Statistical inference in Python the **NIFTY** way

Michael R. Bell

Frontier Technology, Inc.

Marco Selig, Henrik Junklewitz, Niels Oppermann, Martin Reinecke, Maksim Greiner, Carlos Pachajoa, Torsten A. Enßlin

Max Planck Institute for Astrophysics, Munich, Germany

is a Python framework for developing statistical inference algorithms independent of the underlying geometry or resolution.

Follow along at: http://tinyurl.com/nifty-demo-slides

Data & Signal

Signal

observation

Data

$$s = s(x)$$

$$, \quad x \in \Omega$$

$$\boldsymbol{d} = (d_i)_{i \in \mathbb{N}}$$

Signal estimate

Data

$$s = s(x)$$
 , $x \in \Omega$

$$x \in \Omega$$

$$\boldsymbol{d} = (d_i)_{i \in \mathbb{N}}$$

Wiener filtering

$$oldsymbol{s} \curvearrowleft \mathcal{G}(oldsymbol{s}, oldsymbol{S})$$

$$m{n} \curvearrowleft \mathcal{G}(m{n}, m{N})$$

$$d = Rs + n$$

$$oldsymbol{m} = \underbrace{\left(oldsymbol{S}^{-1} + oldsymbol{R}^\dagger oldsymbol{N}^{-1} oldsymbol{R}
ight)^{-1}}_{oldsymbol{D}} \underbrace{\left(oldsymbol{R}^\dagger oldsymbol{N}^{-1} oldsymbol{d}
ight)}_{oldsymbol{j}}$$

• is a versatile PYTHON library incorporating CYTHON, C++, and C libraries for performance

- is a versatile PYTHON library incorporating CYTHON, C++, and C libraries for performance
- abstracts spaces, fields, and operators into an object-orientated framework

NIFTy classes object space — field — operator

Selig et al. (2013) arXiv: 1301.4499

- parameters
- domain space
- field values
- domain space
- target space
- instance methods applying to fields

NIFTY classes

object

Selig et al. (2013) arXiv: 1301.4499

```
space ← field ← operator
```

- point_space
 - rg_space
- lm_space
- hp_space
- gl_space

- unstructured list of points
- n-dimensional regular grid
- spherical harmonics
- HEALPIX grid
- Gauss-Legendre grid
- nested_space (arbitrary product of grids)

Selig et al. (2013) **NIFT**Y classes object arXiv: 1301.4499 space ← field ← operator ← probing point_space diagonal_operator □ power_operator rg_space projection_operator lm_space hp_space vecvec_operator gl_space response_operator invertible_operator nested_space propagator_operator explicit_operator

- is a versatile PYTHON library incorporating CYTHON, C++, and C libraries for performance
- abstracts spaces, fields, and operators into an objectorientated framework
- operates regardless of the underlying spatial grid and its resolution

- is a versatile PYTHON library incorporating CYTHON, C++, and C libraries for performance
- abstracts spaces, fields, and operators into an objectorientated framework
- operates regardless of the underlying spatial grid and its resolution
- provides useful tools for the development of statistical inference algorithms (optimization, operator probing, visualization, etc.)

- is a versatile PYTHON library incorporating CYTHON, C++, and C libraries for performance
- abstracts spaces, fields, and operators into an objectorientated framework
- operates regardless of the underlying spatial grid and its resolution
- provides useful tools for the development of statistical inference algorithms (transformations, operator probing, visualization, etc.)
- includes extensive on-line documentation

NIFTy project homepage: http://www.mpa-garching.mpg.de/ift/nifty/

Demo

Wiener filtering, revisited

$$egin{aligned} oldsymbol{d} &= oldsymbol{R} oldsymbol{s} + oldsymbol{n} & oldsymbol{s} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{S}) & oldsymbol{n} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{m} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{m} oldsymbol{n} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{S}) & oldsymbol{n} arphi \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{m} \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{m} \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} \mathcal{G}(oldsymbol{s}, oldsymbol{N}) & oldsymbol{n} \mathcal{G}(oldsymbol{s}, oldsymbol{s}) & oldsymbol{n} \mathcal{$$

Go here to follow along: http://tinyurl.com/nifty-demo-notebook

Applications

The RESOLVE algorithm:

Improved image reconstruction for radio astronomy.

Narrow bandwidth image reconstruction.

Junklewitz, Bell, Selig, Enßlin (2014) http://arxiv.org/abs/1401.4711

The RESOLVE algorithm:

Improved image reconstruction for radio astronomy.

Broad bandwidth image reconstruction.

Junklewitz, Bell, Enßlin (2014) http://arxiv.org/abs/1311.5282

Locations of 41,330 measurements

Inferred Galactic Faraday depth

Studying magnetic fields in the Milky Way through inference of "Faraday depth."

Oppermann, et al. (2012) http://arxiv.org/abs/1111.6186

Oppermann, et al. (2014) http://arxiv.org/abs/1404.3701

Denoising, Deconvolving, and Decomposing Photon Observations — **D**³**PO** (Selig, et al., in prep.)

Denoising, Deconvolving, and Decomposing Photon Observations — **D**³**PO** (Selig, et al., in prep.)

NIFTy project homepage: http://www.mpa-garching.mpg.de/ift/nifty/

and on GitHub: https://github.com/mselig/nifty

bellmr@gmail.com @mryanbell

Thank you!