Project Title: Regression Analysis on bike sharing demands of Washington, D.C.

Author: Pradeep Sathyamurthy (DePaul University, Chicago)

Guiding Professor: Prof. Nandhini Gulasingam

Dataset Name: Kaggle's competition on Bike Sharing Dataset

test.csvtrain.csv

Dataset Description:

- Capital Bike share program in Washington, D.C. is similar to the DIVVY program in City of Chicago
- ➤ Data generated by the IoT (network KIOSK) at each docking stations throughout the city attracts researchers because of the diversified information present as part of this dataset
- ➤ Bike sharing systems therefore function as a sensor network, which can be used for studying mobility in a city
- This is one of the Univariate dataset used for Kaggle's competition

URL Details:

- We can obtain this dataset from Kaggle and as well from UCI data repository.
- Data present in UCI is more normalized and structured while dataset present in Kaggle are raw data as such generated from network KIOSK. We will use dataset shared by Kaggle:
 - 1. Kaggle: https://www.kaggle.com/c/bike-sharing-demand/data
 - 2. UCI: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Problem Description:

We are asked to combine historical usage patterns with weather data in order to forecast bike rental demand in the Capital Bike share program in Washington, D.C.

Proposed Approach:

In – Scope Approaches	Shadow Scoping (will be tried to improve model if needed)
Data Split-up [in this case we might not need it] and Outlier Studies	Jacknife Regression
Exploratory Data Analysis	Logistic Regression
Hypothesis Testing to validate the data and its inference	Locally Estimated Scatter Plot Smoothing (LOESS)
Data Exploration, smoothing, transformation and data preparation	Multivariate Adaptive Regression Splines (MARS)
Linear Regression - Model Building, Model Assumption, Model Validation	Advance Data Analysis Methods if Data Demands
Residual, outlier and influential points Analysis	
Prediction with Test Data	

I will first try to build a model using linear regression methods studied as part of this course CSC-423. Model efficiency will be the primary focus; we will observe the maximum variance in rental demands of bicycle that will be explained by Linear Regression Model. If the Adjusted R-square of final model is less than 50%, we will study the limitations of Linear Regression in such case and try to improve the model with one advance data analysis method that is not in scope of CSC-423 to experience the need of Advance regression methods in model building.

Citation Request and Reference:

Fanaee-T, Hadi, and Gama, Joao, Event labeling combining ensemble detectors and background knowledge, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg. (IEEE ref inside this are studied)