

Quantifying White Matter Hyperintensity and Brain Volumes in Heterogeneous Clinical and Low-Field Portable MRI

Pablo Laso, Stefano Cerri, Annabel Sorby-Adams, Jennifer Guo, Farrah Mateen, Philipp Goebl, Jiaming Wu, Peirong Liu, Hongwei Bran Li, Sean I Young, Benjamin Billot, Oula Puonti, Gordon Sze, Sam Payabavash, Adam DeHavenon, Kevin N Sheth, Matthew S Rosen, John Kirsch, Nicola Strisciuglio, Jelmer M Wolterink, Arman Eshaghi, Frederik Barkhof, W Taylor Kimberly, Juan Eugenio Iglesias

Presenter: Hongwei Bran Li

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

Introduction

- Brain atrophy and white matter hyperintensity (WMH) in brain MRIs are key biomarkers to determine brain injuries in diseases like multiple sclerosis.
- Automated quantification of brain structures and WMH across heterogeneous MRIs is urgently needed

Existing Segmentation Methods

- LST^[1]: An unsupervised method to segment WMHs
- Supervised deep learning [2] based on expert annotations.
- SAMSEG^[3]: A contrastive-adaptive method using parametric Bayesian modelling.

^[1] Schmidt, Paul, et al. "An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis." Neuroimage 59.4 (2012)

^[2] Roy, Abhijit Guha, et al. "QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy." NeuroImage 186 (2019)

^[3] Cerri, Stefano, et al. "A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis." Neuroimage 225 (2021).

Our Method's Features

- Does not require retraining when deployed in clinical routine
- Uses a composite loss to improve sensitivity and specificity
- Adapts to low-field portable MRI
- Uses multi-task learning for enhanced robustness.

Our Method: WMH-SynSeg

Learning from synthetic data by random contrasts [4]

Generation process of synthetic data

[4] Billot, Benjamin, et al. "SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining." Medical image analysis (2022)

Our Method - WMH-SynSeg

- Training on synthetic data
 - 3D U-Net [5] architecture with five levels, 64 feature maps per level, and group normalization, taking 1603 voxel cubes.
 - a tailored loss function with equal weight on cross-entropy, Dice scores, average L1 error for T1w intensities, and L1 error for bias field.
- Testing on real data
 - Test-time augmentation with flipping for robustness.

Experiment

Training and testing on nine diverse brain MRI datasets

Dataset	НСР	ADNI	GE3T	Singapore	Utrecht	ISBI	FLI-IAM	ADHD	MGH
Train	897	1148	15	15	-	-	-	-	-
Test	-	-	5	5	20	15	15	20	12
WMHs	Х	Х	✓	√	✓	√	✓	Х	Х

- Evaluation metrics
 - Dice scores
 - Correlation between volumetric measurement from high-field and low-field scans

Sample images

Results

Qualitative comparison

Results

Quantitative comparison

Method	T	1w	FLAIR		
	Anat	WMH	Anat	WMH	
LST (LPA)	N/A	N/A	N/A	0.57	
SAMSEG	0.81	0.46	0.72	0.56	
WMH-SynthSeg (NoWMH-noCE-noMTL)	0.83	0.47	0.76	0.53	
WMH-SynthSeg (NoWMH)	0.85	0.47	0.78	0.54	
WMH-SynthSeg (full)	0.85	0.55	0.79	0.62	

Method	\mathbf{T}	lw	FLAIR		
	Hippo	WMH	Hippo	WMH	
LST (LPA)	N/A	N/A	N/A	-0.33	
SAMSEG	0.71	0.63	0.69	0.64	
WMH-SynthSeg (full)	0.89	0.75	0.86	0.85	

High correlations between volumetric measurements from high-field and low-field MRIs in an in-house MS cohort are observed.

Results

Segmentation on low-field portable MRI without retraining

Summary

- **WMH-SynSeg** is a highly robust segmentation tool that simultaneously segments 30 brain structures and WMHs.
- Future work will include realistic modeling of WMH and evaluation on pMRI from larger cohorts. W.
- WMH-SynthSeg is publicly available and has potential in analyzing portable MRI acquired in medically underserved areas.

Using only one line for segmentation in FreeSurfer!

Thank you! Any questions?

