American Computer Science League

Contest #1

Elementary Division Solutions

1. Computer Number Systems

 $A6C2E_{16} = 1010\ 0110\ 1100\ 0010\ 1110_2$ when using 4 bits per digit = $10\ 100\ 110\ 110\ 000\ 101\ 110_2$ when using 3 bits per digit = 2466056_8

1. 24660568

2. Computer Number Systems

 $375_8 = 3*8^2 + 7*8^1 + 5*8^0 = 3*64 + 7*8 + 5*1 = 192 + 56 + 5 = 253_{10} \\ 100_{16} = 1*16^2 + 0*16^1 + 0*16^0 = 1*256 + 0 + 0 = 256_{10} \\ 111111110_2 = 1*2 + 1*4 + 1*8 + 1*16 + 1*32 + 1*64 + 1*128 = 254_{10} \\ 255_{10}$

 2.100_{16}

3. Computer Number Systems

 $\begin{array}{lll} 414_8 = 100\ 001\ 100_2 & has\ 3\ 1\mbox{'s} \\ 1B5_{16} = 1\ 1011\ 0101_2 & has\ 6\ 1\mbox{'s} \\ A68_{16} = 1010\ 0110\ 1000_2 & has\ 5\ 1\mbox{'s} \\ 524_8 = 101\ 010\ 100_2 & has\ 4\ 1\mbox{'s} \end{array}$

3. 1B5 or 1B5₁₆

4. Computer Number Systems

 $57_8 = 5*8 + 7 = 47$ (47 + 3 * 20 - 57) * 4 $11_2 = 1 + 2 = 3$ (47 + 60 - 57) * 4 $14_{16} = 1*16 + 4 = 20$ 50 * 4 $100_2 = 0 + 0 + 4 = 4$ 200 4. 200

5. Computer Number Systems

The BLUE component is the last 2 digits in each hexadecimal number. If you subtract 1D from C4 in base 16, you get A7. Borrowing 16 from C makes that B and 4 + 16 - D(13) = 7. Then B(11) - 1 = 10(A).

5. A7₁₆