B.M.S. COLLEGE OF ENGINEERING BENGALURU

Autonomous Institute, Affiliated to VTU

Lab Record

Artificial Intelligence

Submitted in partial fulfillment for the 5th Semester Laboratory

Bachelor of Technology in Computer Science and Engineering

Submitted by:

Harsh Kumar 1BM21CS261

Department of Computer Science and Engineering B.M.S. College of Engineering Bull Temple Road, Basavanagudi, Bangalore 560 019 Nov-Mar 2024

B.M.S. COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the Artificial Intelligence (22CS5PCAIN) laboratory has been carried out by Harsh Kumar (1BM21CS261) during the 5th Semester Nov-March-2024.

Signature of the Faculty Incharge:

Prof. Shravya AR
Assistant Professor
Department of Computer Science and Engineering
B.M.S. College of Engineering, Bangalore

1. Tic-Tac-Toe

```
le ma Mc Pac Poe
del anitualize board ().

vecturen [['for-in range (3)]

for-in range (3)]
de airplay-board (board):
 for dear in board?

prient ('1'-join (row))

prient ('-' * 5)
det us-hummer (doored, player):
    y all (board [][] == player
   ( jui juin vange (3)) ou all
   Charled [][[] = = player for ; in
     sange (3))
  vellum tour
  uf (all (chard ti) (j) == player for i' um drange (3) ) or all (
    board [1] [2-i] == player por
    i un Leunge (3)):
                vieleum there
   detwen false
```

del is ward fell (deodera). helmen all board [13 [13] vange (3) for quin range (3) def tic-fac-foe ()? beard = anitialize - departed) ciwient - player = x' aunil delle ? display- decould (decould) proud = unt (input (f"playor amerine - playery, enter son (0, dare) ?)) col = un (anput (11 entre columno),1, De 2)0 11)) y board Torons [col] == 11 Woord flow [[w] = avoient player. is menner (beard current player): 8 display- doored (doored) peent (f" player Lawrent-player?

Wellack des if us board full (decored), clipplay - board (board) prient (" its a dears 1") delease else current player = 101 ig abount player = x'else (al Siele) bruscale publiques else point ("invaire move. Tuy
again ")
mount ig - name - = = 11 mainof thicatac toes) tupino mo = 191 Housh Rumar welcome to tictac toi? - represent player (Sopole moderno, organes) summers de pe Council jarood Holopus brown (2) Florier Connerd Man - brond

0 | 0 | X

```
Player move: (0-8)
0 | 0 | X
 | x |
0 | |
0 | 0 | X
x | x |
0 | |
                 Player move: (0-8)
Player move: (0-8)
                  7
0 | 0 | X
                   0 | 0 | X
x | x | o
0 | |
0 | 0 | X
                   0 | 0 | X
x | x | o
                 The game was a draw.
```

2. 8 Puzzle Breadth First Search Algorithm

4) Iwash just search morres orysternationly. or solved with an until gud one an ampty path. or withle where are confighations in the gulle - take fund config from the rune - check eyed matthe the goal colate -> a) gre the path its drie config is the woution -) if not ignitate meno configuration ly molling chank expall and add Thin its quelle Repeat untillesoution, -> crepret untill a repullion is found or all presorber configuration and explosed. punt coulion y a soulle is found prient Atu puth daken to vieach ethe good colati.

```
1 | 2 | 3

4 | 5 | 6

0 | 7 | 8

1 | 2 | 3

0 | 5 | 6

4 | 7 | 8

1 | 2 | 3

4 | 5 | 6

7 | 0 | 8

0 | 2 | 3

1 | 5 | 6

4 | 7 | 8

1 | 2 | 3

5 | 0 | 6

4 | 7 | 8

1 | 2 | 3

4 | 0 | 6

7 | 5 | 8

1 | 2 | 3

4 | 0 | 6

7 | 5 | 8

1 | 2 | 3

4 | 5 | 6

7 | 5 | 8
```

3. 8 Puzzle Iterative Deepening Search Algorithm

```
code for 8 puzzle monguliration
       deeping walch function
    Code ?- = lamely a Alyan (1)
a de devative depening-souven unital soute,
  depth-demid = 0
 untille Tilue?
     deput = depth demiks relation (unitial -state, good sietle, depth - demit)
    of clean = = "goal found"; "
" herman " word found"
     elet iresult = = "curoff";
      depth-demit + = 1
     elf cream == "fairme"?
           celellan " bud ond veladrable"
def depth limito-secural intate, goal state, dupth-current):
     Julium Julium Julia - de de de ,
                                 goel-stall,
                                     deph-dent
all viewerine als (whate 19 oat - state)
```

cy Wate = = goal_side? ely depthound = = 0; allelthum 11 cutoff 1' ella cutoff-occurred = false for successor un generale successors 18tate)? Healt = recursine_dls (oucussor, goal state, alkin lint)
uf viesell == goal squard". elig susuel = "cuseff"? CUtoff- Occurred = There if anoff occurred? 1 add a basic la creature "cutoff" det generale successive (stale): pinks) els encourres po

```
Enter the start state matrix
1 2 3
4 5 6
_ 7 8
Enter the goal state matrix
123
456
78_
123
456
_78
123
456
7_8
123
456
78_
```

4. 8 Puzzle A* Search Algorithm

```
Her & Scalch Algorithm
umpout heapqy
Class & PuzzleNode?
      def_writ_(seef, state, pour = Nove,
nove = Nove, corred = 0,
nove= 0):
   daj. 8 tolle = wtate
    Self pavero = pavent
  buy, more - morre Chimano I maria
      Sely. cost = cost
vsy. huriustic = hurristic
      all -1+- (cally, other )?
           return ( colf, cost +
                          well hemerster) <
                        (other, cost + other; humballe)
 des astale-source (limbal state, goal ale)
      open-oret = [Puggenode runillal+state]
                                 distance ( unual sotate
                                  gaus state)
```

```
Ly find rue position ( state ).
           for i an range (3)
              for jun dunge (3)
                   in whate Ti) [j] == 0 :
                      Scottler (1,j)
    of is valid more (position)
           deliver 0 (= position to) <3
                      and o <= resulmitize
   ef nove-tile (votate, from-position,
                      to position):
        new-state=[deapt*] boy wow
                 un istate?
        XI, Y 1 = prom - position
        X2, 42 - to resultion
         New-state[XI][8] -a presentale[X2142]
                        = new-ostale (x2) T/R)
all the constraint - peth i node).
    anualiaber [[1,R13],
                   T 810143,
                   [7/6/5]]
      goal-ostale = [[1,2,3],
```

dy find-goal position (value, gas ordate): for tun deange(3)? bi goal-oslate [i] []]== value: Jutuen (i, i) de generate vuccessores (state)? successor = [] Xeleo-position = find zeux-position moves=[-1,0), (1,0), (0,-1),(0,1)] for mon in mones of new-position = (zeleo-position To)+. Thelloward to Commentate a collection + mone (12)

if is -valid - more (new - position) vullesson = monectiles (colate, Successon appers (Rucusson) delluer successors.

closed only sell () untill gron set? www.mode = heapy - heappoplopen of current node state = = goal sale: vietum vieionstrud_petth (cumunt closed-cost, add (ctuple (map (ruple, current nich state))) for reversor un generale-concersor current_node-state); if tuple (map (tuple, successor)) not cin closed alt? heap. reappearn typen - voit, fuzzlende) deller " Goal Not Viewhall! dy man hattam-distance (votate, good state). alstance = 0 for Pan dangel3)? for j' in range (3): () goal - position = dos distance = all'i-goal resumentos)

+ ales (j-goalpealients)

5. Vacuum Cleaner

```
Vaccum Clambe week-s
voicum cleanire de clean for in successions
import drandom 8829 thilly of
dy desplay (dissom) ? I made to
pen (macus) Pring anim is
doom = [ " sint me
   Critical muy
plum (" All disoms alle diety")
duplay (moom) . . . .
X=0 Quantification of the X
y=0 ( a any mode de man 11) truly
Just X < 2 ?

Just (x) (y) = dandom chair (a,1)
    X+=1
 4=0
punt (" Bejoir Moning the shoom I died
all these random duits")
display ( cusom )
```

x=0

While xx2:

W

for a con max woom wangs will be of surance an anith - 3100 ampout deamdomment de provide agent. tuil mabries dy display(visom)? plunt (clusm) [1, 13, (0,1)] punt ("all dooms are duity") duplay (wood or mound X = D swoom (x3 = dandom. chaice (011) voicem un this bootety plund (depour cleaning the broom) duplay (visoro) and binow is many if woom [x]== [0,0], [0,0] X= 0 puint l'haccum chance les un utris / x) clesom [x] = 0 puent (" Cleaned", X) pent (bean is clean enow') lespay (owom)

of all difference cuspies in Ol dooms are duty (C111) (C111) Jandom dut & (made) yolgres per [[10], [1.1] mane thoug Cleaned OD many with the below what woution to Wednesd' Drabnow = [2] model beleiem un this localtion 11 clicened who prumple evopue bruly Room is cland mas product propagate (10,0), (0,0) 'x) moant is accum channe in un ethis

```
Enter clean status for Room 1 (1 for dirty, 0 for clean): 1
Enter clean status for Room 2 (1 for dirty, 0 for clean): 1
[('Room 1', 1), ('Room 2', 1)]
Cleaning Room 1 (Room was dirty)
Room 1 is now clean.
Cleaning Room 2 (Room was dirty)
Room 2 is now clean.
Returning to Room 1 to check if it has become dirty again:
Room 1 is already clean.
Room 1 is clean after checking.
```

6. Knowledge Base Entailment

```
Knowledge hoold snowlimens
  of weather waved enterement ( hypothesis,
  A ordance of p and c are heapprending conocions.
  of premier == " humid" and a > 70°.
      viellin there
  ely phomise = " that cloudy " and 6750?
       return time
 ely premise == " nome-Other constituén" and
      relium Tuil
  else?
     Jeetwen false
 premise condition = " humid "
 upathesis-teat = "The oceather is uncompartable."
 himidity_condition = 75
  chardenes - condition = 60
  Rome_other=condllon = 40
heret = wather dazed enteilment (hypothesis-ket,
        promise condition, hungelly-condition
        cloudines-condition, some-other-
in versus : f" The hypothesis is enterted the printer consistion?
```

condition = "

" whether we condition by the rums condition = "

" whether we condition by the rums condition = "

" whether we will be made as a series of the series of

```
Knowledge Base: ~r & (Implies(p, q)) & (Implies(q, r))
Query: p
Query entails Knowledge Base: False
```

7. Knowledge Base Resolution

```
Enouledge Based Resolution
[KB=P, 7PV8, PV78, 0VR, 78VR]
 from sympy degic booldly umpor or, AND, NOT
des main ():
  toy :
    aprission 1 = Possession 1 1 1000
    Expussion 2 = Or (NO+(P), B
    Explession 3 = Or(P, NOT(8), R)
    September 4 = Or (Not (8) , R)
   Enouledge-wase = (Expression ),
  & expulsion2, Expuession3, Expuession4)
   prend ("mouldge Base? ")
   plant ( knowledge - base)
   resolved_10b = Knowledge-have simplify
   plient ("I'm resolved priently pase?")
   kunt (creatured 100)
  nigation - of - R = NU+(P) & malloom
  nigation- of- Q = NOT(8)
```

plund (" In Negalion of pol) punt (megalion of 8:11) Rund (ngallon - 01 - 13) bring (, Marmon of & 5 11) plunt (myation - 06-R) Except Exception as e? plund (f' An everar occurred : Ley") yname == = 1 main - = s moussulus mays (2) tous 10 = 0 Marany & oupettange I sas = las u sphilipping knowledge liere in a grand P & (B | NP) & (R | NB) & (P) R | NB Resourd knowledge wase? Neguion of P. 2 hours sumbain 1111 their

```
|Clause | Derivation
Step
          Rv~P
                    Given.
1.
           Rv~Q
                    Given.
2.
           ~RVP
                    Given.
3.
           ~RVQ
                    Given.
4.
                    Negated conclusion.
5.
           ~R
                    Resolved Rv~P and ~RvP to Rv~R, which is in turn null.
6.
A contradiction is found when ~R is assumed as true. Hence, R is true.
       rules = 'Rv\simP Rv\simQ \simRvP \simRvQ' #(P^{\circ}Q)<=>R : (Rv\simP)^{\circ}(Rv\simQ)^{\circ}(\simRvP)^{\circ}(\simRvQ)
79
80
       goal = 'R'
       main(rules, goal)
81
```

8. Unification

```
Implement unification un fund.
 def certify-varelvar, x, ethita):
  if var an theta:

Setturn whity (theta [ 5] /x, theta)
      elly you in theta?
           critisin unily (valy, thitatis, theta)
      else?
         thita [var] = X = 1
        orduin theta
all centify (x, y, theta = (4)?
 cy theta is None?
      Cly x = = Y;
  ely isunstance (x, votr) and x [0]. islawer:
          Jewen unity-var (x, y, thila)
      ely instruction (1, str) and yroz. is court.
       return enjy vou ( y , x, thata)
```

elif weinstance (x, did) and whinstance if Oden (x) 1 = uency) 14, mot). victuren some for xi, yi win zip (x1)? thota = uenify (xi, Yi, thua) if theta us None? viellen None scoluum ethota lle · dutiuen None = [HOV] WILL & cample unput explission = [1] / j', 21]

Explission 2 = [1] P', j', 21] result = unify (expression), expression 2) prent ("unput:") puint (! Expussion !! , Expussion!) punt (! Explusaion 2 " ! gapussion 2) puint (11/n Output) fund ("unification Rucion ") plant 1" sullution thata: " result)

```
107  exp1 = "knows(A,x)"
108  exp2 = "knows(y,Y)"
109  substitutions = unify(exp1, exp2)
110  print("Substitutions:")
111  print(substitutions)
```

```
Substitutions:
[('A', 'y'), ('Y', 'x')]
```

9. FOL to CNF

```
plugom - q
nplement a given fourt. Order doge
   istallment into congriture runnal
   form (CNF)
from sympy umpout symbols, to only,
                      prorts expe
dy convert to coonf ( cloque estatement)
 parald estatement parabe-sept
                           culgic - estatement)
        cry = to-conf(parceld-intatement)
       return conf
    vj. - rame - - = = = - mais - 1
     logie_cetatement = "(P/Nay)+
(NPI)"

CNJ - result = convert-
ub - cnj (rusque Tenant)
     prient (11 original colatement 11, cup-result)
```

```
print(fol_to_cnf("bird(x)=>~fly(x)"))
print(fol_to_cnf("∃x[bird(x)=>~fly(x)]"))
```

```
~bird(x)|~fly(x)
[~bird(A)|~fly(A)]
```

10. Forward reasoning

```
plusgram 10
 - Create a knowledge was consisting
  of fleet order digit istalement
    & people the given oneme
    oring followed bleasoning
 from regriphy umport reymbols, eg, , and , ou, , Implies, ask,
     Rollie | cable
  John, Masay, Alice, Bob = Rymbols
( Sohm Marry Mice Rob)
  lavent = symbols ('parent')
  busanapourent = wymbols (' luxanopournt')
 knowledge here = [Eq (parent CJohn,
  Alle), Tulle), Eq (Parent Mary)
 A lie ), Turu), tay ( Parent (A) vie, Bob)
  Toure), Implier ( jouent (x1y), twomand
   power (2(4)), 7
quiny = grandparent (John, Bob)
dy formand measoning (knowledge - many):
        new-facts = ruft)
```

merle dence : for fact un renouledge wase? up ask (fact)? uf Raltof lable (fact): mew-facts. add (fact) y mot new jacts? Wheak knowledge - wase reviend vultum ask (quely) veret = forward - veasoning (Knowldge-dease, print (4 Resetts 11, desut) OIP awy? Wandfaren (John, Bob) Repuits ! Joine

```
kb = KB()
95
      kb.tell('missile(x)=>weapon(x)')
 96
      kb.tell('missile(M1)')
97
      kb.tell('enemy(x,America)=>hostile(x)')
 98
      kb.tell('american(West)')
99
      kb.tell('enemy(Nono,America)')
100
      kb.tell('owns(Nono,M1)')
101
      kb.tell('missile(x)&owns(Nono,x)=>sells(West,x,Nono)')
102
      kb.tell('american(x)&weapon(y)&sells(x,y,z)&hostile(z)=>criminal(x)'
103
      kb.query('criminal(x)')
104
      kb.display()
105
Querying criminal(x):

    criminal(West)

All facts:
       1. missile(m)
       2. weapon(M1)
       3. enemy(Nono,America)
       4. owns(Nono,M1)
       5. hostile(Nono)
       6. criminal(West)
       american(West)
       8. sells(West,M1,Nono)
```