

Predicting
Customer Churn in the
Telecommunications
Industry

Why Predict Customer Churn?

- Getting new customers is much more expensive than retaining existing ones.
 Some studies have shown that it costs six to seven times more to acquire a new customer than to keep an existing one.
- Not only do loyal customers help sales, but they are also more likely to buy highmargin supplemental goods and services.
- According to BeyondPhilosophy.com:
 "Loyal customers reduce costs associated with consumer education and marketing, especially when they become Net Promoters for your organization."
- Hence it is important to be able to proactively determine the customers most at risk of leaving and take preventative measures against this.

Project Goals

Project Stages

Data Cleaning, EDA

3 numerical, 15 categorical
One-hot encoding
Feature Selection (correlation)
Feature Selection (Random Forest Classification)

Data Interpretation

Factors that affect churn Impact on telcos

Telco Customer Data

from IBM Data Sets, Kaggle

Model Selection, Threshold Tuning

GridSearchCV
Compare Models (based on class 1)
Threshold Tuning using F1

Tools Used

Data Clean and Exploratory Data Analysis

- Data set has 26.5% churn.
- Check that each customer id is unique.
- Check for data set imbalance.
- Replace blank spaces in total charges column, convert to numerical data type.
- Dropped 7 features that have high correlation values >0.6, and 1 feature of little effect on Churn.
- 9 Categorical features (One-hot encoding), 3 Numerical features
- 16 feature selection down to 11 features through Random Forest Classification.

Highly

dropped.

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

-0.4

Feature Importances

Each Model undergoes GridSearchCV using k-fold Cross Validation Procedure

AUC ROC

Log Loss

Tuning
Hyerparameters
from 10-fold
GridSearchCV

Model	Model Parameters		Log Loss	F1
Logistic Regression	ression C = 5.0941, Penalty = L2, Solver = lbfgs		0.42	0.58
KNN	n neighbours = 15	0.775	0.7371	0.51
Random Forest	n estimators = 300, criterion: 'gini'	0.815	0.5027	0.55
SVC	C = 1, Kernel = Linear , Gamma =1	0.793	0.4811	0.53

Tuning threshold in Logistic Regression Model

F-Measure = (2 * Precision * Recall) / (Precision + Recall)

Threshold = 0.5			Based on	Threshold = 0.361258				
Class	Precision	Recall	f1	fmax	Class	Precision	Recall	f1
1	0.61	0.55	0.58		1	0.52	0.78	0.62

Top Features

THANKS!

Do you have any questions?

syleo22@gmail.com

https://github.com/syleo22/SiuYin_Projects https://www.linkedin.com/in/syleo/

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution