3.3 Pumping - Lemma

Wir beweisen durch Widerspruch und nehmen an, dass L
 regulär ist. Somit gibt es ein $n \in \mathbb{N}$ für das alle Wörter $x \in L$ die Länge
n haben. Wähle i als nächstgrößere Primzahl nach
n, $x := a^i$ und betrachte eine beliebige Zerlegung
x = uvw und setze s = 2n , so gilt:

$$\exists j, k, l : 0 \leq j, k, l \leq n : x = uvw$$

$$= a^{j}a^{k}a^{l}$$

$$=^{Pumping-Lemma} a^{j}a^{s-(j+k)}a^{k}$$

$$= a^{s}$$

$$= a^{2n}$$

$$\Rightarrow |a^{2n}| = 2n$$

$$(1)$$