1. gyakorlat

Téma:

Algoritmusok műveletigényének meghatározása, hatékonyság, hatékonyság jellemzése (aszimptotikus korlátok bevezetése). Az anyag úgy lett összeállítva, hogy akkor is elvégezhető, ha még nem volt előtte előadás.

Polinom helyettesítési értékének kiszámítása.

Adott egy n-ed fokú polinom, határozzuk meg egy adott x helyen felvett értékét:

$$a_n * x^n + a_{n-1} * x^{n-1} + \dots a_1 * x + a_0$$

(Tfh. nagyon sok polinomunk van, és nagyon sok helyen kell kiszámítani az értékét, ezért készítsünk minél hatékonyabb megoldást.)

A polinom együtthatóit egy nullától indexelt, n+1 méretű tömbben helyezzük el. (Megállapodás: ha a tömböt nem nullától indexeljük, a deklarációnál és a specifikációnál jelezzük, pl. A/1:T[n]. Most tehát Z:R[] ugyanaz, mint Z/0:R[].) A Z tömb mérete: Z.length (fontos, hogy: Z.length=n+1).

A megoldásoknál írjuk fel, hogy az egyes lépések hányszor hajtódnak végre. Vizsgáljuk meg a ciklusiterációk it(n), a szorzások S(n) és az összeadások $\ddot{O}(n)$ számát, a polinom fokszámának függvényében.

Feltehető, hogy n≥0, azaz Z.length>0

Első megoldás, az összegzés tételéből származik:

Polinom1(Z:R[]; x:R) :R

Hányszor fut le (Z.length=n+1)

$$S(n) = \frac{n * (n + 1)}{2} = \frac{n^2 + n}{2}$$

 $\ddot{O}(n) = n$ $it(n) = S(n)$

Második megoldás, x hatványait rekurzívan számoljuk a h változóban: xi=xi-1*x, ha i>0, x0=1

Rekurzív(Z:R[]; x:R) :R

Hányszor fut le (Z.length=n+1)

y:=Z[0]
 h:=1
 1

 i = 1 to Z.length-1

$$n+1$$

 h:=h*x
 n

 y:=y+h*Z[i]
 n

 return y
 1

$$S(n) = 2 * n$$

 $\ddot{O}(n) = n$
 $it(n) = n$

Harmadik megoldás, a Horner séma:

$$y=(...(a_n*x+a_{n-1})*x+a_{n-2})*x+...+a_1)*x+a_0$$

Horner(Z:R[]; x:R) :R

Hányszor fut le (Z.length=n+1)

y	1	
i= Z.I	n+1	
	y:=y*x+Z[i]	n
	1	
	•	

$$S(n) = n$$
 $it(n) = n$ $\ddot{O}(n) = n$

Jellemezzük a három megoldást a Θ aszimptotikus korlát segítségével. Itt is láthatjuk, és általánosságban is mondhatjuk, hogy it(n) a futási idő nagyságrendjét általában minden nemrekurzív program esetében megadja:

	Polinom1	Rekurzív	Horner
S(n)	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n)$
Ö(n)	Θ (<i>n</i>)	$\Theta(n)$	$\Theta(n)$
it(n)	$\Theta(n^2)$	$\Theta(n)$	Θ(<i>n</i>)

Buborék rendezés

Nézzük meg az összehasonlítások Öh(n) és cserék számát Cs(n). Cserék elemzésénél használjuk a mCs(n), MCs(n) ACs(n) (minimum, maximum, átlagos csereszám) jelöléseket. Átlagos csere számot nem kell pontosan kiszámolni, elég csak a "megérzés"-re támaszkodni.

A rendezés menete egy rövid példán:

Buborék példa:

0	1	2	3	4	Csere
3	5	2	4	1	0
3	5	2	4	1	1
3	2	5	→ 4	1	1
3	2	4	5 🔷	1	1
3	2	4	1	5	1. menet vége, 5 a helyén van
3	2	4	1	5	1
2	3	4	1	5	0
2	3	4 🔷	1	5	1
2	3	1	4	5	2. menet vége
2	3	1	4	5	0
2	3 🛑	→ 1	4	5	1
2	1	3	4	5	3. menet vége
2	1	3	4	5	1
1	2	3	4	5	4. menet vége, rendezett a tömb

Csere összesen: 7 Összehasonlítás összesen: 10 A rendezendő kulcsokat (és a hozzájuk tartozó adatokat) egy A nevű tömbben helyeztük el. A.length = n, a rendezendő kulcsok darabszáma.

Buborék(A:T[n]) i = n-1 downto 1 j=0 to i-1 A[j] > A[j+1] Csere(A[j],A[j+1]) skip

n+n-1+ ... +2

n-1+n-2+ ... +1

Hányszor fut le (A.length=n)

Cserék számát hogyan tudjuk meghatározni?

Cserék száma a rendezendő adatsorban található inverziók számával egyenlő. Lásd a példában 7 inverzió van: 3,2 3,1 5,2 5,4 5,1 2,1 4,1

Ebből adódik, hogy mCs(n)=0 (nincs inverzió, azaz növekvően rendezett a bemenet)

Az összehasonlítások száma $\ddot{O}(n)=\sum_{i=1}^{n-1}i=\frac{n^*(n-1)}{2}=\frac{n^2-n}{2}\in\Theta(n^2)$

MCs(n)= Ö(n) (minden összehasonlítást csere követ, azaz fordítottan rendezett a tömb)

 $ACs(n) = \frac{n*(n-1)}{4} = \Theta(n^2)$ Ezt nem kell pontosan levezetni, a lejjebb megadott linken megtalálható.

Vezessük be az Ω és O aszimptotikus korlátokat, és használjuk a csere számra: mCs(n)=0, MCs(n)=O(n²) azaz Cs(n)=O(n²)

Az átlagos futási idő kiszámítása részletesen megtalálható dr Fekete István jegyzetében: https://people.inf.elte.hu/fekete/algoritmusok jegyzet/01 fejezet Muveletigeny.pdf

A buborék rendezés javítási módszerei:

- figyelhetjük egy logikai változóval, hogy volt-e csere, ha nem volt akkor a külső ciklus álljon le,
- megjegyezhetjük az utolsó csere helyét: ha ez u és u+1 indexen történt, akkor u+1-től már a tömb rendezett, a külső ciklus változót u-ra lehet csökkenteni. Legkedvezőbb és legrosszabb esetek: mÖ(n)∈Θ(n), MÖ(n)∈Θ(n²).

 $\mathsf{mT}(\mathsf{n}) \in \Theta(\mathsf{n}), \ \mathsf{MT}(\mathsf{n}) \in \Theta(\mathsf{n}^2); \ \mathsf{azaz} \ \mathsf{mT}(\mathsf{n}), \mathsf{MT}(\mathsf{n}) \in \Omega(\mathsf{n}), \ \mathsf{mT}(\mathsf{n}), \mathsf{MT}(\mathsf{n}) \in O(\mathsf{n}^2)$

Javított buborék példa:

0	1	2	3	4	Csere
2	3	1	4	5	0
2	3	1	4	5	1 u=1
2	1	3	4	5	0
2	1	3	4	5	0
2	1	3	4	5	1. menet vége 3,4,5 rendezett
2 🛑	→ 1	3	4	5	1 u=0
1	2	3	4	5	kész

Csere összesen: 2 Összehasonlítás összesen: 5 Struktogramja, elemzés nélkül:

JavítottBuborék(A:T[n])

1. A maximum kiválasztásos rendezés

Hányszor fut le (A.length=n)

Mit mondhatunk a MaxKivRend rendezés összehasonlításainak számáról, csereszámáról, műveletigényéről?

mCs(n)∈Θ(n), MCs(n)∈Θ(n) (minden menet végén csere van!)
 mÖ(n)∈Θ(n²), MÖ(n)∈Θ(n²) (minden esetben minden összehasonlítást megcsinál)
 mT(n)∈Θ(n²), MT(n)∈Θ(n²)

Házi feladat (a kvízhez kell!): Milyen lehet a MinKivRend rendezés?