

Systèmes interactifs

Pr. Bouzid

Génie informatique – 5ème année **Année universitaire 2020 - 2021**

Objectifs

- Comprendre l'importance des IHM dans le développement logiciel
- Comprendre les techniques d'interactivité entre l'humain et la machine
- Savoir concevoir de bonnes IHM pour les systèmes interactifs
- Connaître les critères et règles ergonomiques pour la réussite des IHM

Plan du cours

- Introduction aux IHM et systèmes interactifs
- Méthode de conception d'IHM
- L'ergonomie des IHM

Introduction aux IHM et systèmes interactifs

Plan de la section

- Notion d'IHM
- Notion de système interactif
- Historique
- Les styles d'interaction
- Domaines des systèmes interactifs et leur importance

Notion d'IHM

- IHM = Interface Homme Machine (Interaction Homme Machine)
- ensemble de dispositifs matériels et logiciels permettant à un utilisateur d'interagir avec un système informatique

 Interaction (communication) homme machine : étude de l'ensemble des aspects de la conception des systèmes interactifs

Systèmes interactifs

- Un système interactif prend en compte les entrées de manière interactive
- La plupart des applications informatiques destinées aux utilisateurs sont interactives
- La conception de l'interaction représente plus de 50% du coût de développement
- L'IHM peut représenter jusqu'à 80% du code d'une application (peut être modifiée et reconstruite plusieurs fois)
- L'IHM est destinée à l'utilisateur humain

Nécessité de prendre en compte l'utilisateur dans la conception d'un système interactif (user centered design)

Systèmes interactifs

Approches d'interaction :

Approche technocentrée

- Centrée sur la machine et ses capacités
- L'utilisateur doit s'adapter

Approche anthropocentrée

- Centrée sur l'utilisateur et ses besoins
- La machine doit s'adapter

Evolution de l'interaction Homme-Machine :

1937 - 1960

- Perforateurs, lecteurs de carte, tubes à vide
- ☐ Tableaux de bord, voyants
- Imprimantes
- Langages de commande

Perforateurs (Mark I d'IBM)

• Les premiers ordinateurs : machines à calculer ou hyper calculateur (certains programmables), parmi lesquels: mark I d'IBM et ENIAC, servaient à la base à résoudre tous les problèmes calculatoires.

Panneau de contrôle de stretch (d'IBM)

Panneau de contrôle de l'ENIAC

Mark I d'IBM (ordinateur électromécanique)

 Années 60 - 80: apparition des écrans, de la souris et début des ordinateurs modernes

1960 - 1990

- 1963 : écran graphique et stylo optique
- 1968 : première souris (inventée en 63 par Douglas Egelbart)
- 1970 1980 : ordinateurs personnels

SketchPad 1963 (d'Ivan Sutherland)

Première souris d'Egelbart (inventée en 63 et commercialisée en 68)

Station de travail d'Egelbart (Stanford Research Institute)

1973: Ordinateurs personnels avec interface graphique :

- Première station de travail personnelle munie d'un écran graphique est l'Alto (développée en 73 par Xerox PARC)
 - Langage utilisé : Smalltalk
 - Fonctions: édition de texte et de dessins (images ou formes graphiques), courrier électronique, sélection souris,...

Prototype de l'Alto

• L'Altair 8800 (créé en 1975 par MITS)

<u>Bill Gates</u>, <u>Paul Allen</u>, <u>Steve Wozniak</u> et <u>Steve Jobs</u> ont fait leur début dans l'informatique sur ce produit

 Xerox 8010 (connu sous le nom de Star) créé en 1981 par Xerox Parc

Première interface utilisateur graphique:

- Notion de bureau, dossiers, corbeille
- Icônes graphiques
- Fenêtre, barre d'outils
- Sélection souris
- Fonctionnement en réseaux local (ethernet)
- Impression: What you see is what you get (WYSIWYG)

Echec commercial (prix 15.000\$)

Lisa d'Apple créé en 1983 (inspiré du Star de Xerox)

Echec commercial (prix 10.000\$)

Macintosh 1984 (Mac 128K)

Mêmes idées que le Lisa mais mieux réalisé :

- amélioration de l'IHM (précision)
- meilleure performance graphique
- Prix concurrentiel (2500\$)

Succès commercial

Systè.....

• Windows 1. 0 de Microsoft a vu le jour en 1985

Interface graphique basée sur le système d'exploitation MS-DOS:

- Mêmes idées que Mac et Star (fenêtres, boutons, sélection souris, menu, scrollbar,...)
- Pas assez
 ergonomique: les
 fenêtres n'avaient pas
 de boutons de
 fermeture

 Windows 3.0 (1990) Program Manager Options Window <u>H</u>elp Main 0 Control Panel Print Manager DOS Prompt Clipboard About Program Manager File Options Window Help Microsoft Windows Version 3.00a ht © 1985-1990 Microsoft Corp. Accessories Real Mode Terminal Write Paintbrush Notepad Recorder lemory..... 396K Cardfile Calendar Calculator Clock PIF Editor B

Games

Main

Succès de Windows depuis les années 90

Evolution des IHM depuis les années 90:

- Amélioration du rendu graphique (couleur, intensité, ...)
- Diversité des résolutions graphiques
- Cohérence et logique de navigation
- Feed back, gestion des erreurs
- Système d'aide
- Suggestions / recommandations (IA)
- Reconnaissance vocale
- Interface tactile
- Vision 3D
- Ecran pliable
- · Réalité virtuelle, réalité augmentée, réalité diminuée

Réalité Augmentée

Réalité Diminuée

Conclusion sur l'évolution des systèmes interactifs:

- On est passé d'une utilisation centrée sur la machine à une utilisation centrée sur l'utilisateur
- On cherche à faciliter de plus en plus l'interaction de l'Homme avec la machine
- On s'approche de plus en plus du langage humain
- Les interactions deviennent ludiques : combinaison numérique et physique

L'interaction du futur:

- L'Homme doit fournir le moindre effort : il suffit qu'il pense
- La machine doit être capable de comprendre l'intention de l'Homme et l'exécuter

Les styles d'interaction depuis leur évolution :

- Système conversationnel
- Menu à choix
- Par navigation
- WYSIWYG (édition de document)
- Manipulation directe (manipulation d'objets, interaction iconique)
- Robot conversationnel (chatbot)
- Reconnaissance de traces (tactile)
- Réalité virtuelle
- Réalité augmentée

Conversationnel :

 Il s'agit du langage de commande imposé par le système


```
Invite de commandes

Microsoft Windows [version 10.0.18362.959]
(c) 2019 Microsoft Corporation. Tous droits réservés.

C:\Users\sara>cd Desktop

C:\Users\sara\Desktop>_
```

Menu à choix:

- Guidage du système
- Interaction contrôlée par le système

```
----Menu:----
1: Calcul chiffre d'affaires
2: Voir le produit realisant max CA
3: Rechercher un produit
4: Afficher les ventes
0: Quitter le programme
Faites un choix: _
```

 Par navigation: (d'une page, d'un document, d'un lien à un autre)

- WYSIWYG (édition de document):
 - présenter un document à l'écran sous une forme la plus proche possible de sa forme imprimée

- Manipulation directe : (style d'interaction de toutes les interfaces actuelles)
 - Actions physique sur des objets (boutons, champs de texte, images..)
 - Menus verticaux, horizontaux, barres des tâches, onglets, formulaires
 - Interaction iconique, actions drag and drop (glisser et déposer)

P Taper ici pour rechercher

- Robot conversationnel (chatbot):
 - Interaction par messagerie/tchat
 - Interaction audio

Reconnaissance de traces :

- reconnaître les mouvements du périphérique de localisation par rapport à un vocabulaire gestuel prédéfini
- Exemples: appui court (sélection), appui long (plus d'option), mouvement vers le haut et le bas (défilement), ...
- Inspire les interfaces tactiles actuelles

Réalité virtuelle :

- Immersion de l'utilisateur dans un monde synthétique :
 - tout ce que l'utilisateur perçoit (vue, ouïe et, idéalement, toucher) est produit par le système
 - et inversement toutes ses actions (actions physiques comme parole) sont interprétées par le système.
- Issue des travaux des militaires dans le domaine des simulateurs de vols, la réalité virtuelle trouve aujourd'hui des applications dans des domaines très spécialisés : médecine, télé-opération en milieu hostile, etc.

Réalité augmentée :

- on intègre l'interface du système informatique dans les objets et environnements du quotidien.
- La frontière entre les mondes physique et informatique s'efface, rendant l'interface invisible.

Domaines des systèmes interactifs

Domaine pluridisciplinaire:

- Informatique
 - Programmation
 - IA
 - synthèse et reconnaissance de la parole, langues naturelles
 - Image
 - Système
- Psychologie cognitive
- Ergonomie cognitive, ergonomie des logiciels
- Sciences de l'éducation, didactique
- Anthropologie, sociologie, philosophie, linguistique
- Communication, graphisme, audiovisuel

Importance de l'IHM

- De nombreux systèmes disposent d'IHM mal conçues: pas adaptées à l'utilisateurs, au contexte métier, logique incompréhensible (ne répond pas au standard),...
- L'IHM doit être adaptée aux caractéristiques suivantes:

Caractéristiques	Exemples
Caractéristique de l'utilisateur	 Différences physiques (âge, handicap) Connaissances et expériences: dans le domaine de la tâche (novice, expert, professionnel), en informatique (usage occasionnel, quotidien) Caractéristiques psychologiques (visuel / auditif, logique /intuitif, analytique / synthétique) Caractéristiques socio-culturelles (sens de l'écriture, format de date, langue, signification des icônes, des couleurs,)

Importance de l'IHM

Caractéristiques	Exemples
Contexte	 Grand public (proposer une prise en main immédiate) Loisir (rendre le produit attrayant) Industrie (augmenter la productivité, systèmes critiques: sécurité)
Caractéristiques de la tâche	répétitive, régulière, occasionnelle, sensible aux modifications de l'environnement, risquée, contrainte par le temps,
Contraintes techniques	 - Plateforme, OS - Espace mémoire - Écrans, raccourcies, capteurs

Références

- https://www.lri.fr/~mbl/ENS/IHM/ecolein2p3/Cours/cours1.html
- http://www.lirmm.fr/~mountaz/Ens/DessTni/Ihm/Cours/c1introErgo.pdf
- http://idoughi.weebly.com/uploads/9/7/8/9/9789826/c1_intr oduction-historique.pdf
- https://perso.liris.cnrs.fr/stephanie.jeandaubias/enseignement/IHM/LifIHM-CM6-ErgoElements.pdf
- http://deptinfo.cnam.fr/Enseignement/CycleSpecialisation/IH M/annee56/Ergonomie.pdf
- http://remy-manu.noip.biz/Java/Tutoriels/JavaFX/PDF/ihm1 id 03 man.pdf
- https://www.lri.fr/~mbl/ENS/IHM/ecole-in2p3/720x540/intro-index.html