algoritmi e strutture di dati

complessità degli algoritmi

m.patrignani

040-complessita-algoritmi-05

copyright @2014 patrignani@dia.uniroma3.it

nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

040-complessita-algoritmi-05

algoritmi e programmi

- un *algoritmo* coincide per noi con la sua descrizione in pseudocodice
 - sappiamo che ciò è equivalente a definire una Random Access Machine
- lo pseudocodice può essere facilmente tradotto in un linguaggio di programmazione arbitrario per ottenere un *programma*
- l'operazione di traduzione di un algoritmo in un programma viene detta *implementazione*

040-complessita-algoritmi-05

copyright @2014 patrignani@dia.uniroma3.it

esecuzione dei programmi

- il programma può essere eseguito
 - su una piattaforma opportuna
 - con dati di input opportuni
- la sua esecuzione ha un costo (economico) che può essere espresso tramite le risorse di calcolo utilizzate
 - tempo
 - memoria
 - traffico generato su rete
 - trasferimento dati da/su disco
 - **–**
- nella maggior parte dei casi la risorsa più critica è il tempo di calcolo

040-complessita-algoritmi-05

fattori che influenzano il tempo di calcolo

- dimensione dell'input
 - maggiore è la quantità di dati in input maggiore è il tempo necessario per processarli
- algoritmo
 - può essere più o meno efficiente
- hardware
 - un supercalcolatore è più veloce di un personal computer
- linguaggio
 - un'implementazione diretta in linguaggio macchina è più veloce di un'implementazione in un linguaggio ad alto livello
 - un programma compilato è più veloce di un programma interpretato
- compilatore
 - alcuni compilatori sono progettati per generare codice efficiente
- programmatore
 - a parità di algoritmo e di linguaggio, programmatori esperti scelgono costrutti più veloci

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

tempo di calcolo e dimensione dell'input

- si riscontra che il tempo di calcolo cresce al crescere della dimensione *n* dell'input
 - − è legittimo misurarlo come una funzione di *n*
- la nozione di dimensione dell'input dipende dal problema
 - ordinamento:
 - · numero di elementi da ordinare
 - operazioni su liste:
 - · lunghezza della lista
 - operazioni su matrici:
 - dimensione massima delle matrici coinvolte
 - valutazione di un polinomio in un punto:
 - · grado del polinomio

tempo di calcolo e algoritmi

esperimento: confronto tra due algoritmi di ordinamento

- stesso input: 1.000.000 numeri interi

algoritmo	insertion sort	merge sort
hardware	supercalcolatore	personal computer
linguaggio	linguaggio macchina	linguaggio ad alto livello
compilatore	_	non efficiente
programmatore	esperto	medio

conclusione:

tempo

 a parità di input, il tempo di calcolo di un programma è influenzato dall'algoritmo che implementa più che dagli altri fattori

040-complessita-algoritmi-05

5,56 ore

copyright @2014 patrignani@dia.uniroma3.it

16,67 minuti

progetto di algoritmi efficienti

motivazione

- ha un impatto economico diretto per gli utilizzatori dei programmi
 - il tempo di calcolo si traduce in un investimento economico
- è fondamentale per ottenere implementazioni di uso pratico
 - l'usabilità di un programma può essere compromessa da un algoritmo inefficiente

problema

 nel momento in cui progettiamo un algoritmo non possiamo misurare direttamente l'efficienza delle sue future implementazioni

soluzione

 previsione del tempo di calcolo delle implementazioni di un algoritmo (analisi)

040-complessita-algoritmi-05

analisi degli algoritmi

obiettivo

- prevedere il tempo di calcolo richiesto dall'esecuzione di un programma che implementa il nostro algoritmo
 - in funzione della dimensione dell'input
 - per piccoli input il tempo di calcolo sarà comunque basso
 - qual è il tempo di calcolo per input di grandi dimensioni?

strumenti

- ipotesi sul tempo di esecuzione di ogni istruzione
- analisi asintotica delle funzioni
 - quale funzione consideriamo?

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

il tempo di calcolo non è una funzione

• In generale il tempo di calcolo per un input di dimensione *n* **non** è una funzione

tempo di calcolo e analisi asintotica

- vogliamo studiare il tempo di calcolo con gli strumenti dell'analisi asintotica
 - ma l'analisi asintotica si applica solo alle funzioni
 - dobbiamo trasformare il tempo di calcolo in una funzione
 - per questo consideriamo il caso peggiore/medio/migliore

uso del caso peggiore

- per noi è di maggiore interesse il *caso peggiore* rispetto al *caso migliore* o al *caso medio*
 - preferiamo un errore per eccesso ad un errore per difetto
 - il caso migliore non dà nessuna garanzia sul tempo di calcolo con un input generico
 - è di interesse solamente teorico
 - spesso il tempo di calcolo del caso medio è più vicino al caso peggiore che al caso migliore
 - conoscere il costo del caso medio può essere utile solo qualora si debba ripetere un'operazione un numero elevato di volte

stima del tempo di calcolo

- denotiamo *T(n)* il tempo di calcolo di una implementazione dell'algoritmo nel caso peggiore su un input di dimensione *n*
- vogliamo stimare T(n) a partire dallo pseudocodice
- quanto costa ogni operazione elementare?
- ipotesi semplificativa:
 - per eseguire una linea (o istruzione) di pseudocodice è richiesto tempo costante
 - denotiamo con c_i il tempo necessario per eseguire la riga i

040-complessita-algoritmi-05

copyright @2014 patrignani@dia.uniroma3.it

strategie per la stima del tempo di calcolo

- strategia più onerosa
 - calcoliamo esplicitamente T(n) a partire dallo pseudocodice
 - T(n) dipende, oltre dalla dimensione dell'input n, anche dal costo di esecuzione associato alle singole righe dello pseudocodice c₁, c₂, c₃, c₄, ...
 - studiamo il comportamento asintotico di T(*n*)
- strategia più efficiente
 - calcoliamo il costo asintotico di ogni porzione dello pseudocodice
 - otteniamo il costo asintotico dell'intero algoritmo componendo i costi calcolati
 - otteniamo il comportamente asintotico di T(n) senza mai calcolare esplicitamente T(n)

040-complessita-algoritmi-05

esempio di algoritmo

- algoritmo per invertire un array
 - da 0 1 2 3 4 5 6 7 a 7 6 5 4 3 2 1 0
- strategia
 - memorizzo A[0]
- memo 0
- 01234567
- copio A[A.length-1] in A[0]
- memo 0
- 7 1 2 3 4 5 6 7
- traslo tutte le caselle A[1..A.length-2] in avanti
 - memo 0
 - memo O
- 7 1 2 3 4 5 6

- ripeto per A[1]

- copio memo in A[1]

- 70123456
- 76012345

- ripeto per A[2]
- 76012345

– ...

040-complessita-algoritmi-05

copyright ©2014 patrignani@dia.uniroma3.it

esempio di calcolo di T(n)

INV	/ERTI-ARRAY(A)
1.	<pre>for i = 0 to A.length-2</pre>
2.	memo = A[i]
3.	A[i] = A[A.length-1]
4.	<pre>for j = A.length-1 down to i+2</pre>
5.	<pre></pre>
6.	A[j] = A[j-1]
7.	A[i+1] = memo

costo	n° di volte
\mathbf{c}_1	n
c_2	n-1
$egin{array}{ccc} c_2 & & & & \\ c_3 & & & & \\ c_4 & & & & \\ 0 & & & & & \end{array}$	n-1
c_4	
0	
c_6	
c ₆ c ₇	n-1

- 1 il test viene eseguito *n* volte
 - n-1 volte entro nel ciclo for
 - l'ultimo test determina l'uscita dal ciclo
- 2,3,7 linee eseguite per ogni iterazione del ciclo for, cioè *n*-1 volte

040-complessita-algoritmi-05

esempio di calcolo di T(n)

IN	/ERTI-ARRAY(A)
1.	<pre>for i = 0 to A.length-2</pre>
2.	memo = A[i]
3.	A[i] = A[A.length-1]
4.	<pre>for j = A.length-1 down to i+2</pre>
5.	<pre></pre>
6.	A[j] = A[j-1]
7.	A[i+1] = memo

costo	n° di volte
c_1	n
c_2	n-1
c_3	n-1
c_4	(n-1)(n+2)/2
0	(n-1)(n+2)/2-1
c ₆	(n-1)(n+2)/2-1
c ₇	n-1

- 4 il test viene eseguito, per ogni i = 0, ..., n-2 (cioè n-1 volte) un numero di volte pari a n-(i+2)+2=n-i, quindi $\sum_{i=0..n-2} (n$ -i) = $\sum_{i=0..n-2} (n) \sum_{i=0..n-2} (i) = (n$ -1)n-(n-2)(n-1)/2 = (n-1)(n+2)/2
 - si è utilizzata la formula di Gauss $\sum_{i=1..n} (i) = (n+1)n/2$
- 5,6 come sopra -1

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

esempio di calcolo di T(n)

IN	/ERTI-ARRAY(A)
1.	<pre>for i = 0 to A.length-2</pre>
2.	memo = A[i]
3.	A[i] = A[A.length-1]
4.	<pre>for j = A.length-1 down to i+2</pre>
5.	<pre> > traslo in avanti A[i+1] </pre>
6.	A[j] = A[j-1]
7.	A[i+1] = memo

costo	n° di volte
\mathbf{c}_1	n
c_2	n-1
c_3	n-1
c_4	(n-1)(n+2)/2
0	(n-1)(n+2)/2-1
c_6	(n-1)(n+2)/2-1
c ₇	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) n/2 + c_6 ((n-1)n/2-1) + c_7 (n-1)$$

$$= n^2 (c_4/2 + c_6/2) +$$

$$n (c_1 + c_2 + c_3 - c_4/2 - c_6/2 + c_7) -$$

$$(c_2 + c_3 + c_6 + c_7)$$

Dunque: $T(n) \in O(n^2)$, $T(n) \in \Omega(n^2) \Rightarrow T(n) \in \Theta(n^2)$

algoritmi e complessità O(f(n))

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha complessità temporale O(f(n)) se T(n) = O(f(n))

- · diciamo anche che
 - il tempo di esecuzione dell'algoritmo $A \stackrel{.}{e} al più f(n)$
 - -f(n) è un *limite superiore*, o *upper-bound*, al tempo di esecuzione dell'algoritmo A
 - -f(n) è la quantità di tempo *sufficiente* (in ogni caso) all'esecuzione dell'algoritmo A

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

algoritmi e complessità O(f(n))l'algoritmo A ha complessità temporale <math>O(f(n)) se T(n) = O(f(n))1'4 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'4 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'4 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'4 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'4 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'5 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'6 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'6 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'6 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'6 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'6 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo A ha Complessità temporale <math>C(f(n)) se T(n) = O(f(n))1'7 algoritmo C ha Complessità temporale <math>C ha Complessit

significatività della funzione f(n)

- se un algoritmo ha complessità f(n) allora ha anche complessità g(n) per ogni g(n) tale che $f(n) \in O(g(n))$
- la complessità espressa tramite la notazione O-grande diventa tanto più significativa quanto più f(n) è stringente (piccolo)

algoritmi e complessità $\Omega(f(n))$

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha complessità temporale $\Omega(f(n))$ se $T(n) = \Omega(f(n))$

- diciamo anche che
 - il tempo di esecuzione dell'algoritmo A è almeno f(n)
 - f(n) è un *limite inferiore*, o *lower-bound*, al tempo di esecuzione dell'algoritmo A
 - -f(n) è la quantità di tempo *necessaria* (in almeno un caso) all'esecuzione dell'algoritmo A

algoritmi e complessità $\Theta(f(n))$

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha *complessità temporale* $\Theta(f(n))$ se ha complessità temporale O(f(n)) e $\Omega(f(n))$

- diciamo anche che
 - il tempo di esecuzione dell'algoritmo è f(n)
 - f(n) è un *limite inferiore* e *superiore* (*lower-bound* e *upper-bound*), al tempo di esecuzione dell'algoritmo
 - -f(n) è la quantità di tempo *necessaria e sufficiente* all'esecuzione dell'algoritmo

strategie di analisi più efficienti

INV	/ERTI-ARRAY(A)
1.	<pre>for i = 0 to A.length-2</pre>
2.	memo = A[i]
3.	A[i] = A[A.length-1]
4.	<pre>for j = A.length-1 down to i+2</pre>
5.	> traslo in avanti A[i+1]
6.	A[j] = A[j-1]
7.	A[i+1] = memo

- 1. una prima strategia più efficiente si ottiene trascurando le costanti c₁, c₂, c₃, ... nel calcolo del costo di ogni riga
- 2. una strategia ancora più efficiente si basa sul calcolo diretto del costo asintotico di ogni riga

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

calcolo efficiente del costo asintotico

- istruzioni semplici
 - tempo di esecuzione costante: $\Theta(1)$
- sequenza (finita) di istruzioni semplici
 - tempo di esecuzione costante: $\Theta(1)$
- sequenza di istruzioni generiche
 - somma dei tempi di esecuzione di ciascuna istruzione

istrizioni condizionali

per calcolare T(n) occorrerebbe sapere se la condizione si verifica o meno

- troviamo un limite superiore O-grande al tempo di esecuzione T(n) come somma dei costi seguenti
 - costo O-grande della valutazione della condizione
 - costo O-grande maggiore tra <parte-then> e <parteelse>
- troviamo un limite inferiore Ω al tempo di esecuzione T(n) come somma dei costi seguenti
 - $-\cos \Omega$ della valutazione della condizione
 - $-\cos to \Omega \text{ minore tra} < \text{parte-then} > e < \text{parte-else} >$

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

istruzioni ripetitive

- il nostro pseudocodice ci offre tre istruzioni ripetitive
 - for, while e repeat
- per il limite superiore O-grande occorre determinare
 - un limite superiore O(f(n)) al numero di iterazioni del ciclo
 - un limite superiore O(g(n)) al tempo di esecuzione di ogni iterazione
 - si compone del costo dell'esecuzione del blocco di istruzioni più il costo di esecuzione del test
- il costo del ciclo sarà: $O(g(n) \cdot f(n))$
- analogamente sarà: $\Omega(g'(n) \cdot f'(n))$
 - dove le iterazioni sono $\Omega(g'(n))$ ed il costo di una iterazione è $\Omega(f'(n))$

istruzioni ripetitive: esempio

```
FACT (n)

1. f = 1

2. k = n

3. while k > 0

4. do f = f * k

5. k = k - 1

6. return f
```

- numero di iterazioni del ciclo while: $\Theta(n)$
- costo di una singola iterazione: $\Theta(1)$
- costo complessivo del ciclo while: $\Theta(n \cdot 1) = \Theta(n)$
- costo complessivo della procedura: $\Theta(n)$

040-complessita-algoritmi-05 copyright ©2014 patrignani@dia.uniroma3.it

attenzione al modello

```
FACT (n)
1. f = 1
2. k = n
3. while k > 0
4. do f = f * k
5. k = k - 1
6. return f
```

- stiamo lavorando nell'ipotesi in cui le variabili (che corrispondono ai registri della RAM) riescano sempre a contenere i numeri coinvolti
- se la misura dell'input è il numero k di bit necessari per rappresentare n in binario avremmo $k = \lceil \log_2 n \rceil$ e costo complessivo = $\Theta(2^k)$

chiamata a funzione o procedura

```
1. P(...)
2. ...
3. Q(...)
4. ...
```

supponiamo che un programma P invochi la procedura Q

- sia $T_O(n)$ il tempo di esecuzione della procedura Q
- il tempo di esecuzione dell'invocazione della procedura Q in P è T_Q(m), dove m è la dimensione dell'input passato alla procedura Q
 - attenzione: occorre determinare la relazione tra m e la dimensione n dell'input di P

040-complessita-algoritmi-05

copyright @2014 patrignani@dia.uniroma3.it

esempio di chiamata a funzione

```
SUM-OF-FACT (n)

1. sum = 0

2. m = n

3. while m > 0

4. do sum = sum + FACT (m)

5. m = m - 1

6. return sum
```

- il corpo del ciclo while ha complessità $\Theta(1) + \Theta(m) = \Theta(m)$
- il ciclo viene eseguito n volte, per i valori di m = n, n-1, ..., 1
- il costo complessivo del ciclo è dunque: $\Theta(n) + \Theta(n-1) + ... + \Theta(2) + \Theta(1) = \Theta(n^2)$
- il costo totale è $\Theta(n^2)$

esempio di analisi della complessità

- secondo algoritmo per invertire un array
 - da 01234567 a 76543210
- strategia
 - scambio A[0] con A[A.length-1] 7 1 2 3 4 5 6 0
 - scambio A[1] con A[A.length-2] 7 6 2 3 4 5 1 0
 - scambio A[2] con A[A.length-3] 7 6 5 3 4 2 1 0
 - scambio A[3] con A[A.length-4] 7 6 5 4 3 2 1 0
 - **–** ...

040-complessita-algoritmi-05

copyright ©2014 patrignani@dia.uniroma3.it

analisi della complessità efficiente

```
INVERTI-ARRAY-CON-SCAMBI(A)

1. for i = 0 to [A.length/2] do

2. SCAMBIA(A,i,A.length-1-i)
```

```
SCAMBIA(A,j,k)

1. memo = A[j]

2. A[j] = A[k]

3. A[k] = memo
```

- la funzione **SCAMBIA**(A,j,k) ha complessità $\Theta(1)$ in quanto è composta da una successione di istruzioni elementari
- la funzione **INVERTI-ARRAY-CON-SCAMBI**(A) ha complessità $\Theta(n)$ in quanto esegue per $\Theta(n)$ volte il blocco delle istruzioni che consiste nell'esecuzione di una procedura $\Theta(1)$