異なる一電子基底を使った二電子 CI 比較 H 軌道 (非 CF 軌道)vsF 軌道 (SCF 軌道)

藤原大地

2025年7月4日

目次

- ▶ 第1章 理論(前回のおさらい)
- ▶ 第2章 プログラム概要
- ▶ 第3章 結果と考察
 - ▶ 3.1 多電子波動関数の比較
 - 3.2 エネルギーのω依存性

第1章 理論

中間規格化された多電子波動関数 |Φ₀⟩ を導入する

$$\left|\Phi_{0}\right\rangle = \left|\Psi_{0}\right\rangle + \sum_{a,r} c_{a}^{r} \left|\Psi_{a}^{r}\right\rangle + \sum_{a < b,\, r < s} c_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + \cdots$$

このとき、Full CI エネルギー E_{Toal} は HF エネルギー E_0 と相関エネルギー E_{corr} に分けられる:

$$E_{Total} = E_0 + E_{corr}$$

HF エネルギー:基底スレーターのみの多電子エネルギー

$$E_0 = \langle \Psi_0 | \mathscr{H} | \Psi_0 \rangle$$

相関エネルギー:電子相関に起因する負のエネルギー

$$(\mathscr{H}-E_0)\ket{\Phi_0}=E_{\mathrm{corr}}\ket{\Phi_0}$$

遷移エネルギーはつぎの形で計算され

$$H_i j = \langle \Psi_i | \mathscr{H} | \Psi_j \rangle$$

次に二つの要請を満たすとき $H_{ij}=0$ である

- ▶ Ψ_i と Ψ_i で異なる違いが 3 個以上

第2章 プログラム概要

一電子系 H 演算子の波動関数と SCF 最適化された F 演算子の波 動関数のそれぞれで CI 計算を行い、比較するプログラムを作成 した.

第3章 結果の考察

今回は 100nm サイズの InSb 量子ドットに閉じ込めた二電子系を対象に, Singlet 状態と Triplet 状態で, SCFCI と非 SCFCI の結果をを比較した.

特に次二項目についえ整理した..

- ▶ 多電子波動関数の比較
- ▶ エネルギーのω依存性

3.1 多電子波動関数の比較

Singlet(1-2 配座) $\omega = 15[a.u.]$

Triplet(1-3 配座) $\omega = 15[a.u.]$

非 SCF 基底の多電子波動関数は縮退軌道が混成しているので, jz ユニタリ変換を施す必要がある.

3.2 多電子波動関数の比較

Singlet(1-2 配座)

相関による非 SCFCI の安定について、今回の singlet 系の計算では一電子軌道の対称性はどちらも保たれているので、対称性が原因ではないと考えられる.

Triplet(1-3 配座)

相関エネルギーによる安定化が上回り, SCFCI のほうのエネルギーが安定した.