Undergraduate Complexity Theory Lecture 15: coNP

Marcythm

July 18, 2022

1 Lecture Notes

idea: NP: efficiently certifying $x \in L$, coNP: efficiently certifying $x \notin L$. Recall UNSAT in hw5.

Definition 1.1. $coNP = \{L : \overline{L} \in NP\}.$

Remark 1.2. $coNP \neq \overline{NP}$.

Theorem 1.3. $SAT \in P \implies UNSAT \in P$.

Theorem 1.4. $A \leq_m^{\mathsf{P}} B \iff \overline{A} \leq_m^{\mathsf{P}} \overline{B}$.

Theorem 1.5. P is closed under complement.

Theorem 1.6. $P \subseteq coNP$.

Theorem 1.7. $P = NP \implies P = coNP$.

Corollary 1.8. $P = NP \implies coNP = NP$.

Corollary 1.9. $coNP \neq NP \implies P \neq NP$.

Theorem 1.10. UNSAT is coNP-complete.

 $\textit{Proof.} \ \, \forall A \in \mathsf{coNP} : \overline{A} \in \mathsf{NP} \implies A \leq^{\mathsf{P}}_m \overline{A} \leq^{\mathsf{P}}_m \mathsf{SAT} \leq^{\mathsf{P}}_m \mathsf{UNSAT}.$

Definition 1.11. TAUTOLOGY = $\{\langle \phi \rangle : \text{ every truth assignment makes } \phi \text{ true} \}.$

 $\mathsf{TAUTOLOGY} \in \mathsf{NP}? \ \mathsf{TAUTOLOGY} \in \mathsf{coNP}? \ \overline{\mathsf{TAUTOLOGY}} \in \mathsf{NP} \implies \mathsf{TAUTOLOGY} \in \mathsf{coNP}.$ $\mathsf{PRIME} \in \mathsf{coNP}.$

review:

- 1. $L \in NP$: $\forall x \in L$, \exists succinct efficiently checkable proof of $x \in L$.
- 2. $L \in \mathsf{coNP}$: $\forall x \notin L$, \exists succinct efficiently checkable proof of $x \notin L$.
- 3. $L \in \mathsf{NP} \cap \mathsf{coNP}$: ..., has "good characterization". e.g.
 - (a) PERFECT-MATCHING, obviously in NP. Suppose the graph G=(L,R,E), the Hall's Theorem: $\forall S\subseteq L: |N(S)|\geq |S|$ implies G has PM, which is the converse of the intuition: $\exists S\subseteq L: |N(S)|<|S|$ implies G has no PM. Then also PERFECT-MATCHING \in coNP. Actually, PERFECT-MATCHING \in P.

- (b) A similar question: LinearProgramming $\in NP \cap coNP$, whether it's in P? unknown til now.
- (c) $PRIMES \in NP$ is shown in 1975 by Pratt, thus it's also in $NP \cap coNP$. It's proven in P.
- (d) FACTOR \in NP \cap coNP, here FACTOR $= \{ \langle X, A, B \rangle : X \text{ has a prime factor between } A \text{ and } B \}.$

Theorem 1.12. B is prime iff $\exists A \in [1, B) \text{ s.t. } A, A^2, A^3, \dots, A^{B-2} \neq 1 \pmod{B}$.