Machine Learning I MATH80629A

Apprentissage Automatique I MATH80629

"Mid-term-ish" summary

Supervised Machine Learning

$$\mathbf{x}$$
 \longrightarrow $\mathbf{f}(\mathbf{x};\theta) \equiv \hat{\mathbf{y}}$

Loss

$$\mathbf{x} \longrightarrow \mathbf{f}(\mathbf{x}; \theta) \equiv \hat{\mathbf{y}}$$

Loss

$$\mathbf{x} \longrightarrow \mathbf{f}, \theta \longrightarrow \mathbf{f}(\mathbf{x}; \theta) \equiv \hat{\mathbf{y}} \qquad \mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$$

Loss

$$\mathbf{x} \longrightarrow \mathbf{f}(\mathbf{x}; \theta) \equiv \hat{\mathbf{y}}$$
 $\mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$

Different losses for different types of y's

```
\begin{array}{ll} y \in \mathcal{R} \\ y \ categorical \ e.g., \ \{cat, dog, bird\} \\ y \in \{0,1\} \end{array} \qquad \begin{array}{ll} Regression \\ Classification \\ Binary \ Classification \end{array}
```

Distribution over (x,y):

Learning Process

P(x,y)

f,
$$\theta$$

 $\hat{\mathbf{y}}_{\mathsf{train}}$

Loss

 $L(\hat{y}_{train}, y_{train})$

$$f, \hat{\theta}$$

$$\hat{\mathbf{y}}_{\mathsf{test}}$$

 $L(\hat{y}_{test}, y_{test})$

Learning Process In practice

Distribution
over (x,y):
P(x,y)

Xtra

$$f, \theta$$

$$\hat{\mathbf{y}}_{\mathsf{train}}$$

$$L(\hat{y}_{train}, y_{train})$$

f,
$$\hat{ heta}$$

$$\hat{\mathbf{y}}_{\mathsf{valid}}$$

$$f, \hat{\theta}$$

$$\hat{\mathbf{y}}_{\mathsf{test}}$$

$$\textbf{L}(\hat{\textbf{y}}_{\text{test}}, \textbf{y}_{\text{test}})$$

Distribution over (x,y): P(x,y)

Learning Process In practice

Loss

 $L(\hat{y}_{train}, y_{train})$

f,
$$\theta$$

$$\hat{\mathbf{y}}_{\mathsf{train}}$$

f,
$$\hat{ heta}$$

$$\hat{\mathbf{y}}_{\mathsf{valid}}$$

- to select hyper-parameters
- To pick the best model

$$f, \hat{\theta}$$

$$\hat{\mathbf{y}}_{\mathsf{test}}$$

 $L(\hat{y}_{test}, y_{test})$

Learning

Learn: Change the parameters to obtain better predictions

Loss θ

- In other words: change the parameters to minimize the loss
 - Take the derivative of the loss wrt the parameter: $\frac{d \text{ Loss}}{d\theta}$

Different models

- f: linear regression, θ has a closed-form solution
- f: neural network, θ does not have a closed-forum solution. Gradient descent is used

- Given a training set: {(x_{train}, y_{train})}
- Initialize $\hat{\theta}_1$ randomly

for
$$t = 1, 2, ...$$
 (epochs) do for $i = 1, 2, ...$ (datum) do

- Obtain the predictions $\{f(x_{train}; \hat{\theta}_t)\}$ (Forward propagation)
- Compute the Loss: Loss_{ti} := $L(f(x_i; \hat{\theta}_t), y_i)$
- Find the derivative of the loss: $\frac{d \text{ Loss}_{ti}}{d \hat{\theta}_t}$
- Update parameters: $\hat{\theta}_{t+1} = \hat{\theta}_t \alpha \frac{d \ Loss_{ti}}{d \ \hat{\theta}_t}$
- If $||\hat{\theta}_{\mathsf{t+1}} \hat{\theta}_{\mathsf{t}}||_2^2 < \epsilon$ then stop

end for end for

- Given a training set: {(x_{train}, y_{train})}
- Initialize $\hat{ heta}_1$ randomly

Stochastic Gradient Descent

for
$$t=1,2,\ldots$$
 (epochs) do for $i=1,2,\ldots$ (datum) do

- Obtain the predictions $\{f(x_{train}; \hat{\theta}_t)\}$ (Forward propagation)
- Compute the Loss: Loss_{ti} := $L(f(x_i; \hat{\theta}_t), y_i)$
- Find the derivative of the loss: $\frac{d \text{ Loss}_{ti}}{d \hat{\theta}_t}$
- Update parameters: $\hat{\theta}_{t+1} = \hat{\theta}_t \alpha \frac{d \ Loss_{ti}}{d \ \hat{\theta}_t}$
- If $||\hat{\theta}_{\mathsf{t+1}} \hat{\theta}_{\mathsf{t}}||_2^2 < \epsilon$ then stop

end for end for

Probabilistic Models separate Decision and Inference

Non-Probabilistic Modelling

Probabilistic Modelling Probabilistic Model

$$\longrightarrow$$
 P(y = k|x) \longrightarrow

Decision Rule

10

Loss

$$\mathbf{x} \longrightarrow \mathbf{f}(\mathbf{x}; \theta) \equiv \hat{\mathbf{y}} \qquad \mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$$

10

Loss

10

 $\mathbf{x} \qquad \qquad \mathbf{f}, \theta = \hat{\mathbf{y}} \qquad \qquad \mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$ $\mathbf{P}(\theta)$ $\mathbf{P}(\mathbf{x}, \mathbf{y} \mid \theta)$ \mathbf{f}

 $\mathbf{x} \qquad \qquad \mathbf{f}, \theta = \hat{\mathbf{y}} \qquad \qquad \mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$ $\mathbf{P}(\mathbf{x} \mid \theta) \qquad \qquad \mathbf{P}(\mathbf{x}, \mathbf{y} \mid \theta)$ $\mathbf{f} \qquad \qquad \mathbf{f} \qquad \mathbf$

Loss

10

Loss

Loss

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

$$Likelihood(x \mid \mu, 1) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{(x-\mu)^2}{2}}$$

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

$$Likelihood(x \mid \mu, 1) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{(x-\mu)^2}{2}}$$

Log-Likelihood

$$= \log \frac{1}{\sqrt{2\pi}} \exp -\frac{(x-\mu)^2}{2}$$

$$= \log 1 - \frac{1}{2} \log 2\pi - \frac{(x-\mu)^2}{2}$$

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

Likelihood(x |
$$\mu$$
,1) = $\frac{1}{\sqrt{2\pi}} \exp{-\frac{(x-\mu)^2}{2}}$

Log-Likelihood

$$= \log \frac{1}{\sqrt{2\pi}} \exp -\frac{(x-\mu)^2}{2}$$

$$= \log 1 - \frac{1}{2} \log 2\pi - \frac{(x-\mu)^2}{2}$$

What value of µ maximizes it?

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

$$Likelihood(x \mid \mu, 1) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{(x-\mu)^2}{2}}$$

Log-Likelihood

$$= \log \frac{1}{\sqrt{2\pi}} \exp -\frac{(x-\mu)^2}{2}$$

$$= \log 1 - \frac{1}{2} \log 2\pi - \frac{(x-\mu)^2}{2}$$

What value of μ maximizes it?

$$\frac{d \text{ Log-Likelihood}}{d \mu}$$

$$= \frac{d \frac{(x-\mu)^2}{2}}{d \mu}$$

$$= (x - \mu)$$
set to 0
$$\mu = x$$

Data: 952 1064 965 1037 871 1029 1138 (unsupervised problem)

Model: $P(x \mid \theta) := \mathcal{N}(\mu, 1)$

Likelihood for a single datum:

$$Likelihood(x \mid \mu, 1) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{(x-\mu)^2}{2}}$$

Log-Likelihood

$$= \log \frac{1}{\sqrt{2\pi}} \exp -\frac{(x-\mu)^2}{2}$$

$$= \log 1 - \frac{1}{2} \log 2\pi - \frac{(x-\mu)^2}{2}$$

What value of μ maximizes it?

$$\frac{d \text{ Log-Likelihood}}{d \mu}$$

$$= \frac{d \frac{(x-\mu)^2}{2}}{d \mu}$$

$$= (x - \mu)$$
set to 0
$$\mu = x = 952$$

 $\mathsf{Model} : \mathsf{P}(\mathsf{x}, \mathsf{y} \mid \theta) = \mathsf{P}(\mathsf{x} \mid \mathsf{y}, \theta) \mathsf{P}(\mathsf{y} \mid \theta)$

$$\mathbf{Model}: \mathbf{P}(\mathbf{x},\mathbf{y}\mid\theta) = \mathbf{P}(\mathbf{x}\mid\mathbf{y},\theta)\mathbf{P}(\mathbf{y}\mid\theta)$$

Data: x Gaussian Mixture Models

Data: x Gaussian Mixture Models

$$Model: P(x \mid \theta) = \sum_{k=1}^{K} P(\theta_x = k) \underbrace{P(x \mid \theta_k)}_{\mathcal{N}(x \mid \mu_k, \Sigma_k)} \text{ (K components)}$$

Data: x Gaussian Mixture Models

$$\mathsf{Model} : \mathsf{P}(\mathsf{x} \mid \theta) = \sum_{\mathsf{k}=1}^{\mathsf{K}} \mathsf{P}(\theta_{\mathsf{x}} = \mathsf{k}) \underbrace{\mathsf{P}(\mathsf{x} \mid \theta_{\mathsf{k}})}_{\mathcal{N}(\mathsf{x} \mid \mu_{\mathsf{k}}, \Sigma_{\mathsf{k}})} \text{ (K components)}$$

Data: x Gaussian Mixture Models

$$\mathsf{Model}: \mathsf{P}(\mathsf{x} \mid \theta) = \sum_{\mathsf{k}=1}^{\mathsf{K}} \mathsf{P}(\theta_{\mathsf{x}} = \mathsf{k}) \underbrace{\mathsf{P}(\mathsf{x} \mid \theta_{\mathsf{k}})}_{\mathcal{N}(\mathsf{x} \mid \mu_{\mathsf{k}}, \Sigma_{\mathsf{k}})} \text{ (K components)}$$

Max. likelihood (MLE) : $\hat{\theta}_{\mathsf{MLE}} = \arg\max_{\theta} \mathbf{P}(\mathbf{x} \mid \theta)$

MLPs/RNNs/CNNs

- MLPs: layers are fully-connected to the next layer
- RNNs: inputs at each layer
 - Typical application: time-series modelling
- CNNs: replace matrix multiplications by convolutions (sparse connections, weight sharing) + pooling
 - Typical application: object recognition in images

MLPs

(e) (4 points) Consider the neural network below. We have estimated its parameters (shown next to their corresponding arrows).

The activation function of each unit in the network is a simple thresholding function:

threshold(x) =
$$\begin{cases} 0 & \text{if } x \le 0, \\ 1 & \text{if } x > 0. \end{cases}$$
 (1)

For each of these four sets of inputs write down the network's output (i.e., its prediction) in the "Output" column of the table below.

Input 1	Input 2	Output
0	0	
1	1	
0	1	
1	0	