

METODY OBLICZENIOWE W NAUCE I TEHCNICE II ROK

Informatyka Wydział Informatyki, Elektroniki i Telekomunikacji

ZNAJDOWANIE PIERWIASTKÓW LABORATORIUM NR 6

JACEK NITYCHORUK

SEMESTR LETNI 2019/2020

Spis treści

1	Por	ównanie działania metod obliczania pierwiastków funkcji	3					
	1.1	Badane funkcje	3					
	1.2	Metoda False Position (regula falsi)	6					
	1.3	Metoda Newtona	8					
	1.4	Metoda Steffensena	10					
	1.5	Podsumowanie wyników uzyskanych za pomocą trzech metod:	12					
	1.6	Wnioski	12					
2	Der	nonstracja działania metod poszukiwania pierwiastków na wybranej funkcji	13					
	2.1	Badana funkcja	13					
	2.2	Wyniki działania różnych metod obliczania pierwiastków	14					
	2.3	Wyniki działania 12 metod obliczania pierwiastków metodą False Position	16					
	2.4	Wszystkie pierwiastki funkcji	17					
3	Der	nonstracja przykładów nieprawidłowego działania	18					
	3.1	Metoda False Position	18					
	3.2	Metoda Newtona	19					
	3.3	Metoda Steffensena	20					
4	Wstęga Newtona							
	4.1	Program	21					
	4.2	Przykładowy fraktal - wstęga Newtona	22					
5	Doc	datek - porównanie 12 implementacji metody False Position	24					

1 Porównanie działania metod obliczania pierwiastków funkcji

Zadanie: Wybrać trzy metody poszukiwania pierwiastków:

- wykorzystującą przedział i zmianę znaku,
- wykorzystującą pochodną,
- wykorzystującą przybliżenie pochodnej

Każdą z trzech wybranych metod przetestować (ilość iteracji, ilość wywołań funkcji) na sześciu wybranych funkcjach ze zbioru Zero Finder Tests. Wyniki przedstawić w formie tabelki. Pamiętać o sprawdzeniu czy wynik jest poprawny poprzez obliczenie wartości funkcji dla znalezionego pierwiastka!

1.1 Badane funkcje

Spośród 19 funkcji znajdujących się w zbiorze Zero Finder Tests wybrałem 6, które wydały mi się dość różnorodne i ciekawe.

1.
$$f(x) = e^x - \frac{1}{(10x)^2}$$

$$2. \ f(x) = \cos(x) - x$$

3.
$$f(x) = \frac{20x}{100x^2+1}$$

4.
$$f(x) = \begin{cases} -\sqrt[3]{|x|} \cdot e^{-x^2} & x < 0\\ 0 & x = 0\\ \sqrt[3]{|x|} \cdot e^{-x^2} & x > 0 \end{cases}$$

5.
$$f(x) = \pi \cdot \frac{x-5}{180} - 0.8 \cdot \sin\left(\frac{x\pi}{180}\right)$$

6.
$$f(x) = \cos(100x) - 4 \cdot \operatorname{erf}(30x - 10)$$

We wzorze ostatniej badanej funkcji występuje funkcja błędu Gaussa:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, \mathrm{d}t \tag{1}$$

Następnie użyłem środowiska Julia, w którym wprowadziłem badane funkcje, aby móc wykonywać na nich operacje:

```
f1(x) = exp(x)-1/(10*x)^2
f2(x) = cos(x)-x
f3(x) = 20*x/(100*x^2 + 1)
function f4(x)
    if x<0
        return -(abs(x)^(1/3))*exp(-x^2)
elseif x == 0
        return 0
else
        return abs(x)^(1/3)*exp(-x^2)
end</pre>
```

```
end
f5(x) = pi*(x-5)/180 - 0.8*sin(pi*x/180)
f6(x) = cos(100*x)-4*erf(30x-10)
D(f) = x -> ForwardDiff.derivative(f,float(x))
f = Function[]
f = [f1,f2,f3,f4,f5,f6]
x_left = Float64[];
x_left = [-4, -4, -2, -2, -5, -0.1]
x_right = Float64[];
x_right = [4,4,2,2,45,0.6]
x_search_1 = Float64[];
push!(x_search_1, 0)
for i in 2:length(f)
   push!(x_search_l, x_left[i])
x_search_r = Float64[];
for i in 1:length(f)
   push!(x_search_r, x_right[i])
x_search_r[3] = 3
x_search_r[4] = 3
start = [1,1,1,0.3,1,0.32]
y_top = Float64[];
y_{top} = [5, 4, 1, 1, 0.2, 5.5]
y_bottom = Float64[];
y_bottom = [-5, -5, -1, -1, -0.1, -5.5]
labels = String[]
push!(labels, "e^x-1/(10*x)^2")
push!(labels, "\cos(x)-x")
push!(labels, "20*x/(100*x^2+1)")
push!(labels, "+/-(|x|^(1/3))*e^(-x^2)")
push!(labels, "pi*(x-5)/180 - 0.8*sin(pi*x/180)")
push!(labels, "cos(100x)-4*erf(30x-10)")
```

Następnie wygenerowałem wykresy funkcji (rys. 1):

```
for i in 1:length(f)
    p = plot(f[i], x_left[i], x_right[i], ylims=(y_bottom[i],y_top[i]), label=labels[i], linewidth=3);
    plot!( x->0, label=false, color="black")
    plot!([0], seriestype = :vline, color="black", label=false)
    display(p)
    savefig(string("plot",i,".pdf"))
end
```


Rysunek 1: Wykresy badanych funkcji na interesujących nas przedziałach

1.2 Metoda False Position (regula falsi)

Następnie wykonałem próby obliczenia pierwiastków przy pomocy metody wykorzystującej zmianę znaku na krańcach przedziału. W tym celu użyłem kodu poniżej:

```
for i in 1:length(f)
println(labels[i])
x = find_zero(f[i], (x_search_1[i], x_search_r[i]), FalsePosition(5), verbose=true)
s = sign(f[i](prevfloat((x)))*sign(f[i](nextfloat(x))))
if s <= 0
    changes_sign = true
else
    changes_sign = false
end
println(f[i](x),"\t", iszero(f[i](x)), "\t", changes_sign)
end</pre>
```

Rezultat był następujący:

```
e^x-1/(10*x)^2
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: FalsePosition(5)()
* iterations: 16
* function evaluations: 18
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
(a_0, b_0) = ( 0.00000000000000, 4.0000000000000)
(a_1, b_1) = ( 0.00000000000000, 2.0000000000000)
(a_15, b_15) = (0.0953446172045514, 0.0953446171948915)
(a_16, b_16) = (0.0953446171948915, 0.0953446172002587)
                         false
2.220446049250313e-16
                                         true
cos(x)-x
Results of univariate zero finding:
* Converged to: 0.7390851332151607
* Algorithm: FalsePosition{5}()
* iterations: 7
* function evaluations: 9
* stopped as |f(x_n)| \le \max(d, \max(1, |x|)*e) using d = atol, e = rtol
(a_0, b_0) = (0.00000000000000, 4.00000000000000)
(a_1, b_1) = (4.000000000000000, 0.7075083376742781)
(a_6, b_6) = (0.7390851845804344, 0.7390851332151601)
(a_7, b_7) = (0.7390851845804344, 0.7390851332151607)
         true
                      true
20*x/(100*x^2+1)
Results of univariate zero finding:
* Converged to: 3.0
* Algorithm: FalsePosition{5}()
* iterations: 0
* function evaluations: 3
```

```
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: Exact zero found
Trace:
(a_0, b_0) = (-2.00000000000000, 3.00000000000000)
          true
                       true
+/-(|x|^{(1/3)})*e^{-x^2}
Results of univariate zero finding:
* Converged to: 3.0
* Algorithm: FalsePosition{5}()
* iterations: 0
* function evaluations: 3
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: Exact zero found
(a_0, b_0) = (-2.00000000000000, 3.00000000000000)
     true true
pi*(x-5)/180 - 0.8*sin(pi*x/180)
Results of univariate zero finding:
* Converged to: 22.656578669567754
* Algorithm: FalsePosition{5}()
* iterations: 8
* function evaluations: 10
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
(a_0, b_0) = (0.000000000000000, 45.000000000000000)
(a_1, b_1) = (45.000000000000000, 17.8732960351904886)
(a_7, b_7) = ( 22.6567890424722087, 22.6565786692063611) (a_8, b_8) = ( 22.6567890424722087, 22.6565786695677538)
                     true
          true
cos(100x)-4*erf(30x-10)
Results of univariate zero finding:
* Converged to: 0.33186603357456257
* Algorithm: FalsePosition{5}()
* iterations: 11
* function evaluations: 13
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: x_n = x_{n-1}. Change of sign at xn identified.
       Algorithm stopped early, but |f(xn)| < e^{(1/3)}, where e depends on xn, rtol, and atol.
Trace:
(a_0, b_0) = (0.00000000000000, 0.6000000000000)
(a_1, b_1) = (0.60000000000000, 0.3014344366440125)
(a_10, b_10) = (0.3318660340164839, 0.3318660335745625)

(a_11, b_11) = (0.3318660335745625, 0.3318660335745626)
-7.91033905045424e-15 false true
```

1.3 Metoda Newtona

Ponowiłem obliczenia przy użyciu metody Newtona z wykorzystaniem pochodnych funkcji:

```
for i in 1:length(f)
   println(labels[i])
   x = find_zero((f[i], D(f[i])), start[i], Roots.Newton(), verbose=true)
   s = sign(f[i](prevfloat((x)))*sign(f[i](nextfloat(x))))
   if s <= 0
        changes_sign = true
   else
        changes_sign = false
   end
   println(f[i](x),"\t", iszero(f[i](x)), "\t", changes_sign)
end</pre>
```

Otrzymany wynik:

```
e^x-1/(10*x)^2
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: Roots.Newton()
* iterations: 12
* function evaluations: 25
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
2.220446049250313e-16
                      false
                                 true
cos(x)-x
Results of univariate zero finding:
* Converged to: 0.7390851332151607
* Algorithm: Roots.Newton()
* iterations: 4
* function evaluations: 9
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
0.0
        true
20*x/(100*x^2+1)
Results of univariate zero finding:
* Converged to: 1.7002120211960927e7
* Algorithm: Roots.Newton()
* iterations: 24
* function evaluations: 49
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
```

```
Trace:
(...)
                                     fx_23 = 0.0000000235264776
fx_24 = 0.0000000117632388
x_23 = 8501060.1059804614633322,
x_24 = 17002120.2119609266519547,
1.176323879061276e-8 false
+/-(|x|^{(1/3)})*e^{(-x^2)}
Results of univariate zero finding:
* Converged to: -5.817879689923602
* Algorithm: Roots.Newton()
* iterations: 31
* function evaluations: 63
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
x_30 = -5.7301771844857070, fx_30 = -0.000000000000000088

x_31 = -5.8178796899236023, fx_31 = -0.0000000000000000036
-3.5895646777142075e-15
                           false
                                       false
pi*(x-5)/180 - 0.8*sin(pi*x/180)
Results of univariate zero finding:
* Converged to: 22.656578669567754
* Algorithm: Roots.Newton()
* iterations: 5
* function evaluations: 11
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
(...)
x_4 = 22.6565786695788134, fx_4 = 0.000000000000000505
x_5 = 22.6565786695677538, fx_5 = 0.00000000000000000
0.0
         true
\cos(100x)-4*erf(30x-10)
Results of univariate zero finding:
* Converged to: 0.3318660335745625
* Algorithm: Roots.Newton()
* iterations: 6
* function evaluations: 13
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: x_n = x_{n-1}. Change of sign at xn identified.
      Algorithm stopped early, but |f(xn)| < e^{(1/3)}, where e depends on xn, rtol, and atol.
Trace:
x_5 = 0.3318660335745626, fx_5 = -0.00000000000000079

x_6 = 0.3318660335745625, fx_6 = 0.000000000000000071
7.077671781985373e-15
                         false
```

1.4 Metoda Steffensena

Powtórzyłem obliczenia przy użyciu metody Steffensa:

```
for i in 1:length(f)
    println(labels[i])
    x = find_zero(f[i], start[i], Order2(), verbose=true)
    s = sign(f[i](prevfloat((x)))*sign(f[i](nextfloat(x))))
    if s <= 0
        changes_sign = true
    else
        changes_sign = false
    end
    println(f[i](x),"\t", iszero(f[i](x)), "\t", changes_sign)
end</pre>
```

Co dalo rezultat:

```
e^x-1/(10*x)^2
Results of univariate zero finding:
* Converged to: -8.999510577041852
* Algorithm: Order2()
* iterations: 23
* function evaluations: 34
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
4.9203805092823405e-16
                       false
                                 false
cos(x)-x
Results of univariate zero finding:
* Converged to: 0.7390851332151603
* Algorithm: Order2()
* iterations: 4
* function evaluations: 8
* stopped as |f(x_n)| \le \max(d, \max(1, |x|)*e) using d = atol, e = rtol
Trace:
4.440892098500626e-16
                      false
                                 false
20*x/(100*x^2+1)
Results of univariate zero finding:
* Converged to: 2.3314039945266686e7
* Algorithm: Order2()
* iterations: 26
* function evaluations: 48
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
```

```
Trace:
(...)
x_25 = 11142472.8398810550570488,

x_26 = 23314039.9452666863799095,
                                fx_25 = 0.000000179493370
fx_26 = 0.0000000085785218
8.578521803579771e-9 false false
+/-(|x|^(1/3))*e^(-x^2)
Results of univariate zero finding:
* Converged to: -5.858316025427789
* Algorithm: Order2()
* iterations: 34
* function evaluations: 63
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
x_33 = -5.7647567514216780, fx_33 = -0.000000000000000066
x_34 = -5.8583160254277891, fx_34 = -0.00000000000000022
-2.2438589727829635e-15
                       false
                                 false
pi*(x-5)/180 - 0.8*sin(pi*x/180)
Results of univariate zero finding:
* Converged to: 22.65657866956753
* Algorithm: Order2()
* iterations: 5
* function evaluations: 11
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
(...)
false
-9.992007221626409e-16
                      false
cos(100x)-4*erf(30x-10)
Results of univariate zero finding:
* Converged to: 0.33186603357456257
* Algorithm: Order2()
* iterations: 7
* function evaluations: 13
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: x_n = x_{n-1}. Change of sign at xn identified.
     Algorithm stopped early, but |f(xn)| < e^{(1/3)}, where e depends on xn, rtol, and atol.
Trace:
-7.91033905045424e-15
                     false
                                true
```

1.5 Podsumowanie wyników uzyskanych za pomocą trzech metod:

Na postawie otrzymanych wyników zebrałem dane statystyczne wykonanych obliczeń i umieściłem w tabeli 1:

D 1 ·		False Position			Newton				Steffensen			
Funkcja	Iteracje	Wywołania	Dokładne (zero)	Zmiana znaku	Iteracje	Wywołania	Dokładne (zero)	Zmiana znaku	Iteracje	Wywołania	Dokładne (zero)	Zmiana znaku
$e^{x} - \frac{1}{(10x)^{2}}$	16	18		+	12	25		+	23	34		
$\mathbf{cos}(\mathbf{x}) - \mathbf{x}$	7	9	+	+	4	9	+	+	4	8		
$\frac{20x}{100x^2+1}$	0	3	+	+	24	49			26	48		
$\pm \left \mathbf{x}\right ^{rac{1}{3}} \cdot \mathrm{e}^{-\mathbf{x^2}}$	0	3	+	+	31	63			34	63		
$\pi \cdot rac{\mathbf{x-5}}{180} - 0.8 \cdot \sin\left(rac{\mathbf{x}\pi}{180} ight)$	8	10	+	+	5	11	+	+	5	11		
$\cos(100\mathrm{x}) - 4 \cdot \mathrm{erf}(30\mathrm{x} - 10)$	11	13		+	6	13		+	7	13		+
Średnia	7.0	9.3			13.7	28.3			16.5	29.5		

Tabela 1: Podsumowanie liczby wywołań funkcji i dokładności obliczonych danych

1.6 Wnioski

Otrzymane wyniki wskazują, że różne metody obliczania pierwiastków mogą dawać różne wyniki. Na tabeli 1 wyraźnie widać, że metoda korzystająca ze zmiany znaku potrzebowała najmniej iteracji do otrzymania prawidłowego wyniku. 0 iteracji w 3. i 4. przypadku jest najprawdopodobniej wynikiem faktu, że obie te badane funkcje są nieparzyste i zerują się w 0, co pozwoliło algorytmowi na błyskawiczne odnalezienie miejsca zerowego.

W kolumnie dokładne oznaczyłem znakiem "+" te wyniki, dla których wartość funkcji faktycznie była równa 0. Zmiana znaku zaś oznacza, że najbliższa liczba na lewo do wyniku jest przeciwnego znaku niż najbliższa liczba z prawej.

Dokładne wyniki otrzymane za pomocą pierwszej z badanych metod są również efektem nie-przypadkowego wyboru użytej metody. Spośród 12 implementacji wybrałem tą, która dla badanych funkcji dawała najlepsze wyniki - wersję 5. W sekcji nr 5 opisuję porównanie wyników różnych implementacji metody False Position dla badanych funkcji.

2 Demonstracja działania metod poszukiwania pierwiastków na wybranej funkcji

Zadanie: Zademonstrować wybrany, ciekawy przykład trudnej funkcji z p.1 i działania metod na niej.

2.1 Badana funkcja

Do dokładniejszej analizy wybrałem funkcję:

$$f(x) = e^x - \frac{1}{(10x)^2} \tag{2}$$

Przyczyną wybory właśnie tej była obecność trzech miejsc zerowych oraz jej nieciągłość w 0. Wykres przedstawiłem na rysunku 2.

Rysunek 2: Wykres funkcji na przedziałach w których występują jej pierwiastki

Dodatkowo sporządziłem wykres funkcji pochodnej - widoczny na rys. 3.

Rysunek 3: Wykres pochodnej badanej funkcji

2.2 Wyniki działania różnych metod obliczania pierwiastków

Przy użyciu poniższego kodu przeprowadziłem obliczenia przy użyciu 6 różnych metod oblicznania pierwiastków. Aby otrzymane wyniki dotyczyły tego samego pierwiastka (funkcja ma ich 3) zmodyfikowałem odpowiednio punkt startowy poszukiwań w wymagających tego metodach.

```
x = find_zero(f[1], (x_search_1[1], x_search_r[1]), Bisection(), verbose=true)
x = find_zero(f[1], (x_search_1[1], x_search_r[1]), FalsePosition(5), verbose=true)
# Newton
x = find_zero((f[1], D(f[1])), start[1]-0.9, Roots.Newton(), verbose=true)
# Halley
x = find_zero((f[1], D(f[1]), D(D(f[1]))), start[1]-0.9, Roots.Halley(), verbose=true)
# Metoda siecznych
x = find_zero(f[1], start[1]-0.9, Order1(), verbose=true)
# Steffensen
x = find_zero(f[1], start[1]-0.9, Order2(), verbose=true)
```

Szczegółowy rezultat wykonania:

```
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: Roots.BisectionExact()
* iterations: 62
* function evaluations: 64
* stopped as x_n = x_{n-1} using atol=xatol, rtol=xrtol
* Note: Change of sign at xn identified.
(a_13, b_13) = (0.0934143066406250, 0.1012344360351563)
(a_14, b_14) = (0.0934143066406250, 0.0973243713378906)
(a_61, b_61) = (0.0953446172002587, 0.0953446172002588)
(a_62, b_62) = (0.0953446172002587, 0.0953446172002587)
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: FalsePosition(5)()
* iterations: 16
* function evaluations: 18
* stopped as |f(x_n)| \le max(d, max(1,|x|)*e) using d = atol, e = rtol
(a_0, b_0) = (0.00000000000000, 4.000000000000000)
(a_1, b_1) = ( 0.0000000000000000, 2.000000000000000)
(...)
(a_15, b_15) = (0.0953446172045514, 0.0953446171948915)
(a_16, b_16) = (0.0953446171948915, 0.0953446172002587)
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: Roots.Newton()
* iterations: 4
* function evaluations: 9
* stopped as |f(x_n)| \le \max(d, \max(1, |x|))*e) using d = atol, e = rtol
```

```
Trace:
x_0 = 0.10000000000000000000, fx_0 = 0.1051709180756473

x_1 = 0.0950168175143479, fx_1 = -0.0079636939147820

x_2 = 0.0953430071258671, fx_2 = -0.0000389245275041

x_3 = 0.0953446171613899, fx_3 = -0.00000000009396552
x_3 = 0.0953446171613899,
x_4 = 0.0953446172002587,
                                     Results of univariate zero finding:
* Converged to: 0.09534461720025877
* Algorithm: Roots.Halley()
* iterations: 2
* function evaluations: 9
* stopped as |f(x_n)| \le \max(d, \max(1, |x|)*e) using d = atol, e = rtol
Trace:

x_0 = 0.100000000000000,

x_1 = 0.0953458783641774,
                                   fx_0 = 0.1051709180756473
                                    fx_1 = 0.0000304880920805
x_2 = 0.0953446172002588,
                                      fx_2 = 0.0000000000000007
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: Roots.Secant()
* iterations: 6
* function evaluations: 8
* stopped as |f(x_n)| \le max(d, max(1,|x|)*e) using d = atol, e = rtol
x_1 = 0.0950163893725045, fx_1 = -0.0079741467693415

x_2 = 0.0953676202692240, fx_2 = 0.0005559080165574

x_3 = 0.0953447303727287, fx_3 = 0.00000273504056370

x_4 = 0.0953446171612243
Results of univariate zero finding:
* Converged to: 0.09534461720025875
* Algorithm: Order2()
* iterations: 5
* function evaluations: 10
* stopped as |f(x_n)| \le \max(d, \max(1, |x|)*e) using d = atol, e = rtol
```

Wyniki zebrałem i porównałem w tabeli 2.

Metoda:	x	$\mathbf{f}(\mathbf{x})$	Zero	Zmiana znaku	Iteracje	Wywołania funkcji
Bisekcja:	0.095()875	2.22E-16	-	+	62	64
False position:	0.095()875	2.22E-16	-	+	16	18
Newton:	0.095()875	2.22E-16	-	+	4	9
Halley:	0.095()877	6.66E-16	-	-	2	9
Siecznych:	0.095()875	2.22E-16	-	+	6	8
Steffensen:	0.095()875	2.22E-16	-	+	5	10

Tabela 2: Wyniki działania różnych metod wyznaczania pierwiastków funkcji

Co warte zauważenia - wszystkie metody poza metodą Halleya odnalazły pierwiastek z tą samą dokładnością, choć metody nie korzystające z pochodnych potrzebowały na to znacznie więcej iteracji, co było wynikiem m.in. szerszego przedziału początkowego.

2.3 Wyniki działania 12 metod obliczania pierwiastków metodą $False\ Position$

Następnie przetestowałem wszystkie 12 metod wyznaczania pierwiastków metodą False Position. Wyniki zgromadziłem w tabeli 3. Do obliczeń użyłem poniższego kodu:

```
for j in 1:12
    x = find_zero(f[1], (x_search_1[1], x_search_r[1]), FalsePosition(j), verbose=false)
    s = sign(f[1](prevfloat((x)))*sign(f[1](nextfloat(x))))
    if s <= 0
        changes_sign = true
    else
        changes_sign = false
    end
    println(j,"\t", x,"\t",f[1](x),"\t",iszero(f[1](x)), "\t",
        sign(f[1](prevfloat((x)))*sign(f[1](nextfloat(x))))<=0)
end</pre>
```

$\begin{array}{c} \mathbf{Numer} \\ \mathbf{metody} \end{array}$	x	$\mathbf{f}(\mathbf{x})$	Zero	Zmiana znaku	Iteracje	Wywołania funkcji
1	$0.095(\dots)5875$	2.22E-16	-	+	14	16
2	$0.095(\dots)5875$	2.22E-16	-	+	15	17
3	$0.095(\dots)5877$	6.66E-16	-	-	14	16
$oldsymbol{4}$	$0.095(\dots)5876$	4.44E-16	-	-	13	15
5	$0.095(\dots)5875$	2.22E-16	-	+	16	18
6	$0.095(\dots)5875$	2.22E-16	-	+	17	19
7	$0.095(\dots)5875$	2.22E-16	-	+	17	19
8	$0.095(\dots)5875$	2.22E-16	-	+	15	17
9	$0.095(\dots)5875$	2.22E-16	-	+	14	16
10	$0.095(\dots)5875$	2.22E-16	-	+	16	18
11	$0.095(\dots)5877$	6.66E-16	-	-	16	18
12	0.095()5876	4.44E-16	-	-	13	15

Tabela 3: Wyniki dwunastu metod False Position

Tylko 8 z 12 metod uzyskało wynik najbliższy dokładnemu. Wszystkie wykonały natomiast bardzo podobną liczbę iteracji.

2.4 Wszystkie pierwiastki funkcji

Na zakończenie wygenerowałem wszystkie pierwiastki funkcji przy użyciu metody find_zeros(f[1], -10, 10)

```
x f(x) is_zero? change_sign?
-8.999510577046975 5.421010862427522e-20 false true
-0.1054119671030927 -1.1102230246251565e-16 false true
0.09534461720025873 -4.440892098500626e-16 false true
```

3 Demonstracja przykładów nieprawidłowego działania

Zadanie: Zademonstrować wybrany, ciekawy przykład trudnej funkcji z p.1 i działania metod na niej.

3.1 Metoda False Position

Metoda False Position nie zadziała, jeżeli krańce przedziału, który chcemy przeszukiwać są tego samego znaku. Przykładowo dla wywołania metody na pierwszej z badanych funkcji: $f(x) = e^x - \frac{1}{(10x)^2}$ przestawionej na rys. 4 na przedziale [-2,2] otrzymamy komunikat o błędzie.

```
ArgumentError: The interval [a,b] is not a bracketing interval.

You need f(a) and f(b) to have different signs (f(a) * f(b) < 0).

Consider a different bracket or try fzero(f, c) with an initial guess c.
```


Rysunek 4: Wykres funkcji, która generuje problemy

Przyczyną jest fakt, że zarówno f(2) jak i f(-2) są dodatnie. Rozwiązaniem jest wybranie punktów o przeciwnych co do znaku wartościach funkcji. Na przykład w celu odnalezienia dodatniego minimum - przedział od 0.01 do 1.

3.2 Metoda Newtona

Metoda Newtona często nie zadziała, jeżeli funkcja nie jest monotoniczna, a wybierzemy punkt startowy daleko od miejsca zerowego. Jeżeli funkcja zmieniła monotoniczność pomiędzy punktem startowym, a pierwiastkiem może się okazać, że oddalamy się dod miejsca serowego. Przykładowo dla wywołania metody na trzeciej z badanych funkcji: $f(x) = \pi \cdot \frac{x-5}{180} - 0.8 \cdot \sin\left(\frac{x\pi}{180}\right)$ przestawionej na rys. 5 z punktem startowym 1.0 otrzymamy komunikat o znalezieniu miejsca zerowego dla bardzo dużej wartości.

```
Results of univariate zero finding:
* Converged to: 1.7002120211960927e7
* Algorithm: Roots.Newton()
* iterations: 24
* function evaluations: 49
* stopped as |f(x_n)| \le \max(d, \max(1,|x|)*e) using d = atol, e = rtol
Trace:
x_0 =
      fx_0 = 0.1980198019801980
x_1 = 2.0202020202020203,
                                 fx_1 = 0.0987580181659888
      4.0503283574619111,
                                 fx_2 = 0.0493486314602615
x_23 = 8501060.1059804614633322,
                                        fx_23 = 0.0000000235264776
x_24 = 17002120.2119609266519547
                                         fx_24 = 0.000000117632388
```


Rysunek 5: Wykres funkcji, która generuje problemy dla metody Newtona

Jest to spowodowane faktem, że funkcja asymptotycznie dąży do 0 w nieskończoności. Nie udało się natomiast odnaleźć pierwiastka w 0. Każda kolejna iteracja oddalała się od niego. Rozwiązaniem jest wybieranie punktu startowego bliżej szukanego pierwiastka.

3.3 Metoda Steffensena

Metoda Steffensena również często nie działa dla funkcji niemonotonicznych. Zachodzi tu podobny mechanizm, co dla metody Newtona. Przykładowo dla wywołania metody na szóstej z badanych funkcji: $f(x) = \cos(100x) - 4 \cdot \text{erf}(30x - 10)$ przestawionej na rys. 6 z punktem startowym 0.3 otrzymamy komunikat o braku zbieżności:

```
Roots.ConvergenceFailed("Stopped at: xn = -143314.4170861863")
```


Rysunek 6: Wykres funkcji, która generuje problemy dla metody Steffensena

Śledząc kolejne wywołania obserwujemy oddalanie się badanego punku w niekontrolowany sposób od pierwiastka:

```
Trace:
fx_0 = 3.5250546216864436
x_1 = 0.2280256452124042,
                                 fx_1 = 3.3114962022096508
x 2 = -0.8880287024435723.
                                 fx_2 = 4.6687456397881792
      2.9510400237013261,
                                 fx_3 = -3.0210831958901538
                                 fx_4 = -3.0271979844485957
x_4 = 1.4427950075558296,
x_5 = 748.1172268858236976,
                                   fx_5 = -4.5596535402085685
   = -1473.5307053496881053,
                                    fx_6 = 4.9817599789555080
                                   fx_7 = 3.0238256478786925
x_7 = -313.5645500299915511,
x_8 = 1477.8823618783765141,
                                   fx_8 = -3.8642022172105612
x_9 = 472.8758107148921681,
                                   fx_9 = -3.0534564153315635
x 10 = -3312.2115668431779341.
                                     fx_10 = 3.0048350476449528
x_11 = -3331.6638612591777928,
                                     fx_11 = 4.8845757571551349
x_12 = -3281.1163547628184460,
                                     fx_12 = 3.151230596721480
```

Funkcja ma bardzo wiele przedziałów monotoniczności, które powodują tak duże "skoki" w kolejnych iteracjach. Podobnie jak w poprzednim przykładzie rozwiązaniem jest lepsze dobieranie punktu startowego.

4 Wstęga Newtona

Zadanie: Narysować wstegę Newtona i objaśnić, w jaki sposób powstała i jaki jest jej związek z metodą Newtona do znajdowania pierwiastków. Sposób i język - dowolny.

4.1 Program

Do realizacji zadania wybrałem język Python z uwagi na bogate i proste w użyciu biblioteki numeryczne, oraz możliwość łatwego generowania wykresów.

Użyty kod:

```
import numpy as np
import math
import matplotlib.pyplot as plt
   return z**3 - 2*z + 2
def calculate_newton_fractal(width_px, height_px, niter):
   output_pix = np.arange(width_px*height_px*3, dtype=np.uint32).reshape(height_px, width_px, 3)
   x_min, x_max, y_min, y_max = -3, 3, -3, 3
   h = 1e-6
   max err = 1e-8
   root1 = -1.76929235423863
   root2 = complex(0.884646177119316, -0.589742805022206)
    root3 = complex(0.884646177119316, 0.589742805022206)
    color_mult = 8
    for y in range(height_px):
        zy = y * (y_max - y_min) / (height_px - 1) + y_min
        for x in range(width_px):
            zx = x * (x_max - x_min) / (width_px - 1) + x_min
            z = complex(zx, zy)
            count = 0
            for i in range(niter):
                der_z = (f(z + complex(h, h)) - f(z)) / complex(h, h)
                if der_z == 0:
                    break
                count += 1
                if count > 255:
                    break
                next_z = z - f(z) / der_z
                if abs(next_z - z) < max_err:</pre>
                    break
                z = next_z
            if abs(z-root1)<max_err:</pre>
                output_pix[y,x] = (255 - count*color_mult,
                50 - count*color_mult % 50, 120 - count*color_mult % 120)
            elif abs(z-root2) <= max_err:</pre>
                output_pix[y,x] = (120 - count*color_mult % 120,
                255 - count*color_mult, 120 - count*color_mult % 120)
            elif abs(z-root3)<=max_err:</pre>
                output_pix[y,x] = (120 - count*color_mult % 120,
                120 - count*color_mult % 120, 255 - count*color_mult)
```

```
return output_pix

def create_fractal(width=2048, height=2048, niter=4096):
    output_img = calculate_newton_fractal(width, height, niter=niter)
    plt.axis('off')
    plt.imshow(output_img)
    plt.savefig('newton_plot.pdf', dpi=400)

if __name__ == "__main__":
    create_fractal()
```

4.2 Przykładowy fraktal - wstęga Newtona

Do wygenerowania wstęgi Newtona użyłem funkcji:

$$f(z) = z^3 - 2z + 2 (3)$$

Efekt widoczny jest na rysunku 7:

Rysunek 7: Fraktal Newtona

Powstawanie fraktala Dla każdego punktu na płaszczyźnie zespolonej stosując metodę Newtona dążymy do miejsca zerowego wybranej funkcji $(f(z)=z^3-2z+2)$. Kolor na wykresie oznacza, do którego pierwiastka zbiegliśmy, a jasność jest zależna od liczby iteracji przed osiągnięciem wystarczającej dokładności, (im ciemniej tym dłużej). Białe koła na wykresie to obszary, dla których nie udało się uzyskać zbieżności do któregoś z miejsc zerowych. W efekcie w zależności od użytej funkcji i sposobu kolorowania możemy uzyskać bardzo efektowne obrazy.

5 Dodatek - porównanie 12 implementacji metody False Position

Dodatkowo wykonałem testy każdej z 12 metod False Position na wszystkich 6 badanych fun kcjach, aby móc określić, która z metod jest w badanych przypadkach najlepsza. Użyłem do tego kodu:

```
using DataFrames
falsi = DataFrame(
   fun = String[],
   version = Int64[],
   is_zero = Bool[],
   sign_change = Bool[]
for i in 1:length(f)
   for j in 1:12
       x = find_zero(f[i], (x_search_1[i], x_search_r[i]), FalsePosition(j), verbose=false)
       s = sign(f[i](prevfloat((x)))*sign(f[i](nextfloat(x))))
       if s <= 0
           changes_sign = true
       else
           changes_sign = false
       println(j, ".\t", f[i](x), "\t", iszero(f[i](x)), "\t", changes\_sign)
       push!(falsi, [labels[i], j, iszero(f[i](x)), changes_sign ])
   end
   println("----")
```

W efekcie otrzymałem następujące dokładności:

```
2.220446049250313e-16
2.
         2.220446049250313e-16
                                    false
                                                 true
3.
         6.661338147750939e-16
                                   false
                                                 false
         4.440892098500626e-16
4.
                                     false
                                                 false
                                    false
5.
         2.220446049250313e-16
                                                 true
6.
         2.220446049250313e-16
                                   false
                                                 true
         2.220446049250313e-16
                                     false
7.
                                                 true
8.
         2.220446049250313e-16
                                     false
                                                 true
9.
         2.220446049250313e-16
                                    false
                                                 true
10.
          2.220446049250313e-16
                                     false
                                                  true
                                                 false
11.
          6.661338147750939e-16
                                     false
         4.440892098500626e-16
12.
                                     false
                                                 false
1.
         0.0
         4.440892098500626e-16
                                                 false
2.
                                    false
3.
         6.661338147750939e-16
                                     false
                                                 false
4.
         0.0
                               true
         0.0
5.
                   true
                               true
6.
         0.0
                   true
                               true
         0.0
                    true
                               true
         6.661338147750939e-16
                                     false
                                                 false
8.
9.
         0.0
                  true
                               true
10.
          0.0
                    true
                                true
          0.0
11.
                    true
                                true
12.
          0.0
1.
         0.0
                    true
                               true
2.
         0.0
                    true
                               true
         0.0
                    true
                               true
```

4.	0.0	true	true			
5.	0.0	true	true			
6.	0.0	true	true			
7.	0.0	true	true			
8.	0.0	true	true			
9.	0.0	true	true			
10.	0.0	true	true	<u>i</u>		
11.	0.0	true	true			
12.	0.0	true	true			
1.	0	true	true			
2.	0	true	true			
3.	0	true	true			
4.	0	true	true			
5.	0	true	true			
6.	0	true	true			
7.	0	true	true			
8.	0	true	true			
9.	0	true	true			
10.	0	true	true			
11.	0	true	true			
12.	0	true	true			
1.	-2 997	6021664879227	 'e-15	false	false	
2.		871601444713e		false	false	
3.		115123125783		false	false	
4.	0.0	true	true	14150	14150	
5.	0.0	true	true			
6.		823385706477e		false	false	
7.		0687127941496		false	false	
8.		15123125783e-		false	true	
9.		1151231257836		false	true	
10.	-3.33	0669073875469	96e-16	false	false	
11.	0.0	true	true			
12.	0.0	true	true			
1.		33905045424e-		false	true	
2.		71781985373e-		false	true	
3.		33905045424e-		false	true	
4.		33905045424e-		false	true	
5.		33905045424e-		false	true	
6.	-7.910	33905045424e-	-15	false	true	
7.	1.5071	2775592865e-1	14	false	false	
8.	-7.910	33905045424e-	-15	false	true	
9.	7.0776	71781985373e-	-15	false	true	
10.	-2.28	7059430727822	25e-14	false	false	
11.	7.077	6717819853736	e-15	false	true	
12.	7 077	671781985373e	-15	false	true	

Kolejne kolumny to odpowiednio:

- \bullet numer metody
- \bullet f(x) w wyznaczonym punkcie
- czy jest 0?
- czy dla najbliższych sąsiadów zmienia znak?

Następnie dane przetworzyłem i zebrałem wyniki w tabeli 4. Na podstawie tych danych wybrałem metodę 5 do użycia we wcześniej opisanych zadaniach.

```
falsi_methods=by(falsi, :version,
    solved=:is_zero => sum,
    changed_sign=:sign_change => sum,
)
sort!(falsi_methods, (:solved, :changed_sign), rev=(true,true))
```

	Numer	Dokładne	e Z miana
	metody		znaku
1	5	4	6
$\frac{2}{3}$	4	4	5
3	11	4	5
4	12	4	5
5	9	3	6
6	1	3	5
7	6	3	5
8	7	3	4
9	10	3	4
10	8	2	5
11	2	2	4
12	3	2	3

Tabela 4: Metody uszeregowane od najbardziej skutecznych w przypadku badanych funkcji