Trabalho de Conclusão de Curso

Simulação de Algoritmos Distribuídos Aplicados ao Cálculo do PageRank

Oscar Neiva E. Neto

Orientador: D.Sc. Eduardo Krempser Coorientador: D.Sc. Marcos Garcia Todorov

Faculdade de Educação Tecnológica do Estado do Rio de Janeiro - FAETERJ Petrópolis Laboratório Nacional de Computação Científica - LNCC

- Introdução
- O Algoritmo PageRank
- 3 Definição dos Modelos
 - A Matriz HiperlinkO Power Method
 - O Power Method
 - Teleportation Model
 - O Modelo dos Algoritmos Distribuídos
- 4 Simulações
- 5 Considerações Finais

Objetivo e Motivação

- Este trabalho consiste no estudo e simulação de sistemas sujeitos a saltos markovianos.
- A motivação para os estudos no tema parte dos problemas relacionados a simulação do algoritmo *PageRank*.

O Algoritmo PageRank

- A proposta do PageRank¹.
- O grau de importância das páginas.
- O Sistema de Busca e o PageRank.

Criadores do PageRank e barra de pesquisa do Google

¹Brin, Sergey and Page, Lawrence, The anatomy of a large-scale hypertextual web search engine, 1998.

- Da World Wide Web Worm em 1994 até 2016.
- Nos útimos 20 anos a Web vem ganhando 240.000.000 páginas por ano.

Buscador	Nº de Páginas Indexadas
WWWW	110 mil
AltaVista	100 milhões
Google	518 milhões
Google	4.8 bilhões

O Problema do PageRank

- A massividade da Web e a dificuldade do cálculo.
- A navegação entre páginas desconexas.
- A página Buraco Negro.

O Buraco Negro da Web

A Matriz Hiperlink

Introdução

Grafo representando links entre páginas da web

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

(1)

Oscar Neiva E. Neto

Trabalho de Conclusão de Curso

A Matriz Hiperlink

- n: nós, que representam as páginas. A navegação é então representada através de uma cadeia de Markov com espaço de estados discreto de dimensão n.
- \mathcal{E} : arestas, que representam os *links*. Para o caso de um vértice i estar conectado a um j, tem-se que $(i,j) \in \mathcal{E}$.

$$a_{ij} = \begin{cases} \frac{1}{n_i}, & \mathsf{caso}\,(i,j) \in \mathcal{E}, \\ 0, & \mathsf{caso}\,\mathsf{contrário}. \end{cases} \tag{2}$$

O Power Method

- Um método para obtenção do PageRank é o chamado Power $Method^2$.
- O PageRank é o ponto fixo da seguinte recursão:

$$x(k+1) = Ax(k), k \ge 0, \text{ com } x(0) = x_0,$$
 (3)

onde $x_0 \in \mathbb{R}^{n \times 1}$ é uma condição inicial positiva de soma igual a um.

²Ishii, Hideaki and Tempo, Roberto, The pagerank problem, multiagent consensus, and web aggregation: A systems and control viewpoint, 2014.

Questões de Convergência do Power Method

- Caso a matriz A seja irredutível, independente da condição inicial é atingida a distribuição limite.
- Diz-se que A é irredutivel se sempre existe um caminho ligando dois nós quaisquer.

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad x^* = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.1 \\ 0.4 \end{pmatrix}$$

• Embora a simplicidade do *Power Method* o torne atraente, ele

• O Teleportation promove exploração, sem afetar o PageRank.

pode apresentar problemas de convergência.

• O Teleportation Model é uma estratégia reconhecida para que, através de uma pequena modificação na matriz A, o método convirja globalmente.

$$M = (1 - m)A + \frac{m}{n} \mathbf{1} \mathbf{1}^T \tag{4}$$

- $m \in (0,1)$
- $M \in \mathbb{R}^{n \times n}$
- $\mathbf{1} \in \mathbb{R}^{n \times 1}$

Simulações

O Modelo dos Algoritmos Distribuídos

- Tornar o cálculo menos custoso e factível.
- Explorar os recursos computacionais dos servidores.
- Emprego de algoritmos distribuídos³.

Cluster da Google.

³Lei, Jianjun and Chen, Han-Fu, Distributed Randomized PageRank Algorithm Based on Stochastic Approximation, 2015.

0000000

O Modelo dos Algoritmos Distribuídos

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} A_{4} = \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

14 / 25

(5)

Simulações

O Modelo dos Algoritmos Distribuídos

 O modelo distribuído trata-se de um sistema dinâmico sujeito a saltos⁴.

$$x(k+1) = A_{\theta(k)}x(k), \quad k \ge 0, \quad \text{com} \quad x(0) = x_0.$$
 (6)

• Este mecanismo de seleção é modelado por $\theta=\{\theta(k),k=0,1,\ldots\}$ é uma cadeia de Markov 5 , regida pela propriedade:

$$P(\theta(k+1) = j \mid \theta(k) = i_k, \theta(k-1) = i_{k-1}, \dots, \theta(0) = i_0) = P(\theta(k+1) = j \mid \theta(k) = i_k).$$
(7)

Trabalho de Conclusão de Curso

Oscar Neiva E. Neto

 $^{^4}$ O. L. V. Costa and M. D. Fragoso and M. G. Todorov, Continuous-Time Markov Jump Linear Systems, 2013.

⁵ P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, 1999.

Adaptando ao *Teleportation Model*:

$$x(k+1) = (1-\hat{m})A_{\theta(k)}x(k) + \frac{\hat{m}}{n}\mathbf{1}\mathbf{1}^{T},$$
 (8)

• k > 0,

- com $x(0) = x_0$,
- $\bullet \text{ onde } \hat{m} = \frac{2m}{n m(n-2)},$
- $m = 0.15^{6}$.
- Problemas de convergência.

 $^{^6}$ Zaki, Nazar and Berengueres, Jose and Efimov, Dmitry, Detection of protein complexes using a protein ranking algorithm, 2012.

Questões de Convergência do Modelo Distribuído

• y(k) é a média do conjunto de amostras x(0), ..., x(k),

$$y(k) = \frac{1}{k+1} \sum_{l=0}^{k} x(l).$$

O algoritmo converge no sentido da média quadrática:

• y(k+1) é a média recursiva do conjunto de amostras x(0),...,x(k+1),

$$y(k+1)$$
,
$$y(k+1) = \frac{(k+1)}{(k+2)}y(k) + \frac{1}{(k+2)}x(k+1).$$

 $\lim_{k \to \infty} \mathbb{E}[\parallel y(k) - x^* \parallel^2] = 0.$

(9)

(10)

$$x_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

(12)

Simulação do Teleportation Model

Simulação do Teleportation Model Distribuído

A falta de convergência é tipica de simulações estocásticas.

O Modelo Recursivo da Média no Tempo Aplicada a Simulação do Modelo Distribuído

Método de Monte Carlo Aplicado após Modelo Recursivo da Média

Considerações Finais

- O sucesso dos sistemas de busca.
- Utilizar outros métodos, válidos na simulação do PageRank.
- Implementação com links já coletados por um Web Crawling⁷.
 - Uso de outras linguagens de programação.
 - Computação Distribuída.

 $^{^{7}}$ U.K. New Zealand Univ., Statistical Cybermetrics Research Group, 2006.