Assignment #1 CS676: Computer Vision and Image Processing

HW: Implementation of Mean Shift algorithm for image segmentation

Group # 15
Abhishek Meena - 12028 Jitendra Kumar Nagar - 12325

Algorithm

Step 1: Mean Shift Clustering:

Let \mathbf{x}_i and $\mathbf{z}_i, i = 1, \dots, n$, be the *d*-dimensional input and filtered image pixels in the joint spatial-range domain. For each pixel,

- 1. Initialize j = 1 and $\mathbf{y}_{i,1} = \mathbf{x}_i$.
- 2. Compute $\mathbf{y}_{i,j+1}$ according to (20) until convergence, $\mathbf{y} = \mathbf{y}_{i,c}$.
- 3. Assign $\mathbf{z}_i = (\mathbf{x}_i^s, \mathbf{y}_{i,c}^r)$.

The superscripts s and r denote the spatial and range components of a vector, respectively. The assignment specifies that the filtered data at the spatial location \mathbf{x}_i^s will have the range component of the point of convergence $\mathbf{y}_{i.c}^r$.

The kernel (window) in the mean shift procedure moves in the direction of the maximum increase in the *joint* density gradient, while the bilateral filtering uses a fixed, static window. In the image smoothed by mean shift filtering, information *beyond* the individual windows is also taken into account.

Step2: Mean Shift Image Segmentation

Let \mathbf{x}_i and $\mathbf{z}_i, i = 1, ..., n$, be the *d*-dimensional input and filtered image pixels in the joint spatial-range domain and L_i the label of the *i*th pixel in the segmented image.

- 1. Run the mean shift filtering procedure for the image and store *all* the information about the *d*-dimensional convergence point in \mathbf{z}_i , i.e., $\mathbf{z}_i = \mathbf{y}_{i.c}$.
- 2. Delineate in the joint domain the clusters $\{\mathbf{C}_p\}_{p=1...m}$ by grouping together $all\ \mathbf{z}_i$ which are closer than h_s in the spatial domain and h_r in the range domain, i.e., concatenate the basins of attraction of the corresponding convergence points.
- 3. For each i = 1, ..., n, assign $L_i = \{p \mid \mathbf{z}_i \in \mathbf{C}_p\}$.
- 4. Optional: Eliminate spatial regions containing less than M pixels.

Results:

Different image segmentation obtained by varying the 3 parameters:

Kernel: Gaussian

- hs = spatial bandwidth if the kernel
- hr = range bandwidth of the kernel
- th = threshold set for he convergence

Original image (42049)

Segmented image and data points with their clusters for (hs,hr) = (8,7)

Image # 101085

Original Image

Segmented Image (hs,hr)=8,20

Segmented Image (hs,hr)=8,7

Segmented Image (hs,hr)=25,30

Segmented Image (hs,hr)=10,19

data points with their cluster centres Gaussian Kernel (hs,hr)=10,19 300 350

Segmented Image (hs,hr)=10,9

