

Logique

Durée : 1h 30 Documents autorisés Le sujet comporte 3 pages

1 Langage des propositions

1.1 Table de vérité (2 points)

Rappel de l'axiome A2 du système formel SF_1 :

$$(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

Question 1.1

Montrer que l'axiome A2 du système formel SF_1 est une tautologie.

1.2 Système formel SF_R (4 points)

Nous avons vu en cours que le système formel SF_R ne permet de démontrer aucun théorème. Cependant SF_R est complet pour la réfutation. Il devient alors possible, en utilisant SF_R , de contrôler qu'une proposition P est une tautologie, i.e de contrôler $\models P$.

Question 1.2

Indiquer comment utiliser SF_R pour contrôler qu'une proposition P est une tautologie.

Question 1.3

Montrer que l'axiome A2 du système formel SF_1 est une tautologie en suivant pas à pas la démarche que vous venez de proposer.

1.3 Système formel Coupure (8 points)

Nous nous intéressons au sous-ensemble, noté \mathcal{S} , des propositions de la forme :

$$(a_1 \wedge a_2 \wedge \cdots \wedge a_n) \Rightarrow (b_1 \vee b_2 \vee \cdots \vee b_m)$$

dans laquelle a_i et b_i sont des propositions atomiques.

$$(a_1 \wedge a_2 \wedge \cdots \wedge a_n)$$
 est dite prémisse.
 $(b_1 \vee b_2 \vee \cdots \vee b_m)$ est dite conclusion.

 \triangle note la prémisse vide.

 ∇ note la conclusion vide.

Par convention, (mais c'est somme toute assez logique!) toute valuation est réalisation de \triangle et est réfutation de ∇ .

Pour S nous proposons un système formel sans axiome.

1.3.1 Règle de coupure

Nous proposons la règle d'inférence (dite règle de coupure) :

$$\{C,D\} \vdash_{cut} E$$

qui signifie:

- si $C = (a_1 \wedge a_2 \wedge \cdots \wedge a_n) \Rightarrow (b_1 \vee b_2 \vee \cdots \vee b_m)$ a été démontré,
- si $D = (c_1 \wedge c_2 \wedge \cdots \wedge c_p) \Rightarrow (d_1 \vee d_2 \vee \cdots \vee d_q)$ a été démontré,
- si $\exists i \in [1, m]$ et $\exists j \in [1, p]$ tels que $b_i = c_j$

alors la règle d'inférence produit :

$$E = (a_1 \wedge \cdots \wedge a_n \wedge c_1 \wedge \cdots \wedge c_{j-1} \wedge c_{j+1} \cdots \wedge c_p) \Rightarrow (b_1 \vee \cdots \vee b_{i-1} \vee b_{i+1} \cdots \vee b_m \vee d_1 \vee \cdots \vee d_q)$$

Exemple:

$$\mathcal{D}: \quad \dots \\ C = (p_1 \wedge p_2 \wedge p_3) \Rightarrow (p_4 \vee p_5) \\ \dots \\ D = (p_6 \wedge p_4) \Rightarrow (p_7 \vee p_8) \\ \dots \\ E = (p_1 \wedge p_2 \wedge p_3 \wedge p_6) \Rightarrow (p_5 \vee p_7 \vee p_8) \quad \text{par coupure sur } C \text{ et } D$$

Question 1.4

Démontrer que si E se déduit par coupure de C et D, alors $\{C, D\} \models E$.

Question 1.5

Que dire d'une proposition $P \in \mathcal{S}$ qui contient la même proposition atomique a en prémisse et en conclusion?

1.3.2 Règle de simplification

Nous proposons une seconde règle d'inférence (dite règle de simplification) :

$$P \Rightarrow C \vdash_{simp} P' \Rightarrow C'$$

La prémisse P' est la prémisse P dans laquelle chaque proposition atomique n'est conservée qu'en un seul exemplaire.

Idem pour C' vis à vis de C.

Soit $\Gamma \subset \mathcal{S}$ un ensemble de propositions et $C \in \mathcal{S}$.

Définition 1.1

Une **démonstration par coupure** de C à partir de Γ est une suite de propositions de S, $(P_1, \ldots, P_n = C)$ telle que :

- $-P_i \in \Gamma$ ou
- P_i se déduit de P_j par simplification (j < i) ou
- P_i se déduit de P_j et P_k par **coupure** (j, k < i)

Définition 1.2

Une **réfutation par coupure** de Γ est une démonstration par coupure de $\Delta \Rightarrow \nabla$ à partir de Γ

Question 1.6

Rédiger une réfutation par coupure de $\{(A \land B) \Rightarrow C, A \Rightarrow B, (B \land C) \Rightarrow \bigtriangledown, \triangle \Rightarrow A\}$

2 Langage des prédicats

2.1 Unification (2 points)

Soient les formules :

$$F = P(f(7, 4, g(1, 2)), g(h(u), u))$$
 et

$$G = P(u, g(v, f(x, y, z)))$$

dans lesquelles les variables sont : u, v, x, y et z.

Question 2.1

Trouver un unificateur de F et G

2.2 Système formel Résolution (4 points)

Question 2.2

Montrer, en utilisant SF_R que :

$$\{\exists x \forall y (P(x) \land (Q(y) \Rightarrow S(x,y))), \forall x \forall y (\neg P(x) \lor \neg R(y) \lor \neg S(x,y))\} \models \forall y (Q(y) \Rightarrow \neg R(y))$$