1. Problem

we consider

$$y = Ax \tag{6}$$

where $A \in R^{m \times n}$ is fat (m < n),i.e.,

- there are more variables than equations
- ullet x is underspecified, i.e., many choices of x lead to the same y

we'll assume that A is full rank(m), so for each $y \in R^m$, there is a solutions et of all solutions has form

$$\{x|Ax = y\} = \{x_p + z|Az = 0\} \tag{1}$$

where x_p is any ('particular') solution, i.e., $Ax_p=y$

How to prove that $x^* = A^T (AA^T)^{-1} y$ is the solution of y = Ax that minimizes $||x||_2^2$?

2. Proof

 $x^* = A^T (AA^T)^{-1} y$ is a solution because

$$Ax^* = AA^T (AA^T)^{-1} y = Iy = y (2)$$

Then we consider an optimization problem

$$\max_{x} ||x||_{2}^{2}$$

$$s t Ax = b$$
(3)

We have $A(x-x^*)=0$ and $\forall x\in\{x|Ax=y\}$, so that

$$(x - x^*)^T x^* = (x - x^*)^T A^T (AA^T)^{-1} y$$

= $(A(x - x^*))^T (AA^T)^{-1} y$
= 0 (4)

So $(x-x^*) \perp x^*$.

According to Triangular Inequality of 2 vertical vectors, we have

$$||x|| = ||x^* + x - x^*||_2^2 = ||x - x^*||_2^2 + ||x^*||_2^2 \ge ||x^*||_2^2$$
 (5)

So $x^* = A^T (AA^T)^{-1} y$ is the solution of y = Ax that minimizes $\left| |x| \right|_2^2$