

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree Second Year – Semester II Examination - September/October 2013

PHY 2106- Atomic and Nuclear Physics

Answer any two questions

Time: One hour

Electron mass m_e = 9.1 x 10⁻³¹ kg Planck constant h = 6.624 x 10⁻³⁴ J s Elementary charge e = 1.6 x 10⁻¹⁹ C Permittivity of free space ε_0 = 8.85 x 10⁻¹² C² N⁻¹ m⁻² Electron volt eV = 1.6 x 10⁻¹⁹ J

Use of a non-programmable calculator is permitted.

Unless otherwise specified, symbols have their usual meaning.

1. (a) State the postulates of Bohr's theory of the hydrogen atom.

In a μ - mesonic atom, a muon with a charge -e and mass 200 m_e moves in a circular orbit around the nucleus of charge +3e. Assuming that Bohr's model of atom is applicable to this system.

- (i) Derive the expression for the radius of n^{th} Bohr orbit.
- (ii) Find the value of n for which the radius of the orbit is approximately the same as that of Bohr's first orbit of hydrogen atom. (Bohr radius = 0.53×10^{-10} m.)
- (iii) Calculate the first excitation potential of the atom.
- (b) What is L-S coupling scheme?
- (c) Distinguish between normal and anomalous Zeeman effect.

2. (a) Explain the term "Larmor precession".

Show that the angular velocity of precession is

$$\omega_L = \frac{eB}{2m_e}$$

Where e - charge of electron

me- mass of electron

B - external magnetic field

(b) What is the difference between nuclear fission and nuclear fusion?

Describe the construction and working principle of a nuclear reactor with suitable figures.

A reactor is developing energy at the rate of 32×10^6 W. How many atoms of 235 U undergo fission per second? Assume that on an average, energy of 200 MeV is released per fission.

- 3. (a) Explain what it is meant by radioactive equilibrium.
 - (b) Radon, the disintegration product of radium is in equilibrium with 1 g of Radium. Find the mass of Radon. Half lives of ²²⁶Ra- 1590 years and ²²²Rn- 3.82 days.

Hint: The Bateman equation, $N_2 = \frac{N_0 \lambda_1}{\lambda_2 - \lambda_1} \left[\exp^{-\lambda_1 t} - \exp^{-\lambda_2 t} \right]$ gives the number of daughter atoms at time t.

(c) What is it meant by half life $(t_{1/2})$ of a radioactive sample?

Two isotopes of a certain element have half lives T_1 and T_2 . They are observed with abundances A_1 and A_2 respectively. Assuming that these isotopes were equally abundant at the time of formation of earth, calculate the age of the Earth in terms of T_1 and T_2 .