EN. 601.454/654 Augmented Reality
Assignment 3
J
Name: Yuliang Liao
JHED: Yxiao39
Date: 09/29/2022

1. Camera Distortion

1.1 What is the goal of undistortion? Why should we undistort an image before processing it? (1 point)

The goal of undistortion is to achieve an overal one-to-one mapping (linear image) Because the image processing is a linear transformation and a distorted image will have errors when applying image processing without undistortion

1.2 Given $f(r) = 1 + 0.057r^2 + 0.00014r^4$, compute and sketch the undistorted image of Fig. 1. (2 points)

According to Fig. 1, the distation center $C = \begin{bmatrix} c_x \\ c_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

For point \$ = [-0.913, 0.9129] T

~= |(-0.9129, 0.9129)) | = 1.29/

$$f(r) = 1 + 0.057 r^{2} + 0.00019 r^{4} = 1.095$$

$$\vec{p}_{1} cound = f(r) \vec{p}_{1} = 1.095 \cdot \begin{bmatrix} -0.9129 \\ 0.9129 \end{bmatrix} = \begin{bmatrix} -0.9196 \\ 0.9196 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

For point 12= [0,0.9509]T

$$f(r) = 1 + 0.057 r^2 + 0.000147^4 = 1.052$$

$$\vec{p}_{cound} = f(r) \vec{p}_{2} = 1.052 \cdot \begin{bmatrix} 0 \\ 0.9509 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

For point 13 = [0.917, 0.9129]

$$f(r) = 1 + 0.057 r^2 + 0.00019 r^2 = 1.095$$

$$\vec{\beta}_{content} = f(r) \vec{\beta}_{3} = 1.095 \cdot \begin{bmatrix} 0.9129 \\ 0.9129 \end{bmatrix} = \begin{bmatrix} 0.9996 \\ 0.9996 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0.9996 \end{bmatrix}$$

For point
$$\vec{R}_1 = [-0.9509]$$
, 0] $\vec{r} = [-0.950]$

$$f(r) = [+0.05]^{r} + 0.00019r^{r} = [-0.52]$$

$$\vec{R}_{cound} = f(r) \vec{R}_{1} = [-0.952] - 0.950]$$

For point $\vec{R}_{2} = [-0.959]$, 0] $\vec{r} = 0.950$

$$f(r) = [+0.05]^{r} + 0.00019r^{r} = [-0.052]$$

$$\vec{R}_{cound} = f(r) \vec{R}_{2} = [-0.9137.0.912]^{T}$$

$$r = [(-0.9137.0.912]^{T}]$$

$$r = [(-0.9137.0.912]^{T}]$$

$$\vec{R}_{cound} = f(r) \vec{R}_{3} = [-0.915] = [-0.915]$$

$$\vec{R}_{cound} = f(r) \vec{R}_{3} = [-0.915] = [-0.915]$$
For point $\vec{R}_{1} = [-0.93509]^{T}$

$$r = [(-0.93509]^{T}]$$

$$r = [(-0.93509]^{T}]$$

$$r = [(-0.93509]^{T}]$$

$$r = [(-0.93509]^{T}]$$
For point $\vec{R}_{1} = [-0.93509]^{T}$

$$r = [(-0.93509]^{T}]$$

$$r = [-0.93509]^{T}$$

$$r =$$

	distortion? Why or why not? (2 points)
	equation I doesn't work for modeling the distortion. Because in the
isheye	. comera, there's existing tangential distortion. But in Eq.(, it doe
ontaiv	the expression for correcting tangential distortion
1 /	(UG Optional) Typically, we use $f(r) = 1 + k_1 r^2 + k_2 r^4 + k_3 r^6$ to model the radial
1.4	distortion. Note that only even power terms are used in the polynomial. Why do we not use the odd order terms? (1 point)
	A. C. 70 Wishing and A. C. 70 Wishing
	As for as I'm thinking, because the function domain v is [0, max) and
	As far as I'm thinking, because the function domain v is [0, vimax) and is always positive, there's no need to use odd term
	As for as I'm thinking, because the function domain v is [0, vmax) and is always positive, there's no need to use odd term
	As for as I'm thinking, because the function domain v is [0, max) and is always positive, there's no need to use odd term
	As for as I'm thinking, because the function domain v is [0, max) and is always positive, there's no need to use odd term.
	As for as I'm thinking, because the function domain v is [0, max) and is always positive, there's no need to use odd term.
	As four as I'm thinking, because the function domain v is [0, vmax) and is always positive, there's no need to use add term
	As far as I'm thinking, because the function domain v is [0, vmax) and is always positive, there's no need to use add term
	As far as I'm thinking, because the function domain v is [0, vmax) and is always positive, there's no need to use odd term
	As for as I'm thinking, because the function domain v is [0, vinax] and is always positive, there's no need to use odd term
	As far as I'm thinking, because the function domain v is [0, vmax) and is always positive, there's no need to use odd term.
	As four as I'm thinking, because the fametion domain v is [0, vmax) and is always positive, there's no need to use odd term
	As far as I'm thinking, because the faution domain r is [0, rmax) and is always positive, there's no need to use odd term