An Ensembling of Pagerank Accelerators

An inner-outer solver combined with robust matrix subsampling

Brock Hargreaves

CPSC 517 Sparse Matrix Computation

December 10th, 2013

(.

Illustration: Miniature web example

Goal: Based on their interactions, rank these web pages

Miniature web example: Adjacency Matrix

	Alpha	Beta	Gamma	Delta	Rho	Sigma
Alpha	0	0	0	1	0	1 \
Beta	1	0	0	0	0	0
Gamma	0	1	0	0	0	0
Delta	0	1	1	0	0	0
Rho	0	0	1	0	0	0
Sigma	\setminus 1	0	1	0	0	0 /

Let n_j be the out degree of the j'th column, the j'th column sum.

ロト 4個ト 4度ト 4度ト (度) 釣り(で)

The PageRank Formulation

Raw Pagerank of a page

$$x_i = \sum_{j o i} rac{x_j}{n_j}$$
; n_j is the out-degree of page j

Then the problem is to find a vector x that satisfies $x = \bar{P}x$ where

$$\bar{P}_{j,i} = \begin{cases} \frac{1}{n_i} : i \to j \\ 0 : i \not\to j \end{cases}$$

December 10th, 2013 4 / 13

Handling dangling nodes

Idea: Perturb pages with no outlinks

$$P = \bar{P} + ud^{T}$$
; $d_i = \begin{cases} 1 & \text{if } n_i = 0 \\ 0 & \text{otherwise} \end{cases}$

Further allow users to teleport anywhere in the graph (and gives us a nice stochastic matrix):

$$A = \alpha P + (1 - \alpha) \text{ ve}^T$$

Then we wish to find x such that

$$Ax = x$$

and apply solver.

5 / 13

December 10th, 2013

	Alpha	Beta	Gamma	Delta	Rho	Sigma
Alpha	.025	.025	.025	.875	.166	.875 \
Beta	.450	.025	.025	.025	.166	.025
Gamma	.025	.450	.025	.025	.166	.025
Delta	.025	.450	.308	.025	.166	.025
Rho	.025	.025	.308	.025	.166	.025
Sigma	.450	.025	.308	.025	.166	.025

Power method on Ax = x

$$x = [.321, .17, .106, .136, .064, .200]^T$$

December 10th, 2013

An Inner-Outer Iteration for Computing PageRank

D. Gleich ,A. Gray ,C. Greif and T. Lau 2010 [1]

Reformulate Ax = x as:

$$(I - \alpha P) x = (1 - \alpha) v$$

Note:

$$(I - \beta P)x = (1 - \beta)v$$

is easier to solve for $\beta < \alpha$ (Check eigenvalues)

December 10th, 2013

Inspired by this β business, consider the stationary iteration:

$$(I - \beta P)x_{k+1} = (\alpha - \beta)Px_k + (1 - \alpha)v$$

Idea: Fix the right hand side:

$$f = (\alpha - \beta)Px_k + (1 - \alpha)v$$

and solve(approximately) an easier subproblem:

$$(I - \beta P)y = f$$

via the inner iteration $y_{j+1} = \beta P y_j + f$. Then set $x_{k+1} = y$, update the right hand side and repeat.

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ めらで

December 10th, 2013 8 / 13

Fast Pagerank approximation by adaptive sampling

W. Liu, G. Li, J. Cheng [2] 2013

Idea: Sample the transition matrix P, while preserving the edge distribution of the input graph.

Algorithm 1 Non uniform sampling(A, α, θ) (A arbitrary)

- 1: Initialize: An empty priority queue, Q, Z=0, $s=\frac{N}{\alpha^2}$
- 2: **for** each $A_{i,j}$ **do**
- 3: Set $Z \leftarrow Z + A_{i,j}^2$
- 4: draw $r_{i,j}$ uniformly and independently from [0,1]
- 5: insert $A_{i,j}$ in Q with key $k_{i,j} = max\{\frac{sA_{i,j}^2}{r_{i,j}}, \frac{sA_{i,j}^2}{\theta^2 r_{i,j}^2}\}$
- 6: remove all elements with key smaller than Z
- 7: end for
- 8: Set \tilde{A} as the contents of Q

Sampling strategies

 Direct sampling: Sample the transition matrix and then apply inner-outer iterations

Adaptive sampling: At each outer iteration, adjust sampling rate and add more samples from transition matrix

Example: eu-2005

n = 862,664, nnz = 19,235,140

Applying only the sampling operator:

Naive first try MATLAB implementation : ≈ 21 days Mex compiled C++ priority queue : ≈ 20 minutes

Figure: nnz = 19,235,140

Figure: nnz = 9,617,228

In progress

- Quantize gains made (speed vs accuracy) using a combination of the inner-outer solver and the two sampling techniques described.
- Write an (even more) efficient implementation of sampling algorithm
- Investigation parameter choices for sampling (currently using author suggestions)

Prediction: Significant reduction in computation with comparable accuracy

References

David F. Gleich, Andrew P. Gray, Chen Greif, and Tracy Lau.

An inner-outer iteration for PageRank.

SIAM Journal of Scientific Computing, 32(1):349–371, February 2010.

Wenting Liu, Guangxia Li, and James Cheng.

Fast pagerank approximation by adaptive sampling.

Knowledge and Information Systems, pages 1–20, 2013.