Divide-and-Conquer Determinization of Büchi automata

Yong Li

Joint work with Andrea Turrini, Weizhi Feng, Moshe Y. Vardi and Lijun Zhang

Büchi determinization

Büchi automata are not closed under determinization

Deterministic ω-automata Rabin (DRA) **Nondeterministic** Parity (DPA) Büchi automata (NBA) **Emerson-Lei (DELA)**

Why Büchi determinization is important

Reactive synthesis

Probabilistic verification

- Complementing NBA
- Checking language inclusion of NBAs

Existing constructions

Safra-Piterman's construction

Existing constructions

Work on all SCCs at once

Our contributions

1. Divide-and-conquer methodology

2. Two subclasses with better upper bounds

3. Comprehensive evaluation

Our determinization construction

Our determinization construction

Insight 1: Determinize each SCC independently

Determinizing different types of SCCs

Three different types of SCCs

- 1. Inherently Weak SCC (IWC): 3ⁿ
- 2. Deterministic Accepting SCC (DAC): O(n!)
- 3. Nondeterministic Accepting SCC (NAC): $O((n!)^2)$

Three different types of SCCs

Insight 2: Specific construction for each type of SCCs

Final determinization construction

Perform union product on-the-fly

COLA solves more instances in shorter time

Tool	PAR-2 score: lower is better
COLA	17,351
Spot	67,258
Owl	206,431

Heat map: blue color corresponds to fewer data points

COLA constructs **smaller**

deterministic automata than **Spot**

Heat map: blue color corresponds to fewer data points

COLA constructs **smaller**

deterministic automata than **Owl**

Summary

- 1. Divide-and-conquer determinization
- 2. Better upper bounds for two subclasses:
 - O(n!) vs. $O((n!)^2)$ and $O(2^n)$ vs. O(n!)
- 3. COLA outperforms Spot and Owl

Future work

- Parallel determinization for each SCC
- Applications to
 - Reactive synthesis
 - Probabilistic verification
 - Büchi complementation and inclusion