UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA DE CORRECCIÓN EXAMEN. CÁLCULO III. 525211.

1. (30 ptos.) Sea $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ una función de clase \mathcal{C}^2 con respecto de x e y, y de clase \mathcal{C}^2 con respecto de ρ y θ , con $x = \rho \cos \theta$, e $y = \rho \sin \theta$ (coordenadas polares). Calcule $\frac{\partial^2 f}{\partial \theta \partial \rho}$ y $\frac{\partial^2 f}{\partial \rho \partial \theta}$ en coordenadas cartesianas ξ qué podría pasar con el cálculo anterior si f es de dos veces diferenciable pero no es de clase \mathcal{C}^2 con respecto de ρ y θ ?

Solución

$$\frac{\partial f}{\partial \rho} = \frac{\partial x}{\partial \rho} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \rho} \frac{\partial f}{\partial y} = \frac{\partial (\rho \cos \theta)}{\partial \rho} \frac{\partial f}{\partial x} + \frac{\partial (\rho \sin \theta)}{\partial \rho} \frac{\partial f}{\partial y} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}$$

$$\frac{\partial f}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial f}{\partial y} = \frac{\partial (\rho \cos \theta)}{\partial \theta} \frac{\partial f}{\partial x} + \frac{\partial (\rho \sin \theta)}{\partial \theta} \frac{\partial f}{\partial y} = -\rho \sin \theta \frac{\partial f}{\partial x} + \rho \cos \theta \frac{\partial f}{\partial y}$$
(10 ptos.)

$$\frac{\partial^{2} f}{\partial \rho \partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial \rho} \right) = \frac{\partial}{\partial \theta} \left(\cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y} \right)
= \cos \theta \frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial x} \right) + \sin \theta \frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial y} \right) - \sin \theta \frac{\partial f}{\partial x} + \cos \theta \frac{\partial f}{\partial y}
= -\rho \sin \theta \cos \theta \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) + \rho \cos^{2} \theta \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) - \rho \sin^{2} \theta \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)
+ \rho \sin \theta \cos \theta \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) - \sin \theta \frac{\partial f}{\partial x} + \cos \theta \frac{\partial f}{\partial y}
= \frac{1}{\sqrt{x^{2} + y^{2}}} \left(xy \left(\frac{\partial^{2} f}{\partial y^{2}} - \frac{\partial^{2} f}{\partial x^{2}} \right) + (y^{2} - x^{2}) \frac{\partial^{2} f}{\partial x \partial y} - y \frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y} \right)$$

(10 ptos.)

$$\frac{\partial^2 f}{\partial \theta \partial \rho} = \frac{\partial^2 f}{\partial \rho \partial \theta} \text{ (por el Teorema de Schwarz, pues } f \text{ es de clase } \mathcal{C}^2).$$

(5 ptos.)

 ξ qué podría pasar con el cálculo anterior si f es de dos veces diferenciable pero no es de clase \mathcal{C}^2 con respecto de ρ y θ ?

Respuesta: no necesariamente $\frac{\partial^2 f}{\partial \theta \partial \rho} = \frac{\partial^2 f}{\partial \rho \partial \theta}$, pues ser de clase \mathcal{C}^2 es una de las hipótesis del Teorema de Schwarz para que la igualdad se verifique (condición suficiente).

(5 ptos.)

2. (40 ptos.) Una compañía fabrica una serie de productos, tres de los cuales son deficitarios. Se ha estimado que la función que determina las pérdidas al fabricar esos productos es:

$$f(x, y, z) = x^3 + 2yz$$

Los compromisos que la compañía debe cumplir por contratos con otras firmas son :

$$x + y = \alpha$$
,

$$y + z = \beta$$
, donde $\beta > 2\alpha > 0$ son dos parámetros reales positivos.

- (a) Calcule las produciones óptimas x_0 , y_0 , z_0 que minimizan las pérdidas, y los Multiplicadores de Lagrange λ_1 , λ_2 asociados al problema.
- (b) Pruebe usando las condiciones suficientes de optimalidad que $f(x_0, y_0, z_0)$ es mínimo.
- (c) Sea la función pérdidas mínimas en términos de α y β : $\varphi(\alpha,\beta)=f(x_0,y_0,z_0)$. Pruebe que

$$\frac{\partial \varphi}{\partial \alpha} = \lambda_1, \qquad \text{y} \qquad \frac{\partial \varphi}{\partial \beta} = \lambda_2.$$

Solución

(a) Lagrangiano

$$\mathcal{L}(x,y,x,\lambda_1,\lambda_2) = x^3 + 2yz + \lambda_1(\alpha - x - y) + \lambda_2(\beta - y - z)$$
(5 ptos.)

Luego los puntos críticos se obtienen de:

$$\frac{\partial \mathcal{L}}{\partial x} = 3x^2 - \lambda_1 = 0 \Longrightarrow \lambda_1 = 3x^2$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2z - \lambda_1 - \lambda_2 = 0$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2y - \lambda_2 = 0 \Longrightarrow \lambda_2 = 2y$$

(5 ptos.)

$$\frac{\partial \mathcal{L}}{\partial y} = 0 \implies 2z = \lambda_1 + \lambda_2 = 3x^2 + 2y$$

$$\implies 3x^2 + 2(y - z) = 0 \implies 3x^2 + 2(2y - \beta) = 0$$

$$\implies 3x^2 + 4(\alpha - x) - 2\beta = 0 \implies 3x^2 + 4\alpha - 2\beta = 0$$

$$\implies x = \frac{2}{3} \pm \frac{\sqrt{4 - 6(2\alpha - \beta)}}{3}$$
(2 raices reales, $x_1 < 0$ y $x_2 > 0$ pues $\beta > 2\alpha > 0$)

(5 ptos.)

Escogemos $x_0 = x_2 = \frac{2}{3} + \frac{\sqrt{4 - 6(2\alpha - \beta)}}{3} > 0$ pues es la única de las dos que tiene sentido práctico econmico (la cantidad de un producto debe ser positiva). Luego $y_0 = \alpha - x_0$, $z_0 = \beta - y_0$, $\lambda_1 = 3x_0^2$, y $\lambda_2 = 2y_0$. (5 ptos.)

(b.1) 1er Método : Condición suficiente de extremos condicionados. Necesitamos el cálculo de la segunda derivada del Lagrangiano $(Hess(\mathcal{L}) \equiv d^2\mathcal{L})$ y de la derivada de las restricciones $(dg \equiv Jacob(g)^t)$.

$$Hess(\mathcal{L}) = \begin{bmatrix} 6x_o & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \qquad Jacob(g)^t = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

donde las restricciones están dadas por $g(x,y) = \begin{pmatrix} \alpha - x - y \\ \beta - y - z \end{pmatrix}$. (5 **ptos.**)

Sea
$$\Delta X=\begin{pmatrix}\Delta x\\\Delta y\\\Delta z\end{pmatrix}$$
 tal que $d\varphi\Delta X=0$. Entonces $\Delta X=\Delta x\begin{pmatrix}1\\-1\\1\end{pmatrix}$. Luego

$$d^{2}\mathcal{L}(\Delta X, \Delta X) = \Delta X^{t} Hess(\mathcal{L}) \Delta X = 6x_{0} \Delta x^{2} + 4\Delta y \Delta z$$
$$= (6x_{0} - 4) \Delta x^{2} = (2\sqrt{4 - 6(2\alpha - \beta)} - 4) \Delta x^{2} > 0$$
$$(pues \beta > 2\alpha)$$

Luego (x_0, y_0, z_0) es mínimo. (5 ptos.)

(b.2) 2do Método : Como $y = \alpha - x$ y $z = \beta - y$ se define

$$\tilde{f}(x) = f(x, y(x), z(x)) = x^3 + 2(\alpha - x)(\beta - \alpha + x)$$

Luego $\tilde{f}''(x_0) = 6x_0 - 4 = 2\sqrt{4 - 6(2\alpha - \beta)} - 4 > 0$, pues $\beta > 2\alpha$. Luego (x_0, y_0, z_0) es mínimo.

(10 ptos.)

(c) Sean λ_1 y λ_2 cualquiera (no necesariamente los multiplicadores que resultan de la solución óptima), y sean $x_0 = x_0(\alpha, \beta)$, $y_0 = y_0(\alpha, \beta)$ solución del problema. Entonces,

$$\varphi(\alpha,\beta) = f(x_0, y_0, z_0) = \mathcal{L}(x_0(\alpha,\beta), y_0(\alpha,\beta), z_0(\alpha,\beta), \lambda_1, \lambda_2)$$

pues x_0 e y_0 verifican las restricciones (con lo cual los términos multiplicados por λ_1 λ_2 son cero). Entonces por regla de la cadena

$$\frac{\partial \varphi}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial x} \frac{\partial x_0}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y_0}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z_0}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial \alpha}$$

Luego escogiendo como λ_1 y λ_2 , los Multiplicadores de Lagrange, es decir tales que $\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial z} = 0$ se tiene que

$$\frac{\partial \varphi}{\partial \alpha} = \frac{\partial \mathcal{L}}{\partial \alpha}(x_0, y_0, z_0, \lambda_1, \lambda_2) = \frac{\partial}{\partial \alpha}(\lambda_1(\alpha - x - y)) = \lambda_1$$

De igual modo

$$\frac{\partial \varphi}{\partial \beta} = \frac{\partial \mathcal{L}}{\partial \beta}(x_0, y_0, z_0, \lambda_1, \lambda_2) = \lambda_2.$$

Nota : La resolución de este problema también se puede hacer reemplazando las soluciones $x_0 = x_0(\alpha, \beta), y_0 = y_0(\alpha, \beta)$, de manera explicita, pero sale más largo.

(10 ptos.)

3. (30 ptos.) Un satelite de masa m que gira en torno a la tierra, está sometido a la suma de dos fuerzas $F = F_G + F_E$ donde F_G es la fuerza de gravedad de la Tierra, y F_E una fuerza externa dada.

$$F_G(x,y,z) = -rac{GMm}{(x^2+y^2+z^2)^{3/2}}(x,y,z), \qquad ext{y} \qquad F_E(x,y,z) = (0,x,0),$$

- (a) Calcule $\nabla \times F_E$, y deduzca que F_E define un campo vectorial no conservativo.
- (b) Sabiendo que F_G es conservativo, calcule el trabajo realizado por el satelite al recorrer la elipse C ubicada en el plano XY, y con foco f en (0,0,0) (es decir, en el centro de la Tierra):

$$C = \{(c + a\cos\theta, b\sin\theta, 0) \in \mathbb{R}^3 \mid \theta \in [0, 2\pi]\}$$

con a > b > 0 constantes positivas y $c = \sqrt{a^2 - b^2}$.

Solución

(a)

$$\nabla \times F_E = \begin{pmatrix} \frac{\partial 0}{\partial y} - \frac{\partial x}{\partial z} \\ \frac{\partial 0}{\partial z} - \frac{\partial 0}{\partial x} \\ \frac{\partial x}{\partial x} - \frac{\partial 0}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \neq 0$$

Luego F_E no es conservativo.

(10 ptos.)

(b) El trabajo W está dado por

$$W = \int_C F \cdot \mathbf{dr} = \oint_C (F_G + F_E) \cdot \mathbf{dr} = \oint_C F_E \cdot \mathbf{dr}$$

pues el campo F_G es conservativo y C es una curva cerrada.

(10 ptos.)

Luego

$$W = \oint_C F_E \cdot \mathbf{dr} = \int_0^{2\pi} (0, c + a \cos \theta, 0) \cdot (-a \sin \theta, b \cos \theta, 0) d\theta$$
$$= cb \int_0^{2\pi} \cos \theta d\theta + ab \int_0^{2\pi} \cos^2 \theta d\theta = \pi ab$$

(10 ptos.)

(15-Julio-2004)

MSC/msc