Quantum Mechanics

Mark Benazet Castells

March 27, 2024

Week 5

Quantum Mechanics

Exercise Material

Webpage

Week 3

Recap

Review

Exercises

Quantum Mechanics

Review of Last Week

- Any questions on last week's topics?
- Feedback on the previous session?

Quantum Mechanics Postulates

- ullet Wave functions $\Psi(x,t)$ represent physical states in the **Hilbert** Space.
- $\Psi(x,t)$ must be square-integrable and normalized:

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1.$$

 If the Wave function lays in the Hilbert Space, we can represent it as a vector:

$$\Psi = \sum_{n=1}^{\infty} c_n f_n(ec{r})
ightarrow egin{pmatrix} c_1 \ c_2 \ dots \ c_n \end{pmatrix}_{\psi_n} = |\Psi
angle \quad exttt{"ket"}$$

Observable properties are extracted using linear Hermitian operators.

• Hermitian operators ensure real expectation values:

$$\langle \Psi | \hat{Q} \Psi \rangle = \langle \hat{Q} \Psi | \Psi \rangle$$

Determinate States

An eigenvalue equation for an operator \hat{Q} and a state Ψ is expressed as:

$$\hat{Q}\Psi = q\Psi,$$

indicating that if a system is in state Ψ , any measurement of \hat{Q} will consistently yield the eigenvalue q.

- \bullet States Ψ solving the eigenvalue equation are called $\mbox{\bf determinate}$ states.
- ullet The set of all possible eigenvalues q of \hat{Q} forms its **spectrum**.
- Eigenfunctions with the same eigenvalue are termed **degenerate** states.

Generalized Interpretation

When Ψ is not an eigenfunction of \hat{Q} , a measurement yields an eigenvalue q_n with probability $|c_n|^2$:

where $\langle Q \rangle$ is the expected value of \hat{Q} .

To find the coefficients c_n , project Ψ onto the eigenfunctions ψ_n :

$$c_n = \langle \psi_n | \Psi \rangle.$$

Given $\vec{\Psi}_{gen}=c_1\vec{e}_{\psi_1}+c_2\vec{e}_{\psi_2}+c_3\vec{e}_{\psi_3}$, we define:

$$|\Psi\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}_{\psi_r}$$

Where, $c_n=\langle \psi_n|\Psi\rangle$, encapsulating the system's state in terms of basis vectors $\hat{\psi}_n$.

Review

Generalized Uncertainty Principle

$$[\hat{A},\hat{B}]=0$$

If \hat{A} and \hat{B} are compatible, precise measurements of these observables are possible as they share eigenfunctions, implying $\sigma_A\sigma_B=0$. Thus, both can be measured simultaneously without state interference.

Where Ψ is the Wave function and ψ_n are the eigenfunctions of \hat{A} and \hat{B} .

$$[\hat{A},\hat{B}]\neq 0$$

If \hat{A} and \hat{B} are incompatible, precise measurement of these observables is impossible due to differing eigenfunctions, implying $\sigma_A\sigma_B\neq 0$. Hence, simultaneous measurement is unfeasible as it alters the state.

Where Ψ is the wave function, ψ_A are the eigenfunctions of operator \hat{A} , and ψ_B are the eigenfunctions of operator \hat{B} .

Therefore, we introduce the **generalized uncertainty principl**e for non-commuting operators:

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2$$

For
$$\hat{A}=\hat{x}$$
, $\hat{B}=\hat{p}$, $[\hat{x},\hat{p}]=i\hbar$
$$\sigma_A^2\sigma_B^2\geq \left(\frac{1}{2i}\langle[\hat{A},\hat{B}]\rangle\right)^2$$

$$\sigma_x^2\sigma_p^2\geq \left(\frac{\hbar}{2}\right)^2$$

$$\sigma_x\sigma_p\geq \frac{\hbar}{2}$$

Continuous Eigenfunctions

Position Operator

To illustrate eigenfunctions of the position operator \hat{x} :

$$\hat{x}g(x) = x'g(x),$$

where \hat{x} is the operator, g(x) the eigenfunction, and x' the eigenvalue. The Dirac delta function, $\delta(x-x')$, uniquely satisfies:

$$\hat{x}\delta(x-x') = x'\delta(x-x').$$

- It is not in the Hilbert Space as it is not Square-integrable.
- It ensures orthonormality—position eigenstates are mutually orthogonal. Dirac delta instead of Kronecker delta.
- Completeness is achieved as any spatial function can be expressed through these eigenstates.

Momentum Operator

For the momentum operator \hat{p} , we seek a function $f_{p'}$ that satisfies:

$$\hat{p}f_{p'} = p'f_{p'},$$

where p' is the eigenvalue. The solution is:

$$f_{p'}(x) = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(\frac{ip'x}{\hbar}\right),$$

- It is not in the Hilbert Space as it is a free-particle.
- It ensures orthonormality. Dirac delta instead of Kronecker delta.
- Completeness is achieved as any spatial function can be expressed through these eigenstates.

Momentum eigenfunctions correspond to waves with wavelength $\lambda = \frac{h}{p'}$.

T/F L6

T/F L6

Midterm

Midterm

Exercises

Exercise 2

Remark: Use the properties from the ZF

Exercise 3

Exercise 4

Really useful to practice how to do such problems.

Questions?

THANK YOU!

The Dirac Delta Function

The Dirac delta function, denoted $\delta(x)$, is defined as:

$$\delta(x) = \begin{cases} 0 & \text{if } x \neq 0, \\ \infty & \text{if } x = 0, \end{cases}$$

with the integral property:

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1.$$

Furthermore, it has the sifting property where for any function f(x): $f(x)\cdot\delta(x-a)\to f(a)\cdot\delta(x-a)$,

But in practice, it really works in the integral form:

$$\int_{-\infty}^{\infty} f(x) \cdot \delta(x - a) \, dx = f(a).$$

