Lecture 7 Wireless Local Area Networks (LANs)

Introduction to Wireless LANs

- Local area networks (LANs)
 - Share resources and information
 - Low-cost, high speed, and almost error-free communications
 - Ethernet; token ring networks

Introduction to Wireless LANs (Cont'd)

- What is wireless LAN?
 - An extension of the wired LAN
 - Compatible
 - □ Coverage: ~ 100 feet
 - Merits
 - Convenience
 - Fast installation
 - User mobility
 - Challenges
 - Smaller bandwidth
 - Interference/noise → not reliable
 - Broadcast medium → intercepted by snoopers

Wireless LAN Standards

- HiperLAN European Telecommunications Standards Institute (ETSI) @ 5 GHz unlicensed frequency band
- IEEE 802.11 IEEE 802.11 Worldwide Standard Group @ 2.4 GHz or 5 GHz unlicensed frequency band
 - * IEEE: Institute of Electrical and Electronics Engineers, largest technical professional organization, non-profit.

IEEE 802.11 Family for Wireless LANs

- Specify air interface between APs and stations, or between two stations
- Difference: radio frequency band, transmission speed, modulation scheme
- 802.11
 - original wireless LAN standard
 - □ 1 2 Mbps
- 802.11a
 - Orthogonal frequency division multiplexing (OFDM)
 - 5 GHz radio frequency
 - High speed: up to 54 Mbps
- 802.11b
 - DS-SS at 2.4 GHz
 - Up to 11 Mbps
- 802.11e
 - Support quality-of-service
- **802.11g**
 - OFDM
 - High speed standard at 2.4 GHz
 - □ Up to 54 Mbps

WLAN Architecture

- Two modes: ad hoc networks & Infrastructure networks
- Basic service set (BSS)
 - a group of stations that can communicate with each other
- Ad hoc network
 - No infrastructure; temporary
 - Peer-to-peer
 - Conference meetings, distributed computer games

Infrastructure Network

- An access point (AP) in each BSS
- Distribution system: interconnect BSSs to form an extended service set (ESS)
- Portal: bridge to other networks

Wireless LAN Physical Layers

- Physical layer: transfer of bits over a communication channel
- IEEE 802.11 wireless LAN physical layer
 - Infrared
 - Spread spectrum (SS) at 2.4 GHz

Application
Presentation
Session
Transport
Network
Data link
Physical

OSI model

Infrared Physical Layer

- Coverage: 10 20 m
- Pulse-position modulation (PPM)
 - Each transmitted symbol has 16 time slots, one contains a pulse
 - □ Four bits → integer in [1, 16] ('0000'→1, '1111'→16)
 - The integer determines which slot is used for the pulse
 - An example

Infrared Physical Layer (Cont'd)

Advantages

- Simple & inexpensive
- □ Constrained by walls → Secured against eavesdropping, low interference

Disadvantages

- Interference (sunlight, indoor lighting)
- Limited range
 - Not popular

Spread Spectrum Physical Layer

- Spread spectrum: spread the signal energy over a wide frequency band
- Frequency hopping (FP) & direct sequence (DS) (802.11b)

Where is MAC in OSI Model?

- Data link layer: logic link control (LLC) + MAC
- MAC: coordinating the access to the shared medium.
- LLC: operate over all MAC standards (802.3, 802.5, and 802.11), and offer the network layer a standard set of services

Distributed Coordination Function (DCF)

- Mandatory in IEEE 802.11
- Distributed manner
- Asynchronous data transfer & best effort
- All stations contend
- Recall: Ethernet has carrier sensing multiple access with collision detection (CSMA-CD)
- Why not use CSMA-CD in wireless LANs?
 - Sense the channel before transmission
 - □ Channel busy → persistent methods
 - During transmission, continue to sense (detect collision)
 - □ Collision detected → abort
 - transmit and sense at the same time

Distributed Coordination Function (DCF) (Cont'd)

- Drawbacks of CSMA-CD over wireless LANs
 - □ "Collision detection" problem: half-duplex → unable to transmit and sense simultaneously at the same frequency band
 - "Hidden-station" problem (also called "hidden-terminal" problem)

- A transmits data frame
- C senses medium; hears nothing
- C transmits data frame
- C collides with A at B
- A new MAC: CSMA with collision avoidance (CSMA-CA)

Solution to "Collision Detection" Problem

- Acknowledgement (ACK)
 - No ACK → collision
- Information exchange handshake: Data + ACK
- New problem: ACK collision

Solution to "Collision Detection" (Cont'd)

- Two kinds of carrier sensing
 - Physical carrier sensing
 - Virtual carrier sensing: tell others how long I need
 - Sender: set duration field in the MAC header of the transmitted frames
 - Indicate the amount of time needed to complete the Data-ACK handshake
 - Other stations wait until the completion of the exchange, and the waiting time is called network allocation vector (NAV) ______

Solution to "Hidden-Station" Problem

- Request-to-send (RTS)/clear-to-send (CTS) handshake
- Four-way handshake: RTS-CTS-Data-ACK

Data frame: up to 1500 bytes; RTS: 20 bytes The duration field in CTS tells C to wait.

Basic CSMA-CA Operation

Interframe space (IFS): "idle gap" between two frame transmissions

- Short IFS (SIFS): High-priority frames (such as CTS, ACK)
- DCF IFS (DIFS): RTS

Backoff Procedure

- If a station has a frame to send
 - Schedule a random backoff timer from a window [0, 31] (called contention window)
 - After DIFS channel idle, count down the backoff timer by one when the channel continues to be idle for one more time slot
 - Transmit when the backoff timer reaches 0
 - Access time: after DIFS + random backoff time
 - Can collisions be eliminated completely?
 - If two stations have the same backoff time?

Collisions and Retransmissions

Each sender

- □ If non-arrival of CTS or ACK, interpret as a collision, and double the contention window, [0, 31] → [0, 63]
- Schedule a new backoff timer from the new contention window
- Retransmit when the backoff timer counts down to 0
- If collided again, double contention window again
- Until ACK arrives or the maximum attempt number is reached
 - binary exponential backoff
- After a successful transmission, contention window is reset to initial window [0, 31].

Red font: backoff timer

CW: contention window

Summary of CSMA-CA Mechanisms

Mechanism	Objective
ACK	"Collision detection" problem
RTS/CTS	"Hidden station" problem
Binary exponential backoff	Collision avoidance and resolution