Practice Problems: Linear First-Order ODEs

Lesson 14 - Prof. Ditkowski's ODE 1

Part A: Converting to Standard Form (5 problems)

- 1. Convert to standard form: $3ty' 6y = t^2e^t$
- 2. Convert to standard form: $\sin(t)y' + \cos(t)y = \tan(t)$
- 3. Convert to standard form: $(t^2 + 1)y' + ty = \ln t$
- 4. Convert to standard form: $e^t y' + 2e^t y = t$
- 5. Identify which equations are linear:
 - (a) $y' + ty^2 = \sin t$
 - (b) $yy' + t = e^t$
 - (c) $y' + (\sin t)y = \cos t$
 - (d) $y' + y = e^y$

Part B: Basic Integrating Factor Problems (6 problems)

- 6. Solve: $y' + 3y = e^{2t}$
- 7. Solve: y' 2y = t
- 8. Solve: $y' + y = \sin t$
- 9. Solve: $y' + \frac{1}{t}y = t$ for t > 0
- 10. Solve: $y' \frac{2}{t}y = t^2$ for t > 0
- 11. Solve: ty' + y = t for t > 0

Part C: Complex Integration Required (5 problems)

- 12. Solve: $y' + (\tan t)y = \sec t$ on $(-\pi/2, \pi/2)$
- 13. Solve: $y' + \frac{2t}{1+t^2}y = \frac{1}{1+t^2}$
- 14. Solve: $y' + e^t y = e^{2t}$
- 15. Solve: $y' + \frac{1}{t \ln t}y = \frac{1}{t}$ for t > e
- 16. Solve: $y' + (\cot t)y = \csc t$ on $(0, \pi)$

Part D: Initial Value Problems (5 problems)

- 17. Solve: y' + 2y = 4, y(0) = 3
- 18. Solve: $y' y = e^{2t}$, y(0) = 2
- 19. Solve: $ty' + 2y = t^3$, y(1) = 2 for t > 0
- 20. Solve: $y' + (\cos t)y = \cos t$, y(0) = 0
- 21. Find the solution of $y' + \frac{3}{t}y = \frac{1}{t^2}$ that remains bounded as $t \to \infty$

Part E: Theoretical and Proof Problems (4 problems)

- 22. Prove that if y_1 and y_2 are solutions of y' + p(t)y = g(t), then $y_1 y_2$ is a solution of the homogeneous equation.
- 23. Show that the integrating factor $\mu(t) = e^{\int p(t)dt}$ is never zero.
- 24. Prove that if p(t) is continuous on [a, b] and p(t) > 0 for all $t \in [a, b]$, then any solution of y' + p(t)y = 0 with y(a) > 0 satisfies y(t) > 0 for all $t \in [a, b]$.
- 25. Let y' + p(t)y = g(t) where p(t) and g(t) are continuous and periodic with period T. Prove that there exists a unique periodic solution with period T.

Part F: Exam-Style Mixed Problems (5 problems)

- 26. Consider the equation $y' + \frac{2}{t}y = \frac{\sin t}{t^2}$ for t > 0.
 - (a) Find the general solution
 - (b) Find the solution satisfying $\lim_{t\to\infty} y(t) = 0$
 - (c) Verify your solution by substitution
- 27. A tank contains 100 liters of water with 10 kg of salt dissolved. Fresh water enters at 2 L/min and the mixture leaves at 2 L/min.

- (a) Set up the differential equation for salt amount S(t)
- (b) Solve for S(t)
- (c) When will the salt concentration reach 0.01 kg/L?
- 28. For the equation $y' + p(t)y = e^{-\int p(t)dt}$:
 - (a) Show that $y_p = t \cdot e^{-\int p(t)dt}$ is a particular solution
 - (b) Write the general solution
 - (c) Explain why this forcing function is special
- 29. Consider y' + ay = b where a, b are constants with $a \neq 0$.
 - (a) Find the general solution
 - (b) Find $\lim_{t\to\infty} y(t)$ if a>0
 - (c) Sketch solution curves for a > 0 and a < 0
- 30. The equation $ty' + (1 t)y = e^{-t}$ for t > 0:
 - (a) Convert to standard form
 - (b) Identify any singular points
 - (c) Find the general solution
 - (d) Discuss behavior as $t \to 0^+$ and $t \to \infty$

Solutions

Part A Solutions

For Problem 1: Divide by 3t to get $y' - \frac{2}{t}y = \frac{te^t}{3}$

Solution: Complete solutions with detailed steps...

[Full solutions would be provided for all problems, showing complete work, alternative methods where applicable, and connections to exam techniques. Each solution would include verification by substitution where appropriate.]