

Claims

1
1 1. A process for pyrolysis of feedstock, comprising the following steps:
2 introducing feedstock into, and moving said feedstock through, a reactor tube; and
3 heating the feedstock within said reactor tube to a sufficient temperature such that pyrolysis
4 occurs,

5 wherein the feedstock is introduced into the reactor tube from an inner hopper,
6 wherein gases of pyrolysis travel through the feedstock in the inner hopper such that said
7 feed stock in the inner hopper acts as a filler,

8 wherein heat for heating the feedstock is generated by a heat source selected from the
9 group consisting of: combustion chamber, gases, electric oven, coal, heavy oil, tire crumb,
10 electric tube furnace, microwave, solar, and nuclear.

Antal, Jr.
201/35 ?

1 2. The process according to claim 1, wherein said feedstock comprises a substance
2 selected from the group consisting of biomass wood chips, newspaper, mixed waste paper,
3 peat, energy crops, agricultural residues, coal, tire chips, plastics, RDF, and other organic
4 matter.

1 3. The process according to claim 1, wherein the heat generated by the heat source
2 is conducted to the feedstock within the reactor tube through a reactor tube wall.

3 4. The process according to claim 1, wherein the feedstock is moved through the
4 reactor tube by a rotating auger.

1 5. The process, according to claim 1, wherein pyrolysis occurs within a temperature
2 range from about 800°C (1650°F) to about 1200°C (2190°F) such that substantially
3 anaerobic gasification occurs.

1 6. The process according to claim 1, wherein pyrolysis occurs within a temperature

2 range from about 400°C (752°F) to about 800°C (1472°F) such that liquefaction occurs.

1 7. The process according to claim 1, further comprising the steps of: introducing
2 feedstock into, and moving said feedstock through, at least one additional reactor tube;

3 and heating the feedstock within said at least one additional reactor tube to a
4 sufficient temperature such that pyrolysis occurs;

5 wherein the feedstock is introduced into at least one additional reactor tube from the
6 inner hopper.

1 8. The process according to claim 1, wherein said reactor tube comprises an exit
2 orifice, feedstock exiting the reactor tube via the exit orifice enters a pressure vessel such that
3 the pressure from the pressure vessel controls the flow of gases of pyrolysis from exiting into
4 the pressure vessel.

1 9. The process according to claim 1, wherein a gas is injected into the reactor tube.

1 10. The process according to claim 9, wherein said gas is selected from the group
2 consisting of CO₂, steam, natural gas, oxygen, and air.

1 11. The process according to claim 4, wherein the auger comprises a hollow shaft
2 having at least one opening, wherein gases of pyrolysis can exit through said hollow shaft.

1 12. The process according to claim 10, further comprising the step of controlling the
2 flow of the gas into the reactor tube in order to adjust the conversion of char and tar exiting
3 the reactor tube into useful gases and/or liquids.

1 13. The process according to claim 1, further comprising the step of capturing the
2 feedstock residue exiting the reactor tube, wherein said process is useful for pyrolysis of

3 feedstock comprising a contaminant.

1 14. The process according to claim 1, further comprising the step of capturing the
2 feedstock residue exiting the reactor tube, wherein said process is useful for pyrolysis of
3 feedstock used for phytomining.

1 15. The process according to claim 13, wherein said contaminant is selected from
2 the group consisting of heavy metals, lead, mercury, highly refractory metals, volatile metals,
3 copper, chromium, arsenic, copper chromium arsenate and other toxics.

1 16. A device for pyrolysis of feedstock, comprising:
2 a reactor tube within which pyrolysis of feedstock occurs;
3 a means for moving feedstock through the reactor tube;
4 a means for heating the feedstock within said reactor tube to a sufficient temperature
5 such that pyrolysis occurs; and

6 an inner hopper, wherein the feedstock enters the reactor tube from the inner hopper,
7 wherein gases of pyrolysis travel through the feedstock in the inner hopper such that said
8 feedstock in the inner hopper acts as a filter.

1 17. The device according to claim 16, wherein the means for moving said feedstock
2 through said reactor is a rotating auger.

1 18. The device according to claim 16, wherein said reactor tube comprises an exit
2 orifice, wherein the feedstock residue exiting the exit orifice enters a pressure vessel, wherein
3 the pressure from the pressure vessel controls the flow of gases exiting the exit orifice.

1 19. The device according to claim 16, wherein the auger comprises a hollow shaft
2 having at least one opening, wherein the gases of pyrolysis can exit through said hollow
3 shaft.

1 20. The device according to claim 18, further comprising a means for injecting a gas
2 into the exit orifice of the reactor tube.

1 21. The device according to claim 20, wherein said gas is selected from the group
2 consisting of carbon dioxide, steam, natural gas, oxygen, and air.

1 22. The device according to claim 16, further comprising:
2 a means for capturing the feedstock residue exiting the reactor tube, wherein said
3 device is useful for pyrolysis of feedstock containing contaminants.

1 23. The device according to claim 16, further comprising:
2 a means for capturing the feedstock residue exiting the reactor tube, wherein said
3 device is useful for phytomining.

1 24. The device according to claim 19, comprising a means whereby a portion of the
2 pyrolysis gases or external gases are injected into a lower end of the hollow shaft to hasten
3 the transport of condensable gases to an external condenser liquid separator.

1 25. A method of pyrolysis of feedstock containing at least one contaminant using
2 indirectly heated gasification, comprising the following steps:

3 moving feedstock containing at least one contaminant through a reactor tube; and
4 heating the feedstock within said reactor tube to a sufficient temperature such that
5 pyrolysis occurs,

6 wherein low oxygen conditions of pyrolysis leads to lower containment of the at least
7 one contaminant in the gaseous output and higher capture and concentration of the at least

8 one contaminant in the feedstock residue.

1 26. The method according to claim 25, wherein said at least one contaminant is
2 selected from the group consisting of heavy metals, lead, mercury, refractory metals, volatile
3 metals, copper chromium arsenate, copper, chromium, arsenic and other toxics.

1 27. The method according to claim 25, further comprising the step of scrubbing gas
2 output from the pyrolysis to remove volatile metals from the gas output.

1 28. The method according to claim 25, wherein low oxygen conditions of pyrolysis
2 leads to essentially anaerobic pyrolysis, wherein said essentially anaerobic pyrolysis lowers
3 the formation of volatile metallic oxides and promotes metallic deposition in the feedstock
4 residue.

1 29. The method according to claim 25, wherein said method is used for disposal of
2 plant matter used in phytoremediation.

1 30. The method according to claim 25, wherein the biomass is introduced into the
2 reactor tube from an inner hopper, and wherein gases of pyrolysis travel through biomass in
3 the inner hopper such that said biomass in the inner hopper acts as a filter.

1 31. A method for recovery of a substance residing in plant matter used in
2 phytoremediation, comprising the following steps:

3 moving plant matter used in phytoremediation through a reactor tube; heating the
4 plant matter within said reactor tube to a sufficient temperature such that pyrolysis occurs;
5 and capturing plant matter residue exiting the reactor tube,

6 wherein a substance residing in the plant matter is recovered in the captured plant
7 matter residue.

1 32. A method for recovering of a substance residing in plant matter used in
2 phytomining, comprising the following steps:

3 moving the plant matter used in phytomining through a reactor tube; heating the plant
4 matter within said reactor tube to a sufficient temperature such that pyrolysis occurs; and
5 capturing plant matter residue exiting the reactor tube,

6 wherein a substance residing in the plant matter is recovered in the captured plant
7 matter residue.

1 33. A process for pyrolysis of feedstock, comprising the following steps:

2 introducing feedstock into, and moving said feedstock through, a reactor tube; and
3 heating the feedstock within said reactor tube to a sufficient temperature such that pyrolysis
4 occurs.

1 34. The process, according to claim 33, further comprising the step of introducing
2 a gas into the reactor tube.

1 35. The process, according to claim 34, wherein the gas is selected from the group
2 consisting of: CO₂, steam, natural gas, oxygen, and air.

1 36. The process, according to claim 33, wherein the reactor tube comprises an exit
2 orifice, feedstock exiting the reactor tube via the exit orifice enters a pressure vessel such that
3 the pressure from the pressure vessel controls the flow of gases of pyrolysis exiting into the
4 pressure vessel.