Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

РАСЧЕТНОЕ ЗАДАНИЕ

Курс: Методы оптимизации и принятия решений **Тема:** Марковские модели принятия решений

Выполнил студент группы 13541/3	Д.В. Круминьш (подпись)
Преподаватель	А.Г. Сиднев (подпись)

Оглавление

2	Мар	ковски	ие модели принятия решений	3
	2.1	Поста	новка задачи	3
	2.2	Метод	д итераций по стратегиям	7
		2.2.1	Этап(1) оценивания параметров	Ę
		2.2.2	Этап(1) улучшения стратегии	6
		2.2.3	Этап(2) оценивания параметров	6
		2.2.4	Этап(2) улучшения стратегии	7
		2.2.5	Этап(3) оценивания параметров	7
		2.2.6	Этап(3) улучшения стратегии	8
		2.2.7	Этап(4) оценивания параметров	8
		2.2.8	Этап(4) улучшения стратегии	C

Глава 2

Марковские модели принятия решений

2.1 Постановка задачи

Вариант: 12, решить задачу методом итераций по стратегиям для $N=\infty$

Крупная фирма, производящая моющие средства и пользующаяся широкой известностью в связи с успехами в исследованиях по созданию новых продуктов и их рекламированию, выпустила на рынок новый высококачественный стиральный порошок, названный LYE. Руководитель, возглавляющий производство этого продукта, совместно с отделом рекламы разрабатывает специальную рекламную кампанию по сбыту порошка, для которой принят девиз «Порошок LYE нужен всем!» Как и все продукты фирмы, новый продукт в течение первого полугодия будет иметь высокий уровень сбыта. Руководитель полагает, что с вероятностью 0,8 этот уровень сбыта сохранится и в последующем полугодии при условии проведения особой рекламной кампании и что эта вероятность составит всего 0,5, если такую кампанию не проводить. В случае, если уровень сбыта снизится до среднего, у руководителя имеются две возможности. Он может дать указание о проведении исследований с целью улучшения качества продукта. При этом условии с вероятностью 0,7 уровень сбыта к началу следующего полугодия повысится до первоначального высокого значения. С другой стороны, можно ничего не предпринимать в отношении улучшения качества продукта. Тогда с вероятностью 0,6 в начале последующего полугодия уровень сбыта останется средним, однако вследствие изменений потребительских вкусов он может вновь подняться до высокого значения лишь с вероятностью 0,4.

Если сбыт нового стирального порошка начинается на высоком уровне при обычной рекламе, то прибыли в течение полугодия равны 19 единицам в случае, когда этот уро-

вень сохраняется, и равны 13, если уровень сбыта падает. При проведении специальной рекламной кампании соответствующие показатели равны 4,5 и 2 единицам. Если начальный уровень сбыта окажется средним и при этом проводятся исследования с целью улучшения качества продукции, то прибыли составят 11 единиц в случае, когда уровень сбыта поднимается до высокого, и 9 единиц в противном случае. При сохранении продукта в неизменном виде соответствующие прибыли равны 13 и 3 единицам. Предположим, что одна и та же проблема принятия решений относительно сбыта стирального порошка LYE повторяется через каждые полгода в течение бесконечного планового периода.

2.2 Метод итераций по стратегиям

Для начала выпишем все известные параметры задачи.

Система может быть в двух состояних:

- 1. хороший сбыт (S_1) ;
- 2. средний сбыт (S_2) .

Организация может предпринять следующие действия(далее стратегии):

- 1. всегда улучшать сбыт (X_1)
 - при S_1 создание специальной рекламы (D_1) ;
 - при S_2 проведение исследований (D_2) .
- 2. улучшать сбыт только при хорошем сбыте (X_2)
 - при S_1 создание специальной рекламы (D_1) ;
 - при S_2 ничего не делать (D_3) .
- 3. улучшать сбыт только при среднем сбыте (X_3)
 - при S_1 ничего не делать (D_3) ;
 - при S_2 проведение исследований (D_2) .
- 4. всегда ничего не делать (X_4)
 - при S_1 ничего не делать (D_3) ;
 - при S_2 ничего не делать (D_3) .

На основе данной информации составим матрицы переходных вероятностей P_1, P_2, P_3, P_4 соответсвующие стратегиям X_1, X_2, X_3, X_4 .

$$P_1 = \begin{pmatrix} 0.8 & 0.2 \\ 0.7 & 0.3 \end{pmatrix} P_2 = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix} P_3 = \begin{pmatrix} 0.5 & 0.5 \\ 0.7 & 0.3 \end{pmatrix} P_4 = \begin{pmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \end{pmatrix}$$

Также составим матрицы доходов R_1, R_2, R_3, R_4 .

$$R_1 = \begin{pmatrix} 4.5 & 2 \\ 11 & 9 \end{pmatrix} R_2 = \begin{pmatrix} 4.5 & 2 \\ 13 & 3 \end{pmatrix} R_3 = \begin{pmatrix} 19 & 13 \\ 11 & 9 \end{pmatrix} R_4 = \begin{pmatrix} 19 & 13 \\ 13 & 3 \end{pmatrix}$$

Множество допустимых стратегий $G = \{X_1, X_2, X_3, X_4\}$.

2.2.1 Этап(1) оценивания параметров

Выбираем стратегию τ - X_4 . Тогда, матрицы переходных вероятностей и доходов будут следующими:

$$P = \begin{pmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \end{pmatrix} R = \begin{pmatrix} 19 & 13 \\ 13 & 3 \end{pmatrix}$$

Учитывая, что $F_{\tau}(2)=0$, получаем систему линейных алгебраических уравнений:

$$\begin{cases} E_{\tau} - (1 - 0.5) * F_{\tau}(1) = 16 \\ E_{\tau} - (1 - 0.4) * F_{\tau}(1) = 7 \end{cases}$$

```
syms Et Ft
eqn1 = Et - (1-0.5)*Ft == 16;
eqn2 = Et - (1-0.4)*Ft == 7;
[A, B] = equationsToMatrix([eqn1, eqn2], [Et, Ft])
X = linsolve(A, B)
```

В результате выполнения скрипта matlab, было получено единственное решение:

Листинг 2.1: Скрпит для решения системы уравнений

$$E_{\tau} = 61; F_{\tau}(1) = 90$$

2.2.2 Этап(1) улучшения стратегии

Для каждого состояния S_j , где j от 1 до m, найдем допустимое решение, на котором достигается:

$$max(v_j(X_i) + \sum_{k=1}^{m} p_{jk}(X_i) F_{\tau}(k)$$

	S_i		$\varphi_i = v_j(X_i) + p_{j1}(X_i)F_i(1)$				X_i
	i=1	i=2	i=3	i=4	$max\varphi_i$	5	
	1	4+0.8*(90)=	4+0.8*(90)=	16+0.5*(90)=	16+0.5*(90)=	76	X_1 ,
'	ı	76	76	61	61	70	X_2
	2	10.4+0.7*(90)=	7+0.4*(90)=	10.4+0.7*(90)=	7+0.4*(90)=	73.4	X_1 ,
	73.4	40	73.4	40	/3.4	X_3	

2.2.3 Этап(2) оценивания параметров

Выбираем стратегию τ - X_3 . Тогда, матрицы переходных вероятностей и доходов будут следующими:

$$P = \begin{pmatrix} 0.5 & 0.5 \\ 0.7 & 0.3 \end{pmatrix} R = \begin{pmatrix} 19 & 13 \\ 11 & 9 \end{pmatrix}$$

Учитывая, что $F_{\tau}(2) = 0$, получаем систему линейных алгебраических уравнений:

$$\begin{cases} E_{\tau} - (1 - 0.5) * F_{\tau}(1) = 16 \\ E_{\tau} - (1 - 0.7) * F_{\tau}(1) = 10.4 \end{cases}$$

```
syms Et Ft
eqn1 = Et - (1-0.5)*Ft == 16;
eqn2 = Et - (1-0.7)*Ft == 10.4;
[A, B] = equationsToMatrix([eqn1, eqn2], [Et, Ft])
X = linsolve(A, B)
```

Листинг 2.2: Скрпит для решения системы уравнений

В результате выполнения скрипта matlab, было получено единственное решение:

$$E_{\tau} = 2$$
; $F_{\tau}(1) = -28$

2.2.4 Этап(2) улучшения стратегии

Для каждого состояния S_j , где j от 1 до m, найдем допустимое решение, на котором достигается:

$$max(v_j(X_i) + \sum_{k=1}^{m} p_{jk}(X_i) F_{\tau}(k)$$

S_i	$\varphi_i = v_j(X_i) + p_{j1}(X_i)F_i(1)$				$max\varphi_i$	X_i
	i=1	i=2	i=3	i=4	71	
1	4+0.8*(-28)=	4+0.8*(-28)=	16+0.5*(-28)=	16+0.5*(-28)=	2	X_3 ,
I	-18.4	-18.4	2	2	Δ.	X_4
	10.4+0.7*(-	7+0.4*(-28)=	10.4+0.7*(-	7+0.4*(-28)=		X_{2}
2	28)=	` ′	28)=	` ′	-4.2	$\begin{bmatrix} X_2, \\ X_4 \end{bmatrix}$
	-9.2	-4.2	-9.2	-4.2		A4

Так как $t \neq \tau$, то снова переходим к этапу оценивания параметров.

2.2.5 Этап(3) оценивания параметров

Листинг 2.3: Скрпит для решения системы уравнений

Выбираем стратегию au - X_2 . Тогда, матрицы переходных вероятностей и доходов будут следующими:

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix} R = \begin{pmatrix} 4.5 & 2 \\ 13 & 3 \end{pmatrix}$$

Учитывая, что $F_{\tau}(2) = 0$, получаем систему линейных алгебраических уравнений:

$$\begin{cases} E_{\tau} - (1 - 0.8) * F_{\tau}(1) = 4 \\ E_{\tau} - (1 - 0.4) * F_{\tau}(1) = 7 \end{cases}$$

```
syms Et Ft
eqn1 = Et - (1-0.8)*Ft == 4;
eqn2 = Et - (1-0.4)*Ft == 7;
[A, B] = equationsToMatrix([eqn1, eqn2], [Et, Ft])
X = linsolve(A, B)
```

В результате выполнения скрипта matlab, было получено единственное решение:

$$E_{\tau} = 5/2; F_{\tau}(1) = -15/2$$

2.2.6 Этап(3) улучшения стратегии

Для каждого состояния S_j , где j от 1 до m, найдем допустимое решение, на котором достигается:

$$max(v_j(X_i) + \sum_{k=1}^{m} p_{jk}(X_i) F_{\tau}(k)$$

S_{i}	$\varphi_i = v_j(X_i) + p_{j1}(X_i)F_i(1)$				$max\varphi_i$	X_i
	i=1	i=2	i=3	i=4	7700071	
	4+0.8*(-	4+0.8*(-	16+0.5*(-	16+0.5*(-		X_3 ,
1	15/2)=	15/2)=	15/2)=	15/2)=	12.25	$\begin{bmatrix} X_3, \\ X_4 \end{bmatrix}$
	-2	-2	12.25	12.25		Λ_4
	10.4+0.7*(-	7+0.4*(-	10.4+0.7*(-	7+0.4*(-		X_1
2	15/2)=	15/2)=	15/2)=	15/2)=	5.15	$\begin{bmatrix} X_1, \\ X_3 \end{bmatrix}$
	5.15	4	5.15	4		Λ3

Так как $t \neq \tau$, то снова переходим к этапу оценивания параметров.

2.2.7 Этап(4) оценивания параметров

Выбираем стратегию τ - X_1 . Тогда, матрицы переходных вероятностей и доходов будут следующими:

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.7 & 0.3 \end{pmatrix} R = \begin{pmatrix} 4.5 & 2 \\ 11 & 9 \end{pmatrix}$$

Учитывая, что $F_{\tau}(2) = 0$, получаем систему линейных алгебраических уравнений:

$$\begin{cases} E_{\tau} - (1 - 0.8) * F_{\tau}(1) = 4 \\ E_{\tau} - (1 - 0.7) * F_{\tau}(1) = 10.4 \end{cases}$$

```
syms Et Ft
eqn1 = Et - (1-0.8)*Ft == 4;
eqn2 = Et - (1-0.7)*Ft == 10.4;
[A, B] = equationsToMatrix([eqn1, eqn2], [Et, Ft])
X = linsolve(A, B)
```

Листинг 2.4: Скрпит для решения системы уравнений

В результате выполнения скрипта matlab, было получено единственное решение:

$$E_{\tau} = -44/5; F_{\tau}(1) = -64$$

2.2.8 Этап(4) улучшения стратегии

Для каждого состояния S_j , где j от 1 до m, найдем допустимое решение, на котором достигается:

$$max(v_j(X_i) + \sum_{k=1}^m p_{jk}(X_i)F_{\tau}(k))$$

S_i	$\varphi_i = v_j(X_i) + p_{j1}(X_i)F_i(1)$					X_i
	i=1	i=2	i=3	i=4	$max\varphi_i$	
1	4+0.8*(-64)=	4+0.8*(-64)=	16+0.5*(-64)=	16+0.5*(-64)=	-16	X_3 ,
I	-47.2	-47.2	-16	-16	-10	X_4
	10.4+0.7*(-	7+0.4*(-64)=	10.4+0.7*(-	7+0.4*(-64)=		X_{2}
2	64)=	` ,	64)=	` ′	-18.6	$\begin{bmatrix} X_2, \\ X_4 \end{bmatrix}$
	-34.4	-18.6	-34.4	-18.6		Λ_4

Итак в этапе(2) и данном, были найдены оптимальные стратегии. То есть

$$au = ((X_3 \ \mathsf{ИЛИ} \ X_4), (X_2 \ \mathsf{ИЛИ} \ X_4))^T$$

В каждом из двух состояний, имеется два варианта дальнейших действий.

Если подвести итоги, то данное решение означает что:

- В состоянии хорошего сбыта (S_1) ничего не делать (D_3) ;
- В состоянии среднего сбыта (S_2) ничего не делать (D_3) .

И судя по данным итогам, ничего не делать (D_3) является лучшей стратегией. Подобный исход можно объяснить тем, что при попытках увеличения сбыта, компания тратит на это деньги и соответственно доход снижается.