Aljabar Linier

[KOMS120301] - 20223/2024

9.1 - Vektor dalam ruang vektor

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 9 (Oktober 2023)

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan dapat:

explain

Bagian 1: Ruang vektor

Apa itu ruang *n*?

Ingat kembali diskusi sebelumnya...

- *n*-tuple terurut adalah barisan *bilangan riil*: $(a_1, a_2, ..., a_n)$ (atau, dapat dilihat sebagai vektor).
- ruang-n adalah himpunan semua n-tupel bilangan real. Biasanya dilambangkan dengan \mathbb{R}^n . Untuk $n=1, \mathbb{R}^1 \equiv \mathbb{R}$.
 - Ruang ini adalah ruang dimana vektor terdefinisi
- Ruang $n \mathbb{R}^n$ juga disebut Ruang Euclid.

Contoh:

Vektor in \mathbb{R}^2

Vektor in \mathbb{R}^3

Vektor di ruang *n*

- *n*-tuple di \mathbb{R}^n , misalnya $u = (u_1, u_2, \dots, u_n)$ disebut titik atau vektor.
- u_i disebut koordinat, komponen, entri, atau elemen dari u.
- Ketika mengacu pada \mathbb{R}^n , sebuah elemen dari \mathbb{R} disebut scalar.
- Vektor $(0,0,\ldots,0)$ disebut zero vector.
 - Contoh: vektor nol di \mathbb{R}^2 adalah (0,0), dan vektor nol di \mathbb{R}^3 adalah (0,0,0)
- Vektor u dan v adalah sama jika mereka memiliki jumlah komponen yang sama, dan komponen yang bersesuaian juga sama.

Vektor baris dan kolom

Sebuah vektor dalam \mathbb{R}^n dapat ditulis secara horizontal (disebut vektor baris) atau vertikal (disebut vektor kolom).

$$u = [a_1, a_2, \dots, a_n]$$

$$u = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_3 \end{bmatrix}$$

Catatan: setiap operasi yang didefinisikan untuk vektor baris didefinisikan secara analog untuk vektor kolom. Mulai sekarang, vektor sering ditulis sebagai vektor baris.

Bagian 3: **Operasi vektor**

Penjumlahan vektor dan perkalian skalar vektor

Misalkan u dan v adalah vektor dalam \mathbb{R}^n

$$u = (a_1, a_2, \dots, a_n)$$
 and $v = (b_1, b_2, \dots, b_n)$

Jumlah u + v didefinisikan sebagai:

$$u + v = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

Jika $k \in \mathbb{R}$, perkalian skalar atau perkalian ku didefinisikan sebagai:

$$ku = k(a_1, a_2, ..., a_n) = (ka_1, ka_2, ..., ka_n)$$

Negatif dan pengurangan u dan v didefinisikan sebagai:

$$-u = (-1)u$$
 and $u - v = u + (-v)$

Catatan: u + v, ku, -u, u - v juga merupakan vektor dalam \mathbb{R}^n .

Vektor nol dan vektor satu

Vektor nol 0 = (0, 0, ..., 0) dan vektor satu 1 = (1, 1, ..., 1) dalam \mathbb{R}^n serupa seperti skalar 0 dan 1 di \mathbb{R} .

• Untuk vektor $u = (a_1, a_2, \dots, a_n)$, maka:

$$u + 0 = (a_1 + 0, a_2 + 0, \dots, a_n + 0) = (a_1, a_2, \dots, a_n) = u$$

 $1u = 1(a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n) = u$

Bagian 4: Kombinasi Linear dari Vektor

Kombinasi linier

Diketahui vektor $u_1, u_2, \ldots, u_n \in \mathbb{R}^n$ dan skalar $k_1, k_2, \ldots, k_n \in \mathbb{R}$, kita dapat membentuk vektor baru:

$$v = k_1 u_1 + k_2 u_2 + \cdots + k_m u_m$$

Vektor ini disebut kombinasi linier dari vektor u_1, u_2, \ldots, u_m .

Contoh

1 Misalkan u = (2, 4, -5) dan v = (1, -6, 9), maka:

$$u + v = (2 + 1, 4 + (-6), -5 + 9) = (3, -2, 4)$$

$$4u = (8, 14, -20)$$

$$-v = (-1, 6, -9)$$

$$3u - 2v = (6, 12, -15) + (-2, 12, -18)$$

Misal
$$u = \begin{bmatrix} 2 \\ 3 \\ -4 \end{bmatrix}$$
 dan $v = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$, maka:

$$2u - 3v = \begin{bmatrix} 4 \\ 6 \\ -8 \end{bmatrix} + \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -5 \\ 9 \\ -2 \end{bmatrix}$$

Interpretasi geometris kombinasi linier

Bagaimana Anda menafsirkan kombinasi linier vektor secara geometris?

Lihat sebagai kombinasi penskalaan dan perpindahan vektor dalam ruang

Contoh

Diketahui sebuah vektor $\vec{u}=[3/4]$ dan $\vec{v}=[-2/1]$. Bagaimana Anda menjelaskan $2\vec{u}+3\vec{v}$?

Interpretasi geometris kombinasi linier

[1 0] dan [0 1] adalah "vektor khusus" dalam ruang 2D. Bisakah Anda menebak mengapa?

Setiap vektor u dalam \mathbb{R}^2 dapat direpresentasikan sebagai kombinasi linier dari vektor $x_1=[1\ 0]$ dan $x_2=[0\ 1]$, yaitu:

Untuk setiap $u \in \mathbb{R}^2$, terdapat konstanta $c_1, c_2 \in \mathbb{R}$ sehingga $u = c_1x_1 + c_2x_2$.

Khususnya, jika $u = [a_1 \ a_2]$ maka $u = a_1x_1 + a_2x_2$.

Contoh

$$[4 \ 3] = 4[1 \ 0] + 3[0 \ 1]$$

- Apa vektor khusus dalam ruang 3D?
- Bagaimana dengan *n*D-space?

Interpretasi geometris dari kombinasi linier

Himpunan

$$\{x_i,\ i\in\{1,2,\ldots,n\}\ |\ x_i=(0,\ldots,0,1,0,\ldots,0)\ 1\ \text{berada pada posisi }i\text{-th}\}$$

adalah himpunan vektor khusus dalam ruang n.

Jadi setiap vektor $u = (a_1, a_2, \dots, a_n)$ dapat ditulis sebagai:

$$u = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Kita katakan bahwa $\{x_1, x_2, \dots, x_n\}$ mencakup \mathbb{R}^n .

Definisi yang lebih formal akan dibahas kemudian.

Vektor-vektor yang bebas linier

Secara aljabar, dua vektor adalah bebas linier jika tidak satu pun dari vektor tersebut dapat dinyatakan sebagai kombinasi linier dari yang lain.

Contoh vektor yang bebas linier

Tentukan apakah vektor-vektor berikut bebas linier?

$$\mathbf{u} = (1,4,0), \ \mathbf{v} = (10,2,1), \ \mathbf{w} = (-5,0,6)$$

Pertanyaan ini sama dengan menanyakan:

Apakah sistem persamaan linier berikut hanya memiliki solusi trivial? (trivial berarti solusi (0,0,0))

$$c_1(1,4,0) + c_2(10,2,1) + c_3(-5,0,6) = (0,0,0)$$

yang ekuivalen dengan:

$$\begin{bmatrix} 1 & 10 & -5 \\ 4 & 2 & 0 \\ 0 & 1 & 6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Latihan. Coba Anda selesaikan sistem persamaan linier berikut.

Bagian 5: **Komputasi Numerik Vektor dalam** \mathbb{R}^n

Sifat-sifat vektor di bawah operasi

Teorema

Untuk sembarang vektor $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ dan semua skalar $k, k' \in \mathbb{R}$,

$$\mathbf{0} \mathbf{u} + \mathbf{0} = \mathbf{u}$$
 (identity element w.r.t. addition)

Catatan: Misalkan **u** dan **v** adalah vektor dalam \mathbb{R}^n , dan $\mathbf{u} = k\mathbf{v}$ untuk beberapa $k \in \mathbb{R}$. Kemudian **u** disebut multiple dari **v**. Jika k > 0, maka **u** dan **v** memiliki arah yang sama, dan jika k < 0, maka mereka berada di berlawanan arah.

Contoh

Berikan masing-masing sebuah contoh untuk memeriksa kebenaran teorema di atas.

bersambung...