Book of Abstract Algebra (2nd Edition)		
Chapter 23, Problem 3ED	Bookmark	Show all steps: ON
Pro	oblem	
Prove the following for an integers a, b, c and a	Il positive integers <i>m</i> ar	nd <i>n</i> :
If $a \equiv b \pmod{p}$ for every prime p , then $a = b$.		
Step-by-s	tep solution	
Step ·	1 of 3	
Here, objective is to prove that $a = b$		
Comment		
Step 2	2 of 3	
Consider a,b are integers, m is a positive integers	jer.	
If m divides $a-b$, then a is congruent to b mod	dulo <i>m</i> which is represe	$a = b \pmod{m}$ $a = b + mq$
Comment		
Step :	3 of 3	
Consider $a = b \pmod{p}$; p is a prime.		

$$a = b \pmod{p}$$

 $a = b + pk$
 $a - b = pk$; when $-1 \le k \le 1$
 P divides equivalently $a - b$, that is $p \mid a - b$;
 $a - b \in \{...., -3p, -2p, -p, 0, p, 2p, 3p,\}$
 $a - b = 0 \pmod{p}$ $\left(\because -\frac{p}{2} < a, b < \frac{p}{2}\right)$
 $a - b = 0$
 $a = b$
Hence, proved

Comment