Thème 1 – Outils mathématiques

I- Produits scalaires et vectoriels

- 1- Pour que 2 vecteurs aient leur produit scalaire nul, il suffit :
- (a) qu'ils soient colinéaires ; (b) qu'ils soient orthogonaux ; (c) que l'un au moins soit nul.
- 2- Pour que 2 vecteurs aient leur produit vectoriel nul, il suffit :
- (a) qu'ils soient colinéaires; (b) qu'ils soient orthogonaux; (c) que l'un au moins soit nul.

Dans un repère orthonormé, d'origine O et de base $(\vec{i}, \vec{j}, \vec{k})$, on considère les vecteurs : $\vec{A} = 5\vec{i} - \vec{j} - 2\vec{k}$, $\vec{B} = 2\vec{i} + 3\vec{j} - \vec{k}$ et $\vec{C} = \vec{i} + \vec{j} + 2\vec{k}$.

- 3- Évaluer $\vec{A} \cdot \vec{B} : \vec{A} \wedge \vec{B} : \vec{B} \wedge \vec{A} : ||\vec{A} \wedge \vec{B}||$.
- 4- Que représente géométriquement la norme de $\vec{A} \wedge \vec{B}$?
- 5- Calculer le plus petit angle θ formé par \vec{A} et \vec{B} à l'aide des produits vectoriel, puis scalaire.
- 6- Calculer le produit mixte $(\vec{A}, \vec{B}, \vec{C})$.
- 7- Vérifier que $\vec{A} \wedge (\vec{B} \wedge \vec{C}) = \vec{B}(\vec{A}.\vec{C}) \vec{C}(\vec{A}.\vec{B})$.

II- Éléments de surface et de volume

- 1- Établir l'expression du volume d'un cylindre droit de hauteur h et de rayon R.
- 2- Calculer l'aire de la portion de surface d'un cylindre droit de rayon R=2 m et de hauteur h=5 m, limitée à $30^{\circ} \le \theta \le 120^{\circ}$.
- 3- Calculer la surface de la bande découpée sur la sphère de rayon R et définie par $\alpha \le \theta \le \beta$. Que devient ce résultat quand $\alpha = 0$ et $\beta = \pi$?

III- Intégrale d'une fonction radiale

On considère en coordonnées sphériques un champ scalaire f(r). Montrer que son intégrale sur tout l'espace s'écrit : $\int_0^{+\infty} 4\pi r^2 f(r) dr$.

IV- Circulation

Soit un champ vectoriel $\vec{a}(M)$ dans un espace à trois dimensions et (Γ) une courbe joignant deux points P et Q. On appelle circulation du champ $\vec{a}(M)$ le long de la courbe (Γ) de P à Q la quantité :

$$C(\vec{a}) = \int_{P}^{Q} \vec{a}(M) . d\vec{\ell}_{M}$$
.

Lorsque le champ vectoriel considéré est un champ de force, on appelle travail $W_{P\to Q}$ sa circulation.

- 1- On considère un champ de force uniforme, c'està-dire tel que $\vec{F}(M) = \vec{F}_0 = \overrightarrow{C}^{ste}$. Exprimer son travail en fonction des normes de \vec{F}_0 , \overrightarrow{PQ} et de l'angle $\theta = (\vec{F}_0, \overrightarrow{PQ})$.
- 2- On considère un champ électrique $\vec{E}(M) = E_r(r)\vec{u}_r$ purement radial. Montrer que sa circulation le long de tout cercle de centre O est nulle.