

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Übungsblatt 12

12.07.21

Aufgabe 1 (Signatur)

Wir betrachten die Bilinearform

$$\beta\colon \mathbb{R}^4\times\mathbb{R}^4\to\mathbb{R}$$

$$\begin{pmatrix}
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \mapsto -x_1(y_1 + y_2 + y_4) - y_1(x_1 + x_2 + x_4) + 2(x_2y_3 + x_3y_3 + x_3y_2)$$

- a) Bestimmen Sie die Signatur und den Rang von β . Ist β entartet?
- b) Bestimmen Sie jeweils eine Zerlegung $\mathbb{R}^4 = U_+ \oplus U_- \oplus U_0$ in Untervektorräume $U_+, U_-, U_0 \subseteq \mathbb{R}^4$, sodass $\beta|_{U_+ \times U_+}$ positiv definit ist, $\beta|_{U_- \times U_-}$ negativ definit ist, $\beta|_{U_0 \times U_0} = 0$ gilt, und außerdem
 - i) $\dim(U_+) = 1$, $\dim(U_-) = 1$, $\dim(U_0) = 2$ gilt.
 - ii) $\dim(U_+) = 2$, $\dim(U_-) = 0$, $\dim(U_0) = 2$ gilt.

Hinweis: Wie muss die Fundamentalmatrix $FM_B(\beta)$ bezüglich einer Basis B eines der Unterräume aussehen? Können die Unterräume orthogonal zueinander sein?

Aufgabe 2 (Symmetrien von Quadriken)

(10 Punkte)

Es sei V ein \mathbb{R} -Vektorraum, $\beta \colon V \times V$ eine Bilinearform, $q = q_{\beta}$ die zugehörige quadratische Form, $\varphi \colon V \to \mathbb{R}$ eine Linearform, $c \in \mathbb{R}$ eine Konstante und

$$M := \{x \in V \mid q(x) + 2\varphi(x) + c = 0\}$$

die zugehörige Quadrik.

Wir sagen

• M ist punktsymmetrisch am Punkt $p \in V$, wenn

$$\forall x \in V : (p + x \in M \iff p - x \in M)$$

gilt.

• M ist verschiebungssymetrisch in Richtung $v \in V$, wenn

$$\forall x \in V : (x \in M \iff x + v \in M)$$

gilt.

• M hat volle Dimension, wenn es keinen affinen Unterraum $A \subsetneq V$ gibt, der $M \subseteq A$ erfüllt. Hinweis: Daraus folgt insbesondere LH(M) = V. Beweisen Sie die folgenden Aussagen:

- a) Es gibt Quadriken, die an keinem Punkt punktsymmetrisch sind. (Geben Sie ein Beispiel an und begründen Sie).
- b) Falls $\ker(\varphi) \setminus \text{Null}(\beta) \neq \emptyset$ gilt oder q indefinit ist, ist M nicht leer. Hinweis: Wählen Sie ein geeignetes $v \in V$ und zeigen Sie dann, dass es ein $\alpha \in \mathbb{R}$ mit $\alpha v \in M$ gibt.
- c) Falls $v \in \text{Null}(\beta) \cap \ker(\varphi)$ gilt, ist M verschiebungssymetrisch in Richtung $v \in V$.
- d) Falls M volle Dimension hat und verschiebungssymetrisch in Richtung $v \in V$ ist, gilt $v \in \text{Null}(\beta) \cap \ker(\varphi)$.
- e) Falls $\varphi = 0$ gilt und M volle Dimension hat, ist M punktsymmetrisch am Punkt p genau dann, wenn $p \in \text{Null}(\beta)$ gilt.

Abgabe bis Montag, den 19.07.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.