1.
$$|\psi(t=0)\rangle = |E_2\rangle$$

$$E_n = \frac{n^2 \pi^2 \hbar^2}{\lambda m L^2}$$

$$a) \langle \hat{H} \rangle = E_z = \frac{3\pi^2 k^2}{m L^2} \text{ at all times.}$$

$$|\psi(t)\rangle = e^{-iE_2t/k} |E_2\rangle$$

An energy measurement will always yield E2.

b)
$$\psi(x,t) = e^{-iE_2t/t}$$
 $\psi(x) = e^{-iE_2t/t}$ $\int_{E_2}^2 \sin(\frac{2\pi x}{L})$ $\int_{E_2}^2 \sin(\frac{2\pi x}{L})$

$$\left| \psi(x,t) \right|^2 = \frac{2}{L} \sin^2\left(\frac{2\pi x}{L}\right)$$

$$\langle x(t) \rangle = \int_{X}^{L} |y(x,t)|^{2} dx = \frac{2}{L} \int_{Q}^{L} x \sin^{2}\left(\frac{2\pi x}{L}\right) dx$$

Method 1: Change to dimensionless variables $u = \frac{x}{L}$, x = Lu

$$\langle x(t) \rangle = \frac{2}{L} \int_{0}^{L} (Lu) \sin^{2}(2\pi u) \cdot (Ldu) = 2L \int_{0}^{L} u \sin^{2}(2\pi u) du$$

This makes sense because 1412 is symmetric about the middle of the well.

1.6) Method 2: Evaluate the integral yourself: $\int u \sin^2 \left(2\pi u\right) du \qquad \sin^2 x = \frac{1}{2} \left(1 - \cos 2x\right)$ = $\frac{1}{2} \left[\mu \left(1 - \cos 4\pi n \right) dn = \frac{1}{2} \left(\frac{1}{2} n^2 \right)^2 - \int n \cos (4\pi n) dn \right]$ Integrate by parts: dr = cos (4rru) du v = 4rr sin (4rru) = 4 - 2 [4 m six (4 mm)] - 4 six (4 mm) du] $=\frac{1}{4}$ Method 3: Use Symbolab or Mathematica to give you an algebraic expression that contains of.

Then you don't have to change to dimensionless variables Jin, the first place. (But it's a good trick to know!) c) Calculate $\langle \hat{p}(t) \rangle$

Method 1: Bute force
$$\langle \hat{p}(t) \rangle = \langle \psi(t) | \hat{p} | \psi(t) \rangle = \int \psi'(x,t) \left(-i \hbar \frac{d}{Jx}\right) \psi(x,t) dx$$

$$= \frac{2}{L} \int_{e}^{L+i E_2 t/k} \sin \left(\frac{2\pi x}{L}\right) \cdot \left(-i \hbar\right) \cdot \frac{2\pi}{L} \cos \left(\frac{2\pi x}{L}\right) \cdot e^{-i \frac{E_2 t}{k}} dx$$

1.c) sin 2 mx is odd around $x = \frac{L}{2}$ cox $\frac{2\pi x}{L}$ is even around $x = \frac{L}{2}$ Their product is odd, so the integral is 0, If you aren't confident about that result, then continue $\langle \hat{p}(t) \rangle = -i\hbar \frac{4\pi}{L^2} \int \sin\left(\frac{2\pi x}{L}\right) \cos\left(\frac{2\pi x}{L}\right) dx$ $=-i\hbar\frac{4\pi}{L^2}\cdot\frac{L}{2\pi}\sin^2\left(\frac{2\pi x}{L}\right)\Big|_{\Omega}=0$ Method 2: Ehrenfest: Theorem: $\langle \hat{p}(t) \rangle = m \frac{d}{dt} \langle \hat{x}(t) \rangle$ But $\langle \hat{x}(t) \rangle = \frac{1}{2}$ is independent of time, so $\langle \hat{p} \rangle = 0$. This makes sense because the system is in a stationary state!

d) $P\begin{bmatrix} \frac{1}{4} < x < \frac{3}{4} \end{bmatrix} = \int_{\frac{1}{4}}^{3} |\gamma(x,t)|^2 dx$ $= \frac{2}{L} \int_{-L}^{44} \sin^2\left(\frac{2\pi x}{L}\right) dx = \frac{1}{L} \int_{L}^{44} \left(1 - \cos\left(\frac{4\pi x}{L}\right)\right) dx$ $=\frac{1}{L}\cdot\left[\chi-\frac{L}{4\pi}\sin\left(\frac{4\pi\chi}{L}\right)\right]^{3L/4}_{L/4}$ $=\frac{1}{L}\left[\left(\frac{3L}{4}-\frac{L}{4}\right)-\frac{L}{4\pi}\left(4m3\pi-4m\pi\right)\right]=\frac{1}{L}\cdot\frac{L}{2}=\frac{1}{2}$ He could have guessed this from 14 92:

1. e) We whendy have
$$\langle \hat{\chi} \rangle$$
 and $\langle \hat{\rho} \rangle$, so we noted $\langle \hat{\chi}^2 \rangle$ and $\langle \hat{\rho}^2 \rangle$
 $\langle \chi^2 \rangle = \int_0^{\chi^2} \langle \psi(\chi, t) \rangle d\chi = \frac{2}{L} \int_0^{\chi^2} \sin^2\left(\frac{2\pi x}{L}\right) d\chi$

Organ VM we $\mu = \frac{\chi}{L}$:

 $\langle \chi^2 \rangle = 2 L^2 \int_0^{1/2} u^2 \sin^2\left(2\pi u\right) du = L^2 \left(\frac{1}{3} - \frac{1}{8\pi^2}\right)$

For the integral, Ayabolah gines $\frac{32\pi^2 + 12\pi}{192\pi^2} = \frac{1}{6} - \frac{1}{16\pi^2}$
 $\Delta \chi = \sqrt{\langle \chi^2 \rangle - \langle \chi \rangle^2} = \sqrt{L^2 \left(\frac{1}{3} - \frac{1}{8\pi^2}\right) - \frac{L^2}{4}} = \sqrt{L^2 \left(\frac{1}{12} - \frac{1}{8\pi^2}\right)}$
 $= L\sqrt{0.0707...} \approx 0.266 L$
 $\langle \rho^2 \rangle = \int_0^{1/2} \psi \left(-k^2 \frac{1}{L^2}\psi\right) d\chi = -k^2 \frac{2}{L} \int_0^{1/2} \sin\left(\frac{2\pi \chi}{L}\right) \left(\frac{2\pi}{L}\right)^2 \left(-\sin\frac{2\pi \chi}{L}\right) d\chi$
 $= \frac{8\pi^2}{L^2} k^2 \int_0^{1/2} \sin^2\left(\frac{2\pi \chi}{L}\right) d\chi = 4\pi^2 \frac{k^2}{L^2}$

 $\Delta \rho = \sqrt{\langle \rho^2 \rangle - \langle \rho \rangle^2} = \sqrt{4\pi^2 k_{\perp}^2} = \frac{2\pi k}{L}$

DX AP = 0.266 L. 2xx = 1.67 t

Uncertainty Principle says 0x4p > 2 h, so this is consistent.

2.
$$|\psi(t=0)\rangle = A(|E_1\rangle + 3i|E_2\rangle)$$

a) $1 = \langle \psi | \psi \rangle = |A|^{\lambda} (1+9) = 10 |A|^{\lambda} \rightarrow A = \frac{1}{\sqrt{10}}$

Measure energy: results are $E_1 \approx E_2$
 $P(E_1) = \frac{1}{10} \quad P(E_A) = \frac{9}{10}$
 $|\psi(E_1)| = \frac{1}{10} \quad P(E_A) = \frac{9}{10}$
 $|\psi(E_1)| = \frac{1}{10} \quad P(E_A) = \frac{9}{10}$
 $|\psi(E_1)| = \frac{1}{10} \quad P(E_A) = \frac{1}{10} \quad P(E_A) = \frac{9}{10}$
 $|\psi(E_1)\rangle = \frac{1}{\sqrt{10}} \quad P(E_1)\rangle + \frac{3i}{2mL^2} = 3.7 E_1$
 $|\psi(E_1)\rangle = \frac{1}{\sqrt{10}} \quad P(E_1)\rangle + \frac{3i}{2mL^2} = 3.7 E_1$
 $|\psi(E_1)\rangle = \frac{1}{\sqrt{10}} \quad P(E_1)\rangle + \frac{3i}{2mL^2} \quad P(E_2)\rangle + \frac{3i}{2mL^2} \quad P(E_1)\rangle + \frac{3i}{\sqrt{10}} \quad P(E_1)\rangle + \frac{3$

2. c)
$$\left| \gamma \left(x, t \right) \right|^2 = \frac{1}{5L} \left[\sin^2 \frac{\pi x}{L} + 9 \sin^2 \frac{2\pi x}{L} + 6 \sin^2 \frac{\pi x}{L} \sin^2 \frac{\pi x}{L} \right]$$

$$t_{0}=0 \rightarrow \sin \omega t = 0$$
, $t_{1}=\frac{\pi}{2\omega} \rightarrow \sin \omega t = 4\dot{m}\frac{\pi}{2}=1$
 $t_{2}=\frac{\pi}{\omega} \rightarrow \sin \omega t = \sin \pi = 0$, $t_{3}=\frac{3\pi}{2\omega} \rightarrow \sin \omega t = \sin \frac{3\pi}{2}=1$
 $t_{4}=\frac{3\pi}{2\omega} \rightarrow \sin \omega t = 0$

The plots for t=to, to, and to will be identical. See next page for plots made in Mathematica. The probability density sloshes back and forth in the well.

$$d) \langle x(t) \rangle = \int_{0}^{L} \chi \left| \psi(x,t) \right|^{2} dx$$

Let's separate the integral into a time-independent part (first two terms) plus a time-dependent part (last term) (first $\int_{L}^{1} \int_{0}^{1} dx (x \sin^{2} \frac{\pi x}{L} + 9 x \sin^{2} \frac{\lambda \pi x}{L}) = \frac{1}{5L} \left(\frac{L^{2}}{4} + 9 \frac{L^{2}}{4}\right) = \frac{L}{2}$ It is separate the integral into a time-independent part (last term) (first two terms) (first two terms) (f

 $x_{max} = L\left(\frac{1}{2} + \frac{16}{15\pi^{3}}\right) = 0.608 L$ $x_{min} = L\left(\frac{1}{2} - \frac{16}{15\pi^{3}}\right) = 0.392 L$

In problem 1, $\langle x(t) \rangle = \frac{1}{2}$ always.

t=to, to, on ty

 $_{in[7]=}$ Plot[Sin[$\pi * x$] ^2 + 9 * Sin[2 * $\pi * x$] ^2 + 6 * Sin[$\pi * x$] * Sin[2 * $\pi * x$], {x, 0, 1}]

t = t,

 $In[8] = Plot[Sin[\pi * x]^2 + 9 * Sin[2 * \pi * x]^2 - 6 * Sin[\pi * x] * Sin[2 * \pi * x], \{x, 0, 1\}]$

t = 13

2. e) Measure energy, obtain result E_1 . The system is now in the state $|E_1\rangle \rightarrow \varphi_{E_1}(x) = \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}$ $P\left[\frac{1}{4}, \frac{3}{4}\right] = \left(\frac{2}{L} \sin^2 \frac{\pi x}{L} dx = \frac{2}{L} \cdot \frac{1}{2} \left(\frac{3}{4}\right) dx + \frac{1}{2} \cdot \frac{1}{2} \left(\frac{3}{4}\right) dx + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \left(\frac{3}{4}\right) dx + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \left(\frac{3}{4}\right) dx + \frac{1}{2} \cdot \frac{1}{2} \cdot$

1 4 (a) 1 3 1/4 L

In the ground state the probability of finding the particle in the middle half of the well is large.

