Contents

1	Har	Harmonic oscillator		
	1.1	Ladder operators	4	
	1.2	Fock states wave functions	5	

2 CONTENTS

Chapter 1

Harmonic oscillator

1.1 Ladder operators

Definition 1.1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential

$$V(\hat{x}) = \frac{\omega^2}{2}\hat{x}^2, \qquad \omega^2 = \frac{k}{m}.$$
 (1.1)

We define the creation and annihilation operators as

$$\hat{a}^{\dagger} := \frac{\alpha}{\sqrt{2}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right), \qquad \hat{a} := \frac{\alpha}{\sqrt{2}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \qquad \alpha := \sqrt{\frac{m\omega}{\hbar}}.$$
 (1.2)

Proposition 1.1.1. Let \mathcal{H} be a Hilbert space in a harmonic potential. Then,

$$\langle x | \hat{a}^{\dagger} = \frac{\alpha}{\sqrt{2}} \left(x - \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right), \qquad \langle x | \hat{a} = \frac{\alpha}{\sqrt{2}} \left(x + \frac{1}{\alpha^2} \frac{\mathrm{d}}{\mathrm{d}x} \right), \qquad \alpha = \frac{m\omega}{\hbar}.$$
 (1.3)

Proposition 1.1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$\hat{x} = \frac{1}{\sqrt{2}\alpha}(\hat{a}^{\dagger} + \hat{a}), \qquad \hat{p} = i\hbar \frac{\alpha}{\sqrt{2}}(\hat{a}^{\dagger} - \hat{a}). \tag{1.4}$$

Proposition 1.1.3. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- 1. $\hat{a}, \hat{a}^{\dagger}$ are not hermitian.
- 2. $[\hat{a}, \hat{a}^{\dagger}] = \hat{I}$.
- 3. $\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$.

Definition 1.1.2. Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *number operator* as

$$\hat{N} \coloneqq \hat{a}^{\dagger} \hat{a}. \tag{1.5}$$

Proposition 1.1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

- 1. \hat{H} is hermitian.
- 2. $\left[\hat{N}, \hat{a}\right] = -\hat{a}, \left[\hat{N}, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger},$
- 3. $\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\hat{I}\right)$.

Proposition 1.1.5. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, \hat{H} and \hat{N} have a common basis of eigenvectors, which is countable, and

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle, \qquad \hat{a} | n \rangle = \sqrt{n} | n-1 \rangle,$$
 (1.6)

$$\hat{N}|n\rangle = n|n\rangle, \qquad \hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle, \qquad n \in \mathbb{N}.$$
 (1.7)

Corollary 1.1.6. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then,

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle. \tag{1.8}$$

Proposition 1.1.7. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, the eigenstates form a non-dgenerate basis.

Definition 1.1.3 (Fock states). Let \mathcal{H} be a Hilbert space with a harmonic potential. We define the *Fock states* as the states that determine the basis $(|n\rangle)$ and have a well-defined number of excitations.

Definition 1.1.4. Let \mathcal{H} be a Hilbert space with a harmonic potential. We call the fundamental Fock state *the vaccum*.

Proposition 1.1.8. Let \mathcal{H} be a Hilbert space with a harmonic potential. Then, $\hat{a}, \hat{a}^{\dagger}$ and \hat{N} have the following matrix representation in the basis $(|n\rangle)$.

$$[\hat{N}]_B = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \qquad [\hat{a}]_B = \begin{pmatrix} 0 & \sqrt{1} & 0 & \cdots \\ 0 & 0 & \sqrt{2} & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \qquad [\hat{a}^{\dagger}]_B = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

$$(1.9)$$

or in coefficient representation,

$$[\hat{N}]_{ij} = (i-1)\delta_{ij}, \qquad [\hat{a}]_{ij} = \sqrt{j-1}\delta_{i,j-1}, \qquad [\hat{a}^{\dagger}]_{ij} = \sqrt{i-1}\delta_{i-1,j}.$$
 (1.10)

1.2 Fock states wave functions