Machine Listening for Music and Sound Analysis

Lecture 2 – Machine Learning/Deep Learning

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

Learning Objectives

- Introduction
- Learning paradigms
- Machine learning (ML) project pipeline
- Deep learning

Introduction

Goals

- "...give computers the ability to learn without being explicitly programmed" [Samuels, 1959]
- Learning structures in given (un)labeled data to make predictions on new / unseen data
- Paradigm change
 - Before: manually designed / general-purpose features
 - Now: joint representation learning (features) & data modeling (classification)
- Related disciplines
 - Statistics, data science, optimization

Introduction Terminology

- Artificial Intelligence (AI)
 - "an agent's ability to achieve goals in a wide range of environments" [Legg & Hutter, 2007]
- Machine Learning (ML)
 - Pattern recognition, data modeling, learning, prediction
- Deep Learning (DL)
 - (Brain-inspired) artificial neural networks (ANN)
- Data Science
 - Knowledge extraction from data

Introduction

Application Scenarios

- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)
- Energy (price & load forecasting)
- Predictive maintenance (automotive, aerospace, manufacturing)
- Natural language processing (sentiment classification, text search, translation)
- Machine listening (music transcription, instrument recognition, sound event detection, acoustic scene classification)

Learning Paradigms

- Goal
- Find hidden **structure** and **patterns** in data
- No annotations available

- Goal
- Find hidden **structure** and **patterns** in data
- No annotations available
- Clustering
 - **Grouping** of **similar** data instances

- Goal
- Find hidden **structure** and **patterns** in data
- No annotations available
- Clustering
 - **Grouping** of **similar** data instances

- Goal
- Find hidden **structure** and **patterns** in data
- No annotations available
- Clustering
 - **Grouping** of **similar** data instances

- Challenges
 - What is the **optimal number of clusters**?

- K-means clustering
 - Initialize *K* "means" randomly (=cluster centroids)

- K-means clustering
 - K = 3

- K-means clustering
 - Assignment: assign each data point to its closest mean

- K-means clustering
 - Assignment: assign each data point to its closest mean

- K-means clustering
 - Assignment: assign each data point to its closest mean

- K-means clustering
 - Update: update mean by average over all assigned data points

- K-means clustering
 - Assignment: re-assign data points to closest mean

- K-means clustering
 - Update: re-assign data points to closest mean (repeat until convergence)

Learning Paradigms

Supervised Learning - Classification

- Predict one or multiple categorical labels from features
 - Examples → music genre, instrument(s), key

- Predict one or multiple categorical labels from features
 - Examples → music genre, instrument(s), key
- Feature space modeling (Example: 2 classes)

- Example: k-Nearest Neighbors
 - Training → Store all examples

- Example: k-Nearest Neighbors
 - Training → Store all examples

- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items

$$k = 3 \rightarrow ? = \blacktriangle$$

- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items

$$k = 11 \rightarrow ? =$$

- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items
- Distance measures
 - Euclidean distance, Manhatten distance, cosine distance, ...

Learning Paradigms Supervised Learning - Regression

- Goal
- Predict a dependent (response) variable given one or multiple independent variables (features)
- Continuous quantities
- Examples
 - Univariate (linear) regression:
 - - $\blacksquare \beta_0 \rightarrow \text{bias}$
 - $\blacksquare \beta_1 \rightarrow \text{weight}$

Learning Paradigms

Supervised Learning - Regression

- Goal
- Predict a dependent (response) variable given one or multiple independent variables (features)
- Continuous quantities
- Examples
 - Univariate (linear) regression:

- $\blacksquare \beta_0 \rightarrow \text{bias}$
- $\blacksquare \beta_1 \rightarrow \text{weight}$

ML Project Pipeline

- Training Set
 - Model learns from this data

- Training Set
 - Model learns from this data
- Validation / Development Set
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data

- Training Set
 - Model learns from this data
- Validation / Development Set
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data
- Test set
 - Only used once after the model training & tuning is completed
 - Should reflect the targeted real-world use case for the model

- Training Set
 - Model learns from this data
- Validation / Development Set
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data
- Test set
 - Only used once after the model training & tuning is completed
 - Should reflect the targeted real-world use case for the model
- Common split ratios
 - 80/10/10% or even 98/1/1% (for large datasets)

ML Project Pipeline Data Collection & Pre-Processing

- Data collection
 - Check for available data resources for given (or related) task
 - Collect / record / annotate new data
 - Ensure data variability
 - Example (from acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...

ML Project Pipeline Data Collection & Pre-Processing

- Data collection
 - Check for available data resources for given (or related) task
 - Collect / record / annotate new data
 - Ensure data variability
 - Example (from acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...
- Data cleanup / pre-processing
 - Remove errors, silence, empty files, ...
 - Balance dataset (proportions among class examples)
 - Normalize (depends on the model)

ML Project Pipeline Model Selection

- Many models and approaches exist
 - Types (SVM, GMM, logistic regression, DNNs)
 - Hyperparameters (SVM kernel functions, DNN layer types)

ML Project Pipeline Model Selection

- Many models and approaches exist
 - Types (SVM, GMM, logistic regression, DNNs)
 - Hyperparameters (SVM kernel functions, DNN layer types)
- Often constrained by the use-case / task
 - Model complexity (memory, training time, training data amount)

ML Project Pipeline Model Selection

- Many models and approaches exist
 - Types (SVM, GMM, logistic regression, DNNs)
 - Hyperparameters (SVM kernel functions, DNN layer types)
- Often constrained by the use-case / task
 - Model complexity (memory, training time, training data amount)
- Feature pre-processing depends on model type
- Use simple models for simple tasks

- Iterative process
 - Typically: start with random parameter initialization

- Iterative process
 - Typically: start with random parameter initialization
 - Use (batches of) training data to iteratively improve model predictions (optimization)
 - Learn from examples

- Iterative process
 - Typically: start with random parameter initialization
 - Use (batches of) training data to iteratively improve model predictions (optimization)
 - Learn from examples
 - Update model parameters according to loss function

Example: linear regression

$$y \approx \beta_0 + \beta_1 x_1$$

Training loop

ML Project Pipeline Model Validation

 Regular model evaluation each or multiple training iteration

ML Project Pipeline Model Validation

Regular model evaluation each or multiple training iteration

ML Project Pipeline Model Validation

- Regular model evaluation each or multiple training iteration
- Helps to
 - optimize model (hyper)parameters
 - detect overfitting on training data
 - stop the training

ML Project Pipeline Model Testing

- Example: Binary classification evaluation
 - True/false positives (TP/FP)
 - True/false negatives (TN/FN)

ML Project Pipeline Model Testing

- Example: Binary classification evaluation
 - True/false positives (TP/FP)
 - True/false negatives (TN/FN)
 - Metrics
 - Precision
 - Recall
 - Accuracy
 - F-score

- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing

- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing
- Shallow networks

Simple Neural Network

- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing
- Shallow networks → deep networks

- Hierarchical feature learning
 - Example (face recognition)

Edges, curves

Fig. 11

First layers

Final layers

- Hierarchical feature learning
 - Example (face recognition)

Edges, curves

Shapes, object parts

Fig. 11

First layers

Final layers

- Hierarchical feature learning
 - Example (face recognition)

Edges, curves

Shapes, object parts

Objects (faces)

Fig. 11

First layers

Final layers

Input layer

 \boldsymbol{x}

 \bigcirc

Own

Own

Own

Deep Learning Activation Functions

- Activation functions add non-linearity
- Make networks more powerful in (complex) pattern recognition
- Examples:

Hyper Tangent Function

ReLU Function

Sigmoid Function

Overview

Features v

X

Target

y

Own

Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)

1) Forward propagation

$$L(z,y) = - \Big[y \log(z) + (1-y) \log(1-z) \Big]$$

- Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)
- Backpropagation → backpropagate loss → compute gradients of loss w.r.t. weights

(1) Forward propagation

(2) Backpropagation

$$L(z,y) = - \Big[y \log(z) + (1-y) \log(1-z) \Big]$$

$$rac{\partial L(z,y)}{\partial w}$$

Fig. 20

- Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)
- Backpropagation → backpropagate loss → compute gradients of loss w.r.t. weights
- Weights update → use gradients & learning rate to update weights

1 Forward propagation

(2) Backpropagation

$$L(z,y) = - \Big[y\log(z) + (1-y)\log(1-z)\Big]$$

$$rac{\partial L(z,y)}{\partial w}$$

(3) Weights update

$$w \longleftarrow w - lpha rac{\partial L(z,y)}{\partial w}$$

Fig. 20

- Gradient descent
 - Move in opposite direction of gradient
 - Learning rate effects step size

- Loss contour
 - Goal → find global minima

Deep Learning Playground

- A neural network playground!
 - https://playground.tensorflow.org

Deep Learning Convolutional Neural Networks (CNN)

- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input

Deep Learning Convolutional Neural Networks (CNN)

- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (across input)

Deep Learning Convolutional Neural Networks (CNN)

- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (across input)
 - translation of input → translation of activations (equivariance)

Deep Learning Convolutional Neural No.

Convolutional Neural Networks (CNN)

- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (across input)
 - translation of input → translation of activations (equivariance)
- lacksquare Pooling ightarrow local aggregation / down-sampling

Deep Learning Recurrent Neural Networks (RNN)

- Recurrent layers
 - Model sequential data → model dynamic temporal behaviour
 - Internal memory state(s) → memorize previous data for future predictions

Recurrent Neural Networks (RNN)

- Recurrent layers
 - Model sequential data → model dynamic temporal behaviour
 - Internal memory state(s) → memorize previous data for future predictions
- Vanishing gradient problem
 - Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term Memory (LSTM)

Recurrent Neural Networks (RNN)

- Application Examples
 - One-to-many: sequential music generation (given a starting note)

Fig. 19

Recurrent Neural Networks (RNN)

- Application Examples
 - One-to-many: sequential music generation (given a starting note)
 - Many-to-one: sentiment classification (positive vs. negative)

Fig. 19

Recurrent Neural Networks (RNN)

- Application Examples
 - One-to-many: sequential music generation (given a starting note)
 - Many-to-one: sentiment classification (positive vs. negative)
 - Many-to-many: machine translation (e.g., Spanish to German)

Deep Learning Autoencoders

Symmetric architecture (decoder & encoder)

Own

Deep Learning Autoencoders

- Symmetric architecture (decoder & encoder)
- Objective: minimize reconstruction error (e.g., mean squared error, MSE)

Deep Learning Autoencoders

- Symmetric architecture (decoder & encoder)
- Objective: minimize reconstruction error (e.g., mean squared error, MSE)
- Compression of input (embedding)
- lacktriangle Prioritize important information ightarrow learn useful representations

Summary

- Introduction
 - Terminology, application scenarios
- Learning Paradigms
 - Unsupervised, supervised, self-supervised learning
- ML project pipeline
 - Data collection, pre-processing, split
 - Model selection, training, validation, testing
- Deep Learning
 - DNN, CNN, RNN, Autoencoders

References

Introducing Machine Learning. (2016). Retrieved from https://www.mathworks.com/content/dam/mathworks/tagteam/Objects/i/88174_92991v00_machine_learning_section1_ebook.pdf

S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4): 391-444.

L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3), 210-229

Srihari, S. N. (2020). Forward Propagation and Backward Propagation (Deep Learning Lecture). Retrieved from https://cedar.buffalo.edu/~srihari/CSE676/6.5.0 Forward Backward.pdf

Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). *Computational Analysis of Sound Scenes and Events*. Cham, Switzerland: Springer International Publishing.

Images

- Fig. 1: [Machine Learning, 2016], p. 4, Fig. 2
- Fig. 2: https://i0.wp.com/www.sthda.com/sthda/RDoc/figure/clustering/ partitioning-cluster-analysis-k-means-plot-4-groups-1.png
- Fig. 3: https://i.stack.imgur.com/hsilO.png (https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)
- Fig. 4: https://miro.medium.com/max/975/1*OyYyr9qY-w8RkaRh2TKo0w.png (reproduced)
- Fig. 5: https://lilianweng.github.io/lil-log/assets/images/self-sup-lecun.png
- Fig. 6: https://www.asimovinstitute.org/wp-content/uploads/2019/04/NeuralNetworkZoo20042019.png
- Fig. 7: https://www.educative.io/api/edpresso/shot/6668977167138816/image/5033807687188480
- Fig. 8: [Virtanen, 2018], p. 170, Fig. 6.7
- Fig. 9: https://miro.medium.com/max/915/1*SJPacPhP4KDEB1AdhOFy_Q.png
- Fig. 10: https://www.skampakis.com/wp-content/uploads/2018/03/simple_neural_network_vs_deep_learning.jpg
- Fig. 11: https://pic4.zhimg.com/80/v2-057b248288a8af2f01272a956f862873_1440w.png
- Fig. 12: https://blog.e-kursy.it/deeplearning4j-workshop/video/html/presentation_specific/img/4_activation_functions.png

Images

- Fig. 13: https://blog.paperspace.com/content/images/2018/05/challenges-1.png
- Fig. 14: https://www.cs.umd.edu/~tomg/img/landscapes/noshort.png
- Fig. 15: https://blog.paperspace.com/content/images/2018/05/grad.png
- Fig. 16: https://www.wandb.com/articles/intro-to-cnns-with-wandb
- Fig. 17: https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
- Fig. 18: https://wiki.tum.de/download/attachments/22578349/RNN1.png
- Fig. 19: https://stanford.edu/~shervine/teaching/cs-230/illustrations/architecture-rnn-ltr.png
- Fig. 20: [Srihari, 2020], p.8, (Fig. 1)

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

