MAD – Data Analysis & Biostatistics in R Logistic Regression

James R. Hunter, Ph.D.

DIPA, EPM, UNIFESP

9 October 2020

Section 1

Logistic Regression

Extension of Basic Regression Concepts

- Used frequently in biostatistics
- Variable Y is now a binomial variable
 - Only has 2 states:
 - **★** TRUE; FALSE
 - ***** 1;0
 - ★ R5; X4
 - Infected; Not Infected
- As with SLR and MLR, covariates can be numeric or categorical

logit Function

- log-odds
- odds of an event
 - Probability of an event occurring divided by the probability of it not occurring
- logit natural logarithm of the odds

$$logit(p) = \frac{p}{1-p}$$

Logit Function

Logistic Function

- Function applied to independent variables (X)
 - Result: Dependent variable stays in interval between 0 and 1
 - ★ Range of probabilities
- Logistic function
- Inverse of the logit
- Can be applied to any number

$$logit^{-1}(x) = \frac{1}{1 + e^{-x}}$$

Logistic Function Graph

Compare SLR with Logistic Regression

• Linear Regression (using matrix notation)

$$y = X\beta + \epsilon_i$$

Logistic Regression

$$p(y_i = 1) = logit^{-1}(X_i\beta) + \epsilon_i$$

General Linear Models

- Logistic regression prime example of class of models: general linear model (GLM)
 - A special case of GLM
- They manipulate the matrices differently than do the SLR models
- Other GLM models: poisson (count data)
- Output will be similar to the SLR output

Example: Patients with Coronary Heart Disease (CHD)

- Study of 100 patients
- Relation between the patient's age and CHD
- Data comes from Hosmer & Lemeshow, Applied Logistic Regression (2a Ed.)
 - ▶ File: chdage.csv

Load the Data

Basic Exploratory Analysis

```
chdage %>%
 select(idade) %>%
 descr(transpose = TRUE,
       stats = c("mean", "sd", "min", "q1", "med", "q3",
                "max", "igr", "cv"))
## Descriptive Statistics
## chdage$idade
## N: 100
                Mean Std.Dev Min Q1 Median Q3
                                                                      IQR
       idade 44.38 11.72 20.00 34.50 44.00
                                                      55.00 69.00
                                                                     20.25 0.26
chdage %>%
 select(chd) %>%
 freq()
## Frequencies
## chdage$chd
## Type: Factor
##
```

```
##
              Frea
                   % Valid % Valid Cum. % Total % Total Cum.
##
      negativo 57 57.00
                            57.00 57.00
                                                57.00
     positivo 43 43.00 100.00 43.00
                                               100.00
##
         <NA>
               0
                                      0.00
                                               100.00
        Total
              100
                   100.00
                         100.00 100.00
                                               100.00
##
```

DotPlot of CHD x Idade

chdscat <- ggplot(data = chdage, aes(y = chd, x = idade)) + geom_point() chdscat

Boxplot of Age

```
chdbox <- ggplot(data = chdage, aes(x = chd, y = idade, group = chd))
chdbox <- chdbox + geom_boxplot()
chdbox</pre>
```


Plot of Conditional Density

- Also useful for understanding how age changes with the 2 categories of CHD
- ullet Shows the number with CHD (chd = 1) for all ages
 - As if chd were continuous
- Function cdplot() is in base R

```
cdplot(factor(chd) ~ idade, data = chdage,
    main = "Densidade Condicional de Idade sobre CHD",
    xlab = "Idade", ylab = "CHD")
```

Densidade Condicional de Idade sobre CHD

Model

- Like function lm, glm uses the formula format to specify the model
 - ▶ Dependent variable ~ independent variables
 - Independent variables separated by +
- Where the data come from (data =)
- Family of the model (in this case, binomial)
- Link function (in this case, logit)

Results

- Use summary() to get results (as with lm())
- Graph to review results with coefplot()
 - In package with same name

Model Coefficients

summary(chdfit1)

```
##
## Call:
## glm(formula = chd ~ idade, family = binomial(link = "logit"),
      data = chdage)
## Deviance Residuals:
      Min
              1Q Median 3Q
                                        Max
## -1.9718 -0.8456 -0.4576 0.8253 2.2859
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.30945 1.13365 -4.683 0.00000282 ***
                        0.02406 4.610 0.00000402 ***
## idade
           0.11092
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 107.35 on 98 degrees of freedom
## ATC: 111.35
##
## Number of Fisher Scoring iterations: 4
```

Coefficients Plot

coefplot::coefplot(chdfit1)

Understanding the Coefficients

- Similar to summary() of linear regression
- ullet Coefficients themselves represent the log odds that the result would be Y=1.
- You can see on the plot which are positive and which negative
- Graph also indicates the size of the standard error for each independent variable
- To understand the coefficients better, need to calculate the inverse logit
- This puts the coefficients in the interval between 0 and 1
 - that is, probability

Inverse Logit

```
invlogit <- function(x) {
   1/(1 + exp(-x))
}
invlogit(chdfit1$coefficients[2])</pre>
```

```
## idade
## 0.5277019
```

- With transformation, we can interpret the results as probabilities
- ullet With a probability > 50%, we can say that age does have a positive relationship with CHD

Deviance and AIC

- 2nd part of the results are equivalent to R^2
 - ▶ Measures of quality of the model
- Instead of variance, we use the term *deviance* with glm()
- We want to minimize the residual deviance
- AIC = Akaike's Information Criterion (here = 111.3530927)
- AIC useful for comparing models
 - Lower number better

This Model

- Residual Deviance = 107.3530927
- AIC = 111.3530927

Second Model for Comparison

- Model with age as a categorical variable age groups
- Aim is to understand better the probabilities related to age groups than numerical age
 - Are the elderly more likely to have CHD?
- Use car::recode()

Age Groups

```
chdage$idgrp <- car::Recode(chdage$idade, "20:29 = '20-29'; 30:34 = '30-34'; 35:39 = '35-39'; 40:44 = '40-44'; 45:49 = '45-49'; 50:54 = '50-54'; 55:59 = '55-59'; 60:69 = '60-69'", as.factor = TRUE)
```

Age Group Model

Resultados

summary(chdfit2)

```
##
## Call:
## glm(formula = chd ~ idgrp, family = binomial(link = "logit").
      data = chdage)
##
##
## Deviance Residuals:
##
      Min
               10 Median
                                30
                                       Max
## -1.7941 -0.9005 -0.4590 0.7325
                                    2.1460
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.1972 1.0540 -2.085 0.03710 *
## idgrp30-34 0.3254 1.2992 0.250 0.80221
## idgrp35-39 1.0986 1.2471 0.881 0.37837
## idgrp40-44 1.5041 1.1878 1.266 0.20543
## idgrp45-49 2.0431 1.1918 1.714 0.08649 .
## idgrp50-54 2.7081 1.2823 2.112 0.03470 *
## idgrp55-59 3.3759 1.1991 2.815 0.00487 **
## idgrp60-69 3.5835 1.3175 2.720 0.00653 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 107.96 on 92 degrees of freedom
## ATC: 123.96
##
## Number of Fisher Scoring iterations: 4
```

Model Coefficients Plot

Elderly Have High Probability of CHD

```
invlogit(coef(chdfit2)[5:8])
```

```
## idgrp45-49 idgrp50-54 idgrp55-59 idgrp60-69
## 0.8852459 0.9375000 0.9669421 0.9729730
```

Which Model Is Better?

- Model 1 Numeric age
 - ► Residual Deviance = 107.3530927
 - ► AIC = 111.3530927
- Model 2 Categorical Age
 - ► Residual Deviance = 107.9614654
 - ► AIC = 123.9614654
- AIC better in the numeric model
- But, the categorical model gives more information about the age groups of interest

Section 2

Example with Multiple Independent Variables

Another CHD Study

- Researchers want to identify factors that cause CHD
- Idendependent Covariates
 - ▶ id (Case ID number)
 - ► age (in years)
 - bmi (body mass index in kg/m^2)
 - ▶ gender (0 = male, 1 = female)
- 65 cases
- Data riscochd.RData

Load riscochd. RData with load() Function

```
load(here::here("riscochd.RData"))
riscochd <- riscochd %>%
 mutate(chd = fct recode(factor(chd), negativo = "0", positivo = "1"),
         genero = fct_recode(factor(genero), masculino = "0", feminino = "1"))
glimpse(riscochd)
## Rows: 65
## Columns: 5
            <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1...
## $ id
## $ idade
            <int> 75, 98, 91, 88, 56, 86, 93, 74, 56, 95, 64, 99, 68, 66, 95, ...
## $ bmi
            <dbl> 36.38134, 27.65790, 26.47878, 35.70601, 33.71147, 32.12082, ...
## $ genero <fct> masculino, feminino, feminino, masculino, feminino, masculin...
## $ chd
            <fct> positivo, positivo, positivo, positivo, negativo, positivo, ...
```

Exploratory Analysis

Median

28.06

74.00

Q3

31.47

84.00

Max

44.94

99.00

IQR

6.30

28.00

0.19

0.25

Std.Dev

5.36

17.67

Mean

28.42

71.38

bmi idade Min

16.78

33.00

Q1

25.18

56.00

Categorical Variables

```
riscochd %>%
  select(genero, chd) %>%
 freq()
## Frequencies
## riscochd$genero
## Type: Factor
##
##
                           % Valid
                                     % Valid Cum. % Total
                                                             % Total Cum.
                    Freq
##
        masculino
                             63.08
                                            63.08
                                                      63.08
                                                                    63.08
                      41
##
         feminino
                      24
                             36.92
                                           100.00
                                                      36.92
                                                                   100.00
             <NA>
                                                       0.00
                                                                   100.00
##
                       0
##
            Total
                      65
                            100.00
                                           100.00
                                                     100.00
                                                                   100.00
##
  riscochd$chd
  Type: Factor
##
##
                          % Valid % Valid Cum.
                                                  % Total
                                                            % Total Cum.
                   Freq
                            50.77
                                           50.77
                                                     50.77
                                                                   50.77
##
        negativo
                     33
##
        positivo
                     32
                            49.23
                                          100.00
                                                     49.23
                                                                  100.00
            <NA>
                                                      0.00
##
                    0
                                                                  100.00
##
           Total
                     65
                           100.00
                                          100.00
                                                    100.00
                                                                  100.00
```

Boxplot of Age

Boxplot of BMI

Conditional Density Plot - Age

Model 1 – All the Independent Variables

```
chdfit3 <- glm(chd ~ idade + bmi + genero, data = riscochd,
             family = binomial(link = "logit"))
summary(chdfit3)
##
## Call:
## glm(formula = chd ~ idade + bmi + genero, family = binomial(link = "logit").
      data = riscochd)
## Deviance Residuals:
       Min
                 10 Median
                                   30
                                            Max
## -1.84596 -0.48371 -0.05345 0.48149 2.46001
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.64336 5.06903 -4.072 0.0000465 ***
## idade
                0.14814 0.03822 3.876 0.000106 ***
                ## bmi
## generofeminino 0.45202 0.77568 0.583 0.560069
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 90.094 on 64 degrees of freedom
## Residual deviance: 43.886 on 61 degrees of freedom
## ATC: 51 886
##
## Number of Fisher Scoring iterations: 6
```

Model 2 – Using Only the Age Variable

```
chdfit4 <- glm(chd ~ idade, data = riscochd,
              family = binomial(link = "logit"))
summary(chdfit4)
##
## Call:
## glm(formula = chd ~ idade, family = binomial(link = "logit"),
      data = riscochd)
##
## Deviance Residuals:
      Min
               1Q Median
                                         Max
## -1.6471 -0.7813 -0.2121 0.7718 2.4418
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.91677 1.79219 -3.859 0.000114 ***
          0.09495 0.02393 3.968 0.0000725 ***
## idade
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 90.094 on 64 degrees of freedom
## Residual deviance: 64.000 on 63 degrees of freedom
## AIC: 68
##
## Number of Fisher Scoring iterations: 5
```

Second Model Compared to the First

- AIC increased in the age only model
- Model had lower quality

Model 3 – Using the Age and BMI Variables

```
chdfit5 <- glm(chd ~ idade + bmi, data = riscochd,
              family = binomial(link = "logit"))
summary(chdfit5)
##
## Call:
## glm(formula = chd ~ idade + bmi, family = binomial(link = "logit"),
      data = riscochd)
##
##
## Deviance Residuals:
##
       Min
                  10
                      Median
                                              Max
## -1 94448 -0 51392 -0 05453 0 52326 2 40266
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.84877 5.11434 -4.077 0.0000457 ***
## idade
              0.15229 0.03819 3.988 0.0000667 ***
              0.35020 0.10196 3.435 0.000593 ***
## bmi
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 90.094 on 64 degrees of freedom
## Residual deviance: 44.225 on 62 degrees of freedom
## ATC: 50.225
## Number of Fisher Scoring iterations: 6
```

New Model Performance

- Of all three models, best AIC (50.2246163)
- Residual Deviance very close to (but a bit higher) than the first model

Plot of the Coefficients of Final Model

Results Translated to Probability and Odds

Conclusion about riscochd

- The two variables in the last model have more than 50% probability of being risks for CHD
- Logistic regression models are difficult to interpret
 - ▶ Log Odds, Odds ratios, AIC, etc.
- Logistic regression important technique that you will see frequently

Section 3

Third Example of Logistic Regression

Breast Cancer Diagnosis Model

- Data come from a Wisconsin study on breast cancer
- Characteristics of breast cancer tumors
- Dependent variable: diagnosis (diag)
- Model more realistic than earlier
 - More covariates
 - Presence of NA's

Covariates – Tumor Characteristics

- Come from analysis of images based on fine needle aspiration
- Characteristics
 - ► Sample ID (code number)
 - Clump thickness
 - ▶ Uniformity of cell size
 - Uniformity of cell shape
 - Marginal adhesion
 - Single epithelial cell size
 - Number of bare nuclei
 - Bland chromatin
 - Number of normal nuclei
 - Mitosis

Load Data

```
bc data <- read.table(here::here("breast-cancer-wisconsin-data.txt"),</pre>
                      header = FALSE.
                       sep = ",",
                      na.strings = "?")
colnames(bc_data) <- c("sample_code_number",</pre>
                        "clump_thickness",
                        "uniformity_of_cell_size",
                        "uniformity_of_cell_shape",
                        "marginal_adhesion",
                        "single_epithelial_cell_size",
                        "bare_nuclei",
                        "bland chromatin".
                        "normal nucleoli".
                        "mitosis",
                        "diag")
bc_data$diag <- ifelse(bc_data$diag == "2", "benign",
                           ifelse(bc_data$diag == "4", "malignant", NA))
```

Data

\$ diag

```
glimpse(bc_data)
## Rows: 699
## Columns: 11
## $ sample code number
                                 <int> 1000025, 1002945, 1015425, 1016277, 101...
## $ clump_thickness
                                 <int> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, ...
## $ uniformity_of_cell_size
                                 <int> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3,...
## $ uniformity_of_cell_shape
                                 <int> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3,...
## $ marginal_adhesion
                                 <int> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, ...
## $ single epithelial cell size <int> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, ...
## $ bare nuclei
                                 <int> 1, 10, 2, 4, 1, 10, 10, 1, 1, 1, 1, 1, ...
## $ bland chromatin
                                 <int> 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, ...
## $ normal nucleoli
                                 <int> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, ...
## $ mitosis
                                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, ...
```

<chr> "benign", "benign", "benign", "benign", ...

Analysis of NAs – What Will We Do with Them

• How many NAs are in the data?

```
sum(is.na(bc_data))
```

```
## [1] 16
```

• Are all of them in the bare_nuclei variable?

How Many Cases Do We Lose If We Take Out the NAs?

```
glue::glue("Número de casos perdidos: ", nrow(bc_data[is.na(bc_data), ]))
## Número de casos perdidos: 16
glue::glue("Tamanho da base final: ", dim(drop_na(bc_data))[1])
```

Tamanho da base final: 683

Options to Resolve NAs

- Eliminate cases with NA tidyr::drop_na()
- Fill in NAs com neighboring values tidyr::fill()
- Fill in with another value tidyr::replace_na()
 - Value that you decide
 - ▶ Eg. $0 (x <- x \%>\% mutate_all(replace_na, 0))$
- Impute values with mice package

Impute Values with mice::mice

- Multivariate Imputation by Chained Equations
- Create imputed data for incomplete multivariate data
 - Gibbs Sampling (Bayesian technique)
 - Generates plausible synthetic values based on other variables in the data set
- Imputation introduces more uncertainty in the model

```
descr(bc data$bare nuclei, transpose = TRUE, # todos NA vem de bare nuclei
     stats = c("mean", "sd", "med", "min", "max", "n.valid"))
## Descriptive Statistics
## bc_data$bare_nuclei
## N· 699
##
                             Std.Dev Median
                      Mean
                                                 Min
                                                          Max
                                                                N.Valid
##
        bare nuclei 3.54
                                3.64
                                         1.00 1.00
                                                       10.00
                                                                 683.00
a numero <- function(x) as.numeric(as.character(x))
mod cols <- colnames(bc data[2:10])
bc_data <- bc_data %>%
 mutate at(mod cols, ~a numero(.), na.rm = TRUE)
dataset_impute <- mice::mice(bc_data[, 2:10], print = FALSE)
bc data <- cbind(diag = bc_data$diag, mice::complete(dataset_impute, 1))
descr(bc data$bare nuclei, transpose = TRUE, # todos NA vem de bare nuclei
     stats = c("mean", "sd", "med", "min", "max", "n.valid"))
## Descriptive Statistics
## bc data$bare nuclei
## N· 699
```

Summary of Diagnoses

- Convert diag to a factor
- How many benign and malignant cases are there?

```
bc_data$diag <- as.factor(bc_data$diag)
summary(bc_data$diag)</pre>
```

```
## benign malignant
## 458 241
```

Plot of Diagnoses

```
brgr1 <- ggplot(bc_data, aes(x = diag, fill = diag)) + geom_bar()
brgr1</pre>
```


Unequal diag Classes

- Normally need an adjustment to deal with inequality
- But, not today

Exploration of Some of the Covariates

```
bc_data %>%
  select(clump_thickness:mitosis) %>%
  descr(transpose = TRUE.
        stats = c("mean", "sd", "min", "q1", "med", "q3",
                   "max", "igr", "cv"))
## Descriptive Statistics
## bc data
## N: 699
##
##
                                                 Std.Dev
                                                             Min
                                                                      01
                                                                           Median
                                                                                       03
                                                                                                       IOR
                                                                                                               CV
                                          Mean
                                                    3.62
                                                                                     6.00
                           bare_nuclei
                                          3.51
                                                            1.00
                                                                    1.00
                                                                              1.00
                                                                                             10.00
                                                                                                     5.00
                                                                                                             1.03
##
                      bland chromatin
                                          3.44
                                                    2.44
                                                            1.00
                                                                    2.00
                                                                              3.00
                                                                                     5.00
                                                                                             10.00
                                                                                                      3.00
                                                                                                             0.71
                      clump_thickness
##
                                          4.42
                                                    2.82
                                                            1.00
                                                                    2.00
                                                                              4.00
                                                                                     6.00
                                                                                             10.00
                                                                                                      4.00
                                                                                                             0.64
                    marginal_adhesion
                                          2.81
                                                    2.86
                                                            1.00
                                                                    1.00
                                                                              1.00
                                                                                     4.00
                                                                                                     3.00
                                                                                                             1.02
##
                                                                                             10.00
##
                               mitosis
                                          1.59
                                                    1.72
                                                            1.00
                                                                    1.00
                                                                              1.00
                                                                                     1.00
                                                                                             10.00
                                                                                                     0.00
                                                                                                             1.08
##
                      normal nucleoli
                                          2.87
                                                            1.00
                                                                    1.00
                                                                              1.00
                                                                                     4.00
                                                                                             10.00
                                                                                                             1.07
                                                     3.05
                                                                                                     3.00
##
         single_epithelial_cell_size
                                          3.22
                                                    2.21
                                                            1.00
                                                                    2.00
                                                                              2.00
                                                                                     4.00
                                                                                            10.00
                                                                                                     2.00
                                                                                                             0.69
            uniformity_of_cell_shape
                                          3.21
                                                    2.97
                                                            1.00
                                                                                     5.00
                                                                                                             0.93
##
                                                                    1.00
                                                                              1.00
                                                                                             10.00
                                                                                                     4.00
##
              uniformity of cell size
                                          3.13
                                                    3.05
                                                            1.00
                                                                    1.00
                                                                              1.00
                                                                                     5.00
                                                                                             10.00
                                                                                                     4 00
                                                                                                             0.97
```

Plot of Covariates with the Diagnosis das Covariáveis com a Diagnose

```
gr_covars <- gather(bc_data, x, y, clump_thickness:mitosis) %>%
  ggplot(aes(x = y, color = diag, fill = diag)) +
  geom_density(alpha = 0.3) +
  facet_wrap( ~ x, scales = "free", ncol = 3)
```


Build Model with caret

- Funções para apoiar machine learning
- Pode conduzir todo a análise dentro de caret
- No grupos dos pacotes iniciais

Create Training and Test Data

```
set.seed(42)
index <- caret::createDataPartition(bc_data$diag, p = 0.7, list = FALSE)
train_data <- bc_data[index, ]
test_data <- bc_data[-index, ]</pre>
```

Do the Training and Test Sets Reflect the Same Data?

Train Control – Cross Validation

- Before training our model, need to decide what type of validation we want to use
 - bootstrap, k-fold cross validation
- We will use 10-fold cross validation
- Will strengthen the validation process by repeating it 10 times

trainControl()

Train the Model with Logistic Regression

Model

```
model_glm
```

```
## Generalized Linear Model
##
  490 samples
##
     9 predictor
     2 classes: 'benign', 'malignant'
##
##
## Pre-processing: scaled (9), centered (9)
## Resampling: Cross-Validated (10 fold, repeated 10 times)
## Summary of sample sizes: 441, 441, 441, 441, 441, 441, ...
## Resampling results:
##
##
     Accuracy Kappa
     0.9538864 0.8975163
##
```

Summary of Model Results

```
## Call.
## NULL.
## Deviance Residuals:
      Min
                10
                    Median
                                        Max
## -3.2699 -0.1647 -0.0840
                            0.0415
                                     2,4068
##
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                            -1.15008
                                        0.30601 -3.758 0.000171 ***
## clump thickness
                            1.45679 0.40877 3.564 0.000366 ***
## uniformity_of_cell_size -0.37247 0.63538 -0.586 0.557737
## uniformity_of_cell_shape
                          1.32760 0.71892 1.847 0.064798 .
## marginal adhesion
                            0.79412 0.34782 2.283 0.022424 *
## single epithelial cell size -0.06482 0.35409 -0.183 0.854761
## bare_nuclei
                     1.05272 0.34924 3.014 0.002576 **
## bland chromatin
                          1.23724 0.42776 2.892 0.003823 **
## normal nucleoli
                             0.24995 0.35824 0.698 0.485361
                                        0.48203 2.069 0.038571 *
## mitosis
                              0.99718
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 631.35 on 489 degrees of freedom
## Residual deviance: 100.96 on 480 degrees of freedom
## ATC: 120.96
##
## Number of Fisher Scoring iterations: 8
```

Can the Model Predict the Results We Already Know?

- predict() function
 - Using the model and values we can use for prediction
- First, applied ot the train set as an example
- More interesting test set
 - ▶ Because the model has never seen these data
- Acid Test

Predictions

##

```
predtr <- predict(model_glm, train_data)
predtest <- predict(model_glm, test_data)
tabyl(predtest) %>% adorn_pct_formatting()

## predtest n percent
## benign 139 66.5%
## malignant 70 33.5%
tabyl(predtr) %>% adorn_pct_formatting()

## predtr n percent
```

benign 322 65.7%

malignant 168 34.3%

Which Variables Are Important in the Model?

plot(caret::varImp(model_glm))

Confusion Matrix - A Truth Table

		True condition	
	Total population	Condition positive	Condition negative
Predicted condition	Predicted condition positive	True positive	False positive, Type I error
	Predicted condition negative	False negative, Type II error	True negative

- Way of comparing predictions to the truth
- If the predictions are not correct, they either suffer from Type I or Type II errors
 - ► Type I False positive
 - ▶ Type II False negative

Calculations You Can Do with the Confusion Matrix

Predictions Based on the Test Set – Confusion Matrix

confusionMatrix(predtest, test_data\$diag, positive = "malignant") ## Confusion Matrix and Statistics ## ## Reference ## Prediction benign malignant 135 benign ## malignant 2 68 ## ## Accuracy: 0.9713 ## 95% CI: (0.9386, 0.9894) No Information Rate : 0.6555 ## P-Value [Acc > NTR] : <2e-16 ## Kappa : 0.936 ## Mcnemar's Test P-Value : 0.6831 ## ## ## Sensitivity: 0.9444 Specificity: 0.9854 Pos Pred Value: 0.9714 ## ## Neg Pred Value: 0.9712 Prevalence: 0.3445 ## ## Detection Rate : 0.3254 Detection Prevalence: 0.3349 ## ## Balanced Accuracy: 0.9649 ##

'Positive' Class : malignant

##

Predictions Based on the Training Set - Confusion Matrix

confusionMatrix(predtr, train_data\$diag, positive = "malignant")

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction benign malignant
     benign
                  312
                             10
##
     malignant
                    9
                            159
##
##
                  Accuracy: 0.9612
##
                    95% CI: (0.9401, 0.9765)
       No Information Rate : 0.6551
##
       P-Value [Acc > NTR] : <2e-16
##
                     Карра: 0.9141
##
    Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.9408
               Specificity: 0.9720
            Pos Pred Value: 0.9464
##
            Neg Pred Value: 0.9689
                Prevalence: 0.3449
##
##
            Detection Rate : 0.3245
      Detection Prevalence: 0.3429
##
##
         Balanced Accuracy: 0.9564
##
##
          'Positive' Class : malignant
##
```

Section 4

Next Week

Next Week

- ROC Curves
- Other Classification Algoritms
- Principal Components Analysis
- Cluster Analysis