S1211Q Introduction to Statistics Lecture 18

Wei Wang

July 31, 2012

Hypothesis Testing for a Population Mean

- In this section, the null hypothesis is about a population mean $H_0: \mu = \mu_0$ and there are there possible Alternative Hypothesis $H_a: \mu > \mu_0$ or $H_a: \mu < \mu_0$ or $H_a: \mu \neq \mu_0$.
- ► We will discuss three cases which parallel our discussion about Confidence Interval for a Population Mean.
- ▶ Case I: Normal Distribution and Known σ (z Test)
 - ▶ Case II: General Distribution, Unknown σ but Large Sample (z Test)
 - ▶ Case III: Normal Distribution and Unknown σ (t Test)

Under the null hypothesis, the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma \sqrt{n}}$$

follow a standard normal distribution.

Under the null hypothesis, the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma \sqrt{n}}$$

follow a standard normal distribution.

If the Alternative Hypo is $H_a: \mu > \mu_0$, then the Rejection Region is something like $\{z \geq z_0\}$.

Under the null hypothesis, the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma \sqrt{n}}$$

follow a standard normal distribution.

- If the Alternative Hypo is H_a : $\mu > \mu_0$, then the Rejection Region is something like $\{z \geq z_0\}$.
- ▶ z_0 is determined by the level of the test α , if we set z_0 as z critical value z_{α} then

$$P(\text{type I error}) = P(H_0 \text{ is rejected when } H_0 \text{ is true})$$

= $P(Z > z_{\alpha} \text{ when } Z \sim N(0, 1)) = \alpha$

- ▶ We can also compute Type II Error β and sample size n. Still we consider the upper-tailed test as a demonstration.
- ▶ Type II Error β will be a function of any particular number μ' that is larger than the null value μ_0 .

$$\beta(\mu') = P(Z < z_{\alpha} \text{ when } \mu = \mu')$$

$$= P(\frac{\bar{X} - \mu_0}{\sigma \sqrt{n}} < z_{\alpha} \text{ when } \mu = \mu')$$

$$= P(\frac{\bar{X} - \mu'}{\sigma \sqrt{n}} < z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma \sqrt{n}} \text{ when } \mu = \mu')$$

$$= \Phi(z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma \sqrt{n}}) \le 1 - \alpha$$

- Φ () is the CDF of standard normal.
- What is the power of the test?
- ▶ To add the table on p311 and figure on 312

▶ For a given True Value μ' , Type I Error level α and Type II Error β , we can determined the sample size n that we need with

$$\Phi(\mathbf{z}_{\alpha} + \frac{\mu_0 - \mu'}{\sigma \sqrt{n}}) = \beta$$

Thus

$$-z_{\beta}=z_{\alpha}+\frac{\mu_{0}-\mu'}{\sigma\sqrt{n}}$$

▶ To add the table on p314

Case II: General Distribution, Unknown σ but Large Sample (z Test)

 As we discussed in Confidence Interval, under the null hypothesis, the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\hat{\sigma}\sqrt{n}}$$

approximately follow a standard normal distribution.

- ▶ The rule of thumb is n > 40.
- ▶ All the procedure, e.g., Test Statistic, Rejection Region and formula for β and sample size, are the same except for substituting σ with its estimator $\hat{\sigma}$.

Under the null hypothesis, the test statistic

$$T = \frac{\bar{X} - \mu_0}{\hat{\sigma}\sqrt{n}}$$

follows a t distribution with degrees of freedom n-1

► To add table on p317.

