UNIVERSIDAD DE GUADALAJARA

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Sistemas Inteligentes IV

Actividad 5. Clasificadores y Métricas de Clasificación

Pacheco Quintero Marco Antonio 213535019

23 de abril de 2021

Semestre 2021A

Sección D01

Objetivo

- Para la parte 1, realizar un programa en Python para aplicar una clasificación binaria a los datos de los archivos adjuntos a la actividad. Utilizar las herramientas de sklearn para el modelo de clasificación.
- Para la parte 2, plantear algún problema de clasificación binaria y realiza un programa en Python para resolverlo. Utilizar las herramientas de sklearn para el modelo de clasificación.
- Para cada caso utilizar la métrica de F1 score macro average para demostrar que el entrenamiento tiene una buena generalización. Además, utilizar los siguientes modelos de clasificación:
 - o Arboles de decisión
 - K vecinos más cercanos
 - Máquinas de soporte vectorial
 - o Perceptrón Multicapa

Resultados

Parte 1

- Para el archivo adjunto "df_clasificacion_1.cvs" se muestran a continuación los mejores resultados obtenidos para cada modelo de clasificación.
 - Arboles de decisión

Los resultados de las métricas globales son:

F1 entrenamiento = 0.97 F1 generalización = 0.96 Exactitud (Accuracy) = 0.96

	Precisión	Sensibilidad	Coeficiente F1
0	0.91	1	0.95
1	1	0.93	0.97

La matriz de confusión y curva ROC generadas se muestran enseguida:

o K vecinos más cercanos

Los resultados de las métricas globales son:

F1 entrenamiento = 0.96 F1 generalización = 0.96 Exactitud (Accuracy) = 0.96

	Precisión	Sensibilidad	Coeficiente F1
0	1	0.92	0.96
1	0.92	1	0.96

La matriz de confusión y curva ROC generadas se muestran enseguida:

		Predicciones	
		0	1
Valores	0	12	1
verdaderos	1	0	12

Máquinas de soporte vectorial

Los resultados de las métricas globales son:

 $F1\ entrenamiento=0.92$

F1 generalización = 0.92

 $Exactitud\;(Accuracy)=0.92$

	Precisión	Sensibilidad	Coeficiente F1
0	0.92	0.92	0.92
1	0.92	0.92	0.92

La matriz de confusión y curva ROC generadas se muestran enseguida:

o Perceptrón Multicapa

Los resultados de las métricas globales son:

F1 entrenamiento = 0.92 F1 generalización = 0.92 Exactitud (Accuracy) = 0.92

	Precisión	Sensibilidad	Coeficiente F1
0	0.88	1	0.93
1	1	0.82	0.90

		Predicciones	
		0	1
Valores	0	14	0
verdaderos	1	2	9

- Para el archivo adjunto "df_clasificacion_2.cvs" se muestran a continuación los mejores resultados obtenidos para cada modelo de clasificación.
 - o Arboles de decisión

Los resultados de las métricas globales son:

$$F1$$
 entrenamiento = 0.9333
 $F1$ generalización = 0.92
 $Exactitud$ (Accuracy) = 0.92

En la tabla siguiente se muestran los resultados de las métricas locales:

	Precisión	Sensibilidad	Coeficiente F1
0	0.82	1	0.90
1	1	0.88	0.93

		Predicciones	
		0	1
Valores	0	9	0
verdaderos	1	2	14

K vecinos más cercanos

Los resultados de las métricas globales son:

F1 entrenamiento = 0.91 F1 generalización = 0.92 Exactitud (Accuracy) = 0.92

En la tabla siguiente se muestran los resultados de las métricas locales:

	Precisión	Sensibilidad	Coeficiente F1
0	0.81	1	0.89
1	1	0.88	0.94

		Predicciones	
		0	1
Valores	0	8	0
verdaderos	1	2	15

Máquinas de soporte vectorial

Los resultados de las métricas globales son:

$$F1$$
 entrenamiento = 0.88
 $F1$ generalización = 0.88
 $Exactitud$ (Accuracy) = 0.88

En la tabla siguiente se muestran los resultados de las métricas locales:

	Precisión	Sensibilidad	Coeficiente F1
0	0.86	0.92	0.89
1	0.91	0.83	0.87

		Predicciones	
		0	1
Valores	0	12	1
verdaderos	1	2	10

Perceptrón Multicapa

Los resultados de las métricas globales son:

F1 entrenamiento = 0.92 F1 generalización = 0.92 Exactitud (Accuracy) = 0.92

En la tabla siguiente se muestran los resultados de las métricas locales:

	Precisión	Sensibilidad	Coeficiente F1
0	0.92	0.92	0.92
1	0.92	0.92	0.92

	Predicciones		
		0	1
Valores	0	12	1
verdaderos	1	1	11

- Para el archivo adjunto "df_clasificacion_3.cvs" se muestran a continuación los mejores resultados obtenidos para cada modelo de clasificación.
 - Arboles de decisión

Los resultados de las métricas globales son:

F1 entrenamiento = 0.92 F1 generalización = 0.92 Exactitud (Accuracy) = 0.92

	Precisión	Sensibilidad	Coeficiente F1
0	1	0.86	0.92
1	0.85	1	0.92

o K vecinos más cercanos

Los resultados de las métricas globales son:

F1 entrenamiento = 0.96 F1 generalización = 0.96 Exactitud (Accuracy) = 0.96

	Precisión	Sensibilidad	Coeficiente F1
0	0.91	1	0.95
1	1	0.93	0.97

	Predicciones		
		0	1
Valores	0	10	0
verdaderos	1	1	14

Máquinas de soporte vectorial

Los resultados de las métricas globales son:

F1 entrenamiento = 0.88 F1 generalización = 0.88 Exactitud (Accuracy) = 0.88

	Precisión	Sensibilidad	Coeficiente F1
0	0.79	1	0.88
1	1	0.79	0.88

o Perceptrón Multicapa

Los resultados de las métricas globales son:

F1 entrenamiento = 0.92 F1 generalización = 0.92 Exactitud (Accuracy) = 0.92

	Precisión	Sensibilidad	Coeficiente F1
0	0.93	0.93	0.93
1	0.90	0.90	0.90

	Predicciones					
		0	1			
Valores	0	14	1			
verdaderos	1	1	9			

Parte 2

 En esta sección se planteó un problema de clasificación binaria y se resolvió usando las herramientas vistas en la parte 1.

En un terrario se tienen 2 especies de la familia de insectos Formicidae (Hormigas), con sensores se toman datos a cada individuo y se obtienen pares de datos, uno referente al color del individuo y otro referente al tipo de feromona que secreta. Aclarar que cada especie está relacionada a un rango de color y un tipo de feromona. Los datos recabados se muestran en la siguiente tabla:

x_1	1.2	1.3	1	1.5	1.2	1.6	1.4	0.1	0.4	0.95	0.8	1.7
x_2	0.08	-0.3	-0.08	-0.2	-0.1	0.4	0.2	-0.47	-0.1	-0.13	-0.4	0.08
ŷ	1	0	0	1	0	0	0	1	1	1	1	0

x_1	0.48	2.2	2.4	2	2.3	1.65	0.63	0.9	0.54	0.14	1.5	0.27
x_2	-0.42	0.25	-0.3	0.15	0.5	0.33	-0.37	-0.32	-0.35	-0.21	-0.45	-0.17
ŷ	1	0	0	0	0	0	1	1	1	1	1	1

Arboles de decisión

Los resultados de las métricas globales son:

F1 entrenamiento = 0.84 F1 generalización = 0.8333 Exactitud (Accuracy) = 0.83

	Precisión	Sensibilidad	Coeficiente F1
0	0.75	1	0.86
1	1	0.67	0.80

o K vecinos más cercanos

Los resultados de las métricas globales son:

 $F1\ entrenamiento=0.8333$

 $F1\ generalizaci\'on=0.8333$

Exactitud (Accuracy) = 0.83

En la tabla siguiente se muestran los resultados de las métricas locales:

	Precisión	Sensibilidad	Coeficiente F1
0	0.75	1	0.86
1	1	0.67	0.80

Máquinas de soporte vectorial

Los resultados de las métricas globales son:

F1 entrenamiento = 0.83 F1 generalización = 0.83 Exactitud (Accuracy) = 0.83

	Precisión	Sensibilidad	Coeficiente F1
0	1	0.75	0.86
1	0.67	1	0.80

		Predicciones	
		0	1
Valores	0	3	1
verdaderos	1	0	2

o Perceptrón Multicapa

Los resultados de las métricas globales son:

F1 entrenamiento = 1

F1 generalizaci'on = 1

Exactitud(Accuracy) = 1

	Precisión	Sensibilidad	Coeficiente F1
0	1	1	1
1	1	1	1

Conclusión

Al realizar la actividad se notó que el modelo de regresión de árboles de decisiones y K vecinos más cercanos fueron los más difícil de configurar en cuanto a sus parámetros con el fin de obtener una relativa buena generalización. Mientras que los modelo que menos ajustes necesitaron fueron el modelo de máquinas de soporte vectorial (SVR) y el perceptrón multicapa (MLP). En la parte 2 de la actividad se usó un ejemplo con menor ruido, por lo que fueron más fácil de configurar todos los modelos, y se obtuvieron mejores resultados.