Tests sur la proportion

Mohamed LEMDANI

MISO Université de Lille

27 Septembre 2021

Cas d'une seule population Cas de deux populations Théorie Exemple

Test à un échantillon (observé/théorique)

Variable qualitative (binaire) étudiée sur une seule population (représentée par un échantillon de taille n) \Longrightarrow comprendre/tester cette population pour cette variable.

- Prévalence d'une maladie, sur une région : comparer à une valeur minimale.
- Logiciel de randomisation : comparer la proportion des sujets d'un bras à 50%.

Méthodologie: comparer la valeur d'une proportion (observée) dans la population dont est issu l'échantillon à une valeur donnée (théorique).

Notations : π = valeur de la proportion dans la population, p = valeur (calculée) sur

l'échantillon et π_0 = valeur théorique (connue) à laquelle on compare π .

Hypothèses : H_0 : $\{\pi = \pi_0\}$ contre H_1 : $\{\pi \neq \pi_0\}$ (cas bilatéral) ou $\{\pi <> \pi_0\}$ (unilatéral). **Données**: n observations de $X \Longrightarrow x_1 = A, x_2 = B, ..., x_n = A \Longrightarrow p = n_A/n$.

 $\label{eq:Variable de décision} \mbox{Variable de décision}: u = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} \sim \mathcal{N}(0, 1) \mbox{ sous } H_0.$ Conditions d'utilisation :

- n "grand" (n ≥ 30) et
- π_0 "ni trop petite" ($n\pi_0 \ge 5$) "ni trop grande" ($n(1-\pi_0) \ge 5$).

Choix de α et construction des zones d'acceptation/rejet à partir de la table de la N(0,1).

Exemple 1

Un logiciel simulant le jeu de "pile" ou "face" a été conçu afin de randomiser des groupes dans le cadre d'essais cliniques. Afin de le tester, on simule $10\,000$ lancers qui retournent un total de 5110 "piles". Peut-on dire que ce logiciel simule une pièce truquée au seuil de $5\,\%$?

Variable observée : X = "Résultat du lancer", observée sur un échantillon de taille $n = 10\,000$.

 $\pi = \mathbb{P}(X = \text{"pile"})$ ou proportion de "piles" sur la "population".

$$\pi_0 = 1/2$$
 (pièce non truquée).

$$\begin{array}{ll} H_0: \{\pi=1/2\} & \textit{versus} & H_1: \{\pi\neq 1/2\}. \\ \textbf{Variable de décision}: u = \frac{p-\pi_0}{\sqrt{\frac{\pi_0(1-\pi_0)}{p}}} \sim \mathcal{N}(0,1) \; \text{sous} \; H_0. \end{array}$$

Conditions:

- $n = 10000 \ge 30 \sqrt{.}$
- $n\pi_0 = 10\,000 \times (1/2) = 5\,000 \geqslant 5$ et $n(1-\pi_0) = 10\,000 \times (1/2) = 5\,000 \geqslant 5$ $\sqrt{.}$

Cas d'une seule population Cas de deux populations Théorie Exemple

Exemple 1 (suite)

Calculs: p = 5110/10000 = 0.511

$$\Rightarrow u_c = \frac{0.511 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{10000}}} = \frac{0.011 \times \sqrt{10000}}{\sqrt{0.5^2}} = 1.1/0.5 = 2.2.$$

Zone de non-rejet ($\alpha = 5\%$ **)** : $\mathfrak{u}_c \notin [-1.96, 1.96] \Longrightarrow$ rejet de H_0 au seuil de 5% (au risque de 5%, on peut conclure que le logiciel simule une pièce truquée). $G(\mathfrak{a}) = 0.025 \Longrightarrow \mathfrak{a} = 1.96$

Calcul de la p-value : Rejet à
$$5\%$$
 \Longrightarrow rejet pour tout $\alpha > 5\%$.

Pour quel α minimal peut-on rejeter? C'est la p-value (niveau de signification) p du test.

$$p = 2 \times G(2.2) \approx 2 \times 0.014 = 0.028 = 2.8\%.$$

Comparaison de deux proportions observées

Variable qualitative (binaire) X étudiée sur deux populations représentées, chacune, par un échantillon (tailles respectives n_1 et n_2) \Longrightarrow comparer des proportions de X entre ces populations.

- comparer les taux d'efficacité de deux médicaments,
- comparer le taux de présence d'un caractère entre deux populations.

Paramètres étudiés : proportions d'une valeur A de X sur les populations (π_1 et π_2).

Objectif : Comparer ces deux paramètres

$$\begin{aligned} & \text{Hypoth\`eses}: H_0: \{\pi_1 = \pi_2\} \text{ contre } H_1: \{\pi_1 \neq \pi_2\} \text{ (cas bilat\'eral), } \{\pi_1 <> \pi_2\} \text{ (unilat\'eral).} \\ & \textbf{Variable de d\'ecision}: u = \frac{p_1 - p_2}{\sqrt{\frac{p(1-p)}{n_1} + \frac{p(1-p)}{n_2}}} \sim \mathcal{N}(0,1) \text{ sous } H_0. \end{aligned}$$

 v_1, v_2 : proportions respectives calculées sur les deux échantillons.

p : proportion commune (calculée sur le regroupement des deux échantillons).

Conditions d'utilisation :

- n_1 et n_2 "grands" ($\geqslant 30$) et
- p "ni trop petite" $(n_1p, n_2p \ge 5)$ "ni trop grande" $(n_1(1-p), n_2(1-p) \ge 5)$.

Théorie Exemple

Exemple

Exemple 2 : On souhaite comparer l'effet d'un traitement à celui d'un placebo. Pour cela, on randomise 100 sujets en deux bras paritaires. À l'issue de l'étude, on constante une amélioration pour 30 patients traités contre 20 patients placebo. Peut-on dire que le traitement est plus efficace que le placebo au seuil de 5%?

Variable observée : X = "Amélioration" (oui/non), observée sur deux échantillons de tailles $n_1 = n_2 = 50$ (1= 'Traités' et 2 = 'Placebos').

Données:
$$p_1 = \frac{30}{50} = 0.6$$
, $p_2 = \frac{20}{50} = 0.4$ et $p = \frac{30+20}{50+50} = \frac{50}{100} = 0.5$ et $1 - p = 0.5$.

$$H_0: \{\pi_1=\pi_2\} \qquad \textit{versus} \qquad H_1: \{\pi_1>\pi_2\}.$$

Variable de décision :
$$u = \frac{p_1 - p_2}{\sqrt{\frac{p(1-p)}{n_1} + \frac{p(1-p)}{n_2}}} \sim \mathcal{N}(0, 1)$$
 sous H_0 .

Conditions:

•
$$n_1 = n_2 = 50 \ge 30 \sqrt{.}$$

•
$$n_1p = n_2p = n_1(1-p) = n_2(1-p) = 50 \times 0.5 = 25 \ge 5 \sqrt{.}$$

Cas d'une seule population Cas de deux populations

Théorie Exemple

Exemple 2 (suite)

$$H_0: \{\pi_1 = \pi_2\} \qquad \textit{versus} \qquad H_1: \{\pi_1 > \pi_2\}.$$

$$p_1 = 0.6, p_2 = 0.4 \text{ et } p = 1 - p = 0.5.$$

$$u = \frac{p_1 - p_2}{\sqrt{\frac{p(1-p)}{n} + \frac{p(1-p)}{n}}} \sim \mathcal{N}(0,1) \text{ sous } H_0.$$

Zone de rejet (unilatérale,
$$\alpha=5\%$$
) : $u_c \in [1.6449, +\infty[$.

rejet \Longrightarrow choix de $H_1 \Longrightarrow \pi_1 > \pi_2 \Longrightarrow \mathfrak{p}_1 > \mathfrak{p}_2 \Longrightarrow \mathfrak{u} > 0$ (zone de rejet du côté de $+\infty$).

$$G(\alpha)=0.05\Longrightarrow \alpha=1.6449.$$

$$\textbf{Calculs}: u_c = \frac{0.6 - 0.4}{\sqrt{\frac{0.5 \times 0.5}{50} + \frac{0.5 \times 0.5}{50}}} = \frac{0.2}{\sqrt{0.5^2/25}} = \frac{0.2 \times 5}{0.5} = 2.$$

Rejet de H₀ au seuil de 5% (on seuil de 5% on peut conclure à un traitement plus efficace que le placebo).

Niveau de signification (p-value) :

$$p = G(2) \approx 0.023(2.3\%).$$