07.12.2020

Do końca wykładu będziemy zakładać, że $f: D \to \mathbb{R}, D \subset \mathbb{R}$ i x_0 jest punktem wewnętrznym D.

1. Def. Punkt $(x_0, f(x_0))$ jest punktem przecięcia funkcji $f \iff$ funkcja f ma styczną w tym punkcie i zmienia się w nim ze ściśle wklęsłej na ścisle wypukłą lub na odwrót

L(o zachowaniu znaku funkcji ciągłej): $f:(a,b)\to\mathbb{R}$ jest ciągła w $x_0\in(a,b)$ i $f(x)>0\Longrightarrow$ istnieje $(c,d)\subset(a,b)$ takie, $\dot{z}e \ x_0 \in (c,d) \ i \ \forall_{x \in (c,d)} f(x) > 0$

2. Twierdzenie 11.8 (warunek konieczny punktu przegięcia):

Jeśli f ma w $(x_0, f(x_0))$ punkt przegięcia i f''(x) istnieje, to $f''(x_0) = 0$

D: Przy założeniu, że istnieje $\delta > 0$ taka, że f jest dwukrotnie różniczkowalna w $(x_0 - \delta, x_0 + \delta)$ i f'' jest ciągła w x_0 Dowód nie wprost. Zakładamy, że $(x_0, f(x_0))$ jest punktem przegięcia f i $f''(x_0) \neq 0$

Dla ustalenia uwagi przyjmiemy, że $f''(x_0) > 0$

 $\int f'' \text{ jest ciągła w } x_0 \qquad \text{lemat o zachowaniu znaku funkcji ciągłej} \text{ istnieje } (c,d) \subset (x_0,-\delta,x_0+\delta) \text{ taki,}$ $\int f''(x_0) > 0$

 $\dot{z}e\ x_0 \in (c,d)\ i\ \forall_{x\in(c,d)}f''(x)>0$

 $\implies f$ jest ściśle wypukła w (c,d) - sprzeczność z tym, że f zmienia się w $(x_0,f(x_0))$ na ściśle wklęsłą lub na odwrót Uwaga: Warunek $f''(x_0) = 0$ nie jest warunkiem wystarczającym pkt. przegięcia w pkt $(x_0, f(x_0))$. Tzn. Może być tak, że f''(x) = 0 i f nie ma punktu przegięcia w $(x_0, f(x_0))$, na przykład $f(x) = x^4$

3. Twierdzenie 11.9(warynek wystarczający punktu przegięcia):

Jeśli funkcja f ma styczną w punkcie $(x_0, f(x_0))$ i istnieje $\delta > 0$ taka, że f jest dwukrotnie rózniczkowalna w $(x_0, -\delta, x_0 + \delta)$

 $\begin{cases} \forall_{x \in (x_0, -\delta, x_0)} & f''(x) < 0 \\ \forall_{x \in (x_0, x_0 + \delta)} & f''(x) > 0 \end{cases} \text{lub} \begin{cases} \forall_{x \in (x_0, -\delta, x_0)} & f''(x) > 0 \\ \forall_{x \in (x_0, x_0 + \delta)} & f''(x) < 0 \end{cases} \text{ to } (x_0, f(x_0)) \text{ jest punktem przegięcia } f$ D: Twierdzenie to wynika bezpośrednio z definicji punktu przegięcia i 11.5 oraz 11.6