CS 747, Autumn 2020: Week 10, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

• For illustration consider prediction—estimating V^{π} .

- For illustration consider prediction—estimating V^{π} .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- For illustration consider prediction—estimating V^{π} .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top.$$

• With TD(0), our first update would be:

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2) \}.$$

- For illustration consider prediction—estimating V^{π} .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$$
.

• With TD(0), our first update would be:

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2) \}.$$

With First-visit Monte Carlo, our update would be

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\mathsf{old}}(s_2) \}.$$

- For illustration consider prediction—estimating V^{π} .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

• With TD(0), our first update would be:

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{2 + \gamma V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2)\}.$$

With First-visit Monte Carlo, our update would be

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\mathsf{old}}(s_2) \}.$$

Can we make this update instead?

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2) \}.$$

- For illustration consider prediction—estimating V^{π} .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

• With TD(0), our first update would be:

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{2 + \gamma V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2)\}.$$

With First-visit Monte Carlo, our update would be

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\mathsf{old}}(s_2) \}.$$

Can we make this update instead?

$$V^{\mathsf{new}}(s_2) \leftarrow V^{\mathsf{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 V^{\mathsf{old}}(s_3) - V^{\mathsf{old}}(s_2) \}.$$

Yes. It uses a 2-step return as target.

• Trajectory: $s^0, r^0, s^1, r^1, ...$

- Trajectory: $s^0, r^0, s^1, r^1,$
- For $t \ge 0, n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1} (s^{t+n}).$$

- Trajectory: $s^0, r^0, s^1, r^1, ...$
- For $t \ge 0, n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

• Convention: on episodic tasks, if a terminal state is encountered at t + n' for $1 \le n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.

- Trajectory: $s^0, r^0, s^1, r^1, ...$
- For $t \ge 0, n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1} (s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at t + n' for $1 \le n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- n-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{G_{t:t+n} - V^{t+n-1}(s^t)\}.$$

- Trajectory: $s^0, r^0, s^1, r^1,$
- For $t \ge 0, n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1} (s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at t + n' for $1 \le n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- n-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{G_{t:t+n} - V^{t+n-1}(s^t)\}.$$

• For each $n \ge 1$, we have $\lim_{t \to \infty} V^t = V^{\pi}$.

- Trajectory: $s^0, r^0, s^1, r^1, ...$
- For $t \ge 0$, $n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1} (s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at t + n' for $1 \le n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- n-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{G_{t:t+n} - V^{t+n-1}(s^t)\}.$$

- For each $n \ge 1$, we have $\lim_{t\to\infty} V^t = V^{\pi}$.
- What is the effect of *n* on bootstrapping?

- Trajectory: $s^0, r^0, s^1, r^1,$
- For $t \ge 0$, $n \ge 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \cdots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1} (s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at t + n' for $1 \le n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- n-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{G_{t:t+n} - V^{t+n-1}(s^t)\}.$$

- For each $n \ge 1$, we have $\lim_{t\to\infty} V^t = V^{\pi}$.
- What is the effect of n on bootstrapping?
 Small n means more bootstrapping.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes.

$$G_{t:t+1}$$
.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes.

$$G_{t:t+1}$$
. Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

• Can we use this as our target?

$$G_{t:t+3}$$
. Yes. $G_{t:t+1} + G_{t:t+2}$.

 $G_{t:t+1}$. Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1} + G_{t:t+2}$. Yes.

$$G_{t:t+1}$$
. Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1}$. Yes. $G_{t:t+1} + G_{t:t+2}$. Yes. $\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1} + G_{t:t+2}$. Yes. $\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$. Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1}$ Yes. $G_{t:t+1}$ Yes. $G_{t:t+1} + G_{t:t+2}$ Yes. $G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}$

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1}$ Yes. $G_{t:t+1} + G_{t:t+2}$ Yes. $\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$ Yes. $\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$ Yes.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1}$. Yes. $G_{t:t+1}$. Yes. $\frac{G_{t:t+1}+G_{t:t+2}}{2}$. Yes. $\frac{2G_{t:t+1}+3G_{t:t+2}+G_{t:t+3}}{6}$. Yes. $\frac{G_{t:t+1}+G_{t:t+2}+3G_{t:t+3}}{4}$. No. $\frac{G_{t:t+1}-2G_{t:t+2}+4G_{t:t+3}}{3}$.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

$$G_{t:t+3}$$
. Yes. $G_{t:t+1}$. Yes. $G_{t:t+1}$. Yes. $\frac{G_{t:t+1}+G_{t:t+2}}{2}$. Yes. $\frac{2G_{t:t+1}+3G_{t:t+2}+G_{t:t+3}}{6}$. Yes. $\frac{G_{t:t+1}+G_{t:t+2}+3G_{t:t+3}}{4}$. No. $\frac{G_{t:t+1}-2G_{t:t+2}+4G_{t:t+3}}{3}$. No.

• Consider updating the estimate of s^t at step t + 3 using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{ \text{Target} - V^{t+2}(s^t) \}.$$

• Can we use this as our target?

$$\begin{array}{c} \textit{$G_{t:t+3}$. Yes.} & \textit{$G_{t:t+1}$. Yes.} \\ \frac{\textit{$G_{t:t+1}+G_{t:t+2}$}}{2}. \text{ Yes.} & \frac{2\textit{$G_{t:t+1}+3G_{t:t+2}+G_{t:t+3}$}}{6}. \text{ Yes.} \\ \frac{\textit{$G_{t:t+1}+G_{t:t+2}+3G_{t:t+3}$}}{4}. \text{ No.} & \frac{\textit{$G_{t:t+1}-2G_{t:t+2}+4G_{t:t+3}$}}{3}. \text{ No.} \end{array}$$

• Can use any convex combination of the applicable G's.

The λ -return

• A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^{\lambda} \stackrel{ ext{def}}{=} (\mathbf{1} - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_T$ (otherwise $T = \infty$).

The λ -return

• A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^{\lambda} \stackrel{ ext{def}}{=} (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_T$ (otherwise $T = \infty$).

- Observe that $G_t^0 = G_{t:t+1}$, yielding full bootstrapping.
- Observe that $G_t^1 = G_{t:\infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.

The λ -return

• A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^{\lambda} \stackrel{ ext{def}}{=} (\mathbf{1} - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_T$ (otherwise $T = \infty$).

- Observe that $G_t^0 = G_{t:t+1}$, yielding full bootstrapping.
- Observe that $G_t^1 = G_{t:\infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.
- If $\lambda > 0$, transition (s^t, r^t, s^{t+1}) contributes to the update of every previously-visited state: that is, $s^0, s^1, s^2, \dots, s^t$.
- The amount of contribution falls of geometrically.
- Updating with the λ -return as target can be implemented elegantly by keeping track of the "eligibility" of each previous state to be updated.

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

$\mathsf{TD}(\lambda)$ algorithm

- Maintains an eligibility trace $z: S \to \mathbb{R}$.
- Implementation often called the backward view.

$\mathsf{TD}(\lambda)$ algorithm

- Maintains an eligibility trace $z: S \to \mathbb{R}$.
- Implementation often called the backward view.

Initialise $V: S \to \mathbb{R}$ arbitrarily. Repeat for each episode: Set $z \to \mathbf{0}$.//Eligibility trace vector.

Assume the agent is born in state s.

Repeat for each step of episode:

Take action a; obtain reward r, next state s'.

$$\delta \leftarrow r + \gamma V(s') - V(s).$$

$$z(s) \leftarrow z(s) + 1$$
.

For all s:

$$V(s) \leftarrow V(s) + \alpha \delta z(s).$$

 $z(s) \leftarrow \gamma \lambda z(s).$

$$s \leftarrow s'$$
.

Effect of λ

- Lower λ : more bootstrapping, more bias (less variance).
- Higher λ : more dependence on empirical rewards, more variance (less bias).
- For finite t, error is usually lowest for intermediate λ value.

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there?

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there? An infinite number!

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there? An infinite number!
- What to do?

Features

• State s is defined by positions and velocities of players, ball.

Features

- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not generalise well.

Features

- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not generalise well.
- Define features $x : S \to \mathbb{R}$. Idea is that states with similar features will have similar consequences of actions, values.

- $x_1(s)$: Distance to teammate.
- $x_2(s)$: Distance to nearest opponent.
- x₃(s): Largest open angle to goal.
- x₄(s): Distance of teammate to goal.

Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q-values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?

Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q-values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?

- Might not be able to represent Q*!
- Unlike supervised learning, convergence not obvious!
- Even if convergent, might induce sub-optimal behaviour!

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

Prediction with a Linear Architecture

- Suppose we are to evaluate π on MDP (S, A, T, R, γ).
- Say we choose to approximate V^{π} by \hat{V} : for $s \in S$,

$$\hat{V}(w, s) = w \cdot x(s)$$
, where

 $x: S \to \mathbb{R}^d$ is a *d*-dimensional feature vector, and $\mathbf{w} \in \mathbb{R}^d$ is the weight/coefficient vector.

Prediction with a Linear Architecture

- Suppose we are to evaluate π on MDP (S, A, T, R, γ).
- Say we choose to approximate V^{π} by \hat{V} : for $s \in S$,

$$\hat{V}(w,s) = w \cdot x(s)$$
, where

 $x: S \to \mathbb{R}^d$ is a d-dimensional feature vector, and $\mathbf{w} \in \mathbb{R}^d$ is the weight/coefficient vector.

- Usually $d \ll |S|$.
- Illustration with |S| = 3, d = 2. Take $w = (w_1, w_2)$.

s	$V^{\pi}(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w,s)$
<i>S</i> ₁	7	2	-1	$2w_1 - w_2$
S ₂	2	4	0	4 <i>w</i> ₁
s ₃	-4	2	3	$2w_1 + 3w_2$

The Best Approximation

S	$V^{\pi}(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w,s)$
<i>S</i> ₁	7	2	-1	$2w_1 - w_2$
S ₂	2	4	0	4 <i>w</i> ₁
s ₃	-4	2	3	$2w_1 + 3w_2$

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^{π} .

The Best Approximation

s	$V^{\pi}(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w,s)$
<i>S</i> ₁	7	2	-1	$2w_1 - w_2$
S ₂	2	4	0	4w ₁
s ₃	-4	2	3	$2w_1 + 3w_2$

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^{π} .
- Which w provides the best approximation?

The Best Approximation

S	$V^{\pi}(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w,s)$
S ₁	7	2	-1	$2w_1 - w_2$
S ₂	2	4	0	4w ₁
s ₃	-4	2	3	$2w_1 + 3w_2$

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^{π} .
- Which w provides the best approximation?
- A common choice is

$$egin{aligned} m{w}^{\star} &= rgmin_{m{w} \in \mathbb{R}^d} m{MSVE}(m{w}), \ m{MSVE}(m{w}) &\stackrel{ ext{def}}{=} rac{1}{2} \sum_{m{s} \in m{S}} \mu^{\pi}(m{s}) \{ m{V}^{\pi}(m{s}) - \hat{m{V}}(m{w}, m{s}) \}^2, \end{aligned}$$

where $\mu^{\pi}: S \to [0, 1]$ is the stationary distribution of π .

(Scaling based on μ^{π} not explicitly shown.)

(Scaling based on μ^{π} not explicitly shown.)

How to find w^* ?

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$

 Iteratively take steps in the w space in the direction minimising MSVE(w).

• Iteratively take steps in the *w* space in the direction minimising *MSVE*(*w*).

• Feasible here?

 Iteratively take steps in the w space in the direction minimising MSVE(w).

• Feasible here? Sort of.

• Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \}^2 \right)$$
$$= w^t + \alpha_{t+1} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).$$

• Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \ge 0$ update as

$$w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \}^2 \right)$$
$$= w^t + \alpha_{t+1} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).$$

• But we don't know $\mu^{\pi}(s)$, $V^{\pi}(s)$ for all $s \in S$. We're learning, remember?

• Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \ge 0$ update as

$$w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \}^2 \right)$$
$$= w^t + \alpha_{t+1} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).$$

- But we don't know $\mu^{\pi}(s)$, $V^{\pi}(s)$ for all $s \in S$. We're learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{V}^{\pi}(\mathbf{s}^t) - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t)$$

since $\mathbf{s}^t \sim \mu^{\pi}$ anyway (as $t \to \infty$).

• Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \ge 0$ update as

$$w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \}^2 \right)$$
$$= w^t + \alpha_{t+1} \sum_{s \in S} \mu^{\pi}(s) \{ V^{\pi}(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).$$

- But we don't know $\mu^{\pi}(s)$, $V^{\pi}(s)$ for all $s \in S$. We're learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{V}^{\pi}(\mathbf{s}^t) - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t)$$

since $\mathbf{s}^t \sim \mu^{\pi}$ anyway (as $t \to \infty$).

• But still, we don't know $V^{\pi}(s^t)$! What to do?

Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{V}^{\pi}(\mathbf{s}^t) - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$m{w}^{t+1} \leftarrow m{w}^t + lpha_{t+1} \{ m{G}_{t:\infty} - \hat{m{V}}(m{w}^t, m{s}^t) \} \nabla_{m{w}} \hat{m{V}}(m{w}^t, m{s}^t),$$
 since $\mathbb{E}[m{G}_{t:\infty}] = m{V}^{\pi}(m{s}^t).$

Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{V}^{\pi}(\mathbf{s}^t) - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$m{w}^{t+1} \leftarrow m{w}^t + lpha_{t+1} \{ m{G}_{t:\infty} - \hat{m{V}}(m{w}^t, m{s}^t) \} \nabla_{m{w}} \hat{m{V}}(m{w}^t, m{s}^t),$$

since $\mathbb{E}[m{G}_{t:\infty}] = m{V}^{\pi}(m{s}^t).$

In practice, we also do

$$w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G_t^{\lambda} - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t),$$

for $\lambda < 1$, even if $\mathbb{E}[G_t^{\lambda}] \neq V^{\pi}(s^t)$ in general.

Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{V}^{\pi}(\mathbf{s}^t) - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$m{w}^{t+1} \leftarrow m{w}^t + lpha_{t+1} \{ m{G}_{t:\infty} - \hat{m{V}}(m{w}^t, m{s}^t) \} \nabla_{m{w}} \hat{m{V}}(m{w}^t, m{s}^t),$$

since $\mathbb{E}[m{G}_{t:\infty}] = m{V}^{\pi}(m{s}^t).$

In practice, we also do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{G}_t^{\lambda} - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t),$$

for $\lambda < 1$, even if $\mathbb{E}[G_t^{\lambda}] \neq V^{\pi}(s^t)$ in general. For example, Linear TD(0) performs the update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{r}^t + \gamma \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^{t+1}) - \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^t) \} \mathbf{x}(\mathbf{s}^t).$$

Although we cannot perform update

$$\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^{t} + \alpha_{t+1} \{ \boldsymbol{V}^{\pi}(\boldsymbol{s}^{t}) - \hat{\boldsymbol{V}}(\boldsymbol{w}^{t}, \boldsymbol{s}^{t}) \} \nabla_{\boldsymbol{w}} \hat{\boldsymbol{V}}(\boldsymbol{w}^{t}, \boldsymbol{s}^{t}),$$

we can do

$$m{w}^{t+1} \leftarrow m{w}^t + lpha_{t+1} \{ m{G}_{t:\infty} - \hat{m{V}}(m{w}^t, m{s}^t) \} \nabla_{m{w}} \hat{m{V}}(m{w}^t, m{s}^t),$$

since $\mathbb{E}[m{G}_{t:\infty}] = m{V}^{\pi}(m{s}^t).$

In practice, we also do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{G}_t^{\lambda} - \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{\mathbf{V}}(\mathbf{w}^t, \mathbf{s}^t),$$

for $\lambda < 1$, even if $\mathbb{E}[G_t^{\lambda}] \neq V^{\pi}(s^t)$ in general. For example, Linear TD(0) performs the update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathbf{r}^t + \gamma \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^{t+1}) - \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^t) \} \mathbf{x}(\mathbf{s}^t).$$

• For λ < 1, the process is not true gradient descent. But it still converges with linear function approximation.

Linear $TD(\lambda)$ algorithm

- Maintains an eligibility trace $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_W \hat{V}(w, s) = x(s)$.

Linear $TD(\lambda)$ algorithm

- Maintains an eligibility trace $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_W \hat{V}(w, s) = x(s)$.

Initialise $w \in \mathbb{R}^d$ arbitrarily.

Repeat for each episode:

Set $z \rightarrow \mathbf{0}$.//Eligibility trace vector.

Assume the agent is born in state *s*.

Repeat for each step of episode:

Take action a; obtain reward r, next state s'.

$$\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s).$$

$$z \leftarrow \gamma \lambda z + \nabla_{w} \hat{V}(w, s).$$

$$\mathbf{W} \leftarrow \mathbf{W} + \alpha \delta \mathbf{Z}$$
.

$$s \leftarrow s'$$
.

Linear $TD(\lambda)$ algorithm

- Maintains an eligibility trace $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_W \hat{V}(w, s) = x(s)$.

Initialise $w \in \mathbb{R}^d$ arbitrarily.

Repeat for each episode:

Set $z \rightarrow \mathbf{0}$.//Eligibility trace vector.

Assume the agent is born in state s.

Repeat for each step of episode:

Take action a; obtain reward r, next state s'.

$$\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s).$$

$$z \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s).$$

$$w \leftarrow w + \alpha \delta z.$$

 $s \leftarrow s'$.

 See Sutton and Barto (2018) for variations (accumulating, replacing, and dutch traces).

Convergence of Linear $TD(\lambda)$

$$MSVE(w_{\lambda}^{\infty}) \leq \frac{1 - \gamma \lambda}{1 - \gamma} MSVE(w^{\star}).$$

Convergence of Linear $TD(\lambda)$

$$MSVE(w_{\lambda}^{\infty}) \leq \frac{1 - \gamma \lambda}{1 - \gamma} MSVE(w^{\star}).$$

Control with Linear Function Approximation

- Linear function approximation is implemented in the control by approximating $Q(s, a) \approx w \cdot x(s, a)$.
- Linear Sarsa(λ) is a very popular algorithm.

RL on Half Field Offense

• Uses Linear Sarsa(0) with tile coding.

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72–85, Springer,

Reinforcement Learning

- 1. Multi-step returns
- 2. $TD(\lambda)$
- 3. Generalisation and Function Approximation
- 4. Linear function approximation
- 5. Linear $TD(\lambda)$