

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Информатика и системы управления (ИУ)
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Моделирование» «Моделирование непрерывных марковских процессов»

Группа <u>ИУ7-71Б</u>		
Студент	подпись, дата	<u>Лукьяненко В.А.</u> фамилия, и.о.
Преподаватель	подпись, дата	Рудаков И.В. фамилия, и.о.
Оценка		

Задание

Цель работы

Цель работы: изучение принципов моделирования непрерывных марковских процессов, реализация программного средства для расчёта стационарных вероятностей и визуализации сходимости состояний во времени.

Теоретическая часть

Марковские процессы

Марковский процесс — это стохастический процесс, обладающий свойством отсутствия памяти: вероятность перехода зависит только от текущего состояния. В непрерывном времени он описывается системой дифференциальных уравнений Колмогорова:

$$\frac{dP(t)}{dt} = P(t)Q,$$

где P(t) — вектор вероятностей состояний, а Q — матрица интенсивностей переходов.

Построение матрицы переходов

Матрица Q формируется на основе введённых пользователем интенсивностей λ_{ij} :

$$Q_{ij} = \begin{cases} \lambda_{ij}, & i \neq j, \\ -\sum_{j \neq i} \lambda_{ij}, & i = j. \end{cases}$$

Каждая строка суммируется в ноль, что отражает сохранение полной вероятности.

Методы расчёта

Для вычисления стационарного распределения π используется решение линейной системы

$$\pi Q = 0, \quad \sum_{i} \pi_i = 1.$$

Решение производится методом Гаусса с выбором главного элемента.

Динамика приближения P(t) к π моделируется численным методом Эйлера:

$$P_{k+1} = P_k + \Delta t \cdot P_k Q,$$

с нормировкой $\sum_i P_i = 1$ на каждом шаге.

Время сходимости τ_i для каждого состояния определяется по условию малой производной и близости $P_i(t)$ к π_i .

Вывод

Разработанная программа вычисляет стационарные вероятности состояний, определяет время сходимости и визуализирует процесс стабилизации системы. Метод Эйлера и алгоритм Гаусса обеспечивают корректное и наглядное моделирование марковских процессов.