Or, coimate the p-value, and determine if it is significant or not based off the Stecified Alpha (0.05).

 $\label{eq:control_control_control} X \ bar = sample \ mean, \ Mu0 = null \ hypothesis \ of \ population \ mean, \ sigma = population \ std. \\ S = sample \ std,$

Summary of Hypothesis Tests and Confidence Intervals

	$H_{\scriptscriptstyle 0}$	The statistical value/test	H_1	Rejection region	Confidence interval	In	R
1.	$\mu = \mu_0$	$z = \frac{\overline{x} - \mu_0}{\sqrt[\sigma]{\int_n}}$	$\mu < \mu_0$	$z < -z_{1-\alpha}$ $z > z$	of: μ $\overline{x} \pm z_{1-\alpha/2} \frac{\alpha}{\sqrt{x}}$		(Data, mu, Sigma. X, alternative =)
	Test for a sample mean against a Normal Distribution Scipy.ttest 1samp	Sigma/sqt(n) = variance/n. This is the <u>estimate</u> of the std of our population, using the std of the sample of the sample mean. This is a pretty close approximation, but not exact σ is known and $X \sim N$ Or $n > 30$	$\mu > \mu_0$ $\mu \neq \mu_0$	$ z > z_{1-\alpha}$ $ z > z_{1-\alpha/2}$			
2.	$\mu = \mu_0$	$t = \frac{\overline{x} - \mu_0}{\sqrt{x}} \qquad \text{OF}_{v} = n - 1$	$\mu < \mu_0$	$t < -t_{\alpha}$ Table	of: μ $\overline{x} \pm t_{\frac{a}{2}} \frac{s}{\sqrt{n}}$	t. test	- (Data, mu, alternative =)
	Student's T-test,	σ is unknown, $X \sim N$ and	$\mu > \mu_0$	$t > t_{\alpha}$	$X \stackrel{\iota}{=} \iota_{\frac{\alpha}{2}} \sqrt{n}$		
	for sample mean against a T distribution	$n \le 30$	$\mu \neq \mu_0$	$ t > t_{\frac{\alpha}{2}}$			
3.	$\mu_1 - \mu_2 = d_0$	$z = \frac{\overline{x_1} - \overline{x_2} - d_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$\mu_1 - \mu_2 < d_0$	$z < -z_{1-\alpha}$	of: $\mu_1 - \mu_2$	Z.tes	$+(X=X_Dota, Y=Y_Dota, MU=0, Sigma.X=15, Sigma.Y=15)$
	Testing difference of two	$z = \frac{\overline{x_1} - \overline{x_2} - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sigma_1, \sigma_2 \text{ are known} \text{Offen equal 0}$	$\mu_1 - \mu_2 > d_0$	$z > z_{1-\alpha}$	$\bar{x}_1 - \bar{x}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}$		
	independent sample means (scipy.ttest_ind())	$X_1, X_2 \sim N \text{ or } n_1, n_2 > 30$	$\mu_1 - \mu_2 \neq d_0$	$ z > z_{1-\alpha/2}$			
4.	$\mu_1 - \mu_2 = d_0$ Welch's T-Test	$t = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$\mu_{\!\scriptscriptstyle 1}\!-\!\mu_{\!\scriptscriptstyle 2}\!<\!d_{\scriptscriptstyle 0}$	$t < -t_{\alpha}$	of: $\mu_1 - \mu_2$ $\overline{x}_1 - \overline{x}_2 \pm t_{\frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	t.tes	t(x=x_Data, y= x_Data, Var.eana) = True/False) Weich's
	for unequal variances	$\sigma_1 = \sigma_2$ are unknown	$\mu_1 - \mu_2 > d_0$	$t > t_{\alpha}$			WEICH J
		$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$					
		$v = n_1 + n_2 - 2$	$\mu_1 - \mu_2 \neq d_0$	$ t > t_{\frac{\alpha}{2}}$			
		$X_1, X_2 \sim N $ and $n_1 \le 30 \text{ or } n_2 \le 30$					
5.	$\mu_1 - \mu_2 = d_0$	Average of $t = \frac{\overline{d} - d_0}{s_d}$	$\mu_1 - \mu_2 < d_0$	$t < -t_{\alpha}$	of: μ_d	t.test	(X=xp, Y=xp, Pairel = True)
	T test for Paired Samples	Average of $I = \frac{1}{S_d}$ difference	$\mu -\mu_2 > d_0$	$t > t_{\alpha}$	$d \pm t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}}$		
		Paired samples $D \sim N, n \le 30$	$\mu_1 - \mu_2 \neq d_0$	$ t > t_{\frac{\alpha}{2}}$			
6.	$p = p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{1 - p_0}}$	$p < p_0$	$z < -z_{1-\alpha}$	of: p		
	of populations	$\sqrt{\frac{p_0(1-p_0)}{n}}$	$p > p_0$	$z > z_{1-\alpha}$	$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$		
	Ot Lotor Mras	$n\hat{p}, n(1-\hat{p}) \ge 5$	$p \neq p_0$	$ z > z_{1-\alpha/2}$			

	$H_{\scriptscriptstyle 0}$	The statistical value/test	H_1	Rejection region	Confidence interval	
7.	$p_1 - p_2 = d_0$ Difference	$z = \frac{\hat{p}_1 - \hat{p}_2 - d_0}{\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}}$			of: $p_1 - p_2$ $\hat{p}_1 - \hat{p}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$	
	of propertions	$n_1 \hat{p}_1, n_1 (1 - \hat{p}_1) \ge 5$ $n_2 \hat{p}_2, n_2 (1 - \hat{p}_2) \ge 5$ $d_0 = 0$ then we take the	$p_1 - p_2 > d_0$	$z > z_{1-\alpha}$		
		following as the denominator: $\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \text{ for }$ $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$				
8.	$\sigma^2 = \sigma_0^2$ Chi squared: Testing a variance	$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$ $v = n-1$	$\sigma^2 < \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 < \chi^2_{1-\alpha}$ $\chi^2 > \chi^2_{\alpha}$	of: σ^2 between $\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}$	VarTest (X = X_data, alternative = "two. sidel", signa. squared = C
	Variance of a population is — X	$X \sim N$		or $\chi^2 < \chi_{1-\frac{\alpha}{2}}^2$ $\chi^2 > \chi_{\frac{\alpha}{2}}^2$	and $\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}}$	
9.	$\sigma_1^2 = \sigma_2^2$ F Test: Testing a variance	_		$F > F_{\alpha}(\nu_1, \nu_2)$	of : $\frac{{\sigma_1}^2}{{\sigma_2}^2}$	var. test(x, y, alternotive = "two. s!lod=)
	against another variance	V = Degrees of freedom $v_1 = n_1 - 1$ $v_2 = n_2 - 1$ If the test is two-sided, then X_1 is the variable with the greatest variance according to H_1 $X_1, X_2 \sim N$		$F < F_{1-\frac{\alpha}{2}}(v_1, v_2)$ $F > F_{\frac{\alpha}{2}}(v_1, v_2)$	between $\frac{{s_1}^2}{{s_2}^2} \frac{1}{F_{\underline{\alpha}}(\nu_1, \nu_2)}$ and $\frac{{s_1}^2}{{s_2}^2} F_{\underline{\alpha}}(\nu_2, \nu_1)$	Example: Testing the variance of a sample of Men's Wages US. women's wages.

$$F_{\alpha}\left(v_{1},v_{2}\right) = \frac{1}{F_{1-\alpha}\left(v_{2},v_{1}\right)}$$