Representing pose in 3D

Daniel Stangeland s331489

September 18, 2020

In Figure 1, 2, 3, 4, we can see examples of different poses in 3 dimensions.

Figure 1: 3D view

Figure 3: Projection on X axis

Figure 2: Top view

Figure 4: Projection on Y axis

Contents

1	Exercise 1		
	1.1	a) Determine positions of two points	3
	1.2	b) Determine the homogeneous transformation matrices ${}^{O}T_{A}$, ${}^{O}T_{B}$, ${}^{O}T_{C}$	4
	1.3	c) Determine the homogeneous transformation matrices ${}^BT_{C}$, ${}^CT_{A}$, ${}^AT_{B}$,	5
	1.4	d) Using the obtained transformation matrices ${}^{O}T_{A}$, ${}^{O}T_{B}$, ${}^{O}T_{C}$ and ${}^{O}p_{1}$, ${}^{O}p_{2}$ from the diagram	
		determine position vectors:	6
2	Exe	rcise 2	8
3	Exercise 3		10
	3.1	a) Show that $R(0) = I_3$ where I_3 is the identity matrix of dimensions $3 \dots \dots \dots \dots$	10
	3.2	b) Show that $det(R(\theta)) = +1$ for any angle θ	10
	3.3	c) Show that $R(\theta)^T R(\theta) = I_3 \dots \dots$	11
	3.4	d) Show that the columns of $R(\theta)$ are orthonormal	12
	3.5	e) Show that the rows of $R(\theta)$ are orthonormal	12
4	Exe	Exercise 4	
5	Exercise 5		14
6	Fve	rcise 6	15
Ü	LAC	icise o	10
7	Exe	Exercise 7	
	7.1	a) Determine equivalent rotation matrix and plot it	16
	7.2	b) Determine the equivalent unit quaternion	18
	7.3	c) Determine the equivalent vector-angle representation	19
8	Exe	Exercise 8	
	8.1	a) Determine the equivalent rotation matrix and plot it	20
	8.2	b) Determine equivalent unit quaternion	22

1.1 a) Determine positions of two points

Using figures 1, 2, 3, 4, determine the positions of the points 1 and 2, denoted by circles in the following reference frames:

$${}^{O}p_{1}, {}^{A}p_{1}, {}^{B}p_{1}, {}^{C}p_{1}$$
 ${}^{O}p_{2}, {}^{A}p_{2}, {}^{B}p_{2}, {}^{C}p_{2}$

We know that a point in reference to a known frame is denoted as

$${}^{A}p = \begin{bmatrix} {}^{A}p_{x} \\ {}^{A}p_{y} \\ {}^{A}p_{z} \end{bmatrix} \tag{1}$$

A representing the reference frame

With this information combined with figures we denote the points in the following way

$${}^{O}p_{1} = \begin{bmatrix} -1\\1\\2 \end{bmatrix} \qquad \qquad {}^{O}p_{2} = \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}$$

$${}^{A}p_{1} = \begin{bmatrix} 1\\\frac{3}{2}\\1 \end{bmatrix} \qquad \qquad {}^{A}p_{2} = \begin{bmatrix} 4\\-\frac{3}{2}\\3 \end{bmatrix}$$

$${}^{B}p_{1} = \begin{bmatrix} \frac{3\sqrt{2}}{2}\\\frac{3\sqrt{2}}{4} \end{bmatrix} \qquad \qquad {}^{B}p_{2} = \begin{bmatrix} 2\sqrt{2}\\-\sqrt{2}\\1 \end{bmatrix}$$

$${}^{C}p_{1} = \begin{bmatrix} 2\\3\\0 \end{bmatrix} \qquad \qquad {}^{C}p_{2} = \begin{bmatrix} -1\\1\\3 \end{bmatrix}$$

1.2 b) Determine the homogeneous transformation matrices ${}^{O}T_{A}$, ${}^{O}T_{B}$, ${}^{O}T_{C}$

The homogeneous transformation matrix is as follows

$${}^{A}T_{B} = \begin{pmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \mathbf{0}_{1X3} & 1 \end{pmatrix} \tag{2}$$

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{bmatrix} \in \mathbb{R}^{3X3} \quad {}^{A}\mathbf{t}_{B} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \mathbf{0}_{1X3} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
 (3)

The total rotation matrix is determined by looking at one rotation at a time, from A to B, where each rotation has its own matrix denoted R_x , R_y , R_z . and are commonly known as the Elementary Rotational Matrices.

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \quad R_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \quad R_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(4)

To find the total rotation R each of these rotational matrices are matrix multiplied together. The order of the multiplication is critical since rotations in 3D are non commutative, meaning $R_1 \cdot R_2 \neq R_2 \cdot R_1$.

$$\mathbf{R} = R_x \cdot R_y \cdot R_z \tag{5}$$

 ${}^{O}T_{A}$ has a positive $\theta = \frac{\pi}{2}$ rotation around the X axis with translation ${}^{O}t_{A} = \begin{bmatrix} -2\\2\\\frac{1}{2} \end{bmatrix}$

$${}^{O}T_{A} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) & 2 \\ 0 & \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 ${}^{O}T_{B}$ has a positive $\theta = \frac{\pi}{4}$ rotation around the Z axis with translation ${}^{O}t_{B} = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix}$

$${}^{O}T_{B} = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) & 0 & -1\\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) & 0 & -2\\ 0 & 0 & 1 & -2\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & -1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & -2\\ 0 & 0 & 1 & -2\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 ${}^{O}T_{C}$ has a positive $\theta=\pi$ rotation around the Y axis with translation ${}^{O}t_{C}=\begin{bmatrix}1\\-2\\2\end{bmatrix}$

$${}^{O}T_{C} = \begin{bmatrix} cos(\pi) & 0 & sin(\pi) & 1\\ 0 & 1 & 0 & -2\\ -sin(\pi) & 0 & cos(\pi) & 2\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 1\\ 0 & 1 & 0 & -2\\ 0 & 0 & -1 & 2\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.3 c) Determine the homogeneous transformation matrices BT_C , CT_A , AT_B

 BT_C has its first rotation of $\theta_{Y_B}=\pi$ and its second rotation of $\theta_{Z_B}=\frac{\pi}{4}$ with a translation

$$^{B}t_{C} = \begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \\ 4 \end{bmatrix}$$
. Computing $R = R_{y}(\pi) \cdot R_{z}(\frac{\pi}{4})$ gives the following homogeneous transform matrix:

$${}^{B}T_{C} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & \sqrt{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & -\sqrt{2} \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 CT_A has its first rotation of $\theta_{Y_C}=\pi$ and its second rotation of $\theta_{X_C}=\frac{\pi}{2}$ with a translation

$${}^{C}t_{A} = \begin{bmatrix} 3 \\ 4 \\ \frac{3}{2} \end{bmatrix}$$
. Computing $R = R_{y}(\pi) \cdot R_{x}(\frac{\pi}{2})$ gives the following homogeneous transform matrix:

$${}^{C}T_{A} = \begin{bmatrix} -1 & 0 & 0 & 3\\ 0 & 0 & -1 & 4\\ 0 & -1 & 0 & \frac{3}{2}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 AT_B has its first rotation of $heta_{X_A}=-rac{\pi}{2}$ and its second rotation of $heta_{Z_A}=rac{\pi}{4}$ with a translation

$$^{A}t_{B}=\begin{bmatrix}1\\-rac{5}{2}\\4\end{bmatrix}$$
. Computing $R=R_{x}(-rac{\pi}{2})\cdot R_{z}(rac{\pi}{4})$ gives the following homogeneous transform matrix:

$${}^{A}T_{B} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 1\\ 0 & 0 & 1 & -\frac{5}{2}\\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 4\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.4 d) Using the obtained transformation matrices ${}^{O}T_{A}$, ${}^{O}T_{B}$, ${}^{O}T_{C}$ and ${}^{O}p_{1}$, ${}^{O}p_{2}$ from the diagram determine position vectors:

$${}^{A}p_{1}, {}^{B}p_{1}, {}^{C}p_{1}$$
 ${}^{A}p_{2}, {}^{B}p_{2}, {}^{C}p_{2}$

To find the position vectors we use the following relation

$${}^{A}\tilde{p}_{1} = {}^{A}T_{O} \cdot {}^{O}\tilde{p}_{1} = ({}^{O}T_{A})^{-1} \cdot {}^{O}\tilde{p}_{1}$$
(6)

Where \tilde{p} denotes the homogeneous representation of vector p

$$p = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \tilde{p} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \tag{7}$$

To compute this we use python. The results from each computation should be equal to the results found in Exercise 1a.

```
[6]: import numpy as np import robotteknikk as rob
```

```
[21]: # Exercise 1.d
      # Define homogeneous transformation matrices
      oTa = np.array([[1, 0, 0, -2],
                       [0, 0, -1, 2],
                       [0, 1, 0, 1/2],
                       [0, 0, 0, 1]])
      oTb = np.array([[np.sqrt(2)/2, -np.sqrt(2)/2, 0, -1],
                       [np.sqrt(2)/2, np.sqrt(2)/2, 0, -2],
                       [0, 0, 1, -2],
                       [0, 0, 0, 1]])
      oTc = np.array([[-1, 0, 0, 1],
                     [0, 1, 0, -2],
                      [0, 0, -1, 2],
                      [0, 0, 0, 1]])
      # Define vectors
      Op1 = np.array([-1, 1, 2])
      Op2 = np.array([2, -1, -1])
```

```
[26]: # Determine Ap1

Ap1_h = np.linalg.inv(oTa).dot(rob.e2h(Op1))
Ap1 = rob.h2e(Ap1_h)
Ap1
```

[26]: array([1., 1.5, 1.])

```
[27]:  # Determine Bp1
      Bp1_h = np.linalg.inv(oTb).dot(rob.e2h(Op1))
      Bp1 = rob.h2e(Bp1_h)
      Bp1
[27]: array([2.12132034, 2.12132034, 4.
                                               ])
[28]: # Determine Cp1
      Cp1_h = np.linalg.inv(oTc).dot(rob.e2h(0p1))
      Cp1 = rob.h2e(Cp1_h)
      Cp1
[28]: array([2., 3., 0.])
[29]: # Determine Ap2
      Ap2_h = np.linalg.inv(oTa).dot(rob.e2h(0p2))
      Ap2 = rob.h2e(Ap2_h)
      Ap2
[29]: array([ 4., -1.5, 3.])
[30]: # Determine Ap2
      Bp2_h = np.linalg.inv(oTb).dot(rob.e2h(Op2))
      Bp2 = rob.h2e(Bp2_h)
      Bp2
[30]: array([ 2.82842712, -1.41421356, 1.
                                                  ])
[31]: # Determine Ap2
      Cp2_h = np.linalg.inv(oTc).dot(rob.e2h(Op2))
      Cp2 = rob.h2e(Cp2_h)
      Cp2
[31]: array([-1., 1., 3.])
```

Results from the python script is equal to those found in Exercise 1a.

Determine if the following are valid rotation matrices

$$R_a = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_b = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_c = \begin{bmatrix} -0.5 & 0 & 0.866 \\ 0 & 1 & 0 \\ 0.866 & 0 & -0.5 \end{bmatrix}$$

The following properties of a rotational matrix are used to determine if the matrix is valid or not.

$$det(R) = +1 \quad R^T R = I \tag{8}$$

```
[45]: import numpy as np
      import robotteknikk as rob
[33]: def isRotMat(R):
          Rdim = R.shape
          RtR = R.T.dot(R)
          tol = 1e-5
          detR = np.linalg.det(R)
          #checks if RtR and detR is close to the identity matrix and 1.
          if np.allclose(RtR,np.eye(Rdim[0]), rtol=tol, atol=tol) and np.
       →isclose(detR,1,rtol=tol, atol=tol):
              print("det(R) = ",detR,"\n")
              print("R^TR = \n", RtR.round(3))
              print("\nR =\n",R,"\n\nIs a valid rotation matrix\n")
          else:
              print("det(R) = ",detR,"\n")
              print("R^TR = \n", RtR.round(3))
              print("\nR = \n", R, "\n\nIs NOT avalid rotation matrix \n")
[34]: Ra = np.array([[1, 1, 0],
                      [0, 0, 0],
                      [0, 0, 1]])
```

```
isRotMat(Ra)
```

```
det(R) = 0.0
R^TR =
 [[1 1 0]
 [1 1 0]
 [0 0 1]]
R =
 [[1 1 0]
 [0 0 0]
 [0 0 1]]
```

Is NOT avalid rotation matrix

Is NOT avalid rotation matrix

```
[44]: Rb = np.array([[np.sqrt(2)/2, -np.sqrt(2)/2, 0],
                   [np.sqrt(2)/2, np.sqrt(2)/2, 0],
                  [0,0,1]])
     isRotMat(Rb)
    det(R) = 1.0
    R^TR =
     [[ 1. -0. 0.]
     [-0. 1. 0.]
     [ 0. 0. 1.]]
    R =
      [[ 0.70710678 -0.70710678 0.
      [ 0.70710678  0.70710678  0.
                                       ]
     [ 0.
                                       ]]
                  0.
                       1.
     Is a valid rotation matrix
[56]: Rc = np.array([[-0.5, 0, 0.866],
                   [0, 1, 0],
                   [0.866,0,-0.5]])
     isRotMat(Rc)
    det(R) = -0.499956
    R^TR =
     [[ 1.
             0.
                    -0.866]
      [ 0.
              1.
                    0. ]
     [-0.866 0.
                   1. ]]
    R =
                   0.866]
      [[-0.5
              0.
      [ 0.
              1.
                    0. ]
      [ 0.866 0.
                   -0.5 ]]
```

9

Consider the following rotation matrix

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

3.1 a) Show that $R(0) = I_3$ where I_3 is the identity matrix of dimensions 3

We know that

$$sin0 = 0$$
 and $cos0 = 1$

Plugging this ($\theta = 0$) into the rotation matrix $R(\theta)$

$$R(0) = \begin{bmatrix} \cos 0 & -\sin 0 & 0 \\ \sin 0 & \cos 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

3.2 b) Show that $det(R(\theta)) = +1$ for any angle θ

To show that $det(R(\theta)) = +1$ for any angle the following trigonometric property in combination with the formula for finding the determinant of a 3x3-matrix is used.

$$sin^2\theta + cos^2\theta = 1$$

and

$$det(A) = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

The determinant for the given rotational matrix is therefore as follows

$$det(R) = \begin{bmatrix} cos\theta & -sin\theta & 0 \\ sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = cos\theta \begin{vmatrix} cos\theta & 0 \\ 0 & 1 \end{vmatrix} - (-sin\theta) \begin{vmatrix} sin\theta & 0 \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} sin\theta & cos\theta \\ 0 & 0 \end{vmatrix}$$
$$= cos\theta(cos\theta - 0) + sin\theta(sin\theta - 0) + 0$$
$$= cos^2\theta + sin^2\theta$$
$$= 1$$

As shown above the determinate of a rotational 3x3-matrix is always 1.

3.3 c) Show that $R(\theta)^T R(\theta) = I_3$

First we compute $R(\theta)^T$

$$R(\theta)^T = egin{bmatrix} \cos \theta & -\sin \theta & 0 \ \sin \theta & \cos \theta & 0 \ 0 & 0 & 1 \end{bmatrix}^T = egin{bmatrix} \cos \theta & \sin \theta & 0 \ -\sin \theta & \cos \theta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Then we multiply $R(\theta)^T R(\theta)$

$$R(\theta)^{T} \cdot R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (\cos^{2}\theta + \sin^{2}\theta) & (-\sin\theta\cos\theta + \sin\theta\cos\theta) & 0 \\ (-\sin\theta\cos\theta + \sin\theta\cos\theta) & (\sin^{2}\theta + \cos^{2}\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= I_{3}$$

3.4 d) Show that the columns of $R(\theta)$ are orthonormal

Two columns being orthonormal means they are orthogonal to each other and their length corresponds to the length of a unit-vector (unit norm).

We describe the rotational matrix R as follows:

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \end{bmatrix} \in \mathbb{R}^{3X3}$$

To compute the length of each column the following formula is used. In this case the unit-vector should equal 1.

$$||a||^2 = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2} = 1$$
$$||b||^2 = \sqrt{(b_1)^2 + (b_2)^2 + (b_3)^2} = 1$$
$$||c||^2 = \sqrt{(a_1)^2 + (c_2)^2 + (c_3)^2} = 1$$

Two columns is said to be orthogonal if the dot product equals 0.

$$a^Tb = 0$$
, $b^Tc = 0$, $c^Ta = 0$.

We apply this to the given rotational matrix and compute the length of each column and its dot products.

$$||a||^2 = \sqrt{\cos^2\theta + \sin^2\theta + 0} = \sqrt{1} = 1$$
$$||b||^2 = \sqrt{(-\sin\theta)^2 + \cos^2\theta + 0} = \sqrt{1} = 1$$
$$||c||^2 = \sqrt{0 + 0 + 1^2} = \sqrt{1} = 1$$

$$\mathbf{a}^{T}\mathbf{b} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \end{bmatrix} \cdot \begin{bmatrix} -\sin\theta \\ \cos\theta \\ 0 \end{bmatrix} = \begin{bmatrix} -\sin\theta\cos\theta + \sin\theta\cos\theta + 0 \end{bmatrix} = 0$$

$$\mathbf{b}^{T}\mathbf{c} = \begin{bmatrix} -\sin\theta & \cos\theta & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 + 0 + 0 \end{bmatrix} = 0$$

$$\mathbf{c}^{T}\mathbf{a} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\theta \\ \sin\theta \\ 0 \end{bmatrix} = \begin{bmatrix} 0 + 0 + 0 \end{bmatrix} = 0$$

The results show that the columns of rotational matrix R are orthonormal.

3.5 e) Show that the rows of $R(\theta)$ are orthonormal

This proof is identical to Exercise 3.d, where the only difference is working with rows instead of columns.

Consider the transforms

$$T_1 = \begin{bmatrix} R_1 & t_1 \\ 0_{1x3} & 1 \end{bmatrix} T_2 = \begin{bmatrix} R_2 & t_2 \\ 0_{1x3} & 1 \end{bmatrix}$$

Where

$$t_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \quad t_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \quad 0_{1x3} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Show that

$$T_1 T_2 = \begin{bmatrix} R_1 R_2 & t_1 + R_1 t_2 \\ 0_{1x3} & 1 \end{bmatrix}$$

This can be shown by preforming matrix multiplication. To be able multiply the different "inner" matrices the dimensions of each multiplication need to be valid.

$$T_1 T_2 = \begin{bmatrix} R_1 & t_1 \\ 0_{1x3} & 1 \end{bmatrix} \cdot \begin{bmatrix} R_2 & t_2 \\ 0_{1x3} & 1 \end{bmatrix} = \begin{bmatrix} R_1 R_2 + (t_1 \cdot 0_{1X3}) & t_1 + R_1 t_2 \\ (0_{1X3} \cdot R_2) + 0_{1X3} & (0_{1X3} \cdot t_2) + 1 \end{bmatrix}$$

Where

$$(t_1 0_{1X3}) = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(0_{1X3} \cdot R_2) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$(0_{1X3} \cdot t_2) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = 0$$

With matrix addition we can now simplify T_1T_2

$$T_1 T_2 = \begin{bmatrix} R_1 R_2 + (t_1 \cdot 0_{1X3}) & t_1 + R_1 t_2 \\ (0_{1X3} \cdot R_2) + 0_{1X3} & (0_{1X3} \cdot t_2) + 1 \end{bmatrix} = \begin{bmatrix} R_1 R_2 & t_1 + R_1 t_2 \\ 0_{1x3} & 1 \end{bmatrix}$$

Show that $T^{-1} = \begin{bmatrix} R^T & -R^Tt \\ 0_{1X3} & 1 \end{bmatrix}$ is the inverse transform of $T = \begin{bmatrix} R & t \\ 0_{1X3} & 1 \end{bmatrix}$.

The inverse of a matrix A exists if the following is true

$$AA^{-1} = A^{-1}A = I_n (9)$$

By using this property we can show that T^{-1} is the inverse of T.

$$\begin{split} TT^{-1} &= \begin{bmatrix} R & t \\ 0_{1X3} & 1 \end{bmatrix} \cdot \begin{bmatrix} R^T & -R^T t \\ 0_{1X3} & 1 \end{bmatrix} \\ &= \begin{bmatrix} RR^T + (t \cdot 0_{1X3}) & (R \cdot (-R^T t) + t) \\ (0_{1X3} \cdot R^T) + 0_{1X3} & (0_{1X3} \cdot (-R^T t) + 1) \end{bmatrix} \\ &= \begin{bmatrix} RR^T + (t \cdot 0_{1X3}) & (-RR^T t) + t \\ (0_{1X3} \cdot R^T) + 0_{1X3} & (0_{1X3} \cdot -R^T t + 1) \end{bmatrix} \end{split}$$

Where

$$RR^{T} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta + 0 & \cos\theta\sin\theta - \cos\theta\sin\theta + 0 & 0 + 0 + 0 \\ \cos\theta\sin\theta - \cos\theta\sin\theta & \cos^{2}\theta + \sin^{2}\theta & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_{3}$$

$$RR^{T}t = I_{2}t = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = t$$

$$(t_{1} \cdot 0_{1X3}) = \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(0_{1X3} \cdot R^{T}) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$(0_{1X3} \cdot -R^{T}t) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \cdot - \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} -x\cos\theta - y\sin\theta + 0 \\ x\sin\theta - y\cos\theta + 0 \\ 0 + 0 + z \end{bmatrix} = 0$$

With matrix addition we can now simplify TT^{-1}

$$TT^{-1} = \begin{bmatrix} RR^T + (t \cdot 0_{1X3}) & (-RR^Tt) + t \\ (0_{1X3} \cdot R^T) + 0_{1X3} & (0_{1X3} \cdot -R^Tt + 1) \end{bmatrix} = \begin{bmatrix} I_3 & (-t+t) \\ 0_{1X3} & 1 \end{bmatrix} = \begin{bmatrix} I_3 & 0_{3X1} \\ 0_{1X3} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I_3$$

This confirms that $T^{-1} = \begin{bmatrix} R^T & -R^Tt \\ 0_{1X3} & 1 \end{bmatrix}$ is the inverse transform of $T = \begin{bmatrix} R & t \\ 0_{1X3} & 1 \end{bmatrix}$

Given the roll, pitch, yaw angles $(\theta_r, \theta_p, \theta_y)$ the corresponding rotation matrix is given by

$$R = R_x(\theta_r)R_y(\theta_p)R_z(\theta_y)$$

Where

$$R_x(\theta_r) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \quad R_y(\theta_p) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \quad R_z(\theta_y) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Write a function in python that returns this rotation R matrix with roll, pitch, yaw angles as arguments in the function

```
[4]: import numpy as np
     import robotteknikk as rob
     def rpy2r(roll, pitch, jaw):
         """This fuction takes roll, pitch and jaw angles
             and converts them to a rotational matrix."""
         # Rotational matrix for roll angle (around X)
         Rx = np.array([[1, 0, 0],
                        [0, np.cos(roll), -np.sin(roll)],
                        [0, np.sin(roll), np.cos(roll)]])
         # Rotational matrix for pitch angle (around Y)
         Ry = np.array([[np.cos(pitch), 0, np.sin(pitch)],
                        [0, 1, 0],
                        [-np.sin(pitch), 0, np.cos(pitch)]])
         # Rotational matrix for jaw angle (around Z)
         Rz = np.array([[np.cos(yaw), -np.sin(yaw), 0],
                        [np.sin(yaw), np.cos(yaw), 0],
                        [0, 0, 1]])
         \# Rotates around x-axis, then new y-axis and then z-axis
         R = Rx.dot(Ry).dot(Rz)
         return R
```

Convert the following roll, pitch and yaw angels $(\theta_r, \theta_p, \theta_y) = (\frac{\pi}{4}, \frac{\pi}{6}, -\frac{\pi}{2})$

7.1 a) Determine equivalent rotation matrix and plot it

```
[44]: import numpy as np
      import matplotlib.pyplot as plt
      import robotteknikk as rob
      def tpr(R):
          """This function returns a homogeneous pure rotation matrix"""
          n = R.shape[0] # finds shape of first column, either 2 or 3.
          if n == 2:
              # Creates a identity matrix of 3 dimensions
              T = np.eye(3)
              # Append the identity matrix rows and columns with R input
              T[0:2,0:2] = R
          elif n == 3:
              # Creates a identity matrix of 4 dimensions
              T = np.eye(4)
              # Append the identity matrix rows and columns with R input
              T[0:3,0:3] = R
          else:
              print("Invalid rotation matrix. Please check that dimensions are correct")
          return T
```


7.2 b) Determine the equivalent unit quaternion

By using the following relationship between a rotational matrix and the unit quaternion

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{4q_0} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$
(10)

Where

$$q_0 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}} \tag{11}$$

A function can easily be made in python. The function takes a arbitrary rotational matrix as input and returns the equivalent unit quaternion.

```
[28]: R = ([[0., 0.866, 0.5], [-0.707, 0.354, -0.612], [-0.707, -0.354, 0.612]])
```

```
[31]: def r2quat(R, print=None):
          This function converts the rotation matrix to
          its equvivalent unit quaternion expression
          A Quaternion is a hyper complex number:
                  a + ib + jc + ke
          Represented as:
                  q = s + v(i, j, k)
          Where s is the real part and v is the imaginary part
          s = 1/2*np.sqrt(1+R[0,0]+R[1,1]+R[2,2])
          q = np.array([[R[2,1]-R[1,2]],
                        [R[0,2]-R[2,0]],
                        [R[1,0]-R[0,1]])
          v = 1/(4*s) * q
          if print is not None:
             print(f"{s} <{q.T}>")
          return s, v
      s, v = r2quat(R, print)
```

0.7010706098532444 <[[0.258 1.207 -1.573]]>

7.3 c) Determine the equivalent vector-angle representation

To determine the angle vector representation of a rotation matrix, the eigenvalues and eigenvectors of that matrix is used.

The eigenvector containing only real values is the vector representation v. The angle representation θ is the angle of the eigenvalues, $\lambda = \cos \theta \pm i \sin \theta$.

This can be computed using python.

```
[28]: R = ([[0., 0.866, 0.5], [-0.707, 0.354, -0.612], [-0.707, -0.354, 0.612]])
```

```
[225]: # Exercise 7.c
       def r2angvec(R):
           11 11 11
           This function converts a rotation matrix to the equivalent
           vector-angle representation
           # Finds the eigen values and vectors of R
           eigvalues, eigvectors = np.linalg.eig(R)
           # Extract imaginary parts from eigenvectors
           v0 = np.imag(eigvectors[:,0])
           v1 = np.imag(eigvectors[:,1])
           v2 = np.imag(eigvectors[:,2])
           # Creates an array of zeroes in the same dimension
           zeros = np.zeros(eigvectors.shape[0])
           # Identifies the vector with no imaginart parts.
           if (v0 == zeros).all():
               vector = np.real(eigvectors[:,0])
           elif (v1 == zeros).all():
               vector = np.real(eigvectors[:,1])
           elif (v2 == zeros).all():
               vector = np.real(eigvectors[:,2])
           else:
               print("No eigenvector with only real parts")
           # Identifies index of theta
           i = 0
           while np.angle(eigvalues[i]) <= 0:</pre>
               i = i+1
           angle = np.angle(eigvalues[i])
           return angle, vector
       theta, v = r2angvec(R)
       theta, v
```

```
[225]: (1.587834237962121, array([-0.12942831, -0.603641 , 0.78668027]))
```

Given a rotation of $\theta = \frac{\pi}{5}$ along axis $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$.

8.1 a) Determine the equivalent rotation matrix and plot it

```
[240]: # Exercise 8.a
       def skew(v):
           Returns a skew symmetric matric from a vector
           w with dimensions 3x1
           vx = v[0]
           vy = v[1]
           vz = v[2]
           skew = np.array([[0,-vz,vy],
                             [vz,0,-vx],
                             [-vy,vx,0]])
           return skew
       def angvec2r(theta, v):
           This function computes a rotational matrix from
           the angle vector.
           Theta is in radians and vector is of dimensions 3x1
           Using the Rodrigues formula:
               R = I_{3X3} + \sin(\text{theta}) S(\text{vector}) + (1 - \cos(\text{theta}))(\text{vv.T} - I_{3X3})
           Where S is the skew matrix
           n = v.shape[0] # Defines the shape of vector array
           I = np.eye(n) # Creates an identity matrix of n-size
           s = np.sqrt(v[0]**2+v[1]**2+v[2]**2) # Computes the length of v
           # Can also use s = np.sqrt(v.dot(v))
           v = v/s # Renormalize v, it now has unit length
           S = skew(v) # Returns the skew matrix made form vector array
           # Computes the rotational matrix by using Rodrigues formula
           R = I + np.sin(theta) * S + (1 - np.cos(theta))*(np.outer(v,v) - I)
           return R
       def plotR(R):
           # To plot the rotational matrix it must be converted to the homogeneous pure_
        →rotation matrix
           T = tpr(R)
           # Define the plot and use robotteknikk's plotting function
           fig = plt.figure(1, figsize=(10,10))
           ax = plt.axes(projection='3d')
           rob.trplot3(ax,T,name="0")
```

```
theta = np.pi/5
v = np.array([-np.sqrt(2)/2, np.sqrt(2)/2,0])

R = angvec2r(theta, v)
plotR(R)
R.round(3)
```


8.2 b) Determine equivalent unit quaternion

```
[243]: R.round(3)
[243]: array([[ 0.905, -0.095, 0.416],
              [-0.095, 0.905, 0.416],
              [-0.416, -0.416, 0.809]]
[241]: # Exercise 8.b
       def r2quat(R, print=None):
           This function converts the rotation matrix to
           its equvivalent unit quaternion expression
           A Quaternion is a hyper complex number:
                   a + ib + jc + ke
           Represented as:
                   q = s + v(i, j, k)
           Where s is the real part and v is the imaginary part
           s = 1/2*np.sqrt(1+R[0,0]+R[1,1]+R[2,2])
           q = np.array([[R[2,1]-R[1,2]],
                         [R[0,2]-R[2,0]],
                         [R[1,0]-R[0,1]])
          v = 1/(4*s) * q
           if print is not None:
              print(f"{s} <{q.T}>")
          return s, v
       s, v = r2quat(R, print)
```

0.9510565162951535 <[[-0.83125388 0.83125388 0.]]>