STATISTICAL DATA ANALYSIS PROJECT

A COMPARATIVE STUDY OF INFLATION RATES IN INDIA, CHINA, USA, GERMANY, AND JAPAN

GROUP MEMBERS:

KUNTAL DUTTA(A24007)

JAYANT KUMAR(A24005)

INTRODUCTION

- IMPORTANCE OF ANALYZING INFLATION RATES:
 - INFLATION IMPACTS THE COST OF LIVING, ECONOMIC STABILITY, AND GLOBAL TRADE.
 - COMPARING INFLATION RATES ACROSS COUNTRIES HELPS UNDERSTAND ECONOMIC HEALTH.
- COUNTRIES COMPARED:
 - INDIA, CHINA, USA, GERMANY, JAPAN
- PROJECT OBJECTIVES:
 - ANALYZE INFLATION TRENDS OVER TIME FOR THE SELECTED COUNTRIES.
 - UNDERSTAND THE RELATIONSHIPS BETWEEN INFLATION AND OTHER FACTORS
 - UNDERSTAND THE DIFFERENCES BETWEEN COUNTRIES' INFLATION RATES.

DATA OVERVIEW

DATASET INCLUDES:

- INFLATION RATE
- COUNTRIES (INDIA, CHINA, USA, GERMANY, JAPAN)
- YEARS (PERIOD OF THE DATASET)
- GDP AND GDP GROWTH RATE
- GDP PER CAPITA AND GDP PER CAPITA GROWTH RATE
- UNEMPLOYMENT

PREPROCESSING STEPS:

- SET DATE AS AN INDEX TO HANDLE TIME SERIES DATA.
- HANDLE MISSING DATA THROUGH INTERPOLATION OR CLEANING.

METHODOLOGY

ANALYSIS METHODS:

- EXPLORATORY DATA ANALYSIS (EDA) FOR DESCRIPTIVE STATISTICS AND UNDERSTANDING DATA.
- TIME SERIES ANALYSIS OF INFLATION TRACK CHANGES OVER TIME.
- CORRELATION BETWEEN INFLATION AND OTHER VARIABLES
- ANOVA TEST
- MULTIVARIATE REGRESSION

VISUALIZATIONS:

LINE PLOTS TO SHOW INFLATION RATES OVER TIME FOR EACH COUNTRY.


```
datas['Year']=datas['Year'].astype(str)
datas.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 165 entries, 0 to 164
Data columns (total 8 columns):
     Column
                            Non-Null Count Dtype
                            165 non-null
     Country
                                            object
                            165 non-null
                                            object
     Year
     GDP
                            165 non-null
                                            int64
 2
    GDP_growth
                            165 non-null
                                            float64
                                            float64
    GDP_per_capita
                            165 non-null
    GDP_per_capita_growth 165 non-null
                                            float64
    Unemployment
                                            float64
                            165 non-null
     Inflation
                            165 non-null
                                            float64
dtypes: float64(5), int64(1), object(2)
memory usage: 10.4+ KB
```

datas.	.describe()					
	GDP	GDP_growth	GDP_per_capita	GDP_per_capita_growth	Unemployment	Inflation
count	1.650000e+02	165.000000	165.000000	165.000000	165.000000	165.000000
mean	5.979318e+12	3.935030	25592.358424	3.250848	5.576303	3.208788
std	5.854453e+12	3.880645	20779.616905	3.633568	2.140721	3.676989
min	2.701053e+11	-5.780000	301.500000	-6.670000	2.060000	-1.400000
25%	2.071324e+12	1.490000	1915.550000	1.150000	4.000000	0.990000
50%	4.082469e+12	2.970000	29967.710000	2.390000	4.980000	2.190000
75%	7.551546e+12	6.990000	41103.260000	6.090000	7.650000	4.120000
max	2.736094e+13	14.230000	81695.190000	13.640000	11.170000	24.260000

Inflation rate (%) over time for India, China, USA, Germany and Japan Country India China Germany Japan USA Inflation Year

INFLATION TREND VISUALIZATION

- INDIA'S INFLATION RATE FLUCTUATED SIGNIFICANTLY, WITH A PEAK BETWEEN 1991-1995, REACHING AROUND 15%.
- AFTER 2008, AGAIN INDIA SAW A SIGNIFICANT RISE IN INFLATION WITH SOME LARGE SPIKES,
 PEAKING AT AROUND 10% BEFORE STABILIZING.
- THE **USA** SHOWS A RELATIVELY STABLE INFLATION RATE, MOSTLY RANGING BETWEEN 0% TO 5%.
- POST-2020, THERE IS A VISIBLE INCREASE, POSSIBLY DUE TO ECONOMIC SHOCKS FROM THE PANDEMIC AND OTHER GLOBAL EVENTS, PUSHING THE RATE UP TO 6-7%.

- GERMANY HAS CONSISTENTLY MAINTAINED A LOW AND STABLE INFLATION RATE, TYPICALLY
 UNDER 5%.
- A NOTICEABLE SLIGHT RISE OCCURRED POST-2020, LIKELY DUE TO THE PANDEMIC, REACHING 6-7%.
- JAPAN HAS CONSISTENTLY MAINTAINED VERY LOW INFLATION RATES, OFTEN NEAR OR BELOW 0%, INDICATING DEFLATION IN SOME YEARS.
- A SMALL RISE IS OBSERVED POST-2020, BUT IT REMAINS ONE OF THE LOWEST INFLATION RATES COMPARED TO THE OTHER COUNTRIES.
- CHINA'S INFLATION RATE WAS NOTABLY HIGH IN THE EARLY 1990S, PEAKING AT AROUND 25% BETWEEN 1993-1994.
- AFTER 1995, IT SHARPLY DROPPED, REMAINING RELATIVELY LOW (<5%) FOR MOST OF THE PERIOD.

KEY OBSERVATIONS

- COUNTRIES WITH HIGHER INFLATION:
 - E.G., INDIA AND CHINA MIGHT HAVE HAD HIGHER INFLATION RATES AT CERTAIN POINTS.
- COUNTRIES WITH LOWER OR MORE STABLE INFLATION:
 - E.G., GERMANY AND JAPAN MIGHT SHOW STABLE, LOWER INFLATION TRENDS.
- COMPARATIVE INSIGHTS:
 - INDIA'S INFLATION MAY BE MORE VOLATILE COMPARED TO THE USA OR GERMANY.

STATISTICAL ANALYSIS

CORRELATION ANALYSIS:

- CORRELATION BETWEEN INFLATION RATES AND OTHER VARIABLES.
- FOR EXAMPLE, CORRELATION COEFFICIENTS SHOWING THE RELATIONSHIP BETWEEN INFLATION AND (GDP GROWTH, GDP PER CAPITA)

KEY FINDINGS:

- STRONG OR WEAK CORRELATIONS BETWEEN INFLATION RATES AND OTHER VARIABLES.
- INSIGHTS INTO WHETHER GLOBAL EVENTS INFLUENCE INFLATION ACROSS COUNTRIES SIMILARLY.

Correlation between Inflation and other variables for China:

GDP -0.317132

GDP_growth 0.500853

GDP_per_capita -0.319977

GDP_per_capita_growth 0.469739

Unemployment -0.486196

Name: Inflation, dtype: float64

Correlation between Inflation and other variables for Japan:

GDP -0.479318

GDP_growth 0.167636

GDP_per_capita -0.451394

GDP_per_capita_growth 0.183630

Unemployment -0.680317

Name: Inflation, dtype: float64

Correlation between Inflation and other variables for Germany:

GDP 0.071275

GDP_growth 0.178252

GDP_per_capita 0.056956

GDP_per_capita_growth 0.097216

Unemployment -0.274571

Name: Inflation, dtype: float64

Correlation between Inflation and other variables for USA:

GDP 0.164113

GDP_growth 0.215529

GDP_per_capita 0.170454

GDP_per_capita_growth 0.242643

Unemployment -0.358626

Name: Inflation, dtype: float64

Correlation between Inflation and other variables for India:

GDP -0.291148

GDP_growth -0.117789

GDP_per_capita -0.280437

GDP_per_capita_growth -0.165859

Unemployment -0.070655

Name: Inflation, dtype: float64

ANNOVA TEST

WE WILL USE ONE-WAY ANOVA TO COMPARE THE MEANS OF INFLATION RATES BETWEEN DIFFERENT COUNTRIES (CHINA, INDIA, USA, GERMANY AND JAPAN) TO SEE IF THERE'S A SIGNIFICANT DIFFERENCE IN INFLATION RATES AMONG THESE COUNTRIES.

HO: THERE IS NO STATISTICALLY SIGNIFICANT DIFFERENCE IN MEANS OF INFLATION RATES AMONG THE COUNTRIES.

H1: AT LEAST ONE COUNTRY HAS STATISTICALLY SIGNIFICANT DIFFERENCE IN MEANS OF INFLATION RATES.

FROM THE P-VALUE OF THE ABOVE HYPOTHESIS TESTING, WE'RE ABLE TO REJECT THE NULL HYPOTHESIS AT 0.05 SIGNIFICANCE LEVEL AND CONCLUDE THAT THERE IS SOME STATISTICALLY SIGNIFICANT DIFFERENCE IN MEANS OF INFLATION RATES AMONG THE COUNTRIES

```
from scipy.stats import f_oneway
India_inflation = datas[datas['Country']=='India']['Inflation']
China_inflation = datas[datas['Country']=='China']['Inflation']
Germany_inflation = datas[datas['Country']=='Germany']['Inflation']
Japan_inflation = datas[datas['Country']=='Japan']['Inflation']
USA_inflation = datas[datas['Country']=='USA']['Inflation']

f_statistics, p_value = f_oneway(India_inflation,China_inflation,Germany_inflation,Japan_inflation,USA_inflation)
print("F-statistics:", f_statistics)
print("P_value:", p_value)

F-statistics: 22.72350230786072
P_value: 7.034646464221198e-15
```

MULTIPLE LINEAR REGRESSION

Regression for China:							Regression for German	ny:					
	OLS Re	gression R	esults					OLS Reg	ression Re	sults			
======================================	 Inflat	ion R-sq	======= uared:	=======	0.447		Dep. Variable:	Inflati	on R-squ	 uared:		0.233	
Model:		OLS Adj.	R-squared:		0.345		Model:	(LS Adj.	R-squared:		0.091	
Method:	Least Squa	res F-st	atistic:		4.372		Method:	Least Squar	es F-sta	atistic:		1.644	
Date: T	hu, 26 Sep 2	.024 Prob	(F-statistic	:):	0.00481		Date:	Thu, 26 Sep 20		(F-statistic)):	0.182	
Time:	12:17	':10 Log-	Likelihood:		15.186		Time:	12:17:	_	ikelihood:		49.971	
No. Observations:		33 AIC:			-18.37		No. Observations:		33 AIC:			-87.94	
Df Residuals:		27 BIC:			-9.394		Df Residuals:		27 BIC:			-78.96	
Df Model:		5					Df Model:		5				
Covariance Type:	nonrob	ust					Covariance Type:	nonrobu	ıst				
	coef	std err	 t	P> t	[0.025	0.975]	=======================================	coef	std err	t	P> t	[0.025	0.975]
const	-0.5997	0.357	-1.682	0.104	-1.331	0.132	const	0.2637	0.127	2.077	0.047	0.003	0.524
GDP	13.1324	11.939	1.100	0.281	-11.364	37.629	GDP	10.2854	7.520	1.368	0.183	-5.145	25.715
GDP_growth	9.9107	5.327	1.860	0.074	-1.020	20.841	GDP_growth	0.5316	0.559	0.951	0.350	-0.615	1.678
GDP_per_capita	-53.2489	50.738	-1.049	0.303	-157.355	50.857	GDP_per_capita	-2.6202	1.907	-1.374	0.181	-6.532	1.292
GDP_per_capita_growth	-9.1520	5.364	-1.706	0.099	-20.157	1.853	GDP_per_capita_growt	h -0.4051	0.547	-0.741	0.465	-1.527	0.716
Unemployment	0.4501	1.120	0.402	0.691	-1.847	2.748	Unemployment	-0.0604	0.062	-0.966	0.343	-0.189	0.068
 Omnibus:	 15.	======= 659 Durb	======= in-Watson:	=======	1.189		Omnibus:	 2.8	======= 368 Durbi	in-Watson:	=======	0.656	
Prob(Omnibus):			ue-Bera (JB):		18.258		Prob(Omnibus):	0.2	38 Jarqu	ue-Bera (JB):		2.184	
Skew:			(JB):		0.000108		Skew:	0.6	30 Prob((JB):		0.335	
			. No.		2.63e+03		Kurtosis:	2.9	76 Cond.	No.		1.01e+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- [2] The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression for India:							Regression for Japan:	:					
	OLS Re	gression						OLS Reg	ression R	desults			
Dep. Variable:	Inflat	ion R-s			0.551		Dep. Variable:	Inflati	.on R-sa	======================================	======	0.589	
Model:		OLS Adj	. R-squared:		0.468		Model:	0	LS Adj.	R-squared:		0.513	
Method:	Least Squa	res F-s	tatistic:		6.623		Method:	Least Squar	es F-st	atistic:		7.753	
Date: T	Thu, 26 Sep 2	024 Pro	b (F-statistic	:):	0.000384		Date:	Thu, 26 Sep 20	24 Prob	(F-statistic)	:	0.000125	
Time:	12:17	:10 Log	-Likelihood:		36.797		Time:	12:17:	10 Log-	Likelihood:		70.149	
No. Observations:		33 AIC	:		-61.59		No. Observations:		33 AIC:			-128.3	
Df Residuals:		27 BIC	:		-52.62		Df Residuals:		27 BIC:			-119.3	
Df Model:		5					Df Model:		5				
Covariance Type:	nonrob	ust					Covariance Type:	nonrobu	ıst				
	coef	std err	t	P> t	[0.025	0.975]	=======================================	coef	std err	t	P> t	[0.025	0.975]
const	1.2290	0.372		0.003	0.465	1.993	const	0.2302	0.102	2.256	0.032	0.021	0.440
GDP	-69.7229	15.085	-4.622	0.000	-100.674	-38.771	GDP	0.8062	6.233	0.129	0.898	-11.983	13.595
GDP_growth	-0.6142	4.294	-0.143	0.887	-9.425	8.196	GDP_growth	-0.5230	0.543	-0.964	0.344	-1.637	0.591
GDP_per_capita	298.6876	62.128	4.808	0.000	171.212	426.164	GDP_per_capita	-0.6304	2.414	-0.261	0.796	-5.584	4.323
GDP_per_capita_growth	0.3114	4.385	0.071	0.944	-8.685	9.308	GDP_per_capita_growth	0.5893	0.552	1.068	0.295	-0.543	1.721
Unemployment	-1.1671	0.288	-4.050	0.000	-1.758	-0.576	Unemployment	-0.2393	0.087	-2.746	0.011	-0.418	-0.061
Omnibus:	 3.	====== 238 Dur	======= bin-Watson:	======	2.113		 Omnibus:	 4.9	======= 983 Durb	======== oin-Watson:	======	1.594	
Prob(Omnibus):	0.	198 Jar	que-Bera (JB):		2.346		Prob(Omnibus):	0.0	83 Jaro	ue-Bera (JB):		3.442	
Skew:	0.	651 Pro	b(JB):		0.309		Skew:	0.7	'09 Prob	(ЈВ):		0.179	
Kurtosis:	3.	115 Con	d. No.		5.97e+03		Kurtosis:	3.7		l. No.		1.49e+03	

Notes:

- [2] The condition number is large, 5.97e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 - [2] The condition number is large, 1.49e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Regression for USA:	OLS Reg	gress	sion Res	sults			
 Dep. Variable:	 Inflati	-===	P-cau	======== nod:	=======	0.157	
Model:				R-squared:		0.001	
	Least Squar		_			1.007	
	Thu, 26 Sep 26				١٠	0.433	
Time:				ikelihood:	<i>,</i> .	51.153	
No. Observations:		33	AIC:	incirio ou i		-90.31	
Of Residuals:		27	BIC:			-81.33	
Of Model:		5					
	nonrobu						
	==========	-===			=======	========	=======
	coef	sto	err	t	P> t	[0.025	0.975]
const	0.0158	e	276	0.057	0.955	-0.550	0.582
GDP	-0.9516	1	1.655	-0.575	0.570	-4.348	2.445
GDP_growth	0.0496	1	1.961	0.025	0.980	-3.974	4.07
GDP_per_capita	1.1162	1	1.904	0.586	0.563	-2.791	5.02
GDP_per_capita_growth	0.0201	1	L.935	0.010	0.992	-3.950	3.996
Unemployment	-0.0767	e	0.070	-1.088	0.286	-0.221	0.068
 Omnibus:	13.4	101	Durbir	 n-Watson:		1.071	
Prob(Omnibus):	0.6	001	Jarque	e-Bera (JB):		15.845	
Skew:	1.6	97	Prob(JB):		0.000362	
Kurtosis:	5 9	590	Cond.	No.		428.	

CONCLUSION

INFLATION TRENDS:

- INDIA AND CHINA SHOW HIGHER INFLATION RATES OVER TIME.
- USA AND GERMANY HAVE RELATIVELY STABLE INFLATION.
- JAPAN STAND OUT WITH CONSISTENTLY LOW INFLATION RATES.

DIFFERENCES IN INFLATION RATES ACROSS COUNTRIES:

- INFLATION BEHAVIOR VARIES ACROSS COUNTRIES DUE TO FACTORS LIKE ECONOMIC POLICIES, GLOBAL TRADE, AND EXTERNAL SHOCKS.
- GLOBAL EVENTS (E.G., THE 2008 FINANCIAL CRISIS AND THE COVID-19 PANDEMIC) IMPACTED INFLATION DIFFERENTLY ACROSS COUNTRIES, WITH NOTABLE SPIKES POST-2020.

CORRELATION:

- THE CORRELATION ANALYSIS REVEALED SIGNIFICANT RELATIONSHIPS BETWEEN INFLATION AND OTHER ECONOMIC FACTORS LIKE GDP GROWTH AND GDP PER CAPITA.
- THESE CORRELATIONS INDICATE HOW INFLATION IS INTERTWINED WITH BROADER ECONOMIC PERFORMANCE, INFLUENCING KEY MACROECONOMIC INDICATORS.

REGRESSION:

 SIGNIFICANT PREDICTORS: THE MODEL IDENTIFIES SIGNIFICANT FACTORS AFFECTING INFLATION, SUCH AS GDP GROWTH AND UNEMPLOYMENT.

REFERENCES

• DATA SOURCES:

• WORLD BANK, INTERNATIONAL MONETARY FUND (IMF), NATIONAL STATISTICAL AGENCIES (E.G., INDIA'S MINISTRY OF STATISTICS).

THANK YOU