Anteater Dynamics

Problem Definition

Team Introduction

Lucas Cardona Mechanical Engineer

Diego AvilaSoftware Engineer

Rogel Aguilar Software Engineer

Tomas Mejia Electrical Engineer

Ishan Malik Mechanical Engineer

Noah Castillo Electrical Engineer

Quad Chart

Purpose

- Offer mid-tier option robotic arm option for home researchers
- Use to train robotic AI models on interactions with physical world

Customers/Stakeholders

- Industry Sponsor: Robotis Inc
- Open-source design
- For robotics machine learning researchers

Technical Approach

- Incorporate Robotis electronics (sensors, actuators, etc)
- Design parts for additive manufacturing
- Design for ease-of-assembly

Success Criteria

- Able to be mass produced via injection molding OR by 3D printing at home
- \$500-\$600 full BOM range
- 7DOF for ML research
- ◆ Able to pick up ~500g

Problem Statement and Objectives

Problem Statement:

Create a low-cost 7 degree of freedom robotic arm capable of picking up small household items to collect data for machine learning, and document the development in a public manner.

Objectives

- High Priority
 - Low Cost (<\$1000)
 - o Capable of lifting 300-500 g
 - Use of ROBOTIS components
- Secondary Priority
 - Open Source

Sponsor & Existing Solutions

Koch v1.1 Low-Cost Robot Arm

\$237 Low Fidelity

Our Solution

Mid-Range ~\$500-600 Open-Source ML Capable

OpenMANIPULATOR-X

\$1,416 High-Fidelity

Timeline Milestones

WBS NUMBER	TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION
X	ROBOTIS Objectives				
А	Project Outline Discussion and Defining Parameters	ALL	WK3	WK4	
В	Initial Virtual Kinematics Validation	ALL	WK4	WK5	
С	Problem Definition and Initial Physical Prototyping	ALL	WK6	WK7	
Е	Physical Prototyping Design	ALL	WK7	WK8	
F	Bugfixing and testing	ALL	WK9	WK10	
F	Initial Design Review w/ Functional Prototype	ALL	WK9	WK10	

Project Deliverables

- 1. 7 DOF Robot Arm
- 2. Project documentation/resources
- 3. Weekly updates on GITHub

System Requirements

- 7 DOF
- Pick up small household objects (e.g. a soda can)
- 650mm reach, 500mm at load
- Clamped/Bolted for table mounting
- 400g lifting capacity
- Aluminum and plastic injection molding
- Under \$1000

Measures of Effectiveness

- The final product is affordable in the \$500-600 range
- The arm can easily manipulate a 500g mass
- The design is open source and available to 3D print at home
- Integrates ROBOTIS actuators

Functional Hierarchy

Grey Box Diagram

Anticipated Technical Concerns

Preventing Servo Stall

Load Cell Sensor Integration End Effector

Joint Stability and Backlash Prevention for Data Accuracy

Achieving Desired Reach and Load Targets

Weight vs Strength Trade Off

Range of Motion and Collision Prevention

Thank You For Listening

