There are two periods, t = 0 and t = 1. At the end of period 1, the world ends. The economy is populated by two types of agents: households and a government.

There is a single consumption good, which households value. The following utility function captures the schedule of households' preferences among consumption pair (c_0, c_1) , where c_0 represents consumption in period 0, and c_1 consumption in period 1:

$$u(c_0) + \beta u(c_1)$$

All transactions are carried out using consumption goods.

The government demands g_0 goods in the market in period 0, and g_1 in period 1. To finance itself, it charges lump-sum taxes (τ_0, τ_1) on households. It also issues bonds that promise the delivery of one unit of good in the following period. In period 0, the price of one bond is q_0 units of consumption good. In period 1, households have no incentive to save, and demand no bonds; hence, the equilibrium bond price is $q_1 = 0$.

The following equations represent the budget constraint faced by the government.

$$q_0 b_0 + \tau_0 - g_0 = b_{-1} \tag{1}$$

$$\tau_1 - g_1 = b_0 \tag{2}$$

$$\max_{c_0,c_1,b_0} u(c_0) + \beta u(c_1)$$

s.t.
$$q_0b_0 + c_0 = b_{-1} + y_0 - \tau_0$$
 (3)

$$c_1 = b_0 + y_1 - \tau_1 \tag{4}$$

$$b_0 > b \tag{5}$$

We assume income (y_0, y_1) and initial wealth b_{-1} are large enough so that the household can choose non-negative amounts of goods.

We assume that $b_{-1} + y_0 - \tau_0 \ge 0$

 $y_0 > \tau_0$, so income high enough to pay taxes.

 $b_{-1} \ge 0$

 \underline{b} is the borrowing limit.