CM106 - Otimização I

Lista de Exercícios (última atualização: 05 de Junho de 2018 às 19:48)

- 1. Exercícios 7.1 7.6 do livro da Ana Friedlander.
- 2. Resolva

$$\min_{\boldsymbol{u}} \frac{1}{2} \left\| \boldsymbol{y} \right\|^2 \qquad \text{suj. a} \qquad \boldsymbol{A}^\mathsf{T} \boldsymbol{y} = \boldsymbol{c}.$$

Para deixar a solução explícita, qual a hipótese sobre a matriz A?

3. Considere os dois problemas a seguir

$$(QM) : \min_{x} \frac{1}{2} \|Ax - b\|^{2}$$
 $(NM) : \min_{y} \frac{1}{2} \|y\|^{2}$ suj. a $A^{T}y = c$,

onde A é uma matriz $m \times n$ com m > n e A não necessariamente tem posto completo. Sejam \overline{x} e \overline{y} as soluções dos problemas acima.

- (a) Escreva as condições de otimalidade que \bar{x} e \bar{y} satisfazem.
- (b) Mostre que $\overline{y}^{T}(A\overline{x} b) = 0$.
- (c) Mostre que $\overline{y}^Tb = \overline{x}^Tc$.
- (d) Se A tem posto coluna completo, mostre explicitamente quem são \overline{x} e \overline{y} .
- (e) Mostre que se A tem posto coluna completo e b é factível para (NM), então \bar{x} é o multiplicador de Lagrange associado à \bar{y} .
- 4. Sejam $w \in \mathbb{R}^n$ e b, $c \in \mathbb{R}$. Calcule a distância entre os hiperplanos $w^T x = b$ e $w^T y = c$.
- 5. Escreva os seguintes problemas como problema de otimização com restrições lineares, e escreva as condições de otimalidade.
 - (a) Qual a projeção de v na imagem de A?
 - (b) Qual a projeção de w no núcleo de A?
- 6. Exercícios 8.1 8.11 do livro da Ana Friedlander.
- 7. Exercícios 9.1 9.9 do livro da Ana Friedlander.
- 8. Exercícios 10.1 10.4 do livro da Ana Friedlander, mas apenas graficamente.

Nas questões abaixo, use o seguinte método de restrições ativas para o problema min f(x) sujeito à $\alpha_i^T x \geqslant b_i$, com $i=1,\ldots,m$.

- 8. Exercícios 10.1 10.4 do livro da Ana Friedlander, mas apenas graficamente.
- 9. Resolva cada problema esboçado abaixo, a partir do ponto indicado. A cada opção de remoção de restrição de W, faça todas as variações.
 - (a) A partir de $x_0 = (0, 1)$.

Algorithm 1 Restrições ativas com gradiente projetado e busca exata

- 1: Dado x, faça W = A(x) (restrições ativas),
- 2: Tente resolver o sistema $\nabla f(x) = \sum_{i \in \mathcal{W}} \alpha_i \lambda_i$. Se não for possível, vá ao passo 3, se for possível vá ao passo 7.,
- 3: Calcule d a projeção de $-\nabla f(x)$ sobre as restrições em W.
- 4: Calcule o minimizador de $f(x + \alpha d)$, $\alpha \ge 0$ e $a_i^T(x + \alpha d) \ge b_i$.
- 5: Se $x + \alpha d$ encontrou uma ou mais restrições, então adicione essas restrições adicionais em W.
- 6: Volte ao passo 2.
- 7: Se $\lambda \geqslant 0$, FIM
- 8: Se algum $\lambda_i < 0$, escolha **uma** restrição com $\lambda_i < 0$ e remova de W.
- 9: Volte ao passo 2.

(b) A partir de $x_0 = (3, 4)$.

(c) A partir de $x_0 = (4, 0.5)$.

- 10. Exercícios 11.1 11.2 do livro da Ana Friedlander.
- 11. Exercícios 12.1 12.5 do livro da Ana Friedlander.
- 12. Escreva as condições de otimalidade de

$$\min_{x,t} f(x) + \frac{\delta}{2} \|t\|^2 \qquad \text{suj. a} \qquad h(x) + \delta t = 0,$$

onde $\delta \geqslant 0$.

- 13. Exercícios 13.1 13.14 do livro da Ana Friedlander.
- 14. Calcule a projeção de $v \in \mathbb{R}^n$ na esfera de raio R>0 centrada na origem, usando otimização.