						Roll No.:		
	National Institute of Technology,						Delhi	
D		Name of	the Examin	nation: B. Te	ech.	2000		
Branch Title of the Course		: All Branches : Linear Algebra & Complex Analysis			Semester : II			
	ne: 3 Hours		a a compi	ex Allalysis	Cour		: MAL151 Marks: 50	
			Section A	7				
0.1.7	[All Attempt the following:	parts of section A a	re compulsor	y. Each part is	of 01 ma	ırk]		
i.	treempt the following.	with Rank of A as 2						
::	(A) I	(B) 2	(C) 7		(D) 5			
ii.	find the dimension	ns of the null space	and the colu	mn space of th	ie given r	natrix		
	$A = \begin{vmatrix} 1 & -3 & -1 \\ -2 & 1 \end{vmatrix}$	3 -4 1						
	(A) dim Nul $A = A$	4, dim Col $A = 1$	B) dim Nul	$A = 3 \dim Co$	1 A = 2			
	(c) $aim Nul A = 2$	2, dim Col $A = 3$ (D) dim Nul	A = 3, dim Co	1A = 3			
i.	The value of the inte	gral $\int_{0}^{1+t} (x^2 + iy) dz$,	along the path	$y = x^2$ is				
		-						
	$(A) \frac{1}{3} (5i - 3)$	(B) $\frac{1}{6}(5i-1)$	(C) $\frac{1}{6} (5i$	+1)	(D) $\frac{1}{2}$ (3	(i-1)		
•	The value of the integral				3	,		
	(A) $2\pi i$	(B) 0	(C) $2(\pi i -$	-1)	(D) πi			
	If $f(z) = u + iv$ is a	analytic function and	$u = x^2 - y^2$	then v is	()			
	(A) $2xy+c$	(B) $2x^2y + c$		(C) $2xv^2 + c$	(D	$2r^2v^2 + c$		
	$\begin{bmatrix} 4 & -1 & 6 \end{bmatrix}$) 2x y + c		
	Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. An eigen value of	A is 2. The ba	sis for the corre	esponding	eigen space is		
	2 -1 8					•		
	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$		$1 \rceil \lceil 1 \rceil$	[[1	$\lceil \rceil \lceil 3 \rceil \rceil$		
	$\left\{ \left \begin{array}{c} 2 \\ \end{array} \right , \left \begin{array}{c} 0 \\ \end{array} \right \right\}$	$\{ 0 , 0 \}$		2 , -2	{ ($0 \mid, \mid 0 \mid$		
	$ \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\} $ (A)	(B) $\lfloor 1 \rfloor \lfloor 1 \rfloor \rfloor$	(C)	1] [0]]		$2 \rfloor \lfloor -2 \rfloor \rfloor$		
	Which one of the follow	owing statement is tru	ue for $f(z) =$	z^2	(D)			
	(A) Differentiable eve(C) Differentiable onl	erywhere (E	3) Nowhere o					
	The function $\frac{\sin z}{z^4}$ ha) Analytic					
	-							
	(A) pole of order 4	(B) removable sin	ngularity	(C) pole of orde	er 3 (D) essential sin	gularity	
	The value of the integr	rai $\oint_C \frac{1}{z+1} dz$, where	e C is circle 2	z = 2 is				
	(A) 0 (B)	$2\pi i$ (C)	$2\pi ie$	(D) $\frac{2\pi i}{e}$				
	The value of the integr							
	(A) 0 (B)	$2\pi i$ (C)	πi	(D) $3\pi i$				
				. ,				

Section B

[Attempt any 04 questions of 05 marks each]

Q.2. Define Eigen values and Eigen vectors of a matrix. Obtain the Eigen values and Eigen vectors of the

$$\text{matrix} \begin{bmatrix}
 8 & -6 & 2 \\
 -6 & 7 & -4 \\
 2 & -4 & 3
 \end{bmatrix}$$

- Q.3. Construct a matrix A having Eigen values -1, 2, 2 and corresponding Eigen vectors (1,2,3), (1,1,0), (0,1,1) respectively.
- Q.4. State and prove the necessary and sufficient conditions for the derivative of a function f(z) of a complex variable.
- Q.5. Evaluate $\oint_{|z|=2} \frac{e^z}{z} dz$ and hence show that $\int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 2\pi$. Q.6. Find Laurent Series expansion of $f(z) = \frac{2z-3}{z(z+1)(z-2)}$ in the region 1 < |z+1| < 3.

[Attempt any 02 questions of 10 marks each]

- Q.7. (A) Use the Gram Schmidt process to produce an orthogonal basis for W from the basis of W (04 Marks) given by $\{(1,-1,-1,1,1), (2,1,4,-4,2), (5,-4,-3,7,1)\}.$
 - (B) Let $A = \begin{bmatrix} 6 & -5 & 25 & 28 \\ 8 & -6 & 34 & 38 \end{bmatrix}$ be a matrix. Construct a matrix N whose columns form a basis

for the Nul A (null space of A), and construct a matrix R whose rows form a basis for Row A (row space (06 Marks) of A).

- Q.8. (A) Show that the Eigen values of the Hermitian matrix are always real. (04 Marks)
 - **(B)** Given a function $f(z) = \begin{cases} \frac{2xy(x+iy)}{x^2+y^2}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$, show that the CR-Equations are satisfied

at origin however the derivative of the function f(z) at origin does not exist. (06 Marks)

Q.9. (A) Determine the poles of the function and residue at each pole for $f(z) = \frac{z^2}{(z^2+1)(z^2-4)(z-1)^2}$.

(03 Marks)

- **(B)** Find the analytic function f(z) = u + iv, given that v = 2xy. (03 Marks)
- (C) Evaluate using Cauchy Residue theorem $\oint_{|z+2-j|=6} \frac{dz}{(z-1)^3 (z^2+1)}.$ (04 Marks)