Properties of Materials

Metal Processing

Microstructures

Dr Matthew Peel
matthew.peel@bristol.ac.uk
2.7 Queens Building

Formative Feedback

- Top 3 Questions
 - "How to choose correct side of the lever"
 - "If there is liquid present, is it always composed of both metals"
 - "Is there a visual example of partially mixed solid"

- Response
 - I'll show/reinforce this during this lecture
 - No (for you: YES). Also
 90% if our interest is solidsolid transformations
 - I will show videos of solidification (solid+liquid) and deal with solid-solid mixtures in this lecture.

Preview

Intended Learning Outcomes	
Understanding	How the phases predicted by phase diagrams tend to manifest.
Skills	Able to make qualitative predictions of microstructure from phase diagrams.
Values	Appreciate the link between microstructure and subsequent properties.

- Interpreting phase diagrams wrt common microstructures
- Predict likely changes in properties
- Look at Fe-C phase diagram

Microstructures

Solidification

Solidification

Microstructures

Nucleation of (Pb), below 305 °C

Grains of (Pb), 270 °C to 150 °C

Precipitation of (Sn) within (Pb) grains, below 150 °C

If precipitates are **hard** in **soft** matrix we get a strengthened material

1

Install the app from pollev.com/app

2

Start the presentation

Al-Cu (2xxx)

1

Install the app from pollev.com/app

2

Start the presentation

Eutectic growth

1

Install the app from pollev.com/app

2

Start the presentation

Aluminium

Precipitates of CuAl₂ in (Al)

Precipitation strengthened wrought Aluminium (2xxx Al-Cu)

Cast Al-Si alloy

Primary Si grains, just above 577 °C

C) Eutectic (AI)+Si, just below 577 °C

Much bigger scale Si 100-200um

Fe-C Phase Diagram

Steel Microstructures

Pure Fe (C<0.02%)

Steel Microstructures

Eutectoid Fe (C=0.8%)

Steel Microstructures

Hypoeutectoid Fe (C=0.3%)

Just below 723 °C: ferrite + pearlite

More pearlite (more C) = more strength, less ductility

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

Summary

Intended Learning Outcomes		
Understanding	How the phases predicted by phase diagrams tend to manifest.	
Skills	Able to make qualitative predictions of microstructure from phase diagrams.	
Values	Appreciate the link between microstructure and subsequent properties.	

COMPLETE QUESTIONS 4-7 BY NEXT WEEK