

Fig. 1 Cleavage and Polyadenylation Process For The
SV40 early Poly(A) site

A. CTTATCGATACCGTCGAAACTTGTATTGCAGCTATAATGGTTACAAATAAGCAATAGCAT
CACAAATTCACAAATAAAGCATTTCACACTGCATTCTAGTTGGTTGTCCAAACTCATCA
ATGTATCTTATCATGTC (Seq ID NO:1) Cleavage site

B. AAUAAA
GCA

C. GCAaaaaaaaaaaaaaaaaaaaaaa (Seq ID NO:18)

+ Upstream and downstream
cleavage-polyadenylation elements

(Seq ID NO:2)

Fig 2 E1A transcription control region

► ITR	CATCATCAAT	AATATAACCTT	ATTTTGGATT	GAAGCCAATA	TGATAATGAG	GGGGTGGAGT	60
	TTGTGACGTG	GCGCGGGGCG	TGGGAACGGG	GC ^{GGG} ITGACG	TAGTAGTGTG	GCGGAAGTGT	120
	GATGTTGCAA	GTGTGGCGGA	ACACATGTAA	GCGAC ^{GGG} ATG	^{AP3 DNA BS} TGGCAAAGT	GAC G TTTTTG	180
	GTGTGCGCCG	GTGTACACAG	GAAGTGACAA	TTTTCGCGCG	GTTTTAGGCG	GATGTTGTAG	240
	TAAATTGGG	CGTAACCGAG	TAAGATTTGG	CCATTTCGCG	GGGAAA ^X ACTG	AATAAGAGGA	300
	AGTGAATCT	GAATAATT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA	GGGCCGCGG	360
	GACTTGACC	GT ^{TT} TACGTGG	AGACTCGCCC	AGGTGTTTT	CTCAGGTGTT	TTC CGC GTTC	420
	CGGGTCAAAG	TTGGCGTTT	ATTATTATAG	TCAGCTGACG	TGTAGTGTAT	TTA TAC CCGG	480
	TGAGTTCCCTC	AAGAGGCCAC	TCTTGAGTGC	CAGCGAGTAG	AGTTTCTCC	TCC GAG CCGC	540
	TCCGACACCG	GGACTGAAA A	TGAGACATAT	TATCTGCCAC	GGAGGTGTTA	TTACCGAAGA	600
•	Enhancer elements	▽—▽	dl 103-551	Ar6			
×	E2F-motif	▽—▽	dl 189-551				
+	Packaging elements	▼—▼	dl 357-551	Ar5			

Figure 3. Sequence of Ar6pAE2fF from left and right ends of viral DNA

A. Nucleotides 1-1802 containing ITR, polyA, E2F-1 promoter, E1a and a portion of the E1b gene
(Seq ID NO:3)

1 CATCATCAATAATACCTTATTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGT
+-----ITR-----

61 TTGTGACGTGGCGCGGGCGTGGAACGGGGCGGGTGACGTAGGGCGCGATCAAGCTTAT
+-----ITR-----+-----

121 CGATACCGTCGAAACTTGTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATT
-----polyA-----

181 ACAAAATTACAAATAAAGCATTTCCTACTGCATTCTAGTTGTGGTTGTCCAAACTC
-----polyA-----

241 ATCAATGTATCTTATCATGTCTGGATCCGCGCCGCTAGCGATCATCCGGACAAAGCCTGC
-----+-----+-----

301 GCGCGCCCCGCCCGCCATTGGCGTACCGCCCCGCGCCGCCATCTCGCCCCCTCG
-----E2F-1 promoter-----

361 CCGCCGGTCCGGCGCTAAAGCCAATAGGAACCGCCGCCGTGTTCCCGTCACGGCCG
-----E2F-1 promoter-----

421 GGGCAGCCAATTGTGGCGCGCTGGCGCTCGTGGCTTTCGCGGAAAAAGGATTG
-----E2f-1 promoter-----

481 GCGCGTAAAAGTGGCCGGACTTGCAGGCAGCGCCGGGGCGGAGCGGGATCGAG
-----E2f-1 promoter-----

541 CCCTCGATGATATCAGATCATGGATCCGGTCGACTGAAAATGAGACATATTATCTGCC
-----+-----+-----

601 ACGGAGGTGTTATTACCGAAGAAATGGCCGCCAGTCTTGGACCAGCTGATCGAAGAGG
-----E1a gene-----

661 TACTGGCTGATAATCTCCACCTCCTAGCCATTGAAACCACCTACCCCTCACGAACGT
-----E1a gene-----

721 ATGATTAGACGTGACGGCCCCCGAAGATCCAACGAGGAGGCGGTTCGCAGATTTTC
-----E1a gene-----

781 CCGACTCTGTAATGTTGGCGGTGCAGGAAGGGATTGACTTACTCACTTTCCGCCGGCG
-----E1a gene-----

841 CCGGTTCTCCGGAGCCGCCTCACCTTCCGGCAGCCCGAGCAGCCGGAGCAGAGAGCCT
-----E1a gene-----

901 TGGGTCCGGTTCTATGCCAAACCTTGTACCGGAGGTGATCGATCTTACCTGCCACGAGG
-----E1a gene-----

961 CTGGCTTCACCCAGTGACGACGAGGATGAAGAGGGTGAGGAGTTGTGTTAGATTATG
-----E1a gene-----

1021 TGGAGCACCCGGGCACGGTTCAGGTCTTGTCAATTATCACCGGAGGAATACGGGGGACC
-----E1a gene-----

1081 CAGATATTATGTGTTCGCTTGCTATATGAGGACCTGTGGCATGTTGTCTACAGTAAGT
-----E1a gene-----

1141 GAAAATTATGGGCAGTGGGTGATAGAGTGGTGGGTTGGTGTGTAATTTTTTTTAAT
-----E1a gene-----

1201 TTTTACAGTTTGTGGTTAAAGAATTGTATTGTATTAAAGGTCTGTGTC
-----E1a gene-----

1261 TGAACCTGAGCCTGAGCCCGAGCCAGAACCGGAGCCTGCAAGACACTACCCGCCGTCTAA
-----E1a gene-----

1321 AATGGCGCCTGCTATCCTGAGACGCCGACATCACCTGTGTCTAGAGAATGCAATAGTAG
-----E1a gene-----

1381 TACGGATAGCTGTGACTCCGGTCCTCTAACACACCTCCTGAGATAACACCGGTGGTCCC
-----E1a gene-----

1441 GCTGTCCCCATTAAACCAAGTTGCCGTGAGAGTTGGTGGCGTCGCCAGGCTGTGGAATG
-----E1a gene-----

1501 TATCGAGGACTTGCTTAACGAGCCTGGCAACCTTGAGCTGTAAACGCCAG
-----E1a gene-----

1561 GCCATAAGGTGTAAACCTGTGATTGCGTGTGGTTACGCCTTGCTGAATGAGT
-----E1a gene-----

1621 TGATGTAAGTTAATAAAAGGGTGAGATAATGTTAACTTGCATGGCGTGTAAATGGGGC
-----+-----

1681 GGGGCTTAAAGGGTATATAATGCCCGTGGCTAATCTTGGTTACATCTGACCTCATGGA
-----E1b gene-----

1741 GGCTTGGGAGTGTGTTGGAAGATTCTGCTGTGCGTAACCTGCTGGAACAGAGCTCTAA
-----E1b gene-----

1801 CA
--

B. Nucleotides 33881-34412 containing packaging signal and ITR (Seq ID NO:4)

33881 AACCTACGCCAGAACGAAAGCCAAAAACCCACAACCTCCTCAAATCGTCACCTCCGT

33941 TTTCCCACGTTACGTCACTTCCCATTAAAGAATTCTACAATTCCCAACACATACA

34001 AGTTACTCCGCCCTAAAACCCTGGCGAGTCTCCACGTAAACGGTCAAAGTCCCCGCGGC
-----+-----
-----packaging signal-----

34061 CCTAGACAAATATTACCGCTATGAGTAACACAAAATTATTAGATTTCACTTCCTCTTA
-----+-----
-----packaging signal-----

34121 TTCAGTTTCCCGCGAAATGGCCAATCTIACACTCGTTACGCCAAATTACTACAACA
-----+-----
-----packaging signal-----

34181 TCCGCCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGCGCACACCAAAAACG
-----+-----

34241 TCACCTTGCCACATCCGTCGCTACATGTGTTCCGCCACACTTGCAACATCACACTTCC

34301 GCCACACTACTACGTACCCGCCCCGTTCCCACGCCCGCGCACGTACAAACTCCACC
-----+-----
-----ITR-----

34361 CCCTCATTATCATATTGGCTTCAATCCAAAATAAGGTATATTATGATGATG
-----+-----
-----ITR-----+-----

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Figure 4. Sequence of Ar6F from left end of viral DNA (Seq ID NO:5)

1 CATCATCAATAATACCTTATTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGT
+-----ITR-----

61 TTGTGACGTGGCGCGGGCGTGGAACGGGGCGGGTGACGTAGGGCGCGCCGCTAGCGAT
-----ITR-----+---MCS-----

121 ATCGGATCCC GGTCGACTGAAAATGAGACATATTATCTGCCACGGAGGTGTTATTACCGA
-----+-----Ela-----

181 AGAAATGGCCGCCAGTCTTTGGACCAGCTGATCGAAGAGGTACTGGCTGATAATCTTCC
-----Ela-----

241 ACCTCCTAGCCATTTGAACCACCTACCCTCACGAACGTATGATTAGACGTGACGGC
-----Ela-----

301 CCCCGAAGATCCCAACGAGGAGGCGGTTCGCAGATTTCGGACTCTGTAATGTTGGC
-----Ela-----

361 GGTGCAGGAAGGGATTGACTTACTCACTTTCCGCCGGCGCCGGTTCTCCGGAGCCGCC
-----Ela-----

421 TCACCTTCCGGCAGCCGAGCAGCCGGAGCAGAGAGCCTGGGTCCGGTTCTATGCC
-----Ela-----

481 AAACCTTGTACCGGAGGTGATCGATCTTACCTGCCACGAGGCTGGCTTCCACCCAGTGA
-----Ela-----

541 CGACGAGGATGAAGAGGGTGAGGAGTTGTGTTAGATTATGTGGAGCACCCGGGACGG
-----Ela-----

601 TTGCAGGTCTTGTCAATTACCCGGAGGAATACGGGGACCCAGATATTATGTGTTCGCT
-----Ela-----

Figure 5. Sequence of Ar6pAF from left end of viral DNA (Seq ID NO:6)

1 CATCATCAATAATACCTTATTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGT
+-----ITR-----
61 TTGTGACGTGGCGCGGGCGTGGAACGGGGCGGGTGACGTAGGGCGCGATCAAGCTTAT
-----ITR-----+-----
121 CGATACCGTCGAAACTTGTATTGCAGCTTATAATGGTTACAAATAAGCAATAGCATC
-----polyA-----
181 ACAAAATTCACAAATAAGCATTTCACACTGCATTCTAGTTGTGGTTGTCCAAACTC
-----polyA-----
241 ATCAATGTATCTTATCATGTCTGGATCCGCCGCTAGCGATATCGGATCCCGTCGACT
-----+-----+
301 GAAAATGAGACATATTATGCCACGGAGGTGTTATTACGAAGAAATGGCCGCCAGTCT
-----E1a-----
361 TTTGGACCAGCTGATCGAAGAGGTACTGGCTGATAATCTTCCACCTCCTAGCCATTTGA
-----E1a-----
421 ACCACCTACCCTTCACGAACTGTATGATTAGACGTGACGGCCCCGAAGATCCAACGA
-----E1a-----
481 GGAGGCAGTTTCGAGATTTCCGACTCTGTAATGTTGGCGGTGCAGGAAGGGATTGA
-----E1a-----
541 CTTACTCACTTTCCGCCGGCGCCCGTTCTCCGGAGCCGCCTCACCTTCCGGCAGCC
-----E1a-----
601 CGAGCAGCCGGAGCAGAGAGCCTGGGTCCGGTTCTATGCCAACCTGTACCGGAGGT
-----E1a-----

Figure 6. Schematic diagram of Ar6pAF and Ar6pAE2fF vectors

Fig. 7 Body weight change

Fig. 8 Minimizing nonspecific transactivation of E1a gene

Backbones generated:

Figure 9. Mean H460 tumor volume

Figure 10. Survival following intratumoral administration of vectors to H460 tumors

Figure 11. Mean Hep3B tumor volumes

13/73

14/73

Figure 12. Survival following intratumoral administration of vector to Hep3B tumors

Figure 13. Schematic diagram of adenovirus right donor plasmid pDR2F.

Figure 14. Schematic diagram of adenovirus right donor plasmid pDR2mGmF.

Figure 15. Schematic diagram of plasmid pG1mGmSvNa.

Figure 16. Schematic diagram of plasmid pG1NaSvBg.

Figure 17. Sequence of the murine GM-CSF cDNA (Seq ID NO:7) and protein (Seq ID NO:8).

7878 TTCCGGACAG ACCTCAATAA CTCTGTTTAC CAGAACAGGA GGTGAGCTTA
7928 GAAAACCCTT AGGGTATTAG GCCAAAGGCG CAGCTACTGT GGGGTTTATG
7978 AACAAATTCAA GCAACTCTAC GGGCTATTCT AATTCAAGTT TCTCTAGCCG
8028 GGCTGCAGGA ATTCAATGGC CGCTACCTAC AATGGCCCAC GAGAGAAAGG
M A H E R K
8078 CTAAGGTCTT GAGGAGGATG TGGCTGCAGA ATTTACTTT CCTGGGCATT
A K V L R R M W L Q N L L F L G I
8128 GTGGTCTACA GCCTCTCAGC ACCCACCCGC TCACCCATCA CTGTCACCCG
V V Y S L S A P T R S P I T V T
8178 GCCTTGGAAAG CATGTAGAGG CCATCAAAGA AGCCCTGAAC CTCCTGGATG
R P W K H V E A I K E A L N L L D
8228 ACATGCCTGT CACATTGAAT GAAGAGGTAG AAGTCGTCTC TAACGAGTTC
D M P V T L N E E V E V V S N E F
8278 TCCTTCAAGA AGCTAACATG TGTGCAGACC CGCCTGAAGA TATTGAGCA
S F K K L T C V Q T R L K I F E
8328 GGGTCTACGG GGCAATTCA CCAAACCTCAA GGGCGCCTTG AACATGACAG
Q G L R G N F T K L K G A L N M T
8378 CCAGCTACTA CCAGACATAC TGCCCCCAA CTCCGGAAAC GGACTGTGAA
A S Y Y Q T Y C P P T P E T D C E
8428 ACACAAGTTA CCACCTATGC GGATTTATA GACAGCCTTA AAACCTTTCT
T Q V T T Y A D F I D S L K T F
8478 GACTGATATC CCCTTGAAT GCAAAAAACC AGTCCAAAAA TGAGGAAGCC
L T D I P F E C K K P V Q K -
8528 CAGGCCAGCT CTGAATCCAG CTTCTCAGAC TGCTGCTTT GTGCCTGCGT
8578 AATGAGCCAG GAACTCGGAA TTTCTGCCTT AAAGGGACCA AGAGATGTGG
8628 CACAGGTAGT CGAATCAAGC TTATCGATAC CGTCGACCTC GACTAGATAA
8678 CTTCGTATAA TGTATGCTAT ACGAAGTTAT GCTAGAAATG GACGGAATTAA
8728 TTACAGAGCA GCGCCTGCTA GAAAGACGCA GGGCAGCGGC CGAGCAACAG
8778 CGCATGAATC AAGAGCTCCA AGACATGGTT AACTTGACCC AGTGCAAAA 8826

Figure 18. Pathway used to generate pAr6pAE2fmGmF plasmid.

Figure 19. MTS assay of oncolytic vectors on different tumor cell lines.

Figure 20. Sequence of the human GM-CSF cDNA (Seq ID NO:19) and protein (Seq ID NO:20).

28536 TATTAGGCCA AAGGCGCAGC TACTGTGGGG TTTATGAACA ATTCAAGCAA
28546 CTCTACGGGC TATTCTAATT CAGGTTTCTC TAGGATCTT CCGCAGCAGC

28636 CGCCACCATG TGGCTGCAGA GCCTGCTGCT CTTGGCACT GTGGCCTGCA
M W L Q S L L L L G T V A C

28686 GCATCTCTGC ACCCGCCCCGC TCGCCCAGCC CCAGCACGCA GCCCTGGGAG
S I S A P A R S P S P S T Q P W E

28736 CATGTGAATG CCATCCAGGA GGCCCGGCGT CTCCTGAACC TGAGTAGAGA
H V N A I Q E A R R L L N L S R

28786 CACTGCTGCT GAGATGAATG AAACAGTAGA AGTCATCTCA GAAATGTTG
D T A A E M N E T V E V I S E M F

28836 ACCTCCAGGA GCCGACCTGC CTACAGACCC GCCTGGAGCT GTACAAGCAG
D L Q E P T C L Q T R L E L Y K Q

28886 GGCTGCGGG GCAGCCTCAC CAAGCTCAAG GGCCCCCTGA CCATGATGGC
G L R G S L T K L K G P L T M M

28936 CAGCCACTAC AAGCAGCACT GCCCTCCAAC CCCGGAAACT TCCTGTGCAA
A S H Y K Q H C P P T P E T S C A

28986 CCCAGACTAT CACCTTGAA AGTTCAAAG AGAACCTGAA GGACTTTCTG
T Q T I T F E S F K E N L K D F L

29036 CTTGTCATCC CCTTTGACTG CTGGGAGCCA GTCCAGGAGT GAGTCGACAA
L V I P F D C W E P V Q E -

29086 GCTCTAGATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TGCTAGAAAT
29136 GGACGGAATT ATTACAGAGC AGCGCCTGCT AGAAAGACGC AGGGCAGCGG
29186 CCGAGCAACA GCCCATGAAT CAAGAGCTCC AAGACATGGT TAACTTGCAC
29236 CAGTGCAAAA GGGGTATCTT TTGTCTGGTA AAGCAGG 29273

Figure 21. Pathway used to generate pAr6pAE2fhGmF plasmid.

Figure 22. MTS assay of oncolytic vectors on different tumor cell lines.

Figure 23. Efficacy of GM-CSF armed oncolytic vectors in H460 tumor model

Figure 24. Efficacy of GM-CSF armed oncolytic vectors in Hep3B tumor model

Figure 25. Schematic Diagram of PCR and Overlap PCR for Δ gp19 Donor Plasmids

Figure 26. Schematic Diagram of Δgp19 Vectors

a. Sequence of native E3 region:

b. Sequence comparison of Δgp19 vectors at the junction between E3-6.7 and GM-CSF:

1. Δgp19a:

2. Δgp19b:

3. Δgp19c:

4. Δgp19d:

5. Δgp19b/IRES: cgccacccaagatga CAATT...IRES...atg.....(Seq ID NO:12)

Figure 27a. Pathway Used to Generate the pAr6pAE2f(E3+,mGm,Dg19b)F Large Plasmid

Figure 27b. Pathway Used to Generate the pAr6pAE2f(E3+,hGm,Dg19b)F Large Plasmid

31/73

Figure 28. MTS Assay of Δ gp19 mGM-CSF Vectors on H460 and Hep3B Tumor Cell Lines

A.

Figure 29. GM-CSF Expression Mediated by Δ gp19 GM-CSF Vectors in Infected H460 Cells Detected by ELISA

a. Mouse GM-CSF expression in H460 cells

b. Human GM-CSF expression in H460 cells

Figure 30. Anti-Tumor Activity of Oncolytic Adenoviruses (2×10^9 particles/injection) in the Hep3B Xenograft Subcutaneous Tumor Model

Figure 31. Anti-Tumor Activity of Oncolytic Adenoviruses in the H460 Xenograft Subcutaneous Tumor Model

Figure 32. Schematic diagram of adenovirus pDr5hGmF and pDr5mGmF right donor plasmids.

A. pDr5hGmF

B. pDr5mGmF

Figure 33. Pathway used to generate the pAr15pAE2fhGmF plasmid.

Figure 34. Pathway used to generate the pAr15pAE2fmGmF plasmid.

Figure 35. MTS assay of Ar15pAE2fhGmF and Ar15pAE2fmGmF vectors on H460 and Hep3B tumor cell lines.

Figure 36. GM-CSF expression mediated by Ar15pAE2fhGmF and Ar15pAE2fmGmF vectors in infected H460 cells detected by ELISA.

Figure 37. Schematic Diagram of PCR and Overlap PCR for Δ E3-14.7 plasmids

Figure 38. Schematic Diagram of Δ E3-14.7 Vectors

a. Sequence of native E3-14.5/E3-14.7 junction:

b. Sequence of the Ar16pAE2fhGm vector at the junction engineered between the E3-14.5 gene and human GM-CSF cDNA:

Figure 39. Pathway Used to Generate the pAr16pAE2fhGmF Large Plasmid

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

Figure 40. Pathway Used to Generate the pAr16pAE2fhGmF Large Plasmid

Figure 41. MTS Assay of Δ E3-14.7 hGM-CSF Vector on H460 Tumor Cell Line

Figure 42. GM-CSF Expression Mediated by Δ E3-14.7 hGM-CSF Vector (Ar16pAE2fhGmF) compared to Ar6pAE2fF, Ar6pAE2fhGmF and Ar6pAE2f(E3+,hGm,Dg19)F in Infected H460 Cells 24 Hours Post-Infection

Figure 43. Spread of adenoviruses in H460 xenograft tumors detected by FACS.

*: p<0.05 between Ar6pAE2fF or Ar6pAE2fE3F and Add/312, ANOVA
 #: p<0.05 between Ar6pAE2fF and Ar6pAE2fE3F vectors, ANOVA

4/7/73

Figure 44. Spread of adenoviruses in Hep3B xenograft tumors detected by FACS.

*: p<0.05 between Ar6pAE2fGmF or Ar6pAE2f(E3+,hGm,Dg19)F and Add/312, ANOVA
♦: p<0.05 between Ar6pAE2fGmF and Ar6pAE2f(E3+,hGm,Dg19)F vectors, ANOVA

Figure 45: Flowchart for construction of pAr17pAE2fFTrtex:

Figure 46: Plasmids used to create oncolytic vector Ar17pAE2fFTtex

Figure 47: Sequence of the right end of Ar17pAE2fFTrtex (Seq ID NO:17).

35351 agtgctaaaa agcgaccgaa atagcccgaa ggaatacata cccgcaggcg
35401 tagagacaac attacagccc ccataggagg tataacaaaa ttaataggag
35451 agaaaaacac ataaacaccc gaaaaacccct cctgcctagg caaaatacgca
35501 ccctcccgct ccagaacaac atacagcgct tcacagcggc agcctaacag
35551 tcagcttac cagtaaaaaa gaaaacctat taaaaaaaca ccactcggat
35601 caattcgcgg gggtggccgg ggcgcagggt tcccacgtgc gcagcaggac
35651 gcagcgcgtgc ctgaaactcg cgccgcgagg agagggcgaa gccqcgaaaa
35701 ggaaggggag gggctggggag ggcccggagg gggctggggcc ggggaccgg
35751 gaggggtcgg gacggggcg ggtccgcgcg gaggaggcg agcttggaaagg
35801 tgaaggggca ggacgggtgc cccgggtcccc agtcctccg ccacgtgggg
35851 ctaggatcct taattaagaa ttctacaatt cccaaacacat acaagttact
35901 ccgccttaaa accctggcg agtctccacg taaacggtca aagtccccgc
35951 ggccttagac aaatattacg cgctatgagt aacacaaaaat tattcagatt
36001 tcacttcctc ttatcagtt ttcccgcgaa aatggccaaa tcttactcgg
36051 ttacgccc aaatctaca acatccgcct aaaaccgcgc gaaaattgtc
36101 acttcctgtg tacaccggcg cacacaaaaa acgtcacttt tgccacatcc
36151 gtcgcttaca tgtgttccgc cacacttgc aacatcacact tccgcccacac
36201 tactacgtca cccgccccgt tcccacgcgc cgcgcacgt cacaactcc
36251 accccctcat tatcatattg gcttcaatcc aaaataaggt atattattga
36301 tgatg

Figure 48: Diagram of Ar17pAE2fFTrtex.

Figure 49. E4 expression is dependent on the hTERT promoter

Figure 50. E4 transcription start sites in Ar17pAE2fFTrtex (Seq ID NO:21)

35521	AT <u>ACAGGGT</u> TCACAGGGC AGCCTAACAG T <u>CAAGCTTAC</u> CAGTAAAAAA GAAAACCTAT
	Ext P1
35581	TAAAAAAACA CCA <u>CTCCGGAT</u> CAA <u>TT<u>CGCGG</u></u> GG <u>GTGGCCGG</u> GGCC <u>CAGGGCT</u> TCCC <u>ACAGTG</u> C
35641	<u>GCAGCAGGAC</u> <u>GCAGCGCTGC</u> <u>CTGAA<u>AACTCG</u></u> CG <u>CCGGAGG</u> AG <u>AGGGGG</u> GG <u>CGGGAAA</u>
35701	AGGA <u>ACGGGA</u> CGGG <u>CTGGGA</u> TGG <u>CCCGGAA</u> GGGG <u>CTGGGC</u> CGGG <u>GACCCG</u> GG <u>AAAGGGTC</u>
35761	GGGA <u>CGGGGC</u> GGG <u>GTTCGGC</u> GGG <u>GACGAGG</u> CGG <u>AGCTGGA</u> AGGT <u>GAAGGG</u> GG <u>AGGACCGG</u>
35821	T <u>GCCCGGGTC</u> CCC <u>AGTCCCT</u> CCC <u>CCACGTG</u> GGG <u>CTAGGAT</u> CCT <u>TAATTAA</u> GAAT <u>TCTACA</u>
35881	ATT <u>CCCAACA</u> CATA <u>CAAGT</u> ACT <u>CCGGCCT</u> AAA <u>ACCCCTGG</u> GCG

Figure 51. Efficacy of Ar17pAE2fFTTrtex in Hep3B model.

Figure 52. Effect of Ar17pAE2fTrtex on survival.

Figure 53. Body weight changes

Figure 54. Efficacy of Ar17pAE2fFTtex in Hep3B model.

Figure 55. Effect of Ar17pAE2fFTtex on survival.

Application #: Not Yet Assigned
Title: NOVEL ONCOLYTIC ADENOVIRAL VECTORS
Inventor: ENNIST et al.
Docket #: 14317024/GT1
(302) 258-4619
Attorney: GT1

59/73

Figure 56. Body weight changes

60/73

Figure 57 Dose-dependent anti-tumor efficacy

Figure 58. Individual tumor volumes following intravenous administration of Ar17pAE2fFTrex

Figure 59. Effect of Ar17pAE2fFTrtex on survival.

Figure 60. Body weight (% change)

Application #: Not Yet Assigned
Title: NOVEL ONCOLYTIC ADENOVIRAL VECTORS
Inventor: ENNIST et al.
Docket #: 43744AGN
(302) 258-4619
Attorney: GTI
64/73

Figure 61.

Figure 62. Effect on body weight in SCID mice

Figure 63. Improved isobologram with additivity envelope for Ar17pAE2fFTrtex and Taxol against Hep 3B and PC3M.2AC6 cells.

MR (ppc/nM)	Virus EC ₅₀ ^b	Chemo EC ₅₀ ^b	Effect
Virus alone	1	0	-
Chemo alone	0	1	-
8.3e-05	0.23	0.0043	synergy
3.3e-04	0.53	0.0024	synergy
1.3e-03	0.40	0.00046	synergy
5.3e-03	0.93	0.00027	synergy

MR (ppc/nM)	Virus EC ₅₀ ^b	Chemo EC ₅₀ ^b	Effect
Virus alone	1	0	-
Chemo alone	0	1	-
0.02	3.4	1.3	antagonism
0.2	0.71	0.028	synergy
2	0.75	0.003	synergy
20	0.97	0.0004	synergy

Figure 64. Improved isobologram with additivity envelope for Ar17pAE2fFTrex and Doxorubicin against Hep 3B and PC3M.2AC6 cells.

MR (ppc/nM)	Virus EC ₅₀ ^b	Chemo EC ₅₀ ^b	Effect
Virus alone	1	0	-
Chemo alone	0	1	-
1.3e-05	0.0028	0.60	synergy
5.0e-05	0.0078	0.42	synergy
2.0e-04	0.029	0.39	synergy
8.0e-04	0.11	0.36	synergy

MR (ppc/nM)	Virus EC ₅₀ ^b	Chemo EC ₅₀ ^b	Effect
Virus alone	1	0	-
Chemo alone	0	1	-
1	2.2	0.015	antagonism
10	0.92	6.1e-4	synergy
100	0.34	2.2e-5	synergy
1000	0.32	2.1e-6	synergy

Figure 65. Improved isobologram with additivity envelope for Ar17pAE2fTrtex and Epothilone B against Hep 3B cells.

	Virus EC ₅₀ ^b	Chemo EC ₅₀ ^b	Effect
Virus alone	1	0	-
Chemo alone	0	1	-
3.1e-06	0.00045	0.63	synergy
1.3e-05	0.0018	0.80	synergy
5.0e-05	0.0084	0.95	synergy
2.0e-04	0.042	1.2	antagonism
8.0e-04	0.18	1.6	antagonism
3.2e-03	0.51	1.2	antagonism
1.3e-02	0.56	0.32	additivity
5.1e-02	1.1	0.06	antagonism

69/73

Figure 66. Doxorubicin Combination: Mean Tumor Volumes

70/73

Figure 67. Doxil® Combination Mean Tumor Volumes

Figure 68. Cytotoxicity assessed in primary human hepatocytes

Figure 69

Ad35-Based Oncolytic Vectors

Figure 70

