理论计算机科学基础 期中整理

郭嘉睿

ntguojiarui@pku.edu.cn

2022年1月16日

0 预备知识

在本文档中,字母表 Σ 定义为任意非空有穷集合,字符串由字母表中若干字母组成,串长度定义为串所包含的字母数,用 $[\cdot]$ 表示,子串定义为串中连续长度的一段,

 $\Sigma^* = \{x | x$ 为Σ上的有穷长度的串 $\}$,

 $\Sigma^+ = \{x | x$ 为Σ上的正有穷长度的串 $\}$,

 $\Sigma^{\infty} = \{x | x \to \Sigma \bot$ 的无穷长度的串 $\}$,

语言定义为串的集合 $A \subseteq \Sigma^*$, 空语言定义为空集 \varnothing .

1 正则语言

定义 1.1 (DFA). 有穷自动机是一个五元组 $M=(Q,\Sigma,\delta,q_0,F)$, 其中,Q 为有穷状态集, Σ 为输入字母表, $\delta:Q\times\Sigma\to Q$ 为转移函数, $q_0\in Q$ 为初始状态, $F\subseteq Q$ 为接收状态集.

定义 1.2 (正则语言). 有穷自动机 M 接受的语言称为正则语言,用 L = L(M) 表示.

定义 1.3 (正则运算). 设 A, B 是两个语言, 正则运算是指

- 1. 并: $A \cup B = \{x | x \in A \lor x \in B\};$
- 2. 连接: $AB = \{xy | x \in A \land y \in B\};$
- 3. 星号: $A^* = \bigcup_{i=0}^{\infty} A^k = \{x_1 \cdots x_k | k \ge 0, x_i \in A\}.$

定义 1.4 (NFA). 非确定性有穷自动机是一个五元组 $N = (Q, \Sigma, \delta, q_0, F)$, 其中,Q 为有穷状态集, Σ 为输入字母表, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ 为转移函数, $q_0 \in Q$ 为初始状态, $F \subseteq Q$ 为接收状态集.

对于非确定性有穷自动机,N接受w当且仅当存在接受计算。

定理 1.5 (NFA 和 DFA 的等价性). 每个 NFA 都有等价 DFA.

证明. 思路: 构造等价 DFA, 对于 NFA 的 k 个状态, 用 DFA 的 2^k 个状态去模拟。

定义 1.6 (REX). R 是正则表达式, 当且仅当 R 是 (递归定义)

 $1.\ a,a\in\Sigma;$

- $2. \varepsilon;$
- $3. \varnothing;$
- 4. $R_1 \cup R_2$, R_1, R_2 都是正则表达式;
- 5. R₁R₂, R₁, R₂ 都是正则表达式;
- 6. R_1^* , R_1 是正则表达式;

这里,运算优先级规定为 * > · > ∪.

定理 1.7 (REX 与正则语言的等价性). 一个语言是正则的当且仅当可用正则表达式描述该语言.

定理 1.8 (泵引理). 设 A 是正则语言,则存在常数 p, s.t. 若 $s \in A$ 且 $|s| \ge p$,则 s = xyz,且满足以下条件:

- $1. \ \forall i \geq 0, xy^iz \in A;$
- 2. |y| > 0;
- 3. $|xy| \le p$.

2 上下文无关语言

定义 2.1 (CFG). 上下文无关文法是一个四元组 $G = (V, \Sigma, R, S)$, 其中, V 为有穷变元集, Σ 为有穷终结符集, R 为有穷规则集 (规则形如 $A \to w, w \to (V \cup \Sigma)^*$), $S \in V$ 是一个初始变元.

定义 2.2 (CFL). 上下文无关文法生成的语言称为上下文无关语言,用 L = L(G) 表示.

定理 2.3. 正则语言都是 CFL.

定义 2.4 (CNF). 称一个 CFG 为 Chomsky 范式, 若它的每一条规则都具有如下形式:

- 1. $S \to \varepsilon$;
- 2. $A \rightarrow BC$;
- 3. $A \rightarrow a$.

这里, A,B,C 是任意变元, B,C 不是初始变元, a 是任意终结符.

定理 2.5. 任何 CFG 都有等价 CNF.

定义 2.6 (PDA). 下推自动机是一个六元组 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, 其中, Q 为有穷状态集, Σ 为输入字母表, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, Γ 为栈字母表, $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$, $\delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ 为转移函数, $q_0 \in Q$ 为初始状态, $F \subseteq Q$ 为接收状态集.

定理 2.7. 一个语言是 CFL 当且仅当存在 PDA 识别它.

定理 2.8 (泵引理). 设 A 是上下文无关语言,则存在常数 p, s.t. 若 $s \in A$ 且 $|s| \ge p$,则 s = uvxyz,且满足以下条件:

- 1. $\forall i \geq 0, uv^i x y^i z \in A;$
- 2. |vy| > 0;
- $3. |vxy| \leq p.$

3 图灵机

定义 3.1 (TM). 单带图灵机是一个七元组 $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm acc},q_{\rm rej})$,其中,Q 为有穷状态集, Σ 为输入字母表,空格符 B $\not\in$ Σ , Γ 为带字母表, $\Sigma \cup$ B \subseteq Γ , $\delta:Q \times \Gamma \to Q \times \Gamma \times \{\rm L,R\}$ 为转移函数, $q_0 \in Q$ 为初始状态, $q_{\rm acc}$ 为停机接受状态, $q_{\rm rej}$ 为停机拒绝状态, $q_{\rm acc} \neq q_{\rm rej}$.

对于图灵机,它的计算结果包括停机接受、停机拒绝和不停机.

	可判定 (可计算)	可识别 (半可计算)	补可识别 (补半可计算)
$x \in A$	停机接受	停机接受	停机接受/不停机
$x \not\in A$	停机拒绝	停机拒绝/不停机	停机接受

定理 3.2. 图灵可识别等价于图灵可枚举.

证明. ⇒:枚举 Σ^* 逐个识别. 利用楔形,定义 $A_i = \{w | w$ 运行i步后接受 $\}$,则 $A = \bigcup_{i=1}^{\infty} A_i$; \Leftarrow : 逐个枚举等待出现.

定理 3.3 (CSL). 给定一台图灵机,它的所有接受计算历史的集合构成上下文有关语言.

定义 3.4 (LBA). 线性界限自动机是一台带头不能移出输入区的图灵机(等价于带头不能移出输入区的常数倍).

定理 3.5. 一个语言是 CSL 当且仅当存在 LBA 识别它.

4 归约,(不)可计算性

定义 4.1 (m 归约). 设 A,B 是语言,若存在可计算函数 $f: \Sigma^* \to \Sigma^*$,s.t. $x \in A \Leftrightarrow f(x) \in B$,则 说语言 A 可以 m 归约到 B,记为 $A \leq_m B$ 或 $A \leq_m B$ via f.

定义 4.2 (Turing 归约). 设 A, B 是语言,称 A 可以 Turing 归约到 B,若 A 相对于 B 可判定,记为 $A \leq_T B$.

4.1 正则语言的可判定性

定理 4.3 (A_{DFA}). A_{DFA} = $\{\langle B, w \rangle | \text{DFA} : B$ 接受 $w\}$ 可判定.

证明. 模拟 DFA 的判定过程, 用 TM: M 模拟 B, 跟踪 B 的状态.

定理 4.4 (E_{DFA}). $E_{DFA} = \{\langle B \rangle | DFA: B不派生任何串 \} 可判定.$

证明. 利用图的连通性.

定理 4.5 (EQ_{DFA}). EQ_{DFA} = $\{\langle A, B \rangle | \text{DFA} : A, B, L(A) = L(B) \}$ 可判定.

证明. 只要判定 $L(A) \bigoplus L(B) = (L(A) - L(B)) \cup (L(B) - L(A))$ 是否为空,而正则语言对布尔运算封闭.

4.2 上下文无关语言的可判定性

定理 4.6 (A_{CFG}). $A_{CFG} = \{\langle G, w \rangle | CFG : G派生w \}$ 可判定.

证明. 利用 Chomsky 范式,一个长度为 n 的串必定通过 2n-1 次派生得到.

定理 4.7 (E_{CFG}). $E_{CFG} = \{\langle G \rangle | CFG : G, L(G) = \emptyset \}$ 可判定.

证明. 利用 Chomsky 范式,依次检查每个变元是否产生终结符串.

定理 4.8 (ALL_{CFG}). ALL_{CFG} = $\{\langle G \rangle | \text{CFG} : G, L(G) = \Sigma^* \}$ 不可判定.

证明. 利用 $\overline{A_{TM}} \leq_m ALL_{CFG}$,由于 TM 的非接受计算历史的集合构成 CFL,对于 TM: A 和串 w,若 A 接受 w,则它的非接受计算历史的集合不为 Σ^* ;若 A 不接受 w,则它的非接受计算历史的集合为 Σ^* . 因此,检查 A 的非接受计算历史的集合 B 是否为 Σ^* 可以判定 A 是否接受 w,从而 $\overline{A_{TM}} \leq_m ALL_{CFG}$. 由于 A_{TM} 不可判定,故 ALL_{CFG} 也不可判定.

定理 4.9 (EQ_{CFG}). EQ_{CFG} = $\{\langle G, H \rangle | \text{CFG: } G, H, L(G) = L(H) \}$ 不可判定.

证明. 构造 $L(H)=\Sigma^*$,则判定 G 是否与 H 等价可以判断 L(G) 是否为 Σ^* ,从而 $\mathrm{ALL}_{\mathrm{CFG}}\leq_m$ EQ_{CFG}.

4.3 图灵机的可判定性

图灵机的所有问题几乎都是不可判定的.

定理 4.10 (A_{TM}). A_{TM} = $\{\langle M, w \rangle | \text{TM} : M$ 接受 $w\}$ 不可判定.

证明. 利用对角线法则, 将每个 TM 化为一个串. 定义

$$D_{TM} = \{\langle M \rangle | TM \colon M \not\in \mathcal{M} \}.$$

设计 TM: U,

$$U(M,M) = \begin{cases} 接受, \quad \hbox{若M拒绝}M; \\ \text{拒绝,} \quad \hbox{若M接受}M. \end{cases}$$

检查 U(U,U), 有 U 接受 $U \Leftrightarrow U$ 拒绝 U, 矛盾!

定理 4.11 (Rice 定理). 若 S 是非平凡的指标集 (不为 \emptyset , Σ^*),则 S 不可判定. 这里,指标集是指, $\langle M_1 \rangle \in S$, $L(M_1) = L(M_2) \Rightarrow \langle M_2 \rangle \in S$.

证明. 取一个 TM: M_0 , s.t. $L(M_0) = \emptyset$. 对于任意一台 TM: M',

- 1. 若 $M_0 \in S$,取 $M_1 \notin S$,对于 $\langle M, w \rangle$,若 M 接受 w,则 $L(M') = L(M_1)$,否则拒绝所有输入 $L(M') = \emptyset = L(M_0)$. 从而判定 $M' \in S$ 可以解决 $\overline{\mathbf{A}_{\mathrm{TM}}}$,故 $\overline{\mathbf{A}_{\mathrm{TM}}} \leq_m S$;
- 2. 若 $M_0 \notin S$, 取 $M_1 \in S$, 对于 $\langle M, w \rangle$, 若 M 接受 w, 则 $L(M') = L(M_1)$, 否则拒绝所有输入 $L(M') = \emptyset = L(M_0)$. 从而判定 $M' \in S$ 可以解决 A_{TM} , 故 $A_{TM} \leq_m S$.

无论如何,我们都得到了矛盾,所以S不可判定.

4.4 上下文有关语言的可判定性

定理 4.12 (A_{LBA}). A_{LBA} = $\{\langle M, w \rangle | \text{LBA} : M 接受w \}$ 可判定.

证明. 给定 $\langle M,w \rangle$, 状态数 q、符号数 g、长度 n 均有限, 格局至多有 qng^n 个, 可以检测死循环. \square

定理 4.13 (E_{LBA}). $E_{LBA} = \{\langle M \rangle | LBA : M, L(M) = \emptyset \}$ 不可判定.

证明. TM 的接受计算历史构成上下文有关语言. 对于图灵机 M 及其输入 w,LBA: M' 及其输入 x,检查 x 是否为 M 在 w 上的接受计算历史,若是则接受,否则拒绝. 从而 $\langle M,w \rangle \in \overline{A_{TM}} \Leftrightarrow \forall y,y$ 不是 M 在 w 上的接受计算历史 $\Leftrightarrow L(M') = \varnothing$,因此 $\overline{A_{TM}} \leq_m E_{LBA}$.

总结:见下表,

	DFA	CFG	LBA	ТМ
接受性	Y	Y	Y	N
空性	Y	Y	N	N
等价性	Y	N		N
停机			Y	N
正则性				N

5 总结

定理 5.1 (递归定理). 设 TM: T, 可计算函数 $t: \Sigma^* \times \Sigma^* \to \Sigma^*$, 则存在 TM: R, 可计算函数 $r: \Sigma^* \to \Sigma^*$, s.t. $r(w) = t(\langle R \rangle, w)$.

定理 5.2 (不动点定理). \forall 可计算函数 t, \exists TM: F, s.t. $L(t(\langle F \rangle)) = L(F)$.

定理 5.3 (递归定理的不动点形式). \forall 可计算函数 $t: \Sigma^* \to \Sigma^*$, \exists TM: F, s.t. $t(\langle F \rangle)$ 与 F 等价.

关于语言的分类 (均不属于更低一层):

正则	0*1*		
CFL	$0^n 1^n, ww^R, 非 ww^R, 非 ww, 非接受计算历史$		
CSL	$0^n1^n2^n$, ww ,接受计算历史		
可判定	$A_{LBA}, E_{CFG}, EQ_{DFA}$		
图灵可识别	$A_{TM}, HALT_{TM}, PCP, \overline{EQ_{CFG}}$		

语言的封闭性,这里,RC(L) = $\{xy|yx \in L\}$,同态是指:对于函数 $f: \Sigma \to \Gamma^*$, $f(L) = \{f(x_1)\cdots f(x_n)|x_1\cdots x_n \in L\}$,CUT(L) = $\{yxz|xyz \in L\}$, $\mathcal{L}_{\frac{1}{2}-}(L) = \{x|\exists y, xy \in L\}$,对 \leq 封闭是指 $A \leq B, B \in S \Rightarrow A \in S$.

	正则	CFL	CSL	可判定	图灵可识别	补图灵可识别
交	Y	N1	Y	Y	Y	Y
并	Y	Y	Y	Y	Y	Y
补	Y	N2	Y	Y	N	N
连接	Y	Y	Y	Y	Y	Y
星号	Y	Y	Y	Y	Y	Y
RC	Y3	Y		Y	Y	Y
同态	Y	Y4		N5	Y	Y
CUT	Y	N		Y	Y	Y
$L_{\frac{1}{2}-}$	Y	N		Y	Y	Y
\leq_m	N6	N		Y	Y	Y
\leq_T	N	N		Y	N	N

其中一些结论的证明:

- 1. 考虑 $0^{n}1^{n}2^{m}$ 和 $0^{m}1^{n}2^{n}$,它们都是 CFL,但他们的交 $0^{n}1^{n}2^{n}$ 不是 CFL.
- 2. 利用 De Morgen 律, $A \cap B = (A' \cup B')'$, 若补封闭则交也封闭.
- 3. 利用 NFA 猜.
- 4. 在 Chomsky 范式中作替换.

- 5. 由于 $L \in \Sigma^1 \Leftrightarrow L = \{x | \exists y, (x,y) \in C\}$,这里 C 是可计算语言. 对于 (x,y),它是可计算的. 为 所有的 y 更换新的字母表使之与 x 的字母表不交,然后构造同态: $f(x) = x, f(y) = \varepsilon$,此时 新得到的语言是 Σ^1 的.
- 6. 对于任何一个可识别的语言 A,输出 1 若接受,输出 0 若拒绝,则 $A \leq_m \{0,1\}$.