Course	18AIC304J	Course		Reinforcem	ent Learning Techniques	Course	С	Professional Core Courses	L	Τ	Р	С
Code		Name				Category			2	0	2	3
Pre-requisite	Nil			Co-requisite	Nil	Pro	gressive	Nil				
Courses				Courses		С	ourses					
Course Offering	Department	Artificia	al Intelligence		Data Book / Codes/Standards	Nil	•					

Course O	Objectives The purpose of learning this course is to:				Learning			Program Outcomes (PO)														
1	Introduce a range of topic	s related to Reinforcement Learning and probability concepts		1	2	3		1	2	3	4	5	6	7	8	9	1	1 1	1 2	1 3	1 4	1 5
2	Gain knowledge on Mark	ov Decision Process									٦											
3	The dynamic programming	g methods of Reinforcement L		(Bloom)	(%	(%		Φ			arch					ᆠ						
4	The Monte Carlo Prediction	The Monte Carlo Prediction and Time Difference Learning				ut (6		edge		nen	Rese	Φ				Work		auce				ļ
5	Function Approximation n	ethods and Q-leaming		Thinking (roficier	Attainment (%)			alysis	Development	esign, F	ol Usag	& Culture	ıt &		Team	ation	. & Finance	earning			
Course O	lutcomes (CO):	At the end of this course, learners will be able to:		Level of Th	Expected Proficiency (%)	Expected A		Engineering Knowledge	Problem Analysis	Design & D	Analysis, Design, Research	Modern Tool Usage	Society & (Environment &	Ethics	Individual &	Communication	Project Mgt.	Life Long Learning	PS0 - 1	PS0-2	PS0-3
CO-1:	Device solutions to small p	Device solutions to small problems using reinforcement Learning and Concepts of Probability				75		2	2	2	-	-		-	-	-	1	-	3	-	-	-
CO-2:	Express proficiency in utilizi	Express proficiency in utilizing Markov Decision Process and Bellman Equation for reinforcement learning				70		3	3	2	,	-	-	-	-	-	1	-	3	-	-	
CO-3:	Apply dynamic programming techniques on Markov decision process and Monte Carlo methods			3	80	70		3	3	3	,	-	-	-	-	-	1	-	3	-	-	
CO-4:	Implement Time difference	Implement Time difference Learning for real world problems			80	70		3	3	3	1	-	-	-	-	-	-	-	3	-	-	
CO-5:	Apply Approximation metho	Apply Approximation methods of learning and Q-Learning Techniques to solve a problem				70		3	3	3	,	-	-	-	-	-	1	-	3	-	-	

Duration (hour)		15	15	15	15	15
S-1 SLO-1		Introduction to Reinforcement Learning	Markov Decision Process	Overview of dynamic programming forMDP	Monte Carlo Prediction	Getting started with the function approximation methods
	SLO-2	Examples	The Agent–Environment Interface		Monte Carlo Estimation of Action Values	
S-2	SLO-1	Elements of Reinforcement Learning - Limitations and Scope	Goals and Rewards-Returns	Definition and formulation of planning in MDPs	Monte Carlo Control	Revisiting risk minimization
	SLO-2	,	Unified Notation for Episodic and Continuing Tasks			gradient descent from Machine Learning

S-3			The Markov Property	principle of optimality	Off-policy Prediction via Importance Sampling	Gradient MC and Semi-gradient TD(0) algorithms
	SLO-2	History of Reinforcement Learning	Markov Decision Processes	Policy Evaluation	Incremental Implementation	
S 4-5 (LAB	SLO-1	LAB 1: Installation of Code Standards and Libraries used in RL (Python/Keras/Tensorflow)	LAB 4: Dynamic programming algorithms for solving MDPs.	Lab 7: Monte Carlo Prediction	Lab 10: Q-Learning (Off Policy TD Learning)	Lab 13: Policy Gradient: REINFORCE with Baseline
S-6	SLO-1	Probability concepts	Value Functions	Policy Improvement	Off-Policy Monte Carlo Control	Linear Methods
	SLO-2	Axioms of probability	-			
S-7	SLO-1	Concepts of random variables	Optimal Value Functions	Policy Iteration	Temporal-Difference Learning: TD Prediction	Eligibility trace for function approximation
	SLO-2					
S-8	SLO-1	PMF, PDFs, CDFs, Expectation	Optimality and Approximation	Value Iteration	Advantages of TD Prediction Methods	Control with function approximation
	SLO-2				Optimality of TD(0)	
S 9-10 (LAB	SLO-1	Lab 2: Implement Tic-tac-toe problem	Lab 5: Dynamic Programming: Policy Evaluation and Policy	Lab 8: Monte Carlo Off-Policy Control with Importance Sampling	Lab 11:Q-Learning with Linear Function Approximation	Lab 14: Policy Gradient: Actor Critic with Baseline
)	SLO-2		Iteration			
S-11	SLO-1	Concepts of joint and multiple random variables	Bellman expectation equations	Generalized Policy Iteration	TD(1)	Least squares, Experience replay in deep Q-Networks
	SLO-2			Efficiency of Dynamic Programming	$TD(\lambda)$	
S-12	SLO-1	joint, conditional and marginal distributions	Bellman optimality equations	Banach fixed point theorem	Sarsa: On-Policy TD Control	Naive REINFORCE algorithm
	SLO-2	Correlation and independence				Bias and variance in Reinforcement Learning
S-13	SLO-1	An-Armed Bandit Problem	Markov Reward Process	proof of convergence of policy evaluation and value iteration	Q-Learning: Off-Policy TD Control	Actor-Critic Methods
	SLO-2	Action-Value Methods.]	algorithms	unified view of DP, MC and TD evaluation methods	
S 14-15	SLO-1	Lab 3: Implement Armed Bandit Problem	Lab 6:Dynamic Programming: Policy Improvement and Value	Lab 9: SARSA (On Policy TD Learning)	Lab 12: Deep Q-Learning for Atari Games	Lab 15: Policy Gradient: Actor Critic with Baseline for Continuous
(LAB	SLO-2		Iteration			Action Spaces

Learning	1.	Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An introduction", Second Edition, MIT Press, 2019
Resources	2.	Algorithms for Reinforcement learning, by Csaba Szepesvari, Morgan & Claypool Publishers, 2010.
	3.	Probability, Statistics, and Random Processes for Electrical Engineering, 3rd Edition, Alberto Leon-Garcia, 2009
	4.	"Machine Learning: A Probabilistic Perspective", Kevin P. Murphy, 2012

Learning Asses	ssment										
-	Continuous Learning Assessment (50% weightage)										n /EO0/ woightogo)
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA -	4 (10%)	Final Examination (50% weightag	
	Level of Thinking	Theory (5%)	Practice (5%)	Theory (7.5%)	Practice (7.5%)	Theory (7.5%)	Practice (7.5%)	Theory (5%)	Practice (5%)	Theory (25%)	Practice (25%)
Level 1	Remember	20%		15%		15%				15%	
Level 2	Understand	20%		25%		25%				20%	
Level 3	Apply	45%	30%	40%	35%	40%	40%	45%	20%	45%	30%
Level 4	Analyze	15%	40%	20%	35%	20%	30%	35%	50%	20%	35%
Level 5	Evaluate		30%		30%		30%	20%	30%		35%
Level 6	Create	20%		15%		15%				15%	
	Total	100 %	100 %	100 %	100 %	100 %	100 %	100%	100%	100%	100%

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc..

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr. Soundararajan Dhakshinamoorthy, Principle Software Engineer, Technology Leadership, Optum Insights India Pvt Ltd., Chennai.	Dr. Udendran, Dept. of CSE., Bharathidasan University, Tiruchirappalli	Mr. S. Joseph James, SRMIST							