

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
<u> </u>	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	KOM IV
Popis sady vzdělávacích materiálů:	Konstrukční měření IV, 4. ročník.
Sada číslo:	J-06
Pořadové číslo vzdělávacího materiálu:	18
Označení vzdělávacího materiálu:	VY_52_INOVACE_J-06-18
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Měření průtoku 2
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Měření průtoku

Měřidla průřezová

Princip je v zaškrcení průtoku clonou, dýzou nebo Venturiho trubicí. Na tomto zaškrcení vzniká takzvaná místní ztráta, část kinetické energie se převede na tlakovou. Z rozdílu tlaku před a za škrcením určíme objemový průtok. Clona a dýza má malé rozměry ale velké ztráty, Venturiho trubice je sice rozměrově velká, ale ztráty jsou malé.

Měřidla plováková - rotametry

Ve skleněné kuželové trubici je umístěný plováček. Čím je větší průtok, tím výše plováček v trubici vystoupá.

Na následujícím obrázku je rotametr.

Průtokoměry založené na změně směru proudu

Měníme směr proudění pomocí kolena nebo smyčky. Z rozdílu tlaku na vnitřní a vnější straně oblouku určíme průtok. Tyto průtokoměry mají malé ztráty.

Na následujícím obrázku je smyčkový průtokoměr.

Přetržité měření

Tento princip měření je velmi jednoduchý. Měříme dobu, za kterou se naplní nádoba určitého objemu. $Q_v = \frac{V}{t}$.

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: *Technologická a strojnická měření*. Praha: SNTL, 1982. ISBN 04-214-82.