Assignment 2 | Side-Channel Attack CSE406 — Computer Security

Student ID: 2005110

```
BATCH_SIZE = 64

EPOCHS = 50

LEARNING_RATE = 1e-4

TRAIN_SPLIT = 0.8

INPUT_SIZE = 1000

HIDDEN_SIZE = 128
```

Final Evaluation of Complex Model:							
Classification Report:		11	Ca				
	precision	recall	f1-score	support			
https://cse.buet.ac.bd/moodle/	0.52	0.53	0.52	200			
https://google.com	0.51	0.49	0.50	200			
https://prothomalo.com	0.64	0.67	0.65	200			
accuracy			0.56	600			
macro avg	0.56	0.56	0.56	600			
weighted avg	0.56	0.56	0.56	600			
Model Comparison:							
Simple Model Best Accuracy: 0.5 Complex Model Best Accuracy: 0.							

Easiest Website to Classify

- https://prothomalo.com
 - Highest precision (0.64), recall (0.67), and F1-score (0.65).
 - o Indicates the model is best at identifying this site correctly.
 - Likely due to unique structure or dynamic behavior that produces distinctive traces.

Hardest Website to Classify

- https://google.com
 - o Lowest recall (0.49) and F1-score (0.50).
 - The model misses many correct instances of Google, possibly due to its minimal page content or high similarity to other sites.


```
BATCH_SIZE = 32 ;decreasing

EPOCHS = 50

LEARNING_RATE = 3e-4 ; increasing

TRAIN_SPLIT = 0.8

INPUT_SIZE = 1000

HIDDEN_SIZE = 128
```

Classification Report:				
•	precision	recall	f1-score	support
https://cse.buet.ac.bd/moodle/	0.55	0.61	0.58	200
https://google.com	0.57	0.48	0.52	200
https://prothomalo.com	0.69	0.72	0.71	200
accuracy			0.60	600
macro avg	0.60	0.60	0.60	600
weighted avg	0.60	0.60	0.60	600
Model Comparison:				
Simple Model Best Accuracy: 0.5	08 3			
Complex Model Best Accuracy: 0.	6050			

Experimental Observations: Trace Collection and Model Accuracy

During my experimentation with website fingerprinting, I used two different versions of the collect.py script to gather data. Below are the key differences I observed, along with the impact each had on the performance of the trained models:

1. Number of Traces per Website

- In the first setup, I collected **1000 traces per website**, which gave me a **large and diverse dataset**.
- In the second setup, I limited it to only 188 traces per website for faster collection this significantly impacted model performance.
- Observation: A higher number of traces per site should improve model generalization and performance. But for some issues in <u>collect.py</u>, I got a less diverse dataset which gave less accuracy than lower dataset.

2. User Interaction Simulation

- The first script was designed to performe only a single mid-page scroll and no interaction at all.
- In contrast, the second script **simulate realistic user behavior** like clicking, hovering over elements, and full-page scrolling.
- Challenge: The lack of interaction in the first script led to less distinctive trace patterns, making it harder for the model to learn.

3. Scrolling Behavior

- In the high-performing version, the page was scrolled **smoothly from top to bottom** and back, with random delays to mimic human-like behavior.
- The simplified version only scrolled to the middle of the page once.
- **Insight**: Full scrolling triggered more JavaScript execution and DOM changes, which improved fingerprinting signal richness.

4. Interaction Duration

- The interactive version had an **engagement time of 10 seconds**, involving various actions.
- The minimal version only paused for a few seconds with no real interaction.
- Effect: Longer and active interaction led to better trace quality and higher accuracy.

5. Timing of Trace Collection

- I observed that starting trace collection **after interacting with the target website** yielded more meaningful data.
- The simplified version started trace collection **immediately after a short scroll**, without any real activity.
- **Conclusion**: Interaction before collection is critical to capturing useful behavioral fingerprints.

6. Feedback Handling from Backend

- In the better-performing version, I waited for a success confirmation from the backend before proceeding.
- The other version often **timed out or continued silently**, which might have included failed or incomplete traces.
- Challenge: Not verifying backend success messages could have led to invalid or missing trace data.

7. Accuracy Results

- With the full-featured script:
 - Simple model accuracy: ~83%

- Complex model accuracy: ~85+%
- With the minimal interaction script:
 - Simple model accuracy: ~50%
 - Complex model accuracy: ~60%
- **Conclusion**: The quality and richness of interaction during trace collection directly affect model learning and classification accuracy.

```
BATCH_SIZE = 64

EPOCHS = 50

LEARNING_RATE = 1e-4

TRAIN_SPLIT = 0.8

INPUT_SIZE = 188

HIDDEN_SIZE = 128
```

Final Evaluation of Complex Model:							
Classification Report:							
	precision	recall	f1-score	support			
https://cse.buet.ac.bd/moodle/	0.97	0.82	0.89	38			
https://google.com	0.84	0.95	0.89	38			
https://prothomalo.com	0.77	0.79	0.78	38			
accuracy			0.85	114			
macro avg	0.86	0.85	0.85	114			
weighted avg	0.86	0.85	0.85	114			
Model Comparison:							
Simple Model Best Accuracy: 0.8 Complex Model Best Accuracy: 0.							

Hardest Website to Classify

- Prothom Alo:
 - Lowest precision (0.77), recall (0.79), and F1-score (0.78).
 - o Possible reasons: More dynamic content or visual similarities with others.


```
BATCH_SIZE = 32

EPOCHS = 50

LEARNING_RATE = 2e-4

TRAIN_SPLIT = 0.8

INPUT_SIZE = 188

HIDDEN_SIZE = 128
```

Final Evaluation of Complex Model:							
Classification Report:			6-				
	precision	recall	f1-score	support			
https://cse.buet.ac.bd/moodle/	0.92	0.89	0.91	38			
https://google.com	0.92	0.92	0.92	38			
https://prothomalo.com	0.82	0.84	0.83	38			
accuracy			0.89	114			
macro avg	0.89	0.89	0.89	114			
weighted avg	0.89	0.89	0.89	114			
Model Comparison:							
Simple Model Best Accuracy: 0.8 Complex Model Best Accuracy: 0.							

