Problema A. Navalha Batal

Nome do arquivo fonte: batal.c, batal.cpp, ou batal.java

Bibika está jogando o famoso jogo Navalha Batal. Para quem não conhece, o jogo é disputado entre duas pessoas e um tabuleiro comum, de tamanho $N \times N$, com algumas peças (que representam Bavios) de tamanhos $1 \times T$ e $T \times 1$ previamente inseridas, onde o valor de T é inteiro positivo menor ou igual a N. A sobreposição de peças não é possível!

Após a posição das peças iniciais ser revelada, cada jogador tem alguns minutos para analisar o tabuleiro e calcular (ou chutar) a quantidade de peças $1 \times T$, $T \times 1$ diferentes que ainda podem ser inseridas no tabuleiro. Duas peças são diferentes se os espaços que elas ocupam no tabuleiro são diferentes.

Segue um exemplo de um tabuleiro 3×3 com as posições $\{(1,2),(2,3),(3,1),(3,2)\}$ previamente preenchidas.

Nesse caso ainda é possível inserir nas células vazias 7 peças diferentes, como ilustrado abaixo:

Após jogarem com um tabuleiro bem pequeno, Bibika gostaria de saber, dado um tabuleiro gigante e uma configuração inicial do tabuleiro, qual é a solução do jogo. Como é uma tarefa bastante complexa a olho nu, cabe a você ajudá-la!

Entrada

A primeira linha contém dois inteiros N e Q, sendo N o número de linhas e colunas do tabuleiro e Q a quantidade de células distintas que estão previamente preenchidas. As próximas Q linhas possuem dois inteiros, X_i e Y_i , indicando que a coordenada X_i, Y_i do tabuleiro está preenchida.

Saída

A saída deve conter uma linha com um único inteiro representando a quantidade de bavios de tamanho $1 \times T$ ou $T \times 1$ que ainda são possíveis de serem colocados de forma que fiquem totalmente inseridos no tabuleiro e não exista sobreposição com outros bavios.

Restrições

- $1 \le N \le 10^6$
- $0 < Q < 10^5$
- $1 \leq X_i, Y_i \leq N$, para todo $i = 1, 2, \ldots, Q$

Exemplos

Entrada	Saída
3 4	7
1 2	
2 3	
3 1	
3 2	

Entrada	Saída
2 3	1
1 1	
1 2	
2 2	