PATENT SPECIFICATION

(11)1 595 701

(21) Application No 26670/77 (22) Filed 24 June 1977 (23) Complete Specification filed 31 May 1978

(44) Complete Specification published 19 August 1981

(51) INT. CL.3 C10M 1/50

(52) Index at acceptance C5F 102 139 692 730 743 747 790 793 A KG

(72) Inventors: COLIN JOHN HARRINGTON HERBERT FRANK ASKEW TERRY JOHN PATRICK BRIDGWATER

(54) FLUIDS SUITABLE FOR USE AS HYDRAULIC FLUIDS, ELECTRICAL OILS, HEAT TRANSFER FLUIDS AND REFRIGERANT OILS

We, CASTROL LIMITED, a British (71) Company, of Burmah House, Pipers Way, Swindon, Wiltshire, SN3 1RE, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to fluids suitable for use as hydraulic fluids, electrical oils, heat transfer fluids and refrigerant oils, hereinafter referred to as "functional fluids" and in particular to functional fluids based on hydrocarbon oils.

15

The performance of fluids based on hydrocarbon oils is often found in practice to be impaired by the presence of water, this problem being particularly acute when such fluids are used as hydraulic fluids e.g. in aviation or automobiles, or as electrical or refrigerant oils. In hydraulic fluids for example, water may be present as the result of condensation or inadequate drying of the hydraulic system prior to filling or subsequently, by entry through worn seals and it has been found that the effective vapour lock temperature (VLT) of the fluid can be reduced to the boiling point of water even by the presence of very minor amounts of water, e.g. of the order of 0.5%. This constitutes a serious deficiency with particularly dangerous consequences in those systems which are brake systems or central hydraulic systems including brake systems. Furthermore, in electrical oils the presence of free water increases conductivity and thus promotes electrical discharge and in refrigerant oils water may separate out as ice crystals.

We have now found that in certain silicon compounds are useful as water scavengers in functional fluids based on hydrocarbon oils and may thus alleviate the problems outlined above as previously encountered in the use of such fluids.

According to the present invention there is provided a functional fluid as hereinbefore defined comprising a major amount (by weight) of a hydrocarbon oil and a minor amount (by weight) of an oxysilane compound having the

general formula:-

$$R^{2}$$
 50 $R^{1} - Si - R^{3}$

wherein:-

; .

55 (i) R¹ is alkyl, preferably containing from 1 to 20, more preferably 1 to 4, carbon atoms; alkenyl, preferably containing from 2 to 20 carbon atoms; aryl, preferably phenyl; alkaryl or aralkyl, preferably containing from 7 to 20 60 carbon atoms; or alicyclic, preferably containing from 6 to 20 carbon atoms;

(ii) R² and R³ are each independently a group as defined for R1 or a group of the for-

mula $-(OR^5)_n - OR^6$; (iii) R^4 is a group of the formula $-(OR^5)_n$ $-OR^6$ or a group of the formula

$$R^1$$

$$-R^7 - Si - R^2$$

$$R^3$$
wherein R^1 , R^2 and R^3 are independently as

defined above;

(iv) R⁵ is alkylene, preferably containing from 1 to 15, more preferably 1 to 4, carbon atoms, especially ethylene, propylene or butylene; and each R5 may be the same as or different from any other group R5;

(v) R⁶ is alkyl, preferably containing from 1 to 20, more preferably 4 to 18, especially 6 to 15, carbon atoms; alkenyl, preferably containing from 2 to 20 carbon atoms; aryl, preferably phenyl; alkaryl or aralkyl, preferably containing from 7 to 20 carbon atoms; or alicyclic, 85 preferably containing from 6 to 20 carbon atoms; and each R⁶ may be the same as or different from any other group Ro;

(vi) n is zero or an integer, preferably zero or an integer from 1 to 30, more preferably 1 to 10, particularly 1 to 4; and each n may be the same as or different from any other n; and

(vii) R⁷ is a direct linkage or a group of the formula — $(OR^5 -)_n O$ — wherein R^5 and n are independently as defined above, provided 95 that when R7 is a direct linkage at least one

65

75

80

90

75

80

85

20

35

group of R^2 or R^3 is a group of the formula $-(OR^5)_n - OR^6$

The water scavenging action of the oxysilane compounds defined above has been found to be 5 improved in the presence of an amine and functional fluids in accordance with the invention which additionally comprise as an optional constituent a small amount, e.g. from 0.5 to 20%, more particularly from 1 to 10%, by weight of 10 an amine are accordingly preferred. Many amines have been found to be suitable, including primary, secondary and tertiary amines, especially those containing a total of at least 5 carbon atoms. Amines which have been found 15 to be particularly useful include Primene 81 R and Primene JMT which are commercially available primary amines with two methyl groups on the alpha carbon atom. (Primene is a Registered Trade Mark).

Other amines which may be useful are Mannich bases formed by condensation of an amine and formaldehyde with a phenol previously alkylated with di- or polyisobutylene; polyisobutenylsuccinimides derived from di- or polyamines; or amides derived from di- or polyalkylene polyamines and polyisobutenyl substituted monocarboxylic acids.

The amount of oxysilane compound employed in the functional fluids of the invention may vary over a wide range, e.g. from 0.1% to 50% by weight based on the total weight of the fluid

More particularly, the amount will depend on several factors such as:-

(a) the nature of the fluid base-stock;

(b) the normal use of the functional fluid;

(c) the physical properties required of the finished functional fluid; and

(d) the amount of water likely to be encoun-40 tered by the fluid in its final use.

In hydraulic fluids for instance the oxysilane compound would normally be employed in an amount of from 1 to 35%, preferably from 10 to 20%, by weight. On the other hand, in

45 refrigerant oils, electrical oils and heat transfer fluids the preferred amount of oxysilane compound would generally be somewhat lower e.g. from 0.1 to 5.0% by weight.

The oxysilane compounds employed in the fluids of the present invention may be readily prepared from chlorosilanes by reaction with appropriate hydroxy compounds using wwll known techniques. A detailed description of such preparative methods is to be found in J. 55 Amer. Chem. Soc. 80, 1733 (Wright et al) and 68, 70 (Peppard et al).

The hydrocarbon oil used as base-stock in the functional fluids of the invention is preferably a mineral oil, whether derived from crude oil or synthesised from hydrocarbons. Specific examples of such oils are hydrorefined mineral oils and alkylated benzenes.

The functional fluids of the invention may optionally comprise, e.g. in an amount from 0.1 to 30%, preferably 0.5 to 20%, by weight based

on the total weight of the fluid, one or more silane derivatives having the general formula:—

$$R^{8} - Si - R^{10}$$
 70

wherein:

(a) R^8 is a group of the formula R^{12} – $(OR^{13})_m - OR^{14}$;

(b) each of R^9 and R^{10} is independently alkyl, preferably containing from 1 to 18 carbon atoms, more preferably methyl; alkenyl, preferably containing from 2 to 18 carbon atoms; aryl, preferably phenyl; alkaryl, preferably alkyl substituted phenyl in which the alkyl substituent contains from 1 to 12 carbon atoms; or aralkyl, preferably benzyl; a group of the formula $- QR^{11}$; or a group of the formula $R^{12} - (QR^{13})_m - QR^{14} = (QR^{13})_m - QR^{14} = (QR^{14})_m + QR^{14} = (QR^{14})_m$

(c) R¹¹ is a group of the formula R¹² – (OR¹³)_m – or a group of the formula:–

$$R^{16} - Si - (OR^{13})_m$$
 90 OR^{17}

and each R¹¹ may be the same as or different from any other group R¹¹;

(d) R¹² is alkyl, preferably containing from 1 to 18 carbon atoms; alkenyl, preferably containing from 2 to 18 carbon atoms; aryl, preferably phenyl; alkaryl, preferably alkyl substituted phenyl in which the alkyl substituted phenyl in to 12 carbon atoms; or aralkyl, preferably benzyl; and each R¹² may be the same as or different from any other group R¹²;

(e) R¹³ is an alkylene group, preferably containing from 1 to 15, more preferably 1 to 4, carbon atoms, especially ethylene or propylene; 105 and each R¹³ may be the same as or different from any other group R¹³;

(f) R¹⁴ is an alkylene group, preferably containing from 1 to 15, more preferably 1 to 6, carbon atoms; and each R¹⁴; may be the same 1 as or different from any other group R¹⁴;

(g) m is zero or an integer, preferably zero or an integer of from 1 to 4; and each m may be the same as or different from any other m;

(h) each of R¹⁵ and R¹⁶ is independently alkyl, preferably containing from 1 to 18 carbon atoms, more preferably methyl; alkenyl, preferably containing from 2 to 18 carbon atoms; aryl, preferably phenyl; alkaryl, preferably alkyl substituted phenyl in which the alkyl substituent contains from 1 to 12 carbon atoms; or arakyl, preferably benzyl; a group of the formula -OR¹⁷; or a group of the formula R¹² - (OR¹³)_m - OR¹⁴ -; and

(i) R¹⁷ is a group of the formula R¹² - 125

(i) R¹⁷ is a group of the formula R¹² – (OR¹³)_m – and each R¹⁷ may be the same as or different from any other group R¹⁷.

The above defined silane derivatives of Formula II are more fully described in our U.K. Patent Application No. 48009/75 (Serial No. 13

1577715) (equivalent to German Offenlegungsschrift 26 52 719) to which reference may be made for further details.

It will be understood that the functional 5 fluids of the present invention may contain small amounts e.g. 0.05% to 20%, particularly 0.1 to 2%, by weight of additives conventionally employed in such fluids.

In a further aspect of the present invention 10 there is provided a hydraulic system for transmitting power by hydraulic means which system contains as the hydraulic fluid, a functional

fluid as hereinbefore described.

In yet another aspect of the present inven-15 tion there is provided a method of operating a hydraulic system which comprises introducing into the hydraulic system as the hydraulic fluid a functional fluid as hereinbefore described and transmitting power by applying pressure to the 20 hydraulic fluid.

The invention will now be illustrated by the following Examples: -

Examples 1 to 21

.35

3

Functional fluids in accordance with the 25 invention were formulated and subjected to the following tests:-

(a) Kinematic viscosities at -40°C, in centistokes (cS), were measured in the manner set forth in the current SAE J1703 specification;

(b) Rubber swell properties with respect to nitrile (HN 57) and urethane (HU723) rubbers were determined in the manner set forth in the BS 903 specification by measuring the increase in volume of 2.54 cm. square, 2 mm. thick rubber specimens after immersion in the test fluid at 70°C for 3 days.

(c) Vapour lock temperatures were determined by the Gilpin Vapour Lock Test as specified in SAE Paper 710 253 entitled "Operating 70 Performance of Motor Vehicle Braking Systems as affected by Fluid Water Content", the Gilpin vapour lock temperature (VLT) being taken to correspond with the appearance of 3 ml of vapour. This test was performed upon fluids which had previously been subjected to a Humidity Test at a relative humidity (RH) of 80% and a temperature of about 23°C substantially as described in the FMVSS DOT 3/4 specification but extended to a 5 day period and without a reference fluid.

Details of the oxysilane compounds and proportions thereof in the fluids and of the results obtained in the above tests are given in Table 1.

In each case the fluid also contained 2% Primene JMT, a commercially available tertiary alkyl primary amine containing approximately 18 carbon atoms.

The hydrocarbon oil constituting the balance of the fluid was in each case a naphthenic mineral oil having the following characteristics: Viscosity: 130 cS at _-40°F; 3.5 cS at 100°F; and 1.31

cS at 210°F. < - 70°F. 248°C. Pour Point:— . Boiling Point:-208°C. Flash Point (closed):-76°C. Aniline Point:-

100

95

3

75

80

	Example No.	Silane	% by wt in blend	Viscosity @ -40 (cS)	Rubber HN 57	Swell Tests HU 723	Gilpin VLT (°C)	
40	1 2	(RO) ₃ -Si-Me R = 2-octyl R = tridecyl R = Me(OCHCH ₂)-	40 20 10	156.6 236.8 139	-4.0 -1.1 0.46	-14 2.0 3.9	257 233 241	105
45		CH ₃						110
50	4 5 6	(RO) ₂ -Si(Me) ₂ R = n-octyl R = tridecyl R = phenyl R - CH ₃ (OCHCH ₂) ₂ - CH ₃	8 4 20 50	97 590 115 94.9	6.6 -4.6 17.9 7.6	4.0 0.66 20.3 8.1	227 266 197 234	115
55		C ₄ H ₉ OCH ₂ CH ₂ O—Si(Me) ₂ H ₂ CH ₂ CH ₂ CHCH ₂ O 	45	68.6	2.5	5.1	234	120
60	9 CH₃	C_2H_5 CH_3 $(OCH CH_2)_2O-Si(Me)_2$	35	96	5.2	-	245	125
65	CH₃CH	₂CH₂CH₂CH CH₂0						130

TABLE 1

4

Exampl No.	le Silane	0/ h			_	•
		% by wt in blend	Viscosity @ -40 (cS)		Swell Tests HU 723	Gilpin VLT (°C)
•	C ₂ H ₅					
10	$(RO) - Si - (Me)_3$ R = 2 ethylhexyl	40	282	3.6	6.2	172
11	R = tridecyl	30	89.7	2.0	4.4	173 206
12	$R = Me(OCH_2CH) -$	20	62.1	6.1	8.6	160
13	CH ₃ R = phenyl	10	75.1	5.7	12.2	179
14	CH ₃	30	743	-3.5	+0.65	167
15	(CH ₃) ₃ Si-(OCH ₂ CH) ₂₀ (phenyl) ₂ Si [O(CH CH ₂					
	CH ₃	15	300	2.9	3.8	223
16	methyl-Si-[0 CH ₂ CH	-CH ₂ CH ₂ CH	CH ₃] ₂			
	I I	30 H ₅	208.1	1.7	3.2	247
	R' Si(OR) ₃		<u> </u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
17	R' = phenyl R = 2-ethyl hexyl	25	212.3	0.2	2.4	249
18	R' = ethyl R = 2-methylcyclohexy		331.7	-1.4	1.9	250
19	R' = ethyl R = benzyl	40	124.4	28.8	24.0	227
20	R' = Vinyl R = butyl triglycol	35	309.0	8.7	9.6	183
21	R' = 2,4,4-trimethylpen $R = C_4 H_9 OCH_2 CH_2 -$		140.7	1.2	4.2	235
* The fo	ormula given is an ideal o					
propyle	ne glycols of average mol	ecular weight	of about 1500).		io or poly
WHAT	WE CLAIM IS:-		same as o	r differer	t from any o	other group R5;
1. A	functional fluid as herein	nbefore	(v) R ⁶	is alkyl,	alkenyl, ary	l, alkaryl, aralkyl
	comprising a major amou		or alicycl	ic; and ea	ch R ⁶ may t	e the same as or
	drocarbon oil and a minor				other group	
	of an oxysilane compoun formula:—	d having the	(VI) n	is zero oi	an integer;	and each n may
Belletal	R ²		and	ne as or c	mierent mor	n any other n;
	1			27 is a dir	ect linkage o	or a group of the
	$R^1 - Si - R^3$		I formula -		L O - where	ein R ^s and n are
			independ	ently as d	efined above	e, provided that
	$\overset{1}{\mathrm{R}}^{4}$		when R7	is a direc	t linkage at l	east one group
wherein	: :		R ² or R ³	is a grou	p of the form	nula – $(OR^5)_n$ –
(i) F	č' is alkyl, alkenyl, aryl, a	alkaryl, aral-	OR ⁶ .	•	•	` '
kyl or a	licyclic;		2. A f	luid as cla	aimed in clai	m I wherein R ¹
(ii)	R ² and R ³ are each inder	endent a	is alkyl co	ontaining	from 1 to 20	carbon atoms,
group a	s defined for R ¹ or a grou	ip of the for-	alkneyl co	ontaining	from 2 to 20	O carbon atoms,
mular –	$(OR^5)_n - OR^6;$ R ⁴ is a group of the form	la (075)	phenyl, a	karyl or	aralkyl conta	ining from 7 to
(III)	K is a group of the form	iuia – (UK°) _n				ntaining from 6
– UK	or a group of the formula	ı.—	to 20 carl			
	R'					m 1 wherein R ¹
	$-R^7 - Si - R^2$					carbon atoms.
	-K'-SI-K'		4. A f	ivid as cla	nimed in any	one of the pre-
	- R' - SI - R' R3		ceding cla	ums wher	ein K'is alk	ylene containing
who-oi-	N° D1 D2 and D3 are inde-	nondon4l	from 1 to	15 carbo	n atoms.	41
WILGIGIU	ik, k and k are inde	pendently as				m 4 wherein R ⁵
defined	R ⁵ is alkylene; and each	D5 may ba +L-				4 carbon atoms. m 5 wherein R ⁵

75

90

100.

105

110

115

120

125

may be the same as or different from any other 130

is ethylene, propylene or butylene. and R is benzyl, R' is vinyl and R is butyl triglycol or R' is 2,4,4-trimethylpentyl and R is 7. A fluid as claimed in any one of the preceding claims wherein R⁶ is alkyl containing C₄H₃OCH2CH2↔ from 1 to 20 carbon atoms, alkenyl containing 14. A fluid as claimed in any one of the pre-5 from 2 to 20 carbon atoms, phenyl, alkaryl ceding claims which additionally comprises an 70 or aralkyl containing from 7 to 20 carbon amine in an amount of from 0.5 to 20% by atoms or alicyclic containing from 6 to 20 carweight. bon atoms. 15. A fluid as claimed in claim 14 wherein the amine is present in an amount of from 1 A fluid as claimed in claim 7 wherein R^o 10 is alkyl containing from 4 to 18 carbon atoms. to 10% by weight. 9. A fluid as claimed in claim 8 wherein R⁶ 16. A fluid as claimed in claim 14 or claim is alkyl containing from 6 to 15 carbon atoms. 15 wherein the amine is a primary, secondary 10. A fluid as claimed in any one of the preor tertiary amine containing at least 5 carbon ceding claims wherein n is zero or an integer atoms. 15 of from 1 to 30. 17. A fluid as claimed in any one of claims 11. A fluid as claimed in claim 10 wherein n 14 to 16 wherein the amine is selected from Mannich bases formed by condensation of an is zero or an integer of from 1 to 10. 12. A fluid as claimed in claim 11 wherein n amine and formaldehyde with a phenol preis zero or an integer of from 1 to 4. viously alkylated with di- or polyisobutylene; 13. A fluid as claimed in claim 1 wherein polyisobutenylsuccinimides derived from dithe oxysilane is selected from:or polyamines; and amides derived from di-(i) compounds of the formula $(RO)^3 - Si$ or polyalkylene polyamines and polyisobutenyl CH₃ wherein R is 2-octyl, tridecyl or substituted monocarboxylic acids. CH₃(OCHCH₂)-; 18. A fluid as claimed in claim 16 wherein the amine is a primary amine having two CH_3 methyl groups on the alpha carbon atom. (ii) compounds of the formula (RO)₂-Si-19. A fluid as claimed in any one of the pre-(CH₃)₂ wherein R is n-octyl, tridecyl, phenyl ceding claims wherein the hydrocarbon oil is or CH_3 (OCHCH₂)₂-; a mineral oil. 20. A fluid as claimed in any one of claims 30 CH₃ 1 to 18 wherein the hydrocarbon oil is hydro-(iii) the compound having the formula refined mineral oil or an alkylated benzene. $C_4H_9OCH_2CH_2O-Si(CH_3)_2$; A fluid as claimed in any one of the preceding claims which additionally comprises one CH3 CH2 CH2 CHCH2O or more silane derivatives having the general formula:- C_2H_5 $R^{8} - Si - R^{10} \\ OR^{11}$ (iv) the compound having the formula CH₃ 40 $CH_3(OCHCH_2)_2O-Si(CH_3)_2$ wherein: $CH_{3}\,CH_{2}\,CH_{2}\,CH_{2}\,CH_{C}H_{2}\,O$ (a) R^8 is a group of the formula R^{12} – $(OR^{13})_m - OR^{14}$ –; (b) each of R⁹ and R¹⁰ is independently 45 alkyl, alkenyl, aryl, alkaryl, aralkyl, a group of the formula $-OR^{11}$ or a group of the formula $R^{12} - (OR^{13})_m - OR^{14}$; (c) R^{11} is a group of the formula $R^{12} - (OR^{13})_m$ – or a group of the formula:— R^{15} (v) compounds of the formula (RO) - Si -(CH₃)₃ wherein R is 2-ethylhexyl, tridecyl, phenyl or CH₃(OCH₂CH)-; CH₃ 50 (vi) the compound having the formula $R^{16} - Si - (OR^{13})_m$ CH₃ (CH₃)₃ Si-(OCH₂ CH)₂₆ -OSi(CH₃)₃; (vii) the compound having the formula $(phenyl)_2 Si[O(CHCH_2O)_3 CH_3]_2;$ and each R11 may be the same as or different from any other group R¹¹;

(d) R¹² is alkyl, alkenyl, aryl, alkaryl or aralkyl; and each R¹² may be the same as or different from any other group R¹²;

(e) R¹³ is an alkylene group; and each R¹³ CH_3 (viii) the compound having the formula 60 CH₃-Si[OCH₂CH-CH₂CH₂CH₂CH₃]₂; and may be the same as or different from any other C_2H_5 (ix) compounds of the formula R' Si(OR)₃ group R13: (f) R¹⁴ is an alkylene group; and each R¹⁴ wherein R' is phenyl and R is 2-ethylhexyl, R'

65 is ethl and R is 2-methylcyclohexyl, R' is ethyl

	group R ¹⁴ ;	the silane derivative of formula II is present in	40
	(g) m is zero or an integer, and each m may	an amount of from 0.5 to 20% by weight.	
	be the same as or different from any other m; (h) each of R ¹⁵ and R ¹⁶ is independently	25. A fluid as claimed in any one of the pre-	
_	alkyl, alkenyl, aryl, alkaryl, aralkyl, a group of	ceding claims wherein oxysilane compound of	
3	the formula $-OR^{17}$ or a group of the formula	formula I is present in an amount of from 0.1 to 50% by weight based on the total weight of	45
	$R^{12} - (OR^{13})_m - OR^{14}$ -; and	the fluid.	45
	(i) R ¹ ' is a group of the formula R ¹² —	26. A fluid as claimed in claim 25 wherein	
	$(OR^{13})_m$ – and each R^{17} may be the same as	oxysilane compound of formula I is present in	
10	or different from any other group R17.	an amount of from 1 to 35% by weight.	
	22. A fluid as claimed in claim 21 wherein	27. A fluid as claimed in claim 26 wherein	50
	each of R ⁹ and R ¹⁰ is independently alkyl	oxysilane compound of formula I is present in	
	containing from 1 to 18 carbon atoms, alkenyl	an amount of from 10 to 20% by weight.	
	containing from 2 to 18 carbon atoms, phenyl, alkyl substituted phenyl in which the alkyl	28. A fluid as claimed in claim 25 wherein	
15	substituent contains from 1 to 12 carbon	oxysilane compound of formula I is present in	E E
	atoms, benzyl, a group of the formula $-OR^{11}$	an amount of from 0.1 to 5.0% by weight. 29. A fluid as claimed in any one of the pre-	55
	or a group of the formula $R^{12} - (OR^{13})_m$	ceding claims which additionally comprises	
	OR ¹⁴ -; R ¹² is alkyl containing from 1 to 18	one or more additives conventionally employed	
20	carbon atoms, alkenyl containing from 2 to	in hydraulic fluids, refrigerant oils, electrical	
	18 carbon atoms, phenyl, alkyl substituted	oils or heat transfer fluids.	60
	phenyl in which the alkyl substituent contains	30. A fluid as claimed in claim 1, substan-	
	from 1 to 12 carbon atoms or benzyl; R ¹³ is	tially as hereinbefore described in any one of	
25	an alkylene group containing from 1 to 15 car- bon atoms; R ¹⁴ is an alkylene group containing	Examples 1 to 21.	
25	from 1 to 15 carbon atoms; m is zero or an	31. A hydraulic system for transmitting power by hydraulic means which system con-	65
	integer of from 1 to 4; and each of R ¹⁵ and	tains as the hydraulic fluid, a functional fluid	03
	R ¹⁶ is independently alkyl containing from	as claimed in any one of the preceding claims.	
	1 to 18 carbon atoms, alkenyl containing from	32. A method of operating a hydraulic	
30	2 to 18 carbon atoms, phenyl, alkyl substituted	system which comprises introducing into the	
	phenyl in which the alkyl substituent contains	hydraulic system as the hydraulic fluid, a func-	7 0 °
	from 1 to 12 carbon atoms, benzyl, a group of	tional fluid as claimed in any one of claims 1	
	the formula $-OR^{17}$ or a group of the formula $R^{12} - (OR^{13})_m - OR^{14} -$.	to 30 and transmitting power by applying	
25	23. A fluid as claimed in claim 21 or claim	pressure to the hydraulic fluid.	
35	22 wherein the silane derivative of formula II	BOULT, WADE & TENNANT	75
	is present in an amount of from 0.1 to 30% by	34, Cursitor Street,	13
	weight, based on the total weight of the fluid.	London EC4A 1PQ	
	24. A fluid as claimed in claim 23 wherein	Chartered Patent Agents	

Printed for Her Majesty's Stationery Office by MULTIPLEX techniques ltd., St. Mary Cray, Kent. 1981. Published at the Patent Office, 25 Southampton Buildings, London WC2 1AY, from which copies may be obtained.