About My Projects

Sungkyunkwan University. Artificial Intelligence. INGLab

Suyoung Bae

Github: https://github.com/BaeSuyoung

Linkedln: https://www.linkedin.com/in/suyoung99/

List of my Projects

Undergraduate

Master Degree

[2021.03~2021.12]

연구 학점제

- ROCStories dataset 사용해서 GPT-2 모델 구현 - 다음 문장 생성

[2021.09~2021.12]

TABERT

- BERT 언어 모델에 강화학습 적용 - 데이터 증강 실험 [2022.03~2022.07]

KCC 2022

- 멀티 도메인 대화 데이터 셋을 사용한 문서 검색 모 델 [2022.05~2022.10]

COLING Shared Task

- Movie Script Summarization Task - 2등 수상 [2022..10~]

Bigcomp Paper Accept

- Predicting the Morality of a Character Using Character-Centric Embeddings - 2023.02 발표 예정

연구학점제: GPT2 기반 Text Generation 성능 관찰 [2021.03~2021.12]

Method: ROCStories 데이터셋을 사용한 GPT2 문장 생성

본 연구는 사전 훈련된 GPT2 모델을 사용해서 Text Generation을 구현해 생성된 문장이 원래 문법, 의미, 반복성 등에서 얼마나 정확성을 보이는지 실험하는 연구입니다. 모델은 gpt2 Hggingface pre-train 모델을 사용했고, 데이터셋은 ROCstories dataset을 사용해 모델에 대한 fine-tunning을 진행했습니다.

실험은 총 F가지를 진행했습니다. 첫번째는 gpt2 모델 학습 시 batch size, epoch, learning rate를 조정하면서 perplexity 가 가장 낮은 hyperparameter를 찾는 실험과, 학습된 모델을 사용해서 문장을 생성할 때 top p값과 temperature를 조정하면서 bleu, rouge 평가시 가장 좋은 결과가 나오는 hyperparameter를 찾는 실험을 진행했습니다.

마지막으로 생성된 문장들의 예시들을 뽑아 적합성을 평가해 보았습니다. <Training Hyperparameter>. <Generated Sentence 성능>

<생성된 문장의 적합성>

Batch size	epoch	Learning rate	final Loss	perplexity	
4	5	1e-4	0.1837	6.0758	
8	5	1e-4	0.2755	8.839	
16	5	1e-4	0.3151	12.456	
32	5	1e-4	0.2530	11.375	

Batch size	epoch	Learning rate	final Loss	perplexity	
4	5	1e-4	0.1837	6.076	
4	10	1e-4	0.1945	10.990	
4	15	1e-4	0.3078	338.938	
4	20	1e-4	0.2619	6.825	

Batch size	epoch	Learning rate	final Loss	perplexity
4	5	5 2e-5		11.539
4	5	5e-5	0.2390	10.907
4	5	1e-4	0.1837	6.0758
4	5	5e-3	0.2911	88.738

Top_p	temperature	Blue-1	ROUGE-1 r	ROUGE-1 p		
0.85	0	0.076	0.092	0.094		
0.95	0	0.080	0.066	0.077		
0.99	0	0.071	0.078	0.074		

	Top_p	temperature	Blue-1	ROUGE-1 r	ROUGE-1 p	
ľ	0.85	0	0.076	0.092	0.094	
ľ	0.85	0.2	0.078	0.082	0.106	
Ī	0.85	0.5	0.076	0.091	0.113	
ľ	0.85	1.0	0.078	0.079	0.085	

	Input sentence	Output generated sentence	repetition	logic	consistency
1	The pastor droned on with the service.	The pastor was not allowed to speak to the congregation.	0	0	0
2	When they all arrived and were about to start the police showed up.	They were told to leave.	0	0	0
3	Javier loved playing outside.	But he didn't like the heat.	0	0	X
4	My brothers and I fought, and one of us broke the vase.	He was a bad boy.	0	0	0
5	They decided to have dessert at a bakery.	They decided to have dinner with friends.	0	0	X
6	Jim was really into books.	She was a good teacher.	0	0	X
7	He would visit often.	His wife was a doctor.	0	0	X
8	Cathy wanted to plan a surprise party for Danny's special day.	He didn't know what to do.	0	0	X
9	They needed to get a family vehicle.	The driver of the car was also injured.	0	0	X
10	At first he was shy and scared of the baby.	Then he was scared of the baby.	×	0	0
11	Will decided to go to the beach anyway.	He was very disappointed.	0	0	X
12	The laptop began to beep and shut down.	He told the police he was going to be arrested.	0	0	X
13	Paul forgot to get his girlfriend a card for Valentine's Day.	0 During the walk, he dropped down on one knee.	0	Х	0
14	The church had plenty of insurance coverage.	But the problem was that they were not insured.	0	0	0
15	Everybody was dancing but him.	He was like a bad biker.	0	Х	0
16	He specifically hated squids though.	He was afraid they would be hurt.	0	0	0
17	Lacey and her boyfriend went to the fair.	They were told to wait for the police.	0	0	0

TABERT: Text data Augmentation using BERT by Reinforce Learning [2021.09~2021.12]

Member: Suyoung Bae, Eunchong Kim

Idea: 소량의 데이터셋으로 좋은 모델 성능을 내기 위해서는 좋은 데이터셋을 사용해야 한다. 따라서 BERT 모델의 Masked Language Modeling을 사용해 텍스트 증강을 구현했고 여기에 강화학습 Q-learning을 적용해 단순히 데이터 수를 늘이는 것 뿐만 아니라 모델 성능을 실질적으로 높일 수 있는 텍스트를 생성하는 방법을 고안했다.

Method:

- 1. 기존에 무작위 위치에 [MASK] 토큰을 할당한 방법을 사용하는 대신 POS TAGGER 를 적용해 모델 성능을 높일 수 있는 위치 찾기
- 2. 위치를 찾는 방식에 강화학습 DQN 알고리즘 사용

Related Work: Text Augmentation, Text in Reinforcement Learning

Experiment: Google Colab GPU 환경에서 실험 진행

- SNLI 데이터셋을 사용해서 실험
- Action 정의하기 위해 DQN 모델 사용 : POS TAGGER category 6개 중 한 개 선택
- MLM : 선택된 action 에 해당하는 단어에 mask 토큰을 부여하고 그 위치를 다른 단어로 대체함으로써 새로운 문장 생성
- NLI: 생성된 새로운 문장이 모델 성능 향상에 + 가 되는지 확인하기 위해 적용 이를 통해 reward 값 구해서 이 reward를 통해 다음 state 결정

Result: Acc 54.61%, Loss 0.904

	Agent	Г
	Q Learning	t
		a
State : Who are Reward : 0.1	your favorite movie stars? Action : Change Adjective	a
	Environment	a [
	NLI BERT 🗘 MLM BERT	a s c
		a

Original_sequence	New_sequence	Label
a dog running in the grass . [SEP] outside there is an animal on the move .	a dog running in the yard. [SEP] outside there is an animal on the ground.	0 (명사 대체)
a little boy playing with his toy , [SEP] the dog ran after the car .	a little boy playing with his bag. [SEP] the dog ran after the car.	1 (명사 대체)
an impromptu toast among friends . [SEP] everyone in the room hates each other .	an impromptu hug among friends. [SEP] everyone in the room hugged each other.	1 (동사 대체)
a blond girl in a green patterned shirt has her hand raised . [SEP] the girl is at a dance party .	a blond girl in a green patterned dress has her head raised. [SEP] the girl is at a dance party.	1 (명사 대체)
a group of people are riding on a tour bus and viewing something interesting out the window . [SEP] the tour bus is full of people .	a group of people are riding on a tour bus and viewing something interesting through the window. [SEP] the tour bus is full of people.	0 (전치사 대체)
a guy looking at the city map . [SEP] a boy is using a gps .	a boy looking at the city map, [SEP] a girl is using a gps,	1 (명사 대체)

KCC 2022: 멀티 도메인 대화 데이터셋을 사용한 문서 검색 모델 [2022.03~2022.07]

Method:

MultiDoc2Dial 데이터셋을 사용해서 ODQA 모델에 사용했던 Dense Phrase Retriever 학습을 다시 진행했다.

학습 데이터셋만을 바꿔서 학습을 진행했을 때 기존 모델에 비해 성능이 얼마나 증가하는지 실험을 진행했다.

Result: 기존 모델보다 검색 성능이 정확도에서 10~20% 정도 향상되었고, 이전 대화 내용을 포함한 질문을 제시했을 때 모델이 답변과 관련된 문단을 잘 검색하는 결과가 나왔다.

Experiment:

- 1. 기존 위키피디아 데이터셋을 DPR 을 학습한 모델과 MultiDoc2Dial 데이터셋을 사용해서 학습한 모델의 정확도 비교
- 2. 질문에 이전 대화 기록을 포함하는지, 안 하는지에 따른 성능 비교

k	1			20			60			100		
	TrainDevTest		TrainDevTest			Train Dev Test			TrainDevTest			
Single			52			81						87

표 2: Single 모델의 정확도

	k	1			20			60			100		
		Train DevTest		TrainDevTest		TrainDevTest			TrainDevTest				
ı	Multi	72	33	0	82	60	81	83	69	94	83	73	96

표 3: Multi 모델의 정확도

k	1			20			60			100		
	Trair) Dev	Test	Train	Dev	Test	Train	Dev	Test	Train	Dev	Test
0	72	33	0	82	60	81	83	69	94	83	73	96
X	40	20	0	57	39	56	62	48	59	64	52	59

표 4: MultiDoc2Dial 데이터 셋 통계

멀티 도메인 대화 데이터 셋을 사용한 문서 검색 모델

성능 개선

배수영[○], 김은총, 정윤경 성균관 대학교 인공지능학과 {sybae01, prokkec, aimecca}@g.skku.edu

Improving Document Retrieval Model Multi Domain

Dialogue Dataset

Suyoung BaeO, Eunchong Kim, YunGung Cheong SungKyunKwan University Artificial Intelligence Department

요 으

으본 도메인 집의 응답 모델에서 DPR(Dense Phrase Retrieval)은 두 개의 인코더를 사용해서 잘문과 문단 간의 정확도 높은 문단을 검색하는 모델이다. 기준 DPR은 위키피디아 도메인한 개를 사용해 학습을 진행했지만 보 연구에서는 네 개의 도메인과 대화 학식의 집의 응답으로 이루어진 데이터 셋을 사용해서 DPR 학습을 진행하고 기준 모델과 검색 성능을 비교하는 실험을 진행했다. 그 결과 기존 모델보다 검색 성능이 정확도 성능 지표 면에서 약 10~20% 정도 항상되는 결과가 나왔고, 이전 대화 내용이 포함된 질문을 제시했을 때 모델이 답변과 관련된 문단을 잘 검색하는 결과가 나왔다.

COLING 2022: The CreativeSumm 2022 Shared Task: A Two-Stage Summarization Model using Scene Attributes [2022.05~2022.10]

Author: EunChong Kim, TaeWoo Yoo, GunHee Cho, SuYoung Bae, Yun-Gyung Cheong Method: Two-Stage Summarization Model (Abstractive + Extractive Summarization)

- 1. Scene 에서 등장인물의 등장 횟수를 기준으로 Scene 을 다시 나눈다. (Scene Segmentation)
- 2. LDA topic modeling 을 적용해 Topic 이 많이 포함되어 있는 scene의 Abstractive Summary 만을 추출해 합친다. (=Sub Summary)
- 3. Extractive Summarization model 을 사용해서 최종 summary 를 도출한다.

Result: Rouge, BERTScore 가 베이스라인보다 높은 점수를 보였고, Shared Task 전체에서 2등을 수상했다.

The CreativeSumm 2022 Shared Task: A Two-Stage Summarization Model using Scene Attributes

EunChong Kim* TaeWoo Yoo* GunHee Cho SuYoung Bae Yun-Gyung Cheong

Department of Artificial Intelligence Sungkyunkwan University, South Korea

{prokkec,woo990307,skate4333,sybae01,aimecca}@skku.edu

THE 29TH
INTERNATIONAL
CONPERRENCE ON
COMPUTATIONAL
LINGUISTICS
Cotaber 13. 17. 202
Gyeonglu, Republic of Korea

Paper: https://aclanthology.org/2022.creativesumm-1.8/

Github: https://github.com/BaeSuyoung/MovING_sum

BIGCOMP 2022: Predicting the Morality of a Character Using Character–Centric Embeddings [2022.10~]

Author: Suyoung Bae, EunChong Kim, Yun-Gyung Cheong

Method: Moral Character Identification Framework

- 1. Story dataset 사용해서 전처리 후 Main Character 를 추출한다.
- 2. 캐릭터들을 special token 으로 치환하고, Masked Language Model 학습 방법을 사용해 캐릭터 임베딩을 학습한다.
- 3. 학습된 모델에 special token 으로 주어를 치환한 moral stories 문장을 입력으로 넣고 morality score 를 계산한다.

Predicting the Morality of a Character Using Character-Centric Embeddings

1st Su-Young Bae Department of AI Sungkyunkwan University Suwon, Korea sybae01@skku.edu 2nd Eun-Chong Kim Department of AI Sungkyunkwan University Suwon, Korea prokkec@skku.edu 3rd Yun-Gyung Cheong Department of AI Sungkyunkwan University Suwon, Korea aimecca@skku.edu

Dataset:

- 1. Harry Potter novel dataset 사용해서 학습, 평가
- 2. Moral Stories dataset 사용해서 morality 평가

Dataset	Model	Harry	Hermione	Ron	Sirius	Snape	Voldemort	Hagrid
all	BERT	0.08	0.57	0.35	-0.53	-0.20	0.15	0.25
	ALBERT	-0.65	0.07	-0.35	0.24	0.31	0.09	-0.17
	RoBERTa	-0.59	-0.32	-0.19	-0.04	0.18	0.25	0.02
subj	BERT	0.67	0.19	0.72	-0.65	-0.47	0.15	-0.34
	ALBERT	-0.13	0.94	0.63	-0.36	0.17	0.02	0.08
	RoBERTa	-0.29	-0.02	0.02	-0.07	-0.05	-0.01	0.03

Result : Masked Language Model 이 윤리적 캐릭터와 비윤리적 캐릭터에 대해 어느정도 분류를 잘 하는 것을 검증