

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

ONTWIKKELDE TECHNIEK

- Viola & Jones framework OpenCV
- Cascade van weak classifiers
- Features : LBP/ Haar / HOG

TECHNIEK - ANNOTATIESTAP

- Annotatietool installer Windows 7 x64
- Komt ook cmd line tool universeler

• Heel wat extra opties : universele aanpak cases

TECHNIEK - TRAINING MODEL

- Software voor formateren van data
- Software voor training op basis van data
- Cmd line interfacing universeel
 - Eenvoud <-> volledige functionaliteit
- Handleiding met uitleg parameters wordt ter beschikking gesteld

TECHNIEK - DETECTIE MODEL

Lessius 🗇

- Uit de voorgaande stap komt een XML model
- Universeel formaat voor data uitwisseling

TECHNIEK - DETECTIE MODEL

- Opnieuw cmd line interface universeel
- Kan echter vlot geïntegreerd worden in interface
- Real time → enkele eisen
 - Gebruik van minSize & maxSize
 - Keuze van stap in scalePyramid
- Resultaat = detectie

LIVE DEMO

- Opstelling Vision & Robotics 2013 beurs
- Werd tevens ook een presentatie over het TOBCAT project gegeven
- Opmerkingen
 - Variabele achtergrond
 - Beperkte trainingsbeelden (300p 500n)
 - Robuuste detectie van snoepgoed
- Demo opstelling

AGENDA

10u00 - 10u15: Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning 12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

Begeleidend bedrijf: Eurosense

• Evolutie van deze case :

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

Eerste testen uitgeprobeerd op wagens

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

 Ideale case voor toepassen dominante oriëntatietechniek die reeds gepresenteerd werd in vorige gebruikersgroepbijeenkomst

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

biob€/T

CASE B1: Detectie van mijten

- Begeleidend bedrijf: Biobest
- Evolutie van deze case :

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B1: Detectie van mijten

- Standaard objectdetectie workflow
- Specifiek zoeken naar 1 soort mijt, de roofmijt
- Uitgewerkt door Nils De Schepper op basis van reeds ontwikkelde techniek.
- Resultaten vervat in masterthesis.

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B1: Detectie van mijten

- Enkele conclusies
 - In heel wat gevallen werkt deze aanpak voor het detecteren van de mijt
 - Er zijn echter ook mijten die de detectie ontlopen
 - Inzetten op meer trainingsvoorbeelden
 - Opvolgen en diepgaandere studie van de detectieparameters om beter resultaat te bekomen

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B2: Detectie van graanonzuiverheden

- Begeleidend bedrijf : Case New Holland
 - CONH
- Evolutie van deze case :

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B2: Detectie van graanonzuiverheden

 Bijsturen proces om graan te maaien aan de hand van de hoeveelheid onzuiverheden

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B2: Detectie van graanonzuiverheden

- Gekende techniek van BB om object is geen ideale oplossing
 - veel achtergrondinformatie
 - meer features in achtergrond

- Voorstel om gesegmenteerd te detecteren
- Kleine regio's uiteindelijk combineren tot een enkele detectie

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B3: Detectie van rijpe/onrijpe aardbeien

- Begeleidend bedrijf: Induct
- Evolutie van deze case :

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B3: Detectie van rijpe/onrijpe aardbeien

- REEDS GEBEURD
- Basisanalyse van eigenschappen aardbei
- Nodig om een pre- of postprocessing van de zoekruimte te doen zodanig dat vals positieven weggewerkt worden.
- TODO
 - Beelden verzamelen
 - Model intrainen via data
 - Detectieresultaten testen

CASES LANDBOUW EN BIOLOGISCHE TOEPASSINGEN

CASE B3: Detectie rijpe/onrijpe aardbeien

Interessante insteek is gebruik maken van structuur

CASES AUTOMATISATIE EN PRODUCTIEPROCESSEN

CASE C1: Detectie van truffels of paprika's of ??

- Begeleidend bedrijf: VHA / Creative Computing / Vistalink
- Evolutie van deze case :

CASES AUTOMATISATIE EN **PRODUCTIEPROCESSEN**

CASE C1: Detectie van truffels of paprika's of ??

- Nog geen definitieve keuze
- Op een first-come, first-serve basis
- TODO
 - Verzamelen van inputbeelden en annoteren
 - Slimme keuze achtergrondvoorbeelden
 - Model opbouwen
 - Detectie uittesten

CASES AUTOMATISATIE EN **PRODUCTIEPROCESSEN**

CASE C2: Kwaliteitsmeting orchideeën

- Begeleidend bedrijf: Aris
- Evolutie van deze case :

CASES AUTOMATISATIE EN **PRODUCTIEPROCESSEN**

CASE C2: Kwaliteitsmeting orchideeën

- TODO
 - Verzamelen van inputbeelden en annoteren
 - Model opbouwen
 - Detectie uittesten
- AANPAK
 - Dubbel model, 1 voor bloemknoppen, 1 voor bloemen
 - Per inputbeeld = plant een totaal bijhouden
 - Op basis van gegevens prijs bepalen

CASES AUTOMATISATIE EN **PRODUCTIEPROCESSEN**

CASE C3: Detectie snoepgoed & koekjes

Begeleidend bedrijf: EAVISE

• Evolutie van deze case :

5

CASES AUTOMATISATIE EN **PRODUCTIEPROCESSEN**

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

Begeleidend bedrijf: MOBILAB

• Evolutie van deze case :

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

- Begeleidend bedrijf: MOBILAB
- Gait speed used as primary predictor for:
 - hospitalization
 - decline in health
 - Falls
- Measuring the time needed to perform the exact same transfer several times a day.

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

- Experimental setup:
 - Predefined walking zone
 - Automatic selection and measurement of the transfers

essius.

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

Detecting trends in measured times

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

 Short term trend detection difficult when different walking aids are used:

CASE OUDERENMONITORING

CASE VERKEERSMONITORING

CASE E1: Inschatten en detectie van gevaarlijke verkeerssituaties

Begeleidend bedrijf: IMOB

• Evolutie van deze case :

CASE VERKEERSMONITORING

CASE E1: Inschatten en detectie van gevaarliike verkeerssituaties

- Bepalen snelheden
- Bepalen afstanden
- Bepalen gevaar
- Detectiealgoritme
 - Voetgangers
 - Auto's
 - Vanuit 'eagle-eye' camera standpunt

CASE VERKEERSMONITORING

CASE VERKEERSMONITORING

CASE E1: Inschatten en detectie van gevaarlijke verkeerssituaties

- Aanpak via bestaande modellen
- Testen detectienauwkeurigheid
- Toepassingsgericht, coördinaten van objecten
- Kijken hoe dit geïntegreerd kan worden in open-source verkeersanalyse software

https://bitbucket.org/Nicolas/ trafficintelligence/wiki/Home

CASES REMOTE SENSING + **MOBILE MAPPING**

CASE A1: Detectie van objecten in luchtdata

- Positieve resultaten → verder uitwerken
- TODO
- Nieuwe klassen annoteren & intrainen model
 - Nieuwe detecties uitvoeren en resultaten evalueren
- Enkele objectklassen die we nog bekijken
 - Wegmarkering
 - Treinverbindingen
 - Wegen

CASES REMOTE SENSING + **MOBILE MAPPING**

VANSTEELANDT

Grontmij

CASE A2: Detectie in panoramische beelden

- Begeleidend bedrijf 1 : Vansteelandt/GeoVisat
- Begeleidend bedrijf 2 : Grontmij
- Full 360° vs. single images
- Evolutie van deze case :

CASES REMOTE SENSING + **MOBILE MAPPING**

CASE A2: Detectie in panoramische beelden

Basis persoonsdetector levert goeie resultaten

CASES REMOTE SENSING + **MOBILE MAPPING**

CASE A2: Detectie in panoramische beelden

- Basis persoonsdetector doet echter ook vreemde detecties
 - Detecties in de lucht

CASES REMOTE SENSING + MOBILE MAPPING

CASE A2: Detectie in panoramische beelden

 Nadien nog enkele hardnekkige objecten, zoals verkeerspaaltjes, die detecties bleven geven

Oplossing = naive bayes classifier, die naar beeldinhoud gaat kijken in HSV kleurenruimte

CASES REMOTE SENSING + **MOBILE MAPPING**

CASE A2: Detectie in panoramische beelden

- Verschil tussen twee cases lijkt miniem
- Grootste verschil in trainings- en detectiedata
 - Full view = gerectificeerd
 - Single images = geen recitificatie
- We willen vooral nagaan welke aanpak het snelst werkt en de meest robuuste resultaten oplevert.

TOEKOMSTPLANNEN

- Momenteel 2 technieken bestudeerd
- Viola & Jones framework

ALGEMENE

• Felzenszwalb persoonsdetectie algoritme

Eerste techniek hoofdzakelijk gebruik MAAR we doen nog een vergelijkende studie met basis van tweede techniek:

HOG features + SVM tactiek

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

RELEVANTE PRESENTATIES & **PUBLICATIES**

Demo setup objectdetectietechnieken GPU symposium De Nayer

RELEVANTE PRESENTATIES & **PUBLICATIES**

Presentaties

- Intl. Conf. On Vision applications, VISAPP 2013, Barcelona (21/02/2013-24/02/2013)
- Onderzoekssymposium Thomas More, Sint-Katelijne-Waver (21/03/2013) Vision & Robotics 2013, Eindhoven (22/06/2013-23/06/2013)

- VISAPP 2013: "How to exploit scene constraints to improve object categorization algorithms for industrial applications?"

 Artikel in DSP Valley Newsletter: "Tobcat: industrial applications of object categorization techniques"
- (In voorbereiding) Rollator detectie MOBILAB & EAVISE

Objectclassificatietechnieken voor het tellen van mijten, Nils De Schepper

AGENDA

10u00 - 10u15: Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning 12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

DOCTORAATSAANVRAAG

Vanuit doctoraat ook aanvraag bij IWT strategisch basisonderzoek.

Indien toegekend is er meteen ook mogelijkheid om cases tijdens mijn doctoraat te 'hertesten' met nieuw ontwikkelde technieken.

Onderwerp: Optimale objectcategorisatie onder variatie van de scène.

RAPIDO

'Vision Guided Random Picking for InDustrial RobOts' IWT-TETRA project

ADMINISTRATIE

- IWT e-tool "gebruikerspoll"
- Cofinanciering uitsturen facturen
- Afgeschermd download gedeelte bedrijven Paswoord = tobcat_2013
- Feedback & vragen altijd welkom via mail/tel/...
- Projectwebsite: www.eavise.be/tobcat

Lessius

VOLGENDE GEBRUIKERSGROEP BIJEENKOMST

- Planning eind november begin december
- Gedaan met theorie, op naar de praktijk → HANDS - ON WORKSHOP
- Ontdek zelf hoe de interfacing werkt
- Stap voor stap 'doe het zelf' opleiding
- Wij voorzien alle hardware
- Kennis programmeertaal C/C++ gewenst

CONTACTGEGEVENS

Zit u nog met vragen, aarzel dan niet om ons te contacteren:

- Toon Goedemé projectleider
 - toon.goedeme@lessius.eu
 - 015/31 69 44
- Steven Puttemans projectonderzoeker
 - steven.puttemans@lessius.eu
 - 015/31 69 44

