Warm-up question

Consider the set of matrices of the form $M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ where $\theta \in \mathbb{R}$. Sketch the vector \mathbf{x} and the matrix product $M\mathbf{x}$ where:

(a)
$$\theta = \frac{\pi}{4}$$
 and $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (c) $\theta = \frac{\pi}{2}$ and $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(b)
$$\theta = \frac{\pi}{4}$$
 and $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (d) $\theta = \frac{\pi}{2}$ and $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Seminar questions

- 1. Using the cosine law from lecture, verify that the angle between \mathbf{x} and $M\mathbf{x}$ is θ for parts (a) and (c) of the Warm-up question.
- 2. Three vectors, \mathbf{u} , \mathbf{v} and \mathbf{w} are given below. Show, geometrically, how the vector \mathbf{w} can be written as a linear combination of \mathbf{u} and \mathbf{v} ; that is, show that $\mathbf{w} = C_1\mathbf{u} + C_2\mathbf{v}$ for some $C_1, C_2 \in \mathbb{R}$. Do this by finding the required values for C_1 and C_2 (use a ruler if you have one, or give your best estimate).

- 3. Create one vector that runs parallel to $\begin{pmatrix} 2\\-1\\1\\2 \end{pmatrix}$ and one vector that runs perpendicular to it. Find the magnitude of each.
- 4. Create a line that passes through point (0, -2, 2) and runs perpendicular to the vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Write the equation of this line in vector, parametric, normal, and general forms.
- 5. Verify the Cauchy-Schwarz inequality and the triangle inequality for the vectors

$$\mathbf{u} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}.$$

Additional practice problem

6. What is the distance between the vectors $\begin{pmatrix} 1\\1\\4\\-2 \end{pmatrix}$ and $\begin{pmatrix} -3\\5\\-1\\1 \end{pmatrix}$?