Introdução à Ciência de Dados

Long Assignment

Churn Data

Inês Silva Maria Miguel Ribeiro Renatha Vieira

CRISP-DM

- 1. Business Understanding
- 2.Data Understanding
- 3.Data Preparation
- 4. Modeling
- 5. Evaluation
- 6.Deployment

BUSINESS UNDERSTANDING

O objetivo deste projeto é analisar, processar os dados e desenvolver modelos preditivos para uma previsão precisa de desistência. Isto significa que o objetivo empresarial, neste caso, é prever corretamente se um cliente irá ou não desistir da empresa.

DATA UNDERSTANDING

Exploração do conjunto de dados de modo a visualizar as diferentes variáveis e compreender possíveis padrões relevantes, com o intuito de extrair perceções (insights).

VARIÁVEIS NOMINAIS

VARIÁVEIS NUMÉRICAS

VARIÁVEIS NUMÉRICAS

OUTLIERS

OUTLIERS

	Quantidade de Outliers		
accountlength	24		
numbervmailmessages	60		
totaldayminutes	35		
totaldaycalls	35		
totaldaycharge	36		
totaleveminutes	42		
totalevecalls	27		
totalevecharge	42		
totalnightminutes	39		
totalnightcalls	43		
totalnightcharge	39		
totalintlminutes	71		
totalintlcalls	114		
totalintlcharge	70		
numbercustomerservicecalls	392		

<u> </u>	Coluna	Outlier	Distancia	Limite
0	accountlength	243.0	35.00000	Superior
1	numbervmailmessages	52.0	9.50000	Superior
2	totaldayminutes	0.0	34.95000	Inferior
3	totaldaycalls	0.0	48.00000	Inferior
4	totaldaycharge	0.0	5.99500	Inferior
5	totaleveminutes	0.0	64.91250	Inferior
6	totalevecalls	0.0	46.50000	Inferior
7	totalevecharge	0.0	5.47875	Inferior
8	totalnightminutes	0.0	65.45000	Inferior
9	totalnightcalls	0.0	48.00000	Inferior
10	totalnightcharge	0.0	2.93500	Inferior
11	totalintlminutes	0.0	3.25000	Inferior
12	totalintlcalls	20.0	9.50000	Superior
13	totalintlcharge	0.0	0.89000	Inferior
14	numbercustomerservicecalls	9.0	5.50000	Superior

CORRELAÇÃO

Verificou-se uma grande correlação entre as seguintes variáveis:

- 'totaldaycharge' e 'totaldayminutes';
- 'totalevecharge' e 'totaleveminutes';
- 'totalnightcharge' e 'totalnightminutes';
- 'totalintlcharge' e 'totalintlminutes'.

'totaldaycharge' \cong 0.17 * 'totaldayminutes', 'totalevecharge' \cong 0.085 * 'totaleveminutes', 'totalnightcharge' \cong 0.045 * 'totalnightminutes', 'totalintlcharge' \cong 0.27 * 'totalintlminutes'.

MISSING VALUES

Uso do pacote Missingno

Análise da correlação entre os missing values

CORRELAÇÃO

Os missing values são completamente aleatórios (MCAR). São dados que não possuem nenhuma dependência em relação a dados observados ou não observados.

Data Pre-Processing

Imputação de Valores

Variáveis Correlacionadas

Para preencher os missing values de 'totaldayminutes', 'totaleveminutes', 'totalnightminutes' e 'totalintlminutes' utilizamos a seguinte fórmula:

MINUTES = CHARGE / TAXA POR MINUTO

Missing Values Restantes

Como os missing values não apresentam grande correlação entre si, o mais recomendado para a sua imputação são os valores de tendência central, nomeadamente, a mediana.

Data Pre-Processing

Exclusão de Varáveis

Variáveis Correlacionadas

Como as variáveis 'totaldaycharge', 'totalevecharge', 'totalnightcharge' e 'totalintlcharge' derivam das variáveis que contabilizam o total de minutos para cada categoria (dia, noite, total e internacional) estas podem ser excluídas.

Data Pre-Processing

Modelação

Dados Desequilibrados

Como o dataset é desiquilibrado, favorece usuários que não abandonam a companhia telefónica.

Dados Equilibrados

Utilização do método SMOTE:
As técnicas de SMOTE são
especialmente desenhadas para
tratar de datasets
desiquilibrados, gerando dados
sintéticos para a classe
minoritária.

Dados Desequilibrados

Ensemble AdaBoost

Mean Accuracy: 0.8754
Mean Precision: 0.7603
Mean Recall: 0.6415

Decision Tree

Mean Accuracy: 0.9122 Mean Precision: 0.8681 Mean Recall: 0.7412

Support Vector Machine

Mean Accuracy: 0.8578 Mean Precision: 0.4289 Mean Recall: 0.5000

Naive Bayes

Mean Accuracy: 0.8732 Mean Precision: 0.7646 Mean Recall: 0.6054

K-nearest Neighbors

Mean Accuracy: 0.8874 Mean Precision: 0.8307 Mean Recall: 0.6378

Neural Network Classifier

Mean Accuracy: 0.8642 Mean Precision: 0.7136 Mean Recall: 0.6228

Dados Equilibrados

Ensemble AdaBoost

Mean Accuracy: 0.8753 Mean Precision: 0.7597 Mean Recall: 0.6452

Decision Trees

Mean Accuracy: 0.9145
Mean Precision: 0.8798
Mean Recall: 0.7427

Support Vector Machine

Mean Accuracy: 0.8580 Mean Precision: 0.4290 Mean Recall: 0.5000

Naive Bayes

Mean Accuracy: 0.8727 Mean Precision: 0.7717 Mean Recall: 0.6041

K-nearest Neighbours

Mean Accuracy: 0.8863 Mean Precision: 0.8292 Mean Recall: 0.6363

Neural Network Classifier

Mean Accuracy: 0.9205 Mean Precision: 0.8726 Mean Recall: 0.7752

Avaliação e escolha do modelo

O recall foi a métrica utilizada para escolher dentre os modelos testados o que melhor se adequa ao nossso problema.

A ênfase do problema está na minimização de falsos negativos, ou seja, minimizar o errar na previsão ao prever que o cliente irá ficar quando na realidade sai.

Avaliação Final - AUC

Escolha do Modelo

Desequilibrados

Decision Trees

Mean Recall: 0.7412

AUC score: 0.7478463222453396

Neural Networks

Mean Recall: 0.6228

AUC score: 0.5795588284743938

Equilibrados

Decision Trees

Mean Recall: 0.7427

AUC score: 0.7495884825240852

AdaBoost

Mean Recall: 0.6452

AUC score: 0.6551274659714738

Conclusão

O melhor modelo para este problema de negócio em específico é o Decision Tree, uma vez que apresentou um melhor AUC e recalli tanto para o dataset equilibrado como para o desequilibrado.

Obrigada!

Inês Silva, Maria Miguel Ribeiro & Renatha Vieira