# Duomenų tyrybos praktinė užduotis

Darbą atliko: Vytautas Žilinas (Magistro 1 kurso studentas)

## Įžanga

Šiame darbe nagrinėjamas Future-500-17.csv. Duomenų aibei nagrinėti naudojamas Python 3.8

**Užduoties tikslas** – išanalizuoti duotų duomenų aibę, atlikti pirminį duomenų apdorojimą: užpildyti praleistus duomenis, išskirti taškus atsiskyrėlius, pritaikyti kelis normavimo metodus, pateikti aprašomąsias duomenų statistikas. Atlikti tiriamos aibės vizualią analizę, naudojant taškines, stačiakampes diagramas, histogramas, dimensijos mažinimo algoritmus.

#### Uždaviniai:

- 1. Aprašyti užduoties tikslą ir uždavinius.
- 2. Trumpai aprašyti tiriamą duomenų aibę, kokie požymiai: skaitiniai, ranginiai ir pan.?
- 3. Pateikti atskirų požymių aprašomąsias statistikas lentelės pavidalu: min, max, 1, 3 kvartilės, vidurkis mediana, dispersija ir pan.
- 4. Pasirinktais metodais užpildyti praleistas reikšmes, mokėti argumentuoti, kokį metodą taikėte ir kodėl.
- 5. Nustatyti taškus atsiskyrėlius, pašalinti juos iš duomenų aibės, palyginti, kaip pasikeitė imties statistiniai duomenys.
- 6. Sunormuoti duomenų aibę naudojant du normavimo metodus: pagal vidurkj ir dispersiją, min max.
- 7. Pateikti vizualią duomenų aibės analizę: taškiniai grafikai, dažnio diagramos, histogramos, stačiakampės diagramos. Po kiekvienu grafiku turi būti interpretacija, kokias išvadas gauname analizuojant grafikus. Kaip pajamos priklauso nuo pramonės šakos? Koks pelno pasiskirstymas pagal valstijas? Ir t.t.
- 8. Apskaičiuoti požymių koreliacijas, pateikti skaitinius įverčius lentelės pavidalu.
- 9. Duomenų aibę suformuoti paliekant tik skaitinius požymius ir Industry stulpelį. Vizualizuoti daugiamačius duomenis naudojant PCA ir MDS algoritmus.
- 10. Reikia pateikti atliekamos užduoties kodus.

## Duomenų aibė

Imties dydis - Nagrinėjami duomenys susidaro iš 500 įmonių.

**Imties duomenų savybės** - Nagrinėjama duomenų aibė susidaro iš požymių: ID, Name, Industry, Inception, Employees, State, City, Revenue, Expenses, Profit, Growth.

Šios savybės skaidomi į šiuos tipus:

Nominalieji: Industry, Inception, State, City,

Ranginiai: ID

Kiekybiniai diskretieji: Revenue, Expenses, Profit, Employees

Tolydieji: Growth

## Duomenų priešanalizė

Neapdorotus duomenis analizuojant su Python priedu Pandas

```
data = pd.read_csv("Future-500-17.csv")
print(data.describe(include='all'))
```

|        | ID         | Name | Industry | Inception   | Employees  | State | City | Revenue | Expenses | Profit       | Growth |
|--------|------------|------|----------|-------------|------------|-------|------|---------|----------|--------------|--------|
| count  | 500.000000 | 500  | 497      | 499.000000  | 495.000000 | 495   | 500  | 493     | 495      | 4.970000e+02 | 497    |
| unique | NaN        | 500  | 7        | NaN         | NaN        | 42    | 297  | 493     | 495      | NaN          | 32     |
| freq   | NaN        | 1    | 145      | NaN         | NaN        | 57    | 13   | 1       | 1        | NaN          | 39     |
| mean   | 250.500000 | NaN  | NaN      | 2010.174349 | 149.161616 | NaN   | NaN  | NaN     | NaN      | 6.534190e+06 | NaN    |
| std    | 144.481833 | NaN  | NaN      | 3.228211    | 398.474670 | NaN   | NaN  | NaN     | NaN      | 3.872034e+06 | NaN    |
| min    | 1.000000   | NaN  | NaN      | 1999.000000 | 1.000000   | NaN   | NaN  | NaN     | NaN      | 1.243400e+04 | NaN    |

|     | ID         | Name | Industry | Inception   | Employees   | State | City | Revenue | Expenses | Profit       | Growth |
|-----|------------|------|----------|-------------|-------------|-------|------|---------|----------|--------------|--------|
| 25% | 125.750000 | NaN  | NaN      | 2009.000000 | 27.500000   | NaN   | NaN  | NaN     | NaN      | 3.259485e+06 | NaN    |
| 50% | 250.500000 | NaN  | NaN      | 2011.000000 | 56.000000   | NaN   | NaN  | NaN     | NaN      | 6.512379e+06 | NaN    |
| 75% | 375.250000 | NaN  | NaN      | 2012.000000 | 126.000000  | NaN   | NaN  | NaN     | NaN      | 9.314149e+06 | NaN    |
| max | 500.000000 | NaN  | NaN      | 2014.000000 | 7125.000000 | NaN   | NaN  | NaN     | NaN      | 1.962453e+07 | NaN    |

Gauname tokius rezultatus iš kurių matome, jog trūksta duomenų visur išskyrus Name, Industry. Todėl duomenis turime apvalyti.

# Praleistų reikšmių užpildymas

Rankomis užpildomi State duomenys, kadangi juos galima gauti pagal City stulpelį.

Duomenų išvalymas:

#### Kategoriniams duomenims uždedami tipai:

```
data['Industry'] = data['Industry'].astype('category')
data['Name'] = data['Name'].astype('category')
data['Inception'] = data['Inception'].astype('category')
data['State'] = data['State'].astype('category')
data['City'] = data['City'].astype('category')
```

#### Like duomenys užpildomi Python pagalba:

Expenses stulpeliui šalinami "Dollars" ir kableliai:

```
data['Expenses'] = data['Expenses'].str.replace("Dollars", "")
data['Expenses'] = data['Expenses'].str.replace(",", "")
data['Expenses'] = pd.to_numeric(data['Expenses'], errors='coerce', downcast='float')
```

Expenses stulpeliui šalinami "Dollars" ir kableliai:

```
data['Expenses'] = data['Expenses'].str.replace("Dollars", "")
data['Expenses'] = data['Expenses'].str.replace(",", "")
data['Expenses'] = pd.to_numeric(data['Expenses'], errors='coerce', downcast='float')
```

Revenue stulpeliui šalinami "\$" ir kableliai:

```
data['Revenue'] = data['Revenue'].str.replace("$", "")
data['Revenue'] = data['Revenue'].str.replace(",", "")
data['Revenue'] = pd.to_numeric(data['Revenue'], errors='coerce', downcast='float')
```

Growth šalinamas procentų ženklas ir dalinama iš 100:

```
data['Growth'] = data['Growth'].str.replace("%", "")
data['Growth'] = pd.to_numeric(data['Growth'], errors='coerce', downcast='float') / 100
```

Profit ir Employees nustatomas skaitinis tipas:

```
data['Profit'] = pd.to_numeric(data['Profit'], errors='coerce', downcast='float')
data['Employees'] = pd.to_numeric(data['Employees'], errors='coerce', downcast='float')
```

Revenue ir Employees užpildomi pagal Industry stulpelio medianą:

```
data['Revenue'].fillna(data.groupby('Industry')['Revenue'].transform('median'), inplace=True)
data['Employees'].fillna(data.groupby('Industry')['Employees'].transform('median'), inplace=True)
```

Bandoma užpildyti Expenses ir Profit naudojant formulę (Expenses = Revenue - Profit):

```
data['Expenses'] = data['Expenses'].fillna(data['Revenue'] - data['Profit'])
data['Profit'] = data['Profit'].fillna(data['Revenue'] - data['Expenses'])
```

Nežinomiems Growth nustatomas 0:

```
data['Growth'] = data['Growth'].fillna(value=0)
```

Tas eilutes kurių Revenue, Expenses, Profit, Industry nepavyko išskaičiuoti yra šalinamos:

Sutvarkius duomenys gaunami tokie rezultatai:

|       | Employees   | Revenue    | Expenses   | Profit      | Growth     |
|-------|-------------|------------|------------|-------------|------------|
| count | 495.000000  | 495.0      | 495.00     | 495.00      | 495.000000 |
| mean  | 148.870712  | 10831591.0 | 4297555.50 | 6532033.00  | 0.143232   |
| std   | 398.469299  | 3190166.5  | 2125169.75 | 3871154.25  | 0.069440   |
| min   | 1.000000    | 1614585.0  | -41678.00  | 12434.00    | -0.030000  |
| 25%   | 28.000000   | 8696234.5  | 2755930.00 | 3284662.50  | 0.080000   |
| 50%   | 56.000000   | 10651148.0 | 4316632.00 | 6512379.00  | 0.150000   |
| 75%   | 125.500000  | 13096431.0 | 5814274.00 | 9293752.50  | 0.200000   |
| max   | 7125.000000 | 21810052.0 | 9860686.00 | 19624534.00 | 0.300000   |

# Taškų atsiskyrėlių arba išskirčių identifikavimas ir išmetimas

Buvo pasirinkta šalinti Employees, Revenue, Expenses, Profit, Growth ekstremalius atsiskyrėlius Buvo panaudotas toks pats kodas visiems šiems elementams, vaizduojamas su Revenue pavyzdžiu:

# Šalinamų elementų kiekis:

Employees: 36 Revenue: 0 Expenses: 0 Profit: 0 Growth: 0

Employees turėjo daugiausia atsiskyrėlių, tai gali indikuoti, kad per daug mažas koeficientas barjero. Taip pat kadangi nagrinėjamos Fortune 500 kompanijos viršutinė ribą gali būti padidinta, nes nagrinėjamos didžiausio įmonės. Todėl employees turėtų būti nagrinėjamas papildomai.

### Duomenų normavimas

#### Min-Max Normavimas

Min-Max normavimas buvo atliktas naudojant sklearn.preprocessing

```
scaler = MinMaxScaler()
minmax_scaled = s1.copy()
minmax_scaled[["Revenue", "Expenses", "Profit", "Growth", "Employees"]] = scaler.fit_transform(
    s1[["Revenue", "Expenses", "Profit", "Growth", "Employees"]])
```

ir gauti rezultatai:

|       | Employees  | Revenue    | Expenses   | Profit     | Growth     |
|-------|------------|------------|------------|------------|------------|
| count | 459.000000 | 459.000000 | 459.000000 | 459.000000 | 459.000000 |
| mean  | 0.199027   | 0.453909   | 0.439685   | 0.356515   | 0.531458   |
| std   | 0.205348   | 0.157664   | 0.214205   | 0.209048   | 0.209382   |
| min   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 0.062189   | 0.343678   | 0.283465   | 0.179506   | 0.333333   |
| 50%   | 0.121891   | 0.445237   | 0.440128   | 0.357079   | 0.575758   |
| 75%   | 0.253731   | 0.564660   | 0.596619   | 0.508046   | 0.696970   |
| max   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   |

#### Normavimas pagal vidurkį ir dispersiją

```
x = s1.loc[:, scl_names].values
x = StandardScaler().fit_transform(x)

act_data = s1[["Revenue", "Expenses", "Profit", "Growth", "Employees"]]
mapper = DataFrameMapper([(act_data.columns, StandardScaler())])

scaled_features = mapper.fit_transform(act_data.copy(), 4)
scaled_features_df = pd.DataFrame(
    scaled_features, index=act_data.index, columns=act_data.columns)
std_scaled = s1.copy()
std_scaled[["Revenue", "Expenses", "Profit", "Growth", "Employees"]] =
    scaled_features_df[["Revenue", "Expenses", "Profit", "Growth", "Employees"]]
```

ir gauti rezultatai:

|       | Employees     | Revenue       | Expenses      | Profit        | Growth        |
|-------|---------------|---------------|---------------|---------------|---------------|
| count | 4.590000e+02  | 4.590000e+02  | 4.590000e+02  | 4.590000e+02  | 4.590000e+02  |
| mean  | 7.272027e-09  | -4.155444e-09 | -4.155444e-09 | -1.662177e-08 | 6.233166e-09  |
| std   | 1.001091e+00  | 1.001091e+00  | 1.001091e+00  | 1.001091e+00  | 1.001091e+00  |
| min   | -9.702740e-01 | -2.882099e+00 | -2.054878e+00 | -1.707284e+00 | -2.540996e+00 |
| 25%   | -6.670964e-01 | -6.999158e-01 | -7.300987e-01 | -8.476647e-01 | -9.472709e-01 |
| 50%   | -3.760459e-01 | -5.506565e-02 | 2.072976e-03  | 2.703224e-03  | 2.118023e-01  |
| 75%   | 2.666906e-01  | 7.032116e-01  | 7.334369e-01  | 7.256549e-01  | 7.913389e-01  |
| max   | 3.904822e+00  | 3.467409e+00  | 2.618649e+00  | 3.081531e+00  | 2.240180e+00  |

# Vizualizacijos

Bendri grafikai

### Darbuotojų kiekis pagal Industry ir State





Šiuose grafikuose galime matyt, jog daugiausiai Employees yra IT Services Industry ir CA State, tai yra tikriausiai dėl Silicon valley.

### Kiekybinių priklausomybė



Iš šio grafiko galime matyti, jog Profit nepriklauso nuo Employees, nes net ir nedaug darbuotojų turinčios įmonės turi aukštą profit.



Iš šio grafiko galime matyti, jog Profit yra susiję su Revenue - kuo didesnė apyvartą tuo didesnis ir pelnas

Min-Max normuoti grafikai

# Pagal Industry



Matome kad industrijos Employees maksimumus yra pakankamai panašus.





Industry Profit ir Revenue maksimumus dominuoja IT Services.

# Pagal State



Matome kad State Expenses maksimumus yra stipriai mažesnis WV ir NV State, kas reiškia, kad ten pigiausia kurti įmonę.

Vidurkiu ir dispersija normuoti grafikai

### **Pagal Industry**



Growth yra didžiausias IT services, o mažiausias Government service.

### **Pagal State**

Nenagrinėjama, nes per mažai duomenų, kad vidurkis būtų indikatorius.

# PCA ir MDS algoritmas

Daugiamačiam nagrinėjimui buvo pasirinktas PCA algoritmas naudojant sklearn.decomposition ir seaborn vizualizacijai:

```
#x - Normuoti duomenys pagal vidurki ir dispersija kiekybiniai
#std_scaled - normuoti visi duomenys
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principal_Df = pd.DataFrame(data=principalComponents, columns=['Dim1', 'Dim2'])
principal_Df['Industry'] = std_scaled['Industry']
sns.pairplot(x_vars=["Dim1"], y_vars=["Dim2"], data=principal_Df, hue="Industry")
```

Gautas grafikai pagal industrijas rodo pakankamai matomus klasterius





# Koreliacija

Koreliacija gaunama naudojant Pandas:

```
data.corr(method='pearson')
```

|           | <b>Employees</b> | Revenue   | Expenses  | Profit    | Growth    |
|-----------|------------------|-----------|-----------|-----------|-----------|
| Employees | 1.000000         | -0.022411 | 0.063000  | -0.052620 | -0.083790 |
| Revenue   | -0.022411        | 1.000000  | -0.033675 | 0.835522  | 0.448901  |
| Expenses  | 0.063000         | -0.033675 | 1.000000  | -0.576776 | -0.250309 |
| Profit    | -0.052620        | 0.835522  | -0.576776 | 1.000000  | 0.502986  |
| Growth    | -0.083790        | 0.448901  | -0.250309 | 0.502986  | 1.000000  |

Matome, kad Revenue ir Profit tikrai stipriai susiję teigiamai. Taip pat matome, kad Profit ir Expenses susiję neigiamai.

### Išvados

Darbo eigoje gaunant tarpinius rezultatus paaiškėjo tam tikri dalykai apie nagrinėjamą duomenų aibę:

- 1. Duomenis valymu pašalinama 41 eilutė.
- 2. Reikia papildomos analizės dėl darbuotojų kiekio išorinio barjero.
- 3. Daugiausiai Employees yra IT Services Industry ir CA State.
- 4. Profit nepriklauso nuo Employees, nes net ir nedaug darbuotojų turinčios įmonės turi aukštą pelną.
- 5. Profit yra stipriai susijęs su Revenue kuo didesnė apyvartą tuo didesnis ir pelnas.
- 6. Industry Profit ir Revenue maksimumus dominuoja IT Services.
- 7. Matome kad industrijos Employees kiekių viršūnės yra panašios.
- 8. WV ir NV State įsteigtos įmonės turi mažiausius Expenses.
- 9. Norint turėti aukšta pelną reikia didelės apyvartos ir mažų išlaidų ir tam geriausiai tinka IT service industrija didžiausiam Revenue ir WV arba NV State mažiausiems kaštas.