Introduction to Data Science Course Outline

Andrew Wheeler, PhD, andrew.wheeler@hms.com

Lesson 01: Data Science 101

- Intro to Data Science Team
- What is Data Science
 - o Predictive modeling
 - o Cost-benefit analysis
 - Experimental Evaluation (e.g. A/B testing)
 - Augmenting Human Processes
- Overview of Types of Prediction Tasks
 - Supervised learning (know the outcome)
 - Unsupervised learning (unlabeled data)
 - o Reinforcement learning
- Typical Data Science Process Work Flow
- Simple Data Analysis Example in Python
 - Reading in data
 - o Exploratory Data Analysis (EDA)
 - o Fitting a regression model
 - Making Predictions

Lesson 02: Machine Learning 101

- Prediction vs Inference
 - Bias/Variance trade-off
 - Cost function
 - Stats vs Machine Learning
 - o IIA
- Supervised Learning Models
 - o Regression
 - Linear for continuous outcomes
 - Logistic for categorical outcomes
 - Tree based models
 - Random Forest & Ensembles
 - Boosting
 - o K-nearest Neighbors / SVM
 - Neural Networks/Deep Learning
- Other models

- Unsupervised Learning
 - Latent Variables
- Reinforcement Learning
 - Multi-armed bandits
- Recommender Systems
- Interpretability vs Black Box
- Example Regression vs Random Forests in Python

Lesson 03: Evaluating Predictions

- Evaluating Predictive Models
 - Test/train (in sample is optimistic)
 - Weighing false positives & false negatives
 - o ROC and AUC
 - Positive Predictive Value is dependent on prevalence ("mix %")
 - Simple models as baseline
 - o Continuous Loss functions
- Example binary prediction in Python
 - Creating test and training samples
 - Fit logistic model and random forest model
 - o Compare in-sample vs out-of-sample
 - o Cost-benefit analysis of false-positives vs false-negatives

Lesson 04: Intro Data Transformation in Python

- Data Types
 - o Numeric, Categorical
- Data Wrangling
 - Duplication
 - o Aggregation
 - o Reshaping data (Pivot)
 - Stacking & Merge
- Data Normalization
 - Outliers
 - Transformations (Log, Square Root, Box-Cox)
 - O Standardizing [0-1 vs 0-100]
 - Z-Scoring
- Intro to Data Pipeline / ETL
- Example in Python

Lesson 05: Data Visualization 101

- Visual Processing
- Hierarchy of Data Visualization
- Color Advice
 - Color blindness
 - o Printing / Presentation
- Making nice tables
 - Comparisons across rows vs columns
 - o Aligning numbers
 - o Limiting Digits
- Examples in Python

Lesson 06: Feature Engineering

- Motivation
 - Understanding causal mechanisms
 - What impacts outcome, as well as functional form
 - Importance of Business Domain Knowledge
- Creating new data
 - o Polynomial & Spline terms
 - Dummy variables
 - Interactions
 - When it is necessary (regression) vs not (tree-based)
- EDA
 - Smoothed plots
 - Binning for interactions
 - Small multiple plots
- Understanding feature importance in Machine Learning Models
 - o Feature importance for prediction
 - Marginal Effects
- Example in Python
 - Feature Tools (??Python??)

Lesson 07: Missing Data

- Understanding why missing data occurs
 - Missing = 0, or missing is unknown, or missing is N/A
- Ways of Encoding Missing Data
 - o Dummy variable and interaction trick
- Imputation Strategies

- Caution with using mean/mode imputation
- Dropping cases/columns
- o Predicting missing cases using Machine Learning
- o Multiple imputation is for inference, not for prediction
- Example in Python

Lesson 08: Big Data and Parallel Computing Intro

- Subsampling (working with data in chunks)
 - Stratified sampling for rare outcomes
 - Adjusting predictions based on sampling
 - Case/control
 - Raking to population
 - Weighting ML models
- SQL vs inside Python
 - Working with already aggregated data
 - o Turning models into SQL code
- HDF5 & MapReduce
- Hive/Spark/Clusters
- Sparse matrices
- NoSQL solutions
- Example in Python

Lesson 09: Dimension Reduction and Unsupervised Learning

- Too many independent variables
 - Feature selection (regularized models)
 - o Dimension reduction via Principle Components Analysis (PCA)
- Unsupervised Learning
 - Latent Categories (Clustering)
 - Latent Continuous values (IQ)
- Example PCA in Python

Lesson 10: High Cardinality (Many Categories)

- Types of Many Category Data
 - o General concept of handling high cardinality
 - Diagnoses Codes
 - o Geographic Data
- Many Categories for Outcomes
 - Multinomial Logistic Regression
 - Reformulating as a Logit model
 - Posterior probabilities and Assigning a category
- Many Categories for Independent Variables
 - Theory of why traditional encoding does not work
 - o Reduced encoding of data subsets
 - Hierarchical Models for predicting new categories
 - Association Rules
- Examples in Python

Lesson 11: Intro to Forecasting

- · Goals of Forecasting
 - Resource Allocation
 - o Outlier Identification
- Simple models for forecasting
 - Last value forward
 - Exponential smoothing
 - Simple count statistics
- ARIMA modelling framework
- Prediction Intervals
- Time Series Forecasting and Feature Engineering
- Example in Python

Lesson 12: Conducting Experiments

- Purpose of doing experiments
 - Knowing whether a change in strategy works

- A/B testing framework
 - o Hypothesis Testing
 - o Power analysis upfront
 - o Testing continuous outcomes
 - o Testing binary outcomes
- Continuous Monitoring of Outcomes
 - CuSum charts
 - Stopping Early based on results
- Alternatives to random experiments when not possible
 - o Historical analysis is difficult
 - Stratified experiments
 - Can't cherry pick
- Example in Python