

AJUSTE DE CURVAS POR MÍNIMOS CUADRADOS

APROXIMACIÓN NUMÉRICA INTRODUCCIÓN

AJUSTE DE CURVAS POR MÍNIMOS CUADRADOS MÉTODOS DE SOLUCIÓN

CONTENIDO

Título Ajuste de curvas por mínimos cuadrados.

Duración 120 minutos

Información general Resaltar la importancia de realizar un ajuste de curvas por

mínimos cuadrados, con programación; aplicando Métodos

Numéricos en problemas de Ingeniería.

Objetivo : Conocer las técnicas de los métodos numéricos, con

programación numérica, para hacer un ajuste de curvas por

mínimos cuadrados; obteniendo resultados confiables.

AJUSTE DE CURVAS POR MÍNIMOS CUADRADOS

Es un método de ajuste de datos del tipo (x_i, y_i) , i = 1, 2, 3, ..., n, basado en la minimización del error cuadrático.

La sumatoria de los errores e_i , de todos los puntos, puede ser cero; pudiendo ser mal interpretado esto.

Es por esta razón que se considera el error cuadrático $E_i = (e_i)^2$; siendo:

$$E = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

TIPOS DE FUNCIONES.- Como funciones de ajuste $\hat{y} = f(x)$ se tienen:

$$\hat{y} = b_0 + b_1 x
\hat{y} = b_0 + b_1 x + b_2 x^2
\hat{y} = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n
\hat{y} = e^{b_0 + b_1 x}$$

EJERCICIO

Encontrar la curva de ajuste lineal, por Mínimos Cuadrados, para el siguiente conjunto de nodos:

	X	f(x)	
$x_1 \rightarrow$	2	8	$\leftarrow f(x_1)$
$x_2 \rightarrow$	3	15	$\leftarrow f(x_2)$
$\chi_3 \rightarrow$	4	12	$\leftarrow f(x_3)$
$x_4 \rightarrow$	6	24	$\leftarrow f(x_4)$
$\chi_5 \rightarrow$	8	21	$\leftarrow f(x_5)$

(Ejercicio a ser resuelto en clase con la participación de los alumnos)

EJERCICIO

Encontrar la curva de ajuste de grado 2, por Mínimos Cuadrados, para el siguiente conjunto de nodos:

	X	f(x)	
$x_1 \rightarrow$	2	8	$\leftarrow f(x_1)$
$x_2 \rightarrow$	3	15	$\leftarrow f(x_2)$
$x_3 \rightarrow$	4	12	$\leftarrow f(x_3)$
$x_4 \rightarrow$	6	24	$\leftarrow f(x_4)$
$x_5 \rightarrow$	8	21	$\leftarrow f(x_5)$

(Ejercicio a ser resuelto en clase con la participación de los alumnos)

EJERCICIO

Encontrar la curva de ajuste exponencial, por Mínimos Cuadrados, para el siguiente conjunto de nodos:

	X	f(x)	
$x_1 \rightarrow$	2	8	$\leftarrow f(x_1)$
$x_2 \rightarrow$	3	15	$\leftarrow f(x_2)$
$x_3 \rightarrow$	4	12	$\leftarrow f(x_3)$
$x_4 \rightarrow$	6	24	$\leftarrow f(x_4)$
$x_5 \rightarrow$	8	21	$\leftarrow f(x_5)$

(Ejercicio a ser resuelto en clase con la participación de los alumnos)

RECOMENDACIONES:

- Cuando no se conoce la función y especialmente cuando existe una tendencia en los datos, es recomendable trabajar con los mínimos cuadrados.
- Los mínimos cuadrados no son interpolaciones, son tendencias solamente; por tanto no importa elevar el grado.
- El comando en Matlab "polyfit" calcula el polinomio de mínimos cuadrados.

REFERENCIAS BIBLIOGRAFICAS

- 1. Sánchez Juan Miguel, Problemas de Cálculo Numérico para ingenieros con aplicaciones Matlab, McGraw-Hill, Primera edición, 2005.
- 2. A. Quarteroni, F. Saleri, Cálculo Científico con Matlab y Octave. Springer-Verlag Italia, milano 2006