MACHINE LEARNING

LAB - WORKING ENVIRONMENTS FOR MACHINE LEARNING

Danilo Croce - croce@info.uniroma2.it

Machine Learning October 2025

GOALS

- Introduce tools and environments for running Python code.
- Show local and cloud execution options.
- Learn to manage Python environments and notebooks.

PYTHON AS THE COURSE LANGUAGE

- The course will primarily use Python, the most popular language for Data Science and Machine Learning.
- Python provides an extensive ecosystem of libraries and frameworks that make experimentation and prototyping fast and accessible.
- Core tools for data handling and analysis:
 - III NumPy numerical computing and linear algebra
 - III Pandas data manipulation and tabular analysis
 - Matplotlib data visualization and plotting
- Machine Learning and Deep Learning frameworks:
 - scikit-learn classical ML algorithms and model evaluation
 - PyTorch, TensorFlow, Keras neural networks and GPU acceleration
- Advantages of using Python:
 - Open-source and widely supported by both academia and industry
 - Huge community, tutorials, and pre-trained models available
 - Seamless integration with notebooks (Jupyter, Colab) and visualization tools

WHERE TO RUN YOUR CODE

- Two main options:
 - Local execution on your own computer
 - Cloud execution on external systems (e.g., Google Colab, Kaggle Notebooks)
- Pros and cons:
 - Local: full control, persistent environment, better performance
 - Cloud: no installation needed, but sessions are temporary and limited

LOCAL SETUP WITH CONDA

- Conda is an environment and package manager
- It allows you to:
 - Create isolated environments with specific dependencies
 - Avoid version conflicts between projects
 - Reproduce setups easily on different machines

Basic commands:

```
conda create -n ml-lab python=3.11
conda activate ml-lab
conda install numpy pandas scikit-learn
```


WHAT IS AN ENVIRONMENT?

- An environment is an isolated workspace containing its own Python interpreter and libraries.
 - It helps prevent dependency conflicts between different projects.
 - Think of it as a "box" that holds:
 - A specific Python version
 - A controlled set of packages and dependencies
- You can export it using an environment.yml file so others can share or reproduce it:
 - conda env export > environment.yml
- Learn more (official docs):
 - Managing environments in Conda user guide:

https://docs.conda.io/docs/user-guide/tasks/manage-environments.html

ANACONDA DISTRIBUTION

- Anaconda is a Python distribution that includes Conda and many preinstalled tools
- It also provides:
 - Anaconda Navigator a graphical interface to manage environments
 - Jupyter Notebook/Lab preinstalled
- Great for beginners: everything ready to use
- For advanced users, Miniconda or Mambaforge are lighter alternatives

Official links:

- Anaconda distribution → https://www.anaconda.com/products/distribution
- Installing Miniconda → https://docs.anaconda.com/miniconda/

ANACONDA VS MINICONDA (AND MAMBAFORGE)

Conda → the core package and environment manager used by both.

Anaconda

- Full Python distribution for data science and ML
- Includes: Conda, Python, Anaconda Navigator, Jupyter, and many preinstalled packages (NumPy, Pandas, scikit-learn...)
- Best for beginners: ready-to-use setup, no configuration needed
- ▲ Large install (~3–4 GB), slower updates

Miniconda

- Minimal installer with only Conda + Python
- You install packages as needed (e.g., conda install numpy pandas)
- **W** Best for intermediate users: lightweight, clean, flexible
- Manual package setup required

Mambaforge

- Community alternative with mamba (faster Conda) and conda-forge channel by default
- Best for advanced users: fast, reproducible, open-source friendly

CONDA AND THE SANDBOX CONCEPT

- **Problem in ML projects:** *dependency hell* (conflicts between library versions across different projects).
- Conda solution:
 - Each **environment** is a sandbox (separate folder) with its own Python + packages.
 - No interference between projects: one can use TensorFlow 2.10, another PyTorch 2.4.
- You must activate the environment to work inside it: conda activate myenv
- Empty at the start \rightarrow you install only what you need.

INSTALLING PACKAGES

CONDA VS PIP

- Once the environment is created, you fill it with packages:
 - conda install numpy pandas scikit-learn
 - or pip install package-name if not available on conda.

Differences:

- $pip \rightarrow standard Python package manager, installs from PyPI.$
- conda → package + environment manager, can install Python libs and non-Python dependencies (C/Fortran libs, CUDA...).
- Rule of thumb:
 - Use **conda** for core packages (ML, scientific stack).
 - Use pip only if the package isn't available in conda.

REPRODUCIBILITY SHARING ENVIRONMENTS

- Good practice: always save the list of packages with their versions.
- Options:
 - Conda:
 - conda env export > environment.yml
 - pip:
 - pip freeze > requirements.txt
- Why important?
 - Another person can rebuild your environment exactly:
 - conda env create -f environment.yml
 - pip install -r requirements.txt
- A well-documented ML project includes these files to ensure reproducibility and avoid "it works on my machine" issues.

INTRODUCTION TO JUPYTER NOTEBOOKS

- Jupyter Notebooks allow writing and executing Python code interactively
- Combine:
 - Code
 - Text (Markdown)
 - Figures and tables
- Excellent for analysis, experimentation, and teaching
- Basic shortcuts:
 - Shift + Enter → run a cell
 - "Kernel \rightarrow Restart & Run All" \rightarrow execute everything from scratch

GOOGLE COLAB (ONLINE ALTERNATIVE)

- Google Colab: a free, cloud-based notebook environment
- Provides:
 - CPU, GPU, or TPU runtime
 - Integration with Google Drive
 - No local setup required
- Perfect if your laptop cannot handle heavy computation
- Introductory guide (Politecnico di Torino):
 - https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2024/04/Colab_intro.pdf

USING NOTEBOOKS LOCALLY AND IN COLAB

- You can run notebooks in two main ways:
 - Online with Google Colab (no setup required)
 - Locally in Anaconda/JupyterLab (persistent, customizable)
- Download options from Colab or Jupyter:
 - .ipynb → open again in Jupyter/Colab
 - $.py \rightarrow plain Python script for any environment$
- Good practice: keep both the notebook and environment file (environment.yml / requirements.txt) in your project.

INSTRUCTOR'S RECOMMENDATIONS

- Prefer local setup with Conda/Anaconda whenever possible
- Use Colab for quick tests or when you lack GPU resources
- Always keep:
 - Your notebooks organized and backed up
 - An exported environment file (environment.yml)
- Avoid installing packages globally on your system Python
- Recommended Python version: 3.10+

TRAINING VS TEST WHY DO WE SPLIT THE DATA?

- We start with a labeled dataset
- Goal: train a model that can generalize to unseen data
- Training set → the model learns from this data
- Test set \rightarrow kept aside, simulates future data, used only once for final evaluation

Marning: models may achieve **very high accuracy on training data** but perform poorly on test data → **overfitting**

AVOIDING "PEEKING" AT THE TEST SET

- Training a model often requires tuning hyperparameters
 - Example: parameter C in an SVM, number of layers in a neural network
- X Wrong approach: optimizing hyperparameters by checking test accuracy (cheating!)
- Best practice: split the training data further:
 - Train set → fit the model
 - Development (Validation) set → tune hyperparameters
 - Test set → untouched, only for final unbiased evaluation

• Takeaway:

- Never use the test set until the very end
- Use train/dev/test for a fair and reproducible workflow

SIMPLE BUT IMPORTANT NOTES ON EVALUATION

- **Do not change the test set** when comparing results
 - Different test sets may be easier or harder → results not comparable
- A possible approach:
 - Use multiple random splits of the test set
 - Compute mean and variance of performance across runs
- But in general use a well-assessed benchmark!!!

IS 80% ACCURACY GOOD?

- Always compare with bounds:
 - Lower bound (baseline):
 - Weak baseline: predict the most frequent class
 - Stronger baseline: use a simple model (e.g. SVM on basic features)
 - Upper bound:
 - Human performance on the same task
 - Best results reported in the literature on the same dataset
- Why it matters:
 - An accuracy value (e.g. 80%) is meaningless alone
 - Context comes from comparison with baselines and references
- Research practice: In a good conference, a paper without baselines is not accepted

LABORATORY 1.1

FIRST STEPS WITH DATA

- This first exercise is mainly about:
 - Getting familiar with the working environment (Colab or Conda + Jupyter)
 - Loading a simple dataset (Iris)
 - Trying a first data manipulation technique: shuffle & train/test split
- Goal: Practice running Python code in notebooks and understand the idea of holding out data for testing.

• LINK:

https://colab.research.google.com/drive/1s2feJiR902pIrOEhJrUdedN
7eQOC1aqA?usp=sharing

LABORATORY 1.2

TRAINING A NEURAL NETWORK

- In this lab, we move from data preparation to model training
- We will use:
 - MNIST dataset handwritten digit recognition
 - **PyTorch** one of the most popular deep learning frameworks
 - MLP (Multi-Layer Perceptron) a simple feed-forward neural network

Learning objectives:

- Understand the pipeline:
 - Dataset \rightarrow Model \rightarrow Training Loop \rightarrow Evaluation
- Get hands-on with PyTorch syntax
- Compare performance between training and test sets
- The purpose is **not** to reach state-of-the-art accuracy,
 - but to understand the key steps in training a neural network.

• LINK:

https://colab.research.google.com/drive/1kwUyurdARvIP
28CWbvkM-TV-kuFfW-MP?usp=sharing

WHAT YOU NEED TO DO AFTER LAB 1

- Use Colab Notebook of Lab 1.1:
 - Open it in Google Colab
 - Download it as:
 - Jupyter Notebook (.ipynb)
 - Python script (.py)
 - Run it also on your local machine with Anaconda/Jupyter and using Python on the command line
- The Colab Notebook of Lab 1.2 is illustrative only:
 - It shows the objectives of the course
 - For now, you don't need to go deeper into it