Physics Notes wahoo

Leo Wang

Contents

Chapter 1	1D Killematics	rage 2
1.1	Coordinate System in 1D	2
1.2	Position Vector in 1D	2
1.3	Displacement Vector in 1D	2
1.4	Avg. Velocity in 1D	3
1.5	Instantaneous Velocity in 1D	3
Chapter 2	1D Kinematics - Acceleration	Page 4
2.1	Intro to Acceleration	4
2.2	Acceleration in 1D	4
Chapter 3	2D Kinematics	Page 5
3.1	Coordinate System and Position Vector in 2D	5
3.2	Instantaneous Velocity in 2D	5
3.3	Instantaneous Acceleration in 2D	6
3.4	Projectile Motion	6
Chapter 4	Name to a Caraca da Larra	Da 7
Chapter 4	Newtons First and Second Laws	Page 7

1D Kinematics

1.1 Coordinate System in 1D

Coords in 1D:

- Set origin
- Set axis
 - Set positive coordinate system
- Unit vector
 - You only need one because it only has one dimension

Every point in 1D space has a point $\hat{\mathbf{i}} \to \text{point } p_1$ has a vector $\hat{\mathbf{i}}_1$ and point p_2 has a vector $\hat{\mathbf{i}}_2$ and $\hat{\mathbf{i}}_1 = \hat{\mathbf{i}}_2 \to |\hat{\mathbf{i}}| = 1$

1.2 Position Vector in 1D

x(t) is the position function that changes according to time.

Position vector is $\vec{r}(t) = x(t)\hat{\mathbf{i}}$

x(t) is the component of the potition vector

x(t) changes sign depending on location $\to x(t) > 0$ when the object is positive of the origin, x(t) = 0 when the object is on the vector, and x(t) < 0 when the object is negative of the origin

Direction of the vector is determined by the sign of the component (x(t)) times the component (\hat{i})

1.3 Displacement Vector in 1D

The position after time Δt if the object has been moving at a constant velocity is $r(t + \Delta t) = x(t + \Delta t)\hat{i}$ Displacement vector for $[t, t + \Delta t]$ is

$$\Delta \vec{r} \equiv \vec{r}(t + \Delta t) - \vec{r}(t) = (x(t + \Delta t) - x(t))\hat{\mathbf{i}}$$
$$\Delta \vec{r} = \Delta x \hat{\mathbf{i}}$$

 Δx is the component of the displacement vector, where a $\Delta x > 0$ means a displacement in the positive x direction, a $\Delta x = 0$ meaning no net change in position, and a $\Delta x < 0$ meaning a change in position in the negative x direction

1.4 Avg. Velocity in 1D

Average velocity depends on the time interval Ex. for interval $[t, \Delta t]$:

$$\vec{v}_{avg} \equiv \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}$$

where $\frac{\Delta x}{\Delta t}$ is the component of velocity

1.5 Instantaneous Velocity in 1D

How do we find velocity at specific time t_1 ?

Consider avg. velocity over time interval $[t_1,t_{1+\Delta t}]\to \vec{v}_{avg}=$ slope of the line.

As we shrink Δt , we find the slope changes. If we consider $\lim_{x\to 0} \frac{\Delta x}{\Delta t}$, we will get to the slope of the tangent line at time t_1

Thus we have:

$$\vec{v}(t_1) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}$$
$$= \lim_{\Delta t \to 0} \left(\frac{x(t_1 + \Delta t) - x_1(t)}{\Delta t} \right) \hat{\mathbf{i}}$$

 $\vec{v}(t_1)$ is the instantaneous at time $t=t_1$ More generally, $\vec{v}(t)=\lim_{\Delta t\to 0}\frac{\Delta x}{\Delta t}\hat{\mathbf{1}}\to \vec{v}(t)=\frac{dx}{dt}\hat{\mathbf{1}}$

1D Kinematics - Acceleration

2.1 Intro to Acceleration

Acceleration is the change in velocity over time $\to \frac{d\vec{v}}{dt}$ For an object in freefall, $\vec{F}_{grav}=m\vec{a}$ where \vec{a} is the gravitational constant

Note:-

Freefall is where an object is under the influence of the gravitational force \vec{F}_g

2.2 Acceleration in 1D

 $\Delta \vec{v} = (v(t + \Delta t) - v(t))\hat{\mathbf{i}}$ on the interval $[t, \Delta t]$ Now we find instantaneous acceleration:

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} \hat{\mathbf{i}}$$

Visually, $\vec{a}(t)$ is the slope of the tangent line of the plot of $\vec{v}(t)$ vs t Componently, $\vec{a}(t) = a_x(t)\hat{\bf i} = \frac{dv_x}{dt}\hat{\bf i}$

2D Kinematics

3.1 Coordinate System and Position Vector in 2D

To represent 2D motion in vectors, one first needs to set up a coordinate system. For any arbitrary point p_1 , there'll be unit vectors $\hat{\imath}_1$ and $\hat{\jmath}_1$.

Note:-

The Cartesian coordinate system is interesting in that no matter what point we're at, the unit vectors are all the same \rightarrow we just have \hat{i} and \hat{j}

Now we find the position vector, $\vec{r}(t)$, a vector from the origin to the position of the object. We can represent \vec{r}_t as two vectors, x(t) and y(t).

Thus $\vec{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$

3.2 Instantaneous Velocity in 2D

To find velocity, we want to find $\lim_{\Delta t \to 0} \vec{r}(t)$

Graphically, $\lim_{\Delta t \to 0} \vec{r}(t)$ is directly tangent to the position at time t.

Given $\vec{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$, we can find velocity by:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = (\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}) + (\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} \hat{\mathbf{j}})$$
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \hat{\mathbf{i}} + \frac{dy}{dt} \hat{\mathbf{j}}$$
$$\vec{v} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}}$$

where $(v_x, v_y) = (\frac{dx}{dt}, \frac{dy}{dt})$

Note:-

The speed of the velocity is $v = |(v_x^2 + v_y^2)^{\frac{1}{2}}|$

We can find the direction of velocity as such:

$$\tan \theta = \frac{v_y}{v_x}$$
$$\theta = \arctan \frac{v_y}{v_x}$$

3.3 Instantaneous Acceleration in 2D

$$\vec{a}(t) - \frac{d\vec{v}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{v} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} \longrightarrow \vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \hat{\mathbf{i}} + \frac{dv_y}{dt} \hat{\mathbf{j}}$$

$$\vec{a} = \frac{d^2x}{dt^2} \hat{\mathbf{i}} + \frac{d^2y}{dt^2}$$

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$$

$$a_x = \frac{d^2x}{dt^2} = \frac{dv_x}{dt}, a_y = \frac{d^2y}{dt^2} = \frac{dv_y}{dt}$$

$$a = |(a_x^2 + a_y^2)^{\frac{1}{2}}|$$

3.4 Projectile Motion

Projectile motion is the motion of an object while under the influence of gravity. Need to apply Newtons 2nd Law in order to analyze the kinematics.

 $\mathbf{\hat{i}} \colon 0 = ma_x \to a_x = 0$

Thus, we have:

$$v_y(t) = v_{y0} - gt (3.1)$$

$$y(t) = y_0 + v_{y0}t - \frac{1}{2}gt^2$$

$$v_x(t) = v_{x0}$$
 (3.2)
 $x(t) = x_0 + v_{x0}t$

$$x_0 = 0 \rightarrow x = v_{x0}t$$
$$t = x/v_{x0}$$

$$y(x) = y_0 + \frac{v_{y0}x}{v_{x0}} - \frac{1}{2}g\frac{x^2}{v_{x0}}$$
(3.3)

Newtons First and Second Laws

Newtons First Law tells us about the motion of isloated bodies - where the net force is 0. States that an isolated body moves in a straight line at a const velocity.

Ex: Isloated body at rest will remain at rest as long as its undisturbed.