```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
print("done")

data1= pd.read_csv("C:/Users/hp/Desktop/Skills/EDA/Titanic1.csv")
data2= pd.read_csv("C:/Users/hp/Desktop/Skills/EDA/Titanic2.csv")
print("successfully imported")

successfully imported

df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
df= pd.concat([df1,df2], ignore_index = True)
```

The successfully consistenate

print("successfully concatenated")

successfully concatenated

df.head()

→	PassengerId Survived Pclass		Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

+ Code

+ Text

df.tail()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1304	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
	1305	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
	1306	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
	1307	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
	1308	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1309 entries, 0 to 1308 Data columns (total 12 columns): Non-Null Count Dtype Column PassengerId 1309 non-null int64 Survived 1309 non-null int64 Pclass 1309 non-null int64 Name 1309 non-null object 3 1309 non-null object 1046 non-null float64 5 Age 6 SibSp 1309 non-null int64 Parch 1309 non-null int64 Ticket 1309 non-null object 9 Fare 1308 non-null float64

11 Embarked 1307 non-null object dtypes: float64(2), int64(5), object(5)

295 non-null

object

memory usage: 122.8+ KB

df.describe()

10 Cabin

→	PassengerId		Survived	Survived Pclass		SibSp	Parch	Fare
	count	1309.000000	1309.000000	1309.000000	1046.000000	1309.000000	1309.000000	1308.000000
	mean	655.000000	0.377387	2.294882	29.881138	0.498854	0.385027	33.295479
	std	378.020061	0.484918	0.837836	14.413493	1.041658	0.865560	51.758668
	min	1.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
	25%	328.000000	0.000000	2.000000	21.000000	0.000000	0.000000	7.895800
	50%	655.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	982.000000	1.000000	3.000000	39.000000	1.000000	0.000000	31.275000
	max	1309.000000	1.000000	3.000000	80.000000	8.000000	9.000000	512.329200

df.isnull().sum()

→ PassengerId 0 Survived 0 Pclass 0 Name 0 0 Sex 263 Age SibSp 0 0 Parch Ticket 0 Fare 1 Cabin 1014 Embarked 2 dtype: int64

#dealing with missing values in Age column.
mean_age = df['Age'].mean()
rounded_mean_age = round(mean_age, 2)
print(rounded_mean_age)

df['Age'] = df['Age'].fillna(rounded_mean_age)

→ 29.88

df.tail()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1304	1305	0	3	Spector, Mr. Woolf	male	29.88	0	0	A.5. 3236	8.0500	NaN	S
	1305	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.00	0	0	PC 17758	108.9000	C105	С
	1306	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.50	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
	1307	1308	0	3	Ware, Mr. Frederick	male	29.88	0	0	359309	8.0500	NaN	S
	1308	1309	0	3	Peter, Master. Michael J	male	29.88	1	1	2668	22.3583	NaN	С

df.isnull().sum()

```
→ PassengerId
                      0
    Survived
                      0
    Pclass
                      0
    Name
                      0
    Sex
    Age
                      0
                      0
    SibSp
    Parch
                      0
    Ticket
                      0
    Fare
                     1
    Cabin
                  1014
                     2
    Embarked
    dtype: int64
```

df["Embarked"] = df["Embarked"].replace(np.nan, "unknown")

df.isnull().sum()


```
plt.figure(figsize = (4,5))
plot1= sns.countplot(x= "Survived", data = df, palette=["#443752","#9b7ab3"])
plot1.bar_label(plot1.containers[0])
plot1.bar_label(plot1.containers[1])
plt.title("Number of Survived and Dead Passengers")
plt.xlabel("0:Dead, 1:Survived")
plt.ylabel("count of passengers")
plt.show()
```

C:\Users\hp\AppData\Local\Temp\ipykernel_2720\1167081184.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

plot1= sns.countplot(x= "Survived", data = df, palette=["#443752","#9b7ab3"])

Number of Survived and Dead Passengers 800 - 815 700 - 600 - 500 - 494 200 - 100 - 100 - 0 0:Dead, 1:Survived

```
plt.figure(figsize = (4,5))
plot1= sns.countplot(x= "Sex", data = df, palette=["#443752","#9b7ab3"], hue="Survived")
plot1.bar_label(plot1.containers[0])
plot1.bar_label(plot1.containers[1])
plt.title("Survived and Dead Passengers by Gender")
plt.xlabel("Gender of Passenger, 0:dead & 1:survived")
plt.ylabel("count of passengers")
plt.show()
```


Here, we conclude that female passengers have a higher survival rate than male passengers.

female

```
colour =["#443752","#9b7ab3","#89649a"]
gb= df.groupby("Pclass").agg({"Pclass": "count"})
plot2= plt.pie(gb["Pclass"],autopct="%1.2f%%",colors= colour,labels= gb.index)
plt.title(" Percentage of Passengers in each class")
plt.legend(loc= "center right")
plt.show()
```

Gender of Passenger, 0:dead & 1:survived

→

0

male

Percentage of Passengers in each class


```
plt.figure(figsize = (4,5))
plot1= sns.countplot(x= "Pclass", data = df, palette=["#443752","#9b7ab3"], hue="Survived")
plot1.bar_label(plot1.containers[0])
plot1.bar_label(plot1.containers[1])
plt.title("Survived and Dead Passengers by Passenger class")
plt.xlabel("Passenger Class, 0:dead & 1:survived")
plt.ylabel("count of passengers")
plt.show()
```

→

rescue.

Survived and Dead Passengers by Passenger class

Through the above two graphs, we can conclude that the largest population of passengers belongs to Pclass 3, at the same time the maximum number of passengers died belongs also belongs to Pclass3 which implies that passengers from Pclass 1 and 2 were prioritized at the time of

```
colour =["#443752","#9b7ab3","#89649a","red"]
gb1= df.groupby("Embarked").agg({"Embarked": "count"})
plot2= plt.pie(gb1["Embarked"],autopct="%1.2f%%",colors= colour,labels= gb1.index)
plt.title(" Percentage of Passengers from each port")
plt.legend(loc= "lower right")
plt.show()
```

Percentage of Passengers from each port

The name of the ports are: C = Cherbourg, Q = Queenstown, S = Southampton. From this pie chart we can conclude that the maximum passengers embarked from Southampton port.

```
plt.figure(figsize = (4,5))
plot1= sns.countplot(x= "Survived", data = df, palette=["#443752","#9b7ab3","#89649a","#574571"], hue="Embarked")
plot1.bar_label(plot1.containers[0])
plot1.bar_label(plot1.containers[1])
plot1.bar_label(plot1.containers[2])
plot1.bar_label(plot1.containers[3])
plt.title("Survived and Dead Passengers by each Embarked port")
plt.xlabel("Embarked port, 0:dead & 1:survived")
plt.ylabel("count of passengers")
plt.show()
```

Survived and Dead Passengers by each Embarked port

