Quiz D (Week 15) Linear Algebra

- (A) Problems for Chapter 5
 - 1. Find the matrix $P = \frac{aa^T}{a^Ta}$ that projects any vector onto the line through $a = (2, 1, 2)^T$.
 - (a) What is the only nonzero eigenvalue of P,
 - (b) Every eigenvalue of a Skew-Hermitian matrix is pure imaginary.
 - (c) Two eigenvectors of a Skew-Hermitian matrix, if they come from different eigenvalues, are orthogonal to one another.
 - 2. Let $\alpha, \beta \in \mathbb{R}^n$ be nonzero vectors, $\alpha = (1, a_2, \dots, a_n)^T$. Write everything you know about the matrix $A = (I + \beta \alpha^T)$:
 - (a) All eigenvalues of A and the corresponding eigenvectors,
 - (b) Is A diagonalizable ? If yes, give you the matrix S such that $AS = S\Lambda$.
 - 3. Prove that $A^H A$ is always a Hermitian matrix.

$$A = \left[\begin{array}{ccc} i & 1 & i \\ 1 & i & i \end{array} \right]$$

- Compute $B = AA^H$ and $C = A^HA$.
- \bullet Compute the eigenvalues of B.
- Give a unitary matrix U such that $B = U^H \Lambda U$.
- 4. For the matrices of B and C in the last problem,
 - (a) Show that the both matrices have the same nonzero eigenvalues.
 - (b) If x is an eigenvector of B, show that $A^H x$ is an eigenvector of C.
 - (c) Show that 0 an eigenvalue of C.
 - (d) Compute the eigenvector of C corresponding to the eigenvalue 0 of C.
- 5. If $A^H = A$, the matrix is a Hermitian matrix. Please show that
 - (a) If $A = A^H$, then for all complex vectors x, the $x^H A x$ is real.
 - (b) Every eigenvalue of a Hermitian matrix is real.
 - (c) Two eigenvectors of a Hermitian matrix, if they come from different eigenvalues, are orthogonal to one another.

- 6. If $K^H = -K$, the matrix is Skew-Hermitian. Please show that
 - (a) If $K^H = -K$, then for all complex vectors x, the $x^H K x$ is pure imaginary.
 - (b) Every eigenvalue of a Skew-Hermitian matrix is pure imaginary or zero.
 - (c) Two eigenvectors of a Skew-Hermitian matrix, if they come from different eigenvalues, are orthogonal to one another.
 - (d) If $A^T = -A$ is a n by n matrix and n is an odd number, then det(A) = 0.
- 7. If A = R + iS is a Hermitian matrix, are the real matrices R and S symmetric. Please give you argument.
- 8. If $A^2 = -I$, what are the eigenvalues of A? If A is a real n by n matrix show that n must be even, and give an example.
- 9. If K is a skew-symmetric matrix, show that $Q = (I K)(I + K)^{-1}$ is an orthogonal matrix. Find Q if $K = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$.

(B) Problems for Chapter 6

1. Let A be a n by n symmetric matrix, please show that there is a constant c such that

$$|x^T A x| \le c \cdot (x^T x), \quad \forall x \in \Re^n.$$

- 2. If A is positive definite and a_{11} is increased prove that the determinant is increased.
- 3. Let A be a positive semi-definite matrix, please show the generalized Cauchy-Schwarz inequality $|x^TAy| \leq (x^TAx)(y^TAy)$.
- 4. Let I be n times n Identity matrix and $e \in \mathbb{R}^n$ whose every entry is 1. Please show that :
 - (a) The matrix $(n\mathbf{I} e\mathbf{e}^T)$ is positive semi-definite.
 - (b) For any $\boldsymbol{x} \in \boldsymbol{R}^n$,

$$\sum_{j=1}^{n} x_j^2 \ge \frac{1}{n} (\sum_{j=1}^{n} x_j)^2.$$

- 5. Please show that for every symmetric matrix A, there is a constants s_0 and t_0 , such that
 - (a) $s_0I + A$ is positive semi-definite, sI + A is positive definite for any $s > s_0$.
 - (b) $t_0I + A$ is negative semi-definite, tI + A is positive definite for any $t < t_0$.
- 6. Let $f(x) = \sum_{i=1}^{n} x_i^2 + \sum_{1 \le i < j \le n} x_i x_j$
 - (a) Write this function in the quadratic form $x^T A x$.
 - (b) What is the eigenvalues and the corresponding eigenvectors of A.
- 7. Let A be an $n \times n$ positive definite matrix, $\alpha, \beta \in \mathbb{R}^n$.

$$H = \begin{bmatrix} A & \alpha \\ \alpha^T & a \end{bmatrix}, \qquad L = \begin{bmatrix} I_n & 0_{n \times 1} \\ \beta^T & 1 \end{bmatrix},$$

(a) If
$$LH = \begin{bmatrix} A & \alpha \\ 0_{1 \times n} & x \end{bmatrix}$$
, $\beta = ?$

- (b) If H is positive definite, a > ?
- 8. Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be a symmetric matrix, $\det(A_{11}) \neq 0$. Please give a matrix

$$C = \begin{bmatrix} I & X \\ 0 & I \end{bmatrix}$$
 such that $C^T A C = \begin{bmatrix} A_{11} & 0 \\ 0 & Z \end{bmatrix}$. What are the matrices X and Z ?