1 Statements

1.1 Class Handout, Chapter 1.3, Implications.

Let a, b, and c be integers, with a and b non-zero. If $(ab) \mid (ac)$, then $b \mid c$.

Proof 1.

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$. Suppose $(ab) \mid (ac)$. Then $\exists k \in \mathbb{Z} \ s.t. \ ac = (ab)k$. Divide both sides of the equation by a:

$$c = bk$$
.

Since $k \in \mathbb{Z}$, by definition of divides, $b \mid c$.

1.2 Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if $a\in\mathbb{Q}$ and $ab\notin\mathbb{Q}$, then $n\notin Q$.

Proof 2.

Let $a, b \in \mathbb{Q}$. Assume for the sake of contradiction that if $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$, we have $b \in \mathbb{Q}$. Then, $\exists p, q, m, n \in \mathbb{Z} \text{ s.t. } a = \frac{m}{n} \text{ and } b = \frac{p}{q}$. Hence,

$$ab = \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

As $mp, nq \in \mathbb{Z}$, $ab \in \mathbb{Q}$.

* This contradicts with the fact that $ab \notin \mathbb{Q}$.

So, b must not be rational.

1.3 Chapter 1.1 # 7(c)

Prove the square of an even integer is divisible by 4.

Proof 3.

Suppose $x \in \mathbb{Z}$ is even. Then $\exists k \in \mathbb{Z} \text{ s.t. } x = 2k$. Then, $x^2 = (2k)^2 = 4k^2$. Since $k^2 \in \mathbb{Z}$, we have $4 \mid 4k^2$.

Theorem 1.1 (Archimedean Principle) For every real number x, there is an integer n, such that n > x.

1.4 Chapter 1.1 # 11

For every positive real number ε , there exists a positive integer N such that $\frac{1}{n} < \varepsilon$ for all $n \ge N$.

Proof 4.

Suppose $\varepsilon \in \mathbb{R}$ and $\varepsilon > 0$. Since $\varepsilon \in \mathbb{R}$, we have $\frac{1}{n} \in \mathbb{R}$. Then, by Archimedean Principle, $\exists n \in \mathbb{Z}$ s.t. $n > \frac{1}{\varepsilon}$. Hence, $n\varepsilon > 1$ or $\varepsilon > \frac{1}{n}$.

Suppose $N \in \mathbb{Z}$ s.t. $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, where $\left\lceil \frac{1}{\varepsilon} \right\rceil$ means the integer greater to $\frac{1}{\varepsilon}$ if $\frac{1}{\varepsilon} \notin \mathbb{Z}$, and the integer equals to $\frac{1}{\varepsilon}$ if $\frac{1}{\varepsilon} \in \mathbb{Z}$. Hence, $N \geq \frac{1}{\varepsilon}$. As $n > \frac{1}{\varepsilon}$, we have $n \geq N$

1.5 Chapter 1.1 # 12

Use the Archimedean Principle (Theorem 1.1) to prove if x is a real number, then there exists a positive integer n such that -n < x < n.

Proof 5.

Suppose $x \in \mathbb{R}$.

Case 1 If x > 0, then -x < 0 (i.e., -x < 0 < x). By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > x$. Multiply (-1) on both sides of the inequality:

$$-n < -x$$

As -x < 0 < x,

$$-n < -x < 0 < x < n,$$

which means -n < x < n, and n is positive.

Case 2 If x < 0, then -x > 0 (i.e., -x > 0 > x) Since $x \in \mathbb{R}$, we have $-x \in \mathbb{R}$. By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > -x$. Multiply (-1) on both sides of the inequality:

$$-n < x$$

As x < 0 < -x,

$$-n < x < 0 < -x < n$$

which means -n < x < n, and n is positive. In all cases, we have proven that $x \in \mathbb{R} \implies \exists n \in \mathbb{Z}, n > 0$ s.t. -n < x < n.

1.6 Chapter 1.1 # 13

Prove that if x is a positive real number, then there exists a positive integer n such that $\frac{1}{n} < x < n$.

Proof 6.

Suppose $x \in \mathbb{R}, \ x > 0$

Case 1 If $0 < x \le 1$, then $\frac{1}{x} \ge 1$. Hence, $x \le 1 \le \frac{1}{x}$. As $x \in \mathbb{R}$, $\frac{1}{x} \in \mathbb{R}$, then by the Archimedean Principle (Theorem 1.1):

$$\exists n \in \mathbb{Z} \ s.t. \ n > \frac{1}{x}.$$

Hence, nx > 1 or $x > \frac{1}{n}$. As $x \le \frac{1}{x}$, $n > \frac{1}{x}$, and $x > \frac{1}{n}$, we have

$$\frac{1}{n} < x < n.$$

Case 2 If x > 1, then $0 < \frac{1}{x} < 1$. Hence, $\frac{1}{x} < 1 < x$. As $x \in \mathbb{R}$, by the Archimedean Principle:

$$\exists n \in \mathbb{Z} \ s.t. \ n > x > 0$$

Hence, $\frac{1}{n} < \frac{1}{x}$. As $\frac{1}{x} < x$, $\frac{1}{n} < \frac{1}{x}$, and n > x, we have

$$\frac{1}{n} < x < n$$

In all cases, we proven that $x \in \mathbb{R}, \ x > 0 \implies \exists n \in \mathbb{Z}, n > 0 \ s.t. \ \frac{1}{n} < x < n.$

1.7 Handout Chapter 1.4-2 More Contradictions and Equivelence

There are no positive integer solutions to the equation $x^2 - y^2 = 10$.

Proof 7.

Assume for the sake of contradiction that there are positive integer solutions to the equation $x^2 - y^2 = 10$. Suppose $\exists x, y \in \mathbb{Z}$ and x > 0, y > 0 s.t. $x^2 - y^2 = 10$. Then, we have $x^2 = 10 + y^2$. Since x > 0, $x^2 > 0$, we have $10 + y^2 > 0$. Then, $y^2 > -10$.

* This contradicts with the fact that $y^2 \geq 0$ if $y \in \mathbb{Z}$.

So, our assumption is wrong. There must be no positive integer solutions to the equation $x^2 - y^2 = 10$.

1.8 Handout Chapter 1.4-2 More Contradictions and Equivelence

Show that if $a\in\mathbb{Q}$ and $b\in\mathbb{Q}'$, then $a+b\in\mathbb{Q}'$

Remark The notation \mathbb{Q} means the set for rational numbers, and \mathbb{Q}' means the set for irrational numbers.

Proof 8.

Suppose $a \in \mathbb{Q}$ and $b \in \mathbb{Q}'$ Assume for the sake of contradiction that $a + b \in \mathbb{Q}$. Then, $\exists m, n, p, q \in \mathbb{Z}$ such that $a = \frac{m}{n}$ and $a + b = \frac{p}{q}$. Then,

$$b = \frac{p}{q} - a = \frac{p}{q} - \frac{m}{n} = \frac{pn - mq}{qn} \in \mathbb{Q}$$

Since $pn - mq \in \mathbb{Q}$ and $qn \in \mathbb{Z}$, we have $b = \frac{pn - mq}{qn} \in \mathbb{Q}$.

* This contradicts with the fact that $b \in \mathbb{Q}'$.

So, a + b must be irrational.

1.9 Handout Chapter 1.4-2 More Contradictions and Equivalence

If $n \in \mathbb{N}$ and $2^n - 1$ is prime, then n is prime.

Proof 9.

We will prove the contrapositive: if n is not prime, then $2^n - 1$ is not prime. Suppose n is not prime. Then, $\exists a, b \in \mathbb{Z}$ with 1 < a, b < n s.t. n = ab. Then, $2^n - 1 = 2^{ab} = (2^a)^b - 1$. Notice that for $x^w - 1$, by

polynomial long division, have

$$x^{w} - 1 = (x - 1) (x^{w-1} + x^{w-2} + \dots + 1),$$

Substitute $x = 2^a$ and w = b, we have

$$2^{n} - 1 = (2^{a} - 1) \left[(2^{a})^{b-1} + (2^{a})^{b-2} + \dots + 1 \right].$$

Since $(2^a - 1) \in \mathbb{Z}$ and $\left[(2^a)^{b-1} + (2^a)^{b-2} + \dots + 1 \right] \in \mathbb{Z}$, we see that $2^n - 1$ is not prime.

1.10 Exam 1 Review 1-b-i

 $\text{Prove that } [P \wedge (P \implies Q)] \implies Q.$

Proof 10.

P	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$[P \land (P \Rightarrow Q)] \implies P$
Т	Т	Τ	Т	T
${\bf T}$	F	\mathbf{F}	F	${ m T}$
F	Т	${ m T}$	F	${ m T}$
F	F	${ m T}$	F	T

1.11 Exam 1 Review 1-b-ii

Prove that $[Q \wedge (P \implies Q)] \implies P$.

Proof 11.

P	Q	$P \Rightarrow Q$	$Q \wedge (P \Rightarrow Q)$	$[Q \land (P \Rightarrow Q)] \implies Q$
Т	Т	Τ	Т	Т
Τ	F	\mathbf{F}	F	${ m T}$
\mathbf{F}	Т	${ m T}$	${ m T}$	T
F	F	${ m T}$	F	T

Page 5 of 43

1.12 Exam 1 Review 2-a

Given statements P and $Q\text{, prove }\neg(P\vee Q)\equiv\neg P\wedge\neg Q\text{.}$

Proof 12.

P	Q	$P \lor Q$	$\neg(P\vee Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
T	Т	Τ	F	F	F	F
${\bf T}$	F	Τ	\mathbf{F}	F	Τ	F
F	Т	Τ	F	Т	F	\mathbf{F}
F	F	F	${ m T}$	Τ	Τ	${ m T}$

1.13 Exam 1 Review 2-b

There is no smallest integer.

Proof 13.

Assume for the sake of contradiction that there exists a smallest integer n. Hence, $\forall x \in \mathbb{Z}$, we have $x \geq n$. Notice that if n > 0, we have $0 \in \mathbb{Z}$ and 0 < n. Hence, n = 0 cannot be the smallest integer (*) Therefore, n most be smaller than 0. Suppose m = -n. Since $n \in \mathbb{Z}$, $m = -n \in \mathbb{Z} \in \mathbb{R}$ By the Archimedean Principle (Theorem 1.1), $\exists k \in \mathbb{Z} \text{ s.t. } k > m$. Hence, k > -n. Multiply (-1) on both sides of the inequality:

$$-k < n$$
.

As $k \in \mathbb{Z}$, $-k \in \mathbb{Z}$. Then $\exists -k \in \mathbb{Z}$ s.t. -k < n.

* This contradicts with our assumption that n is the smallest integer.

Hence, our assumption must be wrong. There is no smallest integer.

1.14 Exam 1 Review 2-c

The number $\log_2 3$ is irrational.

Proof 14.

Assume for the sake of contradiction that $\log_2 3$ is irrational. By definition, $\exists p, qin\mathbb{Z}$, with $q \neq 0$ s.t. $\log_2 3 = \frac{p}{q}$. Observe that $\log_2 3 \neq 0$. Then $p \neq 0$ as well. By definition of logarithm,

$$2^{p/q} = 3$$

$$(2^p)^{1/q} = 3$$

Raise two sides of the equation to the power of q:

$$2^p = 3^q$$

As $p \neq 0$ and $q \neq 0$, 2^p and 3^q are not $1 \ \forall p, q \in \mathbb{Z}$. Hence, 2^p is even $\forall p \in \mathbb{Z}$ and 3^q is odd $\forall q \in \mathbb{Z}$.

* This contradicts with the fact that an even number cannot equal to an odd number.

Hence, our assumption is wront. The number $\log_2 3$, then, must be irrational.

1.15 Exam 1 Review 2-d

There is a rational number a and an irrational number b such that a^b is rational.

Proof 15.

Observe that 1 is a rational number and π is an irrational number. Suppose a=1 and $b=\pi$, we have $a^b=a^\pi=1$, which is irrational.

Proof 16.

Recall that we have proven in the previous proof, we have proven that $\log_2 3$ is an irrational number. Recall the definition of logarithm and exponents, we have

$$2^{\log_2 3} = 3$$

Hence, we find a pair of a and b that satisfies the requirement.

1.16 Exam 1 Review 2-e

For all integers n, the number $n+n^2+n^3+n^4$ is even.

Proof 17.

Suppose $n \in \mathbb{Z}$.

Case 1 If n is even. Suppose n = 2k f.s. $k \in \mathbb{Z}$. Then,

$$n + n^{2} + n^{3} + n^{4} = (2k) + (2k)^{2} + (2k)^{3} + (2k)^{4}$$
$$= 2k + 4k^{2} + 8k^{3} + 16k^{4}$$
$$= 2(k + 2k^{2} + 4k^{3} + 8k^{4})$$

Since $(k + 2k^2 + 4k^3 + 8k^4) \in \mathbb{Z}$, we have $2(k + 2k^2 + 4k^3 + 8k^4)$ is even. Hence, $n + n^2 + n^3 + n^4$ is even when n is even.

Case 2 If n is odd. Suppose n = 2k + 1 f.s. $k \in \mathbb{Z}$. Then,

$$n + n^{2} + n^{3} + n^{4} = (2k + 1) + (2k + 1)^{2} + (2k + 1)^{3} + (2k + 1)^{4}$$

$$= 2k + 1 + 4k^{2} + 4k + 1 + 8k^{3} + 12k^{2} + 6k + 1 + 16k^{4} + 32k^{3} + 24k^{2} + 8k + 1$$

$$= 16k^{4} + 40k^{3} + 40k^{2} + 20k + 4$$

$$= 2(8k^{4} + 20k^{3} + 20k^{2} + 10k + 2)$$

Since $(8k^4 + 20k^3 + 20k^2 + 10k + 2) \in \mathbb{Z}$, we have $2(8k^4 + 20k^3 + 20k^2 + 10k + 2)$ is even. Hence, $n + n^2 + n^3 + n^4$ is even when n is odd.

Since integers can either be even or odd, and we have proven $n + n^2 + n^3 + n^4$ is even in either case, $n + n^2 + n^3 + n^4$ is even for all integers.

Definition 1.1 (Perfect Square) A perfect square is an integer n for which there exists an integer m such that $n = m^2$.

1.17 Exam 1 Review 2-f

If n is a positive integer such that n is in the form 4k+2 or 4k+3, then n is not a perfect square.

Proof 18.

Page 8 of 43

We will prove the contrapositive of the statement: "If n is a perfect square, then n is a positive integer of the form 4k or 4k+1 f.s. $k \in \mathbb{Z}$." Suppose n to be a perfect square, then $\exists m \in \mathbb{Z} \ s.t.$ $n=m^2$. Case 1 Suppose m is even, then m=2t f.s. $t \in \mathbb{Z}$.

$$n = m^2 = (2t)^2 = 4t^2 > 0.$$

Let $k = t^2$. Since $t^2 \in \mathbb{Z}$, we have $k \in \mathbb{Z}$. Hence, n is positive and is in the form of 4k.

Case 2 Suppose m is odd, then m = 2t + 1 f.s. $t \in \mathbb{Z}$.

$$n = m^2 = (2t+1)^2 = 4t^2 + 4t + 1 = 4(t^2+t) + 1 > 1$$

Let $k = t^2 + t$. Since $(t^2 + t) \in \mathbb{Z}$, we have $k \in \mathbb{Z}$. Hence, n is in the form of 4k + 1. Hence, we prove the contrapositive of the original statement to be true, which means our original statement is also true.

1.18 Exam 1 Review 2-g

For any integer n, $3 \mid n$ if and only if $3 \mid n^2$.

Proof 19.

Suppose $n \in \mathbb{Z}$.

- (⇒) Suppose $3 \mid n$. Then, $\exists k \in \mathbb{Z}$ s.t. n = 3k. Then, $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$. Since $3k^2 \in \mathbb{Z}$, by definition, $3 \mid n^2$. \square
 - (\Leftarrow) WTS: $3 \mid n^2 \implies 3 \mid n$. We will prove the contrapositive: If $3 \nmid n$, then $3 \nmid n^2$ Suppose $3 \nmid n$.

Case 1 Suppose n = 3m+1 f.s. $m \in \mathbb{Z}$. Then, $n^2 = (3m+1)^2 = 9m^2 + 6m + 1$ Since $9m^2 + 6m + 1$ cannot be written in the form of 3k f.s. $k \in \mathbb{Z}$, by definition, $3 \nmid n^2$.

Case 2 Suppose n = 3m + 2 f.s. $m \in \mathbb{Z}$ Then, $n^2 = (3m + 2)^2 = 9m^2 + 12m + 4$ Since $9m^2 + 12m + 4$ cannot be written in the form of 3k for some $k \in \mathbb{Z}$, by definition, $3 \nmid n^2$. Hence, we proved the contrapositive, and thus the original statement is true.

Therefore, $n \mid n \iff 3 \mid n^2$.

1.19 Exam 1 Review 2-h

There exists an integer n such that $12\mid n^2$ but $12\nmid n$.

Proof 20.

Observe that if we take n=6, we have $n^2=36$. Since $n^2=36=3\times 12$, we know $12\mid n^2$. However, $12\nmid 6$ since 6 cannot be written as 12k for all $k\in\mathbb{Z}$. Hence, there exists an integer n=6 s.t. $12\mid n^2$ but $12\nmid n$.

1.20 Exam 1 Review 2-i

For every integer a, the numbers a and (a+1)(a-1) have opposite parity.

Proof 21.

Suppose $a \in \mathbb{Z}$.

Case 1 Suppose a is even. Then a = 2k f.s. $k \in \mathbb{Z}$. Then,

$$(a+1)(a-1) = a^2 - 1 = (2k)^2 - 1 = 4k^2 - 1 = 2(2k^2) - 1.$$

Since $2k^2 \in \mathbb{Z}$, we have (a+1)(a-1) is odd. That is, a and (a+1)(a-1) have opposite parity.

Case 2 Suppose a is odd. Then a = 2k + 1 f.s. $k \in \mathbb{Z}$. Hence,

$$(a+1)(a-1) = a^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 2(2k^2 + 2k).$$

Since $2k^2 + 2k \in \mathbb{Z}$, we have (a+1)(a-1) is even. As a result, a and (a+1)(a-1) have opposite parity. In both cases, we've shown that a and (a+1)(a-1) have opposite parity.

1.21 Exam 1 Review 2-j

Suppose $x \in \mathbb{R}$. If x^2 is irrational, then x is irrational.

Proof 22.

We will prove the contrapositive: "If x is rational, then x^2 is rational." Suppose $x \in \mathbb{Q}$, then $x = \frac{p}{q}$ f.s. $p, q \in \mathbb{Z}$, assuming p and 1 have no common factors and $q \neq 0$. Then,

$$x^2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2}.$$

As $p, q \in \mathbb{Z}$, we have $p^2, q^2 \in \mathbb{Z}$. Hence, $x^2 = \frac{p^2}{q^2} \in \mathbb{Q}$. Therefore, if x is rational, so is x^2 .

1.22 Exam 1 Review 2-k

For any integers a and b, if ab is even, then a is even or b is even.

Proof 23.

We will prove the contrapositive: "If a is odd and b is odd, then ab is odd." Suppose $a, b \in \mathbb{Z}$ and a and b are both odd. Then, $\exists k, l \in \mathbb{Z}$ s.t. a = 2k + 1 and b = 2l + 1. Then,

$$ab = (2k+1)(2l+1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.$$

Since $2kl + k + l \in \mathbb{Z}$, we have ab is odd.

1.23 Exam 1 Review 2-l

For $n \in \mathbb{N}$, n, n+2, and n+4 are all prime if and only if n=3.

Proof 24.

 (\Rightarrow) WTS: n, n+2, and n+4 are all prime $\implies n=3$. We will prove the contrapositive: $n \neq 3 \implies n, n+2$, or n+4 is not prime.

Case 1 Suppose 0 < n < 3.

- ① If n = 1, then n = 1 is not a prime.
- ② If n=2, then n=2 is a prime number, but n+2=2+2=4 is not a prime.

Hence, if 0 < n < 3, n, n + 2, or n + 4 is not a prime.

Case 2 Suppose n > 3.

- ① If n = 3k f.s. $k \in \mathbb{Z}$, then n is not a prime because $3 \mid n$.
- ② If n = 3k + 1 f.s. $k \in \mathbb{Z}$, then n + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1). Since $k + 1 \in \mathbb{Z}$, we have $3 \mid n + 2$. Then, n + 2 is not a prime.
- ③ If n = 3k + 2 f.s. $k \in \mathbb{Z}$, then n + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2). Since $k + 2 \in \mathbb{Z}$, we know that $3 \mid n + 4$. Therefore, n + 4 is not a prime.

Hence, if n > 3, we also have n, n + 2, or n + 4 is not a prime.

In both cases, we have proven that if $n \neq 3$, then n, n + 2, or n + 4 is not a prime.

(\Leftarrow) Note that when n=3, we have n+2=3+2=5 and n+4=3+4=7. Since 3, 5, and 7 are all primes, we have shown that when n=3, n, n+2, and n+4 are all primes.

1.24 Exam 1 Review 3-a

Prove or disprove: Every real number is less than or equal to its square.

Disproof 25.

We will prove the negation: "Some real number is greater than its square." Observe that when x = 0.1, then $x^2 = (0.1)^2 = 0.01$. Since 0.01 < 0.1, we have $x = 0.1 \in \mathbb{R}$ is greater than its square. Since the negation is true, the original statement is then false.

1.25 Exam 1 Review 3-b

Prove or disprove: The sum of two integers is never equal to their product.

Disproof 26.

We will prove the negation: "The sum of some integers is equal to their product." Suppose $p, q \in \mathbb{Z}$, and their sum equals to their product. Then, p+q=pq. Divide p on both sides: $q=1+\frac{q}{p}$. Observe that when p=2, we have $q=1+\frac{q}{2}$. So, 2q=1+q, or q=2. Hence, p+q=2+2=4 and $pq=2\times 2=4$. Therefore, we've found integers p=2 and q=2 such that p+q=pq.

1.26 Exam 1 Review 3-c

Prove or disprove: There exists a non-zero integer whose cube equals its negative.

Disproof 27.

We will prove the negation: "For all non-zero integers, their cubes do not equal their negations." Assume for the sake of contradiction that there exists a non-zero integer whose cube equals its negative. Suppose $x \in \mathbb{Z}$ and $x \neq 0$ s.t. $x^3 = -x$. So we have $x^3 + x = 0$, or $x(x^2 + 1) = 0$. Then, x = 0 or $x^2 + 1 = 0$. As $x \neq 0$, it must be that $x^2 + 1 = 0$, or $x^2 = -1$.

* This contradicts with the fact that $\forall x \in \mathbb{Z}, x^2 \geq 0 > -1$.

So, our assumption is incorrect. For all non-zero integers, their cubes do not equal their negatives.

1.27 Exam 1 Review 3-d

Prove or disprove: Fall all $x \in \mathbb{R}$, $x \le x^2$ or $0 \le x < 1$.

Proof 28.

Suppose $x \in \mathbb{R}$.

Case 1 Suppose $0 \le x < 1$. Then, x satisfies the requirement.

Case 2 Suppose x < 0, then $x^2 > 0$. Therefore, $x < 0 < x^2$.

Case 3 Suppose $x \ge 1$. Multiply the inequality by x on both sides, we have: $x \cdot x \ge x$ or $x^2 \ge x$. Hence, $x \le x^2$.

In all cases, we've proven that $\forall x \in \mathbb{R}, x \leq x^2 \text{ or } 0 \leq x < 1.$

1.28 Chapter 1.4 # 20-a

Let n be an integer. Prove that n is even if and only if n^3 is even.

Proof 29.

- (⇒) WTS: n is even $\implies n^3$ is even. Suppose n is even. Then n=2k f.s. $k \in \mathbb{Z}$. Then, $n^3=(2k)^3=8k^3=2(4k^3)$. Since $4k^3\in\mathbb{Z}$, n^3 is even.
- (\Leftarrow) WTS: n^3 is even \implies n is even. We will prove the contrapositive: n is odd \implies n^3 is odd. Suppose n is odd. Then, n=2k+1 f.s. $k\in\mathbb{Z}$. Then,

$$n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 8k + 1 = 2(4k^3 + 6k^2 + 4k) + 1.$$

Since $4k^3 + 6k^2 + 4k \in \mathbb{Z}, n^3$ is odd.

1.29 Chapter 1.4 # 20-b

Let n be an integer. Prove that n is odd if and only if n^3 is odd.

Proof 30.

- (\Rightarrow) WTS: n is odd. $\implies n^3$ is odd. This statement is previously proven.
- (\Leftarrow) WTS: n^3 is odd $\implies n$ is odd. We will prove the contrapositive: n is even $\implies n^3$ is even. The contrapositive is also previously proven.

1.30 Chapter 1.4 # 21

Prove that $\sqrt[3]{2}$ is irrational.

Proof 31.

Assume for the sake of contradiction that $\sqrt[3]{2}$ is rational. Suppose $\sqrt[3]{2}$ is rational. By definition, $\exists p,q\in\mathbb{Z} \ s.t. \ \sqrt[3]{2}=\frac{p}{q}$, assuming p and q have no common factors and $q\neq 0$. Raise the two sides of the equation to cube:

$$2 = \left(\frac{p}{q}\right)^3 = \frac{p^3}{q^3}.$$

Then, $p^3 = 2q^3$. Since $q^3 \in \mathbb{Z}$, we know p^3 is even. Then, p is also even (previously proven). Then, p = 2k f.s. $k \in \mathbb{Z}$. Hence,

$$2q^3 = p^3 = (2k)^3 = 8k^3$$

 $q^3 = 4k^3 = 2(2k^3)$

Since $2k^3 \in \mathbb{Z}$, we see q^3 is even. Then, q is also even.

* This contradicts with our assumption that p and q have no common factors as p,q being even indicates they have 2 as their common factor.

So, our assumption is wrong, and $\sqrt[3]{2}$ is irrational.

2 Sets

2.1 Handout Chapter 2.1 - Sets and Subsets

Prove that $\{12a+4b \mid a,b \in \mathbb{Z}\} = \{4c \mid c \in \mathbb{Z}\}.$

Proof 1.

- (\subseteq) Suppose $x \in \{12a+4b \mid a,b \in \mathbb{Z}\}$. Then, x=12a+4b f.s. $a,b \in \mathbb{Z}$. So, x=12a+4b=4(3a+b). As $3a+b \in \mathbb{Z}$, we have $x \in \{4c \mid c \in \mathbb{Z}\}$. By definition, $\{12a+4b \mid a,b \in \mathbb{Z}\} \subseteq \{4c \mid c \in \mathbb{Z}\}$.
- (\supseteq) Suppose $x \in \{4c \mid c \in \mathbb{Z}\}$. Then, x = 4c f.s. $c \in \mathbb{Z}$. Suppose c = 3a + b f.s. $a, b \in \mathbb{Z}$. Then, x = 4c = 4(3a + b) = 12a + 4b. By definition, $\{4c \mid c \in \mathbb{Z}\} \subseteq \{12a + 4b \mid a, b \in \mathbb{Z}\}$

Hence, we have proven $\{12a + 4b \mid a, b \in \mathbb{Z}\} = \{4c \mid c \in \mathbb{Z}\}.$

2.2 Exam 1 Review 2-m

If $A=\{x\mid x=n^4-1,\ n\in\mathbb{Z}\}$ and $B=\{x\mid x=m^2-1,\ m\in\mathbb{Z}\}$, then $A\subseteq B$.

Proof 2.

Suppose $x \in A$. Then, $x = n^4 - 1$ f.s. $n \in \mathbb{Z}$. Then, $x = n^4 - 1 = (n^2)^2 - 1$. Since $n^2 \in \mathbb{Z}$, we have $x \in B$. Therefore, $A \subseteq B$.

2.3 Exam 1 Review 2-n

If A, B, and C are sets, then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof 3.

- (⊆) Suppose $x \in A \cap (B \cup C)$. WTS: $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. By definition, $x \in A$ and $x \in (B \cup C)$. By definition, $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. Therefore, $x \in (A \cap B)$ or $x \in (A \cap C)$. That is, $x \in (A \cap B) \cup (A \cap C)$. Hence, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. □
- (⊇) Suppose $x \in (A \cap B) \cup (A \cap C)$. WTS: $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. By definition, $x \in (A \cap B)$ or $x \in (A \cap C)$. WLOG, consider $x \in (A \cap B)$. Then, $x \in A$ and $x \in B$. Similarly, we know $x \in A$ and $x \in C$ from $x \in (A \cap C)$. Therefore, $x \in A$ and $x \in B$ or $x \in C$. That is, $x \in A$ and $x \in B \cup C$, or $x \in A \cap (B \cup C)$. Hence, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

As $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ and $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$, we have shown that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

2.4 Exam 1 Review 2-o

For subsets A and B of a universal set U, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof 4.

- (⊆) Suppose $x \in \overline{A \cup B}$. By definition, $x \notin A \cup B$. That is, $x \notin A$ and $x \notin B$. Or, $x \in \overline{A}$ and $x \in \overline{B}$. That is, $x \in \overline{A} \cap \overline{B}$. Therefore, $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.
 - (\supseteq) Suppose $x \in \overline{A} \cap \overline{B}$. By definition, $x \notin A$ and $x \notin B$. That is, $x \in \overline{A \cup B}$. Therefore, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$. Since $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$, we have $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

2.5 Exam 1 Review 2-p

Suppose that A, B, and C are subsets of a universal set U. Let P and Q be the following statements:

 $P: A \subseteq B \text{ or } A \subseteq C; \text{ and }$

 $Q: A \subseteq B \cap C$.

Write the statement $P \implies Q$, its converse, and its contrapositive. Prove the true ones or give counterexamples.

Claim. $P \implies Q : A \subseteq B \text{ or } A \subseteq C \implies A \subseteq B \cap C.$

Proof 5.

Suppose $x \in A$.

Case 1 Suppose $A \subseteq B$. Then $x \in B$. Since $B \cap C \subseteq B, x \in B \cap C$. Therefore, $A \subseteq B \cap C$.

Case 2 Suppose $A \subseteq C$. Then $x \in C$. Since $B \cap C \subseteq C$, $x \in B \cap C$. Therefore, $A \subseteq B \cap C$.

In both cases, we proven $A \subseteq B$ or $A \subseteq C \implies A \subseteq B \cap C$.

Claim. Converse: $Q \implies P$: $A \subseteq B \cap C \implies A \subseteq B$ or $A \subseteq C$.

Proof 6.

Suppose $A \subseteq B \cap C$. Suppose $x \in A$. Then $x \in B \cap C$. By definition, $x \in B$ and $x \in C$. Hence, $A \subseteq B$ and $A \subseteq C$. Since the "or" here is inclusive, $A \subseteq B$ and $A \subseteq C$ is a true case for $A \subseteq B$ or $A \subseteq C$. Hence, $A \subseteq B \cap C \implies A \subseteq B$ or $A \subseteq C$.

Claim. Contrapositive: $\neg Q \implies \neg P \colon A \nsubseteq B \cap C \implies A \nsubseteq B \text{ and } A \nsubseteq C.$

Proof 7.

Since the original statement is true, its contrapositive is automatically true.

2.6 Handout Chapter 2.2 # 10-a-i

Let $A = \{6a + 4 \mid x \in \mathbb{Z}\}$ and $B = \{18b - a \mid b \in \mathbb{Z}\}$. Prove or disprove: $A \subseteq B$.

Disproof 8.

Suppose $x \in A$. Then x = 6a + 3 f.s. $a \in \mathbb{Z}$. Notice that $6a + 4 = 18\left(\frac{1}{3}a + \frac{1}{3}\right) - 2$. Since $\frac{1}{3}a + \frac{1}{3} = \frac{1}{3}(a+1) \in \mathbb{Q}$, but $\frac{1}{3}(a+1) \notin \mathbb{Z} \forall a \in \mathbb{Z}$, we have $6a + 4 \notin \{18b - 2 \mid b \in \mathbb{Z}\}$. By definition of subsets, $A \nsubseteq B$.

Remark We can also use proof by contradiction to disprove this statement.

2.7 Handout Chapter 2.2 # 10-a-ii

Let $A=\{6a+4\mid x\in\mathbb{Z}\}$ and $B=\{18b-a\mid b\in\mathbb{Z}\}$. Prove or disprove: $B\subseteq A$.

Proof 9.

Suppose $x \in B$. Then, x = 18b - 2 f.s. $b \in \mathbb{Z}$. Notice that 18b - 2 = 6(3b - 1) + 4. Since $3b - 1 \in \mathbb{Z}$, we have $x \in A$. Hence, by definition of subsets, $B \subseteq A$.

2.8 Handout Chapter 2.2 # 10-b

If A and B are sets, then $\mathcal{P}(A) - \mathcal{P}(B) = \mathcal{P}(A - B)$.

Proof 10.

(⊆) WTS: $\mathcal{P}(A) - \mathcal{P}(B) \subseteq \mathcal{P}(A - B)$. Suppose $X \in \mathcal{P}(A) - \mathcal{P}(B)$. By definition of set difference, $X \in \mathcal{P}(A)$ and $X \notin \mathcal{P}(B)$. By definition of power sets, $X \subseteq A$ and $X \nsubseteq B$. Hence, $X \subseteq (A - B)$, by definition of set difference. Therefore, $X \in \mathcal{P}(A - B)$, and thus $\mathcal{P}(A) - \mathcal{P}(B) \subseteq \mathcal{P}(A - B)$ as desired. □

(⊇) WTS: $\mathcal{P}(A - B) \subseteq \mathcal{P}(A) - \mathcal{P}(B)$. Suppose $X \in \mathcal{P}(A - B)$. Then, $X \subseteq A - B$. By definition of set difference, $X \subseteq A$ and $X \nsubseteq B$. Then, $X \in \mathcal{P}(A)$ and $X \notin \mathcal{P}(B)$. By definition of set difference, $X \in \mathcal{P}(A) - \mathcal{P}(B)$. Hence, $\mathcal{P}(A - B) \subseteq \mathcal{P}(A) - \mathcal{P}(B)$.

2.9 Handout Chapter 2.2 # 10-c

If A, B, and C are sets, and $A \times B = B \times C$, then A = B.

Proof 11.

Suppose A, B, and C are sets. Suppose $\exists a, b \in \mathbb{Z}$ s.t. $(a, c) \in A \times C$. By definition of Cartesian product, $a \in A$ and $c \in C$. Suppose $\exists b, c \in \mathbb{Z}$ s.t. $(b, c) \in B \times C$. So, we know that $b \in B$. Suppose $A \times C = B \times C$. Then, $A \times C \subseteq B \times C$ and $A \times C \supseteq B \times C$.

- (\subseteq) If $A \times C \subseteq B \times C$, we have $(a, c) \in B \times C$. Then, $a \in B$. Since $a \in A$, we know $A \subseteq B$.
- (\supseteq) Similarly, since $A \times C \supseteq B \times C$, we have $(b,c) \in A \times C$. Then, $b \in A$. Since $b \in B$, we see that $B \subseteq A$.

By definition of set equality, A = B.

2.10 Chapter 2.1 # 6

Let $n \in \mathbb{Z}$ and let $A = n\mathbb{Z}$. Prove that if $x, y \in A$, then $x + y \in Z$ and $xy \in A$.

Proof 12.

Suppose $n \in \mathbb{Z}$ and $A = n\mathbb{Z}$. Then, $A = \{nk \mid k \in \mathbb{Z}\}$. Suppose $x, y \in A$. Then, $\exists k, l \ s.t. \ x = nk$ and y = nl. Then, x + y = nk + nl = n(k + l). Since $k + l \in \mathbb{Z}, x + y \in A$. Similarly, xy = (nk)(nl) = n(nkl). Since $nkl \in \mathbb{Z}, xy \in A$.

2.11 Chapter 2.1 # 10

Let n and m be integers. Let $A=n\mathbb{Z}$ and $B=m\mathbb{Z}$. Prove that if n is a multiplier of m, then $A\subseteq B$.

Proof 13.

Let n and m be integers. Let $A = n\mathbb{Z}$ and $B = m\mathbb{Z}$. Suppose $x \in A$. Then, by definition, $\exists k \in \mathbb{Z}$ s.t. x = nk. Since n is a multiplier of m, n = ml f.s. $l \in \mathbb{Z}$. Then, x = nk = (ml)k = m(lk). Since $lk \in \mathbb{Z}$, x = m(lk) is a multiplier of m. That is, $x \in m\mathbb{Z}$. Hence, $A \subseteq B$.

Page 18 of 43

2.12 Chapter 2.1 # 12

Let $A=\{n\in\mathbb{Z}\mid n \text{ is a multiple of } 4\}$ and $B=\left\{n\in\mathbb{Z}\mid n^2 \text{ is a multiple of } 4\right\}$. Prove that $A\subseteq B$ and $B\nsubseteq A$.

Proof 14.

WTS: $A \subseteq B$. Suppose $x \in A$. Then, $\exists k \in \mathbb{Z} \ s.t. \ x = 4k$. Consider $x^2 = (4k)^2 = 16k^2 = 4(8k^2)$. Since $8k^2 \in \mathbb{Z}$, by definition of divides, x^2 is a multiple of 4. Hence, by definition of set $B, x \in B$. That is, $A \subseteq B$.

Proof 15.

WTS: $B \nsubseteq A$. Consider x = 2k f.s. $k \in \mathbb{Z}$. Then, $x^2 = (2k)^2 = 4k^2$. Since $k^2 \in \mathbb{Z}$, x^2 is a multiple of 4. Hence, $x \in B$. However, x = 2k is not a multiple of 4. That is, $x \notin A$. Hence, we found an element of B that is not an element of A. Then, by definition, $B \nsubseteq A$.

2.13 Chapter 2.1 # 13

If $A = \{n \in \mathbb{Z} \mid n+3 \text{ is odd}\}$, then A is equal to the set of all even integers.

Proof 16.

Suppose $B = \{n \in \mathbb{Z} \mid n \text{ is even}\}$. Then, B is the set of all even numbers.

- (⊆) Suppose $x \in A$. Then, by definition, x + 3 is odd. That is, $\exists k \in \mathbb{Z} \text{ s.t. } x + 3 = 2k + 1$. Then, x = 2k + 1 3 = 2k 2 = 2(k 1). Since $k 1 \in \mathbb{Z}$, then x is even. Therefore, $x \in B$, and $A \subseteq B$.
- (2) Suppose $x \in B$. Then, x is even. So, $\exists k \in \mathbb{Z} \ s.t. \ x = 2k$. Consider x + 3 = 2k + 3 = 2k + 2 = 1 = 2k
- 2(k+1)+1. Since $k+1\in\mathbb{Z}$, then x+3 is odd. Hence, $x\in A$, and $B\subseteq A$.

Collectively, we've proven A = B.

2.14 Chapter 2.1 # 15

Let $A=\{n\in\mathbb{Z}\mid n=4t+1 \text{ for some } t\in\mathbb{Z}\}$ and $B=\{n\in\mathbb{Z}\mid n=4t+9 \text{ for some } t\in\mathbb{Z}\}.$ Prove that A=B.

Proof 17.

(⊆) Suppose $x \in A$. Then, x = 4t + 1 f.s. $t \in \mathbb{Z}$. Note that x = 4t + 9 - 8 = (4t - 8) + 9 = 4(t - 2) + 9. Since $t - 2 \in \mathbb{Z}$, by definition, $x \in B$. Then, $A \subseteq B$.

(2) Suppose $x \in B$. Then, x = 4t + 9 f.s. $t \in \mathbb{Z}$. Note that x = 4t + 9 = 4t + 8 + 1 = 4(t + 2) + 1. Since $t + 2 \in \mathbb{Z}$, by definition, $x \in A$. Hence, $B \subseteq A$.

Collectively, we've proven A = B.

 $\text{Let } A \ = \ \{n \in \mathbb{Z} \mid n = 3t+1 \text{ for some } t \in \mathbb{Z}\} \text{ and } B \ = \ \{n \in \mathbb{Z} \mid n = 3t+2 \text{ for some } t \in \mathbb{Z}\}.$ Prove that A and B have no elements in common.

Proof 18.

Assume for the sake of contradiction that A and B have one element in common, and suppose that element is x. By our assumption, $x \in A$. So, x = 3t + 1 f.s. $t \in \mathbb{Z}$. Also, $x \in B$, so x = 3s + 2 f.s. $s \in \mathbb{Z}$. Then, we have x = 3t + 1 = 3s + 2. Solve for t, we have

$$3t = 3s + 2 - 1 = 3s + 1$$
$$t = \frac{3s + 1}{3} = s + \frac{1}{3}$$

Since $s \in \mathbb{Z}, \frac{1}{3} \notin \mathbb{Z}$, we have $t = s + \frac{1}{3} \notin \mathbb{Z}$.

* This contradicts with the fact that $t \in \mathbb{Z}$.

So, our assumption is wrong, and A and B have no elements in common.

$$2.16 \quad \textit{Chapter 2.3 \# 8}$$
 Let $A_i = (-i,i) = \{x \in \mathbb{R} \mid -i < x < i\}.$ Prove that $\bigcup_{i=1}^{\infty} (-i,i) = \mathbb{R} \text{ and } \bigcap_{i=1}^{\infty} (-i,i) = (-1,1).$

Proof 19.

WTS:
$$\bigcup_{i=1}^{\infty} (-i, i) = \mathbb{R}$$

- (\subseteq) Suppose for some $k \in \mathbb{Z}$ and $k \geq 1$, $x \in A_k$. That is, $x \in (-k, k)$. Since $k \geq 1$, by definition of
- (\subseteq) Suppose for some $k \in \mathbb{Z}$ and $k \geq 1$, $x \in A_k$. Thus, $x \in \mathbb{R}$, where $x \in \mathbb{R}$ and $x \in \mathbb{R}$. Hence, $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$. Hence, $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$. Since $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are $x \in \mathbb{R}$ and $x \in \mathbb{R}$ are $x \in \mathbb{R}$ are x

Proof 20.

WTS:
$$\bigcap_{i=1}^{\infty} (-i, i) = (-1, 1)$$

- WTS: $\bigcap_{i=1} (-i,i) = (-1,1)$. (\subseteq) Let $x \in \bigcap_{i=1}^{\infty} (-i,i)$. So, $x \in A_i \quad \forall i = \{1,2,3,\cdots\}$. Specially, $x \in A_1 = (-1,1)$. Hence, $\bigcap_{i=1}^{\infty} (-i,i) \subseteq (-i,i)$ (-1,1).
- (\supseteq) Let $x \in (-1,1)$. Let $k \in \{1,2,3,\cdots\}$. We will show $x \in A_k$. Since $k \ge 1$, then $-k \le -1$. Form $x \in (-1,1)$, we know -1 < x < 1. Then, $-k \le -1 < x < 1 \le k$. That is, -k < x < k, or $x \in (-k,k) = A_k$. Since k is arbitrary, we've proven $x \in A_k$ $\forall k \ge 1$. So, $x \in \bigcap_{i=1}^{\infty} (-i,i)$. Hence, $(-1,1) \subseteq \bigcap_{i=1}^{\infty} (-i,i)$.

Chapter 2.3 # 10

Let
$$A_i=\{1,2,3,\cdots,i\}$$
 for $i\in\mathbb{Z}^+$. Compute $\bigcup_{i=1}^\infty A_i$ and $\bigcap_{i=1}^\infty A_i$. Prove your answer.

Claim. $\bigcup_{i=1}^{\mathfrak{C}} A_i = \mathbb{Z}^+$.

Proof 21.

- (\subseteq) Let $x \in \bigcup A_i$. Then $x \in A_k$ f.s. $k \in \mathbb{Z}^+$. That is, by definition, $x \in \{1, 2, 3, \dots, k\}$. Since $k \in \mathbb{Z}^+, \{1, 2, 3, \cdots, k\} \subseteq \mathbb{Z}^+, x \in \mathbb{Z}^+.$
- (⊇) Let $x \in \mathbb{Z}^+$. Consider $A_{x+1} = \{1, 2, 3, \dots, x+1\}$. Then, $x \in A_{x+1}$. By definition of union, $A_{x+1} \subseteq \bigcup_{i=1}^{\infty} A_i$. So, $x \in \bigcup_{i=1}^{\infty} A_i$. Hence, we've shown $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+$.

Claim. $\bigcap^{\infty} A_i = \{1\}.$

Proof 22.

- $(\subseteq) \text{ Suppose } x \in \bigcap A_i. \text{ By definition of union, } x \in A_k \quad \forall k \geq 1. \text{ Specially, } x \in A_1 = \{1\}.$
- (\supseteq) Suppose $x \in \{1\}$. Let $k \ge 1$. By definition, $A_k = \{1, 2, 3, \dots, k\}$. Since $\{1\} \subseteq \{1, 2, 3, \dots, k\} = A_k, x \in A_k$. As k was arbitrary, we've proven $x \in A_k$ $\forall k \ge 1$. So, $x \in \bigcap_{i=1}^{\infty} A_i$. Hence, $\{1\} \subseteq \bigcap_{i=1}^{\infty} A_i$.

2.18 Chapter 2.3 # 10

Let
$$A_i = [i, i+1) = \{x \in \mathbb{R} \mid i \leq x < i+1\}$$
 for $i \in \mathbb{Z}^+$. Compute $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$. Prove your answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = \{x \in \mathbb{R} \mid x \geq 1\}.$$

Proof 23.

- (\subseteq) Suppose $x \in \bigcup_{i=1}^{\infty} A_i$. By definition of union, $x \in A_k$ f.s. $k \in \{1, 2, \dots\}$. By definition, $A_k = [k, k+1)$, so $k \le x < k+1$. Since $k \ge 1$, we have $1 \le k \le x < k+1$. That is, $x \in \{x \in \mathbb{R} \mid x \ge 1\}$. Hence, $\bigcup_{i=1}^{\infty} A_i \subseteq \{x \in \mathbb{R} \mid x \ge 1\}. \qquad \Box$
- (2) Suppose $x \in \{x \in \mathbb{R} \mid x \ge 1\}$. Then, $x \ge 1$. Consider $A_x = [x, x + 1)$, we have $x \in [x, x + 1)$. By definition of union, $A_x \subseteq \bigcup_{i=1}^{\infty} A_i$. Hence, $x \in \bigcup_{i=1}^{\infty} A_i$, or $\{x \in \mathbb{R} \mid x \ge 1\} \subseteq \bigcup_{i=1}^{\infty} A_i$.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \varnothing$$
. Proof 24.

Note that $n+1 \in A_{n+1}$. However, $n+1 \notin A_n = [n, n+1)$. That is, for every $n \in \mathbb{Z}^+$, n+1 is not in every A_i . So, by definition of set intersection, $\bigcap_{i=1} A_i = \emptyset$.

$$2.19 \quad \textit{Chapter 2.3 \# 12}$$
 Let $A_i = \left(\frac{1}{i}, i\right] = \left\{x \in \mathbb{R} \mid \frac{1}{i} < x \leq i\right\} \text{ for } i \geq 2. \quad \text{Compute } \bigcup_{i=1}^{\infty} A_i \text{ and } \bigcap_{i=1}^{\infty} A_i. \text{ Prove your answer.}$

Claim.
$$\bigcup_{i=1}^{\infty} A_i = (0, \infty).$$

- (\subseteq) Suppose $x \in \bigcup_{i=1}^{\infty} A_i$. Then, $x \in A_k$ f.s. $k \ge 2$. By definition of A_i , $x \in A_k = \left(\frac{1}{k}, k\right]$. Since $\left(\frac{1}{k}, k \mid \subseteq (0, \infty), \text{ we know } x \in (0, \infty). \right)$
- (2) Suppose $x \in (0, \infty)$. Consider $\lceil x \rceil$, the minimum integer greater than x. Suppose $k = \lceil x \rceil$, then $A_k = \left(\frac{1}{k}, k\right]$. Since $k \ge x$, by definition of the ceiling function, $x \in A_k$. Since $A_k \subseteq \bigcup_{i=1}^k A_i$, we know that $x \in \bigcup_{i=1}^{\infty} A_i$.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \left(\frac{1}{2}, 2\right]$$
. *Proof 26.*

(\subseteq) Suppose $x \in \bigcap^{\infty} A_i$. Then, $x \in A_k \quad \forall k \geq 2$. Specially, $x \in A_2 = \left(\frac{1}{2}, 2\right]$.

$$(\supseteq)$$
 Suppose $x \in \left(\frac{1}{2}, 2\right]$. Consider $A_k = \left(\frac{1}{k}, k\right]$ f.s. $k \ge 2$. Since $k \ge 2, \frac{1}{2} \le \frac{1}{2}$. Then, $\left(\frac{1}{2}, 2\right] \subseteq \left(\frac{1}{2}, 2\right)$

$$\left(\frac{1}{k},k\right]$$
. Hence, $x\in A_k$. Since k is arbitrary, we have proven that $x\in A_k$ $\forall k\geq 2$. That is, $x\in \bigcap_{i=1}^\infty A_i$.

$$2.20 \quad \textit{Chapter 2.3 \# 13}$$
 Let $A_i = \left[i, 1 + \frac{1}{i}\right] \text{ for } i \in \mathbb{Z}^+ \text{.} \quad \text{Compute } \bigcup_{i=1}^\infty A_i \text{ and } \bigcap_{i=1}^\infty A_i. \text{ Prove your answer.}$

Claim.
$$\bigcup_{i=1}^{\infty} A_i = [1, 2].$$
Proof 27.

(
$$\subseteq$$
) Suppose $x \in \bigcup_{i=1}^{\infty} A_i$. Then, $x \in A_k$ f.s. $k \in \mathbb{Z}^+$. Hence, $x \in A_k = \left[1, 1 + \frac{1}{k}\right]$. That is, $1 \le x \le 1 + \frac{1}{k}$. Since $k \in \mathbb{Z}^+$, $\frac{1}{k} \le 1$. Then, $1 + \frac{1}{k} \le 2$. So, $1 \le x \le 1 + \frac{1}{2} \le 2$, or $x \in [1, 2]$.

(
$$\supseteq$$
) Suppose $x \in [1, 2]$. Note that $A_1 = [1, 2]$, so $x \in A_1$. Since $A_1 \subseteq \bigcup_{i=1}^{\infty} A_i$, by definition of set union, $x \in \bigcup_{i=1}^{\infty} A_i$.

Claim.
$$\bigcap_{i=1}^{\infty} A_i = \{1\}.$$
Proof 28.

(
$$\subseteq$$
) Suppose $x \in \bigcap_{i=1}^{\infty} A_i$. Then, $x \in A_k \quad \forall k \in \mathbb{Z}^+$. By definition of A_k , $x \in A_k = \left[1, 1 + \frac{1}{k}\right]$. Note $\lim_{k \to 0} \left(1 + \frac{1}{k}\right) = 1 + 0 = 1$. So, $A_k = [1, 1] = \{1\}$, when $k \to \infty$.

(2) Suppose
$$x \in \{1\}$$
. Consider $A_k = \left[1, 1 + \frac{1}{k}\right]$ for some $k \in \mathbb{Z}^+$. Since $1 \in \left[1, 1 + \frac{1}{k}\right]$, we have $x \in \left[1, 1 + \frac{1}{k}\right] = A_k$. Since k is arbitrary, $x \in A_k \quad \forall k \in \mathbb{Z}^+$. That is, $x \in \bigcap_{i=1}^{\infty} A_i$.

$$2.21 \quad \textit{Chapter 2.3 \# 14}$$
 Let $A_i = \left(i, 1 + \frac{1}{i}\right) \text{ for } i \in \mathbb{Z}^+.$ Compute $\bigcup_{i=1}^{\infty} A_i \text{ and } \bigcap_{i=1}^{\infty} A_i.$ Prove your answer.

Claim.
$$\bigcup_{i=1}^{\infty} A_i = (1,2)$$
, and $\bigcap_{i=1}^{\infty} A_i = \emptyset$.

Proof 29

Similar proofs as done in the previous exercise.

2.22 Exam 2 Review 2

For sets A,B,C,D, prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof 30.

Let A, B, C, D be sets.

- (\subseteq) Suppose $(x,y) \in (A \times B) \cap (C \times D)$. By definition of set intersection, $(x,y) \in A \times B$ and $(x,y) \in C \times D$. Since $(x,y) \in A \times B$, by definition of Cartesian product, $x \in A$ and $y \in B$. Similarly, since $(x,y) \in C \times D$, $x \in C$ and $y \in D$. Since $x \in A$ and $x \in C$, by definition of set intersection, $x \in A \cap C$. Similarly, since $y \in B$ and $y \in D$, $y \in B \cap D$. Hence, $(x, y) \in (A \cap C) \times (B \cap D)$, by definition of Cartesian product.
- (\supseteq) Suppose $(x,y) \in (A \cap C) \times (B \cap D)$. By definition of Cartesian product, $x \in A \cap C$ and $y \in B \cap D$. Since $x \in A \cap C$, by definition of set intersection, $x \in A$ and $x \in C$. Similarly, since $y \in B \cap D$, $y \in B$ and $y \in D$. Note that $x \in A$ and $y \in B$. Hence, $(x, y) \in A \times B$. Further, since $x \in C$ and $y \in D$, $(x, y) \in C \times D$. Therefore, $(x,y) \in A \times B$ and $(x,y) \in C \times D$. By definition of set intersection, $(x,y) \in (A \times B) \cap (C \times D)$.

2.23 Exam 2 Review 3

Given the indexed sets, compute the unions and intersections. Give full and careful proofs of each: $A_i=[i-1,i]$ for $i=1,\cdots,n.$ Compute $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$.

Claim. $\bigcap_{i=1}^{n} A_i = \begin{cases} A_1, & n=1 \\ A_1 \cap A_2 = \{1\}, & n=2 \end{cases}$

Proof 31.

We will prove that if $n \ge 3$, $\bigcap_{i=1}^n A_i = \emptyset$. Suppose $x \in A_k$ f.s. $k \in \{1, 2, 3, \dots, n\}$. Then, by definition, $k-1 \le x \le k$. Consider $A_{k+2} = [k+1, k+2]$. Since k < k+1, $x \notin [k+1, k+2]$. Hence, $\bigcap_{i=1}^n A_i = \emptyset$.

Proof 32.

Alternatively, we can use proof by contradiction. Suppose $n \geq 3$. Assume for the sake of contradiction that $\bigcap_{i=1}^{n} A_i \neq \emptyset$. Then, $\exists x \in \bigcap_{i=1}^{n} A_i$. So, $x \in A_i \quad \forall i \in \{1, 2, 3, \dots, n\}$. Since $n \geq 3$, specifically, $x \in A_1 = [0, 1]$ and $x \in A_3 = [2, 3]$. *But this is a contradiction because $A_1 \cap A_3 = \emptyset$. So, it must be that

$$\bigcap_{i=1}^{n} A_i = \varnothing.$$

Claim. $\bigcup_{i=1}^{n} A_i = [0, n].$

Proof 33.

- (\subseteq) Suppose $x \in \bigcup_{i=1}^n A_i$. Then, $x \in A_k$ f.s. $k \in \{1, 2, \dots, n\}$. Then, by definition of A_i , $x \in [k-1, k]$, or $k-1 \le x \le k$. Since $1 \le k \le n$ and $0 \le k-1 \le n-1$, we have $0 \le k-1 \le x \le k \le n$. So, $x \in [0, n]$. \square
 - (\supseteq) Let $x \in [0, n]$.

Case 1 x = 0. Note that $x \in [0, 1] = A_1$. Then, $x \in \bigcup_{i=1}^n A_i$.

Case 2 When x > 0, set $k = \lceil x \rceil$. Then, $k \in \mathbb{N}$ and $1 \le k \le n$. Then, $k - 1 \le x \le k$. That is, $x \in [k - 1, k] = A_k$. So, $x \in \bigcup_{i=1}^n A_i$.

2.24 Exam 2 Review 4

Here's a mathematical statement:

(s): for all sets A and B, $A \subseteq B$ implies that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

State the converse (s_1) of (s), the contrapositive (s_2) of (s), the negation $(\neg s)$ of (s). Which of the statements (s), (s_1) , (s_2) , $(\neg s)$ are true?

Claim. (s) is true.

Proof 34.

Let A and B be sets. Suppose $A \subseteq B$. Suppose $X \subseteq A$. Since $A \subseteq B, X \subseteq B$. Because $X \subseteq A$, $X \in \mathcal{P}(A)$. Since $X \subseteq B, X \in \mathcal{P}(B)$. Therefore, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Claim. (s_1) : "for all sets A and B, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ implies $A \subseteq B$ " is true.

Proof 35.

Let A and B be sets. Suppose $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Suppose $X \in \mathcal{P}(A)$. Then, $X \subseteq A$. By definition of subsets, $X \in \mathcal{P}(B)$. So, $X \subseteq B$. Suppose $x \in X$. Since $X \subseteq A$, $x \in A$. Similarly, since $X \subseteq B$, $x \in B$. Therefore, $A \subseteq B$.

Claim. Since (s) is true, the contrapositive of it (s_2) , "for all sets A and B, $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$ implies $A \nsubseteq B$," will be true for sure.

Claim. Since (s) is true, the negation of it $(\neg s)$ "for all sets A and B, $A \subseteq B$ and $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$," will be false.

2.25 Exam 2 Review 5

For all sets A and B, if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.

Proof 36.

To prove set equality, we will prove $A \subseteq B$ and $B \subseteq A$. However, since A and B are symmetric, WLOG, proving $A \subseteq B$ is sufficient. Suppose $X \in \mathcal{P}(A)$. Then, $X \subseteq A$. Since $\mathcal{P}(A) = \mathcal{P}(B)$, $X \in \mathcal{P}(B)$. So, $X \subseteq B$. Suppose $x \in X$. Since $X \subseteq A$, $x \in A$. Similarly, since $X \subseteq B$, $x \in B$. Therefore, for all $x \in A$, $x \in B$. By definition of subset, $A \subseteq B$.

2.26 Exam 2 Review 7

Find $\bigcap_{n\in\mathbb{N}}=n\mathbb{Z}$.

Claim. $\bigcap_{n \in \mathbb{N}} = n\mathbb{Z} = \{0\}.$

Proof 37.

- (\subseteq) WTS: $0 \in n\mathbb{Z} \quad \forall n \in \mathbb{N}$. Let $n \in \mathbb{N}$. Consider $n\mathbb{Z}$. Note that 0 = n(0). Since $0 \in \mathbb{Z}, 0 \in n\mathbb{Z}$. Since we picked an arbitrary $n \in \mathbb{Z}$, we've shown that $0 \in n\mathbb{Z} \quad \forall n \in \mathbb{N}$. By definition of intersection, $0 \in \bigcap_{n \in \mathbb{N}} = n\mathbb{Z}$. So, $\{0\} \subseteq \bigcap_{n \in \mathbb{N}} = n\mathbb{Z}$.
- (\supseteq) Suppose for the sake of contradiction that an integer $\neq 0$ belongs to the intersection. Then, $\exists x \neq 0 \text{ s.t. } x \in n\mathbb{Z} \quad \forall n \in \mathbb{N}.$

Case 1 If x > 0, then $x \in \mathbb{N}$. So, $2x \in \mathbb{N}$. Therefore, by our assumption, $x \in 2x\mathbb{Z}$. Then, $\exists k \in \mathbb{Z}$ s.t. x = 2xk. So, we get $k = \frac{x}{2x} = \frac{1}{2}$ since $x = \neq 0$. * This contradicts with the fact that $k \in \mathbb{Z}$. Therefore, our assumption is wrong. Hence, $\nexists x \neq 0$ s.t. $x \in n\mathbb{Z}$ $\forall n \in \mathbb{N}$.

Case 2 If x < 0, then $-x \in \mathbb{N}$. So, $-2x \in \mathbb{N}$. Therefore, by our assumption, $x \in -2x\mathbb{Z}$. Then, $\exists k \in \mathbb{Z} \ s.t. \ x = -2xk$. So, we get $k = \frac{x}{-2x} = -\frac{1}{2}$ since $x \neq 0$. However, $k = \frac{1}{2} \notin \mathbb{Z}$. * This contradicts with the fact that $k \in \mathbb{Z}$. Therefore, our assumption is wrong. $\nexists x \neq 0 \ s.t. \ x \in n\mathbb{Z} \quad \forall n \in \mathbb{N}$.

3 Integers and Induction

3.1 Handout Chapter 5.1-5.2-Axioms of Integers

Let $a, b \in \mathbb{Z}$. Then (-a)(-b) = ab.

Proof 1.

Notice that $a \cdot 0 = 0$. Multiply (-1) on both sides:

$$(-a \cdot 0) = -0 = 0$$

$$(-a) \cdot 0 = 0$$

By additive identity, b + (-b) = 0, so we know that

$$(-a)(b + (-b)) = 0.$$

By distributivity,

$$(-a)b + (-a)(-b) = 0.$$

Add the additive inverse of -ab to both sides:

$$-ab + (-(-ab)) + (-a)(-b) = 0 + (-(-ab))$$
$$0 + (-a)(-b) = 0 + ab$$
$$(-a)(-b) = ab.$$

3.2 Chapter 5.1 # 1-a

$$-(-a)=a$$
 for all $a\in\mathbb{Z}$.

Proof 2.

By additive inverse, we know a + (-a) = 0. Multiply (-1) on both sides:

$$(-1)(a + (-a)) = 0$$

$$(-1)a + (-1)(-a) = 0$$
 distributivity

Add (a) on both sides, we get

$$(-1)a + (-1)(-a) + a = 0 + a$$

 $(-1)a + a + (-1)(-a) = a$ additive identity, commutativity
 $-a + a + (-1)(-a) = a$ additive inverse
 $(-1)(-a) = a$ additive identity
 $-(-a) = a$

3.3 Chapter 5.1
$$\#$$
 1-c
$$a(b-c)=ab-ac \text{ for all } a,b,c\in\mathbb{Z}.$$

Proof 3.

By distributivity,

$$(b + (-c))a = ba + (-c)a$$

$$= ab + (-1)ac \qquad commutativity$$

$$= ab - ac$$

3.4 Chapter 5.1
$$\#$$
 2 Let $a,b\in\mathbb{Z}$. Prove that $-(a+b)=-a-b$.

Proof 4.

$$-(a+b) = (-1)(a+b) = (-1)a + (-1)b \qquad distributivity$$
$$= -a - b.$$

3.5 Chapter 5.1
$$\#$$
 3 Let $a,b \in \mathbb{Z}$. Suppose that $a < b$. Prove that $(-a) > (-b)$.

Proof 5.

By definition, we know that $a - b \in \mathbb{Z}^+$. Since a - b = a + (-b) = (-b) + a = (-b) - (-a), we know $(-b) - (-a) \in \mathbb{Z}^+$. By definition, (-b) < (-a). That is, (-a) > (-b).

Theorem 3.1 (Well Ordering Principle for \mathbb{N} .) If $X \subseteq \mathbb{N}$ and $X \neq \emptyset$, then $\exists x_0 \in X$ s.t. $\forall a \in X$ and $a \neq x_0$, we have $a - x_0 \in \mathbb{Z}^+$.

3.6 Exam 2 Review 6-a

Every non-empty subset of the rational numbers $\mathbb Q$ contains a minimum element.

Counter example 6.

Consider $(-\infty,0) \cap \mathbb{Q}$. There will not be a minimum rational number in it.

Counter example 7.

Consider $(0,1) \cap \mathbb{Q}$. There will not be a minimum element in it.

Proof 8.

Suppose $\exists s_0 \ s.t. \ s_0$ is the minimum element of $(0,1) \cap \mathbb{Q}$. Since $s_0 \in \mathbb{Q}, \exists \ p,q \in \mathbb{Z} \ s.t. \ s_0 = \frac{p}{q}$. Consider $\frac{p}{q+1}$. Since $1 \in \mathbb{Z}, \ q+1 \in \mathbb{Z}$, then $\frac{p}{q+1} \in \mathbb{Q}$. Since $s_0 \in (0,1)$ and s_0 is the minimum element of $(0,1) \cap \mathbb{Q}, \ 0 < s_0 < 1$ and there is no element between 0 and s_0 . Then, $\frac{p}{q} > 0$. That means, $p \neq 0$. So, $\frac{p}{q+1} > 0$ as well. However, since q+1 > q, $\frac{p}{q+1} < \frac{p}{q}$. That is, $\frac{p}{q+1} \in (0,s_0)$. * This contradicts with our assumption that there is no element in $(0,s_0)$. Hence, our assumption is incorrect. So, there is no minimum element of $(0,1) \cap \mathbb{Q}$.

3.7 Exam 2 Review 8

Prove that for all $n \in \mathbb{N}$,

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}.$$

Proof 9.

Let P(n) be the statement that " $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$."

Base Case Consider $P(1): 1\cdot 2=\frac{1(1+1)(1+2)}{3}$. Note that $1\cdot 2=2$ and $\frac{1(1+1)(1+2)}{3}=\frac{1(2)(3)}{3}=2$. Therefore, $1\cdot 2=\frac{1(1+1)(1+2)}{3}$. That is, P(1) is correct. Inductive Steps Suppose P(k) is true for some $k\in\mathbb{N}$. That is,

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 \cdots + k(k+1) = \frac{k(k+1)(k+2)}{3}$$
 ①

Add (k+1)(k+2) on both sides of equation ①, we get

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 \cdots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$
$$= \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3}$$
$$= \frac{(k+1)(k+2)(k+3)}{3}.$$

Therefore, P(k+1) is true given P(k) is true.

Since we've proven that P(1) is true and $P(k) \implies P(k+1)$, by Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.

Definition 3.1 (Fibonacci Sequence) The Fibonacci Sequence f_n is defined recursively as follows:

$$f_1 = 1$$
, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$.

3.8 Exam 2 Review 9

Prove that for all $n \in \mathbb{N}$,

$$f_{n+1}^2 - f_{n+1}f_n - f_n^2 = (-1)^n.$$

Proof 10.

Let P(n) be the statement that " $f_{n+1}^2 - f_{n+1}f_n - f_n^2 = (-1)^n$."

Base Case Consider P(1): $f_{1+1}^2 - f_{1+1}f_1 - f_1^2 = (-1)^1$. Since $f_1 = 1$ and $f_{1+1} = f_2 = 1$, we know that $f_{1+1}^2 - f_{1+1}f_1 - f_1^2 = 1^2 - (1)(1) - (1)^2 = 1 - 1 - 1 = -1$. Further since $(-1)^1 = -1$, so $f_{1+1}^2 - f_{1+1}f_1 - f_1^2 = (-1)^1$, and thus P(1) is true.

Inductive Steps Suppose P(k) is true for some $k \in \mathbb{N}$. Then, $f_{k+1}^2 - f_{k+1}f_k - f_k^2 = (-1)^k$. Consider $P(k+1): f_{k+1+1}^2 - f_{k+1+1}f_{k+1} - f_{k+1}^2 = f_{k+2}^2 - f_{k+2}f_{k+1} - f_{k+1}^2$. By definition of Fibonacci Sequence

(Definition 3.1), we know $f_{k+2} = f_k + f_{k+1}$. So,

$$\begin{split} f_{k+2}^2 - f_{k+2} f_{k+1} - f_{k+1}^2 &= (f_k + f_{k+1})^2 - (f_k + f_k + 1)(f_{k+1}) - f_{k+1}^2 \\ &= f_k^2 + f_{k+1}^2 + 2f_k f_{k+1} - f_k f_{k+1} - f_{k+1}^2 - f_{k+1}^2 \\ &= f_k^2 + f_k f_{k+1} - f_{k+1}^2 \\ &= -(f_{k+1}^2 - f_{k+1} f_k - f_k^2) \\ &= -(-1)^k \\ &= (-1)^{k+1}. \end{split}$$

Therefore, we get $P(k) \implies P(k+1)$.

Since we've proven P(1) is true and $P(k) \implies P(k+1)$, by Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.

3.9 Exam 2 Review 10

Let $f: \mathbb{N} \to \mathbb{N}$ be defined recursively by f(1) = 1 and $f(n+1) = \sqrt{2 + f(n)}$ for all $n \in \mathbb{N}$. Prove that f(n) < 2 for all $n \in \mathbb{N}$.

Proof 11.

Let P(n) be the statement that "f(n) < 2, where f is a function from \mathbb{N} to \mathbb{N} defined recursively by f(1) = 1 and $f(n+1) = \sqrt{2 + f(n)}$."

Base Case Consider P(1). Note that, by definition of f, f(1) = 1 and 1 < 2. So, f(1) = 1 < 2 and P(1) is true.

Inductive Steps Suppose P(k) is true for some $k \geq 1$. That is, f(k) < 2. Consider $f(k+1) = \sqrt{2 + f(k)}$. Since f(k) < 2, we have 2 + f(k) < 2 + 2 = 4. Hence, $f(k+1) = \sqrt{2 + f(k)} < \sqrt{4} = 2$. That is, f(k+1) < 2. So, $P(k) \implies P(k+1)$.

Since we've proven P(1) is true and $P(k) \implies P(k+1)$, by mathematical induction, we know P(n) is true for all $n \in \mathbb{N}$.

3.10 Exam 2 Review 11

Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Proof 12.

Let P(n) be $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Base Case Consider P(1). Since $1^3 = 1$ and $\frac{1^2(1+1)^2}{4} = \frac{1^2(2)^2}{4} = \frac{4}{4} = 1$, so $1^3 = \frac{1^2(1+1)^2}{4}$. Hence, P(1) is true.

Inductive Steps | Suppose P(k) is true for some $k \geq 1$. Then,

$$1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}.$$
 ©

Consider P(k+1). Add $(k+1)^3$ to both sides of equation ①, we get

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{\left[k^{2} + 4(k+1)\right](k+1)^{2}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4k + 4)}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2}[(k+1) + 1]^{2}}{4}$$

Hence, $P(k) \implies P(k+1)$.

Since we've proven P(1) is true and $P(k) \implies P(k+1)$, by Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.

3.11 Exam 2 Review 18

Let $n\in\mathbb{Z}$ and let $S\subseteq\mathbb{Z}$ satisfy |S|>n. Then, at least two distinct members of S are congruent $\mod n$.

Proof 13.

WTS: $\exists \ a,b \in S \ s.t. \ a \equiv b \mod n$, or $n \mid (a-b)$. $\forall s \in S$, we can write s = nk + r, where $k \in \mathbb{Z}$ and $r = \{0,1,2,\cdots,n\}$. There are exactly n possibilities for r; however, since |s| > n, there are more than n integers in S. So, by the Pigeonhole Principle, $\exists \ a,b \in S \ s.t. \ a = nk + r \ \text{and} \ b = nl + r$, where $k,l \in \mathbb{Z}$ and $r = \{0,1,2,\cdots,n\}$. So, a-b = (nk+r) - (nl-r) = nk - nl = n(k-l). Since $k-l \in \mathbb{Z}$, we know $n \mid (a-b)$. So, $a \equiv b \mod n$.

Page 32 of 43

4 Equivalence Relations

4.1 Exam 2 Review 6-b

Suppose that R is an equivalence relation on A and that $a,b\in A$. Then, if $[a]\cap [b]\neq\varnothing$, then [a]=[b].

Proof 1.

Since $[a] \cap [b] \neq \emptyset$, $\exists x \in [a] \cap [b]$. By definition of set intersection, $x \in [a]$ and $x \in [b]$. Since $x \in [a]$, xRa. Also, since $x \in [b]$, then xRb. Since R is an equivalence relation, by symmetry, aRx. Since aRx and xRb, by transitivity, aRb. Then, [a] = [b], by definition of equivalence class.

4.2 Exam 2 Review 12-a

Determine whether each of the following relations on $\mathbb R$ is an equivalence relation. Justify your answer. If R is an equivalence relation, describe its equivalence classes: xRy if $x-y\in\mathbb Z$.

Proof 2.

- Reflexive: Suppose $a \in \mathbb{R}$. Since $a a = 0 \in \mathbb{Z}$, we have aRa.
- Symmetric: Let $a, b \in \mathbb{R}$. Suppose aRb. Then, by definition, $a-b \in \mathbb{Z}$. That is, $\exists k \in \mathbb{Z} \ s.t. \ a-b=k$. Consider (b-a)=-(a-b)=-k. Since $k \in \mathbb{Z}, \ -k \in \mathbb{Z}$. So, $b-a \in \mathbb{Z}$. That is, bRa.
- Transitive: Let $a, b, c \in \mathbb{R}$. Suppose aRb and aRc. Then, by definition, $a b \in \mathbb{Z}$ and $b c \in \mathbb{Z}$. That is, $\exists k, l \in \mathbb{Z}$ s.t. a b = k and b c = l. Add the two equations, we get (a b) + (b c) = k + l. Simplify, we will get a c = k + l. Since $k, l \in \mathbb{Z}$, $k + l \in \mathbb{Z}$. So, $a c \in \mathbb{Z}$, or aRc.

Claim. $[a] = \{a - k \mid k \in \mathbb{Z}\}.$

Proof 3.

- (⊆) Suppose $x \in [a]$. Then, by definition, aRx. So, $a x \in \mathbb{Z}$. Suppose a x = m f.s. $m \in \mathbb{Z}$. Then, -x = m a, or x = a m. Since $m \in \mathbb{Z}$, $x \in \{a k \mid k \in \mathbb{Z}\}$.
- (⊇) Suppose $x \in \{a k \mid k \in \mathbb{Z}\}$. Then, x = a m f.s. $m \in \mathbb{Z}$. Consider a x = a (a m) = a a + m = m. Since $m \in \mathbb{Z}$, $a x \in \mathbb{Z}$. That is, aRx, or $x \in [a]$, by definition of equivalence class.

Page 33 of 43

4.3 Exam 2 Review 12-b

Determine whether each of the following relations on $\mathbb R$ is an equivalence relation. Justify your answer. If R is an equivalence relation, describe its equivalence classes: xRy if $x+y\in\mathbb Z$.

Disproof 4.

R is not an equivalence relation because it is not reflexive. Suppose $a \in \mathbb{R}$. Then, $a + a = 2a \in \mathbb{R}$, but it does not always hold that $2a \in \mathbb{Z}$. Therefore, $a \not R a$, or R is not reflexive.

4.4 Exam 2 Review 13

Prove or disprove: R is an equivalence relation on \mathbb{Z} . If R is an equivalence relation, describe its equivalence classes: xRy if $4\mid (x+y)$.

Disproof 5.

R is not an equivalence relation because it is not reflexive. Suppose $a \in \mathbb{Z}$. Consider a + a = 2a. Since $a \in \mathbb{Z}$, $2a \in \mathbb{Z}$, but $4 \nmid 2a$ for all $a \in \mathbb{Z}$. Therefore, $a \not R a$, and so R is not reflexive.

4.5 Exam 2 Review 14

Prove or disprove: R is an equivalence relation on \mathbb{Z} . If R is an equivalence relation, describe its equivalence classes: xRy if $4\mid (x+3y)$.

Proof 6.

- Reflexive: Suppose $a \in \mathbb{Z}$. Consider a + 3a = 4a. Since $a \in \mathbb{Z}$, $4 \mid 4a$. That is, $4 \mid a + 3a$, or aRa.
- Symmetric: Suppose $a, b \in \mathbb{Z}$. Then, a + 3b = 4k f.s. $k \in \mathbb{Z}$. So, a = 4k 3b. Consider

$$b + 3a = b + 3(4k - 3b) = b + 12k - 9b$$
$$= 12k - 8b$$
$$= 4(3k - 2b).$$

Since $k, b \in \mathbb{Z}$, $4k - 2b \in \mathbb{Z}$. So, $4 \mid 4(3k - 2b)$, or $4 \mid b + 3a$. Hence, bRa.

• Transitive: Let $a, b, c \in \mathbb{Z}$. Suppose aRb and bRc. Then, $4 \mid a+3b$ and $4 \mid b+3c$. Hence, $\exists k, l \in \mathbb{Z} \ s.t. \ a+3b=4k$ and b+3c=4l. Hence, a=4k-3b and 3c=4l-b. Consider

$$a + 3c = 4k - 3b + 4l - b = 4k + 4l - 4b = 4(k + l - b).$$

Since $k, b, l \in \mathbb{Z}$, $k + l - b \in \mathbb{Z}$. So, $4 \mid 4(k + l - b)$, or $4 \mid a + 3c$. Therefore, aRc.

Since R is symmetric, reflexive, and transitive, R is an equivalence relation.

Claim. $[i] = \{4k + i \mid k \in \mathbb{Z}\} \quad \forall i \in \{0, 1, 2, 3\}.$

Proof 7.

 (\subseteq) Suppose $x \in [i]$. Then, xRi. By definition of R, $4 \mid x+3i$. So, x+3i=4k f.s. $k \in \mathbb{Z}$. Then,

$$x = 4k - 3i = 4(k - i) - 3i + 4i = 4(k - i) + i.$$

Since $k \in \mathbb{Z}$ and $i \in \{0, 1, 2, 3\}$, we know $k - i \in \mathbb{Z}$. Then, $x = 4(k - i) + i \in \{4k + i \mid k \in \mathbb{Z}\}$.

 (\supseteq) Suppose $x \in \{4k+i \mid k \in \mathbb{Z}\}$. Then, x=4k+i f.s. $k \in \mathbb{Z}$. Consider

$$x + 3i = 4k + i + 3i = 4k + 4i = 4(k + i).$$

Since $k \in \mathbb{Z}$ and $i \in \{0, 1, 2, 3\}$, we know $k + i \in \mathbb{Z}$. Then, $4 \mid 4(k + i)$, or $x \mid x + 3i$. That is, xRi, or $x \in [i]$.

4.6 Exam 2 Review 15

Define a relation R on \mathbb{R}^2 as follows: for all $(a_1,b_1),(a_2,b_2)\in\mathbb{R}^2,(a_1,b_1)R(a_2,b_2)$ if (a_1,b_1) and (a_2,b_2) are on the same line through the origin. Decide whether R is an equivalence relation – either show why or why not. If it is, what are the elements of the equivalence class [(1,2)]?

Proof 8.

- Reflexive: Suppose $(a,b) \in \mathbb{R}^2$. The line of (a,b) and the origin is $y = \frac{b}{a}x$. Apparantly, (a,b) and (a,b) is both on $y = \frac{b}{a}x$. So, (a,b)R(a,b).
- Symmetric: Suppose (a_1, b_1) and $(a_2, b_2) \in \mathbb{R}^2$. Let $(a_1, b_1)R(a_2, b_2)$. The line between (a_1, b_1) and the origin is $y = \frac{b_1}{a_1}x$. Then, (a_2, b_2) is on the same line: $b_2 = \frac{b_1}{a_1} \cdot a_2$. So, $\frac{b_2}{a_2} = \frac{b_1}{a_1}$. That is,

 $\frac{b_2}{a_2} \cdot a_1 = b_1$, or (a_1, b_1) is on the line $y = \frac{b_2}{a_2}x$. Since $y = \frac{b_2}{a_2}x$ is the line between (a_2, b_2) and (0, 0), we have $(a_2, b_2)R(a_1, b_1)$.

• <u>Transitive</u>: Suppose $(a_1, b_1), (a_2, b_2), \text{ and } (a_3, b_3) \in \mathbb{R}^2$. Suppose $(a_1, b_1)R(a_2, b_2)$ and $(a_2, b_2)R(a_3, b_3)$. Then, $\frac{b_1}{a_1} = \frac{b_2}{a_2}$ and $\frac{b_2}{a_2} = \frac{b_3}{a_3}$. So, $\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3}$. Then, $(a_1, b_1)R(a_3, b_3)$.

Claim. $[(1,2)] = \{(x,y) \mid y = 2x\}.$

Proof 9.

- (⊆) Suppose $(x,y) \in [(1,2)]$. Then, (x,y)R(1,2). So, $\frac{y}{x} = \frac{2}{1}$. That is, y = 2x. Hence, $(x,y) \in \{(x,y) \mid y = 2x; \ x,y \in \mathbb{R}\}$. \square
- (\supseteq) Suppose $(x,y) \in \{(x,y) \mid y=2x\}$. Then, (x,y) = (x,2x). Since $\frac{2x}{x} = \frac{2}{1}$, we have (x,2x)R(1,2). Therefore, $(x,y) \in [(1,2)]$.

5 Functions

5.1 Exam 2 Review 17

Let $A=\{x,y,z\}$. Define functions $f:\mathcal{P}(A)$ by $f(a)=\{a\}$ and $g:A\to\mathcal{P}(A)$ by $g(a)=A-\{a\}$. Find $\mathrm{Im}(f)$ and $\mathrm{Im}(g)$.

Claim. $Im(f) = \{\{x\}, \{y\}, \{z\}\}.$

Proof 1.

- (\subseteq) Suppose $a \in A$. Then, we have $f(a) = \{a\}$. Since $a \in A$, $\{a\} \in \{\{x\}, \{y\}, \{z\}\}\}$. Therefore, $\operatorname{Im}(f) \subseteq \{\{x\}, \{y\}, \{z\}\}$. \square
- (\supseteq) Suppose $a \in \{\{x\}, \{y\}, \{z\}\}\}$. WLOG, suppose $a = \{x\}$. Choose b = x. So, $f(b) = \{b\} = \{x\} = a$. Therefore, $a \in \text{Im}(f)$. That is, $\{\{x\}, \{y\}, \{z\}\} \subseteq \text{Im}(f)$.

Claim. $\text{Im}(g) = \{\{y, z\}, \{x, z\}, \{x, y\}\}.$

Proof 2.

 (\subseteq) Suppose $a \in A$. Then, a = x, or a = y, or a = z. WLOG, suppose a = x. Then,

$$f(a) = A - \{a\} = \{x, y, z\} - \{x\} = \{y, z\}.$$

Since $\{y, z\} \subseteq \{\{y, z\}, \{x, z\}, \{x, y\}\}$, we know that $f(a) \in \{\{y, z\}, \{x, z\}, \{x, y\}\}$. Therefore, we've proven $\text{Im}(f) \subseteq \{\{y, z\}, \{x, z\}, \{x, y\}\}$.

 (\supseteq) Suppose $a \in \{\{y,z\},\{x,z\},\{x,y\}\}.$ WLOG, suppose $a = \{y,z\}.$ Note that

$$\exists x \in A \text{ s.t. } f(x) = A - \{x\} = \{y, z\} = a.$$

So, $a \in \text{Im}(f)$. That is, $\{\{y, z\}, \{x, z\}, \{x, y\}\} \subseteq \text{Im}(f)$.

5.2 Exam 2 Review 17

Let $f:\mathbb{R}\to\mathbb{R}$ be given by $f(x)=2x^3+3x^2-12x+1$. Let X=[-1,2]. Find f(X).

Answer 3.

Find $f'(x) = 6x^2 + 6x - 12$. So, f(x) is not always increasing or decreasing. Find critical points by setting f'(x) = 0: $6x^2 + 6x - 12 = 0$, so we get (x+2)(x-1) = 0, or x = -2, x = 1. Since X = [-1, 2], it

must be x = 1. Check f''(x) = 12x + 6: f''(1) = 12(1) + 6 = 12 + 6 > 0. So, f(1) is the minimum value: $f(1) = 2(1)^3 + 3(1)^2 - 12(1) + 1 = -6$. Then, maximum value will be found at x = -1 or x = 2. At x = -1, $f(-1) = 2(-1)^3 + 3(-1)^2 - 12(-1) + 1 = 14$. At x = 2, we have $f(2) = 2(2)^3 + 3(2)^2 - 12(2) + 1 = 5$. Since 14 > 5, maximum value occurs at x = -1. So, f(X) = [-6, 14].

Definition 5.1 ($\varepsilon - \delta$ **Definition of Continuity**) Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x), then f is continuous at x = a when then following condition is satisfied:

$$\forall \varepsilon > 0, \exists \delta \in \mathbb{R} \text{ s.t. } |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

5.3 Exam 3 Review 2

Consider the function $f(x)=\begin{cases} 0,&x<0\\ 1,&x\geq0 \end{cases}$. Rigorously prove that f is discontinuous at x=0. Your proof should involve ε and $\delta.$

Proof 4.

Choose $\varepsilon = \frac{1}{2}$. Then, we need $|f(x) - f(0)| < \frac{1}{2}$. That is, we want $|f(x) - 1| < \frac{1}{2}$, or $-\frac{1}{2} < f(x) - 1 < \frac{1}{2}$. That is, $\frac{1}{2} < f(x) < \frac{3}{2}$. Note that $\forall x \in (-\delta, 0), f(x) = 0$, by definition of (x). That is, $f(x) \notin \left(\frac{1}{2}, \frac{3}{2}\right)$. So, f is discontinuous at x = 0.

5.4 Exam 3 Review 3-a

Use the formal definition of continuity, prove that the function $f(x) = x^2 + 4x + 3$ is continuous at x = -2.

Proof 5.

Let $\varepsilon > 0$ be given. Suppose $\delta = \sqrt{\varepsilon}$. Since $\varepsilon > 0$, we know $\delta = \sqrt{\varepsilon} > 0$. Suppose $|x - (-2)| = |x + 2| < \delta$. Then,

$$|f(x) - f(-2)| = |x^2 + 4x + 3 - (-1)| = |x^2 + 4x + 3 + 1| = |x^2 + 4x + 4|$$

$$= |(x+2)^2|$$

$$= |x+2||x+2|$$

$$< \delta \cdot \delta = \sqrt{\varepsilon} \cdot \sqrt{\varepsilon} = \varepsilon.$$

Since ε was arbitrary, we've shown that

$$\forall \varepsilon > 0, \exists \ \delta = \sqrt{\varepsilon} > 0 \ s.t. \ |x+2| > \delta \implies |f(x) - f(-2)| < \varepsilon.$$

So, f is continuous at x = -2.

5.5 Exam 3 Review 3-b

Use the formal definition of continuity, prove that the function $f(x)=x^2+4x+3$ is continuous at x=2.

Proof 6.

Let $\varepsilon > 0$ be given. Suppose $\delta = \min\left\{1, \frac{\varepsilon}{9}\right\}$. Then, $\delta \le 1$ and $\delta \le \frac{\varepsilon}{9}$. Suppose $x \in \mathbb{R}$ and $|x - 2| < \delta$. Since $|x - 2| < \delta \le 1$, we have 1 < x < 3. So, 7 < x + 6 < 9. That is, |x + 6| < 9. Then,

$$|f(x) - f(2)| = |x^2 + 4x + 3 - 15| = |x^2 + 4x - 12|$$

$$= |(x - 2)(x + 6)|$$

$$= |x - 2||x + 6|$$

$$< 9|x - 2|$$

$$< 9 \cdot \delta$$

$$\leq 9 \cdot \frac{\varepsilon}{9} = \varepsilon.$$

Since ε was arbitrary, we've proven that

$$\forall \varepsilon > 0, \exists \ \delta = \min\left\{1, \frac{\varepsilon}{9}\right\} > 0 \ s.t. \ |x - 2| < \delta \implies |f(2) - f(x)| < \varepsilon.$$

So, by the definition of continuity, f is continuous at x=2.

5.6 Exam 3 Review 6

Prove or disprove: Every injective map form $\mathbb{R} o \mathbb{R}$ is bijective.

Disproof 7.

Consider $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = e^x$. For $x, y \in \mathbb{R}$, if f(x) = f(y), we have $e^x = e^y$. Take logarithm with base e, we have $\ln e^x = \ln e^y$. So, x = y. Hence, f is injective. Consider $b = -1 \in \mathbb{R}$. Set

f(x) = -1. That is, $e^x = -1$. * This contradicts with the fact that f(x) > 0. Therefore, our assumption is wrong, and f(x) cannot be -1. Hence, by definition, f is not surjective.

5.7 Exam 3 Review 7

Show that the function $f: \mathbb{R} - \{0\} \to \mathbb{R}$ defined by $f(x) = \frac{x+1}{x}$ is injective but not surjective. How could we change the codomain so that f is surjective?

Proof 8.

• **Injective**: Suppose $x, y \in \mathbb{R} - \{0\}$ s.t. f(x) = f(y). Then, we get

$$\frac{x+1}{x} = \frac{y+1}{y}$$
$$(x+1)y = (y+1)x$$
$$xy + y = xy + x$$
$$y = x.$$

So, $f(x) = f(y) \implies x = y$. That is, f is injective.

• <u>Not Surjective</u>: Set f(x) = 1. So we should have $\frac{x+1}{x} = 1$. So, x+1 = x, or 1 = 0. This is not possible, so $f(x) \neq 1$. Therefore, f is not surjective.

Answer 9.

We can change the codomain to $\mathbb{R} - \{1\}$. So that our function will become surjective.

5.8 Exam 3 Review 11-a

Let $f:A \to B$ for a function and $X \subseteq A$. Prove or disprove: $f^{-1}(f(X)) = X$.

Disproof 10.

Consider $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Define f(1) = a and f(2) = f(3) = b. Set $X = \{2\}$, then $f(X) = f(\{2\}) = \{b\}$. Therefore, $f^{-1}(f(X)) = f^{-1}(\{b\}) = \{2, 3\}$. Since $3 \in f^{-1}(f(X))$ but $3 \notin X$, $f^{-1}(f(X)) \neq X$.

5.9 Exam 3 Review 11-b

Let $f:A\to B$ for a function and $X\subseteq A$. Prove or disprove: $f(f^{-1}(f(X)))=f(X)$.

Proof 11.

Let $f: A \to B$ be a function and $X \subseteq A$.

- (⊆) Suppose $x \in f(f^{-1}(f(X)))$. Then, $\exists a \in f^{-1}(f(X))$ s.t. f(a) = x. Since $a \in f^{-1}(f(X))$, $f(a) \in f(X)$. Note f(a) = x, so $x \in f(X)$.
- (\supseteq) Suppose $x \in f(X)$. Then, $\exists a \in X \text{ s.t. } f(a) = x$. Since $f(a) = x \in f(X)$, we have $f(a) \in f(X)$. Then, $a \in f^{-1}(f(X))$. Therefore, $f(a) \in f(f^{-1}(f(X)))$. That is, $x \in f(f^{-1}(f(X)))$.

5.10 Exam 3 Review 12

Let $f:A\to B$ and $g:B\to C$, and assume that f is surjective. Prove that $g\circ f$ is injective if and only if g and f are both injective.

Proof 12.

- (\Rightarrow) Suppose $g \circ f$ is injective.
- <u>f injective</u>: Let $x, y \in A$ s.t. f(x) = f(y). Apply g on both sides, we get g(f(x)) = g(f(y)). That is, $(g \circ f)(x) = (g \circ f)(y)$. Since $(g \circ f)$ is injective, we have x = y. Hence, f is injective.
- g injective: Let $x, y \in B$ s.t. g(x) = g(y). Since f is surjective from $A \to B$, $\exists a, b \in A$ s.t. f(a) = x and f(b) = y. Then, $g(x) = g(f(a)) = (g \circ f)(a)$ and $g(y) = g(f(b)) = (g \circ f)(b)$. Therefore, $(g \circ f)(a) = (g \circ f)(b)$. Since $g \circ f$ is injective, we have a = b. Since f is injective (proven above), we have f(a) = f(b). Since f(a) = x and f(b) = y, we know x = y, and hence g is also injective. \Box
- (\Leftarrow) Suppose g and f are injective. Let $x, y \in A$ s.t. $(g \circ f)(x) = (g \circ f)(y)$. Since $(g \circ f)(x) = g(f(x))$ and $(g \circ f)(y) = g(f(y))$, we have g(f(x)) = g(f(y)). Since g is injective, we know f(x) = f(y). Further since f is also injective, we have x = y. Then, $g \circ f$ is injective.

5.11 Exam 3 Review 13

Suppose that $f:A\to B$ is a function. Prove that f is injective if and only if for all subsets C,D of A, $f(C\cap D)=f(C)\cap f(D)$.

Page 41 of 43

Proof 13.

Let $f: A \to B$ be an injective function. Let $C, D \subseteq A$.

- (\Rightarrow) Suppose f is injective. WTS: $f(C \cap D) = f(C) \cap f(D)$.
- (⊆) Let $x \in f(C \cap D)$. Then, $\exists a \in C \cap D$ s.t. f(a) = x. Since $a \in C \cap D$, we have $a \in C$ and $a \in D$. Since $a \in C$, $f(a) \in f(C)$ That is, $x \in f(C)$. Similarly, since $a \in D$, $f(a) \in f(D)$, and thus $x \in f(D)$. Since $x \in f(C)$ and $x \in f(D)$, by definition of set intersection, $x \in f(C) \cap f(D)$. □
- (⊇) Let $x \in f(C) \cap f(D)$. Then, $x \in f(C)$ and $x \in f(D)$. So, $\exists c \in C$ s.t. f(c) = x and $\exists d \in D$ s.t. f(d) = x. Therefore, we know f(c) = f(d) = x. Since f is injective, we have c = d. Hence, $c \in C$ and $c \in D$, and that is, $c \in C \cap D$. So, $f(c) = x \in f(C \cap D)$.
- (\Leftarrow) Suppose $f(C \cap D) = f(C) \cap f(D)$. Suppose $x, y \in A$ s.t. f(x) = f(y). Say f(x) = f(y) = m. Suppose $C = \{x\} \subseteq A$ and $D = \{y\} \subseteq A$. Then, by assumption, $f(C) = f(\{x\}) = \{m\}$ and $f(D) = f(\{y\}) = \{m\}$. So, $f(C \cap D) = f(C) \cap f(D) = \{m\} \cap \{m\} = \{m\}$. If $C \cap D = \emptyset$, then $f(C \cap D) = f(\emptyset) = \emptyset \neq \{m\}$. Hence, $C \cap D \neq \emptyset$. That is, $\{x\} \cap \{y\} \neq \emptyset$. The only way for intersection of two single-element sets being non-empty is that the two elements are identical. So, x = y.

5.12 Exam 3 Review 14

Let A,B be sets, and let F(A,B) denote the set of all functions from A to B. Let $g:A\to A$ be a bijection. Define a new function $\Delta_g:F(A,B)\to F(A,B)$ as follows: $f\mapsto f\circ g$. Prove that Δ_g is a bijection.

Proof 14.

- <u>Injective</u>: Suppose $f, h \in F(A, B)$ s.t. $\Delta_g(f) = \Delta_g(h)$. Since g is a bijection, g is also invertible. Denote the inverse of g as g^{-1} . By definition, $\Delta_g(f) = f \circ g$ and $\Delta_g(h) = h \circ g$. So, by assumption, $f \circ g = h \circ g$. Apply $f \circ g$ and $h \circ g$ to g^{-1} , respectively, we have $(f \circ g) \circ g^{-1} = (h \circ g) \circ g^{-1}$. So, we know that $f \circ (g \circ g^{-1}) = h \circ (g \circ g^{-1})$. Since $g \circ g^{-1} = i_A$, we have $f \circ i_A = h \circ i_A$. That is, f = h.
- Surjective: Suppose $h \in F(A, B)$. Choose $f = h \circ g^{-1} \in F(A, B)$. Then,

$$\Delta_g(f) = f \circ g = (h \circ g^{-1}) \circ g = h \circ (g^{-1} \circ g) = h \circ i_A = h.$$

Therefore, $\exists f = h \circ g^{-1} \in F(A, B) \text{ s.t. } \Delta_g(f) = h \quad \forall h \in F(A, B). \text{ That is, } \Delta_g \text{ is surjective.}$

5.13 Exam 3 Review 15-a

Let A,B be sets, and let $f:A\to B$ be a function. Let I be an index, and let $\{C_i\}_{i\in I}$ be a collection of subsets such that for all $i\in I,C_i\subseteq B$. Prove that $f^{-1}\left(\bigcap_{i\in I}C_i\right)=\bigcap_{i\in I}f^{-1}(C_i)$.

Proof 15.

- (\subseteq) Suppose $a \in f^{-1}\left(\bigcap_{i \in I} C_i\right)$. So, by definition of inverse image, $f(a) \in \bigcap_{i \in I} C_i$. That is, $\forall i \in I$, $f(a) \in C_i$. By definition of inverse image, $a \in f^{-1}(C_i) \quad \forall i \in I$. That is, $a \in \bigcap_{i \in I} f^{-1}(C_i)$, by definition of set intersection. \square
- (⊇) Suppose $a \in \bigcap_{i \in I} f^{-1}(C_i)$. By definition of set intersection, $a \in f^{-1}(C_i)$ $\forall i \in I$. By definition of inverse image, $f(a) \in C_i$ $\forall i \in I$. That is, $f(a) \in \bigcap_{i \in I} C_i$. So, $a \in f^{-1}\left(\bigcap_{i \in I} C_i\right)$.

5.14 Exam 3 Review 15-a

Let A,B be sets, and let $f:A\to B$ be a function. Let I be an index, and let $\{C_i\}_{i\in I}$ be a collection of subsets such that for all $i\in I,C_i\subseteq B$. Prove that $f^{-1}\left(\bigcup_{i\in I}C_i\right)=\bigcup_{i\in I}f^{-1}(C_i)$.

Proof 16.

- (⊆) Suppose $a \in f^{-1}\left(\bigcup_{i \in I} C_i\right)$. By definition of inverse image, $f(a) \in \bigcup_{i \in I} C_i$. Hence, by definition of set union, $f(a) \in C_k$ f.s. $k \in I$. So, $a \in f^{-1}(C_k)$ f.s. $k \in I$. Since $f^{-1}(C_k) \subseteq \bigcup_{i \in I} f^{-1}(C_i)$, we have $a \in \bigcup_{i \in I} f^{-1}(C_i)$. \square
- (⊇) Suppose $a \in \bigcup_{i \in I} f^{-1}(C_i)$. Then, by definition of set union, $a \in f^{-1}(C_k)$ f.s. $k \in I$. By definition of inverse image, $f(a) \in C_k$ f.s. $k \in I$. So, $f(a) \in \bigcup_{i \in I} C_i$. That is, $a \in f^{-1}\left(\bigcup_{i \in I} C_i\right)$.