Home Work: Simplex Method / Big-M Method / Two Phase Simplex Method

Prof. M.P. Biswal

Department of Mathematics

IIT- Kharagpur E-Mail: mpbiswal@maths.iitkgp.ac.in

January 18, 2022

Numerical Example -TPS1: Two different LPP are considered

$$LPP - 1 : \max : Z = x_1 + 3x_2 + x_3$$

$$LPP - 2 : min : Z = 3x_1 + x_2 + x_3$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Two- Phase Simplex Method: LPP-1:

Numerical Example -TPS1: Condensed Tableau

$$\max : Z = x_1 + 3x_2 + x_3$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Numerical Example -TPS1:

First Phase Objective Function:

$$\min: f1 = a_1 + a_2 = \sum \text{ orbitish variables}$$

$$\max: -f1 = -a_1 - a_2$$

Second Phase Objective Function:

$$\max: Z = x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 10$$
 condition for $x_1 + 4x_2 + x_3 + a_2 = 16$ condition for $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$a_1, a_2 \geq 0$$

First Phase Objective Function:

$$\min: f1 = a_1 + a_2$$

$$\max: -f1 = -a_1 - a_2$$

SIMP	CN	0	0	0	b
СВ	BV/NV	x ₁	<i>x</i> ₂	<i>x</i> ₃	XB
-1	a 1	1	1	1	10
-1	a ₂	1	* 4	1	16
*	*	_2	_ 5	-2	-26

Table 0:

First Phase Objective Function:

Table 1:

Table 1	•				
SIMP	CN	0	-1	0	b
СВ	BV/NV	<i>x</i> ₁	a ₂	<i>x</i> ₃	XB
-1	a ₁	*3/4	-1/4	- 3/4	6
0	x ₂	1/4	1/4	1/4	4
*	*	-3/4	5/4	- 3/4	-6
	I	J 5/7	J - 7	J 3/7	ı o

First Phase Objective Function: Table 2:

SIMP	CN	-1	-1	0	b
СВ	BV/NV	a ₁	a ₂	<i>x</i> ₃	XB
0	<i>x</i> ₁	4/3	-1/3	1	8
0	x ₂	-1/3	1/3	0	2
*	*	1	1	0	0

Optimal Solution:

Optimal Solution:
$$a_1 = 0, a_2 = 0, x_1^* = 8, x_2^* = 2, x_3^* = 0, -f1^* = 0,$$
Final Table of Phase-I

Which is sufficient to the sum of th

First Table of Phase-II **Second Phase Objective Function:**

$$\max : Z = x_1 + 3x_2 + x_3$$

Table 3:					7	other columns same as
Table 5.						the previous table
SIMP	CN	0	0	0	b	I want in the ward
СВ	BV/NV	a 1	a ₂	<i>x</i> ₃	XB	* coefficients up deted according to the
0	<i>x</i> ₁	0	0	1	8	according to the
0	<i>x</i> ₂	0	0	0	2	The all all the last
*	*	0	0	0	0	1 A LUICE ADIN COCCO
		<u> </u>	<u> </u>	'		hum product method
		704	65 lot	l		and nothed
	a	الملك	cial	varia	ble	wnn
	U	and,				8 / 38

Final Table of Phase-II Second Phase Objective Function:

$$\max : Z = x_1 + 3x_2 + x_3$$

Table 4:

SIMP	CN	0	0	1	b
СВ	BV/NV	a ₁	a ₂	<i>x</i> ₃	XB
1	<i>x</i> ₁	0	0	1	8
3	<i>x</i> ₂	0	0	0	2
*	*	0	0	0	14

Optimal Solution:

presence of atternate optimal solution

$$x_1^* = 8, x_2^* = 2, x_3^* = 0, Z^* = 14,$$

Final Table of Phase-II Second Phase Objective Function:

$$\max : Z = x_1 + 3x_2 + x_3$$

Table 5:

SIMP	CN	0	0	1	b
СВ	BV/NV	a 1	a ₂	<i>x</i> ₁	XB
1	<i>x</i> ₃	0	0	1	8
3	<i>x</i> ₂	0	0	0	2
*	*	0	0	0	14

71 number of solutions indicate the enist

Alternate Optimal Solution:

$$x_1^* = 0, x_2^* = 2, x_3^* = 8, Z^* = 14,$$

& solutions

Two Phase Simplex Mehod: LPP-2

Numerical Example -TPS1:

First Phase Objective Function:

$$\min: f1 = a_1 + a_2$$

$$\max: -f1 = -a_1 - a_2$$

Second Phase Objective Function:

$$\min: Z = 3x_1 + x_2 + x_3$$

$$\max : -Z = -3x_1 - x_2 - x_3$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 10$$

$$x_1 + 4x_2 + x_3 + a_2 = 16$$

$$x_1,x_2,x_3\geq 0$$

Artificial variables:

$$a_1, a_2 \geq 0$$

First Phase Objective Function:

$$\min: f1 = a_1 + a_2$$

$$\max : -f1 = -a_1 - a_2$$

	SIMP	CN	U	U	U	D
	СВ	BV/NV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	XB
le 0:	-1	a 1	1	1	1	10
	-1	a ₂	1	* 4	1	16

Table 0:

First Phase Objective Function:

Table 1:

SIMP	CN	0	-1	0	b
СВ	BV/NV	<i>x</i> ₁	a ₂	<i>x</i> ₃	XB
-1	a ₁	*3/4	-1/4	- 3/4	6
0	<i>x</i> ₂	1/4	1/4	1/4	4
*	*	-3/4	5/4	- 3/4	-6

First Phase Objective Function:

Table	2
-------	---

SIMP	CN	-1	-1	0	b
СВ	BV/NV	a ₁	a ₂	<i>x</i> ₃	XB
0	<i>x</i> ₁	4/3	-1/3	1	8
0	<i>x</i> ₂	-1/3	1/3	0	2
*	*	1	1	0	0

Optimal Solution:

$$a_1 = 0, a_2 = 0, x_1^* = 8, x_2^* = 2, x_3^* = 0, -f1^* = 0, f1^* = 0,$$

Final Table of Phase-I

First Table of Phase-II Second Phase Objective Function:

$$\max : -Z = -3x_1 - x_2 - x_3$$

Table 3:

SIMP	CN	0	0	0	b
СВ	BV/NV	a 1	a ₂	<i>X</i> 3	XB
0	<i>x</i> ₁	0	0	1	8
0	<i>x</i> ₂	0	0	0	2
*	*	0	0	0	0

Final Table of Phase-II Second Phase Objective Function:

$$\max : -Z = -3x_1 - x_2 - x_3$$

Table 4:

SIMP	CN	0	0	-1	b
СВ	BV/NV	a 1	a ₂	<i>x</i> ₃	XB
-3	<i>x</i> ₁	0	0	1	8
-1	<i>x</i> ₂	0	0	0	2
*	*	0	0	-2	-26

Final Table of Phase-II **Second Phase Objective Function:**

Phase-II
Objective Function: x zeros in the last you x at you d v ables do not imply putting do not imply putting

$$\max: -Z = -3x_1 - x_2 - x_3$$
 by alterna

Table 4:

SIMP	CN	0	0	-3	b
СВ	BV/NV	a ₁	a ₂	<i>x</i> ₁	XB
-1	<i>x</i> ₃	0	0	1	8
-1	x ₂	0	0	0	2
*	*	0	0	2	-10

Optimal Solution :

even from drumery

zers are too to raisbles.

the correspond sociables.

-10. 7*

 $x_1^* = 0, x_2^* = 2, x_3^* = 8, -Z^* = -10, Z^* = 10,$

Numerical Example -1

$$\max: Z = x_1 + 4x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 \le 16$$

 $x_1 + x_2 + 2x_3 \le 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example 2

$$\max: Z = 4x_1 + 4x_2 + x_3$$

$$x_1 + 6x_2 + x_3 \le 40$$

 $6x_1 + x_2 + x_3 \le 30$
 $x_1 + x_2 + 3x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example 3

$$\max: Z = 8x_1 + 2x_2 + 8x_3$$

$$4x_1 + x_2 + x_3 \le 40$$

 $x_1 + 5x_2 + x_3 \le 15$
 $x_1 + x_2 + 4x_3 \le 25$
 $x_1, x_2, x_3 > 0$

Numerical Example 4

$$\max: Z = x_1 + 4x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 \le 16$$

 $x_1 + x_2 + 2x_3 \le 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example -TPS-5

$$\max: Z = 6x_1 + 6x_2 + x_3$$

$$4x_1 + 2x_2 + x_3 = 26$$

$$2x_1 + 4x_2 + x_3 = 22$$

$$x_1 + x_2 + x_3 \le 12$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-6

$$\max: Z = 10x_1 + 10x_2 + 2x_3$$

$$6x_1 + 2x_2 + x_3 = 58$$

$$2x_1 + 6x_2 + x_3 = 46$$

$$x_1 + x_2 + x_3 \le 19$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-7

$$\max: Z = 6x_1 + 6x_2 + x_3$$

$$8x_1 + 2x_2 + x_3 = 58$$

$$2x_1 + 8x_2 + x_3 = 52$$

$$2x_1 + 2x_2 + x_3 \le 28$$

$$x_1, x_2, x_3 \ge 0$$

Numerical Example -TPS-8

$$\max: Z = 8x_1 + 8x_2 + x_3$$

$$6x_1 + 4x_2 + x_3 = 76$$

$$4x_1 + 6x_2 + x_3 = 74$$

$$4x_1 + 4x_2 + x_3 \le 62$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-9

$$\max: Z = 7x_1 + 7x_2 + 2x_3$$

$$4x_1 + 2x_2 + x_3 = 26$$

$$2x_1 + 4x_2 + x_3 = 22$$

$$x_1 + x_2 + x_3 \le 10$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-10

$$\max: Z = x_1 + 4x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 = 16$$

 $x_1 + x_2 + 2x_3 = 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

Numerical Example -TPS-11

$$\max: Z = 4x_1 + 4x_2 + x_3$$

$$x_1 + 6x_2 + x_3 = 40$$

 $6x_1 + x_2 + x_3 = 30$
 $x_1 + x_2 + 3x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

Numerical Example -TPS-12

$$\max: Z = 8x_1 + 2x_2 + 8x_3$$

Subject to

$$4x_1 + x_2 + x_3 = 40$$
$$x_1 + 5x_2 + x_3 \le 15$$
$$x_1 + x_2 + 4x_3 = 25$$

 $x_1, x_2, x_3 > 0$

Numerical Example -TPS-13

$$\max: Z = x_1 + 4x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 = 16$$

 $x_1 + x_2 + 2x_3 = 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example -TPS-14

$$\max: Z = 6x_1 + 6x_2 + x_3$$

$$4x_1 + 2x_2 + x_3 = 26$$

$$2x_1 + 4x_2 + x_3 = 22$$

$$x_1 + x_2 + x_3 \le 12$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-15

$$\max: Z = 10x_1 + 10x_2 + 2x_3$$

$$6x_1 + 2x_2 + x_3 = 58$$

$$2x_1 + 6x_2 + x_3 = 46$$

$$x_1 + x_2 + x_3 \le 19$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-16

$$\min: Z = 6x_1 + 6x_2 + x_3$$

$$8x_1 + 2x_2 + x_3 = 58$$
$$2x_1 + 8x_2 + x_3 = 52$$
$$2x_1 + 2x_2 + x_3 \le 28$$

$$\textit{x}_1,\textit{x}_2,\textit{x}_3 \geq 0$$

Numerical Example -TPS-17

$$\min: Z = 8x_1 + 8x_2 + x_3$$

$$6x_1 + 4x_2 + x_3 = 76$$

$$4x_1 + 6x_2 + x_3 = 74$$

$$4x_1 + 4x_2 + x_3 \le 62$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-18

$$\min: Z = 7x_1 + 7x_2 + 2x_3$$

$$4x_1 + 2x_2 + x_3 = 26$$

$$2x_1 + 4x_2 + x_3 = 22$$

$$x_1 + x_2 + x_3 \le 10$$

$$x_1, x_2, x_3 > 0$$

Numerical Example -TPS-19

$$\min: Z = x_1 + 4x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 = 16$$

 $x_1 + x_2 + 2x_3 = 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example -TPS-20

$$\min: Z = 4x_1 + 4x_2 + x_3$$

$$x_1 + 6x_2 + x_3 = 40$$

 $6x_1 + x_2 + x_3 = 30$
 $x_1 + x_2 + 3x_3 \le 12$
 $x_1, x_2, x_3 > 0$

Numerical Example -TPS-21

$$\min: Z = 8x_1 + 2x_2 + 8x_3$$

$$4x_1 + x_2 + x_3 = 40$$

$$x_1 + 5x_2 + x_3 \leq 15$$

$$x_1 + x_2 + 4x_3 = 25$$

$$\textit{x}_1,\textit{x}_2,\textit{x}_3 \geq 0$$