MTH307 Population Dynamics

Chongfeng Ling

2021-2022

Contents

1	Basic Population Dynamics			1
	1.1	Single Species Model: Malthusian Model		2
		1.1.1	Discrete Time Equation $N(t+\tau)=N(t)+\tilde{B}(t,\tau)-\tilde{D}(t,\tau)$	2
		1.1.2	Continuous Time Equation $\frac{dN}{dt} = \tilde{b}(t) - \tilde{d}(t)$	3
		1.1.3	Link of Two Equation	4
1.2		Intraspecific Competition Model		5
		1.2.1	Verhulst (Logistic) Model	5
		122	Richards Model	6

1 Basic Population Dynamics

Difference between Population Dynamics and other models

Types of models

Single Species Model

t be time, changing with intervals τ (e.g. 1 year).

N(t) be total population of the species at time t.

 $\tilde{B}(t,\tau)$ be number of births in the population between t and $t+\tau$, fertility/recruitment term.

 $\tilde{D}(t,\tau)$ be number of deaths in the population between t and $t+\tau$, mortality term, $\tilde{D}>=0$.

 $\tilde{b}(t) = \lim_{\tau \to 0} \tilde{B}(t,\tau)/\tau$ be numbers of births per unit time.

 $\tilde{d}(t) = \lim_{\tau \to 0} \tilde{D}(t,\tau)/\tau$ be numbers of deaths per unit time.

Discrete Time

$$N(t+\tau) = N(t) + \tilde{B}(t,\tau) - \tilde{D}(t,\tau)$$
(1)

Continuous Time when $\tau \to 0$, then

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \lim_{\tau \to 0} \frac{N(t+\tau) - N(t)}{\tau} = \tilde{b}(t) - \tilde{d}(t) \tag{2}$$

1.1 Single Species Model: Malthusian Model

Assumption 1.1 (Malthusian Assumption). The acts of death and birth of animals (vegetation, cell) happen statistically independently of each other and independently of the current population size.

1.1.1 Discrete Time Equation $N(t+\tau)=N(t)+\tilde{B}(t,\tau)-\tilde{D}(t,\tau)$

Total number of births and deaths happening during timestep τ proportional to current population size, we have

$$\tilde{D}(t,\tau) = D(\tau)N(t), \quad \tilde{B}(t,\tau) = B(\tau)N(t)$$

then Eq.1 becomes

$$N(t+\tau) = (1+B(\tau)+D(\tau))N(t)$$

$$N(t+\tau) = R(\tau)N(t)$$
(3)

where

$$R(\tau) = 1 + B(\tau) + D(\tau) = \frac{N(t+\tau)}{N(t)}$$

is called *reproduction coefficient*. $R(\tau)$ is size ratio and only $R(\tau) \geq 0$ make **biological** sense. $R(\tau) = 0$ is the trivial case: the population dies out within one time step.

Discrete Time Solution

to solve Eq.3, we set $N(\tau) = R(\tau)N(0), N(0) \ge 0$ at t = 0. And for all $t = n\tau$, we have

$$t = 0, N(\tau) = RN(0)$$

$$t = \tau, N(2\tau) = RN(\tau) = R^2N(0)$$

$$t = 2\tau, N(3\tau) = RN(2\tau) = R^3N(0)$$
...
$$t = n\tau, N(n\tau) = RN(n\tau) = R^nN(0)$$
(4)

That is, the population grows (for $R(\tau) > 1$) or decays (for $R(\tau) < 1$) in **Geometric Progression**.

1.1.2 Continuous Time Equation $\frac{\mathrm{d}N}{\mathrm{d}t} = \tilde{b}(t) - \tilde{d}(t)$

Now we have the number of births and deaths happening continuously per unit time proportional to current population size.

$$\tilde{d}(t) = dN(t), \quad \tilde{b}(t) = bN(t)$$

then Eq.2 becomes

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \tilde{b}(t) - \tilde{d}(t)$$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN(t)$$
(5)

where

$$r = b - d$$

is called *reproduction rate*, r can be positive or negative.

Continuous Time Solution

We solve Eq.5 by separation of variables.

$$\frac{dN}{N(t)} = rdt$$

$$\int \frac{dN}{N(t)} = \int rdt$$

$$\ln N(t) = rt + C$$

$$N(t) = N(0)e^{rt}$$
(6)

where

$$N(t=0) = N(0) \ge 0$$

This is, the population grows (for r > 0) or decays (for r < 0) exponentially.

1.1.3 Link of Two Equation

Discrete \rightarrow Continuous $N(n\tau) = R^n(\tau)N(0) \rightarrow N(t) = e^{rt}N(0)$

For small τ ,

$$\lim_{\tau \to 0} \frac{R(\tau) - 1}{\tau} = \lim_{\tau \to 0} \frac{B(\tau) - D(\tau)}{\tau}$$

$$R(\tau) \approx 1 + \tau r \tag{7}$$

For fixed time t,

$$n = \frac{t}{\tau} \to \infty$$

Then we have

$$N(n\tau) = \lim_{\tau \to 0} R(\tau)^n N(0)$$

$$\approx \lim_{\tau \to 0} (1 + r\tau)^{t/\tau} N(0)$$

$$= e^{rt} N(0)$$

Continuous \rightarrow Discrete $N(t) = e^{rt}N(0) \rightarrow N(n\tau) = R^n(\tau)N(0)$

Let $t = n\tau$, we have

$$N(t) = N(n\tau)$$

$$= e^{(r\tau)n}N(0)$$

$$\approx (1 + r\tau)^n N(0)$$

$$\approx R^n(\tau)N(0)$$

by Eq.7 as $\tau \to 0$ and Taylor series.

1.2 Intraspecific Competition Model

Competition: increase of population size suppresses its reproduction.

Assumption 1.2 (Intraspecific Competition Assumption). Reproduction per capita per unit of time is **NOT** constant. Instead, reproduction is depends on the current population size.

Discrete Time

$$N_{t+1} = R(N_t)N_t$$

Competition when

Continuous Time

$$dN/dt = r(N)N$$

Competition when

1.2.1 Verhulst (Logistic) Model

1.2.2 Richards Model

First paragraph paragraph

First subparagraph subparagraph

Theorem 1 (Helge Tverberg 1966). Given (r-1)(d+1)+1 points in \mathbb{R}^d , there is a partition of them into r parts whose convex hulls intersect.