

KATEDRA KYBERNETIKY

DIPLOMOVÁ PRÁCE

Pokročilé algoritmy autonomního přistávání bezpilotního letounu na plošině

Autor: Vojtěch Breník Vedoucí práce: Ing. Petr Neduchal, Ph.D.

19. února 2024

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Fakulta aplikovaných věd Akademický rok: 2023/2024

ZADÁNÍ DIPLOMOVÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení:

Bc. Vojtěch BRENÍK

Osobní číslo:

A22N0105P

Studijní program:

N0714A150011 Kybernetika a řídicí technika

Specializace:

Umělá inteligence a automatizace

Téma práce:

Pokročilé algoritmy autonomního přistávání bezpilotního letounu na

plošině

Zadávající katedra:

Katedra kybernetiky

Zásady pro vypracování

- 1. Proveďte rešerši v oblasti algoritmů pro autonomní přistání bezpilotního letounu (dronu) na plošině.
- 2. Proveďte rešerši dostupných simulátorů vhodných pro tuto úlohu.
- 3. Analyzujte možnosti simulace externích vlivů (vítr, teplota, ...) na přistávající bezpilotní letoun.
- 4. Navrhněte systém pro simulaci přistání bezpilotního letounu na plošině s využitím některé z metod uvedených v rešerši.

Rozsah diplomové práce:

40-50 stránek A4

Rozsah grafických prací:

Forma zpracování diplomové práce: tištěná/elektronická

Seznam doporučené literatury:

- 1. Xin, L., Tang, Z., Gai, W., & Liu, H. (2022). Vision-based autonomous landing for the uav: A review. Aerospace, 9(11), 634.
- 2. Kakaletsis, E., Symeonidis, C., Tzelepi, M., Mademlis, I., Tefas, A., Nikolaidis, N., & Pitas, I. (2021). Computer vision for autonomous UAV flight safety: An overview and a vision-based safe landing pipeline example. Acm Computing Surveys (Csur), 54(9), 1-37.
- 3. Saavedra-Ruiz, M., Pinto-Vargas, A., & Romero-Cano, V. (2022). Monocular Visual Autonomous Landing System for Quadcopter Drones Using Software in the Loop. IEEE Aerospace and Electronic Systems Magazine, 37(5), 2–16.

Vedoucí diplomové práce:

Ing. Petr Neduchal, Ph.D.

Výzkumný program 1

Datum zadání diplomové práce:

2. října 2023

Termín odevzdání diplomové práce: 20. května 2024

Doc. Ing. Miloš Železný, Ph.D. děkan

Doc. Dr. Ing. Vlasta Radová vedoucí katedry

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou na závěr studia na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použitím odborné literatury a pramenů, jejichž úplný seznam je její součástí.

V Plzni dne 20. května 2024

ZÁPADOČESKÁ UNIVERZITA

Fakulta aplikovaných věd Katedra kybernetiky

Abstrakt

Pokročilé algoritmy autonomního přistávání bezpilotního letounu na plošině

Vojtěch Breník

Český abstrakt

Advanced algorithms for autonomous landing of an unmanned aerial vehicle on a platform

English abstract

Poděkování

Poděkování...

Obsah

Al	ostrakt	ii		
1	Úvod 1.1 Bezpilotní letadlo 1.2 Přistávání 1.3 Plošina 1.4 Struktura práce	1 1 1 1		
2	Definice úlohy	2		
3	Plošina pro přistávání 3.1 Optické značky (tagy)	3 3 3		
4	Detekce optických značek	4		
5	Algoritmy pro přistávání	5		
6	Simulátory bezpilotních letadel	6		
7	Návrh systému pro přistávání7.1 Vstupy systému7.2 Komonenty systému7.3 Výstupy systému7.4 Struktura systému	7 7 7 7 7		
8	Grafické uživatelské rozhraní	8		
9	Vyhodnocení	9		
10	Diskuze 10.1 Možnosti reálného nasazení systému	10 10		
11	11 Z ávěr			
Bi	Bibliografie			

Seznam obrázků

Seznam tabulek

Seznam zkratek

AF Aktivační funkce. 25

API Application Programming Interface (rozhraní pro programování aplikací). 1, 18, 32, 39

DPS Deska plošných spojů. 12–14

FFNN Feedforward Neural Network (dopředná neuronová sít). 26, 34

 ${\bf GUI}\,$ Graphical User Interface (grafické uživatelské rozhraní). 12, 19–21, 26, 27, 29, 30

IoT Internet of Things (internet věcí). 2, 8

LSTM Long Short-Term Memory (druh rekurentní neuronové sítě). 6, 7, 25, 26, 34

MCU Microcontroller Unit (jednočipový počítač). 13, 14, 16, 39

 \mathbf{MSE} Mean Squared Error (střední kvadratická odchylka). 22, 25, 33–35, 37, 39, 40

NS Neuronová sít. 2, 9, 21–23, 25, 26, 33, 36, 39–43

ReLU Aktivační funkce Rectified Linear Unit. 3, 4

URL Uniform Resource Locator. 19

1 Úvod

1.1 Bezpilotní letadlo

UAV - využití, aplikace, součástí mise je přistávání - potřeba jeho automatizace; druhy, historie, specifika; zúžení na čtyřrotorový pro účely práce

1.2 Přistávání

definice, možnosti, navádění na cíl (opticky, radiomajáky?)

1.3 Plošina

vymezení, optické značky

1.4 Struktura práce

2 Definice úlohy

3 Plošina pro přistávání

- 3.1 Optické značky (tagy)
- 3.1.1 Apriltag
- 3.1.2 Aruco

4 Detekce optických značek

5 Algoritmy pro přistávání

6 Simulátory bezpilotních letadel

7 Návrh systému pro přistávání

- 7.1 Vstupy systému
- 7.2 Komonenty systému
- 7.3 Výstupy systému
- 7.4 Struktura systému

8 Grafické uživatelské rozhraní

Budoucí výstup projektu - rozhraní pro spawnování dronu, plošiny a nastavení simulátoru atd.

9 Vyhodnocení

Porovnání vybraných algoritmů

10 Diskuze

10.1 Možnosti reálného nasazení systému

11 Závěr

Bibliografie

[1] Warren S McCulloch a Walter Pitts. "A logical calculus of the ideas immanent in nervous activity". In: *The bulletin of mathematical biophysics* 5.4 (1943), s. 115–133.