Claims:

10

11

1

2

3

4

5

- A system for executing a software application comprising a plurality of 1 1. hardware independent bytecodes, the system comprising: 2 3 a computing system that generates bytecodes; a virtual machine, remote to the computing system, comprising means for receiving a 4 plurality of bytecodes from said computing system, and means for executing said plurality of 5 6 bytecodes;
- means for testing said bytecodes against a set of predetermined criteria; and 7 means for securely distributing said testing means between said virtual machine and 8 said computing system so that the bytecode verification completed by the computing system 9 is authenticated by the virtual machine prior to the execution of the bytecodes by said virtual machine.
 - The system of Claim 1, wherein said remote computing system comprises 2. means for determining that the bytecodes comply with a predetermined set of criteria to generate verified bytecodes, and means for generating a proof of authenticity attached to said verified bytecodes to generate authenticated bytecodes so that the authenticated bytecodes are tamper-resistant.
- 1 The system of Claim 2, wherein said virtual machine comprises means for 3. determining that the authenticated bytecodes are not corrupted comprising means for 2 generating a proof of authenticity based on the received bytecodes, and means for comparing 3 4 said generated proof of authenticity against said authenticated bytecodes.

1

1	4. The system of Claim 2, wherein said virtual machine comprises means for
2	performing limited run-time testing of said authenticated bytecodes.
1	5. The system of Claim 4, wherein said performing means comprises means for
2	testing the memory access of said authenticated bytecodes.
1	6. The system of Claim 2, wherein said virtual machine comprises means for
2	storing authenticated bytecodes in a non-volatile manner so that the authenticated bytecodes
3	are not repeatedly communicated with the virtual machine.
1	7. A virtual machine for executing a software application comprising a plurality
2	of bytecodes, the virtual machine being executed by a hardware processor, the virtual
3	machine comprising:
4	means for receiving an authenticated bytecode, the authenticated bytecode being
5	previously compared against a predetermined set of criteria and having a proof of
6	authenticity;
7	means for determining that the authenticated bytecode is not corrupted based on the
3	proof of authenticity; and
9	means for executing said bytecode.
1	8. The virtual machine of Claim 7 further comprising means for checking, at run-
2	time, said authenticated bytecode for memory access errors.

1	9. The virtual machine of Claim 7, wherein said determining means comprises
2	means for generating a proof of authenticity, and means for comparing the generated proof of
3 .	authenticity against the proof of authenticity attached to the received bytecode.
1	10. The virtual machine of Claim 7, wherein said virtual machine comprises means
2.	for storing authenticated bytecodes in a non-volatile manner so that the authenticated
3 -	bytecodes are not repeatedly communicated with the virtual machine.
1	11. A system for executing a software application comprising a plurality of
2	bytecodes, the system comprising:
3	a computer system comprising means for verifying that a bytecode conforms to a
4	predetermined set of criteria to generate a verified bytecode, and means for generating a
5	secure verified bytecode from said verified bytecode; and
6	a virtual machine, remote from said computer system, for executing said secure
7	verified bytecodes, said virtual machine comprising means for receiving said secure verified
8	bytecodes, means for determining that the secure verified bytecodes are not corrupted, and
9	means for executing said secure verified bytecodes.
1	12. The system of Claim 11, wherein said virtual machine comprises means for
2	performing limited run-time testing of said received bytecodes.

- 1 The system of Claim 11, wherein said computing system comprises means for 13. generating a proof of authenticity, and means for attaching said proof of authenticity to said 2 3 bytecodes. The system of Claim 12, wherein said virtual machine comprises means for 1 14. generating a proof of authenticity, and means for comparing said generated proof of 2 authenticity against said received proof of authenticity to determine that said received 3 4 bytecode is not corrupted. A smart card having a plastic card having a microcontroller embedded therein, 1 15. 2 the smart card comprising: a virtual machine being executed by a microcontroller, the virtual machine executing a 3 software application comprising a plurality of previously verified bytecodes, the virtual 4 machine comprising means for receiving an authenticated bytecode, the authenticated 5 bytecode being previously compared against a predetermined set of criteria and having a 6 proof of authenticity, means for determining that the authenticated bytecode is not corrupted 7 8 based on the proof of authenticity, and means for executing said bytecode. The smart card of Claim 15 further comprising means for checking, at run-1 16. 2 time, said received bytecode for run-time memory access errors. The smart card of Claim 15, wherein said authenticated bytecode comprises a 1 17. proof of authenticity attached to said received bytecode, and wherein said determining means
 - PAV600805.2 1090404-991100

- 25 3 comprises means for generating a proof of authenticity, and means for comparing the generated proof of authenticity against the proof of authenticity attached to the received 4 5 bytecode to determine if the authenticated bytecode is corrupted. A method for executing a software application on a virtual machine, the 1 18. 2 application comprising a plurality of bytecodes, comprising: receiving an authenticated bytecode by a virtual machine, the authenticated 3 bytecode being previously compared against a predetermined set of criteria and having 4 5 a proof of authenticity; determining that the authenticated bytecode is not corrupted based on the proof 6 7 of authenticity; and 8 executing said bytecode. 19. The virtual machine of Claim 18 further comprising checking, at run-2 time, said authenticated bytecode for memory access errors. The virtual machine of Claim 18, wherein determining comprises 1 20. generating a proof of authenticity, and comparing the generated proof of authenticity 2 3 against the proof of authenticity attached to the received bytecode.
- 1 21. The virtual machine of Claim 18 further comprising storing
- 2 authenticated bytecodes in a non-volatile manner so that the authenticated bytecodes
- 3 are not repeatedly communicated with the virtual machine.

2

1	22. A virtual machine for executing a software application comprising a plurality
2	of bytecodes, the virtual machine being executed by a hardware processor, the virtual
3	machine comprising:
4	means for receiving data comprising a plurality of authenticated bytecodes, the
5	authenticated bytecodes being previously compared against a predetermined set of criteria to
6	reduce the amount of data received by the virtual machine;
7	means for determining that the authenticated bytecodes are not corrupted, and
8	means for executing said bytecodes.
1	23. The virtual machine of Claim 22, wherein said data received by said

virtual machine excludes data used for verification of said bytecodes.