# Prueba de clase 9 de Abril de 2019

Alumno:\_\_\_\_\_\_\_D.N.I.:\_\_\_\_\_\_Grupo:\_\_\_\_\_

# RESPUESTAS A LAS PREGUNTAS TEST $^1$

|            | (a) | (b) | (c) | (d)            |
|------------|-----|-----|-----|----------------|
| Pregunta 1 | V   | F   | V   | F              |
| Pregunta 2 | F   | V   | V   | F              |
| Pregunta 3 | F   | V   | V   | $\overline{F}$ |
| Pregunta 4 | V   | F   | V   | F              |

### PREGUNTAS TEST

**Ejercicio 1.** Sea B un álgebra de Boole y x, y, z tres elementos de B tales que  $x \le y$  y x < z. Entonces:

1. 
$$\overline{x} + \overline{y} + z = 1$$
.

2. 
$$x + y < z + y$$
.

3. 
$$\overline{x} \downarrow z = 0$$
.

4. 
$$y \le z$$
.

# Solución:

Para este ejercicio tenemos en cuenta que el orden en un álgebra de Boole está definido como sigue:

$$x \le y \text{ si } x + y = y.$$

En este caso tenemos que x + y = y y que x + z = z. Con esto:

- 1. Puesto que x+z=z tenemos que  $\overline{x}+z=\overline{x}+(x+z)=(\overline{x}+x)+z=1+z=1$ . Por tanto,  $\overline{x}+\overline{y}+z=1+\overline{y}=1$ . La afirmación es por tanto verdadera.
- 2. Esta afirmación no es cierta. Basta tomar, en el álgebra  $\mathbb{B}$ , x=0, y=1 y z=1. Entonces  $x\leq y$ , x< z pero x+y no es menor que x+z, pues ambos valen 1.
- 3. Ahora tenemos que  $\overline{x}\downarrow z=\overline{\overline{x}+z}=\overline{1}=0$ . Hemos usado que  $\overline{x}+z=1$ , tal y como hemos visto en el apartado primero. La afirmación es verdadera.
- 4. Esta última afirmación es falsa. Por ejemplo, en el álgebra  $\mathbb{B}^2$  tomamos  $x=(0,0),\ y=(1,0)$  y z=(0,1). Entonces  $x\leq y,\ x< z$  pero y no es menor o igual que z.

9 de Abril de 2019 (1)

 $<sup>^{1}\</sup>mathrm{Cada}$  casilla del cuadro debe ser rellenada con V (verdadero) o F (falso).

**Ejercicio 2.** Sea  $f: \mathbb{B}^3 \to \mathbb{B}$  la función dada por  $f = M_1 \cdot M_3 \cdot M_5$ . Entonces:

1. 
$$f(x, y, z) = (x \downarrow y) \downarrow z$$
.

2. 
$$f(x, y, z) = (x \uparrow y) \uparrow z$$
.

3. 
$$f(x, y, z) = (x + \overline{z})(y + \overline{z})(\overline{x} + y + \overline{z}).$$

4. 
$$f(x, y, z) = \overline{x} \overline{z} + xy$$
.

## Solución:

Vamos, a partir de los mapas de Karnaugh, a obtener dos expresiones booleanas de f.





Una vez que tenemos estas dos expresiones para f respondemos a las cuestiones:

- 1.  $(x\downarrow y)\downarrow z=\overline{x+y}\downarrow z=\overline{\overline{x+y}+z}=\overline{\overline{x+y}}\,\overline{z}=(x+y)\overline{z}=x\overline{z}+y\overline{z}.$  Y esta expresión no es igual a f(x,y,z), pues f(x,y,z)=1 mientras que  $(0\downarrow 0)\downarrow 0=0.$
- 2.  $(x \uparrow y) \uparrow z = \overline{xy} \uparrow z = \overline{\overline{xy}} \overline{z} = xy + \overline{z}$ , que vemos que coincide con la expresión de f.
- 3. Tenemos que  $x + \overline{z} = M_1 \cdot M_3$ ,  $y + \overline{z} = M_1 \cdot M_5$  y  $\overline{x} + y + \overline{z} = M_5$ . Por tanto:

$$(x+\overline{z})(y+\overline{z})(\overline{x}+y+\overline{z}) = M_1 \cdot M_3 \cdot M_1 \cdot M_5 \cdot M_5 = M_1 \cdot M_3 \cdot M_5.$$

La expresión se corresponde con la función f.

4. Ahora tenemos que  $\overline{x}\overline{z} = m_0 + m_2$ , mientras que  $xy = m_6 + m_7$ , luego  $\overline{x}\overline{z} + xy = m_0 + m_2 + m_6 + m_7$ , que no coincide con f (falta el minterm 4).

**Ejercicio 3.** Sea  $\delta$  la fórmula  $(\alpha \to \beta) \land (\beta \to \gamma) \to \alpha$ . Entonces:

1.  $\delta$  es una tautología.

2.  $\delta$  es satisfacible y refutable.

3.  $\alpha \to \delta$  es una tautología.

4.  $\beta \rightarrow \delta$  es una tautología.

# Solución:

Calculamos las tablas de verdad de las distintas fórmulas:

| $\alpha$ | β | $\gamma$ | $\alpha \to \beta$ | $\beta \to \gamma$ | $(\alpha \to \beta) \land (\beta \to \gamma)$ | $\delta = (\alpha \to \beta) \land (\beta \to \gamma) \to \alpha$ | $\alpha \to \delta$ | $\beta \to \delta$ |
|----------|---|----------|--------------------|--------------------|-----------------------------------------------|-------------------------------------------------------------------|---------------------|--------------------|
| 0        | 0 | 0        | 1                  | 1                  | 1                                             | 0                                                                 | 1                   | 1                  |
| 0        | 0 | 1        | 1                  | 1                  | 1                                             | 0                                                                 | 1                   | 1                  |
| 0        | 1 | 0        | 1                  | 0                  | 0                                             | 1                                                                 | 1                   | 1                  |
| 0        | 1 | 1        | 1                  | 1                  | 1                                             | 0                                                                 | 1                   | 0                  |
| 1        | 0 | 0        | 0                  | 1                  | 0                                             | 1                                                                 | 1                   | 1                  |
| 1        | 0 | 1        | 0                  | 1                  | 0                                             | 1                                                                 | 1                   | 1                  |
| 1        | 1 | 0        | 1                  | 0                  | 0                                             | 1                                                                 | 1                   | 1                  |
| 1        | 1 | 1        | 1                  | 1                  | 1                                             | 1                                                                 | 1                   | 1                  |

Y vemos como  $\delta$ es satisfacible y refutable,  $\alpha \to \delta$ es tautología y  $\beta \to \delta$ no lo es.

9 de Abril de 2019 (3)

**Ejercicio 4.** Sea  $\Gamma = \{ \neg a \land b \rightarrow c, \ b \rightarrow \neg a \land \neg c, \ \neg c \rightarrow b \}$ . Entonces:

1.  $\alpha = c$  es consecuencia lógica de  $\Gamma$ .

2.  $\alpha = c \rightarrow \neg a$  es consecuencia lógica de  $\Gamma$ .

3.  $\alpha = a \vee \neg b$  es consecuencia lógica de  $\Gamma$ .

4.  $\alpha = a \rightarrow b$  es consecuencia lógica de  $\Gamma$ .

#### Solución:

Calculamos la forma clausulada de cada una de las fórmulas de  $\Gamma$ :

$$\bullet b \to \neg a \land \neg c \equiv \neg b \lor (\neg a \land \neg c) \equiv (\neg b \lor \neg a) \land (\neg b \lor \neg c).$$

$$\neg c \to b \equiv c \lor b.$$

Y ahora estudiamos cada uno de los casos:

1. Para ver si c es consecuencia de  $\Gamma$  estudiamos si  $\{a \vee \neg b \vee c, \neg a \vee \neg b, \neg b \vee \neg c, c \vee b, \neg c\}$  es o no insatisfacible. Lo hacemos por el algoritmo de Davis-Putnam.

Al llegar a la cláusula vacía, el conjunto es insatisfacible, luego la implicación semántica es cierta.

2. Al igual que antes, estudiamos si el conjunto  $\{a \lor \neg b \lor c, \neg a \lor \neg b, \neg b \lor \neg c, c \lor b, c, a\}$  es insatisfacible:

Y puesto que hemos llegado al conjunto vacío, la implicación semántica no es cierta. Podemos ver que para la interpretación  $I(a)=1,\ I(b)=0$  e I(c)=1 se tiene que  $I(\neg a \land b \to c)=1,\ I(b\to \neg a \land \neg c)=1,\ I(\neg c\to b)=1$  e  $I(c\to \neg a)=0$ .

3. Ahora tenemos que ver si el conjunto  $\{a \lor \neg b \lor c, \ \neg a \lor \neg b, \ \neg b \lor \neg c, \ c \lor b, \ \neg a, \ b\}$  es o no insatisfacible. Lo hacemos por resolución:



Y como hemos llegado a la cláusula vacía, el conjunto es insatisfacible luego la fórmula  $a \vee \neg b$  es consecuencia lógica de  $\Gamma$ .

4. Podemos ver que con la interpretación que pusimos en el apartado 2, es decir, I(a)=1, I(b)=0 e I(c)=1 el valor de verdad de todas las fórmulas de  $\Gamma$  es 1 mientras que  $I(a\to b)=0$ . Por tanto, no es consecuencia lógica de  $\Gamma$ .

9 de Abril de 2019 (5)

#### FIN DE LAS PREGUNTAS TEST

**Ejercicio 5.** Sea  $f: \mathbb{B}^4 \to \mathbb{B}$  la función booleana dada por

$$f(x, y, z, t) = x + y\overline{z} + t \downarrow (x \downarrow z).$$

 $Y sea g : \mathbb{B}^4 \to \mathbb{B} la función dual de f.$ 

- 1. Calcula la forma normal canónica disyuntiva de f y la forma normal canónica conjuntiva de  $\overline{f}$ .
- 2. Simplifca la expresión de f obtenida en el apartado anterior.
- 3. Calcula la forma normal canónica conjuntiva de g y una expresión simplificada como producto de sumas de literales.

#### Solución:

- 1. Para calcular la forma normal canónica disyuntiva de f tenemos en cuenta que  $t\downarrow(x\downarrow z)=\overline{t+\overline{x+z}}=\overline{t}\,(x+z)=\overline{t}\,x+\overline{t}\,z$ . Y ahora:

  - $y\overline{z} = m_4 + m_5 + m_{12} + m_{13}.$
  - $\bar{t} x = m_8 + m_{10} + m_{12} + m_{14}.$
  - $\bar{t}z = m_2 + m_6 + m_{10} + m_{14}.$

Y por tanto  $f = m_2 + m_4 + m_5 + m_6 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$ . Y esta es la forma disyuntiva, que podemos escribir así:

$$f(x,y,z,t) = \overline{x}\,\overline{y}\,z\,\overline{t} + \overline{x}\,y\,\overline{z}\,\overline{t} + \overline{x}\,y\,\overline{z}\,t + \overline{x}\,y\,\overline{z}\,\overline{t} + x\,y\,z\,\overline{t} + x\,\overline{y}\,\overline{z}\,\overline{t} + x\,\overline{y}\,\overline{z}\,\overline{t} + x\,\overline{y}\,\overline{z}\,\overline{t} + x\,\overline{y}\,z\,\overline{t} + x\,y\,z\,\overline{t} +$$

Para calcular la forma normal conjuntiva de  $\overline{f}$  tenemos en cuenta que  $\overline{m_i} = M_i$ , luego

$$\overline{f} = \overline{m_2 + m_4 + m_5 + m_6 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15} }$$

$$= \overline{m_2} \cdot \overline{m_4} \cdot \overline{m_5} \cdot \overline{m_6} \cdot \overline{m_8} \cdot \overline{m_9} \cdot \overline{m_{10}} \cdot \overline{m_{11}} \cdot \overline{m_{12}} \cdot \overline{m_{13}} \cdot \overline{m_{14}} \cdot \overline{m_{15}}$$

$$= M_2 \cdot M_4 \cdot M_5 \cdot M_6 \cdot M_8 \cdot M_9 \cdot M_{10} \cdot M_{11} \cdot M_{12} \cdot M_{13} \cdot M_{14} \cdot M_{15}.$$

Es decir:

2. Vamos a simplificar la expresión de f. Esto lo hacemos mediante un diagrama de Karnaugh:

|                            | $\overline{x}\overline{y}$ | $\overline{x}y$ | xy | $x  \overline{y}$ |
|----------------------------|----------------------------|-----------------|----|-------------------|
| $\overline{z}\overline{t}$ |                            | 1               | 1  | 1                 |
| $\overline{z} t$           |                            | 1               | 1  | 1                 |
| z t                        |                            |                 | 1  | 1                 |
| $z \overline{t}$           | 1                          | 1               | 1  | 1                 |

Y tenemos que  $f(x, y, z, t) = x + z \overline{t} + y \overline{z}$ .

(6) 9 de Abril de 2019

3. Para calcular una forma normal canónica conjuntiva de g, y al ser esta función la dual de f, tomamos la forma normal canónica disyuntiva de f y intercambiamos sumas por productos. Nos queda entonces que la forma normal canónica conjunta de g es:

 $(\overline{x}+\overline{y}+z+\overline{t})(\overline{x}+y+\overline{z}+\overline{t})(\overline{x}+y+\overline{z}+t)(\overline{x}+y+z+\overline{t})(x+\overline{y}+z+\overline{t})(x+\overline{y}+\overline{z}+\overline{t})(x+\overline{y}+z+\overline{t})(x+\overline{y}+z+\overline{t})(x+y+\overline{z}+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y+z+\overline{t})(x+y$ 

Es decir, 
$$g = M_{13} \cdot M_{11} \cdot M_{10} \cdot M_8 \cdot M_7 \cdot M_6 \cdot M_5 \cdot M_4 \cdot M_3 \cdot M_2 \cdot M_1 \cdot M_0$$

Por último, para la expresión reducida como producto de suma de literales, partimos de la expresión de f obtenida en el apartado segundo e intercambiamos sumas con productos. Esta expresión de f es  $f(x,y,z,t)=x+z\,\bar{t}+y\,\bar{z}$ . Por tanto:

$$g(x, y, z, t) = x(z + \overline{t})(y + \overline{z}).$$

9 de Abril de 2019 (7)

Ejercicio 6. Dadas las siguientes fórmulas:

- $\bullet$   $\alpha_1 = a \wedge b \rightarrow c$ .
- $\bullet \alpha_2 = \neg c \to ((a \lor d) \land (d \land e \to a) \land (b \lor e)).$
- $\bullet \ \alpha_3 = a \to \neg e \land (b \lor e).$
- $\beta = \neg c \to b \land c \land d.$

Estudia si  $\{\alpha_1, \alpha_2, \alpha_3\} \models \beta$ . En caso de no ser cierto da una interpretación que lo muestre.

### Solución:

Tenemos que comprobar si  $\{\alpha_1, \alpha_2, \alpha_3\} \models \neg c \rightarrow b \land c \land d$ . Aplicando primero el teorema de la deducción y después el teorema de refutación nos queda comprobar si el siguiente conjunto de fórmulas

$$\{a \land b \rightarrow c, \neg c \rightarrow ((a \lor d) \land (d \land e \rightarrow a) \land (b \lor e)), a \rightarrow \neg e \land (b \lor e), \neg c, \neg (b \land c \land d)\}$$

es o no insatisfacible. Pasamos cada una de las fórmulas a cláusulas:

$$\bullet \alpha_1 = a \wedge b \to c$$

$$\equiv \neg(a \wedge b) \vee c$$

$$\equiv \neg a \vee \neg b \vee c.$$

$$\begin{array}{lll} \bullet \ \alpha_2 & = & \neg c \to ((a \lor d) \land (d \land e \to a) \land (b \lor e)) \\ & \equiv & c \lor ((a \lor d) \land (\neg (d \land e) \lor a) \land (b \lor e)) \\ & \equiv & c \lor ((a \lor d) \land (\neg d \lor \neg e \lor a) \land (b \lor e)) \\ & \equiv & (c \lor a \lor d) \land (c \lor \neg d \lor \neg e \lor a) \land (c \lor b \lor e). \end{array}$$

$$\bullet \alpha_3 = a \rightarrow \neg e \land (b \lor e) 
\equiv \neg a \lor (\neg e \land (b \lor e)) 
\equiv (\neg a \lor \neg e) \land (\neg a \lor b \lor e).$$

- $\bullet \neg c = \neg c.$
- $\bullet \neg (b \land c \land d) \equiv \neg b \lor \neg c \lor \neg d.$

Y nos queda el siguiente conjunto de cláusulas:

$$\Sigma = \{ \neg a \lor \neg b \lor c, \ c \lor a \lor d, \ c \lor \neg d \lor \neg e \lor a, \ c \lor b \lor e, \ \neg a \lor \neg e, \ \neg a \lor b \lor e, \ \neg c, \ \neg b \lor \neg c \lor \neg d \}.$$

Comprobamos si es o no insatisfacible por el algoritmo de Davis-Putnmam.

Puesto que una rama ha llegado al conjunto vacío el conjunto es satisfacible, y la implicación no es cierta. Una interpretación que lo muestra es I(a) = 0, I(b) = 1, I(c) = 0, I(d) = 1, I(e) = 0.

Podemos ver que con esa interpretación,  $I(\alpha_1) = I(\alpha_2) = I(\alpha_3) = 1$  mientras que  $I(\beta) = 0$ .

(8) 9 de Abril de 2019