Isaac Van Doren Chapter 2 April 11, 2023

Section 1

Exercise 2.1.i The question asks us to the consider natural transformations between Cat(1,-) and Cat(2,-) induced by functors between 1 and 2.

For the collapsing functor $!: 2 \to 1$, we have the following naturality square:

$$\mathbf{Cat}(\mathbf{1}, x) \xrightarrow{!^*} \mathbf{Cat}(\mathbf{2}, x)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{f_*}$$

$$\mathbf{Cat}(\mathbf{1}, y) \xrightarrow{!^*} \mathbf{Cat}(\mathbf{2}, y)$$

This diagram commutes because for any suitable input x, $f_*!^*(x) = !xf = !^*f_*(x)$.

We achieve similar results for 0 and 2 by drawing a similar diagram for natural transformations from $Cat(2, -) \to Cat(1, -)$.

what else should be said about these natural transformations?

Exercise 2.1.ii If F is representable then we have a natural isomorphism α and the following commutative square:

$$Fx \stackrel{\alpha_x}{\longleftrightarrow} C(c, x)$$

$$Ff \downarrow \qquad \qquad \downarrow f_*$$

$$Fy \stackrel{\alpha_y}{\longleftrightarrow} C(c, y)$$

Now suppose f is monic and pick two morphisms $g, h : W \Rightarrow C(c, x)$ for some set W, such that $f_*g = f_*h$. This is equivalent to saying $\forall w \in W, f_*(g(w)) = f_*(h(w)) \implies f \circ (g(w)) = f \circ (h(w)) \implies g(w) = h(w) \implies g = h$ by the fact that f is monic. Hence f_* is monic.

Now, by the square, we have $\alpha_y Ff = f_* \alpha_x \implies Ff = \alpha_y^{-1} f_* \alpha_x$. Hence Ff is a composition of three injective maps which together are also injective. Therefore F preserves monomorphisms.

As for part two, pick a functor $\mathbf{2} \to \mathbf{Set}$ that takes the morphism to a non-injective function. By the contrapositive of the above statement, the functor is not representable because it does not preserve monomorphisms. ///

Section 2

Exercise 2.2.i To reach the dual of the Yoneda Lemma, consider the category in question to be C^{op} . Then for a functor $F: C^{op} \to \mathbf{Set}$, there is a bijection

$$\operatorname{Hom}(C^{\operatorname{op}}(c,-),F) \cong Fc$$

for any $c \in C^{op}$. Now realize that $C(a,b) = C^{op}(b,a)$, so we have

$$\operatorname{Hom}(C(-,c),F) \cong Fc$$

Isaac Van Doren Chapter 2 April 11, 2023

///

Exercise 2.2.ii It does not dualize to that because that is just not the dual statement.

Exercise 2.2.iii Pick two objects $c, d \in \omega$ and consider $\omega(c, d)$ and $\mathbf{Set}^{\omega^{\mathrm{op}}}(yc, yd) = \mathbf{Set}^{\omega^{\mathrm{op}}}(\omega(-, c), \omega(-, d))$. Because ω is a poset, there is at most one morphism in $\omega(c, d)$

Exercise 2.2.iv Suppose $f: x \to y$ is an isomorphism. Then $f_*: C(-,x) \to C(-,y)$ defines a natural transformation one direction and $(f^{-1})_* = f_*^{-1}$ defines the other direction.

Suppose f_* is a natural isomorphism. Then f_* has an inverse, f_*^{-1} . This means that we have $f_* \circ f_*^{-1} = \operatorname{id}_y$ and $f_*^{-1} \circ f_* = \operatorname{id}_x$. So, for suitable morphisms, h, k, we have $f_*^{-1}(f_*(h)) = f_*^{-1}(fh) = h$ and $f_*(f_*^{-1}(k)) = ff_*^{-1}(k) = k$

(INSERT PROOF) hence f is an isomorphism.

The same reasoning applies for f^* .

Section 3