PONDEROSA Tutorial

Henn lab meeting 13 May 2021

Resources

- Github repo (with manual): https://github.com/williamscole/PONDEROSA
- Any questions (or bugs), please please shoot me an email: cole_williams@brown.edu

When should I use PONDEROSA?

- 1. I need to generate a .fam file
- 2. I know which pairs are parent-offspring, but I'm not sure who the parent is, who the child is
- 3. I'm not sure whether two people are half-siblings or full siblings
- 4. I want to identify all the relationships in the dataset
- 5. There are 2nd degree pairs, but I'm not sure whether they are half-siblings, grandparent-grandchildren or avuncular
- 6. I want to identify a set of unrelated individuals

Motivation behind PONDEROSA

- Himba relatives share more IBD than outbred populations
- Existing algorithms overestimated relatedness in the Himba
 - E.g. Himba cousins being misclassified as half-siblings
- PONDEROSA mines the dataset for high-confidence relationships and uses these to train a machine learning classifier

LDA classifier used by PONDEROSA

IBD proportions of Himba relatives

Running PONDEROSA

- PONDEROSA was written in python and requires python 3.6 or higher
- PONDEROSA requires the sci-kit learn python package, numpy, pandas
 - Either create a virtual environment or use anaconda3's python
 - On augrabies: /software/anaconda3/4.5.12/lssc0-linux/bin/python3.6
- PONDEROSA's github repo is found here: /share/hennlab/lab_scripts/ PONDEROSA
 - Good practice to git pull before using it, just in case I've made any changes

Running PONDEROSA

- PONDEROSA has three different run types that should be run sequentially for a new dataset
- For a complete manual, see https://github.com/williamscole/PONDEROSA

Run type	Description
po_only	If selected, PONDEROSA will compute haplotype scores for PO pairs. Using age first, and then haplotype scores (if age is unavailable), this run type will output all PO pairs oriented as parent-child. We suggest running this step to create the .fam file necessary for other run types.
ped_only	PONDEROSA will output all pairwise relationships present in the .fam file provided.
run_all	Will do the above but will also infer unresolved second degree relationships.

Quick set up

- git clone https://github.com/williamscole/PONDEROSA_tutorial
- cd PONDEROSA_tutorial
- source /share/hennlab/projects/himba_pedigree/PONDEROSA_tutorial/bin/activate
- bash setup.sh

A note on calling IBD

- Many, many IBD callers out there
- Doesn't really matter which you use (in terms of format), as long as it can be run on haploid genomes
 - Germline v1.5 (—haploid flag)
 - iLASH (haploid method; no flag)
 - phasedibd: 23andMe's new IBD caller. use_phase correction must be
 False. Must rearrange columns to be in Germline or iLASH format

sample ID and haplotype index separated by a single character

SampleAL7 SampleAL7_0
SampleAX0 SampleAX0_1
SampleAI0 SampleAI0_0

SampleAZ6 SampleAZ6 SampleAZ1 SampleAZ6_1 SampleAZ6_1 SampleAZ1_1 1 1 1

246226566 249154567 246068837 249154567 245882414 249154567

physical positions

rs4445429 rs12058703 rs7524184

rs10157709 rs10157709 rs10157709 3.0683 1 3.36047 1 3.78468 1

po_only

- You've just received a new dataset; all you have is the genotype data and (maybe) some age data
- Pre-PONDEROSA steps
 - Run GERMLINE (—haploid flag) or iLASH
 - Run KING (-kinship flag)
- That's it! Now PONDEROSA will...
 - 1. Use KING to identify parent-offspring pairs
 - 2. Use age to identify who is the parent, who is the child
 - 3. If no/incomplete age data, uses haplotype scores to do this

Haplotype scores

- Haplotype scores are calculated for each individual in each pair
 - e.g. the haplotype score of individual i in the pair (i,j) will likely be different than i's haplotype score in the pair (i,k)
- Haplotype scores reflect how much IBD is shared on one haplotype vs.
 the other haplotype

More on haplotype scores

Take individuals i and j who are parent-offspring

Individual i

$$h_i = \frac{max(50,55)}{55 + 50} = 0.52$$

Individual j

$$h_j = \frac{max(105,0)}{105+0} = 1$$

More on haplotype scores

- Haplotype scores allow PONDEROSA to infer the genetically older individual in a pair
 - Parent in a parent-offspring pair
 - Grandparent in a grandparent-grandchild pair
 - Aunt/uncle in an avuncular pair
- The genetically older relative should have a lower haplotype score than the younger relative
- Individuals that are genetically the same age (e.g. the same generation) should have similar haplotype scores

[prefix]_PO.txt file

- The script make_fam.py converts [prefix]_PO.txt file to .fam file
- Easy to run: python make_fam.py par_file.txt
 - Don't need to make any changes to the par_file
- It does several things
 - 1. If there are siblings, makes sure they have the same parent
 - 2. Checks for sex errors (e.g. an individual has two parents of the same sex)
 - 3. If sex is missing, infers the missing sex of the parents
 - 4. Checks age gaps of parents for possible age errors
 - 5. Several checks to make sure the parent-offspring orientation is correct

ped_only

- Now that we have a full .fam file, we can explore what relatives are present in our dataset
- ped_only uses the parent-offspring pairs from the .fam file to identify 2nd,
 3rd, and 4th degree relatives
- Only requires a complete .fam file and a KING .seg file
- If we want to **run_all**, we must have enough training pairs (at least one of each PO, FS, 2nd, 3rd, 4th and at least one of GP, AV, PHS, and MHS)
 - More training pairs is better though. I recommend more than 10 pairs of each category

Identifying sets of unrelated individuals

- Run the remove_relatives.py script
 - I created a bash script remove_relatives.sh that makes this easy to run; just change the parameters in the script
- The script gives **many** options for (1) specifying the maximum relatedness tolerated in the set and (2) how relatedness is determined
- 3 modes:
 - LDA: uses the PONDEROSA [prefix]_pairs.txt file to train an LDA classifier. The classifier is used to determine relatedness
 - KING: uses the KING .seg file's relatedness inference.
 - float: the user specifies the maximum kinship coefficient to be tolerated

remove_relatives.py

LDA mode

python remove_relatives.py Himba_pairs.txt Himba.seg Himba.fam 3rd

KING mode

python remove_relatives.py None Himba.seg Himba.fam 3rd

float mode

python remove_relatives.py 0.18 Himba.seg Himba.fam 5th

run_all

- run_all does the previous steps and infers the relationship of 2nd degree relatives
 - 2nd degree relatives include half-siblings, avuncular (e.g. aunt/niece), and grandparent-grandchild
- run_all is only useful if there are enough training pairs
 - Running ped_only will give you an idea of how many training pairs you have; if you don't PONDEROSA will (gracefully) stop running

How does PONDEROSA distinguish 2nd degree relatives?

- 2nd degree relatives are hard to distinguish because they all (on average) share the same proportion of the genome IBD
- PONDEROSA trains another LDA classifier with two statistics:
 - The number of IBD segments shared, n
 - The haplotype score ratio, HSR
 - For a given pair (i,j), $HSR_{ij} = \frac{h_i}{h_j}$ where $h_j > h_i$
 - Because half-siblings are of the same generation, we expect $h_j = h_i$ so $HSR_{ij} = 1$
 - This is not the case in avuncular/grandparent-grandchild pairs, where $h_j>h_i$ so $HSR_{ij}<1$

How does PONDEROSA distinguish 2nd degree relatives?

- PONDEROSA will look for other information to help distinguish relationships
 - Parameter mhs_gap is the maximum age gap two maternal half-siblings can be; if a pair exceeds this then P(MHS) = 0
 - gp_gap: the minimum age gap for two individuals to be considered grandparent-grandchildren

LDA classifier for 2nd degree relatives

Evaluating [prefix]_second.txt

- This step of PONDEROSA works well when the data are phased well
- PONDEROSA stitches together IBD segments, so that n (the number of IBD segments) is robust to phase errors
- The HSR is more sensitive to phase errors
- When phase quality is poor, PONDEROSA will have a hard time distinguishing half-siblings from grandparent-grandchild/avuncular
 - But it can still do a good job distinguishing MHS/avuncular from PHS/ grandparent-grandchild

Common PONDEROSA errors

- GP and AV tend to be misclassified as HS
- Half-siblings misclassifications tend to be sex misclassifications of the missing parent

Run_type
po_only False
ped_only False
run_all True

PONDEROSA par_file

```
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None
Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False
```

 Run_type specifies the run type; only one can be true Run_type
po_only False
ped_only False
run_all True

PONDEROSA par_file

File options

```
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None
```

Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False

```
FID1 ID1 FID2
Sample1 SampleAA0
Sample1 SampleAA0
Sample1 SampleAA0
```

- king_file is the path to the KING generated .seg file
- Generated using KING's -kinship flag
- Required for all run types

```
MaxIBD1 MaxIBD2 IBD1Seg IBD2Seg PropIBD InfType
ID2
                                        0.0764
Sample1 SampleAA1
                        20.0
                                6.0
                                               0.0023
                                                        0.0405
Sample1 SampleAA3
                        51.4
                                0.0
                                        0.2417
                                               0.0000
                                                        0.1208
                                                                3rd
Sample1 SampleAA4
                                        0.9711 0.0279
                        138.2
                                11.3
                                                        0.5135
```

```
Run_type
po_only False
ped_only False
run all True
```

```
run_all True
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None
Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False
```

- IBD segments generated from Germline or iLASH
- Germline: must use —haploid flag
- Required for po_only and run_all run types

```
Run_type
po_only False
ped_only False
run_all True
```

```
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None
Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False
```

- .fam file contains the individual ID, father ID, mother ID, sex
- Required for ped_only and run_all

```
Sample1 SampleAA0 0 0 1 -9
Sample1 SampleAA1 0 0 1 -9
Sample1 SampleAA3 0 0 2 -9
Sample1 SampleAA4 SampleAA0 0 1 -9
Sample1 SampleAA5 SampleAA0 0 1 -9
```

Run_type
po_only False
ped_only False
run_all True

cm_gap 1

disc_homoz 1

mhs_gap 30

po_gap 15

gp_gap 30

likelihood 0.80

trust_fs False

```
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None

Parameters
out Sample
num_chr 22
```

- PLINK .map and .ped files
- .map file required for po_only and run_all
- .ped file optional for po_only and run_all

```
Run_type
po_only False
ped_only False
run_all True
```

PONDEROSA par_file

```
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
```

age_file Sample/Misc_Files/Sample_Ages.txt

hap_file None

```
Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False
```

- Age file. Column 1 is the IID; column 2 is the age (int or float)
- Optional for po_only and run_all

Run_type
po_only False
ped_only False
run_all True

```
File options
king_file Sample/Misc_Files/Sample_KING.seg
match_file Sample/Segments/Sample_ilash_chr1.match
fam_file Sample/Misc_Files/Sample.fam
map_file Sample/Map_Files/Sample_chr1.map
ped_file None
age_file Sample/Misc_Files/Sample_Ages.txt
hap_file None
```

```
Parameters
out Sample
num_chr 22
cm_gap 1
disc_homoz 1
likelihood 0.80
mhs_gap 30
po_gap 15
gp_gap 30
trust_fs False
```

- The calculation of haplotype scores is the most computationally intensive step
- If PONDEROSA has already been run, the .haps file can be supplied so that it skips this step