

a module solution provider

WG1300-00 WLAN Module

TI CC3000 IEEE 802.11b/g solution

Datasheet
Revision 0.4

FEATURES

- IEEE 802.11 b/g compliant.
- Typical WLAN Transmit Power:
 - > +18.0 dBm, 11Mbps, CCK (b)
 - > +13.5 dBm, 54Mbps, OFDM (g)
- Typical WLAN Sensitivity:
 - > -86 dBm, 8% PER, 11Mbps
 - > -73 dBm, 10% PER, 54Mbps
- Compact footprint: 16.3mmx13.5mm
- Low height profile: 2mm
- Operating Voltage: 2.9~4.8V
- Operating temperature: -40~85°C
- Embedded network stack
- Wireless security subsystem
 - ➤ WEP
 - WPA Personal
 - WPA2 Personal
- SPI host interface
- Worldwide certificate: FCC, IC, CE

APPLICATIONS

- Home entertainment control
- Thermostats, appliances
- HVAC controller, remote displays
- Home Network aggregators
- Remote appliance diagnostics/support
- Remote storage devices
- Cameras and video surveillance

DESCRIPTION

WG1300-00 is a 2.4GHz WLAN module which can be integrated with any low-cost/low power MCU to makes it the ideal solution for embedded applications.

With the necessary PHY, MAC and network layers, it makes WG1300-00 can support WLAN application via SPI bus to communicate with host microcontrollers or other embedded processors.

With worldwide certificates, customers can leverage modular certificate by adopting the same antenna and RF trace routing to save development cost and speed up time to market by following its reference design.

- Toys
- Gaming

<u>Index</u>

1. FUNCTIONAL FEATURES	4
1.1. Module Block Diagra	4
1.2. FUNCTIONAL BLOCK FEATURES	4
1.2.2. WLAN Features	4
1.2.2. Network Stack Supported Protocols	5
1.2.3. Wireless Security System Features	5
2. MODULE SPECIFICATION	6
2.1. ABSOLUTE MAXIMUM RATINGS	6
2.2 RECOMMENDED OPERATING CONDITIONS	6
2.3. GENERAL CHARACTERISTICS	7
2.4. Power comsumption	7
2.4. POWER COMSUMPTION	8
3. MODULE OUTLINE	9
3.1. FOOTPRINT AND PINOUTS	12
4. SPI HOST CONTROLLER INTERFACE	
4.1. Overview	
4.2. SPI Interface Description	
4.3. SPI LINE DESCRIPTION	13
5. POWER-UP SEQUENCE	14
6. DEBUG INTERFACE	15
6.1.UART DEBUG LINES	15
6.2.RS232 Debug Lines	
7. SMT AND BAKING RECOMMENDATIONS	16
7.1. Baking condition	16
7.2. SMT RECOMMENDATION	
7.2. SIVIT RECONIVENDATION 7.3. STENCIL THICKNESS	
7.4. SOLDERING PASTE (WITHOUT PB)	
· · · · · · · · · · · · · · · · · · ·	

8. PACKAGE INFORMATION	18
8.1. MODULE MECHANICAL OUTLINE	18
8.2. PACKAGE MARKING	
8.3.Ordering Information	19
9. REFERENCE SCHEMATICS	20
10. LAYOUT RECOMMENDATIONS	21
11. CONTACT JORJIN TECHNOLOGY	23
12. HISTORY CHANGE	24
ORITA	

1. FUNCTIONAL FEATURES

1.1. Module Block Diagram

Figure 1 Module Block Diagram

1.2. Functional Block Feature

1.2.1. WLAN Features

WLAN MAC Baseband Processor and RF transceiver which is IEEE802.11b/g compliant

- Accepts 26MHz reference clock Input
- IEEE Std 802.11d,i PICS compliant
- Supports Serial Peripheral Interface (SPI) Host Interface
- Medium-Access Controller (MAC)
 - Embedded ARM™ Central Processing Unit (CPU)
 - ➤ Hardware-Based Encryption/Decryption Using 64-, 128-Bit WEP, TKIP or AES Keys
 - Supports requirements for Wireless Fidelity (Wi-Fi) Protected Access (WPA and WPA2.0) and IEEE Std 802.11i [Includes Hardware-Accelerated Adanced-Encrytion Standard (AES)]

- Baseband Processor
- 2.4GHz Radio
 - Digital Radio Processor (DRP) implementation
 - Internal LNA
 - Supports: IEEE Std 802.11b, 802.11g, 802.11b/g

1.2.2. Network Stack Supported Protocols

- Transport layer
 - ➤ TCP
 - ➤ UDP
- Network layer
 - ➤ IPv4
 - Ping
 - ➤ DHCP
 - DNS Client
- Link layer
 - > ARP

1.2.3. Wireless Security System Features

- Supported modes
 - Open (no security)
 - ➤ WEP
 - > WPA-Personal
 - WPA2-Personal
- Supported encryption types
 - ➤ WEP
 - TKIP
 - > AES
 - Open

2. MODULE SPECIFICATION

2.1. Absolute Maximum Ratings

Parameters	Min	Max	Unit
Power supply Voltage (VBAT)	-0.5	+5.5 ⁽¹⁾	V
Voltage of digital pins (2)	-0.5	+3.6	V
Voltage of EEPROM and RS232 test signals	-0.5	2.1)	V
Operating Temperature	-40	+85 (3)	°C
Storage Temperature	-55	+125	°C

- (1) Maximum allowed depends on accumulated time at that voltage; 4.8V for 7 years lifetime, 5.5V for 6 hours cumulative.
- (2) This includes the SPI and Power Enable signals
- (3) The device can be reliably operated for 5,000 active-WLAN cumulative hours at TA of 85°C.

Table 1 Absolute Maximum Ratings

2.2. Recommended Operating Conditions

Recommended Operating Conditions

Parameters	Min	TYP	Max	Unit
VBAT	2.9	3.3	4.8	V
Voltage of digital pins	0	3.3	3.6	V
Voltage of EEPROM and RS232 test signals	0		1.8	V
Operating Temperature	-30	25	75	°C

Table 2 Recommended Operating Conditions

2.3. General Characteristics

DC Characteristics (RS232/EEPROM I/O)

Parameters	Test Conditions Min		Max	Unit
Logic input low, V _{IL}		0	0.67	V
Logic input high, V _{IH}		1.05	1.92	V
Logic output low, V _{OL}	4.8mA	0	0.45	V
Logic output high, V _{OH}	4.8mA	1.17	1.92	V

Table 3 DC Characteristics General Purpose I/O

2.4. Power Consumption

Parameters	Test Conditions	Tye	Max	Unit
802.11b TX Current	VBAT=3.6V, T_{amb} =+25°C, P_{o} =17dBm, 11Mpbs,	212		mA
	L=2048bytes, t _{delay} (idle)=40u\$			
802.11g TX Current	VBAT=3.6V, $T_{amb} = \pm 25^{\circ}C$, $P_{e} = 13.5$ dBm,	165		mA
	54Mpbs, L=2048bytes, t _{delay} (idle)=40uS			
802.11b RX Current		92		mA
802.11g RX Current	VBAT=3.6V	92		mA
Shut-down mode		0.5	5	uA

Table 4 WLAN Power Consumption

2.5. RF Characteristics

WLAN Transmitter Characteristics

 $(TA=+25^{\circ}C, VBAT=3.3V)$

Parameters	Test Conditions	Min	Tye	Max	Unit
802.11b TX Output Power	11Mpbs, Mask Compliance, 35%EVM	16	18		dBm
802.11g TX Output Power	54Mpbs, Mask Compliance, -25dB EVM	11.5	13.5		dBm

Table 5 WLAN Transmitter RF Characteristics

WLAN Receiver Characteristics

(TA = +25°C, VBAT = 3.3V)

Parameters	Test Conditions	Min	Tye	Max	Unit
802.11b RX Sensitivity	11Mbps, 8% PER	Y	-73	-69	dBm
802.11g RX Sensitivity	54Mbps, 10% PER		-86	-82	dBm

Table 6 WLAN Receiver RF Characteristics

3. MODULE OUTLINE

3.1. Footprint and pinouts

For PCB layout, the footprint below is recommended for your applications.

Figure 2 WG1300-00 Footprint and Pinouts

3.2. Pin Description

Pin #	Signal Name	Туре	Description
1	GND	GND	Ground
2	NS_UARTD	1/0	Networking subsystem; UART Debug line
3	FUNC4	1/0	GPIO Signal
4	WL_UART_DBG	I	WL_UART_DBG
5	WL_EN2 (1)	0	WL_EN2
6	WL_RS232_TX (2)	I	WL_RS232_TX (Test-mode signal, 1.8V Logic)
7	WL_EN1 (3)	0	WL_EN1.

	N/I B0000 51/ (2)		Doog DV (T
8	WL_RS232_RX ⁽²⁾	0	WL_RS232_RX (Test-mode signal, 1.8V Logic)
9	GND	GND	Ground
10	GND	GND	Ground
11	GND	GND	
12	SPI_CS	0	HOST Interface SPI Chip Select
13	SPI_DOUT	I	HOST Interface SPI Data Out
14	SPI_IRQ	0	HOST Interface SPI Interrupt
15	SPI_DIN	I	HOST Interface SPI Data In
16	GND	GND	Ground
17	SPI_CLK	0	HOST Interface SPI CLOCK
18	GND	GND	Ground
19	VBAT_IN	Power	Power Supply to Module
20	GND	GND	Ground
21	EXT_32K	CLK	EXTERNAL SLOW CLOCK FROM HOST
22	GND	GND	Ground
23	VIO_HOST	Power	WIO Supply FROM HOST
24	VIO_SOC	Power	Module VIO Supply
25	GND	GND	Ground
26	VBAT_SW_EN)_	Module Enable
27	SDA_EEPROM (4)	1/0	I2C DATA LINE FROM EEPROM.
28	SDA_CC3000 (4)	1/0	I2C DATA LINE FROM CC3000.
29	SCL_EEPROM (5)	1/0	I2C CLOCK LINE FROM EEPROM.
30	SCL_CC3000 (5)	1/0	I2C CLOCK LINE FROM CC3000.
31	GND	GND	Ground
32	GND	GND	Ground
33	GND	GND	Ground
34	GND	GND	Ground
35	RF_ANT	RF	WLAN ANT Port
36	GND	GND	Ground

37	GND	GND	Ground
38	GND	GND	Ground
39	GND	GND	Ground
40	GND	GND	Ground
41	GND	GND	Ground
42	GND	GND	Ground
43	GND	GND	Ground
44	GND	GND	Ground
45	GND	GND	Ground
46	GND	GND	Ground

- (1) Short to WL_EN1 (Pin #7) for function mode.
- (2) Left unconnected for function mode
- (3) Short to GND for test mode; Short to WL_EN2 (Pin #5) for function mode.
- (4) I2C Data lines from EEPROM and CC3000 must be connected together for function mode. (5)

12C Clock lines from EEPROM and CC3000 must be connected together for function mode.

Table 7 WG1300-00 Pin Description

4. SPI HOST CONTROLLER INTERFACE

WG1300-00 communicates with HOST via SPI Bus. Below shows the descriptions on SPI bus.

4.1. Overview

The SPI interface provides high-speed data transfer capability with low power consumption for mobile electronic devices. The SPI bus was designed to operate on a point-to-multipoint basis by providing a separate, active-low chip select (CS) per device.

4.2. SPI Interface Description

In order to facilitate a broad implementation, the protocol is half duplex and does not require simultaneous operation of data OUT (DO) and data IN (DI). All TI communication devices are slaves in this protocol, and all transactions are initiated by the host, as the SPI Master. The clock rate for each one of the connected devices may be different and configured per device. Figure 3 shows SPI interface signals

Figure 3 SPI Interface signals

4.3. SPI Line Description

Port Name	1/0	Description
SPI_CLK	1	Clock (0 MHz to 38.4 MHz) from host to slave
SPI_DI	I	Data from host to slave
SPI_CS	I	CS signal from host to slave
SPI_IRQ	0	Interrupt from slave to host
SPI_DO	0	Data from slave to host

Table 8 SPI Interface Signals Description

5. POWER-UP SEQUENCE

Figure 7 demonstrates the wake up sequence of WG1300-00

Figure 4 WG1300-00 Power-On Sequences

Note:

- 1. VBAT, VIO, and SLOWCLK must be available before WL_EN1 and WL_EN2 are asserted.
- 2. At T0: WL_EN1 and WL_EN2 can be asserted after the VIO reaches 90 percent of VIO voltage.

 On this functional mode the MCU drives the WLAN pins to initiate the power up (WL_EN1 and WL_EN2 are shorted and connected to MCU GPIO).
- 3. At T1 (wake-up time): The CC3000 device accomplishes power up after the IRQ changes state to LOW. Wake-up time T1 is approximately 53 msec.
- 4. At T2: The normal master SPI write sequence is CS low, followed by IRQ low (CC3000 host), indicating that the CC3000 core device is ready to accept data. The duration of T2 is approximately 7 msec.

6. DEBUG INTERFACE

The debug interface helps customers to evaluate the HW/SW features for their application. It also helps to debug during the development and manufacturing stage. The WG1300-00 module support RS232 signals and UART signals for debug purpose. Connect RS232 and UART signals to the test points for future debug support.

6.1. UART Debug Lines

A unidirectional UART lines are provided for debugging WLAN subsystem and network subsystem functions. This is a TX-only debug interface that delivers diagnostic messages. Table 11 shows the dedicated UART debug pins of WG1300-00

Signal names	WG1300-00 Pin#	Function
WL_UART_DBG	4	Logger for WLAN FW debug
NS_UARTD	2	Networking subsystem UART Debug line

Table 9 WG1300-00 UART Debug Lines

6.2. RS232 Debug Lines

During production testing the pins below are used for RTTT Wireless LAN SW utility. Table 12 shows the dedicated rs232 debug pins of WG1300-00

Signal names	Function
WL_RS232_TX	RTTT Test Utility for WLAN RF Debug
WL_RS232_RX	

Table 10 WG1300-00 RS232 Debug Lines

7. SMT AND BAKING RCOMMENDATIONS

7.1. Baking Condition

- Follow MSL Level 4 to do baking process.
- After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be mounted within 72 hours of factory conditions <30°C/60% RH or stored at <10% RH.
- Device require bake, before mounting, if Humidity Indicator Card reads > 10%
- If baking is required, Devices may be baked for 8 hrs at 125°C.

7.2. SMT Recommendation

Figure 8 is recommended reflow profile and Table 13 is its information

Figure 5 WG1300-00 Recommended reflow profile

No.	Item	Temperature (°C)	Time (sec)
1	Pre-heat	D1: 140 ~ D2: 200	T1: 80 ~ 120
2	Soldering	D2: = 220	T2: 60 +/- 10
3	Peak-Temp.	D3: 250	°C max

Table 11 WG1300-00 reflow information

Note: (1) Reflow soldering is recommended two times maximum.

(2) Add Nitrogen while Reflow process: SMT solder ability will be better.

7.3. Stencil Thickness

0.1~ 0.15 mm (Recommended)

7.4. Soldering Paste (without Pb)

Recommended SENJU N705-GRN3360-K2-V can get better soldering effects.

8. PACKAGE INFORMATION

8.1. Module Mechanical Outline

Figure 6 WG1300-00 Mechanical Outline

8.2. Package Marking

JORJIN CC3000-WG1300-XX O YYWWSSF

Date Code: YYWWSSF

YY = Digit of the year, ex: 2010=10

 $WW = Week (01 \sim 53)$

SS = Serial number from 01 ~99 match to manufacture's lot number

F = Reserve for internal use

Figure 7 WG1300-00 Package Marking

8.3. Ordering Information

Order Number	Description
WG1300-00	JORJIN CC3000 Module
WG1300E00	JORJIN CC3000 Module EM Board with Chip Antenna

Table 12 Orderable WG1300-00 Part Numbers

9. REFERENCE SCHEMATICS

WG1300-00 to Host Reference Design

** VIO_HOST supports both of two cases which the voltages of VBAT and VIO of MCU may be the same or different. So it keeps MCU selection to be more flexible.

10. LAYOUT RECOMMENDATION

RF Trace & Antenna

- > 50 ohm trace impedance match on the trace to the antenna.
- Recommended 50ohm trace design for PCB layout

Move all the high-speed traces and components far away from the antenna.

10.0 mil

4.3

Separation (S):

Dielectric (Er):

- > Check ANT vendor for the layout guideline and clearance.
- Matching circuit layout should be as following figure.

Power Trace

➤ Power trace for VBAT should be 40mil wide. 1.8V trace should be 18mil wide.

Ground

- ➤ Having a complete Ground and more GND vias under module in layer1 for system stable and thermal dissipation as following figure.
- ➤ Have a complete Ground pour in layer 2 for thermal dissipation.

ORINA

- Increase the GND pour in the 1st layer, move all the traces from the 1st layer to the inner layers if possible.
- Move GND vias close to the pad.

Slow Clock

> The slow clock trace should not be routed above or below digital signals on other layers.

11. CONTACT JORJIN TECHNOLOGY

Headquarters 5F, No.28, Lane 141, Sing-ai Rd, Neihu

District, Taipei City 114, Taiwan R.O.C.

Website http://www.jorjin.com/tw

Technical Support davidkuo@jorjin.com.tw

Sales Contact mtlee@jorjin.com.tw

**WG1300-00 EM Board User Guide (WG1300-00 EM Board-UG-D01)

12. HISTORY CHANGES

Revision	Date	Description
R 0.1	2012/1/4	Release 0.1
R 0.2	2012/2/20	Add Module footprint at Section 10.1
R 0.3	2012/4/17	Update Package Marking
R 0.4	2012/5/7	Modify file format, reference SCH.
		Update power consumption