UNIAXIAL TENSION LAB 7

UNIAXIAL TENSION

- Stress and Strain
- Stress-Strain Diagram
- Material Ductility
- Ductile Material vs Brittle Material
- Determination of Yield Stress
- Strain Energy
- Goal: To determine the Young's Modulus, yield stress, ultimate tensile strength,
 ductility and toughness of aluminum and cast iron

NORMAL STRESS

• Stress = intensity of the internal force

$$Stress = \frac{Force}{Area}$$

• Normal stress: Greek letter sigma (σ)

$$\sigma_{\text{avg}} = \frac{F}{A}$$

• Units: psi, ksi, pa, kpa, mpa

NORMAL STRAIN

- ullet Deformation: Greek letter δ
- Normal strain: Greek letter ε (epsilon)

$$\varepsilon = \frac{\delta}{L}$$

$$\varepsilon(P) = \frac{d\delta_n}{dL}$$

- Units: none (dimensionless)
- Sign: same with the stress
 - Tensile strain: +
 - Compressive strain: —
- Hooke's law

$$\sigma = E\varepsilon$$

STRESS-STRAIN DIAGRAM

Modulus of Elasticity (E)

ELASTICITY AND PLASTICITY

STRAIN HARDENING

NECKING AND FRACTURE

POISSON'S RATIO

• Lateral contraction accompanies axial elongation

• Poisson's Ratio relates these two strains to one another

$$v = -\frac{\text{lateral strain}}{\text{axial strain}} = -\frac{\varepsilon'}{\varepsilon}$$

- Units: none (dimensionless)
- Limitations:
 - The material must be homogeneous
 - Elastic properties must be the same in all directions perpendicular to the longitudinal axis ==> isotropic material
 - Theoretical maximum is 0.5 (Rubber ~ 0.5)

MATERIAL DUCTILITY

Ductility is defined by the degree to which a material can sustain plastic deformation before failure from a tensile stress greater than the material's yield stress.

$$\%Elongation = \frac{L_B - L_0}{L_0} \times 100$$
 $\%Reduction\ in\ Area = \frac{A_0 - A_B}{A_0} \times 100$

DUCTILE MATERIAL VS BRITTLE MATERIAL

Structural Steel

Aluminum Alloy

Cast Iron

DETERMINATION OF YIELD STRESS

- Used to determine an arbitrary yield stress
- A straight line is drawn on the stressstrain diagram parallel to the initial linear part of the curve at an offset of 0.002 (or 0.2%) strain
- The intersection of the offset line and the stress-strain curve (point A) defines the "offset yield stress".

MAXIMUM STRESSES

• The maximum normal stress occurs when the reference plane is perpendicular to the member axis

$$\sigma_{max} = \frac{P}{A_0}, \qquad \tau' = 0$$

The maximum shear stress occurs for a plane at $\pm 45^o$ with respect to the axis

$$\tau_{max} = \frac{P}{2A_0}, \qquad \sigma' = \frac{P}{2A_0}$$

STRAIN ENERGY

Average force magnitude

$$\frac{\Delta F}{2} = \frac{1}{2} \left(\sigma \Delta x \Delta y \right)$$

• Strain energy

$$\Delta U = \frac{1}{2} (\sigma \Delta x \Delta y) \epsilon \Delta z$$

Strain energy density

$$\Delta V = \Delta x \Delta y \Delta z; \ u = \frac{\Delta U}{\Delta V} = \frac{1}{2} \sigma \epsilon$$

Modulus of Resilience

$$u_r = \frac{1}{2}\sigma_{pl}\epsilon_{pl}$$

STRAIN ENERGY

Toughness is the ability of a material to absorb energy and plastically deform without fracturing. Energy volume

$$Toughness = \int_0^{\epsilon} \sigma \, d\epsilon$$

Segment 1:

Selected crashworthiness tests

FOR THE REPORT

- 3 Aluminum Samples
- 3 Cast Iron Samples
- Plots:
 - A complete stress-strain curve for each material.
 - A plot of the linear elastic region with offset curve intersection.
 - A curve fit of the elastic deformation region
- 95% confidence t-test
- Compare your calculated and observed values to known published values

MATERIAL PROPERTIES

Properties of Selected Materials (SI Units)

Exact values may vary widely with changes in composition, heat treatment, and mechanical working. More precise information can be obtained from manufacturers.

Materials	Den- sity (Mg/m²)	ELASTIC STRENGTH [®]			ULTIMATE STRENGTH			Endx-	Modu- lus of	Modu- lus of	Coeffi- cient of Thermal
		Ten- sion (MPa)	Comp. (MPa)	Shear (MPa)	Ten- sion (MPa)	Comp. (MPa)	Shear (MPa)	Limit ^e tici	Elas- ticity (GPa)	ity	sion
errous metals			90			156					
Wrought iron	7.70	210	b		330		170	160	190		12.1
Structural steel	7.87	250	b		450			190	200	76	11.9
Steel, 0.2% C hardened	7.87	430	b		620				210	80	11.9
Steel, 0.4% C hot-rolled	7.87	360	b		580			260	210	80	
Steel 0.8% C but colled	7.97	520	b		240	b		20000	210	90	
Cast iron—gray	7.20				170	690		80	100		12.1
Cast iron—malleable	7.37	220			340				170		11.9
Cast iron—nodular	7.37	480			690				170		11.9
Stainless steel (18-8) annealed	7.92	250			590	ь		270	190	86	17.3
Stainless steel (18-8) cold-rolled	7.92	1140			1310	0		620	190	86	17.3
Steel, SAE 4340, heat-treated	7.84	910	1000		1030		650	520	200	76	
ionferrous metal alloys											
Aluminum, cast, 195-T6	2.77	160	170		250	1.5%	210	50	71	26	D.C. CO-CO.
Aluminum, wrought, 2014-T4	2.80	280	280	160	430		260	120	73	28	22.5
Aluminum, wrought, 2024-T4	2.77	330	330	190	470	ь	280	120	73	28	22.5
Aluminum, wrought, 6061-T6	2.71	270	270	180	310	8	210	93	70	26	22.5

STUDIO

- The following data was obtained for a 0.2% C plain-carbon steel
 - Plot the stress-strain curve.
 - Determine the Young's Modulus of the material.
 - Determine the yield stress of the material.
 - Determine the ultimate stress of the material.
 - Determine the percent elongation at fracture

Carbon-Steel (0.2% C)						
Stress (MPa)	Strain (%)					
0	0					
207	0.1					
379	0.2					
414	0.5					
469	1					
496	2					
510	4					
517	6					
524	8					
517	10					
503	12					
476	14					
448	16					
386	18					
352	19					