FCC RF Test Report

APPLICANT : AzulFlower LLC

EQUIPMENT : Tablet PC MODEL NAME : SL056ZE

FCC ID : 2AIP5-3975

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (UNII) Unlicensed National Information Infrastructure

The testing was completed on Feb. 23, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 1 of 30 Report Issued Date : Mar. 10, 2017

1190

: Rev. 01

Report No.: FR671336-01E

Report Template No.: BU5-FR15EWLB4 AC Version 1.5

Report Version

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6	Applicant	5 5 5
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1 2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 10
3	TEST	RESULT	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	29
ΑP	PEND PEND	ERTAINTY OF EVALUATIONIX A. CONDUCTED TEST RESULTS IX B. RADIATED SPURIOUS EMISSION IX C. RADIATED SPURIOUS EMISSION PLOTS	30
ΑP	PEND	IX D. DUTY CYCLE PLOTS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Report No. : FR671336-01E

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR671336-01E	Rev. 01	Initial issue of report	Mar. 10, 2017

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456

Repo

FAX : 886-3-328-4978 FCC ID : 2AIP5-3975 Page Number : 3 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass
3.4	15.407(b)	Unwanted Emissions	15.407(b)(4)(i) &15.209(a)	Pass
3.5	15.207	AC Conducted Emission	15.207(a)	Pass
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 4 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

1 General Description

1.1 Applicant

AzulFlower LLC

10 Dorrance Street Suite 700 Providence, RI 02903

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment	Tablet PC			
Model Name	SL056ZE			
FCC ID	2AIP5-3975			
EUT supports Radios application	WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE			

Report No.: FR671336-01E

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range	5745 MHz ~ 5825 MHz			
	802.11a : 13.99 dBm / 0.0251 W			
	802.11n HT20 : 13.99 dBm / 0.0251 W			
Maximum Output Power	802.11n HT40 : 14.00 dBm / 0.0251 W			
	802.11ac VHT20: 12.85 dBm / 0.0193 W			
	802.11ac VHT40: 13.09 dBm / 0.0204 W			
	802.11ac VHT80: 12.95 dBm / 0.0197 W			
	802.11a : 17.40 MHz			
00% Occupied Bandwidth	802.11n HT20 : 18.05 MHz			
99% Occupied Bandwidth	802.11n HT40 : 36.20 MHz			
	802.11ac VHT80 : 75.36 MHz			
Antenna Type / Gain	Fixed internal Antenna with gain 2.60 dBi			
Type of Medulation	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)			

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 30

 TEL: 886-3-327-3456
 Report Issued Date
 : Mar. 10, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID : 2AIP5-3975 Report Template No.: BU5-FR15EWLB4 AC Version 1.5

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FR671336-01E

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., I	Hwa Ya Technology Park,			
Test Site Location	Kwei-Shan District, Tao	Yuan City, Taiwan, R.O.C.			
rest Site Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Took Site No		Sporton Site No.			
Test Site No.	TH05-HY	CO05-HY	03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 6 of 30

 TEL: 886-3-327-3456
 Report Issued Date
 : Mar. 10, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID : 2AIP5-3975 Report Template No.: BU5-FR15EWLB4 AC Version 1.5

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz Band 4	151*	5755	159*	5795
(U-NII-3)	153	5765	161	5805
(3.411.6)	155 [#]	5775	165	5825

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 7 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

2.2 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

	Test Cases				
AC Conducted	Mode 1 : WLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earphone + MicroSD Card + USB Cable (Charging from Adapter)				
Emission					

	Ch. #		Band IV: 5725-5850 MHz	
	CII. #	802.11a	802.11n HT20	802.11n HT40
L	Low	149	149	151
M	Middle	157	157	-
Н	High	165	165	159

Ch. #		Band IV:5725-5850 MHz			
	CII. #	802.11ac VHT20	802.11ac VHT40	802.11ac VHT80	
L	Low	149	151	-	
М	Middle	157	-	155	
Н	High	165	159	-	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 8 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 9 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
5.	Earphone	N/A	N/A	Verification	Unshielded, 1.15 m	N/A

2.5 EUT Operation Test Setup

For WLAN function, programmed RF utility, "cmd" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 10 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

Report Version : Rev. 01

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.
 Section C) Emission bandwidth for the band 5.725-5.85GHz

Report No.: FR671336-01E

- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

 SPORTON INTERNATIONAL INC.
 Page Number
 : 11 of 30

 TEL: 886-3-327-3456
 Report Issued Date
 : Mar. 10, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AIP5-3975 Report Template No.: BU5-FR15EWLB4 AC Version 1.5

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 12 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 13 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, 10 log(1/x), where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 14 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR671336-01E

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report Issued Date: Mar. 10, 2017
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.5

: 15 of 30

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 16 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band:
 - 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r03 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 17 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03. Section G) Unwanted emissions measurement.

Report No.: FR671336-01E

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.

SPORTON INTERNATIONAL INC.

Page Number : 18 of 30 TEL: 886-3-327-3456 Report Issued Date: Mar. 10, 2017 FAX: 886-3-328-4978 Report Version : Rev. 01

FCC ID: 2AIP5-3975 Report Template No.: BU5-FR15EWLB4 AC Version 1.5 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 19 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 20 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR671336-01E

: 21 of 30

Frequency of emission (MHz)	Conducted limit (dBμV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). 2.
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- Both sides of AC line were checked for maximum conducted interference. 6.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Mar. 10, 2017 FAX: 886-3-328-4978 Report Version : Rev. 01

FCC ID: 2AIP5-3975 Report Template No.: BU5-FR15EWLB4 AC Version 1.5

3.5.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 22 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.5.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	22~23 ℃			
Test Engineer :	Kai-Chun Chu	Relative Humidity :	51~52%			
Test Voltage :	120Vac / 60Hz	Phase :	Line			
Function Type :	NLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earphone + MicroSD Card					

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.158000	44.9	Off	L1	19.6	20.7	65.6
0.230000	37.7	Off	L1	19.6	24.7	62.4
0.366000	33.6	Off	L1	19.6	25.0	58.6
0.574000	33.0	Off	L1	19.6	23.0	56.0
1.462000	31.0	Off	L1	19.6	25.0	56.0
2.678000	30.2	Off	L1	19.4	25.8	56.0
8.654000	31.7	Off	L1	20.0	28.3	60.0

Final Result : Average

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)
0.158000	33.8	Off	L1	19.6	21.8	55.6
0.230000	27.6	Off	L1	19.6	24.8	52.4
0.366000	25.7	Off	L1	19.6	22.9	48.6
0.574000	27.2	Off	L1	19.6	18.8	46.0
1.462000	24.7	Off	L1	19.6	21.3	46.0
2.678000	23.3	Off	L1	19.4	22.7	46.0
8.654000	24.1	Off	L1	20.0	25.9	50.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 23 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

#	
SPORTON LAB.	FCC RF Test Report

Test Mode :	Mode 1	Temperature :	22~23 ℃		
Test Engineer :	Kai-Chun Chu	Relative Humidity :	51~52%		
Test Voltage :	120Vac / 60Hz	Phase :	Neutral		
	WLAN (5GHz) Link + Bluetooth Link + MPEG4 + Earphone + MicroSD Card +				

Function Type: USB Cable (Charging from Adapter)

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	48.0	Off	N	19.6	18.0	66.0
0.230000	37.6	Off	N	19.6	24.8	62.4
0.462000	33.1	Off	N	19.6	23.6	56.7
0.630000	35.1	Off	N	19.6	20.9	56.0
1.246000	33.9	Off	N	19.6	22.1	56.0
7.998000	31.9	Off	N	19.9	28.1	60.0
21.342000	31.9	Off	N	20.7	28.1	60.0

Final Result : Average

mai Result . Average							
Frequency	Average	Filter	Line	Corr.	Margin	Limit	
(MHz)	(dBµV)	riitei	-liter Line		(dB)	(dBµV)	
0.150000	35.8	Off	N	19.6	20.2	56.0	
0.230000	28.0	Off	N	19.6	24.4	52.4	
0.462000	27.3	Off	N	19.6	19.4	46.7	
0.630000	29.3	Off	N	19.6	16.7	46.0	
1.246000	27.1	Off	N	19.6	18.9	46.0	
7.998000	25.0	Off	N	19.9	25.0	50.0	
21.342000	25.0	Off	N	20.7	25.0	50.0	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975

Page Number : 24 of 30 Report Issued Date: Mar. 10, 2017 Report Version : Rev. 01

Report No.: FR671336-01E

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall
 be measured by radiation emissions at upper and lower frequency points, and finally
 compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 25 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

EUT is verified this characteristic during the function check of normal sample associated with an access point:

- A. Information start: make EUT supply information to the access point.
- B. Information stop: stop supplying information to the access point.

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving.

C. Information start: make EUT supply information to the access point again.

The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 26 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC Version 1.5

Report No.: FR671336-01E

Note: The control / signalling information during the period B is precluded.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 27 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 28 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No.: FR671336-01E

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	0932001	300MHz~40GHz	Sep. 29, 2016	Jan. 25, 2017 ~ Feb. 23, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 29, 2016	Jan. 25, 2017 ~ Feb. 23, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 25, 2016	Jan. 25, 2017 ~ Feb. 23, 2017	Nov. 24, 2017	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40℃ ~90℃	Sep. 01, 2016	Jan. 25, 2017 ~ Feb. 23, 2017	Aug. 31, 2017	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 11, 2016	Jan. 25, 2017 ~ Feb. 23, 2017	Oct. 10, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 30, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Jan. 30, 2017	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Jan. 30, 2017	Nov. 28, 2017	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35419&03	30MHz to 1GHz	Jan. 07, 2017	Jan. 26, 2017 ~ Feb. 21, 2017	Jan. 06, 2018	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 19, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Aug. 18, 2017	Radiation (03CH07-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	20Hz ~ 8.4GHz	Oct. 26, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Oct. 25, 2017	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Jan. 26, 2017 ~ Feb. 21, 2017	Sep. 01, 2017	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz ~ 18GHz	Apr. 15, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Apr. 14, 2017	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 18, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Mar. 17, 2017	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~ 26.5GHz	Oct. 12, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Oct. 11, 2017	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Feb. 27, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Feb. 26, 2017	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Jan. 26, 2017 ~ Feb. 21, 2017	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jan. 26, 2017 ~ Feb. 21, 2017	N/A	Radiation (03CH07-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Jun. 13, 2017	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170584	18GHz- 40GHz	Nov. 08, 2016	Jan. 26, 2017 ~ Feb. 21, 2017	Nov. 07, 2017	Radiation (03CH07-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : 29 of 30
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.7
of 95% (U = 2Uc(y))	2.1

Report No.: FR671336-01E

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	
Measuring Uncertainty for a Level of Confidence	5.7
of 95% (U = 2Uc(y))	5.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5
of 95% (U = 2Uc(y))	5.5

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

	-
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.2

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

 TEL: 886-3-327-3456
 Report Issued Date : Mar. 10, 2017

 FAX: 886-3-328-4978
 Report Version : Rev. 01

 FCC ID: 2AIP5-3975
 Report Template No.: BU5-FR15EWLB4 AC Version 1.5

Page Number

: 30 of 30

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AIP5-3975 Page Number : A1 of A1
Report Issued Date : Mar. 10, 2017
Report Version : Rev. 01

Report No. : FR671336-01E

Test Engineer:	Tommy Lee / Derek Hsu	Temperature:	21~25	°C
Test Date:	2017/01/25~2017/02/23	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 26dB EBW and 99% OBW

	Band IV												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	6 dB Bandwidth (MHz)	6dB Bandwidth min. Limit (MHz)	Pass/Fail				
11a	6M bps	1	149	5745	17.15	21.5	15.12	0.5	Pass				
11a	6Mbps	1	157	5785	17.15	21.6	15.08	0.5	Pass				
11a	6Mbps	1	165	5825	17.4	21.6	15.08	0.5	Pass				
HT20	MCS 0	1	149	5745	18	23.1	15.08	0.5	Pass				
HT20	MCS 0	1	157	5785	18.05	25.4	15.08	0.5	Pass				
HT20	MCS 0	1	165	5825	17.95	24.2	15.08	0.5	Pass				
HT40	MCS 0	1	151	5755	36.2	41.58	35.12	0.5	Pass				
HT40	MCS 0	1	159	5795	36.2	41.76	35.04	0.5	Pass				
VHT80	MCS 0	1	155	5775	75.36	80.64	75.12	0.5	Pass				

TEST RESULTS DATA Average Power Table

	Band IV												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)		Pass/Fail			
11a	6M bps	1	149	5745	0.36	13.99	30.00	2.60		Pass			
11a	6Mbps	1	157	5785	0.36	13.97	30.00	2.60		Pass			
11a	6Mbps	1	165	5825	0.36	13.98	30.00	2.60		Pass			
HT20	MCS 0	1	149	5745	0.38	13.99	30.00	2.60		Pass			
HT20	MCS 0	1	157	5785	0.38	13.98	30.00	2.60		Pass			
HT20	MCS 0	1	165	5825	0.38	13.95	30.00	2.60		Pass			
HT40	MCS 0	1	151	5755	0.67	14.00	30.00	2.60		Pass			
HT40	MCS 0	1	159	5795	0.67	13.95	30.00	2.60		Pass			
VHT20	MCS 0	1	149	5745	0.35	12.85	30.00	2.60		Pass			
VHT20	MCS 0	1	157	5785	0.35	12.63	30.00	2.60		Pass			
VHT20	MCS 0	1	165	5825	0.35	12.67	30.00	2.60		Pass			
VHT40	MCS 0	1	151	5755	0.67	13.09	30.00	2.60		Pass			
VHT40	MCS 0	1	159	5795	0.67	12.90	30.00	2.60		Pass			
VHT80	MCS 0	1	155	5775	1.30	12.95	30.00	2.60		Pass			

TEST RESULTS DATA Power Spectral Density

	Band IV											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	10log (500kHz /RBW) Factor (dB)	Average Power Density (dBm/500kHz)	Average PSD Limit (dBm/500kHz)	DG (dBi)	Pass/Fail		
11a	6M bps	1	149	5745	0.36	2.22	0.71	30.00	2.60	Pass		
11a	6Mbps	1	157	5785	0.36	2.22	0.70	30.00	2.60	Pass		
11a	6Mbps	1	165	5825	0.36	2.22	0.71	30.00	2.60	Pass		
HT20	MCS 0	1	149	5745	0.38	2.22	0.42	30.00	2.60	Pass		
HT20	MCS 0	1	157	5785	0.38	2.22	0.37	30.00	2.60	Pass		
HT20	MCS 0	1	165	5825	0.38	2.22	0.32	30.00	2.60	Pass		
HT40	MCS 0	1	151	5755	0.67	2.22	-2.35	30.00	2.60	Pass		
HT40	MCS 0	1	159	5795	0.67	2.22	-2.38	30.00	2.60	Pass		
VHT80	MCS 0	1	155	5775	1.30	2.22	-6.10	30.00	2.60	Pass		

TEST RESULTS DATA Frequency Stability

	Band IV												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Center Frequency (MHz)	Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note			
11a	6M bps	1	149	5745	5745.000	0.000	0.00	35	3.8				
11a	6M bps	1	149	5745	5745.050	0.050	8.70	0	3.8				
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	4.2				
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	3.4				
11a	6M bps	1	149	5745	5745.000	0.000	0.00	20	3.8				

Appendix B. Radiated Spurious Emission

Toot Engineer :	Jesse Wang, James Chiu and Daniel Lee	Temperature :	21~22°C
Test Engineer :	besse wang, James Chiu and Daniel Lee	Relative Humidity :	44~48%

Report No. : FR671336-01E

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5640.2	50.2	-18	68.2	38.78	34.6	11.95	35.13	198	281	Р	Н
		5672.8	50.38	-34.73	85.11	38.91	34.6	12	35.13	198	281	Р	Н
		5719.8	58.5	-52.24	110.74	46.98	34.6	12.06	35.14	198	281	Р	Н
		5722.8	63.4	-53.78	117.18	51.88	34.6	12.06	35.14	198	281	Р	Н
	*	5745	107.26	-	-	95.7	34.6	12.11	35.15	198	281	Р	Н
802.11a	*	5745	99.66	-	-	88.1	34.6	12.11	35.15	198	281	Α	Н
CH 149 5745MHz		5649.8	50.87	-17.33	68.2	39.45	34.6	11.95	35.13	214	91	Р	٧
3743WITIZ		5697	51.52	-51.47	102.99	40.06	34.6	12	35.14	214	91	Р	٧
		5718.8	57.64	-52.82	110.46	46.12	34.6	12.06	35.14	214	91	Р	٧
		5725	61.61	-60.59	122.2	50.09	34.6	12.06	35.14	214	91	Р	V
	*	5745	108.36	-	-	96.8	34.6	12.11	35.15	214	91	Р	V
	*	5745	100.76	-	-	89.2	34.6	12.11	35.15	214	91	Α	V

SPORTON INTERNATIONAL INC. Page Number : B1 of B16

WIFI Limit Antenna Table Peak Pol. Note Frequency Level Over Read Cable Preamp Ant Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) 5630 49.96 -18.2468.2 38.54 34.6 11.95 35.13 200 282 Η 50.49 Ρ 5657 -22.91 73.4 39.07 34.6 11.95 35.13 200 282 Н 5718.4 50.78 -59.57 110.35 39.26 34.6 12.06 35.14 200 282 Ρ Н Ρ 5723.6 49.76 -69.25 119.01 38.24 34.6 12.06 35.14 200 282 Н 5785 107.61 34.6 35.16 200 282 Ρ _ 96 12.17 Η * 5785 100.11 88.5 34.6 12.17 35.16 200 282 Α Н 5852.8 51.06 -64.76 115.82 39.35 34.6 12.28 35.17 200 282 Р Н 5863 50.86 -57.7 108.56 39.05 34.6 12.39 35.18 200 282 Ρ Н 5884.4 51.19 -47.03 98.22 39.39 34.6 12.39 35.19 200 282 Н 802.11a Ρ 200 282 Н 5934.8 50.54 -17.66 68.2 38.63 34.6 12.51 35.2 CH 157 Р 5638 50.55 -17.65 34.6 11.95 35.13 217 90 ٧ 68.2 39.13 5785MHz 5700 50.98 -54.22 105.2 39.52 34.6 35.14 217 Ρ ٧ 12 90 5700 105.2 12 Ρ ٧ 50.98 -54.22 39.52 34.6 35.14 217 90 Ρ ٧ 5720.8 49.13 -63.49112.62 37.61 34.6 12.06 35.14 217 90 5785 107.81 -_ 96.2 34.6 12.17 35.16 217 90 Ρ ٧ 5785 100.51 88.9 34.6 12.17 35.16 217 90 Α ٧ Ρ ٧ 5853.6 50.35 113.99 38.64 34.6 12.28 35.17 217 -63.64 90 51.53 34.6 Ρ ٧ 5858.2 -58.37 109.9 39.83 12.28 35.18 217 90 5879.2 52.36 -49.72 102.08 40.55 34.6 12.39 35.18 217 90 Ρ ٧ Ρ ٧ 5927.8 52.1 -16.1 68.2 40.18 34.6 12.51 35.19 217 90

Report No.: FR671336-01E

: B2 of B16

Page Number

SPORTON INTERNATIONAL INC.

(MHz) 5825 5825 5850 5856.4 5877.6	(dBµV/m) 107.71 100.31 59.64 53.88 51.94	Limit (dB)62.56 -56.53	Line (dBµV/m) - - 122.2 110.41	Level (dBμV) 96 88.6 47.93	Factor (dB/m) 34.6 34.6 34.6	Loss (dB) 12.28 12.28 12.28	Factor (dB) 35.17 35.17	Pos (cm) 207 207	Pos (deg) 282 282 282	Avg. (P/A) P A	Н
5825 5825 5850 5856.4	107.71 100.31 59.64 53.88	-62.56	122.2	96 88.6 47.93	34.6	12.28	35.17 35.17	207	282	P	Н
5825 5850 5856.4	100.31 59.64 53.88	-62.56		88.6 47.93	34.6	12.28	35.17	207	282	Α	Н
5850 5856.4	59.64 53.88	-62.56		47.93							
5856.4	53.88				34.6	12.28	35.17	207	202	_	
		-56.53	110.41	40.47					202	Р	Н
5877.6	51 0/			42.17	34.6	12.28	35.17	207	282	Р	Н
	31.34	-51.33	103.27	40.13	34.6	12.39	35.18	207	282	Р	Н
5940.2	51.06	-17.14	68.2	39.04	34.6	12.62	35.2	207	282	Р	Н
5825	108.41	-	-	96.7	34.6	12.28	35.17	203	91	Р	V
5825	101.11	-	-	89.4	34.6	12.28	35.17	203	91	Α	V
5850.8	60.23	-60.15	120.38	48.52	34.6	12.28	35.17	203	91	Р	V
5855	57.23	-53.57	110.8	45.52	34.6	12.28	35.17	203	91	Р	V
5892.8	52.39	-39.6	91.99	40.59	34.6	12.39	35.19	203	91	Р	V
5944.4	50.88	-17.32	68.2	38.86	34.6	12.62	35.2	203	91	Р	V
	5825 5850.8 5855 5892.8 5944.4	5825 108.41 5825 101.11 5850.8 60.23 5855 57.23 5892.8 52.39 5944.4 50.88 other spurious found.	5825 108.41 - 5825 101.11 - 5850.8 60.23 -60.15 5855 57.23 -53.57 5892.8 52.39 -39.6 5944.4 50.88 -17.32 other spurious found.	5825 108.41 - - 5825 101.11 - - 5850.8 60.23 -60.15 120.38 5855 57.23 -53.57 110.8 5892.8 52.39 -39.6 91.99 5944.4 50.88 -17.32 68.2 other spurious found.	5825 108.41 - - 96.7 5825 101.11 - - 89.4 5850.8 60.23 -60.15 120.38 48.52 5855 57.23 -53.57 110.8 45.52 5892.8 52.39 -39.6 91.99 40.59 5944.4 50.88 -17.32 68.2 38.86	5825 108.41 - - 96.7 34.6 5825 101.11 - - 89.4 34.6 5850.8 60.23 -60.15 120.38 48.52 34.6 5855 57.23 -53.57 110.8 45.52 34.6 5892.8 52.39 -39.6 91.99 40.59 34.6 5944.4 50.88 -17.32 68.2 38.86 34.6 other spurious found.	5825 108.41 - - 96.7 34.6 12.28 5825 101.11 - - 89.4 34.6 12.28 5850.8 60.23 -60.15 120.38 48.52 34.6 12.28 5855 57.23 -53.57 110.8 45.52 34.6 12.28 5892.8 52.39 -39.6 91.99 40.59 34.6 12.39 5944.4 50.88 -17.32 68.2 38.86 34.6 12.62 other spurious found.	5825 108.41 - - 96.7 34.6 12.28 35.17 5825 101.11 - - 89.4 34.6 12.28 35.17 5850.8 60.23 -60.15 120.38 48.52 34.6 12.28 35.17 5855 57.23 -53.57 110.8 45.52 34.6 12.28 35.17 5892.8 52.39 -39.6 91.99 40.59 34.6 12.39 35.19 5944.4 50.88 -17.32 68.2 38.86 34.6 12.62 35.2	5825 108.41 - - 96.7 34.6 12.28 35.17 203 5825 101.11 - - 89.4 34.6 12.28 35.17 203 5850.8 60.23 -60.15 120.38 48.52 34.6 12.28 35.17 203 5855 57.23 -53.57 110.8 45.52 34.6 12.28 35.17 203 5892.8 52.39 -39.6 91.99 40.59 34.6 12.39 35.19 203 5944.4 50.88 -17.32 68.2 38.86 34.6 12.62 35.2 203	5825 108.41 - - 96.7 34.6 12.28 35.17 203 91 5825 101.11 - - 89.4 34.6 12.28 35.17 203 91 5850.8 60.23 -60.15 120.38 48.52 34.6 12.28 35.17 203 91 5855 57.23 -53.57 110.8 45.52 34.6 12.28 35.17 203 91 5892.8 52.39 -39.6 91.99 40.59 34.6 12.39 35.19 203 91 5944.4 50.88 -17.32 68.2 38.86 34.6 12.62 35.2 203 91	5825 108.41 - - 96.7 34.6 12.28 35.17 203 91 P 5825 101.11 - - 89.4 34.6 12.28 35.17 203 91 A 5850.8 60.23 -60.15 120.38 48.52 34.6 12.28 35.17 203 91 P 5855 57.23 -53.57 110.8 45.52 34.6 12.28 35.17 203 91 P 5892.8 52.39 -39.6 91.99 40.59 34.6 12.39 35.19 203 91 P 5944.4 50.88 -17.32 68.2 38.86 34.6 12.62 35.2 203 91 P

^{2.} All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		11490	47.46	-26.54	74	48.37	39.27	17.16	57.34	100	0	Р	Н
802.11a		17232	44.86	-23.34	68.2	37.56	42.43	20.76	55.89	100	0	Р	Н
CH 149		11490	42.64	-31.36	74	43.55	39.27	17.16	57.34	100	0	Р	V
5745MHz		17232	45.38	-22.82	68.2	38.08	42.43	20.76	55.89	100	0	Р	V
		11570	47.92	-26.08	74	48.75	39.2	17.16	57.19	100	0	Р	Н
802.11a		17352	45.01	-23.19	68.2	37.87	42.24	20.84	55.94	100	0	Р	Н
CH 157		11570	43.43	-30.57	74	44.26	39.2	17.16	57.19	100	0	Р	٧
5785MHz		17352	45.71	-22.49	68.2	38.57	42.24	20.84	55.94	100	0	Р	V
		11650	48.34	-25.66	74	49.15	39.11	17.16	57.08	100	0	Р	Н
802.11a		17472	46.83	-21.37	68.2	39.84	42.05	20.93	55.99	100	0	Р	Н
CH 165 5825MHz		11650	42.29	-31.71	74	43.1	39.11	17.16	57.08	100	0	Р	V
		17472	45.52	-22.68	68.2	38.53	42.05	20.93	55.99	100	0	Р	V

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B4 of B16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No. : FR671336-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5643.4	50.96	-17.24	68.2	39.54	34.6	11.95	35.13	204	281	Р	Н
		5689	50.95	-46.14	97.09	39.49	34.6	12	35.14	204	281	Р	Н
		5718.4	59.4	-50.95	110.35	47.88	34.6	12.06	35.14	204	281	Р	Н
		5724.4	65.62	-55.21	120.83	54.1	34.6	12.06	35.14	204	281	Р	Н
802.11n	*	5745	107.06	-	-	95.5	34.6	12.11	35.15	204	281	Р	Н
HT20	*	5745	99.66	-	-	88.1	34.6	12.11	35.15	204	281	Α	Н
CH 149		5621.4	50.46	-17.74	68.2	39.03	34.6	11.95	35.12	208	90	Р	٧
5745MHz		5670	52.06	-30.98	83.04	40.59	34.6	12	35.13	208	90	Р	٧
		5718.6	61.37	-49.04	110.41	49.85	34.6	12.06	35.14	208	90	Р	V
		5725	64.49	-57.71	122.2	52.97	34.6	12.06	35.14	208	90	Р	V
	*	5745	108.36	-	-	96.8	34.6	12.11	35.15	208	90	Р	V
	*	5745	100.96	-	-	89.4	34.6	12.11	35.15	208	90	Α	٧

SPORTON INTERNATIONAL INC. Page Number : B5 of B16

WIFI Limit Antenna Table Peak Pol. Note Frequency Level Over Read Cable Preamp Ant Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) 5645.6 50.25 -17.9568.2 38.83 34.6 11.95 35.13 197 280 Η 51.58 Ρ 5696 -50.67 102.25 40.12 34.6 12 35.14 197 280 Н 5712.8 49.6 -59.19 108.79 38.08 34.6 12.06 35.14 197 280 Ρ Н Ρ 5723 50.4 -67.24 117.64 38.88 34.6 12.06 35.14 197 280 Н 5785 107.21 34.6 35.16 280 Ρ _ _ 95.6 12.17 197 Н * 5785 99.81 88.2 34.6 12.17 35.16 197 280 Α Н 5853.6 51.1 -62.89 113.99 39.39 34.6 12.28 35.17 197 280 Р Н 5865 50.58 -57.42 108 38.77 34.6 12.39 35.18 197 280 Ρ Н 5909.4 52.57 -27.14 79.71 40.65 34.6 12.51 35.19 197 280 Н 802.11n Ρ 280 Н HT20 5948.8 51.25 -16.95 68.2 39.23 34.6 12.62 35.2 197 CH 157 Р 5607.4 49.34 37.97 34.6 11.89 35.12 213 138 ٧ -18.86 68.2 5785MHz 5681.2 51.59 -39.74 91.33 40.13 34.6 12 35.14 213 138 Ρ ٧ 5701.2 138 Ρ ٧ 51.47 -54.07 105.54 39.95 34.6 12.06 35.14 213 ٧ 5722 49.54 -65.82 115.36 38.02 34.6 12.06 35.14 213 138 5785 108.51 -_ 96.9 34.6 12.17 35.16 213 138 Ρ ٧ 5785 101.21 89.6 34.6 12.17 35.16 213 138 ٧ Α Ρ ٧ 5852.4 50.38 -66.35 116.73 38.67 34.6 12.28 35.17 213 138 51.86 34.6 138 Ρ ٧ 5859 -57.82 109.68 40.16 12.28 35.18 213 5877.8 52.5 -50.62 103.12 40.69 34.6 12.39 35.18 213 138 Ρ ٧ Ρ ٧ 5944.8 50.82 -17.38 68.2 38.8 34.6 12.62 35.2 213 138

Report No.: FR671336-01E

SPORTON INTERNATIONAL INC. Page Number : B6 of B16

WIFI Preamp Note Frequency Over Limit Read Antenna Cable Table Peak Pol. Level Ant Limit Line **Factor** Factor Pos Pos Ant. Level Loss Avg. (dBµV/m) (dB) (dB \(V/m \) (deg) (P/A) (H/V) (MHz) (dB_µV) (dB/m) (dB) (dB) (cm) * 107.41 35.17 208 5825 95.7 34.6 12.28 279 Η * 5825 100.21 88.5 34.6 35.17 208 279 --12.28 Α Н 5852.4 62.07 -54.66 116.73 50.36 34.6 12.28 35.17 208 279 Ρ Н 5857.2 34.6 12.28 35.17 208 279 Н 58.07 -52.11 110.18 46.36 5893.4 51.41 -40.14 91.55 39.61 34.6 12.39 35.19 208 279 Ρ Н 802.11n 5931.6 50.59 -17.61 68.2 38.67 34.6 12.51 35.19 208 279 Ρ Н HT20 CH 165 5825 108.91 97.2 34.6 12.28 35.17 216 121 Р V 5825MHz 5825 101.71 90 34.6 12.28 35.17 216 121 Α ٧ 5852.4 62.88 -53.85 116.73 51.17 34.6 12.28 35.17 216 121 ٧ Ρ ٧ 5856.2 59.52 -50.94 110.46 47.81 34.6 12.28 35.17 216 121 34.6 Р ٧ 5901 51.32 -34.6 85.92 39.4 12.51 35.19 216 121 40.07 ٧ 5935.4 51.98 -16.22 68.2 34.6 12.51 35.2 216 121 No other spurious found.

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11n		11490	47.33	-26.67	74	48.24	39.27	17.16	57.34	100	0	Р	Н
HT20		17232	44.62	-23.58	68.2	37.32	42.43	20.76	55.89	100	0	Р	Н
CH 149		11490	42.17	-31.83	74	43.08	39.27	17.16	57.34	100	0	Р	V
5745MHz		17232	45.2	-23	68.2	37.9	42.43	20.76	55.89	100	0	Р	V
802.11n		11570	47.56	-26.44	74	48.39	39.2	17.16	57.19	100	0	Р	Н
HT20		17352	44.54	-23.66	68.2	37.4	42.24	20.84	55.94	100	0	Р	Н
CH 157		11570	44.33	-29.67	74	45.16	39.2	17.16	57.19	100	0	Р	V
5785MHz		17352	45.51	-22.69	68.2	38.37	42.24	20.84	55.94	100	0	Р	V
802.11n		11650	48.9	-25.1	74	49.71	39.11	17.16	57.08	100	0	Р	Н
HT20		17472	45.29	-22.91	68.2	38.3	42.05	20.93	55.99	100	0	Р	Н
CH 165		11650	42.56	-31.44	74	43.37	39.11	17.16	57.08	100	0	Р	٧
5825MHz		17472	45.94	-22.26	68.2	38.95	42.05	20.93	55.99	100	0	Р	٧

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B8 of B16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No. : FR671336-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5647.8	52.69	-15.51	68.2	41.27	34.6	11.95	35.13	200	280	Р	Н
		5699	54.98	-49.48	104.46	43.52	34.6	12	35.14	200	280	Р	Н
		5715.8	66.8	-42.83	109.63	55.28	34.6	12.06	35.14	200	280	Р	Н
		5722.4	74.53	-41.74	116.27	63.01	34.6	12.06	35.14	200	280	Р	Н
	*	5755	104.46	-	-	92.9	34.6	12.11	35.15	200	280	Р	Н
	*	5755	97.26	-	-	85.7	34.6	12.11	35.15	200	280	Α	Н
		5854	50.57	-62.51	113.08	38.86	34.6	12.28	35.17	200	280	Р	Н
		5870	51.71	-54.89	106.6	39.9	34.6	12.39	35.18	200	280	Р	Н
802.11n		5891.2	51.78	-41.4	93.18	39.98	34.6	12.39	35.19	200	280	Р	Н
HT40		5945.6	51.2	-17	68.2	39.18	34.6	12.62	35.2	200	280	Р	Н
CH 151		5625	51.39	-16.81	68.2	39.96	34.6	11.95	35.12	200	122	Р	٧
5755MHz		5696.4	55.56	-46.99	102.55	44.1	34.6	12	35.14	200	122	Р	٧
		5715.4	68.04	-41.47	109.51	56.52	34.6	12.06	35.14	200	122	Р	٧
		5721.8	68.97	-45.93	114.9	57.45	34.6	12.06	35.14	200	122	Р	٧
	*	5755	106.76	-	-	95.2	34.6	12.11	35.15	200	122	Р	٧
	*	5755	98.96	-	-	87.4	34.6	12.11	35.15	200	122	Α	٧
		5850.4	50.52	-70.77	121.29	38.81	34.6	12.28	35.17	200	122	Р	٧
		5855.8	50.8	-59.78	110.58	39.09	34.6	12.28	35.17	200	122	Р	٧
		5894.2	52.1	-38.85	90.95	40.3	34.6	12.39	35.19	200	122	Р	٧
		5928	50.81	-17.39	68.2	38.89	34.6	12.51	35.19	200	122	Р	V

SPORTON INTERNATIONAL INC. Page Number : B9 of B16

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5642	49.68	-18.52	68.2	38.26	34.6	11.95	35.13	196	280	Р	Н
		5687.4	52.72	-43.19	95.91	41.26	34.6	12	35.14	196	280	Р	Н
		5718.8	51.8	-58.66	110.46	40.28	34.6	12.06	35.14	196	280	Р	Н
		5723.4	50.59	-67.96	118.55	39.07	34.6	12.06	35.14	196	280	Р	Н
	*	5795	105.51	-	-	93.9	34.6	12.17	35.16	196	280	Р	Н
	*	5795	98.01	-	-	86.4	34.6	12.17	35.16	196	280	Α	Н
		5851	53.75	-66.17	119.92	42.04	34.6	12.28	35.17	196	280	Р	Н
		5859.2	56.84	-52.78	109.62	45.14	34.6	12.28	35.18	196	280	Р	Н
802.11n		5875.8	53.79	-50.82	104.61	41.98	34.6	12.39	35.18	196	280	Р	Н
HT40		5941.2	51.32	-16.88	68.2	39.3	34.6	12.62	35.2	196	280	Р	Н
CH 159		5638.6	50.92	-17.28	68.2	39.5	34.6	11.95	35.13	201	121	Р	V
5795MHz		5699.2	50.55	-54.06	104.61	39.09	34.6	12	35.14	201	121	Р	V
		5715	53.06	-56.34	109.4	41.54	34.6	12.06	35.14	201	121	Р	V
		5725	50.58	-71.62	122.2	39.06	34.6	12.06	35.14	201	121	Р	V
	*	5795	106.31	-	-	94.7	34.6	12.17	35.16	201	121	Р	V
	*	5795	99.11	-	-	87.5	34.6	12.17	35.16	201	121	Α	٧
		5851.8	55.73	-62.37	118.1	44.02	34.6	12.28	35.17	201	121	Р	V
		5856.4	56.69	-53.72	110.41	44.98	34.6	12.28	35.17	201	121	Р	V
		5881.2	54.92	-45.67	100.59	43.11	34.6	12.39	35.18	201	121	Р	V
		5932.6	52.5	-15.7	68.2	40.58	34.6	12.51	35.19	201	121	Р	٧

Report No. : FR671336-01E

Remark

SPORTON INTERNATIONAL INC. Page Number : B10 of B16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.	İ			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11510	48.74	-25.26	74	49.58	39.3	17.16	57.3	100	0	Р	Н
HT40		17268	44.63	-23.57	68.2	37.38	42.37	20.79	55.91	100	0	Р	Н
CH 151		11505	44.44	-29.56	74	45.28	39.3	17.16	57.3	100	0	Р	V
5755MHz		17268	43.94	-24.26	68.2	36.69	42.37	20.79	55.91	100	0	Р	V
802.11n		11595	46	-28	74	46.82	39.18	17.16	57.16	100	0	Р	Н
HT40		17388	44.7	-23.5	68.2	37.59	42.19	20.87	55.95	100	0	Р	Н
CH 159		11590	42.44	-31.56	74	43.26	39.18	17.16	57.16	100	0	Р	V
5795MHz		17385	44.67	-23.53	68.2	37.56	42.19	20.87	55.95	100	0	Р	V
Remark	1. No	other spurious	s found.										

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5644.2	51.02	-17.18	68.2	39.6	34.6	11.95	35.13	100	283	Р	Н
		5678.2	54.45	-34.66	89.11	42.98	34.6	12	35.13	100	283	Р	Н
		5715.8	59.71	-49.92	109.63	48.19	34.6	12.06	35.14	100	283	Р	Н
		5722.2	59.4	-56.42	115.82	47.88	34.6	12.06	35.14	100	283	Р	Н
	*	5775	99.02	30.82	-	-	34.6	12.11	35.16	100	283	Р	Τ
	*	5775	91.15	37.15	-	-	34.6	12.11	35.16	100	283	Α	Η
		5855	56.63	-54.17	110.8	44.92	34.6	12.28	35.17	100	283	Р	Н
		5860.6	56.64	-52.59	109.23	44.83	34.6	12.39	35.18	100	283	Р	Н
802.11ac		5877.4	52.48	-50.94	103.42	40.67	34.6	12.39	35.18	100	283	Р	Η
VHT80		5928	50.55	-17.65	68.2	38.63	34.6	12.51	35.19	100	283	Р	Н
CH 155		5646	51.12	-17.08	68.2	39.7	34.6	11.95	35.13	201	129	Р	V
5775MHz		5700	57.34	-47.86	105.2	45.88	34.6	12	35.14	201	129	Р	V
		5719	60.62	-49.9	110.52	49.1	34.6	12.06	35.14	201	129	Р	V
		5723	59.26	-58.38	117.64	47.74	34.6	12.06	35.14	201	129	Р	V
	*	5775	102.02	33.82	-	-	34.6	12.11	35.16	201	129	Р	V
	*	5775	94.29	40.29	-	-	34.6	12.11	35.16	201	129	Α	V
		5852	57.57	-60.07	117.64	45.86	34.6	12.28	35.17	201	129	Р	V
		5857.6	60.37	-49.7	110.07	48.66	34.6	12.28	35.17	201	129	Р	V
		5877.4	52.94	-50.48	103.42	41.13	34.6	12.39	35.18	201	129	Р	V
		5931	50.3	-17.9	68.2	38.38	34.6	12.51	35.19	201	129	Р	V

Domark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B12 of B16

Band 4 5725~5850MHz

Report No. : FR671336-01E

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		/ B411- \	(dD::\//re \	Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11550	43.94	-30.06	74	44.77	39.23	17.16	57.22	100	0	Р	Н
VHT80		17325	45.75	-22.45	68.2	38.58	42.29	20.81	55.93	100	0	Р	Н
CH 155		11550	42.03	-31.97	74	42.86	39.23	17.16	57.22	100	0	Р	V
5775MHz		17325	44.67	-23.53	68.2	37.5	42.29	20.81	55.93	100	0	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC. Page Number : B13 of B16

Emission below 1GHz

5GHz WIFI 802.11n HT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	27	-13	40	31.28	26	1.07	31.35	-	-	Р	Н
		207.66	26.19	-17.31	43.5	39.56	16.22	1.87	31.46	-	-	Р	Н
		264.9	26.6	-19.4	46	35.92	19.7	2.32	31.34	-	-	Р	Н
		781.6	30.37	-15.63	46	29.56	27.52	3.9	30.61	-	-	Р	Н
5GHz		829.2	32.33	-13.67	46	30.52	28.29	4.1	30.58	-	-	Р	Н
802.11n		957.3	33.09	-12.91	46	29.33	30.22	4.07	30.53	100	0	Р	Н
HT40		40.53	31.14	-8.86	40	41.72	19.84	1.07	31.49	100	0	Р	V
LF		213.06	20.43	-23.07	43.5	33.68	16.33	1.87	31.45	-	-	Р	V
		256.8	23.65	-22.35	46	33.24	19.7	2.07	31.36	-	-	Р	٧
		815.2	30.9	-15.1	46	29.59	27.99	3.9	30.58	-	-	Р	٧
		871.2	32.06	-13.94	46	29.61	28.83	4.17	30.55	-	-	Р	٧
		946.8	33.15	-12.85	46	29.48	30.13	4.07	30.53	-	-	Р	٧
Remark		o other spurious		mit line.									

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B14 of B16

Note symbol

Report No. : FR671336-01E

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not				
	exceed the level of the fundamental frequency.				
!	Test result is over limit line.				
P/A	Peak or Average				
H/V	Horizontal or Vertical				

SPORTON INTERNATIONAL INC. Page Number : B15 of B16

A calculation example for radiated spurious emission is shown as below:

Report No.: FR671336-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : B16 of B16

Appendix C. Radiated Spurious Emission Plots

Toot Engineer	Jesse Wang, James Chiu and Daniel Lee	Temperature :	21~22°C	
Test Engineer :		Relative Humidity :	44~48%	

Note symbol

-L	Low channel location
-R	High channel location

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 - 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11n HT40 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 5GHz WIFI 802.11n HT40 (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR671336-01E

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
802.11a	92.05	1390.00	0.72	1kHz
5GHz 802.11n HT20	91.55	1300.00	0.77	1kHz
5GHz 802.11n HT40	85.71	648.00	1.54	3kHz
5GHz 802.11ac VHT80	74.07	320.00	3.13	10kHz

802.11a

Date: 25.JAN.2017 14:29:07

Report No.: FR671336-01E

802.11n HT20

Date: 25.JAN.2017 14:58:01

802.11n HT40

Date: 25.JAN.2017 15:10:21

FCC RF Test Report

Report No. : FR671336-01E

802.11ac VHT80

Date: 14.FEB.2017 22:32:49