Data Quality Metrics

(IN COLLABORATION WITH BMW GROUP)

Developers: Vladana Djakovic, Valari Pai, Ekaterina Shmaneva

Supervisors: Dr Maka Karalashvili (ext.), Prof. Dr Matthias Schubert (int.)

Introduction

Theoretical aspects

(Summarization&classification tasks, Existing methods)

Background

(Data processing & used model)

Implementation details

(Storyline, insights, results)

Summary

(Future work, conclusion)

CONTENT

MOTIVATION

When (or after) the car is produced, different defects occur. These defects are recorded and stored in the data source — the "Knowledge base" — that summarizes similar defects and assigns them to the prebuilt defect cluster. Each defect contains high amount of human written-text data, which makes analysis time-consuming and complicated

OUR GOAL

To build a model that will process the human created text data of different length, create a summary of it, classify it based on the "sense" of the generated summary and evaluate the quality of it

Summarization

- a text that is produced from one or more texts, that contains a significant portion of the information in the original text(s).

If it was created with the computer, it is called automatic summarization.

Can be abstractive and extractive.

Classification

- categorizing open-ended text into two or more predefined classes based on some rules or similarities between these texts.

Can be performed based on of the three approaches:

- Rule-based systems
- ML-based systems
- Hybrid systems

Models, used only for summarization

(e.g. Sumy)

Models, used only for classification

(e.g. Naive Bayes, SVMs)

Models, used for both tasks

(e.g. Gensim, CNNs, RNNs, BERT-based models, GPT models, XLNet, T5)___

Data access and security issues

Insufficient resources issues

Data access and security issues

(new open-source dataset should be found, that would match the original one)

Amazon Product Review Dataset

Information

Structure

ID, Product ID, User ID, Profile Name,

O columns: Helpfulness Numerator, Helpfulness

Denominator, Score, Time, Summary, Text

568.427 reviews

Content

2 columns kept: Summary, Text

Useful data

Lack of proper computational resources

(lightweight models should be found to complete the task)

OUR CHOICE: T5 model summarization

Encoder & Decoder blocks

(decoder block helps model to create better summary)

The output is a text string

→ improper output for summarization task)

Robust and extensible

(weights are assigned more properly, the model can be easily modified to other tasks)

OUR CHOICE: DistilBERT model classification

Small, fast, cheap

(40% less parameter than BERT \rightarrow 60% faster)

Distilled & transfer-learning adapted

→ Above 90% accuracy on classification)

Open-source & flexible

(model available via HuggingFace, retains 97% of BERT performance)

PROJECT TIMELINE

Oct, 2021

(Getting to know the supervisor, the project and the goal of it, searching for the data)

Nov, 2021

(Exploration of the dataset, metric extraction & processing ideas, building a data loader)

Dec, 2021

(Research on summarization techniques, exploring necessary packages)

Jan, 2022

(First-choice model research, baseline model building (RoBERTa), research on classification)

PROJECT TIMELINE

Feb, 2022

(RoBERTa issue handling, parameter fine-tuning, classification implementation)

Mar, 2022

(Classification model issue handling, testing and parameter fine-tuning)

Apr, 2022

(Second-choice model research and implementation (Google T5 model))

May, 2022

(New model issue handling, parameter finetuning, documentation preparation)

Note on summarization model change

Pre-training

Pre-training time

Base of the model

Parameter set

Optimizer used

ROUGE Score (official paper)

RoBERTa

5 datasets containing about 160GB of text

1 day (1024xV100 GPUs, batch size 8k)

BERT (bi-directional transformer model)

354M parameters (RoBERTa-large)

Adam (learning rate = 0.0006)

F-measure (ROUGE-L) = 25.67

VS.

Google T5

Multi-task un-&supervised tasks on 16 datasets

~12 hours (Titan RTX, batch size 8k)

_

11B parameters (t5-11b)

AdamW & AdaFactor (learning rate = 0.0003)

F-measure (ROUGE-L) = 38.35

Implementation: Set Up

Computational System

Google Colab Pro (up to 24GB RAM, K80, P100, T4 GPUs)

Environment

Python ver. 3.8.5 and above

Model & documentation


```
class SummaryModel(pl.LightningModule):

def __init__(self):
    super().__init__()
    #initializing model
    self.model = T5ForConditionalGeneration.from_pretrained(modelName, return_dict=True)

# Defining forward function and it output
def forward(self,input_ids, attention_mask, decoder_attention_mask, labels=None):
    output = self.model(
    input_ids,
    attention_mask=attention_mask,
    labels=labels,
    decoder_attention_mask=decoder_attention_mask
)
return output.loss, output.logits
```

```
def training_step(self, batch, batch_idx):
       input_ids = batch[ "text_input_ids"]
21
       attention_mask = batch["text_attention_mask"]
      labels = batch["labels"]
       x = batch[ "text_input_ids"]
24
       labels_attention_mask = batch["labels_attention_mask"]
25
       loss, outputs = self(
27
         input_ids=input_ids,
         attention_mask=attention_mask,
         decoder_attention_mask=labels_attention_mask,
         labels=labels
31
32
33
       batch_dictionary={ "loss": loss, "labels": labels}
34
35
       self.log("Loss/Train (Batch)", loss, prog_bar=True,logger=True)
36
       self.logger.experiment.add_scalar("Loss/Train (Epoch)", loss, self.current_epoch)
       #return loss
       return batch_dictionary
39
```

```
def validation_step(self, batch, batch_idx):
41
       input_ids = batch[ "text_input_ids"]
       attention_mask = batch["text_attention_mask"]
      labels = batch["labels"]
      labels_attention_mask = batch["labels_attention_mask"]
       loss, outputs = self(
         input_ids=input_ids,
         attention_mask=attention_mask,
         decoder_attention_mask=labels_attention_mask,
         labels=labels
52
53
       self.logger.experiment.add_scalar("Loss/Val (epoch)",loss,self.current_epoch)
54
       self.log("Loss/Val (Batch)", loss, prog_bar=True,logger=True)
       epoch_dictionary={'loss': loss}
56
       return epoch_dictionary
57
```

```
def test_step(self, batch, batch_idx):
       input_ids = batch[ "text_input_ids"]
61
       attention_mask = batch["text_attention_mask"]
       labels = batch["labels"]
       labels_attention_mask = batch["labels_attention_mask"]
65
       loss, outputs = self(
66
         attention_mask=attention_mask,
67
         decoder_attention_mask=labels_attention_mask,
68
         labels=labels
69
70
       self.logger.experiment.add_scalar("Loss/Test",loss,self.current_epoch)
71
       self.log("test_loss", loss, prog_bar=True,logger=True)
72
       return {'loss': loss}
73
74
    # Configurating optimizer as most used one AdamW
     def configure_optimizers(self):
76
        return AdamW(self.parameters(), lr=0.0001)
77
```

Implementation: DistilBERT Tokenizer

```
tokenizer([training_sentences[0]], truncation=True, padding=True, max_length=128)
        # Tokenizing the data
    train_encodings = tokenizer(training_sentences,truncation=True,padding=True)
    val_encodings = tokenizer(validation_sentences,truncation=True,padding=True)
    # Slicing the dataset
    train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings),training_labels))
    val_dataset = tf.data.Dataset.from_tensor_slices((dict(val_encodings),validation_labels))
    # Loading the DistilBert model from transformers
    model = TFDistilBertForSequenceClassification.from_pretrained
       ('distilbert-base-uncased',num_labels=2)
12
    # Defining and fitting the model on the training data
    optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5, epsilon=1e-08)
    callbacks=tf.keras.callbacks.EarlyStopping(monitor='accuracy',
                                                  min_delta=0.0001,
16
                                                  patience=3,
                                                  mode='auto',
                                                  verbose=2,
                                                  baseline=None)
21
    model.compile(optimizer=optimizer, loss=model.compute_loss, metrics=['accuracy'])
    model.fit(train_dataset.shuffle(100).batch(16),
              epochs=5,
^{24}
              batch_size=16,
              validation_data=val_dataset.shuffle(100).batch(16),callbacks=callbacks)
```

Implementation: DistilBERT Tokenizer

```
tokenizer([training_sentences[0]], truncation=True, padding=True, max_length=128)
        # Tokenizing the data
    train_encodings = tokenizer(training_sentences,truncation=True,padding=True)
    val_encodings = tokenizer(validation_sentences,truncation=True,padding=True)
    # Slicing the dataset
    train_dataset = tf.data.Dataset.from_tensor_slices((dict(train_encodings),training_labels))
    val_dataset = tf.data.Dataset.from_tensor_slices((dict(val_encodings),validation_labels))
    # Loading the DistilBert model from transformers
    model = TFDistilBertForSequenceClassification.from_pretrained
       ('distilbert-base-uncased',num_labels=2)
12
    # Defining and fitting the model on the training data
    optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5, epsilon=1e-08)
    callbacks=tf.keras.callbacks.EarlyStopping(monitor='accuracy',
                                                  min_delta=0.0001,
16
                                                  patience=3,
                                                  mode='auto',
                                                  verbose=2,
                                                  baseline=None)
21
    model.compile(optimizer=optimizer, loss=model.compute_loss, metrics=['accuracy'])
    model.fit(train_dataset.shuffle(100).batch(16),
              epochs=5,
^{24}
              batch_size=16,
              validation_data=val_dataset.shuffle(100).batch(16),callbacks=callbacks)
```

Implementation: DistilBERT Classes

Initial text of the review

Implementation: DistilBERT Classes

Newly generated summary

Performance: Metrics

Running time

shows the amount of time that was required to perform the training (only)

Validation and training losses

describe the performance of the model, indicating how well it is fitting the training and the new data correspondingly

ROUGE Score

compares automatically produced summary against reference (human-written) ones

Accuracy

defines the number of correctly predicted data points out of all the data points

Performance: T5

	10k sample	VS.	100k sampl
Running time	approx 30 min		approx 3 hours
Train loss	2.481		2.849
Validation loss	3.532		3.859
ROUGE Scores Rouge-1 recall precision f-measure Rouge-L	0.266 1.0 0.421 0.266		0.143 1.0 0.250 0.143
recall precision f-measure	1.0 0.421		1.0 0.250

Performance: Classification

	10k sample	VS.	100k sample
Running time	approx 36 min		approx 3.5 hours
Train loss	0.137		0.094
Accuracy	0.953		0.963
Validation loss	0.274		0.194
Validation accuracy	0.901		0.935
Classification error	0.1		0.1

FUTURE

- 1. Model adaptation to the BMW data
- 2. Further summarization model fine-tuning to make the model more precise
- 3. Expanding the classification of the data (based on the information, that the summaries contain)

Why task is important

(Analysing the human-written defects is not easy and time consuming)

What models exist

(Summarization: BERT (&variations), GPT, T5, CNN, RNN; Classification: Naive Bayes, SVM, summarization ones)

What models were chosen

(Summarization: Google T5 model; Classification: DistilBERT)

Performance analysis

(Summarization: all of the n-grams in the generated summaries are present in the reference text; Classification: overall accuracy > 90%, error = 0.1)

What else can be done

(Summarization: fine-tuning to increase the quality, Classification: expanding the number of classes)

Why task is important

(Analysing the human-written defects is not easy and time consuming)

What models exist

What model we've chosen

Performance analysis

What else can be done

References

Literature:

- Jacob Devlin andothers. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding http://arxiv.org/abs/1810.04805
- Aastha Singh. Evolving with BERT: Introduction to RoBERTa https://medium.com/analytics-vidhya/evolving-with-bert-introduction-to-roberta-5174ec0e7c82
- Yinhan Liu andothers. RoBERTa: A Robustly Optimized BERT Pretraining Approach https://arxiv.org/abs/1907.11692
- Rohan Jagtap. RoBERTa: Robustly Optimized BERT-Pretraining Approach. DataSeries https://medium.com/dataseries/roberta-robustly-optimized-bert-pretraining-approach-d033464bd946
- Anubhav. Step by Step Guide: Abstractive Text Summarization Using RoBERTa https://anubhav20057.medium.com/step-by-step-guide-abstractive-text-summarization-using-roberta-e93978234a90
- Manmohan Singh. Summarize Reddit Comments using T5, BART, GPT-2, XLNet Models https://towardsdatascience.com/summarize-reddit-comments-using-t5-bart-gpt-2-xlnet-models-a3e78a5ab944
- Sukanya Bag. Text Summarization using BERT, GPT2, XLNet

 https://medium.com/analytics-vidhya/text-summarization-using-bert-gpt2-xlnet-5ee80608e961
- Summarization with GPT-3. KDnuggets. Section: Products and Services https://www.kdnuggets.com/2022/04/packt-summarization-gpt3.html
- Priya Shree. The Journey of Open AI GPT models. Walmart Global Tech Blog https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
- Maria Yao. 10 Leading Language Models For NLP In 2021 https://www.topbots.com/leading-nlp-language-models-2020/
- Qiurui Chen. T5: a detailed explanation https://medium.com/analytics-vidhya/t5-a-detailed-explanation-a0ac9bc53e51
- Pedro Marques. Fine tuning a T5 text-classification model on colab. Pedrormarques https://pedrormarques.wordpress.com/2021/10/21/fine-tuning-a-t5-text-classification-model-on-colab/

References

Literature:

- Mathew Alexander. Data to Text generation with T5; Building a simple yet advanced NLG model https://towardsdatascience.com/data-to-text-generation-with-t5-building-a-simple-yet-advanced-nlg-model-b5cce5a6df45
- Abstractive Summarization Using Google's T5. Turbolab Technologies Blog. Section: Technology https://turbolab.in/abstractive-summarization-using-googles-t5/
- Eduard Hovy. Text Summarization. The Oxford Handbook of Computational Linguistics https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199276349.001.0001/oxfordhb-9780199276349-e-32
- Praveen Dubey. Understand Text Summarization and create your own summarizer in python https://towardsdatascience.com/understand-text-summarization-and-create-your-own-summarizer-in-python-b26a9f09fc70
- Text Classification: What it is And Why it Matters https://monkeylearn.com/text-classification/
- Shrivar Sheni. Text Summarization Approaches for NLP Practical Guide with Generative Examples https://www.machinelearningplus.com/nlp/text-summarization-approaches-nlp-example/
- Susan Li. Multi-Class Text Classification with Doc2Vec & Logistic Regression https://towardsdatascience.com/multi-class-text-classification-with-doc2vec-logistic-regression-9da9947b43f4
- In'es Rold'os. Go-to Guide for Text Classification with Machine Learning. MonkeyLearn Blog. Section: Text Classification https://monkeylearn.com/blog/text-classification-machine-learning/
- Leo Laugier. Extractive Document Summarization Using Convolutional Neural Networks Reimplementation https://www.semanticscholar.org/paper/Extractive-Document-Summarization-Using-Neural-Laugier/ed0f189bbbbccceefb41ccb36e1c5b62bc36d2fb
- Christian Heumann andothers. LMU Course: Deep Learning for Natural Language Processing https://moodle.lmu.de/course/view.php?id=17645
- Zhenzhong Lan andothers. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations https://arxiv.org/abs/1909.11942
- Victor Sanh andothers. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter https://arxiv.org/abs/1910.01108

References

Literature:

- Zihang Dai. XLNet: Generalized Autoregressive Pretraining for Language Understanding
 - https://www.diva-portal.org/smash/record.isf?pid=diva2%3A1606199&dswid=-4773
- What is a Data Steward? Experian Business
 - https://www.experian.co.uk/business/glossary/data-steward/
- SAS-institute. What is a data scientist?
 - https://www.sas.com/en_us/insights/analytics/what-is-a-data-scientist.html
- Rachel Draelos. Best Use of Train/Val/Test Splits, with Tips for Medical Data
 - https://glassboxmedicine.com/2019/09/15/best-use-of-train-val-test-splits-with-tips-for-medical-data/
- Andrew Fogarty. Summarization: T5
 - http://seekinginference.com/applied_nlp/T5.html#rouge-metrics
- Kavita Ganesan. An intro to ROUGE, and how to use it to evaluate summaries
 - https://www.freecodecamp.org/news/what-is-rouge-and-how-it-works-for-evaluation-of-summaries-e059fb8ac840/

Data:

Amazon. Amazon Product data https://imcaulev.ucsd.edu/data/amazon/

Imagery:

- unsplash.com
- pinterest.de
- behance.net

Graphics:

icons8.com

Performance analysis: T5 Graphs

10k sample

100k sample

Performance analysis: T5 Graphs

10k sample

(b) Validation loss calculated epoch-wise

100k sample

(b) Validation loss calculated batch-wise