Problemas - Módulo

- 1. Em cada item abaixo, encontre todos os valores de x que satisfazem a igualdade/desigualdade.
 - a) |x-3|=8.

- c) |x-1| + |x-2| > 1. e) |x-1|.|x+1| = 0. d) |x-1| + |x+1| < 1. f) |x-1|.|x+2| = 3.

b) |x+4| < 2.

- 2. Mostre que se $|x+3| < \frac{1}{2}$ então |4x+13| < 3.
- 3. Em cada item abaixo, escreva sem o sinal de módulo tratando, quando necessário, vários casos separadamente.
 - a) |a+b|-|b|.

c) $|x| - |x^2|$.

e) $|1-2x^2|$.

b) ||x| - 1|.

- d) a |a |a||.
- f) |x-1|+|x+2|
- 4. Desenhe no plano o conjunto de pontos (x,y) que satisfazem x+|x|=y+|y|.
- 5. Sendo $\max(x,y)$ e $\min(x,y)$ o máximo e o mínimo, respectivamente, entre $x,y\in\mathbb{R}$, mostre que

$$\max(x,y) = \frac{x+y+|y-x|}{2} \quad \text{e} \quad \min(x,y) = \frac{x+y-|y-x|}{2}.$$

Encontre uma forma análoga para $\max(x, y, z)$ e $\min(x, y, z)$ usando, por exemplo, que $\max(x, y, z)$ = $\max(x, \max(y, z)).$

6. Seja $\varepsilon > 0$. Mostre que se

$$|x-x_0| < \frac{\varepsilon}{2}$$
 e $|y-y_0| < \frac{\varepsilon}{2}$

então

$$|(x+y) - (x_0 + y_0)| < \varepsilon$$
 e $|(x-y) - (x_0 - y_0)| < \varepsilon$.

7. Seja $\varepsilon > 0$. Mostre que se

$$|x - x_0| < \min\left(\frac{\varepsilon}{2(|y_0| + 1)}, 1\right)$$
 e $|y - y_0| < \frac{\varepsilon}{2(|x_0| + 1)},$

então

$$|x.y - x_0.y_0| < \varepsilon.$$

8. Seja $\varepsilon > 0$. Mostre que se $x_0 \neq 0$ e

$$|x - x_0| < \min\left(\frac{|x_0|}{2}, \frac{\varepsilon |x_0|^2}{2}\right),$$

então $x \neq 0$ e

$$\left|\frac{1}{x} - \frac{1}{x_0}\right| < \varepsilon.$$

1

9. Dê uma interpretação dos exercícios 6, 7 e 8. O que os resultados querem dizer?