Matematisk statistik och diskret matematik

Oscar Palm

March 2023

Contents

1 Grundläggande sannolikhetsteori			gande sannolikhetsteori	2
	1.1	Kombi	inatorik	2
		1.1.1	Multiplikationsprincipen	2
		1.1.2	Permutation	2
2	Ord	llista		3

Chapter no. 1

$Grundl\"{a}ggande\ sannolikhet steori$

1.1 Kombinatorik

För att kunna räkna ut sannolikheten för en händelse behöver vi kunna räkna ut antalet möjliga utfall. Detta görs med hjälp av kombinatorik.

1.1.1 Multiplikationsprincipen

Antag ett slumpexperiment i k steg. Låt n_j vara antalet möjliga utfall i $j \in \{1, ..., k\}$ -te steget. Då ges antalet utfall för hela experimentet av:

$$\Pi_{j=1}^k n_j = n_1 \cdot n_2 \cdot \ldots \cdot n_k$$

Exempel: Exempel

På en dans var 8 herrar och 9 damer bjudna. Om herrarna bara dansar med damerna och vise versa, hur många olika danspar kan det bli?

1.1.2 Permutation

Hur många tal kan vi bilda med siffrorna 1,2,3 utan att repetera en siffra? Enligt multiplikationsprincipen finns $3 \cdot 2 \cdot 1 = 6$ möjliga kombinationer:

$$(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)$$

För att få fram antalet permutationer av $n \in \mathbb{N}$ element kan vi använda följande: När vi väljer första objektet har vi nst val, för andra har vi (n-1)st val och så vidare. Antalet ordningar är då:

$$n(n-1)(n-2)\cdot \dots \cdot 3\cdot 2\cdot 1 = \prod_{i=1}^{n} = n!$$

n! kallas n-fakultet och är ett sätt att räkna antalet permutationer av n element. 0-fakultet definieras som 0! = 1.

Chapter no. 2

Ordlista

Utfall

Resultatet av ett slumpmässigt försök eller experiment.

Utfallsrummet

Mängden av alla möjliga utfall.

Trädiagram

Sätt att beskriva ett utfallsrum av stegvisa slumpexperiment.

Händelse

En delmängd av utfallsrummet S.

Omöjliga händelsen

Annat namn för den tomma mängden \emptyset .

Säkra händelsen

Mängden S kallas för den säkra händelsen.

Disjunktion/ oförenlighet

Två händelser A och B är disjunkta om de inte har några gemensamma utfall. Detta skrivs $A \cap B = \emptyset$.

Parvis disjunktion/oförenlighet

Två händelser A och B är parvis disjunkta om de inte har några gemensamma utfall. Detta skrivs $A \cap B = \emptyset \ \forall i \neq j$.

Kombinatorik

Teorin om räkning av möjliga utfall (kombinationer).

Permutation

En ordning av element i en mängd kallas för en permutation av elementen i mängden.