Admission to Candidacy Examination

REAL ANALYSIS
JANUARY 1992

Notation: \mathbb{R} denotes the Real Numbers and λ denotes Lebesgue measure on \mathbb{R} .

- 1. State and prove Hölder's inequality.
- 2. State and prove Egorov's theorem.
- 3. Let (X, \mathcal{A}, μ) be a measure space, and let $f \in L^1(X, \mathcal{A}, \mu)$. Prove each of the following:
 - a. Given $\epsilon > 0$, there exists a $\delta > 0$ such that

$$\left| \int_A f \, d\mu \right| < \epsilon \quad \text{for all } A \in \mathcal{A} \text{ with } \mu(A) < \delta.$$

b. Given $\epsilon > 0$ there exists $A \in \mathcal{A}$ with $\mu(A) < \infty$ such that

$$\left| \int_{X \setminus A} f \, d\mu \right| < \epsilon.$$

- 4. Let $\{p_n\}$ be a sequence of 2π -periodic measurable functions on $\mathbb R$ satisfying
 - (a) $p_n(t) \ge 0$ for all n and t,
 - (b) $\int_{-\pi}^{\pi} p_n(t) dt = 1$,
 - (c) For each $\delta > 0$, $\lim_{n \to \infty} \int_{\delta \le |t| \le \pi} p_n(t) dt = 0$.

For f continuous and 2π -periodic on \mathbb{R} , set

$$f_n(x) = \int_{-\pi}^{\pi} p_n(x-t)f(t)dt.$$

Prove that $\lim_{n\to\infty} f_n(x) = f(x)$ uniformly on \mathbb{R} .

- 5. Definition. $f:[a,b] \to \mathbb{R}$ is in $Lip_1([a,b])$ if there exists a positive constant M such that $|f(x) f(y)| \le M|x y|$ for all $x, y \in [a,b]$.
 - (a) Prove that if $f \in Lip_1([a, b])$, then f is absolutely continuous on [a, b].
- (b) If f is absolutely continuous on [a, b], prove that $f \in Lip_1([a, b])$ if and only if $f' \in L^{\infty}([a, b])$.

6. Let f be a bounded real valued function on [a, b]. Prove that if f is Riemann integrable on [a, b], then f is Lebesgue integrable on [a, b], and the two integrals are equal.

The Let f be a nonnegative real valued function on \mathbb{R} with $f \in L^1(\mathbb{R})$. Define φ on $[0,\infty)$ by

$$\varphi(t) = \lambda(\{x : f(x) \ge t\})$$
 $t \ge 0.$

Prove that φ is nonincreasing and that

$$\int_0^\infty \varphi(t)dt = \int_{\mathbb{R}} f \, d\lambda.$$

Suppose f, f_1, f_2, \ldots are Lebesgue integrable functions on [a, b] with $\lim_{k\to\infty} \int_a^b |f-f_n| d\lambda = 0$. Assume further that g, g_1, g_2, \ldots are measurable, bounded in L^{∞} , and that $g_k \to g$ a.e. as $k \to \infty$. Prove that

$$\lim_{k \to \infty} \int_a^b |f_k g_k - fg| \, d\lambda = 0.$$

9. If $f \in L^1(\mathbb{R})$, then prove that $\lim_{h\to 0} ||f_h - f||_{L^1(\mathbb{R})} = 0$, where $f_h(x) := f(x+h)$.