PREDICTINGHOUSEPRICEUSINGMACHINELEARNING

TEAM

MEMBERNAME: RAM

PRAKASH.M

Phase2SubmissionDocument

Project:HousePricePrediction

Introduction:

- ✓ Therealestatemarketisoneofthemostdynamicandlucrativesectors, with house prices constantly fluctuating based on various factors such aslocation, size, amenities, and economic conditions. Accurately predictinghouse prices is crucial for both buyers and sellers, as it can help makeinformeddecisionsregardingbuying, selling, or investing in properties.
- ✓ Traditional linear regression models are often employed for house priceprediction. However, they may not capture complex relationships betweenpredictors and the target variable, leading to suboptimal predictions. Int his project, we will explore advanced regression techniques to enhance the accuracy and robustness of house price prediction models.
- ✓ Brieflyintroducetherealestatemarketandtheimportanceofaccuratehouse priceprediction. Highlight the limitations of traditional linearregressionmodelsin capturingcomplex relationships.
- ✓ EmphasizetheneedforadvancedregressiontechniqueslikeGradientBoo stingandXGBoostto enhancepredictionaccuracy.

ContentforProjectPhase2:

Consider exploring advanced regression techniques like Gradient Boosting or XGB oost for improved Prediction accuracy.

DataSource:

A good data source for house price prediction using machine learning should be Accurate, Complete, Covering the geographic area of interest, Accessible.

DatasetLink:(https://www.kaggle.com/datasets/vedavyasv/usa-housing)

Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
79545.45857	5.682861322	7.009188143	4.09	23086.8005	1059033.56	208
79248.64245	6.002899808	6.730821019	3.09	40173.07217	1505890.91	188
61287.06718	5.86588984	8.51272743	5.13	36882.1594	1058987.99	9127
63345.24005	7.188236095	5.586728665	3.26	34310.24283	1260616.81	USS
59982.19723	5.040554523	7.839387785	4.23	26354.10947	630943.489	USNS
80175.75416	4.988407758	6.104512439	4.04	26748.42842	1068138.07	06039
64698.46343	6.025335907	8.147759585	3.41	60828.24909	1502055.82	4759
78394.33928	6.989779748	6.620477995	2.42	36516.35897	1573936.56	972 Joyce
59927.66081	5.36212557	6.393120981	2.3	29387.396	798869.533	USS
81885.92718	4.42367179	8.167688003	6.1	40149.96575	1545154.81	Unit 9446
80527.47208	8.093512681	5.0427468	4.1	47224.35984	1707045.72	6368
50593.6955	4.496512793	7.467627404	4.49	34343.99189	663732.397	911
39033.80924	7.671755373	7.250029317	3.1	39220.36147	1042814.1	209
73163.66344	6.919534825	5.993187901	2.27	32326.12314	1291331.52	829
69391.38018	5.344776177	8.406417715	4.37	35521.29403	1402818.21	PSC 5330,
73091.86675	5.443156467	8.517512711	4.01	23929.52405	1306674.66	2278
79706.96306	5.067889591	8.219771123	3.12	39717.81358	1556786.6	064
61929.07702	4.788550242	5.097009554	4.3	24595.9015	528485.247	5498
63508.1943	5.94716514	7.187773835	5.12	35719.65305	1019425.94	Unit 7424
62085.2764	5.739410844	7.091808104	5.49	44922.1067	1030591.43	19696
86294.99909	6.62745694	8.011897853	4.07	47560.77534	2146925.34	030 Larry
60835.08998	5.551221592	6.517175038	2.1	45574.74166	929247.6	USNS
64490.65027	4.21032287	5.478087731	4.31	40358.96011	718887.232	95198
60697.35154	6.170484091	7.150536572	6.34	28140.96709	743999.819	9003 Jay
59748.85549	5.339339881	7.748681606	4.23	27809.98654	895737.133	24282

<u>DataCollectionandPreprocessing</u>:

- ✓ Importing the dataset: Obtain a comprehensive dataset containing relevantfeaturessuchassquarefootage,numberofbedrooms,location,amenities,etc.
- ✓ Datapreprocessing:Cleanthedatabyhandlingmissingvalues,outliers,andcateg oricalvariables.Standardize ornormalize numericalfeatures.

Exploratory DataAnalysis (EDA):

- ✓ Visualizeandanalyzethedatasettogaininsightsintotherelationshipsbetweenvariab les.
- ✓ Identifycorrelationsandpatternsthatcaninformfeatureselectionandengin eering.
- ✓ Presentvariousdatavisualizationstogaininsightsintothedataset.
- ✓ Explorecorrelations between features and the target variable (house prices).
- ✓ DiscussanysignificantfindingsfromtheEDAphasethatinformfeatureselect ion.

FeatureEngineering:

- ✓ Createnewfeaturesortransformexistingonestocapturevaluableinformation.
- ✓ Utilizedomainknowledgetoengineerfeaturesthatmayimpacthouseprices, such a sproximity toschools, transportation, or crimerates.
- ✓ Explaintheprocessofcreatingnewfeaturesortransformingexistingones.
- ✓ Showcasedomainspecificfeatureengineering, such as proximity scores or composite indicators.
- ✓ Emphasizetheimpactofengineeredfeaturesonmodelperformance.

AdvancedRegressionTechniques:

- ➤ RidgeRegression:IntroduceL2regularizationtomitigatemulticollinearityandover fitting.
- ➤ LassoRegression:EmployL1regularizationtoperformfeatureselectionandsimplifythemodel.
- ➤ ElasticNetRegression:

Combine both L1 and L2 regularization to be nefit from their respective advantages.

> RandomForestRegression:

Implementanensembletechniquetohandlenonlinearityandcapture complexrelationships in the data.

➤ GradientBoostingRegressors(e.g.,XGBoost,LightGBM):Utilizegradientboostingalgorithmsforimprovedaccuracy.

ModelEvaluationandSelection:

- Splitthedatasetintotrainingandtestingsets.
- $^{\circ}$ Evaluate models using appropriate metrics (e.g., Mean Absolute Error, Mean Squared Error, R-squared) to assess their performance.
- ${}^{\smallfrown} Use cross-validation techniques to tune hyperparameters and ensure model stability.$
- ${}^{\smallfrown} Compare the results with traditional linear regression models to highlight improvements.$
- Selectthebest-performing model for further analysis.

ModelInterpretability:

- ${}^{\frown} Explainhow to interpret \ feature importance from Gradient Boosting and XGBoost models.$
- CDiscuss the insights gained from feature importance analysis and their relevance to house price prediction.
- ^c InterpretfeatureimportancefromensemblemodelslikeRandomForestandGradientBoosting to understand the factors influencinghouseprices.

DeploymentandPrediction:

- $^{\smallfrown} Deploy the chosen regression model to predict house prices.$
- CDevelopauser-

friendly interface for users to input property features and receive price predictions.

Program:

In[1]:

model_lr=LinearRegression()

HousePricePrediction

```
Importing Dependencies
import pandas as
pdimport numpy as
npimportseabornassns
importmatplotlib.pyplotasplt
fromsklearn.model_selectionimporttrain_test_splitfr
omsklearn.preprocessingimportStandardScaler
fromsklearn.metricsimportr2 score,mean absolute error,mean squared errorfroms
klearn.linear modelimportLinearRegression
fromsklearn.linear_modelimportLasso
from sklearn. ensemble import Random Forest Regressor fr\\
omsklearn.svmimportSVR
importxgboostasxg
%matplotlibinlinei
mportwarnings
warnings.filterwarnings("ignore")
/opt/conda/lib/python3.10/site-packages/scipy/_init_.py:146: UserWarning:
ANumPy version >=1.16.5 and <1.23.0 is required for this version of
SciPy(detected version 1.23.5
warnings.warn(f"ANumPyversion>={np_minversion}and<{np_maxversion}"
LoadingDataset
dataset=pd.read_csv('E:/USA_Housing.csv')
Model1-LinearRegression
```

```
In[2]:
model_lr.fit(X_train_scal,Y_train)
```

Out[2]:

```
tinearRegression
LinearRegression()
```

PredictingPrices

In[3]:

Prediction1=model_lr.predict(X_test_scal)

EvaluationofPredictedData

```
In[4]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual
Trend')plt.plot(np.arange(len(Y_test)), Prediction1, label='PredictedTrend')plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('ActualvsPredicted')
```

Out[4]:

Text(0.5,1.0,'ActualvsPredicted')

In[5]:
sns.histplot((Y_test-Prediction1),bins=50)

Out[5]:

<Axes:xlabel='Price',ylabel='Count'>

In[6]: print(r2_score(Y_test, Prediction1))print(mean_absolute_error(Y_test, Prediction1))print(mean_squared_error(Y_test, Prediction1))

Out[6]:0.9182928179

392918 82295.49779231755 10469084772.975954

Model2-SupportVectorRegressor

Text(0.5,1.0,'ActualvsPredicted')

```
In[7]:
model_svr=SVR()
In[8]:
model_svr.fit(X_train_scal,Y_train)
Out[8]:
     * SVR
    SVR()
PredictingPrices
In[9]:
Prediction2=model_svr.predict(X_test_scal)
EvaluationofPredictedData
In[10]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual
Trend')plt.plot(np.arange(len(Y_test)),Prediction2,label='PredictedTrend')plt.xl
abel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('ActualvsPredicted')
Out[10]:
```


In[11]:
sns.histplot((Y_test-Prediction2),bins=50)

Out[12]: <Axes:xlabel='Price',ylabel='Count'>

In[12]: print(r2_score(Y_test, Prediction2))print(mean_absolute_error(Y_test, Prediction2))print(mean_squared_error(Y_test,

Prediction2))
-0.0006222175925689744

286137.81086908665

128209033251.4034

Model3-LassoRegression

In[13]: model_lar=Lasso(alpha=1)

In[14]:

model_lar.fit(X_train_scal,Y_train)

Out[14]:

PredictingPrices

In[15]:

 $Prediction 3 = model_lar.predict(X_test_scal)$

EvaluationofPredictedData

```
In[16]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual
Trend')plt.plot(np.arange(len(Y_test)), Prediction3, label='PredictedTrend')
```

plt.xlabel('Data')p lt.ylabel('Trend')p lt.legend() plt.title('ActualvsPredicted')

Out[16]:

Text(0.5,1.0,'ActualvsPredicted')

In[17]:
sns.histplot((Y_test-Prediction3),bins=50)

Out[17]:

<Axes:xlabel='Price',ylabel='Count'>

In[18]:
print(r2_score(Y_test,
Prediction2))print(mean_absolute_error(Y_test,
Prediction2))print(mean_squared_error(Y_test,
Prediction2))
-0.0006222175925689744
286137.81086908665
128209033251.4034

$\underline{Model 4\text{-}Random Forest Regressor}$

```
In[19]:
model_rf=RandomForestRegressor(n_estimators=50)
In[20]:
model_rf.fit(X_train_scal,Y_train)
```

Out[20]:

```
▼ RandomForestRegressor

RandomForestRegressor(n_estimators=50)
```

PredictingPrices

In[21]:

Prediction4=model_rf.predict(X_test_scal)

EvaluationofPredictedData

In[22]:

plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual
Trend')plt.plot(np.arange(len(Y_test)), Prediction4, label='PredictedTrend')plt.xl
abel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('ActualvsPredicted')

Out[22]:

Text(0.5,1.0,'ActualvsPredicted')

In[23]:
sns.histplot((Y_test-Prediction4),bins=50)

Out[23]: <Axes:xlabel='Price',ylabel='Count'>

In[24]:
print(r2_score(Y_test,Prediction2))

```
print(mean_absolute_error(Y_test,Prediction2))
print(mean_squared_error(Y_test,Prediction2))
```

Out[24]:

-0.0006222175925689744 286137.81086908665 128209033251.4034

Model5-XGboostRegressor

```
In[25]:
```

 $model_xg=xg.XGBRegressor()$

In[26]:

model_xg.fit(X_train_scal, Y_train)Out[26]:

XGBRegressor

XGBRegressor(base_score=None, booster=None,

callbacks=None,colsample_bylevel=None,

colsample_bynode=None,colsample_bytree=None,

early_stopping_rounds=None,enable_categorical=False,

eval_metric=None,

feature_types=None,gamma=None,gpu_id=None,grow_policy=None,impo

rtance_type=None,interaction_constraints=None, learning_rate=None,

max_bin=None,max_cat_threshold=None,

max_cat_to_onehot=None,max_delta_step=None, max_depth=None,

 $max_leaves = None, min_child_weight = None, missing = nan, monotone_const$

raints=None,

```
n_estimators=100,n_jobs=None,num_parallel_tree=None, predictor=None, random state=None,...)
```

PredictingPrices

```
In[27]:
Prediction5=model_xg.predict(X_test_scal)
EvaluationofPredictedData
```

```
In[28]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual

Trend')plt.plot(np.arange(len(Y_test)), Prediction5, label='PredictedTrend')plt.xl
abel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('ActualvsPredicted')
```

Out[28]: Text(0.5,1.0,'ActualvsPredicted')

In[29]:
sns.histplot((Y_test-Prediction4),bins=50)

Out[29]: <Axes:xlabel='Price',ylabel='Count'>

In[30]:
print(r2_score(Y_test,
Prediction2))print(mean_absolute_error(Y_test,
Prediction2))print(mean_squared_error(Y_test,
Prediction2))

Out[30]:
-0.0006222175925689744
286137.81086908665
128209033251.4034

<u>ConclusionandFutureWork(Phase2):</u>

ProjectConclusion:

- ^cInthePhase2conclusion, wewillsummarizethekeyfindingsand insightsfromtheadvanced regression techniques. We will reiterate the impact of these techniques onimprovingthe accuracy androbustnessof housepricepredictions.
- ^c FutureWork: Wewilldiscusspotentialavenuesforfuturework, such as incorporating additional data sources (e.g., real-time economic indicators), exploring deep learning models for prediction, or expanding the project into a web application with more features and interactivity.