Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Grupa IZ07IO2

ALGORYTMY PRZETWARZANIA OBRAZÓW

(projekt)

Tytuł projektu

Program konwersji obrazów z postaci *.bmp/*tif na tablice liczb, eksport do Excela, operacje w Excelu, operacje w programie, import z Excela, porównanie wyników operacji prowadzonych w programie z wynikami z Excela, dodatkowo wylicza dwa obrazy różnic a-b i b-a dostosowane do wyświetlania przez skalowanie obcinające

Autor:

Tomasz Kyc

Prowadzący: dr hab. Anna Korzyńska, prof. IBIB PAN

Warszawa 2019/2020

Spis treści

1.	Wpr	owadzenie	. 2
	1.1.	Wymagania systemowe	. 2
	1.2.	Uruchomienie programu	. 2
	1.3.	Wykorzystane narzędzia programistyczne	. 2
	1.4.	Budowanie programu ze źródeł	. 2
2.	Inte	rfejs programu	3
	2.1.	Wybór języka	3
	2.2.	Pasek menu	. 4
3.	Pod:	stawowe operacje	. 4
	3.1.	Wczytanie obrazu do programu	. 4
	3.2.	Wczytywanie pliku CSV do programu	. 6
	3.3.	Generowanie tablicy wartości pikseli szaroodcieniowych	. 7
	3.4.	Konwersja na obraz szaroodcieniowy	. 8
	3.5.	Eksport obrazu do pliku CSV	. 9
	3.6.	Porównywanie obrazów	10

1. Wprowadzenie

Program apo pozwala konwersję obrazów z postaci *.bmp/*.tif na tablicę liczb, eksport do Excela, operacje w Excelu, operacje w programie, import z Excela, porównanie wyników operacji prowadzonych w programie z wynikami z Excela, a także wyliczanie dwóch obrazów różnic a-b i b-a

1.1. Wymagania systemowe

- System operacyjny: Windows 7, Windows 10, OS X, Linux. Potencjalnie program można uruchomić na dowolnym systemie z zainstalowanym Java JRE 8.
- Java JRE 8.

1.2. Uruchomienie programu

Program jest dystrybuowany w postaci jednego pliku wykonywalnego jar. Program uruchamia się za pomocą podwójnego kliknięcia, lub z lini poleceń komendą: java -jar <scieka do pliku wykonywalnego>

1.3. Wykorzystane narzędzia programistyczne

Program został napisany w języku Java 8. Do zbudowania interfejsu graficznego wykorzystana została bibioteka JavaFX. Dodatkowo w projekcie wykorzystano poniższe narzędzia i biblioteki:

- Apache Maven https://maven.apache.org/- do budowania projektu
- Apache Commons Lang https://commons.apache.org/proper/commons-lang/
 do operacji na łańcuchach znaków
- Icons8 https://icons8.com do ikon użytych w aplikacji
- OpenJFX https://openjfx.io framework do twrozenia GUI w Javie

1.4. Budowanie programu ze źródeł

Repozytorium ze źródłami jest dostępne na githubie pod adresem: https://github.com/tomaszkyc/apo-project Do zbudowania projektu wymagany jest Java Development Kit 8 lub nowszy, oraz Maven 2.3. Projekt buduje się wywołując z lini poleceń z katalogu projektu komendę: mvn clean package jak poniżej:

Rysunek 1 Wywołanie budowania projektu ze źródeł

Po zakończeniu procesu w katalogu target zostanie utworzony plik wykonywalny jar o nazwie apo-project-1.0-SNAPSHOT.jar jak poniżej:

Rysunek 2 Pokazanie plików wynikowych po poprawnym zbudowaniu projektu

2. Interfejs programu

2.1. Wybór języka

W programie są dostępne dwie wersje językowe: polska i angielska. Język można zmienić w ustawieniach programu:

Pomoc -> Zmień język

Po wejściu do menu ukaże nam się okienko, gdzie możemy wybrać język aplikacji, a następnie kliknąć "Zastosuj":

Rysunek 3 Okno zmiany języka

2.2. Pasek menu

Rysunek 4 Pasek menu

Pasek menu (Rysunek 2) umiejscowiony jest w górnej części okna programu. Na pasku umieszczone są podstawowe funkcje programu. Niektóre operacje posiadają przypisany skrót klawiszowy (np. Otwórz plik – CTRL + O, Zamknij program – CTRL + E).

Opis obiektów menu oraz ich rozkładu poniżej:

Plik:

- Otwórz plik odpowiada za otwarcie pliku obrazu (*.bmp/*.tif) lub pliku CSV z wartościami szaroodcieniowymi obrazu
- Zamknij program zamyka program

Pomoc:

- O programie pokazuje okno z informacją o autorze i linku do repozytorium na GitHub
- Zmień język pokazuje okno z panelem do zmiany języka w programie.

3. Podstawowe operacje

3.1. Wczytanie obrazu do programu

Wczytywanie obrazu do programu odbywa się poprzez wybranie z menu: Plik -> Otwórz plik lub użycia skrótu klawiszowego CTRL + O:

Rysunek 5 Wczytywanie obrazu do programu

Następnie otworzy nam się okno z możliwością wyboru obrazu. Dodatkowo w programie został dodany filtr rozszerzeń plików, aby uniknąć błędnego wskazania pliku z rozszerzeniem, którego program nie obsługuje.

Rysunek 6 Dostępne rozszerzenie do wczytania w programie

Po wybraniu pliku obraz zostanie załadowany do programu w postaci zakładki jak poniżej:

Rysunek 7 Program po wczytaniu obrazu

3.2. Wczytywanie pliku CSV do programu

Wczytywanie obrazu do programu odbywa się poprzez wybranie z menu: Plik -> Otwórz plik lub użycia skrótu klawiszowego CTRL + O:

Rysunek 8 Wczytywanie obrazu do programu

Następnie otworzy nam się okno z możliwością wyboru obrazu. Wybieramy rozszerzenie CSV i wskazujemy plik:

Rysunek 9 Wskazanie rozszerzenia pliku CSV

Po tej operacji załadował się do programu drugi obraz (przekonwertowany z wartości pikseli szaroodcieniowych w pliku CSV):

Rysunek 10 Zaimportowany obraz z pliku CSV

3.3. Generowanie tablicy wartości pikseli szaroodcieniowych

Aby wygenerować tablicę pikseli szaroodcieniowych klikamy PPM (Prawym Przyciskiem Myszy) na wybraną zakładkę, a następnie wybieramy opcję "Pokaż tablicę wartości":

Rysunek 11 Użycie opcji "Pokaż tablicę wartości"

Po chwili wygeneruje się nam tablica wartości, którą możemy wyeksportować do CSV klikając w przycisk "Eksportuj do pliku CSV":

Rysunek 12 Przykładowe wartości szaroodcieniowe pikseli obrazu

3.4. Konwersja na obraz szaroodcieniowy

Aby przekonwertować obraz kolorowy (3 kanałowy) na obraz szaroodcieniowy klikamy PPM (Prawym Przyciskiem Myszy) na wybraną zakładkę, a następnie wybieramy opcję "Zamień na obraz szaroodcieniowy":

Rysunek 13 Pokazanie opcji "Zamień na obraz szaroodcieniowy"

Po konwersji nie będzie można ponownie wybrać tej opcji jak poniżej:

Rysunek 14 Wyszarzona opcja "Zamień na obraz szaroodcieniowy"

3.5. Eksport obrazu do pliku CSV

Aby wyeksportować obraz z danej zakładki klikamy PPM (Prawym Przyciskiem Myszy) na wybraną zakładkę, a następnie wybieramy opcję "Eksportuj do pliku CSV":

Rysunek 15 Pokazanie opcji "Eksportuj do pliku CSV"

Po kliknięciu otworzy nam się okno zapisu, gdzie domyślną nazwą pliku jest:

Yyyy-MM-dd exported-image.csv, gdzie "yyyy-MM-dd" to data wywołania tej funkcji. Zapisany plik będzie posiadał wartości szaroodcieniowe pikseli.

3.6. Porównywanie obrazów

Aby porównać dwa obrazy musimy je najpierw zaimportować do programu. Następnie dla pierwszego (oznaczamy go jako "obraz zaznaczony do porówywania") klikamy PPM (Prawym Przyciskiem Myszy) na wybraną zakładkę, a następnie wybieramy opcję "Zaznacz do porównania":

Rysunek 16 Pokazanie opcji "Zaznacz do porównania"

Następnie w pozostałych zakładkach pojawi nam się opcja w menu kontekstowym "Porównaj z zaznaczonym" jak poniżej, ale również możemy kliknąć ponownie opcję "Zaznacz do porównania" – spowoduje to możliwość porównania w przeciwnym kierunku i pojawienie się opcji w pozostałych zakładkach:

Rysunek 17 Pokazanie opcji "Porównaj z zaznaczonym"

Po kliknięciu na opcję "Porównaj z zaznaczonym" musimy poczekać na wygenerowanie się tablic z wartościami pikseli dla poszczególnych kanałów.

Rysunek 18 Okno porównywania wartości pikseli

Domyślnie pokazuje się jako pierwsza tablica z wartościami szaroodcieniowymi. Po lewej stronie mamy wartości dla obrazu, dla którego zaznaczyliśmy opcję "Zaznacz do porównania", natomiast po prawej stronie mamy wartości dla obrazu, dla którego zaznaczyliśmy opcję "Porównaj z zaznaczonym". Każda komórka reprezentuje wartość pojedynczego piksela obrazu dla zadanego kanału.

Nazwy kanałów można zobaczyć w tytułach zakładek jak poniżej:

Rysunek 19 Nazwa pliku i kanału, dla którego pokazane są wartości pikseli

W przypadku, gdy dany obraz posiada więcej niż jeden kanał - klikamy PPM (Prawym Przyciskiem Myszy) na wybraną zakładkę, a następnie wybieramy opcję "Zmień kanał obrazu" i wybieramy interesujące nas wartości dla zadanego kanału:

Rysunek 20 Zmiana kanału obrazu i pokazanie wartości pikseli dla kanału niebieskiego Po kliknięciu wartości w tabeli zostaną zmodyfikowane oraz zostanie zaktualizowana nazwa zakładki o nazwę kanału, który został wybrany.

Rysunek 21 Nazwa zakładki po zmianie kanału

Następnie dla wybranych kanałów możemy porównać wartości poprzez odjęcie wartości każdego piksela z lewej tabeli o wartość piksela z prawej tabelki i odpowiadającej mu komórki (gdzie komórka to piksel). Aby to zrobić należy kliknąć w menu "Akcje", a następnie wybrać opcję "Porównaj obrazy po wartościach pikseli" jak poniżej:

Rysunek 22 Opcja "Porównaj obrazy po wartościach pikseli"

Po chwili pojawi nam się okno z wynikiem odejmowania (dla ułatwienia został dodany tytuł okna wskazujący na informacje o danych znajdujących się w tabeli). Można również wynik tej operacji wyeksportować do pliku CSV:

Rysunek 23 Wynik różnicy dwóch obrazów

UWAGA: Porównywanie obrazów jest tylko możliwe w sytuacji, gdy obrazy mają taką samą szerokość i wysokość. W przeciwnym wypadku program nie pozwala na porównanie i pokazuje komunikat użytkownikowi:

Rysunek 24 Komunikat o błędzie w przypadku różnic w szerokości lub wysokości obrazów