Modern Artificial Intelligence Individual Assignment, CSCi 323

Name: Jeslyn Ho Ka Yan ID: 8535383

Question 1

Loss $(x, y, z, w) = 4(x^2y^2 + 3\min\{w, z\} + 2w).$

$$x = 4$$
, $y = -2$, $z = 5$ and $w = -1$.

Gradient for X

$$\frac{dL}{dx} = \frac{dL}{d(x^2y^2 + 3w + 2w)} \times \frac{d(x^2y^2 + 3w + 2w)}{d(x^2y^2 + 3w)} \times \frac{d(x^2y^2 + 3w)}{d(x^2y^2)} \times \frac{d(x^2y^2)}{dx^2} \times \frac{dx^2}{dx}$$

$$\frac{dL}{dx} = 4 \times 1 \times 4 \times 2 = 32$$

Gradient for Y

$$\frac{dL}{dy} = \frac{dL}{d(x^2y^2 + 3w + 2w)} \times \frac{d(x^2y^2 + 3w + 2w)}{d(x^2y^2 + 3w)} \times \frac{d(x^2y^2 + 3w)}{d(x^2y^2)} \times \frac{d(x^2y^2)}{dy^2} \times \frac{dy^2}{dy}$$

$$\frac{dL}{dy} = 4 \times 1 \times 1 \times 4 = 16$$

Gradient for w

$$\frac{dL}{dw} = \left\{ \frac{dL}{d(x^2y^2 + 3w + 2w)} \times \frac{d(x^2y^2 + 3w + 2w)}{d(x^2y^2 + 3w)} \times \frac{d(x^2y^2 + 3w)}{d(3w)} \times \frac{d(3w)}{dw} \right\}
+ \left\{ \frac{dL}{d(x^2y^2 + 3w + 2w)} \times \frac{d(x^2y^2 + 3w + 2w)}{d(2w)} \times \frac{d(2w)}{dw} \right\}
\frac{dL}{dw} = \left\{ 4 \times 1 \times 1 \times 3 \right\} + \left\{ 4 \times 1 \times 2 \right\} = 20$$

Gradient for Z, not required since min(w,z) = w, so z is ignored.

Question 2

To make the datasets linearly separable, we use a quadratic feature transformation: $\phi(x) = [1, x^2]$

The first component "1" provides a bias term for flexibility. The second component, x^2 , adds non-linearity, allowing us to separate data that cannot be split by a straight line in the original space. This transformation makes it possible to use a linear classifier to perfectly separate the classes in the new feature space.

Orginal Datasets

- $D_1 = \{(-1, +1), (0, -1), (1, +1)\}$
- $D_2 = \{(-1, -1), (0, +1), (1, -1)\}$

Trasnformed Dataset using $\phi(x) = [1, x^2]$

- $D_1 = \{(1, 1), (1, 0), (1, 1)\}$
- $D_2 = \{(1, 1), (1, 0), (1, 1)\}$

Feature Vectors

- When x = -1 or x = 1: $\phi(x) = [1, 1]$
- When x = 0: $\phi(x) = [1, 0]$

$$f(x) = w_0 + w_1 x^2$$

Weight Vector For D₁

$$\begin{aligned} \mathbf{f}(x) &> 0 \ for \ [1,1] \ (+1 \ Label) \\ \mathbf{f}(x) &< 0 \ for \ [1,0] \ (-1 \ Label) \end{aligned} \qquad \begin{aligned} \mathbf{f}(x) &= w_0 + w_1 \times 1 = w_0 + w_1 > 0 \\ \mathbf{f}(x) &= w_0 + w_1 \times 0 = w_0 < 0 \end{aligned}$$

Choose
$$w_0 = -1$$
 and $w_1 = 2$

For
$$[1,1]$$
: $-1+2=1>0$ Correct for +1 label
For $[1,0]$: $-1<0$ Correct for -1 label

For
$$(-1,-1)$$
:
 $(-1) + (2) \times 1 = 1 > 0$ (correct for +1 label)
For $(0,1)$:
 $(-1) + (2) \times 0 = -1 < 0$ (correct for -1 label)
For $(1,-1)$:
 $(-1) + (2) \times 1 = 1 > 0$ (correct for +1 label)

Weight Vector For D₂

$$\begin{aligned} &\textbf{f}(x) < 0 \ for \ [1,1] \ (-1 \ Label) & \textbf{f}(x) = w_0 + w_1 \times 1 = w_0 + w_1 < 0 \\ &\textbf{f}(x) > 0 \ for \ [1,0] \ (+1 \ Label) & \textbf{f}(x) = w_0 + w_1 \times 0 = w_0 > 0 \end{aligned}$$
 Choose $w_0 = 1 \ and \ w_1 = -2$ For $[1,1]: 1 + (-2) = -1 < 0$ Correct for -1 label For $[1,0]: 1 > 0$ Correct for $+1$ label
$$\begin{aligned} &\textbf{For } (-1,-1): \\ &(1) + (-2) \times 1 = -1 > 0 \ (\text{correct for } +1 \ \text{label}) \end{aligned}$$
 For $(0,1): \\ &(1) + (-2) \times 0 = 1 < 0 \ (\text{correct for } +1 \ \text{label}) \end{aligned}$ For $(1,-1): \\ &(1) + (-2) \times 1 = -1 > 0 \ (\text{correct for } -1 \ \text{label}) \end{aligned}$

Therefore, the weight vectors listed below meet the classification requirements for the corresponding dataset:

Weight Vectors for D1: $w_0 = -1$ and $w_1 = 2$ Weight Vectors for D2: $w_0 = 1$ and $w_1 = -2$

Question 3

Start state: A, end state: D

Intialization

Start: AGoal: D

• Frontier: (A, cost=0)

• Explored: {}

UCS Table

Step	Node Popped	Frontier (cost)	Explored	Notes
0	_	A (0)	-	Start state
1	Α	B (3), C (4)	{A}	Expand A: $A \rightarrow B$ (3), $A \rightarrow C$ (4)
2	В	C (4), D (5)	{A, B}	Expand B: $B \rightarrow D$ (3+2=5), $B \rightarrow C$ (3+1=4)
3	С	D (5), D (6)	{A, B, C}	Expand C: $C \rightarrow D$ (4+2=6), but keep lowest
4	D	-	{A,B,C,D}	Goal found!

Step 1: Expand A, add B (3), C (4)

Step 2: Expand B, add D (5)

Step 3: Expand C, D (6) ignored (D at 5 already)

Step 4: Expand D (goal found)

Path Reconstruction

• From A \rightarrow B \rightarrow D (because cost to B is 3, then to D is 2, total 5)

Final Answer

• Minimum cost path: $A \to B \to D$

• Total minimum cost: 5