

Geometric Modeling for a Tendon Actuated CR Prototype

TUTORIAL CONTINUUM ROBOTICS

Dipl.-Ing. Josephine Granna

November 24, 2016

Prototype

- 2 segments
- 3 tendons per segment
- 6 motors to control each tendon

Direct and Inverse Kinematics for a Tendon Actuated Continuum Robot

Length of

Geometric Modeling Assumptions

- Simplified linear beam deflection
 - Circular bending shape
- Neglected influencing factors
 - Gravitational energy
 - Friction
 - Weight of disks
 - External forces
- Fixed distances
 - between first and secondary backbones
 - between disks

Robot Dependent Mapping

- Determine geometrical parameters first:
 - Curvature κ
 - Rotation and bending angle ϕ , θ

Geometrical Parameters

Single Segment

- Three tendons
- Indices
 - j: segment
 - i: secondary backbone
- Angle of the tangent backbone in the bending plane:
 - $\theta_{0_1} = \theta_{0_2} = \dots = \pi/2$

Base Disk Coordinate System

x_b-axis points from the center to the first secondary backbone

Bending Plane Coordinate System

End Disk Coordinate System

Position and orientation of end disk coordinate system?

Secondary Backbones

• Secondary backbone is offset by Δ_i from the primary backbone

Offset Δ_i

• Secondary backbone is offset by Δ_i from the primary backbone

$$\Delta_i = d \cdot \cos(\sigma_j) \qquad \sigma_1 = \phi_j$$

$$\Delta_i = d \cdot \cos(\phi_j + (i-1)\beta)$$

$$\beta = \frac{2\pi}{3}$$

Radius of Curvature

 Radius of curvature of primary backbone and secondary backbine are related according to:

$$r = r_i + \Delta_i$$

$$\frac{1}{\kappa} = \frac{1}{\kappa_i} + \Delta_i$$

Bending Angle θ_{ℓ_i}

Leibniz
Lo 2
Loo 4
Hannover

- s: arc length
- For one segment:

$$\ell_{s_i} = \int ds_i = \int ds_i - ds + ds$$

$$= \int_{\alpha_0}^{\alpha_\ell} (r_i - r) d\alpha + \ell$$

$$= -\Delta_i (\alpha_\ell - \alpha_0) + \ell$$

$$= -\Delta_i (\theta_0 - \theta_\ell) + \ell$$

$$\theta_{\ell_j} = \theta_{0_j} + \frac{\Delta \ell_{ji}}{\Delta_{ji}}$$

 $\theta_{\ell i}$

Kinematic Compatibility Condition

• θ_{ℓ_j} is identical, if e.g. tendon 1 and 2 are being actuated

$$\theta_{0_{j}} + \frac{\Delta \ell_{11}}{\Delta 1} = \theta_{0_{j}} + \frac{\Delta \ell_{12}}{\Delta 2}$$

Exercise

Use the kinematic compatibility condition to derive an equation for the rotation angle ϕ

Bending angle
$$\theta_{\ell_j} = \theta_{0_j} + \frac{\Delta \ell_{ji}}{\Delta_i}$$

condition

Kinematic compatibility
$$\theta_{0_j} + \frac{\Delta \ell_{11}}{\Delta 1} = \theta_{0_j} + \frac{\Delta \ell_{12}}{\Delta 2}$$

Offset $\Delta_i = d \cdot \cos(\phi_i + (i-1)\beta)$

$$oldsymbol{\phi}=$$
 ?

$$cos(x + y)$$

$$= cos(x) cos(y)$$

$$- sin(x) sin(y)$$

Rotation Angle ϕ_i

Kinematic compatibility condition

$$\theta_{0_1} + \frac{\Delta \ell_{11}}{\Delta 1} = \theta_{0_1} + \frac{\Delta \ell_{12}}{\Delta 2}$$

Offset
$$\Delta_i = d \cdot \cos(\phi_i + (i-1)\beta)$$

$$\theta_{0_{j}} + \frac{\Delta \ell_{j1}}{\Delta 1} = \theta_{0_{j}} + \frac{\Delta \ell_{j2}}{\Delta 2}$$

$$\frac{\Delta \ell_{j1}}{d\cos(\phi_1)} = \frac{\Delta \ell_{j2}}{d\cos(\phi_1 + \beta)}$$

$$\frac{\Delta \ell_{j1}}{\cos(\phi_1)} = \frac{\Delta \ell_{j2}}{\cos(\phi_1)\cos(\beta) - \sin(\phi_1)\sin(\beta)}$$

$$\left(\Delta \ell_{j1} \cos(\beta) - \Delta \ell_{j2}\right) \cos(\phi_1) = \Delta \ell_{j1} \sin(\beta) \sin(\phi_1)$$

$$\frac{\sin(\phi_j)}{\cos(\phi_j)} = \frac{\Delta \ell_{j1} \cos(\beta) - \Delta \ell_{j2}}{\Delta \ell_{j1} \sin(\beta)}$$

$$\frac{\sin(\phi_j)}{\cos(\phi_j)} = \frac{\Delta \ell_{j1}\cos(\beta) - \Delta \ell_{j2}}{\Delta \ell_{j1}\sin(\beta)} \quad \boxed{\phi_j = atan2 \frac{\Delta \ell_{j1}\cos(\beta) - \Delta \ell_{j2}}{\Delta \ell_{j1}\sin(\beta)}}$$

Robot Independent Mapping

- Geometrical parameters
 - Curvature κ
 - Rotation and bending angle ϕ , θ

- Position
- Orientation
- Space Curve

3D Space Curve

Frames along Backbone

- Generate frames at each disk's centerpoint and determine their position and orientation
- Output of your model is space curve
- Robot independent mapping:
 - Transformation matrices with bending and rotation angle
 - Frenet-Serret Frames

Implement the Geometric Model

- runGeometricModeling.m
 - Define robot parameters
 - Run implemented model
 - Input of configurational parameters
- GeometricModel.m
 - Determine position and orientation of robot's space curve
- drawRobot.m
 - Visualize robot in 3D space
- Document your code!

runGeometricModeling.m

Script file

```
% 2 segment tendon actuated continuum robot
                                        % number of disks per segment
TACR.ndisks = [10;10];
TACR.diskRadius = [8;8];
                              % disk radius
TACR.diskHeight = 3;
                                % heigth of the disks
TACR.diskPitchRadius = [6.5;5]; % pitch circle radius of disks
TACR.segmentLength = [92;102];
                                  % segment length = length of first backbone per segment
q = [4,-2,0;2,2,0];
                                   % actuation parameters (delta 1 per tendon);
                                   % Remember: only 2 tendons can be
                                   % retracted at once, the 3rd tendon has
                                   % to extend
% compute robot's space curve
robotShape = GeometricModel(TACR,q);
% visualize the robot
drawRobot(robotShape, TACR);
```

GeometricModel.m

Leibniz 102 1004 Hannover

- Function file
- Input: struct TACR, q: [j x 3] configurational parameters
- Output: robotShape

```
function[robotShape] = GeometricModel(TACR,q)
- %% GeometricModel.m
 % This function computes the space curve of a tendon actuated continuum
 % robot with 2 segments and utilizes a geometric forward kinematics model
 % Copyright: 2016 Leibniz Universität Hannover, All rights reserved
 % Email: continuumrobotics@lkr.uni-hannover.de
 % Version: 1
 % Date: 11/16/2016
 % input: struct TACR, q:[jx3] configurational parameters
 % output: robotShape.diskPoints: n rows for n disks, 12 columns for coordinates
          (x,y,z) for central backbone, points tendon 1, points tendon 2,
           points tendon 3
           robotShape.diskRotation: n rows for n disks, columns represent
           rotation matrices (3x3): columns 1-3 are matrix elements (1,1; 1,2; 1,3),
           columns 4-6 are matrix elements (2,1; 2,2; 2,3),
           columns 7-9 are matrix elements (3,1; 3,2; 3,3),
 %% implement the geometric model here
 robotShape.diskPoints=[];
 robotShape.diskRotation=[];
 end
```

drawRobot.m

Function file

Input: robotShape

Output: []

→ Points measured at bottom of disk

	 Central Backbone 			Tendon 1			Tendon 2			• Tendon 3		
Disks	X	у	Z	Х	у	Z	X	у	Z	X	у	Z
1												
2												
3												

3rd row, 3rd column of matrix

Disks	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
1									
2									
3									

 Rotation matrices for each backbone point with respect to base frame

Find your team member today

- 2 students per team
- Send Email until 11/25/16 with:
 - your name & matriculation number
 - your team member's name & matriculation number

continuumrobotics@lkr.uni-hannover.de

Appointment for Experimental Evaluation

Make appointment for experimental evaluation in our lab during office

hours

© www.3d-microscribe.com

Office hours: Monday 4pm-5pm, Wednesday 3pm-4pm