Numerical Algorithms

Fall 2020

Assignment 11

November 19, 2020

Exercise 1 [5 points]

For n > 1, let ω denote the n-th root of unity $\omega = e^{2\pi i/n}$. Show that

$$1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{n-1} = 0.$$

Hand in your proof.

Exercise 2 [5 points]

For $n \in \mathbb{N}$, let $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ be two vectors in \mathbb{R}^n such that

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 0, \tag{1}$$

and let P be the closed planar polygon with n vertices $p_i=(x_i,y_i), i=1,\ldots,n$. Clearly, the barycentre \bar{p} of P is the origin, $\bar{p}=(0,0)$. Now consider the midpoint algorithm with normalization, which starts with the polygon $P^{(0)}=P$ and iteratively creates a sequence of polygons $P^{(k)}$ with n vertices $p_i^{(k)}=(x_i^{(k)},y_i^{(k)}), i=1,\ldots,n$ by computing

$$u^{(k+1)} = M_n x^{(k)}$$
 $x^{(k+1)} = u^{(k+1)} / \|u^{(k+1)}\|_2,$
 $v^{(k+1)} = M_n y^{(k)}$ $y^{(k+1)} = v^{(k+1)} / \|v^{(k+1)}\|_2,$

for k = 0, 1, 2, ..., where M_n is the averaging matrix that we defined in the lecture.

Implement this algorithm and run it for n=50 and random initial points $p_i \in [-1,1]^2$ satisfying (1). Plot $P^{(k)}$ for $k=50,100,150,\ldots,1000$ for three different random initial polygons.

Hand in your code and the output of your program.

Solutions must be returned online or in class on November 26, 2020