

Machine Learning & Predictive Analytics

Duo Zhou

Agenda

- Problem Statement
- Exploratory Data Analysis & Feature Engineering
- 3 Analytic Approach
- Model Building & Evaluation
- Model Comparison
- 6 Conclusion

Problem Statement

- Many people are struggling to get loans due to insufficient credit histories
- Home Credit's role is to ensure clients who is capable of repayment are not rejected from getting loans
- Make default prediction given certain characteristics of a credit applicant can help load companies to minimize risk.
- Home Credit provides positive and safe loan experience to clients
- Home Credit is exploring avenues to unlock the complete potential of the data and thereby increasing the correct prediction of their clients' repayment abilities

EDA & Feature Engineering

Data Overview

Univariate Analysis

Bivariate Analysis

- AMT_CREDIT → AMT_GOODS_PRICE corr: 0.98
 Credit amount of the loan is highly correlated with the price of the goods for which the loan is given
- REGION_RATING_CLIENT → REGION_RATING_CLIENT_W_CITY corr: 0.95
 Rating of the region where client lives is highly correlated with rating of the region where client lives with taking city into account
- CNT_FAM_MEMBERS → CNT_CHILDREN corr: 0.88
 Number of family members does client have is highly correlated with number of children the client has
- LIVE_REGION_NOT WORK_REGION → REG_REGION_NOT_WORK_REGION corr: 0.86
 Client's contact address does not match work is highly correlated with client's permanent address does not match work address
- LIVE_CITY_NOT_WORK_CITY → REG_CITY_NOT_WOTK_CITY corr: 0.82

 Client's contact address does not match work address is highly correlated with / client's permanent address does not match work address
- AMT_GOODS_PRICE → AMT_ANNUITY corr: 0.77
 The price of the goods for which the loan is given is highly correlated with the loan annuity

Missing Value

missing value rate

	missing value rate
COMMONAREA_AVG	0.698723
COMMONAREA_MODE	0.698723
COMMONAREA_MEDI	0.698723
NONLIVINGAPARTMENTS_AVG	0.694330
NONLIVINGAPARTMENTS_MODE	0.694330
NONLIVINGAPARTMENTS_MEDI	0.694330
FONDKAPREMONT_MODE	0.683862
LIVINGAPARTMENTS_MEDI	0.683550
LIVINGAPARTMENTS_AVG	0.683550
LIVINGAPARTMENTS_MODE	0.683550
FLOORSMIN_AVG	0.678486
FLOORSMIN_MODE	0.678486
FLOORSMIN_MEDI	0.678486
YEARS_BUILD_AVG	0.664978
YEARS_BUILD_MEDI	0.664978
YEARS_BUILD_MODE	0.664978
OWN_CAR_AGE	0.659908
OCCUPATION_TYPE	0.313455

- Identify variables with missing value rate above 15%
- Inspect the mechanism of missing values. Determine whether those missing values are MCAR, MAR or MNAR
- Except below two variables, no clear pattern is observed in other missing values. Therefore, we assume they are Missing Completely At Random
- **OWN_CAR_AGE**: Most missing values are because people don't have cars

```
Missing values: 202929
Missing values with N in the column FLAG_OWN_CAR: 202924
```

OCCUPATION_TYPE: Most of the missing values in OCCUPATION_TYPE are people whose INCOME_TYPE is pensioner.

Pensioner	55357
Working	24920
Commercial associate	12297
State servant	3787
Unemployed	22
Student	5
Businessman	2
Maternity leave	1

Feature Engineering Process

- Drop columns with missing value rate above 15%
- Drop columns that are highly correlated (corr. > 0.7)
- Drop rows with too many missing values given their target variable is 0
- Drop outliers

- Divide train and test set Impute columns with structural following same distribution deficiency
 - Categorical variable: Most common value
 - Numerical variable: Median for skewed variable, Mean for non-skewed variable

· Reduce levels in some

- categorical variables
- One-Hot Encoding

Analysis Approaches

Approaches for Imbalanced Data

Key challenge

- The target class is imbalanced
- This makes the optimization of classification accuracy meaningless

Adaptive re-sampling

- The data are re-sampled in order to magnify the relative proportion of the minor class
- Oversample minor class (Synthetic Minority Over-sampling Technique SMOTE)
- Under-sample major class (Random Sampling)
- The classification algorithm is learned on re-sampled data

Cost-sensitive learning

- Off-the-shelf classification algorithms are used
- ▶ The loss function of the classification algorithm is modified to weight the classification errors differently for major and minor class
- The misclassification cost is added to the loss function

Adaptive re-sampling – Logistic Regression

Take Logistic Regression as an example:

- Identify re-sampling strategy using Logistic Regression
- Oversampling minor class using SMOTE; undersampling major class using random sampling
- The results of the two algorithms indicate that under-sampling major class to the sample size of minor class is the best strategy
- Re-sampling doesn't affect the AUC score, but increases the recall drastically
- In our case, since correctly identifying a client is likely to default is more important, we will use recall as the evaluation metric.

Cost-sensitive learning

Misclassification cost is added to loss function. Take log loss as an example:

$$Loss(\hat{y}_{i}, y_{i}) = \sum_{i=1}^{n} (-y_{i}log(\hat{y}_{i}) - (1 - y_{i})\log(1 - \hat{y}_{i}))$$

$$Weighted\ Loss(\hat{y}_{i}, y_{i}) = \sum_{i=1}^{n} (-w_{0}y_{i}log(\hat{y}_{i}) - w_{1}(1 - y_{i})\log(1 - \hat{y}_{i}))$$

- A smaller weight is assigned to majority class while a larger weight is assigned to minority class
- Conduct grid/random search weighs and use following weights:

Major class: 1

Minor class: Size of Major Class / Size of Minor Class

We can see that the BEST cost sensitive learning produces very similar results as the best resampling strategy

Imbalanced Data Approach Conclusion

- Both under-sampling of majority class and cost-sensitive learning produce similar results with logistic regression
- Three different scenarios will be applied to 4 different ML models(SVM, Random Forest, Boosting, and ANN):
 - Original Data without either re-sampling or cost-sensitive learning
 - Original Data with under sampling of major class to the same size of minor class. No cost-sensitive learning
 - Original Data without re-sampling, but different cost-sensitive learning rates applied for random/grid search

Model Building and Evaluation

Support Vector Machine

Train	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.918320	0.000655	0.698785
Under-sampling with Cost Function Weight 1:1	0.659225	0.629909	0.699494
Cost-sensitive with Cost Function Weight 1:4	0.910275	0.030916	0.629627

Test	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.918265	0.000201	0.703843
Under-sampling with Cost Function Weight 1:1	0.663740	0.633837	0.704300
Cost-sensitive with Cost Function Weight 1:4	0.910044	0.027190	0.635207

- Several kernel options are used, and the linear kernel performs better
- There is no sign of overfitting since the fitting scores for train and test are very close
- The recall for original data is very close to zero
- The result of cost-sensitive learning has good accuracy, but the recall is low
- The best model is using under-sampling method. It has the best recall and auc score

Random Forest

- Based on predetermined sampling techniques we've implemented Random Forest to test for both Recall and AUC metrics
- Under-sampling and Weighted Learning methods perform significantly better compared to the other sampling strategies
- Although, there is a significant increase in recall value, in scenarios like fraud detection it's below industry standards

Train	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.999	0.999	1.00
Under-sampling with Cost Function Weight 1:1	0.768	0.775	0.855
Cost-sensitive with Cost Function Weight 1:12	0.675	0.700	0.756

Test	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.918	0.001	0.676
Under-sampling with Cost Function Weight 1:1	0.651	0.641	0.702
Cost-sensitive with Cost Function Weight 1:12	0.666	0.622	0.697

XGBoost

Train	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.9186	0.0050	0.7122
Under-sampling Data with Cost Function Weight 1:1	0.6556	0.6489	0.7127
Original Data with Cost Function Weight 1:12	0.6730	0.6595	0.7271

Test	Accuracy	Recall	AUC Score
Original Data with Cost Function Weight 1:1	0.9184	0.0028	0.7104
Under-sampling Data with Cost Function Weight 1:1	0.6559	0.6483	0.7080
Original Data with Cost Function Weight 1:12	0.6727	0.6415	0.7146

- Different weights have been searched for cost-sensitive learning. The weight of 1:12 generates a higher recall than other weights
- After applying under-sampling or cost-sensitive learning:
 - A significant drop in accuracy
 - A great boost in recall
 - AUC scores remain similar
- Under-sampling approach produces the best recall result for test data
- From the metrics of training data and test data, we can see there is no sign of overfitting

Artificial Neural Network

An ANN model was built with dropouts and batch normalization.

Layer (type)	Output		Param #
dense (Dense)	(None.		5184
			3184
batch_normalization (BatchNo	(None,	64)	256
dense_1 (Dense)	(None,	64)	4160
dropout (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	128)	8320
batch_normalization_1 (Batch	(None,	128)	512
dropout_1 (Dropout)	(None,	128)	9
dense_3 (Dense)	(None,	128)	16512
dropout_2 (Dropout)	(None,	128)	0
dense_4 (Dense)	(None,	256)	33024
batch_normalization_2 (Batch	(None,	256)	1024
dropout_3 (Dropout)	(None,	256)	0
dense_5 (Dense)	(None,	256)	65792
batch_normalization_3 (Batch	(None,	256)	1024
dropout_4 (Dropout)	(None,	256)	9
dense_6 (Dense)	(None,		514
Total params: 136,322			
Trainable params: 134,914			

- Both under sampling and original data showed clear sign of overfitting.
- Cost-Sensitive Learning with the performed significantly better compared to the other scenarios without overfitting.
- Test accuracy and test AUC scores are very similar. Cost-Sensitive
 Learning with Weight ratio of 1:12 gives the best recall scores of 0.622

	Model	Test_Accuracy	Test_Precision	Test_Recall	Test_AUC
0	Original Data Cost Function Weight 1:1	0.918479	0.421053	0.00161128	0.680043
1	Undersampling Data Cost Function Weight Ratio 1:1	0.753713	0.152889	0.445519	0.66806
2	Original Data Cost Function Weight 1:8	0.238706	0.0584298	0.552064	0.669933
3	Original Data Cost Function Weight 1:10	0.713641	0.148519	0.531319	0.676267
4	Original Data Cost Function Weight 1:12	0.638995	0.133104	0.622356	0.679911

No resampling & No Cost Sensitive Learning

Under-sampling & No Cost Sensitive Learning

No resampling & Cost Sensitive Learning weight ratio 1:12

Model Comparison

Based on the Test Recall and AUC values XGBoost has performed the best

Model	AUC	Recall
Random Forest (Under-sampling Data with Cost Function Weight 1:1)	0.7019	0.6418
ANN (Original Data with Cost Function Weight 1:12)	0.6799	0.6222
SVM (Under-sampling Data with Cost Function Weight 1:1)	0.7043	0.6338
XGBoost (Under-sampling Data with Cost Function Weight 1:1)	0.7080	0.6483

Conclusion & Future Work

Conclusion

- For this project, applying different resampling strategy or cost sensitive learning weights on different models do not significantly change test AUC scores
- However, Recall increases significantly by applying those techniques to offset the imbalanced data effect
- The model that gives the best test recall result is XGBoost with majority class under-sampled to the size of minority class and no cost sensitive learning

Future Work

- Inclusion of additional features may increase the recall percentage; additional feature engineering analysis is recommended
- Instead of simple mean and median imputation, other interpolative or regressive methods can be used for imputation.
- Other selection criteria can be used to split the trees in Random Forest, i.e., binary cross-entropy
- Auto encoder can be employed to conduct outlier detection
- GAN can be used to generate additional minority class observations
- Different optimizers and learning rates can employed for ANN given sufficient computational resources and time

Thank You

Q & A

