BIG DATA FINAL PROJECT

Team 5

Spatial, Temporal, and Weather Analysis of Accidents in Greater Nashville

Mark Raj, Daniel Zhang, Fateen Anam Rafid

Team 5

BIG DATA, Machine Learning, Artificial Intelligence

Mark Raj, Daniel Zhang, Fateen Anam Rafid

Spatial, Temporal, and Meteorological Analysis of Accidents in Greater Nashville

1. Spatial Analysis

- a. **Geopandas** to create spatial joins and create visualizations with **plotly**
- b. Used <u>linear regression</u> to see demographic correlations with response time/accidents

2. Temporal Analysis

a. Conducted with <u>Pandas and PlotLib</u> to see year/month/time-of-day breakdowns

3. Meteorological Analysis

- a. Joined minute-by-minute weather data to accident data using **Spark/EMR**, filtering for the closest weather stations
- o. <u>2 machine learning models</u> to predict response time based on weather factors

Temporal Analysis of Incidents

Key Takeaway:

- Rise of Total Accidents over the Years.
- Correlation can be seen with response time

Temporal Analysis of Incidents

Key Takeaway:

- More Accidents happen during winter Correlation can be seen between total incidents response time

Temporal Analysis of Incidents

Key Takeaway:

- More accidents happen during the day Response time is higher after midnight. Inverse correlation.

Spatial Analysis of Incidents

Number of Incidents

Average Response Time

Meteorological Analysis of Incidents

Meteorological Analysis of Incidents

Machine Learning

- Random Forest
 - o RMSE: 156 seconds
 - \circ R² = 0.04
- Gradient Boosting
 - o RMSE: 54191 seconds
 - \circ R² = 0.09
- Prioritized location and time over weather

Conclusions

- The primary focus for government should be <u>on spatial disparities</u> between areas of Nashville, contributing to longer response times
- Investments in <u>weather-resistant systems</u> would prove useful in lowering response times, including evenly distributing these systems throughout Nashville
- Incident frequency has a strong relationship with time-based metrics and local government should use <u>time-based smart suggestions</u> to keep ahead

Bibliography

Pettet, G., Nannapaneni, S., Stadnick, B., Dubey, A., & Biswas, G. (2017, August). Incident analysis and prediction using clustering and bayesian network. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1-8). IEEE.

Soni, A. (2018). Violin plots explained. Towards Data Science. https://towardsdatascience.com/violin-plots-explained-fb1d115e023d