

Claims

- 1 1. A dual gate oxide high-voltage semiconductor device, comprising:
- 2 a buried oxide layer formed over a semiconductor substrate;
- 3 a silicon layer formed over the buried oxide layer;
- 4 a top oxide layer formed over the silicon layer;
- 5 a first gate oxide formed over the silicon layer adjacent the top oxide
- 6 layer; and
- 7 a second gate oxide formed over a portion of the first gate oxide.
- 1 2. The device of claim 1, wherein the silicon layer comprises a source region, a body region, and a drift region.
- 1 3. The device of claim 2, wherein the first gate oxide is formed over the drift region, the body region, and the source region.
- 1 4. The device of claim 2, wherein the second gate oxide is formed over the first gate oxide between the top oxide layer and the body region.
- 1 5. The device of claim 1, further comprising a field plate formed over the top oxide layer, the first gate oxide, and the second gate oxide.

1 6. The device of claim 1, wherein the first gate oxide has a thickness in a range of
2 approximately 300-600A, and wherein the second gate oxide has a thickness in a
3 range of approximately 900-1200A.

1 7. The device of claim 1, wherein the first gate oxide has a length of
2 approximately 3-4 μ m, and wherein the second gate oxide has a length of
3 approximately 1-2 μ m.

PROTENT INSTITUTE

1 8. A dual gate oxide high-voltage semiconductor device, comprising:
2 a buried oxide layer formed over a semiconductor substrate;
3 a silicon layer formed over the buried oxide layer, wherein the silicon
4 layer comprises a source region, a body region, and a drift region;
5 a top oxide layer formed over the silicon layer;
6 a first gate oxide formed over the silicon layer adjacent the top oxide
7 layer; and
8 a second gate oxide formed over a portion of the first gate oxide between
9 the top oxide layer and the body region.

1 9. The device of claim 8, further comprising a field plate formed over the top
2 oxide layer, the first gate oxide and the second gate oxide.

1 10. The device of claim 8, wherein the first gate oxide has a thickness in a range
2 of approximately 300-600A, and wherein the second gate oxide has a thickness in
3 a range of approximately 900-1200A.

1 11. The device of claim 8, wherein the first gate oxide has a length of
2 approximately 3-4 μ m, and wherein the second gate oxide has a length of
3 approximately 1-2 μ m.

see 5

12. The device of claim 8, wherein a thickness of approximately 1200A for the
second gate oxide results in an increase from approximately $1e^{12}cm^{-2}$ to
approximately $2e^{12}cm^{-2}$ for a maximum allowable charge, and wherein a decrease
of approximately 30% for a specific-on-resistance, of the device.

卷之三

1 13. A method for forming a dual gate oxide high-voltage semiconductor device,
2 comprising:

3 forming a buried oxide layer over a semiconductor substrate;

4 forming a silicon layer over the buried oxide layer;

5 ~~forming a top oxide layer over the silicon layer;~~

6 forming a first gate oxide adjacent the top oxide layer over the silicon
7 layer; and

8 forming a second gate oxide over the first gate oxide.

1 14. The method of claim 13, wherein forming the first gate oxide, and forming the
2 second gate oxide comprises:

3 growing the first gate oxide adjacent the top oxide layer over the silicon
4 layer;

5 applying a mask over the first gate oxide; and

6 growing the second gate oxide over a portion of the first gate oxide.

1 15. The method of claim 13, wherein forming the silicon layer comprises forming
2 a silicon layer having a source region, a body region, and a drift region over the
3 buried oxide layer.

1 16. The method of claim 15, wherein forming the first gate oxide comprises
2 forming a first gate oxide over the drift region, the body region, and the source
3 region.

1 17. The method of claim 15, wherein forming the second gate oxide comprises
2 forming a second gate oxide over the first gate oxide between the top oxide layer
3 and the body region.

1 18. The method of claim 13, further comprising:
2 increasing a maximum allowable charge of the device from
3 approximately $1e^{12}cm^{-2}$ to approximately $2e^{12}cm^{-2}$; and
4 decreasing a specific-on-resistance of the device by approximately 30%.

1 19. The method of claim 13, wherein forming the first gate oxide and forming the
2 second gate oxide comprises:
3 forming a first gate oxide having a thickness in a range of approximately
4 300-600A adjacent the top oxide layer over the silicon layer; and
5 forming a second gate oxide having a thickness in a range of
6 approximately 900-1200A over the first gate oxide.

1 20. The method of claim 13, further comprising forming a field plate over the top
2 oxide layer, the first gate oxide, and the second gate oxide.