DEMO DAWGI BHM Age-metallicity inference of a simple stellar population.

Simple stellar population model (DEMO)

Hyper-parameter	a		Stellar fraction vector
Parameters	M_j^k	mag	Absolute magnitude
	$arpi_{ ext{true},j}$	mas	True parallax
	$G^k_{\mathrm{true},j}$	mag	True apparent magnitude
Data	G_j^k	mag	Observed apparent magnitude
	e_j^k	mag	Apparent magnitude error
Fixed quantities	μ	mas	Distance modulus
	\mathcal{M}_i^k	mag	Absolute magnitude isochrone
	σ_i^k	mag	Observed apparent magnitude
	$\phi(m)$		Initial mass function

K=1,2,3 > white, blue, red phot. bands $G^k_{\text{true},\,j} = M^k_{\,i} + \mu$

$$M_j^k \sim \mathcal{N}(\mathcal{M}_i^k(m), \, \sigma_i^k(m))$$

$$G_j^k \sim \mathcal{N}(G_{\text{true},j}^k, \, e_j^k)$$

Simple stellar population model (DEMO)

$$P(\boldsymbol{a}|G_{j}^{k}) = P(\boldsymbol{a}) \prod_{j=1}^{N_{D}} \int \frac{S(G_{j}^{k})P(G_{j}^{k}|G_{\text{true}}^{k})P(M_{j}^{k}|\boldsymbol{a})}{\ell(\boldsymbol{a},S)} dM_{j}^{k}$$

Hyper-prior:

$$P(\boldsymbol{a}) = \frac{\Gamma(\xi N_{iso})}{\Gamma(\xi)^{N_{iso}}} \prod_{i=1}^{N_{iso}} a_i^{\xi-1}$$

Likelihood:

$$P(G_j^k|G_{\text{true},j}^k) = \prod_{k=1}^3 \mathcal{N}(G_j^k|G_{\text{true},j}^k, e_j^k).$$

Prior:

$$P(M_j^k|\mathbf{a}) \propto \sum_{i=1}^{N_{iso}} a_i \int_{m_{l,i}}^{m_{u,i}} \phi(m) \prod_{k=1}^{3} \mathcal{N}(M_j^k|\mathcal{M}_i^k, \sigma_i^k) dm.$$

Implemetation:

$$P(\boldsymbol{a}|G_j^k) \propto P(\boldsymbol{a}) \prod_{j=1}^{N_D} \sum_{i=1}^{N_{iso}} a_i P_{ij}$$

- 1) Pij
- 2) Sampling the posterior
- 3) Estimate AMD and credible intervalas using percentiles.

Age-metallicity distribution (AMD): Pleiades

Ben's talk

HBM: Practical advice

- Carefully consider dependencies in your model.
- Beware selection effects; these can be included in the model but may be complex.
- Usually good to try on a mock population first!

Activities:

- Infer the of the population for stars brighter than: G=20 mag and G=15 mag.
- Infer AMD for G=20 mag for Salpeter and Kroupa IMF.

Results: G<15 mag

Results: G<20 mag

