Задачи по теме: «Дискриминантный анализ» Вариант 3

По представленным данным с помощью дискриминантного анализа классифицировать объекты.

Задача 1

Таблица 1. Анализируемые данные

№ п/п	Группы регионов	Объем реализованной продукции растениеводства, млн. руб.	Объем реализованной продукции животноводства, млн. руб.
1	Высокий уровень (Х)	25	21
2	_	31	37
3		27	22
4		33	36
1	Низкий уровень (Ү)	47	38
2		50	67
3		52	45
4]	39	49
5		66	33
1	Подлежат дискриминации (Z)	32	42
2]	67	33
3		46	56

Решение:

Определим векторы средних и оценки ковариационных X, Y матриц Sx и Sy соответственно для групп регионов высокого и низкого уровня.

Векторы средних: Хср. трансп.= (29 29); Уср. трансп. = (50,8 46,4)

Матрица ковариации X		
10	22,5	
22,5	56,5	

Матрица ковариации У		
77,36	-44,12	
-44,12	136,64	

Для подсчета значений векторов и матриц, используются формулы:

$$s_{jl(x)} = \frac{1}{n_l} \sum_{i=1}^{n_l} (x_i^{(j)} - \overline{x}^{(j)}) (x_i^{(l)} - \overline{x}^{(l)}),$$

$$\overline{x}^{(j)} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i^{(j)}$$

Вектор (Хср.-Yср.) трансп. =
$$(-21.8 -17.4)$$

Далее найдем несмещенную оценку суммарной ковариационной матрицы по формуле:

$$\hat{\mathbf{S}} = \frac{1}{n_1 + n_2 - 2} \left[n_1 \cdot \mathbf{S}_x + n_2 \cdot \mathbf{S}_y \right]$$

Несмещенная оценку суммарной ковариационной матрицы		
60,97142857	-18,65714286	
-18,65714286	129,8857143	

Обратная матрица	
0,01715517014	0,002464216036
0,002464216036	0,008053042911

Вычислим вектор оценок коэффициентов дискриминантной функции:

$$\hat{a} = \hat{\mathbf{S}}^{-1} (\overline{X} - \overline{Y})$$

	-0,416860068	
a^	-0,1938428562	

Теперь найдем оценки дискриминантной функции для обучающих выборок:

Ux=X*a^	Uy=Y*a^
-14,49220168	-26,95845173
-20,09484779	-33,83047477
-15,51976467	-30,39965207
-20,73472507	-25,75584261
	-33,90957874

Получим средние значения оценок дискриминантной функции, а затем оценку константы дискриминации:

$$Uxcp = -17,71$$
; $Uycp = -30,17$

$$\hat{c} = \frac{1}{2} (\overline{\hat{U}}_x + \overline{\hat{U}}_y)$$

$$c^{=\frac{1}{2}}*(-17,71+(-30,17))=-23,94$$

Чтобы определить, к какой группе относятся регионы, подлежащие дискриминации, рассчитаем для них дискриминантную функцию:

 $U(z1) = 32*a1+42*a2=-21,48 > c^=-23,94 => Данный регион можно отнести к региону высокого уровня$

$$U(z2) = -34,32 < c^{-23,94} = > Данный регион можно отнести к региону низкого уровня$$

Задача 2

Имеются 12 фирм, характеризуемые тремя показателями: производительность труда (млн. руб./чел.), удельный вес потерь заказов (%) и годовой рост заявок на техобслуживание сети (%). Из этих компаний выделены две обучающие выборки, первая из которых включает $n_1 = 4$ группы A, а вторая - $n_2 = 5$ группы B. Используя данные таблице, с помощью дискриминантного анализа провести классификацию трех последних фирм (Z).

Таблица 2. Анализируемые данные

№ п/п	Группы компаний	Производительность труда, млн. руб./чел.	Удельный вес потерь заказов, %	Годовой рост заявок на техобслуживание сети, %
1	Группа $A(X_1)$	9,4	0,15	1,91
2		9,9	0,34	1,68
3		9,1	0,09	1,89
4		9,4	0,21	2,30
1	Группа В (Х2)	6,6	0,48	0,88
2		4,3	0,41	0,62
3		7,4	0,62	1,09
4		6,6	0,50	1,32
5		5,5	1,20	0,68
1	Подлежат	5,5	0,05	1,02
2	дискриминации (Z)	10	0,32	2,62

Решение:

Определим векторы средних и оценки ковариационных X1, X2 матриц Sx1 и Sx2 соответственно для групп компаний, относящихся к группам компаний A и B. Векторы средних: X1ср. трансп.= $(9,45 \ 0,1975 \ 1,945)$; X2ср. трансп. = $(6,08 \ 0,642 \ 0,918)$

Матрица ковариации X1			
0,0825 0,025875 -0,0			
00856875 -0,000	0,025875 0,00		
0,0064375 0,09	-0,029 -0,0		

Матрица ковариаций X2				
1,1576	-0,01956	0,21696		
-0,01956	0,082416	-0,023676		
0,21696	-0,023676	0,067616		

Для подсчета значений векторов и матриц, используются формулы:

$$s_{jl(x)} = \frac{1}{n_1} \sum_{i=1}^{n_1} (x_i^{(j)} - \overline{x}^{(j)}) (x_i^{(l)} - \overline{x}^{(l)}),$$

$$\overline{x}^{(j)} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i^{(j)}$$

Вектор (Х1ср.-Х2ср.) трансп. = (3,37 -0,4445 1,027)

Далее найдем несмещенную оценку суммарной ковариационной матрицы по формуле:

$$\hat{\mathbf{S}} = \frac{1}{n_1 + n_2 - 2} \left[n_1 \cdot \mathbf{S}_x + n_2 \cdot \mathbf{S}_y \right]$$

Несмещенная оценк	а суммарной ковариацио	нной матрицы
0,874	0,0008142857143	0,1384
0,0008142857143	0,063765	-0,02059
0,1384	-0,02059	0,07694

Обратная матрица		
1,665414799	-1,082119067	-3,285342341
-1,082119067	17,86905896	6,72847937
-3,285342341	6,72847937	20,70744438

Вычислим вектор оценок коэффициентов дискриминантной функции:

$$\hat{a} = \hat{\mathbf{S}}^{-1}(\overline{X} - \overline{Y})$$

	2,719403213
	-4,679389648
a^	7,204132604

Теперь найдем оценки дискриминантной функции для обучающих выборок:

Ux1=X1*a^	Ux2=X2*a^
38,62037502	22,04159086
37,4340421	14,24144627
37,94123479	25,07486673
41,14922336	25,11782142
	14,24026026

Получим средние значения оценок дискриминантной функции, а затем оценку константы дискриминации:

$$Ux1cp = 38,78$$
; $Ux2cp = 20,14$

$$\hat{c} = \frac{1}{2} (\overline{\hat{U}}_x + \overline{\hat{U}}_y)$$

$$c^{=1/2}*(38,78+20,14)=29,46$$

Чтобы определить, к какой группе относятся компании, подлежащие дискриминации, рассчитаем для них дискриминантную функцию:

 $U(z1)=5,5*a1+0,05*a2+1,02*a3=22,07 < c^=29,46 =>$ Данную компанию можно отнести к группе B.U(z2) = 44,57 > c^=29,46 => Данную компанию можно отнести к группе A.