CSC2001F: Data Structures II

Omowunmi Isafiade

Email: omowunmi.isafiade@uct.ac.za

Office: Room 306

Outline

- Quadratic probing A method of Collision Resolution
- Load Factor (re-visited)
- Rehashing and Overflow (The problem of Table Size)
- Secondary Clustering
- Double hashing A method of Collision Resolution
- Separate Chaining A method of Collision Resolution
- Summary

Quadratic Probing – Table Size Issue

- Recall Example: with quadratic probing we have the problem of inserting 53
- Issue...
 - Choice of Table Size & Load Factor (>= 0.5)
- Solution:
 - If table size is prime and load factor is never >0.5
- Advantage: we can always insert a new item and no cell is probed more than twice during an access.

Quadratic Probing – Table Size & Load Factor

- What happens if the table size is too small
- What happens if quadratic probing cannot resolve the collision?
- Possible Solutions:
 - Adjust the load factor of the hash table by expanding the table size (Rehashing)
 - Requires that the load factor satisfies a constraint (<= threshold value)</p>
 - Set pre-conditions for the table size

Methods of Collision Resolution?

- Recall # 1: Linear probing (LP)
 - Probe alternative locations successively (H+1, H+2, H+3,....)
 - Primary clustering (problem expensive)
- Recall # 2: Quadratic probing (QP)
 - Probe alternative locations away from original probe point H → (H+1, H+4, H+9 ...)
 - Resolves primary clustering
 - BUT!!! Results in secondary clustering

Reflection: In LP, each probe tries a different cell. Does QP always guarantee that? And if table is not full does QP always guarantee an insertion? (Table size-prime & load factor < 0.5)

Secondary Clustering

- Note: Secondary clustering is a consequence of quadratic probing
- Since items probe the same alternative cells during collision resolution
- How do we resolve this?

"Approach characteristics to quadratic probing whereby elements that hash out to the same position probe the same alternative cells"

_	
0	10
1	
2	
3	
4	337
5	617
6	123
7	93
8	17
9	
10	63

Secondary cluster formation due to probing of the Same alternative cells to resolve collision

How do we resolve secondary clustering?

Resolving Secondary Clustering?

- Alternatives to quadratic probing that circumvent secondary clustering
 - Double Hashing a method of collision resolution
 - Does not suffer from secondary clustering
 - A second hash function is used to drive the collision resolution (uses two hash functions)
 - Separate Channing Hashing a method of collision resolution
 - "Space efficient alternative. Uses a combination of an array and linked lists"
 - Less sensitive to high load factors

What is Double Hashing?

- Double Hashing a method of collision resolution
 - Uses two hash functions, h1 and h2
 - A second hash function (h2) is used to drive the collision resolution (uses two hash functions)
 - h1(k) is the position where the function hash out to (the evaluated index value)
 - h2(k) determines the probing sequence (offset) for specific locations to check (i.e for insertion)

Note:

- keys could have different probing sequence (offset)
- Contrast to quadratic probing where same alternative cells are probed to resolve collision
- In linear probing h2(k) is always 1

Double Hashing – How it works

```
DoubleHashingInsert( K )

If (table is full) throw an exception
    probe = h1 (k);

offset = h2 (k);

While (table [probe] occupied)
    probe = (probe + offset) mod m;

table[probe] = k;
```

Note: offset is determined by h2(k), so it can be different for different keys (dynamic)

Double Hashing

- Has many of the same (dis)advantages as linear probing
- BUT! Distributes key more uniformly than linear probing (no clusters formed)
- If "m" is prime, every position in the hash table eventually be examined
- Note: Avoid "cycling back" you tend to cycle back when your offset, h2(k), divides m

Double Hashing - Observations

- Assumption: every probe looks at a random location in the hash table
- Load factor is less than 1 (α <1)
- = 1 $-\alpha$ fraction of the table is empty
- Less sensitive to high load factors
- Expected number of probes required to find an empty location (unsuccessful search is 1/(1-lpha))

Double Hashing - Example

- Using double hashing, insert the following keys {337, 123, 617, 93, 63,17, 37,43, 77} into a hash table of size 13
- Hash function: h1 = k mod m
- Hash function: $h2 = 8 (k \mod 8)$
- Hash function computation gives...?

k	337	123	617	93	63	17	37	43	77
h1(k)									
h2(k)									

Double Hashing – Example (Solution)

- Using double hashing, insert the following keys {337, 123, 617, 93, 63,17, 37,43, 77} into a hash table of size 13
- Hash function: h1 = k mod m
- Hash function (Note: offset): h2 = 8 (k mod 8)
- Hash function computation gives...?

k	337	123	617	93	63	17	37	43	77
h1(k)	12	6	6	2	11	4	11	4	12
h2(k)			7				3	5	3

Double Hashing – Example (Solution)

- Step 1: Insert 337
- Step 2: Insert 123
- Step 3: Insert 617 (collision!)
 - Prob + offset = 6+7=0 (so goes to 0)
- Step 4: Insert 93
- Step 5: Insert 63
- Step 6: Insert 17
- Step 7: Insert 37 (collision!)
 - Prob + offset = 11+3 = 1 (so goes to 0)
- Step 8: Insert 43 (collision!)
 - Prob + offset = 4+5 = 9 (so goes to 9)
- Step 9: Insert 77 (collision!)
 - Prob + offset = 12 + 3 = 2 (occupied!!!)
 - 2 + 3 = 5 (insert!!!)

```
617
     37
     93
3
     17
5
     77
     123
6
8
     43
9
10
11
     63
12
     337
```

Double Hashing – Example (Solution)

Using double hashing, insert the following keys {337, 123, 617, 93, 63,17, 37,43, 77} into a hash table of size 13

k	337	123	617	93	63	17	37	43	77
h1(k)	12	6	6	2	11	4	11	4	12
h2(k)			7				3	5	3

0	617
1	37
2	93
3	
4	17
5	77
6	123
7	
8	
8	43
	43
9	4363
9	

Resolving Secondary Clustering?

- Alternatives to quadratic probing that circumvent secondary clustering
 - Double Hashing a method of collision resolution
 - Does not suffer from secondary clustering
 - A second hash function is used to drive the collision resolution (uses two hash functions)
 - Separate Channing Hashing a method of collision resolution
 - "Space efficient alternative. Uses a combination of an array and linked lists"
 - Less sensitive to high load factors

Separate Chaining Hashing

- Separate Channing Hashing a method of collision resolution
 - Maintains an array of linked lists
 - For an array of linked lists, the hash function tells us which list to insert an item X
 - And during a find operation, which list contains X
 - AIM: Although searching linked lists is a linear operation, if the lists are short the search time will be very fast

Separate Chaining Example

- Using separate chaining insert the keys {22, 32, 18, 19 and 30, 25, 42, 24} into a hash table of size 5 using the hash function h(k) = k mod m
- h(22) = 2
- h(32) = 2
- h(18) = 3
- h(19) = 4
- h(30) = 0
- h(25) = 0
- h(42) = 2
- h(24) = 4
- h(44) = 4

Separate Chaining Hashing: Observations

- Load factor can be > 1.0
 - Less sensitive to high load factor
 - Rehashing is avoided
- Choose a hash function that distributes key equitably
 - Reduces cost of searching long linked lists attached to single probe
 - Choose a sufficiently large (prime) table size to ensure that lists are short
 - E.g for an array of 2000 items, choose a prime approximately close to (2000/3).
 - i.e 701 (prime) ensures not more than 3 collisions per index

Separate Chaining Hashing: Observations

Example: if keys are not uniformly distributed,
performance is degraded (poor performance)

Defeats the aim of hashing(fast access)

keys

Index
0
1

2

3

4

Hash Tables versus Binary Search Trees

"Hash table useful instead of binary search tree if you do not need order statistics and are worried about non-random points"

S/N	Hash Tables	Binary Search Trees
1	Not efficient for finding minimum element	Good for finding min or max
2	Searches for strings are inefficient when the exact string is not known	Can quickly find all strings (items) within a certain range
3	O(1) on searches and inserts	O(log N) bound on searches and inserts
4	Good when no ordering is needed or when data is sorted.	Good when ordering is needed and the data is not sorted.

Next Class...

The Priority Queue ... (Chapter 21)

Reference Textbook:

"Data Structures & Problem Solving using Java", 4th Ed., Mark A. Weiss.