On Martingale Posteriors, Gaussian Processes & Pseudo Data

Yingzhen Li

yingzhen.li@imperial.ac.uk

References

Discussions based on many papers. To start I recommend reading:

- Fong, Edwin, Chris Holmes, and Stephen G. Walker. "Martingale posterior distributions." Journal of the Royal Statistical Society Series B: Statistical Methodology 85.5 (2023): 1357-1391.
- Leibfried, Felix, et al. "A tutorial on sparse Gaussian processes and variational inference." arXiv preprint arXiv:2012.13962 (2020).
- Ritter, Hippolyt, et al. "Sparse uncertainty representation in deep learning with inducing weights." Advances in Neural Information Processing Systems 34 (2021): 6515-6528.

The task:

given data $y_{1:N}$, construct a predictor $p(y_{N+1:\infty}|y_{1:N})$

Solution 1: Explicit Bayesian modelling (de Finetti)

Build a model:

Prior:
$$p(\theta)$$

Likelihood: $p(y|\theta)$

Compute posterior:

$$p(\theta|y_{1:N}) \propto \prod_{n=1}^{N} p(y_n|\theta) p(\theta)$$
 Bayesian predictive inference:

$$p(y_{N+1:\infty}|y_{1:N}) = \int \prod_{n=N+1}^{\infty} p(y_n|\theta) p(\theta|y_{1:N}) d\theta$$

The task:

given data $y_{1:N}$, construct a predictor $p(y_{N+1:\infty}|y_{1:N})$

Solution 2: Direct construction of predictive (Doob)

Define a 1-step predictor (with some conditions):

$$\{p(\cdot | y_{1:N})\}_{n>N} \Rightarrow p(y_{N+1:\infty}|y_{1:N}) = \prod_{n=N+1}^{\infty} p(y_n|y_{1:n-1})$$

The task:

given data $y_{1:N}$, construct a predictor $p(y_{N+1:\infty}|y_{1:N})$

Solution 2: Direct construction of predictive (Doob)

Define a 1-step predictor (with some conditions):

$$\{p(\cdot | y_{1:N})\}_{n>N} \Rightarrow p(y_{N+1:\infty}|y_{1:N}) = \prod_{n=N+1}^{\infty} p(y_n|y_{1:n-1})$$

Consider the following definition:

$$Y_{N+1:M} \sim \{p(\cdot | y_{1:N})\}_{n>N}$$
 $p_M(y|Y_{N+1:M}) \coloneqq \hat{p}(y|y_{1:N}, Y_{N+1:M})$ (empirical dist.)

The task:

given data $y_{1:N}$, construct a predictor $p(y_{N+1:\infty}|y_{1:N})$

Solution 2: Direct construction of predictive (Doob)

Define a 1-step predictor (with some conditions):

$$\{p(\cdot | y_{1:N})\}_{n>N} \Rightarrow p(y_{N+1:\infty} | y_{1:N}) = \prod_{n=N+1}^{\infty} p(y_n | y_{1:n-1})$$

Define a 1-step predictor (with some conditions):
$$(\{p(\cdot | y_{1:N})\}_{n>N}) \longrightarrow p(y_{N+1:\infty} | y_{1:N}) = \prod_{n=N+1}^{\infty} p(y_n | y_{1:n-1})$$
 Consider the following definition:
$$Y_{N+1:M} \sim \{p(\cdot | y_{1:N})\}_{n>N}$$
 (empirical dist.)
$$p_M(y|Y_{N+1:M}) \coloneqq \hat{p}(y|y_{1:N}, Y_{N+1:M})$$
 (empirical dist.)
$$p_M(y|Y_{N+1:M}) \coloneqq \hat{p}(y|y_{1:N}, Y_{N+1:M})$$
 Construct the (finite) Martingale posterior $p_M(\theta_M | y_{1:N})$ and take $M \to \infty$:

$$\theta_{M} \sim p_{M}(\theta_{M}|y_{1:N}) \quad \Leftrightarrow \underbrace{(Y_{N+1:M})}_{N+1:M} \sim \{p(\cdot|y_{1:N})\}_{n>N},$$

$$\theta_{M} = argmin_{\theta} KL[p_{M}(y|Y_{N+1:M})||p(y|\theta)]$$

- Remember the steps for sampling from the Martingale posterior:
 - Specify a predictive model $\{p(\cdot | y_{1:N})\}_{n>N}$
 - Sample $Y_{N+1:M} \sim \{p(\cdot | y_{1:N})\}_{n>N}$
 - Fit a model $p(y|\theta)$ to dataset $\{y_{1:N}, Y_{N+1:M}\}$ with MLE
 - Consider the distribution of the MLE estimator when $M \to \infty$

- Remember the steps for sampling from the Martingale posterior:
 - Specify a predictive model $\{p(\cdot | y_{1:N})\}_{n>N}$
 - Sample $Y_{N+1:M} \sim \{p(\cdot | y_{1:N})\}_{n>N}$
 - Fit a model $p(y|\theta)$ to $p_M(y|Y_{N+1:M}) \coloneqq \hat{p}(y|y_{1:N},Y_{N+1:M})$ with MLE
 - Consider the distribution of the MLE estimator when $M \to \infty$
- Conditions to make this procedure work:
 - The limit exists (a.s., wrt. dist of $Y_{N+1:\infty}$):

$$p_{\infty}(y|Y_{N+1:\infty}) = \lim_{M\to\infty} p_M(y|Y_{N+1:M}),$$

- Remember the steps for sampling from the Martingale posterior:
 - Specify a predictive model $\{p(\cdot | y_{1:N})\}_{n>N}$
 - Sample $Y_{N+1:M} \sim \{p(\cdot | y_{1:N})\}_{n>N}$
 - Fit a model $p(y|\theta)$ to $p_M(y|Y_{N+1:M}) \coloneqq \hat{p}(y|y_{1:N},Y_{N+1:M})$ with MLE
 - Consider the distribution of the MLE estimator when $M \to \infty$
- Conditions to make this procedure work:
 - The limit exists (a.s., wrt. dist of $Y_{N+1:\infty}$):

$$p_{\infty}(y|Y_{N+1:\infty}) = \lim_{M\to\infty} p_M(y|Y_{N+1:M}),$$

• Bias-free:

$$E[p_{\infty}(y|V_{N+1:\infty})] = \hat{p}(y|y_{1:N})$$

• Now let's use the Bayesian predictive dist. from Solution 1:

$$p(y_{N+1:M}|y_{1:N}) = \int \prod_{n=N+1}^{M} p(y_n|\theta) p(\theta|y_{1:N}) d\theta$$

The following two sampling methods are equivalent:

Joint sampling: $\theta \sim p(\theta|y_{1:N})$, $Y_{N+1:M} \sim p(\cdot|\theta)$ i.i.d.

Sequential sampling: $Y_m \sim p(\cdot | Y_{N+1,m-1}, y_{1:N}), m = N+1:M$

• Now let's use the Bayesian predictive dist. from Solution 1:

$$p(y_{N+1:M}|y_{1:N}) = \int \prod_{n=N+1}^{M} p(y_n|\theta) p(\theta|y_{1:N}) d\theta$$

The following two sampling methods are equivalent:

Joint sampling: $\theta \sim p(\theta|y_{1:N})$, $Y_{N+1:M} \sim p(\cdot|\theta)$ i.i.d.

Sequential sampling: $Y_m \sim p(\cdot | Y_{N+1,m-1}, y_{1:N}), m = N+1:M$

Two solutions are the same:

• If $Y_{N+1:M}$ is generated by $p(y|\theta_0)$ using $\theta_0 \sim p(\theta|y_{1:N})$, then under identifiability conditions, the MLE solution converges:

$$\theta_M = argmin_\theta KL[p_M(y|Y_{N+1:M})||p(y|\theta)],$$

 $\theta_M \to \theta_0$ as $M \to \infty$

• Now let's use the Bayesian predictive dist. from Solution 1:

$$p(y_{N+1:M}|y_{1:N}) = \int \prod_{n=N+1}^{M} p(y_n|\theta) p(\theta|y_{1:N}) d\theta$$

The following two sampling methods are equivalent:

Joint sampling: $\theta \sim p(\theta|y_{1:N})$, $Y_{N+1:M} \sim p(\cdot|\theta)$ i.i.d. Sequential sampling: $Y_m \sim p(\cdot|Y_{N+1,m-1},y_{1:N})$, m=N+1:M

Two solutions are the same:

- If $Y_{N+1:M}$ is generated by $p(y|\theta_0)$ using $\theta_0 \sim p(\theta|y_{1:N})$, then under identifiability conditions, the MLE solution converges: $\theta_M = argmin_\theta KL[p_M(y|Y_{N+1:M})||p(y|\theta)], \qquad \theta_M \to \theta_0 \text{ as } M \to \infty$
- Unbiasedness is satisfied since $Y_{N+1:M}$ are conditionally identically distributed (Berti et al. 2004)

Two philosophies on Bayesian inference

- Solution 1 (de Finetti): explicit parameter dist. modelling
 - Specify prior $p(\theta)$
 - Specify likelihood $p(y|\theta)$
 - Posterior $p(\theta|y_{1:N})$ from Bayes' rule
- Solution 2 (Doobs): predictive distribution modelling
 - Specify a sequence of predictive dist. $\{p(\cdot | y_{1:N})\}_{n>N}$
 - Specify likelihood $p(y|\theta)$
 - Posterior $p(\theta|y_{1:N})$ implicitly defined by the following procedure
 - Sample more data $Y_{N+1:M}$ from the predictive dists.
 - Fit $p(y|\theta)$ to the augmented dataset by MLE
 - Repeat the above two steps multiple times and have a set of samples for heta

Two philosophies on Bayesian inference

$$\overbrace{f_{\theta}(y)}(\pi(\theta)) \xrightarrow{\text{Bayes' rule}} \pi(\theta \mid y_{1:n}) \xrightarrow{\text{posterior predictive}} p(y \mid y_{1:n})$$

$$\overbrace{f_{\theta}(y), \pi(\theta)}_{\text{Bayes' rule}} \pi(\theta \mid y_{1:n}) \xrightarrow{\text{posterior predictive}} p(y \mid y_{1:n})$$

$$\xrightarrow{T_{\theta}(y), \pi(\theta \mid y_{1:n})} \pi(\theta \mid y_{1:n}) \xrightarrow{\text{posterior predictive}} p(y \mid y_{1:n}) \xrightarrow{\text{predictive update}} p(y)$$

Two philosophies on Bayesian inference

1-1 correspondence if $\{p(\cdot | y_{1:N})\}$ and $f_{\theta}(y)$ (or in our notation $p(y|\theta)$) are consistent!

Not so surprising to GP researchers...

Gaussian process modelling:

$$f \sim GP(m(\cdot), k(\cdot, \cdot)), \quad y \sim p(y|f(x))$$

Not so surprising to GP researchers...

Gaussian process modelling:

$$f \sim GP(m(\cdot), k(\cdot, \cdot)),$$

- Important: f is infinite dimensional!
- A prior on f will induce a prior on $Y_{1:\infty}$

Prior:
$$p(f|X)$$

$$= N([m(x_1)], K_{XX}) K_{XX} = [p(x_1), K_{XX}]$$

$$p(Y_{(x_1)}|X) = \int [I_n p(Y_n)f(x_n)) p(f|X) df$$

$$= 2/[m(x_1)]$$

$$= p(y|f(x)) \land (f(x), 6]$$

$$\frac{X}{f} = \frac{1}{2} \left(\frac{x_1}{x_1}, \dots, \frac{1}{2} \frac{x_N}{x_N} \right)$$

$$\frac{X}{f} = \frac{1}{2} \left(\frac{x_1}{x_1}, \dots, \frac{1}{2} \frac{x_N}{x_N} \right)$$

$$\frac{X}{f} = \frac{1}{2} \left(\frac{x_1}{x_1}, \dots, \frac{1}{2} \frac{x_N}{x_N} \right)$$

$$\frac{X}{f} = \frac{1}{2} \left(\frac{x_1}{x_1}, \dots, \frac{1}{2} \frac{x_N}{x_N} \right)$$

Leibfried et al. "A tutorial on sparse Gaussian processes and variational inference." arXiv:2012.1396

Not so surprising to GP researchers...

- In fact: this idea works for any explicit Bayesian models
- The structure of prior on $Y_{1:\infty}$

Solution
$$P(\theta)$$
, $P(y|\theta)$

Leibfried et al. "A tutorial on sparse Gaussian processes and variational inference." arXiv:2012.13962

GP people is smart about augmenting data

• GP posterior is expensive to compute - $O(N^3)$ time complexity $p(f|y_{1:N}) = GP(m_{post}(\cdot), k_{post}(\cdot, \cdot))$

• Sparse GP approximation: use augmented "pseudo data"
$$\mathcal{L}=f(Z)$$
 $\mathcal{L}=f(Z)$ $\mathcal{L}=f(Z)$

Consider a probabilistic model

Prior: $p(\theta)$

Likelihood: $p(y|\theta)$

- Augmentations for predictive inference:
 - Augment the prior: define $\pi(\theta, U)$ such that

$$\int \pi(\theta, U) dU = p(\theta)$$

Consider a probabilistic model

Prior: $p(\theta)$ Likelihood: $p(y|\theta)$

- Augmentations for predictive inference:
 - Augment the prior: define $\pi(\theta, U)$ such that $\int \pi(\theta, U) dU = p(\theta)$
 - Now consider the posterior predictive:

$$p(y|y_{1:N}) = \int p(y|\theta)p(\theta|y_{1:N})d\theta = \frac{p(y,y_{1:N})}{p(y_{1:N})}$$

Consider a probabilistic model

Prior: $p(\theta)$

Likelihood: $p(y|\theta)$

- Augmentations for predictive inference:
 - Augment the prior: define $\pi(\theta, U)$ such that $\int \pi(\theta, U) dU = p(\theta)$
 - Now consider the posterior predictive:

Consider a probabilistic model

Prior: $p(\theta)$ Likelihood: $p(y|\theta)$

- Augmentations for predictive inference:
 - Augment the prior: define $\pi(\theta, U)$ such that $\int \pi(\theta, U) dU = p(\theta)$
 - Now consider the posterior predictive:

Key: predictive $p(y|y_{1:N})$ remains the same regardless of using $p(\theta|y_{1:N})$ or $p(U|y_{1:N})$

Consider a probabilistic model

Prior: $p(\theta)$

Likelihood: $p(y|\theta)$

- Augmentations for predictive inference:
 - Augment the prior: define $\pi(\theta, U)$ such that $\int \pi(\theta, U) dU = p(\theta)$
 - Now consider the posterior predictive:

You can then think about how to do variational inference then;)

9(0)2 PCO (JCM) 2 Sprylaga, gralaprulyr=n)

Ritter et al. "Sparse uncertainty representation in deep learning with inducing weights." NeurIPS 2021.

Take aways

- ML people cares about predictions (only?)
- This prompts us to think about more direct approaches
 - Function-space uncertainty (de Finetti)
 - Martingale posterior (Doob)
- Auxiliary variables (e.g., pseudo data) as flexible approach to assist!
 - Gaussian processes
 - General (approximate) Bayesian inference

Take aways

- ML people cares about predictions (only?)
- This prompts us to think about more direct approaches
 - Function-space uncertainty (de Finetti)
 - Martingale posterior (Doob)
- Auxiliary variables (e.g., pseudo data) as flexible approach to assist!
 - Gaussian processes
 - General (approximate) Bayesian inference
- Bonus: other Bayesian methods that involves auxiliary variables
 - Hamiltonian Monte Carlo
 - Polya-Gamma Augmentation
 - •