# Capstone Project: Analysis of Stock price and forecasting using LSTM

Rezoan Ahmed Shuvro

#### Objective

- Filter stocks from the S&P 500 based on users coice
- To perform exploratory data analysis to observe various stock price trend and analyze the stock price behavior of different stocks.
- To develop a simple LSTM based model for predicting the upward/downward trend for a stock using historical stock price data and predict future stock price.
- Use the prediction price from the model to decide which stocks to buy



Energy transfer stock prediction (source: CNN)

#### Data collection

- Used pandas datareader API to scrap stock prices data from 'yahoo'
- Data was then manipulated to create the following DataFrame where:
  - rows represents time series of date
  - Columns represent a hierarchical table of stock tickers and prices info

| ticker     | ET   |      |      |       |            |              | FANG      |           |           |           |  |
|------------|------|------|------|-------|------------|--------------|-----------|-----------|-----------|-----------|--|
| info       | High | Low  | Open | Close | Volume     | Adj<br>Close | High      | Low       | Open      | Close     |  |
| Date       |      |      |      |       |            |              |           |           |           |           |  |
| 2020-04-20 | 6.45 | 5.71 | 5.80 | 6.08  | 40978800.0 | 6.08         | 32.480000 | 28.549999 | 29.000000 | 30.860001 |  |
| 2020-04-21 | 6.19 | 5.82 | 5.92 | 6.14  | 29398100.0 | 6.14         | 31.540001 | 29.150000 | 29.469999 | 31.400000 |  |
| 2020-04-22 | 6.57 | 6.12 | 6.30 | 6.48  | 27209800.0 | 6.48         | 34.650002 | 32.980000 | 33.200001 | 34.240002 |  |
| 2020-04-23 | 7.10 | 6.63 | 6.75 | 7.05  | 36418800.0 | 7.05         | 37.830002 | 34.849998 | 35.450001 | 37.099998 |  |
| 2020-04-24 | 7.49 | 7.02 | 7.28 | 7.19  | 42761400.0 | 7.19         | 39.490002 | 35.160000 | 37.880001 | 35.779999 |  |

### Data cleaning

- First scrap data from yahoo finance
- Populate the following table
- Issues:
  - Market cap includes B for billion, M for million, T from trillion. Convert them to integer
  - Define change using pct\_change using price and the wall street estimate
  - Convert objects to float
  - Populate dividend values and replace Nan with zero

|        | price   | estimate | year_low | year_high | beta | pe_ratio | dividend | yield | market_cap  | change    |
|--------|---------|----------|----------|-----------|------|----------|----------|-------|-------------|-----------|
| ticker |         |          |          |           |      |          |          |       |             |           |
| MSFT   | 182.92  | 197.16   | 130.71   | 190.70    | 0.93 | 31.19    | 2.04     | 1.12% | 1.42e+11    | 7.784824  |
| AAPL   | 322.32  | 316.95   | 190.30   | 331.75    | 1.17 | 26.04    | 3.28     | 1.02% | 1.437e+11   | -1.666046 |
| AMZN   | 2460.60 | 2675.96  | NaN      | NaN       | 1.32 | 118.60   | 0.00     | 0     | 1.238e+11   | 8.752337  |
| FB     | 226.29  | 241.81   | 137.10   | 240.90    | 1.20 | 31.66    | 0.00     | 0     | 6.57487e+10 | 6.858456  |

### Data analysis

#### ticker

| ET   | 7.19   |
|------|--------|
| FANG | 35.78  |
| MSFT | 174.55 |
| SPG  | 51.49  |
| VGT  | 233.89 |
| voo  | 260.14 |

pd.merge(pd.DataFrame(my\_stocks.xs(key='Close',axis=1
,level='info').idxmax()),
pd.DataFrame(my\_stocks.xs(key='Close',axis=1,level='info
').max()),on='ticker')

#### ticker

| ET   | 2015-06-15 | 35.240002  |
|------|------------|------------|
| FANG | 2018-10-03 | 139.919998 |
| MSFT | 2020-02-10 | 188.699997 |
| SPG  | 2016-08-01 | 227.600006 |
| VGT  | 2020-02-19 | 273.209991 |
| voo  | 2020-02-19 | 310.920013 |

Last day's price All time high

- SPG, FANG, ET are close to their all time low
- MSFT,VOO, VGT are very close to their all time high

pd.merge(pd.DataFrame(my\_stocks.xs(key='Close',axis=1,level='info').
idxmin()),

pd.DataFrame(my\_stocks.xs(key='Close',axis=1,level='info').min()),on= 'ticker')

#### ticker

| ET   | 2008-11-21 | 3.322500   |
|------|------------|------------|
| FANG | 2020-03-18 | 15.560000  |
| MSFT | 2009-03-09 | 15.150000  |
| SPG  | 2009-03-06 | 24.308067  |
| VGT  | 2008-11-20 | 29.270000  |
| voo  | 2011-10-03 | 100.339996 |

All time low

### Data analysis





- Distribution plot of the standard deviation of the return (calculated using the percentage change) indicates that ET stock is more fluctuations in prices compared to MSFT

#### Stock price and dividend over time



- SPG, MSFT, VOO are very stable dividend payers. While ET pays dividend at a decent ratio, but the dividend is not growing

#### **Smoothing the variance of the stock prices**



50 day rolling average

365 day rolling average

- Time series of the 50 day and 365 day rolling average gives a high-level idea about the stock type.
- For example, MSFT is a still growing (growth stock)
- Energy transfer pays dividends to the share holders. It's a dividend stock

#### Correlation between stock price



- Correlation between stocks can be used to identify similar stocks. For example VGT (technology index and VOO (S&P 500 index are heavily correlated))
- To enhance diversity of the portfolio, avoid investing all of your investments in the same bucket

#### 50 Day moving avg vs 200 day moving Avg.



- When 50day moving average cuts the 200day moving average, it is called the golden cross
- 50day moving average cuts the 200day moving average and the slop is positive, it's a bullish signal (buy)
- 50day moving average cuts the 200day moving average and the slop is positive, it's a bearish signal (sell)

The figure above for the ticker 'ABBV' (a pharmaceutical stock) validates the above-mentioned fact

### Filtering

- Used filtering based on users choice to filter stocks to buy.
- For example, see the following filtering: here user wants to filter stocks that have market cap over 10B, beta values less than 1 (less risky stocks), pct change greater than 10 (greater reward), pays dividend greater than 3%, and pe ratio less than 30 (not overpriced)

```
filter = stocks_filter[(stocks_filter.market_cap> 10000000000) & (stocks_filter.beta < 1) & (stocks_filter.change > 10) & (stocks_filter.pe_ratio < 30) & (stocks_filter.dividend > 3)]
```

- The filtering criterion resulted with the following 4 tickers JNJ, AMGN, PM, UNH
- Notice that 3 out of 4 stocks are pharmaceutical, wall street expects higher return from pharma stocks in future as response to covid 19

# Dividend (example JNJ)



#### Correlation between stock price



- Correlation between stocks can be used to identify similar stocks. For example SPY (S&P500 index P 500 index are heavily correlated)) and pharma stocks are heavily correlated

### Summary of the LSTM model and parameters

| Layer (type)         | Output Shape    | Param # |
|----------------------|-----------------|---------|
| lstm_21 (LSTM)       | (None, 60, 100) | 40800   |
| dropout_21 (Dropout) | (None, 60, 100) | 0       |
| lstm_22 (LSTM)       | (None, 60, 100) | 80400   |
| dropout_22 (Dropout) | (None, 60, 100) | 0       |
| lstm_23 (LSTM)       | (None, 60, 100) | 80400   |
| dropout_23 (Dropout) | (None, 60, 100) | 0       |
| lstm_24 (LSTM)       | (None, 100)     | 80400   |
| dropout_24 (Dropout) | (None, 100)     | 0       |
| dense_6 (Dense)      | (None, 1)       | 101     |

Total params: 282,101 Trainable params: 282,101 Non-trainable params: 0

### JNJ



Time series data from 2005 to 2019 (training data )

Time series data from for the 5 months of 2020(test data). Red line shows the predicted stock prices using LSTM model

### **AMGN**



Time series data from 2005 to 2019 (training data )



Time series data from for the 5 months of 2020(test data). Red line shows the predicted stock prices using LSTM model

### UNH





Time series data from 2005 to 2019 (training data )

Time series data from for the 5 months of 2020(test data). Red line shows the predicted stock prices using LSTM model

### PM



Time series data from 2005 to 2019 (training data )



Time series data from for the 5 months of 2020(test data). Red line shows the predicted stock prices using LSTM model

#### SPY





Time series data from 2005 to 2019 (training data )

Time series data from for the 5 months of 2020(test data). Red line shows the predicted stock prices using LSTM model

# Table 1: prediction analysis

For simplicity I assumed, equal investments on the filtered stocks

| Ticker | price on<br>Dec 31 | Model (5 months predicted) | prediction<br>MSE | actual | model<br>return | model<br>return<br>(individua<br>I) | actual<br>return<br>(individu<br>al ) | Actual<br>return |
|--------|--------------------|----------------------------|-------------------|--------|-----------------|-------------------------------------|---------------------------------------|------------------|
| JNJ    | 145.87             | 128.78                     | 13.43             | 146.99 | -14.8%          | -11.7%                              | 0.77%                                 | -2.701%          |
| AMGN   | 241.07             | 219.30663                  | 16.01             | 222.74 |                 | -9.0%                               | -7.60%                                |                  |
| PM     | 85.09              | 75.18                      | 6.08              | 77.1   |                 | -11.6%                              | -9.39%                                |                  |
| UNH    | 293.98             | 215.39                     | 44                | 310.75 |                 | -26.7%                              | 5.70%                                 |                  |
| SPY    | 321.86             | 363.61                     | 62.72             | 320.68 | 13.0%           | 13.0%                               | -0.37%                                | -0.37%           |

## Analysis

| Model return                    | -14.8% |
|---------------------------------|--------|
| Actual return (filtered stocks) | -2.7%  |
|                                 |        |
|                                 |        |
| model SPY return                | 13.0%  |
| Actual SPY return               | -0.4%  |

- Model return suggests significant loss compared to SPY. So suggestion is to buy SPY (SP 500 index)
- From the actual data, we can see that although both returns are negative, SPY loss is less compared to the filtered stock.

#### Future works

- Add more features in prediction, seasonality, holiday sales, quarterly information and so on.
- Recently I came to know about facebook prophet library for time series which integrates new features easily. It would be nice to play with that.
- Running neural networks on my computer is a pain. It takes ages to run 5-10 epochs. Further hyperparameter tuning, grid search, more epochs would increase the RMSE of the model.
- Do the linear optimization to find the value to weight parameters.