PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-079684

(43) Date of publication of application: 18.03.2003

(51)Int.Cl.

A61H 3/00 G05D 17/02 // B25J 5/00

(21)Application number: 2001-236336

(71)Applicant: HONDA MOTOR CO LTD

(22) Date of filing:

03.08.2001

(72)Inventor: IKEUCHI YASUSHI

KATO HISASHI

(30)Priority

Priority number: 2001200416

Priority date: 02.07.2001

Priority country: JP

2001 300815

27.06.2001

US

(54) TORQUE IMPARTING SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a system capable of imparting the proper torque to various rotations including the bending of a knee joint accompanied by walking or the like corresponding to conditions through the construction of a system capa ble of properly assisting walking corresponding to various walking conditions.

SOLUTION: The torque imparting system is equipped with a first measuring means 6, a second measuring means 7, a reference work load determination means 8 and an external torque determination means 10. The first measuring means 6 measures the internal work load of a leg part around a joint and the second measuring means 7 measures the external work load around the joint applied to the leg part. The work load determination means 8 determines reference work load on the basis of the internal work load of the leg part measured by the first measuring means 6. The external torque determination means 10 determines the external torque applied to the leg part so as to reduce the deviation between the internal work load of the leg part measured by

the first measuring means 6 and the reference work load determined by the reference work load determination means 8 on the basis of the external work load measured by the second measuring means 7.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-79684 (P2003-79684A)

(43)公開日 平成15年3月18日(2003.3.18)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコード(参考)
A 6 1 H	3/00		A 6 1 H 3/00	B 3C007
G 0 5 D	17/02		G 0 5 D 17/02	
# B 2 5 J	5/00		B 2 5 J 5/00	F

審査請求 未請求 請求項の数11 OL (全 13 頁)

(21)出顧番号	特願2001-236336(P2001-236336)	(71) 出願人 000005326
		本田技研工業株式会社
(22)出顧日	平成13年8月3日(2001.8.3)	東京都港区南青山二丁目1番1号
		(72)発明者 池内 康
(31)優先権主張番号	60/300815	埼玉県和光市中央1丁目4番1号 株式会
(32)優先日	平成13年6月27日(2001.6.27)	社本田技術研究所内
(33)優先権主張国	米国(US)	(72)発明者 加藤 久
(31)優先権主張番号	特願2001-200416(P2001-200416)	埼玉県和光市中央1丁目4番1号 株式会
(32)優先日	平成13年7月2日(2001.7.2)	社本田技術研究所内
(33)優先権主張国	日本(JP)	(74)代理人 100077805
		弁理士 佐藤 辰彦 (外1名)
		Fターム(参考) 3C007 BS27 CS08 KS28 LU07 WA03
		WA13 WB08

(54) 【発明の名称】 トルク付与システム

(57)【要約】

【課題】多様な歩行条件に応じて適切に歩行を補助し得るシステムの構築を通じ、歩行に伴う膝関節の折り曲げ等を含む種々の回動に状況に応じた適切なトルクを付与し得るシステムを提供する。

【解決手段】本発明のトルク付与システムは、第1測定手段6と、第2測定手段7と、基準仕事量決定手段8と、外的トルク決定手段10とを備えている。第1測定手段6は関節回りの脚部の内的仕事量を測定する。第2測定手段7は脚部に付与される関節回りの外的仕事量を測定する。基準仕事量決定手段8は第1測定手段6により測定される脚部の内的仕事量に基づいて基準仕事量を決定する。外的トルク決定手段10は第2測定手段6により測定される脚部の内的仕事量と、基準仕事量決定手段8により決定される基準仕事量との偏差を減少するように脚部へ付与される外的トルクを決定する。

【特許請求の範囲】

【請求項1】歩行者の脚部に対して足関節、膝関節又は 股関節回りの外的トルクを付与するシステムであって、 脚部から生じる関節回りの内的仕事量を測定する第1測 定手段と、

1

脚部に付与される関節回りの外的仕事量を測定する第2 測定手段と

第1測定手段により測定される脚部の内的仕事量に基づいて基準仕事量を決定する基準仕事量決定手段と、

第2測定手段により測定される外的仕事量に基づき、第 10 1測定手段により測定される脚部の内的仕事量と、基準 仕事量決定手段により決定される基準仕事量との偏差を 減少するように脚部へ付与される外的トルクを決定する 外的トルク決定手段と、

外的トルク決定手段により決定された外的トルクを脚部 に付与する外的トルク付与手段とを備えていることを特 徴とするトルク付与システム。

【請求項2】基準仕事量決定手段により決定される基準 仕事量との偏差が0となる場合の脚部の内的仕事量に対 する脚部に付与される外的仕事量の比を目標値とし、時間を追って該目標値に収束するよう第1係数を逐次決定 する第1係数決定手段を備え、第1測定手段は脚部の関 節回りの内的トルクを測定し、

外的トルク決定手段は、第1測定手段により測定される 脚部の内的トルクと、第1係数決定手段により決定され る第1係数との積を演算し、該演算結果を脚部に付与さ れる外的トルクとして決定することを特徴とする請求項 1記載のトルク付与システム。

【請求項3】第1係数決定手段は、第1測定手段により 測定される内的仕事量、又は第2測定手段により測定される外的仕事量に基づいて第1係数の上限又は下限を決 定することを特徴とする請求項2記載のトルク付与システム。

【請求項4】第1係数決定手段は、第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量との和である合計仕事量が、基準仕事量決定手段により決定される基準仕事量以下のとき、第1係数の下限を0と決定することを特徴とする請求項2記載のトルク付与システム。

【請求項5】第1係数決定手段は、第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量との和である合計仕事量が、基準仕事量決定手段により決定される基準仕事量以上の所定量以上のとき、第1係数の上限を決定することを特徴とする請求項2記載のトルク付与システム。

【請求項6】第1測定手段は脚部の関節回りの内的トルク及び角速度の積を測定し、

第1係数決定手段は第1測定手段により測定された積の 区分に応じて第1係数を区分して決定し、

外的トルク決定手段は、第1測定手段により測定された 50

積の区分が先に第1測定手段により測定された過去の積の区分に一致するとき、第1係数決定手段によって該過去の積の区分に応じた内的仕事量に基づいて先に決定された第1係数を用いて外的トルクを決定することを特徴とする請求項2記載のトルク付与システム。

【請求項7】第1係数決定手段は第1測定手段により測定された脚部の関節回りの内的トルク及び角速度の積の正負に応じて第1係数を区分して決定することを特徴とする請求項6記載のトルク付与システム。

【請求項8】基準仕事量決定手段は、第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量の和である合計仕事量を演算し、

合計仕事量と第1測定手段により測定される歩行者の無 負荷状態における平地歩行時の脚部の内的仕事量との差 と、脚部の内的仕事量と基準仕事量との偏差を0とする 外的トルクに関する第2係数との積を演算し、

合計仕事量と、該積との差を演算し、該演算結果を基準 仕事量として決定することを特徴とする請求項1、2、 3、4、5、6又は7記載のトルク付与システム。

20 【請求項9】第1及び第2測定手段は、歩行者の歩行周期を積分時間とすることでそれぞれ内的及び外的仕事量を測定することを特徴とする請求項1、2、3、4、5、6、7又は8記載のトルク付与システム。

【請求項10】第1測定手段は、脚部の足平への床反力を測定し、測定した床反力に基づき逆動力学モデルに従って脚部の足関節、膝関節又は股関節回りの内的トルクと外的トルクとの合計トルクを測定し、測定した合計トルクから第2測定手段により測定される外的トルクとの差を演算することで脚部の足関節、膝関節又は股関節回りの内的トルクを測定することを特徴とする請求項1、2、3、4、5、6、7、8又は9記載のトルク付与システム。

【請求項11】関節を介して相対的に回動可能に連結された連結体に対して関節回りの外的トルクを付与するシステムであって、

連結体から生じる関節回りの内的仕事量を測定する第 1 測定手段と、

連結体に付与される関節回りの外的仕事量を測定する第2測定手段と、

第1測定手段により測定される連結体の内的仕事量に基づいて基準仕事量を決定する基準仕事量決定手段と、

第2測定手段により測定される外的仕事量に基づき、第 1測定手段により測定される連結体の内的仕事量と、基 準仕事量決定手段により決定される基準仕事量との偏差 を減少するように連結体へ付与される外的トルクを決定 する外的トルク決定手段と、

外的トルク決定手段により決定された外的トルクを連結 体に付与する外的トルク付与手段とを備えていることを 特徴とするトルク付与システム。

0 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、関節を介して相対 的に回動可能に連結された連結体に対して関節回りの外 的トルクを付与するシステム、より具体的には歩行者の 脚部に対して足関節、膝関節又は股関節回りの外的トル クを付与するシステムに関する。

[0002]

【従来の技術】脚力の低下のため自力での歩行が困難と なった者の歩行を補助するシステムが特開平7-163 607号公報や特開2000-166997号公報等に おいて提案されている。かかるシステムによれば、患者 の膝関節部分等にトルク付与装置が取り付けられ、当該 装置によって膝等にトルクが付与されることで、歩行者 の歩行が補助される。

[0003]

【発明が解決しようとする課題】しかし、従来のシステ ムによれば、階段、平地等の歩行条件は大まかに識別さ れていたに過ぎず、段差が不規則な階段や傾斜の相違す る坂道等、多様な歩行条件が識別された上でトルクが付 与されていなかった。このため、付与されるトルクが過 剰になってしまうおそれがある。

【0004】そこで、本発明は、多様な歩行条件に応じ て適切に歩行を補助し得るシステムの構築を通じ、歩行 に伴う膝関節の折り曲げ等を含む種々の回動に状況に応 じた適切なトルクを付与し得るシステムを提供すること を解決課題とする。

[0005]

【課題を解決するための手段】前記課題を解決するため の本発明の第1態様のトルク付与システムは、脚部から 生じる関節回りの内的仕事量を測定する第1測定手段 と、脚部に付与される関節回りの外的仕事量を測定する 第2測定手段と、第1測定手段により測定される脚部の 内的仕事量に基づいて基準仕事量を決定する基準仕事量 決定手段と、第2測定手段により測定される外的仕事量 に基づき、第1測定手段により測定される脚部の内的仕 事量と、基準仕事量決定手段により決定される基準仕事 量との偏差を減少するように脚部へ付与される外的トル クを決定する外的トルク決定手段と、外的トルク決定手 段により決定された外的トルクを脚部に付与する外的ト ルク付与手段とを備えていることを特徴とする。

【0006】前記課題を解決するための本発明の第2態 様のトルク付与システムは、連結体から生じる関節回り の内的仕事量を測定する第1測定手段と、連結体に付与 される関節回りの外的仕事量を測定する第2測定手段 と、第1測定手段により測定される連結体の内的仕事量 に基づいて基準仕事量を決定する基準仕事量決定手段 と、第2測定手段により測定される外的仕事量に基づ き、第1測定手段により測定される連結体の内的仕事量 と、基準仕事量決定手段により決定される基準仕事量と の偏差を減少するように連結体へ付与される外的トルク 50 的にゆるやかに解消するように外的トルクを脚部に付与

を決定する外的トルク決定手段と、外的トルク決定手段 により決定された外的トルクを連結体に付与する外的ト

ルク付与手段とを備えていることを特徴とする。 【0007】本発明によれば、歩行者の脚部又は連結体 (以下「脚部等」という。) の関節回りの内的仕事量が 基準仕事量に一致するように、脚部等に対して関節回り の外的トルクが付与される。従って、歩行者が平地歩行 から階段歩行へ移行する等、脚部等の歩行又は動作(以 下「歩行等」という。)の条件が変動し、歩行等に要す 10 る脚部等の仕事量が基準仕事量を超過した場合、当該超 過分が補助される形で脚部等に外的トルクが付与され る。そして、歩行等の条件変動に関わらず、脚部等にお

行等を可能とすることができる。 【0008】また、脚部等に付与される外的トルクは、 脚部等に付与される外的仕事量に基づいて決定され、当 該決定の基準となる基準仕事量は脚部等の内的仕事量に 基づいて決定される。従って、脚部等の内的仕事量と外 的仕事量とのバランスに応じた適切な外的トルクを脚部 等に付与することができる。なお、本システムにより付 与される外的トルクには、歩行等の方向をx軸、鉛直方

ける基準仕事量に対応する内的トルクの発揮によって歩

向をz軸として、xy平面、yz平面、zx平面の全て の平面内の外的トルク、即ち、3次元空間内のあらゆる 方向への外的トルクが包含されている。

【0009】上記システムにおいて、基準仕事量決定手 段により決定される基準仕事量との偏差が0となる場合 の脚部の内的仕事量に対する脚部に付与される外的仕事 量の比を目標値とし、時間を追って該目標値に収束する よう第1係数を逐次決定する第1係数決定手段を備え、

30 第1測定手段は脚部の関節回りの内的トルクを測定し、 外的トルク決定手段は第1測定手段により測定される脚 部の内的トルクと、第1係数決定手段により決定される 第1係数との積を演算し、該演算結果を脚部に付与され る外的トルクとして決定することが好ましい。

【0010】本発明によれば、歩行者の歩行条件の変動 により脚部の内的仕事量が基準仕事量を超過した場合、 この超過分を解消すべく、第1係数、ひいては脚部に付 与される外的トルクが逐次決定される。また、第1係数 がその目標値に収束したとき、第1係数に基づき決定さ 40 れる外的トルクが脚部に付与されることで、脚部の基準 仕事量に対応する内的トルクの発揮による歩行を可能と することができる。

【0011】さらに、第1係数のその目標値への収束速 度を大きくすることで、歩行条件の変動により歩行に要 する仕事量が基準仕事量を超過した場合、当該超過分を 迅速に解消するように外的トルクを脚部に付与すること ができる。一方、第1係数のその目標値への収束速度を 小さくすることで、歩行条件の変動により歩行に要する 仕事量が基準仕事量を超過した場合、当該超過分を時間 することができる。

【0012】上記システムにおいて、第1係数決定手段は、第1測定手段により測定される内的仕事量、又は第2測定手段により測定される外的仕事量に基づいて第1係数の上限又は下限を決定することが好ましい。

【0013】本発明によれば、第1係数に上限又は下限が設定され、これにより脚部に付与される外的トルクが過大又は過少となり、歩行者が肉体的苦痛を覚えたり、歩行者の心理に悪影響が及ぶおそれを解消することができる。また、第1係数の上限又は下限は、歩行者の歩行 10状況に応じて変動する内的仕事量又は外的仕事量に基づいて決定されるので、当該歩行状況に応じて適切に外的トルクを制限することができる。

【0014】上記システムにおいて、第1係数決定手段は、第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量との和である合計仕事量が、基準仕事量決定手段により決定される基準仕事量以下のとき、第1係数の下限を0と決定することが好ましい。

【0015】上述のように脚部の内的仕事量と基準仕事 20 量とが一致するように第1係数の目標値が決定される。 従って、脚部の合計仕事量が減少して基準仕事量を下回った場合、脚部の内的トルクひいては内的仕事量を増大させて基準トルクに一致させるべく、第1係数が負に決定され、脚部には歩行の抵抗となる負の外的トルクが付与される。

【0016】本発明によれば、このような場合、第1係数の下限が0と決定されるので、第1係数と内的トルクとの積として決定される外的トルクが0となるので、脚部に負の外的トルクが付与される事態を防止することができる。

【0017】上記システムにおいて、第1係数決定手段は、第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量との和である合計仕事量が、基準仕事量決定手段により決定される基準仕事量以上の所定量以上のとき、第1係数の上限を決定することが好ましい。

【0018】脚部の合計仕事量が増大して基準仕事量を大きく上回った場合、脚部の内的トルクひいては内的仕事量を減少させて基準仕事量に一致させるべく、第1係数が過大に決定され、脚部に過大な外的トルクが付与される。

【0019】本発明によれば、このような場合、第1係数の上限が決定されるので、第1係数と内的トルクとの積として決定される外的トルクに上限が設けられ、脚部に過大な外的トルクが付与される事態を防止することができる。

【0020】上記システムにおいて、第1測定手段は脚 される外的ト 部の関節回りの内的トルク及び角速度の積を測定し、第 節、膝関節又 1係数決定手段は第1測定手段により測定された積の区 50 が好ましい。 6 区分して決定し、外的トルク決策

分に応じて第1係数を区分して決定し、外的トルク決定 手段は第1測定手段により測定された積の区分が先に第 1測定手段により測定された過去の積の区分に一致する とき、第1係数決定手段によって該過去の積の区分に応 じた内的仕事量に基づいて先に決定された第1係数を用 いて外的トルクを決定することが好ましい。

【0021】さらに、第1係数決定手段は第1測定手段により測定された脚部の関節回りの内的トルク及び角速度の積の正負に応じて第1係数を区分して決定することが好ましい。

【0022】上記システムにおいて、基準仕事量決定手段は第1測定手段により測定される内的仕事量と、第2測定手段により測定される外的仕事量の和である合計仕事量を演算し、合計仕事量と第1測定手段により測定される歩行者の無負荷状態における平地歩行時の脚部の内的仕事量との差と、脚部の内的仕事量と基準仕事量との標差を0とする外的トルクに関する第2係数との積を演算し、合計仕事量と該積との差を演算し、該演算結果を基準仕事量として決定することが好ましい。

20 【0023】本発明によれば、歩行に際して必要な合計 仕事量の基準仕事量に対する変動分のうち、どれだけを 外的トルクにより補償するかが第2係数の大小によって 決定される。即ち、第2係数が大きく設定されること で、当該変動分のうち外的トルクにより補償される分の 割合を大きくすることができる。一方、第2係数が小さく 設定されることで、当該変動分のうち外的トルクにより 補償される分の割合を小さくすることができる。なお 「歩行者の無負荷状態における平地歩行時の内的仕事 量」には、外部から負荷が加わっていない状態で歩行者 が平地を歩行する際の内的仕事量のほか、外部から負荷 が加わっている状態で歩行者が平地を歩行する際の内的 仕事量であって、当該負荷が加わっていない状態での内 的仕事量と擬制され得るように当該負荷を考慮に入れて 補正される内的仕事量も含まれる。

【0024】上記システムにおいて、第1及び第2測定 手段は、歩行者の歩行周期を積分時間とすることでそれ ぞれ内的及び外的仕事量を測定することが好ましい。

【0025】本発明によれば、右又は左の足平が離床してから接地し、且つ、左又は右の足平が離床してから接地し、由り、左又は右の足平が離床してから接地するまでの内的仕事量、外的仕事量に基づいて次回の左右の脚部に付与される外的トルクを決定することができる。

【0026】上記システムにおいて、第1測定手段は、脚部の足平への床反力を測定し、測定した床反力に基づき逆動力学モデルに従って脚部の足関節、膝関節又は股関節回りの内的トルクと外的トルクとの合計トルクを測定し、測定した合計トルクから第2測定手段により測定される外的トルクとの差を演算することで脚部の足関節、膝関節又は股関節回りの内的トルクを測定することが好ましい。

【0027】詳細は後述するが逆動力学モデルによれば、脚部が関節を介して回動可能に順次連結された複数の剛体棒と仮定され、一の剛体棒の一の関節回りのトルク及び関節の反力に基づいて当該一の剛体の他の関節回りのトルク及び関節の反力が決定される。従って、本発明によれば、床反力に基づき足関節回りのトルク及び関節の反力が測定されることで、膝関節、股関節のトルクを順次測定することができる。また、逆動力学モデルに従って測定されたトルクは内的トルク及び外的トルクの和なので、これから外的トルクを差し引くことで内的トルクを測定することができる。

[0028]

【発明の実施の形態】本発明のトルク付与システムの実施形態について図面を用いて説明する。図1は本実施形態のトルク付与システムとしての歩行補助装置の構成説明図であり、図2は歩行補助装置による歩行補助の概要説明図であり、図3は歩行補助装置の機能を説明するフローチャートであり、図4は歩行者の足平の床反力測定の概念説明図であり、図5は歩行者の関節周りのトルク測定の概念説明図であり、図6は歩行補助装置による歩行補助の実験結果の説明図であり、図7及び図8は歩行補助装置による歩行補助のシミュレーション結果の説明図である。

【0029】図1に示すトルク付与システムは、歩行者 の腰部に取り付けられて股関節回りの外的トルクを付与 する第1アクチュエータ(外的トルク付与手段)1と、 歩行者の膝部に取り付けられて膝関節回りの外的トルク を付与する第2アクチュエータ2(同)と、各アクチュ エータ1、2の作動等を制御する制御ユニット3と、各 アクチュエータ1、2に電力を供給するNi-Znバッ テリ等のバッテリ4とを備えている。制御ユニット3及 びバッテリ4は歩行者の背中に担がれるバックパック5 の中に格納されている。第1アクチュエータ1は歩行者 に取り付けられた腹帯bと、大腿部当てcとを介して股 関節回りの外的トルクを付与する。第2アクチュエータ 2は歩行者に取り付けられた大腿部当てcと脛部当てd とを介して膝関節回りの外的トルクを付与する。なお、 歩行者の腰部、大腿部、脛部は本発明の「連結体」に相 当する。

【0030】また、本歩行補助装置は、歩行者の背後に取り付けられ、上半身の鉛直方向に対する角速度を測定するジャイロセンサgと、水平方向の加速度を測定する Gセンサg'とを備えている。さらに、歩行者の腰部に取り付けられ、腰部の鉛直方向に対する角速度を測定するジャイロセンサgと、水平方向、鉛直方向の加速度を測定する Gセンサg'とを備えている。また、歩行者の腰部に取り付けられて腰部に対する左右の大腿部の股関節回りの回転角を測定し、膝部に取り付けられて大腿部に対する脛部の回転角を測定する角度センサaを備えている。

8

【0031】制御ユニット3は、第1測定手段6と、第2測定手段7と、基準仕事量決定手段8と、第1係数決定手段9と、外的トルク決定手段10と、記憶手段11とを備えている。制御ユニット3は、後述の諸機能を発揮可能となりようにCPU、信号入出力回路、メモリ等が組み合わせられることで構成されている。

【0032】第1測定手段6は各センサg、g'、aの 測定値に基づいて膝関節、股関節回りの脚部の内的トル クT, と、内的トルクT, と内的角速度 ω , との積の絶 対値の時間積分である内的仕事量w₁ とを測定する。第 2測定手段7は各アクチュエータ1、2の電流値や角度 センサaの測定値に基づいて膝関節、股関節回りの外的 トルクT、と外的角速度 ω 、との積の絶対値の時間積分 である外的仕事量wzを測定する。基準仕事量決定手段 8は第1測定手段6により測定される脚部の内的仕事量 w, に基づいて基準仕事量w。を決定する。第1係数決 定手段9は基準仕事量決定手段8により決定される基準 仕事量w。との偏差がOとなる場合の内的仕事量w, に 対する外的仕事量w。の比を目標値cょ。とし、内的仕事 20 量w₁に対する外的仕事量w₂の比を第1系数c₁と し、時間を追ってこの目標値に収束するよう第1係数c 1 を逐次決定する。外的トルク決定手段10は第1測定 手段6により測定される内的トルクT, と、第1係数決 定手段9により決定される第1係数c, との積を演算 し、アクチュエータ1、2を通じて股関節、膝関節回り に付与される外的トルクT, を決定する。記憶手段11 はROM等の不揮発性メモリや、RAM等の揮発性メモ リ等により構成され、後述のように基準仕事量w。の決 定に用いられる第2係数c,や、歩行者の左右の足平へ 30 の床反力等の測定に用いられるデータテーブル等を記憶 する。

【0033】上記構成の歩行補助装置の機能について図 2~図8を用いて説明する。

【0034】まず、第2アクチュエータ2から歩行者の脚部に対して付与される膝関節回りの外的トルクの概要について図2を用いて説明する。歩行者が無負荷状態で平地を歩行するときの膝関節回りの内的仕事量w,が黒塗部分で表されている。なお「無負荷状態での内的仕事量w,」には、歩行者が歩行補助装置を装着していない状態で三次元動作解析装置等により測定される内的仕事量のほか、歩行者が歩行補助装置を装着した状態で上記角度センサa等により測定される内的仕事量が、当該装置の重量やフリクションを考慮して減少補正されることで決定される内的仕事量も含まれる。

【0035】歩行者が階段を上り始めたとき、膝関節回りの内的仕事量w,が、平地歩行時よりも△w(①の斜線部分)だけ超過したとする。この超過は歩行者が階段を上るとき、平地歩行時よりも脚部を大きく動かす必要があることに起因している。従って、筋力低下等のために平地歩行はできても階段歩行がままならない歩行者は

階段を上ることが困難となる。

【0036】そこで、歩行者の階段歩行を補助すべく脚 部に外的トルクT, が付与される。外的トルクT, は、 後述のように基準仕事量w。が決定された上で、内的仕 事量W1 がこの基準仕事量w。に収束するように内的ト ルクT」に基づいて逐次決定される。これにより歩行者 が階段を上るにつれ、①から②、②から③、③から④に 移行するごとに外的仕事量w, (②~④の白塗部分)が 徐々に増大し、その分だけ内的仕事量w.が徐々に減少 して基準仕事量w。に収束する。このため、膝関節回り に内的トルクを生じるために必要な歩行者の筋力負担 が、階段を上るにつれて軽減されていく。これ以後、歩 行者は基準仕事量w。に対応する内的トルクT、の発揮 により登り階段歩行を継続することができる。

【0037】次に、第1、第2アクチュエータ1、2か ら脚部に対して付与される股関節、膝関節回りの外的ト ルクT、を決定する手順の詳細について図3~図6を用* * いて説明する。なお、歩行者の i 番目 (i = 1 、 2 、

…)の歩行周期(以下「第i周期」という。) における 物理量に適宜添字iを付する。

【0038】まず、膝関節及び股関節回りの内的トルク $T_{1(1)}$ 及び角速度 $\omega_{1(1)}$ が測定される(図3 s 1)。内 的トルクT,,,,の測定方法について図4及び図5を用い

【0039】歩行者の左右の脚部への床反力が図4に示 すモデルを用いて測定される。図4に示す質量mの歩行 10 者の左右の脚部にはそれぞれ床反力(F_{lx} 、 F_{ly})、 (F_{xx}, F_{xy}) が作用している。また、歩行者の身体重 心座標、左足関節座標及び右足関節座標はそれぞれ(x $(x_{\iota}, y_{\iota}), (x_{\iota}, y_{\iota}), (x_{\iota}, y_{\iota})$ raso. このモデルにおける力のバランスや方向を考慮すると次 の関係式(1a)~(1d)が得られる。

※【0042】次に、測定された床反力に基づき、図5に

示すモデルを用い、逆動力学モデルに従って膝関節、股

関節回りの合計トルクが測定される。 図5 に示すように

足関節に床反力(Fax、Fav)が作用し、膝関節に反力

(Fox、Fox)が作用し、質量mの脛部の重心には加速

度に伴う力 (mx"、m(y"+g)) が作用している

とする。また、足関節、膝関節回りのトルクがそれぞれ

 T_a 、 T_b であり、脛部と床とのなす角を θ 、脛部の慣

の距離がそれぞれa、bとする。このモデルにおいて力

やトルクのバランスを考慮すると、次の関係式(2a)

30 性モーメントを1、足関節、膝関節から脛部の重心まで

[0040]

$$F_{xv} + F_{Lv} = m (g + y_{g}) (g : 重力加速度) \cdot (1a)$$
 $F_{xx} + F_{Lx} = m x_{g} \cdot \cdot (1b)$
 $(y_{g} - y_{g}) / (x_{g} - x_{g}) = F_{xv} / F_{xx} \cdot \cdot (1c)$
 $(y_{g} - y_{L}) / (x_{g} - x_{L}) = F_{Lv} / F_{Lx} \cdot \cdot (1d)$

(6)

【0041】歩行者の質量mは事前に測定され、また、 身体重心座標(x。、y。)、左右の足関節座標

(x, y,)、(x, y,)、身体重心座標の加速 度(x。"、y。")は歩行者の事前の身体測定、及び 歩行者の腰部等に取り付けられたジャイロセンサgやG センサg、、股関節及び膝関節に取り付けられた角度セ ンサaの測定値に基づいて測定される。詳細には、左右 の足関節座標(x」、y」)、(x, 、y,)等は、記 憶手段11に記憶されている股関節や膝関節の角度、大 腿部や脛部の長さ等との対応関係を特定するデータテー ブルに基づいて測定される。そして、これらの測定値が 上の関係式に代入されることで第1測定手段6により床 反力(F_{Lx}、F_{Lv})、(F_{sx}、F_{sv})が測定される。

> $F_{ax} - F_{bx} - mx'' = 0 \cdot \cdot (2a)$ $F_{av} - F_{bv} - my" - mg = 0 \cdot \cdot (2b)$ $I \theta$ " = $T_a - T_b + F_{ax} a s i n \theta - F_{av} a c o s \theta$

 $+ F_{bx} b s i n \theta - F_{by} b c o s \theta \cdots (2 c)$

~(2c)が得られる。

[0043]

【0044】床反力(F_{**}、F_{**})は上述の方法により 測定される。また、脛部の重心位置の加速度(x"、 y")、脛部の床に対する角度heta、及び角加速度heta"は 歩行者の事前の身体測定や歩行者に取り付けられたジャ イロセンサg、Gセンサg'、角度センサaの測定値に 基づいて測定される。さらに、脛部の慣性モーメント I、足関節、膝関節から脛部の重心までの距離a、bは 歩行者の事前の身体測定に基づいて測定される。また、 足関節回りのトルクT。は、床反力(F_{xx}、F_{xy})に基 づき記憶手段11に記憶されているデータテーブル従っ て第1測定手段6により測定される。そして、これらの

で膝関節回りのトルクT。が測定される。同様に、上の 40 関係式(2a)~(2c)を用いることで股関節回りの トルクも測定される。

【0045】以上のように測定された膝関節、股関節回 りのトルクから、第1、第2アクチュエータ1、2によ り付与されている外的トルクTzcs、が差し引かれること で膝関節、股関節回りの内的トルクT、いが測定される (図3s1)。また、内的角速度ω₁₍₁₎及び外的角速度 ωιιι (両者は略一致すると考えられるので角速度ω (1) と共通して表す)も角度センサaにより測定される (図3 s 1)。なお、各関節回りの外的トルクT,...は 測定値を上の関係式(2a)〜(2c)に代入すること 50 第1、第2アクチュエータ1、2の電流値に基づいて第

2測定手段により測定される。

【0046】次に、外的トルクTュィィ、が外的トルク付与 手段10により決定され、第1、第2アクチュエータ 1、2を通じて歩行者の脚部に付与される(図3 s 2)。外的トルクT_{2(i)}は第1測定手段6により逐次測 定される内的トルクT1(1)と、第1係数決定手段9によ り歩行周期ごとに決定される第1係数 c1(1) との積をも って決定される。即ち、第1係数cィィ、は外的トルクT z(1)を内的トルクT1(1)の何%にするかを決定するもの である。第1係数cュィ;、の決定方法については後述す

【0047】続いて、制御ユニット3によって第i周期 が経過したか否かが判断される(図3 s 3)。具体的に は、第1制御手段6により測定される右足平の床反力が 有限値から0になり、再び有限値になった後で0になっ たことが測定される周期が歩行周期の経過と判断され

【0048】第i周期経過前(図3s3でNO)、歩行 補助装置の作動が終了されない限り(図3sl0でN 〇)、上記s1~s3の処理が繰り返される。

【0049】第i周期が経過したと判断されたとき(図 3 s 3でYES)、第1測定手段6により、各関節回り の内的仕事量 w (; ;) が次式(3)に従って測定される (図3s4)。即ち、内的仕事量w₁₍₁₎が、各関節回り の内的トルク T_{1G} 、と、角速度 α_G 、との積の絶対値が 第i周期にわたり積分されることで測定される。

[0050]

 $\mathbf{w}_{1(i)} = \int d \mathbf{t} \cdot | \mathbf{T}_{1(i)} \times \omega_{(i)} | \cdots (3)$ 【0051】また、第2測定手段7により、各関節回り の外的仕事量w1(1)が次式(4)に従って測定される (図3 s 5)。即ち、外的仕事量w,(i)が、各関節回り の外的トルク $T_{z(i)}$ と角速度 $\omega_{(i)}$ との積の絶対値が第*

 $c_{\tau_{G(i+1)}} = c_{2} \Delta w_{i} / \{w_{\tau_{G(i)}} + (1 - c_{2}) \Delta w_{i}\} \cdots (6)$ 【0058】また、第1係数決定手段によって第1係数 C1(1+1)が記憶手段11に記憶されているゲイン係数G (0 < G ≤ 1)を用いて次式(7)に従って決定され る。ゲイン係数Gはその大小により内的仕事量w1(1+1) が基準仕事量w。ci+1、に収束する速度を決定するもので ある。即ち、ゲイン係数Gを大きくするほど内的仕事量※

 $c_{1(i+1)} = w_{2(i)} / w_{1(i)} + G \left(c_{TG(i+1)} - w_{2(i)} / w_{1(i)} \right) \cdots (7)$

【0060】歩行補助装置の作動が終了されなければ (図3s9でNO)、第i周期の第1係数c1(i)がc 1(1+1)に更新される(図3 s 1 1)。この上で、第 i + 1周期について、第1測定手段6により内的トルクT 1(1+1)が測定される(図3 s 1)。また、外的トルク決 定手段10により上述のように外的トルクT*(1+1)が上 述のように第1係数 $c_{1(i+1)}$ と、内的トルク $T_{1(i+1)}$ と の積として次式(8)のように決定される(図3 s 2).

 $[0\ 0\ 6\ 1\]\ T_{i(i+1)} = e_{i(i+1)} T_{i(i+1)} \cdots (8)$

* 1周期にわたり積分されることで測定される。 [0052]

 $w_{z(i)} = \int dt \cdot |T_{z(i)} \times \omega_{(i)}| \cdot (4)$ 【0053】なお、各関節回りの内的トルクTicio、外 的トルク $T_{z(i)}$ 及び角速度 $\omega_{(i)}$ は第 i 周期内において も時々刻々変動する時間関数としての物理量である。 【0054】さらに、基準仕事量決定手段8により第1 +1周期の基準仕事量 Wo(i+1)が次式(5)に従って決 定される(図3s6)。詳細にはまず、内的仕事量w 1(i) と外的仕事量w_{2(i)} との和である合計仕事量w_{1(i)} +w₂₍₁₎が、予め測定された平地歩行時の内的仕事量w 1(0)に対してどれだけ変動したかが測定される。即ち、 基準仕事量w。;;;;)は、合計仕事量w;;;)+w;;;)から 記憶手段11に記憶されている第2係数cょ(0≦cょ ≦1)と当該変動量△w、との積を差し引くことで決定 される。第2係数c、は、この変動量 Δw 、のうち外的 トルクT₂₍₁₊₁₎の付与により補償される割合を決定する ものである。例えば、第2係数c,が1.0に設定され ていれば、変動量△w。の全てを補償するように、即 20 ち、歩行状態の変動に関わらず平地歩行状態における内 的仕事量w、、、、、によって歩行継続が可能となるように外 的トルク $T_{z_{(i+1)}}$ が決定される。また、第2係数 c_z が 0.5に設定されていれば、変動量△w,の半分を補償 するように外的トルクTzcitnが決定される。なお、第 2係数 c , は、操作パネル (図示略) 等において設定・ 更新可能とされていてもよい。

[0055]

 $W_{0(i+1)} = W_{1(i)} + W_{2(i)} - C_2 \Delta W_i \cdots (5)$ 【0056】また、第1係数決定手段9により第1係数 30 の目標値 c τς (1+1) が次式(6) に従って決定される (図3s7)。 [0057]

※ W1(1)が迅速に基準仕事量W0(1)に収束するように外的 トルクTz(i)が大きく決定される。なお、ゲイン係数G は、操作バネル (図示略) において設定・更新可能とさ れてもよい。

[0059]

【0062】そして、外的トルク決定手段10により決 定された外的トルク $T_{2(1+1)}$ が第1、第2アクチュエー タを通じて歩行者の脚部に付与される(図3 s 2)。 【0063】次に、歩行者の膝関節に付与される外的ト ルクT、が歩行条件の変動に伴いどのように変動するか について実験した結果を、図6を用いて説明する。図6 には歩行者が平地で歩行を開始し、階段を上り、そして 階段を下りた場合に第1係数c」がどのように変動する かが示されている。上述のように第1係数c, は内的ト 50 ルクT₁ のうち何%を外的トルクT₂ として決定・付与

するかを左右するので、その変動を通じて間接的に外的 トルクT、の変動を把握することができる。なお、実験 に際して第1係数c1の上限が0.25に設定され、第 2係数c,が0.25に設定されている。

13

【0064】平地での歩行時、第1係数c,は0からそ の上限0.25に達した後、徐々に減少して0に至って いる(図中下向き矢印参照)。これは、平地での歩行開 始直後は膝関節に大きな外的トルクが付与されて歩行者 の歩行が補助され、その後、徐々に外的トルクが減少し て歩行者が自力で歩行していることを示している。

【0065】また、階段を上るとき、第1係数c,は0 からその上限0.25に達した後、以後もほぼ全時間に わたってその上限に維持されている。これは、階段を上 る間は膝関節に定常的に大きな外的トルクが付与されて 歩行者の歩行が補助されていることを示している。

【0066】さらに、階段を下りるとき、第1係数c, は0から0.1程度に上昇し、やや減少した上で0.1 5程度まで徐々に増大している(図中上向き矢印参 照)。これは、階段を下りる間は階段を上るときよりは 小さいながらも、適切な大きさの外的トルクが膝関節に 付与されて歩行者の歩行が補助されていることを示して

【0067】続いて、歩行者に付与される外的仕事量w 、が歩行条件の変動に伴いどのように変動するかについ てシミュレーションを行った結果について図7及び図8 を用いて説明する。図7及び図8では縦軸に歩行に要す る合計仕事量、横軸に歩行者の歩行周期が表されてい る。また、仕事量は平地歩行時における合計仕事量(点 線)で規格化されている。さらに図7では平地歩行時を 基準とした合計仕事量の変動量が斜線で表され、図8で は外的仕事量の変動量が斜線で表されている。

【0068】図7に示すように合計仕事量が第1~第4 周期で1.0、第5周期に1.0から1.5に増大し、 第6~第11周期で1.5、第12周期に1.5から 2. 0に増大したとする。また、第13~第17周期で 2. 0、第18周期に2. 0から1. 5に減少し、第1 9~第21周期で1.5、第22周期に1.5から1. 0に減少し、第23周期以降は1.0と変動したとす る。合計仕事量の増大は例えば平地歩行から坂道や階段 を登る歩行への移行に対応し、合計仕事量の減少は例え ば坂道や階段を降る歩行から平地歩行への移行に対応し ている。

【0069】第2係数c,、ゲイン係数Gの組み合わせ $\mathcal{E}(1, 0, 0, 6), (0, 5, 0, 6), (1, 6)$ 0、1.0)、(0.5、1.0)とした場合の内的仕 事量及び外的仕事量の変動のシミュレーション結果をそ れぞれ図8(a)、図8(b)、図8(c)、図8 (d) に示す。

【0070】図8(a)及び図8(c)を見ると、第2

計仕事量の変動量(図7斜線部)の全部が補償されるよ うに外的トルク、ひいては外的仕事量(図8(a)、図 8(c)斜線部)が付与されていることがわかる。ま た、図8(b)及び図8(d)を見ると、第2係数c, が0.5の場合、変動量(図7斜線部)の半分が補償さ れるように外的トルク、ひいては外的仕事量(図8 (b)、図8(d)斜線部)が付与されていることがわ かる。

【0071】また、図8(a)及び図8(c)、又は図 8(b)及び図8(d)を比較すると、ゲイン係数Gが 大きい方が関節回りに付与される外的トルク、ひいては 外的仕事量(図8(a)~8(d)斜線部)が変動量 (図7斜線部) に対応して迅速に変動するのがわかる。 また、ゲイン係数Gが小さい方が関節回りに付与される 外的仕事量(図8(a)~8(d)斜線部)が変動量 (図7斜線部) に対応して緩やかに変動するのがわか る。即ち、図2を用いて既に説明した通り、外的仕事量 (白塗部分) w、が階段上り時に徐々に増加していく が、ゲイン係数Gが大きいほど①から②、②から③、③ 20 から**④**へと移行する速度が大きくなり、ゲイン係数Gが 小さいほど当該速度は小さくなる。

【0072】本歩行補助装置によれば、歩行者の脚部の 関節回りの内的仕事量w、が基準仕事量w。に一致する ように、脚部に対して関節回りの外的トルクT、が付与 される。従って、歩行者が平地歩行から階段歩行へ移行 する等、歩行条件が変動し、歩行に要する脚部の仕事量 が基準仕事量w。を超過した場合、当該超過分が補助さ れる形で脚部等に外的トルクT、が付与される。そし て、歩行条件の変動に関わらず、脚部における基準仕事 30 量w。に対応する内的トルクT₁ の発揮による歩行を可 能とすることができる。

【0073】また、脚部に付与される外的トルクT 2 は、第1係数 c1、さらには脚部に付与される外的仕 事量w, に基づいて決定され(上式(6)~(8)参 照)、当該決定の基準となる基準仕事量w。は脚部の内 的仕事量w1 に基づいて決定される(上式(5)参 照)。従って、脚部の内的仕事量w, と外的仕事量w, とのバランスに応じた適切な外的トルクTzを脚部に付 与することができる。

【0074】さらに、ゲイン係数Gを大きくすることで 第1係数 c₁ のその目標値 c₁ への収束速度を大きくす ることができる。そして、歩行条件の変動により歩行に 要する仕事量が基準仕事量w。を超過した場合、当該超 過分を迅速に解消するように外的トルクT。を脚部に付 与することができる(図8(c)、8(d)参照)。-方、ゲイン係数Gを小さくすることで第1係数c,のそ の目標値croへの収束速度を小さくすることができる。 そして、歩行条件の変動により歩行に要する仕事量が基 準仕事量w。を超過した場合、当該超過分を時間的にゆ 係数 \mathbf{c} 、が 1 、 0 の場合、平地歩行状態を基準とした合 -50 るやかに解消するように外的トルク \mathbf{T} 、を脚部に付与す ることができる(図8(a)、8(b)参照)。

【0075】また、基準仕事量w。に対する歩行に際し て必要な合計仕事量の変動分のうち、どれだけを外的ト ルクT、により補償するかが第2係数c,の大小によっ て決定される。即ち、第2係数 c、が大きく設定される ことで、当該変動分のうち外的トルクT、により補償さ れる分の割合を大きくすることができる(図8(a)、 8(c)参照)。一方、第2係数c,が小さく設定され ることで、当該変動分のうち外的トルクT。により補償 される分の割合を小さくすることができる(図8 (b)、8(d)参照)。

【0076】なお、本実施形態では歩行者の脚部に対し て股関節及び膝関節回りの外的トルクが付与されたが、 他の実施形態として脚部に対して足関節回りの外的トル クが付与されてもよく、腕部の手根関節、肘関節又は肩 関節回りの外的トルクが付与されてもよい。即ち、本実 施形態では外的トルクが付与される対象としての「連結 体」が股関節を介して連結された歩行者の腰部と大腿 部、及び膝関節を介して連結された大腿部と脛部であっ たが、他の実施形態として「連結体」が足関節を介して 連結された脛部と足平等であってもよい。

【0077】また、本実施形態では人間の動作を補助す べくその脚部に関節回りの外的トルクが付与されたが。 他の実施形態として猫や大等の動物の動作を補助すべく その脚部に関節回りの外的トルクが付与されてもよい。 これは、本発明のトルク付与システムが人間の医療分野 等のみならず、獣医学の分野にも適用可能であることを 意味する。

【0078】さらに、本実施形態では左右両脚部に外的 トルクが付与されたが、他の実施形態として左右いずれ 30 か一方の脚部にのみ外的トルクが付与されてもよい。

【0079】本実施形態では歩行者の歩行を補助すべく 外的トルクT、が付与されたが、他の実施形態として歩 行者が動かそうとする方向とは逆方向に外的トルクT、 が付与されてもよい。当該他の実施形態によれば、第1 係数決定手段9により第1係数 c1 が負に決定されるこ とで外的トルクT、がと内的トルクT、との符号が異な る(上式(8)参照)。そして、歩行者がかかる外的ト ルクT。に反して体を動かそうとすることで歩行者の筋 力強化を図ることができる。即ち、本発明のトルク付与 40 システムがスポーツ選手等の筋力増強を図るトレーニン グ装置として利用される。

【0080】本実施形態では制御ユニット3が歩行補助 装置のバックパック5に格納されたが、他の実施形態と して制御ユニット3と、歩行補助装置とが分離され、両 者間の信号送受信することで制御ユニット3における内 的トルク T_1 の測定や外的トルク T_2 の決定、第1、第 2アクチュエータ1、2の作動指示等が実行されてもよ 63.

16

段6により測定される内的仕事量w, と、第2測定手段 7により測定される外的仕事量w, との和である合計仕 事量が、基準仕事量決定手段8により決定される基準仕 事量w。以下のとき、第1係数 c,の下限を0と決定し てもよい。これにより、脚部の合計仕事量w, +w,が 減少して基準仕事量w。を下回った場合、第1係数c, が負に決定され、脚部に負の外的トルクT、が付与され る事態を防止することができる。

【0082】さらに、第1係数決定手段9は、脚部の合 10 計仕事量w₁ + w₂ が、基準仕事量決定手段8により決 定される基準仕事量w。以上の所定量(0、1.5 w。、2.5w。、…等) 以上のとき、第1係数 c₁の 上限を決定してもよい。これにより、脚部の合計仕事量 $W_1 + W_2$ が増大して基準仕事量 W_0 を大きく上回った 場合、第1係数c、が過大に決定され、脚部に過大な外 的トルクT、が付与される事態を防止することができ

【0083】本実施形態では内的トルクT₁及び角速度 ω₁ の積、外的トルクT、及び角速度ω,の積が歩行者 の歩行周期にわたり時間積分されることで内的仕事量w 1、外的仕事量w,が測定されたが(上式(3)、

(4)、図3s3~s5参照)、他の実施形態として当 該積分時間は単位時間であってもよく、歩行者が単位距 離だけ移動するのに要した時間等、異なる時間であって

【0084】本実施形態では脚部への床反力に基づき逆 動力学モデルに従って膝関節、股関節の内的トルクT1 及び内的仕事量w,が測定されたが(図5、式(2a) ~(2c)参照)、他の実施形態として三次元動作解析 装置によって各関節の内的トルクT、及び内的仕事量w 1 が測定されてもよい。即ち、脚部の動作が x y z 方向 から撮影され、各関節がどれだけの角速度ω、でどれだ けの角度折れ曲がっているかが画像解析され、この解析 結果に基づいて各関節の内的トルクT、や内的仕事量w 」が測定されてもよい。

【0085】本実施形態では角度センサa等の測定値に 基づいて歩行者の脚部への床反力が測定されたが(図 4、式(1a)~(1d)参照)、他の実施形態として 歩行者が履くシューズに床反力センサが設けられ、これ により直接床反力が測定されてもよい。

【0086】本実施形態では関節回りの内的トルクT, 及び(内的)角速度ωが測定され、両者の積の絶対値が 時間積分されることで当該関節回りの内的仕事量w、が 測定されたが(式(3)参照)、他の実施形態として歩 行者の関節に関連する筋肉収縮力及び筋肉収縮速度が測 定され、両者の積に基づいて当該関節回りの内的仕事量 w₁ が測定されてもよく、歩行者の上体や鉛直方向に対 する左右の大腿部や脛部等の角度、又は足平の移動距離 が測定され、記憶手段11により当該測定値と内的仕事 【0081】また、第1係数決定手段9は、第1測定手 50 量w1 との対応データテーブルが記憶保持され、当該測

定値及びデータテーブルとが用いられることで内的仕事 量w゛が測定されてもよい。

【0087】本実施形態では関節回りの外的トルクT, 及び(外的)角速度ωが測定され、両者の積の絶対値が 時間積分されることで当該関節回りの外的仕事量w』が 測定されたが(式(4)参照)、他の実施形態として各 アクチュエータ1、2の消費電力が測定され、当該消費 電力に基づいて外的仕事量w、が測定されてもよく、ア クチュエータ1、2が油圧式の場合、油圧の変動量が測 定され、当該油圧変動量の時間積分に基づいて外的仕事 10 量w」が測定されてもよい。

【0088】ここで、さらに本発明の他の実施形態につ いて説明する。歩行者が階段を上る場合、歩行者の膝関 節回りの外的トルクΤ、及び角速度ωの積について考え る。また、膝が屈曲する方向を「負」、伸張する方向を 「正」とする。

【0089】歩行者が踏み出した右足平が上段に接地し たとき右膝は屈曲している。次に、歩行者がさらに階段 を上るべく下段から左足平を離反させると、歩行者の体 を持ち上げるべく右膝を屈曲状態から伸張させるように 20 の場合の積分部分 $\mathbf{w}_{\mathbf{1}(\mathbf{t})}^{-}$ 、 $\mathbf{w}_{\mathbf{2}(\mathbf{t})}^{-}$ とに分割して測定 「正」の内的トルクT、が生じる。また、右膝部に取り 付けられたアクチュエータ2(図1参照)により右膝の*

* 伸張を補助すべく「正」の外的トルクT、が付与され る。しかるに、歩行者が下段から左足平を離反させた直 後は、右膝は歩行者の体重によりやや屈曲し、角速度の は「負」となる。従って、内的トルクT、と角速度ωと の積、及び外的トルクT、と角速度ωとの積はともに 「負」となる。

【0090】続いて、歩行者が左足平を離反してからあ る程度の時間が経過すると、歩行者の右膝は「正」の内 的トルクT、及び外的トルクT、により屈曲状態から徐 々に伸張し、角速度のは「正」となる。従って、内的ト ルクT₁ と角速度ωとの積、及び外的トルクT₂ と角速 度ωとの積はともに「正」となる。

【0091】このように歩行条件によっては1の歩行周 期の中にもトルクと角速度との積が「正」になったり 「負」になったりする場合が考えられる。

【0092】かかる事情に対応し、当該他の実施形態で は、第1測定手段6、第2測定手段7により、内的、外 的仕事量 W1(1)、 W2(1) が次式 (9) ~ (12) に従い 当該積が正の場合の積分部分wュ(;;) 、wュ(;;) と、負 される。

[0093]

(10)

[0094]

$$w_{z(i)} = w_{z(i)}^* + w_{z(i)}^* = \int dt \cdot f^* (T_{z(i)} \times \omega_{(i)}) + \int dt \cdot f^* (T_{z(i)} \times \omega_{(i)}) \cdot (10)$$

[0095]

 $f^+(x) \equiv x(if x \ge 0)$, 0 (if x < 0) ·· (11) [0096]

 $f^-(x) \equiv 0 (i f x \ge 0)$ -x (if x < 0) ·· (12)

【0097】この上で、第1係数決定手段9によりw 1(+) * 及びw2(+) * に基づき、さらにw1(+) * 及びw z(i) c基づき、相違する第1係数 c1(i+1) 、 c 1(1+1) が決定される(式(7)参照)。

【0098】そして、i+1周期で内的トルク $T_{1(i+1)}$ 40 及び角速度 ω_{CI+1} 、の積が「正」のとき、i 周期で当該 積が「正」の状況に応じて決定された第1係数 c1(1+1) * に基づいて外的トルク決定手段10によって外的トル クT₂₍₁₊₁₎が決定される(式(8)参照)。一方、当該 積が「負」のとき、i周期で当該積が「負」の状況に応 じて決定された第1係数c1(1+1)。 に基づいて外的トル クTz(i+1)が決定される(同)。

【0099】従って、過去の歩行条件と一致する歩行条 件に接したとき、当該過去の歩行条件に応じて予め決定 された第1係数 ${f c}$ 、に基づき、現在の外的トルク ${f T}$ 、を ${f 50}$ ン結果の説明図(その2)

30 決定・付与することができる。

【0100】また、前記他の実施形態では内的トルクT 1 及び角速度ωの積の正負に応じてそれぞれ第1係数 c 1、さらには外的トルクT,が決定されたが、さらに他 の実施形態として当該積が3つ以上の複数区分のそれぞ れに応じて第1係数 c, が決定されてもよい。例えば、 当該積が任意単位をもって-2未満、-2以上+1未 満、+1以上のそれぞれの場合に応じた第1係数 c_1 が 決定されてもよい。

【図面の簡単な説明】

【図1】歩行補助装置の構成説明図

【図2】歩行補助装置による歩行補助の概要説明図

【図3】歩行補助装置の機能を説明するフローチャート

【図4】歩行者の足平の床反力測定の概念説明図

【図5】歩行者の関節周りのトルク測定の概念説明図

【図6】歩行補助装置による歩行補助の実験結果の説明

【図7】歩行補助装置による歩行補助のシミュレーショ ン結果の説明図(その1)

【図8】歩行補助装置による歩行補助のシミュレーショ

【符号の説明】

- 1…第1アクチュエータ、2…第2アクチュエータ、3
- …制御ユニット、4…バッテリ、6…第1測定手段、7
- …第2測定手段、8…基準仕事量決定手段、9…第1係*

* 数決定手段、10…外的トルク決定手段、11…記憶手 段、a··角度センサ、g··ジャイロセンサ、g'··Gセ ンサ

【図1】

(11)

[図2]

FIG. 2

【図3】

FIG. 3

【図4】

【図7】

FIG. 7

[図8]

