Tarea IV

Román Contreras

31 de marzo de 2018

1. Volumen orientado

1.1. Algunas propiedades del volumen

En lo que sigue, fijemos una base ortonormal $\beta=\{\vec{w_1},\vec{w_2},\vec{w_3}\}$ y asumamos que el volumen satisface

$$V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$$

además de ser multineal y alternante.

Usando la base ortonormal identificaremos un vector con sus coordenadas dadas por la base β , es decir:

Si $\vec{v} = a\vec{w}_1 + b\vec{w}_2 + c\vec{w}_3$ escribiremos simplemente $\vec{v} = (a, b, c)$, así mismo, al utilizar el volumen, para que la notación sea mas compacta, escribiremos las

coordenadas de un vector de manera vertical, es decir: $\vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Además, las coordenadas de \vec{v} se pueden recuperar con los productos interiores:

$$a = \langle \vec{v}, \vec{w}_1 \rangle$$
$$b = \langle \vec{v}, \vec{w}_2 \rangle$$
$$c = \langle \vec{v}, \vec{w}_3 \rangle$$

Recuerda que en clase demostramos que

$$V\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = gA\begin{pmatrix} b & e \\ c & f \end{pmatrix} + -hA\begin{pmatrix} a & d \\ c & f \end{pmatrix} + iA\begin{pmatrix} a & d \\ b & e \end{pmatrix}$$
$$= g(bf - ec) - h(af - cd) + i(ae - db)$$

Ejercicio 1.1. Demuestra que

$$V\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = a(ei - hf) - b(di - fg) + c(dh - eg)$$
$$= -d(bi - hc) + e(ai - cg) - f(ah - bg)$$

Ejercicio 1.2. Definamos el volumen de tres vectores

$$\vec{v} = (a, b, c)$$

$$\vec{w} = (d, e, f)$$

$$\vec{z} = (q, h, i)$$

mediante la fórmula:

$$V(\vec{v}, \vec{w}, \vec{z}) = V \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = g(bf - ec) - h(af - cd) + i(ae - db)$$

En clase demostramos algunas de las propiedades que cumple el volumen así definido. Demuestra las propiedades que faltaban, es decir, es lineal en las últimas dos entradas, y es alternante.

Ejercicio 1.3. Sean $\vec{v}_1, \vec{v}_2, \vec{v}_3$ tres vectores. Demuestra que si los tres vectores son linealmente dependientes entonces $V(\vec{v}_1, \vec{v}_2, \vec{v}_3) = 0$.

Ejercicio 1.4. Sean \vec{v}_1, \vec{v}_2 dos vectores linealmente independientes. Argumenta por qué debe existir al menos un vector \vec{z} tal que $V(\vec{v}_1, \vec{v}_2, \vec{z}) \neq 0$.

Ejercicio 1.5. Sean \vec{v}_1, \vec{v}_2 dos vectores linealmente independientes. Usando el ejercicio anterior, demuestra que para cada número real $r \in \mathbb{R}$ existe al menos un vector \vec{z} tal que $V(\vec{v}_1, \vec{v}_2, \vec{z}) = r$.

Ejercicio 1.6. Demuestra que

$$V\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = V\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

Ejercicio 1.7. Sean $\vec{v}, \vec{w}, \vec{z}$ tres vectores dados por:

$$\vec{v} = (a, b, c)$$

$$\vec{w} = (d, e, f)$$

$$\vec{z} = (g, h, i)$$

Demuestra que:

$$\vec{V}(\vec{v}, \vec{w}, \vec{z})w_1 = (ei - fh)\vec{v} + (ch - bi)\vec{w} + (bf - ce)\vec{z}$$

$$\vec{V}(\vec{v}, \vec{w}, \vec{z})w_2 = (di - fg)\vec{v} + (ai - cg)\vec{w} + (af - cd)\vec{z}$$

$$\vec{V}(\vec{v}, \vec{w}, \vec{z})w_3 = (dh - eg)\vec{v} + (ah - bg)\vec{w} + (ae - bd)\vec{z}$$

En particular, demuestra que si $V(\vec{v}, \vec{w}, \vec{z}) \neq 0$, entonces los vectores $\vec{w}_1, \vec{w}_2, \vec{w}_3$ se pueden expresar como combinación lineal de los vectores $\vec{v}, \vec{w}, \vec{z}$.

Ejercicio 1.8. Demuestra que si \vec{v} , \vec{w} , \vec{z} son tres vectores tales que $V(\vec{v}, \vec{w}, \vec{z}) \neq 0$ entonces cualquier otro vector es combinación lineal de esos tres vectores.