| 段 图 网 |    |    |    |    |    |    |  |  |  |
|-------|----|----|----|----|----|----|--|--|--|
| Мо    | Tu | We | Th | Fr | Sa | Su |  |  |  |

| Memo No. |   |   |
|----------|---|---|
| Date     | 1 | 1 |

(b) 二 19 分数学 (Special)
y" no special: (Dy"+Dy'+Dy+Dx=0

$$D y'' = f(x)$$

$$y' = \int f(x) dx + C_1$$

$$y = \int \int f(x) dx' dx + G(x) + C_2$$

$$(2) \quad y'' = f(x, y')$$

$$= y' = z'$$

$$z' = f(x, z) - \beta i$$

ey. 
$$\chi y'' = (y') + \chi^2 e^{\chi}$$
  
 $\pm 1 + \chi e^{\chi}$   
 $\pm 1 = \pm 2 + \chi e^{\chi}$   
 $\pm 2 = \pm 2 + \chi e^{\chi}$   
 $\pm 2 = \chi e^{\chi}$   
 $\pm 3 = \chi e^{\chi}$   
 $\pm 4 = \chi e^{\chi}$ 

$$y' = e^{x} x + cx , \quad y = \int (ce^{x} x) + (cx) dx$$

$$\Rightarrow = \frac{c}{c} x^{2} + \chi e^{x} - e^{x} + c_{2}$$

$$\Rightarrow y'' = f(y, y')$$

$$y = \frac{d}{dx} + \frac{d}{dx} = \frac{d}{dx}$$

$$\Rightarrow x + \frac{d}{dx} = f(y, x)$$

$$\Rightarrow x = \frac{d}{dx} + \frac{d}{dx} = \frac{d}{dx}$$

$$\Rightarrow x = \frac{d}{dx} + \frac{d}{dx} = \frac{d}{dx} + \frac{d}{dx}$$

$$\Rightarrow x = \frac{d}{dx} + \frac{d}{dx} = \frac{d}{dx} + \frac{d}{dx}$$

$$\Rightarrow x = \frac{d}{dx} + \frac{d}{dx} = \frac{d}{dx} + \frac{d}{dx}$$

$$\Rightarrow y' = x + \frac{d}{dx} = \frac{d}{dx} + \frac{d}{dx}$$

$$\Rightarrow y' = x + \frac{d}{dx}$$

$$\Rightarrow x' = x + \frac{d}{dx}$$

$$\Rightarrow x$$

|  | Мо | Tu | We | Th | Fr | Sa | Su |  |  |
|--|----|----|----|----|----|----|----|--|--|

| Memo No. |   |   |  |
|----------|---|---|--|
| Date     | 1 | 1 |  |

## ① 三项常务数条次线性方疑。 ②Y\*\*+PY+2y=0(生1)2.2 常数

$$\Delta y_1'' + \beta y_1' + 2 y_1 = 0$$

$$0 y_2'' + \beta y_2' + 2 y_2 = 0$$

$$13'' + \beta 0 / 2 + 2 y_2 = 0$$

$$\frac{1}{y} \frac{y'' + p y' + q y = 0}{y = c_1 y_1 + c_2 y_2} \frac{y_1}{y_2} + K$$

Euler 海色搭盖电影法

er/kex

 $(e^{\lambda X})^{"+} [(e^{\lambda X})^{"} + (e^{\lambda X})^{"$ 

| Mo Tu We Th Fr Sa Su                                      | Memo No                                |
|-----------------------------------------------------------|----------------------------------------|
| 7 Nº +PN+2=0                                              | 特征台项计                                  |
| りー元二次が経                                                   |                                        |
| ②Λ,≠Λ2 为实表                                                |                                        |
| $=)$ $Y = Ge^{\lambda_1 X} + Ge^{\lambda_2 X}$            |                                        |
|                                                           | ONIX = ENLX =) 数提相美                    |
| => \$6/2 , \frac{\gamma_2}{e^{\alpha_1}},                 | r + K                                  |
| $ \underbrace{\xi \frac{y_2}{\partial x}}_{=21} = \pm 1 $ | 17, Yz=en zexpiter                     |
| E'theretprey                                              | 4 CAX 4 PA 49/8/70                     |
| CENTE DENT ZING + S                                       | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| y'' + py' + qy = 0                                        | THIN YL                                |
| ( 1ex. = (x) + ex = (x))                                  | + 12(VEXX5(X)+6xx7(X))                 |
| +2. e 1x. 7(x) =0                                         |                                        |
|                                                           | + Nexx. 7(x) + exx 2"(x))              |
| + PAENZW+ PEAKZ                                           | _                                      |
| =) exix) ( N=Z(X)+N>(X) =                                 | 172'(x)+2"(x)+P12cx)+                  |
| (X(X) + 9.2(X)) =0                                        |                                        |
| enx [ 24(x) + (22+p).                                     | Z'(x) +(1)+PN+9) Z(x)]=0               |
| 入りある年至 ハンナアのナダ                                            | =0 66 18                               |
| 又个人是上级                                                    | =重板 九州2=一前一月                           |
|                                                           | フィ・スンこ タ                               |

$$=) \lambda_1^2 = 2\lambda_1 + p = 0$$

$$2\lambda_1 = p$$

: e x [2"]=0

$$z=cx$$
 =  $cx \cdot e^{x}$ 

$$z=cx$$
 =  $cx$ ,  $e^{x}$ 

11 45年前经是同期

## ⑤八八八 被数

$$\Lambda_1 = \alpha + i\beta$$

$$\Lambda_2 = \overline{\lambda_1} = \alpha - i\beta$$

 $\Lambda_2 = \overline{\lambda_1} = \alpha - i\beta$   $e^{i\chi} = \cos \chi + i \sin \chi$ 

$$e^{\lambda_1 X} = e^{(\alpha + i\beta_1)X} = e^{\alpha X} \cdot e^{i\beta X}$$
 Enlon Est

enx = e (dx [wspx-isingx]

$$D+D=2e^{ax}$$
, as  $ax=e^{ax}+e^{ax}$ 

$$0-0=2ie^{\alpha x}simpx=e^{\alpha x}-e^{\alpha x}$$



| $\Diamond$ | Z  | 5  | R  |    |    |    |
|------------|----|----|----|----|----|----|
| Mo         | Tu | Wo | Th | Fr | Sa | Su |

Memo No. \_\_\_\_\_\_/

e.g. 2 y'' + 4y' + 4y = 0 $\lambda^{2} + 4\lambda + 4 = 0$   $\lambda_{1} = -2$   $\lambda_{2} = -2$   $y = c, e^{-2x} + c_{2}xe^{-2x}$ 

e.g. 3 y'' + 2y' + 4y = 0 $\Lambda^2 + 2\Lambda + 4 = 0$   $(\Lambda + 1)^2 = -3$ 

 $\Rightarrow \begin{cases} \lambda_1 = -1 + \beta_1 \\ \lambda_2 = -1 - \beta_1 \end{cases} \qquad \Delta = -1, \quad \beta = \beta_3$ 

 $= C_1 e^{-X} \cos \beta_X + C_2 e^{-X} \sin \beta_X$   $= C_1 e^{-X} \cos \beta_X + C_2 e^{-X} \sin \beta_X$