# **Projections**

Jaskirat Kaur

February 9, 2024

Short title

#### Introduction to Projections

- Projection of a vector onto a subspace is finding the closest point in the subspace to the vector.
- This involves minimizing the error vector, which is orthogonal to the subspace.

$$\mathbf{p} = \mathbf{a}\mathbf{\hat{x}} = \mathbf{a}\frac{\mathbf{a}^T\mathbf{b}}{\mathbf{a}^T\mathbf{a}} = \mathbf{a}(\mathbf{a}^T\mathbf{a})^{-1}\mathbf{a}^T\mathbf{b}.$$

#### Projection onto a plane

#### Projection onto a plane 3

Consider the plane x-5y-4z=0. We will compute the projection of the vector  $\mathbf{b}=\begin{bmatrix}2\\-2\\0\end{bmatrix}$  onto the plane.

Give  $\hat{\mathbf{x}}$  and the projection vector  $\mathbf{p}$ .

$$\hat{\mathbf{x}} = \begin{bmatrix} lacksquare \\ lacksquare \end{bmatrix}$$
  $\mathbf{0}$   $\mathbf{p} = \begin{bmatrix} lacksquare \\ lacksquare \end{bmatrix}$ 

Give the projection matrix P.



## Finding a Basis for the Plane

- The plane x 5y 4z = 0 is defined by its normal vector **n**.
- To find a basis, we choose vectors orthogonal to **n**.
- We construct matrix **A** with these basis vectors as columns.

Short title

## Computing the Projection Vector

- The projection vector  $\mathbf{p}$  is found by solving  $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ .
- We calculate  $\hat{\mathbf{x}}$  using the equation  $\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ .
- Then,  $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}}$ .

## Deriving the Projection Matrix

- The projection matrix P is used to project any vector onto the subspace.
- It is computed as  $\mathbf{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ .
- ullet This matrix represents a linear transformation mapping  $\mathbb{R}^3$  onto the plane.

## Projection with Invertible Matrix

Let A be an invertible matrix and let P be the projection matrix that projects vectors onto the column space of A.

#### **Solution:**

- Algebraically,  $P = A(A^TA)^{-1}A^T$ .
- Since A is invertible,  $(A^TA)^{-1} = A^{-1}(A^T)^{-1}$ , thus P = I.
- Explanation:
  - A is invertible, so its columns form a basis for  $\mathbb{R}^n$ .
  - The column space of A is  $\mathbb{R}^n$ .
  - $\bullet$  Projecting any vector onto  $\mathbb{R}^n$  returns the vector itself.