

Learning Objectives

- Explain the structure of the atom and Bohr's model
- Differentiate between emission and absorption spectroscopy
- 3 Explain the chemistry behind EDX and SEM-EDX
- 4 Explain the chemistry behind NAA

What are the chemical elements present?

Spectroscopy & the structure of atoms

- How can we do elemental analysis?
- When and why do we want to carry out elemental analysis?

When and why do we want to carry out elemental analysis?

→ When it gives the required information

Examples

Poisoning

Suspected arsenic, lead or chromium poisoning

Analyze body fluids

Examples

- Poisoning
- Determining the time of death
 - Analyze bone chemistry

Examples

- Poisoning
- Determining the time of death
- 3 Elemental analysis of bullets
 - Forensic information about firearms use

Cases

River Thames, London, September 2001

Cases

How many people fired at JFK?

Cases

Death of Napoleon

Ancient Greeks

4 elements

Concept discarded

Robert Boyle (1627 – 1691)

Elements can neither be created nor destroyed

Elements are the basic building blocks

93 naturally occurring

Others created artificially

Common naturally occurring elements

→ C

Less common naturally occurring elements

Made of cellulose

→ C, H, O

Burning a piece of paper

$$H \longrightarrow$$

ibre Analysis

Human Body

C, H, O, N, P, S, Ca, Na, K, Fe...

$$\rightarrow$$
 C \longrightarrow CO_2

$$\rightarrow$$
 H \rightarrow H₂O

Human Body

Au or Hg in teeth

bre Analysis

hydrogen 1 H						Th	e P	Peri	od	ic T	abl	le						He
ilhium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	C	N	0	F	Ne
6,941 sodium 11	9,0122 magnesium 12												10,811 aluminium	12.011 slicon 14	phosphorus	15,999 suffer 16	18.998 chlorine	20,190 argon 18
Na	Mg												AI	Si	P	S	CI	Ar
22,990 potassium 19	24.305 calcium 20	12	scandium 21	tilanium 22	vanadium 23	chromium 24	manganese 25	iron 26	coball 27	nickel 28	copper 29	zinc 30	26.982 gallium 31	28.086 germanium 32	30.974 arsenic 33	32.065 selenium 34	35.453 bromine 35	39,948 krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium 37	40.078 stronlium 38		44.956 yttrium 39	47,867 zirconium 40	50,942 niobium 41	51,996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58,933 rhodium 45	58.693 palladium 46	63,546 silver 47	65.39 cadmium 48	69.723 indium 49	72.61 tin 50	74.922 antimony 51	78,96 tellurium 52	79.904 lodine 53	83.80 xenon 54
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85,468 caesium 55	87.62 barium 56	57-70	88.906 lutetium 71	91.224 hafnium 72	92,906 tantalum 73	95.94 lungsten 74	[98] rhenium 75	101.07 osmium 76	102.91 iridium 77	106.42 platinum 78	107.87 gold 79	112,41 mercury 80	114.82 thallium 81	118.71 lead 82	121.76 bismuth 83	127.60 polonium 84	126.90 astatine 85	131,29 radon 86
Cs	Ba 137.33	*	Lu 174.97	Hf 178.49	Ta	W 183.84	Re	Os	lr 192.22	Pt 195.08	Au 196.97	Hg	TI 204.38	Pb	Bi	Po	At	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnillum 110	unununtum 111	ununblum 112	254.55	ununquadium 114	200.30	leng	[2.15]	1 1225
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

*	Lan	than	ide	seri	es

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytlerbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium 89	lhorlum 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

The Periodic Table

Dmitri Mendeleev

Chemist

Organized the elements according to chemistry

The Periodic Table

Tom Lehrer

- Mathematician and musician
- Organized elements musically

http://www.youtube.com/watch?v=AcS3NOQnsQM

Tom Lehrer

Bulk composition

What is most of it made of?

Lead in bullets

Bullet

Trace impurities

What is a very small part of it made of?

Silver and antimony in bullets

Bullet

Analysis of elements

1 Bulk composition

2 Trace impurities

More informative for forensic scientists

Chemical Tests

Disadvantages

- Large amounts of samples required
- Destructive
- Subject to interference

Chemical Tests

Advantages

- Fast
- Easy to do
- Simple equipment

ibre Analysis

Trace Impurities

How small is small?

S. I. prefixes for units

DNA

S. I. Prefixes

1 Megagram	1 Mg	1 000 000 g	1 tonne
1 Kilogram	1 kg	1 000 g	
1 milligram	1 mg	0.001 g	1 / 1000 th
1 microgram	1 µg	0.000 001 g	1 / 1000 000 th
1 nanogram	1 ng	0.000 000 001 g	1 / billionth
1 picogram	:	0.000 000 000 001 g	

1 picogram

100 000 000 000 atoms

Trace Impurities

Trace elements often measured in ppm

- Part per million
- → 1 per 1 000 000

- 1 g of 1 tonne
- 👈 🛮 1 ppm

Trace Impurities

Trace elements often measured in ppm

Sometimes measured in ppb

Part per billion

1 per 1 000 000 000

