Baby Rudin Solutions

Michael You

Contents

1 The Real and Complex Number Systems

1

ii CONTENTS

Forward

These solutions are for the $3^{\rm rd}$ edition Principles of Mathematical Analysis textbook by the legendary Walter Rudin.

I will do my best to provide some guidance along the way in this book.

iv CONTENTS

Chapter 1

The Real and Complex Number Systems

The most important definition in this chapter is **1.10** about the *least-upper-bound property*, or the sup, and the corresponding inf. Without these concepts it's hard to prove anything else, so please pay attention to this definition!

Although you don't have to understand the R construction from Q perfectly, it is a good exercise. It is quite set-theory heavy, so if you haven't read $Naive\ Set\ Theory$ by Paul Halmos, I would highly recommend give that book a skim.

I thought it was helpful to think the cuts in the construction as subsets of Q that kinda look like $(-\infty, r)$. This isn't super precise, but it should aid with the understanding quite a bit (the book should honestly include a diagram for this idea). I believe these cuts are known as Dedekind cuts in the real world.

Exercises

Exercise 1

Suppose they are trivial, then we have

- (a) $r + x = q \in Q$ so $x = q r \in Q$ which is a contradiction
- (b) $rx = q \in Q$ so $x = \frac{q}{r} \in Q$ which is a contradiction

so we conclude both are irrational.

Exercise 2

This is the classic $\sqrt{2}$ is irrational proof, but you start with AFSOC $q \in Q$ such that

$$q^2 = 12$$

$$\left(\frac{m}{n}\right)^2 = 12$$
 $m^2 = 12n^2$
 $(m, n \in \mathbb{Z}, m, n \text{ relatively prime})$

Now, m must be a multiple of 3, so let $m = 3k, k \in \mathbb{Z}$.

$$m^2 = 9k^2 = 12n^2 3k^2 \qquad = 4n^2$$

and we conclude the same for n, which is a contradiction since we assume $\frac{m}{n}$ was represented as a fraction in simplest forms.

Exercise 3

These are pretty trivial.

Exercise 4

Pick an arbitrary $x \in E$, then we have $\alpha \le x$ by lower bound definition and $x \le \beta$ by upper bound definition. Putting these together, we get

$$\alpha \le x \le \beta \implies \alpha \le \beta$$

Exercise 5

Let $\alpha = -\sup(-A) \implies -\alpha = \sup(-A)$. Then we know

$$-\alpha > y \qquad (y \in -A)$$

$$\alpha < -y \qquad (y \in -A)$$

$$\alpha < y' \qquad (y' = -y \in A)$$

Therefore α is a lower bound for A. Now, because of the sup property of α on -A, we know $\beta\beta$ such that

$$\beta > \alpha$$
 and $\beta < y$ for $y \in -A$

which means α is the largest lower bound for A as well, so therefore we conclude $\alpha = \inf(A)$

Exercise 6

(a) I think the idea here is to show that m/n = p/q AFSOC means $p = km, q = kn, k \in Q$, and then you say

$$(b^m)^{\frac{1}{n}} = A \implies b^m = A^n$$
 (Theorem 1.21)
 $b^{km} = A^{kn}$ (Repeatedly multiply both sides k times)
 $(b^p)^{\frac{1}{q}} = (b^{km})^{\frac{1}{kn}} = A$

- (b) Substitute fractions in for r, s and you can derive the rest with help from (a).
- (c) Any $r' \leq r$ will have $b^{r'} \in B(r)$ by definition of B(r). If r' > r, then $r' \notin B(r)$, hence we see that $b^r = \sup B(r)$.
- (d) Add B(x) and B(y) and use (c).

Exercise 7

TODO

Exercise 8

 $i^2 = -1 < 0$ so it is not ordered.

Exercise 9

TODO but you just run through the definition and verify.

Exercise 10

TODO

Exercise 11

We just have to set r = |z| and divide z's coefficients by r to get w. These are unique because |z| is unique.

Exercise 12

We can use induction to prove this, starting with the n=2 case which is given by axioms.

Exercise 13

Start with triangle inequality and manipulate. I think you sould WLOG |x| < |y| at some point when you try to get the |x| - |y| term, so you can get your inequality.

Exercise 14

$$|1+z|^{2} + |1-z|^{2} = (1+z)(1+\bar{z}) + (1-z)(1-\bar{z})$$

$$= 1+z+\bar{z}+z\bar{z}+1-z-\bar{z}+z\bar{z}$$

$$= 4 \qquad (z\bar{z}=1)$$

You can also do this problem geometrically, realizing that |z| = 1 means z is on the unit circle in the complex plane, and that

$$|1+z|^2 + |1-z|^2 = |1-(-z)|^2 + |1-z|^2$$
 (1.1)

which means we are finding the sum of square distances of z, -z from 1 on the complex plane, which, since z, -z are endpoints of a diameter, their sum distances are the sums of squares of two legs of a right triangle with the diameter as the hypotenuse, which has diameter length 2. We then conclude their square sums = $2^2 = 4$.

Figure 1.1: z, \bar{z} and their square sum distance from 1 is the diameter

Exercise 15

Taking a look at our derivation, equality would happen when every $|Ba_i - Cb_i| = 0$.

Exercise 16

- (a) For some reason I'm only getting k solutions here, since you have the locus of points that are r away from x, y respectively and you find their intersection.
- (b) There is only one point that is equidistant from x and y and sums up to d, which is the midpoint of the two points.
- (c) This is impossible because there is no point that can be < r to both points but also cover the d distance.

Exercise 17

Proving equality is just an algebra exercise, use the conjugate definition.

Geometrically, we see that $|x + y|^2 + |x - y|^2$ are the sum of squares of the diagonals, and the rest are the sums of squares of the side lengths. And we've proved they are equal.

Exercise 18

In k = 1 this is not possible because xy = 0 implies one of them is 0.

To some up with a general y for any k, observe that

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{k} x_i y_i$$

$$= x_1 \cdot \frac{1}{x_1} + x_2 \cdot \frac{1}{x_2} + \dots + x_k \cdot \frac{-(k-1)}{x_k}$$

$$= k - 1 - (k-1) = 0$$

Geometrically, any perpendicular vector would have a dot product of 0.

Exercise 19

TODO

Exercise 20

TODO