Introduction to Recommender Systems

Getting Started

- Open a new R Script
- Install (if necessary) and load the data.table and RANN package

Import data

- Import the the books dataset as a data.table from https://github.com/zygmuntz/goodbooks-10k/raw/master/books.csv and assign it the
 variable books
- Import the the ratings dataset as a **data.table** from https://github.com/zygmuntz/goodbooks-10k/raw/master/ratings.csv and assign it the variable *ratings*
- Import the book to tags dataset as a data.table from https://github.com/zygmuntz/goodbooks-10k/raw/master/book_tags.csv and assign it the variable book_tags
- Import the tags lookup dataset as a data.table from https://github.com/zygmuntz/goodbooks-10k/raw/master/tags.csv and assign it the
 variable tags

Processing the data

- Filter book_tags and keep only the top 3 tags (by counts), for each goodreads_book_id
- Run the following code to generate indicator columns for a combination of genre types. Explore the main_tags data.frame.

Hide

```
#Get the main categories from tags for each book

main_tags_labels = c('romance', 'fiction', 'young-adult', 'fantasy', 'science-fiction',
    'children', 'best', 'covers', 'non-fiction', 'history', 'mystery',
    'paranormal', 'love', 'horror', 'historical', 'gay', 'sci-fi',
    'historical-fiction', 'nonfiction', 'series', 'literature', 'contemporary',
    'thriller', women', 'novels', 'suspense', 'classics', 'graphic-novels',
    'historical-romance', 'christian')

main_tags = merge(x=book_tags,y=tags,by="tag_id")
    main_tags = main_tags[,.(tags = paste(tag_name,collapse=",")),.(goodreads_book_id)]

for(j in main_tags_labels){
    set(main_tags,j = j,value = grepl(x = main_tags$tags,pattern = j)*1)

    print(j)
}
main_tags[,tags:=NULL]
```

- Add the following columns to the books data.table. 1. primary_author: The name of the first author of a book. 2. english: A binary (0/1) indicator for the letters "en" in a books language_code.
- Remove all other columns except book_id,work_id,goodreads_book_id,primary_author, original_publication_year,english,average_rating,ratings_1,ratings_2, ratings_3,ratings_4,ratings_5 from books
- Join main_tags data to books on goodreads_book_id

Exploratory Data Analysis

Create a new books data.table called books_wide by "melting" the genre columns.

Use the books_wide data set for the following

- Calculate the average book rating by author
- Calculate the average book rating, and number of published book by author in each genre

Calculate the three top rated authors in each genre
Calculate the best genre of each author
Content-Based Filtering
• Create books_cb a copy of books, and delete the primary_author, goodreads_book_id and work_id column
Normalize (subtract the min, divide by the range) all remaining numeric columns with the exception of book_id
 Randomly assign 500 unique user_ids from ratings into a variable to test_user. Assign the remaining to train_user
Create user_affinity a data.table of the high rated books by user_id
 For each user in test_user, find the top 5 books(book_id) that are most related to their highest rated book based on the Cosine Similarity metric
Print recommendation for the test_users!
Collaborative Filtering
 Create a user-item matrix ratings matrix using the ratings dataset called user_item_mat
Create a subset of user_item_mat, for user_id's only in test_users
Remove rows correspondig to test_users from user_item_mat_test
• In user_item_mat and user_item_mat_test, replace all NA values with 0
• For the first 10 rows (user) in <i>user_item_mat_test</i> :
 1. Use the Euclidean Distance metric to find the 5 most similar users in user_item_mat.
2. Find the highest rated book_id's for the 5 most similar users
Print recommendation for the 10 test_users!