# Reinforcement Learning 1

**Denis Basharin** 

### Постановка задачи

Учимся принимать хорошие последовательности действий, без понимания фундаментального устройства мира

Задача включает в себя

- Optimization
- Generalization
- Exploration
- Delayed consequences

# RL vs Supervised Learning

#### RL

Optimization

Sparse reward function

Generalization

yep

Exploration

unknown consequences for actions

Delayed consequences

reward for decisions may come afterwards

# Supervised Learning

Optimization

differentiable loss function

Generalization

yep

Exploration

true labels for dataset

Delayed consequences

none

- Среда (environment)
- Aгент (agent)
- Действие (action)
- Состояние (state)
- Награда (reward)



• Наблюдение (observation)

Марковское свойство:

$$p(S_{t+1}|S_t, A_t) = p(S_{t+1}|S_t, A_t, S_{t-1}, A_{t-1}, \dots, S_0, A_0)$$

Состояние state полностью определяет все неслучайные процессы окружения

Политика (policy)

$$\pi(a|s)$$

v-function (state-value function)

$$v_{\pi}(s) = E[G_t | S_t = s] = E\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s\right]$$

q-function (action-value function)

$$q_{\pi}(s, a) = E[G_t | S_t = s, A_t = a] = E\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s, A_t = a\right]$$

# Кросс-энтропийный метод

# Общий фреймворк

1. Инициализируем политику

- 2. Семплируем п сессий
- 3. Оцениваем все n сессий по v-функции
- 4. Выбираем т элитных сессий
- 5. Обновляем политику на основании данных элитных сессий

6. Повторяем 2-5 пока не сойдемся

# Табличный случай

Конечное число state, action

- политика - таблица state x action

- семпл - обычный семпл дискретного распределения

$$- \pi^{new}(a|s) = \frac{\sum_{a_i, s_i \in Elites} I\{a_i = a, s_i = s\}}{\sum_{a_i, s_i \in Elites} I\{s_i = s\}}$$

### А если слишком много возможных состояний?

Конечное число state, action

- политика - классификатор  $state o action\ probabilities$ 

- семпл - обычный семпл дискретного распределения

$$- \pi^{new}(a|s) = argmax_{\pi} \sum_{a,s \in Elites} \log \pi(a|s)$$

argmax делать сложно, оптимизируем моделью

#### А если слишком много возможных состояний?

Конечное число state, action

- политика классификатор  $state o action\ probabilities$  model = RandomForestClassifier()
- семпл обычный семпл дискретного распределения

$$- \pi^{new}(a|s) = argmax_{\pi} \sum_{a,s \in Elites} \log \pi(a|s)$$

model.fit(elite\_states, elite\_actions)

# А если и количество действий континуально?

Зафиксируем распределение action при state

а|s  $\sim N(\mu_{ heta}(s), const)$  - нормальное распределение

 $\sim P_{ heta}(s)$  - любое параметризованное распределение

Предсказываем распределение с помощью нейросети

# А если и количество действий континуально?

Конечное число state, action

- политика - регрессор  $state \rightarrow action \ values$ 

- семпл нормального распределения

- 
$$\pi^{new}(a|s) = argmax_{\theta} \sum_{a_i, s_i \in Elites} \log \pi_{\theta}(a|s)$$

argmax решить сложно, поэтому используем приближенное решение

# А если и количество действий континуально?

Конечное число state, action

- политика регрессор  $state \rightarrow action \ values$  model = RandomForestRegressor()
- семпл нормального распределения

- 
$$\pi^{new}(a|s) = argmax_{\theta} \sum_{a_i, s_i \in Elites} \log \pi_{\theta}(a|s)$$

model.fit(elite\_states, elite\_actions)

# Другой подход

Можем считать модель  $\pi_w$  и добиваться exploration также через семплирование весов:

1)  $w \sim N(\mu, \sigma)$ 

- 2) sample and evaluate n models  $\pi_{w_i}$
- 3) select top m examples, reassign  $\mu$  and  $\sigma$

4) repeat 2-3

# Примеры

https://github.com/udacity/deep-reinforcement-learning/tree/master/cross-entropy

#### **Action**

force  $\in$  [-1;1]

#### **State**

(velocity, position)

#### Reward

 $-0.1\ action^2$ 

100 if goal is reached



# Потенциальные сложности в RL

Reward hacking

Exploitation vs Exploration

Credit assignment problem

#### Источники

https://www.youtube.com/watch?v=FgzM3zpZ55o&list=PLoROMvodv4rOSOPzutgyCTapiGIY2Nd8u

https://www.youtube.com/watch?v=BwLIPEUkjxQ&list=PL4 hYwCyhAvY7k32D65g3xJVo8X8dc3Ye&index=8

https://www.youtube.com/watch?v=JgvyzIkgxF0

https://www.youtube.com/watch?v=eMxOGwbdqKY

example: <a href="https://github.com/udacity/deep-reinforcement-learning/tree/master/cross-entropy">https://github.com/udacity/deep-reinforcement-learning/tree/master/cross-entropy</a>

picture: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292