Vecteurs:

1- tracer le point M tel que $\overrightarrow{AB} = \overrightarrow{CM}$

2- Représenter les points M, N, P, Q image respective des points C, D, E, F par la translation de vecteur \overrightarrow{AB}

3- Propriété fondamentale : Tracer le représentant du vecteur \vec{u} d'origine A

4- Représenter le vecteur opposé à chacun des vecteurs ci-dessous :

5- Milieu d'un segment et vecteurs Pour chaque segment [AB], [CD], [EF] placer le milieu respectivement I, J, K Comparer alors les vecteurs \overrightarrow{AI} et \overrightarrow{IB} , \overrightarrow{CJ} et \overrightarrow{JD} puis \overrightarrow{EK} et \overrightarrow{KF}

6- Vecteurs et coordonnées.

On se place dans un repère (O,I,J) et on considère les points A(2;1), B(-1;-1), C(1;3) Placer ces points et représenter les vecteurs \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC}

En déduire les coordonnées de ces vecteurs.

On considère dans ce repère le vecteur \vec{u} représenté ci-dessous, en utilisant la partie précédente en déduire les coordonnées de \vec{u} .

7- Somme de vecteurs.

On considère la translation de vecteur \overrightarrow{AB} puis la translation de vecteur \overrightarrow{BC} Quelle est l'image du point A si on lui applique successivement ces deux translations ? Quelle est la translation qui permet d'obtenir directement l'image de A ? Quelle relation vectorielle peut-on en déduire ?

