

universidade de aveiro

Learning outcomes

- Understand the diversity of situations for mobile networks
- Become aware of celular network architectures

Wireless networks

- Networks are designed according to the number of users and coverage area
- In wireless networks there are several scales on number of users and coverage area
 - Personal: PANs → Bluetooth
 - Local: LANs → IEEE 802.11
 - Regional: WANs → GSM, UMTS
 - Worldwide : Sattelite → Iridium

Types of connections

- Point-to-point networks
 - Communication points need to be in line of sight (LoS) (e.g. sattelite).
- Diffusion networks
 - There is no specific physical relationship between the two communication points (e.g. 802.11)
- Semi-diffusion networks
 - Require some limitations in the relative positioning of the communication points (e.g. Infrared)

5

Types of mobility

- User
 - Capacity to access services in different places
- Personal
 - Identifies the user position and allows the reception of information
- Terminal
 - Movement of equipments
 - Rellocation
 - Essentially it is a location change
 - Moving
 - Accompanying the terminal dynamic movement maintaining the connection
 - Universality
 - Capacity of movement in large areas, covering multiple administrative entities

Cell

- Smallest physical entity that allows the access to mobile entities
- Cell ≠ point-to-point connection
- Associated to the physical mechanism of information transfer (radio technologies or infrared)
- Cell
 - Terminal oriented or
 - Defined by a base station
- There is overlapping of different cells in a wireless network

universidade de aveiro

Home network

- Network where the user is "known"
- Associated to identification concepts
- Associated to accounting concepts
- Destination network for the others (even if the user is not there)
- Mobility is developed assuming that usually the user is in this network
- There needs to be communication between this network and the one where the user is at each time

Reacting to location

- Several distinct possibilities
 - "re-addressing" terminal has a new address, which is communicated to the users requesting communication
 - "tunnel" information always goes to the home network and is directed to the new location of the user
 - "re-routing" network modifies the routing tables to route all traffic destined to the terminal to the new access point

10

Handover

Transfer of information flow between access points

Handover ≠ Roaming

- Several handover classifications
 - Scope
 - Technology
 - Connectivity
 - Performance

Long Range Technologies for IoT Sigfox LoRa NB-IoT (Cat NB1) Network: LoRa PLWAN DSSS modulation Type: PLWAN Throughput Kbit/s: 0.1 50 100 Bandwidth: Ultra-narrowband Narrowband Narrowband 1.6 - 10s 1 - 30s Based on profile Latency: 3GPP Rel. 13 Standard: Proprietary Proprietary Availability world-wide: Unlicensed ISM Spectrum: Unlicensed ISM Licensed LTE Complexity: Low Coverage / range: Medium / high Medium / high Battery life: Very high Very high / high High Gateway needed: Yes Yes No, but optional

Medium / high

+++

Medium / high

+++

++++

High

+++

Signal penetration:

Security:

Future proof:

Cells

Advantages:

- > capacity
- > # users
- < power
- > robustness (distributed system)
- Each cell locally takes care of interference, coverage area, etc...

Disadvantages

- Uses cabled network between cells
- Many handovers
- · Interference between cells

Fundamental:

Cell dimensioning

- · Length of the cell
- Frequency re-utilization
- Channel reservation

23

Cells

- Length:
 - 100m to 35 km (GSM)
 - Microcells: closed spaces
 - Hat cell: set of cells
 - · Avoid frequent handoffs in critical places
- Format:
 - Teoretically analyzed as a hexagon
 - Reality: it depends on the place
- BS positioning:
 - Cell centrally excited
 - BS in the center of the cell, with omni-directional antenna
 - Cell side excited
 - BSs in the vertices (in three)
 - Directional antennas

GSM:

first widespread celular network

- Defined by CEPT/ETSI
- · Requirements defined in terms of

– Services Portability =PSTN

-QoS = PSTN

Security Ciphering with low cost

Use of radio frequency Efficiency

Network
 Numbering ITU-T, SS-7

- Cost Low

27

Basic architecture

- Each cell is controlled by a Base Station System (BSS)
- BSS are structured as base station controllers (BSC) + base transceiver station (BTS)
 - BTS comprises the radio transmission and reception devices; manages the signal processing related to the air interface
 - BSC manages the radio interface: allocation, release and handover of radio channels
- BSs are connected to mobile switching center (MSC) through physical lines
- Each MSC is connected to other MSCs
 - ISDN-switch
 - Coordinates and sets up calls to and from Mobile Stations (MS)
- There are MSC connected to the public network (PSTN), the gateway mobile switching center (GMSC).

- MSC = Mobile Switching Center Contains:
 - Home Location Register (HLR) database used to store permanent and semi-permanent subscriber data; it knows in which location area the MS is
 - Visitor Location Register (VLR) contains all the subscriber data, both permanent and temporary, which are necessary to control a MS in the MSCs coverage area.
 - Autentication Center (Au) database with subscriber authentication keys and the algorithm required to calculate the authentication parameters to be transferred to the HLR
 - Equipment Identity Registry (EIR) database contains information on the MS and its capabilities
- Connects to BSS
 - (Master of the cell, defines channels and access to them...)
- Contains the registration of its stations
- There is a specific signalling channel
 - MT-BS (MSC): location, call establishment, answer to a received call
 - BS (MSC)-MT: cell identification, location update, establishment of received call

Logical channels

- Logical channels are mapped in physical channels. It is a technique to simplify radio resource management.
- A physical channel consists on a specified timeslot in a specified
 - GSM distinguishes between physical channels (the timeslot) and logical channels (the information carried by the physical channels)
- Data channels
 - TCH Full rate traffic channel
 - TCH/H Half rate traffic channel
- Signalling channels
 - Synchronizes MN with cell
 - Informs MN about
 - · Cell parameters
 - · Neighbor cells
 - Channels
 - Performs paging
 - Discovers MN in low-power mode
 - Allows MN to access the network
 - · Access in shared mode
 - Fundamental for MN to ask connection

BCH – Broadcast channels; CCH – common control channels;

Logical channels

BCH: Broadcast channels

- Broadcast Control Channel (BCCH) Broadcasts Network information, e.g. for describing the current control channel structure. The BCCH is a point-to-multipoint channel (BSS-to-MS).

 Frequency Correction Channel (FCCH) - MS frequency correction Synchronization Channel (SCH) - Synchronisation of the MSs

CCH: common control channels

- Random Access Channel (RACH) MS access requests, response to call announcement, location update, etc
- Paging Channel (PCH) MS terminating call announcement

D/ACCH: dedicated/associated control channels

- Stand-alone Dedicated Control Channel (SDCCH) For signalling
- exchanges, e.g. during call setup, registration / location updates Slow Associated Control Channel (SACCH) SDCCH in-band signalling, e.g. for link monitoring

37

MN registration

There is an explicit registration of MN in the network

- GPRS attach
- GPRS detach can be initiated by MN or network
- Location packets are periodically sent
- HLR (changed!) maintains information about MN status, including
 - GPRS status (ready, standby, idle)
 - QoS profile (priority 3, delay 4, reliability 5, peak and mean throughput 19 and 9)
 - PDP (packet data protocol) context
 - Is a data structure present on both the SGSN and the GGSN which contains the subscriber's session information when the subscriber has an active session.
 - When a mobile wants to use GPRS, it must first attach and then activate a PDP context. This allocates a PDP context data structure in the SGSN that the subscriber is currently visiting and the GGSN serving the subscribers access point.
 - Also stored in SGSN and GGSN

Logical channels in GPRS			
Group	Channel	Function	Direction
Packet data Traffic channel	PDTCH	Data Traffic	MS ←→ BSS
Packet broadcast control channel	PBCCH	Broadcast Control	MS ← BSS
Packet common Control Channel (PCCCH)	PRACH PAGCH PPCH PNCH	Random Access Access Grant Accept/not Paging Notification	MS → BSS MS ← BSS MS ← BSS MS ← BSS
Packet Dedicated Control Channels	PACCH PTCCH	Associated Control Timing Advance Control	MS ←→ BSS MS ←→ BSS

CANTAL STATE STATE OF STATE O

- 3G system
- Oriented to generalized service diffusion and its future users trends
 - Combines cellular, wireless, paging, etc. functions
- "multimedia everywhere"
- Developed as an evolution path of 2.5G systems
 - Progressive evolution (GPRS-EDGE-UMTS)
- (Initial) Data rates of UMTS were:
 - 144 kbps for rural
 - 384 kbps for urban outdoor
 - 2048 kbps for indoor and low range outdoor
 - Large rates later, progressively increased

universidade de aveiro UMTS Network Architecture

- UMTS network architecture consists of three domains
 - Core Network (CN): Provides switching, routing and transit for user traffic
 - UMTS Terrestrial Radio Access Network (UTRAN): Provides the air interface access method for user equipment.
 - User Equipment (UE): Terminals work as air interface counterpart for base stations. The various identities are: IMSI, TMSI, P-TMSI, TLLI, MSISDN, IMEI, IMEISV

UTRAN

- Wide band CDMA technology is selected for UTRAN air interface
 - WCDMA
 - TD-SCDMA
- Base stations are referred to as Node-B and control equipment for Node-B is called as Radio Network Controller (RNC).
 - Functions of Node-B are
 - Air Interface Tx/Rx
 - Modulation/Demodulation
 - Functions of RNC are:
 - Radio Resource Control
 - Channel Allocation
 - Power Control Settings
 - Handover Control
 - Ciphering
 - · Segmentation and reassembly

