LoadAnalysis Class Documentation

Description

The LoadAnalysis class is designed to perform load analysis on a structure given various input parameters. The analysis includes the generation of master forces, calculation of strains, validation, thermal effects, and noise studies.

Class Initialization

 $\label{loadAnalysis} LoadAnalysis (E, y_loc_master, I_master, F_l_1, F_l_2, F_l_3, F_l_4, max_training_load, min_testing_load, increment_testing, noise_level, BL, sen_locs, alpha, max_training_temp, min_training_temp, max_testing_temp, min_testing_temp)$

Parameters:

- E: Young's modulus of the material.
- y_loc_master: List or array containing the y-locations of sensors.
- Imaster: List or array containing the moments of inertia at corresponding sensor locations.
- \bullet F_1_1, F_1_2, F_1_3, F_1_4: Applied loads on the structure.
- max_training_load, min_training_load, increment_training: Parameters for generating master forces for training.
- max_testing_load, min_testing_load, increment_testing: Parameters for generating master forces for testing.
- noise_level: Standard deviation of noise in the system.
- BL: Boundary condition's location of the structure.
- sen_locs: Sensor locations on the structure.
- alpha: Coefficient of thermal expansion.
- max_training_tem, $min_t raining_t emp$, max_testing_temp, min_testing_temp: Parameters for temperature variation during training and testing.

Methods

- 1. generate_master_force(min_training_load, max_training_load, increment_training)
 Generates a master force matrix for training based on specified parameters.
- 2. calculate_strain(master_force)

Calculates the strains in the structure based on the master force matrix.

3. generate_C(master_training_strain, master_force)

Generates the C matrix for the training dataset and visualizes it using a heatmap.

4. Validation(master_force, master_training_strain, C)

Performs validation on the training dataset and visualizes the results.

5. generate_master_force_test(min_testing_load, max_testing_load, increment_testing)

Generates a master force matrix for testing based on specified parameters.

6. calculate_strain_test(master_force_test)

Calculates the strains in the structure for testing.

7. Validation_test(master_force_test, master_testing_strain, C)

Performs validation on the testing dataset and visualizes the results.

8. Validation_test_noise(noise, master_force_test, master_testing_strain, C)

Performs validation on the testing dataset with added noise and visualizes the results.

 $9. \ \, \texttt{Thermal_C(calculate_strain, master_force, alpha, max_training_temp, min_training_temp)} \\$

Calculates the C matrix considering thermal effects during training.

10. Thermal_test(C_thermal, master_force_test, calculate_strain_test, alpha, max_testing_temp, min_testing_temp)

Simulates thermal effects during testing and predicts thermal loads.

11. noise_study(C)

Studies the effect of noise on the system by plotting the variance of loads against different noise levels.