Strutture Dati

Lezione 2 Ricorsione Analisi degli algoritmi

Oggi parleremo di

- Ricorsione
- Analisi degli algoritmi
 - complessità
 - temporale
 - spaziale
 - notazioni O, Ω, θ

,

Ricorsione (non si sa mai!)

- Un algoritmo (o una funzione) si dice ricorsivo (o ricorsiva) quando contiene chiamate a se stesso/a
- Ricorsione diretta
 - A chiama A
- Ricorsione indiretta
 - A chiama B
 - B chiama B₁
 - B₁ chiama B₂
 -
 - B_n chiama A

3

Ricorsione

- In una definizione ricorsiva si definisce una classe di oggetti strettamente correlati tra loro nei termini degli oggetti stessi
- La definizione ricorsiva prevede
 - una base: si definiscono uno o più oggetti semplici
 - un passo di induzione: si definiscono oggetti più grandi nei termini di quelli più piccoli della classe

```
Esempio 1: Fattoriale

n!=n * (n-1)! \quad n \ge 1

0! = 1
```

```
int fact(int n)
{
   if (n==0) return 1;
   return n*fact(n-1);
}
```

.

Esempio 2: Il problema dei conigli

- Al mese 1 vi è una coppia di conigli neonati
- Al mese successivo la coppia inizia il processo di riproduzione
 - ogni coppia genera una nuova coppia ogni mese
 - ogni coppia non è in grado di procreare durante il primo mese di vita
- Quante coppie vi sono al mese n , F_n?

Il problema dei conigli

- Al mese 1 vi è 1 coppia: F₁=1
- Al mese 2 la coppia non può procreare: F₂=1
- Al mese 3 la coppia può procreare: F₃=2
- Al mese 4 l'ultima coppia nata non è fertile, quindi solo la coppia originale si riproduce: F₄=3
- Al mese n vi sono le coppie presenti al mese precedente, F_{n-1}, più quelle generate nell'ultimo mese (ovvero le coppie fertili al mese n-1), F_{n-2}

$$F_n = F_{n-1} + F_{n-2}$$
 con $F_1 = 1$ e $F_2 = 1$
o $F_0 = 0$ e $F_1 = 1$

Il problema dei conigli

Successione di Fibonacci

```
F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 ... 0 1 1 2 3 5 8 13 21 ...
```

```
int fib(int n)
{
   if (n==0) return 0;
   if (n==1) return 1;
   return fib(n-1)+fib(n-2);
}
```

7

```
Ricerca binaria iterativa
```

Ricerca binaria ricorsiva

```
int ricbin(int lista[], int numric, int primo, int ultimo)
{
  int mezzo;

if (primo<=ultimo) {
    mezzo = (primo + ultimo)/2;
    switch(CONFRONTA(lista[mezzo], numric)) {
        case -1 : return(ricbin(lista, numric, mezzo+1, ultimo));
        case 0 : return mezzo;
        case 1 : return(ricbin(lista, numric, primo, mezzo -1));
      }
}
return -1;
}</pre>
```

Divide-et-impera

- Nella ricorsione un problema si ripropone al suo interno in sottoproblemi uguali all'originale, ma applicati a sottoinsiemi dei dati
- La soluzione globale si ottiene come combinazione delle soluzioni dei sottoproblemi (es. Fibonacci)
- Il metodo divide-et-impera consiste nei seguenti passi
 - 1. DIVIDI il problema in un certo numero di sottoproblemi
 - 2. CONQUISTA i sottoproblemi risolvendoli ricorsivamente
 - COMBINA insieme le soluzioni dei sottoproblemi in una unica soluzione
- Un bilanciamento della partizione consente di guadagnare in efficienza (es. Quicksort, Mergesort)

10

Ricorsione

- Vantaggi
 - facilità di formulazione
 - eleganza
 - compattezza
 - correttezza
 - · calcolo della complessità
- Svantaggi
 - comprensibilità delle operazioni
 - tempo di calcolo

Analisi di un algoritmo

- Un problema può essere risolto da più di un algoritmo
- Quale scegliere?
- Quello migliore!

11

9

Analisi di un algoritmo

- Criteri per giudicare la qualità di un algoritmo
 - semplicità
 - chiarezza
 - efficienza
 - quantità di risorse usate
 - tempo di esecuzione
 - quantità di memoria

13

Analisi di un algoritmo

- Fattori che influenzano il tempo di esecuzione
 - architettura
 - linguaggio di programmazione
 - compilatore
 - fattori esterni
 - incidenza sulla velocità di esecuzione per un fattore costante
- Le analisi che faremo saranno tutte a meno di fattori costanti

14

Analisi di un algoritmo

- I dati del problema (le sue dimensioni!)
- Si definisce dimensione dell'input una funzione che associa ad ogni ingresso un numero naturale che rappresenta intuitivamente la quantità di informazione contenuta nel dato
 - ordinamento: numero di oggetti da ordinare
 - gestione dati: numero di dati da gestire
 - problemi sui grafi: numero di archi e nodi del grafo
- Dipende dalla rappresentazione dei dati (struttura dati)

15

Analisi di un algoritmo

- Definiamo il tempo di esecuzione o complessità in tempo T(n) come il numero di operazioni elementari eseguite su un input di dimensione n
- Il calcolo del tempo esatto è problematico
- Vogliamo prescindere dalla reale esecuzione dell'algoritmo (calcolo teorico della complessità in tempo)
- E' necessaria un'operazione di astrazione

6

Analisi di un algoritmo

- Possiamo determinare il numero totale di passi compiuti dal programma/algoritmo su un input di dimensione n
 - paragonare due programmi diversi su uno stesso input
 - capire come cresce il tempo di calcolo al variare delle caratteristiche dell'input
- Cos'è un passo di un programma?
 - linea di pseudocodice
 - istruzione

Analisi di un algoritmo

- Assegnare un costo astratto ad ogni passo dell'algoritmo comprensivo di
 - numero di operazioni aritmetiche elementari
 - · costo effettivo di ogni operazione elementare
- Determinare il numero di volte che viene eseguito ciascun passo
- Ipotesi:
 - una singola istruzione richiede un tempo di esecuzione costante
 - istruzioni diverse richiedono tempi di esecuzione diversi

Esempio: un problema di conteggio

- Input
 - Un intero N dove $N \ge 1$.
- Output
 - Il numero di coppie ordinate (i , j) tali che i e j sono interi e $1 \le i \le j \le N$.
- Esempio: Input N=4
 - (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)
 - Output = 10

19

```
Algoritmo 1
  int Count 1(int N)
     sum = 0
    for i = 1 to N \longrightarrow 2N

for j = i to N \longrightarrow 2\sum_{i=1}^{N} (N+1-i)
        II tempo di esecuzione è 2+2N+3\sum_{i=1}^{N}(N+1-i)=\frac{3}{2}N^2+\frac{7}{2}N+2
```

Algoritmo 2 int Count 2(int N) 1 sum = 0 for i = 1 to N \longrightarrow 2Nsum = sum + (N+1-i) + 4Nreturn sum — 1 Il tempo di esecuzione è 6N+2Osserviamo: $\sum_{i=1}^{N} (N+1-i) = \sum_{i=1}^{N} i = N(N+1)/2$

Riassumendo

Algoritmo	Tempo di Esecuzione
Algoritmo 1	$\frac{3}{2}N^2 + \frac{7}{2}N + 2$
Algoritmo 2	6N+2
Algoritmo 3	5

La complessità in pratica

■ Per n=10

■ Per n=100

■ Per n=500

• $T_1(n)=187$

T₁(n)=15352

• $T_2(n)=62$ • $T_2(n)=602$

• $T_1(n)=376752$

• $T_2(n)=3002$

• $T_3(n)=5$

T₃(n)=5

• $T_3(n)=5$

■ Quale è l'algoritmo più conveniente?

La complessità in pratica

- Per valutare la bontà di un algoritmo occorre effettuare una analisi asintotica della complessità in tempo, ovvero per n →∞
- Occorre studiare il comportamento di T(n) per grandi valori di n

25

Funzioni di complessità tipiche

Sia A1 di complessità in tempoSia A2 " "

Sia A3 " "

 $nlog_2n$ (loglineare) n^2 (quadratica) n^3 (cubica)

■ Sia A4 " " " ■ Sia A5 " "

Sia A6

2ⁿ (esponenziale) 3ⁿ (esponenziale)

(lineare)

	Complessità	Max dim		
A1	n	6*10 ⁷		
A2	$nlog_2n$	28*10 ⁵		
A3	n^2	77*10 ²		
A4	n^3	390		
A5	2 ⁿ	25		

T(operazione elementare)= 1μsec (10-6sec)

Dimensioni massime di input processabili in un minuto

26

La complessità

comp/ dim	n=10	n=20	n=50	n=100	n=10 ³	n=10 ⁴	n=10 ⁵	n=10 ⁶
n	10 μs	20 μs	50 μs	0.1 ms	1 ms	10 ms	0.1 s	1 s
nlog ₂ n	33.2μs	86.4μs	0.28ms	0.6 ms	9.9 ms	0.1 s	1.6 s	19.9 s
n²	0.1 ms	0.4 ms	2.5 ms	10 ms	1 s	100 s	2.7 h	11.5 g
n ³	1 ms	8 ms	125 ms	1 s	16.6 m	11.5 g	31.7 a	≈ 300 c
2 ⁿ	1ms	1 s	35.7 a	≈10 ¹⁴ c	••	••	••	
3 ⁿ	59 ms	58 m	≈10 ⁸ c	••	••	••	••	••

• • > millennio

T(operazione elementare)= $1\mu sec$ ($10^{-6}sec$)

27

La complessità

- Algoritmi di complessità $\sim n^k \ (k \ge 2)$ sono applicabili sono per n non troppo elevato
 - 2≤k<3 applicabili su input di dimensione media
 - k ≥3 tempi inaccettabili
- Algoritmi di complessità lineare o quasi lineare (nlogn) utilizzabili anche per input di dimensioni elevate
- Algoritmi di complessità esponenziale hanno tempi di calcolo proibitivi anche per input di dimensioni limitate

28

La notazione O-grande

Esprime il tempo di esecuzione in maniera "approssimata"

Definizione

Siano f(n) e g(n) due funzioni definite in N e a valori in R

Diciamo che f(n) è O-grande di g(n) e scriviamo $f(n) \in O(g(n))$ (oppure f(n) = O(g(n))) se esistono una costante c > 0 e un numero $n_0 \in N$ tale che $\forall n \geq n_0$ si ha $f(n) \leq c * g(n)$

Si dice che f(n) ha ordine di grandezza minore o uguale a quello di g(n)

La notazione O-grande

g(n) rappresenta il **limite superiore asintotico** a f(n) (a meno di un fattore costante)

Esempio di limite superiore asintotico

$$3n^2 + 5 \stackrel{.}{\circ} O(n^2)$$

$$4 g(n) = 4n^2$$

$$= 3n^2 + n^2$$

$$\ge 3n^2 + 9 \quad \text{per ogni } n \ge 3$$

$$> 3n^2 + 5$$

$$= f(n)$$
Quindi, $f(n) \in O(g(n))$

$$g(n) = n^2$$

Esercizio sulla notazione O

Mostrare che $3n^2+2n+5 \in O(n^2)$

$$10n^2 = 3n^2 + 2n^2 + 5n^2$$
$$\ge 3n^2 + 2n + 5$$

$$c = 10, n_0 = 1$$

Esercizio sulla notazione O

Mostrare che $2n^2+3n+5 \in O(n^2)$

Mostrare che
$$2n^2+3n+5 \in O(n^2)$$

$$2n^2+3n+5 \le 4n^2$$

$$c=4, n_0=3$$

$$2n^2+3n+5 \le 4n^2$$

$$2n^2+3n+5 \le 4n^2$$

$$2n^2+3n+5 \le 2n^2+3n+5$$

Utilizzo della notazione O

- In genere quando impieghiamo la notazione O, utilizziamo la formula più "semplice".
 - Scriviamo
 - \bullet 3*n*²+2*n*+5 = $O(n^2)$
 - Le seguenti sono tutte corrette ma in genere non le si usa:
 - \bullet 3 $n^2+2n+5 = O(3n^2+2n+5)$
 - $4 3n^2 + 2n + 5 = O(n^2 + n)$
 - $3n^2+2n+5 = O(3n^2)$

La notazione Omega-grande

Esprime il tempo di esecuzione in maniera "approssimata"

Definizione

Siano f(n) e g(n) due funzioni definite in N e a valori in R

Diciamo che f(n) è Ω -grande di g(n) e scriviamo $f(n) \in \Omega(g(n))$ se esistono una costante c>0 e un numero $n_0 \in N$ tale che $\forall n \ge n_0 \text{ si ha } f(n) \ge c * g(n)$

La notazione Omega-grande

g(n) è detto un **limite inferiore asintotico** di f(n)

Esempio di limite inferiore asintotico

Esercizio sulla notazione O e Ω

■ Mostrare che $3n+2 \in O(n)$ e $3n+2 \in \Omega(n)$

La notazione *Theta*-grande

Definizione

Siano f(n) e g(n) due funzioni definite in N e a valori in R

Diciamo che f(n) è Θ -grande di g(n) e scriviamo $f(n) \in \Theta(g(n))$ se esistono due costanti $c_1 > 0, c_2 > 0$ e un numero $n_0 \in N$ tale che $\forall n \geq n_0$ si ha $c_1 * g(n) \leq f(n) \leq c_2 * g(n)$

3

Riassumendo

- *O* : *O-grande*: limite superiore asintotico
- $\blacksquare \Omega$: Omega-grande: limite inferiore asintotico
- *Θ*: *Theta*: limite asintotico stretto
- Usiamo la *notazione asintotica* per dare un limite ad una funzione (f(n)), a meno di un fattore costante (c).

La complessità in spazio

- Definiamo la complessità in spazio come il massimo spazio invaso nella memoria durante l'esecuzione dell'algoritmo
- Si studia la complessità asintotica, limitandosi al suo ordine di grandezza
- Ciò che definisce la bontà di un algoritmo è la complessità in tempo

41

Caso medio, pessimo, ottimo

- Per complessità media si intende la complessità di un algoritmo mediato su tutte le possibili occorrenze iniziali dei dati (difficile!)
- Per complessità nel caso pessimo si intende la complessità relativa a quella particolare occorrenza iniziale dei dati per cui l'algoritmo ha comportamento pessimo
 - fornisce un limite superiore alla complessità
 - semplice da individuare
- La complessità nel caso ottimo non ci dice nulla sulla bontà di un algoritmo