	Математический анализ I
Конспект	г основан на лекциях Константина Петровича Кохас

Оглавление

0.1	Некоторые базовые понятия		2
-----	---------------------------	--	---

0.1 Некоторые базовые понятия

Определение. *Отображением* из множества X в множество Y называется отношение $F \subseteq X \times Y$, для которого

$$\forall x \in X \exists ! y \in Y : (x, y) \in F$$

Обозначается $F: X \to Y$ или $X \xrightarrow{F} Y$. Сам факт того, что $(x,y) \in F$ обозначается f(x) = y. X называют областью определения, а Y — областью значений f.

Определение. Отображение $f: X \longrightarrow Y$ называется *инъективным*, если для него выполняется

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

Иначе говорят, что f - 1-1 отображение, и часто обозначают $f : X \xrightarrow{1-1} Y$.

Определение. Отображение $f: X \to Y$ называется *сюръективным*, если для него выполняется

$$\forall y \in Y \ \exists x \in X \colon f(x) = y$$

Такие отображения называют отображениями Ha, и часто обозначают $f: X \stackrel{\text{\tiny ha}}{\longrightarrow} Y$.

Определение. Отображение $f: X \to Y$ называют *биекцией*, если оно одновременно сюръективно и инъективно, иначе говоря

$$\forall y \in Y \ \exists ! x \in X \colon f(x) = y$$

Такие отображения, по аналогии с предыдущими определениями, называют 1-1 на отображениями, и часто обозначают $f: X \xrightarrow[\text{на}]{1-1} Y$.

Определение. Образом множества $A\subseteq X$ при отображении $f:X\to Y$ называют множество

$$f(A) \stackrel{def}{=} \{ f(x) \mid x \in A \}$$

Определение. *Прообразом* множества $B \subseteq Y$ при отображении $f: X \to Y$ называют множество

$$f^{-1}(B) \stackrel{def}{=} \{ x \in X \mid f(x) \in B \}$$

Определение. Обратимым называется отображение $f: X \to Y$, для которого существует обратное относительно композиции отображение $f^{-1}: Y \to X$, для которого выполняется

$$f^{-1} \circ f = id_X$$

Теорема 0.1.1 (Свойства прообраза). Пусть $f: X \to Y$, $A, B \subseteq X$. Тогда справедливо

1.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

2.
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Доказательство. Без доказательства (очевидно).

Теорема 0.1.2. f биективно \iff f обратимо

Доказательство. Без доказательства (тривиально).

Определение. *Полем* называется тройка $(X, +: X \times X \to X, \cdot: X \times X \to X)$, где X — множество, удовлетворяющая аксиомам поля:

+G1
$$\alpha$$
 + (β + γ) = (α + β) + γ

$$+G2 \exists 0 \in X: \alpha + 0 = 0 + \alpha = \alpha$$

$$+G3 \exists -\alpha: \alpha + -\alpha = 0$$

$$+G4 \alpha + \beta = \beta + \alpha$$

$$\cdot G1 \ \alpha(\beta \gamma) = (\alpha \beta) \gamma$$

$$\cdot$$
G2 $\exists 1 \in X: 1\alpha = \alpha 1 = \alpha$

·G3
$$\alpha \neq 0 \Rightarrow \exists \alpha^{-1}$$
: $\alpha \alpha^{-1} = 1$

·G4
$$\alpha\beta = \beta\alpha$$

D
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

Для любых $\alpha, \beta, \gamma \in X$. Аксиомы +G1-4 задают на X структуры абелевой группы по +, аксиомы ·G1-4 задают на $X \setminus \{0\}$ структуру абелевой группы по ·, аксиома дистрибутивности D связывает + и ·.

Примеры.

- 1. \mathbb{R} поле. В дальнейшем можно под произвольным полем понимать \mathbb{R} , общность от этого сильно не пострадает.
- 2. \mathbb{Z}_p тогда и только тогда поле, когда p простое.

Определение. Векторным (линейным) пространством над полем K называется тройка $\langle V, +_V : V \times V \to V, \cdot_V : V \times K \to V \rangle$, где V — множество, удовлетворяющюю аксиомам:

$$+_{V}G1 x + (y + z) = (x + y) + z$$

$$+_{V}G2 \exists 0 \in X: x + 0 = 0 + x = x$$

$$+_{V}G3 \exists -\mathbf{x}: \mathbf{x} + -\mathbf{x} = \mathbf{0}$$

$$+_{V}G4 x + y = y + z$$

V1
$$(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$$

V2
$$(\alpha \beta)\mathbf{x} = \alpha(\beta \mathbf{x})$$

V3
$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$$

$$V4 \ 1_K \mathbf{x} = \mathbf{x}$$

Для любых $\alpha, \beta \in K$, $\mathbf{x}, \mathbf{y} \in V$.

Пример. $K^n \stackrel{def}{=} \underbrace{K \oplus K \oplus \ldots \oplus K}_n$ — векторное пространство, которому изоморфны все векторные пространства над полем K размерности n. Мы ограничимся рассмотрением \mathbb{R}^n .