

Automated and Connected Driving Challenges

Section 5 – Connected Driving

Collective Cloud Functions Introduction

Bastian Lampe

Institute for Automotive Engineering

Definition Recap - Collective Cloud Functions

Collection of data

from individual connected entities

for **central** data processing

in (edge) clouds

to **distribute** processed **collective** data

Advantages of (Collective) Cloud-based Data Processing

- Multiple connected entities may provide data
 - → Combination of data possible
- Multiple connected entities may receive the same data
 - → Agents base their actions on the same premises
- More powerful hardware possible in cloud servers
 - → Bigger and better models may be used
- Energy-intensive processing less problematic
 - → Energy saving in the vehicle possible
- Large storage capacity available
 - → Saving large amounts of data possible
- Hardware updates and upgrades easier
 - → More frequent hardware updates and upgrades possible

Architectures: Cloud Computing vs Fog Computing

Cloud Computing Architecture

Fog Computing Architecture

Online and Offline Data Processing

Online functions	Offline functions

Online and Offline Data Processing

Online functions

- Receive continuous data streams from connected entities
- Immediately process received data
- Provide processed data
- No inherent need to store data long-term
- Strict requirements regarding latency, throughput, connection reliability

Offline functions

Online and Offline Data Processing

Online functions

- Receive continuous data streams from connected entities
- Immediately process received data
- Provide processed data
- No inherent need to store data long-term
- Strict requirements regarding latency, throughput, connection reliability

Offline functions

- Receive continuous data streams or intermittent data packages from connected entities
- Filter and store received data
- Provide processed data or functions

Online and Offline Data Processing

Online functions

- Receive continuous data streams from connected entities
- Immediately process received data
- Provide processed data
- No inherent need to store data long-term
- Strict requirements regarding latency, throughput, connection reliability

Offline functions

- Receive continuous data streams or intermittent data packages from connected entities
- Filter and store received data
- Provide processed data or functions
- Need to store data long-term
- Less strict requirements regarding latency, throughput, connection reliability

Online Use-Case: Collective Environment Model

- Sensor data is processed in real time by artificial neural networks for the perception of connected vehicles and intelligent infrastructure
 - → Sensor Data Processing
- Data from multiple connected entities is fused to increase accuracy and range
 → Data Fusion
- Elements in the environment are associated and tracked to form the collective environment model
 - **→** Environment Tracking

RWTH AACHEN UNIVERSITY

Online Use-Case: Collective Behavior

- The actions of other road users are continually predicted based on the collective environment model and shared plans by individual agents
 - → Behavior Prediction
- Based on the latest predictions, optimized trajectories are computed
 - → Behavior Planning
- Behavior recommendations are provided to connected agents, which may choose to incorporate them into their behavior
 - → Trajectory Suggestion

Offline Use-Case: Collective Memory

- Large amounts of heterogeneous data from connected entities are gathered in a short-term memory and analyzed for a preliminary identification of relevant data
 → Preliminary Data Analysis
- Selected data are efficiently stored in an accessible long-term memory
 → Data Storage
- Interfaces for manual data analysis and automatic retrieval of requested data for detailed analysis are made available
 - → Data Provision

RWTHAACHEN UNIVERSITY

Offline Use-Case: Collective Learning

- An in-depth analysis can identify compositions of Collective Memory data suitable for automatic training data set creation and collective learning
 - → Detailed Data Analysis
- Data of multiple perspectives, time frames and connected entities is combined
 - → Dataset Creation
- Continually improved models for perception, prediction and planning are automatically learned and validated
 - → Machine Learning