		Category	L	T	P	Credit	Year of
CST 308	COMPREHENSIVE						Introduction
	COURSE WORK	PCC	1	0	0	1	2019

Preamble:

The objective of this Course work is to ensure the comprehensive knowledge of each student in the most fundamental core courses in the curriculum. Six core courses credited from Semesters 3, 4 and 5 are chosen for the detailed study in this course work. This course helps the learner to become competent in cracking GATE, placement tests and other competitive examinations

Prerequisite:

- 1. Discrete Mathematical Structures
- 2. Data Structures
- 3. Operating Systems
- 4. Computer Organization And Architecture
- 5. Database Management Systems
- 6. Formal Languages And Automata Theory

Course Outcomes: After the completion of the course the student will be able to

CO1	Comprehend the concepts of discrete mathematical structures (Cognitive Knowledge Level: Understand)
CO2:	Comprehend the concepts and applications of data structures (Cognitive Knowledge Level: Understand)
CO3:	Comprehend the concepts, functions and algorithms in Operating System (Cognitive Knowledge Level: Understand))
CO4 :	Comprehend the organization and architecture of computer systems (Cognitive Knowledge Level: Understand)
CO5:	Comprehend the fundamental principles of database design and manipulation (Cognitive Knowledge Level: Understand)
CO6 :	Comprehend the concepts in formal languages and automata theory Cognitive Knowledge Level: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
CO1	(0		AF	JD.	U		ζA	LA	W		(
CO2	(0	7	Н	NI	N	\cap	(7)	0	Δĭ		(
CO3	(0		'n	iV	Fi	50	ĬŤ	∇	1.1.		(
CO4	②	0		LN	1. V		100	1 1	J.			②
CO5	②	②										②

Assessment Pattern

Bloom's Category	End Semester Examination
Remember	10
Understand	20
Apply	20
Analyse	
Evaluate	
Create	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
50	0	50	1 hour

End Semester Examination Pattern: Objective Questions with multiple choice (Four). Question paper include fifty questions of one mark each covering the five identified courses.

Syllabus

Full Syllabus of all six selected Courses.

- 1. Discrete Mathematical Structures
- 2. Data Structures
- 3. Operating Systems
- 4. Computer Organization And Architecture
- 5. Database Management Systems
- 6. Formal Languages And Automata Theory

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures				
1	DISCRETE MATHEMATICAL STRUCTURES (14 hours)					
1.1	Mock Test on Module 1 and Module 2	1 hour				
1.2	Mock Test on Module 3, Module 4 and Module 5	1 hour				
2	DATA STRUCTURES					
2.1	Mock Test on Module 1, Module 2 and Module 3	1 hour				
2.2	Mock Test on Module 4 and Module 5					
3	OPERATING SYSTEMS					
3.1	Mock Test on Module 1 and Module 2	1 hour				
3.2	Mock Test on Module 3, Module 4 and Module 5	1 hour				
3.3	Feedback and Remedial	1 hour				
4	COMPUTER ORGANIZATION AND ARCHITECTURE					
4.1	Mock Test on Module 1, Module 2 and Module 3 1 hour					
4.2	Mock Test on Module 4 and Module 5					
5	DATABASE MANAGEMENT SYSTEMS					

5.1	Mock Test on Module 1, Module 2 and Module 3	1 hour
5.2	Mock Test on Module 4 and Module 5	1 hour
6	FORMAL LANGUAGES AND AUTOMATA THEORY	
6.1	Mock Test on Module 1, Module 2 and Module 3	1 hour
6.2	Mock Test on Module 4 and Module 5	1 hour
6.3	Feedback and Remedial	1 hour

		Mod	lel Question Paper		
QP COD	Е:				
Reg No:		<u></u>			
Name:		<u></u>			PAGES: 10
	APJ A	BDUL KALAN	M TEC <mark>h</mark> nologicai	L UNIVERSITY	
\$	SIXTH SEMES	TER B.TECH	DEGR <mark>e</mark> e Examina	TION, MONTH &	YEAR
		Cor	urse Co <mark>d</mark> e: CST 308		
		Course Name:	Comprehensive Cour	rse Work	
Max. Ma	rks: 50			Du	ration: 1 Hour
Object	ive type questio	-	e choices. Mark one co question Carries 1 Mai		each question.
	That is the maximith 4 elements?	num possible nu	mber of relations from	a set with 5 elemen	nts to another set
(A	a) 2^10	(B)2 ¹⁶	(C)2^20	(D)2^25	
	ne set {1,2,4,7,8 ement 13	,11,13,14} is a	group under multiplica	tion modulo 15. Fir	nd the inverse of
(A	A) 7	(B) 13	(C) 1	(D) 8	

3. Consider the recurrence relation $a_1=2,\,a_n=3n+a_{n-1}$ Then a_{72} is

	(A) 7882	(B) 7883	(C) 7884	(D) 7885	
4.	Which among the following	llowing is a contra	adiction?		
	(A) $(p \land q) \lor \neg (p \lor q)$	_		<i>q</i>)	
	(C) $(p \land q) \land \neg (p \lor q)$		D) $(p \land q) \lor (p \land \neg$		
	ÀDI	ARIN	1 11 1/2 //	LAAL	
5.	The number of non-r	negative solutions	to $x + y + z = 18$,	with conditions $x \ge 3$	$3, y \ge 2, z \ge$
	1is	TLI NI/			
	(A) 84 (B) 9	(C) 105	(D) 1	21	
6.	The solution of the		` '		ditions $a_0 =$
	$2, a_1 = 7$, is		LICH		Ů
	(A) $3(2)^n - (-1)^n$	(B) $3(2)^n + 6$	$(-1)^n$		
	(C) $-3(2)^n - (-1)^n$				
7.	Which among the fol	llowing is not a su	bgroup of the set of	Complex numbers un	nder
	addition?	C		•	
	(A) R, the set of all I	Real numbers.			
	(B) Q ⁺ , the set of pos		nbers.		
	(C) Z , the set of all in				
	(D) The set <i>iR</i> of pur	_	mbers including 0		
8.	Minimum number n	of integers to be s	selected from $S = \{1$,2,,9} to guarante	e that the
	difference of two of				
	(A) 3	(B) 4	C) 6	(D) 9	
9.	Find the contrapositi	ve the of statemen	nt "If it is a sunday, t	hen I will wake up lat	te"
	(A) If I am not w	aking up late, then	n it is a suniday		
	(B) If I am not w	aking up late, ther	n it is not a suniday		
	(C) If it is not a s	sunday, then I will	not wake up late.		
	(D) It is not a sur	nday or I will wak	e up late		
10	In the poset $(Z^+,)$	(where Z ⁺ is the s	et of all positive int	egers and is the divi	ides relation),
	which of the following	ng are false?			
	I. 3 and 9 is compara	ıble			
	II. 7 and 10 is compa	arable			
	III. The poset $(Z+,)$	is a total order			
	(A) I and III	(B) II only	(C) II and I	II (D) I	II only
11.	. Consider the follow:	ing sequence of o	perations on an emp	ry stack.	

push(22); push(43); pop(); push(55); push(12); s=pop();

COMPUTER SCIENCE AND ENGINEERING

	following sequence of ope			
	enqueue(27); dequeue(); e	nqueue(38); enq	ueue(12); q=dec	queue();
The value of s		(C) 20	(D) 70	
(A) 44	(B) 54	(C) 39	(D) 70	
	g postfix expression with $\frac{1}{43} + 51 = -$	single digit opera	ands is evaluate	d using a stack:
Note that ^ is	the exponentiation opera	tor. The top two	elements of the	e stack after the first *
is evaluated a		EDCI		
(A) 12,2	(B) 12,5	(C) 2,12		(D) 2,5
resulting tree (A) One right (B) One left r (C) One left r (D) The resul	otation followed by two riotation and one right rotating tree itself is AVL 4-ary tree, every internal rich a tree with 6 internal rich.	following is required ght rotations ion	uired?	
I. a b c f d e II. a b e d f c III. a b f c d e	following graph with the f	Collowing sequen	ces	
IV. afcbed	b	е		
f	С			
	d			

Which are Depth First Traversals of the above graph?

- (A) I, II and IV only(B) I and IV only(C) II, III and IV only(D) I, III and IV only
- 16. Consider a hash table of size seven, with starting index zero, and a hash function (2x + 5) mod7. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 4, 9, 6 is inserted into the table using closed hashing? Note that '_' denotes an empty location in the table.
 - $(A) 9, _, 1, 6, _, _, 4$
- (B) 1, _, 6, 9, _, _, 4
- (C) 4, _, 9, 6, _, _, 1
- (D) 1, , 9, 6, , , 4
- 17. Consider the following C program where TreeNode represents a node in a binary tree

```
struct TreeNode {
struct TreeNode *leftChild;
struct TreeNode *rightChild;
int element;
};
int CountNodes(struct TreeNode *t)
{
if((t==NULL)||((t->leftChild==NULL) && (t->rightChild==NULL)))
    return 0;
else
{
    return 1+CountNodes(t->leftChild)+CountNodes(t->rightChild)
}
}
```

The value returned by CountNodes when a pointer to the root of a binary tree is passed as its argument is

- (A) number of nodes
- (B) number of leaf nodes
- (C) number of non leaf nodes
- (D) number of leaf nodes-number of non leaf nodes
- 18. How many distinct binary search trees can be created out of 6 distinct keys?
 - (A) 7
- (B) 36
- (C) 140
- (D) 132
- 19. Suppose a disk has 400 cylinders, numbered from 0 to 399. At some time the disk arm is at cylinder 58, and there is a queue of disk access requests for cylinder 66, 349, 201, 110, 38, 84, 226, 70, 86. If Shortest-Seek Time First (SSTF) is being used for scheduling the disk access, the request for cylinder 86 is serviced after servicing number of

	equests. A) 1	(B) 2	(C)3	(D)4	
`		. ,		ble entry of 2 bytes can ac	ldress
_		sical memory.			
(1	A) 2^12	(B) 2 ¹⁶	(C) 2 ¹⁸	(D) 2^28	
		fragmentation B) 4KB		d process size is 103KB. D) 2KB	
22. V	Which of the following	ng scheduling p	olicy is likely to impro	ve interactiveness?	
(1	A) FCFS		(B) Round Robin		
(0	C) Shortest Process 1	Next	(D) Priority Based Sc	geduling	
23. C	Consider the following Semaphore X				
V	oid A ()		Void B ()		
{			{		
	While (1)		While	(1)	
	{		{		
	P(X);		P(Y);		
	Print'1';		P(X);		
	V(Y);		Print'0	' ;	
	}		V(X);		
}			}		
			}		
T	he possible output o	f the program:			
(1	A) Any number of 0	's followed by	any number of 1's.		
(1	B) Any number of 1	's followed by	any number of 0's.		
(0	C) 0 followed by dea	adlock			
(]	D) 1 followed by dea	adlock			
			new process arrives at	the rate of 12 processes per	
	ninute and each such PU utilization?	process requir	es 5 seconds of service	time. What is the percentage	e of
	A) 41.66	(B) 100.00	(C) 240.00	(D) 60.00	
25. A	system has two pro	cesses and thre	e identical resources. I	Each process needs a maximu	ım of
tv	wo resources. This c	ould cause			
(1	A) Deadlock is possi	ble	(B) Deadlock	is not possible	

	(C) Starv	vation may be pres	ent	(D) Thrashing					
26	. Which o	f the following is t	rue with regard to	o Round Robin sche	eduling technique?				
	(A) Resp	(A) Responds poorly to short process with small time quantum.							
	(B) World	(B) Works like SJF for larger time quantum							
	` '	(C) Does not use a prior knowledge of burst times of processes.							
	` /	are that the ready of							
27	cache massociati	emory is 2^N wor ve cache memory,	ds. The size of e	ach cache block is mber of bits) of the	2^W words. The capacity of 2^K words. For a M-way settag field is				
	` ′		` ′	$-N - K + log_2M$					
28		ble (one word is	• •	•	, where the memory is word- ous of the processor is atleast				
	(A) 30	(B) 31	(C) 32	(D)	None				
29	(with destages we pipeline	lay 900 picosecono	ds) is replaced will lays 600 and 55 t.	th a functionally eq	0 picoseconds. The first stage uivalent design involving two e throughput increase of the				
30	6 bits in address a (A) block (B) block (C) block	the tag. The numb	bits, word (offset bits))	t (index) and word (t) field = 9 bits t) field = 8 bits t) field = 9 bits	ock size 512 words. There are offset) fields of physical				
31	instruction addressing	on format, with and modes; a registive field. If an instruct	4 fields: an opc ster address field	ode field; a mode	bits each. The computer has field to specify one of 12 48 registers; and a memory pcode field? (D) 14 bits				
32	-			it address. Suppose	there are 252 two-address				

(C) 2^28 (D) 2^30

	*	segment takes 1 cyc	
(A) 1200 cycles	(B) 206 cycles	(C) 207 cycles	(D) 205 cycles
34. Match the following Lis	ete:		
P.DMA		rity Interrupt	
Q. Processor status Wo		Transfer	
R. Daisy chaining	3.CPU		
S. Handshaking		nchronous Data Trai	nefer
(A) P-1, Q-3, R-4, S-2	(B) P-2, Q-3,		
(C) P-2, Q-1, R-3, S-4	(D) P-4, Q-3,	·	
(C) 1-2, Q-1, K-3, 5-4	(D) 1 -4, Q-3,	K-1, 5-2	
R1 and R2 are two rela to-many. R3 is another	tionships between E relationship betwee ributes of their own.	1 and E2, where R1 n E2 and E3 which What is the minim	mple single-valued attributes. is one-to-many, R2 is manyis many-to-many. R1, R2 and um number of tables required
-	B) 4	(C) 5	(D) 6
36. Identify the minimal	key for relational	scheme R(U, V, W	V, X, Y, Z) with functional
dependencies $F = \{U - $	•		
	(B) UW	(C) UX	(D) UY
37. It is given that: "Every many students", what is entity to the "Course" e (A) M:1 relationship (C) 1:1 relationship	s the cardinality of the entity in the ER diagr (B) M:N relat	ne relation say "Regi ram to implement the ionship	ster" from the "Student"
38. Consider the relation br	ranch (branch nama	accete branch city	
	` —		S WHERE T.assets > L.assets
	-	Totalien 1, orallen	WILLIAM T. Massels - L. Massels
AND S.branch_city = "			
AND S.branch_city = " Finds the names of		n all branches locate	ed in TVM.
AND S.branch_city = " Finds the names of (A) All branches that ha	ave greater assets that		
AND S.branch_city = " Finds the names of	ave greater assets that ave greater assets that	n some branch locat	

(A) 2^24

(B) 2²6

COMPUTER SCIENCE AND ENGINEERING

1 1 Null 1 5 5 2 1 9 5 13 5 13 9 15 Which one of the following can be a foreign key that refers to the same relation? (A) A2 (B) A3 (C) A4 (D) ALL 40. A relation R(ABC) is having the tuples (1,2,1), (1,2,2), (1,3,1) and (2,3,2). Which of the following functional dependencies holds well? (A) $A \rightarrow BC$ (B) $AC \rightarrow B$ $(C) AB \rightarrow C$ (D) BC \rightarrow A 41. Consider a relation R with attributes A, B, C, D and E and functional dependencies $A \rightarrow BC$, BC \rightarrow E, E \rightarrow DA. What is the highest normal form that the relation satisfies? (A) BCNF (B) 3 NF (C) 2 NF (D) 1 NF 42. For the given schedule S, find out the conflict equivalent schedule. S: r1(x); r2(Z); r3(X); r1(Z); r2(Y); r3(Y); W1(X); W2(Z); W3(Y); W2(Y)(A) $T1 \rightarrow T2 \rightarrow T3$ (B) T2->T1->T3(C) T3 \rightarrow T1 \rightarrow T2 (D) Not conflict serializable 43. Which of the following strings is in the language defined by the grammar: $S \rightarrow aX$ $X \rightarrow aX \mid bX \mid b$ (A) aaaba (B) babab (C) aaaaa (D) ababb 44. Consider the regular expression (x+y)*xyx(x+y)* where $\Sigma = (x,y)$. If L is the language represented by this regular expression, then what will be the minimum number of states in a DFA recognizing L? (C)4(D) 5 (A) 2(B) 3 45. Which of the following cannot handle the same set of languages? (A) Deterministic Finite Automata and Non-Deterministic Finite Automata (B) Deterministic Push Down Automata and Non-Deterministic Push Down Automata (C) All of these (D) None of these 46. Consider L be a context-free language and M be a non-context-free language. Which among the following is TRUE?

39. Consider the following relation instance, where "A" is primary Key.

A4

A3

A2

- (I) L will definitely pass the pumping lemma test for CFLs.
- (II) M will definitely pass the pumping lemma test for CFLs.
- (III) L will not definitely pass the pumping lemma test for CFLs.
- (IV) M will not definitely pass the pumping lemma test for CFLs.
- (V) L may or maynot pass the pumping lemma test for CFLs.
- (VI) M may or maynot pass the pumping lemma test for CFLs.
- (A) I, II
- (B) II, V
- (C) I, VI
- (D) IV, V
- 47. Which of the following problem(s) is/are decidable?
 - (I) Whether a CFG is empty or not.
 - (II) Whether a CFG generates all possible strings.
 - (III) Whether the language generated by a Turing Machine is regular.
 - (IV) Whether the language generated by DFA and NFA are same.
 - (A) I and II
- (B) II and III
- (C) II and IV
- (D) I and IV

- 48. Which of the following is/are TRUE?
 - (I) Regular languages are closed under complementation.
 - (II) Recursive languages are closed under complementation.
 - (III) Context free languages are closed under complementation.
 - (IV) Context free languages are not closed under complementation.
 - (A) I, II and III
- (B) I, II and IV
- (C) II and III
- (D) III only
- 49. Which of the following regular expressions defined over the alphabet $\Sigma = \{0,1\}$ defines the language of all strings of length 1 where 1 is a multiple of 3?
 - (A) (0+1+00+11+000+111)*
- (B) (000 + 111)*
- (C)((0+1)(0+1)(0+1))*
- (D) ((000 + 01 + 1)(111 + 10 + 0))*
- 50. Determine the minimum number of states of a DFA that recognizes the language over the alphabet {a,b} consisting of all the strings that contain at least three a's and at least four b's.
 - (A) 6

- (B) 12
- (C) 15
- (D) 20

ANSWER KEY:-

QNo	Ans. Key								
1	(C)	11	(C)	21	(C)	31	(B)	41	(A)

COMPUTER SCIENCE AND ENGINEERING

2	(A)	12	(A)	22	(B)	32	(D)	42	(D)
3	(B)	13	(A)	23	(D)	33	(D)	43	(D)
4	(C)	14	(C)	24	(B)	34	(B)	44	(C)
5	(B)	15	(A)	25	(B)	35	(C)	45	(B)
6	(A)	16	(D)	26	(C)	36	(D)	46	(C)
7	(B)	17	(C)	27	(A)	37	(A)	47	(D)
8	(C)	18	(D)	28	(A)	38	(B)	48	(B)
9	(B)	19	(C)	29	(D)	39	(B)	49	(C)
10	(C)	20	(D)	30	(C)	40	(D)	50	(D)