Modelos y bases de datos Normalización

CEIS

2025-1

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNBC

Otros ejemplos

Student

¿ Buen diseño?

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

Problemas

CEstudiante	CMateria	NMateria	NGrupo	Profesor	NProfesor	NEstudiante
2092964	MBDA	Modelos y bases de datos	01	MIDR	María Díaz	Edwin Garcia
2093435	MBDA	Bases de datos	01	MIDR	María Díaz	Felipe Gomez
2090475	MBDA	Modelos y bases de datos	02	STB	Servio Benitez	Felipe Ortíz

Problemas

; Buen diseño?

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

Problemas

CEstudiante	CMateria	NMateria	NGrupo	Profesor	NProfesor	NEstudiante
2092964	MBDA	Modelos y bases de datos	01	MIDR	María Díaz	Edwin Garcia
2093435	MBDA	Bases de datos	01	MIDR	María Díaz	Felipe Gomez
2090475	MBDA	Modelos y bases de datos	02	STB	Servio Benitez	Felipe Ortíz

Problemas

- 1. Redundancia
- 2. Integridad
- 3. Anomalías al actualizar: Ad, Mo, El

¿ Buen diseño?

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

Problemas

CEstudiante	CMateria	NMateria	NGrupo	Profesor	NProfesor	NEstudiante
2092964	MBDA	Modelos y bases de datos	01	MIDR	María Díaz	Edwin Garcia
2093435	MBDA	Bases de datos	01	MIDR	María Díaz	Felipe Gomez
2090475	MBDA	Modelos y bases de datos	02	STB	Servio Benitez	Felipe Ortíz

Problemas

- Redundancia
- 2. Integridad
- Anomalías al actualizar: Ad, Mo, El
 Ad: 2090475 POOB Programación Orientada a Objetos MIDR María Díaz Andrés Campos

¿ Buen diseño?

INSCRIPCIONES(CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

Problemas

CEstudiante	CMateria	NMateria	NGrupo	Profesor	NProfesor	NEstudiante
2092964	MBDA	Modelos y bases de datos	01	MIDR	María Díaz	Edwin Garcia
2093435	MBDA	Bases de datos	01	MIDR	María Díaz	Felipe Gomez
2090475	MBDA	Modelos y bases de datos	02	STB	Servio Benitez	Felipe Ortíz

Problemas

- 1. Redundancia
- 2. Integridad
- 3. Anomalías al actualizar: Ad, Mo, El

El: La inscripción de Felipe Ortiz a MBDA

Tabla normalizada

Normalizar

¿Cuándo?

Tabla normalizada

Una tabla está en una forma normal específica si cumple con las condidiciones definidas para dicha forma

Normalizar

Convertir un conjunto de tablas en otro mejor. [:)]

$$\{R\} \leftarrow ($$
 Siempre R= R1 [X] R2) $\leftarrow \{R1,R2\}$

- No tiene algunos problemas. Cumple la condición de la forma.
- No se pierde información. Se puede reconstruir.

¿Cuándo?

Niveles

Problemas

ESTUDIANTES(codioo, cedula!, apellidos, nombres)

- 1. Redundancia
- 2. Integridad
- 3. Anomalías al actualizar: Ad, Mo, El

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Formas normales

1FN

2FN

3FN

FNB(

Otros ejemplo

Student

Bases teóricas

Dependiencia funcional

El subconjunto de atributos Y de R depende funcionalmente del subconjunto de atributos X de R si y sólo si un sólo valor de Y está asociado a cada valor de X

$$R.X \longrightarrow R.Y$$

- R.Y depende funcionalmente de R.X
- R.X determina funcionalmente a R.Y

La dependencia funcional es un concepto semántico

Bases teóricas

Dependiencia funcional

ESTUDIANTES(codigo, cedula!, apellidos, nombres)

¿Hay dependencia funcional?

- ► A: (codigo, cedula) B:(nombre,apellido)
- ► C: (codigo) D:(cedula)
- ► E: (nombre) F: (apellido)

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

TEI/

2FN

3FN

FNB(

Otros ejemplos

Student

Bases teóricas

Dependiencia funcional completa o irreductible

El subconjunto de atributos Y de R es por completo dependiente funcionalmente del subconjunto de atributos X de R si y sólo si depende funcionalmente de X y no depende funcionalmente de ningún subconjunto propio de X

Bases teóricas

Dependiencia funcional

ESTUDIANTES (codiao, cedula!, apellidos, nombres)

¿Dependencia funcional completa?

- ► A: (codigo, cedula) B:(nombre,apellido)
- ► C: (codigo) D:(cedula)
- ► E: (nombre) F: (apellido)

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1 F IV

2FN

3FN

FNB(

Otros ejemplos

Student

Bases teóricas

Determinante

Un determinante es un subconjunto de atributos de R del cual depende funcionalmente (por completo) algún otro subconjunto de atributos

Bases teóricas

Determinantes

ESTUDIANTES(codico, cedula!, apellidos, nombres)

¿Cuáles son los determinantes?

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNBC

Otros ejemplos

Student

Primera forma normal

 Una relación está en primera forma normal (1NF) si y sólo si todos los dominios simples subyacentes contienen sólo valores atómicos

1FN: ¿Todos los atributos tienen valores simples?

Inscripciones

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

1FN: ¿Todos los atributos tienen valores simples?

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNBC

Otros ejemplos

Student

Segunda forma normal

Una relación está en segunda forma normal (2NF) si y sólo si está en primera forma normal y todo atributo que no sea clave depende irreductiblemente de la clave

2FN: ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?

Inscripciones

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

Inscripciones

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

3FN: ¿Cuáles son la dependencias entre los otros atributos?

No 2 FN

 $\textbf{INSCRIPCIONES}(\underline{\textit{CEstudiante}}, \underline{\textit{CMateria}}, \underline{\textit{NMateria}}, \underline{\textit{NGrupo}}, \underline{\textit{IProfesor}}, \underline{\textit{NProfesor}}, \underline{\textit{NEstudiante}})$

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

No 2 FN

INSCRIPCIONES (CEstudiante, CMateria, NMateria, NGrupo, IProfesor, NProfesor, NEstudiante)

Código estudiante, Código materia, Nombre materia, Número de grupo. Identificación del profesor, Nombre profesor, Nombre estudiante

No 2 FN

INSCRIPCIONES(CEstudiante, CMateria, NGrupo, IProfesor, NProfesor)

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNBC

Otros ejemplos

Student

Tercera forma normal

Una relación está en tercera forma normal (3NF) si y sólo si está en segunda forma normal y todos los atributos que no son clave son dependientes de manera no transitiva de la clave

Inscripciones

Inscripciones

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNBC

Otros ejemplos

Student

Forma normal Boyce/Cood

Una relación está en forma Boyce/Cood(BCFN) si y sólo si todo determinante es una clave candidata

BCFN: ¿Cuáles son los determinantes? ¿Son claves candidatas?

Inscripciones

BCFN: ¿Cuáles son los determinantes? ¿Son claves candidatas?

Inscripciones

BCFN: ¿Cuáles son los determinantes? ¿Son claves candidatas?

Normalización

Datos

CEstudiante	CMateria	NMateria	NGrupo	IP rofesor	NProfesor	NEstudiante
2092964	MBDA	Modelos y bases de datos	01	MIDR	María Díaz	Edwin Garcia
2093435	MBDA	Bases de datos	01	MIDR	María Díaz	Felipe Gomez
2090475	MBDA	Modelos y bases de datos	02	STB	Servio Benitez	Felipe Ortíz

Inscripciones

Agenda

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNB(

Otros ejemplos

Student

Programaciones

Student

```
Student(SSN, sName, address,

HScode, HSname, HScity, GPA, priority

Keys:

Keys:

⟨SSN, HScode⟩
```

Normalizando

1FN ¿Todos los atributos tienen valores simples?

Student

```
Student(SSN, sName, address,

HScode, HSname, HScity, GPA, priority

GPA → priority

(SSN, HScode)
```

Normalizando

- 1FN ¿Todos los atributos tienen valores simples?
- **2FN** ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?

Student

```
Student(SSN, sName, address,

HScode, HSname, HScity, GPA, priority

GPA → priority

{

SSN, HScode}
```

Normalizando

- 1FN ¿Todos los atributos tienen valores simples?
- **2FN** ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?
- 3FN ¿Cuáles son la dependencias entre los otros atributos?

Student

```
Student(SSN, sName, address,

HScode, HSname, HScity, GPA, priority

Keys:

⟨SSN, HScode⟩
```

Normalizando

- 1FN ¿Todos los atributos tienen valores simples?
- **2FN** ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?
- 3FN ¿Cuáles son la dependencias entre los otros atributos?
- FNBC ¿Cuáles son los determinantes? ¿Son claves candidatas?

Student

```
Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority Keys:

GPA \rightarrow priority \{ssN, HScode\}
```

Student - BNF

```
BCNF Decomposition Example
\simSSN\rightarrowsName, address, GPA\rightarrowpriority
                             Key: {sin, uscode}
► HScode → HSname, HScity
    SI (HScode, HSname, Hacity) -
-52 (SSN, SName, addr, Houle, GPA, prioris
      S3 (GPA, priority)
          Sy ( SSN, SName, addr, Bode, GPA)
              S 55 (SSN, SName, addr, GPA)
                   S6 (SSN, Hscode
```

Agenda

Normalización

Bases teóricas

Dependencia funcional

Dependencia funcional completa

Determinante

Formas normales

1FN

2FN

3FN

FNB(

Otros ejemplos

Student

Programaciones

Programaciones

PROGRAMACIONES(salon, dia, hora, materia, grupo, inscritos, capacidad)

Normalizando

1FN ¿Los atributos tienen valores simples?

Programaciones

PROGRAMACIONES(salon, dia, hora, materia, grupo, inscritos, capacidad)

Normalizando

1FN ¿Los atributos tienen valores simples?

2FN ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?

Programaciones

PROGRAMACIONES(salon, dia, hora, materia, grupo, inscritos, capacidad)

Normalizando

1FN ¿Los atributos tienen valores simples?

2FN ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?

3FN ¿Cuáles son la dependencias entre los otros atributos?

Programaciones

PROGRAMACIONES(salon, dia, hora, materia, grupo, inscritos, capacidad)

Normalizando

1FN ¿Los atributos tienen valores simples?

2FN ¿Cuáles son la dependencias entre los atributos clave y los otros atributos?

3FN ¿Cuáles son la dependencias entre los otros atributos?

FNBC ¿Cuáles son los determinantes? ¿Son claves candidatas?