/department of mathematics and computer science

Calculation

Recall the following calculation:

Can we conclude

$$\neg P \Rightarrow Q \stackrel{val}{=\!\!\!=} P \lor Q ?$$

 $\stackrel{val}{=\!\!\!=\!\!\!=} \; \{ \; \text{Double Negation} \; \}$ $P \vee Q$

- 1. What about applying two standard equivalences in a row? Does it preserve equivalence?
- 2. First step: not a *literal* application of Implication. Can we do substitutions?
- 3. Second step: literal application of Double Negation.
 Is it safe to apply standard equivalences in a larger context?

TU/e Technische Universiteit Eindhoven University of Technology

Table of standard equivalences

TABLES FOR PART I

Equivalences for connectives			
$ \begin{array}{c} \textbf{Commutativity:} \\ P \wedge Q \overset{val}{=} Q \wedge P, \\ P \vee Q \overset{val}{=} Q \vee P, \\ P \Leftrightarrow Q \overset{val}{=} Q \Leftrightarrow P \end{array} $	$ \begin{array}{c} \textbf{Associativity:} \\ (P \wedge Q) \wedge R \stackrel{val}{==} P \wedge (Q \wedge R), \\ (P \vee Q) \vee R \stackrel{val}{==} P \vee (Q \vee R), \\ (P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{==} \\ P \Leftrightarrow (Q \Leftrightarrow R) \end{array} $		
$\begin{array}{c} \textbf{Idempotence:} \\ P \wedge P \stackrel{wal}{=} P, \\ P \vee P \stackrel{val}{=} P \end{array}$	Double Negation: $\neg P \stackrel{val}{=\!\!\!=\!\!\!=} P$		
$\begin{array}{l} \text{Inversion:} \\ \neg \text{True} \stackrel{val}{=} \text{False,} \\ \neg \text{False} \stackrel{val}{=} \text{True} \end{array}$	$\begin{array}{l} \mathbf{True/False\text{-}elimination:} \\ P \wedge \mathbf{True} \overset{val}{=\!\!=\!\!=\!\!=} P, \\ P \wedge \mathbf{False} \overset{val}{=\!\!=\!\!=\!\!=} \mathbf{False}, \\ P \vee \mathbf{True} \overset{val}{=\!\!=\!\!=} \mathbf{True}, \\ P \vee \mathbf{False} \overset{val}{=\!\!=\!\!=} P \end{array}$		
$ \begin{array}{c} \textbf{Negation:} \\ \neg P \stackrel{val}{=\!\!\!=\!\!\!=} P \Rightarrow \texttt{False} \end{array} $	$\begin{array}{c} \textbf{Contradiction:} \\ P \wedge \neg P \stackrel{val}{=\!=\!=} \textbf{False} \\ \textbf{Excluded Middle:} \\ P \vee \neg P \stackrel{val}{=\!=\!=} \textbf{True} \end{array}$		
$\begin{array}{c} \textbf{Distributivity:} \\ P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R), \\ P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R) \end{array}$	$ \begin{array}{c} \textbf{De Morgan:} \\ \neg (P \land Q) \stackrel{val}{=\!\!\!=} \neg P \lor \neg Q, \\ \neg (P \lor Q) \stackrel{val}{=\!\!\!=} \neg P \land \neg Q \end{array} $		
$ \begin{array}{c} \textbf{Implication:} \\ P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q \end{array} $	Contraposition: $P\Rightarrow Q \ \ ^{\underline{val}} \ \ \neg Q\Rightarrow \neg P$		
$\begin{array}{c} \textbf{Bi-implication:} \\ P \Leftrightarrow Q \stackrel{val}{=\!=\!=} (P \Rightarrow Q) \land (Q \Rightarrow P) \end{array}$	$\begin{array}{c} \textbf{Self-equivalence:} \\ P \Leftrightarrow P \stackrel{val}{=\!\!\!=\!\!\!=} \texttt{True} \end{array}$		

For the collection of *all* standard equivalences, see page 372 of the book!

You will have to know them by heart (including their names!).

Start memorising them today!

TU/e Technische Universiteit Eindhoven University of Technology

 $\stackrel{val}{=}$ is a decent *equivalence*

Lemma 6.1.1

1. (Reflexivity:) $P \stackrel{val}{=} P$

department of mathematics and computer science

- 2. (Symmetry:) If $P \stackrel{val}{=} Q$, then $Q \stackrel{val}{=} P$
- 3. (Transitivity:) If $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{=} R$, then $P \stackrel{val}{=} R$

TU/e Technische Universiteit Eindhoven University of Technology

26/57

Substitution is the replacement of all occurrences of a 'letter' by a formula.

Examples:

1. If we substitute $Q \wedge P$ for P in the valid equivalence

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
,

then we get the valid equivalence

$$(Q \wedge P) \Rightarrow Q \stackrel{val}{=} \neg (Q \wedge P) \vee Q$$
.

/department of mathematics and computer science

Substitution

37/57

Substitution is the replacement of all occurrences of a 'letter' by a formula.

Examples:

3. If we (simultaneously) substitute $Q \wedge P$ for P and $\neg R$ for Q in the valid equivalence

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
,

then we get the valid equivalence

$$(Q \wedge P) \Rightarrow \neg R \stackrel{val}{=} \neg (Q \wedge P) \vee \neg R$$
.

TU/e Technische Universiteit Eindhoven University of Technology

Substitution

Substitution is the replacement of all occurrences of a 'letter' by a formula.

Examples:

2. If we substitute $\neg R$ for Q in the valid equivalence

$$(Q \wedge P) \Rightarrow Q \stackrel{val}{=} \neg (Q \wedge P) \vee Q$$
,

then we get the valid equivalence

$$(\neg R \land P) \Rightarrow \neg R \stackrel{val}{=} \neg (\neg R \land P) \lor \neg R$$
.

/department of mathematics and computer science

Substitution Rule

20/5

SUBSTITUTION PRESERVES EQUIVALENCE

Important remarks:

- 1. Substitution operates on entire equivalences
- 2. If you substitute for some letter *P* in an equivalence, then you have to replace all occurrences of *P* in that equivalence!

10/57

Leibniz's rule is about the replacement of a subformula by an equivalent subformula.

Example:

From the valid equivalence

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$

we can *make new valid equivalences* by replacing $P \Rightarrow Q$ in some complex formula by $\neg P \lor Q$, for instance:

$$(\neg P \land (P \Rightarrow Q)) \lor R \stackrel{val}{=} (\neg P \land (\neg P \lor Q)) \lor R$$

/department of mathematics and computer science

Proving tautologies—method 1

12/57

To prove with a calculation that P is a tautology:

Give calculation that shows $P \stackrel{val}{=}$ True.

TU/e Technische Universiteit Eindhoven University of Technology

Leibniz's rule

Leibniz's rule is about the replacement of a subformula by an equivalent subformula.

Schematically:

$$\frac{P \stackrel{val}{=\!\!\!=\!\!\!=} Q}{\cdots P \cdots \stackrel{val}{=\!\!\!=\!\!\!=} \cdots Q \cdots}$$

/department of mathematics and computer science

Proving tautologies—method 1 (example)

Prove with a calculation that $\neg(P \land \neg P)$ is a tautology.

We have the following calculation:

So $\neg (P \land \neg P)$ is a tautology.

/department of mathematics and computer science

44/57

Lemma 6.1.3

If $P \stackrel{val}{=} Q$, then $P \Leftrightarrow Q$ is a tautology, and vice versa.

To prove with a calculation that P is a tautology:

Give a calculation that shows $P \stackrel{val}{=} Q$.

/department of mathematics and computer science

Proving tautologies—method 2 (example)

45/5

Prove with a calculation that $\neg(Q \Rightarrow R) \Leftrightarrow (\neg R \land Q)$ is a tautology.

First, we establish, with a calculation, that $\neg(Q \Rightarrow R) \stackrel{val}{=} (\neg R \land Q)$:

$$\begin{array}{c} \neg(Q\Rightarrow R) \\ \stackrel{val}{=} \; \{\; \text{Implication} \; \} \\ \neg(\neg Q \lor R) \\ \stackrel{val}{=} \; \{\; \text{De Morgan} \; \} \\ \neg\neg Q \land \neg R \\ \stackrel{val}{=} \; \{\; \text{Double negation} \; \} \\ \neg R \land Q \end{array}$$

Explanation:

Substituting $\neg Q$ for P and R for Q in $\neg (P \lor Q) \stackrel{val}{=\!=\!=} \neg P \land \neg Q$ (De Morgan) we get, by the substitution rule: $\neg (\neg Q \lor R) \stackrel{val}{=\!=\!=} \neg \neg Q \land \neg R.$

TU/e Technische Universiteit Eindhoven University of Technology

Proving tautologies—method 2 (example)

45/57

Prove with a calculation that $\neg(Q \Rightarrow R) \Leftrightarrow (\neg R \land Q)$ is a tautology.

First, we establish, with a calculation, that $\neg(Q \Rightarrow R) \stackrel{val}{=} (\neg R \land Q)$:

$$\begin{array}{l} \neg(Q \Rightarrow R) \\ & \stackrel{val}{=} \; \{ \; \text{Implication} \; \} \\ \neg(\neg Q \lor R) \\ & \stackrel{val}{=} \; \{ \; \text{De Morgan} \; \} \\ \neg\neg Q \land \neg R \\ & \stackrel{val}{=} \; \{ \; \text{Double negation} \; \} \\ \neg R \land Q \\ \end{array}$$

Explanation:

Substituting Q for P and R for Q in $P\Rightarrow Q \stackrel{val}{=} \neg P \lor Q$ (Implication) we get, by the substitution rule: $Q\Rightarrow R \stackrel{val}{=} \neg Q \lor R$.

(The application of this equivalence in the calculation involves an application of Leibniz.)

/department of mathematics and computer science

Proving tautologies—method 2 (example)

15/57

Prove with a calculation that $\neg(Q \Rightarrow R) \Leftrightarrow (\neg R \land Q)$ is a tautology.

First, we establish, with a calculation, that $\neg(Q \Rightarrow R) \stackrel{val}{=} (\neg R \land Q)$:

$$\neg(Q \Rightarrow R)$$

$$\stackrel{val}{=} \{ \text{ Implication } \}$$

$$\neg(\neg Q \lor R)$$

$$\stackrel{val}{=} \{ \text{ De Morgan } \}$$

$$\neg\neg Q \land \neg R$$

$$\stackrel{val}{=} \{ \text{ Double negation } \}$$

$$\neg R \land Q$$

Explanation:

Substituting Q for P in $\neg\neg P \stackrel{val}{=} P$ (Double negation) we get, by the substitution rule: $\neg\neg Q \stackrel{val}{=} Q$.

(The application of this equivalence in the calculation involves an application of Leibniz, and is followed by an application of Commutativity.)

TU/e Technische Universiteit Eindhoven University of Technology

Proving tautologies—method 2 (example)

45/57

Prove with a calculation that $\neg(Q \Rightarrow R) \Leftrightarrow (\neg R \land Q)$ is a tautology.

First, we establish, with a calculation, that $\neg(Q \Rightarrow R) \stackrel{val}{=\!=\!=} (\neg R \land Q)$:

$$\begin{split} \neg(Q \Rightarrow R) \\ & \stackrel{val}{=} \; \{ \; \text{Implication} \; \} \\ \neg(\neg Q \lor R) \\ & \stackrel{val}{=} \; \{ \; \text{De Morgan} \; \} \\ \neg \neg Q \land \neg R \\ & \stackrel{val}{=} \; \{ \; \text{Double negation} \; \} \\ \neg R \land Q \end{split}$$

From $\neg(Q\Rightarrow R)\stackrel{val}{=} \neg R \land Q$ it follows (by Lemma 6.1.3) that $\neg(Q\Rightarrow R)\Leftrightarrow (\neg R \land Q)$ is a tautology.

department of mathematics and computer science

Logical Consequence (example 1)

47/57

$$\neg P \left\{ \begin{array}{c} \stackrel{val}{\longleftarrow} ? \\ \stackrel{val}{\longleftarrow} ? \end{array} \right\} P \Rightarrow Q$$

P	Q	$\neg P$	$P \Rightarrow Q$	
0	0	1	$\longrightarrow 1$	
0	1	1	$\rightarrow 1$	extra true
1	0	0	0	
1	1	0	1	

So $\neg P$ is stronger than $P \Rightarrow Q$ (i.e., $\neg P \stackrel{val}{\longleftarrow} P \Rightarrow Q$).

TU/e Technische Universiteit Eindhoven University of Technology

16/57

Recall:

$$P \stackrel{val}{=\!\!\!=\!\!\!=} Q$$
 means $\left\{ egin{array}{ll} ext{(a) whenever P is 1, then also Q is 1} \ ext{(b) whenever Q is 1, then also P is 1} \end{array} \right.$

Define:

$$P \stackrel{val}{\models} Q$$
 means $\{$ (a) whenever P is 1, then also Q is 1

Pronounce $P \stackrel{val}{=} Q$ as "P is stronger than Q."

$$\begin{array}{c|c} P & Q \\ \hline 1 & 1 \\ \hline 0 & 1/0 \end{array} \quad P \stackrel{val}{\models} Q \text{: 1s are } \begin{array}{c} \text{carried over from } P \text{ to } Q. \end{array}$$

/department of mathematics and computer science

Logical Consequence (example 2)

/18/

$$P \Rightarrow Q \left\{ \begin{array}{c} \stackrel{val}{\rightleftharpoons} ? \\ \stackrel{val}{\rightleftharpoons} ? \end{array} \right\} P \vee Q$$

P	Q	$P \Rightarrow Q$	$P \lor Q$
0	0	1)	$\longleftrightarrow 0$
0	1	1	1
1	0	0 ↔	<u>(1)</u>
1	1	1	1

So $P \Rightarrow Q$ and $P \lor Q$ are incomparable.

Technische Universiteit
Eindhoven
University of Technology

Standard weakenings

40/E7

\land - \lor -weakening: $P \land Q \stackrel{val}{\rightleftharpoons} P$ $P \stackrel{val}{\rightleftharpoons} P \lor Q$

P	Q	$P \wedge Q$	P	$P \lor Q$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	$\rightarrow 1$
1	1	1) 1	$\rightarrow 1$

Also:

$$P \wedge Q \stackrel{val}{\models} Q$$
 and
$$Q \stackrel{val}{\models} P \vee Q .$$

Extremes:

False $\stackrel{val}{\longleftarrow} P$ $P \stackrel{val}{\longleftarrow} \text{True}$

False is strongest of all True is weakest of all

/department of mathematics and computer science

Basic properties of $\stackrel{val}{=}$, $\stackrel{val}{=}$

51/57

Lemma 7.3.2

 $P \stackrel{val}{=} Q$ if, and only if, $P \stackrel{val}{=} Q$ and $P \stackrel{val}{=} Q$.

So, if you need to prove $P \stackrel{val}{\rightleftharpoons} Q$ or $P \stackrel{val}{\rightleftharpoons} Q$ by a calculation, then it is enough to prove $P \stackrel{val}{\rightleftharpoons} Q$. But $P \stackrel{val}{\rightleftharpoons} Q$ (or $P \stackrel{val}{\rightleftharpoons} Q$) alone is not enough to conclude $P \stackrel{val}{\rightleftharpoons} Q!$

TU/e Technische Universiteit Eindhoven University of Technology

50/5

Lemma 7.3.1

- (1a) $P \stackrel{val}{=} P$.
- (2) If $P \stackrel{val}{=} Q$, then $Q \stackrel{val}{=} P$, and vice versa.
- (3) If $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{=} R$, then $P \stackrel{val}{=} R$.

/department of mathematics and computer science

Basic properties of $\stackrel{val}{=}$, $\stackrel{val}{=}$

52/

Lemma 7.3.4

 $P \stackrel{val}{\longleftarrow} Q$ if, and only if, $P \Rightarrow Q$ is a tautology.

The Substitution Rule also works for $\stackrel{val}{\models}$ and $\stackrel{val}{\rightleftharpoons}$:

SUBSTITUTION PRESERVES WEAKENING/STRENGHTENING

Example

We have the following valid weakening:

$$P \wedge Q \stackrel{val}{=} P \vee R$$

and hence, according to the Substitution Rule, if we substitute $(Q \Rightarrow R)$ for P and $(P \lor Q)$ for Q, we get another valid weakening:

$$(Q \Rightarrow R) \land (P \lor Q) \stackrel{val}{\models} (Q \Rightarrow R) \lor R$$
.

/department of mathematics and computer science

Monotonicity

We do have the following weaker variant of Leibniz's Rule:

Monotonicity:

- (1) If $P \stackrel{val}{=} Q$, then $P \wedge R \stackrel{val}{=} Q \wedge R$
- (2) If $P \stackrel{val}{=} Q$, then $P \vee R \stackrel{val}{=} Q \vee R$

Example:

Since $P \stackrel{val}{\models} P \lor Q$ by $\land \neg \lor \neg$ weakening, we have:

$$P \wedge R$$

$$\stackrel{\forall al}{\longleftarrow} \ \{ \ \land \ \neg \lor \neg \text{weakening + Monotonicity} \ \}$$

$$(P \lor Q) \land R \ .$$

Leibniz for $\stackrel{val}{=}$, $\stackrel{val}{=}$?

Recall Leibniz's Rule for making new equivalences:

$$\frac{P \stackrel{val}{=} Q}{\cdots P \cdots \stackrel{val}{=} \cdots Q \cdots}$$
 Can we replace $\stackrel{val}{=}$ by $\stackrel{val}{=}$ in this rule?

Examples

Note that, by \land - \lor -weakening, $P \land Q \stackrel{val}{=} P \lor Q$. Now consider:

- 1. $\neg (P \land Q) \not\models^{val} \neg (P \lor Q);$
- 2. $R \Rightarrow (P \land Q) \stackrel{val}{\longleftarrow} R \Rightarrow (P \lor Q)$; and
- 3. $(P \land Q) \Rightarrow R \not\models (P \lor Q) \Rightarrow R$.

Conclusion: replacing $\stackrel{val}{=}$ by $\stackrel{val}{=}$ does not yield a valid rule!

department of mathematics and computer science

Example

Prove with a calculation that $\neg(P \Rightarrow Q) \Rightarrow (\neg Q \land (P \lor R))$ is a tautology.

First, we establish that $\neg(P \Rightarrow Q) \stackrel{val}{=} \neg Q \land (P \lor R)$:

$$\neg(P \Rightarrow Q)$$

$$\stackrel{val}{=}$$
 { Implication }

$$\neg(\neg P \lor Q)$$

So, by Lemma 7.3.4, the formula

$$\stackrel{val}{=} \{ \text{ De Morgan } \}$$

$$\neg(P \Rightarrow Q) \Rightarrow (\neg Q \land (P \lor R))$$

$$\stackrel{val}{=}$$
 { Double Negation }

$$P \wedge \neg Q$$

$$\stackrel{val}{\models} \{ \land \neg \lor \neg \text{weakening + Monotonicity } \}$$
$$\neg Q \land (P \lor R)$$

department of mathematics and computer science

Formal System for Calculation

57/57

We now have a precisely defined formal system for calculating with abstract propositions:

- standard equivalences and standard weakenings;
- ► inference rules (viz. reflexivity, symmetry, transitivity, substitution, Leibniz for equality, Monotonicity for weakening)

It gives a method to prove in a structured manner that

- two abstract propositions are equivalent, or one is stronger/weaker than the other;
- an abstract proposition is a tautology.

/department of mathematics and computer science