MATH597 Analysis II

Pingbang Hu

January 5, 2022

Contents

1	Measures	1
	1.1 σ -algebras	2

Lecture 1: Measures

05 Jan. 11:00

1 Measures

Example. Before we start, we first see some examples.

1. Let $X = \{a, b, c\}$. Then

$$\mathcal{P}(X) := \{ \varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \},\$$

which is the *power set* of X. We see that

$$\#X = n \implies \#\mathcal{P}(X) = 2^n$$

for $n < \infty$.

2. If $n = \infty$, say $X = \mathbb{N}$, then

$$\mathcal{P}(\mathbb{N})$$

is an uncountable set while $\mathbb N$ is a countable set. We can see this as follows. Consider

$$\phi \colon \mathcal{P}(\mathbb{N}) \to [0,1], \quad A \mapsto 0.a_1 a_2 a_3 \dots \text{(base 2)},$$

where

$$a_i = \begin{cases} 1, & \text{if } i \in A \\ 0, & \text{if } i \notin A, \end{cases}$$

and for example, A can be $A=\{2,3,6,\ldots\}\subseteq\mathbb{N}.$ Note that ϕ is surjective, hence we have

$$\#\mathcal{P}(\mathbb{N}) \geq \# [0,1]$$
.

But since [0,1] is uncountable, so is $\mathcal{P}(\mathbb{N})$.

We like to measure the size of subsets of X. Hence, we are intriguing to define a map μ such that

$$\mu \colon \mathcal{P}(X) \to [0, \infty]$$
.

Example. We first see some examples.

- 1. Let $X = \{0, 1, 2\}$. Then we want to define $\mu \colon \mathcal{P}(X) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$. Then we have

$$-\mu(\{0,1\})=2$$

$$-\mu(\{0\})=1$$

• $\mu(A) = \sum_{i \in A} 2^i$. Then we have

$$-\mu(\{0,1\}) = 2^0 + 2^1 = 3$$

- 2. Let $X = \{0\} \cup \mathbb{N}$. Then we want to define $\mu \colon \mathcal{P}(\mathbb{N}) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$. Then we have

$$-\ \mu(\{2,3,4,5,\ldots\}) = \infty = \mu(\{\text{even numbers}\})$$

• $\mu(A) = e^{-1} \sum_{i \in A} \frac{1}{i!}$. Then we have

$$- \mu(\{0, 2, 4, 6, \ldots\}) = e^{-1} \left(1 + \frac{1}{2!} + \frac{1}{3!} + \ldots\right)$$

•
$$\mu(A) = \sum_{i \in A} a_i$$

- 3. Let $X = \mathbb{R}$. Then we want to define $\mu \colon \mathcal{P}(\mathbb{R}) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$
 - $\mu((a,b)) = b a$.

Problem. Can we extend this map to all of $\mathcal{P}(\mathbb{R})$?

Answer. No!

• $\mu((a,b)) = e^b - e^a$.

Problem. Can we extend this map to all of $\mathcal{P}(\mathbb{R})$?

Answer. No!

We immediately see the problems. To extend our native measure method into \mathbb{R} is hard and will cause something counter-intuitive! Hence, rather than define measurement on *all* subsets in the power set of X, we only focus on *some* subsets. In other words, we want to define

$$\mu \colon \mathcal{P}(\mathbb{R}) \supset \mathcal{U} \to [0, \infty]$$
.

1.1 σ -algebras

¹https://en.wikipedia.org/wiki/Banach-Tarski_paradox

Definition 1. Let X be a set. A collection \mathcal{U} of subsets of X, i.e., $\mathcal{U} \subset \mathcal{P}(X)$ is called a σ -algebra on X if

- $\phi \subset \mathcal{U}$
- \mathcal{U} is closed under complements. i.e., if $A \in \mathcal{U}$, $A^c = X \setminus A \in \mathcal{U}$.
- \mathcal{U} is closed under countable union. i.e., if $A_i \in \mathcal{U}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{U}$.

Remark. There are some easy properties we can immediately derive.

- $X \in \mathcal{U}$
- ullet $\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i\right)^c$, namely $\mathcal U$ is closed under countable intersections.
- $A_1 \cup A_2 \cup \ldots \cup A_n = A_1 \cup A_2 \cup \ldots \cup A_n \cup \varnothing \cup \varnothing \cup \ldots$, hence \mathcal{U} is closed under finite unions and intersections.