olist

Segmentation des clients d'un site de e-commerce

Sommaire

Contexte

Segmentation & maintenance

Qui est Olist?

Segmentation des clients => campagnes de communication ciblées

Comprendre les **différents types d'utilisateurs** grâce à leur comportement et à leurs données personnelles

Différencier les bons et moins bons clients en termes de commandes et de satisfaction

Fournir une **description actionnable** de la segmentation et de sa logique sous-jacente pour une utilisation optimale

Proposition de **contrat de maintenance :** analyse de la **stabilité des segments** au cours du temps

Les données disponibles

- Base de données SQL
- 9 tables
- Données anonymisées
- Commandes de 2016 à 2018

Analyse exploratoire

Nettoyage des données

96096 clients (99441 commandes), 51 variables

93042 clients (96203 commandes), 86 variables

Filtres sur les données :

- order_status = 'delivered' (97%)
- Janvier 2017< Période retenue < Septembre 2018
- Ecarter les clients B2B (6 clients)

Nouvelles variables : agrégation par client

- RFM : Récence, Fréquence, Montant total
- Satisfaction clients
- Délai de livraison moyen
- Panier moyen : montant, nombre d'articles
- Nombre d'articles achetés par catégorie et total

Pic de ventes au moment du Black Friday

2 clients sur 5 habitent dans l'état dans Sao Paulo

Seulement 3% des clients ont effectué plusieurs achats

Récence

1 client sur 2 a effectué un achat dans les 9 derniers mois.

Fréquence

3 clients sur 100 ont effectué plusieurs achats

3% des clients = 7% des commandes

Monétaire

3 clients sur 4 ont dépensé moins de 200 € au total sur le site

10% des clients ~ 38% du CA

Satisfaction

8 clients sur 10 satisfaits après la livraison de leur commande

Corrélation entre les variables

Peu de clients ont effectué plusieurs achats => corrélation entre:

- average_basket_amount et monetary
- average_basket et total_items

Segmentation des clients

La démarche

Les pistes explorées

Baseline

RFM Marketing

RFM Marketing : démarche simple mais limitée

RFM | k-means, 4 clusters

Clustering K-means - RFM

RFM | Autres pistes explorées

CAH: Dataset trop important

Test sur un échantillon du dataset

Alternative : k-means puis CAH

DBScan : Dataset trop important et nuage de points trop dense

Clustering DBScan avec les variables RFM

Test sur un échantillon du dataset

RFM + Satisfaction | K-Means

Clustering K-means - RFM + satisfaction

segment

- Hibernating
- Dissatisfied
- New customer
- Loyalist
- Can't lose

Répartition des clients par segment

RFM + Satisfaction | K-Means

Segment	Définition
Hibernating	High value recency
Dissatisfied	Low value review score
New customer	Low value recency
Loyalist	High value frequency
Can't lose	High value monetary

ACP + K-Means : définition des clusters non actionnables

Simulation Maintenance

Détermination de la période de maintenance : ARI score

- Echantillon d'entraînement : 6 mois
- Incrément de calcul de l'ARI : 1 mois

• Fréquence de maintenance : 2 mois

Simulation de la maintenance tous les 2 mois

- Un réentraînement du modèle tous les 2 mois permet de rester au-dessus de la limite de 0,8.
- Possible d'espacer les maintenances au bout d'un certain temps.

Points de vigilance

Paramètres à surveiller :

- Nombre optimal de clusters k
- Tests statistiques (ex. Kolmogorov Smirnov)

Changement des données d'entrée :

- Echelle du review_score
- Suppression de catégorie
- Ventes exceptionnelles (Black Friday)

Test de Kolmogorov Smirnov

H0 : les distributions sont identiques.

- 1 = H0 non rejetée
- 0 = H0 rejetée

Conclusion & Perspectives

Conclusion

Méthode retenue : K-Means

Variables : **Récence, Fréquence, Montant, Satisfaction clients**

5 clusters: New customer, Hibernating, Dissatisfied, Loyalist, Can't Lose

Maintenance tous les 2 mois dans un premier temps, surveillance de paramètres (k, distribution des variables, ...)

Perspectives !!

- Avis des clients : analyse de sentiment, longueur de l'avis, étapes concernées, vendeurs
- **Délai de livraison**: distance client-vendeur, respect de la date limite de livraison produit, ...

- Recueillir plus d'informations sur les clients : Age, Genre, ...
- Ajouter la richesse du quartier pour l'utilisation des données de géolocalisation

Segmentation clients pour les évènements micro (Black Friday, Soldes, ...) : définir des campagnes ciblées pour les clients qui pourraient revenir

planos e preços

dúvidas

parceiros

os c

mais

área do cliente

quero vender no olist

Merci de votre attention

Back-up slides

Un chiffre d'affaires en croissance

Nombre de clients en augmentation

10% des clients représentent 38% du chiffres d'affaires

Fréquence

3% des clients = 7% des commandes

Monétaire

10% des clients = 38% du CA

Items

12% des clients = 46% des articles vendus

CA par vendeur

10% des vendeurs = 67% du chiffre d'affaires

Health beauty: la catégorie de produit phare

12% des ventes et 14% du chiffre d'affaires

Des clients insatisfaits de la livraison

25% des délais de livraison > 15j

Méthode des k-means

Choix du nb de clusters : k

Initialisation : k centres placés aléatoirement au sein du nuage de points

<u>Itérations</u>:

- Association des points au centre le plus proche,
- Calcul des nouveaux centres de gravité
- Association des points aux nouveaux centres
- Etc... jusqu'à ce que les centres ne bougent plus (= convergence)

Méthodes pour déterminer le nombre optimal de clusters k

Distortion score

Silhouette score

Silhouette plot

RFM k-means: comparaison 4 et 6 clusters

Classification ascendante hiérarchique (CAH)

<u>Initialisation</u>: 1 individu = 1 cluster

Itérations: Regroupement avec les individus les + proches en distances (les plus similaires)

Un dendrogramme représente la hiérarchie sous la forme d'un arbre :

- Individus = feuilles
- Branches = liaisons entre les individus

La distance entre les individus est représentée par la longueur de la branche : plus la branche est courte, plus les individus sont similaires et inversement.

Les classes, ou *clusters*, sont obtenues en coupant l'arbre à une distance choisie *(souvent à l'endroit où les branches s'allongent).*

Density based Scan (DBScan)

Hyperparamètres:

- **Epsilon** : rayon autour d'un point de données
- Minpts: nombre minimum de points nécessaires pour former une région dense (=cluster)

<u>Initialisation</u>: 1 individu = 1 cluster

<u>Itérations</u>: Regroupement des individus par densité

Core, border, and noise points (image by author)

Analyse en Composantes Principales

Objectif : Réduction de dimension

- + : Visualisation des données, Améliorer l'apprentissage, Gain en stockage et temps de traitement par la suite
- : Perte d'informations

- Recherche de la projection permettant de visualiser au mieux les données
- Composante principale = combinaison linéaire des variables initiales

