12.10

O problema da *p*-mediana é usado frequentemente para escolher a localização de centros de serviço, nomeadamente no sector público.

Considerem-se N pontos de consumo, cada um quais constitui um local possível para a instalação de um centro de serviço. O objectivo do problema é seleccionar exactamente p locais (p < N) para instalar centros de serviço, de modo a minimizar a soma dos tempos de deslocação entre os pontos de consumo (pesados pela população existente em cada ponto) e os centros onde os serviços estão localizados.

Cada ponto de consumo é constituído por uma população w_i (i = 1, ..., N) e o parâmetro t_{ij} representa o tempo de deslocação de uma pessoa entre o ponto de consumo i e o centro de serviço j. Evidentemente, na solução óptima, cada ponto de consumo será integralmente servido pelo centro de serviço que se encontrar mais próximo.

Considerando os dados abaixo referidos, referentes a três pontos de consumo, e sabendo que se pretende instalar dois centros de serviço, formule **apenas** um modelo de programação inteira que lhe permita determinar a solução óptima.

				t_{ij}		
i	1	2	3	1	0	4
v_i	15	11	10	2	4	0
				3		

Considere variáveis de decisão x_{ij} que tomam o valor unitário se o ponto de consumo i for servido pelo centro de serviço j.

Problema da p-mediana

• Dados

```
-p: número de centros a usar
-wi: população do ponto i, i=1,2,3
-tij: tempo de deslocação do ponto i a0 centro
 de serviço j
• Variáveis de decisão (binárias)
- xij: ponto i servido pelo centro j
-yj: centro de serviço j é usado
```

p-mediana: função objectivo

-minimizar a soma dos tempos de deslocação de cada ponto ao ponto de serviço, pesadas com o valor da população.

$$\frac{i}{w_i}$$
 15 11 10

t_{ij}	1	2	3
1	0	4	2
2	4	0	3
3	2	3	0

Minimizar		+ 15 (4) x12	+ 15(2) x13
	+ 11 (4) x21		+ 11(3) x23
	+ 10 (2) x31	+ 10 (3) x32	

12.10 restrições

- cada ponto deve estar atribuído a um ponto de serviço

```
x11 + x12 + x13 = 1;
x21 + x22 + x23 = 1;
x31 + x32 + x33 = 1;
- se algum ponto estiver atribuído a um serviço, esse serviço deve abrir
x11 <= y1; x12 <= y2; x13 <= y3;
x21 <= y1; x22 <= y2; x23 <= y3;
x31 <= y1; x32 <= y2; x33 <= y3;
- deve haver exactamente 2 pontos de serviço
y1 + y2 + y3 = 2;
- restrições de integralidade
bin x11 x12 x13 x21 x22 x23 x31 x32 x33;
bin y1 y2 y3;
```

```
/* Exercício 12.11 */
min:
             60 x12 + 30 x13 +
      44 x21
                     + 33 x23 +
      20 x31 + 30 x32 ;
x11 + x12 + x13 = 1;
x21 + x22 + x23 = 1;
x31 + x32 + x33 = 1;
x11 <= y1; x12 <= y2; x13 <= y3;
x21 <= y1; x22 <= y2; x23 <= y3;
x31 <= y1; x32 <= y2; x33 <= y3;
y1 + y2 + y3 = 2;
bin x11 x12 x13 x21 x22 x23 x31 x32 x33;
bin y1 y2 y3;
```

12.10

Modelo

12.10 Resolução

Objective	Constraints	Sensi	tivity
Variables	M	IILP	result
	2	20	20
x12	0)	0
x13	0)	0
x21	0)	0
x23	0)	0
x31	1		1
x32	0)	0
x11	1		1
x22	1		1
x33	0)	0
у1	1		1
у2	1		1
у3	0)	0

12.10 Solução óptima

- instalação de pontos de serviço em:
- 1 e 2
- População de 3 é servida no ponto 1

• Custo óptimo = 20

Objective	Constraints	Sensi	tivity
Variables	М	ILP	result
	21)	20
x12	0		0
x13	0		0
x21	0		0
x23	0		0
x31	1		1
x32	0		0
x11	1		1
x22	1		1
x33	0		0
у1	1		1
у2	1		1
у3	0		0

Dúvidas?