

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO

Adão Thalisson Castro Guimarães Pedro Henrique Ferreira Amorim da Silva Victor Augusto Medeiros Balbino

CONTROLADOR DIGITAL DISCRETO

 $\begin{array}{c} {\rm JUAZEIRO - BA} \\ 2022 \end{array}$

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO

Adão Thalisson Castro Guimarães Pedro Henrique Ferreira Amorim da Silva Victor Augusto Medeiros Balbino

CONTROLADOR DIGITAL DISCRETO

Esta trabalho teve como objetivo a montagem de um controlador digital discreto, dados os requisitos que o mesmo deveria possuir. Além de calcular seus parâmetros de modo teórico e simulá-los para averiguação destes resultados, e poder comprovar que estão sendo cumpridos os requisitos.

Orientador: Prof. Msc. Juracy Emanuel Magalhaes da Franca

JUAZEIRO - BA 2022

LISTA DE ILUSTRAÇÕES

Figura 1 –	Resposta ao degrau	5
Figura 2 –	Sistema contínuo utilizado para projeto	8
Figura 3 -	Curvas da resposta contínua	8
Figura 4 $-$	Sistema digital transformado	9
$Figura \ 5 \ -$	Resposta em malha fechada do sistema compensado	9
Figura 6 -	Comparação entre os sinais	0

LISTA DE CÓDIGOS

5.1	Código em Matlab para obtenção de polos dominantes e K do Sistema NC	13
5.2	Código em Matlab para implementação e geração dos gráficos	13

SUMÁRIO

1	PLANTA	5
2	CONVERSÃO DE CONTÍNUO PARA DISCRETO	8
3	CONCLUSÃO	11
4	REFERÊNCIAS	12
5	ANEXOS	13

1 PLANTA

De início, foi proposta uma planta para ser feito o controlador digital, ela é da forma:

$$G_p(s) = \frac{1}{s(s+1)}$$

Foi proposto também que o controlador deveria possuir alguns requisitos, que são:

- OS= 16,3 %
- $T_p = 1s$

A planta, na sua forma contínua, apresentava o seguinte comportamento:

Figura 1 – Resposta ao degrau

É notado que essa função apresenta Tp=3,5 aproximadamente, e um OS de 1,2(20%) aproximadamente também, resultados esses que serão comprovados por meio dos cálculos analíticos.

O primeiro passo é encontrar a função compesada dessa planta, os passos estão a seguir demonstrados, até encontrar a mesma. Alguns valores foram encontrados utilizando o Matlab, a exemplo dos polos dominantes e o valor de K.

Trabalho Controle II

$$W_{n} = \frac{4}{545} \qquad S = \frac{\ln(05|100)}{\sqrt{11^{2} + (\ln(04|100))^{2}}}$$

$$6c = \frac{1}{5(s+1)} = \frac{1}{5^2+5}$$

$$S = -8Wn \pm Wn \sqrt{8^2 - 1}$$

$$Wn = \frac{PARHE}{-6} REAL DE S = \frac{-0.154}{0.15} = \frac{1.08}{0.15}$$

$$W = \frac{PARTE}{-6} \frac{REAL}{-6} = \frac{DE}{-6} = \frac{17}{0.15}$$

$$Encontrar = 0 + 5 \left(\frac{1}{1080} \frac{1}{1080} + \frac{1}{1080} \frac{1}{1080} + \frac{1}{1080} \frac{1}{1080} + \frac{1}{1080} \frac{1}{1080} \right) = \frac{1}{1080} = \frac{1}{108$$

Columbre
$$\sigma$$
 σ

Solvendo que $wn = \frac{4}{5ts}$ e $\sigma = -8.Wn$, formos os substituiçãos

 $\sigma = -8.4 - 0$
 $\sigma = -4.4 + 0$
 $\sigma = -0.54$

Como a equação do tempo de pico é: tp=II wnV1-52 | sendo wnV1-52 = wd I tempo de pies desgodo é 1s,

$$\theta_{1} = 180 - \tan^{-1}\left(\frac{3!14}{0.54}\right) = 99.75^{\circ}$$

$$O_2 = tan^{-1} \left(\frac{3.14}{0.146} \right) = 81,6^{\circ}$$

O2 = tan (3.14) = 81,6 (Porém não vou enteror, pa essellai pl ser um zero, correlondo assim com o polo)

$$\theta_1 + \theta_3 = -180$$
 $-99,75 + \theta_3 = -180$
 $\theta_3 = -180 + 99,75$
 $\theta_3 = 80,25^{\circ}$

$$tan(03) = \frac{3.14}{x}$$
 $tan(80,25) = \frac{3.14}{x}$ $tan(80,25) = \frac{3.14}{5.181}$ $tan(80,25) = \frac{3.14}{5.181}$ $tan(80,25) = \frac{3.14}{5.181}$

$$h_1 = \sqrt{3.14^2 + 0.54^2} = 3.186$$

 $h_3 = \sqrt{3.14^2 + 0.54^2} = 3.186$

Como $K \neq dodo pa = K = h 1.h \cdot 3 (Nusse coso)$ $K = 3_1 186 \cdot 3_1 186 = 10_1 1512$

A função compensoda suá então: 10,1512. (5+1) (5+1,08)

$$G_{c}(s) = 10_{1}15 \cdot \frac{(s+1)}{(s+1_{1}08)}$$

2 CONVERSÃO DE CONTÍNUO PARA DISCRETO

O sistema será da seguinte forma:

Figura 2 – Sistema contínuo utilizado para projeto

Teremos o seguinte gráfico para a resposta em malha fechada no plano s:

Figura 3 — Curvas da resposta contínua

Entretanto desejamos o sistema em função de Z, ou seja, o sistema discreto, para isso, faremos a transformação do Gp(s) e Gc(s) em Gp(z) e Gc(z), respectivamente. (Usaremos um tempo de amostragem de 0,01s)

$$G_p(s) \to G_p(z) = \frac{5,159 * 10^{-5}z + 5,142 * 10^{-5}}{z^2 - 1,99z + 0,99}$$

$$G_c(s) \to G_c(z) = \frac{10,15z - 10,05}{z - 0,9893}$$

O diagrama de blocos tem de ficar da seguinte forma, como mostrado a seguir, para o nosso sistema digital transformado:

Figura 4 – Sistema digital transformado

Fazendo agora a "multiplicação" destes dois sinais, como mostrado no diagrama de blocos e obtendo a função de transferêmcia de malha fechada, ficaremos com a seguinte função:

$$G_p(z)*G_c(z) \to G_e(z) = \frac{0,0005236z^2 + 3,466*10^{-6}z - 0,0005167}{z^3 - 2,979z^2 + 2,959z - 0,9794}$$

A curva ficará então da seguinte maneira:

Figura 5 – Resposta em malha fechada do sistema compensado

Sendo assim possível notar que os valores anteriormente calculados, de fato estão corretos, como o Tempo de pico sendo de 1s e o overshoot sendo de no máximo 16,3%.

Na seguinte imagem, foram colocadas sobrepostas as respostas do sistema Não compensado , e o do compensado, na sua forma digital. Lembrando que o tempo de amostragem é de 1s, como foi mencionado no início deste relatório.

Figura 6 – Comparação entre os sinais

Estão mostrados alguns pontos notáveis, como o Tempo de pico, além de ser notado o Tempo de acomodação dentro do que era calculado, sendo este de 7,4s.

Na seção de anexos está o código utilizado para geração destes gráficos, comentado para facilitar o entendimento.

3 CONCLUSÃO

O experimento trouxer uma conclusão de forma abrangente de como se comportam na prática e como vimos em sala de aula, trazendo um amadurecimento de saber lidar e contornar erros ocasionais, bem como problemas que surgiram na realização dos mesmos, e que podem acontecer na prática.

Além disso, os resultados adquiridos nesse experimento foram suficientemente claros e objetivos com a proposta do experimento. Entendendo como funciona e verificar os comportamentos da função compensada, além do overshoot e dos polos, compreendendo todos os princípios, desde os seus gráficos, foi possível também apurar os cálculos neles envolvidos. Dessa forma, pode-se aplicar conceitos teóricos de forma prática, apesar de serem realizados por meio de simulação. Entretanto, é algo bem factível de assemelhação com o mundo real.

4 REFERÊNCIAS

1. NISE, N. S. Engenharia de Sistemas de Controle, 6a Edição, LTC, 2012.

5 ANEXOS

Código 5.1 – Código em Matlab para obtenção de polos dominantes e K do Sistema NC

```
1
   0S = 16.3
  zeta=-log(OS/100)/sqrt(pi^2+[log(OS/100)]^2);
3
  %zeta=0.707
4
   num_nc=[1] %numerador da funcao nao compensada
   den_nc=[1 1 0] %denominador da funcao nao compensada
6
7
8
  funcao_nc=tf(num_nc, den_nc) %transforma em uma funcao de
      transferencia
9
  rlocus(funcao_nc) %mostra o LR
10
   sgrid(zeta,0) % Sobrep e a reta de ultrapassagem percentual
11
      desejada.
12
13
  PD_nao_comp=-0.54+0.887*i;
14
   parte_real_nc= real(PD_nao_comp); %separa a parte real do PD
15
   parte_im_nc= imag(PD_nao_comp); %separa a parte Imaginaria do PD
16
17
   wn_nc = parte_real_nc/-zeta;
18
   ts_nc = 4/ (wn_nc * zeta);
19
20
21
   K_nc=-real(polyval(den_nc, PD_nao_comp)) %mostra o K do sistema
22
23
   %%% compensando
24
   ts_comp = ts_nc
25
   wn_comp = 4/(zeta*ts_comp)
26
27
28
29
30
31
32
33
34
```

Código 5.2 – Código em Matlab para implementação e geração dos gráficos

```
_____
2
  %Funcao em s da planta
3
  funcNC=tf(1.0352*1,[1 1 0]);
4
5
6 Ts = 0.01;
7 funNCz=c2d(funcNC,Ts); %funcao em z da planta
  MFNCz=feedback(funNCz,1) %obtendo funcao em malha fechada para a
     funcao NC
  step(MFNCz)
9
10
11 hold on
12
13
  funcC=tf(10.15*[1 1],[1 1.08]);%funcao em s do compensador
14
15
funCz=c2d(funcC,Ts); %funcao em z do compensador
17
  Gez=funNCz*funCz %multiplicacao da planta com o compensador Z
19
20 MFz=feedback(Gez,1) % obtem a funaco de transferencia em malha
     fechada
21 step(MFz);
  legend('Nao Compensado Digital','Resposta do sistema digital');
23
24
25 hold off
26
  //-----
```