Ejercicios

- **4.5.1** Encuentre con ayuda de *Wolfram Mathematica* el producto cartesiano entre A y B, siendo $A = \{a \in \mathbb{N} \mid a \text{ un número par, } a \le 500\}$ y $B = \{b \in \mathbb{N} \mid b \text{ un número impar, } b \le 500\}$. ¿Cuál es la cardinalidad de $A \times B$?
- **4.5.2** Grafique $A \times B$ por medio del software *Mathematica*, si $A = \{a \in \mathbb{R} \mid a \ge 5\}$ y $B = \{b \in \mathbb{R} \mid -10 \le b \le 6\}$.
- **4.5.3** Halle el dominio y el rango de la relación binaria R dada por: aRb sí y solo sí el mínimo común múltiplo entre a y b es igual a 300, con $a \in A = \{1,3,...,99\}$ y $b \in B = \{2,4,...,100\}$. ¿Cuál es el máximo valor del mínimo común múltiplo donde la relación R es distinta de vacío? Sugerencia: utilice el comando **LCM** de M de
- **4.5.4** Represente en el plano cartesiano la relación binaria R: aRb siendo a y b dos números reales, sí y solo sí $\frac{a^2}{36} + \frac{b^2}{49} = 1$. ¿Cuál es el domino de R? ¿Cuál es el ámbito de R? Determine si los pares ordenados de L pertenecen a la relación R con:

$$L = \left\{ \left(\sqrt{2}, \frac{7}{3}\sqrt{\frac{17}{2}}\right), \left(5\sqrt{2}, \frac{7}{3}\sqrt{\frac{29}{2}}\right), \left(2\sqrt{7}, \frac{7\sqrt{2}}{3}\right), \left(\sqrt{2}, \frac{7}{3}\sqrt{\frac{53}{2}}\right), \left(-3, \frac{7\sqrt{3}}{2}\right), \left(\sqrt{3}, -\frac{7}{2}\sqrt{\frac{11}{3}}\right), \left(-3, \frac{7\sqrt{11}}{2}\right), \left(\sqrt{7}, -\frac{7\sqrt{29}}{6}\right), \left(\frac{1}{2}, -\frac{7\sqrt{143}}{12}\right), (0, -7) \right\}$$

4.5.5 Sea R_1 la relación binaria: $aR_1b \Leftrightarrow a \leq b^2$, siendo $a, b \in A = \{2,4,6,...,100\}$. Encuentre explícitamente los pares ordenados de R_1 . Determine usando la instrucción **ElementRelBinQ** si $6R_13$, $84R_196$, $24R_12$, $98R_110$ y $38R_16$.

Halle los pares ordenados que constituyen las siguientes relaciones binarias definidas sobre el conjunto *A* indicado.

- **4.5.6** $R_2 = \{(a, b) \mid a + b \le 20\} \text{ con } A = \{2, 4, 6, ..., 100\}.$
- **4.5.7** $aR_3b \Leftrightarrow a \text{ y } b \text{ son números palíndromos con } A = \{11, 13, 17, 19, 21, 22, 23, 29, 32, 51, 72, 83, 89, 97, 113, 121, 127, 222, 312, 723\}.$
- **4.5.8** $aR_4b \Leftrightarrow a^2 b^2$ es múltiplo de 5 con $A = \{1, 2, 3, 4, 5\}$.
- **4.5.9** $aR_5b \Leftrightarrow \text{el residuo de la división } (a-3) \div 3 \text{ es igual al residuo de } (b-3) \div 3 \text{ donde } A = \{1,2,3,4,5\}.$
- **4.5.10** $R_6 = \{(a, b) \mid a b \ge 3\} \text{ con } A = \{1, 2, 3, 4, 5\}.$
- **4.5.11** $aR_7b \Leftrightarrow |a^3+b^2| = 3k \text{ con } k \in \mathbb{Z} \text{ donde } A = \{1,2,3,4,5\}.$
- **4.5.12** Grafique en el plano cartesiano las relaciones binarias R_1 , R_2 , R_3 , R_4 , R_5 , R_6 y R_7 . Encuentre una matriz y un grafo que las represente.

Resuelva las operaciones señaladas a continuación, usando la definición y también matrices booleanas.

4.5.13
$$\overline{R_1^{-1}}$$
 y $R_1 o R_1$.

4.5.14
$$\overline{R_2 o R_2}$$
 y $(R_2 o R_2) o R_2$.

4.5.15
$$R_3^{-1} \cup R_3$$
 y $R_3 \cap R_3^{-1}$.

4.5.16
$$\overline{R_1^{-1} \cup R_2^{-1}}$$
 y $R_1^{-1} o R_2^{-1}$.

4.5.17
$$(R_6 \cup R_5)^{-1}$$
 y $\overline{\left(\overline{R_4 \cap R_7}\right)^{-1}}$.

4.5.18
$$((\overline{R_5} \cap R_6^{-1}) \cup R_4) o \overline{R_7}.$$

4.5.19
$$\left(\left(\overline{R_7} \cap R_5^{-1}\right)^{-1} o \overline{R_6}\right) \cup R_4^{-1}$$
.

- 4.5.20 Clasifique como reflexiva, antisimétrica, transitiva, de equivalencia y de orden parcial, las relaciones R_1 , R_2 , R_3 , R_4 , R_5 , R_6 y R_7 . Justifique su respuesta.
- 4.5.21 Construya con ayuda del comando SetPartitions, todas las relaciones de equivalencia que se obtienen de las particiones de longitud 2 sobre el conjunto $A = \{1, 2, 3, 4, 5\}.$

Descargue un archivo: código 153.

Solución de los ejercicios propuestos.