ASSIGNMENT 22.1

Problem Statement:

Go through below blog and reiterate the same at your end.

https://docs.google.com/document/d/1csLBlMiEXs_hXWV2Z8VpBlrj_R6RoDQLlZUnA0uBTCk

Solution:

I have downloaded the dataset from the link below:

https://drive.google.com/open?id=0ByJLBTmJojjzWllGZFJFaXFVbU0

Due to the limitation of 22 elements for a map function, we are taking only 22 columns from the data set.

Here is the total dataset description:

State String, District String, Persons String, Males int, Females int, Growth_1991_2001 int, Rural int. Urban Scheduled Caste population int. Percentage SC to total int. int. Number_of_households int, Household_size_per_household int, Sex_ratio_females_per_1000_males int, Sex_ratio_0_6_years int, Scheduled_Tribe_population Percentage_to_total_population_ST int, Persons_literate int, Males Literate Females Literate int, Persons_literacy_rate int, Males_Literatacy_Rate int, Females Literacy Rate int, Total Educated int, Data without level int, Below Primary int, Primary int, Middle int, Matric_Higher_Secondary_Diploma int, Graduate_and_Above int, X0_4_years int, X5_14_years int, X15_59_years int, X60_years_and_above_Incl_ANS int, Total_workers int, Main_workers int, Marginal_workers int, Non_workers int, SC_1_Name String, SC_1_Population int, SC_2_Name String, SC_2_Population int, SC_3_Name String, SC_3_Population int, Religeon_1_Name String, Religeon_1_Population int, Religeon_2_Name String, Religeon_2_Population int, Religeon_3_Name String, Religeon_3_Population int, ST_1_Name String, ST_1_Population int, ST_2_Name String, ST_2_Population int, ST_3_Name String, ST_3_Population int, Imp_Town_1_Name String, Imp_Town_1_Population int, Imp_Town_2_Name String, Imp_Town_2_Population int, Imp_Town_3_Name String, Imp_Town_3_Population int, Total_Inhabited_Villages int, Drinking_water_facilities int, Safe Drinking water Electricity_Power_Supply Electricity_domestic int. int, int, Electricity_Agriculture Primary_school Middle_schools int, int, int,

Secondary_Sr_Secondary_schools int, College int, Medical_facility int, Primary_Health_Centre int, Primary_Health_Sub_Centre int, Post_telegraph_and_telephone_facility int, Bus_services int, Paved_approach_road int, Mud_approach_road int, Permanent_House int, Semi_permanent_House int, Temporary_House int

Here is what we are taking:

"State". "Persons". "Females". "Growth 1991 2001", "Males". "Rural". "Urban". "Scheduled_Caste_population", "Percentage_SC_to_total", "Number_of_households", "Household_size_per_household", "Sex_ratio_females_per_1000_males", "Sex_ratio_0_6_years", "Scheduled_Tribe_population", "Percentage_to_total_population_ST", "Persons_literate", "Males_Literate", "Females_Literate", "Persons_literacy_rate", "Males_Literatacy_Rate", "Females_Literacy_Rate", "Total_Educated"

Let's load this dataset into Spark memory:

val census_data = sc.textFile("file:///home/kiran/Documents/datasets/census.csv")

```
.map (x => x.split(",")) // split each line by comma to access each // field by its index position
```

```
.map (x => (x(0), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11), x(12), x(13), x(14), x(15), x(16), x(17), x(18), x(19), x(20), x(21), x(22)))
```

.toDF("State", "Persons", "Males", "Females", "Growth_1991_2001", "Rural", "Urban", "Scheduled_Caste_population", "Percentage_SC_to_total", "Number_ of_households", "Household size per household", "Sex ratio females per "Scheduled Tribe population", 1000 males", "Sex ratio 0 6 years", "Percentage_to_total_population_ST", "Persons_literate", "Males_Literate", "Females Literate", "Persons_literacy_rate", "Males_Literatacy_Rate", "Females_Literacy_Rate", "Total_Educated") //define schema for the dataset .registerTempTable("census") // register a temporary table // with name 'census'

Problem 1: Find out the state wise population and order by state

```
Here is an SQL query embedded into Spark's SQL context to find this out:

val population = spark.sql("select state,sum(persons) as total_population " +

"from census " +

"group by state " +

"order by total_population desc "

).show
```

Output:

+	++
state	total_population
+	++
UP	1.66197921E8
Maharashtra	9.6878627E7
Bihar	8.2998509E7
WB	8.0176197E7
Andhra	7.1308587E7
TN	6.2405679E7
MP	6.0348023E7
Rajasthan	5.6507188E7
Karnataka	5.2850562E7
Gujarat	5.0671017E7
Orrisa	3.5664657E7
Kerala	3.1841374E7
Jharkhand	2.6945829E7
Assam	2.6655528E7
Punjab	2.4358999E7
Haryana	2.1144564E7
CG	2.0833803E7
Delhi	1.3850507E7
] JK	1.01437E7
Uttranchal	8489349.0
+	++
only showing	top 20 rows

2. Find out the Growth Rate of Each State Between 1991-2001.

```
Here is an SQL query embedded into Spark's SQL context to find this out: val\ growth\_rate = spark.sql("select\ state,\ avg(Growth\_1991\_2001)\ as\ total\_growth\ "+" "from\ census\ group\ by\ state" ).show
```

Output:

```
state| total_growth|
+----+
      Nagaland| 64.92375|
      Karnataka| 15.50666666666668|
         D_N_H| 59.2|
         Kerala| 9.354999999999999
         Punjab| 18.87705882352941|
            CG|17.506249999999998|
        Manipur|29.240000000000002|
            HP| 17.530833333333333
            Goal
                          15.0451
        Mizoram| 30.64428571428571|
         Orrisa|15.551379310344826|
|ArunachalPradesh| 25.46999999999999
       Meghalya| 32.81428571428571|
             WB|18.424999999999997|
        Haryana|27.816842105263152|
      Jharkhand| 23.79666666666667|
        Gujarat| 20.8248|
             TN| 10.12766666666668|
         Andhra|14.571818181818184|
         UP| 25.70228571428572|
only showing top 20 rows
```

3. Find the literacy rate of each state.

Here is an SQL query embedded into Spark's SQL context to find this out: val literacy = spark.sql("select state,avg(Persons_literacy_rate)" +

"from census group by state").show

Output:

```
+----+
  state|avg(CAST(Persons_literacy_rate AS DOUBLE))|
+-----
      Nagaland
                                       68.52875
      Karnataka|
                                  65.72666666666666
        D_N_H
                                        57.63
        Kerala
                                  90.52285714285713|
                                  68.61176470588235
        Punjab|
                                  63.023124999999999
           CG
       Manipur|
                                          68.6125
           HPI
                                  75.508333333333333
           Goa
                                  81.78999999999999
       Mizoram|
                                  85.55375000000001|
                                 59.97965517241381
        0rrisa|
|ArunachalPradesh|
                                 53.166923076923084
      Meghalya|
                                 60.722857142857144|
                                           66.07
                                  68.24473684210527
       Haryana|
      Jharkhand|
                                  50.511666666666671
                                  67.07480000000001
       Gujarat|
           TNI
                                  72.942666666666651
        Andhra|
                                  59.293636363636371
                                  56.01057142857144
```

only showing top 20 rows

4. Find out the States with More Female Population.

Here is an SQL query embedded into Spark's SQL context to find this out:

val female_pop = spark.sql("select state, sum(Males)-sum(Females) as Female_Population" +

"from census" +

"group by state").show

Output:

+	+	
state Female	_Population	
+	+	
Nagaland	104246.0	
Karnataka	947274.0	
D_N_H	22842.0	
Kerala	-904146.0	
Punjab	1611091.0	
[CG]	114633.0	
Manipur	20533.0	
HP	97980.0	
Goa	26828.0	
Mizoram	29645.0	
Orrisa	482015.0	
ArunachalPradesh	61914.0	
Meghalya	33352.0	
WB	2755773.0	
Haryana	1583342.0	
Jharkhand	824245.0	
Gujarat	2100137.0	
TN	396139.0	
Andhra	826959.0	
UP	8932817.0	
++		
only showing top 20 rows		

5. Find out the Percentage of Population in Every State

Output:

++	+	
state p	percent_pop_by_state	
++	+	
Nagaland	0.19464122457545488	
Karnataka	5.169202018044398	
D_N_H	0.02156566193106157	
Kerala	3.1143376439044568	
Punjab	2.3825023239741796	
[CG]	2.0377103371415317	
Manipur	0.19662075848548596	
HP	0.5944665819347776	
Goa	0.13181256512000492	
Mizoram	0.08690945130876308	
Orrisa	3.488284891601744	
ArunachalPradesh	0.10738993468694186	
Meghalya	0.22679908989209513	
WB	7.841864753141607	
Haryana	2.0681052152192616	
Jharkhand	2.6355147111714583	
Gujarat	4.956025317815201	
TN	6.103767861999858	
Andhra	6.974542519042551	
UP	16.25546817511578	
++	+	
only showing top 20 rows		