Implementation of Φ_1 in SFINCS

February 10, 2016

EUTERPE old equations vs new equations

We want to modify the implementation of the old EUTERPE equations [1] in SFINCS to the new equations [2].

The old equations for the particle trajectories and the drift-kinetic equation are

$$\dot{\mathbf{R}} = v_{\parallel} \mathbf{b} - \frac{\nabla \Phi_0 \times \mathbf{b}}{B} \tag{1}$$

$$\dot{v}_{\parallel} = -\frac{q}{m} \boldsymbol{b} \cdot \nabla \Phi_{1} - \mu \boldsymbol{b} \cdot \nabla B - \frac{v_{\parallel}}{B^{2}} \left(\boldsymbol{b} \times \nabla B \right) \cdot \nabla \Phi_{0}$$
 (2)

$$\dot{\mu} = 0 \tag{3}$$

and

$$\frac{\partial f_{1}}{\partial t} + \dot{\boldsymbol{R}} \cdot \nabla f_{1} + \dot{v}_{\parallel} \frac{\partial f_{1}}{\partial v_{\parallel}} - C =
= -f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) \cdot \nabla \psi - \frac{q}{m} \frac{f_{M}}{v_{\text{th}}^{2}} \left(v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_{d} \right) \cdot (\nabla \Phi_{0} + \nabla \Phi_{1}) .$$
(4)

The new equations are

$$\dot{\mathbf{R}} = v_{\parallel} \mathbf{b} - \frac{\nabla \Phi_0 \times \mathbf{b}}{B} \tag{5}$$

$$\dot{v}_{\parallel} = -\frac{q}{m} \boldsymbol{b} \cdot \nabla \Phi_{1} - \mu \boldsymbol{b} \cdot \nabla B - \frac{v_{\parallel}}{B^{2}} \left(\boldsymbol{b} \times \nabla B \right) \cdot \nabla \Phi_{0}$$
 (6)

$$\dot{\mu} = 0 \tag{7}$$

and

$$\frac{\partial f_1}{\partial t} + \dot{\mathbf{R}} \cdot \nabla f_1 + \dot{v}_{\parallel} \frac{\partial f_1}{\partial v_{\parallel}} - C =
= -f_0 \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_0}{\partial \psi} + \left(\frac{mv^2}{2T} - \frac{3}{2} + \frac{q}{T} \Phi_1 \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] (\mathbf{v}_d + \mathbf{v}_{E1}) \cdot \nabla \psi. \quad (8)$$

Here we have the definitions

$$\Phi(\psi, \theta, \varphi) \equiv \Phi_0(\psi) + \Phi_1(\theta, \varphi), \qquad (9)$$

$$\boldsymbol{v}_d = \frac{m}{q} \frac{\mu B + v_{\parallel}^2}{B^2} \boldsymbol{b} \times \nabla B, \tag{10}$$

$$\boldsymbol{v}_{E1} = -\frac{\nabla \Phi_1 \times \boldsymbol{b}}{B},\tag{11}$$

$$f_0 = f_M \exp\left(-q\Phi_1/T\right) = \frac{n_0(\psi)}{(2\pi)^{3/2} v_{\rm th}^3} \exp\left[-\frac{\left(v_{\parallel}^2 + v_{\perp}^2\right)}{2v_{\rm th}^2}\right] \exp\left(-q\Phi_1/T\right), \quad (12)$$

q = Ze and $v_{\rm th}^2 = T/m$.

The only differences appear in the RHS:s of Eqs. 4 and 8: Firstly, f_M has been replaced by f_0 containing the $\exp(-q\Phi_1/T)$ factor. Secondly, some of the terms have been modified. We rewrite the RHS of 8:

RHS_{NEW} =
$$-f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T} \Phi_{1} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) \cdot \nabla \psi =$$

$$= -f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) \cdot \nabla \psi +$$

$$- f_{0} \frac{q}{T} \Phi_{1} \frac{1}{T} \frac{\partial T}{\partial \psi} (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) \cdot \nabla \psi =$$

$$= -f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{d} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi - f_{0} \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \frac{q}{T} \Phi_{1} \frac{\nabla T}{T} \cdot (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) =$$

$$= -f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{d} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$- f_{0} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

Similarly, the RHS of 4 is rewritten as:

$$RHS_{OLD} = -f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] (\boldsymbol{v}_{d} + \boldsymbol{v}_{E1}) \cdot \nabla \psi - \frac{q}{m} \frac{f_{M}}{v_{th}^{2}} \left(v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_{d} \right) \cdot (\nabla \Phi_{0} + \nabla \Phi_{1}) =$$

$$= -f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{d} \cdot \nabla \psi +$$

$$-f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{E1} \cdot \nabla \psi +$$

$$-f_{M} \frac{q}{T} \left[v_{\parallel} \boldsymbol{b} \cdot \nabla \Phi_{1} + \boldsymbol{v}_{d} \cdot \nabla \Phi_{1} \right]. \quad (14)$$

Comparing RHS_{NEW} to RHS_{OLD} we see that, apart from $f_M \to f_0$, only the terms in red have changed.

What has to be changed in SFINCS

The only part of the drift-kinetic equation block we need to modify is the RHS, where we need to update the red terms and substitute $f_M \to f_0$. SFINCS had earlier neglected the $\mathbf{v}_d \cdot \nabla \Phi_1$ -term which is small in the standard ρ_* -expansion. The RHS that was implemented is (see Matt's ISHW poster, also note that $\mathbf{v}_E \cdot \nabla \psi = \mathbf{v}_{E1} \cdot \nabla \psi$)

$$RHS_{SFINCS,OLD} = -f_M \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_0}{\partial \psi} + \left(\frac{mv^2}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_d \cdot \nabla \psi + \\ -f_M \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^2}{2T} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_E \cdot \nabla \psi - f_M \frac{q}{T} v_{\parallel} \boldsymbol{b} \cdot \nabla \Phi_1. \quad (15)$$

We thus replace

$$v_{\parallel} \boldsymbol{b} \cdot \nabla \Phi_1$$
 (16)

with

$$\nabla \Phi_0 \cdot \boldsymbol{v}_E + \Phi_1 \frac{\nabla T}{T} \cdot \boldsymbol{v}_d + \Phi_1 \frac{\nabla T}{T} \cdot \boldsymbol{v}_E, \tag{17}$$

and make the substitution

$$f_M \to f_0 = f_M \exp(-q\Phi_1/T).$$
 (18)

All terms which contain Φ_1 are now nonlinear. It does not make sense to have both switches **includePhi1** and **nonlinear** still available in SFINCS, and consequently we will remove the **nonlinear** switch.

We will also introduce to possibility to run SFINCS with an adiabatic species.

Implementation in SFINCS

Of the equations implemented in SFINCS [4], the only two we need to modify are the kinetic equation

$$R(f_{1}, \Phi_{1}) = K\{\theta\} \frac{\partial f}{\partial \theta} + K\{\zeta\} \frac{\partial f}{\partial \zeta} + K\{x\} \frac{\partial f}{\partial x} + K\{\xi\} \frac{\partial f}{\partial \xi} + K\{\psi\} \frac{\partial f_{M}}{\partial \psi} + C\{f\} - S_{1}f_{M} - S_{2}f_{M}x^{2} - \frac{Zev}{T}x\xi \frac{\langle \mathbf{E} \cdot \mathbf{B} \rangle B}{\langle B^{2} \rangle} f_{M} = 0 \quad (19)$$

and the quasineutrality equation

$$\sum_{s} Z_s \int d^3 v \, f_s + \lambda = 0. \tag{20}$$

Drift-kinetic equation

For the residual $R(f_1, \Phi_1)$ the only term in the kinetic equation we need to modify is the one in red in Eq. 19. We replace $f_M \to f_0 = f_M \exp(-q\Phi_1/T)$, and use that $K\{\psi\} = \mathbf{v}_E \cdot \nabla \psi + \mathbf{v}_d \cdot \nabla \psi = \mathbf{v}_{E1} \cdot \nabla \psi + \mathbf{v}_d \cdot \nabla \psi$ to write

$$K \{\psi\} \frac{\partial f_{M}}{\partial \psi} = \exp\left(-q\Phi_{1}/T\right) \frac{\partial f_{M}}{\partial \psi} \left(\boldsymbol{v}_{E1} \cdot \nabla \psi + \boldsymbol{v}_{d} \cdot \nabla \psi\right) =$$

$$= \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T}\Phi_{1}\right) \frac{1}{T} \frac{\partial T}{\partial \psi}\right] \left(-\frac{\nabla \Phi_{1} \times \boldsymbol{b}}{B} \cdot \nabla \psi + \boldsymbol{v}_{d} \cdot \nabla \psi\right) =$$

$$= \left\|-\frac{\nabla \Phi_{1} \times \boldsymbol{b}}{B} \cdot \nabla \psi - \frac{\boldsymbol{B} \times \nabla \psi}{B^{2}} \cdot \nabla \Phi_{1} - \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta}\right]\right\| =$$

$$= \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T}\Phi_{1}\right) \frac{1}{T} \frac{\partial T}{\partial \psi}\right] \cdot$$

$$\left(\frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta}\right] + \boldsymbol{v}_{d} \cdot \nabla \psi\right) \quad (21)$$

(Here $D = \nabla \psi \cdot \nabla \theta \times \nabla \zeta$.) Written like this we explicitly see the places where Φ_1 appears in $K \{\psi\} \frac{\partial f_M}{\partial \psi}$. From Eq. 21 we obtain the corresponding terms in the Jacobian matrix

$$\frac{\delta}{\delta\Phi_{1}}\left(K\left\{\psi\right\}\frac{\partial f_{M}}{\partial\psi}\right) = -\frac{q}{T}\exp\left(-\frac{q\Phi_{1}}{T}\right)f_{M}\left[\frac{1}{n}\frac{\partial n}{\partial\psi} + \frac{q}{T}\frac{\partial\Phi_{0}}{\partial\psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T}\Phi_{1}\right)\frac{1}{T}\frac{\partial T}{\partial\psi}\right] \cdot \left(\frac{1}{B^{2}}D\left[B_{\theta}\frac{\partial\Phi_{1}}{\partial\zeta} - B_{\zeta}\frac{\partial\Phi_{1}}{\partial\theta}\right] + \mathbf{v}_{d}\cdot\nabla\psi\right) + \\
+ \exp\left(-\frac{q\Phi_{1}}{T}\right)f_{M}\frac{q}{T}\frac{1}{T}\frac{\partial T}{\partial\psi}\left(\frac{1}{B^{2}}D\left[B_{\theta}\frac{\partial\Phi_{1}}{\partial\zeta} - B_{\zeta}\frac{\partial\Phi_{1}}{\partial\theta}\right] + \mathbf{v}_{d}\cdot\nabla\psi\right) + \\
+ \exp\left(-\frac{q\Phi_{1}}{T}\right)f_{M}\left[\frac{1}{n}\frac{\partial n}{\partial\psi} + \frac{q}{T}\frac{\partial\Phi_{0}}{\partial\psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T}\Phi_{1}\right)\frac{1}{T}\frac{\partial T}{\partial\psi}\right] \cdot \left(\frac{1}{B^{2}}D\left[B_{\theta}\frac{\partial}{\partial\zeta} - B_{\zeta}\frac{\partial}{\partial\theta}\right]\right) \quad (22)$$

Residual

Many of the terms involving $v_d \cdot \nabla \psi$ are almost implemented in SFINCS already except that they now contain the exp $\left(-\frac{q\Phi_1}{T}\right)$ -factor. We therefore rewrite Eq. 21 as

$$K\{\psi\} \frac{\partial f_M}{\partial \psi} = R_m + R_E \tag{23}$$

where

$$R_m = \exp\left(-\frac{q\Phi_1}{T}\right) f_M \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_0}{\partial \psi} + \left(\frac{mv^2}{2T} - \frac{3}{2} + \frac{q}{T} \Phi_1\right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_d \cdot \nabla \psi \qquad (24)$$

and

$$R_E = \exp\left(-\frac{q\Phi_1}{T}\right) f_M \left[\frac{1}{n}\frac{\partial n}{\partial \psi} + \frac{q}{T}\frac{\partial \Phi_0}{\partial \psi} + \left(\frac{mv^2}{2T} - \frac{3}{2} + \frac{q}{T}\Phi_1\right) \frac{1}{T}\frac{\partial T}{\partial \psi}\right] \frac{1}{B^2} D \left[B_\theta \frac{\partial \Phi_1}{\partial \zeta} - B_\zeta \frac{\partial \Phi_1}{\partial \theta}\right]$$
(25)

$$K \left\{ \psi \right\} \frac{\partial f_{M}}{\partial \psi} = \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T} \Phi_{1}\right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{d} \cdot \nabla \psi +$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2} + \frac{q}{T} \Phi_{1}\right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right] =$$

$$= \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2}\right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \boldsymbol{v}_{d} \cdot \nabla \psi +$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \left[\frac{1}{n} \frac{\partial n}{\partial \psi} + \left(\frac{mv^{2}}{2T} - \frac{3}{2}\right) \frac{1}{T} \frac{\partial T}{\partial \psi} \right] \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right] +$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right] +$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right] +$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \frac{\partial \Phi_{0}}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right]$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \Phi_{1} \frac{1}{T} \frac{\partial T}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right]$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \Phi_{1} \frac{1}{T} \frac{\partial T}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right]$$

$$+ \exp\left(-\frac{q\Phi_{1}}{T}\right) f_{M} \frac{q}{T} \Phi_{1} \frac{1}{T} \frac{\partial T}{\partial \psi} \frac{1}{B^{2}} D \left[B_{\theta} \frac{\partial \Phi_{1}}{\partial \zeta} - B_{\zeta} \frac{\partial \Phi_{1}}{\partial \theta} \right]$$

Check of Matt's former implementation of $rac{Ze}{T}f_{M}v_{\parallel} abla_{\parallel}\Phi_{1}$

Looking at Matt's ISHW poster, since Φ_1 is an unknown this term is in the LHS of the square block matrix system. The term is accessed by "rowIndex = BLOCK_F" and "colIndex = BLOCK_QN". We use

$$\nabla_{\parallel} \Phi_{1} = \boldsymbol{b} \cdot \nabla \Phi_{1} = \frac{1}{B} \left[B^{\theta} \frac{\partial \Phi_{1}}{\partial \theta} + B^{\zeta} \frac{\partial \Phi_{1}}{\partial \zeta} \right] = \frac{\bar{\Phi}}{\hat{B}\bar{R}} \left[\hat{B}^{\theta} \frac{\partial \hat{\Phi}_{1}}{\partial \theta} + \hat{B}^{\zeta} \frac{\partial \hat{\Phi}_{1}}{\partial \zeta} \right],$$

$$f_M = n_0 \left(\psi \right) \frac{m^{3/2}}{\left(2\pi T \right)^{3/2}} \exp \left[-\frac{v^2}{v_s^2} \right] = \hat{n} \bar{n} \frac{\hat{m}^{3/2}}{\left(2\pi \hat{T} \right)^{3/2}} \left(\frac{\bar{m}}{\bar{T}} \right)^{3/2} \exp \left[-x^2 \right],$$

 $v_{\parallel}=v_sx\xi=v_sxP_1=xP_1\sqrt{2\hat{T}/\hat{m}}\sqrt{\bar{T}/\bar{m}}$ and $x=v/v_s$. With $\alpha=e\bar{\Phi}/\bar{T}$ we obtain

$$\frac{Ze}{T}f_{M}v_{\parallel}\nabla_{\parallel}\Phi_{1} = \frac{Ze}{\hat{T}\bar{T}}\hat{n}\bar{n}\frac{\hat{m}^{3/2}}{\left(2\pi\hat{T}\right)^{3/2}}\left(\frac{\bar{m}}{\bar{T}}\right)^{3/2}\exp\left[-x^{2}\right]xP_{1}\sqrt{2\hat{T}/\hat{m}}\sqrt{\bar{T}/\bar{m}}\frac{\bar{\Phi}}{\hat{B}\bar{R}}\left[\hat{B}^{\theta}\frac{\partial\hat{\Phi}_{1}}{\partial\theta} + \hat{B}^{\zeta}\frac{\partial\hat{\Phi}_{1}}{\partial\zeta}\right] = \\
= \frac{Z\alpha}{2\pi^{3/2}}xP_{1}\exp\left[-x^{2}\right]\frac{\hat{n}\hat{m}}{\hat{B}\hat{T}^{2}}\frac{\bar{n}\bar{m}}{\bar{R}\bar{T}}\left[\hat{B}^{\theta}\frac{\partial}{\partial\theta} + \hat{B}^{\zeta}\frac{\partial}{\partial\zeta}\right]\hat{\Phi}_{1}. \quad (27)$$

In SFINCS the kinetic equation is made dimensionless by multiplying with

$$\frac{\bar{v}^3 \bar{R}}{\bar{n}\bar{v}} = \frac{2\bar{T}\bar{R}}{\bar{m}\bar{n}},$$

which implies that the RHS of Eq. 27 becomes

$$\frac{Z\alpha}{\pi^{3/2}}xP_1\exp\left[-x^2\right]\frac{\hat{n}\hat{m}}{\hat{B}\hat{T}^2}\left[\hat{B}^\theta\frac{\partial}{\partial\theta}+\hat{B}^\zeta\frac{\partial}{\partial\zeta}\right]\hat{\Phi}_1\tag{28}$$

in the implementation.

Implementation of $f_0 \frac{q}{T} \nabla \Phi_0 \cdot \boldsymbol{v}_{E1}$

$$\left(f_0 \frac{q}{T} \nabla \Phi_0 \cdot \boldsymbol{v}_{E1}\right)_{\text{SFINCS}} =
= \frac{Z\alpha^2 \Delta}{2\pi^{3/2}} \frac{\hat{n}\hat{m}^{3/2} \hat{D}}{\hat{T}^{5/2} \hat{B}^2 \hat{\psi}_a} \frac{\partial \hat{\Phi}_0}{\partial \psi_N} \exp\left(-x^2\right) \exp\left(-\frac{Z\alpha \hat{\Phi}_1}{\hat{T}}\right) \left[\hat{B}_\theta \frac{\partial}{\partial \zeta} - \hat{B}_\zeta \frac{\partial}{\partial \theta}\right] \hat{\Phi}_1 \quad (29)$$

Implementation of $f_0 \frac{q}{T} \Phi_1 \frac{\nabla T}{T} \cdot \boldsymbol{v}_d$

$$\left(f_{0}\frac{q}{T}\Phi_{1}\frac{\nabla T}{T}\cdot\boldsymbol{v}_{d}\right)_{\text{SFINCS}} =
= \frac{\alpha\Delta}{3\pi^{3/2}}\frac{\hat{n}\hat{m}^{3/2}\hat{D}}{\hat{T}^{5/2}\hat{B}^{3}\hat{\psi}_{a}}\hat{\Phi}_{1}\frac{\partial\hat{T}}{\partial\psi_{N}}x^{2}\left(P_{2}\left(\xi\right)+2\right)\exp\left(-x^{2}\right)\exp\left(-\frac{Z\alpha\hat{\Phi}_{1}}{\hat{T}}\right)\left[\hat{B}_{\theta}\frac{\partial\hat{B}}{\partial\zeta}-\hat{B}_{\zeta}\frac{\partial\hat{B}}{\partial\theta}\right]$$
(30)

Implementation of $f_0 \frac{q}{T} \Phi_1 \frac{\nabla T}{T} \cdot \boldsymbol{v}_{E1}$

$$\left(f_0 \frac{q}{T} \Phi_1 \frac{\nabla T}{T} \cdot \boldsymbol{v}_{E1}\right)_{\text{SFINCS}} =
= \frac{Z\alpha^2 \Delta}{2\pi^{3/2}} \frac{\hat{n}\hat{m}^{3/2}\hat{D}}{\hat{T}^{7/2}\hat{B}^2\hat{\psi}_a} \frac{\partial \hat{T}}{\partial \psi_N} \hat{\Phi}_1 \exp\left(-x^2\right) \exp\left(-\frac{Z\alpha\hat{\Phi}_1}{\hat{T}}\right) \left[\hat{B}_\theta \frac{\partial}{\partial \zeta} - \hat{B}_\zeta \frac{\partial}{\partial \theta}\right] \hat{\Phi}_1 \quad (31)$$

Quasi-neutrality equation

In EUTERPE Φ_1 is calculated from quasi-neutrality by expanding the exponential, assuming adiabatic electrons and neglecting the impurities:

$$n_s = n_{s0} (\psi) \exp(-q_s \Phi_1/T_s) + n_{s1},$$
 (32)

$$\sum_{s} Z_s n_s = 0, \tag{33}$$

$$\Rightarrow \quad 0 \simeq \sum_{s} Z_{s} \left[n_{s0} \left(1 - q_{s} \Phi_{1} / T_{s} \right) + n_{s1} \right] \quad \Leftrightarrow \quad$$

$$\sum_{s} Z_{s} \left[n_{s0} + n_{s1} \right] = \sum_{s} \frac{Z_{s}^{2} e}{T_{s}} \Phi_{1} n_{s0}.$$

Since $n_{s0}(\psi)$ is obtained by integrating the Maxwellian f_{Ms} over velocity space we must have

$$\sum_{s} Z_s n_{s0} = 0,$$

which yields

$$\sum_{s} Z_s n_{s1} - \Phi_1 \sum_{s} \frac{Z_s^2 e}{T_s} n_{s0} = 0.$$
 (34)

With kinetic ions, adiabatic electrons $(n_{e1} = 0)$ and neglecting impurities we obtain

$$\Phi_1 = \frac{T_e}{e} \left[\frac{T_e}{T_i} n_{i0} + n_{e0} \right]^{-1} n_{i1}. \tag{35}$$

Implementation in SFINCS

For a first benchmark, we want to implement the same equations as EUTERPE in SFINCS.

REMARK: This is not a very generic quasi-neutrality equation so it is possible that we might want to change it in SFINCS later.

In the code we add an adiabatic species which only enters into the quasi-neutrality equation, and neglect its collisional impact on the kinetic species (the effect of ion-electron collisions is small compared to ion-ion collisions). Moreover, we will only consider the first of the kinetic species in quasi-neutrality and neglect the rest. This is implemented by modifying the LHS of the row corresponding to quasi-neutrality in the block-matrix structure of Matt's ISHW poster, adding the adiabatic term to the Φ_1 -column and removing all kinetic species except the first.

REMARK: It feels a bit weird to remove species from quasi-neutrality, even if the impurity density is small. Does this mean that we should removed the check that the input densities are quasi-neutral and instead check that $n_{i0}(\psi) = n_{e0}(\psi)$ in the input?

The equation we will implement in SFINCS is thus

$$Z_i n_{i1} - \Phi_1 \left[\frac{Z_i^2 e}{T_i} n_{i0} + \frac{Z_e^2 e}{T_e} n_{e0} \right] = 0.$$
 (36)

We note that

$$n_s = n_{s0} (\psi) \exp(-q_s \Phi_1/T_s) + n_{s1} = \int d^3 v f_{Ms} \exp(-q_s \Phi_1/T_s) + \int d^3 v f_{1s} =$$

$$= d^3 v f_{0s} + d^3 v f_{1s}. \quad (37)$$

The velocity integration is SFINCS is done in $(x, \xi) = (v/v_s, v_{\parallel}/v)$, and

$$\int d^3v = 2\pi v_s^3 \int_0^\infty dx \, x^2 \int_{-1}^1 d\xi \tag{38}$$

(note that $v_s^2=2T_s/m_s$ differs from Jose's notation $v_{\rm th}^2=T/m$). Using SFINCS normalizations $n_s=\bar{n}\hat{n}_s,\,T_s=\bar{T}\hat{T}_s,\,v_s/\bar{v}=\sqrt{\hat{T}_s/\hat{m}_s},\,f_s=\bar{n}\hat{f}_s/\bar{v}^3$, we find

$$\hat{n}_s = 2\pi \left(\hat{T}_s/\hat{m}_s\right)^{3/2} \int_0^\infty dx \, x^2 \int_{-1}^1 d\xi \, \hat{f}_s. \tag{39}$$

Also using $\Phi_1 = \bar{\Phi}\hat{\Phi}_1$ and $\alpha = e\bar{\Phi}/\bar{T}$ we can write Eq. 36

$$Z_i \hat{n}_{i1} - \alpha \hat{\Phi}_1 \left[\frac{Z_i^2}{\hat{T}_i} \hat{n}_{i0} + \frac{Z_e^2}{\hat{T}_e} \hat{n}_{e0} \right] = 0 \tag{40}$$

and finally obtain

$$\left[2\pi Z_i \left(\hat{T}_i/\hat{m}_i\right)^{3/2} \int_0^\infty dx \, x^2 \int_{-1}^1 d\xi \hat{f}_{i1}\right] - \alpha \hat{\Phi}_1 \left[\frac{Z_i^2}{\hat{T}_i} \hat{n}_{i0} + \frac{Z_e^2}{\hat{T}_e} \hat{n}_{e0}\right] = 0. \tag{41}$$

This is the equation we will implement in the code, but adding a λ to make the system square.

REMARK: Is the 2π factor correct in Eq. 41? It is not in the former implementation of quasi-neutrality, but in that situation it could be divided away.

Albert Mollén Implementation of Φ_1 in SFINCS

References

- [1] J. M. García-Regaña, R. Kleiber, C. D. Beidler, Y. Turkin, H. Maaßberg and P. Helander, *Plasma Phys. Control. Fusion* **55** (2013) 074008.
- [2] J. M. García-Regaña, C. D. Beidler, Y. Turkin, R. Kleiber, P. Helander, H. Maaßberg, J. A. Alonso and J. L. Velasco, *arXiv:1501.03967* (2015).
- [3] Landreman M, Smith H M, Mollén A and Helander P 2014 Phys. Plasmas 21 042503
- [4] M. Landreman, Technical Documentation for version 3 of SFINCS (2014).