Math-42 Worksheet #11

Functions

- 1. Determine if each of the following is a function. If so then identify the domain and range. If not then indicate why not.
 - (a) $\{(1,a),(2,b),(3,a),(4,b)\}$

- (c) $f(x) = \sqrt{4 x^2}$
- (d) $f(x) = \frac{1}{x}$

- 2. Consider the function $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=x^3.$
 - (a) Prove that f(x) is injective (one-to-one) using a standard injection proof.
 - (b) Prove that f(x) is surjective (onto) using a standard surjection proof.

- (c) Prove that f(x) is bijective. (Hint: only one line is required).
- 3. Let $g:A\to B$ and $f:B\to C$. Prove each of the following:
 - (a) If f and g are injective then $f \circ g$ is injective.
 - (b) If f and g are surjective then $f \circ g$ is surjective.
 - (c) If $f \circ g$ is surjective then f is surjective.
 - (d) If $f \circ g$ is injective then g is injective.
- 4. Let $g:A\to B$ and $f:B\to C$. Use a function diagram to provide a counterexample to each of the following false propositions:
 - (a) If $f \circ g$ is surjective then g is surjective.
 - (b) If $f \circ g$ is injective then f is injective.
- 5. Let $f: A \to B$ and $S, T \subseteq A$. Prove that $f(S \cup T) = f(S) \cup f(T)$.
- 6. Let $f:A\to B$ and $S,T\subseteq A$:
 - (a) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$
 - (b) Which step in your proof is non-reversible, thus precluding equality, and why?
 - (c) What is required of f so that equality holds and why?
- 7. Let $f:A \to B$ and $S,T \subseteq B$. Prove each of the following:
 - (a) $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$
 - (b) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$
- 8. Let $f:A\to B$ and $S\subset A$. Draw a function diagram to demonstrate why $f^{-1}(f(S))\supseteq S$. What is required of f so that equality holds?

- 9. Let $f:A\to B$ and $T\subset A$. Draw a function diagram to demonstrate why $f(f^{-1}(T))\subseteq T$. What is required of f so that equality holds?
- 10. Evaluate the following:
 - (a) $\lfloor \pi \rfloor$
 - (b) $\lceil \pi \rceil$
 - (c) $\lfloor -\pi \rfloor$
 - (d) $\lceil -\pi \rceil$