

## planetmath.org

Math for the people, by the people.

## Weyl algebra

Canonical name WeylAlgebra

Date of creation 2013-03-22 15:27:19 Last modified on 2013-03-22 15:27:19 Owner GrafZahl (9234) Last modified by GrafZahl (9234)

Numerical id 5

Author GrafZahl (9234)

Entry type Definition
Classification msc 16S36
Classification msc 16S32

Related topic HeisenbergAlgebra

Related topic UniversalEnvelopingAlgebra

## Abstract definition

Let F be a field and V be an F-vector space with basis  $\{P_i\}_{i\in I} \cup \{Q_i\}_{i\in I}$ , where I is some non-empty index set. Let T be the tensor algebra of V and let J be the ideal in T generated by the set  $\{P_i \otimes Q_j - Q_j \otimes P_i - \delta_{ij}\}_{i,j\in I}$  where  $\delta$  is the Kronecker delta symbol. Then the quotient T/J is the |I|-th Weyl algebra.

## A more concrete definition

If the field F has characteristic zero we have the following more concrete definition. Let  $R := F[\{X_i\}_{i \in I}]$  be the polynomial ring over F in indeterminates  $X_i$  labeled by I. For any  $i \in I$ , let  $\partial_i$  denote the partial differential operator with respect to  $X_i$ . Then the |I|-th Weyl algebra is the set W of all differential operators of the form

$$D = \sum_{|\alpha| \le n} f_{\alpha} \partial^{\alpha}$$

where the summation variable  $\alpha$  is a multi-index with |I| entries, n is the degree of D, and  $f_{\alpha} \in R$ . The algebra structure is defined by the usual operator multiplication, where the coefficients  $f_{\alpha} \in R$  are identified with the operators of left multiplication with them for conciseness of notation. Since the derivative of a polynomial is again a polynomial, it is clear that W is closed under that multiplication.

The equivalence of these definitions can be seen by replacing the generators  $Q_i$  with left multiplication by the indeterminates  $X_i$ , the generators  $P_i$  with the partial differential operator  $\partial_i$ , and the tensor product with operator multiplication, and observing that  $\partial_i X_j - X_j \partial_i = \delta_{ij}$ . If, however, the characteristic p of F is positive, the resulting homomorphism to W is not injective, since for example the expressions  $\partial_i^p$  and  $X_i^n$  commute, while  $P_i^{\otimes p}$  and  $Q_i^{\otimes n}$  do not.