We now easily compute this last integral using the parametrization given by $\mathbf{r}(t) = a\cos t\mathbf{i} + a\sin t\mathbf{j}, 0 \le t \le 2\pi$. Thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C'} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{2\pi} \frac{(-a\sin t)(-a\sin t) + (a\cos t)(a\cos t)}{a^{2}\cos^{2}t + a^{2}\sin^{2}t} dt = \int_{0}^{2\pi} dt = 2\pi$$

We end this section by using Green's Theorem to discuss a result that was stated in the preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We're assuming that $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ is a vector field on an open simply-connected region D, that P and Q have continuous first-order partial derivatives, and that

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \text{throughout } D$$

If C is any simple closed path in D and R is the region that C encloses, then Green's Theorem gives

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} P \, dx + Q \, dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_{R} 0 \, dA = 0$$

A curve that is not simple crosses itself at one or more points and can be broken up into a number of simple curves. We have shown that the line integrals of **F** around these simple curves are all 0 and, adding these integrals, we see that $\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve C. Therefore $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D by Theorem 16.3.3. It follows that **F** is a conservative vector field.

16.4 **EXERCISES**

I-4 Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem.

- 1. $\oint_C (x-y) dx + (x+y) dy$, \tilde{C} is the circle with center the origin and radius 2
- **2.** $\oint_C xy \, dx + x^2 \, dy$, \widetilde{C} is the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1)
- 3. $\oint_C xy dx + x^2 y^3 dy$, C is the triangle with vertices (0, 0), (1, 0), and (1, 2)
- **4.** $\oint_C x \, dx + y \, dy$, *C* consists of the line segments from (0, 1)to (0,0) and from (0,0) to (1,0) and the parabola $y=1-x^2$ from (1, 0) to (0, 1)

5-10 Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

5. $\int_C xy^2 dx + 2x^2y dy$, \overline{C} is the triangle with vertices (0, 0), (2, 2), and (2, 4)

- $\mathbf{6.} \int_{\mathcal{C}} \cos y \, dx + x^2 \sin y \, dy,$ \widetilde{C} is the rectangle with vertices (0,0),(5,0),(5,2), and (0,2)
- 7. $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, \widetilde{C} is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$
- **8.** $\int_C xe^{-2x} dx + (x^4 + 2x^2y^2) dy$, \widetilde{C} is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- **9.** $\int_C y^3 dx x^3 dy$, C is the circle $x^2 + y^2 = 4$
- **10.** $\int_C \sin y \, dx + x \cos y \, dy, \quad C \text{ is the ellipse } x^2 + xy + y^2 = 1$

II-I4 Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. (Check the orientation of the curve before applying the theorem.)

II. $\mathbf{F}(x, y) = \langle \sqrt{x} + y^3, x^2 + \sqrt{y} \rangle$ C consists of the arc of the curve $y = \sin x$ from (0, 0) to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to (0, 0)

- **12.** $\mathbf{F}(x, y) = \langle y^2 \cos x, x^2 + 2y \sin x \rangle$, C is the triangle from (0, 0) to (2, 6) to (2, 0) to (0, 0)
- **13.** $\mathbf{F}(x, y) = \langle e^x + x^2 y, e^y xy^2 \rangle$, *C* is the circle $x^2 + y^2 = 25$ oriented clockwise
- **14.** $\mathbf{F}(x, y) = \langle y \ln(x^2 + y^2), 2 \tan^{-1}(y/x) \rangle$, *C* is the circle $(x 2)^2 + (y 3)^2 = 1$ oriented counterclockwise
- [AS] 15–16 Verify Green's Theorem by using a computer algebra system to evaluate both the line integral and the double integral.
 - **15.** $P(x, y) = y^2 e^x$, $Q(x, y) = x^2 e^y$, C consists of the line segment from (-1, 1) to (1, 1) followed by the arc of the parabola $y = 2 x^2$ from (1, 1) to (-1, 1)
 - **16.** $P(x, y) = 2x x^3y^5$, $Q(x, y) = x^3y^8$, C is the ellipse $4x^2 + y^2 = 4$
 - **I7.** Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y) = x(x + y)\mathbf{i} + xy^2\mathbf{j}$ in moving a particle from the origin along the *x*-axis to (1, 0), then along the line segment to (0, 1), and then back to the origin along the *y*-axis.
 - **18.** A particle starts at the point (-2, 0), moves along the *x*-axis to (2, 0), and then along the semicircle $y = \sqrt{4 x^2}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y) = \langle x, x^3 + 3xy^2 \rangle$.
 - **19.** Use one of the formulas in (5) to find the area under one arch of the cycloid $x = t \sin t$, $y = 1 \cos t$.
- **20.** If a circle C with radius 1 rolls along the outside of the circle $x^2 + y^2 = 16$, a fixed point P on C traces out a curve called an *epicycloid*, with parametric equations $x = 5 \cos t \cos 5t$, $y = 5 \sin t \sin 5t$. Graph the epicycloid and use (5) to find the area it encloses.
 - **21.** (a) If *C* is the line segment connecting the point (x_1, y_1) to the point (x_2, y_2) , show that

$$\int_{C} x \, dy - y \, dx = x_1 y_2 - x_2 y_1$$

(b) If the vertices of a polygon, in counterclockwise order, are $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, show that the area of the polygon is

$$A = \frac{1}{2}[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \cdots$$

$$= + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)]$$

- (c) Find the area of the pentagon with vertices (0, 0), (2, 1), (1, 3), (0, 2), and (-1, 1).
- **22.** Let D be a region bounded by a simple closed path C in the xy-plane. Use Green's Theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$\bar{x} = \frac{1}{2A} \oint_C x^2 dy \qquad \bar{y} = -\frac{1}{2A} \oint_C y^2 dx$$

where A is the area of D.

- **23.** Use Exercise 22 to find the centroid of a quarter-circular region of radius *a*.
- **24.** Use Exercise 22 to find the centroid of the triangle with vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0.
- **25.** A plane lamina with constant density $\rho(x, y) = \rho$ occupies a region in the *xy*-plane bounded by a simple closed path *C*. Show that its moments of inertia about the axes are

$$I_x = -\frac{\rho}{3} \oint_C y^3 dx \qquad I_y = \frac{\rho}{3} \oint_C x^3 dy$$

- **26.** Use Exercise 25 to find the moment of inertia of a circular disk of radius a with constant density ρ about a diameter. (Compare with Example 4 in Section 15.5.)
- **27.** If **F** is the vector field of Example 5, show that $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ for every simple closed path that does not pass through or enclose the origin.
- **28.** Complete the proof of the special case of Green's Theorem by proving Equation 3.
- **29.** Use Green's Theorem to prove the change of variables formula for a double integral (Formula 15.9.9) for the case where f(x, y) = 1:

$$\iint\limits_{R} dx \, dy = \iint\limits_{S} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv$$

Here R is the region in the xy-plane that corresponds to the region S in the uv-plane under the transformation given by x = g(u, v), y = h(u, v).

[*Hint:* Note that the left side is A(R) and apply the first part of Equation 5. Convert the line integral over ∂R to a line integral over ∂S and apply Green's Theorem in the uv-plane.]

16.5 CURL AND DIVERGENCE

In this section we define two operations that can be performed on vector fields and that play a basic role in the applications of vector calculus to fluid flow and electricity and magnetism. Each operation resembles differentiation, but one produces a vector field whereas the other produces a scalar field.