Scilab Textbook Companion for Integrated Circuits by S. Sharma¹

Created by
Mohd Tasleem
B.Tech
Electronics Engineering
Raj Kumar Goel Institute Of Technology
College Teacher
Mr. Rahul Kumar
Cross-Checked by
Shamika

March 6, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Integrated Circuits

Author: S. Sharma

Publisher: S. K. Kataria & Sons, Delhi

Edition: 3

Year: 2010

ISBN: 978-93-5014-058-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Analog Integrated Circuit Design An Overview	8
2	The 741 IC Op Amp	12
3	Op Amp With Negative Feedback	17
4	Linear Applications of IC Op Amps	2 5
5	Filters	42
6	Sinusoidal Oscillators	60
8	CMOS Realization Of Inverters	62
10	Nonlinear Applications of IC Op Amps	66
12	Digital to Analog and Analog to Digital Converters	71
13	Integrated Circuit Timer	7 8
14	Phase Locked Loops	90

List of Scilab Codes

Exa 1.1	Constant current	8
Exa 1.2	Value of RE	8
Exa 1.3	Collector current	9
Exa 1.4	Collector current	10
Exa 1.5	Output resistance	11
Exa 2.2	Input bias current	12
Exa 2.4	Slew rate and maximum possible frequency	12
Exa 2.5	Output voltage	13
Exa 2.6	CMRR	14
Exa 2.6.2	Input offset voltage	14
Exa 2.17	Lowest value of RL	15
Exa 2.18	Slew rate and maximum possible frequency	15
Exa 3.1	Closed loop voltage gain	17
Exa 3.2	Inverting op amp	18
Exa 3.4	Feedback resistance	18
Exa 3.5	Closed loop gain and input resistance	19
Exa 3.6	Voltage gain and input resistance	20
Exa 3.7	Value of Af Rif RoF and fF	20
Exa 3.8	Voltage gain and input output resistance	22
Exa 3.9	Input impedance voltage gain and power gain	22
Exa 3.10	Inverting op amp	23
Exa 3.11	Inverting op amp	23
Exa 4.1	Output voltage	25
Exa 4.2	Design an adder circuit	25
Exa 4.3	Output voltage	26
Exa 4.4	Summing amplifier	27
Exa 4.5	Values of resistances	27
Exa 4.6	Output voltage	28

Exa 4.7	Limiting frequency
Exa 4.8	Practical integrator circuit
Exa 4.9	Maximum change in output voltage
Exa 4.10	Safe frequency and dc gain
Exa 4.11	Output voltage
Exa 4.12	Closed loop time constant
Exa 4.13	Values of R1 and RF
Exa 4.14	Sketch of output voltage
Exa 4.15	Time duration for saturation
Exa 4.16	Values of resistors
Exa 4.17	Practical differentiator circuit
Exa 4.18	Output voltage
Exa 4.19	Values of ROM and Vout
Exa 4.20	Range of gain
Exa 4.21	Value of RG
Exa 4.22	Transconductance resistance
Exa 4.23	Instrumentation amplifier
Exa 4.24	Expression for output voltage
Exa 4.25	Gain of instrumentation amplifier
Exa 4.27	Output voltage
Exa 4.28	Value of RG
Exa 4.31	Three op amp instrumentation amplifier 41
Exa 5.1	Cut off frequency and passband voltage gain 42
Exa 5.2	First order low pass filter
Exa 5.3	Low pass filter
Exa 5.4	Second order low pass filter
Exa 5.5	Second order low pass filter
Exa 5.6	Second order low pass filter
Exa 5.7	Second order low pass filter
Exa 5.8	Second order Butterworth filter
Exa 5.9	Second order Butterworth filter
Exa 5.12	Second order low pass filter
Exa 5.13	Fourth order Butterworth filter
Exa 5.14	Value of Resistance
Exa 5.15	Passband gain
Exa 5.16	Cut off frequency and passband voltage gain
Exa 5.17	Second order Bessel Filter
Exa 5 18	Wide band pass filter 53

Exa 5.19	Narror band pass filter
Exa 5.20	Wide band reject Filter
Exa 5.21	Active notch filter
Exa 5.22	Phase shift between input and output voltages
Exa 5.23	Center frequency and quality factor
Exa 5.24	Wide bandpass Filter
Exa 6.3	Frequency of oscillaitor
Exa 6.4	Wien Bridge Oscillator
Exa 8.2	Value of RL ans WbyL
Exa 8.4	CMOS Inverter
Exa 8.5	Value of VOH VOL and Vth
Exa 8.6	Value of Vx
Exa 10.1	Threshold voltages
Exa 10.2	Value of R1 and R2
Exa 10.3	Time duration
Exa 10.4	Value of R1 and R2
Exa 10.6	values of VLT VUT and VH
Exa 10.7	Threshold voltages and hysteresis voltage
Exa 10.10	Values of VUT VLT and oscillation frequency
Exa 10.12	Change in output voltage
Exa 12.1	Resolution
Exa 12.2	Final output voltage
Exa 12.3	VoFS and Vout
Exa 12.4	Step size and analog output
Exa 12.5	Full scale output voltage and percentage resolution
Exa 12.6	Values of resistors
Exa 12.7	Resolution and digital output
Exa 12.8	Quantizing error
Exa 12.9	The value of t2
Exa 12.10	Digital output
Exa 12.11	Conversion time
Exa 12.12	Maximum frequency
Exa 13.1	Frequency and duty cycle
Exa 13.2	Positive and negative pulse width
Exa 13.3	Resistor required
Exa 13.4	A 555 timer
Exa 13.5	Frequency and duty cycle
Exa 13.6	Positive and negative pulse width

Exa 13.7	Value of resistor required	32
Exa 13.8	A 555 timer	32
Exa 13.9	A 555 timer	33
Exa 13.10	Resistor required	33
Exa 13.11	Resistor required	34
Exa 13.12	Value of RLED	34
Exa 13.13	Resistor required	35
Exa 13.14	A 555 based square wave generator	36
Exa 13.15	A 555 timer	36
Exa 13.16	A 555 timer	37
Exa 13.17	Output pulse width	38
Exa 13.18	Relationship between tp and T	88
Exa 13.19	Value of RA	39
Exa 14.1	Free running frequency and Lock range	90
Exa 14.2	Frequency and number of bits	91

Chapter 1

Analog Integrated Circuit Design An Overview

Scilab code Exa 1.1 Constant current

```
1 // Exa 1.1
2 clc;
3 clear;
4 close;
5 // Given data
6 V_EE = 10; // in V
7 R2 = 2.4; // in k ohm
8 R1 = 2.4; // in k ohm
9 R3 = 1; // in k ohm
10 V_BE3 = 0.7; // in V
11 I = (V_EE - ((R2*V_EE)/(R1+R2)) - V_BE3)/R3; // in mA
12 disp(I,"The constant current in mA is");
```

Scilab code Exa 1.2 Value of RE

```
1 // Exa 1.2
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ V_CC} = 50; // \text{ in V}
7 \text{ V}_{BE2} = 0.7; // \text{ in V}
8 R = 50; // in k ohm
9 R = 50 * 10^3; // in ohm
10 I_C1 = 10; // in A
11 I_C1 = I_C1 * 10^-6; // in A
12 V_T = 26; // in mV
13 V_T = V_T * 10^-3; // in V
14 I_C2 = (V_CC - V_BE2)/R; // in A
15 R_E = (V_T*log(I_C2/I_C1))/I_C1; // in ohm
16 R_E = R_E * 10^-3; // in k ohm
17 disp(R_E, "The value of R_E in k
```

Scilab code Exa 1.3 Collector current

```
1 // Exa 1.3
2 clc;
3 clear;
4 close;
5 // Given data
6 \ V = 10; // in \ V
7 \text{ V_BE} = 0.715; // \text{ in V}
8 V_R = 0 - (V_BE - V); // in V
9 R = 5.6; // in k ohm
10 I_R = V_R/R; // in mA
11 bita = 100;
12 I_C = I_R * (bita/(1+bita)); // in mA
13 disp(I_C, "For transistor Q1, the collector current
      in mA is");
14 I_C2 = I_R; // in mA
15 disp(I_C2, "For transistor Q2, the collector current
```

```
in mA is");
16 I_C3 = I_R; // in mA
17 disp(I_C3, "For transistor Q3, the collector current in mA is");
18 I_C4 = I_R; // in mA
19 disp(I_C4, "For transistor Q4, the collector current in mA is");
```

Scilab code Exa 1.4 Collector current

```
1 // Exa 1.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \ V = 10; // in \ V
7 \text{ V_BE} = 0.715; // in V
8 R = 5.6; // in k ohm
9 I = (V-V_BE)/(R); // in mA
10 \text{ bita} = 100;
11 I_C1 = (bita/(4+bita))*I; // in mA
12 disp(I_C1, "For transistor Q1, the collector current
      in mA is");
13 I_C2 = I_C1; // in mA
14 disp(I_C2, "For transistor Q2, the collector current
      in mA is");
15 I_C3 = I_C1; // in mA
16 disp(I_C3, "For transistor Q3, the collector current
      in mA is");
17 I_C4 = I_C1; // in mA
18 disp(I_C4, "For transistor Q4, the collector current
      in mA is");
```

Scilab code Exa 1.5 Output resistance

```
1 // Exa 1.5
2 clc;
3 clear;
4 close;
5 // Given data
6 I_D1 = 100; // in A
                       A/V^2
7 \text{ k_n} = 200; // in
8 \ W = 10; // in \ m
9 1 = 1; // in m
10 V_A = 20; // in V
11 V_{ov} = \frac{sqrt((I_D1*2)/(k_n*(W/1)))}{/} in V
12 V_t = 0.7; // in V
13 V_{GS} = V_{t} + V_{ov}; // in V
14 V_{GS} = round(V_{GS}); // in V
15 V_DD = 3; // in V
16 I_REF = 100; // in
17 I_REF = I_REF * 10^-3; // in mA
18 R = (V_DD - V_GS)/I_REF; // in k ohm
19 disp(R,"The value of R in k
                                     is");
20 \text{ V\_ov\_min} = \text{V\_ov}; // \text{ in volt}
21 disp(V_ov_min,"The lowest possible value of V_o in V
       is");
22 \text{ r_o2} = V_A/I_D1; // \text{ in M ohm}
23 disp(r_o2, "The output resistance in M is");
24 \ V_0 = V_GS; // in V
25 \text{ del_Io} = V_0/r_02; // in
                               Α
26 disp(del_Io,"The change in output current in A is"
      );
```

Chapter 2

The 741 IC Op Amp

Scilab code Exa 2.2 Input bias current

```
1 // Exa 2.2
2 clc;
3 clear;
4 close;
5 // Given data
6 I_b1 = 18; // in A
7 I_b2 = 22; // in A
8 I_b = (I_b1+I_b2)/2; // in A
9 disp(I_b, "Input bias current in A is ");
10 I_ios = abs(I_b1-I_b2); // in A
11 disp(I_ios, "Input offset current in A is");
```

Scilab code Exa 2.4 Slew rate and maximum possible frequency

```
1 // Exa 2.4
2 clc;
3 clear;
4 close;
```

```
5  // Given data
6  I_CQ = 10; // in  A
7  I_CQ= I_CQ*10^-6; // in  A
8  I = I_CQ; // in  A
9  C_C = 33; // in  pF
10  C_C=C_C*10^-12; // in  F
11  C = C_C; // in  F
12  S = I/C; // in  V/sec
13  disp(S*10^-6, "The slew rate in  V/ -sec is");
14  V_m = 12; // in  V
15  f_m = S/(2*%pi*V_m); // in  Hz
16  f_m = f_m * 10^-3; // in  kHz
17  disp(f_m, "Maximum possible frequency in kHz is");
```

Scilab code Exa 2.5 Output voltage

```
1 // Exa 2.5
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ CMRR} = 100;
7 \text{ V1} = 300; // in
8 V2 = 240; // in
9 \text{ V_id} = \text{V1-V2}; // \text{ in}
10 V_{cm} = (V1+V2)/2; // in V
11 A_{id} = 5000;
12 \quad A_{cm} = A_{id}/CMRR;
13 V_{out} = (A_{id}*V_{id}) + (A_{cm}*V_{cm}); // in
                                                      V
14 V_{out} = V_{out} * 10^{-3}; // in mV
15 disp("Part (i)")
16 disp(V_out, "The output Voltage in mV is");
17 disp("Part (ii)")
18 \text{ CMRR} = 10^5;
19 A_{cm} = A_{id}/CMRR;
```

```
20 V_out = (A_id*V_id) + (A_cm*V_cm); // in V
21 V_out = V_out* 10^-3; // in mV
22 disp(V_out, "The output voltage in mV is");
```

Scilab code Exa 2.6 CMRR

```
1 // Exa 2.6
2 clc;
3 clear;
4 close;
5 // Given data
6 R1 = 1; // in k ohm
7 R2 = 100; // in k ohm
8 A_id = R2/R1; // in k ohm
9 Epsilon = 1 - (90/R2);
10 A_cm = (R2*Epsilon)/(R1+R2)
11 CMMR = A_id/A_cm;
12 CMRR = 20*log10(CMMR); // in dB
13 disp(CMRR, "The value of CMRR in dB is");
```

Scilab code Exa 2.6.2 Input offset voltage

```
1 // Exa 2.6 Again
2 clc;
3 clear;
4 close;
5 // Given data
6 gm1= 1/5.26; // in mA/V
7 gm1= gm1*10^-3; // in A/v
8 I= 9.5; // in A
9 I=I*10^-6; // in A
10 del_I= 5.5*10^-3*I; // in A
11 V_OS= del_I/gm1; // in V
```

```
12 disp(V_OS*10^3, "The offset voltage in mV is : ")
```

Scilab code Exa 2.17 Lowest value of RL

```
1 // Exa 2.17
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 10; // in V
7 R1 = 1; // in k ohm
8 R1=R1*10^3; // in ohm
9 R2 = 9; // in k ohm
10 R2= R2*10^3; // in ohm
11 I_out = 20; // in mA
12 I_out=I_out*10^-3; // in A
13 R_L = V/( I_out-(V/(R1+R2)) ); // in ohm
14 disp(R_L, "The lowest value of R_L in ohm is");
```

Scilab code Exa 2.18 Slew rate and maximum possible frequency

```
1  // Exa 2.18
2  clc;
3  clear;
4  close;
5  // Given data
6  I_CQ = 10; // in A
7  I_CQ= I_CQ*10^-6; // in A
8  I = I_CQ; // in A
9  C_C = 33; // in pF
10  C_C=C_C*10^-12; // in F
11  C = C_C; // in F
12  S = I/C; // in V/sec
```

```
13 disp(S*10^-6, "The slew rate in V/ -sec is");
14 V_m = 12; // in V
15 f_m = S/(2*%pi*V_m); // in Hz
16 f_m = f_m * 10^-3; // in kHz
17 disp(f_m, "Maximum possible frequency in kHz is");
```

Chapter 3

Op Amp With Negative Feedback

Scilab code Exa 3.1 Closed loop voltage gain

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 // Given data
6 A = 2*10^5;
7 R_F = 4.7*10^3; // in ohm
8 R1 = 470; // in ohm
9 K = R_F/(R1+R_F);
10 B = R1/(R1+R_F);
11 A_F = -(A*R_F)/(R1+R_F+(R1*A));
12 disp(A_F, "The closed loop voltage gain is");
13 R_in = 2; // in M ohm
14 R_in = R_in * 10^6; // in ohm
15 R_{inf} = R1 + ((R_F*R_{in})/(R_F+R_{in} + (A*R_{in}))); //
      in ohm
16 disp(R_inf, "Input resistance in is");
17 R_o = 75; // in ohm
18 R_{of} = R_{o}/(1+(A*B)); // in ohm
```

```
19 R_of = R_of * 10^3; // in m
20 disp(R_of, "Output Resistance in m is");
21 f_o = 5; // Hz
22 f_f = f_o*(1+(A*B)); // in Hz
23 f_f = f_f *10^-3; // in kHz
24 disp(f_f, "Band width with feedback in kHz is");
25
26 // Note: In the book, the unit of output resistant is wrong it will be m (not M)
```

Scilab code Exa 3.2 Inverting op amp

```
1  // EXa 3.2
2  clc;
3  clear;
4  close;
5  // Given data
6  A_F = -30;
7  R_F = 1; // in M ohm
8  R1 = -(R_F/A_F); // in Mohm
9  R_i = R1; // in Mohm
10  disp(R_i*10^3, "Input resistance in k is");
```

Scilab code Exa 3.4 Feedback resistance

```
1  // Exa 3.4
2  clc;
3  clear;
4  close;
5  // Given data
6  A_F = 61;
7  R1 = 1; // in k ohm
8  R1 = R1 * 10^3; // in ohm
```

```
9  R_F = (A_F-1)*R1; // in ohm
10  R_F = R_F * 10^-3; // k ohm
11  disp(R_F, "The value of feedback resistance in k is ");
```

Scilab code Exa 3.5 Closed loop gain and input resistance

```
1 // Exa 3.5
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 A = 2*10^5;
7 R1 = 1; // in k ohm
8 R1 = R1 *10^3; // in ohm
9 R_F = 10; // in k ohm
10 R_F = R_F * 10^3; // in ohm
11 B = R1/(R1+R_F);
12 R_i = 2; // in M ohm
13 R_i = R_i * 10^6; // in ohm
14 R_o = 75; // in ohm
15 A_F = A/(1+(A*B));
16 disp(A_F, "The closed loop gain is");
17 R_{if} = R_{i} * (1+(A*B)); // in ohm
18 disp(R_if*10^-9, "Input resistance in G
                                              is");
19 R_{of} = R_{o}/(1+(A*B)); // in ohm
20 R_of = R_of * 10^3; // in m
21 disp(R_of, "The output resistance in m is");
22 	 f_o = 5; // in Hz
23 	 f_f = f_o*(1+(A*B)); // in Hz
24 f_f = f_f * 10^-3; // in kHz ... correction ....
25 disp(f_f, "Bandwidth with feedback in kHz is");
```

Scilab code Exa 3.6 Voltage gain and input resistance

```
1 // Exa 3.6
2 clc;
3 clear;
4 close;
5 // Given data
6 A = 2*10^5;
7 \text{ R_i} = 2; // \text{ in M ohm}
8 R1 = 1; // in ohm
9 R_o = 75; // in ohm
10 R_F = 1; // in ohm
11 B = R1/(R1+R_F);
12 \quad A_F = -1;
13 disp(A_F, "The voltage gain is ");
14 R_{if} = 330; // in ohm
15 disp(R_if, "Input resistance in is");
16 R_of = R_o/(A/2); // in ohm
17 disp(R_of, "Output resistance in
                                       is");
18 \, f_o = 5; // in \, Hz
19 f_F = (A/2)*f_o; // in Hz
20 f_F = f_F * 10^-6; // in MHz
21 disp(f_F, "The bandwidth in MHz is");
```

Scilab code Exa 3.7 Value of Af Rif RoF and fF

```
1  // Exa 3.7
2  clc;
3  clear;
4  close;
5  // Given data
6  A = 2*10^5;
7  R_i = 2; // in  M ohm
8  R_i = 2*10^6; // in ohm
9  R_o = 75; // in ohm
```

```
10 \, \text{f_o} = 5; // \, \text{in Hz}
11 V_{CC} = 15; // in V
12 V_{EE} = -15; // in V
13 R1 = 1; // in k ohm
14 R1 = R1 * 10^3; // in ohm
15 R_F = 10; // in k ohm
16 R_F = R_F * 10^3; // in ohm
17 OVS= 13; // output voltage swing in V in
18 B = R1/(R1+R_F);
19 \quad A_B = A*B;
20 A_B1 = 1 + (A*B);
21 A_F = (1+(R_F/R1));
22 disp("Part (i) For non-inverting amplifier")
23 disp(A_F, "The value of A_F is");
24 R_{iF} = R_{i} * (A_{B1}); // in ohm
25 disp(R_iF*10^-9, "The value of R_iF in G is");
26 R_OF = R_o/(A_B1); // in ohm
27 disp(R_OF, "The value of R_OF in ohm is");
28 	ext{ f_F} = 	ext{f_o*A_B1;}// 	ext{ in } 	ext{Hz}
29 f_F = f_F * 10^-3; // in kHz
30 disp(f_F, "The value of f_F in kHz is");
31 V_{ooT} = OVS/(1+A*B); // in V
                                  "+string(V_ooT)+" V or
32 disp ("The value of VooT is
        "+string(V_ooT*10^3)+" mV")
33
34 disp("Part (ii) For inverting amplifier")
35 \text{ R}_F = 4.7; // \text{ in k ohm}
36 \text{ R}_F = \text{R}_F * 10^3; // \text{ in ohm}
37 R_1 = 470; // in ohm
38 \text{ A}_F = -(R_F)/R_1;
39 disp(A_F, "The value of A_F is");
40 R_iF = R_1//in ohm
41 disp(R_iF, "The value of R_iF in is");
42 R_OF = R_o/(A_B1); // in ohm
43 disp(R_OF, "The value of R_OF in
                                           is");
44 	 f_F = f_o*A_B1; // in Hz
45 \text{ f}_F = \text{f}_F * 10^-3; // in kHz
46 disp(f_F, "The value of f_F in kHz is");
```

```
47 V_ooT = OVS/A_B1; // in mV

48 disp("The value of VooT is "+string(V_ooT)+" V or

"+string(V_ooT*10^3)+" mV")
```

Scilab code Exa 3.8 Voltage gain and input output resistance

```
1 // EXA 3.8
2 clc;
3 clear;
4 close;
5 // Given data
6 R1 = 5; // in k ohm
7 R_F = 500; // in k ohm
8 \text{ V_in} = 0.1; // \text{ in V}
9 A_F = -(R_F/R1);
10 disp(A_F, "Voltage gain is");
11 R_i = R1; // in k ohm
12 disp(R_i, "The Input resistance in k is");
13 R_o = 0; // in ohm
14 disp(R_o, "Output resistance in
                                     is");
15 V_{out} = A_F * V_{in}; // in V
16 disp(V_out, "Output voltage in V is");
17 I_{in} = V_{in}/(R1*10^3); // in A
18 I_{in} = I_{in} * 10^3; // in mA
19 disp(I_in, "Input current in mA is");
```

Scilab code Exa 3.9 Input impedance voltage gain and power gain

```
1 // Exa 3.9
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 R_F = 1; // in M ohm
7 R_in = 1; // in M ohm
8 V_in = 1; // in V (assumed)
9 V_out = -(R_F/R_in)*V_in;
10 A_v = V_out/V_in;
11 disp(A_v, "The value of A_v is");
12 I_in = 1; // in A
13 I_out = I_in; // in A
14 A_in = I_out/I_in;
15 disp(A_in, "The value of A_in is");
16 A_P = abs(A_v*A_in);
17 disp(A_P, "The value of A_P is");
```

Scilab code Exa 3.10 Inverting op amp

```
1 // Exa 3.10
2 clc;
3 clear;
4 close;
5 // Given data
6 R_F = 1; // in M ohm
7 R_F = R_F * 10^6; // in ohm
8 Av = -30;
9 R1 = R_F/abs(Av); // in ohm
10 R1 = R1 * 10^-3; // in k ohm
11 disp(R_F*10^-6, "The value of R_F in M is:")
12 disp(R1, "The value of R1 in k is");
```

Scilab code Exa 3.11 Inverting op amp

```
1 // Exa 3.11
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 A_v = -8;
7 V_in = -1; // in V
8 I1 = 15; // in A
9 I1 = I1 * 10^-6; // in A
10 R1 = -(V_in)/I1; // in ohm
11 R1 = R1 * 10^-3; // in k ohm
12 disp(R1, "Minimum value of R1 in k is");
13 R_F = -(A_v)*R1; // in k ohm
14 disp(R_F, "The minimum value of R_F in k is");
15
16 // Note: There is calculation error in the book to find the value of R_F so the answer in the book is wrong.
```

Chapter 4

Linear Applications of IC Op Amps

Scilab code Exa 4.1 Output voltage

```
1 //Exa 4.1
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 1; // in k
7 R2= 1; // in k
8 R3= 1; // in k
9 RF= 1; // in k
10 Vin1= 2; // in volt
11 Vin2= 1; // in volt
12 Vin3= 4; // in volt
13 Vout= -(RF/R1*Vin1+RF/R2*Vin2+RF/R3*Vin3)
14 disp(Vout, "The output voltage in volts is:")
```

Scilab code Exa 4.2 Design an adder circuit

```
1 / Exa 4.2
2 clc;
3 clear;
4 close;
5 // Given data
6 RF= 100; // in k
7 Vout= '-(V1+10*V2+100*V3)';// given expression
8 // Vout = -(RF/R1*V1+RF/R2*V2+RF/R3*V3)
9 // Comparing the Vout with the given expression
10 R1= RF; // in k
11 R2= RF/10; // in k
12 R3= RF/100; // in k
13 disp(R1,"The value of R1 in k
                                    is : ");
                                    is : ");
14 disp(R2, "The value of R2 in k
15 disp(R3, "The value of R3 in
                                    is : ");
                               k
```

Scilab code Exa 4.3 Output voltage

```
1 //Exa 4.3
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 12; // in k
7 R2= 2; // in k
8 R3= 3; // in k
9 RF= 12; // in k
10 V1= 9; // in volt
11 V2= -3; // in volt
12 V3= -1; // in volt
13 Vout= -(RF/R1*V1+RF/R2*V2+RF/R3*V3)
14 disp(Vout, "The output voltage in volts is:")
```

Scilab code Exa 4.4 Summing amplifier

```
1 //Exa 4.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ RF} = 6; // \text{ in } k
7 Vout= -V1+2*V2-3*V3; // given expression or
8 Vout= '-(V1-2*V2+3*V3)';
9 // Vout = -(RF/R1*V1+RF/R2*V2+RF/R3*V3)
10 // Comparing the Vout with the given expression
11 R1= RF; // in k
12 R2= RF/2; // in k
13 R3= RF/3; // in k
14 disp(R1, "The value of R1 in k is: ");
15 disp(R2, "The value of R2 in k is: ");
16 disp(R3, "The value of R3 in k is: ");
```

Scilab code Exa 4.5 Values of resistances

```
1  //Exa 4.5
2  clc;
3  clear;
4  close;
5  // Given data
6  R3= 10; // in k
7  Vout= '-2*V1+3*V2+4*V3'; // given expression or
8  Vout= '-(2*V1-3*V2-4*V3)';
9  // Vout= -(RF/R1*V1+RF/R2*V2+RF/R3*V3)
10  // Comparing the Vout with the given expression, we get
11  RF= 4*R3; // in k
12  R2= RF/3; // in k
13  R1= RF/2; // in k
```

```
14 disp(RF, "The value of RF in k is : ");
15 disp(R2, "The value of R2 in k is : ");
16 disp(R1, "The value of R1 in k is : ");
```

Scilab code Exa 4.6 Output voltage

```
1 / Exa 4.6
2 clc;
3 clear;
4 close;
5 // Given data
6 V1= 2; // in V
7 \text{ V2} = -1; // \text{ in V}
8 R=10; // assuming value in k
9 R1=R; // in k
10 R2= R; // in k
11 R3= R; \frac{1}{1} in k
12 R4= R; // in k
13 RF= 2*R; // in k
14 Vin1 = V1*(R1*R2/(R1+R2))/(R1+(R2*R3/(R2+R3))); // in
15 Vout1= Vin1*(1+RF/R1); // in V
16 Vin2 = V2*(R3*R4/(R3+R4))/(R2+(R3*R4/(R3+R4))); // in
17 Vout2 = Vin2*(1+RF/R2); // in V
18 Vout= Vout1+Vout2; // in V
19 disp(Vout, "The output voltage in volts is: ")
```

Scilab code Exa 4.7 Limiting frequency

```
1 //Exa 4.7
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 R1= 10; // in k
7 CF= 0.1; // in micro F
8 CF= CF*10^-6; // in F
9 RF= 10*R1; // in k
10 RF= RF*10^3; // in
11 fa= 1/(2*%pi*RF*CF); // in Hz
12 disp(fa, "Limiting frequency in Hz is:")
```

Scilab code Exa 4.8 Practical integrator circuit

```
1 // Exa 4.8
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 10; // in kHz
7 f = f * 10^3; // in Hz
8 dcGain= 10;
9 fa= f/10; // in Hz
10 R1= 10; // in k
11 // Formula dcGain= RF/R1
12 RF= R1*dcGain; // in k
13 RF=RF*10^3; // in
14 R1= R1*10^3; // in
15 // Formula fa= 1/(2*\%pi*RF*CF)
16 CF= 1/(2*\%pi*RF*fa); // in F
17 CF = CF * 10^9; // in nF
18 Rcomp= R1*RF/(R1+RF); // in
19 disp(CF, "The value of CF in nF is: ")
20 disp(Rcomp*10^-3, "The value of Rcomp in k is: ");
21
22 // Note: There is calculation error in evaluating
      the value of CF in the book. So The value of CF
```

Scilab code Exa 4.9 Maximum change in output voltage

```
1 / Exa 4.9
2 clc;
3 clear;
4 close;
5 // Given data
6 Vin=5;// in V
7 \text{ R1} = 1; // \text{ in } k
8 R1 = R1 * 10^3; // in
9 CF= 0.1; // in
10 CF= CF*10^-6; // in F
11 f = 1; // in kHz
12 f = f *10^3; // in Hz
13 T = 1/f; // in sec
14 delta_Vout= Vin*T/(2*R1*CF); // in V
15 disp(delta_Vout,"The maximum change in output
      voltage in volts is: ")
16 S= 2*\%pi*f*Vin;// in V/sec
17 disp(S*10^-6, "The minimum slew rate required in V/
      micro-sec is : ")
```

Scilab code Exa 4.10 Safe frequency and dc gain

```
1  // Exa 4.10
2  clc;
3  clear;
4  close;
5  // Given data
6  R_F = 1.2; // in M ohm
7  R_F = R_F * 10^6; // in ohm
```

```
8 \text{ C_F} = 10; // \text{ in nF}
9 C_F = C_F * 10^-9; // in F
10 f_a = 1/(2*\%pi*R_F*C_F); // in Hz
11 disp(f_a, "The safe frequency in Hz is");
12 R1 = 120; // in k ohm
13 R1 = R1 * 10^3; // in ohm
14 A = R_F/R1;
15 AindB= 20*log10(A); // in dB
16 disp(AindB, "The d.c gain in dB is");
17 f = 10; // in kHz
18 f = f * 10^3; // in Hz
19 A = (R_F/R1)/(sqrt(1+((f/f_a)^2)));
20 V_{in_peak} = 5; // in V
21 V_{\text{out\_peak}} = V_{\text{in\_peak}} *A; // in V
22 disp(V_out_peak*10^3,"The peak of output voltage in
      mV is");
```

Scilab code Exa 4.11 Output voltage

```
1 // Exa 4.11
2 clc;
3 clear;
4 close;
5 // Given data
6 Vrms= 10; // in mV
7 f = 2*10^3; // in kHz
8 C = 2*10^-6; // in F
9 R= 50*10^3; // in ohm
10 SF= -1/(C*R); // scale factor
11 //\text{Vout} = -1/(R*C)*\text{sqrt}(2)*\text{Vrms}*\text{integrate}('\sin d(2*\%\text{pi}*
       f * t) ', 't', 0, t); // in mV
12 //\text{Vout} = 1/(\text{R*C}) * \text{sqrt}(2) * \text{Vrms}/(2 * \% \text{pi*f}) * (\cos(4000 * \text{t}))
       -1); // in mV
13 V = 1/(R*C)*sqrt(2)*Vrms/(2*%pi*f); // (assumed)
14 disp("Output voltage in mV is: "+string(V)+"*(cos
```

```
(4000 *t)-1) mV")
```

Scilab code Exa 4.12 Closed loop time constant

```
1 / Exa 4.12
2 clc;
3 clear;
4 close;
5 // Given data
6 Vin=10;//in V
7 R = 2.2; // in k
8 R = R*10^3; // in
9 T = 1; // in ms
10 T= T*10^-3; // in sec
11 C = 1; // in F
12 C = C*10^-6; // in F
13 gain= 10^5; // differential voltage gain
14 I= Vin/R; // in A
15 V = I * T/C; // in V
16 disp(V,"The capacitor voltage at the end of the
      pulse in volts is : ")
17 RC_desh= R*C*gain; // in sec
18 \operatorname{disp}(\mathtt{RC\_desh}, \mathtt{``The\ closed\ loop\ time\ constant\ in\ sec})
      is : ")
```

Scilab code Exa 4.13 Values of R1 and RF

```
1 //Exa 4.13
2 clc;
3 clear;
4 close;
5 // Given data
6 omega= 10000; // in rad/sec
```

```
7 GaindB= 20; // peak gain in dB
8 Gain= 10^(GaindB/20);
9 C= 0.01; // in F
10 C= C*10^-6; // in F
11 // Formula omega= 1/(C*RF)
12 RF= 1/(C*omega); // in
13 R1= RF/Gain; // in
14 disp(RF*10^-3, "The value of RF in k is:")
15 disp(R1*10^-3, "The value of R1 in k is:")
```

Scilab code Exa 4.14 Sketch of output voltage

```
1 / Exa 4.14
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 40*10^3; // in
7 C= 0.2*10^-6; // in F
8 Vin= 5; // in V
9 V1=3; // in V
10 V2 = V1; // in V
11 Vout= V2;// in V
12 t = 0:0.1:50; // in ms
13 Vout= -1/(R*C)*integrate('Vin-V1', 't', 0, t)/10^3+Vout
      ;// in volts
14 plot(t, Vout);
15 xlabel("Time in milliseconds")
16 ylabel ("Output voltage in volts")
17 title("Vout Graph")
18 disp("The Vout graph shown in figure")
```

Scilab code Exa 4.15 Time duration for saturation

Scilab code Exa 4.16 Values of resistors

```
1 // Exa 4.16
2 clc;
3 clear;
4 close;
5 // Given data
6 C_F = 10; // in
7 C_F = C_F * 10^-6; // in F
8 R1 = 1/C_F; // in ohm
9 R1 = R1 * 10^{-3}; // in k ohm
10 disp(R1, "The value of R1 in k
                                     is");
11 R2 = 1/(C_F*2); // in ohm
12 R2 = R2 * 10^-3; // in k ohm
13 disp(R2, "The value of R2 in k
                                     is");
14 R3 = 1/(C_F*5); // in ohm
15 R3 = R3 * 10^-3; // in k ohm
16 disp(R3, "The value of R3 in k
                                     is");
```

Scilab code Exa 4.17 Practical differentiator circuit

```
1 // Exa 4.17
2 clc;
3 clear;
4 close;
5 // Given data
6 f_{max} = 150; // in Hz
7 f_a = f_{max}; // in Hz
8 disp(f_a, "The value of f_a in Hz is : ")
9 \text{ C1} = 1; // in
10 \text{ C1} = \text{C1} * 10^-6; // \text{ in } \text{F}
11 R_F = 1/(2*\%pi*f_a*C1); // in ohm
12 disp(R_F*10^-3, "The value of R_F in k is");
13 f_b = 10*f_a; // in Hz
14 R1 = 1/(2*\%pi*f_b*C1); // in ohm
15 C_F = (R1*C1)/R_F; // in F
16 disp(C_F*10^6, "The value of C_F in
17 R_{comp} = (R1*R_F)/(R1+(R_F)); // in ohm
18 disp(R_comp, "The value of R_comp in
                                                is");
```

Scilab code Exa 4.18 Output voltage

```
1 // Exa 4.18
2 clc;
3 clear;
4 close;
5 // Given data
6 Vmax= 10; // in V
7 f= 2*10^3; // in kHz
8 //Vin= Vmax*sin(2*%pi*f*t);// in V
```

```
9 disp("The input voltage is "+string(Vmax)+"*sin ("+string(2*f)+"%pi*t) V")
```

Scilab code Exa 4.19 Values of ROM and Vout

```
1 // Exa 4.19
2 clc;
3 clear;
4 close;
5 // Given data
6 Vp= 1.5; // in V
7 f = 200; // in Hz
8 f_a = 1*10^3; // in Hz
9 C = 0.1*10^-6; // in F
10 // Formula f_a = 1/(2*\%pi*f_a*C)
11 R= 1/(2*\%pi*f_a*C); // in ohm
12 R= 1.5; // in k
                   (standard value)
13 f_b = 20*f_a; // in Hz
14 // Formula f_b = 1/(2*\%pi*R_desh*C)
15 R_desh= 1/(2*\%pi*f_b*C); // in ohm
16 R_desh= 82; // in ohm (standard value)
17 R_OM = R; // in kohm
18 disp(R_OM, "The value of R_OM in k
                                       is : ")
19 omega= 2*%pi*f;// in radian
20 // Vin= Vp*sin(omega*t) and Vout= -R*C*dv_in/dt
21 // Vout= -R*C*Vp*omega*cos(400*\%pi*t)
22 V = -R*10^3*C*Vp*omega; // (assumed)
23 //Vout= V*\cos(400*\%pi*t)
24 disp("Output voltage is "+string(V)+" *\cos(400*\%pi*t)
     ) volts")
25 disp("Output voltage waveforms shown in figure")
26 x = -\%pi/2:0.1:2*\%pi;
27 plot(x, V*cos(x));
28 title("Output Voltage waveforms")
29 xlabel("Time")
```

Scilab code Exa 4.20 Range of gain

```
1 // Exa 4.20
2 clc;
3 clear;
4 close;
5 // Given data
6 R2 = 100; // in ohm
7 R1 = 200; // in ohm
8 R_F = 100; // in k ohm
9 R_F = R_F * 10^3; // in ohm
10 R_G = 100;// in ohm
11 Gain_max = (1+((2*R_F)/R_G)) * (R2/R1);
12 R = 100; // in k ohm
13 R_G1 = 0.01 + R; // in k ohm
14 R_G1 = R_G1 * 10^3; // in ohm
15 Gain_min = (1+((2*R_F)/R_G1)) * (R2/R1);
16 disp("The gain can be varied from "+string(Gain_min)
     +" to "+string(Gain_max))
```

Scilab code Exa 4.21 Value of RG

```
1 // EXa 4.21
2 clc;
3 clear;
4 close;
5 // Given data
6 R1 = 100; // in k ohm
7 R2 = 100; // in k ohm
8 R_F = 470; // in k ohm
9 Gain = 100;
```

```
10 R_G = (2*R_F)/(Gain-1); // in ohm
11 disp(R_G, "The value of R_G in ohm is");
```

Scilab code Exa 4.22 Transconductance resistance

```
1 // Exa 4.22
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 100; // in ohm
7 T = 25; // in degree C
8 \text{ alpha} = 0.00392;
9 R1 = R*(1+(alpha*T)); // in ohm
10 expression= R_T = Ro*[1+alpha*T];
11 disp(expression, "The expression for the resistance
      at T C is: ")
12 disp(R1,"The transducer resistance at 25 C in
     ");
13 T = 100; // in degree C
14 R2 = R*(1+(alpha*T)); // in ohm
15 disp(R2, "The transducer resistance at 100 C in
      is");
```

Scilab code Exa 4.23 Instrumentation amplifier

```
1  // Exa 4.23
2  clc;
3  clear;
4  close;
5  // Given data
6  R3 = 1;// in k ohm
7  R4 = 1;// in k ohm
```

```
8 R_min = R4/R3;
9 R_4 = 50; // in k ohm
10 R_max = (R_4+R4)/R3;
11 R2 = 10; // in k ohm
12 A_F = 5;
13 R1 = (((A_F/R_min)-1)*R2)/2; // in k ohm
14 disp(R1, "The value of R1 in k is");
15 disp(R2, "The value of R2 in k is : ")
```

Scilab code Exa 4.24 Expression for output voltage

```
1 // Exa 4.24
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 100; // in k
7 R2=200; // in k
8 R3= 20; // in k
9 R4=40; // in k
10 //Vout= [1+R2/R1]*[R4/(R3+R4)]*Vin1-R2/R1*Vin2
11 A=[1+R2/R1]*[R4/(R3+R4)]; // (assumed)
12 disp("Output voltage is "+string(A)+"*(Vin1-Vin2)")
```

Scilab code Exa 4.25 Gain of instrumentation amplifier

```
1  // Exa 4.25
2  clc;
3  clear;
4  close;
5  // Given data
6  R_F = 5; // in  k ohm
7  R_G = 1; // in  k ohm
```

```
8 R1 = 10; // in k ohm
9 R2 = 20; // in k ohm
10 A = (1 + ((2*R_F)/R_G))*(R2/R1);
11 disp(A, "The gain of instrumentaion amplifier is");
```

Scilab code Exa 4.27 Output voltage

```
1 // EXa 4.27
2 clc;
3 clear;
4 close;
5 // Given data
6 R_F = 10; // in k ohm
7 R_G = 5; // in k ohm
8 R1 = 1; // in k ohm
9 R2 = 2; // in k ohm
10 A = (1+ ((2*R_F)/R_G))*(R2/R1);
11 V_in2 = 2; // in mV
12 V_in1 = 1; // in mV
13 V_out = A*(V_in2-V_in1); // in mV
14 disp(V_out, "The output voltage in mV is");
```

Scilab code Exa 4.28 Value of RG

```
1  // Exa 4.28
2  clc;
3  clear;
4  close;
5  // Given data
6  V_out = 3; // in V
7  V_in2 = 5; // in mV
8  V_in1 = 2; // in mV
9  V1 = V_in2-V_in1; // in mV
```

```
10 V1 = V1 * 10^-3; // in V
11 A = V_out/V1;
12 R_F = 15; // in k ohm
13 R1 = 1; // in k ohm
14 R2 = 2; // in k ohm
15 R = R2/R1; // in k ohm
16 R_G = (2*R_F)/((A/R)-1); // in k ohm
17 R_G = R_G * 10^3; // in ohm
18 disp(R_G, "The value of R_G in is");
```

Scilab code Exa 4.31 Three op amp instrumentation amplifier

```
1 // \text{Exa} \ 4.31
2 clc;
3 clear;
4 close;
5 // Given data
6 \quad A = 10000;
7 R1 = 100; // in k
8 A2= 1/5; // (assumed value)
9 R2= R1/A2; // in k
10 // A= A1*A2 and A1= 1+2*RF/R\_GB
11 RFbyR_GB= (A/A2-1)/2;
12 // [1+2*RF/RG]*A2= 1 \text{ and } RG= RGB+100 \text{ k}
13 R_G= (1-1/A2)/2*100/[(1/A2-1)/2-RFbyR_GB]; // in k
14 R_F= RFbyR_GB*R_G; // in k
15 disp(R_F, "The value of R_F in k is: ")
16 disp(R_G*10^3, "The value of R_G in is:")
17 disp("This is the base resistance required in series
       with the pot of 100 k ")
```

Chapter 5

Filters

Scilab code Exa 5.1 Cut off frequency and passband voltage gain

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 10; // in k ohm
7 R = R * 10^3; // in ohm
8 C = 0.001; // in
9 \ C = C * 10^-6; // in F
10 f_c = 1/(2*\%pi*R*C); // Hz
11 f_c = f_c * 10^-3; // in kHz
12 disp(f_c, "Cutoff frequency in kHz is");
13 R_F = 100; // in k ohm
14 R1 = 10; // in k ohm
15 A_F = 1 + (R_F/R1);
16 disp(A_F, "The passband voltage gain is");
```

Scilab code Exa 5.2 First order low pass filter

```
1 // Exa 5.2
2 clc;
3 clear;
4 close;
5 // Given data
6 R1 = 10; // in k ohm
7 R_F = R1; // in k ohm
8 disp(R_F, "The value of R_F in k is");
9 C = 0.001; // in
                     \mathbf{F}
10 \ C = C \ *10^-6; // in F
11 f_c = 10; // in kHz
12 	ext{ f_c} = 	ext{f_c} * 10^3; // in Hz
13 R = 1/(2*\%pi*f_c*C); // in ohm
14 R = R * 10^-3; // in k ohm
15 disp(R,"The value of R in k is");
```

Scilab code Exa 5.3 Low pass filter

```
1 // Exa 5.3
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f_c = 2; // in kHz
7 \text{ f_c} = \text{f_c} * 10^3; // in Hz
8 C = 0.01; // in F
9 \ C = C * 10^-6; // in F
10 R = 1/(2*\%pi*f_c*C); // in ohm
11 R = R * 10^-3; // in k ohm
12 R = 8.2; // in k ohm(Practical value)
13 A_F = 2.5;
14 R1 = (A_F*R)/1.5; // in k ohm
15 R_F = 1.5*R1; // in k ohm
16 disp(R1, "The value of R1 in k is:")
17 disp(R_F, "The value of R_F in k is:")
```

Scilab code Exa 5.4 Second order low pass filter

```
1 // Exa 5.4
2 clc;
3 clear;
4 close;
5 // Given data
6 	ext{ f_c} = 1; // 	ext{ in kHz}
7 \text{ f_c} = \text{f_c} * 10^3; // in Hz
8 C = 0.005*10^-6; // in F
9 R3 = 1/(2*\%pi*f_c*C); // in ohm
10 R3 = R3 * 10^{-3}; // in k ohm
11 R2 = R3; // in k ohm
12 R1 = 33; // in k ohm (standard value)
13 R_F = 0.586*R1; // in k ohm
14 disp(R1, "The value of R1 in k is:")
15 disp(R3,"The value of R2 and R3 in k is");
16 disp(R_F, "The value of R_F in k is:")
17 disp(C*10^6, "The value of C2 and C3 in F is:")
```

Scilab code Exa 5.5 Second order low pass filter

```
1  // Exa 5.5
2  clc;
3  clear;
4  close;
5  // Given data
6  R1 = 12; // in k ohm
7  R_F = 7; // in k ohm
8  R2 = 33; // in k ohm
9  R3 = R2; // in k ohm
```

```
10 R = R2; // in k ohm
11 R = R * 10^3; // in ohm
12 C1 = 0.002; // in F
13 C1 = C1 * 10^-6; // in F
14 C2 = C1; // in F
15 C = C1; // in F
16 f_c = 1/(2*%pi*R*C); // in Hz
17 f_c = f_c * 10^-3; // in kHz
18 disp(f_c, "Cut off frequency in kHz is");
19 A_F = 1+(R_F/R1);
20 disp(A_F, "Pass band voltage gain is");
```

Scilab code Exa 5.6 Second order low pass filter

```
1 // Exa 5.6
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f_c = 2; // in kHz
7 	ext{ f_c} = 	ext{f_c} * 10^3; // in Hz
8 C2 = 0.033; // in F
9 C2 = C2 * 10^-6; // in F
10 C3 = C2; // in F
11 C = C2; // in F
12 R2 = 1/(2*\%pi*f_c*C); // in ohm
13 R2 = R2 * 10^-3; // in k ohm
14 R3=R2; // in kohm
15 disp(R2, "The value of R2 and R3 in k is:");
16 / R_{-}F = 0.586 * R1
17 R1= 2*R2*(1+0.586)/0.586; // in k ohm
18 disp(R1,"The value of R1 in k
19 R1= 15; // in k ohm
20 R_F = 0.586 * R1; // in k ohm
21 disp(R_F, "The value of R_F in k is:");
```

Scilab code Exa 5.7 Second order low pass filter

```
1 // Exa 5.7
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f_c = 1; // in kHz
7 \text{ f_c} = \text{f_c} * 10^3; // in Hz
8 C2 = 0.0047; // in F
9 C2 = C2 * 10^-6; // in F
10 C3 = C2; // in F
11 C = C2; // in F
12 R2 = 1/(2*\%pi*f_c*C); // in ohm
13 R2 = R2 * 10^-3; // in k ohm
14 R3= R2; // in kohm
15 // Let
16 R1=30; // in kohm
17 R_F= R1*0.586; // in kohm
18 disp(floor(R2), "The value of R2 and R3 in k is:"
     )
19 disp(R1, "The value of R1 in k is:")
20 disp(R_F, "The value of R_F in k is:")
21 disp("The standard value of R_F is 20 k")
```

Scilab code Exa 5.8 Second order Butterworth filter

```
1 // Exa 5.8
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 	 f_c = 1.5; // in kHz
7 	ext{ f_c} = 	ext{f_c} * 10^3; // in Hz
8 	 alpha = sqrt(2);
9 R_F = (2-alpha); // in ohm
10 disp(R_F, "The value of R_F in
                                   is : ");
11 R_i = 1; // in ohm
12 A_F = 1 + (R_F/R_i);
13 disp(A_F, "The pass band gain is");
14 Omega_c = 2*\%pi*f_c;//in rad/sec
15 C = 1; // in F
16 R = 1/Omega_c; // in ohm
17 R = R * 10^7; // in ohm
18 R=R*10^-3; // in kohm
19 R1 = R; // in k ohm
20 R2=R1; // in kohm
21 disp(R1, "The value of R1 and R2 in k is");
22 C = C/10^7; // in
23 C = C * 10^9; // in nF
24 C1=C; // in nF
25 C2 = C1; // in nF
26 disp(C1, "The value of C1 and C2 in nF is");
27
28 // Note: The unit of R1 and R2 is wrong in the book
```

Scilab code Exa 5.9 Second order Butterworth filter

```
1 // Exa 5.9
2 clc;
3 clear;
4 close;
5 // Given data
6 alpha = 1.414;
7 f_c = 1.5; // in kHz
8 f_c = f_c * 10^3; // in Hz
```

```
9 C1 = 2/alpha; // in F
10 C2 = alpha/2; // in F
11 R1 = 1; // in ohm
12 R2 = R1; // in ohm
13 R_F = 2; // in ohm
14 Omega_c = 2*\%pi*f_c;//in rad/sec
15 R = 1/Omega_c; // in ohm
16 R = R * 10^7; // in ohm
17 R1 = R; // in ohm
18 R2= R1; // in ohm
19 R_F = 2*R; // in ohm
20 \text{ C1} = \text{C1}/10^7; // \text{ in } \text{F}
21 C2 = C2/10^7; // in F
22 disp(R1*10^-3, "The value of R1 and R2 in k ohm");
23 disp(C1*10^9, "The value of C1 in nF is");
24 disp(C2*10^9, "The value of C2 in nF is");
25 disp(R_F*10^-3, "The value of R_F in k ohm");
```

Scilab code Exa 5.12 Second order low pass filter

```
1 // Exa 5.12
2 clc;
3 clear;
4 close;
5 // Given data
6 f_c = 10; // in kHz
7 f_c = f_c * 10^3; // in Hz
8 omega_c = 2*%pi*f_c; // in rad/sec
9 C = 0.01; // in F
10 C = C*10^-6; // in F
11 Ri = 10*10^3; // in
12 n = 2;
13 Q = 1/1.414;
14 R = 1/(2*%pi*f_c*C); // in
15 Af = 3-1/Q;
```

```
16 Rf = (Af - 1) * Ri ; // in
17 disp(C*10^6, "The value of C in F is:")
18 disp(R*10^-3, "The value of R in k is : ")
19 disp(Rf*10^-3, "The value of Rf in k is:")
20 disp("Frequency versus gain magnitude shown in
      following table:")
21 disp("
               Frequency in Hz
      Gain Magnitude in dB |H(s)|")
22 f = 1000; // in Hz
23 omega= 2*\%pi*f; // in rad/sec
24 HsdB= 20*log10(Af/sqrt(1+(omega/omega_c)^4))
25 disp("
                      "+string(f)+"
                                                       " +
      string(HsdB))
26 f = 2000; // in Hz
27 omega= 2*\%pi*f; // in rad/sec
28 HsdB= 20*log10(Af/sqrt(1+(omega/omega_c)^4))
                      "+string(f)+"
29 disp("
                                                       " +
     string(HsdB))
30 f = 5000; // in Hz
31 omega= 2*\%pi*f;// in rad/sec
32 HsdB = 20*log10(Af/sqrt(1+(omega/omega_c)^4))
33 disp("
                      "+string(f)+"
                                                       "+
     string(HsdB))
34 f = 10000; // in Hz
35 omega= 2*\%pi*f; // in rad/sec
36 HsdB = 20*log10(Af/sqrt(1+(omega/omega_c)^4))
                     "+string(f)+"
37 disp("
                                                      " +
     string(HsdB))
38 f = 50000; // in Hz
39 omega= 2*\%pi*f; // in rad/sec
40 HsdB= 20*log10(Af/sqrt(1+(omega/omega_c)^4))
41 disp("
                     "+string(f)+"
                                                     " +
     string(HsdB))
```

Scilab code Exa 5.13 Fourth order Butterworth filter

```
1 // Exa 5.13
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f_c = 1; // in kHz
7 	ext{ f_c} = 	ext{f_c} * 10^3; // in Hz
8 C = 0.1; // in F
9 disp(C,"The value of C in
                                 F is");
10 C = C * 10^-6; // in F
11 R = 1/(2*\%pi*f_c*C); // in ohm
12 disp(R*10^-3, "The value of R in k
13 Q1 = 1/0.765;
14 \text{ alpha1} = 1/Q1;
15 Q2 = 1/1.848;
16 \text{ alpha2} = 1/Q2;
17 A_F1 = 3-alpha1;
18 A_F2 = 3-alpha2;
19 R_i =10*10^3; // in ohm
20 R_F = (A_{F1}-1)*R_i; // in ohm
21 disp(R_F*10^-3, "For first stage the value of R_F in
      k
         is");
22 R_i = 100*10^3; // ohm
23 R_F = (A_{F2}-1)*R_i; // in ohm
24 disp(R_F*10^-3, "For second stage the value of R_F in
       k is");
```

Scilab code Exa 5.14 Value of Resistance

```
1 // Exa 5.14
2 clc;
3 clear;
4 close;
5 // Given data
6 f_c = 10; // in kHz
7 f_c = f_c *10^3; // in Hz
8 C = 0.0047; // in F
9 C = C * 10^-6; // in F
10 R = 1/(2*%pi*f_c*C); // in ohm
11 R = R * 10^-3; // in k ohm
12 disp(R,"The value of R in k is");
```

Scilab code Exa 5.15 Passband gain

```
1  // Exa 5.15
2  clc;
3  clear;
4  close;
5  // Given data
6  R = 15; // in k ohm
7  R = R *10^3; // in ohm
8  C = 0.01; // in F
9  C = C * 10^-6; // in F
10  f_c = 1/(2*%pi*R*C); // in Hz
11  f_c= round(f_c);
12  disp(f_c, "Cut off frequency in Hz is");
13  Omega_c = 2*%pi*f_c; // in rad/sec
14  disp(Omega_c*10^-3, "The value of omega_c in k rad/sec is");
```

```
15
16 // Note: There is calculation error to find the
    value of omega_c. So the answer in the book is
    wrong
```

Scilab code Exa 5.16 Cut off frequency and passband voltage gain

```
1 // Exa 5.16 printed as 5.13
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ R1} = 27; // \text{ in k ohm}
7 R1 = R1 * 10^3; // in ohm
8 R2 = R1; // in ohm
9 R3 = R2 ; // in ohm
10 R = R1; // in ohm
11 R_L = 10; // in k ohm
12 R_F = 16; // in k ohm
13 C2 = 0.005; // in
14 C2 = C2 * 10^-6; // in F
15 C3 = C2; // in F
16 \ C = C3; // in F
17 f_c = 1/(2*\%pi*R*C); // in Hz
18 	ext{ f_c} = 	ext{f_c} * 10^-3; // in kHz
19 R1= R1*10^-3; // in kohm
20 disp(f_c, "Cut off frequency in kHz is");
21 A_F = 1 + (R_F/R1);
22 disp(A_F, "Voltage gain is");
```

Scilab code Exa 5.17 Second order Bessel Filter

```
1 // Exa 5.17
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ alpha} = 1.732;
7 k_f = 1.274;
8 \text{ C1} = 1; // \text{ in } F
9 C2 = C1; // in F
10 R1 = alpha/2; // in ohm
11 R2 = 2/alpha; // in ohm
12 R_F = R2; // in ohm
13 f_3dB = 2; // in kHz
14 \text{ f}_3dB = f_3dB * 10^3; // in Hz
15 f_c = f_3dB/k_f; // in Hz
16 Omega_c = 2*\%pi*f_c;// in rad/sec
17 R1 = R1/Omega_c; // in ohm
18 R1 = R1 * 10^8; // in ohm
19 R2 = R2/Omega_c; // in ohm
20 R2 = R2 * 10^8; // in ohm
21 R_F = R2; // in ohm
22 \text{ C1} = \text{C1}/10^8; // \text{ in } \text{F}
23 disp(R1*10^-3, "The value of R1 in k is : ")
24 disp(R2*10^-3, "The value of R2 and R_F in k is : "
25 disp(C1*10^9, "The value of C1 and C2 in nF is: ")
```

Scilab code Exa 5.18 Wide band pass filter

```
1  // Exa 5.18 printed as 5.15
2 clc;
3 clear;
4 close;
5  // Given data
6 Cdesh = 0.01; // in F
7 Cdesh= Cdesh* 10^-6; // in F
```

```
8 f_H = 1; // in kHz
9 f_H = f_H * 10^3; // in Hz
10 Rdesh= 1/(2*\%pi*f_H*Cdesh); // in ohm
11 A_F2 = 2;
12 R1desh = 10*10^3; // in ohm
13 Rdesh_F= R1desh; // in ohm
14 disp("(i) Low-pass Filter Components: ")
15 disp(R1desh*10^-3, "The value of R1desh in k is");
16 disp(Rdesh*10^-3, "The value of Rdesh in k is:");
17 disp(Rdesh_F*10^-3, "The value of Rdesh_F in k
18 disp(Cdesh*10^6, "The value of C in F is ");
19 C = 0.05; // in F
20 \text{ C} = \text{C} * 10^-6; // \text{ in } \text{F}
21 	 f_L = 100; // in Hz
22 R = 1/(2*\%pi*f_L*C); // in ohm
23 A_F1 = 2;
24 R1 = 10*10^3; // in ohm
25 R_F = R1; // in ohm
26 disp("(ii) High pass Filter Components")
27 disp(R1*10^-3, "The value of R1 in k
28 disp(R*10^-3, "The value of R in k is");
29 disp(R_F*10^-3, "The value of R_F in k is");
30 disp(C*10^6, "The value of C in F is ");
31 Q = sqrt(f_H*f_L)/(f_H-f_L);
32 disp(Q,"The quality factor is");
33
34 // Note: In High pass filter components, the value
      of R is calculated 31.83 k but at last it is
      writter as 3.183 k so the answer of R in High
      pass filter components is wrong.
```

Scilab code Exa 5.19 Narror band pass filter

```
1 // Exa 5.19
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f_c = 2; // in kHz
7 	ext{ f_c} = 	ext{f_c} * 10^3; // in Hz
8 \text{ A}_{F} = 10;
9 \ Q = 4;
10 C = 0.01; // in
11 C = C * 10^-6; // in F
12 R1 = Q/(2*\%pi*f_c*C*A_F); // in ohm
13 R1 = R1 * 10^-3; // in k ohm
14 disp("The value of R1 is "+string(R1)+" k
      standard value 3.3 k )");
15 R2 = Q/(2*\%pi*f_c*C*(2*Q^2-A_F)); // in ohm
16 R2 = R2 * 10^-3; // in k ohm
17 disp("The value of R2 is "+string(R2)+" k
                                                  (
      standard value 1.5 k )");
18 R3 = Q/(\%pi*f_c*C); // in ohm
19 R3 = R3 * 10^-3; // in k ohm
20 disp("The value of R3 is "+string(R3)+" k
      standard value 63 k )");
21 	 f_c1 = 1; // in kHz
22 Rdesh2 = R2*(((f_c*10^-3)/f_c1)^2);// in k ohm
23 disp("The value of Rdesh_2 is "+string(Rdesh2)+" k
       (standard value 5.8 k)");
```

Scilab code Exa 5.20 Wide band reject Filter

```
1  // Exa 5.20 Printed as 5.17
2  clc;
3  clear;
4  close;
5  // Given data
6  f_H = 100; // in Hz
```

```
7 	ext{ f_L = 2; // in kHz}
8 f_L = f_L * 10^3; // in Hz
9 C = 0.01; // in F
10 C = C * 10^-6; // in F
11 R = 1/(2*\%pi*f_L*C); // in ohm
12 R = R * 10^-3; // in k ohm
13 \text{ A}_F = 2;
14 R1 = 10; // in k ohm
15 // A_F = 1 + R_F / R1 \text{ or }
16 R_F = (A_F - 1) * R1; // in k ohm
17 disp("(i) High-pass Section Components: ")
18 disp(C*10^6, "The value of C in F is: ")
19 disp(R,"The value of R in k is");
20 disp(R_F,"The value of R_F and R1 in k
21 \text{ Cdesh} = 0.1; // in
                       \mathbf{F}
22 Cdesh = Cdesh * 10^-6; // in F
23 Rdesh = 1/(2*\%pi*f_H*Cdesh); // in ohm
24 Rdesh = Rdesh * 10^-3; // in k ohm
25 Rdesh1 = 10; // in k ohm
26 Rdesh_F = Rdesh1; // in k ohm
27 disp("(ii) Low-pass Section components: ")
28 disp(Cdesh*10^6, "The value of Cdesh in F is: ")
29 disp(Rdesh, "The value of Rdesh in k is");
30 disp(Rdesh_F, "The value of Rdesh_F and Rdesh1 in k
       is");
31 R2 = 10; // in k ohm
32 R3 = R2; // in k ohm
33 R4 = R2; // in k ohm
34 \text{ R_OM} = (R2*R3*R4)/(R2*R3+R3*R4+R4*R2); // in k ohm
35 disp("(iii) Summing Amplifier component")
36 disp(R_OM,"The value of R_OM in k
```

Scilab code Exa 5.21 Active notch filter

```
1 // Exa 5.21
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 f_N = 50; // in Hz
7 C = 0.47; // in F
8 C = C * 10^-6; // in F
9 R = 1/(2*%pi*f_N*C); // in ohm
10 R = R * 10^-3; // in k ohm
11 disp(R, "Resistance in k ohm is");
```

Scilab code Exa 5.22 Phase shift between input and output voltages

```
1 // EXa 5.22
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 10; // in k ohm
7 R = R * 10^3; // in ohm
8 C = 0.01; // in F
9 C = C * 10^-6; // in F
10 f = 2; // in kHz
11 f = f * 10^3; // in Hz
12 Phi = -2*atand(2*%pi*R*C*f); // in degree
13 disp(Phi, "The phase shift in degree is");
```

Scilab code Exa 5.23 Center frequency and quality factor

```
1 // Exa 5.23
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 f_L = 200; // in Hz
7 f_H = 1; // in kHz
8 f_H = f_H * 10^3; // in Hz
9 f_c = sqrt(f_H*f_L); // in Hz
10 disp(f_c, "The center frequency in Hz is");
11 Q = f_c/(f_H-f_L);
12 disp(Q, "Quality factor is");
```

Scilab code Exa 5.24 Wide bandpass Filter

```
1 // Exa 5.24
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f1 = 5; // in kHz
7 	ext{ f1 = f1 * 10^3; // in Hz}
8 	ext{ f2} = 15; // in kHz
9 	ext{ f2 = f2 * 10^3; // in Hz}
10 Cdesh = 0.01; // in
11 Cdesh = Cdesh * 10^-6; // in F
12 Rdesh = 1/(2*\%pi*f2*Cdesh); // in ohm
13 \quad A_F1 = 1.414;
14 \quad A_F2 = A_F1;
15 Rdesh1 = 10; // in k ohm
16 Rdesh_F = (A_F1-1)*Rdesh1; // in k ohm
17 disp("(i) Low pass Filter components: ")
18 disp(Rdesh1, "The value of Rdesh1 in k is: ")
19 disp(Rdesh*10^-3, "The value of Rdesh in k is:")
20 disp(Rdesh_F, "The value of Rdesh_F in k is: ")
21 disp(Cdesh*10^6, "The value of Cdesh in F is");
22 C = 0.05; // in
23 \ C = C * 10^-6; // in F
24 R = 1/(2*\%pi*f1*C); //in ohm
```

```
25 R1 = 10; // in k ohm
26 R_F = (A_F1-1)*R1; // in k ohm
27 disp("(ii) High pass Filter components : ")
28 disp(R1,"The value of R1 in k is : ");
29 disp(R,"The value of R in is : ");
30 disp(R_F,"The value of R_F in k is : ");
31 disp(C*10^6,"The value of C in F is : ");
```

Chapter 6

Sinusoidal Oscillators

Scilab code Exa 6.3 Frequency of oscillaitor

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 // Given data
6 R3 = 6; // in k ohm
7 \text{ R4} = 2; // \text{ in k ohm}
8 A = 1 + (R3/R4);
9 if A>3 then
       disp("The circuit will work as the oscillator")
10
11 end
12 R = 5.1; // in k ohm
13 R = R * 10^3; // in ohm
14 \ C = 0.001; // in
15 \ C = C * 10^-6; // in F
16 f = 1/(2*\%pi*R*C); // in Hz
17 f = f * 10^-3; // in kHz
18 disp(f, "The frequency of oscillations in kHz is");
```

Scilab code Exa 6.4 Wien Bridge Oscillator

```
1 // Exa 6.4
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.05; // in F
7 C = C * 10^-6; // in F
8 f = 1; // in kHz
9 f = f * 10^3; // in Hz
10 R = 1/(2*\%pi*f*C); // in ohm
11 R = R * 10^-3; // in k ohm
12 disp(R,"The value of R1 and R2 in k is");
13 R4 = 10; // in k ohm
14 disp(R4,"The value of R3 in k
                                    is");
15 R3 = 2*R4; // in k ohm
16 disp(R3,"The value of R4 in k
                                    is");
```

Chapter 8

CMOS Realization Of Inverters

Scilab code Exa 8.2 Value of RL ans WbyL

```
1 // Exa 8.2
2 clc;
3 clear;
4 close;
5 // Given data
6 NMH= 1;// in V
7 VIH= 2;// in V
8 VTon= 0.5; // in V
9 VOL= 0.2; // in V
10 VDD= 3; // in V
11 KP= 30*10^-6; // in A/V<sup>2</sup>
12 PD= 100*10^-6; // power dissipation in W
13 // Formula VIH= VTon +2*sqrt(2*VDD/(3*kn*RL))-1/(kn*
      RL) (i)
14 // Let x= 1/(kn*RL), putting the values in (i), we
      get
15 / x^2 - 5 * x + 2.25 = 0
16 x = [1 -5 2.25];
17 x = roots(x);
18 x=x(2);
19 // Formula PD= VDD*(VDD-VOL)/(2*RL)
```

```
20  RL= VDD*(VDD-VOL)/(2*PD); // in
21  disp(RL,"The value of RL in is: ")
22  kn= 1/(x*RL); // in A/V^2
23  // Formula kn= KP*(W/L)
24  WbyL= kn/KP;
25  disp(WbyL,"The value of (W/L)n is: ")
```

Scilab code Exa 8.4 CMOS Inverter

```
1 // Exa 8.4
2 clc;
3 clear;
4 close;
5 // Given data
6 unCox= 40; // in  A /V^2
7 upCox= 20; // in  A /V^2
8 Ln= 0.5; // in  m
9 Lp= 0.5; // in  m
10 Wn= 2.0; // in  m
11 Wp= unCox*Wn/upCox; // in  m
12 disp(Wp, "The value of Wp in  m is : ")
```

Scilab code Exa 8.5 Value of VOH VOL and Vth

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 // Given data
6 VTO= 0.43; // in V
7 VDD= 2.5; // in V
8 g=0.4; // value of gamma
9 W1= 0.375;
```

```
10 L1 = 0.25;
11 W2 = 0.75;
12 L2=0.25;
13 /VDD-VOUT-VT=VDD-VOUT-(VTO+g*(sqrt(0.6+VOUT)-sqrt)
                     (0.6))=0
14 / VOUT^2 + VOUT * (2 * A - g^2) + (A - 0.6 * g^2) = 0, where
15 A=VTO-VDD-g*sqrt(0.6); // assumed
16 B= (2*A-g^2); // assumed
17 C = (A^2 - 0.6 * g^2); // assumed
18 VOUT= [1 B C];
19 VOUT= roots(VOUT);// in V
20 VOUT= VOUT(2); // in V
21 VOH= VOUT; // in V
22 disp(VOH, "The value of VOH in volts is:")
23 Vout = (W1 + 3 * L2) - (VDD - VTO) * (W2 * L1 / (W1 * L2) - 1) + (VDD) / (W2 * L1 / (W1 * L2) - 1) + (VDD) / (W1 * L2) - (W1 
                    VDD-VTO)
24 VOL= Vout; // in V
25 disp(VOL, "The value of VOL in volts is:")
26 Vth= (VDD+VTO-L1)/(VDD*VTO)*(1-W1*L2/(W2*L1))+(L1*L2
                    /VDD)
27 disp(Vth,"The value of Vth for circuit A in volts is
                        : ")
28 \text{ W4} = 0.365;
29 \quad L4 = 0.25;
30 \text{ W3} = 0.75;
31 L3 = 0.15;
32 Vth=(L3*L4/VDD)+(VDD/(W3*L4*VDD))-(VDD)/(1-W4*L3/(W3
                    *L4))-2*W4
33 disp(Vth,"The value of Vth for circuit B in volts is
                       : ")
```

Scilab code Exa 8.6 Value of Vx

```
1 // Exa 8.6 2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 VTO= 0.43; // in V
7 VDD= 2.5; // in V
8 \text{ g=0.5}; // value of gamma
9 //VDD-Vx-VT=VDD-Vx-(VTO+g*(sqrt(0.6+Vx)-sqrt(0.6)))
      =0
10 //Vx^2+Vx*(2*A-g^2)+(A-0.6*g^2)=0, where
11 A=VTO-VDD-g*sqrt(0.6); // assumed
12 B= (2*A-g^2); // assumed
13 C = (A^2 - 0.6 * g^2); // assumed
14 Vx = [1 B C];
15 Vx = roots(Vx); // in V
16 Vx = Vx(2); // in V
17 disp(Vx, "The value of Vx in volts is: ")
```

Chapter 10

Nonlinear Applications of IC Op Amps

Scilab code Exa 10.1 Threshold voltages

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ V}_{CC} = 15; // \text{ in V}
7 \text{ V_sat} = \text{V_CC}; // \text{ in V}
8 R1 = 120; // in ohm
9 R2 = 51; // in k ohm
10 R2 = R2 * 10^3; // in ohm
11 V_{in} = 1; // in V
12 V_UT = (V_sat*R1)/(R1+R2); //in V
13 disp(V_UT*10^3, "When supply voltage is +15V then
      threshold voltage in mV is");
14 V_ULT = ((-V_sat)*R1)/(R1+R2); // in V
15 V_ULT = V_ULT; // in V
16 disp(V_ULT*10^3, "When supply voltage is -15V then
      threshold voltage in mV is");
```

Scilab code Exa 10.2 Value of R1 and R2

```
1 // EXa 10.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \ V_{sat} = 12; // in \ V
7 V_H = 6; // in V
8 R1 = 10; // in k ohm
9 R1 = R1 * 10^3; // in ohm
10 // Formula V_H = R1/(R1+R2)*(V_sat-(-V_sat)) and Let
11 V = V_H/(V_sat-(-V_sat)); // in V (assumed)
12 R2 = (R1 - V * R1) / V
13 disp(R1*10^-3, "The value of R1 in k
                                            is");
14 disp(R2*10^-3, "The value of R2 in k
                                            is");
```

Scilab code Exa 10.3 Time duration

```
1  // Exa 10.3
2  clc;
3  clear;
4  close;
5  // Given data
6  V_P = 5; // in V
7  V_LT = -1.5; // in V
8  V_H = 2; // in V
9  f = 1; // in kHz
10  f = f * 10^3; // in Hz
11  V_UT = V_H-V_LT; // in V
12  V_m = V_P/2; // in V
13  // Formula V_LT= V_m*sind(theta)
```

```
14 theta= asind(-V_LT/V_m);
15 T = 1/f; // in sec
16 theta1 = theta+180; // in degree
17 T1 = (T*theta1)/360; // in sec
18 T2 = T-T1; // in sec
19 disp(T1*10^3, "The value of T1 in ms is : ")
20 disp(T2*10^3, "The value of T2 in ms is : ")
```

Scilab code Exa 10.4 Value of R1 and R2

```
1 // Exa 10.4
2 clc;
3 clear;
4 close;
5 // Given data
6 V_H = 10; // in V
7 V_L = -10; // in V
8 I_max = 100; // in
9 I_max = I_max * 10^-6; // in A
10 V_HV = 0.1; // in V
11 V_{sat} = 10; // in V
12 R2 = 1; // in k ohm
13 R1 = 199; // in k ohm
14 R = (R1*R2)/(R1+R2); // in k ohm
15 disp(R*10^3, "The resistance in
                                     is");
16
17 // Note: The unit of the answer in the book is wrong
```

Scilab code Exa 10.6 values of VLT VUT and VH

```
1 // Exa 10.6
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 V_sat = 12; // in V
7 R1 = 1; // in k ohm
8 R2 = 3; // in k ohm
9 V_LT = ((-V_sat)*R1)/R2; // in V
10 disp(V_LT, "The value of V_LT in V is");
11 V_UT = (-(-V_sat) * R1)/R2; // in V
12 disp(V_UT, "The value of V_UT in V is");
13 V_H = (R1/R2)*(V_sat - (-V_sat)); // in V
14 disp(V_H, "The value of V_H in V is");
```

Scilab code Exa 10.7 Threshold voltages and hysteresis voltage

```
1  // Exa 10.7
2  clc;
3  clear;
4  close;
5  // Given data
6  R1 = 80; // in k ohm
7  R2 = 20; // in k ohm
8  V_sat = 12.5; // in V
9  V_UT = (R2/(R1+R2))*V_sat; // in V
10  disp(V_UT, "Upper threshold voltage in V is");
11  V_LT = (R2/(R1+R2))*(-V_sat); // in V
12  disp(V_LT, "Lower threshold voltage in V is");
13  V_HV = (R2/(R1+R2))*(2*V_sat); // in V
14  disp(V_HV, "The hysteresis voltage in V is");
```

Scilab code Exa 10.10 Values of VUT VLT and oscillation frequency

```
1 // Exa 10.10
2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 \text{ R1} = 86; // \text{ in k ohm}
7 \text{ V\_sat} = 15; // \text{ in V}
8 R2 = 100; // in k ohm
9 V_UT = (R1/(R1+R2))*V_sat; // in V
10 disp(V_UT, "The value of V_UT in V is ");
11 V_LT = (R1/(R1+R2))*(-V_sat); // in V
12 disp(V_LT, "The value of V_LT in V is");
13 R_F = 100; // in k ohm
14 R_F= R_F*10^3; // in ohm
15 C = 0.1; // in F
16 \ C = C * 10^-6; // in F
17 f_0 = 1/(2*R_F*C*log((V_sat-V_LT)/(V_sat-V_UT)));
      // in Hz
18 disp(f_o, "Frequency of oscillation in Hz is");
```

Scilab code Exa 10.12 Change in output voltage

```
1 // Exa 10.12
2 clc;
3 clear;
4 close;
5 // Given data
6 del_Vin = 5; // in V
7 FRR = 80; // in dB
8 // Formula FRR= 20*log10(del_Vin/del_Vout)
9 del_Vout=del_Vin/(10^(FRR/20)); // in V
10 disp(del_Vout*10^3, "Change in output voltage in mV is : ")
```

Chapter 12

Digital to Analog and Analog to Digital Converters

Scilab code Exa 12.1 Resolution

```
1 // Exa 12.1
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 8;
7 Resolution = 2^n;
8 disp(Resolution, "The resolution is");
9 disp("That is, the output voltage can have "+string(
     Resolution)+" different values including zero")
10 V_{OFS} = 2.55; // in V
11 Resolution = V_OFS/(2^n - 1)*10^3;
12 disp("Resolution is: "+string(Resolution)+" mV/1LSB
     ")
13 disp("That is, an input change of 1 LSB causes the
     output to change by "+string(Resolution)+" mV")
```

Scilab code Exa 12.2 Final output voltage

```
1 // Exa 12.2
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 4;
7 V_OFS = 15; // in V
8 digital_input = '0110'; // in binary
9 D= bin2dec(digital_input);
10 Resolution = V_OFS/((2^n)-1); // in V/LSB
11 V_out = Resolution*D; // in V
12 disp(V_out, "Final output voltage in V is");
```

Scilab code Exa 12.3 VoFS and Vout

```
1 // Exa 12.3
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 8;
7 Resolution = 20; // in mV/LSB
8 digital_input= '100000000'; // in binary
9 D= bin2dec(digital_input); // in decimal
10 Resolution=Resolution*10^-3; // in V/LSB
11 V_OFS = Resolution * ((2^n)-1); // in V
12 disp(V_OFS, "The value of V_OFS in V is");
13 V_out = Resolution*D; // in V
14 disp(V_out, "The value of V_out in V is");
```

Scilab code Exa 12.4 Step size and analog output

```
1 // Exa 12.4
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 4;
7 \text{ V_OFS} = 5; // \text{ in V}
8 digital_input= '1000'; // in binary
9 D= bin2dec(digital_input);// in decimal
10 Resolution = V_OFS/((2^n)-1);
11 V_out = Resolution * D; // in V
12 disp(V_out,"When input is 1000 then, the output in V
       is");
13 // When
14 digital_input= '1111'; // in binary
15 D= bin2dec(digital_input);// in decimal
16 V_out= Resolution * D; // in V
17 disp(V_out,"When input is 1111 then, the output in
     V is");
```

Scilab code Exa 12.5 Full scale output voltage and percentage resolution

```
1 // Exa 12.5
2 clc;
3 clear;
4 close;
5 // Given data
6 n=12;
7 digital_input= '010101101101';// in binary
8 D= bin2dec(digital_input);// in decimal
9 step_size= 8;// in mV
10 step_size=step_size*10^-3;// in V
11 VoFS= step_size*(2^n-1);// in V
12 disp(VoFS,"The full scale output voltage in V is:")
```

```
13 Per_resolution= step_size/VoFS*100; // in %
14 disp(Per_resolution, "Percentage resolution is :")
15 Vout= step_size*D; // in V
16 disp(Vout, "The output voltage in V is : ")
```

Scilab code Exa 12.6 Values of resistors

```
1 // EXa 12.6
2 clc;
3 clear;
4 close;
5 // Given data
6 V_R = 10; // in V
7 n = 4;
8 Resolution = 0.5; // in V
9 R_F = 10; // in k ohm
10 R = (1/2^n)*(V_R/Resolution)*R_F; // in k ohm
11 disp(R,"The value of resistor in k is");
```

Scilab code Exa 12.7 Resolution and digital output

```
1 // Exa 12.7
2 clc;
3 clear;
4 close;
5 // Given data
6 V_i = 5.1; // in V
7 n = 8;
8 Re = 2^n;
9 Resolution = V_i/(2^n-1); // in V/LSB
10 disp(Resolution*10^3, "The Resolution in mV/LSB is");
11 // When
12 V_i = 1.28; // in V
```

```
13 D = round(V_i/Resolution);
14 D_in_binary = dec2bin(D); // in binary
15 disp(D_in_binary, "The digital output is :")
```

Scilab code Exa 12.8 Quantizing error

```
1 // Exa 12.8
2 clc;
3 clear;
4 close;
5 // Given data
6 V_i = 4.095; // input voltage in V
7 n = 12;
8 Q_E = V_i/( ((2^n)-1)*2 ); // in V
9 Q_E = Q_E * 10^3; // in mV
10 disp(Q_E, "The quantizing error in mV is");
```

Scilab code Exa 12.9 The value of t2

```
1 // Exa 12.9
2 clc;
3 clear;
4 close;
5 // Given data
6 disp("Part (i)")
7 V_i = 100; // in mV
8 V_R = 100; // in mV
9 t1 = 83.33; // in ms
10 t2 = (V_i/V_R)*t1; // in ms
11 disp(t2,"The value of t2 in ms is");
12 disp("Part (ii)")
13 Vi = 200; // in mV
14 t_2 = (Vi/V_R)*t1; // in ms
```

```
15 disp(t_2, "The value of t_2 in ms is");
```

Scilab code Exa 12.10 Digital output

```
1 // Exa 12.10
2 clc;
3 clear;
4 close;
5 // Given data
6 C_F = 12; // clock frequency in kHz
7 C_F = C_F * 10^3; // in Hz
8 V_i = 100; // in mV
9 V_R = 100; // in mV
10 t1 = 83.33*10^-3; // in sec
11 D = C_F * t1*(V_i/V_R); // in counts
12 disp("The Digital output is: "+string(round(D))+" counts");
```

Scilab code Exa 12.11 Conversion time

```
1 // Exa 12.12
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 8;
7 T_C = 9; // in sec
8 T_C = T_C * 10^-6; // in sec
9 f_max = 1/(2*%pi*T_C*(2^n)); // in Hz
10 disp(f_max, "Maximum frequency in Hz is");
```

Scilab code Exa 12.12 Maximum frequency

```
1 // Exa 12.12
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 8;
7 T_C = 9; //in sec
8 T_C = T_C * 10^-6; // in sec
9 f_max = 1/(2*%pi*T_C*(2^n)); // in Hz
10 disp(f_max, "Maximum frequency in Hz is");
```

Chapter 13

Integrated Circuit Timer

Scilab code Exa 13.1 Frequency and duty cycle

```
1 // Exa 13.1
2 clc;
3 clear;
4 close;
5 // Given data
6 \ C = 0.01; // in
7 C = C *10^-6; // in F
8 R_A = 2; // in k ohm
9 R_A = R_A * 10^3; // in ohm
10 R_B = 100; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 T_HIGH = 0.693*(R_A+R_B)*C; // in s
13 T_HIGH = T_HIGH; // in sec
14 \text{ T_LOW} = 0.693*R_B*C; // in s
15 T_LOW = T_LOW ; // in sec
16 T = T_HIGH + T_LOW; // in sec
17 f = 1/T; // in Hz
18 disp(f, "Frequency in Hz is");
19 D = (T_HIGH/T)*100; // in \%
20 disp(D, "Duty cycle in % is");
```

Scilab code Exa 13.2 Positive and negative pulse width

```
1 // Exa 13.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \ C = 1; // in
7 C = C * 10^-6; // in F
8 R_A = 4.7; // in k ohm
9 R_A = R_A * 10^3; // in ohm
10 R_B = 1; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 T_{on} = 0.693*(R_A+R_B)*C; // in s
13 T_{on} = T_{on}; // in sec
14 disp(T_on * 10^3, "Positive pulse width in ms is");
15 T_{off} = 0.693*R_B*C; // in s
16 \text{ T_off} = \text{T_off}; // \text{ in ms}
17 disp(T_off * 10^3, "Negative pulse width in ms is");
18 f = 1.4/((R_A+2*R_B)*C);// in Hz
19 disp(f, "Free running frequency in Hz is");
20 D = ((R_A+R_B)/(R_A+(2*R_B)))*100; // in \%
21 disp(D,"The duty cycle in % is");
```

Scilab code Exa 13.3 Resistor required

```
1 // Exa 13.3
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.01; // in F
```

```
7  C = C * 10^-6; // in F
8  f = 1; // in kHz
9  f = f * 10^3; // in Hz
10  R_A = 1.44/(2*f*C); // in ohm
11  R_A = R_A * 10^-3; // in k ohm
12  R_B= R_A; // in kohm
13  disp(R_A, "The value of both the resistors required in k is");
```

Scilab code Exa 13.4 A 555 timer

```
1 // Exa 13.4
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 700; // in Hz
7 C = 0.01; // in F
8 C = C * 10^-6; // in F
9 \ a = 1.44;
10 R_A = a/(2*f*C); // in ohm
11 R_A = R_A * 10^-3; // in k ohm
12 R_B = R_A; // in k ohm
13 disp(C*10^6, "The the value of C in F is: ")
14 disp(R_A,"The value of both the resistors in k
     );
15 disp("(Standard value of resistor is 100 k)")
```

Scilab code Exa 13.5 Frequency and duty cycle

```
1 // Exa 13.5
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 \ C = 0.01; // in
7 C = C *10^-6; // in F
8 R_A = 2; // in k ohm
9 R_A = R_A * 10^3; // in ohm
10 R_B = 100; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 T_HIGH = 0.693*(R_A+R_B)*C; // in s
13 T_HIGH = T_HIGH; // in sec
14 \text{ T_LOW} = 0.693*R_B*C; // in s
15 \text{ T_LOW} = \text{T_LOW}; // in sec
16 T = T_HIGH + T_LOW; // in sec
17 f = 1/T; // in Hz
18 disp(f, "Frequency in Hz is");
19 D = (T_HIGH/T)*100; // in \%
20 disp(D,"Duty cycle in % is");
```

Scilab code Exa 13.6 Positive and negative pulse width

```
1  // Exa 13.6
2  clc;
3  clear;
4  close;
5  // Given data
6  C = 1; // in  F
7  C = C * 10^-6; // in  F
8  R_A = 4.7; // in  k ohm
9  R_A = R_A * 10^3; // in ohm
10  R_B = 1; // in  k ohm
11  R_B = R_B * 10^3; // in ohm
12  T_on = 0.693*(R_A+R_B)*C; // in  s
13  T_on = T_on; // in sec
14  disp(T_on * 10^3, "Positive pulse width in ms is");
15  T_off = 0.693*R_B*C; // in s
```

```
16  T_off = T_off; // in ms
17  disp(T_off * 10^3, "Negative pulse width in ms is");
18  f = 1.4/((R_A+2*R_B)*C); // in Hz
19  disp(f, "Free running frequency in Hz is");
20  D = ((R_A+R_B)/(R_A+(2*R_B)))*100; // in %
21  disp(D, "The duty cycle in % is");
```

Scilab code Exa 13.7 Value of resistor required

```
1 // Exa 13.7
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.01; // in
7 C = C * 10^-6; // in F
8 f = 1; // in kHz
9 f = f * 10^3; // in Hz
10 \ a = 1.44;
11 R_A = a/(2*f*C); // in ohm
12 R_A = R_A * 10^-3; // in k ohm
13 R_B = R_A; // in k ohm
14 disp(R_A," The value of both the resistors required
      in k
             is");
```

Scilab code Exa 13.8 A 555 timer

```
1 // Exa 13.8
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 700; // in Hz
```

```
7    C = 0.01; // in    F
8    C = C * 10^-6; // in    F
9    a = 1.44;
10    R_A = a/(2*f*C); // in ohm
11    R_A = R_A * 10^-3; // in k ohm
12    R_B = R_A; // in k ohm
13    disp(C*10^6, "The the value of C in    F is : ")
14    disp(R_A, "The value of both the resistors in k is" );
15    disp("(Standard value of resistor is 100 k )")
```

Scilab code Exa 13.9 A 555 timer

```
1 // Exa 13.9
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 800; // in Hz
7 C = 0.01; // in F
8 C = C * 10^-6; // in F
9 R_A = 1.44/(5*f*C); // in ohm
10 R_A = R_A * 10^-3; // in k ohm
11 disp(R_A, "The value of R_A in k is");
12 R_B = 2*R_A; // in k ohm
13 disp(R_B, "The value of R_B in k is");
```

Scilab code Exa 13.10 Resistor required

```
1 // Exa 13.10
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 C = 10; // in F
7 C = C*10^-6; // in F
8 T_ON = 5; // in sec
9 R = T_ON/(1.1*C); // in ohm
10 disp(R,"The resistor value in ohm is");
```

Scilab code Exa 13.11 Resistor required

```
1 // EXa 13.11
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 10; // in
7 C = C * 10^-6; // in F
8 \text{ T_off} = 1; // \text{ in sec}
9 //Formula T_{off} = 0.693 * R2 * C
10 R2 = T_off/(0.693*C); // in ohm
11 disp(R2, "The value of R2 in
                                   is");
12 T_{on} = 3; // in sec
13 // Formula T_{on} = 0.693 * (R1+R2) *C
14 R1 = T_{on}/(C*0.693) - R2; // in ohm
15 disp(R1,"The value of R1 in
                                      is");
```

Scilab code Exa 13.12 Value of RLED

```
1 // Exa 13.12
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.22; // in F
```

```
7 C=C*10^-6; // in F
8 \text{ T_on} = 10; // \text{ in ms}
9 \text{ T_on} = \text{T_on} * 10^-3; // in s
10 V_{CC} = 15; // in V
11 V_BE = 0.7; // in V
12 V_EC = 0.2; // in V
13 V_{LED} = 1.4; // in V
14 I_LED= 20*10^-3; // in A
15 R = T_{on}/(C*1.1); // in ohm
16 R = R *10^-3; // in k ohm
17 disp("Values for first circuit: ")
18 disp(R,"The value of R in k
19 V_o = V_CC - (2*V_BE) - V_EC; // in V
20 disp(V_o, "The output voltage in V is");
21 R_LED = (V_o - V_LED)/(I_LED); // in ohm
22 disp(R_LED, "The value of R_LED in
23 // Part (ii)
24 f = 1*10^3; // in Hz
25 C=0.01*10^-6; // in F
26 D= 95/100; // duty cycle
27 // Formula f = 1.44/((R1+2*R2)*C)
28 / R1 + 2*R2 = 1.44/(f*C)
                                               ( i )
29 // D= (R1+R2)/(R1+2*R2) or
30 / R2 = (1-D)/(2*D-1)*R1
                                         (ii)
31 // From eq (i) and (ii)
32 R1= 1.44/(f*C*(1+2*((1-D)/(2*D-1)))); // in ohm
33 R2= (1-D)/(2*D-1)*R1; // in ohm
34 disp("Values for second circuit: ")
35 \text{ disp}(R1*10^-3, "The value of R1 in k)
                                             is : ");
36 disp(R2*10^-3, "The value of R2 in k
                                             is : ");
```

Scilab code Exa 13.13 Resistor required

```
1 // Exa 13.13
2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 T = 5; // in msec
7 T = T * 10^-3; // in sec
8 C = 0.1; // in F
9 C = C * 10^-6; // in F
10 R = T/(C*1.1); // in ohm
11 R = R * 10^-3; // in k ohm
12 disp(R,"The resistor in k is");
```

Scilab code Exa 13.14 A 555 based square wave generator

```
1 // Exa 13.14
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 1; // in kHz
7 f = f * 10^3; // in Hz
8 T = 1/f; // in s
9 T = T * 10^3; // in msec
10 T_d = T/2; // in msec
T_d = T_d * 10^-3; // in sec
12 C = 0.1; // in F
13 C = C * 10^-6; // in F
14 R2 = T_d/(0.69*C); // in ohm
15 R2 = R2 * 10^-3; // in k ohm
16 disp(C*10^6, "The value of C in F is: ")
17 disp(R2, "The value of R2 in k is");
18 disp("The value of R1 will be 100 + 10 k
                                                 pot");
```

Scilab code Exa 13.15 A 555 timer

```
1 // Exa 13.15
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 800; // in Hz
7 D = 0.6;
8 C = 0.1; // in F
9 \ C = C * 10^-6; // in F
10 // Formula f = 1.44/((R_A+2*R_B)*C)
11 // R_A + 2*R_B = 1.44/(f*C)
                                                 ( i )
12 // D = (R_A + R_B) / (R_A + 2 * R_B) \text{ or }
13 // R_B = (1-D)/(2*D-1)*R_A
                                          (ii)
14 // From eq (i) and (ii)
15 R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1)))); in ohm
16 R_B = (1-D)/(2*D-1)*R_A; // in ohm
17 disp(R_A*10^-3, "The value of R_A in k
                                               is : ");
18 disp(R_B*10^-3, "The value of R_B in k
                                               is : ");
```

Scilab code Exa 13.16 A 555 timer

```
1 // Exa 13.16
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 700; // in Hz
7 D = 0.5;
8 C = 0.1; // in F
9 C = C * 10^-6; // in F
10 // Formula f= 1.44/((R_A+2*R_B)*C)
11 // R_A+2*R_B= 1.44/(f*C) (i)
12 // D= (R_A+R_B)/(R_A+2*R_B) or
13 // R_A+R_B=D*1.44/(f*C)
14 // From eq (i) and (ii)
```

```
15 R_B=round(1.44/(f*C))*(1-D);

16 R_A= round(D*1.44/(f*C))-R_B;

17 //R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1))));// in ohm

18 //R_B= (1-D)/(2*D-1)*R_A;// in ohm

19 disp(round(R_A), "The value of R_A in is:");

20 disp((R_B*10^-3), "The value of R_B in k is:");
```

Scilab code Exa 13.17 Output pulse width

```
1 // Exa 13.17
2 clc;
3 clear;
4 close;
5 // Given data
6 R_A = 20; // in k ohm
7 R_A = R_A * 10^3; // in ohm
8 C = 0.1; // in F
9 C = C*10^-6; // in F
10 pulse_width = 1.1*R_A*C; // in s
11 disp(pulse_width*10^3, "The output pulse width in ms is");
```

Scilab code Exa 13.18 Relationship between tp and T

```
1  // Exa 13.18
2  clc;
3  clear;
4  close;
5  // Given data
6  n=4;
7  // t_p= X*T, where
8  X= [0.2+(n-1)]; // (assumed)
9  disp("The relation between t_p and T is :")
```

```
10 disp("t_p = "+string(X)+"*T");
```

Scilab code Exa 13.19 Value of RA

```
1 // Exa 13.19
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.02; // in F
7 C = C * 10^-6; // in F
8 f=2*10^3; // frequency in Hz
9 T = 1/f; // in sec
10 n = 5;
11 t_p = (0.2+(n-1))*T; // in sec
12 R_A = t_p/(1.1*C); // in ohm
13 disp(R_A*10^-3, "The value of R_A in k is");
```

Chapter 14

Phase Locked Loops

Scilab code Exa 14.1 Free running frequency and Lock range

```
1 // Exa 14.1
2 clc;
3 clear;
4 close;
5 // Given data
6 R_T = 10; // in k ohm
7 R_T = R_T * 10^3; // in ohm
8 C_T = 0.005; // in F
9 C_T = C_T * 10^-6; // in F
10 C=10*10^-6; // in F
11 f_out = 0.25/(R_T*C_T); // in Hz
12 disp("Free Running frequency is: "+string(f_out
     *10^-3)+" kHz");
13 // Part (ii)
14 V = 20; // in V
15 f_L = 8*f_out/V; // in Hz
16 disp("Lock range in kHz is : "+string(f_L*10^-3)+"
      kHz")
17 // Part (iii)
18 f_C = sqrt(f_L/(2*\%pi*3.6*10^3*C)); // in Hz
19 disp("Capture range is : "+string(f_C)+" Hz")
```

Scilab code Exa 14.2 Frequency and number of bits

```
1 // Exa 14.2
2 clc;
3 clear;
4 close;
5 // Given data
6 f_out_max = 200; // in kHz
7 f_out_min = 4; // in Hz
8 f_CLK = 2.2*f_out_max; // in kHz
9 disp(f_CLK,"Frequency of reference oscillation in kHz is");
10 f_CLK= f_CLK*10^3; // in Hz
11 // Formula f_out_min= f_CLK/2^n
12 n=log(f_CLK/f_out_min)/log(2);
13 disp(round(n),"The number of bits required in the phase accumulator is:")
```