Chapter 1: Introduction

(Presentation Slides Adapted from Book's Website)

MATH2319

- What is Predictive Data Analytics?
- What is Machine Learning?
- 3 How Does Machine Learning Work?
- What Can Go Wrong With ML?
- 5 PDA Project Lifecycle: Crisp-DM

What is Predictive Data Analytics?

- Predictive Data Analytics (PDA) encompasses
 - the business
 - the data processes (a.k.a. data pipeline)
 - mathematical/ statistical/ computational models (a.k.a. machine learning)

that enable a business to make data-driven decisions.

Figure: Predictive data analytics moving from data to insights to decisions.

Example Applications:

- Loan default prediction
- Fraud detection
- Medical diagnosis
- Document Classification
- Predict selling price of a diamond
- Can you predict when a volcano will erupt?

Two Types of Predictions:

- Predicting a categorical target variable: Classification
- Predicting a numerical target variable: Regression

What is Machine Learning?

 (Supervised) Machine Learning techniques automatically learn a model of the relationship between a set of descriptive features and a target feature from a set of historical examples.

Summary of the Learning Setup

Figure: (from "Learning from Data" textbook)

Figure: Using machine learning to induce a prediction model from a training dataset.

Figure: Using the model to make predictions for new query instances.

Many names for the same things

Some other names for features:

- attributes
- variables

Some other names for a target feature:

- response variable
- dependent variable

Some other names for descriptive features:

- independent variables
- explanatory variables

Some names for rows in a dataset:

- instances
- observations
- records

12/39

			LOAN-SALARY	
ID	OCCUPATION	AGE	RATIO	OUTCOME
1	industrial	34	2.96	repaid
2	professional	41	4.64	default
3	professional	36	3.22	default
4	professional	41	3.11	default
5	industrial	48	3.80	default
6	industrial	61	2.52	repaid
7	professional	37	1.50	repaid
8	professional	40	1.93	repaid
9	industrial	33	5.25	default
10	industrial	32	4.15	default

 What is the relationship between the descriptive features (OCCUPATION, AGE, LOAN-SALARY RATIO) and the target feature (OUTCOME)?

```
if LOAN-SALARY RATIO > 3 then
  OUTCOME='default'
else
  OUTCOME='repay'
end if
```

- This is an example of a prediction model
- Notice that this model does not use all the features and the feature that it uses is a derived feature (in this case a ratio). Two important topics that we will return to again and again:
 - feature design
 - feature selection

- What is the relationship between the descriptive features and the target feature (OUTCOME) in the following dataset?
- In the table below, Type "stb" refers to second-time buyer and "ftb" refers to first-time buyer.

			Loan- Salary					
ID	Amount	Salary	Ratio	Age	Occupation	House	Туре	Outcome
1	245,100	66,400	3.69	44	industrial	farm	stb	repaid
2	90,600	75,300	1.2	41	industrial	farm	stb	repaid
3	195,600	52,100	3.75	37	industrial	farm	ftb	default
4	157,800	67,600	2.33	44	industrial	apartment	ftb	repaid
5	150,800	35,800	4.21	39	professional	apartment	stb	default
6	133,000	45,300	2.94	29	industrial	farm	ftb	default
7	193,100	73,200	2.64	38	professional	house	ftb	repaid
8	215,000	77,600	2.77	17	professional	farm	ftb	repaid
9	83,000	62,500	1.33	30	professional	house	ftb	repaid
10	186,100	49,200	3.78	30	industrial	house	ftb	default
11	161,500	53,300	3.03	28	professional	apartment	stb	repaid
12	157,400	63,900	2.46	30	professional	farm	stb	repaid
13	210,000	54,200	3.87	43	professional	apartment	ftb	repaid
14	209,700	53,000	3.96	39	industrial	farm	ftb	default
15	143,200	65,300	2.19	32	industrial	apartment	ftb	default
16	203,000	64,400	3.15	44	industrial	farm	ftb	repaid
17	247,800	63,800	3.88	46	industrial	house	stb	repaid
18	162,700	77,400	2.1	37	professional	house	ftb	repaid
19	213,300	61,100	3.49	21	industrial	apartment	ftb	default
20	284,100	32,300	8.8	51	industrial	farm	ftb	default
21	154,000	48,900	3.15	49	professional	house	stb	repaid
22	112,800	79,700	1.42	41	professional	house	ftb	repaid
23	252,000	59,700	4.22	27	professional	house	stb	default
24	175,200	39,900	4.39	37	professional	apartment	stb	default
25	149,700	58,600	2.55	35	industrial	farm	stb	default

```
if LOAN-SALARY RATIO < 1.5 then
   OUTCOME='repay'
else if LOAN-SALARY RATIO > 4 then
   OUTCOME='default'
else if AGE < 40 and OCCUPATION ='industrial' then
   OUTCOME='default'
else
   OUTCOME='repay'
end if</pre>
```

 The real value of machine learning becomes apparent in situations like this when we want to build prediction models from large datasets with multiple features.

How Does Machine Learning Work?

- Machine learning algorithms work by searching through a set of possible prediction models for the model that best captures the relationship between the descriptive features and the target feature.
- An obvious search criteria to drive this search is to look for models that are consistent with the data
 - Consistent Model: A model that makes no mistakes on the training data
- However, because a training dataset is only a sample, ML is an ill-posed problem.

Table: A simple retail dataset

ID	BABY FOOD	ALCOHOL	ORGANIC	GROUP TYPE (TARGET)
1	no	no	no	couple
2	yes	no	yes	family
3	yes	yes	no	family
4	no	no	yes	couple
5	no	yes	yes	single

- Here it is assumed that there is no noise in the data.
- Notice there are $2^3 = 8$ possible combinations, and we already know the target value for 5 of them (3 descriptive features all with 2 possible values).
- The goal here is find a ML model to predict the remaining 3 combinations.

Table: A sample of the models that are consistent with the training data

Вву	ALC	ORG	GRP	M_1	\mathbb{M}_2	M_3	\mathbb{M}_4	\mathbb{M}_5	 M ₆ 561
no	no	no	couple	couple	couple	single	couple	couple	couple
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no	no	?	couple	couple		family	family	
yes	no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	? -	single	single	family	family	couple	family

- There are $3^3 = 27$ models that are all consistent with the training data (3 missing combinations, 3 different group possibilities).
- They all agree on the sample data, but they disagree on the predictions denoted by ?.
- Since a single consistent model cannot be found based on a sample training dataset, ML is said to be ill-posed.

- Consistency ≈ memorizing the dataset.
- Consistency with noise in the data isn't desirable.
- Goal: a model that generalises beyond the dataset and that isn't influenced by the noise in the dataset.
- So what criteria should we use for choosing between models?

- Inductive bias is the set of assumptions that define the model selection criteria of an ML algorithm.
- There are two types of bias that we can use:
 - Restriction bias (required)
 - Preference bias (optional, usually a good idea to avoid overfitting)
- Inductive bias is necessary for learning (beyond the dataset).

Examples of Inductive Bias

- Example 1:
 - Restrictive bias: a tree model
 - Preference bias: shallow trees
- Example 2:
 - Restrictive bias: a nearest neighbour model
 - Preference bias: higher degrees of K (the number of neighbours to examine)
- Example 3:
 - Restrictive bias: a linear model
 - Preference bias: fewer number of terms

How ML works (Summary)

- ML algorithms work by searching through sets of potential models.
- There are two sources of information that guide this search:
 - the training data,
 - the inductive bias of the algorithm.

What Can Go Wrong With ML?

- No free lunch!
- What happens if we choose the wrong inductive bias:
 - underfitting
 - overfitting

Table: The age-income dataset.

ID	Age	Іпсоме
1	21	24,000
2	32	48,000
3	62	83,000
4	72	61,000
_ 5	84	52,000

Figure: Trying to achieve a balance when trying to predict income from age

 Striking the right balance between model complexity and simplicity (between underfitting and overfitting) is the hardest part of machine learning.

Bias-Variance Trade-off Illustration

In a 2-dimensional feature space:

dataset whereas the black boundary makes some mistakes.

The green boundary gives 100% accuracy on the (training)

- The inexperienced ML practitioner will go for the green boundary.
- However, what you should really use in the real world (for making predictions) is the black boundary and not the green boundary.
- Why?

Concept of Bias-Variance Trade-off

- The green boundary corresponds to a very complex model and it has
 - High Variance: the boundary is likely to change (a lot!) for a new sample from the population of all possible training datasets.
 - ► Low Bias: the boundary is likely to have very little difference from the true boundary for this training dataset.
- The black boundary corresponds to a very simple model and it has
 - Low Variance
 - High Bias
- In general, all models will trade some bias with some variance.
- Figuring out the optimal model complexity (that is, the optimal bias-variance trade-off) is at the **heart of machine learning**.
- However, figuring out the optimal model complexity is more difficult than it looks and this is why machine learning is both art and science at the same time.

MATH2319 Chapter 1: Introduction 35/39

Types of machine learning algorithms

- Four fundamental learning paradigms:
 - Information based learning
 - Similarity based learning
 - Probability based learning
 - Error based learning
- Basic ML algorithms are sometimes combined via boosting and ensembles, giving rise to more complex ML algorithms:
 - Gradient boosting
 - Random forests
 - ► Etc.

PDA Project Lifecycle: Crisp-DM

Figure: A diagram of the CRISP-DM (Cross-Industry Standard Process for Data Mining) process which shows the six key phases and indicates the important relationships between them.

- What is Predictive Data Analytics?
- What is Machine Learning?
- 3 How Does Machine Learning Work?
- What Can Go Wrong With ML?
- 5 PDA Project Lifecycle: Crisp-DM