- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

4.3. Gruppenkommunikation

- 1. $1 \rightarrow 1$
- 2. $1 \rightarrow n$
- 3. $n \rightarrow 1, n \rightarrow m, \dots \rightarrow Übung$?
- 1. Anwendungsschicht
- 2. Verbindungsschicht (Vermittlungs-)
- 3.physikalische Schicht

- Größen
- Prinzipien
- Gruppen
- Schichten

- Größen
- Prinzipien
- Gruppen
- Schichten

4.3. Gruppenkommunikation: Anwendungsschicht

- eMail: $1 \rightarrow 1$, $1 \rightarrow$ n (Einzelverbindungen $n^* 1 \rightarrow 1$)
- www: Lastverteilung auf parallele HW, SW
 - Anforderung: $n \rightarrow 1$ (Einzelverbindungen)
 - Anwort: $1 \rightarrow n$ (Einzelverbindungen)
- Internet Relay Chat (ICR): Multicast
- Video on Demand: $n*1 \rightarrow 1, 1 \rightarrow n$; Multicast
- MPI: Globale Kommunikation
 - Broadcast, Gather (sammeln), Scatter (streuen)
 - All-to-all: Erweiterung zu Gather
- Programmiermodell: Client Server
 - $n*1 \rightarrow 1$
 - Anycast

- Größen
- Prinzipien
- Gruppen
- Schichten

4.3. Gruppenkommunikation (Verbindungsschicht)

- 1. Direktverbindung: Ende-zu-Ende-Verbindung mit Zwischenstationen
 - Telefon: leitungsvermittelte Direktverbindung
- 2. virtuelle Verbindungen
 - **IP Routing**:
 - unicast
 - multicast
 - anycast
 - broadcast
 - geocast
 - ATM: virtual circuit

- Größen
- Prinzipien
- Gruppen
- Schichten

4.3. Gruppenkommunikation (Physische Schicht)

Punkt-zu-Punkt:

Telefon, WAN, DSL, RS 232,

- feste Verbindung
- virtuelle Verbindung, Switch
- Broadcast: Radio, TV, Kreuzschienenverteiler, Omega-Netzwerke
- Bus (Koordinierung): Peripherie-Bus PCI, Messbus I2C, GPIB, Ethernet
 - inhärente 1 → n Topologie, oft mit Master
 - logisch: häufig 1 → 1 durch Adressierung nur eines Gerätes
 - Switch: simuliert häufig $1 \rightarrow 1$
 - Ethernet: HW uni-, multi-, broadcast
- Unterscheidung physische und logische Verbindung
 - physisch: WAN logisch: Leitung

- Größen
- Prinzipien
- Gruppen
- Schichten

4.3. Gruppenkommunikation (Physische Schicht)

Punkt-zu-Punkt:
 Telefon, WAN, DSL, RS 232,

Hypertransport, FSB

- feste Verbindung
- virtuelle Verbindung, Switch
- Broadcast: Radio, TV, Kreuzschienenverteiler, Omega-Netzwerke
- Bus (Koordinierung): Peripherie-Bus PCI, Messbus I2C, GPIB, Ethernet
 - inhärente 1 → n Topologie, oft mit Master
 - logisch: häufig 1 → 1 durch Adressierung nur eines Gerätes
 - Switch: simuliert häufig $1 \rightarrow 1$
 - Ethernet: **HW uni-, multi-, broadcast**
- Unterscheidung physische und logische Verbindung
 - physisch: WAN logisch: Punkt-zu-Punkt

- Größen
- Prinzipien
- Gruppen
- Schichten

4.3. Gruppenkommunikation (Physische Schicht)

- Punkt-zu-Punkt:
 - Telefon, WAN, DSL, RS 232, Hypertransport, FSB
 - feste Verbindung
 - virtuelle Verbindung, Switch
- Broadcast: Radio, TV, Kreuzschienenverteiler, Omega-Netzwerke
- Bus (Koordinierung): Peripherie-Bus PCI, Messbus I2C, GPIB, Ethernet
 - inhärente 1 → n Topologie, oft mit Master
 - logisch: häufig $1 \rightarrow 1$ durch Adressierung nur eines Gerätes
 - Switch: simuliert häufig 1 → 1
 - Ethernet: **HW uni-, multi-, broadcast**
- Unterscheidung physische und logische Verbindung
 - physisch: Bus logisch: Punkt-zu-Punkt

- Größen
- Prinzipien
- Gruppen
- Schichten

4.4. Schichtung der Kommunikation

mächtiges Werkzeug für Abstraktion

- Hard- und Software-Schichten flexibel
- Dienst Protokoll Schnittstelle
 - Dienst: Mechanismus f
 ür den Zugriff auf eine Funktionalit
 ät (OASIS)
 - Protokoll: Verhaltensregel für den Dienst
 - Aufteilung zwischen Steueranweisung und Nutzdaten
- ➤ Protokollstapel: Anlehnung an ISO/OSI 7 Schichtenmodell
 - Bitübertragung, Sicherung, Vermittlung, Transport, Anwendung
 - Beispiel: TCP/IP Protokollstapel
 - Beispiel: NoC Protokoll Stapel:

- Größen
- Prinzipien
- Gruppen
- Schichten

4.4. Schichtung der Kommunikation

- Werkzeug: Schichtenmodell (Layering Model)
- 7-Layer Reference (ISO/OSI) Model das grundlegende Modell
 - veränderte Konzepte und Protokollreihen
 - Begriffe inzwischen oft informell und verändert
- 1. Bitübertragung: z.B. RS-232 physikalische Kodierung von Daten
- 2. Sicherung: Rahmen, Bitstopfen, Fehlerkorrektur (Prüfsummen)
 Daten in logischen Paketen
- 3. Vermittlung: Adressierung, Weiterleitung Sende → Empfangs-Knoten
- 4. Transport: zuverlässige Übertragung zwischen Anwendungen
- **5. Sitzung**: Anmeldung, Sicherheit
- **6. Darstellung**: Datendarstellung
- **7. Verarbeitung**: Anwendung

- Größen
- Prinzipien
- Gruppen
- Schichten

4.4. Schichtung der Kommunikation

- mächtiges Konzept
- Jede Umwandlung, die ein Protokoll vor dem Versenden auf einen Rahmen anwendet, muss beim Empfang des Rahmens vollständig umgekehrt werden.
- jede Schicht unabhängig
- Weitergabe an nächste Schicht:
 - zusätzliche Infos in Header
 - verschachtelte Header
- Schichten von Ziel und Quelle arbeiten zusammen
- Zusatzinfos anhängen

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur 5. Systemarchitektur
 - Vernetzung **von** Knoten
 - Sender Quelle
 - Empfänger Ziel
 - Datenverarbeitung

- Vernetzung in Knoten
 - Prozessor(en)
 - Speicher
 - Peripherie

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.1. Kommunikation und Systemarchitektur

• Unterteilung:

- 1. Backplane-Busse (ISA, VME, Hypertransport)
- 2. Peripherie-Busse (RS-232, PCIe, USB)
- 3. Feldbusse (Profibus, Echtzeit-Ethernet)
- 4. Netzwerke

- Kommunikation
- Topologien
- HW
- SW

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.2. Topologien der Systemarchitektur

Topologie

- Bus: Zugriffskoordinierung Flaschenhals min. Kosten
- Ring: Unterbrechung
- Punkt-zu-Punkt: exklusiv
 - Linie: min. Verkabelung
 - Baum: hierarchisch
 - Maschen, Vollvermascht
- Stern: Flaschenhals Hub
 - $O(n^2)$
 - Crossbar (Kreuzschienenverteiler, Koppelfeld)
- Einsatzgebiete: Knoten-Knoten, im Knoten

Topologien

 $\bullet \, HW$

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.3. Hardware-Architektur

- Knoten-Knoten: Netzwerke → SAN, LAN, WAN, Internet
- im Knoten
 - Hardware-, Software-Architektur
 - System- und IO-Bus, FrontSide-Bus und Brücke, Switch oder Hub

- Systembus = Speicherbus
- IO viel langsamer als Systembus
- 4 GB, 33 MB/s, 25 MHz

- Systembus = FSB
- MA: CPU, Grafik, IO
- IO: bis 125 MB/s

- P2P bis 32 Links
- Crossbar
- > 312 MB/s/Link 39

Kommunikation

• Topologien

• HW

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.4. SW-Architektur

- Treiber für die einzelnen Geräte und deren Funktionen
 - direkte Registerzugriffe steuern HW Gerät
 - API für Systemfunktionen zur Initialisierung und Betrieb (BS-Kern)
 - Benutzerzugriff
- Speicher- und IO-Adressen: Geräte mit IO-Registern
- Virtuelle Speicheradressen PCI-Konfiguration + Mem-Map
 - MMU
 - bis zu 256 Busse, 32 Geräte, 8 Funktionen, 256 Register
 - Index-Port 0xcf8, Daten-Port 0xcfc
- Transaktionen
 - MMU in CPU
 - IO: 256 MB Mem-Map; Erweiterung auf 4k Register
- > Abstraktion von den physischen Details

- Kommunikation
- Topologien
- HW
- SW

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.4.1 Betriebssystem Linux

- Kernel:
 - IO Gerätereiber: ladbare Module
 - NW Protokollstapel auch
 - IPC
 - Speichverwaltung
- User-Mode
 - API
 - Einbindung in Dateisystem
 - Abstraktion von physischen Details

Abstraktionsschichten in Linux

Kommunikation

• Topologien

• HW

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.4.2 Betriebssystem Windows

- Gerätetreiber über Ebene HAL
- Dienst-Manager:
 - Server Mikrokern
 - FS Bestandteil des IO-Manager
 - Systemdienste
- API im User Mode
 - winsock.dll, ndis.dll

OS/2 Programme		Win32- Programme	DOS- Programme DOS- System	Win16- Programme Windows on Windows		POSIX- rogramme	User Mode
OS/2- Subsystem	W	Vin32 Subsystem (kernel32.dll, user32.dll, gdi32.dll POSIX-Subsystem					
Systemdienste							
IO-Manager (Dateisystem, Netzwerk)		Objekt-, Sicherheits-, Prozess-, LPC-, Speicher- Manager Mikrokern			r-	Window- Manager	Kernel Mode
Gerätetreiber Hardware-A		Abstraktions-Schicht (HAL)		Grafiktreiber		Wiode	
Hardware: Prozessor(en), Speicher, Geräte							

Abstraktionsschichten in Windows NT

Kommunikation

• Topologien

• HW

1. Information

2. Kommunikationskapazität

3. Signal-, Infotheorie

4. Merkmale

5. Systemarchitektur

5.4.3 Systemarchitektur – Prozeduren

- open, close, read, write
 - Standardprozeduren: Unix IO-Konzept
- send, receive
 - Nachrichten-Interface
- synchrone Kommunikation
 - warten bis Kommunikation abgeschlossen → Rendezvous der Prozesse
 - Abbruch durch Zeitablauf (timeout), Fehlermeldung
 - Client-Server Programmierung
 - Anwendungsebene: Telefon, Skype
- asynchrone Kommunikation
 - kein Warten auf Abschluss der Kommunikation
 - Abfrage des Ergebnisses
 - Kommunikation nicht blockierend Prozeduren können blockieren
 - Anwendungsebene: eMail, SMS, Groupware

Kommunikation

Topologien

• HW

- 1. Information
- 2. Kommunikationskapazität
- 3. Signal-, Infotheorie
- 4. Merkmale
- 5. Systemarchitektur

5.5 Zusammenfassung

- Daten als Repräsentation von Information
- Kommunikation: Datenübertragung
- Kapazitäten: Übertragung, Verarbeitung, Speicherung
- Signaltheorie: mathematische Sicht auf Signale
- Informationstheorie: Informationsgehalt von Daten, Kodierung
- technische Grundgrößen der Kommunikation: Kapazität, Latenz
- Grundprinzip: Nachrichten-, Speicherkopplung
- Gruppenkommunikation
- Systemarchitektur Schichtung

Vortragsthemen

1.	Nick Henkenjohann	NoC Archtiektur
2.	Oleksandr Goranskyy	NoC QoS
3.	Georg Reinhardt, Bo Wang	GPS
4.	Christoph Keiner, Robert Zimmermann	GSM, LTE, UMTS
5.	Anastasia Aftakhova, Lena-Sophie Schwabe	MIMO
6.	Johannes Sommer	WLAN, Absicherung
7.	Matthias Reuse, David Hasterok	RFID
8.	Johannes Eifler, Felix Baral-Weber, Sascha T	Thoska Thoska

Übung Grundlagen

- Def: Daten, Information, Kommunikation, Nachricht
- Daten, Kodierung, Zeichen, Bedeutung, Wissen, Aktion
- Def: Bit, Entropie
- Wie groß ist der Informationsgehalt des dt. Alphabet.
- Womit beschäftigen sich Signal-, System-, Informationstheorie?

Übung Grundlagen

- Nyquist, Shannon: Bandbreite, Kodierung, SNR
 - Sie haben eine Cu-Leitung mit Bandbreite von 3 kHz und einem SNR von 10 dB. Wie groß ist die Datenrate bei einer 2B1Q-Kodierung? Wie groß muss das SNR (in dB) für eine 2B1Q-Kodierung sein?
 - Gigabit Ethernet 1000BASE-T hat eine Bandbreit von 62,5 MHz und eine Symbolgeschwindigkeit von 125 MBd mit 2 bit pro Symbol auf jede der 4 Leitungspaare. Wie groß muss das SNR [in dB] mindestens sein.
 - Wie hoch muss das Signal-Rauschverhältnis in dB sein, damit 2 Bit bzw.
 15 Bit kodiert werden können? Wie viel Bit können bei einem SNR von 10 dB in einem Symbol kodiert werden? Welche DSL-Geschwindigkeit ist damit erreichbar.
- Gruppenkommunikation: $n \rightarrow 1$, $n \rightarrow m$, ...