My Courses / My courses / Algorithms and Data Structures, MSc (Spring 2023) / Exercise Quizzes

/ Week 4: Sorting, Mergesort

Started on	Thursday, 23 February 2023, 11:34
State	Finished
Completed on	Thursday, 23 February 2023, 18:57
Time taken	7 hours 22 mins
Marks	8.33/16.00
Grade	3.65 out of 7.00 (52%)

Question 1

Correct

Mark 1.00 out of 1.00

Consider Selection Sort: How many times will a given object <u>at most</u> be exchanged (ie. moved around in the array)?

Select one:

- \circ a. $\log(n)$
- \circ b. $n^2/2$
- O c. 1
- \odot d. n-1

Your answer is correct.

The correct answer is: n-1

 \uparrow

2/23/23, 7:58 PM Week 4: Sorting, Mergesort: Attempt review	
Question 2	
Incorrect	
Mark 0.00 out of 1.00	
Consider running Selection Sort on the array E A S Y Q U E S T I O N	
After the algorithm has done 2 exchanges, how does the array look?	
Select one:	
○ a. AEESYQUSTION	
	×
O c. AESYQUESTION	
Your answer is incorrect.	
The correct answer is: A E S Y Q U E S T I O N	
Question 3	
Incorrect	
Mark 0.00 out of 1.00	
Consider using Top-down Merge Sort on the array a consisting of the keys:	
EASYQUESTION.	
If the initial call to sort uses the indices sort(a, 0, 11), which indices does the second recursive (not the first recursive) call to	sort
use as parameters?	
Select one:	
○ a. sort(a, 0, 5)	
○ b. sort(a, 6, 8)	
© c. sort(a, 6, 11)	×
O d. sort(a, 0, 2)	
Your answer is incorrect.	

The correct answer is: sort(a, 0, 2)

2/23/23, 7:58 PM	Week 4: Sorting, Mergesort: Attempt review
Question 4	
Correct	
Mark 1.00 out of 1.00	
Again, consider using Top-down Merge	. Sort on the array a consisting of the keys:
EASYQUESTION.	
Which indices are used as parameters	to the <u>second to last</u> call to merge?
Select one:	
a. merge(a, 8, 11, 15)	
○ b. merge(a, 8, 9, 11)	
o c. merge(a, 5, 8, 11)	
⊚ d. merge(a, 6, 8, 11)	✓
Your answer is correct.	
The correct answer is: merge(a, 6, 8, 1	1)
Question 5	
Correct	
Mark 1.00 out of 1.00	

Imagine an array $\it a$ of size $\it n$ presented as a recursion tree while running a top-down merge sort. Each node of the tree represents a sub-array of a (as described in Chapter 2.2 of [SW]) Can you say anything wise about the <u>height</u> h of this tree in relations to n?

Select one:

 \bigcirc a. h is always n/2

 \odot b. h is always $\log n$

 \circ c. \emph{h} takes an arbitrary value based on the contents of \emph{a}

 \circ d. h is always $n \log n$

Your answer is correct.

The correct answer is: h is always $\log n$

Question 6

Correct

Mark 1.00 out of 1.00

Define the values $\,f(n)\,$ positive integers $\,n\,$ by

$$f(n) = f(n-1) + f(n-2)$$

$$f(1) = f(2) = 1$$

Compute f(6)

Answer:

The correct answer is: 8

Question 7

Partially correct

Mark 0.50 out of 1.00

For some real number $\, r > 1 \,$ and integer $\, K_0 \,$, consider the following recurrence relation:

$$K(n) = K(n-1) + K(n-1) \cdot r$$

$$K(0) = K_0$$

Which well-known phenomenon does this recurrence describe and what is the closed form?

Select one or more:

- lacksquare a. K(n) is the total capital after n years with interest rate r and starting capital K_0 .
- \square b. K(n) is the n th Fibonacci number, provided r=2 and $K_0=1$.
- \square c. K(n) is the total speed of a car with acceleration r after n seconds, starting from K_0 .
- $\ \square$ d. $\ K(n)$ is the number of comparisons for sorting $\ n$ numbers for an $\ r$ -recursive algorithm with stack size $\ K_0$.
- \square e. $K(n) = (1+r)^n K_0$
- \square f. $K(n) = K_0 \log_r n$
- \square g. $K(n) = K_0 + nr$

Your answer is partially correct.

You have correctly selected 1.

The correct answers are: K(n) is the total capital after n years with interest rate r and starting capital K_0 .

$$K(n) = (1+r)^n K_0$$

1

Question 8

Correct

Mark 1.00 out of 1.00

Solve the following recurrence:

$$T(n) = T(n-1) + 3$$

$$T(0) = 0$$
.

Select one:

- \odot a. T(n) = 3n
- \bigcirc b. T(n) = 3 + n
- \bigcirc c. $T(n) = n^3$
- \bigcirc d. $T(n) = \frac{1}{3}n$

Your answer is correct.

The correct answer is: T(n) = 3n

Question 9

Correct

Mark 1.00 out of 1.00

Professor Sloppy wrote down the following recurrence for f_n for integer $n \geq 1$:

$$f_n = f_{n-1} + f_{n-2}$$

$$f_1 = 1$$

What are the problems, if any, with this formulation?

Select one or more:

- \square a. Recurrences must be written as functions ($T(n) = \cdots$, not as sequences $f_n = \cdots$)
- \square b. You can never have two occurrences of the recursively-defined values (here, f_{n-1} and f_{n-2}) on the right hand side.
- c. The values are undefined because there is only one base case.
- d. Recurrences must be defined for all real numbers, not only integers.

Your answer is correct.

The correct answer is: The values are undefined because there is only one base case.

Question 10

Partially correct

Mark 0.83 out of 5.00

Consider the *lexicographic ordering* on sequences of digits, such as 235. Then the following list is sorted in ascending order:

Your answer is partially correct.

You have correctly selected 1.

The correct answer is:

Consider the lexicographic ordering on sequences of digits, such as 235. Then the following list is sorted in ascending order: [10] < [100] < [11] < [48] < [50] < [99]

Question 11

Correct

Mark 1.00 out of 1.00

Consider the *numeric ordering* on sequences of digits, such as 235, using the standard convention, i.e., $235 = 2 \cdot 10^2 + 3 \cdot 10 + 5$. Then the following list is sorted in ascending order: 10 \checkmark < 11 \checkmark < 48 \checkmark < 50 \checkmark < 99 \checkmark < 100 \checkmark

Your answer is correct.

The correct answer is:

Consider the numeric ordering on sequences of digits, such as 235, using the standard convention, i.e., $235 = 2 \cdot 10^2 + 3 \cdot 10 + 5$. Then the following list is sorted in ascending order: [10] < [11] < [48] < [50] < [99] < [100]

Question 12		
Not answered		
Marked out of 1.00		

(You probably need to consult	an external source for this.)			
Three Danish locations, sorted	d lexicographically according t	o Danish rules:	<	
Three Swedish locations, sorte	ed lexicographically according	to Swedish rules:	<	
	<	<		
Three German locations, sorte	ed lexicographically according	to German rules:	<	
Ägyptisches Museum Berlin	Überlingen	Växjö	Århus	
Zarrentin am Schaalsee	Ølstykke	Åre	Ærø	
Skallebølle	Ängelholm	Öland	Öhringen	

Your answer is incorrect.

The correct answer is: (You probably need to consult an external source for this.)

Three Danish locations, sorted lexicographically according to Danish rules: [Skallebølle] < [&rø] < [&lebølle] < [&rhus]

Three Swedish locations, sorted lexicographically according to Swedish rules: [Växjö] < [Åre] < [Ängelholm] < [Öland]

Three German locations, sorted lexicographically according to German rules: [Ägyptisches Museum Berlin] < [Öhringen] < [Überlingen] < [Zarrentin am Schaalsee]