"Sistemas lineales e invariantes (LTI) en tiempo discreto"

Señales y Sistemas

Clase de problemas nº 8 15.11.2019

Material basado en el libro "Problemas resueltos de señales y sistemas" S. Marini, E. Gimeno y en los apuntes del profesor Stephan Marini.

Daniel Puerto

Problema 4. Examen enero 2012. Considera la conexión en cascada (serie) de tres sistemas lineales e invariantes:

La respuesta impulsiva h₂[n] viene dada por:

$$h_2[n] = u[n] - u[n-2].$$

Considerando que la respuesta impulsiva total equivalente es:

$$h_T[n] = \delta[n+3] + 4\delta[n+2] + 7\delta[n+1] + 7\delta[n] + 4\delta[n-1] + \delta[n-2].$$

- a) Encontrar $h_1[n]$.
- b) Estudiar la causalidad y la estabilidad del sistema $h_1[n]$.

a) Encontrar h₁ [n]

Los sistemas están en serie, entonces: $h_T[n] = h_1[n]*(h_2[n])*h_2[n] = h_1[n]*h_{2eq}[n]$

Para hallar $h_1[n]$ hay que reducir el sistema, y antes calcular: $h_{2eq}[n] = h_2[n] * h_2[n]$

Como $h_2[n] = u[n] - u[n-2]$

Aplicando las operaciones con secuencias

$$\delta[n] + \delta[n-1] = h_2[n]$$

Tenemos, Calculando la convolución mediante el método A

$$h_{2ea} = (\delta[n] + \delta[n-1]) * (\delta[n] + \delta[n-1]) = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

Una forma de obtener h1[n] es realizar una tabla y calcular la convolución desplazando $h_{2eq}[n]$.

Las incógnitas serán los valores de $h_1[n]$, ya que se conocen los valores de la respuesta final $h_T[n]$ y $h_{eq2}[n]$

$$h_{T}[n] = h_{1}[n] * h_{eq2}[n]$$

Ahora calculamos el instante discreto en el que comenzará y terminará h₁[n].

$$\begin{aligned} &h_{_{T}}[n] = \delta[n+3] + 4\delta[n+2] + 7\delta[n+1] + 7\delta[n] + 4\delta[n-1] + \delta[n-2] \\ &h_{2eq} = \delta[n] + 2\delta[n-1] + \delta[n-2] \end{aligned}$$

$$h_{Tini} = h_{1ini} + h_{eq2ini} \rightarrow h_{1ini} = h_{Tini} + h_{eq2ini} = -3 - 0 = -3$$

 $h_{Tfin} = h_{1fin} + h_{eq2fin} \rightarrow h_{1fin} = h_{Tfin} + h_{eq2fin} = 2 - 2 = 0$

Por lo tanto $h_1 \neq 0$ para $-3 \leq n \leq 0$

Tabla para resolver $h_1[n]$, aplicando :

$$z[n] = \sum_{k=-\infty}^{\infty} x[k] * y[n-k]$$

 $\begin{aligned} & h_{2eq}[n] = \delta[n] + 2\delta[n-1] + \delta[n-2] \\ & h_{T}[n] = \delta[n+3] + 4\delta[n+2] + 7\delta[n+1] + 7\delta[n] + 4\delta[n-1] + \delta[n-2] \end{aligned}$

k	-5	-4	-3	-2	-1	0	1	2	3	k	h _T
$h_1[k]$			X_1	X ₂	X_3	X ₄					
h _{2eq} [n]						1	2	1			
$h_{2eq}[-3-k]$	1	2	1							k = -3	1
$h_{2eq}[-2-k]$		1	2	1						k = -2	4
$h_{2eq}[-1-k]$			1	2	1					k = -1	7
$h_{2eq}[-k]$				1	2	1				k = 0	7
$h_{2eq}[1-k]$					1	2	1			k = 1	4
$h_{2eq}[2-k]$						1	2	1		k=2	1
$h_{2eq}[3-k]$							1	2	1	k = 3	0

$$h_{2eq}[n] = \delta[n] + 2\delta[n] + \delta[n-2]$$

 $h_{T}[n] = \delta[n+3] + 4\delta[n+2] + 7\delta[n+1] + 7\delta[n] + 4\delta[n-1] + \delta[n-2]$

Ahora tenemos como incógnitas X₁, X₂, X₃ y X₄.

(n=-3)
$$X_1 \cdot 1=1$$
; $X_1=1/1=1$; $X_1=1$

(n=-2)
$$X_1 \cdot 2 + X_2 \cdot 1 = 4$$
; $1 \cdot 2 + X_2 \cdot 1 = 4$; $X_2 = 4 - 2 = 2$; $X_2 = 2$

(n=-1) De
$$h_{eq2}[-1-k] \rightarrow (X_1 \cdot 1 + X_2 \cdot 2 + X_3 \cdot 1 = 7; 1 \cdot 1 + 2 \cdot 2 + X_3 \cdot 1 = 7; X_3 = 7 \cdot 5 = 2; X_3 = 2$$

(n=0)
$$X_2 \cdot 1 + X_3 \cdot 2 + X_4 \cdot 1 = 7$$
; $2 \cdot 1 + 2 \cdot 2 + X_4 \cdot 1 = 7$; $X_4 = 7 - 6 = 1$; $X_4 = 1$

Por lo tanto
$$h_1[n] = \delta[n+3] + 2\delta[n+2] + 2\delta[n+1] + \delta[n]$$

 X_1 X_2 X_3 X_4

b) Estudiar la causalidad y la estabilidad del sistema h₁[n].

$$h_1[n] = \delta[n+3] + 2\delta[n+2] + 2\delta[n+1] + \delta[n]$$

Analizando h1[n] se puede afirmar que el sistema **no es causal** ya que:

$$h \neq 0$$
 para $n < 0$.

n	h ₁ [n]
0	1
-1	2
-2	2
-3	1

y que el sistema **si es estable** ya que

$$\sum_{n=-3}^{0} |h_1[n]| = 1 + 2 + 2 + 1 = 6 < \infty$$

Ejercicio 1.3.7. Las siguientes expresiones corresponden a las respuestas impulsivas de sistemas lineales e invariantes en tiempo discreto. Determina en cada caso si el sistema es estable y/o causal.

Un sistema es **CAUSAL** si su respuesta solamente depende de los valores de excitación en el instante de tiempo actual y en el pasado, no en el futuro. Puesto que no puede existir respuesta antes de producirse la excitación si la excitación es el impulso unidad se tendrá que: h[n]=0 para n < 0.

Un sistema es **ESTABLE** si se verifica que: si la excitación es una señal acotada en todo su intervalo de definición, la respuesta también lo es.

a)
$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$
, (Definido entre $0 e \infty$)

n	h[n]
0	$(\frac{1}{2})^0 = 1$
1	$(\frac{1}{2})^1 = \frac{1}{2}$
2	$(\frac{1}{2})^2 = \frac{1}{4}$
3	$(\frac{1}{2})^3 = \frac{1}{8}$

<u>CAUSAL:</u> $h(n) \neq 0$ solo para $n \geq 0$ y h[n] = 0 para n < 0.

Por lo tanto el sistema es causal

Si
$$0 < x < 1, x^{\infty} = 0$$

$$\sum_{n=0}^{\infty} |x| = \frac{x^0 - x^\infty}{1 - x}$$

ESTABLE:
$$\sum_{n=0}^{\infty} |h[n]| = \sum_{n=0}^{\infty} \left| {\binom{1}{2}}^n \right| = \frac{{\binom{1}{2}}^0 - {\binom{1}{2}}^{\infty}}{1 - {\binom{1}{2}}}^{\infty} = \frac{1}{1/2} = 2 < \infty$$

Por lo tanto el sistema es estable

c)
$$h[n] = 0.99^n u[-n]$$
, (Definido entre - ∞ y 0) $h[n]$

n	$(0,99)^n$
0	1
-1	1/0,99 = 1,01
-2	$1/(0.99)^2 = 1.02$
-3	$1/(0.99)^3 = 1.03$

CAUSAL: $h(n) \neq 0$ para n < 0

Por lo tanto el sistema no es causal

Si
$$0 < x < 1, x^{-\infty} = \infty$$

$$\sum_{n=-\infty}^{0} |(0,99)^n| = \frac{(0,99)^{-\infty} - (0,99)^{0+1}}{0 - 0,99} = \infty$$

$$\sum_{n=-\infty}^{0} |x| = \frac{x^{-\infty} - x^{0+1}}{0 - x}$$

 $\sum_{x=0}^{\infty} |x| = \frac{x^{-\infty} - x^{0+1}}{0-x}$ Por lo tanto el sistema **no es estable**

d)
$$h[n] = 4^n u[2-n]$$
, (Definido entre $-\infty y$ 2)

n	h[n]
-2	1/16 (4-2)
-1	1/4 (4-1)
0	1 (40)
1	4 (4 ¹)
2	16 (4 ²)

CAUSAL: $h(n) \neq 0$ para n < 0

Por lo tanto el sistema no es causal

Si
$$x > 1, x^{-\infty} = 0$$

Si $x > 1, x^{\infty} = \infty$

$$\sum_{n=0}^{\infty} |x| = \frac{x^{-\infty} - x^{2+1}}{1 - x}$$

ESTABLE:
$$\sum_{n=0}^{\infty} |(4)^n| = \frac{(4)^{-\infty} - (4)^{2+1}}{1-4} = \frac{-64}{-3} = \frac{64}{3} = 21,3 < \infty$$

 $\sum_{x=0}^{\infty} |x| = \frac{x^{-\infty} - x^{2+1}}{1-x}$ Por lo tanto el sistema **es estable**

Ejercicio 1.3.10. Representa el diagrama de bloques del siguiente sistema descritos por ecuaciones en diferencias lineales:

$$2y[n] - y[n-1] + y[n-3] = x[n] - 5x[n-4] \rightarrow$$

$$y[n] = \frac{1}{2} x[n] - \frac{5}{2} x[n-4] + \frac{1}{2} y[n-1] - \frac{1}{2} y[n-3]$$

En MATLAB

Ver apartado 7.4 del Tema 3