Quantum-inspired ℓ^2 sampling and applications to machine learning

Faris Sbahi

3/5/19

Quantum Machine Learning

Classical ℓ^2 sampling

Introduction

- Machine learning is a broad term for algorithms which are capable of finding patterns in data.
- Fundamental goal: capture these patterns in a "model" that generalizes.
- These algorithms have two components:
 - 1. A learning element. Updates the model depending on its performance on the considered dataset.
 - 2. A performance element. Provides the measure of performance.
- Bottom line: "machine learning" is a somewhat hollow term. Many ML algorithms are in fact familiar linear algebraic techniques.

PCA

Motivation: Singular value transformation

- ▶ "Training" dataset \mathcal{T} consists of the accessible samples of data. \mathcal{T} is drawn from a subset of $\Omega \subset \mathbb{R}^d$ where each component represents a "feature".
- ▶ Samples from Ω are assumed to be drawn according to some distribution \mathcal{D} .
- Example: data is collected on the heights and lengths of cherry blossom petals.

► How and why may it make sense to reduce the dimensionality of the feature space?

Moore-Penrose Pseudoinverse

Motivation: Singular value transformation

► Say we wish to solve the linear system

Quantum Machine Learning

Classical ℓ^2 sampling

Quantum Machine Learning

Classical ℓ^2 sampling