Buckley-Leverett Tests

CSIRO

April 16, 2016

Contents

1 Single Phase 2

Chapter 1

Single Phase

MOOSE is compared with a simple single-phase one-dimensional Buckley-Leverett problem¹. The single-phase fluid moves in a region $0 \le x \le 15\,\mathrm{m}$. A fully-saturated front initially sits at position x=5, while the region x>5 is initially unsaturated. With zero suction function $P_c=0$, there is no diffusion of the sharp front, and it progresses towards the right (increasing x). This is a difficult problem to simulate numerically as maintaining the sharp front is hard. The front's speed is independent of the relative permeability, since the fluid is flowing from a fully-saturated region (where $\kappa_{\mathrm{rel}}=1$). This problem is therefore a good test of the upwinding.

In the simulation below, the pressure at the left boundary is kept fixed at $P_0 = 0.98 \,\mathrm{MPa}$, while the right boundary is kept fixed at $P_{15} = -20000 \,\mathrm{Pa}$, so the difference is 1 MPa. The medium's permeability is set to $\kappa = 10^{-10} \,\mathrm{m}^2$ and its porosity is $\phi = 0.15$. It is not possible to use a zero suction function in the MOOSE implementation, but using the van Genuchten parameters $\alpha = 10^{-3} \,\mathrm{Pa}^{-1}$ and m = 0.8 approximates it. The fluid viscosity is $\mu = 10^{-3} \,\mathrm{Pa}$.s.

The initial condition is

$$P(t=0) = \begin{cases} P_0 - (P_0 - P_{15})x/5 & \text{for } x < 5\\ P_{15} & \text{for } x \ge 5 \end{cases},$$
 (1.1)

which is shown in Figure 1.1. With the suction function defined above this gives

$$S(t=0) = \begin{cases} 1 & \text{for } x \le 4.9\\ 0.061 & \text{for } x \ge 5 \end{cases}$$
 (1.2)

Good approximations for the pressure P(x,t) and the front position f(t)

 $^{^1{\}rm SE}$ Buckley and MC Leverett (1942) "Mechanism of fluid displacements in sands". Transactions of the AIME 146 107–116

Figure 1.1: Initial setup of the Buckley-Leverett problem where porepressure is a piecewise linear function. The region $x \le 4.9$ is fully saturated, while the region x > 5 has saturation 0.061. During simulation the value $P(x = 0) = 0.98 \times 10^6$ MPa is held fixed.

may be determined from

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -\frac{\kappa}{\phi\mu} \frac{\partial P}{\partial x}\Big|_{x=f} ,$$

$$P(x,t) = \begin{cases}
P_0 - (P_0 - P_{15})x/f & \text{for } x \leq f \\
P_{15} & \text{for } x > f
\end{cases} , \tag{1.3}$$

which has solution

$$f(t) = \sqrt{f(0)^2 + \frac{2\kappa}{\phi\mu}(P_0 - P_{15})t} \ . \tag{1.4}$$

For the parameters listed above, the front will be at position $f=9.6\,\mathrm{m}$ at $t=50\,\mathrm{s}$. This solution is only valid for zero capillary suction. A nonzero suction function will tend to diffuse the sharp front.

With coarse meshes it is impossible to simulate a sharp front, of course, since the front is spread over at least one element.

Figure 1.2 shows the results from a MOOSE simulation with a uniform mesh of size 0.1 m. At $t=50\,\mathrm{s}$ the front in this simulation sits at $x=9.6\,\mathrm{m}$ as desired. However, the simulation takes 10 seconds to complete due to the very low values

of saturation obtained for van Genuchten $\alpha=10^{-3}\,\mathrm{Pa^{-1}}$. Other simulations give similar results but run much faster. For instance, the test suite uses the van-Genuchten parameter $\alpha=10^{-4}\,\mathrm{Pa^{-1}}$, but the front diffuses a little into the unsaturated region (the front sits between $x=9.7\,\mathrm{m}$ and $x=10.4\,\mathrm{m}$ at $t=50\,\mathrm{s}$).

Figure 1.2: The MOOSE solution of the Buckley-Leverett problem at $t=50\,\mathrm{s}$. Top: saturation. Bottom: porepressure. The front sits between $x=9.6\,\mathrm{m}$ as expected from the analytical solution.