Problem 4.72 Using Excel as a calculator.

Description Propane is burned with air. Determine the molar composition of the product gas if no CO is formed, assuming:

- (a) Theoretical air supplied, 100% conversion of fuel.
- (b) 20% excess air, 100% conversion.
- (c) 20% excess air, 90% conversion. Calculate the molar composition of the stack gas on a dry basis.

Solution:

For problem 4.72, parts (a) and (b) are essentially the same problem with a different value for excess air. Part (c) requires mole fraction calculation on a dry basis and with a different value for conversion. If we set up a spreadsheet with both wet and dry mole fractions and with chageable values for excess air and conversion, we can use one sheet to solve parts (a), (b), and (c).

First we draw the flowsheet and label the streams.

Flowsheet Drawing

Then we write down the balanced reaction equation: $C_3H_8+5O_2\to 3CO_2+4H_2O$, or $P+5O\to 3C+4W$ with extent of reaction ξ .

We'll feed the air into Stream 1 and the propane into Stream 2.

Choose a basis, in this case we'll use 100 mol/s of P in the feed.

$$n_{2_P} = 100 \frac{\text{mol}}{\text{s}}.$$

Then by the definition of excess air and the balanced reaction,

$$n_{1_0} = 5(1+xs)n_{2_p}$$

where xs is the fraction of excess air.

For standard air,

$$n_{1_N} = \frac{79}{21} n_{1_O}.$$

Next, a mass balance for each species around the mixer yields,

$$n_{3_i} = n_{1_i} + n_{2_i}$$
.

A mole balance on the reactor yields,

$$n_{4_i} = n_{3_i} + v_i \xi.$$

In terms of fractional conversion,

$$\xi = \frac{n_{1p} f_P}{-(-1)}.$$

To calculate mole fractions in each stream we have

$$x_i = \frac{n_i}{\sum n_i}.$$

If the stream is on a dry basis we just leave water out of the calculation. Nomenclature: In a spreadsheet, the cells containing entries that can be changed are in *italics*, the intermediate calculated quantities are in plain text, and the answers are in **bold text**.

To solve the problem, the following formulas are entered into a spreadsheet

Species	Stoic. Coeff	Stream 1	Stream 2	Stream 3	Stream 4		
C3H8	-1	0	100	=C2+D2	=E2+B2*\$B\$16		
O2	-5	=B3/B2*(1+B14)*D2	0	=C3+D3	=E3+B3*\$B\$16		
N2	0	=79/21*C3	0	=C4+D4	=E4+B4*\$B\$16		
CO2	3	0	0	=C5+D5	=E5+B5*\$B\$16		
H2O	4	0	0	=C6+D6	=E6+B6*\$B\$16		
	Total mole/s	=SUM(C2:C6)	=SUM(D2:D6)	=SUM(E2:E6)	=SUM(F2:F6)	Dry Total	=SUM(F2:F5)
	xC3H8	=C2/C\$7	=D2/D\$7	=E2/E\$7	=F2/F\$7	xC3H8-dry	=F2/H\$7
	xO2	=C3/C\$7	=D3/D\$7	=E3/E\$7	=F3/F\$7	xO2-dry	=F3/H\$7
	xN2	=C4/C\$7	=D4/D\$7	=E4/E\$7	=F4/F\$7	xN2-dry	=F4/H\$7
	xCO2	=C5/C\$7	=D5/D\$7	=E5/E\$7	=F5/F\$7	xCO2-dry	=F5/H\$7
	xH2O	=C6/C\$7	=D6/D\$7	=E6/E\$7	=F6/F\$7		
Frac. xs	0						
f C3H8	1						
extent	=D2*B15/(-B2)						

If you are running this tutorial in *FrameMaker* and you have *Microsoft Excel* available, you can double-click the spreadsheets above and below and they will operate just like in *Excel*.

A major time saving trick is to enter a cell and then choose *Edit->Fill->Down* (Ctrl-d) or *Edit->Fill->Right* (Ctrl-r). For example in the above spreadsheet:

Then select from Enter 0 here to here and fill down (Ctrl-d)									
Species	Stoic. Coeff	Stream 1	Stream 2	Stream 3	Stream 4				
C3H8	-1	0	100	=C2+D2	=E2+B2*\$B\$16				
O2	-5	=B3/B2*(1+B14)*D2	0	=C3+D3	=E3+B3*\$B\$16				
N2	0	=79/21*C3	0	=C4+D4	=E4+B4*\$B\$16				
CO2	3	0	0	=C5+D5	=E5+B5*\$B\$16				
H2O	4	0	0	=C6+D6	=E6+B6*\$B\$16				
	Total mole/s	=SUM(C2:C6)	=SUM(D2:D6)	=SUM(E2:E6)	=SUM(F2:F6)	Dry Total	=SUM(F2:F5)		
	xC3H8	=C2/C\$7	=D2/D\$7	=E2/E\$7	=F2/F\$7	xC3H8-dry	=F2/H\$7		
	xO2	±C3/C\$7	=D3/D\$7	=E3/E\$7	=F3/F\$7	xO2-dry	=F3/H\$7		
	xN2	=C4/C\$7	=D4/D\$7	=E4/E\$7	=F4/F\$7	xN2-dry	=F4/H\$7		
	xCO2	=C5/C\$7	≥Q5/D\$7	=E5/E\$7	=F5/F\$7	xCO2-dry	=F5/H\$7		
	xH2O	=C6/C\$7	=D6/D\$7	=E6/E\$7	=F6/F\$7		_		
Frac. xs f C3H8 extent									
click	Click here and type '=', click on Cell C2, type '/', click on Cell C7, then Next select from here to here and fill down (Ctrl-d) and then fill right (Ctrl-r).								
click on the text edit box (at the top) between the 'C' and the '7', type '\$' and Enter. The '\$' means use Row 7 regardless of Copy, Paste, or Fill.									

Fill right was used for **Total mole/s** (C7 to F7). Fill down was used for **Stream 3** (E2 to E6). The \$'s and fill down were used for **Stream 4** (F2 to F6) and **x-dry** (H8 to H11). Using fill down, fill right, and \$ can save you a lot of typing. For more information read "About cell and range references" and "Cell references are wrong after I move or copy cells" in Excel online help.

For part (a) the values are entered as follows:

Species	Stoic. Coeff	Stream 1	Stream 2	Stream 3	Stream 4		
C3H8	-1	0	100	100	0		
O2	-5	500	0	500	0		
N2	0	1880.952	0	1880.952	1880.952		
CO2	3	0	0	0	300		
H2O	4	0	0	0	400		
	Total mole/s	2380.952	100	2480.952	2580.952	Dry Total	2180.952
	xC3H8	0	1	0.040307	0	xC3H8-dry	0
	xO2	0.21	0	0.201536	0	xO2-dry	0
	xN2	0.79	0	0.758157	0.728782	xN2-dry	0.862445
	xCO2	0	0	0	0.116236	xCO2-dry	0.137555
	xH2O	0	0	0	0.154982		
Frac. xs	0						
f C3H8	1						
extent	100						

Again, the following key is used in the spreadsheet: Numbers that are entered or changeable by the user are in *italics*. Calculated intermediate values are in normal text and calculated values for the answer are in **bold**.

We can do part (b) by changing the fraction excess air from 0 to 0.2 (20% excess air)

Species	Stoic. Coeff	Stream 1	Stream 2	Stream 3	Stream 4		
C3H8	-1	0	100	100	0		
O2	-5	600	0	600	100		
N2	0	2257.143	0	2257.143	2257.143		
CO2	3	0	0	0	300		
H2O	4	0	0	0	400		
	Total mole/s	2857.143	100	2957.143	3057.143	Dry Total	2657.143
	xC3H8	0	1	0.033816	0	xC3H8-dry	0
	xO2	0.21	0	0.202899	0.03271	xO2-dry	0.037634
	xN2	0.79	0	0.763285	0.738318	xN2-dry	0.849462
	xCO2	0	0	0	0.098131	xCO2-dry	0.112903
	xH2O	0	0	0	0.130841		
Frac. xs	0.2						
f C3H8	1						
extent	100						

And we can do part c) by changing the conversion from 1 to 0.9 (100% to 90%)

Species	Stoic. Coeff	Stream 1	Stream 2	Stream 3	Stream 4		
C3H8	-1	0	100	100	10		
O2	-5	600	0	600	150		
N2	0	2257.143	0	2257.143	2257.143		
CO2	3	0	0	0	270		
H2O	4	0	0	0	360		
	Total mole/s	2857.143	100	2957.143	3047.143	Dry Total	2687.143
	xC3H8	0	1	0.033816	0.003282	xC3H8-dry	0.003721
	xO2	0.21	0	0.202899	0.049226	xO2-dry	0.055821
	xN2	0.79	0	0.763285	0.740741	xN2-dry	0.839979
	xCO2	0	0	0	0.088608	xCO2-dry	0.100478
	xH2O	0	0	0	0.118143		
Frac. xs	0.2						
f C3H8	0.9						
extent	90						