Completeness exercise

We want to prove completeness of

$$(p \to q) \to q \vdash (q \to p) \to p$$

We follow the steps described in the assignment text.

We start with

$$(p \to q) \to q \models (q \to p) \to p$$

Now we move the premises to the right hand side, so we get

$$\models ((p \rightarrow q) \rightarrow q) \rightarrow ((q \rightarrow p) \rightarrow p)$$

We proceed by creating a truth table

p	q	$p \rightarrow q$	$(p \to q) \to q$	$q \rightarrow p$	$(q \to p) \to p$	$((p \to q) \to q) \to ((q \to p) \to p)$
Τ	T	Τ	${ m T}$	Τ	Τ	T
T	F	F	Т	Т	Т	T
F	Т	Т	Τ	F	Т	Т
F	F	Т	F	Т	F	T

This means we have the following constructed sequents

$$p, q \vdash ((p \to q) \to q) \to ((q \to p) \to p) \qquad : \alpha_1$$

$$p, \neg q \vdash ((p \to q) \to q) \to ((q \to p) \to p) \qquad : \alpha_2$$

$$\neg p, q \vdash ((p \to q) \to q) \to ((q \to p) \to p) \qquad : \alpha_3$$

$$\neg p, \neg q \vdash ((p \to q) \to q) \to ((q \to p) \to p) \qquad : \alpha_4$$

As explained in the assignment text, we start by proving α_1 , meaning we prove

$$p \vdash \gamma_{l}[p] \qquad (a)$$

$$q \vdash \gamma_{l}[q] \qquad (b)$$

$$p, q \vdash \gamma_{l}[p \to q] \qquad (c)$$

$$p, q \vdash \gamma_{l}[(p \to q) \to q] \qquad (d)$$

$$p, q \vdash \gamma_{l}[q \to p] \qquad (e)$$

$$p, q \vdash \gamma_{l}[(q \to p) \to p] \qquad (f)$$

$$p, q \vdash \gamma_{l}[(p \to q) \to q) \to ((q \to p) \to p)] \qquad (g)$$

In (a), we prove $p \vdash \gamma_l[p]$ where $\gamma_l[p] = p$ meaning it is trivially true. In (b), we prove $q \vdash \gamma_l[q]$ where $\gamma_l[q] = q$ meaning it is trivially true. In (c), we prove $p, q \vdash \gamma_l[p \to q]$ where $\gamma_l[p \to q] = p \to q$. A box proof is provided below

1	p	pre	emise
2	q	pre	emise
3	p	ass	umption
4	q	(2)	
5	$p \rightarrow$	ightarrow q	I(3-4)

In (d), we prove $p, q \vdash \gamma_l[(p \to q) \to q]$ where $\gamma_l[(p \to q) \to q] = (p \to q) \to q$. A box proof is provided below

premise premise
$$\begin{array}{ccc} & p & & & & \\ 2 & q & & & & \\ \hline & 3 & p \rightarrow q & & & \\ & 4 & q & & & \\ & 5 & (p \rightarrow q) \rightarrow q & & & & \\ & & & \rightarrow I(3-4) & & \\ \end{array}$$

In (e), we prove $p, q \vdash \gamma_l[q \to p]$ where $\gamma_l[q \to p] = q \to p$. This is the exact same proof as in (c), so we reuse this proof with the atoms p and q switched.

In (f), we prove $p, q \vdash \gamma_l[(q \to p) \to p]$ where $\gamma_l[(q \to p) \to p] = (q \to p) \to p$. This is the exact same proof as in (d), so we reuse this proof with the atoms p and q switched.

In (g), we prove $p, q \vdash \gamma_l[((p \to q) \to q) \to ((q \to p) \to p)]$ where $\gamma_l[((p \to q) \to q) \to ((q \to p) \to p)] = ((p \to q) \to q) \to ((q \to p) \to p)$. A boxproof is provided below

1
$$p$$
 premise
2 q premise
3 $(p \rightarrow q) \rightarrow q$ proved in (d)
4 $(q \rightarrow p) \rightarrow p$ proved in (f)

5 $(p \rightarrow q) \rightarrow q$ assumption
6 $(q \rightarrow p) \rightarrow p$ (4)

7 $((p \rightarrow q) \rightarrow q) \rightarrow ((q \rightarrow p) \rightarrow p)$ $\rightarrow I(5-6)$

We now prove α_2 in the same manner.

$$p \vdash \gamma_{l}[p]$$

$$\neg q \vdash \gamma_{l}[q]$$

$$p, \neg q \vdash \gamma_{l}[p \to q]$$

$$p, \neg q \vdash \gamma_{l}[(p \to q) \to q]$$

$$p, \neg q \vdash \gamma_{l}[(p \to q) \to q]$$

$$p, \neg q \vdash \gamma_{l}[(q \to p) \to p]$$

$$p, \neg q \vdash \gamma_{l}[(q \to p) \to p]$$

$$p, \neg q \vdash \gamma_{l}[((p \to q) \to q) \to ((q \to p) \to p)]$$

$$(a)$$

$$(b)$$

$$(c)$$

$$(d)$$

$$(e)$$

$$p, \neg q \vdash \gamma_{l}[(p \to q) \to q) \to ((q \to p) \to p)]$$

$$(g)$$

(g)

In (a), we prove $p \vdash \gamma_l[p]$ where $\gamma_l[p] = p$ meaning it is trivially true.

In (b), we prove $\neg q \vdash \gamma_l[q]$ where $\gamma_l[q] = \neg q$ meaning it is trivially true.

In (c), we prove $p, \neg q \vdash \gamma_l[p \to q]$ where $\gamma_l[p \to q] = \neg(p \to q)$. A box proof is provided below

premise premise
$$2 \neg q$$
 premise $3 (p \rightarrow q)$ assumption $4 q$ $\rightarrow E(1,3)$ $5 \bot$ $\neg E(4,2)$ $\neg I(3-5)$

In (d), we prove $p, \neg q \vdash \gamma_l[(p \to q) \to q]$ where $\gamma_l[(p \to q) \to q] = (p \to q) \to q$. A box proof is provided below

premise premise
$$premise$$
 $premise$ $premise$ $premise$ $premise $premise$ $premise$ $premise $premise$ $premise$ $premise $premise$ $premise$ $premise$ $premise $premise$ $pr$$$$$

In (e), we prove $p, \neg q \vdash \gamma_l[q \to p]$ where $\gamma_l[q \to p] = q \to p$. A box proof is provided below

1	p	premise
2	$\neg q$	premise
3	q	assumption
4	p	$\neg E(3,2)$
5	$q \rightarrow p$	$\rightarrow I(3-5)$

In (f), we prove $p, q \vdash \gamma_l[(q \to p) \to p]$ where $\gamma_l[(q \to p) \to p] = (q \to p) \to p$. A box proof is provided below

In (g), we prove $p, \neg q \vdash \gamma_l[((p \to q) \to q) \to ((q \to p) \to p)]$ where $\gamma_l[((p \to q) \to q) \to ((q \to p) \to p)] = ((p \to q) \to q) \to ((q \to p) \to p)$. A boxproof is provided below

$_{1}$ p	premise
$_2$ $\neg q$	premise
$_3 (p \to q) \to q$	proved in (d)
$_4 (q \to p) \to p$	proved in (f)
$_{5}$ $(p \rightarrow q) \rightarrow q$	assumption
$ \qquad \qquad 6 (q \to p) \to p $	(4)
$((p \to q) \to q) \to ((q \to p) \to p)$	$\rightarrow I(5-6)$

We now prove α_3 in the same manner.

$$\neg p \vdash \gamma_{l}[p] \qquad (a)
q \vdash \gamma_{l}[q] \qquad (b)
\neg p, q \vdash \gamma_{l}[p \to q] \qquad (c)
\neg p, q \vdash \gamma_{l}[(p \to q) \to q] \qquad (d)
\neg p, q \vdash \gamma_{l}[q \to p] \qquad (e)
\neg p, q \vdash \gamma_{l}[(q \to p) \to p] \qquad (f)
\neg p, q \vdash \gamma_{l}[((p \to q) \to q) \to ((q \to p) \to p)] \qquad (g)$$

In (a), we prove $\neg p \vdash \gamma_l[p]$ where $\gamma_l[p] = \neg p$ meaning it is trivially true. In (b), we prove $q \vdash \gamma_l[q]$ where $\gamma_l[q] = q$ meaning it is trivially true. In (c), we prove $\neg p, q \vdash \gamma_l[p \to q]$ where $\gamma_l[p \to q] = p \to q$. A box proof is provided below

1	$\neg p$	premise
2	q	premise
3	p	assumption
4	\perp	$\neg E(3,1)$
5	q	$\perp E(4)$
6	p o q	$\rightarrow I(3-5)$

In (d), we prove $\neg p, q \vdash \gamma_l[(p \to q) \to q]$ where $\gamma_l[(p \to q) \to q] = (p \to q) \to q$. A box proof is provided below

In (e), we prove $\neg p, q \vdash \gamma_l[q \to p]$ where $\gamma_l[q \to p] = \neg(q \to p)$. A box proof is provided below

In (f), we prove $\neg p, q \vdash \gamma_l[(q \to p) \to p]$ where $\gamma_l[(q \to p) \to p] = (q \to p) \to p$. A box proof is provided below

In (g), we prove $\neg p, q \vdash \gamma_l[((p \to q) \to q) \to ((q \to p) \to p)]$ where $\gamma_l[((p \to q) \to q) \to ((q \to p) \to p)] = ((p \to q) \to q) \to ((q \to p) \to p)$. A boxproof is provided below

$_{\scriptscriptstyle 1}$ $\neg p$	premise
$_2$ q	premise
$_3 (p \to q) \to q$	proved in (d)
$_4 (q \to p) \to p$	proved in (f)
$_{5}$ $(p \rightarrow q) \rightarrow q$	assumption
$6 (q \to p) \to p$	(4)
$_7 ((p \to q) \to q) \to ((q \to p) \to p)$	$\rightarrow I(5-6)$

We now prove α_4 in the same manner.

$$\neg p \vdash \gamma_{l}[p] \qquad (a)$$

$$\neg q \vdash \gamma_{l}[q] \qquad (b)$$

$$\neg p, \neg q \vdash \gamma_{l}[p \to q] \qquad (c)$$

$$\neg p, \neg q \vdash \gamma_{l}[(p \to q) \to q] \qquad (d)$$

$$\neg p, \neg q \vdash \gamma_{l}[q \to p] \qquad (e)$$

$$\neg p, \neg q \vdash \gamma_{l}[(q \to p) \to p] \qquad (f)$$

$$\neg p, \neg q \vdash \gamma_{l}[((p \to q) \to q) \to ((q \to p) \to p)] \qquad (g)$$

In (a), we prove $\neg p \vdash \gamma_l[p]$ where $\gamma_l[p] = \neg p$ meaning it is trivially true.

In (b), we prove $\neg q \vdash \gamma_l[q]$ where $\gamma_l[q] = \neg q$ meaning it is trivially true.

In (c), we prove $\neg p, \neg q \vdash \gamma_l[p \to q]$ where $\gamma_l[p \to q] = p \to q$. A box proof is provided below

In (d), we prove $\neg p, \neg q \vdash \gamma_l[(p \to q) \to q]$ where $\gamma_l[(p \to q) \to q] = \neg((p \to q) \to q)$. A

box proof is provided below

$_{1}$ $\neg p$	premise
$_{2}$ $\neg q$	premise
$p \rightarrow q$	proved in (c)
$_4 (p \to q) \to q$	assumption
5 q	$\rightarrow E(3,4)$
6 \(\psi \)	$\neg E(5,2)$
$_7 \neg ((p \rightarrow q) \rightarrow q)$	$\neg I(4-6)$

In (e), we prove $\neg p, \neg q \vdash \gamma_l[q \to p]$ where $\gamma_l[q \to p] = q \to p$. A box proof is provided below

premise premise
$$-2 - q$$
 premise premise $-2 - q$ assumption $-2 - q$ assumption $-2 - q$ $-2 - q$ $-2 - q$ $-2 - q$ $-2 - q$ assumption $-2 - q$ $-2 - q$

In (f), we prove $\neg p, \neg q \vdash \gamma_l[(q \to p) \to p]$ where $\gamma_l[(q \to p) \to p] = \neg((q \to p) \to p)$. A box proof is provided below

$_{1}$ $\neg p$	premise
$_2$ $\neg q$	premise
$_3 (q \to p)$	proved in (e)
$_4 (q \to p) \to p$	assumption
5 p	$\rightarrow E(3,4)$
6 Т	$\neg E(5,1)$
$ \neg ((q \to p) \to p) $	$\neg I(4-6)$

In (g), we prove
$$\neg p, \neg q \vdash \gamma_l[((p \to q) \to q) \to ((q \to p) \to p)]$$
 where $\gamma_l[((p \to q) \to q) \to ((q \to p) \to p)] = ((p \to q) \to q) \to ((q \to p) \to p)$. A boxproof is provided below

-/			
	1	p	premise
	2	q	premise
	3	$\neg((p \to q) \to q)$	proved in (d)
	4	$\neg((q \to p) \to p)$	proved in (f)
	5	$(p \to q) \to q$	assumption
	6	_	$\neg E(5,3)$
	7	$(q \to p) \to p$	$\perp E(6)$
	8	$((p \to q) \to q) \to ((q \to p) \to p)$	$\rightarrow I(5-7)$

These proofs $\alpha_1, \alpha_2, \alpha_3$ and α_4 together can be used to prove that

$$\vdash ((p \to q) \to q) \to ((q \to p) \to p)$$

as all combination of truth values are used.

We extend this to to the proof

$$(p \to q) \to q \vdash (q \to p) \to p$$

As so we have proved completeness of the formula.