2020

COMPUTER SCIENCE — GENERAL

Paper: DSE-A-2

(Operation Research)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Day 2

Answer question no. 1 and any four from the rest.

1. Answer any five questions:

 2×5

- (a) State duality theorem.
- (b) Write the necessary and sufficient condition for existence of a feasible solution to a transportation problem.
- (c) What is degeneracy in transportation problem?
- (d) Define pure strategy.
- (e) Explain in brief about the nature of Operations Research.
- (f) Define dual problem.
- (g) Give a mathematical formulation of the assignment problem.
- (h) What assumptions are made in the theory of games?
- **2.** (a) Solve the following transportation problem to find the minimum transportation cost (using North-West corner rule):

			To				Available
	9	12	9	6	9	10	5
	7	3	7	7	5	5	6
From Required	6	5	9	11	3	11	2
	6	8	11	2	2	10	9
Required	4	4	6	2	4	2	

(b) Solve the transportation problem using matrix minima method to minimize the cost.

	D_1	D_2	D_3	D_4	D_5	Supply
O_1	7	7	10	5	11	45
O_2	4	3	8	6	13	90
O_3	9	8	6	7	5	95
O_4	12	13	10	6	3	75
O_5	5	4	5	6	12	105
Demand	120	80	50	75	85	

3. (a) A firm plans to begin production of three new products. They own three plants and wish to assign one new plant. The unit cost of producing i at plant j is C_{ij} , as given by the following matrix. Find the assignment that minimizes the total unit cost.

Plant

Product
$$\begin{pmatrix} 10 & 8 & 12 \\ 18 & 6 & 14 \\ 6 & 4 & 2 \end{pmatrix}$$

(b) Give a mathematical formulation of the assignment problem.

5+5

5+5

5+5

- 4. (a) State the rules for determining a Saddle point.
 - (b) Solve the following game and determine the value of the game.

$$\begin{bmatrix}
B \\
A \begin{bmatrix} 2 & 5 \\
4 & 1
\end{bmatrix}$$

5. (a) Solve the following problem using graphical solution mehtod:

Max
$$Z = 3x_1 + 4x_2$$

subject to the constraints:

$$4x_1 + 2x_2 \le 80$$
$$2x_1 + 5x_2 \le 180$$
$$x_1, x_2 \ge 0.$$

(b) Use the simplex method to solve the following L.P.P.

Maximize
$$Z = x_1 + 2x_2$$

subject to,

$$-x_1 + 2x_2 \le 8$$

$$x_1 + 2x_2 \le 12$$

$$x_1 - 2x_2 \le 3$$

$$x_1, x_2 \ge 0.$$

5+5

6. (a) Write the dual to the following linear programming problem. (L.P.P.):

Maximize $Z = x_1 - x_2 + 3x_2$

subject to the constraints,

$$x_1 + x_2 + x_3 \le 10$$

 $2x_1 - x_3 \le 2$
 $2x_1 - 2x_2 + 3x_3 \le 6$

$$x_1, x_2, x_3 \ge 0.$$

(b) Use duality to solve the followign L.P.P.:

Maximize $Z = 2x_1 + x_2$

Subject to the constraints:

$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

$$x_1, x_2 \ge 0.$$

5+5

- 7. (a) Explain how to transform an unbalanced transportation problem into a balanced transportation problem where demand of warehouses is satisfied by the supply of factories.
 - (b) Solve the following transportation problem.

Destination

		1	2	3	Supply
Source	A	2	3	1	20
	В	5	4	8	15
	C	5	6	8	30
Demand		20	30	25	

5+5

- 8. (a) How will you solve an assignment problem where a particular assignment is prohibited?
 - (b) How can you maximize an objective function in the assignment problem?

5+5