Learning in graphical models & MCMC methods

Fall 2014

Cours 8 — November 19

Enseignant: Guillaume Obozinski Scribe: Khalife Sammy, Maryan Morel

The web page of the course: http://www.di.ens.fr/~fbach/courses/fall2014/

8.1 HMM (cntd.)

8.2 Learning on graphical models

8.3 Approximate inference

8.3.1 Sampling methods

We often need to comptue the expectancy of a function f under some distribution p that cannot be computed. Let X be a random variable following the distribution p, we want to compute $\mu = \mathbb{E}[f(X)].$

Example 8.3.1 $X = (X_1, ..., X_n)$,

$$f(X) = \delta(X = x_A)$$

$$\mathbb{E}[f(X)] = \mathbb{P}(X = x_A)$$

If we know how to sample from p, we can use the following method:

Algorithm 1 Monte Carlo Estimation

- 1: Draw $X_1, ..., X_n \overset{i.i.d.}{\sim} p$ 2: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n f(X_i)$

This method relies on the two following propositions:

Proposition 8.1 (Law of Large Numbers (LLN))

$$\hat{\mu} \xrightarrow{a.s.} \mu \text{ if } ||\mu|| < \infty$$

Proposition 8.2 (Central Limit Theorem (CLT)) For X a scalar random variable, if $\mathbb{V}ar(f(X)) = \sigma^2 < \infty$, then

$$\sqrt{n}(\hat{\mu} - \mu) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$

thus $\mathbb{E}(||\hat{\mu} - \mu||_2^2) = \frac{\sigma^2}{n}$

How to sample from a specific distribution?

- 1. Uniform distribution on [0, 1]: use rand
- 2. Bernoulli distribution of parameter $p: X = \mathbf{1}_{\{U < p\}}$ with $U \sim \mathcal{U}([0,1])$
- 3. Using inverse transform sampling:

$$\forall x \in \mathbb{R}$$
 $F(x) = \int_{-\infty}^{x} p(t)dt = \mathbb{P}(X \in [-\infty, x])$

$$X = F^{-1}(U)$$
 avec $U \sim \mathcal{U}([0, 1])$

$$\mathbf{Proof} \ \mathbb{P}(X \leq y) = \mathbb{P}(F^{-1}(U) \leq y) = \mathbb{P}(U \leq F(y)) = F(y)$$

Example 8.3.2 Exponential distribution (one of the rare cases admitting an explicit inverse CDF^1)

$$p(x) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x)$$

$$X = -\frac{1}{\lambda}\ln(U)$$

8.3.2 Rejection sampling

Assume that p(x) is known up to a constant

$$p(x) = \frac{\tilde{p}(x)}{Z_p}$$

Assume that we can construct and compute q_k such that

$$\tilde{p}(x) < kq_k(x)$$

with q_k a probability distribution. Assume we can sample from q We define the rejection sampling (R.S.) algorithm as:

Algorithm 2 Rejection Sampling Algorithm

- 1: Draw X from q
- 2: Accept X with probability $\frac{\tilde{p}(x)}{kq_k(x)} \in [0, 1]$, otherwise, reject the sample

¹Cumulative Distribution Function

Proof

$$\begin{split} \mathbb{P}(X=x,X \text{ is accepted}) &= \mathbb{P}(X=x,X \text{ is accepted}) \\ &= \mathbb{P}(X \text{ is accepted}|X=x)\mathbb{P}(X=x) \\ &= \frac{\tilde{p}(x)}{kq(x)}q(x) \\ &= \frac{\tilde{p}(x)}{k} \end{split}$$

and

$$\mathbb{P}(X \text{ is accepted}) = \int \frac{\tilde{p}(x)}{k} dx$$
$$= \frac{Z_p}{k}$$

Thus

$$\mathbb{P}(X = x | X \text{ is accepted}) = \frac{\tilde{p}(x)}{k} \frac{k}{Z_p}$$
$$= p(x)$$

Remark 8.3.1 In practice, finding q and k such that acceptance has a reasonably large probability is hard.

8.3.3 Importance Sampling

Assume $X \sim p$. We aim to compute the expectancy of a function f:

$$\mathbb{E}_{p}(f(X)) = \int f(x)p(x)dx$$

$$= \int \frac{f(x)p(x)}{q(x)}q(x)dx$$

$$= \mathbb{E}_{q}\left(f(Y)\frac{p(Y)}{q(Y)}\right) \quad \text{with } Y \sim q$$

$$= \mathbb{E}_{q}(g(Y))$$

$$\approx \frac{1}{n}\sum_{j=1}^{n}g(Y_{j}) \quad \text{with } Y_{j} \stackrel{iid}{\sim} q$$

$$= \frac{1}{n}\sum_{j=1}^{n}f(Y_{j})\frac{p(Y_{j})}{q(Y_{j})}$$

 $w(Y_i) = \frac{p(Y_i)}{q(Y_i)}$ are called importance weights. Remind that

$$\mu = \mathbb{E}_p(f(X)) \approx \hat{\mu} = \frac{1}{n} \sum_{i=1}^n f(X_i)$$

Thus we get:

$$\mathbb{E}(\hat{\mu}) = \frac{1}{n} \sum_{x} \int_{x} f(x) \frac{p(x)}{q(x)} q(x) dx = \int_{x} f(x) p(x) dx$$

$$Var(\hat{\mu}) = \frac{1}{n} Var_{q(x)} \left(\frac{f(x)p(x)}{q(x)} \right)$$

Lemme 8.3 If $\forall x, |f(x)| \leq M$,

$$Var(\hat{\mu}) \le \frac{M^2}{n} \int \frac{p(x)^2}{q(x)} dx.$$

Proof

$$Var(\hat{\mu}) = \frac{1}{n} Var_{q(x)} \left(\frac{f(x)p(x)}{q(x)} \right)$$

$$\leq \frac{1}{n} \int \frac{f(x)^2 p(x)^2}{q(x)^2} q(x) dx$$

$$\leq \frac{M^2}{n} \int \frac{p(x)^2}{q(x)} dx.$$

Remark 8.3.2

$$\int \frac{p(x)^2}{q(x)} dx = \int \frac{p^2(x) - 2p(x)q(x) + q^2(x)}{q(x)} dx + \int \frac{2p(x)q(x) - q^2(x)}{q(x)} dx$$

$$= \underbrace{\int \frac{(p(x) - q(x))^2}{q(x)} dx}_{Y^2 \text{ divergence between p and q.}} + 1$$

Hence, importance sampling will give good results if q has mass where p has. Indeed, if for some y, q(y) << p(y), importance weights $Var(\hat{\mu})$ may be very large.

Extension of Importance Sampling Assume we only know p and q up to a constant : $p(x) = \frac{\tilde{p}(x)}{Z_p}$ and $q(x) = \frac{\tilde{q}(x)}{Z_p}$, and only $\tilde{p}(x)$ and $\tilde{q}(x)$ are known.

$$\mathbb{E}\left(f(Y)\frac{\tilde{p}(Y)}{\tilde{q}(Y)}\right) = \mathbb{E}\left(f(Y)\frac{p(Y)}{q(Y)}\frac{Z_p}{Z_q}\right) = \mu \frac{Z_p}{Z_q}$$

$$\hat{\tilde{\mu}} = \frac{1}{n}\sum_{i=1}^n f(Y_i)\frac{\tilde{p}(Y_i)}{\tilde{q}(Y_i)} \xrightarrow{a.s.} \mu \frac{Z_p}{Z_q}$$

Take f to be a constant, we get

$$\hat{Z}_{p/q} = \frac{1}{n} \sum_{i=1}^{n} \frac{p(Y_i)}{q(Y_i)} \xrightarrow{a.s.} \frac{Z_p}{Z_q}$$

$$\hat{\mu} = \frac{\hat{\hat{\mu}}}{\hat{Z}_{p/q}} \xrightarrow{a.s.} \mu$$

Remark 8.3.3 Even if $Z_p = Z_q = 1$, renormalizing by $\hat{Z}_{p/q}$ often improves the estimation.

8.4 Markov Chain Monte Carlo (MCMC)

Context $x \in \mathcal{X}$, \mathcal{X} finite. We aim to build a Markov chain X_0, X_1, \ldots such that its density $q_t(x) = p(X_t = x)$ converges to a target distribution p(x).

8.4.1 Reminder on Markov chains

Consider order 1 homogenous Markov chains, i.e.

$$\mathbb{P}(X_t = y | X_{t-1} = x) = \mathbb{P}(X_{t-1} = y | X_{t-2} = x)$$

Definition 8.4 (Time Homogenous Markov chain)

$$\forall t \ge 0 \ \forall (x, y) \in \mathcal{X} \qquad p(X_{t+1} = y \mid X_t = x, X_{t-1}, \dots, X_0)$$

$$= p(X_{t+1} = y \mid X_t = x)$$

$$= p(X_1 = y \mid X_0 = x)$$

$$= S(x, y)$$

Definition 8.5 (Transition matrix) Let $k = card(\mathcal{X}) < \infty$. We define the matrix $S \in \mathbb{R}^{k \times k}$ such that $\forall x, y \in \mathcal{X}, S(x, y) = \mathbb{P}(X_t = y | X_{t-1} = x)$. S is called transition matrix of the Markov chain $(X_k)_k$.

Properties 8.4.1 *If* $k = card(\mathcal{X}) < \infty$, then:

- $S \succeq 0$
- S1 = 1 (i.e. column sum is equal to 1)

S is a stochastic matrix

Definition 8.6 (Stationary Distribution) The distribution π on \mathcal{X} is stationary if $S^T\Pi = \Pi$ where

$$\Pi = \pi(x)_{x \in \mathcal{X}}$$

Equivalently,

i.e.
$$\forall x, y \ \pi(y) = \sum_{x} \pi(x) S(x, y)$$

If $\mathbb{P}(X_n = x) = \pi(x)$ with π a stationary distribution of S, then we have $\mathbb{P}(X_{n+1} = y) = \sum_x \mathbb{P}(X_{n+1} = y | X_n = x) \mathbb{P}(X_n = x) = \sum_x S(x, y) \pi(x) = \pi(y)$

Theorem 8.7 (Perron-Frobenius) Every stochastic matrix S has at least one stationary distribution π

Definition 8.8 (Regular Markov Chain) A markov chain is regular (or equivalently aperiodic irreductible) if $\forall x, y \in \mathcal{X}, S(x, y) > 0$

Proposition 8.9 If a Markov chain is regular, then its transition matrix has a unique stationary distribution π and for any initial distribution q_0 on X_0 , if $q_t(\cdot) = \mathbb{P}(X_t = \cdot)$, then $q_t \xrightarrow[t \to +\infty]{} \pi$ Let q_n be the distribution of X_n , then for all distribution q_0 we get

$$q_n \to \pi$$

Goal We want to find

$$\pi(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

We try to reverse engineer this distribution by finding a Markov chain converging to π

Definition 8.10 (Detailed Balance) A Markov chain is reversible if for the transition matrix S,

$$\exists \pi, \forall x, y \in \mathcal{X}, \pi(x)S(x, y) = \pi(y)S(y, x)$$

This equation is called detailed balance equation. It can be reformulated

$$\mathbb{P}(X_{t+1} = y, X_t = x) = \mathbb{P}(X_{t+1} = x, X_t = y)$$

Proposition 8.11 If π satisfies detailed balance, then π is a stationary distribution and $\sum_x S(x,y)p(x) = \sum_x p(y)S(y,x) = p(y)\sum_x S(y,x) = p(y)$

8.4.2 Metropolis-Hastings Algorithm

Proposal transition $T(x, z) = \mathbb{P}(Z = z | X = x)$

Acceptance probability $\alpha(x,t) = \mathbb{P}(\text{Accept z } | X = x, Z = z)$

 α is not a transition matrix.

Algorithm 3 Metropolis Hastings

- 1: Initialize x_0 from $X_0 \sim q$
- 2: **for** t = 1, ..., T **do**
- 3: Draw z_t from $\mathbb{P}(Z = \cdot | X_{t-1} = x_{t-1}) = T(x_{t-1}, \cdot)$
- 4: With probability $\alpha(Z_t, x_{t-1})$, set $x_t = z_t$, otherwise, set $x_t = x_{t-1}$
- 5: end for

Proposition 8.12 With that choice of $\alpha(x, z)$, if $T(\cdot, \cdot)$ is regular, then the Metropolis-Hastings algorithm defines a Markov chain that converges to π .

Explanation $\mathbb{P}(X_t = x_t | X_{t-1} = x_{t-1}) = S(x_{t-1}, x_t)$

$$\forall z \neq x, S(x, z) = T(x, z)\alpha(x, z)$$

$$S(x, x) = T(x, x) + \sum_{z \neq x} T(x, z)(1 - \alpha(x, z))$$

Let π be given: we want to choose S such that we have detailed balance:

$$\pi(x)S(x,z) = \pi(z)S(z,x)$$

$$\pi(x)T(x,z)\alpha(x,z) = \pi(z)T(z,x)\alpha(z,x)$$

Then

$$\frac{\alpha(x,z)}{\alpha(z,x)} = \frac{\pi(z)T(z,x)}{\pi(x)T(x,z)} \ (*)$$

If

$$\alpha(x, z) = \min\left(1, \frac{\pi(z)T(z, x)}{\pi(x)T(x, z)}\right)$$

then

$$\left\{ \begin{array}{l} \alpha(x,z) \in [0,1] \\ (*) \text{ is satisfied } \Longrightarrow \text{ detailed balance} \end{array} \right.$$