实验四 信号通过线性系统的特性分析

学号: 2128410206 姓名: 龚烨 成绩:

一、实验目的

- 1. 掌握无失真传输的概念及无失真传输的线性系统满足的条件。
- 2. 分析无失真传输的线性系统输入、输出频谱特性,给出系统的频谱特性。
- 3. 掌握系统幅频特性的测试及绘制方法。

二 、实验仪器及器材

- 1. 万用表一只。
- 2. 直流稳压电源一台。
- 3. 信号发生器一台。
- 4. 选频电平表一只。
- 5. 电阻与电容若干。

三、实验原理

通过频谱分析可以看出,在一般情况下线性系统的响应波形与激励波形是不同的,即信号在通过线性系统传输的过程中产生了失真。

线性系统引起的信号失真是由两方面的因素造成的:一是系统对信号中各频率分量的幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,造成幅度失真;二是系统对各频率分量产生的相移与频率不成正比,使响应各频率分量在时间轴上的相对位置产生变化,造成相位失真。

线性系统的幅度失真与相位失真都不产生新的频率分量。对于非线性系统,由于其具有非线性特性,对于传输信号产生非线性失真,非线性失真可能产生新的频率分量。

如果信号在传输过程中不失真,那么响应 r(t)与激励 e(t)波形相同,只是幅度大小或出现的时间不同。激励与响应的关系可表示为

$$r(t) = ke(t - t_0)$$

为了实现信号无失真传输,线性系统应该满足的条件可由式给出,即

$$R(j\omega) = kE(j\omega)e^{-j\omega t_0}$$

设 e(t) 与 r(t) 的傅立叶变换分别是 E(jw) 和 R(jw),则 比较式 (3.3.2) 与式 (3.3.3),在信号无失真传输时,系统函数应为

$$H(j\omega) = |H(j\omega)| e^{j\Phi(\omega)} = ke^{-j\omega t_0}$$

因此,为了实现任意信号通过线性系统不产生波形失真,该系统应满足以下两个理想条件:

$$\begin{cases} |H(j\omega)| = k \\ \Phi(\omega) = -\omega t_0 \end{cases}$$

a 幅频特性

b 相频特性

图 1 理想线性传输系统的系统函数的频率特性

很显然,在传输有限频宽的信号时,上述理想条件可以放宽,只要在信号占有频带范围内系统满足上述理想条件即可。

四、实验方法

实验电路如图 2 所示,且有

$$H(j\omega) = \frac{U_1(j\omega)}{U_2(j\omega)} = \frac{\frac{R_2}{1 + j\omega R_2 C_2}}{\frac{R_1}{1 + j\omega R_1 C_1} + \frac{R_2}{1 + j\omega R_2 C_2}}$$

 $\ddot{a}R_1C_1 = R_2C_2$,则 $H(j\omega) = \frac{R_2}{R_1+R_2}$, $\Phi(\omega) = 0$,该系统满足无失真传输的条件。

图 2 实验电路

1. 系统传输函数幅频特性的测试。

首先测试系统输入信号的频谱,再测试该信号通过系统后输出的频谱,比较 输入、输出的变化。

为能反映出特性的整体形状,测量点的分布应合理。首先找出谐振点,在其两边都要取数据点,越靠近谐振点测量点应取得越密些。这些位置是特性变化大的地方,必须用较多的数据描述。

2. 系统传输函数幅频特性的绘制。

由于幅频特性的频率范围跨度很大,采用对数坐标,能够在有限的空间内反映出全貌。

五、实验内容

- 1. 用 Multisim 软件实现低通滤波器的输人、输出频
- (1) 绘制测量电路(图3)并做输入,输出信号的参数仿真。

图 3 无失真传输线性系统的测量电路

(2) 无失真传输线性系统输入、输出信号幅度频谱的仿真测量。

虚拟电压信号源设置参数为周期矩形波信号,其中周期 $T=100 \mu s$,脉冲宽度 $\tau=60 \mu s$,脉冲幅度 V2=5V。采用虚拟示波器测量滤波器输入、输出信号的时域波形,采用波特仪测量线性系统传输特性的频谱图,并记录输出波形。

(3) 通过变换 R、C 参数, 掌握其对滤波器传输特性的影响。

当 R1=200 Ω , C1=10nF, R2=200 Ω , C2=10nF 时, 测试系统传输特性频谱图;

当 R1=200 Ω , C1=10nF, R2=20 Ω , C2=100nF 时, 测试系统传输特性频谱图;

当 R1=200 Ω , C1=10nF, R2=5k Ω , C2=10nF 时, 测试系统传输特性频谱图;

当 R1=200 Ω , C1=10nF, R2=2k Ω , C2=10nF 时, 测试系统传输特性频谱图;

当 $R1=200\Omega$, C1=10nF, $R2=200\Omega$, C2=100nF 时, 测试系统传输特性频谱图。

2. 无失真传输线性系统的设计、装配与调试。

(1) 电路的焊接。

按仿真电路给定的元器件参数在万能板上进行焊接,注意板面的布局、器件的分布及极性、走线的合理等问题。

(2) 电路的电气检查。

先对焊接后的电路进行短路检查,无短路现象方可上电调试。(3)信号的测量。信号发生器的输出信号接至调试电路的输入端,设置参数为周期矩形波信号,其中周期 $T=100~\mu~s$,脉冲宽度 $\tau=60~\mu~s$,脉冲幅度 Vp=5V。采用示波器测量滤波器输入、输出信号的时域波形,采用选频电平表测量待调试系统的输入、输出信号的频谱,并记录实验数据。

注意: 电源开关的顺序是先给待调试的系统上电, 然后开启信号发生器电源。

(4) 通过变换 R、C 参数, 掌握其对滤波器传输特性的影响。

当 R1=200Ω, C1=10nF, R2=200Ω, C2=10nF 时, 测试系统传输特性频谱图:

当 R1=200Ω, C1=10nF, R2=20Ω, C2=100nF 时, 测试系统传输特性频谱图:

当 R1=200 Ω , C1=10nF, R2=5k Ω , C2=10nF 时, 测试系统传输特性频谱图;

当 R1=200 Ω , C1=10nF, R2=200 Ω , C2=100nF 时, 测试系统传输特性频谱图。

六、实验结果及数据分析

$R1=200\,\Omega$, C1=10nF, $R2=200\,\Omega$, C2=10nF

$R1=200\,\Omega$, C1=10nF, $R2=20\,\Omega$, C2=100nF

图 5 R1=200 Ω , C1=10nF, R2=5k Ω , C2=10nF

图 6

$R1=200\,\Omega$, C1=10nF, $R2=200\,\Omega$, C2=100nF

图 7

频谱值/mV			频率/kHz									
			f	2f	3f	4f	5f	6f	•••	13f	14f	15f
参数	R1=200 C1=10n R2=200 C2=10n	U_i	1.900	0.540	0.360	0.440	0.000	0.310		0.100	0. 152	0.000
		U_0	0.880	0. 270	0.180	0. 230	0.000	0.160		0.043	0.064	0.000
		A_v	0.463	0.500	0.500	0. 523	ı	0.516		0.430	0. 421	-
	R1=200 C1=10n R2=200 C2=10n	U_i	2. 100	0.580	0.380	0.480	0.000	0.320		0.102	0. 156	0.000
		U_0	1.960	0.520	0.320	0.380	0.000	0. 220		0.065	0.099	0.000
		A_v	0. 933	0.897	0.842	0. 792	-	0.688		0.637	0.635	_

通过 Multisim 仿真及实际电路实验,成功验证了在 $R_1C_1 = R_2C_2$,的条件下,系统对于不同频率的 A_v 基本相同,此时该系统满足无失真传输的条件。

图 8

七、结论与分析

本实验,通过 Multisim 仿真软件和实验板的实际测量,研究了信号通过线性系统的特性。在这次实验中,我对无失真传输的线性系统输入、输出频谱特性有了更熟练的掌握。我还掌握系统幅频特性的测试及绘制方法。