ЛАБОРАТОРНАЯ РАБОТА 25

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНЕТРОНА

Выполнил студент гр	Ф.И.О
Подпись преподавателя(обязательна после окончания эксперимента)	дата

Цель работы: : измерение величины удельного заряда электрона с помощью магнетрона.

Порядок выполнения работы

- 1. Ознакомьтесь со схемой электрической цепи. Определите положение каждого измерительного прибора на панели установки. Определите цену деления каждого измерительного прибора.
- 2. Ручки потенциометров ΠA и Π поверните против часовой стрелки до упора, установив нулевые значения.
- 3. Включите установку в сеть. Ручкой потенциометра ПА установите анодное напряжение $U_{\rm A1}$ и поддерживайте его постоянным до конца снятия одной характеристики.

- 4. Снимите так называемую сбросовую характеристику магнетрона $I_{\rm A}=f\left(I\right)$, т.е. зависимость величины анодного тока $I_{\rm A}$ от тока катушки I. Для этого, удерживая кнопку S в нажатом состоянии, медленно увеличивайте ток I в катушке с помощью ручки потенциометра Π и заносите в таблицу значения тока I и соответствующие им значения анодного тока $I_{\rm A}$. Снимите не менее 10 значений тока для установленного анодного напряжения $U_{\rm A1}$.
- 5. Аналогичные сбросовые характеристики снимите для двух других значений анодного напряжения $U_{\rm A2}$ и $U_{\rm A3}$. Рекомендуемые величины $U_{\rm A1}$, $U_{\rm A2}$ и $U_{\rm A3}$ указаны на лабораторной установке. Все результаты измерений занесите в таблицу.
 - 6. Приведите установку в исходное состояние и отключите от сети.
- 7. По измеренным данным постройте графики трех сбросовых характеристик в одних координатных осях.
- 8. На графике каждой характеристики найдите точку сброса анодного тока $I_{\rm A}$ и соответствующее ей критическое значение тока в катушке $I_{\rm kp}$. Критический ток можно определить как ток катушки, при котором ток анода начинает резко уменьшаться. При измерениях анодный ток вначале уменьшается не слишком зна-

чительно. На рисунке справа показано как с помощью двух прямых асимптотических линий определить положение точки $I_{\rm kp}$.

9. По формуле $B_{\rm kp} = \mu_0 I_{\rm kp} n$ вычислите значение критической индукции магнитного поля катушки

$$I_{\rm kp}$$
 и по формуле $\frac{e}{m} = \frac{8U_{\rm A}r_{\rm a}^2}{B_{\rm kp}^2\left(r_{\rm a}^2 - r_{\rm k}^2\right)^2}$

рассчитайте величину удельного заряда электрона е/т для каждого из трех опытов с разными значениями $U_{\rm A}$, а также среднее значение. $\langle e/m \rangle$. Размеры $r_{\rm a}, r_{\rm k}$ и плотность витков nуказаны на установке.

10. Найдите случайные отклонения $\Delta(e/m)_i = (e/m)_i - \langle e/m \rangle$ для каждого измерения i = 1,2,3 и вычислите погрешность результата измерений $\langle \Delta(e/m) \rangle = \sqrt{\sum (\Delta_i(e/m))^2/6}$. Pe-

№ п/п	$U_{\rm A1}$ =	В	$U_{\mathrm{A2}} =$	В	$U_{\mathrm{A3}} =$	В
	I, A	$I_{\rm A}$, мк ${ m A}$	<i>I</i> , A	$I_{\rm A}$, мк ${ m A}$	I, A	$I_{\rm A}$, мк ${ m A}$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
I_{kp} , A						
$B_{\text{кр}}$, Тл						
<i>e/m</i> , Кл/кг						
$\Delta(e/m)$						
$(e/m)_{\mathfrak{I}KC\Pi}=$	<u>±</u>	К.	л/кг	$(e/m)_{\text{табл}}=1$,76·10 ¹	¹ Кл/кг
$r_{\rm a}=$	MM;	$r_{\scriptscriptstyle m K}\!\!=\!$]	мм; n	=	M ⁻¹

зультаты вычислений занести в таблицу.

11. Запишите результат в виде $\left(e/m\right)_{2\mathsf{KCII}} = \left(\left\langle e/m\right\rangle \pm \left\langle \Delta\left(e/m\right)\right\rangle\right)$, Кл/кг и сравните его с табличным значением отношение величины заряда электрона $e = 1,602 \cdot 10^{-19}$ Кл к его массе $m = 9,11 \cdot 10^{-31}$ Кг.

Контрольные вопросы к лабораторной работе № 25

- 1. На электрической схеме установки покажите замкнутую цепь, по которой течет ток I катушки (соленоида), и цепь, по которой течет анодный ток $I_{\rm A}$. Укажите приборы, которые измеряют эти токи.
- 2. С какой целью магнетрон окружен витками соленоида? Что меняется при увеличении тока І?
- 3. Какова величина и направление вектора индукции магнитного поля, создаваемого в магнетроне? Как можно изменить эту величину?
- 4. Напишите выражение силы Лоренца, действующей на электрон в скрещенных электрическом и магнитном полях. Укажите направление электрической и магнитной составляющих этой силы.
- 5. Направление тока І, текущего по виткам намотанной на цилиндрический анод катушки, указано на рис.А. Укажите и объясните правильную траекторию движения одного из электронов, создающих анодный ток.
- 6. Что называется удельным зарядом электрона, как вычислить его величину и чему

она должна быть равна?

7. Укажите соответствие траекторий электронов, вылетающих из катода на левом рис.Б, и точек графика зависимости анодного тока I_{A} от тока I, протекающего по виткам катушки (правый рис.Б).

8. Объясните поведение графиков зависимости $I_{\rm A} = I_{\rm A} \, (I)$: почему при увели-Рис.Б чении тока I величина $I_{\rm A}$ вначале не меняется? Каким условием определяется критическое значение тока $I_{\kappa p}$? Почему после достижения критической величины $I_{\kappa p}$ анодный ток уменьшается постепенно, а не падает скачком до нуля?

- 9. Сделайте и объясните вывод расчетной формулы для вычисления удельного заряда электрона в данной работе.
- 10. Может ли электрон в скрещенных однородных электрическом и магнитном полях двигаться с постоянной по величине и направлению скоростью? Если да, то при каких условиях? Чему равна минимальная величина такой скорости?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс физики в 3-х тт.: Т. 2: Электричество М.: Наука, 1970. §§ 74-77.
- 2. Колмаков, Ю.Н. Кажарская С.Е. Физика. Электромагнетизм: руководство к проведению самостоятельной работы студентов. Изд-во ТулГУ, 2017, стр. 82-86.