Structures Algébriqes Lois Internes MPSI 2

1 Définitions

Définition 1.0.1

On appelle <u>loi interne sur E</u> toute application f définie sur $E \times E$ dans E:

$$f \colon E \times E \longrightarrow E$$
$$(x,y) \longmapsto f(x,y)$$

Notation: f(x,y) = f * y

2 Propriétés des lois internes

Définition 2.0.2

Soit E un ensemble non vide mini d'une loi interne *. (E,*) est un magma. * est une loi associative si $\forall (x,y,z) \in \mathcal{E} \times E \times E, \ (x*y)*z = x*(y*z)$

Propriété 2.0.1

Soit * une <u>loi associative</u> sur E, et $\{x_1, x_2, ..., x_n\}$ un sous-ensemble a n éléments de E.

- $x_1 * ... * x_n$ est défini par récurrence: $(x_1 * ... * x_{n-1}) * x_n = x_1 * ... * x_n$
- $x_1 * ... * x_n = (x_1 * ... * x_{n_1}) * (x_{n_1+1} * ... * x_{n_2}) * ... * (x_{n_p} * ... * x_n)$ est défini avec p parenthèses.

Définition 2.0.3

* est une <u>loi commutative</u> sur E si $\forall (x,y) \in E \times E$, x * y = y * x

Définition 2.0.4

On dit que * admet un <u>élément neutre</u> noté e si $\forall x \in \mathcal{E}$, x * e = x et e * x = x

Propriété 2.0.2

Si*admet un 'el'ement neutre, alors il est unique

Soit e_1 et e_2 deux éléments neutres de (E,*). alors $e_1*e_2=e_1$ car e_1 est un élémnet neutre $e_1*e_2=e_2$ car e_2 est un élémnet neutre Or, * est une application, donc $e_1=e_2$

Définition 2.0.5

Soit (E,*) un magma. Si * est associative et admet un élément neutre dans E, alors (E,*) est un $\underline{monoïde}$

Notations: Soit (E, *) un monoïde.

Notation multiplicative:

- $\bullet x * y = x \times y$
- \bullet L'élément neutre est noté 1 ou 1_E
- $\bullet \ x_1 * \dots * x_n = \prod_{i=1}^n x_i$
- S'utilise en général lorsque * n'est pas commutative.

Notation additive:

- $\bullet \ \ x * y = x + y$
- $\bullet\,$ L'élément neutre est noté 0 ou 0_E
- $\bullet \ x_1 * \dots * x_n = \sum_{i=1}^n x_i$
- S'utilise en général lorsque * est commutative.

Définition 2.0.6

Soit (E,*) un monoïde d'élément neutre e. Soit x un élément de E. x est symétrisable dans E si il existe un élément y de E tel que:

$$x * y = e \ et \ y * x = e$$

Propriété 2.0.3

 $Si\ x\ est\ sym\'etrisable,\ alors\ son\ sym\'etrique\ est\ unique.$

Notation:

- Multiplicative: le symétrique de x s'appelle inverse et se note x^{-1}
- ullet Additive: le symétrique de x s'appelle opposé et se note -x

Remarque: Soit (E, *) un monoïde.

Si x et y sont symétrisables de symétriques x' et y' Alors x * y est symétrisable de symétrique y' * x'