

User Manual

Panda

Safety

Improper use of the PANDA can cause personal injury, death and/or property damage from loss of control, collision, and falls. To reduce risk of injury, read and follow all instructions and warnings in this manual.

The following safety messaging conventions are used throughout this document:

WARNING!	Warns you about actions that could result in death or	
WARNING!	serious injury.	
CAUTION!	Warns you about actions that could result in minor or	
CAUTION	moderate injury.	
NOTICE	Indicates information considered important, but not	
NOTICE	related to personal injury.	

WARNING!

- Do not sit, stand or ride on PANDA. It may cause injury.
- Do not control PANDA to hit people or animals. Collision may cause injury.
- When PANDA is running, it needs to remind people nearby at all times.
 Accidental collisions with PANDA may result in injuries.
- PANDA can be accelerated quickly, and customers are advised to practice at a low speed until users are familiar with controlling PANDA.

The unexpected movement of PANDA may cause injuries.

- Do not attempt to disassemble the battery, which may result in electric shock, burns or even fire. Trying to open the battery case can damage the battery case and release toxic substances. It can also render the battery unusable.
- As with all rechargeable batteries, do not charge near flammable materials, which could cause a fire.
- If the battery shell is damaged or the battery emits peculiar smell, smoke, overheat, or leaks, do not continue to use the battery. Do not touch any substance that oozes from the battery, which may cause poisoning.
- Strictly observe and follow all safety information on the warning label
 on the battery. Failure to do so can result in injury or even death.
- Do not use badly worn or damaged cables, which may shock yourself or damage PANDA.

CAUTION!

- Set performance parameters correctly and carefully. PANDA follows
 the commands issued to it, and it is the user's responsibility to
 implement correct and safe performance parameters.
- Not charging the battery can cause permanent damage to the

battery.

- The battery can only be charged with the charger of PANDA.
- Before operating PANDA, please be sure to read the user manual and be familiar with the operation of PANDA and various precautions.

NOTICE

 In the absence of communication with our company, our company will not take any responsibility for any accident caused by the modification of the chassis.

Index

1 Product introduction	7
1.1Product schematic diagram	7
1.2 Component Introduction	8
1.3 The remote control	9
1.3.1 Schematic diagram of remote control	9
1.3.2 Receiver pair	10
1.3.3 Remote control instructions	10
1.3.4 The upper system controls the car explanation	11
2 Software introduction	15
2.1 The file provided to the user	15
2.2 Interface function introduction	16
2.2.1 C/C++interface introduction	16
2.2.2 ROS interface introduction —SmartCar	20
2.2.3 Fault code information table	23
2.2.4 In-situ rotation function introduction	28
3 Firmware upgrade and version upgrade	30
3.1 The firmware update	30
3.2 Version update	32
Appendix 1 System Parameters and Mode switching logic	37

Appendix 2 Connector welding instructions40
Appendix 3 Defines the connector Pin Angle43
Appendix 4 C/C++ API reference documentation44

1 Product introduction

1.1Product schematic diagram

Figure 1

Figure 2

Figure 3

1.2 Component Introduction

Table 1

Number	Component name	Description
		Start up: long press the power switch button, until the indicator
		light is steady on and accompanied by a prompt tone, the
		chassis starts up successfully, the chassis is in lock mode, and
1	Power switch button	the indicator light is steady yellow
'		Shutdown: long press the power switch button until the prompt
		sound starts, release the power switch button, the chassis
		shuts down successfully, at this time, the power switch button
		lamp and indicator light are all off.
2	External charging port	Connect the charger to charge the device
3	Emargan av atam buttan	Used to switch the chassis to emergency stop mode in
3	Emergency stop button	emergency state
4	Hub motor with brake	8 inch tire, with power-off brake
5	Hub motor without brake	8 inch tire
	Power supply port for the	Cumpling negrow to the upper exeters
6	upper system	Supplies power to the upper system
7	Communication interface	la chi da a CANI, a suisi manta and manata a critical manais an
7	for the upper system	Includes CAN, serial port, and remote control receiver
8	Battery	Used to power the entire system
0	Ctatus indicate:	Indicator color and status represent different modes of the
9	Status indicator	product
10	Battery compartment key	It opens the lock that holds the battery

1.3 The remote control

1.3.1 Schematic diagram of remote control

Figure 4

* The forward and reverse input (throttle or direction) of the remote control can be achieved by flipping the phase switch under the T8FB.

Figure 5

*Remote control alarm voltage adaptive 2S, 3S, 4S lithium batteries and 4 nickel metal hydride batteries, that is, if T8FB is powered by 2S, 3S, 4S lithium batteries or 4 nickel metal hydride batteries, after connecting the batteries, T8FB will automatically set the low voltage alarm value according to the battery type.

1.3.2 Receiver pair

Each transmitter has its own ID code. Before starting to use the device, the receiver must pair with the transmitter. After pairing, the ID code is stored in the receiver and does not need to be paired again unless the receiver is paired with another transmitter. When you buy a new receiver, you must re-code it, otherwise the receiver will not work properly.

- (1) Place the remote control and receiver horizontally, and the distance between them is about 50cm;
- (2) Turn on the power switch of the remote control to supply power to the receiver, and the LED light of the receiver starts to blink slowly;
- (3) Press the ID SET key on the side of the receiver for more than 1 second, and the LED light of the receiver starts flashing quickly, indicating that the code is being matched, and the receiver will look for the nearest remote control for matching the code;
- (4) Stop flashing the LED light of the receiver, which means that the code is completed. If the LED light of the receiver blinks slowly, it means that the code fails, and the code needs to be repeated.

1.3.3 Remote control instructions

(1) PANDA chassis startup: press the PANDA power switch button; Note: Please check the PANDA status. Hold down the power switch

button until the buzzer does not beep continuously and the indicator is steady yellow.

(2) Turn on the remote control: push up the power switch of the remote control;

Note: Ensure that the remote control is not in emergency stop state and enter the enable state. That is, the emergency stop switch is not under, and the enable switch is shifted from the top to the bottom.

(3)PANDA is in Normal mode at this time. See the following table for detailed operations:

Table 2 Remote control operation

Control action	Remote control operation
Turn right or left	Turn the rudder lever left and right
Move forward or back	The throttle lever moves forward and backward
Emergency stop/exit	Remote control emergency stop switch:
emergency stop	Top - exit emergency stop;
emergency stop	Bottom - Open emergency stop
Adjust the maximum	Adjustment knob for maximum angular velocity of remote control. If you turn
angular velocity	left, the maximum angular velocity decreases. If you turn right, the
angular velocity	maximum angular velocity increases.
Adjust the maximum	Adjustment knob for maximum linear speed of remote controller. If you turn
linear velocity	left, the maximum linear velocity decreases. If you turn right, the maximum
inlear velocity	linear velocity increases.
Enable/disable the	Turn the enable switch from the top to the bottom to enable chassis.
function	Turn the enable switch from the bottom to the top to disable the chassis.

1.3.4 The upper system controls the car explanation

The upper system is a PC terminal control computer, which can directly issue control commands, and various information changes are

displayed on the screen. The upper system controls the chassis and provides some necessary operating environment for the chassis, and extends the man-machine control or demonstration functions provided by the chassis. The upper system has the characteristics of leading management, coordinating resources, monitoring agent and controlling PANDA.

(1) PANDA chassis startup: press the PANDA power switch button; Note one: Please check the PANDA status. Hold down the power switch button until the buzzer does not beep continuously and the indicator is steady yellow.

Note two: The remote control cannot be turned on when the upper system controls the car. Or after the remote control is turned on, turn the enable switch to the top.

- (2) Ensure that the PANDA serial cable or CAN line is connected to the upper system;
- (3) Grant permission to the /sdcard/segway/hardware_log/ folder. Otherwise, the new log file will fail. Give /catkin_ws/SRC/RosCode segwayPanda/lib/ all files and directory add permissions (after the first setting, you do not need to reset it):

. ,

`cd /sdcard/segway/hardware_log`


```
`sudo chmod 777 /sdcard/segway/hardware_log/`

`cd $PRO_HOME$/catkin_ws/src/RosCode/segwayPanda/lib/`

`sudo chmod 777 *
```

(4) According to the file of txt under 'catkin_ws/src/RosCode /segwayPanda/Cmakelists.txt', choose the compile option based on the upper system platform (x86_64 or arm). The sample below is complied based on x86_64 platform. Disable 'libctrl_arm64-v8a.so' by using '#' (after the first setting, you do not need to reset it):

`target_link_libraries(SmartCar`

`\${catkin_LIBRARIES}`

`#\${PROJECT_SOURCE_DIR}/lib/libctrl_arm64-v8a.so

//under x86_64 platform, enable the line, disable the line under ARM`

`\${PROJECT_SOURCE_DIR}/lib/libctrl_x86_64.so

// under arm platform, enable the line, disable the line under x86_64`

.,

(5) Enter the ROS workspace and run the following command to compile the Segway_MSgs package message.

6 9

cd catkin_ws


```
catkin_make
  -DCATKIN_WHITELIST_PACKAGES='segway_msgs'
     .,
    (6) Enter the ROS workspace and run the following command to
compile the Segwayrmp package.
     . ,
      cd catkin_ws
      catkin_make -DCATKIN_WHITELIST_PACKAGES='segwayrmp'
    (7) Execution of vehicle control in ROS:
      1) To create a terminal, run the following command
     .,
      cd catkin_ws
      roscore
     . ,
      2) Create a new terminal and run the SmarCar node
      cd catkin_ws
      source devel/setup.bash
      rosrun segwayrmp SmartCar
     .,
```


3) Create a new terminal and run the following command to run the routine test node

. ,

cd catkin_ws

source devel/setup.bash

rosrun segwayrmp ChassisResponseTest

.,

2 Software introduction

This chapter describes the related files, software interface functions, and fault code information provided by PANDA.

2.1 The file provided to the user

Table 3 Files provided

Files	Function
Libctrl_x86_64.so	Provides the x86 platform C/C++ chassis
	related interface
Libctrl_arm64-v8a.so	Provides arm platform C/C++ chassis
	related interface
Comm_ctrl_navigation.h	The C/C++ API interface head files
ROS package	Provides ROS nodes for chassis control

2.2 Interface function introduction

2.2.1 C/C++interface introduction

Table 4 callback data type

The callback type	Index of the callback	Function description	Data structure
			typedef struct{
			int16_t fl_speed;
Chassis Data Mat		Chassis 4 who of	int16_t fr_speed;
Chassis_Data_Mot	1	Chassis 4 wheel	int16_t rl_speed;
ors_Speed		speed information	int16_t rr_speed;
			}chassis_motors_speed_data_t
			;
			typedef struct{
Chassis_Data_Car_		Get chassis speed	int16_t car_speed;
Speed	2	information	int16_t turn_speed;
			}chassis_car_speed_data_t;
			typedef struct{
Chassis_Data_Fron	_	Chassis front two wheel encoder information	int32_t fl_ticks;
t_Ticks	3		int32_t fr_ticks;
			}front_motors_ticks_t;
			typedef struct{
Chassis_Data_Rear	4	Chassis rear two wheel encoder	int32_t rl_ticks;
_Ticks			int32_t rr_ticks;
		information	}rear_motors_ticks_t;
			typedef struct{
Chassis_Data_Odo	_	Odom pose information	float pos_x;
m_Pose_xy	5		float pos_y;
			}odom_pos_xy_t;
			typedef struct{
Chassis_Data_Odo		Odom Euler	float euler_x;
m_Euler_xy	6	X/Y information	float euler_y;
			}odom_euler_xy_t;
<u> </u>			typedef struct{
Chassis_Data_Odo	7	Odom Euler Z information	float euler_z;
m_Euler_z			}odom_euler_z_t;
Chassis_Data_Odo	_	Odom speed	typedef struct{
m_Linevel_xy	8	X/Y information	float vel_line_x;

			float vel_line_y;
			<pre>}odom_vel_line_xy_t;</pre>
Chassis Data Imu			typedef struct{
Chassis_Data_Imu	9	Gyroscope data	int16_t gyr[3];
_Gyr			}imu_gyr_original_data_;
Chassis Data Issue			typedef struct{
Chassis_Data_Imu	10	Accelerometer data	int16_t acc[3];
_Acc			}imu_acc_original_data_;

Note 1: Odom data: the default heading Angle at startup is 0 degrees.

Note 2: IMU (gyroscope and accelerometer) data: carrier coordinate system XYZ corresponds to right, front and up.

Table 5 event definition

Event type	Index of event	Function description
ChassisBootReadyEvent	1	The chassis center panel is
ChassisbootheadyEvent	I	started
PadPowerOffEvent	2	The chassis to turn it off
OnEmergeStopEvent	3	Enter the emergency stop
OutEmergeStopEvent	4	Exit the emergency stop
		The inability of a wheel to
OnLockedRotorProtectEvent	5	rotate due to an external
		force
		The failure of the wheel to
OutLockedRotorProtectEvent	6	rotate due to external forces
		was eliminated
OnLostCtrlProtectEvent	7	The wheel appears to rotate
OneostethFlotectEvent	ľ	rapidly without control
OutLostCtrlProtectEvent	8	The rapid rotation
OdiLosiCinFloteCtEVeni	0	phenomenon is eliminated
CalibrateGyroSuccess	9	Gyroscope calibration
CambrateGyroSuccess	9	successful
CalibrataCyraFail	10	Failed to calibrate the
CalibrateGyroFail	10	gyroscope
CalibratePasheCurrentSuccess	11	Calibration of phase current
Cambraterashecurrentsuccess	11	succeeded
CalibratePasheCurrentFail	12	Failed to calibrate phase
Campraterasnecurrentrall	12	current
ChassisLockRotorWarning	13	Locked-rotor occor and

	then warning	

Table 6 get/set interface

	Table o get/set interface		
Interface name	Interface description		
got orr state	Get error code for upper system/central board/motor		
get_err_state	board/battery		
get_bat_soc	Obtain the percentage of the remaining battery power		
get_bat_charging	Obtain the battery charging status (1: charging; 0: non-charging)		
get_bat_mvol	Obtain battery voltage (unit: millivolt)		
get_bat_mcurrent	Obtain battery current (unit: milliampere)		
get_bat_temp	Obtain the battery temperature (in Degrees Celsius)		
get_chassis_work_model	Get chassis working state (0: wheels have no power; 1: the wheel		
get_chassis_work_model	have power)		
get_chassis_load_state	Get chassis load parameter Settings (0: no load; 1: full load)		
get_chassis_mode	Get the chassis state machine (0: lock the car; 1: car control; 2.		
get_chassis_mode	Implementation; 3: emergency stop; 4: False)		
got otrl omd cro	Get the chassis current control source (0: remote control; 1: host		
get_ctrl_cmd_src	computer)		
get_vehicle_meter	Get chassis mileage (unit meters)		
get_host_version	Obtain the version number of the upper computer		
get_chassis_central_version	Obtains the version number of the central board		
get_chassis_motor_version	Get motor board version number (reserved)		
get_line_forward_max_vel_fb	Obtain chassis forward speed limit value (unit meters per hour)		
get_line_backward_max_vel_fb	Get chassis backward speed limit value (unit meters per hour)		
get_angular_max_vel_fb	Get the chassis angular velocity limit (milliradians per second)		
getlapProgress	Get IAP progress		
iapCentralBoard	IAP upgrades to the central board		
iapMotorBoard	IAP upgrades to the motor board		
iapBrakeBoard	IAP upgrades to the brake board(with the brake board)		
isHostlapOver	Check whether IAP ends		
motil location Docust	Get IAP results (3: complete; 4: failure. 5: Interruption. 0:		
getHostlapResult	meaningless)		
getHostlapErrorCode	Get the IAP error code		
got colibrate mid value status	Check whether the front wheel median has been corrected (1:		
get_calibrate_mid_value_status	corrected; 0: uncorrected)		
ant and val	Set chassis linear velocity and angular velocity (unit meters per		
set_cmd_vel	second and radians per second)		
set_line_forward_max_vel	Set chassis forward speed limit (in meters per second)		
set_line_backward_max_vel	Set chassis backward speed limit (in meters per second)		

exit_control_ctrl	Chassis exit initialization interface
set_smart_car_serial	Set the name of the serial port used by the dynamic library of the upper computer
set_comu_interface	Set the communication interface with the chassis (0: serial port; 1: CAN)
set_chassis_load_state	Set chassis load parameters (0: no load; 1: full load)
set_chassis_poweroff	Issue the chassis shutdown command
setHostlapCanceled	Cancel IAP command on upper computer
	The command to correct the median Angle of the first two rounds
set_calibrate_mid_value	is delivered
set_calibrate_mid_value reset_host_power_time_s	is delivered Issue a command to reset the upper mechanical power of the chassis (unit: second; Maximum interval: 65535 seconds)
	Issue a command to reset the upper mechanical power of the

2.2.2 ROS interface introduction —SmartCar

Table 7 News release

		Table / News Telease		Fre
Topic Name	Function	Message Type	Message Type Info	que
Topic Hame	decription	Wessage Type	Wiessage Type IIIIe	ncy
			int1C hat and	ПСУ
			int16 bat_soc	
D (le	Battery		int16 bat_charging	4
Bms_fb	Information	Segway_msgs/ Bms_fb	int32 bat_vol	1
			int32 bat_current	
			int16 bat_temp	
Chassis_ctrl_	Chassis control	Segway_msgs/	uint16	
src_fb	command	Chassis_ctrl_src_fb	chassis_ctrl_cmd_src	1
	source			
Chassis_mile	Chassis	Segway_msgs/		
age_meter_f	mileage	Chassis_mileage_meter_fb	uint32 vehicle_meters	1
b	Ola sa si sa si sa	0		
Chassis_mod	Chassis state	Segway_msgs/	uint16	1
e_fb	machine	Chassis_mode_fb	chassis_mode	
		3 ,_ 3	uint32 host_error	
			uint32 central_error	
			uint32	
			front_left_motor_error	
Error_code_f	Chassis error		uint32	
b	code		front_right_motor_error	1
			uint32	
			rear_left_motor_error	
			uint32	
			rear_right_motor_error	
			uint32 bms_error	
	Chassis	_	uint16	
Motor_work_	working	Segway_msgs/	motor_work_mode	1
mode_fb	condition	Motor_work_mode_fb	#0: no output	
			torque 1: output torque	
			float32 car_speed	
			float32 turn_speed	
Speed_fb	Chassis speed	Segway_msgs/ Speed_fb	float32 fl_speed	
-1	,		float32 fr_speed	40
			float32 rl_speed	
			float32 rr_speed	

			uint64		
			speed_timestamp		
			int32 fl_ticks		
	Chassis		int32 fr_ticks		
Ticks_fb	encoder	Segway_msgs/ Ticks_fb	int32 rl_ticks	40	
	information		int32 rr_ticks	40	
			uint64 ticks_timestamp		
Odom	Odom data	Nav_msgs/odom			
Odom	Odom data	Nav_msgs/odom		40	
lmu	lmu data	Sensor_msgs/imu			
iiiiu	iiiu uala	Sensoi_msys/imu		40	

Table 8 News subscription

TopicName	Function decription	Message Type	Message Type Info
	Control		Angular.z //rad/s
Cmd_vel	chassis	Geometry_msgs/twist	Linear.x //m/s
	movement		LINEALA //III/S

Table 9 service client

Service name	Function decription	Message type	Message type info
chassis_se nd_event_s	Send event	Segway_msgs/chass is_send_event	chassis_send_event_idros_is_receive

Table10 service server

Service name	Function decription	Message type	Message type info
ros_clear_chassis _error_code_cmd. srv	Clear chassis error codes, excluding alarms, exceptions, and battery errors. Use with caution	Segway_msgs/ ros_clear_chassis_ error_code_cmd	bool clear_chassis_error_code_cmd uint8 clear_chassis_error_code_resul t
ros_enable_chassi s_rotate_cmd.srv	Enable the chassis in-situ	Segway_msgs/ ros_enable_chassis _rotate_cmd	bool ros_enable_chassis_rotate_cm d

	rotation function		int16 chassis_enable_rotate_result
ros_get_chassis_r otate_switch_cmd. srv	Query whether the chassis is rotating in place	Segway_msgs/ ros_get_chassis_rot ate_switch_cmd	bool ros_get_chassis_rotate_cmd uint8 chassis_rotate_state
ros_get_chassis_S N_cmd.srv	Get the SN of the chassis central control MCU	Segway_msgs/ ros_get_chassis_S N_cmd	bool ros_get_chassis_SN string chassis_SN
ros_get_load_para m_cmd_srv	Getting load Settings	Segway_msgs/ ros_get_load_para m_cmd	ros_get_load_param get_load_param #0:no_load, 1: full_load
ros_get_sw_versio n_cmd_srv	Obtaining the Software Version	Segway_msgs/ ros_get_sw_version _cmd	ros_get_sw_version_cmd uint16 host_version uint16 central_version uint16 motor_version
ros_get_vel_max_f eedback_cmd_srv	Get the speed limiter	Segway_msgs/ ros_get_vel_max_f eedback_cmd	ros_get_vel_max_fb_cmd forward_max_vel_fb backward_max_vel_fb angular_max_vel_fb
ros_set_chassis_e nable_cmd_srv	The chassis enable command is issued	Segway_msgs/ ros_set_chassis_en able_cmd	ros_set_chassis_enable_cmd chassis_set_chassis_enable_re sult
ros_set_chassis_p oweroff_cmd_srv	Issue the chassis shutdown command	Segway_msgs/ ros_set_chassis_po weroff_cmd	ros_set_chassis_poweroff_cmd chassis_set_poweroff_result
ros_set_load_para m_cmd_srv	Setting chassis load	Segway_msgs/ ros_set_load_para m_cmd	ros_set_load_param #0:no_load, 1: full_load chassis_set_load_param_result
ros_set_vel_max_ cmd_srv	Set the speed limit	Segway_msgs/ ros_set_vel_max_c md_srv	ros_set_forward_max_vel ros_set_backward_max_vel ros_set_angular_max_vel

			chassis_set_max_vel_result
ros reset host po	Chassis reset	segway_msgs/ros_	uint16 reset_interval_time
wer cmd srv		reset_host_power_	
wer_crrid_siv	upper power	cmd	uint8 reset_result

Table11 action server

Action name	Function decription	Message type	Message type info
ros_set_iap _cmd_actio n	IAP upgrade of board firmware	Segway_msgs/ ros_set_iap_c mdAction	uint16 board_index_for_iap Int16 iap_result #3: iap_state_complete; 4: iap_state_fail; 5: iap_state_abort Int16 error_code #When iap_result value is 4, this value represents the error code Int16 iap_percent

2.2.3 Fault code information table

The fault code is obtained through the uint32_get_err_state (board_name_e board_name) interface. The corresponding information is as follows: (Note: "Manual Force Clear Errors" needs to be implemented very carefully):

Table12 Fault code

Board name	Bit	Error info	底盘动作	处理
	0x0000000	No error		
host	0x0000001	The central board is out of contact	Level 2, unable to control the car	Check communication
	0x0000002	The serial port module is	Level 2, unable to	Plug back the module

		removed	control the car	
	0x0000000	No error		
	0x0000001	Vehicle control command communication is interrupted	Level 2, chassis parking, lock mode	Check communication
	0x00000002	Motor board communication is interrupted	Level 2, chassis parking, lock mode	Check motor board communication
	0x0000004	IMU initialization failed	Level 1, controllable car, wrong angle	Drive back at low speed, check hardware
	0x0000008	The IMU failed to read data	Level 1, controllable car, wrong angle	Drive back at low speed, check hardware
Central	0x0000010	The wheel whirled uncontrollably	Level 5, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x00000020	The wheel cannot rotate because of external forces	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x0000040	Failed to calibrate the IMU	Level 1, controllable car, wrong angle	Drive back at low speed, check hardware
	0x00000080	Flash read failure	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x00000100	IMU data update failed	Level 1, controllable car, wrong angle	Drive back at low speed, check hardware

			Level 2,	Make sure the
	0x00000400	rollover	Parking, Lock	chassis is not in
			Mode	a rollover state
		Restart of any	Level 2,	Check motor
	0x00000800	motor board	Parking, Lock	board
		detected	Mode	communication
		The front left		Manually clear
		wheel	Level 5,	errors, drive to
	0x00001000	magnetic	Parking, Error	safety at low
	0,000001000	encoder is	Mode	speed, check
		faulty	Wiode	hardware
		The front right		Manually clear
		wheel	Loval 5	_
	0x00002000		Level 5,	errors, drive to
	UXUUUU2UUU	magnetic	Parking, Error	safety at low
		encoder is	Mode	speed, check
		faulty		hardware
				Manually clear
		Battery	Level 3,	errors, drive to
	0x00004000	communication	Parking, Error	safety at low
		is interrupted.	Mode	speed, check
				hardware
		The rear left		Manually clear
		wheel	Level 5,	errors, drive to
	0x00008000	magnetic	Parking, Error	safety at low
		encoder is	Mode	speed, check
		faulty		hardware
		The rear right		Manually clear
		wheel	Level 5,	errors, drive to
	0x00010000	magnetic	Parking, Error	safety at low
		encoder is	Mode	speed, check
		faulty		hardware
		Abnormal front	LovelO	
	0,,000,000	wheel angle	Level 2,	Righting the
	0x00200000	convergence	Parking, Lock	front wheel
		timeout	Mode	
	0x0000000	No error		
				Manually clear
			Level 4,	errors, drive to
Motor	0x0000001	Phase current	Parking, Error	safety at low
		fault	Mode	speed, check
				hardware
	0x00000002	Phase voltage	Level 3,	Manually clear
	UN0000002	i hase voltage	200010,	Widifadily Cical

	fault	Parking, Error	errors, drive to
		Mode	safety at low
			speed, check
			hardware
			Manually clear
		Level 3,	errors, drive to
0x00000004	Lack of phase	Parking, Error	safety at low
		Mode	speed, check
			hardware
			Manually clear
		Level 4,	errors, drive to
0x00000008	Voltage failure	Parking, Error	safety at low
		Mode	speed, check
			hardware
			Manually clear
		Level 3,	errors, drive to
0x0000010	Self-test failure	Parking, Error	safety at low
000000010	Sell test failule	Mode	_
		iviode	speed, check
			hardware
			Manually clear
		Level 4,	errors, drive to
0x00000020	Over current	Parking, Error	safety at low
		Mode	speed, check
			hardware
	The wheel		Manually clear
	cannot rotate	Level 4,	errors, drive to
0x00000080	because of	Parking, Error	safety at low
	external forces	Mode	speed, check
	external forces		hardware
			Manually clear
	Floatrical Assis	Level 3,	errors, drive to
0x00000100	Electrical Angle	Parking, Error	safety at low
	fault	Mode	speed, check
			hardware
		Level 4,	
0x00000200	Overpower	Parking, Error	detect
	fault	Mode	hardware
			Manually clear
		Level 5,	errors, drive to
0x00000400	Over	Parking, Error	safety at low
0.00000400	speed fault	Mode	_
		ivioue	speed, check
			hardware

	0x00000800	Speed sensor fault	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x0000000	No error	No error	
Battery	0x00000200	overshoot	Level 3, Parking, Error Mode	detect hardware
	0x00000400	The charging temperature exceeds the normal temperature	Level 3, Parking, Error Mode	detect hardware
	0x00000002	Left brake open circuit	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x0000004	Left brake short circuit	Level 4, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
BrakeSticking	0x00000008	Left brake failed to close	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x00000200	Right brake open circuit	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x00000400	Right brake short circuit	Level 4, Parking, Error Mode	Manually clear errors, drive to safety at low speed, check hardware
	0x00000800	Right brake failed to close	Level 3, Parking, Error Mode	Manually clear errors, drive to safety at low

			speed, che
			hardware
	Brake board	Level 2,	Detect brak
0x00008000	0008000 communication	Parking, Error	board
	lost	Mode	communicati

2.2.4 In-situ rotation function introduction

The in-situ rotation function is a function realized in the special mode of the chassis. When the linear velocity is 0 and the angular velocity is not 0, the chassis uses this function. When this function is used, the current of the rear wheel will be too large, which may cause abnormality of the chassis and the motor. It is recommended to use this function. Not necessary and not easy to use. After the chassis is powered on, it does not support the in-situ rotation function by default. If you really need to use this function, as described in Section 2.2.2, the host computer needs to use the "Enable chassis in-situ rotation mode" service of ROS to enable the chassis to support in-situ rotation again.

When using the chassis to rotate in place, if the chassis is stuck and cannot rotate and the rotor is blocked, the chassis will perform the following actions:

1. When the rotor is locked for about 5 seconds, the chassis cancels the support for the in-situ rotation function, and sends the locked rotor alarm event to the upper computer at the same time. At this time, it is necessary

to stop the rotation in place, and then let the chassis have a forward and backward movement component to release the electric energy accumulated by the chassis.

- 2. When the locked rotor occurs and the chassis still cannot release the electric energy for about 10 seconds, the chassis will automatically release the accumulated electric energy. At this time, it is necessary to prevent the chassis from being on a sloped ground.
- 3. When the locked rotor occurs, the hardware is damaged and the power cannot be released. After about 15 seconds, the chassis sends a locked rotor error event to the upper computer. At the same time, the chassis switches to the error mode, and the power is off and the brake is locked.

After the chassis releases power and returns to normal, if it is really necessary to continue to use the in–situ rotation function, as described in Section 2.2.2, the host computer needs to use the "Enable chassis in–situ rotation mode" service of ROS to enable the chassis to support in–situ again. rotation. At the same time, it should be noted that in order to protect the chassis, the above services cannot be used within 30 seconds after the chassis stops supporting the in–situ rotation function to enable the chassis to support the in–situ rotation function.

3 Firmware upgrade and version upgrade

IAP is a software function module of the system, that is, in application programming, that is, online to upgrade the MCU program. This function uses the upper computer to burn and write the new version bin file to the single chip microcomputer (including the central control board, motor driver board, etc.) when the program is running. The premise is that the single chip microcomputer bin file to be burned needs to be named according to the requirements of the upper computer, and then placed in the /sdcard/firmware/ path of the upper computer. Then the online upgrade is performed through commands on the terminal.

3.1 The firmware update

Before firmware upgrade, test the data communication between the upper computer and the lower computer to check whether the communication is normal. Test using commands at shell terminals.

(1) View the program path of the upper computer

Go to the path where the host program resides and check whether the executable file exists. Arm executable file, x86 executable file, ARM dynamic library and x86 dynamic library are shown below:


```
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$ ll 总用量 1742
drwxrwxrwx 1 root root 4096 6月 30 10:11 //
drwxrwxrwx 1 root root 4096 6月 16 17:29 //
-rwxrwxrwx 1 root root 93115 4月 20 17:50 adb*
-rwxrwxrwx 1 root root 414192 6月 30 10:11 ctrl_arm64-v8a*
-rwxrwxrwx 1 root root 386280 6月 30 10:11 ctrl_x86_64*
-rwxrwxrwx 1 root root 446544 6月 30 10:11 libctrl_arm64-v8a.so*
-rwxrwxrwx 1 root root 433816 6月 30 10:11 libctrl_x86_64.so*
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$
```

Figure 6

(2) View the software version of central board

Check the software version of the lower computer. This step can test the communication status of the upper computer and the lower computer at the same time. If you can check the software version of each plate of the lower computer through the upper computer, it indicates that the communication is good.

Center board test command: ./ ctrl_x86_64 s -test central

1) When connecting the serial port for the first time, if the USB port of the serial port is not granted with the execution permission, the program requires to obtain the root permission to modify the execution permission of the serial port USB port. In this case, you need to enter the system login password and press Enter, as shown in the following figure:

Figure 7

2) When communication fails, the version number is 0xFFFF, as shown in the figure below:

Figure 8

3) When the communication is successful, the version number is printed as follows, and the version number is non-0xFFFF. At this time, the communication between the upper computer and the single chip microcomputer is normal, and online upgrade can be carried out:

图 9

3.2 Version update

(1) Single-chip bin file placement

Put the bin file of the board software to be upgraded into the /sdcard/firmware path of the upper computer, central board software bin file 'central.bin', front wheel motor board bin file 'motor_front.bin', rear wheel motor board bin file 'motor_rear.bin' and brake board bin file

'barke.bin'

```
tu@ubuntu:/sdcard/firmware$ ll
  用量 272
drwxrwxrwx 2 root
                     root
                              4096 1月
                                          7 10:33
                              4096 7月
drwxrwxrwx 5 root
                     root
                                         26
TWXTWXTWX 1 root root 28708 11月
FWXTWXTWX 1 ubuntu ubuntu 91368 12月
                                                  brake.bin*
                                         31 14:59 central.bin*
                             67788 11月
                                         12 20:49 motor_front.bin*
rwxrwxrwx 1 root
                     root
                             67788 11月
                                        12 20:49 motor_rear.bin*
rwxrwxrwx 1 root
                     root
rwxrwxrwx 1 root
                                40 10月
                     root
                                        13 10:09 password.txt*
buntu@ubuntu:/sdcard/firmware$
```

Figure 10

(2) The bin file on the lower computer is written online Enter the path of the program executable file ctrl_X86_64 or CTRI_ARM64-V8A on the upper computer, as follows:

```
<u>u@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$ ll</u>
总用量 1763
                              4096 6月
drwxrwxrwx 1 root root
                                          30 10:11
                              4096 6月
               root root
                                          16 17:29
rwxrwxrwx 1 root root 114264 6月
rwxrwxrwx 1 root root 414192 6月
                                          30 14:13 adb*
                                          30 10:11 ctrl_arm64-v8a*
rwxrwxrwx 1 root root 386280 6月
                                          30 10:11 ctrl_x86_64*
rwxrwxrwx 1 root root 446544 6月
rwxrwxrwx 1 root root 433816 6月
                                          30 10:11 libctrl_arm64-v8a.so*
30 10:11 libctrl_x86_64.so*
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$
```

Figure 11

Run the following commands to upgrade each board online: Go to the program path of the upper computer and run the following

commands (use 's' when using a serial port; Use 'C' when using CAN port) :

Center board upgrade command:

Front wheel motor board upgrade command:

Rear wheel motor board upgrade command:

Brake board upgrade command:

For example, run the./ ctrl_x86_64 s -IAP central command to upgrade the central board, as shown in the following

figure:

```
project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$ ./ctrl_x86_64 s -iap centra
               .....Start Comucore!.....
host version build date:[21-06-29]
host version build time:[20:39:35]
Communication interface adding SERIAL_INTERFACE
Communication interface adding SERIAL_INTERFACE
Use the serial port[/dev/ttyUSB0]
Please enter the administrator permission login password:
serial open success! serial port:/dev/ttyUSB0, baud:921600
Scheduler Num 0 Start. Task Num = 1. Period = 100000
Scheduler Num 1 Start. Task Num = 1. Period = 50000
Scheduler Num 2 Start. Task Num = 1. Period = 20000
当前测试RMP版本: 1.0.0
 IAP Start! path:/sdcard/firmware/central.bin
                                                                                   id: 38 version:2.01
Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
                                                                0: status: 2
0: status: 2
                                                                 0: status:
Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
                                                                0: status:
                                                                0: status:
 Id:0x38 version:2.01 Iap Progress
                                                                        status:
Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
                                                                0: status:
                                                                        status:
 Id:0x38 version:2.01 Iap Progress
                                                                        status:
Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
                                                                        status:
                                                                        status:
 Id:0x38 version:2.01 Iap Progress
                                                                         status:
 Id:0x38 version:2.01 Iap Progress
Id:0x38 version:2.01 Iap Progress
                                                                 0:
                                                                        status:
                                                                        status:
 Id:0x38
               version:2.01 Iap Progress
                                                                        status:
 Id:0x38 version:2.01 Iap Progress
                                                                        status:
```

Figure 12

During the upgrade process, you can view the upgrade Progress.

Progress indicates the percentage of IAP upgrade Progress. When
the Progress value reaches 100, it indicates that the bin file of the
routing board has been burned to the central board chip.

```
Id:0x38
         version:2.01 Iap Progress
                                            status: 4
         version:2.01 Iap Progress
Id:0x38
                                       98:
                                            status: 4
Id:0x38
         version:2.01 Iap Progress
                                       98:
                                            status:
         version:2.01 Iap Progress
Id:0x38
                                       98:
                                            status:
         version:2.01 Iap Progress
Id:0x38
                                       98:
                                            status:
Id:0x38
         version:2.01 Iap Progress
                                            status:
Id:0x38
        version:2.01 Iap Progress
                                            status:
         version:2.01 Iap Progress
version:2.01 Iap Progress
version:2.01 Iap Progress
Id:0x38
                                            status:
Id:0x38
                                       99:
                                            status:
Id:0x38
                                       99:
                                            status: 8
         version:2.01 Iap Progress
Id:0x38
                                       99: status:
         version:2.01 Iap Progress
version:2.01 Iap Progress
Id:0x38
                                       99:
                                            status:
Id:0x38
                                       99:
                                            status:
         version:2.01 Iap Progress
Id:0x38
                                            status:
Id:0x38
         version:2.01 Iap Progress
                                            status:
         version:2.01 Iap Progress
Id:0x38
                                            status:
Id:0x38
         version:2.01 Iap Progress
                                            status:
Id:0x38
        version:2.01 Iap Progress
                                      99:
                                            status: 8
Id:0x38 version:2.01 Iap Progress 100: status:10
Iap_success!
ubuntu@ubuntu:/home/project/EE_PROJECT_RMP/Project/RMP_panda/ROS/src/segwayrmp/lib$
```

Figure 13

(3) Test the results of the IAP version online upgrade:

Run Step 1 to check the software version. In the path of the upper computer program, enter the command./ ctrl_x86_64 s -test central, as shown in the following figure:

In this case, the software version number of the central control board is 0x1000, indicating that the online upgrade is successful and the communication between the host computer and the central control board is good.

Figure 14

Appendix 1 System Parameters and Mode switching logic

Table 1 System parameters

Table 1 System parameters			
	size	Length * Width * Height (mm)	
		672 * 598 * 274	
		Wheelbase * wheel base * ground clearance	
	The etrustural perameters	(mm) :	
	The structural parameters	456*545*58 (chassis compressed to the lowest	
The structural		point)	
parameters	Tire size	8"	
	own weight	26kg	
	Nominal load	28kg	
	The disabled	5cm/10° ramp/speed bump	
	suspension	Independent suspension	
	Protection grade	IPX5	
	Maximum speed	3.56m/s	
The	Maximum steering speed	2rad/s	
performance	Minimum turning radius	1.36m	
parameters	The braking distance	Under full load, 3.56m/s about 1m	
parameters	The control mode	Remote control, upper computer control	
	The brake way	The electric brake mechanical brake	
	Communication interface	UART, CAN	
Communication	API	ROS	
	Feedback data	encoder, IMU	
	Continuous operating	under full load 2m/s 5、about 40km	
The battery	distance	under fail load 211//3 31 about 40km	
The battery	The battery	36V 15.3Ah	
	Charging way	Manual cable charge/quick battery change	
	The keys	Emergency stop botton, power swich botton	
	Status indication	On/off state indicator light, chassis state indicator	
Interaction		light,	
		Control source indicator, power display, charging	
		state display	

SEGWAY° ROBOTICS

Chassis				
mode	input excute exit		exit	
Lock mode	 1. The default mode for powering on the chassis 2. Default mode after emergency stop is restored 3. In the vehicle control mode, it enters the mode after recoverable exceptions such as communication timeout and communication chain disconnection occur 4. Enter this mode after the upper computer manually forcibly clears the error 	Version without brake: 0-speed closed-loop, shielding speed command, the status indicator light is always on in yellow; Version with brake: Shield the speed command, the status indicator light is always on in yellow, the brake is disabled when power off, and the brake is locked.	 1. An unrecoverable exception errorcode is detected and the system enters the error mode 2. The enable command is received and the vehicle control mode is entered 3. The emergency stop button is triggered to enter the emergency stop mode 	
Control mode	In the lock mode, the enable command is received	Close loop, accept control instruction. Remote control car - green indicator light is often blinking; Upper control car - Indicator is green on (The version with a power-off brake will open the brake when the brake is powered on)	 1. An unrecoverable exception errorCode is detected and the system enters the error mode 2. Enter the lock mode after detecting recoverable exceptions such as communication timeout and communication chain disconnection 3. The emergency stop button is triggered to enter the emergency stop mode 	
Emergency stop mode	In non-abnormal mode, the emergency stop button is triggered	Wheels lose power, shielding speed and		

		enable	
		command,	
		status indicator	
		is red and often	
		flashes.(The	
		version with the	
		power-off brake	
		is disabled at	
		this time, and	
		the brake is	
		locked)	
	An unrecoverable exception errorcode was detected	Brake, wheels	
		lose power	
		shielding speed	1. Reboot
		and enable	2. The upper
		command.	computer manually
		Indicator light	forcibly clears the
Error mode		steady red	error. (manual forced
		(The version with	clearing of errors
		the power-off	needs to be
		brake is disabled	implemented very
		at this time, and	carefully)
		the brake is	
		locked)	

Appendix 2 Connector welding instructions

- The preparatory work
- 1、Tools

Electric iron, solder wire

2. The material

8 Pin connector, 2 Pin connector, two AWG16 cables, and eight AWG26 cables, as shown in Figure 1.

Figure 1

- ☐、 Welding instructions (taking 8 Pin connector as an example)
- The 8 Pin connector received by the customer is shown in Figure 2.
 Screw the connector from the position shown in the red arrow to the state shown in Figure 3;

Figure 2

Figure 3

2. Take out the component shown in Figure 4, which is the component to

be welded;

Figure 4

3. As shown in Figure 5, the Pin Angle number of the connector can be seen from one side of the part. Then rotate the part 180°, which is the part to be welded;

Figure 5

4. Weld the wires of AWG26 according to the definition of PIN Angle in the welding instructions (see Appendix 3 for details). After the welding is completed, see Figure 6;

Figure 6

5. Take out the two parts as shown in Figure 7 and put them on the welded parts, as shown in Figure 8;

SEGWAY ROBOTICS

Figure 7

Figure8

6. Take out the parts shown in Figure 9, put them on the previously assembled parts, and tighten them, as shown in Figure 10;

Figure 10

7. Then connect the remote control receiver and serial port, as shown in Figure 11;

Figure 11

8. The welding method of the 2 Pin connector is the same as that of the8 Pin connector.

Appendix 3 Defines the connector Pin Angle

Connector	Pin number	Define	Wire size	Remark
	1	CANH	AWG26	CAN
	2	CANL	AWG26	CAN
	3	TX	AWG26	
8pin	4	RX	AWG26	Serial port
	5	GND	AWG26	
	6	5V	AWG26	Remote
	7	GND	AWG26	control
	8	S.B PPM	AWG26	receiver
	1	Power+	AWG16	power supply
2pin	•	1 000611	AVVOID	for upper
	2	Power-	AWG16	system

Appendix 4 C/C++ API reference documentation

int Init_Comcore(void)
Function: initialization of host computer dynamic link library
Parameter: none
Return value: 0: initialization succeed;
Other: initialization fail
void exit_Comcore(void)
Function: exit initialization of host computer dynamic link library
Parameter: none
Return value: none
void aprctrl_datastamped_jni_register(saprctrldatastampedt* f)

Function: registration via the callback function provided by parameter,

and this callback function conducts the sensor data processing.

SEGWAY®

Parameter: f is a struct pointer, and this struct includes the unique function pointer member variables.

Return value: none

void aprctrl_eventcallback_jni_register(saprctrleventt* f)

Function: registration via the callback function provided by parameter, and this callback function conducts the processing of event code.

Parameter: f is a struct pointer, and this struct includes the unique function pointer member variables.

Return value: none

uint16t get_err_state(boardname boardname)

Function: acquire the software/firmware runtime error code

Parameter: board name refers to the software/firmware ID

Parameter is one of the following values:

Host upper computer node ID

Motor0 front_left motor node ID

Motor1 front_right motor node ID

Motor2 rear_left motor node ID

Motor3 rear_right motor node ID

Central central_board node ID

BMS batter ID

Return value: error code

int16t get_bat_soc(void)

Function: acquire percentage of battery remaining capacity

Parameter: none

Return value: percentage of battery remaining capacity (1~100)

int16t get_bat_charging(void)

Function: inquire whether the battery is in charging state

Parameter: none

Return value: 0: not in charging state

1: in charging state int16t get_bat_mvol(void) Function: acquire real-time voltage of battery Parameter: none Return value: voltage value, unit mV int16t get_bat_mcurrent(void) Function: acquire real-time current of battery Parameter: none Return value: current value, unit mA int16*t get*_bat_temp(void) Function: acquire battery temperature Parameter: none Return value: temperature value, unit degree Celsius

int16t get_chassis_work_model(void) Function: acquire working state of chassis motor Parameter: none Return value: 1: motor in augmentation; 0: motor not in augmentation int16t get_chassis_load_state(void) Function: acquire setting value of chassis based on controlling parameter of different loading Parameter: none Return value: 0: no-load control parameter; 1: full load controlling parameter int16t get_chassis_mode(void) Function: acquire working mode of chassis finite state machine (FSM) Parameter: none

Return value: 0 locking mode;	
1 vehicle control mode;	
2 pushing mode;	
3 emergency stop mode;	
4 error mode	
int16t get_ctrl_cmd_src(void)	
Function: acquire command origin of motor chassis control	
Parameter: none	
Return value: 0: control vehicle with remote controller;	
1: control vehicle with host computer	
int16t get_vehicle_meter(void)	
Function: acquire the mileage since the chassis is power up	
Parameter: none	
Return value: mileage value, unit meter	

uint16t get_host_version(void)

Function: acquire the host computer software version

Parameter: none

Return value: host computer software version number

uint16t get_chassis_central_version (void)

Function: acquire the central board firmware version

Parameter: none

Return value: the central board firmware version number

uint16t get_chassis_motor_version (void)

Function: acquire the motor board firmware version

Parameter: none

Return value: the motor board firmware version number

int16_t get_line_forward_max_vel_fb (void)

Function: acquire the forward speed limiting feedback value of the chassis

Parameter: None

Return value: the forward speed limiting feedback value of the chassis

int16_t get_line_backward_max_vel_fb (void)

Function: acquire the backward speed limiting feedback value of the chassis

Parameter: None

Return value: the backward speed limiting feedback value of the chassis

int16_t get_angular_max_vel_fb (void)

Function: acquire the angular speed limiting feedback value of the chassis

Parameter: None

Return value: the angular speed limiting feedback value of the chassis

Function: Get the progress of IAP upgrades

Parameter: None

Return value:

-1: IAP upgrade failed

0: IAP upgrades are idle or started or interrupted

100: IAP upgrade completed

Other: Percentage of IAP upgrade progress

> void iapCentralBoard (void)

Function: IAP upgrade of the central board firmware of the chassis

int16_t getlapProgress (void)

Parameter: None

Return value: none

Note: You need to place the central board firmware "central.bin" in the path of "/sdcard/firmware/" in advance.

void iapMotorBoard (motor_index_e motor_index)

Function: IAP upgrade of the motor board firmware of the chassis

Parameter: Parameter is one of the following enumerated values:

Motor_front: Represents the front wheel circuit board

Motor_rear: Represents the rear wheel circuit board

Return value: none

Note: You need to place the motor board firmware "motor.bin" in the path of "/sdcard/firmware/" in advance.

bool isHostlapOver (void)

Function: Query if the IAP upgrade process has ended

Parameter: None

Return value: true: the IAP completes or fails or is interrupted

False: IAP not started or in progress

Int16_t getHostlapResult (void)

Function: acquire the reason for the end of IAP

Parameter: None Return value: 3: IAP completes 4: IAP fails 5: IAP is interrupted Others: IAP not started or in progress Int16_t getHostlapErrorCode (void) Function: Gets the error code for IAP failure Parameter: None Return value: the error code for IAP failure int16_t get_calibrate_mid_value_status(void) Function: Query if the median headway Angle has been calibrated Parameter: None Return value: 1: calibrated;

0: no calibrated.

SEGWAY ROBOTICS

void set_cmd_vel(double linearx,double angularz)

Function: set up the command value of chassis target speed, which needs to be regular transmit once the chassis is enabled. It will be determined as communication failure if the chassis can't receive the command value in continuous 150ms in controlling mode.

Parameter: linear_x: linear velocity command value, unit m/s;

angular_z: angular velocity command value, unit rad/s

Return value: none

void set_line_forward_max_vel(double linearforwardmax_x)

Function: set up the max forward linear velocity value of chassis.

Parameter: linearforwardmax_x: max forward linear velocity value of chassis, unit m/s, range 0 - 2.3

Return value: none

void set_line_backward_max_vel(double linearbackwardmax_x)

Function: set up the max backward linear velocity value of chassis. Parameter: linearbackwardmax_x: max backward linear velocity value of chassis, unit m/s, range -0.85 - 0 Return value: none void set_angular_max_vel(double angularmax_z) Function: set up the max angular velocity command value of chassis. Parameter: angularmaxz: the max angular velocity command value, unit rad/s, range 0 - 2 Return value: none void set_enable_ctrl(uint16t enableflag) Function: set up to enable the chassis to control the vehicle. Parameter: enable_flag:

1 enable the vehicle control;

0 exit the vehicle control

Return value: none

void set_smart_car_serial(const char * serialno)

Function: set up the terminal name of serial port of host computer, e.g.

ttyUSB0.

Parameter: serial_no: terminal name of serial port, under the path /dev/

by default, e.g. "ttyUSB0"

Return value: none

void set_comu_interface (comu_choice_e comu_choice)

Function: Set up the communication interface between the host

computer and the chassis, including serial communication and CAN

communication

Parameter: comu_choice:

'comu_serial' Use a serial port for communication

'comu_can' Use a CAN port for communication

Return value: none

void set_chassis_load_state(int16t newLoadSet) Function: set up the parameter of chassis control based on the different chassis load. Parameter: newLoadSet: 0: no-load parameter; 1: full load parameter Return value: none void set_chassis_poweroff (void) Function: chassis power off controlled by host computer. Parameter: none Return value: none void setHostlapCanceled (void) Function: Interrupt the IAP upgrade process. Parameter: none

Return value: none

uint8_t set_calibrate_mid_value(void)

Function: Sets the command to calibrate the median Angle of the front wheel of the chassis.

Parameter: none.

Return value: 0: successfully set; other: setup failed.

uint8_t reset_host_power_time_s(uint16_t reset_time_s);

Function: Set the reset time after power failure of the upper machine

Parameter: reset_time_s: reset interval time.

Range: 0~65535. unit: second.

Return value: 0: successfully; other: failed.