1

AI1110 Assignment 1

Donal Loitam(AI21BTECH11009)

ICSE class 10 paper 2019

Q2 (C): In an Arithmetic Progression, the fourth and sixth terms are 8 and 16 respectively. Find:

- i) common difference
- ii) first term
- iii) sum of the first 20 terms

Solution: Let a_i denote the i th term of the AP , d denote the common diff,

 S_{20} denote the sum of first 20 terms

TABLE I Variables

Symbol	value
i	4
j	6
a_i	8
a_j	14
a_1	?
d	?
S_n	?
S_{20}	?

For any general a_i , a_j :

(i)
$$a_i + (j-i)d = a_j$$

$$\Rightarrow \qquad (j-i)d = a_j - a_i$$

$$\Rightarrow \qquad d = \frac{a_j - a_i}{(j-i)} \qquad (1)$$

Substituting $i=4, j=6, a_i=8$ and $a_j=14$ in eq.(1):

$$\Rightarrow \qquad d = \frac{14-8}{(6-4)}$$

$$\Rightarrow \qquad d = \frac{6}{2}$$

$$\therefore \qquad d = 3 \qquad (2)$$

$$(ii) a_1 + (i-1)d = a_i$$

$$\Rightarrow a_1 = a_i - (i-1)d$$

$$\Rightarrow a_1 = a_i - \frac{(i-1)(a_j - a_i)}{(j-i)}$$

$$\Rightarrow a_1 = \frac{a_i(j-1) + a_j(1-i)}{(j-i)}$$

$$\Rightarrow (3)$$

Substituting d = 3 and $a_i = 8$ in eq.(3):

$$\Rightarrow a_{1} = \frac{8(6-1)+14(1-4)}{(6-4)}$$

$$\Rightarrow a_{1} = \frac{8(5)+14(-3)}{(2)}$$

$$\Rightarrow a_{1} = \frac{40-42}{(2)}$$

$$\therefore a_{1} = \frac{-2}{2} = -1$$
(4)

Now calculating S_n for general n:

$$iii)S_n = a_1 + a_2 + \dots + a_n$$

$$= \frac{n \times [2a_1 + (n-1)d]}{2}$$

$$= \frac{n}{2} \times \left[2 \times \frac{a_i(j-1) + a_j(1-i)}{(j-i)} + \frac{(n-1)(a_j - a_i)}{(j-i)} \right]$$

$$= \frac{n}{2} \times \left[\frac{2a_i(j-1) + 2a_j(1-i) + (n-1)(a_j - a_i)}{(j-i)} \right]$$

$$= \frac{n}{2} \times \left[\frac{a_i(2j-n-1) + a_j(1+n-2i)}{(j-i)} \right]$$
(5)

Substituting the values of $n = 20, i, j, a_i$ and a_j in eq.(5)

$$S_{20} = \frac{20}{2} \times \left[\frac{8(2 \times 6 - 20 - 1) + 14(1 + 20 - 2 \times 4)}{(6 - 4)} \right]$$

$$\Rightarrow S_{20} = \frac{20}{2} \times \left[\frac{8(2 \times 6 - 20 - 1) + 14(1 + 20 - 2 \times 4)}{(2)} \right]$$

$$\Rightarrow S_{20} = 10 \times \left[\frac{8(12 - 21) + 14(21 - 8)}{2} \right]$$

$$\Rightarrow S_{20} = \frac{10}{2} \times \left[8(12 - 21) + 14(21 - 8) \right]$$

$$\Rightarrow S_{20} = 5 \times \left[8(-9) + 14(13) \right]$$

$$\Rightarrow S_{20} = 5 \times \left[182 - 72 \right]$$

$$\therefore S_{20} = 5 \times \left[110 \right] = 550$$