[Simplicial complex].

Det 1: An Astract simplicial complex is a family Δ consisting of finite subsets of a grow set X sit. the following condition made:

If $T \in \Delta$ and $O \subseteq T$, then $O \in \Delta$

 $T \in \Delta$ is face of Δ . The dimension of a face T is |T|-1.

Def2: A face t is maximal face of & if there is no face or of D s.t.

- · O dimensional faces: vertices
- "I -domensional faces: edges
- · A surplicated coplex of dimension <1: Comple & loopless) graph.

Def 3: A simplicial complex $\triangle 0$ is a <u>subcomplex</u> of \triangle if $\triangle 0 \le \triangle$. For $k \ge 1$, the k-skeleton $\triangle^{(k)}$ of \triangle is the subcomplex of \triangle obtained by remaining all faces of divension higher than k.

Def 4: (f-vector) For each $n\geq 1$, the let $f_n=f_n(\Delta)$ be the # of faces of the f-vector of Δ is the vector (f-1, fo, f1,...,fd) where d is the dimension of Δ .

eft The sets \$, sas, sbl. sct., sdl., fa, cl., sb., ct., ct., dl., sc, dl.,

ý

for & some intuitions:

- · A simplified complex in \mathbb{R}^n is a collection of simplifies of \mathbb{R}^n . (of possibly varying dimensions) s.f.
 - 1) From fare of a supplex of K is in K.
 - The intersection of any two simplicities of k is a face of each.

a IIIII This z-simplex together in all the faces is a simplicial complex.

I sa,b,c4, la,b), sb,c4, sa,cl, sal, sb, felp.

Rad

Def 5: Geometric realizations of simplicial complexes).

1015: The For and 20, the standard of simplex is the set · Xd={(λο,...,λd): λί >0 for 0≤ i≤d, λο+..+ λd=1} C Rd+1 equ. Xd is the convex full of (1,0,..,0), (0,1,0,0.0), ... (0,0...0))

- · les & be absort stiplicial complex with vertex set V, le f: V - IR" be any may. For any non-enpry deface o = 9 ao, ad } of d. f induces a map: fo : Xd -> 1Rn (No,... Nd) H- nof(as) + --+ nx + (ad).
- · f induces a generative realization of \(\D if:
 - 1) The map for is rejective for each $OED(f\beta)$.

 1) Tor any nonempty O, CED, we have: mfonmfr = mfont.

I.l. (1) = " there is no the non-trivial linear contration $\sum \lambda_i f(ai) = 0$ s.t. $\sum_i \lambda_i = 0$.

(2) = "the intersection between the realizations of any two faces contains nothing more than the realization of the greatest common five of the two simplimes

· The artual Jeometer realization: 101 = 0 im for.

Back to ey.1: E1=10, 9a1, 161, 6d1, 6a, 61, Food, 9a, c1, 16d1, 9a,6,01. Green realresse of 61:

act 6: oriented complex

Det 6: (intuition) An oriented simplex is a simplex & or together with an orientation of or.

of [ao, ai, ..., ap] spans a p-simplex or, then we denote the overted complex with [ao, ai, ..., ap].

(formal). Let F be a commutative sing, Δ be simplified complex. For each $N \geq 1$, we form a free F-module $Cn(\Delta; F)$ with a basis indexed by the n-dimensional faces of Δ .

For each, face as as ... an, we have a basis element Eas, as, ..., an. (n-dimensional)

we refer to a basis element as an arented singlex. give the direction? (analogous to the idea of unit vectors)

Def 7: For the above context, we refer to $Cn(\Delta; F)$ as the chain group of degree n.

(note that the rank of $Cn(\Delta; F)$ is the n-th value $f_n(\Delta)$ in the f-vector of Δ .

Back to ey! :

For E1 = { \$, {a}, {b}, {c4, {d}, ...}.

~ (E1) = { n eφ : λ ∈ F} ⊆ F

Co (E1) = frala + rule + ruled : ra, ro, re EF) = F+

The extenser product notation for oriented complex:

ao nai n ... nan = lao, ai, ..., an.

eg. as b represents the oderted shaplex earb.

e (in defree 1, we use lp).

A, exterior product: \bigcirc b \land a = $-a \land b$ \bigcirc a \land a = 0.

Def 8: (Boundary Maps, On.).

Fetare The boundary map ∂r is a homomorphism $\partial n : C_n(\Delta) \longrightarrow C_{n+1}(\Delta)$.

 $(4)(a_0 \wedge a_1 \wedge \cdots \wedge a_n) \longmapsto \sum_{r=0}^{n} (-1)^r a_0 \wedge \cdots \wedge a_{r+1} \wedge \hat{a_r} \wedge a_{r+1} \wedge \cdots \wedge a_{r+1} \wedge \cdots \wedge a_r$ for each n, where $\hat{a_r}$ denotes removing the element a_r .

(special case n=0, let do(a)=0 for each vertex a).

Proposition 9: (The dauble boundary condition).

Boundary maps satisfy the double boundary condition, i.e., In a double =0 4n.

(The go-to eg.: The boundary of a disk is a circle, which is a closed cure. And a closed cure has varishing boundary. Taking the boundary of boundary of a disk (cares us with nothing!)

for some constants $N_0, ..., \lambda_{n+1}$, when $\lambda_0 = 1$.

For rek, 2 appearances in A. Ino duti (aodinanti):

1) remorting are first then ar: coefficient = 1k. (-1)

(2) remains ar first then a_k : coefficient = $\lambda r \cdot (-1)^{k-1} + c$ can a_k ends up in partion k-1 after a_k is removed

 $\Delta \lambda k \cdot (-1)^{r} + \lambda r \cdot (-1)^{k-1} = 0$ $\Delta k \cdot (-1)^{r} = \lambda r \cdot (-1)^{k}.$

SIME $\lambda_0 = 1$, $\lambda_K = (-1)^K \forall K$.

Simplified.

Def 10: (, Chain complex). $C(\Delta): \dots = \underbrace{\partial_{n+2}}_{} > C_{n+1}$

C(\D): ... \dintz \tilde{C}_{n+1}(\D) \dintz \tilde{C}_n(\D) \dintz \dots \tilde{C}_n(\D) \dots \dots \tilde{C}_{n+1}(\D) \dots \dot

Back to ey.1:

have for arranging vortices in an oriented complex:

O 1-dimension case: $a \wedge b$ and $b \wedge a$ have opposite orientations. $c \wedge b = -b \wedge a$.

D. 2-dimension case:

Check: $a \wedge b \wedge c = -b \wedge a \wedge c = b \wedge c \wedge a = -c \wedge b \wedge a = c \wedge a \wedge b = -a \wedge c \wedge b$ Check: $\partial z (b \wedge a \wedge c) = b \wedge a + a \wedge c + c \wedge b$ $= -a \wedge b - b \wedge c - c \wedge a$ $= -\partial z (a \wedge b \wedge c) \rightarrow augns with <math>b \wedge a \wedge c = -a \wedge b \wedge c \vee c$

- 3 General rule:
- . Fix a total order on the vertex set of Δ .
- For any vertices $80, x_1, ..., 8n$ forming an n-dimensional face, define a pair (x_i, x_j) to be an inversion in $\vec{x} = 80.1811 \cdots 18n$ if $\vec{i} \cdot \vec{j}$ and $x_i > x_j$.

ey! If acheced, then bad nanc contains 3 inventors, namely (b,a), (d,a), (d,c).

- · Define MV(X) to be the number of memor of X.
- Consider a face as a ... an, assuming as (a_1, a_2, a_3) let π be a permutation of $\{0, ..., n\}$. Write $b_1 = a_1(r)$, $\vec{a} = a_0 \wedge a_1 \wedge ... \wedge a_n$, $\vec{b} = b_0 \wedge b_1 \wedge ... \wedge b_n$. Define $\vec{b} = (-1)^{n_1(\vec{b})} \cdot \vec{a}$, (*).

(Det 11).

Lemma 12: The assignment in Defil (*) orbyth in the boundary map ∂_{N} .

1.e. when computing $\partial_{N}(\vec{b})$ according to rule in det δ (A), the result is $(-1)^{inv(\vec{b})}$. $\partial_{N}(\vec{d})$.

Def 13: Two oriented so simplified $\vec{a} = ao \Lambda \cdots \Lambda av$ and $\vec{b} = bo \Lambda \cdots \Lambda bk$ are compatible if $\{ao, ..., av\} \cup \{bo, ..., b\kappa\} \in \Delta$.

If \vec{a} and \vec{b} are compatible up define the (exterior) product between \vec{a} and \vec{b} : $\vec{a} \wedge \vec{b} = ao \Lambda \cdots \Lambda bo \Lambda \cdots \Lambda bk$.

Generalization of the exterior product: Suppose that $C_1 = \sum_{\alpha} \lambda_{\alpha} \cdot \hat{A} \in C_r(A)$

(1 = 5 Mb · B & CK (D)

are two linear combinations of aniented simplicities st. \vec{a} and \vec{b} are competible wherever $\lambda a \pm 0$ and $\lambda b \pm 0$. Then we can form the product:

CINCZ = 5 raps · and & Cr+k-1(A).

Det 14: (Homology of a simplicital complex Δ).

(Intuition) The homology gives an algebraic measure on the amount of cycles that are not boundaries.

(formal) Define the F-module $Z_n(\Delta;F)$ of cycles and the F-module $B_n(\Delta;F)$ of boundaries by the following formlas:

- · Zn (D) F) = ker dn = {Z ∈ Cn(D) F): dn(Z)=0},
- · Bn(a) F) = im dn+1 = fz & cn(D) F): Z = dn+1 (x).

 for some x & cn+1 (A)F)?.

By Prop 9, Br (DIF) is a submodule of Zr (D) F).

We define the simplicial homology in degree n of Δ to be the quotent: $\widetilde{H}_n(\Delta; F) = \mathbb{E}_n(\Delta; F) / B_n(\Delta; F).$

Def 15: (homology class). Each member of $H_n(\Delta; F)$ is a <u>homology dass</u>. Each such member is an equivalent dass under the relation $z \wedge z' \Leftrightarrow \overline{z} - \overline{z}' \in B_n(\Delta; F)$. Let [z] denote the homology class to containing the cycle \overline{z} .

Dot 16: (reduced vs unreduced homology).

- · Hn (DiF) is reduced homology.
 - ~ (1)F) = F. ep.
 - $-\partial_0(\alpha) = e p$ for each vertex α .
- · Hn (D) F) is unreduced homology.
 - $C_{+}(\Delta)F) = 0.$
 - do is the zero map.
- · For degree n >1, Fin (D; F) = Hn(D; F).

Homology as amount of "holes" in &:

- In certain well-technied cases, homology can be interpreted as an algebraic measure on the amount of homes "h &.
- "hole": Gree $X \subseteq \mathbb{R}^n$, a hole of X is a bounded converted component of $\mathbb{R}^n \setminus X$.

 For a given $k \ge 0$, suppose (k+1)-skeletion $D^{(k+1)}$ of D has a famour realization

For a given $k \ge 0$, suppose (k+1)-skeletion $D^{(k+1)}$ of D has a Jamestre realization X in IR^{k+1} . Then H_K (D;F) is a free F-module of rank the # of holes of X.

Rock to eg. 1:

Geometric relatization of B1:

- The shaded region is bounded & separated by |Eil from the unbounded region outside |611.
- · HI(EI, F) has rank 1
- · The homodory dass of the cycle (bac+cad+dab) & Q' generator of $\widehat{H_1}(E_1,F)$.
- · In the perend case, however, the interpretation (that honology = amount of holes) does NOT hold.

Methods for computing handogy (arenters).

- 1. Combinatorial techniques.
 - · splittly chair complexes

 - · Collapsing · Dowette More Heary. · Jans, Links, and deletions
- 2. Agentaire techniques.
 - · exact sequences
 - · chan maps & than isomorphisms.
 - · relative houndagy.
 - · mayer Victori) sequences.