Affine Arithmetic

Bogdan Burlacu

September 15, 2020

1 Introduction

In affine arithmetic, a quantity *x* is represented as the following affine form:

$$x = x_0 + x_1 \epsilon_1 + \dots + x_n \epsilon_n \tag{1}$$

where ϵ_1 , ..., ϵ_n are symbolic real variables whose values are unknown but assumed to lie in [-1, 1]. Note that the number n changes during the calculation.

In the case of a multivariate function $f = (x_1, ..., x_m)$ the following affine forms are initialized:

$$x_1 = \frac{\overline{x}_1 + \underline{x}_1}{2} + \frac{\overline{x}_1 - \underline{x}_1}{2} \epsilon_1 \tag{2}$$

$$\vdots (3)$$

$$x_m = \frac{\overline{x}_m + \underline{x}_m}{2} + \frac{\overline{x}_m - \underline{x}_m}{2} \epsilon_m \tag{4}$$

(5)

where $[\underline{x}_k, \overline{x}_k]$ is the domain of variable x_k .

An affine form can be converted to an interval using the formula:

$$I(x) = [x_0 - \Delta, x_0 + \Delta] \qquad \text{where } \Delta = \sum_{i=1}^{n} |x_i|$$
 (6)

1.1 Linear operations

For two affine forms, $x = x_0 + \sum_{i=1}^n x_i \epsilon_i$ and $y = y_0 + \sum_{i=1}^n y_i \epsilon_i$ the following linear operations are defined:

$$x \pm y = (x_0 \pm y_0) + \sum_{i=1}^{n} (x_i \pm y_i) \epsilon_i$$
 (7)

$$x \pm \alpha = (x_0 \pm \alpha) + \sum_{i=1}^{n} x_i \epsilon_i$$
 (8)

$$\alpha x = (\alpha x_0) + \sum_{i=1}^{n} (\alpha x_i) \tag{9}$$

A nonlinear function f(x) of an affine form is generally not able to be represented directly as an affine form. We must therefore consider a linear approximation of f and a representation of the approximation error by introducing a new noise symbol ϵ_{n+1} .

Let X = I(x) be the range of x. For a nonlinear function f(x), a linear approximation in the form ax + b will have a maximum approximation error δ :

$$\delta = \max_{x \in X} |f(x) - (ax + b)| \tag{10}$$

The result of the nonlinear operation can then be represented as follows:

$$f(x) = ax + b + \delta \epsilon_{n+1} \tag{11}$$

$$= a(x_0 + x_1\epsilon_1 + \dots + x_n\epsilon_n) + b + \delta\epsilon_{n+1}$$
(12)

Nonlinear binomial operations are calculated similarly.

2 Minima and maxima of multivariate functions

We consider a multivariate nonlinear function

$$y = f(x_1, ..., x_m) \tag{13}$$

The domain of this function is the m-dimensional region (the box):

$$X^{(0)} = \left(X_1^{(0)}, ..., X_m^{(0)}\right) \tag{14}$$

$$= \left([\underline{X_1^{(0)}}, \overline{X_1^{(0)}}], ..., [\underline{X_m^{(0)}}, \overline{X_m^{(0)}}] \right)$$
 (15)

One of the first methods to calculate the bounds of the codomain of f is Fujii's method, in which the maxima and minima are calculated with guaranteed accuracy by means of recursively dividing X into subregions and applying interval arithmetic (IA) to bound the range of f in each region. The method discards the subregions that are guaranteed not to contain the point corresponding to the minimum (maximum) value.

2.1 Miyajima and Kashiwagi's method

Without loss of generality, we consider finding maxima of a two-dimensional function $f(x_1, x_2)$ in the box $X^{(0)} = (X_1^{(0)}, X_2^{(0)}) = ([X_1^{(0)}, \overline{X_1^{(0)}}], [X_2^{(0)}, \overline{X_2^{(0)}}]).$

For an interval J, let the center and the width of J be c(J) and w(J), respectively.

For a box X, let $F_A(X)$ be the range boundary of f in X obtained by applying AA and let the upper bound of $I(F_A(X))$ be $\overline{F_A(X)}$.

Algorithm 1: Algorithm for computing maxima of multivariate function (part 1)

Data: $f(\mathbf{x})$, X (domain of f), stopping criteria ϵ_r , ϵ_b

Result: Maxima (minima) of f

// Step 1

1 Initialize lists S and T for storing boxes and range boundaries:

 $_{2}$ $\mathcal{S}\leftarrow\emptyset$;

з $\mathcal{T} \leftarrow \emptyset$;

// Step 2: divide $X^{(0)}$ into subregions $X^{(1)}$ and $X^{(2)}$

$$\begin{array}{c|c} \mathbf{4} & \mathbf{if} \ w(X_{1}^{(0)}) < w(X_{2}^{(0)}) \ \mathbf{then} \\ \\ \mathbf{5} & X^{(1)} = ([\underline{X_{1}^{(0)}}, \overline{X_{1}^{(0)}}], [\underline{X_{2}^{(0)}}, c(X_{2}^{(0)})]) \\ \\ X^{(2)} = ([\underline{X_{1}^{(0)}}, \overline{X_{1}^{(0)}}], [c(X_{2}^{(0)}), \overline{X_{2}^{(0)}}]) \end{array}$$

7
$$X^{(1)} = ([\underline{X_1^{(0)}}, c(X_1^{(0)})], [\underline{X_2^{(0)}}, \overline{X_2^{(0)}}])$$

$$X^{(2)} = ([c(X_1^{(0)}), \overline{X_1^{(0)}}], [\underline{X_2^{(0)}}, \overline{X_2^{(0)}}])$$

8 Calculate $F_A(X^{(1)})$ and $F_A(X^{(2)})$, then calculate $f_{\max}^{(1)}$ and $f_{\max}^{(2)}$ (use algorithm 3). The lower bound of the maxima is then given as $f_{\text{max}} = \max(f_{\text{max}}^{(1)}, f_{\text{max}}^{(2)})$

// Step 4

9 if
$$\overline{F_A(X^{(1)})} < f_{\max}$$
 then

Insert
$$X^{(2)}$$
 and $F_A(X^{(2)})$ into S and discard $X^{(1)}$.

 $\overline{\mathbf{F}_A(X^{(2)})} < f_{\max}$ then

Insert
$$X^{(1)}$$
 and $\overline{F_A}(X^{(1)})$ into S and discard $X^{(2)}$.

13 else

Insert
$$X^{(1)}$$
, $F_A(X^{(1)})$, $X^{(2)}$, $F_A(X^{(2)})$ into S .

```
Algorithm 2: Algorithm for computing maxima of multivariate function (part 2)
    Data: f(\mathbf{x}), X (domain of f), stopping criteria \epsilon_r, \epsilon_b
    Result: Maxima (minima) of f
    // Step 5
 1 while S \neq \emptyset do
          Find the box X^{(i)} \in \mathcal{S} for which F_A(X^{(i)}) is largest.
 2
                                               X^{(i)} = \arg\max_{i} \left( F_A(X^{(i)}) \right)
 3
          Remove X^{(i)} from S.
 4
          Select X^{(i)} and F_A(X^{(i)}) as the box and range to be processed.
 5
          Calculate f_{\text{max}}^{(i)} (the candidates of f_{\text{max}}) by utilizing X^{(i)} and F_A(X^{(i)}) and by applying
 6
            algorithm 3. Update f_{\text{max}} = \max\{f_{\text{max}}^{(i)}\}.
          Discard any box X and range boundary F_A(X) from S and T for which \overline{F_A(X)} < f_{\text{max}}.
 7
          Narrow X^{(i)} down by utilizing X^{(i)}, F_A(X^{(i)}) and f_{\text{max}} using algorithm 4.
 8
          Divide X^{(i)} into X^{(j)} and X^{(k)}.
 9
          if w(X_1^{(i)}) < w(X_2^{(i)}) then
10
                                              X^{(j)} = ([X_1^{(i)}, \overline{X_1^{(i)}}], [X_2^{(i)}, c(X_2^{(i)})])
11
                                              X^{(k)} = ([X_1^{(i)}, \overline{X_1^{(i)}}], [c(X_2^{(i)}), \overline{X_2^{(i)}}])
          else
12
                                              X^{(j)} = ([X_1^{(i)}, c(X_1^{(i)})], [X_2^{(i)}, \overline{X_2^{(i)}}])
13
                                              X^{(k)} = ([c(X_1^{(i)}), \overline{X_1^{(i)}}], [X_2^{(i)}, \overline{X_2^{(i)}}])
          Calculate F_A(X^{(j)}) and F_A(X^{(k)}).
14
          \begin{array}{l} \textbf{if} \max_{1 \leq h \leq m} w(X_h^{(j)}) < \epsilon_r \ \textit{and} \ w(I(F_A(X^{(j)}))) < \epsilon_b \ \textbf{then} \\ \big| \ \operatorname{Insert} X^{(j)} \ \text{and} \ F_A(X^{(j)}) \ \text{into} \ \mathcal{T}. \end{array}
15
16
          else
17
               Insert X^{(j)} and F_A(X^{(j)}) into S.
18
          if \max_{1 \leq h \leq m} w(X_h^{(k)}) < \epsilon_r and w(I(F_A(X^{(k)}))) < \epsilon_b then 
 \mid \text{Insert } X^{(k)} \text{ and } F_A(X^{(k)}) \text{ into } \mathcal{T}.
19
20
21
           Insert X^{(k)} and F_A(X^{(k)}) into S.
22
    // Step 6
Group together boxes in \mathcal T that share a common point. Let Y^{(1)},...,Y^{(l)} be one such group.
      Then, the maxima is given by \bigcup_{h=1}^{l} I(F_A(Y^{(h)})), with corresponding point \bigcup_{h=1}^{l} Y^{(h)}.
      Repeat for all groups.
```

Algorithm 3: Algorithm 1

- // Compared to Fujii's method, this algorithm is able to calculate candidates bounding $f_{
 m max}$ more closely, therefore this allows to discard more subregions (boxes) in the initial stage.
- 1 Suppose $F_A(X)$ is calculated as follows:

$$F_A(X) = a_0 + a_1 \epsilon_1 + \dots + a_m + a_{m+1} + \dots + a_n \epsilon_n$$
 (16)

Let the point (vector) $y = (y_1, ..., y_m)$ be as follows:

$$y_i = \begin{cases} \overline{X_i} & 0 < a_i \\ \underline{X_i} & a_i < 0 \quad (i = 1, ..., m) \end{cases}$$

$$(17)$$

(18)

Then, the candidate for f_{max} is calculated as f(y).

Algorithm 4: Algorithm 2

- 1 Calculate $F_A(X)$ using Equation (16).
- 2 Calculate

$$\alpha = \sum_{i=m+1}^{n} |a_i| \tag{19}$$

 $\mathbf{3}$ forall i = 1, ..., m do

if $a_i \neq 0$ then

Apply IA (interval arithmetic) as follows:

$$\varepsilon_i^* = \frac{1}{a_i} \left(f_{\text{max}} - a_0 - \alpha - \sum_{j=1, j \neq i}^m (a_j \times [-1, 1]) \right)$$
 (20)

6

9

10

11

13

15

7 Let
$$\varepsilon_i^* = [-1, 1]$$
.

8

Narrow
$$X_i$$
 down as follows: **if** $\varepsilon_i^* \in [-1, 1]$ **then**

$$X_i = \begin{cases} [\underline{X_i} + r(X_i)(\underline{\varepsilon_i^*} + 1), \overline{X_i}] & 0 < a_i \\ [\underline{X_i}, \overline{X_i} - r(\overline{X_i})(1 - \overline{\varepsilon_i^*})] & a_i < 0 \end{cases} \text{ where } r(X_i) = \frac{\overline{X_i} - \underline{X_i}}{2}$$

else if $\varepsilon_i^* \leq -1$ and $\overline{\varepsilon_i^*} \in [-1, 1)$ and $a_i < 0$ then

$$X_i = [X_i, \overline{X_i} - r(X_i)(1 - \overline{\varepsilon_i^*})]$$

 $X_i = [\underline{X_i}, \overline{X_i} - r(X_i)(1 - \overline{\varepsilon_i^*})]$ else if $\underline{\varepsilon_i^*} \in (-1, 1]$ and $1 \le \overline{\varepsilon_i^*}$ and $0 < a_i$ then 12

$$X_i = [\underline{X_i} + r(X_i)(\varepsilon_i^* + 1), \overline{X_i}]$$

else 14

We are not able to narrow X_i down.