DEPARTMENT OF
COMPUTER SCIENCE
& ENGINEERING
College of
Engineering

EST. 1890

Extracting Possessions from Social Media: Images Complement Language

Dhivya Chinnappa, Srikala Murugan and Eduardo Blanco University of North Texas

Objective: To extract possession existence, type, temporal anchors, and interest in possessee

from social media posts including a text and an image

Possession: The state where a possessor has or controls a possessee **Possesor**: An entity having or controlling another entity *John's car*

Possessee: An entity belonging to another entity John's car

Type: Alienable (ownership) or control John borrowed Mary's Jacket

Temporal Anchors: When does the possession hold? *I bought this pen yesterday* **Interest in possessee**: Is the plausible possessor excited about the plausible possessee?

I love those shoes

Dataset:

English Tweets

- Text + Images
- Contain *I, me, my,* or *mine*

Labels:

Possession existence: Yes, Never,Unk.
Possession type: Alienable, Control
Temporal anchors: Bef, Dur, Aft
Interest in possessee: Yes, No

Cohen's kappa: 0.78 to 0.8

Text vs. Text + Image

Automatic Extraction

- Text: Glove Common Crawl and Twitter embeddings, possessee embeddings.
- Image: Weights from InceptionNet, Top 5 tags from cloud vision API.

Results:

Label		Only text			Text + Image			Text + Image + Vision tags		
		Р	R	F	Р	R	F	Р	R	F
Possession Existence	Yes	0.7	0.69	0.69	0.7	0.72	0.71	0.73	0.78	0.76
	Never	0.57	0.55	0.56	0.57	0.57	0.57	0.64	0.63	0.63
	Unk.	0.57	0.55	0.56	0.51	0.47	0.49	0.64	0.53	0.58
	Avg.	0.61	0.6	0.6	0.59	0.59	0.59	0.67	0.65	0.66
Possession Type	Alien.	0.84	0.94	0.89	0.84	0.95	0.89	0.83	0.92	0.88
	Cont.	0.19	0.07	0.1	0.21	0.07	0.1	0.75	0.82	0.77
	Avg.	0.52	0.51	0.5	0.53	0.51	0.5	0.79	0.87	0.83
Interest in Possessee	Yes	0.54	0.39	0.45	0.52	0.48	0.5	0.52	0.43	0.47
	No	0.64	0.77	0.7	0.65	0.68	0.67	0.64	0.72	0.68
	Avg	0.61	0.58	0.58	0.59	0.58	0.59	0.58	0.58	0.58

Conclusion

- We extract possessions from text and image.
- Humans identify more possessions when the image is available.
- Neural networks benefit from incorporating events and objects identified in an image as additional textual input.