Fundação Universidade Federal de Rondônia UNIR

CIÊNCIA DA COMPUTAÇÃO - 2º Período - 2º Sem. / 2021 - Geometria Analítica

Lista de Exercícios nº 3 - CIRCUNFERÊNCIA (Revisão do Terceirão)

1 – Determine a equação da circunferência de centro C e raio r, considerando:

- a) C(3, 4) e r = 2
- **Resposta:** $(x-3)^2 + (y-4)^2 = 4$
- b) C(0, -3) e r = 3
- **Resposta:** $x^2 + (y + 3)^2 = 9$ **Resposta:** $x^2 + y^2 = 16$
- c) C(0, 0) e r = 4
- 2 Determine a equação da circunferência de centro C (2, 3), que passa pelo ponto P (-1, 2).

Resposta: O raio é $\mathbf{r} = \sqrt{10}$. A circunferência é $(\mathbf{x} - \mathbf{2})^2 + (\mathbf{v} - \mathbf{3})^2 = \mathbf{10}$.

3 – Determine a equação da circunferência de centro C (-1, 2), que passa pelo ponto Q (2, 0).

Resposta: O raio é $\mathbf{r} = \sqrt{13}$. A circunferência é $(\mathbf{x} + 1)^2 + (\mathbf{v} - 2)^2 = 13$.

4 - Os pontos A (4, -2) e B (2, 0) são as extremidades de um diâmetro de uma circunferência. Determine a equação dessa circunferência.

Resposta: O centro é C(3, -1). O raio é $\mathbf{r} = \sqrt{10}$. A circunferência é $(\mathbf{x} - \mathbf{5})^2 + (\mathbf{y} - \mathbf{1})^2 = \mathbf{10}$.

5 – Determine a equação da circunferência que passa pelos pontos D(4, -2), E(2, 0) e F(8, 2).

Resposta: O centro é C(5, 1). O raio é $\mathbf{r} = \sqrt{2}$. A circunferência é $(\mathbf{x} - \mathbf{3})^2 + (\mathbf{v} + \mathbf{1})^2 = \mathbf{2}$.

6 – Determine a equação da circunferência de centro na bissetriz do 1º e 3º quadrantes e que passa pelos pontos A(4, 0) e B(0, -2).

Resposta: A equação da reta que passa por $AB \in \mathbf{x} - 2\mathbf{y} - 4 = \mathbf{0}$. O ponto médio de $AB \in \mathbf{M}(2-1)$.

A equação da mediatriz de \overline{AB} é 2x + y - 3 = 0. O centro é C(1, 1). O raio é $\mathbf{r} = \sqrt{10}$. A circunferência pedida é $(x-1)^2 + (y-1)^2 = 10$.

- 7 Verifique se cada uma das equações abaixo representam circunferência:
 - a) $x^2 + y^2 + 10x 6y + 12 = 0$
- Resposta: Sim.
- Resposta: Sim.
- b) $4x^2 + 4y^2 4x + 4y 7 = 0$ c) $2x^2 + 5y^2 2x 10y + 1 = 0$
- Resposta: Não.

- Resposta: Sim.
- d) $x^2 + y^2 x = 0$ e) $x^2 + y^2 + 2xy + 4x 2y + 6 = 0$
- Resposta: Não.
- 8 As equações abaixo representam circunferência. Calcule o centro C e o raio r de cada uma delas:
 - a) $x^2 + y^2 + 6x 4y + 11 = 0$
- **Resposta:** C(-3, 2) e r = $\sqrt{2}$.
- b) $x^2 + y^2 2x 5 = 0$
- **Resposta:** C(1, 0) e r = $\sqrt{6}$.
- 9 A reta (s) 2x + y 5 = 0 é tangentes a circunferência (λ) $x^2 + y^2 = 5$. Determine as coordenadas do ponto de tangência. Resposta: P(2, 1).
- 10 Determine os pontos de intersecção da circunferência (α) $x^2 + y^2 2x + 8y + 4 = 0$ com a bissetriz dos quadrantes ímpares. **Resposta:** $P_1(-1, -1)$ e $P_2(-2, -2)$.
- 11 Determine os pontos de intersecção da circunferência (β) $x^2 + y^2 8x 9 = 0$ com os eixos do sistema de coordenadas. **Resposta:** $P_1(9, 0)$; $P_2(-1, 0)$; $P_3(0, 3)$ e $P_4(0, -3)$.
- 12 Determine os pontos de intersecção das circunferências (λ_1) $x^2 + y^2 2x 4y + 4 = 0$ e (λ_2) $x^2 +$ $y^2 - 6x - 4y + 8 = 0$. Resposta: $P_1(1, 3) \in P_2(1, 1)$.