

Features

- · High speed
 - -10 ns
- Fast t_{DOE}
- · CMOS for optimum speed/power
- · Low active power
 - -467 mW (max, 12 ns "L" version)
- · Low standby power
 - -0.275 mW (max, "L" version)
- 2V data retention ("L" version only)
- · Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C199 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion

32K x 8 Static RAM

is provided by an active LOW Chip Enable (\overline{CE}) and active LOW Output Enable (\overline{OE}) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 81% when deselected. The CY7C199 is in the standard 300-mil-wide DIP, SOJ, and LCC packages.

An active LOW Write Enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O_0) through I/O_7 is written into the memory location addressed by the address present on the address pins (A_0) through A_{14} . Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. A die coat is used to improve alpha immunity.

Selection Guide

		7C199 -8	7C199 -10	7C199 -12	7C199 -15	7C199 -20	7C199 -25	7C199 -35	7C199 -45	Unit
Maximum Access Time		8	10	12	15	20	25	35	45	ns
Maximum Operating Current		120	110	160	155	150	150	140	140	mΑ
	L		90	90	90	90	80	70		
Maximum CMOS Standby Current		0.5	0.5	10	10	10	10	10	10	mΑ
	L		0.05	0.05	0.05	0.05	0.05	0.05		

Shaded area contains advance information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential (Pin 28 to Pin 14)-0.5V to +7.0V

DC Voltage Applied to Outputs in High-Z State^[1].....-0.5V to V_{CC} + 0.5V

DC Input Voltage^[1].....-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	–40°C to +85°C	5V ± 10%
Military	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range (-8, -10, -12, -15)[3]

				7C′	199-8	7C1	99-10	7C1	99-12	7C1	99-15	
Parameter	Description	Test Condition	Test Conditions		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} =–4.0 mA		2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$		- 5	+5	- 5	+5	- 5	+5	- 5	+5	μΑ
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Disabled	GND <u><</u> V _O <u><</u> V _{CC} , Output Disabled		+5	- 5	+5	- 5	+5	- 5	+5	μΑ
I _{CC}	V _{CC} Operating Supply	V _{CC} = Max.,	Com'l		120		110		160		155	mΑ
	Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	L				85		85		100	mA
		I - IMAX - IMRC	Mil								180	mA
I _{SB1}	Automatic CE	Max. V _{CC} , CE ≥	Com'l		5		5		30		30	mA
	Power-down Current— TTL Inputs	$V_{IH}, V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$	L				5		5		5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		0.5		0.5		10		10	mA
	Power-down Current— CMOS Inputs	$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$	L		0.05		0.05		0.05		0.05	mA
	Civico iriputo	or $V_{IN} \le 0.3V$, $f = 0$	Mil								15	mA

Electrical Characteristics Over the Operating Range (-20, -25, -35, -45) [3]

				7C1	99-20	7C1	99-25	7C1	99-35	7C199-45		
Parameter	Description	Test Conditio	Test Conditions		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8$	3.0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3V	V						
V _{IL}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		- 5	+5	μΑ						
I _{OZ}	Output Leakage Current	GND $\leq V_1 \leq V_{CC}$, Ou Disabled	ıtput	- 5	+5	μΑ						
I _{CC}	V _{CC} Operating Supply	V _{CC} = Max.,	Com'l		150		150		140		140	mA
	Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	L		90		80		70		70	mA
		I - IMAX - IMRC	Mil		170		150		150		150	mA

Shaded area contains advance information.

Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. T_A is the "instant on" case temperature.
- 3. See the last page of this specification for Group A subgroup testing information.

Electrical Characteristics Over the Operating Range (-20, -25, -35, -45) (continued)^[3]

				7C1	199-20 7C199-25		99-25	7C199-35		7C199-45		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{JH}$,	Com'l		30		30		25		25	mΑ
	Power-down Current— TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$ $f = f_{MAX}$	L		5		5		5		5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		10		10		10		10	mA
	Power-down Current— CMOS Inputs	$\label{eq:max_vcc} \begin{split} & \underline{\text{Max. V}_{\text{CC}}}, \\ & \underline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V} \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V} \text{ or} \end{split}$	L		0.05		0.05		0.05		0.05	μΑ
	OMOG IIIpalo	$V_{IN} \le 0.3V, f=0$	Mil		15		15		15		15	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms^[5]

Data Retention Characteristics Over the Operating Range (L-version only)

Parameter	Description		Conditions ^[6]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Com'l	$V_{CC} = V_{DR} = 2.0V$, $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le V_{CC} - 0.3V$			μΑ
		Com'l L	$0.3V$, $v_{IN} \ge v_{CC} - 0.3V$ of $v_{IN} \le 0.3V$		10	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Ret	ention Time		0		ns
t _R ^[5]	Operation Recovery Time			200		μs

Data Retention Waveform

Note:

- 4. Tested initially and after any design or process changes that may affect these parameters.
 5. t_R≤ 3 ns for the -12 and the -15 speeds. t_R≤ 5 ns for the -20 and slower speeds
 6. No input may exceed V_{CC} + 0.5V.

Switching Characteristics Over the Operating Range (-8, -10, -12, -15) [3, 7]

		7C1	199-8	7C1	99-10	7C1	99-12	7C199-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle									•	
t _{RC}	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address to Data Valid		8		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		8		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		4.5		5		5		7	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		5		5		5		7	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8,9]		4		5		5		7	ns
t _{PU}	CE LOW to Power-up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-down		8		10		12		15	ns
Write Cycle ^{[10}	0, 11]	•	•	•		•		•	•	•
t _{WC}	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE LOW to Write End	7		7		9		10		ns
t _{AW}	Address Set-up to Write End	7		7		9		10		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	7		7		8		9		ns
t _{SD}	Data Set-up to Write End	5		5		8		9		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High-Z ^[9]		5		6		7		7	ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		3		3		3		ns

Switching Characteristics Over the Operating Range (-20, -25, -35, -45)^[3, 7]

		7C19	99-20	7C1	99-25	7C1	99-35	7C199-45		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle					•	•	•	•	•	I.
t _{RC}	Read Cycle Time	20		25		35		45		ns
t _{AA}	Address to Data Valid		20		25		35		45	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		20		25		35		45	ns
t _{DOE}	OE LOW to Data Valid		9		10		16		16	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		9		11		15		15	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		9		11		15		15	ns
t _{PU}	CE LOW to Power-up	0		0		0		0		ns

Shaded area contains advance information.

- 7. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 9. t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 10. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 11. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Characteristics Over the Operating Range (-20, -25, -35, -45)[3, 7]

		7C19	99-20	7C1	99-25	7C19	99-35	7C19	99-45	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PD}	CE HIGH to Power-down		20		20		20		25	ns
Write Cycle ^[10,]	11]						•			
t _{WC}	Write Cycle Time	20		25		35		45		ns
t _{SCE}	CE LOW to Write End	15		18		22		22		ns
t _{AW}	Address Set-up to Write End	15		20		30		40		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	15		18		22		22		ns
t _{SD}	Data Set-up to Write End	10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High-Z ^[9]		10		11		15		15	ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		3		3		3		ns

Switching Waveforms

Read Cycle No. 1^[12, 13]

Read Cycle No. 2 [13, 14]

Notes:

- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[10, 15, 16]

Write Cycle No. 2 (CE Controlled)^[10, 15, 16]

Write Cycle No. 3 (WE Controlled $\overline{\text{OE}}$ LOW)[11, 16]

Notes:

15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
8	CY7C199-8VC	V21	28-Lead Molded SOJ	Commercial	
	CY7C199-8ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-8VC	V21	28-Lead Molded SOJ		
	CY7C199L-8ZC	Z28	28-Lead Thin Small Outline Package		
10	CY7C199-10VC	V21	28-Lead Molded SOJ	Commercial	
	CY7C199-10ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-10VC	V21	28-Lead Molded SOJ		
	CY7C199L-10ZC Z2		28-Lead Thin Small Outline Package		
	CY7C199-10VI	V21	V21 28-Lead Molded SOJ Ind		
	CY7C199-10ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-10VI	V21	28-Lead Molded SOJ		
	CY7C199L-10ZI	Z28	28-Lead Thin Small Outline Package		
12	CY7C199-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial	
	CY7C199-12VC	V21	28-Lead Molded SOJ		
	CY7C199-12ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-12PC	P21	28-Lead (300-Mil) Molded DIP		
	CY7C199L-12VC	V21	28-Lead Molded SOJ		
	CY7C199L-12ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199-12VI	V21	28-Lead Molded SOJ	Industrial	
	CY7C199-12ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-12VI	V21	28-Lead Molded SOJ		
	CY7C199L-12ZI	Z28	28-Lead Thin Small Outline Package		
15	CY7C199-15PC	7C199-15PC P21 28-Lead (300-Mil) Molded DIP		Commercial	
	CY7C199-15VC	V21	28-Lead Molded SOJ		
	CY7C199-15ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-15PC	P21	28-Lead (300-Mil) Molded DIP		
	CY7C199L-15VC	V21	28-Lead Molded SOJ		
	CY7C199L-15ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199-15VI	V21	28-Lead Molded SOJ	Industrial	
	CY7C199-15ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199-15DMB	Y7C199-15DMB D22 28-Lead (300-Mil) CerDIP		Military	
	CY7C199-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier		
	CY7C199L-15DMB	D22	28-Lead (300-Mil) CerDIP		
	CY7C199L-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier		
20	CY7C199-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial	
	CY7C199-20VC	V21	28-Lead Molded SOJ		
	CY7C199-20ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199L-20PC	P21	28-Lead (300-Mil) Molded DIP		
	CY7C199L-20VC	V21	28-Lead Molded SOJ		
	CY7C199L-20ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199-20VI	V21	28-Lead Molded SOJ	Industrial	
	CY7C199-20ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199-20DMB	D22	28-Lead (300-Mil) CerDIP	Military	
	CY7C199-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier		
	CY7C199L-20DMB	D22	28-Lead (300-Mil) CerDIP		
	CY7C199L-20LMB				

Shaded area contains advance information. Contact your Cypress sales representative for availability

Ordering Information (continued)

Speed (ns)			Package Type	Operating Range	
25	CY7C199-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial	
	CY7C199-25SC	S21	28-Lead Molded SOIC		
	CY7C199-25VC	V21	28-Lead Molded SOJ		
	CY7C199-25ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199-25SI	S21	28-Lead Molded SOIC	Industrial	
	CY7C199-25VI	V21	28-Lead Molded SOJ		
	CY7C199-25ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199-25DMB	D22	28-Lead (300-Mil) CerDIP	Military	
	CY7C199-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier		
35	CY7C199-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial	
	CY7C199-35SC	S21	28-Lead Molded SOIC		
	CY7C199-35VC	V21	28-Lead Molded SOJ		
	CY7C199-35ZC	Z28	28-Lead Thin Small Outline Package		
	CY7C199-35SI	S21	28-Lead Molded SOIC	Industrial	
	CY7C199-35VI	V21	28-Lead Molded SOJ		
	CY7C199-35ZI	Z28	28-Lead Thin Small Outline Package		
	CY7C199-35DMB	D22	28-Lead (300-Mil) CerDIP	Military	
	CY7C199-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier		
45	CY7C199-45DMB D22		28-Lead (300-Mil) CerDIP	Military	
	CY7C199-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier		

Shaded area contains advance information. Contact your Cypress sales representative for availability

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
l _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups	
Read Cycle		
t _{RC}	7, 8, 9, 10, 11	
t _{AA}	7, 8, 9, 10, 11	
t _{OHA}	7, 8, 9, 10, 11	
t _{ACE}	7, 8, 9, 10, 11	
t _{DOE}	7, 8, 9, 10, 11	
Write Cycle		
t _{WC}	7, 8, 9, 10, 11	
t _{AA}	7, 8, 9, 10, 11	
t _{AW}	7, 8, 9, 10, 11	
t _{HA}	7, 8, 9, 10, 11	
t _{SA}	7, 8, 9, 10, 11	
t _{PWE}	7, 8, 9, 10, 11	
t _{SD}	7, 8, 9, 10, 11	
t _{HD}	7, 8, 9, 10, 11	

Package Diagrams

28-pin Rectangular Leadless Chip Carrier L54 MIL-STD-183\$C-11A

Package Diagrams (continued)

28-pin (300-Mil) Molded DIP P21

28-pin (300-Mil) Molded SOIC S21

51-85031-B

Package Diagrams (continued)

28-Lead Thin Small Outline Package Type 1 (8x13.4 mm) Z28

0.025 MIN.

NDTE: ORIENTATION I.D MAY BE LOCATED EITHER
AS SHOWN IN OPTION 1 OR OPTION 2

All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY7C199 32K x 8 Static RAM Document Number: 38-05160				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109971	10/28/01	SZV	Change from Spec number: 38-00239 to 38-05160
*A	121730	01/09/02	DFP	Updated Product Offering table.