BỘ GIÁO DỤC VÀ ĐÀO TẠO

HÎNH HỌC

NHÀ XUẤT BẢN GIÁO DỤC VIỆT NAM

BỘ GIÁO DỤC VÀ ĐÀO TẠO

TRẦN VĂN HẠO (Tổng Chủ biên) NGUYỄN MỘNG HY (Chủ biên) NGUYỄN VĂN ĐOÀNH – TRẦN ĐỰC HUYÊN

HÌNH HỌC 10

(Tái bản lần thứ mười bốn)

NHÀ XUẤT BẢN GIÁO DỤC VIỆT NAM

Kí hiệu dùng trong sách

A Hoạt động của học sinh trên lớp

VECTO

- ♦ Vector
- ❖ Tổng và hiệu của hai vectơ
- Tích của vectơ với một số
- ❖ Toạ độ của vectơ và toạ độ của điểm

Trong vật lí ta thường gặp các đại lượng có hướng như lực, vận tốc, ... Người ta dùng vectơ để biểu diễn các đại lượng đó.

§1. CÁC ĐỊNH NGHĨA

Hình 1.1

Các mũi tên trong hình 1.1 biểu diễn hướng chuyển động của ôtô và máy bay.

Cho đoan thẳng AB. Nếu ta chon điểm A làm điểm đầu, điểm B làm điểm cuối thì đoan thẳng AB có hướng từ A đến B. Khi đó ta nói AB là một đoan thẳng có hướng.

Định nghĩa

. Vectơ là một đoạn thẳng có hướng.

Vecto có điểm đầu A, điểm cuối B được kí hiệu là \overrightarrow{AB} và đọc là "vecto \overrightarrow{AB} ". Để vẽ vector AB ta vẽ đoan thẳng AB và đánh dấu mũi tên ở đầu mút B (h.1.2a).

Vecto còn được kí hiệu là \vec{a} , \vec{b} , \vec{x} , \vec{y} , ... khi không cần chỉ rõ điểm đầu và điểm cuối của nó (h.1.2b).

🕰 1 Với hai điểm A, B phân biệt ta có được bao nhiêu vectơ có điểm đầu và điểm cuối là A hoặc B.

Vecto cùng phương, vecto cùng hướng 2.

Đường thẳng đi qua điểm đầu và điểm cuối của một vecto được gọi là giá của vectơ đó.

 \triangle 2 Hãy nhân xét về vi trí tương đối của các giá của các cặp vectơ sau : \overline{AB} và \overline{CD} , \overrightarrow{PQ} và \overrightarrow{RS} , \overrightarrow{EF} và \overrightarrow{PQ} (h.1.3).

Hình 1.3

Đinh nghĩa

Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Trên hình 1.3, hai vector \overrightarrow{AB} và \overrightarrow{CD} cùng phương và có cùng hướng đi từ trái sang phải. Ta nói \overrightarrow{AB} và \overrightarrow{CD} là hai vecto cùng hướng. Hai vecto \overrightarrow{PQ} và \overrightarrow{RS} cùng phương nhưng có hướng ngược nhau. Ta nói hai vecto \overrightarrow{PO} và \overrightarrow{RS} là hai vecto ngược hướng.

Như vậy, nếu hai vectơ cùng phương thì chúng chỉ có thể cùng hướng hoặc ngược hướng.

Nhận xét. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi hai vector AB và \overrightarrow{AC} cùng phương.

That vay, nếu hai vector \overrightarrow{AB} và \overrightarrow{AC} cùng phương thì hai đường thẳng \overrightarrow{AB} và AC song song hoặc trùng nhau. Vì chúng có chung điểm A nên chúng phải trùng nhau. Vậy ba điểm A, B, C thẳng hàng.

Ngược lại, nếu ba điểm A, B, C thẳng hàng thì hai vector \overrightarrow{AB} và \overrightarrow{AC} có giá trùng nhau nên chúng cùng phương.

📤 3 Khẳng định sau đúng hay sai :

Nếu ba điểm phân biệt A, B, C thẳng hàng thì hai vector \overrightarrow{AB} và \overrightarrow{BC} cùng hướng.

Hai vecto bằng nhau 3.

Mỗi vectơ có một đô dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vecto đó. Độ dài của \overrightarrow{AB} được kí hiệu là $|\overrightarrow{AB}|$, như vây $|\overrightarrow{AB}| = AB$.

Vecto có độ dài bằng 1 gọi là vecto đơn vi.

Hai vecto \vec{a} và \vec{b} được gọi là *bằng nhau* nếu chúng cùng hướng và có cùng đô dài, kí hiệu $\vec{a} = \vec{b}$.

Chú ý. Khi cho trước vecto \vec{a} và điểm O, thì ta luôn tìm được một điểm Aduy nhất sao cho $\overrightarrow{OA} = \overrightarrow{a}$.

🕰 4 Gọi O là tâm hình lục giác đều ABCDEF. Hãy chỉ ra các vectơ bằng vectơ OA.

Vecto - không 4.

Ta biết rằng mỗi vectơ có một điểm đầu và một điểm cuối và hoàn toàn được xác định khi biết điểm đầu và điểm cuối của nó.

Bây giờ với một điểm A bất kì ta quy ước có một vecto đặc biệt mà điểm đầu và điểm cuối đều là A. Vecto này được kí hiệu là AA và gọi là vecto - không.

Vector AA nằm trên mọi đường thẳng đi qua A, vì vây ta quy ước vecto - không cùng phương, cùng hướng với moi vecto. Ta cũng quy ước rằng $|\overline{AA}| = 0$. Do đó có thể coi mọi vecto - không đều bằng nhau. Ta kí hiệu vecto - không là $\vec{0}$. Như vậy $\vec{0} = \overrightarrow{AA} = \overrightarrow{BB} = ...$ với mọi điểm A, B...

Câu hỏi và bài tập

- 1. Cho ba vecto \vec{a} , \vec{b} , \vec{c} đều khác vecto $\vec{0}$. Các khẳng định sau đúng hay sai ?
 - a) Nếu hai vecto \vec{a} , \vec{b} cùng phương với \vec{c} thì \vec{a} và \vec{b} cùng phương.
 - b) Nếu \vec{a} , \vec{b} cùng ngược hướng với \vec{c} thì \vec{a} và \vec{b} cùng hướng.
- **2.** Trong hình 1.4, hãy chỉ ra các vectơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau.

Hình 1.4

- 3. Cho tứ giác \overrightarrow{ABCD} . Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi $\overrightarrow{AB} = \overrightarrow{DC}$.
- **4.** Cho lục giác đều *ABCDEF* có tâm *O*.
 - a) Tìm các vectơ khác $\vec{0}$ và cùng phương với \overrightarrow{OA} ;
 - b) Tìm các vecto bằng vecto \overrightarrow{AB} .

§2. TỔNG VÀ HIỆU CỦA HAI VECTƠ

Hình 1.5

Trên hình 1.5, hai người đi dọc hai bên bờ kênh và cùng kéo một con thuyền với hai lực $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$. Hai lực $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$ tạo nên hợp lực \overrightarrow{F} là tổng của hai lực $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$, làm thuyền chuyển động.

Định nghĩa

Cho hai vecto \overrightarrow{a} và \overrightarrow{b} . Lấy một điểm \overrightarrow{A} tuỳ \cancel{y} , vẽ $\overrightarrow{AB} = \overrightarrow{a}$ và $\overrightarrow{BC} = \overrightarrow{b}$. Vecto \overrightarrow{AC} được gọi là **tổng** của hai vecto \overrightarrow{a} và \overrightarrow{b} . Ta kí hiệu tổng của hai vecto \overrightarrow{a} và \overrightarrow{b} là $\overrightarrow{a} + \overrightarrow{b}$. Vậy $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$ (h.1.6).

Phép toán tìm tổng của hai vectơ còn được gọi là phép cộng vecto.

Hình 1.6

Quy tắc hình bình hành 2.

Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

Hình 1.7

Trên hình 1.5, hợp lực của hai lực $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$ là lực \overrightarrow{F} được xác định bằng quy tắc hình bình hành.

Tính chất của phép cộng các vectơ 3.

Với ba vecto \vec{a} , \vec{b} , \vec{c} tuỳ ý ta có $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (tính chất giao hoán); $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (tính chất kết hợp); $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$ (tính chất của vecto - không).

Hình 1.8 minh hoạ cho các tính chất trên.

Hình 1.8

1 Hãy kiểm tra các tính chất của phép cộng trên hình 1.8.

Hiệu của hai vectơ 4.

a) Vecto đối

🕰 2 Vẽ hình bình hành ABCD. Hãy nhận xét về độ dài và hướng của hai vecto AB và CĎ.

Cho vecto \vec{a} . Vecto có cùng độ dài và ngược hướng với \vec{a} được gọi là vecto $d\delta i$ của vecto \vec{a} , kí hiệu là $-\vec{a}$.

Mỗi vectơ đều có vectơ đối, chẳng han vectơ đối của \overrightarrow{AB} là \overrightarrow{BA} , nghĩa là -AB = BA.

Đặc biệt, vectơ đối của vecto $\vec{0}$ là vecto $\vec{0}$.

 $lue{U}$ **Ví dụ 1.** Nếu D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB của tam giác ABC (h.1.9), khi đó ta có

$$\overrightarrow{EF} = -\overrightarrow{DC},$$

$$\overrightarrow{BD} = -\overrightarrow{EF},$$

$$\overrightarrow{EF}$$

Hình 1.9

 \triangle 3 Cho $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{0}$. Hãy chứng tỏ \overrightarrow{BC} là vectơ đối của \overrightarrow{AB} .

b) Đinh nghĩa hiệu của hai vectơ

Cho hai vecto \vec{a} và \vec{b} . Ta gọi hiệu của hai vecto \vec{a} và \vec{b} là vecto $\vec{a} + (-\vec{b})$, kí hiệu $\vec{a} - \vec{b}$.

Như vây

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}).$$

Từ đinh nghĩa hiệu của hai vecto, suy ra

Với ba điểm O, A, B tuỳ ý ta có $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ (h.1.10).

 \triangle 4 Hãy giải thích vì sao hiệu của hai vecto \overrightarrow{OB} và \overrightarrow{OA} là vecto \overrightarrow{AB} .

- Chú ý. 1) Phép toán tìm hiệu của hai vecto còn được gọi là phép trừ vecto. B
 - 2) Với ba điểm tuỳ ý A, B, C ta luôn có:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (quy tắc ba điểm);

$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$$
 (quy tắc trừ).

Thực chất hai quy tắc trên được suy ra từ phép công vecto.

Ví du 2. Với bốn điểm bất kì A, B, C, D ta luôn có $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$.

Thật vậy, lấy một điểm O tuỳ ý ta có

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{OB} - \overrightarrow{OA} + \overrightarrow{OD} - \overrightarrow{OC} = \overrightarrow{OD} - \overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{AD} + \overrightarrow{CB}.$$

Áp dung 5.

- a) Điểm I là trung điểm của đoạn thẳng AB khi và chỉ khi $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.
- **b**) Điểm G là trong tâm của tam giác ABC khi và chỉ khi $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

CHỨNG MINH

b) Trong tâm G của tam giác ABC nằm trên trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Khi đó BGCD là hình bình hành và G là trung điểm của đoan thẳng AD. Suy ra $\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GD}$ và $\overrightarrow{GA} + \overrightarrow{GD} = \overrightarrow{0}$. Ta có

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA} + \overrightarrow{GD} = \overrightarrow{0}$$
. Ta co

Hình 1.11

Ngược lại, giả sử $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. Vẽ hình bình hành \overrightarrow{BGCD} có I là giao điểm của hai đường chéo. Khi đó $\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GD}$, suy ra $\overrightarrow{GA} + \overrightarrow{GD} = \overrightarrow{0}$ nên G là trung điểm của đoạn thẳng AD. Do đó ba điểm A, G, I thẳng hàng, GA = 2GI, điểm G nằm giữa A và I. Vậy G là trọng tâm của tam giác ABC.

Câu hỏi và bài tập

- 1. Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho AM > MB. Vẽ các vector $\overrightarrow{MA} + \overrightarrow{MB}$ và $\overrightarrow{MA} \overrightarrow{MB}$.
- 2. Cho hình bình hành ABCD và một điểm M tuỳ ý. Chứng minh rằng $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$.
- 3. Chứng minh rằng đối với tứ giác ABCD bất kì ta luôn có

a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$$
;

b)
$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$$
.

- **4.** Cho tam giác *ABC*. Bên ngoài của tam giác vẽ các hình bình hành *ABIJ*, *BCPQ*, *CARS*. Chứng minh rằng $\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS} = \vec{0}$.
- 5. Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vector $\overrightarrow{AB} + \overrightarrow{BC}$ và $\overrightarrow{AB} \overrightarrow{BC}$.
- **6.** Cho hình bình hành ABCD có tâm O. Chứng minh rằng

a)
$$\overrightarrow{CO} - \overrightarrow{OB} = \overrightarrow{BA}$$
;

b)
$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{DB}$$
;

c)
$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{OD} - \overrightarrow{OC}$$
;

d)
$$\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$$
.

7. Cho \vec{a} , \vec{b} là hai vecto khác $\vec{0}$. Khi nào có đẳng thức

a)
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$$
;

b)
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
.

- **8.** Cho $|\vec{a} + \vec{b}| = 0$. So sánh độ dài, phương và hướng của hai vecto \vec{a} và \vec{b} .
- 9. Chứng minh rằng $\overrightarrow{AB} = \overrightarrow{CD}$ khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.
- **10.** Cho ba lực $\overrightarrow{F_1} = \overrightarrow{MA}$, $\overrightarrow{F_2} = \overrightarrow{MB}$ và $\overrightarrow{F_3} = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ đều là 100 N và $\widehat{AMB} = 60^{\circ}$. Tìm cường độ và hướng của lực $\overrightarrow{F_3}$.

Thuyền buồm chạy ngược chiều gió

Thông thường người ta vẫn nghĩ rằng gió thổi về hướng nào thì sẽ đẩy thuyền buồm về hướng đó. Trong thực tế con người đã nghiên cứu tìm cách lợi dụng sức gió làm cho thuyền buồm chạy ngược chiều gió. Vậy người ta đã làm như thế nào để thực hiện được điều tưởng chừng như vô lí đó?

Nói một cách chính xác thì người ta có thể làm cho thuyền chuyển động theo một góc nhọn, gần bằng $\frac{1}{2}$ góc vuông đối với chiều gió thổi. Chuyển động này được thực hiện theo đường dích dắc nhằm tới hướng cần đến của mục tiêu.

Để làm được điều đó ta đặt thuyền theo hướng TT' và đặt buồm theo phương BB' như hình vẽ.

Khi đó gió thổi tác động lên mặt buồm một lực. Tổng hợp lực là lực \vec{f} có điểm đặt ở chính giữa buồm. Lực \vec{f} được phân tích thành hai lực : lực \vec{p} vuông góc với cánh buồm BB' và lực \vec{q} theo chiều dọc cánh buồm. Ta có $\vec{f} = \vec{p} + \vec{q}$. Lực \vec{q} này không đẩy buồm đi đâu cả vì lực cản của gió đối với buồm không đáng kể. Lúc đó chỉ còn lực \vec{p} đẩy buồm dưới một góc vuông. Như vậy khi có gió thổi, luôn luôn có một lực \vec{p} vuông góc với mặt phẳng BB' của buồm. Lực \vec{p} này được phân tích thành lực \vec{r} vuông

góc với sống thuyền và lực \vec{s} dọc theo sống thuyền TT' hướng về mũi thuyền. Khi đó ta có $\vec{p} = \vec{s} + \vec{r}$. Lực \vec{r} rất nhỏ so với sức cản rất lớn của nước, do thuyền buồm có sống thuyền rất sâu. Chỉ còn lực \vec{s} hướng về phía trước dọc theo sống thuyền đẩy thuyền đi một góc nhọn ngược với chiều gió thổi. Bằng cách đổi hướng thuyền theo con đường dích dắc, thuyền có thể đi tới đích theo hướng ngược chiều gió mà không cần lực đẩy.

§3. TÍCH CỦA VECTƠ VỚI MỘT SỐ

 \triangle 1 Cho vecto $\vec{a} \neq \vec{0}$. Xác định đô dài và hướng của vecto $\vec{a} + \vec{a}$.

1.

Định nghĩa

Cho số $k \neq 0$ và vectơ $\vec{a} \neq \vec{0}$. Tích của vectơ \vec{a} với số k là một vectơ, kí hiệu là k \vec{a} , cùng hướng với \vec{a} nếu k > 0, ngược hướng với \vec{a} nếu k < 0 và có độ dài bằng $|k| |\vec{a}|$.

Ta quy ước $0\vec{a} = \vec{0}$, $k\vec{0} = \vec{0}$.

Người ta còn gọi tích của vectơ với một số là tích của một số với một vectơ.

Ví dụ 1. Cho G là trọng tâm của tam giác ABC, D và E lần lượt là trung điểm của BC và AC. Khi đó ta có (h1.13)

$$\overrightarrow{GA} = (-2)\overrightarrow{GD},$$

$$\overrightarrow{AD} = 3\overrightarrow{GD},$$

$$\overrightarrow{DE} = \left(-\frac{1}{2}\right)\overrightarrow{AB}.$$

Hình 1.13

Tính chất 2.

Với hai vecto \vec{a} và \vec{b} bất kì, với mọi số h và k, ta có

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$
;

$$(h+k)\overrightarrow{a} = h\overrightarrow{a} + k\overrightarrow{a}$$

$$h(\vec{ka}) = (h\vec{k})\vec{a}$$

$$k(a+b) = ka + kb ;$$

$$(h+k)\vec{a} = h\vec{a} + k\vec{a} ;$$

$$h(k\vec{a}) = (hk)\vec{a} ;$$

$$1.\vec{a} = \vec{a}, (-1).\vec{a} = -\vec{a}.$$

 \triangle 2 Tim vecto đối của các vecto \vec{k} \vec{a} và $\vec{3}$ \vec{a} $-4\vec{b}$.

Trung điểm của đoan thẳng và trọng tâm của tam giác 3.

- a) Nếu I là trung điểm của đoan thẳng AB thì với mọi điểm M ta có $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$.
- b) Nếu G là trong tâm của tam giác ABC thì với moi điểm M ta có $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

A3 Hãy sử dụng mục 5 của §2 để chứng minh các khẳng định trên.

Điều kiện để hai vecto cùng phương 4.

Điều kiện cần và đủ để hai vectơ \vec{a} và \vec{b} ($\vec{b} \neq \vec{0}$) cùng phương là có một số $k \, d\vec{e} \, \vec{a} = k\vec{b}$.

That vay, nếu $\vec{a} = k\vec{b}$ thì hai vector \vec{a} và \vec{b} cùng phương.

Ngược lại, giả sử \vec{a} và \vec{b} cùng phương. Ta lấy $k = \frac{|\vec{a}|}{|\vec{b}|}$ nếu \vec{a} và \vec{b} cùng

hướng và lấy $k = -\frac{|\vec{a}|}{|\vec{l}|}$ nếu \vec{a} và \vec{b} ngược hướng. Khi đó ta có $\vec{a} = k\vec{b}$.

Nhân xét. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k khác 0 $\overrightarrow{AB} = k\overrightarrow{AC}$.

5. Phân tích một vectơ theo hai vectơ không cùng phương

Cho $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ là hai vecto không cùng phương và $\vec{x} = \overrightarrow{OC}$ là một vectơ tuỳ ý. Kẻ CA' // OB và CB' // OA (h. 1.14). Khi đó $\vec{x} = \overrightarrow{OC} = \overrightarrow{OA'} + \overrightarrow{OB'}$. Vì $\overrightarrow{OA'}$ và \vec{a} là hai vecto cùng phương nên có số hđể $\overrightarrow{OA'} = \overrightarrow{ha}$. Vì $\overrightarrow{OB'}$ và \overrightarrow{b} cùng phương nên có số k để $\overrightarrow{OB}' = k\overrightarrow{b}$.

$$\overrightarrow{\text{Vây } x} = \overrightarrow{ha} + \overrightarrow{kb} .$$

15

Khi đó ta nói vecto \vec{x} được phân tích (hay còn được gọi là *biểu thi*) theo hai vecto không cùng phương \vec{a} và \vec{b} .

Một cách tổng quát người ta chứng minh được mệnh đề quan trọng sau đây:

Cho hai vector \vec{a} và \vec{b} không cùng phương. Khi đó mọi vector \vec{x} đều phân tích được một cách duy nhất theo hai vectơ \vec{a} và \vec{b} , nghĩa là có duy nhất $\vec{cap} \ so h, k \ sao \ cho \vec{x} = \vec{ha} + \vec{kb}$.

Bài toán sau cho ta cách phân tích trong một số trường hợp cu thể.

Bài toán. Cho tam giác ABC với trọng tâm G. Gọi I là trung điểm của đoạn AG và K là điểm trên cạnh AB sao cho $AK = \frac{1}{5}AB$.

- a) Hãy phân tích \overrightarrow{AI} , \overrightarrow{AK} , \overrightarrow{CI} , \overrightarrow{CK} theo $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$;
- b) Chứng minh ba điểm C, I, K thẳng hàng.

GIẢI

a) Goi AD là trung tuyến của tam giác ABC (h. 1.15). Ta có

$$\overrightarrow{AD} = \overrightarrow{CD} - \overrightarrow{CA} = \frac{1}{2}\overrightarrow{b} - \overrightarrow{a}$$
.

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AD} = \frac{1}{6}\vec{b} - \frac{1}{3}\vec{a} ;$$

$$\overrightarrow{AK} = \frac{1}{5}\overrightarrow{AB} = \frac{1}{5}(\overrightarrow{CB} - \overrightarrow{CA}) = \frac{1}{5}(\vec{b} - \vec{a}) ;$$

$$\overrightarrow{CI} = \overrightarrow{CA} + \overrightarrow{AI} = \vec{a} + \frac{1}{6}\vec{b} - \frac{1}{3}\vec{a} = \frac{1}{6}\vec{b} + \frac{2}{3}\vec{a} ;$$

$$\overrightarrow{CK} = \overrightarrow{CA} + \overrightarrow{AK} = \overrightarrow{a} + \frac{1}{5}\overrightarrow{b} - \frac{1}{5}\overrightarrow{a} = \frac{1}{5}\overrightarrow{b} + \frac{4}{5}\overrightarrow{a}.$$

Hình 1.15

b) Từ tính toán trên ta có $\overrightarrow{CK} = \frac{6}{5}\overrightarrow{CI}$. Vậy ba điểm C, I, K thẳng hàng.

Câu hỏi và bài tập

1. Cho hình bình hành ABCD. Chứng minh rằng:

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}$$
.

- 2. Cho \overrightarrow{AK} và \overrightarrow{BM} là hai trung tuyến của tam giác \overrightarrow{ABC} . Hãy phân tích các vector \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} theo hai vector $\overrightarrow{u} = \overrightarrow{AK}$, $\overrightarrow{v} = \overrightarrow{BM}$.
- 3. Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}$. Hãy phân tích vecto \overrightarrow{AM} theo hai vecto $\overrightarrow{u} = \overrightarrow{AB}$ và $\overrightarrow{v} = \overrightarrow{AC}$.
- **4.** Gọi AM là trung tuyến của tam giác ABC và D là trung điểm của đoạn AM. Chứng minh rằng
 - a) $2\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} = \vec{0}$;
 - b) $2\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 4\overrightarrow{OD}$, với O là điểm tuỳ ý.
- **5.** Gọi *M* và *N* lần lượt là trung điểm các cạnh *AB* và *CD* của tứ giác *ABCD*. Chứng minh rằng :

$$2\overrightarrow{MN} = \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{AD}$$
.

6. Cho hai điểm phân biệt A và B. Tìm điểm K sao cho

$$3\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0}$$
.

- 7. Cho tam giác *ABC*. Tìm điểm *M* sao cho $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.
- **8.** Cho lục giác *ABCDEF*. Gọi *M*, *N*, *P*, *Q*, *R*, *S* lần lượt là trung điểm của các cạnh *AB*, *BC*, *CD*, *DE*, *EF*, *FA*. Chứng minh rằng hai tam giác *MPR* và *NQS* có cùng trọng tâm.
- 9. Cho tam giác đều ABC có O là trọng tâm và M là một điểm tuỳ ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng

$$\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = \frac{3}{2} \overrightarrow{MO} \ .$$

Tỉ lệ vàng

O-clit (*Euclide*), nhà toán học của mọi thời đại đã từng nói đến "tỉ lệ vàng" trong tác phẩm bất hủ của ông mang tên "Những nguyên tắc cơ bản". Theo O-clit, điểm *I* trên đoạn *AB* được gọi là điểm *chia đoạn AB theo tỉ lệ vàng* nếu thoả mãn

$$\frac{AI}{IB} = \frac{AB}{AI}.$$

$$I \qquad B$$

$$Hinh 1.16$$

Đặt $x = \frac{AI}{IB} = \frac{AB}{AI}$ ta có $\overrightarrow{AB} = x\overrightarrow{AI}$ và $\overrightarrow{AI} = x\overrightarrow{IB}$. Số x đó được gọi là $t\hat{l}$ lệ vàng và điểm I được gọi là $d\hat{l}$ ểm vàng của đoạn dB.

Để tính x, ta có thể đặt IB = 1. Từ (1) ta có

$$\frac{x}{1} = \frac{x+1}{x}$$
, hay $x^2 - x - 1 = 0$,
 $x = \frac{1+\sqrt{5}}{2} \approx 1,61803$.

tức là

Với tỉ lệ vàng người ta có thể tạo nên một hình chữ nhật đẹp, cân đối và gây hứng thú cho nhiều nhà hội hoạ kiến trúc. Ví dụ, khi đến tham quan đền Pác-tê-nông ở A-ten (Hi Lạp) người ta thấy kích thước các hình hình học trong đền phần lớn chịu ảnh hưởng của tỉ lệ vàng. Nhà tâm lí học người Đức Phít-nê (Fichner) đã quan sát và đo hàng nghìn đồ vật thường dùng trong đời sống như ô cửa sổ, trang giấy viết, bìa sách... và so sánh kích thước giữa chiều dài và chiều ngang của chúng thì thấy tỉ số gần bằng tỉ lệ vàng.

Hình1.17. Đền Pác-tê-nông và đường nét kiến trúc của nó.

Để dựng điểm vàng I của đoạn AB = a ta làm như sau :

Vẽ tam giác ABC vuông tại B, với $BC = \frac{a}{2}$. Đường tròn tâm C bán kính $\frac{a}{2}$ cắt AC tại E. Đường tròn tâm A bán kính AE cắt AB tại I.

Ta có
$$AC = \frac{a\sqrt{5}}{2}$$
 và $AE = AI = \frac{a}{2}(\sqrt{5} - 1)$. Do đó $\frac{AB}{AI} = \frac{a}{\frac{a}{2}(\sqrt{5} - 1)} = \frac{\sqrt{5} + 1}{2}$.

Sử dụng điểm vàng I ta có thể dựng được góc 72° , từ đó dựng được ngũ giác đều cũng như ngôi sao năm cánh như sau :

Ta dựng đường tròn tâm I bán kính IA cắt trung trực của IB tại F ta được $\widehat{FAB} = 36^{\circ}$ và $\widehat{ABF} = 72^{\circ}$ (h.1.18).

Một ngũ giác đều nội tiếp đường tròn trên có hai đỉnh liên tiếp là F và điểm xuyên tâm đối A' của A. Từ đó ta dựng được ngay ba đỉnh còn lại của ngũ giác đều.

Cần lưu ý rằng trên ngôi sao năm cánh trong hình 1.19 thì tỉ số $\frac{AI}{IK} = \frac{AK}{AI}$ chính là tỉ lệ vàng. Ngôi sao vàng năm cánh của Quốc kì nước ta được dựng theo tỉ số này.

§4. HỆ TRỤC TOẠ ĐỘ

Với mỗi cặp số chỉ kinh độ và vĩ độ người ta xác định được một điểm trênTrái Đất.

1. Trục và độ dài đại số trên trục

a) Trục toạ độ (hay gọi tắt là <math>trục) là một đường thẳng trên đó đã xác định một điểm O gọi là $\vec{diểm}$ gốc và một vecto đơn vị \vec{e} .

Ta kí hiệu trục đó là $(O; \vec{e})$ (h.1.20)

b) Cho M là một điểm tuỳ ý trên trục $(O; \vec{e})$. Khi đó có duy nhất một số k sao cho $\overrightarrow{OM} = k\vec{e}$. Ta gọi số k đó là toạ độ của điểm M đối với trục đã cho.

c) Cho hai điểm A và B trên trục (O; e). Khi đó có duy nhất số a sao cho $\overrightarrow{AB} = ae$. Ta goi số a đó là đô dài đai số của vecto \overrightarrow{AB} đối với truc đã cho và kí hiệu a = AB.

Nhân xét. Nếu \overrightarrow{AB} cùng hướng với \overrightarrow{e} thì AB = AB, còn nếu \overrightarrow{AB} ngược hướng với \overrightarrow{e} thì $\overline{AB} = -AB$.

Nếu hai điểm A và B trên truc (O; e) có toa đô lần lượt là a và b thì $\overline{AB} = b - a$.

Hệ trục toa độ 2.

Trong muc này ta sẽ xây dưng khái niêm hệ truc toa đô để xác đinh vi trí của điểm và của vecto trên mặt phẳng.

A1 Hãy tìm cách xác định vị trí quân xe và quân mã trên bàn cờ vua (h.1.21)

a) Định nghĩa

Hệ trục toạ độ $(O; \vec{i}, \vec{j})$ gồm hai trục $(O; \vec{i})$ và $(O; \vec{j})$ vuông góc với nhau. Điểm gốc O chung của hai truc gọi là **gốc** toa đô. Truc $(O; \vec{i})$ được gọi là **truc hoành** và kí hiệu là Ox, truc $(O; \vec{j})$ được gọi là **truc tung** và kí hiệu là Oy. Các vectơ \vec{i} và \vec{j} là các vecto đơn vị trên Ox và Oy và $|\vec{i}| = |\vec{j}| = 1$. Hệ truc toa đô $(O; \vec{i}, \vec{j})$ còn được kí hiệu là Oxy (h.1.22)

Hình 1.22

Mặt phẳng mà trên đó đã cho một hệ trục toạ độ Oxy được gọi là mặt phẳng toạ độ Oxy hay gọi tắt là mặt phẳng Oxy.

b) Toa độ của vecto

 \triangle 2 Hãy phân tích các vectơ \vec{a} , \vec{b} theo hai vecto \vec{i} và \vec{j} trong hình (h.1.23)

Hình 1.23

Trong mặt phẳng Oxy cho một vector \vec{u} tuỳ ý. Vẽ $\overrightarrow{OA} = \vec{u}$ và gọi A_1 , A_2 lần lượt là hình chiếu vuông góc của A lên Ox và Oy (h.1.24). Ta có $\overrightarrow{OA} = \overrightarrow{OA_1} + \overrightarrow{OA_2}$ và cặp số duy nhất (x ; y) để $\overrightarrow{OA_1} = x\vec{i}$, $\overrightarrow{OA_2} = y\vec{j}$. Như vậy $\vec{u} = x\vec{i} + y\vec{j}$.

Cặp số (x; y) duy nhất đó được gọi là *toạ* độ *của vecto* \vec{u} đối với hệ toạ độ *Oxy* và viết $\vec{u} = (x; y)$ hoặc $\vec{u}(x; y)$. Số thứ nhất x gọi là *hoành độ*, số thứ hai y gọi là *tung độ* của vecto \vec{u} .

Như vây

$$\vec{u} = (x; y) \Leftrightarrow \vec{u} = x\vec{i} + y\vec{j}$$

Hình 1.24

Nhận xét. Từ định nghĩa toạ độ của vectơ, ta thấy hai vectơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.

Nếu
$$\vec{u} = (x; y), \vec{u}' = (x'; y')$$
 thì

$$\vec{u} = \vec{u'} \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases}$$

Như vậy, mỗi vectơ được hoàn toàn xác định khi biết toạ độ của nó.

c) Toạ độ của một điểm

Trong mặt phẳng toạ độ Oxy cho một điểm M tuỳ ý. Toạ độ của vecto \overrightarrow{OM} đối với hệ trục Oxy được gọi là toạ độ của điểm M đối với hệ trục đó (h.1.25).

Như vậy, cặp số (x;y) là toạ độ của điểm M khi và chỉ khi $\overrightarrow{OM} = (x;y)$. Khi đó ta viết M(x;y) hoặc M = (x;y). Số x được gọi là hoành độ, còn số y được gọi là tung độ của điểm M. Hoành độ của điểm M còn được kí hiệu là x_M , tung độ của điểm M còn được kí hiệu là y_M .

 M_2

Chú ý rằng, nếu $MM_1 \perp Ox$, $MM_2 \perp Oy$ thì $x = \overline{OM_1}$, $y = \overline{OM_2}$.

M(x; y)

 \triangle 3 Tìm toạ độ của các điểm A, B, C trong hình 1.26. Cho ba điểm D(-2; 3), E(0; -4), F(3; 0). Hãy vẽ các điểm D, E, F trên mặt phẳng Oxy.

Hình 1.26

d) Liên hệ giữa toạ độ của điểm và toạ độ của vecto trong mặt phẳng Cho hai điểm $A(x_A; y_A)$ và $B(x_B; y_B)$. Ta có

$$\overrightarrow{AB} = (x_B - x_A ; y_B - y_A).$$

4 Hãy chứng minh công thức trên.

Toa đô của các vecto $\vec{u} + \vec{v}$, $\vec{u} - \vec{v}$, $k\vec{u}$ 3.

Ta có các công thức sau:

Cho
$$\vec{u} = (u_1; u_2), \vec{v} = (v_1; v_2)$$
. Khi đó:
 $\vec{u} + \vec{v} = (u_1 + v_1; u_2 + v_2);$
 $\vec{u} - \vec{v} = (u_1 - v_1; u_2 - v_2);$
 $\vec{ku} = (ku_1; ku_2), k \in \mathbb{R}.$

Ví dụ 1. Cho $\vec{a} = (1; -2), \vec{b} = (3; 4), \vec{c} = (5; -1)$. Tìm toạ độ vector $\vec{u} = 2\vec{a} + \vec{b} - \vec{c}$

Ta có
$$2\vec{a} = (2; -4), \ 2\vec{a} + \vec{b} = (5; 0), \ 2\vec{a} + \vec{b} - \vec{c} = (0; 1).$$

Vậy $\vec{u} = (0; 1).$

Ví dụ 2. Cho $\vec{a} = (1; -1), \vec{b} = (2; 1)$. Hãy phân tích vecto $\vec{c} = (4; -1)$ theo \vec{a} và \vec{b}

Giả sử
$$\vec{c} = k\vec{a} + h\vec{b} = (k + 2h; -k + h)$$

Ta có
$$\begin{cases} k+2h=4\\ -k+h=-1 \end{cases} \Rightarrow \begin{cases} k=2\\ h=1. \end{cases}$$

Vậy
$$\vec{c} = 2\vec{a} + \vec{b}$$
.

Nhận xét. Hai vectơ $\vec{u}=(u_1;u_2)$, $\vec{v}=(v_1;v_2)$ với $\vec{v}\neq\vec{0}$ cùng phương khi và chỉ khi có một số k sao cho $u_1 = kv_1$ và $u_2 = kv_2$.

Toa độ trung điểm của đoan thắng. Toa độ của trọng tâm tam giác 4.

a) Cho đoạn thẳng AB có $A(x_A; y_A)$, $B(x_B; y_B)$. Ta dễ dàng chứng minh được toạ độ trung điểm $I(x_I; y_I)$ của đoạn thẳng AB là:

$$x_{I} = \frac{x_{A} + x_{B}}{2}, \ y_{I} = \frac{y_{A} + y_{B}}{2}.$$

 $igsplus_5$. Goi G là trong tâm của tam giác ABC. Hãy phân tích vecto \overrightarrow{OG} theo ba vecto \overrightarrow{OA} , \overrightarrow{OB} và \overrightarrow{OC} . Từ đó hãy tính toa đô của G theo toa đô của A, B và C.

b) Cho tam giác ABC có $A(x_A; y_A)$, $B(x_B; y_B)$, $C(x_C; y_C)$. Khi đó toạ độ của trọng tâm $G(x_G; y_G)$ của tam giác ABC được tính theo công thức :

$$x_G = \frac{x_A + x_B + x_C}{3}, y_G = \frac{y_A + y_B + y_C}{3}.$$

Ví du. Cho A(2;0), B(0;4), C(1;3). Tìm toạ độ trung điểm I của đoạn thẳng AB và toa đô của trọng tâm G của tam giác ABC.

Ta có
$$x_I = \frac{2+0}{2} = 1$$
,

$$y_I = \frac{0+4}{2} = 2$$
;

$$x_G = \frac{2+0+1}{3} = 1,$$
 $y_G = \frac{0+4+3}{3} = \frac{7}{3}.$

$$y_G = \frac{0+4+3}{3} = \frac{7}{3}.$$

Câu hỏi và bài tâp

- Trên trục $(O; \overrightarrow{e})$ cho các điểm A, B, M, N có toạ độ lần lượt là -1, 2, 3, -2. 1.
 - a) Hãy vẽ truc và biểu diễn các điểm đã cho trên truc;
 - b) Tính độ dài đại số của \overrightarrow{AB} và \overrightarrow{MN} . Từ đó suy ra hai vecto \overrightarrow{AB} và \overrightarrow{MN} ngược hướng.
- 2. Trong mặt phẳng toa đô các mênh đề sau đúng hay sai?
 - a) $\vec{a} = (-3; 0)$ và $\vec{i} = (1; 0)$ là hai vecto ngược hướng;
 - b) $\vec{a} = (3; 4) \text{ và } \vec{b} = (-3; -4) \text{ là hai vecto đối nhau};$
 - c) $\vec{a} = (5; 3)$ và $\vec{b} = (3; 5)$ là hai vecto đối nhau;
 - d) Hai vectơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung đô bằng nhau.
- 3. Tìm toa đô của các vectơ sau:

a)
$$\vec{a} = 2\vec{i}$$
;

b)
$$\vec{b} = -3\vec{j}$$
;

c)
$$\vec{c} = 3\vec{i} - 4\vec{j}$$
;

d)
$$\vec{d} = 0, 2\vec{i} + \sqrt{3}\vec{j}$$
.

- Trong mặt phẳng Oxy. Các khẳng định sau đúng hay sai? 4.
 - a) Toa đô của điểm A là toa đô của vector \overrightarrow{OA} ;
 - b) Điểm A nằm trên truc hoành thì có tung đô bằng 0:
 - c) Điểm A nằm trên truc tung thì có hoành độ bằng 0;
 - d) Hoành đô và tung đô của điểm A bằng nhau khi và chỉ khi A nằm trên tia phân giác của góc phần tư thứ nhất.

- Trong mặt phẳng toạ độ Oxy cho điểm $M(x_0; y_0)$. 5.
 - a) Tìm toa đô của điểm A đối xứng với M qua truc Ox;
 - b) Tìm toa đô của điểm B đối xứng với M qua truc O_V ;
 - c) Tìm toa đô điểm C đối xứng với M qua gốc O.
- Cho hình bình hành ABCD có A(-1; -2), B(3; 2), C(4; -1). Tìm toa đô đỉnh D. 6.
- Các điểm A'(-4; 1), B'(2; 4) và C'(2; -2) lần lượt là trung điểm các canh 7. BC, CA và AB của tam giác ABC. Tính toạ độ các đỉnh của tam giác ABC. Chứng minh rằng trọng tâm của các tam giác ABC và A'B'C' trùng nhau.
- Cho $\vec{a} = (2; -2)$, $\vec{b} = (1; 4)$. Hãy phân tích vector $\vec{c} = (5; 0)$ theo hai vector 8. \vec{a} và \vec{b} .

ÔN TẬP CHƯƠNG I

I. CÂU HỎI VÀ BÀI TẬP

- Cho luc giác đều ABCDEF có tâm O. Hãy chỉ ra các vecto bằng \overrightarrow{AB} có điểm 1. đầu và điểm cuối là O hoặc các đỉnh của lục giác.
- Cho hai vector \vec{a} và \vec{b} đều khác $\vec{0}$. Các khẳng đinh sau đúng hay sai? 2.
 - a) Hai vecto \vec{a} và \vec{b} cùng hướng thì cùng phương ;
 - b) Hai vecto \vec{b} và $k\vec{b}$ cùng phương;
 - c) Hai vecto \vec{a} và (-2) \vec{a} cùng hướng;
 - d) Hai vecto \vec{a} và \vec{b} ngược hướng với vecto thứ ba khác $\vec{0}$ thì cùng phương.
- Tứ giác \overrightarrow{ABCD} là hình gì nếu $\overrightarrow{AB} = \overrightarrow{DC}$ và $|\overrightarrow{AB}| = |\overrightarrow{BC}|$. 3.
- Chứng minh rằng $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$. 4.
- Cho tam giác đều ABC nôi tiếp trong đường tròn tâm O. Hãy xác đinh các 5. $\overrightarrow{\text{diểm }}M, N, P$ sao cho
 - a) $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB}$; b) $\overrightarrow{ON} = \overrightarrow{OB} + \overrightarrow{OC}$; c) $\overrightarrow{OP} = \overrightarrow{OC} + \overrightarrow{OA}$.

- Cho tam giác đều ABC có canh bằng a. Tính 6.
 - a) $|\overrightarrow{AB} + \overrightarrow{AC}|$; b) $|\overrightarrow{AB} \overrightarrow{AC}|$.

7. Cho sáu điểm M, N, P, Q, R, S bất kì. Chứng minh rằng $\overrightarrow{MP} + \overrightarrow{NQ} + \overrightarrow{RS} = \overrightarrow{MS} + \overrightarrow{NP} + \overrightarrow{RQ}$.

8. Cho tam giác *OAB*. Gọi *M* và *N* lần lượt là trung điểm của *OA* và *OB*. Tìm các số *m*, *n* sao cho

a) $\overrightarrow{OM} = m\overrightarrow{OA} + n\overrightarrow{OB}$;

b) $\overrightarrow{AN} = m\overrightarrow{OA} + n\overrightarrow{OB}$;

c) $\overrightarrow{MN} = m\overrightarrow{OA} + n\overrightarrow{OB}$;

d) $\overrightarrow{MB} = m\overrightarrow{OA} + n\overrightarrow{OB}$.

- 9. Chứng minh rằng nếu G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C' thì $3\overrightarrow{GG'} = \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$.
- **10.** Trong mặt phẳng toạ độ *Oxy*, các khẳng định sau đúng hay sai ?
 - a) Hai vecto đối nhau thì chúng có hoành độ đối nhau;
 - b) Vector $\vec{a} \neq \vec{0}$ cùng phương với vector \vec{i} nếu \vec{a} có hoành độ bằng $\vec{0}$;
 - c) Vector \vec{a} có hoành độ bằng 0 thì cùng phương với vector \vec{j} .
- **11.** Cho $\vec{a} = (2; 1), \vec{b} = (3; -4), \vec{c} = (-7; 2).$
 - a) Tìm toạ độ của vector $\vec{u} = 3\vec{a} + 2\vec{b} 4\vec{c}$;
 - b) Tìm toạ độ vecto \vec{x} sao cho $\vec{x} + \vec{a} = \vec{b} \vec{c}$;
 - c) Tìm các số k và h sao cho $\vec{c} = k\vec{a} + h\vec{b}$.
- **12.** Cho $\vec{u} = \frac{1}{2}\vec{i} 5\vec{j}$, $\vec{v} = m\vec{i} 4\vec{j}$.

Tìm m để \vec{u} và \vec{v} cùng phương.

- 13. Trong các khẳng định sau khẳng định nào là đúng?
 - a) Điểm A nằm trên trục hoành thì có hoành độ bằng 0;
 - b) *P* là trung điểm của đoạn thẳng *AB* khi và chỉ khi hoành độ của *P* bằng trung bình công các hoành đô của *A* và *B*;
 - c) Nếu tứ giác ABCD là hình bình hành thì trung bình cộng các toạ độ tương ứng của A và C bằng trung bình cộng các toạ độ tương ứng của B và D.

II. CÂU HỔI TRẮC NGHIÊM

1. Cho tứ giác ABCD. Số các vectơ khác $\vec{0}$ có điểm đầu và điểm cuối là đỉnh của tứ giác bằng :

(A) 4;

(B) 6;

(C) 8;

(D) 12.

5.	Cho ba điểm phân biệt A, B, C . Đẳng thức nào sau đây là đúng ?		
	(A) $\overrightarrow{CA} - \overrightarrow{BA} = \overrightarrow{BC}$;	(B) $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$;	
	(C) $\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CB}$;	(D) $\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{CA}$.	
6.	Cho hai điểm phân biệt A và B . Điều kiện để điểm I là trung điểm của đoạt thẳng AB là :		
	(A) $IA = IB$;	(B) $\overrightarrow{IA} = \overrightarrow{IB}$;	
	(C) $\overrightarrow{IA} = -\overrightarrow{IB}$;	(D) $\overrightarrow{AI} = \overrightarrow{BI}$.	
7.	Cho tam giác ABC có G là trọng tâm, I là trung điểm của đoạn thẳng BC Đẳng thức nào sau đây là đúng ?		
	(A) $\overrightarrow{GA} = 2\overrightarrow{GI}$;	(B) $\overrightarrow{IG} = -\frac{1}{3}\overrightarrow{IA}$;	
	(C) $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GI}$;	(D) $\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA}$.	
8.	Cho hình bình hành ABCD. Đẳng thức nào sau đây là đúng?		
	(A) $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$;	(B) $\overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB}$;	
	(C) $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{CD}$;	(D) $\overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{CD}$.	
9.	Trong mặt phẳng toạ độ <i>Oxy</i> cho hình bình hành <i>OABC</i> , <i>C</i> nằm trên <i>O</i> . Khẳng định nào sau đây là đúng ?		
	(A) \overrightarrow{AB} có tung độ khác 0;	(B) A và B có tung độ khác nhau ;	
	(C) C có hoành độ bằng 0 ;	(D) $x_A + x_C - x_B = 0$.	

Cho lục giác đều ABCDEF có tâm O. Số các vecto khác $\vec{0}$ cùng phương với

Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ \overrightarrow{OC} có điểm

Cho hình chữ nhật ABCD có AB = 3, BC = 4. Độ dài của vecto \overrightarrow{AC} là :

(C) 7;

(C) 4;

(C) 7;

(D) 8.

(D) 6.

(D) 9.

 \overrightarrow{OC} có điểm đầu và điểm cuối là đỉnh của lục giác bằng :

(B) 6;

đầu và điểm cuối là đỉnh của lục giác bằng:

(B) 3;

(B) 6;

2.

3.

(A) 4;

(A) 2;

(A) 5;

- **10.** Cho $\vec{u} = (3; -2), \vec{v} = (1; 6)$. Khẳng định nào sau đây là đúng ?
 - (A) $\vec{u} + \vec{v}$ và $\vec{a} = (-4; 4)$ ngược hướng;
 - (B) \vec{u} và \vec{v} cùng phương;
 - (C) $\vec{u} \vec{v}$ và $\vec{b} = (6; -24)$ cùng hướng;
 - (D) $2\vec{u} + \vec{v}$ và \vec{v} cùng phương.
- **11.** Cho tam giác *ABC* có *A*(3; 5), *B*(1; 2), *C*(5; 2). Trọng tâm của tam giác *ABC* là:
 - (A) $G_1(-3;4)$;

(B) $G_2(4;0)$;

(C) $G_2(\sqrt{2};3)$;

- (D) $G_4(3;3)$.
- **12.** Cho bốn điểm A(1; 1), B(2; -1), C(4; 3), D(3; 5). Chọn mệnh đề đúng:
 - (A) Tứ giác ABCD là hình bình hành;
 - (B) Điểm $G(2; \frac{5}{3})$ là trọng tâm của tam giác BCD;
 - (C) $\overrightarrow{AB} = \overrightarrow{CD}$:
 - (D) AC, AD cùng phương.
- **13.** Trong mặt phẳng Oxy cho bốn điểm A(-5; -2), B(-5; 3), C(3; 3), D(3; -2). Khẳng định nào sau đây là đúng?
 - (A) \overrightarrow{AB} và \overrightarrow{CD} cùng hướng;
- (B) Tứ giác ABCD là hình chữ nhất;
- (C) Điểm I(-1; 1) là trung điểm AC; (D) $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$.
- **14.** Cho tam giác *ABC*. Đặt $\vec{a} = \vec{BC}$, $\vec{b} = \vec{AC}$.

Các cặp vectơ nào sau đây cùng phương?

- (A) $2\vec{a} + \vec{b}$ và $\vec{a} + 2\vec{b}$:
- (B) $\vec{a} 2\vec{b}$ và $2\vec{a} \vec{b}$;
- (C) $5\vec{a} + \vec{b}$ và $-10\vec{a} 2\vec{b}$:
- **15.** Trong mặt phẳng toa đô *Oxy* cho hình vuông *ABCD* có gốc *O* là tâm của hình vuông và các canh của nó song song với các truc toa độ. Khẳng đinh nào sau đây là đúng?
 - (A) $|\overrightarrow{OA} + \overrightarrow{OB}| = AB$;
- (B) $\overrightarrow{OA} \overrightarrow{OB}$ và \overrightarrow{DC} cùng hướng;
- (C) $x_A = -x_C$ và $y_A = y_C$; (D) $x_B = -x_C$ và $y_C = -y_B$.

16.	Cho $M(3; -4)$. Kê MM_1 vuông gốc với Ox , MM_2 vuông gốc với Oy . Khẳng định nào sau đây là đúng ?			
	(A) $\overline{OM_1} = -3$;	(B) $\overline{OM_2} = 4$;		
	(C) $\overrightarrow{OM_1} - \overrightarrow{OM_2}$ có toạ độ (-3; -4);	(D) $\overrightarrow{OM_1} + \overrightarrow{OM_2}$ có toạ độ (3; -4).		
17.	Trong mặt phẳng toạ độ Oxy cho $A(2;-3)$, $B(4;7)$. Toạ độ trung điểm I của đoạn thẳng AB là			
	(A) (6; 4);	(B) (2; 10);		
	(C)(3;2);	(D) $(8; -21)$.		
18.	Trong mặt phẳng toạ độ Oxy cho $A(5; 2)$, $B(10; 8)$. Toạ độ của vecto \overrightarrow{AB} là			
	(A) (15; 10);	(B) (2;4);		
	(C) (5; 6);	(D) (50; 16).		
19.	Cho tam giác ABC có $B(9;7)$, $C(11;-1)$, M và N lần lượt là trung điểm của AB và AC . Toạ độ của vector \overrightarrow{MN} là			
	(A) (2; -8);	(B) (1; -4);		
	(C) (10; 6);	(D) (5; 3).		
20.	Trong mặt phẳng toạ độ Oxy cho bốn điểm $A(3;-2)$, $B(7;1)$, $C(0;1)$, $D(-8;-5)$.			
	Khẳng định nào sau đây là đúng ? (A) \overrightarrow{AB} và \overrightarrow{CD} đối nhau ;			
	→ →			
	(B) \overrightarrow{AB} và \overrightarrow{CD} cùng phương nhưng ngược hướng;			
	(C) AB và CD cùng phương và cùng hướng;(D) A, B, C, D thẳng hàng.			
21.	Cho ba điểm $A(-1; 5)$, $B(5; 5)$, $C(-1; 11)$. Khẳng định nào sau đây là đúng ? (A) A , B , C thẳng hàng ;			
	(A) \overrightarrow{AB} , \overrightarrow{C} thang hang, (B) \overrightarrow{AB} và \overrightarrow{AC} cùng phương;			
	(C) \overrightarrow{AB} và \overrightarrow{AC} không cùng phương;			
	(D) \overrightarrow{AC} và \overrightarrow{BC} cùng phương.			

22.	Cho $\vec{a} = (3; -4), \vec{b}$ (A) (-4; 6);			(D) (-3; -8).		
23.	Cho $\vec{a} = (-1; 2), \vec{b}$ (A) (6; -9);			(D) (-5; -14).		
24.	Cho $\vec{a} = (-5; 0), \vec{b}$ (A) -5;		\vec{a} và \vec{b} cùng phương (C) 0;	g nếu số x là (D) -1 .		
25.	Cho $\vec{a} = (x; 2), \vec{b} = (A) x = -15;$		7). Vector $\vec{c} = 2\vec{a} + 3\vec{b}$: (C) $x = 15$;	nếu (D) $x = 5$.		
26.	Cho $A(1; 1)$, $B(-2; -2)$, $C(7; 7)$. Khẳng định nào đúng? (A) $G(2; 2)$ là trọng tâm của tam giác ABC ; (B) Điểm B ở giữa hai điểm A và C ; (C) Điểm A ở giữa hai điểm B và C ; (D) Hai vecto \overrightarrow{AB} và \overrightarrow{AC} cùng hướng.					
27.	Các điểm $M(2;3)$, $N(0;-4)$, $P(-1;6)$ lần lượt là trung điểm các cạnh BC , CA , AB của tam giác ABC . Toạ độ đỉnh A của tam giác là :					
28.	Cho tam giác ABC c $A(-2; 2), B(3; 5)$. T	có trọng tâm là gố c oạ độ của đỉnh C l		và <i>B</i> có toạ độ là		
29.	(A) $(-1; -7)$; (B) $(2; -2)$; (C) $(-3; -5)$; (D) $(1; 7)$. Khẳng định nào trong các khẳng định sau là đúng? (A) Hai vector $\vec{a} = (-5; 0)$ và $\vec{b} = (-4; 0)$ cùng hướng; (B) Vector $\vec{c} = (7; 3)$ là vector đối của $\vec{d} = (-7; 3)$; (C) Hai vector $\vec{u} = (4; 2)$ và $\vec{v} = (8; 3)$ cùng phương; (D) Hai vector $\vec{a} = (6; 3)$ và $\vec{b} = (2; 1)$ ngược hướng.					
30.	Trong hệ trục $(O; \vec{i})$ (A) $(0; 1);$		-	(D) (1; 1).		

Tìm hiểu về vectơ

Việc nghiên cứu vectơ và các phép toán trên các vectơ bắt nguồn từ nhu cầu của cơ học và vật lí. Trước thế kỉ XIX người ta dùng tọa đô để xác định vectơ và quy các phép toán trên các vecto về các phép toán trên toa đô của chúng. Chỉ vào giữa thế kỉ XIX, người ta mới xây dựng được các phép toán trực tiếp trên các vecto như chúng ta đã nghiên cứu trong chương I. Các nhà toán học Ha-min-tơn (W. Hamilton), Grat-sman (H. Grassmann) và Gip (J. Gibbs) là những người đầu tiên nghiên cứu một cách có hệ thống về vectơ. Thuật ngữ "Vectơ" cũng được đưa ra từ các công trình ấy. Vector theo tiếng La-tinh có nghĩa là Vât mang. Đến đầu thế kỉ XX vectơ được hiểu là phần tử của một tập hợp nào đó mà trên đó đã cho các phép toán thích hợp để trở thành một cấu trúc gọi là không gian vectơ. Nhà toán học Vây (Weyl) đã xây dựng hình học O-clit dựa vào không gian vectơ theo hê tiên đề và được nhiều người tiếp nhận một cách thích thú. Đối tượng cơ bản được đưa ra trong hệ tiên đề này là điểm và vectơ. Việc xây dựng này cho phép ta có thể mở rông số chiều của không gian một cách dễ dàng và có thể sử dung các công cu của lí thuyết tập hợp và ánh xa. Đồng thời hình học có thể sử dung những cấu trúc đại số để phát triển theo các phương hướng mới.

Vào những năm giữa thế kỉ XX, trong xu hướng hiện đại hoá chương trình phổ thông, nhiều nhà toán học trên thế giới đã vận động đưa việc giảng dạy vectơ vào trường phổ thông. Ở nước ta, vectơ và toạ độ cũng được đưa vào giảng dạy ở trường phổ thông cùng với một chương trình toán hiện đại nhằm đổi mới để nâng cao chất lượng giáo dục cho phù hợp với xu thế chung của thế giới.

TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

- Giá trị lượng giác của một góc bất kì từ 0° đến 180°
- Tích vô hướng của hai vectơ và ứng dụng
- Các hệ thức lượng trong tam giác và giải tam giác

Trong chương này chúng ta sẽ nghiên cứu thêm một phép toán mới về vectơ, đó là phép nhân vô hướng của hai vectơ. Phép nhân này cho kết quả là một số, số đó gọi là *tích vô hướng của hai vecto*. Để có thể xác định tích vô hướng của hai vectơ ta cần đến khái niệm *giá trị lượng giác của một góc \alpha bất kì với* $0^{0} \leq \alpha \leq 180^{0}$ là mở rộng của khái niệm tỉ số lượng giác của một góc nhọn α đã biết ở lớp 9.

§1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KÌ TỪ 0° ĐẾN 180°

 \triangle 1 Tam giác ABC vuông tại A có góc nhọn $\widehat{ABC} = \alpha$. Hãy nhắc lại định nghĩa các tỉ số lương giác của góc nhon α đã học ở lớp 9.

Hình 2.1

2 Trong mặt phẳng toạ độ Oxy, nửa đường tròn tâm O nằm phía trên trục hoành bán kính R = 1 được gọi là *nửa đường tròn đơn vi* (h.2.2). Nếu cho trước một góc nhon α thì ta có thể xác định một điểm M duy nhất trên nửa đường tròn đơn vị sao cho $\widehat{xOM} = \alpha$. Giả sử điểm M có toạ độ $(x_0; y_0)$.

Hãy chứng tổ rằng $\sin \alpha = y_0$, $\cos \alpha = x_0$, $\tan \alpha = \frac{y_0}{x_0}$, $\cot \alpha = \frac{x_0}{y_0}$.

Hình 2.2

Mở rộng khái niệm tỉ số lượng giác đối với góc nhọn cho những góc α bất kì với $0^{\circ} \le \alpha \le 180^{\circ}$, ta có định nghĩa sau đây :

1. Đinh nghĩa

Với mỗi góc α ($0^{\circ} \le \alpha \le 180^{\circ}$) ta xác đinh một điểm M trên nửa đường tròn đơn vi (h.2.3) sao cho $\widehat{xOM} = \alpha$ và giả sử điểm M có toạ độ $M(x_0; y_0)$. Khi đó ta đinh nghĩa:

Hình 2.3

• tang của góc
$$\alpha$$
 là $\frac{y_0}{x_0}$ $(x_0 \neq 0)$, kí hiệu tan $\alpha = \frac{y_0}{x_0}$;

• côtang của góc
$$\alpha$$
 là $\frac{x_0}{y_0}$ $(y_0 \neq 0)$, kí hiệu $\cot \alpha = \frac{x_0}{y_0}$.

Các số $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$ được gọi là các *giá tri lương giác của góc* α .

Ví dụ. Tìm các giá trị lượng giác của góc 135°.

Lấy điểm M trên nửa đường tròn đơn vi sao cho $\widehat{xOM} = 135^{\circ}$. Khi đó ta có $\widehat{yOM} = 45^{\circ}$. Từ đó ta suy ra toạ độ của điểm M là $\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$ (h.2.4).

Vậy
$$\sin 135^{\circ} = \frac{\sqrt{2}}{2}$$
; $\cos 135^{\circ} = -\frac{\sqrt{2}}{2}$
 $\tan 135^{\circ} = -1$; $\cot 135^{\circ} = -1$.

Chú ý. • Nếu α là góc tù thì $\cos \alpha < 0$, $\tan \alpha < 0$, $\cot \alpha < 0$. B

> • $\tan \alpha$ chỉ xác định khi $\alpha \neq 90^{\circ}$, $\cot \alpha \operatorname{chi} \operatorname{xác} \operatorname{dinh} \operatorname{khi} \alpha \neq 0^{\circ}$ và $\alpha \neq 180^{\circ}$.

Hình 2.4

2. Tính chất

Trên hình 2.5 ta có dây cung NM song song với trục Ox và nếu $\widehat{xOM} = \alpha$ thì $\widehat{xON} = 180^{\circ} - \alpha$. Ta có $y_M = y_N = y_0$, $x_M = -x_N = x_0$. Do đó

$$\sin \alpha = \sin (180^{\circ} - \alpha)$$

$$\cos \alpha = -\cos (180^{\circ} - \alpha)$$

$$\tan \alpha = -\tan (180^{\circ} - \alpha)$$

$$\cot \alpha = -\cot (180^{\circ} - \alpha).$$

Hình 2.5

3. Giá tri lượng giác của các góc đặc biệt

Giá trị lượng giác của các góc bất kì có thể tìm thấy trên bảng số hoặc trên máy tính bỏ túi.

Sau đây là giá trị lượng giác của một số góc đặc biệt mà chúng ta cần ghi nhớ.

Bảng giá trị lượng giác của các góc đặc biệt

Giá trị α lượng giác	0°	30°	45°	60°	90°	180°
$\sin\!lpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
an lpha	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	=	0
$\cot \alpha$	II	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	

Trong bảng, kí hiệu " \parallel " để chỉ giá trị lượng giác không xác định.

Chú ý. Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá tri lượng giác của một số góc đặc biệt khác.

Chẳng hạn:

$$\sin 120^{\circ} = \sin(180^{\circ} - 60^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
$$\cos 135^{\circ} = \cos(180^{\circ} - 45^{\circ}) = -\cos 45^{\circ} = -\frac{\sqrt{2}}{2}.$$

 \triangle 3 Tìm các giá trị lượng giác của các góc 120° , 150° .

4. Góc giữa hai vecto

a) Định nghĩa

Cho hai vecto \vec{a} và \vec{b} đều khác vecto $\vec{0}$. Từ một điểm O bất kì ta vẽ $\overrightarrow{OA} = \vec{a}$ và $\overrightarrow{OB} = \vec{b}$. Góc \overrightarrow{AOB} với số đo từ 0° đến 180° được gọi là **góc giữa hai vecto** \vec{a} và \vec{b} . Ta kí hiệu góc giữa hai vecto \vec{a} và \vec{b} là (\vec{a}, \vec{b}) (h.2.6). Nếu $(\vec{a}, \vec{b}) = 90^{\circ}$ thì ta nói rằng \vec{a} và \vec{b} vuông góc với nhau, kí hiệu là $\vec{a} \perp \vec{b}$ hoặc $\vec{b} \perp \vec{a}$.

b) Chú ý. Từ định nghĩa ta có $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$.

Hình 2.6

4 Khi nào góc giữa hai vectơ bằng 0°? Khi nào góc giữa hai vectơ bằng 180°?

c) Ví dụ. Cho tam giác ABC vuông tại A và có góc $\hat{B} = 50^{\circ}$ (h.2.7). Khi đó:

$$(\overrightarrow{BA}, \overrightarrow{BC}) = 50^{\circ}, (\overrightarrow{AB}, \overrightarrow{BC}) = 130^{\circ},$$

$$(\overrightarrow{CA}, \overrightarrow{CB}) = 40^{\circ}, (\overrightarrow{AC}, \overrightarrow{BC}) = 40^{\circ},$$

$$(\overrightarrow{AC}, \overrightarrow{CB}) = 140^{\circ}, (\overrightarrow{AC}, \overrightarrow{BA}) = 90^{\circ}.$$

Hình 2.7

5. Sử dụng máy tính bỏ túi để tính giá trị lượng giác của một góc

Ta có thể sử dụng các loại máy tính bỏ túi để tính giá trị lượng giác của một góc, chẳng hạn đối với máy CASIO fx -500MS cách thực hiện như sau :

a) Tính các giá trị lượng giác của góc α

Sau khi mở máy ấn phím MODE nhiều lần để màn hình hiện lên dòng chữ ứng với các số sau đây :

Deg	Rad	Gra
1	2	3

Sau đó ấn phím 1 để xác định đơn vị đo góc là "độ" và tính giá trị lượng giác của góc.

• Tính $\sin \alpha$, $\cos \alpha$ và $\tan \alpha$.

Ví dụ 1. Tính sin 63° 52' 41".

Ấn liên tiếp các phím sau đây:

Ta được kết quả là : $\sin 63^{\circ} 52' 41'' \approx 0,897859012$.

Để tính $\cos \alpha$ và $\tan \alpha$ ta cũng làm như trên, chỉ thay việc ấn phím $\boxed{\sin}$ bằng phím $\boxed{\cos}$ hay $\boxed{\tan}$.

b) Xác đinh đô lớn của góc khi biết giá tri lương giác của góc đó

Sau khi mở máy và chon đơn vi đo góc, để tính góc x khi biết các giá tri lương giác của góc đó ta làm như ví du sau.

Ví dụ 2. Tìm *x* biết $\sin x = 0.3502$.

Ta ấn liên tiếp các phím sau đây:

và được kết quả là : $x \approx 20^{\circ}29'58''$.

Muốn tìm x khi biết $\cos x$, $\tan x$ ta làm tương tự như trên, chỉ thay phím $\sin x$ bằng phím | cos |, tan |.

Câu hỏi và bài tâp

Chứng minh rằng trong tam giác ABC ta có: 1.

a)
$$\sin A = \sin(B + C)$$
;

b)
$$\cos A = -\cos(B + C)$$
.

- Cho AOB là tam giác cân tại O có OA = a và có các đường cao OH và AK. 2. Giả sử $\overrightarrow{AOH} = \alpha$. Tính AK và OK theo a và α .
- Chứng minh rằng: 3.

a)
$$\sin 105^{\circ} = \sin 75^{\circ}$$
;

b)
$$\cos 170^{\circ} = -\cos 10^{\circ}$$
;

c)
$$\cos 122^{\circ} = -\cos 58^{\circ}$$
.

- Chứng minh rằng với moi góc $\alpha (0^{\circ} \le \alpha \le 180^{\circ})$ ta đều có $\cos^2 \alpha + \sin^2 \alpha = 1$. 4.
- Cho góc x, với $\cos x = \frac{1}{3}$. Tính giá trị của biểu thức : $P = 3\sin^2 x + \cos^2 x$. 5.
- 6. Cho hình vuông ABCD. Tính:

$$\cos(\overrightarrow{AC}, \overrightarrow{BA}), \sin(\overrightarrow{AC}, \overrightarrow{BD}), \cos(\overrightarrow{AB}, \overrightarrow{CD}).$$

§2. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ

Trong vật lí, ta biết rằng nếu có một lực \overrightarrow{F} tác động lên một vật tại điểm O và làm cho vật đó di chuyển một quãng đường s = OO' thì công A của lực \overrightarrow{F} được tính theo công thức :

$$A = |\vec{F}| . |\overrightarrow{OO'}| \cos \varphi \qquad \text{(h.2.8)}$$

trong đó $|\overrightarrow{F}|$ là cường độ của lực \overrightarrow{F} tính bằng Niuton (viết tắt là N), $|\overrightarrow{OO'}|$ là độ dài của vecto $|\overrightarrow{OO'}|$ tính bằng mét (m), $|\varphi|$ là góc giữa hai vecto $|\overrightarrow{OO'}|$ và $|\overrightarrow{F}|$, còn công |A| được tính bằng Jun (viết tắt là J).

Trong toán học, giá trị A của biểu thức trên (không kể đơn vị đo) được gọi là tích vô hướng của hai vecto \overrightarrow{F} và \overrightarrow{OO} .

1. Định nghĩa

Cho hai vectơ \vec{a} và \vec{b} đều khác vectơ $\vec{0}$. **Tích vô hướng** của \vec{a} và \vec{b} là một số, kí hiệu là \vec{a} . \vec{b} , được xác định bởi công thức sau :

$$\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|\cos(\vec{a},\vec{b}).$$

Trường hợp ít nhất một trong hai vecto \vec{a} và \vec{b} bằng vecto $\vec{0}$ ta quy ước $\vec{a}.\vec{b} = 0$.

🖙 Chú ý

- a) Với \vec{a} và \vec{b} khác vecto $\vec{0}$ ta có \vec{a} . $\vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.
- **b**) Khi $\vec{a} = \vec{b}$ tích vô hướng $\vec{a} \cdot \vec{a}$ được kí hiệu là \vec{a}^2 và số này được gọi là bình phương vô hướng của vecto \vec{a} .

Ta có
$$\overrightarrow{a}^2 = |\overrightarrow{a}| . |\overrightarrow{a}| \cos 0^\circ = |\overrightarrow{a}|^2 .$$

Ví dụ. Cho tam giác đều ABC có cạnh bằng a và có chiều cao AH. Khi đó ta có (h.2.9)

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = a \cdot a \cdot \cos 60^{\circ} = \frac{1}{2}a^{2}$$
,

$$\overrightarrow{AC}.\overrightarrow{CB} = a.a.\cos 120^{\circ} = -\frac{1}{2}a^2$$
,

$$\overrightarrow{AH} \cdot \overrightarrow{BC} = \frac{a\sqrt{3}}{2} \cdot a \cdot \cos 90^{\circ} = 0$$
.

Hình 2.9

2. Các tính chất của tích vô hướng

Người ta chứng minh được các tính chất sau đây của tích vô hướng:

Với ba vecto
$$\vec{a}$$
, \vec{b} , \vec{c} bất kì và mọi số k ta có :

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (tính chất giao hoán);

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$
 (tính chất phân phối);
 $(\vec{k}\vec{a}) \cdot \vec{b} = \vec{k}(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\vec{k}\vec{b})$;

$$(\vec{k}\vec{a}) \cdot \vec{b} = \vec{k}(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\vec{k}\vec{b})$$

$$\vec{a} \ge 0, \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}.$$

Nhận xét. Từ các tính chất của tích vô hướng của hai vectơ ta suy ra:

$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a}.\vec{b} + \vec{b}^2$$
;

$$(\vec{a} - \vec{b})^2 = \vec{a}^2 - 2\vec{a}.\vec{b} + \vec{b}^2;$$

 $(\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = \vec{a}^2 - \vec{b}^2.$

$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a}^2 - \vec{b}^2$$

lacktriangle1 Cho hai vecto $ec{a}$ và $ec{b}$ đều khác vecto $ec{0}$. Khi nào thì tích vô hướng của hai vecto đó là số dương? Là số âm? Bằng 0?

 \acute{U} ng dụng. Một xe goòng chuyển động từ A đến B dưới tác dụng của lực \overrightarrow{F} . Lực \overrightarrow{F} tạo với hướng chuyển động một góc α , tức là $(\overrightarrow{F}, \overrightarrow{AB}) = \alpha$ (h.2.10).

Hình 2.10

Lực \overrightarrow{F} được phân tích thành hai thành phần $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$ trong đó $\overrightarrow{F_1}$ vuông góc với \overrightarrow{AB} , còn $\overrightarrow{F_2}$ là hình chiếu của \overrightarrow{F} lên đường thẳng AB. Ta có $\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2}$. Công \mathscr{A} của lực \overrightarrow{F} là $\mathscr{A} = \overrightarrow{F}.\overrightarrow{AB} = (\overrightarrow{F_1} + \overrightarrow{F_2}).\overrightarrow{AB} = \overrightarrow{F_1}.\overrightarrow{AB} + \overrightarrow{F_2}.\overrightarrow{AB} = \overrightarrow{F_2}.\overrightarrow{AB}$.

Như vậy lực thành phần $\overrightarrow{F_1}$ không làm cho xe goòng chuyển động nên không sinh công. Chỉ có thành phần $\overrightarrow{F_2}$ của lực \overrightarrow{F} sinh công làm cho xe goòng chuyển động từ A đến B.

Công thức $\mathscr{A} = \overrightarrow{F} \cdot \overrightarrow{AB}$ là công thức tính công của lực \overrightarrow{F} làm vật di chuyển từ A đến B mà ta đã biết trong vật lí.

3. Biểu thức toa độ của tích vô hướng

Trên mặt phẳng toạ độ $(O\;;\;\vec{i}\;,\;\vec{j}\;)$, cho hai vecto $\vec{a}=(a_1\;;a_2),\;\vec{b}=(b_1\;;b_2).$ Khi đó tích vô hướng $\vec{a}\;.\vec{b}\;$ là :

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2.$$

Thật vậy
$$\vec{a} \cdot \vec{b} = (a_1 \vec{i} + a_2 \vec{j}) \cdot (b_1 \vec{i} + b_2 \vec{j})$$

= $a_1 b_1 \vec{i}^2 + a_2 b_2 \vec{j}^2 + a_1 b_2 \vec{i} \cdot \vec{j} + a_2 b_1 \vec{j} \cdot \vec{i}$.

Vì
$$\vec{i}^2 = \vec{j}^2 = 1$$
 và $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{i} = 0$ nên suy ra :
 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$.

Nhận xét. Hai vecto $\vec{a}=(a_1\,;\,a_2),\,\vec{b}=(b_1\,;\,b_2)$ đều khác vecto $\vec{0}$ vuông góc với nhau khi và chỉ khi

$$a_1b_1 + a_2b_2 = 0.$$

 \triangle 2 Trên mặt phẳng toạ độ Oxy cho ba điểm A(2;4), B(1;2), C(6;2). Chứng minh rằng $\overrightarrow{AB} \perp \overrightarrow{AC}$.

Úng dung 4.

a) Đô dài của vectơ

Độ dài của vector $\vec{a} = (a_1; a_2)$ được tính theo công thức :

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2} \ .$$

Thật vậy, ta có $|\vec{a}|^2 = \vec{a}^2 = \vec{a} \cdot \vec{a} = a_1 a_1 + a_2 a_2 = a_1^2 + a_2^2$.

Do đó
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$
.

b) Góc giữa hai vectơ

Từ định nghĩa tích vô hướng của hai vectơ ta suy ra nếu $\vec{a} = (a_1; a_2)$ và $\vec{b} = (b_1; b_2)$ đều khác $\vec{0}$ thì ta có:

$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}.\sqrt{b_1^2 + b_2^2}}.$$

Ví dụ. Cho $\overrightarrow{OM} = (-2; -1), \overrightarrow{ON} = (3; -1).$

Ta có
$$\widehat{cos MON} = \widehat{cos(OM, ON)} = \frac{\overrightarrow{OM}.\overrightarrow{ON}}{|\overrightarrow{OM}|.|\overrightarrow{ON}|} = \frac{-6+1}{\sqrt{5}.\sqrt{10}} = -\frac{\sqrt{2}}{2}.$$

Vậy
$$(\overrightarrow{OM}, \overrightarrow{ON}) = 135^{\circ}$$
.

c) Khoảng cách giữa hai điểm

Khoảng cách giữa hai điểm $A(x_A; y_A)$ và $B(x_B; y_B)$ được tính theo công thức :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} .$$

Thật vậy, vì
$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$$
 nên ta có

$$AB = \left| \overrightarrow{AB} \right| = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2} \ .$$

Ví dụ. Cho hai điểm M(-2; 2) và N(1; 1). Khi đó $\overrightarrow{MN} = (3; -1)$ và khoảng cách MN là : $|\overrightarrow{MN}| = \sqrt{3^2 + (-1)^2} = \sqrt{10}$.

Câu hỏi và bài tập

- 1. Cho tam giác vuông cân ABC có AB = AC = a. Tính các tích vô hướng $\overrightarrow{AB.AC}$, $\overrightarrow{AC.CB}$.
- **2.** Cho ba điểm O, A, B thẳng hàng và biết OA = a, OB = b. Tính tích vô hướng $\overrightarrow{OA}.\overrightarrow{OB}$ trong hai trường hợp :
 - a) Điểm O nằm ngoài đoạn AB;
 - b) Điểm O nằm trong đoạn AB.
- 3. Cho nửa đường tròn tâm O có đường kính AB = 2R. Gọi M và N là hai điểm thuộc nửa đường tròn sao cho hai dây cung AM và BN cắt nhau tại I.
 - a) Chứng minh $\overrightarrow{AI}.\overrightarrow{AM} = \overrightarrow{AI}.\overrightarrow{AB}$ và $\overrightarrow{BI}.\overrightarrow{BN} = \overrightarrow{BI}.\overrightarrow{BA}$;
 - b) Hãy dùng kết quả câu a) để tính $\overrightarrow{AI}.\overrightarrow{AM} + \overrightarrow{BI}.\overrightarrow{BN}$ theo R.
- **4.** Trên mặt phẳng Oxy, cho hai điểm A(1; 3), B(4; 2).
 - a) Tìm toạ độ điểm D nằm trên trục Ox sao cho DA = DB;
 - b) Tính chu vi tam giác OAB;
 - c) Chứng tỏ OA vuông góc với AB và từ đó tính diện tích tam giác OAB.

Trên mặt phẳng Oxy hãy tính góc giữa hai vecto \vec{a} và \vec{b} trong các trường 5. hop sau:

a)
$$\vec{a} = (2; -3), \vec{b} = (6; 4);$$

b)
$$\vec{a} = (3; 2), \vec{b} = (5; -1);$$

c)
$$\vec{a} = (-2; -2\sqrt{3}), \vec{b} = (3; \sqrt{3}).$$

- 6. Trên mặt phẳng toa đô Oxy cho bốn điểm A(7; -3), B(8; 4), C(1; 5), D(0; -2). Chứng minh rằng tứ giác ABCD là hình vuông.
- Trên mặt phẳng Oxy cho điểm A(-2; 1). Gọi B là điểm đối xứng với điểm A7. qua gốc toa đô O. Tìm toa đô của điểm C có tung đô bằng 2 sao cho tam giác *ABC* vuông ở *C*.

§3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

Chúng ta biết rằng một tam giác được hoàn toàn xác định nếu biết một số yếu tố, chẳng han biết ba canh, hoặc hai canh và góc xen giữa hai canh đó.

Như vậy giữa các canh và các góc của một tam giác có một mối liên hệ xác định nào đó mà ta sẽ gọi là các hệ thức lượng trong tam giác. Trong phần này chúng ta sẽ nghiên cứu những hệ thức đó và các ứng dung của chúng.

Đối với tam giác ABC ta thường kí hiệu : a = BC, b = CA, c = AB.

 \triangle 1 Tam giác ABC vuông tại A có đường cao AH = h và có BC = a, CA = b, AB = c. Gọi BH = c' và CH = b' (h.2.11). Hãy điền vào các ô trống trong các hệ thức sau đây để được các hệ thức lương trong tam giác vuông :

$$a^2 = b^2 +$$
 ...

$$b^2 = a \times \boxed{\dots}$$

$$c^2 = a \times \boxed{\dots}$$

$$h^2 = b' \times \boxed{\dots}$$

$$ah = b \times \boxed{...}$$

$$\frac{1}{\boxed{\dots}} = \frac{1}{b^2} + \frac{1}{c^2}$$

$$\sin B = \cos C = \frac{\Box}{a}; \sin C = \cos B = \frac{\Box}{a}$$

$$tanB = cotC = \frac{\Box}{c}$$
; $cotB = tanC = \frac{\Box}{b}$.

Trước tiên ta tìm hiểu hai hệ thức lượng cơ bản trong tam giác bất kì là định lí côsin và đinh lí sin.

1. Đinh lí côsin

a) Bài toán. Trong tam giác ABC cho biết hai cạnh AB, AC và góc A, hãy tính cạnh BC (hình 2.12).

Ta có
$$BC^2 = |\overrightarrow{BC}|^2 = (\overrightarrow{AC} - \overrightarrow{AB})^2$$

 $= \overrightarrow{AC}^2 + \overrightarrow{AB}^2 - 2\overrightarrow{AC}.\overrightarrow{AB}$
 $BC^2 = \overrightarrow{AC}^2 + \overrightarrow{AB}^2 - 2|\overrightarrow{AC}|.|\overrightarrow{AB}|\cos A$.

Vậy ta có
$$BC^2 = AC^2 + AB^2 - 2AC.AB.\cos A$$

nên $BC = \sqrt{AC^2 + AB^2 - 2AC.AB.\cos A}$.

Từ kết quả của bài toán trên ta suy ra đinh lí sau đây:

b) Đinh lí côsin

Trong tam giác ABC bất kì với BC = a, CA = b, AB = c ta có :

$$a^{2} = b^{2} + c^{2} - 2bc \cos A;$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B;$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C.$$

2 Hãy phát biểu định lí côsin bằng lời.

📤 3 Khi ABC là tam giác vuông, định lí côsin trở thành định lí quen thuộc nào ?

Từ đinh lí côsin ta suy ra:

Hệ quả

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc};$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac};$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}.$$

c) Áp dụng. Tính độ dài đường trung tuyến của tam giác.

Cho tam giác ABC có các cạnh BC = a, CA = b và AB = c. Gọi m_a , m_b và m_{c} là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A, B và C của tam giác. Ta có:

$$m_a^2 = \frac{2(b^2 + c^2) - a^2}{4} ;$$

$$m_b^2 = \frac{2(a^2 + c^2) - b^2}{4} ;$$

$$m_c^2 = \frac{2(a^2 + b^2) - c^2}{4} .$$

Hình 2.13

Thật vậy, gọi M là trung điểm của canh BC, áp dung đinh lí côsin vào tam giác AMB ta có:

$$m_a^2 = c^2 + \left(\frac{a}{2}\right)^2 - 2c \cdot \frac{a}{2} \cdot \cos B = c^2 + \frac{a^2}{4} - ac \cos B$$

Vì $\cos B = \frac{a^2 + c^2 - b^2}{2\pi a}$ nên ta suy ra :

$$m_a^2 = c^2 + \frac{a^2}{4} - ac \cdot \frac{a^2 + c^2 - b^2}{2ac} = \frac{2(b^2 + c^2) - a^2}{4}.$$

Chứng minh tương tự ta có:

$$m_b^2 = \frac{2(a^2 + c^2) - b^2}{4}$$

$$m_c^2 = \frac{2(a^2 + b^2) - c^2}{4} \,.$$

d) Ví du

Ví dụ 1. Cho tam giác ABC có các cạnh AC = 10 cm, BC = 16 cm và góc $\hat{C} = 110^{\circ}$. Tính cạnh AB và các góc A, B của tam giác đó.

GIẢI

$$\text{D} \check{\mathbf{a}} \mathsf{t} \, BC = a, \, CA = b, \, AB = c.$$

Theo đinh lí côsin ta có:

$$c^2 = a^2 + b^2 - 2ab \cos C$$

= $16^2 + 10^2 - 2.16.10 \cdot \cos 110^\circ$

$$c^2 \approx 465,44.$$

Vậy $c \approx \sqrt{465,44} \approx 21,6$ (cm).

Theo hê quả đinh lí côsin ta có:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \approx \frac{10^2 + (21,6)^2 - 16^2}{2.10.(21,6)} \approx 0,7188.$$

Suv ra $\hat{A} \approx 44^{\circ}2'$, $\hat{B} = 180^{\circ} - (\hat{A} + \hat{C}) \approx 25^{\circ}58'$.

Ví dụ 2. Hai lực $\overrightarrow{f_1}$ và $\overrightarrow{f_2}$ cho trước cùng tác dụng lên một vật và tạo thành góc nhọn $(\overrightarrow{f_1}, \overrightarrow{f_2}) = \alpha$. Hãy lập công thức tính cường độ của hợp lực \overrightarrow{s} .

GIẢI

Đặt
$$\overrightarrow{AB} = \overrightarrow{f_1}$$
, $\overrightarrow{AD} = \overrightarrow{f_2}$ và vẽ hình bình hành \overrightarrow{ABCD} (h.2.15).

Khi đó
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{f_1} + \overrightarrow{f_2} = \overrightarrow{s}$$
.

$$|\vec{s}| = |\vec{AC}| = |\vec{f_1} + \vec{f_2}|.$$

Hình 2.15

Theo định lí côsin đối với tam giác ABC ta có

$$AC^2 = AB^2 + BC^2 - 2AB.BC.\cos B,$$

hay
$$|\vec{s}|^2 = |\vec{f_1}|^2 + |\vec{f_2}|^2 - 2|\vec{f_1}| \cdot |\vec{f_2}| \cdot \cos(180^\circ - \alpha)$$
.

Do đó
$$|\vec{s}| = \sqrt{\overrightarrow{f_1}^2 + \overrightarrow{f_2}^2 + 2|\overrightarrow{f_1}| \cdot |\overrightarrow{f_2}| \cdot \cos \alpha}$$
.

2. Đinh lí sin

 \triangle 5 Cho tam giác ABC vuông ở A nội tiếp trong đường tròn bán kính R và có BC = a, CA = b, AB = c. Chứng minh hệ thức:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

Đối với tam giác ABC bất kì ta cũng có hệ thức trên. Hệ thức này được gọi là định lí sin trong tam giác.

a) Đinh lí sin

Trong tam giác ABC bất kì với BC = a, CA = b, AB = c và R là bán kính đường tròn ngoại tiếp, ta $c\acute{o}$:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

CHÚNG MINH. Ta chứng minh hệ thức $\frac{a}{\sin A} = 2R$. Xét hai trường hợp :

• Nếu góc A nhọn, ta vẽ đường kính BD của đường tròn ngoại tiếp tam giác ABC và khi đó vì tam giác BCD vuông tại C nên ta có BC = BD. $\sin D$ hay a = 2R. $\sin D$ (h.2.16a).

Ta có $\widehat{BAC} = \widehat{BDC}$ vì đó là hai góc nội tiếp cùng chắn cung \widehat{BC} . Do đó $a = 2R. \sin A$ hay $\frac{a}{\sin A} = 2R.$

Hình 2.16

• Nếu góc A tù, ta cũng vẽ đường kính BD của đường tròn tâm O ngoại tiếp tam giác ABC (h.2.16b). Tứ giác ABDC nội tiếp đường tròn tâm O nên $\widehat{D} = 180^{\circ} - \widehat{A}$. Do đó $\sin D = \sin(180^{\circ} - A)$. Ta cũng có BC = BD. $\sin D$ hay a = BD. $\sin A$.

Vậy
$$a = 2R \sin A$$
 hay $\frac{a}{\sin A} = 2R$.

Các đẳng thức $\frac{b}{\sin B} = 2R \text{ và } \frac{c}{\sin C} = 2R \text{ được chứng minh tương tự.}$

Vậy ta có
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

6 Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp tam giác đó.

b) Ví dụ. Cho tam giác ABC có $\widehat{B} = 20^{\circ}$, $\widehat{C} = 31^{\circ}$ và cạnh b = 210 cm. Tính \widehat{A} , các cạnh còn lại và bán kính R của đường tròn ngoại tiếp tam giác đó.

Ta có $\hat{A} = 180^{\circ} - (20^{\circ} + 31^{\circ})$, do đó $\hat{A} = 129^{\circ}$ (h.2.17).

Mặt khác theo định lí sin ta có:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 (1)

Từ (1) suy ra
$$a = \frac{b \sin A}{\sin B} = \frac{210.\sin 129^{\circ}}{\sin 20^{\circ}} \approx 477.2 \text{ (cm)}.$$

$$c = \frac{b \sin C}{\sin B} = \frac{210.\sin 31^{\circ}}{\sin 20^{\circ}} \approx 316.2 \text{ (cm)}.$$

$$R = \frac{a}{2\sin A} = \frac{477.2}{2.\sin 129^{\circ}} \approx 307.02 \text{ (cm)}.$$

3. Công thức tính diện tích tam giác

Ta kí hiệu $h_a,\ h_b$ và h_c là các đường cao của tam giác ABC lần lượt vẽ từ các đỉnh A, B, C và S là diên tích tam giác đó.

A7 Hãy viết các công thức tính diện tích tam giác theo một cạnh và đường cao tương ứng.

Cho tam giác ABC có các canh BC = a, CA = b, AB = c.

Goi R và r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác và $p = \frac{a+b+c}{2}$ là nửa chu vi của tam giác.

Diện tích S của tam giác ABC được tính theo một trong các công thức sau :

$$S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B \; ; \tag{1}$$

$$S = \frac{abc}{4R};$$

$$S = pr;$$

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 (công thức Hê-rông). (4)

$$S = pr; (3)$$

$$S = \sqrt{p(p-a)(p-b)(p-c)} \quad \text{(công thức Hê-rông)}. \tag{4}$$

Ta chứng minh công thức (1).

Ta đã biết $S = \frac{1}{2}ah_a$ với $h_a = AH = AC\sin C = b\sin C$ (kể cả \widehat{C} nhọn, tù hay vuông) (h.2.18).

Hình 2.18

Do đó
$$S = \frac{1}{2}ab\sin C$$
.

Các công thức $S = \frac{1}{2}bc\sin A$ và $S = \frac{1}{2}ca\sin B$ được chứng minh tương tự.

A8 Dựa vào công thức (1) và định lí sin, hãy chứng minh $S = \frac{abc}{4R}$.

Hình 2.19

Ta thừa nhận công thức Hê-rông.

Ví dụ 1. Tam giác ABC có các cạnh a=13 m, b=14 m và c=15 m.

- a) Tính diện tích tam giác ABC;
- b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC.

GIẢI

a) Ta có
$$p = \frac{1}{2}(13 + 14 + 15) = 21$$
. Theo công thức Hê-rông ta có :
$$S = \sqrt{21(21-13)(21-14)(21-15)} = 84 \text{ (m}^2).$$

b) Áp dụng công thức
$$S = pr$$
 ta có $r = \frac{S}{p} = \frac{84}{21} = 4$.

Vậy đường tròn nội tiếp tam giác ABC có bán kính là r = 4 m.

Từ công thức $S = \frac{abc}{4R}$.

Ta có
$$R = \frac{abc}{4S} = \frac{13.14.15}{336} = 8,125 \text{ (m)}.$$

Ví dụ 2. Tam giác ABC có cạnh $a=2\sqrt{3}$, cạnh b=2 và $\widehat{C}=30^{\circ}$. Tính cạnh c, góc A và diên tích tam giác đó.

GIẢI

Theo đinh lí côsin ta có

$$c^2 = a^2 + b^2 - 2ab\cos C = 12 + 4 - 2.2\sqrt{3}.2.\frac{\sqrt{3}}{2} = 4.$$

Vậy c = 2 và tam giác ABC có AB = AC = 2. Ta suy ra $\widehat{B} = \widehat{C} = 30^{\circ}$.

Do đó
$$\hat{A} = 120^{\circ}$$
.

Ta có
$$S = \frac{1}{2} ac \sin B = \frac{1}{2} . 2\sqrt{3}.2. \frac{1}{2} = \sqrt{3}$$
 (đơn vị diện tích).

Giải tam giác và ứng dụng vào việc đo đạc 4.

a) Giải tam giác

Giải tam giác là tìm một số yếu tố của tam giác khi cho biết các yếu tố khác.

Hình 2.20. Giác kế dùng để ngắm và đo đạc.

Muốn giải tam giác ta thường sử dung các hệ thức đã được nêu lên trong đinh lí côsin, đinh lí sin và các công thức tính diện tích tam giác.

Ví dụ 1. Cho tam giác ABC biết cạnh a = 17.4 m, $\hat{B} = 44^{\circ}30'$ và $\hat{C} = 64^{\circ}$. Tính góc \widehat{A} và các canh b, c.

GIẢI

Ta có
$$\hat{A} = 180^{\circ} - (\hat{B} + \hat{C}) = 180^{\circ} - (44^{\circ}30' + 64^{\circ}) = 71^{\circ}30'.$$

Theo dinh lí sin ta có $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,

do đó
$$b = \frac{a \sin B}{\sin A} \approx \frac{17, 4.0,7009}{0,9483} \approx 12,9 \text{ (m)},$$
$$c = \frac{a \sin C}{\sin A} \approx \frac{17, 4.0,8988}{0,9483} \approx 16,5 \text{ (m)}.$$

Ví du 2. Cho tam giác ABC có canh a = 49.4cm, b = 26.4cm và $\hat{C} = 47^{\circ}20^{\circ}$. Tính canh c, \widehat{A} và \widehat{B} .

GIẢI

Theo đinh lí côsin ta có

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\approx (49,4)^{2} + (26,4)^{2} - 2.49,4.26,4.0,6777 \approx 1369,66.$$

Vây $c \approx \sqrt{1369,66} \approx 37 \text{ (cm)}.$

Ta có
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \approx \frac{697 + 1370 - 2440}{2.26, 4.37} \approx -0,191.$$

Như vậy \hat{A} là góc tù và ta có $\hat{A} \approx 101^{\circ}$.

Do đó
$$\hat{B} = 180^{\circ} - (\hat{A} + \hat{C}) \approx 180^{\circ} - (101^{\circ} + 47^{\circ}20') \approx 31^{\circ}40'$$
.

Vâv $\hat{B} \approx 31^{\circ}40'$.

Ví dụ 3. Cho tam giác ABC có cạnh a=24 cm, b=13 cm và c=15 cm. Tính diên tích S của tam giác và bán kính r của đường tròn nôi tiếp.

GIẢI

Theo đinh lí côsin ta có

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{169 + 225 - 576}{2.13.15} \approx -0,4667,$$

như vậy \widehat{A} là góc tù và ta tính được $\widehat{A} \approx 117^{\circ}49' \Rightarrow \sin A \approx 0.88$.

Ta có
$$S = \frac{1}{2}bc\sin A = \frac{1}{2}.13.15.0,88 \approx 85.8 \text{ (cm}^2).$$

Áp dụng công thức
$$S = pr$$
 ta có $r = \frac{S}{p}$. Vì $p = \frac{24+13+15}{2} = 26$ nên $r \approx \frac{85,8}{26} = 3,3$ (cm).

b) Ứng dụng vào việc đo đạc

Bài toán 1. Đo chiều cao của một cái tháp mà không thể đến được chân tháp.

Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A, B trên mặt đất sao cho ba điểm A, B và C thẳng hàng. Ta đo khoảng cách AB và các góc \widehat{CAD} , \widehat{CBD} . Chẳng hạn ta đo được AB = 24 m, $\widehat{CAD} = \alpha = 63^{\circ}$, $\widehat{CBD} = \beta = 48^{\circ}$. Khi đó chiều cao h của tháp được tính như sau :

Hình 2.21

Áp dụng định lí sin vào tam giác ABD ta có

$$\frac{AD}{\sin\beta} = \frac{AB}{\sin D}.$$

Ta có $\alpha = \widehat{D} + \beta$ nên $\widehat{D} = \alpha - \beta = 63^{\circ} - 48^{\circ} = 15^{\circ}$.

Do đó
$$AD = \frac{AB\sin\beta}{\sin(\alpha-\beta)} = \frac{24\sin 48^{\circ}}{\sin 15^{\circ}} \approx 68,91.$$

Trong tam giác vuông ACD ta có $h = CD = AD\sin \alpha \approx 61,4$ (m).

Bài toán 2. Tính khoảng cách từ một địa điểm trên bờ sông đến một gốc cây trên một cù lao ở giữa sông.

Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo khoảng cách AB, góc \widehat{CAB} và \widehat{CBA} . Chẳng hạn ta đo được AB = 40 m, $\widehat{CAB} = \alpha = 45^{\circ}$, $\widehat{CBA} = \beta = 70^{\circ}$.

Hình 2.22

Khi đó khoảng cách AC được tính như sau :

Áp dụng định lí sin vào tam giác ABC, ta có

$$\frac{AC}{\sin B} = \frac{AB}{\sin C} \quad \text{(h.2.22)}.$$

Vì
$$\sin C = \sin(\alpha + \beta)$$
 nên $AC = \frac{AB\sin\beta}{\sin(\alpha + \beta)} = \frac{40.\sin 70^{\circ}}{\sin 115^{\circ}} \approx 41,47 \text{ (m)}.$
Vậy $AC \approx 41,47 \text{ (m)}.$

Câu hỏi và bài tập

- 1. Cho tam giác ABC vuông tại A, $\widehat{B} = 58^{\circ}$ và cạnh a = 72 cm. Tính \widehat{C} , cạnh b, cạnh c và đường cao h_a .
- **2.** Cho tam giác ABC biết các cạnh a = 52,1 cm, b = 85 cm và c = 54 cm. Tính các góc \widehat{A} , \widehat{B} và \widehat{C} .
- 3. Cho tam giác ABC có $\widehat{A} = 120^{\circ}$, cạnh b = 8 cm và c = 5 cm. Tính cạnh a, và các góc \widehat{B} , \widehat{C} của tam giác đó.
- **4.** Tính diện tích S của tam giác có số đo các cạnh lần lượt là 7, 9 và 12.
- 5. Tam giác ABC có $\widehat{A} = 120^{\circ}$. Tính cạnh BC cho biết cạnh AC = m và AB = n.
- **6.** Tam giác ABC có các cạnh a = 8 cm, b = 10 cm và c = 13 cm.
 - a) Tam giác đó có góc tù không?
 - b) Tính độ dài trung tuyến MA của tam giác ABC đó.
- 7. Tính góc lớn nhất của tam giác ABC biết
 - a) Các cạnh a = 3 cm, b = 4 cm và c = 6 cm;
 - b) Các cạnh a=40 cm, b=13 cm và c=37 cm.
- **8.** Cho tam giác ABC biết cạnh a = 137.5 cm, $\widehat{B} = 83^{\circ}$ và $\widehat{C} = 57^{\circ}$. Tính góc A, bán kính R của đường tròn ngoại tiếp, cạnh b và c của tam giác.
- 9. Cho hình bình hành ABCD có AB = a, BC = b, BD = m và AC = n. Chứng minh rằng $m^2 + n^2 = 2(a^2 + b^2)$.

- **10.** Hai chiếc tàu thuỷ P và Q cách nhau 300 m. Từ P và Q thẳng hàng với chân A của tháp hải đăng AB ở trên bờ biển người ta nhìn chiều cao AB của tháp dưới các góc $\widehat{BPA} = 35^{\circ}$ và $\widehat{BQA} = 48^{\circ}$. Tính chiều cao của tháp.
- 11. Muốn đo chiều cao của Tháp Chàm Por Klong Garai ở Ninh Thuận (h.2.23), người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế (h.2.24). Chân của giác kế có chiều cao h = 1,3 m. Gọi D là đỉnh tháp và hai điểm A_1, B_1 cùng thẳng hàng với C_1 thuộc chiều cao CD của tháp. Người ta đo được $\widehat{DA_1C_1} = 49^\circ$ và $\widehat{DB_1C_1} = 35^\circ$. Tính chiều cao CD của tháp đó.

Hình 2.23

Hình 2.24

Ban có biez

Người ta đã đo khoảng cách giữa Trái Đất và Mặt Trăng như thế nào ?

Loài người đã biết được khoảng cách giữa Trái Đất và Mặt Trăng cách đây khoảng hai ngàn năm với một độ chính xác tuyệt vời là vào khoảng 384 000 km. Sau đó khoảng cách giữa Trái Đất và Mặt Trăng đã được xác lập một cách chắc chắn vào năm 1751 do một nhà thiên văn người Pháp là Giô-dep La-lăng (Joseph Lalande, 1732-1807) và một nhà toán học người Pháp là Ni-cô-la La-cay (Nicolas Lacaille, 1713-1762). Hai ông đã phối hợp tổ chức đứng ở hai địa điểm rất xa nhau, một người ở Bec-lin gọi là điểm A, còn người kia ở Mũi Hảo Vong (Bonne-Espérance) môt mũi đất ở cực nam châu Phi, goi là điểm B (h. 2.25). Goi C là một điểm trên Mặt Trăng. Từ A và B người tạ đo và tính được các góc A, B và canh AB của tam giác ABC.

Trong mặt phẳng (ABC), gọi tia Ax là đường chân trời vẽ từ đỉnh A và tia By là đường chân trời vẽ từ đỉnh B. Kí hiệu

$$\alpha = \widehat{CAx}$$
, $\beta = \widehat{CBy}$.

Gọi O là tâm Trái Đất, ta có:

$$u = \widehat{xAB} = \widehat{yBA} = \frac{1}{2}\widehat{AOB}$$
.

Tam giác ABC có $\widehat{A} = \alpha + u$, $\widehat{B} = \beta + u$.

Hình 2.25

Vì biết độ dài cung $\stackrel{\frown}{AB}$ nên ta tính được góc AOB và do đó tính được độ dài cạnh AB. Tam giác ABC được xác định vì biết "góc - cạnh - góc" của tam giác $\stackrel{\frown}{A}B$. Từ đó ta có thể tính được chiều cao CH của tam giác ABC là khoảng cách cần tìm. Người ta nhận thấy rằng khoảng cách này gần bằng mười lần độ dài xích đạo của Trái Đất ($\approx 10 \times 40~000~\text{km}$).

ÔN TẬP CHƯƠNG II

I. CÂU HỎI VÀ BÀI TẬP

- 1. Hãy nhắc lại định nghĩa giá trị lượng giác của một góc α với $0^{\circ} \le \alpha \le 180^{\circ}$. Tại sao khi α là các góc nhọn thì giá trị lượng giác này lại chính là các tỉ số lượng giác đã được học ở lớp 9 ?
- 2. Tại sao hai góc bù nhau lại có sin bằng nhau và côsin đối nhau?
- 3. Nhắc lại định nghĩa tích vô hướng của hai vector \vec{a} và \vec{b} . Tích vô hướng này với $|\vec{a}|$ và $|\vec{b}|$ không đổi đạt giá trị lớn nhất và nhỏ nhất khi nào?
- **4.** Trong mặt phẳng Oxy cho vecto $\vec{a} = (-3; 1)$ và vecto $\vec{b} = (2; 2)$, hãy tính tích vô hướng $\vec{a}.\vec{b}$.
- 5. Hãy nhắc lại định lí côsin trong tam giác. Từ các hệ thức này hãy tính $\cos A$, $\cos B$ và $\cos C$ theo các cạnh của tam giác.
- **6.** Từ hệ thức $a^2 = b^2 + c^2 2bc \cos A$ trong tam giác, hãy suy ra định lí Py-ta-go.
- 7. Chứng minh rằng với mọi tam giác ABC, ta có $a = 2R \sin A$, $b = 2R \sin B$, $c = 2R \sin C$, trong đó R là bán kính đường tròn ngoại tiếp tam giác.
- **8.** Cho tam giác *ABC*. Chứng minh rằng :
 - a) Góc A nhọn khi và chỉ khi $a^2 < b^2 + c^2$;
 - b) Góc A tù khi và chỉ khi $a^2 > b^2 + c^2$;
 - c) Góc A vuông khi và chỉ khi $a^2 = b^2 + c^2$.
- 9. Cho tam giác ABC có $\widehat{A} = 60^{\circ}$, BC = 6. Tính bán kính đường tròn ngoại tiếp tam giác đó.
- 10. Cho tam giác ABC có a=12, b=16, c=20. Tính diện tích S của tam giác, chiều cao h_a , các bán kính R, r của các đường tròn ngoại tiếp, nội tiếp tam giác và đường trung tuyến m_a của tam giác.
- **11**. Trong tập hợp các tam giác có hai cạnh là *a* và *b*, tìm tam giác có diện tích lớn nhất.

II. CÂU HỎI TRẮC NGHIỆM

1. Trong các đẳng thức sau đây đẳng thức nào là đúng?

(A)
$$\sin 150^{\circ} = -\frac{\sqrt{3}}{2}$$
;

(B)
$$\cos 150^{\circ} = \frac{\sqrt{3}}{2}$$
;

(C)
$$\tan 150^{\circ} = -\frac{1}{\sqrt{3}}$$
;

(D)
$$\cot 150^{\circ} = \sqrt{3}$$
.

2. Cho α và β là hai góc khác nhau và bù nhau. Trong các đẳng thức sau đây, đẳng thức nào sai ?

(A)
$$\sin \alpha = \sin \beta$$
;

(B)
$$\cos \alpha = -\cos \beta$$
;

(C)
$$\tan \alpha = -\tan \beta$$
;

(D)
$$\cot \alpha = \cot \beta$$
.

3. Cho α là góc tù. Điều khẳng định nào sau đây là đúng?

(A)
$$\sin \alpha < 0$$
;

(B)
$$\cos \alpha > 0$$
;

(C)
$$\tan \alpha < 0$$
;

(D)
$$\cot \alpha > 0$$
.

4. Trong các khẳng đinh sau đây, khẳng đinh nào sai?

(A)
$$\cos 45^{\circ} = \sin 45^{\circ}$$
;

(B)
$$\cos 45^{\circ} = \sin 135^{\circ}$$
;

(C)
$$\cos 30^{\circ} = \sin 120^{\circ}$$
;

(D)
$$\sin 60^{\circ} = \cos 120^{\circ}$$
.

5. Cho hai góc nhọn α và β trong đó $\alpha < \beta$. Khẳng định nào sau đây là sai ?

(A)
$$\cos \alpha < \cos \beta$$
;

(B)
$$\sin \alpha < \sin \beta$$
;

(C)
$$\alpha + \beta = 90^{\circ} \Rightarrow \cos \alpha = \sin \beta$$
;

(D)
$$\tan \alpha + \tan \beta > 0$$
.

6. Tam giác *ABC* vuông ở *A* và có góc $\hat{B} = 30^{\circ}$. Khẳng định nào sau đây là sai ?

(A)
$$\cos B = \frac{1}{\sqrt{3}}$$
;

(B)
$$\sin C = \frac{\sqrt{3}}{2}$$
;

(C)
$$\cos C = \frac{1}{2}$$
;

(D)
$$\sin B = \frac{1}{2}$$
.

7. Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

(A)
$$\sin \widehat{BAH} = \frac{\sqrt{3}}{2}$$
;

(B)
$$\cos \widehat{BAH} = \frac{1}{\sqrt{3}}$$
;

(C)
$$\sin \widehat{ABC} = \frac{\sqrt{3}}{2}$$
;

(D)
$$\sin \widehat{AHC} = \frac{1}{2}$$
.

10	Tom giáo APC va	uông ở A và có góc \widehat{B}	– 50 ⁰ Hâ thức nà	o sau đây là sai 9
10.			,	
	(A) $(\overrightarrow{AB}, \overrightarrow{BC}) = 1$	30°;	(B) $(BC,$	\overrightarrow{AC}) = 40° ;
	(C) $(\overrightarrow{AB}, \overrightarrow{CB}) = 5$	0°;	(D) $(\overrightarrow{AC}, \overrightarrow{AC}, $	$(\overrightarrow{CB}) = 120^{\circ}$.
11.	Cho \vec{a} và \vec{b} là ha sau đây, hãy chọn	0 0	à đều khác vectơ	$\vec{0}$. Trong các kết quả
	(A) $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} $;	(B) \vec{a} . \vec{b}	= 0;
	(C) $\vec{a} \cdot \vec{b} = -1$;		(D) \vec{a} . \vec{b}	$=- \vec{a} . \vec{b} $.
12.	Cho tam giác ABC vuông cân tại A có $AB = AC = 30$ cm. Hai đường trung tuyến BF và CE cắt nhau tại G . Diện tích tam giác GFC là :			
	(A) 50 cm^2 ;		(B) $50\sqrt{2}$	$\overline{2}$ cm ² ;
	(C) 75 cm^2 ;		(D) $15\sqrt{1}$	$\overline{05}$ cm ² .
13.	Cho tam giác ABo	C vuông tại A có AB =	= 5 cm, BC = 13 cm	m. Gọi góc $\widehat{ABC} = \alpha$
	và $\widehat{ACB} = \beta$. Hãy chọn kết luận đúng khi so sánh α và β :			
	(A) $\beta > \alpha$;		(B) β <	α ;
	(C) $\beta = \alpha$;		(D) $\alpha \leq \beta$	<i>β</i> .
14.		50° . Gọi <i>A</i> và <i>B</i> là ha Độ dài lớn nhất của đơ		n lượt trên <i>Ox</i> và <i>Oy</i>
	(A) 1,5;	(B) $\sqrt{3}$;	(C) $2\sqrt{2}$;	(D) 2.

(B) $\cos \alpha = \cos(180^{\circ} - \alpha)$;

(D) $\cot \alpha = \cot(180^{\circ} - \alpha)$.

(B) $\sin 60^{\circ} < \sin 80^{\circ}$;

(D) $\cos 45^{\circ} = \sin 45^{\circ}$.

Điều khẳng định nào sau đây là đúng?

Tìm khẳng định sai trong các khẳng định sau đây:

(A) $\sin \alpha = \sin(180^{\circ} - \alpha)$;

(C) $\tan \alpha = \tan(180^{\circ} - \alpha)$;

(A) $\cos 35^{\circ} > \cos 10^{\circ}$;

(C) $\tan 45^{\circ} < \tan 60^{\circ}$;

8.

9.

15.	Cho tam giác AB	$C \operatorname{có} BC = a , CA =$	b, $AB = c$. Mệnh để	nào sau đây là đúng ?
	(A) Nếu $b^2 + c^2$	$-a^2 > 0$ thì góc A	nhọn ;	
	(B) Nếu $b^2 + c^2$	$-a^2 > 0$ thì góc A	tù ;	
	(C) Nếu $b^2 + c^2$	$-a^2 < 0$ thì góc A	nhọn ;	
	(D) Nếu $b^2 + c^2$	$-a^2 < 0$ thì góc A	vuông.	
16.	•		: 15 cm. Gọi <i>P</i> là mộ 1a <i>P</i> và vuông góc vo	t điểm cách tâm <i>O</i> một ới <i>PO</i> có độ dài là :
	(A) 22 cm;	(B) 23 cm;	(C) 24 cm;	(D) 25 cm.
17.	Cho tam giác AE Giá trị sinA là :	$BC \operatorname{có} AB = 8 \operatorname{cm},$	$AC = 18 \text{ cm và có } \alpha$	liện tích bằng 64 cm².
	(A) $\frac{\sqrt{3}}{2}$;	(B) $\frac{3}{8}$;	(C) $\frac{4}{5}$;	(D) $\frac{8}{9}$.

18. Cho hai góc nhọn α và β phụ nhau. Hệ thức nào sau đây là sai ?

(A)
$$\sin \alpha = -\cos \beta$$
;

(B)
$$\cos \alpha = \sin \beta$$
;

(C)
$$\tan \alpha = \cot \beta$$
;

(D)
$$\cot \alpha = \tan \beta$$
.

19. Bất đẳng thức nào dưới đây là đúng?

(A)
$$\sin 90^{\circ} < \sin 150^{\circ}$$
;

(B)
$$\sin 90^{\circ}15' < \sin 90^{\circ}30'$$
;

(C)
$$\cos 90^{\circ}30' > \cos 100^{\circ}$$
;

(D)
$$\cos 150^{\circ} > \cos 120^{\circ}$$
.

20. Cho tam giác *ABC* vuông tại *A*. Khẳng định nào sau đây là sai ?

(A)
$$\overrightarrow{AB}.\overrightarrow{AC} < \overrightarrow{BA}.\overrightarrow{BC}$$
;

(B)
$$\overrightarrow{AC}.\overrightarrow{CB} < \overrightarrow{AC}.\overrightarrow{BC}$$
;

(C)
$$\overrightarrow{AB}.\overrightarrow{BC} < \overrightarrow{CA}.\overrightarrow{CB}$$
;

(D)
$$\overrightarrow{AC}.\overrightarrow{BC} < \overrightarrow{BC}.\overrightarrow{AB}$$
.

21. Cho tam giác ABC có AB = 4 cm, BC = 7 cm, CA = 9 cm. Giá trị $\cos A$ là :

(A)
$$\frac{2}{3}$$
; (B) $\frac{1}{3}$;

(B)
$$\frac{1}{3}$$

(C)
$$-\frac{2}{3}$$
; (D) $\frac{1}{2}$.

(D)
$$\frac{1}{2}$$
.

22. Cho hai điểm A = (1; 2) và B = (3; 4). Giá trị của \overrightarrow{AB}^2 là :

(B)
$$4\sqrt{2}$$
; (C) $6\sqrt{2}$;

(C)
$$6\sqrt{2}$$

	(A) 90° ;	(B) 60°;
	(C) 45° ;	(D) 30° .
24.	Cho hai điểm $M = (1; -2)$ và $N = (-3; 4)$. Khoảng cách giữa hai điểm M và N là :
	(A) 4;	(B) 6;
	(C) $3\sqrt{6}$;	(D) $2\sqrt{13}$.
25.	Tam giác ABC có $A = (-1; 1); B = (1; -1)$	(3) và $C = (1; -1)$.
	Trong các cách phát biểu sau đây, hãy c	chọn cách phát biểu đúng.
	(A) ABC là tam giác có ba cạnh bằng r	nhau ;
	(B) ABC là tam giác có ba góc đều nhọ	on;
	(C) ABC là tam giác cân tại B (có BA =	=BC);
	(D) ABC là tam giác vuông cân tại A.	
26.	Cho tam giác ABC có $A = (10; 5), B =$ sau đây là đúng?	(3; 2) và $C = (6; -5)$. Khẳng định nào
	(A) ABC là tam giác đều;	
	(B) ABC là tam giác vuông cân tại B;	
	(C) ABC là tam giác vuông cân tại A ;	
	(D) ABC là tam giác có góc tù tại A.	
27.	Tam giác ABC vuông cân tại A và nội t	iếp trong đường tròn tâm O bán kính R .
	Gọi r là bán kính đường tròn nội tiếp tar	m giác ABC . Khi đó tỉ số $\frac{R}{r}$ bằng :
	(A) $1+\sqrt{2}$;	(B) $\frac{2+\sqrt{2}}{2}$;
	(A) $1+\sqrt{2}$;	(D) $\frac{1+\sqrt{2}}{}$

28. Tam giác ABC có AB = 9 cm, AC = 12 cm và BC = 15 cm. Khi đó đường

(B) 10 cm;

(D) 7,5 cm.

trung tuyến AM của tam giác có độ dài là:

23. Cho hai vecto $\vec{a} = (4; 3)$ và $\vec{b} = (1; 7)$. Góc giữa hai vecto \vec{a} và \vec{b} là:

(A) 8 cm;

(C) 9 cm;

29. Tam giác *ABC* có *BC* = *a*, *CA* = b, *AB* = *c* và có diện tích *S*. Nếu tăng cạnh *BC* lên 2 lần đồng thời tăng cạnh *CA* lên 3 lần và giữ nguyên độ lớn của góc *C* thì khi đó diện tích của tam giác mới được tạo nên bằng :

(A) 2S;

(B) 3S;

(C) 4S;

- (D) 6S.
- **30.** Cho tam giác DEF có DE = DF = 10 cm và EF = 12 cm. Gọi I là trung điểm của cạnh EF. Đoạn thẳng DI có độ dài là :

(A) 6.5 cm;

- (B) 7 cm;
- (C) 8 cm;
- (D) 4 cm.

Người tìm ra sao hải Vương (Neptune) chỉ nhờ các phép tính về quỹ đạo các hành tinh

Nhà thiên văn học U-banh Lơ-ve-ri-ê (*Urbain Leverrier*, 1811-1877) sinh ra trong một gia đình công chức nhỏ tại vùng Noóc-măng-đi nước Pháp. Ông học ở trường Bách khoa và được giữ lại tiếp tục sự nghiệp nghiên cứu khoa học và giảng dạy ở đó. Ông đã say sưa thích thú tính toán chuyển động của các sao chổi và của các hành tinh, nhất là sao Thuỷ (*Mercure*). Với những thành tích nghiên cứu khoa học xuất sắc về thiên văn học, ông được nhận danh hiệu Viện sĩ Hàn lâm Pháp khi ông tròn 34 tuổi.

Vào thời kì bấy giờ, các nhà thiên văn đang tranh luận sôi nổi về "điều bí mật"

của sao Thiên Vương (Uranus) vì hành tinh này không phục tùng theo những định luât về chuyển đông của các hành tinh do Giô-han Kê-ple (Johannes Kepler, 1571-1630) nêu ra và không theo đúng định luật vạn vật hấp dẫn của I-sặc Niu-tơn (Isaac Newton, 1642-1727). Điều bí ẩn là vi trí của sao Thiên Vương trên bầu trời không bao giờ phù hợp với những tiên đoán dưa vào các phép tính của các nhà thiên văn thời bấy giờ. Nhà thiên văn học trẻ tuổi Lơ-ve-ri-ê muốn nghiên cứu tìm hiểu điều bí ẩn này và tư đặt câu hỏi tại sao sao Thiên Vương lại không tuận theo những quy luật chuyển động của các thiên thể. Một số nhà thiên văn thời bấy giờ đã dư đoán rằng con đường đi của sao Thiên Vương bi sức hút của sao Mộc (Jupiter) hay sao Thổ (Saturne) quấy nhiễu. Khi đó riêng Lơ-ve-ri-ê đã nêu lên một giả thuyết hết sức táo bạo, dựa vào các phép tính mà ông đã thực hiện. Ông cho rằng sao Thiên Vương không ngoạn ngoãn theo tiên đoán của các nhà thiên văn có lẽ do bi ảnh hưởng bởi một hành tinh khác chưa được biết đến ở xa Mặt Trời hơn sao Thiên Vương. Hành tinh này đã tác động lên sao Thiên Vương làm cho nó có những nhiễu loan khó có thể quan sát được. Lơ-ve-ri-ê đã kiên nhẫn tính toán làm việc trong phòng suốt hai tuần liền, với biết bao công thức, nhìn vào ai cũng cảm thấy chóng mặt. Cuối cùng chỉ dựa vào thuần tuý các phép tính, Lơ-ve-ri-ê xác nhân rằng có sư hiện diện của một hành tinh chưa biết tên. Vào thời gian đó, ở Pháp vì đài Thiên văn Pa-ri không đủ manh, nên không thể nhìn được hành tinh đó. Ngay sau đó, Lơ-ve-ri-ê phải nhờ nhà thiên văn Gan (Galle) ở đài quan sát Bec-lin xem xét hô. Ngày 23 tháng 9 năm 1846, Gan đã hướng kính thiên văn về khu vực bầu trời đã được Lơ-ve-ri-ê chỉ định và vui mừng tìm thấy một hành tinh chưa có tên trên danh muc. Như vây sức manh của tài năng con người lai được thể hiện một cách xuất sắc qua việc khám phá ra hành tinh mới này. Moi người đều thán phục, chúc mừng cuộc khám phá thành công tốt đẹp này và cho rằng Lơ-ve-ri-ê đã phát hiên ra một hành tinh mới chỉ nhờ vào đầu chiếc bút chì của mình (!). Đây là một bài toán rất khó, nó không giống bài toán tìm ngày, giờ, địa điểm xuất hiện nhật thực, nguyệt thực vì các chi tiết chỉ biết phỏng chừng thông qua các nhiễu loạn, do tác đông của một vật chưa biết, người ta cần phải tìm quỹ đạo và khối lượng của hành tinh đó, cần xác đinh được khoảng cách của nó tới Mặt Trời và các hành tinh khác v.v... Hành tinh mới này được đặt tên là sao Hải Vương (Neptune). Cũng vào thời điểm đó nhà thiên văn học người Anh là A-đam (Adam) cũng phát hiên ra hành tinh đó và người này không biết đến công trình của người kia. Tuy vậy, Lơ-ve-ri-ê vẫn được xem là người đầu tiên phát hiện ra sao Hải Vương và sau đó ông được nhân học vi Giáo sư Đại học Xoóc-bon đồng thời được nhân Huy chương Bắc đấu bôi tinh. Năm 1853 U-banh Lơ-ve-ri-ê được Hoàng đế Na-pô-lê-ông (Napoléon) Đê Tam phong chức Giám đốc Đài quan sát Pa-ri. Ông mất năm 1877. Các nhà thiên văn học trên thế giới đã đánh giá cao phát minh quan trọng này của Lơ-ve-ri-ê.

PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẨNG

- Phương trình đường thẳng
- Phương trình đường tròn
- Phương trình đường elip

Trong chương này chúng ta sử dụng phương pháp toạ độ để tìm hiểu về đường thẳng, đường tròn và đường elip.

Hình 3.1

§1. PHƯƠNG TRÌNH ĐƯỜNG THẮNG

Vecto chỉ phương của đường thẳng 1.

 \triangle 1 Trong mặt phẳng Oxy cho đường thẳng \triangle là đồ thị của hàm số $y = \frac{1}{2}x$.

- a) Tìm tung độ của hai điểm M_0 và M nằm trên Δ , có hoành độ lần lượt là 2 và 6.
- b) Cho vector $\overrightarrow{u}=(2\ ;\ 1)$. Hãy chứng tổ $\overline{M_0M}$ cùng phương với \overrightarrow{u} .

Hình 3.2

Vectơ \vec{u} được gọi là **vectơ chỉ phương** của đường thẳng Δ nếu $\vec{u} \neq \vec{0}$ và giá của \vec{u} song song hoặc trùng với Δ .

Nhân xét

- Nếu \vec{u} là một vecto chỉ phương của đường thẳng Δ thì \vec{ku} $(k \neq 0)$ cũng là một vectơ chỉ phương của Δ. Do đó một đường thẳng có vô số vectơ chỉ phương.
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương của đường thẳng đó.

Phương trình tham số của đường thẳng 2.

a) Đinh nghĩa

Trong mặt phẳng Oxy cho đường thẳng Δ đi qua điểm $M_0(x_0; y_0)$ và nhận $\vec{u} = (u_1; u_2)$ làm vectơ chỉ phương. Với mỗi điểm M(x; y) bất kì trong mặt

phẳng, ta có
$$\overrightarrow{M_0M} = (x - x_0; y - y_0)$$
. Khi đó

 $M \in \Delta \Leftrightarrow \overrightarrow{M_0 M}$ cùng phương với $\overrightarrow{u} \Leftrightarrow \overrightarrow{M_0 M} = \overrightarrow{tu}$

Hệ phương trình (1) được gọi là phương trình tham số của đường thẳng Δ , trong đó t là tham số.

Cho t một giá trị cụ thể thì ta xác định được một điểm trên đường thẳng Δ .

🕰 2 Hãy tìm một điểm có toạ độ xác định và một vectơ chỉ phương của đường thẳng có phương trình tham số

$$\begin{cases} x = 5 - 6t \\ y = 2 + 8t. \end{cases}$$

b) Liên hệ giữa vectơ chỉ phương và hệ số góc của đường thẳng

Cho đường thẳng Δ có phương trình tham số

$$\begin{cases} x = x_0 + tu_1 \\ y = y_0 + tu_2. \end{cases}$$

Nếu $u_1 \neq 0$ thì từ phương trình tham số của Δ ta có

$$\begin{cases} t = \frac{x - x_0}{u_1} \\ y - y_0 = tu_2 \end{cases}$$

suy ra
$$y - y_0 = \frac{u_2}{u_1} (x - x_0)$$
.

Đặt
$$k = \frac{u_2}{u_1}$$
 ta được $y - y_0 = k(x - x_0)$.

Hình 3.4

Goi A là giao điểm của Δ với truc hoành, Av là tia thuộc Δ ở về nửa mặt phẳng toa đô phía trên (chứa tia O_V). Đặt $\alpha = \widehat{xAV}$, ta thấy $k = \tan \alpha$. Số kchính là $h\hat{e}$ số góc của đường thẳng Δ mà ta đã biết ở lớp 9.

Như vậy nếu đường thẳng Δ có vecto chỉ phương $\vec{u} = (u_1; u_2)$ với $u_1 \neq 0$ thì

$$\Delta$$
 có hệ số góc $k = \frac{u_2}{u_1}$.

igate3 Tính hệ số góc của đường thẳng d có vectơ chỉ phương là $ec{u}=(-1\,;\sqrt{3})$.

Ví dụ. Viết phương trình tham số của đường thẳng d đi qua hai điểm A(2;3)và B(3; 1). Tính hệ số góc của d.

GIẢI

Vì d đi qua A và B nên d có vecto chỉ phương $\overrightarrow{AB} = (1; -2)$

Phương trình tham số của d là $\begin{cases} x = 2 + t \\ y = 3 - 2t. \end{cases}$

Hệ số góc của *d* là $k = \frac{u_2}{u_1} = \frac{-2}{1} = -2$.

3. Vectơ pháp tuyến của đường thẳng

A4 Cho đường thẳng Δ có phương trình $\begin{cases} x = -5 + 2t \\ y = 4 + 3t \end{cases}$ và vector $\vec{n} = (3; -2)$. Hấy chứng tổ \vec{n} vuông góc với vector chỉ phương của Δ .

Định nghĩa

Vectơ \vec{n} được gọi là **vectơ pháp tuyến** của đường thẳng Δ nếu $\vec{n} \neq \vec{0}$ và \vec{n} vuông góc với vectơ chỉ phương của Δ .

Nhận xét

- Nếu \vec{n} là một vectơ pháp tuyến của đường thẳng Δ thì \vec{kn} $(k \neq 0)$ cũng là một vectơ pháp tuyến của Δ . Do đó một đường thẳng có vô số vectơ pháp tuyến.
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vecto pháp tuyến của nó.

4. Phương trình tổng quát của đường thẳng

Trong mặt phẳng toạ độ Oxy cho đường thẳng Δ đi qua điểm $M_0(x_0; y_0)$ và nhận \vec{n} (a; b) làm vectơ pháp tuyến.

Với mỗi điểm M(x; y) bất kì thuộc mặt phẳng, ta có : $\overline{M_0M} = (x - x_0; y - y_0)$.

Khi đó:
$$M(x; y) \in \Delta \Leftrightarrow \overrightarrow{n} \perp \overrightarrow{M_0M}$$

$$\Leftrightarrow a(x - x_0) + b(y - y_0) = 0$$

$$\Leftrightarrow ax + by + (-ax_0 - by_0) = 0$$

$$\Leftrightarrow ax + by + c = 0$$
 với $c = -ax_0 - by_0$.

$$0$$

$$Hinh 3.5$$

$$0$$

$$= 0$$

 y_0

a) Đinh nghĩa

Phương trình ax + by + c = 0 với a và b không đồng thời bằng 0, được gọi là phương trình tổng quát của đường thẳng.

Nhân xét. Nếu đường thẳng Δ có phương trình là ax + by + c = 0 thì Δ có vector pháp tuyến là $\vec{n} = (a; b)$ và có vector chỉ phương là $\vec{u} = (-b; a)$.

5 Hãy chứng minh nhân xét trên.

b) Ví du. Lập phương trình tổng quát của đường thẳng Δ đi qua hai điểm A(2; 2) và B(4; 3).

GIẢI

hay

Đường thẳng Δ đi qua hai điểm A, B nên có vecto chỉ phương là $\overrightarrow{AB} = (2; 1)$. Từ đó suy ra Δ có vectơ pháp tuyến là $\vec{n} = (-1; 2)$. Vây đường thẳng Δ có phương trình tổng quát là:

$$(-1).(x-2) + 2(y-2) = 0$$
$$x - 2y + 2 = 0.$$

📤 6 Hãy tìm toạ độ của vectơ chỉ phương của đường thẳng có phương trình :

$$3x + 4y + 5 = 0$$
.

c) Các trường hợp đặc biệt

Cho đường thẳng Δ có phương trình tổng quát ax + by + c = 0

• Nếu a = 0 phương trình (1) trở thành

$$by + c = 0 \text{ hay } y = -\frac{c}{b}.$$

Khi đó đường thẳng Δ vuông góc với trục Oy tại điểm $\left(0; -\frac{c}{L}\right)$ (h.3.6).

Hình 3.6

• Nếu b = 0 phương trình (1) trở thành ax + c = 0 hay $x = -\frac{c}{a}$.

Khi đó đường thẳng Δ vuông góc với trục Ox tại điểm $\left(-\frac{c}{a};0\right)$ (h.3.7).

Hình 3.7

• Nếu c = 0 phương trình (1) trở thành ax + by = 0.

Khi đó đường thẳng Δ đi qua gốc toạ độ O (h.3.8).

Hình 3.8

• Nếu a, b, c đều khác 0 ta có thể đưa phương trình (1) về dạng

$$\frac{x}{a_0} + \frac{y}{b_0} = 1$$

$$v\acute{o}i \qquad a_0 = -\frac{c}{a} , b_0 = -\frac{c}{b}.$$

Hình 3.9

Phương trình (2) được gọi là phương trình đường thẳng theo đoạn chắn, đường thẳng này cắt Ox và Oy lần lượt tại $M(a_0;0)$ và $N(0;b_0)$ (h.3.9).

Trong mặt phẳng Oxy, hãy vẽ các đường thẳng có phương trình sau đây :

$$d_1: x - 2y = 0$$
;

$$d_2: x = 2;$$

$$d_3: y + 1 = 0$$
;

$$d_4: \frac{x}{8} + \frac{y}{4} = 1.$$

Vị trí tương đối của hai đường thẳng 5.

Xét hai đường thẳng Δ_1 và Δ_2 có phương trình tổng quát lần lượt là

$$a_1x + b_1y + c_1 = 0$$
 và $a_2x + b_2y + c_2 = 0$.

Toạ độ giao điểm của Δ_1 và Δ_2 là nghiệm của hệ phương trình :

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0. \end{cases}$$
 (I)

Ta có các trường hợp sau:

- a) Hệ (I) có một nghiệm (x_0 ; y_0), khi đó Δ_1 cắt Δ_2 tại điểm $M_0(x_0; y_0)$.
- b) Hệ (I) có vô số nghiệm, khi đó Δ_1 trùng với Δ_2 .
- c) Hệ (I) vô nghiệm, khi đó Δ_1 và Δ_2 không có điểm chung, hay Δ_1 song song với Δ_2 .

Ví dụ. Cho đường thẳng d có phương trình x-y+1=0, xét vị trí tương đối của d với mỗi đường thẳng sau :

$$\Delta_1 : 2x + y - 4 = 0$$
;

$$\Delta_2 : x - y - 1 = 0$$
;

$$\Delta_3 : 2x - 2y + 2 = 0.$$

GIẢI

a) Xét d và Δ_1 , hệ phương trình

$$\begin{cases} x - y + 1 = 0 \\ 2x + y - 4 = 0 \end{cases}$$

có nghiệm (1; 2).

Vậy d cắt Δ_1 tại M(1; 2) (h.3.10).

Hình 3.10

b) Xét d và Δ_2 , hệ phương trình

$$\begin{cases} x - y + 1 = 0 \\ x - y - 1 = 0 \end{cases}$$
 vô nghiệm.

Vậy $d /\!/ \Delta_2$ (h.3.11).

Hình 3.11

c) Xét d và Δ_3 , hệ phương trình

$$\begin{cases} x - y + 1 = 0 & (1) \\ 2x - 2y + 2 = 0 & (2) \end{cases}$$

có vô số nghiệm (vì các hệ số của (1) và (2) tỉ lệ).

Vậy $d \equiv \Delta_3$ (h.3.12).

Hình 3.12

A8 Xét vị trí tương đối của đường thẳng $\Delta: x - 2y + 1 = 0$ với mỗi đường thẳng sau :

$$d_1: -3x + 6y - 3 = 0$$
;

$$d_2: y = -2x;$$

$$d_3: 2x + 5 = 4y.$$

6. Góc giữa hai đường thẳng

2 Cho hình chữ nhật *ABCD* có tâm *I* và các cạnh *AB* = 1, *AD* = $\sqrt{3}$. Tính số đo các góc \widehat{AID} và \widehat{DIC} .

Hình 3.13

Hai đường thẳng Δ_1 và Δ_2 cắt nhau tạo thành bốn góc. Nếu Δ_1 không vuông góc với Δ_2 thì góc nhọn trong số bốn góc đó được gọi là *góc giữa hai đường thẳng* Δ_1 và Δ_2 . Nếu Δ_1 vuông góc với Δ_2 thì ta nói góc giữa Δ_1 và Δ_2 bằng 90° . Trường hợp Δ_1 và Δ_2 song song hoặc trùng nhau thì ta quy ước góc giữa Δ_1 và Δ_2 bằng 0° . Như vậy góc giữa hai đường thẳng luôn bé hơn hoặc bằng 90° .

Góc giữa hai đường thẳng Δ_1 và Δ_2 được kí hiệu là $\left(\widehat{\Delta_1,\,\Delta_2}\right)$ hoặc $(\Delta_1,\,\Delta_2)$.

Cho hai đường thẳng

$$\Delta_1 : a_1 x + b_1 y + c_1 = 0,$$

 $\Delta_2 : a_2 x + b_2 y + c_2 = 0.$

Đặt $\varphi = \widehat{(\Delta_1, \Delta_2)}$ thì ta thấy φ bằng hoặc bù với góc giữa $\overrightarrow{n_1}$ và $\overrightarrow{n_2}$ trong đó $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ lần lượt là vectơ pháp tuyến của Δ_1 và Δ_2 . Vì $\cos \varphi \ge 0$ nên ta suy ra

$$\cos \varphi = \left| \cos \left(\overrightarrow{n_1}, \overrightarrow{n_2} \right) \right| = \frac{\left| \overrightarrow{n_1}, \overrightarrow{n_2} \right|}{\left| \overrightarrow{n_1} \right| \left| \overrightarrow{n_2} \right|}.$$

Vây

$$\cos \varphi = \frac{\left| a_1 a_2 + b_1 b_2 \right|}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}}.$$

Hình 3.14

🖙 Chú ý

•
$$\Delta_1 \perp \Delta_2 \Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \Leftrightarrow a_1 a_2 + b_1 b_2 = 0.$$

• Nếu Δ_1 và Δ_2 có phương trình $y=k_1x+m_1$ và $y=k_2x+m_2$ thì

$$\Delta_1 \perp \Delta_2 \iff k_1.k_2 = -1.$$

7. Công thức tính khoảng cách từ một điểm đến một đường thẳng

Trong mặt phẳng Oxy cho đường thẳng Δ có phương trình ax + by + c = 0 và điểm $M_0(x_0; y_0)$. **Khoảng cách** từ điểm M_0 đến đường thẳng Δ , kí hiệu là $d(M_0, \Delta)$, được tính bởi công thức

$$d(M_0, \Delta) = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}.$$

CHỨNG MINH

Phương trình tham số của đường thẳng m đi qua $M_0(x_0;\ y_0)$ và vuông góc với đường thẳng Δ là :

$$\begin{cases} x = x_0 + ta \\ y = y_0 + tb \end{cases}$$

Hình 3.15

trong đó $\vec{n}(a;b)$ là vecto pháp tuyến của Δ .

Giao điểm H của đường thẳng m và Δ ứng với giá trị của tham số là nghiệm t_H của phương trình :

$$a(x_0 + ta) + b(y_0 + tb) + c = 0$$
.

Ta có
$$t_H = -\frac{ax_0 + by_0 + c}{a^2 + b^2}$$
.

Vậy điểm $H = (x_0 + t_H a; y_0 + t_H b)$.

Từ đó suy ra
$$d(M_0, \Delta) = M_0 H = \sqrt{(x_H - x_0)^2 + (y_H - y_0)^2}$$

$$= \sqrt{(a^2 + b^2)t_H^2} = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}.$$

10 Tính khoảng cách từ các điểm M(-2; 1) và O(0; 0) đến đường thẳng Δ có phương trình 3x - 2y - 1 = 0.

Câu hỏi và bài tập

- 1. Lập phương trình tham số của đường thẳng d trong mỗi trường hợp sau :
 - a) d đi qua điểm M(2; 1) và có vecto chỉ phương u = (3; 4);
 - b) d đi qua điểm M(-2; 3) và có vecto pháp tuyến là $\vec{n} = (5; 1)$.
- **2.** Lập phương trình tổng quát của đường thẳng Δ trong mỗi trường hợp sau :
 - a) Δ đi qua M(-5; -8) và có hệ số góc k = -3;
 - b) Δ đi qua hai điểm A(2; 1) và B(-4; 5).
- **3.** Cho tam giác *ABC*, biết A(1; 4), B(3; -1) và C(6; 2).
 - a) Lập phương trình tổng quát của các đường thẳng AB, BC và CA;
 - b) Lập phương trình tổng quát của đường cao AH và trung tuyến AM.
- **4.** Viết phương trình tổng quát của đường thẳng đi qua điểm M(4;0) và điểm N(0;-1).
- 5. Xét vị trí tương đối của các cặp đường thẳng d_1 và d_2 sau đây:

a)
$$d_1: 4x - 10y + 1 = 0$$

$$d_2: x + y + 2 = 0;$$

b)
$$d_1: 12x - 6y + 10 = 0$$

$$d_2: \begin{cases} x = 5 + t \\ y = 3 + 2t \end{cases}$$

c)
$$d_1 : 8x + 10y - 12 = 0$$

$$d_2: \begin{cases} x = -6 + 5t \\ y = 6 - 4t. \end{cases}$$

6. Cho đường thẳng d có phương trình tham số $\begin{cases} x = 2 + 2t \\ y = 3 + t. \end{cases}$

Tìm điểm M thuộc d và cách điểm A(0; 1) một khoảng bằng 5.

- 7. Tìm số đo của góc giữa hai đường thẳng d_1 và d_2 lần lượt có phương trình $d_1: 4x-2y+6=0 \text{ và } d_2: x-3y+1=0.$
- 8. Tìm khoảng cách từ một điểm đến đường thẳng trong các trường hợp sau :
 - a) A(3; 5),

$$\Delta: 4x + 3y + 1 = 0$$
;

b) B(1; -2),

$$d: 3x - 4y - 26 = 0$$
;

c) C(1; 2),

$$m: 3x + 4y - 11 = 0.$$

9. Tìm bán kính của đường tròn tâm C(-2; -2) tiếp xúc với đường thẳng $\Delta: 5x + 12y - 10 = 0$.

§2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

1. Phương trình đường tròn có tâm và bán kính cho trước

Hình 3.16

Trong mặt phẳng Oxy cho đường tròn (C) tâm I(a;b), bán kính R (h.3.16). Ta có

$$M(x; y) \in (C)$$
 $\Leftrightarrow IM = R$
 $\Leftrightarrow \sqrt{(x-a)^2 + (y-b)^2} = R$
 $\Leftrightarrow (x-a)^2 + (y-b)^2 = R^2$.

Phương trình $(x-a)^2 + (y-b)^2 = R^2$ được gọi là phương trình đường tròn tâm I(a; b) bán kính R.

Chẳng hạn, phương trình đường tròn tâm I(2; -3) bán kính R = 5 là:

$$(x-2)^2 + (y+3)^2 = 25.$$

Chú ý. Phương trình đường tròn có tâm là gốc toạ độ O và có bán kính R là : B

$$x^2 + y^2 = R^2$$
.

▲1 Cho hai điểm A(3; -4) và B(-3; 4).

Viết phương trình đường tròn (C) nhân AB làm đường kính.

Nhân xét 2.

Phương trình đường tròn $(x-a)^2 + (y-b)^2 = R^2$ có thể được viết dưới dang $x^2 + y^2 - 2ax - 2by + c = 0$, trong đó $c = a^2 + b^2 - R^2$.

Ngược lai, phương trình $x^2 + y^2 - 2ax - 2by + c = 0$ là phương trình của đường tròn (C) khi và chỉ khi $a^2 + b^2 - c > 0$. Khi đó đường tròn (C) có tâm I(a;b) và bán kính $R = \sqrt{a^2 + b^2 - c}$.

🕰2 Hãy cho biết phương trình nào trong các phương trình sau đây là phương trình đường tròn:

$$2x^{2} + y^{2} - 8x + 2y - 1 = 0;$$

$$x^{2} + y^{2} + 2x - 4y - 4 = 0;$$

$$x^{2} + y^{2} - 2x - 6y + 20 = 0;$$

$$x^{2} + y^{2} + 6x + 2y + 10 = 0.$$

Cho điểm $M_0(x_0; y_0)$ nằm trên đường tròn (C) tâm I(a; b). Gọi Δ là tiếp tuyến với (C) tại M_0 .

Ta có M_0 thuộc Δ và vecto $\overrightarrow{IM_0} = (x_0 - a; y_0 - b)$ là vecto pháp tuyến của Δ. Do đó Δ có phương trình là :

$$(x_0 - a)(x - x_0) + (y_0 - b)(y - y_0) = 0$$
 (2)

Phương trình (2) là *phương trình tiếp tuyến* của đường tròn $(x - a)^2 + (y - b)^2 = R^2$ tại điểm M_0 nằm trên đường tròn.

Ví du. Viết phương trình tiếp tuyến tại điểm M(3; 4) thuộc đường tròn

$$(C)$$
: $(x-1)^2 + (y-2)^2 = 8$.

GIẢI

(C) có tâm I(1; 2), vậy phương trình tiếp tuyến với (C) tại M(3; 4) là:

$$(3-1)(x-3) + (4-2)(y-4) = 0$$

$$\Leftrightarrow 2x + 2y - 14 = 0$$

$$\Leftrightarrow x + y - 7 = 0.$$

Câu hỏi và bài tâp

- Tìm tâm và bán kính của các đường tròn sau: 1.
 - a) $x^2 + y^2 2x 2y 2 = 0$;
 - b) $16x^2 + 16y^2 + 16x 8y 11 = 0$;
 - c) $x^2 + y^2 4x + 6y 3 = 0$.
- Lập phương trình đường tròn (\mathscr{C}) trong các trường hợp sau : 2.
 - a) (\mathscr{C}) có tâm I(-2;3) và đi qua M(2;-3);
 - b) (\mathscr{C}) có tâm I(-1; 2) và tiếp xúc với đường thẳng x 2y + 7 = 0;
 - c) (\mathscr{C}) có đường kính AB với A = (1; 1) và B = (7; 5).

- 3. Lập phương trình đường tròn đi qua ba điểm
 - a) A(1; 2),

B(5;2),

C(1; -3);

b) M(-2; 4),

N(5;5),

P(6; -2).

- **4.** Lập phương trình đường tròn tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm M(2;1).
- 5. Lập phương trình của đường tròn tiếp xúc với các trục toạ độ và có tâm ở trên đường thẳng 4x 2y 8 = 0.
- **6.** Cho đường tròn (\mathscr{C}) có phương trình

$$x^2 + y^2 - 4x + 8y - 5 = 0.$$

- a) Tìm toạ độ tâm và bán kính của (\mathscr{C}) ;
- b) Viết phương trình tiếp tuyến với (\mathscr{C}) đi qua điểm A(-1;0);
- c) Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng

$$3x - 4y + 5 = 0$$
.

§3. PHƯƠNG TRÌNH ĐƯỜNG ELIP

1. Định nghĩa đường elip

Hình 3.18

Quan sát mặt nước trong cốc nước cầm nghiêng (h.3.18a). Hãy cho biết đường được đánh dấu bởi mũi tên có phải là đường tròn hay không?

📤 2 Hãy cho biết bóng của một đường tròn trên một mặt phẳng (h.3.18b) có phải là một đường tròn hay không?

Đóng hai chiếc đinh cố định tại hai điểm F_1 và F_2 (h.3.19). Lấy một vòng dây kín không đàn hồi có độ dài lớn hơn $2F_1F_2$. Quàng vòng dây đó qua hai chiếc đinh và kéo căng tại một điểm M nào đó. Đặt đầu bút chì tại điểm M rồi di chuyển sao cho dây luôn căng. Đầu bút chì vạch nên một đường mà ta gọi là đường elip.

Hình 3.19

Định nghĩa

Cho hai điểm cố định F_1 , F_2 và một độ dài không đổi 2a lớn hơn F_1F_2 . **Elip** là tập hợp các điểm M trong mặt phẳng sao cho

$$F_1M + F_2M = 2a.$$

Các điểm F_1 và F_2 gọi là các **tiêu điểm** của elip. Độ dài $F_1F_2 = 2c$ gọi là **tiêu cự** của elip.

2. Phương trình chính tắc của elip

Hình 3.20

Cho elip (E) có các tiêu điểm F_1 và F_2 . Điểm M thuộc elip khi và chỉ khi $F_1M+F_2M=2a$. Chọn hệ trục toạ độ Oxy sao cho $F_1=(-c\ ;0)$ và $F_2=(c\ ;0)$. Khi đó người ta chứng minh được :

$$M(x; y) \in (E) \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (1)

trong đó $b^2 = a^2 - c^2$.

Phương trình (1) gọi là phương trình chính tắc của elip.

 \triangle 3 Trong phương trình (1) hãy giải thích vì sao ta luôn đặt được $b^2 = a^2 - c^2$.

3. Hình dạng của elip

Xét elip (E) có phương trình (1):

a) Nếu điểm M(x ; y) thuộc (E) thì các điểm $M_1(-x ; y)$, $M_2(x ; -y)$ và $M_3(-x ; -y)$ cũng thuộc (E) (h.3.21).

Vậy (E) có các trục đối xứng là Ox, Oy và có tâm đối xứng là gốc O.

Hình 3.21

b) Thay y=0 vào (1) ta có $x=\pm a$, suy ra (E) cắt Ox tại hai điểm $A_1(-a;0)$ và $A_2(a;0)$. Tương tự thay x=0 vào (1) ta được $y=\pm b$, vậy (E) cắt Oy tại hai điểm $B_1(0;-b)$ và $B_2(0;b)$.

Các điểm A_1 , A_2 , B_1 và B_2 gọi là các đỉnh của elip.

Đoạn thẳng A_1A_2 gọi là trục lớn, đoạn thẳng B_1B_2 gọi là trục nhỏ của elip.

Ví dụ. Elip (E): $\frac{x^2}{9} + \frac{y^2}{1} = 1$ có các đỉnh là $A_1(-3; 0)$, $A_2(3; 0)$, $B_1(0; -1)$, $B_2(0; 1)$ và $A_1A_2 = 6$ là trục lớn còn $B_1B_2 = 2$ là trục nhỏ.

4 Hãy xác định toạ độ các tiêu điểm và vẽ hình elip trong ví dụ trên.

4. Liên hệ giữa đường tròn và đường elip

- a) Từ hệ thức $b^2 = a^2 c^2$ ta thấy nếu tiêu cự của elip càng nhỏ thì b càng gần bằng a, tức là trục nhỏ của elip càng gần bằng trục lớn. Lúc đó elip có dạng gần như đường tròn.
- ${\it b}$) Trong mặt phẳng Oxy cho đường tròn ($\mathscr C$) có phương trình

$$x^2 + y^2 = a^2.$$

Với mỗi điểm M(x; y) thuộc đường tròn ta xét điểm M'(x'; y') sao cho

$$\begin{cases} x' = x \\ y' = \frac{b}{a}y \end{cases}$$
 (với $0 < b < a$) (h.3.22)

thì tập hợp các điểm M' có toạ độ thoả mãn phương trình

$$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 1$$
 là một elip (E).

Khi đó ta nói đường tròn (\mathscr{C}) được co thành elip (E).

Hình 3.22

Câu hỏi và bài tập

 Xác định độ dài các trục, toạ độ các tiêu điểm, toạ độ các đỉnh của các elip có phương trình sau :

a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
;

b)
$$4x^2 + 9y^2 = 1$$
;

c)
$$4x^2 + 9y^2 = 36$$
.

- 2. Lập phương trình chính tắc của elip, biết
 - a) Độ dài trục lớn và trục nhỏ lần lượt là 8 và 6;
 - b) Độ dài trục lớn bằng 10 và tiêu cự bằng 6.
- 3. Lập phương trình chính tắc của elip trong các trường hợp sau :
 - a) Elip đi qua các điểm M(0; 3) và $N\left(3; -\frac{12}{5}\right)$;
 - b) Elip có một tiêu điểm là $F_1(-\sqrt{3};0)$ và điểm $M\left(1;\frac{\sqrt{3}}{2}\right)$ nằm trên elip.
- **4.** Để cắt một bảng hiệu quảng cáo hình elip có trục lớn là 80 cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước 80 cm × 40 cm, người ta vẽ hình elip đó lên tấm ván ép như hình 3.19. Hỏi phải ghim hai cái đinh cách các mép tấm ván ép bao nhiều và lấy vòng dây có độ dài là bao nhiều ?
- 5. Cho hai đường tròn $\mathscr{C}_1(F_1\;;\;R_1)$ và $\mathscr{C}_2(F_2\;;\;R_2)$. \mathscr{C}_1 nằm trong \mathscr{C}_2 và $F_1 \neq F_2$. Đường tròn \mathscr{C} thay đổi luôn tiếp xúc ngoài với \mathscr{C}_1 và tiếp xúc trong với \mathscr{C}_2 . Hãy chứng tỏ rằng tâm M của đường tròn \mathscr{C} di động trên một elip.

Ba đường cônic và quỹ đạo của tàu vũ trụ

Hình 3.23

- 1. Khi cắt một mặt nón tròn xoay bởi một mặt phẳng không đi qua đỉnh và không vuông góc với trục của mặt nón, người ta nhận thấy ngoài đường elip ra, có thể còn hai loại đường khác nữa là parabol và hypebol (h.3.23). Các đường nói trên thường được gọi là ba đường cônic (do gốc tiếng Hi Lap Konos nghĩa là mặt nón).
- 2. Dưới đây là vài ví dụ về hình ảnh của ba đường cônic trong đời sống hằng ngày :
 - Bóng của một quả bóng đá trên mặt sân thường có hình elip (h.3.24).

Hình 3.24

- Tia nước từ vòi phun ở công viên thường là đường parabol (h.3.25).

Hình 3.25

- Bóng của đèn ngủ in trên tường có thể là đường hypebol (h.3.26).

Hình 3.26

3. Tàu vũ trụ được phóng lên từ Trái Đất luôn bay theo những quỹ đạo, quỹ đạo này thường là đường tròn, elip, parabol hoặc hypebol. Hình dạng của quỹ đạo phụ thuộc vào vận tốc của tàu vũ trụ (h.3.27). Ta có bảng tương ứng giữa tốc độ và quỹ đạo như sau.

Tốc độ V ₀ của tàu vũ trụ	Hình dạng quỹ đạo tàu vũ trụ
7,9 km/s	đường tròn
7,9 km/s < V_0 < 11,2 km/s	elip
11,2 km/s	Một phần của parabol
V ₀ > 11,2 km/s	Một phần của hypebol

Ngoài ra người ta còn tính được các tốc độ vũ trụ tổng quát, nghĩa là tốc độ của các thiên thể chuyển động đối với các thiên thể khác dưới tác dụng của lực hấp dẫn tương hỗ. Ví dụ để phóng một tàu vũ trụ thoát li được Mặt Trăng trở về Trái Đất thì cần tạo cho tàu một tốc độ ban đầu là 2,38 km/s.

Hình 3.27

Giô-han Kê-ple và quy luật chuyển đông của các hành tinh

Hình 3.28

Giô-han Kê-ple (*Johannes Kepler*, 1571 - 1630) là nhà thiên văn người Đức. Ông là một trong những người đã đặt nền móng cho khoa học tự nhiên. Kê-ple sinh ra ở Vu-tem-be (*Wurtemberg*) trong một gia đình nghèo, 15 tuổi theo học trường dòng. Năm 1593 ông tốt nghiệp Học viện Thiên văn và Toán học vào loại xuất sắc và trở thành giáo sư trung học. Năm 1600 ông đến Pra-ha và cùng làm việc với nhà thiên văn nổi tiếng Ti-cô Bra.

Kê-ple nổi tiếng nhờ phát minh ra các định luật chuyển động của các hành tinh:

- 1. Các hành tinh chuyển động quanh Mặt Trời theo các quỹ đạo là các đường elip mà Mặt Trời là một tiêu điểm.
- 2. Đoạn thẳng nối từ Mặt Trời đến hành tinh quét được những diện tích bằng nhau trong những khoảng thời gian bằng nhau. Chẳng hạn nếu xem Mặt Trời là tiêu điểm F và nếu trong cùng một khoảng thời gian t, một hành tinh di chuyển từ M_1 đến M_2 hoặc từ M_1' đến M_2' thì diện tích hai hình FM_1M_2 và $FM_1'M_2'$ bằng nhau (h.3.28).
- 3. Nếu gọi T_1 , T_2 lần lượt là thời gian để hai hành tinh bất kì bay hết một vòng quanh Mặt Trời và gọi a_1 , a_2 lần lượt là độ dài nửa trục lớn của elip quỹ đạo của hai hành tinh trên thì ta luôn có

$$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} \ .$$

Các định luật nói trên ngày nay trong thiên văn gọi là ba định luật Kê-ple.

ÔN TẬP CHƯƠNG III

I. CÂU HỎI VÀ BÀI TẬP

- 1. Cho hình chữ nhật ABCD. Biết các đỉnh A(5; 1), C(0; 6) và phương trình CD: x + 2y 12 = 0. Tìm phương trình các đường thẳng chứa các cạnh còn lại.
- **2.** Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho $MA^2 + MB^2 = MC^2$.
- 3. Tìm tập hợp các điểm cách đều hai đường thẳng

$$\Delta_1$$
: $5x + 3y - 3 = 0$ và Δ_2 : $5x + 3y + 7 = 0$.

- **4.** Cho đường thẳng $\Delta: x y + 2 = 0$ và hai điểm O(0; 0), A(2; 0).
 - a) Tìm điểm đối xứng của O qua Δ ;
 - b) Tìm điểm M trên Δ sao cho độ dài đường gấp khúc OMA ngắn nhất.
- **5.** Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).
 - a) Tìm toạ độ của trọng tâm G và trực tâm H của tam giác ABC;
 - b) Gọi T là tâm của đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng ;
 - c) Viết phương trình đường tròn ngoại tiếp tam giác ABC.
- **6.** Lập phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng 3x 4y + 12 = 0 và 12x + 5y 7 = 0.
- 7. Cho đường tròn (\mathscr{C}) có tâm I(1;2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó ta vẽ được hai tiếp tuyến với (\mathscr{C}) tạo với nhau một góc 60° là một đường tròn. Hãy viết phương trình đường tròn đó.
- **8.** Tìm góc giữa hai đường thẳng Δ_1 và Δ_2 trong các trường hợp sau :

a)
$$\Delta_1 : 2x + y - 4 = 0$$
 và $\Delta_2 : 5x - 2y + 3 = 0$;

b)
$$\Delta_1: y = -2x + 4$$
 và $\Delta_2: y = \frac{1}{2}x + \frac{3}{2}$.

9. Cho elip (E):
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
.

Tìm toạ độ các đỉnh, các tiêu điểm và vẽ elip đó.

10. Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo một quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có chiều dài trục lớn và trục nhỏ lần lượt là 769 266 km và 768 106 km. Tính khoảng cách ngắn nhất và khoảng cách dài nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng cách đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip.

II. CÂU HỎI TRẮC NGHIÊM

- **1.** Cho tam giác ABC có toạ độ các đỉnh là A(1; 2), B(3; 1) và C(5; 4). Phương trình nào sau đây là phương trình đường cao của tam giác vẽ từ A?
 - (A) 2x + 3y 8 = 0;

(B) 3x - 2y - 5 = 0;

(C) 5x - 6y + 7 = 0;

- (D) 3x 2y + 5 = 0.
- **2.** Cho tam giác ABC với các đỉnh là A(-1; 1), B(4; 7) và C(3; -2), M là trung điểm của đoạn thẳng AB. Phương trình tham số của trung tuyến CM là :
 - (A) $\begin{cases} x = 3 + t \\ y = -2 + 4t \end{cases}$

(B) $\begin{cases} x = 3 + t \\ y = -2 - 4t ; \end{cases}$

 $(C) \begin{cases} x = 3 - t \\ y = 4 + 2t \end{cases}$

- (D) $\begin{cases} x = 3 + 3t \\ y = -2 + 4t. \end{cases}$
- 3. Cho phương trình tham số của đường thẳng $d: \begin{cases} x = 5 + t \\ y = -9 2t. \end{cases}$

Trong các phương trình sau, phương trình nào là phương trình tổng quát của (d)?

(A) 2x + y - 1 = 0;

(B) 2x + 3y + 1 = 0;

(C) x + 2y + 2 = 0;

- (D) x + 2y 2 = 0.
- **4.** Đường thẳng đi qua điểm M(1; 0) và song song với đường thẳng d: 4x + 2y + 1 = 0 có phương trình tổng quát là :
 - (A) 4x + 2y + 3 = 0;

(B) 2x + y + 4 = 0;

(C) 2x + y - 2 = 0;

- (D) x 2y + 3 = 0.
- 5. Cho đường thẳng d có phương trình tổng quát : 3x + 5y + 2006 = 0. Tìm mệnh đề sai trong các mệnh đề sau :
 - (A) (d) có vecto pháp tuyến $\vec{n} = (3; 5)$;
 - (B) (d) có vecto chỉ phương $\vec{a} = (5; -3);$
 - (C) (d) có hệ số góc $k = \frac{5}{3}$;
 - (D) (d) song song với đường thẳng 3x + 5y = 0.

6.	Bán kính của đường tròn tâm $I(0; -2)$ và tiếp xúc với đường thẳng $\Delta: 3x - 4y - 23 = 0$ là:							
	(A) 15;	(B) 5;	(C) $\frac{3}{5}$;	(D) 3.				
7.	Cho hai đường thẳng $d_1 : 2x + y + 4 - m = 0$ và							
	$d_2: (m+3)x + y - 2m - 1 = 0.$							
	d_1 song song với d_2 khi :							
	(A) $m = 1$;	(B) $m = -1$;	(C) $m = 2$;	(D) $m = 3$.				
8.	Cho (d_1) : $x + 2y + 2$	(d_1) : $x + 2y + 4 = 0$ và (d_2) : $2x - y + 6 = 0$. Số đo của góc giữa hai đường g d_1 và d_2 là:						
	(A) 30° ;	(B) 60° ;	(C) 45° ;	(D) 90° .				
9.		and $\Delta_1 : x + y + 5 = 0$ (B) 30° ;	và Δ_2 : $y = -10$. Góc (C) $88^{\circ}57'52''$;					
10.	Khoảng cách từ điểm $M(0; 3)$ đến đường thẳng $\Delta : x\cos\alpha + y\sin\alpha + 3(2 - \sin\alpha) = 0$ là :							
	(A) $\sqrt{6}$;	(B) 6;	(C) $3\sin\alpha$;	(D) $\frac{3}{\sin\alpha + \cos\alpha}$				
11.		sau đây là phương trì						
		$x^{2} - 4x - 8y + 1 = 0$; (B) $4x^{2} + y^{2} - 10x - 6y - 2 = 0$;		•				
	(C) $x^2 + y^2 - 2x - $	-8y + 20 = 0;	(D) $x^2 + y^2 - 4x + 6y$	y - 12 = 0.				
12.	_	(C) : $x^2 + y^2 + 2x + 4y$ trong các mệnh đề sau						
	(A) (C) có tâm $I(C)$	(1;2);	(B) (C) có bán kính $R = 5$;					
	(C) (<i>C</i>) đi qua đi		(D) (C) không đi qua	a điểm $A(1; 1)$.				
13.	· · ·	o tuyến tại điểm $M(3;$ x-4y-3=0 là:	4) với đường tròn					
	(A) x + y - 7 = 0	•	(B) $x + y + 7 = 0$;					
	(C) $x - y - 7 = 0$;	(D) $x + y - 3 = 0$.					

- **14.** Cho đường tròn (C): $x^2 + y^2 4x 2y = 0$ và đường thẳng Δ : x + 2y + 1 = 0. Tìm mênh đề đúng trong các mênh đề sau:
 - (A) Δ đi qua tâm của (C);
- (B) Δ cắt (C) tai hai điểm;

(C) Δ tiếp xúc với (C);

- (D) Δ không có điểm chung với (C).
- **15.** Đường tròn (*C*) : $x^2 + y^2 x + y 1 = 0$ có tâm *I* và bán kính *R* là :
 - (A) I(-1; 1), R = 1;

- (B) $I\left(\frac{1}{2}; -\frac{1}{2}\right), R = \frac{\sqrt{6}}{2};$
- (C) $I\left(-\frac{1}{2}; \frac{1}{2}\right), R = \frac{\sqrt{6}}{2};$
- (D) I(1;-1), $R = \sqrt{6}$.
- **16.** Với giá trị nào của *m* thì phương trình sau đây là phương trình của đường tròn $x^{2} + y^{2} - 2(m+2)x + 4my + 19m - 6 = 0$?
 - (A) 1 < m < 2;

(B) $-2 \le m \le 1$:

(C) m < 1 hoặc m > 2;

- (D) m < -2 hoặc m > 1.
- 17. Đường thẳng $\Delta: 4x + 3y + m = 0$ tiếp xúc với đường tròn $(C): x^2 + y^2 = 1$ khi :
 - (A) m = 3;
- (B) m = 5;
- (C) m = 1;
- (D) m = 0.
- **18.** Cho hai điểm A(1; 1) và B(7; 5). Phương trình đường tròn đường kính AB là:
 - (A) $x^2 + y^2 + 8x + 6y + 12 = 0$; (B) $x^2 + y^2 8x 6y + 12 = 0$;
 - (C) $x^2 + y^2 8x 6y 12 = 0$; (D) $x^2 + y^2 + 8x + 6y 12 = 0$.
- **19.** Đường tròn đi qua ba điểm A(0; 2), B(-2; 0) và C(2; 0) có phương trình là :
 - (A) $x^2 + y^2 = 8$;

(B) $x^2 + y^2 + 2x + 4 = 0$:

(C) $x^2 + y^2 - 2x - 8 = 0$:

- (D) $x^2 + y^2 4 = 0$.
- **20.** Cho điểm M(0; 4) và đường tròn (C) có phương trình $x^2 + y^2 8x 6y + 21 = 0$. Tìm phát biểu đúng trong các phát biểu sau:
 - (A) M nằm ngoài (C);

(B) M nằm trên (C);

(C) M nằm trong (C);

- (D) M trùng với tâm của (C).
- **21.** Cho elip (E) : $\frac{x^2}{25} + \frac{y^2}{9} = 1$ và cho các mệnh đề :
 - (I) (E) có các tiêu điểm F_1 (-4; 0) và F_2 (4; 0);
 - (II) (E) có tỉ số $\frac{c}{a} = \frac{4}{5}$;

- (III) (E) có đỉnh $A_1(-5; 0)$;
 - (IV) (E) có độ dài trục nhỏ bằng 3.

Tìm mênh đề sai trong các mênh đề sau:

(A) (I) và (II);

(B) (II) và (III);

(C) (I) và (III);

- (D) (IV) và (I).
- 22. Phương trình chính tắc của elip có hai đỉnh là (-3; 0), (3; 0) và hai tiêu điểm là(-1;0), (1;0) là:
 - (A) $\frac{x^2}{0} + \frac{y^2}{1} = 1$;

(B) $\frac{x^2}{8} + \frac{y^2}{9} = 1$;

(C) $\frac{x^2}{9} + \frac{y^2}{9} = 1$;

- (D) $\frac{x^2}{1} + \frac{y^2}{0} = 1$.
- **23.** Cho elip (E): $x^2 + 4y^2 = 1$ và cho các mênh đề:
 - (I) (E) có truc lớn bằng 1;

- (II) (E) có truc nhỏ bằng 4;
- (III) (E) có tiêu điểm $F_1\left(0; \frac{\sqrt{3}}{2}\right)$;
- (IV) (E) có tiêu cự bằng $\sqrt{3}$.

Tìm mệnh đề đúng trong các mệnh đề sau:

- (A)(I);
- (B) (II) và (IV);
- (C) (I) và (III);
- (D) (IV).
- **24.** Dây cung của elip (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài là:
- (A) $\frac{2c^2}{c}$; (B) $\frac{2b^2}{c}$; (C) $\frac{2a^2}{c}$; (D) $\frac{a^2}{c}$.
- **25.** Một elip có trục lớn bằng 26, tỉ số $\frac{c}{a} = \frac{12}{13}$. Trục nhỏ của elip bằng bao nhiêu ?
 - (A) 5;

- (C) 12;
- (D) 24.
- **26.** Cho elip (E): $4x^2 + 9y^2 = 36$. Tîm mệnh đề sai trong các mệnh đề sau :
 - (A) (E) có truc lớn bằng 6;

(B) (E) có truc nhỏ bằng 4;

(C) (E) có tiêu cư bằng $\sqrt{5}$;

(D) (E) có tỉ số $\frac{c}{a} = \frac{\sqrt{5}}{2}$.

27. Cho đường tròn (C) tâm F_1 bán kính 2a và một điểm F_2 ở bên trong của (C).

Tập hợp tâm M của các đường tròn (C') thay đổi nhưng luôn đi qua F_2 và tiếp xúc với (C) (h.3.29) là đường nào sau đây ?

- (A) Đường thẳng;
- (B) Đường tròn;

(C) Elip;

(D) Parabol.

Hình 3.29

- **28.** Khi cho t thay đổi, điểm M (5 $\cos t$; 4 $\sin t$) di động trên đường nào sau đây ?
 - (A) Elip;

(B) Đường thẳng;

(C) Parabol;

- (D) Đường tròn.
- **29.** Cho elip (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (0 < b < a). Gọi F_1 , F_2 là hai tiêu điểm và cho điểm M(0; -b). Giá trị nào sau đây bằng giá trị của biểu thức MF_1 . $MF_2 OM^2$?
 - (A) c^2 ;
- (B) $2a^2$;
- (C) $2b^2$;
- (D) $a^2 b^2$.
- **30.** Cho elip (E): $\frac{x^2}{16} + \frac{y^2}{9} = 1$ và đường thẳng $\Delta : y + 3 = 0$.

Tích các khoảng cách từ hai tiêu điểm của (E) đến đường thẳng Δ bằng giá trị nào sau đây :

- (A) 16;
- (B) 9;

- (C) 81;
- (D) 7.

ÔN TẬP CUỐI NĂM

- 1. Cho hai vecto \vec{a} và \vec{b} có $|\vec{a}| = 3$, $|\vec{b}| = 5$, $(\vec{a}, \vec{b}) = 120^{\circ}$. Với giá trị nào của m thì hai vecto $\vec{a} + m\vec{b}$ và $\vec{a} m\vec{b}$ vuông góc với nhau?
- **2.** Cho tam giác \overrightarrow{ABC} và hai điểm M, N sao cho $\overrightarrow{AM} = \alpha \overrightarrow{AB}$; $\overrightarrow{AN} = \beta \overrightarrow{AC}$.
 - a) Hãy vẽ M, N khi $\alpha = \frac{2}{3}$; $\beta = -\frac{2}{3}$.
 - b) Hãy tìm mối liên hệ giữa α và β để MN song song với BC.

- 3. Cho tam giác đều ABC cạnh a.
 - a) Cho M là một điểm trên đường tròn ngoại tiếp tam giác ABC. Tính $MA^2 + MB^2 + MC^2$ theo a:
 - b) Cho đường thẳng d tuỳ ý, tìm điểm N trên đường thẳng d sao cho $NA^2 + NB^2 + NC^2$ nhỏ nhất.
- **4.** Cho tam giác đều ABC có cạnh bằng 6 cm. Một điểm M nằm trên cạnh BC sao cho BM = 2 cm.
 - a) Tính độ dài của đoạn thẳng AM và tính côsin của góc \widehat{BAM} ;
 - b) Tính bán kính đường tròn ngoại tiếp tam giác ABM;
 - c) Tính độ dài đường trung tuyến vẽ từ đỉnh C của tam giác ACM;
 - d) Tính diện tích tam giác ABM.
- 5. Chứng minh rằng trong mọi tam giác ABC ta đều có
 - a) $a = b\cos C + c\cos B$;
 - b) $\sin A = \sin B \cos C + \sin C \cos B$;
 - c) $h_a = 2R \sin B \sin C$.
- **6.** Cho các điểm A(2; 3), B(9; 4), M(5; y) và P(x; 2).
 - a) Tìm y để tam giác AMB vuông tại M;
 - b) Tìm x để ba điểm A, P và B thẳng hàng.
- 7. Cho tam giác ABC với H là trực tâm. Biết phương trình của đường thẳng AB, BH và AH lần lượt là 4x + y 12 = 0, 5x 4y -15 = 0 và 2x + 2y 9 = 0. Hãy viết phương trình hai đường thẳng chứa hai cạnh còn lại và đường cao thứ ba.
- **8.** Lập phương trình đường tròn có tâm nằm trên đường thẳng $\Delta: 4x + 3y 2 = 0$ và tiếp xúc với hai đường thẳng

$$d_1$$
: $x + y + 4 = 0$ và d_2 : $7x - y + 4 = 0$.

- **9.** Cho elip (*E*) có phương trình : $\frac{x^2}{100} + \frac{y^2}{36} = 1$.
 - a) Hãy xác định toạ độ các đỉnh, các tiêu điểm của elip (E) và vẽ elip đó;
 - b) Qua tiêu điểm của elip dựng đường thẳng song song với Oy và cắt elip tại hai điểm M và N. Tính độ dài đoạn MN.

HƯỚNG DẪN VÀ ĐÁP SỐ

CHUONG I

§1.

- 1. a) Đúng; b) Đúng.
- 2. a) Các vecto cùng phương : $\vec{a}, \vec{b}; \vec{u}, \vec{v}; \vec{x}, \vec{y}, \vec{w}$ và \vec{z} .
 - b) Các vectơ cùng hướng : \vec{a} , \vec{b} ; \vec{x} , \vec{y} và \vec{z} .
 - c) Các vecto ngược hướng : $\vec{u}, \vec{v}; \vec{w}, \vec{x}; \vec{w}, \vec{y}; \vec{w}, \vec{z}$.
 - d) Các vectơ bằng nhau : \vec{x} , \vec{y} .
- **4.** a) Các vecto cùng phương với $\overrightarrow{OA}: \overrightarrow{DA}, \overrightarrow{AD}, \overrightarrow{BC}, \overrightarrow{CB}, \overrightarrow{AO}, \overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{DO}, \overrightarrow{FE}, \overrightarrow{EF}.$
 - b) Các vecto bằng \overrightarrow{AB} : \overrightarrow{OC} , \overrightarrow{ED} , \overrightarrow{FO} .

§2.

- 5. $|\overrightarrow{AB} + \overrightarrow{BC}| = a$, $|\overrightarrow{AB} \overrightarrow{BC}| = a\sqrt{3}$.
- 7. a) Nếu \vec{a} , \vec{b} cùng hướng;
 - b) Nếu giá của \vec{a} và \vec{b} vuông góc.
- **8.** \vec{a} , \vec{b} có cùng độ dài và ngược hướng.
- **10.** $\overrightarrow{F_3}$ có cường độ là $100\sqrt{3}$ N, ngược hướng với \overrightarrow{ME} , trong đó E là đỉnh của hình bình hành MAEB.

§3.

- 2. $\overrightarrow{AB} = \frac{2}{3}(\overrightarrow{u} \overrightarrow{v})$; $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{u} + \frac{4}{3}\overrightarrow{v}$; $\overrightarrow{CA} = -\frac{4}{3}\overrightarrow{u} \frac{2}{3}\overrightarrow{v}$.
- $3. \quad \overrightarrow{AM} = -\frac{1}{2} \overrightarrow{u} + \frac{3}{2} \overrightarrow{v}.$
- **6.** *K* là điểm thuộc đoạn *AB* mà $\frac{KA}{KB} = \frac{2}{3}$
- 7. M là trung điểm của trung tuyến CC'.

§4.

1. $\overrightarrow{AB} = 3$, $\overrightarrow{MN} = -5$; \overrightarrow{AB} và \overrightarrow{MN} ngược hướng.

- 2. a) đúng b) đúng c) sai d) đúng.
- 3. $\vec{a} = (2; 0), \vec{b} = (0; -3),$ $\vec{c} = (3; -4), \vec{d} = (0, 2; \sqrt{3}).$
- **4.** a), b), c) đều đúng, d) sai.
- 5. $A(x_0; -y_0); B(-x_0; y_0);$ $C(-x_0; -y_0).$
- **6.** D(0; -5)
- 7. A(8; 1), B(-4; -5), C(-4; 7).
- **8.** $\vec{c} = 2\vec{a} + \vec{b}$

ÔN TẬP CHƯƠNG I

- 1. Các vectơ cần tìm : \overrightarrow{OC} , \overrightarrow{FO} , \overrightarrow{ED} .
- 2. Các khẳng định đúng : a), b) và d).
- 3. ABCD là hình thoi.
- **5.** *M*, *N*, *P* lần lượt là các điểm đối xứng với *C*, *A*, *B* qua tâm *O*.
- **6.** a) $|\overrightarrow{AB} + \overrightarrow{AC}| = a\sqrt{3}$; b) $|\overrightarrow{AB} \overrightarrow{AC}| = a$.
- 8. a) $m = \frac{1}{2}$, n = 0; b) m = -1, $n = \frac{1}{2}$; c) $m = -\frac{1}{2}$, $n = \frac{1}{2}$; d) $m = -\frac{1}{2}$, n = 1.
- 10. Các khẳng định đúng a) và c).
- **11.** a) $\vec{u} = (40; -13)$; b) $\vec{x} = (8; -7)$; c) k = -2, h = -1.
- **12.** $m = \frac{2}{5}$.
- 13. Khẳng định đúng là c).

CHUONG II

§1.

- 2. $AK = a\sin 2\alpha$; $OK = a\cos 2\alpha$.
- 5. $P = \frac{25}{9}$.
- **6.** $\cos(\overrightarrow{AC}, \overrightarrow{BA}) = -\frac{\sqrt{2}}{2}$; $\sin(\overrightarrow{AC}, \overrightarrow{BD}) = 1$; $\cos(\overrightarrow{AB}, \overrightarrow{CD}) = -1$.

§2.

- 1. $\overrightarrow{AB}.\overrightarrow{AC} = 0$; $\overrightarrow{AC}.\overrightarrow{CB} = -a^2$.
- 2. a) Khi điểm O nằm ngoài đoạn AB ta có $\overrightarrow{OA.OB} = a.b$.
 - b) Khi điểm O nằm giữa hai điểm A và B ta có $\overrightarrow{OA}.\overrightarrow{OB} = -a.b$.
- 3. b) $4R^2$.
- **4.** a) $D\left(\frac{5}{3}; 0\right);$ b) $\sqrt{10}(2+\sqrt{2});$
- **5.** a) $(\vec{a}, \vec{b}) = 90^{\circ}$; b) $(\vec{a}, \vec{b}) = 45^{\circ}$; c) $(\vec{a}, \vec{b}) = 150^{\circ}$.
- 7. Toạ độ điểm C cần tìm là : C(1; 2) và C'(-1; 2).

§3.

- 1. $\hat{C} = 32^{\circ}$; $b \approx 61,06 \text{ cm}$; $c \approx 38,15 \text{ cm}$; $h_a \approx 32,36 \text{ cm}$.
- 2. $\hat{A} \approx 36^{\circ}$: $\hat{B} \approx 106^{\circ}28'$: $\hat{C} = 37^{\circ}32'$.
- 3. a = 11,36 cm; $\hat{B} \approx 37^{\circ}48'$; $\hat{C} = 22^{\circ}12'$.
- **4.** S = 31,3 dvdt.
- 5. $BC = \sqrt{m^2 + n^2 + mn}$
- **6.** a) $\hat{C} = 91^{\circ}47'$; b) $m_a = 10,89$ cm.
- 7. a) Góc lớn nhất là $\hat{C} \approx 117^{\circ}16'$;
 - b) Góc lớn nhất là $\widehat{A} \approx 93^{\circ}41'$.
- **8.** $\hat{A} = 40^{\circ}$; b = 212,31 cm; c = 179,40 cm
- 10. 568,457 m.
- **11.** 22,772 m.

ÔN TẬP CHƯƠNG II

- **4.** $\vec{a}.\vec{b} = -4$.
- **9.** $R = 2\sqrt{3}$.
- **10.** S = 96; $h_a = 16$; R = 10; r = 4; $m_a \approx 17,09$.
- 11. Diện tích S của tam giác lớn nhất khi $\hat{C} = 90^{\circ}$.

CHUONG III

§1.

- **1.** a) $\begin{cases} x = 2 + 3t \\ y = 1 + 4t \end{cases}$; b) $\begin{cases} x = -2 + t \\ y = 3 5t. \end{cases}$
- **2.** a) 3x + y + 23 = 0; b) 2x + 3y 7 = 0.
- 3. a) AB : 5x + 2y 13 = 0; BC : x - y - 4 = 0; CA : 2x + 5y - 22 = 0.
 - b) AH: x + y 5 = 0; AM: x + y 5 = 0.
- **4.** x 4y 4 = 0.
- **5.** a) d_1 cắt d_2 ; b) $d_1//d_2$; c) $d_1 \equiv d_2$.
- **6.** $M_1(4; 4), M_2\left(-\frac{24}{5}; \frac{-2}{5}\right).$
- **7.** 45°.
- **8.** a) $\frac{28}{5}$; b) 3; c) 0.
- 9. $\frac{44}{13}$.
- **§2.**
- **1.** a) I(1; 1), R = 2; b) $I\left(-\frac{1}{2}; \frac{1}{4}\right), R = 1;$
 - c) I(2; -3), R = 4.
- **2.** a) $(x+2)^2 + (y-3)^2 = 52$;
 - b) $(x+1)^2 + (y-2)^2 = \frac{4}{5}$;
 - c) $(x-4)^2 + (y-3)^2 = 13$.
- 3. a) $x^2 + y^2 6x + y 1 = 0$;
 - b) $x^2 + y^2 4x 2y 20 = 0$.
- 4. $(x-1)^2 + (y-1)^2 = 1$; $(x-5)^2 + (y-5)^2 = 25$.
- 5. $(x-4)^2 + (y-4)^2 = 16$; $\left(x - \frac{4}{3}\right)^2 + \left(y + \frac{4}{3}\right)^2 = \frac{16}{9}$.
- **6.** a) I(2; -4), R = 5;
 - b) 3x 4y + 3 = 0;
 - c) 4x + 3y + 29 = 0, 4x + 3y 21 = 0.

§3.

1. a)
$$2a = 10, 2b = 6$$
;
 $F_1(-4; 0), F_2(4; 0)$;
 $A_1(-5; 0), A_2(5; 0)$;
 $B_1(0; -3), B_2(0; 3)$.

b)
$$2a = 1, 2b = \frac{2}{3};$$

 $F_1\left(-\frac{\sqrt{5}}{6}; 0\right), F_2\left(\frac{\sqrt{5}}{6}; 0\right);$
 $A_1\left(-\frac{1}{2}; 0\right), A_2\left(\frac{1}{2}; 0\right);$
 $B_1\left(0; -\frac{1}{3}\right), B_2\left(0; \frac{1}{3}\right).$

c)
$$2a = 6, 2b = 4$$
;
 $F_1(-\sqrt{5}; 0), F_2(\sqrt{5}; 0)$;
 $A_1(-3; 0), A_2(3; 0)$;
 $B_1(0; -2), B_2(0; 2)$.

2. a)
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
; b) $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

3. a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
; b) $\frac{x^2}{4} + \frac{y^2}{1} = 1$.

4.
$$40-20\sqrt{3} \approx 5,36$$
 cm;
 $80+40\sqrt{3} \approx 149,28$ cm.

5.
$$MF_1 + MF_2 = R_1 + R_2$$
.

ÔN TẬP CHƯƠNG III

1.
$$AB: x + 2y - 7 = 0$$
; $AD: 2x - y - 9 = 0$; $BC: 2x - y + 6 = 0$.

2.
$$(x+6)^2 + (y-5)^2 = 66$$
.

$$3. \quad 5x + 3y + 2 = 0.$$

4. a)
$$O'(-2; 2);$$
 b) $M\left(-\frac{2}{3}; \frac{4}{3}\right)$.

5. a)
$$G\left(1; \frac{2}{3}\right)$$
, $H(13; 0)$, $T(-5; 1)$;

b)
$$\overrightarrow{TH} = 3\overrightarrow{TG}$$
;

c)
$$(x+5)^2 + (y-1)^2 = 85$$
.

6.
$$21x + 77y - 191 = 0$$
; $99x - 27y + 121 = 0$.

7.
$$(x-1)^2 + (y-2)^2 = 36$$
.

8. a)
$$\cos(\widehat{\Delta_1, \Delta_2}) = \frac{8}{\sqrt{145}}$$
,
 $(\widehat{\Delta_1, \Delta_2}) \approx 48^{\circ}21'59''$;
b) $(\widehat{\Delta_1, \Delta_2}) = 90^{\circ}$.

9.
$$A_1(-4; 0), A_2(4; 0);$$

 $B_1(0; -3), B_2(0; 3);$
 $F_1(-\sqrt{7}; 0), F_2(\sqrt{7}; 0).$

10. 363 517 km; 405 749 km.

ÔN TẬP CUỐI NĂM

1.
$$m = \pm \frac{3}{5}$$
.

2. b)
$$\alpha = \beta$$
.

3. a)
$$2a^2$$
;

b) N là hình chiếu vuông góc của trọng tâm G của tam giác ABC lên d.

4. a)
$$AM = \sqrt{28}$$
 cm, $\cos \widehat{BAM} = \frac{5\sqrt{7}}{14}$;

b)
$$R = \frac{2\sqrt{21}}{3}$$
 cm; c) $\sqrt{19}$ cm;

d)
$$3\sqrt{3} \text{ cm}^2$$
.

6. a)
$$y = 0$$
, $y = 7$; b) $x = -5$.

7.
$$AC: 4x + 5y - 20 = 0$$
;
 $BC: x - y - 3 = 0$;
 $CH: 3x - 12y - 1 = 0$.

8.
$$(x-2)^2 + (y+2)^2 = 8$$
;
 $(x+4)^2 + (y-6)^2 = 18$.

9. a)
$$A_1(-10; 0)$$
, $A_2(10; 0)$;
$$B_1(0; -6)$$
, $B_2(0; 6)$;
$$F_1(-8; 0)$$
, $F_2(8; 0)$;

b)
$$\frac{36}{5}$$
.

BẢNG THUẬT NGỮ

В		P	
Bảng giá trị lượng giác của các góc		Phân tích (biểu thị) một vectơ theo hai	
đặc biệt	37	vecto không cùng phương	15
Biểu thức toạ độ của tích vô hướng	43	Phương trình chính tắc của elip	86
Bình phương vô hướng của một vectơ	41	Phương trình đường tròn	81
С		Phương trình tiếp tuyến của đường tròn	83
Công thức Hê-rông	53	Phương trình đường thẳng theo đoạn chắn	75
-		Phương trình tổng quát của đường thẳng	74
D Diân tính tana niún	50	Phương trình tham số của đường thẳng	71
Diện tích tam giác	53	Q	
Ð		Quy tắc ba điểm	11
Độ dài đại số	21	Quy tắc hình bình hành	9
Điều kiện để ba điểm thẳng hàng	15	Quy tac mini binii nami	9
Điều kiện để hai vectơ cùng phương	15	Т	
Đỉnh của elip	87	Tâm đối xứng của elip	86
Định lí côsin	48	Tiêu cự của elip	85
Định lí sin	51	Tiêu điểm của elip	85
Độ dài của vectơ	6	Tích của vectơ với một số	14
Đường cônic	89	Tính chất của phép cộng các vectơ	9
E		Tích vô hướng của hai vectơ	41
Elip (đường elip)	85	Toạ độ của một điểm	23
Lilp (ddorig elip)	00	Toạ độ của vectơ	22
G		Toạ độ của trọng tâm tam giác	25
Góc giữa hai vectơ	38	Toạ độ trung điểm của đoạn thẳng	25
Góc giữa hai đường thẳng	78	Tổng của hai vectơ	8
Gốc toạ độ	21	Trục nhỏ của elip	87
Giải tam giác	55	Trục đối xứng của elip	86
Giá của vectơ	5	Trục hoành	21
Giá trị lượng giác của một góc	36	Trục lớn của elip	87
н		Trục toạ độ	20
Hệ trục toạ độ	21	Trục tung	21
Hệ số góc của đường thẳng	72	Tung độ	23
Hiệu của hai vectơ	10	V	
Hệ thức lượng trong tam giác	46	Vecto	1
Hoành độ	23	Vecto Vecto đơn vị	4
•	20	Vecto don vị Vecto bằng nhau	6 6
K		_	5
Khoảng cách từ một điểm đến một	70	Vector cùng hướng	
đường thẳng	79	Vector cùng phương	5
Khoảng cách giữa hai điểm	45	Vecto chỉ phương của đường thẳng	70
M		Vecto đối	10
Mặt phẳng toạ độ	22	Vector - không	6
		Vecto ngược hướng	5
N Niĝo diskon tran den vi	25	Vecto pháp tuyến của đường thẳng	73
Nửa đường tròn đơn vị	35	Vi trí tương đối của hai đường thẳng	76

MỤC LỤC

		Trang
Chương I.	VECTO	3
	§1. Các định nghĩa	4
	Câu hỏi và bài tập	7
	§2. Tổng và hiệu của hai vectơ	8
	Câu hỏi và bài tập	12
	§3. Tích của vectơ với một số	14
	Câu hỏi và bài tập	17
	§4. Hệ trục toạ độ	20
	Câu hỏi và bài tập	26
	Ôn tập chương l	27
	I. Câu hỏi và bài tập	27
	II. Câu hỏi trắc nghiệm	28
Chương II.	TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG	34
	§1. Giá trị lượng giác của một góc bất kì từ 0° đến 180°	35
	Câu hỏi và bài tập	40
	§2. Tích vô hướng của hai vectơ	41
	Câu hỏi và bài tập	45
	§3. Các hệ thức lượng trong tam giác và giải tam giác	46
	Câu hỏi và bài tập	59
	Ôn tập chương ll	62
	I. Câu hỏi và bài tập	62
	II. Câu hỏi trắc nghiệm	63
Chương III.	PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẨNG	69
	§1. Phương trình đường thẳng	70
	Câu hỏi và bài tập	80
	§2. Phương trình đường tròn	81
	Câu hỏi và bài tập	83
	§3. Phương trình đường elip	84
	Câu hỏi và bài tập	88
	Ôn tập chương III	93
	I. Câu hỏi và bài tập	93
	II. Câu hỏi trắc nghiệm	94
	Ôn tập cuối năm	98
	Hướng dẫn và đáp số	100
	Bảng thuật ngữ	103

 $Chịu \ trách \ nhiệm xuất bản: Chủ tịch Hội đồng Thành viên <math>\mathbf{NGUY} \mathbf{\tilde{E}N} \ \mathbf{D} \mathbf{\acute{U}C} \ \mathbf{TH} \mathbf{\acute{A}I}$

Tổng Giám đốc HOÀNG LÊ BÁCH

Chịu trách nhiệm nội dung: Tổng biên tập PHAN XUÂN THÀNH

Biên tập lần đầu: NGUYỄN HOÀNG NGUYÊN - HOÀNG NGỌC PHƯƠNG

Biên tập tái bản : TRẦN THANH HÀ

Thiết kế sách : BÙI NGỌC LAN

Trình bày bìa : HÀ TUỆ HƯƠNG

 $\emph{Sửa}$ $\emph{bản}$ in : ~ PHÒNG SỬA BẢN IN (NXBGD TẠI TP.HCM)

 $\it Ch\'e$ bản : $\it PH\ro$ NG CHẾ BẢN (NXBGD TẠI TP.HCM)

HÌNH HỌC 10