UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innavons pour votre réussite !

Examen en méthode numérique

Durée (2h:00 mn)

Prof. A.Ramadane, Ph.D.

EATE SOMED EDUCATION HOLDING • Zénith Millénium, Bâtiment 6, Lot Attawfiq, Sidi Mâarouf Casablanca • Tél : 05 29 02 37 00 • Fax : 05 22 78 61 04

Capital social: 111, 830,000.00 dhs • Taxe professionnelle 37983111 • N*RC 214245 • N*IF 40192279

| www.uic.ac.ma |

UNIVERSITÉ INTERNATIONALE DE CASABLANC

Nous innovens pour votre réussit

Exercice 1 (4 points):

Soit les valeurs expérimentales suivantes, que l'on a obtenues en mesurant la vitesse en (Km/h) d'un véhicule toutes les 5 secondes :

t(s)	0	5	10	15	20	25	30	35	40	45
t(s) v(km/h)	55	60	58	54	55	60	54	57	52	49

Donner une valeur réaliste de la vitesse à 42.5, s, Justifier votre réponse d'une manière très rigoureuse.

Exercice 2 (6 points)

Considérons l'intégrale

$$I = \int_{-3}^{5} e^{-x^2} dx$$

- a) Calculer une approximation de I en appliquant la méthode du trapèze composée avec
 5 intervalles.
- b) Pour cette méthode, quel est le nombre minimal d'intervalles à utiliser pour obtenir une approximation qui a une erreur d'au plus 10⁻³?
- (c) Refaire la question a pour la méthode de Simpson.
 - d) Utiliser la méthode de quadrature de Gauss à 4 nœuds pour trouver une approximation de I

Exercice3 (6 points)

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite !

Obtenir l'ordre de précision de l'approximation de la dérivée:

$$f''(x) \simeq \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

- a) Obtenir l'ordre de cette approximation en utilisant les développements de Taylor appropriés (détailler les calculs).
- b) Utiliser cette formule de différences pour obtenir une approximation de f''(3,0) pour la fonction tabulée suivante, en prenant d'abord h = 0, 2, ensuite h = 0, 1.

х	f(x)
2.8	1,587 7867
2.9	1,641 8539
3.0	1,693 1472
3.1	1,741 9373
9.2	1,788 4574

c) Soit l'approximation de la dérivée première

$$f'(x)\simeq\frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}.$$

A l'aide de développements de Taylor de degré approprié, obtenir l'ordre de cette approximation.

d) Sachant que

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite !

$$f'(0,2) = 0,9798652;$$

 $f'(0,4) = 0,9177710;$
 $f'(0,6) = 0,8080348;$
 $f'(0,8) = 0,6386093;$
 $f'(1,0) = 0,3843735,$

Evaluer f'(0,2) avec h=0,4.

Exercice 4 (4 points)

On a mesuré toutes les 10 secondes la vitesse (en m/s) d'écoulement de l'eau dans une conduite cylindrique. On a calculé à l'aide de ces données la table de différences divisées suivante:

	W		V		1
i	t_i	$f(t_i)$	$f[t_i, t_{i+1}]$	$f[t_i,\cdots,t_{i+2}]$	$f[t_i,\cdots,t_{i+3}]$
0	0	2,00	-		
			-1.1×10^{-2}		
1	10	1,89		?	
			-1.7×10^{-2}		7
2	20	1,72	_ 1	?	
			$-2,8 \times 10^{-2}$		
3	30	1,44			

- (a) Compléter la table.
- (b) Trouver l'approximation de la vitesse (en m/s) à t = 15 s avec le polynôme de Newton de degré 2.
- (c) Donner une approximation de l'erreur commise sur la vitesse calculée en (b).

Aide mémoire d'analyse numérique

A. Ramadane, Ph.D.

Interpolation

Interpolation polynômiale de Lagrange: étant donné (n+1) points (x_i, f(x_i)) pour i = 0, 1, · · · , n;
 p_π(x) = ∑_{i=0}ⁿ f(x_i)L_i(x),

$$\dot{\text{où}} \ \ L_t(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)(x_i-x_1)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}$$

• Différences divisées: $f[x_i] = f(x_i)$,

$$f[x_t,x_{t+1}] = \frac{f(x_{t+1}) - f(x_t)}{x_{t+1} - x_t}, \quad f[x_t,x_{t+1},x_{t+2}] = \frac{f[x_{t+1},x_{t+2}] - f[x_t,x_{t+1}]}{x_{t+2} - x_t}, \quad \text{etc.}$$

• Polynôme de Newton:

$$\begin{split} p_n(x) &= a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \dots + a_n(x-x_0)(x-x_1) \cdot \dots \cdot (x-x_{n-1}), \\ \text{où } a_i &= f[x_0,x_1,x_2,\dots,x_l] \quad \text{pour} \quad i = 0,1,\dots,n \end{split}$$

Erreur d'interpolation:

$$E_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x-x_0)(x-x_1) \cdots (x-x_n) \quad \text{pour} \quad \xi(x) \in [x_0,x_n]$$

Définitions, développement de Taylor et erreur de troncature

- Erreur absolue: $\Delta x = |x x^*|$
- Errour relative: $e_r(x) = \frac{\Delta x}{4\pi}$
- · Chillres significatils:

Le chiffre de x^* associé à la puissance de m et les chiffres associés aux puissances supérieures tels que $\Delta x \le 0.5 \times 10^m$.

• $f(x_0 + h) = P_n(h) + R_n(h)$:

$$\begin{cases} P_n(h) = f(x_0) + f'(x_0)h + \frac{1}{2!}f'''(x_0)h^2 + \frac{1}{2!}f'''(x_0)h^3 + \cdots + \frac{1}{n!}f^{(n)}(x_0)h^n \\ R_n(h) = \frac{1}{(n-1)!}f^{(n-1)}(\xi(h))h^{(n-1)} & \text{pour } \xi(h) \text{ entre } x_0 \in X_0 + h. \end{cases}$$

• $f(x) = P_n(x) + R_n(x)$

$$\begin{cases} P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{[n]}(x_0)(x - x_0)^n \\ R_n(x) = \frac{1}{(n+1)!}f^{[n+1)}(\xi(x))(x - x_0)^{[n+1)} & \text{pour } \xi(x) \text{ entre } x_0 \in LX. \end{cases}$$

• $f(h) = \mathcal{O}(h^n)$:

Il existe une constante C > 0 t.q. $\left| \frac{f(h)}{h^n} \right| \le C$ pour h près de 0.

· Approximation de l'erreur d'interpolation:

$$E_n(x) = f[x_0, x_1, \cdots, x_n, x_{n+1}](x-x_0)(x-x_1)\cdots(x-x_n)$$

Borne de l'erreur d'interpolation:

$$|E_n(x)| \leq \max_{\xi(x) \in [x_0,x_n]} |f^{(n+1)}(\xi(x))| \frac{h^{n+1}}{4(n+1)} \quad \text{pour} \quad h = x_i - x_{i-1} \quad \text{où} \quad i = 1,2,\dots,n$$

Différentiation et Intégration numériques

• Différentiation numérique:

formule de différence finie	terme d'erreur
$f'(x) = \frac{f(x \cdot h) \cdot f(x)}{h}$	$-\frac{L^{*}(\xi)}{2}h$
$f'(x) = \frac{f(x) - f(x - h)}{h}$	$\frac{f^{*}(\Omega)}{2}h$
$f'(x) = \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}$	f=(§) h2
$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$	-1m(E) J12
$f'(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h}$	$\frac{f^{m}(\xi)}{h^2}h^2$
$f''(x) = \frac{f(x+2h)-2f(x+h)+f(x)}{h^2}$	-f'''(ξ)h
$f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$	$-\frac{L^{m}(\xi)}{12}h^{2}$
$f''(x) \simeq \frac{f(x-2h)-2f(x-h)+f(x)}{h^2}$	f'''(ξ)h
$f''(x) = \frac{-f(x+2h)+16f(x+h)-10f(x)+16f(x-h)-f(x-2h)}{12h^2}$	$\frac{1}{90}f^{(6)}(\xi)h^4$

Soit

$$Q_{exa} = Q_{app}(h) + c_n h^n + c_{n+1} h^{n+1} + c_{n+2} h^{n+2} + \dots$$

alors pour p > 1

$$Q_{\text{exa}} = \frac{p^{n}Q_{\text{app}}(\frac{h}{p}) - Q_{\text{app}}(h)}{p^{n} - 1} + \frac{\left(\frac{1}{p} - 1\right)c_{n+1}h^{n+1} + \left(\frac{1}{p^{2}} - 1\right)c_{n+2}h^{n+2} + \cdots}{p^{n} - 1}$$

Quadratures de Newton-Cotes

méthode	formule de quadrature	terme d'erreur	de peinte
trapere	(Julian) + fixell	$-L_{12}^{*40}h^{*}$	2
trapéze tompenés	$\frac{1}{2}(f(x_0) + 2)f(x_1) + \cdots + f(x_{n-1}) + f(x_n))$	- 13 J ~ (E)h2	n-1
Simpson	\$ (f(x_1) + 4f(x_1) + f(x_2))	Traint Pr	3
Simpson § composée	(U(x_0) + 4f(x_0) + 2f(x_0) + + 2f(x_{2n-1}) + 4f(x_{2n-1}) + f(x_{2n}))	- the free (E) he	2n+1
Sampson 2	$\frac{2}{4}(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_1))$	22 10 (12 h 2	•
Sampson composer	$ \begin{array}{l} \frac{35}{4}(f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + \dots \\ \dots + 2f(x_{2n-1}) - 3f(x_{2n-2}) + 3f(x_{2n-1}) + f(x_{2n})) \end{array} $	- (\$ 10 f + 4 (E) h+	34+1
Houle	\$ (7f(xa) + 32f(x1) + 12f(x1) + 32f(x1) +7f(x4)	- 52'61', \$1 ft."	5
Boole composée	$\begin{cases} (7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + \\ -14f(x_4) + \dots + 32f(x_{4n-2}) + 14f(x_{4n-4}) + \\ +12f(x_{4n-2}) + 12f(x_{4n-2}) + 12f(x_{4n-1}) + 7f(x_{4n}) \end{cases}$	-2(h-4) -271 f*** (E) A**	4n+1

• Intégration de Gauss:

$$\int_{a}^{b} f(x) \, dx = \frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a)t + (a+b)}{2}\right) \, dt = \frac{(b-a)}{2} \int_{-1}^{1} g(t) \, dt \simeq \frac{(b-a)}{2} \sum_{i=1}^{n} \omega_{i} g(t_{i})$$

nb de pts (n)	points de Gauss f	poids de Gauss co _t	degré de précision $(2n-1)$
l _{ing}	+0,000000000	2,000 000 000	I
2	-0,577350269 +0,577350269	1,000 000 000	3
3	-0,774596669 +0,0000000000 +0,774596669	0,55555556 0,88888889 0,55555556	5
4	-0,861136312 -0,339981044 +0,339981044 +0,861136312	0,347854845 0,652145155 0,652145155 0,347854845	7