

Departamento de electrónica, telecomunicações e informática

Curso 8204 - Mestrado Integrado em Engenharia Electrónica e Telecomunicações

Disciplina 41489 - Sistemas de Instrumentação Eletrónica

Ano Lectivo 2018/2019

Primeira Fase

Trabalho 4 - Controlo de Velocidade e Posição de um Elevador

Autores:

76517 João André de Jesus Cruz

76674 Henrique da Silva Bernardes Camello Martins

Turma P4 Grupo G6

Data 12 de Março de 2019

Docente Pedro Fonseca

Índice

1	Introdução	2
2	Objetivos	2
3	Especificações do Projeto	2
4	Diagramas de Blocos	2
5	Esquema Elétrico	5
6	Diagrama de rede - PERT	7
7	Conclusão	11
8	Bibliografia	11

1 Introdução

Este projeto a ser realizado no contexto das aulas práticas de Sistemas de Instrumentação Eletrónica, tem como objetivo, o controlo da posição e velocidade de um elevador. Para isso, irá se desenvolver-se um sistema baseado num microcontrolador sendo este mesmo o Max32 Digilent.

Quanto ao funcionamento do elevador, resumidamente este está acoplado a um sistema cabo roldana, que está ligado a um motor e que tem o seu veio ligado a um codificador incremental bi-fásico.

A velocidade e posição do elevador, será controlada pelo microcontrolador e pelo PC. A escolha da posição será feita pelo utilizador, com recurso a uma consola. Quanto à velocidade, essa será controlada de acordo com um perfil calculado, a partir de parâmetros enviados por um PC.

Este relatório referente à primeira fase apresenta as especificações do projeto, a componente hardware, as variações e grandezas dos sinais em pontos críticos e por fim a estruturação das atividades a desenvolver.

2 Objetivos

Sabendo que o objetivo do projeto é o controlo e a velocidade de um elevador, este mesmo pode funcionar em duas direções diferentes (para baixo e cima), é usado um push-pull driver, que através de uma ponte H, faz com que o motor varie o sentido de rotação conforme o sinal PWN recebido.

O utilizador, como já referido na Introdução irá interagir com o sistema, podendo escolher a posição. A velocidade e a posição irá ser apresentada num display LCD.

Nesta primeira fase, tem-se como objetivos apresentar o diagrama de blocos, esquemas elétricos com o hardware detalhado, identificação dos sinais e gamas de variação, em pontos de interesse dos circuitos e no fim um diagrama PERT com a distribuição do esforço, dependências e a calendarização.

3 Especificações do Projeto

- Definição do ponto de chegada em coordenadas do encoder.
- Capacidade de programação dos parâmetros Vmax, Vapr e Dapr com configuração automática dos perfis
- $\bullet\,$ Capacidade de alimentação de motor DC (5V / 1W).
- Encoder bi-fásico com saída TTL e 500 ipr
- Deteção de piso por sensor de proximidade (efeito de hall), com auto-calibração
- Adicionalmente: capacidade de programação dos parâmetros do controlador.
- Medição da corrente consumida.

4 Diagramas de Blocos

Recorrendo ao diagrama apresentado no guião dos trabalhos práticos, concluímos que como entradas temos: a posição dada pelo encoder, os quatro sensores por andar, o sensor do piso zero e o andar desejado pelo utilizador. Como saídas, temos: o controlo do motor e um display LCD para apresentar a velocidade e posição do elevador.

Posto isto, fez-se o desenho dos diagramas de blocos do nível zero ao nível dois.

Figure 1: Diagrama de Blocos Nível 0

Figure 2: Diagrama de Blocos Nível 1

Figure 3: Diagrama de Blocos Nível 2

5 Esquema Elétrico

Esquema elétrico do driver do motor, com indicação dos pinos do microcontrolador a usar e com ligação à ficha DB9F.

Figure 4: Circuito Principal

Esquema elétrico das entradas para a seleção do andar e entradas dos Sensores de Hall utilizados para observar a aproximação ao nível.

Figure 5: Entradas de nível do sistema

Esquema elétrico para o display da velocidade e da posição onde o elevador se encontra.

Figure 6: Display de resultados

6 Diagrama de rede - PERT

Figure 7: Diagrama Fase 1

Figure 8: Diagrama Fase 2

Figure 9: Diagrama Fase 3

 $1~\mathrm{dia} = 8\mathrm{h}$ de trabalho

Tabela de atividade				
Atividade	Precedente	Tempo	Aula	
A - Escolha		0d	1	
B - Planeamento	A	2d	2	
C - Levantamento da pic	A	0d	2	
D - Validação	В, С	0d	3	
E - Início fase 2	D	0d	4	
F - Dimensionamento do circuito	D	2d	4	
G - Adquirir Material	D	1d	4	
H - Montagem e testes	E, F, G	2d	5	
I - Device Drivers	Н	3d	6 e 7	
J - Procedimento de Validação	Н	2d	6 e 7	
K - Testes e Resultados	I, J	2d	8	
L - Validação	K	0d	9	
M - Início fase 3	L	0d	10 e 11	
N - Algoritmo final	L	4d	10 e 11	
O - Validação	M, N	0d	12	
P - Testes finais	M, N	2d	12	
Q - Manual Utilizador	M, N	1d	12	
R - Documentação final	M, N	1d	12	
S - Apresentação	O, P, Q, R	0d	13	

7 Conclusão

Quanto à primeira fase atingimos os objetivos impostos pelo guião da disciplina, sendo estes a apresentação dos diagramas de blocos, esquema elétrico detalhado do hardware, listagem dos tipos de sinais e gamas de variação em pontos críticos e no fim o diagrama de PERT com o planeamento do projeto.

No futuro podem haver alterações no que foi apresentado nesta fase inicial. Pois na fase seguinte, procede-se à montagem do hardware, desenvolvimento do software base e validação. As possíveis alterações serão apresentadas, em versões atualizadas no relatório da segunda fase.

8 Bibliografia

Apontamentos de Sistemas de Instrumentação Eletrónica, fornecidos pelo docente.

Esquema do Elevador,

 $https://elearning.ua.pt/pluginfile.php/962673/mod_resource/content/1/praticas/trabalhos/t4/elevador.pdf$

OMRON ,Rotary Encoder E6B2 Datasheet,

https://elearning.ua.pt/pluginfile.php/962676/mod_resource/content/1/praticas/trabalhos/t4/omrom_e6b2.pdf

SGS-THOMSON MICROELECTRONICS, 1293B,L293E, Datasheet,

https://elearning.ua.pt/pluginfile.php/962679/mod_resource/content/1/praticas/trabalhos/t4/1293.pdf

HONEYWELL, SS495A-S, Datasheet

 $\verb|https://sensing.honeywell.com/honeywell-sensing-sensors-linear-hall-effect-ics-ss490-series-\\ \verb|datasheet-005843-2-en.pdf| \\$

Manual de referência online da Max32 Digilent,

https://elearning.ua.pt/pluginfile.php/963675/mod_resource/content/1/chipkit-max32_rm.pdf