Name : Suryal D . Khirade

Roll NO: T190424399 Assignment No :03

 $$\operatorname{Basic}$ Statistics - Measures of Central Tendenc ies and Variance Perform the following

operations on any open source dataset (eg. dat a.csv)

1. Provide summary statistics (mean, median, m inimum, maximum, standard deviation) for

a dataset (age, income etc.) with numeric variables grouped by one of the qualitative

(categorical) variable. For example, if your c ategorical variable is age groups and quantitative

variable is income, then provide summary stati stics of income grouped by the age groups.

Create a list that contains a numeric value for each response to the categorical variable.

2. Write a Python program to display some basi c statistical details like percentile, mean,

standard deviation etc. of the species of 'Iri s-setosa', 'Iris-versicolor' and 'Iris-versicolor' of

In [1]: # Import the required libraries

import pandas as pd
import numpy as np
import sklearn
from sklearn import datasets

```
In [2]:
        iris = datasets.load_iris()
        iris
Out[2]: {'data': array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
In [3]: | df = pd.DataFrame(iris['data'])
        df.head()
Out[3]:
                     2
         0 5.1 3.5 1.4 0.2
         1 4.9 3.0 1.4 0.2
         2 4.7 3.2 1.3 0.2
         3 4.6 3.1 1.5 0.2
         4 5.0 3.6 1.4 0.2
In [4]:
        df[4] = iris['target']
        df.head()
Out[4]:
             0
                 1
                     2
                         3 4
         0 5.1 3.5 1.4 0.2 0
         1 4.9 3.0 1.4 0.2 0
         2 4.7 3.2 1.3 0.2 0
         3 4.6 3.1 1.5 0.2 0
         4 5.0 3.6 1.4 0.2 0
```

In [5]: # Adding column names
 df.rename(columns = {0:'SepalLengthCm', 1:'SepalWidthCm', 2:'PetalLengthCm'
 df.head()

Out[5]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [6]: df.describe()

Out[6]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [7]: df.shape

Out[7]: (150, 5)

MEAN

In [8]: df.mean()

Out[8]: SepalLengthCm 5.843333 SepalWidthCm 3.057333 PetalLengthCm 3.758000 PetalWidthCm 1.199333 Species 1.000000

dtype: float64

MEDIAN

```
In [10]:
         df.median()
Out[10]: SepalLengthCm
                           5.80
          SepalWidthCm
                           3.00
          PetalLengthCm
                           4.35
         PetalWidthCm
                           1.30
          Species
                           1.00
         dtype: float64
         MODE
         # Calculated only for categorical data
In [11]:
         df.Species.mode()
Out[11]: 0
               0
               1
         Name: Species, dtype: int32
In [12]: df.groupby(['Species']).count()
Out[12]:
                  SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
          Species
               0
                             50
                                          50
                                                       50
                                                                    50
               1
                             50
                                          50
                                                       50
                                                                    50
               2
                             50
                                          50
                                                       50
                                                                    50
          STANDARD DEVIATION
In [13]:
         df.SepalLengthCm.std()
Out[13]: 0.8280661279778629
In [14]:
         df.SepalWidthCm.std()
Out[14]: 0.435866284936698
In [15]:
         df.PetalLengthCm.std()
Out[15]: 1.7652982332594667
In [16]:
         df.PetalWidthCm.std()
Out[16]: 0.7622376689603465
```