# Funkcje Analityczne

na podstawie wykładu prof. Krzysztof Oleszkiewisz

autor Michał Posiadała przy wykorzystaniu nieocenionych notatek dr Wojciecha Politarczyka, Marty Kołodziejczyk oraz Małgorzaty Ciołek

Data ostatniej aktualizacji: 13 lutego 2025

# 1 Podstawowe informacje na liczbach zespolonych

# Twierdzenie 1.1: de Movire

$$\forall_{\substack{\alpha \in \mathbb{R} \\ n \in \mathbb{N}}} (\cos \alpha + i \sin \alpha)^n = \cos(n\alpha) + i \sin(n\alpha)$$

# Wniosek 1.1: Pierwiastki z 1

Dla  $k \in \{0,1,2,...,n-1\}$ niech

$$w_n^k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$$

Tak więc $w_n^k$ są więc pierwiastkami stopnia  $n \ge 1.$ 

# 2 Ciągi i szeregi zespolone

#### Twierdzenie 2.1: Nierówność Cauchy'ego

Niech  $z_i, w_i$  - ciągi liczb zespolonych. Wtedy

$$\left| \sum_{k=1}^{n} z_k w_k \right| \le \left( \sum_{k=1}^{n} z_k \right)^{\frac{1}{2}} \left( \sum_{k=1}^{n} w_k \right)^{\frac{1}{2}}$$

# Twierdzenie 2.2: Kryteria Porównawcze

# Kryterium Weierstrassa

Niech  $\sum_{n=1}^{\infty}A_n$  - zbieżny szereg o wyrazach nieujemnych. Wtedy jeśli prawie wszystkie wyrazy szeregu  $\sum_{n=1}^{\infty}z_n$  spełniają nierówność

$$|z_n| \leqslant A_n$$

wówczas szereg $\sum\limits_{n=1}^{\infty}z_{n}$ jest bezwzględnie zbieżny.

# Kryterium d'Alamberta

Jeśli  $\limsup \left|\frac{z_{n+1}}{z_n}\right| < 1$ , to szereg  $\sum_{n=1}^{\infty} z_n$  jest zbieżny bezwzględnie, a jeśli  $\liminf \left|\frac{z_{n+1}}{z_n}\right| > 1$ , to szereg jest rozbieżny.

# Kryterium Cauchy'ego

Jeśli  $\gamma = \limsup \sqrt[n]{z_n} < 1$ , to szereg  $\sum_{n=1}^{\infty} z_n$  jest zbieżny bezwględny, a w przypadku  $\gamma > 1$  jest on rozbieżny.

# Kryterium Raabego

Jeżeli  $\limsup n\left(\left|\frac{z_{n+1}}{z_n}\right|\right) < -1$  to szereg  $\sum_{n=1}^{\infty} z_n$  jest zbieżny bezwzględnie.

# Twierdzenie 2.3: Kryteria Zbieżności jednostajnej

Rozważmy szereg funkcyjny,

$$\sum_{n=0}^{\infty} f_n(z)$$

gdzie wszystkie funkcje  $f_n$  są określone na obszarze  $\Omega \subset \mathbb{C}$ .

1. (Kryterium Cauchy'ego) Szereg  $\sum\limits_{n=0}^{\infty}f_n(z)$  jest zbieżny jednostajnie na zbiorze  $D\subset\Omega$ , jeśli dla dowolnego  $\epsilon>0$  istnieje N>0 takie, że dla n>m>N zachodzi

$$\sup_{z\in D}|f_m(z)+f_{m+1}(z)+\cdots+f_n(z)|<\epsilon.$$

2. (**Kryterium Weierstrassa**) Szereg  $\sum_{n=0}^{\infty} f_n(z)$  jest zbieżny jednostajnie na zbiorze  $D \subset \Omega$ , jeśli istnieje ciąg liczb nieujemnych  $(A_n)_{n\geqslant 1}$  takich, że dla prawie wszystkich n mamy

$$\sup_{z \in D} |f_n(z)| \leqslant A_n,$$

oraz szereg  $\sum_{n=0}^{\infty} A_n$  jest zbieżny. Dodatkowo, jeśli  $f_1, f_2, \dots$  są ciągłe, to  $\sum_{n=1}^{\infty} f_n$  też iest funkcja ciągła.

3. (Kryterium Dirichleta) Szereg  $\sum_{n=0}^{\infty} a_n f_n(z)$  jest zbieżny jednostajnie na zbiorze  $D \subset \Omega$ , jeśli współczynniki  $a_n$  są liczbami dodatnimi dążącymi do zera oraz istnieje M > 0 takie, że dla prawie wszystkich n > 0 zachodzi

$$\sup_{z \in D} \sum_{k=1}^{n} f_k(z) < M.$$

# Definicja 2.1: Promień zbieżności

$$R = \frac{1}{\limsup \sqrt[n]{|c_n|}} \in [0, +\infty]$$

# Twierdzenie 2.4: Abel - Cauchy - Hadamard

Szereg potęgowy jest zbieżny wewnątrz promienia zbieżności i rozbieżny na zewnątrz.

#### Twierdzenie 2.5: Abela

- 1. Promień zbieżności R szeregu potęgowego  $\sum_{n=1}^{\infty}na_n(z-z_0)^{n-1}$  jest taki sam jak promień zbieżności szeregu  $\sum_{n=0}^{\infty}a_n(z-z_0)^n$
- 2. Funkcja  $f: D(z_0, R) \to \mathbb{C}$  zadana wzorem

$$f(z) = a_0 + \sum_{n=1}^{\infty} a_n (z - z_0)^n$$

jest różniczkowalna w sensie zespolonym i

$$f'(z) = \sum_{n=1}^{\infty} n \cdot a_n (z - z_0)^{n-1}$$

#### Wniosek 2.1

Szereg potęgowy o środku  $z_0 \in \mathbb{C}$  oraz dodatnim promieniu zbieżności R jest swoim własnym szeregiem Taylora na  $D(z_0, R)$ 

# Twierdzenie 2.6: O zbieżności w kącie

 $\sum c_n(z-z_0)^n$  - szereg potęgowy o dodatnim promieniu zbieżności R. Załóżmy, że dla pewnej liczby zespolonej  $w \in \partial D(z_0, R)$ , tzn. takiej, że  $|z_0 - w| = R$ , szereg  $\sum_{n=1}^{\infty} c_n(w-z_0)^n$  jest zbieżny.

Wtedy

$$\lim_{t \in A} \sum_{n=0}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (w - z_0)^n$$

# 3 Różniczkowalność w sensie zespolonym

# Definicja 3.1: Różniczkowalność zespolona

Niech f będzie funkcją zespoloną określoną na zbiorze otwartym  $G\subset\mathbb{C}$ . Funkcja f nazywamy RÓŻNICZKOWALNĄ W SENSIE ZESPOLONYM w punkcie  $z_0\in G$ , jeśli granica

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

istnieje i jest skończona. Granicę tę nazywamy POCHODNĄ FUNKCJI f w punkcie  $z_0$  i oznaczamy  $f'(z_0)$ 

# Definicja 3.2: Równania Cauchy'ego-Riemanna

Mając funkcją

$$f(z) = u(x, y) + iv(x, y), \qquad x = \operatorname{Re}(z), y = \operatorname{Im}(z)$$

wtedy definiujemy RÓWNANIA CAUCHY'EGO-RIEMANNA jako:

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$

$$u_y(x_0, y_0) = -v_x(x_0, y_0)$$

# Twierdzenie 3.1

# NWSR

- $\bullet$  Funkcja f(x,y)=u(x,y)+iv(x,y)jest różniczkowalna w sensie zespolonym (jest holomorficzna)
- $\bullet$  Pochodne cząstkowe ui vistnieją, są ciągłe i spełniają równania CR

# Definicja 3.3: Holomorficzność

Mówimy, że funkcja jest HOLOMORFICZNA na obszarze  $\Omega$ , jeśli jest różniczkowalna w sensie zespolonym w każdym punkcie tego obszaru  $\Omega$ .

#### Twierdzenie 3.2

Każda funkcja f holomorficzna na obszarze  $\Omega\subset\mathbb{C}$  ma pochodną  $f^{(n)}$  dowolnego rzędu  $n\in\mathbb{N}$  na tym obszarze.

# Definicja 3.4: Analityczność

Mówimy, że funkcja  $f:U\to\mathbb{C}$  jest ANALITYCZNA na zbiorze otwartym U, jeśli

$$\bigvee_{z \in U} \exists D(z, r_z) \subseteq U$$

oraz  $f \bigg|_{D(z,r_z)}$ rozwija się w szereg potęgowy o środkuzi promieniu  $r_z$ 

# Fakt 3.1

Każda funkcja analityczna na U jest jednocześnie holomorficzna na U.

# Definicja 3.5: Funkcje harmoniczne

JeśliU - otwarty oraz  $u:U\to\mathbb{R}^n,$ wówczas mówimy, że

$$u$$
 jest funkcją harmoniczną  $\iff \sum_{k=1}^n u_{kk} = 0$ 

#### Twierdzenie 3.3

Jeśli  $f:\Omega\to\mathbb{C}$  posiada pochodną zespoloną w każdym punkcie obszaru  $\Omega$ , wówczas funkcje  $\mathrm{Re}(f)$  oraz  $\mathrm{Im}(f)$  są harmoniczne.

# 4 Własności funkcji holomorficznych

# Definicja 4.1: Funkcja wykładnicza

Dla  $z\in\mathbb{C}$  funkcję wykładniczą definiujemy przy pomocy następującego szeregu potęgowego:

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!},$$

który jest niemal jednostajnie zbieżny na całej płaszczyźnie zespolonej.

#### Własności:

- 1. Dla dowolnych  $z_1, z_2 \in \mathbb{C}$ , zachodzi  $\exp(z_1) \cdot \exp(z_2) = \exp(z_1 + z_2)$ .
- 2. Równość  $\exp(z) = 1$  zachodzi wtedy i tylko wtedy, gdy  $z = 2k\pi i$ , gdzie  $k \in \mathbb{Z}$ . W konsekwencji, funkcja exp jest okresowa o okresie  $2\pi i$ .
- 3. Równanie  $\exp(z) = 0$  nie ma rozwiązań w  $\mathbb{C}$ .
- 4. Dla dowolnego  $z \in \mathbb{C}$  zachodzi  $|\exp(z)| = \exp(\operatorname{Re}(z)), \operatorname{Arg}(\exp(z)) = \operatorname{Im}(z).$
- 5. Dla wszystkich  $w \in \mathbb{C}$  zachodzi (exp)' = exp.

# Definicja 4.2: Ciągła gałąź argumentu na zbiorze

Jeśli $\emptyset \neq U \subseteq \mathbb{C}\backslash\{0\},$ to powiemy, że funkcje  $f:U\to \mathbb{R}$ jest CIĄGŁĄ GAŁĘZIĄ ARGUMENTU NA ZBIORZE Ujeśli:

- 1. f jest ciągła na U
- $2. \ \ \underset{z \in \mathbb{C}}{\forall} f(z) \in \arg(z)$

#### Definicja 4.3: Ciągła gałąź logarytmu

Jeśli  $\emptyset \neq U \subseteq \mathbb{C} \setminus \{0\}$ , to powiemy, że funkcje  $g:U \to \mathbb{R}$  jest CIĄGŁĄ GAŁĘZIĄ LOGARYTMU w na zbiorze U jeśli:

- 1. g jest ciągła na U
- $2. \ \ \bigvee_{z \in \mathbb{C}} e^{g(z)} = z$

# Fakt 4.1

Załóżmy, że  $\emptyset \neq U \subset \mathbb{C} \setminus \{0\}$ 

1. Wówczas jeśli  $f:U\to\mathbb{C}$  jest ciągłą gałęzią argumentu na U, to funkcja  $g:U\to\mathbb{C}$  zdefiniowana wzorem

$$g(z) = \log|z| + if(z)$$

jest ciągłą gałęzią logarytmu naturalnego na U

2. Jeśli zaś  $g: U \to \mathbb{C}$  jest ciągłą gałęzią logarytmu naturalnego na U, to  $f: U \to \mathbb{R}$  zdefiniowana wzorem  $f(z) = \log g(z)$  jest ciągłą gałęzią argumentu na U.

#### Uwaga:

Jeśli  $\emptyset \neq U \subseteq \mathbb{C} \setminus \{0\}$  jest zbiorem spójnym oraz  $f_1, f_2: U \to \mathbb{R}$  są ciągłymi gałęziami argumentu na U, to

$$\exists_{k \in \mathbb{Z}} \forall_{z \in U} f_1(z) = 2k\pi + f_2$$

#### Fakt 4.2

Nie istnieje ciągła gałąź argumentu na  $\mathbb{C} \setminus \{0\}$ 

# Definicja 4.4

 $U=\mathbb{C}\setminus[0,+\infty),\,U$ - spójny. Jeśli  $f:\mathbb{C}\setminus\{0\}\to\mathbb{R}$  jest ciągłą gałęzią argumentu na  $\mathbb{C}\setminus\{0\}$  to  $f\Big|_U:U\to\mathbb{R}$  jest ciągłą gałęzią argumentu na U.

# Definicja 4.5: Argument Główny

Argument Główny Arg :  $\mathbb{C} \setminus \{0\} \to \mathbb{R}$  definiujemy wzorem  $\{\operatorname{Arg}(z)\} = \operatorname{arg}(z) \cap [0, 2\pi)$ 

# Definicja 4.6: Gałąź główna logarytmu

GŁÓWNĄ GAŁĘZIĄ LOGARYTMU NATURALNEGO na  $\mathbb{C}\setminus\{0\}$  nazywamy funkcję Log :  $\mathbb{C}\setminus\{0\}\to\mathbb{C}$  określoną wzorem

$$Log(z) = log |z| + i Arg(z)$$

# $na \ og \'old \ nie \ jest$ prawdq $\log(uw) = \log u + \log w$

# 5 Własności funkcji Log i exp

# Definicja 5.1: Funkcja potęgowa

Załóżmy, że log jest gałęzią logarytmu naturalnego na niepustym zbiorze  $U\subseteq\mathbb{C}\setminus\{0\}$ . Wówczas dla  $w\in\mathbb{C}$  możemy zdefiniować ciągłą gałąź FUNKCJI POTĘGOWEJ o wykładniku w na zbiorze U dana wzorem

$$z^w = e^{w \cdot \log z}$$
$$z^{u+w} = z^u \cdot z^w$$

#### Definicja 5.2: Pierwiastek *n*-tego stopnia

$$z^{\frac{1}{n}} = e^{\frac{\log z}{n}}$$

#### Uwaga:

Jeśli  $w \in \mathbb{C}$  jest pierwiastkiem n-tego stopnia z jedynki, to

$$f(z) = wz^{\frac{1}{n}}$$

również jest ciągłą gałęzią pierwiastka n-tego stopnia na U.

# Własności:

- 1. Jeśli  $\mu \in \mathbb{Z}$ , wówczas funkcja  $z \mapsto z^{\mu}$  jest jednoznaczna na  $\Omega = \mathbb{C} \setminus (-\infty, 0]$ .
- 2. Jeśli  $\mu = \frac{m}{n} \in \mathbb{Q}$  jest ułamkiem nieskracalnym, to funkcja wieloznaczna  $z \mapsto z^{\mu}$  ma

dokładnie n gałęzi:

$$\operatorname{Pow}_{k}(z, \mu) = \exp\left(\frac{m}{n}\log^{(k)}(z)\right), \quad k = 0, 1, \dots, n - 1.$$

3. Jeśli  $\mu \in \mathbb{C} \setminus \mathbb{Q}$ , to funkcja wieloznaczna  $z \mapsto z^{\mu}$  ma nieskończenie wiele gałęzi:

$$\operatorname{Pow}_k(z,\mu) = |z|^{\mu} \cdot \exp\left(\mu \cdot \log^{(k)}(z)\right), \quad k \in \mathbb{Z}.$$

#### Fakt 5.1

Załóżmy, że  $f: U \to \mathbb{C}$   $\emptyset \neq U \subseteq \mathbb{C}$ ,  $z_0 \in U$ , f jest ciągła w  $z_0$ ,  $g: \to \mathbb{C}$  jest różniczkowalna w  $z_0$  przy czym  $g'(f(z_0)) \neq 0$ . Jeśli g(f(z)) = z dla każdego  $z \in U$ , to f jest różniczkowalna w sensie zespolonym w punkcie z oraz

 $f'(z_0) = \frac{1}{g'(f(z_0))}$ 

W pewnym sensie funkcja f jest jednostronnie odwrotna do funkcji g

#### **Fakt 5.2**

Niech:

- $\emptyset \neq U, V \subseteq \mathbb{C}$  otwarte
- $f: U \to V$  ciągła
- $\bullet \;\; g:V \to \mathbb{C}$  holomorficzna na V
- $\forall g(f(z)) = z \text{ oraz } \forall g'(v) \neq 0$

Wtedy przy powyższych założeniach f jest holomorficzna na zbiorze U oraz

$$f'(z) = \frac{1}{g'(f(z))}$$

#### Wniosek 5.1

Załóżmy, że  $\emptyset \neq U \subseteq \mathbb{C} \setminus \{0\}$  a ponadto log jest ciągłą gałęzią logarytmu na U. Wówczas log jest funkcją holomorficzną na U a ponadto

$$\frac{d}{dz}(\log z) = \frac{1}{z} \text{ na } U$$

# 6 Homografia

#### Stwierdzenie 6.1

- a) Przekształcenie  $z\mapsto \overline{z}$ jest symetrią prostopadłą płaszczy<br/>zny względem osi rzeczywistej.
- b) Gdy  $a,b\in\mathbb{C}$  i  $a\neq 0$ , to przekształcenie  $f:\mathbb{C}\to\mathbb{C}$  zadane wzorem f(z)=az+b jest podobieństwem. Ściślej biorąc, jest ono:
  - i) przesunięciem, gdy a = 1,
  - ii) obrotem wokół 0 o kat arg(a), gdy |a| = 1 i b = 0,
  - iii) jednokładnością o środku w 0 i skali |a|, gdy  $a \in \mathbb{R}$  i b = 0,
  - iv) złożeniem obrotu wokół punktu  $z_0 = \frac{b}{1-a}$  o kąt  $\arg(a)$  i jednokładności o środku w tym punkcie i skali |a|, gdy  $a \neq 1$ .

# Definicja 6.1: Konforemność

Przekształcenie  $F: \mathbb{R}^s \to \mathbb{R}^2$  nazwiemy KONFOREMNYM, jeśli jest ono homeomorfizmem klasy  $C^1$  i pochodna df(p) jest podobieństwem, dla każdego  $p \in U$ .

# Definicja 6.2: Rzut Stereograficzny

Symbolem  $\mathbb{S}^2=\left\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+\left(z-\frac{1}{2}\right)=\frac{1}{4}\right\}$  SFERA RIEMANNA. Natomiast punkt N=(0,0,1) nazwiemy BIEGUNEM PÓŁNOCNYM.



Jeśli P jest dowolnym punktem na  $\mathbb{S}^2 \setminus \{N\}$ , a l to półprosta o początku N i przechodząca przez P, to punkt

$$(x, y, 0) = l \cap \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$$

nazywamy RZUTEM STEREOGRAFICZNY punktu P.

# Definicja 6.3: Zbieżność w $\mathbb C$ a zbieżność w $\mathbb S^2$

Załóżmy, że  $f: \Omega \to \mathbb{C}$ , gdzie  $\{z \in \mathbb{C}: |z| > R\} \subset \Omega \subset \mathbb{C}$ , dla pewnego R > 0.

1. Niech  $z_0 \in \mathbb{C}$ . Mówimy, że  $\lim_{z \to \infty} f(z) = z_0$  wtedy i tylko wtedy, gdy

$$\forall \epsilon > 0 \ \exists R_0 > R \text{ takie, in } |z| > R_0 \implies |f(z) - z_0| < \epsilon.$$

2. Podobnie definiujemy  $\lim_{z\to\infty} f(z) = \infty$ , jeśli

$$\forall R' > 0 \exists R_0 > R \text{ takie, } \dot{z}e |z| > R_0 \implies |f(z)| > R'.$$

3. Dla  $z_0 \in \Omega$  definiujemy  $\lim_{z \to z_0} f(z) = \infty$  w następujący sposób:

$$\forall R' > 0 \ \exists \delta > 0 \ \text{takie}, \ \dot{z}e \ |z - z_0| < \delta \implies |f(z)| > R'.$$

#### Fakt 6.1

Na ogół funkcja ciągła na  $\mathbb{C}$  nie przedłuża się do funkcji ciągłej na  $\overline{\mathbb{C}}$ .

#### **Fakt 6.2**

Jeśli  $w \in \mathbb{C}[z]$  to w można przedłużyć do funkcji ciągłej na  $\overline{\mathbb{C}}$ . Kładziemy:

- $w(\infty) = \infty \text{ gdy deg } w \geqslant 1$
- $w(\infty) = w(0)$  jeśli w jest wielomianem stałym

**Uwaga:** Każdą funkcje wymierną również da się przedłużyć na funkcję stałą w  $\overline{\mathbb{C}}$ 

# Definicja 6.4: Homografia

Jeśli  $ad \neq cb$  to funkcja  $h: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  określoną wzorem

$$h(z) = \begin{cases} \frac{az+b}{cz+d} & z \neq -\frac{1}{c} \\ \infty & z = -\frac{d}{c} \text{ (Biegun Homografii)} \\ \frac{a}{c} & z = \infty \end{cases}$$

to nazywamy ją Homografią o macierzy  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 

#### Własności:

- 1. Homografie tworzą grupę przekształceń
- 2. Każda homografia jest jednoznacznie wyznaczona przez swoje wartości w trzech punktach.
- 3. Każda homografia jest złożeniem translacji, podobieństwa i inwersji.
- 4. Każda homografia przekształca okręgi uogólnione na okręgi uogólnione.
- 5. (**Zasada symetrii**) Jeśli punkty z i  $z^*$  są symetryczne względem okręgu uogólnionego C oraz f jest homografią, wówczas f(z) i  $f(z^*)$  są symetryczne względem f(C).

#### Definicja 6.5: Okrąg uogólniony

Powiemy, że podzbiór  $\mathbb C$  jest okręgiem uogólnionym, jeśli jest albo okręgiem w  $\mathbb C$  albo jest zbiorem postaci  $l \cup \{+\infty\}$ 

#### Twierdzenie 6.1

Jeśli L jest prostą na płaszczyźnie  $\mathbb{C}$ , to dla dowolnej homografii h, zbiór  $h(L \cup \{\infty\})$  jest prostą (wraz z punktem  $\infty$ ) lub okręgiem. Co więcej, h(L) jest okęgiem wtedy i tylko wtedy, gdy  $c \neq 0$  i  $-\frac{d}{c} \notin L$ .

# Definicja 6.6: Inwersja Analityczna

Jeśli

$$h(z) = z^{-1} = \frac{0 \cdot z + 1}{1 \cdot z + 0}$$

to h nazwiemy Inwersją analityczną względem okręgu jednostkowego

# 7 Całka z funkcji zespolonej

Uwaga:
macierz
homografii nie
jest
jednoznaczna

# Definicja 7.1: Funkcja pierwotna

Niech  $\Omega \subset \mathbb{C}$  będzie obszarem oraz niech  $f, F: \Omega \to \mathbb{C}$  będą funkcjami ciągłymi. Mówimy, że F jest funkcją pierwotną f, jeśli dla każdego  $z \in \Omega$  istnieje pochodna zespolona F'(z) oraz F'(z) = f(z).

# Twierdzenie 7.1

Niech  $\Omega\subset\mathbb{C}$ będzie obszarem oraz niech fbędzie funkcją ciągłą na  $\Omega.$  NWSR:

- 1. Funkcja f posiada funkcję pierwotną na  $\Omega$ .
- 2. Dla dowolnej drogi  $\gamma$  w  $\Omega$  mamy  $\int_{\gamma} f(z) dz = 0$ .

#### Przykład 7.1: Egzamin 2025

**Zadanie 1.** Niech  $V=\{z\in\mathbb{C}:|z|>1\}$ . Proszę wyznaczyć zbiór wszystkich liczb zespolonych w o tej własności, że funkcja  $\varphi_w:V\to\mathbb{C}$  określoną wzorem  $\varphi_w(z)=(1+z)^{-1}e^{wz}+(1-z)^{-1}$  ma na zbiorze V funkcję pierwotną.

Rozwiązanie Zadania 1. Oznaczmy f(z) = 1,  $g(z) = e^{wz}$ . Zauważmy, że są one holomorficzne na całym obszarze V. Oznaczmy  $\gamma : [0, 2\pi] \to \mathbb{C}$ ,  $\gamma(t) = 2e^{it}$ . Wtedy f posiada funkcję pierwotną na V gdy całka po  $\gamma$  będzie równa 0, czyli gdy:

$$\int_{\gamma} \frac{e^{wz}}{z+1} - \frac{1}{z-1} dz = 0$$

$$\int_{\gamma} \frac{e^{wz}}{z+1} dz - \int_{\gamma} \frac{1}{z-1} dz = 0$$

Korzystamy ze wzoru Cauchy'ego:

$$\int_{\gamma} \frac{e^{wz}}{z+1} dz - \int_{\gamma} \frac{1}{z-1} dz = \frac{0!}{2\pi i} (f(1) - g(-1)) = \frac{1}{2\pi i} (e^{-w} - 1)$$

Wtedy

$$\frac{1}{2\pi i}(e^{-w} - 1) = 0$$

$$e^{-w} = 1$$

$$e^{-w} = e^{0}$$

Korzystając z własności liczb zespolonych widzimy, że  $w=\{z\in\mathbb{C}:z=2k\pi i,k\in\mathbb{Z}\}$ 

#### Twierdzenie 7.2

Jeśli  $\Omega$  jest gwiaździste, oraz f jest funkcją ciągłą na  $\Omega$  taką, że dla dowolnego trójkąta  $\Delta \subset \Omega$  zachodzi  $\int_{\partial \Delta} f(z) \, dz = 0$ , to f ma funkcję pierwotną na  $\Omega$ .

# Twierdzenie 7.3

Jeśli  $\Omega$  jest gwiaździsty, oraz f jest funkcją ciągłą na  $\Omega$  taką, że dla dowolnego trójkąta  $\Delta \subset \Omega$  zachodzi  $\int_{\partial \Delta} f(z) dz = 0$ , to f ma funkcję pierwotną na  $\Omega$ .

#### Lemat 7.1: Lemat Goursata

Jeśli $\Omega$ jest obszarem oraz fjest holomorficzna na  $\Omega,$ wówczas, dla dowolnego trójkąta

 $\Delta \subset \Omega$  mamy

$$\int_{\partial \Lambda} f(z) \, dz = 0.$$

# Wniosek 7.1: Twierdzenie Cauchy'ego

Jeśli  $\Omega$  jest gwiaździstym obszarem i funkcja f jest holomorficzna na  $\Omega$ , to dla każdej drogi zamkniętej  $\gamma$  w  $\Omega$  zachodzi

$$\int_{\gamma} f(z) \, dz = 0.$$

# Twierdzenie 7.4: Uogólniony wzór całkowy Cauchy'ego

Niech  $\Omega$  będzie obszarem oraz niech f będzie funkcją holomorficzną na  $\Omega$ . Załóżmy, że  $\Omega_1\subset\Omega$  jest obszarem takim, że:

- 1.  $\Omega_1 \subset \Omega$ ,
- 2. istnieje droga zamknięta  $\gamma:[a,b]\to\Omega$  taka, że  $\gamma([a,b])=\partial\Omega_1$  oraz odwzorowanie  $\gamma:S(0,1)\to\partial\Omega_1,\ \gamma(e^{2\pi it})=\gamma((b-a)t+a),\ \text{gdzie}\ t\in[0,1],\ \text{jest homeomorfizmem}$  zachowującym orientację,
- 3. dla dowolnej funkcji holomorficznej  $h: \Omega \to \mathbb{C}$  mamy

$$\int_{\gamma} h(z) \, dz = 0.$$

Wówczas, dla dowolnego  $z\in\Omega_1$ oraz dowolnego całkowitego  $n\geqslant 0$ mamy

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw.$$

#### Definicja 7.2: Całka zespolona

 $\phi: [a,b] \to \mathbb{C}$ 

 $\phi$  - ciągła poza skończoną liczbą punktów

$$\phi = \operatorname{Re}(\varphi) + i\operatorname{Im}(\varphi)$$

$$\int_{a}^{b} \varphi(t) dt = \operatorname{Re} \int_{a}^{b} \varphi(t) dt + i \operatorname{Im} \int_{a}^{b} \varphi(t) dt$$

Własności:

1. 
$$\int_a^b \varphi_1(t) + \varphi_2(t) dt = \int_a^b \varphi_1(t) dt + \int_a^b \varphi_2(t) dt$$

2. 
$$s \in (a, b)$$

$$\int_a^b \varphi(t) dt = \int_a^s \varphi(t) dt + \int_s^b \varphi(t) dt$$

3. 
$$z \in \mathbb{C}$$
 
$$\int_a^b z\varphi(t) dt = z \int_a^b \varphi(t) dt$$

4. 
$$\left| \int_{a}^{b} \varphi(t) \, dt \right| \leqslant \int_{a}^{b} |\varphi(t)| \, dt$$

# Definicja 7.3: Ścieżka

ŚCIEŻKĄ nazywamy dowolną funkcję ciągłą  $\gamma:[a,b]\to\mathbb{C}.$ 

- 1. Jeśli  $\gamma(a) = \gamma(b)$  nazywamy ją PĘTLĄ
- 2. Ścieżkę nazywamy GŁADKĄ jeśli  $\text{Re}(\gamma)$  i  $\text{Im}(\gamma)$  są klasy  $C^1$ . Wtedy

$$\gamma'(t) = \operatorname{Re}(\gamma(t))' + i\operatorname{Im}(\gamma(t))' \qquad |\gamma'(t)| \neq 0$$

3. Ścieżka jest KAWAŁKAMI GŁADKA jeśli  $a=t_0 < t_1 < t_2 < \ldots < t_n = b$ t. że  $\gamma \Big|_{[t_i,t_{i+1}]}$  jest gładka

#### Stwierdzenie 7.1

Niech:

 $\tau:[c,d]\to[a,b]$ - homeomorfizm kawałkami gładki

 $\gamma: [a, b] \to \mathbb{C}$  jest drogą

 $f:\gamma^*\to\mathbb{C}$ - ciągła

 $\delta = \gamma \circ \tau \text{ oraz } \gamma^* = \delta^*$ 

Wówczas, jeśli  $\tau$  zachowuje orientację, to

$$\int_{\gamma} f(z) \, dz = \int_{\delta} f(z) \, dz$$

Zaś jeśli tau nie zachowuje orientacji, to

$$\int_{\gamma} f(z) dz = -\int_{\delta} f(z) dz$$

Gwiazdką \*
będziemy
oznaczać obrazy

Czyli całka jest niezależna od drogi, zdziwienie dla nikogo

#### Stwierdzenie 7.2

Jeśli  $\gamma:[a,b]\to\mathbb{C}$  i  $\lambda:[c,d]\to\mathbb{C}$  są drogami, t. że ich obrazy są równe oraz  $\gamma$  i  $\tau$  są różnowartościowe to zachodzi jeden z dwóch przypadków:

- $\lambda(c) = \gamma(a)$  i  $\int_{\gamma} f(z) dz = \int_{\lambda} f(z) dz$
- $\lambda(c) = \gamma(b)$  i  $\int_{\gamma} f(z) dz = -\int_{\lambda} f(z) dz$

#### Wniosek 7.1

 $f_n:U\to\mathbb{C},\,U\subset\mathbb{C}$  - obszar.  $f_n$  ciągłe i jednostajnie zbieżne do  $f:U\to\mathbb{C}$  to

$$\int_{\gamma} f_n(z) dz \xrightarrow{n \to \infty} \int_{\gamma} f(z) dz$$

Jednostajnie zbieżne zbieżne na każdym zbiorze zwartym

# Definicja 7.4

- 1. Łuk kawałkami gładki L <u>różnowartościowej</u> drogi. Końce L to punkty  $x \in L$  t. że  $L \setminus \{x\}$  jest spójny
- 2. Konturem  $\Lambda=(L_1,L_2,...,L_k)$  nazywamy skończony ciąg zorientowanych łuków takich, że koniec  $L_k$  jest początkiem  $L_{k+1}$
- 3. Kontur Prosty to taki kontur którego parametryzacja  $\lambda:[a,b]\to\mathbb{C}$  jest różnowartościowa na (a,b] i [a,b).

Dla konturu  $\Lambda$  definiujemy obraz

$$\Lambda^* = \bigcup_{i=1}^k L_i^* \leftarrow \text{Nośnik Konturu}$$

Jeśli $f:\Lambda^*\to\mathbb{C}$ ciągła to

$$\int_{\Lambda} f(z) dz = \sum_{i=1}^{k} \int_{L_i} f(z) dz$$

4. Dla  $-\Lambda = (L_1, L_2, ..., L_i)$  definiujemy Kontur Przeciwny

$$-\Lambda = (K_1, K_2, ..., K_k) \text{ t. że } K_i^* = L_{k-i+1}^*$$
 
$$\int_{-\Lambda} f(z) dz = -\int_{\Lambda} f(z) dz$$

5. Zdefiniujmy SUMĘ KONTURÓW jako

$$\Lambda_1 = (L_1^1, L_2^1, ..., L_k^1)$$
  $\Lambda_2 = (L_1^2, L_2^2, ..., L_m^2)$ 

Takie że koniec  $\Lambda_1 = \text{początek } \Lambda_2$ 

$$\Lambda_1 \# \Lambda_2 = (L_1^1, L_2^1, ..., L_k^1, L_1^2, L_2^2, ..., L_m^2)$$

Wtedy

$$\int_{\Lambda_1 \# \Lambda_2} f(z) = \int_{\Lambda_1} f(z) dz + \int_{\Lambda_2} f(z) dz$$

#### Wniosek 7.2

Jeśli  $U\subset\mathbb{C}$  - otwarty i gwiaździsty,<br/>a $f:U\to\mathbb{C}$  jest holomorficzna, to dla każdej drogi zamknięte<br/>j $\gamma:[a,b]\to U$   $(\gamma(a)=\gamma(b)),$   $\gamma-$ ciągła, kawałkami<br/>  $C^1$ mamy

$$\int_{\gamma} f = 0$$

# Lemat 7.2

Jeśli U jest obszarem,<br/>a $f:U\to\mathbb{C}$  jest holomorfizmem oraz taka, że  $\forall_{z\in U}\,f'(z)=0$  to f jest stała.

#### Wniosek 7.3

Jeśli  $U\subset \mathbb{C}$  jest zbiorem otwartym,<br/>a $f:U\to \mathbb{C}.$ NWSR

- 1. Jest holomorficzna i taka, że  $\forall_{z \in U} f'(z) = 0$
- 2. f jest stała na każdej składowej spójności zbioru U

#### Fakt 7.1

Jeśli $\gamma:[a,b]\to U\subset\mathbb{C}$ oraz $f:U\to\mathbb{C}$ jest ciągła, a Fjest funkcją pierwotną funkcji f, to

$$\int_{\gamma} f = F(\gamma(b)) - F(\gamma(a))$$

# Definicja 7.5: Zbiór gwieździsty

Powiemy, że U jest GWIEŹDZISTY (względem punktu  $z_0$ ), jeśli  $\bigvee_{z\in U}[z_0,z]\subset U$ 

# Twierdzenie 7.5: Goursata

Jeśli $\emptyset \neq U \subset \mathbb{C}$ jest otwarty i gwiaździsty, a funkcja  $f:U \to \mathbb{C}$ jest ciągła to f to NWSR

- 1. f ma funkcję pierwotną na U
- 2. dla każdego trójkąta  $\Delta$ z wnętrzem

$$\int_{\partial \Delta} f = 0$$

# 8 Wnioski z Lematu Goursata

# Wniosek 8.1

Jeśli $\emptyset\neq U\subset\mathbb{C}$ jest otwarty i gwiaździsty, a funkcja  $f:U\to\mathbb{C}$ jest holomorficzna, to dla każdej pętli $\gamma$ mamy

$$\int_{\gamma} f = 0$$

# Fakt 8.1

Niech  $U\subseteq\mathbb{C}$  - otwarty. Jeśli  $f:U\to\mathbb{C}$  ma na U funkcję pierwotną to f jest holomorficzna.

# Twierdzenie 8.1: Morery

Niech  $U\subseteq \mathbb{C}$  - otwarty i  $f:U\to \mathbb{C}$  - ciągła. NWSR

- 1. f jest holomorficzna na U
- 2. dla każdego trójkąta  $\Delta \subseteq U$ z wnętrzem

$$\int_{\partial \Delta} f = 0$$

#### Wniosek 8.2

Przy powyższych założeniach

$$\int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \, dw = \frac{1}{k} \int_{\gamma} \frac{f'(w)}{(w-z)^k} \, dw$$

#### Twierdzenie 8.2: Wzór Całkowy Cauchy'ego

Niech  $\Omega$  - obszar oraz niech f bęzie funkcją holomorficzną na  $\Omega$ . Załóżmy, że  $\gamma$  jest cyklem w  $\Omega$ . Wówczas dla dowolnego  $z \in \Omega \setminus \gamma^*$  oraz dla  $n \in \mathbb{N}$  mamy

$$f^{(n)}(z)$$
ind <sub>$\gamma$</sub>  $(z) = \frac{n!}{2\pi i} \int_{\partial D(z_0,r)} \frac{f(w)}{(w-z)^{n+1}}$ 

# Przykład 8.1: 2022

Zadanie 2. Znajdź część rzeczywistą i urojoną całki

$$\int_{\partial D} \frac{\log(z+\sqrt{3})}{z(z-i)^2} \, dz,$$

gdzie:

(a) 
$$D = \{ z \in \mathbb{C} : |z| \leq \frac{1}{2} \},$$

(b) 
$$D = \{z \in \mathbb{C} : |z - i| \leq \frac{1}{2}\}.$$

Uwaga: W powyższej całce log oznacza logarytm główny, czyli funkcję holomorficzną

$$\log: \mathbb{C} \setminus \mathbb{R}_0^- \to \mathbb{C},$$

która jest gałęzią logarytmu zespolonego taką, że log(1) = 0.

Rozwiązanie Zadania 2. Zauważmy najpierw, że funkcja  $\log(z+\sqrt{3})$  jest holomorficzna na zbiorze  $\Omega = \mathbb{C} \setminus L$ , gdzie  $L = (-\infty, -\sqrt{3}]$ .

(a) Niech  $D=\{z\in\mathbb{C}:|z|\leqslant\frac{1}{2}\}$ . Zauważmy, że funkcja  $f(z)=\frac{\log\left(z+\sqrt{3}\right)}{(z-i)^2}$  jest holomorficzna na D.

Dodatkowo,  $\operatorname{Ind}_{\partial D}(0) = 1$ . Zatem, z twierdzenia Cauchy'ego otrzymujemy:

$$I = \int_{\partial D} \frac{\log(z + \sqrt{3})}{z(z - i)^2} dz = \int_{\partial D} \frac{f(z)}{z} dz = f(0) = 2\pi i \frac{\log(\sqrt{3})}{(-i)^2} = -2\pi i \log(\sqrt{3}).$$

Zatem:

$$\operatorname{Re}(I) = 0$$
,  $\operatorname{Im}(I) = -2\pi \log(\sqrt{3})$ .

(b) Niech  $D = \{z \in \mathbb{C} : |z-i| \leq \frac{1}{2}\}$ . Wówczas funkcja  $g(z) = \frac{\log(z+\sqrt{3})}{z}$  jest holomorficzna na D oraz  $\operatorname{Ind}_{\partial D}(i) = 1$ . Zatem, na mocy twierdzenia Cauchy'ego, otrzymujemy:

$$I = \int_{\partial D} \frac{\log(z + \sqrt{3})}{z(z - i)^2} dz = \int_{\partial D} \frac{g(z)}{(z - i)^2} dz = 2\pi i g'(i).$$

Mamy:

$$g'(z) = \frac{1}{z(z+\sqrt{3})} - \frac{\log(z+\sqrt{3})}{z^2},$$

zatem:

$$I = 2\pi i \left( \frac{1}{i(i+\sqrt{3})} - \frac{\log(i+\sqrt{3})}{i} \right) = 2\pi \frac{\sqrt{3} - i}{2} - 2\pi \log(i+\sqrt{3}).$$

Obliczamy:

$$\frac{2\pi}{i+\sqrt{3}} = 2\pi \frac{\sqrt{3}-i}{2} = \pi(\sqrt{3}-i),$$

oraz:

$$\log(i+\sqrt{3}) = \log(|i+\sqrt{3}|) + i\operatorname{Arg}(i+\sqrt{3}) = \log(2) + \frac{\pi i}{6},$$

gdzie Arg jest argumentem głównym, a log oznacza logarytm naturalny. Zatem:

$$Re(I) = \pi(\sqrt{3} + 2\log(2)), \quad Im(I) = -\pi + \frac{\pi}{6}.$$

#### Twierdzenie 8.3: Nierówność Cauchy'ego

Jeśli 
$$f \in H(D(z_0,r))$$
,  $f$  ciągłą na  $\overline{D}(z_0,r)$  i  $f(z) = \sum_{n=0}^{\infty} u_n (z-z_0)^n$  dla  $z \in D(z_0,r)$  to

$$|u_n| \leqslant \frac{\sup_{w \in \partial D(z_0, r)} |f(w)|}{r^n}$$

# Przykład 8.2: Egzamin 2025

**Zadanie 3.** Niech  $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ , a więc  $\overline{\mathbb{D}}=\{z\in\mathbb{C}:|z|\geqslant1\}$ , a także niech  $W=\{z\in\mathbb{C}:1<|z|<3\}$ . Załóżmy, że funkcja  $f:W\to\mathbb{C}$  jest holomorficzna (na zbiorze W), a jej obraz f(W) zawiera się w dysku  $\mathbb{D}$ . Proszę udowodnić, że  $f'(2)\in\mathbb{D}$ .

Rozwiązanie Zadania 3. Rozważmy zbiór  $W'=\{z\in\mathbb{C}:|z-2|<1\}$  (zaznaczony na rysunku na czerwono):



fjest oczywiście holomorficzna na  $W^\prime,$ da się ją więc przedstawić jako

$$\forall f(z) = \sum_{n=0}^{\infty} c_n (z-2)^n$$

$$f(z) = c_0 + c_1 (z-2) + c_2 (z-2)^2 + \dots$$

$$f'(z) = c_1 + 2c_2 (z-2) + \dots$$

$$f'(2) = c_1$$

Korzystamy z nierówności Cauchy'ego

$$|f'(2)| = |c_1| \le \frac{\sup_{z \in \partial D(2,1)} |f(z)|}{1^2} \le$$

Wiemy że obraz f(z) zawiera się w dysku jednostkowym, więc

$$\leq \frac{1}{1} = 1$$

Należy jeszcze udowodnić, że  $|f'(2)| \neq 1$ .

# Definicja 8.1: Funkcja Całkowita

Funkcję holomorficzną określoną na całej płaszczyźnie zespolonej, nazywamy FUNKCJĄ CAŁKOWITĄ.

#### Twierdzenie 8.4: Liouville'a

Każda ograniczona funkcja całkowita jest stała

#### Wniosek 8.3

Jeśli f jest całkowita, to albo f jest stała albo  $f(\mathbb{C})$  jest gestym podzbiorem  $\mathbb{C}$ 

# Wniosek 8.4: Zasada izolowanych zer

Jeśli  $z_0$  jest niezdegenerowanym zerem funkcji holomorficznej, to istnieje takie  $\delta > 0$ , że  $D(z_0, \delta) \subseteq U$  i dla  $z \in D(z_0, \delta) \setminus \{z_0\}$   $f(z) \neq 0$ .

Inaczej: Niezdegenerowane zera funkcji holomorficznych są izolowane.

Niezdegenerowane zero - o skończonej krotności

#### Twierdzenie 8.5

Załóżmy, że U-obszar, a  $f:U\to\mathbb{C}$ jest holomorficzna. Wówczas dla zachodzi jedna z dwóch możliwości

- 1. wówczas  $\forall_{z \in U} f(z) = 0$
- 2. f ma wyłącznie izolowane zera

# Twierdzenie 8.6: Zasada identyczności

Niech  $U \subseteq \mathbb{C}$  będzie obszarem,  $f, g: U \to \mathbb{C}$ . Wtedy jeśli istnieje taki zbiór  $A \subseteq U$ , że A ma punkt skupienia należący do U oraz taki że  $\forall_{z \in A} f(z) = g(z)$  to wtedy  $\forall_{z \in U} f(z) = g(z)$ 

#### Przykład 8.3: Kolokwium 2022

Zadanie 4. Rozważmy obszar

$$\Omega = \{ z \in \mathbb{C} : |z - 1| < 1/2 \}.$$

Załóżmy, że  $f \in \mathcal{H}(\Omega)$  oraz dla dostatecznie dużych  $k \in \mathbb{N}$  zachodzi

$$f\left(\frac{k+1}{k}\right) = \frac{k^3}{(k-1)^3}.$$

Oblicz  $f^{(2022)}(1)$ .

Rozwiązanie Zadania 4. Podstawmy  $z=\frac{k+1}{k}=1+\frac{1}{k},$  wówczas  $k=\frac{1}{z-1}.$  Zatem,

$$f(z) = \frac{\frac{1}{(z-1)^3}}{\left(\frac{1}{z-1} - 1\right)^3} \cdot = \frac{1}{(z-2)^3}.$$

Zatem funkcja f zgadza się z funkcją  $\frac{1}{(z-2)^3}$  dla  $z=1+\frac{1}{k}$ , dla k dostatecznie dużych. Na mocy zasady identyczności mamy  $f(z)=\frac{1}{(z-2)^3}$ .

Aby policzyć  $f^{(2022)}(1)$ , zauważmy, że dla  $g(z) = \frac{1}{z-2}$  mamy

$$g''(z) = \frac{2}{(z-2)^3} = 2f(z).$$

Rozwijając funkcję g w punkcie  $z_0=1,$  otrzymujemy szereg potęgowy, który jest zbieżny na  $\Omega$ :

$$g(z) = \frac{1}{z-2} = -\frac{1}{1-(z-1)} = -\sum_{k=0}^{\infty} (z-1)^k.$$

Różniczkując wyraz po wyrazie, mamy:

$$g''(z) = -\sum_{k=0}^{\infty} (k+2)(k+1)(z-1)^k.$$

Zatem:

$$f(z) = -\frac{1}{2} \sum_{k=0}^{\infty} (k+2)(k+1)(z-1)^k.$$

Stad:

$$f^{(2022)}(1) = -2022! \cdot \frac{2024 \cdot 2023}{2}.$$

# Twierdzenie 8.7: Zasada Wartości Średniej

Jeśli  $f: \overline{D}(z_0, R) \to \mathbb{C}$  ciągła i f holomorficzna na  $D(z_0, R)$  to

$$\bigvee_{(r,R)} f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\alpha}) d\alpha$$

# 9 Homotopijne wzory Cauchy'ego

# Twierdzenie 9.1: Homotopijny Wzór Cauchy'ego I

Niech  $U \subseteq \mathbb{C}$  otwarty, niepusty,  $f: U \to \mathbb{C}$  holomorficzna  $\gamma_1, \gamma_2: [a, b] \to U$  - drogi, takie że  $\gamma_1(a) = \gamma_2(a), \gamma_1(b) = \gamma_2(b)$ . Wtedy jeśli  $\gamma_1$  i  $\gamma_2$  są homotopijnie równoważne w U to

# Twierdzenie 9.2: Homotopijny Wzór Cauchy'ego II

Niech  $U\subseteq\mathbb{C}$  otwarty, niepusty,  $f:U\to\mathbb{C}$  holomorficzna  $\gamma_1,\gamma_2:[a,b]\to U$  - pętle klasy  $C^1$ , takie że  $\gamma_1(a)=\gamma_1(b),\gamma_2(b)=\gamma_2(b)$ . Wtedy jeśli  $\gamma_1$  i  $\gamma_2$  są homotopijnie równoważne w U to

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$



#### Fakt 9.1

Niech  $A\subseteq\mathbb{C}$  gwiaździsty,  $\gamma_1,\gamma_2:[a,b]\to A$  drogi zamknięte, kawałkami  $C^1$ . Wtedy  $\gamma_1$  i  $\gamma_2$  są homotopijne

#### Wniosek 9.1

Niech A gwiaździsty,  $A \subseteq U \subseteq \mathbb{C}$   $\gamma_1, \gamma_2 : [a, b] \to A$  pętle zamknięte, kawałkami  $C^1$ . Wtedy  $\gamma_1$  i  $\gamma_2$  są homotopijne w U.

#### Fakt 9.2

Jeśli  $\gamma_1, \gamma_2 : [a, b] \to B \subseteq U \subseteq \mathbb{C}$  są petlami kawałkami  $C^1$  a ponadto B jest zbiorem homeomorficznym z pewnym zbiorem gwiaździstym. Wtedy  $\gamma_1$  i  $\gamma_2$  są homotopijnie równoważne w B, a więc i w zbiorze U.

#### Fakt 9.3

Niech  $\Omega = \mathbb{C} \setminus \overline{S}(0,1)$  (lub też dowolny obszar konforemny z pierścieniem) oraz niech f holomorficzna,  $f(z) \neq 0$ . Wtedy na  $\Omega$  istnieje holomorficzna gałąź logarytmu z f wtedy i tylko wtedy gdy dla pewnego pewnego okręgu  $\gamma$  (R > 1) zawartego w  $\Omega$  zachodzi

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0$$

#### Przykład 9.1: Egzamin 2025

**Zadanie 5.** Niech  $V=\{z\in\mathbb{C}:|z|>1\}$ . Proszę wyznaczyć zbiór wszystkich liczb zespolonych w o tej własności, że funkcja  $\varphi_w:V\to\mathbb{C}$  określoną wzorem  $\varphi_w(z)=(1+z)^{-1}e^{wz}+(1-z)^{-1}$  ma na zbiorze V funkcję pierwotną.

Rozwiązanie Zadania 5. Oznaczmy  $f(z)=1, \quad g(z)=e^{wz}$ . Zauważmy, że są one holomorficzne na całym obszarze V. Oznaczmy  $\gamma:[0,2\pi]\to\mathbb{C}, \gamma(t)=2e^{it}$ . Wtedy f posiada funkcję pierwotną na V gdy całka po  $\gamma$  będzie równa 0, czyli gdy:

$$\int_{\gamma} \frac{e^{wz}}{z+1} - \frac{1}{z-1} \, dz = 0$$

$$\int_{\gamma} \frac{e^{wz}}{z+1} dz - \int_{\gamma} \frac{1}{z-1} dz = 0$$

Korzystamy ze wzoru Cauchy'ego:

$$\int_{\gamma} \frac{e^{wz}}{z+1} dz - \int_{\gamma} \frac{1}{z-1} dz = \frac{0!}{2\pi i} (f(1) - g(-1)) = \frac{1}{2\pi i} (e^{-w} - 1)$$

Wtedy

$$\frac{1}{2\pi i}(e^{-w} - 1) = 0$$

$$e^{-w} = 1$$

$$e^{-w} = e^{0}$$

Korzystając z własności liczb zespolonych widzimy, że  $w = \{z \in \mathbb{C} : z = 2k\pi i, k \in \mathbb{Z}\}$ 

# Twierdzenie 9.3: Laurenta

Niech  $A(z_0, R, r) = \{z \in \mathbb{C} : |z - z_0| \in (r, R)\}$ . Niech  $f : A(z_0, r, R) \to \mathbb{C}$  holomorficzna. Wówczas istnieją liczby zespolone  $(u_n)_{n \in \mathbb{Z}}$  takie że

$$\forall_{z \in A(z_0,R,r)} f(z) = u_0 + \underbrace{\sum_{n=1}^{\infty} u_n (z-z_0)^n}_{\text{Szereg zbieżny na } D(z_0,R)} + \underbrace{\sum_{n=1}^{\infty} u_{-n} (z-z_0)^{-n}}_{\text{Szereg zbieżny na } \mathbb{C} \setminus \overline{D}(z_0,r)}$$

Dodatkowo, dla każdego  $n\in\mathbb{Z}$ , całka  $\int_{\partial D(z_0,s)}\frac{f(w)}{(w-z_0)^{n+1}}\,dw$  jest jednakowa dla wszystkich  $s\in(r,R)$ 

# Definicja 9.1: Szereg Laurenta

Szereg postaci danej w twierdzeniu Laurenta, nazywamy Szeregiem Laurenta.

#### Własności:

- 1. Część szeregu Laurenta zawierająca wyrazy o potęgach ujemnych nazywana jest CZĘŚCIĄ GŁÓWNĄ.
- 2. Jeśli część główna szeregu jest trywialna (wszystkie współczynniki dla potęg ujemnych są równe zero), to szereg Laurenta redukuje się do szeregu Taylora.
- 3. Szereg Laurenta zbiega absolutnie i niemal jednostajnie w pierścieniu zbieżności  $r < |z z_0| < R$ , co oznacza, że funkcja f(z) jest analityczna w tym obszarze.
- 4. Szeregi Laurenta można dodawać, odejmować oraz mnożyć, zachowując pierścień zbieżności.
- 5. Szeregi Laurenta można całkować i różniczkować wyraz po wyrazie w obrębie pierścienia zbieżności.

# Twierdzenie 9.4

Jeżeli f jest funkcją analityczną na pierścieniu  $\Omega=\{z:r<|z-z_0|< R\},$  wówczas współczynniki w rozwinięciu f w szereg Laurenta

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

dane są wzorem

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=r'} \frac{f(w)}{(w-z_0)^{n+1}} dw,$$

gdzie r < r' < R.

# Definicja 9.2: Residuum w punkcie

Gdy  $f(z)=\sum\limits_{n=-\infty}^{\infty}a_n(z-z_0)^n$  jest szeregiem Laurenta, to wyraz  $a_{-1}$  nazywamy RESIDUUM FUNKCJI W PUNKCIE  $z_0$ 

$$\operatorname{res}_{z=z_0}(f) = a_{-1}$$

# Definicja 9.3: Osobliwości izolowane

Niech  $U \subset \mathbb{C}$  będzie obszarem oraz niech  $z_0 \in U$ . Jeśli f jest analityczna na  $\Omega = U \setminus \{z_0\}$ , wówczas mówimy, że f ma izolowaną osobliwość w punkcie  $z_0$ .

Izolowane osobliwości funkcji analitycznych można podzielić na trzy typy:

- 1. OSOBLIWOŚĆ USUWALNA: Funkcja f(z) ma osobliwość usuwalną w punkcie  $z_0$ , jeśli  $\lim_{z\to z_0} f(z)$  istnieje.
- 2. BIEGUN: Funkcja f ma biegun rzędu m, gdzie  $m \in \mathbb{Z}_+$ , jeśli funkcja  $\phi(z) = z^m \cdot f(z)$  ma osobliwość usuwalną w  $z_0$ , ale funkcja  $\frac{\phi(z)}{z} = z^{m-1} f(z)$  nie ma usuwalnej osobliwości w  $z_0$ .
- 3. OSOBLIWOŚĆ ISTOTNA: Funkcja f(z) ma osobliwość istotną w punkcie  $z_0$ , jeśli nie jest ani osobliwością usuwalną, ani biegunem.

# Twierdzenie 9.5: Riemanna o osobliwości usuwalnej

Niech f będzie analityczna na  $\Omega \setminus \{z_0\}$ . Jeśli funkcja f(z) jest ograniczona w sąsiedztwie punktu  $z_0$ , to  $z_0$  jest osobliwością usuwalną. Wówczas funkcja F zdefiniowana następująco:

$$F(z) = \begin{cases} f(z), & z \in \Omega \setminus \{z_0\}, \\ \lim_{z \to z_0} f(z), & z = z_0, \end{cases}$$

jest analityczna na  $\Omega$ .

#### Twierdzenie 9.6: Weierstrassa

Załóżmy, że funkcja f jest analityczna na zbiorze  $\Omega \setminus \{z_0\}$ . Jeśli  $z_0$  jest osobliwością istotną funkcji f(z), to jeśli  $U \subset \Omega$  jest dowolnym otoczeniem punktu  $z_0$ , to  $f(U \setminus \{z_0\})$  jest gęstym podzbiorem  $\mathbb{C}$ .

# Twierdzenie 9.7

Załóżmy, że funkcja f jest analityczna w pierścieniu  $\Omega=\{z:0<|z-z_0|< R\}$ . Typ osobliwości w punkcie  $z_0$  związany jest z częścią główną rozwinięcia w szereg Laurenta

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

funkcji f(z) w otoczeniu  $z_0$ :

- Funkcja f ma osobliwość usuwalną w  $z_0$  wtedy i tylko wtedy, gdy część główna rozwinięcia jest trywialna, tj.  $a_n = 0$  dla każdego n < 0.
- $\bullet$  Funkcja fma biegun rzędu mw punkcie  $z_0$ wtedy i tylko wtedy, gdy część główna rozwinięcia jest postaci

$$c_{-m}(z-z_0)^{-m} + c_{-m+1}(z-z_0)^{-m+1} + \dots + c_{-1}(z-z_0)^{-1},$$

gdzie  $c_{-m} \neq 0$ .

• Funkcja f ma osobliwość istotną w  $z_0$  wtedy i tylko wtedy, gdy część główna rozwinięcia w szereg Laurenta jest nieskończona, tj.  $a_{-m} \neq 0$  dla nieskończenie wielu m>0.

#### Fakt 9.4

Niech  $z_0$  będzie biegunem rzędu n funkcji f. Zachodzi wtedy:

$$\operatorname{res}_{z=z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{d^{n-1}z} ((z-z_0)^k f(z))$$

#### Twierdzenie 9.8: Lemat Jordana

Niech f(z) będzie funkcją analityczną w obszarze zawierającym półpłaszczyznę  $\{z: \text{Re}(z) > 0\}$ , a a>0 będzie stałą. Wówczas dla funkcji  $f(z)e^{iaz}$  zachodzi nierówność:

$$\left| \int_{C_R} f(z) e^{iaz} \, dz \right| \leqslant M(R) \cdot \frac{\pi}{a},$$

gdzie  $C_R$  jest górnym półokręgiem o promieniu R i środku w  $z_0 = 0$ , a  $M(R) = \sup_{|z|=R} |f(z)|$ .

Ponadto, jeśli  $\lim_{R\to\infty} M(R) = 0$ , to

$$\lim_{R \to \infty} \int_{C_R} f(z) e^{iaz} \, dz = 0.$$

# Definicja 9.4: Indeks krzywej względem punktu

Niech  $\gamma$  - pętla zdefiniowana jak w poprzednim twierdzeniu. Wtedy INDEKSEM KRZYWEJ  $\gamma$  WZGLĘDEM PUNKTU s nazywamy liczbę okrążeń krzywej  $\gamma$  wokół punktu s, formalnie

$$\operatorname{ind}(\gamma, s) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - s}$$

#### Własności:

- 1. Całkowitość:  $\operatorname{ind}(\gamma, s) \in \mathbb{Z}$
- 2. Ciągłość
- 3. Niezmienniczość względem homotopii Jeśli  $\gamma_1$  i  $\gamma_2$  są homotopijnymi pętlami, kaw. klasy  $C^1$  w  $\mathbb{C} \setminus \{s\}$  to  $\operatorname{ind}(\gamma_1, s) = \operatorname{ind}(\gamma_2, s)$
- 4. Jeśli punkty na pętli leżą na tych samych składowych spójności, to ich indeks jest taki sam.

#### Twierdzenie 9.9: O całkowaniu przy użyciu residuów

 $U \subset \mathbb{C}$  - otwarty

Niech  $f:U\setminus S\to \mathbb{C}$  - holomorficzna, gdzie  $S=\{a_1,a_2,...,a_k\}$  - punkty osobliwości funkcji f.

 $\gamma$ - pętla kawałkami  $C^1 \le U \setminus S$ 

Ponadto załóżmy, że  $\gamma$ jest homotopijnie równoważna w Upewnej pętli stałej Wówczas

$$\int_{\gamma} f = 2\pi i \cdot \sum_{a_i \in S} (\operatorname{res}_{a_i} f \cdot \operatorname{ind}(\gamma, a_i))$$



# Przykład 9.2: Egzamin 2025

Zadanie 6. Określmy  $\gamma:[0,2\pi]\to\mathbb{C}$ wzorem  $\gamma(t)=2e^{it}.$  Proszę wyznaczyć wartość całki

$$\int_{\gamma} \frac{z^{2025}}{z^{2025} - 1} \, dz$$

**Rozwiązanie Zadania 6.** Zauważmy, że funkcja w mianowniku ma 2025 miejsc zerowych:  $z_1,z_2,...,z_{2025}$  Są one biegunami pierwszego rzędu funkcji

$$f(z) = \frac{z^{2025}}{z^{2025} - 1}$$

Policzmy residua funkcji f w tych miejscach korzystając z tego że są to bieguny pierwszego rzędu:

$$\operatorname{res}_{z=z_i} f = \lim_{z \to z_i} (z-z_i) \frac{z^{2025}}{z^{2025}-1} = \lim_{z \to z_i} (z-z_i) \frac{z^{2025}}{z^{2025}-1} = \lim_{z \to z_i} \frac{z^{2026}-z_i \cdot z^{2025}}{z^{2025}-1} = \lim_{z \to z_i} \frac{z^{2025}-z_i \cdot z^{2025}}{z^{2025}-1} = \lim_{z \to z_i} \frac{z^{2025}-z_$$

Granica ma postać  $\left\lceil \frac{0}{0}\right\rceil$ , korzystamy więc z reguły de l'Hospitala

$$= \lim_{z \to z_i} \frac{2026z^{2025} - 2025z_i \cdot z^{2024}}{2025z^{2024}} = \lim_{z \to z_i} \frac{2026z - 2025z_i}{2025} = \frac{z_i}{2025}$$

Korzystamy ze wzoru obliczania całek przez residua, korzystając z tego że  $\mathrm{ind}_{z_i}\gamma=1$ :

$$\int_{\gamma} \frac{z^{2025}}{z^{2025}-1} dz = 2\pi i \sum_{1}^{2025} \operatorname{res}_{z_i} f \cdot \operatorname{ind}_{z_i} \gamma = 2\pi i \sum_{1}^{2025} \frac{z_i}{2025} = \frac{2\pi i}{2025} \sum_{1}^{2025} z_i = \frac{2\pi i}{20$$

I tutaj korzystamy z faktu że suma pierwiastków z liczby zespolonej jest równa 0, więc

$$=\frac{2\pi i}{2025}\cdot 0=0$$