CORRIGÉ TD : SÉRIES

SOLUTION 1.

- ▶ On suppose 0 < b < 1. Dans ce cas, $b^n \xrightarrow[n \to +\infty]{} 0$. Or $2^{\sqrt{n}} \xrightarrow[n \to +\infty]{} +\infty$ donc $b^n = o\left(2^{\sqrt{n}}\right)$ puis $2^{\sqrt{n}} + b^n \sim 2^{\sqrt{n}}$. Finalement $u_n \sim a^n$. On en déduit que $\sum_{n \in \mathbb{N}} u_n$ converge pour 0 < a < 1 et diverge vers $+\infty$ sinon.
- ▶ On suppose b > 1. Dans ce cas, $2^{\sqrt{n}} = o$ (b^n) et donc $2^{\sqrt{n}} + b^n \sim b^n$. Finalement, $u_n \sim \left(\frac{\alpha}{b}\right)^n 2^{\sqrt{n}}$. Si a < b, il existe $\epsilon > 0$ tel que $\frac{\alpha}{b} + \epsilon < 1$. On montre alors que $u_n = o\left(\left(\frac{\alpha}{b} + \epsilon\right)^n\right)$ donc $\sum_{n \in \mathbb{N}} u_n$ converge. Si $a \geqslant b$, $u_n \xrightarrow[n \to +\infty]{} + \infty$ donc $\sum_{n \in \mathbb{N}} u_n$ diverge grossièrement.

SOLUTION 2.

Première méthode:

▶ Supposons p = 0. Pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{1! + 2! + \dots + n!}{n!} \geqslant \frac{n!}{n!} = 1$$

La série $\sum_{n\in\mathbb{N}^*}u_n$ diverge grossièrement.

▶ Supposons p = 1. Pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{1! + 2! + \dots + n!}{(n+1)n!} = \frac{1}{n+1} \frac{1! + 2! + \dots + n!}{n!} \geqslant \frac{1}{n+1}$$

Or la série $\sum_{n\in\mathbb{N}}\frac{1}{n+1}$ diverge vers $+\infty$. Par minoration, la série $\sum_{n\in\mathbb{N}^*}u_n$ diverge.

▶ Supposons $p \ge 2$. Pour $n \ge 2$,

$$1! + 2! + \cdots + n! \le (n-1)(n-1)! + n! \le n(n-1)! + n! = 2n!$$

Ainsi

$$u_n \le \frac{2n!}{(n+p)!} \le \frac{2n!}{(n+2)!} = \frac{2}{(n+1)(n+2)} \sim \frac{2}{n^2}$$

Or la série $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$ converge donc la série $\sum_{n\in\mathbb{N}^*}u_n$ également.

Seconde méthode : On peut également montrer que $1! + 2! + \cdots + n! \sim n!$. En effet, on a pour $n \in \mathbb{N}^*$

$$\frac{1!+2!+\cdots+n!}{n!}\geqslant 1$$

et pour $n \ge 3$,

$$\frac{1! + 2! + \dots + n!}{n!} \le 1 + \frac{1}{n} + \sum_{k=1}^{n-2} \frac{k!}{n!}$$

$$\le 1 + \frac{1}{n} + (n-2) \frac{(n-2)!}{n!}$$

$$\le 1 + \frac{1}{n} + \frac{(n-2)}{n(n-1)}$$

Par encadrement, $\frac{1!+2!+\cdots+n!}{n!} \xrightarrow[n \to +\infty]{} 1$ i.e. $1!+2!+\cdots+n! \sim n!$. On en déduit que

$$u_n \sim \frac{1}{n \to +\infty} \frac{1}{(n+p)(n+p-1)\dots(n+1)} \sim \frac{1}{n \to +\infty} \frac{1}{n^p}$$

La série de terme général u_n est donc de même nature que celle de terme général $\frac{1}{n^p}$: elle converge donc si et seulement si $p \ge 2$.

SOLUTION 3.

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ converge. Alors (S_n) converge vers la somme S>0 de cette série. On a donc $\frac{u_n}{S_n}\sim \frac{u_n}{S}$. La série $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ converge donc.

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ diverge. Puisque cette série est à termes positifs, elle diverge donc vers $+\infty$. Si $\frac{u_n}{S_n}$ ne tend pas vers 0 lorsque n tend vers $+\infty$, $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ diverge grossièrement. Sinon, $\ln\left(1-\frac{u_n}{S_n}\right)\sim -\frac{u_n}{S_n}$ donc les séries de terme général $\frac{u_n}{S_n}$ et $\ln\left(1-\frac{u_n}{S_n}\right)$ sont de même nature. Or

$$\begin{split} \sum_{n=1}^{N} \ln \left(1 - \frac{u_n}{S_n} \right) &= \sum_{n=1}^{N} \ln \frac{S_{n-1}}{S_n} \\ &= \sum_{n=1}^{N} \left(\ln S_{n-1} - \ln S_n \right) = \ln S_0 - \ln S_N \end{split}$$

Or $S_N \xrightarrow[N \to +\infty]{} + \infty$ puisque $\sum_{n \in \mathbb{N}} u_n$ diverge vers $+\infty$. Ainsi $\sum_{n \in \mathbb{N}^*} \ln \left(1 - \frac{u_n}{S_n}\right)$ diverge de même que $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$. Les deux séries $\sum_{n \in \mathbb{N}} u_n$ et $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$ sont donc toujours de même nature.

SOLUTION 4.

On prouve par récurrence que pour tout $n \in \mathbb{N}$, $\frac{u_{2n}}{u_0} \leqslant \frac{v_{2n}}{v_0}$ et $\frac{u_{2n+1}}{u_1} \leqslant \frac{v_{2n+1}}{v_1}$. En posant $K = \max\left(\frac{u_0}{v_0}, \frac{u_1}{v_1}\right)$, on a donc $u_n \leqslant Kv_n$ pour tout $n \in \mathbb{N}$. La série $\sum_{n \geqslant 0} u_n$ est à termes positifs et son terme général est majoré par celui d'une série convergente : elle converge également.

SOLUTION 5.

- $\textbf{1. Soit } N \in \mathbb{N} \text{ tel que } \frac{u_{n+1}}{u_n} \leqslant \frac{\nu_{n+1}}{\nu_n} \text{ pour } n \geqslant N. \text{ Par t\'elescopage, on obtient, } \frac{u_n}{u_N} \leqslant \frac{\nu_n}{\nu_N} \text{ i.e. } u_n \leqslant \frac{u_N}{\nu_N} \nu_n \text{ pour tout } n \geqslant N. \text{ On a donc } u_n = \mathcal{O}\left(\nu_n\right).$
- 2. a. Soit β tel que $1<\beta<\alpha$ et posons $\nu_n=\frac{1}{n^\beta}$ pour $n\in\mathbb{N}^*.$ On a alors

$$\frac{\nu_{n+1}}{\nu_n} = \frac{n^{\beta}}{(n+1)^{\beta}}$$
$$= \left(1 + \frac{1}{n}\right)^{-\beta}$$
$$= 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$$

Ainsi $\frac{\nu_{n+1}}{\nu_n} - \frac{u_{n+1}}{u_n} \sim \frac{\alpha-\beta}{n}$. Puisque $\alpha-\beta>0$, on a donc $\frac{u_{n+1}}{u_n} \leqslant \frac{\nu_{n+1}}{\nu_n}$ à partir d'un certain rang. D'après la première question, $u_n=\mathcal{O}\left(\nu_n\right)$. La série $\sum_{n\in\mathbb{N}}\nu_n$ converge car $\beta>1$ et, comme elle est à termes positifs, sa convergence entraı̂ne celle de $\sum_{n\in\mathbb{N}}u_n$.

- **b.** Cette fois-ci, on se donne β tel que $\alpha < \beta < 1$ et on pose à nouveau $\nu_n = \frac{1}{n^\beta}$ pour $n \in \mathbb{N}^*$. On montre comme précédemment que $\nu_n = \mathcal{O}\left(u_n\right)$. La divergence de $\sum_{n \in \mathbb{N}} \nu_n$ entraı̂ne la divergence de $\sum_{n \in \mathbb{N}} u_n$.
- $\begin{aligned} \textbf{c.} & \text{ Si on pose } u_n = \frac{1}{n} \text{ pour } n \in \mathbb{N}^*, \text{ on a } \frac{u_{n+1}}{u_n} = 1 \frac{1}{n} + o\left(\frac{1}{n}\right) \text{ et } \sum_{n \in \mathbb{N}^*} u_n \text{ diverge.} \\ & \text{ Si on pose maintenant } u_n = \frac{1}{n \ln^2 n} \text{ pour } n \geqslant 2, \text{ on a à nouveau } u_n = 1 \frac{1}{n} + o\left(\frac{1}{n}\right). \text{ Mais la fonction } x \mapsto \frac{1}{x \ln^2 x} \\ & \text{ étant décroissante, la série } \sum_{n \in \mathbb{N}} u_n \text{ et l'intégrale } \int_2^{+\infty} \frac{dt}{t \ln^2 t} \text{ sont de même nature. Or une primitive de } t \mapsto \frac{1}{t \ln^2 t} \\ & \text{ est } t \mapsto -\frac{1}{\ln t}, \text{ ce qui prouve la convergence de l'intégrale précédente et par conséquent celle de la série } \sum_{n \in \mathbb{N}} u_n. \end{aligned}$
- **3.** On a

$$\frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+3} = \frac{1+\frac{1}{n}}{1+\frac{3}{2n}}$$
$$= 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Autrement dit, $\alpha=\frac{1}{2}<1$ avec les notations précédentes. La série de terme général \mathfrak{u}_n diverge.

Remarque. Le critère de Raabe-Duhamel permet de conclure (sauf si $\alpha=1$) dans les cas où le critère de d'Alembert ne le permet pas $(\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} 1)$.

SOLUTION 6.

- 1. Comme $\sum_{n\in\mathbb{N}}a_n$ converge, $a_n=o(1)$ et donc $a_n^2=o(a_n)$. La série $\sum_{n\in\mathbb{N}}a_n$ étant convergente à termes positifs, la série $\sum_{n\in\mathbb{N}}a_n^2$ converge également.
- $\textbf{2. Comme} \sum_{n \in \mathbb{N}} a_n \text{ converge, } a_n = o(1) \text{ et donc } \frac{a_n}{1+a_n} \sim a_n. \text{ La série } \sum_{n \in \mathbb{N}} a_n \text{ étant convergente à termes positifs, la série } \sum_{n \in \mathbb{N}} \frac{a_n}{1+a_n} \text{ converge également.}$
- 3. Comme $\sum_{n\in\mathbb{N}}a_n$ converge, $a_n=o(1)$. Ainsi $a_{2n}=o(1)$ et donc $a_na_{2n}=o(a_n)$. La série $\sum_{n\in\mathbb{N}}a_n$ étant convergente à termes positifs, la série $\sum_{n\in\mathbb{N}}a_na_{2n}$ converge également.
- 4. On démontre facilement que pour $x,y\in\mathbb{R}, \, xy\leqslant \frac{1}{2}(x^2+y^2)$. Ainsi pour tout $n\in\mathbb{N}^*, \, \frac{\sqrt{\alpha_n}}{n}\leqslant \frac{1}{2}\left(\alpha_n+\frac{1}{n^2}\right)$. On sait que les séries de terme général α_n et $\frac{1}{n^2}$ convergent donc celle de terme général $\frac{1}{2}\left(\alpha_n+\frac{1}{n^2}\right)$. La série $\sum_{n\in\mathbb{N}^*}\frac{\sqrt{\alpha_n}}{n}$ est à termes positifs et son terme général est majoré par celui d'une série convergente : elle converge donc également.

SOLUTION 7.

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n \alpha_k B_k &= \sum_{k=n_0}^n (A_k - A_{k-1}) B_k \\ &= \sum_{k=n_0}^n A_k B_k - \sum_{k=n_0}^n A_{k-1} B_k \\ &= \sum_{k=n_0}^n A_k B_k - \sum_{k=n_0-1}^{n-1} A_k B_{k+1} \\ &= A_n B_n + \sum_{k=n_0}^{n-1} A_k (B_k - B_{k+1}) \\ &= A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k \end{split}$$

2. Il suffit de poser $a_n = \sin n$ et $B_n = \frac{1}{n}$ pour tout $n \geqslant 1$. Avec les notations précédentes, pour tout $n \geqslant 1$

$$\begin{split} A_n &= \sum_{k=1}^n \sin k \\ &= \operatorname{Im} \left(\sum_{k=1}^n e^{ik} \right) \\ &= \operatorname{Im} \left(e^i \frac{e^{in} - 1}{e^i - 1} \right) \\ &= \operatorname{Im} \left(e^{\frac{i(n+1)}{2}} \frac{\sin \frac{n}{2}}{\sin \frac{1}{2}} \right) \\ &= \frac{\sin \frac{n+1}{2} \sin \frac{n}{2}}{\sin \frac{1}{2}} \\ b_n &= \frac{1}{n+1} - \frac{1}{n} \end{split}$$

D'après la question précédente, pour tout $n \ge 1$,

$$\sum_{k=1}^{n} \frac{\sin k}{k} = A_{n} b_{n} - \sum_{k=1}^{n-1} A_{k} b_{k}$$

Or (A_n) est bornée et (b_n) converge vers 0 donc (A_nb_n) converge vers 0. De plus pour tout $k \ge 1$,

$$|A_k b_k| \leqslant \frac{1}{\sin \frac{1}{2}} |b_k| = \frac{1}{\sin \frac{1}{2}} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

Or la série $\sum_{n\geq 1} \frac{1}{n} - \frac{1}{n+1}$ converge (série télescopique) donc la série $\sum_{n\geqslant 1} A_n b_n$ est absolument convergente donc

convergente. On en déduite la convergence de la série $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.

3. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to +\infty}A_nB_n=0$. Puisque (A_n) est bornée, $A_nb_n=\mathcal{O}(|b_n|)$. Or la série $\sum_{n\geqslant n_0}|b_n|$ converge car $\sum_{n\geqslant n_0}b_n$ est absolument convergente

et est à termes positifs donc $\sum_{n\geqslant n_0}A_nb_n$ converge (absolument). Ainsi $\sum_{k=n_0}^{n-1}A_kb_k$ admet une limite quand n tend

vers $+\infty$.

Il s'ensuit que $\sum_{k=n_0}^n a_k B_k$ admet également une limite lorsque n tend vers $+\infty$ i.e. que la série $\sum_{n\geqslant n_0} a_n B_n$ converge.

SOLUTION 8.

- 1. Supposons que $\sum_{n\geqslant 0} \nu_n$ converge. On a pour tout $n\in\mathbb{N}, \frac{u_{n+1}}{\nu_{n+1}}\leqslant \frac{u_n}{\nu_n}$. Par une récurrence évidente, $\frac{u_n}{\nu_n}\leqslant \frac{u_0}{\nu_0}$. Posons $\lambda=\frac{u_0}{\nu_0}$. On a alors $0< u_n\leqslant \lambda\nu_n$ pour tout $n\in\mathbb{N}$ et donc $u_n=0$ (ν_n). Comme la série $\sum_{n\geqslant 0} \nu_n$ est à termes positifs et converge, la série $\sum_{n\geqslant 0} u_n$ converge également.
- 2. C'est tout simplement la contraposée de la proposition montrée à la question précédente.

SOLUTION 9.

- 1. On remarque tout d'abord que $\sum \max(u_n, \nu_n)$ est à termes positifs. De plus, $\max(u_n, \nu_n) \leq u_n + \nu_n$ car u_n et ν_n sont positifs. Enfin, $\sum u_n + \nu_n$ converge, ce qui permet de conclure à la convergence de $\sum \max(u_n, \nu_n)$.
- 2. On remarque tout d'abord que $\sum \sqrt{u_n v_n}$ est à termes positifs. De plus, $\sqrt{u_n v_n} \leqslant \frac{1}{2}(u_n + v_n)$. Enfin, $\sum \frac{1}{2}(u_n + v_n)$ converge, ce qui permet de conclure à la convergence de $\sum \max(u_n, v_n)$.
- 3. On remarque tout d'abord que $\sum \frac{u_n v_n}{u_n + v_n}$ est à termes positifs. De plus, $\frac{u_n v_n}{u_n + v_n} \le v_n$ car $u_n + v_n$ est positif. Enfin, $\sum v_n$ converge, ce qui permet de conclure à la convergence de $\sum \frac{u_n v_n}{u_n + v_n}$.

SOLUTION 10.

- 1. Soit $k \in]l, 1[$. Puisque $\lim \frac{u_{n+1}}{u_n} = l,$ il existe un rang $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \leqslant k$ pour tout $n \geqslant N$. Une récurrence montre que $u_n \leqslant k^{n-N}u_N$ pour tout $n \geqslant N$. Ainsi $u_n = \mathcal{O}(k^n)$. Puisque la série $\sum_{n \in \mathbb{N}} k^n$ est un série à termes positifs convergente donc $\sum_{n \in \mathbb{N}} u_n$ converge.
- 2. Soit $k \in]1,1[$. Puisque $\lim \frac{u_{n+1}}{u_n} = 1$, il existe un rang $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \geqslant k$ pour tout $n \geqslant N$. Une récurrence montre que $u_n \geqslant k^{n-N}u_N$ pour tout $n \geqslant N$. En particulier, la suite (u_n) diverge vers $+\infty$ et a fortiori ne converge pas vers 0. Ainsi $\sum_{n \in \mathbb{N}} u_n$ diverge.
- 3. Posons $u_n = n+1$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\sum_{n \in \mathbb{N}} u_n$ diverge. Posons $u_n = \frac{1}{(n+1)^2}$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\sum_{n \in \mathbb{N}} u_n$ converge.
- **4.** Posons $u_n = \frac{n!}{n^n}$ pour $n \in \mathbb{N}^*$. La série $\sum_{n \in \mathbb{N}^*} u_n$ est à termes strictement positifs et pour tout $n \in \mathbb{N}^*$, $\frac{u_{n+1}}{u_n} = \frac{1}{e}$ et la série $\sum_{n \in \mathbb{N}^*} u_n$ converge.

SOLUTION 11.

- 1. Si $\beta \geqslant 0$, alors $0 \leqslant u_n \leqslant \frac{1}{n^{\alpha}}$ pour $n \geqslant 3$. Or la série de Riemann $\sum_{n \geqslant 1} \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$. On en déduit que $\sum_{n \geqslant 2} u_n$ converge.
 - Si $\beta<0$, donnons-nous $\gamma\in]1,\alpha[$. Alors $(\ln n)^{-\beta}=\atop_{n\to+\infty}o(n^{\alpha-\gamma})$ par croissances comparées. Ceci signifie que

 $u_n \underset{n \to +\infty}{=} o\left(\frac{1}{n^\gamma}\right). \text{ Or la série de Riemann } \sum_{n \geqslant 1} \frac{1}{n^\gamma} \text{ est à termes positifs et converge puisque } \gamma > 1. \text{ On en déduit que } \sum_{n \geqslant 2} u_n \text{ converge.}$

- 2. Si $\beta \leqslant 0$, alors $0 \leqslant \frac{1}{n^{\alpha}} \leqslant u_n$ pour $n \geqslant 3$. Or $\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$ diverge donc $\sum_{n\geqslant 2} u_n$ diverge. Si $\beta > 0$, donnons-nous $\gamma \in]\alpha, 1[$. Alors $(\ln n)^{\beta} = o(n^{\gamma-\alpha})$ par croissances comparées. Ceci signifie que $\frac{1}{n^{\gamma}} = o(u_n)$. Or la série $\sum_{n\geqslant 2} u_n$ est à termes positifs et la série de Riemann $\sum_{n\geqslant 1} \frac{1}{n^{\gamma}}$ diverge puisque $\gamma < 1$. On en déduit que $\sum_{n\geqslant 2} u_n$ diverge.
- 3. On a alors $0 \leqslant \frac{1}{n} \leqslant u_n$ pour $n \geqslant 3$. Or la série harmonique $\sum_{n\geqslant 1} \frac{1}{n}$ diverge. On en déduit que $\sum_{n\geqslant 2} u_n$ diverge.
- 4. Posons $f(x) = \frac{1}{(x \ln x)^{\beta}}$ pour x > 1. f est décroissante sur]1, $+\infty$ de sorte que

$$\int_2^{n+1} f(x) \, dx \leqslant \sum_{k=2}^n u_k \leqslant \frac{1}{(\ln 2)^\beta} + \int_2^n f(x) \, dx$$

Si $\beta \neq 1,$ alors $x \mapsto \frac{(\ln x)^{1-\beta}}{1-\beta}$ est une primitive de f de sorte que

$$\frac{(\ln(n+1))^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta} \leqslant \sum_{k=2}^n u_k \leqslant \frac{1}{(\ln 2)^\beta} + \frac{(\ln n)^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta}$$

Le théorème de minoration nous permet d'affirmer que la série $\sum u_n$ diverge si $\beta < 1$. Par contre, si $\beta > 1$, la suite des sommes partielles de la série $\sum_{n\geqslant 2} u_n$ est croissante (puisque la série est à termes positifs) et majorée par une

suite convergente donc elle converge en vertu du théorème de la limite monotone. On peut donc affirmer que $\sum_{n\geqslant 2} u_n$ converge.

Si $\beta = 1$, alors $x \mapsto \ln(\ln x)$ est une primitive de f de sorte que

$$\ln(\ln(n+1)) - \ln(\ln 2) \leqslant \sum_{k=2}^n u_k$$

On conclut à la divergence de $\sum_{n\geqslant 2}\mathfrak{u}_n$ via le théorème de minoration.

Solution 12.

- 1. Soit $q \in]l, 1[$. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \sqrt[n]{u_n} \leqslant q$ pour $n \geqslant N$. Ainsi $0 \leqslant u_n \leqslant q^n$ pour $n \geqslant N$. Puisque la série $\sum q^n$ converge, il en est de même de la série $\sum u_n$.
- 2. Soit $q \in]1, l[$. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \leqslant q \leqslant \sqrt[n]{u_n}$ pour $n \geqslant N$. Ainsi $0 \leqslant q^n \leqslant u_n$ pour $n \geqslant N$. Puisque la série $\sum q^n$ diverge, il en est de même de la série $\sum u_n$.
- $\begin{array}{l} \textbf{3.} \ \operatorname{Posons} \ u_n = 1. \ \operatorname{Pour} \ \operatorname{tout} \ n \in \mathbb{N}. \ \operatorname{Alors} \ \lim_{n \to +\infty} \sqrt[n]{u_n} = 1 \ \operatorname{et} \ \sum u_n \ \operatorname{diverge}. \\ \operatorname{Posons} \ u_n = \frac{1}{n^2}. \ \operatorname{Alors} \ \sqrt[n]{u_n} = \exp\left(-\frac{2\ln n}{n}\right) \ \operatorname{d'où} \ \lim_{n \to +\infty} \sqrt[n]{u_n} = 1 \ \operatorname{et} \ \sum u_n \ \operatorname{converge}. \\ \end{array}$

SOLUTION 13.

Pour tout $n \in \mathbb{N}^*$,

$$S_{2n+1} - S_{2n-1} = -\frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2n}} \ge 0$$

et

$$S_{2n+2} - S_{2n} = \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+1}} \le 0$$

Ainsi la suite (S_{2n-1}) est croissante et la suite (S_{2n}) est décroissante. De plus, pour tout $n \in \mathbb{N}^*$

$$S_{2n} - S_{2n-1} = \frac{1}{\sqrt{2n}}$$

donc $\lim_{n\to +\infty} S_{2n} - S_{2n-1} = 0$. Les suites (S_{2n-1}) et (S_{2n}) sont donc adjacentes. Elles convergent vers la même limite, ce qui assure la convergence de la suite (S_n) et donc de la série $\sum_{n\in \mathbb{N}^*} \frac{(-1)^n}{\sqrt{n}}$.

SOLUTION 14.

- 1. Supposons que $\sum u_n$ converge. Alors $\lim_{n\to +\infty} u_n=0$. Il s'ensuit que $u_n=o(1)$ et donc $u_n^2=o(u_n)$. Puisque $\sum u_n$ est à termes positifs et converge, $\sum u_n^2$ converge également. La réciproque est fausse puisque $\sum \frac{1}{n^2}$ converge mais pas $\sum \frac{1}{n}$.
- 2. Il suffit de poser $u_n = \frac{(-1)^n}{\sqrt{n}}$.

SOLUTION 15.

 (S_{2n}) est décroissante car

$$S_{2n+2} - S_{2n} = u_{2n+2} - u_{2n+1} \le 0$$

 (S_{2n+1}) est croissante car

$$S_{2n+3} - S_{2n+1} = -u_{2n+3} + u_{2n+2} \ge 0$$

De plus

$$S_{2n+1} - S_{2n} = -u_{2n+1} \xrightarrow{n \to +\infty} 0$$

Aussi les suites (S_{2n}) et (S_{2n+1}) sont-elles adjacentes. Elles convergent donc vers la même limite, ce qui entraı̂ne la convergence de la suite (S_n) , c'est-à-dire de la série $\sum (-1)^n u_n$.

Solution 16.

- 1. On sait que $\tan x = x + \mathcal{O}(x^2)$ donc $\tan \left(\frac{1}{n}\right) \frac{1}{n} = \mathcal{O}\left(\frac{1}{n^2}\right)$. Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ converge et est à termes positifs, il en est de même de la série $\sum_{n \in \mathbb{N}^*} \left(\tan \left(\frac{1}{n}\right) \frac{1}{n}\right)$.
- **2.** Puisque $e^x = 1 + x + o(x)$,

$$\sqrt[n]{3} = e^{\frac{\ln 3}{n}} = 1 + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)$$

et

$$\sqrt[n]{2} = e^{\frac{\ln 2}{n}} = 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

On en déduit que

$$\sqrt[n]{3} - \sqrt[n]{2} \sim \frac{\ln\left(\frac{3}{2}\right)}{n}$$

Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge, il en est de même de la série $\sum_{n \in \mathbb{N}^*} {n \choose \sqrt{3} - \sqrt[n]{2}}.$

3. Puisque $\cos x = 1 - \frac{x^2}{2} + o(x^2)$

$$\cos\left(\frac{1}{\sqrt{n}}\right) = 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

De plus, $\ln(1+u) \underset{u\to 0}{\sim} u$ donc

$$\ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right) \sim -\frac{1}{2n}$$

Puisque $\sum_{n\in\mathbb{N}^*}\frac{1}{n}$ diverge, il en est de même de la série $\sum_{n\in\mathbb{N}^*}\ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right).$

4. Puisque ch $x = 1 + \frac{x^2}{2} + \mathcal{O}(x^4)$

$$\mathrm{ch}\left(\frac{1}{\sqrt{3n}}\right) = 1 + \frac{1}{6n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque sh $x = x + \frac{x^3}{6} + \mathcal{O}(x^5)$

$$\mathrm{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n}=1+\frac{1}{6n}+\mathcal{O}\,\left(\frac{1}{n^2}\right)$$

Ainsi

$$\mathrm{ch}\left(\frac{1}{\sqrt{3n}}\right) - \mathrm{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n} = \mathcal{O}\,\left(\frac{1}{n^2}\right)$$

 $\text{Puisque} \ \sum_{n \in \mathbb{N}^*} \frac{1}{n^2} \ \text{converge et est à termes positifs, il en est de même de la série} \ \sum_{n \in \mathbb{N}^*} \bigg(\mathrm{ch} \left(\frac{1}{\sqrt{3n}} \right) - \mathrm{sh} \left(\frac{1}{\sqrt{n}} \right) \sqrt{n} \bigg).$

SOLUTION 17.

Comme $\alpha > 0$, on a

$$\cos(1/n^{\alpha}) = 1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$$

ainsi, pour n au voisinage de $+\infty$:

$$\begin{split} n\ln(\cos(1/n^{\alpha})) &= n\ln\left(1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right) \\ &= -\frac{n^{1-2\alpha}}{2} + o\left(n^{1-2\alpha}\right) \end{split}$$

ightharpoonup Si $1-2\alpha<0$, par continuité de l'exponentielle au point 0, on a

$$\lim_{n\to+\infty}u_n=1\neq 0$$

donc Σu_n diverge banalement.

▶ Si $1-2\alpha=0$, par continuité de l'exponentielle en -1/2, on a

$$\lim_{n\to +\infty} u_n = \frac{1}{\sqrt{e}} \neq 0$$

donc Σu_n diverge.

▶ Si $1-2\alpha > 0$, on a par croissances comparées au voisinage de $+\infty$,

$$u_n = e^{-n^{1-2\alpha}/2 + o\,(n^{1-2\,\alpha})} = o\,(1/n^2)$$

donc Σu_n converge par comparaison à la série de Riemann $\sum \frac{1}{n^2}$.

En conclusion : Σu_n converge si et seulement si

$$0 < \alpha < 1/2$$
.

SOLUTION 18.

On a clairement

$$u_n \sim \frac{1}{n^{3/2}}$$

donc Σu_n converge par comparaison à la série de Riemann $\sum \frac{1}{n^{3/2}}$.

SOLUTION 19.

Pöur tout $n \ge 0$, notons $u_n = 1/\binom{2n}{n}$. On a

$$\frac{u_{n+1}}{u_n} = \frac{(2n)!}{n!^2} / \frac{(2n+2)!}{(n+1)!^2}$$
$$= \frac{(n+1)^2}{(2n+2)(2n+1)}$$

d'où

$$\lim_{n\to +\infty} \left|\frac{u_{n+1}}{u_n}\right| = \frac{1}{4} < 1$$

la série $\sum u_n$ est donc convergente d'après le critère de D'Alembert.

SOLUTION 20.

On a, pour tout $n \ge 1$:

$$\begin{split} u_n &= 1 + \frac{\ln(\alpha)}{n} - \frac{2 + \ln(bc)/n}{2} + \mathcal{O}\left(\frac{1}{n^2}\right) \\ &= \frac{\ln(\alpha/\sqrt{bc})}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \end{split}$$

Puisque toute série dont le terme général est en $\mathcal{O}(1/n^2)$ converge, on déduit du théorème sur les séries de Riemann que $\sum \mathfrak{u}_n$ converge si et seulement si

$$\ln(a/\sqrt{bc})=0,$$

i.e. $a = \sqrt{bc}$.

SOLUTION 21.

Comme

$$u_n = e^{-(1+1/n)\ln(n)} = \frac{1}{n} e^{-\ln(n)/n} \, \sim \, \frac{1}{n},$$

car

$$\lim_{n\to +\infty}\frac{\ln(n)}{n}=0.$$

Ainsi la série $\sum u_n$ diverge.

SOLUTION 22.

Comme

$$n^2u_n=e^{2\ln(n)-\sqrt{n}},$$

on a

$$\lim_{n\to+\infty}n^2u_n=0,$$

la série $\sum u_n$ converge par comparaison à la série de Riemann $\sum \frac{1}{n^2}$.

SOLUTION 23.

On a:

$$n^2 u_n = e^{2 \ln(n) - \ln(n) \ln(\ln(n))}$$
.

Or

$$2\ln(n) = o(\ln(n)\ln(\ln(n))).$$

Ainsi

$$\lim_{n\to +\infty} n^2 u_n = 0$$

et donc, par comparaison aux séries de Riemann, $\sum u_n$ converge.

Solution 24.

Pour tout entier n, notons

$$\alpha_n = (7 + 4\sqrt{3})^n + (7 - 4\sqrt{3})^n.$$

D'après la formule du binôme, on a pour tout $\mathfrak n$ dans $\mathbb N$:

$$\alpha_n = \sum_{0 \le 2k \le n} 2 \binom{n}{2k} 7^{n-2k} 4^{2k} 3^k$$

ainsi $\alpha_n \in \mathbb{Z}$ et donc, par $\pi\text{-périodicit\'e}$ et imparité de la tangente :

$$u_n = -\tan(\pi(7-4\sqrt{3})^n).$$

Comme $0 < 7 - 4\sqrt{3} < 1$, on a

$$u_n \sim -\pi (7 - 4\sqrt{3})^n$$

et puisque la série géométrique $\sum (7-4\sqrt{3})^n$ converge, la série $\sum u_n$ est convergente.

SOLUTION 25.

Comme

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln(n) + \gamma + o(1)$$

où γ désigne la constante d'Euler, on a :

$$\begin{split} u_n &= \alpha^{H_n} = \alpha^{\ln(n) + \gamma + o\left(1\right)} = e^{(\ln(n) + \gamma + o\left(1\right))\ln(\alpha)} \\ &= e^{\ln(n^{\ln(\alpha)})} e^{\gamma + o\left(1\right)} = \frac{1}{n^{-\ln(\alpha)}} e^{\gamma + o\left(1\right)} \end{split}$$

Ainsi:

$$u_n \sim \frac{e^{\gamma}}{n^{-\ln(\alpha)}}.$$

Comme $e^{\gamma} \neq 0$, on déduit du théorème sur les séries de Riemman que $\sum u_n$ converge si et seulement $si - \ln(a) > 1$, c'est-à-dire

$$a<\frac{1}{e}$$
.

Remarque. Sans être aussi savant sur la série harmonique, on peut déduire d'une comparaison série-intégrale que

$$\ln(n) \leqslant H_n \leqslant \ln(n) + 1$$

ce qui permet de conclure avec des encadrements au lieu d'équivalents.

SOLUTION 26.

On a clairement

$$\mathfrak{u}_{\mathfrak{n}} \underset{+\infty}{=} (1+\mathfrak{a}+\mathfrak{b})\ln(\mathfrak{n}) + \frac{\mathfrak{a}+2\mathfrak{b}}{\mathfrak{n}} + \mathcal{O}\left(\frac{1}{\mathfrak{n}^2}\right).$$

On a donc que $\sum u_n$ converge si et seulement si

$$a + b + 1 = a + 2b = 0$$

ie (a, b) = (-2, 1).

SOLUTION 27.

Pour tout entier n, notons

$$\alpha_n = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n$$
.

D'après l
ma formule du binôme, on a pour tout $\mathfrak n$ dans $\mathbb N$:

$$\alpha_n = \sum_{0 \leqslant 2k \leqslant n} 2 \binom{n}{2k} 2^{n-2k} 3^k$$

ainsi $\alpha_n \in \mathbb{Z}$ et donc, par $\pi\text{-antipériodicité}$ du sinus :

$$|u_n| = |\sin(\pi(2-\sqrt{3})^n|.$$

Comme $0 < 2 - \sqrt{3} < 1$, on a

$$|u_n| \sim (2 - \sqrt{3})^n$$

et puisque la série géométrique $\sum (2-\sqrt{3})^n$ converge, la série $\sum u_n$ est absolumment convergente donc convergente.

SOLUTION 28.

On posera $S_n = \sum_{k=1}^n \frac{1}{k^\alpha}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^\alpha}$ lorsque $\alpha > 1$.

▶ Supposons $\alpha \leq 0$. Par comparaison à une intégrale

$$\int_{0}^{n} \frac{dt}{t^{\alpha}} \leqslant S_{n} \leqslant \int_{1}^{n+1} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{n^{1-\alpha}}{1-\alpha} \leqslant S_n \leqslant \frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit $S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$.

▶ Supposons $0 < \alpha \le 1$. Par comparaison à une intégrale

$$\int_1^{n+1} \frac{dt}{t^\alpha} \leqslant S_n \leqslant 1 + \int_1^n \frac{dt}{t^\alpha}$$

Si $0 < \alpha < 1$, on en déduit

$$\frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} \leqslant S_n \leqslant 1 + \frac{n^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit à nouveau $S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$

Si
$$\alpha = 1$$
,

$$\ln(n+1) \leqslant S_n \leqslant 1 + \ln n$$

et donc $S_n \sim \ln n$.

 \blacktriangleright Supposons $\alpha > 1$. On compare à nouveau à une intégrale. Pour des entiers n et N tels que $1 \le n < N$

$$\int_{n+1}^{N+1} \frac{dt}{t^{\alpha}} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \leqslant \int_{n}^{N} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{1}{\alpha-1}\left(\frac{1}{(n+1)^{\alpha-1}}-\frac{1}{(N+1)^{\alpha-1}}\right)\leqslant \sum_{k=n+1}^N\frac{1}{k^\alpha}\leqslant \frac{1}{\alpha-1}\left(\frac{1}{n^{\alpha-1}}-\frac{1}{N^{\alpha-1}}\right)$$

En faisant tendre N vers $+\infty$, on obtient

$$\frac{1}{\alpha-1}\frac{1}{(n+1)^{\alpha-1}}\leqslant R_n\leqslant \frac{1}{\alpha-1}\frac{1}{n^{\alpha-1}}$$

On en déduit que $R_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$.

Solution 29.

Remarquons que S_n est la somme partielle de rang n de la série $\sum_{n\geqslant 1}\frac{1}{n^2+\sqrt{n}}$. Puisque $\frac{1}{n^2+\sqrt{n}}\sim \frac{1}{n^2}$ et que $\sum_{n\geqslant 1}\frac{1}{n^2}$ est une série à termes positifs convergente, la série $\sum_{n\geqslant 1}\frac{1}{n^2+\sqrt{n}}$ converge vers un réel C. En notant R_n le reste de rang nde la série $\sum_{n\geqslant 1}\frac{1}{n^2+\sqrt{n}}$, on a $S_n=C-R_n$ pour tout $n\in\mathbb{N}^*$. Puisque $\frac{1}{k^2+\sqrt{k}}\sim\frac{1}{k^2}$, $R_n\sim\sum_{k=n+1}^{+\infty}\frac{1}{k^2}$. Une comparaison à une intégrale montre que $R_n \sim \frac{1}{n}$ d'où le résultat annoncé.

SOLUTION 30.

1. Soit $n \in \mathbb{N}^*$. On a évidemment $u_n = \sum_{k=1}^n \ln k$. La fonction \ln étant croissante sur \mathbb{R}_+^* ,

$$\int_1^n \ln(t) dt \leqslant u_n \leqslant \int_1^{n+1} \ln(t) dt$$

ou encore

$$n \ln(n) - n + 1 \le u_n \le (n+1) \ln(n+1) - n$$

On a clairement $1 = o(n \ln n)$, $n = o(n \ln n)$ donc $n \ln n - n + 1 \sim n \ln n$.

De plus,

$$(n+1)\ln(n+1) - n = n\ln n + n\ln\left(1 + \frac{1}{n}\right) + \ln n + \ln\left(1 + \frac{1}{n}\right) - n$$

On a clairement $n=o(n\ln n)$ et $\ln n=o(n\ln n)$. Par ailleurs, $\ln\left(1+\frac{1}{n}\right)\underset{n\to+\infty}{\longrightarrow}0$ donc $\ln\left(1+\frac{1}{n}\right)=o(n\ln n)$.

On en déduit également que $n \ln \left(1 + \frac{1}{n}\right) = o(n)$ et a fortiori $n \ln \left(1 + \frac{1}{n}\right) = o(n \ln n)$.

Finalement, $(n + 1) \ln(n + 1) - n \sim n \ln n$.

Le théorème des gendarmes assure alors que $u_n \sim n \ln n$.

- 2. D'après la question précédente, $\frac{1}{u_n^2} \sim \frac{1}{n^2(\ln n)^2}$. On en déduit par exemple que $\frac{1}{u_n^2} = \mathcal{O}\left(\frac{1}{n^2}\right)$, ce qui assure la convergence de la série $\sum_{n\geqslant 2}\frac{1}{u_n^2}$.
- 3. Soit $(x,y) \in]1, +\infty[$ tel que $x \le y$. Alors $0 < \le \ln x \le \ln y$ donc $0 \frac{1}{\ln y} \le \frac{1}{\ln x}$. Puisque $0 < \frac{1}{y} \le \frac{1}{x}$, on en déduit que $0 \le f(y) \le f(x)$. Ainsi f est décroissante sur $]1, +\infty[$.
- **4.** Soit $n \ge 2$. Puisque la fonction f est décroissante sur $]1, +\infty[$

$$\int_{2}^{n+1} f(t) dt \leqslant \sum_{k=2}^{n} f(k)$$

ou encore

$$\ln(\ln(n+1)) - \ln(\ln 2) \leqslant \sum_{k=2}^n \frac{1}{u_k}$$

Par théorème de minoration, la série $\sum_{n\geqslant 2} \frac{1}{u_n}$ diverge (vers $+\infty$).

SOLUTION 31.

Comme $\cos x = \frac{\sin 2x}{2\sin x}$, on a pour $k \in \mathbb{N}$ et pour $x = \frac{\alpha}{2^k}$:

$$\cos\frac{\alpha}{2^k} = \frac{\sin\frac{\alpha}{2^{k-1}}}{2\sin\frac{\alpha}{2^k}} = \frac{u_{k-1}}{u_k}$$

 $\mathrm{avec}\ u_k = 2^k \sin\frac{\alpha}{2^k}.$

Notons S_n la somme partielle de la série de l'énoncé. On a donc par télescopage :

$$S_n = \ln u_{-1} - \ln u_n$$

Or $\ln u_{-1} = \ln \frac{\sin 2\alpha}{2}$. De plus, comme $\sin \frac{\alpha}{2^n} \sim \frac{\alpha}{2^n}$,

$$\lim_{n\to +\infty} \ln u_n = \ln \alpha$$

On en déduit que la série $\sum_{n\in\mathbb{N}}\ln\left(\cos\frac{\alpha}{2^n}\right)$ converge et que sa somme vaut $\ln\left(\frac{\sin2\alpha}{2\alpha}\right)$.

SOLUTION 32.

On a

$$\sum_{\omega \in \mathbb{U}_p} \sum_{n \geqslant 0} \frac{\omega^n}{n!} = \sum_{n \geqslant 0} \frac{\sum_{\omega \in \mathbb{U}_p} \omega^n}{n!}$$

puisque les séries intervenant dans cette égalité convergent. Soit $\mathfrak{n} \in \mathbb{N}$. L'endomorphisme de groupes $\left\{ \begin{array}{ccc} \mathbb{U}_{\mathfrak{p}} & \longrightarrow & \mathbb{U}_{\mathfrak{p}} \\ \omega & \longmapsto & \omega^{\mathfrak{n}} \end{array} \right.$ est un automorphisme si et seulement si \mathfrak{n} est premier avec \mathfrak{p} autrement dit si et seulement si \mathfrak{p} ne divise pas \mathfrak{n} (puisque \mathfrak{p} est premier). De plus, on sait que la somme des racines $\mathfrak{p}^{\text{èmes}}$ de l'unité est nulle. Donc pour \mathfrak{n} non multiple de \mathfrak{p} , $\sum_{\omega \in \mathbb{U}_{\mathfrak{p}}} \omega^{\mathfrak{n}} = \mathfrak{p}$. Finalement,

$$\sum_{\omega \in \mathbb{U}_p} \sum_{n \geqslant 0} \frac{\omega^n}{n!} = p \sum_{n \geqslant 0} \frac{1}{(pn)!}$$

$$\operatorname{Or} \sum_{n\geqslant 0} \frac{\omega^n}{n!} = e^\omega. \ \operatorname{Donc} \sum_{n\geqslant 0} \frac{1}{(\mathfrak{p} n)!} = \frac{1}{\mathfrak{p}} \sum_{\omega \in \mathbb{U}_\mathfrak{p}} e^\omega.$$

SOLUTION 33.

Considérons la fraction rationnelle $F = \frac{X}{X^4 + X^2 + 1}$. Elle admet une décomposition en éléments simples sur $\mathbb R$ du type

$$F = \frac{aX + b}{X^2 - X + 1} + \frac{cX + d}{X^2 + X + 1}$$

L'imparité de F donne a=c et b=-d. En considérant la limite de xF(x) lorsque x tend vers $\pm \infty$, on trouve a+c=0 et donc a=c=0. On trouve alors facilement $b=\frac{1}{2}$ et $d=-\frac{1}{2}$ d'où

$$F = \frac{1}{2(X^2 - X + 1)} - \frac{1}{2(X^2 + X + 1)}$$

On remarque alors que $X^2-X+1=X^2-(X-1)$ et que $X^2+X+1=(X+1)^2-X$. Ainsi pour $\mathfrak{p}\in\mathbb{N}$

$$\begin{split} \sum_{n=0}^p \frac{n}{n^4+n^2+1} &= \frac{1}{2} \sum_{n=0}^p \frac{1}{n^2-(n-1)} - \frac{1}{(n+1)^2-n} \\ &= \frac{1}{2} \left(1 - \frac{1}{(p+1)^2-p}\right) \text{ par t\'elescopage} \\ &\xrightarrow[p \to +\infty]{} \frac{1}{2} \end{split}$$

Ainsi la série de l'énoncé converge bien et sa somme vaut $\frac{1}{2}$.

SOLUTION 34.

La fraction rationnelle $F = \frac{2X - 1}{X^3 - 4X}$ admet une décomposition en éléments simples du type

$$F = \frac{a}{X-2} + \frac{b}{X} + \frac{c}{X+2}$$

En posant P = 2X - 1 et $Q = X^3 - 4X$, on a

$$a = \frac{P(2)}{Q'(2)} = \frac{3}{8}$$

$$b = \frac{P(0)}{Q'(0)} = \frac{1}{4}$$

$$c = \frac{P(-2)}{Q'(-2)} = -\frac{5}{8}$$

Pour $\mathfrak{p}\geqslant 3$, on a en remarquant que $\frac{1}{4}=\frac{5}{8}-\frac{3}{8}$

$$\begin{split} \sum_{n=3}^{p} \frac{2n-1}{n^3-4n} &= \frac{3}{8} \sum_{n=3}^{p} \left(\frac{1}{n-2} - \frac{1}{n} \right) + \frac{5}{8} \sum_{n=3}^{p} \left(\frac{1}{n} - \frac{1}{n+2} \right) \\ &= \frac{3}{8} \left(1 + \frac{1}{2} - \frac{1}{p-1} - \frac{1}{p} \right) + \frac{5}{8} \left(\frac{1}{3} + \frac{1}{4} - \frac{1}{p+1} - \frac{1}{p+2} \right) \text{ par t\'elescopage} \\ &\xrightarrow[p \to +\infty]{} \frac{89}{96} \end{split}$$

Ainsi la série de l'énoncé converge et sa somme vaut $\frac{89}{96}$.

SOLUTION 35.

Pour tout $n \in \mathbb{N}$,

$$\frac{1}{\binom{n+p}{n}} = \frac{p!}{(n+p)(n+p-1)\dots(n+1)}$$

$$= \frac{p!}{p-1} \frac{(n+p)-(n+1)}{(n+p)(n+p-1)\dots(n+1)}$$

$$= \frac{p!}{p-1} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)}\right)$$

Donc pour tout $N \in \mathbb{N}$, on a par télescopage

$$\begin{split} \sum_{n=0}^{N} \frac{1}{\binom{n+p}{n}} &= \frac{p!}{p-1} \sum_{n=0}^{N} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)} \right) \\ &= \frac{p!}{p-1} \left(\frac{1}{(p-1)\dots1} - \frac{1}{(N+p)\dots(N+2)} \right) \xrightarrow[N \to +\infty]{} \frac{p!}{(p-1)(p-1)!} = \frac{p}{p-1} \end{split}$$

Ainsi la série $\sum_{n\in\mathbb{N}} \frac{1}{\binom{n+p}{n}}$ converge et sa somme vaut $\frac{p}{p-1}$.

SOLUTION 36.

1. On reconnaît le développement de Taylor en 0 de exp.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. exp est de classe \mathcal{C}^{∞} sur \mathbb{R} donc, a fortiori, de classe \mathcal{C}^{n+1} sur le segment d'extrémités 0 et x. De plus, la dérivée d'ordre n+1 de exp est encore exp pour tout t compris entre 0 et x, $|e^t| = e^t \leq M$ avec $M = \max(e^x, 1)$ (pour éviter de distinguer suivant le signe de x). En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| e^{x} - \sum_{k=0}^{n} \frac{x^{k}}{k!} \right| \leqslant \frac{M|x|^{n+1}}{(n+1)!}$$

Remarquons que M est indépendant de $\mathfrak n$ donc l'inégalité précédente est valable pour tout $\mathfrak n \in \mathbb N$. Par comparaison des suites de référence, $\lim_{n \to +\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ et donc $\lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!} = e^x$ par encadrement. La série $\sum_{n\geqslant 0} \frac{x^n}{n!}$ converge donc et sa somme est e^x .

2. On reconnaît les développements de Taylor en 0 de cos et sin.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. cos et sin sont de classe \mathcal{C}^{∞} sur \mathbb{R} donc, a fortiori, de classe \mathcal{C}^{n+1} sur le segment d'extrémités 0 et x. Une récurrence évidente montre que $\cos^{(2n+1)} = (-1)^{n+1}$ sin et $\sin^{(2n+2)} = (-1)^{n+1}$ sin. Il est alors évident que $\cos^{(2n+1)}$ et $\sin^{(2n+2)}$ sont majorées en valeur absolue par 1 sur \mathbb{R} . En appliquant l'inégalité de Taylor-Lagrange à cos entre 0 et x à l'ordre 2n, on a

$$\left|\cos x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}\right| \le \frac{|x|^{2n+1}}{(2n+1)!}$$

En appliquant l'inégalité de Taylor-Lagrange à sin entre 0 et x à l'ordre 2n+1, on a

$$\left|\sin x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!}\right| \leqslant \frac{|x|^{2n+2}}{(2n+2)!}$$

Par comparaison des suites de référence,

$$\lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = \lim_{n \to \infty} \frac{|x|^{2n+2}}{(2n+2)!} = 0$$

Ceci permet de conclure que les séries $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ convergent et ont respectivement pour sommes $\cos x$ et $\sin x$.

Remarque. On peut, en reprenant la preuve de la première question, montrer que la série $\sum_{n=0}^{+\infty} \frac{(ix)^n}{n!}$ converge et a pour somme e^{ix} . On obtient la convergence et la somme des séries $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ en passant à la partie réelle et imaginaire.

3. On reconnaît le développement de Taylor en0 de $x \mapsto \ln(1+x)$. Soient $x \in [0,1]$ et $n \in \mathbb{N}^*$. $f: t \mapsto \ln(1+t)$ est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$ donc, a fortiori, de classe \mathcal{C}^{n+1} sur [0,x]. Une récurrence évidente montre que $f^{(n+1)}(t) = \frac{(-1)^n n!}{(1+t)^{n+1}}$ pour tout $t \in]-1,+\infty[$. Ainsi pour tout $t \in [0,x]$,

$$|f^{(n+1)}(t)| \leqslant n!$$

En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| \ln(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} \right| \leqslant \frac{x^{n+1} n!}{(n+1)!} = \frac{x^{n+1}}{n+1} \leqslant \frac{1}{n+1}$$

car $x \in [0,1]$. Par encadrement, $\lim_{n \to +\infty} \sum_{k=0}^n \frac{(-1)^{k+1} x^k}{k} = \ln(1+x)$. La série $\sum_{n \geqslant 1} \frac{(-1)^{n+1} x^n}{n}$ converge donc et sa somme vaut $\ln(1+x)$.

SOLUTION 37.

Soit $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \sum_{k=1}^{n} (-1)^{k-1} \int_0^x t^{k-1} dt$$

$$= \int_0^x \sum_{k=0}^{n-1} (-t)^k dt$$

$$= \int_0^x \frac{1 - (-t)^n}{1 + t} dt$$

$$= \int_0^x \frac{dt}{1 + t} + (-1)^{n+1} \int_0^x \frac{t^n}{1 + t} dt$$

$$= \ln(1 + x) + (-1)^{n+1} \int_0^x \frac{t^n}{1 + t} dt$$

Si x est positif, on a pour tout $t \in [0, x]$

$$0\leqslant \frac{t^n}{1+t}\leqslant t^n$$

et par croissance de l'intégrale

$$0 \leqslant \int_0^x \frac{t^n}{1+t} dt \leqslant \frac{x^{n+1}}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^x \frac{t^n}{1+t} dt = 0$ puis

$$\lim_{n\to +\infty}\sum_{k=1}^n\frac{(-1)^{k-1}x^k}{k}=\ln(1+x)$$

On en déduit que $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n-1}x^n}{n}$ converge et que sa somme est $\ln(1+x)$. Supposons maintenant $x\leqslant 0$. Remarquons que

$$\sum_{k=1}^n \frac{(-1)^{k-1} x^k}{k} = \ln(1+x) - \int_0^x \frac{(-t)^n}{1+t} \ dt$$

Puis en effectuant le changement de variables $\mathfrak{u}=-\mathfrak{t}$ (pour se ramener à une variable d'intégration positive et s'éviter des maux de tête)

$$\sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \ln(1+x) + \int_{0}^{-x} \frac{u^n}{1-u} du$$

Pour tout $u \in [0, -x]$

$$1 \leqslant \frac{1}{1-u} \leqslant \frac{1}{1+x}$$

Par croissance de l'intégrale

$$\int_0^{-x} u^n du \leqslant \int_0^{-x} \frac{u^n}{1-u} du \leqslant \frac{1}{1+x} \int_0^{-x} u^n du$$

ou encore

$$\frac{(-x)^{n+1}}{n+1} \le \int_0^{-x} \frac{u^n}{1-u} \, du \le \frac{1}{1+x} \frac{(-x)^{n+1}}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^{-x} \frac{u^n}{1-u} dt = 0$ puis

$$\lim_{n\to +\infty}\sum_{k=1}^n\frac{(-1)^{k-1}\chi^k}{k}=\ln(1+x)$$

On en déduit que $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n-1}x^n}{n}$ converge et que sa somme est $\ln(1+x)$.

SOLUTION 38.

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} &= \sum_{k=1}^{n} (-1)^{k-1} \int_{0}^{1} t^{k-1} dt \\ &= \int_{0}^{1} \sum_{k=0}^{n-1} (-t)^{k} dt \\ &= \int_{0}^{1} \frac{1 - (-t)^{n}}{1 + t} dt \\ &= \int_{0}^{1} \frac{dt}{1 + t} + (-1)^{n+1} \int_{0}^{1} \frac{t^{n}}{1 + t} dt \\ &= \ln(1 + x) + (-1)^{n+1} \int_{0}^{1} \frac{t^{n}}{1 + t} dt \end{split}$$

On a pour tout $t \in [0, 1]$

$$0 \leqslant \frac{t^n}{1+t} \leqslant t^n$$

et par croissance de l'intégrale

$$0 \leqslant \int_0^1 \frac{t^n}{1+t} dt \leqslant \frac{1}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^1 \frac{t^n}{1+t} dt = 0$ puis

$$\lim_{n\to +\infty}\sum_{k=1}^n\frac{(-1)^{k-1}\chi^k}{k}=\ln(1+x)$$

On en déduit que $\sum_{n\in\mathbb{N}^*}\frac{(-1)^{n-1}}{n}$ converge et que sa somme est $\ln(1+x).$

SOLUTION 39.

Notons u_n le terme général de la série étudiée. Puisque $u_n \sim 1/n^2$, la série $\sum u_n$ est clairement convergente. On remarque que, pour tout réel x>0:

$$\frac{1}{x^2+3x}=\frac{1}{3x}-\frac{1}{3(x+3)}.$$

Il y a donc télescopage dans les sommes partielles de $\sum u_n$ qui converge et dont la somme vaut :

$$\sum_{n=1}^{+\infty} u_n = \frac{1}{3} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} \right) = \frac{11}{18}.$$

SOLUTION 40.

Pour tout $n \geqslant 0$, on a par croissance sur \mathbb{R}_+ de la fonction arctangente de 0 à $\pi/2$:

$$\alpha_n = \arctan(n+1) - \arctan(n) \in [0, \pi/2[$$
.

De plus,

$$\tan(\alpha_n) = \frac{n + n - n}{1 + n(n+1)} = \frac{1}{n^2 + n + 1}$$

et ainsi

$$\alpha_n = \arctan\bigg(\frac{1}{n^2+n+1}\bigg).$$

Il y donc télescopage dans les sommes partielles de $\sum u_n$ qui converge et dont la somme vaut

$$\sum_{n=0}^{+\infty}u_n=\frac{\pi}{2}.$$

SOLUTION 41.

Puisque $0 \le p(n) \le 9$ pour tout $n \ge 1$, on a

$$\frac{p(n)}{n(n+1)} = \mathcal{O}\left(\frac{9}{n^2}\right)$$

et la série de l'énoncé est convergente. On remarque que, pour tout m dans \mathbb{N}^* , on a $\mathfrak{p}(\mathfrak{n}) = m$ si et seulement si $10^{m-1} \le n < 10^m$. Notons $(S_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1}$ la suite de sommes partielles de la série de l'énoncé. On sait que $(S_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1}$ converge vers la même limite que $(S_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1}$ en tant que suite extraite. Ainsi :

$$\sum_{n=1}^{+\infty} \frac{p(n)}{n(n+1)} = \lim_{m \to +\infty} S_{10^m - 1}.$$

Or, pour tout $m \ge 1$:

$$\begin{split} S_{10^{m}-1} &= \sum_{k=1}^{m} \sum_{\ell=10^{k-1}}^{10^{k}-1} \frac{p(\ell)}{\ell(\ell+1)} = \sum_{k=1}^{m} \sum_{\ell=10^{k-1}}^{10^{k}-1} \frac{k}{\ell(\ell+1)} \\ &= \sum_{k=1}^{m} k \sum_{\ell=10^{k-1}}^{10^{k}-1} \left(\frac{1}{\ell} - \frac{1}{\ell+1}\right) \\ &= \sum_{k=1}^{m} k \left(\frac{1}{10^{k-1}} - \frac{1}{10^{k}}\right) \\ &= \sum_{k=1}^{m} \frac{k}{10^{k-1}} - \sum_{k=1}^{m} \frac{k}{10^{k}} \\ &= \sum_{k=1}^{m} \frac{k-1+1}{10^{k-1}} - \sum_{k=1}^{m} \frac{k}{10^{k}} \\ &= \sum_{k=1}^{m} \frac{1}{10^{k-1}} - \frac{m}{10^{m}} = \frac{1-1/10^{m}}{1-1/10} - \frac{m}{10^{m}} \\ &= \frac{10}{9} (1 - 10^{-m}) - \frac{m}{10^{m}} \end{split}$$

Ainsi:

$$\lim_{m\to+\infty}S_{10^m-1}=\frac{10}{9}$$

et

$$\sum_{n=1}^{+\infty} \frac{p(n)}{n(n+1)} = \frac{10}{9}.$$

SOLUTION 42.

- ▶ La série est clairement alternée de terme général convergeant vers 0 : elle est donc convergente.
- \blacktriangleright Soit $n \geqslant 1$. Notons $(\Sigma_n)_{n\geqslant 2}$ la suite des sommes partielles de cette série et posons, pour tout entier naturel $n\geqslant 2$

$$S_n = \sum_{k=2}^n (-1)^k \ln(k).$$

On a, après tout calcul

$$\begin{split} \Sigma_{2n} &= \sum_{k=2}^{2n} (-1)^k [\ln(k+1) + \ln(k-1) - 2\ln(k)] \\ &= -4S_{2n} + \ln(2n(2n+1)) \\ &= -4\ln\left(\frac{2\times 4\times \cdots \times (2n)}{3\times 5\times \cdots \times (2n-1)}\right) + \ln(2n(2n+1)) \\ &= \ln\left(\frac{2n(2n+1)(2n)!^4}{2^{8n}n!^8}\right) \end{split}$$

En utilisant l'équivalent de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

on trouve que

$$\frac{2n(2n+1)(2n)!^4}{2^{8n}n!^8} \sim \frac{4n^2(2\pi\times 2n)^2(\frac{2n}{e})^{8n}}{2^{8n}(2\pi\times n)^4(\frac{n}{e})^{8n}} \sim \frac{4}{\pi^2}$$

et donc, par continuité du logarithme, on a

$$\lim_{n\to +\infty} \Sigma_{2n} = \ln\bigg(\frac{4}{\pi^2}\bigg),$$

et, puisque la série converge, on a

$$\sum_{n=2}^{+\infty} (-1)^n \ln \left(1 - \frac{1}{n^2} \right) = \ln \left(\frac{4}{\pi^2} \right).$$

SOLUTION 43.

La série

$$\sum_{n \ge 1} (-1)^n \ln(1 + 1/n)$$

est clairement alternée. Comme

$$(\ln(1+1/n))_{n\in\mathbb{N}^*}$$

tend vers 0 en décroissant, on déduit du critère spécial des séries alternées que la série converge. Notons $(S_n)_{n\geqslant 1}$ la suite des sommes partielles de cette série. Pour tout $n\geqslant 1$, on a :

$$\begin{split} S_{2n} &= \sum_{k=1}^{2n} (-1)^k \ln \left(1 + \frac{1}{k}\right) = -\sum_{k=0}^{n-1} \ln \left(1 + \frac{1}{2k+1}\right) + \sum_{k=1}^n \ln \left(1 + \frac{1}{2k}\right) \\ &= -\sum_{k=0}^{n-1} \ln \left(\frac{2k+2}{2k+1}\right) + \sum_{k=1}^n \ln \left(\frac{2k+1}{2k}\right) = -\sum_{k=0}^{n-1} \left[\ln(2k+2) - \ln(2k+1)\right] + \sum_{k=1}^n \left[\ln(2k+1) - \ln(2k)\right] \\ &= -\sum_{k=0}^{n-1} \ln(2k+2) - \sum_{k=1}^n \ln(2k) + \sum_{k=1}^n \ln(2k+1) + \sum_{k=0}^{n-1} \ln(2k+1) \\ &= -2\sum_{k=1}^n \ln(2k) + 2\sum_{k=0}^{n-1} \ln(2k+1) + \ln(2n+1) \\ &= \ln \left(\left[\frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)}\right]^2 (2n+1)\right) = \ln \left(\left[\frac{(2n)!}{(2 \times 4 \times \dots \times (2n))^2}\right]^2 (2n+1)\right) \\ &= \ln \left(\left[\frac{(2n)!}{(2^n n!)^2}\right]^2 (2n+1)\right) = \ln \left(\frac{(2n)!^2}{2^{4n} n!^4} (2n+1)\right) \end{split}$$

Or, d'après la formule de Stirling, on sait que

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

d'où

$$\frac{(2n)!}{2^{2n}n!^2} \sim \frac{\sqrt{4\pi n}2^{2n}(n/e)^{2n}}{2^{2n}2\pi n(n/e)^{2n}} = \frac{1}{\sqrt{n\pi}}$$

et donc

$$\frac{(2n)!^2}{2^{4n}n!^4}(2n+1) \sim \frac{2n}{n\pi} = \frac{2}{\pi}.$$

On déduit alors de la continuité du logarithme que

$$\lim_{n\to +\infty} S_{2n} = \ln\left(\frac{2}{\pi}\right)$$

puis de la convergence de la série que

$$\sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \ln \left(\frac{2}{\pi}\right).$$

SOLUTION 44.

Posons $v_0 = 1$ et, pour tout $k \ge 1$

$$\nu_k = \frac{\sqrt{k!}}{(1+\sqrt{1})\cdots(1+\sqrt{k})}.$$

Pour tout $n \ge 1$, on a clairement

$$u_n = v_{n-1} - v_n.$$

Ainsi, en notant $(S_n)_{n\geqslant 1}$ la suite des sommes partielles de la série $\sum u_n$, on obtient après telescopage

$$S_n = v_0 - v_n = 1 - v_n$$
.

De plus, on a

$$v_n = \prod_{k=1}^n \frac{\sqrt{k}}{1 + \sqrt{k}} = \frac{1}{\prod_{k=1}^n \left(1 + \frac{1}{\sqrt{k}}\right)}$$

et donc

$$-\ln(\nu_n) = \sum_{k=1}^n \ln{\left(1 + \frac{1}{\sqrt{k}}\right)}.$$

Comme

$$\ln\left(1+\frac{1}{\sqrt{k}}\right) \sim \frac{1}{\sqrt{k}}$$

et que $\sum k^{-1/2}$ diverge vers $+\infty$, on a

$$\lim_{n \to +\infty} -\ln(\nu_n) = +\infty$$

et, par composition des limites,

$$\lim_{n\to+\infty}\nu_n=0.$$

Ainsi

$$\sum_{n=1}^{+\infty} u_n = 1.$$

SOLUTION 45.

1. Soient $x, y \in \mathbb{R}_+^*$. Notons $f_x(t) = \frac{t - [t]}{t(t+x)}$. Comme x > 0, t(t+x) ne s'annule pas sur l'intervalle]0, y]. De plus, pour $0 \le t < 1$, [t] = 0 et donc

$$\lim_{t \to 0^+} \frac{t - [t]}{t(t + x)} = \lim_{t \to 0^+} \frac{1}{t + x} = \frac{1}{x}$$

Enfin, la fonction partie entière est continue par morceaux sur \mathbb{R} . On en déduit que f_x est continue par morceaux sur [0,y] et l'intégrale G(x,y) est bien définie pour tout $(x,y) \in (\mathbb{R}_+^*)^2$.

2. Soit $x \in \mathbb{R}_+^*$. La fonction f_x est positive sur \mathbb{R}_+ . On en déduit que $y \mapsto G(x,y)$ est croissante sur \mathbb{R}_+^* . Il suffit donc maintenant de prouver que cette fonction est majorée. Pour $t \in \mathbb{R}_+^*$, t-[t] < 1 et $t(t+x) \geqslant t^2$ donc $f_x(t) \leqslant \frac{1}{t^2}$. On peut supposer $y \geqslant 1$. Séparons l'intégrale définissant G(x,y) en deux parties pour éviter les problèmes en 0:

$$G(x,y) = \int_0^1 f_x(t) \, dt + \int_1^y f_x(t) \, dt \leqslant \int_0^1 f_x(t) \, dt + \int_1^y \frac{dt}{t^2} \leqslant \int_0^1 f_x(t) \, dt + 1 - \frac{1}{y} \leqslant \int_0^1 f_x(t) \, dt + 1$$

Ainsi $y \mapsto G(x,y)$ est croissante est majorée, elle admet donc une limite finie en $+\infty$.

3. Soit $n \in \mathbb{N}^*$. On a classiquement $\frac{1}{t(t+n)} = \frac{1}{n}\left(\frac{1}{t} - \frac{1}{t+n}\right)$. On en déduit que

$$G(n,y) = \frac{1}{n} \left(\int_0^y \frac{t - [t]}{t} dt - \int_0^y \frac{t - [t]}{t + n} dt \right)$$

On peut effectuer le changement de variable u = t + n dans la seconde intégrale. Comme n est entier [t] = [u - n] = [u] - n et donc t - [t] = u - [u]. On a donc

$$\int_0^y \frac{t - [t]}{t + n} dt = \int_n^{y + n} \frac{u - [u]}{u} du$$

On a alors

$$G(n,y) = \frac{1}{n} \left(\int_0^y \frac{t - [t]}{t} dt - \int_n^{y+n} \frac{t - [t]}{t} dt \right)$$

On utilise la relation de Chasles :

$$\int_0^y \frac{t - [t]}{t} dt = \int_0^n \frac{t - [t]}{t} dt + \int_n^y \frac{t - [t]}{t} dt \qquad \qquad \int_n^{y+n} \frac{t - [t]}{t} dt = \int_n^y \frac{t - [t]}{t} dt + \int_y^{y+n} \frac{t - [t]}{t} dt$$

Après simplification, on a la relation demandée.

4. Déterminons tout d'abord une expression de G(n). Remarquons que

$$0\leqslant \int_{y}^{y+n}\frac{t-[t]}{t}\,dt\leqslant \int_{y}y+n\frac{1}{y}\,dt=\frac{n}{y}$$

 $\mathrm{On\ en\ d\'eduit\ que\ }\lim_{y\to+\infty}\int_y^{y+n}\frac{t-[t]}{t}\,dt=0.\ \mathrm{Ainsi}\ G(n)=\frac{1}{n}\int_0^n\frac{t-[t]}{t}\,dt\ \mathrm{et\ }H(n)=\int_0^n\frac{t-[t]}{t}\,dt.\ \mathrm{On\ a\ donc}$

$$H(n) - H(n-1) = \int_{n-1}^{n} \frac{t - [t]}{t} dt$$

On effectue le changement de variables u = t - (n - 1) de sorte que

$$H(n) - H(n-1) = \int_0^1 \frac{u - [u]}{u + n - 1} dt = \int_0^1 \frac{u}{u + n - 1}$$

car [u] = 0 pour $0 \le u < 1$. On obtient alors facilement

$$H(n) - H(n-1) = 1 - (n-1) \ln \frac{n-1}{n} = 1 - (n-1) \ln \left(1 + \frac{1}{n-1}\right)$$

On va maintenant chercher un équivalent de $H(n) - H(n-1) - \frac{1}{2n}$.

$$\ln\left(1+\frac{1}{n-1}\right) = \frac{1}{n-1} - \frac{1}{2(n-1)^2} + \frac{1}{3(n-1)^3} + o\left(\frac{1}{(n-1)^3}\right)$$

On en déduit que

$$H(n)-H(n-1)=\frac{1}{2(n-1)}-\frac{1}{3(n-1)^2}+o\left(\frac{1}{(n-1)^2}\right)$$

Or $\frac{1}{2(n-1)} = \frac{1}{2n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$ et $\frac{1}{(n-1)^2} \sim \frac{1}{n^2}$. Finalement

$$H(n) - H(n-1) - \frac{1}{2n} = \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$$

Comme la série de terme général $\frac{1}{6\pi^2}$ converge, on a également convergence de la série de terme général $H(n)-H(n-1)-\frac{1}{2n}$. Notons (S_n) la suite des sommes partielles de cette série i.e.

$$S_n = \sum_{k=2}^n H(k) - H(k-1) - \frac{1}{2k}$$

On a par téléscopage $S_n = H(n) - H(1) - \sum_{k=2}^n \frac{1}{2k}$. Comme (S_n) est bornée et que $\sum_{k=2}^n \frac{1}{2k} \sim \frac{1}{2} \ln n$ tend vers $+\infty$, on en déduit que $H(n) \sim \frac{1}{2} \ln n$. Ainsi $G(n) \sim \frac{1}{n \ln n}$.

Solution 46.

1. Définition

On définit deux suites (q_n) et (a_n) par récurrence. On pose $a_0=x$ et pour $n\in\mathbb{N}$

$$q_n = \left| \frac{1}{q_n} \right| + 1 \qquad \qquad a_{n+1} = q_n a_n - 1$$

Il faut vérifier que ces deux suites sont bien définies. Nous démontrerons en même temps que (q_n) est une suite d'entiers supérieurs ou égaux à 2. Faisons l'hypothèse de récurrence suivante :

 $HR(n): \mathfrak{a}_n \,\, \mathrm{et} \,\, \mathfrak{q}_n \,\, \mathrm{sont} \,\, \mathrm{d\acute{e}finis}, \,\, \mathfrak{q}_n \mathfrak{a}_n > 1, \, 0 < \mathfrak{a}_n \leqslant 1 \,\, \mathrm{et} \,\, \mathfrak{q}_n \geqslant 2.$

En reprenant une partie de la récurrence, on voit que pour tout $n \in \mathbb{N}$, $\frac{1}{a_n} < q_n \leqslant \frac{1}{a_n} + 1$ implique que $q_n a_n \leqslant a_n + 1$ et donc que $a_{n+1} = q_n a_n - 1 \leqslant a_n$. La suite (a_n) est une suite décroissante de réels strictement positifs donc la suite $\left(\frac{1}{a_n}\right)$ est croissante. Par croissance de la partie entière, la suite (q_n) est croissante.

Reste à montrer qu'on a bien $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}$. Montrons par récurrence que

$$x = \sum_{k=0}^{n} \frac{1}{q_0 q_1 \dots q_k} + \frac{a_{n+1}}{q_0 q_1 \dots q_n}$$

 $\text{Puisque } \alpha_1 = q_0\alpha_0 + 1, \, x = \alpha_0 = \frac{1}{q_0} + \frac{\alpha_1}{q_0}, \, \text{ce qui initialise la récurrence. Supposons alors que } x = \sum_{k=0}^n \frac{1}{q_0q_1\dots q_k} + \frac{1}$

$$\frac{\alpha_{n+1}}{q_0q_1\dots q_n}. \text{ Puisque } \alpha_{n+2} = q_{n+1}\alpha_{n+1} - 1, \ \alpha_{n+1} = \frac{1}{q_{n+1}} + \frac{\alpha_{n+2}}{q_{n+1}} \text{ et donc}$$

$$x = \sum_{k=0}^{n} \frac{1}{q_0 q_1 \dots q_k} + \frac{1}{q_0 q_1 \dots q_n q_{n+1}} + \frac{a_{n+2}}{q_0 q_1 \dots q_n q_{n+1}} = \sum_{k=0}^{n+1} \frac{1}{q_0 q_1 \dots q_k} + \frac{a_{n+2}}{q_0 q_1 \dots q_n q_{n+1}}$$

L'hérédité est donc prouvée.

Puisque pour tout $n \in \mathbb{N}$, $q_n \geqslant 2$ et $0 \leqslant a_n \leqslant 1$, on a $0 \leqslant \frac{a_{n+1}}{q_0q_1...q_n} \leqslant \frac{1}{2^{n+1}}$. Ceci prouve que $\frac{a_{n+1}}{q_0q_1...q_n} \underset{n \to +\infty}{\longrightarrow} 0$ et

$$\mathrm{donc}\ \mathrm{que}\ \sum_{k=0}^n \frac{1}{q_0q_1\dots q_k} \underset{\scriptscriptstyle{n\to+\infty}}{\longrightarrow} x.$$

Unicité

Supposons qu'il existe une suite croissante d'entiers supérieurs ou égaux à 2 (q_n) telle que $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}$. Pour

 $n\in\mathbb{N}, \text{ on pose } a_n=\sum_{k=n}^{+\infty}\frac{1}{q_nq_{n+1}\dots q_k}. \text{ Cette somme est bien convergente puisque pour } k\geqslant n, \ \frac{1}{q_nq_{n+1}\dots q_k}\leqslant$

 $\frac{1}{2^{k-n+1}} \text{ et que la série } \sum_{k=n}^{+\infty} \frac{1}{2^{k-n+1}} \text{ converge. On remarque que } \alpha_{n+1} = q_n \alpha_n - 1 \text{ pour tout } n \in \mathbb{N}. \text{ De plus, comme}$

 (q_n) est croissante, on a $a_{n+1} \leqslant a_n$ pour tout $n \in \mathbb{N}$. Enfin, $q_n = \frac{1}{a_n} + \frac{a_{n+1}}{a_n}$ et donc $\frac{1}{a_n} < q_n \leqslant \frac{1}{a_n} + 1$ pour tout $n \in \mathbb{N}$. Autrement dit, $q_n = \left\lfloor \frac{1}{a_n} \right\rfloor + 1$ pour tout $n \in \mathbb{N}$. Ainsi les suites (q_n) et (a_n) vérifient $a_0 = x$ et pour tout $n \in \mathbb{N}$

$$q_n = \left\lfloor \frac{1}{a_n} \right\rfloor + 1 \qquad \qquad a_{n+1} = q_n a_n - 1$$

Ceci détermine la suite (q_n) de manière unique.

2. Supposons la suite (q_n) constante égale à C à partir du rang N.

$$x = \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \sum_{n=N}^{+\infty} \frac{1}{q_0 q_1 \dots q_{N-1} C^{n-N}}$$

$$= \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \frac{1}{q_0 q_1 \dots q_{N-1}} \sum_{n=0}^{+\infty} \frac{1}{C^n}$$

$$= \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \frac{1}{q_0 q_1 \dots q_{N-1}} \frac{C}{C-1}$$

Sous cette forme, on voit bien que x est rationnel.

Supposons maintenant x rationnel. Il existe donc $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tel que $x = \frac{p}{q}$. On garde les notations de la question

précédente. Montrons par récurrence que pour tout $n \in \mathbb{N}$, il existe un entier p_n tel que $a_n = \frac{p_n}{q}$. L'initialisation est claire puisque $a_0 = x = \frac{p}{q}$: il suffit donc de poser $p_0 = p$. Supposons maintenant que pour un certain $n \in \mathbb{N}$, il existe un entier p_n tel que $a_n = \frac{p_n}{q}$. On a alors $a_{n+1} = q_n a_n - 1 = \frac{p_{n+1}}{q}$ avec $p_{n+1} = q_n p_n - q$, ce qui achève la récurrence. D'après la première question, (a_n) est une suite décroissante de réels strictements positifs : on en déduit que (p_n) est une suite décroissante d'entiers naturels (non nuls). La suite (p_n) est donc stationnaire. Il en est de même de la suite (a_n) puis de la suite (q_n) puisque pour tout $n \in \mathbb{N}$, $q_n = \left\lfloor \frac{1}{a_n} \right\rfloor + 1$.

3. Posons x = e - 2 de sorte que $x \in]0,1]$. On sait que $x = \sum_{n=0}^{+\infty} \frac{1}{(n+2)!}$. Si on pose $q_n = n+2$ pour tout $n \in \mathbb{N}$, (q_n) est bien croissante et on a bien $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}$. La suite (q_n) n'étant pas stationnaire, x n'est pas rationnel d'après la question précédente.