What's in a good representation?

John Tan Chong Min

Aim

 Find a way to encode a suitable representation to perform decision making

 Such representation can also be how we store memories for use in the future

Autoencoders: Representation via Reconstruction

• Prioritises output clarity – may not disentangle well in latent space

Do you need to predict everything?

Transformers: Representation via Prediction

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Taken from: Attention is all you need. Vaswani et al. (2017)

Large Self-Supervised Learning

 Self-supervised learning helps to learn better manifolds across large data

Can work zero-shot on a new sample

Manifold of having only 2 classes

Manifold of having 4 classes

JEPA - Only use whatever is necessary to predict

• Prediction is done in latent space

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

World Modelling

- Use hidden representations for prediction
- Latent space is discrete using latent space of categorical variables

Mastering Atari with Discrete World Models. Hafner et al. 2022.

Natural Fixed Biases: Faster learning by constraints

• Sound: frequency in cilia

• Vision:

- Local patches
- Cones for Red, Green, Blue
- · Rods for Black and White

Audio – Freq Modelling

Audio signal converted into frequencies

Images taken from: https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

Use overlapping window to model waveform over time

Vision – Pixel Proximity

Vertical edge detection

1		1										
10	10	10	0	0	0				1			
10	10	10	0	0	0	*	1 0 -1 1 0 -1 1 0 -1	=	0	30	30	0
10	10	10	0	0	0				0	30	30	0
10	10	10	0	0	0				0	30	30	0
10	10	10	0	0	0		3 ×3		0	30	30	0
10	10	10	0	0	0					1	tx4	
		67	6							\	4	
						*	1 1 1	Andrew Ng				

Information Pipeline – Bias for Representation

The next level

Hierarchical Prediction

Hierarchical Prediction is the future

- Hierarchical prediction of more than just next token, but broader prediction at higher levels
- Higher level prediction can be more abstract and less detailed than lower levels

Evidence of a predictive coding hierarchy in the human brain listening to speech.

Caucheteux. 2022. Nature Human Behaviour.

How to represent part-whole hierarchies in a neural network. Hinton, 2021.

Hierarchical Prediction – Jukebox (OpenAI)

- Hierarchical Quantization of sound from coarse-grained input to fine-grained layers
- Codebook entries are finite

Jukebox: A Generative Model for Music. Dhariwal et. al. 2020.

Hierarchical Prediction – Jukebox (OpenAI)

• Conditional generation of coarse-grained input to fine-grained layers

Residual Vector Quantization

- Hierarchical Quantization from coarse-grained input to fine-grained layers
- Akin to compositionality?

Optimized residual vector quantization for efficient approximate nearest neighbor search. Ai et al. 2015.

Hierarchical Prediction - Feature Pyramid Network

• Hierarchical prediction from coarse-grained image to fine-grained image

Feature Pyramid Networks for Object Detection. Lin et al. 2017.

Hierarchical JEPA

• Hierarchical prediction of actions from the highest level action to the lowest level action

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

Hierarchical Action Prediction

Hierarchical prompting of actions from broad action to specific actions

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent's current situation. Retrieval identifies a subset of these observations that should be passed to the language model to condition its response to the situation.

Generative Agents: Interactive Simulacra of Human Behavior. Joon et al. 2022

Transformers:

Can a Transformer perform hierarchical generation?

Figure 1: The Transformer - model architecture.

Memorizing Transformers. Wu et al. 2022.

Attention is all you need. Vaswani et al. (2017)

Questions to Ponder

- Do we learn from experience, or from natural fixed bias? Or both?
- Should we do prediction whereby we map back to input space (like tokens in Transformers), or should we just predict the latent space? What are the benefits and drawbacks?
- Should we use hierarchical generation? Is our brain hierarchical or more flat like what Jeff Hawkins proposes in "Thousand Brains Theory"?
- Should we represent latent space as continuous or discrete? Would an unbounded length of discrete tokens be sufficient to represent continuous spaces?