

Quo vadis? How COVID changed the selecting of trip destinations

Project in cooperation with ARUP, funded by the Federal Institute for Resarch on Building, Urban Affairs and Spatial Development (BBSR)

Berd Academy

Data Challenge: Mobile Phone Data

12 November 2024

Rolf Moeckel | Professor of Travel Behavior | Department of Mobility Systems Engineering | Technical University of Munich Research partners: Nadine Blätgen (BBSR), Ali Saad (ARUP), Yangqian Cai (TUM)

Problem statement

- It is well understood that the COVID pandemic had a long-term impact on travel behavior
- While the modal shift from transit to personal vehicles is well-established, it remains less clear how preferences for destinations might have changed
- Traditional household travel surveys (such as "Mobilität in Deutschland", or Mobility in Germany) are conducted too infrequently to observe behavioral shifts in a timely manner

New data potential

- Mobile phone data are collected continuously
- The sample size can be much larger than in traditional surveys
- Travel behavior changes can be observed almost instantaneously

Mobile phone data

Mobile phone data for Germany

- Teralytics provided mobile phone data for all of Germany
- Trip ends are provided by raster cells, their resolution ranges from 500x500 m in urban regions to 10x10 km in rural areas.
- Hourly temporal resolution from 2019 to 2022

Direction of travel and distance

Data are provided for each raster cell by direction of travel and travel distance class:

	To a raster cell	From a raster cell	Roundtrip inside one raster cell		
0-5 km	21.7%	21.7%	7.0%		
5-30 km	20.2%	20.2%	0.6%		
> 30 km	4.3%	4.3%	0.2%		

Share of trips by direction and distance class

Temporal resolution

- Data were provided in one-hour increments (0-1, 1-2, 2-3, ... 23-24)
- Data were provided for (almost) every day from Jan 1st 2019 to Dec 31th 2022

Descriptive analysis

Trip destinations

Jan 1st, 2019, all day

Trip destinations

Cologne/Bonn

Berlin

Seasonal change of number of trips

Change in number of trips from year to year

April 2019 → April 2020

April 2020 → April 2021

April 2021 → April 2022

Statistical analysis

Definition of "before", "during" and "after" COVID

Time periods of interest

Dependent variable: Change of arriving trips per raster cell from 2019 to 2022

Explanatory variables

'Gensily, szort, "skoptkrójm", Gensily, szationneyl/tilopin", densily, supermindell/tilopim", lestily, supermindell/tilopim", densily, densil

Aggregation of variables to reduce the dimensions

Category	Definition	Ave. Density	75 Percentile	Max. Density
Restaurant	'bakery', 'cafe', 'fast_food', 'food_court', 'restaurant'	6.142	2	744
Bars	'bar', 'nightclub', 'pub'	1.179	C	248
Health	'chemist', 'clinic', 'dentist', 'doctors', 'hospital', 'nursing_home', 'optician', 'pharmacy', 'veterinary'	2.629	0.68	600
Banks	'atm', 'bank'	0.888	0.04	128
Beauty	'beauty_shop', 'hairdresser'	1.836	0.08	256
Parks	'arts_centre', 'artwork', 'biergarten', 'cinema', 'dog_park', 'museum', 'park', 'playground', 'theatre',	2.123	1	424
Sports	'golf_course', 'ice_rink', 'pitch', 'stadium', 'swimming_pool', 'track'	0.560	C	112
Retail	'beauty_shop', 'beverages', 'bicycle_shop', 'bookshop', 'butcher', 'car_dealership', 'clothes',	5.649	2	920
Education	'college', 'kindergarten', 'library', 'school', 'university'	0.782	0.04	100
Ohter	'laundry', 'travel_agent', 'wastewater_plant', 'water_works'	0.398	C	56
Shared mobility	bicycle_rental', 'car_rental', 'car_sharing'	0.478	C	80
Religion	'wayside_shrine'	0.070	C	30
Public services	'community_centre', 'courthouse', 'embassy', 'fire_station', 'police', 'post_office', 'public_building',	0.522	0.08	136
Hotels	'alpine_hut', 'camp_site', 'chalet', 'caravan_site', 'guesthouse', 'hotel', 'hostel', 'motel'	0.444	0.04	184
Tourist attractions	'archaeological', 'attraction', 'battlefield', 'castle', 'fort', 'monument', 'ruins', 'tower', 'windmill'	0.264	0.04	136

Statistical methods applied

- 1. Regression analysis
- Generalized Additive Model
- 3. XGBoost (Machine Learning)
- 4. Geographically weighted regression

Regression analysis of trip attraction (trips < 5 km)

Variable	Parameter	Std. Error	t Value	P(> t)
Constant	-70.646	23.77	-2.972	0.003
Share green area (2018)	1.3812	1.109	1.246	0.213
Distance to next county-free city (km)	0.7353	0.24	3.07	0.002
Education facilities / km ²	-29.85	2.398	-12.445	0
Hotels / km ²	-36.8172	2.888	-12.748	0
Public services / km2	-38.9345	3.825	-10.179	0
Parks and leisure facilities / km ²	0.9558	0.916	1.044	0.297
Sports facilities / km ²	14.3915	2.441	5.896	0
Average purchasing power	0.0007	0	1.614	0.107
Population / km ² (2021)	0.1114	0.003	40.172	0
Share retail center area (2017)	6.7441	1.377	4.898	0
Transit stops / km ²	2.488	0.387	6.421	0
Adjusted R ² : 0.061				

Regression analysis: Effect of retail centers by size

Generalized Additive Model (trips < 5 km)

XGBoost (trips < 5 km)

Geographically weighted regression

Calculate coefficients based on current raster cell and neighboring raster cells.

Geographically weighted regression estimation results

Variable	Average	Std. Dev.	Min	Median	Max
Constant	-0.041	1.219	-20.128	-0.044	9.245
Share green area (2018)	0.003	0.244	-5.789	0.005	2.465
Distance to next county-free city (km)	-0.01	1.409	-22.809	0.001	12.012
Education facilities / km ²	-0.04	0.649	-6.479	-0.035	6.515
Hotels / km ²	0.008	0.622	-3.608	0.008	2.924
Public services / km2	-0.005	0.454	-2.275	-0.011	5.6
Parks and leisure facilities / km ²	0.092	0.64	-3.703	0.034	5.236
Sports facilities / km ²	-0.035	0.83	-6.244	-0.009	12.227
Average purchasing power	-0.025	0.211	-3.883	-0.003	2.544
Population / km ² (2021)	0.224	0.549	-2.557	0.177	3.844
Share retail center area (2017)	-0.037	0.577	-3.526	-0.041	3.147
Transit stops / km ²	-0.055	0.54	-2.926	-0.027	4.228

Bandwidth t: 179

Trips < 5 km

Adj. R²: 0,459

Geogr. weighted regression: Range of estimated parameters

Summary of statistical analyses

	< 5 km				5 to 30 km				> 30 km			
Model	LR	GAM	XGB	GWR	LR	GAM	XGB	GWR	LR	GAM	XGB	GWR
Adj. R ² or Pseudo R ²	0.067	0.120	0.280	0.459	0.134	0.175	0.266	0.445	0.012	0.075	0.253	0.377
Moranindex		0.216	0.156	0.026		0.097	0.086	0.012		0.131	0.114	0.036

Normalized mean parameters of geographically weighted regression

Conclusions

- Densely populated areas and leisure facilities gained in popularity for trip attraction from pre- to post-COVID
- Mixed impact of retail: mega shopping centers lost in attractivity, but other shopping centers gained
- Major strength of mobile phone data: Massive data available almost instantaneously
- Major weakness of mobile phone data:
 Unknown processing of data provider and limited spatial resolution

