PAT-NO:

JP02000306528A

DOCUMENT-IDENTIFIER: JP 2000306528 A

TITLE:

CATHODE-RAY TUBE

PUBN-DATE:

November 2, 2000

INVENTOR-INFORMATION:

NAME MASHITA, TAKUYA COUNTRY N/A

SHIMIZU, NORIO INOUE, MASACHIKA

N/A N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TOSHIBA CORP

N/A

APPL-NO:

JP2000014865

APPL-DATE:

January 24, 2000

PRIORITY-DATA: 11035764 (February 15, 1999)

INT-CL (IPC): H01J029/87, H01J029/86

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a cathode-ray tube improving its explosion-proof characteristic and reducing its beam landing variation.

SOLUTION: A panel 2 of a vacuum envelope has an almost rectangle-like effective part 8 having an almost flat outer surface and having a phosphor screen 1 being formed on its inner surface, and has a skirt part 9 being provided along the peripheral part of the effective part 8 and extending almost perpendicularly to the effective part 8; and a funnel 3 is joined to the skirt part 9. To the outer surface of the skirt part 9, a reinforcing band for fastening the skirt part 9 is attached. When a is the distance, along the tube axis direction, from the panel-funnel junction to the reinforcing-band edge on the outer surface side of the effective part 8 and when h is the distance, along the tube axis direction, from the junction to the center position of the outer surface of the effective part 8, the reinforcing band is provided so as to satisfy a ≥0.9 h.

3/19/05, EAST Version: 2.0.1.4

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-306528 (P2000-306528A)

(43)公開日 平成12年11月2日(2000.11.2)

(51) Int.CL'

資別記号

ΡI

テーマコート*(参考)

H01J 29/87

29/86

H01J 29/87 29/86

Z

de la maire

審査請求 未請求 請求項の数9 OL (全 7 頁)

PH 2. 41-14

(21)出願番号 特置2000-14865(P2000-14865)

(22) 出題日

平成12年1月24日(2000.1.24)

(31) 優先権主張番号 特額平11-35764

(32) 優先日

平成11年2月15日(1999.2.15)

(33) 優先權主張国

日本 (JP)

(71)出版人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 真下 拓也

埼玉県深谷市幅温町1丁目9番2号 株式

会社東芝深谷工場内

(72)発明者 清水 紀雄

埼玉県深谷市幡羅町1丁目9番2号 株式

会社東芝深谷工場内

(72)発明者 井上 雅及

埼玉県深谷市幡羅町1丁目9番2号 株式

会社東芝深谷工場内

(74)代理人 100058479

弁理士 鈴江 武彦 (外6名)

(54) 【発明の名称】 陰極線管

(57)【要約】

【課題】防爆特性を向上させ、ビームランディングのバ ラツキを軽減可能な陰極線管を提供することにある。

【解決手段】真空外囲器のパネル2は、ほぼ平坦な外面 を有しているとともに内面に蛍光体スクリーン1が形成 されたほぼ矩形状の有効部8と、有効部の周縁部に沿っ て設けられているとともに有効部に対してほぼ垂直に延 出したスカート部9とを有し、スカート部にはファンネ ル3が接合されている。スカート部の外面には、スカー ト部を締め付ける補強バンドが取り付けられている。パ ネルとファンネルとの接合部から、補強バンドの有効部 外面側の端部までの管軸方向に沿った距離をa、接合部 から有効部外面の中心位置までの管軸方向に沿った距離 をhとしたとき、補強バンドは、a≥0.9hを満たす ように設けられている。

【特許請求の範囲】

【請求項1】ほぼ平坦な外面を有しているとともに内面 に蛍光体スクリーンが形成されたほぼ矩形状の有効部、 およびこの有効部の周縁部に沿って設けられているとと もに有効部に対してほぼ垂直に延出したスカート部を有 したパネルと、上記スカート部に接合されたファンネル と、を有する真空外囲器と、

上記ファンネルのネック内に配設され、上記蛍光体スク リーンに向けて電子ビームを放出する電子銃と、

上記パネルのスカート部の外面に取り付けられ、スカー 10 ト部を締め付ける補強バンドと、を備え、

上記補強バンドは、上記真空外囲器の管軸方向に関し て、上記スカート部の中央部よりも上記有効部の外面側 に接近した位置で上記スカート部に取付けられているこ とを特徴とする陰極線管。

【請求項2】ほぼ平坦な外面を有しているとともに内面 に蛍光体スクリーンが形成されたほぼ矩形状の有効部、 およびこの有効部の周縁部に沿って設けられているとと もに有効部に対してほぼ垂直に延出したスカート部を有 したパネルと、上記スカート部に接合されたファンネル 20 と、を有する真空外囲器と、

上記ファンネルのネック内に配設され、上記蛍光体スク リーンに向けて電子ビームを放出する電子銃と、

上記パネルのスカート部の外面に取り付けられ、スカー ト部を締め付ける補強バンドと、を備え、

上記パネルとファンネルとの接合部から、上記補強バン ドの有効部外面側の端部までの管軸方向に沿った距離を aとし、上記接合部から上記有効部外面の中心位置まで の管軸方向に沿った距離をhとしたとき、上記補強バン ドは、

 $a \ge 0.9h$

を満たすように設けられていることを特徴とする陰極線 管。

【請求項3】上記補強バンドは、補強バンドの上記有効 部外面側の端部を外側に折返して形成された折り曲げ部 を有し、上記パネルとファンネルとの接合部から上記折 り曲げ部の電子銃側端までの管軸方向沿った距離をbと し、上記接合部から上記有効部の外面中心位置までの管 軸方向に沿った距離をhとしたとき、上記補強バンド は、

b≥0.7h

を満たすように設けられていることを特徴とする請求項 2に記載の陰極線管。

【請求項4】ほぼ平坦な外面を有しているとともに内面 に蛍光体スクリーンが形成されたほぼ矩形状の有効部、 およびこの有効部の周縁部に沿って設けられているとと もに有効部に対してほぼ垂直に延出したスカート部を有 したパネルと、上記スカート部に接合されたファンネル と、を有する真空外囲器と、

リーンに向けて電子ビームを放出する電子銃と、

上記パネルのスカート部の外面に取り付けられ、スカー ト部を締め付ける補強バンドと、を備え、

上記パネルとファンネルとの接合部から上記パネルのモ ールドマッチラインまでの管軸方向に沿った距離をcと し、上記接合部から上記有効部の外面中心までの管軸方 向の距離をhとしたとき、上記パネルは

c≥0.8h

の関係を満たしているとともに、上記補強バンドは、上 記モールドマッチラインに重ねて上記スカート部に巻付 けられていることを特徴とする陰極線管。

※※【請求項5】ほぼ平坦な外面を有しているとともに内面 に蛍光体スクリーンが形成されたほぼ矩形状の有効部、 およびこの有効部の周縁部に沿って設けられているとと もに有効部に対してほぼ垂直に延出したスカート部を有 したパネルと、上記スカート部に接合されたファンネル と、を有する真空外囲器と、

上記ファンネルのネック内に配設され、上記蛍光体スク リーンに向けて電子ビームを放出する電子銃と、

上記パネルのスカート部の外面に取り付けられ、スカー ト部を締め付ける補強バンドと、を備え、

上記補強バンドは、補強バンドの上記有効部外面側の端 部を外側に折返して形成された折り曲げ部を有し、

上記パネルとファンネルとの接合部から、上記補強バン ドの有効部外面側の端部までの管軸方向に沿った距離を a、上記接合部から上記折り曲げ部の電子銃側端までの 管軸方向沿った距離をb、上記接合部から上記パネルの モールドマッチラインまでの管軸方向に沿った距離を

c、上記接合部から上記有効部の外面中心位置までの管 30 軸方向に沿った距離をhとしたとき、上記補強バンドお よびパネルは、

 $a \ge 0.9h, b \ge 0.7h, c \ge 0.8h$ の関係を満たしているとともに、上記補強バンドは、上

記モールドマッチラインに重ねて上記スカート部に巻付 けられていることを特徴とする陰極線管。

【請求項6】ほぼ平坦な外面を有しているとともに内面 に蛍光体スクリーンが形成されたほぼ矩形状の有効部、 およびこの有効部の周縁部に沿って設けられているとと もに有効部に対してほぼ垂直に延出したスカート部を有 40 したパネルと、上記スカート部に接合されたファンネル と、を有する真空外囲器と、

上記ファンネルのネック内に配設され、上記蛍光体スク リーンに向けて電子ビームを放出する電子銃と、

上記パネルのスカート部の外面に取り付けられ、スカー ト部を締め付ける補強バンドと、を備え、

上記補強バンドは上記パネルのモールドマッチラインに 重ねて取り付けられ、

上記パネルは、上記パネルのモールドマッチラインから 上記有効部外面までの上記スカート部の外面と管軸方向 上記ファンネルのネック内に配設され、上記蛍光体スク 50 とがなす角度hetaが0度となる部分を有していることを特

10.33

徴とする陰極線管。

【請求項7】上記パネルは各コーナー部においてのみ、 上記角度θが0度であることを特徴とする請求項6に記 載の陰極線管。

【請求項8】上記補強バンドは、補強バンドの上記有効部外面側の端部を外側に折返して形成された折り曲げ部を有し、

上記パネルとファンネルとの接合部から、上記補強バンドの有効部外面側の端部までの管軸方向に沿った距離を a、上記接合部から上記折り曲げ部の電子銃側端までの 管軸方向沿った距離をb、上記接合部から上記パネルの モールドマッチラインまでの管軸方向に沿った距離を c、上記接合部から上記有効部の外面中心位置までの管 軸方向に沿った距離をhとしたとき、上記補強バンドおよびパネルは、

a≥0.9h、b≥0.7h、c≥0.8h の関係を満たしていることを特徴とする請求項6又は7 に記載の陰極線管。

【請求項9】上記蛍光体スクリーンの外周縁位置での上記有効部の肉厚をt、上記蛍光体スクリーンの中心位置 20 での上記有効部の肉厚をtcとしたとき、上記有効部は、

t≥1.5tc

を満たしている部位を有することを特徴とする請求項1 ないし8のいずれか1項に記載の陰極線管。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、防爆性を向上する ための補強バンドを有した陰極線管に関する。

[0002]

【従来の技術】一般に、カラー陰極線管はガラスで形成された真空外囲器を備え、この真空外囲器は、ほぼ矩形状のバネルと、バネルに接合されたファンネルとを有している。バネルは、ほぼ矩形状の有効部と、有効部の周縁に沿って設けられ有効部に対してほぼ垂直に延出した枠状のスカート部と、を一体に有している。有効部の内面には、背、緑、赤に発光する三色の蛍光体層で構成された蛍光体スクリーンが形成されている。

【0003】真空外囲器内には、多数の電子ビーム通過 孔を有したシャドウマスクが蛍光体スクリーンに対向し 40 て配置され、また、ファンネルのネック内には、蛍光体 スクリーンに向けて3電子ビームを放出する電子銃が装 着されている。

【0004】上記構成のカラー陰極線管では、電子銃から放出された3電子ビームをファンネルの外側に装着された偏向ヨークを用いて偏向し、シャドウマスクの電子ビーム通過孔を介して、蛍光体スクリーン上を水平、垂直走査することにより、対応する蛍光体層に照射し、カラー画像を表示する。

【0005】また、従来のカラー陰極線管は、真空外囲 50

器の防爆性を高めるために、パネルのスカート部を補強 バンドで締め付けて真空外囲器に圧縮応力を与えてい ス

【0006】従来のカラー陰極線管において、パネルの 有効部は大きな曲率を有している。そのため、補強バン ドの締め付け位置をスカート部の管軸方向中央付近とし ても、補強バンドの締め付けによってパネルの有効部に 生じる外部方向への力は、この有効部の全面でほぼ均一 となり、これにより、安定した防爆性が得られる。

)【0007】一方、近年、画像の見易さの点からカラー 陰極線管の有効部外面を平坦にする要求が高まってい る。ままままで

[0008]

【発明が解決しようとする課題】しかしながら、有効部 を平坦に形成するにあたって、従来の構造では防爆特性 等に問題が生じる。すなわち、カラー陰極線管のパネル の有効部の外面が平面又は若干の曲率しか持たない場 合、従来のようにスカート部の管軸方向中央付近を補強 バンドによって締め付ける構成とすると、補強バンドの 締め付けによってパネルの有効部で生じる外部方向への 力は、有効部のコーナー部で極端に大きくなる。そのた め、真空外囲器が破壊した際、有効部のコーナー部にお いてガラスの飛散が起こりやすく、防爆性が悪化する。 【0009】また、補強バンドの締め付けによる有効部 の変形が大きいため、有効部に作用する圧縮応力にバラ ツキが生じると、有効部の変形のバラツキも大きくな る。これに伴い、蛍光体スクリーンも変形するため、蛍 光体層が本来の位置からずれてしまい、この結果、ビー ムランディングのバラツキが生じ画像品位が低下てしま 30 う。

【0010】本発明は、上記事情に鑑みてなされたものであり、その目的は、ビームランディングのバラツキを軽減することができるとともに防爆特性の向上したカラー降極線管を提供することにある。

[0011]

【課題を解決するための手段】上記目的を達成するため、この発明に係るカラー陰極線管は、ほぼ平坦な外面を有しているとともに内面に蛍光体スクリーンが形成されたほぼ矩形状の有効部、およびこの有効部の周縁部に沿って設けられているとともに有効部に対してほぼ垂直に延出したスカート部を有したパネルと、上記スカート部に接合されたファンネルと、を有する真空外囲器と、上記ファンネルのネック内に配設され、上記蛍光体スクリーンに向けて電子ビームを放出する電子銃と、上記パネルのスカート部の外面に取り付けられ、スカート部を締め付ける補強パンドと、を備え、上記補強パンドは、上記真空外囲器の管軸方向に関して、上記スカート部の中央部よりも上記有効部の外面側に接近した位置で上記スカート部に取付けられていることを特徴としている。【0012】上記構成の陰極線管によれば、補強バンド

の取り付け位置を管軸方向に関してパネル有効部外面付 近としたので、補強バンドによる圧縮応力をパネルの有 効部に与えやすくして有効部における外部方向への力が 減少する。それにより、パネルの有効部から、パネルを 構成するガラスの飛散を減少させ防爆特性を高めること ができ、また、補強バンドの圧縮応力によるパネル有効 部の変形を軽減させてビームランディングのバラツキを 抑えることができる。

ば、パネルとファンネルとの接合部から、補強バンドの 10 有効部外面側端部までの管軸方向に沿った距離をaと に沿った距離をhとしたとき、上記補強バンドは、a≥ 0.9hの関係を満たすように設けられていることを特 徴としている。

【0013】また、この発明に係る他の陰極線管によれ

【0014】上記構成によれば、補強バンドによる圧縮 応力をパネルの有効部に与えやすくして有効部における 外部方向へのカを減少させることができ、ガラスの飛散 を減少させ防爆特性を高めることができる。また、補強 バンドの圧縮応力によるパネル有効部の変形を軽減させ 20 てビームランディングのバラツキを抑えることができ る.

【0015】また、この発明に係る陰極線管によれば、 上記補強バンドは、補強バンドの上記有効部外面側の端 部を外側に折返して形成された折り曲げ部を有し、上記 パネルとファンネルとの接合部から上記折り曲げ部の電 子銃側端までの管軸方向沿った距離をbとし、上記接合 部から上記有効部の外面中心位置までの管軸方向に沿っ た距離をhとしたとき、上記補強バンドは、b≥0.7 hを満たすように設けられていることを特徴としてい

【0016】このように、補強バンドの折り曲げ部の寸 法をb≥0.7hとなるように規制することにより、こ の補強バンド締め付け範囲内においてもパネルの有効部 付近のみ圧縮応力を大きくすることができ、防爆性の向 上およびピームランディングのバラツキを抑えることが できる。

...【0017】更に、この発明に係る他の陰極線管によれ ば、上記パネルとファンネルとの接合部から上記パネル のモールドマッチラインまでの管軸方向に沿った距離を 40 cとし、上記接合部から上記有効部の外面中心までの管 軸方向の距離をhとしたとき、上記パネルはc≥0.8 hの関係を満たしているとともに、上記補強バンドは、 上記モールドマッチラインに重ねて上記スカート部に巻 付けられていることを特徴としている。

【0018】この発明によれば、補強バンドによって与 えられる圧縮店力が最も大きくなるパネルモールドマッ チラインの位置を c≥0.8 hに設定してパネルの有効 部外面側に近づけるため、パネルの有効部付近の圧縮応 力をより大きくすることができ、ガラスの飛散を減少さ 50 と、を一体に有している。有効部8の外面は平坦に、あ

せ防爆特性を高めることができ、また、補強バンドの圧 縮応力によるパネル有効部の変形を軽減させてビームラ ンデインクのバラツキを抑えることができる。

【0019】この発明に係る他の陰極線管によれば、上 記補強バンドおよびパネルは、a≥0.9h、b≥0. 7h、c≥0.8hの関係を満たしているとともに、上 記補強バンドは、上記モールドマッチラインに重ねて上 記スカート部に巻付けられていることを特徴としてい る.

【0020】この発明に係る更に他の陰極線管によれ ば、補強バンドはパネルのモールドマッチラインに重ね て取り付けられ、上記パネルは、上記パネルのモールド マッチラインから有効部外面までのスカート部の外面と 管軸方向とがなす角度 & が0度となる部分を有している ことを特徴としている。

【0021】また、上記陰極線管によれば、上記パネル は各コーナー部においてのみ、上記角度θが0度である ことを特徴としている。

【0022】上記構成の陰極線管によれば、パネルのモ ールドマッチラインから有効部外面側のスカート部にお いて補強バンドによる圧縮応力が大きく与えられるた め、やはりガラスの飛散を低減し防爆特性の向上を図れ るとともに、パネル有効部の変形を低減しビームランデ ィングのバラツキを抑えることができる。

【0023】更に、この発明に係る他の陰極線管によれ ば、上記蛍光体スクリーンの外周縁位置での上記有効部 の肉厚をも、上記蛍光体スクリーンの中心位置での上記 有効部の肉厚をtcとしたとき、上記有効部は、t≧ 1.5 t c を満たした部位を有していることを特徴とし 30 ている。

【0024】このように有効部の肉厚を規定することに より、上述した他の条件を満たすことによる作用効果を 一層大きくすることが可能となる。また、上述した各条 件a≥0.9h、b≥0.7h、c≥0.8h、 θ = 0、t≥1.5tcを全て満たす構成の陰極線管を構成 してもよく、この場合、パネルの有効部付近の圧縮応力 を確実に大きくすることができ、防爆特性の向上および ビームランディングのバラツキ低減を図ることができ る。

[0025]

【発明の実施の形態】以下、図面を参照しながら、この 発明の実施の形態に係るカラー陰極線管について詳細に 説明する。

【0026】図1および図2に示すように、カラー陰極 **換管はガラスで形成された真空外囲器10を備え、この** 真空外囲器は、ほぼ矩形状のパネル2と、パネルに接合 されたファンネル3とを有している。パネル2は、ほぼ 矩形状の有効部8と、有効部の周縁に沿って設けられ有 効部に対してほぼ垂直に延出した枠状のスカート部9

るいは僅かな曲率を有して形成され、また、有効部の内 面には、青、緑、赤に発光する三色の蛍光体層を有する 蛍光体スクリーン1が形成されている。ファンネル3 は、スカート部9の端面に接合されている。

【0027】真空外囲器10内には、蛍光体スクリーン 1に対向して、多数の電子ビーム通過孔を有したシャド ウマスク12が配置され、また、ファンネル3のネック 4内には、蛍光体スクリーンに向けて3電子ビームを放 出する電子銃5が装着されている。スカート部9の内面 の複数箇所には係合ピン14が突設され、シャドウマス 10 ク12は、このシャドウマスクに取付けられた弾性支持 部材13を係合ピン14と係合させることにより、真空 外囲器10内に支持されている。

【0028】上記構成のカラー陰極線管では、電子銃5 から放出された3電子ビームをファンネル3の外側に装 着された偏向ヨーク16を用いて偏向し、シャドウマス ク12の電子ビーム通過孔を介して、蛍光体スクリーン 1を水平、垂直走査することにより、対応する蛍光体層 に照射し、カラー画像を表示する。

【0029】パネル2のスカート部9の外面には、スカ 20 ート部を締め付ける補強バンド7が全周に渡って取り付 けられている。補強バンド7は合金により形成され、ス カート部9の外形に対応してほぼ矩形枠状を成してい る。図3に示すように、補強バンド7の有効部外面側の 端部は外側に180度折曲げられ、折り曲げ部7aを形 成している。

【0030】本実施の形態によれば、補強バンド7の締 め付けによってパネル2の有効部8のコーナー部で生じ る外部方向への力を減少させるため、補強バンド7によ 7を真空外囲器10の管軸方向について、スカート部9 の中央付近よりも有効部8の外面付近に接近させて取り 付けている。

【0031】詳細に述べると、図3に示すように、パネ ル2とファンネル3との接合部 (シールエッジ) から補 強バンド7の有効部外面側端までの管軸 2方向に沿った 距離をa、シールエッジからパネル2の有効部8の外面 中心までの管軸方向に沿った距離をhとしたとき、補強 バンド7は、

a≥0.9h

を満たす位置に取付けられている。

【0032】また、補強バンド7の締め付け範囲内にお いて、有効部8付近の領域のみ圧縮応力を大きくするた めに、補強バンド7の有効部8側にある折り曲げ部7a の寸法を規制している。つまり、シールエッジから折り 曲げ部7aの電子銃5側端までの管軸Z方向に沿った距 離を b とした場合、補強バンド7は、

b≥0.7h

を満たすように形成されている。

【0033】また、補強バンド7によって与えられる圧 縮応力が最も大きくなるパネル2のモールドマッチライ ン11の部分は、パネル2の有効部8の外面に接近して 位置している。パネル2とファンネル3とのシールエッ ジからモールドマッチライン11までの管軸 乙方向に沿 った距離をcとすると、モールドマッチライン11は c≥0.8h

の関係を満たすように形成されている。

【0034】パネル2のスカート部9外面の内、モール ドマッチライン11から有効部8外面までの部分の外面 は、管軸Z方向に対して角度heta(0 \sim 3度)をなしている。しかしながら、補強パンド記による圧縮応力がパネ ル2の有効部8のコーナー部により大きく与えられるよ うに、パネル2の外面の一部、すなわち、パネルの各コ ーナー部は、図4に示すように、モールドマッチライン 11から有効部8外面までの領域でスカート部9の外面 と管軸Z方向との成す角度θが0度となるように形成さ れている。従って、パネル2の各コーナ部では、モール ドマッチライン11から有効部8外面までの領域も補強 バンド7に当接し、その結果、スカート部9の各コーナ 一部においてのみ、圧縮応力が有効部8の外面側に加わ る.

【0035】上述したように、a≥0.9h、b≥0. 7h、c \geq 0 . 8h . θ = 0 度の諸条件を設定すること によって、補強バンド7の締め付けによる圧縮応力をパ ネル2の有効部8に与えやすくし、有効部8における外 部方向への力を減少させることができる。

【0036】これにより、真空外囲器10が破壊した 際、有効部8から外方へのガラス片の飛散を減少させ、 る圧縮応力がより有効部8に加わるように、補強バンド 30 カラー陰極線管の防爆特性を向上することができる。同 時に、補強バンド7の締め付けによる圧縮応力に起因す る有効部8の変形を軽減し、ビームランディングのバラ ツキを抑えることができる。

> 【0037】次に、本発明の具体的実施例を説明する。 パネル2の有効部8外面の曲率半径が約10mのカラー 陰極線管を用いて、以下の表1に示すように、上述した 各構造パラメータa、b、c、θが異なる6種類のカラ 一陰極線管 (CRT) (1)~(6)を作成し、防爆強 度試験を実施した。

40 【0038】防爆強度試験は、ボール衝撃法とミサイル 衝撃法を採用し、米国おける規格で最も厳しい安全基準 であるUL規格に準拠して実施した。試験方法は、図5 に示すように、規定の鋼鉄球20又は鋼鉄弾を振り子の 原理を用いて各CRT(1)~(6)のパネルの有効部 の規定領域に衝突させて規定の衝撃を与え、この時、有 効部の前方に飛び散るガラス片の重量と飛散距離とを測 定した。それにより、表1に示す試験結果を得た。

[0039]

【表1】

\sim			
		٠	

9						10
	h[mm]	a[mm]	b[mm]	dmml	θ[mm] (コ-ナ-#5)	战略結果
CRT1	115	107 (0.930h)	87 (0.757h)	95 (0.826h)	0.0	0
CRT2	125	117 (0.936h)	82 (0.656h)	101 (0.808h)	2.0	0
CRT3	125	115 (0.920h)	80 (0.640h)	99 (0.792h)	2.0	Δ+
CRT4	100	(0.900h)	70 (0.700h)	77 (0.770h)	3.0	Δ-
CRT5	115	103 (0.896h)	73 (0.635h)	90 (0.783h)	3.0	×
CRT6	115	98.5 (0.857h)	78.5 (0.683h)	90 (0.783h)	3.0	×

TALL ALAS

This was a second

【0040】表1の試験結果から明らかなように、CRT(4)ないし(6)は、ガラスの剥離片の飛散が非常に大きく、UL規格を満たすのは困難であった。また、CRT(3)は飛散する剥離片の重量も軽く、飛散距離も短いものの、UL規格を若干上回る程度であった。【0041】そして、CRT(2)は、剥離片の飛散は問題なくUL規格を満たし、また、CRT(1)の場合には、UL規格を満たし、かつ、小さい爆縮すら確率的に殆ど発生せず非常に安定した防爆特性が得られた。

【0042】したがって、上述した本実施の形態の条件 に従い、各構造パラメータを、

a≥0.9h

b≥0.7h

c≥0.8h

 $\theta=0$ (コーナ部)

とし、補強バンド7の締め付けによる圧縮応力をよりパネル2の有効部8側に与えることにより、有効部8から 30のガラスの飛散を減少させることが可能となり防爆特性が向上することが分かる。また、上述した各条件を設定することで、補強バンド7の締め付けによる圧縮応力に起因する有効部8の変形が軽減され、補強バンド7の締め付けによる圧縮応力のバラツキに伴うビームランディングのバラツキを軽減することが可能となる。

【0043】次に、図3に示すように、蛍光体スクリーン1の外周縁の位置での有効部8の最大肉厚をt、蛍光体スクリーン1の中心位置での有効部8の肉厚をtcとし、肉厚t応じた上記各条件の効果の相違を試験した。ここで、肉厚tの異なる3種類のカラー陰極線管(7)~(8)を用意し、上記と同様の方法で防爆強度試験を実施した。その際の、肉厚tとtcとの関係および試験結果を以下の表2に示す。

[0044]

【表2】

	t	武功結果
CRT7	1.8tc	Δ+
CRT8	1.9tc	0
CRT9	2.2tc	0

1 0

【0045】表2から分かるように、蛍光体スクリーン1の周縁位置での有効部の肉厚もが、蛍光体スクリーン1の中心位置での有効部8の肉厚もでに対して大きい程、上述した条件を満たした場合の効果が大きく、防爆特性が安定する。従って、有効部8は、t≥1.5tcの関係を満たすように形成されていることが望ましい。【0046】なお、この発明は上述した実施の形態に限定されることなく、この発明の範囲内で種々変形可能である。例えば、この発明はカラー陰極線管に限らず、モノクロの陰極線管にも適用可能である。

[0047]

【発明の効果】以上詳述したように、本発明によれば、 パネル有効部の外面がほぼ平坦に形成された陰極線管に おいて、補強バンドによる圧縮応力がパネル有効部側に 作用するように補強バンドを設けることにより、パネル 有効部からのガラス片の飛散を軽減して防爆特性を向上 させることが可能であるとともに、補強バンドの締め付 けに起因するパネル有効部の変形を軽減させ、ビームラ ンディングのバラツキを軽減することが可能な陰極線管 を提供することができる。

【0048】また、本発明によれば、各構造パラメータ a、b、c、のを適切な値に設定することにより、パネル有効部からのガラス片の飛散を軽減し防爆特性を向上 させることができるとともに、補強バンドの締め付けに よる圧縮応力によるパネル有効部の変形を軽減し、ビー ムランディングのバラツキを軽減することが可能な陰極 線管を提供することができる。

【図面の簡単な説明】

50 【図1】本発明の実施の形態に係るカラー陰極線管を一

11

部破断して示す平面図。

【図2】上記カラー陰極線管のパネルを示す正面図。

【図3】上記カラー陰極線管の構造パラメータa、b、

c、 θ を説明するためにパネルおよび補強バンドを概略 的に示した図。

【図4】図2の線A-Aに沿った上記パネルの断面図。

【図5】ボール衝撃法を概略的に示す図。

【符号の説明】

1…蛍光体スクリーン

2…パネル

3…ファンネル

5…電子銃

7…補強バンド

7a…折り曲げ部

8…有効部

9…スカート部

10…真空外囲器

11…モールドマッチライン

