# 데이터마이닝과 딥러닝을 통한 수상레저적합 요인 예측 및 지수 개발

일반 국민 전형 이근영, 박채영, 소은비

## 목차 |

#### 1. 배경 및 목적

- 선정 배경
- 목적

#### 2. 분석 주요내용

- 방법론
- 기법소개[DNN, LSTM, RIDGE]

#### 3. 활용 데이터

- 데이터 소개 및 수집
- 데이터 전치리 및 통합

#### 4. 분석 결과

- 상관분석 및 랜덤포레스트
- DNN, LSTM, RIDGE 및 결과정리
- 예측 지표의 범주화 및 레저 별 지표산출
- 활용 예시

#### 5. 실용화 방안

- APP을 이용한 수상레저 지수 제공
- 수상레저 계획 도움 및 안전사고 예방
- 안전지킴이 수 예측
- 새로운 레저 관광 지역 개발

#### 6. 결론 및 시사점

- 결론 및 한계점

## 배경 및 목적 | 선정배경



해양경찰청

[경인방송 = 최상철 기자] 해양경찰청(청장 조현배)이 국민의 안전한 수상레저 활동을 위해 대비책 마련에 나섰습니다.

오늘(24일) 해양경찰청에 따르면 올해 강과 바다에서 <mark>수상레저를 즐긴 인구는 519만</mark>여 명으로, 지난해 431 만명보다 약 20% 증가했습니다.



최근 수상레저를 즐기는 인구의 증가가 두드러짐과 동시에, 그에 따른 안전사고에 대한 문제도 꾸준히 제기되고 있다. 특히 여름철 물놀이에서만 매년 수십명의 사망자가 발생한다.

## 배경 및 목적 | 선정배경

[똑똑! 응급의료]물놀이 안전사고 막으려면...깊이·수온 먼저 확인, 준비운 동은 필수

박효순 기자 anytoc@kyunghyang.com



일반적으로 수영하기에 알맞은 수온은 25~26°C 정도이다. 물에 들어갈 때는 다음 사항을 꼭 지켜야 합니다.

야외 물놀이를 계획할 때에는 물이 깨끗하고, <u>자연 조건이</u> 안전한 지역을 선택해야 합니다.

물놀이 이전에 확인하여 둘 것들

물의 깊이와 온도, 물 흐름의 빠르기를 먼저 확인한다.



물놀이를 하면 안되는 경우

1. 물이 오염되어 있나?

수상레저 안전에 중요한 것은 '수온','수심','유속','수질'이다.[국민안전처, 중앙의료원 출처] BUT, 이러한 변수들은 예보가 제공되지 않음.

-> 위 변수들을 예보하고 각 수상레저를 즐기기에 적합한지 지표로 만들어 제공

## 배경 및 목적 | 목적

목적은 크게 두가지! 첫째, 수상레저와 밀접한 변수들을 여러 예측 기법을 통해 예측

둘째, 예측한 변수를 이용하여 국민의 안전과 즐거운 수상레저를 즐길 수 있도록 가공하여 UI형태로 제공

UI에서는 수상레저 종류, 장소, 시간 등을 선택 할 수 있고, 이에 대한 맞춤형 정보를 우측의 APP과 같이 국민의 눈높이 에 맞게 제공







## 분석 주요내용 | 방법론



데이터 전 처리후, 랜덤포레스트와 상관분석을 통해 딥러닝과 회귀분석에 사용할 변수 선정



예측변수와 기법 별로 도출된 R^2/RMSE 테이블을 작성하여, 변수마다 가장 성능이 좋은 기법 선정

## 분석 주요내용 | 기법 소개 [DNN]



#### DNN이란?

- 딥러닝의 기본적인 형태
- 입력층과 출력층 사이에 '은닉계층'과 '노드'로 이뤄진 인공신경망
- Back- Propagation을 통해 학습됨
- 하이퍼파라미터: 활성함수, 노드 수, 은닉계층 수, 학습률 등



#### 사용 언어 및 라이브러리

R언어 - 'neuralnet' library

#### 하이퍼파라미터

'layer', 'node', 'stepmax', 'threshold', 'learningrate', 'algorithm'을 조절하여 종속변수를 예측함

## 분석 주요내용 | 분석 기법[LSTM]



#### LSTM이란?

- 시계열 데이터와 같이 시간의 흐름에 따라 변화하는 데이터를 학습하기 위한 딥 러닝 모델
- vanishing gradient problem문제를 해결하기 위해 장단기메모리를 도입

#### 사용 언어 및 라이브러리

Python - keras

#### 하이퍼파라미터

'layer', 'loss', 'optimizer', 'epoch' 를 조절하 여 종속변수를 예측함

## 분석 주요내용 | 분석 기법[LASSO, RIDGE 회귀]

#### Dimension Reduction of Feature Space with LASSO



$$w = rg \min_{w} \left( \sum_{i=1}^{N} e_i^2 + \lambda \sum_{j=1}^{M} |w_j| 
ight)$$

$$w = rg \min_{w} \left( \sum_{i=1}^{N} e_i^2 + \lambda \sum_{j=1}^{M} w_j^2 
ight)$$

#### Ridge, Lasso 란?

- 선형회귀에서 제약조건을 추가하여 과적합을 방지
- [Ridge 회귀모형]: 가중치들의 제곱합을 최소화하는 것을 추가적인 제약조건으로 함
- [Lasso 회귀모형]: 가중치의 절댓값 합을 최소화하는 것을 추가적인 제약조건으로 함

#### 사용 언어 및 라이브러리

Python - sklearn

#### 하이퍼파라미터

'degree', 'alpha'값을 조정하여 종속변수를 예측함

## 활용 데이터 I 데이터 소개 및 수집

#### 데이터 소개

#### 데이터:

- 1. 하천 데이터
- -> [공공 데이터 포털 제공] 수질자동측정망 데이터
- 2. 기상 데이터
- -> [기상자료개방포털 제공] 종관기상관측 데이터

## 데이터 수집

- 1. 하천 데이터
- -> openAPI를 통해 수집
- -> Python을 통해 json 형식으로 데이터를 가져온 후 파싱하여 csv로 변환하여 사용
- 2. 기상 데이터
- -> csv 파일로 제공받음

## <u>활용 데이터</u> 데이터 전처리 및 통합

#### 데이터 전처리

- 1. 이상치 제거
- -> 사분범위에서 크게 벗어난 값을 이상치로 설정하여 제거
- 2. NA를 포함한 행 제거
- 3. 날짜 변수 전처리
- -> 정규표현식을 이용하여 어긋나는 데이터 제거
- 4. Composite Key 생성
- -> 하천 데이터와 기상데이터를 통합하기 위해 생성
- -> 날짜+지역

#### 데이터 통합

- 1. 하천데이터와 기상 데이터의 통합
  -> 수질 데이터와 기상데이터의 데이터 측정소의 위치가 달라 지역 값 매칭이 어려움
- -> R의 ggmap을 통해 각 지역의 위도, 경도 변수 생성
- -> 수질 데이터의 지역과 가장 가까운 기상데이터의 지역 위치를 유클리디안 거리로 계산하여 매칭
- 2. 변수 정규화
- -> MinMax 방법을 통해 모든 값을 0과 1사이의 값으로 변환

## 분석 결과 | 상관분석

| 0000 |
|------|
|      |
| 7857 |
| 1506 |
| 7920 |
| 3958 |
| 4949 |
| 5827 |
| 9232 |
| 5277 |
| 3684 |
| 5122 |
|      |
|      |

상관계수: 두 변수들 사이의 선형관계를 나타냄. Pearson 상관계수가 보편적으로 이용되며, 아래와 같은 식에 의해 계산됨.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

ITEM\_TEMP(수온)를 종속변수로 】 상관분석을 실행한 결과

## 분석 결과 | 랜덤포레스트

| ÷               | %IncMSE <sup>‡</sup> | IncNodePurity * | var ÷           |
|-----------------|----------------------|-----------------|-----------------|
| MEAN_TEMP       | 17.51278             | 50.823217       | MEAN_TEMP       |
| MEAN_LAND       | 22.28793             | 50.300829       | MEAN_LAND       |
| L_TEMP          | 15.60935             | 29.803657       | L_TEMP          |
| U_TEMP          | 19.44648             | 25.766371       | U_TEMP          |
| L_TEMP.1        | 18.70226             | 22.614850       | L_TEMP.1        |
| MEAN_DEW        | 16.53718             | 16.380238       | MEAN_DEW        |
| MEAN_STPR       | 16.87121             | 15.357846       | MEAN_STPR       |
| MEAN_SUN        | 32.90153             | 8.260583        | MEAN_SUN        |
| ITEM_DOC        | 55.34225             | 7.309030        | ITEM_DOC        |
| U_hPa           | 17.33105             | 6.679995        | U_hPa           |
| ITEM_PH         | 55.55090             | 6.058508        | ITEM_PH         |
| ITEM_COD        | 42.65969             | 5.678286        | ITEM_COD        |
| L_hPa           | 20.25655             | 5.541153        | L_hPa           |
| ITEM_TP         | 35.48023             | 4.840720        | ITEM_TP         |
| MEAN_PRES       | 19.33504             | 4.458051        | MEAN_PRES       |
| ITEM_BOD        | 34.44467             | 4.255363        | ITEM_BOD        |
| ITEM_SS         | 29.42077             | 3.956223        | ITEM_SS         |
| ITEM_TN         | 19.99496             | 3.270896        | ITEM_TN         |
| MEAN_hPa        | 19.03354             | 3.170830        | MEAN_hPa        |
| SUM_SUN         | 27.59904             | 3.077448        | SUM_SUN         |
| L_REHU          | 23.97722             | 2.994235        | L_REHU          |
| MEAN_MOIS       | 27.79763             | 2.796797        | MEAN_MOIS       |
| M_WIND_100      | 25.66638             | 2.304458        | M_WIND_100      |
| MAX_MOMENT_WIND | 27.50093             | 2.214428        | MAX_MOMENT_WIND |
| MAX_MIN         | 26.31937             | 1.994473        | MAX_MIN         |
| MEAN_WIND       | 25.11321             | 1.702622        | MEAN_WIND       |

다수의 결정트리를 학습하는 앙상블 방법으로, 모델링 시 도출되는 MDG(MeanDecreaseGini) 값을 통해 중요변수 선정

#### **Random Forest Simplified**



ITEM\_TEMP(수온)를 종속변수로 랜덤포레스트를 실행한 결과

## 분석결과 | DNN

#### 1. Train, Test set

- train set: test set = 7:3의 비율로 랜덤 추출(Hold out)

### 2. 하이퍼파라미터 조절

| Layer/Node | 3/3     |
|------------|---------|
| Loss       | SSE     |
| Optimizer  | Sigmoid |
| stepmax    | 1e7     |

- \* hidden layer와 node의 수는 2~3개에서 그리드 탐색을 한 결과 (3,3)에서 결과가 가장 좋았다.
- 최대 계산량을 설정하는 stepmax는 입력변수 및 record가 많아 기본값 보다 더 여유를 주어서 1e7로 설정하였다.
- \* 회귀예측에 주로 사용하는 SSE loss fuction을 사용하였다.

## 분석결과 | DNN

#### 2. 모델 결과

- 증가하고 감소하는 추이 등이 잘 맞는 것을 볼 수 있다.

< 상관분석 변수 결과>

- RMSE: 0.066

- R-squared : 0.762

< 랜덤포레스트 변수 결과>

- RMSE: 0.0614

- R-squared : 0.788

사용!



Y축: 모델을 통해 예측한 값

X축: 실제 값

## 분석결과 | LSTM(Long Short-Term Memory)

## 1. Train set, Test set 분리

- train set, test set의 비율을 8:2로 분리 (시간순으로 정렬하여)
  - > 8:2 비율을 사용한 이유는 2014년 ~ 2018년 까지 총 5개년의 데이터를 사용했기 때문이다. 강물의 특성 상 날씨의 영향을 많이 받는데, 날씨는 계절별로 특성을 지닌다. 대략 4개년도의 데이터로 모델을 학습시키고, 1개년도로 테스트하는 방식을 택했다.





Train set

Test set

## 분석결과 | LSTM(Long Short-Term Memory)

#### 2. 하이퍼파라미터 조절

| Layer     | 20   |
|-----------|------|
| Loss      | MSE  |
| Optimizer | Adam |
| epoch     | 100  |

- \* epoch : 전체 데이터 셋에 대해 한번 학습을 완료한 상태
- > epoch가 너무 많으면 overfitting 이 일어나고, 너무 적으면 underfitting이 일어나기 쉽다.
- > epoch를 많이 돌린 후 early stopping을 이용해서 특정 시점에서 멈춰야 한다.
- \* Early stopping 의 특정 시점의 기준
  - > 예측값의 성능이 더 이상 개선되지 않을 때 학습을 중지
- > loss의 기준이 'MSE'이므로 MSE가 더 이상 줄어들지 않으면 학습을 중지

## 분석결과 | LSTM(Long Short-Term Memory)

#### 3. 모델 결과

- 증가하고 감소하는 추이 등이 잘 맞는 것을 볼 수 있다.

< 상관분석 변수 결과>

- RMSE: 0.086

- R-squared : 0.827

사용!

< 랜덤포레스트 변수 결과>

- RMSE: 0.096

- R-squared : 0.789



주황: 모델을 통해 예측한 값

파랑:실제 값

## 분석결과 | Ridge, Polynomial Regression

#### 1. Train, Test set

- train set: test set = 7:3의 비율로 랜덤 추출(Hold out)

#### 2. 하이퍼파라미터 조절

|                | 다중     | 다항(degree=2) | 릿지     | 랏쏘      | 다항(degree=3) | 릿지     | 랏쏘      | 다항(degree=4) | 릿지     | 랏쏘      |
|----------------|--------|--------------|--------|---------|--------------|--------|---------|--------------|--------|---------|
| train          | 74.372 | 78.419       |        |         | 81.52        |        |         | 86.125       |        |         |
| test           | 73.53  | 77.601       |        |         | 79.779       |        |         | 75.305       |        |         |
| alpha=10       |        |              | 77.679 | 0       |              | 78.928 | 0       |              | 79.748 | 0       |
|                |        |              | 76.987 | -415.36 |              | 78.182 | -415.36 |              | 78.922 | -415.36 |
| alpha=1        |        |              | 78.109 | 0       |              | 79.903 | 0       |              | 80.628 | 0       |
|                |        |              | 77.377 | -415.36 |              | 79.046 | -415.36 |              | 79.653 | -415.36 |
| alpha=0.001    |        |              | 78.416 | 73.507  |              | 81.28  | 73.507  |              | 83.416 | 73.507  |
|                |        |              | 77.595 | 72.768  |              | 79.822 | 72.768  |              | 80.284 | 72.768  |
| alpha=0.000001 |        |              | 78.419 | 78.154  |              | 81.511 | 80.117  |              |        |         |
|                |        |              | 66.601 | 77.399  |              | 79.801 | 79.178  |              |        |         |

-> degree = 3 alpha = 0.005로 설정

수온에 대해 RandomForest를 통해 도출된 중요변수를 독립변수로, 수온을 종속변수로 하여 다양한 모델(다중, 다항, 릿지, 랏쏘)을 파라미터를 변경시켰을 때의 R-square값

## 분석결과 | Ridge, Polynomial Regression

#### 3. 모델 결과

- 오른쪽 그림은 수온에 대한 예측값과 실제값을 그래프로 나타낸 것이다.

< 상관분석 변수 결과>

- RMSE: 0.086

- R-squared : 0.827

< 랜덤포레스트 변수 결과>

- RMSE: 0.096

- R-squared : 0.789

사용!



주황: 모델을 통해 예측한 값

파랑:실제 값

## 분석결과 | 결과 정리

| R^2/RMSE | 수온(TEMP)    | 생물화학적<br>산소요구량<br>(BOD) | 화학적<br>산소요구량<br>(COD) | 총인(TP)      | 부유물질(SS)    | 수소이 <del>온농</del> 도<br>(PH) | 용존 산소<br>(DOC) |
|----------|-------------|-------------------------|-----------------------|-------------|-------------|-----------------------------|----------------|
| DNN      | 0.762/0.066 | 0.401/0.115             | 0.523/0.137           | 0.395/0.152 | 0.216/0.255 | 0.452/0.105                 | 0.331/0.110    |
| LSTM     | 0.827/0.086 | 0.308/0.122             | 0.410/0.120           | 0.421/0.150 | 0.308/0.122 | 0.188/0.170                 | 0.356/0.233    |
| 다항회귀     | 0.780/0.064 | 0.415/0.115             | 0.600/0.103           | 0.472/0.145 | 0.478/0.157 | 0.244/0.170                 | 0.377/0.111    |
| RIDGE    | 0.782/0.064 | 0.416/0.115             | 0.598/0.103           | 0.473/0.145 | 0.478/0.157 | 0.244/0.169                 | 0.384/0.110    |

#### 상관분석을 통해 도출된 변수를 사용한 결과

| R^2/RMSE | 수온(TEMP)    | 생물화학적<br>산소요구량<br>(BOD) | 화학적<br>산소요구량<br>(COD) | 총인(TP)      | 부유물질(SS)    | 수소이 <del>온농</del> 도<br>(PH) | 용존 산소<br>(DOC) |
|----------|-------------|-------------------------|-----------------------|-------------|-------------|-----------------------------|----------------|
| DNN      | 0.788/0.061 | 0.388/0.120             | 0.428/0.127           | 0.367/0.155 | 0.518/0.142 | 0.258/0.151                 | 0.342/0.114    |
| LSTM     | 0.789/0.096 | 0.344/0.119             | 0.509/0.110           | 0.346/0.160 | 0.425/0.162 | 0.200/0.169                 | 0.404/0.211    |
| 다항회귀     | 0.802/0.061 | 0.412/0.115             | 0.527/0.113           | 0.502/0.140 | 0.477/0.156 | 0.305/0.162                 | 0.384/0.110    |
| RIDGE    | 0.803/0.061 | 0.438/0.112             | 0.526/0.113           | 0.505/0.140 | 0.482/0.155 | 0.311/0.161                 | 0.382/0.109    |

랜덤 포레스트로 도출된 변수를 사용한 결과

## <u>분석결과 | 예측 지표의 범주화</u>

범주화: 예측 지표로 레저 별 적합도를 판단하기 위함.

- 물놀이의 경우, 우측 자료처럼 '미국 기상청' 등이 기준을 제공.
- 기관 및 논문, 전문가 의견을 수렴하여 지표산출



[미국 기상청] 온도별 물놀이 기준

| 수온   |
|------|
| 26.5 |
| 4.1  |
| 17.4 |

기관, 논문, 전문가 의견 등을 이용해 변수별 적합도 산출



| 수온 |
|----|
| 위험 |
| 안전 |
| 보통 |

종합 레저지수 산출 을 위해 Numeric type으로 변환한다



| 수온 |  |
|----|--|
| 3  |  |
| 1  |  |
| 2  |  |

## **분석결과** 레저별 지표산출을 위한 벡터가중치법 적용

[텍스트 마이닝] '각 레저를 대표하는 네이버 카페'로 부터 각 예측 지표들의 언급빈도를 가져옴.

[벡터정규화] 각각의 가중치를 산출. 벡터정규화란? 유클리디안 거리를 평가하여 각 지표의 선호순위를 결정하는 기법

| ~ —        | $b_{ij}$                   |
|------------|----------------------------|
| $z_{ij} =$ | $\sqrt{\frac{n}{n}}$       |
|            | $\sqrt{\sum_{ij}b_{ij}^2}$ |
|            | $V_{i=1}$                  |
|            |                            |



|        | 수온   | 수질  | 유속   | 수심   |
|--------|------|-----|------|------|
| 스쿠버다이빙 | 6034 | 3   | 1343 | 27   |
| 낚시     | 1274 | 522 | 93   | 5000 |
| 서핑     | 1683 | 22  | 10   | 1562 |

[텍스트 마이닝을 통한 각 지표 별 언급 빈도]

| 가중치    | 수온          | 수질          | 유속         | 수심          |  |
|--------|-------------|-------------|------------|-------------|--|
| 스쿠버다이빙 | 0.000157902 | 1.66261E-06 | 0.0007443  | 0.037037037 |  |
| 낚시     | 4.73532E-05 | 2.06478E-05 | 3.7187E-06 | 0.0002      |  |
| 서핑     | 0.000319178 | 9.01481E-06 | 4.0985E-06 | 0.000640205 |  |

[벡터 정규화를 이용하여 산출한 레저별, 변수별 가중치]

## 분석 결과 | 활용 예시

[예측 지표의 범주화] - 1:위험, 2 : 보통, 3 : 안전

| 다이빙      | 수온 | 수질 유속 |   | 수심 |
|----------|----|-------|---|----|
| 20.08.13 | 3  | 3     | 3 | 3  |
| 20.08.14 | 2  | 3     | 1 | 2  |
| 20.08.15 | 3  | 2     | 2 | 3  |

곱한다(가중치 적용)

| 가중치    | 수온          | 수질          | 유속         | 수심          |
|--------|-------------|-------------|------------|-------------|
| 스쿠버다이빙 | 0.000157902 | 1.66261E-06 | 0.0007443  | 0.037037037 |
| 낚시     | 4.73532E-05 | 2.06478E-05 | 3.7187E-06 | 0.0002      |
| 서핑     | 0.000319178 | 9.01481E-06 | 4.0985E-06 | 0.000640205 |

[벡터 정규화를 이용하여 산출한 레저별, 변수별 가중치]

| 레저지수     | 스쿠버다이빙 | 낚시 | 서핑 |
|----------|--------|----|----|
| 20.08.13 | 보통     | 보통 | 안전 |
| 20.08.14 | 위험     | 위험 | 위험 |
| 20.08.15 | 보통     | 위험 | 안전 |

[종합 레저 지수]

## 실용화 방안 | [MyWater]를 통한 수상레저 지수 제공

K-WATER 에서 현재 운영중인 MyWater 어플리케이션 사용

[기존] 원하는 위치와 날짜 별 댐/보의 실시간 수질 정보 등 다수 서비스



[추가] 원하는 날짜, 수상레저, 장소를 선택하여 종합 레저 지수 및 각 요인 별 예측 값 추가

- \* 사용자 친화적인 [수상 레저 예측 지수]
- -> 사용자들이 한눈에 이해하기 좋게 수치 값 뿐만 아니라 위험, 보통, 안전 등을 의미하는 빨강, 노랑, 초록 색 표시를 사용하였다
- \* 기존의 어플리케이션에 기능을 추가하므로 홍보, 경제적 차원에서도 이점



[예상 어플리케이션 UI]

## 실용화 방안 | 수상레저 계획 도움 및 안전사고 예방

#### [수상레저 계획을 세우는 데 도움]

- 여행을 계획할 때 날씨를 고려하여 세부 일정을 정한다.
- 해당 서비스를 이용하면 미리 수상레저 지수를 확인할 수 있게 되어 레저를 즐길 적절한 장소, 날짜 등을 정하고 즐기는데 도움을 받을 수 있을 것이다.

#### [안전사고 예방]

- 14년도 이전에는 수상레저 사고가 3~4건, 17년도에는 54건에 이르는 등 안전 문제가 빈번하게 발생
- 국민들이 수상레저 지수 예보를 통해 수상환경 및 안정성에 대한 정보를 미리 얻는다면 수상레저 사고를 방지할 수 있을 것으로 예상된다.

## <u>실용화 방안 | 안전지킴이 수 예측 및 새로운 레저 관광 지역 개발</u>

## 효율적인 안전요원 배치 가능

- 예측된 수상환경에 따라, 안전 지킴이 수를 유동적으로 조절할 수 있다.





종합레저 지수 상 레저에 적합하다고 생각 되는 곳 중 활성화 되지 않은 곳을 발굴 할 수 있다.

기대 효과: 해당 지역 경제 활성화 + 국민들의 쾌적한 수상레저 환경 제공

## 결론 및 시사점 | 결론

## 날씨, 하천 정보 -> 하천의 수온 등의 수상환경 예측

- DNN, LSTM, 릿지 회귀, 라쏘 회귀, 단순 선형 회귀 등의 기법 사용
- 변수 별로 RSME, R-squared 값이 가장 우수한 모델을 사용하여 예측 값 도출
- 논문 또는 전문가의 의견을 수렴하여 각 수상레저별 좋음, 보통, 나쁨 등을 결정할 지표 결정
- 텍스트 마이닝을 통해 변수들의 가중치 산출 후 최종 종합 레저 지수 산출

## 결론 및 시사점 | 한계점

#### API 활용가이드와는 달랐던 데이터

- 수위, 유량의 데이터가 실제 API에서는 누락되어 있음
- 따라서 분석 시에는 수온과 수질을 나타내는 몇가지 요소(BOD, COD, PH 등)를 사용함
- 수위, 유량 등의 데이터가 주어지면 동일한 방식으로 학습이 가능하도록 준비해 두었음



공공데이터 개방·공유·활용·체계 개발 OpenAPI 활용가이드

| wmdep    | 수심<br>(단위 : m)                         | 6, 1  | 0 | 0.5   | 수심<br>(단위 : m)                          |
|----------|----------------------------------------|-------|---|-------|-----------------------------------------|
| itemLvl  | 측정값(수위)<br>(단위 : m)                    | 14, 4 | 0 | 40.8  | 측정값(수위)<br>(단위 : m)                     |
| itemAmnt | 측정값(유량)<br>(단위 : m³/sec)               | 14, 4 | 0 | 1.099 | 측정값(유량)<br>(단위 : m³/sec)                |
| itemTemp | 즉성값(수온)<br>(단위 : ℃)                    | 14, 4 | 0 | 12.4  | 즉성값(수온)<br>(단위 : ℃)                     |
| itemPh   | 측정값(수소이온농도(pH))<br>(단위 : -)            | 14, 4 | 0 | 7.1   | 측정값(수소이온농도(pH))<br>(단위:-)               |
| itemDoc  | 측정값(용존산소(DO))<br>(단위 : mg/L)           | 14, 4 | 0 | 11.5  | 측정값(용존산소(DO))<br>(단위 : mg/L)            |
| itemBod  | 측정값(생물화학적산소요<br>구량(BOD))<br>(단위: mg/L) | 14, 4 | 0 | 3.5   | 측정값(생물화학적산소요<br>구량(BOD))<br>(단위 : mg/L) |



API를 통해 가져온 실제 데이터

13.4

10.4

13.8 10.1

14.2 10.8

0.5

0.3

1.3 0.3

0.3



API 활용가이드 에는 수심, 수위, 유량이 제공된다 고 되어있지만, 실제 데이터에는 누락되어있다.

# 감사합니다