Homework 6

ALECK ZHAO

October 18, 2016

Section 2.6: Cosets and Lagrange's Theorem

4. If $K \subseteq H \subseteq G$ are finite groups, show that $|G:K| = |G:H| \cdot |H:K|$.

Proof. For finite groups, we have |G:K| = |G|/|K| and similarly for the other two, so we have

$$\frac{|G|}{|K|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|}$$

as desired.

15. If H and K are subgroups of a group and |H| is prime, show that either $H \subseteq K$ or $H \cap K = \{1\}$.

27. Is $D_5 \times C_3 \cong D_3 \times C_5$? Prove your answer.

Section 2.8: Normal Subgroups

4. If $D_4 = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$, $K = \{1, b\}$ and $H = \{1, a^2, b, ba^2\}$ show that $K \leq H \leq D_4$, but $K \not \supseteq D_4$.

Proof. Since |H:K|=2, by section 2.8 theorem 4, K is normal in H. Similarly, $|D_4:H|=2$, so H is normal in D_4 . However, we have $aK=\{a,ab\}\neq\{a,ba\}=Ka$ since $ab\neq ba$.

11. Let p and q be distinct primes. If G is a group of order pq that has a unique subgroup of order p and a unique subgroup of order q, show that G is cyclic.

16. Show that $\operatorname{Inn} G \subseteq \operatorname{Aut} G$ for any group G.

25. If X is a nonempty subset of a group G, define the **normalizer** N(X) of X by

$$N(X) = \{ a \in G \mid aXa^{-1} = X \}.$$

(a) Show that N(X) is a subgroup of G.

Proof. Clearly $1_G X 1_G^{-1} = X$, so $1_G \in N(X)$. Then if $a, b \in N(X)$, we have

$$aXa^{-1} = X$$
$$bXb^{-1} = X$$
$$\implies a(bXb^{-1})a^{-1} = X$$
$$\implies (ab)X(ba)^{-1} = X$$

Homework 6 Advanced Algebra I

so $ab \in N(X)$. Then if $a \in N(X)$, we have

$$aXa^{-1} = X$$
$$aX = Xa$$
$$X = a^{-1}Xa$$

so $a^{-1} \in N(X)$ as well. Thus, N(X) is a subgroup of G, as desired.

(b) If H is a subgroup of G, show that $H \subseteq N(H)$.

(c) If H is a subgroup of G, show that N(H) is the largest subgroup of G in which H is normal. That is, if $H \subseteq K$, and K if a subgroup of G, then $K \subseteq N(H)$.

Section 2.10: The Isomorphism Theorem

- 7. If $\alpha: G \to G_1$ is a group homomorphism and both $\alpha(G)$ and ker α are finitely generated, show that G is finitely generated.
- 9. If $K = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$, is there a group homomorphism $\alpha: S_4 \to A_4$ with $\ker \alpha = K$?
- 21. Show that $\mathbb{C}^*/\mathbb{C}^0 \cong \mathbb{R}^+$ where $\mathbb{C}^0 = \{ z \mid |z| = 1 \}$ is the circle group.

Proof. Define the homomorphism $\varphi: \mathbb{C}^* \to \mathbb{R}^+$ where $\varphi(z) = |z|$. This is indeed a homomorphism because $\varphi(z_1 z_2) = |z_1 z_2| = |z_1| |z_2| = \varphi(z_1) \varphi(z_2)$.

Then the kernel of φ is the set $\{z \mid \varphi(z) = 1\}$ which is exactly \mathbb{C}^0 . Finally, φ " $(\mathbb{C}^*) = \mathbb{R}^+$ since invertible elements in \mathbb{C} are all except 0, whose magnitudes are all positive.

Thus, by the first Isomorphism Theorem, since \mathbb{C}^0 is the kernel of a homomorphism, $\mathbb{C}^*/\mathbb{C}^0 \cong \mathbb{R}^+$, as desired.