Strutture fisiche e strutture di accesso ai dati

ALBERTO BELUSSI

SECONDA PARTE
ANNO ACCADEMICO 2018-2019

Gestore dei metodi di accesso

2

E' il modulo del DBMS che esegue il piano di esecuzione prodotto dall'ottimizzatore e produce sequenze di accessi alle pagine della base di dati presenti in memoria secondaria.

piano di esecuzione

Gestore dei metodi d'accesso

Richieste di accesso alle pagine DATI/INDICI (fix, unfix, setDirty)

Gestore dei metodi di accesso

3

Metodi d'accesso

Sono i moduli software che implementano gli algoritmi di accesso e manipolazione dei dati organizzati in specifiche strutture fisiche.

Esempio:

- Scansione sequenziale
- Accesso via indice
- Ordinamento
- Varie implementazioni del join

Metodi di accesso

4

Ogni metodo d'accesso ai dati conosce:

- L'organizzazione delle tuple nelle pagine DATI salvate in memoria secondaria (come una tabella viene organizzata in pagine DATI della memoria secondaria)
- L'organizzazione fisica della pagine DATI contenenti tuple e delle pagine che memorizzano le strutture fisiche di accesso o INDICI (<u>come i record dell'indice vengono</u> <u>memorizzati all'interno delle pagine</u>).

Organizzazione di una pagina DATI

o Informazioni utili: tuple della tabella

informazioni di controllo:

o Informazioni di controllo: dizionario, bit di parità, altre informazioni del file system o della specifica struttura fisica.

STRUTTURA della pagina DATI

Pagina DATI

6

Struttura del dizionario

- Tuple di lunghezza fissa: il dizionario non è necessario, si deve solo memorizzare la dimensione delle tuple e l'offset del punto iniziale
- Tuple di lunghezza variabile: il dizionario memorizza l'offset di ogni tupla presente nella pagina e di ogni attributo di ogni tupla

Lunghezza massima di una tupla = dimensione massima dell'area disponibile su una pagina, altrimenti va gestito il caso di tuple memorizzate su più pagine (in postgreSQL si veda la soluzione TOAST - The Oversized-Attribute Storage Technique).

Pagina DATI

$\left(7\right)$

<u>Operazioni</u>

- Inserimento di una tupla
 - Se esiste spazio contiguo sufficiente: inserimento semplice
 - Se non esiste spazio contiguo ma esiste spazio sufficiente:
 riorganizzare lo spazio ed eseguire un inserimento semplice
 - O Se non esiste spazio sufficiente: operazione rifiutata
- Cancellazione: sempre possibile anche senza riorganizzare
- Accesso ad una tupla
- Accesso ad un attributo di una tupla
- Accesso sequenziale (di solito in ordine di chiave primaria)
- Riorganizzazione

Rappresentazione di una tabella a livello fisico

Strutture fisiche di rappresentazione dei dati

<u>File sequenziale (struttura sequenziale ordinata in base alla chiave di ordinamento)</u>

Caratteristica fondamentale: è un file sequenziale dove le tuple sono ordinate secondo una chiave di ordinamento.

Esempio	Filiale	Conto	Cliente	Saldo	
Pagina 1	A	102	Rossi	1000	-
	В	110	Rossi	3020	
	В	198	Bianchi	500	
Pagina 2	E	17	Neri	345	-
	E	102	Verdi	1200	
	E	113	Bianchi	200	
	Н	53	Neri	120	
	F	78	Verdi	3400	

FILE SEQUENZIALE

10

<u>Operazioni</u>

- Inserimento di una tupla
 - o Individuare la pagina P che contiene la tupla che precede, nell'ordine della chiave, la tupla da inserire.
 - o Inserire la tupla nuova in P; se l'operazione non va a buon fine aggiungere una nuova pagina (overflow page) alla struttura: la pagina contiene la nuova tupla, altrimenti si prosegue.
 - Aggiustare la catena di puntatori.
- Scansione sequenziale ordinata secondo la chiave (seguendo i puntatori)
- Cancellazione di una tupla
 - o Individuare la pagina P che contiene la tupla da cancellare.
 - O Cancellare la tupla da P.
 - O Aggiustare la catena di puntatori.
- Riorganizzazione: si assegnano le tuple alle pagine in base ad opportuni coefficienti di riempimento, riaggiustando i puntatori.

INDICI

Per aumentare le prestazioni degli accessi alle tuple memorizzate nelle strutture fisiche (FILE SEQUENZIALE), si introducono strutture ausiliarie (dette strutture di accesso ai dati o INDICI).

Tali strutture velocizzano l'accesso casuale via <u>chiave di ricerca</u>. La chiave di ricerca è un insieme di attributi utilizzati dall'indice nella ricerca.

Indici su file sequenziali

- INDICE PRIMARIO: in questo caso la **chiave di ordinamento** del file sequenziale <u>coincide</u> con la **chiave di ricerca** dell'indice.
- INDICE SECONDARIO: in questo caso invece la **chiave di ordinamento** e la **chiave di ricerca** sono diverse.

12

Usa una chiave di ricerca che coincide con la chiave di ordinamento del file sequenziale.

Ogni record dell'indice primario contiene una coppia <v_i, p_i>:

- o v_i: valore della chiave di ricerca;
- op_i: puntatore al primo record nel file sequenziale con chiave v_i

Esistono due varianti dell'indice primario:

- INDICE DENSO: per ogni occorrenza della chiave presente nel file esiste un corrispondente record nell'indice.
- INDICE SPARSO: solo per alcune occorrenze della chiave presenti nel file esiste un corrispondente record nell'indice, tipicamente una per pagina.

Esempio

<u>Operazioni</u>

- Ricerca di una tupla con chiave di ricerca *K*.
 - o DENSO (⇒K è presente nell'indice)
 - \times Scansione sequenziale dell'indice per trovare il record (K, p_k)
 - \times Accesso al file attraverso il puntatore p_k

Costo: 1 accesso indice + 1 accesso pagina dati

- o SPARSO (⇒K potrebbe non essere presente nell'indice)
 - × Scansione sequenziale dell'indice fino al record $(K', p_{k'})$ dove K' è il valore più grande che sia minore o uguale a K
 - × Accesso al file attraverso il puntatore $p_{k'}$ e scansione del file (pagina corrente) per trovare le tuple con chiave K.

Costo: 1 accesso indice + 1 accesso pagina dati

Operazioni

• Inserimento di un record nell'indice

Come inserimento nel FILE SEQUENZIALE (nella pagina della memoria secondaria invece di tuple ci sono record dell'indice)

o DENSO

x L'inserimento nell'indice avviene solo se la tupla inserita nel file ha un valore di chiave K che non è già presente.

SPARSO

➤ L'inserimento avviene solo quando, per effetto dell'inserimento di una nuova tupla, si aggiunge una pagina dati alla struttura; in tutti gli altri casi l'indice rimane invariato.

<u>Operazioni</u>

Cancellazione di un record nell'indice

Come cancellazione nel FILE SEQUENZIALE

- DENSO
 - x La cancellazione nell'indice avviene solo se la tupla cancellata nel file è l'ultima tupla con valore di chiave K.

SPARSO

➤ La cancellazione nell'indice avviene solo quando K è presente nell'indice e la corrispondente pagina viene eliminata; altrimenti, se la pagina sopravvive, va sostituito K nel record dell'indice con il primo valore K' presente nella pagina.

INDICE SECONDARIO

Usa una chiave di ricerca che NON coincide con la chiave di ordinamento del file sequenziale.

Ogni record dell'indice secondario contiene una coppia $\langle v_i, p_i \rangle$:

- ov_i: valore della chiave di ricerca;
- o p_i: puntatore al <u>bucket di puntatori</u> che individuano nel file sequenziale tutte le tuple con valore di chiave v_i.

Gli indici secondari sono sempre DENSI.

INDICE SECONDARIO

INDICE SECONDARIO

<u>Operazioni</u>

- Ricerca di una tupla con chiave di ricerca *K*.
 - \times Scansione sequenziale dell'indice per trovare il record (K, p_k)
 - imes Accesso al bucket B di puntatori attraverso il puntatore p_k
 - Accesso al file attraverso i puntatori del bucket B.

Costo: 1 accesso indice + 1 accesso al bucket + n accessi pagine dati

• Inserimento e cancellazione: come indice primario denso con in più l'aggiornamento dei bucket.