

IoT Reference Framework

IoT Alliance Australia
Enabler Workstream #3 Cybersecurity & Network Resilience

Version 1.31

August 2022

loT Reference Framework

The IoT Reference Framework

- is a generic and vendor-neutral reference framework for all IoT solutions
- shows IoT building blocks
- brings in one place the relationship between technical architecture, IoT users, business stakeholders, and industry sectors
- Is a communications tool

It's Purpose

- serves as reference building blocks for all IoT applications across multiple industry sectors
- provides a 'Common Language' to avoid ambiguity amongst stakeholders
- Enables organisations to articulate IoT solution requirements clearly by looking through the various business lenses, e.g., business, data, cybersecurity, technology, etc.
- Helps demystify IoT

IoT Reference Framework – Overview

10	Industry Sector & Solution			Smart City	ÿ	Health Care	isi kkk	Agriculture	<u> </u>	Manufacturing		Transport		Utility
9	Solution / Service Provider	1	₽¢.	IoT Solution Owner		Connectivity Provider	2 2 1 - 2	Service Provider e.g., XaaS, Devid Suppliers, IoT Pl	ce					
8	Users		200	Internal	(3)	Admin	<u> </u>	End User	20	Support				
7	User Interface			Mobile I/F		Web / API Portals		B2B System I/F		Cloud I/F		AR/VR I/F		
6	Application Enablement		₩	API Gateway		User I/F Security		Business Logic Engine		Web/App Server				
5	Intelligence Enablement			Data Enablement		Data Ingestion Rules Engine		Analytics		Artificial Intelligence Machine Learning		Block Chain	ى	Integration / Interface
4	Connection Management		 [25	Configuration / Identity Management		Device / Meta Data Management		Connectivity Management	8	Events Management		Networking: DNS, LB, VPN		
3	Connectivity		*	Bluetooth		Zigbee 6LoWPAN	Ş	Wi-Fi Mesh	((A)))	Wireless Cat-M1/NB-loT, LoRaWAN, etc.		Wired Ethernet	(4.7	(IoT) Satellite
2	Edge Gateway		40	Protocol Gateway		Field Gateway		Edge Computin Gateway / Clou					22 Licensed to Io	「AA by INFYRA
1	IoT Endpoint	((••••))		Smart Light	₩	Sensor / Wearables		Connected Machinery	(O)	Smart Appliances	©	Location Tracker		Smart Meter

IoT Reference Framework – Overview

IoT Industry & Solution		The loT industry & solution layer aims to provide the context for an IoT solution such as the industry segment (industrial, consumer, enterprise) that the IoT solution belongs to, and the potential implications that IoT solution owners/practitioners might have to comply to in terms of regulatory compliance such as cybersecurity, data privacy, critical infrastructure, etc.
Solution / Service Provider	(1)	The IoT Solution Owner / Service Provider layer intends to bring in the business aspects of the IoT solution into consideration. Understanding the roles of stakeholders in a solution can enable clear understanding of roles, responsibilities as well as missing items such as strategies, processes, people and skills that need to be actioned. Examples of items can include (but not limited to) Governance, Cybersecurity compliance, Strategy, Risks, Data Sharing, etc.
IoT Users	2	The IoT User layer helps businesses identify who the end-users (and/or beneficiary of) the IoT solution. As a suggestion, IoT Users can be categorised as Primary or Secondary . Primary users are those who will act upon / make their (business) decisions based directly on the outcome/information that their IoTsolution produced. Secondary users are those who might use the IoT data to derive further value, but not directly affecting the primary users.
IoT User Interface		The IoT User Interfaces layer shows the type of interfaces that need to be supported by the Application Enablement layer. Examples include interfaces that are widely used today such as from mobile apps, to the emerging type such as AR/VR devices. User Interface that enable access and or manage of the IoT system and devices. IoT Client devices can be a Desktop , Laptop , Tablet , Smart Phone , Wearables , or purpose-made devices .
Application Enablement		The Application Enablement layer refers to a set of functions and foundational services such as the API enabler, Web Portal, Web & Mobile application building and enablement, User Interface Security, Developer services, etc. This layer includes functions that are both business and technical in nature to be accessible to the 'users'. You might have come cross other sources of information refers to Application Enablement as IoT platform. This layer forms one part of what is commonly referred to as the 'IoT Platform'. (The functions in this layer could be a PaaS/SaaS solution.)
Intelligence Enablement		The Intelligence Enablement layer refers to the use of smart technologies such as Analytics, Artificial Intelligence, Machine Learning, Deep Learning, Block Chain, etc. as part of the IoT solution, in order to generate insightful outcomes and to drive smart actions. The functions in this layer is what really make IoT solutions truly smart and value-adding. This layer forms another part of what is commonly referred to as the 'IoT Platform'. (The functions in this layer could be a PaaS/SaaS solution or Edge solution.)
Connection Management		The Connection Management layer refers to a set of the IoT Core functions , commonly refers to as Connection Management, which includes, but not limited to to the management of networks, protocols, device/gateway management, ID management, User Authentication, etc. This layer forms the final part of what is commonly referred to as the 'IoT Platform'. (The functions in this layer could be a PaaS/SaaS solution.)
Connectivity		The Connectivity layer represents the digital connectivity between end-point/gateway devices (layer 1, 2) and various platforms in layers 4, 5 or 6. Digital connectivity technologies in this layer can be any of the followings, wired or wireless: Bluetooth, WiFi, Ethernet, 6LoPAN, LoRaWAN, Sigfox, Weighless-D, 2G/3G/4G LTE, 5G (Cat-M1, NB-IoT and 5G NR), DECT (Wirepas) as well as any other proprietary radio technologies (e.g., Taggle); This layer can also represent (Internet) Access Network for IoT client devices, which could be fixed or mobile broadband, as well as connectivity to ISP.
IoT Gateway		IoT Gateway layer represents 1) the Aggregation Point for a group of sensors and actuators to coordinate the connectivity of these devices to each other and to an external network such as a connectivity network; 2) a Protocol Gateway that performs protocol conversion between devices and the core platform; and/or 3) a Edge Computing Gateway that performs a subset of functions from layer 4,5 and 6 above, such as data storage, analytics, ML, etc.
IoT EndPoint	(((•••)))	IoT End Point (EP) layer represents end point devices that can be remotely managed. These endpoints can either be simple, stand-alone device such as wearables, sensors, or embedded devices, etc., or complex products that have multiple endpoints embedded in it, or an appliance (e.g., washing machines, vehicle, industrial machines, etc.) that has embedded sensors.
	Solution Solution / Service Provider IoT Users IoT User Interface Application Enablement Intelligence Enablement Connection Management Connectivity	Solution Solution Solution Service Provider IoT Users IoT User Interface Application Enablement Intelligence Enablement Connection Management Connectivity IoT Gateway

IoT Reference Framework – Views

The IoT Reference Framework shows

- Contextual View
 - Industries, markets, solution, revenue, value-chain
 - security, risks, regulations, etc.
- **Business View**
 - Stakeholders, processes, policies, industry and regulatory compliance
- **User View**
 - Organisations, consumers, governments, communities
- **Architectural View**
 - Solution, architecture, network, system, sub-system (each layer), component (detailed viéw)

IoT Reference Framework – Lenses

IoT solution requirements can be viewed through the lenses of:

- Business requirements
- Technical solution;
- Security;
- Privacy;
- Safety;
- Data;
- reliability;
- Integration;
- And more

								В	S	S	Р	9	5	D			
า	10	Industry Sector & Solution			Smart City	<u>•</u>	Health Care	U	0	cul E	R	м	ng	A	N	ort	Utility
	9	Solution / Service Provider		4	IoT Solution Owner		Connecti Provider	S	L	rice Xa plie	tfo	Г		T	T		
	8	Users	-	200	Internal	(2):	Admin	1	U	Us	V	1 5		Α	E		
	7	User Interface			Mobile I/F		Web / Al Portals	N E	î	R B ster	A C	,			G R	R I/F	
	6	Application Enablement		⊕	API Gateway		User I/F Security	S	0	ine ic E	Y	Г			A		
	5	Intelligence Enablement	300		Data Enablement		Data Inge Rules Eng	S	N	alyt Y		\rti Иас	nir	n	Т	thain 👃	Integration / Interface
	4	Connection Management			Configuration / Identity Management		Device / Meta Dat Manager		2	nec nag		Ev M	nt			orking: LB, VPN	
	3	Connectivity		*	Bluetooth	C N	RFID/NF			1	(W Ca Si _l	l, W	,	O N	d met	(IoT) Satellite
	2	Edge Gateway		40	Protocol Gateway		Field Gateway			e C ewa	Ed					© 2022 Licensed to	IoTAA by INFYRA
	1	IoT Endpoint	((••••))		Smart Light	₩	Sensor / Wearabl		Ġ	ıne chii		Si Al				ion er	Smart Meter
ľ											1				1		

This IoT Reference Framework was developed by

Nam Nguyen
Principal Consultant

INFYRA

www.infyra.net

nam@infyra.net

nam.nguyen@iot.org.au

The IoT Reference Framework was further refined with contributors from

Members of Enabler Workstream 3

Cybersecurity & Network Resilience

IOT ALLIANCE AUSTRALIA

www.iot.org.au

Terms of Use

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0</u> International License.

The IoT Reference Framework is available for non-commercial use by organisations and individuals, for purposes of communications, IoT architecture references, documentation, capability assessment, etc.

The use of this IoT Reference Framework for commercial purposes, such as marketing, advisory services, consulting tools, etc. for financial gains are not permitted, and subject to IP licensing.

Please contact <u>INFYRA</u> if you want to use this IoT Reference Framework for commercial purposes.

Copyright © 2022 INFYRA and licenced to IoTAA

REVISION	DATE	CHANGE HISTORY
V1.0	November 2018	First release
V1.1	October 2020	Updated with new icons, and licence agreement
V1.2	February 2022	Updated to Layers 4, 5, 6 and 7, to better explain the concept behind those icons
V1.3	August 2022	Updated explanations as well as general editing