

Preet Kanwal

Department of Computer Science & Engineering

Unit 2

Preet Kanwal

Department of Computer Science & Engineering

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Is there any infinite language for which we cannot construct a Finite Automata?

That means, a language which is not regular?

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

PES UNIVERSITY

Let's look at an example:

Unit 2 - Pumping Lemma for Regular Languages

Let's look at an example:

Unit 2 - Pumping Lemma for Regular Languages

Let's look at an example:

$$S \rightarrow aS \mid F$$
 $F \rightarrow bF \mid \lambda$

Regularing

$$S \rightarrow aS \mid F$$
 $F \rightarrow bF \mid \lambda$

Regularinar

Unit 2 - Pumping Lemma for Regular Languages

Finite Acceptor or

Regular Grammar or

Regular Expression

???????????

Unit 2 - Pumping Lemma for Regular Languages

Basically,

There is no way to remember how many a's you have seen to compare with the upcoming b's!

The value of n could be anything!

We cannot come up with a FA that takes care of all n!

Unit 2 - Pumping Lemma for Regular Languages

Basically,

There is no way to remember here you have seen to compare with the Non-Regular! You have Definitely Non-Regular!

The value or in could be anything!

We cannot come up with a FA that takes care of all n!

Unit 2 - Pumping Lemma for Regular Languages

We cannot come up what a FA that takes care of all n!

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Limits of Finite Automata:

- Finite Memory !
- String comparison not possible A finite automata can only "count"; that is, It can maintain a counter, where different states correspond to different values of the counter.
- Linear Power:

an n>0 is possible but a^{n^2}, a^{2^n}, aⁱ where i is prime is not

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

if |w| >= n

we visit a set of states more than once

Unit 2 - Pumping Lemma for Regular Languages

we visit a set of states more than once

The Pigeonhole Principle

Unit 2 - Properties of Regular Languages

The Pigeonhole Principle

There is a pigeonhole with more than 1 pigeon

Unit 2 - Properties of Regular Languages

The Pigeonhole Principle

There is a pigeonhole with more than 1 pigeon

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

we visit a set of states more than once which means,

there exists a loop in our Automata (within these n states)

if we pump that loop 0 or more no. of times,

the resultant string will always be in the language

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

 $y \neq \epsilon$ that is |y| >= 1

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

w = abbbc |w| = 5 > n

n = 3

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >=1 and |xy| <= n

w = abbbc|w| = 5 > n

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >=1 and |xy| <= n

w = abbbc|w| = 5 > n

n =3

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

$$|w| >= n$$

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n, for every i >= 0,

xyⁱz belongs to L

w = abbbc |w| = 5 > n

n =3

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

$$|w| >= n$$

There exists a break up of the string in three parts w = xyz s uch that |y| >= 1 and |xy| <= n, for every i >= 0,

xyⁱz belongs to L

w = abbbc |w| = 5 > n

n =3

$$w = abc$$

 $x = a$

$$y = b$$

$$z = c$$

for i>=0, abⁱc is in lang ab*c

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

For every Regular language L,

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n,

for every $i \ge 0$,

xyⁱz belongs to L

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

For every Regular language L,

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n,

for every i >= 0, xyⁱz belongs to L Replace
For every ----> ♥
There exists ---->
∃
belongs to ----> ∈

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- **▼** Regular language L,
- **=** n where n is the # states in Finite Automata for L
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0, $xy^iz \subseteq L$

```
Replace
For every ----> ♥
There exists ---->
∃
belongs to ----> ∈
```

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- **▼** Regular language L,
- **∃** n where n is the # states in Finite Automata for L
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

- \exists w = xyz such that |y| >= 1 and |xy| <= n,
- \forall i >= 0, $xy^iz \subseteq L$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- Regular language L,
- In where n is the # states in Finite Automata for
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0, $xy^iz \subseteq L$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

In where n is the # states in Finite Automata for

$$\forall$$
 string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$xy^iz \in L$$

To Prove a lang is Non-Regular

~Pumping Property

a language L which is claimed to be regular,

n where n is the # states in Finite Automata for L

 \exists string $w \subseteq L$ such that,

 \forall w = xyz such that |y| >= 1 and |xy| <= n,

$$\exists i >= 0,$$

A

This contradicts the claim made, hence proving that the language is not regular

Unit 2 - Pumping Lemma for Regular Languages

A

For Regular Languages (infinite)

Pumping Property

In where n is the # states in Finite Automata for

$$\forall$$
 string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0,

$$xy^iz \in L$$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

To Prove a lang is Non-Regular

~Pumping Property

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Procedure to prove a language is Not regular:

- 1. Assume the opposite: L is regular
- 2. Use Pumping Lemma to obtain a contradiction

It suffices to show that only one string gives a contradiction

3. Thereby proving L is not regular

Unit 2 - Pumping Lemma for Regular Languages

Procedure to prove a language is Not regular:

- 1. Assume the opposite: L is regular
- 2. Use Pumping Lemma to obtain a contradiction

String must be chosen appropriately

It suffices to show that only one **String** gives a contradiction

3. Thereby proving L is not regular

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Pumping lemma as a game

Unit 2 - Pumping Lemma for Regular Languages

Pumping lemma is a game between

You vs. Adversary

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims L is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Claims L is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Adversary

Claims L is regular

There are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Find some i, so that the resultant string is not in L

Adversary

Claims L is regular

The are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Find some i, so that the resultant string is not in L

Adversary

Claims L is regular

The are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

You won!

GAME OVER

Adversary

laims L is regular

e are n states in my

Okay! Gimme the states in your machi

Okay! here is the st from L such th $|\mathbf{w}| >= \mathbf{n}$

Could you tell me w

the loop in your machine?

automata for L

The loop is xyⁱz

Okay! but for some i, the resultant string is not in L

Unit 2 - Pumping Lemma for Regular Languages

Using Pumping lemma prove that the language aⁿbⁿ is not regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims $L = a^n b^n$ is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims $L = a^n b^n$ is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? aaaaaabbbbbbb

Pump up, $i=2 \rightarrow a^5ababb^5 \notin L$

 $a^5(ab)^ib^5$

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? agaaaabbbbbbbb

Pump down, i=0 \rightarrow a⁶b⁵ \notin L Pump up, i=2 \rightarrow a⁶b⁷ \notin L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

aaaaaabbbbbb

```
Pump down, i=0 \rightarrow a^{6}b^{7}
i=1 \frac{doesn't help!!}{a^{6}(b)^{i}b^{5}}
```

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? aaaaaabbbbbbb

For every break up possible we got some i that will result in a string \(\begin{aligned}
 & to L \)

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10Now tell me where is the

loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the states in your machi

okay! I'll choose the a⁶b⁶

|w| >= 10

Now tell me where is the loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

 $ns L = a^n b^n is regular$

e are 10 states in my automata for L

e saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

Using Pumping lemma prove that the language of the form ww over $\{a,b\}^*$ is not regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims L = ww is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L = ww is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L = ww is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string $a^n a^n$

 $|\mathbf{w}| >= \mathbf{n}$

Now tell me where is the loop in your automata?

Adversary

Claims L = ww is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa...a..aa..a

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a.aa...a.aa...a

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa..aa..a

aⁿ⁻²(aa)ⁱaⁿ

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

Let's Pump down, i=0

```
= a^{n-2}a^n
= a^{n-2}a^2a^{n-2}
= a^{n-1}a^{n-1}
```

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

$$a...a..aa..aa..aa..aa..a$$
 $a^{n-2}(aa)^ia^n$

Let's Pump up, i=3

- $= a^{n-2}(aa)^3a^n$
- $= a^{n-2}(a^2)^3a^n$
- $= a^{n-2}a^6a^n$
- $= a^{n-2}a^4a^2a^n$
- $= a^{n-2+4}a^{n+2}$
- $= a^{n+2}a^{n+2}$

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa..a..a..a

 $a^{n-2}(aa)^{i}a^{n}$

Pump up or Pump down, resultant string will always belong to L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

Pump up or Pump down, resultant string will always belong to L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724