An Efficient Video Desnowing and Deraining Method with a Novel Variant Dataset

Arezoo Sadeghzadeh, Md Baharul Islam, Reza Zaker

2021.09.23

ICVS-2021, Vienna University of Technology

Computer Vision Systems

Virtual Event, September 22–24, 2021 Proceedings

Contents

Introduction

- The importance of snow/rain removal
- Challenges
- The main goal of the paper

The Proposed Method

Pixel-wise Video Desnowing/Deraining

The Problems of Current Studies

- · Image-based approaches
- Video-based approaches

Experimental Results and Comparison

- Qualitative Results
- · Quantitative Results
- Computational Cost

Dataset Development

- Videos with Synthetic snow and Synthetic rain
- · Videos with Quasi-snow
- Videos with Real Snow and Rain

Conclusion

- Cons/Pros
- · Future Direction

The Importance of Snow/Rain Removal

Example For Its Importance

Object detection in presence of snow Object detection from the scene without snow

Left image

Right image

Disparity map

Why Snow/Rain Removal?

Weather conditions such as rain, snow, fog, and haze have a negative effect on the perceptual quality of the videos/ images captured from outdoor video/ image processing or vision systems

Application

Video/movie editing, vision-based navigation, autonomous driving, and video surveillance

Challenges and Limitations of Video-based Snow/Rain Removal Approaches

Performance of Videobased Approaches

Performance degradation of the video rain removal techniques applied to the snowy videos

Causing severe blurring artifacts even for static backgrounds when the camera slightly shakes or moves while capturing the videos

Lack of Appropriate Dataset

Lack of ground-truth information for real snowy/rainy scenes from videos or YouTube

Limited variations of the snowflakes, rain streaks, camera setting, and environmental conditions in synthetic snow and rain

The Main Goal of the Paper

Novel Dataset Development

- Providing a new snow and rain videos dataset
- Considering all variations of background (static and dynamic) and the camera (static and dynamic, e.g. translation, zooming, illumination changes, and rotation)
- Providing the ground-truth information in the synthetic snow and rain videos allows the

Pixel-wise Video Snow/Rain Removal Method

- A simple but very efficient video desnowing/ deraining method based on the temporal information and the color of the pixels
- Removing the snow and rain for static background and camera even for heavy snow
 - Low computational cost and high robust to illumination changes and camera shaking

The Problems of Current Studies

Snow/Rain Removal

Image-based Approaches

Suffering from the limited generalization ability

Sparsity prior, patch-rank prior

Time-consuming and a very CNNs and handcrafted priors large size

A physics-based backbone and GAN

single-image desnowing model based on a pyramidal hierarchicaldesign

Video-based Approaches

High correlation between the corresponding pixels in consecutive frames

Stereo videos desnowing/deraining

Include more information and details than the monocular videos

CNNs and RCNNs

Online multi-scale convolutional sparse coding

Limitations on non-surveillance videos, moving objects, fast illumination changes, and fast moving cameras

Dataset Development

Variants in Snow&Rain Videos

Dataset Development

Variants in Snow&Rain Videos

Ground-truth videos for synthetic snow and rain

	Ground-truth videos for synthetic show and rain				
	Camera resolution	Camera variations	Background	Number of videos	Video length
	25MP 1080 × 1920 pixels	Static	Dynamic (slow)	3	35 s, 14 s, 13 s
	fps = 30		Dynamic (fast)	4	8 s, 8 s, 10 s, 8 s
		Dynamic (shaking and translation)	Dynamic (slow)	1	14 s
		Static and Dynamic (slow and fast translation, zooming, rotation, illumination changes, small and large shaking, both rotation and zooming)	Dynamic (fast)	13	11 s, 11 s, 14 s, 18 s, 11 s, 10 s, 13 s, 29 s, 9 s, 12 s, 11 s, 13 s, 11s
			Dynamic (slow)	13	14 s, 21 s, 14 s, 13 s, 18 s, 10 s, 10 s, 20 s, 10 s, 34 s, 11 s, 9 s, 13 s
			Static	12	22 s, 11 s, 18 s, 11 s, 25 s, 12 s, 37 s, 11 s, 10 s, 14 s, 18 s, 11 s

Videos based on q	uasi-snow			
$8\mathrm{Mp}$	Static	Static	2	59 s, 23 s
480×460 $fps = 30$	Dynamic (translation)		1	74 s
25MP 1080 × 1920 fps = 30	Static and Dynamic (slow and fast translation, zooming, rotation, illumination changes, small and large shaking, both rotation and zooming)		13	25 s, 19 s, 12 s, 10 s, 26 s, 16 s, 16 s, 10 s, 19 s, 28 s, 11 s, 26 s, 13 s

Videos with real snow and rain					
13MP 1080×1920 fps = 30	Static	Static	1 (snow)	8 s	
25MP 1080 × 1920 fps = 30	Static	Static and Dynamic		21 s, 7 s, 21 s, 11 s, 12 s, 42 s, 11 s, 18 s	

Total characteristics of the videos and the considered scenarios in the developed dataset.

Proposed Method

The Overall Flowchart

Proposed Method

The possible conditions for a single pixel in five consecutive frames.

Experimental Results

Qualitative and Quantitative Results and Computational time

Qualitative Results

Image size	3 consecutive frames	7 consecutive frames	10 consecutive frames	
480×640	0.61 s	0.65 s	0.75 s	
1080×1920	3.82 s	4.10 s	4.40 s	

Computational time

Quantitative Results

Experimental Results

Comparison

Conclusion

Cons/Pros and Future Direction

Thank you for your attention!