Your Name:	netid:	Group #:
Name:	netid:	
Name:	netid:	
Name:	netid:	

ECE 120 Worksheet 14: LC-3 datapath control

The figure below shows the LC-3 datapath and all the control signals necessary to control it. At each state of the LC-3 FSM, these signals are configured to enable a particular RTL statement to be carried out by the datapath. In lecture, we attempted to show how the datapath needs to be configured to implement the states for the *fetch* phase of the instruction cycle. In this worksheet, you will configure the datapath for the *execute* phase states for some of the LC-3 instructions.

Feel free to detach and keep the last 3 pages of this booklet.

1. LC-3 control signals

Fill in the table below by specifying control bits for the states listed in the table. You may use don't cares where appropriate. The states are listed top-to-bottom, left-to-right as they appear in the LC-3 state diagram. Consult with the LC-3 FSM and datapath attached to this worksheet (you can detach and keep the last 3 pages). States 18 and 32 are done for you as an example.

STATE	RTL	LD.BEN	LD.MAR	LD.MDR	LD.IR	LD.PC	LD.REG	LD.CC	Gate.MARMUX	Gate.MDR	Gate.ALU	Gate.PC	MARMUX	PCMUX (2 BITS)		ADDR2MUX	DRMUX (2 RITS)			(2 BITS)	
18	$MAR \leftarrow PC, PC \leftarrow PC+1$	0	1	0	0	1	0	0	0	0	0	1	Х	00	Х	XX	XX	XX	XX	0	Х
32	BEN ← nN+zZ+pP	1	0	0	0	0	0	0	0	0	0	0	Х	XX	Х	XX	XX	XX	XX	0	Х
5	DR←SR1&OP2, set cc	0	0	0	0	0	1	1	0	0	1	0	X	XX	X	XX	00	01	01	0	X
6	MAR ← B+off6	0	1	0	0	0	0	0	1	0	0	0	1	XX	1	01	XX	01	ХХ	0	X
25	$MDR \leftarrow M[MAR]$	0	0	1	0	0	0	0	0	0	0	0	X	XX	X	XX	XX	хх	ХХ	1	0
27	DR ← MDR, set cc	0	0	0	0	0	1	1	0	1	0	0	X	XX	X	XX	00	ХХ	ХХ	0	X

2. LC-3 control words

In the previous problem you noticed that each RTL statement requires configuring 25 LC-3 datapath control signals. These 25 control signals can be packed together as a single 25-digit binary word, or **control word**, assuming some fixed order, e.g.,

For example, control word for the RTL statement implementing the execute phase of ADD instruction is

00000110010xxxxxx0001000x

We can add three more 0 bits to the front of this word (so that it is 28-bit long) and convert it into a 7-digit hexadecimal number, replacing all don't cares with 0s:

 $0000 \ 0000 \ 1100 \ 1000 \ 0000 \ 0001 \ 0000_2 = x00C8010$ <- control word for state 1.

Based on your table from the previous part, write the control words for the following states:

State	Control word in binary (25 bits)	Control word in					
		hexadecimal					
18	0 1001 0000 01 <u>0</u> 0 0 <u>000</u> <u>0000</u> <u>00</u> 0 <u>0</u>	x0504000					
32	1 0000 0000 00 <u>00</u> <u>0000</u> <u>0000</u> <u>00</u> 0 <u>0</u>	x1000000					
5	0 0000 1100 1000 0000 0001 0100	x00C8014					
6	0 1000 0010 0010 0101 0001 0000	x0822510					
25	0 0100 0000 0000 0000 0000 0010	x0400002					
27	0 0000 1101 0000 0000 0000 0000	x00D0000					

LC-3 FSM

LC-3 datapath

LC-3 control signals

LC-3 Instructions

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

