Université Hassan II-Mohammedia

FSJES - Mohammedia
Filière Economie-Gestion
Samastra 2 Modula Méthodas quantit

Semestre 2 – Module Méthodes quantitatives

Examen de Mathématiques II Session de Mai 2010 Durée : 1H30

Documents non autorisés (sauf calculatrice) Aucun échange de calculatrice n'est autorisé

Exercice 1 : Une suite géométrique est telle que la somme des ses cinq premiers termes est égale à 310 ($u_1+u_2+u_3+u_4+u_5=310$) et la somme des ses termes compris entre le quatrième terme et le huitième terme est égale à 2480 ($u_4+u_5+u_6+u_7+u_8=2480$). Donner la raison de cette suite et la somme de ses dix premiers termes.

Exercice 2 : Un capital C est placé à intérêts simples pendant 10 périodes au taux d'intérêts 9% par période. Sachant que l'intérêt de la 5^{ème} période est égal à 9000, calculer la valeur définitive de ce placement.

Exercice 3 : Un capital C est placé pendant 12 périodes au taux d'intérêts i par période. Sachant que l'intérêt de la 3^{ème} période est égal à 3307,50 et celui de la 6^{ème} période est égal à 3828,85 ; calculer le taux d'intérêt i et la valeur définitive de ce placement.

Exercice 4 : Chaque fin d'année, un particulier place, sur un compte lui rapportant 6,5% (à intérêts composés) un capital de 4500 (Nombre de versements : 10). Une année après le dernier versement, il retire 20000 et trois années plus tard 25000. L'année suivante, il décide de clôturer son compte. Calculer le montant du dernier retrait.

Exercice 5:

- a) Calculer la valeur acquise immédiatement après le dernier versement d'une suite de 12 placements : les 4 premiers de 1500 chacun, les 4 suivants de 2500 chacun et les 4 derniers de 3500 chacun. Le taux d'intérêt est 7%
- b) Un emprunt est remboursé par 12 versements : les 4 premiers de 3500 chacun, les 4 suivants de 2500 chacun et les 4 derniers de 1500 chacun. Le taux d'intérêt est 8%. Calculer le montant de cet emprunt

Exercice 6 : Une personne emprunte 60 000€ remboursables en 6 ans par le versement d'annuités calculées à 10%. Établir le tableau d'amortissement et **donner le coût** de cet emprunt dans chacun des cas suivants :

- a) La procédure utilisée est celle des amortissements constants.
- b) La procédure utilisée est celle du remboursement final.
- c) La procédure utilisée est celle du remboursement par annuités constantes

1

Exercice 1 : (3 points) Désignons par u₁ le premier terme de cette suite et k sa raison :

$$\triangleright$$
 (1) $u_1 + u_2 + u_3 + u_4 + u_5 = u_1 (1 + k + k^2 + k^3 + k^4) = 310$
 \triangleright (2) $u_4 + u_5 + u_6 + u_7 + u_8 = u_4 (1 + k + k^2 + k^3 + k^4) = 2480$

On divise (2) par (1), sachant que $u_4 = k_1^3 u_1$ on obtient : $k^3 = 8$, donc k = 2 (1 point) On reporte dans (1) (par exemple) et on obtient $u_1 = 10$ (1 point)

Par consequent: $\underline{u}_1 + ... + \underline{u}_{10} = u_1 (1 + ... + k^9) = u_1 (k^{10} - 1)/(k - 1) = 10230$ (1 point)

Exercice 2: (2 points) A intérêts simples <u>les intérêts par période sont constants</u> et de valeur commune Ci, ainsi Ci = 9000 c'est-à-dire C x 0,09 = 9000, donc <u>C = 100000</u> (1 point) La valeur définitive de ce placement est donc $V_D = C(1+ni) = 100000(1+10x0,09) = 190000 (1 point)$

Exercice 3: (4 points) L'intérêt de la 3^{ème} période étant différent de celui de la 6^{ème} période, le placement est certainement à intérêts composés. L'intérêt de la 3^{ème} période est calculé sur la base de la valeur acquise fin de la $2^{\text{ème}}$ période : $I_3 = C_2$ i $= C_0$ (1+i) 2 i = 3307,50 ; L'intérêt de la $6^{\text{ème}}$ période est calculé sur la base de la valeur acquise fin de la $5^{\text{ème}}$ période : $I_6 = C_5$ i = C_0 (1+i) 5 i = 3828,85. Nous avons alors $I_6/I_3 = (1+i)^3 = 3828,85/3307,50 = 1,1576...$ on obtient i = 5% (2 points) On reporte dans I_3 et on obtient : $C_0 = 60000$ (1 point)

La valeur définitive de ce placement est donc $V_D = C_0 (1+i)^n = 60000 \times 1,05^{12} = 107751,38$ (1 point)

Exercice 4 : (3 points) Immédiatement après les 10 versements de 4500, la valeur acquise est : $V_1 = 4500 (1,065^{10} - 1)/0,065 = 60724,90$, La valeur acquise une année plus tard après le retrait de 20000 est : $V_2 = V_1 \times 1,065 - 20000 = 44672.02$ et 3 années plus tard après le retrait de 25000 cette valeur acquise devient égale à $V_3 = V_2 \times 1,065^3 - 25000 = 28961,55$. A la clôture du compte une année plus tard :

Le montant du dernier retrait est dons égal à : $V_4 = V_3 \times 1,065 = 30844,05$ (3 points)

Exercice 5: (4 points)

a)... $V_A = 1500((1.07^4 - 1)/0.07) \times 1.07^8 + 2500((1.07^4 - 1)/0.07) \times 1.07^4 + 3500((1.07^4 - 1)/0.07)$ = $(1500 \times 1,07^8 + 2500 \times 1,07^4 + 3500) ((1,07^4-1)/0,07) = 41532,42$ (2 points)

b)...D₀ = $3500((1-1,08^{-4})/0,08) + 2500((1-1,08^{-4})/0,08) \times 1.08^{-4} + 1500((1-1,08^{-4})/0,08) \times 1.08^{-8}$ = $(3500 + 2500 \times 1,08^{-4} + 1500 \times 1,08^{-8}) ((1-1,08^{-4})/0,08) = 20362,88$ (2 points)

Exercice 6: (4 points)

ATS constarts

a)

Période	Capital dû	Intérêts	Amortissements	Annuités
1	60 000	6000	10 000	16 000
2	50 000	5000	10.000	15 000
3	40.000	4000 -	10 000	14 000
4	30,000	3000	10 000	13 000
5	20 000	-2000	10.000	12 000
6	10 000	1000	10 000	11 000

Coût de cette procédure = somme des intérêts = 21 000 (1 point)

Remboursement finale

b)

Période	Capital dû	Intérêts	Amortissements Annuités
1	60.000	6000	0 6,000
2	60 000	6000	0 6 000
3	60.000	6000	0 6 000
4	60.000	6000	0 6 000
5	60:000	6000	6.000
6	60 000	6000	60 000 - 66 000

Coût de cette procédure = somme des intérêts = 36 000 (1 point)

Annuté constant

c)

Période	Capital dû	Intérêts Amortissements	Annuités
1	60.000	6000 7776 44	13776,44
2	52223,56	5222,36 8554,08	13776,44
3	43069,48	4366,95 9409,49	13776,44
4	34259,99	3426 10350,44	13776,44
5	23909,55	2390,95 11385,49	13776,44
6	12524,06	1252,40 12524,04	13776,44

Coût de cette procédure = somme des intérêts = 6 x annuité - 60 000 = 22 658,64 (2 points)

a -

 $\int_{0}^{\infty} \rho_{0} = a \frac{1 - (n+i)^{-1}}{i}$

as Dor (+1)-sh.

1 - (1+i)

1-(210,30)

5,4355260639

(2)