Chapter 5 PCP Theorem and the Hardness of Approximation

Angsheng Li

Institute of Software Chinese Academy of Sciences

Advanced Algorithms, U CAS 28th, March, 2016

Outline

- 1. Backgrounds
- 2. Approximation
- 3. PCP
- 4. Equivalence of two views
- Linearity test
- 6. Fourier analysis
- 7. Exercises

Probabilistically checkable proofs (PCP)

The PCP theorem:

- 1. A gap reduction
- 2. hardness of approximation
- 3. new definition of NP
- 4. new methods and ideas for algorithms

Locally testable proof systems

Approach I: Locally testable proof systems For a language L in NP, **Verification is easy**

PCP definition of NP: There is a verifier V,

Completeness: if $x \in L$, for the certificate σ of $x \in L$, encode σ to a codeword π , V randomly checks 3 bits of π , with prob \approx 1, accepts.

Soundness If $x \notin L$, for any claimed certificate σ , encode it to π , V randomly accesses 3 bits of π , with prob $<\frac{1}{2}$, accepts. **Verification is even much easier**

Hardness of approximation

- Approach II Hardness of approximation
 For many NP-hard optimization problem, finding a good approximate solution is as hard as finding the optimum solution
- Conclusion: The two approaches are equivalent.

Approximation view

Definition

(Approximation of MAX 3SAT) Given a 3CNF formula ϕ , the *value* of ϕ , denoted by $val(\phi)$, is the maximum fraction of clauses that are satisfied by an assignment to ϕ 's variables. For $\rho \leq 1$, we say that an algorithm A is ρ -approximation algorithm for MAX-3SAT, if for every 3CNF formula ϕ with m clauses, A on input ϕ runs in poly time, outputs and assignment that satisfies at least $\rho val(\phi)m$ clauses of ϕ .

Recall:

- 1) Semidefinite programming leads to $\frac{7}{8} \epsilon$ approximation algorithm for MAX-3SAT.
- 2) Min-Vertex cover VC has $\frac{1}{2}$ approximation algorithm.

Locally testable proofs- I

Remark: Not IP Take SAT for example

- 1. Alice wants to convince Bob
 - 1.1 a CNF ϕ is satisfied
 - 1.2 Alice presents an assignment σ of ϕ to Bob
- 2. Bob checks if σ satisfies ϕ However, Bob has to check the whole σ in time polynomial of n.

Locally testable proofs- II

The new view is:

- Using an ECC, let $\pi = E(\sigma)$
- Bob checks only a constant bits of π
- With high probability, Bob is correct

Why?

- i) the proof π is robust
- ii) a few bits of π determines the property of the assignment σ again, why this is possible
- iii) Food test?

Verifier for PCP - informal

In a PCP, the verifier V satisfies:

- (1) V is probabilistic
- (2) V has random access to a proof string π , i.e., V can get each bit b_i of π by query, for V only needs to know the locations i for π_i
 - Number of queries
 - answer size, the length of a symbol π_i , if π is not 0, 1 string
- (3) V runs in poly time
- (4) adaptive or nonadaptive

PCP verifier - formal definition

Let L be a language, $q, r: \mathbb{N} \to \mathbb{N}$. We say that L has an (r(n), q(n))-PCP verifier, if there is a polynomial time probabilistic algorithm V satisfying:

Efficiency: On an input string $x \in \{0,1\}^n$, and given random access to a proof string $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$, V uses at most r(n) random coins, and makes at most q(n) nonadaptive queries to locations of π . Output $V^{\pi}(x)$.

Completeness If $x \in L$, then $\exists \pi$,

$$\Pr[V^{\pi}(x)=1]=1$$

Soundness If $x \notin L$, then $\forall \pi$

$$\Pr[V^{\pi}(x)=1] \leq \frac{1}{2}.$$

The PCP theorem: Locally testable proofs

PCP (r(n),q(n)): The languages having (O(r(n)), O(q(n))-PCP verifiers.

Theorem

$$NP = PCP(\log n, 1).$$

Remarks:

$$PCP(r(n), q(n)) \subseteq NTIME(2^{O(r(n))} \cdot q(n))$$

$$PCP(\log n, 1) \subseteq NP$$

- (2) The number of queries is a universal constant.
- (3) The soundness $\frac{1}{2}$ can be arbitrarily small such as $\frac{1}{2^c}$ for some c.

The PCP theorem: Hardness of approximation

Theorem

There exists a ρ < 1 such that for every $L \in NP$, there is a polynomial time reduction R mapping strings to 3CNF formulas such that

$$x \in L \Rightarrow val(R(x)) = 1$$

$$x \notin L \Rightarrow \operatorname{val}(R(x)) < \rho.$$

Remarks

1.

$$\exists \rho < 1 \forall L \exists R_L$$

- $-\rho$ is a universal constant for all *L*'s, while each *L* has its own reduction R_L
- Cook reduction

$$x \notin L \Rightarrow \operatorname{val}(R(x)) < 1.$$

- a surprising extension to Cook's theorem
- crucial idea is the gap given by ρ < 1, which is hence called a *gap reduction*

Hardness of approximation

Theorem

There exists a constant ρ < 1 such that if there is a polynomial time ρ -approximation algorithm for MAX 3SAT, then P = NP.

Proof.

Let A be an algorithm such that for any ϕ , A on input ϕ outputs an assignment that satisfies $\rho \cdot \mathrm{OPT}(\phi)$ clauses.

For an NP language L, and instance x,

If $x \in L$, R(x) is satisfied, A on input R(x) is an assignment satisfies ρm clauses.

If $x \notin L$, $val(R(x)) < \rho$, so $OPT < \rho m$. A(R(x)) satisfies at most $OPT < \rho m$ clauses.

 $x \in L$ if and only if A(R(x)) satisfies at least ρm clauses. NP \subseteq P.

Does Cook reduction help?

Cook reduction R.

$$L \in NP \Rightarrow 3CNF$$

$$x \in L \Rightarrow \operatorname{val}(R(x)) = 1$$

 $x \notin L \Rightarrow \operatorname{val}(R(x)) < 1$

Gap reduction requires:

$$x \notin L \Rightarrow \operatorname{val}(R(x)) < \rho$$

- a significant number of clauses that are not satisfied, i.e., there are many errors
- error correcting codes help, we guess,
- yes, we can do that

Constraint satisfaction problem, CSP

Definition

Let q be a natural number. A qCSP instance ϕ is a collection of functions $\phi_1, \phi_2, \cdots, \phi_m$ from $\{0,1\}^n \to \{0,1\}$ such that each ϕ_i contains only q variables.

- $-\operatorname{val}(\phi)$ is the maximum fraction of functions $\phi_1, \phi_2, \cdots, \phi_m$ that are satisfied by any assignment of the variables x_1, x_2, \cdots, x_n .
- -q is called the arity of ϕ .

Gap CSP

Definition

For $q\in\mathbb{N},\ \rho\leq 1$, we define the $\rho\text{-GAP}\ q\text{CSP}$ to be the problem of the following form: Given a qCSP instance ϕ , If ϕ is satisfied, $\text{val}(\phi)=1$. If ϕ is unsatisfied, then

$$val(\phi) < \rho$$
.

Hardness of ρ -GAP qCSP

For every $L \in NP$, there is a polynomial time reduction R, for any x,

$$x \in L \Rightarrow \operatorname{val}(R(x)) = 1$$

$$x \notin L \Rightarrow val(R(x)) < \rho$$

Hardness of GAP CSP

Theorem

There exist q, ρ < 1 such that ρ -GAP q CSP is NP-hard.

PCP verifier implies GAP CSP hard

Let NP \subseteq PCP(log n, 1). Suppose that V is a ($c \log n$, q)-PCP verifier for 3SAT. Then:

1) If x is in 3SAT, $\exists \pi$,

$$\Pr_{r \in_{\mathbb{R}}\{0,1\}^{c \log n}}[V^{\pi}(x,r)] = 1$$

2) If x is not in 3SAT, then for any π ,

$$\Pr_{r \in_{\mathbb{R}}\{0,1\}^{c\log n}}[V^{\pi}(x,r)] \leq \frac{1}{2}$$

V queries *q* bits of π .

Here $V^{\pi}(x, r)$ uses q queries for π , $\pi_{i_1}, \dots, \pi_{i_q}$ say.

Therefore, $V^{\pi}(x, r)$ is a function of q variables.

Let ϕ be the collection of $V^{\pi}(x, r)$ for all $r \in \{0, 1\}^{c \log n}$. Then ϕ is a qCSP instance.

The PCP verifier ensures that $\frac{1}{2}$ -GAP qCSP is NP-hard.

ρ -GAPqCSP hardness implies NP \subseteq PCP(log n, 1)

Suppose that there exist q, ρ < 1 such that ρ -GAPqCSP is NP-hard.

For every language $L \in NP$, there is a reduction R such that for all x, R(x) is a qCSP instance satisfying:

$$x \in L \Rightarrow \operatorname{val}(R(x)) = 1$$

 $x \notin L \Rightarrow \operatorname{val}(R(x)) < \rho$

Then the PCP verifier V proceeds as follows: Let $R(x) = \{\phi_1, \phi_2, \cdots, \phi_m\}$

- 1. randomly pick ϕ_i
- 2. Query π for the variables of ϕ_i
- 3. Accept, if ϕ_i is satisfied.

Proof

Completeness: If $x \in L$, then R(x) is satisfied, there is a proof π such that $\Pr[V^{\pi}(R(x)) = 1] = 1$. **Soundness**: If $x \in L$, for any π ,

$$\Pr[V^{\pi}(R(x)) = 1] < \rho.$$

By repeating several times, for any π ,

$$\Pr[V^{\pi}(R(x))=1] \leq \frac{1}{2}.$$

Hece

$$L \in PCP(\log n, 1)$$
.

Hardness of GAP qCSP \equiv Gap reduction

Any function $\psi: \{0,1\}^q \to \{0,1\}$ can be transformed into a set of 3CNF clauses.

A weak PCP verifier

Theorem

$$NP \subseteq PCP(poly(n), 1)$$
.

Linearity test establishes the theorem.

Walsh Hadamard code- recall

In GF(2),

WH:
$$\{0,1\}^* \to \{0,1\}^*$$

$$u \in \{0,1\}^n \mapsto \langle u \odot x \rangle_{x \in \{0,1\}^n}.$$

WH is regarded as a function from $\{0,1\}^n$ to $\{0,1\}$ or a string of length 2^{2^n} .

Random Subsum Principle

Theorem

If $u \neq v$, then

$$\Pr[u\odot x\neq v\odot x]=\frac{1}{2}.$$

Let $u_1 = 1$, $v_1 = 0$, for any x,

$$u \odot x = v \odot x$$

$$\iff$$

$$x_1 = (v_2 - u_2)x_2 + \cdots (v_n - u_n)x_n$$

The only bit that is fixed is x_1 . The number of such x's is $2^n/2$.

ECC

WH is an ECC of distance $\frac{1}{2}$.

WH is linear

Given a function $f: \{0,1\}^n \to \{0,1\}$, f is linear if and only if f is a WH codeword. WH codeword

$$f(x_1, x_2, \cdots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

In GF(2).

f is linear

$$\iff$$

 $\forall x, y$

$$f(x+y)=f(x)+f(y).$$

Linearity test

Given a function $f: \{0,1\}^n \to \{0,1\}$, the algorithm tests whether f is linear or fare from any linear function. \mathcal{T} :

- 1) Pick $x, y \in_{\mathbb{R}} \{0, 1\}^n$,
- 2) Accepts if f(x + y) = f(x) + f(y), and reject otherwise.

The test queues *f* only three bits.

Definition

Definition

Let $0 \le \delta \le 1$, $f, g: \{0,1\}^n \to \{0,1\}$ be functions. We say that f, g are δ -close, if

$$\Pr_{\mathbf{x}\in_{\mathbf{R}}\{0,1\}^n}[f(\mathbf{x})=g(\mathbf{x})]\geq\delta.$$

Theorem

Completeness: If f is linear, then T accepts with prob 1.

Theorem

If \mathcal{T} accepts with probability $\frac{1}{2} + \rho$, then f is 2ρ -close to some WH codeword.

Local decoder for WH: Recall

Given $f: \{0,1\}^n \to \{0,1\}$, suppose that f is $(1-\delta)$ -close to a linear function \widehat{f} , for some $\delta < \frac{1}{4}$. Then \widehat{f} is locally decoded. We compute \widehat{f} by \mathcal{T} : for an input $x \in \{0,1\}^n$,

- 1) Pick $y \in_{\mathbb{R}} \{0,1\}^n$
- 2) Output b = f(y) + f(y + x)All in GF(2).

Result: With prob at least $1 - 2\delta$, $b = \hat{f}(x)$.

Proof of the weak PCP for NP

QUADEEQ Quadratic equations. In GF(2)

$$u_1u_2 + u_3u_4 + u_1u_5 = 1$$
$$u_2u_3 + u_1u_4 = 0$$

A QUADEQ instance is a system of m equations. each is a quadratic over variables $u_1, u_2, \cdots u_n$, in GF(2).

The system is expressed by a matrix A of $m \times n^2$ and an m-dimensional vector b.

Solving the system is to find:

1) n^2 -dimensional vector U such that

$$AU = b$$

2) U is the tensor product $u \otimes u$ for some n-dimensional vector

PCP verifier for QUADEQ

Given a QEADEQ instance AU = b, we check is there an assignment u such that

- i) $U = u \otimes u$,
- ii) AU = b,

The key is we are allowed to query only a constant bits from a proof π .

This is possible if we use the WH codewords.

Given $f: \{0,1\}^n \to \text{to be expected the WH code of an assignment } u$

Given a function $g: \{0,1\}^{n^2} \to \{0,1\}$ to be expected the WH code of $u \otimes u$

PCP verifier V

 \mathcal{T} :

- 1. Check whether or not f, g are linear. Suppose yes, and $f = \hat{f}$, $g = \hat{g}$.
- 2. Check \hat{g} is the codeword of $u \otimes u$.
- 3. Check if *g* encodes a satisfying assignment, by *random subsum principle*.

Hilbert space

Transfer $GF(2^n)$ to $\{\pm 1\}^n$

- $b \mapsto (-1)^b$
- $\bullet \ 0 \mapsto 1$
- 1 → −1
- $XOR \mapsto \cdot$

The Hilbert space consists of the functions from $\{\pm 1\}^n$ to $\mathbb R$ with

- (i) (f+g)(x) = f(x) + g(x)
- (ii) $(\alpha f)(\mathbf{x}) = \alpha f(\mathbf{x})$
- (iii) $\langle f, g \rangle = E[f(x)g(x)]$, the inner product, x is chosen uniformly and randomly.

The Fourier basis

For every $\alpha \subseteq [n]$,

$$\chi_{\alpha}(\mathbf{x}) = \prod_{i \in \alpha} \mathbf{x}_i$$

$$\chi_{\emptyset} = 1.$$

Theorem

- 1) The Fourier basis is an orthonormal basis
- 2) This is equivalent to Walsh-Hadamard codes

Given a linear function *f*:

$$f(x) = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Set
$$\alpha = \{i \mid a_i = 1\}$$

Then

 χ_{α} corresponds to f.

$$\alpha = \beta$$

For $\alpha, \beta \subseteq [n]$, define

$$\delta_{\alpha,\beta} = \langle \chi_{\alpha}, \chi_{\beta} \rangle.$$

For $\alpha = \beta$,

$$\delta_{\alpha,\beta} = \langle \chi_{\alpha}, \chi_{\beta} \rangle$$

$$= E_{\mathbf{x} \in_{\mathbb{R}} \{\pm 1\}^n} [\chi_{\alpha}(\mathbf{x}) \chi_{\alpha}(\mathbf{x})]$$

$$= E_{\mathbf{x} \in_{\mathbb{R}} \{\pm 1\}^n} [\prod_{i \in \alpha} \mathbf{x}_i \prod_{i \in \alpha} \mathbf{x}_i] = 1. \tag{1}$$

$$\alpha \neq \beta$$

$$\delta_{\alpha,\beta} = \langle \chi_{\alpha}, \chi_{\beta} \rangle$$

$$= E_{\mathbf{x} \in_{\mathbb{R}} \{\pm 1\}^{n}} [\chi_{\alpha}(\mathbf{x}) \chi_{\beta}(\mathbf{x})]$$

$$= E_{\mathbf{x} \in_{\mathbb{R}} \{\pm 1\}^{n}} [\prod_{i \in \alpha} \mathbf{x}_{i} \prod_{i \in \beta} \mathbf{x}_{i}]$$

$$= E_{\mathbf{x} \in_{\mathbb{R}} \{\pm 1\}^{n}} [\prod_{i \in \alpha \setminus \beta, \text{ of } i \in \beta \setminus \alpha} \mathbf{x}_{i}] = 0.$$
(2)

 χ_{α} are orthonormal basis of the Hilbert space.

Fourier representation

$$\chi_{\alpha}(\mathbf{x}) = \prod_{i \in \alpha} \mathbf{x}_i$$

– a multi-linear function Every function $f: \{\pm 1\}^n \to \mathbb{R}$,

$$f = \sum_{\alpha \subseteq [n]} \widehat{f}_{\alpha} \chi_{\alpha},$$

 \hat{f}_{α} is the Fourier coefficients of f.

Parseval's identity

Lemma

For every $f, g: \{\pm 1\}^n \to \mathbb{R}$,

1)
$$\langle f, g \rangle = \sum_{\alpha} \widehat{f}_{\alpha} \widehat{g}_{\alpha},$$

2) (Parseval's identity) $\langle f, f \rangle = \sum_{\alpha} \widehat{f}_{\alpha}^2$.

$$\langle f, g \rangle = \langle \sum_{\alpha} \widehat{f}_{\alpha} \chi_{\alpha}, \sum_{\beta} \widehat{g}_{\beta} \chi_{\beta} \rangle$$

$$= \sum_{\alpha, \beta} \widehat{f}_{\alpha} \widehat{g}_{\beta} \langle \chi_{\alpha}, \chi_{\beta} \rangle$$

$$= \sum_{\alpha, \beta} \widehat{f}_{\alpha} \widehat{g}_{\beta} \delta_{\alpha, \beta}$$

$$= \sum_{\alpha, \beta} \widehat{f}_{\alpha} \widehat{g}_{\alpha}. \tag{3}$$

Boolean functions

 $f: \{\pm 1\}^n \to \mathbb{R}$ is Boolean, if for every $x \in \{\pm 1\}^n$, $f(x) \in \{\pm 1\}$. For Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$,

$$\langle f, f \rangle = E_{\mathsf{X}}[f^2(\mathsf{X})] = 1.$$

 χ_{α}

For $x, y \in \{\pm 1\}^n$, define

$$xy=(x_1y_1,x_2y_2,\cdots,x_ny_n).$$

$$\chi_{\alpha}(xy) = \prod_{i \in \alpha} (xy)_{i}$$

$$= \prod_{i \in \alpha} x_{i} \prod_{i \in \alpha} y_{i}$$

$$= \chi_{\alpha}(x)\chi_{\alpha}(y). \tag{4}$$

Inner product of Boolean functions

For Boolean functions f, g,

$$\langle f,g \rangle = E_x[f(x)g)x)]$$

= the fraction of x at which $f(x) = g(x)$
-the fraction of x at which $f(x) \neq g(x)$. (5)

If $\langle f, g \rangle = \epsilon$, then

$$\Pr[f(x) = g(x)] = \frac{1}{2} + \frac{\epsilon}{2}.$$

Therefore, of there is an α such that $\widehat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \epsilon$, then f is $(\frac{1}{2} + \frac{\epsilon}{2})$ -close to the linear function χ_{α} .

Linearity test

Theorem

Suppose that $f: \{\pm 1\}^n \to \{\pm 1\}$ satisfies

$$\Pr_{x,y\in_{\mathbb{R}}\{\pm 1\}^n}[f(xy)=f(x)f(y)]\geq \frac{1}{2}+\epsilon.$$

Then there is an α such that

$$\widehat{f}_{\alpha} \geq 2 \cdot \epsilon$$
.

Intuition

Intuition If the linearity test accepts f with a probability slightly better than $\frac{1}{2}$, then there is a linear function χ_{α} that is close to f. This means that, if f is far from any linear function, then the test accepts f with probability no larger than $\frac{1}{2}$. Due to

$$\langle f, f \rangle = \sum_{\alpha} \widehat{f}_{\alpha}^2 = 1$$

with probability \widehat{f}_{α}^2 to choose α , decodes the linear function χ_{α} that is close to f, if any.

Proof - I

Assume

$$\Pr[f(xy) = f(x)f(y)] \ge \frac{1}{2} + \epsilon.$$

Then

$$E_{e,y}[f(xy)f(x)f(y)] \geq \frac{1}{2} - (\frac{1}{2} - \epsilon) = 2\epsilon.$$

$$\begin{aligned} 2\epsilon & \leq E_{x,y}[f(xy)f(x)f(y)] \\ & = E_{x,y}[\sum_{\alpha} \widehat{f}_{\alpha}\chi_{\alpha}(xy)\sum_{\beta} \widehat{f}_{\beta}\chi_{\beta}(x)\sum_{\gamma} \widehat{f}_{\gamma}\chi_{\gamma}(y)] \\ & = E_{x,y}[\sum_{\alpha} \widehat{f}_{\alpha}\chi_{\alpha}(x)\chi_{\alpha}(y)\sum_{\beta} \widehat{f}_{\beta}\chi_{\beta}(x)\sum_{\gamma} \widehat{f}_{\gamma}\chi_{\gamma}(y)] \end{aligned}$$

Proof - II

$$= E_{\mathbf{x},\mathbf{y}} \left[\sum_{\alpha,\beta,\gamma} \widehat{f}_{\alpha} \widehat{f}_{\beta} \widehat{f}_{\gamma} \chi_{\alpha}(\mathbf{x}) \chi_{\alpha}(\mathbf{y}) \chi_{\beta}(\mathbf{x}) \chi_{\gamma}(\mathbf{y}) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \widehat{f}_{\alpha} \widehat{f}_{\beta} \widehat{f}_{\gamma} E_{\mathbf{x}} \left[\chi_{\alpha}(\mathbf{x}) \chi_{\beta}(\mathbf{y}) \right] E_{\mathbf{y}} \left[\chi_{\alpha}(\mathbf{y}) \chi_{\gamma}(\mathbf{y}) \right]$$

$$(\mathbf{x},\mathbf{y} \text{ are independent})$$

$$= \sum_{\alpha,\beta,\gamma} \widehat{f}_{\alpha} \widehat{f}_{\beta} \widehat{f}_{\gamma} \delta_{\alpha,\beta} \delta_{\alpha,\gamma}$$

$$= \sum_{\alpha,\beta,\gamma} \widehat{f}_{\alpha}^{3} \leq (\max_{\alpha} \widehat{f}_{\alpha}) \sum_{\alpha} \widehat{f}_{\alpha}^{2} = \max_{\alpha} \widehat{f}_{\alpha}. \tag{6}$$

General idea of Fourier analysis

There are many applications.

If a function is correlated with itself in some structured way, then it belongs to a small set of functions.

Exercises

- (1) Give a probabilistic polynomial time algorithm that given a 3CNF formula ϕ with exactly three distinct variables in each clause, outputs an assignment satisfying at least a $\frac{7}{8}$ fraction of ϕ 's clauses.
- (2) Give a deterministic polynomial time algorithm with the same approximation guarantee as Exercise 1 above.
- (3) Show a polynomial time algorithm that given a satisfiable 2CSP instance ϕ over binary alphabet with m clauses outputs a satisfying assignment for ϕ .
- (4) Show a deterministic poly $(n, 2^q)$ -time algorithm that given a qCSP-instance ϕ over binary alphabet with m clauses outputs an assignment satisfying $m/2^q$ of the constraints of ϕ .

(5) Suppose that G = (V, E) is an (n, d, λ) -expander. Show that for any $S \subset V$ of size $\leq \frac{n}{2}$, the following holds:

$$\Pr_{(u,v)\in_{\mathbb{R}} E}[u\in S \wedge v\in S] \leq \frac{|S|}{n}(\frac{1}{2}+\frac{\lambda}{2}).$$