Técnicas
Digitais
Para

Computação

ULA Multifunção Multiplicadores

Aula 15

Comparador

X	Y	COMP
0	0	1
0	1	0
1	0	0
1	1	1

$$COMP = X Y + \overline{X} \overline{Y} = \overline{X \oplus Y}$$

Comparador (igualdade) de 4 bits (A3A2A1A0 e B3B2B1B0)

Exemplo de uma ULA Simples

M = Modo

- 1 funções aritméticas
- 0 funções lógicas

S = Seleção da função

M	S1	S0	nome da função	F	X	Y	C0
0	0	0	Complementa	A'	A'	0	0
0	0	1	E	A E B	A E B	0	0
0	1	0	Identidade	A	A	0	0
0	1	1	OU	A OU B	A OU B	0	0
1	0	0	Decrementa	A-1	A	Todos 1s	0
1	0	1	Soma	A+B	A	В	0
1	1	0	Subtrai	A+B'+1	A	B '	1
1	1	1	Incrementa	A+1	A	Todos 0s	1

Tabela 2 – Tabela-verdade para o extensor aritmético.

S1	S0	bi	yi
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Tabela 3 – Mapa de Karnaugh para o extensor aritmético.

S1S0 bi	00	01	11	10
0	1	0	0	1
1	1	1	0	0

Extensor Aritmético

Tabela 4 – Tabela-verdade para o extensor lógico.

M	S1	S0	хi
0	0	0	ai'
0	0	1	ai.bi
0	1	0	ai
0	1	1	ai+bi
1	?	?	ai

Tabela 5 – Mapa de Karnaugh para o extensor aritmético.

		M=0				M=1		
S1S0 ai bi	00	01	11	10	00	01	11	10
00	1							
01	1		1					
11		1	1	1	1	1	1	1
10			1	1	1	1	1	1

Extensor Lógico

Projeto de ULA de 1 bit

Alternativa de implementação #2

ULA de 2 bits

ULA em VHDL

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity ULA is
  Port (A: in STD LOGIC VECTOR (3 downto 0);
     B: in STD LOGIC VECTOR (3 downto 0);
     C: in STD LOGIC VECTOR (1 downto 0);
     F: out STD LOGIC_VECTOR (3 downto 0));
end ULA;
architecture Behavioral of ULA is
Begin
process (A, B, C)
begin
CASE C is
                                           ULA
WHEN "00" => F <= A+B;
WHEN "01" => F <= A-B;
WHEN "10" => F <= A xor B;
WHEN others \Rightarrow F \leq not A:
END CASE;
end process;
```


Projeto Físico de ULA - Planta Baixa tipo Bit-Slice

Bit-Slice de mesma altura "Tiling" de elementos aritméticos e registradores

Multiplicador Combinacional

2) Equações em SDP, simplificado por mapa de Karnaugh

$$P_{3} = m_{15}$$

$$P_{2} = \sum m (10, 11, 14)$$

$$P_{1} = \sum m (6, 7, 9, 11, 13, 14)$$

$$P_{0} = \sum m (5, 7, 13, 15)$$

$$\begin{aligned} \mathbf{P}_{0} &= \mathbf{A}_{0} \mathbf{B}_{0} \\ \mathbf{P}_{1} &= \mathbf{\overline{A}}_{1} \mathbf{A}_{0} \mathbf{B}_{1} + \mathbf{\overline{A}}_{1} \mathbf{B}_{0} \mathbf{A}_{1} + \mathbf{A}_{1} \mathbf{\overline{A}}_{0} \mathbf{B}_{0} + \mathbf{B}_{1} \mathbf{\overline{B}}_{0} \mathbf{\overline{A}}_{0} \\ \mathbf{P}_{2} &= \mathbf{A}_{1} \mathbf{\overline{A}}_{0} \mathbf{B}_{1} + \mathbf{A}_{1} \mathbf{B}_{1} \mathbf{\overline{B}}_{0} \\ \mathbf{P}_{3} &= \mathbf{A}_{1} \mathbf{A}_{0} \mathbf{B}_{1} \mathbf{B}_{0} \end{aligned}$$

Multiplicador de 2 bits. Síntese de circuito combinacional

\mathbf{A}_1	\mathbf{A}_0	\mathbf{B}_1	\mathbf{B}_{0}	P_3	\mathbf{P}_{2}	\mathbf{P}_1	$\mathbf{P_0}$
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

$$A1 A0 = X1 X0$$

$$B1 B0 = Y1 Y0$$

$$P_3 = m_{15}$$

$$P_2 = \sum m (10, 11, 14)$$

$$P_1 = \sum m (6, 7, 9, 11, 13, 14)$$

$$P_0 = \sum m (5, 7, 13, 15)$$

$$P_{1} = X_{1}X_{0}Y_{1} + Y_{1}Y_{0}X_{1} + X_{1}X_{0}Y_{0} + Y_{1}Y_{0}X_{0}$$

Multiplicador Combinacional

1) Multiplicação é equivalente a uma operação E

2) Soma binária dos termos:

Soma =
$$X \oplus Y \oplus C_{in}$$

 $C_{out} = XY + XC_{in} + YC_{in}$

3) Substituindo os X e Y pelos termos da multiplicação:

$$P_{0} = A_{0}B_{0}$$

$$P_{1} = \overline{A}_{1}A_{0}B_{1} + \overline{A}_{1}B_{0}A_{1} + A_{1}\overline{A}_{0}B_{0} + B_{1}\overline{B}_{0}A_{0}$$

$$P_{2} = A_{1}\overline{A}_{0}B_{1} + A_{1}B_{1}\overline{B}_{0}$$

$$P_{3} = A_{1}A_{0}B_{1}B_{0}$$

Multiplicador Combinacional

Uso de Produtos Parciais

Multiplicador tipo array de 4 bits (Produto Z tem 8 bits)

Multiplicador tipo Array

Gera todos os "n" produtos parciais simultaneamente

Multiplicador de M bits x N bits -

$$t_{mult} = [(M-1) + (N-2)]t_{carry} + (N-1)t_{sum} + (N-1)t_{and}$$

Multiplicador em VHDL

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity MULT is
  Port (A: in STD LOGIC VECTOR (3 downto 0);
     B: in STD LOGIC VECTOR (3 downto 0);
     F: out STD LOGIC VECTOR (7 downto 0));
end MULT;
architecture Behavioral of MULT is
Begin
                      multiplicador
process (A, B)
begin
F \le A * B;
end process;
end Behavioral;
```


Multiplicador tipo carry-save

Vector Merging Adder

 $t_{mult} = (N-1)t_{carry} + (N-1)t_{and} + t_{merge}$

Multiplicador tipo Wallace Tree

Multiplicadores - Sumário

- Otimização específica das Células de FA, HA, AND
- Identificar o caminho crítico combinacional
- Outras técnicas utilizadas na prática
 - Atraso logarítmico versus Linear (Árvore de Wallace para Multiplicação)
 - Recodificação do Multiplicando (Codificação de Booth)
 - Pipelinização do multiplicador

Otimizações no nível sistema: Barramentos p/ Operando