MANIPAL UNIVERSITY JAIPUR

School of Computing and Information Technology

Department of Information Technology

Course Hand-out

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING | IT3201 | 4 Credits | 3 | 0 4

Session: Jan 24- May 24| Faculty: Dr.Pratistha Mathur|

Dr Devesh Kumar Srivastaval Dr Sulabh Bansal|Dr Avani Shama| Mr Venkatesh Gauri Shanker: Core

Introduction: This course introduces artificial intelligence techniques and machine learning techniques to the students. The aim is to teach about Autonomous Agents, Problem solving, Search, Heuristic methods, State space Learning, Knowledge Representation, Uncertainty, Propositional Logic, Predicate Logic, Logic-based Agents, Basics of Machine Learning with its types, Concept Learning, Decision Tree Learning, Classification and Regression, Introduction to ANN with perceptron and backpropagation algorithms.

A. Course Outcomes: At the end of the course, students will be able to

- **IT3201.1** Discuss basics of Artificial intelligence and some representative applications of artificial intelligence.
- **IT3201.2** Formalise a given Al problem and analyse it along different dimensions.
- **IT3201.3** Identify and implement appropriate A.I. search technique to solve the problem.
- **IT3201.4** Illustrate knowledge representation using propositional, first order predicate logic and semantic network and apply reasoning process to draw conclusions.
- **IT3201.5** Apply different models performing common machine learning tasks such as classification and clustering.
- **IT3201.6** Discuss basic concepts of ANN and illustrate the working of Backpropagation algorithm.

B. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- [PO.1]. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- [PO.2]. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- [PO.3]. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- [PO.4]. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- [PO.5]. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- [PO.6]. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- [PO.7]. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- [PO.8]. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices
- [PO.9]. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

- [PO.10]. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- [PO.11]. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- [PO.12]. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- [PSO.1]. To apply creativity in support of the design, simulation, implementation and inference of existing and advanced technologies.
- [PSO.2]. To participate & succeed in IT oriented jobs/competitive examinations that offer inspiring & gratifying careers.
- [PSO.3]. To recognize the importance of professional developments by pursuing postgraduate studies and positions.

C. Assessment Plan:

Criteria	Description	Maximum Marks							
	Sessional Exam (Closed Book)	30							
Internal Assessment	In class Quizzes, Assignments and	30							
(Summative)	Class Performance (Accumulated and								
	Averaged)								
End Term Exam	End Term Exam (Closed Book)	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is require	d to be maintained by a student to be							
(Formative)	qualified for taking up the End Semester	examination. The allowance of 25%							
	includes all types of leaves including medical leaves.								
Make up Assignments	Students who misses a class will have								
(Formative)	absence. A makeup assignment on the to								
	be given which has to be submitted with								
	No extensions will be given on this. The	·							
	absence will be marked blank, so that the								
	These assignments are limited to a ma	aximum of 5 throughout the entire							
	semester.								
Homework/ Home Assignment/	There are situations where a student may have to work in home, especially								
Activity Assignment	before a flipped classroom. Although these works are not graded with marks.								
(Formative)	(Formative) However, a student is expected to participate and perform these assignments								
	with full zeal since the activity/ flipped cla	ssroom participation by a student will							
	be assessed and marks will be awarded.								

D. SYLLABUS

Pre-requisite(s): Programming in C, Data Structures, Engineering Mathematical - III, Design and Analysis of Algorithms

Introduction: : Introduction to Artificial Intelligence, Current Trends in AI; Intelligent Agents, Agent v/s Software Program, Classification of Agents, Working of an Agent, Single and Multi-Agent System, Performance Evaluation of Agents, Architecture of Intelligent Agents; AI Problems- Problem Space: Problem analysis; Problem Solving Techniques: Heuristic search Techniques; Knowledge Representation: Semantic Networks, Propositional and Predicate Logic: Propositional and Predicate calculus, semantics for predicate calculus, theorem prover, inference rules, unification, Resolution, Refutation in predicate logic; Machine Learning: Introduction, Types of Learning, Supervised vs Unsupervised Learning, Concept Learning- Concept Learning as Search, Find-S, Version Spaces and Candidate Elimination Algorithm, Decision Tree Learning, Classification and Regression using Supervised Learning; ANN-Introduction, Perceptron Learning, Multilayer Networks and the Back-propagation Learning.

E. TEXT BOOKS

- TI. E. Rich, K. Knight, and S.B. Nair, "Artificial Intelligence", 3rd Ed., Tata McGraw Hill, 2009.
- T2. S. Russell, and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, 2011.
- T3. Tom M. Mitchell, Machine Learning, (1e India Edition), McGraw Hill Education, 2017.

F. REFERENCE BOOKS

Prateek Joshi, Artificial Intelligence with Python, (1e), Packt Publishing Limited, 2017.

G. Lecture Plan:

Lec No	Topics	Session Outcome	Mode of Delivery	Corresponding CO	Mode of Assessing the Outcome
I- 2	Fundamental Concepts	Intelligent Systems,	Lecture	IT3201.1	In Class Quiz
		Foundation and			Sessional
		Application of Al	^ * 4la a a m .	2002	End Term
	·	Current Trends in Al	A* theory	page 7	
3– 5	Problems, Problem Spaces	Defining a Problem	Lecture	IT3201.2	In Class Quiz
		Characteristics of a			Sessional
		Problem			End Term
M	anhattan Euclidean distance	A brief introduction to	Differe	nce b/w informed	and uninformed
101	armattari Edonadari diotarioo	problem solving	Dillele	and unimonned	
		techniques.			
6-11	Heuristic Search Techniques	Heuristic search	Lecture	IT3201.3	In Class Quiz
		technique: Generate and	Tutorial	rot occrab from n	
	Notes ppt go through	Test, Hill Climbing,	Desti	irst search from no	Sessional
		Best-first search, Depth	generat	te theory	End Term
	tic tac heuristic	First Search, Branch and		hill climbing th	eory
	a* ao* graph	Bound Search, Problem reduction, Constraint			
under	estimation and over for a*	satisfaction	constrain	thoory	
12-14	Intelligent Agents	Agent v/s Software	Lecture	IT3201.2	In Class Quiz
	intelligency (genes	Program	Tutorial		Sessional
	MIN MAX algo	Rational Agent and			End Term
		PEAS Description			
	alpha beta prunning	Classification of Agents,			
		Working of an Agent	ppt	reolstuin tree	
		Single and Multi-Agent	easy engir	neering knowlefge	represation
	Study ppt	System Performance Evaluation	cas, siigii		, oprocanon
		of Agents, Architecture	knowledge	represtion baada	guestion
		of Agent, Intelligent	resolution		
		Agents;			
18	Knowledge Representation	Knowledge	Lecture	IT3201.4	Class Quiz
ta	utotlogy	Representation Issues	theory		Sessional
			•		End term
19-22		Propositional and Logic	Lecture	IT3201.4	Class Quiz
	Propositional and Predicate	operators, Simplification	Tutorial		Sessional End term
	Logic	laws, Predicate Calculus: Limitations of		first order predic	
	unification	Propositional Logic,	EACTS TO E		MAHESH HUDDAR
	unification	Quantifiers: Existential	17010101	NOT ONDER BY	WATESTITIODDAN
		and Universal, Domain	Neso aca	d for questions of	nested quantifier
	Education 4 u	Constraints, Nested	11030 404	u for questions of	ilested quantiner
		Quantifiers			-
23-26	Propositional and Predicate	Semantics for predicate	Lecture	IT3201.4	Class Quiz
	Logic Parichay sei puchna	calculus, Inference rules,	Tutorial		Sessional End term
27-32	Knowledge Representation	Resolution principle Knowledge	Tutorial	IT3201.4	Class Quiz
27-32	Milowiedge Kepreselladioli	Representation using	i utoriai	resoultion i	n -
		predicate logic	semantic n		hend term
		Semantic nets		propostion	
33	Machine Learning	Introduction to Machine	Lecture	IT3201.5	Class Quiz
		Learning, different types			
		of learning.			End term
34-38	Machine Learning	Concept Learning-	Lecture	IT3201.5	Class Quiz
		Concept Learning as	Tutorial		

	Trouble Free Mahesh Huddar	Search, Find-S, Version Spaces and Candidate	revise this !!!		End term	
39-43	Machina Lagunina	Elimination Algorithm	Lastina	IT3201.5	Class Ouiz	
37-43	Machine Learning	Decision Tree Learning, Classification and	Lecture Tutorial	113201.5	Class Quiz	
Practi	ce needed for decision tree	Regression using Supervised Learning	Validation	formulae	End term	
44 – 47	Artificial Neural Networks	Introduction, Neuron,	Lecture	IT3201.6	Class Quiz	
	Back propagation question	Model, Perceptron, Multilayer Networks, Back propagation	Advantages	of BackPropagati	End term	
48	Conclusion and Course Summarization	NA	Lecture	NÁ	NA	

Course Outcome Attainment Level Matrix:

со	STATEMENT	ATTAINMENT OF PROGRAM OUTCOMES THRESHOLD VALUE: 40%										ATTAINMENT OF PROGRAM SPECIFIC				
		PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO	PO 12	PSO	PSO	PSO
IT3201.I	Discuss basics of Artificial intelligence and some representative applications of artificial intelligence.	1	1	2	1	5	Ь	/	8	9	10	11	12	2	2	3
IT3201.2	Formalise a given problem and analyse it along different dimensions	1	3	2	1	1								3	2	1
IT3201.3	Identify and implement appropriate A.I. search technique to solve the problem.	2	3	1	1	2								3	2	1
IT3201.4	Illustrate knowledge representation using propositional, first order predicate logic and semantic network and apply reasoning process to draw conclusions.	2	2	2	2	2								3	3	2
IT3201.5	Apply different models performing common machine learning tasks such as classification and clustering.	2	2	2	2	2								3	3	2
IT3201.6		2	2	2	2	2							2	3	3	2

0-No Attainment; I- Low Attainment; 2- Moderate Attainment; 3- Substantial Attainment