homework 1

Xie zejian

Contents

1	1		1
		1	
		2	
	1.3	3	2
2	2		2
3	3		2
	3.1	1	2
		2	
		3	
	3.4	4	3
_	6		3
	4.1	1	3
	4.2	2	4

1 1

1.1 1

Lemma 1.1. Suppose A with eigenvalues λ_i is symmetric, then

$$eig(\mathbf{I} + c\mathbf{A}) = 1 + c\lambda_i$$

 $eig(\mathbf{A} - c\mathbf{I}) = \lambda_i - c$

Proof. Note

$$|\mathbf{I} + c\mathbf{A} - \lambda \mathbf{I}| = |\mathbf{I} + c\lambda_i \mathbf{I} - \lambda \mathbf{I}| = 0 \Rightarrow \lambda = 1 + c\lambda_i$$

the other one can be proved similarly.

Note

$$\mathbf{A} = \mathbf{I} - \rho(-\mathbf{I} + \mathbf{e}\mathbf{e'})$$

Where **e** is p all-one vector. Note **ee'** has one eigenvalue of p and p-1 eigenvalues of 0, then **A** has p-1 eigenvalues of $1-\rho$ and one $1+(p-1)\rho$ and thus

$$|\mathbf{A}| = (1 - \rho)^{p-1} [1 + (p-1)\rho]$$

1.2 2

Let |A|=0, we have $(1-\rho)=0$ or $1+(p-1)\rho=0$ and thus

$$\rho = \begin{cases} 1 \\ -\frac{1}{p-1} \end{cases}$$

1.3 3

You can't prove a false statement.

2 2

Note eigenvalues of $c\mathbf{A}$ is $c\lambda_i$. Plug $\rho = .5$ and p = 3, we find

$$eig(\mathbf{A}) = 4, 1, 1$$

and the corresponding eigenvectors are:

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

3 3

3.1 1

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = (\mathbf{x} - \overline{x}\mathbf{e})' (\mathbf{x} - \overline{x}\mathbf{e})$$

$$= \left(\mathbf{x} - \frac{\mathbf{e}'\mathbf{x}}{\mathbf{e}'\mathbf{e}}\mathbf{e}\right)' \left(\mathbf{x} - \frac{\mathbf{e}'\mathbf{x}}{\mathbf{e}'\mathbf{e}}\mathbf{e}\right)$$

$$= \mathbf{x}' (\mathbf{I} - \mathbf{P}_{\mathbf{e}})' (\mathbf{I} - \mathbf{P}_{\mathbf{e}})\mathbf{x}$$

$$= \mathbf{x}' (\mathbf{I} - \mathbf{P}_{\mathbf{e}})\mathbf{x}$$

where $\mathbf{P_e} = \frac{\mathbf{e}\mathbf{e'}}{\mathbf{e'}\mathbf{e}}$ and thus

$$A = I - P_e$$

3.2 2

It's symmetric and idempotent and thus a projection. In fact we have

Lemma 3.1. If P is a projection matrix, so is I - P

Proof. Symmetric follows from both \mathbf{I} and \mathbf{P} is symmetric and idempotent follows from

$$(I - P)^2 = (I^2 + P^2 - PI - IP) = I - P$$

3.3 3

Nonnegative define as $\sum_{i=1}^{n} (x_i - \overline{x})^2 \ge 0$ clearly.

3.4 4

$$\begin{aligned} \operatorname{rank}\left(\mathbf{I} - \mathbf{P_e}\right) &= \operatorname{tr}\left(\mathbf{I} - \mathbf{P_e}\right) \\ &= \operatorname{tr}\left(\mathbf{I}\right) - \operatorname{tr}\left(\mathbf{P_e}\right) \\ &= n - \operatorname{rank}\left(\mathbf{P_e}\right) \\ &= n - 1 \end{aligned}$$

4

By 1 we have find it's eigenvalues are $1 + \rho$ and $1 - \rho$, thus the corresponding eigenvectors is

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

and thus

$$\mathbf{A} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 - \rho & \\ & 1 + \rho \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

5

4 6

4.1 1

Note $\frac{\partial \mathbf{X'AX}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A'})\mathbf{x}$ for general \mathbf{A} and \mathbf{x} :

$$\frac{\partial \frac{\mathbf{x'Ax}}{\mathbf{x'x}}}{\partial \mathbf{x}} \propto 2\mathbf{Ax}(\mathbf{x'x}) - \mathbf{x'Ax}2\mathbf{x} = 0 \Rightarrow \mathbf{Ax} = \frac{\mathbf{x'Ax}}{\mathbf{x'x}}\mathbf{x}$$

that implies the extreme value occurs when \mathbf{x} is the eigenvectors and the eigenvalues is the value of $\frac{\mathbf{x}'\mathbf{A}\mathbf{x}}{\mathbf{x}'\mathbf{x}}$. Thus

$$\max_{x \neq 0} \frac{\mathbf{x'Ax}}{\mathbf{x'x}} = \lambda_1$$

$$\min_{x \neq 0} \frac{\mathbf{x'Ax}}{\mathbf{x'x}} = \lambda_p$$

and holds when $x = t_1$ and $x = t_p$ respectively.

4.2 2

Lemma 4.1. A is positive definite iff there exist invertible B s.t. A=BB'

By lemma 4.1, **B** is symmetric and thus

$$\frac{\partial \frac{\mathbf{x'Ax}}{\mathbf{x'Bx}}}{\partial \mathbf{x}} \propto 2\mathbf{Ax}(\mathbf{x'Bx}) - \mathbf{x'Ax}2\mathbf{Bx} = 0 \Rightarrow \mathbf{Ax} = \frac{\mathbf{x'Ax}}{\mathbf{x'Bx}}\mathbf{Bx}$$

thus ${\bf x}$ is eigenvectors of ${\bf B^{-1}A}$ and correspond to $\frac{{\bf x'Ax}}{{\bf x'Bx}}$ and the claim follows easily.