# Zero shot learning

2017-01-04 Presented by Cheng-Hao Tu

## Outline

- Motivation
- Introduction
- Related work
- Experiment
- Summary and future plan

#### Motivation

- The number of object categories can be huge in the open world
  - Pure supervised learning approach needs huge amount annotations
  - Training huge amount data needs huge amount of computation resources
- The situation becomes severe in fine-grained classification









#### Introduction

- Zero-shot learning
  - To recognize classes that have no training samples
  - o In training time:
    - Seen classes (train classes) and their descriptions
    - Seen classes training samples
  - o In testing time:
    - Unseen classes and their descriptions
    - Given a new input sample, predict its class

## Introduction (cont'd)

In training time







#### 檮杌:

西方荒中有獸焉, 其狀如虎而犬毛, 長二尺, 人面虎足, 豬口牙, 尾長, 一丈八尺, 攪亂荒中, 名檮杌, 一名傲狠, 一名難訓。



## Introduction (cont'd)



# Introduction (cont'd)



### Related work

#### Different descriptions



## Related work (cont'd)

- Intermediate representation (IR)
  - Attributes list
  - Word2vec



## Related work (cont'd)

- Predict classifier parameters
  - Pure text descriptions

Pure supervised learning case:

$$y_{i_1} = f_{\underline{w_1}}(x_i), \ y_{i_2} = f_{\underline{w_2}}(x_i), \dots$$
 These classifiers are trained using training data. But what about  $f_{\underline{w_u}}(\cdot)$ 

To determine whether sample  $\,x_i\,$  is class 1  $\,f_{w_1}(x_i)\,$ 

------

Zero-shot learning case:

$$y_{i_1} = f_{\underline{w_1}}(x_i), \ y_{i_2} = f_{\underline{w_2}}(x_i), \dots f_{w_u}(\cdot) = f_{g_s(\ descriptions\ of\ unseen\ class\ )}$$

$$w_1 = g_s(\ descriptions\ of\ class1\ )$$

$$w_2 = g_s(\ descriptions\ of\ class2\ )$$

To determine whether sample  $x_i$  is class 1  $f_{g_s(\ descriptions\ of\ class1\ )}(x_i)$ 

## Experiment

- Dataset: Animals with Attributes (AwA)
- 50 animals classes (separate to 40 seen classes, 10 unseen classes)
  - Seen classes: antelope, grizzly\_bear, killer\_whale, beaver, dalmatian, horse, german\_shepherd, blue\_whale, siamese\_cat, skunk, mole, tiger, moose, spider\_monkey, elephant, ......
  - Unseen classes: chimpanzee, giant\_panda, leopard, persian\_cat, pig, hippopotamus, humpback\_whale, raccoon, rat, seal
- No raw images (only provide extracted features) !!!
- Have 85 attributes
- No Pure text descriptions (I extract paragraph from wikipedia for each classes)

## Experiment (cont'd)

- Two IR approaches modified from (Lampert, Nickisch, and Harmeling, CVPR 2009), (Socher et al., NIPS 2013)
  - Word2vec (google) and Attributes list (with 85 attributes provided by the dataset)
  - Using Neural network as model
- One "Predict classifier parameters" approaches (Lei Ba, Swersky, Fidler, et al., ICCV 2015)
  - Predict linear classifier weight on AwA only (since the dataset didn't provide feature map)
  - Using tf-idf as description features
  - Using vgg fc7 and image features

| CUB200_2010 dataset |              |              |  |  |  |  |
|---------------------|--------------|--------------|--|--|--|--|
|                     | fc fc+con    |              |  |  |  |  |
| mean top<br>1 acc   | 0.159 (0.17) | 0.151        |  |  |  |  |
| mean top<br>5 acc   | 0.334 (0.38) | 0.330 (0.25) |  |  |  |  |

AwA dataset Seen samples: 4859, Unseen samples: 6180, Total samples: 11039, 40 seen classes, 10 unseen classes

| Top5<br>acc                               | Intermediate representation |                |               |                 |                |               | Predict classifier parameters |                |                |  |
|-------------------------------------------|-----------------------------|----------------|---------------|-----------------|----------------|---------------|-------------------------------|----------------|----------------|--|
|                                           | Attributes                  |                |               | Google Word2Vec |                |               | Fc                            |                |                |  |
|                                           | Seen samples                | Unseen samples | Total samples | Seen samples    | Unseen samples | Total samples | Seen samples                  | Unseen samples | Total samples  |  |
| Seen<br>classes<br>+<br>Unseen<br>classes | 0.98                        | 0.52           | 0.72          | 0.95            | 0.10           | 0.47          | 0.97                          | 0.23           | 0.56           |  |
| Unseen                                    | -                           | 0.91           | -             | -               | 0.47           | -             | -                             | 0.79           | <b>-</b><br>13 |  |

AwA dataset Seen samples: 4859, Unseen samples: 6180, Total samples: 11039, 40 seen classes, 10 unseen classes

| Top1<br>acc                               | Intermediate representation |                |               |                 |                |               | Predict classifier parameters |                |               |
|-------------------------------------------|-----------------------------|----------------|---------------|-----------------|----------------|---------------|-------------------------------|----------------|---------------|
|                                           | Attributes                  |                |               | Google Word2Vec |                |               | Fc                            |                |               |
|                                           | Seen samples                | Unseen samples | Total samples | Seen samples    | Unseen samples | Total samples | Seen samples                  | Unseen samples | Total samples |
| Seen<br>classes<br>+<br>Unseen<br>classes | 0.92                        | 0.11           | 0.46          | 0.87            | 0.00           | 0.38          | 0.85                          | 0.00           | 0.37          |
| Unseen<br>classes                         | -                           | 0.62           | -             | -               | 0.17           | -             | -                             | 0.20           | - 14          |

## Summary

- Briefly introduce the zero shot learning and some previous solutions
- Experiment on Animals with Attributes dataset using three methods
- Future plan:
  - Focus on face expression project