1.32.) M.a.s. 10 establishes

A) Plantour contrale de hipotesis

B) Resolver contraste hipotesis, nivel symifacura 10%

Xt	Fa(x)	(x) +		FA(XE-1) - F(XE)
11	0:1	0,040929	0,069071	0,040929
23	0/3	0,166023	0,133977	0,066013
² 5	0,6	0,424655	0,016345	01124665
26	6,7	0,575346	01124665	6,075,345
2 7	0,9	0183977	0,066013	0.133977
10	1	0,9590.71	0,040929	0,069041

Le Columna obtenida con p(x=x2) (skalgraphics)

- 0,133977 + 0,239

$$\neq$$
 0,239
L. No recharannos Ho; acceptamos Ho => X ~ N(μ 1.72)
 $-\mu$ 1 = X = $\frac{Z_{11}}{\alpha}$ = 5,6
 $-\sqrt{X_{12}}$ = $\sqrt{X_{12}}$ = 2,579

C) Calcolar IC
$$7^2$$
 aphrenen proposed of 95%

IC 7^2 con 1 descended 1×3^2 1×3^2
 $1 \times 5^2 = \frac{5}{2} \times \frac{2}{3} = \frac{2}{3} \times \frac{3}{3} = \frac{2}{3} = \frac{2}{3} \times \frac{3}{3} = \frac{2}{3} = \frac{2}{3}$

0)
$$\mu_1 = \mu_1$$
?

 $\mu_1 = \mu_2 = 0$
 $\mu_1 = \mu_2 = 0$
 $\mu_1 = \mu_1 = \mu_2 = 0$
 $\mu_2 = \mu_2 = 0$
 $\mu_3 = \mu_4 = 0$
 $\mu_4 = \mu_4 = 0$
 $\mu_5 = \mu_5 = 0$
 $\mu_6 = \mu_6 = \mu_6$
 $\mu_7 = \mu_8 = 0$
 $\mu_8 = \mu_8 = 0$
 $\mu_9 = \mu_8 = \mu_9$
 $\mu_9 = \mu_9 = \mu_9$
 $\mu_9 = \mu_9 = \mu_9$
 $\mu_9 = \mu_8 = \mu_9$
 $\mu_9 = \mu_9 = \mu_9$
 $\mu_9 = \mu_9$