Complexity Theory Part One

Up to this point: "Can we solve this problem?" (Computability Theory)

Starting today:

"Ok, even if we *can*, we need to consider whether the time/resources required actually make practical/feasible sense."

(Complexity Theory)

A Decidable Problem

- *Presburger arithmetic* is a logical system for reasoning about arithmetic.
 - $\forall x. \ x + 1 \neq 0$
 - $\forall x. \ \forall y. \ (x + 1 = y + 1 \rightarrow x = y)$
 - $\forall x. \ x + 0 = x$
 - $\forall x. \ \forall y. \ (x + y) + 1 = x + (y + 1)$
 - $(P(0) \land \forall y. (P(y) \rightarrow P(y+1))) \rightarrow \forall x. P(x)$
- Given a statement, it is decidable whether that statement can be proven from the laws of Presburger arithmetic.
- Any Turing machine that decides whether a statement in Presburger arithmetic is true or false has to move its tape head at least $2^{2^{cn}}$ times on some inputs of length n (for some fixed constant $c \ge 1$).

For Reference

• Assume c = 1.

```
2^{2^{0}} = 2
2^{2^{1}} = 4
2^{2^{2}} = 16
2^{2^{3}} = 256
2^{2^{4}} = 65536
2^{2^{5}} = 18446744073709551616
2^{2^{6}} = 340282366920938463463374607431768211456
```

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is *feasibly* decidable.
- In *computability theory*, we ask the question What problems can be solved by a computer?
- In complexity theory, we ask the question
 What problems can be solved
 efficiently by a computer?
- In the remainder of this course, we will explore this question in more detail.

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is *feasibly* decidable.
- In *computability theory*, we ask the question What problems can be solved by a computer?

• In *complexity theory*, we ask the question

Where We've Been

- The class **R** represents problems that can be solved by a computer.
- The class **RE** represents problems where "yes" answers can be verified by a computer.

Where We're Going

- The class **P** represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where "yes" answers can be verified *efficiently* by a computer.

All Languages

The Setup

- In order to study computability, we needed to answer these questions:
 - What is "computation?"
 - What is a "problem?"
 - What does it mean to "solve" a problem?
- To study complexity, we need to answer these questions:
 - What does "complexity" even mean?
 - What is an "efficient" solution to a problem?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of *D*?

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of *D*?
 - Number of states.
 - Size of tape alphabet.
 - Size of input alphabet.
 - Amount of tape required.
 - Amount of time required.
 - Number of times a given state is entered.
 - Number of times a given symbol is printed.
 - Number of times a given transition is taken.
 - (Plus a whole lot more...)

Measuring Complexity

- Suppose that we have a decider D for some language L.
- How might we measure the complexity of *D*?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.

Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an efficient algorithm?

Searching Finite Spaces

- Many decidable problems can be solved by searching over a large but finite space of possible options.
- Searching this space might take a staggeringly long time, but only finite time.
- From a decidability perspective, this is totally fine.
- From a complexity perspective, this may be totally unacceptable.

log₂n	n	n log ₂ n	n²	2 ⁿ
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64			
7	128	-		
8	256			
9	512			
10	1,024			
30	2,070,000,000			

Two *tiny* little updates

- Imagine we approve statehood for Puerto Rico
 - Add San Juan, the capital city
- Also add Washington, DC

This work has been released into the <u>public capplies</u> worldwide.

Now 52 capital cities instead of 50

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **Y** or **N**.

log₂n	n	n log₂n	n²		2 ⁿ	
2	4	8	1	.6	16	
3	8	24		64	256	
4	16	64	2.	56	65,536	
5	32	160	1,0	24	4,294,967,296	
6	64	384	4,0	96	1.84 x 10 ¹⁹	
7	128	896	16,3	884	3.40 x 10 ³⁸	
8	256		3.59E+21 YEARS			
9	512					
10	1,024					
30	2,070,000,000					

log ₂ n	n	n log₂n	n ²	2 ⁿ
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84 x 10 ¹⁹
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16 x 10 ⁷⁷
9	512	4,608	262,144	1.34×10^{154}
10	1,024	10,240 (.000003s)	1,048,576 (.0003s)	1.80 x 10 ³⁰⁸
30	2,070,000,000	64,062,560,941 (35s)	4,284,900,000,000,000, 000 (75 years)	LOL

log ₂ n	n	n log ₂ n	n²	2 ⁿ
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84 x 10 ¹⁹
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16 x 10 ⁷⁷
9	512	4,608	262,144	1.34×10^{154}
10	1,024	10,240 (.000003s)	1,048,576 (.0003s)	1.80 x 10 ³⁰⁸
30	2,070,000,000	64,062,560,941 (35s)	4,284,900,000,000,000, 000 (75 years)	1.06 x 10 ^{623,132,091}

1.86×10^{623,132,074} years

log ₂ n	n	n log ₂ n	n²	2 ⁿ
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84 x 10 ¹⁹
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16 x 10 ⁷⁷
9	512	4,608	262,144	1.34×10^{154}
10	1,024	10,240 (.000003s)	1,048,576 (.0003s)	1.80×10^{308}
30	2,070,000,000	64,062,560,941 (35s)	4,284,900,000,000,000, 000 (75 years)	1.06 x 10 ^{623,132,091}

2ⁿ is clearly infeasible, but look at log₂n —only a tiny fraction of a second!

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

 4
 3
 11
 9
 7
 13
 5
 6
 1
 12
 2
 8
 0
 10

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of the longest increasing subsequence of this sequence.

Longest Increasing Subsequences

- *One possible algorithm:* try all subsequences, find the longest one that's increasing, and return that.
- There are 2^n subsequences of an array of length n.
 - (Each subset of the elements gives back a subsequence.)
- Checking all of them to find the longest increasing subsequence will take time $O(n \cdot 2^n)$.
- Nifty fact: the age of the universe is about 4.3×10^{26} nanoseconds old. That's about 2^{85} nanoseconds.
- Practically speaking, this algorithm doesn't terminate if you give it an input of size 100 or more.

Longest Increasing Subsequences

- *Theorem:* There is an algorithm that can find the longest increasing subsequence of an array in time $O(n \log n)$.
- The algorithm is *beautiful* and surprisingly elegant. Look up *patience sorting* if you're curious.
- This algorithm works by exploiting particular aspects of how longest increasing subsequences are constructed. It's not immediately obvious that it works correctly.

Another Problem

Another Problem

Another Problem

Goal: Determine the length of the shortest path from **A** to **F** in this graph.

Shortest Paths

- It is possible to find the shortest path in a graph by listing off all sequences of nodes in the graph in ascending order of length and finding the first that's a path.
- This takes time $O(n \cdot n!)$ in an n-node graph.
- For reference: 29! nanoseconds is longer than the lifetime of the universe.

Shortest Paths

- **Theorem:** It's possible to find the shortest path between two nodes in an n-node, m-edge graph in time O(m + n).
- **Proof idea:** Use breadth-first search!
- The algorithm is a bit nuanced. It uses some specific properties of shortest paths and the proof of correctness is nontrivial.

For Comparison

- Longest increasing
 Shortest path subsequence:
 - Naive: $O(n \cdot 2^n)$
 - Fast: $O(n^2)$

- problem:
 - Naive: $O(n \cdot n!)$
 - Fast: O(n + m).

Defining Efficiency

- When dealing with problems that search for the "best" object of some sort, there are often at least exponentially many possible options.
- Brute-force solutions tend to take at least exponential time to complete.
- Clever algorithms often run in time O(n), or $O(n^2)$, or $O(n^3)$, etc.

Polynomials and Exponentials

- An algorithm runs in *polynomial time* if its runtime is some polynomial in *n*.
 - That is, time $O(n^k)$ for some constant k.
- Polynomial functions "scale well."
 - Small changes to the size of the input do not typically induce enormous changes to the overall runtime.
- Exponential functions scale terribly.
 - Small changes to the size of the input induce huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be **decided efficiently** if there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if it can be decided in time $O(n^k)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is **not** a theorem!

It's an assumption about the nature of efficient computation, and it is somewhat controversial.

The Cobham-Edmonds Thesis

According to the Cobham-Edmonds thesis, how many of the following runtimes are considered efficient?

$$4n^2 - 3n + 137$$
 10^{500}
 2^n
 1.000000000001^n
 $n^{1,000,000,000,000}$
 $n^{\log n}$

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **a number**.

The Cobham-Edmonds Thesis

- Efficient runtimes:
 - 4n + 13
 - $n^3 2n^2 + 4n$
 - *n* log log *n*
- "Efficient" runtimes:
 - n^{1,000,000,000,000}
 - 10⁵⁰⁰

- Inefficient runtimes:
 - 2^n
 - n!
 - *n*ⁿ
- "Inefficient" runtimes:
 - $n^{0.0001 \log n}$
 - 1.00000001^n

Why Polynomials?

- Polynomial time *somewhat* captures efficient computation, but has a few edge cases.
- However, polynomials have very nice mathematical properties:
 - The sum of two polynomials is a polynomial. (Running one efficient algorithm, then another, gives an efficient algorithm.)
 - The product of two polynomials is a polynomial. (Running one efficient algorithm a "reasonable" number of times gives an efficient algorithm.)
 - The *composition* of two polynomials is a polynomial. (Using the output of one efficient algorithm as the input to another efficient algorithm gives an efficient algorithm.)

The Complexity Class **P**

- The *complexity class* **P** (for *p*olynomial time) contains all problems that can be solved in polynomial time.
- Formally:
 - $\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$
- Assuming the Cobham-Edmonds thesis, a language is in **P** if it can be decided efficiently.

Examples of Problems in **P**

- All regular languages are in **P**.
 - All have linear-time TMs.
- All CFLs are in **P**.
 - Requires a more nuanced argument (the *CYK algorithm* or *Earley's algorithm*.)
- And a ton of other problems are in P as well.
 - Curious? Take CS161!

Undecidable Languages

Undecidable Languages

How many simple paths are there from the start node to the end node?

List all the subsets of a given set.

Calculate 2ⁿ for a given *n*, where the input and output are both written in unary (base 1).

An Interesting Observation

- There are (at least) exponentially many objects of each of the preceding types.
- However, each of those objects is not very large.
 - Each simple path has length no longer than the number of nodes in the graph.
 - Each subset of a set has no more elements than the original set.
- This brings us to our next topic...

What if you need to search a large space for a single object?

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1						2	
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

Does this Sudoku problem have a solution?

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

Does this Sudoku problem have a solution?

Is there an ascending subsequence of length at least 7?

Is there an ascending subsequence of length at least 7?

Is there a simple path that goes through every node exactly once?

Is there a simple path that goes through every node exactly once?

Verifiers

- Recall that a verifier for L is a TM V such that
 - *V* halts on all inputs.
 - $w \in L$ iff $\exists c \in \Sigma^*$. V accepts $\langle w, c \rangle$.

Polynomial-Time Verifiers

- A **polynomial-time verifier** for L is a TM V such that
 - *V* halts on all inputs.
 - $w \in L$ iff $\exists c \in \Sigma^*$. V accepts $\langle w, c \rangle$.
 - V's runtime is a polynomial in |w| (that is, V's runtime is $O(|w|^k)$ for some integer k)

The Complexity Class NP

- The complexity class **NP** (*nondeterministic polynomial time*) contains all problems that can be verified in polynomial time.
- Formally:

```
\mathbf{NP} = \{ L \mid \text{There is a polynomial-time }  verifier for L \}
```

- The name **NP** comes from another way of characterizing **NP**. If you introduce *nondeterministic Turing machines* and appropriately define "polynomial time," then **NP** is the set of problems that an NTM can solve in polynomial time.
- Although it's not immediately obvious, $NP \subseteq R$. Come talk to me after class if you're curious why!

And now...

The

Most Important Question in

Theoretical Computer Science

 $\mathbf{P} = \{ L \mid \text{There is a polynomial-time } \\ \text{decider for } L \}$

 $\mathbf{NP} = \{ L \mid \text{There is a polynomial-time }$ verifier for $L \}$

 $\mathbf{P} = \{ L \mid \text{There is a polynomial-time } \\ \text{decider for } L \}$

 $\mathbf{NP} = \{ L \mid \text{There is a polynomial-time }$ verifier for $L \}$

$$P \subseteq NP$$

Which Picture is Correct?

Which Picture is Correct?

Does P = NP?

$\mathbf{P} \stackrel{?}{=} \mathbf{NP}$

- The $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$ question is the most important question in theoretical computer science.
- With the verifier definition of \mathbf{NP} , one way of phrasing this question is
 - If a solution to a problem can be **checked** efficiently, can that problem be **solved** efficiently?
- An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
 - Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
 - Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
 - Determining the best way to assign hardware resources in a compiler (optimal register allocation).
 - Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
 - And many more.
- If P = NP, all of these problems have efficient solutions.
- If $P \neq NP$, none of these problems have efficient solutions.

Why This Matters

• If P = NP:

- A huge number of seemingly difficult problems could be solved efficiently.
- Our capacity to solve many problems will scale well with the size of the problems we want to solve.

• If $P \neq NP$:

- Enormous computational power would be required to solve many seemingly easy tasks.
- Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving **P** ² **NP** has proven **extremely difficult**.
- In the past 45 years:
 - Not a single correct proof either way has been found.
 - Many types of proofs have been shown to be insufficiently powerful to determine whether P

 ² NP.
 - A majority of computer scientists believe P ≠ NP, but this isn't a large majority.
- Interesting read: Interviews with leading thinkers about P ² NP:
 - http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered a \$1,000,000 prize to anyone who proves or disproves $\mathbf{P} = \mathbf{NP}$.

Do you think P = NP?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **Y** or **N**.

What do we know about $P \stackrel{?}{=} NP$?

Adapting our Techniques

A Problem

- The **R** and **RE** languages correspond to problems that can be decided and verified, *period*, without any time bounds.
- To reason about what's in R and what's in RE, we used two key techniques:
 - *Universality*: TMs can run other TMs as subroutines.
 - **Self-Reference**: TMs can get their own source code.
- Why can't we just do that for **P** and **NP**?

Theorem (Baker-Gill-Solovay): Any proof that purely relies on universality and self-reference cannot resolve $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$.

Proof: Take CS154!

So how *are* we going to reason about **P** and **NP**?

Next Time

Reducibility

 A technique for connecting problems to one another.

NP-Completeness

What are the hardest problems in NP?