Smart-shoes for Physiotherapy Diagnostics

Electronic Design Lab, 2018

Faculty Mentor: Prof. Siddharth Tallur

Teaching Assistants: Dheeraj Kotagiri, Rahul Kumar

Group: DD08

Rohan Pathak 15D070006 Mohak Sahu 15D0700047 Suyash Bagad 15D070007

Motivation

Several foot and palm disorders affecting people with intellectual disabilities and have an impact on their ability to mobilise.

Initial diagnosis of such disabilities involves the foot-palm pressure-map analysis

Available Technology: Tekscan's pressure mapping Mat

Cost: \$1700 to \$2000, approximately ₹1,15,000 to ₹1,36,000

User experience: Constrained mobility

The need of a real-time, portable and wireless, low-cost, low-power and easy-to-use device to map plantar pressure for convenient diagnosis by doctors inspired us to take up this project.

Foot Reflexology Chart

Reference: "Revisiting reflexology: Concept, evidence, current practice, and practitioner training"
Authors: Nurul Haswani, Embong, Yee Chang Soh, Long Chiau Ming and Tin Wui Wongc
Journal of Traditional and Complementary Medicine

Block Diagram

Sensors

Signal Conditioning

Transmission Block

Receiver host Computer

Schematic Diagram of Signal Conditioning

R1,R2,R3,R4,R5 are appropriate similar resistors.

Calibration of Sensors

 We used dead weights for calibrating the sensor in steps of 450 grams, from 0 to 8 kgs, followed by unloading.

Calibration Setup

Plot of the log(Resistance) VS log(pressure) values

Hardware involved

361,119 464,132 273,167 455,262 257,306 431,426 289,500 437,574 378,693

BONES OF FOOT

Initial Approach -Using Matlab for generating Pressure Map

Successfully generated a 2D contour as well as a 3D plot from given data

Drawbacks

- It requires around 30 sec to generate the shown two plots
- We cannot therefore implement a real time system
- To read the values from bluetooth we would need to save the data in a file and then read it from the matlab. Hence, inconvenient.

Alternative Solution-Using Python for generating Pressure Map

- We implemented the same in Python which takes around 2 to 3 sec to generate the Pressure Map
- Since the map is calculated so rapidly, we can implement a real time system which updates itself after approximately every 3 sec

Further Advantages-

- The values from the microprocessor are sent serially to the host PC using Bluetooth module HC05.
- The data is directly read in Python using Pyserial Module
- So in the same file we can read the data and directly plot the pressure map

400 -

300 -

200 -

100 -

0 -

50

100

150

200

Claw toe

Thickening of big toe

Hammer toe

Flat foot

Fabrication Process

Goals for the Demo

Assured Claims:

- Make a person of weight less than 50 kg stand on the sensor
- Then the pressure sensor values will be processed and sent through the ADC to the host PC via Bluetooth
- Plot the steady state pressure map of the foot

Additional objectives which we will try to attain:

 Implement a real time system which will update the pressure map approximately every 3 seconds via the bluetooth module

