

RETINEURALI ARTIFICIALI

Teoria e implementazione

2 feature -> 2 caratteristiche delle classi

```
8.77131695 -8.09700984]
 5.72632
            -8.8155016
 7.66156323 -10.93071471]
 8.18393421 -4.70904159]
 3.23386564 -10.41767869]
 7.97139445 -3.59309613]
10.31613965 -4.0052443 ]
 8.02389528 -3.16667702]
 5.54466302 -11.38884739]
11.80412386 -2.45767052]
            -9.94550812]
 8.5021353
 7.71045389 -7.751419 ]
 6.59624461 -9.19900251]
 9.54779862 -5.63154374]
 4.12703205 -1.99052661]
 8.38941594 -0.64151842]
 6.15307256 -8.3647682
 8.80854104 -2.14442139]
 4.38986875 -9.86151543]
7.35338061 -1.50379713]]
```

20 samples

2 classi -> 0, 1

[[1] [1] [1] [0] [1] [0] [0] [0] [1] [0] [1] [1] [1] [0] [0] [0] [1] [0] [1] [0]]

Generazione del dataset

```
n_samples -> numero di sample
n_features -> numero di feature
centers -> numero di cluster / classi
cluster_std -> deviazione standard dei cluster
random_state -> inizializzazione della generazione di numeri pseudo-casuali
```


Visualizzazione del dataset

```
import matplotlib.pyplot as plt

def plot_data(a,b):
    #Ptotting

fig = plt.figure(figsize=(6,4))
    plt.plot(a[:, 0][b == 0], a[:, 1][b == 0], 'r^')
    plt.plot(a[:, 0][b == 1], a[:, 1][b == 1], 'bs')
    plt.xlabel("feature 1")
    plt.ylabel("feature 2")
    plt.title('Random Classification Data with 2 classes')
    plt.show()
```


Generazione e visualizzazione del dataset

Chiamata della funzione plot_data con i parametri X e t

Aggiungere il bias all'input

```
8.77131695
            -8.09700984]
 5.72632
             -8.8155016 ]
 7.66156323 -10.93071471]
            -4.70904159]
 8.18393421
 3.23386564 -10.41767869]
 7.97139445
            -3.59309613]
10.31613965
            -4.0052443 ]
 8.02389528
            -3.16667702]
 5.54466302 -11.38884739]
11.80412386
            -2.45767052]
 8.5021353
             -9.94550812]
 7.71045389
            -7.751419
 6.59624461
            -9.19900251]
 9.54779862
            -5.63154374]
 4.12703205
            -1.99052661]
 8.38941594
            -0.64151842]
 6.15307256
            -8.3647682 ]
 8.80854104
            -2.14442139]
 4.38986875
            -9.86151543]
7.35338061
            -1.50379713]]
```

```
8.77131695
           -8.09700984
                          1.
 5.72632
             -8.8155016
 7.66156323 -10.93071471
 8.18393421 -4.70904159
 3.23386564 -10.41767869
 7.97139445
            -3.59309613
10.31613965
           -4.0052443
 8.02389528
           -3.16667702
 5.54466302 -11.38884739
11.80412386 -2.45767052
                          1.
                          1.
 8.5021353
            -9.94550812
7.71045389 -7.751419
                          1.
 6.59624461 -9.19900251
                          1.
 9.54779862 -5.63154374
 4.12703205 -1.99052661
 8.38941594 -0.64151842
                          1.
 6.15307256 -8.3647682
 8.80854104 -2.14442139
 4.38986875
           -9.86151543
 7.35338061
           -1.50379713
```


Aggiungere il bias all'input

[8.77131695 -8.09700984 1.

```
#Add bias to the input
def add bias(self, x):
  # input -> input for the ANN
  if x.ndim > 1:
    inp = np.insert(x,self.n,1,axis=1)
  else:
    inp = np.insert(x,2,1)
  return inp
# END of function
      1 dimensione
[ 8.77131695 -8.09700984]
```

2 dimensioni

```
8.77131695 -8.09700984]
5.72632
            -8.8155016
7.66156323 -10.93071471]
8.18393421
            -4.70904159]
3.23386564 -10.41767869]
7.97139445 -3.593096131
10.31613965 -4.0052443
8.02389528 -3.16667702]
5.54466302 -11.38884739]
11.80412386 -2.45767052]
            -9.94550812]
8.5021353
7.71045389 -7.751419
6.59624461 -9.19900251]
9.54779862 -5.63154374]
4.12703205 -1.99052661]
8.38941594 -0.64151842]
6.15307256 -8.3647682
8.80854104 -2.14442139]
4.38986875 -9.86151543]
7.35338061 -1.50379713]]
```

```
8.77131695 -8.09700984
 5.72632
             -8.8155016
 7.66156323 -10.93071471
            -4.70904159
 8.18393421
 3.23386564 -10.41767869
            -3.59309613
 7.97139445
10.31613965
             -4.0052443
 8.02389528
            -3.16667702
 5.54466302 -11.38884739
11.80412386 -2.45767052
 8.5021353
             -9.94550812
            -7.751419
 7.71045389
            -9.19900251
 6.59624461
            -5.63154374
 9.54779862
            -1.99052661
 4.12703205
            -0.64151842
 8.38941594
             -8.3647682
 6.15307256
 8.80854104
            -2.14442139
             -9.86151543
 4.38986875
 7.35338061
            -1.50379713
```


Attivazione del neurone

```
netinput_1 = \sum_{i=0}^{\infty} x_i w_{i1}
#Calculates the activation of the neuron
def activation(self,x):
  net input = np.dot(x,self.weights)
  output = self.step_func(net_input)
  return output
                                                                          activation = \begin{cases} 1 & if & net input \ge 0 \\ 0 & if & net input < 0 \end{cases}
[[1.54891636 0.74589865 1.
       dim[1,3]
                                 dim[3,1] [4.5
 1.5489 \times 0.7741 + 0.7458 \times 0.7833 + 1 \times 4.5 =
 = 6.2834
 step_function(6.2834) =
 = 1
```


Funzione di attivazione

```
#defining the activation function
def step_func(self, x):
   if (x > 0):
      return 1.0
   else:
      return 0.0
#END of function
```

Esistono diverse funzioni di attivazione

In questo modo possiamo facilmente modificare la funzione di attivazione

Metodo per l'addestramento della rete neurale

- Per addestrare la rete neurale utilizziamo la regola delta
- Presentiamo molte volte, in sequenza, i pattern di input del training set
- Attiviamo la rete neurale per ogni pattern di input
- Confrontiamo la previsione della rete neurale con il rispettivo target output (calcolo dell'errore)
- Modifichiamo i pesi della rete neurale

Per numero di epoche

Per ogni pattern del training set

Attivazione la rete neurale Calcolo dell'errore

Se errore diverso da 0 modifica dei pesi con la regola delta Fine se Fine training set Fine epoche

Metodo per l'addestramento della rete neurale

```
# Training the ANN
def train(self):
  for epoch in range(self.epochs):
      # variable to store misclassified example
      n miss = 0
      # looping for every example.
      for idx, i in enumerate(self.inputANN):
          # reshape the array
          i = i.reshape(1,self.n+1)
          # Calculating prediction - outpurt of the ANN
          output = self.activation(i)
          if (t[idx] - output) != 0:
              # Updating if the example is misclassified
              n miss += 1
              #delta rule
              self.weights += self.lr*((t[idx] - output)*i.T)
          # end of if
      print(epoch, n_miss) #end of epoch
  return self.weights
  #END of function
```

Per numero di epoche

Per ogni pattern del training set

Attivazione la rete neurale Calcolo dell'errore

Se errore diverso da 0 modifica dei pesi con la regola delta

Fine se Fine training set Fine epoche

Metodo per l'addestramento della rete neurale

#END of function

```
# Training the ANN
def train(self):
for epoch in range(self.epochs):
                                                                                              self.activation(x)
    # variable to store misclassified example
                                                         Dim 1
    n miss = 0
                                                                            [[1.54891636 0.74589865 1.
    # looping for every exampl
    for idx, (i i) enumerate(self.inputANN):
                                                                                   dim[1,3]
                                                                                                             dim[3,1]
        # reshape the array
        i = i.reshape(1,self.n+1)
                                                            Dim 2
        # Calculating prediction - outpurt of the ANN
        output = self.activation(i)
                                                                           E' necessario modificare la shape
       if (t[idx] - output) != 0:
                                                                           di x e farla passare da 1 a 2
           # Updating if the example is misclassified
           n miss += 1
                                                                           Ulizziamo la funzione reshape()
           self.weights += self.lr*((t[idx] - output)*i.T)
    print(epoch, n_miss) #end of epoch
return self.weights
```


Metodo per l'addestramento della rete neurale

```
# Training the ANN
def train(self):
 for epoch in range(self.epochs):
     # variable to store misclassified example
     n miss = 0
     # looping for every example.
     for idx, i in enumerate(self.inputANN):
                                                 Regola delta
         # reshape the array
         i = i.reshape(1,self.n+1)
         # Calculating prediction - outpurt of the ANN
         output = self.activation(i)
         if (t[idx] - output) != 0: ←
             # Updating if the example is misclassified
             n miss += 1
             #delta rule
             self.weights += self.lr*((t[idx] - output)*i.T)
     print(epoch, n miss) #end of epoch
 return self.weights
 #END of function
```

$$w_0^t = w_0^{t-1} + \eta(d - y)x_1$$

$$w_1^t = w_1^{t-1} + \eta(d - y)x_2$$

$$w_2^t = w_2^{t-1} + \eta(d - y)bias$$

Calcolo dell'errore - LOSS

Metodo per l'addestramento della rete neurale

return self.weights

#END of function

```
i \rightarrow dim[1,3]
                                                                       [[1.54891636 0.74589865 1.
# Training the ANN
                                                                       [[0.77419012]
def train(self):
                                                                        [0.78337744] self.weights -> dim[3,1]
                                                                        [4.5
 for epoch in range(self.epochs):
     # variable to store misclassified example
                                                                                             w_0^t = w_0^{t-1} + \eta(d-y)x_1
     n miss = 0
                                                                                             w_1^t = w_1^{t-1} + \eta(d-y)x_2
     # looping for every example.
     for idx, i in enumerate(self.inputANN):
                                                                                             w_2^t = w_2^{t-1} + \eta(d-y)bias
         # reshape the array
                                                                                      [[0.77419012]
                                                                                                           [[1.54891636]
         i = i.reshape(1,self.n+1)
                                                                                       [0.78337744]
                                                                                                                    [0.74589865]
         # Calculating prediction - outpurt of the ANN
         output = self.activation(i)
                                                                                          dim[3,1]
                                                                                                                        dim[3,1]
         if (t[idx] - output) != 0:
             # Updating if the example is misclassified Trasposizione di i
             n miss += 1
             #delta rule
                                                                       [[1.54891636 0.74589865 1.
             self.weights += self.lr*((t[idx] - output)*i.T)
         # end of if
                                                                                  dim[1,3]
     print(epoch, n miss) #end of epoch
```


Metodo per attivare la rete neurale per una sola predizione

```
#Activate the ANN
def predict(self, x):
   x = self.add_bias(x)
   output = self.activation(x)
   return output
```

- Aggiungiamo il bias al patter di input
- Attiviamo la rete neurale

CLASSE PERCEPTRON

Utilizziamo la classe Percetron per fare apprendere il pattern dei dati che abbiamo generato

Array che contiene tutte le risposte della rete neurale

Possiamo utilizzare la funzione plot_data(X, t_pred) per visualizzare le risposte della rete neurale

