DOI: 10.1007/s11401-005-0320-8

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2006

η -Invariant and Flat Vector Bundles***

Xiaonan MA* Weiping ZHANG**

(Dedicated to the memory of Shiing-Shen Chern)

Abstract We present an alternate definition of the mod **Z** component of the Atiyah-Patodi-Singer η invariant associated to (not necessary unitary) flat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Patodi and Singer.

Keywords Flat vector bundle, η -Invariant, ρ -Invariant 2000 MR Subject Classification 58J

1 Introduction

Let M be an odd dimensional oriented closed spin manifold carrying a Riemannian metric g^{TM} . Let S(TM) be the associated Hermitian bundle of spinors. Let E be a Hermitian vector bundle over M carrying a unitary connection ∇^E . Moreover, let F be a Hermitian vector bundle over M carrying a unitary flat connection ∇^F . Let

$$D^{E\otimes F}: \Gamma(S(TM)\otimes E\otimes F) \longrightarrow \Gamma(S(TM)\otimes E\otimes F) \tag{1.1}$$

denote the corresponding (twisted) Dirac operator, which is formally self-adjoint (cf. [4]).

For any $s \in \mathbf{C}$ with $\operatorname{Re}(s) \gg 0$, following [1], set

$$\eta(D^{E\otimes F}, s) = \sum_{\lambda \in \text{Spec}(D^{E\otimes F})\setminus\{0\}} \frac{\text{Sgn}(\lambda)}{|\lambda|^s}.$$
 (1.2)

Then by [1], one knows that $\eta(D^{E\otimes F}, s)$ is a holomorphic function in s when $\operatorname{Re}(s) > \frac{\dim M}{2}$. Moreover, it extends to a meromorphic function over \mathbb{C} , which is holomorphic at s = 0. The η invariant of $D^{E\otimes F}$, in the sense of Atiyah-Patodi-Singer [1], is defined by

$$\eta(D^{E\otimes F}) = \eta(D^{E\otimes F}, 0), \tag{1.3}$$

while the corresponding reduced η invariant is defined and denoted by

$$\bar{\eta}(D^{E\otimes F}) = \frac{\dim(\ker D^{E\otimes F}) + \eta(D^{E\otimes F})}{2}.$$
(1.4)

Manuscript received July 28, 2005.

^{*}Centre de Mathématiques, UMR 7640 du CNRS, École Polytechnique, 91128 Palaiseau Cedex, France. E-mail: ma@math.polytechnique.fr

^{**}Nankai Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China. E-mail: weiping@nankai.edu.cn

^{***}Project supported by the Cheung-Kong Scholarship of the Ministry of Education of China and the 973
Project of the Ministry of Science and Technology of China.

The η and reduced η invariants play an important role in the Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary (cf. [1]).

In [2] and [3], it is shown that the following quantity

$$\rho(D^{E\otimes F}) := \bar{\eta}(D^{E\otimes F}) - \operatorname{rk}(F)\,\bar{\eta}(D^E) \mod \mathbf{Z}$$
(1.5)

does not depend on the choice of g^{TM} as well as the metrics and (Hermitian) connections on E. Also, a Riemann-Roch theorem is proved in [3, (5.3)], which gives a K-theoretic interpretation of the analytically defined invariant $\rho(D^{E\otimes F})\in\mathbf{R}/\mathbf{Z}$. Moreover, it is pointed out in [3, Remark (1), p. 89] that the above mentioned K-theoretic interpretation applies also to the case where F is a non-unitary flat vector bundle, while on [3, p. 93] it shows how one can define the reduced η -invariant in case F is non-unitary, by working on non-self-adjoint elliptic operators, and then extend the Riemann-Roch result [3, (5.3)] to an identity in \mathbf{C}/\mathbf{Z} (instead of \mathbf{R}/\mathbf{Z}). The idea of analytic continuation plays a key role in obtaining this Riemann-Roch result, as well as its non-unitary extension.

In this paper, we show that by using the idea of analytic continuation, one can construct the \mathbf{C}/\mathbf{Z} component of $\bar{\eta}(D^{E\otimes F})$ directly, without passing to analysis of non-self-adjoint operators, in the case where F is a non-unitary flat vector bundle. Consequently, this leads to a direct construction of $\rho(D^{E\otimes F})$ in this case. We will use a deformation introduced in [9] for flat connections in our construction.

In the next section, we will first recall the above mentioned deformation from [9] and then give our construction of $\bar{\eta}(D^{E\otimes F})$ mod \mathbf{Z} and $\rho(D^{E\otimes F})\in\mathbf{C}/\mathbf{Z}$ in the case where F is a non-unitary flat vector bundle.

2 The η and ρ Invariants Associated to Non-unitary Flat Vector Bundles

This section is organized as follows. In Subsection 2.1, we construct certain secondary characteristic forms and classes associated to non-unitary flat vector bundles. In Subsection 2.2, we present our construction of the mod \mathbf{Z} component of the reduced η -invariant, as well as the ρ -invariant, associated to non-unitary flat vector bundles. Finally, we include some further remarks in Subsection 2.3.

2.1 Chern-Simons classes and flat vector bundles

We fix a square root of $\sqrt{-1}$ and let $\varphi: \Lambda(T^*M) \to \Lambda(T^*M)$ be the homomorphism defined by $\varphi: \omega \in \Lambda^i(T^*M) \to (2\pi\sqrt{-1})^{-i/2}\omega$. The formulas in what follows will not depend on the choice of the square root of $\sqrt{-1}$.

If W is a complex vector bundles over M and ∇_0^W , ∇_1^W are two connections on W. Let W_t , $0 \le t \le 1$, be a smooth path of connections on W connecting ∇_0^W and ∇_1^W . We define Chern-Simons form $CS(\nabla_0^W, \nabla_1^W)$ to be the differential form given by

$$CS(\nabla_0^W, \nabla_1^W) = -\left(\frac{1}{2\pi\sqrt{-1}}\right)^{\frac{1}{2}}\varphi \int_0^1 Tr\left[\frac{\partial \nabla_t^W}{\partial t} \exp(-(\nabla_t^W)^2)\right] dt. \tag{2.1}$$

Then (cf. [10, Chapter 1])

$$d\operatorname{CS}(\nabla_0^W, \nabla_1^W) = \operatorname{ch}(W, \nabla_1^W) - \operatorname{ch}(W, \nabla_0^W). \tag{2.2}$$

Moreover, it is well known that up to exact forms, $CS(\nabla_0^W, \nabla_1^W)$ does not depend on the path of connections on W connecting ∇_0^W and ∇_1^W .

Let (F, ∇^F) be a flat vector bundle carrying the flat connection ∇^F . Let g^F be a Hermitian metric on F. We do not assume that ∇^F preserves g^F . Let $(\nabla^F)^*$ be the adjoint connection of ∇^F with respect to g^F .

From [8, (4.1), (4.2)] and $[7, \S 1, (g)]$, one has

$$(\nabla^F)^* = \nabla^F + \omega(F, g^F) \tag{2.3}$$

with

$$\omega(F, g^F) = (g^F)^{-1}(\nabla^F g^F). \tag{2.4}$$

Then

$$\nabla^{F,e} = \nabla^F + \frac{1}{2}\omega(F, g^F) \tag{2.5}$$

is a Hermitian connection on (F, g^F) (cf. [7, (1.33)] and [8, (4.3)]).

Following [9, (2.47)], for any $r \in \mathbb{C}$, set

$$\nabla^{F,e,(r)} = \nabla^{F,e} + \frac{\sqrt{-1}\,r}{2}\omega(F,g^F). \tag{2.6}$$

Then for any $r \in \mathbf{R}$, $\nabla^{F,e,(r)}$ is a Hermitian connection on (F, g^F) .

On the other hand, following [7, (0.2)], for any integer $j \geq 0$, let $c_{2j+1}(F, g^F)$ be the Chern form defined by

$$c_{2j+1}(F, g^F) = (2\pi\sqrt{-1})^{-j} 2^{-(2j+1)} \text{Tr}[\omega^{2j+1}(F, g^F)].$$
(2.7)

Then $c_{2j+1}(F, g^F)$ is a closed form on M. Let $c_{2j+1}(F)$ be the associated cohomology class in $H^{2j+1}(M, \mathbf{R})$, which does not depend on the choice of g^F .

For any $j \geq 0$ and $r \in \mathbf{R}$, let $a_i(r) \in \mathbf{R}$ be defined as

$$a_j(r) = \int_0^1 (1 + u^2 r^2)^j du.$$
 (2.8)

With these notation we can now state the following result first proved in [9, Lemma 2.12].

Proposition 2.1 The following identity in $H^{\text{odd}}(M, \mathbf{R})$ holds for any $r \in \mathbf{R}$,

$$CS(\nabla^{F,e}, \nabla^{F,e,(r)}) = -\frac{r}{2\pi} \sum_{j=0}^{+\infty} \frac{a_j(r)}{j!} c_{2j+1}(F).$$
 (2.9)

2.2 η and ρ invariants associated to flat vector bundles

We now make the same assumptions as in the beginning of Section 1, except that we no longer assume ∇^F there is unitary.

For any $r \in \mathbf{C}$, let

$$D^{E\otimes F}(r):\Gamma(S(TM)\otimes E\otimes F)\longrightarrow \Gamma(S(TM)\otimes E\otimes F) \tag{2.10}$$

denote the Dirac operator associated to the connection $\nabla^{F,e,(r)}$ on F. Since when $r \in \mathbf{R}$, $\nabla^{F,e,(r)}$ is Hermitian on (F,g^F) , $D^{E\otimes F}(r)$ is formally self-adjoint and one can define the associated reduced η -invariant as in (1.4).

By the variation formula for the reduced η -invariant (cf. [1, 6]), one gets that for any $r \in \mathbf{R}$,

$$\bar{\eta}(D^{E\otimes F}(r)) - \bar{\eta}(D^{E\otimes F}(0)) \equiv \int_{M} \widehat{A}(TM)\operatorname{ch}(E)\operatorname{CS}(\nabla^{F,e}, \nabla^{F,e,(r)}) \quad \operatorname{mod} \mathbf{Z}, \tag{2.11}$$

where \widehat{A} and ch are standard notations for the Hirzebruch \widehat{A} -class and Chern character respectively (cf. [10, Chapter 1]).

Let $D^{E\otimes F,e}$ denote the Dirac operator $D^{E\otimes F}(0)$.

From (2.9) and (2.11), one gets that for any $r \in \mathbf{R}$,

$$\bar{\eta}(D^{E\otimes F}(r)) \equiv \bar{\eta}(D^{E\otimes F,e}) - \frac{r}{2\pi} \int_{M} \widehat{A}(TM) \operatorname{ch}(E) \sum_{j=0}^{+\infty} \frac{a_{j}(r)}{j!} c_{2j+1}(F) \mod \mathbf{Z}.$$
 (2.12)

Recall that even though when $\text{Im}(r) \neq 0$, $D^{E\otimes F}(r)$ might not be formally self-adjoint, the η -invariant can still be defined, as outlined in [3, p. 93]. On the other hand, from (2.5) and (2.6), one sees that

$$\nabla^F = \nabla^{F,e,(\sqrt{-1})}. (2.13)$$

We denote the associated Dirac operator $D^{E\otimes F}(\sqrt{-1})$ by $D^{E\otimes F}$.

We also recall that

$$\int_0^1 (1 - u^2)^j du = \frac{2^{2j} (j!)^2}{(2j+1)!}.$$
 (2.14)

We can now state the main result of this paper as follows.

Theorem 2.2 Formula (2.12) holds indeed for any $r \in \mathbb{C}$. In particular, one has

$$\bar{\eta}(D^{E\otimes F}) \equiv \bar{\eta}(D^{E\otimes F,e}) - \frac{\sqrt{-1}}{2\pi} \int_{M} \widehat{A}(TM) \operatorname{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j} j!}{(2j+1)!} c_{2j+1}(F) \mod \mathbf{Z}.$$
 (2.15)

Equivalently,

$$\operatorname{Re}\left(\bar{\eta}(D^{E\otimes F})\right) \equiv \bar{\eta}(D^{E\otimes F,e}) \mod \mathbf{Z},$$

$$\operatorname{Im}\left(\bar{\eta}(D^{E\otimes F})\right) = -\frac{1}{2\pi} \int_{M} \widehat{A}(TM) \operatorname{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j}j!}{(2j+1)!} c_{2j+1}(F). \tag{2.16}$$

Proof Clearly, the right-hand side of (2.12) is a holomorphic function in $r \in \mathbb{C}$. On the other hand, by [3, p. 93], $\bar{\eta}(D^{E\otimes F}(r))$ mod **Z** is also holomorphic in $r \in \mathbb{C}$. By (2.12) and the uniqueness of the analytic continuation, one sees that (2.12) holds indeed for any $r \in \mathbb{C}$. In particular, by putting together (2.12) and (2.13), one gets (2.15).

Recall that when ∇^F preserves g^F , the ρ -invariant has been defined in (1.5). Now if we no longer assume that ∇^F preserves g^F , then by Theorem 2.2, one sees that one gets the following formula of the associated (extended) ρ -invariant.

Corollary 2.3 The following identity holds:

$$\rho(D^{E\otimes F}) \equiv \bar{\eta}(D^{E\otimes F,e}) - \operatorname{rk}(F)\,\bar{\eta}(D^E)$$
$$-\frac{\sqrt{-1}}{2\pi} \int_M \widehat{A}(TM)\operatorname{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j}j!}{(2j+1)!} c_{2j+1}(F) \mod \mathbf{Z}. \tag{2.17}$$

Equivalently,

$$\operatorname{Re}\left(\rho(D^{E\otimes F})\right) \equiv \bar{\eta}(D^{E\otimes F,e}) - \operatorname{rk}(F)\,\bar{\eta}(D^{E}) \quad \operatorname{mod} \mathbf{Z},$$

$$\operatorname{Im}\left(\rho(D^{E\otimes F})\right) = -\frac{1}{2\pi} \int_{M} \widehat{A}(TM)\operatorname{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j}j!}{(2j+1)!} c_{2j+1}(F). \tag{2.18}$$

It is pointed out in [3] that the Riemann-Roch formula proved in [3, (5.3)] still holds for $\rho(D^{E\otimes F})$ in the case where ∇^F does not preserve g^F . One way to understand this is that the argument in the proof of [3, (5.3)] given in [3] works line by line to give a K-theoretic interpretation of $\bar{\eta}(D^{E\otimes F,e}) - \text{rk}(F)\bar{\eta}(D^E)$. By (2.17) it then gives such an interpretation for $\rho(D^{E\otimes F})$.

2.3 Further remarks

Remark 2.4 The argument in proving Theorem 2.2 works indeed for any twisted vector bundles F, not necessary a flat vector bundle. This gives a direct formula for the mod \mathbf{Z} part of the η -invariant for non-self-adjoint Dirac operators.

Remark 2.5 In [11, Theorem 2.2], a K-theoretic formula for $D^{E\otimes F}(r)$ mod ${\bf Z}$ has been given in the $r\in {\bf R}$ case. As a consequence, one gets an alternate K-theoretic formula for $\rho(D^{E\otimes F})$ in [11, (4.6)] which holds in the case where ∇^F preserves g^F . By combining the arguments in [11] with Theorem 2.2 proved above, one can indeed extend [11, Theorem 2.2] and [11, (4.6)] to the case where ∇^F might not preserve g^F . We leave this to the interested reader. Here we only mention that this will provide an alternate K-theoretic interpretation of ρ -invariants in the case where ∇^F does not preserve g^F .

Remark 2.6 We refer to [9] where we have employed the deformation (2.6) to study and generalize certain Riemann-Roch-Grothendieck formulas due to Bismut-Lott [7] and Bismut [5], for flat vector bundles over fibred spaces.

References

- [1] Atiyah, M. F., Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian geometry I, *Proc. Camb. Philos. Soc.*, **77**, 1975, 43–69.
- [2] Atiyah, M. F., Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian geometry II, Proc. Camb. Philos. Soc., 78, 1975, 405–432.
- [3] Atiyah, M. F., Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian geometry III, Proc. Camb. Philos. Soc., 79, 1976, 71–99.
- [4] Berline, N., Getzler, E. and Vergne, M., Heat Kernels and the Dirac Operator, Grundl. Math. Wiss., 298, Springer, Berlin-Heidelberg-New York, 1992.
- [5] Bismut, J.-M., Eta invariants, differential characters and flat vector bundles (with an appendix by K. Corlette and H. Esnault), *Chin. Ann. Math.*, **26B**(1), 2005, 15–44.
- [6] Bismut, J.-M. and Freed, D. S., The analysis of elliptic families, II, Commun. Math. Phys., 107, 1986, 103–163.
- [7] Bismut, J.-M. and Lott, J., Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., 8, 1995, 291–363.
- [8] Bismut, J.-M. and Zhang, W., An extension of a theorem by Cheeger and Müller, Astérisque, n. 205, Paris, 1992.
- [9] Ma, X. and Zhang, W., Eta-invariants, torsion forms and flat vector bundles, preprint. math.DG/0405599.
- [10] Zhang, W., Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracks in Mathematics, Vol. 4, World Scientific, Singapore, 2001.
- [11] Zhang, W., η-Invariant and Chern-Simons current, Chin. Ann. Math., 26B(1), 2005, 45–56.