$\mathrm{titlesec}[2016/03/21]$

Mathematikwettbewerb 2025

Aaron Tsamaltoupis

January 18, 2025

Contents

1	Nr 1	3
2	Nr 2	4

1 Nr 1

2 Nr 2

Für jede ganze Zahl $n \geq 2$ betrachten wir in der Dezimaldarstellung von n! die letzte von Null verschiedene Ziffer.

Bestimme alle Ziffern, die mindestens einmal in dieser Folge vorkommen, und zeige, dass jede dieser Ziffern sogar unendlich oft vorkommt.

Sei eine funktion $f: \mathbb{Z}^+ \to [1, 2, 3, 4, 5, 6, 7, 8, 9]$ definiert, sodass f(n) die letzte von Null verschiedene Ziffer von n ist.

$$f(n) = \varepsilon \text{ iff } \varepsilon \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \land \exists k, l(n = 10^k \cdot (10 \cdot l + \varepsilon))$$

Sei B die Menge aller Folgen b, die folgendermaßen definiert werden können:

$$b_1^k = k+1$$
 und für alle $n \in \mathbb{Z}_+$ gilt $b_n^k = (k+1) \cdot (k+2)...(k+n-1) \cdot (k+n)$
 $\Longrightarrow b_n^k = \frac{(k+n)!}{k!}$

Alle Folgen $b \in B$ haben also folgende Elemente:

$$b_1 = k$$

$$b_2 = k \cdot (k+1)$$

$$b_3 = k \cdot (k+1) \cdot (k+2)$$

$$b_4 = \dots$$

Sei eine weitere Menge F, die Folgen beinhaltet, folgerndermaßen definiert:

$$F = \{Fb^k : \exists b^k \in B(Fb_n^k = f(b_n^k))\}$$

Das nte Element jeder Folge Fb_0 in F ist also die letzte von Null verschiedene Ziffer des nten Elementes einer Folge $b_0 \in B$

Sei die Folge aus der Aufgabenstellung, die mit (2,6,4,2,2,...) beginnt die Folge Fa=(2,6,4,2,2,...)

Diese Folge kann folgendermaßen beschrieben werden:

 $Fa_n = f(a_n)$, wobei a_n das nte Element einer weiteren Folge a ist, wobei a = (2!, 3!, 4!, ...)

Auch diese Folge a ist ein Element der Menge B:

$$a_1 = 2$$

$$a_2 = 2 \cdot 3$$

$$a_3 = 2 \cdot 3 \cdot 4$$

Da a also ein Element von B ist und $Fa_n = f(a_n)$ ist Fa auch ein Element von F.

Lemma 2.1. Es soll bewiesen werden, dass für alle Folgen $b \in B$ gilt, dass sobald es ein Element b_{h_0} dieser Folge gibt, für das gilt

$$\exists p_0, q_0, m_0 \in \mathbb{Z} + (2 \nmid m_0 \land 5 \nmid m_0 \land b_{h_0} = 10^{p_0} \cdot 2^{q_0} \cdot m_0)$$

,dann gilt für alle folgenden Elemente h dieser Folge b, dass es auch für sie ein p, q und $m \in \mathbb{Z}^+$ gibt, wobei $(2 \nmid m \land 5 \nmid m \land h = 10^p \cdot 2^q \cdot m)$

Sei

Lemma 2.2. Es soll nun bewiesen werden, dass es für jede Folge $b \in Bein$ solches Element b_{h_0} gibt.

$$\square$$

Lemma 2.3. Es soll bewiesen werden, dass wenn ein $n \in \mathbb{Z}^+$ in der Form $n = 10^p \cdot 2^q \cdot m$ notiert werden kann, wobei m weder durch 2 noch durch 5 teilbar ist, f(n) eine gerade Ziffer ist.

Zu beweisen:

$$\forall n \in \mathbb{Z}^+(\exists (p,q,m)(2 \nmid m \land 5 \nmid m \land n = 10^p \cdot 2^q \cdot m) \implies f(n) \in [2,4,6,8])$$
Proof.

Nach Lemma 2.1 gilt also, dass es ein Element a_{h_0} der Folge a gibt, wonach alle nachfolgenden Elemente a_h der Folge a in der Form $10^q \cdot 2^p \cdot m$ geschrieben werden können, wobei m weder durch 5 oder durch 2 teilbar sind.

Direkt das erste Element von a $a_1 = 2!$ kann in dieser Form geschrieben werden: $2 = 10^0 \cdot 2^1 \cdot 1$, demnach können alle Elemente von a in dieser Form geschreiben werden.

Nach Lemma 2.3 gilt dann, dass $f(a_k)$ für alle Elemente a_k von a eine gerade Ziffer ist.

Die Ausgangsfolge der Aufgabenstellung Fa=(2,6,4,2,2,...) besteht also nur aus geraden Ziffern.

Keine andere Zahl außer 2,4,6, oder 8 kommt also in der Ausgangsfolge Fa vor.

Lemma 2.4. Es soll bewiesen werden, dass in jeder Folge $Fb \in F$ immer mindestens zwei verschiedene Elemente undendlich oft vorkommen.

Proof. Es soll durch Widerspruch bewiesen werden. Sei also ein Element Fb_{x_0} von Fb, ab dem alle folgenden Elemente Fb_x nur noch den Wert ε_0 haben.

 $Fb_{x_0} = f(b_{x_0})$, wobei $b_1 = k$

Es gibt ein b_{h+1} , sodass $h > x_0$ und h + k kein Vielfaches von 5 ist.

$$b_{h+1} = \frac{(k+h)!}{(k-1)!}$$

$$= \frac{(k+h-1)!}{(k-1)!} \cdot (k+h)$$

$$= b_h \cdot (k+h)$$

 b_h muss von der Form $b_h = 10^n \cdot (10l + \varepsilon_0)$ sein, da ansonsten $f(b_h) \neq \varepsilon_0$ und demnach $Fb_h \neq \varepsilon_0$

$$\implies b_{h+1} = 10^{n_1} \cdot (10l_1 + \varepsilon_0) \cdot (k+h)$$

 \Longrightarrow

Lemma 2.5. Es soll bewiesen werden, dass für alle $x_1, x_2 \in \mathbb{N}$ gilt, wenn $f(x_1) = \varepsilon_1$ und $f(x_2) = \varepsilon_2$ dann gilt $f(x_1 \cdot x_2) = f(\varepsilon_1 \cdot \varepsilon_2)$

Proof.
$$f(x_1) = \varepsilon_1 \implies x_1 = 10^{n_1} \cdot (10 \cdot l_1 + \varepsilon_1)$$

 $f(x_2) = \varepsilon_2 \implies x_2 = 10^{n_2} \cdot (10 \cdot l_2 + \varepsilon_2)$
 $x_1 \cdot x_2 = 10^{n_1 + n_2} \cdot ()$

Lemma 2.6. Es soll bewiesen werden, dass jede Folge $b \in B$ mindestens ein Element b_n hat, sodass $f(b_n) = 6$. Es soll also bewiesen werden, dass in jeder Folge $Fb \in F$ mindestens einmal die Zahl 6 vorkommt.

Proof. Sei b^k eine beliebige Folge aus B, sodass $b_n^k = k \cdot (k+1)...(k+n-1) \cdot (k+n)$. Sei Fb^k die Folge aus F, sodass $\forall n \in \mathbb{Z}_+(Fb_n^k = f(b_n^k))$ Die Folge Fb enthält entweder die Zahl 6, oder nicht.

Wenn sie die Zahl 6 enthält ist nichts mehr zu beweisen. Sei die Folge Fb enthält die Zahl 6 nicht. Nach Lemma 2.4 enthält die Folge Fb mindestens zwei unterschiedliche Elemente, die unendlich vorkommen. Nach Lemma 2.1, 2.2, und 2.3 gibt es ein Element b_{h_0} , ab für alle Folgenden Elemente gilt, dass $f(b_{h_0}) \in \{2,4,6,8\}$. Die beiden Elemente, die definitiv unendlich oft vorkommen, müssen also beide gerade Ziffern sein. Unter diesen Voraussetzungen gibt es für dieses Paar an unterschiedlichen Elementen von Fb drei Möglichkeiten:

Fall 1: Fb enthält unendlich oft die Zahlen 4 und 8

Fall 2: Fb enthält unendlich oft die Zahlen 2 und 4

Fall 3: Fb enthält unendlich oft die Zahlen 2 und 8

Fall 1: Sei ein Element Fb_{n_0} von Fb, sodass $Fb_{n_0} = 4$ Sei ein folgendes Element $Fb_{n_0+n_1}$ der Folge Fb, sodass $Fb_{n_0+n_1} = 2$ $Fb_{n_0} = f(b_{n_0}), Fb_{n_0+n_1} = f(b_{n_0+n_1})$

$$b_{n_1}^k = b_{n_0}^k \cdot (k + n_0 + 1) \cdot (k + n_0 + 2) \cdot \dots \cdot (k + n_0 + n_1)$$

$$b_{n_0+n_1}^k = b_{n_0}^k \cdot b_{n_0+n_1}^{k+n_0}$$

$$f(b_{n_0+n_1}^k) = f(b_{n_0}^k \cdot b_{n_0+n_1}^{k+n_0}) = 2$$

Es gibt Fall 2: Fb enthält unendlich oft die Zahlen 2 und 4 Fall 3: Fb enthält unendlich oft die Zahlen 4 und 8

Theorem 2.7. Es soll bewiesen werden, dass es für jedes Element Fa_k von Fa ein nachfolgendes Element von Fa_{k+n} gibt, sodass $Fa_k = Fa_{k+n}$.

Proof. Sei ein beliebiges Element Fa_k .

Jedes Element, das einmal in Fa auftritt, tritt also garantiert unendlich oft auf, da es kein letztes Element Fa_k eines Wertes geben kann, da es immer ein Fa_{k+n} gibt, das den selben Wert hat.