ЛР №2 Митренко В. Д.

Лабораторна робота №2

Тема: Застосування кластерного аналізу в процесі визначення переліку стану об'єкта

Мета: закріпити навички проєктування програм для кластерного аналізу опису станів досліджуваних об'єктів.

Хід роботи

Після ознайомлення із теорією кластерного аналізу, було вирішено написати просту веб-сторінку, яка буде містити в собі вхідну таблицю із заповненими даними та проводити обрахунки. В якості мов програмування були обрані **HTML**-розмітка та **JavaScript** логіка. Усі формули були детально розібрані та реалізовані за допомогою методів. Кожен із них був описаний та поміщений у файл calculator.js:

```
\checkmark // This method calculates the sum of each column
49 ∨ function calculateTheSumOfColumns(inputTable) {
         const columnsAmount = inputTable[0].length
          const allColumnsSums = new Array(columnsAmount).fill(0)
          for (let i = 0; i < inputTable.length; i++) {</pre>
              for (let j = 0; j < inputTable[i].length; j++) {</pre>
                  allColumnsSums[j] += inputTable[i][j]
          return allColumnsSums;
62 \sim // Divides the input table by the columns sums. Formula: Vij = Xij / sum (Xij) [1..n]; n - amount of columns. (formula 11)
66 ∨ function divideOnSums(inputTable, columnsSums) {
67 const dividedTable = []
          for (let i = 0; i < inputTable.length; i++) {</pre>
              const row = []
              for (let j = 0; j < inputTable[i].length; j++) {</pre>
                 const currentTableValue = inputTable[i][j]
                  const currentColumnSum = columnsSums[i]
                   row.push(currentTableValue / currentColumnSum)
              dividedTable.push(row)
          return dividedTable;
```

Рисунок 1. Приклад методів у файлі calculator.js

Задля виконання функцій перетворення даних у html-розмітку було написано файл ui-utils.js, у якому було написано метод для створення розмітки таблиці із двовимірного масиву, а також метод створення розмітки результату обчислень:

```
// creates a table from given array.
// Paramas:
// Paramas:
// could be coloured as a colour as
```

Рисунок 2. Метод для створення розмітки таблиці із двовимірного масиву

Для перевірки роботоздатності розробленого веб-застосунку, було виконано кластерний аналіз на прикладах, що були зазначені у теоричному документі до лабораторної роботи. Завдяки цьому можна покроково перевірити правильність виконаних розрахунків.

Вхідна матриця								
Attribute1 Attribute2 Attribute3 Attribute4								
P1	30	0.6	2	5				
P2	33	0.6	2.5	5				
Р3	50	1	2	15				
P4	45	0.8	2	10				
P5	20	0.2	1	5				
P6	25	0.6	1	20				

Рисунок 3. Вхідна матриця тестових даних у розробленому застосунку Результати обрахунків зображуються, коли користувач натискає на кнопку «Створити кластери». Спочатку виконується обрахунок сум усіх колонок та нормалізація матриці:

Обраховуємо суми колонок:

	Вхідна матриця із сумами колонок									
	Attribute1 Attribute2 Attribute3 Attribute4									
P1	30	0.6	2	5						
P2	33	0.6	2.5	5						
Р3	50	1	2	15						
P4	45	0.8	2	10						
P5	20	0.2	1	5						
P6	25	0.6	1	20						
Sum(Xij)	203	3.8	10.5	60						

Рисунок 4. Обраховані суми колонок вхідної матриці

На рисунку 5 зображений процес нормалізації вхідної матриці:

Ділимо кожен елемент на суму колонки:

	Вхідна матриця поділена на суми колонок									
	Attribute1	Attribute4								
P1	0.1478	0.1579	0.1905	0.0834						
P2	0.1626	0.1579	0.2381	0.0834						
Р3	0.2464	0.2632	0.1905	0.25						
P4	0.2217	0.2106	0.1905	0.1667						
P5	0.0986	0.0527	0.0953	0.0834						
P6	0.1232	0.1579	0.0953	0.3334						

Нормалізуємо матрицю:

	Нормалізована матриця									
	Attribute1	Attribute2	Attribute3	Attribute4	Wij					
P1	0.1478	0.1579	0.1905	0.0834	0.5795					
P2	0.1626	0.1579	0.2381	0.0834	0.6419					
Р3	0.2464	0.2632	0.1905	0.25	0.95					
P4	0.2217	0.2106	0.1905	0.1667	0.7894					
P5	0.0986	0.0527	0.0953	0.0834	0.3298					
P6	0.1232	0.1579	0.0953	0.3334	0.7097					

Рисунок 5. Нормалізація вхідної матриці для ізотонічної розбивки

Наступним кроком була виконана ізотонічна розбивка на кластери, а її результати були виведені на сторінці. Результат ізотонічної розбивки можна побачити на рисунку 6.

Ізотонічна розбивка

Обраховуємо відстані та мінімальні значення рядків:

	Матриця відстаней										
	P1	P2	Р3	P4	P5	P6	Min Pi				
P1	0	0.0624	0.3705	0.2099	0.2498	0.1302	0.0624				
P2	0.0624	0	0.3081	0.1475	0.3122	0.0678	0.0624				
Р3	0.3705	0.3081	0	0.1606	0.6203	0.2404	0.1606				
P4	0.2099	0.1475	0.1606	0	0.4597	0.0798	0.0798				
P5	0.2498	0.3122	0.6203	0.4597	0	0.3799	0.2498				
Р6	0.1302	0.0678	0.2404	0.0798	0.3799	0	0.0678				

Критична відстань R (= Max Min Pi) = 0.24976233687667448

Можна виділити наступні кластери:

Кластер 1: Р5

Кластер 2: Р1,Р2,Р6,Р4,Р3

Рисунок 6. Результат ізотонічної розбивки

Далі, за аналогією було виконано ізоморфну розбивку на кластери. Для цього, спочатку потрібно виконати відповідну нормалізацію:

Ізоморфна розбивка

Нормалізуємо матрицю:

	Нормалізована матриця (ізоморфна)								
	Attribute1	Attribute2	Attribute3	Attribute4					
P1	0.2551	0.2725	0.3287	0.1439					
P2	0.2533	0.246	0.371	0.1299					
Р3	0.2593	0.2771	0.2006	0.2632					
P4	0.2809	0.2668	0.2414	0.2112					
P5	0.2989	0.1597	0.2889	0.2528					
P6	0.1736	0.2226	0.1343	0.4698					

Рисунок 7. Нормалізація матриці для ізоморфної розбивки

Результат ізоморфної розбивки можна побачити на рисунку 8:

Обраховуємо відстані та мінімальні значення рядків:

	Матриця відстаней (ізоморфна)										
	P1	P2	Р3	P4	P5	P6	Min Pi				
P1	0	0.0519	0.1753	0.1135	0.1677	0.3914	0.0519				
P2	0.0519	0	0.2187	0.1569	0.1772	0.4225	0.0519				
Р3	0.1753	0.2187	0	0.0703	0.1525	0.2396	0.0703				
P4	0.1135	0.1569	0.0703	0	0.1257	0.303	0.0703				
P5	0.1677	0.1772	0.1525	0.1257	0	0.3011	0.1257				
Р6	0.3914	0.4225	0.2396	0.303	0.3011	0	0.2396				

Критична відстань R (= Max Min Pi) = 0.2395558483017508 Можна виділити наступні кластери:

Кластер 1: Р6

Кластер 2: Р1,Р2,Р3,Р4,Р5

Рисунок 8. Результат ізоморфної розбивки

Проаналізувавши відповіді побудованої системи та порівнявши їх із обрахунками у теоретичному документі до лабораторної роботи, було зроблено висновок, що усі алгоритми працюють коректно та виконання кластеризації проходить без помилок. Далі було виконано тестування системи на основі заданого варіанту (варіант №2):

2						
2		X1	X2	Х3	X4	X5
	P1	15,5	0,2	0,1	105	4,1
	P2	12,3	0,15	0,5	55	4,5
	Р3	11,2	0,18	0,2	75	4,2
	P4	17,7	0,17	0,7	100	4,7
	P5	19,8	0,22	0,9	50	5,9
	P6	12,5	0,16	0,8	65	5,8
	P7	12,2	0,17	0,5	80	5,5

Вхідні дані за варіантом зображені на рисунку 9:

Кластерний аналіз

	Вхідна матриця									
	Attribute1	Attribute2	Attribute3	Attribute4	Attribute5					
P1	15.5	0.2	0.1	105	4.1					
P2	12.3	0.15	0.5	55	4.5					
Р3	11.2	0.18	0.2	75	4.2					
P4	17.7	0.17	0.7	100	4.7					
P5	19.8	0.22	0.9	50	5.9					
P6	12.5	0.16	0.8	65	5.8					
P7	12.2	0.17	0.5	80	5.5					

Створити кластери

Рисунок 9. Вхідна матриця за варіантом роботи Обрахунки кластерів для даної матриці зображені на рисунках 10-14:

Обраховуємо суми колонок:

	Вхідна матриця із сумами колонок									
	Attribute1	Attribute5								
P1	15.5	0.2	0.1	105	4.1					
P2	12.3	0.15	0.5	55	4.5					
Р3	11.2	0.18	0.2	75	4.2					
P4	17.7	0.1701	0.7	100	4.7					
P5	19.8	0.22	0.9	50	5.9					
P6	12.5	0.16	0.8	65	5.8					
P7	12.2	0.1701	0.5	80	5.5					
Sum(Xij)	101.2	1.25	3.7	530	34.7					

Рисунок 10. Обрахунок сум усіх колонок матриці

Ділимо кожен елемент на суму колонки:

	Вхідна матриця поділена на суми колонок									
	Attribute1	Attribute2	Attribute3	Attribute4	Attribute5					
P1	0.1532	0.16	0.0271	0.1982	0.1182					
P2	0.1216	0.12	0.1352	0.1038	0.1297					
Р3	0.1107	0.144	0.0541	0.1416	0.1211					
P4	0.175	0.136	0.1892	0.1887	0.1355					
P5	0.1957	0.176	0.2433	0.0944	0.1701					
P6	0.1236	0.128	0.2163	0.1227	0.1672					
P7	0.1206	0.136	0.1352	0.151	0.1586					

Нормалізуємо матрицю:

	Нормалізована матриця									
	Attribute1	Attribute2	Attribute4	Attribute5	Wij					
P1	0.1532	0.16	0.0271	0.1982	0.1182	0.6565				
P2	0.1216	0.12	0.1352	0.1038	0.1297	0.6102				
Р3	0.1107	0.144	0.0541	0.1416	0.1211	0.5713				
P4	0.175	0.136	0.1892	0.1887	0.1355	0.8243				
P5	0.1957	0.176	0.2433	0.0944	0.1701	0.8793				
Р6	0.1236	0.128	0.2163	0.1227	0.1672	0.7576				
P7	0.1206	0.136	0.1352	0.151	0.1586	0.7012				

Рисунок 11. Нормалізація матриці

Ізотонічна розбивка

Обраховуємо відстані та мінімальні значення рядків:

Матриця відстаней								
	P1	P2	Р3	P4	P5	P6	P7	Min Pi
P1	0	0.0464	0.0852	0.1678	0.2229	0.1011	0.0447	0.0447
P2	0.0464	0	0.0389	0.2141	0.2692	0.1474	0.0911	0.0389
Р3	0.0852	0.0389	0	0.253	0.308	0.1863	0.1299	0.0389
P4	0.1678	0.2141	0.253	0	0.0551	0.0667	0.1231	0.0551
P5	0.2229	0.2692	0.308	0.0551	0	0.1218	0.1782	0.0551
Р6	0.1011	0.1474	0.1863	0.0667	0.1218	0	0.0564	0.0564
P7	0.0447	0.0911	0.1299	0.1231	0.1782	0.0564	0	0.0447

Критична відстань R (= Max Min Pi) = 0.056389154307309175 Можна виділити наступні кластери:

Кластер 1: Р6

Кластер 2: P2,P3,P1,P7,P4,P5

Рисунок 11. Обрахунок відстаней та результат ізотонічної розбивки на кластери

Ізоморфна розбивка

Нормалізуємо матрицю:

Нормалізована матриця (ізоморфна)							
	Attribute1	Attribute2	Attribute3	Attribute4	Attribute5		
P1	0.2334	0.2438	0.0412	0.3018	0.18		
P2	0.1993	0.1967	0.2215	0.1701	0.2126		
Р3	0.1938	0.2521	0.0947	0.2478	0.2119		
P4	0.2123	0.1651	0.2296	0.229	0.1644		
P5	0.2226	0.2002	0.2767	0.1073	0.1934		
P6	0.1631	0.169	0.2855	0.1619	0.2207		
P7	0.172	0.194	0.1928	0.2153	0.2261		

Рисунок 12. Нормалізація матриці для ізоморфної розбивки

ЛР №2 Митренко В. Д.

Обраховуємо відстані та мінімальні значення рядків:

Матриця відстаней (ізоморфна)								
	P1	P2	Р3	P4	P5	P6	P7	Min Pi
P1	0	0.2331	0.0919	0.2184	0.309	0.3024	0.1971	0.0919
P2	0.2331	0	0.1589	0.0839	0.089	0.0794	0.0617	0.0617
Р3	0.0919	0.1589	0	0.1696	0.2382	0.2274	0.1214	0.0919
P4	0.2184	0.0839	0.1696	0	0.1386	0.115	0.0884	0.0839
P5	0.309	0.089	0.2382	0.1386	0	0.0912	0.1496	0.089
Р6	0.3024	0.0794	0.2274	0.115	0.0912	0	0.1104	0.0794
P7	0.1971	0.0617	0.1214	0.0884	0.1496	0.1104	0	0.0617

Критична відстань R (= Max Min Pi) = 0.09184186367991484

Можна виділити наступні кластери:

Кластер 1: Р1,Р3

Кластер 2: P2,P7,P6,P4,P5

Рисунок 13. Результат ізоморфної розбивки на кластери

Увесь вихідний код даної системи можна побачити на GitHub репозиторії за посиланням: https://github.com/VadymMytr/ISPPR

Висновок: під час виконання даної лабораторної роботи було ознайомлено із ізотонічною та ізоморфною розбивками на кластери, розібрано відповідні формули, створено систему, яка розбиває задану матрицю на кластері та протестовано її на тестових даних із теоретичної частини, а також на даних за варіантом. Можна стверджувати, що система працює коректно та швидко.