#### Exercice 1\* (10 min): Le jouet

Un enfant tire à l'aide d'une corde un jouet de masse m. Le jouet, dont les roues sont bloquées, ne peut pas rouler mais glisse sur le sol horizontal avec un coefficient de frottements  $\mu$  et à vitesse constante  $\vec{v}$ . L'angle que fait la corde avec le sol est noté  $\alpha$ . Trouvez la norme  $\|\vec{F_e}\|$  de la force avec laquelle l'enfant tire le jouet.

# Application numérique:

$$\alpha = 45^{\circ}$$
,  $m = 1$  kg,  $\|\vec{v}\| = 3.6$  km.  $h^{-1}$ ,  $\mu = 0.5$ , et  $g = 10$  m. s<sup>-1</sup>.

## Exercice 2\*\* (30 min): Boule de la mort







Une attraction rencontrée parfois dans les fêtes foraines consiste pour un motard à entrer dans une « cage » sphérique et à tourner circulairement de plus en plus vite. Au début de la rotation, le motard se trouve dans le bas de la sphère, puis, à mesure que sa vitesse augmente, il « monte ». Il peut ainsi atteindre le milieu de la sphère. Dans cette situation, le corps du motard est à l'horizontal ( $\alpha=90^\circ$ ).

Soit une cage sphérique de rayon R, et un motard (sur sa moto) que l'on considère comme un point matériel, de masse m, et dans un champ de pesanteur  $\vec{g}$ . On négligera les frottements.

- a) Calculer la vitesse v du motard en fonction de l'angle  $\alpha$  (cf. figure) correspondant à une situation d'équilibre (mouvement circulaire uniforme et il ne tombe pas).
- b) En s'appuyant sur un schéma où on indiquera les forces, montrez sans calcul que  $\alpha$  ne peut pas être supérieur à 90°.

------

#### Formulaire:

Coordonnées polaires :

$$\vec{v} = \dot{\rho}\vec{e}_{\rho} + \rho\dot{\phi}\vec{e}_{\varphi}$$

$$\vec{a} = (\ddot{\rho} - \rho \dot{\varphi}^2) \vec{e}_{\rho} + (\rho \ddot{\varphi} + 2 \dot{\rho} \dot{\varphi}) \vec{e}_{\varphi}$$

Coordonnées cylindriques :

$$\vec{v} = \dot{\rho}\vec{e}_{\rho} + \rho\dot{\phi}\vec{e}_{\varphi} + \dot{z}\vec{e}_{z}$$

$$\vec{a} = (\ddot{\rho} - \rho \dot{\varphi}^2) \vec{e}_{\rho} + (\rho \ddot{\varphi} + 2 \dot{\rho} \dot{\varphi}) \vec{e}_{\varphi} + \ddot{z} \vec{e}_{z}$$

Coordonnées sphériques

$$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + r\dot{\phi}\sin\theta\vec{e}_\phi$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta) \vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \cos \theta \sin \theta) \vec{e}_\theta + (r\ddot{\phi} \sin \theta + 2r\dot{\phi}\dot{\theta} \cos \theta + 2\dot{r}\dot{\phi} \sin \theta) \vec{e}_\phi$$

## Exercice 3\*\* (30 min): Le paquet perdu (extrait examen)

Un camion démarre à vitesse nulle et accélère uniformément pour atteindre la vitesse  $v_0$  en un temps  $t_0$ . Un paquet de masse m repose sur la remorque sans être attaché. Il est situé à la distance D du bord de la remorque. Quand le camion démarre, le paquet se met à glisser vers l'arrière de la remorque avec un coefficient de frottement sec dynamique  $\mu_d$ .

- $\stackrel{D}{\longleftrightarrow}$
- a) Faites un schéma dans un repère lié au sol des différentes forces qui s'exercent sur le paquet.
- b) Calculez l'accélération horizontale du paquet dans le référentiel lié au sol.
- c) Déterminez le temps mis par le paquet pour atteindre le bord de la remorque et tomber.

#### Exercice 4\*\* (30 min): Stabilité dans un cône

Un cube de masse M est placé dans un cône de demi-angle au sommet  $\theta$  comme illustré sur la figure ci-contre. Le cube est à la distance l du sommet du cône. Le cube est dans le champ de pesanteur  $\vec{g}$  et il est soumis à une force de frottement sec de coefficient  $\mu$  avec la surface du cône. Dans ce qui suit, on considérera le cube comme un point matériel.



- a) Dans un premier temps, le cône ne tourne pas. Montrez que la condition pour que le cube ne glisse pas est  $\theta>\theta_{lim}$ . Exprimez  $\theta_{lim}$  en fonction du coefficient de frottement  $\mu$ .  $\mu$  représente-t-il ici le coefficient de frottement dynamique ou statique ?
- b) Le cône, avec  $\theta>\theta_{lim}$ , est ensuite mis en rotation à la vitesse angulaire  $\Omega$  constante (voir schéma). On observe que le cube se met à glisser vers le haut si  $\Omega$  dépasse une valeur  $\Omega_{lim}$ . Exprimez  $\Omega_{lim}$  en fonction de  $\mu$ , g, l et  $\theta$ .

\*\*\*

# Exercice supplémentaire S5.1\*\* (30 min) : Le camionneur

Un camionneur a oublié de redescendre la benne de son camion. Celleci fait un angle  $\alpha$  avec l'horizontale (cf. schéma). Un paquet de masse m, initialement au repos grâce à la force de frottement sec, se trouve en haut de la benne (on note  $\mu_s$  et  $\mu_d$  les coefficients de frottement statique et dynamique).

- a<sub>c</sub>
- a) Déterminez l'angle limite  $\alpha$ , lorsque le camion est à l'arrêt, pour que le paquet ne glisse pas.
  - b) On suppose que l'angle  $\alpha$  est inférieur à l'angle limite. Déterminez la norme minimale de l'accélération horizontale  $a_c$  du camion qui va faire que le paquet se mette en mouvement par rapport à la benne (décrochage du paquet). On suppose que le paquet reste toujours en contact avec la benne.

# Exercice supplémentaire S5.2\*\* (25 min) : Stabilité sur un cône

Un cube de masse M est placé sur un cône dont la forme est définie par angle  $\theta$  comme illustré sur la figure ci-contre. Le cube est à la distance R de l'axe du cône. Le cube est dans un champ de pesanteur  $\vec{g}$  et il est soumis à une force de frottement sec de coefficient  $\mu$  avec la surface du cône. Dans ce qui suit, on considérera le cube comme un point matériel.



- a) Lorsque l'angle  $\theta$  est très grand, le cube ne glisse pas. Cependant, il existe un angle  $\theta_{lim}$  pour lequel le cube n'est plus stable et se met en mouvement. Exprimez cet angle en fonction du coefficient de frottement  $\mu$ . Préciser le type de coefficient de frottement (dynamique ou statique).
  - b) Le cône, avec  $\theta > \theta_{lim}$ , est ensuite mis en rotation à la vitesse angulaire  $\Omega$  (voir schéma). Il existe une valeur de  $\Omega_{lim}$  au-delà de laquelle le cube se met à glisser. Exprimez  $\Omega_{lim}$  en fonction de  $\mu$ ,  $\vec{g}$ , R et  $\theta$ .

### Exercice supplémentaire S5.3\*\*\* (25 min): Bloc sur plan incliné



Un petit bloc (d'une masse m) est placé sur le côté pentu d'un bloc triangulaire (d'une masse M) lui-même posé sur une table horizontale. En supposant qu'il n'y ait aucun frottement sur ces surfaces, déterminez la force qu'il faut exercer sur M pour que m garde une position fixe par rapport au bloc triangulaire (c'est-à-dire qu'il ne glisse pas le long de la pente)