Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học

Nguyễn Quản Bá Hồng*

Ngày 30 tháng 4 năm 2025

Tóm tắt nội dung

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/. Latest version:

• Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.pdf.

 $TeX: \verb| URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.tex.$

• Slide: Mathematical Analysis – Slide: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.pdf.

 $T_{\rm E}X: \ {\tt URL:https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.tex.}$

- Codes:
 - o C++: https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/C++.
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/Python.

Mục lục

1	Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản 1.1 Numbers – Các loại số	4
2	Sequence – Dãy Số	•
3	Function – Hàm Số	9
4	Continuity – Sự Liên Tục	9
5	Series – Chuỗi Số	9
6	Derivative & Differentiability – Đạo Hàm & Tính Khả Vi	9
7	Integral – Tích Phân7.1 SymPy/integrals module7.2 Leibniz integral rule – Quy tắc tích phân Leibniz	ļ
8	Functional Equation – Phương Trình Hàm	6
9	Fourier transform – Biến đổi Fourier	
10	Miscellaneous 10.1 See also	
Tài liâu		

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com, hong.nguyenquanba@umt.edu.vn. Bến Tre City, Việt Nam.

1 Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản

Resources - Tài nguyên.

- 1. Đặng Đình Áng. Nhập Môn Giải Tích.
- 2. [Rud76]. Walter Rudin. Principles of Mathematical Analysis.
- 3. [Tao22a]. TERENCE TAO. Analysis I.
- 4. [Tao22b]. TERENCE TAO. Analysis II.

Question 1 (Definition of mathematical analysis). What is mathematical analysis? Cf. mathematical analysis with other types of analysis.

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.1: What Is Analysis?, pp. 1–2], Wikipedia/mathematical analysis. For other types of analysis, see, e.g., Wikipedia/analysis.

Question 2 (Motivation of mathematical analysis). Why do mathematical analysis?

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.2: Why Do Analysis?, pp. 2–10]

Example 1 (Division by zero & infinity). The cancellation law for multiplication $ac = bc \Rightarrow a = b$ does not work when c = 0 & $c = \pm \infty$. The cancellation law for addition $a + c = b + c \Rightarrow a = b$.

Example 2 (Cancellation properties).

See, e.g., Wikipedia/cancellation property.

Example 3 (Geometric series – Chuỗi hình học). When does the geometric series $G(a) := \sum_{i=0}^{\infty} \frac{1}{a^i}$ converge? When does G(a) diverge?

1.1 Numbers – Các loai số

Trong chương trình Toán phổ thông, học sinh đã được học: số tự nhiên ở chương trình Toán 6 [Thá+23a; Thá+23b], & số hữu tỷ & số thực ở chương trình Toán 7,

1.2 Notations & conventions – Ký hiệu & quy ước

Đặt tập hợp các đa thức (polynomial) 1 biến với hệ số nguyên, hệ số hữu tỷ, hệ số thực, hệ số phức lần lượt cho bởi:

$$\mathbb{Z}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Z}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{Q}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Q}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{R}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{C}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{C}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Ta có quan hệ hiển nhiên $\mathbb{N}[x] \subset \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x] \subset \mathbb{C}[x]$. Tổng quát, với \mathbb{F} là 1 trường bất kỳ, tập hợp các đa thức 1 biến với hệ số thuộc trường \mathbb{F} (e.g., $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) cho bởi:

$$\mathbb{F}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{F}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Tập xác định của đa thức có thể là toàn bộ trường số thực \mathbb{R} hoặc trường số phức \mathbb{C} , i.e., $D_P = \text{dom}(P) = \mathbb{R}$ or $D_P = \text{dom}(P) = \mathbb{C}$, tùy vào trường \mathbb{F} của các hệ số & mục đích sử dụng đa thức.

Problem 1 (Cf: Calculus vs. Mathematical Analysis). Distinguish & compare Calculus vs. Mathematical Analysis.

Analysis is more pure mathematics. Calculus is more applied mathematics.

Problem 2 (Examples & counterexamples in mathematical analysis – Ví dụ & phản ví dụ trong phân tích toán học). Find, from simple to advanced, examples & counterexamples to each mathematical concepts & mathematical results, including lemmas, propositions, theorems, & consequences.

- Tìm các ví dụ & phản ví dụ từ đơn giản đến nâng cao cho mỗi khái niệm toán học & kết quả toán học, bao gồm các bổ đề, mệnh đề, định lý, & hệ quả.

Problem 3 (Python SymPy). Study SymPy to support calculus & mathematical analysis.

2 Sequence – Dãy Số

Bài toán 1 ([VMS24], p. 32, 1.1, VNUHCM UIT). Cho $a, b \in \mathbb{R}$, a < b. Xét dãy số

$$\begin{cases} x_0 = a, \ x_1 = b, \\ x_{n+1} = x_n + \frac{1}{2} x_{n-1} \left(1 - \cos \frac{\pi}{n} \right). \end{cases}$$

Chứng minh $\{x_n\}$ hội tụ.

Bài toán 2 ([VMS24], p. 32, 1.2, ĐH Đồng Tháp). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$u_n = \sum_{i=1}^n \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}, \ \forall n \in \mathbb{N}^*.$$

(a) Tìm $n \in \mathbb{N}$ lớn nhất để $u_n < \frac{2023}{2024}$. (b) Tính giới hạn $\lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{2024} u_i^n} = \sqrt[n]{u_1^n + u_2^n + \dots + u_{2024}^n}$.

Bài toán 3 ([VMS24], p. 32, 1.3, ĐHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ thỏa $\frac{1}{2} < a_n < 1$, $\forall n \in \mathbb{N}^{\star}$. Dãy số $\{x_n\}$ đặt bởi

$$x_1 = a_1, \ x_{n+1} = \frac{2(a_{n+1} + x_n) - 1}{1 + 2a_{n+1}x_n}, \ \forall n \in \mathbb{N}^\star.$$

(a) Chứng minh dãy số $\{x_n\}_{n=1}^{\infty}$ tăng $\mathscr E$ bị chặn trên. (b) Tìm $\lim_{n\to+\infty}x_n$.

Bài toán 4 ([VMS24], p. 33, 1.4, DH Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} x_1 = 2024, \\ x_{n+1} = \frac{x_n^2}{3|x_n| + 4}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Chứng minh $x_8 < 1$. (b) Chứng minh $\{x_n\}_{n=1}^{\infty}$ hội tụ $\mathscr E$ tìm giới hạn.

3 Function – Hàm Số

4 Continuity – Sự Liên Tục

Definition 1 ([Tao22a], Def. 6.1.1, p. 109: distance between 2 reals). Given $x, y \in \mathbb{R}$, their distance d(x, y) is defined to be $d(x, y) := |x - y| \in [0, \infty)$.

Definition 2 ([Tao22a], Def. 6.1.2, p. 109: ε -close reals). Let $\varepsilon > 0$ be a real number. $x, y \in \mathbb{R}$ is said to be ε -close iff $d(x, y) \leq \varepsilon$.

5 Series – Chuỗi Số

Bài toán 5 ([VMS24], p. 33, 2.1, ĐHCNTT TpHCM). Khảo sát sự hội tụ của chuỗi số

$$\sum_{i=1}^{+\infty} \frac{\beta \sin^2 l\alpha}{1 + \beta \sin^2 k\alpha}, \ \alpha \notin \{k\pi : k \in \mathbb{Z}\}, \ \beta > 0.$$

6 Derivative & Differentiability – Đạo Hàm & Tính Khả Vi

Bài toán 6 ([VMS24], p. 33, 3.1, VNUHCM UIT). Cho f là hàm số thực trên $(0, \infty)$. Giả sử

$$f(x^{\alpha}) = f(x)\sin^2\alpha + f(1)\cos^2\alpha, \ \forall x \in (0, \infty), \ \forall \alpha \in \mathbb{R}.$$

Chứng minh f khả vi tại 1.

Bài toán 7 ([VMS24], p. 34, 3.2, DH Đồng Tháp). (a) Chứng minh với mỗi $n \in \mathbb{N}^*$, phương trình $2x = \sqrt{x+n} + \sqrt{x+n+1}$ có nghiệm dương duy nhất, ký hiệu là x_n . (b) Tính $a := \lim_{n \to +\infty} \frac{x_n}{\sqrt{n}}, b := \lim_{n \to +\infty} x_n - a\sqrt{n}$.

Bài toán 8 ([VMS24], p. 34, 3.3, DH Đồng Tháp). *Cho*

$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Chứng minh f khả vi tại 0 nhưng f không khả vi tại các điểm $x_n := \frac{2}{2n+1}$ với $n \in \mathbb{Z}$.

Bài toán 9 ([VMS24], p. 34, 3.4, DH Đồng Tháp). Giả sử f khả vi liên tục trên $(0, \infty)$, f(0) = 1. Chứng minh nếu $|f(x)| \le e^{-x}$, $\forall x \ge 0$ thì tồn tại $x_0 > 0$ để $f'(x_0) = -e^{-x_0}$.

Bài toán 10 ([VMS24], p. 34, 3.5, DHGTVT). Cho $a \in \mathbb{R}$, $b \in (0, \infty)$. Hàm f xác định trên [-1, 1], được cho bởi

$$f(x) = \begin{cases} x^a \sin x^{-b} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Tìm tất cả các giá trị của a để hàm f liên tục trên [-1,1]. (b) Tìm tất cả các giá trị của a để tồn tại f'(0). (c) Tìm điều kiện của a,b để tồn tại f''(0).

Bài toán 11 ([VMS24], p. 35, 3.7, HUS). Cho $f: \mathbb{R} \to \mathbb{R}$ là hàm số được xác định bởi công thức

$$f(x) = \begin{cases} x^2 + a & \text{if } x \le 0, \\ be^x + x & \text{if } x > 0, \end{cases}$$

 $v\acute{o}i\ a,b\in\mathbb{R}$: tham số. Xác định a,b để f có nguyên hàm trên \mathbb{R} .

Bài toán 12 ([VMS24], p. 35, 3.8, ĐH Vinh). Cho hàm $f \in C(\mathbb{R}, \mathbb{R})$ thỏa $f_{2024}(x) = x$, $\forall x \in \mathbb{R}$ với

$$\begin{cases} f_{n+1}(x) = f(f_n(x)), \ \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \\ f_1(x) = f(x), \ \forall x \in \mathbb{R} \end{cases}$$

Chứng minh $f_2(x) = x, \forall x \in \mathbb{R}$.

Bài toán 13 ([VMS24], p. 35, 3.9, DH Vinh). Cho hàm

$$f(x) = \left(\frac{2023^x + 2024^x}{2}\right)^{\frac{1}{x}}, \ x > 0.$$

(a) Tìm $\lim_{x\to 0^+} f(x)$. (b) Chứng minh f là hàm số đơn điệu tăng trên $(0,+\infty)$.

Bài toán 14 ([VMS24], p. 36, 4.1, HCMUT). (a) Cho $f \in C^3(\mathbb{R}, [0, +\infty))$ thỏa $\max_{x \in \mathbb{R}} |f'''(x)| \le 1$. Chứng minh

$$f''(x) \ge -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

(b) Tìm tất cả các hàm số f thỏa mãn điều kiên của (a) thỏa

$$f''(x) = -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

Bài toán 15 ([VMS24], p. 36, 4.2, VNUHCM UIT). Cho hàm số $f:[0,1]\to\mathbb{R}$) liên tục trên [0,1], khả vi trên (0,1) sao cho $\exists M>0,\ \exists c\in[0,1]$ thỏa f(c)=0 &

$$|f'(x)| \le M|f(x)|, \ \forall x \in (0,1).$$

Chứng minh $f(x) = 0, \forall x \in [0, 1].$

Bài toán 16 ([VMS24], p. 36, 4.3, DH Đồng Tháp). Cho f khả vi trên \mathbb{R} & f' giảm ngặt trên \mathbb{R} . (a) Chứng minh

$$f(x+1) - f(x) < f'(x) < f(x) - f(x-1), \ \forall x \in \mathbb{R}.$$

(b) Chứng minh nếu tồn tại $\lim_{x\to +\infty} f(x) = L$ thì $\lim_{x\to +\infty} f'(x) = 0$. (c) Tìm hàm số g khả vi trên \mathbb{R} & tồn tại $\lim_{x\to +\infty} g(x) = L$ nhưng $\lim_{x\to +\infty} g'(x) \neq 0$.

Bài toán 17 ([VMS24], p. 37, 4.4, ĐHGTVT). $Gi\mathring{a}$ sử V là tập hợp các hàm liên tục $f:[0,1]\to\mathbb{R}$ & khả vi trên (0,1) thỏa f(0)=0, f(1)=1. Xác định các giá trị $\alpha\in\mathbb{R}$ để với mỗi $f\in V$, luôn tồn tại $\xi\in(0,1)$ thỏa $f(\xi)+\alpha=f'(\alpha)$.

Bài toán 18 ([VMS24], p. 37, 4.5, HUS). Cho $f:[0,3] \to \mathbb{R}$ là hàm liên tục trên [0,3] & khả vi trong (0,3). Chứng minh tồn tại $c \in (0,3)$ thỏa 2f'(c) = f(3) - f(2) + f(1) - f(0).

Bài toán 19 ([VMS24], p. 37, 4.6, ĐH Mỏ-Địa chất). Giả sử có chuỗi có 2 đầu hướng ra vô cực

$$\cdots + f''(x) + f'(x) + f(x) + \int_0^x f(t) dt + \int_0^x \int_0^t f(s) ds dt + \cdots$$

 \mathcal{E} hội tụ đều trên khoảng (-1,1). Chuỗi là biểu diễn của số nào?

Bài toán 20 ([VMS24], p. 37, 4.7, ĐH Vinh). Cho hàm $f \in C^2(\mathbb{R}, \mathbb{R})$ & thỏa $f(x) \leq 2024$, $\forall x \in \mathbb{R}$. Chứng minh tồn tại $x \in \mathbb{R}$ thỏa f''(x) = 0.

7 Integral – Tích Phân

Bài toán 21 ([VMS24], p. 37, 5.1, VNUHCM UIT). Cho $\alpha \in (0, \infty)$ & $f \in C([0, 1])$ nghịch biến, $a \in (0, 1)$ thỏa

$$\int_0^a f(t) \, \mathrm{d}t < \frac{a}{2025}, \ f(0) = \beta > 0.$$

Chứng minh phương trình $f(x) = x^{2024}$ có nghiệm trong [0,1].

Bài toán 22 ([VMS24], p. 38, 5.2, ĐH Đồng Tháp). $Gi\mathring{a} s\mathring{u} f \in C^1([0,1]) thỏa f(0) = 0, 0 \le f'(x) \le 1, \forall x \in [0,1]. Xét hàm số$

$$F(t) = \left(\int_0^t f(x) \, \mathrm{d}x\right)^2 - \int_0^t (f(x))^3 \, \mathrm{d}x, \ \forall t \in [0, 1].$$

(a) Chứng minh F đồng biến trên [0,1]. (b) Chứng minh

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \ge \int_0^1 (f(x))^3 \, \mathrm{d}x.$$

Cho vài ví dụ về hàm f để đẳng thức xảy ra.

Bài toán 23 ([VMS24], p. 38, 5.3, DHGTVT). Cho $f:[0,1] \to (0,+\infty)$ là 1 hàm khả tích thỏa f(x)f(1-x) = 1, $\forall x \in [0,1]$. Chứng minh $\int_0^1 f(x) \, \mathrm{d}x \ge 1$.

Bài toán 24 ([VMS24], p. 38, 5.4, HUS). Cho $f:[0,1]\to\mathbb{R}$ là hàm khả tích trên [0,1] & liên tục trên (0,1). Chứng minh tồn tại $a,b\in(0,1)$ phân biệt sao cho

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{f(a) + f(b)}{2}.$$

Bài toán 25 ([VMS24], p. 38, 5.5, ĐH Mỏ-Đia chất). Tính tích phân

$$\iiint_{x^2+y^2+z^2+t^2 \le 1} e^{x^2+y^2-z^2-t^2} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z \, \mathrm{d} t.$$

Bài toán 26 ([VMS24], p. 38, 5.6, DH Vinh). Chứng minh

$$\frac{9}{8\pi} < \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{\sin x}{x}\right)^2 dx < \frac{3}{2\pi}.$$

7.1 SymPy/integrals module

See https://docs.sympy.org/latest/modules/integrals/integrals.html. The integrals module in SymPy implements methods to calculate definite & indefinite integrals of expressions. Principal method in this module is integrate():

- integrate(f, x) returns the indefinite integral $\int f dx$
- integrate(f, (x, a, v)) returns the definite integral $\int_a^b f dx$.

Problem 4 (Integration of elementary functions). Use SymPy to compute definite- & indefinite integrals of elementary functions as many as possible.

Problem 5 (Integration of nonelementary functions). Use SymPy to compute definite- & indefinite integrals of nonelementary functions as many as possible.

Example 4 (Integral of error function). The indefinite integral of the nonelementary function $e^{-x^2}\operatorname{erf}(x)$, where $\operatorname{erf}(x)$ is the error function, is given by

$$\int e^{-x^2} \operatorname{erf}(x) \, \mathrm{d}x = \frac{\sqrt{\pi}}{4} \operatorname{erf}(x).$$

Run the following Python code:

```
from sympy import *
x = Symbol('x')
print(integrate(exp(-x**2)*erf(x), x))
```

to obtain the following output:

$$sqrt(pi)*erf(x)**2/4$$

For more information about the error function, see, e.g., Wikipedia/error function.

7.2 Leibniz integral rule – Quy tắc tích phân Leibniz

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz.

Theorem 1 (Leibniz integral rule – Quy tắc tích phân Leibniz). For an integral of the form $\int_{a(x)}^{b(x)} f(t,x) dt$ where $a(x), b(x) \in \mathbb{R}$ \mathcal{B} the integrands are functions dependent on x, the derivative of this integral is expressible as

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(t,x) dt\right) = f(b(x),x)\frac{d}{dx}b(x) - f(a(x),x)\frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \partial_x f(t,x) dt, \tag{1}$$

where the partial derivative $\partial_x = \frac{\partial}{\partial x}$ indicates that inside the integral, only the variation of f(t,x) with x is considered in taking the derivative.

8 Functional Equation – Phương Trình Hàm

Bài toán 27 ([VMS24], p. 38, 6.1, HUS). Cho $f:(0,1)\to\mathbb{R}$ là 1 hàm khả vi thỏa $(f'(x))^2-3f'(x)+2=0$, $\forall x\in(0,1)$. Tìm f. (b) [HM] Mở rộng bài toán cho dạng phương trình hàm phức tạp hơn.

9 Fourier transform – Biến đổi Fourier

Resources - Tài nguyên.

1. [Tao12]. Terence Tao. Higher Order Fourier Analysis.

9.1 Discrete Fourier transform – Biến đổi Fourier rời rạc

See, e.g., Wikipedia/discrete Fourier transform. In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

Definition 3 (Discrete Fourier transform). The discrete Fourier transform transforms a sequence of N complex numbers $\mathbf{x} = \{x_n\}_{n=0}^{N-1} \coloneqq x_0, x_1, \dots, x_{N-1} \text{ into another sequence of complex numbers, } \mathbf{X} = \{X_n\}_{n=0}^{N-1} \coloneqq X_0, X_1, \dots, X_{N-1} \text{ defined by }$

$$X_k := \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{k}{N}n}.$$
 (dFt)

The transform is sometimes denoted by the symbol \mathcal{F} , as in $\mathbf{X} = \mathcal{F}\{\mathbf{x}\}$ or $\mathcal{F}(\mathbf{x})$ or $\mathcal{F}\mathbf{x}$.

10 Miscellaneous

10.1 See also

- 1. [Str20]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe.
- 2. [Str24]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mật Của Vũ Trụ Như Thế Nào?.

Nhận xét. 1 quyển sách hay về thường thức về lịch sử phát triển của Giải tích Toán học & các ý tưởng cơ bản nhất của Giải tích. Khuyến khích đọc thử, cũng như các tác phẩm thường thức Khoa học Tự nhiên nói chung & Toán học nói riêng khác của tác giả STEVEN STROGATZ.

- 3. TS. HUỳNH QUANG Vũ. Các Bài Giảng Giải Tích. https://sites.google.com/view/hqvu/teaching.
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. *Giáo Trình Vi Tích Phân*
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. *Giáo Trình Vi Tích Phân*
- 4. Vietnamese Mathematical Olympiad for High School- & College Students (VMC) Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.pdf.

TrX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.tex.

• Codes:

- C++ code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/C++.
- Python code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/Python.
- Resource: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/resource.
- Figures: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/figure.
- 5. Olympic Tin Hoc Sinh Viên OLP & ICPC.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.pdf.

TFX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.tex.

- Codes:
 - C: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C.
 - o C++: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C++.
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/Python.

Tài liêu

- [Rud76] Walter Rudin. *Principles of mathematical analysis*. Third. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976, pp. x+342.
- [Str20] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe. Mariner Books, 2020, p. 400.
- [Str24] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mât Của Vũ Tru Như Thế Nào? Pham Văn Thiều dịch. Nhà Xuất Bản Trẻ, 2024, p. 486.
- [Tao12] Terence Tao. Higher order Fourier analysis. Vol. 142. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012, pp. x+187. ISBN: 978-0-8218-8986-2. DOI: 10.1090/gsm/142. URL: https://doi.org/10.1090/gsm/142.
- [Tao22a] Terence Tao. Analysis I. Vol. 37. Texts and Readings in Mathematics. Fourth edition [of 2195040]. Hindustan Book Agency, New Delhi, [2022] © 2022, pp. xvi+355. ISBN: 978-81-951961-9-7.
- [Tao22b] Terence Tao. Analysis II. Vol. 38. Texts and Readings in Mathematics. Fourth edition [of 2195041]. Springer, Singapore; Hindustan Book Agency, New Delhi, [2022] ©2022, pp. xvii+195. ISBN: 978-9-81197-284-3. DOI: 10.1007/978-981-19-7284-3. URL: https://doi.org/10.1007/978-981-19-7284-3.
- [Thá+23a] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 1. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 128.
- [Thá+23b] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 2. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 108.
- [VMS24] Hội Toán Học Việt Nam VMS. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần Thứ 30. Đà Nẵng 8–13/4/2024. VMS, 2024, p. 112.