1 Introduction

- 1. Suppose we have some sequence T, a combination with repetition of M tokens taken from a set of $W = \{w_k, 0 \le k < N\}$.
- 2. Now, we define the one hot encoding $\mathbf{e}_k \in B^N$, where \mathbf{e}_k is the k-esim column of \mathbf{I}_N , the identity matrix in $\Re^{N \times N}$. Thus, we assign the vector \mathbf{e}_k to each token w_k .
- 3. Then, we define a matrix $\mathbf{D} \in B^{N \times M}$, where $T_m = w_k$, $0 \le m < M$ implies $\mathbf{D}_m \doteq \mathbf{e}_k$.

We want to evaluate

$$\mathbf{D} \cdot \left(\mathbf{I}_m - \frac{\mathbf{u} \cdot \mathbf{u}^t}{m} \right) \cdot \mathbf{x} = \lambda \, \mathbf{y},\tag{1}$$

$$\left(\mathbf{I}_m - \frac{\mathbf{u} \cdot \mathbf{u}^t}{m}\right) \cdot \mathbf{D}^t \cdot \mathbf{y} = \lambda \,\mathbf{x}.\tag{2}$$