Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Информационная безопасность

Лабораторная работа №2 Атака на алгоритм шифрования RSA методом повторного шифрования

Вариант 14

Студент: Мокров Семён Андреевич

P34121

Преподаватель: Маркина Татьяна Анатольевна

Содержание

Цель работы	3
Задание	
Вариант задания	
листинг разработанной программы	
Исходный код	
Результаты работы программы	
Скриншоты вывода программы	
Полученное сообщение	
Выводы	

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

Задание

- ознакомьтесь с теорией в [3], рассмотренной в подразделе («Атака повторным шифрованием»);
- получите вариант задания у преподавателя;
- по полученным исходным данным, используя метод перешифрования, определите порядок числа е в конечном поле $Z_{\phi(N)}$; используя значение порядка экспоненты, получите исходный текст
- используя значение порядка экспоненты, получите исходный текст методом перешифрования;
- результаты и промежуточные вычисления оформите в виде отчета.

Вариант задания

14	112546779899	280297	70526810403
			14149862236
			45856385641
			70576010398
			55035023176
			13450029743
			87602027501
			5373321283
			106271591904
			105497609146
			58279045288
			104373761049
			16432846070

Листинг разработанной программы

from termcolor import colored

```
source: str = "
70526810403
14149862236
45856385641
70576010398
55035023176
13450029743
87602027501
5373321283
106271591904
105497609146
58279045288
104373761049
16432846070
N: int = 112546779899
e: int = 280297
print(colored("Стартовые данные:", "green"))
print("Зашифрованная строка: " + source)
print("N: " + str(N))
print("e: " + str(e))
list_source = source.split()
result: str = ""
for i in range(len(list source)):
  list source[i] = int(list source[i])
for y in list source:
  y_i: int = pow(y, e, N)
  current result: int = 0
```

```
while y_i != y:
    current_result = y_i
    y_i = pow(y_i, e, N)

current_result_bytes = int.to_bytes(current_result, length=4, byteorder='big')
    result += current_result_bytes.decode('windows-1251')

print(colored("\nПолученное сообщение: ", "green") + result)
```

Исходный код

Исходный код расположен в репозитории:

https://github.com/semwett0301/information-security

Результаты работы программы

Скриншоты вывода программы

```
Стартовые данные:
Зашифрованная строка:
70526810403
14149862236
45856385641
70576010398
55035023176
13450029743
87602027501
5373321283
106271591904
105497609146
58279045288
104373761049
16432846070
N: 112546779899
e: 280297
Полученное сообщение: и встроенного ПО позволило тестерам получать и отсы
```

Полученное сообщение

и встроенного ПО позволило тестерам получать и отсы

Выводы

В данной лабораторной работе я:

- Ознакомился с принципом взлома RSA при помощи метода повторного шифрования
- Реализовал процесс взлома на Python