1 Funzioni continue

Una funzione f è continua in un punto x_0 se:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

(cioè se il valore limite, per x che tende a x_0 , è uguale al valore della funzione in x_0).

Una funzione è continua in un intervallo [a, b] se è continua in ogni punto $x_0 \in [a, b]$. (se $x_0 = a$ si considera il limite destro, se $x_0 = b$ si considera il limite sinistro).

Abbiamo visto, ad esempio, che $\lim_{x\to 0} \sin x = 0 = \sin 0$ e $\lim_{x\to 0} \cos x = 1 = \cos 0$; \Longrightarrow le funzioni $\sin x$ e $\cos x$ sono continue per x=0 ed anche per ogni altro $x_0 \in \mathbb{R}$.

Si dimostra anche che tutte le funzioni elementari sono continue. Potrei avere una discontinuità quando ho un denominatore come $f(x) = \frac{\sin x}{x}$ che non è definita in x = 0.

1.1 Punti di discontinuità

I punti di discontinuità sono i punti in cui la funzione non è continua.

1.1.1 Discontinuità eliminabile

 x_0 è il punto di **discontinuità eliminabile** se esiste il limite di f in x_0 e risulta:

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

1.1.2 Discontinuità di prima specie

f(x) presenta in x_0 una discontinuità di prima specie se esistono finiti i limiti destro e sinistro di f in x_0 e si ha:

$$\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$$

1.1.3 Discontinuità di seconda specie

f(x) presenta in x_0 una discontinuità di seconda specie se almeno uno dei due limiti non esiste o è infinito.

1.2 Teoremi sulle funzioni continue

1.2.1 Teorema della permanenza del segno

Sia f una funzione definita in un intorno di x_0 e sia continua in x_0 ($\lim_{x\to x_0} f(x) = f(x_0)$). Se $f(x_0) > 0$ allora esiste un numero $\delta > 0$ con la proprietà che f(x) > 0 per ogni $x \in (x_0 - \delta, x_0 + \delta)$. **Dimostrazione:** la funzione è continua in x_0 , cioè $\lim_{x\to x_0} f(x) = f(x_0)$ quindi per definizione di limite:

$$\forall \varepsilon > 0, \ \exists \delta > 0 : \ \forall x, \ x \neq x_0, \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

scelgo $\varepsilon = \frac{f(x_0)}{2}$, quindi:

$$|f(x) - f(x_0)| < \frac{f(x_0)}{2} \implies -\frac{f(x_0)}{2} < f(x) - f(x_0) < \frac{f(x_0)}{2}$$

$$f(x) > f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} > 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

Corollario: Se f(x) è continua in x_0 e $f(x) \ge 0$ o f(x) > 0 $\forall x \in (x_0 - \delta, x_0 + \delta)$ allora $f(x_0) \ge 0$.

1.2.2 Teorema dell'esistenza degli zeri

Sia f(x) una funzione continua in un intervallo [a, b].

Se f(a) < 0 e f(b) > 0 allora esiste almeno un punto $x_0 \in (a, b)$ tale che $f(x_0) = 0$.

Dimostrazione: troppo lunga guarda pagine 11-25 lez 06.

1.2.3 Teorema dell'esistenza dei valori intermedi

Una funzione continuia in un intervallo [a, b] assume tutti valori compresi tra f(a) e f(b). **Dimostrazione:** Consideriamo il caso in cui $f(a) \le f(b)$.

Dobbiamo provare che $\forall y_0 \in [f(a), f(b)] \exists x_0 \in [a, b] \text{ tale che } f(x_0) = y_0.$

- Se $y_0 = f(a)$, possiamo prendere $x_0 = a$ e analogamente se $y_0 = f(b)$ possiamo prendere $x_0 = b$.
- Se $y_0 \in (f(a), f(b))$, consideriamo la funzione:

$$g(x) = f(x) - y_0 \quad \forall x \in [a, b]$$

e calcolata in x = a e x = b

$$g(a) = f(a) - y_0$$
 $g(b) = f(b) - y_0 \implies g(a) < 0$ $g(b) > 0$

Applicando quindi il teorema dell'esistenza degli zeri alla funzione $g(x) \implies$

$$\exists x_0 \in (a,b) : g(x_0) = 0 \implies f(x_0) = y_0$$

1.2.4 Teorema di Weierstrass

Sia f(x) una funzione continua in un intervallo chiuso e limitato [a,b]. Allora f(x) assume minimo e massimo in [a,b]. Cioè esistono x_1, x_2 in [a,b] che sono detti rispettivamente punti di minomo e di massimo per f(x) nell'intervallo [a,b]. I corrispondenti valori $m = f(x_1)$ e $M = f(x_2)$ sono detti **minimo** e **massimo** di f(x) in [a,b].

Dimostrazione: Hp: funzione continua in un intervallo chiuso e limitato. Poniamo $M = \sup\{f(x) : x \in [a,b]\}$ esiste, potrebbe essere $M < +\infty$ o $M = +\infty$. Verifichiamo ora che $\exists x_n \in [a,b] : \lim_{n \to +\infty} f(x_n) = M(\star)$.

- Se $M = +\infty$, per le proprietà dell'estremo superiore, $\forall n \in \mathbb{N}, \exists x_n \in [a, b] : f(x_n) > n$. Per il teorema di confronto $f(x_n) \to M = +\infty$.
- Se invece $M < +\infty$, sempre per le proprietà dell'estremo superiore, $\forall n \in \mathbb{N}, \ \exists x_n \in [a,b]$ tale che $M \frac{1}{n} < f(x_n) \le M$ e quindi $f(x_n) \to M$ per il teorema dei carabinieri. (*) $\lim_{m \to +\infty} f(x_n) = M$
- Per il teorema di Bolzano-Weierstrass, da $x_n \subset [a,b]$ (limitate), esiste una estratta x_{nk} convergente ad un punto $x_0 \in [a,b]$.

$$x_{nk} \to x_0$$

Ma poichè la funzione è continua:

$$f(x_{nk}) \to f(x_0) \quad (n \to +\infty)$$

Allora

$$M = \lim_{n \to +\infty} f(x_n) = \lim_{k \to +\infty} f(x_{nk}) = f(x_0) \implies M = f(x_0)$$

Quindi abbiamo dimostrato che M è un massimo perchè:

$$f(x_0) = M = \sup\{f(x) : x \in [a, b]\}$$
 è un massimo

Conseguenza: La funzione è limitata, dal massimo e minimo.

Possiamo ora dare una nuova formulazione del teorema di esistenza dei valori intermedi.

1.2.5 Teorema di esistenza dei valori intermedi (formulazione II)

Una funzione continua in un intervallo [a, b] ammette tutti i valori compresi tra il massimo e il minimo. Tra i risultati sulle funzioni continue, si dimostra come applicazione, anche il seguente:

1.2.6 Criterio di invertibilità

Una funzione continua e stretteamente monotona in un intervallo [a, b] è invertibile in tale intervallo.