

Inteligență Artificială

Universitatea Politehnica Bucuresti Anul universitar 2021-2022

Adina Magda Florea

Curs 7

- Elemente de învățare automată
- Arbori de decizie

1. Definiții

- Învățarea este procesul prin care un sistem isi imbunatateste performantele (Herbert Simon)
- Învățarea este achizitia cunostintelor explicite
- Învățarea este achizitia deprinderilor de rezolvare a problemelor
- Învățarea este formare teoriilor, formarea ipotezelor si inferența inductivă
- ML observa cantitati mari de date şi caută şabloane petru predicție

Invatare automata

De ce sa invete?

- Taskuri definite prin exemple
- Relatii / corelatii in cantitati mari de date
- Mediu in schimbare
- Date diferite, cu zgomot
- Cantitate de cunostinte prea mare pentru a fi reprezentate explicit

Denumiri utilizate

- Instanță
- Concept
- Concept vizat (target concept)
- Clasă de ipoteze
- Mulțimea de învățare (Training set)
- Mulţimea de test (Test set)

Denumiri utilizate

- T vector de intrare, vector sablon, vector de caracteristici, esantioane, exemple, instanțe
- x_i caracteristici, atribute, variabile de intrare, componente
- x_i pot fi valori reale, valori numerice intregi, valori simbolice, valori booleene
- $f(X_i)$
 - valori reale: h functie de esantionare
 - valori simbolice: h clasificator
 - boolene: 1 instanta pozitiva, 0 instanta negativa

2. Tipuri de invatare

- Învățare supervizată determinarea ipotezei de invatare pe baza unor date etichetate
 - Simbolica sau non-simbolica
- Învățare nesupervizată determinarea ipotezei de invatare / a unei structuri pe baza unor date neetichetate
 - Simbolica sau non-simbolica
- Învățarea prin recompensa

Model simplu

 $T = \{X_1, X_2, ..., X_m\}$ — multime de invatare

$$\mathbf{X_i} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow \begin{bmatrix} h \\ h \\ \mathbf{X_i} \end{bmatrix} \longrightarrow \mathbf{h}(\mathbf{X_i})$$

$$h \in \mathbf{H}$$

■ Invatare supervizata – se cunosc $f(X_1)$, ..., $f(X_m)$ Gasim h a.i. $h(X_i) = f(X_i)$, $i=1,m \rightarrow h(X_i) = f(X_i)$, $\forall i$

Clasificare $-\mathbf{f}$ - valori discrete - grupeaza exemple Regresie $-\mathbf{f}$ - valori continue, estimeaza sau prezice valori

Metode de invatare supervizata

Clasificare

- Arbori de decizie
- Clasificare probabilistica (Naïve Bayes)
- K-Nearest neighbours (k-NN pt clasificare)
- SVM
- Retele neurale
- Invățare mulțime (ensemble learning): păduri aleatoare, ADA boost

Metode de invatare supervizata

- Regresie liniara
- SVR
- Arbori de regresie
- K-Nearest neighbours (k-NN pt regresie)

Clasificare vs regresie

Clasificare

Caine / Pisica

- Dan 10.000 lei
- George 3.000 lei
- Vlad 15.000 lei
- Maria 5.000 lei

credit de 30.000 lei

credit de 10.000 lei

credit de 50.000 lei

cat credit?

Clasificare vs regresie

Reprezentam ipotezele de invatare sub o forma care sa permita ca iesirea algoritmului sa fie o eticheta (clasa): arbori, retele neurale, etc.

Clasificare

 Reprezentam ipoteza de invatare ca o functie liniara

$$h(x)=a_0+a_1x$$

Cat este valoarea y pt punctul rosu?

Model simplu

 $T = \{X_1, X_2, ..., X_m\}$ — multime de invatare

$$\mathbf{X_i} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \mathbf{h} \longrightarrow \mathbf{h}(\mathbf{X_i})$$

$$h \in \mathbf{H}$$

- Invatare ne-supervizata NU se cunosc $f(X_1)$, ..., $f(X_m)$ Imparte T in submultimi clase
- Se poate vedea tot ca invatarea unei functii val f = numele submultimii careia ii apartine X_i
- Invatare prin recompensa Se cunosc recompensele pentru valorile $h(X_1), ..., h(X_m)$, Nu se cunosc valorile lui f

Metode de invatare nesupervizata

- Clustering
 - k-means clustering (grupare), k-means ierarhic (grupare ierarhica)
- Retele neurale
 - Retele neurale cu auto-organizare
 - Autoencoders
 - Deep belief networks

Metode de invatare nesupervizata

- Expectation maximization (EM)
 - HMM algoritmul Baum-Welch
 - Retele Bayesiene estimarea parametrilor in cazul datelor incomplete
 - Soft clustering clasele se pot suprapune
- Principal Component Analysis (PCA)

Regimuri de invatare:

- Batch
- Incremental

Zgomot:

- zgomot intrari (de ex valorile atributelor)
- zgomot iesiri (alterare iesiri)
- Ipoteza favorita a inductiei (Inductive bias)
 - O multime de presupuneri (explicite sau implicite) pe care algoritmul de invatare se bazeaza pentru a obtine un model (a generaliza) din setul de invatare

Inductive bias

- Spatiu de ipoteze restrictionat (Restricted Bias)
 - Functii liniare sau polinomiale de ordin mic
- Ipoteza preferata (Preference Bias)
 - Occam's razor
 - Nerest neighbours
 - Independenta conditionala maxima
 - Margine maxima
 - CNN, Deep RL agents

Occam's Razor

Principiul lamei lui Occam (lex parsimoniae)

- prefera explicatiile simple celor complexe
- selecteaza ipoteza care implica cele mai putine presupuneri, intre ipoteze similare/egal probabile
- Wiliam of Occam, 1285 1347
- filozof englez

"non sunt multiplicanda entia praeter necessitatem"

Problema: identifica personaje de film "bune" sau "rele" dupa modul in care arata

Atribute /	Sex	Masca	Pelerina	Cravata	Urechi	Lupta	Clasa
Instante							
	Set de invatare						
Datasas	Mana	D.	D.	NT	D.	NT	D
Batman	Masc	Da	Da	Nu	Da	Nu	Bun
Robin	Masc	Da	Da	Nu	Nu	Nu	Bun
Alfred	Masc	Nu	Nu	Da	Nu	Nu	Bun
Pinguin	Masc	Nu	Nu	Da	Nu	Da	Rau
Catwoman	Fem	Da	Nu	Nu	Da	Nu	Rau
Joker	Masc	Nu	Nu	Nu	Nu	Nu	Rau
	Date de test						
Batgirl	Fem	Da	Da	Nu	Da	Nu	??
Fred	Masc	Da	Nu	Nu	Nu	Nu	??

Clasifica corect datele?

Clasifica corect datele?

Aleg prima varianta (cf. lamei lui Occam)

- Clasificatoarele trebuie sa fie suficient de "expresive" pentru a fi in concordanta cu setul de invatare
- Dar clasificatoarele care au o complexitate prea mare pot duce la fenomenul de "overfit" (overfitting)

- Overfitting = modelul include zgomot sau sabloane de date nerelevante
- Nu mai poate generaliza
- Validare încrucișată
- Regularizare

Underfitting = modelul nu se potriveste nici datelor de învățare și nici nu poate generaliza la date noi

- Regularizare
- Evită overfitting
- Se poate aplica aproape oricărui model ML
- Simplifică modelele cu complexitate prea mare prin adăugarea de termeni de penalizare in funcția obiectiv

Cross-validation

- Antrenarea se face pe subseturi de date de învățare și evaluare pe restul
- Metode:
 - Hold out
 - K-fold cross validation
 - Leave-P-out

3. Metrici de performanță

- Mean Absolute Error (MAE) = media diferenței absolute între valori corecte și valori prezise
- Root Mean Square Error (RMSE) = rădăcina pătrată a mediei diferențelor pătratelor între valori corecte și valori prezise

Clasificare

■ Confusion matrix — corectitudinea și acuratețea modelului

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Accuracy
 — utilă dacă clasele sunt distribuite uniform

Precision (hit)

Recall sau Sensitivity (misses)

Recall or Sensitivity

4 Arbori de decizie

- ID3 in jur de 1960s
- C4.5 (Quinlan):
- Permite atribute numerice
- Trateaza cazurile valorilor lipsa
- Trateaza cazul valorilor cu zgomot
- C4.5 unul din cei mai cunoscuti algoritmi de invatare
- Ultima versiune de cercetare: C4.8, implementata in Weka
- Versiunea comerciala: C5.0

Invatarea inductiva prin AD

- Vede invatarea ca achizitia cunostintelor structurate
- Reprezentarea cunostintelor = arbori de decizie (AD)
- Problema de invatare = clasificare
- Invatare supervizata
- Strategie = invatare batch (ne-incrementala)
- AD se construieste pornind de la radacina spre frunze = *Top Down Induction of Decision Tree*

ID3 (Quinlan)

- Univers de obiecte U descrise in termenii unei colectii de atribute {A}
- Fiecare atribut masoara o caracteristica importanta a unui obiect o∈U
- Domeniul de valori atribute D_A = discret, simbolic (ulterior extins)
- Fiecare obiect apartine unui clase dintr-o multime de clase mutual exclusive {Cl}
- Se da setul de invatare (SI)
- Problema = obtinerea unor reguli de clasificare / construirea unui AD care clasifica corect nu numai ∀o∈SI dar si ∀o∈U

ID3 (Quinlan)

- Structura iterativa fereastra din SI
- S-au gasit AD corecti in cateva iteratii pt 30 000 obiecte cu 50 atribute
- Empiric s-a aratat ca iterativ se obtin arbori mai buni decat daca s-ar construi din tot SI

- Utilizare AD
- Reguli de decizie

ID3 (Quinlan)

Metoda de constructie

- C = multmea de obiecte / ex inv. din SI
- A^k atribut test cu valori a^k_1 , ... a^k_v
- "divide-and-conquer"
- Impartirea/expandarea AD se opreste cand toate obiectele din C apartin unei aceleiasi clase
- Se termina intotdeauna (in cazul cel mai nefavorabil, cate un obiect in fiecare clasa)

ID3 – Exemplu

No.	Atribute				Clasa
	Vreme	Temperatura	Umiditate	Vant	
1	soare	cald	mare	fals	N
2	soare	cald	mare	adev	N
3	nori	cald	mare	fals	P
4	ploaie	placut	mare	fals	P
5	ploaie	racoare	normal	fals	P
6	ploaie	racoare	normal	adev	N
7	nori	racoare	normal	adev	P
8	soare	placut	mare	fals	N
9	soare	racoare	normal	fals	P
10	ploaie	placut	normal	fals	P
11	soare	placut	normal	adev	P
12	nori	placut	mare	adev	P
13	nori	cald	normal	fals	P
14	ploaie	placut	mare	adev	N

ID3 – Exemplu

ID3 – Arbore minim

- Din acelasi SI se pot contrui diferiti AD
- Cum se poate obtine cel mai mic arbore (lama lui Occam)?
- = Cum selectez atributul din radacina unui arbore?

ID3 – Cum selectez A?

■ Multimea de exemple C cu un numar de ex pozitive $p \in P$ si exemple negative $n \in N$

Se presupune ca:

• (1) Orice AD corect va clasifica obiectele proportional cu reprezentarea lor in C

Un obiect (exemplu) $o \in C$ va fi clasificat:

- \bullet \in P cu probabilitatea p/(p+n)
- \in N cu probabilitatea n/(p+n)
- (2) Cand un AD este utilizat pentru a clasifica obiecte, acesta intoarce o clasa ⇒

AD poate fi vazut ca o sursa a unui mesaj 'P' sau 'N' avand informatia necesara pentru a genera acest mesaj

Teoria informatiei ofera criteriul

Pentru un univers de mesaje

$$M = \{m_1, m_2, ..., m_n\}$$

si o probabilitate $p(m_i)$ de aparitie a fiecarui
mesaj, **continutul informational** $I(M)$ al
mesajelor din M se defineste astfel:

$$I(M) = \sum_{i=1}^{n} -p(m_i) \log_2(p(m_i))$$

Selectia testului (atributului)

- Fie multimea de obiecte C cu $p \in P$ si $n \in N$
- Continutul de informatie I(AD_{p,n}) este

$$I(AD_{p,n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

- Selecteaza A in radacina; valori $A \in \{a_1,...,a_v\}$
- Fie C_i cu $p_i \in P$ si $n_i \in N$, i=1,v
- Continutul de informatie pentru fiecare C_i este $I(AD_{pi,ni})$, i=1,v

Selectia testului (atributului)

 Dupa selectarea lui A in radacina, cantitatea de informatie necesara pentru a termina constructia arborelui este suma ponderata a continutului de informatie din toti subarborii

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(AD_{pi,ni})$$

- unde ponderea ramurii i este fractiunea de obiecte din C care apartin lui C_i :
- v este numarul de valori ale lui A

Selectia testului (atributului)

 Castigul informational al unui atribut A obtinut prin selectia acestuia ca radacina a arborelui de decizie este:

$$G(A) = I(AD_{p,n}) - E(A)$$

- Se selecteaza A cu castig informational maxim
- Recursiv pentru a forma AD corespunzatori multimilor C₁ ... C_v

Calcul G(A) pt Ex

- 14 exemple, $9 \in P$, $5 \in N$
- $I(AD_{p,n}) = 0.940 \text{ bits}$

$$-\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14}$$

- vreme
 - soare $2 \in P$, $3 \in N \Rightarrow I(AD_{p1,n1}) = 0.971$
 - nori $4 \in P$, $0 \in N \Rightarrow I(AD_{p2,n2}) = ?$
 - ploaie $3 \in P$, $2 \in N \Rightarrow I(AD_{p3,n3}) = ?$
- E(vreme) = 0.694 bits ←

$$\boxed{\frac{5}{14}I(AD_{p1,n1}) + \frac{4}{14}I(AD_{p2,n2}) + \frac{5}{14}I(AD_{p3,n3})}$$

- G(vreme) = 0.940-0.694 = 0.246 bits
- G(temperatura) = 0.029 bits
- G(umiditate) = 0.151
- G(vant) = 0.048 bits

$$C_{\text{soare}} = \{1N, 2N, 8N, 9P, 11P\}$$

$$C_{nori} = \{3P, 7P, 12P, 13P\}$$

$$C_{ploaie} = \{4P, 5P, 6N, 10P, 14N\}$$

Generalizare la mai multe clase

Continutul de informatie

$$I(Arb) = \sum_{i=1}^{v} -p(Cl = C_i) * \log_2 p(Cl = Ci)$$

 Cantitatea de informatie necesara pentru a termina constructia arborelui

$$E(A) = \sum_{i=1}^{\nu} \frac{|C_i|}{|C|} I(C_i)$$

Castigul informational

$$G(A) = I(Arb) - E(A)$$

Algoritm ID3

functie ind-arbore (set-invatare, atribute, default)

- 2. **daca** toate exemplele din set-invatare sunt in aceeasi clasa **atunci intoarce** o frunza etichetata cu acea clasa Bine = recunoaste
- 3. **daca** atribute este vida **atunci intoarce** o frunza etichetata cu disjunctia tuturor claselor din set-invatare Caz 2 atr inadecvate
- 4. selecteaza un atribut A, creaza nod pt A si eticheteaza nodul cu A
- 5. sterge A din atribute -> atribute1
- 6. m = cea mai frecventa clasa (set-invatare)
- 7. **pentru** fiecare valoare V a lui A **repeta**
 - fie partitie_V multimea exemplelor din set-invatare, cu valorea V pentru A
 - creaza $nod_V = ind-arbore$ (partitie_V, atribute1, m)
 - creaza legatura nod $A nod_V$ etichetata cu V

sfarsit

Complexitate

- In fiecare nod cu exceptia frunzelor trebuie aflat G (castig informational) pt fiecare atribut A
- G depinde de valorile p_i si n_i pentru fiecare valoare a_i a lui A \Rightarrow fiecare obiect din C trebuie investigat (clasa, valoare A) \Rightarrow
- O(|C| * |A|), |A| nr atribute
- Pentru fiecare iteratie, complexitatea ID3
- O(|C| * |A| * |AD|), unde |AD| numar de noduri interne AD

Cazuri speciale

Caz 1. Nu exista obiecte $o \in C$ pentru care $A=A_j$

(exemple de invatare lipsa)

■ ID3 eticheteaza frunzele cu "*null*" sau "*Failure*" – deci nu clasifica in aceste noduri

Solutie

 Generalizeaza si se atribuie frunzei clasa cu cea mai mare frecventa de aparitie in C (cea mai frecventa)

Cazuri speciale: Zgomot

Caz 2. Informatia din SI este afectata de zgomot (attribute inadecvate)

- Zgomot
 - valori de atribute ale obiectelor din C afectate de zgomot
 - clasificare incorecta a obiectelor din C
- Erorile din C (zgomotele) pot duce la 2 probleme:
 - AD cu complexitate mai mare decat este necesar (a)
 - atribute inadecvate (b)

Cazuri speciale: Zgomot

Modificari necesare ID3 pt a trata zgomotul

- (a) Trebuie sa decida daca testarea unor atribute suplimentare va creste sau nu acuratetea predictiva a AD
- (b) Trebuie sa poata lucra cu atribute inadecvate

Cum se realizeaza (a)

Solutie

- $G(A) > prag \alpha$ absolut sau relativ
- α suficient de mare pt a elimina atribute nerelevante - dar elimina si atribute relevante pt cazul fara zgomot

Cazuri speciale: Zgomot atribute

Cum se realizeaza (b – atribute inadecvate)

 Trebuie produsa o eticheta pt C_i dar obiectele nu sunt in aceeasi clasa

Solutia 1

Se utilizeaza notiunea de apartenenta la o clasa cu o anumita probabilitate, de ex. $p_i/(p_i+n_i)$

Solutia 2

Eticheteaza cu clasa cea mai numeroasa: P daca $p_i > n_i$, N daca $p_i < n_i$, oricare (P sau N) daca $p_i = n_i$

Cazuri speciale: Extinderi C4.5

Caz 3. Valori necunoscute de atribute

3.1 Valori de atribute lipsa in setul de invatare Solutia 1

Atribuie valoarea cu cea mai mare frecventa

Solutia 2

 Foloseste probabilitati pt a determia distributia de probabilitate a valorilor lui A in C in functie de apartenenta la o clasa

$$prob(A = A_i \mid clasa = P) = \frac{prob(A = A_i \land clasa = P)}{prob(clasa = P)}$$

si alege valoarea cu cea mai mare probabilitate

Cazuri speciale: atribute lipsa SI

Solutia 3

- Construieste un AD pt a invata valorile atributelor lipsa
- C'⊂C, C' cu valori pt A
- In C' clasa este privita ca un atribut cu valori P sau
 N
- Valorile lui A clasele de invatat
- Obtine AD' utilizat apoi pentru a clasifica obiectele din C-C' ⇒ determin valoarea atributului A
- Solutia 3 > Solutia 2 > Solutia 1

Cazuri speciale: Extinderi C4.5

Caz 4. Atribute cu multe valori

- $A_1 ... A_n$ f multe valori simbolice sau valori numerice / continue, sau chiar valori aleatoare
- Castig mare \rightarrow arbore cu 1 nivel

Solutia 1 (valori numerice)

• Partitionez in intervale $(A_i+A_{i+1})/2$, fiecare interval o valoare

Exemplificare Solutia 1 (valori numerice)

• Partitionez in intervale $(A_i+A_{i+1})/2$, fiecare interval o valoare

Ordonez valorile atributului din setul de invatare

Cazuri speciale: Extinderi C4.5

Solutia 2 (valori numerice)

Pt fiecare A_i , i=1,m imparte obiectele in $(-\infty, A_i]$ si $(A_i, +\infty) \Rightarrow$ partitie P_i

 Pentru fiecare P_i calculeaza castigul informational si selecteaza partitia cu castig informational maxim

Solutia 3 (valori simbolice)

- Utilizeaza Informatia de separare = cantitatea de informatie necesara pentru a determina valoarea unui atribut A intr-un set de invatare C
- Fie P_{A,C} distributia de probabilitate a valorilor lui A

$$P_{AC} = (\frac{|A_1|}{|C|}, ..., \frac{|A_{v}|}{|C|})$$

Informatia de separare

$$ISep(A) = -\sum_{i=1}^{v} \frac{p_i + n_i}{p+n} \log_2 \frac{p_i + n_i}{p+n}$$

$$GR(A) = \frac{G(A)}{ISep(A)}$$
 sa fie cat mai mare

- Dar GR poate sa nu fie intotdeauna definita (ISep=0) sau sa tinda sa favorizeze ISep mici
- Selecteaza dintre atributele cu G(A) mare (peste medie) acelea cu GR(A) cel mai bun
- G(vreme) = 0.246 bits
- G(temperatura) = 0.029 bits
- G(umiditate) = 0.151 bits
- G(vant) = 0.048 bits
- ISep(vreme) = 1.578, ISep(umiditate) = 1 bit
- GR(vreme) = 0.246/1.578 = 0.156
- GR(umiditate) = 0.151/1.0 = 0.151

 Utilizeaza diverse metode de invatare pentru a forma clase din aceste valori sau a grupa aceste valori in grupuri (clustere), clase care sa devina valori discrete (sau sa produca mai putine valori) pentru atribut

5. Random forests

- Ipoteza metodei: combina mai multe modele de invatare a conceptului pentru a creste acurateta invatarii
- Bagging obtine o medie a unor modele de invatare (fiecare poate fi afectat de zgomot sau de impartire favorizanta - biased)
- Idee Selectam aleator din multimea de invatare o submultime de exemple si tot aleator selectam o submultime de atribute, apoi construim, pentru fiecare selectie cate un arbore (random selection of attributes and random seletion of examples)
- Obtinem o padure de arbori

Random forests

- N numarul de exemple de invatare, M numarul de atribute
- Se vor selecta in fiecare arbore *m* atribute (*m*<M) si *n* (*n*<N) exemple, aleator, din setul de invatare (bootstrap sample)
- Restul exemplelor se folosesc pentru evaluare
- Fiecare arbore este complet construit

Random forests

Random forests

- Pentru o padure de arbori, si o instanta necunoscuta se clasifica instanta cu fiecare arbore
- Fiecare arbore aduce un vot, se considera clasificarea data de votul majoritar

Avantajele metodei

- Acuratete mare de invatare
- Reduce influenta unui model favorizant (biased)
- Mai putin sensibil la zgomote
- Totusi are tendinta la overfitting pentru anumite seturi de date