TD 1: Interpolation polynomiale

Exercice 1: Identification

Parmi les polynômes suivants, lequel est le polynôme de Lagrange d'interpolation P aux points (-2,4), (0,0), (1,0) et (2,4).

1.
$$P_1(X) = X^4 - \frac{2}{3}X^3 - 3X^2 + \frac{8}{3}X$$

2. $P_2(X) = \frac{4}{3}X^2 - \frac{4}{3}$
3. $P_3(X) = \frac{1}{3}X^3 + X^2 - \frac{4}{3}X$

2.
$$P_2(X) = \frac{4}{2}X^2 - \frac{4}{2}$$

3.
$$P_3(X) = \frac{9}{3}X^3 + X^2 - \frac{4}{3}X$$

Exercice 2 : Polynômes de Lagrange

Soit $x_0, x_1, ..., x_n, n+1$ points distincts.

- a. Soit $(L_i)_{i=0,1...,n}$, n+1 fonctions de \mathcal{P}_n vérifiant $L_i(X_j=\delta_{ij})$. Montrer que $(L_i)_{i=0,1...,n}$ est une base de \mathcal{P}_n (ensemble des polynômes de degré inférieur ou égal à n). Construire cette base.
- b. Soit $p_n \in \mathcal{P}_n$ vérifiant : $p_n(x_i) = f(x_i) \forall i = 0, ..., n$, Décomposer p_n sur la base des $(L_i)_{i=0,1...,n}$. Un tel p_n est-il unique?
- c. Soit la fonction f définie sur l'intervalle $[0, 2\pi]$ par $f: x \to \cos(x)$. Déterminer le polynôme de degré 3 qui approxime cette fonction selon la méthode de Lagrange associés aux réels distincts : $x_0 = \frac{\pi}{2}$, $x_1 = \pi$, $x_2 = \frac{3\pi}{2}$ et $x_3 = 2\pi$.

Exercice 3: points de Chebyshev

Déterminer la liste des points d'interpolation de Chebyshev $x_0, x_1, ..., x_n$ sur l'intervalle [-3,1] avec n=5. Rappeler l'intérêt de sélectionner un nombre pair de points d'interpolation.

Exercice 4 : polynômes de Legendre

Soit le polynôme $P_n(x)$ défini sur [-1,1] par :

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n \tag{1}$$

- 1. Calculer $P_n(1)$ et $P_n(-1)$
- 2. Montrer que $P_n(x)$ possède n racines simples dans]-1;1[
- 3. Les polynômes de Legendre sont solutions des équations de Legendre : $[(1-x^2)u'_n]' + n(n+1)u = 0$ avec n, le degré du polynôme u_n . Montrer que P_n est orthogonal à tout polynôme P_m avec $m \neq n$
- 4. Quelle est la valeur de la fonction poids dans le cas des polynômes de Legendre?
- 5. Calculer la valeur de $||P_n(x)||^2$

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{3x^2 - 1}{2},$$

$$P_3(x) = \frac{5x^3 - 3x}{2}, P_4(x) = \frac{35x^4 - 30x^2 + 3}{8}, P_5(x) = \frac{63x^5 - 70x^3 + 15x}{8}$$