# MT4531/5731: (Advanced) Bayesian Inference Introduction to Bayesian Computation (Monte Carlo sampling)

Nicolò Margaritella

School of Mathematics and Statistics, University of St Andrews



#### Outline

Introduction

2 Monte Carlo Integration

#### Outline

Introduction

2 Monte Carlo Integration

#### Bayesian inference - univariate case

- Data  $\mathbf{x} = (x_1, \dots, x_n)'$  with likelihood  $f(\mathbf{x}|\theta)$ .
- Prior  $p(\theta)$  for the single parameter  $\theta$ .
- Posterior

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)p(\theta)}{f(\mathbf{x})}$$

where 
$$f(\mathbf{x}) = \int f(\mathbf{x}|\theta) p(\theta) d\theta$$

# Bayesian inference - multivariate case (1)

- Data  $\mathbf{x} = (x_1, \dots, x_n)'$  with likelihood  $f(\mathbf{x}|\boldsymbol{\theta})$ .
- Prior  $p(\theta)$ , now for a vector  $\theta$  of parameters.
- Posterior

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)p(\theta)}{f(\mathbf{x})}$$

where 
$$f(x) = \int ... \int f(x|\theta) p(\theta) d\theta$$

## Bayesian inference - multivariate case (2)

• Often the parameters  $\theta = \{\theta_1, \theta_2, \theta_3, \dots\}$  are assumed to be independent of each other, *a priori*, so that,

$$p(\theta) = \prod_{i=1}^n p(\theta_i).$$

• It is also common to introduce prior dependence between the parameters, by introducing another hyper-parameter  $\phi$ , so that,

$$p(\boldsymbol{\theta}|\phi) = \prod_{i=1}^{n} p(\theta_i|\phi), \qquad p(\phi) = \dots$$

 In more than one dimensions the posterior distribution significantly increases in complexity.

#### Intractable posteriors

- Data:  $x_1, \ldots, x_n$  with  $x_i \sim N(\mu, \sigma^2)$ .  $\mu$  and  $\sigma^2$  unknown.
- Priors:  $\mu \sim N(\phi, \tau^2)$  and  $\sigma^2 \sim \Gamma^{-1}(\alpha, \beta)$

•

$$\pi(\mu, \sigma^2 | \mathbf{x}) \propto (\sigma^2)^{-(n/2 + \alpha + 1)} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right)$$
$$\exp\left(-\frac{\beta}{\sigma^2}\right) \exp\left(-\frac{(\mu - \phi)^2}{2\tau^2}\right)$$

•

$$f(\mathbf{x}) = \int_{\mu = -\infty}^{\infty} \int_{\sigma^2 = 0}^{\infty} (\sigma^2)^{-(n/2 + \alpha + 1)} \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right) \exp\left(-\frac{\beta}{\sigma^2}\right) \exp\left(-\frac{(\mu - \phi)^2}{2\tau^2}\right) d\mu d\sigma^2$$

### Bayesian computation

- Q: How do we do Bayesian analysis when we have posterior distributions of non-standard form, possibly of high dimension?
- A: Use a computer to generate random samples from the posterior.
- Use these samples to provide empirical estimates of the quantities we want





#### Bayesian computation

- Q: How do we do Bayesian analysis when we have posterior distributions of non-standard form, possibly of high dimension?
- A: Use a computer to generate random samples from the posterior.
- Use these samples to provide empirical estimates of the quantities we want





#### Bayesian computation

- Q: How do we do Bayesian analysis when we have posterior distributions of non-standard form, possibly of high dimension?
- A: Use a computer to generate random samples from the posterior.
- Use these samples to provide empirical estimates of the quantities we want





#### Samples can be independent or dependent

- Two ways to generate the samples: independent or dependent (i.e., value of one sample depends on the value of the previous one)
- Both give the same distribution in the end, but with dependent samples:
  - Start point matters for a while i.e., it takes a while to "burn-in"
  - You need more samples for the same level of accuracy



#### Samples can be independent or dependent

- Two ways to generate the samples: independent or dependent (i.e., value of one sample depends on the value of the previous one)
- Both give the same distribution in the end, but with dependent samples:
  - Start point matters for a while i.e., it takes a while to "burn-in"
  - You need more samples for the same level of accuracy



#### Samples can be independent or dependent

- Two ways to generate the samples: independent or dependent (i.e., value of one sample depends on the value of the previous one)
- Both give the same distribution in the end, but with dependent samples:
  - Start point matters for a while i.e., it takes a while to "burn-in"
  - You need more samples for the same level of accuracy



#### Outline

Introduction

2 Monte Carlo Integration

#### Monte Carlo Integration

• Example: Estimate the posterior (marginal) expectation of  $\theta$  given  ${\bf x}$ 

$$\mathbb{E}_{\pi}( heta) = \int heta \pi( heta | oldsymbol{x}) d heta$$

- Say we have a sample  $\theta^1, \ldots, \theta^n$  from the  $\pi(\theta|\mathbf{x})$
- We can estimate the expectation using

$$\hat{\mathbb{E}}_{\pi}( heta) = rac{1}{n} \sum_{i=1}^n heta^i$$

• This idea extends to any function of  $\theta$ ,  $f(\theta)$ . For example, the posterior mean of  $f(\theta)$ :

$$\widehat{\mathbb{E}}_{\pi}(f(\theta)) = \frac{1}{n} \sum_{i=1}^{n} f(\theta^{i})$$

## Monte Carlo Integration

• For 100 samples  $\theta^i$ , the 5% quantile of  $\pi(\theta|\mathbf{x})$ , is obtained by considering the fifth sample  $\theta^{(5)}$ , after sorting the sample to  $\theta^{(1)}, \theta^{(2)}, \theta^{(3)}, \dots$  in increasing order:

$$P_{\pi}(\theta \leq \theta^{(5)}|\mathbf{x}) \simeq 0.05.$$

- The posterior variance of  $f(\theta)$  ?
- The probability  $f(\theta)$  is more than some value c?

See Exercise 2 in tutorial 4.

#### Example

- Suppose  $\pi(\theta|\mathbf{x}) \sim N(0,1)$ .
- Hence  $\mathbb{E}(\theta) = 0$  and  $sd(\theta) = 1$ .
- Simulate values from rnorm in R:

| Samples | 1           |           | 2       |       | 3       |       |
|---------|-------------|-----------|---------|-------|---------|-------|
| n       | Sample Mean | Sample SD | S. Mean | S. SD | S. Mean | S. SD |
| 10      | -0.39       | 1.26      | -0.36   | 1.32  | -0.09   | 0.87  |
| 100     | 0.36        | 0.88      | -0.23   | 0.94  | 0.10    | 0.95  |
| 1000    | -0.10       | 1.01      | -0.01   | 1.01  | 0.02    | 0.98  |
| 10000   | -0.01       | 1.00      | 0.00    | 0.99  | 0.00    | 1.00  |
| 100000  | 0.00        | 1.00      | 0.00    | 1.00  | 0.00    | 1.00  |

#### Monte Carlo Error

- Measures the between-simulation variability in estimates
- For n independent  $\theta^i$  samples, for estimating the expected value of  $\theta$ :

$$\overline{ heta} \sim \mathcal{N}\left(\mathbb{E}_{\pi}( heta), rac{\sigma^2}{n}
ight).$$

- $\sigma^2/n$  is the Monte Carlo variance
- $\sqrt{\sigma^2/n}$  is the Monte Carlo error.
- See later in module for dependent samples...

# Aside: Calculating any definite integral using MC integration

 MC integration can in fact be used to calculate any definite integral

$$\int_{a}^{b} f(x) dx$$

• you can introduce the Uniform U(a, b) within the integral

$$(b-a)\int_a^b f(x)\frac{1}{b-a}dx$$

• so that the integral is calculated by approximating the expectation of f(x) multiplied by (b-a).

$$\int_{a}^{b} f(x)dx \simeq (b-a)\hat{\mathbb{E}}(f(x)) = \frac{(b-a)}{n} \sum_{i=1}^{n} f(x^{i})$$

• where the  $x^i$  are sampled from the uniform U(a,b)

#### Conclusion

- Bayesian problems frequently lead to intractable integrals
- If we can sample from the posterior, we can use Monte Carlo integration to obtain estimates of quantities of interest
- So, we have replaced an integration problem with a sampling problem
- How do we obtain samples from the posterior?
- ... see future lectures.