2/6/24, 3:53 PM worksheet_03

Worksheet 03

Name: Mohit Sai Gutha UID: U48519832

Topics

· Intro to DS

Linear Algebra Review

If you need a linear algebra review, please read through the <u>following pdf</u> (https://github.com/gallettilance/CS506-Spring2023/raw/main/worksheets/lecture 03 linear algebra review.pdf) before next class

Intro to Data Science

a) what property must a hypothesis have?

Falsifiability: A hypothesis should be structured in a way that makes it possible to be proven false.

b) what examples would you have wanted to try?

(8,12,10);(111,113,115);(22,20,18)

c) Poll 1

C. (1,2,3)

d) Given the hypothesis (x, 2x, 3x), for each of the following, determine whether they are positive or negative examples:

- \bullet (2, 4, 6)
- (6, 8, 10)
- (1, 3, 5)

1. (2,4,6): Positive

2. (6,8,10): Negative

3. (1,3,5): Negative

2/6/24, 3:53 PM worksheet 03

e)	Poll	2

C. (1,2,3)

f) Describe steps of a Data Science Workflow

- 1. Process Data: Data is gathered, cleaned, and formatted for analysis.
- 2. Explore Data: The goal is to try and understand how different elements of the data vary as a function of another.
- 3. Extract Features: Identifying relevant features that will be used for analysis and modeling.
- 4. Create Model: Developing and training models based on the data to make predictions or derive insights.
- g) Give a real world example for each of the following data types:
 - record
 - graph
 - image
 - text
 - 1. Record: Patient electroni health records containing medical history, diagnoses, and treatments.
 - 2. Graph: Transportation networks data.
 - 3. Image: Satellite Images for land cover classification
 - 4. Text: News articles
- h) Give a real world example of unsupervised learning

Emails similar to the mails marked as spam could be labelled as spam.

i) Give a real world example of supervised learning

Predicting whether tumor is benign or malignant based on age and tumor size.