2019-2020 学年第 2 学期《大学物理 2A》期中测试答案

一、选择题 (共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	D	С	С	В	D	С	A	В	A	В

二、填空题 (共30分,每小题3分)

题号	11	12	13		14	15	
答案	$\frac{v_0 + bt}{\sqrt{b^2 + (v_0 + bt)^4 / R^2}}$	25.6 m/s ² , 0.8 m/s ²	$2\vec{i}$ m/s		18 J, 6 m/s	−0.05 rad • s ⁻² , 250 rad	
题号	16	17	18	19	9	20	
答案	$\frac{3}{2}kT, \frac{5}{2}kT, \frac{5}{2}MRT/M_{\text{mol}}$	(2),(1)	$\frac{7}{2}W$	40	00	$(\frac{1}{3})^{\gamma-1}T_0, (\frac{1}{3})^{\gamma}p_0$	

三、计算题 (共40分, 每题10分)

21:

解: $k = Mg/x_0$ 2 分

油灰与笼底碰前的速度 $v = \sqrt{2gh}$ 1分

碰撞后油灰与笼共同运动的速度为V,应用动量守恒定律

mv = (m+M)V ① 2 分

油灰与笼一起向下运动,机械能守恒,下移最大距离Ax,则

 $\frac{1}{2}k(x_0 + \Delta x)^2 = \frac{1}{2}(M+m)V^2 + \frac{1}{2}kx_0^2 + (M+m)g\Delta x \qquad ② \qquad 3 \, \text{?}$

联立解得: $\Delta x = \frac{m}{M} x_0 + \sqrt{\frac{m^2 x_0^2}{M^2} + \frac{2m^2 h x_0}{M(M+m)}} = 0.3 \text{ m}$ 2 分

22:

解: 受力分析如图所示. 2 分 $2mg-T_1=2ma$ 1 分 $T_2-mg=ma$ 1 分 $T_1r-Tr=\frac{1}{2}mr^2\beta$ 1 分

 $Tr - T_2 r = \frac{1}{2} mr^2 \beta \qquad 1 \%$

 $a=r\beta$ 2分

解上述 5 个联立方程得: T=11mg/8 2 分

23:

解: 氢气的速率分布曲线如图中虚线所示。

$$\frac{(v_p)_{\rm H_2}}{(v_p)_{\rm He}} = \left(\frac{M_{mol\, \rm He}}{M_{mol\, \rm H_2}}\right)^{1/2} = \sqrt{2}$$

∴
$$(v_p)_{\text{H}_2} = \sqrt{2}(v_p)_{\text{He}} = 1.41 \times 10^3 \text{ m/s}$$
 2 分

$$(\sqrt{\overline{v^2}})_{\text{H}_2} = (v_p)_{\text{He}} \sqrt{\frac{3M_{\text{mol H} e}}{2M_{\text{mol H} 2}}} = 1.73 \times 10^3 \text{ m/s} \quad 4 \text{ }\%$$

或 $(\sqrt{\overline{v^2}})_{H_2} = (v_p)_{H_2} \sqrt{\frac{3}{2}} = 1.73 \times 10^3 \text{ m/s}$

24:

解:根据热力学第一定律:

$$Q = \Delta E + W$$

ab 为等温过程, $\Delta E = 0$,故吸热

$$Q_{ab} = W_{ab} = v RT_a \ln \frac{V_a}{V_b} = v RT_a \ln 3 = p_a V_a \ln 3$$
 2 \(\frac{1}{2}\)

图 2 分

ca 为绝热过程,故有 $V_c^{\gamma-1}T_c=V_a^{\gamma-1}T_a$

得
$$T_c = T_a \left(\frac{V_a}{V_c}\right)^{\gamma - 1}$$

式中
$$\gamma = \frac{C_p}{C_V} = \frac{i+2}{i} = \frac{7}{5}, \quad V_c = V_b = 3V_a$$

所以
$$T_c = T_a \left(\frac{1}{3}\right)^{\frac{7}{5}-1} = 0.644T_a$$
 3分

bc 为等体过程, $T_c < T_b$, W = 0, 故为放热过程.

放热大小
$$Q_{bc} = |\Delta E_{bc}| = \nu \ C_V (T_b - T_c)$$
$$= \nu \ C_V (T_a - T_c) = \nu \ C_V T_a (1 - 0.644)$$
$$= \nu \frac{5}{2} R T_a \times 0.356 = 0.890 p_a V_a$$
 3 分

循环效率为
$$\eta = 1 - \frac{Q_{bc}}{Q_{ab}} = 1 - \frac{0.890}{\ln 3} = 19.0\%$$
 2 分