

MapleT.A. 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

View Details View Grade Help **Quit & Save**

Feedback: Details Report

[PRINT]

2010 Matematik 2A hold 4, Prøveeksamen juni 2010 Alex Bondo Andersen, 6/1/10 at 1:20 PM

Question 1: Score 15/15

Der er givet et sæt $S = \{a, b, c\}$ af vektorer i \mathbb{R}^2 , hvor

$$a = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, c = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Besvar følgende to spørgsmål.

(a) Er vektorerne i S lineært uafhængige?

Your Answer: Nei

(b) Bestem dimensionen af SpanS. Skriv svaret som et tal nedenfor, for eksempel

Your Answer: 2

Comment: Dimensionen er 2

Question 2: Score 15/15

Der er givet en 8 $\,\times\,$ 11 matrix $\,A$. Bes var følgende to spørgsmål.

(a) Angiv den største værdi, som dimensionen af søjlerummet for A, $\dim \operatorname{Col} A$, kan antage. Skriv svaret som et tal nedenfor, for eksempel

Your Answer: 8

Comment: Svaret er 8.

Angiv den mindste værdi, som dimensionen af nulrummet for A, $\dim NulA$, kan antage. Skriv svaret som et tal nedenfor, for eksempel

Your Answer: 3

(b)

Comment: Svaret er 3.

Question 3: Score 10/10

Der er givet en 3×3 matrix A ved

$$A = \left(\begin{array}{cccc} a - 2 & -1 & -1 \\ 0 & 1 & 0 \\ a - 2 & 0 & a \end{array}\right)$$

Her er a et vilkårligt reelt tal. Besvar følgende to spørgsmål.

(a) Beregn determinanten af A, $\det A$.

Svaret skal givet i Maple syntax. Et udtryk som 2a-4 indtastes som 2*a-4

og et udtryk som $2a^2 - 3a + 7$ indtastes som $2*a^2-3*a+7$

Your Answer: (a-2)*a-(a-2)*(-1)

Comment: Determinanten er lig med $a^2 - a - 2$.

Bestem den eller de værdier af a, for hvilke matricen A *ikke* er invertibel (*ikke* er regulær). Svaret skal gives i Maple syntax. Hvis svaret er for eksempel a=4, skal tallet indtastes. Hvis svaret er for eksempel a=4 og a=-2, skal de to tal indtastes, separeret af et komma, som i a=4, a=4

Rækkefølgen betyder ikke noget.

Your Answer: 2,-1

Comment: A er ikke invertibel for værdierne

a = -1 og a = 2

Question 4: Score 10/10

Der er givet en lineær afbildning fra \mathbb{R}^n , n=3, til \mathbb{R}^m , m=4 ved

$$T(\mathbf{x}) = \begin{pmatrix} x_1 - x_3 \\ -2x_1 + 2x_2 - 2x_3 \\ x_1 - 2x_2 + 2x_3 \\ 2x_1 + 2x_2 + x_3 \end{pmatrix}$$

(i) Bestem standardmatricen for denne lineære afbildning. Svaret skal gives under brug af Maple syntax. En 3×4 matrix

indtastes som

Matrix([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

Your Answer: Matrix([[1,0,-1],[-2,2,-2],[1,-2,2],[2,2,1]])

Det korrekte svar er

Comment:
$$\begin{pmatrix} 1 & 0 & -1 \\ -2 & 2 & -2 \\ 1 & -2 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

Afgør, om den lineære afbildning T ovenfor er injektiv (på engelsk 'one-to-one'). Hvis T er injektiv, skriv ja i svarfeltet nedenfor. Hvis T ikke er injektiv, skriv nej i svarfeltet.

CORRECT

Your Answer: ja

Comment: No feedback provided with this question

(iii)

Afgør, om den lineære afbildning T ovenfor er surjektiv (på engelsk 'onto'). Hvis T er surjektiv, skriv ja i svarfeltet nedenfor. Hvis T ikke er surjektiv, skriv nej i svarfeltet.

Bemærk, at svaret skal skrives som enten ja eller nej, altså små bogstaver. Svar som Ja og JA og JA vil være forkerte.

Your Answer: nej

Comment: No feedback provided with this question

Comments:

Den reducerede echelonform af standardmatricen for T er

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Question 5: Score 10/10

Der er givet en matrix A ved

$$A = \left(\begin{array}{ccc} 5 & 1 & 0 \\ 3 & -4 & 4 \\ 2 & 3 & 3 \end{array}\right)$$

og to elementære matricer $E_{\mathbf{1}}$ og $E_{\mathbf{2}}$ ved

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \text{ og } E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Matricen $\it B$ fremkommer ved at anvende først rækkeoperationen givet ved $\it E_1$ og dernæst rækkeoperationen givet ved $\it E_2$

Markér matricen \mathcal{B} nedenfor.

Your Answer:

Question 6: Score 10/10

Der er givet en matrix

$$A = \left(\begin{array}{ccccc} -2 & -1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 1 & 0 \\ -2 & 1 & -2 & 0 & 0 \end{array} \right)$$

Besvar følgende tre spørgsmål.

(i)

Markér den matrix nedenfor, som er den reducerede echelon form af matricen $\,A\,$

Your Answer:

(ii)

Find dimensionen af søjlerummet ColA. Skriv svaret som et tal nedenfor.

Your Answer: 2

Comment: Dimensionen er 2.

(iii)

Find dimensionen af nulrummet NulA. Skriv svaret som et tal nedenfor.

Your Answer: 3

Comment: Dimensionen er 3.

Question 7: Score 15/15

Der er givet en diagonaliserbar $\exists \times \exists$ matrix

$$A = \left(\begin{array}{rrr} -3 & -6 & -33 \\ 0 & -1 & -9 \\ 0 & 0 & 2 \end{array} \right)$$

Besvar nedenstående to spørgsmål.

(i) Bestem egenværdierne for A .

Svaret skal gives som tal adskilt af komma. Hvis egenværdierne er $\,1\,$, $\,-\,1\,$, og $\,2\,$, skal svaret gives som $\,1\,$, $\,-\,1\,$, $\,2\,$

Hvis $\,1\,$ er egenværdi med multiplicitet $\,2\,$, og den tredje egenværdi er -4 skal svaret gives som -4,1,1

altså gentagelse svarende til multiplicitet. Rækkefølgen betyder ikke noget.

Your Answer: 2,-1,-3

Comment: Egenværdierne er -3, -1 og 2.

Sorter de fundne egenværdier efter størrelse, og lad D betegne den $\exists \times \exists$ diagonalmatrix, der har den mindste egenværdi som indgang D_{11} og den største som indgang D_{33} .

Bestem en $\exists \times \exists$ invertibel matrix P, således at $A = PDP^{-1}$. Svaret skal gives i Maple syntax for en matrix, for eksempel indtastes matricen

som

Matrix([[1,2,3],[0,4,5],[0,0,6]])

Pas på, at du ikke bytter om på rækker og søjler. Brug preview funktionen til at se, at du har indtastet det, du mente at indtaste.

Your Answer: Matrix([[1, -3, -3], [0, 1, -3], [0, 0, 1]])

Et muligt korrekt svar er

Comment: $P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

 $P = \left(\begin{array}{ccc} 1 & -3 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{array}\right)$

Der er mange andre korrekte svar.

Question 8: Score 10/10

Der er givet følgende lineære ligningssystem, bestående af to ligninger i fire variable.

$$2 x_1 + x_2 + 2 x_3 - x_4 = 1$$

 $-2 x_1 - 2 x_2 - 2 x_3 + 2 x_4 = -3$

Find den udvidede koefficientmatrix (totalmatricen) for dette system. Svaret skal gives i Maple syntax for en matrix. Et eksempel er

Tryk på preview for at se matricen du har tastet ind.

Your Answer: Matrix([[2,1,2,-1,1],[-2,-2,-2,2,-3]])

Comment: Den udvidede koefficientmatrix er

 $\begin{pmatrix} 2 & 1 & 2 & -1 & 1 \\ -2 & -2 & -2 & 2 & -3 \end{pmatrix}$

Question 9: Score 15/15

Der er givet et underrum

$$H = \operatorname{Span} \left[\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \right].$$

Besvar følgende to spørgsmål.

(i) Bestem en basis for ${\cal H}$.

Svaret skal angives i Maple syntax som en komma-separeret liste af vektorer, for eksempel som Vector([1,0,0]), Vector([2,3,0])

Your Answer: Vector([0,1,1,0]), Vector([-1,-1,-1,1])

Et muligt valg af basis er

(ii) Find dimensionen af $\,H\,.\,$ Skriv svaret som et tal nedenfor.

Your Answer: 2

Comment: Dimensionen er 2.

Question 10: Score 15/15

Der er givet to invertible $\exists \times \exists$ matricer A og B ved

$$A = \begin{pmatrix} 1 & -3 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ og } B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Opgaven går ud på at bestemme den $\exists \times \exists$ matrix X, som opfylder ligningen XA = B.

Besvar følgende to spørgsmål.

(a)

Markér den korrekte formel for $\, X \, . \,$

Your Answer:

$$X = BA^{-1}$$

(b) Bestem løsningen X. Svaret skal gives i Maple syntax. En $\exists x \exists$ matrix

indtastes som

Matrix([[1,2,3],[0,4,0],[5,0,6]])

Your Answer: Matrix([[1, 3, 3], [-1, -2, -3], [1, 3, 4]])

Løsningen er

Comment: $X = \begin{pmatrix} 1 & 3 & 3 \\ -1 & -2 & -3 \\ 1 & 3 & 4 \end{pmatrix}$

Question 11: Score 10/10

Der er givet et lineært ligningssystem bestående af tre ligninger med tre ubekendte.

$$-2 x_1 - 2 x_2 - x_3 = -1$$

 $-2 x_1 + x_2 + x_3 = 11$

$$-x_1 - 2 x_2 - x_3 = -4$$

Besvar følgende to spørgsmål.

Bestem en løsning til dette *inhomogene* ligningssystem.
Svaret skal gives i Maple syntax, som en vektor, hvor alle indgange er tal. En vektor

CORRECT

indtastes som
Vector([1,2,3])

Your Answer: Vector([-3,2,3])

Et korrekt svar er

Comment:

Der kan være mange andre korrekte svar.

(ii) Bestem den fuldstændige løsning til det tilsvarende *homogene* ligningssystem. Svaret skal gives på parametriseret vektorform.

Hvis svaret for eksempel er $c_1 a + c_2 b$, skal de to vektorer indtastes i Maple syntax, adskilt af et komma. For eksempel

Vector([1,1,0,1]), Vector([-3,1,1,0])

Koefficienterne c_1 og c_2 skal ikke indtastes. Hvis den eneste løsning er nulvektoren, skal en nulvektor med det rigtige antal komponenter indtastes som svar.

Your Answer: Vector([0,0,0])

Et korrekt svar er alle linearkombinationer af vektorerne i mængden

Comment:

Der kan være mange andre korrekte svar.

Question 12: Score 15/15

Der er givet en $n \times n$ matrix A med den egenskab, at der findes et b, så at ligningssystemet Ax = b er inkonsistent. Markér alle sande udsagn nedenfor.

Choice	Selected	V / X
A er aldrig diagonaliserbar.	No	[answer withheld]
Nul er ikke en egenværdi for A	No	[answer withheld]
Det homogene ligningssystem $A\mathbf{x}=0$ har en ikke-triviel løsning.	Yes	[answer withheld]
A er ikke invertibel.	Yes	[answer withheld]

Number of available correct choices: 2

Partial Grading Explained