Physics 89 (Mathematical Methods) Problem Set #5 Due by February 24, 2023

Matrices that are important in Physics

1 Pauli matrices

The three matrices:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

are known as *Pauli spin matrices*. They play an important role in the quantum mechanical theory of particles with spin.¹

(a) Calculate the following matrices:

$$AB = ?$$
, $BA = ?$, $AC = ?$, $CA = ?$, $BC = ?$, $CB = ?$

Is AB equal to BA or not?

- (b) Express your answers to part (a) in terms of the matrices $\pm iA$, $\pm iB$, and $\pm iC$.
- (c) Calculate

$$A^2 = ?, \qquad B^2 = ?, \qquad C^2 = ?,$$

(d) Denote

$$\sigma_1 = A, \qquad \sigma_2 = B, \qquad \sigma_3 = C, \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The results of parts (b)-(c) can be summarized in the form

$$\sigma_m \sigma_n = \sum_{k=1}^{3} \alpha_{mnk} \sigma_k + \beta_{mn} I, \qquad m = 1, 2, 3, \qquad n = 1, 2, 3,$$

where α_{mnk} and β_{mn} are (possibly complex) numbers that depend on the indices m, n, k. Express these numbers in terms of the Levi-Civita tensor ϵ_{mnk} and the Kronecker delta tensor δ_{mn} .

(e) The **trace** of a square matrix is defined as the sum of the elements on the diagonal.

$$\operatorname{tr} M = \sum_{i=1}^{n} M_{ii}$$
 (the trace of an $n \times n$ matrix M)

Calculate tr(ABC).

Note: For any two $n \times n$ matrices F and G we have an identity that tr(FG) = tr(GF).

¹The standard notation of Quantum Mechanics is $\sigma_x = A$, $\sigma_y = B$, and $\sigma_z = C$. See part (d) below.

2 Upper Triangular matrices

A square matrix with all zero entries below the diagonal is called *upper triangular*. Here is an upper triangular 3×3 matrix:

$$M = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

- (a) Calculate M^T (the transpose of M);
- (b) Calculate $\det M$.
- (c) Calculate the matrix products MM^T and M^TM . Are they equal or not?
- (d) Calculate M^{-1} (the inverse of M).

3 The Jacobian

A coordinate system on the plane is an assignment of two variables to each point. For example, the polar coordinate system assigns (r, θ) to the point with Cartesian coordinates

$$x = r \cos \theta$$
 and $y = r \sin \theta$.

The *Jacobian* of the coordinate system is defined as the **determinant** of the matrix of first derivatives

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}.$$

- (a) Calculate the Jacobian of polar coordinates. Simplify until you get an answer for J that is independent of θ .
- (b) An elliptical coordinate system assigns the variables (u, v) to a point with Cartesian coordinates

$$x = a \cosh u \cos v$$
, $y = a \sinh u \sin v$,

where a is a given constant.

Calculate the Jacobian

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$

Express the result in terms of $\cosh u$ and $\cos v$ only (without using $\sinh u$ or $\sin v$).

(c) For spherical coordinates in 3D,

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$,

calculate the Jacobian, which is now defined as

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{vmatrix}.$$

Simplify until you get a result that is independent of ϕ .

4 The Pfaffian and relativistic electrodynamics

An antisymmetric matrix is a matrix that satisfies $M^T = -M$. When electrodynamics is combined with Special Relativity, it is convenient to combine the electric field components (E_x, E_y, E_z) with the magnetic field components (B_x, B_y, B_z) into a 4×4 antisymmetric matrix:

$$M = \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{pmatrix}$$

where c is the speed of light.²

- (a) Calculate det M by Laplace development. Advice: try to simplify the cofactors by collecting $E_x B_x + E_y B_y + E_z B_z = \vec{E} \cdot \vec{B}$ where it appears.
- (b) Show that $\det M = \alpha (\vec{E} \cdot \vec{B})^2$, where α is a numerical coefficient that you need to determine. (It contains c.)

Note: in general the determinant of an antisymmetric $(2n) \times (2n)$ matrix can be expressed as a square of a polynomial in its coefficients (like $\vec{E} \cdot \vec{B}$ above). The square root of det M in this case is called the *Pfaffian* of M. The Pfaffian is only defined for an **antisymmetric matrix**. Also, it turns out that the determinant of an antisymmetric $m \times m$ matrix with odd m is always zero.

²This matrix is called the *field strength tensor*.