

PLAN

Contexte

Mission 1

Résumé des données utilisées

Mission 2

Distribution des revenus

- diversité des pays
- courbes de Lorenz
- indices de Gini

Mission 3

Distributions conditionnelles

- coefficients d'élasticité
- Génération de la classe c(i,parent)

Mission 4

Modélisation

Explication du revenu des individus en fonction de plusieurs variables explicatives : le pays, l'indice de Gini de ce pays, la classe de revenus des parents, etc.

Conclusion

CONTEXTE

CONTEXTE

- Banque présente dans de nombreux pays.
- Objectif: cibler de nouveaux prospects, plus particulièrement les jeunes en âge d'ouvrir leur tout premier compte bancaire et, parmi ceux-ci, les plus susceptibles d'avoir, plus tard dans leur vie, de hauts revenus.
- Mission: créer un modèle permettant de déterminer le revenu potentiel d'une personne.
- Proposition : réaliser une régression linéaire avec 3 variables :
 - 1. le revenu des parents ;
 - 2. le revenu moyen du pays dans lequel habite le prospect ;
 - 3. l'indice de Gini calculé sur les revenus des habitants du pays en question.

MISSION 1 RÉSUMÉ DES DONNÉES UTILISÉES

Les données sources :

- distributions de revenus des populations de certains pays (source World Income Distribution via OCR) → table income
- 2. Populations des pays du monde (source FAO) \rightarrow table pop
- 3. indices de Gini* estimés par la <u>Banque mondiale</u> → table gini

^{*} L'indice de Gini est un indicateur synthétique permettant de rendre compte du niveau d'inégalité pour une variable et sur une population donnée. Il varie entre 0 (égalité parfaite) et 1 (inégalité extrême). Cf. insee.fr

Table income: présentation

in	<pre>inc.head()</pre>									
	country	year_survey	quantile	nb_quantiles	income	gdpppp				

116 pays, 100 lignes/pays.

Nous avons les codes des pays mais pas leurs noms.

country_c	ode').nunique().sum()
116	
116	
11599	
116	
11599	
114	
	116 116 11599 116

Il manque visiblement 1 ligne quantile (et donc *income*) et 2 lignes gdpppp*.

7 années (de 2004 à 2011, rien en 2005). L'année 2008 est la plus représentée.

*Gdp ppp

gross domestic product (based on) purchasing power parity. En français : produit intérieur brut en parité du pouvoir d'achat (PIB PPA). Permet de pouvoir faire des comparaisons entre pays sans distorsion due au taux de change.

Table income: traitements

 Quantile manquant : qtl 41 de la Lituanie. On l'évalue en faisant la moyenne avec les quantiles précédent et suivant.

```
6239 LTU 2008 40 100 4868.4507 17571.0 Lituanie
6240 LTU 2008 42 100 4895.8306 17571.0 Lituanie
(float(inc2.iloc[6239]['income']) + float(inc2.iloc[6240]['income'])) / 2
4882.14065
```

 Utilisation de quantiles (centiles) = bonne méthode car compromis entre réduction de la taille de l'échantillon et préservation de l'information. Permet notamment d'effectuer des comparaisons relativement précises entre pays.

Table income: traitements

 gdp ppp manquants : Palestine et Kosovo → complété avec des données de la Banque mondiale.

```
Fidji 2008.0 50.5 100.0 2098.730882 4300332.0 
inc2.loc[inc2['country_code'] == 'FJI', 'gdpppp'] = 7078.627
```

Table income: jointure avec la table population

• Jointure via le nom et l'année. Pour cela, création d'une table temporaire avec les noms des pays et leurs codes ISO.

```
inc3 = pd.merge(inc2, pop, on = ['country_name', 'year'], how = 'left')
```

20 pays ont leur population non renseignée.
 Cause : les noms sont différents selon les tables.
 Ex : Biélorussie != Bélarus, Egypte != Égypte
 → Mise à jour via une fonction.

```
# Fonction pour mettre à jour les noms des pays

def corr_country_name(name):
    if (name == 'Bélarus'):
        return 'Biélorussie'

elif (name == 'Bolivie (État plurinational de)'):
        return 'Bolivie'

else:
        return name
```

```
country_codeyearquantilenb_quantilesincomegdpppcountry_namepopulation0ALB20081100728.897957297.0Albanie3002678.0
```

Table gini

- Source : <u>Banque mondiale</u>
- 264 lignes, 65 colonnes.
- Table avec de nombreuses données manquantes.

gini.	head()																				
	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	Aruba	ABW	GINI index (World Bank estimate)	SI.POV.GINI	NaN																

(extrait de la table Gini)

Table gini: jointure avec la table income + population

Calcul de la moyenne de l'indice de Gini par pays...

```
# Calcul des moyennes des indices pour chaque pays
gini['mean_gini'] = gini.mean(axis=1)
```

...puis jointure

```
# Jointure pour ajouter la moyenne de l'indice de Gini par pays
inc4g = pd.merge(inc4g, gini3, left_on = 'country_code', right_on = 'Country Code', how = 'left')
inc4g.drop('Country Code', axis = 1, inplace = True)
```

Cambodge et Taiwan n'ont pas d'indice de Gini.
 Pas de source d'info sûre => suppression de ces lignes.

Résultat final et population représentée par l'analyse

	country_code	year	quantile	nb_quantiles	income	gdpppp	country_name	population	mean_gini
0	ALB	2008	1	100	728.89795	7297.0	Albanie	3002678.0	31.411111

11 400 lignes, 9 colonnes

Population représentée : un peu plus de **75%** de la population mondiale recensée par la FAO (un peu + de 6 milliards de personnes).

MISSION 2 DISTRIBUTION DES REVENUS

Diversité des pays en termes de distribution de revenus : choix de 6 pays représentatifs

Je créé un df pour avoir la moyenne des revenus par pays, je le classe par income
inc_dr = inc4.groupby(['country_name', 'country_code'])['income'].mean().reset_index()
inc_dr.sort_values('income').head()

	country_name	country_code	income
23	Congo République démocratique du	COD	276.016044

Pays retenus pour la comparaison :

- Les pays aux 2 extrêmes de la liste : Congo et Islande
- Ceux situés au niveau des quartiles : Viêt Nam, Paraguay, Chili
- La France pour avoir un point de comparaison connu

Représentation du revenu moyen de chacune des classes de revenus des pays choisis

L'Islande est visiblement le pays le plus riche du groupe et aussi le plus égalitaire.

Courbes de Lorenz de chacun des pays choisis

Les courbes les plus proches de la diagonale représentent les pays les plus égalitaires.

Ici : l'Islande, suivie de la France.

Évolution de l'indice de Gini au fil des ans

Visiblement, le Paraguay et le surtout le Chili évoluent vers plus d'égalité.

Classement des pays par indice de Gini

La France se situe à la place n° 32 sur les 114 pays représentés.

Gini France = 0.32

Gini monde = 0.38

=> La France fait partie des pays les plus égalitaires.

<u>Indices les</u> (pays les plus	-	<u>Indices les p</u> (pays les plus ir		
country_name		country_name		
Slovénie	24.961111	Afrique du Sud	61.714286	
République tchèque	25.944444	Brésil	56.847059	
Slovaquie	26.160000	Guatemala	55.000000	
Danemark	26.405263	Swaziland	54.925000	
Finlande	26.768421	Honduras	54.641379	

MISSION 3 DISTRIBUTIONS CONDITIONNELLES

Coefficients d'élasticité

Point d'étape :

Nous avons à disposition 2 des 3 variables explicatives souhaitées :

- 1. *m(j)*, le revenu moyen du pays *j*
- 2. *G(j)*, l'indice de Gini du pays *j*

Il nous manque donc, pour un individu i, la classe de revenu c(i,parent) de ses parents.

Nous allons simuler cette information grâce à un coefficient $\rho(j)$ (propre à chaque pays) mesurant une corrélation entre le revenu de l'individu i et le revenu de ses parents...

m(j), le revenu moyen du pays j

G(j), l'indice de Gini du pays j

classe de revenu c(i,parent) des parents

revenus de l'enfant

Coefficients d'élasticité

...ce coefficient sera ici appelé coefficient d'élasticité. Il mesure la mobilité intergénérationnelle du revenu.

Précisions:

L'élasticité intergénérationnelle des revenus permet d'estimer la variation en % du revenu d'un enfant lorsque les revenus des parents augmentent de 1%.

Une parfaite mobilité sociale (= aucune influence de la situation familiale sur le revenu des enfants) implique donc une élasticité égale à 0. Plus l'élasticité est grande, plus la mobilité sociale est faible.

Coefficients d'élasticité

Mathématiquement, ce coefficient est déterminé par une régression linéaire simple dans laquelle le logarithme du revenu de l'enfant Y(child) est une fonction du logarithme du revenu des parents Y(parent):

$$ln(Y_{child}) = \alpha + p_j ln(Y_{parent}) + \epsilon$$

Pour chaque pays, nous allons utiliser une génération aléatoire de la classe de revenu des parents c(i,parent), à partir de ces seules deux informations :

- le coefficient d'élasticité ρ(j)
- la classe de revenu de l'enfant *c(i,child)*.

Coefficients d'élasticité

Sources:

- Les coefficients (« IGEincome ») donnés par la Banque mondiale, dans GDIM dataset
- Les estimations provenant de multiples études, extrapolées à différentes régions du monde, regroupées dans le fichier elasticity.txt

Méthode suivie pour avoir les coefficients d'élasticité par pays :

Application du coef du pays quand il est connu (précis), sinon application du coef de la région (moins précis).

Coefficients d'élasticité

Après traitement, nous obtenons le tableau suivant :

	country_code	qı	uantile	nb_quantiles	income	gdpppp	mean_gini	coef_elast	
0	ALE		1	100	728.89795	7297 0	31.411111	0.815874	Très faible mobilité sociale.
			1						Pour info, le coefficient d'élasticité
1	ALE		2	100	916.66235	7297.0	31.411111	0.815874	de la France est de 0,34
									ue la Fluille est de 0,54

Attention:

Syrie et Kosovo ont été retirés (pas de source d'info sûre pour compléter les données manquantes).

Représentation des distributions conditionnelles

On utilise le code fourni par OCR.

Exemple pour une population segmentée en 10 classes avec p(j) = 0.34 (France).

Montre que notre code fonctionne!

Représentation des distributions conditionnelles

Représentations avec des pays très égalitaires et des pays très inégalitaires :

Représentation des distributions conditionnelles

Exemple pour une population segmentée en centiles avec p(j) = 0,34 (France).

Génération du dataset pour la mission 4

Création de 499 « clones » → la taille du nouvel échantillon est donc 500 fois plus grande que celui de la World Income Distribution.

Pour chaque pays, il y a maintenant 500 individus. Nous attribuons aux 500 individus leurs classes conformément aux distributions trouvées précédemment.

Cela donne 50 000 lignes/pays (500 x 100). Taille du *dataframe* : 5 600 000 lignes (500 x 100 x nb de pays).

```
for country in country list:
    # On va chercher le coef d'élasticité pour chaque pays
    pj = inc5.loc[inc5['country code'] == country,'coef elast'].iloc[0]
    # nombre de classes de revenu
    nb quantiles = 100
    # taille de l'échantillon
    n = 50000
    y child, y parents = generate incomes(n, pj)
    sample = compute quantiles(y child, y parents, nb quantiles)
    cd = conditional distributions(sample, nb quantiles)
    # Pour chaque classe de revenu enfant...
    for c i child in range(100):
        # ...pour chaque classe de revenu parent...
        for c i parent in range(100):
            # ...on calcule la proba de la classe parent connaissant la classe enfant
            p = proba cond(c i parent, c i child, cd)
            # On ajoute chaque nouvelle ligne à la précédente avec la méthode extend
            list prob.extend([c i parent + 1] * (int(p * 500)))
```

MISSION 4 MODÉLISATION

MODÉLISATION

Objectif:

Expliquer le revenu des individus en fonction de plusieurs variables explicatives :

- le pays de l'individu
- l'indice de Gini de ce pays
- la classe de revenus des parents
- etc.

ANOVA

Y a-t-il une différence de revenu entre les pays ? ANOVA : income ~ country

ANOVA?

- analysis of variance / analyse de la variance
- permet d'étudier l'impact d'une (ou plusieurs) variable qualitative (dans notre cas : country) sur une variable quantitative (income).
- L'ANOVA vise à comparer des moyennes sur plusieurs échantillons et à répondre à la question : y a-t-il des différences significatives entre les groupes ?

ANOVA

Y a-t-il une différence de revenu entre les pays ? ANOVA : income ~ country

Graphiquement, on observe des moyennes différentes en fonction des pays.

ANOVA

Y a-t-il une différence de revenu entre les pays ? ANOVA : income ~ country

Statistiquement:

• La p-valeur du test de Fisher est très en dessous du seuil de 5% → rejet de H0 (égalité des moyennes) => le pays a un effet sur les revenus.

• Plus précisément : $\eta^2 = 0.49 \rightarrow$ le pays explique 49% de la variance du revenu.

Nous pouvons aller plus loin.

income ~ income_mean + gini

variables explicatives = revenu moyen du pays de l'individu + indice de Gini du pays de l'individu

Résultats

- L'explication de la variance n'est pas meilleur qu'avec l'ANOVA.
- $R^2 = 0.49$
- La p-valeur de l'indice de Gini n'est pas significative (elle est proche de 1).

OLS Regression Results

Dep. Variable:	i	ncome_q	R-s	quared:	0	.494
Model	:	OLS	Adj. R-s	quared:	0	.494
Method:	Least	Squares	F-8	statistic:	5	467.
Date	Mon, 29	Jun 2020	Prob (F-s	tatistic):		0.00
Time:	:	19:02:16	Log-Lik	elihood:	-1.14586	e+05
No. Observations:	:	11200		AIC:	2.2926	e+05
Df Residuals:	:	11197		BIC:	2.2926	e+05
Df Model:	:	2				
Covariance Type:	: n	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const -	1.381e-11	357.813	-3.86e-14	1.000	-701.377	701.377
mean_gini 1	1.421e-13	0.406			40 477	
	1.4216-13	8.406	1.69e-14	1.000	-16.477	16.477
income_mean	1.0000	0.010	1.69e-14 95.885	0.000	0.980	1.020
income_mean Omnibus:	1.0000	0.010				
-	1.0000	0.010 Durbi	95.885		0.980 0.686	
Omnibus:	1.0000 14173.515	0.010 Durbi Jarque-	95.885 n-Watson:	0.000	0.980 0.686	

income ~ income_mean + gini

Analyse

- Les résidus ne suivent pas une loi normale.
- Ils semblent dépendants de la valeur prédite (hétéroscédasticité)
- 7% des individus sont marginaux.
- Les données ne sont pas linéaires, notre modèle prédit mal.

log(income) ~ log(income_mean) + gini

Résultats:

- L'explication de la variance est bien meilleure.
- Toutes les p-valeurs sont faibles, y compris pour l'indice de Gini.
- $R^2 = 0.72$ (meilleur)
- Le modèle explique 72% de la variance. Les 28% restants peuvent être expliqués par les autres facteurs non considérés dans le modèle (efforts, chance, etc).

OLS Regression Results

Dep. Variable	e:	incom	ne_q	R-sq	uared:	0.7	24
Mode	d:	(OLS A	dj. R-sq	uared:	0.7	24
Method	d: L	east Squ	ares	F-sta	itistic:	1.469e+	04
Date	e: Mon,	29 Jun 2	2020 Pro	ob (F-sta	tistic):	0.	00
Time	e:	21:2	5:57 L	og-Likeli	hood:	-1231	11.
No. Observations	s:	11	200		AIC:	2.463e+	04
Df Residuals	s:	11	1197		BIC:	2.465e+	04
Df Mode	A:		2				
Covariance Type	e:	nonro	bust				
	coef	std err	t	P> t	[0.025	0.975]	
const	0.5117	0.070	7.261	0.000	0.374	0.000	
			1.201	0.000	0.514	0.650	
mean_gini -	-0.0167	0.001	-18.969	0.000	-0.018	-0.015	
mean_gini · income_mean	0.0167 0.9826	0.001 0.006					
	0.9826	0.006	-18.969	0.000	-0.018	-0.015	
income_mean	0.9826	0.006 3 Du r	-18.969 154.960	0.000 0.000 on:	-0.018 0.970	-0.015	
income_mean Omnibus:	0.9826 753.353	0.006 3 Dur 0 Jarq u	-18.969 154.960 bin-Wats	0.000 0.000 on:	-0.018 0.970 0.386	-0.015	

log(income) ~ log(income_mean) + gini

Analyse

- Les résidus suivent une loi normale.
- Ils ont une variance constante (homoscédasticité).

 Il reste seulement 2% d'individus marginaux.

Proposition faite au départ du projet :

log(income) ~ log(income_mean) + gini + c_parent

variables explicatives = revenu moyen du pays de l'individu + indice de Gini du pays de l'individu + revenu des parents

Résultats:

- L'explication de la variance est encore meilleure. R² = 0,73.
- Il reste 27 % non expliqués. Le reste peut être expliqué par d'autres facteurs comme par exemple le lieu d'habitation, le niveau d'études, les efforts, la chance, etc.
- Le coef de Gini est négatif => plus il augmente, plus le revenu diminue.

OLS Regression F	Qesults					
Dep. Variab	le:	income	_q	R-squar	red:	0.732
Mod	el:	0	LS Adj.	Adj. R-squared:		
Metho	od: L	east Squar	res	F-statistic: 5.09		
Da	te: Mon	, 29 Jun 20	20 Prob (F-statist	tic):	0.00
Tim	ne:	23:33:	07 Log-	Likeliho	od: -6.	.0776e+06
No. Observation	18:	56000	00		AIC:	1.216e+07
Df Residua	ls:	55999	96	E	BIC:	1.216e+07
Df Mod	el:		3			
Covariance Typ	oe:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.3011	0.003	95.505	0.000	0.295	0.307
mean_gini	-0.0167	3.89e-05	-429.971	0.000	-0.017	-0.017
classe_parent	0.0042	1.05e-05	397.231	0.000	0.004	0.004
income_mean	0.9826	0.000	3513.955	0.000	0.982	0.983
Omnibus:	396746	. 440 B	urbin-Wats		0.3	00
Olimbrio.						
Prob(Omnibus):			que-Bera (.		13090.4	
Skew:	-().155	Prob(.		0.	00
Kurtosis:		.847	Cond.	No.	71	13.

CONCLUSION

CONCLUSION

Rappel de la mission : créer un modèle permettant de déterminer le revenu potentiel d'une personne.

En ajoutant la classe de revenu des parents, nous obtenons un modèle suffisamment pertinent de manière à prévoir les revenus enfants.

Théoriquement, ce modèle pourrait encore être amélioré à condition d'ajouter les facteurs non considérés tels que les efforts, la chance, etc.

