

STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC

Value-line ARM[®]基于32位MCU,最高256 KB闪存, 定时器,ADC,通信接口, 2.4-3.6 V操作

数据表- 生产数据

特征

- ●核心: ARM ® 32位Cortex ®-M0 CPU, 频率高达48 MHz
- 回忆
 - 16至256千字节 闪存
 - 带硬件的4到32 KB SRAM平价
- CRC计算单元
- 重置并获得法术力 gement
 - 数字和I / O供应: V _{DD} = 2.4 V至3.6 V.
 - 模拟电源: V DDA = VDD 至3.6 V
 - 上 电/掉电复位 (POR / PDR)
 - 低功耗模式:睡眠,S顶部,Standby

• 时钟管理

- 4至32 MHz晶体振荡器
- 用于带校准的RTC的32 kHz振荡器
- 具有x6 PLL选项的内部8 MHz RC
- 内部40 kHz RC振荡器
- 最多55个快速I / O.
 - 所有mapp能够在外部 中断向量小号
 - 具有5V容限电容的多达55个I/O.吴春明
- 5通道DMA控制器
- ◆一个12位,1.0µsADC(最多16个通道)
 - 转换响了e: 0至3.6V
 - 分开ana对数电源: 2.4 V至3.6 V.
- 日历RTC带报警和pe 周期性的唤醒 来自Stop / Standby
- 11个计时器
 - 一个16位高级控制计时器
 - 六通道PWM输出 最多7个16位定时器到四
 - IC / OC,OCN,可用 用于红外控制 解码
 - 独立和系统看门狗定时器
 - SysTick计时器

TSSOP20 (6.4x4.4 mm) LQFP48 (7x7毫米) LQFP32 (7x7毫米)

- ●沟通 接口
 - 最多两个我C接口
 - 支持 快速模式加(1 Mbit / s) 一个或两个I / F,电流为20 mA 下沉
 - SMBus / PMBus支持(唱歌le I / F)
 - 最多六个USARŤ支持大师 同步SPI和调制解调器控制; 具有自动波特率检测功能

Ť能够1.设备 摘要

- 最多两个SPI(18 Mbit / s),4到16 可编程位帧
- 串行线调试(SWD)
- 所有包ECOPACK

- 130	D A III A
参考	部件号
STM32F030x4	STM32F030F4
STM32F030x6	STM32F030C6, STM32F030K6
STM32F030x8	STM32F030C8, STM32F030R8
STM32F030xC	STM32F030CC, STM32F030RC

2017年1月 DocID024849 Rev 3 这是完整产品的信息,减税。

1/91 万维网.st.com

2/91

内容小号

•	leg 7 T	
2	描述。	
3	功能	既述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
	3.1	ARM [®] -Cortex [®] -M0内核,内置闪存和SRAM。。。。。。。。。。12
	3.2	回忆。。。。。。。。。。。。。。。。12
	3.3	启动模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
	3.4	循环冗余校验计算单元(CRC)。。。。。。。。。。。。。。。。13
	3.5	电源管理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
	0.0	3.5.1 电源sc血红素。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13
		3.5.2 电源监控器 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 13
		3.5.3 Voltage监管机构 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
		3.5.4 低功率模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 14
	3.6	时钟和启动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
	3.7	通用输入/输出(GPIOS)。。。。。。。。。。。。。。。。。。 15
	3.8	直接内存访问控制器(DMA)。。。。。。。。。。。。。。。。。。。。。16
	3.9	中断和事件s。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 16
		3.9.1 嵌套向量中断控制器(NVIC)。。。。。。。。。。。。。。。。。。。16
		3.9.2 扩展中断/事件控制器(EXTI)。。。。。。。。。。。。。。。。16
	3.10	模数转换器(ADC)。。。。。。。。。。。。。。。。。。。。。。。。。17
		3.10.1 T.温度传感器 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17
		3.10.2 内部电压参考文献(V. _{REFINT})。。。。。。。。。。。。。。。。。。。。。17
	3.11	吨我和看门狗 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 18
		3.11.1 高级控制计时器(TIM1)。。。。。。。。。。。。。。。。。。。。。。。。
		3.11.2 通用定时器(TIM3,TIM1417)。。。。。。。。。。。。。。。。。19
		3.11.3 基本定时器TIM6和TIM7。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19
		3.11.4 独立监督机构(IWDG)。。。。。。。。。。。。。。。。。。。。。。。。。19
		3.11.5 系统窗口看门狗(WWDG)。。。。。。。。。。。。。。。。。。。。。。。。20
		3.11.6 SysTick计时器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
	3.12	实时时钟(RTC) 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
	3.13	内部集成电路接口(I. ² C)。。。。。。。。。。。。。。。。。。。。。。21
	3.14	通用同步/异步接收器/发射器(USART)。。。。21
2/91		DocID024849 Rev 3

STM32F030x4 / x6 / x8 / xC 内容

	3.15	串行外说	0接口(SPI) 。	0 0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0		0 0	0 0	0	0 0	0 (0 0	0 0	22			
	3.16	串行线训	周试端口	(SW-D	P) 。	0 0	0 0	0 0	0 0	0 0		0 0	0 0	0 (0 0	0	0 0	0 0	0 0	0 0	0 0	。 23		
4	引脚	s和引脚说	锐明。。	0 0 0	0 0 0	000	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0	24			
5	内存的	映射。。。	0 0 0 0	000	0 0 (0 0 0	0 0	0 0	0 0	0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0 0	0 0 0	。3	7
6	电气	characte	risti CS	S	0 0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 (0 0	0	0 0	0	0 0	0 (0 0	0 0 0	40	
	6.1	参数条件	# 。。。	0 0 0 0	0 0	0 0 0	0 0	0 0		0 0	0 0	0 0	0	0 0	0 0	. 0	0 0	0 (0 0	0 0	0 0	000	40		
		6.1.1	最小值和	口最大值	0 0 0	0 0 0	000	0 0	0 0	0 0	0 0				0 0	0 0	0 0	0 0		。40)				
		6.1.2	T.基本化	个值观。。	0 0 0	0 0	0 0	0 0 0			0 0	0 0	0 0	0 0	0 0		0 0	0 0	0 0				0 0 0	0 0 0	40
		6.1.3	T.曲线。				0 0	0 0			0 0							0 0	0		0 0	0 0 0		40	
		6.1.4	加载电容	字器。。 。 器容	0 0 0		0 0	0 0 0			0 0					0 0			0 0				4	0	
		6.1.5		\电压。。)
		6.1.6		血红素 。																					
		6.1.7		決点umpti																					
	6.2	绝对最大	大额定值		0 0 0		0 0	0 0	0 0		0 0	0 0						0 0			0 0		42		
	6.3	运行条件																							
		6.3.1	一般操作	乍条件。。			0 0	001			0 0	0 0	0 0	0 0	0 0		0 0	0 0	0 0	, , 4	43				
		6.3.2		牛在上电/																					
		6.3.3		重置和电																					
		6.3.4	嵌入式	参考电压。	0 0		0 0	0 0	0 0		0 0		0 0			0 0	0 0			0 0	. 45	;			
		6.3.5		流c极特。																					
		6.3.6		毛模式唤醒																					
		6.3.7	外部c锁	源特征 。	0 0 0	0 0	0 0 (0 0			0 0		0 0			51							
		6.3.8	内部时针	中源特性			0 0	0 0	0 0	0 0	0 0							55							
		6.3.9		E特性。。																		0 0	56	6	
		6.3.10	记忆特征	Ε				0 0			0 0		0 0			0 0		0 0			0 0	56			
		6.3.11		及特 。。																			。 57		
		6.3.12		改度特性。																					
		6.3.13	I/O电流	允注入特性	生开创!!	生意义			0 0	0 0		0 0	0 0	0 0	0 0	0 0	0 1		0 0	0 0	0 0	59			
		6.3.14	I / O端口	口特性。。	0 0 0		0 0	000			0 0		0 0			0 0			0 0				60		
		6.3.15		脚特性。																					
		6.3.16		C特性。																					
		6.3.17		感器特性																					
		6.3.18	T.imer#	的特点 。。			0 0	0 0	0 0	0 0		0 0	0 0	0 0	0 0		0 0	0 0	0 0		0 0		。70		
		6.3.19]																					
<u></u>																									
				Docli	102484	9 Rev	3									3/9	1								

STM32F030x4 / x6 / x8 / xC

7	包装信	言思。	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	. 7	5		
	7.1	LQF	P64	封装	信息	0 0	0	0 1	0 0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 1	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	75	5				
	7.2	LQF	P48	封装	信息	0 0	0	0 (0 0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 (0	0	0	0 0	0	0	0	78	3				
	7.3	LQF	P32	封装	信息	0 0	0	0 1	0 0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 1	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	81	ı				
	7.4	TSS	OP2	0封	支信.	息。	0	0 0	0	0	0	0 0	0	0	0 (0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 (0	0	0	84	1					
	7.5	热特	性。	0 0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0	0 0	, 8	37					
		7.5.1		参考	文件	0 0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 (0	0	87				
8	订购信	言息 。	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	o c	0	0	0	0	0	0	o c) c	0	0	0	0	0	0	88			
9	修订历	5史。	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	o 0	0	0	0	0	0	0	o 0) c	0	0	0	0	0	0 (0 0	0	0	89

STM32F030x4 / x6 / x8 / xC 表格列表

清单tABLES

表1.	设备摘要。。。。。。。	0 0 0	000	0 0 0	0 0	0 0		0 0		0 0 0		0 0		0 0	0 0		0 0		0 0		0 0 1		1
表2.	STM32F030x4 / 5233 /x8																						
表3.	温度e sensor calibrat离子																		. 17				
表4.	内部参考电压校准价值观																0 0	0 0					
表5.	计时器专长比较ISON。。																					- 18	
表6.	I2C模拟和数字滤波器的比																	0 0	, 0	0 0 0	0 0	0 10	
表7.	STM32F030x4 / x6 / x8 / x	<u>~~</u> 2€	o o o ⊵#D	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0	0 0 0	0 0 0	, , ,	0 0	0 0	0 0	0 0		2	1				
表8.	STM32F0x0 USART实现。																						
表9.	STM32F030x4 / x6 / x8 / x																						
表10.	图例/引脚排列表中使用的																	0 4	23				
表10.																					07		
表11.	STM32F030x4 / 6/8 / C引												0 0	0 0	0 0	0 0	0 0	0 0	0 (0 0	21		
	备用函数tions选择了thrGF																						
表13.	备用函数tions选择了thrGF																						
表14.	替代fu选定的节目GPIOC_																						
表15.	替代fu选定的节目GPIOD	AFR奇	仔器用	士 端口	D.。。	0 0	0 0	0 0 0	0 0	0 0 0	。 36												
表16.	替代fu选择的部分 通过GP	IOF_A	FR 奇石	子器用-	上端口	F.。。	0 0	0 0	0 0	0 0 0	0 0	0 0	36										
表17.	STM32F030x4 / X6 / x8 /																						
表18.	电压特性。。。。。。。。																						
表19.	电流特性 。 。。。。。。	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	43		
表20.	Therma我的特点抽动。。																				0 0	43	3
表21.	一般操作条件。。。。。。	0 0 0	0 0 0	0 0 0	0 0	00	0 0 0	0 0		0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	。4	3			
表22.	上电/断电时的工作条件。	0 0 0	0000		0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	44									
表23.	嵌入式复位和电源公司控制	块特征	E。。。	0 0 0	0 0 0		0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	. 44										
表24.	嵌入式内部参考电压。 。					0 0	0 0 0		0 0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	4 5					
表25.	典型的ad最大电流消费 从										0 0												
表26.								烘应。	000	0 0		0 0	0 0	0 0	0 0	。4	7						
	典型的ad最大电流消费 从	V	模式。	0 0 0			DDA	烘应。	0 0 0		。。。 48	0 0	0 0	0 0	0 0	。4	7						
表26. 表27.		V 和 待机	模式。.		0 0 0		DDA	共应。 。。。	0 0 0	0 0	。。。 48	0 0	0 0	0 0	0 0	。4	7						
表26. 表27.	典型的ad最大电流消费 从 典型的ad最大消费在停止和 行模式下的 典型电流消耗	V 和 待机 毛,代码	模式。 9 与数据	居处理			DDA ¹	0 0 0	0 0	000	48							0 0	0.0		0.0		4
表26. 表27. 表28. 运	典型的ad最大电流消费 从 典型的ad最大消费在停止和 行模式下的 典型电流消耗 从Flash运行。。。。。	V 和 待机 毛,代码 。。。。	模式 。. 9 与数排 。。。。	居处理 。。。	000		DDA ¹		0 0 0		48	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0 0 0	0 0	0000	4
表26. 表27. 表28. 运 表29.	典型的ad最大电流消费 从 典型的ad最大消费在停止和 行模式下的 典型电流消耗 从Flash运行。。。。。 切换输出I/O cur租金合约	V 知 待机 毛,代码 。。。。	模式。. B 与数排 。。。。 。。。	居处理 。。。。 。。。			DDA ¹		000		48	0 0	0 0	0 0	0 0	0 0	。。 50				0 0		4
表26. 表27. 表28. 运 表29. 表30.	典型的ad最大电流消费 从 典型的ad最大消费在停止对 行模式下的 典型电流消耗 从Flash运行。。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。。	V 和 待机 毛,代码 。。。。	模式。 男 与数排 。。。。 。。。。	B处理 。。。 。。。	000		DDA ^{(;}	000			48	00	00	00	00	0 0	. 50	0 0		0 0	0 0		4
表26. 表27. 表28. 运 表29. 表30. 表31.	典型的ad最大电流消费 从 典型的ad最大消费在停止和 行模式下的 典型电流消耗 从Flash运行。。。。约 统动投输出I/O cur租金合 低功耗模式唤醒时序。。。 高速d外部用户 时钟特征复	V 和 待机 毛,代码 。。。。 。 。 成电路	模式。 男与数据 。。。。。 。。。。	居处理 。。。 。。。	000		DDA ¹				48					00	. 50	0 0		> 0 0	0 0	0000	4
表26. 表27. 表28. 运 表29. 表30. 表31. 表32.	典型的ad最大电流消费从 典型的ad最大消费在停止活 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/Ocur租金合约 低功耗模式唤醒时序。。 高速d外部用户时钟特征ic 低速d外部用户时钟特征ic	V 和 待机 毛,代码 。。。。	模式。 男与。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	居处理 。。。。 。。。。			DDA ¹				48					52	. 50 . 51	0 0	51		0 0	0000	4
表26. 表27. 表28. 运 表29. 表30. 表31. 表32. 表33.	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。 高速d外部用户 时钟特征ic 低速d外部用户。时钟特征ic HSE振荡器特性。。。。。	V 和 待机 毛,代码 。。。。。 感成。。。	模式。 男与。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	居处理 。。。。 。。。。			DDA ¹				48					52	。 50 。51	0 0	51	52		0000	4
表26. 表27. 表28. 运 表30. 表31. 表32. 表33. 表34.	典型的ad最大电流消费 从 典型的ad最大消费在停止为 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。 高速d外部用户 时钟特征 低速d外部用户 时钟特征 低SE振荡器特性(f	V 和 毛,代 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	模式。 妈与。。。。。。。 SSE=	B处理 。。。。 。。。。 。。。。	, , , , , , , , , , , , , , , , , , ,		DDA ¹				48					52	, 50 , 51	0 0	51	52 54			4
表26. 表27. 表28. 运 表30. 表31. 表32. 表33. 表34. 表35.	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。 高速d外部用户时钟特征值 低速d外部用户时钟特征ic HSE振荡器特性。。。。。 LSE振荡器特性(f HSI振荡器特性。。。。。。。。	V 和 待机 6、 。。。。 ks。 。。。 。。。。。。。。。	模式。 妈与。。。。。。。。 S. S. S	居处理 。。。。。。。。。。。。。 32.76	3 kHz,		DDA ¹				48					52	. 50 . 51	0 0	51	52 54 55			4
表26. 表27. 表28. 运 表29. 表30. 表31. 表32. 表33. 表34. 表35. 表36.	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型 电流消耗 从Flash运行。。。。。 切换输出I/O cur租金合约 低功耗模式晚醒时序。。。。 低速d外部用户时钟特征ic HSE振荡器特性。。。。。 LSE振荡器特性(f HSI振荡器特性(s	V 和	模马。。	居处理 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	3		DDA ¹				48					52	. 50 . 51		51	52 54 55 55			4
表26. 表27. 表28. 运表29. 表30. 表31. 表32. 表33. 表33. 表33. 表33. 表34. 表35. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。 高速d外部用户时钟特征ic HSE振荡器特性(f HSE振荡器特性(f HSI振荡器器特性。。。。。 LSI振荡器特性。。。。。	Valence of the second of the	模马。。	居处理 。。。。。 32.76	3 kHz,)	DDA ¹				48					52	. 50 . 51		51	52 55 55 55 55	1		4
表26. 表27. 表28. 表29. 表30. 表31. 表33. 表33. 表34. 表35. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。。 高速d外部用户 时钟特征ic HSE振荡器特性(f HSI振荡器特性。。。。。 LSE指荡器特性。。。。。。 HSI14振荡器特性。。。。。。 PLL特性。。。。。。。。。。。。。	Valence of the second of the	模马。。。。。。。 式为。。。。。。。s 数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	居处理 。。。。。 32.76	3 kHz,		DDA!				48					52	. 50 . 51		51	52 55 55 55 55	1		4
表26. 表27. 运表28. 运表30. 表31. 表32. 表33. 表表34. 表35. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。。 高速d外部用户时钟特征! 代速d外部用户时钟特征! HSE振荡器特性。。。。。 LSE振荡器特性(f HSI振荡器特性。。。。。 LSI振荡器特性。。。。。 USI14振荡器特性。。。。。	V 待代。。。	模马。。。 \$ 。。	居处理 。。。。。 32.76	3 kHz,		DDA!				48					52	. 50 . 51		51	, 52 。 54 。 55 55 。 55	1		4
表26. 表27. 运表28. 运表30. 表31. 表32. 表33. 表34. 表35. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。。 低速d外部用户时钟特征id HSE振荡器特性。。。。。 LSI振荡器特性(f HSL振荡器特性(s。。。。 LSI振荡器特性。。。。。 LSI振荡器特性。。。。。 Flash memory endurance	V 和毛。。。 》 \$\f\$ \$\f\$ \$\f\$ \$\f\$ \$\f\$ \$\f\$ \$\f\$ \$\	模马。。。。。。。。。。 《我的。。。。。。。。。。。。。。。 wretentio	居处理 。。。。。。。。。。。。。。 32.76。。。。。。	3 kHz,		DDA (48					52	. 50 . 51		51	, 52 , 55 , 55 , 55 , 55	1	56	4
表26. 表27. 运表28. 表30. 表31. 表32. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。。。 高速d外部用户时钟特征ic HSE振荡器特性(f HSI振荡器特性。。。。。 LSI振荡器特性。。。。。 LSI振荡器特性。。。。。 LSI振荡器特性。。。。。 是SI振荡器特性。。。。。	V 和毛。。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 和 。 机 。 。 。 。	模与。。。。。。。。。。。。。 kstantantantantantantantantantantantantant	居处理 。。。。。 32.76	8 kHz,		DDA				48					52	50 51		51	, 52 。 54 。 55 55 。 55 。 5	• • • •	56 57	4
表 26. 表 27. 运 表表 30. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur和金合约 低功耗模式唤醒时序。。。。 低功耗模式唤醒时序。 低速d外部用户时钟特征id HSE振荡器特性。。。。。。 HSI14振荡器特性。。。。。 HSI14振荡器特性。。。。。 Flash memory endurance EMS特征。。。。。。。。。	V 和毛。。。 。 。 。 。 和 。 。 , 和 。 。 。 。 。 和 。 。 。 。	模与。。。。。。。。。。。。。。。。。。。 · use in the second	居处理 。。。。。。 32.76	3 kHz,		DDA ¹				48					52	50 51		51	, 52 。 54 。 55 55 。 55 。 57	• • • •	56 57	4
表 26. 表 27. 运 表 28. 表 28. 表 28. 表 30. 表 33. 表 33. 表 34. 表 35. 表 36. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消 从Flash运行。。。。 切换输出I/O cur和金合约 低功耗模式唤醒时序。。。 高速d外部用户时钟特征id HSE振荡器特性。。。。。 LSE振荡器特性。。。。。 LSI振荡器特性。。。。。 HSI14振荡器特性。。。。。 Flash memory endurance EMS特征。。。。。。。。 ESD绝对值最低评级。。。	V 印毛。。。 影 90 。 。 。 。 和 7 。 。	模与。。。。。。。。。。etentio。。。。。。	居处理 。。。。。。32.76	3 kHz,		DDA				48					52	50 51	5	51	52 55 55 55 55 57	• • • •	56 57 58	4
表 26. 表 27. 运 表 33. 表 35. 表 35. 表 35. 表 35. 表 35. 表 36. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电。。。。 切换输出I/O cur租金合约 低功耗模式唤胜时序。征 低功耗模式唤胜时序。征 低速d外部用户时钟特征ic HSE振荡器特性(f HSI振荡器特性(s。。。。 LSI振荡器特性。。。。。 USI振荡器特性。。。。。 Flash memory endurance EMS特征。。。。。。。。 EMI特性。。。。。。。。。 EMI特性。。。。。。。。。 ESD绝对值最低评级。。。。 电气敏感性。。。。。。。	V 印毛。。。 影 \$P 。 。 。 。 和 。 。 。 机 6 代 。 。 成 8 。 。 。 。 数 。 。 。 机 4 (。 。 路 。 。 。 。 路 。 。 。 路 。 。 。 。 路 。 。 。 。	模与。。。s。。s。setentio。。。sussets。shows a setentio seess and	居处理 。。。。。。32.76。 n。。。。。	8 kHz,		DDA				48					52	50		51	52 55 55 55 57	• • • •	56 57 58	4
· 表26. 表表27. 运 表表30	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。 切换输出I/O cur租金合约 低功耗模式唤户时钟钟特征。 HSE振荡器特性(f HSE振荡器特性。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。 ESD绝对值最低评级。。。。 ESD绝对值最低评级。。。。。 I/O电流注入敏感性。。。。。	V泊毛。。。爲.S.。。。。。和。。。。。机化。。。成。。。。。。数。。。。。如机化。。。。。。数。。。。。。。。如此,以,以,以,以,以,以,以,以,以,以,以,以,以,以,以,以,以,以,以	模马。。 Sees Sees Sees Sees Sees Sees Sees Se	居处理 。。。。。32.76。 n。。。。。。。。。。。。。。。。。。。	3 kHz,		DDA				48					52	50 51	5	51	52 55 55 55 57 57	• • • •	56 57 58 59	4
· 表26. 表27. 表28. 表29. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。每。 低功耗模式唤醒时序。有 低速d外部用户时钟特征id HSE振荡器特性。。。。。。 LSE振荡器特性。。。。。。 LSI振荡器特性。。。。。。 Flash memory endurance EMS特征。。。。。。。。 EMI转性。。。。。。。。 EMI转性。。。。。。。。 ESD绝对值最低评级。。。 ESD绝对值最低评级。。。 LO静态特性小号。。。。。。	V 印毛,。。 是 S 。 。 。 。 。 数 。 。 。 。	模马。。 See See See See See See See See See S	居处理 。。。。32.76	3 kHz,		DDA				48					52	50 51	5	51	52 55 55 55 57 57	• • • •	56 57 58 59	4
· 表26. 表表27. 运 表表30	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。 切换输出I/O cur租金合约 低功耗模式唤户时钟钟特征。 HSE振荡器特性(f HSE振荡器特性。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。。 LSI振荡器特性。。。。。 ESD绝对值最低评级。。。。 ESD绝对值最低评级。。。。。 I/O电流注入敏感性。。。。。	V 印毛,。。 是 S 。 。 。 。 。 数 。 。 。 。	模马。。 See See See See See See See See See S	居处理 。。。。32.76	3 kHz,		DDA				48					52	50 51	5	51	52 55 55 55 57 57	• • • •	56 57 58 59	4
· 表26. 表27. 表28. 表29. 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	典型的ad最大电流消费从 典型的ad最大消费在停止消 行模式下的 典型电流消耗 从Flash运行。。。。 切换输出I/O cur租金合约 低功耗模式唤醒时序。每。 低功耗模式唤醒时序。有 低速d外部用户时钟特征id HSE振荡器特性。。。。。。 LSE振荡器特性。。。。。。 LSI振荡器特性。。。。。。 Flash memory endurance EMS特征。。。。。。。。 EMI转性。。。。。。。。 EMI转性。。。。。。。。 ESD绝对值最低评级。。。 ESD绝对值最低评级。。。 LO静态特性小号。。。。。。	V 印毛,。。 是 S 。 。 。 。 。 数 。 。 。 。	模马。。 See See See See See See See See See S	居处理 。。。。32.76	3 kHz,		DDA				48					52	50 51	5	51	52 55 55 55 57 57	• • • •	56 57 58 59	4

\7/

DocID024849 Rev 3

表48.	1/0	O AC特性。	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0 0		0	0	0	0 0	0 0		0	0	0 0		0	0	0 0		0	0		0	0	0	0 0		0	0	0	0 (。6	ί4			
表49.	NR	ST引脚特性	ŧ.	0 0	0	0	0 0	0	0	0 0	0	0 (0	0	0	0	0 (0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 (0	0	0	0 0		0	0	65	5				
表50.	AD	C特性 。。	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0	0	0	0 0		0	0	0 0	0 0	0	0	0 (0	0	0	0 (0	0	0				66	3			
表51.	ř	AIN 最大																																														
表52.	AD	C精度。。	0 0	0	0 0	0	0 (0	0	0 0	0	0	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0 0		0	0	0	0 0		0	0	0	0 0	0	0	68
表53.	TS!	特性。。。	0 (0 0	0		0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0	0	0	0	0 0	0	0	0	0 0		0	0	0 0	0	0	0	0 0	0	0	0	0	0 (0 0	0	70			
表54.	TIM	/lx特性。。		0 0		0	0 0	0	0 0	0 0	0	0 0			0	0	0 0		0	0	0	0 0		0	0	0 1	0 0		0	0		0	0	0 0		0	0	0	0 0		0	0	0	. 7	70			
表55.	在4	10 kHz时的	IWI	OGi	 浸小	/最	大	部	亅周	期	(LSI)	، (0	0	0 1			0	0	0 0	0 0		0		0 0	0	0	0	0 0		0	0 (0	0		0 0		7	1						
表56.	48	MHz时的W	/WI)Gi	浸小	/撮	大	超时	付值	(PC	LK)	0	0	0	0 0	0	0	0	0	0 0	0 0		0		0 0		0	0	0 0		0	0 1		0	0		. 7	71									
表57.	I2C	模拟滤波器	特	性。	0	0 0	0	0	0 0	0	0	0 0	0	0	0 1		0	0	0	0	0 0		0	0	0 0		0	0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	72	2						
表58.	SP	l特性。。。	0	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 (0	0	0	0 (0 0	0	0	0	0 0		0	0	0 0	0	0	0		0	0	0	0 0	0	0	0	0	0	。7	′2			
表	59.LQF	FP64机械数	裾	0 0	0	0 0	0	0	0 0		0	0 0	0	0	0	0 0		0	0	0	0 0		0	0	0 (0 0	0	0	0	0 0		0	0 0		0	0	0	0 0	0	0	0	0		75				
表	60.LQF	FP48机械数	裾	0 0	0	0 0	0	0	0 0		0	0 0	0	0	0	0 0		0	0	0	0 0		0	0	0 (0 0	0	0	0	0 0		0	0 0		0	0	0	0 0	0	0	0	0		78				
	61.LQF	FP32机械数	腒	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0		0	0	0 (0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	. 8	81				
表62.	TS	SOP20机械	数:	据。	0	0 0	0	0 (0	0	0 0	0	0	0 0		0	0	0	0 (0	0	0 0		0	0	0 0		0	0	0 0	0	0	0	0 0		0	0	0	. 1	84					
表63.	Pac	ckage therr	na}	践的	特	点拍	蚰	0 0		0	0 1		0	0	0 0		0	0	0	0 0			0	0 1			0		0 0	0	0	0		0	0	0	0 0	0	0	0	0	0 0		8	7			
表64.	订贝	购信息方案 。		0 0		0	0 0	0	0	0 0		0	0	0 0		0	0		0 0		0	0		0 0		0	0	0 0		0	0	0 0	0	0	0	0 0		0	0	88								
表65.	文标	当修订历史。	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0		0	0	0	0 0		0	0	0 1	0 0		0	0	0 0		0	0	0 0		0	0	0 0	0	0	0	0 (8	9						

数字清单

图1.	框图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图2.	时钟树。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	ţ
图3.	LQFP64 64-引脚封装引出线(顶视图),适用于STM32F030x4 / 6/8器件。。。。。。。。。。。。。24	
图4.	LQFP64 64引脚封装引脚排列(俯视图),用于STM32F030RC设备。。。。。。。。。。。。。。24	
图5.	LQFP48 48-引脚封装引出线(顶视图),适用于STM32F030x4 / 6/8器件。。。。。。。。。。。。。25	
图6.	LQFP48 48引脚封装引脚排列(俯视图),用于STM32F030CC设备。。。。。。。。。。。。。25	
图7.	LQFP32 32引脚封装引脚排列(俯视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 26	
图8.	TSSOP20 20引脚封装引脚排列(顶部 视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 26	
图9.	STM32F030x4 / x6 / x8 / xC存储器映射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图10.	引脚装载条件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图11.	引脚输入电压。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图12.	电源方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图13.	当前消耗测量方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41	
图14.	High-speed ex内部时钟AC AC timing diagra米。。。。。。。。。。。。。。。。。。。。。。。。。51	
图15.	低速e外部时钟源AC定时图上午。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52	
图16.	典型的适用离子与8MHz晶体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53	
图17.	T适用的离子与32.768 kHz 水晶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 54	
图18.	TC和TTal/O输入特性集成电路。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62	
图19.耐	压 五伏(FT和FTF)I / O输入characte ristics。。。。。。。。。。。。。。。。。。。。。。。。62	
图20.	I/O AC特性定义 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65	
图21.	推荐的NRST引脚保护。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。66	
图22.	ADC精度特性小号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图23.	典型连接使用ADC的图表 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	
图24.	SPI时序图 - 从机模式和CPHA = 0。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73	
图25.	SPI时序图 - 从机模式和CPHA = 1。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73	
图26.	SPI时序图 - 主模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图27.	LQFP64大纲。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图28.	LQFP64重复修改足迹。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图29.	LQFP64 mar王示例(包顶视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。77	
图30.	LQFP48大纲。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图31.	LQFP48重新开始修改足迹。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图32.	LQFP48 mar王示例(包顶视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。80	
图33.	LQFP32概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图34.	LQFP32重新开始修改足迹。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图35.	LQFP32 mar王示例(包顶视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。83	
图36.	TSSOP20概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
图37.	TSSOP20占位面积。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	
図20	TSSOP20左过三例(有顶加图)	

\7/

DocID024849 Rev 3

1简介

该数据表提供或中国的信息传递与机械设备特性 STM32F030x4 / x6/ x8 / xC微控制器。

这份文件应该是b阅读未ction与STM32F0x0xx参考手册升(RM0360)。参考nce手册可从STMicroele获得ctronics网站 万维网.st.com。

有关ARM的信息 [®] 皮质 [®]-M0核心,请r选择Cortex 参考手册,可从该处获得e www.arm.com网站。

®-M0 T.技术

2描述

STM32F030x4 / x6 / x8 / xC microcontrolle RS INCORPo the high-p性能ARM 皮质 ®-M0 32位RISC内核,运行48 MHz频率,高速嵌入式记忆(最多 256 闪存的Kbytes和高达32 KB的SRAM),以及广泛的增强d外围设备和I / O. 所有设备fer标准通信接口(向上两个我 2Cs,最多两个SPI,最多六个 USART小号),一个12位ADC,七通用16比特时间rs和高级 控制PWM定时器。

STM32F030x4 / x6 / x8 / xC 微控制器在 -温度为40至+ 85°C 范围从2.4到3.6V电源。一套全面的省电模块des允许低功耗的设计 应用。

STM32F030x4 / x6 / x8 / xC微控制器s 包括四个设备中的设备不同的ackages 范围从20引脚到64引脚。依赖新生选择的设备,差异不同的外设 被包含在内。描述是低提供了一个overview的完整范围 STM32F030x4 / x6 / x8 / xC外设als提出。

这些功能使STM32F030x4 / x6 / x8成为可能/xC微控制器适合le范围广泛应用程序控制和用户界面,手持设备等应用程序A / V. 接收器和数字电视,PC外围设备,gami ng和GPS平台表格,工业应用程序lications,PLC,逆变器,打印机,scanners,alar m系统,可视对讲机和HVAC的。

DocID024849 Rev 3

9/91

Ť能够2. STM32F030x4 / 5233 / X8 / XC系列德副features和外围公司UNTS

外围	设备	STM32 F030F4	STM32 F030K6	STM32 F030C6	STM32 F030C8	STM32 F030CC	STM32 F030R8	STM32 F030RC
闪存(Kby	tes)	16	32	32	64	256	64	25
SRAM (KI	oytes)		4		8	32	8	32
	高级 控制				1(16位)			
Ťimers	一般 目的		4(16位) ⁽¹⁾)		5 (1	6位)	
	基本		-		1(16位) ⁽²	2(16位)	1(16位 ⁾²	2(16位)
	SPI		1 ⁽³⁾			2	2	
通讯。 接口	<u>-2</u> œ <u>#</u>		1 (4)			2	2	
жH	USART		1 ⁽⁵⁾		2 (6)	6	2 (6)	6
12位ADC (频道数)		1 (9分机 +2 int。)	1 (10分机 +2 int。)	1 (10分机 +2 int。)	1 (10分机 +2 int。)	1 (10分机 +2 int。)	1 (16分机 +2 int。)	1 (16分机 +2 int。)
GP-	世Øs			15	26	39	39	37
最大。CPU	J频率			48	MHz			
工作电压				2.4至3.6	5 V.			
工作温度				工作温度: -4 结温: -40°C				
封装	TSS	OP20 LC	FP32	LC	QFP48		LQFP64	1

10/91

^{1.} TIM15不存在。 2. TIM7不存在。

SPI2不存在。
 I2C2不存在。

USARŤ2到USART6不存在。
 USARŤ3到USART6不存在

图1.块图

- 1. TIMER6,TIMER15,SPI,USART2和I2C2 仅适用于STM 32F030x8 / C器件。
- 2. USART3, USART4, USART5, USART6和TIME R7仅适用于ST M32F030xC器件。

577

DocID024849 Rev 3 191分之1

3功能 概观

3.1 ARM®-Cortex®-M0内核,内置闪存和SRAM

手臂 [®] 皮质 [®]-M0处理器是 最新一代ERAT ARM PR的离子嵌入式的ocessors 系统。它已发展到p提供低成本平台满足的形式MCU的需求 实行具有减少的引脚数和低p值在提供的同时消耗功率 outst和计算机国家行为rmance和先进的系统打断中断秒。

手臂 [®] 皮质 [®] M0 32位RISC处理器fe特殊代码 - 效率,提供高性能预期来自记忆中的ARM核心通常是大小与8位和16位设备相关联。

STM32F0xx系列有一个嵌入式d ARM核心因此是comp适合所有人ARM工具和软件。

图3显示了器件系列的总体框图。

3.2回忆

装置 有以下g功能:

- 4至32 KB的嵌入式SRAM接口 ssed (读/写) CPU时钟速度d为0 等待状态和特色 嵌入式的TY 有例外属检查失败的 关键应用。
- 非易失性存储器分为 两个数组:
 - 16比256千字节 嵌入ed Flash memory fo程序和数据
 - 选项字节

使用选项字节 写保护内存(4 KB granularity)和/或读出 - 保护整个memory有以下选项:

- 0级:无读数保护
- 1级:存储器读出保护,闪存不能从或读写入,如果任何调试功能已连接或者开机 RAM是s当选
- 第2级: 芯片读取保护离子,调试 功能(公司RTEX [®]-M0串口线)和开机 禁用RAM选择

3.3启动 模式

在启动时,引导引脚d引导选择器opti on bit用于选择一个 三个开机

- 从用户闪存引导
- 从中启动 系统备忘录RY
- 从嵌入式SRAM引导

引导加载程序位于系统备忘录中RY。它用于代理人是闪存的使用USART在引脚P上A14 / PA15或P.A9 / PA10。

STM32F030x4 / x6 / x8 / xC 功能概述

3.4循环 冗余 澈CK计算部 (CRC)

CRC(循环冗余校验)计算i on unit用于获取使用a的CRC代码可配置的generator多项式值a和大小。

在其他应用中,CRC-based技术用于验证data transmission或存储完整性。在EN / IEC 60335-1 st的范围内他们的一种手段验证Flash备忘录诚信。CRC计算单元帮助计算签名durin软件g运行时,要比较用引用签名编辑 在链接处生成 - 时间并存储在给定的内存位置。

3.5电源 管理

3.5.1 供电方案

- V DD = 2.4至3.6 V.: I/O和内部的外部电源监管机构。提供外部通过VDD引脚。
- V DDA = 从V DD 至3.6 V:外部模拟电源为ADC电源,复位块,驻地协调员和PLL。V. DDA 电压等级必须是always大于或等于V. DD 电压水平,必须先提供。

更多信息关于如何连接电源引脚的问题,参见图e 12: 供电方案。

3.5.2 电源监控器

该设备已集成上电复位(POR)和电源-复位(PDR)电路秒。 它们始终处于活动状态,并确保正常运行高于2 V的阈值。装置 保持重置模式n监控的电源电压年龄低于指定的年龄阈限,

V_{POR / PDR} 不需要 外部重置 电路。

- POR monit 只有V DD 供应电力即 在启动期间这是必需的 那个VDDA 应该先到达并且大于或等于V.
- PDR mo 这两个人都是e V. _{DD} 和V. _{DDA} 供电电压年龄,但V _{DDA} 功率 供应主管可以是disabled(按程序一个专门的Option)减少 如果应用程序设计确保V的功耗 等于V. _{DD}。

3.5.3 Voltage 调节器

监管机构有两个运营模式des和它始终启用af重置。

- Main(MR)用于正常操作模式 (跑)。
- S中可以使用低功率(LPR) 顶级模式所在的电源 需求减少。

在S.tandby模式,它被放入po下来模式。在此模式下,稳压器输出为高电平阻抗和内核电路y断电,导致零消耗(但是寄存器的内容d SRAM丢失)。

DocID024849 Rev 3

3.5.4低功耗 模式

STM32F030x4 / x6 / x8 / xC 微控制器支持三个低 -功率模式实现低功耗,短路的最佳折衷方案制作时间和可用唤醒来源:

睡眠模式

在休眠模式下,仅停止CPU。所有周边外围人士继续经营e和可以唤醒CPU时 发生中断/事件。

● Sto p 模式

小号[†]op模式实现非常低的功率呃消费在保持连续的同时离子SRAM的内容 并注册。所有时钟都在1.8 V域名是止损切,PLL,HSI RC和thÉ HSE晶体振荡器被禁用。电压调节器也可以放入 正常或低功率的德。

该设备可以从S唤醒任何EXTI线的顶级模式。EXTI线source可以是16个exte之一rnal lines和R.TC。

斯坦 D bÿ 模式

Standby模式用于实现最低功耗离子。内置的 电压调节lator被关掉了整个1.8 V域都是供电的F。该 PLL,HSI RC和HSE晶体振荡器也被关闭。进入后 小号tandby模式,SRAM和寄存器内容除了R中的寄存器外,s丢失了TC 域和Standb电路。

设备退出S.坦迪莫de外部复位(NRST引脚),IWDG复位,a 上升的边缘 WKUP引脚,或RŤ发生C事件。

注意: RTC,/WDG,和 相应的时钟如此尿素是n因进入而停止 小号最佳或S. 扩和模式。

3.6 时钟和startup

系统时钟选择在启动时执行,但内部RC 8 MHz oscillator是选为默认CPU时钟重置。一个可以选择外部4-32 MHz时钟在哪种情况下,它会被监控失败。如果检测到故障,系统将自动切换回到内部RC振荡器。如果启用,则会生成软件中断。同样,满满的打断管理必要时可以使用PLL时钟输入(例如,开启)间接使用的外部晶体,电容器或振荡器的故障)。

几个预分频器允许应用程序配置AHB和APB的频率 域。AHB和APB域的最大频率为48 MHz。 STM32F030x4 / x6 / x8 / xC 功能概述

图2.时钟树) lash memory programming interface) L=T) L。 , 2&1S: HS, HŞ, 8 MHz H=S,R& ☐ HS: S=YS=L。 /2 A=H%, core, memory, DMA, &orte=x) L. free-run clock s: S=YS=L ♣ & orte=x s=ystem timer /8 HS, P=LL&L /1,/2,... .../512 为A=P% peripherals PPR (/1,/2,. ../16 TIM1,3,6⁽²⁾,7⁽³⁾ 14,15⁽²⁾,16,17 HS (OS=_OUT 4-32 MHz HS (OS & os&_, N /2, /4 AD & (14 MHz max) L=S (14 MHz H=S,14 R& OS32_, N RT=CC=L。 32.768 kHz L=S (OS & OS32_OUT S=YS=L。— HS,— L=S (► US=ART1 RT=S (L 40 kHz L=S,R 8 L=S, P=LL=NOD=, V /1⁽¹⁾,/2 - P=LL & L。 Main clock 一街 /1,/2,/4,.. H=S, 14 -HS (M=O L=egend black white -S=YS=L。 - L=\$1) clock tree element -L=S⁽¹(clock tree control element clock line control line MSv32138V2

- 1. 适用于STM32F030x4 / x6 / xC器件。
- 2. 适用于STM32F030x8 / xC器件。
- 3. 适用于STM32F030xC器件。

3.7 通用输入S /输出小号 端口(GPIO)

每个GPIO pins可以配置 通过软件 作为输出(推拉o开漏),如输入(有或没有上拉或下拉)或按照ipheral交替功能。大部分的GPIO引脚与。共享 DIGITAl或模拟改变nate函数。

DocID024849 Rev 3

15/91

如果需要,可以锁定I / O配置为了减轻特定的顺序 避免虚假 写信给e I / O注册ERS。

3.8 直接内存访问控制器(DMA)

5通道属I-purpose DMA管理内存到 -记忆,周边全部擦除到存储器和记忆到每个外围转移秒。

DMA支持circular buffer管理,删除需要用户代码interventi在控制时到达end的缓冲区。

每个频道都是连词ected到专用hardw是一个重新DMA请求s,支持software 触发每个频道。配置由sof完成两者之间的tware和传输大小来源和目的地独立。

DMA可与主外设一起使用: SPI,I2C,USARŤ,所有TIMx定时器(除外TIM14)和ADC。

3.9中断小号 和 事件

3.9.1 嵌套向量中断控制器 (NVIC)

STM32F0xx系列嵌入了嵌套矢量 中断控制器能够提供le up 32个可屏蔽中断通道(不包括Co的16个中断线)RTEX 优先级。

®-M0) 和4

- 紧密耦合的NVIC提供低延迟中断处理
- 中断入口向量t 能够解决问题直接瞄准核心
- 緊密耦合的NVIC核心接口
- 允许早期处理o f中断小号
- 处理迟到的更高的先验 ty中断
- 支持t AIL-链接
- 处理器状态自动保存
- 中断en 尝试恢复inte没有破坏退出 指示头

这个硬件块提供灵活的霹雳马nagement 特征 与微量中断潜伏。

3.9.2 扩展中断/事件控制器(EXTI)

延长的中断t / event co ntroller包括32条边缘线的 s用来生成中断/事件请求并唤醒系统。Ea ch line可以独立使用配置为选择触发事件(上升沿,下降沿,两者)并可以屏蔽独立地。挂起的寄存器维护st中断请求的原因秒。EXTI可以检测划外部脉冲wid更短的than内部时钟周期。最多55 GPIO可以连接到16 exter最终中断线秒。

STM32F030x4 / x6 / x8 / xC 功能概述

3.10 模拟到数字转换器(ADC)

12位模拟到 数字转换器 最多有16个外部和2个内部(temperature 传感器,电压重新ference measurement)陈nel s并执行单一转换 射击 或扫描莫DES。在扫描中 模式,automatic conversion在选定的一组上执行模拟输入TS。

ADC可以由DMA控制器提供服务。

一个模拟看门狗功能allo非常精确的监控 con转换电压 一,部分或全部选定频道。一个间隔收敛时产生upt特德伏特加是的在计划之外med threshoLDS。

3.10.1 T.emperature 传感器

温度sensor(TS)生成电压V.

随线性变化

温度。

温度传感器内部连接到ADC_IN16输入通道即用来转换森吸收输出电压年龄变成一个数字值。

传感器提供良好的线性但它必须经过校准以获得良好的结果所有 te的准确性温度测量。作为温度的抵消e传感器各不相同 从芯片到 芯片由于 过程变量你,你ncalibrated int温度温度奈尔是 适合app检测温度变化的药物LY。

To改善 准确性是的emperatur传感器measurement,每个开发者冰是单独出厂校准 由ST。te mp温度传感器工厂校准数据一个是由ST存储在系统存储区中,a在只读模式下可访问。

Ť能够3.T温度森校准n值

	校准值名称 说	明	存储器地址	
[TS_CAL1	1	获得的TS ADC原始数据 温度为30°C(±5°C), √ _{DDA} = 3.3 V(±10 mV)	0x1FFF F7B8 - 0x1FFF F7B9

3.10.2 内部电压年龄参考(V. REFINT)

内部电压参考nce(V REFINT)提供刺le(带隙)伏特年龄输出ADC。 YeFINT 内部连接到ADC_IN17输入通道。 钍精确伏特年龄 of REFINT 是单独的很容易每个部分由ST du戒指产品测试d存储在系统内存区域。它是以只读模式访问。

Ť能力4.内部 电压参考校准定量值小号

校准值名称	说明	存储器地址	
VREFINT_CAL	温度为3	居a acqui红了 80°C(±5°C), 3.3 V(± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

DocID024849 Rev 3

91

3.11 吨我和看门狗

STM32F030x4 / x6 / x8 / xC器件包括最多五个ge橙花,purpose计时器,两个bASIC 定时器和一个高级控制时间[R。

钽b升Ë 5 比较es的特点不同的计时器。

Ť能够5.Timer feature comp阿里森

			HE JY U.	illilei leatui	e comp _P 主称		
计时器 类型	蒂姆呃	计数器 解析度	计数器 类型	预分频器 因子	DMA 请求 代	捕获/比较 渠道	补充 产量小号
高级 控制	TIM1	16位	向上, 下, 向上/向下	任何整数 1之间 和65536	叶s	4	3
	TIM3	16位	向上, 下, 向上/向下	任何整数 1之间 和65536	叶s	4	-
一般	TIM14	16位	向上	任何整数 1之间 和65536	没有	1	-
目的	TIM15 ⁽¹⁾	16位	向上	任何整数 1之间 和65536	叶s	2	-
	TIM16, TIM17	16位	向上	任何整数 1之间 和65536	叶s	1	1
基本	TIM6, ⁽¹⁾ TIM7 ⁽²⁾	16位	向上	任何整数 1之间 和65536	叶s	0	-

- 1. A仅适用于STM32F030x8 和STM32F030xC器件。
- 2. A仅适用于STM32F030xC器件

3.11.1高级控制计时器(TIM1)

先进的骗局控制计时器(TIM1)可以看作是一个ree-phase PWM multip六点左右 通道。它 有完美的ntary PWM outpu使用programmab勒插入 死时间。 它 也可以看作是一个补偿lete general-purpose计时器。这四个独立的陈内尔斯可以 由干:

- 输入捕获 URE
- 輸出公司 mpare
- PWM生成(边缘或中心 对齐模式)
- 单脉冲模式输出

如果配置为标准d 16位定时器,它具有与TIMx计时器相同的功能。如果配置为16位PWM发生器,它有完整的模块能力(0-100%)。

柜台可以是frozen在调试模式下。

许多功能都是与thos分享电子的STandard计时器 有同样的 建筑。先进公司控制计时器可以 牛逼herefore共同努力 与其他计时器 通过T用于同步的 imer Link功能n或事件链接。

STM32F030x4 / x6 / x8 / xC 功能概述

3.11.2通用 ti mers (TIM3, TIM14..17)

有四个或五个同步可归属的I-purpose定时器嵌入在 STM32F030x4 / 5233/ x8 / xC设备(原9b升분5 为差异NCES)。每个通用计时器 可用于生成PWM输出s,或简单的时基。

TIM3

STM32F030x4 / 5233/ x8 / xC设备具有一个同步功能e 4-channel ge橙花用途计时器。TIM3基于16位自动重载up / d自己的计算机和16位预分频器。它有四个独立的ch每个输入捕获/输出的输出 COMPARe,PWM或单脉冲模式输出。这最多可以提供12个输入捕获/输出比较s / PWM on最大的ackages。

TIM3一般紫色TIM定时器可以在TIM1前进的情况下工作d控制定时器通过 Ť用于同步或事件链接的imer Link功能。

TIM3具有独立的DMA请求gen关合作。

这个计时器能够手持g正交(增量al)编码r信号和数字TAL 来自的输出 1至3厅 - 如图1所示fect传感器。

柜台可以是frozen在调试模式下。

TIM14

此计时器基于16位自动重载d upcounter和16位prescaler。

TIM14具有一个用于输入捕获/输出的单通道mpare,PWM或oNE-脉冲模式输出。

它的计数器可以在调试模块中冻结即

TIM15, TIM16和TIM17

这些计时器基于16位au重新加载upcounter和一个16位预分频器。

TIM15有两个独立凹陷通道eas TIM16和TIM17 一个人唱歌乐输入捕获的通道/输出比较re,PWM或单脉冲模式输出。

TIM15,TIM16和TIM17定时器可以rk togeth呃,TIM15也可以运行通过T与TIM1imer Link功能r同步或事件链接。

TIM15可以与之同步 TIM16和TIM17。

TIM15,TIM16和TIM17有一个comp借助ary outpu与死亡时间的产生 和独立的DMA重新任务生成。

他们的柜台可以b在调试中冻结 模式。

3.11.3基本 时间rs TIM6和TIM7

这些定时器可用作通用的16位时基。

3.11.4独立 看家狗 (IWDG)

独立的watchdog基于8位预备缩放器和12位向下与...对抗 用户定义的刷新窗口。它是由一个时钟n独立的40 kHz internal RC和它一样 独立于主要的clock,它可以在S中运行顶部和S.tandby模式。它

DocID024849 Rev 3

23

19/91

可以用ei作为一个观察og重置 设备何时 出现问题s,或作为frEE 应用程序timeou运行计时器管理。它是硬件或软件tware configurab乐 通过选项字节。柜台可以冻结 在调试模式下。

3.11.5系统 赢得看门狗(WWDG)

系统窗口看门狗基于7位向下计数器,可以设置为空闲 运行。它可以用作监视器来重置d发生问题时的服务。它是 从APB时钟(PCLK)开始计时。它有一个预警中断能力和 计数器可以在调试模式下冻结。

3.11.6 SysTick 计时器

这个计时器是de指的是真实的时间经营 系统,但也可以使用 作为一个标准RD 倒柜台。它的特点是:

- 24位递减计数器
- •自动重载功能
- ●可屏蔽系统中断发生器 当计数器到达时s 0
- Programmab 时钟源(HCLK或HCLK /8)

3.12实时 时钟 (RTC)

RTC是一个独立的endent BCD计时器/计数器。它主要特点如下:

- 日历,亚秒,秒,m inutes,hours(12或24格式),工作日,约会, 一个月,一年,以BCD(二进制编码的十进制)形式在。
- 自动校正28,29(跳跃 mo, 30和31天第n个。
 可编程报警,从S唤醒 顶部和S.tandby模式功能。
 带编程的定期唤醒单元 分辨率和期限。
- •动态校正 n从1到32767 R.TC时钟脉冲。这可以使用至 同步RTC带主时钟。
- 数字校准电路,分辨率为1 ppm ,用于补偿石英晶体 不准确。
- 反篡改德可编程的引脚 过滤。MCU可以被唤醒来自S.顶部和S.tandby 模式安培事件 检测。
- imestamp功能哪个可以习惯了在calen达尔内容。 这个功能你可以 触发b是时间上的一个事件放大器引脚,或通过篡改e发泄。MCU可以 从S醒来顶部和S.时间上的tandby模式放大器事件ction。
- 参考时钟检测: 可以使用更精确的se cond源时钟(50或60 Hz) 用于提高日历精度。

RTC时钟源可以是:

- 32.768 kHz外部晶振
- 谐振器或振荡器
- 内部低功耗RC振荡器(ty 频率为40 kHz)
- 高速外部时钟除以32

STM32F030x4 / x6 / x8 / xC 功能概述

3.13内部整合 电路接口(I.

2C)

最多两个I2C接口(I2C1和I2C2)可以在多主机或奴隶模式。都 可以支持t S.tandard模式(向上to 100 kbit / s)或快速m颂歌(最多4个00 kbit / s)。一世2C1也 支持 快速模式加(最高1 Mbit / s),20 mA输出驱动。

两者都支持7位和10-b它解决模式,多个7-b奴隶地址(两个地址,一个配置能够面具)。他们还包括 可编程模拟和 数字噪声滤波器。

Ť能够6.比较由I2C模拟和数字滤波器组成

	- 模拟滤波器	数字	过滤器
脉冲宽度 抑制尖峰		≥ 50纳秒	可编程长度从1到15 I2C外设时钟
优点	可	用S中顶级模式	1.额外的过滤能力vs. 标准要求。 S桌子长度
缺点		Variations取决于 温度,电压,过程	-

另外,I2C1提供hardwa重新苏pport为2.0 SMBUS 和PMBUS 1.1: ARP能力,主机通知prot ocol,硬件CRC(PEC)生成/验证,超时验证和ALERT协议管理耳鼻喉科

DMA接口可以为I2C接口提供服务。

参考Tab升Ë7为差异补间I2C1和I2C2。

Ť能够7. STM32F030x4 / x6 / x8 / x亿实现

(1)

I2C具有	I2C1	I2C2 功能 ⁽²⁾
7位寻址模式 X	X.	
10位寻址模式 X	X.	
小号标准模式(向上至100 kbit / s)	Х	X.
快速模式(最高400 kbit / s)	Х	X.
快速模式加(最高1 Mbit / s),20mA 输出驱动器I / O	Х	-
独立的clock	х	-
SMBus	Х	-
w ^来自STOP的akeup	-	-

- 1. X =支持。
- 2. 仅适用于STM32F030x8 / C器件。

3.14通用 同步/异步接收器/发送器

(USART)

DocID024849 Rev 3

21/91

钽b升Ë 图8 概述了可用USART上实现的功能接口。 所有USART interf可以通过DMA控制器提供aces。

Ť能够8. STM32F0x0 USART实现通货膨胀 (1)

USART模式/	STM32F030x4 STM32F030x6	STM32	F030x8		STM3	2F030xC		
特征	USART1	USART1	USART2	USART1 USART2 USART3	USART4	USART5	USART6	;
硬件流量控制 调制解调器	Х		х	х	х	х	-	
连续 沟通使用 DMA	х		х	х	х	х	х	
多处理器 通讯	х		×	х	х	х	х	
小 号ÿñCH[RØñØü/J	Æ	米Øde	х		х	Х	Х
小 号米一]↑	RŤC-	↑	[Rd 米Øde		-	1
单线半双工前 通讯	Х		х	х	х	х	х	
— <u></u> #[Rd-	个小	号一	t	<u>‡</u> [R ËñdËC b	†∣ØCķ	1
大 号一	世ñ 米Øde		-		-	-	-	-
双时钟域和 唤醒from S.顶级模式	-		-	-	-	-	-	
接收器超时 打断	Х		х		-		х	
Modbus通讯 -		-	-	-	-			1
自动波特率检测 (支持的模式)	2		2	-		4	-	
d[R—	±vË[R Ëñ—	个b升	е	Х		x	х
USART数据长度为	8₹	19位			7,8和9位			1

1. X =支持。

3.15 串行外设接口(SPI)

最多两个SPI能够在从机和主机模式下完全通信,最高可达18 Mbit / s 双工和半双工x通讯模式。3位预分频器给出s 8主模式 频率和帧大小 可配置从4位到16位秒。

SPI1和SPI2完全相同并且实现t为集featur的如图所示他跟随表。

577

22/91

DocID024849 Rev 3

STM32F030x4 / x6 / x8 / xC 功能概述

Ť能够9. STM32F030x4 / x6 / x8 / xC SPI工具通货膨胀 (1)

1,55 % C. C. III C Z. CCCX 1. XC. XC. XC.	_	• • • • • • • • • • • • • • • • • • • •	
SPI具有		SPI1	SPI2 功能 ⁽²⁾
硬件CRC计算 X		X.	
Rx / Tx FIFO		X	X.
NSS脉冲模式		X	X.
TI模式		Х	X.

串行线调试端口(SW-DP) 3.16

同时提供ARM SW-DP接口wa串口线调试ging工具要连接到MCU。

23/91

^{1.} X =支持。 2. 不适用于STM32F030x4 / 6。

引脚s和引脚说明 4

图3. LQFP64 64引脚package pin出(顶视图),对于STM32F030x4/6/8设备

图4. LQFP64 64引脚package pinout(顶视图),用于STM32F030RC器件小号

24/91 DocID024849 Rev 3

图5. LQFP48 48引脚package pin出(顶视图),对于STM32F030x4/6/8设备

DocID024849 Rev 3

!

26/91 DocID024849 Rev 3

Ť能够10.传奇/ ab引脚分配中使用的缩减能够

名和	你	缩写	定义					
别名		除非另有规定括号中的引脚名称,引脚功能期间和 复位后与实际引脚名称相同						
		s	供应引脚					
针型	<u>Į</u>	我	只输入引脚					
		1/0	输入/输出引脚					
		FT	5 V容忍I / O.					
		FTf	5 V容限I /O,FM +上限能够					
1/ 0结	:#a	TT-	3.3 V宽容I / O直接连接到ADC					
17 050	11"9	TC	S.标准3.3 VI / O.					
		В	专用BOOT0销					
		RST	双向复位引脚,内置弱上拉电阻					
笔ì	i2	除非注释另有说明,否则所有I / O都将在期间和之后设置为浮动输入 重启。						
销	备用 功能	通过GPIOx_AFR寄存器选择的功能						
功能 额外 直接选择/启用的功能d 通过外围区域讲演者								

Ť能够11. STM32F030x4 / 6/8 / C引脚definitions

Ŷ	计号							引脚功能	
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	针型	1/0结构	笔记	复用功能 一个dditio	nal功能
1	1	-	-	VDD		s	-	互补电源	
2	2	-		- P		.C13	(1)	我/Ø -ŤC	RTC_Ť一个MP1, RTC_TS, RTC_OUŤ, WKUP2
3	3	-		PC14-OSC32_IN (PC14)	1/0	тс	(1)	-	OSC32_IN
4	4	-		PC15-OSC32_OUT (PC15)	1/0	тс	(1)	-	OSC32_OUT
5	5	2	2	PF0-OSC_IN (PF0)	1/0) F1	-	12C1_SDA	OSC_IN
6	6	3	3	PF1-OSC_OUT (PF1)	1/0) F1	-	12C1_SĆ₽)	OSC_OUT
7	7	4	4	NRST	ı	/O I	RST	设备复位输入/内部复 (低电	位输出 平有效)

Ť能够11. STM32F030x4/6/8 / C 引脚定义(继续)

				THE TO THE OTHER			- 5115-17		
ŧ	+号							引脚功能	 能
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	4型	1/ 0结构	笔记	复用功能 一个dditio	nal功能
8	-	-		-	P	.C0		事件输出— USART6_TX (5)	-ADC_IN10
9	-	-		-		.C1		事件输出_ USART6_RX (5)	-ADC_IN11
10	-	-	-	PC2	ı	/ O	ТТа	SPI2_MISO ⁽⁵⁾ 事件输出	ADC_IN12
11	-	-	-	P.C3	1	Ì/Ø	ŤТа	SPI2_MOSI ⁽⁵⁾ 事件输出	ADC_IN13
12	8	-	-	VSSA		s	-	- 模:	拟地
13	9	5	5	VDDA		s	-	- 模拟电	1源
14	10	6	6	PA0		1/0	ТТа	USART1_CTS ⁽²⁾ , -USART2_CTS ⁽³⁾ , ⁽⁵⁾ USART4_TX ⁽⁵⁾	ADC_IN0, RTC_Ť一个MP2, WKUP1
15	11	7	7	PA1		1/0	ТТа	USART1_RTS ⁽²⁾ , USART2_RTS ⁽³⁾ , ⁽⁵⁾ 事件输出, USART4_RX ⁽⁵⁾	ADC_INT
16	12	8	8	PA2		1/0	ТТа	USART1_TX ⁽²⁾ - USART2_TX ⁽³⁾ , ⁽⁵⁾ TIM15_CH1 ⁽³⁾ ⁽⁵⁾	
17	13	9	9	PA3		1/0	TTa	USART1_RX ⁽²⁾ , - USART2_RX ⁽³⁾ , ⁽⁵⁾ TIM15_CH2 ⁽³⁾ ⁽⁵⁾	ADC_IN3
18 ⁽⁴⁾	-		-	Р	F4		(4)	我/Ø 酒 动	-
18 ⁽⁵⁾	-	-	-	VSS		\$	(5)	地面	i
19 ⁽⁴⁾	-		-	Р	F5		(4)	我/Ø 语 动	-
19 ⁽⁵⁾	-		-	V	.dD		(5)	互补电源	
20	14	10	10) P.A4		1/0	TTa	SPI1_NSS, USART1_CK ⁽²⁾ - USART2_CK ⁽³⁾ , ⁽⁵⁾ TIM14_CH1, USART6_TX ⁽⁵⁾	ADC_IN4
21	15	11	11	PA5	1	裁/ O	тта	SPI1_SCK, - USART6 RX (5)	ADC_IN5

28/91 DocID024849 Rev 3

Ť能够11. STM32F030x4/6/8 / C 引脚定义(继续)

	T能够11. STM32F030x4/6/8 / C 引脚定义(继续)													
Ŷ	十号							引脚功能	能					
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	4型	1/ 0结构	笔记	复用功能 一个dditio	nal功能					
22	16	12	12	P.A6		1/0	TTa	SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, 事件输出 USART3_CTS ⁽⁵⁾	ADC_IN6					
23	17	13	13	P.A7		1/0	ТТа	SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, 事件输出	ADC_IN7					
24	-	-	-	PC4	ı	/ O	TTa	- 事件输出, USART3_TX ⁽⁵⁾	ADC_IN14					
25	-	-	-	PC5	1	/ O	TTa	- USART3 ⁵ RX	ADC_IN15, WKPU5 ⁽⁵⁾					
26	18	14	-	PB0	ı	/ O	T.Ťa	TIM3_CH3, TIM1_CH2N, 事件输出, USART3_CK ⁽⁵⁾	ADC_IN8					
27	19	15	14	· PB1	ı	/ O	ТŤа	TIM3_CH4, TIM14_CH1, TIM1_CH3N, USART3_RTS (5)	ADC_IN9					
28	20	-	-	PB2	ı	/ O	FT ⁽⁶⁾	-						
29	21	-	-	PB10		/0	FT	SPI2_SCK ⁽⁵⁾ , I2C1_SCL ⁽²⁾ , I2C2_SCL ⁽³⁾ , ⁽⁵⁾ USART3_TX ⁽⁵⁾	-					
30	22	-	'	PB11	ı	/ O	FT	I2C1_SDA ⁽²⁾ , I2C2_SDA ⁽³⁾ , ⁽⁵⁾ 事件输出, USART3_RX ⁽⁵⁾	-					
31	23	16	-	VSS		s	-		接地					
32	24	17	16	VDD		s	-	- 数字6	 					
33	25	-	-	PB12	ı	/0	FT	SPI1_NSS ⁽²⁾ SPI2_NSS ⁽³⁾ , ⁽⁵⁾ - TIM1_BKIN, 事件输出, USART3_CK ⁽⁵⁾	-					

DocID024849 Rev 3

29/91

Ť能够11. STM32F030x4/6/8 / C 引脚定义(继续)

				I能够11. SIM32FU	JUX4	10101	□ ∃1841.		N-
1	計号							引脚功能	ië .
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	钟型	型 笔记 笔记 二		复用功能 一个dditio	nal功能
34	26	-	-	PB13	ı	/0	FT	SPI1_SCK ⁽²⁾ SPI2_SCK ⁽³⁾ , ⁽⁵⁾ - I2C2_SCL ⁽⁵⁾ , TIM1_CH1N, USART3_CTS ⁽⁵⁾	-
35	27	-	-	PB14	ı	/O	FT	SPI1_MISO (2) SPI2_MISO (3), (5) I2C2_SDA (5), TIM1_CH2N, TIM15_CH1 (3), (5) USART3_RTS (5)	-
36	28	-	-	PB15	ı	/0	FT	SPI1_MOSI (2) SPI2_MOSI (3) , (5) - TIM1_CH3N, TIM15_CH1N (3) , (5) TIM15_CH2 (3) (5)	RTC_REFIN, WKPU7 ⁽⁵⁾
37	-	-	-	PC6	ı	/ O	FT	- TIM3_CH1	-
38	-	-	-	PC7	ı	/ O	FT	- TIM3_CH2	-
39	-	-	-	PC8	ı	/ O	FT	- TIM3_CH3	-
40	-	-	-	PC9	1	/ O	FT	- TIM3_CH4	-
41	29	18	-	P.A8		1/0	FT	USART1_CK, TIM1_CH1, 事件输出, MCO	-
42	30	19	17	PA9	ı	/ O	FT	USART1_TX, TIM1_CH2, TIM15_BKIN (3) (5) I2C1_SCL (2) (5)	-
43	31	20	18	PA10		1/0	FT	USART1_RX, TIM1_CH3, TIM17_BKIN I2C1_SDA (2) (5)	-
44	32	21	-	PA11		我/ O	FT	USART1_CTS, TIM1_CH4, 事件输出, I2C2_SCL ⁽⁵⁾	-
45	33	22	-	P.A12		1/0	FT	USART1_RTS, TIM1_ETR, 事件输出, I2C2_SDA ⁽⁵⁾	-

30/91 DocID024849 Rev 3

Ť能够11. STM32F030x4/6/8 / C 引脚定义(继续)

	T能够11. STM32F030x4/6/8 / C 引脚定义 (继续)											
ŧ	针号							引脚功能	te e			
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	中型	1/ 0结构	笔记	复用功能 一个dditio	nal功能			
46	34	23	19	PA13 (SWDIO)	1/0) F1	(7)	IR_OUT, SWDIO	-			
47 (4)	35 ⁽⁴⁾	-		P .F6			我/Ø ⁽⁴⁾ F	Ť I2C1_SCL ⁽²⁾ I2C2_SCL ⁽³⁾	-			
47 (5)	35 ⁽⁵⁾	-	-	VSS	s	-	(5)	地面				
48 (4)	36 ⁽⁴⁾	-		P .F7			我/Ø ⁽⁴⁾ F	Ť I2C1_SDA ⁽²⁾ I2C2_SDA ⁽³⁾	-			
48 (5)	36 ⁽⁵⁾	-		V .dD			S ⁽⁵⁾ .	- 互补电源				
49	37	24	20	PA14 (SWCLK)	1/0) FI	(7)	USART1_TX ⁽²⁾ USART2_TX ⁽³⁾ , ⁽⁵⁾ SWCLK	-			
50	38	25	-	P.A15		1/0	FT	SPI1_NSS, USART1_RX ⁽²⁾ , - USART2_RX ⁽³⁾ , ⁽⁵⁾ USART4_RTS ⁽⁵⁾ 事件输出	-			
51	-	-	-	PC10	ı	/0	FT	USART3_TX (5) USART4_TX (5)	-			
52	-	-	-	PC11	ı	/ O	FT	USART3_RX (5) USART4_RX (5)	-			
53		,	-	PC12	ı	/0	FT	USART3_CK ⁽⁵⁾ - USART4_CK ⁽⁵⁾ USART5_TX ⁽⁵⁾	-			
54	-		-	PD2	ı	/0	FT	TIM3_ETR, - USART3_RTS (5) USART5_RX (5)	-			
55	39	26	-	PB3	ı	/ O	FT	SPI1_SCK, - 事件输出, USART5_TX ⁽⁵⁾	-			
56	40	27	-	PB4	ı	/0	FT	SPI1_MISO, TIM3_CH1, - 事件输出, TIM17_BKIN ⁽⁵⁾ USART5_RX ⁽⁵⁾	-			
57	41	28	-	PB5	ı	/0	FT	SPI1_MOSI, I2C1_SMBA, - TIM16_BKIN, TIM3_CH2, USART5_CK_RT小學	WKPU6 ⁽⁵⁾			

DocID024849 Rev 3

Ť能够11. STM32F030x4/6/8 / C 引脚定义(继续)

	1能够11. 31的321 030047070 7 日前足入(组织)												
ŧ	計号							引脚功能					
LQFP64	LQFP48	LQFP32	TSSOP20	别名 (功能 af 之三 重启)	中型	1/ 0结构	笔记	复用功能 一个dditional功能					
58	42	29	-	PB6	ı	/ O	FTf	I2C1_SCL, - USART1_TX, - TIM16_CH1N					
59	43	30	-	PB7	ı	/ O	FTf	I2C1_SDA, USART1_RX, - TIM17_CH1N, USART4_CTS ⁽⁵⁾					
60	44	31	1	воото		I	В	引导存储器选择					
61	45	-	-	PB8	ı	/ O	FTf ⁽⁶⁾	I2C1_SCL, TIM16_CH1					
62	46	-	-	PB9	ı	/ O	FTf	I2C1_SDA, IR_OUT, - SPI2_NSS ⁽⁵⁾ , TIM17_CH1, 事件输出					
63	47	32	15	VSS		s	-	接地					
64	48	1	16	VDD		s	-	数字电源					

- 1. PC13,PC14和PC15通过电源开关供电。由于开关仅吸收有限量的电流(3 mA),在输出模式下使用GPIO PC13至PC15是有限的: -速度不应超过2 MH2,最大负载为30 pF。 不得将这些GPIO用作电流源(例如,驱动LED)。
- 2. 此功能仅适用于STM 32F030x6和STM32F030x4器件。
- 3. 此功能仅适用于STM32F030x8器件。
- 4.仅 适用于STM32F030x4 / 6/8器件。
- 5. 仅适用于STM32F030xC器件。

32/91

- 6. 在LQFP32上ackage,PB2和PB8应被视为未连接的引脚(即使是they不在包,它们不会被硬件强制定义。
- After reset,这些引脚配置为SWDIO和SWCL K备用功能,以及intSWDIO引脚上的ernal上拉电阻 并激活SWCLK引脚上的内部下拉电阻。

Ť能够12.替代功能 通过选择 GPIOA_AFR寄存器 对于港口A.

引脚名称	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA0		USART1_CTS (2)			USART4_TX ⁽¹⁾		
PAU	-	USART2_CTS (1)	(3)	-	USAR14_1X***	-	
PA1	EVENTOUT.	USART1_RTS (2)			LICADTA DV(1)	TIM15 CH1N (1)
PAI	EVENTOUT	USART2_RTS (1)	(3)	-	USART4_RX**	TIMIS_CHIN	-
PA2	TIM15_CH1 ⁽¹⁾	USART1_TX (2)					
PAZ	TIMI5_CHI	USART2_TX (1)	(3)		-		-
PA3	TIM15_CH2 ⁽¹⁾	USART1_RX (2)					
IAS	11W15_0112	USART2_RX (1)	(3)		-		
PA4	SPI1_NSS	USART1_CK (2)			TIM14 CH1	USART6_TX ⁽¹⁾	
FA4	JFII_N33	USART2_CK (1)	(3)	-	111014_0111	USARTO_TX	-
PA5	SPI1_SCK	-	-	-	-	USART6_ŔX	-
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN	-	USART3_CTS	TIM16_CH1	EVENTOUT
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH	1 EVENTOU
PA8	мсо	USART1_CK	TIM1_CH1	EVENTOU	-	-	-
PA9	TIM15_BKIN ⁽¹⁾	(3) USART1_TX	TIM1_CH2	-	I2C1_SCL ⁽¹⁾	²⁾ MCO ⁽¹⁾	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	12C1_SDA (2) -	
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	-	SCL	-

Ť能够12. Altern吃功能选择d通过GPIOA AFR端口A的寄存器(续)inued)

引脚名称	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA12	EVENT出	美国RT1_RTS	TIM1_ETR	-	-	SDA	-
PA13	SWDIO	IR_OUT	-	-	-	-	-
5	0.4015	USART1_TX (2)					
PA14	S.w^C大号ķ	USART2_TX (1)	3)		-		-
PA15	SPI1_NSS	USART1_RX (2)	_	EVENTOUT	USART4_RTS ⁽¹⁾	-	
		USART2_RX (1)					

- 1. 此功能适用于STM32F030xC器件。
 2. 此功能适用于STM32F030x4和STM32F030x6器件。
 3. 此功能适用于STM32F030x8器件。

Ť能够13. Alterna通过GPIOB AFR reg选择的功能B口的废物

I能够13. Alterna进过GPIOB_AFR reg还掉的功能B口的废物						
别名	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-	USART3_ĆŔ	-
PB1	1	IM14_CH1	TIM3_C	:H4	TIM1_CH3N ¹⁾	-
PZ2	-		-		-	-
PB3	SPI1_SCK	EVENTOUT	-	-	USART5_f划	-
PB4	SPI1_MISO	TIM3_CH1	EVENTOUT	-	USART5_成划	TIM17_BKIN (1)
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	USART5_CK_R1	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-	USART4_C†\$	-

USART3_RTS

STM32F030x4 / X6 / X8 / XC

Ť能够改变nate函数selected THR OUGh GPIOB_AFR注册为port B(续)

别名	AF0	AF1	AF2	AF3	AF4	AF5
PB8	-	I2C1_SCL	TIM16_CH1	-	-	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	-	SPI2_NŚŚ
		I2C1_SCL (2)	-		USART3_TX (1)	SPI2_SCK (1)
PB10	-	I2C2_SCL (1) (3)			USART3_RX (1)	-
PB11个 E	EVENTOUT	I2C1_SDA (2)			USART3_RX ⁽¹⁾	
	EVENTOUT	I2C2_SDA (1) (3)		USART3_RX*	- I	
PB12	SPI1_NSS (2)	EVENTOUT	TIM1_BKIN		USART3 RTŚ ¹⁾	TIM15 ⁽¹⁾
FBIZ	SPI2_NSS ^{(1) (3}) EVENTOOT	TIWI_BKIN	-	USAKI3_KI3	TIWITS
PB13	SPI1_SCK (2)		TIM1_CH1N	-	USART3_CTS ⁽¹ (I2C2_SCL (1)
FBIS	SPI2_SCK (1) (3)				
PB14	SPI1_MISO (2)	TIM15_CH1 (1) (5	³⁾ TIM1_CH2N	-	USART3_RTS ⁽¹⁾	I2C2_SDA (1)
PB14	SPI2_MISO (1)	3)				1202_3DA · ·
PB15 -	SPI1_MOSI (2)	- TIM15_CH2 ^{(1) (3}	³⁾ TIM1_CH3N	TIM15_CH1N ⁽¹⁾	(3)	
	SPI2_MOSI (1)					

此功能适用于STM32F030xC器件。
 此功能适用于STM32F030x4和STM32F030x6器件。

^{3.} 此功能适用于STM32F030x8器件。

Ť能力14.替代功能通过GPIOC_AFR注册选择的离子C口

引脚名称	AF0	AF1 ⁽¹⁾	AF2 ⁽¹⁾
PC0	EVENTOUT	-	USART6_TX
PC1	EVENTOUT	-	USART6_RX
PC2	EVENTOUT	SPI2_MISO	-
PC3	EVENTOUT	SPI2_MOSI	-
PC4	EVENTOUT	USART3_TX	-
PC5	-	USART3_RX	-
PC6	TIM3_CH1	-	-
PC7	TIM3_CH2	-	-
PC8	TIM3_CH3	-	-
PC9	TIM3_CH4	-	-
PC10	USART4_TX (1)	USART3_TX	-
PC11	USART4_RX ⁽¹⁾	USART3_RX	-
PC12	USART4_CK (1)	USART3_CK	USART5_TX
PC13	-	-	-
PC14	-	-	-
PC1五	-	-	-

^{1.} A仅适用于STM32F030xC器件。

Ť能力15.替代功能通过GPIOD_AFR选择的离子注册港口D的人

引脚名称	AF0	AF1 ⁽¹⁾	AF2 ⁽¹⁾
PD2	TIM3_ETR	USART3_RTS	USART5_RX

^{1.} A仅适用于STM32F030xC器件。

Ť能够16.替代通过GPIOF选择的功能_AFR为端口F注册

引脚名称	AF0	AF1 ⁽¹⁾
PF0	-	I2C1_SDA
PF1	-	I2C1_SCL

^{1.} A仅适用于STM32F030xC器件。

36/91 DocID024849 Rev 3

STM32F030x4 / x6 / x8 / xC 内存映射

5记忆制图

图9. STM32F030x4 / x6 / x8 / xC内存映射

^{1.} 对于STM32F030x4,STM32F030,系统存储器的起始地址为0x1FFF EC00x6和STM32F030x8器件,和STM32F030xC器件的0x1FFF D800。

DocID024849 Rev 3 37/91

39

Ť能够17. STM32F030x4 / x6 / x8 / xC peri ph注册边界 地址

总线	边界地址	8 / xC peri ph汪 大小		设
- 0x4	800 1800 -	0x5FFF FFFF ~3	84 MB	保留
	0x4800 1400 -	0x4800 17FF 1 KE	GPIOF	
	0x4800 1000 -	0x4800 13FF 1 KE	3 保留	
ALIDO	0x4800 0C00 -	0x4800 0FFF 1 K	B GPIOD	
AHB2	0x4800 0800 -	0x4800 0BFF 1 KI	B GPI	ОС
	0x4800 0400 -	0x4800 07FF 1 KE	GPIOB	
	0x4800 0000 -	0x4800 03FF 1 KE	GPIOA	
- 0x4	002 4400 -	0x47FF FFFF ~1	28 MB	保留
	0x4002 3400 -	0x4002 43FF 4 KE	3 保留	
	0x4002 3000 -	0x4002 33FF 1 KE	CRC	
	0x4002 2400 -	0x4002 2FFF 3 KI	3 保留	
AHB1	0x4002 2000 -	0x4002 23FF	1 KB	FLASH InterfacË
АПВТ	0x4002 1400 -	0x4002 1FFF 3 KI	3 保留	
	0x4002 1000 -	0x4002 13FF 1 KE	RCC	
	0x4002 0400 -	0x4002 0FFF 3 KI	3 保留	
	0x4002 0000 -	0x4002 03FF	1 KB	DMA
- 0x4	001 8000 -	0x4001 FFFF 32	КВ	保留
	0x4001 5C00 -	0x4001 7FFF 9 K	B 保留	
	0x4001 5800 -	0x4001 5BFF 1 KI	B DBGMCU	
	0x4001 4C00 -	0x4001 57FF 3 K	B 保留	
	0x4001 4800 -	0x4001 4BFF	1 KB	TIM17
	0x4001 4400 -	0x4001 47FF 1 KE	TIM16	
	0x4001 4000 -	0x4001 43FF 1 KE	TIM15	(1)
	0x4001 3C00 -	0x4001 3FFF 1 K	B 保留	
	0x4001 3800 -	0x4001 3BFF	1 KB	USART1
APB	0x4001 3400 -	0x4001 37FF 1 KE	3 保留	
711 15	0x4001 3000 -	0x4001 33FF 1 KE	SPI1	
	0x4001 2C00 -	0x4001 2FFF	1 KB	TIM1
	0x4001 2800 -	0x4001 2BFF 1 KI	3 保留	
	0x4001 2400 -	0x4001 27FF 1 KE	ADC	
	0x4001 1800 -	0x4001 23FF 3 KE	8 保留	
	0x4001 1400 -	0x4001 17FF 1 KE	USART6	(2)
	0x4001 0800 -	0x4001 13FF 3 KE	3 保留	
	0x4001 0400 -		1 KB	EXT—世
	0x4001 0000 -	0x4001 03FF	1 KB	SYSCFG

38/91 DocID024849 Rev 3

STM32F030x4 / x6 / x8 / xC 内存映射

Ť能够17. STM32F030x4 / x6 / x8/ xC peripheral register boundar地址(继续d)

总线	边界地址 大/	N 9	设
- 0x4	000 8000 - 0x4000 FFFF	32 KB	保留
	0x4000 7400 - 0x4000 7FFF	3 KB 保留	
	0x4000 7000 - 0x4000 73FF	1 KB PWR	
	0x4000 5C00 - 0x4000 6FFF	5 KB 保留	
	0x4000 5800 - 0x4000 5BFF	1 KB	12C21)
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	USART ^(g)
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART(2)
	0x4000 4800 - 0x4000 4BFF	1 KB	USART ⁽³⁾
	0x4000 4400 - 0x4000 47FF	1 KB USART2	(1)
	0x4000 3C00 - 0x4000 43FF	2 KB 保留	
	0x4000 3800 - 0x4000 3BFF	1 KB	SPIŹ ¹⁾
APB	0x4000 3400 - 0x4000 37FF	1 KB 保留	
	0x4000 3000 - 0x4000 33FF	1 KB IWDG	
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB 保留	
	0x4000 2000 - 0x4000 23FF	1 KB TIM14	
	0x4000 1800 - 0x4000 1FFF	2 KB 保留	
	0x4000 1400 - 0x4000 17FF	1 KB	TIM ⁶²⁾
	0x4000 1000 - 0x4000 13FF	1 KB	тім(6 ¹⁾
	0x4000 0800 - 0x4000 0FFF	2 KB 保留	
	0x4000 0400 - 0x4000 07FF	1 КВ ТІМЗ	
	0x4000 0000 - 0x4000 03FF	1 KB 保留	

^{1.} 此功能仅适用于STM32F030x8和STM32F030xC器件。F或STM32F030x6和STM32F060x4,该区域保留。
2. 此功能仅适用于ST M32F030xC器件。这个特性保留给STM32F030x4 / 6/8设备。

DocID024849 Rev 3

39/91

6电气 特点

6.1参数 条件

除非另有说明,否则为全电压年龄参考V

SSº

6.1.1 最小值和最大值

除非另有说明,否则最小值嗯,最大值是gu在最糟糕的情况下保证 环境温度条件,供电电压通过公测试验的频率开发 100%具有ambien的设备T温度 选定的项目温特拉NGE)。

数据库d表征结构lts,design 模拟和/或技术特征如表所示 脚注并没有在生产中进行测试前。基于表征,th最小和最大化m值指样品测试s和repr发表意见平均值加上或减去圣经的三倍昂达尔偏差(平均值±3 o)。

6.1.2 T.ypical 值

除非另有说明,否则典型cal data基于T 仅作为de签署准则d未经过测试。

 $_{-7.25}^{\circ}$ C, $V_{DD} = V_{DDA} = 3.3 \text{ V. } \check{\text{THE}}\ddot{\text{y}}$

Ť典型的ADC准确度值es由...决定表征a 一批样品frOM 一个标准的扩散批次在福温度范围,wh占95%设备哈有一个 误差小于或等于指示的值 (平均值±2ơ)。

6.1.3 T.ypical 曲线

除非另有说明,否则所有典型曲线仅作为设计指南给出 未经测试。

6.1.4加载 电容器

用于pi的加载条件n参数测量结果如图10所示。

6.1.5 引脚输入电压年龄

输入电压图11中描述了器件引脚上的测量。

40/91

DocID024849 Rev 3

6.1.6 供电方案

6.1.7当前 消费 测量

图13.当前消费测量方案

42/91

6.2 绝对最大额定值

小号超过绝对最大比率在Ta中列出的ngsb升Ë 18: V电压特性物流, 钽b升Ë 19: 电流特性a和T能20: 热特性 可能会导致 永久性伤害装置。这些是仅压力等级和功能开放的比例 不暗示在这些条件下的设备。暴露于最大额定条件下 延长的时间可能会影响设备的可靠性。

Ť能够18. VOLT年龄特征eristics (1)

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1 - HK 10 III C 11	000		
符号	评级	Ē		最大 单位	
V _{DD} -V _{SS}	外部主要供应y电压	-0.3	4	.0 V	
V _{DDA} -V _{SS}	外部模拟供应y电压	-0.3	4.0	V	
V _{DD} -V _{DDA}	V的允许电压差	_{DD} > V _{DDA}	-	0。4	V
	FT和FTf引脚	V 上的输入电压	SS-0.3	V _{DDIOx} + 4.0 ⁽³⁾	٧
V _在 ⁽²⁾	TT上的输入电压针脚	٧	SS-0.3	4.0	٧
V在 · ·	воото		0	V _{DIOx} + 4.0 (3)	٧
	任何其他引脚	V 上的输入电	B压 _{SS} - 0.3	4.0	٧
∆ ₩ _{DX}	Variati不同的V之间的关系	DD电源引脚	-	50	mV
I V _{rissx} V _{ss} I	V所有不同的地方之间的兴趣 销		-	50	米V
V _{ESD (HBM)}	静电放电电压 (人体模型)		见6.3.12节: 电 灵敏度特征	≒	-

^{1.} 所有主电源(V DD, VDA)和地面(V SS, VSA)引脚必须始终连接到外部最大的力量供应,在允许的范围内。

^{2.} V_c必须始终尊重最大值。参见*T.19*: 最大电流特性允许注入电流值。

^{3.} V_{DDIOx}内部连接VDD引脚。

Ť能力19.目前的特征cteristics

	1987) 13. E HILL THE LEE			
符号	评级	最	大值 单:	元
Σ税D	Ť总电流为所有VDD的总和 电源线(来	·源) (1)	120	
ΣĶS	Ť所有VSS总和中的总电流 地线(水	·槽) (1)	-120	
V# (PIN)	每个VDD电源引脚的最大电流(源)	(1)	100	
V# (PIN)	每个最大电流 VSS接地引脚(接收器)	(1)	-100	
тоЩым)	输出电流由任何I / O和控制引脚	25 下沉		
	任何I / O和控制引脚	-25 输出电流源		嘛
Σ裁 (PIN)	Ť所有I / O和控制引脚的总输出电流下降	(2)	80	
∠ 173 (PIN)	Ť所有I / O和控制引脚的总输出电流	(2)	-80	
	FT和FTf引脚上的注入电流为	-5	/ + 0 ⁽⁴⁾	
™∰(PIN) ⁽³⁾	TC和RST引脚上的注入电流为		±5	
	在TT上注入电流一个别针 (5)		±5	
Σ載 (PIN)	Ť总注入电流(所有I / O和控制引脚的总和)	(6)	±25	

- 1. 所有主电源(VDD,VDDA)和接地(VSS,VSSA)引脚必须始终连接到外部电源,在里面允许的范围。
- 2. 此电流消耗必须正确分配在所有I / O和控制引脚上使用。总输出电流不得为 沉没/来源于两个连续的权力supp引脚指的是高引脚 统计QFP包。

在 < V SS。INT UPIN 绝对不能

- 6. 当几个输入被提交给一个电流注入,最大Σ 我 负注入电流(瞬时值)。

INJ(PIN是积极和积极的绝对总和

Ť能干racteristics

符号	评级		V.ALUE	单位
Ť _{STG}	小号torag温度范围	-6	5至+ 150 °C	
Ťĵ	最高结温在	150	°C	

6.3运营 条件

一般操作条件 6.3.1

Ť21.一般操作在条件下

符号	参数	件	最小 最	大 !	单位	
FHCLK	内部AHB时钟频率	-	0	48		兆赫
F _{PCLK}	内部APB时钟频率	-	0	48		7099
V _{DD}	小号标准操作额定电压	-	:	2.4	3.6	V.

Ť能够21.一般开放评级条件 (继续)

	63 W	J 5				
符号	参数	件 最小 最	大 .	单位		
V _{DDA}	模拟操作 电压	必须具有相同的潜力 达到或高于V. _{DD}	2.4	3.6	V	
		TC和RST I / O	-0.3	V _{DDIOx} +0.3		
V在	 I/O輸入电压年龄	TTI / O	-0.3	V _{DDA} +0.3 ⁽²) V	
V 在	17 0 柳八七上牛崎	FT和FTf I / O	-0.3	5.5 (2)		
		воото	0	5.5		
	T的功耗¬85°C	LQFP64	-	455		
D.		LQFP48	-	364	毫瓦	
P _d	后缀6 (1)	LQFP32	-	357	笔以	
		TSSOP20	-	263	1	
÷	环境温度	最大功耗 -40 85			_	
Ť_ <u>↑</u>	后缀6版	功耗低 (2)	-40	105	С	
Ťĵ	Juncti温度范围 后缀6版本	-40 10	5	°C		

ⅉ 不超过T.

_{J最大}。 _Ĵ 不超过T.

_{J最大}(见7.5节:

6.3.2操作条件上电/断电时

标准杆在T中给出的电流表能够从测试得出 22 在amb下进行的ient 温度条件总结在Tab升Ë 21 。

Ť能够22.歌剧在po的条件wer-up / power-down

符号	参数	条件	最小	最	大 身	位	
T _{VDD}	V _{DD} 上升时间率				0	8	
	V _{DD} 下降时间率		-		20	8	微秒/ V
Ťvdda	V _{DDA} 上升时间率				0	8	10X1727 V
VDDA	V _{DDA} 下降时间率		-		20	8	

6.3.3 嵌入式复位和电源控制模块的特性

标准杆在T中给出的电流表能够从测试得出 23 在amb下进行的ient 温度和补充电压cond在Ta中总结了它b升 \overline{t} 21: 一般操作条件。

Ť能够23.嵌入式资源et和功率控制块charac开创性意义

符号	参数	条件	闵	ŧyp	最大	单位		
V _{POR / PDR} ⁽¹⁾	开机/关机		下降的边缘	(2)	1.80	1.88	1.96 ⁽³⁾	٧
*POR/PDR	重置阈值		上升	1.84	(3)	1.92	2.00	٧

44/91

DocID024849 Rev 3

Ť能够23.嵌入式的设置和功率控制block特征s(续)

- 130 35 130	, 12 0F3 XX III 73 1 .			(-,,,				
符号	参数	条件	闵	ŧyp	最大	单位		
V _{PDRhyst}	PDR迟滞		-	-	40		m	V
Ť _{RSTTEMPO} (4)	重置temporization		-		1.50	2.50	4.50	ms

1. PDR检测器监视V. 仅监视V DDo

DD 还有V. DDA(如果在opti on bytes中保持启用状态)。POR探测器

2. 设计保证产品性能低至最小值V.

POR / PDR值。

Data基于表征结果,未在pr。中测试oduction。
 设计保证,未经生产测试。

6.3.4嵌入式 参考 伏特年龄

标准杆在T中给出的电流表能够24来自测试在amb下进行的ient 温度和补充电压cond在Ta中总结了它b升芒21:一般操作 条件。

Ť能够24.嵌入式int参考电压年龄

	100-32 = 7-100 / (2011)	•> 5 01111					
符号	参数 条件	‡ 闵 ŧyp ⅓	最大	单位			
V _{REFINT}	内部参考 电压	-40°C <t 85°c<="" _<+="" td=""><td>1.2</td><td>1.23</td><td>1.25</td><td>V.</td><td></td></t>	1.2	1.23	1.25	V.	
ŠT艺术	ADC_IN17缓冲区启动 时间	-		-	(1)	微秒	10
Ť_vrefint	ADC采样时间 阅读内部 参考电压	-	4 (1)	-		μ小	
Δ V _{REFINT}	内部参考 电压蔓延过来 温度范围	V _{DDA} = 3 V	-	-	10 (1)	毫伏	
Ť_ <u>系</u> 数	T温度系数 -		-100 ⁽¹	-	100 (1)	PPM /°C	

1. 设计保证,未经生产测试。

6.3.5 电源电流特性

电流消耗是几个p的函数参数和因素如 操作伏特年龄,环境温度,I/Opin加载,设备软件tware配置, 工作频率,I/O引脚切换 速率,内存中的程序位置和执行摊晒 二进制代码。

电流消耗测量为de划线在图*13*: 目前的消费测量方案。

所有运行模式电流公司nsumption测量Š 在本节中给出用a执行减少代码,提供消费等值符合CoreMark代码。

DocID024849 Rev 3

45/91

7

号

Ť最大和最大电流消耗

MCU处于以下条件下:

● 所有I / O引脚均处于模拟输入模式

◆ 所有外围设备都是dis 体健恩当明确提到CEPT

● 调整闪存访问时间 转到f

HCLK 频率:

PCLK = fHCLK

标准杆在7中给出的电流表能够25 到7a b升Ë 27 来源于测试pe变形了环境温度和电源电压年龄状况总结为in 7ab升Ë 21: 将军 运行条件。

Ť能够25.TV的最大和最大电流消耗

_{DD} 在**V**供应 _{DD} = 3.6 V ⁽¹⁾

				DD 1= - 17 17		
				所有外围设备	备都很棒LED	
中中	参数	条件 f	HCLK	_	Max @ T_{2}	单元
夲				泰p	85°C	
			48 MHz	22.0	22.8	
		HSI或HSE时钟,PLL开	48 MHz 2	6.8 30.2		
-555±	供电电流 运行模式,代码	HOUSED STY, PLLT	24 MHz	12.2	13.2	嘛
DD=	从Flash执行		24 MHz 1	4.1 16.2		1997
		HSI或HSE时钟,PLL关	₹ 8 MHz	4.4	5.2	
		77777	8 MHz 4.	9 5.6		
		HSI或HSE时钟,PLL开启	48 MHz	22.2	23.2	
			48 MHz 2	6.1 29.3		
ᇳ	供电电流 运行模式,代码		24 MHz	11.2	12.2	嘛
-00	从RAM执行		24 MHz 1	3.3 15.7		7717
		HSI或HSE时钟,PLL关	₹ 8 MHz	4.0	4.5	
		TIOIS, TIOE STATE TEEX	8 MHz 4.	6 5.2		
			48 MHz	14	15.3	
	供电电流	HSI或HSE时钟,PLL开	48 MHz 1	7.0 19.0		
西世	睡眠模式,代码		24 MHz	7.3	7.8	麻
-00	从Flash执行 或RAM		24 MHz 8	7 10.1		·m
	2,33. 2 411	HSI或HSE时钟,PLL关闭	₹ 8 MHz	2.6	2.9	
			8 MHz 3.	Ø 3.5		

- 1. 灰色阴影用于区分STM32F030xC器件的值。
- 2. 基于表征结果的数据s,未在生产单位中进行测试,否则指定。

77

	Ť能够26. T.V的最为	大和最大电流消耗		DDA 供应 (1)			
				V _{DDA}	= 3.6 V		
符号	参数 条件	(2)	FHCLK	泰p	Max @ T{3)	单元	
				₩þ	85°C		
		HSE旁路,PLL开启	48 MHz	175	215		
	供电电流	NOC方路,PLL开启	48 MHz 160	192			
		HSE旁路, PLL关闭	8 MHz	3.9	4.9		
			8 MHz 3.7	4.6			
_##	运行或睡眠模式, 代码执行		1 MHz	3.9	4.1		
西棋	来自闪存		1 MHz 3.3	4.4		μA	
	或RAM	LIGHTS DILTE	48 MHz	244	275	1	
		HSI时钟,PLL开启	48 MHz 235	275			
		HSI时钟,PLL关闭	8 MHz	85	105		
		I IOIPITT, PLLXIII	8 MHz 77 9	2]	

47/91

^{1.} 灰色阴影用于表示STM32F030xC器件的值。 2. 来自V的电流消耗 处于运行或睡眠模式或从闪存或RAM执行。福此外,当PLL关闭时,我 频率。

^{3.} Data基于特征结果,未经生产测试ñ。

Ť能够27.TS中的最大消耗量和最大消耗量顶部和圣和模式

I能够27.15中的最大消耗重和最大消耗重则能和全和模式										
符号	参数	Condi蒸发散		泰p @V _{DD} (Ŋ _D = V _{DDA})	马克 斯 ⁾	单元				
			3.6 V	T ₹85°C						
	供应电流进来	调节器处于运行模式,	所有振荡器关闭	19	48					
市世	小号Ť操作模式	调节器在低功率模式下	5	32						
	供应电流进来 小号坦德模式	LSI ON和IWDG ON	2	-						
	供应电流进来 小号Ť操作模式		调节器运行或低 - 电源模式,al升 振荡器关闭	2.9	3.5					
	供应电流进来	V _{DDA} 监控ON	LSI ON和IWDG ON	3.3	-	μΑ				
_#	小号坦德模式		LSI OFF和IWDG OFF	2.8	3.5					
可媒	供应电流进来 小号Ť操作模式		调节器运行或低 - 电源模式,al升 振荡器关闭	1.7	-					
	供应电流进来 小号坦德模式	V _{DDA} 关闭监控	LSI ON和IWDG ON	2.3	-					
			LSI OFF和IWDG关闭	1.4	-					

1. Data基于表征结果,未在pr。中测试除非另有规定,否则应采用。

Ť典型的电流消耗

MCU处于以下条件下:

- V DD = VDDA = 3.3 V
 所有I / O引脚均处于模拟输入配置

- AHB预分频器为2,4,8和16用于频率 优先级4 MHz,2 MHz,1 MHz和分别为500 kHz

ELECTR特征 STM32F030x4 / 5233 / X8 / XC

Ť能够28.T运行模式下的逻辑电流消耗,带有dat的代码一个处理

从Flash运行

/// Idon/2/i								
				泰	р			
符号帕拉	帕拉仪表 条	件 f	HCLK	外围设备小号 启用	外设 残	单元		
	Run中的电流 来自V的模式 _{DD} 供应	从。跑	48 MHz	23.3	11.5	n-è-		
		HSE水晶 时钟8 MHz,	8 MHz	4.5	3.0	嘛		
	Run中的电流	代码执行	48 MHz	158	158			
西棋	来自V的模式 _{DDA} 供应	来自Flash	8 MHz	2.43	2.43	μA		

I/O系统电流消耗

目前的消费 I / O系统有两个组件nents: static和动态。

I/O静态电流消耗

所有I / O都用作上拉输入GE ñ 消耗当前的消费引脚是 pt 离子

外部的w ^。此电流消耗的值可以简单地通过使用来计算 上拉/拉 - 降低了Ta中给出的值b升Ë 46: 1/O静态特性。

对于输出引脚,任何外部下拉或分机 估计当前的消费量。 ernal load must也是conØ

额外的I/O电流消耗是由于I/Oco 如果是中间人,则将其配置为输入

额外的I/O电流消耗是由于I/Oco 如果是F 外部电压水平适用。目前的消费这是由施密特输入引起的 触发电路用于区分输入值。除非这个特定的配置是 应用程序要求,可以避免这种供应消耗由configurin构成G 这些I/O处于模拟模式。这不是应该是ADC输入引脚的情况 配置为模拟输入TS。

警告: 一个

y浮动输入引脚也可以稳定到an在中间电压水平或无意中切换,由于外部al electromagnetic nois e。 To避免与此相关的当前消费浮针,他们必须e它配置在模拟mode,或强制inte一定要到了数字值。这可以做到或者b使用上拉/d自己的电阻或配置输出模式下的引脚。

I/O动态电流消耗

消费我asured asiously, I / O. 除内部外围全部擦除CURREN Ť

$$\overline{SW} = V_{DDIOx} \times F_{SW} \times C$$

DocID024849 Rev 3

49/91

哪里

SWE通过切换I / O充电/放电的电流电容负载

V_{DDIOx}是I / O供应 电压 F_{SW} 是I / O切换频率

C是总上限I / O引脚看到的电位: C = C.

INT + CEXT + C小号

C小量PCB板电容包括p的ance广告针。

测试引脚配置为推送-pull输出模式,由fixe软件切换d频率。

Ť能够29.退出把I / O电流消耗

	. 130 37 = 4.22				
符号	参数条	件 (1)	I / O切换 频率(f sw)	泰p	üñ—⊞
			4 MHz	0.18	
	1/ O电流 消费	V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		C = C _{INT} + C _{EXT} + C _{小号}	24 MHz	1.39	· · · · · · · · · · · · · · · · · · · ·
			48 MHz	2.188	
			4 MHz	0.49	
-5₩		$V_{DDIOX} = 3.3 \text{ V}$ $C_{EXT} = 22 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_{INS}$	8 MHz	0.94	
			16 MHz	2.38	
		- INI - EXI - 715	24 MHz	3.99	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		C _{EXT} = 47 pF	8 MHz	1.7	
		C = C _{INT} + C _{EXT} + C小号 C = C _{INT}	16 MHz	3.67	

^{1.} C_{小号}7 pF(估计值)。

6.3.6 W从低功率时间开始的时间德

唤醒时间在T中给出的mes能够30 是事件和之间的延迟 执行 第一个用户指令。该设备功耗很低模式后WFE(W为了 事件)指令,在WFI(Wai t For Interruption)执行的情况下,16个CPU周期 必须添加到以下时间由于中断迟到了ncy在Cortex M0中 建筑。

SYSCLK时钟源设置保持不变terw从睡眠模式开始。 从S唤醒期间顶部或S.tandby模式,SYSCLKt设置默认设置:HSI 8 MHz。

来自Slee的唤醒源p和S.top模式是在事件模式下配置的EXTI行。 来自S的唤醒源黄褐色dby模式是WKUP1引脚(P.A0)。

所有时间都来自测试在...下执行环境温度和供应 电压条件进化了 钽b升芒 21: 一般开放评级条件。

Ť能够30.低 - 电源模式唤醒时间

符号	参数条件	 	泰 p @V DD = V DDA	最大	单位
			= 3.3 V		
Ťwustop	w ^来自S的akeup顶部模式	运行模式下的调节器	2.8	5	
Ť _{武汉科技大学AN}	we∜来自S的akeuptandby模式	-	51	-	微秒
Ťwusleep	w ^睡眠模式中的akeup	-	4 SYSCLK 周期	-	

6.3.7外部 时钟 来源特征

高速外部用户时钟ge来自外部来源

在旁路模式下HSE oscillator 关闭,输入引脚为a 标准GPIO。

外部时钟信号必须遵守第6.3.14节中的I/O特性。然而,推荐的时钟 inpu t波形如图所示 14: 高速前内部时钟来源AC tim图。

Ť31.高速d外部用户时钟characteristics

符号	Parameter (1)		Min	Тур	最大	单位
F _{HSE_ext}	用户外部时钟源频率为 1	1	8	32	MHz	
V _{HSEH}	OSC_IN我输入引脚高电压年龄	0.7	V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN输入引脚低电平电压	V	· ss	-	0.3 V _{DDIOx}	v
Ťw (HSEH) W (HSEL)	OSC_IN高或低时间		15	-	-	NS
Ť (HSE) Ť (HSE)	OSC_IN上升或下降时间		-	-	20	INO

1. 设计保证,未经测试 在生产中。

图14.高速外部clock源AC时序图

DocID024849 Rev 3 51/9

低速外部用户时钟基因从外部来源评定

在旁路模式下,LSE振荡器被切换为F 输入引脚是标准GPIO。

外部时钟信号必须遵守第6.3.14节中的I / O特性。然而,推荐的时钟 inpu t波形如图所示 15。

Ť能够。低速前终端用户时钟特征eristics

符号	参数 (1)	Min	Тур	最大	单位
F _{SE_ext}	用户外部时钟源频率 -	32.768	1000	kHz	
V _{LSEH}	OSC32_IN输入引脚高电平电压 0.7 V	DDIOx	-	V_{DDIOx}	V
V _{LSEL}	OSC32_IN输入引脚低电平电压 V	. ss	-	0.3 V _{DDIOx}	•
Ťw (LSEH) Ťw (LSEL)	OSC32_IN高或低时间	450	-	-	NS
Ť _F (LSE)	OSC32_IN上升或下降时间	-	-	50	INO

1. 设计保证,n未经生产测试。

图15.低速外部al时钟源AC时序图

高速外部时钟属从一个水晶ted铝/陶瓷谐振器

高速的外部al(HSE)时钟可以提供4至32 MHz的晶体人/陶瓷 谐振器振荡器。所有信息本段中给出的是基于设计的 仿真结果用典型的外表来获得最终组成部分s中指定的 应用,谐振器和load容量必须 尽量靠近 振荡器引脚,以最大限度地减少输出失真和启动稳定时间。参考 到晶体共振制造商更多det关于谐振器特性的问题

(频率,包装年龄,准确性)。

Ť33. 33. HSE振荡器特性

符号	参数	条件		(1)	敏 (2)	泰p	M—√3	单元
Fosc_in	振荡器频率		-	4	8	32	MHz	
[R _E	反馈电阻		-	-	200	-	ķΩ	

52/91 DocID024849 Rev 3

能够33。在里面

Ť33. 33. HSE振荡器特性

100. 00. 110E1jk/m/aii 191E									
符号	参数	条件	(1)	敏 ⁽²	泰p	M—√3	单元		
			在启动期间 (3)	-		8。五			
町世	HSE电流消耗	,	$V_{DD} = 3.3 \text{ V},$ $Rm = 45\Omega,$ $CL = 10 \text{ pF @ 8 MH}$	-	0。 五	-	嘛		
			V _{DD} = 3.3 V, Rm = 30Ω, CL = 20 pF @ 32 兆赫	- ħ	1。五	-			
G _*	振荡器跨导	S.tartup	10 -	-	mA	/ V.			
Ť _{SU (HSE)} (4	小号塔尔图p时间		_{DD} 稳定 -	2	-	毫秒	>		

- 1. 由th给出的谐振器特性È 晶体/陶瓷谐振器制造商。
- 2. 设计保证,未经产品测试离子。
- 3. 吨的前2/3期间的这种消耗水平发生他

SU (HSE启动时间

4. tu (HSE)从启用(通过软件)到稳定的8 MHz的瞬间测量的启动时间 运到振荡。该值是针对标准晶体谐振器测量的,并且可以显着变化 与水晶制造商

对于 C_{L1} 和C. L_2 ,建议使用high-quality外部陶瓷帽中的蚂蚁 五 Γ 至20 pF范围(Typ。),专为高频应用而设计s,并选择匹配 要求s水晶或resonator(见 图 16)。C L_1 和C. L_2 通常是 相同的大小。结晶制造商通常指定负载上限acita这是什么的 C系列组合 L_1 和C. L_2 。PCB和MCU引脚电容必须包括在内ded(10 pF可以用作梳理针和公猪的粗略估计d capacity当时 浆纱 C_{L1} 和C. L_2 。

注意: 有关信息在选择 CRYSTAI,参考appl/阳离子注释AN2867 "振荡器 ST麦克风设计指南rocontrollers"av从ST网上可以看到迭。www.st.com。

图16. Tÿ具有8 MHz晶体的pical应用人

1. ř_{EXT}价值取决于经济特征。

生成低速外部时钟马晶谐振器

低语外部(LSE)clock可以是撒谎了 32.768 kHz 晶体谐振器 振荡器。本段中的所有信息均基于设计模拟结果

DocID024849 Rev 3

53/91

通过典型获得 外部的指定的内容 钽b升芒 34。在应用程序中,谐振器和负载帽一个citors已被放置为CL OSE尽可能给振荡器为了最小化输出失真的销ND ST艺术品稳定时间。参考水晶谐振器 厂家专业呢关于的详细信息 谐振器 characteristics(频率uency,包装,准确性)。

Ť能够34. LSE振荡或特征s(f LSE = 32.768 kHz)

				LOE					
符号	参数	条件	(1)		敏 (2)	泰p	M—∕²¾	4 单元	
	LSE当前	低驱动能力		-	0.5	0.9			
		中低驱动能力	-	-	1				
古世 Consumpt离子	consumpt离子	中高驱动能力	-	-	1.3			μA	
		高驱动能力		-	-	1.6			
	振荡器跨导	低驱动能力		5	-	-			
G.,		中低驱动能力	8	-	-			μΑ/ V	
G _*		中高驱动能力	15	-	-			μΑ/ V	
		高高的我是一	名男子	ility	2	5	-	-	
Šu (LSE) (3	小号tartup time	DVIOx 稳定了	7	-	2		- :	8	

- 1. 请参阅表格下方的注释和注意段落以及应用程序牛逼离子笔记AN2867"振荡器 ST微控制器设计指南"。
- 2. 设计保证,未经测试 在生产中。
- 3. kgu (LSs是从启用(通过软件)到稳定的时刻测量的启动时间 32.768 kHz振荡是 到达。该值是针对a测量的 标准晶体,它可以有很大的变化 与水晶制造商

注意: 有关信息在选择 CRYSTAI,参考appl/阳离子注释AN2867 "振荡器 ST麦克风设计指南rocontrollers"av从ST网上可以看到迭。www.st.com。

图17. T适用于32.768 kHz晶体的应用人

注意: 外部电阻器没有在OSC32_IN和OSC32之间需要_OUT,这是禁止的添加一个。

54/91 DocID024849 Rev 3

内部时钟源特性 6.3.8

标准杆在T中给出的电流表能35 从测试衍生 在环境下进行 温度和补充电压cond在Ta中总结了它b升Ë 21: 一般操作 条件。提供d曲线是characterization results,没有在产品中测试过灰。

高速内部(HSI)RC振荡TOR

Ť35. HSI振荡特征

100111013879313 111									
符号	参数	条件	闵	ŧyp	最大	单位			
Fisi	频率		-	-	8	-	М	Hz	
TRIM	HSI用户修剪tep		-	-	-	1	(2)	%	
DuCy _{HSI}	工作周期		-		45 ⁽²⁾	-	5五 ⁽²⁾	%	
ACC	HSI振荡器的精度		Ť_≒ _↑ 40至85	5°C	-	±5	-	%	
ACC _{HSI}	(工厂校准)		Ť_ = ∱25°C		-	±1 ⁽³⁾	-		
Ť _{SU (HSI)}	HSI振荡器启动时间		-	1	(2)	-	2 (2)	微秒	
ъЩ (на)	HSI振荡器功率 消费		-			80	1		

- 1. V_{DDA} = 3.3 V,工除非另有说明,否则= -40至85°C。
- 2. 设计保证,而不是tested在生产中。
- 3. 用户校准。

高速内部14 MHz(HSI14)RC操作系统cillator(致力于ADC)

Ť能够36. HSI14振荡器特性ristics

(1)

符号	参数 条件	闵 t yp	最大	单位						
F _{HSI14}	频率		14		М	Hz				
TRIM	HSI14用户修剪步骤			1	(2)	%				
DuCy (HSI14	工作周期	-	45 ⁽²⁾	-	5五 ⁽²⁾	%				
ACC _{HSI14}	HS的准确性I14 振荡器(fac保守校准)	Ť_⇒~40至85°C	-	±5	-	%				
Šu (HSI14)	HSI14振荡lator开始上班时间	-	1 ⁽²⁾	-	2 (2)	微秒				
D肼 (HSI14)	HSI14振荡器电源 消费	-	-	100	-	μA				

- 1. V_{DDA} = 3.3 V,工除非另有说明,否则= -40至85°C。
- 2. 设计保证,而不是tested在生产中。

低速内部(LSI)RC振荡器

Ť能够.LSI振荡器racteristics

(1)

符号	参数	最小	ŧyp	最大	单位	
F _{LSI}	频率30		40	D		

kHz

DocID024849 Rev 3

55/91

50

μ—

 \uparrow

Ť能够.LSI振荡器racteristics

	The dy. Let ink /// and determined									
符号	参数	最小	ŧyp	最大	单位					
00 (E0I)	LSI振荡器启动时间	-		-	85	微秒				
市供 (LSI) ⁽²⁾	LSI振荡器功耗	- 0.	75	-	μA					

- 1. V_{DDA} = 3.3 V, 工除非另有说明, 否则= -40至85°C。
- 2. 设计保证,没有在生产中进行测试。

6.3.9 PLL 特点

标准杆在T中给出的电流表能力38来源于测试在环境下进行温度和补充电压cond在Ta中总结了它b升Ë21:一般操作

Ť能够38. PLL characteristics

符号	参数		单元						
10.2	参 数	Min	T是的	最大	二 九				
	PLL inpu时钟 (1)	1 ⁽²⁾	8.0	24 ⁽²⁾	兆赫				
F _{LL_IN}	PLL输入时钟占空比 40	(2)	-	60 ⁽²⁾	%				
F-LL_OUT	PLL乘法器输出时钟 16	(2)	-	48	中				
Ť _锁	PLL锁定时间	-	-	200 (2)	微秒				
抖动 PLL	周期间抖动 -	-	30	00 ⁽²⁾	PS				

号Hž

- 1. T爱你se采用适当的乘法因子来获得兼容的PLL输入时钟值范围由扩定义 PLL_OUT。
 2. 设计保证,未经生产测试。

6.3.10记忆 特点

闪存

特征是gi在T

_除非另有说明,否则 = -40至85°C。

Ť能够39. Flas记忆characteristics

符号	参数	条件 闵	ŧ 是的 :	最大		(1)	单元
Ť _{PROG}	16位编程时间 T.	_ ↑ -40至+ 85°C		-	53.5	-	μs
Ť _{ERASE}	页面擦除ti我 ⁽²⁾	Ť _{一주} -40到+85°C		-	30	-	ms
義	质量擦除时间 7	. _{一个} -40到+85°C		-	30	-	ms
±10.0	电源电流	WR迭代模式		-	-	10	mA
DD≌	<i>۪۪</i>	擦除模式			-	12	mA
V _{PROG}	编程电压 -		2.4	-	3.6	V.	

- 1. 设计保证,未经生产测试。
- 2. STM32F030x4 / 6的页面大小为1KB/ 8个器件和2KB用于STM32F030xC器件

477

Elect特征 STM32F030x4 / x6 / x8 / xC

Ť能够40. F.鞭子记忆endurance和dat保留

符号	参数		条件	最小值	(1)	单元
ñ _{结束}	耐力	Т	_ ↑ -40至+ 85°C		1	kcycle
Ťкет	数据保留	1 kc	ycle ⁽² 在T _— ₹85°C		20	ÿ耳朵

- 1. 基于表征结果的数据,未在pr。中测试oduction。
- 2. 在整个温度r下进行循环安格。

6.3.11 EMC 特点

在器件表征期间,基于样品进行易感性测试。

功能EMS(电磁悬浮ptibility)

虽然在设备上执行简单的应用程序(togg通过I / O po提供2个LEDRTS)。 该设备是 强调 两个电omagnetic 直到失败的事件eo ccurs。失败的是 表示 LED:

- 所有d都采用静电放电(ESD)(正极和负极) 直到功能性干扰发生。该测试符合要求符合IEC 61000-4-2 标准。
 FTB:快速下的爆发 瞬态电压(正负)是一个适用于V.
 V_{SS}通过100 pF上限acitor,直到发生功能性干扰。钍是测试是符合IEC 61000-4-4 st昂达尔。

DD 和

设备重置允许恢复正常操作。

测试结果以T给出能41。它们基于EMS级别a 和类在应用笔记AN1709中定义。

Ť能力...... EMS特征开创性意义

符号	参数	条件	水平/ 类
V _{FESD}	V要施加的电压限制 在任何I / O引脚上引起功能性紊乱	V _{DD} = 3.3V,LQFP48, +25°C, F _{HCLK} = 48 MHz, 符合IEC 61000-4-2	3B
V _{EFTB}	快速瞬态电压突发限制 申请粗糙100 pF 在V DD 和V. SS 引脚引起功能性干扰	V _{DD} = 3.3V,LQFP48,L _六 + 25°C, F _{HCLK} = 48 MHz, 符合IEC 61000-4-4	4B

设计硬化的sof要注意避免噪音问题

EMC表征和优化是每形成在组件级别与典型的 应用环境和SIM卡plified MCU软件。应该注意的是去EMC表现很高y依赖于用户 申请和软件pware in p关节的。

因此,它是推荐d用户applies EMC软洁具优化和与EMC级别请求者进行资格预审测试d他的申请。

索夫提示建议

DocID024849 Rev 3

软件flowchar必须包括失控条件的管理,例如:

- 程序计数器损坏
- 意外重置
- 关键数据损坏 离子(控制 注册...)

资格预审试验

大多数常见的失败(未解决cted reset和pr计数器腐败n)可以 通过手动将NRST引脚或振荡器引脚上的低电平状态设置为1来再现 第一。

Ťo完成这些试验后,ESD压力可以直接应用于设备上,over的范围 规格值。什么时候不成功检测到 cted行为,该软件 可能很难ened 防止不可恢复 发生错误(见应用程序注释AN1015)。

电磁干扰 (EMI)

发射的电磁场 通过设备监控虽然简单 申请是 执行(通过I / O切换POR 2个LED 吨S)。该排放测试符合 IEC 61967-2标准w他指定了test板和引脚 加载。

Ť能够了cteristics

THE 39 J CLETISTICS						
	符号参数	数 条件	(†	监控	最大与[f HSE/FHCLK]	単元
				频带	8/48 MHz	+76
	小鍋	峰值水平	V _{DD} = 3.6 V, T _주 25°C, LQFP100封装 符合 IEC 61967-2	0.1至30 MHz	-3	
				30至130 MHz	23	ΨdΒμV
				130 MHz至1 GHz	17	
				EMI等级	4	-

6.3.12电气 SENS itivity特点

基于三个 使用sp的不同测试(ESD,LU)高效的测量ement methods,devic是的强调以确定其性能在电气方面 灵敏度。

Electrost放电 (ESD)

静电消毒ges(一个位置那么一个负面的lse分开 1秒)arË 根据每个引脚组合施加到每个样品的引脚上。样本量 取决于数量 设备中的电源引脚(3部分s×(n + 1)个供电引脚)。这个测试 符合JESD22-A114 / C101标准。

Ť能力43 FSD a绝对最大化米评级

	1能力 43. EGD 4纪对取入化水灯纵							
符号	评级	条件 包小号 类			最大值 值 ⁽¹⁾	单元		
V _{ESD} (HBM)	静电放电电压 (人体模型)	Ť _{_予} + 25°C,符合要求 到JESD22-A114	全部	2	2000	٧		
V _{ESD} (CDM)	静电放电电压 (充电设备型号)	Ť _{—҈↑} + 25°C,符合要求 到ANSI / ESD STM5.3.1	所有	C4 ⁽²⁾ C3 ⁽³⁾	500 ⁽²⁾ 250 ⁽³⁾	V		

- 1. 基于表征结果的数据,未在pr。中测试oduction。
- 2. 适用于STM32F030xC
- 3. 适用于STM32F030x4,STM32F030x6和STM32F030x8中

圣atic闩锁

Ť需要在六个方面进行补充静态测试以评估闩锁 性能:

- 供应过电压 e应用于每个电源引脚。
- 电流注入应用于每个输入,输出和配置 le I / O引脚。

这些测试符合EIA / JESD 78A IC闩锁 标准。

Ť能力44.电气敏感IES

符	号	参数	条件	类	
	LU	小号tatic latch-up class	_ ^ 产1符合JESD78A	II 标准的05	C我是

6.3.13 I / O. 当前 在jection特性

作为一般规则,由于外部电压低于I / O引脚的电流注入V 高于V. DDIOX(标准,3.3 V有能力的I / O引脚)你应该避免没有肾错构瘤 产品运作。然而,为了表明th的稳健性Ë 微控制器在发生异常注入的情况下,发生了磁敏度测试 以样本为基础进行环设备特征灰。

对I/O的功能敏感性c注射

虽然在设备上执行简单的应用程序,但是通过注入来强调设备 在浮动输入模式下编程的I/O引脚电流。在注入电流的同时 I/O引脚,一次一个,检查设备的功能故障。

失败是指示d超出范围p参数:ADC错误高于cer限制(更高超过5 LSB TUE)常规限制引起的泄漏相邻引脚上的电流(出的-5 μ A/+ 0μ A范围)或其他功能失败(例如重置发生依旧或振荡器频率偏差)。

特征结果s以Ta给出b升Ë 45。

负面的诱导泄漏 目前是ca.用于阴性注射和阳性诱导漏电流是由正注入引起的。

DocID024849 Rev 3

.

59/91

Ť能力45.1/O电流注入敏感性

符号	说明	实用 感受性		单元
ב נו	,		正 注射	辛ル
	BOOT0和PF1引脚上的注入电流为 -(N	A	
	P上的注入电流A9,PB3,PB13,PF11针s诱导 相邻引脚上的漏电流小于50μ —个	-5	NA	
₩	P上的注入电流A11和PA12引脚带诱导相邻引脚上的漏电流小于-1 mA	-5	NA	嘛
IN3-	所有其他FT和FTf引脚上的注入电流为 -	5 N	A	791
	PB0和PB1引脚上的注入电流为 5	N	A	
	PC0引脚上的注入电流为	-0	+5	
	在所有其他TT上注入电流a,TC和RST引脚 -5	+5		

6.3.14 I / O. 港口 特点

一般输入/输出特性

除非另有说明,否则p给出的参数 钽*b*升Ë *46*来自测试小号 在...下执行 条件summar在 T能*21*: 一般操作条件。所有 I / O被设计为 CMOS和TTL-兼容(BOOT0除外)。

Ť能够.I / O st特征

符号	参数	条件	闵	ŧyp	大	单位	
		TC和TTI / O		-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
	低水平输入电压	FT和FTf1/O		-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	
V _{IL}		воото		-	-	0.3 _D / _{DIOx} -0.3 ⁽¹⁾	V
		所有I / O除外 BOOT0引脚		- (3 V	DDIOx	
	高水平输入	TC和TTI / O	0.	445 V _{DDIOx} 0.398 ^{(*}) _		
		FT和FTf1/O		0.5 V. _{DDIOx} +0.2 ⁽¹⁾	-		
V _{IH}	电压	воото		0.2 V _{DIOx} 0.95 ⁽¹⁾	-		V
		所有I / O除外 BOOT0引脚		0.7 V _{DDIOx}	-		
		TC和TTI / O		-	200 ⁽¹⁾	-	
V _{HYS}	施密特触发器 滞后	FT和FTf1/O		-	100 ⁽¹⁾	-	毫伏
		воото		-	300 ⁽¹⁾	-	

60/91 DocID024849 Rev 3

Ť能够.I / O st特征(续)

	1能勢.17 〇 5時至世(朱)									
符号	参数条	件 闵	ŧyp 最	大	单位					
		TC,FT和FTf I / O. TTa在数字模式下 V _{SS} ≤ V _在 ≤ V _{DDIOx}	-		±0.1					
世	输入泄漏 当前 ⁽²⁾	TTa在数字模式下 V _{DDIOx} ≤ V _在 ≤ V _{DDA}	-		1	μA				
		TT一个模拟的 模式 V _{SS} ≤ V _在 ≤ V _{DDA}		-		±0.2				
		FT和FTf I / O. (3) V _{DDIOx} ≤ V _在 ≤ 5 V	-		10					
[R _{PU}	弱puLL-了 等效电阻 (4)	V _在 = V _{SS}	25	40	55	ķſ				
[R _{PD}	弱puLL-下降 当量 电阻 ⁽⁴⁾	V在 = V _{DDIOx}	25	40	55	ķſ				
C _{IO}	I / O引脚电容	-	- 5		- pl	F				

- 1. 数据仅基于设计模拟。不 在生产中测试。
- 3. Ťo维持伏特年龄高于V
- DDIOx + 0.3 V,内部上拉/上拉下来再必须禁用晶体管。
- 4. 设计了上拉和下拉电阻具有可切换PMOS / NMOS的串联电阻的真正电阻。这个PMOS / NMOS对系列的贡献s 阻力最小(约10%的顺序)。

所有I / O都符合CMOS和TTL标准(没有 软件骗局需要配置)。钍EIR 特征覆盖范围超过严格的CMOS技术ogy或TTL参数秒。该 报道 这些要求ents显示在 图18 为圣 andard I / Os,and 见图19 对于 5 V容限I / O. 钍以下曲线是设计n模拟结果,未经过测试 生产。

DocID024849 Rev 3

图19.耐5V电压(FT和FTf)I/O输入特性

62/91 DocID024849 Rev 3

477

输出驱动电流

GPIO(通用输入/输出uts)可以吸收或提供高达+/- 8 mA的电流,或吸收或来源高达+/- 20 毫安(用 放松的 $_{
m OL}/{
m V_{fl}}$)。

在用户应用程序中,必须限制可以驱动电流的I / O 数量 尊重绝对最大值ra中指定的 第6.2 第6.2节:

消耗来自V的MCU DDIOx,加上最大値 DDIOx,加上最大値 DD,不能超过abso琵琶最大等级 DD,不能超过abso琵琶最大等级 的的总和 所有的にの報告を記し、 ◆ 当前的总和 由V上的所有I / O提供 消耗来自V的MCU

אבאסענע NF 有的I / O都被沉没了 V SS ,加上最大化的消费ption of MCU沉没在V上 SS,不能超过绝对最大额定值Σ 我 VSS(看: 7能18:Vo(特征)。 ● 当前的总和 所有的I / O都被沉没了 V

输出电压年龄层次

除非另有说明,日市盈率的中给出的参数以下能够得出 从测试 在...下执行 环境温度和伏特供电年龄状况总结如下 钽b升芒 21:一般操作条件。所有I / O都符合CMOS和TTL标准(FT,TT一个或 TC,除非另有说明)。

Ť能够47. Outpu电压年龄特征集成电路

符号	参数条件	‡ns Min	Max Uni	t		
V _{OL}	输出I / O引脚的低电平电压	我 =8毫安	-	0。4	V	
V哦	输出I / O引脚	V的 為 电平电压.7 V	DDIOx-0.4	-] '	
V _{OL} (2)	输出I / O引脚的低电平电压	我 =20毫安	-	1。3	V	
V _哦 (2)	输出I / O引脚	V的傷电平电压.7 V	DDIOx-1.3	-		
V _{OL} (2)	输出I / O引脚的低电平电压	1升1 - 6亭安	-	0。4	V	
V _哦 (2)	输出I / O引脚	我 =6毫安 V的高电平电压	DDIOx-0.4	-	'	
V _{OLFm +} (2)	输出FTf I / O引脚的低电平电压 Fm +模式	我 = 20毫安 V _{DDIOx} ≥ 2.7 V	-	0。4	V	
	1111 17520	我 = 10 mA	-	0.4	V.	

在我。设备的电流源或沉没必须尊重绝对值 T中指定的最大额定值能18: V电压特性和总和 必须始终通过所有1/O(I/O端口和控制引脚)来源或沉没的电流 尊重绝对最大额定值 Σ TOU

2. 基于表征结果的数据。未经生产测试。

输入/输出AC特性

定义和价值观 输入/ ou输入AC char特征在E中给出图 20和 钽b升Ë 分别为 48。

除非另有说明,日市盈率的参数are来自测试在...下执行 ambien温度尿素和sup层电压条件ns总结道 在

钽b升Ë 21: 将军

DocID024849 Rev 3

63/91

Ť能够了。我/ O AC charac开创性意义 (2)

OSPEEDRy [1: 0]值 ⁽¹⁾	符号	参数		条件	最小	最大	单位			
	F最大值 (IO)	最高频率 (3))				-	2	中	号Hž
X0	羊 (10) 出	产量下降时间		C _{大号} 50 pF,例	DIOx≥2.4V时		-	125	NS	
	Ř (IO) 出	产量上升t我				-	125		INO	
	最大值 (IO)	最高频率 (3))				-	10	中	号Hž
01	Ě (10) 出	产量下降时间		C _{大号} 50 pF,从 _{DIOx} ≥ 2.4V时			-	25	NS	
	Ř (10) 出	产量上升t我				-	2	25	INO	
				C _{大号} 30 pF,以	_{DIOx} ≥ 2.7 V -	50				
	最大值 (IO)	最高频率 (3))	C _{大号} 50 pF,Y _{DIOx} ≥ 2.7 V		-	30	兆赫		
				C _{大号} 50 pF,2.	4V≤V _{DIOx} <	2.7 V	-	20		
		出 产量下降 时间		C _{大号} 30 pF,M	DIOx ≥ 2.7 V -	5				
11	羊 (10) 出			C _{大号} 50 pF,以	_{DIOx} ≥ 2.7 V -	8				
				C _{大号} 50 pF ,2	4V≤y _{DIOx} <	2.7 V	-	12	NS	
				C _{大粤} 30 pF,例	DIOx ≥ 2.7 V -	5			140	
	Ř (10) 出	产量上升t我		C _{大号} 50 pF,例	_{DIOx} ≥ 2.7 V -	8				
				C _{大号} 50 pF ,2	.4V≤y _{DIOx} <	2.7 V	-	12		
FM +	最大值 (IO)	最高频率 (3))				-	2	中	号Hž
configur通货版 (4)	胀 (10) 出	产量下降时间		C _{大号} 50 pF,例	DIOx≥2.4V时		-	12	NS	
(4)	ᢜ (IO) 出	产量上升t我				-	;	34	110	
-	t _{EXTIPW}	外部脉冲宽度 信号检测到的信号 EXTI控制器			-		10	-		

ñ/J۱

^{1.} I/O速度是可配置的红色使用OSPEEDRx [1: 0]位。请参阅STM32F0xxxx RM0360参考手册一个GPIO端口配置寄存器的描述。
2. 设计保证,而不是tested在生产中。
3. 最大频率定义为图20。
4. 当Fm + El習时如果设置,则会绕过 I/O 速度控制。请参阅STM32F0xxxx参考手册RM0360有关Fm + I/O配置的详细说明。

图20. I / O AC 特性deFINITION

6.3.15 NRST 销 特点

NRST引脚输入驱动器使用 CMOS技术。它连接到永久拉 - 电阻器,R PU 除非另有说明,日市盈率的中给出的参数以下能够得出 从测试 在...下执行 环境温度和伏特供电年龄状况总结如下 包b升E 21: 一般操作条件。

Ť能够49. NRST引脚特性eristics

符号	参数 条件	闵	ŧyp	最大		单位	
V _{IL (NRST)}	NRST输入低电平电压	-	-	-	0.3	V _{DD} +0.07 ⁽¹⁾	V
Vih (NRST)	NRST输入高电平 电平电压	- 0	.445V _{DD} 0.39	8 (1	-		\ \ \
V _{HYS} (NRST	NRST Schmitt触发voltage 滞后	-			200	-	
[P _{PU}	弱上拉当量 电阻 ⁽²⁾	V _在 = V _{SS}	25		40	55	ķΩ
V _{F (NRST)}	NRST输入滤波脉冲	-	-	-		100 (1)	NS
V. (NRST输入未滤波脉冲	2.7 <v <sub="">DD <3.6</v>	300 (3)		-		NS
VNF (NRST	THE CHAIN CHAINS INC.	2.4 <v <sub="">DD <3.6</v>	500 (3)		-		

^{1.} 数据仅基于设计模拟。不 在生产中测试。

米V

65/91

拉是设计与可切换PMOS串联的真实电阻。这个PMOS对系列的贡献小号阻力很小(约10%的顺序)。

^{3.} 数据仅基于设计模拟。不 在生产中测试。

图21.推荐 NRST引脚保护离子

- 1. 外部帽acitor保护设备免受标准复位。
- 用户必须确保N上的等级RST引脚可以低于V. 表49: NRST引脚特性。否则,将不会考虑重置设备。

IL (NRST最大级别

6.3.16 12位 ADC 特点

除非另有说明,否则参数在Ta中给出的rsb升Ë50是得出的初步值从测试执行在上午脾气暴躁ature,f p_{CLK} 频率和V.条件苏mmarized在b升Ë21:一般开放评级条件。 DDA 电源电压

建议执行校准af每个力量-up。 注意:

Ť能够50. ADC characteris抽动

符号	参数 公司	n.s Min	TYP		Max	UniŤ	
V _{DDA}	模拟电源电压 ADC ON	-	2.4	-	3.6	٧	
D# (ADC)	目前的消费量 ADC (1)	V _{DD} = V _{DDA} = 3.3 V	-	0.9	-	mA	
Ā _{DC}	ADC时钟频率	-	0.6 -		14 N	Hz	
F _J \=(2)	采样rate	-	0.05		1	MHz	
F _{TRIG} (2)	外部触发器	F _{ADC} = 14 MHz	-	-	823	kHz	
TRIG	频率	-		-		ADC	17 1/F
V _{AIN}	转换电压范围	- 0	-	V.	DDA	V	
[R _{AIN} (2)	外部输入阻抗	见公式1和 751详情	-		五0	ķΩ	
[R _{ADC} (2)	采样sw痒 抵抗性	-		-			1 ķΩ
C _{ADC} (2)	内部采样并保持 电容器	-		-			8 pF

DocID024849 Rev 3 66/91

Ť能够50. ADC ch特点(continued)

符号	参数	公司	n.s M	lin	TYP		Max	UniŤ
Ť _{CAL} (2) (3)	14-A-04-23		F _{ADC} = 14兆赤	*		5.9		微秒
CAL C	校准时间		-			83		
			ADC时钟= HSI14	ı	1.5 ADC 周期+2 F _{PCLK} 周期	-	1.5 ADC 周期+3 F _{CLK} 周期	-
w (ATENCY (2)	ADC_DR寄存器写入 潜伏		ADC时钟= PCLK	/2	-	4.5	-	F _{CLK} 周期
			ADC时钟= PCLK	/4	-	8.5	-	F _{PCLK} 周期
			F _{ADC} = f _{PCLK} / 14 MHz	2 =	0.196			微秒
			FADC = fPCLK	1	2		5 _F 5 _{CLK}	
Ť _{latr} ⁽²⁾	Ť装配工转换 潜伏		F _{ADC} = f _{PCLK} / 12 MHz	4 =	0.219µs			
			F _{ADC} = f _{PCLK} / 4			1-6£ĸ		
			F _{ADC} = f _{HSI14} = 1	4兆赫	0.188	-	0.259	微秒
抖动 _{ADC}	触发时ADC抖动 转变		F _{ADC} = f _{HSI1}	4	-	1	-	1/F _{HSI14}
ţ''(5)	采样时间		F _{ADC} = 14兆	.	0.107	-	17.1	微秒
小号 ′	木件町町		-		1.5	-	239.5	1 46
Ťsтав ⁽²⁾	小号制表时间		-		14			1/f ADC
Ť _{CONV} (2)	Ť总转换时间		F _{ADC} = 14 MI 12位分辨率	Ηz,	1	-	18	微秒
CONV	(包括抽样时间)		12位分辨率		14至252(t _J 、 连续批准xima	取样+12 ition)	.5 for	的加热

DDA 和60µA

- 2. 设计保证,而不是tested在生产中。
- 3. 小号pecified值仅包括ADC时序。它不包括寄存器访问的延迟。
- 4. 此参数指定转换传输的延迟结果到ADC_DR 寄存器。此时设置EOC标志。

公式1: R
$$_{\text{AIN}}$$
 最大公式 $_{T_{\text{Jye}}}$ $_{\text{Fadc}}$ $_{\text{C}}$ $_{\text{ADC}}$ $_{\text{ADC}}$ $_{\text{ADC}}$ $_{\text{ADC}}$

上面的公式(公式1)是过去常常蔑视格言外部因素edance 允许误差低于LSB的1/4。她的e N = 12(来自12位分辨率N)。

577

DocID024849 Rev 3

/91

的1 / f

Ť能够51.R AIN 最大为f ADC = 14 MHz

Ť _小 類期)	t _{/J\} ∉jµs)	aRn最大(K Ω) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28。5	2。 04	2五。2
41。5	2。96	37₀ 2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

1. 设计保证,而不是tested在生产中。

(1) (2) (3) Ť能够.ADC accuracy

符号	参数	T.est条件 T.是的	j i	長大	(4)	单元	
ET	T.总不可调整的错误			±3.3	±4		
EO	偏移误差	F _{CLK} = 48 MHz,		±1.9	±2.8		
EG	增益误差	反 _{DC} = 14 MHz,R _{AIN} <10千9 V _{DDA} = 2.7 V至3.6 V.	2	±2.8	±3	LSB	
ED	差分线性误差	Ť_¬¬40至85°C	±0.7	±1.3			
EL	积分线性误差		±1.2	±.	1.7		

1. ADC DC精度值are内部校准后测量。

1. ADC DC4時度協同はPSpPTX. IEID 河里。
ADC 開度与反向注入 4項: 注射是负面的é 任何标准(非鲁棒)模拟输入上的电流应避免使用引脚,因为这会显着降低a转换的推确性是在另一个模拟上进行的输入。建议添加一个肖特基二极管(引脚到gr)到标准的模拟引脚,可能会注入负电流任何正注入电流都会减小指定的限值 NJ (PIN 472 我 INJ (PIN 474 在确性。

INJ (PIN和Σ我 INJ (PIN在Section 6.3.14 不影响ADC

3. 更好的表现可能是ach在受限制的V中 DDA,频率和温度范围。

4. 基于特征结果的数据,未在p中测试roduction。

图22. ADC精度特性

图23. T.ypical connecti在使用ADC的图表上

1. 参见T.能够50: ADC特性FOr的值

AIN, RADC和C. ADCº

一般PCB设计指南

电源去耦应如图12所示执行:电源 ÿ 计划。10 nF的上限 acitor应该是陶瓷(质量好),它应该放在一个小号

477

DocID024849 Rev 3 69/91

6.3.17 T.温度传感器特性

Ť能够53. TS charac开创性意义

符号	参数	最小	ŧyp	最大	单位	
Ť _大 싘 ¹⁾	V _感 温度线性	- ±1±2	۰		С	
Avg_Slope (1)	平均坡度	4	.0 4	1.3	4.6 r	nV /°C
V ₌₊	V电压为30°C (±5°C) (2)		1.34	1.43	1.52	V
Ťsτ↑R(1)	ADC_IN16缓冲启动时间		-	-	10	微秒
Ť _{S_temp} (1)	读取时的ADC采样时间 温度		4	-	-	

1. 设计保证,而不是tested在生产中。
2. 在处测量 DDG 3.3 V ± 10 mV。V. = ADC转换结果存储在TS_CAL1字节中。参见T能3: T温度传感器校准值。

6.3.18定时器 特点

参数在随后的表格中给出了es由设计保证。

有关输入/ o的详细信息,请参见第6.3.14节: //O端口特性 utput alternate 功能特征(outpu比较,我输入捕捉,外部时钟,PWM输出)。

Ť能54. TIMx characteristics

TRO4. THEIX CHARACTERISTICS									
符号	参数条	件	闵 \$	是的	므	x 单位			
Ť _{RES} (TIM)	Ťimer决议		-			1	-	ŤімхСLК	
RES (TIM)			F _{TIMXCLK} = 48 N	lHz	-	20.8	-	ns	
Ext	Ťimer外部时钟 CH1的频率 至		-			F _{TIMxCLK} /2	-	MHž	
EXI	CH4 CH4		F _{TIMxCLķ} = 48¾ši	赫	-	24	-	兆赫	
	16位定时器最大值 期		-			2 ¹⁶	-	ŤімхСLК	
ŤMAX_COUNT			F _{TIMxCLK} = 48 N	lHz	-	1365	-	μs	
WIAA_COUNT	最多32位计时器	-			2 ³²	-	ŤімхСLК		
	期		F _{TIMxCLK} = 48 N	lHz	-	89.48	-	s	

■月ビ	呼55. IWDG電	约10最大超的 周期为40 KF	iz (LSI)	
预分频器分频器 P	R [2: 0]位	最小超时RL [11: 0] = 量0x000	最大超时RL [11: 0] = 0xFFF的	单元
/ 4	0	0.1	409.6	
/8	1	0.2	819.2	
/ 16	2	0.4	1638.4	
/ 32	3	0.8	3276.8	女士
/ 64	4	1.6	6553.6	

这些时间,给出了一个40kH z时钟,但微控制器inteRC频率可以变化 从30岁起 到60 kHz,此外,给出一个ex act RC振荡器频率,行为时间仍然取决于阶段性 APB接口时钟与LSI时钟的关系总是如此 完整的RC时期的不确定性。

6或7

Ť能够56. WWDG min / max timeout值为48 MHz(PCLK)

预分频器	WDGTB	最小超时值 最大	超时值 单位	
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	女士
4	2	0.3413	21.8453	X.T
8	3	0.6826	43.6906	

3.2

6.4

6.3.19沟通 接口

_2d接口 特点

/ 128

/ 256

I2C接口满足时间重新开始quirement我的

²C-bus规范和用户

13107.2

26214.4

手动转速。03代表:

●S 标准模式 (Sm): 比特率高达100 kbit / s的 ● 快速模式 (Fm) : 比特率高达400 kbit / s

• 快速模式加(Fm +): 带有 比特率高达1 Mbit / s。 I2C时序要求是瓜尔通过anteed 设计时 I2C外设是正确的LY配置(参考参考手册)。

SDA和SCL I / O需要阿姨e遇到以下限制: the SDA和 SCL I / O引脚不是"真正的"开漏。瓦配置为open-drain,PMOS 连接在I / O引脚和V之间 DDIOx 已禁用,但仍然存在。只有FTf I / O引脚 支持Fm +低电平输出电流准则嗯要求。Refe到 第6.3.14节: //O. I2C I / O 特性的端口特性开创性意义。

所有I2C SDA和SCL I / O都嵌入了模拟滤波器。参见t能够在下面进行模拟 过滤特性:

DocID024849 Rev 3

T能够57. I2C模拟滤波器特性ristics								
符号	参数	最小	最为	单位	Ì			
Ť _{AF}	尖峰的最大脉冲宽度 那 被模拟滤波器抑制		50 ⁽²⁾	260 ⁽³⁾	NS			

1. 设计保证,未经测试 在生产中。

2. 小号宽度低于t的长矛 AF (分辨过滤了。 3. 小号宽度大于t的长矛 AF (最大量有过滤

SPI特性

除非另有说明,否则Ta中给出的参数b升분 SPI的 58是派生的来自测试在…下执行环境温度ture,f总结于 $tilde{tilde}$ $tilde{tilde}$ tilde tilde

请参见第6.3.14节:I/O. 港口特色ics了解更多详情在输入/输出上Iternate 功能特征。

Ť能够58. SPI characteristics ⁽¹⁾

符号	参数	C.onditions 最/	】 最	大 单位		
Fsck	SPI时钟频率	主模式	-	18	- 兆赫	
1 /吨(SCK)	OI 103 17799.	奴隶模式	-	18		
ŤR (SCK) Ť (SCK)	SPI时钟上升和下降 时间	电容负载: C = 15 pF	-	6 1	ns	
Ťsu (NSS)	NSS设置时间 从	模式 4Tp	clk -			
Ť (NSS)	NSS保持时间	从属模式 27	pclk + 10	-		
Ťw (SCKH) Ťw (SCKL)	SCK高低时间	主模式,f PCLK = 36 MHz,presc = 4	Tpclk / 2 -2	Tpclk / 2 + 1	ı	
Pn (RI)	数据输入设置时间	主模式	4	-		
		奴隶模式	5	-		
ŤH (MI)	数据输入保持时间	主模式	4	-		
Ť _H (SI)		奴隶模式	5	-	NS	
Ľ _{↑ (SO)}	数据输出访问时间 从模式	t, f _{PCLK} = 20 MHz	0	3Tpclk		
Ťus (so) ⁽³⁾	数据输出禁用时间 从模式	t o	18			
Ť _(SO)	数据输出有效时间 从村	莫式(使能边沿后) -	22.5			
Ť (MO)	数据输出有效时间 主机	莫式(after enable edge) -	6			
Ťi (SO)	数据输出保持时间	从模式(使能边沿后) 11.5	-			
Ť (мо)	WINDHIM INTERNAL	主模式(启用边沿后) 2	-			
DuCy (SCK)	SPI从机输入时钟 占空比	奴隶模式	25	75	%	

- 1. 基于表征结果的数据,未在生产中测试。
- 2. 最短时间是驱动o的最短时间utput和最长时间是验证数据的最长时间。
- 3. 最短时间是使无效的最短时间输出和最大时间是将数据置于Hi-Z的最长时间

577

STM32F030x4 / x6 / x8 / xC Elect特征

图24. SPI时序图 - 从机模式和CPHA = 0

图25. SPI时序图 - 从机模式和CPHA = 1

NSS input

W=^=h(NSS)

1. 测量点在CMOS电平下完成: 0.3 V.

_{DD}和0.7 V _{DD°}

47/

DocID024849 Rev 3

图26. SPI时序图 - 主模式

1. 测量点在CMOS电平下完成: 0.3 V.

_{DD}和0.7 V _{DD}。

7包 信息

为了满足环境心理需求公关,ST在这些设备中加入了这些设备不同等级的ECOPACK[®]包,依赖他们的环境水平一个遵守法规。ECOPACK规格,等级定义和产品状态可在以下网址获得:www.St.com。ECOPACK[®]是ST商标。

7.1 LQFP64 package信息

LQFP64是64针,10 x 10 毫米薄型四方扁平封装。

1. 绘图不按比例绘制。

Ť能够59. LQFP64机械数据 一个

符号		毫米		英寸	(1)	
19.5	Min	T是的	Max	Min	T是的	最大
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DocID024849 Rev 3

Ť能够59. LQFP64机械da Ťa(续)

	- 130 3.	,	D 0 11 10 - 10 - 1	,,,		
符号		毫米		英寸	(1)	
10.2	Min	T是的	Max	Min	T是的	最为
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
Е	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
K		0°	3。五°	7°		0°
大号	0.450	0.600	0.750	0.0177	7 0.023	36 0.02
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

1. V在inches从mm转换为4 de数字。

1. 尺寸以毫米为单位表示。

STM32F030x4 / x6 / x8 / xC 封装信息

设备标记

下图给出了top的示例侧面标记方向ation与pin 1标识符 地占.

其他可选标记或插入/ upset marks,它确定了标准杆通过供应连锁经营,未在下面说明。

图29. LQFP64标记示例(package顶视图)

 标有"ES","E"或附有的部件工程样本通知函,还没有 合格、因此尚未准备好使用生产以及由此产生的任何后果 使用不会在ST费用。在任何情况下,ST都不对客户的使用负责 这些工程 生产中的样品。ST质量必须be 之前的一个你决定使用这些工程 样品运行资格活动。

DocID024849 Rev 3 77/91

7.2 LQFP48 package信息

LQFP48是48引脚,7 x 7 mm低压 四方扁平包装

图30. LQFP48大纲

1. 绘图不按比例绘制。

Ť能够60. LQFP48 机械数据─个

符号		毫米		英寸	(1)	
14.2	Min	T是的	Max	Min	T是的	最大
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	00.010
С	0.090	-	0.200	0.0035	-	00.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200 0.	2677 0.2756 0.	2	835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622

封装信息 STM32F030x4 / x6 / x8 / xC

Ť能60. LQFP48机械 DATa(续)

#* D			毫米		(1)	(1)	
符号	Min	T是的	Max	Min	T是的	最大	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	00.029	
L1	-	1.000	-	-	0.0394	-	
k		0°	3。五°	7°		0°	
ccc	-	-	0.080	-	-	0.0031	

图31. LQFP48推荐的脚打印

1. 尺寸以毫米为单位表示。

577

DocID024849 Rev 3

79/91

3。五°

^{1.} V以英寸为单位的对象从mm和r转换而来四位数。

设备标记

下图给出了top的示例侧面标记方向ation与pin 1标识符

其他可选标记或插入/ upset marks,它确定了标准杆通过供应连锁经营,未在下面说明。

标有"ES","E"或附有的部件工程样本通知函,还没有合格,因此尚未准备好使用生产以及由此产生的任何后果使用不会在5T费用。在任何情况下,ST 都不对客户的使用负责 这些工程生产中的特品。ST质量必须be 之前的一个你决定使用这些工程样品运行资格活动。

7.3 LQFP32 package信息

LQFP32是一个32引脚,7 x 7 mm低压 四方扁平包装

图33. LQFP32概述

1. 绘图不按比例绘制。

Ť能够61. LQFP32 机械数据─个

符号		毫米		英寸	(1)	
19 5	Min	T是的	Max	Min	T是的	最力
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DocID024849 Rev 3

91

Ť能61. LQFP32机械 DATa(续)

	毫米		**-	(1)	
			英寸	(1)	
Min	T是的	Max	Min	T是的	最大
0.300	0.370	0.450	00.0118	0.0146	0.017
0.090	-	0.200	0.0035	-	00.0079
8.800	9.000	9.200	0.3465	0.3543	0.3622
6.800	7.000	7.200 0.	2677 0.2756 0.	2	835
-	5.600	-	-	0.2205	-
8.800	9.000	9.200	0.3465	0.3543	0.3622
6.800	7.000	7.200	0.2677	0.2756	0.2835
-	5.600	-	-	0.2205	-
-	0.800	-	-	0.0315	-
0.450	0.600	0.750	0.0177	0.0236	00.029
-	1.000	-	-	0.0394	-
	0°	3。五°	7°		0°
-	-	0.100	-	-	0.0039
	0.300 0.090 8.800 6.800 - 8.800 6.800 - - 0.450	0.300 0.370 0.090 - 8.800 9.000 6.800 7.000 - 5.600 8.800 9.000 6.800 7.000 - 5.600 - 0.800 0.450 0.600 - 1.000	0.300 0.370 0.450 0.090 - 0.200 8.800 9.000 9.200 6.800 7.000 7.200 0. - 5.600 - 8.800 9.000 9.200 6.800 7.000 7.200 - 5.600 - - 0.800 - 0.450 0.600 0.750 - 1.000 - 0° 3₀ 五°	0.300 0.370 0.450 00.0118 0.090 - 0.200 0.0035 8.800 9.000 9.200 0.3465 6.800 7.000 7.200 0.2677 0.2756 0. - 5.600 - - 8.800 9.000 9.200 0.3465 6.800 7.000 7.200 0.2677 - 5.600 - - - 0.800 - - 0.450 0.600 0.750 0.0177 - 1.000 - - 0° 3。至° 7°	0.300 0.370 0.450 00.0118 0.0146 0.090 - 0.200 0.0035 - 8.800 9.000 9.200 0.3465 0.3543 6.800 7.000 7.200 0.2677 0.2756 0.2 - 0.2205 8.800 9.000 9.200 0.3465 0.3543 6.800 7.000 7.200 0.2677 0.2756 - 5.600 - - 0.2205 - 0.800 - - 0.0315 0.450 0.600 0.750 0.0177 0.0236 - 1.000 - - 0.0394 0° 3.5 \$\pi^{\circ}\$ 7°

1. V以英寸为单位的对象从mm和r转换而来四位数。

1. 尺寸以毫米为单位表示。

82/91 DocID024849 Rev 3

3。五°

STM32F030x4 / x6 / x8 / xC 封装信息

设备标记

下图给出了top的示例侧面标记方向ation与pin 1标识符 地占.

其他可选标记或插入/ upset marks,它确定了标准杆通过供应连锁经营,未在下面说明。

图35. LQFP32标记示例(package顶视图)

1. 标有"ES","E"或附有的部件工程样本通知函,还没有 合格,因此尚未准备好使用生产以及由此产生的任何后果 使用不会在ST费用。在任何情况下,ST都不对客户的使用负责 这些工程 生产中的样品。ST质量必须be 之前的一个你决定使用这些工程 样品运行资格活动。

DocID024849 Rev 3

.

7.4 TSSOP20 package信息

TSSOP20是一款20引脚薄型收缩小外形,6.5 x 4.4 mm,0.65 mm间距封装。

图36.TSSO P20大纲

1. 绘图不按比例绘制。

Ť能62. TSSOP20机制数据

符号		毫米		英寸	(1)	
19 5	闵。	ŤΥΡ。	最大。	闵。	ŤΥΡ。	最大
A	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
С	0.090	-	0.200	0.0035	-	0.0079
D	6.400	6.500	6.600	0.2520	0.2559	0.2598
E	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1	4.300	4.400	4.500	0.1693	0.1732	0.1772
е	-	0.650	-	-	0.0256	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-

577

STM32F030x4 / x6 / x8 / xC 封装信息

Ť能62. TSSOP20机械anical data(续)

符号		毫米		英寸	(1)	
19.5	闵。	ŤYP。	最大。	闵。	ŤΥΡ。	最大
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

1. V以英寸为单位的数字由mm和r转换四位数。

1. 尺寸以毫米为单位表示。

577

DocID024849 Rev 3

_

设备标记

下图给出了top的示例侧面标记方向ation与pin 1标识符 地占.

其他可选标记或插入/ upset marks,它确定了标准杆通过供应连锁经营,未在下面说明。

图38. TSSOP20标记 例子(package顶部 视图)

L. 标有"ES","E"或附有的部件工程样本通知函,还没有合格,因此尚未准备好使用生产以及由此产生的任何后果使用不会在ST费用。在任何情况下,ST都不对客户的使用负责 这些工程生产中的样品。ST质量必须be 之前的一个你决定使用这些工程样品运行资格活动。

STM32F030x4 / x6 / x8 / xC 封装信息

7.5热量 特点

格言嗯芯片junc温度尿素(T. 钽*b*升Ë *21*:一般操作条件。 _Ĵmax)绝不能超过给定的值

最大的筹码君温度,T _Ĵ max,以摄氏度为单位,可能是 计算 使用以下等式:

 $\check{T}_{\hat{J}}$ max = T_—最大+(P_d 最大X Θ_{JA})

哪里:

•T _max是最大值a温度以°为单位C,

Θ_{JA} 是封装结到环境的抵抗力以° C / W表示,

• P $\frac{1}{M}$ max是P的总和 $\frac{1}{M}$ 最大值 $\frac{1}{M}$ 最大值 $\frac{1}{M}$ 最大作 $\frac{1}{M}$ 最大作 $\frac{1}{M}$ 最大作 $\frac{1}{M}$ $\frac{1}{$

PI/O最大代表发现了最大功率d发行on输出引脚whERE:

 $P_{I/M}$ max = Σ ($V_{OL} \times 30_{OL}$) + Σ ($D_{OV_{-}}V_{-}$) × 3 ()

考虑进去 帐户实际的V. ol / つ世和V. 哦 / 哦世 / O处于低位 和高水平我在 应用。

Ť能够63. Packag热炭Cucumis Sativus查阅全文

符号	帕拉米 五	ALUE 单	位
	热阻结 - 环境 LQFP64 - 10毫米x 10毫米	44	
	热阻结 - 环境 LQFP48 - 7 mm x 7 mm	55	°C/W
Θĵ	热阻结 - 环境 LQFP32 - 7 mm x 7 mm	56	C/W
	热阻结 - 环境 TSSOP20 - 6.5 mm x 6.4 mm	76	

7.5.1参考 文献

JESD51-2集成电路它的热量 Ťest 方法环境条件 - 自然 对流(S.直到A.IR)。可从www.jedec.org

DocID024849 Rev 3

477

8订购 信息

有关可用o的列表ptions(记忆,package,a等等)或进一步的信息关于任何问题 该设备的一个方面,请联系离您最近的ST销售办事处。

XXX =已编程的p之才 TR =磁带和卷轴

STM32F030x4 / x6 / x8 / xC 修订历史

9修订历史

Ť能够65. Document修订版 历史

日期	修订	更改
04-Jul-2013	1	初始版本。
2015年1月15日	2	扩展适用性 STM32F030xC。 更新: -F. 吃东西和T.能够 设备摘要, - 部分: 描述, - T.能够: STM32F030x4/6/8/C系列器件功能和外围计数, - 图: 方块图, - 部分: 回忆, - 部分: 回加, - 部分: 回加, - 部分: 回加, - 部分: 回加, - 多。在证的:通用同步/异步接收器发射器(USART), - T.能够: 通过选择的替代功能HGPIOA_AFR为端口A注册, - T.能够: 通过选择的替代功能HGPIOB_AFR为端口B注册, - T.能够: 通过选择的替代功能HGPIOB_AFR为端口B注册, - T.能够: 通过选择的替代功能HGPIOD_AFR注册端口D, - T.能够: 通过选择的替代功能HGPIOD_AFR注册端口D, - T.能够: 通过选择的替代功能HGPIOD_AFR注册端口D, - T.能够: 通过选择的替代功能HGPIOD_AFR注册端口D, - 部分: EMC特性, - 图: LQFP64标记 示例(包顶视图), - 图: LQFP64标记 示例(包顶视图), - 图: LQFP32标记 示例(包顶视图), - 图: LGFP32标记 示例(包顶视图), - 图: TSSOP20标记示例(包顶视图),
2017年1月23日	3	更新: - T. 能够2: STM32F030x4/x6/x8/xC family设备功能和外围设备数量 - F. 图1: 方框图和图脚注 - 图2: 时钟树和图脚注 - 第3节 0.11: 定时器和看门狗- 数量的计时器,补数计数表中的ary输出和脚注

Ť能够65. Docume修订历史(继续d)

日期	修订	更改
2017年1月23日	修订 修订	

进口ANT通知 - PL易读仔细阅读ÿ

STMicroelectronics NV及其潜艇idiary('ST')储备 的权利 做出改变rrections, 改进,莫迪fications, 和完善的对ST产品ts和或他的文件在任何地方没有 注意。 买家 应该ob迟到了相关的T IN 的mation on ST产品之前 放置ordeRS。 ST产品cts被出售讽刺ST的条款和合作ndition销售到位 在o的时候刻申 acknowledgEMENT。

买家 完全是 responsi为了这个选择, 的SelectIOn,并使用 ST products和ST as没有李能力适用离子一ssistance或 的设计 购买者s'的产品。

没有许可证e,快递 或隐含的, 去任何 知识分子 财产局ight是gr由S提供在这里。

ST pro的转售有条件的管道离子不同fr信息离子堡垒这里是shall使任何warr无效安蒂格兰特由ST代表such产品。

ST和the ST标志 是贸易ST的arks。所有其他产品o服务名字是 道具他们的性格r respec主人秒。

Informati在这篇文章中超级edes和替换通知先前供应在任何prio中编辑r版本 这个文件NT。

©2017 STMicroelectronics - 行储备ED

DocID024849 Rev 3