Course code	Essentials of Machine Learning	L	T	P	C
XXXX		3	1	0	4
Pre-requisite: Nil Versi			sion		

Course Objectives:

It introduces theoretical foundations, algorithms, methodologies, and applications of Machine Learning also provide practical knowledge for handling and analysing data sets covering a variety of real-world applications.

This course is devised to learn and explore

- 1. Basic ability to understand the concept of supervised and unsupervised learning techniques
- 2. Differentiate regression, classification and clustering techniques and able to analyse the performance of various machine learning techniques
- 3. To select appropriate features for training, reduce the dimension of the dataset, to handle missing values and to combine different machine learning algorithm to achieve a better results.

Course Outcome:

After successfully completing the course the student should be able to

- 1. Recognize the characteristics of machine learning that makes it useful to solve real-world problems.
- 2. Provide solution for classification and regression approaches in real-world applications.
- 3. Apply Neural Networks and Support Vector Machines to solve a variety of classification problems.
- 4. Gain knowledge to combine machine learning models to achieve better results.
- 5. Solve real-world problems of machine learning solutions to clustering problems.
- 6. Understand methods to reduce the number of dimensions in a dataset.

Student Learning Outcomes (SLO): 2,5,7,9

- 2. Having a clear understanding of the subject related concepts and of contemporary issues
- 5. Having design thinking capability
- 7. Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)
- 9. Having problem solving ability- solving social issues and engineering problems

Module	Topics	Hours	CO
Module:1	Introduction to Machine Learning	6	1
	What is Machine Learning, Examples of Various Learning		
	Paradigms, Perspectives and Issues, Version Spaces, Finite		
	and Infinite Hypothesis Spaces, PAC Learning		
Module:2	Supervised Learning-I	6	2
	Learning a Class from Examples, Linear, Non-linear, Multi-		
	class and Multi-label classification, Generalization error		
	bounds: VC Dimension, Decision Trees: ID3, Classification		
	and Regression Trees, Regression: Linear Regression,		
	Multiple Linear Regression, Logistic Regression		
Module:3	Supervised Learning-II	8	3

	Total Lecture hours:	40 hours	
	care using machine learning techniques.		
	Case Study - fraud detection, speech recognition, health		
Module:6	Recent Trends	6	6
	Genetic Algorithms –Particle Swarm Optimization		
	Derivative based Optimization - Descent Methods -		
Module:5	Optimization Techniques	7	5
	Organizing Map, Principal Component Analysis		
	Introduction to clustering, K-Means Clustering, Self-		
Module:4	Unsupervised Learning	7	4
	Backpropagation network		
	Learning rules, Learning Paradigms. Perceptron network,		
	History, Mathematical model of neuron, ANN architectures,		

Teaching Pedagogy: Online Learning materials, Video Lectures and Case studies **Evaluation Criterion:** Online Quiz, Digital Assignment, Case Study Analysis Report and Term End Examination

References:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.
- 2. S.N Sivanandam, S N Deepa," Principles of Soft Computing", Wiley India, 2nd Edition, 2011.

Reference Books

- 1. Sergios Theodoridis, Konstantinos Koutroumbas, "Pattern Recognition", Academic Press, 4th edition, 2008, **ISBN:**9781597492720
- 2. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012.
- 3. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 4. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.
- 5. Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.
 - 1. 6. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012

Course Owner details:

Course Owner	K.Lavanya
Emp. ID	13340
Email	lavanya.k@vit.ac.in
School	SCOPE

Recommended by Board of Studies	23.11.2018			
Approved by Academic Council	53	Date	13.12.2018	