LECTURE 5 & 6

KARNAUGH MAP (K – MAP)

EXAMPLE 4:

$$F(x, y, z) = \prod_{m} (0, 2, 5, 7) = \underbrace{(1, 3, 4, 6)}$$

$$\frac{1}{1} = \frac{1}{1}$$

$$F = F = (x+2)(x+2)$$

$$= (x+2)+(x+2)$$

$$= (x+2)+(x+2)$$

FOUR VARIABLE K - MAP

FOUR VARIABLE K - MAP

POS: - A+B ^{C+}	D C+D 0 0	C+D 0 1	C+D 1 1	C+D 1 0
AG 508 A+B00	A+B+C+D	A+B+C+Ū	A+B+Ĉ+D	A+B+C+D
	0	1	3	2
A+B 0 1	A+B+C+D	A+B+C+D	A+B+C+D	A+ B + C +D
	4	5	7	6
Ā+B 1 1	Ā+B+C+D	Ā+B+C+D	Ā+B+Ĉ+D	Ā+B+C+D
	12	13	15	14
Ā+B 1 0	Ā+B+C+D	Ā+B+C+D	Ā+B+Ĉ+D	Ā+B+C+D
	8	9	11	10

EXAMPLE I:

- Simplify the following expression into
 - · SOP & give NAND rediretion

F(A,B,C,D) =
$$\sum_{m}$$
 (1,5,6,7,8,9,10,14) = \sum_{m} (0,2,3,4,11,12,13,15)

ABO OO OI II IO SOP Group I'S

F= \overline{ACD} + \overline{ABC} + \overline{ACD} + \overline{ABC} \tag{F} = \overline{ABD} + \overline{BCD} + \overline{ABC} \tag{F} = \overline{ABD}

CONTINUED...

$$F(A,B,C,D) = \sum_{i} (1,5,6,7,8,9,10,14) = \bigwedge_{i} (0,2,3,4,11,12,13,15)$$

POS

EXAMPLE 2:

$$F(A, B, C, D) = \sum_{\text{NS}} (0,1,2,4,5,6,8,9,10,12,13)$$

EXAMPLE 3:

$$F(A,B,C,D) = \prod_{r} (0,2,3,4,8,9,10,14)$$

EXAMPLE 4:

$$F(A,B,C,D) = \overline{C(ABD+D)} + A\overline{BC} + \overline{D}$$

$$= \widehat{A}\overline{B}\overline{C}\overline{D} + \overline{C}D + \widehat{A}\overline{B}C + \overline{D}$$

EXAMPLE 5:

$$F(A,B,C,D) = D(\overline{A} + B) + \overline{B}(C + AD) = \underbrace{(1,2,3,5,7,7,10,11,13,15)}_{m}$$

$$= \underbrace{AD * BD + BC + ABD}$$

DON'T CARE CONDITION

• The "Don't Care" conditions indicate the input combinations which are invalid for a particular circuit. ϕ

• While forming groups of cells, we can consider a "Don't Care" cell as either I or 0 or we can simply ignore that cell.

• Therefore, "Don't Care" condition are used to form a larger group of cells.

0000

EXAMPLE 1:

$$F(A,B,C) = \sum_{m} (1,3,5,7) + \sum_{d} (0,2)^{d}$$

$$= \sqrt{(4,6)} + 77(0,2)$$

$$= \sqrt{(4,$$

EXAMPLE 2:

$$F(W,X,Y,Z) = \sum_{m} (1,3,7,11,15) + \sum_{d} (0,2,5) = \bigwedge_{m} (4,6,8,9,10) . \prod_{12,13,14} (0,2,5)$$

EXAMPLE 3:

$$F(W,X,Y,Z) = \prod_{M} (0,1,3,5,8,9,14) \prod_{D} (2,6,10) = \underbrace{\int_{0}^{4,7} (0,1,3,5,8,9,14)}_{M} = \underbrace{\int_{0}^{4,7} ($$

EXAMPLE 4:

$$F(W,X,Y,Z) = \sum_{m} (1,4,5,7,9,10,11) + D(14,15)$$

EXAMPLE 5:

Design a combinational circuit with 4- input lines that represents a decimal digit in BCD and 4- output lines that generates 2's complement of input digit.

EXAMPLE 6:

Design a combinational circuit to check for even parity of 4 bits. A logic 'I' output is required when the 4 bits constitute an even parity.

EXAMPLE 7:

Design a combinational circuit that multiplies by '5' an input decimal digit represented in BCD. The output is also in BCD.

