

Neural Machine Translation by Jointly Learning to Align and Translate

JUHYEONG LEE, KNUAIR

Agenda

- I. Introduction
- II. Background
- III. Model Architecture: Learning to Align and Translate
- IV. Experiment & Results

Dzmitry Bahdanau

Kyunghyun Cho

Yoshua Bengio

• Bahdanau, D., Cho, K. H., & Bengio, Y. (2015, January). Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015.

• Previous Presentation : Seq-to-Seq

Source: https://github.com/bentrevett/pytorch-seq2seq

- A Family of Encoder–Decoders
 - Encode a source sentence into a fixed-length vector
 - needs to be able to compress all the necessary information of a source sentence into a fixed-length vector

- A Family of Encoder–Decoders
 - Encode a source sentence into a fixed-length vector
 - needs to be able to compress all the necessary information of a source sentence into a fixed-length vector

- Problem
 - the use of a fixed-length vector is a bottleneck
 - difficult for the neural network to cope with long sentences

- Proposal Method
 - Extend this by allowing a model to automatically (soft-)search
 for parts of a source sentence that are relevant to predicting
 a target word, without having to form these parts as a hard
 segment explicitly.

 Searches for a set of positions in a source sentence where the most relevant information is concentrated

Image Source: https://towardsdatascience.com/end-to-end-attention-based-machine-translation-model-with-minimum-tensorflow-code-ae2f08cc8218

- Searches for a set of positions in a source sentence where the most relevant information is concentrated
- Predicts a target word based on the context vectors associated with these source positions and all the previous generated target words

Image Source: https://towardsdatascience.com/end-to-end-attention-based-machine-translation-model-with-minimum-tensorflow-code-ae2f08cc8218

- Distinguishing Feature
 - Does not attempt to encode a whole input sentence into a single fixed-length vector

- Distinguishing Feature
 - Does not attempt to encode a whole input sentence into a single fixed-length vector
 - Encodes the input sentence into a sequence of vectors and chooses a subset of these vectors adaptively while decoding the translation

• The improvement is more apparent with longer sentences

Background: Neural Machine Translation

- NMT : Probabilistic Perspective
 - Finding a target sentence y that maximizes the cond. prob. of y, given a source sentence x
 - $\operatorname{argmax}_{y} p(y|x)$

Background: Neural Machine Translation

- NMT : Probabilistic Perspective
 - Finding a target sentence y that maximizes the cond. prob. of y, given a source sentence x
 - $\operatorname{argmax}_{y} p(y|x)$
 - Given a source sentence, a corresponding translation can be generated by searching for the sentence that maximizes the conditional probability

Background: RNN Enc-Dec

• Encoder: reads the input sentence, a seq. of vectors $\mathbf{x} = (x_1, \dots, x_{T_x})$, into a vector c.

Background: RNN Enc-Dec

- Encoder : reads the input sentence, a seq. of vectors $\mathbf{x} = (x_1, \dots, x_{T_r})$, into a vector c.
- Decoder: trained to predict the next word $y_{t'}$ given the context vector c, and all the previously predicted words $\{y_1, \dots, y_{t'-1}\}$.

Background: RNN Enc-Dec

- Encoder : reads the input sentence, a seq. of vectors $\mathbf{x} = (x_1, \dots, x_{T_r})$, into a vector c.
- Decoder: trained to predict the next word $y_{t'}$ given the context vector c, and all the previously predicted words $\{y_1, \dots, y_{t'-1}\}$.
- $p(y) = \prod_{t=1}^{N} p(y_t | \{y_1, ..., y_{t'-1}\}, c)$, where $p(y_t | \{y_1, ..., y_{t'-1}\}, c) = g(y_{t-1}, s_t, c)$, s_t be the hidden state of the RNN

• New cond. prob. In new model:

$$p(y_i|\{y_1, ..., y_{i-1}\}, x) = g(y_{i-1}, s_i, c_i), \text{ where } s_i = f(s_{i-1}, y_{i-1}, c_i)$$

• The probability is conditioned on a distinct context vector c_i for each target word y_i .

• Encoder maps the input sentence x to a sequence of annotations $(h_1, \dots, h_{T_x}) = \text{hidden states of RNN Encoder}$ and context vector c_i depends on the sequence.

• Encoder maps the input sentence x to a sequence of annotations $(h_1, \dots, h_{T_x}) = \text{hidden states of RNN Encoder}$ and context vector c_i depends on the sequence.

• Each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i-th word of the input sequence.

• The *context vector* c_i is then computed as a weighted sum of these annotations h_i :

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

•
$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

•
$$\alpha_{ij}=\frac{\exp(e_{ij})}{\sum_{k=1}^{T_{\chi}}\exp(e_{ik})}$$
 , where $e_{ij}=a(s_{i-1},h_j)$

•
$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

•
$$\alpha_{ij}=\frac{\exp(e_{ij})}{\sum_{k=1}^{T_{\chi}}\exp(e_{ik})}$$
 , where $e_{ij}=a(s_{i-1},h_j)$

- An energy e_{ij} :
 - scores how well the inputs around position $j(h_j)$ and the output at position $i(s_{i-1})$ match.

Image Source : https://jiho-ml.com/weekly-nlp-23/

- Summary
 - context vector c_i : expected annotation

- Summary
 - context vector c_i : expected annotation
 - Weight α_{ij} : prob. that the target word y_i is aligned to, or translated from, a source word x_i

- Summary
 - context vector c_i : expected annotation
 - Weight α_{ij} : prob. that the target word y_i is aligned to, or translated from, a source word x_j
 - α_{ij} reflects the importance of the annotation h_j w.r.t. the previous hidden state s_{i-1} in deciding the next state s_i and generating y_i

- Summary
 - This implements a *mechanism of attention of decoder*
 - Decoder decides parts of the source sentence to pay attention to

- Summary
 - This implements a *mechanism of attention of decoder*
 - Decoder decides parts of the source sentence to pay attention to

 The information can be spread throughout the sequence of annotations, which can be selectively retrieved by the decoder accordingly

Encoder: Bi-RNN for Annotating

- Obtain an annotation for each word x_j by concatenating $\overrightarrow{h_j}$, $\overleftarrow{h_j}$, i.e., $h_j = \left[\overrightarrow{h_j}^T; \overleftarrow{h_j}^T\right]$
- The annotation h_j
 - contains the summaries of both the preceding words and the following words
 - will be focused on the words around x_j

Experiments & Results

Experiments & Results

- English-French Translation
- "European economic Area"
- "Zone économique européenne"

Soft-Alignment:
 Able to correctly align words

Experiments & Results

- English "the", in French, corresponds to one of "le", "la", "les", or "l"
- Hard-alignment : hard to choose which is correct
- Soft-alignment: solves this issue by look both "the" and "man"
- Able to find a linguistically plausible alignment

Q&A

