Phonons and Electron-Phonon Couplings

Qijing Zheng

Department of Physics

University of Science and Technology of China

2020/11/18

Outline

Introduction

1D Chain of Atoms — 1 Atom per Unit

A 1D chain of N equally spaced atoms at $R_j(t) = x_j + u_j(t)$

The Newton's Equation

$$M \frac{\mathrm{d}^2 u_j}{\mathrm{d}t^2} = K(u_{j+1} + u_{j-1} - 2u_j)$$
 $j = 1, ..., N$

Assume the solution has the form $u_j(t) = \frac{A_q}{\sqrt{M}} e^{i(qx_j - \omega t)}$, then ¹

$$\omega^{2} = \frac{K}{M} (2 - e^{iqa} - e^{-iqa})$$
$$= \frac{2K}{M} (1 - \cos qa)$$
$$\Rightarrow \quad \omega = \sqrt{\frac{4K}{M}} \left| \sin \frac{qa}{2} \right|$$

Q.J. Zheng (D.P. USTC)

 $^{^{1}}u_{j}(t)$ here is complex. In practice, take the real part, i.e. $\mathrm{Re}[u_{j}(t)].$

1D Chain of Atoms

1D Chain of Atoms — 2 Atoms per Unit

A 1D chain with 2 atoms in each unit: $R_s^j(t) = x_j + d_s + u_s^j(t)$; s = 1, 2

The Newton's Equation

$$\begin{aligned} & M_1 \frac{\mathrm{d}^2 u_1^j}{\mathrm{d} t^2} = K(u_2^j + u_2^{j-1} - 2u_1^j) \\ & M_2 \frac{\mathrm{d}^2 u_2^j}{\mathrm{d} t^2} = K(u_1^j + u_1^{j+1} - 2u_2^j) \end{aligned} \implies \begin{cases} u_j^1(t) = \frac{A_q}{\sqrt{M_1}} \mathrm{e}^{i(q x_j - \omega t)} \\ u_j^2(t) = \frac{B_q}{\sqrt{M_2}} \mathrm{e}^{i(q x_j - \omega t)} \end{cases}$$

We then have

$$\begin{pmatrix} \frac{2K}{M_1} & \frac{-K}{\sqrt{M_1M_2}}(1+e^{-iqa}) \\ \frac{-K}{\sqrt{M_1M_2}}(1+e^{iqa}) & \frac{2K}{M_2} \end{pmatrix} \begin{pmatrix} A_q \\ B_q \end{pmatrix} = \omega^2 \begin{pmatrix} A_q \\ B_q \end{pmatrix}$$

$$\implies \omega_{\pm}^2 = \frac{K}{M_1M_2} \left((M_1+M_2) \pm \sqrt{M_1^2 + M_2^2 + 2M_1M_2\cos qa} \right)$$

1D Chain of Atoms

3D Lattice

- x_j : the position of unit cell j
- d_s: the equilibrum position of the atom s in the cell
- \mathbf{u}_s^j : displacement from the equilibrum positon for the atom s in the cell j
- R_s: the position of the atom s in the cell j

 $R_s^j(t) = x_i + d_s + u_s^j(t)$

$$= \mathbf{r}_s^j + \mathbf{u}_s^j(t)$$

$$= \mathbf{r}_s^j + \mathbf{u}_s^j(t)$$

$$R_{s\alpha}^j(t) = r_{s\alpha}^j + u_{s\alpha}^j(t) \quad (\alpha = x, y, z)$$

The total energy can be written as

$$E_{\text{tot}}\left(\{\boldsymbol{R}_{\text{s}}^{j}(t)\}\right) = E_{\text{tot}}^{0}\left(\{\boldsymbol{r}_{\text{s}}^{j}\}\right) + \sum_{j \leq \alpha} \frac{\partial E_{\text{tot}}^{0}}{\partial u_{\text{s}\alpha}^{j}} u_{\text{s}\alpha}^{j} + \frac{1}{2} \sum_{\substack{j \leq \alpha \\ k \neq b}} \frac{\partial^{2} E_{\text{tot}}^{0}}{\partial u_{\text{s}\alpha}^{j} \partial u_{\text{t}\beta}^{k}} u_{\text{s}\alpha}^{j} u_{\text{t}\beta}^{k} + \dots$$

- The expression is exact if we take all the orders in the expansion.
- All the derivatives are taken at the equilibrium positions $\{r_s^j\}$, i.e. $\frac{\partial E_{\rm tot}^0}{\partial u_{\rm for}^j}=0$.
- Harmonic approximation: truncated at *second* order.

3D Lattice Dynamics

Within the harmonic approximation, the Newton's equation for the atom s in cell j

$$M_{s} \frac{\mathrm{d}^{2} u_{s\alpha}^{j}(t)}{\mathrm{d}t^{2}} = -\frac{\partial E_{\text{tot}}}{\partial u_{s\alpha}^{j}} = -\sum_{kt\beta} \frac{\partial^{2} E_{\text{tot}}^{0}}{\partial u_{s\alpha}^{j} \partial u_{t\beta}^{k}} u_{t\beta}^{k} = -\sum_{kt\beta} C_{s\alpha,t\beta}(j,k) u_{t\beta}^{k}$$
(1)

The ansatz of the solution

$$u_{s\alpha}^{j}(t) = \frac{\eta_{\alpha}^{s}(\mathbf{q})}{\sqrt{M_{s}}} e^{i\mathbf{q}\mathbf{x}_{j}} e^{-i\omega t}$$
 (2)

Substitute Eq. 2 into Eq. 1

$$\omega^{2}(\boldsymbol{q})\,\eta_{\alpha}^{s} = \sum_{t\beta} \left[\sum_{k} \frac{1}{\sqrt{M_{s}M_{t}}} \, \frac{\partial^{2} E_{\text{tot}}^{0}}{\partial u_{s\alpha}^{j} \partial u_{t\beta}^{k}} \, e^{i\boldsymbol{q}(\boldsymbol{x}_{k} - \boldsymbol{x}_{j})} \right] \eta_{\beta}^{t} = \sum_{t\beta} D_{s\alpha,t\beta}(\boldsymbol{q}) \, \eta_{\beta}^{t}$$

In matrix form

$$\underbrace{\begin{pmatrix} \cdot \cdot \\ D_{s\alpha,t\beta}(\mathbf{q}) \\ \vdots \end{pmatrix}} \begin{pmatrix} \vdots \\ \eta_{\beta}^{t}(\mathbf{q}) \\ \vdots \end{pmatrix} = \omega^{2}(\mathbf{q}) \begin{pmatrix} \vdots \\ \eta_{\beta}^{t}(\mathbf{q}) \\ \vdots \end{pmatrix}$$

$$\underbrace{3N_{a} \times 3N_{a}} \qquad 3N_{a}$$

where N_a is the number of atoms in a cell.

The Interatomic Force Constants

The Interatomic Force Constants (IFC)

$$\frac{\partial^2 E_{\text{tot}}^0}{\partial u_{s\alpha}^j \partial u_{t\beta}^k} = C_{s\alpha,t\beta}(j,k)$$

Symmetric

$$\frac{\partial^2 E_{\text{tot}}^0}{\partial u_{s\alpha}^j \partial u_{t\beta}^k} = \frac{\partial^2 E_{\text{tot}}^0}{\partial u_{t\beta}^k \partial u_{s\alpha}^j}$$
(3)

 \bullet Translation invariance, depend on the difference between j and k

$$\frac{\partial^2 E_{\text{tot}}^0}{\partial u_{s\alpha}^j \partial u_{t\beta}^k} = \frac{\partial^2 E_{\text{tot}}^0}{\partial u_{s\alpha}^0 \partial u_{t\beta}^{(k-j)}} \tag{4}$$

 Acoustic Sum Rule (ASR): if we displace the whole solid by an arbitrary uniform displacement, the forces acting on the atoms must be zero.

$$F_{s\alpha}^{j} = -\sum_{\beta} \left[\sum_{kt} \frac{\partial^{2} E_{\text{tot}}^{0}}{\partial u_{s\alpha}^{j} \partial u_{t\beta}^{k}} \right] \delta_{\beta} = 0 \qquad \Rightarrow \qquad \sum_{kt} \frac{\partial^{2} E_{\text{tot}}^{0}}{\partial u_{s\alpha}^{j} \partial u_{t\beta}^{k}} = 0$$
 (5)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Dynamical Matrix

The Dynamical Matrix

$$\begin{split} D_{s\alpha,t\beta}(\boldsymbol{q}) &= \frac{1}{\sqrt{M_s M_t}} \sum_k C_{s\alpha,t\beta}(j,k) e^{i\boldsymbol{q}(\boldsymbol{x}_k - \boldsymbol{x}_j)} \\ &= \frac{1}{\sqrt{M_s M_t}} \sum_l C_{s\alpha,t\beta}(0,l) e^{i\boldsymbol{q}\boldsymbol{x}_l} \end{split}$$

• Dynamical matrix is Hermitian

$$D_{s\alpha,t\beta}(\boldsymbol{q}) = D_{t\beta,s\alpha}^*(\boldsymbol{q})$$

Proof

$$\begin{split} D_{s\alpha,t\beta}(\boldsymbol{q}) &= \frac{1}{\sqrt{M_s M_t}} \sum_{l} C_{s\alpha,t\beta}(0,l) e^{i\boldsymbol{q}\boldsymbol{x}_l} \\ &= \frac{1}{\sqrt{M_s M_t}} \sum_{l} C_{s\alpha,t\beta}(-l,0) e^{i\boldsymbol{q}\boldsymbol{x}_l} \\ &= \frac{1}{\sqrt{M_s M_t}} \sum_{l} C_{s\alpha,t\beta}(-l,0) e^{i\boldsymbol{q}\boldsymbol{x}_l} \\ &= \frac{1}{\sqrt{M_s M_t}} \sum_{l} C_{t\beta,s\alpha}(0,-l) e^{i\boldsymbol{q}\boldsymbol{x}_l} \\ &= D_{t\beta,s\alpha}(\boldsymbol{q}) \end{split}$$

How to Calculate the Dynamical Matrix

The definition of the dynamical matrix

$$D_{s\alpha,t\beta}(\boldsymbol{q}) = \frac{1}{\sqrt{M_s M_t}} \sum_{I=-\infty}^{\infty} C_{s\alpha,t\beta}(0,I) e^{i\boldsymbol{q}\boldsymbol{x}_I} \approx \frac{1}{\sqrt{M_s M_t}} \sum_{|I| < I_{\text{cut}}} C_{s\alpha,t\beta}(0,I) e^{i\boldsymbol{q}\boldsymbol{x}_I}$$

• Frozen phonon method with a supercell

IFC in real space: $\frac{\partial^2 E_{\text{tot}}^0}{\partial x^0 \partial x^0 \partial x^0}$

or

Dynamical matrix: $D_{SO, t\beta}(\mathbf{q})$

Thank you!