Linear-Time Sorting Algorithms

• Insertion sort:

- Easy to code
- Fast on small inputs (less than ~50 elements)
- Fast on nearly-sorted inputs
- $O(n^2)$ worst case
- O(n²) average (equally-likely inputs) case
- O(n²) reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - ◆ Split array in half
 - Recursively sort subarrays
 - ◆ Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - ◆ Heap property: parent key > children's keys
 - O(n lg n) worst case
 - Sorts in place

- Quick sort:
 - Divide-and-conquer:
 - ◆ Partition array into two subarrays, recursively sort
 - ◆ All of first subarray < all of second subarray
 - ◆ No merge step needed!
 - O(n lg n) average case
 - Fast in practice
 - $O(n^2)$ worst case
 - ◆ Naïve implementation: worst case on sorted input

Comparison sort

Comparison sort:

- Insertion sort, $O(n^2)$, upper bound in worst case
- Merge sort, $O(n \lg n)$, upper bound in worst case
- Heapsort, $O(n \lg n)$, upper bound in worst case
- Quicksort, $O(n \lg n)$, in average case

• Question:

- what is the lower bounds for any comparison sorting: i.e., at least how many comparisons needed in worst case?
- It turns out: Lower bound in worst case: $\Omega(n \lg n)$, how to prove?
- Merge and Heapsort are asymptotically optimal comparison sorts.

How Fast Can We Sort?

- We will provide a lower bound, then beat it
 - *How do you suppose we'll beat it?*
- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements

Sorting In Linear Time

- Counting sort
 - No comparisons between elements!
 - *But*...depends on assumption about the numbers being sorted
 - \bullet We assume numbers are in the range 1.. k
 - The algorithm:
 - Input: A[1..n], where A[j] \in {1, 2, 3, ..., k}
 - ◆ Output: B[1..n], sorted (notice: not sorting in place)
 - ◆ Also: Array C[1..*k*] for auxiliary storage

```
1
      CountingSort(A, B, k)
2
             for i=1 to k
3
                   C[i] = 0;
4
             for j=1 to n
5
                   C[A[j]] += 1;
             for i=2 to k
6
7
                   C[i] = C[i] + C[i-1];
             for j=n downto 1
8
9
                   B[C[A[j]]] = A[j];
10
                   C[A[j]] -= 1;
```

Work through example: $A = \{4 \ 1 \ 3 \ 4 \ 3\}, k = 4$

```
CountingSort(A, B, k)
2
             for i=1 to k
                                       Takes time O(k)
                    C[i] = 0;
3
             for j=1 to n
5
                    C[A[j]] += 1;
             for i=2 to k
6
                    C[i] = C[i] + C[i-1];
                                                 Takes time O(n)
8
             for j=n downto 1
9
                    B[C[A[j]]] = A[j];
10
                    C[A[j]] -= 1;
```

What will be the running time?

- Total time: O(n + k)
 - Usually, k = O(n)
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \lg n)!$
 - No contradiction--this is not a comparison sort (in fact, there are *no* comparisons at all!)
 - Notice that this algorithm is *stable*

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($2^{32} = 4,294,967,296$)