Unsupervised Machine Translation

Носков Федор Дискуссионный клуб NLP

14 сентября 2020 г.

Общий алгоритм

Algorithm 1 Unsupervised MT

Ensure: P_s , P_t — language models, $P_{s \to t}^{(0)}$, $P_{t \to s}^{(0)}$ — initial translation models

- 1: **for** k = 1 to *N* **do**
- Back-translation: Generate source and target sentences using the current models, $P_{t \to s}^{(k-1)}$ and $P_{s \to t}^{(k-1)}$, factoring in language models, P_s and P_t
- 3: Train new translation models $P_{t \to s}^{(k)}$ and $P_{s \to t}^{(k)}$ using the generated sentences
- 4: end for

Language models

- $L^{LM} = \mathbb{E}_{x \sim S}[-\log P_{s \to s}(x|C(x))] + \mathbb{E}_{y \sim T}[-\log P_{t \to t}(y|C(y))] \to \min$
- C(x) нечто вроде аугментации, некоторые слова с некоторой вероятностью скипаются, с некоторой переставляются, но на не очень большое расстояние
- Фактически перед нами исправляющий автоэнкодер:

Translation model

•
$$u^*(y) = \operatorname{argmax} P_{t \to s}(u|y)$$

•
$$v^*(x) = \operatorname{argmax} P_{s \to t}(v|x)$$

Loss

$$L^{back} = \mathbb{E}_{y \sim \mathcal{T}}[-\log P_{s \to t}(y|u^*(y))] + \mathbb{E}_{x \sim S}[-\log P_{t \to s}(x|v^*(x))]$$

Архитектура

Рис. 1: Схема работы сети (на лосс смотреть не надо)

Общий принцип работы

- Два языка target и source
- Энкодер пререводит предложение в вектор некоего (скрытого) пространства
- Декодер переводит вектор из скрытого простраснтва в предложения. И энкодеру, и декодеру перед скармливанием предложения следует сообщить, на какому языке они работают

Общий принцип работы

- Модель $P_{s \to s}$ составляется из $enc(\cdot, src)$ и декодера $dec(\cdot, src)$ (т.е. энкоедру и декодеру сообщается, что они работают с языком source), ее обучают исправлять предложения, испорченные с помощью функции C (см. предыдущие слайды)
- Модель $P_{s \to t}$ составляется из $enc(\cdot, src)$ и $dec(\cdot, trgt)$, и она учится переводить
- ullet Модели $P_{t o t}$ и модели $P_{t o s}$ работают аналогично
- Обучение всех моделей происходит одновременно путем минимизации ошибки $L^{LM} + L^{back}$ (см. предыдущие слайды)

Performance

Puc. 2: Comparison between unsupervised and supervised approaches