

- Network with industry personnel from various companies
- Attend talks by the companies
- Learn more about the available jobs and internships opportunities

Date: 27 March 2015

Time: 12 – 5 PM

Venue: EA Foyer

Attire: Formal

EE2022 Electrical Energy Systems

Per Unit Analysis- Examples and Revision

Lecturer: Dr. Sangit Sasidhar (elesang)

Slides prepared by Dr. Panida Jirutitijaroen

Department of Electrical and Computer Engineering

3Ф-Steps of Per Unit Analysis

- 1. Choose $S_B^{3\Phi}$ for the system.
- 2. Select $V_B^{
 m line-to-neutral}$ or $V_B^{
 m line-to-line}$ for different zones.
- 3. Calculate $Z_{\rm R}$ for different zones.
- 4. Express all quantities in p.u.
- Draw impedance diagram and solve for p.u. quantities.
- 6. Convert back to actual quantities if needed.

Note that the **per unit circuit is** the circuit in **per-phase analysis** with normalization of the voltage magnitude at different locations. This means that **the phase of voltage** in per unit analysis **refers to** the **line-to-neutral voltage**.

Example 1

• The one-line diagram of a three-phase power system is shown below. Select a **common base of 100 MVA** and 22kV on the generator side. Draw an impedance diagram with all impedances including the load impedance marked in per-unit. The manufacturer's data for each device is given as follow. 10000

- Three-phase Y-connected load absorbs 57 MVA 0.6 pf lagging at 10.45kV.
- Line 1 and line 2 have per phase reactances of 48.4 and 65.43 Ω respectively.

Base Value for V

(1) SB= 100MVA

Zone 3

Base Impedances

Zone 3

Load Impedance

$$\frac{3V_{L-N}^2}{Z_Y^2} = \frac{V_{L-L}^2}{Z_Y^2}$$

$$= \frac{2y}{2y} = \frac{v_{u}}{s_{v_{u}}}$$

$$= \frac{2y}{5y} = \frac{Vu}{57x10^{6}L53.13} = 1.1495 - j1.5327 - 2$$

P.U. Impedance with Change of Base

$$Z_{pu}^{new} = Z_{pu}^{old} \times \left(\frac{V_{BoLO}^{l-L}}{V_{BNEW}^{2-L}}\right)^{2} \times \left(\frac{S_{NEW}^{8p}}{S_{OLD}^{2}}\right) = Z_{pu}^{old} \times \frac{S_{NEW}^{3d}}{S_{OLD}^{3l}}$$

GI 90 MUA 22(220KU X = 18),
$$\Rightarrow$$
 XG = $j0.18 \times 100 = j0.2 pg$
TI SO MUA 22(220KU X = $i0$) \Rightarrow XT, $= j0.1 \times 1000 = j0.2 pg$
T2 to MUA 220/11KU $y = 6'$, \Rightarrow XT2= $j0.06 \times 1000 = j0.15 pg$
T3 40 MUA 22/110KU X= 6.4% \Rightarrow XT3 = $j0.064 \times 1000 = j0.16 pg$
T6 40 MUA 110/11 KU X= 8% \Rightarrow XT3 = $j0.064 \times 1000 = j0.16 pg$

$$X_{G} = j0.18 \times 100 = j0.2 pg$$
 $X_{T_{1}} = j0.1 \times 100 = j0.2 pg$
 $X_{T_{2}} = j0.06 \times 100 = j0.15 pg$
 $X_{T_{3}} = j0.064 \times 100 = j0.16 pg$
 $X_{T_{4}} = j0.08 \times 100 = j0.16 pg$
 $X_{T_{4}} = j0.08 \times 100 = j0.2 pg$

Per Unit Equivalent Circuit

Solve and Convert to Actual Quantities

$$\frac{1}{2} = \frac{V_{a} \rho_{4}}{2\rho_{4}} \Rightarrow V_{a} \rho_{4} = \frac{V_{a} \rho_{4}}{2\rho_{4}} = \frac{V_{a} \rho_{4}}{2\rho_{4}} \Rightarrow V_{a} \rho_{4} = \frac{V_{a} \rho_{4}}{2\rho_{4}} + \frac{V_{a} \rho_{4}}{2\rho_{4}} = \frac{V_{a} \rho_{4}}{2\rho_{4}} + \frac{V_{$$

Transformers- Review

• Define turns ratio as:

$$a \equiv \frac{N_1}{N_2}$$

 From Faraday's and Ampere's Law:

$$V_1 = \left(\frac{N_1}{N_2}\right) V_2 = aV_2$$

$$i_2 = \left(\frac{N_1}{N_2}\right) i_1 = ai_1$$

An Equivalent Circuit for Transformers

1Ф-Steps of Per Unit Analysis

- 1. Choose $S_B^{1\Phi}$ for the system.
- 2. Select V_B for different zones (usually follows transformer voltage ratings).
- 3. Calculate $Z_{\rm B}$ for different zones. = $V_{\rm B}$
- 4. Express all quantities in p.u.
- Draw impedance diagram and solve for p.u. quantities.
- 6. Convert back to actual quantities if needed.

3Ф Transformer Per Unit Model

designation	winding connection
Yy	
Yd	VLN VIN VIN VIN VIN VIN VIN VIN VIN VIN VI
Dy	$\sum_{i=1}^{\infty} V_{LN} \sum_{i=1}^{\infty} V_{In} $
Dd	V _{LN} V _{In}

2

VB each zone

VB each 2000e

(3)

$$Z_{\mathcal{B}} = \frac{(V_{\mathcal{B}}^{L-L})^2}{S_{\mathcal{B}}^{31}}$$
 each 3 me