Worksheets Exercises

Unit 8

Exercise 8.1 – Sample size, Mean, Standard Deviation

Diet	Wtioss				1		
Α	3.709						
Α	7.087	Diet A	n	50			
Α	6.754		Mean	5.341			
Α	8.994		SD	2.536			
Α	9.077						
Α	6.413						
Α	5.877						
Α	2.572						
Α	7.520						
Α	6.881						
Α	7.265						
Α	3.477						
Α	3.755						
Α	8.760						
Α	7.032						
Α	9.052						
Α	10.062						
Α	4.840						
Α	6.449						
Α	9.019						
Α	-1.715						
Α	4.718	Diet B	n	50			
Α	4.007		Mean	3.710			
A	7.241		SD	2.769			
Α	2.128						
-	2.120			1	+		

To find the sample size \rightarrow =COUNT(B52:B101).

To find the sample mean \rightarrow =AVERAGE(B52:B101).

To find the standard deviation \rightarrow =STDEV(B52:B101).

The sample mean weight loss for Diet B is \overline{x} = 3.710. The average weight loss for those individuals who undertook Diet B is 3.710 kg, so the diet appears to have been effective. The sample standard deviation of the weight loss for Diet B is s = 2.769 kg. Since the mean weight loss is a little larger than 1 standard deviation, then a high proportion of those individuals on Diet B had a positive weight loss, again emphasising the effectiveness of the diet.

Both diets have the same sample size, hence they can be compared. The mean of diet A is higher than the mean of diet B, therefore diet A is more effective. Additionally, diet's A s.d. is smaller than diet's B s.d., meaning that diet's A results are closer to their mean.

Exercise 8.2 – Median, Quartiles, Interquartile Range

1	Diet	Wtloss					
2	Α	3.709					
3	Α	7.087	Diet A	n	50		
4	Α	6.754		Mean	5.341		
5	Α	8.994		SD	2.536		
6	Α	9.077		Median	5.642		
7	Α	6.413		Q1	3.748		
8	Α	5.877		Q3	7.033		
9	Α	2.572		IQR	3.285		
10	Α	7.520					
11	Α	6.881					
12	Α	7.265					
13	Α	3.477					
14	Α	3.755					
15	Α	8.760					
16	Α	7.032					
17	Α	9.052					
18	Α	10.062					
19	Α	4.840					
20	Α	6.449					
21	Α	9.019					
22	Α	-1.715					
23	Α	4.718	Diet B	n	50		
24	Α	4.007		Mean	3.710		
25	Α	7.241		SD	2.769		
26	Α	2.128		Median	3.745		
27	Α	6.968		Q1	1.953		
28	Α	4.853		Q3	5.404		
29	Α	0.055		IQR	3.451		
30	Α	2.680					

To find the median \rightarrow =MEDIAN(B52:B101).

To find the 1^{st} quartile \rightarrow =QUARTILE(B52:B101,1).

To find the 2^{nd} quartile \rightarrow =QUARTILE(B52:B101,3).

To find the interquartile range \rightarrow =F28-F27 (Note: Q3-Q1).

The sample median weight loss for Diet B is M = 3.745 kg, therefore the diet appears to have been effective.

The sample IQR of the Diet B weight loss is 3.451 kg. A several individuals on Diet B had a positive weight loss. The median of diet A is higher than the median of diet B, therefore diet A seems to be more effective. Additionally, diet's A IQR. is smaller than diet's B IQR, meaning that diet's A results are closer with each other.

Exercise 8.3 – Conditional Counting and Sums

Area	Brand				
1	В				
1	Other	Frequenci	es		
1	Α				
1	В		Area 1	Area 2	
1	Other	Α	11	19	
1	Α	В	17	30	
1	Other	Other	42	41	
1	Other	Total	70	90	
1	Other				
1	Other				
1	В	Percentag	es		
1	Other				
1	Other		Area 1	Area 2	
1	Α	Α	15.7	21.1	
1	Α	В	24.3	33.3	
1	Α	Other	60.0	45.6	
1	В	Total	100	100	
1	Α				
•	~				

For frequencies:

=COUNTIF(B72:B161,"A") + same for B and Other by replacing A with B and Other, respectively.

Total \rightarrow =SUM(F6:F8)

For percentages:

=100*F6/F\$9 + Dragging the formula for the other two brands.

Total \rightarrow =SUM(F15:F17)

The least favourite cereal brand in both areas is A. The most favourable cereal brand in both areas is cereal falling into the Other category. In Area 2 more people prefer cereal A or B compared to Area 1, whereas in Area 1 more people prefer Other compared to area 2.

Exercise 8.4 – Two-tailed t-test

	Α	В	С	D	E	F	G	Н
1	Batch	Agent1	Agent2		t-Test: Paired Two Sample for Mean	ns		
2	1	7.7	8.5					
3	2	9.2	9.6			Agent1	Agent2	
1	3	6.8	6.4		Mean	8.25	8.683333333	
5	4	9.5	9.8		Variance	1.059090909	1.077878788	
6	5	8.7	9.3		Observations	12	12	
7	6	6.9	7.6		Pearson Correlation	0.901055812		
3	7	7.5	8.2		Hypothesized Mean Difference	0		
9	8	7.1	7.7		df	11		
0	9	8.7	9.4		t Stat	-3.263938591		
1	10	9.4	8.9		P(T<=t) one-tail	0.003772997		
2	11	9.4	9.7		t Critical one-tail	1.795884819		
3	12	8.1	9.1		P(T<=t) two-tail	0.007545995		
4					t Critical two-tail	2.20098516		
5								
6					Difference in Means	-0.433333333		
7								
8								
9								

The obtained related samples t = -3.264 with 11 degrees of freedom.

The associated two-tailed p-value is p = 0.008, so the observed t is significant at the 5% level (two-tailed).

The sample mean numbers of Agents 1 and 2 were, respectively 8.250 and 8.683. Hence, the data constitute significant evidence that the underlying mean number of agents was greater for Agent 2, by an estimated 8.683 - 8.250 = 0.433 agents. The results suggest that Agent 2 is preferable.

Exercise 8.5 – One-tail t-test

4	Α	В	С	D	E	F	G	Н
1	Batch	Agent1	Agent2		t-Test: Paired Two Sample for Mean	ıs		
2	1	7.7	8.5					
3	2	9.2	9.6			Agent1	Agent2	
1	3	6.8	6.4		Mean	8.25	8.683333333	
5	4	9.5	9.8		Variance	1.059090909	1.077878788	
6	5	8.7	9.3		Observations	12	12	
7	6	6.9	7.6		Pearson Correlation	0.901055812		
3	7	7.5	8.2		Hypothesized Mean Difference	0		
9	8	7.1	7.7		df	11		
0	9	8.7	9.4		t Stat	-3.263938591		
1	10	9.4	8.9		P(T<=t) one-tail	0.003772997		
2	11	9.4	9.7		t Critical one-tail	1.795884819		
3	12	8.1	9.1		P(T<=t) two-tail	0.007545995		
4					t Critical two-tail	2.20098516		
5								
6					Difference in Means	-0.433333333		
7								
8								
9								

 H_0 : $\mu_1 \ge \mu_2$

 H_1 : $\mu_1 < \mu_2$

The sample mean numbers of Agent 1 and 2 were, respectively 8.250 and 8.683, so that the data are indeed consistent with H_1 .

As before, the obtained related samples t = -3.264 with 11 degrees of freedom.

The associated one-tailed p-value is p = 0.004, so the observed t is significant at the 1% level (one-tailed).

The data therefore constitute strong evidence (on a one-tailed test) that the underlying mean number of agents was greater for Agent 2, by an estimated 8.683 - 8.250 = 0.433 agents. The results continue to suggest that Agent 2 should be preferred.

Although broadly similar conclusions were reached as before, a higher level of significance was obtained with the one-tailed test.

Exercise 8.6 – F-test (Part 1)

Α	В	С	D	E	F	G	Н	1	J	K
Sex	Income									
М	40.6									
М	54.6						F-Test Two-Sample for	Variances		
М	38.6									
М	58.2							Variable 1	Variable 2	
М	34.6						Mean	52.91333333	44.23333333	
М	42.9						Variance	233.1289718	190.1758192	
М	67.5						Observations	60	60	
М	79.8						df	59	59	
М	54.4						F	1.225860221		
М	47.3						P(F<=f) one-tail	0.21824624		
М	66.4						F Critical one-tail	1.539956607		
М	69.0									
М	62.0						p2	0.43649248		
М	52.5						T.			
М	72.6									

The observed F test statistic is F = 1.226 with 59 and 59 associated degrees of freedom, giving a two tailed p-value of $p = 0.436^{NS}$. The observed F ratio is *not significant*.

Exercise 8.6 – Two-tail t-test (Part 2)

4	M	62.0	p2	0.43649248	
5	М	52.5			
16	М	72.6			
7	М	52.4	t-Test: Two-Sample Assuming Equa	al Variances	
8	М	59.5			
9	М	59.1		Variable 1	Variable 2
20	М	36.7	Mean	52.91333333	44.23333333
21	М	54.6	Variance	233.1289718	190.1758192
22	М	52.1	Observations	60	60
23	М	49.9	Pooled Variance	211.6523955	
24	M	52.0	Hypothesized Mean Difference	0	
25	М	47.1	df	118	
26	М	40.8	t Stat	3.267900001	
7	M	36.5	P(T<=t) one-tail	0.000709735	
28	M	57.1	t Critical one-tail	1.657869522	
29	М	54.1	P(T<=t) two-tail	0.00141947	
30	M	32.4	t Critical two-tail	1.980272249	
31	М	34.9			
32	М	64.1	Difference in Means	8.68	
33	М	54.0			
34	M	51.5			

The obtained independent samples t = 3.268 with 118 degrees of freedom.

The associated two-tailed p-value is p = 0.0014, so the observed t is significant at the 1% level (two-tailed).

The sample mean income for male, and female are, respectively, 52.913 and 44.233.

The data therefore constitute strong evidence that the underlying mean income was greater for male, by an estimated 52.913 - 44.233 = 8.68. The results strongly suggest that male income is higher.

Unit 9

Exercise 9.1 – Clustered Column Chart with One Variable

Results are the same as in Area 1. In Area 2 the least favourite brand is A, followed by brand

B, while the majority of the population in Area 2 prefers some other brand.

Exercise 9.2 – Clustered Column Chart with Two Variables

The results of the two locations are opposite with each other. In location A heather species are mostly abundant and the lowest percentage belongs to the absent category. On the contrary, in location B the heather species are mostly absent, with the lowest percentage reflecting abundant heather species.

Exercise 9.3 - Histogram

For individuals who underwent diet B, the weight loss distribution is unimodal and rather symmetrical, with no skew.