TD 4 : Vecteurs aléatoires

Une étoile désigne un exercice important.

Exercice 1. Une truite pond des oeufs au fond du torrent. Leur nombre N suit une loi de Poisson de paramètre a > 0. Chaque oeuf survit avec une probabilité $p \in]0,1[$, indépendamment des autres.

- 1. Soit M le nombre d'oeufs qui survivent. Donner la loi conjointe du couple (N, M). Donner la loi marginale et l'espérance de M.
- 2. M et N-M sont-elles indépendantes?

Exercice 2. Soient n et N des entiers supérieurs ou égaux à 2 et X_1, \ldots, X_n des variables aléatoires indépendantes et distribuées uniformément sur l'ensemble $\{1, \ldots, N\}$, (i.e. $\mathbb{P}(X_i = k) = 1/N$ pour $k = 1, 2, \ldots, N$). On désigne par U_n leur minimum et par V_n leur maximum.

- 1. Calculer la loi de V_n .
- 2. Calculer la loi jointe de U_n et V_n puis $\mathbb{P}(U_n = V_n)$.

Exercice 3. Dans le bois de Vincennes, on modélise le diamètre d'un arbre par une variable aléatoire X, et sa hauteur par une autre variable aléatoire Y. La loi jointe de X et Y est donnée par la densité : $f_{X,Y}(x,y) = \frac{1}{4}(x+y)e^{-y}$ pour $y \ge 0$, $0 \le x \le 2$.

- 1. Donner la densité marginale de X.
- 2. X et Y sont-elles independantes?
- 3. Calculer E[X].
- 4. L'âge d'un arbre est donné par W = 12XY. Calculer E[W].

Exercice 4. Soient $(X_i)_{i\geq 1}$ une suite de v.a. i.i.d. (indépendantes identiquement distribuées). On suppose que X_1 admet une densité.

- 1. Montrer que pour tout $i \neq j$, $\mathbb{P}(X_i = X_j) = 0$.
- 2. En déduire que $\mathbb{P}(X_1 \leq X_2 \leq \ldots \leq X_n) = \mathbb{P}(X_1 < \cdots < X_n)$, et calculer cette quantité.
- 3. Calculer $\mathbb{P}(X_n > \max_{1 \le i \le n-1} X_i)$.
- \star Exercice 5. Soient X et Y deux variables indépendantes. Donner la loi de X+Y quand :
 - 1. X et Y sont deux variables géométriques, de paramètre (commun) θ ;
 - 2. X et Y suivent la loi uniforme sur [0,1];
 - 3. $X \sim \mathcal{N}(0, \sigma_1^2)$ et $Y \sim \mathcal{N}(0, \sigma_2^2)$.

Exercice 6. Soit (X, Y) un vecteur aléatoire de densité $f(x, y) = \mathbf{1}_{[0,1]^2}(x, y)$. Déterminer les lois de X, Y et Z = XY.

Exercice 7. Soient X et Y deux variables aléatoires indépendantes. X suit une loi $\mathcal{N}(0,1)$ et Y une loi $\mathcal{N}(0,\sigma^2)$, où σ désigne un réel positif.

- 1. Écrire la densité de la loi du couple (X,Y).
- 2. On pose U = Y/X. Calculer la densité de la loi du couple (X, U).
- 3. Les variables X et U sont-elles indépendantes?

Exercice 8. Soient X et Y deux variables aléatoires indépendantes. X suit une loi uniforme sur [0,1] et Y une loi exponentielle de paramètre 1. Calculer la loi de $\frac{Y}{X}$.

Exercice 9. Soit L une v.a. positive admettant une densité de probabilité f et X une v.a. de loi uniforme sur [0,1], indépendante de L. On définit deux v.a. L_1 et L_2 par $L_1 = XL$ et $L_2 = (1 - X)L$, (cela modélise par exemple la rupture d'une chaîne moléculaire de longueur initiale aléatoire L).

- 1. Déterminer la loi du couple (L_1, L_2) ainsi que les lois de L_1 et L_2 .
- 2. Que peut-on dire du couple (L_1, L_2) lorsque $f(x) = \lambda^2 x \exp(-\lambda x) \mathbf{1}_{[0, +\infty[}(x), (\lambda > 0)$?
- 3. Déterminer la loi de $Z = \min(L_1, L_2)$ dans ce cas.

Exercice 10. On appelle variable gamma de paramètre a > 0 une variable à valeurs dans \mathbb{R}_+ dont la loi admet la densité : $e^{-t}t^{a-1}/\Gamma(a)$.

- 1. Soit Z_a une v.a. gamma de paramètre a. Calculer explicitement les moments entiers : $\mathbb{E}((Z_a)^n)$, en fonction de a et de $n \in \mathbb{N}$.
- 2. Soient Z_a et Z_b deux variables gamma indépendantes de paramètres respectifs a et b. Montrer que les variables $Z_a/(Z_a+Z_b)$ et Z_a+Z_b sont indépendantes et expliciter la loi de $Z_a/(Z_a+Z_b)$.

Exercice 11. Soit (X_1, X_2) un couple de v.a. admettant la densité de probabilité :

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x_1^2 - 2\rho x_1 x_2 + x_2^2)\right),$$

où $\rho \in [0,1[$.

- 1. Vérifier que f est une densité de probabilité sur \mathbb{R}^2 et trouver les densités marginales de X_1 et X_2 . A quelle condition les v.a. X_1 et X_2 sont-elles indépendantes?
- 2. On pose $R = \sqrt{X_1^2 + X_2^2}$ et $\Phi \in [0, 2\pi[$ défini par

$$\cos \Phi = \frac{X_1}{R}$$
 et $\sin \Phi = \frac{X_2}{R}$.

Déterminer la densité du couple (R, Φ) puis celle de Φ .