SEG3904 Project Proposal

Project Title: Hand Gesture Calculator

Teddy-Michael Sannan, 300227605 — tsann010@uottawa.ca Stéphane Some — stephane.some@uottawa.ca

Overview:

The purpose of this project is to develop a Hand Gesture Calculator that interprets numerical hand gestures (0-9) using a webcam and performs basic arithmetic operations (addition, subtraction, multiplication, and division). The project will involve implementing computer vision techniques and machine learning algorithms to detect and classify hand gestures in real-time. The application will be developed using Python, leveraging libraries such as OpenCV and TensorFlow. This project will help in understanding how to develop and deploy real-time machine learning models for practical use cases.

Learning Outcomes:

At the end of this project, the student will have learned to:

- G1: Implement and optimize a real-time computer vision application using Python.
- **G2:** Train and fine-tune a machine learning model specifically for gesture recognition.
- G3: Design a standalone application with a simple and intuitive GUI.
- G4: Apply advanced debugging and testing techniques for machine learning applications.
- G5: Use version control and documentation tools effectively to manage project progress.
- **G6:** Work individually on software engineering activities.

Technologies:

- Python: A versatile programming language widely used in ML and AI projects.
- OpenCV: A computer vision library for image and video processing.
- TensorFlow/Keras: Libraries for building and training machine learning models.
- MediaPipe: A framework for real-time hand tracking and multimodal ML pipelines.
- **Tkinter/PyQt:** For developing a simple graphical user interface (GUI) for the application.
- **GitHub:** For version control and project management.

Resources:

- Géron, A. (2017, March 13). Hands-on Machine Learning with Scikit-Learn & Tensorflow. https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
- OpenCV Documentation: https://opencv.org/documentation/
- TensorFlow Documentation: https://www.tensorflow.org/tutorials
- MediaPipe Documentation: https://mediapipe.dev/

Deliverables:

Deliverable	Weight		
Project plan and detailed system requirements			
Initial prototype of the gesture recognition system			
Refined model with increased accuracy and basic GUI	15%		
Arithmetic operation integration based on recognized gestures			
Final application with complete GUI and error handling	15%		
Documentation of code, model, and user instructions	10%		
Final report with system architecture, challenges faced, solutions implemented, and a reflection on learning outcomes	20%		

Work Plan (135 hours):

Week	Met?	Action	Hours
1		Project planning, environment setup, and requirement analysis	10
2		Data collection, preprocessing, and initial model setup	15
3		Development of the initial gesture recognition prototype	10
4		Refinement and optimization of the gesture recognition model	15
5		Integration of arithmetic operations based on gestures	15
6		Development of the GUI and integration with the model	15
7		Testing and iterative improvements	15
8		Final adjustments, debugging, and performance tuning	15
9		Comprehensive testing and user experience enhancement	10

10	Drafting of the final report and preparation for submission	10
11	Submission of the final project and report	5