UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT 3400 — Linear analysis with applications

Day of examination: Friday 6, December 2013

Examination hours: 09.00 – 13.00.

This problem set consists of 4 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 9 subproblems, with a total score of 100 points: you can score up to 11 points for each subproblem, except for the last subproblem (3c)) where the maximal score is 12 points.

Throughout the text, we let \mathbb{K} denote either \mathbb{R} or \mathbb{C} . All vector spaces are assumed to be vector spaces over \mathbb{K} .

Problem 1

Let X be a nonempty set and let $\mathcal{P}(X)$ denote the σ -algebra consisting of all subsets of X.

Let $\ell^{\infty}(X)$ denote the space of all bounded functions from X into \mathbb{K} , equipped with the uniform norm, that is, $||f||_u = \sup\{|f(x)| \mid x \in X\}$ when $f \in \ell^{\infty}(X)$.

a) Let μ denote a measure on $\mathcal{P}(X)$ satisfying $\mu(X) < \infty$. Explain why every $f \in \ell^{\infty}(X)$ is integrable w.r.t. μ and check that the linear map $I_{\mu} : \ell^{\infty}(X) \to \mathbb{K}$ defined by

$$I_{\mu}(f) = \int f \ d\mu \,, \quad f \in \ell^{\infty}(X),$$

is bounded, with $||I_{\mu}|| = \mu(X)$.

(Continued on page 2.)

b) Assume a map $I: \ell^{\infty}(X) \to \mathbb{K}$ is linear, bounded, and satisfies that $I(f) \geq 0$ whenever $f \in \ell^{\infty}(X), f \geq 0$.

Define $\nu: \mathcal{P}(X) \to [0, \infty)$ by

$$\nu(A) = I(\chi_A), \quad A \subset X,$$

where χ_A denotes the characteristic (or indicator) function of A in X.

Show that ν satisfies the following properties:

- i) $\nu(\emptyset) = 0$.
- ii) $\nu(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n \nu(A_j)$ when $n \in \mathbb{N}$ and $A_1, \ldots, A_n \subset X$ are (pairwise) disjoint.
- iii) $\nu(X) < \infty$.

Can you state an additional condition on I that will ensure that ν becomes a measure on $\mathcal{P}(X)$ such that $I = I_{\nu}$?

[You don't have to give any argument, just write down your proposal for a suitable condition].

c) Assume that $\nu : \mathcal{P}(X) \to [0, \infty)$ is a map satisfying the properties i), ii) and iii) mentioned in part b).

Show that there exists a linear, bounded map $I : \ell^{\infty}(X) \to \mathbb{K}$ such that $I(\chi_A) = \nu(A)$ for all $A \subset X$ and $||I|| = \nu(X)$.

Hint: Let \mathcal{E} denote the subspace of $\ell^{\infty}(X)$ consisting of all simple functions on X, that is, $\mathcal{E} = \text{Span } \{\chi_A \mid A \subset X\}$. Consider the map $I_0 : \mathcal{E} \to \mathbb{K}$ defined by

$$I_0(g) = \sum_{j=1}^n \lambda_j \, \nu(A_j)$$

when $g = \sum_{j=1}^{n} \lambda_j \chi_{A_j}$ denotes the standard representation of $g \in \mathcal{E}$. You may take as granted that I_0 is linear. Start by showing that I_0 is bounded.

(Continued on page 3.)

Problem 2

Let (X, \mathcal{A}, μ) be a measure space.

We set $\overline{\mathcal{M}}^+ = \{g : X \to [0, \infty] \mid g \text{ is } \mathcal{A}\text{-measurable}\}$ and let \mathcal{L}^1 denote the space of $\mathcal{A}\text{-measurable}$, $\mathbb{K}\text{-valued}$ functions on X that are integrable with respect to μ .

Assume that f is an A-measurable, \mathbb{K} -valued function on X such that there exists a sequence $\{h_j\}_{j\in\mathbb{N}}$ in \mathcal{L}^1 satisfying

- i) $f(x) = \sum_{j=1}^{\infty} h_j(x)$ for μ -almost all x in X,
- ii) $\sum_{j=1}^{\infty} \left(\int |h_j| \ d\mu \right) < \infty$.

Let $g \in \overline{\mathcal{M}}^+$ be given by $g = \sum_{j=1}^{\infty} |h_j|$.

- a) Show that g is integrable w.r.t. μ .
- b) Show that $f \in \mathcal{L}^1$ and $\int f \ d\mu = \sum_{j=1}^{\infty} (\int h_j \ d\mu)$.
- c) We consider now the case where X = [-1, 1], \mathcal{A} denotes the Lebesgue-measurable subsets of [-1, 1] and μ denotes the Lebesgue measure on \mathcal{A} .

As is well known from elementary calculus, the power series $\sum_{k=1}^{\infty} \frac{1}{k} x^k$ is convergent when $x \in [-1, 1)$, and divergent for x = 1.

We let $f: [-1,1] \to \mathbb{R}$ denote the \mathcal{A} -measurable function defined by

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} x^k$$
 when $x \in [-1, 1)$, while $f(1) = 0$.

Check that $f \in \mathcal{L}^1$. Then verify that

$$\int_{[-1,1]} f \ d\mu = \sum_{m=1}^{\infty} \frac{1}{m (2m+1)}.$$

(Continued on page 4.)

Problem 3

Let H be a Hilbert space, $H \neq \{0\}$, and B(H) denote the space of all bounded linear operators from H into itself.

We consider $S, T \in B(H)$ and assume throughout this exercise that S and T commutes with each other, that is, we have ST = TS.

We recall that a subset M of H is said to be invariant under T if $T(u) \in M$ for all $u \in M$.

a) Let M be a closed subspace of H, $\lambda \in \mathbb{K}$ and set

$$E_{\lambda}^{T} = \{ v \in V \mid T(v) = \lambda v \}.$$

Show that M is invariant under T if and only if M^{\perp} is invariant under T^* . Show also that E_{λ}^T is invariant under S.

b) Assume that S is self-adjoint and T has an eigenvalue $\lambda \in \mathbb{K}$ such that the associated eigenspace E_{λ}^{T} is finite-dimensional.

Show that there exists an orthonormal basis for E_{λ}^{T} that consists of vectors that are also eigenvectors for S.

c) Assume that S is self-adjoint, T is compact and self-adjoint, and H is separable.

Show that there exists an orthonormal basis \mathcal{B} for H consisting of eigenvectors for ST. Moreover, if we also assume that T is one-to one, explain why this orthonormal basis \mathcal{B} may be chosen to consist of vectors that are eigenvectors for both S and T.

THE END