DEVIN MAYA 10/27/23

Math 117 Homework 4

- 2.1.1 Recall that the complex numbers \mathbb{C} may be regarded as an -vector space.
 - 1. Find a basis B for \mathbb{C} as an \mathbb{R} -vector space. Explain why it is a basis.
 - 2. Let $z \in \mathbb{C}$ be a complex number. Consider the multiplication by z map

$$z: \mathbb{C} \to \mathbb{C}$$
$$x \mapsto zx.$$

Explain why this is an R-linear map.

3. If z = a + bi, find the matrix $[z]_B$ of the multiplication-by-z map with respect to the basis B from (i). Your matrix should be given in terms of a and b.

Solution. 1. it is important to observe that a complex number can be shown as a linear combination of i and 1 explicitly a complex number is of the form z = a + bi here $a, b \in R$ can be shown as a(1)+b(i) where 1 and i are linearly independent over \mathbb{R} no real linear combination of such numbers equal zero only if the coefficients are zero so $B = \{1, i\}$ is a basis for \mathbb{C} over \mathbb{R} . The set 1, i is linearly independent over \mathbb{R} since no non trivial real linear combination of these numbers equals 0. Therefore a basis for \mathbb{C} as an R-vector space is $B = \{1, i\}$.

2. Let $z \in \mathbb{C}$ be a complex number. Consider the multiplication by z map Explain why this is an \mathbb{R} -linear map.

Given the definition from the lecture notes Definition 1.3.1. A function $T:V\to W$ is called a linear map or linear transformation if for all $x,y\in V$ and all $a\in F$ then (i) T(x+y)=T(x)+T(y) (ii) T(ax)=aT(x) A linear map $T:V\to V$ is also called a linear operator on V. Given this definition for a map $z:\mathbb{C}\mathbb{B}\mathbb{C}$ to be \mathbb{R} -linear then it must satisfy the following propertie z(x+y)=zx+zy for all $x,y\in\mathbb{C}$ from (i) in the definition $z(c\cdot x)=c\cdot (zx)$ for all $x\in\mathbb{C}$ and $c\in\mathbb{R}$ from (ii) in the definition. Now the objective is to verify these properties for the map z. So for any $x,y\in\mathbb{C}$ then $z(x+y)=z\cdot x+z\cdot y$ This is from the distributive property of complex numbers and this satisfies the first property of linear maps where T(x+y)=T(x)+T(y). For any $x\in\mathbb{C}$ and $c\in\mathbb{R}$ then $z(c\cdot x)=c\cdot (zx)$ This is because multiplication by a real number in the complex numbers is commutative. This goes with the second property of linear maps so T(ax)=aT(x). Therefore the multiplication by z map is indeed an \mathbb{R} linear map by the given definition since the properties have been verified.

3. Using the basis $B = \{1, i\}$, we can determine the matrix of the multiplication-by-z map with respect to the abses found earlier in 1. For the first basis element 1 It is shown as $z \cdot 1 = (a + bi) \cdot 1 = a + bi$ now in terms of basis B this can be shown as the following column

vector
$$\begin{bmatrix} a \\ b \end{bmatrix}$$

For the second basis element $i \ z \cdot i = (a+bi) \cdot i = -b+ai$ now in terms of basis B this is the column vector $\begin{bmatrix} -b \\ a \end{bmatrix}$ the matrix $[z]_B$ representing the multiplication-by-z map with respect to basis B is $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ since it is both components combined .

2.2.1 Consider the vector space $F_2[x]$. Let

$$S = \{1 + x^2, 1 - x^2, x + x^2, 1 + x + x^2\}.$$

Show that S spans $F_2[x]$ and find a basis B for $F_2[x]$ contained in S.

Solution. the objective is to show that the set S spans $F_2[x]$ and find a basis B for $F_2[x]$ contained in S.

Where $S = \{1+x^2, 1-x^2, x+x^2, 1+x+x^2\}$. Within $F_2[x]$ the vector space of polynomials with coefficients from the field F_2 . In F_2 there are only two elements 0 and 1 since the arithmetic is modulo 2 thus 1+1=0. First will show that S spans $F_2[x]$ taking the degrees into consideration where for every polynomial of $F_2[x]$ of degree 2 or less it will be shown as a linear combination of the polynomials in S. For 1 using $1+x^2$ and $1-x^2$ then $1=\frac{1}{2}(1+x^2)+\frac{1}{2}(1-x^2)$. For x in the set using $x+x^2$ and $1+x^2$ then the result is $x=(1+x+x^2)-(1+x^2)$ after subtracting. for x^2 using $1+x^2$ then the result after sub 1 is $x^2=(1+x^2)-1$. For 1+x using $1+x+x^2$ minus $x+x^2$ then $1+x=(1+x+x^2)-(x+x^2)$. For $x+x^2$ it is observed that it is $\in S$ also considering $1+x^2$ and $1+x+x^2$ are in S.

Thus it is shown that every polynomial in $F_2[x]$ with the given degress can be expressed using the elements of S. Therefore S spans $F_2[x]$. Now to address a basis B contained in S the smallest set of linearly independent polynomials from S that can still span $F_2[x]$.

From S it is observable that $x + x^2$ is a linear combination of the others thus it's dependent also polynomials $1 + x^2$, $1 - x^2$, and $1 + x + x^2$ aren't linear combinations of any others in S thus they're independent. Therefore basis B would be $B = \{1 + x^2, 1 - x^2, 1 + x + x^2\}$

2.2.2 Consider the vector space $F^{2\times 2}$. Let

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix} \right\}$$

Show that S is linearly independent.

Solution. The objective show that the set S is linearly independent in the vector space $F^{2\times 2}$. $S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix} \right\}$ Linear independence in matrices means that no matrix in the set can be expressed as a linear combination of the others. begin by setting

up a linear combination of the matrices in S with scalars a, b, c, and d, and set this equal to the zero matrix so $a \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + c \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} + d \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Now performing expansion on the matrix results in $\begin{bmatrix} a+b+2c+d & a-b+c+d \\ a-b+c-d & a+b+3c+5d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Now you can create a system of equations as such

1. a+b+2c+d=0, 2. a-b+c+d=03. a-b+c-d=04. a+b+3c+5d=0 Now the objective is to solve them

2b + 3c = 0 from 1. and 2.

Also 2a + 2c = 0 where a = -c from 3,4

-2c - 4d = 0 then c = -2d From 1,4

combining the results then a = b = c = d = 0 which is trivial sol. Then the system of equations only has the trivial solution where a = b = c = d = 0. Thent none of the matrices $\in S$ can be expressed as a linear combination of the others.

Therefore set S is linearly independent in the vector space $F^{2\times 2}$.

2.2.3 Consider the linear map $T: F^{2\times 3} \to F^2$ given by summing the columns of a matrix:

$$T\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b+c \\ d+e+f \end{bmatrix}$$

Find bases for $\ker(T)$ and (T).

Solution. The objective is to find the bases for the kernel $(\ker(T))$ and the image (T) of the linear map T Given the transformation T T $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a+b+c \\ d+e+f \end{bmatrix}$ Here the kernel of T consists of all matrices in $F^{2\times 3}$ that map to the zero vector in F^2 .

Thus
$$\begin{bmatrix} a+b+c \\ d+e+f \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now observing the derived equations are the following a+b+c=0 and d+e+f=0 thus using the equations results in $\begin{bmatrix} a & b & -a-b \\ d & e & -d-e \end{bmatrix}$ Which is in the kernel of T.

now considering when a = 1, b = 0 and d = 0, e = 0 the result is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Doing the same for a = 0, b = 1 and d = 0, e = 0 the result is $\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Now the same for a = 0, b = 0 and d = 1, e = 0 the result is $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$

Observe that the matrices are linearly independent thus they are forming the basis for $\ker(T)$ where it is

$$\left\{ \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \right\}$$
Now addressing the image of T

Given the transformation T, any vector in F^2 of the form $\begin{bmatrix} x \\ y \end{bmatrix}$ can be done with a combination of the columns in the matrix space $F^{2\times 3}$. Thus image of T spans all of F^2 so a basis for F^2 and therefore for (T) is

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

2.2.4 Consider the linear operator T on $F_2[x]$ given by the change of variables $x \mapsto x + 1$:

$$T(p(x)) = p(x+1).$$

Let $B = \{1, x, x^2\}$ be the standard basis for $F_2[x]$. Explain why $[T]_B$ is an invertible matrix and find its inverse.

Solution. The problem pertains to a linear operator T on the polynomial space $F_2[x]$. This operator is characterized by the transformation $x \mapsto x+1$. We are provided with a standard basis for this space as $B=\{1,x,x^2\}$. The objective is to determine if the matrix representation of this operator with respect to this basis is invertible and provide its inverse First for the matrix representation $[T]_B$ applying the transformation T to each basis vector in B results in T(1) which is 1 since there's no x to substitute. Now for T(x) it is x+1. Now for $T(x^2)$ after x+1 is squared the result if x^2+2x+1 here $\in F_2$ so the coefficients are modulo 2 then it becomes x^2+1 . Now analyzing the transformed polynomials in terms of the basis B where 1 is 1 of the basis 1, 0 of the basis x, and 0 of the basis x, and 0 of the basis x, and 1 of the basis x.

In the matrix representation
$$[T]_B$$
 and using the coeff then
$$[T]_B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 A matrix is invertible if its determinant is non zero thus computing

such value is $det([T]_B) = 1(1 \times 1 - 0 \times 0) = 1$ here determinant is non-zero in F_2 so $[T]_B$ is invertible. Now to find the inverse

evertible. Now to find the inverse
$$[T]_B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ in } F_2 \text{ -1 is equivalent to 1 thus}$$

$$[T]_B^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ Therefore } [T]_B \text{ is found to be invertible and its inverse is}$$

$$[T]_B^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$