# Inductive Representation Learning on Large Graphs (GraphSage)

School of Industrial and Management Engineering, Korea University

Jae Hoon Kim





# **Contents**

- \* Research Purpose
- GraphSage
- Experiments
- Conclusion

- Inductive Representation Learning on Large Graphs (NeurIPS 2017)
  - Stanford Univ.에서 연구하였으며 2022년 1월 23일 기준으로 5311회 인용됨

#### **Inductive Representation Learning on Large Graphs**

William L. Hamilton\*

Rex Ying\*

Jure Leskovec

wleif@stanford.edu rexying@stanford.edu

d.edu jure@cs.stanford.edu

Department of Computer Science Stanford University Stanford, CA, 94305

#### Abstract

Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

- Inductive Representation Learning on Large Graphs (NeurIPS 2017)
  - 기존 연구는 고정된 그래프 데이터를 잘 표현하는 방법을 연구함
  - 해당 연구는 학습한 모델로 새롭게 생성된 노드에 대해서도 잘 표현하는 방법을 연구함
  - 전자는 transductive learning, 후자는 inductive learning에 속함 (좀더명확한비교는 뒷장에서...)



- Transductive Learning vs. Inductive Learning
  - Transductive learning의 경우 학습 시 훈련 및 검증 데이터의 구분이 없으며 둘을 합쳐서 사용함
    - ✓ GCN의 논문 제목이 Semi-Supervised Classification with Graph Convolutional Networks인 이유
  - 별도의 모델을 생성하지 않음 (관찰한 데이터에 맞추어 분류 혹은 예측)
    - ✓ 따라서 새로운 데이터가 추가되었을 때 이에 맞춰 전체 데이터에 대한 재연산이 필요함



\*\* unlabeled data가 또 다른 unlabeled data의 레이블링에 관여함

https://towards datascience.com/inductive-vs-transductive-learning-e608e786f7d

- Transductive Learning vs. Inductive Learning
  - Inductive learning의 경우 학습 시 훈련 및 검증 데이터를 구분하여 사용함
    - ✓ 일반적인 Supervised Learning 방식과 동일함
  - 훈련 데이터를 통해 새로운 데이터를 분류 혹은 예측하기 위한 모델을 생성함
    - ✓ 새로운 데이터가 추가되었을 때 생성된 모델을 사용하여 추론이 가능함



< Given Data >



< Logistic Regression >

\*\* 오직 labeled data만이 unlabeled data의 레이블링에 관여함

https://towards datascience.com/inductive-vs-transductive-learning-e608e786f7d

- Inductive Representation Learning on Large Graphs (NeurIPS 2017)
  - Transductive 모델은 학습에 필요한 연결 정보를 자신과 연결된 모든 노드로 정의함 (full batch)
  - GraphSAGE는 특정 노드의 주변에서 샘플링한 이웃 노드를 연결정보로 사용함 (mini batch)
  - 규모가 큰 그래프 데이터를 처리할 때에는 mini batch 방식이 더 효율적인 학습이 가능함
  - Transductive 모델은 특정 노드를 표현할 때 그래프 전체에 대한 연결 정보를 사용하여 표현함
  - GraphSAGE는 특정 노드에 이웃한 노드의 정보만을 통합하여 표현함
  - 새로운 노드가 생성될 경우 Transductive 모델은 기존 모델 사용이 불가하나 GraphSAGE는 가능함

$$H^{(l+1)} = \sigma \left( \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

< Node feature matrix (H) of Transductive GCN >

#### · 그래프 전체의 연결정보를 나타냄 (Adjancy Matrix)

- 새로운 노드가 추가될 경우 adjancy matrix의 크기가 바뀜
- 따라서 전체 데이터에 대한 재연산이 필요함 (기존 모델 사용 불가)

| 0 | 1 | 1 1 |   |
|---|---|-----|---|
| 1 | 0 | 0   | 1 |
| 1 | 0 | 0   | 1 |
| 0 | 1 | 1   | 0 |

→ 새로운 노드를 추가

# **Graph SAmple and aggregate (GraphSAGE)**

#### Sampling Neighbors

- 특정 노드(A)의 주변에서 hop k의 깊이로 특정 개수의 이웃 노드를 샘플링함
- 각 깊이에서 2개의 노드를 샘플링한다고 할 때 hop 1에서는 C와 E 노드를 샘플링함
- 이후 hop 2에서는 C와 E 각각에서 2개의 노드를 샘플링하여 sub-graph를 구축함



# **Graph SAmple and aggreGatE (GraphSAGE)**

- Aggregate Neighbors
  - Aggregation시 노드 순서와 무관한 연산이 이루어져야 함
  - Aggregation function은 종류가 Mean, LSTM, Pooling(max)이 있으며 학습 가능한 네트워크로 구성 됨
    - ✓ LSTM aggregation의 경우 입력 노드의 순서를 임의로 섞음



# **Graph SAmple and aggreGatE (GraphSAGE)**

#### Objective function

- GraphSAGE의 목적함수는 비지도학습 혹은 지도학습(ex. Cross Entropy) 방식으로 구성될 수 있음
- 비지도학습의 경우 특정 노드와 이에 이웃한 노드의 각 특징 벡터가 유사해지도록 학습함
- 또한 특정 노드와 이웃하지 않은 노드를 Q개 샘플링하여 각 특징 벡터와 안 유사해지도록 학습함

#### **Ex) Unsupervised Learning**

\*\* 모든 z는 인코딩 과정에서 normalized 됨 \*\*  $\sigma$ 는 Sigmoid 함수



Negative Sample of node v

< Original Network >

Encoding  $z_v$   $z_u$ 

< Embedding Space >

$$Loss(z_v) = -\log(\sigma(z_u^T z_v) + \epsilon) - Q * \mathbb{E}_{v_n \sim P_n(v)} \log(\sigma(-z_u^T z_{v_n}) + \epsilon)$$
이웃한 노드 간의 내적 (코사인유사도) Negative Sample 개수 Negative Sample Distribution 내적 값이 클수록 0에 가까워짐

https://medium.com/analytics-vidhya/ohmygraphs-graphsage-and-inductive-representation-learning-ea26d2835331



# **Experiments**

- Benchmark & Various Aggregators
  - Web of Science 인용 정보, Reddit 게시물, Protein-protein interaction 구조 정보 데이터로 성능 비교
  - GraphSAGE에 GCN, Mean aggregator, LSTM aggregator, Pooling aggregator를 사용하여 성능 비교

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}

Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}

1 \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
2 for k = 1...K do
3 | for v \in \mathcal{V} do
4 | \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow AGGREGATE_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}); \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W} \cdot CONCAT(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)\right)
6 end
7 \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k/\|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

#### Default training settings (GraphSAGE)

| • | Optimizer:                                 | Adam          |  |  |
|---|--------------------------------------------|---------------|--|--|
| • | Batch size:                                | 512           |  |  |
| • | Hop size:                                  | 2             |  |  |
| • | Neighborsample size(1st hop):              | 25            |  |  |
| • | Neighbor sample size(2 <sup>nd</sup> hop): | 10            |  |  |
| • | Loss function(Supervised):                 | Cross Entropy |  |  |

# **Experiments**

#### Benchmark & Various Aggregators

- Raw features는 그래프 구조를 사용하지 않고 로지스틱 회귀 모델에 데이터를 입력한 것
- LSTM, Pooling을 이용한 버전이 좋은 성능을 보여줌 (일반적으로 pooling 버전을 많이 사용함)
- Hop size는 GCN과 마찬가지로 2로 설정하는 것이 가장 좋은 성능을 보인다고 함

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

|                     | Citation  |         | Reddit    |         | PPI       |         |
|---------------------|-----------|---------|-----------|---------|-----------|---------|
| Name                | Unsup. F1 | Sup. F1 | Unsup. F1 | Sup. F1 | Unsup. F1 | Sup. F1 |
| Random              | 0.206     | 0.206   | 0.043     | 0.042   | 0.396     | 0.396   |
| Raw features        | 0.575     | 0.575   | 0.585     | 0.585   | 0.422     | 0.422   |
| DeepWalk            | 0.565     | 0.565   | 0.324     | 0.324   | _         | _       |
| DeepWalk + features | 0.701     | 0.701   | 0.691     | 0.691   | _         | _       |
| GraphSAGE-GCN       | 0.742     | 0.772   | 0.908     | 0.930   | 0.465     | 0.500   |
| GraphSAGE-mean      | 0.778     | 0.820   | 0.897     | 0.950   | 0.486     | 0.598   |
| GraphSAGE-LSTM      | 0.788     | 0.832   | 0.907     | 0.954   | 0.482     | 0.612   |
| GraphSAGE-pool      | 0.798     | 0.839   | 0.892     | 0.948   | 0.502     | 0.600   |
| % gain over feat.   | 39%       | 46%     | 55%       | 63%     | 19%       | 45%     |

#### **Conclusion**

#### Conclusion

- 기존 GCN의 경우 transductive한 학습 특성상 대규모 데이터 학습과 새로 발생한 데이터에 대한 추론이 어려웠음
- GraphSAGE 모델은 위의 한계점을 다음과 같이 해결함
  - ✓ 샘플링 방법론을 통해 대규모 데이터도 mini batch 방식으로 효율적인 학습이 가능하도록 함
  - ✓ 이웃 노드만으로 특정 노드를 표현함으로서 inductive 학습으로 새로 발생한 데이터도 기존 모델로 추론이 가능하도록함

#### Reference

- Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.
- https://medium.com/analytics-vidhya/ohmygraphs-graphsage-and-inductive-representation-learning-ea26d2835331
- https://towardsdatascience.com/inductive-vs-transductive-learning-e608e786f7d

# Thank you