Eine kurze Einführung in

Semidirekte Produkte

Jetzt mit noch weniger Kommutativität

Jendrik Stelzner

Letzte Änderung: 14. Januar 2018

Inhaltsverzeichnis

1	Dire	ekte Produkte	
	1.1	Äußere direkte Produkte	
	1.2	Innere direkte Produkte	
2	Semidirekte Produkte		
	2.1	Innere semidirekte Produkte	
	2.2	Äußere semidirekte Produkte	
	2.3	Spaltende Projektionen	

1 Direkte Produkte

1.1 Äußere direkte Produkte

Definition

Es seien G und H zwei Gruppen. Auf der Menge $G \times H$ wird durch die Multiplikation

$$(g_1, h_1) \cdot (g_2, h_2) := (g_1g_2, h_1h_2)$$

eine Gruppenstruktur definiert. Wir nennen die entstehende Gruppe das $\ddot{a}u\beta$ ere direkte Produkt von G und H, und bezeichnen diese ebenfalls mit $G \times H$.

Einbettungen von G und H in $G \times H$

Die Gruppe $G \times H$ enthält die beiden Untergruppen

$$\overline{G} \coloneqq G \times \{1\} \quad \text{und} \quad \overline{H} \coloneqq \{1\} \times H$$
.

Diese sind isomorph zu G, bzw. H, da sich die Gruppenmonomorphismen

$$i: G \to G \times H, \quad g \mapsto (g,1),$$

 $j: H \to G \times H, \quad h \mapsto (1,h)$

zu Gruppenisomorphismen

$$i|^{\overline{G}} \colon G \to \overline{G} \quad \text{und} \quad j|^{\overline{H}} \colon H \to \overline{H}$$

einschränken. Wir können also G und H mit Untergruppen von $G \times H$ identifizieren. Wir werden diese Identifikation im Folgenden nicht implizit vornehmen, sondern stets explizit. Hierfür bezeichnen wir für $g \in G$ und $h \in H$ die entsprechenden Elemente aus $G \times H$ mit

$$\overline{g} := i(g) = (g, 1)$$
 und $\overline{h} := j(h) = (1, h)$.

Vorstellungsmäßig unterscheiden wir im Folgenden allerdings nicht zwischen den Elementen g und \overline{g} , sowie den Elementen h und \overline{h} .

Universelle Eigenschaft von $G \times H$

Stellen wir uns G und H als Untergruppen von $G \times H$ vor, so kommutieren G und H miteinander, denn für alle $g \in G$, $h \in H$ gilt

$$\overline{gh} = (g,1)(1,h) = (g,h) = (1,h)(g,1) = \overline{hg}$$

Die beiden Inklusionen $i\colon G\to G\times H$ und $j\colon H\to G\times H$ betten also die Gruppen G und H in eine neue Gruppe $G\times H$ ein, in der G und H dann miteinander kommutieren. Tatsächlich ist $G\times H$ bereits universell mit dieser Eigenschaft:

Proposition 1. Es sei T eine Gruppe, und es seien $\alpha \colon G \to T$ und $\beta \colon H \to T$ zwei Gruppenhomomorphismen, so dass

$$\alpha(g)\beta(h) = \beta(h)\alpha(g)$$

für alle $g \in G$, $h \in H$ gilt. Dann gibt es einen eindeutigen Gruppenhomomorphismus $\varphi \colon G \times H \to T$, der das folgende Diagramm zum kommutieren bringt:

Die Gruppe $G \times H$ zusammen mit den beiden Inklusionen $i \colon G \to G \times H$ und $j \colon H \to G \times H$ ist also die "allgemeinste" Möglichkeit, die Gruppen G und H auf kommutierende Weise zu einer gemeinsamen Gruppen $G \times H$ zusammenzufassen.

1.2 Innere direkte Produkte

Definition

Es sei G eine Gruppe, und es seien $H,K\leq G$ zwei Untergruppen. Wir wollen untersuchen, wann die Gruppe G dem direkten Produkt $H\times K$ entspricht, d.h. wann die Abbildung

$$\varphi \colon H \times K \to G, \quad (h, k) \mapsto hk$$

ein Gruppenisomorphismus ist. Ist dies der Fall, so bezeichnen wir G als das *innere direkte Produkt* der beiden Untergruppen K und H.

Erste Charakterisierung

Wir charakterisieren zunächst, unter welchen Bedingungen φ ein Gruppenhomomorphismus ist, und wann φ surjektiv, bzw. injektiv ist.

• Für alle $(h_1, k_1), (h_2, k_2) \in K \times H$ gelten

$$\varphi((h_1, k_1)(h_2, k_2)) = \varphi((h_1 h_2, k_1 k_2)) = h_1 h_2 k_1 k_2 ,$$

$$\varphi(h_1, k_1) \varphi(h_2, k_2) = h_1 k_1 h_2 k_2 .$$

Somit ist φ genau dann ein Gruppenhomomorphismus, falls

$$h_1k_1h_2k_2 = h_1h_2k_1k_2$$

für alle $h_1, h_2 \in K$, $k_1, k_2 \in H$ gilt. Indem man den Fall $h_1 = k_2 = 1$ betrachtet, ist dies ferner äquivalent dazu, dass

$$k_1 h_2 = h_2 k_1$$

für alle $h_1 \in K$, $k_2 \in H$ gilt. Also ist φ genau dann ein Gruppenhomomorphismus, wenn die Untergruppen K und H miteinander kommutieren.

- Die Abbildung φ ist surjektiv, wenn sich jedes Element $g \in G$ als g = hk mit $h \in H$ und $k \in K$ darstellen lässt, d.h. wenn G = HK gilt.
- Für alle $(h_1, k_1), (h_2, k_2) \in H \times K$ gilt

$$\varphi(h_1, k_1) = \varphi(h_2, k_2) \iff h_1 k_1 = h_2 k_2 \iff h_2^{-1} h_1 = k_2 k_1^{-1}.$$

Man bemerke, dass das Element $x\coloneqq h_2^{-1}h_1=k_2k_1^{-1}$ dann bereits in $H\cap K$ enthalten ist.

- Gilt $H \cap K = 1$, so gilt x = 1, und somit $h_1 = h_2$ und $k_1 = k_2$. Somit gilt $(h_1, k_1) = (h_2, k_2)$, we shalb φ dann injektiv ist.
- Gilt andererseits $H \cap K \neq 1$, so gibt es ein Element $x \in H \cap K$ mit $x \neq 1$. Dann gilt $\varphi(x, x^{-1}) = 1 = \varphi(1, 1)$ aber $(x, x^{-1}) \neq (1, 1)$. Also ist φ dann nicht injektiv.

Zusammen zeigt dies, dass φ genau dann injektiv ist, wenn $H \cap K = 1$ gilt.

Proposition 2. Eine Gruppe G ist genau dann das innere direkte Produkt zweier Untergruppen $H, K \leq G$, falls H und K miteinander kommutieren, sowie HK = G und $H \cap K = 1$ gelten.

Zweite Charakterisierung

Wir wollen noch eine zweite Charakterisierung innerer direkte Produkte angeben:

- Wir nehmen zunächst an, dass G das innere direkte Produkt der Untergruppen H und K ist, dass also die Abbildung $\varphi \colon H \times K \to G$ ein Gruppenisomorphismus ist. Dann sind die Untergruppen $H, K \leq G$ bereits normal in G:

$$(h,k)(h',1)(h,k)^{-1}=(h,k)(h',1)(h^{-1},k^{-1})=(hh'h^{-1},kk^{-1})=(hh'h^{-1},1)\,,$$

was die Normalität von \overline{H} in $H \times K$ zeigt. Da φ ein Isomorphismus ist, folgt daraus, dass $H = \varphi(\overline{H})$ und $K = \varphi(\overline{K})$ normal in $\varphi(H \times K) = G$ sind.

• Alternativ lassen sich auch die Normalisatoren $N_G(H)$ und $N_G(K)$ betrachten: Es gilt stets $H \leq N_G(H)$, und da H und K miteinander kommutieren, gilt auch $K \leq N_G(H)$. Aus G = HK folgt damit, dass bereits $G = N_G(H)$ gilt, dass also H normal in G ist. Analog ergibt sich die auch Normalität von K in G.

Unabhängig von der Vorgehensweise erhalten wir das folgende wichtige Resultat:

Ist G das innere direkte Produkt zweier Untergruppen $H, K \leq G$, so sind H und K bereits beide normal in G.

• Wir nehmen nun umgekehrt an, dass die Untergruppen $H, K \leq G$ beide normal sind, und dass $H \cap K = 1$ gilt. Dann kommutieren H und K auch schon miteinander. Für alle $h \in H$ und $k \in K$ gilt nämlich, dass

h und k kommutieren miteinander $\iff hk = kh \iff hkh^{-1}k^{-1} = 1$.

Da K normal ist, gilt dabei $hkh^{-1} \in K$, und somit auch $(hkh^{-1})k^{-1} \in K$. Analog gilt aber auch $h(kh^{-1}k^{-1}) \in H$. Somit gilt bereits $hkh^{-1}k^{-1} \in H \cap K = 1$. Also gilt $hkh^{-1}k^{-1} = 1$, weshalb h und k miteinander kommutieren.

Damit erhalten wir ingesamt, dass wir in Proposition 2 die Bedingung, dass H und K miteinander kommutieren, durch die Bedingung ersetzen können, dass H und K beide normal in G sind.

Proposition 3. Eine Gruppe G ist genau dann das innere direkte Produkt zweier Untergruppen $H, K \leq G$, falls H und K beide normal in G sind, sowie HK = G und $H \cap K = 1$ gelten.

Für endliche Gruppen

Ist G endlich, so lässt sich dies Ausnutzen, um Proposition 2 und Proposition 3 umzuformulieren:

• Falls G das innere direkte Produkt von H und K ist, so ist $\varphi \colon H \times K \to G$ ein Isomorphismus, und somit inbesondere

$$|G| = |H \times K| = |H| \cdot |K|.$$

• Es gelte nun andererseits $|G| = |H| \cdot |K|$. Dann sind die Injektvität und Surjektivität von $\varphi \colon H \times K \to G$ äquivalent. In Proposition 2 und Proposition 3 genügt es deshalb jeweils, eine der beiden Bedingungen HK = G und $H \cap K = 1$ zu fordern.

Damit erhalten wir für endliches G die folgenden (vier) Charakterisierungen innerer direkter Produkte:

Proposition 4. Eine endliche Gruppe G ist genau dann das innere direkte Produkt zweier Gruppen $H, K \leq G$, falls $|G| = |H| \cdot |K|$ gilt, und

1. die Untergruppen H und K kommutieren, oder

2. die Untergruppen H und K beide normal sind,

und

1'. es qilt $H \cap K = 1$, oder

2'. es gilt HK = G.

Besonders hervorheben möchten wir an dieser Stelle die folgende der oberen Charakterisierungen:

Korollar 5. Eine endliche Gruppe G ist genau dann das innere direkte Produkt zweier Untergruppen $H, K \leq G$, falls $|G| = |H| \cdot |K|$ gilt, H und K beide normal in G sind, and $H \cap K = 1$ gilt.

Beispiel 6.

1. Für teilerfremde $n,m\geq 1$ betrachten wir die abelsche Gruppe $G:=\mathbb{Z}/(nm)$. Die Untergruppen $H:=n\mathbb{Z}/(nm)$ und $K:=m\mathbb{Z}/(nm)$ sind normal in G, da G abelsch ist. Es gelten |H|=nm/n=m und |K|=nm/m=n. Da $|H\cap K|$ ein Teiler von |H|=m und |K|=n ist, folgt damit aus der Teilerfremdheit von n und m, dass $|H\cap K|=1$ und somit $H\cap K=0$. Außerdem gilt |G|=mn=|H||K|. Somit erhalten wir nach Korollar 5, dass G das innere Produkt der Untergruppen H und K ist.

Inbesondere gilt $G \cong H \times K$. Die Gruppen H und K sind als Untergruppen der zyklischen Gruppe G ebenfalls zyklisch. Also gelten $H \cong \mathbb{Z}/m$ und $K \cong \mathbb{Z}/n$. Damit erhalten wir, dass

$$\mathbb{Z}/(mn) \cong \mathbb{Z}/m \times \mathbb{Z}/n$$
.

- 2. Ist allgemeiner A eine endliche abelsche Gruppe, und sind $B,C \leq A$ zwei Untergruppen mit $B \cap C = 0$ und B + C = 0, oder äquivalent |B||C| = |A|, so gilt $A \cong B \times C$.
- 3. Es sei G eine endliche Gruppe der Ordnung |G| = pq mit p und q prim, so dass p < q und $p \nmid (q-1)$ gilt. Es sei n_p die Anzahl der p-Sylowgruppen in G, und n_q die Anzahl der q-Sylowgruppen.
 - Es gelten $n_p \equiv 1 \pmod{p}$ und $n_p \mid q$. Würde $n_p \neq 1$ gelten, so müsste $n_p = q$ gelten, und somit $q \equiv 1 \pmod{p}$, was aber im Widerspruch zu $p \nmid (q-1)$ steht. Also gilt $n_p = 1$. Es gibt also eine eindeutige p-Sylowuntergruppe $H \leq G$; da es sich um die einzige p-Sylowuntergruppe von G handelt, ist H normal.
 - Es gelten $n_q \equiv 1 \pmod{q}$ und $n_q \mid p$. Würde $n_q \neq 1$ gelten, so wäre $n_q \geq 1 + q$, was wegen p < q im Widerspruch zu $p \mid n_q$ stünde. Somit gilt $n_q = 1$. Es gibt also eine eindeutige q-Sylowuntergruppe $K \leq G$, die notwendigerweise normal in G ist.

Die Ordnung $|H\cap K|$ teilt |H|=p und |K|=q, weshalb $|H\cap K|=1$ und somit $H\cap K=1$ gilt. Außerdem gilt |G|=pq=|H||K|. Somit ergibt sich nach Korollar 5, dass G das innere direkte Produkt der Gruppen H und K ist.

Inbesondere gilt $G \cong H \times K$. Da |H| = p und |K| = q prim sind, gelten $H \cong \mathbb{Z}/p$ und $K \cong \mathbb{Z}/q$. Damit erhalten wir aus der Teilerfremdheit von p und q, dass

$$G \cong H \times K \cong \mathbb{Z}/p \times \mathbb{Z}/q = \mathbb{Z}/(pq)$$
.

4. Es sei $n \geq 1$ ungerade und es sei $G \coloneqq D_{2n}$ die Diedergruppe der Ordnung $|D_{2n}| = 2 \cdot 2n = 4n$. Ist $\rho \in D_{2n}$ eine Rotation um den Winkel $2\pi/(2n)$ und $\tau \in D_{2n}$ eine Spiegelung, so gilt

$$D_{2n} = \{1, \rho, \dots, \rho^{2n-1}, \tau, \tau\rho, \dots, \tau\rho^{2n-1}\},\,$$

und Gruppenstruktur ist eindeutig durch die beiden Relationen

$$\rho^{2n} = 1$$
, $\tau^2 = 1$, $\tau \rho \tau^{-1} = \rho^{-1}$

festgelegt: Für alle $i,j,k,l\in\mathbb{Z}$ gilt

$$\tau^{i} \rho^{j} \cdot \tau^{k} \rho^{l} = \tau^{i} \tau^{k} \rho^{(-1)^{k} j} \rho^{l} = \tau^{i+k} \rho^{(-1)^{k} j + l}.$$

Das Zentrum von D_{2n} ist

$$Z(D_{2n}) = \{1, \rho^n\},\,$$

wobei ρ^n geometrisch gesehen die Rotation um 180° ist, also die Multiplikation mit -1. Außerdem ist

$$D := \{ \tau^i \rho^j \mid i \in \mathbb{Z}, j \in 2\mathbb{Z} \}$$

eine Untergruppe von D_{2n} vom Index 2. Inbesondere sind $\mathbf{Z}(D_{2n})$ und D normal in D_{2n} mit $|D_{2n}|=4n=2\cdot 2n=|\mathbf{Z}(D_{2n})|\cdot |D|$. Da n ungerade ist, gilt $\rho^n\notin D$, und somit $\mathbf{Z}(D_{2n})\cap D=1$. Somit gilt nach Korollar 5, dass D_{2n} das innere direkte Produkt der beiden Untergruppen $\mathbf{Z}(D_{2n})$ und D ist.

Inbesondere gilt $D_{2n} \cong \mathrm{Z}(D_{2n}) \times D$. Dabei gelten $\mathrm{Z}(D_{2n}) \cong \mathbb{Z}/2$ und $D \cong D_n$, und somit

$$D_{2n} \cong D_n \times \mathbb{Z}/2$$
.

2 Semidirekte Produkte

- 2.1 Innere semidirekte Produkte
- 2.2 Äußere semidirekte Produkte
- 2.3 Spaltende Projektionen