Apple Health Analytics

```
!pip install calplot --quiet

import xml.etree.ElementTree as ET

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import calplot

from statsmodels.tsa.seasonal import seasonal_decompose
```

Load the XML File (export.xml)

```
tree = ET.parse('/content/export.xml')
root = tree.getroot()
df = pd.DataFrame([x.attrib for x in root.iter('Record')])
# Remove unnecessary columns
df.drop(columns=['sourceName', 'sourceVersion', 'creationDate', 'device'], inplace=True)
# Remove Rows containing Height and Weight info
df.drop(df.index[:2], inplace=True)
df.reset_index(drop=True, inplace=True)
df.head()
₹
      0 HKQuantityTypeIdentifierStepCount count 2023-03-03 08:37:37 +0530 2023-03-03 08:37:43 +0530
      2 HKQuantityTypeIdentifierStepCount count 2023-03-03 22:51:56 +0530 2023-03-03 22:55:59 +0530
                                                                                                      353
      4 HKQuantityTypeIdentifierStepCount count 2023-03-03 23:16:16 +0530 2023-03-03 23:16:31 +0530
                                                                                                       16
 Next steps: Generate code with df
                                       View recommended plots
df.shape
     RangeIndex: 85116 entries, 0 to 85115 Data columns (total 5 columns):
                     Non-Null Count Dtype
```

Data Cleaning

df['type'].value_counts()

```
type
HKQuantityTypeIdentifierBasalEnergyBurned
HKQuantityTypeIdentifierWalkingSpeed
10477
HKQuantityTypeIdentifierWalkingStepLength
HKQuantityTypeIdentifierWalkingBoubleSupportPercentage
HKQuantityTypeIdentifierActiveEnergyBurned
HKQuantityTypeIdentifierDistanceWalkingRunning
7813
HKQuantityTypeIdentifierStepCount
7812
HKQuantityTypeIdentifierStepCount
HKQuantityTypeIdentifierFlightsClimbed
1439
HKCategoryTypeIdentifierFlightsClimbed
1439
HKCategoryTypeIdentifierAppleWalkingSteadiness
42
HKQuantityTypeIdentifierAppleWalkingSteadiness
42
HKQuantityTypeIdentifierHeadphoneAudioExposure
HKDataTypeSleepDurationGoal
Name: count, dtype: int64
```

Apple HealthKit quantity types:

BasalEnergyBurned: Energy expended at rest.

WalkingSpeed: Walking speed of the user.

WalkingStepLength: Length of each step taken during walking.

WalkingDoubleSupportPercentage: Percentage of time during walking that both feet are on the ground

ActiveEnergyBurned: Energy expended during physical activity.

DistanceWalkingRunning: Distance traveled by walking or running.

StepCount: Number of steps taken by the user.

WalkingAsymmetryPercentage: Asymmetry in steps taken during walking.

SleepAnalysis: Duration of sleep of the user.

AppleWalkingSteadiness: Measurement of walking steadiness based on walking activity.

```
# Shorten "Type" values
df['type'] = df['type'].str.replace('HKQuantityTypeIdentifier', '')
df['type'] = df['type'].str.replace('HKCategoryTypeIdentifier', '')
df['type'] = df['type'].str.replace('HKDataType', '')
df.drop(df[df['type'] == 'HeadphoneAudioExposure'].index, inplace=True)
df.drop(df[df['type'] == 'SleepDurationGoal'].index, inplace=True)
df.drop(df[df['type'] == 'FlightsClimbed'].index, inplace=True)
# Datetime Conversion
df['startDate'] = pd.to_datetime((df['startDate'].str)[:-6])
df['endDate'] = pd.to_datetime((df['endDate'].str)[:-6])
# Calculate 'duration'
df['duration'] = df['endDate'] - df['startDate']
# Drop 'endDate' column
df.drop('endDate', axis=1, inplace=True)
# Write units for each type
df_units = {
     'BasalEnergyBurned': 'kcal',
     'WalkingSpeed': 'km/hr',
     'WalkingStepLength': 'cm',
     'WalkingDoubleSupportPercentage': '%',
     'ActiveEnergyBurned': 'kcal',
     'DistanceWalkingRunning': 'km',
     'StepCount': 'count',
     'WalkingAsymmetryPercentage': '%',
     'SleepAnalysis': float('nan'),
     'AppleWalkingSteadiness': '%'
# Drop 'unit' column
# Reorder columns for clarity
df = df[['type', 'value', 'startDate', 'duration']]
\# Convert 'value' to numeric, fill missing values with 1.0
df['value'] = pd.to_numeric(df['value'], errors='coerce').fillna(1.0)
```

<u>-</u>						
	85111	SleepAnalysis	1.0	2024-07-13 01:15:11	0 days 04:35:42	1
	85112	SleepAnalysis	1.0	2024-07-14 00:08:20	0 days 09:57:48	
	85113	SleepAnalysis	1.0	2024-07-15 00:15:44	0 days 05:53:29	
	85114	SleepAnalysis	1.0	2024-07-15 23:00:00	0 days 07:18:44	
	85115	SleepAnalysis	1.0	2024-07-16 23:48:04	0 days 06:27:01	

df.describe()

<u> </u>		value		duration
	count	83675.000000	83675	83675
	min	0.000000	2023-03-03 08:37:37	0 days 00:00:01
	25%			
	50%	4.284000	2023-10-24 22:54:09	0 days 00:03:19
	75%			
	max	1188.000000	2024-07-17 18:51:47	7 days 00:00:00
	std	135.937649	NaN	0 days 03:47:41.577786342

```
SleepAnalysis = df.loc[df['type'] == 'SleepAnalysis'].groupby(df['startDate'].dt.date)['duration'].sum()

# Pivot table to aggregate values by type and startDate.datea
data = df.pivot_table(index=df['startDate'].dt.date, columns='type', values='value', aggfunc='sum', fill_value=0)

data['SleepAnalysis'] = SleepAnalysis
data.tail()
```

type	ActiveEnergyBurned	AppleWalkingSteadiness	BasalEnergyBurned	DistanceWalkingRunning	SleepAnalysis	StepCount	WalkingAsymmetryPercentage	WalkingDoub1
2024-07- 13	47.961	0.0	1271.439	1.66859	0 days 05:02:35	3055	0.11	
2024 - 07- 14								
2024-07- 15	224.047	0.0	1334.220	6.59308	0 days 13:12:13	11749	0.32	_

data.info()

data.describe()

ty	pe ActiveEnergyBurned	AppleWalkingSteadiness	BasalEnergyBurned	DistanceWalkingRunning	SleepAnalysis	StepCount	WalkingAsymmetryPercentage	WalkingDo
cou	nt 503.000000	503.000000	503.000000	503.000000	389	503.000000	503.000000	
				2.858825				
ste	102.798422	0.210475	115.839888	2.265378	0 days 03:32:53.257219992	3765.497164	1.045184	
mi	n 0.000000	0.000000	907.985000	0.000000	0 days 00:01:19	0.000000	0.000000	
25	35.596500	0.000000	1290.204000	1.003462	0 days 05:16:28	1767.000000	0.030000	
50°	87.485000	0.000000	1435.307000	2.524000	0 days 06:12:08	4232.000000	0.250000	
759	162.880500	0.000000	1480.253000	4.676745	0 days 10:40:49	7756.000000	0.870000	

Exploratory Data Analysis

Basal Energy Burned

```
plt.figure(figsize=(10, 5))
sns.histplot(data['BasalEnergyBurned'], bins=30, kde=False, color='#3498db')
plt.title('Histogram of Basal Energy Burned')
plt.xlabel('Basal Energy Burned (kcal)')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(10, 5))
sns.boxplot(&=data['WalkingSpeed'], color='lightgreen')
plt.title('Box Plot of Walking Speed')
plt.xlabel('Walking Speed (km/hr)')
plt.tight_layout()
nlt.show()
```


Walking Speed vs. Distance Walking/Running

```
plt.figure(figsize=(10, 5))
sns.regplot(x='WalkingSpeed', y='DistanceWalkingRunning', data=data, scatter_kws={'color': '#3498db'}, line_kws={'color': 'orange'})
plt.title('Walking Speed vs. Distance Walking/Running')
plt.xlabel('Walking Speed (km/hr)')
plt.ylabel('Distance Walking/Running (km)')
plt.tight_layout()
plt.show()
```


✓ Correlation Heatmap

```
plt.figure(figsize=(10, 5))
mask = np.triu(np.ones_like(data.corr(), dtype=bool))
sns.heatmap(data.corr(), cmap='coolwarm', square=True,annot = True, fmt=".2f", mask = mask, vmin=-1, vmax=1)
plt.title('Correlation Heatmap')
plt.show()
```


→ Pair Plot

```
plt.figure(figsize=(20, 10))
sns.pairplot(data[['BasalEnergyBurned', 'WalkingSpeed', 'ActiveEnergyBurned', 'StepCount']])
plt.tight_layout()
plt.show()
```


Step Count vs. Active Energy Burned

```
plt.figure(figsize=(10, 5))
sns.scatterplot(x='StepCount', y='ActiveEnergyBurned', size='WalkingSpeed', sizes=(20, 200), data=data)
plt.title('Step Count vs. Active Energy Burned (Bubble Size: Walking Speed)')
plt.xlabel('Step Count (count)')
plt.ylabel('Active Energy Burned (kcal)')
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(10, 5))
sns.histplot(data['WalkingStepLength'], bins=30, kde=True, color='lightcoral')
plt.title('Distribution of Walking Step Length')
plt.xlabel('Walking Step Length (cm)')
plt.ylabel('Frequency')
plt.tight_layout()
slt.ehe.(')
```


Distance Walking/Running

```
plt.figure(figsize=(10, 5))
sns.boxplot(x=data['DistanceWalkingRunning'], color='orange')
plt.title('Box Plot of Distance Walking/Running')
plt.xlabel('Distance Walking/Running (km)')
plt.tight_layout()
plt.show()
```


Walking Asymmetry Percentage

```
plt.figure(figsize=(10, 5))
sns.kdeplot(data['WalkingAsymmetryPercentage'], fill=True, color='purple')
plt.title('KDE Plot of Walking Asymmetry Percentage')
plt.xlabel('Walking Asymmetry Percentage (%)')
plt.ylabel('Density')
plt.tight_layout()
plt.show()
```


Plot the following:

- Step Count (Group by day and week)
- Distance (Group by day and week)
- · Active Energy Burned
- AppleWalkingSteadiness (Weekly)

Advanced (Time Series) Data Exploration

```
data.index = pd.to_datetime(data.index)
week_data = data.resample('W').sum()
month_data = data.resample('M').sum()
```

Rolling Average of Active Energy Burned

```
data['TotalEnergyBurned'] = data['BasalEnergyBurned'] + data['ActiveEnergyBurned']
data['RollingTotalEnergy'] = data['TotalEnergyBurned'].rolling(window=7).mean()

plt.figure(figsize=(20, 5))
sns.lineplot(x=data.index, y='TotalEnergyBurned', data=data, label='Daily Total Energy Burned')
sns.lineplot(x=data.index, y='RollingTotalEnergy', data=data, label='Moving Average (7)')
plt.title('Total Energy Burned and Moving Average Over Time')
plt.xlabel('Date')
plt.ylabel('Total Energy Burned (kcal)')
plt.legend()
plt.tight_layout()
plt.show()
```


Monthly Aggregation of Distance Walking/Running

```
plt.figure(figsize=(20, 5))
sns.barplot(x=month_data.index, y='DistanceWalkingRunning', data=month_data, color='yellow')
plt.title('Monthly Distance Walking/Running')
plt.xlabel('Month')
plt.ylabel('Total Distance Walking/Running (km)')
plt.tight_layout()
plt.tight_layout()
plt.show()
```


Time Series Plot of Walking Speed

```
plt.figure(figsize=(20, 5))
sns.lineplot(x=data.index, y='WalkingSpeed', data=data, color='purple')
plt.title('Walking Speed Over Time')
plt.xlabel('Date')
plt.ylabel('Walking Speed (km/hr)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Seasonal Decomposition of Distance Walking/Running

seasonal_decompose(data['DistanceWalkingRunning'], model='additive').plot()
plt.suptitle('Seasonal Decomposition of Distance Walking/Running')
plt.tight_layout()
plt.show()

, Distribution of Sleep Analysis Duration

```
plt.figure(figsize=(20, 5))
sns.lineplot(x=data.index, y='SleepAnalysis', data=data, color='brown')
plt.title('Sleep Duration Over Time')
plt.xlabel('Date')
plt.ylabel('Duration (hr)')
plt.tight_layout()
plt.show()
```


Step Count Distribution

calplot.calplot(data['StepCount'], suptitle='Step Count Distribution', cmap='Blues', figsize=(20, 5))

