```
[1]: %matplotlib inline
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     from statsmodels.formula.api import ols
     from statsmodels.compat import lzip
     plt.rc("figure", figsize=(16,8))
     plt.rc("font", size=14)
[2]: # Load data
     df = pd.read_csv("blackbird.csv", header = 0)
[3]: # Fill NaN of Sex
     for i in range(df.shape[0]):
         if df.iloc[i, :]["Sex"] == np.nan:
             df.iloc[i, :] = df[df["Ring number"] == df.iloc[1, :]["Ring__
      →number"]]["Sex"]
         else:
             pass
     # Fill NaN of Wing & Weight
     df = df.fillna(df.mean(numeric_only = True))
[4]: # Data clean
     df['Day'] = df['Day'].astype("str")
     df['Month'] = df['Month'].astype("str")
     df['Year'] = df['Year'].astype("str")
     df['Time'] = df['Time'].astype("str")
     df["Sex"] = df["Sex"].astype("category")
     df["Age"] = df["Age"].astype("category")
     df['Time_index'] = df['Year'] + "-" + df['Month'] + "-" + df['Day'] + " " +

df["Time"] + ":00:00"

     df['Time_index'] = pd.DatetimeIndex(df["Time_index"])
     dummies_Sex = pd.get_dummies(df["Sex"], prefix="Sex")
     dummies_Age = pd.get_dummies(df["Age"], prefix="Age")
     df = pd.concat([df, dummies_Sex, dummies_Age],axis=1)
     # Ignore the same bird using Ring number
     df_grouped = df.groupby("Ring number").head(1)
[5]: # OLS
     X = df_grouped.loc[:, ["Sex F", "Sex M", "Age A", "Age F", "Age J"]]
```

```
y = df_grouped["Wing"]
X_model = sm.add_constant(X)
model = sm.OLS(y, X_model)
results = model.fit()
```

[6]: results.summary()

[6]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Wing	R-squared:	0.448
OLS	Adj. R-squared:	0.447
Least Squares	F-statistic:	346.4
Tue, 17 Nov 2020	Prob (F-statistic):	3.12e-272
21:51:09	Log-Likelihood:	-5441.6
2141	AIC:	1.090e+04
2135	BIC:	1.093e+04
	OLS Least Squares Tue, 17 Nov 2020 21:51:09 2141	OLS Adj. R-squared: Least Squares F-statistic: Tue, 17 Nov 2020 Prob (F-statistic): 21:51:09 Log-Likelihood: 2141 AIC:

Df Model: 5
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]		
const	130.4525	0.639	204.069	0.000	129.199	131.706		
Sex_F	-2.0915	0.369	-5.664	0.000	-2.816	-1.367		
Sex_M	2.2263	0.357	6.244	0.000	1.527	2.926		
Age_A	1.4096	0.542	2.602	0.009	0.347	2.472		
Age_F	-2.2311	0.538	-4.146	0.000	-3.286	-1.176		
Age_J	-3.9560	0.569	-6.950	0.000	-5.072	-2.840		
Omnibus:		9.	569 Durbi	n-Watson:		1.864		
Prob(Omnib	us):	0.	008 Jarqu	e-Bera (JB):	:	10.200		
Skew:		-0.	120 Prob(JB):		0.00610		
Kurtosis:		3.	238 Cond.	No.		22.7		

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[7]: df_grouped.groupby("Sex")["Age"].count()

[7]: Sex

F 835 M 1198 U 108 Name: Age, dtype: int64

```
[8]: df_grouped.groupby("Age")["Sex"].count()
```

[8]: Age
 A 713
 F 1063
 J 331
 U 34
 Name: Sex, dtype: int64

[9]: fig = sm.graphics.influence_plot(results, criterion="cooks")
fig.tight_layout(pad=1.0)


```
[10]: fig = sm.graphics.plot_partregress_grid(results)
fig.tight_layout(pad=1.0)
```



```
[12]: fig = sm.graphics.plot_leverage_resid2(results)
fig.tight_layout(pad=1.0)
```


[]: