## UFMS - Universidade Federal de Mato Grosso do Sul Facom - Faculdade de Computação

Curso: Engenharia de Computação

Professor: Dr. Victor Leonardo Yoshimura

Disciplina: Circuitos Eletrônicos

### Prática Experimental 7 - Não-Idealidades dos AmpOps

## **Objetivos**

• Observar e quantificar algumas não-idealidades dos Amplificadores Operacionais (AmpOps): slew-rate, offset e saturação.

## Material

• 2 fontes de tensão ajustáveis

• Gerador de funções

• Multímetro

• Matriz de contatos (protoboard)

• CIs: LM741, LM324 e LF351

• Resistores:  $2 \times 10 \text{k}\Omega$ ,  $15 \text{k}\Omega$  e  $150 \text{k}\Omega$ 

• Potenciômetro (trimpot) de  $10k\Omega$ 

• Fios e cabos para conexões

### **Procedimento**

#### Slew Rate

Monte o circuito da Figura 1a, com o LM741. Aplique uma onda quadrada de 2,5V (pico) e 100Hz. Leia as tensões de entrada e saída no osciloscópio (um ciclo). Aumentando a frequência para 10kHz, determine a taxa de inclinação da saída,  $\frac{\Delta V_o}{\Delta t}$ . Repita para o LM324 e para o LF351.



Figura 1: Circuitos para a prática experimental.

### Offset de Saída

Monte o circuito da Figura 1b, com o LM741, e meça a tensão de saída (offset). Monte, então, o circuito adicional da Figura 2. Ajuste o offset até zerar. Meça os valores das resistências obtidas do potenciômetro. Repita para o LF351.



Figura 2: Circuito adicional para o balanceamento do offset.

## Saturação da Tensão de Saída

Volte ao circuito da Figura 1a com o LM741, trocando  $R_2$  por  $150 \mathrm{k}\Omega$ . Aplique uma tensão senoidal de  $500 \mathrm{mV}/100 \mathrm{Hz}$  (pico) à entrada do circuito e meça esta tensão e a de saída no osciloscópio. Aumente a tensão de entrada de  $250 \mathrm{mV}$ , até atingir  $2 \mathrm{V}$ . Determine a tensão de saturação. Repita para o LM324 e o LF351.

# Tratamento de Dados

- Compare os valores obtidos de slew-rate para os diferentes AmpOps (teórico e simulação).
- Qual a frequência máxima de uma senóide aplicada à entrada para que não sofra distorção de slew-rate?
- Compare os valores obtidos de offset da tensão de saída para os diferentes AmpOps (teórico e simulação).
- Após o teste do potenciômetro, quais valores de resistores de "balance" você colocaria para reduzir o efeito de offset?
- Compare os valores obtidos de tensão de saturação da saída para os diferentes AmpOps (teórico e simulação).

# Referências

[1] Sedra, Adel S. e Kenneth C. Smith: *Microeletrônica*. McGraw-Hill, São Paulo, 5ª edição, 2012.