

RS-485 Interfacing through Odroid-C2 and Arduino

1

Alok Ranjan Kesari[†] and G V V Sharma*

2

CONTENTS

1	Components		
2	Single	e Slave	1
	2.1	Hardware Connections	1
	2.2	Software Setup	1
	2.3	Configuring Arduino as slave	1
	2.4	On Odroid	2
	2.5	Odroid as Master	2

Multiple Slaves

3

1 Components

Component	Quantity
USB-RS485	1
Max485	2
Arduino	2
Known Resistors	2
Unknown Resistors	2

TABLE 1

2 SINGLE SLAVE

2.1 Hardware Connections

Problem 2.1. Make the pin connections as in Table 2. Also connect the Resistors R_1 and R_2 according to Fig. 2.1.

2.2 Software Setup

For Arduino: This library needs to be copied to the libraries folder in the sketchbook directory of Arduino. https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino

† The author wan an intern at IIT Hyderabad during the summer of 2017 email: alok.kesari@yahoo.co.in. *The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

Arduino	Max485	USB-RS485
Tx	DI	
Rx	RO	
D4	DE	
D4	RE	
5V	VCC	
GND	GND	
	A	A
	В	В

TABLE 2

2.3 Configuring Arduino as slave

Problem 2.2. Run the following program on the odroid using Arduino software. This will configure the Arduino as a slave.

#include "Arduino.h"
#include <ModbusRtu.h>
#define TXEN 4

// Storing resistance value
uint16_t resistance[1] = {0};

```
//To initialize the slave arduino
  with address 1
//And using 0/1 pin of arduino as
  TX/RX
//TXEN enables MAX485 transmission
Modbus slave(1,0,TXEN);

void setup() {
//analog pin A3 used for received
  resistance value
  pinMode(A3, INPUT);
//Baudrate at which modbus works
  slave.begin(19200);
}
void loop() {
  resistance[0]=(analogRead(A3));
  slave.poll(resistance, 1);
}
```

2.4 On Odroid

The following commands are for an Odroid running Archlinuxarm. The process for running it on other Linux distributions is similar.

```
#For minimalmodbus,
#python module to control RS-485
sudo pip install minimalmodbus
```

2.5 Odroid as Master

Problem 2.3. Run the following code on Odroid. You will see the resistance value being displayed.

```
#!usr/bin/env python
import time
import minimalmodbus
import serial

instrument = minimalmodbus.
    Instrument('/dev/ttyUSBO',1)
vi=5;#VCC
r1=1000;#1K known resistance

#Modbus Configuration for Master
instrument.serial.baudrate =
    19200
instrument.serial.bytesize = 8
```

```
instrument. serial. parity
   serial.PARITY NONE
instrument. serial. stopbits
                              = 1
instrument. serial. timeout
                              = 1
instrument. mode
  minimal modbus. MODE RTU
while 1:
        try:
                 #Reading resistor
                    [0] in slave
                 test reg =
                    instrument.
                    read registers
                    (0,1)
           print (test_reg)
                 #Calculating the
                    resistance using
                     voltage level
                 vo = (test reg[0] * vi
                    )/1024.0;
                 b = (vi/vo) - 1;
                 r2=r1/b;
                 print ('The_
                    resistance_value
                    _measured_from_1
                    ∟is:', r2)
                 #polling every 0.5
                     seconds
                 time.sleep (0.5)
        except:
                 print ("error_USB2
                    _----")
                 time.sleep (1)
```

3 Multiple Slaves

Problem 3.1. Configure another arduino as a slave with address 2. Use problem 2.2.

Problem 3.2. Connect one more arduino to the odroid using a breadboard according to Table 2. You will have to make multiple connections using the breadboard.

Problem 3.3. Modify the code in problem 2.3 to verify if the second arduino is active.

Problem 3.4. Run the following program to control both arduinos on the RS-485 bus. Note that the bus is nothing but the connection from multiple RS-485 interfaces on the common A,B lines.

```
#! usr/bin/env python
import time
import minimal modbus
import serial
instrument = minimal modbus.
   Instrument('/dev/ttyUSB0',1)
instrument2 = minimalmodbus.
   Instrument ('/dev/ttyUSB0',2)
vi = 5;
b=0;
r1 = 1000;
instrument. serial. baudrate
   19200
instrument. serial. bytesize
                               = 8
instrument. serial. parity
   serial.PARITY NONE
instrument. serial. stopbits
                               = 1
instrument. serial. timeout
instrument.mode
   minimal modbus. MODE RTU
instrument2. serial. baudrate
   19200
instrument2. serial. bytesize
                                = 8
instrument2. serial. parity
                               =
   serial.PARITY NONE
instrument2. serial. stopbits
                               = 1
instrument2.serial.timeout
                                = 1
instrument2.mode
   minimal modbus. MODE\_RTU
usb1_on = True
usb2\_on = True
while 1:
         if usb2 on == True :
                 try:
                          print ("
                             USB1")
                          test_reg =
```

```
instrument2
                     read_registers
                     (0,1)
                  print (
                     test reg
                     [0]
                  vo = (
                     test_reg
                     [0] * vi
                     /1024.0;
                 b = (vi/vo)
                     -1;
                  r2=r1/b;
                  print ('
                     The _
                     resistance
                     _value_
                     measured
                     _from_1_
                     is:', r2
                  time.sleep
                      (0.05)
         except:
                  print ("
                     error_
                     USB1")
                  time.sleep
                      (1)
if usb1 on == True :
         try:
                  print ("
                     USB2")
                  test reg =
                     instrument
                     read_registers
                     (0,1)
                  print (
                     test_reg
                     )
                  vo = (
                     test reg
                     [0]*vi
                     /1024.0;
                 b = (vi/vo)
```

```
-1;
r2=r1/b;
        print ('
           The
           resistance
           ∟value∟
           measured
           _from_2_
           is:', r2
        time.sleep
             (0.5)
except:\\
        print ("
            error_
           USB2_")
        time.sleep
             (1)
```