ECON3113 Microeconomic Theory I

Tutorial #6: Demand Analysis

Today's tutorial

- Re-Cap on the theoretical framework
- Applications
 - Quasi-linear utility function
 - Stone-Geary utility function

Constrained utility maximisation: the framework

- Superposing the budget line with the indifference curves.
- Look for the bundle/point in the budget set that lies on the indifference curve with the highest utility.

- We have:
 - U(x,y)
 - $I = P_x x + P_y y$
- Affordable bundles on or inside the budget constraint
- Tangency at: $MRS = \frac{P_x}{P_y}$
- Note: Limitations of this approach in lecture notes:
 - Corner solutions
 - Tangency not always optimal

Constrained utility maximisation: the framework

- Intuition of why the tangency condition works
- What bundle would make the consumer willing to stay put?
- Start with any bundle $(x_1, x_2) > (0, 0)$. If she wants to increase his consumption of goods 1 by one unit,
 - the amount of goods 2 she is willing to give up is MRS;
 - the amount of goods 2 she has to give up is $p_1 imes \frac{1}{p_2}$
- She wants to consume more of goods 1 if $\frac{p_1}{p_2} < MRS$.

The Quasi-Linear utility function

• Suppose the consumer has a quasi-linear utility function:

$$u(x_1, x_2) = v(x_1) + x_2,$$

for some strictly increasing and strictly concave function v.

The MRS is given by

$$MRS = \frac{\partial u/\partial x_1}{\partial u/\partial x_2} = v'(x_1),$$

so it is strictly decreasing in x_1 but independent of x_2 .

- Strict concavity of v implies DMRS.
- A function f is strictly concave in x and y if for every $\alpha \in (0,1)$:

$$f((1-\alpha)x + \alpha y) > (1-\alpha)f(x) + \alpha f(y)$$

The Quasi-Linear Utility Function: Example

Consider the function $U(x, y) = y + \ln(x)$

• We have MRS =
$$\frac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}}$$

•
$$=\frac{1}{x}$$

- So we have DMRS
- How much of y a consumer requires to compensate for giving up 1 unit of x depends only on how much x the consumer already has
- MRS is constant for different indifference curves at equal points on the x axis (eg A and B)

The Quasi-Linear Utility Function: Example

- Consider the function $U(x, y) = y + \ln(x)$
- To find the demand curves for x and y:

• We have MRS =
$$\frac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}} = \frac{1}{x} = \frac{P_x}{P_y}$$

• ie
$$x^* = \frac{P_y}{P_x}$$

• Then
$$I = P_x x + P_y y = P_x \frac{P_y}{P_x} + P_y y$$

• ie
$$y^* = \frac{I}{P_y} - 1$$

Sensitivity of demand to P_x , P_y and I:

Good	P_{χ}	P_y	I
x	Negative	Positive	Independent
у	Independent	Negative	Positive

- When P_x changes, all of the change in demand is accounted for by changes in demand for x
 - What is causing this?
- y is a normal good; x is not

The homogeneity of demand functions

Theorem

The demand functions are homogeneous of degree zero. That is, $x_i(\lambda p_1, ..., \lambda p_n, \lambda I) = x_i(p_1, ..., p_n, I)$ for all $\lambda > 0$.

Examples:

- For given I, P_x, P_y :
- Cobb Douglas $U(x,y) = x^{\alpha}y^{1-\alpha}$

$$x^* = \alpha \frac{I}{P_x}$$

$$x^* = \alpha \frac{I}{P_x} \qquad \qquad y^* = (1 - \alpha) \frac{I}{P_y}$$

- x^* , y^* invariant to scaling P_x , P_y , I by λ
- Quasi-Linear $U(x, y) = y + \ln(x)$

$$x^* = \frac{P_y}{P_x} \qquad \qquad y^* = \frac{I}{P_y} - 1$$

• x^* , y^* invariant to scaling P_x , P_y , I by λ

Sensitivity of demand to changes in prices and income

Decrease in price of x₁

Increase in income

Example: Quasi-linear utility function

- Increase in income from *I* to *I'*
- We have:

$$x^* = \frac{P_y}{P_x} \qquad \qquad y^* = \frac{I}{P_y} - 1$$

• So demand for x doesn't change, demand for y increases by $\frac{1}{P_{y}}$

Example: Quasi-linear utility function

- Increase in the price of x
- We have:

$$x^* = \frac{P_y}{P_x} \qquad \qquad y^* = \frac{I}{P_y} - 1$$

• So demand for y doesn't change, demand for x decreases by $\frac{P_y}{P_x^2}$

Decomposing a price change into income and substitution effect

- Given a fall in the price of x₁ from p₁ to p₁':
- Equilibrium moves from A to B
- We can de-compose the move into two parts:
 - Rotate the budget constraint around existing indifference curve
 - From A to A'
 - The substitution effect
 - With DMRS the substitution effect is always negative
 - Shift the budget constraint to the new budget constraint
 - from A' to B
 - The income effect

Example: Quasi-linear utility function

- Decrease in the price of *x*
- We have:

$$x^* = \frac{P_y}{P_x} \qquad \qquad y^* = \frac{I}{P_y} - 1$$

- Rotation around U_1 from A to A'
 - Demand for x increases from x_0 to x_1
 - Substitution effect
- Shift to the new budget constraint
 - Demand for x doesn't change!
 - There is no income effect for \boldsymbol{x} with this utility function

Hicksian and Compensated demand curves

- Suppose that the price of good x doubles. What happens to equilibrium consumption?
- What can we say about goods x and y? Is x normal or inferior? Are they complements or substitutes?

Hicksian and Compensated demand curves

Now with x an inferior good

Tutorial - ECON 3014 Managerial Microeconomics

Hicksian and Compensated demand curves

- In the case of the quasi-linear utility function, we have:
- $x^c(P_x, P_y, \overline{U}) = x(P_x, P_y, I)$
- $y^c(P_x, P_y, \overline{U}) =$
- $y(P_x, P_y, I) =$

• Consider the utility function:

$$U(x,y) = (x - x_0)^{\alpha} y^{(1-\alpha)}$$

- In this function, x_0 represents the consumption of good x that a person needs to stay alive
- Note that when $x = x_0$, U = 0
- Let $z = x x_0$
- Then $U(z,y) = z^{\alpha}y^{(1-\alpha)}$
- $I = P_x x + P_y y = P_x (z + x_0) + P_y y$
- $I P_x x_0 = P_x z + P_y y$
- $\bullet \quad \frac{dy}{dz} = -\frac{P_{\chi}}{P_{y}}$

• We have:

$$U(z,y)=z^{\alpha}y^{(1-\alpha)}$$

- $\frac{\partial U}{\partial z} =$
- $\frac{\partial U}{\partial y} =$
- MRS =

- We have $\frac{\partial MRS}{\partial z}$ =
- And so the utility function has DMRS with respect to z (and also with respect to x)

- To find the demand functions for x and y:
- MRS =

- *y* =
- Substitute into the budget constraint:
- $I P_x x_0 = P_x z + P_y y$

To give
$$x^* = \alpha \frac{I}{P_x} + (1 - \alpha)x_0$$

Note that x is a normal good (so we do have an income effect)

- To find the demand function for *y*:
- MRS =
- *y* =

• And so we have (uncompensated) demand functions for x and y

•
$$x^* = \alpha \frac{I}{P_x} + (1 - \alpha)x_0 y$$

•
$$y^* = \frac{(1-\alpha)}{P_{\mathcal{V}}} [I - P_{\mathcal{X}} x_0]$$

• Note that for $x_0 = 0$, these are Cobb-Douglas demand functions

- Exercise:
- Suppose we have:

$$U(x,y) = (x - x_0)^{\alpha} y^{(1-\alpha)}$$

- $\alpha = 0.25$, $x_0 = 2$, I = 10, $P_x = 1$, $P_y = 2$
- Questions:
- 1) Find the equilibrium consumption of x and y and the utility number generated by this consumption
- 2) Find the change in demand for x if its price rises to $P_x=2$
- 3) Find the compensated demand curves for x and y
- 4) Check that in equilibrium, compensated and uncompensated demand for the two goods are equal
- 5) Decompose the total change in demand for x into a substitution effect and an income effect

1) Find the equilibrium consumption of x and y, and the utility number generated by this consumption

•
$$\alpha = 0.25$$
, $x_0 = 2$, $I = 10$, $P_x = 1$, $P_y = 2$

•
$$x^* = \alpha \frac{I}{P_x} + (1 - \alpha)x_0 y$$

•
$$y^* = \frac{(1-\alpha)}{P_y} [I - P_x x_0]$$

•
$$U(x,y) = (x - x_0)^{\alpha} y^{(1-\alpha)}$$

- 2) Find the change in demand for x if its price rises to $P_x=2$
- $\alpha = 0.25$, $x_0 = 2$, I = 10, $P_x = 1$, $P_y = 2$
- $x^* = \alpha \frac{I}{P_x} + (1 \alpha)x_0 y$
- $\frac{\partial x^*}{\partial P_x} =$
- Then change in demand for x =

• So demand for x falls by 1.25

- 3) Find the compensated demand curves for \boldsymbol{x} and \boldsymbol{y}
- MRS = $\frac{P_x}{P_y}$

• To give $y_c^* = \left(\frac{P_x}{P_y}\right)^{\alpha} \left(\frac{1-\alpha}{\alpha}\right)^{\alpha} \overline{U}$

- 3) Find the compensated demand curves for x and y
- MRS = $\frac{P_x}{P_y}$

• To give
$$x_c^* = x_0 + \left(\frac{P_y}{P_x}\right)^{1-\alpha} \left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \overline{U}$$

- 4) Check that in equilibrium, compensated and uncompensated demand for the two goods are equal
- We have:
- $\alpha = 0.25$, $x_0 = 2$, I = 10, $P_x = 1$, $P_y = 2$, $\overline{U} = 2.71$, $x^* = 4$, $y^* = 3$
- $x_c^* = x_0 + \left(\frac{P_y}{P_x}\right)^{1-\alpha} \left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \overline{U}$

- 4) Check that in equilibrium, compensated and uncompensated demand for the two goods are equal
- We have:
- $\alpha = 0.25$, $x_0 = 2$, I = 10, $P_x = 1$, $P_y = 2$, $\overline{U} = 2.71$, $x^* = 4$, $y^* = 3$
- $y_c^* = \left(\frac{P_x}{P_y}\right)^{\alpha} \left(\frac{1-\alpha}{\alpha}\right)^{\alpha} \overline{U}$

5) Decompose the total change in demand for x into a substitution effect and an income effect We have:

•
$$x_c^* = x_0 + \left(\frac{P_y}{P_x}\right)^{1-\alpha} \left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \overline{U}$$

•
$$\frac{\partial x_c^*}{\partial P_x} = (-)(1-\alpha)\left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha}\left(\frac{P_y}{P_x}\right)^{-\alpha}P_yP_x^{-2}\overline{U}$$

• =
$$-(1-\alpha)\left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha}P_{y}^{1-\alpha}P_{x}^{\alpha-2}\overline{U}$$

• Then change in x_c^* is:

- 5) Decompose the total change in demand for x into a substitution effect and an income effect We have:
- $\alpha = 0.25$, $x_0 = 2$, I = 10, $P_x = 1$, $P_y = 2$, $\overline{U} = 2.71$, $x^* = 4$, $y^* = 3$

- Change in x_c^* is
- This is the substitution effect

- 5) Decompose the total change in demand for x into a substitution effect and an income effect We have:
- Total effect of price change on demand for x = substitution effect + income effect
- In our case:

Therefore the income effect is

• Summary:

•
$$x^* = \alpha \frac{I}{P_x} + (1 - \alpha)x_0$$
 • $x_c^* = x_0 + \left(\frac{P_y}{P_x}\right)^{1 - \alpha} \left(\frac{\alpha}{1 - \alpha}\right)^{1 - \alpha} \overline{U}$

•
$$y^* = \frac{(1-\alpha)}{P_y}[I - P_x x_0]$$
 • $y_c^* = \left(\frac{P_x}{P_y}\right)^{\alpha} \left(\frac{1-\alpha}{\alpha}\right)^{\alpha} \overline{U}$

- Total change in demand for x given price change = -1.25
- Substitution effect = -0.81
- Income effect = -0.44
- x is a normal good
- When the price of x rises, demand for y falls
- Uncompensated demand for x does not depend on the price of y