

T/AU99/00691

09/786043 AU99/691

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent Office Canberra

I, LEANNE MYNOTT, TEAM LEADER PATENT OPERATIONS hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PP 5512 for a patent by MONASH UNIVERSITY filed on 27 August 1998.

WITNESS my hand this Twenty-fourth day of September 1999

1. Mynoth

LEANNE MYNOTT **TEAM LEADER PATENT OPERATIONS**

£ 3.50

Monash University

A U S T R A L I A Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"NOVEL THERAPEUTIC MOLECULES AND USES THEREFOR"

The invention is described in the following statement:

-
-
-
-
-
-
-
-

NOVEL THERAPEUTIC MOLECULES AND USES THEREFOR

The present invention relates generally to novel molecules capable of, *inter alia*, controlling cellular functional activity such as proliferation, differentiation and/or transcriptional regulation and to genetic sequences encoding same. More particularly, the present invention relates to novel members of the ETS family of proteins, referred to herein as "ELF5", and to genetic sequences encoding same. The molecules of the present invention are useful, for example, in therapy, diagnosis, antibody generation and as a screening tool for agents capable of modulating transcriptional events during cellular functioning such as in tumorigenesis.

Background of the Invention

The ETS family of transcription factors share a conserved DNA binding domain, termed the 'ETS domain', first identified in the gag-myb-ets fusion protein of avian leukemia virus E26 (Nunn et al., 1983; Watson et al., 1988; Karim et al., 1990; Gutman and Wasylyk, 1991; Seth et al., 1992). The ETS domain recognises and binds to purine rich GGA(A/T) core motifs in the promoters and enhancers of various target genes (Macleod et al., 1992; Wasylyk et al., 1993; Janknecht and Nordheim, 1993; Werner et al., 1995; Kodandapani et al., 1996). The ETS family does not maintain overall similarity outside of the ETS domain, but can be grouped into subfamilies based upon variation within the ETS domain, and also by the arrangement and presence of other domains, such as those involved in transactivation and sites of phosphorylation (Lautenberger et al, 1992; Wasylyk et al., 1993; Janknecht and Nordheim, 1993). Over 30 ETS gene family members have been identified in species ranging from sea urchin to human.

Many ETS factors have been implicated in the control of cellular proliferation and tumorigenesis (Seth et al., 1992; Macleod et al., 1992; Wasylyk et al., 1993; Janknecht and Nordheim, 1993; Scott et al., 1994a; Muthusamy et al., 1995). ETS1, ETS2, ERG2 and PU.1 are proto-oncogenes with mitogenic and transforming activity when

overexpressed in fibroblasts (Seth et al., 1989; Seth and Papas, 1990; Hart et al., 1995; Moreau-Gachelin et al., 1996). In addition, chromosomal translocations involving ETS family members are associated with different human cancers. ERG and ERGB/FLI1 are fused to the EWS gene in t(21;22) and t(11;22) translocations, respectively, in Ewing's 5 sarcoma and other primitive neuroectodermal tumors (Sorensen et al., 1994; Ida et al., 1995). FEV is fused to EWS in a subset of Ewing's tumors in t(2;22) (Peter et al., 1997). TEL is fused to the platelet-derived growth factor receptor beta (PDGFR β) gene in t(5;12) translocations of chronic myelomonocytic leukemia, and to the acute myeloid leukemia 1 (AML1) transcription factor gene in t(12;21) translocations of acute lymphoblastic 10 leukemia (Golub et al., 1994, 1995). Fusion of TEL to the receptor-associated kinase JAK2 results in early pre-B acute lymphoid leukemia in t(9;12), and in a typical chronic myelogenous leukemia in t(9;15;12) (Peeters et al., 1997). Expression of Spil and Flil can be activated by position specific integration of the Friend murine leukemia virus in murine erythroleukemias (Ben-David et al., 1991). Also, ETS1, ETS2 and ERG regulate 15 the expression of metalloproteinase genes, such as stromelysin and collagenase (Buttice and Kurkinen, 1993; Buttice et al., 1996; Wasylyk et al., 1991), which are important for extracellular matrix degradation concomitant with tumor vascularization (angiogenesis) and metastasis.

- ETS factors also have important developmental roles. Pointed P2 and yan play critical roles in Drosophila eye development (O'Neill et al., 1994). ETS2 is involved in skeletal/cartilage development (Sumarsono et al., 1996). PU.1 null mutation results in haematopoietic abnormalities (McKercher et al., 1996), and ETS1 is involved in transactivation of genes required for T cell function (Muthusamy et al., 1995; Sun et al., 1995; Thomas et al., 1995; Thomas et al., 1997) and angiogenesis (Wasylyk et al., 1991; Vandenbunder et al., 1994; Wernert et al., 1992).
- The ETS factors are almost all expressed in haematopoietic lineages (Bhat et al., 1989; Bhat et al., 1990; Kola et al., 1993), and indeed appear to function predominantly in these cells and their related neoplasms. However, the most common solid tumors in humans are

P:\OPER\TDO\ELF5.PRV - 27/8/98

carcinomas which arise from the transformation of epithelial cells. Transformed breast epithelial cells, for example, have been shown to express ETS family members GABPα, PEA3, ELF1, ETS1 and ELK1 (Scott *et al.*, 1994b; Delannoy-Courdent *et al.*, 1996), but expression of these ETS family members is not restricted to epithelial cells. One ETS family member, ELF3/ESX/ESE-1/ERT, has recently emerged with epithelial and epithelial-cancer specific expression (Tymms *et al.*, 1997; Chang *et al.*, 1997; Choi *et al.*, 1998; Oettgen *et al.*, 1997).

In work leading up to the present invention, the inventors have identified and sequenced a novel member of the ETS family, designated herein "ELF5".

Summary of the Invention

Bibliographic details of the publications referred to by author in this specification are

15 collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the
nucleotide and amino acid sequences referred to in the specification are defined following
the bibliography. A summary of the SEQ ID NOs. is provided before the Examples.

Throughout this specification and the claims which follow, unless the context requires

20 otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be
understood to imply the inclusion of a stated integer or step or group of integers or steps but
not the exclusion of any other integer or step or group of integers or steps.

One aspect of the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding ELF5 wherein said ELF5 comprises an ETS domain.

Another aspect of the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding an amino acid sequence substantially as set forth in one of SEQ ID NO:2 or 4 or a derivative thereof or having at least about 45% or greater similarity to one or more of SEQ ID NO:2 or 4 or a derivative thereof.

Yet another aspect of the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:7 or having at least about 45% or greater similarity to a sequence comprising the amino acid sequence set forth in SEQ ID NO:7 or a derivative thereof.

Still yet another aspect of the present invention contemplates a nucleic acid molecule comprising a nucleotide sequence substantially as set forth in one of SEQ ID NO:1 or 3 or a derivative thereof capable of hybridising to one of SEQ ID NO:1 or 3 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in one of SEQ ID NO:2 or 4 or a sequence having at least about 45% similarity to one or more of SEQ ID NO:2 or 4.

A further aspect of the present invention contemplates a nucleic acid molecule comprising a nucleotide sequence substantially as set forth in one of SEQ ID NO:5 or 6 or a derivative thereof capable of hybridising to one of SEQ ID NO:5 or 6 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:7 or a sequence having at least about 45% similarity to SEQ ID NO:7.

20

Yet another further aspect of the present invention provides a nucleotide sequence corresponding to *ELF5* is a cDNA sequence comprising a sequence of nucleotides as set forth in one of SEQ ID NO:1 or 3 or is a derivative thereof including a nucleotide sequence having similarity to one of SEQ ID NO:1 or 3 and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in one of SEQ ID NO:2 or 4 or a sequence having at least about 45% similarity to one or more of SEQ ID NO:2 or 4.

Still yet another further aspect of the present invention provides a nucleotide sequence corresponding to *ELF5* is a cDNA sequence comprising a sequence of nucleotides as set forth in one of SEQ ID NO:5 or 6 or is a derivative thereof including a nucleotide sequence having similarity to one of SEQ ID NO:5 or 6 and which encodes an amino acid sequence

P:\OPER\TDO\ELF5.PRV - 27/8/9

corresponding to an amino acid sequence as set forth in SEQ ID NO:7 or a sequence having at least about a 45% similarity to SEQ ID NO:7.

Another aspect of the present invention contemplates a method of modulating activity of

5 ELF5 in a mammal, said method comprising administering to said mammal a modulating

effective amount of an agent for a time and under conditions sufficient to increase or decrease

ELF5 activity.

Yet another aspect of the present invention contemplates a method of modulating cellular functional activity in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the expression of a nucleotide sequence encoding *ELF5* or sufficient to modulate the activity of ELF5.

15 Still yet another aspect of the present invention contemplates a method of modulating cellular functional activity in a mammal said method comprising administering to said mammal an effective amount of ELF5 or *ELF5*.

A further aspect of the present invention relates to a method of treating a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the expression of *ELF5* or sufficient to modulate the activity of ELF5 wherein said modulation results in modulation of cellular functional activity.

25 Yet another further aspect of the present invention relates to a method of treating a mammal said method comprising administering to said mammal an effective amount of ELF5 or ELF5 for a time and under conditions sufficient to modulate cellular functional activity.

Still yet another further aspect of the present invention relates to the use of an agent capable of modulating the expression of *ELF5* or modulating the activity of ELF5 in the manufacture of a medicament for the modulation of cellular functional activity.

Another aspect of the present invention relates to the use of ELF5 or *ELF5* in the manufacture of a medicament for the modulation of cellular functional activity.

5 Yet another aspect of the present invention relates to agents for use in modulating *ELF5* expression or ELF5 activity wherein said modulation results in modulation of cellular functional activity.

Still yet another aspect of the present invention relates to ELF5 or *ELF5* for use in modulating cellular functional activity.

A further aspect of the present invention contemplates a pharmaceutical composition comprising *ELF5*, ELF5 or an agent capable of modulating *ELF5* expression or ELF5 activity together with one or more pharmaceutically acceptable carriers and/or diluents.

15 ELF5, ELF5 or said agent are referred to as the active ingredients.

Another further aspect of the present invention contemplates a method for detecting ELF5 or *ELF5* mRNA in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for ELF5 or *ELF5* mRNA or its derivatives or homologs for a time and under conditions sufficient for an antibody-ELF5 or antibody-ELF5 mRNA complex to form, and then detecting said complex.

5

Single and three letter abbreviations used throughout the specification are defined in Table 1.

TABLE 1
Single and three letter amino acid abbreviations

Amino Acid	Three-letter	One-letter
	Abbreviation	Symbol
O Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
5 Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
0 Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
5 Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	V
Tyrosine	Tyr	Y
Valine	Val	V
0 Any residue	Xaa	X

Brief Description of the Drawings

Figure 1 is a schematic representation of murine *ELF5* cDNA sequence and relationship to mRNA transcripts. (a) The nucleotide sequence of murine *ELF5* is shown. Breaks in the sequence indicate the source of sequence data; the central region (92-1528) was sequenced from lambda clones, and 5 prime and 3 prime were added from sequencing of RACE PCR products. Numbering of the nucleotides, starting with the most 5-prime sequences obtained, are indicated on the right. The open reading frame (ORF) is shown in capital letters, with the initiating start and stop codons underlined. A stop codon, in the same reading frame as the ORF, but 5 prime to the initiating codon, is also underlined. The ETS domain is indicated in a shaded box. Putative polyadenylation signals are underlined with dashed lines. A/T rich tracts in the 3 prime untranslated region are boxed. (b) Northern blot analysis of day 14 mouse placenta: lane 1, probed with random-prime-labeled 940 bp *Sty1* murine *ELF5* cDNA fragment (probe 1); lane 2, probed with random-prime-labeled murine *ELF5* 696 bp 3'
15 RACE PCR product (probe 2). Positions of 28S and 18S markers are indicated. Both lanes were also probed with GAPDH cDNA (lower panels).

Figure 2 is a schematic representation of (a) Comparison of human and mouse ORFs.

Amino acid sequences present in both human and mouse ELF5 are shaded. The ETS domain is boxed with a solid line and the pointed domain with a dashed line. Putative phosphorylation sites, conserved between the two species are circled and labeled as CKII (casein kinase II), PKC (protein kinase C) or TyP (tyrosine kinase) substrates. (b)

Comparison of the ETS domain of human and mouse ELF5 with those of known members of the ETS gene family. The alignment was generated using CLUSTAL W (Thompson et al., 1994) with the default settings, and the result was subsequently adjusted manually. The ETS factors examined are labeled on the left and include hELF3, mELF3, hNERF, dETS4, dE74A, hELF1, hELK1, hTEL, hERM, mER81, mPEA3, mGABP mERP, dETS6, mPU1, hPE1, hSAP1, hSPIB, dYAN, hERG, mFLI1, dELG, dETS3, mETS1, mETS2, mER71, where 'h' denotes human, 'm' mouse and 'd' Drosophila. The ETS consensus sequence is a list of the amino acids most often conserved between ETS family members. Shading denotes

amino acid identity with human ELF5, and the percent identity of each ETS domain is

conventions are as described for Figure 2b.

20

P:\OPER\TDO\ELF5.PRV - 27/8/9

indicated on the right. (c) Phylogenetic tree of the ETS domain produced by maximum likelihood analysis. The alignment in Figure 2b was analysed using the JTT-F substitution model (Jones et al., 1992) and local bootstrap values were estimated for all internal branches, both by using PROTML in Q mode followed by a second run in R mode (Adachi and Hasegawa, 1996). An underlying assumption of the phylogenetic analysis is that the amino acid content does not vary significantly among the sequences. This assumption was not assessed because tools for doing so are still under development (LSJ, unpublished work). Therefore, the tree may be the result of both historical and compositional components. The four points at which gene duplications have been inferred are marked A, B, C and D. (d) Comparison of the pointed domain of human and mouse ELF5 with those of other members of the ETS family. The ETS factors examined are labeled on the left and include hERG, hELF3, hTEL, hGABP~, hETS1, hETS2, dYAN and dPOINTEDP2. Other labels and

- 15 Figure 3 is a schematic representation of the chromosomal localization of human *ELF5*.

 Human chromosomal localization of ELF5 was performed by PCR using gene specific primers and the Genebridge 4 Radiation Hybrid DNA panel (UK HGMP Resource Centre).

 Diagram based upon PCR results (data not shown) showing localization of *ELF5* within chromosome one, with respect to adjacent marker obtained from mapping data (see text).
- Figure 4 is a photographic representation of *ELF5* expression in mouse tissues. Positions of 28S and 18S markers are indicated. *ELF5a* and *ELF5b* transcripts are indicated. (a)

 Northern analysis of adult mouse tissues probed with murine *ELF5* cDNA (top panels) and GAPDH cDNA (lower panels). Abbreviations; Li: liver; Lu: lung; Br: brain; Ki: kidney; He:

 25 heart; Sm: small intestine; Sp: spleen; Th: thymus; St: stomach; Ov: ovary; Pa: pancreas; To: tongue; Sk: skeletal muscle; Bl: bladder; 2Fa: day 2 pregnant fat; 2 Ma: day 2 pregnant mammary gland; 10 Fa: day 10 pregnant fat; 10 Ma: day 10 pregnant mammary gland; Co: colon. Arrow indicates position of brain specific transcript (see text). (b) Northern analysis as above, but using RNA from day 1 neonate mouse tissues. Additional abbreviation; In:
- 30 intestine. Arrow indicates position of large transcript (see text). (c) Northern analysis as above, but using RNA from day 16, 17 and 19 embryonic tissues. (d) Northern analysis as

above, but using RNA from day 9.5 to day 19 placental tissues as indicated.

Figure 5 is a photographic representation of ELF5 expression in human tissues and cell lines. (a) Northern analysis of adult human tissues probed with human ELF5 cDNA (top panels) 5 and β-Actin cDNA (lower panels). The single ELF5 transcript is indicated. Other labels and conventions are as for Figure 4. Abbreviations; He: heart; Br: brain; Pl: placenta; Lu: lung; Li: liver; Sk: skeletal muscle; Ki: kidney; Pa: pancreas; Sp: spleen; Th: thymus; Pr: prostate; Te: testis; Ov: ovary; Sm: small intestine; Co: colon mucosa; PBL: peripheral blood lymphocytes. (b) RNAse protection analysis of ELF5 and GAPDH in cell lines; 1: CaOv-3 10 (ovarian carcinoma); 2: BT-549 (ductal breast carcinoma); 3: ZR-75-1 (breast carcinoma); 4: T47D (ductal breast carcinoma, progesterone sensitive); 5: 786-O (renal adenocarcinoma); 6: SK-HEP-1 (liver adenocarcinoma); 7: A549 (lung adenocarcinoma); 8: CCL32SK (primary fibroblast): 9: MEL28 (melanoma); 10: WISH (amnion carcinoma); 11: Jurkat (T cell leukemia); 12: DU145 (prostate carcinoma); 13: PC3 (prostate carcinoma); 14: HEC-1 15 (endometrium carcinoma); 15: K562 (erythroid leukemia). (c) Southern analysis of ELF5 in BgIII digested genomic DNA from cell lines; 1: normal blood; 2: BT-549 (ductal breast carcinoma); 3: ZR-75-1 (breast carcinoma); 4: T47D (ductal breast carcinoma); 5: NCI-H1299 (large cell lung carcinoma); 6: NCI-HI87 (small cell lung carcinoma); 7: NCI-H322 (bronchioalveolar carcinoma); 8: NCI-H358 (bronchioalveolar carcinoma); 9: NCI-H522 20 (lung adenocarcinoma); 10: SK-LU-1 (lung adenocarcinoma); 11: NCI-H441 (bronchioalveolar carcinoma); 12: NCI-H460 (large cell lung carcinoma); 13: NCI-H661 (large cell lung carcinoma).

Figure 6 is a photographic representation of ELF5 binding to consensus ETS binding
25 sequences. (a) His-tagged ELF5 recombinant protein, present in E. coli lysates (lane 2), was purified by metal-affinity chromatography to approximately 90% (lane 3) and eluted with imadazole (lane 4). (b) Specific DNA binding of Elf5 was analysed by electrophoretic mobility shift assay (EMSA), using labeled double-stranded oligonucleotides as probes. E74 contains a consensus binding site for ETS family members (lane 1). E74ml is a mutant
30 oligonucleotide based on E74, but with the core GGAA replaced by AGAA (lane 2). Binding to other consensus ETS sites was analysed by the ability of a 100-fold excess of unlabeled

double-stranded oligonucleotide to compete with E74 for Elf5 binding GMETS contains an ETS binding site from the human GM-CSF promoter (lane 6). ERBB2 contains an ETS binding site from the human erbB2/HER2 promoter (lane 7). MSV contains an ETS binding site present in the long terminal repeat of the Moloney sarcoma virus (lane 8). AP1 contains a consensus AP1 binding site used as a negative control ELF5-DNA complexes are marked. Binding of ETS1 to E74 was used as a positive control (lane 10).

Figure 7 is a graphical representation of transactivation by ELF5. COS cells were cotransfected with CAT reporter and Elf5 expression constructs. Transcription of the CAT gene was driven by the thymidine kinase (tk) minimal promoter with five copies of the polyomavirus enhancer inserted upstream (p5Xpoly). The polyomavirus enhancer contains adjacent ETS and AP1 binding sites. The ELF5 sense construct (pBOSElf5as) was designed to express ELF5 protein, and the ELF5 anti-s construct (pBOSElf5as) to produce anti-sense transcripts. In the absence of expression construct the equivalent amount of base vector (pEFBOS) was co-transfected. COS cells were processed for CAT assays and the results of at least four replicates are shown as the mean with standard error of the mean (s.e.m.) bars. Statistically significant results are indicated by asterisks. A single asterisk indicates moderate significance (0.05>P>0.01) and triple asterisks indicate very high significance (P<0.001).

20 Figure 8 is a photographic representation of breast tissue sections from parafin-embedded samples which had been hybridized with ELF5 antisense RNA.

Detailed Description of the Invention

The present invention is predicated, in part, on the identification of a novel member of the ETS family of molecules, termed ELF5. The identification of this novel molecule permits the identification and rational design of a range of products for use in therapy, diagnosis and antibody generation involving, for example, regulation of cellular functional activity such as cellular proliferation. These therapeutic molecules may also act as either antagonists or agonists of ELF5 function and will be useful, *inter alia*, in cancer and autoimmune disease therapy.

10

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding ELF5 wherein said ELF5 comprises an ETS domain.

- 15 Reference to an "ETS domain" should be understood as a reference to a protein domain which recognises and binds to a purine rich GGA(A/T) motif of a promoter or enhancer (Macleod et al., 1992; Wasylyk et al., 1993; Janknecht and Nordheim, 1993; Werner et al., 1995; Kodandapani et al., 1996). The ETS domain may be continuous, meaning that it is comprised of a continuous sequence of amino acids, or it may be discontinuous, meaning that it is comprised of individual amino acids or sequences of amino acids from two or more separate regions of the protein and which are brought into proximity with one another to form the ETS domain due to the secondary, tertiary or quaternary structure of the protein.
- More particularly, the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding an amino acid sequence substantially as set forth in one of SEQ ID NO:2 or 4 or a derivative thereof or having at least about 45% or greater similarity to one or more of SEQ ID NO:2 or 4 or a derivative thereof.
- 30 Another aspect of the present invention provides a nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding an amino acid

sequence substantially as set forth in SEQ ID NO:7 or having at least about 45% or greater similarity to a sequence comprising the amino acid sequence set forth in SEQ ID NO:7 or a derivative thereof.

5 The term "similarity" as used herein includes exact identity between compared sequences at the nucleotide or amino acid levels. Where there is non-identity of the nucleotide level "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, "similarity" 10 includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. The percentage similarity may be greater than 50% such as at least 70% or at least 80% or at least 90% or higher.

Another aspect of the present invention contemplates a nucleic acid molecule comprising a nucleotide sequence substantially as set forth in one of SEQ ID NO:1 or 3 or a derivative thereof capable of hybridising to one of SEQ ID NO:1 or 3 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in one of SEQ ID NO:2 or 4 or a sequence having at least about 45% similarity to one or more of SEQ ID NO:2 or 4.

20

More particularly, the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:1 or 3.

Another aspect of the present invention contemplates a nucleic acid molecule comprising a nucleotide sequence substantially as set forth in one of SEQ ID NO:5 or 6 or a derivative thereof capable of hybridising to one of SEQ ID NO:5 or 6 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:7 or a sequence having at least about 45% similarity to SEQ ID NO:7.

30

More particularly, the present invention contemplates a nucleic acid molecule comprising a

sequence of nucleotides substantially as set forth in SEQ ID NO:5 or 6.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or 10 high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions. In general, washing is carried out at T_m = 69.3 + 0.41 (G + C) % [19] = -12°C. However, the T_m of a duplex DNA decreases by 1°C with every increase of 1% in the number of

The nucleic acid molecule according to this aspect of the present invention corresponds herein to "ELF5". This gene has been determined in accordance with the present invention to encode a protein which displays specific binding to DNA sequences comprising a GGA(A/T) core. The product of the ELF5 gene is referred to herein as ELF5. ELF5 is defined as belonging to the ETS family of transcription factors due to its expression of an ETS domain which recognises and binds the purine rich GGA(A/T) core motifs. ELF5 is a protein for which splice variants exist, thereby resulting in the expression of a variety of isoforms. Human ELF5 and human ELF5 short transcript are examples of 2 isoforms which differ in size due to the splicing out of exon regions from the ELF5 mRNA molecule encoding the ELF5 short transcript. Murine ELF5a and ELF5b are examples of 2 mRNA transcripts which differ in the length of the 3' untranslated region. Human ELF5 and ELF5 short transcript are defined by the amino acid sequences set forth in SEQ ID NO: 2 and 4, respectively and murine ELF5 is defined by the amino acid sequence set forth in SEQ ID NO:7. The cDNA nucleotide sequences for human ELF5 and ELF5 short transcript are

defined by the nucleotide sequences set forth in SEQ ID NO:1 and 3, respectively, and

murine *ELF5a* and *ELFb* are defined by the nucleotide sequences set forth in SEQ ID NO:5 and 6, respectively.

The nucleic acid molecules encoding ELF5 are preferably a sequence of deoxyribonucleic acids such as cDNA sequences or genomic sequences. A genomic sequence may also comprise exons and introns. A genomic sequence may also include a promoter region or other regulatory region.

Reference hereinafter to "ELF5" and "ELF5" should be understood as a reference to all forms of ELF5 and ELF5, respectively, including by way of example the two mRNA transcripts, ELF5a and ELF5b, observed in the mouse. Without limiting the invention in any way, sequence analysis of murine ELF5 has revealed two discrete polyadenylation signals present in the 3' untranslated region (UTR). The first of these (at 1391 bp) appears to be an overlapping poly(A)⁺ recognition signal AATTAA and ATTAAAA. The second is a consensus polyadenylation signal, AATAAA, at 2181 bp. Sequence analysis of human ELF5 has also revealed two mRNA transcripts arising from the splicing out of part of the exon region. Accordingly, the present invention should be understood to extend to all cDNA and peptide isoforms arising from alternative splicing of ELF5 mRNA.

- 20 The protein and/or gene is preferably from a human, primate, livestock animal (eg. sheep, pig, cow, horse, donkey) laboratory test animal (eg. mouse, rat, rabbit, guinea pig) companion animal (eg. dog, cat), captive wild animal (eg. fox, kangaroo, deer), aves (eg. chicken, geese, duck, emu, ostrich), reptile or fish.
- The protein may be glycosylated or unglycosylated, phosphorylated or dephosphorylated to various degrees and/or may contain a range of other molecules fused, linked, bound or otherwise associated to the protein such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins. Reference hereinafer to a "protein" includes a protein comprising a sequence of amino acids as well as a protein associated with other molecules such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins.

Derivatives include fragments, parts, portions, chemical equivalents, mutants, homologs, mimetics from natural, synthetic or recombinant sources including fusion proteins.

Derivatives may be derived from insertion, deletion or substitution of amino acids.

Amino acid insertional derivatives include amino and/or carboxylic terminal fusions as

well as intrasequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in the protein although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterized by the removal of one or more amino acids from the sequence. Substitutional amino acid variants are those in which at least one residue in the sequence has been removed and a different residue inserted in its place. Additions to amino acid sequences including fusions with other peptides, polypeptides or proteins.

The derivatives of ELF5 include fragments having particular epitopes or parts of the entire ELF5 protein fused to peptides, polypeptides or other proteinaceous or non-proteinaceous molecules. For example, ELF5 or derivative thereof may be fused to a molecule to facilitate its entry into a cell. Analogs of ELF5 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecules or their analogs. Derivatives of nucleic acid sequences may similarly be derived from single or multiple nucleotide substitutions, deletions and/or additions including fusion with other nucleic acid molecules. The derivatives of the nucleic acid molecules of the present invention include oligonucleotides, PCR primers, antisense molecules, molecules suitable for use in cosuppression and fusion of nucleic acid molecules.

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; 30 acylation with acetic anhydride; carbamoylation of amino groups with cyanate;

trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH₄.

5 The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation *via* O-acylisourea 10 formation followed by subsequent derivitisation, for example, to a corresponding amide.

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

- 20 Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.
- 25 Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carboethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during protein synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-

hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acid contemplated herein is shown in Table 2.

5

TABLE 2

	Non-conventional	Code	Non-conventional	Code
	amino acid		amino acid	
5		<u> </u>		
	α-aminobutyric acid	Abu	L-N-methylalanine	Nmala
	$\alpha\text{-amino-}\alpha\text{-methylbutyrate}$	Mgabu	L-N-methylarginine	Nmarg
	aminocyclopropane-	Cpro	L-N-methylasparagine	Nmasn
	carboxylate		L-N-methylaspartic acid	Nmasp
10	aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
	aminonorbornyl-	Norb	L-N-methylglutamine	Nmgln
	carboxylate		L-N-methylglutamic acid	Nmglu
	cyclohexylalanine		Chexa L-N-methylhistidine	Nmhis
	cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmile
15	D-alanine	Dal	L-N-methylleucine	Nmleu
	D-arginine	Darg	L-N-methyllysine	Nmlys
	D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
	D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
	D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
20	D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
	D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
	D-isoleucine	Dile	L-N-methylproline	Nmpro
	D-leucine	Dleu	L-N-methylserine	Nmser
	D-lysine	Dlys	L-N-methylthreonine	Nmthr
25	D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
	D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
	D-phenylalanine	Dphe	L-N-methylvaline	Nmval
	D-proline	Dpro	L-N-methylethylglycine	Nmetg
	D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
30	D-threonine	Dthr	L-norleucine	Nle

	D-tryptophan	Dtrp	L-norvaline	Nva
	D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
	D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
	D-α-methylalanine	Dmala	α -methylcyclohexylalanine	Mchexa
5	D-α-methylarginine	Dmarg	α -methylcylcopentylalanine	Mcpen
	D-α-methylasparagine	Dmasn	α -methyl- α -napthylalanine	Manap
	D-α-methylaspartate	Dmasp	α -methylpenicillamine	Mpen
	D-α-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-α-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
10	D-α-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D-α-methylisoleucine	Dmile	N -amino- α -methylbutyrate	Nmaabu
	D-α-methylleucine	Dmleu	α -napthylalanine	Anap
	D-α-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-α-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
15	D-α-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D-α-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D-α-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-α-methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D - α -methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
20	D - α -methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D-α-methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
	D-α-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
25	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
30	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser

P:\OPER\TDO\ELF5.PRV - 27/8/98

- 22 -

carbamylmethyl)glycine
1-carboxy-1-(2,2-diphenyl- Nmbc
ethylamino)cyclopropane

carbamylmethyl)glycine

5

Crosslinkers can be used, for example, to stabilise 3D conformations, using homobifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and heterobifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_α and N_α -methylamino acids, introduction of double bonds between C_α and C_β atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

The nucleic acid molecule of the present invention is preferably in isolated form or ligated to a vector, such as an expression vector. By "isolated" is meant a nucleic acid molecule having undergone at least one purification step and this is conveniently defined, for example, by a composition comprising at least about 10% subject nucleic acid molecule, preferably at least about 20%, more preferably at least about 30%, still more preferably at least about 40-50%, even still more preferably at least about 60-70%, yet even still more preferably 80-90% or greater of subject nucleic acid molecule relative to other components as determined by molecular weight, encoding activity, nucleotide sequence, base composition or other convenient means. The nucleic acid molecule of the present invention may also be considered, in a preferred embodiment, to be biologically pure.

In a particularly preferred embodiment, the nucleotide sequence corresponding to *ELF5* is a cDNA sequence comprising a sequence of nucleotides as set forth in one of SEQ ID NO:1 or 3 or is a derivative thereof including a nucleotide sequence having similarity to one of SEQ ID NO:1 or 3 and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in one of SEQ ID NO:2 or 4 or a sequence having at least about 45% similarity to one or more of SEQ ID NO:2 or 4.

In another particularly preferred embodiment, the nucleotide sequence corresponding to *ELF5* is a cDNA sequence comprising a sequence of nucleotides as set forth in one of SEQ ID NO:5 or 6 or is a derivative thereof including a nucleotide sequence having similarity to one of SEQ ID NO:5 or 6 and which encodes an amino acid sequence corresponding to an amino acid sequence as set forth in SEQ ID NO:7 or a sequence having at least about a 45% similarity to SEQ ID NO:7.

- 15 A derivative of the nucleic acid molecule of the present invention also includes nucleic acid molecules capable of hybridising to the nucleotide sequences as set forth in one of SEQ ID NO:1 or 3 or SEQ ID NO:5 or 6 under low stringency conditions. Preferably said low stringency is at 42°C.
- 20 The nucleic acid molecule may be ligated to an expression vector capable of expression in a prokaryotic cell (eg. E. coli) or a eukaryotic cell (eg. yeast cells, fungal cells, insect cells, mammalian cells or plant cells). The nucleic acid molecule may be ligated or fused or otherwise associated with a nucleic acid molecule encoding another entity such as, for example, a signal peptide, a cytokine or other member of the ETS family.

25

The expression product is ELF5 having an amino acid sequence set forth in one of SEQ ID NO:2 or 4 or SEQ ID NO:7 or is a derivative or homologue as hereinbefore defined or is a mammalian homologue having an amino acid sequence of at least about 45% similarity to the amino acid sequence set forth in one of SEQ ID NO:2 or 4 or SEQ ID NO:7 or derivative or homologue thereof.

The ELF5 of the present invention may be in multimeric form meaning that two or more molecules are associated together. Where the same ELF5 molecules are associated together, the complex is a homomultimer. An example of a homomultimer is a homodimer. Where at least one ELF5 is associated with at least one non-ELF5 molecule, then the complex is a heteromultimer such as a heterodimer. A heteromultimer may include a molecule of another member of the ETS family or other molecule capable of modulating transcription.

In accordance with the present invention, it is proposed that ELF5 is a molecule which

regulates cellular functional activity. Reference to cellular "functional activity" should be
understood as a reference to the functions which a cell is capable of performing such as, but
in no way limited to, one or more of proliferation, differentiation, cell surface molecule
expression, antigen presentation, maintenance of viability, apoptosis, metabolism, signal
transduction and molecular mechanisms such as transcription and translation. Without

limiting this invention to any one theory or mode of action, human ELF5 has been mapped
to human chromosome 1p36.31 which is a region that frequently undergoes loss of
heterozygocity in several types of carcinoma, including breast and colon carcinomas. The
expression pattern of ELF5 and ELF5 in normal and diseased tissues also supports a role for
these molecules in the regulation of cellular functional activity and, in particular, in the direct
or indirect regulation of tumorigenesis. Even more particularly, it is proposed that ELF5
functions as a transcription factor.

The cloning and sequencing of this gene and its expression product now provides an additional gene for use in the prophylactic and therapeutic treatment of diseases such as those involving aberrant cellular functional activity such as aberrant cellular proliferation. Examples of diseases involving aberrant cellular proliferation include diseases caused by excessive cellular proliferation, such as in tumorigenesis, or diseases caused by inadequate cellular proliferation. Accordingly, the present invention contemplates therapeutic and prophylactic uses of ELF5 amino acid and nucleic acid molecules, in addition to ELF5 agonistic and antagonistic agents, for the regulation of cellular functional activity, such as for example, regulation of proliferation, differentiation and/or regulation of gene expression

by transcriptional regulation.

The present invention contemplates, therefore, a method for modulating expression of *ELF5* in a subject, said method comprising contacting *ELF5* gene with an effective amount of an agent for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of *ELF5*. For example, *ELF5* antisense sequences such as oligonucleotides may be introduced into a cell to down-regulate one or more specific functional activities of that cell. Conversely, a nucleic acid molecule encoding ELF5 or a derivative thereof may be introduced to up-regulate one or more specific functional activities of any cell not expressing the endogenous *ELF5* gene.

Another aspect of the present invention contemplates a method of modulating activity of ELF5 in a mammal, said method comprising administering to said mammal a modulating effective amount of an agent for a time and under conditions sufficient to increase or decrease ELF5 activity.

Modulation of said activity by the administration of an agent to a mammal can be achieved by one of several techniques, including but in no way limited to introducing into said mammal a proteinaceous or non-proteinaceous molecule which:

20

- (i) modulates expression of *ELF5*;
- (ii) functions as an antagonist of ELF5;
- 25 (iii) functions as an agonist of ELF5.

Said proteinaceous molecule may be derived from natural or recombinant sources including fusion proteins or following, for example, natural product screening. Said non-proteinaceous molecule may be, for example, a nucleic acid molecule or may be derived from natural sources, such as for example natural product screening or may be chemically synthesised. The present invention contemplates chemical analogs of ELF5 capable of

acting as agonists or antagonists of ELF5. Chemical agonists may not necessarily be derived from ELF5 but may share certain conformational similarities. Alternatively, chemical agonists may be specifically designed to mimic certain physiochemical properties of ELF5. Antagonists may be any compound capable of blocking, inhibiting or otherwise preventing 5 ELF5 from carrying out its normal biological functions. Antagonists include monoclonal antibodies specific for ELF5, or parts of ELF5, and antisense nucleic acids which prevent transcription or translation of *ELF5* genes or mRNA in mammalian cells.

Said proteinaceous or non-proteinaceous molecule may act either directly or indirectly to modulate the expression of *ELF5* or the activity of ELF5. Said molecule acts directly if it associates with *ELF5* or ELF5 to modulate the expression or activity of *ELF5* or ELF5. Said molecule acts indirectly if it associates with a molecule other than *ELF5* or ELF5 which other molecule either directly or indirectly modulates the expression or activity of *ELF5* or ELF5. Accordingly, the method of the present invention encompasses the regulation of 15 *ELF5* or ELF5 expression or activity via the induction of a cascade of regulatory steps which lead to the regulation of *ELF5* or ELF5 expression or activity.

Another aspect of the present invention contemplates a method of modulating cellular functional activity in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the expression of a nucleotide sequence encoding *ELF5* or sufficient to modulate the activity of ELF5.

Yet another aspect of the present invention contemplates a method of modulating cellular functional activity in a mammal said method comprising administering to said mammal an effective amount of ELF5 or *ELF5*.

The ELF5, *ELF5* or agent used may also be linked to a targeting means such as a monoclonal antibody, which provides specific delivery of the ELF5, *ELF5* or agent to the 30 target cells.

In a preferred embodiment of the present invention, the ELF5, *ELF5* or agent used in the method is linked to an antibody specific for said target cells to enable specific delivery to these cells.

5 Administration of the ELF5, ELF5 or agent, in the form of a pharmaceutical composition, may be performed by any convenient means. ELF5, ELF5 or agent of the pharmaceutical composition are contemplated to exhibit therapeutic activity when administered in an amount which depends on the particular case. The variation depends, for example, on the human or animal and the ELF5, ELF5 or agent chosen. A broad 10 range of doses may be applicable. Considering a patient, for example, from about 0.1 mg to about 1 mg of ELF5 or agent may be administered per kilogram of body weight per day. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily, weekly, monthly or other suitable time intervals or the dose may be proportionally reduced as indicated by the 15 exigencies of the situation. The ELF5 or agent may be administered in a convenient manner such as by the oral, intravenous (where water soluble), intranasal, intraperitoneal, intramuscular, subcutaneous, intradermal or suppository routes or implanting (e.g. using slow release molecules). With particular reference to use of ELF5 or agent, these peptides may be administered in the form of pharmaceutically acceptable 20 nontoxic salts, such as acid addition salts or metal complexes, e.g. with zinc, iron or the like (which are considered as salts for purposes of this application). Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, maleate, acetate, citrate, benzoate, succinate, malate, ascorbate, tartrate and the like. If the active ingredient is to be administered in tablet form, the tablet may contain a binder such as 25 tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.

A further aspect of the present invention relates to the use of the invention in relation to mammalian disease conditions. For example, the present invention is particularly useful, 30 but in no way limited to, use in cancer therapy.

Accordingly, another aspect of the present invention relates to a method of treating a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the expression of *ELF5* or sufficient to modulate the activity of ELF5 wherein said modulation results in modulation of cellular functional activity.

In another aspect the present invention relates to a method of treating a mammal said method comprising administering to said mammal an effective amount of ELF5 or *ELF5* for a time and under conditions sufficient to modulate cellular functional activity.

10

Yet another aspect of the present invention relates to the use of an agent capable of modulating the expression of *ELF5* or modulating the activity of ELF5 in the manufacture of a medicament for the modulation of cellular functional activity.

15 A further aspect of the present invention relates to the use of ELF5 or ELF5 in the manufacture of a medicament for the modulation of cellular functional activity.

Still yet another aspect of the present invention relates to agents for use in modulating *ELF5* expression or ELF5 activity wherein said modulation results in modulation of cellular 20 functional activity.

Another aspect of the present invention relates to ELF5 or *ELF5* for use in modulating cellular functional activity.

25 In a related aspect of the present invention, the mammal undergoing treatment may be human or an animal in need of therapeutic or prophylactic treatment.

In yet another further aspect the present invention contemplates a pharmaceutical composition comprising *ELF5*, ELF5 or an agent capable of modulating *ELF5* expression or

30 ELF5 activity together with one or more pharmaceutically acceptable carriers and/or diluents. *ELF5*, ELF5 or said agent are referred to as the active ingredients.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of 5 manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a 10 coating such as licithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thirmerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or 15 sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

When *ELF5*, ELF5 and ELF5 modulators are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or

it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 µg and 2000 mg of active compound.

The tablets, troches, pills, capsules and the like may also contain the following: A binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as

15 dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such a sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other

20 materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should

25 be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and formulations.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, 30 dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the 5 compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 μ g to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 μ g to about 2000 mg/ml of carrier. In the case of compositions containing supplementary active ingredients, the dosages are determined by reference to the usual dose and manner of administration of the said ingredients.

The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule

30 capable of modulating *ELF5* expression or ELF5 activity. The vector may, for example,

be a viral vector.

Still another aspect of the present invention is directed to antibodies to ELF5 including catalytic antibodies. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to ELF5 or may be specifically raised to ELF5. In the case of the latter, ELF5 may first need to be associated with a carrier molecule. The antibodies and/or recombinant ELF5 of the present invention are particularly useful as therapeutic or diagnostic agents. Alternatively, fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic regime.

15

For example, ELF5 can be used to screen for naturally occurring antibodies to ELF5. These may occur, for example in some degenerative disorders.

For example, specific antibodies can be used to screen for ELF5 proteins. The latter would 20 be important, for example, as a means for screening for levels of ELF5 in a cell extract or other biological fluid or purifying ELF5 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays, ELISA and flow cytometry.

25 It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of ELF5.

30

Both polyclonal and monoclonal antibodies are obtainable by immunization with the protein

or peptide derivatives and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal with an effective amount of ELF5, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art. (See, for example Douillard and Hoffman, Basic Facts about Hybridomas, in *Compendium of*15 *Immunology* Vol II, ed. by Schwartz, 1981; Kohler and Milstein, *Nature 256*: 495-499, 1975; *European Journal of Immunology 6*: 511-519, 1976).

In another aspect of the present invention, the molecules of the present invention are also useful as screening targets for use in applications such as the diagnosis of disorders which are regulated by ELF5. For example, screening for the levels of ELF5 protein or ELF5 mRNA transcripts in breast or prostate tissue as an indicator of a predisposition to, or the development of, breast or prostate cancer.

Yet another aspect of the present invention contemplates a method for detecting ELF5 or 25 ELF5 mRNA in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for ELF5 or ELF5 mRNA or its derivatives or homologs for a time and under conditions sufficient for an antibody-ELF5 or antibody-ELF5 mRNA complex to form, and then detecting said complex.

30 The presence of ELF5 may be determined in a number of ways such as by Western blotting, ELISA or flow cytometry procedures. ELF5 mRNA may be detected, for example, by in

situ hybridization or Northern blotting. These, of course, include both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

5 Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to 10 be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted 15 material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to 20 the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention the sample is one which might contain Bim including cell extract, tissue biopsy or possibly serum, saliva, mucosal secretions, lymph, tissue fluid and respiratory fluid. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to 25 fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the ELF5 or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for

conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 5 2-40 minutes) and under suitable conditions (e.g. 25°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

10

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

By "reporter molecule" as used in the present specification, is meant a molecule which, by
its chemical nature, provides an analytically identifiable signal which allows the detection of
antigen-bound antibody. Detection may be either qualitative or quantitative. The most
commonly used reporter molecules in this type of assay are either enzymes, fluorophores or
radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

25 In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include

alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorecein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody

15 adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the

20 presence of the hapten of interest. Immunofluorescene and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

25 The present invention also contemplates genetic assays such as involving PCR analysis to detect *ELF5* or its derivatives.

Further features of the present invention are more fully described in the following examples. It is to be understood, however, that this detailed description is included solely for the purposes of exemplifying the present invention. It should not be understood in any way as a restriction on the broad description of the invention as set out above.

SUMMARY OF SEQ ID Nos.

	<u>Sequence</u>	SEQ ID NO.
5		
	nucleotide sequence of human ELF5	- 1
	amino acid sequence of human ELF5	2
	nucleotide sequence of human ELF5 short transcript	3
	amino acid sequence of human ELF5 short transcript	4
10	nucleotide sequence of murine ELF5a	5
	nucleotide sequence of murine ELF5b	6
	amino acid sequence of murine ELF5	7
	oligonucleotide primer	8
	oligonucleotide primer	9
15	oligonucleotide primer	10
	oligonucleotide primer	11
	oligonucleotide primer	12
	oligonucleotide primer	13
	oligonucleotide primer	14
20	oligonucleotide primer	15

EXAMPLE 1

ISOLATION OF MOUSE AND HUMAN ELF5 cDNAs

The murine ELF5 cDNA was isolated from an adult mouse lung cDNA library. 5 Amalgamation of sequence data revealed a 1437 bp sequence with a maximum open reading frame (ORF) of 759 bp, predicted to encode a 253 amino acid protein of approximately 31 kD (Figure 1a). An upstream, in-frame ston codon suggests that this ORF represents the full-length coding sequence of ELF5. Additional 91 bp of 5', and 696 bp of 3' sequences were obtained by reverse transcriptase polymerase chain reaction 10 (PCR) and rapid amplification of cDNA ends (RACE), using day 14 mouse placental RNA. Sequence analysis revealed two discrete polyadenylation signals present in the 3' untranslated region (UTR). The first of these (at 1391 bp) appears to be an overlapping poly(A)⁺ recognition signal, AATTAA and ATTAAAA. The second is a consensus polyadenylation signal, AATAAA, at 2181 bp. These polyadenylation signals are found 15 close to the 3' termination of the original clone and the 3' RACE product, respectively, suggesting that these represent polyA signals for two separate mRNA products. Thus, the two predicted ELF5 cDNAs are 2224 bp and 1528 bp long. Northern blot analysis, using the ELF5 coding sequence as a probe, confirmed the presence of two predominant ELF5 transcripts in placental tissue, ELF5a and ELF5b, of approximately 2.5 kb and 1.5 20 kb respectively. Only ELF5a was identified using a 3' UTR fragment from between the polyadenylation signals as a probe (Figure 1b), indicating that the transcripts differ in 3' UTR sequences.

A human ELF5 cDNA fragment was isolated from a human lung cDNA library

25 following screening with a cDNA probe containing the coding sequence of mouse ELF5.

The full coding sequence of human ELF5 was then obtained by reverse transcriptase PCR and RACE using human placental RNA. Analysis revealed that the ELF5 sequence is predicted to encode a 255 residue amino acid protein.

EXAMPLE 2

COMPARISON OF HUMAN AND MOUSE ELF5 AMINO ACID SEQUENCES

The predicted amino acid sequences of human and mouse ELF5 are highly conserved,

5 with approximately 95% identity (Figure 2a). Only a single amino acid substitution was observed within the putative ETS domain of human and mouse ELF5, and most of the other differing amino acid residues in the full-length sequences are conservative substitutions (8/13), suggesting that the two proteins are homologs (i.e. having an inferred common ancestry). Interestingly, human ELF5 does, however, contain an additional two amino acid insertion compared to mouse ELF5. In addition to the ETS domain, other features appear to be conserved between these two sequences. These include a putative 'pointed' domain (Seth et al., 1992; Lautenberger et al., 1992) and several consensus casein kinase II (CKII) (Pinna, 1990), protein kinase C (PKC) (Kishimoto et al., 1985; Woodget et al., 1986) and tyrosine kinase (Patschinsky et al., 1982; Hunter, 1982; Cooper et al., 1984) phosphorylation sites.

The ETS domain found within all members of the ETS family is responsible for sequence-specific DNA binding (Seth *et al.*, 1992; Lautenberger *et al.*, 1992; Wasylyk *et al.*, 1993). The putative ETS domain of human/mouse ELF5, situated at the carboxyl terminal of the protein, is similar to that of human/mouse ELF3, with amino acid identity being 67%. However, this domain is only moderately similar to that of other ETS family members, with the highest amino acid identity being 49% to human NERF, 48% to *Drosophila* ETS4 and E74A, and 46% to human ELF1 and ELK1 (Figure 2b). Sequence identity to other family members is in the range of 44-36%. However, amino acids highly conserved amongst ETS family members (Janknecht and Nordheim, 1993) are well conserved in ELF5 (23/38). Some of these highly conserved residues, such as the three tryptophan residues in the carboxyl half of the ETS domain, have been demonstrated to be structurally critical for DNA binding of other ETS family members (Wang *et al.*, 1992; Wasylyk *et al.*, 1992).

Based on ETS domain similarities, a recent phylogenetic analysis (Graves and Petersen, 1998) has proposed the grouping of ETS factors into subfamilies, one of which is the ELF (E-74-like-factor) subfamily. The ELF subfamily includes *Drosophila* E74A, human ELF1 and NERF. A phylogenetic tree was generated including ELF5 and recently isolated ELF3, by maximum likelihood analysis of the ETS domain (Figure 2c). It shows that the human and mouse ELF5 sequences group most closely with the human and mouse ELF3 sequences, and that both ELF3 and ELF5 are most closely related to *Drosophila* ETS4, E74A and human ELF1 and NERF within the ETS family. Thus, *Drosophila* ETS4, and human/mouse ELF3 and ELF5 may also fall into the ELF subfamily of ETS factors.

The phylogency in Figure 2c shows the unrooted relationship among 28 ETS domains.

EXAMPLE 3

HUMAN CHROMOSOMAL MAPPING OF ELF5

Human chromosomal localization of ELF5 was performed by PCR, using gene specific primers and the Genebridge 4 Radiation Hybrid DNA panel (UK HGMP Resource Centre). With these primers, a single product of the expected size (725 bp) was 20 amplified from total human DNA. The PCR reactions were then performed separately for each of the individual hybrids. The amplification results from the 93 hybrids were submitted to the Radiation Hybrid Mapping server at Whitehead Institute/MIT Center for Genome Research for analysis. The result demonstrated that ELF5 is localised to chromosome 1. The marker most tightly linked to ELF5 was NIB1364 (D1S3023) at a 25 distance of OcR (lod score > 3.0), and this marker is located in the region of 1p36.31 (Figure 3). This chromosomal region frequently undergoes loss of heterozygosity (LOH) in several types of carcinoma (Genuardi et al., 1989; Praml et al., 1995; Takayama et al., 1993; Thrash-Bingham et al., 1996; Wada et al., 1998).

15

EXAMPLE 4 EXPRESSION PATTERN OF ELF5 IN MOUSE TISSUES

Poly(A)⁺ mRNA material derived from various mouse tissues were analysed by Northern 5 blot hybridization using the murine ELF5 cDNA as a probe. A GAPDH probe was then used to control for RNA loading.

Analysis of ELF5 expression in adult mouse tissues revealed that ELF5 has a restricted expression pattern. Expression of two ELF5 transcripts, ELF5-a (2.5 kb) and ELF5-b (1.5 kb), were observed in lung (Lu), kidney (Ki), stomach (St), ovary (Ov), tongue (To), bladder (Bl), and day 2 pregnant (2 Ma) and day 10 pregnant (10 Ma) mammary glands, but no expression was observed in liver (Li), heart (He), small intestine (Sm), spleen (Sp), thymus (Th), pancreas (Pa), skeletal muscle (Sk), colon (Co) or fat (2 Fa and 10 Fa) (Figure 4a). Fat from day 2 (2 Fa) and day 10 (10 Fa) pregnant mice was used as a control for mammary expression, since the mammary gland contains much fat tissue. A single transcript was observed in brain (arrow - approximately 2.1 kb), but of a different size to either of the two ELF5 transcripts in other organs.

The expression of ELF5 was examined in the neonatal mouse (Figure 4b) and during 20 embryogenesis on days 19, 17 and 16 (Figure 4c), and observed a similar expression pattern compared to that of the adult. However, at day 16 stage of embryogenesis low levels of ELF5 expression were detected in brain (regular sized transcripts) and small intestine, in addition to the expression pattern observed in the adult.

- 25 Placental expression of ELF5 displayed an interesting pattern during stages of embryogenesis (Figure 4d). Both transcripts were increasingly expressed from day 9.5 to day 13 before an overall decrease observed from day 14 to day 19, although some expression was observed at day 17.
- 30 The two predominant ELF5 mRNA transcripts were observed in variable ratios in

different tissues, suggesting that polyadenylation sites may be utilized differentially, or the two transcripts are subject to differential degradation. ELF5-a was expressed more strongly in neonatal and embryonic lung and kidney (Figures 4b and c), and adult ovary (Figure 4a), compared to ELF5-b. Conversely, ELF5-b was stronger in adult tongue 5 (Figure 4a), and in all developmental stages of stomach (Figures 4a, b and c), compared to ELF5-a. In some RNA samples a further large (>10 kb) transcript was variably observed.

EXAMPLE 5

10 EXPRESSION PATTERN OF ELF5 IN HUMAN TISSUES AND CANCER CELL LINES

Expression of ELF5 in adult human organs was also analysed by Northern blot of poly(A)⁺ mRNA probed with the human ELF5 cDNA (Figure 5a). A single transcript of approximately 2.5 kb was strongly expressed in kidney (Ki) and prostate (Pr). However, much longer exposures of blots demonstrated just detectable expression of ELF5 in placenta (Pl) and lung (Lu). Further, ELF5 was cloned from human lung and placenta cDNA libraries, confirming that it is expressed in these tissues, albeit probably at very low levels.

20

- ELF5 expression in human cancers was examined. A panel of cancer cell lines, including carcinomas of the ovary (CaOv-3), breast (BT-549, ZR-75-1, T47D), kidney (786-0), liver (SK-HEP-1), lung (A549), amnion (WISH), prostate (DU145, PC3) and endometrium (HEC-1), and melanoma (MEL28), T-cell leukemia (Jurkat) and erythroid leukemia (K562), were analysed for ELF5 expression by RNAse protection assay (Figure 5b). A primary fibroblast cell line (CCL32SK) was also included as a sample of non-transformed cells. Of all these cell lines only T47D, a progesterone sensitive ductal breast carcinoma, was observed to express ELF5.
- 30 To evaluate the possibility that lack of ELF5 expression in carcinoma was due to

P:\OPER\TDO\ELFS.PRV - 27/8/9

genomic alterations, a panel of breast and lung carcinoma derived cell lines were analysed by Southern blot (Figure 5c). ELF5 gene dosage was compared to that present in DNA from normal human blood (based on the 6.5 kb BglII fragment) and controlled by hybridization with a β -actin cDNA probe. These results are summarized in the lower 5 panel, where '2' represents a normal allele complement. No evidence was found for allelic loss or gene rearrangement in the two breast carcinoma cell lines that did not express ELF5 (BT-549 - lane 2, ZR-75-1 - lane 3). However, of nine lung carcinoma cell lines, evidence for loss of an ELF5 allele was observed in two (NCI-H358 - lane 8, NCI-H441 - lane 11). Hybridization with an ELF3 cDNA probe, which is localised to 10 the long arm of chromosome 1 (Tymms et al., 1997), helped to confirm the specific loss of ELF5 alleles. Two other lung carcinoma lines (SK-LU-1 - lane 10, NCI-H661 - lane 13) displayed hybridization with multiple fragments (shaded arrows) in addition to those observed in normal DNA (solid arrows), possibly indicating that at least one ELF5 allele has been rearranged in these lines. Confirmation of rearrangement, rather than 15 restriction fragment length polymorphism (RFLP), was made by additional restriction digests. Some cell lines appeared to have amplification or additional copies of the ELF5 gene. One of these, T47D (lane 4), was the only cell line demonstrated to express ELF5, and another, SK-LU-1 (lane 10), appeared to have rearranged alleles.

20 EXAMPLE 6

SEQUENCE-SPECIFIC BINDING OF ELF5 TO DNA SEQUENCES CONTAINING CONSENSUS ETS SITES

Although ELF5 displays similarity to the consensus ETS domain, characterising it as an ETS family member, this sequence is still quite divergent from most other ETS family members. The hallmark of ETS factors to bind DNA sites containing a GGAA-core in a sequence-specific manner is however shared by ELF5, demonstrating an additional functional similarity to the ETS family. A recombinant ELF5 HIS-tag protein of approximately 29 kD, expressed in *E. coli* and purified by metal-affinity chromatography 30 (Figure 6a, lane 4), displayed strong binding to consensus ETS binding sites, as analysed

by electrophoretic mobility shift assay (EMSA) (Figure 6b). ELF5 bound the E74 oligonucleotide (containing a GGAA-core) (lane 1), but not to the E74ml oligonucleotide (which had been mutated to an AGAA-core) (lane 2). The first G-residue of the core has been demonstrated to be a physical point of DNA contact for ETS1, and consequently essential for DNA binding (Fisher *et al.*, 1991; Nye *et al.*, 1992). Thus, ELF5 displays sequence specific binding to a consensus ETS binding site, binding that is disrupted by a mutation known to similarly affect other ETS family members. These results were confirmed through competition analysis. The ELF5-E74 complex (lane 3) was efficiently competed by the addition of a 100-fold excess of unlabeled E74 (lane 4), but not by E74ml (lane 5).

ELF5 also displayed sequence specific binding to different consensus ETS binding sequences, and did so with differential affinity (Figure 6b). Competition of the ELF5-E74 complex (lane 3) was achieved by consensus ETS sites from the GM-CSF promoter (lane 6), *erb*-B2 promoter (lane 7) and moloney sarcoma virus (MSV) long terminal repeat (LTR) (lane 8). The relative ability of ELF5 to bind these sequences occurred in the order: E74>erbB2>MSV>GM-CSF. ELF5 did not appear to be competed at all by an oligonucleotide containing a consensus AP1 binding site (lane 9). ETS1 binding to E74 was used as a positive control (lane 10).

20

EXAMPLE 7 MOUSE ELF5 ACTS AS A TRANSCRIPTIONAL ACTIVATOR

In addition to DNA binding, another characteristic of most ETS factors is their ability to transactivate from binding sites in promoters and enhancers.

A reporter construct, containing the chloramphenicol acetyl-transferase (CAT) driven by a minimal TK promoter and multiple ETS/AP1 binding sites (from the polyomavirus enhancer), was co-transfected into COS cells together with an ELF5 expression construct 30 (Figure 7). Analysis of CAT activities revealed that ELF5 expression resulted in an

average five-fold transactivation of the reporter. Further, this transactivation was inhibited by addition of an anti-sense ELF5 mRNA expression vector, indicating that ELF5 transactivation was due specifically to the product translated from the sense construct.

5

EXAMPLE 8

ISOLATION AND CHARACTERIZATION OF FULL-LENGTH MURINE ELF5 CDNA

The murine Elf5 cDNA was isolated from an adult lung cDNA library in Lambda ZAPII (Stratagene) following screening with a cDNA probe containing the ETS domain region of human ELF3. Additional 5' sequence and 3' sequence were obtained by RT-PCR using a Marathon cDNA synthesis Kit (Clontech) and RACE (Rapid Amplification using day 14 murine of cDNA Ends) placental Poly(A) RNA. The murine Elf5-specific PCR products
were cloned into pGEM-T vector (Promega Corp., Madison, WI, USA). All cDNA sequences were confirmed by sequencing both strands at least once. 5'RACE gene-specific primer 1:5'GCCAGTCTTG-GTCTCTTCAGCATC-3' (SEQ ID NO:8); 5'-RACE nested-gene-specific primer 2: 5'-AGGAGATGCAGTTGGCATCAAGCT-3' (SEQ ID NO:9); 3'-RACE gene-specific primer 1: 5'-AGCCAGTGTTATGGGTGCTG-3' (SEQ ID NO:10);
3'-RACE nested-gene-specific primer 2: 5'-ACAGTCACTTGATCCACGGCCAATCC-3' (SEQ ID NO:11).

EXAMPLE 9

ISOLATION OF HUMAN ELF5 CODING SEQUENCE

25

A human *ELF5* cDNa fragment was isolated from a human lung cDNA library (GIBCO BRL) following screening with a cDNA probe containing the coding sequence of mouse *Elf5*. The coding sequence was then obtained by RT-PCR using a Marathon cDNA synthesis Kit (Clontech) and RACE (Rapid Amplification of cDNA Ends) using human placental Poly(A)⁺ RNA. The human *ELF5*-specific PCR products were cloned into pGEM-T vector (Promega Corp., Madison, WI, USA). All cDNA sequences were

confirmed by sequencing both strands at least once.

EXAMPLE 10 STS CONTENT MAPPING

5

The following sequence specific primers for human ELF5 were used for PCR. Forward primer: 5'-GGGTGGCAGGAAGACAAGCTATGA-3 (SEQ ID NO:12); Reverse primer: 5'-CCAATTAAGTCCCAGCTTGATGGC-3 (SEQ ID NO:13). The PCR reactions were performed in Opti-Primer 10 x buffer #3 (100 mM Tris-HCl pH 8.3, 35 mM MgCl₂, 250 mM Kcl) with 1 μl of Master Mix 50 x buffer (20 mM Tris-HCl pH 8.0, 250 nM EDTA) (Opti-Primer PCR Optimization Kit, Stratagene), 50 ng of template DNA, 0.2 μg of each primer, 1 μl of 10 mM dNTPs and 0.25 U of Taq DNA polymerase in a total volume of 50 μl. PCR parameters were an initial denaturation step at 94°C for 1 min, followed by 30 cycles of 94°C (1 min), 65°C (1 min), 72°C (1 min). For Genebridge 4 Radiation Hybrid DNA panel (UK GHMP Resource Centre), PCR reactions were performed separately for each of the individual hybrids. The PCR results from the 93 hybrids were submitted to the Radiation Hybrid Mapping server at Whitehead Institute/MIT Center for Genome Research (http://www.genome.wi.mit.edu/cgibin/contig/rhmapper.pl). The STS content mapping experiment was performed in duplicate and included PCR reactions with no DNA, total human DNA and total hamster DNA as controls.

EXAMPLE 11 SOUTHERN AND NORTHERN BLOT ANALYSIS

Northern analysis of *ELF5* expression in human adult organs was performed with commercially available blots containing 2 μg of Poly(A)⁺ RNA (Clontech). For other Northern blots POLY(A)⁺ mRNA was isolated by a modification of Gonda *et al.* (1992). Genomic DNA was isolated by standard techniques (Sambrook *et al*, 1997). Random-primed probes using a 898 bp human *ELF5* cDNA fragment and a 940 bp *StyI* mouse *Elf5* 30 cDNA fragment were generated and Southern/Northern hybridizations performed using

standard procedures. Blots were re-probed with glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) or β-actin cDNAs to verify RNA/DNA loading.

EXAMPLE 12 RNASE PROTECTION ANALYSIS

5

ELF5 mRNA abundance in total RNA from human cell lines was determined as described previously (Tymms, 1995). Anti-sense RNA probes for human ELF5 and GAPDH transcribed from linearized plasmid vectors generated full-length probes of 388 bp and 216 bp, respectively. The protected products generated by hybridization and RNAse digestion are 298 bp for ELF5 and 150 bp for GAPDH.

EXAMPLE 13 CELL LINES AND CULTURE

15 Monkey COS7 cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum, 100 U/ml penicillin and 100 μ g/ml streptomycin, and maintained in a humidified incubator at 5% CO₂ and 37°C.

EXAMPLE 14 PLASMIDS

20

pHis6-Elf5 expression vector was made as follows: The murine *Elf5* cDNA was amplified using PCR oligonucleotide primers (5'-CGGGATCCTTGGACTCCGTAACCCATAGC-3' (SEQ ID NO:14) and 5'-GCAGATCTCAGAGTTTCTCTTCCTGCC-3' (SEQ ID NO:15))

- 25 containing a BamHI restriction site followed by 21 nucleotides of the murine Elf5 coding sequence and a BglII restriction site followed by 19 nucleotides complementary to the last 20 nucleotides of the Elf5 coding sequence. The PCR fragment was cloned into the pGEMT vector (Promega Corp., Madison, WI, USA), the BamHI-SacI restriction fragment with the Elf5 coding sequence was then cloned into the BamHI-SacI sites of the pQE30 (Qiagen,
- 30 Inc. Chatsworth, CA, USA) bacterial expression vector resulting in a N-terminal fusion of *Elf5* protein to six histidine residues (His-Tag).

The *Elf5* mammalian expression construct (pBOSElf5s) contains the full mouse *Elf5* cDNA blunt cloned into the T4 polymerase blunted *Xba*I site of pEFBOS (Mizushima and Natata, 1990). Expression from pEFBOS is driven by the elongation factor-1 promoer. The *Elf5* anti-sense expression construct is similar, but with reverse orientation of the *Elf5* polyomavirus enhancer oligonucleotides into the *Bam*HI site of pBLCAT2.

EXAMPLE 15 ELECTROPHORETIC MOBILITY SHIFT ASSAYS (EMSA)

- Purified recombinant Elf5 and Ets1 proteins were produced as 6XHis-tag fusions in E. coli using the QIAexpress expression system (Qiagen). Overnight cultures were diluted 1/10 in LB broth and grown for 1 h at 37°C. Expression of recombinant proteins were induced by addition of 0.1 mM IPTG and culture of cells for 2 h. Cells were harvested and sonicated in lysis buffer (6 M guanidine, 20 mM Tris-HCl, 50 mM NaCl, pH 8.0), and cell debris
 removed by centrifugation. One ml of metal His-affinity resin was incubated with supernatants for 30 min, collected, washed in wash buffer (8 M urea, 20 mM Tris-HCl, 50 mM NaCl, pH 8.0), and resuspended in renaturation buffer (20 mM Tris-HCl, 50 mM NaCl, 3 mM dithiothreitol (DTT), pH 8.0). Proteins were eluted from the beads in renaturation buffer supplemented with 100 mM imidazole. Purification and integrity of recombinant
 proteins were confirmed by denaturing SDS-polyacrylamide gel electrophoresis (PAGE).
 - DNA binding experiments with recombinant proteins were performed using EMSA, as previously described (Thomas *et al*, 1995, 1997). Briefly, purified double stranded oligonucleotides were labeled with γ -³²P dATP and T4 polynucleotide kinase.
- 25 Oligonucleotide probe (1 ng) was incubated for 10 min with approximately 20 ng purified Elf5/Ets1 protein in DNA binding buffer (1 mM EDTA, 10 mM Tris-Hcl pH 8.0, 50 mM NaCl, 3 mM DTT, 1 mg/ml BSA, 500 ng/ml poly-d(I-C)d(I-C), 500 ng/ml poly dI-dC, 200 ng/ml sheared salmon sperm DNA), ± 100 ng unlabelled competitor oligonucleotides, in 10 μl final volume. Assays were run through non-denaturing, 7% acrylamide (29 acrylamide:1
- 30 bis-acrylamide), 0.5 x TBE gels at 4°C.

EXAMPLE 16

LACK OF ELF5 EXPRESSION IN HUMAN PRIMARY BREAST CARCINOMAS

A panel of human primary breast carcinoma samples were analysed for ELF5 expression 5 by *in situ* hybridization (Hogan *et al.*, 1994). Section from parafin-embedded samples were hybridized with ELF5 ³³P-labelled antisense RNA, and signals were detected with a photosensitive emulsion. Serial sections were also stained with eosin and haematoxylin.

A preliminary examination of ELF5 expression shows that ELF5 is not detectable in 20 out of 20 human breast carcinomas studied, whereas it is strongly expressed in adjacent normal epithelium and in epithelial cells from normal subjects (Figure 8).

BIBLIOGRAPHY

Adachi J and Hasegawa M., MOLPHY Version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs. The Institute of Statistical Mathematics, Tokyo

Ben-David Y., Giddens EB., Letwin K and Bernstein A., Genes. Dev., 5:908-918 (1991)

Bhat NK, Komschlies KL, Fujiwara S, Fisher RJ, Mathieson BJ, Gregorio TA, Young HA, Kasik JW, Ozato K and Papas TS., J. Immunol., 142:672-678 (1989)

Bhat NK, Thompson CB, Lindsten T, June CH, Fujiwara S, Koizumi S, Fisher RJ and Papas TS., *Proc. Natl. Acad. Sci. USA.*, 87:3723-3727 (1990)

Buttice G and Kurkinen M., J. Biol. Chem., 268:7196-7204 (1993)

Buttice G, Duterque-Coquillaud M, Basuyaux JP, Carrere S, Kurkinen M and Stehelin D., Oncogene., 13:2297-2306 (1996)

Chang CH, Scott GK, Kuo WL, Xiong X, Suzdaltseva Y, Park JW, Sayre P, Erny K, Collins C, Gray JW and Benz CC., Oncogene., 14:1617-1622 (1997)

Choi SG, Yi Y, Kim YS, Kato M, Chang J, Chung HW, Hahm KB, Yang HK, Rhee HH, Bang YJ and Kim SJ., J. Biol. Chem., 273:110-117 (1998)

Cooper JA, Esch FS, Taylor SS and Hunter T., J. Biol. Chem., 259:7835-7841 (1984)

Delannoy-Courdent A, Fauquette W, Dong-Le Bourhis XF, Boilly B, Vandenbunder B and Desbiens X., Int. J. Dev. Biol., 40:1097-1108 (1996)

Fisher RJ, Mavrothalassitis G, Kondoh A and Papas TS., Oncogene., 6:2249-2254 (1991)

Genuardi M, Tsihira H, Anderson DE and Saunders GF., Am. J. Hum. Genet., 45:73-82 (1989)

Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD and Gilliland DG., *Proc. Natl, Acad. Sci. USA.*, **92**:4917-4921 (1995)

Golub TR, Barker GF, Lovett M and Gilliland DG., Cell., 77:307-316 (1994)

Gonda TJ, Sheiness DK and Bishop JM., Mol. Cell Biol., 2:617-624 (1992)

Graves BL and Petersen JM., Adv. Cancer Res., in press (1998)

Gutman A and Wasylyk B., Trends Genet., 7:49-54 (1991)

Hart AH, Corrick CM, Tymms MJ, Hertzog PJ and Kola I., Oncogene., 10:1423-1430 (1995)

Hogan B, Beddington R, Costantini F and Lacy E., A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press., p.344-351 (1994)

Hunter T., J. Biol. Chem., 257:4843-4848 (1982)

Ida K, Kobayashi S, Taki T, Hanada R, Bessho F, Yamamori S, Sugimoto T, Ohki M and Hayashi Y., Int. J. Cancer., 63:500-504 (1995)

Janknecht R and Nordheim A., Biochim. Biophys. Acta., 1155:346-356 (1993)

Jones DT, Taylor WR and Thornton JM., Nature., 358:86-89 (1992)

Karim FD, Urness LD, Thummel CS, Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA, Gunther CV, Nye JA and Graves BJ., *Genes Dev.*, 4:1451-1453 (1990)

Kishimoto A, Nishiyama K, Nakanishi H, Uratsuji Y, Nomura H, Takeyama Y and Nishizuka Y., J. Biol. Chem., 260:12492-12499 (1985)

Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S, Maki RA and Ely KR., Nature., 380:456-460 (1996)

Kola I, Brookes S, Green AR, Garber R, Tymms M, Papas TS and Seth A., *Proc. Natl. Acad. Sci. USA.*, 90:7588-7592 (1993)

Lautenberger JA, Burdett LA, Gunnell MA, Qi S, Watson DK, O'Brien SJ and Papas TS., Oncogene., 7:1713-1719 (1992)

Macleod K, Leprince D and Stehelin D., Trends Biochem. Sci., 17:251-256 (1992)

Mizushima S and Nagata S., Nucleic Acids Res., 18:5322 (1990)

McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ and Maki RA., EMBO J., 15:5647-5658 (1996)

Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W and Tavitian A., Mol. Cell Biol., 16:2453-2463 (1996)

Muthusamy N, Barton K and Leiden JM., Nature., 377:639-642 (1995)

Nunn MF, Seeburg PH, Moscovici C and Duesberg PH., Nature., 306:391-395 (1983)

Nye JA, Petersen JM, Gunther CV, Jonsen MD and Graves BJ., Genes Dev., 6:975-990 (1992)

O'Neill EM, Rebay I, Tjian R and Rubin GM., Cell., 78:137-147 (1994)

Oettgen P, Alani RM, Barcinski MA, Brown L, Akbarali Y, Boltax J, Kunsch C, Munger K and Libermann TA., Mol. Cell Biol., 17:4419-4433 (1997)

Patschinsky T, Hunter T, Esch FS, Cooper JA and Sefton BM., *Proc. Natl. Acad. Sci. USA.*, 79:973-977 (1982)

Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H and Marynen P., Blood., 90:2535-2540 (1997)

Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H and Delattre O., Oncogene., 14:1159-1164 (1997)

Pinna LA., Biochim. Biophys. Acta., 1054:267-284 (1990)

Praml C, Finke LH, Herfarth C, Schlag P, Schwab M and Amler L., Oncogene., 11:1357-1362 (1995)

Sambrook J, Fritsch ER and Maniatis T., Molecular Cloning: A Laboratory Manual 2nd edn. Cold Spring Harbor Laboratory Press., (1997)

Scott EW, Simon MC, Anastasi J and Singh H., Science., 265:1573-1577 (1994a)

Scott GK, Daniel JC, Xiong X, Maki RA, Kabat D and Benz CC., *J. Biol. Chem.*, **269**:19848-19858 (1994b)

Seth A and Papas TS., Oncogene., 5:1761-1767 (1990)

Seth A, Ascione R, Fisher RJ, Mavrothalassitis GJ, Bhat NK and Papas TS., 3:327-334 (1992)

Seth A, Watson DK, Blair DG and Papas TS., Proc. Natl. Acad. Sci. USA., 86:7833-7837 (1989)

Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ and Denny CT., Nat. Genet., 6:146-151 (1994)

Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A and Kola I., *Nature.*, 379:534-537 (1996)

Sun W, Graves BJ and Speck NA., J. Virol., 69:4941-4949 (1995)

Takayama H, Suzuki T, Mugishima H, Fujisawa T, Ookuni M, Schwab M, Gehring M, Nakamura Y, Sugimura T, Terada M and Yokota J., Oncogene, 7:1185-1189 (1992)

Thomas RS, Tymms MJ, Mckinlay LH, Shannon MF, Seth A and Kola I., Oncogene, 14:2845-2855 (1997)

Thomas RS, Tymms MJ, Seth A, Shannon MF and Kola I., Oncogene, 11:2135-2143 (1995)

Thrash-Bingham CA, Salazar H, Greenberg RE and Tartof KD., Genes Chromosomes Cancer, 16:64-67 (1996)

Tymms MJ, Methods Mol. Biol., 37:31-46 (1995)

Tymms MJ, Ng AY, Thomas RS, Schutte BC, Zhou J, Eyre HJ, Sutherland GR, Seth A, Rosenberg M, Papas T, Debouck C and Kola I, Oncogene, 15:2449-2462 (1997)

Vandenbunder B, Wenert N, Queva C, Desbiens X and Stehelin D, Folia. Biol. (Praha.), 40:301-313 (1994)

Wada M, Yokota J, Mizoguchi H, Sugimura T and Terada M, Cancer Res., 48:2988-2992 (1988)

Wang CY, Petryniak B, Ho IC, Thompson CB and Leiden JM, J. Exp. Med., 175:1391-1399 (1992)

Wasylyk B, Hahn SL and Giovane A, Eur. J. Biochem., 211:-7-18 (1993)

Wasylyk C, Gutman A, Nicholson R, and Wasylyk B, EMBO. J., 10:1127-1134 (1991)

Wasylyk C, Kerckaert JP and Wasylyk B, Genes. Dev., 6:965-974 (1992)

Watson DK, McWilliams MJ, Lapis P, Lautenberger JA, Schweinfest CW and Papas TS, Proc. Natl. Acad. Sci. USA, 85:7862-7866 (1988)

Werner MH, Clore M, Fisher CL, Fisher RJ, Trinh L, Shiloach J and Gronenborn AM, Cell, 83:761-771 (1995)

Wernert N, Raes MB, Lassalle P, Dehouck MP, Gosselin B, Vandenbunder B and Stehelin D. Am. J. Pathol., 140:119-127 (1992)

Woodget JR, Gould KL and Hunter T, Eur. J. Biochem., 161:177-184 (1986)

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1676 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 110..875
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAA	GGCT	ACA (GGTG'	rctt"	ra t'	TTCC	ACTG(CAC	GCTG(STGC	TGG	GAGC	GCC :	rgcc:	TCTC	T	60
TGC	CTTG	AAA (GCCT(CCTC	rt to	GGAC(CTAG	C CA	ecge:	rgcc	CTC	ACGG:		rg Ti et Le 1	_		115
														TGC Cys			163
														TAC Tyr			211
														GTC Val			259
														TTC Phe 65			307
														AAC Asn			355
														TTT Phe			403
														CAG Gln			451
														AGC Ser			499
														AGT Ser 145			547
ATC Ile	AAA Lys	AGT Ser	CAA Gln 150	GAC Asp	TGT Cys	CAC His	AGT Ser	CAT His 155	AGT Ser	AGA Arg	ACA Thr	AGC Ser	CTC Leu 160	CAA Gln	AGT Ser		595
TCT Ser	CAT His	CTA Leu 165	TGG Trp	GAA Glu	TTT Phe	GTA Val	CGA Arg 170	GAC Asp	CTG Leu	CTT Leu	CTA Leu	TCT Ser 175	CCT Pro	GAA Glu	GAA Glu		643

AAC Asn	TGT Cys 180	GGC Gly	ATT Ile	CTG Leu	GAA Glu	TGG Trp 185	GAA Glu	GAT Asp	AGG Arg	GAA Glu	CAA Gln 190	GGA Gly	ATT Ile	TTT Phe	CGG Arg	691
GTG Val 195	GTT Val	AAA Lys	TCG Ser	GAA Glu	GCC Ala 200	CTG Leu	GCA Ala	AAG Lys	ATG Met	TGG Trp 205	GGA Gly	CAA Gln	AGG Arg	AAG Lys	AAA Lys 210	739
AAT Asn	GAC Asp	AGA Arg	ATG Met	ACA Thr 215	TAT Tyr	GAA Glu	AAG Lys	TTG Leu	AGC Ser 220	AGA Arg	GCC Ala	CTG Leu	AGA Arg	TAC Tyr 225	TAC Tyr	787
TAT Tyr	AAA Lys	ACA Thr	GGA Gly 230	ATT Ile	TTG Leu	GAG Glu	CGG Arg	GTT Val 235	GAC Asp	CGA Arg	AGG Arg	TTA Leu	GTG Val 240	TAC Tyr	AAA Lys	835
			AAT Asn										T G	ATCTO	GCTCC	885
AGGC	ATCA	AG (CTCAT	TTTF	T GC	TTTA	CTGI	r CTI	TTA	AAC	AATO	CAGA	TTG (CAATA	AGACAT	945
TCGA	AAGG	CT T	CATI	TTC	T CI	CTTI	TTTT	TTF	ACCI	GCA	AAC	ATGCT	rga '	LAAA1	ATTTCT	1005
CCAC	ATCI	CA (GCTTA	CATT	T GO	SATTO	AGAC	TTO	TTGT	CTA	CGGZ	AGGGT	rga (GAGC	AGAAAC	1065
TCTI	AAGA	AA.	CCTI	TCT	C TO	CCTA	AGGC	GAT	rgag(GGA	TGAT	CTT	TTG '	rggt(GTCTTG	1125
ATC	AACI	TT 1	ATTTT	CCT	G AC	TTGT	GGAZ	A TGA	CAAC	CAGC	CCAT	rgccz	ATT (GATG	CTGATC	1185
AGAC	AAAA	AC I	TTAT	CTAAT	C TO	CCA	TAGA	A GAC	CACA	CCA	ATG	CTCC	CAT	CCCA	AAGGTT	1245
CAAA	AGTT	TT (CAAAC	[AAC]	G TO	GCAC	CTC	A CC	AAAG	TGG	GGGZ	AAAG	CAT	GATT	AGTTTG	1305
CAGO	TTAT	rgg :	ragg <i>i</i>	AGAGO	G TO	AGAT	ATAT	A GAO	ATAC	ATA	CTT:	raga:	rtt '	TAAA	PTATTA	1365
AAGI	CAAA	AAA :	rcca:	ragaz	AA AC	TAT	CCT	r TT	CTTT	TTT	TGAG	GACG	GT '	TCTC	ACTATG	1425
TTG	CCAC	GG (CTGG:	rcttc	A A	CTCCT	ratg(C TC	AGTO	BATC	CTC	CCAC	CTC (GGCC	rcccaa	1485
AGTA	ACTGI	rga :	rtac <i>i</i>	AAGC	GT GA	AGCCZ	ACGG	CAC	CTGG	GCAG	AAA	AGTA!	rct '	TAAT	raatga	1545
AAGA	AGCTA	AAG (CCAT	CAAG	CT GO	GAC	TAAT	r TGC	GATT.	гаас	ATA	GTT(CAC .	AGAA	AGTTTC	1605
CTAA	CCAC	GAG (CATC	CTTT:	rg ac	CACT	rcag(CAA	AACT:	rcca	CAG	ACAT	CCT	TCTG	GACTTA	1665
AAC	GGA	ATT (2													1676

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 255 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Leu Asp Ser Val Thr His Ser Thr Phe Leu Pro Asn Ala Ser Phe

Cys Asp Pro Leu Met Ser Trp Thr Asp Leu Phe Ser Asn Glu Glu Tyr 20 25

Tyr Pro Ala Phe Glu His Gln Thr Ala Cys Asp Ser Tyr Trp Thr Ser

Val His Pro Glu Tyr Trp Thr Lys Arg His Val Trp Glu Trp Leu Gln
Phe Cys Cys Asp Gln Tyr Lys Leu Asp Thr Asn Cys Ile Ser Phe Cys
80
Asn Phe Asn Ile Ser Gly Leu Gln Leu Cys Ser Met Thr Gln Glu Glu
95
Phe Val Glu Ala Ala Gly Phe Cys Gly Glu Tyr Leu Tyr Phe Ile Leu
100
Gln Asn Ile Arg Thr Gln Gly Tyr Ser Phe Phe Asn Asp Ala Glu Glu
Ser Lys Ala Thr Ile Lys Asp Tyr Ala Asp Ser Asn Cys Leu Lys Thr
Ser Gly Ile Lys Ser Gln Asp Cys His Ser His Ser Arg Thr Ser Leu

Glu Glu Asn Cys Gly Ile Leu Glu Trp Glu Asp Arg Glu Gln Gly Ile 180 185 190

Gln Ser Ser His Leu Trp Glu Phe Val Arg Asp Leu Leu Leu Ser Pro

Phe Arg Val Val Lys Ser Glu Ala Leu Ala Lys Met Trp Gly Gln Arg 195 200 205

Lys Lys Asn Asp Arg Met Thr Tyr Glu Lys Leu Ser Arg Ala Leu Arg 210 215 220

Tyr Tyr Tyr Lys Thr Gly Ile Leu Glu Arg Val Asp Arg Arg Leu Val 225 230 235 240

Tyr Lys Phe Gly Lys Asn Ala His Gly Trp Gln Glu Asp Lys Leu 245 250 255

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1415 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:

P:\OPER\TDO\ELF5.PRV - 27/8/9

- (A) NAME/KEY: CDS
- (B) LOCATION: 134..614
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TGTCTGTAGG TGTCACTTAT ATCACAAGGC TACAGGTGTC TTTATTTCCA CTGCACGCTG GTGCTGGGAG CGCCTGCCTT CTCTTGCCTT GAAAGCCTCC TCTTTGGACC TAGCCACCGC

60

TGC	CTC	ACG (GTA I	ATG Met 1	TTG (Leu .	GAC Asp	TCG (Ser '	GTG . Val 5	ACA (Thr)	CAC A	AGC A Ser '	ACC ' Thr	TTC (Phe 1 10	CTG (Leu 1	CCT Pro	169
AAT Asn	GCA Ala	TCC Ser 15	CTC Leu	TGC Cys	GAT Asp	CCC Pro	CTG Leu 20	ATG Met	TCG Ser	TGG Trp	ACT Thr	GAT Asp 25	CTG Leu	TTC Phe	AGC Ser	217
AAT Asn	GAA Glu 30	GAG Glu	TAC Tyr	TAC Tyr	CCT Pro	GCC Ala 35	TTT Phe	GAG Glu	CAT His	CAG Gln	ACA Thr 40	GAT Asp	GCT Ala	GAT Asp	TCC Ser	265
AAC Asn 45	TGC Cys	TTG Leu	AAA Lys	ACA Thr	AGT Ser 50	GGC Gly	ATC Ile	AAA Lys	AGC Ser	CAA Gln 55	GAC Asp	TGT Cys	CAC His	AGT Ser	CAT His 60	313
AGT Ser	AGA Arg	ACA Thr	AGC Ser	CTC Leu 65	CAA Gln	AGT Ser	TCT Ser	CAT His	CTA Leu 70	TGG Trp	GAA Glu	TTT Phe	GTA Val	CGA Arg 75	GAC Asp	361
CTG Leu	CTT Leu	CTA Leu	TCT Ser 80	CCT Pro	GAA Glu	GAA Glu	AAC Asn	TGT Cys 85	Gly	ATT Ile	CTG Leu	GAA Glu	TGG Trp 90	GAA Glu	GAT Asp	409
AGG Arg	GAĄ Glu	CAA Gln 95	GGA Gly	ATT Ile	TTT Phe	CGG Arg	GTG Val 100	GTT Val	AAA Lys	TCG Ser	GAA Glu	GCC Ala 105	Leu	GCA Ala	AAG Lys	457
ATG Met	TGG Trp 110	GGA Gly	CAA Gln	AGG Arg	AAG Lys	AAA Lys 115	Asn	GAC Asp	AGA Arg	ATG Met	ACA Thr 120	Tyr	GAA Glu	AAG Lys	TTG Leu	505
AGC Ser 125	Arg	GCC Ala	CTG Leu	AGA Arg	TAC Tyr 130	Tyr	TAT Tyr	AAA Lys	ACA Thr	GGA Gly 135	Ile	TTG Leu	GAG Glu	CGG Arg	GTT Val 140	553
GAC Asp	CGA Arg	AGG Arg	TTA Leu	GTG Val 145	Tyr	AAA Lys	TTT Phe	GGA Gly	AAA Lys 150	Asn	GCA Ala	CAC His	GGG Gly	TGG Trp 155	CAG Gln	601
	GAC Asp			ļ	ATCT	GCTC	C AG	GCAI	'CAAG	CTC	'ATTT	TAT	GGAT	TTCT	GT	654
CTT	TTAA	AAC	AATC	'AGA'I	TG C	ATAA	GACA	тт	GAAA	.GGCT	TCA	TTTT	CTT	CTCT	TTTTTT	714
TTA	ACCT	GCA	AACA	TGCI	GA I	AAAA'	TTTC	T CC	ACAI	CTCA	GCI	TACA	TTT	GGAT	TCAGAG	774
TTG	TTGT	CTA	CGGA	.GGG1	GA G	SAGCA	GAAA	C TO	TTAA	GAAA	TCC	TTTC	TTC	TCCC	TAAGGG	834
GAT	GAGG	GGA	TGAT	CTTI	TG T	GGTG	TCTT	G AT	CAAA	CTTI	TTA :	TTC	TAG	AGTI	GTGGAA	894
TGA	CAAC	AGC	CCAT	GCCA	ATT C	ATGO	TGAT	'C AC	AGAA	AAAC	TAT	TCA	ATTC	TGCC	'ATTAGA	954
GAC	ACAT	CCA	ATGC	TCC	TAT (CCA	AGGI	T C	AAA	TTTT	CAA	ATA	ACTG	TGGC	AGCTCA	1014
							•								AATATA	
															ATCCCTT	
															CTATGC	
															CACGGC	
ACC	TGGG	CAG	AAAA	AGTA?	rcr :	TAAT:	CAATO	A A	AGAG	CTAAC	G CC	ATCA	AGCT	GGGZ	CTTAAT	131

TGGATTTAAC ATAGGTTCAC AGAAAGTTTC CTAACCAGAG CATCTTTTTG ACCACTCAGC 1374

AAAACTTCCA CAGACATCCT TCTGGACTTA AACCGGAATT C 1415

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160 amino acids
(B) TYPE: amino acid

(ii) MOLECULE TYPE: protein

P:\OPER\TDO\ELF5.PRV - 27/8/98

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

(D) TOPOLOGY: linear

Met Leu Asp Ser Val Thr His Ser Thr Phe Leu Pro Asn Ala Ser Leu 1 5 10 15

Cys Asp Pro Leu Met Ser Trp Thr Asp Leu Phe Ser Asn Glu Glu Tyr
20 25 30

Tyr Pro Ala Phe Glu His Gln Thr Asp Ala Asp Ser Asn Cys Leu Lys 35 40 45

Thr Ser Gly Ile Lys Ser Gln Asp Cys His Ser His Ser Arg Thr Ser 50 55 60

Leu Gln Ser Ser His Leu Trp Glu Phe Val Arg Asp Leu Leu Leu Ser 65 70 75 80

Pro Glu Glu Asn Cys Gly Ile Leu Glu Trp Glu Asp Arg Glu Gln Gly
85 90 95

Ile Phe Arg Val Val Lys Ser Glu Ala Leu Ala Lys Met Trp Gly Gln
100 105 110

Arg Lys Lys Asn Asp Arg Met Thr Tyr Glu Lys Leu Ser Arg Ala Leu 115 120 125

Arg Tyr Tyr Lys Thr Gly Ile Leu Glu Arg Val Asp Arg Arg Leu 130 135 140

Val Tyr Lys Phe Gly Lys Asn Ala His Gly Trp Gln Glu Asp Lys Leu 145 150 155 160

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2224 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 117..876
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTCTCTTGCC TTGAA	AGCCT TCTGTC	TGGA CCTAG	CCACC ACTTG	STCTTC ACGGT	G 116
ATG TTG GAC TCC Met Leu Asp Ser 1	GTA ACC CAT Val Thr His 5	AGC ACC TTO Ser Thr Pho	e Leu Pro A	AC GCA TCC 1 Asn Ala Ser 1 15	TTC 164 Phe
TGT GAC CCC CTG Cys Asp Pro Leu 20	ATG CCT TGG Met Pro Trp	ACC GAT CTO Thr Asp Let 25	G TTC AGC A u Phe Ser A	AT GAA GAC 1 Asn Glu Asp 1 30	TAC 212 Tyr
TAC CCT GCC TTT Tyr Pro Ala Phe 35	GAG CAT CAG Glu His Gln	ACA GCC TG' Thr Ala Cy: 40	T GAT TCC T s Asp Ser T	TAC TGG ACA T Tyr Trp Thr 9	rca 260 Ser
GTG CAC CCT GAA Val His Pro Glu 50	TAC TGG ACC Tyr Trp Thr 55	AAG CGC CA' Lys Arg Hi	T GTC TGG G s Val Trp G 60	SAA TGG CTC (Slu Trp Leu (CAA 308 Gln
TTC TGC TGT GAC Phe Cys Cys Asp 65	CAG TAC AAG Gln Tyr Lys 70	CTT GAT GC Leu Asp Al	C AAC TGC A a Asn Cys I 75	ATC TCC TTC '	TGT 356 Cys 80
CAC TTC AAC ATC His Phe Asn Ile	AGC GGC CTG Ser Gly Leu 85	CAG CTC TG Gln Leu Cy 9	s Ser Met T	ACG CAG GAG (Thr Gln Glu (95	GAG 404 Glu
TTC ATT GAG GCA Phe Ile Glu Ala 100	GCC GGC ATC Ala Gly Ile	TGT GGG GA Cys Gly Gl 105	G TAC CTG T u Tyr Leu T	TAC TTC ATT Tyr Phe Ile 1 110	CTC 452 Leu
CAG AAC ATT CGC Gln Asn Ile Arg 115	TCG CAA GGT Ser Gln Gly	TAC TCC TT Tyr Ser Ph 120	e Phe Asn A	GAT GCT GAA Asp Ala Glu 125	GAG 500 Glu
ACC AAG ACT GGC Thr Lys Thr Gly 130	ATC AAA GAC Ile Lys Asp 135	TAT GCT GA Tyr Ala As	T TCC AGT T p Ser Ser C 140	rGC TTG AAA . Cys Leu Lys	ACA 548 Thr
AGT GGC ATC AAG Ser Gly Ile Lys 145	AGT CAA GAC Ser Gln Asp 150	TGT CAC AG Cys His Se	C CGA ACA A r Arg Thr S 155	Ser Leu Gin	AGT 596 Ser 160
TCT CAC CTG TGG Ser His Leu Trp	GAA TTT GTC Glu Phe Val 165	AGA GAC TI Arg Asp Le 17	u Leu Leu S	TCC CCT GAA Ser Pro Glu 175	GAG 644 Glu
AAC TGT GGC ATC Asn Cys Gly Ile 180	CTG GAA TGG Leu Glu Trp	GAA GAC AG Glu Asp Ar 185	eg GAG CAG (eg Glu Gln (GGC ATT TTC Gly Ile Phe 190	CGA 692 Arg
GTG GTT AAG TCA Val Val Lys Ser 195	GAA GCC CTG Glu Ala Leu	GCA AAG AT Ala Lys Me 200	et Trp Gly (CAA AGG AAG Gln Arg Lys 205	AAG 740 Lys
AAT GAC AGG ATG Asn Asp Arg Met 210	ACG TAC GAG Thr Tyr Glu 215	AAG CTG AC Lys Leu Se	GC CGA GCC er Arg Ala 220	CTG AGA TAC Leu Arg Tyr	TAC 788 Tyr
TAT AAA ACG AGA Tyr Lys Thr Arg 225	ATT CTG GAG Ile Leu Glu 230	CGG GTT GA Arg Val As	AC CGG AGG sp Arg Arg 235	TTA GTG TAC Leu Val Tyr	AAA 836 Lys 240
TTT GGA AAG AAC Phe Gly Lys Asn	GCG CAC GGG Ala His Gly 245	Trp Gln G	AA GAG AAA lu Glu Lys 50	CTC T GATGG! Leu	ACACC 886

GGACACCAGG	CTCATTTGAT	GGATTTCTGT	TGTTGGAAAC	AATCAGATCA	AACTAGACAT	946
TTGAAAGTCT	CCCTCCTCCT	CCTCCTCCCC	CTCCTTCCCC	TCCTCTTCTT	CCTCCCCCTC	1006
CTCCTCTTCA	AAACCTACAA	ACACACTGAT	AAAATTTCTG	CATGTCTCAG	CTTACATTTG	1066
AATTCAGTTG	TTGTCTATTG	GGGCGATGCC	ATCAGCCCTT	AAGCAATCGT	CTTCATCCCA	1126
AGGGGGAGGA	AGGGATGGTC	TTGTGGCAAC	TTGGTGTGAC	ACTGTCTCCT	TAATGAAGTG	1186
ITTGGAGCTA	AGGGAGCCAG	TGTTATGGGT	GCTGTTTCAC	AAGAGGACCC	GTTGCACCAT	1246
TAAGACACAT	GATCCTCCCG	TTCCAGGGGT	TCTGAGCGGT	CGACTGAGGC	AGCTTGCCTG	1306
rggttagttt	TTAGGAAAGG	GAGATGTAAG	ACTTCCTTGC	TTTAGATTTG	AAATTATCAC	1366
AGTTATATTC	CATAGAAGAA	TTTTTAATTA	TTTTAAAAAA	AGTGGCTAAG	CCACTAAACT	1426
GGACCTAAT	TGGATGTAGC	CTAAGTTACT	AATAAGTTCT	TAACCAGATC	ACCATTTCCA	1486
ACCACTTAGC	CACAGTCACT	TGATCCACGG	CCAATCCTTC	TGAACTTAAC	ATCCTTGTAG	1546
TTAGTCACCT	TGGGAATTGC	TACCTAGATT	GTTACCCCCT	TCACCTCACT	GGTGGCTATC	1606
ATCAGGŢCTA	CAGTGACCTG	ATCAACAGAC	ATGTGCATTA	ATTTCTAAAT	CACTGCTGTG	1666
CCTATGATTC	AAACCGTCAG	CGTGTTCAGT	TTATTGATTC	TCTCTGAGGT	CGGAATTTAT	1726
rgattctctc	TGAGGCTAAG	ACATTAAACC	TTTACCAAGC	AGAGAACGTC	CTAACAAGCC	1786
ACGATAGCCG	AACACAGCAT	CGATCTCTTC	TCTTTTCTGA	TGAATACTCA	AACTTTCCAA	1846
CATATTCTCT	TCACAAAAGT	AAAGACAGTG	AATTTACATC	AATCAACGTT	CATGGGTTAA	1906
AGTCTGCACT	GACATTTCCT	TGTCTGCCGT	TGCATGCCGT	TGGCATGCAA	GGTGTTAATG	1966
ACCTGCAACA	TGGTGGAGTG	CCCTGAACCC	TAACTTCCCC	AGAGTTGGGA	CTGTCTAGTG	2026
ACCGGCACTG	AATAGCAATG	CAGGCTGAAG	ACCTCCAGGT	TTAGAATTTA	ACCTCAAAAG	2086
TAACTTGTTT	TTAAAAAGAA	ATGTGAATTA	CTGTAAAATA	ATCTATTTTT	GGATTCGTGT	2146
STTTTTCAGG	TGGATATAGT	TTATAAACAA	TGTGAATAAA	AAATATTTAA	CATGTTTAAA	2206
AAAAAAAA	AAAAAAA					2224

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1528 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 117..876
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTC'	rctt	GCC '	TTGA	AAGC	CT T	CTGT	CTGG	A CC	ragc(CACC	ACT.	rgtc:	TTC 1	ACGG1	rg	116
														TCC Ser 15		164
														GAC Asp		212
														ACA Thr		260
														CTC Leu		308
														TTC Phe		356
														GAG Glu 95		404
														ATT Ile		452
														GAA Glu		500
														AAA Lys		548
AGT Ser 145	GGC Gly	ATC Ile	AAG Lys	AGT Ser	CAA Gln 150	GAC Asp	TGT Cys	CAC His	AGC Ser	CGA Arg 155	ACA Thr	AGC Ser	CTC Leu	CAA Gln	AGT Ser 160	596
														GAA Glu 175		644
														TTC Phe		692
														AAG Lys		740
														TAC Tyr		788
														TAC Tyr		836
	GGA Gly												T G	ATGG	ACACC	886

GGACACCAGG	CTCATTTGAT	GGATTTCTGT	TGTTGGAAAC	AATCAGATCA	AACTAGACAT	946
TTGAAAGTCT	CCCTCCTCCT	CCTCCTCCCC	CTCCTTCCCC	TCCTCTTCTT	CCTCCCCCTC	1006
CTCCTCTTCA	AAACCTACAA	ACACACTGAT	AAAATTTCTG	CATGTCTCAG	CTTACATTTG	1066
AATTCAGTTG	TTGTCTATTG	GGGCGATGCC	ATCAGCCCTT	AAGCAATCGT	CTTCATCCCA	1126
AGGGGGAGGA	AGGGATGGTC	TTGTGGCAAC	TTGGTGTGAC	ACTGTCTCCT	TAATGAAGTG	1186
TTTGGAGCTA	AGGGAGCCAG	TGTTATGGGT	GCTGTTTCAC	AAGAGGACCC	GTTGCACCAT	1246
TAAGACACAT	GATCCTCCCG	TTCCAGGGGT	TCTGAGCGGT	CGACTGAGGC	AGCTTGCCTG	1306
TGGTTAGTTT	TTAGGAAAGG	GAGATGTAAG	ACTTCCTTGC	TTTAGATTTG	AAATTATCAC	1366
AGTTATATTC	CATAGAAGAA	TTTTTAATTA	AAAAAATTTT	AGTGGCTAAG	CCACTAAACT	1426
GGGACCTAAT	TGGATGTAGC	CTAAGTTACT	AATAAGTTCT	TAACCAGATC	ACCATTTCCA	1486
ACCACTTAGC	CACAGTCACT	TGATCCACGG	CCAATCCTTC	TG		1528

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 253 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Leu Asp Ser Val Thr His Ser Thr Phe Leu Pro Asn Ala Ser Phe 1 5 10 15

Cys Asp Pro Leu Met Pro Trp Thr Asp Leu Phe Ser Asn Glu Asp Tyr
20 25 30

Tyr Pro Ala Phe Glu His Gln Thr Ala Cys Asp Ser Tyr Trp Thr Ser

Val His Pro Glu Tyr Trp Thr Lys Arg His Val Trp Glu Trp Leu Gln
50 55 60

Phe Cys Cys Asp Gln Tyr Lys Leu Asp Ala Asn Cys Ile Ser Phe Cys 65 70 75 80

His Phe Asn Ile Ser Gly Leu Gln Leu Cys Ser Met Thr Gln Glu Glu 85 90 95

Phe Ile Glu Ala Ala Gly Ile Cys Gly Glu Tyr Leu Tyr Phe Ile Leu 100 105 110

Gln Asn Ile Arg Ser Gln Gly Tyr Ser Phe Phe Asn Asp Ala Glu Glu
115 120 125

Thr Lys Thr Gly Ile Lys Asp Tyr Ala Asp Ser Ser Cys Leu Lys Thr 130 135

Ser Gly Ile Lys Ser Gln Asp Cys His Ser Arg Thr Ser Leu Gln Ser 145 150 155 160

AGCCAGTGTT ATGGGTGCTG

Ser	His	Leu	Trp	Glu 165	Phe	Val	Arg	Asp	Leu 170	Leu	Leu	Ser	Pro	Glu 175	Glu	
Asn	Cys	Gly	Ile 180	Leu	Glu	Trp	Glu	Asp 185	Arg	Glu	Gln	Gly	Ile 190	Phe	Arg	
Val	Val	Lys 195	Ser	Glu	Ala	Leu	Ala 200	Lys	Met	Trp	Gly	Gln 205	Arg	Lys	Lys	
Asn	Asp 210	Arg	Met	Thr	Tyr	Glu 215	Lys	Leu	Ser	Arg	Ala 220	Leu	Arg	Tyr	Tyr	
Tyr 225	Lys	Thr	Arg	Ile	Leu 230	Glu	Arg	Val	Asp	Arg 235	Arg	Leu	Val	Tyr	Lys 240	
Phe	Gly	Lys	Asn	Ala 245	His	Gly	Trp	Gln	Glu 250	Glu	Lys	Leu				
(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	10 : 8 :	:								
	(i)	(<i>I</i>	A) LI 3) T	ENGTI YPE :	HARACH: 14 nucl	l bas	se pa acio	airs 1								
	-				OGY:											
	(ii)	MOI	LECUI	LE T	YPE:	DNA										
	••		-		ESCRI		ON: S	SEQ I	ID NO	D:8:						
GCC	AGTCT	rtg (TCT(CTTC	AG C	ATC										24
(2)	INFO	ORMA?	rion	FOR	SEQ	ID 1	. e : O <i>l</i>	:								
	(i)	(<i>I</i> (I ((A) L1 3) T 2) S	ENGTI YPE : IRANI	HARAC H: 24 nucl DEDNI DGY:	l bas leic ESS:	se pa acio sing	airs 1								
	(ii)	MOI	LECU	LE T	YPE:	DNA										
	(xi)	SE	QUEN	CE DI	ESCR:	PTI	: NC	SEQ :	ID N	0:9:						
AGG	AGAT	GCA (GTTG(GCAT	CA A	3CT										24
(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:1	0 :								
	(i)	() () ()	A) L: B) T C) S'	ENGT YPE : TRAN	HARACH: 20 nuc: DEDNI	0 ba: leic ESS:	se pa acio sing	airs d								
	(ii)) MO	LECU	LE T	YPE:	DNA										
	(xi)	SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ	ID N	0:10	:					

20

(2)	INFO	RMATION FOR SEQ ID NO:11:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:	
ACAC	TCAC"	IT GATCCACGGC CAATCC	26
(2)	INFO	RMATION FOR SEQ ID NO:12:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xī)	SEQUENCE DESCRIPTION: SEQ ID NO:12	
GGGI	GGCA	GG AAGACAAGCT ATGA	24
(2)	INFO	RMATION FOR SEQ ID NO:13:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CCAA	AATT	GT CCCAGCTTGA TGGC	24
(2)	INFO	RMATION FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CGGG	ATCC.	TT GGACTCCGTA ACCCATAGC	29

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCAGATCTCA GAGTTTCTCT TCCTGCC

27

1/14

${\tt atcacacggctacaggtgcctttatttctacagtccgctggtgctgggagcgcgcttgccttctctttgccttgaaagccttctgtctg$	56 91
c <u>tag</u> ccaccacttgtcttcacggtg	116
<u>ATC</u> TTGGACTCCGTAACCCATAGCACCTTCCTGCCCAACGCATCCTTCTGTGACCCCCTG	176
${\tt ATGCCTTGGACCGATCTGTTCAGCAATGAAGACTACTACCCTGCCTTTGAGCATCAGACA}$	236
GCCTGTGATTCCTACTGGACATCAGTGCACCCTGAATACTGGACCAAGCGCCATGTCTGG	296
GAATGGCTCCAATTCTGCTGTGACCAGTACAAGCTTGATGCCAACTGCATCTCCTTCTGT	356
CACTTCAACATCAGCGGCCTGCAGCTCTGCAGCATGACGCAGGAGGAGTTCATTGAGGCA	416
GCCGGCATCTGTGGGGAGTACCTGTACTTCATTCTCCAGAACATTCGCTCGC	476
TCCTTTTTCAATGATGCTGAAGAGACCAAGACTGGCATCAAAGACTATGCTGATTCCAGT	536
TGCTTGAAAACAAGTGGCATCAAGAGTCAAGACTGTCACAGCCGAACAAGCCTCCAAAGT	596
TCTCACCTGTGGGAATTTGTCAGAGACTTGCTGCTGTCCCCTGAAGAGAACTGTGGCATC	656
CTGGAATGGGAAGACAGGGAGCAGGGCATTTTCCGAGTGGTTAAGTCAGAAGCCCTGGCA	716
AAGATGTGGGGACAAAGGAAGAAGAATGACAGGATGACGTACGAGAAGCTGAGCCGAGCC	776
CTGAGATACTACTATAAAACGAGAATTCTGGAGCGGGTTGACCGGAGGTTAGTGTACAAA	836
TTTGGAAAGAACGCGCACGGGTGGCAGGAAGAGAAACTCTGA tggacaccggacaccagg	896
ctcatttgatggatttctgttgttggaaacaatcagatcaaactagacatttgaaagtct	956
ccctcctcctcctccccctccttcccctcttcttcctcc	1016
aaacctacaaacacactgataaaatttctgcatgtctcagcttacatttgaattcagttg	1076
ttgtctattggggcgatgccatcagcccttaagcaatcgtcttcatcccaagggggagga	1136
agggatggtcttgtggcaacttggtgtgacactgtctccttaatgaagtgttttggagcta	1196
agggagccagtgttatgggtgctgtttcacaagaggacccgttgcaccattaagacacat	1256
gatcctcccgttccaggggttctgagcggtcgactgaggcagcttgcctgtggttagttt	1316
ttaggaaagggagatgtaagacttccttgctttagatttgaaattatcacagttatattc	1376
catagaagaattttt <u>aattaa</u> aaaaattttagtggctaagccactaaactgggacctaat	1436
tggatgtagcctaagttactaataagttcttaaccagatcaccatttccaaccacttagc	1496
cacagtcacttgatccacggccaatccttctg	1528
aacttaacatccttgtagttagtcacct	1556
tgggaattgctacctagattgttacccccttcacctcactggtggctatcatcaggtcta	1616
cagtgacctgatcaacagacatgtgcattaatttctaaatcact <u>gctgt</u> gcctatgattc	1676
aaaccgtcagcgtgttcagtttattgattctctctgaggtcggaatttattgattctctc	1736
tgaggctaagacattaaacctttaccaagcagagaacgtcctaacaagccacgatagccg	1796
aacacagcatcgatctcttctcttttctgatgaatactcaaactttccaacatattctct	1856
tcacaaaagtaaagacagtga <mark>attta</mark> catcaatcaacgttcatgggttaaagtctgcact	1916
gacatttccttgtctgccgttgcatgccgttggcatgcaaggtgttaatgacctgcaaca	1976
tggtggagtgccctgaaccctaacttccccagagttgggactgtctagtgaccggcactg	2036
aatagcaatgcaggctgaagacctccaggtttagaatttaacctcaaaagtaacttgttt	2096
ttaaaaagaaatgtgaattactgtaaaataatct <u>attt</u> tggattcgtgtgtttttcagg	2156
tggatatagtttataaacaatgtgaataaaaaatattaacatgtttaaaaaaaa	2216
aaaaaaaa	2224

FIGURE 1b

hELF5	MLDSVTHSTFLPHASFCDPLMSWTDLFSNEEYYPAFEHQTACDSYWTSVH	50
mELF5	MLDSVTHSTFLPNASFCDPLMPWTDLFSNEDYYPAFEHOUACDSYWTSVH	50
	CKII. CKII CKII	
hELF5	PEYWYKRHVWEWLQFCCDQYKLDTNCISFCNFNISGLQLCSMTQEEFVEA	100
mELF5	- PEYMUKRHVWEWLQFCCDQYKLDANCISFCHFNISGLQLCSMTQEEFIEA	100
	PKC	
hELF5	AGFCGEYLYFILONIRTOGYSFFNDAEESKATIKDYADSNCLKTSGIKSO	150
mELF5	AGICGEYLYFILONIRSQGYSFFNDAEETKTGIKDYADSSCLKTSGIKSQ	150
hELF5	DCHSHSRTSLQSSHLWEFVRDLLISPEENCGILEWEDREQGIFRVVKSEA	200
mELF5	DCHSRTSLQSSHLWEFVRDLLISPEENCGILEWEDREQGIFRVVKSEA	198
	CKII	
hELF5	LAKMWGQRKKNDRMTYEKLSRALRYYYKTGILERYDRRLVYKFGKNAHGW	250
mELF5	LAKMWGQRKKNDRMUYEKLSRALRYYYKTRILERVDRRLVYKEGKNAHGW	248
	ТуР	
hELF5	QEDKL*	255
mELF5	QEEKL*	253

|--|

```
UMEFIRDILIHPE-LNEGLMKWENRHEGVEKFL--RSEAVAQLWGQKK-KNSNMTYEKLSRAMRYYYKREILERVD-GRRLVYKF
                                                                                                                                                                  WEFILDLEODKN-TCPRYIKWTOREKGIRKLV--DSKAVSKLWGKHK-NKPDMNYETMGRALRYYYORGILAKVE-GORLVYOF
                                                                                                                                                                                                        WOFLKELLASPO-VNGTAIRWIDRSKGIFKIE--DSVRVAKLWGRRK-NRPAMNYDKLSRSIRQYYKKGIMKKTERSQRLVYOF
                                                                                                                                                                                                                                               WEFLIKILODRE-YCPRFIKWTNREKGVFKLV--DSKAVSRLWGMHK-NKPDMNYETMGRALRYYYORGILAKVD-GORLVYHF
                                                                                                                                                                                                                                                                                     UNEFILLALLODKA-TCPKYIKWTOREKGIFKLV--DSKAVSRLWGKHK-NKPDMNYETMGRALRYYYORGILAKVE-GORLVYOF
                                                                                                                                                                                                                                                                                                                              UNOFILOIIREQ--GNGHIISWISRDGGEFKLV--DAEEVARLWGLRK-NKTNMNYDKLSRALRYYYDKNIIRKVS-GQKFVYKF
                                                                                                                                                                                                                                                                                                                                                                        MOYVYQLISDS--RYENFIRWEDKESKIFRIV--DPNGLARLWGNHK-NRTNMTYEKMSRALRHYYKLNIIRKEP-GORLLFRF
                                                                                                                                                                                                                                                                                                                                                                                                                 GWQFLVTLLDDP--ANAHFIAWTGR-GMEFKLI--EPEEVARRWGIQK-NRPAMNYDKLSRSLRYYYEKGIMQKVA-GERYUYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                       LWOFLVALLDDP--SNSHFIAWTGR-GMEFKLI--EPEEVARRWGIQK-NRPAMNYDKLSRSLRYYYEKGIMQKVA-GERYYYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INOFLVALLODP--TNAHFIAWTGR-GMEFKLI--EPEEVARLWGIQK-NRPAMNYDKLSRSLRYYYEKGIMQKVA-GERYVYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LWQFLLELLTDK--DARDCISWVGDEG-EFKLN--QPELVAQKWGQRK-NKPTMNYEKLSRALRYYYDGDMICKVQ-GKRFVYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LWQFILHLILDQ--KHEHLICWTSNDG-EFKLL--KAEEVAKLWGLRK-NKTNNNYDKLSRALRYYYDKNIIKKVI-GQKFVYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LWOFLLELLADS--SNANAISWEGQSG-EFRLI--DPDEVARRWGERK-AKPNMNYDKLSRALRYYYDKNIMTKVH-GKRYAYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LYQFILDILRSG--DMKDSIWWVDKDKGTFQFSSKHKEALAHRWGIQKGNRKKMTYQKMARALRNYGKTGEVKKVK--KKLTYQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            UMHFILELLOKE--EFRHVIAWQQGEYGEFVIK--DPDEVARLWGRRK-CKPQMNYDKLSRALRYYYNKRILHKTK-GKRFTYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WOFILQLIOKP--ONKHMICWTSNDG-OFKLL--OAEEVARLWGIRK-NKPNMNYDKLSRALRYYYVKNIIKKVN-GOKFVYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GYQFLLGLLTRG--DMRECVWWVEPGAGVFQFSSKHKELLARRWGQQKGNRKRMTYQKLARALRNYAKTGEIRKVK--RKLTYQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WDFLQQLLNDRNQKYSDLIAWKCRDTGVFKIV--DPAGLAKLWGIQK-NHLSMNYDKMSRALRYYYRVNILRKVQ-GERHCYQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LWOFILELLSDS--SNSSCITWEGTNG-EFKMT--DPDEVARRWGERK-SKPNMNYDKLSRALRYYYDKNIMTKVH-GKRYAYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GWOFILEILTDC--EHTDVIEWVGTEG-EFKLT--DPDRVARLWGEKK-NKPAMNYEKLSRALRYYYDGDMISKVS-GKRFAYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   WOFLLELLTDK--SCOSFISWTGDGW-EFKLS--DPDEVARRWGKRK-NKPKMNYEKLSRGLRYYYDKNIHKTA-GKRYVYRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LWQFLLKLLQDG--ARSSCIRWTGNSR-EFQLC--DPKEVARLWGERK-RKPGMNYEKLSRGLRYYYRRDIVLKSG-GRKYTYRF
                                                                               IWEFIRDILIHPE-LNEGLMKWENRHEGVEKFL--RSEAVAQLWGQKK-KNSNMTYEKISRAMRYYYKREILERVD-GRRIJVYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          :NOFILELLSDS--ANASCITWEGTNG-EFKMT--DPDEVARRWGERK-SKPNMNYDKLSRALRYYYDKNIMTKVH-GKRYAYKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LWOFILELLSDK--SCOSFISWTGDGW-EFKLA--DPDEVARRWGKRK-NKPKMNYEKLSRGLRYYYDKNIHKTS-GKRYVYRF
WEFVRDLLLSPE-ENCGILEWEDREOGIFRVV--KSEALAKMWGORK-KNDRMTYEKLSRALRYYYKTGILERVD--RR
                                         WEFVRDILLSPE-ENCGILEWEDREGGIERVY--KSEALAKMWGORK-KNDRMTYEKLSRALRYYYKTRILERVD--RR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EWOFILELLSDS--NNASCITWEGTNG-EFKLT--DPDEVARRWGERK-SKPNMNYDKLSRALR-----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     P MNY KLSR LRYYY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LWOFLL LL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       consensus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               nGABPa
                                                                                  ELF3
                                                                                                                           MELF3
                                                                                                                                                                  NERF
                                                                                                                                                                                                           JETS4
                                                                                                                                                                                                                                                 dE74A
                                                                                                                                                                                                                                                                                                                              LELK1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      mPEA3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dETS6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SPIB
                                                                                                                                                                                                                                                                                        DELF1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dETS3
                                                                                                                                                                                                                                                                                                                                                                                                                                                          mER81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SAP1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        nFLI1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      nETS1
                                                                                                                                                                                                                                                                                                                                                                          TEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  nETS2
                                                                                                                                                                                                                                                                                                                                                                                                              hERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MERP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        mPU1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IYAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ERG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dELG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PE1
```


FIGURE 2c

23

93

22 22 22 22 21 20 20

Identity

E-SNPMNYN-SYMDEK-NGPPPRNMTTNERRVIIVPR-DPTLWSTDHVRQWLEWAVKEYGLPDVN-IILFQ--NIDGKELCKMTKDDFQRLTPSYNADILLSHLHYLRE A-SVP-PAATFGADDLVLTLSNPQMSLEGTEKASWLGEQPQFWSKTQVLDWISYQVEKNKYDA-SAID-FSRCDMDGATLCNCALEELRLVFG-PLGDQLHAQLRDLTS PESPV-PSYASSTPLHVPVPRALRMEDSIRLPAHLRLQPIYMSRDDVAQMLKWAENEFSLRO-IDSNTFE-MN--GKALLLLTKEDFRYRSP-HSGDVLYELLGHIKQ ITTISDETSEGVTRWAAALEGYRK-EQERLGIPY----DPIQWSTDQVLHWVVWVMKEFSMTDIDLTTL----NISGRELCANTHEEFNOKLPRDPGNIFWTHLQLLKE PLLTPSSKEMMSQALKATFSGFTK-EQQRLGIPI----DPRQWTETKVRDWVMMAVNEFSLKGVDFQK-FC-MN--GAALCALGKDCFLELAPDFVGDILWEHLEILQK PLLTPSSKAVMSQALKATFSGFKK-EQRRLGIPK----NPWLWSEQQVCQWLLWATNEFSLVNVNLQR-FG-MN--GQMLCNLGKERFLELAPDFVGDILWEHLEQMIK INSIN-PGIWSDVIWRCPPAPSSQLAELKTQLPPSLPSDPRLWSREDVLVFLRFCVREFDLPK-LDFDLFQ-MN--GKALCLLTRADFGHRCP-GAGDVLHNVLQMLII PPLTPGTNRKVNEVLKASFASWEK-EVQKCNITK----DPREWTEEHVIYWLNWAKNEFSLVSMNLDP-FYKMK--GRAMVDLGKEKFLAITPPFTGDILWEHLDILQK A-SECDPL-MSWIDLESNEEYYPAFEHQIACDSYWISYHPEYWIKRHVWEWLQFCCDQYKLDI-NCIS-FCNFNISGLOLCSMIQEEFVEAAG-FCGEYLYFILQNIRI A-SECDPL-MPWIDLESNEDYYPAFEHQIACDSYWISVHREYWIKRHVWEWLQFCCDQYKLDA-NCIS-FCHFNISGLQLCSMIQEEFIEAAG-ICGEYLYFILONIRS GKELC L KEDFLER P F GDILWEHLE LRK F WIN WL WAVKEFSL FKK E QRL IP **JPOINTEDP2** consensus hGABPa **ELF3** nETS2 ELF5 RELF5 hETS1 ERG TEL JYAN

FIGURE 3

а

b

-28S

C

d

FIGURE 4

a

b

FIGURE 5

C

FIGURE 5c

FIGURE 6a

Protein	Eif5									ETS1
Probe	E74	E74 m1	E74							
Competitor	-	-	-	E74	E74 m1	GM ETS	ERB B2	MSV	AP1	-
	1	2	3	4	5	6	7	8	9	10

FIGURE 6b

FIGURE 7

breast cancer cells, but is strongly expressed in adjacent ELF5 expression is not detectable in human primary normal epithelium

