H3-2022: Extra Practice Question Set 2

- 1. A semiconductor sample is doped with donor impurity such that the thermal equilibrium electron concentration is 1.04×10^{13} cm⁻³. The intrinsic carrier concentration is $n_i = 5 \times 10^{12}$ cm⁻³ and the semiconductor has a bandgap energy of 0.8 eV. Assume that T = 300 K.
 - (a) What is the thermal equilibrium hole concentration?
 - (b) Determine the donor doping concentration.
 - (c) Calculate the position of the Fermi level E_F relative to the valance band edge E_{ν} and sketch the corresponding energy band diagram.
 - (d) Find the effective masses of electrons and holes in this semiconductor.

[Ans: (a)
$$2.404 \times 10^{12}$$
 cm⁻³, (b) 8×10^{12} cm⁻³, (c) 0.419 eV, (d) 1.0113 m_{θ}]

2. The Fermi level of a non-degenerate Si semiconductor at 300 K is 0.2 eV above the valance band edge, E_V . What doping type and concentration are needed to shift the Fermi level upwards by 0.7 eV? Assume that the semiconductor has $N_C = 2.8 \times 10^{19} \text{ cm}^{-3}$, $N_V = 1.04 \times 10^{19} \text{ cm}^{-3}$ and $E_g = 1.12 \text{ eV}$.

[Ans:
$$1.0337 \times 10^{16}$$
 cm⁻³]

- 3. A constant electric field of $\xi = 500$ V/cm exists in a *p*-type semiconductor sample at 310 K. The hole concentration at position x = 0 in the sample is 5.44×10^{11} cm⁻³. The electron and hole diffusion coefficients are 35 cm²/s and 15 cm²/s, respectively.
 - (a) Calculate the hole mobility in the semiconductor.
 - (b) Determine the hole concentration as a function of x in the semiconductor if a constant total hole current density of 2 mA/cm² flows through the sample. [Ans: (a) 561.7 cm² /V -s, (b) $p = 5 \times 10^{11} \exp(18750x) + 4.444 \times 10^{10} \text{ cm}^{-3}$]
- 4. The hole concentration in a p-type Ge semiconductor sample is

$$p = 10^{16} (x^2 + b^2)$$
 cm⁻³

where b = 1 µm and $0 \le x \le 20$ µm. The total hole current density is zero throughout the sample. Assume that the hole mobility is $\mu_p = 700$ cm²/V.s and T = 300 K.

- (a) Determine the electric field ξ as a function of x in the sample.
- (b) Calculate the hole drift and diffusion current densities at $x = 5 \mu m$.

[Ans: (a)
$$\frac{0.0517x}{(x^2+b^2)}$$
 V/cm, (b) $-28.95 \,\mu$ A/cm²]

5. Figure 1 shows the energy band diagram of a uniformly doped *n*-type semiconductor sample of length 20 μm . The doping concentration is $5\times10^{17}~\rm cm^{-3}$ and the electron and hole mobilities are $200~\rm cm^2/V\cdot s$ and $100~\rm cm^2/V\cdot s$, respectively.

Figure 1

- (a) What is the conduction mechanism (i.e. drift or diffusion) in the sample? Justify your answer.
- (b) Determine the magnitude and direction of the electric current at point X in the sample.

[Ans: (a) drift, (b) 11,200 A/cm²]

6. The energy band diagram of a wide bandgap semiconductor with $n_i = 250 \text{ cm}^{-3}$ is shown in Figure 2. The semiconductor is at a temperature of T = 350 K.

Figure 2

- (a) Is this a non-degenerate semiconductor? Explain your answer.
- (b) Determine the thermal equilibrium electron and hole concentrations.
- (c) What is the maximum wavelength of light that you can use to create excess electron-hole pairs in the semiconductor?

[Ans: (b)
$$1.8766 \times 10^{13}$$
 cm⁻³, 3.33×10^{-9} cm⁻³, (c) 617.4 nm]

7. The resistance of an intrinsic semiconductor increases by a factor of 10 when its temperature changes from 420 K to 350 K. What is the bandgap energy of the semiconductor? Assume that the bandgap energy, the carrier mobilities and the effective density of states do not vary with temperature.

[Ans: 0.833 eV]