## A theory of stream queries

Yuri Gurevich<sup>1</sup> Dirk Leinders<sup>2</sup> Jan Van den Bussche<sup>2</sup>

<sup>1</sup>Microsoft Research

<sup>2</sup>Hasselt University

**DBPL 2007** 

### Motivation

- research on querying streaming data
- main focus: query language, query processor
- general theory of stream queries not yet well developed

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# What is a stream (query)?

#### universe of data elements U

- predicates and functions
- structure (logic)

#### stream

- $\bullet$  = a (possibly infinite) sequence of data elements from  $\mathbb U$
- Stream = set of all streams
- finStream = set of all finite streams

#### stream query

= a function Stream → Stream

# What is a stream (query)?

### example: unreasonable stream query (CHECK)

- Input: stream **s** over {*a*, *b*}
- Output:

$$CHECK(\mathbf{s}) = \begin{cases} () & \text{if } a \in \mathbf{s} \\ b & \text{otherwise} \end{cases}$$

### example: reasonable stream query (filter $\pi_A \sigma_{B>10}$ **s**)

- Input: stream s of tuples with attributes A and B
- Output: stream of A-values of tuples in s with B-value higher than 10.

# What is a computable stream query?

## Repeat(K)

Let K:  $finStream \rightarrow finStream$ . Define Repeat(K):  $Stream \rightarrow Stream$  as follows

$$\mathbf{s}\mapsto igodot_{k=0}^{\mathit{size}(\mathbf{s})} K(\mathbf{s}^{\leq k})$$

#### **Definition**

Q is abstract computable if Q = Repeat(K) for some K. K is called a kernel for Q.

### example: kernel for filter $\pi_A \sigma_{B>10}$ **s**

$$K(s_1 \dots s_k) = egin{cases} s_k.A & ext{if } s_k.B > 10, \ () & ext{otherwise} \end{cases}$$

# What is a computable stream query?

## Repeat(K)

Let  $K: finStream \rightarrow finStream$ . Define  $Repeat(K): Stream \rightarrow Stream$  as follows

$$\mathbf{s}\mapsto igodot_{k=0}^{\mathit{size}(\mathbf{s})} K(\mathbf{s}^{\leq k})$$

#### Definition

Q is abstract computable if Q = Repeat(K) for some K. K is called a kernel for Q.

#### remarks

- result on infinite input stream can be finite
- result on finite input stream must be finite

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# What is a continuous stream query?

#### recall

A real function  $f: \mathbb{R} \to \mathbb{R}$  is called continuous if for all  $x \in \mathbb{R}$ , for every neighborhood around f(x), there exists a neighborhood around x that is completely mapped into the neighborhood of f(x).

#### **Definition**

An open ball is a set of the form

$$\mathbf{B}(\mathbf{p}) := \{ \mathbf{s} \in Stream \mid \mathbf{p} \text{ is a prefix of } \mathbf{s} \},$$

for some  $p \in finStream$ . Elements are called continuations of p.

#### **Definition**

 $\mathcal{Q}$ :  $Stream \rightarrow Stream$  is continuous if for all streams  $\mathbf{s}$ , and all open balls  $\mathbf{B}(\mathbf{q})$  with  $\mathbf{q}$  a prefix of  $\mathcal{Q}(\mathbf{s})$ , there exists a prefix  $\mathbf{p}$  of  $\mathbf{s}$  such that  $\mathcal{Q}(\mathbf{B}(\mathbf{p})) \subseteq \mathbf{B}(\mathbf{q})$ .

# Computability and continuity

#### **Theorem**

Let  $\mathcal Q$  be a stream query mapping finite inputs to finite outputs. Then  $\mathcal Q$  is abstract computable if and only if  $\mathcal Q$  is continuous.

## application

- difference is not abstract computable
  - Input: interleaving of two streams r and s
  - Output: all elements in r that do not occur in s
- CHECK is not abstract computable

#### remark

Qualification that Q maps finite inputs to finite outputs is important.

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# Computability and continuity of finite stream queries

### considering only finite streams ...

- finite stream query = a function *finStream* → *finStream*
- open balls are finite continuations of finite streams

#### **Theorem**

A finite stream query is abstract computable if and only if it is continuous.

# Continuity and monotonicity

A finite stream query  $\mathcal{Q}$  is called monotonic if for all finite streams  $\mathbf{s}$  and  $\mathbf{s}'$  with  $\mathbf{s} \sqsubseteq \mathbf{s}'$  we have  $\mathcal{Q}(\mathbf{s}) \sqsubseteq \mathcal{Q}(\mathbf{s}')$ 

#### **Theorem**

A finite stream query is continuous if and only if it is monotonic.

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# Synchronous abstract computability

abstract computability does not imply synchrony

example: filter query

$$Q(\mathbf{s}) = 12 14 \dots$$

# Synchronous abstract computability

abstract computability does not imply synchrony

example: filter query

$$\mathbf{s} = 3 \quad 5 \quad 12 \quad 14 \quad 7 \quad 8 \quad \dots$$
 $\mathcal{Q}(\mathbf{s}) = 12 \quad 14 \quad \dots$ 
 $\mathcal{K}(3) = \mathcal{K}(3 \quad 5) = ()$ 

# Synchronous abstract computability

abstract computability does not imply synchrony

## example: filter query

$$\mathbf{s} = 3 \quad 5 \quad 12 \quad 14 \quad 7 \quad 8 \quad \dots$$
 $\mathcal{Q}(\mathbf{s}) = 12 \quad 14 \quad \dots$ 
 $\mathcal{K}(3) = \mathcal{K}(3 \quad 5) = ()$ 

#### Definition

 $\mathcal{Q}$  is synchronous abstract computable (SAC) if  $\mathcal{Q} = Repeat(K)$  for some K such that K(()) = () and every other  $K(\mathbf{s})$  is of length one.

## example: SAC filter query

$$\mathbf{s} = 3 \quad 5 \quad 12 \quad 14 \quad 7 \quad 8 \quad \dots$$
 $\mathcal{Q}'(\mathbf{s}) = \quad N \quad N \quad 12 \quad 14 \quad N \quad N \quad \dots$ 
 $K'(3) = K'(3 \quad 5) = N$ 

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# Complexity limitations

- kernel function not restricted
- possible restrictions:
  - computable by TM
  - belonging to a certain complexity class
- computable by streaming ASM

# **Background on Abstract State Machines**

- Transition system with structures as states
- interpretations of function and relation symbols change; dynamic/static vocabulary
- program = update rule
  - basic update rule  $f(t_1, \ldots, t_n) := t_0$
  - if-then-else
  - parallel application of update rules

Gurevich has shown that every sequential algorithm can be modelled as an ASM.

- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# Streaming ASM

## example: sASM for filter query $\pi_A \sigma_{B>10}$ **s**

```
if in.B > 10 then out = in.A else out = \bot endif
```

## Theorem (Universality)

If Q is abstract computable by a bounded-length kernel, then Q is computable by an sASM.

### Corollary

Every SAC query is computable by an sASM.



- General theory
  - Abstract computability
  - Continuity
  - The finite case
  - Time synchronization
- streaming ASMs
  - Universality of streaming ASMs
  - Bounded-memory restrictions

# Bounded-memory computability

#### **Definition**

A bounded-memory sASM (bm sASM) is an sASM where

- dynamic functions are nullary;
- non-nullary (static) functions only in out := t<sub>0</sub> rules;
- out is not used as an argument to a function.

All CQL-queries where a finite window is applied to the input streams are computable by a bounded-memory sASM.

[ CQL = Continuous Query Language [Arasu, Babu, Widom] ]

## INTERSECT not bounded-memory computable

### INTERSECT (boolean, synchronous version)

- Input: two interleaved streams r and s
- Output: do the portions of r and s, seen so far, intersect?

#### **Theorem**

INTERSECT is not computable by a bm sASM.

#### Proof.

Let M compute INTERSECT. Assume total order < on elements.

Ramsey: there is set of elements V s.t. truth of predicates in M's program only depends on <.

Choose  $e_1 < e'_1 < \cdots < e_n < e'_n \text{ in } V$ .

Run of M on  $\langle r : e_1 \rangle \dots \langle r : e_n \rangle \langle s : e_\ell \rangle$  same as run on

 $\langle \mathbf{r} : e_1 \rangle \dots \langle \mathbf{r} : e_n \rangle \langle \mathbf{s} : e'_{\ell} \rangle.$ 



# bounded-memory sASM: too restrictive

### running average

- intuitively computable with little amount of memory
- can not be modeled by bounded-memory sASM

### o(n)-sASM

- relax condition on non-nullary (static) functions
- o(n)-sASM can compute running average (under reasonable assumption)
- o(n)-sASM cannot compute INTERSECT (reduction from theorem on Finite Cursor Machines)

# Open problem

 relax bounded-memory sASMs in other ways than with o(n)-length bitstrings.