CS4243 Computer Vision & Pattern Recognition

AY 2023/24

Lab Session 3

Arrangement

- Part 1 Quick Recap from the Lecture (~15 min)
- Part 2 Lab Tutorial (~40 min)
- Break (10 min)
- Part 3 Lab Solution (~40 min)

Lab Materials

- GitHub Repo: <u>https://github.com/ldkong1205/cs4243_lab</u>
- Slides
- Notebook & Solution
- Other Materials (image, media, etc.)

Lesson 3

Image Transforms

Image Transforms

- Image processing tasks are sometimes best performed in a domain other than the spatial domain, e.g., the Fourier domain.
- Key steps:
 - 1. Transform the image.
 - 2. Carry the task(s) in the transform domain.
 - 3. Apply inverse transform to return to the spatial domain.

Periodic-Noise Reduction using FT

Fourier Transform

- Continuous Fourier Transform (FT)
- Discrete Fourier Transform (DFT)
- Fast Fourier Transform (FFT)
- A sinusoidal signal / function has got 3 parameters:
 - Amplitude.
 - Frequency.
 - · Phase.

$$x(t) = a.\sin(\omega t + \varphi)$$

$$x[n] = a.\sin(\omega n + \varphi)$$

Example: Discrete Fourier Transform

50 100 150 200 250 300 350 400 450

Gray-Level Image

DFT (Fourier Spectrum)

Logarithmic-Scaled Spectrum

Frequency Domain Filters

Ideal	Gaussian	Butterworth
$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$	$H(u,v) = e^{-D^2(u,v)/2D_0^2}$	$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$

- Filter matrix size = image size = Fourier Transformed matrix size
- D_0 = filter bandwidth or coordination of the cut-off point
- Cut-off point: Where the magnitude of the filter reaches 0.5
- D = distance to the frequency axes origin in the <u,v> page
- Corresponding high pass filter (HPF) obtains by 1 LPF

Ideal and Gaussian LPFs

Butterworth LPF

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$

Lab Session 3

Filtering in Fourier Domain

