Name:	lay	

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Let $X = \{1, 2, 3, 4\}$. Let $A = \{A_1, A_2, A_3\}$ where $A_1 = \{1, 2\}$, $A_2 = \{3\}$, $A_3 = \{4\}$. Show that Aforms a partition of X.

(i)
$$A_1, A_2, A_3 \neq \emptyset$$
 and $A_1, A_2, A_3 \subseteq X$ (so each A; is monempty and a subset of X)

(ii)
$$A_1 \cap A_2 = \{1,2\} \cap \{3\} = \emptyset$$

 $A_1 \cap A_3 = \{1,2\} \cap \{4\} = \emptyset$ (so the collection A consists of disjoint sets)
 $A_2 \cap A_3 = \{3\} \cap \{4\} = \emptyset$

(iii)
$$\bigcup_{A\in\mathcal{A}} A = \underbrace{\{1,2\}}_{A_1} \cup \underbrace{\{3\}}_{A_2} \cup \underbrace{\{4\}}_{A_3} = \underbrace{\{1,2,3,4\}}_{A_3} = X$$
 (the union of the collection A is X)

2. Define the relation R on \mathbb{R} by

$$xRy$$
 if and only if $[x] = [y]$.

We showed yesterday that R is an equivalence relation (so you do not need to show this here). Find the partition on the set \mathbb{R} that corresponds to the equivalence relation R.

demma 5.4 on p242 gives us: the collection of equivalence dasses
$$A = \{ [x] : x \in X \}$$
 is a patition of X.

$$A = \{ [x] : x \in \mathbb{R} \}$$
but $[x] = \{ y : y \in \mathbb{R} \text{ and } y \in \mathbb{R} \}$

$$= \{ y : y \in \mathbb{R} \text{ and } [y] = [x] \} \in \mathbb{Z} \text{ x and }$$

 $A = \{ [x] : x \in \mathbb{R} \}$ but $[x] = \{ y : y \in \mathbb{R} \text{ and } y\mathbb{R} \times \}$ $= \{ y : y \in \mathbb{R} \text{ and } \mathbb{C} \times \mathbb{C} \} \}$ ceiling if for some $m \in \mathbb{Z}$ $m-1 < x \leq m$ and $m-1 < y \leq m$ so we can describe our collection A as the set of all $A_m = \{ z : m-1 < z \leq m \}$ where $m \in \mathbb{Z}$.

3. $X = \mathbb{R} \times \mathbb{R}$, and, for each $a \in \mathbb{R}$, let A_a be the set of points on the vertical line through (a,0). The collection of subsets A_a forms a partition of X (you do not need to show this). Find the equivalence relation R on X that corresponds to this partition. R (we know this is a partition.) of A be the collection of all A whice a EIR (we know this is a partition.) demma 5.5 on p 244 gives us the relation we are looking for.

Notice: if $(x_1,y_2) \in Aa$ then $x_1 = a$ if $(x_2,y_2) \in Aa$ then $x_2 = a$

so both $(x_1,y_1)_1(x_2,y_2) \in Aa$ if $x_1=x_2=a$ so in general (x_1,y_1) and (x_2,y_2) are in the same set A in the collector A is $X_1 = X_2$

There for our relation is: