11. Introduction to Value of Information

Gianluca Baio

Department of Statistical Science | University College London

```
■ g.baio@ucl.ac.uk

○ https://gianluca.statistica.it/
○ https://egon.stats.ucl.ac.uk/research/statistics-health-economics/
○ https://github.com/giabaio
○ https://github.com/StatisticsHealthEconomics

■ @gianlubaio
```

Bayesian Methods in Health Economics, Lausanne

Summary

- Motivating Value of Information (VoI) approach
- Summarising uncertainty and PSA
- Research priorities

References

- Bayesian Methods in Health Economics, chapters 3.5.2, 3.5.3 Nook website (CRC) Book website Code
- Evidence Synthesis for Decision Making in Healthcare, chapter 12 Book website
- Bayesian Cost-Effectiveness Analysis with the R package BCEA, chapter 4.3 Pook website (Springer) Book website

2/14

Knowledge is power?

(A tale of two stupid examples)

- **Example 1**: Intervention t=1 is more cost-effective, given current evidence
 - $-\Pr(t=1 \text{ is cost-effective}) = 0.51$
 - If we get it wrong:
 - Increase in population average costs = £3
 - Decrease in population average effectiveness = 0.000001 QALYs
 - Large uncertainty/negligible consequences⇒can afford uncertainty!

Value of Information (VoI)

(A tale of two stupid examples)

- **Example 1**: Intervention t=1 is more cost-effective, given current evidence
 - $-\Pr(t=1 \text{ is cost-effective}) = 0.51$
 - If we get it wrong:
 - Increase in population average costs = £3
 - Decrease in population average effectiveness = 0.000001 QALYs
 - Large uncertainty/negligible consequences⇒can afford uncertainty!
- ullet Example 2: Intervention t=1 is more cost-effective, given current evidence
 - $-\Pr(t=1 \text{ is cost-effective}) = 0.999$
 - If we get it wrong:
 - Increase in population average costs = £1000000000
 - Decrease in population average effectiveness = 999999 QALYs
 - Tiny uncertainty/dire consequences⇒probably should think about it…!

Decisions with uncertainty

- Net Benefit depends on:
 - Relative treatment efficacy (e.g. meta-analysis)
 - Relative treatment efficacy (e.g. meta-analy Natural history / disease progression
 - Utility (quality of life)
 - Economic parameters (costs)
- Uncertainty may exist on all these inputs
 - Parameter uncertainty
- Translates into uncertainty in expected NB
 - *Decision* uncertainty
 - Are we happy to make a decision currently?
 - Should we consider collecting more info?

Evidence based decision-making and Vol

Evidence based decision-making and Vol

Process inherently Bayesian!

Slide stolen from Nicky Welton

Vol: Basic ideas

- A new study will provide more data
 - Reducing (or even eliminating?...) uncertainty in a subset of the model parameters
- Update the cost-effectiveness model
 - If optimal decision changes, gain in monetary **net benefit** (NB = utility) from using new optimal treatment
 - If optimal decision doesn't change, no gain in NB
- Expected Vol is the average gain in NB

- A new study will provide more data
 - Reducing (or even eliminating?...) uncertainty in a subset of the model parameters
- Update the cost-effectiveness model
 - If optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision doesn't change, no gain in NB
- Expected Vol is the average gain in NB
- Expected value of Perfect Information (EVPI)
 - Value of completely resolving uncertainty in all input parameters to decision model
 - Infinite-sized, long-term follow up trial measuring everything!...
 - Gives an upper bound on the value of the new study low EVPI suggests we can make our decision based on existing information

6/14

- A new study will provide more data
 - Reducing (or even eliminating?...) uncertainty in a subset of the model parameters
- Update the cost-effectiveness model
 - If optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision doesn't change, no gain in NB
- Expected Vol is the average gain in NB
- Expected value of Perfect Information (EVPI)
 - Value of completely resolving uncertainty in all input parameters to decision model
 - Infinite-sized, long-term follow up trial measuring everything!...
 - Gives an upper bound on the value of the new study low EVPI suggests we can make our decision based on existing information
- Expected value of Partial Perfect Information (EVPPI)
 - Value of eliminating uncertainty in subset of input parameters to decision model
 - e.g.: Infinite-sized trial measuring relative effects on 1-year survival
 - Useful to identify which parameters are responsible for decision uncertainty

- A new study will provide more data
 - Reducing (or even eliminating?...) uncertainty in a subset of the model parameters
- Update the cost-effectiveness model
 - If optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision doesn't change, no gain in NB
- Expected Vol is the average gain in NB
- Expected value of Perfect Information (EVPI)
 - Value of completely resolving uncertainty in all input parameters to decision model
 - Infinite-sized, long-term follow up trial measuring everything!...
 - Gives an upper bound on the value of the new study low EVPI suggests we can make our decision based on existing information
- 2 Expected value of Partial Perfect Information (EVPPI)
 - Value of eliminating uncertainty in subset of input parameters to decision model
 - e.g.: Infinite-sized trial measuring relative effects on 1-year survival
 - Useful to identify which parameters are responsible for decision uncertainty
- **Expected value of Sample Information (EVSI)**
 - Value of reducing uncertainty by conducting a specific study of a given design
 - Can compare the benefits and costs of a study with given design
 - Is the proposed study likely to be a good use of resource? What is the optimal design?

In general, VoI measures are always expressed as something like

Vol measure = Some idealised decision-making process - current decision-making process

in general, VoI measures are always expressed as something like

Vol measure = Some idealised decision-making process - current decision-making process

Complexity

- There's no natural upper bound
 - Voi measures are positive, but how low is low?...
- Need to account for other factors
 - How much would it cost to get to the point when we can make the idealised decision-making process?
 - Who would that affect?
 - For how long?
 - **–** ...
- Computational & modelling issues
 - You need to know what you're doing (again, modelling **fundamentally** Bayesian)
 - And use suitable tools (basically, never use spreadsheets...)

Expected Value of Perfect Information

	Parameter simulations						
Iteration	π_0	ρ	• • •	γ			
1	0.585	0.3814	• • •	0.4194			
2	0.515	0.0166	• • •	0.0768			
3	0.611	0.1373	• • •	0.0592			
4	0.195	0.7282	• • •	0.7314			
• • •	• • •	• • •	• • •	• • •			
1000	0.0305	0.204	• • •	0.558			

- Characterise uncertainty in the model parameters
 - In a full Bayesian setting, these are drawings from the posterior distribution of $oldsymbol{ heta}$
 - In a frequentist setting, these are typically bootstrap draws from a set of univariate ditributions that describe some level of uncertainty around the MLEs

Expected Value of Perfect Information

	Parameter simulations				Expected utility	
Iteration	π_0	ρ	• • •	γ	$NB_0(oldsymbol{ heta})$	$NB_1(oldsymbol{ heta})$
1	0.585	0.3814	• • •	0.4194	77480.00	67795.00
2	0.515	0.0166	• • •	0.0768	87165.00	106535.00
3	0.611	0.1373	• • •	0.0592	58110.00	38740.00
4	0.195	0.7282	• • •	0.7314	77480.00	87165.00
• • •	• • •	• • •	• • •	• • •	• • •	• • •
1000	0.0305	0.204	• • •	0.558	48425.00	87165.00
				Average	72365.35	77403.49

Uncertainty in the parameters induces a distribution of

decisions

- Typically based on the **net benefits**: $\mathsf{NB}_t(oldsymbol{ heta}) = k\mu_{et} \mu_{ct}$
- In each parameter configuration can identify the *optimal strategy*
- Averaging over the uncertainty in θ provides t^* , the overall optimal decision given current uncertainty (= choose the intervention associated with highest expected utility)

Expected Value of Perfect Information

<u>.</u>	P	arameter	simulatior	าร	Expected utility			
Iteration	π_0	ho	• • •	γ	$NB_0(oldsymbol{ heta})$	$NB_1(oldsymbol{ heta})$	Maximum net benefit	Opportunity loss
1	0.585	0.3814	• • •	0.4194	77480.00	67795.00	77480.00	9685.00
2	0.515	0.0166	• • •	0.0768	87165.00	106535.00	106535.00	0.00
3	0.611	0.1373	• • •	0.0592	58110.00	38740.00	58110.00	19370.00
4	0.195	0.7282	• • •	0.7314	77480.00	87165.00	87165.00	0.00
• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •
1000	0.0305	0.204	• • •	0.558	48425.00	87165.00	87165.00	0.00
				Average	72365.35	77403.49	91192.02	13788.53

Expected value

of "Perfect" Information (EVPI) summarises uncertainty in the decision

Defined as the average Opportunity Loss, or average maximum expected utility under "perfect" information—maximum expected utility overall:

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_t(\boldsymbol{\theta}) \right]$$

Expected Value of Perfect Information

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_t(\boldsymbol{\theta}) \right]$$

- $[\max_t \mathsf{NB}_t(\boldsymbol{\theta})]$: Value of decision if we knew $\boldsymbol{\theta}$
- $\max_t \mathsf{E}_{\boldsymbol{\theta}}[\mathsf{NB}_t(\boldsymbol{\theta})]$: Value of decision based on current information

Expected Value of Perfect Information

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_t(\boldsymbol{\theta}) \right]$$

- $[\max_t NB_t(\boldsymbol{\theta})]$: Value of decision if we knew $\boldsymbol{\theta}$
- $\max_t \mathsf{E}_{\theta}[\mathsf{NB}_t(\theta)]$: Value of decision based on current information

Useful to rewrite as

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) - \mathsf{NB}_{t*}(\boldsymbol{\theta}) \right]$$

where t^* maximises $\mathsf{E}_{m{ heta}}\left[\mathsf{NB}_t(m{ heta})\right]$, based on current information

ullet $[\max_t \mathsf{NB}_t(oldsymbol{ heta}) - \mathsf{NB}_{t*}(oldsymbol{ heta})]$: Opportunity lost from using t^* instead of the optimal t for $oldsymbol{ heta}$

Expected Value of Perfect Information

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \left[\mathsf{NB}_t(\boldsymbol{\theta}) \right]$$

- $[\max_t NB_t(\boldsymbol{\theta})]$: Value of decision if we knew $\boldsymbol{\theta}$
- $\max_t \mathsf{E}_{\theta}[\mathsf{NB}_t(\theta)]$: Value of decision based on current information

Useful to rewrite as

$$\mathsf{EVPI} = \mathsf{E}_{\boldsymbol{\theta}} \left[\max_t \mathsf{NB}_t(\boldsymbol{\theta}) - \mathsf{NB}_{t*}(\boldsymbol{\theta}) \right]$$

where t^* maximises $\mathsf{E}_{m{ heta}}\left[\mathsf{NB}_t(m{ heta})
ight]$, based on current information

ullet $[\max_t \mathsf{NB}_t(oldsymbol{ heta}) - \mathsf{NB}_{t*}(oldsymbol{ heta})]$: Opportunity lost from using t^* instead of the optimal t for $oldsymbol{ heta}$

Golden rule of Value of Information

Information only has value if it changes your decision

Expected Value of Information

Objectives

• To investigate the net benefit of a universal screening over targeted screening for HIV

Design of the study

• Multi-parameter evidence synthesis of observational studies

Ades et al (2002) Medical Decision Making

Targeted prenatal screening

SSA=Sub-Saharian Africans IDU=Injecting Drug Users

Universal vs Targeted testing

$$\mathsf{NB}(oldsymbol{ heta}) = \left\{ egin{array}{ll} 0 & t = 1, \mathrm{targeted} \ N(1-a-b)[e(1-h)(M-T)-T(1-e)] & t = 2, \mathrm{universal} \end{array}
ight.$$

- N = number of pregnancies per year
- (1-a-b) = proportion of "Low Risk"
- M = net benefit of early maternal diagnosis
- e = HIV prevalence in "Low Risk"
- h = proportion of infected "Low Risk" already diagnosed
- $T = \cos t \text{ of screening test (= £3)}$

Uncertainty in model inputs

$$oldsymbol{ heta} = \left\{ egin{array}{ll} N, M, T & ext{economic parameters} \ a, b, e, h & ext{epidemiological parameters} \end{array}
ight.$$

- N = 105,000
- T = £3
- M is uncertain
 - From previous model: M = 600,012 54, 296Y with $Y\sim \mathsf{Gamma}(0.56,3)I(0,2)$
- Epidemiology parameters estimated from multi-parameter evidence synthesis
 - Correlated
 - MCMC samples available

11 / 14

Uncertainty in model inputs

$$oldsymbol{ heta} = \left\{ egin{array}{ll} N, M, T & ext{economic parameters} \ a, b, e, h & ext{epidemiological parameters} \end{array}
ight.$$

- N = 105,000
- T = £3
- M is uncertain
 - From previous model: M = 600,012 54, 296Y with $Y\sim \mathsf{Gamma}(0.56,3)I(0,2)$
- Epidemiology parameters estimated from multi-parameter evidence synthesis
 - Correlated
 - MCMC samples available

Population EVPI

- NB is typically computed per individual patient
 - Need to multiple EVPI by the number of individuals expected to benefit per year
 - In HIV example population size included in NB, so already accounted for
- Also, expect the benefits of getting decision right to accrue for longer than 1 year
 - Until superseded...

R code: Cost effectiveness analysis for the HIV example

```
> # Read in 150,000 simulated values of M, a, b, e, h
> par <- read.table("hiv150.txt",header=TRUE)</pre>
> N <- 105000; T <- 3; Nsim <- nrow(par);
> Nt <- 2
                                         # Nt=no. trts
>
> # Net Benefit based on current information
> NB <- matrix(rep(0.Nsim*Nt).Nsim.Nt)</pre>
> NB[,2] <- N*(1-par$a-par$b)*(par$M*par$e*(1-par$h) - T*(1-par$e*par$h))
                           # Column means for each trt
> ENB <- apply(NB,2,mean)</pre>
> tstar <- which.max(ENB) # t* optimises ENB
>
> # Prob t* is cost-effective: checks if t=2 is optimal
> CE <- ifelse(NB[,2]>NB[,1],1,0)
> probCE <- mean(CE)</pre>
                                      # Prob t*=2 is cost-effective
> # Find maximum NB for each simulation (ie max across rows of NB)
> max.NBgain <- apply(NB,1,max) - NB[,tstar]</pre>
>
> # Compute EVPI
> EVPI <- 7.7217*mean(max.NBgain)</pre>
```

Results

- E(IB) = £1,023,931 Universal vs Targeted
- ullet Optimal decision $t^*=$ 2: Universal
- $\Pr(t^*=2 \text{ is optimal})=0.971$
- EVPI = £71,670 per 10 years

12/14

R code: Check convergence

```
> # Running mean to assess convergence
> EVPI.run<-c(rep(0,150))
> for (i in 1:150) {
+ EVPI.run[i] <- 7.7217*mean(max.NBgain[1:(i*1000)])
+ }
>
> # Plot running mean of EVPI
> plot(seq(1000,150000,1000), EVPI.run, type="l",
+ lty=1,xlab="Simulation", ylab="EVPI")
```


- Claxton et al (2004, 2005) conducted 2 pilot studies applying / integrating VOI to directly inform research priorities
 - NCCHTA (now NIHR NETSCC HTA) funds primary and secondary evaluative research
 - NICE issue guidance on the use of health technologies in the NHS
 - NICE also make research recommendations (but cannot commission research)

- Claxton et al (2004, 2005) conducted 2 pilot studies applying / integrating VOI to directly inform research priorities
 - NCCHTA (now NIHR NETSCC HTA) funds primary and secondary evaluative research
 - NICE issue guidance on the use of health technologies in the NHS
 - NICE also make research recommendations (but cannot commission research)

Is further research required?

NO

Physiotherapy for COPD or asthma in adults (EVPI = £0)

MAYBE

- Liquid based cytology (EVPI = £2.8m)
- AMD (EVPI = £25m)
- Children with asthma (EVPI = £15.7m)
- Recurrent UTI (EVPI = £4.6m)

YES, a priority for:

- Clopodogrel for stroke patients (EVPI = £865m): high prevalence
- NI for influenza (EVPI = £66.7m)
- Multiple sclerosis (EVPI = £86.2m)
- Glycoproteins (EVPI = £171m)

- Claxton et al (2004, 2005) conducted 2 pilot studies applying / integrating VOI to directly inform research priorities
 - NCCHTA (now NIHR NETSCC HTA) funds primary and secondary evaluative research
 - NICE issue guidance on the use of health technologies in the NHS
 - NICE also make research recommendations (but cannot commission research)

Which subgroups?

Clopidogrel

• Research of most value for stroke and MI groups, but high value for all

AMD

• EVPI is higher for those with lower starting visual acuity score

UTI

• EVPI = £2.2m for non-infant girls with normal urinary tracts... but negligible for other risk groups (where low-dose anti-bacterial regimen is clearly cost-effective)

- Claxton et al (2004, 2005) conducted 2 pilot studies applying / integrating VOI to directly inform research priorities
 - NCCHTA (now NIHR NETSCC HTA) funds primary and secondary evaluative research
 - NICE issue guidance on the use of health technologies in the NHS
 - NICE also make research recommendations (but cannot commission research)

Which comparators?

Multiple Sclerosis

• EVPI higher for RCT of glatiramer acetate (£14m) and interferonb-1b (£13.6m) than interferonb-1a (£7m)

UTIs

• EVPI is highest for 2 prophylactic regimens, rather than intermittent treatment, suggesting head-to-head trial

Asthma in children

EVPI highest for 2 therapies, suggesting head-to-head trial

- Claxton et al (2004, 2005) conducted 2 pilot studies applying / integrating VOI to directly inform research priorities
 - NCCHTA (now NIHR NETSCC HTA) funds primary and secondary evaluative research
 - NICE issue guidance on the use of health technologies in the NHS
 - NICE also make research recommendations (but cannot commission research)

Comments

- Research priorities cannot be based on efficacy alone
 - Asthma/COPD in adults had highest uncertainty in effect, but EVPI = £0
 - Clopidogrel and glycoproteins had substantial evidence on some outcomes, but large EVPI
- This analysis requires us to investigate further (see Lecture 12)

Next lecture