

CLAIMS

1. a countermeasure method for implementation in
an electronic component implementing a public-key
5 cryptography algorithm comprising exponentiation
computation, with a left-to-right type exponentiation
algorithm, of the type $y=g^d$, where g and y are
elements of the determined group G written in
multiplicative notation, and d is a predetermined
10 number, said countermeasure method being characterized
in that it includes a random draw step, at the start of
or during execution of said exponentiation algorithm in
deterministic or in probabilistic manner, so as to mask
the accumulator A.

15

2. A countermeasure method according to claim 1,
characterized in that the group G is written in
additive notation.

20

3. A countermeasure method according to claim 1,
characterized in that the group G is the multiplicative
group of a finite field written $GF(q^n)$, where n is an
integer.

25

4. A countermeasure method according to claim 3,
characterized in that the integer is n equal to 1: n=1.

5. A countermeasure method according to claim 4,
characterized in that it comprises the following steps:

- 1) Determine an integer k defining the security of the masking and give d by the binary representation $(d(t), d(t-1), \dots, d(0))$
- 2) Initialize the accumulator A with the integer 1
- 5 3) For i from t down to 0, do the following:
 - 3a) Draw a random integer λ lying in the range 0 to $k-1$ and replace the accumulator A with $A+\lambda.q$ (modulo $k.q$)
 - 10 3b) Replace A with A^2 (modulo $k.q$)
 - 3c) If $d(i)=1$, replace A with $A.g$ (modulo $k.q$)
- 4) Return A (modulo q).

15 6. A countermeasure method according to claim 4, characterized in that it comprises the following steps:

- 1) Determine an integer k defining the security of the masking, and give d by the binary representation $(d(t), d(t-1), \dots, d(0))$
- 20 2) Draw a random integer λ lying in the range 0 to $k-1$ and initialize the accumulator A with the integer $1+\lambda.q$ (modulo $k.q$)
- 3) For i from $t-1$ down to 0, do the following:
 - 3a) Replace A with A^2 (modulo $k.q$)
 - 25 3b) If $d(i)=1$, replace A with $A.g$ (modulo $k.q$)
- 4) Return A (modulo q).

7. A countermeasure method according to claim 2, characterized in that the exponentiation algorithm applies to the group G of the points of an elliptic curve defined on the finite field $GF(q^n)$.

5

8. A countermeasure method according to claim 7, characterized in that it comprises the following steps:

- 1) Initialize the accumulator $A = (A_x, A_y, A_z)$ with the $(x, y, 1)$ triplet and give d by the binary signed-digit representation $(d(t+1), d(t), \dots, d(0))$ with $d(t+1)=1$
- 2) For i from t down to 0, do the following:
 - 2a) Draw a random non-zero element λ from $GF(q^n)$ and replace the accumulator $A = (A_x, A_y, A_z)$ with $(\lambda^2 \cdot A_x, \lambda^3 \cdot A_y, \lambda \cdot A_z)$
 - 2b) Replace $A = (A_x, A_y, A_z)$ with $2 \cdot A = (A_x, A_y, A_z)$ in Jacobian representation, on the elliptic curve
 - 2c) If $d(i)$ is non-zero, replace $A = (A_x, A_y, A_z)$ with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in Jacobian representation on the elliptic curve
- 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x / (A_z)^2, A_y / (A_z)^3)$.

25

9. A countermeasure method according to claim 7, characterized in that it comprises the following steps:

- 1) Draw a non-zero random element λ from $GF(q^n)$ and initialize the accumulator $A = (A_x, A_y, A_z)$ with the $(\lambda^2 \cdot x, \lambda^3 \cdot y, \lambda)$ triplet and give d by

the binary signed-digit representation $(d(t+1), d(t), \dots, d(0))$ with $d(t+1)=1$

2) For i from t down to 0, do the following:

5 2a) Replace $A=(A_x, A_y, A_z)$ with $2*A=(A_x, A_y, A_z)$ in Jacobian representation, on the elliptic curve

2b) If $d(i)$ is non-zero, replace $A=(A_x, A_y, A_z)$ with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in Jacobian representation on the elliptic curve

10 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x / (A_z)^2, A_y / (A_z)^3)$.

10. A countermeasure method according to claim 7, characterized in that it comprises the following steps:

15 1) Initialize the accumulator $A=(A_x, A_y, A_z)$ with the $(x, y, 1)$ triplet and give d by the binary signed-digit representation $(d(t+1), d(t), \dots, d(0))$ with $d(t+1)=1$

2) For i from t down to 0, do the following:

20 2a) Draw a random non-zero element λ from $GF(q^n)$ and replace the accumulator $A=(A_x, A_y, A_z)$ with $(\lambda \cdot A_x, \lambda \cdot A_y, \lambda \cdot A_z)$

2b) Replace $A=(A_x, A_y, A_z)$ with $2*A=(A_x, A_y, A_z)$ in homogeneous representation, on the elliptic curve

25 2c) If $d(i)$ is non-zero, replace $A=(A_x, A_y, A_z)$ with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in homogeneous representation on the elliptic curve

3) If $A_z=0$, return the point at infinity;
 otherwise return $(A_x/A_z, A_y/A_z)$.

11. A countermeasure method according to claim 7,
 5 characterized in that it comprises the following steps:

- 1) Draw a non-zero random element λ from $GF(q^n)$
 and initialize the accumulator $A=(A_x, A_y, A_z)$
 with the $(\lambda.x, \lambda.y, \lambda)$ triplet and give d by the
 binary signed-digit representation $(d(t+1),$
 10 $d(t), \dots, d(0))$ with $d(t+1)=1$
- 2) For i from t down to 0, do the following:
 - 2a) Replace $A=(A_x, A_y, A_z)$ with $2*A=(A_x, A_y, A_z)$
 in homogeneous representation, on the
 elliptic curve
 - 2b) If $d(i)$ is non-zero, replace $A=(A_x, A_y, A_z)$
 with $(A_x, A_y, A_z) + d(i) * (x, y, 1)$ in
 homogeneous representation on the
 elliptic curve
- 3) If $A_z=0$, return the point at infinity;
 20 otherwise return $(A_x/A_z, A_y/A_z)$.

12. An electronic component using the
 countermeasure method according to any preceding claim.