Divisão e Conquista

Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia

10 de Abril de 2019

Aula de hoje

Nesta aula veremos

- Conceitos de Divisão e Conquista
- Análise de algoritmos de Divisão e Conquista
 - busca binária
 - mergesort
 - quicksort

Busca binária

```
int pos(int chave, int v[]) {
2
3
4
5
6
7
8
9
    int inf = 0;
     int sup = v.length - 1;
     while (inf <= sup) {
       // chave está em v[inf...sup] ou não existe
       int meio = inf + (sup-inf) /2;
       if (chave < v[meio]) sup = meio -1;
       else if (chave > v[meio]) inf = meio +1;
       else return meio:
10
11
     return -1:
```

```
Número de comparações no pior caso
```

```
B_{N}=B_{\lfloor N/2 \rfloor}+1 para N>1 com B_{1}=1
```

Análise de busca binária (caso $N = 2^n$)

$$B_{N}=B_{\lfloor N/2 \rfloor}+1$$
 para $N>1$ com $B_{1}=1$

Solução exata para $N=2^n$

- $\bullet \ a_n \equiv B_{2^n}$
- $a_n = a_{n-1} + 1$, para n > 0 com $a_0 = 1$
- Expandir: $a_n = \sum_{1 \le k \le n} 1 + a_0 = n + 1$
- $B_N = \log N + 1$, quando N é potência de 2

Análise de busca binária (caso geral)

Definir B_N como o número de bits na representação binária de N

- $B_1 = 1$
- Remover bit mais à direita de N resulta em |N/2|
- Portanto, $B_N = B_{|N/2|} + 1$
 - mesma recorrência que para busca binária

Exe	ηĮ	ol	0

101011	110101	1
107	53	
Ν	<i>N</i> /2	

Análise da busca binária

Teorema: número de bits B_N para N e o número de comparações na busca binária B_N é $|\lg N|+1$

$$B_N = \lfloor \lg N \rfloor + 1$$
 $B_N = n+1$ para $2^n \le N < 2^{n+1}$ ou $n \le \lg N < n+1$ $\Rightarrow n = \lfloor \lg N \rfloor$

N	1	2	3	4	5	6	7	8	9
binário	1	10	11	100	101	110	111	1000	1001
lg N	0	1.0	1.58	2	2.32	2.58	2.80	3	3.16
[lg <i>N</i>]	0	1	1	2	2	2	2	3	3
$\lfloor \lg N \rfloor + 1$	1 1	2	2	3	3	3	3	4	4

Exercício: Busca ternária

• Vale a pena a dividir um array em três partes em vez de duas?

```
int buscaTernaria(int[] a, int x) {
2
    int inf = 0, sup = a.length -1;
    while (inf \leq sup) {
4
       int esq = inf +(\sup-\inf)/3, dir = \sup -(\sup-\inf)/3;
5
6
7
8
9
      if (a[esq] = x) return esq; // achou
      else if (a[dir] == x) return dir; // achou
      if (a[esq] > x) sup = esq -1; //terço inferior
      else if (a[dir] < x) inf = dir +1; //terço superior
10
11
      else { inf = esq+1; sup = dir -1;}//meio
12
13
14
    return -1; // nao achou
15 }
```

- Von Neumann: implementou para um EDVAC um dos primeiros computadores de propósito geral
- Ordenação estável em Java, C++, Python
- Comprova que ordenação por comparação é $O(n \log n)$

Ideia

- 1 dividir vetor em 2 metades
- recursivamente ordenar cada metade
- mesclar merge as duas metades ordenadas

entrada

5 1 3 6 4 2 9 0

Ideia

- 1 dividir vetor em 2 metades
- 2 recursivamente ordenar cada metade
- mesclar merge as duas metades ordenadas

entrada ordena esquerda

5	1	3	6	4	2	9	0
1	3	5	5	4	2	9	0

Ideia

- 1 dividir vetor em 2 metades
- 2 recursivamente ordenar cada metade
- mesclar merge as duas metades ordenadas

entrada ordena esquerda ordena direita

5	1	3	6	4	2	9	0
1	3	5	5	4	2	9	0
1	3	5	6	0	2	4	9

Ideia

- 1 dividir vetor em 2 metades
- 2 recursivamente ordenar cada metade
- mesclar merge as duas metades ordenadas

entrada ordena esquerda ordena direita antes do merge

5	1	3	6	4	2	9	0
1	3	5	5	4	2	9	0
1	3	5	6	0	2	4	9
1	3	5	6	0	2	4	9

Ideia

- 1 dividir vetor em 2 metades
- 2 recursivamente ordenar cada metade
- mesclar merge as duas metades ordenadas

entrada ordena esquerda ordena direita antes do merge ordenado

5	1	3	6	4	2	9	0
1	3	5	5	4	2	9	0
1	3	5	6	0	2	4	9
1	3	5	6	0	2	4	9
0	1	2	3	4	5	6	9

copiar menor valor do auxiliar

no vetor ordenado

1ⁱ 3 5 6 0^j 2 4 9 10 0 # # # # # # # #

|

#

1ⁱ 3 5 6 0 2^j 4 9 10

9 | 10

ι#, # | # # | # # # # # # # # # # # # # # #

ι#·

no vetor ordenado # # # # # # # # # #

no vetor ordenado # # # # # # # # # #

mergesort: implementação

```
void mergesort(int[] a, int lo, int hi) {
2
    if (hi <= lo) return;</pre>
    int mid = lo + (hi-lo)/2;
    mergesort(a, lo, mid); mergesort(a, mid+1, hi);
5
6
7
8
9
    for (int k = lo; k \le mid; k++) b[k-lo] = a[k];
    for (int k = mid+1; k \le hi; k++) c[k-mid-1] = a[k];
    b[mid-lo+1]=c[hi-mid]=Integer.MAX_VALUE; //sentinelas
10
11
    int i = 0, j = 0;
12
    for (int k = lo; k \le hi; k++) // merge
    if (c[j] < b[i]) a[k] = c[j++];
13
14
      else
              a[k] = b[i++]:
15 }
```

São necessárias N comparações (linha 13) para fazer um merge. Vetores \mathbf{b} e \mathbf{c} são declarados externamente com N elementos.

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

Em verde: subvetor resultante do merge.

6 8 2 9 0 7 4 1 3 5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	Ω	\cap	7	Л	1	2	Е
	O		9	U	- /	4	Τ	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	g	n	7	Δ	1	3	5
_			•	•	-	-	-		
=	6	_	_	_			=	3	5
=	6	8	0	9	7	4	1	\vdash	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
0	2	6	8	9	7	4	1	3	5
0	2	6	8	9	7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
$\overline{}$									-
2	6	8	0	9	7		1	3	5
2	6 6	8	0	9		4	1	3	一
\vdash	6 6 2	8 6	0		=	4	1 1 1		5
2	6 6 2 2		0	9	7	4 4	1 1 1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
0	2	6	8	9	7	4	1	3	5
0	2	6	8	9	7 7	4	1	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	7	4	1	3	5
	6 6 2	8 8	0	9 9 9	7 7	_	1 1	3 3	5 5 5
	6 6 2	8 8 6	0 0 8 8	9 9 9	7 7 7	_	1 1 1	3 3 3	5 5 5

0	2	6	8	9	4	7	1	3	5
0	2	6	8	9	1	4	7	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
									-
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	7	4	1	3	5
2 2 0	6 6 2	8 8 6	0	9 9 9	7 7 7	4 4	1 1	3 3	5 5 5
2 2 0	6 6 2 2	8 8 6	0 0 8	9 9 9	7 7 7	4 4	1 1 1	3 3 3	5 5 5

0	2	6	8	9	4	7	1	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
$\overline{}$									-
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9		4	1	3	5
2 2 0	6 6 2	8 6	0	9	=	4 4	1 1 1	3 3	5 5 5
2 2 0	6 6 2 2	Ť		9 9 9	7	4 4	1 1 1	3 3 3	5 5 5

0									
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
									-
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	\vdash	\vdash	1	3	5
2 0	6 6 2	8 8 6	0	Ě	\vdash	4	1 1 1	3 3	5 5 5
2 2 0	6 6 2 2	Ť	ř	9	7	4	1 1 1	3 3 3	5 5 5

0	2	6	8	9	4	7	1	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	7	\vdash	1	3	5 5
2 2 0	6 6 2	8 8 6	0 0 8	Ė	\vdash	4	1 1 1	3 3	5 5 5
2 2 0	\vdash	_		9	7	4	1 1 1	3 3 3	5

_										
	0	2	6	8	9	4	7	1	3	5
	0	2	6	8	9	1	4	7	3	5
	0	2	6	8	9	1	4	7	3	5
	0	2	6	8	9	1	4	7	3	5
	0	2	6	8	9	1	4	7	3	5
	0	2	6	8	9	1	3	4	5	7

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	7	\vdash	1	3	5 5
2 2 0	6 6 2	8 8 6	0 0 8	Ė	\vdash	4	1 1 1	3 3	5 5 5
2 2 0	\vdash	_		9	7	4	1 1 1	3 3 3	5

0	2	6	8	9	4	7	1	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	3	4	5	7
0	2	6	8	9	1	3	4	5	7

Em cinza: posições desconsideradas do merge atual.

Em vermelho: subvetor com posições a partir de inf até med.

Em azul: subvetor com posições depois de med até sup.

6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
6	8	2	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	9	0	7	4	1	3	5
2	6	8	0	9	7	4	1	3	5
2	6 6	8	0	9	\vdash		1	3	5 5
2 2 0	6 6 2	8 8 6	0	Ě	\vdash	4	1 1 1	3 3	5 5 5
2 2 0	_	\vdash	\vdash	9	7	4	1 1 1	3 3 3	5

0	2	6	8	9	4	7	1	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4	7	3	5
0	2	6	8	9	1	4 3	7	3 5	5 7
0	2 2	6 6	8	9 9 9	1 1 1	4 3	7 4 4	3 5 5	5 7 7
0 0 0	2 2 2 1		8 8 3	9 9 9 4	1 1 1 5	436	7 4 4 7	3 5 5 8	5 7 7 9

Complexidade de Tempo do Problema de Ordenação

Complexidade de tempo da ordenação por comparação é $\Omega(n \log n)$

(AOCP1, Knuth) Todo algoritmo de ordenação por comparação usa pelo menos

 $\lceil \lg N! \rceil > N \lg N - N / \ln 2$

Ideia

- 1 comparação reduz tamanho de arranjo a ser ordenado por até um fator de 2
- Há N! arranjos de N números
- Meta: obter apenas um arranjo de saída (o ordenado)
- Conclusão: número mínimo de comparações deve ser [lg N!]
- Usando a fórmula de Stirling: lg(N!) > N lg N N / ln 2

Como o mergesort é $O(n \lg n)$, o que é igual ao melhor caso do problema, ele é ótimo.

Análise do mergesort: número de comparações - caso 2^n

•
$$C_N=C_{\lfloor N/2 \rfloor}+C_{\lceil N/2 \rceil}+N$$
 para $N>1$ e $C_1=0$ Para $N=2^n$ temos

$$C_{2^n} = 2C_{2^{n-1}} + 2^n \qquad \qquad \text{Dividir por } 2^n$$

$$\frac{C_{2^n}}{2^n} = \frac{C_{2^{n-1}}}{2^{n-1}} + 1 = \frac{C_{2^{n-2}}}{2^{n-2}} + 2 = \dots \qquad \qquad \text{A cada iteração, soma}$$

$$\frac{C_{2^n}}{2^n} = \frac{C_{2^{n-k}}}{2^{n-k}} + k = \sum_{1 \leq k \leq n} 1 = n \qquad \qquad \text{Expande para } k = 1 \dots n$$

$$C_{2^n} = n2^n \qquad \text{Voltar para } C_N \text{ usando } n = \lg N$$

$$C_{2^n} = C_N = \lg(N)2^{\lg N} = N \lg N \qquad \qquad \text{quando } N \text{ \'e potência de } 2$$

Análise do mergesort: número de comparações - caso geral

•
$$C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$$
 para $N > 1$ e $C_1 = 0$

$$C_{N+1} = C_{\lfloor (N+1)/2 \rfloor} + C_{\lceil (N+1)/2 \rceil} + (N+1)$$
 Para $N+1$
$$= C_{\lceil N/2 \rceil} + C_{\lfloor N/2 \rfloor + 1} + N + 1$$

$$C_{N+1} - C_N = C_{\lfloor N/2 \rfloor + 1} - C_{\lfloor N/2 \rfloor} + 1$$
 (1) Subtrair
$$D_N = D_{\lfloor N/2 \rfloor} + 1$$

$$D_N = C_{N+1} - C_N, D_1 = 2$$
 Ver busca binária

Análise do mergesort: número de comparações - caso geral

•
$$C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$$
 para $N>1$ e $C_1=0$

$$D_N = \lfloor \lg N \rfloor + 2 \qquad \text{com } N > 1 \text{ e } D_1 = 2$$

$$D_N = C_{N+1} - C_N$$

$$C_{N+1} = D_N + C_N$$

$$C_N = D_{N-1} + C_{N-1} \qquad \text{Expandir}$$

$$= \lfloor \lg(N-1) \rfloor + 2 + C_{N-1} \qquad \text{Iterar em } C_{N-1}$$

$$= \sum_{1 \le k < N} [\lfloor \lg k \rfloor + 2] + C_1 \qquad \text{mas } C_1 = 0$$

$$C_N = (N-1) + \sum_{1 \le k < N} (\lfloor \lg k \rfloor + 1)$$

 $C_N = N - 1 + \text{número de bits dos números} < N$

Número de bits em n < N

• $S_N =$ número de bits em inteiros positivos < N em binário

$$S_N = S_{|N/2|} + S_{\lceil N/2 \rceil} + N - 1, S_1 = 1$$

- Total de bits na matrix: $T_N = N(|\lg N| + 1)$
- Número de bits descontados: $V_N = \sum_{0 \le k \le |\lg N|} 2^k$

$$S_N = T_N - V_N \Rightarrow S_N = N \lfloor \lg N \rfloor + N - 2^{\lfloor \lg N \rfloor + 1} + 1$$

Análise do mergesort - caso geral

Número de bits de números
$$< N$$

$$S_N = N \lfloor \lg N \rfloor + N - 2^{\lfloor \lg N \rfloor + 1} + 1$$

Comparações no mergesort para ordenar N números

$$C_N = N - 1 + \text{"número de bits de números} < N" = N - 1 + S_N$$

$$C_N = N \lfloor \lg N \rfloor + 2N - 2^{\lfloor \lg N \rfloor + 1}$$

Uso prático do quicksort

quicksort

- Ordenação dicionário Inglês-Russo por Tony Hoare em 1959
- Algoritmo (e variantes) extensivamente analisado
- Mais rápido que mergesort, é in-place e não é estável
- Em C, qsort()
- Ordenação quicksort com 2 pivots em java.util.Arrays por Yaroslavskiy, Bentley e Bloch em 2009

quicksort: ideia

Ideia

- Desordenar o vetor
- Particionar tal que para algum elemento na posição j (pivot)
 - valor em v[j] está na posição correta
 - todos os valores à esquerda de j são menores que v[j]
 - todos os valores à direita de j são maiores que v[j]
- Ordenar cada pedaço recursivamente sem copiar vetor

entrada	Q	U	- 1	C	K	S	Ο	R	Т
desordenado	K	R	Т	Q	S	Ο	I	U	C
partição		C	K	Q	U	R	Τ	S	Ο
ordena esq.	С	I	K	Q	\bigcup	R	Т	S	0
ordena dir.	C		K	Ο	Q	R	S	Т	U
resultado	C	I	K	Ο	Q	R	S	Т	U

Partição

Objetivo

Dividir vetor em duas regiões separadas pelo pivot.

- A região anterior ao pivot consiste de elementos menores ou iguais a ele.
- A região posterior ao pivot consiste de elementos maiores a ele.

Guardamos duas variáveis de índice: da esquerda i e da direita j.

```
 \begin{aligned} &v[p] \text{ \'e o elemento pivot.} \\ &\text{Antes: } \boxed{v[p] \ v[\ldots]} \\ &\text{Durante: } \boxed{v[p] \ v[\ldots] <= v[p] \ v[i] \ldots v[j] \ v[\ldots] > v[p]} \\ &\text{Depois: } \boxed{v[\ldots] <= v[p] \ v[p] \ v[\ldots] > v[p]} \end{aligned}
```

quicksort(a,0,a.length-1);

```
void quicksort(int[] a, int lo, int hi) {
2
     if (hi <= lo) return; //compara
    int i = lo -1, j = hi;
4
    int t, v = a[hi];
5
6
7
8
9
     while (true) { //estágio de particionamento
       while (a[++i] < v); //compara p/ achar maior que v
       while (v < a[--i]) //compara
10
         if (i = lo) break;
11
12
      if (i >= j) break; //terminou partições
13
      t = a[i]; a[i] = a[j]; a[j] = t; //troca
14
15
16
     t = a[i]; a[i] = a[hi]; a[hi] = t; //troca
17
     quicksort (a, lo, i-1);
18
     quicksort(a, i+1, hi);
19 }
```

Análise do quicksort

• Número de comparações é $O(N^2)$

Quicksort usa, em média,

- (N-1)/2 estágios de particionamento
- $2(N+1)(H_{N+1}-3/2) \approx 2N \ln N 1.846N$ comparações
- $(N+1)(H_{N+1}-3)/3+1\approx 0.333N \ln N 0.865$ trocas

Série harmônica *H_N*:

$$H_N = \sum_{1 \le k \le N} 1/k$$

Análise de pior caso

Pior caso ocorre quando o pivot for sempre o menor elemento do vetor. Ou seja, k=1 em $T_N=T_K+T_{N-K}+\alpha N$

Relação de recorrência: pior caso k=1

Divide array com
$$k=1$$

$$T_N=T_{N-1}+T_1+\alpha n$$
 Obtém eq. para $n-1$
$$T_N=[T_{N-2}+T_1+\alpha(N-1)]+\alpha N$$
 Reorganiza
$$T_N=T_{N-2}+2T_1+\alpha(N-1+N)$$

Para
$$k=1$$

$$T_N = T_{N-1} + T_1 + \alpha N$$

Para
$$k=1$$

$$T_N=T_{N-1}+T_1+\alpha N$$
 Eq. de $N-1$
$$= [T_{N-2}+T_1+\alpha (N-1)]+\alpha N$$

Para
$$k = 1$$
 $T_N = T_{N-1} + T_1 + \alpha N$ Eq. de $N-1$ $= [T_{N-2} + T_1 + \alpha(N-1)] + \alpha N$ $= T_{N-2} + 2T_1 + \alpha(N-1 + N)$

Para
$$k=1$$
 $T_N = T_{N-1} + T_1 + \alpha N$ Eq. de $N-1$ $= [T_{N-2} + T_1 + \alpha(N-1)] + \alpha N$ Organiza $= T_{N-2} + 2T_1 + \alpha(N-1 + N)$ Eq. de $N-2$ $= [T_{N-3} + T_1 + \alpha(N-2)] + 2T_1 + \alpha(N-1) + \alpha N$

$$\begin{array}{lll} \text{Para } k = 1 & T_N = T_{N-1} + T_1 + \alpha N \\ \text{Eq. de } N - 1 & = \left[T_{N-2} + T_1 + \alpha (N-1) \right] + \alpha N \\ \text{Organiza} & = T_{N-2} + 2T_1 + \alpha (N-1 + N) \\ \text{Eq. de } N - 2 & = \left[T_{N-3} + T_1 + \alpha (N-2) \right] + 2T_1 + \alpha (N-1) + \alpha N \\ \text{Organiza} & = T_{N-3} + 3T_1 + \alpha \left[(N-2) + (N-1) + N \right] \end{array}$$

Para
$$k=1$$
 $T_N = T_{N-1} + T_1 + \alpha N$ Eq. de $N-1$ $= [T_{N-2} + T_1 + \alpha(N-1)] + \alpha N$ Organiza $= T_{N-2} + 2T_1 + \alpha(N-1+N)$ Eq. de $N-2$ $= [T_{N-3} + T_1 + \alpha(N-2)] + 2T_1 + \alpha(N-1) + \alpha N$ Organiza $= T_{N-3} + 3T_1 + \alpha[(N-2) + (N-1) + N]$ Eq. de $N-i$ $= T_{N-i} + iT_1 + \alpha[(N-i+1) + \dots + (N-1) + N]$

Para
$$k=1$$
 $T_N = T_{N-1} + T_1 + \alpha N$ Eq. de $N-1$ $= [T_{N-2} + T_1 + \alpha(N-1)] + \alpha N$ Organiza $= T_{N-2} + 2T_1 + \alpha(N-1 + N)$ Eq. de $N-2$ $= [T_{N-3} + T_1 + \alpha(N-2)] + 2T_1 + \alpha(N-1) + \alpha N$ Organiza $= T_{N-3} + 3T_1 + \alpha[(N-2) + (N-1) + N]$ Eq. de $N-i$ $= T_{N-i} + iT_1 + \alpha[(N-i+1) + \dots + (N-1) + N]$ Soma $= T_{N-i} + iT_1 + \alpha\sum_{i=0}^{i-1} (N-j)$

Para
$$k=1$$

$$T_{N}=T_{N-1}+T_{1}+\alpha N$$
 Eq. de $N-1$
$$= [T_{N-2}+T_{1}+\alpha(N-1)]+\alpha N$$
 Organiza
$$= T_{N-2}+2T_{1}+\alpha(N-1+N)$$
 Eq. de $N-2$
$$= [T_{N-3}+T_{1}+\alpha(N-2)]+2T_{1}+\alpha(N-1)+\alpha N$$
 Organiza
$$= T_{N-3}+3T_{1}+\alpha[(N-2)+(N-1)+N]$$
 Eq. de $N-i$
$$= T_{N-i}+iT_{1}+\alpha[(N-i+1)+\ldots+(N-1)+N]$$
 Soma
$$= T_{N-i}+iT_{1}+\alpha\sum_{j=0}^{i-1}(N-j)$$
 Vai até $i=N-1$
$$= T_{N-N+1}+(N-1)T_{1}+\alpha\sum_{j=0}^{N-1-1}(N-j)$$

Para
$$k = 1$$
 $T_N = T_{N-1} + T_1 + \alpha N$ Eq. de $N-1$ $= [T_{N-2} + T_1 + \alpha(N-1)] + \alpha N$ Organiza $= T_{N-2} + 2T_1 + \alpha(N-1 + N)$ Eq. de $N-2$ $= [T_{N-3} + T_1 + \alpha(N-2)] + 2T_1 + \alpha(N-1) + \alpha N$ Organiza $= T_{N-3} + 3T_1 + \alpha[(N-2) + (N-1) + N]$ Eq. de $N-i$ $= T_{N-i} + iT_1 + \alpha[(N-i+1) + \dots + (N-1) + N]$ Soma $= T_{N-i} + iT_1 + \alpha \sum_{j=0}^{i-1} (N-j)$ Vai até $i = N-1$ $= T_{N-N+1} + (N-1)T_1 + \alpha \sum_{j=0}^{N-1-1} (N-j)$ Resultado $= NT_1 + \alpha[(\sum_{i=1}^{N} j) - 1]$

Para
$$k=1$$

$$T_{N} = T_{N-1} + T_{1} + \alpha N$$
 Eq. de $N-1$
$$= [T_{N-2} + T_{1} + \alpha(N-1)] + \alpha N$$
 Organiza
$$= T_{N-2} + 2T_{1} + \alpha(N-1+N)$$
 Eq. de $N-2$
$$= [T_{N-3} + T_{1} + \alpha(N-2)] + 2T_{1} + \alpha(N-1) + \alpha N$$
 Organiza
$$= T_{N-3} + 3T_{1} + \alpha[(N-2) + (N-1) + N]$$
 Eq. de $N-i$
$$= T_{N-i} + iT_{1} + \alpha[(N-i+1) + \dots + (N-1) + N]$$
 Soma
$$= T_{N-i} + iT_{1} + \alpha \sum_{j=0}^{i-1} (N-j)$$
 Vai até $i = N-1$
$$= T_{N-N+1} + (N-1)T_{1} + \alpha \sum_{j=0}^{N-1-1} (N-j)$$
 Resultado
$$= NT_{1} + \alpha[(\sum_{j=1}^{N} j) - 1]$$
 Só o somatório
$$\sum_{i=1}^{N} j = (N+1)N/2$$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_N = 2T_{N/2} + \alpha N$$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_N = 2T_{N/2} + \alpha N$$
 Para N/4
$$= 2(2T_{N/4} + \alpha N/2) + \alpha N$$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_N = 2T_{N/2} + \alpha N$$
Para $N/4$ $= 2(2T_{N/4} + \alpha N/2) + \alpha N$
Organizar $= 4T_{n/4} + 2\alpha N/2 + \alpha N$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_N = 2T_{N/2} + \alpha N$$
Para $N/4$
$$= 2(2T_{N/4} + \alpha N/2) + \alpha N$$
Organizar
$$= 4T_{n/4} + 2\alpha N/2 + \alpha N$$

$$= 2^2T_{N/2^2} + 2\alpha N$$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_{N} = 2T_{N/2} + \alpha N$$
 Para $N/4$ = $2(2T_{N/4} + \alpha N/2) + \alpha N$ Organizar = $4T_{n/4} + 2\alpha N/2 + \alpha N$ = $2^{2}T_{N/2^{2}} + 2\alpha N$ Para $N/8$ = $2^{2}[2(T_{N/8} + \alpha N/8)] + 2\alpha N$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_{N} = 2T_{N/2} + \alpha N$$
Para N/4 = $2(2T_{N/4} + \alpha N/2) + \alpha N$
Organizar = $4T_{n/4} + 2\alpha N/2 + \alpha N$
= $2^{2}T_{N/2^{2}} + 2\alpha N$
Para N/8 = $2^{2}[2(T_{N/8} + \alpha N/8)] + 2\alpha N$
Organizar = $2^{3}T_{N/2^{3}} + 3\alpha N$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

$$T_{N} = 2T_{N/2} + \alpha N$$
Para $N/4$ = $2(2T_{N/4} + \alpha N/2) + \alpha N$
Organizar = $4T_{n/4} + 2\alpha N/2 + \alpha N$

$$= 2^{2}T_{N/2^{2}} + 2\alpha N$$
Para $N/8$ = $2^{2}[2(T_{N/8} + \alpha N/8)] + 2\alpha N$
Organizar = $2^{3}T_{N/2^{3}} + 3\alpha N$
Para $N/2^{k}$ = $2^{k}T_{N/2^{k}} + k\alpha N$

Melhor caso ocorre quando o pivot for sempre o elemento que divide o vetor na metade. Ou seja, k=N/2 em $T_N=2T_{N/2}+\alpha N$

Relação de recorrência: melhor caso k=N/2
$$T_N = 2T_{N/2} + \alpha N$$

$$Para N/4 = 2(2T_{N/4} + \alpha N/2) + \alpha N$$

$$Organizar = 4T_{n/4} + 2\alpha N/2 + \alpha N$$

$$= 2^2T_{N/2^2} + 2\alpha N$$

$$Para N/8 = 2^2[2(T_{N/8} + \alpha N/8)] + 2\alpha N$$

$$Organizar = 2^3T_{N/2^3} + 3\alpha N$$

$$Para N/2^k = 2^kT_{N/2^k} + k\alpha N$$

$$Até N = 2^k, com k = \lg N$$

$$T_N = nT_1 + \alpha N \lg N$$

Análise caso médio do quicksort

- Comparações para particionar N elementos: (N+1)
- Fazer média para cada par de partições
 - C_{j-1} e C_{N-j} definidos pelo pivot em j-1
- Para N > 1, $C_1 = C_0 = 0$,

$$C_N = N + 1 + \frac{1}{N} \sum_{1 \le i \le N} (C_{j-1} + C_{N-j})$$

$$C_{N} = N + 1 + \frac{1}{N} \sum_{1 \le j \le N} (C_{j-1} + C_{N-j}) \qquad N > 1, C_{1} = C_{0} = 0$$

$$C_{N} = N + 1 + \frac{2}{N} \sum_{1 \le j \le N} C_{j-1} \qquad \text{Faz } j = N - j + 1 \text{ em } C_{N-j}$$

$$NC_{N} = N(N+1) + 2 \sum_{1 \le j \le N} C_{j-1} \qquad \text{Multiplica } N$$

$$NC_{N} = N(N+1) + 2 \sum_{1 \le j \le N} C_{j-1} \qquad \text{Multiplica } N$$

$$NC_{N} = N(N+1) + 2 \sum_{1 \le j \le N} C_{j-1} \qquad \text{Subtrai } NC_{N} \text{ em } N \in N - 1$$

$$NC_{N} = 2N + (N+1)C_{N-1} \qquad \text{Divide por } N(N+1)$$

$$\frac{C_{N}}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} \qquad \text{Itera em } \frac{C_{N}}{N+1}$$

$$C_{N}/(N+1) = C_{1}/2 + 2 \sum_{3 \le k \le N+1} 1/k \qquad \text{Finaliza}$$

$$C_{N} = (N+1)2(-3/2 + \sum_{1 \le k \le N+1} 1/k) \qquad = 2(N+1)(H_{N} - 3/2)$$

1 < k < N+1

Exercícios

- Escreva a recorrência para o total de comparações do quicksort para todas as possívels N! permutações
- Resolva a seguinte recorrência:

$$A_N = 1 + \frac{2}{N} \sum_{1 < j < N} A_{j-1}$$

com
$$N > 0$$
 e $A_0 = 0$

 Escreva e resolva a recorrência do número médio de estágios de particionamento do quicksort

Vimos

- Primeiros algoritmos de divisão e conquista
- Análise de busca binária, mergesort, quicksort