

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators Section 15.247

Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

And

Industry Canada Spectrum Management and Telecommunications Radio Standards Specification

RSS-210 Issue 8 December 2010

PART II – 20 MHz Bandwidth Data

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: PMP450SM 5.7GHz OFDM Radio with cross-polarized antenna

Kind of Equipment: Point-to-Point Digital Transmission Transceiver

Frequency Range: 5.730 to 5.845 MHz (10 MHz bandwidth)

5.735 to 5.840 MHz (20 MHz bandwidth)

Test Configuration: Stand-alone

Model Number(s): C054045C001A, C054045C002A, C054045C003A, C054045C004A

Model(s) Tested: C054045C004A

Serial Number(s): 0A003EA00037 (integrated), 0A003EA00047 (connectorized)

Date of Tests: April 2nd to May 1st, 2012

Test Conducted For: Cambium Networks

1299 E. Algonquin Road. Schaumburg, IL 60196, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2012, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Report Number:

Company:

Model Tested:

Cambium Networks C054045C004A

17833

166 South Carter, Genoa City, WI 53128

SIGNATURE PAGE

Tested By:

Craig Brandt Test Engineer

Craig Brandt

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Company: Model Tested: Report Number:

Cambium Networks C054045C004A

17833

166 South Carter, Genoa City, WI 53128

Table of Contents

ı. Cov	ver Page	1
ii. Sig	nature Page	2
iii.Tab	ole of Contents	3
iv. NV	LAP Certificate of Accreditation.	4
1.0	Summary of Test Report	5
2.0	Introduction	6
3.0	Test Facilities	6
4.0	Description of Test Sample.	6
5.0	Test Equipment	8
6.0	Test Arrangements	9
7.0	Test Conditions	
8.0	Modifications Made To EUT for Compliance	10
9.0	Additional Descriptions	
10.0	Results	
11.0	Conclusion	
Appen	ndix A – Measurement Data	11
A1.		
A2.		
A3.		
A4.		
A5.	1	
A6.		
A7.	· · ·	
A8.	<u> </u>	
Α9		2.77

Company: Model Tested: Report Number: Cambium Networks C054045C004A

17833

166 South Carter, Genoa City, WI 53128

Report Number: 17833

166 South Carter, Genoa City, WI 53128

1.0 Summary of Test Report

It was determined that the Cambium Networks PMP450SM 5.7GHz OFDM Radio with cross-polarized antenna, Model C054045C004A, complies with the requirements of CFR 47 Part 15 Subpart C Section 15.247 and Industry Canada RSS-210 Issue 8. FCC limits & procedures were used to show compliance with Industry Canada regulations.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
Informative	26 dB Emission Bandwidth	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Section 5.1.1	1	NA
15.247(a)(2) & RSS-210 A8.2(a)	6 dB Emission Bandwidth	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Section 5.1.1	1	Yes
15.247(b)(3) & RSS-210 A8.4(4)(5)	Fundamental Emission Output Power – Average	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Section 5.2.2.1-AVG1	1	Yes
15.247(e) & RSS-210 A8.2(b)	Maximum Power Spectral Density Level in the Fundamental Emission - Average	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Section 5.3.2-AVGPSD	1	Yes
15.247(d) & RSS-210 A8.5	Maximum Unwanted Emission Levels – RF Conducted	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Sections 5.4.1 & 5.4.2	1	Yes
15.247 (d), 15.205 & RSS-210 A8.5 RSS-Gen 7.2.2	Unwanted Emissions into Restricted Frequency Bands - Radiated	ANSI C63.10-2009 Sections 6.5 & 6.6	2	Yes
15.247(d) & RSS-210 A8.5	Band Edge Measurements	FCC Publication KDB 558074 D01 DTS Meas Guidance v01 Sections 5.4.1 & 5.4.2	1	Yes
15.35(c) & RSS-Gen 7.2.3	Duty Cycle of Test Unit	ANSI C63.10-2009 Section 7.5	1	NA
15.207(a) & RSS-Gen 7.2.4	AC Line Conducted Emissions	ANSI C63.10-2009 Section 6.2		Yes

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

Company: Cambium Networks Model Tested: C054045C004A Report Number: 17833

166 South Carter, Genoa City, WI 53128

2.0 Introduction

From April 2 through May 1, 2012 the PMP450SM 5.7GHz OFDM Radio with cross-polarized antenna, Model C054045C004A, as provided from Cambium Networks, was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.247 and Industry Canada RSS-210 Issue 8. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Point-to-Point 5.7 GHz DTS Transceiver with either integrated Patch (9 dBi) and external Cassegrain Lens (9 dBi) antennas or integrated Patch (9 dBi) and Reflector Dish (18 dBi) antennas with 10 MHz or 20 MHz channel bandwidth.

Type of Equipment / Frequency Range:

Stand-Alone / 5.730 to 5.845 MHz (10 MHz bandwidth) 5.735 to 5.840 MHz (20 MHz bandwidth)

Physical Dimensions of Equipment Under Test:

Length: 10 in. Width: 3 in. Height: 1 in.

Power Source:

29 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Phihong power supply model: PSA15R-295 (MOT)

Internal Frequencies:

150 kHz (Switching Power Supply Frequency) 25 MHz, 20 MHz

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Transmit Frequencies Used For Test Purpose:

10 MHz Channel Bandwidth: Low channel: 5730 MHz, Middle channel: 5800 MHz,

High channel: 5845 MHz

20 MHz Channel Bandwidth: Low channel: 5735 MHz, Middle channel: 5800 MHz,

High channel: 5840 MHz

Type of Modulations:

16 QAM, 64 QAM, & QPSK

Description of Circuit Board(s) / Part Number:

Cambium Networks PC Board	84010124001 P6
Patch Antenna	85015000001
2 x Connector (for test unit only)	0989419C01

Report Number: 17833

166 South Carter, Genoa City, WI 53128

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	4/12	4/13
Preamplifier	Rohde & Schwarz	TS-PR10	032001/004	9 kHz – 1 GHz	1/12	1/13
Antenna	ЕМСО	3104C	00054892	20 MHz – 200 MHz	9/10	9/12
Antenna	EMCO	3146	1205	200 MHz – 1 GHz	9/10	9/12
Preamp	Miteq	AMF-6D- 100200-50	313936	1GHz-10GHz	8/11	8/12
Preamp	Miteq	AMF-6D- 010100-50	213976	10GHz-18GHz	8/11	8/12
Horn Antenna	EMCO	3115	9903-5731	1-18GHz	6/11	6/13
Low Pass Filter	Mini-Circuits	VLFX-1125	RUU9260009 20	DC-1125MHz	8/11	8/12
Preamp	Miteq	AMF-8B- 180265-40-10P- H/S	438727	18GHz-26GHz	8/11	8/12
Horn Antenna	EMCO	3116	2549	18 – 40GHz	8/10	8/12
High Pass Filter	Planar Filter Co.	HP8G-7G8-CD- SFF	PF1225/0728	7.5 GHz – 18 GHz	8/11	8/12
High Pass Filter	Planar Filter Co.	CL22600-9000- CD-SS	PF1230/0728	16.2 GHz – 40 GHz	8/11	8/12
LISN	Solar	9252-50-R- 24-BNC	971612	9 kHz – 30 MHz	3/12	3/13
Filter- High- Pass	Solar	7930-120	090701	120 kHz- 30 MHz	1/12	1/13
Limiter	Electro-Metrics	EM-7600	705	9 kHz – 30 MHz	1/12	1/13
20 dB attenuator	Aeroflex/weinsche l	75A-20-12	1071	DC – 40 GHz	6/11	6/12
10 dB attenuator	narda	4768-10	0702	DC – 40 GHz	8/11	8/12
Preamp	Rohde & Schwarz	TS-PR40	052002/025	26 GHz – 40 GHz	6/11	6/12
50 Ohm Load	Pasternack	PE6039	DLS #527	DC – 18 GHz	NA	NA

Report Number: 17833

166 South Carter, Genoa City, WI 53128

6.0 Test Arrangements

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix A – Measurement Data. See the separate exhibit for photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 558074 D01 DTS Meas Guidance v01 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix A – Measurement Data. See the separate exhibit for additional photos of the test set up.

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity:

68°F at 33% RH

Supply Voltage:

29 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Phihong power supply model: PSA15R-295 (MOT)

Company: Cambium Networks Model Tested: C054045C004A Report Number: 17833

166 South Carter, Genoa City, WI 53128

8.0 Modifications Made To EUT for Compliance

No modifications made at time of test.

9.0 Additional Descriptions

Mode of operation: Continuously scanning all channels.

Emission Designators: 10M0X1D, 20M0X1D

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 558074 D01 DTS Meas Guidance v01and ANSI C63.10-2009. Graphical and tabular data can be found in Appendix A at the end of this report.

11.0 Conclusion

The PMP450SM 5.7GHz OFDM Radio with cross-polarized antenna, Model C054045C004A, as provided from Cambium Networks tested from April 2nd to May 1, 2012 **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.247 and Industry Canada RSS-210 Issue 8

Note: FCC limits & procedures were used to show compliance with Industry Canada regulations.

Company: Cambium Networks Model Tested: C054045C004A Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A1.0 26 dB Emission Bandwidth - Conducted

Rule Section: Informative

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – *Guidance for Performing*

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.1.1

Description: RBW = 1-5% of EBW

 $VBW \ge 3 \times RBW$ Detector = Peak

Trace mode = max hold Sweep = auto couple

Measure the maximum width of the emission between the lower and upper frequencies that measure 26 dB below the maximum level of the in-band

emission.

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types, and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: Informative

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 16:00:57

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 16:04:26

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 15:57:31

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 23.APR.2012 11:19:40

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 23.APR.2012 11:24:05

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.44 MHz

Date: 23.APR.2012 11:17:06

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 16:11:32

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 16:08:07

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

 $RBW = 1-5\% \text{ of EBW}; \qquad VBW \geq 3 \text{ x RBW}$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 16:14:49

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.49 MHz

Date: 25.APR.2012 15:32:31

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.39 MHz

Date: 25.APR.2012 15:37:49

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 15:26:48

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.539 MHz

Date: 23.APR.2012 11:09:28

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 23.APR.2012 11:11:14

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A - Measurement Data

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.489 MHz

Date: 23.APR.2012 11:05:09

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 15:46:07

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

 $RBW = 1-5\% \text{ of EBW}; \qquad VBW \ge 3 \text{ x RBW}$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB Emission Bandwidth = 19.44 MHz

Date: 25.APR.2012 15:42:03

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Emission Bandwidth – 26 dB bandwidth – conducted
Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; Trace mode = max hold

Sweep = auto couple

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB Emission Bandwidth = 19.54 MHz

Date: 25.APR.2012 15:50:35

Company: Cambium Networks Model Tested: C054045C004A Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A2.0 Emission Bandwidth - 6 dB bandwidth - conducted

Rule Section: Section 15.247(a)(2)

RSS-210 A8.2(a)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – Guidance for Performing

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.1.1

Description: RBW = 1-5% of EBW

 $VBW \ge 3 \times RBW$ Detector = Peak

Trace mode = max hold Sweep = auto couple

Measure the maximum width of the emission between the lower and upper

frequencies that measure 6 dB below the maximum level of the in-band emission.

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types, and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: 6 dB bandwidth shall be at least 500 kHz

Results: Passed

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.735 MHz

Date: 25.APR.2012 16:02:24

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.69 MHz

Date: 25.APR.2012 16:05:35

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.69 MHz

Date: 25.APR.2012 15:58:31

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.735 MHz

Date: 23.APR.2012 11:20:27

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.74 MHz

Date: 23.APR.2012 11:23:25

Test Date: 04-23-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.786 MHz

Date: 23.APR.2012 11:16:04

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.735 MHz

Date: 25.APR.2012 16:12:44

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.69 MHz

Date: 25.APR.2012 16:09:07

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.74 MHz

Date: 25.APR.2012 16:15:55

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$ Trace mode = max hold

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.84 MHz

Date: 25.APR.2012 15:33:38

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.685 MHz

Date: 25.APR.2012 15:39:18

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.8 MHz

Date: 25.APR.2012 15:28:27

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.735 MHz

Date: 23.APR.2012 11:07:43

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.685 MHz

Date: 23.APR.2012 11:12:18

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.8 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.8 MHz

Date: 23.APR.2012 11:06:19

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$ Trace mode = max hold

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

6 dB Bandwidth = 17.64 MHz

Date: 25.APR.2012 15:47:22

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

6 dB Bandwidth = 17.74 MHz

Date: 25.APR.2012 15:42:57

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Emission Bandwidth – 6 dB bandwidth – conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.1.1

Operator: Craig B

RBW = 1-5% of EBW; $VBW \ge 3 \times RBW$ Detector = Peak; $VBW \ge 3 \times RBW$

Sweep = auto couple

Limit: [15.247(a)(2)]: 6 dB bandwidth shall be at least 500 kHz

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

6 dB Bandwidth = 17.74 MHz

Date: 25.APR.2012 15:51:34

Company: Cambium Networks Model Tested: C054045C004A

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A3.0 Fundamental Emission Output Power - Conducted

Rule Section: Section 15.247(b)(3)

RSS-210 A8.4(4) – allowing Average Measurements & RSS-210 A8.4(5) – Point-to-Point (unlimited EIRP)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – *Guidance for Performing*

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Description: Span = 5-30% greater than the EBW

RBW = 1 MHz;

Detector = power average (RMS)

 $VBW \ge 3 MHz$

Number of measurement points in sweep $\geq 2 \text{ x (span/RBW)}$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol

period)

Trace mode: single sweep

Use analyzer band power function with band limits set to EBW band edges.

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types, and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: 1 Watt (30 dBm)

Results: Passed

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.13 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.13 dBm = **130 mW**

Date: 24.APR.2012 10:05:49

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.08 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.08 dBm = **128 mW**

Date: 24.APR.2012 10:04:09

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.14 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.14 dBm = **130 mW**

Date: 24.APR.2012 10:07:26

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.11 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.11 dBm = **163 mW**

Date: 24.APR.2012 09:59:36

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); $VBW \ge 3 MHz$ Number of measurement points in sweep $\ge 2 x$ (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.02 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.02 dBm = **159 mW**

Date: 24.APR.2012 10:02:19

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); $VBW \ge 3 MHz$ Number of measurement points in sweep $\ge 2 x$ (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.12 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.12 dBm = **163 mW**

Date: 24.APR.2012 09:57:09

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); $VBW \ge 3 \text{ MHz}$ Number of measurement points in sweep $\ge 2 \times (\text{span/RBW})$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.93 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.93 dBm = **196 mW**

Date: 24.APR.2012 09:41:48

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.93 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.93 dBm = **196 mW**

Date: 24.APR.2012 09:39:26

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.89 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.89 dBm = **195 mW**

Date: 24.APR.2012 09:44:13

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.539 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.28 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.28 dBm = **134 mW**

Date: 24.APR.2012 09:00:21

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.26 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.26 dBm = **134 mW**

Date: 24.APR.2012 09:03:23

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.489 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.40 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.40 dBm = **138 mW**

Date: 24.APR.2012 08:56:20

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.539 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.16 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.16 dBm = **164 mW**

Date: 24.APR.2012 09:10:04

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.09 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.09 dBm = **162 mW**

Date: 24.APR.2012 09:07:08

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.489 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 18.18 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 22.18 dBm = **165 mW**

Date: 24.APR.2012 09:12:44

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

26 dB EBW: 19.539 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.50 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.50 dBm = **141 mW**

Date: 24.APR.2012 09:17:35

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

26 dB EBW: 19.44 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.47 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.47 dBm = **140 mW**

Date: 24.APR.2012 09:19:45

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.2.2.1 – AVG1 (power averaging over the EBW with slow sweep speed)

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 1 MHz Detector = power average (RMS); VBW \geq 3 MHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Use band power function with band limits set to EBW band edges.

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

26 dB EBW: 19.489 MHz

Limit: [15.247(b)(3)]: 1 Watt (30 dBm)

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 17.52 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 21.52 dBm = **142 mW**

Date: 24.APR.2012 09:15:16

Company: Cambium Networks Model Tested: C054045C004A

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A4.0 Maximum Power Spectral Density – Conducted

Rule Section: Section 15.247(e)

RSS-210 A8.2(b)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – *Guidance for Performing*

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.3.2 – AVGPSD (Average output power procedure was used to measure

the fundamental emission power)

Description: Span = 5-30% greater than the EBW

RBW = 100 kHzVBW > 300 kHz

Detector = power average (RMS)

Number of measurement points in sweep $\geq 2 \text{ x (span/RBW)}$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol

period)

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by

reducing the measured power by 15.2 dB (bandwidth correction factor = $10\log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types,

and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time

interval of continuous transmission.

Results: Passed

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.92 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.080 dBm - 15.2 dB = -15.12 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.75 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.250 dBm - 15.2 dB = -14.95 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.92 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.080 dBm - 15.2 dB = -15.12 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

24.APR.2012 10:41:41

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.99 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.01 dBm - 15.2 dB = -14.19 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.79 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.21 dBm - 15.2 dB = -13.99 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.11 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.890 dBm - 15.2 dB = -14.31 dBm

Date: 24.APR.2012 10:44:29

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.20 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.80 dBm - 15.2 dB = -13.40 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.19 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.81 dBm - 15.2 dB = -13.39 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

24.APR.2012 10:46:50

Date:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.40 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.60 dBm - 15.2 dB = -13.60 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -4.15 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = -0.150 dBm - 15.2 dB = -15.35 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.86 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.140 dBm - 15.2 dB = -15.06 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); $VBW \ge 300 \text{ kHz}$ Number of measurement points in sweep $\ge 2 \times (\text{span/RBW})$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -4.08 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = -0.080 dBm - 15.2 dB = -15.28 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.94 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.06 dBm - 15.2 dB = -14.14 dBm

Date: 24.APR.2012 11:02:46

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.06 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.940 dBm - 15.2 dB = -14.26 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); $VBW \ge 300 \text{ kHz}$ Number of measurement points in sweep $\ge 2 \times (\text{span/RBW})$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -2.88 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 1.12 dBm - 15.2 dB = -14.08 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.41 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.590 dBm - 15.2 dB = -14.61 dBm

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); VBW \geq 300 kHz Number of measurement points in sweep \geq 2 x (span/RBW)

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.05 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.950 dBm - 15.2 dB = -14.25 dBm

Date: 24.APR.2012 10:56:20

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: AVERAGE Maximum Power Spectral Density – Conducted

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.3.2 – AVGPSD

Operator: Craig B

Span = 5-30% greater than the EBW; RBW = 100 kHz Detector = power average (RMS); $VBW \ge 300 \text{ kHz}$ Number of measurement points in sweep $\ge 2 \times (\text{span/RBW})$

Sweep time: $\geq 10 \text{ x}$ (number of measurement points) x (transmission symbol period)

 $= 10 \times 500 \times 56 \mu s = 0.28 \text{ sec}$

Trace mode: single sweep

Set marker to maximum level within the fundamental EBW.

Scale the observed power level to an equivalent level in 3 kHz by reducing the measured power by 15.2 dB (bandwidth correction factor = $10 \log (3 \text{ kHz} / 100 \text{ kHz} = -15.2 \text{ dB})$

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(e)]: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Maximum PSD = -3.49 dBm + 1 dB for Cambium Networks connectorized cable + 3 dB (MIMO Cross-Pol) = 0.510 dBm - 15.2 dB = -14.69 dBm

Date: 24.APR.2012 10:59:37

Company: Cambium Networks Model Tested: C054045C004A

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A5.0 Maximum Unwanted Emission Levels – Conducted

Rule Section: Section 15.247(d)

RSS-210 A8.5

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – *Guidance for Performing*

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.4.1.2 – Unwanted Emissions

Description: RBW = 100 kHz

VBW > 300 kHz

Span = spectrum to be examined – (Unwanted Emissions)

Detector = peak Sweep = auto couple Trace mode = max hold

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types, and at the legest middle, and highest channels of apareties. ELIT was set to

and at the lowest, middle, and highest channels of operation. EUT was set to transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: 30 dB below maximum in-band average PSD level (maximum level in any 100

kHz band). Average output power procedure was used to measure the

fundamental emission power

Results: Passed

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:25:16

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.98 dBm – 30 dB = -24.02 dBm

Date: 25.APR.2012 11:09:16

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 5.98 dBm – 30 dB = -24.02 dBm

Date: 25.APR.2012 11:04:36

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.98 dBm – 30 dB = -24.02 dBm

Date: 25.APR.2012 11:06:00

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.98 dBm – 30 dB = -24.02 dBm

Date: 25.APR.2012 11:07:33

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.98 dBm – 30 dB = -24.02 dBm

Date: 25.APR.2012 11:10:42

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 25.APR.2012 11:39:36

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 5.800 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.62 dBm – 30 dB = -22.38 dBm

Date: 25.APR.2012 11:46:41

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 7.62 dBm – 30 dB = -22.38 dBm

Date: 25.APR.2012 11:41:55

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 5.800 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.62 dBm – 30 dB = -22.38 dBm

Date: 25.APR.2012 11:44:00

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.62 dBm – 30 dB = -22.38 dBm

Date: 25.APR.2012 11:45:10

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 7.62 dBm – 30 dB = -22.38 dBm

Date: 25.APR.2012 11:48:53

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 6.84 dBm – 30 dB = -23.16 dBm

Date: 25.APR.2012 12:56:11

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

25.APR.2012 12:51:09

Date:

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 5.840 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 6.84 dBm - 30 dB = -23.16 dBmMarker 2 [T3] RBW 100 kHz RF Att 20 dB 300 kHz Ref Lvl -47.94 dBm VBW 10 dBm 6.68136273 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -47.94 dBr 6.68136273 GHz **▽**1 [T3] dBn -27 5.85170341 GHz -10 -20IN1 -D1 -23.16 dBm -30 3VIE ЗМА -40 TDF -50 -70 -80 -90 900 MHz/ Start 1 GHz Stop 10 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 6.84 dBm – 30 dB = -23.16 dBm

Date: 25.APR.2012 12:53:02

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 - 26 GHz Limit = 6.84 dBm - 30 dB = -23.16 dBm

Date: 25.APR.2012 12:54:31

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 5.840 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 - 40 GHz Limit = 6.84 dBm - 30 dB = -23.16 dBm Marker 1 [T3] RBW 100 kHz RF At-

Date: 25.APR.2012 12:58:13

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 11:38:37

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.46 dBm – 30 dB = -24.54 dBm

Date: 25.APR.2012 11:18:47

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 5.46 dBm – 30 dB = -24.54 dBm

Date: 25.APR.2012 11:13:45

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.46 dBm – 30 dB = -24.54 dBm

Date: 25.APR.2012 11:15:21

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.46 dBm – 30 dB = -24.54 dBm

Date: 25.APR.2012 11:16:47

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.46 dBm – 30 dB = -24.54 dBm

Date: 25.APR.2012 11:20:31

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.61 dBm – 30 dB = -22.39 dBm

Date: 25.APR.2012 11:31:56

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

 $VBW \ge 300 \text{ kHz}$ RBW = 100 kHz; Span = spectrum to be examined;Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Channel A: Middle Channel Frequency: 5.800 GHz Output port: Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 7.61 dBm - 30 dB = -22.39 dBmMarker 2 [T3] 100 kHz RBW RF Att 20 dB 300 kHz Ref Lvl -47.66 dBm VBW 10 dBm 6.96993988 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -47.66 dBn 6.96993988 GHz **▽**1 [T3] .21 dBm 5.79759<mark>519 GH</mark>z -10 -20IN1 -30 3VIE ЗМА -40 TOF -50 -70 -80 -90 900 MHz/

Stop 10 GHz

25.APR.2012 11:26:54 Date:

Start 1 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.61 dBm – 30 dB = -22.39 dBm

Date: 25.APR.2012 11:28:35

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.61 dBm – 30 dB = -22.39 dBm

Date: 25.APR.2012 11:30:01

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 7.61 dBm – 30 dB = -22.39 dBm

Date: 25.APR.2012 11:34:00

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 6.81 dBm – 30 dB = -23.19 dBm

Date: 25.APR.2012 13:05:40

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 6.81 dBm – 30 dB = -23.19 dBm

Date: 25.APR.2012 13:01:23

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 6.81 dBm – 30 dB = -23.19 dBm

Date: 25.APR.2012 13:02:54

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 6.81 dBm – 30 dB = -23.19 dBm

Date: 25.APR.2012 13:04:11

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 - 40 GHz Limit = 6.81 dBm - 30 dB = -23.19 dBm Marker 1 [T3] RBW 100 kHz

Date: 25.APR.2012 13:07:24

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.55 dBm – 30 dB = -24.45 dBm

Date: 25.APR.2012 10:59:41

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Frequency Range: 1 – 10 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Limit = 5.55 dBm - 30 dB = -24.45 dBmMarker 2 [T3] 100 kHz RBW RF Att 20 dB 300 kHz Ref Lvl -48.44 dBm VBW 10 dBm 6.98797595 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -48.44 dBr 6.98797595 GHz **▽**1 [T3] 6.85 dBm 5.72545<mark>090 GH</mark>z -10 -20 IN1 -D1 -24.45 dBm

Date: 25.APR.2012 10:54:52

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.55 dBm – 30 dB = -24.45 dBm

Date: 25.APR.2012 10:56:22

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.55 dBm – 30 dB = -24.45 dBm

Date: 25.APR.2012 10:57:55

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.55 dBm - 30 dB = -24.45 dBmMarker 1 [T3] 10 dB 100 kHz RBW RF Att 300 kHz Ref Lvl -38.59 dBm VBW 0 dBm 39.46693387 GHz SWT 3.5 s Unit dBm

Date: 25.APR.2012 11:01:35

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 25.APR.2012 11:51:04

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.55 dBm – 30 dB = -22.45 dBm

Date: 25.APR.2012 11:59:02

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

25.APR.2012 11:54:14

Date:

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 7.55 dBm - 30 dB = -22.45 dBmMarker 2 [T3] 100 kHz RBW RF Att 20 dB 300 kHz Ref Lvl -47.33 dBm VBW 10 dBm 6.98797595 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -47.33 dBr 6.98797595 GHz **▽**1 [T3] .41 dBm 5.79759<mark>519 GH</mark>z -10 -20IN1 -30 3VIE ЗМА -40 TDF -50 -70 -80 -90 900 MHz/ Start 1 GHz Stop 10 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.55 dBm – 30 dB = -22.45 dBm

Date: 25.APR.2012 11:55:43

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.55 dBm – 30 dB = -22.45 dBm

Date: 25.APR.2012 11:57:28

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 - 40 GHz Limit = 7.55 dBm - 30 dB = -22.45 dBm Marker 1 [T3] RBW 100 kHz RF Att 10 dB Ref Lvl -38.17 dBm VBW 300 kHz

Date: 25.APR.2012 12:00:52

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 6.99 dBm – 30 dB = -23.01 dBm

Date: 25.APR.2012 12:08:54

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

25.APR.2012 12:04:06

Date:

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 6.99 dBm - 30 dB = -23.01 dBmMarker 2 [T3] RBW 100 kHz RF Att 20 dB 300 kHz Ref Lvl -48.50 dBm VBW 10 dBm 6.96993988 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -48.50 dBr 6.96993988 GHz **▽**1 [T3] .26 dBm 5.83366733 GHz -10 -20IN1 -D1 -23.01 dBm -30 3VIE ЗМА -40 TDF -50 -70 -80 -90 900 MHz/ Start 1 GHz Stop 10 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 6.99 dBm – 30 dB = -23.01 dBm

Date: 25.APR.2012 12:05:48

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 - 26 GHz Limit = 6.99 dBm - 30 dB = -23.01 dBm

Date: 25.APR.2012 12:07:21

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 - 40 GHz Limit = 6.99 dBm - 30 dB = -23.01 dBm Marker 1 [T3] RBW 100 kHz RF Att 10 dB

Date: 25.APR.2012 12:10:18

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.41 dBm – 30 dB = -24.59 dBm

Date: 25.APR.2012 09:25:37

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 - 10 GHz Limit = 5.41 dBm - 30 dB = -24.59 dBm

Date: 25.APR.2012 09:20:06

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.41 dBm – 30 dB = -24.59 dBm

Date: 25.APR.2012 09:21:43

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.41 dBm – 30 dB = -24.59 dBm

Date: 25.APR.2012 09:23:29

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 - 40 GHz Limit = 5.41 dBm - 30 dB = -24.59 dBm Marker 1 [T3] RBW 100 kHz RF Att

Date: 25.APR.2012 09:27:07

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 5.800 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.70 dBm – 30 dB = -22.30 dBm

Date: 25.APR.2012 09:58:31

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz

Date: 25.APR.2012 09:54:17

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.70 dBm – 30 dB = -22.30 dBm

Date: 25.APR.2012 09:55:40

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.70 dBm – 30 dB = -22.30 dBm

Date: 25.APR.2012 09:57:00

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 5.800 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 7.70 dBm – 30 dB = -22.30 dBm

Date: 25.APR.2012 10:00:19

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:59:09

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.76 dBm – 30 dB = -24.24 dBm

Date: 25.APR.2012 10:28:58

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 5.840 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 - 10 GHz Limit = 5.76 dBm - 30 dB = -24.24 dBm

Date: 25.APR.2012 10:24:21

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.76 dBm – 30 dB = -24.24 dBm

Date: 25.APR.2012 10:25:40

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.76 dBm – 30 dB = -24.24 dBm

Date: 25.APR.2012 10:27:01

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.76 dBm - 30 dB = -24.24 dBmMarker 1 [T3] 10 dB 100 kHz RBW RF Att 300 kHz Ref Lvl -38.60 dBm VBW 0 dBm 39.43887776 GHz SWT 3.5 s Unit dBm

Date: 25.APR.2012 10:30:33

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:07:27

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.39 dBm – 30 dB = -24.61 dBm

Date: 25.APR.2012 09:34:52

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 5.39 dBm – 30 dB = -24.61 dBm

Date: 25.APR.2012 09:30:12

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.39 dBm – 30 dB = -24.61 dBm

Date: 25.APR.2012 09:31:48

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.39 dBm – 30 dB = -24.61 dBm

Date: 25.APR.2012 09:33:11

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 25.APR.2012 09:36:20

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.74 dBm – 30 dB = -22.26 dBm

Date: 25.APR.2012 09:46:53

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz

Date: 25.APR.2012 09:41:36

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.74 dBm – 30 dB = -22.26 dBm

Date: 25.APR.2012 09:43:28

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.74 dBm – 30 dB = -22.26 dBm

Date: 25.APR.2012 09:45:11

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 7.74 dBm – 30 dB = -22.26 dBm

Date: 25.APR.2012 09:48:34

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:03:17

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.54 dBm – 30 dB = -24.46 dBm

Date: 25.APR.2012 10:38:29

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 5.54 dBm – 30 dB = -24.46 dBm

Date: 25.APR.2012 10:33:25

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.54 dBm – 30 dB = -24.46 dBm

Date: 25.APR.2012 10:35:10

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.54 dBm – 30 dB = -24.46 dBm

Date: 25.APR.2012 10:36:44

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.54 dBm – 30 dB = -24.46 dBm

Date: 25.APR.2012 10:40:10

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 5.37 dBm – 30 dB = -24.63 dBm

Date: 25.APR.2012 09:15:28

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 5.37 dBm – 30 dB = -24.63 dBm

Date: 25.APR.2012 09:10:54

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 5.37 dBm – 30 dB = -24.63 dBm

Date: 25.APR.2012 09:12:22

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 5.37 dBm – 30 dB = -24.63 dBm

Date: 25.APR.2012 09:13:52

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 5.37 dBm – 30 dB = -24.63 dBm

Date: 25.APR.2012 09:17:00

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 25.APR.2012 10:02:49

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 7.68 dBm – 30 dB = -22.32 dBm

Date: 25.APR.2012 10:10:31

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Frequency Range: 1 – 10 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Limit = 7.68 dBm - 30 dB = -22.32 dBmMarker 2 [T3] 100 kHz RBW RF Att 20 dB 300 kHz Ref Lvl -48.45 dBm VBW 10 dBm 6.75350701 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -48.45 dBr 6.75350701 GHz **▽**1 [T3] 6.99 dBm 5.79759<mark>519 GH</mark>z -10 IN1 -22.32 dBm -30 3VIE ЗМА -40 TDF -50 -70 -80

900 MHz/

Stop 10 GHz

Date: 25.APR.2012 10:05:38

Start 1 GHz

-90

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 7.68 dBm – 30 dB = -22.32 dBm

Date: 25.APR.2012 10:07:32

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 – 26 GHz Limit = 7.68 dBm – 30 dB = -22.32 dBm

Date: 25.APR.2012 10:09:09

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 7.68 dBm - 30 dB = -22.32 dBmMarker 1 [T3] 10 dB 100 kHz RBW RF Att 300 kHz Ref Lvl -38.46 dBm VBW 0 dBm 39.80360721 GHz SWT 3.5 s Unit dBm

Date: 25.APR.2012 10:12:24

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:55:26

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 30 – 1000 MHz Limit = 6.06 dBm – 30 dB = -23.94 dBm

Date: 25.APR.2012 10:19:43

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 1 – 10 GHz Limit = 6.06 dBm - 30 dB = -23.94 dBmMarker 2 [T3] 100 kHz RBW RF Att 20 dB 300 kHz Ref Lvl -48.20 dBm VBW 10 dBm 6.69939880 GHz SWT 2.25 s Unit dBm**▼**2 [T3] -48.20 dBr

Date: 25.APR.2012 10:15:08

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 10 – 18 GHz Limit = 6.06 dBm – 30 dB = -23.94 dBm

Date: 25.APR.2012 10:16:35

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 18 - 26 GHz Limit = 6.06 dBm - 30 dB = -23.94 dBm

Date: 25.APR.2012 10:18:07

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Maximum Unwanted Emission Levels – Conducted Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Frequency Range: 26 – 40 GHz Limit = 6.06 dBm – 30 dB = -23.94 dBm

Date: 25.APR.2012 10:21:19

Company: Cambium Networks Model Tested: C054045C004A

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A6.0 Maximum Unwanted Emission Levels into Restricted Frequency Bands – Radiated

Rule Section: Section 15.247(d)

RSS-210 A8.5 RSS-Gen 7.2.2

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – Guidance for Performing

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.4.2 – Unwanted Emissions into Restricted Frequency Bands

ANSI C63.10:2009 - Sections 6.5 and 6.6

Description: This test applies to harmonics/spurs that fall in the restricted bands listed in

Section 15.205. Canada: RSS-Gen 7.2.2 Table 3.

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types,

and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: FCC Part 15.209, Canada: RSS-Gen 7.2.5 Table 5

Results: Passed

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 10 and 20 MHz channel bandwidth; Low, Mid, and High channels; with patch, cassegrain, and dish

Date: 04-30-2012

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4279_F1H_Final"

5/1/2012	8:36	AM									
Freque	ncy	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dBµV/m	dВ	dBµV/m	dBμV/m	dВ	m	deg		
560.010		42.23	18.50	-19.7	41.1	46.0	4.9	1.50	125	QUASI-PEAK	None
400.010	000	44.08	14.50	-20.7	37.9	46.0	8.1	1.00	225	QUASI-PEAK	None
720.010	000	33.41	21.80	-18.9	36.3	46.0	9.7	1.10	135	QUASI-PEAK	None
240.010	000	45.21	11.00	-21.5	34.7	46.0	11.3	1.00	225	QUASI-PEAK	None
480.010	000	37.00	17.60	-20.4	34.2	46.0	11.8	1.30	315	QUASI-PEAK	None
640.010	000	34.19	19.30	-19.3	34.2	46.0	11.8	1.30	135	QUASI-PEAK	None
800.020	000	30.66	21.00	-17.7	34.0	46.0	12.0	1.50	315	QUASI-PEAK	None
160.010	000	37.07	13.50	-22.0	28.5	43.5	15.0	1.30	260	QUASI-PEAK	None
840.010	000	26.48	21.50	-17.1	30.9	46.0	15.1	1.30	270	QUASI-PEAK	None
200.000	000	30.98	17.40	-21.6	26.8	43.5	16.7	1.60	90	QUASI-PEAK	None
280.010	000	37.27	13.40	-21.5	29.2	46.0	16.8	1.00	250	QUASI-PEAK	None
760.010	000	26.29	20.40	-17.9	28.8	46.0	17.2	1.50	315	QUASI-PEAK	None
525.010	000	31.19	17.20	-19.8	28.6	46.0	17.4	1.50	135	QUASI-PEAK	None
680.010	000	26.18	21.40	-19.0	28.6	46.0	17.4	1.20	225	QUASI-PEAK	None
425.010	000	30.83	15.70	-20.4	26.1	46.0	19.9	1.00	125	QUASI-PEAK	None
225.010	000	36.21	10.60	-21.6	25.2	46.0	20.8	1.30	75	QUASI-PEAK	None
80.005	000	35.74	6.20	-22.8	19.2	40.0	20.8	2.50	125	QUASI-PEAK	None
120.015	000	30.14	13.00	-22.2	21.0	43.5	22.5	2.60	270	QUASI-PEAK	None
1000.000	000	23.38	24.00	-16.2	31.1	54.0	22.9	1.20	210	QUASI-PEAK	None

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 10 and 20 MHz channel bandwidth; Low, Mid, and High channels; with patch, cassegrain, and dish

Date: 04-30-2012

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4279_F1V_Final"

5/1/2012	8:38	BAM									
Freque	ncy	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dΒμV/m	dВ	dBµV/m	dBµV/m	dВ	m	deg		
560.010		44.33	18.50	-19.7	43.2	46.0	2.8	1.00	135	QUASI-PEAK	None
720.010		39.56	21.80	-18.9	42.5	46.0	3.5	1.00	0	QUASI-PEAK	None
800.020	000	38.01	21.00	-17.7	41.3	46.0	4.7	1.00	0	QUASI-PEAK	None
640.020	000	37.71	19.30	-19.3	37.7	46.0	8.3	1.00	225	QUASI-PEAK	None
400.010	000	43.59	14.50	-20.7	37.4	46.0	8.6	1.40	270	QUASI-PEAK	None
840.010	000	32.53	21.50	-17.1	36.9	46.0	9.1	1.50	0	QUASI-PEAK	None
56.300	000	42.96	10.48	-23.0	30.5	40.0	9.5	1.00	10	QUASI-PEAK	None
480.010	000	38.54	17.60	-20.4	35.8	46.0	10.2	1.00	125	QUASI-PEAK	None
160.015	000	40.03	13.50	-22.0	31.5	43.5	12.0	1.00	175	QUASI-PEAK	None
240.010	000	44.25	11.00	-21.5	33.8	46.0	12.2	1.00	90	QUASI-PEAK	None
475.010	000	34.24	17.60	-20.4	31.5	46.0	14.5	1.00	135	QUASI-PEAK	None
520.010	000	31.62	17.80	-19.7	29.7	46.0	16.3	1.00	225	QUASI-PEAK	None
525.020	000	31.42	17.20	-19.8	28.8	46.0	17.2	1.00	135	QUASI-PEAK	None
80.015	000	38.99	6.20	-22.8	22.4	40.0	17.6	1.00	350	QUASI-PEAK	None
120.015	000	34.86	13.00	-22.2	25.7	43.5	17.8	1.00	350	QUASI-PEAK	None
200.000	000	29.78	17.40	-21.6	25.5	43.5	18.0	1.00	0	QUASI-PEAK	None
425.010	000	32.15	15.70	-20.4	27.4	46.0	18.6	1.30	100	QUASI-PEAK	None
1000.000	000	26.65	24.00	-16.2	34.4	54.0	19.6	1.00	160	OUASI-PEAK	None
960.020	000	26.92	23.00	-16.7	33.2	54.0	20.8	1.00	180	OUASI-PEAK	None
325.010	000	30.21	14.20	-21.1	23.3	46.0	22.7	1.00	90	~ OUASI-PEAK	None
375.020	000	29.06	14.70	-20.6	23.2	46.0	22.8	1.30	110	QUASI-PEAK	None

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with Cassegrain

20 Mrz Chainler Dandwidch; Low, Mid, and High Chainlers; With Cassegrat

Date: 04-26-2012

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4265_sh_Final"

4/27/2012	11:12AM									
Frequenc	cy Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
ME	Hz dBμV	dBµV/m	dВ	dΒμV/m	dΒμV/m	dВ	m	deg		
11469.97000	35.50	40.66	-34.3	41.8	54.0	12.2	1.20	350	AVERAGE	Low ch; 16QAM
11469.98000	35.57	40.66	-34.3	41.9	54.0	12.1	1.20	350	AVERAGE	Low ch; 64QAM
11470.00000	35.65	40.66	-34.3	42.0	54.0	12.0	1.20	350	AVERAGE	Low ch; QPSK
11599.96000	35.42	40.64	-34.1	42.0	54.0	12.0	1.20	350	AVERAGE	Mid ch; 64QAM
11600.02000	35.26	40.64	-34.1	41.8	54.0	12.2	1.20	350	AVERAGE	Mid ch; QPSK
11600.02000	35.26	40.64	-34.1	41.8	54.0	12.2	1.20	350	AVERAGE	Mid ch; 16QAM
11679.97000	36.09	40.51	-34.5	42.1	54.0	11.9	1.20	350	AVERAGE	High ch; 64QAM
11679.98000	36.09	40.51	-34.5	42.1	54.0	11.9	1.20	350	AVERAGE	High ch; QPSK
11679.99000	36.02	40.51	-34.5	42.0	54.0	12.0	1.20	350	AVERAGE	High ch; 16QAM
11469.97000	00 47.95	40.66	-34.3	54.3	74.0	19.7	1.20	350	MAX PEAK	Low ch; 16QAM
11469.98000	00 47.95	40.66	-34.3	54.3	74.0	19.7	1.20	350	MAX PEAK	Low ch; 64QAM
11470.00000	00 47.67	40.66	-34.3	54.0	74.0	20.0	1.20	350	MAX PEAK	Low ch; QPSK
11599.96000	00 47.95	40.64	-34.1	54.5	74.0	19.5	1.20	350	MAX PEAK	Mid ch; 64QAM
11600.02000	00 47.67	40.64	-34.1	54.2	74.0	19.8	1.20	350	MAX PEAK	Mid ch; QPSK
11600.02000	00 47.67	40.64	-34.1	54.2	74.0	19.8	1.20	350	MAX PEAK	Mid ch; 16QAM
11679.97000	00 48.21	40.51	-34.5	54.2	74.0	19.8	1.20	350	MAX PEAK	High ch; 64QAM
11679.98000	00 48.62	40.51	-34.5	54.6	74.0	19.4	1.20	350	MAX PEAK	High ch; QPSK
11679.99000	00 48.62	40.51	-34.5	54.6	74.0	19.4	1.20	350	MAX PEAK	High ch; 16QAM

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with Cassegrain

Date: 04-26-2012

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4265_sv_Final"

4/27/2012 11:	12AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dΒμV/m	dB	dBµV/m	dΒμV/m	dВ	m	deg		
11470.000000	36.02	40.66	-34.3	42.4	54.0	11.6	1.00	35	AVERAGE	Low ch; 64QAM
11470.000000	35.95	40.66	-34.3	42.3	54.0	11.7	1.00	35	AVERAGE	Low ch; QPSK
11470.010000	36.02	40.66	-34.3	42.4	54.0	11.6	1.00	35	AVERAGE	Low ch; 16QAM
11599.990000	35.72	40.64	-34.1	42.3	54.0	11.7	1.10	30	AVERAGE	Mid ch; QPSK
11600.010000	35.72	40.64	-34.1	42.3	54.0	11.7	1.10	30	AVERAGE	Mid ch; 64QAM
11600.030000	35.57	40.64	-34.1	42.1	54.0	11.9	1.10	30	AVERAGE	Mid ch; 16QAM
11679.970000	36.71	40.51	-34.5	42.7	54.0	11.3	1.20	30	AVERAGE	High ch; QPSK
11680.000000	36.71	40.51	-34.5	42.7	54.0	11.3	1.20	30	AVERAGE	High ch; 64QAM
11680.010000	36.65	40.51	-34.5	42.7	54.0	11.3	1.20	30	AVERAGE	High ch; 16QAM
11470.000000	48.21	40.66	-34.3	54.6	74.0	19.4	1.00	35	MAX PEAK	Low ch; QPSK
11470.000000	48.08	40.66	-34.3	54.4	74.0	19.6	1.00	35	MAX PEAK	Low ch; 64QAM
11470.010000	48.21	40.66	-34.3	54.6	74.0	19.4	1.00	35	MAX PEAK	Low ch; 16QAM
11599.990000	47.81	40.64	-34.1	54.3	74.0	19.7	1.10	30	MAX PEAK	Mid ch; QPSK
11600.010000	47.53	40.64	-34.1	54.1	74.0	19.9	1.10	30	MAX PEAK	Mid ch; 64QAM
11600.030000	47.39	40.64	-34.1	53.9	74.0	20.1	1.10	30	MAX PEAK	Mid ch; 16QAM
11679.970000	49.02	40.51	-34.5	55.0	74.0	19.0	1.20	30	MAX PEAK	High ch; QPSK
11680.000000	48.75	40.51	-34.5	54.8	74.0	19.2	1.20	30	MAX PEAK	High ch; 64QAM
11680.010000	49.02	40.51	-34.5	55.0	74.0	19.0	1.20	30	MAX PEAK	High ch; 16QAM

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with dish

Date: 04-27-2012

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4266_sh_Final"

4/27/2012 11:	13AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dΒμV/m	dВ	dBµV/m	dΒμV/m	dВ	m	deg		
11469.990000	36.37	40.66	-34.3	42.7	54.0	11.3	1.50	0	AVERAGE	Low ch; 16QAM
11469.990000	36.37	40.66	-34.3	42.7	54.0	11.3	1.50	0	AVERAGE	Low ch; 64QAM
11470.000000	36.30	40.66	-34.3	42.6	54.0	11.4	1.50	0	AVERAGE	Low ch; QPSK
11600.000000	36.91	40.64	-34.1	43.4	54.0	10.6	1.70	0	AVERAGE	Mid ch; 64QAM
11600.000000	36.91	40.64	-34.1	43.4	54.0	10.6	1.70	0	AVERAGE	Mid ch; QPSK
11600.010000	36.98	40.64	-34.1	43.5	54.0	10.5	1.70	0	AVERAGE	Mid ch; 16QAM
11679.990000	38.30	40.51	-34.5	44.3	54.0	9.7	1.60	0	AVERAGE	High ch; 64QAM
11679.990000	38.24	40.51	-34.5	44.3	54.0	9.7	1.60	0	AVERAGE	High ch; 16QAM
11679.990000	38.24	40.51	-34.5	44.3	54.0	9.7	1.60	0	AVERAGE	High ch; QPSK
11469.990000	48.86	40.66	-34.3	55.2	74.0	18.8	1.50	0	MAX PEAK	Low ch; 16QAM
11469.990000	47.92	40.66	-34.3	54.3	74.0	19.7	1.50	0	MAX PEAK	Low ch; 64QAM
11470.000000	47.79	40.66	-34.3	54.1	74.0	19.9	1.50	0	MAX PEAK	Low ch; QPSK
11600.000000	48.19	40.64	-34.1	54.7	74.0	19.3	1.70	0	MAX PEAK	Mid ch; QPSK
11600.000000	48.06	40.64	-34.1	54.6	74.0	19.4	1.70	0	MAX PEAK	Mid ch; 64QAM
11600.010000	48.06	40.64	-34.1	54.6	74.0	19.4	1.70	0	MAX PEAK	Mid ch; 16QAM
11679.990000	50.48	40.51	-34.5	56.5	74.0	17.5	1.60	0	MAX PEAK	High ch; 16QAM
11679.990000	50.35	40.51	-34.5	56.4	74.0	17.6	1.60	0	MAX PEAK	High ch; QPSK
11679.990000	49.97	40.51	-34.5	56.0	74.0	18.0	1.60	0	MAX PEAK	High ch; 64QAM

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with dish

Date: 04-27-2012

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4266_sv_Final"

4/27/2012 11:	13AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dΒμV/m	dВ	dBμV/m	dBμV/m	dВ	m	deg		
11469.990000	39.73	40.66	-34.3	46.1	54.0	7.9	1.80	0	AVERAGE	Low ch; QPSK
11469.990000	39.64	40.66	-34.3	46.0	54.0	8.0	1.80	0	AVERAGE	Low ch; 64QAM
11470.000000	39.54	40.66	-34.3	45.9	54.0	8.1	1.80	0	AVERAGE	Low ch; 16QAM
11599.970000	40.10	40.64	-34.1	46.6	54.0	7.4	1.80	0	AVERAGE	Mid ch; QPSK
11600.010000	40.19	40.64	-34.1	46.7	54.0	7.3	1.80	0	AVERAGE	Mid ch; 64QAM
11600.010000	40.06	40.64	-34.1	46.6	54.0	7.4	1.80	0	AVERAGE	Mid ch; 16QAM
11680.000000	42.77	40.51	-34.5	48.8	54.0	5.2	1.80	0	AVERAGE	High ch; 16QAM
11680.000000	42.73	40.51	-34.5	48.7	54.0	5.3	1.80	0	AVERAGE	High ch; 64QAM
11680.000000	42.67	40.51	-34.5	48.7	54.0	5.3	1.80	0	AVERAGE	High ch; QPSK
11469.990000	49.83	40.66	-34.3	56.2	74.0	17.8	1.80	0	MAX PEAK	Low ch; 64QAM
11469.990000	49.69	40.66	-34.3	56.0	74.0	18.0	1.80	0	MAX PEAK	Low ch; QPSK
11470.000000	49.41	40.66	-34.3	55.8	74.0	18.2	1.80	0	MAX PEAK	Low ch; 16QAM
11599.970000	49.41	40.64	-34.1	55.9	74.0	18.1	1.80	0	MAX PEAK	Mid ch; QPSK
11600.010000	49.69	40.64	-34.1	56.2	74.0	17.8	1.80	0	MAX PEAK	Mid ch; 16QAM
11600.010000	49.55	40.64	-34.1	56.1	74.0	17.9	1.80	0	MAX PEAK	Mid ch; 64QAM
11680.000000	51.77	40.51	-34.5	57.8	74.0	16.2	1.80	0	MAX PEAK	High ch; 64QAM
11680.000000	51.11	40.51	-34.5	57.1	74.0	16.9	1.80	0	MAX PEAK	High ch; 16QAM
11680.000000	50.98	40.51	-34.5	57.0	74.0	17.0	1.80	0	MAX PEAK	High ch; QPSK

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; patch antenna

Date: 04-26-2012

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4262_sh_Final"

4/27/2012 11:09AM											
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment	
		Factor	Loss	Level			Ant.	Angle	Detector		
MHz	dΒμV	dΒμV/m	dB	dBµV/m	dΒμV/m	dВ	m	deg			
11469.958000	34.35	40.66	-34.3	40.7	54.0	13.3	1.10	260	AVERAGE	Low ch; QPSK	
11469.998000	34.35	40.66	-34.3	40.7	54.0	13.3	1.10	260	AVERAGE	Low ch; 16QAM	
11470.018000	34.35	40.66	-34.3	40.7	54.0	13.3	1.10	260	AVERAGE	Low ch; 64QAM	
11600.000000	34.35	40.64	-34.1	40.9	54.0	13.1	1.10	260	AVERAGE	Mid ch; 16QAM	
11600.000000	34.26	40.64	-34.1	40.8	54.0	13.2	1.10	260	AVERAGE	Mid ch; 64QAM	
11600.070000	34.35	40.64	-34.1	40.9	54.0	13.1	1.10	260	AVERAGE	Mid ch; QPSK	
11680.050000	35.34	40.51	-34.5	41.4	54.0	12.6	1.10	270	AVERAGE	High ch; 16QAM	
11680.100000	35.34	40.51	-34.5	41.4	54.0	12.6	1.10	260	AVERAGE	High ch; 64QAM	
11680.100000	35.34	40.51	-34.5	41.4	54.0	12.6	1.10	270	AVERAGE	High ch; QPSK	
11469.958000	46.84	40.66	-34.3	53.2	74.0	20.8	1.10	260	MAX PEAK	Low ch; QPSK	
11469.998000	47.12	40.66	-34.3	53.5	74.0	20.5	1.10	260	MAX PEAK	Low ch; 16QAM	
11470.018000	46.69	40.66	-34.3	53.0	74.0	21.0	1.10	260	MAX PEAK	Low ch; 64QAM	
11600.000000	46.69	40.64	-34.1	53.2	74.0	20.8	1.10	260	MAX PEAK	Mid ch; 16QAM	
11600.000000	46.98	40.64	-34.1	53.5	74.0	20.5	1.10	260	MAX PEAK	Mid ch; 64QAM	
11600.070000	47.12	40.64	-34.1	53.7	74.0	20.3	1.10	260	MAX PEAK	Mid ch; QPSK	
11680.050000	48.21	40.51	-34.5	54.2	74.0	19.8	1.10	270	MAX PEAK	High ch; 16QAM	
11680.100000	48.21	40.51	-34.5	54.2	74.0	19.8	1.10	260	MAX PEAK	High ch; 64QAM	
11680.100000	48.35	40.51	-34.5	54.4	74.0	19.6	1.10	270	MAX PEAK	High ch; QPSK	

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 35% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; patch antenna

Date: 04-26-2012

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4262_sv_final"

4/27/2012	4/27/2012 11:09AM											
Frequen	cy Leve	l Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment		
		Factor	Loss	Level			Ant.	Angle	Detector			
M	Hz dBµ\	/ dBμV/m	dВ	dΒμV/m	dΒμV/m	dВ	m	deg				
11470.0400	00 34.52	40.66	-34.3	40.9	54.0	13.1	1.00	190	AVERAGE	Low ch; 16QAM		
11470.0500	00 34.52	40.66	-34.3	40.9	54.0	13.1	1.00	190	AVERAGE	Low ch; 64QAM		
11470.0600	00 34.69	40.66	-34.3	41.0	54.0	13.0	1.00	190	AVERAGE	Low ch; QPSK		
11600.0200	00 34.63	L 40.64	-34.1	41.1	54.0	12.9	1.20	225	AVERAGE	Mid ch; QPSK		
11600.0900	00 34.35	40.64	-34.1	40.9	54.0	13.1	1.20	225	AVERAGE	Mid ch; 16QAM		
11600.1200	00 34.63	L 40.64	-34.1	41.1	54.0	12.9	1.00	190	AVERAGE	Mid ch; 64QAM		
11680.0500	00 35.65	40.51	-34.5	41.7	54.0	12.3	1.00	170	AVERAGE	High ch; 16QAM		
11680.0600	00 35.80	40.51	-34.5	41.8	54.0	12.2	1.00	190	AVERAGE	High ch; QPSK		
11680.1100	00 35.8	7 40.51	-34.5	41.9	54.0	12.1	1.00	190	AVERAGE	High ch; 64QAM		
11470.0400	00 47.12	40.66	-34.3	53.5	74.0	20.5	1.00	190	MAX PEAK	Low ch; 16QAM		
11470.0500	00 46.98	40.66	-34.3	53.3	74.0	20.7	1.00	190	MAX PEAK	Low ch; 64QAM		
11470.0600	00 47.95	40.66	-34.3	54.3	74.0	19.7	1.00	190	MAX PEAK	Low ch; QPSK		
11600.0200	00 47.53	40.64	-34.1	54.1	74.0	19.9	1.20	225	MAX PEAK	Mid ch; QPSK		
11600.0900	00 46.98	3 40.64	-34.1	53.5	74.0	20.5	1.20	225	MAX PEAK	Mid ch; 16QAM		
11600.1200	00 47.25	40.64	-34.1	53.8	74.0	20.2	1.00	190	MAX PEAK	Mid ch; 64QAM		
11680.0500	00 47.95	40.51	-34.5	54.0	74.0	20.0	1.00	170	MAX PEAK	High ch; 16QAM		
11680.0600	00 47.9	40.51	-34.5	54.0	74.0	20.0	1.00	190	MAX PEAK	High ch; QPSK		
11680.1100	00 48.48	3 40.51	-34.5	54.5	74.0	19.5	1.00	190	MAX PEAK	High ch; 64QAM		

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with Cassegrain

20 Mrz Chainler Dandwidch; Low, Mid, and High Chainlers; With Cassegrat

Date: 04-27-2012

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4274_sh_Final"

4PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBμV/m	dB	${\tt dB}\mu {\tt V/m}$	${\tt dB}\mu {\tt V/m}$	dB	m	deg		
44.51	46.36	-40.6	50.3	63.5	13.3	1.20	10	AVERAGE	Low ch; 640AM
44.51	46.36	-40.6	50.3	63.5	13.3	1.20	10	AVERAGE	Low ch; QPSK
44.51	46.36	-40.6	50.3	63.5	13.3	1.20	10	AVERAGE	Low ch; 16QAM
57.25	46.36	-40.6	63.0	83.5	20.5	1.20	10	MAX PEAK	Low ch; QPSK
57.00	46.36	-40.6	62.8	83.5	20.8	1.20	10	MAX PEAK	Low ch; 64QAM
56.87	46.36	-40.6	62.6	83.5	20.9	1.20	10	MAX PEAK	Low ch; 16QAM
•	dBμV 44.51 44.51 44.51 57.25 57.00	Level Antenna Factor dBμV dBμV/m 44.51 46.36 44.51 46.36 44.51 46.36 57.25 46.36 57.00 46.36	Level Antenna Factor dBμV/m System Loss dBμV/m 44.51 46.36 -40.6 44.51 46.36 -40.6 44.51 46.36 -40.6 57.25 46.36 -40.6 57.00 46.36 -40.6	LevelAntenna Factor dBμVSystem Loss dBμV/mTotal Level dB dBμV/m44.5146.36 40.6-40.650.344.5146.36 40.6-40.650.344.5146.36 40.6-40.650.357.2546.36 57.00-40.663.057.0046.36-40.662.8	LevelAntenna Factor dBμVSystem Loss dBμV/mTotal Level dBμV/mLimit dBμV/m44.5146.36 -40.6-40.6 50.350.3 63.544.5146.36 46.36-40.6 -40.650.3 50.363.5 63.557.2546.36 46.36-40.6 -40.663.0 63.083.5 83.557.0046.36 46.36-40.6 62.862.883.5	Level dBμVAntenna Factor dBμV/mSystem Loss dB dB dBTotal dBμV/mLimit dBμV/mMargin dB44.5146.36 46.36-40.6 -40.650.3 50.363.5 63.513.3 13.344.5146.36 46.36-40.6 -40.650.3 50.363.5 63.513.3 13.357.2546.36 57.00-40.6 46.3663.0 -40.683.5 62.820.5 83.5	Level Antenna Factor dBμV/m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. Ant. dBμV/m 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 57.25 46.36 -40.6 63.0 83.5 20.5 1.20 57.00 46.36 -40.6 62.8 83.5 20.8 1.20	Level Antenna Factor dBμV System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 57.25 46.36 -40.6 63.0 83.5 20.5 1.20 10 57.00 46.36 -40.6 62.8 83.5 20.8 1.20 10	Level Antenna Factor dBμV/m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT Ant. Angle deg Detector deg 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 AVERAGE 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 AVERAGE 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 AVERAGE 44.51 46.36 -40.6 50.3 63.5 13.3 1.20 10 AVERAGE 57.25 46.36 -40.6 63.0 83.5 20.5 1.20 10 MAX PEAK 57.00 46.36 -40.6 62.8 83.5 20.8 1.20 10 MAX PEAK

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with Cassegrain

Date: 04-27-2012

TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4274_sv_Final"

4/27/2012 3:00	6PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	${\tt dB}\mu {\tt V/m}$	dB	m	deg		
22939.990000	46.05	46.36	-40.6	51.8	63.5	11.7	1.10	10	AVERAGE	Low ch; 160AM
										, ~
22939.990000	45.92	46.36	-40.6	51.7	63.5	11.9	1.10	10	AVERAGE	Low ch; 64QAM
22939.990000	45.66	46.36	-40.6	51.4	63.5	12.1	1.10	10	AVERAGE	Low ch; QPSK
22939.990000	58.27	46.36	-40.6	64.0	83.5	19.5	1.10	10	MAX PEAK	Low ch; QPSK
22939.990000	57.88	46.36	-40.6	63.7	83.5	19.9	1.10	10	MAX PEAK	Low ch; 16QAM
22939.990000	57.25	46.36	-40.6	63.0	83.5	20.5	1.10	10	MAX PEAK	Low ch; 64QAM

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with dish

Date: 04-27-2012

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4272_sh_Final"

5PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBµV/m	dB	${\tt dB}\mu {\tt V/m}$	dBμV/m	dB	m	deg		
47.56	46.36	-40.6	53.3	63.5	10.2	1.60	0	AVERAGE	Low ch; 640AM
47.52	46.36	-40.6	53.3	63.5	10.3	1.60	0	AVERAGE	Low ch; 16QAM
47.36	46.36	-40.6	53.1	63.5	10.4	1.60	0	AVERAGE	Low ch; QPSK
57.75	46.36	-40.6	63.5	83.5	20.0	1.60	0	MAX PEAK	Low ch; QPSK
57.75	46.36	-40.6	63.5	83.5	20.0	1.60	0	MAX PEAK	Low ch; 64QAM
57.75	46.36	-40.6	63.5	83.5	20.0	1.60	0	MAX PEAK	Low ch; 16QAM
	dBμV 47.56 47.52 47.36 57.75	Level Antenna Factor dBµV dBµV/m 47.56 46.36 47.52 46.36 47.36 46.36 57.75 46.36 57.75 46.36	Level Antenna Factor dBμV System Loss dBμV/m 47.56 46.36 -40.6 47.52 46.36 -40.6 47.36 46.36 -40.6 57.75 46.36 -40.6 57.75 46.36 -40.6 57.75 46.36 -40.6	Level Antenna System Total βμν Toss Level ΔΒμν/m ΔΒμν/m 47.56 46.36 -40.6 53.3 47.52 46.36 -40.6 53.3 47.36 46.36 -40.6 53.1 57.75 46.36 -40.6 63.5 57.75 46.36 -40.6 63.5	Level Antenna System Total Limit βμν Loss Level Level ΔΒμν/m ΔΒμν/m	Level Antenna Factor ABμV/m System Level Loss Level ABμV/m Level ABμV/m Level ABμV/m Margin ABμV/m 47.56 46.36 -40.6 53.3 63.5 10.2 47.52 46.36 -40.6 53.3 63.5 10.3 47.36 46.36 -40.6 53.1 63.5 10.4 57.75 46.36 -40.6 63.5 83.5 20.0 57.75 46.36 -40.6 63.5 83.5 20.0	Level Antenna System Total Limit Margin Height dBμV dBμV/m dBμV/m	Level Antenna Factor dBμV/m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 47.56 46.36 -40.6 53.3 63.5 10.2 1.60 0 47.52 46.36 -40.6 53.3 63.5 10.3 1.60 0 47.36 46.36 -40.6 53.1 63.5 10.4 1.60 0 57.75 46.36 -40.6 63.5 83.5 20.0 1.60 0 57.75 46.36 -40.6 63.5 83.5 20.0 1.60 0	Level Antenna System Total Limit Margin Height EuT Final dBμV dBμV/m dB dBμV/m dBμV/m dB μV/m dB μV/m

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; with dish

Date: 04-27-2012

TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4272_sv_final"

4/27/2012 2:03	3PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	${\tt dB}\mu {\tt V/m}$	${\tt dB}\mu {\tt V/m}$	dB	m	deg		
22939.990000	52.68	46.36	-40.6	58.5	63.5	5.1	1.60	0	AVERAGE	Low ch; OPSK
22940.000000	52.37	46.36	-40.6	58.1	63.5	5.4	1.60	0	AVERAGE	Low ch; 16QAM
22940.000000	52.03	46.36	-40.6	57.8	63.5	5.7	1.60	0	AVERAGE	Low ch; 64QAM
22940.000000	60.17	46.36	-40.6	65.9	83.5	17.6	1.60	0	MAX PEAK	Low ch; 16QAM
22939.990000	59.68	46.36	-40.6	65.4	83.5	18.1	1.60	0	MAX PEAK	Low ch; QPSK
22940.000000	59.43	46.36	-40.6	65.2	83.5	18.3	1.60	0	MAX PEAK	Low ch; 64QAM

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; patch antenna

Date: 04-27-2012

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4275_sh_Final"

4PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBµV/m	dB	${\tt dB}\mu {\tt V/m}$	dBμV/m	dB	m	deg		
44.86	46.36	-40.6	50.6	63.5	12.9	1.00	60	AVERAGE	Low ch; 640AM
44.83	46.36	-40.6	50.6	63.5	12.9	1.00	60	AVERAGE	Low ch; 16QAM
44.75	46.36	-40.6	50.5	63.5	13.0	1.00	60	AVERAGE	Low ch; QPSK
56.74	46.36	-40.6	62.5	83.5	21.0	1.00	60	MAX PEAK	Low ch; 64QAM
56.74	46.36	-40.6	62.5	83.5	21.0	1.00	60	MAX PEAK	Low ch; QPSK
56.48	46.36	-40.6	62.3	83.5	21.3	1.00	60	MAX PEAK	Low ch; 16QAM
	dBµV 44.86 44.83 44.75 56.74	Level Antenna Factor dBμV dBμV/m 44.86 46.36 44.83 46.36 44.75 46.36 56.74 46.36 56.74 46.36	Level Antenna Factor dBμV System Loss dBμV/m 44.86 46.36 -40.6 44.83 46.36 -40.6 44.75 46.36 -40.6 56.74 46.36 -40.6 56.74 46.36 -40.6 56.74 46.36 -40.6	Level Antenna System Total βμν Toss Level ΔΒμν/m ΔΒμν/m 44.86 46.36 -40.6 50.6 44.83 46.36 -40.6 50.6 44.75 46.36 -40.6 50.5 56.74 46.36 -40.6 62.5 56.74 46.36 -40.6 62.5	LevelAntenna FactorSystem LossTotal LevelLimitdBμVdBμV/mdB dBμV/mdBμV/m44.8646.36-40.650.663.544.8346.36-40.650.663.544.7546.36-40.650.563.556.7446.36-40.662.583.556.7446.36-40.662.583.5	Level Antenna Factor dBμV dBμV/m System Level dBμV/m Total dBμV/m Limit dBμV/m Margin dBμV/m 44.86 46.36 -40.6 50.6 63.5 12.9 44.83 46.36 -40.6 50.6 63.5 12.9 44.75 46.36 -40.6 50.5 63.5 13.0 56.74 46.36 -40.6 62.5 83.5 21.0 56.74 46.36 -40.6 62.5 83.5 21.0	Level Antenna System Total Limit Margin Height dBμV dBμV/m dBμV/m	Level Antenna Factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 44.86 46.36 -40.6 50.6 63.5 12.9 1.00 60 44.83 46.36 -40.6 50.6 63.5 12.9 1.00 60 44.75 46.36 -40.6 50.5 63.5 13.0 1.00 60 56.74 46.36 -40.6 62.5 83.5 21.0 1.00 60 56.74 46.36 -40.6 62.5 83.5 21.0 1.00 60	Level Antenna System Total Limit Margin Height EuT Final dBμV dBμV/m dBμV/m

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON Comment: 20 MHz channel bandwidth; Low, Mid, and High channels; patch antenna

Date: 04-27-2012

TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4275_sv_final"

1PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBμV/m	dB	${\tt dB}\mu {\tt V/m}$	${\tt dB}\mu {\tt V/m}$	dB	m	deg		
43.80	46.36	-40.6	49.6	63.5	14.0	1.00	160	AVERAGE	Low ch; 160AM
43.77	46.36	-40.6	49.5	63.5	14.0	1.00	160	AVERAGE	Low ch; 64QAM
43.74	46.36	-40.6	49.5	63.5	14.0	1.00	160	AVERAGE	Low ch; QPSK
57.00	46.36	-40.6	62.8	83.5	20.8	1.00	160	MAX PEAK	Low ch; 64QAM
56.22	46.36	-40.6	62.0	83.5	21.5	1.00	160	MAX PEAK	Low ch; 16QAM
56.09	46.36	-40.6	61.9	83.5	21.7	1.00	160	MAX PEAK	Low ch; QPSK
	Level dBμV 43.80 43.77 43.74 57.00 56.22	Level Antenna Factor dBμV dBμV/m 43.80 46.36 43.77 46.36 43.74 46.36 57.00 46.36 56.22 46.36	LevelAntenna Factor dBμVSystem Loss dBμV/m43.8046.36 43.77-40.6 46.36 -40.643.7446.36 40.6-40.657.0046.36 66.22-40.6	LevelAntennaSystemTotalβμνTossLevel10 μν/mLossLevel43.8046.36-40.649.643.7746.36-40.649.543.7446.36-40.649.557.0046.36-40.662.856.2246.36-40.662.0	LevelAntenna FactorSystem LossTotal LevelLimitdBμVdBμV/mdB dBμV/mdBμV/m43.8046.36-40.649.663.543.7746.36-40.649.563.543.7446.36-40.649.563.557.0046.36-40.662.883.556.2246.36-40.662.083.5	Level Antenna Factor dBμV m System Level dBμV/m Loss Level dBμV/m Limit dBμV/m Margin dBμV/m 43.80 46.36 -40.6 49.6 63.5 14.0 43.77 46.36 -40.6 49.5 63.5 14.0 43.74 46.36 -40.6 49.5 63.5 14.0 57.00 46.36 -40.6 62.8 83.5 20.8 56.22 46.36 -40.6 62.0 83.5 21.5	Level Antenna Factor dBμV m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 43.80 46.36 -40.6 49.6 63.5 14.0 1.00 43.77 46.36 -40.6 49.5 63.5 14.0 1.00 43.74 46.36 -40.6 49.5 63.5 14.0 1.00 57.00 46.36 -40.6 62.8 83.5 20.8 1.00 56.22 46.36 -40.6 62.0 83.5 21.5 1.00	Level Antenna System Total Limit Margin Height EuT dBμV dBμV/m dBμV/m	Level Antenna Factor dBμV System Loss Level dBμV/m Loss dBμV/m Level dBμV/m Margin dBμV/m Height Ant. Angle m EuT Angle deg Detector deg 43.80 46.36 -40.6 49.6 63.5 14.0 1.00 160 AVERAGE 43.77 46.36 -40.6 49.5 63.5 14.0 1.00 160 AVERAGE 43.74 46.36 -40.6 49.5 63.5 14.0 1.00 160 AVERAGE 57.00 46.36 -40.6 62.8 83.5 20.8 1.00 160 MAX PEAK 56.22 46.36 -40.6 62.0 83.5 21.5 1.00 160 MAX PEAK

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 10 and 20 MHz channel bandwidth; Low, Mid, and High channels; with patch, cassegrain, and dish

Date: 04-27-2012

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4273_sh_Final"

4/27/2012 2:42	2PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dВ	dΒμV/m	dBμV/m	dВ	m	deg		
31900.800000	52.86	48.01	-50.4	50.4	63.5	13.1	1.20	0	AVERAGE	noise floor
31900.800000	65.80	48.01	-50.4	63.4	83.5	20.2	1.20	0	MAX PEAK	noise floor

Electric Field Strength

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 33% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Continuous transmit; Power setting 19; Both channel A and B turned ON

Comment: 10 and 20 MHz channel bandwidth; Low, Mid, and High channels; with patch, cassegrain, and dish

Date: 04-27-2012

TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meter with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A4273_sv_Final"

4/27/2012 2:45	5PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dВ	dΒμV/m	dBμV/m	dВ	m	deg		
36956.200000	47.69	46.06	-47.0	46.7	63.5	16.8	1.20	0	AVERAGE	noise floor
36956.200000	59.92	46.06	-47.0	59.0	83.5	24.6	1.20	0	MAX PEAK	noise floor

Company: Cambium Networks Model Tested: C054045C004A

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A7.0 Maximum Unwanted Emission Levels – Conducted Band-Edge

Rule Section: Section 15.247(d)

RSS-210 A8.5

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01 – *Guidance for Performing*

Gompliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 5.4.1.1 – Reference Level Section 5.4.1.2 – Unwanted Emissions

Description: RBW = 100 kHz

 $VBW \ge 300 \text{ kHz}$

Span = 5-30% greater than the EBW – (Reference Level) Span = spectrum to be examined – (Unwanted Emissions)

Detector = peak Sweep = auto couple Trace mode = max hold

Measurements were taken for QPSK, 16-QAM, and 64-QAM modulation types, and at the lowest, middle, and highest channels of operation. EUT was set to

transmit continuously (power setting 19 dBm) with 98% duty cycle.

Limit: 30 dB below maximum in-band average PSD level (maximum level in any 100

kHz band). Average output power procedure was used to measure the

fundamental emission power.

Results: Passed

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:25:16

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:29:32

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 11:38:37

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 11:45:16

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:34:51

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Band-edge frequency: 5.850 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:45:57

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Band-edge frequency: 5.850 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:49:56

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Band-edge frequency: 5.850 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:41:55

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 16QAM

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 5.735 GHz

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:14:30

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:07:27

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: 64QAM

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:10:01

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Low Channel Frequency: 5.735 GHz
Output power setting: 19; Modulation Type: QPSK

Band-edge frequency: 5.725 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:18:38

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 16QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:59:09

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 5.840 GHz

Band-edge frequency: 5.850 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 13:03:17

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: 64QAM

Band-edge frequency: 5.850 GHz

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.1 – **Reference Level**

Operator: Craig B

RBW = 100 kHz; $VBW \ge 300 \text{ kHz}$ Span = 5-30% greater than EBW; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:55:26

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047
Test: Maximum Unwanted Emission Levels – Conducted Band-Edge

Procedure: FCC KDB 558074 D01 DTS Meas Guidance v01

Section 5.4.1.2 – **Unwanted Emissions**

Operator: Craig B

RBW = 100 kHz; VBW $\geq 300 \text{ kHz}$ Span = spectrum to be examined; Detector = peak;

Sweep = auto couple; Trace mode = max hold

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; High Channel Frequency: 5.840 GHz
Output power setting: 19; Modulation Type: QPSK

Band-edge frequency: 5.850 GHz

Limit: [15.247(b)(3)]: 30 dB below maximum in-band average PSD level (Average output power procedure was used to measure the fundamental emission power)

Date: 23.APR.2012 12:57:17

Company: Cambium Networks
Model Tested: C054045C004A
Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A8.0 Duty Cycle of Test Unit

Rule Part: FCC Section 15.35(c)

RSS-Gen 7.2.3

Test Procedure: ANSI C63.10-2009 Section 7.5

Limits: Informative

Results: EUT is continuously transmitting (duty cycle \geq 98%).

Sample Equations: None

Notes: No duty cycle correction factor was applied to measurements for this

device.

The EUT was transmitting at a minimum duty cycle of 98%.

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:15:14

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:16:29

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel A; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:13:43

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 16QAM

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:20:50

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: 64QAM

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:21:56

Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

Test Date: 04-25-2012

Company: Cambium Networks

EUT: PMP450SM 5.7 GHz MIMO OFDM SN:0A003EA00047

Test: Duty Cycle – duty cycle used during testing (special test software)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel B; Middle Channel Frequency: 5.800 GHz
Output power setting: 19; Modulation Type: QPSK

Continuous transmit; 100 ms sweep:

Date: 25.APR.2012 13:19:45

Company: Cambium Networks Model Tested: C054045C004A Report Number: 17833

166 South Carter, Genoa City, WI 53128

Appendix A – Measurement Data

A9.0 AC Line Conducted Emissions

Rule Part: FCC Part 15.207

RSS-Gen 7.2.4

Test Procedure: ANSI C63.10-2009

Section 6.2

Limit: FCC Part 15.207(a)

Canada: RSSS-Gen 7.2.4 Table 4

Results: Compliant

Notes: This was an AC Conducted emissions measurement.

The EUT was powered from a representative AC Adapter with an input of 120 VAC 60

Hz.

FCC Part 15.207 Class B

Voltage Mains Test

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks Operating Condition: 69 deg. F, 40% R.H.

Test Site: DLS OATS 2 Operator: Craig B

Test Specification: 120 V 60 Hz; Line 1; Power Supply: Phihong model: PSA15R-295(MOT)

LISN DLS#127

Comment: Continuous transmit Date: 05-01-2012

SCAN TABLE: "Line Cond.Site2Final"

Short Description: Line Conducted Emissions

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw. 150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 5.0 s 9 kHz

CISPR AV

MEASUREMENT RESULT: "50113L1_fin"

5/1/2012	10:29	AM				
Freque	ncy	Level	Transd	Limit	Margin	Detector
1	MHz	dΒμV	dВ	dΒμV	dВ	
0.1590	000	59.30	13.7	66	6.2	QP
0.1600	000	60.20	13.7	66	5.3	QP
0.1630	000	60.70	13.6	65	4.6	QP
0.164	500	60.50	13.6	65	4.7	QP
0.165	500	60.30	13.6	65	4.9	QP
0.170	500	59.40	13.5	65	5.5	QP
0.5040	000	25.90	11.4	56	30.1	QP
0.5520	000	23.60	11.3	56	32.4	QP
2.1880	000	22.00	10.8	56	34.0	QP
2.776	000	22.30	10.7	56	33.7	QP
3.8000	000	22.40	10.9	56	33.6	QP
4.8560	000	22.60	10.9	56	33.4	QP
7.7000	000	30.00	10.9	60	30.0	QP
8.3300	000	30.10	11.0	60	29.9	QP
10.1400	000	26.30	11.1	60	33.7	QP
21.370	000	25.80	11.7	60	34.2	QP
22.6000	000	26.00	11.8	60	34.0	QP
24.8000	000	26.50	11.9	60	33.5	QP

MEASUREMENT RESULT: "50113L1_fin2"

5/1/2012 1	0:29AM				
Frequenc	cy Level	Transd	Limit	Margin	Detector
MH	Iz dBµV	dB	dΒμV	dB	
0.16250	00 43.00	13.6	55	12.3	CAV
0.16450	00 43.80	13.6	55	11.4	CAV
0.16650	00 44.10	13.5	55	11.0	CAV
0.16900	00 43.70	13.5	55	11.3	CAV
0.17100	00 43.00	13.4	55	11.9	CAV
0.17300	00 41.90	13.4	55	12.9	CAV
0.52000	00 15.40	11.4	46	30.6	CAV
1.57200	00 12.00	10.7	46	34.0	CAV
2.23600	15.30	10.8	46	30.7	CAV
2.71600	16.30	10.7	46	29.7	CAV
3.73200	17.50	10.9	46	28.5	CAV
4.86800	00 16.90	10.9	46	29.1	CAV
5.00000	00 16.70	10.9	46	29.3	CAV
6.72000	00 20.70	10.8	50	29.3	CAV
8.47000	00 24.90	11.0	50	25.1	CAV
9.09000	00 21.90	11.0	50	28.1	CAV
10.14000	00 20.90	11.1	50	29.1	CAV
24.94000	20.80	11.9	50	29.2	CAV

FCC Part 15.107 Class B

Voltage Mains Test

EUT: PMP450SM 5.7 GHz MIMO OFDM

Manufacturer: Cambium Networks Operating Condition: 69 deg. F, 40% R.H.

Test Site: DLS OATS 2 Operator: Craig B

Test Specification: 120 V 60 Hz; Line 2; Power Supply: Phihong model: PSA15R-295(MOT)

Comment: Continuous transmit Date: 05-01-2012

SCAN TABLE: "Line Cond.Site2Final"

Line Conducted Emissions Short Description:

Start Step Detector Meas. IF Transducer Stop

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 5.0 s 9 kHz LISN DLS#127

CISPR AV

MEASUREMENT RESULT: "50114L2_fin"

5/1/2012 1 Frequency	y Level	Transd dB	Limit dBµV	Margin dB	Detector
0.15850 0.16050 0.16200 0.16400 0.16900 0.17000 0.51200 0.52000 0.54400 1.30000 3.20800 6.72000 7.28000 7.57000	57.80 59.50 59.80 59.50 58.80 58.60 25.30 25.10 23.30 22.30 21.60 23.60 27.80	13.8 13.7 13.7 13.6 13.5 11.4 11.4 11.2 10.8 10.8 10.8	авиv 66 65 65 65 56 56 56 56 60 60	7.7 5.9 5.6 5.8 6.2 6.4 30.7 30.9 32.7 33.7 34.4 32.4 32.2 31.1	QP QP QP QP QP QP QP QP QP QP QP QP QP
8.30000 23.46000 25.09000	27.00 24.60	11.0 11.8 11.9	60 60	33.0 35.4 34.4	QP QP QP

MEASUREMENT RESULT: "50114L2_fin2"

5/1/2012 1	0:43AM				
Frequenc	y Level	Transd	Limit	Margin	Detector
MH	z dBµV	dB	dΒμV	dB	
0.16200	0 41.90	13.7	55	13.5	CAV
0.16400	0 43.00	13.6	55	12.3	CAV
0.16500	0 43.30	13.6	55	11.9	CAV
0.17000	0 42.70	13.5	55	12.3	CAV
0.17250	0 41.70	13.4	55	13.1	CAV
0.17450	0 39.80	13.4	55	14.9	CAV
0.52000	0 12.70	11.4	46	33.3	CAV
0.68800	0 11.10	11.1	46	34.9	CAV
1.76400	0 11.60	10.7	46	34.4	CAV
1.79200	0 12.80	10.7	46	33.2	CAV
3.22000	0 15.00	10.8	46	31.0	CAV
4.95200	0 16.20	10.9	46	29.8	CAV
5.00000	0 15.90	10.9	46	30.1	CAV
6.72000	0 20.70	10.8	50	29.3	CAV
7.52000	0 23.40	10.9	50	26.6	CAV
21.45000	0 19.00	11.7	50	31.0	CAV
22.65000	0 18.50	11.8	50	31.5	CAV
25.07000	0 20.00	11.9	50	30.0	CAV

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Model Tested: C054045C004A Report Number:

17833

END OF REPORT

Revision #	Date	Comments	By
1.0 Part II	05-07-2012	Preliminary Release, 20 MHz bandwidth, including IC	JS