

ONE DIMENSIONAL MODEL FOR RELATIVISTIC QUANTUM CHEMISTRY

Timothée AUDINET, Julien TOULOUSE

Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France

Introduction

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

Introduction

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

Important for fast-moving particles: average electron velocity in hydrogen-like ground-state

$$v = (\alpha Z)c$$
, with $\alpha \approx 1/137$

Introduction

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

 Important for fast-moving particles: average electron velocity in hydrogen-like ground-state

$$v = (\alpha Z)c$$
, with $\alpha \approx 1/137$

- Explains some physical properties of heavy elements
 - 1. yellow color of gold

```
P. Pyykkö, ACIE, (2004)
```

2. lead-acid battery electro-chemical potential

```
R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, PRL, (2011)
```

3. liquid state of mercury at room temperature

```
K. Steenbergen, E. Pahl and P. Schwerdtfeger, JPCL., (2017)
```

Introduction

WHY ARE WE INTERESTED IN RELATIVISTIC QUANTUM CHEMISTRY?

 Important for fast-moving particles: average electron velocity in hydrogen-like ground-state

$$v = (\alpha Z)c$$
, with $\alpha \approx 1/137$

- Explains some physical properties of heavy elements
 - 1. yellow color of gold

```
P. Pyykkö, ACIE, (2004)
```

2. lead-acid battery electro-chemical potential

```
R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, PRL, (2011)
```

3. liquid state of mercury at room temperature

```
K. Steenbergen, E. Pahl and P. Schwerdtfeger, JPCL., (2017)
```

Explains the electron spin and spin-orbit coupling

Relativistic energy

Free particle energy

Non relativistic:

$$E=\frac{p^2}{2m}\Rightarrow E\in[0,+\infty),$$

QED Effects

Relativistic:

$$E^2 = m^2 c^4 + c^2 p^2 \Rightarrow E \in (-\infty, -mc^2] \cup [mc^2, +\infty),$$

Relativistic energy

Free particle energy

Non relativistic:

$$E=\frac{p^2}{2m}\Rightarrow E\in[0,+\infty),$$

Relativistic:

$$E^{2} = m^{2}c^{4} + c^{2}p^{2} \Rightarrow E \in (-\infty, -mc^{2}] \cup [mc^{2}, +\infty),$$

Link between both

Taylor expansion of the square root for the positive part

$$E = \underbrace{mc^{2}}_{\text{Rest mass}} + \underbrace{\frac{p^{2}}{2m}}_{\text{Kinetic energy}} - \underbrace{\frac{p^{4}}{8m^{3}c^{2}}}_{\text{1st order}} + \dots$$

Dirac equation

Dirac operator

$$\mathcal{D}_0(x) = c \ (\vec{\boldsymbol{\alpha}} \cdot \vec{\boldsymbol{p}}) + \boldsymbol{\beta} \ mc^2, \tag{1}$$

QED Effects

•
$$\vec{\pmb{\alpha}} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$$
 where $\vec{\sigma} = \{\sigma_x, \ \sigma_y, \ \sigma_z\}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac equation

Dirac operator

$$\mathcal{D}_0(x) = c \ (\vec{\boldsymbol{\alpha}} \cdot \vec{\boldsymbol{p}}) + \boldsymbol{\beta} \ mc^2, \tag{1}$$

• $\vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$ where $\vec{\sigma} = \{\sigma_x, \ \sigma_y, \ \sigma_z\}$ are the Pauli matrices

•
$$\boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac eigenvalue equation

$$(\mathcal{D}_0(x) + V(x)) \boldsymbol{\psi}(x) = \mathcal{E} \boldsymbol{\psi}(x)$$
 (2)

$$m{\psi} = egin{pmatrix} \psi^{\mathsf{L}} \ \psi^{\mathsf{S}} \end{pmatrix}$$
 where $\psi^{\mathsf{L}/\mathsf{S}} = egin{pmatrix} \psi^{\mathsf{L}/\mathsf{S}} \ \psi^{\mathsf{L}/\mathsf{S}} \ \end{pmatrix}$

• ${\cal E}$ is the energy of the state ${m \psi}$

0

Hydrogenic spectrum

Non-relativistic spectrum

$$\mathcal{H}(x) = -\frac{\Delta}{2m} + V(x) \tag{3}$$

Spectrum:

- If $\mathcal{E} > 0$: continuum
- If $\mathcal{E} < 0$: bound states

Relativistic spectrum

$$\mathcal{D}(x) = c (\vec{\alpha} \cdot \vec{p}) + \beta mc^2 + V(x)$$
 (4)

Spectrum:

- If $\mathcal{E} \in (-\infty, -mc^2] \cup [mc^2, +\infty)$: continuum
- If $\mathcal{E} \in (-mc^2, mc^2)$: bound states
 - ⇒ Negative continuum spectrum

How to deal with the negative continuum

No-pair approximation

QED description

Introduction

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry

Introduction

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)
- Second level: Quantum electrodynamics (QED) effects (e.g. IP and EA of gold, Lamb shift in hydrogen)

	IP	Error	EA	Error
DC-HF	7.6892	-1.5363	0.6690	-1.6396
DC-CCSD	9.1164	-0.1092	2.1070	-0.2017
DC-CCSD(T)	9.2938	0.0683	2.3457	0.0371
DC-CCSDTQP	9.2701	0.0446	2.3278	0.0192
+Breit	9.2546	0.0290	2.3188	0.0102
+QED	9.2288	0.0032	2.3072	-0.0014
Experiment [31,32]	9.2256		2.3086	

Figure 1: IP and EA of gold with different levels of approximation

P. Schwerdtfeger et al., PRL, (2017)

D

From 3D to 1D

Free 1D Dirac operator

$$\mathbf{D}_0(x) = -\mathrm{i} c \sigma_x \frac{\mathrm{d}}{\mathrm{d}x} + \sigma_z m c^2 \tag{5}$$

Lapidus, AJP, (1983); T. Audinet, J. Toulouse, JCP, (2023)

Dirac eigenvalue equations

$$\mathbf{D}_0(x)\psi_p^0(x) = \varepsilon_p \psi_p^0(x) \tag{6}$$

• Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$

$$(\mathbf{D}_0(x) - Z\delta(x))\,\psi_p^Z(x) = \varepsilon_p \psi_p^Z(x) \tag{7}$$

- Bound State: $\varepsilon_h < mc^2$
- Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$

E

Vacuum Polarization

- Spontaneous creation of electron positron pairs due to the external potential
- Creates a charge density that will interact through the two-electron interaction

$$n^{\mathsf{vp}}(x) = \sum_{\varepsilon_p < 0} \psi_p^{Z\dagger}(x) \psi_p^Z(x) - \sum_{\varepsilon_p < 0} \psi_p^{0\dagger}(x) \psi_p^0(x)$$

- In 3D this quantity diverges, needs to be renormalized
- We want to have a better understanding of this quantity and its influence on the energy spectrum

QED Effects

Plotting the vacuum polarization

Vacuum Polarization Density

$$n^{\mathsf{vp}}(x) = \sum_{\varepsilon_{\rho} < 0} \psi_{\rho}^{Z\dagger}(x) \psi_{\rho}^{Z}(x) - \sum_{\varepsilon_{\rho} < 0} \psi_{\rho}^{0\dagger}(x) \psi_{\rho}^{0}(x)$$
 (8)

$$= \mathcal{N}_0^{\mathsf{vp}} \delta(x) + n_{\mathsf{reg}}^{\mathsf{vp}}(x) \tag{9}$$

Audinet, Morellini, Levitt, Toulouse, in preparation

In a basis... convergence issues?

- Plane wave basis: $\forall x \in \mathbb{R}, k \in \frac{2\mathbb{Z}\pi}{L}, |k| \leq \Lambda, \quad \xi_k(x) = \frac{1}{\sqrt{L}} e^{ikx}$
- Regularization process to clean oscillations

Audinet, Morellini, Levitt, Toulouse, in preparation

Figure 2: Non-regularized plot

In a basis... convergence issues?

- Plane wave basis: $\forall x \in \mathbb{R}, k \in \frac{2\mathbb{Z}\pi}{L}, |k| \leq \Lambda, \quad \xi_k(x) = \frac{1}{\sqrt{L}} e^{ikx}$
- Regularization process to clean oscillations

Audinet, Morellini, Levitt, Toulouse, in preparation

Figure 2: Non-regularized plot

0.5 1.5

Figure 3: Regularized plot

Conclusion

- Effective QED theory including electron-positron pairs
- QED effects are the next challenge of relativistic quantum chemistry
- QED quantities are very troublesome in 3D
- Some singularities appears in a finite basis
- This 1D model help us to understand this problem

Conclusion

- Effective QED theory including electron-positron pairs
- QED effects are the next challenge of relativistic quantum chemistry
- QED quantities are very troublesome in 3D
- Some singularities appears in a finite basis
- This 1D model help us to understand this problem

Perspectives

- Develop relativistic functional beyond the no-pair approximation for molecules
- Generalize the problem to 3D