

Data sheet acquired from Harris Semiconductor

September 1997 - Revised May 2000

High Speed CMOS Logic Dual 4-Stage Binary Counter

Features

- Fully Static Operation
- Buffered Inputs
- Common Reset
- Negative-Edge Clocking
- Typical $f_{MAX} = 60$ MHz at $V_{CC} = 5V$, $C_L = 15pF$, $T_{\Delta} = 25^{\circ}C$
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, I $_I \leq 1 \mu \text{A}$ at $\text{V}_{\mbox{OL}}, \, \text{V}_{\mbox{OH}}$

Description

The 'HC393 and 'HCT393 are 4-stage ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each clock pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC393F3A	-55 to 125	14 Ld CERDIP
CD74HC393E	-55 to 125	14 Ld PDIP
CD74HC393M	-55 to 125	14 Ld SOIC
CD54HCT393F	-55 to 125	14 Ld CERDIP
CD54HCT393F3A	-55 to 125	14 Ld CERDIP
CD74HCT393E	-55 to 125	14 Ld PDIP
CD74HCT393M	-55 to 125	14 Ld SOIC

NOTES:

- 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
- Wafer or die for this part number is available which meets all electrical specifications. Please contact your local TI sales office or customer service for ordering information.

Pinout

CD54HC393, CD54HCT393 (CERDIP) CD74HC393, CD74HCT393 (PDIP, SOIC) TOP VIEW

Functional Diagram

TRUTH TABLE

		OUTI	PUTS	
CP COUNT	Q_0	Q ₁	Q ₂	Q_3
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	Н	L	L	Н
10	L	Н	L	Н
11	Н	Н	L	Н
12	L	L	Н	Н
13	Н	L	Н	Н
14	L	Н	Н	Н
15	Н	Н	Н	Н

CP COUNT	MR	OUTPUT
1	L	No Change
\downarrow	L	Count
Х	Н	LLLL

NOTE: H = High Voltage Level, L = Low Voltage Level, X = Don't Care, \uparrow = Transition from Low to High Level, \downarrow = Transition from High to Low.

Absolute Maximum Ratings

DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$ or I $_{GND}$... ± 50 mA

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (°C/W)
PDIP Package	90
SOIC Package	175
Maximum Junction Temperature	150 ^o C
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

			TEST CONDITIONS		25°C			-40°C 1	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
			6	4.2	-	-	4.2	-	4.2	-	V	
Low Level Input V _{IL} Voltage	=	-	2	-	-	0.5	-	0.5	-	0.5	V	
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output VOH Voltage CMOS Loads	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V	
		-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V	
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	7		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
112 20000			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	II	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μΑ

DC Electrical Specifications (Continued)

		TE: CONDI				25°C		-40°C 1	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES	-		-		-		-	-		-		
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	Voн	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lį	V _{CC} and GND	0	5.5	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	Δl _{CC}	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE: For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
nCP	0.4
nMR	1

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

Prerequisite for Switching Specifications

				25°C		-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES										
Maximum Clock Frequency	f _{MAX}	2	6	-	-	5	-	4	-	ns
		4.5	30	-	-	24	-	20	-	ns
		6	35	-	-	28	-	24	-	ns
Clock Pulse Width	t _W	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
Reset Recovery Time	t _{REC}	2	5	-	-	5	-	5	-	ns
		4.5	5	-	-	5	-	5	-	ns
		6	5	-	-	5	-	5	-	ns

Prerequisite for Switching Specifications (Continued)

			25°C			-40°C T	O 85°C	-55°C T		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Reset Pulse Width	t _W	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
HCT TYPES										
Maximum Clock Frequency	f _{MAX}	4.5	27	-	-	22	-	18	-	MHz
Clock Pulse Width	t _W	4.5	19	-	=	24	=	29	-	ns
Reset Recovery Time	t _{REC}	4.5	5	-	-	5	-	5	-	ns
Reset Pulse Width	t _W	4.5	16	i	ı	20	-	24	-	ns

Switching Specifications Input t_{r} , $t_{f} = 6 \text{ns}$

		TEST	v _{cc}		25°C		-40°C	го 85 ^о С	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(S)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES					-			-	-	-	
Propagation Delay Time (Figure 1)	t _{PLH,} t _{PHL}	C _L = 50pF	2	-	-	45	-	55	-	70	ns
Q _n to Q _n + 1			4.5	-	-	9	-	11	-	14	ns
		C _L =15pF	5	-	4	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	8	-	9	-	12	ns
nCP to nQ ₀	t _{PLH,}	C _L = 50pF	2	-	-	150	-	190	-	225	ns
	t _{PHL}		4.5	-	-	30	-	38	-	59	ns
		C _L =15pF	5	-	12	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	26	-	33	-	50	ns
nCP to nQ ₁	t _{PLH} ,	C _L = 50pF	2	-	-	190	-	245	-	295	ns
	tPHL		4.5	-	-	38	-	49	-	59	ns
			6	-	-	33	-	42	-	50	ns
nCP to nQ ₂	t _{PLH} ,	C _L = 50pF	2	-	-	240	-	300	-	360	ns
	tPHL		4.5	-	-	48	-	60	-	72	ns
			6	-	-	41	-	51	-	61	ns
nCP to nQ ₃	t _{PLH} ,	C _L = 50pF	2	-	-	285	-	355	-	430	ns
	tPHL		4.5		-	57	-	71	-	86	ns
			6	-	-	48	-	60	-	73	ns
MR to Q _n	t _{PLH,}	C _L = 50pF	2	-	-	135	-	170	-	205	ns
	tPHL		4.5	-	-	27	-	34	-	41	ns
		C _L =15pF	5	-	11	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	23	-	29	-	35	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
(Figure 1)			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	C _L =15pF	5	-	20	-	-	-	-	-	pF

Switching Specifications Input t_r , $t_f = 6ns$ (Continued)

		TEST	Vcc	25°C			-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES										_	
Propagation Delay Time (Figure 1)	t _{PLH,} t _{PHL}	C _L = 50pF	4.5	-	ı	12	-	15	-	18	ns
Q _n to Q _n + 1		C _L =15pF	5	-	4	-	-	-	-	-	ns
nCP to nQ ₀	t _{PLH,}	C _L = 50pF	4.5	-	-	32	-	40	-	48	ns
	t _{PHL}	C _L =15pF	5	-	13	-	-	-	-	-	ns
nCP to nQ ₁	t _{PLH,}	C _L = 50pF	4.5	-	-	44	-	55	-	66	ns
nCP to nQ ₂	t _{PLH,}	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
nCP to nQ ₃	t _{PLH,}	C _L = 50pF	4.5	-	-	62	-	78	-	93	ns
MR to Q _n	t _{PLH} ,	C _L = 50pF	4.5	-	-	32	-	40	-	48	ns
	^t PHL	C _L =15pF	5	-	13	-	-	-	-	-	ns
Output Transition	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	C _{IN}	C _L =15pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	C _L =15pF	5	-	21	-	-	-	-	-	pF

NOTES:

- 4. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per stage.
- 5. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated