小麦粉特性与生湿面品质的关系研究

索 婷1、杨书林2、林 娜2、朱科学1、郭晓娜*1 (1. 江南大学 食品学院, 江苏 无锡 214122: 2. 中粮粮谷控股有限公司, 北京 100020)

摘要:研究了小麦粉特性与生湿面品质的关系。以13种小麦粉为原料,测定其蛋白质质量、溶 剂保持力、内源酶活力等特性,并对制得生湿面的外观、质构及感官品质进行分析。结果表明,麦 谷蛋白大聚体质量分数与面片亮度呈显著负相关,谷醇比与熟面黏聚性呈显著负相关,乳酸溶 剂保持力与咀嚼性、感官评分呈显著正相关,脂肪氧合酶活力与硬度、咀嚼性呈显著正相关。经 主成分分析和聚类分析,将13种小麦粉分为3类:第Ⅲ类小麦粉的蛋白质质量、面团流变学品 质显著优于其他小麦粉,熟面食用品质最佳;第Ⅱ类小麦粉制得面片亮度显著高于其他小麦,外 观品质最优。通过将国产小麦与第Ⅲ类/第Ⅲ类小麦搭配可用于制备外观与食用品质俱佳的生 湿面专用粉。

关键词: 生湿面;小麦粉;相关性分析;主成分分析;聚类分析

中图分类号:TS 213.2 文章编号:1673-1689(2024)03-0054-12 DOI:10.12441/spyswjs.20220108001

Study on Relationship between Wheat Flour Characteristics and Quality of Fresh Wet Noodles

SUO Ting¹, YANG Shulin², LIN Na², ZHU Kexue¹, GUO Xiaona^{*1} (1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. COFCO Grains Holdings Limited, Beijing 100020, China)

Abstract: The relationship between wheat flour characteristics and the quality of fresh wet noodles was investigated to provide a theoretical guidance and scientific basis on the germplasm resources screening for wheat breeding and the production of tailored flour for fresh wet noodles. Using 13 types of wheat flours as raw materials, their protein quality, solvent retention capacity, and endogenous enzymes activity were determined, and the appearance, texture, and sensory quality of the prepared fresh wet noodles were analyzed. The results showed that there was a significant negative correlation between the mass concentration glutenin macropolymer and the brightness of dough sheet. The ratio of glutenin to gliadin was significantly negatively correlated with cohesiveness of the cooked noodles. The solvent retention capacity of lactic acid was significantly positively correlated with chewiness and sensory evaluation, and the lipoxygenase activity of flour was significantly positively correlated with hardness and chewiness. Through principal component analysis and clustering analysis, the 13 types of wheat flours could be divided into three categories.

收稿日期: 2022-01-08 修回日期: 2022-02-21

基金项目: 国家"十三五"重点研发计划项目(2018YFD0401003)。

^{*}通信作者: 郭晓娜(1978—),女,博士,教授,博士研究生导师,主要从事主食与方便食品研究。E-mail:xiaonaguo@jiangnan.edu.cn

Wheat flours of cluster III had significantly better protein quality and dough rheological quality than other wheat flours, yielding the best edible quality of the cooked noodles. Wheat flours of cluster II produced noodles with significantly higher brightness than other wheat flours, exhibiting the optimal appearance quality. Combining domestic wheat with cluster II/III wheat could be used to prepare specialized flour for fresh wet noodles with good appearance and edible quality.

Keywords: fresh wet noodles, wheat flour, correlational analysis, principal component analysis, cluster analysis

面条是亚洲许多国家的传统主食,由小麦粉和水按照一定比例和面、压面、切条制作而成。生湿面因其水分含量高、未经熟化,食用品质佳,具有爽滑、筋道、面香味浓等特点而深受消费者欢迎^口。

生湿面的品质主要受原辅料、加工工艺及包装 贮运等因素的影响四,其中小麦粉原料对面条品质 起着决定性作用。国内外学者对小麦粉原料特性与 面条品质关系进行了研究。Zhang 等人认为鲜白熟 面的弹性、黏附性和咀嚼性与蛋白质含量呈显著正 相关^[3]。Konik 等人研究发现小麦粉糊化时的峰值黏 度、衰减值与黄碱面的硬度呈负相关,与光滑度呈 正相关,且与感官品质具有显著相关性^[4]。Barak等 人指出面团的形成时间和稳定性与面条的硬度、弹 性、黏聚性呈正相关,而与黏附性呈负相关的。以往 研究主要集中于小麦粉组分含量(如蛋白质含量)、 糊化特性及面团粉质拉伸特性与生湿面品质的关 系,而对决定小麦粉加工品质的蛋白质质量,如麦 谷蛋白与麦醇溶蛋白的谷醇质量比和麦谷蛋白大 聚体(glutenin macropolymer,GMP)质量分数对生湿 面品质影响的研究较少。此外,溶剂保持力(solvent retention capacity,SRC)作为一种简易、快速评价小 麦粉品质的方法, 在预测弱筋小麦的烘焙制品品 质、小麦种质资源筛选方面受到广泛关注,但其与 生湿面品质的关系仍有待研究[6]。小麦粉中含有的 多种内源酶也会对面制品的色泽、感官品质产生重 要影响[7-8]。

作者选取 13 种不同类型的小麦,经研磨制粉,测定其色泽、蛋白质特性(谷醇比、GMP质量分数等)、淀粉特性、溶剂保持力(水、碳酸钠、蔗糖和乳酸 SRC)、内源酶活力(多酚氧化酶、脂肪酶、脂肪氧合酶、木聚糖酶)、面团流变学特性、糊化特性及微量组分质量分数,并制作生湿面(片),对其亮度、质构及感官品质进行表征,分别探讨小麦粉特性对生

湿面品质的影响。经主成分分析和聚类分析,对适宜制作生湿面的小麦品种进行筛选,以期实现依据小麦粉特性对生湿面品质进行预测。

材料与方法

1.1 材料与试剂

小麦品种'鲁麦 14''烟农 19''郑麦 9023''淮麦 20''扬麦 16''宁麦 13''澳洲标准白麦''澳洲硬粒麦''法国白软麦''加拿大红麦 1 号''加拿大红麦 2 号''美国红软麦''美国白软麦',分别记作 1—13 号小麦。润麦后,采用实验磨粉机制粉,装入密封袋备用。

乙醇、十二烷基硫酸钠、邻苯二酚、盐酸、冰乙酸、间苯三酚、乙腈、三羟甲基氨基甲烷、3,5-二硝基水杨酸、苯酚、亚硫酸钠、氢氧化钠、木糖等:均为分析纯,国药集团化学试剂有限公司;总淀粉试剂盒 K-TSTA 03/20、直链淀粉试剂盒 K-AMYL 02/20:爱尔兰 Megazyme 公司产品。

1.2 仪器与设备

MLU-202 型自动实验磨粉机:德国 Buhler 公司;JNL-12XB型马弗炉:洛阳力宇窑炉有限公司;WSB-IV型白度仪:杭州大成光电科技有限公司;K9840型自动凯氏定氮仪:上海海能仪器股份有限公司;Farinograph-E型粉质仪、Extensograph-E型拉伸仪:德国 Brabender 公司;RVA 4500型快速黏度分析仪:澳大利亚 Perten 公司;TU-1810型紫外可见分光光度计:北京普析通用仪器有限责任公司;BioTek EpoCh 2型酶标仪:美国 Berten 公司;JHMZ-200型针式和面机、JMTD-168/140型半连续式压面机:北京东孚久恒仪器技术有限公司;TA.XT plus型物性测试仪:英国 Stable Micro Systems公司;CR-400型色彩色差计:日本 Konica Minolta公司。

1.3 方法

1.3.1 小麦粉色泽 小麦粉白度测定参照 GB/T 22427.6—2008;色度 L^* 、 a^* 和 b^* 值采用色彩色差计 测定。

1.3.2 蛋白质特性 蛋白质质量分数测定参照 GB 5009.5—2016;湿面筋质量分数测定参照 AACC 38-10 测定¹⁹;小麦粉 SDS 沉淀指数参照 GB/T 15685— 2011 进行测定。

谷醇比,即小麦粉面筋蛋白中麦谷蛋白与麦醇 溶蛋白质量之比,测定参考 Song 等的方法并适当修 改[10]:取1g(精确至0.0001g)小麦面筋蛋白粉与 体积分数 70% 乙醇混合(料液质量体积比1 g:15 mL), 振荡 24 h 后离心(5 000 g 离心 15 min),将醇溶蛋 白上清液转移至 50 mL 容量瓶。向沉淀内继续 加入10 mL的 70% 乙醇,振荡 2 h后离心(5 000 g 离心 15 min),继续转移上清液至上述容量瓶,该过 程重复3次。用体积分数70%乙醇将上述装有醇溶 蛋白提取液的容量瓶定容至 50 mL。取 10 mL 醇溶 蛋白提取液,采用凯氏定氮法测定出1g面筋蛋白 粉中醇溶蛋白质量,谷醇比计算见式(1)。

$$H = \frac{M_1 W - M_2}{M_2} \times 100\% \tag{1}$$

式中:H 为谷醇比,%:M1 为面筋粉的质量,g:W 为 面筋粉的蛋白质质量分数,%;M2为面筋粉中醇溶 蛋白的质量,g。

参照刘锐等的方法测定小麦粉中 GMP 的质量分

数[11]:0.05 g 小麦粉中加入 1 mL 的 1.5 g/dL 的 SDS 提取液,37 ℃恒温水浴振荡提取 30 min,15 500 g 室温离心 15 min, 弃上清液, 采用凯氏定氮法测定 残余物中蛋白质的质量分数作为 GMP 的质量分数。 1.3.3 淀粉特性 总淀粉质量分数参照 Li 等的方 法测定[12];破损淀粉质量分数测定参照徐天云等的 方法进行测定[13];直链淀粉质量分数采用爱尔 兰 Megazyme 公司 K-AMYL 02/20 试剂盒测试方法 测定,直链/支链淀粉质量比计算见式(2)。

$$I = \frac{W_{\pm}}{1 - W_{\pm}} \tag{2}$$

式中:I为直链/支链淀粉质量比; W_{i} 为总淀粉中直 链淀粉的质量分数,%。

1.3.4 溶剂保持力 小麦粉的水 SRC、蔗糖 SRC、 碳酸钠 SRC 及乳酸 SRC 参照 GB/T 35866-2018 进行测定。

1.3.5 面团流变学特性 小麦粉的粉质特性参照 GB/T 14614-2019 进行测定: 拉伸特性参照 GB/T 14615-2019 进行测定。

1.3.6 糊化特性 膨胀势的测定参照 Mccormick 等 的方法[14]。称取小麦粉样品 0.25 g,加入 5 mL 蒸馏 水,涡旋混匀后于 70 ℃水浴 4 min,取出再次涡旋 混匀并于 70 ℃继续水浴 6 min。之后转移至 100 ℃ 沸水浴中保温 10 min,然后置于冷水中冷却 5 min。 1700g离心4min,弃上清液,剩余沉淀称质量,膨 胀势计算见式(3)。

$$R = \frac{m_1}{m_2} \tag{3}$$

式中:R 为膨胀势; m_1 为离心弃去上清液后沉淀的 质量,g;m2 为小麦粉样品的质量,g。

参照 GB/T 24853-2010 采用快速黏度分析仪 测定小麦粉的糊化特性。

1.3.7 内源酶活力 多酚氧化酶(polyphenol oxidase, PPO)活力测定参照 Li 等的方法并作适当修改[15]。将 4.0 g 面粉加到 10 mL 的 0.1 mol/L 磷酸盐缓冲液中 (pH 6.0),4 ℃提取 24 h 并间歇混匀。4 ℃于 10 000 r/min 离心 20 min,上清液作为 PPO 粗酶液。 取 250 μL 粗酶液和 50 μL 邻苯二酚(0.1 mol/L)底 物溶液加入酶标板。使用酶标仪在 420 nm 处测定 反应体系的吸光度。样品在 1 min 内吸光度增大 0.001 定义为一个 PPO 酶活力单位。

脂肪酶(lipase,LA)活力测定参照了 Cai 等的方 法并适当修改[16]。4.0 g 小麦粉加到 10 mL 的 50 mmol/L Tris-HCl 缓冲液中 (pH 8.0),4 ℃提取 30 min 并间歇混匀。4 ℃于 8 000 r/min 离心 10 min, 上清液作为 LA 粗酶液。依次加入 200 μL 的 LA 粗 酶液、1.78 mL 的 Tris-HCl 缓冲液和 20 μL 的 10 mmol/L 的 pnpc-乙腈底物到酶标板中。使用酶标 仪在 37 ℃下测定反应体系在 405 nm 处的吸光度。 样品在 1 min 内吸光度增大 0.01 定义为一个 LA 酶 活力单位。

脂肪氧合酶(lipoxygenase,LOX)活力测定参照 Cato 等的方法并适当修改[17]。2.0 g 小麦粉与10 mL 的 0.1 mol/L 磷酸盐缓冲液(pH 7.5)混合,4 ℃提取 30 min 并间歇混匀。4 ℃于 10 000 r/min 离心 10 min, 上清液作为粗 LOX 粗酶液。反应体系包括 2.89 mL 的 0.05 mol/L 醋酸盐缓冲液 (pH 5.5),90 μL 亚油 酸底物(2.53 mmol/L)和 20 µL LOX 粗酶液。使用分

光光度计在 234 nm 处测定反应体系的吸光度,样 品在 1 min 内吸光度增大 0.01 定义为一个 LOX 酶 活力单位。

木聚糖酶 (xylanase,XA) 活力测定参照 Mccleary 等的方法[18]。1.0 g 小麦粉加入 10 mL 醋酸 盐缓冲液(pH 4.5)中,室温提取 1 h。6 ℃于 10 000 g 离心 30 min,取上清液作为 XA 粗酶液。向 1.8 mL 木聚糖标准底物溶液中加入 0.2 mL 的 XA 粗酶液, 40 ℃保温 5 min,加入 3 mL DNS 试剂并剧烈混匀, 沸水浴 15 min 后立刻加入质量分数 40%酒石酸钾 钠溶液混匀。室温冷却 15 min 后,测定 540 nm 下的 吸光度。同时对梯度稀释的木糖标准液、试剂空白 对照组与酶液空白对照组一同进行上述操作。将样 品吸光度对照木糖标准液工作曲线计算 XA 酶活 力。样品在 1 min 内(pH 4.5,40 ℃)从木聚糖中释放 1 μmol/L 木糖还原糖当量定义为一个 XA 酶活力单位。 1.3.8 小麦粉其他组分 小麦粉灰分质量分数的 测定参照 GB 5009.4-2016, 小麦粉戊聚糖质量浓 度的测定参照 Douglas[19]与 Kiszonas[20]的方法。5 g 小 麦粉加到 10 mL 现制提取液(110 mL 冰醋酸, 2.3 mL 盐酸,5 mL 的 10 g/dL 间苯三酚/乙醇溶液,1 mL 蒸馏水)中,再加入2 mL 蒸馏水,沸水浴25 min (期间间歇振荡2次),后迅速冷却至室温。对梯度 稀释的木糖标准液、蒸馏水空白对照组也进行上述 操作,分别测定样品、梯度稀释木糖标准液及空白 对照组在 505 nm 和 558 nm 下的吸光度,并将样品 与木糖标准液工作曲线对照计算戊聚糖质量浓度。 1.3.9 生湿面的制备 称取 100 g 面粉, 加入 33 mL蒸馏水,针式和面机内和面 5 min,将和好的面 絮置于 25 ℃、相对湿度 75%的恒温恒湿箱内熟化 30 min, 用面条机在 2.5、2.0、1.5、1.0 mm 处各压 3 次得到生湿面面片,一部分用于测定面片亮度,一 部分切条制作生湿面。最终面条厚 1.0 mm, 宽 2.3 mm。 1.3.10 面片亮度 生湿面片制作完成后,立即使 用色彩色差计测定其亮度,记作 L_0^* ;室温放置 24 h

1.3.11 感官评价及全质构分析 (texture profile analysis,TPA) 参考 LS/T3202—1993 面条质量评 分方法,汇总数据取平均值作为感官评分结果。全 质构分析参考 Epstein 等方法并适当修改[21]:将生湿 面煮至最佳蒸煮时间后捞出,用自来水淋洗30 s,将

后再次测定面片亮度记作 L_{24}^* , 并将 24 h 内面片亮

度 L^* 值的变化量记作 ΔL^* 。

3 根面条平行放置在测试平台上,采用 P36/R 探头进 行测试。测前速度:1.00 mm/s;测试速度:1.00 mm/s;测 后速度:1.00 mm/s;触发力:5g;压缩比:75%。

1.3.12 数据处理 所有数据结果均为 3 次以上独 立实验的平均值。使用 Excel 和 SPSS 23.0 软件完成 数据处理及分析,P<0.05 表示显著性差异。选择皮 尔逊相关系数进行相关性分析,提取主成分进行因 子分析,选择最远邻元素法进行聚类分析。

2 结果与分析

2.1 小麦粉品质特性与生湿面品质指标统计分析

13 种小麦粉的色泽、蛋白质特性、淀粉特性、溶 剂保持力、面团流变学特性、糊化特性、内源酶活力 及其他组分测定结果见表 1。由表 1 可知,小麦粉的 蛋白质、湿面筋质量分数有较大变幅,基本涵盖了 高、中、低筋小麦。小麦粉的面团流变学特性、糊化 特性、内源酶活力及戊聚糖、灰分等其他组分质量 分数也有较大的变幅与变异系数。标准偏差、变幅 及变异系数越大,对应样品性质的波动性就越大,表 明所选不同类型样品小麦间具有较大的品质差异。

生湿面在贮藏过程中容易发生褐变,严重影响 其外观品质[2],降低消费者接受度。因此,除了测定 熟面质构特性及感官评分对食用品质进行评价外, 作者还对生湿面片的亮度进行了测定,从外观品质 的角度对生湿面品质进行评价,结果见表 2。不同类 型小麦粉制得生湿面片在贮藏过程中的 ΔL^* 以及硬 度、胶着性、咀嚼性等质构指标具有较大的变异系 数,感官评分变幅也较大。综上,作者所选 13 种不 同类型小麦的品质特性差异较大,可用于后续生湿 面品质研究。

2.2 小麦粉品质特性与生湿面品质的相关性分析

不同类型小麦粉的色泽、蛋白质特性、淀粉特 性、溶剂保持力、面团流变学特性、糊化特性、内源 酶活力和其他组分与生湿面的面片亮度、熟面质构 以及感官评分的相关性分析结果见表 3。

2.2.1 小麦粉蛋白质特性与生湿面品质的相关性 分析 由表3可知,小麦粉的湿面筋质量分数、 GMP 质量分数与生湿面片放置 24 h 的亮度 L_{24}^* 呈 显著负相关(P<0.05),SDS 沉淀指数与面片贮存24 h 内的亮度变化 ΔL^* 呈显著正相关(P<0.05)。有研究 表明蛋白质和淀粉之间的紧密结合使得面条表面 结构致密,反射光减少,因此高蛋白质量分数的面

表 1 小麦粉品质特性 Table 1 Quality properties of wheat flours

品质特性	指标	平均值±标准差	变幅
	白度/%	80.13±3.05	76.53~86.60
小麦粉色泽	<i>L</i> *值	85.17±0.67	84.26~86.65
	<i>a</i> * 值	-0.60±0.18	-0.90~-0.32
	<i>b</i> *值	8.27±1.22	6.28~10.15
	蛋白质质量分数/%	10.09±1.69	7.53~12.75
	湿面筋质量分数/%	26.65±5.47	17.94~34.99
蛋白质特性	谷醇比	0.99±0.14	0.75~1.25
	GMP 质量分数/%	4.23±1.16	2.56~6.67
	SDS 沉淀指数/mL	52.13±9.92	39.00~74.00
	总淀粉质量分数/%	62.53±3.46	55.46~67.16
National data for	直链淀粉(占总淀粉)比例/%	22.02±2.26	18.89~26.40
淀粉特性	直链/支链淀粉比	0.28±0.04	0.23~0.36
	破损淀粉质量分数/%	5.68±1.18	3.31~7.48
	蒸馏水 SRC/%	43.82±5.59	33.17~49.92
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	乳酸 SRC/%	92.47±15.29	68.90~122.24
溶剂保持力	碳酸钠 SRC/%	60.31±7.35	45.82~73.11
	蔗糖 SRC/%	78.37±6.08	65.46~86.80
	吸水率/%	58.75±4.22	49.80~63.30
	形成时间/min	6.41±6.96	0.95~27.65
	稳定时间/min	12.76±8.15	1.55~31.35
	弱化度/FU	52.95±28.53	13.00~110.50
面团流变学特性	粉质质量指数	144.38±94.54	16.00~348.50
	拉伸曲线面积/cm²	108.69±34.22	65.00~177.00
	拉伸阻力/BU	475.46±105.69	300.00~604.00
	延伸性/mm	149.64±51.40	97.00~255.00
	拉伸比例	3.77±1.58	1.20~6.30
	膨胀势	9.80±0.93	8.41~11.57
	峰值黏度/cP	2 515.62±329.34	2 083.00~3 110.50
Wat /1. 1.+- L11.	最低黏度/cP	1 718.00±314.30	990.00~2 083.00
糊化特性	衰减值/cP	793.00±216.88	518.50~1 159.00
	最终黏度/cP	2 866.65±449.81	1 956.00~3 444.00
	回生值/cP	1143.27±181.00	720.50~1 361.00
	PPO 酶活力/(U/(g·min))	348.81±145.78	199.25~778.83
I Medical I	LA 酶活力/(U/(g·min))	24.45±8.26	11.67~37.92
内源酶活力	LOX 酶活力/(U/(g·min))	2 007.84±1 494.75	464.93~5 036.73
	XA 酶活力/(U/(g·min))	15.68±2.20	11.41~18.77
++ M. AH. M	灰分质量分数/%	0.51±0.14	0.40~0.95
其他组分	戊聚糖质量分数/%	1.24±0.55	0.42~1.92

表 2 生湿面片亮度及熟面质构特性、感官评分 Table 2 Lightness of dough sheet and textural properties and sensory scores of cooked noodles

评价指标		平均值±标准差	变幅		
	L_0^*	81.44±2.50	75.87~84.91		
外观品质	L_{24}^*	72.22±2.98	65.44~76.83		
	ΔL^*	9.22±1.51	5.85~11.47		
质构特性	硬度/g	4 536.33±670.40	3 592.18~5 606.72		
	黏聚性	0.66±0.02	0.63~0.71		
	胶着性/g	3 012.09±451.46	2 260.93~3 822.53		
	咀嚼性/g	2 730.03±427.62	2 051.09~3 503.93		
	回复性	0.37±0.33	0.33~0.42		
感官评分		78.38±4.99	70.13~86.88		

条色泽更暗^[23]。湿面筋质量分数、GMP 质量分数与 SDS 沉淀指数均为反映小麦粉蛋白质品质的重要指 标,它们在面粉中的质量分数较高时往往能够提高 面团的强度[24],可能使面条表面质地变得更为致密, 减少面条表面光反射量,降低其色泽。Morris 等认为 蛋白质质量分数增加往往会使白盐面的色泽 更暗[25]。

面筋蛋白的谷醇比与熟面的黏聚性存在显著 负相关(P<0.05)。麦醇溶蛋白一般赋予小麦面团黏 性特征,而麦谷蛋白一般赋予面团弹性的特征。黏 聚性表示样品内部的黏合力[26],随着谷醇比的增大, 即麦醇溶蛋白相对比例减小, 面团的黏性随之减 小,做出的面条也具有较低的黏性。Barak 等指出麦 醇溶蛋白与麦谷蛋白的相对比例会显著影响面条 质构,可以作为预测白盐面品质的决定性因素[5]。

2.2.2 小麦粉 SRC 特性与生湿面品质的相关性分 析 由表 3 可知,小麦粉的乳酸 SRC 与熟面的咀嚼 性和感官评分具有显著正相关性 (P<0.05)。乳酸 SRC 反映小麦粉面筋蛋白的特性。Huen 等发现小 麦粉乳酸 SRC 与 SDS 沉淀指数存在显著正相关 (P<0.05),即乳酸 SRC 值越大,面筋膨胀程度越大, 面筋筋力越好[27]。因此,具有较高乳酸 SRC 的小麦 粉制作的面条可能具有较强的咀嚼性,食用品质 好,感官评分较高。

2.2.3 小麦粉面团流变学特性与生湿面品质的相 关性分析 小麦粉的拉伸比例与熟面的硬度呈显 著负相关(P<0.05),拉伸阻力、拉伸比例与胶着性呈 显著负相关(P<0.05),见表 3。面团的流变学特性中

的拉伸阻力和拉伸比例反映的是面团的弹性与延 展性特征。拉伸阻力、拉伸比例越大,面团的弹性特 征越显著;反之,则延展性占据面团流变特征的主 导地位[28]。熟面的胶着性模拟的是将半固体面条破 裂成吞咽时的稳定状态所需的能量[26],面团的拉伸 阻力与拉伸比例越小,做出的面条可能表现出较高 的黏性特征,使得面条在破裂成吞咽状态时所需要 的能量更大,面条不易破碎,即具有更大的胶着性。 面团的稳定时间、粉质质量指数与熟面的咀嚼性呈 显著正相关(P<0.05),而拉伸阻力、拉伸比例与咀嚼 性呈显著负相关(P<0.05)。面条的感官评分与形成 时间、稳定时间、粉质质量指数及延伸度呈显著正 相关(P<0.05),并与拉伸曲线面积呈极显著正相关 (P<0.01)。Barak 等发现白盐熟面的咀嚼性随面团 的形成时间与稳定性的增加而增加的。邓航等指 出鲜白面的感官评价总分与稳定时间呈极显著正 相关[29]。

2.2.4 小麦粉糊化特性与生湿面品质的相关性分 析 峰值黏度与熟面的胶着性、咀嚼性及回复性呈 显著正相关(P<0.05),衰减值与回复性呈极显著正 相关(P<0.01)。淀粉在面条煮制过程中发生糊化,淀 粉颗粒吸水、溶胀,从而影响熟面的感官品质与表 面状态[30]。小麦粉中的直/支链淀粉在面条蒸煮过程 中表现出不同的糊化特性,黄东印等发现直链淀粉 质量分数适中或偏低时制成的面条具有较好的韧 性和食用品质[3]。研究表明,面粉的峰值黏度和衰减 值与面条的感官品质如表观性质、黏弹性和光滑性 之间都存在较好的正相关性,对于面条品质预测或 配麦、配粉具有重要意义[4,32-33]。

2.2.5 小麦粉内源酶活力与生湿面品质的相关性 分析 从表 3 可知,供试样品小麦粉的 PPO 活力与 生湿面片亮度并不存在显著相关性(P>0.05)。新鲜 面条在放置过程中的褐变现象,受加工工艺及小麦 粉中蛋白质、酚类、糖类等成分以及多酚氧化酶、过 氧化物酶等非酶促和酶促褐变多因素共同作用[7,22,34-35]。 当非酶促褐变因素占据主导地位时, 可能会出现 PPO 活力与面片亮度变化无显著相关性。

LOX酶活力与熟面的硬度、胶着性呈极显著正 相关(P<0.01),与咀嚼性呈显著正相关(P<0.05)。这 可能是由于 LOX 催化了面粉中的脂肪酸氧化,反应 产生的中间产物又氧化了麦谷蛋白中的巯基,促进 了蛋白质交联^[56]。Zhang 等发现 LOX 能够增强面团

表 3 小麦粉品质特性与生湿面品质的相关性 Table 3 Correlation analysis between wheat flour quality properties and quality of cooked noodles

品质			外观品质		1	质构特性				一种之 加八
特性	指怀 	L_0^*	L_{24}^*	ΔL^*	硬度	黏聚性	胶着性	咀嚼性	回复性	感官评分
	白度	0.458	0.472	-0.172	-0.250	0.190	-0.196	-0.118	0.386	-0.118
面粉色泽	L* 值	0.511	0.535	-0.209	-0.249	-0.007	-0.237	-0.046	0.228	-0.046
	a* 值	0.354	0.177	0.238	0.354	0.230	0.396	0.291	0.447	0.291
	<i>b</i> * 值	-0.188	-0.130	-0.055	0.127	-0.102	0.109	0.289	-0.375	0.289
	蛋白质质量分数	-0.592*	-0.651*	0.301	0.394	0.165	0.419	0.416	-0.014	0.416
/	湿面筋质量分数	-0.543	-0.632*	0.347	0.353	0.048	0.352	0.406	-0.124	0.406
蛋白质 特性	谷醇比	0.054	-0.209	0.501	-0.051	-0.667*	-0.205	-0.103	-0.325	-0.103
付注	GMP 质量分数	-0.414	-0.582*	0.461	0.243	0.100	0.257	0.495	-0.181	0.495
	SDS 沉淀指数	-0.249	-0.494	0.561*	0.282	0.161	0.316	0.507	-0.032	0.507
	总淀粉质量分数	0.485	0.375	0.066	-0.331	-0.398	-0.418	-0.424	-0.071	-0.424
>>>\\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	直链淀粉质量分数	0.071	0.189	-0.256	0.327	-0.348	0.236	0.332	-0.038	0.332
淀粉特性	直链/支链淀粉比	0.071	0.189	-0.255	0.349	-0.311	0.266	0.337	-0.017	0.337
	破损淀粉质量分数	0.215	0.059	0.241	0.437	-0.182	0.390	0.495	-0.167	0.495
	水 SRC	-0.141	-0.156	0.075	0.427	0.049	0.430	0.405	-0.216	0.405
溶剂保	乳酸 SRC	-0.263	-0.442	0.435	0.188	0.133	0.219	0.614*	-0.128	0.614*
持力	碳酸钠 SRC	0.230	0.022	0.339	0.403	-0.199	0.351	0.480	-0.156	0.480
	蔗糖 SRC	-0.072	-0.328	0.527	0.295	-0.081	0.269	0.496	-0.229	0.496
	吸水率	-0.278	-0.381	0.291	0.489	-0.023	0.469	0.520	-0.183	0.520
	形成时间	-0.373	-0.323	0.019	0.370	0.167	0.404	0.640*	0.209	0.640*
	稳定时间	-0.423	-0.388	0.063	0.449	0.343	0.519	0.656*	0.277	0.656*
	弱化度	0.279	0.320	-0.168	-0.288	-0.358	-0.365	-0.488	-0.108	-0.488
面团流变 学特性	粉质质量指数	-0.426	-0.396	0.074	0.493	0.297	0.552	0.638*	0.248	0.638*
于1寸1工	拉伸曲线面积	-0.210	-0.372	0.384	0.271	0.303	0.342	0.702**	0.099	0.702**
	拉伸阻力	0.156	0.071	0.119	-0.503	-0.356	-0.574*	-0.252	-0.235	-0.252
	延伸性	-0.270	-0.327	0.198	0.339	0.381	0.423	0.561*	0.104	0.561*
	拉伸比例	0.187	0.191	-0.068	-0.588*	-0.350	-0.657*	-0.451	-0.244	-0.451
	膨胀势	0.134	0.145	-0.064	0.041	-0.282	-0.037	-0.238	-0.170	-0.238
	峰值黏度	0.120	0.033	0.134	0.527	0.329	0.603*	0.352	0.618*	0.352
糊化特性	最低黏度	-0.177	-0.131	-0.036	0.416	0.035	0.417	0.183	0.111	0.183
例化衍生	衰减值	0.402	0.214	0.245	0.234	0.475	0.351	0.248	0.807**	0.248
	最终黏度	-0.117	-0.082	-0.032	0.346	-0.007	0.337	0.004	0.143	0.004
	回生值	-0.022	-0.009	-0.020	0.182	-0.031	0.166	-0.313	0.215	-0.313
	PPO 活力	0.235	0.101	0.190	0.451	0.019	0.453	0.506	0.059	0.506
内源酶	LA 活力	0.312	0.285	-0.045	-0.153	-0.115	-0.179	-0.261	0.259	-0.261
活力	LOX 活力	-0.074	-0.067	0.011	0.711**	-0.037	0.692**	0.171	0.200	0.171
	XA 活力	0.298	0.156	0.187	0.313	-0.168	0.274	0.490	-0.112	0.490
计协加八	灰分质量分数	-0.692**	-0.682*	0.198	0.038	-0.203	-0.019	-0.229	-0.327	-0.229
其他组分一	戊聚糖质量分数	-0.266	-0.404	0.355	-0.450	0.064	-0.436	-0.143	-0.444	-0.143

注:*表示 P<0.05,显著相关;**表示 P<0.01,极显著相关。

强度,改善熟鲜面的硬度、胶着性、咀嚼性和弹性,降低蒸煮损失,促进面筋蛋白的形成^[37]。但小麦粉中LOX酶活力仍不宜过高,否则易使面制品发生氧化酸败,缩短其货架期^[38]。

2.2.6 小麦粉其他组分与生湿面品质的相关性分析 由表 3 可知,小麦粉灰分质量分数与生湿面片初始亮度 L_0^* 呈极显著负相关(P<0.01),与室温放置 24 h 的亮度 L_2^* 呈显著负相关(P<0.05)。小麦在研磨制粉时不可避免地会混入麸皮,小麦粉中混入麸皮的多少决定了小麦粉的灰分质量分数与小麦粉粉色^[39]。灰分质量分数越高,面条亮度越暗,混入小麦粉的麸皮中含有较多的多酚氧化酶类物质,使得小麦粉中的多酚类物质及酪氨酸氧化成黑色物质,影响面条外观和适口性^[40]。孔雁等研究发现,面粉灰分质量分数与拉面感官色泽评价得分呈极显著负相关^[41]。

2.3 主成分分析

研究表明,小麦粉的蛋白质质量分数、GMP质量分数和 SDS 沉淀指数与面团粉质、拉伸特性指标显著相关,湿面筋与最低黏度、最终黏度、回升值等糊化特性显著相关[^{23,42]}。为避免小麦粉指标间信息相互重叠导致相关系数不能正确反映相关性,采用主成分分析法对小麦粉特性指标进行主成分提取,进而对生湿面品质进行研究[^{43]},结果见表 4。

由表 4 可知,前 5 个主成分的方差百分比分别为 38.533%、17.555%、9.809%、8.609%和 7.398%,均大于 5%,累积方差百分比为 81.905%,基本能够反映小麦粉特性指标所具有的信息,解释其变异情况,故提取 5 个主成分对原有 38 个指标进行降维。

表 4 主成分特征值及方差贡献率

Table 4 Eigenvalue and contributes of principal components

主成分	特征值	方差贡献率/%	累积方差贡献率/%
1	14.642	38.533	38.533
2	6.671	17.555	56.088
3	3.728	9.809	65.897
4	3.272	8.609	74.507
5	2.811	7.398	81.905
6	2.236	5.885	87.790

表 5 为主成分载荷矩阵,展示了小麦粉特性指标在各主成分上的载荷情况。

表 5 主成分载荷矩阵

Table 5 Load matrix of principal components

	主成分得分						
指标	1	2	:风牙特尔 3	۲ 4	5		
白度							
口及 L* 值	-0.489	-0.325	-0.217 -0.341	0.691	0.061		
	-0.504	-0.343		0.448	0.112		
a* 值	0.149	0.216	0.221	0.859	-0.021		
b*值	0.311	0.433	-0.046	-0.792	-0.047		
蛋白质质量 分数	0.958	0.044	0.054	-0.117	-0.069		
湿面筋质量 分数	0.907	0.126	0.022	-0.143	-0.082		
SDS沉淀l数	0.780	0.439	-0.220	0.146	-0.108		
谷醇比	-0.297	0.253	0.225	-0.016	-0.094		
GMP 质量分数	0.888	0.358	-0.197	0.039	-0.133		
总淀粉质量 分数	-0.799	-0.029	-0.062	0.312	-0.076		
直链淀粉质 量分数	-0.026	0.095	-0.084	0.015	0.983		
直链/支链淀 粉比	-0.006	0.148	-0.057	0.017	0.980		
破损淀粉质 量分数	0.171	0.939	0.209	-0.107	0.067		
水 SRC	0.486	0.564	0.124	-0.277	0.074		
乳酸 SRC	0.812	0.464	-0.221	-0.053	-0.039		
碳酸钠 SRC	0.177	0.958	0.137	0.058	0.125		
蔗糖 SRC	0.582	0.773	-0.024	0.069	-0.050		
吸水率	0.726	0.609	0.139	-0.152	0.020		
形成时间	0.813	-0.092	0.066	-0.178	0.407		
稳定时间	0.874	0.059	0.332	-0.002	0.219		
弱化度	-0.574	-0.378	-0.525	-0.142	0.225		
粉质质量指数	0.873	0.098	0.346	-0.090	0.184		
拉伸曲线面积	0.806	0.242	-0.139	0.237	-0.199		
拉伸阻力	-0.619	-0.045	0.109	0.151	0.034		
延伸性	0.847	0.178	-0.238	0.061	-0.178		
拉伸比例	-0.786	-0.203	0.002	0.065	0.091		
膨胀势	-0.422	0.401	0.218	0.159	0.229		
峰值黏度	0.114	0.300	0.824	0.260	-0.014		
最低黏度	0.009	0.287	0.896	-0.001	0.087		
衰减值	0.196	0.009	-0.024	0.428	-0.136		
最终黏度	-0.090	0.150	0.943	-0.041	-0.023		
回生值	-0.191	-0.163	0.821	-0.044	-0.202		
PPO 活力	-0.211	-0.582	-0.433	0.199	0.115		
LA 活力	0.264	0.570	-0.179	0.351	0.178		
LOX 活力	0.203	0.084	0.500	-0.198	-0.226		
XA 活力	0.107	0.917	0.225	-0.109	0.086		
灰分	0.107	-0.123	0.187	-0.231	-0.048		
戊聚糖	0.307	0.274	0.024	-0.231	-0.443		
	0.307	0.274	0.024	0.091	0.773		

第1主成分主要支配的指标包括蛋白质质量 分数、湿面筋质量分数、GMP质量分数、吸水率、形 成时间、稳定时间、弱化度、粉质质量指数、拉伸曲 线面积、延伸度、拉伸比例、拉伸阻力、SDS沉淀指数 与乳酸 SRC;第2 主成分主要支配的指标包括破损 淀粉质量分数、碳酸钠 SRC、蔗糖 SRC 与 XA 酶活 力;第3主成分主要支配的指标包括峰值黏度、最 低黏度、回生值与最终黏度;第4主成分主要支配 的指标包括白度、 a^* 值和 b^* 值; 第 5 主成分主要支 配的指标包括直链淀粉含量与直/支链淀粉比。综 上,成分1主要反映小麦粉的蛋白质及流变学特 性;成分2主要反映小麦粉的破损淀粉与戊聚糖特 性;成分3主要反映小麦粉的糊化特性;成分4主 要反映小麦粉的色泽特性;成分5主要反映小麦粉 的淀粉组成。5个主成分解释了小麦粉指标的大部 分信息。

2.4 聚类分析

基于主成分分析提取的5个主成分得分矩阵, 采用最远邻元素法对供试样品小麦进行系统聚类 分析。由图 1 聚类分析谱系图可知, 当类间距离为 20时,供试样品小麦被分为3类:第 [类聚集了9 种小麦,即1、2、3、4、5、6、8、12、13号小麦,分别为 '鲁麦 14''烟农 19''郑麦 9023''淮麦 20''扬麦 16''宁麦 13''澳洲硬粒麦''美国红软麦''美国白 软麦'; 第Ⅱ类聚集了2种小麦, 即7号和9号小 麦,分别为'澳洲标准白麦'和'法国白软麦';第Ⅲ 类聚集了2种小麦,即10号和11号小麦,分别为 '加拿大1号'和'2号小麦'。

Fig. 1 Dendrogram of cluster analysis

聚类分析得到的3类小麦粉及其生湿面品质 指标统计结果见表 6。由表 6 可知,第Ⅲ类小麦的蛋 白质质量分数、湿面筋质量分数、GMP质量分数、乳 酸SRC、形成时间、稳定时间、粉质质量指数、拉伸

曲线面积及延伸度显著(P < 0.05)高于第 I 类和第 Ⅱ类小麦,小麦粉制作的面团强度高、筋力好,熟面 硬度、咀嚼性、感官评分最高,食用品质最好。与第 Ⅰ类和第Ⅲ类小麦相比,第Ⅱ类小麦蛋白质质量分 数较低,由其制得的生湿面片 L*24 显著高于 (P< 0.05)另外两类小麦,外观品质最佳,熟面硬度适中, 国产小麦品种,感官评分仅次于第Ⅱ类小麦,通过 比较其与另外两类小麦品质特性的差异发现,尽管 其蛋白质、湿面筋质量分数显著高于(P<0.05)第Ⅱ 类小麦,但反映蛋白质品质的 GMP 质量分数、SDS 沉淀指数、乳酸SRC 等指标却并未存在显著优势, 且反映面团筋力特性的拉伸阻力、拉伸比例甚至低 于第Ⅱ类小麦,蛋白质品质不优。综上,中国产小麦 的制面色泽表现以及蛋白质品质与进口小麦仍存 在差距,小麦育种领域应以此为目标继续探索提升 我国面条专用小麦育种技术,专注提升小麦蛋白质 品质。在专用粉实际生产中,可通过将国产小麦与 第Ⅱ类或第Ⅲ类小麦进行搭配,提高配麦后小麦粉 制得生湿面的色泽与食用品质。

3 结 语

测定了不同类型小麦粉的色泽、蛋白质特性、 淀粉特性、溶剂保持力、内源酶活力、面团流变学特 性、糊化特性及微量组分等指标,并对由其制成的 生湿面亮度、质构特性和感官评价结果进行了统计 分析。结果发现,小麦粉的 GMP 质量分数、灰分、蛋 白质及湿面筋质量分数与生湿面片亮度呈显著或 极显著负相关 (P<0.05);SDS 沉淀指数与贮藏 24 h 内面片亮度变化 ΔL^* 呈显著正相关(P<0.05); 谷醇 比、乳酸 SRC、LOX 酶活力、面团粉质拉伸特性(形 成时间、稳定时间、拉伸曲线面积等)以及糊化特性 (峰值黏度、衰减值)与面条的质构特性和感官评分 存在显著或极显著相关(P<0.05)。上述分析结果可 在一定程度上用于预测生湿面品质。

基于主成分得分矩阵进行聚类分析,将供试小 麦品种分为 3 类:第Ⅲ类小麦的 GMP 质量分数、乳 酸SRC、蛋白质质量分数、湿面筋质量分数、形成时 间、稳定时间、粉质质量指数、拉伸曲线面积及延伸 度显著高于第Ⅰ类和第Ⅱ类小麦(P<0.05),具有最 高的感官评分与食用品质;第Ⅱ类小麦制得生湿面 片放置 24 h 后的亮度 L_{24}^* 显著高于第 \mathbb{I} 类和第 \mathbb{II} 类

表 6 小麦粉特性和生湿面品质指标的聚类分析结果

Table 6 Clustering analysis of flour characteristics and quality of fresh wet noodles

指标	第Ⅰ类	第Ⅱ类	第Ⅲ类
蛋白质质量分数/%	9.87±1.23 ^b	7.73±0.27°	12.48±0.38 ^a
湿面筋质量分数/%	26.36±4.45 ^b	20.28±0.40 ^b	34.31±0.96 ^a
谷醇比	1.02±0.12 ^a	1.03±0.09 ^a	$0.80 \pm 0.07^{\rm b}$
GMP 质量分数/%	4.00±0.93 ^b	3.43±0.13 ^b	6.08±0.84 ^a
SDS 沉淀指数	49.31±7.86 ^b	48.69±3.27 ^b	68.5±7.07 ^a
乳酸 SRC/%	87.00±11.50 ^b	78.12±13.04 ^b	119.23±4.26 ^a
形成时间/min	4.92±2.82 ^b	1.73±0.33 ^b	17.78±13.97 ^a
稳定时间/min	11.95±6.19 ^{ab}	5.63±5.42 ^b	23.50±11.10 ^a
粉质质量指数	136.59±77.84ab	64.08±54.57 ^b	259.75±125.51 ^a
拉伸曲线面积/cm²	100.78±28.99 ^b	91.00±1.41 ^b	162.00±21.21 ^a
拉伸阻力/BU	493.00±93.57 ^{ab}	544.00±84.85 ^a	328.00±33.94 ^b
延伸性/cm	130.33±27.45 ^b	112.50±10.61 ^b	228.00±38.18 ^a
拉伸比例	4.02±1.35 ^a	4.90±1.27 ^a	1.50±0.42 ^b
峰值黏度/cP	2 561.72±328.92ª	2 496.00±475.18 ^a	2 327.75±346.13 ^a
衰减值/cP	781.11±247.70°	740.00±196.58 ^a	899.50±73.54ª
LOX 酶活力/(U/(g·min))	2 349.00±1689.2 ^a	1 255.32±714.79 ^a	1 225.15±260.32 ^a
硬度/g	4 516.26±624.67 ^a	4 560.17±1368.95 ^a	4 602.79±619.56 ^a
黏聚性	0.66±0.02 ^a	0.65±0.02ª	0.68±0.02 ^a
胶着性/g	2 997.24±404.63 ^a	2 959.51±987.94ª	3 131.51±352.06 ^a
咀嚼性/g	2 704.73±384.58 ^a	2 698.78±915.98 ^a	2 875.1±349.68 ^a
回复性	0.37±0.03ª	0.36±0.05 ^a	0.37±0.03ª
L_{24}^*	71.85±2.84 ^{ab}	76.04±1.11ª	70.05±0.90 ^b
ΔL^*	9.29±1.78 ^a	8.68±0.85 ^a	9.43±0.68 ^a
感官评分	76.63±4.66ª	81.14±2.79 ^a	83.48±4.82 ^a

注:不同小写字母表示同一指标类别间存在显著性差异(P < 0.05);表中仅展示与生湿面品质具有显著相关性(P < 0.05)的小麦粉特性指标。

小麦(P<0.05),外观品质最佳,且其拉伸阻力、拉伸比例显著高于其他两类小麦(P<0.05),熟面硬度与感官评分优于第 I 类小麦。基于国产小麦在蛋白质质量与拉伸特性方面的短板,我国育种工作者今后应继续探索培育具有优良蛋白质品质的国产面条

专用小麦品种。在专用粉实际生产中,可通过将国产小麦与第Ⅱ类小麦或第Ⅲ类小麦搭配,实现优势互补,以生产出兼具生湿面色泽与食用品质的生湿面专用粉。上述结果可为小麦育种种质资源筛选与生湿面专用粉生产提供指导。

参考文献:

- [1] XU T, ZHENG X, WANG M. Changes of starch properties and its relationship with noodle quality during the process of wheat flour maturing[J]. **Cereal & Feed Industry**, 2014(10): 22-25.
- [2] 刘培杏. 影响生湿面品质的因素及处理方法[J]. 广西轻工业,2010,26(6):15-16.

 LIU P X. Factors affecting the quality of wet noodles and their treatment methods[J]. **Guangxi Journal of Light Industry**, 2010,26(6):15-16. (in Chinese)
- [3] ZHANG SB, LUQY, YANG HS, et al. Effects of protein content, glutenin-to-gliadin ratio, amylose content, and starch damage

- on textural properties of Chinese fresh white noodles[J]. Cereal Chemistry, 2011, 88(3): 296-301.
- [4] KONIK C M, MIKKELSEN L M, MOSS R, et al. Relationships between physical starch properties and yellow alkaline noodle quality[J]. **Starch - Stärke**, 1994, 46(8): 292-299.
- [5] BARAK S, MUDGIL D, KHATKAR B S. Effect of compositional variation of gluten proteins and rheological characteristics of wheat flour on the textural quality of white salted noodles[J]. **International Journal of Food Properties**, 2014, 17(4):731-740.
- [6]张勇,张晓,张伯桥,等. 小麦溶剂保持力(SRC)研究进展[J]. 中国农学通报,2013,29(36):9-14. ZHANG Y, ZHANG X, ZHANG B Q, et al. Recent research progress of solvent retention capacity on wheat [J]. Chinese Agricultural Science Bulletin, 2013, 29(36): 9-14. (in Chinese)
- [7] FUERST E P, ANDERSON J V, MORRIS C F. Delineating the role of polyphenol oxidase in the darkening of alkaline wheat noodles[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6):2378-2384.
- [8] 孙小红, 郭兴凤. 酶制剂在面条加工中的应用[J]. 粮食加工, 2014, 39(6): 40-44. SUN X H, GUO X F. Application of enzyme in noodles processing[J]. Grain Processing, 2014, 39(6): 40-44. (in Chinese)
- [9] American Association of Cereal Chemists. Gluten—hand washing method[M]. Saint Paul: AACC International, 2000.
- [10] SONG Y H, ZHENG Q. Preparation and properties of thermo-molded bioplastics of glutenin-rich fraction[J]. Journal of Cereal Science, 2008, 48(1):77-82.
- [11] 刘锐,魏益民,张波,等,面条制作过程中蛋白质组成的变化[J],中国食品学报,2013,13(11):198-204. LIU R, WEI Y M, ZHANG B, et al. Changes of protein composition in the noodle processing and cooking[J]. Journal of Chinese **Institute of Food Science and Technology**, 2013, 13(11): 198-204. (in Chinese)
- [12] LI C, DHITAL S, GILBERT R G, et al. High-amylose wheat starch: structural basis for water absorption and pasting properties[J]. Carbohydrate Polymers, 2020, 245: 116557.
- [13] 徐天云,郑学玲,王明铁. 小麦粉熟化过程中淀粉特性变化及与面条的关系[J]. 粮食与饲料工业, 2014(10): 22-25. XU T Y, ZHENG X L, WANG M T. Changes of starch properties and its relationship with noodle quality during the process of wheat flour maturing[J]. Cereal & Feed Industry, 2014(10): 22-25. (in Chinese)
- [14] MCCORMICK K M, PANOZZO J F, HONG S H. A swelling power test for selecting potential noodle quality wheats [J]. Australian Journal of Agricultural Research, 1991, 42(3):317.
- [15] LI M, ZHU K X, WANG B W, et al. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment[J]. **Food Chemistry**, 2012, 135(4):2163-2169.
- [16] CAI J G,XIE Y,SONG B,et al. Fervidobacterium changbaicum Lip1; identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V[J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1463-1473.
- [17] CATO L, HALMOS A L, SMALL D M. Measurement of lipoxygenase in Australian white wheat flour; the effect of lipoxygenase on the quality properties of white salted noodles [J]. **Journal of the Science of Food and Agriculture**, 2006, 86(11):1670-1678.
- [18] MCCLEARY B V, MCGEOUGH P. A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase[J]. Applied Biochemistry and Biotechnology, 2015, 177(5):1152-1163.
- [19] DOUGLAS S G. A rapid method for the determination of pentosans in wheat flour[J]. Food Chemistry, 1981, 7(2):139-145.
- [20] KISZONAS A M, COURTIN C M, MORRIS C F. A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay[J]. Cereal Chemistry, 2012, 89(3):143-150.
- [21] EPSTEIN J, MORRIS C F, HUBER K C. Instrumental texture of white salted noodles prepared from recombinant inbred lines of wheat differing in the three granule bound starch synthase (waxy) genes[J]. **Journal of Cereal Science**, 2002, 35(1):51-63.
- [22] ASENSTORFER R E, APPELBEE M J, MARES D J. Impact of protein on darkening in yellow alkaline noodles[J]. Journal of **Agricultural and Food Chemistry**, 2010, 58(7): 4500-4507.
- [23] OH N H, SEIB P A, WARD A B, et al. Noodles. IV. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of dry noodles[J]. Cereal Chemistry, 1985, 62(6):441-446.
- [24] 杨钏, 乔文臣, 张影全, 等. 小麦面粉蛋白质特性和面团流变学特性的关系[J]. 食品安全质量检测学报, 2020, 11(12): 4075-
 - YANG C, QIAO W C, ZHANG Y Q, et al. Relationship between protein properties of wheat flour and rheological properties of dough[J]. Journal of Food Safety & Quality, 2020, 11(12): 4075-4082. (in Chinese)
- [25] MORRIS C F. Determinants of wheat noodle color[J]. Journal of the Science of Food and Agriculture, 2018, 98 (14):5171-5180.

- [26] 孙彩玲,田纪春,张永祥. TPA 质构分析模式在食品研究中的应用[J]. 实验科学与技术,2007,5(2):1-4. SUN C L,TIAN J C,ZHANG Y X. Application of TPA test mode in the study of food[J]. **Experiment Science & Technology**, 2007,5(2):1-4. (in Chinese)
- [27] HUEN J,BÖRSMANN J,MATULLAT I,et al. Wheat flour quality evaluation from the baker's perspective:comparative assessment of 18 analytical methods[J]. **European Food Research and Technology**, 2018, 244(3):535-545.
- [28] DELCOUR J A, HOSENEY R C. Principles of Cereal Science and Technology[M]. Minnesota: AACC International, 2010.
- [29] 邓航,周文化,李立华. 小麦品质与鲜湿面品质的关系[J]. 食品与机械,2017,33(12):6-11.

 DENG H,ZHOU W H,LI L H. Study on relationship of quaity between wheat quality and fresh noodles[J]. **Food & Machinery**, 2017,33(12):6-11. (in Chinese)
- [30] 常战战,王纪鹏,刘云祎,等. 制面方式对煮制面条粘连的影响[J]. 食品与生物技术学报,2021,40(6):76-85. CHANG Z Z,WANG J P,LIU Y Y, et al. Effect of noodle processing technology on adhesion of cooked noodles[J]. **Journal of Food Science and Biotechnology**,2021,40(6):76-85. (in Chinese)
- [31] 黄东印,林作楫. 冬小麦品质性状与面条品质性状关系的初步研究[J]. 华北农学报,1990,5(1):40-45. HUANG DY, LIN Z J. A preliminary study on the relationship between noodle processing quality and quality characteristics of winter wheat[J]. **Acta Agriculturae Boreali—Sinica**,1990,5(1):40-45. (in Chinese)
- [32] CROSBIE G B, ROSS A S, MORO T, et al. Starch and protein quality requirements of Japanese alkaline noodles (ramen) [J]. Cereal Chemistry, 1999, 76(3): 328-334.
- [33] ZHANG Y, NAGAMINE T, HE Z H, et al. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality[J]. **Euphytica**, 2005, 141(1):113-120.
- [34] NIU M, HOU G G, WANG L, et al. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product[J]. **Journal of Cereal Science**, 2014, 60(2):382-388.
- [35] DOXASTAKIS G, PAPAGEORGIOU M, MANDALOU D, et al. Technological properties and non-enzymatic browning of white lupin protein enriched spaghetti[J]. Food Chemistry, 2007, 101(1):57-64.
- [36] HAYWARD S, CILLIERS T, SWART P. Lipoxygenases: from isolation to application [J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(1):199-211.
- [37] ZHANG C, ZHANG S, BIE X M, et al. Effects of recombinant lipoxygenase on the rheological properties of dough and the quality of noodles[J]. **Journal of the Science of Food and Agriculture**, 2016, 96(9): 3249-3255.
- [38] GERMAN J B. Food Processing and Lipid Oxidation[M]. Boston: Springer, 1999.
- [39] YOO J, LAMSAL B P, HAQUE E, et al. Effect of enzymatic tempering of wheat kernels on milling and baking performance[J]. Cereal Chemistry, 2009, 86(2):122-126.
- [40] ASENSTORFER R E, APPELBEE M J, MARES D J. Physical-chemical analysis of non-polyphenol oxidase (non-PPO) darkening in yellow alkaline noodles[J]. **Journal of Agricultural and Food Chemistry**, 2009, 57(12):5556-5562.
- [41] 孔雁, 张影全, 邢亚楠, 等. 小麦粉质量性状对兰州拉面色泽的影响[J]. 中国食品学报, 2018, 18(12):295-301. KONG Y, ZHANG Y Q, XING Y N, et al. Effects of wheat flour's quality traits on the color of Lanzhou hand-extended noodles [J]. **Journal of Chinese Institute of Food Science and Technology**, 2018, 18(12):295-301. (in Chinese)
- [42] 雍雅萍,王吉力特,李云玲,等. 河套地区不同小麦粉品质特性对其面条品质的影响[J]. 食品与发酵工业,2021,47(16):226-232
 - YONG Y P, WANG J, LI Y L, et al. Effects of different quality wheat flour on noodle quality in Hetao Area [J]. Food and Fermentation Industries, 2021, 47(16); 226-232. (in Chinese)
- [43] 虞晓芬,傅玳. 多指标综合评价方法综述[J]. 统计与决策,2004(11):119-121.
 YU X F,FU D. Summary of multi-index comprehensive evaluation methods[J]. **Statistics and Decision**,2004(11):119-121. (in Chinese)