Department of Chemical Engineering

MInor II - CHL221 Time: 1:00-2:00 pm CRE -II

M.M 20

Date: 4th Oct., 2013

1. Discuss the concept of temperature –time trajectory for the slow catalyst deactivation.

The vapor phase cracking of a vacuum gas oil (A),

 $-r'_A = (kC_A/1 + K_A C_A)$. a(t), with $K_A = 3$ L/mol and k = 8.0 L/g. s⁻¹.

At 600° C, the catalyst decay rate for vacuum gas oil over this catalyst is given by a second order kinetics, with $k_d = 0.5 \text{ s}^{-1}$. Calculate the conversion of A at the exit of the reactor. (8)

2. A plant is removing a trace of SO₂ from a waste gas stream by passing it over a solid granular adsorbent in a tubular packed bed. At present, 60.0 % removal is being accomplished, but it is believed that higher removal could be achieved if the flow rate were increased by a factor of 2, the particle diameter were decreased by a factor of 2, and the packed tube length is doubled. What percentage of SO₂ would be removed under the scheme proposed? Assume that SO₂ transferring to the adsorbent is removed by an instantaneous chemical reaction. Use the following correlation for the calculation of mass transfer coefficient:

Sh=
$$(Re)^{1/2}(Sc)^{1/3}$$

3. The solid density of silica particle is 3.8 g/cm³, the catalyst pellet density is 1.2 g/cm³, and the internal surface area of the catalyst is 150 m²/g. 12 g of this catalyst is packed in a reactor of volume 15 cm³. Compute the pore volume per catalyst porosity, and the mean pore radius and bed porosity. (5)