3D Parameterization: PolyCube and CubeCover

Tengfei Jiang

October 22, 2013

Outline

- Introduction
- CubeCover and PolyCube
- Conclusion

What we want to do?

What we need to do?

Analogous to 2D parameterization, a good 3D parameterization needs a suitable frame-field.

Which can be defined as follows:

$$\min \int_{V} \|\nabla f - X\|^{2} dV$$

s.t. $C = 0$

Where C = 0 is the boundary condition, and X is the frame-field. Then the most important thing is to generate a good X: smooth, topology well defined, controllable,....

Frame-Field Unknown

- Smooth: It has been done.
- 2 Topology: *CubeCover* has found a few things, but it's still left unknown on how to place singularities.
- Ontrollable: Depends on topology. Also unknown.

CubeCover

./img/meta-mesh-2.png

A good frame-field should statisfy the topology constaint: singularities should be placed well.

Frame-Field Construction

By using the trilinear interpolation, it will get a frame on each point. So that each tet has a frame at the barycenter.

It looks like a simple smoothing process.

Singularity

Frame-Field Construction

The major character of frame field is $./{\tt img/singularity.phg} control \ the \ singularities.$

matching matrix \prod_{st} defines the difference

./img/orientation.pfrom orientation of s to orientation of t.

Inner-Singularity

The singularity type of edge
$$e$$
 is defined as:
$$type(e,t_0) := \prod_{t_kt_0} \circ \prod_{t_{k-1}t_k} \circ ... \circ \prod_{t_1t_2} \circ \prod_{t_0t_1} ./\text{img/singularity-matching-matrix.png}$$
 ./img/singularity-matching-matrix.png The lefs $(t_0...t_k)$ is around the edge e .

Theorem: Let f be a parameterization where no tet is mapped to degenerated tet(a tet with vanishing volume).

Then the *type* of each edge is either the identity or a rotation of 90° around one of the coordinate axes.

An observation which may be usefull

Theorem:

Let p be an inner vertex of a non-degenerated hexahedral mesh and e_i its adjacent edges. Then: $\sum_i (6 - valence(e_i)) = 12$ Where valence of e is the number of adjacent hexahedra.

An observation which may be usefull

The above theorem indicates that:

- A singularity edge will not simply start or end interior. They usually meet at node points or hit the bounding surfaces.
- Not all situations which can fulfill above equation exist in real life. Not complete.

PolyCube

./img/deformation.png

Deformation

./img/rotation.png

./img/position.png

Rotation

Align the model surface normal with the global axes: $\pm X, \pm Y, \pm Z$

Position

Align each PolyCube face with an appropriate axis.

Limitation

Enforcing the planarity constraint will result in large distortion. That's because it's not a plane around the pink point. It needs a chart cutting and inserting. But the chart insertion process is not guaranteed to produce a valid PolyCube. No topology consistency guarantee

Conclusion

The two method are both semi-automatic parameterization.

- PolyCube:
 - All-hex mesh
 - Singularity-free interior
 - No theoretical guarantee on producing a valid PolyCube
- CubeCover:
 - Singularity controllable but need to manually generate meta-mesh
 - Lack of frame-field smoothing
 - There is no sufficient condition on finding a frame-field which adheres to given singularities.