Thực hành xử lý ảnh - Lab 04

Đề bài: Cho ảnh màu I (coneDetection.jpg)

- 1. Biến ảnh $\bf I$ thành ảnh xám $\bf G$ và nhị phân hoá $\bf G$ sử dụng giá trị ngưỡng th=120. Hiển thị ảnh nhị phân thu được $\bf K$.
- 2. Thực hiện phép toán hình giãn nở (dilation) cho ảnh \mathbf{T} với thành phần cấu trúc $S_1(\mathbf{T} \oplus S_1)$, và \mathbf{T} với thành phần cấu trúc $S_2(\mathbf{T} \oplus S_2)$; Gọi

$$\mathbf{S} = (\mathbf{T} \oplus S_1) - (\mathbf{T} \oplus S_2)$$

cấu trúc có tâm tại chính giữa (số bôi đậm) Hiển thị ảnh ${\bf S}$ lên màn hình

Đề bài 2: Cho ảnh $\mathbf{I} \in \mathbb{R}^{m \times n \times 3}$ (fence.png)

1. Sử dụng đoạn mã giả sau nhằm tìm các lỗ hổng trên ảnh ${\bf I}$. Trong đó \ominus là kí hiệu của phép toán hình thái ${\bf co}^1$

Algorithm 1 Thuật toán

- 1: procedure HoleDetection
- \mathbf{C} : Chuyển ảnh \mathbf{I} thành ảnh xám \mathbf{T}
- 3: Gọi $W = (w_{i,j}) \in \mathbb{R}^{101 \times 101}$ là thành phần cấu trúc có tâm là $w_{51,51}$, giá trị các phần tử trên hàng thứ 51 bằng 1, giá trị các phần tử trên cột thứ 51 bằng 1, các phần tử còn lại bằng 0.
- 4: Tính $\mathbf{K} = \mathbf{T} \ominus W$
- 5: Nhị phân hoá ảnh \mathbf{K} sử dụng giá trị ngưỡng bằng 200 (những giá trị pixel của \mathbf{K} lớn hơn 200 được đặt bằng 1, nhỏ hơn hoặc bằng 200 đặt bằng 0). Gọi ảnh nhị phân thu được là \mathbf{B}
- 6: end procedure

Hiển thị ảnh I, K, B thu được trên cùng một hình.

¹The morphological erosion operation