# MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON

#### Problem 1

Verify that if **a** and **b** are nonzero vectors, the vector  $\mathbf{c} = |\mathbf{a}|\mathbf{b} + |\mathbf{b}|\mathbf{a}$  bisects the angle between **a** and **b**.

## Solution

#### Problem 2

Consider the transformation shown, which maps the square  $[-1,1]^2$  to an awesome mantaray-looking region. (a) Where are the two points in the domain of f where the Jacobian of f is equal to 0? Where is the Jacobian of f at a maximum?

(b) Does the transformation map its domain onto its image in an orientation-preserving way or an orientation-reversing way?



## Solution

| Suppose that $f(x,y) = xy - x$ . Find the set of real numbers $c$ such that there exists a differentiable path $\mathbf{r}$ satisfying $\mathbf{r}(0) = 0$ and $(f \circ \mathbf{r})'(0) = c$ . |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution                                                                                                                                                                                        |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
| Problem 4                                                                                                                                                                                       |
| Find the set of all points on the plane $x + y + z = 1$ which are equidistant from the points $(4,2,2)$ , and $(3,5,1)$ .                                                                       |
| Solution                                                                                                                                                                                        |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |
|                                                                                                                                                                                                 |

| Find the center of mass of the parabolic lamina $0 \le y \le 1 - x^2$ . |               |
|-------------------------------------------------------------------------|---------------|
| Solution                                                                |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |
|                                                                         | Final answer: |
|                                                                         |               |
|                                                                         |               |
|                                                                         |               |

| Assume that the m | f inertia about the z-ax<br>ass density of the tetr | ahedron is $\rho(x, y,$ | z) = 1. | <i>G</i> - , (- , | . ,, ( , , , , , ( - |  |
|-------------------|-----------------------------------------------------|-------------------------|---------|-------------------|----------------------|--|
| Solution          |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   | Final answer:        |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |
|                   |                                                     |                         |         |                   |                      |  |

| -1(?    |  |  | <br>a lo |
|---------|--|--|----------|
| olution |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |
|         |  |  |          |

Find the volume of the region in the first octant common to the cylinders  $x^2+y^2 \le 1$  and  $x^2+z^2 \le 1$ , as shown.



| Solution |               |
|----------|---------------|
| Solution |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          | Final answer: |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |

Find the flow of  $\mathbf{F} = \langle 0, 0, x^2 + y^2 \rangle$  outward through the portion of the surface  $z^2 + 1 = x^2 + y^2$  between the planes z = 0 and  $z = \sqrt{3}$ .

## Solution

Final answer:

## Problem 10

Consider the surface parametrized by

$$\mathbf{r}(u,v) = (\cos u \cos v, \cos u \sin v, \sin 2u).$$

as u ranges over  $[-\pi/2, \pi/2]$  and v ranges over  $[0, 2\pi]$ . Use the divergence theorem to find the volume enclosed by the surface.

Hint: you'll have occasion to make use of the identities  $\sin 2\theta = 2\sin\theta\cos\theta$  and  $\sin^2\theta = \frac{1-\cos 2\theta}{2}$ .



#### Solution

Final answer:

Suppose that  $S_1$  is the set of points on the sphere  $x^2 + y^2 + z^2 = 1$  which are not inside the sphere  $x^2 + y^2 + (z+1)^2 = 1$ , and suppose that  $S_2$  is the set of points on the sphere  $x^2 + y^2 + (z+1)^2 = 1$  which are not inside the sphere  $x^2 + y^2 + z^2 = 1$ . We may interpret  $S_1$  and  $S_2$  as surfaces carrying an orientation from the inside to the outside. Find

$$\iint_{S_1} \nabla \times \mathbf{F} \cdot d\mathbf{A} \quad \text{and} \quad \iint_{S_2} \nabla \times \mathbf{F} \cdot d\mathbf{A},$$

where  $\mathbf{F} = \langle yz, x, e^{xyz} \rangle$ .



| How many distinct vectors can be formed by selecting a tail and a head from the grid of points shown? | •      |
|-------------------------------------------------------------------------------------------------------|--------|
|                                                                                                       | • • •  |
| Solution                                                                                              |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |
| Final as                                                                                              | nswer: |
|                                                                                                       |        |
|                                                                                                       |        |
|                                                                                                       |        |

BONUS