ANALISIS DE VARIANZA

Clasificación Simple

- Hipótesis nula: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k = \mu$
- Hipótesis alternativa: $H_a: \mu_i \neq \mu_j$, para algún $i \neq j$
- Suposiciones:
 - k poblaciones normales independientes, con medias $\mu_1, \mu_2, \dots, \mu_k$
 - $\bullet \ \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2 = \sigma^2$
- Pasos a seguir para el análisis de varianza:
 - 1. Cálculo de la suma total de los cuadrados:

$$STC = \sum_{j=1}^{k} \sum_{i=1}^{n_j} X_{ij}^2 - \frac{1}{N} \left(\sum_{j=1}^{k} \sum_{i=1}^{n_j} X_{ij} \right)^2$$

Cálculo de la suma de los cuadrados dentro de las muestras:

$$SCD = \sum_{j=1}^{k} \sum_{i=1}^{n_j} X_{ij}^2 - \sum_{j=1}^{k} \frac{1}{n_j} \left(\sum_{i=1}^{n_j} X_{ij} \right)^2$$

Cálculo de la suma de cuadrados entre muestras:

$$SCE = STC - SCD = \sum_{j=1}^{k} \frac{1}{n_j} \left(\sum_{i=1}^{n_j} X_{ij} \right)^2 - \frac{1}{N} \left(\sum_{j=1}^{k} \sum_{i=1}^{n_j} X_{ij} \right)^2$$

Cálculo de F:

$$F = \frac{SCE/(k-1)}{SCD/(N-k)}$$

- 5. Comparación con $F_{N-k,\alpha}^{k-1}$:
 - Si $F > F_{N-k,\alpha}^{k-1}$, se rechaza H_0 Si $F < F_{N-k,\alpha}^{k-1}$, se acepta H_0

Tabla ANDEVA o ADV

IADIA ANDEVA U ADV							
Fuente	Grados de	Suma de	MS	F			
	libertad	cuadrados					
Entre muestras	k-1	SCE	$\frac{SCE}{k-1}$				
			70 1	$\frac{SCE/(k-1)}{SCD/(N-k)}$			
Dentro de muestras	N-k	SCD	$\frac{SCD}{N-k}$	2 2 2 7 (2 1 1 1 1)			
Total	N-1	STC					

Clasificación Doble

- Se tienen dos factores de clasificación A y B, independientes. Para A se tienen "p" niveles y para B "q"niveles o categorias distintas.
- Para el factor A:
 - Hipótesis nula: $H_0: \mu_{1\bullet} = \mu_{2\bullet} = \cdots = \mu_{p\bullet} = \mu_A$
 - Hipótesis alternativa: H_a : no todas las $\mu_{i\bullet}$ son iguales
- Para el factor B:
 - Hipótesis nula: $H_0: \mu_{\bullet 1} = \mu_{\bullet 2} = \cdots = \mu_{\bullet q} = \mu_B$
 - \bullet Hipótesis alternativa: H_a : no todas las $\mu_{\bullet j}$ son iguales
- Suposiciones:
 - Poblaciones normales independientes, con la misma varianza σ^2
- Pasos a seguir para el análisis de varianza:
 - 1. Cálculo de la suma total de los cuadrados:

$$STC = \sum_{i=1}^{p} \sum_{j=1}^{q} X_{ij}^{2} - \frac{1}{pq} \left(\sum_{i=1}^{p} \sum_{j=1}^{q} X_{ij} \right)^{2}$$

Cálculo de la suma de los cuadrados del factor A:

$$SCA = \frac{1}{q} \sum_{i=1}^{p} \left(\sum_{j=1}^{q} X_{ij} \right)^{2} - \frac{1}{pq} \left(\sum_{i=1}^{p} \sum_{j=1}^{q} X_{ij} \right)^{2}$$

Cálculo de la suma de los cuadrados del factor B:

$$SCB = \frac{1}{p} \sum_{j=1}^{q} \left(\sum_{i=1}^{p} X_{ij} \right)^{2} - \frac{1}{pq} \left(\sum_{i=1}^{p} \sum_{j=1}^{q} X_{ij} \right)^{2}$$

Cálculo de la suma de residuales:

$$SCR = STC - SCA - SCB$$

Cálculo del estadístico F para el factor A:

$$F = \frac{SCA}{SCR}(q-1)$$

6. Comparación con $F_{(p-1)(q-1),\alpha}^{p-1}$:

• Si $F > F_{(p-1)(q-1),\alpha}^{p-1}$, se rechaza H_0 • Si $F < F_{(p-1)(q-1),\alpha}^{p-1}$, se acepta H_0

7. Cálculo del estadístico F para el factor B:

$$F = \frac{SCB}{SCR}(p-1)$$

- 8. Comparación con $F_{(p-1)(q-1),\alpha}^{q-1}$:

 Si $F > F_{(p-1)(q-1),\alpha}^{q-1}$, se rechaza H_0 Si $F < F_{(p-1)(q-1),\alpha}^{q-1}$, se acepta H_0

TD 1.1	A TATE	A TEXT		ADT	7
Tabla	$\mathbf{A} \mathbf{N} \mathbf{I}$) H; V A	0	$\Delta I) $	/

Tabla ANDEVA O ADV							
Fuente	Grados de	Suma de	MS	F			
	libertad	cuadrados					
Factor A	p-1	SCA	$\frac{SCA}{p-1}$	$\frac{SCA}{SCR}(q-1)$			
Factor B	q-1	SCB	$\frac{SCB}{q-1}$	$\frac{SCB}{SCR}(p-1)$			
Residuo	(p-1)(q-1)	SCR	$\frac{SCR}{(p-1)(q-1)}$				
Total	pq-1	STC					