

Examination, 2011 Western Australian Certificate of Education

Question/Answer Booklet

Student Number: In figure	
Section One: Calculator-free	
BC/3D GC/3D	Please place your student identification label in this box

Time allowed for this section

Working time for paper: fifty minutes Reading time before commencing work: sətunim əvif

To be provided by the supervisor Materials required/recommended for this paper

Formula Sheet This Question/Answer Booklet

To be provided by the candidate

highlighters Standard items: pens, pencils, pencil sharpener, eraser, correction fluid/tape, ruler,

Ref: 11-136

Special items: nil

Important note to candidates

before reading any further. examination room. If you have any unauthorised material with you, hand it to the supervisor you do not have any unauthorised notes or other items of a non-personal nature in the No other items may be taken into the examination room. It is your responsibility to ensure that

Copyright © Curriculum Council 2011

the terms of the Copyright Act or with permission of the copyright owners. permission of the Curriculum Council. Copying or communication of any third party copyright material can be done only within

OSBORNE PARK WA 6017 27 Walters Drive Published by the Curriculum Council of Western Australia

Copying or communication for any other purpose can be done only within the terms of the Copyight Act or with prior written

on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the Curriculum

This examination paper – apart from any third party copyright material contained in it – may be freely copied, or communicated

(WACE) may change the examination paper, provided that the Curriculum Council's moral rights are not infringed. Council is acknowledged as the copyright owner. Teachers in schools offering the Western Australian Certificate of Education MATHEMATICS 3C/3D 2 CALCULATOR-FREE

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	8	8	50	40	
Section Two: Calculator- assumed	12	12	100	80	
			Total	120	100

Instructions to candidates

- The rules for the conduct of Western Australian external examinations are detailed in the Year 12 Information Handbook 2011. Sitting this examination implies that you agree to abide by these rules.
- Write your answers in the spaces provided in this Question/Answer Booklet. Spare
 pages are included at the end of this booklet. They can be used for planning your
 responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in
 the original answer space where the answer is continued, i.e. give the page number.
 Fill in the number of the question(s) that you are continuing to answer at the top of the
 page.
- 3. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 4. It is recommended that you **do not use pencil**, except in diagrams.

CALCULATOR-FREE 11 MATHEMATICS 3C/3D

Additional	working	snace

Question	number:	

CALCULATOR-FREE 3C/3D

Section One: Calculator-free (40 Marks)

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.

Continuing an answer: If you need to use the space to continue an answer, indicate in the
original answer space where the answer is continued, i.e. give the page number. Fill in the
number of the question(s) that you are continuing to answer at the top of the page.

Working time: 50 minutes.

Question 1 (6 marks)

Differentiate the following with respect to x, without simplifying.

(s)
$$\frac{1+x^{4}}{1+x^{2}\sqrt{x}} = (x) f$$
 (a)

(S marks) (2 marks)

(c)
$$y(x+1)^{2} = (x+1)^{2} dx$$

MATHEMATICS 3C/3D 10 CALCULATOR-FREE Guestion 8 (5 marks)

Part of the graph of y=f(x) is shown below. The areas of the bounded regions A and B are 7 and 4 square units respectively.

(a) Evaluate (2 marks) (2 marks)

(3 marks) $xb((x)(x-1)^{-1} \int_{1-1}^{1} (x-1)^{-1} dx$

End of questions

MATHEMATICS 3C/3D 4 CALCULATOR-FREE

Question 2 (4 marks)

Calculate the maximum and minimum values of $x^2(6-x)$ in the interval $1 \le x \le 5$.

CALCULATOR-FREE 9 MATHEMATICS 3C/3D

Question 7 (8 marks)

Let S denote {1000, 1001, 1002, ..., 9998, 9999}, the set of four-digit whole numbers.

(a) How many numbers in S are palindromes (that is, read the same forward as backward) like 2002 and 7777? (2 marks

(b) How many numbers in S are multiples of either 4 or 5, but not both, like 3404 and 4025? For example, 3404 is a multiple of 4 but not 5 and 4025 is a multiple of 5 but not 4.

(3 marks)

(c) How many numbers in S contain at least **two (2)** consecutive 5s, like 5529, 1555 and 5255?

(3 marks)

			(3 тагка)	a,b and c by solving the equations in part (a).	Evaluate the constants	(q)
				.64 = .36 + .46 + .64 = .30 + .64 = .30 + .64 = .30 + .64 = .30 + .64 = .30 = .30 + .64 = .30	q - q = 0.01 + 108c = 0	
			(3 marks)	:equations of satisfy the simultaneous equations:	Explain why the consta	(a)
				$\zeta = x$ is notion	əlîni îo înioq s ssrl $(x)d$	•
				9=x is	nioq gnimut a sad (x)q	•
	$1 > \frac{2 + x\xi}{3 - x}$				$\mathcal{EEI} = (\mathcal{E}) q$	•
	C 1 ~ E	Solve the inequality		$+ bx^2 + cx^3$ has the following properties:	ax p = (x)d laimonylog sidus e	ч⊥
(3 marks)		Question 3	(e marks)		9 noites	дn
MATHEMATICS 3C/3D	9	CALCULATOR-FREE	ЗЭЯЯ-ЯОТ А ЛІ	8 C∀rc∩	THEMATICS 3C/3D	ΑM

See next page

Question 5

7

Question 4

(4 marks)

Let $f(x) = e^x$ and $g(x) = \sqrt{1 - x}$.

(a) Determine expressions for f(g(x)) and g(f(x)).

(2 marks)

(b) Determine the range of f(g(x)).

(1 mark)

(c) Determine the domain of g(f(x)).

(1 mark)

(a) Evaluate $\int_{-0.5}^{0} 3(1-x)^2 dx$

(2 marks)

(4 marks)

(2 marks)

(b) Determine $\int x^2(x^3+4)^9 dx$

See next page