Electromagnetism แม่เหล็กไฟฟ้า

Suraphong Yuma

(suraphong.yum@mahidol.ac.th)

Office: P619 (Payathai campus)

Office hours: Friday 13:00-15:00 pm

Website: http://einstein.sc.mahidol.ac.th/~yuma/scpy156/scpy156_2017_4.pdf

ประจูไฟฟ้าและแรงไฟฟ้า

- ไฟฟ้าสถิตเกิดจากการที่สสาร<u>ไม่เป็นกลาง</u>
 ทางไฟฟ้า
 - เช่น เอาผ้าหรือขนสัตว์ถูกกับแท่ง
 อำพัน หรือ ยางแข็ง
 - จะเกิดการแลกเปลี่ยนประจุ (Charge) หรือ ประจุไฟฟ้า (Electric charge)
 - ทำให้มีการผลักกันของประจุเดียวกัน
 หรือดึงดูดกันของประจุต่างขั้วกัน

ประจูใฟฟ้าและแรงไฟฟ้า

Charles-Augustin de Coulomb

- ในระบบ SI (Système International d'Unités)
 ประจุมีหน่วยเป็น คูลอมป์ (Coulomb) และใช้ตัวย่อ C
 - · ประจุของอิเล็กตรอนมีค่า -1.6x10 C
 - · ประจุของโปรตอน มีประจุ +1.6x10 C

Charge and Mass of the Electron, Proton, and Neutron

Particle	Charge (C)	Mass (kg)
Electron (e) Proton (p) Neutron (n)	$-1.602\ 191\ 7 \times 10^{-19}$ + 1.602\ 191\ 7 \times 10^{-19} 0	9.1095×10^{-31} 1.67261×10^{-27} 1.67492×10^{-27}

ประจูไฟฟ้าและแรงไฟฟ้า

 แรงไฟฟ้า (Electric force, f_e) คือ แรงที่ประจุไฟฟ้ากระทำ ต่อกัน และเป็นไปตามกฎของคูลอมบ์ (Coulomb's law)

$$F_e = \frac{kq_1q_2}{r^2}$$

แรง โน้มถ่วง
$$F = \frac{GMm}{r^2}$$

โดย k เป็นค่าคงที่มีค่าเท่ากับ 8.9875x10⁹ N m²/C² ~
 9x10⁹ N m²/C²

ประจุไฟฟ้าและแรงไฟฟ้า

- ทิศทางของแรงจะขึ้นกับชนิด ของประจุ
 - ประจุชนิดเดียวกัน แรงจะมี
 ทิศพุ่งออกจากกัน
 - ประจุชนิดต่างกัน แรงจะมี
 ทิศพุ่งเข้าหากัน

สนามไฟฟ้า

จากกฎของคูลอมบ์ เรารู้ว่า เมื่อมีประจุสองอันขึ้นไป จะมีแรงกระทำต่อกันเสมอ ไม่ว่าจะมีระยะห่างจากกันแค่ไหน

- · สนามไฟฟ้า (Electric field) เป็นปริมาณเวกเตอร์
 - · ถูกสร้างขึ้นมาเพื่ออธิบายลักษณะของแรงไฟฟ้า โดยที่ประจุใดๆจะมีสนามไฟฟ้าอยู่รอบๆตลอดเวลา
 - · สามารถเขียนเป็นสนามไฟฟ้า โดยใช้**เส้นสนามไฟฟ้า**

สนามไฟฟ้า

· สนามไฟฟ้า (E) คือ แรงไฟฟ้า (F_e) ที่กระทำต่อประจุทดสอบ q₀

$$E = \frac{F_e}{q_o}$$

- · หรือ สนามไฟฟ้า คือ แรงไฟฟ้าต่อหนึ่งหน่วยประจุ นั่นเอง
- · ถ้าเราต้องการหาสนามไฟฟ้าที่ระยะห่าง r จากประจุ q ขนาดของสนามไฟฟ้า จะมีค่าเท่ากับ

$$E = \frac{F_e}{q_0} = \frac{\left(\frac{kqq_0}{r^2}\right)}{q_0} = \frac{kq}{r^2}$$

สนามไฟฟ้า

$$E = \frac{kq}{r^2}$$

- จะเห็นว่า ค่าสนามไฟฟ้าอยู่ที่
 ประจุที่เราต้องการหาสนาม ไฟฟ้าเท่านั้น
- ทิศของสนามจะขึ้นอยู่กับประจุ
 - สนามจะพุ่งออกจากประจุบวก และพุ่งเข้าหาประจุลบ

สนามไฟฟ้าในกรณีก้อนประจุต่อเนื่อง

$$\Delta \overrightarrow{E} = k_e \frac{\Delta q}{r^2} \ \hat{r_i}$$

· สนามไฟฟ้ารวมที่จุด P คือ

$$\overrightarrow{E} \approx k_e \sum_{i} \frac{\Delta q_i}{r^2} \, \hat{r_i}$$

$$\overrightarrow{E} = k_e \lim_{\Delta q_i \to 0} \sum_{i} \frac{\Delta q_i}{r^2} \hat{r_i} = k_e \int \frac{dq_i}{r^2} \hat{r_i}$$

เส้นสนามไฟฟ้า

จะมีทิศทางพุ่งออกจากบวก และพุ่งเข้าหาลบเสมอ

การเคลื่อนที่ของประจุในสนามไฟฟ้าคงที่

$$\overrightarrow{F}_e = q \overrightarrow{E} = m \overrightarrow{a}$$
 \longrightarrow $\overrightarrow{a} = \frac{q \cancel{E}}{m}$

- อิเล็กตรอนเคลื่อนที่เข้าสู่สนามไฟฟ้าคงที่ด้วยอัตราเร็วเริ่มต้น v_i=3.00x10⁶ m/s และสนามไฟฟ้ามีขนาด E=200 N/C ความยาวในแนวนอนของระบบคือ l=0.100 m.
 - A. จงหาอัตราเร่งของอิเล็กตรอน ขณะที่เคลื่อนที่อยู่ภายในสนามไฟฟ้า โดยให้มวลของอิเล็กตรอนเป็น 9.11x10⁻³¹ kg
 - B. ถ้าอิเล็กตรอนเคลื่อนที่เข้าสู่สนามไฟฟ้าที่เวลาเริ่มต้น t=0 จงหาเวลาที่อิเล็กตรอนออกจากสนามไฟฟ้า
 - C. ถ้าอิเล็กตรอนเคลื่อนที่เข้าสู่สนามไฟฟ้าที่ตำแหน่ง y=0 อิเล็กตรอนจะออกจากสนามไฟฟ้าที่ระยะ y เท่ากับเท่าไร

Electric Flux ฟลักซ์ใฟฟ้า

· Electric flux คือจำนวนของเส้นสนามไฟฟ้า (ซึ่งเป็นสัดส่วน โดยตรงกับค่าสนามไฟฟ้า E) ที่ผ่านพื้นที่หน้าตัด A.

$$\Phi_E = EA$$

$$\Delta \Phi_E = \overrightarrow{E_i} \cdot \Delta \overrightarrow{A_i}$$

$$\Phi_{E} = \lim_{\Delta A_{i} \to 0} \sum_{i} \overrightarrow{E}_{i} \cdot \Delta \overrightarrow{A}_{i} = \int_{surface} \overrightarrow{E}_{i} \cdot d\overrightarrow{A}_{i}$$

Gauss's Law กฎของเกาส์

$$\Phi_E = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = k_e \frac{q}{R^2} (4\pi R^2) = 4\pi k_e q$$

$$\Phi_E = \frac{q}{\epsilon_o}$$

ฟลักซ์ทั้งหมดที่วิ่งผ่านพื้นที่ผิวปิดใดๆ รอบประจุ q จะมีค่าเท่ากับ q/ ε ο และ<u>ไม่ขึ้นกับรูปทรงของพื้นผิว</u> The same number of field lines and the same flux pass through both of these area elements.

Gauss's Law กฎของเกาส์

 ถ้าเราให้ประจุอยู่ที่พื้นผิวของทรงกลมรัศมี R สนามไฟฟ้า ภายในทรงกลมนั้นจะเป็นอย่างไร?

ตัวนำไฟฟ้าในสมดุลไฟฟ้าสถิต

- · ตัวนำไฟฟ้า ถือได้ว่าอยู่ในสมดุลไฟฟ้าสถิต เมื่อไม่มีการเคลื่อนที่ของประจุในตัวนำไฟฟ้า
- · ตัวนำไฟฟ้าที่อยู่ในสมดุลไฟฟ้าสถิตจะมีคุณสมบัติดังต่อไปนี้
 - 1. สนามไฟฟ้าเป็นศูนย์ทุกที่ ภายในตัวนำไฟฟ้า
 - 2. ถ้าตัวนำไฟฟ้าโดดเดี่ยวมีประจุ ประจุของมันจะอยู่ที่พื้นผิว
 - 3. สนามไฟฟ้าที่อยู่ด้านนอกของตัวนำไฟฟ้าที่มีประจุ จะมีทิศตั้งฉากกับพื้นผิวของตัวนำ ไฟฟ้าและมีขนาดเท่ากับ σ/ε_0 ,เมื่อ σ คือความหนาแน่นของประจุที่พื้นผิวนั้นๆ
 - 4. ในกรณีของตัวนำไฟฟ้าหน้าตาประหลาด ความหนาแน่นประจุที่พื้นผิว จะมีค่ามากที่สุด ณ จุดที่รัศมีความโค้งน้อยสุด

พลังงานศักย์ใฟฟ้าและศักย์ใฟฟ้า

 ถ้าเราต้องการทำงานให้ประจุเคลื่อนที่ จาก A ไป B แบบสม่ำเสมอ

$$W_{AB} = Fd \cos \theta = Fd = (qE)d = qEd$$

ดังนั้น พลังงานศักย์ที่เปลี่ยนไปของ
 ประจุระหว่างตำแหน่ง A และ B คือ

$$\Delta U_{AB} = qEd$$

สนามไฟฟ้า

(เปรียบเทียบกับพลังงานศักย์ โน้มถ่วง mgh)

ความต่างศักย์ และศักย์ไฟฟ้า

· สำหรับระยะทางเล็กๆ ds ที่ประจุเคลื่อนที่ไป จะมีงานเกิดขึ้นจากสนามไฟฟ้าทำกับประจุซึ่งมีค่าเป็น

$$\overrightarrow{F}_e \cdot d\overrightarrow{s} = q_0 \overrightarrow{E} \cdot d\overrightarrow{s}$$

- \cdot พลังงานศักยไฟฟ้าที่เปลี่ยนไป คือ dU=- $q_0 \overrightarrow{E} \cdot d\overrightarrow{s}$
- · จากจุด A ไปจุด B พลังงานศักย์ไฟฟ้าที่เปลี่ยนแปลงไป สามารถหาได้จากความสัมพันธ์

$$\Delta U = U_B - U_A = -q_0 \int_A^B \overrightarrow{E} \cdot d\overrightarrow{s}$$

ความต่างศักย์ใฟฟ้าระหว่างจุด A และ B ในสนามไฟฟ้าคือ

$$\Delta V \equiv \frac{\Delta U}{q_0} = -\int_A^B \vec{E} \cdot d\vec{s}$$

ศักย์ใฟฟ้า

· พลังงานศักย์ สามารถเขียนให้อยู่ในรูปของความต่างศักย์ ได้เป็น

$$W=q\Delta V$$

- · โดยที่หน่วยของศักย์ไฟฟ้า จะเป็น Volt (V) ซึ่งก็คือ J/C
- · หน่วยของพลังงานจะเป็น electron volt (eV),
 - · ถูกนิยามเป็นพลังงานที่ประจุขนาด e (อิเล็กตรอนหรือโปรตอน) ใช้ในการเคลื่อนที่ 1 V

$$1eV = 1.60 \times 10^{-19} \text{C} \cdot V = 1.60 \times 10^{-19} \text{J}$$

$$\Delta U = q\Delta V = -qEd$$

ถ้าประจุเป็นบวก สนามไฟฟ้าจะสูญเสียพลังงานศักย์ไฟฟ้า

ศักย์ใฟฟ้าและพลังงานศักย์ของประจุที่เป็นจุด

$$\Delta V = V_B - V_A = -\int_A^B \overrightarrow{E} \cdot d\overrightarrow{s}$$

$$\overrightarrow{E} \cdot d\overrightarrow{s} = k_e \frac{q}{r^2} \hat{r} \cdot d\overrightarrow{s}$$

$$V_B - V_A = k_e q \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

ความต่างศักย์ไม่ขึ้นกับเส้นทางที่ประจุเคลื่อนที่

$$V=k_e\frac{q}{r}$$
 \longrightarrow $V=k_e\int\frac{q}{r}$

ศักย์ใฟฟ้าจากแผ่นประจุ

- \cdot ให้แผ่นประจุมีรัศมี a และความหนาแน่นของประจุบนพื้นผิว มีค่าเป็น σ จงหา
 - · ศักย์ไฟฟ้าที่จุด p
 - ขนาดของสนามไฟฟ้าในทิศตั้งฉากกับเส้นที่ที่ลากผ่านจุดศูนย์กลางของ แผ่นประจุ (หรือขนาดของสนามไฟฟ้าที่จุด p ในทิศขนาดกับแผ่นประจุ)

แรงแม่เหล็ก (Magnetic force)

• เมื่อมีประจุไฟฟ้า q เคลื่อนที่ในสนามแม่เหล็ก จะได้รับแรงกระทำจาก สนามแม่เหล็ก ที่เรียกว่า "แรงแม่เหล็ก (F_B)" ซึ่งมีค่าเท่ากับ

$$\overrightarrow{F} = q \overrightarrow{v} \times \overrightarrow{B}$$

 $oldsymbol{\cdot}$ โดยที่ $oldsymbol{ heta}$ คือ มุมที่เกิดขึ้นระหว่างทิศการเคลื่อนที่ของประจุและทิศ ของสนามแม่เหล็ก $oldsymbol{B}$

(a)

แรงแม่เหล็กที่เกิดกับตัวนำไฟฟ้าที่มีกระแส

- พิจารณาส่วนของสายไฟนำไฟฟ้าความยาว L
 - ถ้ามีกระแสไฟฟ้า I (ไอ) วิ่งผ่านสนามแม่เหล็ก B
 จะมีแรงแม่เหล็กเกิดขึ้นกับสายไฟ เป็น

The Biot-Savart Law กฎของบิโอ-ซาวาร์ต

- สนามแม่เหล็กสามารถเกิดขึ้นได้ที่จุด P
 ใกล้ๆกับตัวนำไฟฟ้าที่มีกระแสไฟฟ้าไหลผ่าน
- · Biot-Savart Law สามารถเขียนได้เป็น

©Serway & Jewett

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2}$$

Permeability of free space

$$\mu_0 = 4\pi \times 10^{-7} T \cdot m/A$$

ตัวอย่าง

- · พิจารณาเส้นลวดที่มีกระแสไฟฟ้าคงที่วิ่งผ่าน | ถูกวางไว้บนแกน x ดังรูป
 - · จงหาขนาดและทิศทางของสนามแม่เหล็กที่จุด P ที่เกิดจากกระแสไฟฟ้าในเส้นลวดนี้

Ampere's Law กฎของแอมแปร์

· line integral (การอินทิเกรตเชิงเส้น) $\overrightarrow{B}\cdot \overrightarrow{ds}$ ของเส้นทางปิดใดๆ จะมีค่าเท่ากับ μ_0I เมื่อกระแสไฟฟ้า I คือกระแสไฟฟ้าทั้งหมดที่ไหลผ่านพื้นผิวที่เส้นปิดนั้นอยู่

$$\oint \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_0 I$$

Quick Quiz

Rank the magnitude of $\oint \vec{B} \cdot d\vec{s}$ for the below closed paths from least to greatest.

Ampere's Law กฎของแอมแปร์

พิจารณาพื้นผิว S₁ และ S₂ ในรูปด้านขวา

$$\oint_{S_I} \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_0 I$$

$$\oint_{S_2} \overrightarrow{B} \cdot d\overrightarrow{s} = 0$$

กฎของแอมแปร์จะขัดแย้งกันเอง ถ้ากระแสไฟฟ้าไม่ต่อเนื่อง

รูปแบบทั่วไป ของกฎของแอมแปร์

- · James Clerk Maxwell (เจมส์ เคลิร์ก แมกซ์เวล) แก้ปัญหานี้โดยใส่ เทอมอื่นเพิ่มเข้าไปในกฎของแอมแปร์
 - · เทอมที่เพิ่มเข้ามานี้เรียกว่า"displacement current"

$$I_d \equiv \epsilon \frac{d\Phi_E}{dt}$$

Ampere-Maxwell Law

$$\oint \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_0 I + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt}$$

Magnetic Flux ฟลักซ์แม่เหล็ก

$$\Phi_B = \int \overrightarrow{B} \cdot d\overrightarrow{A}$$

$$\Phi_B = BA \cos \theta$$

Gauss's Law of Magnetism กฎของเกาส์ในกรณีของแม่เหล็ก

- · เส้นสนามแม่เหล็กนั้นต่อเนื่อง และจะวิ่งวนเป็นลูป
 - · ฟลักซ์แม่เหล็กทั้งหมดที่วิ่งผ่านพื้นที่ผิวปิดใดๆ จะมีค่าเป็น **ศูนย์** เสมอ!!

Figure 30.23 The magnetic field lines of a bar magnet form closed loops. Note that the net magnetic flux through a closed surface surrounding one of the poles (or any other closed surface) is zero. (The dashed line represents the intersection of the surface with the page.)

Figure 30.24 The electric field lines surrounding an electric dipole begin on the positive charge and terminate on the negative charge. The electric flux through a closed surface surrounding one of the charges is not zero.

©Serway & Jewett

Faraday's Law of Induction กฎการเหนี่ยวนำของฟาราเดย์

 กระแสไฟฟ้าสามารถสร้างขึ้นได้จาก การเปลี่ยนแปลงของสนามแม่เหล็ก

EMF
$$d\Phi_B$$
 $=$ dt

Faraday's Law of Induction กฎการเหนื่ยวนำของฟาราเดย์

$$\mathcal{E} = -\frac{d}{dt} (BA \cos \theta)$$

Example

- มีขดลวดเส้นหนึ่งขดเป็นวง โดยมีพื้นที่ภายในขดลวดเป็น A ถูกวางไว้ใน สนามแม่เหล็กที่มีทิศตั้งฉากกับระบบพื้นที่ภายในขวดลวด ขนาดของ สนามแม่เหล็กสามาถเขียนได้เป็น $B=B_{max}e^{-at}$
 - · โดยที่ a เป็น ค่าคงที่
 - · จงหากระแสไฟฟ้าเหนี่ยวนำที่จะเกิดขึ้นในขดลวดในฟังก์ชันของเวลา

Lenz's Law (กฎของเลนซ์)

Faraday's Law

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

 กระแสไฟฟ้าเหนี่ยวนำในขดลวด จะเกิดขึ้นในทิศทาง ที่จะสร้างสนามแม่เหล็กขึ้นมาเพื่อหักล้างการเปลี่ยน แปลงของฟลักซ์แม่เหล็กในพื้นที่หน้าตัดของขดลวด

Lenz's Law

กระแสไฟฟ้าเหนี่ยวนำและสนามไฟฟ้า

$$q\mathcal{E}=qE(2\pi r)$$

$$E = \frac{\varepsilon}{2\pi r}$$

สนามไฟฟ้าเหนี่ยวนำ E เป็นสนามที่ไม่อนุรักษ์ ที่เกิดจากการเปลี่ยนแปลงของสนามแม่เหล็ก

$$\mathcal{E} = \oint \overrightarrow{E} \cdot d\overrightarrow{s} \longrightarrow \oint \overrightarrow{E} \cdot d\overrightarrow{s} = -\frac{d\Phi_B}{dt}$$

Maxwell's Equations

· สมการที่ใช้อธิบายแม่เหล็กไฟฟ้าทั้งหมด ถูกรวบรวมโดย James Clerk Maxwell เรียกว่า สมการแมกซ์เวล

$$\oint_{s} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q}{\epsilon_{o}}$$

Gauss's Law

$$\oint \overrightarrow{B} \cdot d\overrightarrow{A} = 0$$

Gauss's Law for magnetism

$$\oint \overrightarrow{E} \cdot d\overrightarrow{s} = -\frac{d\Phi_B}{dt}$$

Faraday's Law

$$\oint \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_0 I + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt}$$
 Ampere-Maxwell Law