

Advanced SSL: The good, the bad, and the ugly

AppSec DC November 12, 2009

Michael Coates

Global Membership Committee AppSensor Project Lead

Aspect Security

michael.coates@aspectsecurity.com http://michael-coates.blogspot.com

The OWASP Foundation

http://www.owasp.org

Who am I?

- Senior Application Security Engineer
 - @ Aspect Security
- Creator & Leader OWASP AppSensor
- Security Blogger
 - http://michael-coates.blogspot.com
- Life Outside Security?
 - ▶ Motorcycle, Triathlons

SSL: Super Shiny Locks

Padlock != Secure

SSL Growth

■ > 1 Million SSL Certificates

The Good

- Confidentiality
- Integrity
- Replay Protection
- **■** End Point Authentication

The Bad - Usability

The security certificate presented by this website was not issued by a trusted certificate authority

The security certificate presented by this website was issued for a different website's addres.

The Bad – User Expectations

- How did you get to the site?
- Is HTTPS in the URL?
- Are those zeros or o's?
- Did you get any browser warning messages?
- Did you click "ok" or "accept" to any popup boxes?

"I've told many people about the https and they didn't know!" – dad

The Bad — Websites are Configured Wrong!

■ Scenario 1: Non-SSL Landing Page


```
<form method="POST" action="https://mybank.com/login" > Username: <input type="text" name="user"> <br> Password: <input type="password" name="pass"> <br> </form>
```

Non-SSL Landing Page Attack

HTTP REQUEST
GET http://mybank.com

mybank.com

HTTP Response

```
http://mybank.com

Returning Users: Log On 
User ID:
Steven
Password:
*******
```

HTTP POST POST http://mybank.com

user:Steven&pass:JOSHUA

```
<form method="POST"
action="https://mybank.com/
login" >
...
```

The Bad — Websites are Configured Wrong!

■ Scenario 2: HTTP to HTTPS redirects

https://mybank.com	n	
Returning Users: Log On	i	
User ID:		
Password:		
Remember my User ID		
Forgot User ID/Password?		
Log On		
	& Auto-Su	m 70.

HTTP to HTTPS redirects

HTTP to HTTPS redirects

The Bad — Websites are Configured Wrong!

■ Scenario 3: Mixed Content

The Bad - Not All SSL is equal

■ View Ciphers by Strength

openssl ciphers <strength> -v

■ Test Server:

openssl s_client -connect site.com:443 -cipher <strength>

■ Test Client:

openssl s_server -www -cert cacert.pem -key cakey.pem

<strength>=NULL|LOW|MEDIUM|HIGH|FIPS

FIPS Approved Ciphers

ADH-AES256-SHA DHE-RSA-AES256-SHA DHE-DSS-AES256-SHA

AES256-SHA

ADH-AES128-SHA

DHE-RSA-AES128-SHA DHE-DSS-AES128-SHA

AES128-SHA

ADH-DES-CBC3-SHA

EDH-RSA-DES-CBC3-SHA

EDH-DSS-DES-CBC3-SHA

DES-CBC3-SHA

LOW Strength Ciphers

ADH-DES-CBC-SHA EDH-RSA-DES-CBC-SHA EDH-DSS-DES-CBC-SHA DES-CBC-SHA DES-CBC-MD5

The Ugly

■ MD5 Collision Rogue CA Creation

- Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik, Benne de Weger
- http://www.win.tue.nl/hashclash/rogue-ca/

■ SSLstrip

■ Null Prefix Attacks Against SSL/TLS Certificates

- Moxie Marlinspike
- http://www.thoughtcrime.org/software/sslstrip/
- http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf

MD5 Collision Rogue CA

Null Prefix Attack

Part 1: Certificate Authority

■ CA verifies ownership of root domain

www.foo.com == www.anything.foo.com == nonexistent.a.b.c.foo.com

■ What about? amazon.com\0.foo.com

Part 2: Browser SSL Verification

■ Microsoft CryptoAPI - \0 is eos amazon.com == amazon.com\0.foo.com

■ Vulnerable: "Firefox, Internet Explorer, Chrome, Thunderbird, Outlook, Evolution, Pidgin, AIM, irssi"

SSLstrip

- MitM SSL Connections
 - ▶ ARP Spoofing
 - ▶ IP Tables

- Execute Null Prefix Attack
- Block Certificate Revocation Messages
 - ▶ OCSP Attacks

Is There Hope?

- Average User == Not Technical
- Most Deployments Vulnerable
- Specialized Tools Available

Doing It Right...

The Application

- SSL only
- ✓ No HTTP -> HTTPS redirects: HTTP shows
- "User Education" message
- ✓ No SSL errors or warnings

The User

- **☑** Bookmark the HTTPS page
- Stop if any SSL warnings/errors presented

The Browser

- Set realistic user expectations
- **☑** Provide "Secure" mode option

Internal Network SSL

■ Protect the data on internal network too!

Resources - ssllabs.com (Ivan Ristic)

Recently Seen		Recent Best-Rated		Recent Worst-Rated	
amazon.com	B (67)	sparklit.com	A (91)	webmail.verto.com.br	F (0)
chase.com	B (72)	www.startssl.org	A (88)	webmail.stiefel.com	F (0)
bankofamerica.com	C (60)	ais2.uniba.sk	A (88)	www.kaching.com	F (0)
gmail.google.com	C (64)	blog.startcom.org	A (88)	imperva.com	F (0)

SSL Report: amazon.com (72.21.207.65)

Resources — sslfail.com (Tyler Reguly, Marcin Wielgoszewski)

Thanks

■ Questions:

Lobby —or-

michael.coates@aspectsecurity.com -or-

http://michael-coates.blogspot.com

