Problem 3 If X is a random variable, so is |X|. The converse may be false.

(a) Proof.

Suppose $X: \Omega \to \mathbb{R}$, then X is $\mathcal{B}/\mathcal{B}(\mathbb{R})$ —measurable.

Let $\pi = |\cdot|$, then $\pi : \mathbb{R} \to \mathbb{R}$ is a continous function.

So $\pi \circ X = |X|$ is also $\mathcal{B}/\mathcal{B}(\mathbb{R})$ -measurable.

Thus, |X| is a random variable.

(b) Counterexample:

Let $A \subset \mathbb{R}$ and $A \notin \mathcal{B}(\mathbb{R})$.

Suppose $X: \mathbb{R} \to \mathbb{R}$.

Define $X = 1_A - 1_{A^c}$ be a simple funtion.

Then X is not $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ -measurable since

for $1 = [1, 1] \in \mathcal{B}(\mathbb{R}), X^{-1}(1) = A \notin \mathcal{B}(\mathbb{R}).$

However, $|X| = 1_{\mathbb{R}}$ is a constant funtion.

Since constant function is a continous function and continuous function is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ -measurable, |X| is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ -measurable.