In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
df=pd.read_csv(r"https://github.com/YBI-Foundation/Dataset/raw/main/Fish.csv")
```

In [3]:

```
df.head()
```

Out[3]:

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
0	1	Bream	242.0	11.5200	4.0200	23.2	25.4	30.0
1	1	Bream	290.0	12.4800	4.3056	24.0	26.3	31.2
2	1	Bream	340.0	12.3778	4.6961	23.9	26.5	31.1
3	1	Bream	363.0	12.7300	4.4555	26.3	29.0	33.5
4	1	Bream	430.0	12.4440	5.1340	26.5	29.0	34.0

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 8 columns):
    Column
              Non-Null Count Dtype
#
               -----
 0
    Category 159 non-null
                               int64
 1
    Species
              159 non-null
                               object
 2
    Weight
              159 non-null
                               float64
                               float64
 3
    Height
              159 non-null
               159 non-null
                               float64
 4
    Width
 5
    Length1
              159 non-null
                               float64
 6
    Length2
              159 non-null
                               float64
              159 non-null
 7
    Length3
                               float64
dtypes: float64(6), int64(1), object(1)
memory usage: 10.1+ KB
```

In [5]:

```
df.describe()
```

Out[5]:

	Category	Weight	Height	Width	Length1	Length2	Length3
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	3.264151	398.326415	8.970994	4.417486	26.247170	28.415723	31.227044
std	1.704249	357.978317	4.286208	1.685804	9.996441	10.716328	11.610246
min	1.000000	0.000000	1.728400	1.047600	7.500000	8.400000	8.800000
25%	2.000000	120.000000	5.944800	3.385650	19.050000	21.000000	23.150000
50%	3.000000	273.000000	7.786000	4.248500	25.200000	27.300000	29.400000
75%	4.500000	650.000000	12.365900	5.584500	32.700000	35.500000	39.650000
max	7.000000	1650.000000	18.957000	8.142000	59.000000	63.400000	68.000000

In [6]:

```
df.shape
```

Out[6]:

(159, 8)

In [7]:

```
df.columns
```

Out[7]:

In [8]:

```
y=df['Weight']
```

In [9]:

y.shape

Out[9]:

(159,)

```
In [10]:
У
Out[10]:
0
       242.0
1
       290.0
2
       340.0
3
       363.0
       430.0
154
        12.2
155
        13.4
156
        12.2
157
        19.7
158
        19.9
Name: Weight, Length: 159, dtype: float64
In [11]:
x=df[['Height','Width','Length1','Length2','Length3']]
In [12]:
x=df.drop(['Category','Species','Weight'],axis=1)
In [13]:
x.shape
Out[13]:
(159, 5)
```

```
In [14]:
```

Х

Out[14]:

	Height	Width	Length1	Length2	Length3
0	11.5200	4.0200	23.2	25.4	30.0
1	12.4800	4.3056	24.0	26.3	31.2
2	12.3778	4.6961	23.9	26.5	31.1
3	12.7300	4.4555	26.3	29.0	33.5
4	12.4440	5.1340	26.5	29.0	34.0
154	2.0904	1.3936	11.5	12.2	13.4
155	2.4300	1.2690	11.7	12.4	13.5
156	2.2770	1.2558	12.1	13.0	13.8
157	2.8728	2.0672	13.2	14.3	15.2
158	2.9322	1.8792	13.8	15.0	16.2

159 rows × 5 columns

In [15]:

```
#Get Train Test Split
from sklearn.model_selection import train_test_split
```

In [16]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=2529)
```

In [17]:

```
x_train.shape,x_test.shape,y_train.shape,y_test.shape
```

Out[17]:

```
((111, 5), (48, 5), (111,), (48,))
```

In [18]:

```
#Get model train
from sklearn.linear_model import LinearRegression
```

In [19]:

```
model=LinearRegression()
model.fit(x_train,y_train)
```

Out[19]:

LinearRegression()

```
In [20]:
y_pred=model.predict(x_test)
In [21]:
y_pred.shape
Out[21]:
(48,)
In [22]:
y_pred
Out[22]:
array([ 485.76826299, 502.24720857,
                                     94.72381964, 876.5711712,
        184.0789176 , 219.30130488,
                                     322.32532246, 376.22325991,
        372.35730485, -182.67537078, -160.60486837, 454.33586185,
        159.59755829, 843.48525226, 587.21680573, 299.53521445,
        597.72950823, 197.14605397, 639.89046741,
                                                    91.20067876,
        150.95424753, -103.08320574, 627.19712753, 795.69176861,
                                                    715.89288013,
        814.68732975, -204.1496511 , 329.98746856,
        359.75634357, 792.3243925, 532.7036706, 552.00832342,
        433.48472727, 687.61750267, -204.76362537, 932.53668294,
        810.74234216, -80.06217174, 284.36287887, 907.08036021,
        642.5828335 , 959.33848223 , 675.28792291 , 718.86305458 ,
        623.89849226, 376.48346981, 530.83828119, -86.2357066 ])
In [23]:
#get model evaluation
from sklearn.metrics import mean_squared_error,mean_absolute_error,mean_absolute_percentage
In [24]:
mean_squared_error(y_test,y_pred)
Out[24]:
16397.344524411365
In [25]:
mean_absolute_error(y_test,y_pred)
Out[25]:
103.02952922678537
In [26]:
mean_absolute_percentage_error(y_test,y_pred)
Out[26]:
2.5082853471600264
```

```
In [27]:
```

```
r2_score(y_test,y_pred)
```

Out[27]:

0.8349141424416879

```
In [28]:
```

```
#get future predictions
#1.extract random row using sample function
#2.separate x and y
#3.predict
```

In [29]:

```
df_new=df.sample(1)
df_new
```

Out[29]:

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
5	1	Bream	450.0	13.6024	4.9274	26.8	29.7	34.7

In [30]:

```
x_new=df_new[['Height','Width','Length1','Length2','Length3']]
x_new.shape
```

Out[30]:

(1, 5)

In [31]:

```
y_pred_new=model.predict(x_new)
y_pred_new
```

Out[31]:

array([460.50988666])