

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2554

วิชา ENE 428 Microwave Engineering ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 4 สองภาษา สอบ วันพฤหัสที่ 21 กรกฎาคม พ.ศ. 2554

เวลา 13.00-16.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 11 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ห้ามนำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ
เพื่อขออนุญาตออกนอกห้องสอบ
ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

ชื่อ-สกล	รหัสประจำตัว	
20 41 1		

อาจารย์ราชวดี ศิลาพันธ์ ผู้ออกข้อสอบ โทร. 0-2470-9062

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

Formula sheet

1. Assuming a unform plane ways travels in \hat{a}_z and the electric field travels in \hat{a}_x : Instantaneous form of forwarded electric field $\vec{E}(z,t) = E_0 \cos(\omega t - \beta z) \hat{a}_x$

Phasor form of forwarded electric field $\vec{E}(z) = E_0 e^{-j\beta z} \hat{a}_x$

- 2. loss tangent $\tan \delta = \frac{\sigma}{\alpha c}$
- 3. phase velocity $v_p = \frac{\omega}{\beta}$ m/s
- 4. wavelength $\lambda = \frac{2\pi}{R}$ m

<i>P</i>			
parameters	Lossless media	Low-loss dielectrics	Good conductors
Attenuation constant α (Np/m)	0	$ \cong \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} $	$\sqrt{\pi f \mu \sigma}$
Propagation constant $oldsymbol{eta}$	$\omega\sqrt{\muarepsilon}$	$\cong \omega \sqrt{\mu \varepsilon}$	$\sqrt{\pi f \mu \sigma}$
Intrinsic impedance η	$\sqrt{\frac{\mu}{\varepsilon}}$	$\cong \sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\frac{\omega\mu}{\sigma}}e^{j45^{\circ}}$

- 5. Skin depth $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$ m
- 6. The relationship between \vec{E} (V/m) and \vec{H} (A/m), $\vec{H} = \frac{1}{n} \hat{a}_{\rho} \times \vec{E}$; $\hat{a}_{\rho} =$ wave direction
- 7. Average power density $\vec{P}_{avg} = \frac{1}{2} \text{Re}(\vec{E} \times \vec{H}^*) \text{ W/m}^2$
- 8. Snell's law
 - 8.1 Reflection $\sin \theta_i = \sin \theta_r$
 - 8.2 Refraction $n_1 \sin \theta_i = n_2 \sin \theta_i$
 - where θ_i is the angle of incidence with respect to the normal to the interface
 - $heta_{\!\scriptscriptstyle r}$ is the angle of reflection with respect to the normal to the interface
 - $heta_r$ is the angle of transmission with respect to the normal to the interface
 - n_i is the refractive index in medium 1 = $\sqrt{\varepsilon_{r1}}$
 - n_2 is the refractive index in medium 2 = $\sqrt{\varepsilon_{r2}}$
- 9. Transmission lines
 - 9.1 Load reflection coefficient $\Gamma_L = \frac{Z_L Z_0}{Z_L + Z_0}$
 - 9.2 Input impedance $Z_{in} = Z_0 \frac{Z_L \cos \beta l + j Z_0 \sin \beta l}{Z_0 \cos \beta l + j Z_L \sin \beta l} \Omega$

4		
n	P	

•		4
รหัสป	ระลำ	രാ
9 4 1 64 77	10-70 1	AI 9

เลขที่นั่งสอบ__

1. Uniform plane wave: 1 MHz UPW travels in the z direction through a medium. It is found that the intrinsic impedance of the medium is $\eta=$ 28.1 45° Ω and the skin depth $\delta=$ 5 m, find (20 pts)

a) the medium conductivity (σ) (5 pts)

b) the wavelength (λ) and the phase velocity (10 pts)

c) Let the electric field intensity \vec{E} with the amplitude of 10 V/m travel in the x direction, determine the magnetic field intensity \vec{H} in the instantaneous form. (5 pts)

2. Power density: The electric field $\vec{E}(z) = 10e^{-9.2z}e^{-j9.2z}\hat{a}_x$ V/m travels from air to water, given that the position z = 0 is the water surface and the water conductivity $\sigma = 4$ (treat water as a low loss material), find (20 pts)

a) the average power density \overrightarrow{P}_{avg} (10 pts)

b) the power attenuation rate in the distance z (5 pts)

പ്പ	م ر ہ	ط ف
ชื่อ	รหสประจำตว	เลขทนงสอบ

c) the depth that the average power density is reduced by 40 dB (5 pts)

3. Oblique incidence: Some types of glass has their refractive index (n) varied with the wavelength. A prism with the equilateral shape made of a material with

$$n = 1.6 - \frac{2}{15} \lambda_0$$
,

where $\lambda_{\rm o}$ is the wavelength (in μ m) in vacuum, is used to disperse the white light with the incident angle of 45°, the wavelength $\lambda_{\rm o}$ of red light is 0.7 μ m and that of violet light is 0.4 μ m, determine the angular dispersion in degrees. (20 pts)

4. Transmission lines: A 100 Ω lossless transmission line (TL) with the length of 4 m is connected to the load with $Z_L=150$ - j50 Ω as shown in the picture. If the TL is made of the insulator with the dielectric constant $\mathcal{E}_r=2.25$ and the source voltage is $V_{\rm S}(z,t)=5\cos(4\pi\times10^7\,t-30^\circ)$ V, determine (25 pts)

a) the wavelength (5 pts)

b) the reflection coefficient ($\varGamma_{\rm L}$) (5 pts)

c) the input impedance (Z_{in}) (5 pts)

d) the amplitude of input voltage (V_{in}) (5 pts)

Hint: Draw the equivalent circuit with the Z_{in} load and apply the voltage's division.

e) the power at the load ($P_{\rm L}$) (5 pts)

- 5. Smith chart: A 50 Ω lossless transmission line is terminated in short-circuited load, use the Smith chart to find (15 คะแนน)
- a) the input impedance at the distance 2.3 $\!\lambda$ m from load. (5 pts)

b) the length of the TL that provides the input admittance of $Y_{in} = -j0.04$ S. (5 pts)

c) the distance from load to the first maximum voltage $V_{\rm max}$. (5 pts)

The Complete Smith Chart

