H. Usc FIC

task# task # warps 1 sangle 1st n_ mutiply 2 nd n-1 3 " 3rd n-2 i i i n-r+
$N(n-1)(n-2) (n-r+1) = \frac{n!}{(n-r)!}$ $\sum_{n=1}^{\infty} n(n-1) (n-r+1) + x - x - x - x - x - x - x - x - x - x$
Ex. I form a committee from (0) student of size = 3 where the committee's 3 members are Pres, VP, treasurer
How many ways can I form this committee? Sample w/o replacement b/c cart have some student twice

Apply formula:

$$\frac{10!}{(10-3)!} = \frac{10!}{7!} = \frac{10.9.8.7!}{10.9.8} = 10.9.8$$

Ex. Lotto.

I have a basket w/ 25 numbered balls

Draw 4 of them. all draw equally likely

Guess: (1/3/22) (7)

what's the prob- I correctly quess?

$$P(E) = \frac{(E)}{100}$$

$$P(E) = \frac{|E|}{|S|}$$

$$E = \{03(27)\} \text{ so } |E| = 1$$

$$S = \{\text{ all possible draws}\}$$

$$|S| = \frac{25!}{(254)!} = \frac{25!}{21!} = 25.24.23.22$$

$$P(E) = \frac{1}{25.24.23.22}$$

Theorem: Sampling W repl. and W ordering

The number of ways to sample r

from n w/repl. and w/ ordering is

Lecture Notes Page 5

So
$$(# unordud) = \frac{1}{r!} (# ordered)$$

$$= \frac{1}{r!} \frac{n!}{n!}$$

(n-r);
Theorem: Unordenel W/o Repl.
I can sample r from 2 Wo repl.
w/o order in
$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{(n-r)!r!}$
Binomial Coefficient
read: n choose r
Ex, I have N=(0) professors, how many Co-equal committees can I form of Size (=4)?
Semple w/o order b/c (o-equal w/o replacement b/c Cant have same prof. twice
I can de this in

Ex. How mony 5- (ard poken hands

Can I form a deck of 52 cards)

(52) ~ 2,5 mil

Ex. I have a jar w/ 4 marbles of colors yellow, blue, orange, green.

(all choices expedly likely)

What is the prob I have

a (y) and (b) in my choice?

E = S(y) and (b) 3 = S(y,b,o), S(y,b,g) (E = 2)

$$S = \{ \text{ all selections} \}$$

$$|S| = \binom{4}{3} = \frac{4!}{3!(4 - 3)!} = \frac{4!}{3!} = 4.$$

$$|\text{Hence } P(E) = \frac{|E|}{|S|} = \frac{2}{4} = \frac{1}{2}.$$

$$|\text{Sampling Unordered } w| \text{ Repl.})$$

$$|\text{Censider } n = 3, r = 2$$

$$|\text{O(a)}| = \frac{1}{4} \text{ ordered:}$$

$$|\text{(2,1)}| = \frac{1}{3!} = \frac{1}{4} = \frac{1}{2}.$$

$$|\text{U(a)}| = \frac{1}{3!} = \frac{1}{4} = \frac{1}{2}.$$

$$|\text{U(a)}| = \frac{1}{3!} = \frac{1}{4!} =$$

$$\frac{(n+r-1)!}{r!(n-1)!} = \binom{n+r-1}{r} = \binom{n+r-1}{n-1}$$

Ex. 10 passengers on a bus route w/5 Stops. The driver records the number of people that get off at cach stop.

Stop #

Stop #

Stop #

1 0

2 3

3 1

4 2
$$\Rightarrow$$
 $\{2,2,2,3,4,4,5,5,5,5,5\}$

Ex. Jar w/ 4 marbles: y, b, o, g w/replacement

$$Co(g) = 100 \text{ wheet's the prob. my sample}$$

$$Co(g) = 100 \text{ includes both y and b}$$

$$E = \{y \text{ and b}\} = \{34,5,03,59,593,59,593\}$$

$$So(E = 4)$$

$$Co(g) = 100 \text{ and b}$$

$$Co($$