Lineární algebra II

Ladislav Láska 25. června 2009

Obsah

1	Det	rminant	4
	1.1	Vlastnosti determinantu	4
	1.2	Úpravy matic a jejich vliv na determinant	4
		1.2.1 Přerovnání řádků/sloupců	4
		1.2.2 Linearita násobku řádku matice vůči determinantu	5
		1.2.3 Linearita součtu matice vůči determinantu	5
	1.3	Výpočet determinantu	6
		1.3.1 Determinant součinu	6
		1.3.2 Rozvoj determinantu podle i-tého řádku/sloupce	6
	1.4	Adjungovaná matice	7
	1.5	Vztah adjungované matice a determinantu	7
	1.6	Cramerovo pravidlo	8
	1.7	Objem rovnoběžnostěnu	8
2	-	nomy	9
	2.1	Polynom	9
	2.2	Algebraicky uzavřené těleso, kořen polynomu	9
	2.3	Základní věta algebry (bez důkazu)	9
	2.4	Reprezentace polynomu	9
	2.5	Vandermondova matice	9
	2.6	Ÿ	10
	2.7	Lagrangeova interpolace (bez důkazu)	10
3	Vlas	tní čísla a vektory	10
•	3.1	· ·	10
	3.2		10
	3.3		10
	3.4	· · ·	10
	3.5		11
	3.6		11
	3.7	· ·	$\frac{1}{12}$
	3.8		$\frac{12}{12}$
	3.9		$\frac{12}{12}$
		- · · · · · · · · · · · · · · · · · · ·	$\frac{12}{12}$
		· ·	13
		o contract the contract to the	13
			13
			13
			13
			13
		·	14
			14
	3.19	Počet koster grafu	14
4	Vek	orové prostory se skalárním součinem	16
	4.1	Skalární součin	16
	4.2	Norma	16
	4.3	Cauchy-Schwarzova nerovnost	16
	4.4	·	17
	4.5	-	17
	4.6	ů .	17
	4.7		17

	4.8	Parsevalova rovnost	18
	4.9	Unitární zobrazení	18
	4.10	Podmínka unitárního zobrazení	18
	4.11	Isometrie	18
		Matice zobrazení isometrie	19
		Ortogonální projekce	19
	4.14	Lemma o ortogonální projekci	19
	4.15	Gram-schmidtova ortonormalizace	19
	4.16	Metoda nejmenších čtverců	20
	4.17	Ortogonální doplněk	20
			20
5	Poz	itivně definitní matice	21
	5.1	Pozitivně definitní matice	21
	5.2		21
	5.3		22
	5.4	ı v	22
	5.5		23
6	Kva	dratické a bilineární formy	2 4
Ü	6.1	· ·	24
	6.2	Kvadratická forma	24
	6.2		25
	6.4		25
	6.5		
		v -	25
	6.6	· ·	25
	6.7	O přímkách svírajících úhel v \mathbb{R}^n	26

1 Determinant

Definice Nechť A je čtvercová matice řádu n nad \mathbb{K} , potom **determinant** matice A (det(A)) je zobrazení z $\mathbb{K}^{n \times n} \to \mathbb{K}$ dáno vztahem:

$$\det(A) = \sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n A_{i,p(i)}$$

1.1 Vlastnosti determinantu

Pozorování $det(A^T) = det(A)$

Důkaz (neformální) Všimnene si, že determinant je součet podle permutací, které pokryjí právě všechny kombinace řádků a sloupců. Je tedy zřejmé, že přehozením řádků a sloupců (tj. transpozicí) se determinant nezmění.

Důkaz Formálně podle definice determinantu (1), transpozice (2), a použitím inverzní permutace (3) ukážeme:

$$\sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n (A^T)_{i,p(i)} \tag{1}$$

$$= \sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n A_{p(i),i}$$
 (2)

$$= \sum_{p \in S_n} \operatorname{sgn}(p^{-1}) \prod_{i=1}^n A_{i,p^{-1}(i)}$$
(3)

Což je ale det(A), protože součet je přes všechny permutace.

1.2 Úpravy matic a jejich vliv na determinant

1.2.1 Přerovnání řádků/sloupců

Pozorování Přerovnání sloupců (pro řádky analogicky) můžeme zapsat jako permutaci q. Při výpočtu determinantu to znamená, že budeme počítat se složením permutací - vzhledem k tomu, že determinant je součet přes všechny permutace, budou nás zajímat pouze znaménka.

Tvrzení Nechť A je čtvercová matice a B je matice odvozená od A přerovnáním sloupců (s řádky analogicky) podle permutace q. Potom platí:

$$det(B) = sgn(q) det(A)$$

Důkaz Podle definice determinantu (1), přerovnáním permutací zpět na A (2), přidáním identity (2) a úpravou (3, 4) získáme:

$$\det(B) = \sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n B_{i,p(i)}$$
(1)

$$= \sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n A_{i,q^{-1}(p(i))}$$
 (2)

$$= \sum_{p \in S_n} \underbrace{\operatorname{sgn}(p) \operatorname{sgn}(q^{-1})}_{sgn(q^{-1} \circ p)} \operatorname{sgn}(q) \prod_{i=1}^n A_{i,q^{-1}(p(i))}$$
(3)

$$= \operatorname{sgn}(q) \sum_{p \in S_n} \operatorname{sgn}(q^{-1} \circ p) \prod_{i=1}^n A_{i,(q^{-1} \circ p)(i)}$$
(4)

Což je podle definice determinantu sgn(q) det(A).

Důsledek Záměna dvou řádků mění znaménko.

1.2.2 Linearita násobku řádku matice vůči determinantu

Věta Nechť A' je odvozená matice od A vynásobením k-tého řádku konstantou t, potom platí:

$$\det(A') = t \cdot \det(A)$$

Důkaz Všimneme si, že každý součin si do každého řádku "šáhne" právě jednou. Můžeme tedy z každého takovéhou součinu vytknout konstantu před sumu.

1.2.3 Linearita součtu matice vůči determinantu

Věta Mějme matici A takovou, že platí (všechny řádky jsou stejné, jenom i-tý v A je součtem i-tého v B a C):

$$\forall k \neq i \quad \forall j: \quad B_{k,j} = C_{k,j} = A_{k,j}$$

$$A_{i,j} = B_{i,j} + C_{i,j}$$

Potom platí:

$$\det(A) = \det(B) + \det(C)$$

Důkaz Rozepíšeme podle definice determinant A a i-tý řádek vyjádříme jako součet i-tého řádku z B a C:

$$\det(A) = \sum_{p \in S_n} sgn(p) \cdot A_{1,p(1)} \cdot \dots \cdot (B_{i,p(i)} + C_{i,p(i)}) \cdot \dots \cdot a_{n,p(n)}$$
(1)

Závorkou ale sumu můžeme roznásobit:

$$\sum_{p \in S_n} sgn(p) \cdot A_{1,p(1)} \cdot \dots \cdot B_{i,p(i)} \cdot \dots \cdot a_{n,p(n)}$$
 (2)

$$+\sum_{p \in S_n} sgn(p) \cdot A_{1,p(1)} \cdot \dots \cdot C_{i,p(i)} \cdot \dots \cdot a_{n,p(n)}$$

$$\tag{3}$$

Což podle definice determinantu je:

$$\det(B) + \det(C) = \det(A) \tag{4}$$

Důsledek Přičtení t-násobku i-tého řádku k j-tému řádku determinant nemění: lze rozložit na dvě matice kde v jedné bude původní řádek, v druhé přičítaný t-násobek řádku. Druhá matice bude mít však nulový řádek, tj. nulový determinant.

1.3 Výpočet determinantu

1.3.1 Determinant součinu

Věta Nechť A a B jsou čtvercové matice stejného řádu nad tělesem \mathbb{K} , potom platí:

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Pozorování Všimneme si, že pokud je A nebo B singulární, součin je také singulární, tj. nulový determinant.

Pozorování Je-li A regulární, existuje R regulární taková, že $R \cdot A = I_n$.

Důkaz A si rozložíme na součin elementárních matic:

$$A = E_1 \cdot E_2 \cdot \dots \tag{1}$$

Potom dosazením platí (2) a z asociativity násobení matic (3):

$$\det(A \cdot B) = \det((E_1 \cdot E_2 \cdot \dots) \cdot (B)) = \tag{2}$$

$$= \det(E_1 \cdot (E_2 \cdot \dots \cdot (B))) \tag{3}$$

Protože však E_i je elementární matice, můžeme rozlišit následující případy:

- 1. E_i odpovídá vynásobení i-tého řádku konstantou $t \neq 0 \Rightarrow$ determinant t-krát. Taková matice je jednotková matice s t na místě i, i. Její determinant je t, násobením touto maticí se tedy determinant t-krát zvýší.
- 2. E_i odpovídá přičtení j-tého řádku k i-tému. Taková matice je jednotková s 1 (nebo t, pokud přičítáme násobek) nad nebo pod hlavní diagonálou. Její determinant je 1 (každá parmutace obsahující přidaný prvek musí obsahovat i jednu nulu, tj. na t nezáleží). Násobením touto maticí se tedy determinant nezmění.

Pokud víme, jak dané matice mění determinant, můžeme je postupně vytknout:

$$\det(E_1) \cdot \det(E_2 \cdot \dots \cdot (B)) \tag{4}$$

Takto vytkneme všechny elementární matice. Nyní je však ale můžeme opět spojit pod jeden determinant:

$$\det(E_1) \cdot \dots \cdot \det(E_n) \cdot (B) = \det(A) \cdot \det(B) \tag{5}$$

Což jsme chtěli dokázat.

Důsledek Matice je regulární právě když má nenulový determinant.

Důsledek Determinant matice a inverzní matice jsou si rovny.

1.3.2 Rozvoj determinantu podle i-tého řádku/sloupce

Značení Maticí $A^{i,j}$ značíme matici vzniklou z A vynecháním i-tého řádku a j-tého sloupce.

Tvrzení Pro libovolnou matici řádu $n \geq 2$ a libovolné i od 1..n platí:

$$\det(A) = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} \cdot \det(A^{i,j})$$

Důkaz Užijeme linearitu determinantu: Zapíšeme i-tý řádek jako vhodnou lineární kombinaci:

$$a_{i,1}...a_{i,n} = a_1 \cdot (1,0,...,0) + a_{i,2}(0,1,0,...,0) + ... + a_{i,n}(0,...,0,1)$$
 (1)

Rozložíme matici podle i-tého řádku na jednotlivé elementární matice. Po vytknutí konstanty získáme jeden řádek s nulami a jedničkou na jednom místě:

Takovouto jedničku přesuneme do prvního sloupce cyklem délky i, ten se dá složit z i-1 transpozic. Analogicky celý řádek prohodím na první:

$$(-1)^{i+j} \begin{pmatrix} \boxed{1 & 0 & \cdots & 0} \\ \vdots & & & \\ \vdots & & & \end{pmatrix}$$
 (3)

Nyní je však zřejmé, že každá permutace, která použije j-tý sloupec $j \neq 1$ bude nulová. Pokud j = 1, jednička hodnotu nezmění. Můžeme tedy první řádek a sloupec vynechat.

1.4 Adjungovaná matice

Definice Pro čtvercovou matici A definujeme **adjungovanou** matici adj(A) předpisem:

$$(\operatorname{adj}(A))_{i,j} = (-1)^{i+j} \cdot \det(A^{j,i})$$

1.5 Vztah adjungované matice a determinantu

Věta Pro každou regulerní matici platí:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

Důkaz Všimneme si, že pokud násobíme matici A její adjungovanou matici, vznikne nám:

$$A \cdot \operatorname{adj}(A) = \begin{pmatrix} \det(A) & 0 \\ & \ddots & \\ 0 & \det(A) \end{pmatrix} = \det(A) \cdot I_n$$
 (1)

Což je zřejmé, pokud si uvědomíme, že každý z determinantů ve výsledné matici vznikl podle rozvoje i-tého řádku (koeficienty v A, znaménka a subdeterminanty jsou v adjungované matici). Potom je již odvození triviální:

$$A \cdot \operatorname{adj}(A) \cdot \frac{1}{\det(A)} = I_n$$
 (2)

$$A^{-1} = \operatorname{adj}(A) \cdot \frac{1}{\det(A)} \tag{3}$$

Důsledek Pokud jsou A a A^{-1} celočíselné, $\det(A) = \pm 1$

1.6 Cramerovo pravidlo

 ${\bf Věta}~$ Nechť matice Aje regulární matice soustavy. Potom řešení každé soustavy Ax=blze spočítat po složkách

$$x_i = \frac{\det(A_{i \to b})}{\det(A)}$$

kde $A_{i \to b}$ je matice odvozená z A nahrazením i-tého sloupce vektorem pravých stran b.

Důkaz Podíváme se na součin $A^{-1} \cdot A \cdot x$ a upravíme:

$$Ix = A^{-1} \cdot A \cdot x = A^{-1}b = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) \cdot b$$
 (1)

(2)

Nyní můžeme vyjádřit x_i :

$$x_i = \frac{1}{\det(A)} \cdot (\operatorname{adj}(A) \cdot b)_i \tag{3}$$

A rozložíme závorku jako maticový součin (matice, vektor):

$$\frac{1}{\det(A)} \cdot \sum_{j=1}^{n} \operatorname{adj}(A)_{i,j} b_{j} \tag{4}$$

Kde ale suma vyjadřuje rozvoj podle *i*-tého sloupce $A_{i \to b}$:

$$\frac{1}{\det(A)} \cdot \det(A_{i \to b}) \tag{5}$$

1.7 Objem rovnoběžnostěnu

Věta Nechť $x_1, ..., x_n$ jsou vektory tvořící rovnoběžnostěn. Potom objem $V = |\det(A)|$.

Důkaz Malůvkou.

2 Polynomy

2.1 Polynom

Definice Polynomem P stupně n proměnné x nad tělesem $\mathbb K$ nazveme výraz:

$$\sum_{i=0}^{n} a_i x^i , \text{ kde } a_n \in \mathbb{K} \quad \land \quad a_n \neq 0$$

Definice Na polynomu definujeme oprace:

součet po složkách

$$P(x)^{n} + Q(x)^{m} = \sum_{i=0}^{\max\{m,n\}} (p_{i} + q_{i})x^{i}$$

násobení

$$(p \cdot q)(x) = \sum_{i=0}^{m+n} c_i x^i$$
 kde $c_i = \sum_{j=\max\{0,i-m\}}^{\min\{i,n\}} a_j b_{i+j}$

dělení se zbytkem

$$\forall p, q \quad \exists r, t \in K(x) : \quad \deg t < \deg q \quad \land \quad p = r \cdot q + t$$

2.2 Algebraicky uzavřené těleso, kořen polynomu

Definice Kořen polnomu je prvek k pro který platí, že P(k) = 0.

Definice Těleso, kde všechny polynomy mají alespoň 1 kořen, nazveme algebraicky uzavřené.

2.3 Základní věta algebry (bez důkazu)

 $\mathbf{V\check{e}ta}$ Každý polynom stupně alespoň 1 má nad \mathbb{C} kořen. (bez důkazu)

Důsledek Každý polynom stupně alespoň 1 lze rozložit na součin kořenových součinitelů.

2.4 Reprezentace polynomu

Polynom stupně n můžeme reprezentovat jako:

koeficienty $a_0, ..., a_n \in \mathbb{K}$

kořeny a a_0 na algebraicky uzavřeném tělese

hodnotami P(x) v n+1 různých bodech

2.5 Vandermondova matice

Definice Nechť $x_1,...,x_n$ jsou body z tělesa \mathbb{K} . Potom **Vandrmondovou maticí** nazveme matici:

$$\begin{pmatrix} x_1^0 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ x_2^0 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

9

2.6 Věta o regulárnosti Vandermondovy matice

Věta Vandermondova matice je regulární právě tehdy, pokud hodnoty $x_1, ..., x_{n+1}$ jsou různé.

Důkaz Spočítáme determinant matice: odečteme první řádek od všech ostatních.

$$A = \begin{vmatrix} x_1^0 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ x_2^0 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 0 & x_2 - x_1 & x_2^2 - x_1^2 & \cdots & x_2^{n-1} - x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_n - x_1 & x_n^2 - x_1^2 & \cdots & x_n^{n-1} - x_1^{n-1} \end{vmatrix}$$
(1)

Nyní je již vidět, že můžeme rekurentně spočítat jako rozvoj podle prvního sloupce. Tedy $\det(A)$ je roven součinu rozdílů každé dvojice x_i .

2.7 Lagrangeova interpolace (bez důkazu)

Věta Nechť $[x_i, y_i]$, i = 1...n + 1 jsou body ve kterých známe funkční hodnotu. Nadefinujeme pomocnou funkci P_i :

$$P_i(x) = \frac{(x - x_1)(x - x_2)...(x - x_{i-1})(x - x_{i+1})...(x - x_{n+1})}{(x_i - x_1)(x_i - x_2)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_{n+1})}$$

Je snadné vidět, že $P_i(x_i)=1$, zatímco $P_i(x_j)=0 \quad \forall j\neq i$. Lagrangeův polynom tedy vypočítáme pomocí vztahu:

$$P_n(x) = \sum_{i=1}^{n+1} y_i P_i(x)$$

(bez důkazu)

3 Vlastní čísla a vektory

3.1 Vlastní číslo, vlastní vektor

Definice Nechť V je vektorový prostor nad \mathbb{K} a $f:V\to V$ je lineární zobrazení. Potom **vlastním číslem** zobrazení f rozumíme takové $\lambda\in\mathbb{K}$, že $f(u)=\lambda\cdot u$, vlastní vektor vlastnímu číslu λ je každý, pro který platí $u\in V \quad \Rightarrow \quad f(u)=\lambda\cdot u$.

Definice Je-li vektorový prostor V konečně generovaný a dim(V)=n, potom můžeme f reprezentovat maticí zobrazení $A=[f]_X$ a rozšířit definici na matice, tj. vlastní číslo matice A je libovolné $\lambda \in \mathbb{K}$, takové že $Ax=\lambda x$ pro $x\in \mathbb{K}^n$, $x\neq 0$. Vlastní vektor příslušný λ je takový x, že $Ax=\lambda x$

3.2 Spektrum matice

Definice Množina všech vlastních čísel matice se nazývá Spektrum matice.

3.3 Charakteristický polynom

Definice Charakteristickým polynomem matice A nazveme polynom $P_A(t)$ určený výrazem $P_A(t) = \det(A - t \cdot I)$.

3.4 Věta o vlastním čísle a charakteristickém polynomu

Věta Pro matici $A^{n \times n}$ platí, že λ je vlastní číslo matice A právě když je λ kořen $P_A(t)$.

Důkaz Platí triviálně z definice:

$$Ax = \lambda x \tag{1}$$

$$Ax = \lambda x \tag{1}$$
$$(A - \lambda I)x = 0 \qquad (x \neq 0 \Rightarrow) \tag{2}$$

$$A - \lambda I$$
 singulární (3)

3.5 Věta o zachování podobnosti součinů matic

Nechť A, B jsou čtvercové matice, potom $A \cdot B$ a $B \cdot A$ mají stejná vlastní čísla.

Poznámka Pro násobení blokových matic platí:

$$\begin{pmatrix} I & J \\ K & L \end{pmatrix} \cdot \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \begin{pmatrix} IP + JR & IQ + JS \\ KP + LR & KQ + LS \end{pmatrix}$$

Důkaz Mějme matice C, R, D nadefinované a rozepsané podle součinu blokových matic:

Po rozepsání determinantů matic C a D vidíme, že jsou to po řadě z definice $P_{AB}(t)$, $P_{BA}(t)$ dokážeme tedy rovnost. Vyjádříme $C = R \cdot D \cdot R^{-1}$ a upravíme P_C :

$$P_C = \det(C - tI) \tag{2}$$

$$= \det(R \cdot D \cdot R^{-1} - tI) \tag{3}$$

$$= \det(R \cdot D \cdot R^{-1} - R \cdot tI \cdot R^{-1}) \tag{4}$$

$$= \det(R \cdot (D - tI) \cdot R^{-1}) \tag{5}$$

$$= \det(R) \det(D - tI) \det R^{-1} \tag{6}$$

$$=P_D(t) \tag{7}$$

Cayley-Hamilton 3.6

Věta Nechť $P_A(t)$ je charakteristický polynom matice A. Potom platí, že:

$$P_A(A) = 0$$

Důkaz Nechť M := A - tI. Spočítáme adj(M) a uvědomíme si, že adjungovaná matice má v každé buňce polynom t stupně nejvýše n-1. Rozložíme tedy a zavedeme B_i koeficienty t^i :

$$adj(A - tI) = t^{n-1}B_{n-1} + \dots + t^{0}B_{0}$$
(1)

Nyní podle pravidel o adjungované matici $(I \cdot \det(A) = A \cdot \operatorname{adj}(A))$ můžeme zapsat $P_A(t)$ jako:

$$P_A(t) \cdot I = (A - tI)(t^{n-1}B_{n-1} + \dots + t^0B_0) = a_n \cdot t^n \cdot I + \dots + a_0I$$
 (2)

Nyní porovnáme koeficienty u t^i :

$$t^n -I \cdot B_{n-1} = a_n I (3)$$

$$t^{i} A \cdot B_{i} - I \cdot B_{i-1} = a_{i}I (4)$$

$$t^0 A \cdot B_0 = a_0 I (5)$$

Pokud vynásobíme i-tou rovnici A^i zleva a soustavu sečteme, získáme:

$$P = P_A(A) \tag{6}$$

$$L = \underbrace{-A^n B_{n-1} + A^{n-1} (A B_{n-1})}_{0} - \underbrace{B_{n-2}) + \dots}_{0} = 0$$
 (7)

Tedy $P_A(A) = 0$.

3.7 Věta o nezávislosti vlastních vektorů

Věta Nechť $x_1,...,x_n$ jsou vlastní vektory přístlušící různým vlastním číslům $\lambda_1,...,\lambda_n$ zobrazení f. Potom $x_1,...,x_n$ jsou lineárně nezávislé.

Důkaz Sporem a indukcí:

$$\exists a_1, ..., a_k \neq 0 \quad \sum_{i=1}^k a_i x_i = 0$$
 (1)

Vyjádříme 0:

$$0 = f(0) = f\left(\sum_{i=1}^{k} a_i x_i\right) = \sum_{i=1}^{k} a_i f(x_i) = \sum_{i=1}^{k} a_i \lambda_i x_i$$
 (2)

$$0 = \lambda 0 = \lambda \sum_{i=1}^{k} a_i x_i = \sum_{i=1}^{k} a_i \lambda x_i \tag{3}$$

$$0 = 0 - 0 = \sum_{i=1}^{k} a_i \lambda_i x_i - \sum_{i=1}^{k} a_i \lambda_k x_i = \sum_{i=1}^{k-1} \underbrace{a_i x_i}_{\neq 0} \underbrace{(\lambda_i - \lambda_k)}_{\neq 0}$$
(4)

Tedy existují dva lineárně závislé vektory.

3.8 Podobné matice

Definice Řekneme, že čtvercové matice A a B jsou podobné pokud existuje regulární matice R taková, že $A = R \cdot B \cdot R^{-1}$.

3.9 Věta o vlastních číslech podobných matic

Věta Nechť A a B jsou podobné matice a λ, x jsou vlastní číslo a jeho vlastní vektor matice A. Potom $y = R \cdot x$ je vlastní vektor B příslušící λ .

Důkaz Vyjádříme B:

$$A = R \cdot B \cdot R \quad \Rightarrow \quad B = R \cdot A \cdot R^{-1} \tag{1}$$

Rozepíšeme $B \cdot y$:

$$B \cdot y = (R \cdot A \cdot R^{-1})(R \cdot x) = R \cdot A \cdot x = R \cdot \lambda \cdot x = \lambda \cdot y \tag{2}$$

Tedy y je vlastní vektor B příslušící vlastnímu číslu λ .

3.10 Diagonalizovatelná matice

Definice Matice je diagonalizovatelná, pokud je podobná nějaké diagonální matici.

3.11 Věta o diagonalizovatelnosti matic a vlastních vektorech

 $\mathbf{V\check{e}ta}$ Nechť je matice A řádu n. Potom je diagonalizovatelná právě když má n vlastních vektorů.

Důkaz Z definice diagonalizovatelnosti jasně plyne, že sloupce matice jednoznačně odpovídají vlastním vektorům.

Důsledek Pokud má matice řádu n vlastních čísel, je diagonalizovatelná.

Důsledek Matice $A \in \mathbb{C}^{n \times n}$ má vlastní čísla $\lambda_1, ..., \lambda_n$ násobnosti $r_1, ..., r_k$ a navíc:

$$\forall i \in \{1, ..., n\} \quad \operatorname{rank}(A - \lambda_i I) = n - r_i$$

pak právě tehdy je A diagonalizovatelná.

3.12 Matice v Jordanově normálním tvaru

Definice Matice v Jordanově normálním tvaru je diagonálně bloková matice, kde každý blok má na hlavní diagonále stejné číslo a nad hlavní diagonálou 1 nebo 0.

3.13 Věta o podobnosti Jordanově matici (bez důkazu)

Věta Každá komplexní čtvercová matice je podobná matici v Jordanově normálním tvaru. (bez důkazu)

3.14 Věta o diagonalizaci symetrických matic

Věta Každá reálné symetrická matice je diagonalizovatelná.

3.15 Hermitovská matice, unitární matice

Definice Komplexní čtvercová matice A je hermitovská pokud platí:

$$a_{i,j} = \overline{a_{j,i}}$$

Hermitovská **transpozice** matice A je A^H , kde $(A^H)_{i,j} = \overline{a_{j,i}}$.

 ${\bf Definice}\quad$ Komplexní čtvercová matice se nazývá unitární pokud $A^HA=I$

Pozorování Součin unitárních matic je unitární matice:

$$A^{H}A = I, B^{H}B = I \quad \Rightarrow \quad (AB)^{H} \cdot AB = B^{H}A^{H}AB = I$$

3.16 Reálnost vlastních čísel hermitovské matice

Věta Každá hermitovská matice má všechna vlastní čísla reálná a je diagonalizovatelná.

Důkaz

1. Nechť v je vlastní vektor matice A příslušící vlastnímu číslu λ . Mějme výraz: $v^H A v$. Ten upravíme dvojím způsobem:

$$v^{H}Av =$$

$$= v^{H}(Av) = v^{H}(\lambda v) = \lambda(v^{H}v)$$
(1)

$$= (v^{H}A)v = (v^{H}A^{H})v = (vA)^{H}v = (\lambda v)^{H}v$$
 (2)

výrazy (1) a (2) se musí rovnat. Získáme tedy vztah:

$$\lambda(v^H v) = (\lambda v)^H v \tag{3}$$

Tedy $\lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$.

2. A je hermitovská matice. Podle definice tedy musí platit AR = RD. Ukážeme na obrázku:

$$\begin{pmatrix} A & & \\ & \ddots & \\ & & \ddots \end{pmatrix} \begin{pmatrix} \vdots & \vdots & \vdots \\ x_1 & x_i & x_n \\ \vdots & \vdots & \vdots \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \vdots \\ x_1 & x_i & x_n \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \ddots & \dots & 0 \\ \vdots & D & \vdots \\ 0 & \dots & \ddots \end{pmatrix}$$
(4)

3. R je unitární: z předpokladů víme, že A je hermitovská. Proto platí $\forall i,j \quad a_{i,j} = \overline{a_{i,j}}$, tedy $a_{i,j} \in \mathbb{R}$. Pro unitárnost chcem, aby $R^H R = I$.

3.17 Binet-Cauchyho věta (bez důkazu)

Věta Nechť A a B jsou obdélníkové matice řádu $m \times n$. Potom:

$$|A^T \cdot B| = \sum_{I \in \binom{n}{m}} |A_I^T \cdot B_I|$$

3.18 Laplaceova matice

Definice Nechť G = (V, E) je graf na n vrcholech $v_1, ..., v_n$. Potom definujeme Laplaceovu matici Q předpisem:

$$q_{i,i} = \deg(v_i)$$

$$q_{i,j} = \begin{cases} -1 & \Leftrightarrow (v_i, v_j) \in E \\ 0 \end{cases}$$

3.19 Počet koster grafu

Věta Nechť G je graf. Potom platí:

$$\kappa(G) = \det(Q^{1,1})$$

Důkaz Zavedeme libovolnou orientaci grafu G a zaznamenáme do matice incidence D:

$$d_{i,j} = \begin{cases} 1 \Leftrightarrow e_j = (v_i, v) \\ -1 \Leftrightarrow e_j = (v, v_i) \end{cases}$$

$$(1)$$

Všimneme si, že $D \cdot D^T = Q$. Potom rozepíšeme a podle B-C věty:

$$\det(Q^{1,1}) = \det(D^1 \cdot (D^1)^T) = \sum_{I = \binom{n}{n-1}} |D_I^1 D_I^{1T}| = \sum_{I = \binom{n}{n-1}} |D_I^1|^2$$
(2)

Pokud tedy dokážeme, že $D_I^1 = \pm 1$ právě když $v_i: i \in I$ indukují strom, jinak 0, věta je dokázána.

Lemma 1 Pokud hrany $\{e_i|i\in I\}$ indukují strom, potom $|D_I^1|=\pm 1$.

Důkaz Uspořádáme vrcholy $w_1,...,w_k$ tak, aby w_i byl list na vrcholech $w_{i+1},...$. Potom můžeme uspořádat sloupce v matici D_I^1 podle i. Vznikne nám:

$$\pm \begin{vmatrix} \pm 1 & 0 & \cdots & 0 \\ 0 & \pm 1 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & & \pm 1 \end{vmatrix} = \pm 1 \tag{3}$$

Lemma 2 Pokud hrany $\{e_i|i\in I\}$ neindukují strom, potom $|D_I^1|=0.$

Důkaz Pokud hrany neindukují strom, existuje cyklus C. Mějme tedy vrcholy $w_1,...,w_c \in C$ takové, že $(w_i,w_{i+1 \mod c}) \in E_G$. Pokud přičteme řádky matice příslušící $w_1,...,w_{c-1}$ k řádku w_c , získáme nulový řádek - matice je tedy singulární.

Vektorové prostory se skalárním součinem

4.1 Skalární součin

Definice Nechť V je vektorový prostor nad \mathbb{C} . Zobrazení, které dvěma vektorům $u,v\in V$ přiřadí číslo $\langle u|v\rangle\in\mathbb{C}$ se nazývá **skalární součin** pokud splňuje axiomy:

- (0) $\forall u \in V \quad \langle u|u\rangle = 0 \quad \Leftrightarrow u = 0$
- (LN) $\forall a \in \mathbb{C} \quad \forall u, v \in V \quad \langle au|v \rangle = a \langle u|v \rangle$
- $\forall u, v, w \in V \quad \langle u + v | w \rangle = \langle u | w \rangle + \langle v | w \rangle$ (LS)
- $\forall u, v \in V \quad \langle v|u \rangle = \overline{\langle u|v \rangle}$ (KS)
- **(P)** $\forall u \in V \quad \langle u|u \rangle \geq 0$

Pozorování $\langle u|av\rangle = \overline{\langle av|u\rangle} = \overline{a}\langle u|v\rangle$

Pozorování Skalární součin lze vyjádřit regulární matici A: $\langle u|v\rangle=u^TA^TAv$

4.2 Norma

Definice Nechť V je vektorový prostor se skalárním součinem. Potom norma určená tímto součinem je zobrazení $V \to \mathbb{R}$ dané předpisem $||u|| = \sqrt{\langle u|u\rangle}$.

Poznámka V \mathbb{R}^n můžeme definovat úhel sevřený přímkami pomocí vztahu: $\langle u|v\rangle = ||u|| \cdot ||v|| \cdot$ $\cos \varphi$

Poznámka Z předchozí vztahu je možné dokázat Kosinovou větu.

Cauchy-Schwarzova nerovnost

Věta Nechť V je vektorový prostor se skalárním součinem a normou z něj odvozenou. Potom platí:

$$\forall u, v \in V \quad |\langle u|v\rangle| \le ||u|| \cdot ||v||$$

Důkaz (Pokud $u = 0 \lor v = 0$ platí triviálně.)

Zaveď me parametr $a \in C$ a dokážeme $||u + av|| \ge 0$:

$$0 \le ||u + av||^2 = \langle u + av|u + av\rangle \tag{1}$$

$$= \langle u|u\rangle + a \langle v|u\rangle + \overline{a} \langle u|v\rangle + a\overline{a} \langle v|v\rangle \tag{2}$$

Zvolíme $a = -\frac{\langle u|v\rangle}{\langle v|v\rangle}$, dosadíme a získáme:

$$0 \le \langle u|u\rangle - \frac{\overline{\langle u|v\rangle} \langle u|v\rangle}{\langle v|v\rangle}$$
 (3)

Což upravíme a odmocníme:

$$|\langle u|v\rangle|^2 \leq \langle u|u\rangle\langle v|v\rangle$$

$$|\langle u|v\rangle| \leq ||u||\cdot||v||$$
(5)

$$|\langle u|v\rangle| \leq ||u|| \cdot ||v|| \tag{5}$$

Důsledek Norma odvozená ze skalárního součinu

Důkaz (trojúhelníková nerovnost)

$$||u+v|| \le ||u|| + ||v|| \tag{6}$$

$$||u+v|| = \sqrt{\langle u+v|u+v\rangle} \tag{7}$$

$$= \sqrt{\langle u|u\rangle + \langle u|v\rangle + \langle v|u\rangle + \langle v|v\rangle} \tag{8}$$

Protože $2\mathbb{R}e(a) \leq 2|a|$ můžeme upravit:

$$\leq \sqrt{||u||^2 + ||v||^2 + 2|\langle u|v\rangle|} \tag{9}$$

A podle C-S:

$$\leq \sqrt{||u||^2 + 2||u|| \cdot ||v|| + ||v||^2} = ||u|| \cdot ||v|| \tag{10}$$

4.4 Norma prostoru zobrazení

Definice Norma prostoru zobrazení $V \to \mathbb{R}$ splňuje axiomy:

- 1. $\forall u \in V \quad ||u|| > 0$
- 2. $\forall u \in v \quad ||u|| = 0 \Leftrightarrow u = 0$
- 3. $\forall u \in V \ \forall a \in \mathbb{C} \ ||au|| = |a|||u||$
- 4. $\forall u, v \in V \quad ||u + v|| \le ||u|| + ||v||$

4.5 Ortogonální vektory

Definice Nechť V je vektorový prostor se skalárním součinem. Dva vektory $u, v \in V$ jsou navzájem ortogonální pokud platí $\langle u|v\rangle=0$. Značíme $u\bot v$.

Pozorování Každý systém vzájemně ortogonálních vektorů je lineárně nezávislý.

4.6 Ortonormální báze

Definice Nechť V je vektorový prostor se skalárním součinem a Z je báze taková, že:

- 1. $\forall v \in Z \quad ||v|| = 1$
- 2. $\forall v, w \in Z \quad v \neq w \Rightarrow v \perp w$

4.7 Fourierovy koeficienty

Tvrzení Nechť $Z=(v_1,...,v_n)$ je báze vektorový prostor se skalárním součinem V. Potom: vektor u vyjádříme jako lineární kombinaci vektorů báze Z:

$$\forall u \in V \quad u = \sum_{i=1}^{n} \langle u | v_i \rangle v_i$$

Důkaz Vyjádříme lineární kombinaci a rozepíšeme:

$$u = \sum_{i=1}^{n} a_i v_i$$
 cheeme: $a_i = \langle u | v_i \rangle$ (1)

$$\langle u|v_i\rangle = \left\langle \sum_{j=1}^n a_j v_j |v_i\rangle = \sum_{j=1}^n a_j \left\langle v_j |v_i\rangle \right\rangle$$
 (2)

Vidíme, že $\langle v_j | v_i \rangle$ je rovný 0 pokud $i \neq j$, jinak 1. Můžeme tedy upravit na:

$$= a_i \langle v_i | v_i \rangle = a_i \tag{3}$$

Definice Koeficientům $\langle u|v_i\rangle$ se říká Fourierovy koeficienty.

4.8 Parsevalova rovnost

Tvrzení Nechť $Z = (v_1, ..., v_n)$ je báze vektorového prostoru se skalárním součinem V. Potom:

$$\forall u, v \in V \quad \langle u|w \rangle = [w]_Z^H [u]_Z$$

Důkaz Vyjádříme pomocí Fourierových koeficientů:

$$\langle u|w\rangle = \left\langle \sum_{i=1}^{n} \langle u|v_i\rangle \left| \sum_{j=1}^{n} \langle w|v_j\rangle v_j \right\rangle$$
 (1)

A rozepíšeme:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \langle u | v_i \rangle \overline{\langle w | v_j \rangle} \langle v_i | v_j \rangle = \sum_{i=1}^{n} \langle u | w_i \rangle \overline{\langle w | v_j \rangle} = [w]_Z^H [u]_Z$$
 (2)

4.9 Unitární zobrazení

Definice Lineární zobrazení $f:V\to W$ mezi vektorovými prostory se skalárním součinem se nazývá unitární, pokud zachovává skalární součin:

$$\forall u, v \in V \quad \langle u|w\rangle = \langle f(u)|f(w)\rangle$$

4.10 Podmínka unitárního zobrazení

Věta Zobrazení $f:V\to W$ je unitární právě když pro normy odvozené ze skalárního součinu platí, že:

$$\forall u \in V \quad ||u|| = ||f(u)||$$

Důkaz

⇒ triviální

← Rozepíšeme podle definice lineárního zobrazení a normy (podobně jako u C-S nerovnosti)

$$||u + aw||^2 = ||u||^2 + a\langle w|u\rangle + \overline{a}\langle u|w\rangle + a\overline{a}||w||^2$$
(1)

$$||f(u+aw)||^2 = ||f(u)||^2 + a\langle f(w)|f(u)\rangle + \overline{a}\langle f(u)|f(w)\rangle + a\overline{a}||f(w)||^2$$
(2)

Levé strany se z předpokladu rovnají, porovnáme tedy pravé strany. Můžeme přitom zanedbat členy zapsané jako norma, protože ty jsou z definice taktéž rovny. Zároveň zvolme a = 1 (3) a a = i (4):

$$\langle w|u\rangle + \langle u|w\rangle = \langle f(w)|f(u)\rangle + \langle f(u)|f(w)\rangle \tag{3}$$

$$\langle w|u\rangle - \langle u|w\rangle = \langle f(w)|f(u)\rangle - \langle f(u)|f(w)\rangle \tag{4}$$

Rovnice sečteme a vydělíme 2. Získáme tedy:

$$\langle w|u\rangle = \langle f(w)|f(u)\rangle \tag{5}$$

4.11 Isometrie

Definice Unitární izomorfismus prostoru se skalárním součinem se nazývá isometrie.

4.12 Matice zobrazení isometrie

 ${\bf Věta}~~{\rm Nech}^{\prime}~V$ a Wjsou vektorové prostory s ortonormálními bázemi Xa Ystejné konečné dimenze. Potom:

$$f: V \to W$$
 je isometrie \Leftrightarrow $[f]_{XY}$ je unitární

Důkaz X je ortonormální, platí tedy:

$$\langle u|w\rangle = [w]_X^H [u]_X \tag{1}$$

Y je ortonormální, platí tedy:

$$\langle f(u)|f(w)\rangle = [f(w)]_Y^H[f(u)]_Y = ([f]_{XY}[w]_X)^H[f]_{XY}[u]_X = [w]_X^H \underbrace{[f]_{XY}^H[f]_{XY}}_A[u]_X \tag{2}$$

Rovnost (1) = (2) platí právě tehdy když $A = I_n$, tedy $[f]_{XY}$ je z definice unitární.

4.13 Ortogonální projekce

Definice Nechť W je vektorový prostor se skalárním součinem, $V \subseteq W$ a $Z = (v_1, ..., v_n)$ je ortonormální báze V. Potom zobrazení $p: W \to V$ definované předpisem:

$$p(u) = \sum_{i=1}^{n} \langle u | v_i \rangle v_i$$

se nazývá **ortogonální projekcí** prostoru W do V.

4.14 Lemma o ortogonální projekci

Lemma Nechť W je vektorový prostor se skalárním součinem, $V\subseteq W$ a $Z=(v_1,...,v_n)$ je ortonormální báze V. Nechť p je ortogonální projekcí $W\to V$, potom

$$u - p(u) \perp v_i \quad \forall v_i \in Z$$

Důkaz Rozepíšeme a ověříme podle definice ortogonality:

$$\langle u - p(u)|v_i\rangle = \left\langle u - \sum_{j=1}^n \langle u|v_j\rangle v_j \middle| v_i \right\rangle = \langle u|v_i\rangle - \sum_{j=1}^n \langle u|v_j\rangle \underbrace{\langle v_j|v_i\rangle}_{=0 \text{ pro } j \neq i} = 0 \tag{1}$$

4.15 Gram-schmidtova ortonormalizace

Algoritmus

 \mathbf{vstup} báze U

 $\mathbf{v}\mathbf{\acute{y}stup}$ ortonormální báze V

činnost $\forall i = 1...|U|$:

1.
$$w_i = u_i - \sum_{i=1}^{i-1} \langle u_i | v_i \rangle v_i$$

$$2. \ v_i = \frac{w_i}{||w_i||}$$

Korektnost

- 1. $w_i \perp v_j \quad \forall j < i \quad \Rightarrow \quad v_i \perp v_j$ platí podle lemma o ortogonální projekci
- 2. triviální
- 3. Lineární obal báze je stejný podle Lemma o výměně

Důsledek Pro každý vektorový prostor konečné dimenze existuje ortonormální báze.

4.16 Metoda nejmenších čtverců

Tvrzení p(u) je nejbližší bod ku v prostoru V.

Důkaz Nechť a = u - p(u), b = w - p(u). Potom vypočítáme jejich rozdíl:

$$||a - b|| = \sqrt{\langle a - b|a - b\rangle} = \dots = \sqrt{\langle a|a\rangle + \langle b|b\rangle} > ||a|| \tag{1}$$

Aproximace nejmenšími čtverci Použijeme kolmou projekci a aproximujeme tak řešení s minimální chybou.

4.17 Ortogonální doplněk

Definice Nechť V je množina vektorů ve vektorovém prostoru W se skalárním součinem. Pak **ortogonální doplněk** množiny V je množina

$$V^{\perp} := \{ u \in W | u \perp v_i \quad \forall v_i \in V \}$$

Pozorování $U \subseteq V \Rightarrow U^{\perp} > V^{\perp}$

Důkaz Triviálně podle definice: $u \in V^{\perp} \Rightarrow u \perp v \quad \forall v \in V \Rightarrow u \perp v \forall v \in U \Leftrightarrow u \in U^{T}$

4.18 Vlastnosti ortogonálního doplňku

Věta Nechť V je podprostor W se skalárním součinem. Potom platí:

- a) V^{\perp} je podprostor W
- b) $V \cap V^{\perp} = \{0\}$
- c) $\dim(V) + \dim(V^{\perp}) = \dim(W)$
- d) $(V^{\perp})^{\perp} = V$

Důkaz

a) Nechť $u, v \in V^{\perp}$. Potom $\forall w \in V$:

$$\langle u + v | w \rangle = \langle u | w \rangle + \langle v | w \rangle = 0 \quad \Rightarrow \quad u + v \in V^{\perp}$$
 (1)

b) Sporem: nechť $u \in V \cap V^{\perp}$, $u \neq 0$. Potom axiomu platí:

$$0 < \langle u|u\rangle \tag{2}$$

Zároveň však z definice ortogonálního doplňku $\forall u \in V \forall v \in V^{\perp} : u \perp v$, potom také pro u = v platí $u \perp u$. Neboli z definice ortogonality:

$$\langle u|u\rangle = 0 \tag{3}$$

Což je spor.

Pro body c a d budeme potřebovat následující Lemma:

Lemma Bázi X vektorového prostoru V lze doplnit na ortonormální bázi Z vektorového prostoru W. Tedy:

$$Y := Z \setminus X \qquad X = \{x_1, ..., x_k\} \tag{4}$$

$$Y = \{y_1, ..., y_l\} \tag{5}$$

Potom $V^{\perp} = L(Y)$.

Důkaz lemmatu

1. $L(Y) \subseteq V^{\perp}$: Dokážeme, že $Y \subseteq V^{\perp}$.

$$\forall x_i \in X \quad \forall y_i, y_j \in Y \quad x_i \perp y_j \quad \Rightarrow \quad y_j \perp \sum \alpha_i x_i \quad \Rightarrow \quad Y \subseteq V^{\perp}$$
 (6)

Ukážeme, že platí ortogonalita pro libovolné $w \in L(Y), z \in V$. Rozepsáním definice:

$$\langle w|z\rangle = \left\langle \sum \beta_i y_i \middle| \sum \alpha_i x_i \right\rangle = \sum \sum \beta_j \alpha_i \left\langle y_j \middle| x_i \right\rangle = 0$$
 (7)

Tedy $L(Y) \subseteq V^{\perp}$.

2. Nechť $w \in V^{\perp}$. Potom je wortogonální k libovolnému x_i :

$$\langle w|x_i\rangle = 0 \tag{8}$$

Vyjádříme \boldsymbol{w} jako lineární kombinaci \boldsymbol{x}_i a y_i

$$w = \sum \underbrace{\alpha_i}_{=\langle w | x_i \rangle} x_i + \sum \beta_i y_i \tag{9}$$

Zde je vidět, že první suma je nulová, tedy $w \in L(Y)$ a proto $V^{\perp} \subseteq L(Y)$

c) Podle lemma je již zřejmé, že $\dim(V) = |X|$ a $\dim(V^{\perp}) = |Y|$, proto:

$$|X| + |Y| = |W| = \dim(W)$$
 (10)

c)
$$(V^{\perp})^{\perp} = L(Z \setminus Y) = L(X) = V$$

5 Pozitivně definitní matice

5.1 Pozitivně definitní matice

 ${\bf Definice}\quad {\rm Hermitovsk\acute{a}}$ matice Ařádu nse nazývá pozitivně definitní pokud

$$\forall x \in \mathbb{C}^n \setminus \{0\} \quad x^H A x > 0$$

5.2 Věta o matici skalárního součinu

Věta Nechť V je vektorový prostor se skalárním součinem a $X = (x_1, ..., x_n)$ je jeho báze. Potom pro matici A definovanou:

$$a_{i,j} = \langle x_i | x_j \rangle$$

platí, že:

$$\forall u, v \in V \quad \langle u|w\rangle = [w]_X^H A[u]_X$$

Důkaz Vyjádříme jako lineární kombinaci vektorů báze:

$$[u]_X = (\alpha_1, ..., \alpha_n) \rightarrow u = \sum \alpha_i x_i$$
 (1)

$$[w]_X = (\beta_1, ..., \beta_n) \quad \to \quad u = \sum \beta_i x_i$$
 (2)

Ověříme rozpisem podle definice:

$$\langle u|w\rangle \left\langle \sum \alpha_i x_i \middle| \sum \beta_i x_i \right\rangle = \sum \sum \alpha_i \overline{\beta_i} \left\langle x_i \middle| x_j \right\rangle = [w]_X^H A[u]_X$$
 (3)

Kde poslední krok si lze představit jako maticové násobení.

Důsledek Z vlastnosti skalárního součinu je taková matice hermitovská: $\langle x_j | x_i \rangle = \overline{\langle x_i | x_j \rangle}$

5.3 Ekvivalentní podmínky hermitovské matice

 $\mathbf{V\check{e}ta}$ Nechť A je hermitovská matice řádu n. Potom jsou následující podmínky ekvivalentní:

- a) A je pozitivně definitní
- b) A má všechny vlastní čísla kladná
- c) existuje regulární matice U taková, že $A = U^H U$

Důkaz

 $a \Rightarrow b$) A je z předpokladu hermitovská, má tedy vlastní čísla reálná. Mějme tedy vlastní číslo $\lambda \in \mathbb{R}$ a k němu příslušný vlastní vektor x. Potom z definice:

$$0 < x^H A x = \lambda x^H x \tag{1}$$

Z maticového násobení je zřejmé, že $x^Hx>0$, tedy také $\lambda>0$.

 $b \Rightarrow c) \ A$ je z předpokladu hermitovská, existuje tedy unitární R: $A = R^H D R,$ kde D je diagonální. Zvolme tedy:

$$D': d'_{i,j} = \sqrt{d_{i,j}} \tag{2}$$

Tedy platí, že $A = R^H D^{\prime H} D^{\prime} R$. Zvolme tedy $U = D^{\prime} R$.

 $c \Rightarrow a$) Podle definice pozitivně definitní matice ověříme:

$$x^{H}Ax = x^{H}U^{H}Ux = (Ux)^{H} \cdot (Ux)$$
(3)

Kde je zřejmé, že daný součin bude kladný.

5.4 Choleského rozklad

Věta Pro pozitivně definitní matici existuje jednoznačně určená trojúhelníková matice U s kladnými prvky na diagonál taková, že $A = U^H U$.

Algoritmus

Vstup hermitovská matice A

Výstup trojúhelníková matice U nebo A není pozitivně definitní

Postup

Pro i := 1, ..., n

$$u_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \overline{u_{k,i}} u_{k,i}}$$
 (1)

Pro j := i + 1, ..., n

$$u_{i,j} = \frac{1}{u_{i,i}} \left(a_{i,j} - \sum_{k=1}^{i-1} \overline{u_{k,i}} u_{k,j} \right)$$
 (2)

5.5 Podmínka na pozitivně definitní matice podle determinantu

Věta Nechť A je bloková matice tvaru:

$$A = \begin{pmatrix} \alpha & \cdots & a^H & \cdots \\ \vdots & & & \\ a & & \tilde{A} & \\ \vdots & & & \end{pmatrix}$$

Pak je matice A pozitivně definitní právě když:

$$\alpha>0 \quad \wedge \quad a\left(\tilde{A}-\frac{1}{\alpha}aa^{H}\right)$$
je pozitivně definitní

Poznámka Gaussovou eliminací můžeme matici A upravit na tvar

$$A = \begin{pmatrix} \alpha & \cdots & a^H & \cdots \\ \vdots & & & \\ 0 & \tilde{A} - \frac{1}{\alpha} a a^H \\ \vdots & & \end{pmatrix}$$

Důkaz

 \Leftarrow Mějme libovolný vektor $x \in \mathbb{C}^n \neq 0$ zapsaný ve tvaru:

$$x = \begin{pmatrix} x_1 \\ \tilde{x} \end{pmatrix} \qquad \tilde{x} \in \mathbb{C}^{n-1}, x_1 \in \mathbb{C}$$
 (1)

Ověříme podmínku pro pozitivně definitní matici: (aplikujeme maticové násobení)

$$x^{H}Ax = (\overline{x_{1}}, \tilde{x}^{H}) \cdot \begin{pmatrix} \alpha & a^{H} \\ a & \tilde{A} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ \tilde{x} \end{pmatrix} =$$
 (2)

$$= \left(\tilde{x}_1 \alpha + \tilde{x}^H a, \quad \overline{x}_1 a^H + \tilde{x}^H \tilde{A}\right) \cdot \begin{pmatrix} x_1 \\ \tilde{x} \end{pmatrix} \tag{3}$$

$$= \tilde{x}_1 \alpha x_1 + \tilde{x}^H a x_1 + \overline{x}_1 a^H \tilde{x} + \tilde{x}^H \tilde{A} \tilde{x}$$

$$\tag{4}$$

Přičteme 0:

$$\tilde{x}_1 \alpha x_1 + \tilde{x}^H a x_1 + \overline{x}_1 a^H \tilde{x} + \tilde{x}^H \tilde{A} \tilde{x} + \frac{1}{\alpha} \tilde{x}^H a a^H \tilde{x} - \frac{1}{\alpha} \tilde{x}^H a a^H \tilde{x}$$
 (5)

Povytýkáme:

$$\underbrace{\tilde{x}^{H}\left(\tilde{A} - \frac{1}{\alpha}aa^{H}\right)\tilde{x}}_{\geq 0} + \underbrace{\left(\sqrt{\alpha}\overline{x}_{1} + \frac{1}{\sqrt{\alpha}}\tilde{x}^{H}a\right)\left(\sqrt{\alpha}x_{1} + \frac{1}{\sqrt{\alpha}}a^{H}\tilde{x}\right)}_{\text{komplexně sdružené} \Rightarrow \geq 0}$$
(6)

 \Rightarrow

- 1. $\alpha = e_1^H A e_1 > 0$ platí
- 2. Pro libovolné $\tilde{x} \in \mathbb{C}^{n-1}$ zvolíme $x_1 := -\frac{1}{\alpha} a^H \tilde{x}$ a položím $x = (x_1 \tilde{x})^T$. Potom tedy z předpokladu ověříme:

$$0 < x^H A x = \tilde{x} \left(\tilde{A} - \frac{1}{\alpha} a a^H \right) + 0 \tag{7}$$

Kde díky volbě x se nám zbytek členů odečte.

Důsledek Pozitivně definitní matice lze rozeznat Gaussovo eliminací

Důsledek Jaccobiho podmínka: Hermitovská matice A řádu n je pozitivně definitní právě tehdy, pokud mají matice $A_1, ..., A_n$ kladný determinant (kde A_i vznikne z A vymazáním posledních i řádků a sloupců).

 $\mathbf{D}\mathbf{\hat{u}kaz}$ Rekurentně aplikujeme větu na matici A v odstupňovaném tvaru.

6 Kvadratické a bilineární formy

6.1 Bilineární forma

Definice Nechť V je vektorový prostor nad \mathbb{K} a $f: V \times V \to \mathbb{K}$ zobrazení splňující:

- 1. $\forall u, v, w \in V$ f(u + v, w) = f(u, w) + f(v, w)
- 2. $\forall u, v \in V \quad \forall \alpha \in \mathbb{K} \quad f(\alpha u, v) = \alpha f(u, v)$
- 3. $\forall u, v, w \in V$ f(u, v + w) = f(u, v) + f(u, w)
- 4. $\forall u, v \in V \quad \forall \alpha \in \mathbb{K} \quad f(u, \alpha v) = \alpha f(u, v)$

Potom f se nazývá **bilineární formou** na V.

Definice Pokud navíc platí:

$$\forall u, v \in V \quad f(u, v) = f(v, u)$$

je bilineární forma symetrická.

6.2 Kvadratická forma

Definice Zobrazení $g:V\to\mathbb{K}$ se nazývá kvadratická forma pokud existuje bilineární forma f taková, že:

$$\forall u \in Vg(u) = f(u, u)$$

Pozorování $g(\alpha u) = f(\alpha u, \alpha u) = \alpha^2 g(u)$

6.3 Matice lineární a kvadratická forma

Definice Nechť V je vektorový prostor a $X = (v_1, ..., v_n)$ je jeho báze. Potom definujeme:

Matici lineární formy f vůči bázi X jako matici B kde platí $b_{i,j} = f(v_i, v_j)$

Matici kvadratické formy jako matici symetrické bilineární formy která ji vytvořuje.

6.4 Analytické vyjádření

Definice Nechť f je bilineární formou nad \mathbb{K}^n a B je její matice. Její analytické vyjádření polynomem:

$$f((x_1,...,x_n)^T,(y_1,...,y_n)^T) = \sum_{i=1}^n \sum_{j=1}^n x_i y_i b_{i,j}$$

6.5 Matice formy a matice přechodu

Pozorování Nechť B je maticí formy f vůdci bázi Y. Potom matice $[id]_{XY}^T B[id]_{XY}$ je maticí téže formy vůči X.

Důkaz Rozepíšeme podle definice:

$$[u]_Y = [id]_{XY}[u]_X \tag{1}$$

$$f(u,v) = [u]_Y^T B[v]_Y = [u]_X \underbrace{[id]_{XY}^T B[id]_{XY}}_{B_X} [w]_X \tag{2}$$

6.6 Silvestrův zákon setrvačnosti kvadratických forem

Věta Nechť $f:V\to\mathbb{R}$ je kvadratická forma. Potom existuje báze X prostoru V taková, že matice f vůči X je diagonálí a prvky na diagonále jsou nulové (n_0) , kladné (n_+) , záporné (n_-) a **signatura formy** je trojce (n_0,n_+,n_-) . Silvestrův zákon setrvačnosti pak říká, že signatura formy je neměnná na volbě báze a je pro všechny vhodné báze stejná. Taková vhodná báze se nazývá **polární**.

Důkaz

1. Dokážeme, že taková vhodná báze existuje: Mějme libovolnou bázi Y, poté sestavíme matici B' formy f vůči Y. Víme, že B' je reálná symetrická matice (z definice). Podle věty o diagonalizaci symetrických matic existuje regulární matice R taková, že D je diagonální:

$$R^{-1} \cdot B' \cdot R = D \tag{1}$$

Taktéž je vidět, jak vyjádříme matici B: ta je vůči bázi X, B' vůči Y. Použijeme matici přechodu, kde B bude diagonální.

$$B = [id]_{XY}^T B'[id]_{YX} \tag{2}$$

Nyní si stačí uvědomit, že sloupce $[id]_{XY}$ jsou vektory hledané báze X vůči Y.

2. Nechť V a V' jsou vhodné báze, kde má forma f diagonální matici D, D' uspořádanou tak, že $d_{i_0,i_0}>0$ pro jisté i_0 . Pro spor předpokládejme, že $d'_{i_0,i_0}\leq 0$ pro to samé i_0 (ostatní případy podobně). Nechť tedy existuje $j_0< i_0$ pro které platí $d'_{j_0,j_0}\leq 0$ a nechť $L(\{v_1,...,v_{i_0}\})$ a

 $L(\{v'_{j_0},...,v'_n\})$ jsou podprostory. Aby byly dimenze příslušných prostorů alespoň dimenze L(V), požadujeme netriviální průnik. Mějme tedy w:

$$0 \neq w = (w_1, ..., w_k) = \sum_{i=0}^{i_0} a_i v_i = \sum_{j=j_0}^n a'_j v'_j$$
(3)

Potom ale z předpokladů víme, že (v analytickém vyjádření; také je třeba si uvědomit, že matice d je diagonální a její prvky jsou pouze kladné/záporné)

$$f(w) = \sum_{i} w_i^2 d_{i,i} > 0 \tag{4}$$

$$f(w) = \sum_{i} w_i^2 d'_{i,i} \le 0 \tag{5}$$

Což je spor.

6.7 O přímkách svírajících úhel v \mathbb{R}^n

Věta~ Ne více než $\binom{n+1}{2}$ přímek v \mathbb{R}^n může svírat stejný úhel.

Důkaz Je dáno n přímek svírající stejný úhel udané vektory $v_1, ..., v_n \in \mathbb{R}^d$, kde $||v_i|| = 1$. Potom určíme úhel:

$$|\langle v_i | v_j \rangle| = \begin{cases} 1 \Leftrightarrow i = j \\ \cos \alpha \Leftrightarrow i \neq j \end{cases} \tag{1}$$

Uvažme:

$$a_1 v_1 v_1^T + \dots + a_n v_n v_n^T = 0 (2)$$

Pro každé j vynásobím v_i^T zleva, v_j zprava:

$$a_1 v_j^T v_1 v_1^T v_j + \dots + a_n v_j^T v_n v_n^T v_j =$$
(3)

$$= \sum_{j=1}^{n} a_i \langle v_j | v_i \rangle^2 = a_j + \sum_{i \neq j} a_i \cdot \cos^2 \varphi$$
 (4)

Což můžeme maticově zapsat jako reálnou symetricou matici vynásobenou (zprava) sloupcovým vektorem (a_i) . Taková soustava má však trivální řešení, proto $v_1,...,v_n$ jsou lineárně nezávislé a tudíž $n \leq {d+1 \choose 2}$.