Niveaux d'analyse linguistique en Traitement Automatique des Langues

Frederic Bechet

Aix Marseille Université - Laboratoire d'Informatique et Systèmes - LIS-CNRS UMR 7020

Aix*Marseille

Université

Master Info

Traitement Automatique des Langues

Traitement Automatique des Langues

- Les langages naturels sont implicites et ambigus
 - ► Remove the stones from the cherries and put them in the pie
 - ► I saw the man on the hill with a telescope
- Compréhension du langage?
 - rendre le langage explicite
 - enlever les ambigüités
- OK, mais comment?
 - Compréhension à travers une tâche
 - Compréhension à travers un modèle formel

Compréhension

- à travers une tâche
 - traduction
 - résumé automatique
 - systèmes de dialogue
- à travers un modèle formel
 - basé sur une theorie du langage
 - but : découvrir les structures sous-jacentes de la langue
 - produire des analyses non-ambigues

Analyse linguistique sur plusieurs niveaux

I saw the man on the hill with a telescope

Beaucoup de théories linguistiques!!

- Accord sur les principaux niveaux de traitement auqnd on analyse une phrase
 - d'abord, qu'est-ce qu'une phrase?
 - $oldsymbol{0}$ niveau morpho-lexical \rightarrow quels sont les *mots*, les unités de base d'une *phrase*?
 - $oldsymbol{0}$ niveau syntaxique ightarrow quelles sont les structures qui lient les mots ensembles?
 - niveau semantique → quel est le sens littéral d'une séquence de mots?
 - niveau pragmatique → quel est le sens en contexte d'une séquence de mots?
- Cependant de très nombreuses théories ont été proposées pour chaque niveaux!!
- et tous les niveaux sont inter-dépendants
 - ► I saw [the man on the hill] with [a telescope]
 - ► I saw [the man] on [the hill with a telescope]

Niveau Morphologique

- Part-Of-Speech tagging
 - étiquetage morpho-syntaxique

I saw the man on the hill with a telescope

Niveau syntaxique

A quoi sert la syntaxe?

6/29/16, 1:48 PN

Niveau syntaxique

- Beaucoup de théories différentes!!
- Structure plate : chunking
 - ► [I] [saw] [the man] [on the hill] [with a telescope]
- Structure de graphe
 - Constituency parsing (analyse en constitutants)
 - Dependency parsing (analyse en dépendance)

Constituency parsing

- Principe
 - La structure d'une phrase est faites de mots enchassés en groupes appelés constituants
 - Context-Free-Grammar / Noam Chomsky

Dependency parsing

- Principe
 - La structure syntaxique d'une phrase consiste à relier les mots avec des relations binaires, typées, appelées dépendances
 - ▶ Dependency Grammar / Lucien Tesnière

Encore plus de théories!!

- Globale
 - thème
- Locale
 - Named-entity recognition (reconnaissance en entités nommées)
 - Etiquetage concept/valeur
- Structures sémantiques
 - coreference resolution (résolution des coréférences)
 - analyse sémantique de surface en cadre sémantique (semantic frames)
 - predicat/valeur
 - graphes semantiques
 - ▶ semantique formelle → forme logique

Semantic Role Labelling

Berkeley Framenet

Taking

Definition:

```
An Agent removes a Theme from a Source so that the it is in the Agent's possession.

Milton TOOK the can of beer out of the refrigerator.
```

FEs:

Core:

Agent [] Semantic Type: Sentient

The person who takes possession of the Theme.

Milton TOOK the can of beer out of the refrigerator.

Source [] Semantic Type: Source

The location of the Theme prior to the taking.

Milton TOOK the can of beer out of the refrigerator.

```
Theme []
Semantic Type: Physical object
```

The Agent takes possession of the Theme.

Milton TOOK the can of beer out of the refrigerator.

Abstract Meaning Representation

AMR – Abstract Meaning Representation

- Nodes are variables labelled by concepts
 - · Entities, events, states, properties
 - d / dog: d is an instance of dog
- Edges are semantic relations
- · E.g. "The dog is eating bones."

```
(e / eat-01
:ARG0 (d / dog)
:ARG1 (b / bone))
```



```
eat.01: consume (VN-class: eat-39.1, FN-frame: Ingestion)
ARGO-PAG: consumer, eater (VN-role: agent)
ARG1-PPT: meal (VN-role: patient)
```

Analyse linguistique

Beaucoup de tâches, beaucoup de modèles, mais quels processus sous-jacents?

- 3 operations de base
 - segmentation
 - étiquetage
 - mise en relation (linking)

Analyse linguistique

- Architecture naïve
 - ► Etand onné une entrée X
 - lacktriangledown énumération de toutes les solutions possibles $Y=Y_1,Y_2,\ldots,Y_N$
 - $oldsymbol{0}$ évaluer et donner un score à chaque solution Y_i as $p(Y_i)$
 - \bullet choix de la *meilleure* solution $\hat{Y} = argmax_{Y_i \in Y} p(Y_i)$

Segmentation

$$X = egin{array}{c|cccc} a & b & c & d \\ \hline & a & b & c & d \\ a & b & c & d \\ \mathcal{Y} = egin{array}{c|cccc} a & b & c & d \\ \hline & a & b & c & d \\ \hline & & & \ddots & \\ & a & b & c & d \\ \hline \end{array}$$

• 2^{n-1} segmentations possible

Labelling

ullet k^n séquences de labels possibles

Linking

$$X=$$
 a b c d a a a a b $\mathcal{Y}=$ a a b a b a d d d

ullet n^n relations possibles dans le graphe

Quels algorithmes pour toutes ces opérations?

- ullet Problème 1 o nombre énorme de solutions possibles pour chaque opération
 - impossible d'énumérer toutes les solutions
 - propositions
 - * couper chaque solution Y en $parties: F(Y) = y_1, y_2, \ldots$, partagées par des solutions multiples
 - * évaluer une solution revient à trouver une fonction combinant les évaluations de chacune des parties :

$$p(Y) = \sum_{y \in F(Y)} p(y)$$

- * ajouter des contraintes pour réduire le nombre de solutions solutions
- implémentation
 - * heuristiques, règles expertes
 - * (très large) choix de méthodes d'apprentissage automatique

Quels algorithmes pour toutes ces opérations?

- Problème 2 → interdependence entre les operations
 - ▶ impossible de garder tous les espaces de recherche de chaque opération
 - propositions
 - ajouter plus de contraintes!!
 - **★** pipeline architecture

NLP pipeline architecture

Principes

- ightharpoonup chaque operation est un module M
- l'entrée du module M_i est la sortie du module M_{i-1}
- chaque module M_i produit uniquement la meilleure solution \hat{Y}^i d'après la fonction d'évaluation

NLP pipeline architecture

Avantages

- ▶ simplicité → l'analyse linguistique est la concaténation de modules indépendants
- flexibilité → chaque module peut avoir une architecture différente, du moment qu'il respecte les entrées/sorties attendues
- efficacité → l'espace de recherche est réduit de manière radical entre chaque module (1-best)

Inconvénients

- sous-optimal : on brise l'hypothèse d'interdependence entre les niveaux d'analyse
- \blacktriangleright effet boule de neige possible : une erreur au module M_i peut provoquer plusieurs erreurs au niveau M_{i+1}

Exemple de pipeline linguistique

- Sentence segmention
- Word tokenization
- Part-Of-Speech tagging
- Chunking
- Syntactic parsing
- Named Entity Recognition
- Co-reference resolution
- Semantic parsing

Est-ce qu'on peut faire mieux que le pipeline?

• Prendre des décisions trop tôt peut poser problème ..

Est-ce qu'on peut faire mieux que le pipeline?

• Effet "boule de neige" des erreurs

Comment briser ce pipeline?

- Garder plusieurs hypothèses entre chaque module : espace de recherche
 - ► listes de n-meilleures (n-best) solutions
 - treillis contenant des solutions multiples
 - avantages : simplicité, chaque module reste indépendant
 - inconvénients : les n-meilleures solutions sont souvent très similaires, et garder un treillis pose des problèmes combinatoires

Comment briser ce pipeline?

- Utiliser une approche "multi-tâche"
 - Unification des représentations du texte quelle que soit la tâche
 - sorties multiples ou on non interdépendance entre les niveaux d'analyse
 - ▶ implémentation avec des *réseaux de neurones profonds*

- 1. Select the next task
- 2. Select a random example for this task
- 3. Update task-specific $\dot{\rm NN}$ by taking a gradient step with respect to this example

• Natural Language Processing (Almost) from Scratch (Collobert et al.)

4 Go to 1.

Multi-task with Deep Neural Network

- Using a multitask approach
 - need to unify all processes
 - with a unified representation for all tasks

Can be implemented thanks to deep neural networks!!!!

Unified representation with DNN

- Continuous word meaning representation
 - ► Nothing new!! Distributional Semantic
 - ★ You shall know a word by the company it keeps (J.R. Firth, 1957)
- From Frequency-based models to Prediction-based models
 - sucess story of word embeddings

Unified representation with DNN

- Prediction-based models (or probabilistic models)
 - Model training on a (very) large text corpus for :
 - ★ Predicting a word according to its context
 - * Predicting a context from a word
- (Deep) Neural Network prediction models
 - The last layer in the NN before the prediction output is used to represent each word
 - ► This layer is the word vector on which similarities will be estimated
 - Mikolov 2013 : Word2Vec
 - ⋆ Don't count, predict! [Baroni et al., 2014]
- Dynamic contextual representation (Transformer models)
 - BERT the swiss army knife of NLP

Breaking the pipeline with Deep Neural Networks

- Deep Neural Networks + Representation Learning (embeddings)
 - open a lot of possibilities for multi-task learnings
- A lot of architecture can be defined!!
 - unified network with multi-task loss
 - different networks with common representation updating one task at a time
 - ▶ learning representation for a task + fine-tuning on another one \rightarrow embeddings pipeline

Le règne de BERT

- BERT le couteau-suisse des modèles de langue?
 - modèle de représentation contextuelle des mots
 - appris sur plusieurs tâches en mode auto-supervisé
 - sur d'énorme quantités de données
 - sur plusieurs langues en même temps
- General Language Understanding Evaluation (GLUE) (et SuperGLUE)
 - 9 tâches de "compréhension" du langage
 - ★ question/réponse
 - inférence
 - * analyse de sentiment
 - k ...
- Machine 1 Humain 0?
 - https://gluebenchmark.com/leaderboard