Ejercicio 1 de la colección de problemas

Enunciado:

En un circuito serie RL con $R=5\Omega$ y $L=0.06\,\mathrm{H}$, la tensión en bornes de la bobina es $u_L(t)=15\sin(200\,t)\,\mathrm{V}$.

Determinar:

- La tensión total
- Intensidad de corriente
- Ángulo de desfase de la intensidad respecto de la tensión
- Impedancia del circuito

Solución:

De la expresión temporal de $u_L(t)$ se tiene que $\omega = 200 \,\mathrm{rad/s}$, por lo que:

$$\overline{X}_L = j \omega L = j 200 \cdot 0.06 = j 12 \Omega$$

siendo la impedancia del circuito:

$$\overline{Z}_{eq} = R + \overline{X}_L = 5 + j \cdot 12 = 13 / 67,3801^{\circ} \Omega$$

(es preferible usar cuatro decimales en los ángulos, para reducir los errores numéricos por aproximación).

El fasor correspondiente a $u_L(t)$ es:

$$\overline{U}_L = \frac{15}{\sqrt{2}} \underline{/0^{\circ}} V$$

Por la ley de Ohm, la intensidad de corriente en la bobina (igual a la total, al estar en serie):

$$\overline{I} = \frac{\overline{U}_L}{\overline{X}_L} = \frac{\frac{15}{\sqrt{2}}/0^{\circ}}{j \cdot 12} = \boxed{0.88/-90^{\circ} \text{ A}}$$

y la tensión total, por la 2LK:

$$\overline{U} = \overline{U}_R + \overline{U}_L = 5 \cdot (0.88 / -90^\circ) + \frac{15}{\sqrt{2}} / 0^\circ = \boxed{11.48 / -22.5304^\circ} \text{ V}$$

siendo el ángulo de desfase de la intensidad respecto a la tensión:

$$\theta_I - \theta_{U} = -90 - (-22,53040) = \boxed{-67,4696^{\circ}}$$

(la ligera diferencia en los decimales respecto al ángulo de \overline{Z}_{eq} es debida a las aproximaciones en decimales en operaciones previas).