Azzolini Riccardo 2020-11-24

CFG — Alcune proprietà delle derivazioni

1 Proprietà D1

Proposizione: Sia $G = \langle V, T, \Gamma, S \rangle$ una CFG. Se $A \to \gamma \in \Gamma$, allora $A \Rightarrow_G \gamma$ e $A \stackrel{*}{\Rightarrow}_G \gamma$.

Dimostrazione: $A \Rightarrow_G \gamma$ corrisponde alla definizione di \Rightarrow_G ,

$$\alpha A\beta \Rightarrow_G \alpha \gamma \beta$$
 se e solo se $A \to \gamma \in \Gamma$

se si pongono $\alpha=\beta=\epsilon.$ Poi, per definizione, $A\stackrel{*}{\Rightarrow}_G\gamma$ se

$$A \stackrel{*}{\Rightarrow}_G \beta$$
 e $\beta \Rightarrow_G \gamma$

che ponendo $\beta=A$ diventa

$$A \stackrel{*}{\Rightarrow}_G A$$
 e $A \Rightarrow_G \gamma$

dove $A \stackrel{*}{\Rightarrow}_G A$ vale per definizione e $A \Rightarrow_G \gamma$ è appena stata dimostrata, quindi anche $A \stackrel{*}{\Rightarrow}_G \gamma$ è verificata.

2 Proprietà D2

Proposizione: Sia $G = \langle V, T, \Gamma, S \rangle$ una CFG. Se $\alpha \stackrel{*}{\Rightarrow}_G \beta \gamma_1 \delta$ e $\gamma_1 \stackrel{*}{\Rightarrow}_G \gamma_n$, allora $\alpha \stackrel{*}{\Rightarrow}_G \beta \gamma_n \delta$.

Questa proprietà afferma che, se si può costruire una derivazione della stringa γ_n a partire dalla stringa γ_1 , allora si può "simulare" tale costruzione anche quando γ_1 è contenuta in un contesto (costituito dalle stringhe β e δ).

Dimostrazione: Essendo $\gamma_1 \stackrel{*}{\Rightarrow} \gamma_n$, esiste per definizione una sequenza

$$\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n$$

con $n \ge 1$. La dimostrazione procede per induzione su n.

• Se n = 1, allora $\gamma_1 = \gamma_n$ (la derivazione ha lunghezza 0), quindi $\alpha \stackrel{*}{\Rightarrow} \beta \gamma_1 \delta$ implica $\alpha \stackrel{*}{\Rightarrow} \beta \gamma_n \delta$.

• Sia n = h + 1, con $h \ge 1$. La derivazione $\gamma_1 \stackrel{*}{\Rightarrow} \gamma_n$ ha lunghezza h, e l'ipotesi induttiva è che l'asserto della proposizione valga per derivazioni aventi lunghezza minore di h.

Poiché la derivazione $\gamma_1 \stackrel{*}{\Rightarrow} \gamma_n$ ha almeno lunghezza 1, al primo passo $\gamma_1 \Rightarrow \gamma_2$ si ha $\gamma_1 \neq \gamma_2$. Nel passare da γ_1 a γ_2 deve essere stata applicata una regola di produzione a un qualche simbolo non-terminale contenuto in γ_1 , cioè deve essere $\gamma_1 = \gamma' A \gamma''$, $\gamma_2 = \gamma' \pi \gamma''$ e $A \to \pi \in \Gamma$. Per la definizione del passo di derivazione, la stessa regola di produzione può essere applicata se la stringa γ_1 è inserita in un contesto:

$$\beta \underbrace{\gamma' A \gamma''}_{\gamma_1} \delta \Rightarrow \beta \underbrace{\gamma' \pi \gamma''}_{\gamma_2} \delta$$

cioè $\beta \gamma_1 \delta \Rightarrow \beta \gamma_2 \delta$. Da questo, e dal fatto che $\alpha \stackrel{*}{\Rightarrow} \beta \gamma_1 \delta$, si deduce per definizione di $\stackrel{*}{\Rightarrow}$ che $\alpha \stackrel{*}{\Rightarrow} \beta \gamma_2 \delta$. Infine, siccome $\gamma_2 \stackrel{*}{\Rightarrow} \gamma_n$ con una derivazione di lunghezza h-1 < h, si conclude dall'ipotesi induttiva che $\alpha \stackrel{*}{\Rightarrow} \beta \gamma_n \delta$.

3 Proposizione D3

Proposizione: Sia $G = \langle V, T, \Gamma, S \rangle$ una CFG. Se $\alpha \gamma_1 \alpha' \stackrel{*}{\Rightarrow}_G \alpha \gamma_n \alpha'$, con $\alpha, \alpha' \in T^*$, allora $\gamma_1 \stackrel{*}{\Rightarrow}_G \gamma_n$.

Questa proprietà significa che, quando si ha una derivazione di una stringa γ_n a partire da un'altra stringa γ_1 in un contesto fatto solo da terminali, γ_n è derivabile da γ_1 anche in assenza di tale contesto.

Dimostrazione: Essendo $\alpha \gamma_1 \alpha' \stackrel{*}{\Rightarrow} \alpha \gamma_n \alpha'$, esiste per definizione una sequenza

$$\alpha \gamma_1 \alpha' \Rightarrow \alpha \gamma_2 \alpha' \Rightarrow \cdots \Rightarrow \alpha \gamma_n \alpha'$$

con $n \ge 1$. La dimostrazione procede per induzione su n.

- Se n=1, allora $\gamma_1=\gamma_n$, quindi segue immediatamente dalla definizione di $\stackrel{*}{\Rightarrow}$ (come chiusura riflessiva e transitiva) che $\gamma_1\stackrel{*}{\Rightarrow}\gamma_n$.
- Sia n = h + 1, con $h \ge 1$. La derivazione $\alpha \gamma_1 \alpha' \stackrel{*}{\Rightarrow} \alpha \gamma_n \alpha'$ ha lunghezza h, e l'ipotesi induttiva è che l'asserto della proposizione valga per derivazioni aventi lunghezza minore di h.

Mentre per la proposizione D2 si è ragionato sul primo passo della derivazione, qui si ragiona sull'ultimo, $\alpha\gamma_h\alpha'\Rightarrow\alpha\gamma_{h+1}\alpha'$ (con $\gamma_h\neq\gamma_{h+1}$). Siccome α e α' non contengono simboli non-terminali, il simbolo non-terminale trattato nel passo di derivazione deve essere contenuto in γ_h , ovvero $\gamma_h=\gamma' A\gamma''$, $\gamma_{h+1}=\gamma' \pi\gamma''$ e $A\to\pi\in\Gamma$. Questa stessa regola di produzione può essere applicata in assenza del contesto formato da α e α' : $\gamma' A\gamma'' \Rightarrow \gamma' \pi\gamma''$, cioè $\gamma_h \Rightarrow \gamma_{h+1}$.

Poiché $\alpha\gamma_1\alpha'\overset{*}{\Rightarrow}\alpha\gamma_h\alpha'$, con una derivazione di lunghezza h-1< h, per ipotesi induttiva si ha che $\gamma_1\overset{*}{\Rightarrow}\gamma_h$. Infine, da $\gamma_1\overset{*}{\Rightarrow}\gamma_h$ e $\gamma_h\Rightarrow\gamma_{h+1}$ segue per definizione di $\overset{*}{\Rightarrow}$ che $\gamma_1\overset{*}{\Rightarrow}\gamma_{h+1}=\gamma_n$, ciò che si voleva dimostrare.