

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 2. Präsenzblatt

Julian Dörfler

Aufgabe P2.1 (Identitäten)

Zeigen Sie die folgenden Identitäten für alle regulären Ausdrücke E, F und G.

(a)
$$(E+F)+G=E+(F+G)$$

(b)
$$E + E = E$$

(c)
$$\varepsilon E = E\varepsilon = E$$

(d)
$$\emptyset^* = \varepsilon$$

Lösung P2.1 (Identitäten)

(a) Wir verwenden die Assoziativität der Mengenvereinigung:

$$\begin{split} L((E+F)+G) &= L(E+F) \cup L(G) \\ &= (L(E) \cup L(F)) \cup L(G) \\ &= L(E) \cup (L(F) \cup L(G)) \\ &= L(E) \cup L(F+G) \\ &= L(E+(F+G)) \end{split}$$

(b) Wir verwenden die Idempotenz der Mengenvereinigung.

$$L(E+E) = L(E) \cup L(E)$$
$$= L(E)$$

(c)

$$L(\varepsilon E) = L(\varepsilon)L(E)$$

$$= \{\varepsilon\}L(E)$$

$$= L(E)$$

$$= L(E)\{\varepsilon\}$$

$$= L(E)L(\varepsilon)$$

$$= L(E\varepsilon)$$

Hierbei folgen die mittleren Schritte aus der Neutralität von ε bezüglich der Stringkonkatenation.

(d) Sei $x \in L(\emptyset^*)$. Dann existieren $k \in \mathbb{N}$ Wörter $x_1, x_2, \dots, x_k \in L(\emptyset) = \emptyset$ mit $x = x_1 x_2 \dots x_k$, es gilt also k = 0. Somit ist $x = \varepsilon \in L(\varepsilon)$. Umgekehrt ist für $x \in L(\varepsilon)$ direkt $x = \varepsilon$. ε ist aber eine Konkatenation mit 0 Wörtern aus $L(\emptyset)$, somit $x \in L(\emptyset^*)$.

Aufgabe P2.2 (Reguläre Sprachen)

Beweisen Sie, dass für alle regulären Sprachen L die Sprache $L^{\text{-}0}=\{xy\mid x0y\in L\}$ regulär ist.

Lösung P2.2 (Reguläre Sprachen)

Sei $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ ein DEA, der L erkennt. Wir konstruieren nun für L^{-0} einen nichtdeterministischen endlichen Automaten $M^{-0}=(Q',\Sigma,\delta',q_0^{(1)},Q'_{\rm acc})$, wobei $Q'=\{q^{(i)}\mid q\in Q, i\in\{1,2\}\}$ ist und die akzeptierenden Zustände als $Q'_{\rm acc}=\{p^{(2)}\mid p\in Q_{\rm acc}\}$ gewählt werden. Die Zustandsübergangsfunktion δ' ergibt sich durch folgende Übergänge:

- $\delta'(q^{(i)}, \sigma) = \{\delta(q, \sigma)^{(i)}\}$ für alle $q \in Q, i \in \{1, 2\}$ und $\sigma \in \Sigma$,
- $\delta'(q^{(1)}, \varepsilon) = \{\delta(q, 0)^{(2)}\}$ für alle $q \in Q$.

Nun ist $L(M^{-0}) = L^{-0}$.

 \supseteq : Sei $x = x_1 x_2 \dots x_n \in L^{-0}$.

Dann gibt es ein $k \in \{0, ..., n\}$, so dass $x_1 x_2 ... x_k 0 x_{k+1} ... x_n \in L$.

Dann gibt es $q, q', q'' \in Q$ mit $q = \delta^*(q_0, x_1 \dots x_k), q' = \delta(q, 0)$ und schließlich $\delta^*(q', x_{k+1} \dots x_n) = q'' \in Q_{acc}$.

Nun ist $q'^{(2)} \in \delta'(q^{(1)}, \varepsilon)$. Nach Konstruktion ist $q^{(1)} \in \delta'^{\star}(q_0^{(1)}, x_1 \dots x_k)$. Wir nehmen die ε -Transition nach $q'^{(2)}$. Schließlich ist $q''^{(2)} \in \delta'^{\star}(q'^{(2)}, x_{k+1} \dots x_n)$ und $q''^{(2)} \in Q'_{\mathrm{acc}}$. Somit akzeptiert M^{-0} das Wort x.

 \subseteq : Sei $x \in L(M^{-0})$.

Dann gibt es ein $k \in \mathbb{N}$ und eine Folge von Zuständen $q_0^{(1)}, \dots q_k^{(1)}, q_{k+1}^{(2)}, \dots q_n^{(2)}$, die M^{-0} auf x durchläuft.

Sei also $x = x_1 \dots x_k \in x_{k+1} \dots x_n$. Nach Konstruktion ist $\delta(q_i, x_i) = q_{i+1}$ für $i \neq k$ und $\delta(q_k, 0) = q_{k+1}$ und $q_n \in Q_{acc}$. Damit ist $x_1 \dots x_k 0 x_{k+1} \dots x_n \in L$, woraus $x \in L^{-0}$ folgt.

Aufgabe P2.3 (Letztendlich periodisch)

Eine Menge $U \subseteq \mathbb{N}$ heißt letztendlich periodisch, wenn es natürliche Zahlen n_0 und p mit p > 0 gibt, so dass

$$\forall n > n_0 : n \in U \Leftrightarrow n + p \in U$$
.

Zeigen Sie: Eine unäre Sprache $L \subseteq \{1\}^*$ ist genau dann regulär, wenn die Menge $E = \{e \in \mathbb{N} \mid 1^e \in L\}$ letztendlich periodisch ist.

Lösung P2.3 (Letztendlich periodisch)

 \Leftarrow Seien n_0 und p beliebig, aber fest. Wir schreiben $E=E_{\mathsf{fin}}\cup E_0\cup\cdots\cup E_{p-1},$ wobei

$$E_{\mathsf{fin}} = \{ e \in E \mid e < n_0 \} \text{ und }$$

$$E_i = \{e \in E \mid e \ge n_0 \land e \text{ mod } p = i\} \text{ für alle } i \in \{0, \dots, p - 1\}.$$

Da E letztendlich periodisch ist, gilt für alle $i \in \{0, ..., p-1\}$:

$$E_i \neq \emptyset \Leftrightarrow E_i = \{e \in \mathbb{N} \mid e \geq n_0 \land e \mod p = i\}.$$

Dann gilt $L = L_{\text{fin}} \cup L_0 \cup \cdots \cup L_{p-1}$, wobei

$$L_{\mathsf{fin}} = \{1^e \mid e \in E_{\mathsf{fin}}\} \text{ und }$$

$$L_i = \emptyset \cup L_i = \{1^e \mid e \ge n_0\} \cap \{1^e \mid e \mod p = i\} \text{ für alle } i \in \{0, \dots, p-1\}.$$

Da L_{fin} und \emptyset endlich und $\{1^e \mid e \geq n_0\}$ und $\{1^e \mid e \mod p = i\}$ regulär sind, folgt mit der Abgeschlossenheit unter Schnitt und Vereinigung, dass auch L regulär ist.

⇒ Diese Richtung kann als Pumping-Lemma für unäre Sprachen betrachtet werden. Wenn L regulär ist, gibt es einen deterministischen endlichen Automaten M, der L akzeptiert. Da L außerdem unär ist, hat jeder Zustand M höchstens eine ausgehende Transition. Ein solcher Automat ist ein Pfad, gefolgt von einer Schlaufe. Formaler gesagt gibt es ein n_0 und ein p > 0, so dass M die Zustände s_0, \ldots, s_{n_0+p-1} und Transitionen $s_{i-1} \xrightarrow{1} s_i$ für alle $i \in \{1, \ldots, n_0 + p - 1\}$ hat. Ferner kann es die Transition $s_{n_0+p-1} \xrightarrow{1} s_{n_0}$ geben (wenn nicht, ist die Schlaufe leer und die akzeptierte Sprache ist endlich). Wenn L endlich ist, ist E auch endlich und daher letztendlich periodisch (wähle $n_0 > \max E$). Ansonsten sei $e \in \mathbb{N}$ mit $e \geq n_0$. Um zu zeigen, dass E letztendlich periodisch ist, genügt es zu zeigen, dass

$$1^e \in L \Leftrightarrow 1^{e+p} \in L$$
.

Sei also $1^e \in L$. Da $e \ge n_0$ befinden wir uns in einem akzeptierenden Zustand innerhalb der Schlaufe. Da die Schlaufe die Länge p hat, befinden wir uns nach dem Lesen von weiteren p 1en im selben akzeptierenden Zustand. 1^{e+p} ist also in L.

Sei nun $1^{e+p} \in L$. Da $e \ge n_0$ und die Schlaufe die Länge p hat, befinden wir uns innerhalb der Schlaufe in einem akzeptierenden Zustand, den wir vor p Schritten schon einmal getroffen haben. Folglich ist $1^e \in L$.