Linear Equations 2: Rank, Singularity, and Definiteness

David Carlson

2021

Linear Equations 2: Rank, Singularity, and

Definiteness

Rank

- We previously noted that a 2 × 2 system had one, infinite, or no solutions if the two lines intersected, were the same, or were parallel, respectively.
- We want to be able to characterize a matrix to determine which case we have before us.
- ► More generally, to determine whether one, infinite, or no solutions exist, we can use information about:
 - 1. The number of equations m (the number of rows),
 - 2. the number of unknowns n (the number of columns), and
 - 3. the **rank** of the matrix representing the linear system.

Defining Rank

- ► The **rank** of a matrix is the number of nonzero rows in its row echelon form.
- ► The rank corresponds to the maximum number of linearly independent row or column vectors in the matrix.
- ▶ It also corresponds to the number of dimensions of the *column* space and the vector space (the vector space spanned by the column and row vectors respectively).

Examples

1. Rank=3

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{pmatrix}$$

Examples

1. Rank=3

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{pmatrix}$$

2. Rank=2

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 0
\end{pmatrix}$$

Examples

1. Rank=3

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{pmatrix}$$

2. Rank=2

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 0
\end{pmatrix}$$

3. Rank=3

$$\begin{pmatrix} 1 & 2 & 3 & | & b_1 \\ 0 & 4 & 5 & | & b_2 \\ 0 & 0 & 0 & | & b_3 \end{pmatrix}, \quad b_i \neq 0$$

Basic properties of rank

- Let **A** be the coefficient matrix and $\widehat{\mathbf{A}} = [\mathbf{A}|\mathbf{b}]$ be the augmented matrix. Then
 - 1. rank $\mathbf{A} < \operatorname{rank} \widehat{\mathbf{A}}$

Augmenting **A** with **b** can never result in more zero rows than originally in **A** itself. Suppose row i in **A** is all zeros and that b_i is non-zero. Augmenting **A** with **b** will yield a non-zero row i in $\widehat{\mathbf{A}}$

rank A ≤ rows A
 By definition of rank.

rank A ≤ cols A
 Suppose there are more rows than columns (otherwise the previous rule applies). Each column can contain at most one pivot. By pivoting, all other entries in a column below the

pivot are zeroed. Hence, there will only be as many non-zero rows as pivots, which will equal the number of columns.

Ranks and solutions to systems

- ► The real point here is that the rank of a matrix tells us whether a system of equations has one solution, no solutions, or many.
- ➤ You can think of rank as telling us how many "real" equations have been included.
- ▶ If we have more unknowns than equations, there will be many solutions.
- And if there are more "distinct" equations than unknowns, then it will have no solution.

Exactly one solution

ightharpoonup rank $\mathbf{A} = \operatorname{rank} \widehat{\mathbf{A}} = \operatorname{rows} \mathbf{A} = \operatorname{cols} \mathbf{A}$

Necessary condition for a system to have a unique solution: that there be exactly as many equations as unknowns. We often term this as being of **full rank**.

Infinite solutions

rank $\mathbf{A} = \operatorname{rank} \widehat{\mathbf{A}}$ and cols $\mathbf{A} > \operatorname{rank} \mathbf{A}$

If a system has a solution and has more unknowns than equations, then it has infinitely many solutions.

No solution rank $\mathbf{A} < \operatorname{rank} \widehat{\mathbf{A}}$

Then there is a zero row i in \mathbf{A} 's reduced echelon that corresponds to a non-zero row i in $\widehat{\mathbf{A}}$'s reduced echelon. Row i of the $\widehat{\mathbf{A}}$ translates to the equation

$$0x_{i1} + 0x_{i2} + \cdots + 0x_{in} = b'_{i}$$

where $b_i' \neq 0$. Hence the system has no solution.

Find the rank of the following matrices or systems of equations.

$$\begin{pmatrix} 4 & -1 & 9 \\ 2 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}$$

2.

$$\mathbf{D} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

3.

$$\mathbf{E} = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$$

4.

Returning to determinants

- ▶ Determinants can be used to determine whether a square matrix is nonsingular.
- ► A square matrix is nonsingular iff its determinant is not zero.
- ► The requirements for A to be nonsingular correspond to the requirements for a linear system to have a unique solution: rank A = rows A = cols A.

Understanding determinants

- Let's try to give you an intuitive understanding of determinants and their relationship to singularity.
- ▶ Let

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- Find \mathbf{A}^{-1}
- ► Find |A|
- ▶ What happens to \mathbf{A}^{-1} when $|\mathbf{A}| = 0$?
- Let's expand this intuition out to larger matrices.

Inductive definition

- ightharpoonup Let $\mathbf{A} = a$.
- ► We want the determinant to equal zero when the inverse does not exist.
- ▶ Since the inverse of a, 1/a, does not exist when a = 0, we let the determinant of a be

$$\det(a) = |a| = a$$

- ► For a 2 × 2 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, \mathbf{A} is nonsingular only if $a_{11}a_{22} a_{12}a_{21} \neq 0$.
- ▶ We then define the determinant of a 2×2 matrix **A** as:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

 $= a_{11}|a_{22}|-a_{12}|a_{21}|$

Extending this to a 3×3 matrix, we get:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

Extending this to a 3×3 matrix, we get:

a ₁₁	a ₁₂	a ₁₃	= a ₁₁
a ₂₁	a 22	a23	$= a_{11}$

Extending this to a 3×3 matrix, we get:

	ııııg	LIIIS	ιο	а	J	^	J	matrix,	VVC	gcı
1			1							
a11	<i>a</i> 12	<i>a</i> 1	2			- 1		1		

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}$$

Extending this to a 3×3 matrix we get:

Extending this to a 3×3 matrix, we get.										
	a ₁₁ a ₂₁ a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	$= a_{11}$	a ₂₂	a ₂₃	- a ₁₂	a ₂₁	$\begin{vmatrix} a_{23} \\ a_{33} \end{vmatrix} + a_{13}$	

Extending this to a 3×3 matrix we get:

Extending this to a 5 × 5 matrix, we get.											
a ₁ a ₂ a ₃	11 21 31	a ₁₂ a ₂₂ a ₃₂	a ₁₃ a ₂₃ a ₃₃	$=a_{11}$	a ₂₂	a ₂₃	- a ₁₂	a ₂₁	a ₂₃	+ a ₁₃	a ₂₁

Determinants Defined

- Let's extend this to an $n \times n$ matrix.
- ▶ Let \mathbf{A}_{ij} be the $(n-1) \times (n-1)$ submatrix of \mathbf{A} obtained by deleting row i and column j.
- Let the (i,j)th **minor** of **A** be

$$M_{ij}=|\mathbf{A}_{ij}|$$

▶ Then for any $n \times n$ matrix **A**

Determinants Defined

- ▶ Let's extend this to an $n \times n$ matrix.
- ▶ Let \mathbf{A}_{ij} be the $(n-1) \times (n-1)$ submatrix of \mathbf{A} obtained by deleting row i and column j.
- Let the (i, j)th minor of **A** be

$$M_{ij}=|\mathbf{A}_{ij}|$$

▶ Then for any $n \times n$ matrix **A**

$$|\mathbf{A}| = a_{11}M_{11} - a_{12}M_{12} + \dots + (-1)^{n+1}a_{1n}M_{1n}$$

Example: Does the following matrix have an inverse?

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

1. Calculate its determinant.

$$|\mathbf{A}| = 1 \begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 3 \\ 5 & 1 \end{vmatrix} + 1 \begin{vmatrix} 0 & 2 \\ 5 & 5 \end{vmatrix}$$
$$= 1(2 - 15) - 1(0 - 15) + 1(0 - 10)$$
$$= -13 + 15 - 10$$
$$= -8$$

2. Since $|\mathbf{A}| \neq 0$, we conclude that **A** has an inverse.

Triangular or Diagonal Matrices

- ► For any upper-triangular, lower-triangular, or diagonal matrix, the determinant is just the product of the diagonal terms.
- ► Example: Suppose we have the following square matrix in row echelon form (i.e., upper triangular)

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$$

► Then

$$|\mathbf{R}| = r_{11} \begin{vmatrix} r_{22} & r_{23} \\ 0 & r_{33} \end{vmatrix} = r_{11}r_{22}r_{33}$$

Finding the inverse of a matrix with determinants

- ► Thus far, we have a number of algorithms to
 - 1. Find the solution of a linear system,
 - 2. Find the inverse of a matrix
- But these remain just that algorithms.
- ▶ At this point, we have no way of telling how the solutions x_j change as the parameters a_{ij} and b_i change, except by changing the values and "rerunning" the algorithms.

- ► With determinants, we can
 - 1. Provide an explicit formula for the inverse, and
 - 2. Provide an explicit formula for the solution of an $n \times n$ linear system.
- ► Hence, we can examine how changes in the parameters (A) and b affect the solutions (x).

Defining terms: Cofactor and adjoint matrix

- ▶ Define the (i,j)th **cofactor** C_{ij} of **A** as $(-1)^{i+j}M_{ij}$. Notice that it's just the signed (i,j)th minor.
- ▶ Define the **adjoint** of **A** as the $n \times n$ matrix whose (i, j)th entry is C_{ii}
 - 1. Make a "cofactor matrix" by calculating C_{ij} for each element of the original matrix.
 - 2. The adjoint matrix is just it's transpose.

Determinant formula for the inverse

▶ Then, the inverse of **A** is given by the formula

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \operatorname{adj} \mathbf{A} = \begin{pmatrix} \frac{C_{11}}{|\mathbf{A}|} & \frac{C_{21}}{|\mathbf{A}|} & \cdots & \frac{C_{n1}}{|\mathbf{A}|} \\ \frac{C_{12}}{|\mathbf{A}|} & \frac{C_{22}}{|\mathbf{A}|} & \cdots & \frac{C_{n2}}{|\mathbf{A}|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{C_{1n}}{|\mathbf{A}|} & \frac{C_{2n}}{|\mathbf{A}|} & \cdots & \frac{C_{nn}}{|\mathbf{A}|} \end{pmatrix}$$

Notice the switch in indexing for C_{ij} elements.

Example

Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \operatorname{adj} \mathbf{A} \tag{1}$$

$$= \begin{pmatrix} |\mathbf{A}| & |\mathbf{A}| & |\mathbf{A}| \\ \frac{(-1)^{1+2}M_{12}}{|\mathbf{A}|} & \frac{(-1)^{2+2}M_{22}}{|\mathbf{A}|} & \dots & \frac{(-1)^{n+2}M_{n2}}{|\mathbf{A}|} \end{pmatrix}$$
(2)

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|}$$
ad

$$egin{array}{lll} oxed{A} &=& \overline{|\mathbf{A}|} \ oxed{|\mathbf{A}|} & oxed{(-1)^{1+1}M_{11}} & \underline{(-1)^{2+1}M_{21}} & \dots & \underline{(-1)^{n+1}M_{n1}} \end{array}$$

$$= egin{array}{cccc} rac{(-1)^{1+2} \mathcal{M}_{12}}{|\mathbf{A}|} & rac{(-1)^{2+2} \mathcal{M}_{22}}{|\mathbf{A}|} & \dots \ dots & dots & \ddots \end{array}$$

$$=egin{array}{ccccc} rac{M_{11}}{|\mathbf{A}|} & rac{(-1)M_{21}}{|\mathbf{A}|} & \cdots & rac{M_{n1}}{|\mathbf{A}|} \ rac{(-1)M_{12}}{|\mathbf{A}|} & rac{M_{22}}{|\mathbf{A}|} & \cdots & rac{(-1)M_{n2}}{|\mathbf{A}|} \ dots & dots & dots & dots & dots \end{array}$$

(1)

(2)

(3)

$$= \begin{pmatrix} \frac{-13}{-8} & \frac{(-1)(-4)}{-8} & \frac{1}{-8} \\ \frac{(-1)(-15)}{-8} & \frac{-4}{-8} & \frac{(-1)(3)}{-8} \\ \frac{-10}{-8} & \frac{(-1)0}{-8} & \frac{2}{-8} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-13}{-8} & \frac{(-1)(-4)}{-8} & \frac{1}{-8} \\ \frac{(-1)(-15)}{-8} & \frac{-4}{-8} & \frac{(-1)(3)}{-8} \\ \frac{-10}{-8} & \frac{(-1)0}{-8} & \frac{2}{-8} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{pmatrix}$$

$$(5)$$

(5)

Cramer's Rule

- ► Cramer's rule extends this approach to finding the solution to a linear system of equations.
- ▶ Let $\mathbf{A}_j = \text{matrix}$ obtained from \mathbf{A} by replacing the jth column of \mathbf{A} by \mathbf{b} .
- **Example:**

$$\mathbf{A}_{1} = \begin{pmatrix} b_{1} & a_{12} & \cdots & a_{1n} \\ b_{2} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ b_{n} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

► Then the unique solution $\mathbf{x} = (x_1, \dots, x_n)$ to the $n \times n$ system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is

$$x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}$$

Class exercise

Find the solution of the following system:

1. Using the determinant method, find the inverse of this matrix.

$$\begin{pmatrix} 3 & 6 & 6 \\ -3 & 4 & 6 \\ -9 & 0 & 5 \end{pmatrix}$$

2. Solve the following set of equations using Cramer's Rule

► A definite matrix is always nonsingular.

- A definite matrix is always nonsingular.
- When you come across this term, it is usually there to specify that the matrix can be inverted, and a solution to some system of equations is possible.

- A definite matrix is always nonsingular.
- When you come across this term, it is usually there to specify that the matrix can be inverted, and a solution to some system of equations is possible.
- More specifically, it can determine whether a system of equations has a global maximum or minimum.

- A definite matrix is always nonsingular.
- When you come across this term, it is usually there to specify that the matrix can be inverted, and a solution to some system of equations is possible.
- More specifically, it can determine whether a system of equations has a global maximum or minimum.
- This is actually used all of the time for reason's we will later this week.

When some $n \times n$ matrix **A** is pre- and post-multiplied by a conformable non-zero matrix **x**, we get the equation:

$$\mathbf{x}'\mathbf{A}\mathbf{x} = c$$

▶ In one dimension, this would be:

$$c = xax$$

$$c = ax^2$$

In more than one dimension it would be a quadratic formula

- For all nonzero vectors x:
 - 1. A is said to be **positive definite** if c > 0.

- For all nonzero vectors x:
 - 1. **A** is said to be **positive definite** if c > 0.
 - 2. **A** is said to be **positive semidefinite** if $c \ge 0$.

- For all nonzero vectors x:
 - 1. A is said to be **positive definite** if c > 0.
 - 2. **A** is said to be **positive semidefinite** if $c \ge 0$.
 - 3. A is said to be **negative definite** if c < 0.

- For all nonzero vectors x:
 - 1. **A** is said to be **positive definite** if c > 0.
 - 2. **A** is said to be **positive semidefinite** if $c \ge 0$.
 - 3. **A** is said to be **negative definite** if c < 0.
 - 4. **A** is said to be **negative semidefinite** if $c \le 0$.

- For all nonzero vectors x:
 - 1. **A** is said to be **positive definite** if c > 0.
 - 2. **A** is said to be **positive semidefinite** if $c \ge 0$.
 - 3. **A** is said to be **negative definite** if c < 0.
 - 4. **A** is said to be **negative semidefinite** if $c \le 0$.
 - 5. A is **indefinite** if none of these apply.

Examples: Positive Definite

$$Q(\mathbf{x}) = \mathbf{x}^T \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$
$$= \mathbf{x}^2 + \mathbf{x}^2$$

Example: Positive Semidefinite

$$Q(\mathbf{x}) = \mathbf{x}^{T} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$
$$= (x_1 - x_2)^2$$

Example: Indefinite

$$Q(\mathbf{x}) = \mathbf{x}^{T} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x}$$
$$= x_1^2 - x_2^2$$

Tests for definiteness

- Now we have defined it, how do we prove it?
- ▶ How can we test if a specific matrix meets one of these criteria?
- ► We've got one, but first we need to define terms.

Defining terms: Principal minors

▶ Given an $n \times n$ matrix **A**, kth order **principal minors** are the determinants of the $k \times k$ submatrices along the diagonal obtained by deleting n - k columns and the same n - k rows from **A**.

- **Example:** For a 3×3 matrix **A**,
 - 1. First order principal minors:

$$|a_{11}|, |a_{22}|, |a_{33}|$$

- **Example:** For a 3×3 matrix **A**,
 - 1. First order principal minors:

$$|a_{11}|, |a_{22}|, |a_{33}|$$

2. Second order principal minors:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}, \quad \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

- \triangleright Example: For a 3 \times 3 matrix **A**,
 - 1. First order principal minors:

$$|a_{11}|, |a_{22}|, |a_{33}|$$

2. Second order principal minors:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}, \quad \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

3. Third order principle minor: |A|

Defining terms: Leading principal minors

▶ Define the kth leading principal minor M_k as the determinant of the $k \times k$ submatrix obtained by deleting the last n - k rows and columns from \mathbf{A} .

Defining terms: Leading principal minors

- ▶ Define the kth leading principal minor M_k as the determinant of the $k \times k$ submatrix obtained by deleting the last n k rows and columns from \mathbf{A} .
- ► Example: For a 3 × 3 matrix **A**, the three leading principal minors are

$$M_1 = |a_{11}|, \quad M_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad M_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

An algorithm for determining definiteness of a matrix

If **A** is an $n \times n$ symmetric matrix, then

1. $M_k > 0$, k = 1, ..., n \Longrightarrow Positive Definite

An algorithm for determining definiteness of a matrix

If **A** is an $n \times n$ symmetric matrix, then

- 1. $M_k > 0, k = 1, ..., n$ \Longrightarrow Positive Definite
- 2. $M_k < 0$, for odd k and $M_k > 0$, for even $k \implies$ Negative Definite

An algorithm for determining definiteness of a matrix

If **A** is an $n \times n$ symmetric matrix, then

Indefinite.

- 1. $M_k > 0$, k = 1, ..., n \Longrightarrow Positive Definite
- 2. $M_k < 0$, for odd k and $M_k > 0$, for even k Negative Definite
- 3. $M_k \neq 0, k = 1, ..., n$, but does not fit the pattern of 1 or 2.

Finding semidefinite matrices

If some leading minor is equal to zero, but the others fit the patterns in 1 or 2 above:

- 1. Every principal minor ≥ 0 \Longrightarrow Positive Semidefinite
- 2. Every principal minor of odd order ≤ 0 and every principal minor of even order ≥ 0 \Longrightarrow Negative Semidefinite

Determine whether the following matrices are positive definite, negative definite, or neither:

1.

 $\begin{pmatrix} 7 & 3 \\ 8 & 9 \end{pmatrix}$

2.

$$\begin{pmatrix} 6 & 6 \\ 8 & 4 \end{pmatrix}$$

3.

$$\begin{pmatrix} -4 & -1 \\ 3 & 0 \end{pmatrix}$$

4.

$$\begin{pmatrix} 4 & -1 & 9 \\ 2 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}$$