

Approved by
Dean of School of Applied
Mathematics
Assylbek A. Issakhov

On 23.08.2022 Protocol No. 1

DISCIPLINE CODE AND NAME MATH1213 Calculus – III	CREDITS RK & ECTS: 3 (5 ECTS)	PREREQUISITES: MATH1201 Calculus-I, MATH1202 Calculus-II
TEACHER:	TEACHER'S CONTACTS:	TIME & PLACE OF CLASSES: According to the
Artem V Sinitsa, MSc, Senior-Lecturer	Email: a.sinitsa@kbtu.kz,	approved timetable (MS Teams)

Aim of the course

Calculus or mathematical analysis is the essential part of the mathematical background required of mathematicians, economists, engineers, physicists, and other scientists. This requirement reflects the importance and wide applications of the subject matter. The course is designed for IT and engineering specialties students. This course is also intended to provide students with a thorough understanding of the theory and application of the analysis of functions with complex variables. The aim of this course is to familiarize students with the basic concepts of the analysis of functions of a complex variable, and their various ap-plications in solving physical problems, the formation of a holistic system of knowledge about the analysis of the functions of a complex variable and the development of skills to use it for the study of physical processes.

Classes schedule and assignments

Clubbes belieuu				
Week	Theme / module	Format of	T/SIS	
		conducting	requirements	
		classes		
1	Line Integrals and	Interactive	SIS 1	
	Vector Fields.	lesson		
		(discussion)		
2	Conservative fields	Interactive	SIS 2	
	and general integral	lesson		
	formulas.	(discussion)		
3	Surface Integrals.	Interactive	SIS 3	
		lesson		
		(discussion)		
4	Divergence theorem.	Interactive	SIS 4	
		lesson	Quiz-1	
		(discussion)		
5	Integrals depending	Interactive	SIS 5	
	on parameter.	lesson		
		(discussion)		
6	The Eulerian	Interactive	SIS6	
	Integrals.	lesson		
		(discussion)		
7	The algebra and	Interactive	SIS 7	
	calculus of complex	lesson	Midterm	
	numbers.	(discussion)	assessment	
8	Complex variable	Interactive	SIS 8	
	functions.	lesson		

_			
		(discussion)	
9	Differentiation of complex variable functions.	Interactive lesson (discussion)	SIS 9
10	Integration of complex variable functions	Interactive lesson (discussion)	SIS 10
11	Consequences of Cauchy's integral theorem.	Interactive lesson (discussion)	SIS 11 Quiz-2
12	Representing analytic functions as series.	Interactive lesson (discussion)	SIS 12
13	Residue calculus and application of contour integration.	Interactive lesson (discussion)	SIS 13
14	Applications of complex function theory.	Interactive lesson (discussion)	SIS 14
15	Variational principles of conformal mappings.	Interactive lesson (discussion)	SIS 15

• COURSE ASSESSMENT PARAMETERS*

Main literature:

Academic Handbook

Link to the M-Teams:

Tasks and policy of the course:

Compiled by:

MSc, Senior-Lecturer

Sinitsa A.V.