Dynamic Attribute Serialization for performance improvement in anonymous credential system

02123014 장지운

2023.12.07

EZID

- Attribute-based credentials
 - ✓ selective disclosure of attributes
- Auditability
- Revocation

EZID: Three Basic Components

EZID Protocol: Overview

Preprocessing Process

Attribute (Format)
Definition

- SetUp
- Key Generation

Credential Credential Verification Selective Exposure Verification Verification of Issuer's Signature

Issuer's Signature,
Proof of
Possession Value,
and Selective
Exposure

Proof of
Possession Value
Generation by the
Issuer Based on
Selective
Exposure

Definition

 $\begin{vmatrix} a_1 & a_2 & \dots \end{vmatrix}$

e.g., a2>19

Determination of

Attributes to be Disclosed

or Attributes' Function

EZID Protocol: Types of Attributes

a_0	a ₁	a	a2	ал	a_{E}	ac	a ₇	ao	$a_{\mathbf{o}}$	a ₁₀
0.0	· · · I		~3		5	0	, , , , , , , , , , , , , , , , , , ,	0		- 1U

	Attrib	ute Name	Explanation		
A0	Secret Key	λ_0 -bit Sequence	Random Sequence, e.g., λ=128		
A1	Name		Hong Gil-dong		
A2	Date of Birth	8-digit Decimal	e.g., 20000101		
A3	Gender	Bit	1(Female) or 2(Male)		
A4	Address	Postal Code, 5-digit Decimal	e.g., 34129		
A5		City, Postal Code	Daejeon		
A6		Detailed Address, λ_6 -bit String	218, Gajeong-ro, Yuseong-gu, ETRI Information Security Research Division		

	Attribu	te Name	Explanation
A7	Mobile Phone Number	11-digit Decimal	e.g., 11112341234
A8	CARD Information	Issuer λ_8 -bit String	BC
A9		Number, 16-digit Decimal	1234-5678-9012-3456
A10		Expiration Date, 8-digit Decimal	20211231

EZID Protocol: Basic Operations

- ❖ Bilinear map and Group, $e: G_1 \times G_2 \rightarrow G_T$: a Type III pairing
 - \triangleright where G_1 , G_2 , G_T have the order of prime q
- ❖ Pedersen Commitment

$$f(a_0,\ldots,a_n) \\ = \prod_{i=0}^n u_i^{a_i} = u_0^{a_0} u_1^{a_1} \cdots u_n^{a_n}$$
 Attribute Value

❖ Issuer's signature: BBS⁺ signature for attributes $(a_0 = x, a_1, ..., a_n)$

$$A = \left(g_1 g_2^y u_0^{a_0} \prod_{i=1}^n u_i^{a_i}\right)^{\frac{1}{\theta + \mu}} \qquad \sigma = (A, \mu, y), \qquad A \in G_1, \mu, y \in \mathbb{Z}_q$$

❖ SPK $(y', a_0, a_1, ..., a_n) : F = g_2^{y'} \prod_{i=0}^n u_i^{a_i}$ for a possession of a BBS⁺ signature

Dynamic Attribute Serialization(DAS) Overview

Purpose

✓ When using anonymous credentials, reduce computational complexity during signature and verification to improve performance

Method

- 1. Generate transformed values for attributes (a'_i) to store the transformed attribute values (a_i)
- 2. Define \overline{D} as the indices of attributes for which "selective disclosure" is not performed
- 3. Define $\overline{i} = MIN(\overline{D})$ as the smallest index value among \overline{D}
- 4. Execute concatenation and hash operations on all attributes not subject to "selective disclosure" $(a_{\forall i \in \overline{D}})$ and store the result in the attribute with the smallest index $(a'_{\overline{i}})$
- 5. Set the values of the remaining attributes $(a'_{\forall i \in \overline{D}} \setminus a'_{\overline{i}})$ to '0' for attributes not subject to "selective disclosure" $(a_{\forall i \in \overline{D}})$
 - Since $a'_i = 0$ in the multiplication of attributes $(u_i^{a'_i})$, $u_i^0 = 1$ for all attributes.
- 6. For attributes subject to "selective disclosure" $(a_{\forall i \in DI})$, store each $a_{i \in DI}$ value in the corresponding attribute $a'_{i \in DI}$

DAS Overview (cont.)

❖ Example

- ✓ Assume that n = 6, DI = {1, 3, 5}, $\overline{D} = \{2, 4, 6\}$
- $\checkmark MIN(\overline{D}) = \overline{i} = 2$
- $\checkmark a'_{\overline{i}} = a'_2 = \operatorname{Hash}(a_2||a_4||a_6) \ (\because a'_{\overline{i}} = \operatorname{Hash}(||a_{\forall i \in \overline{D}}))$
- $\checkmark a'_4 = 0, \ a'_6 = 0 \ (\because a'_{\forall i \in \overline{D}} \backslash a'_{MIN(\overline{D})} = 0)$
- $\checkmark a_1' = a_1, \ a_3' = a_3, \ a_5' = a_5 \ (\because a_{i \in DI}' = a_{i \in DI})$
- $= \prod_{i=0}^n u_i^{a_i'} = u_0^{a_0} u_1^{a_1'} u_2^{a_2'} u_3^{a_3'} u_4^{a_4'} u_5^{a_5'} u_6^{a_6'} = u_0^{a_0} u_1^{a_1} u_2^{\operatorname{Hash}\left(a_2 || a_4 || a_6\right)} u_3^{a_3} u_4^{0} u_5^{a_5} u_6^{0} = u_0^{a_0} u_1^{a_1} u_2^{\operatorname{Hash}\left(a_2 || a_4 || a_6\right)} u_3^{a_3} u_5^{a_5} u_5^{0} = u_0^{a_0} u_1^{a_1} u_2^{a_2'} u_3^{a_3'} u_4^{a_4'} u_5^{a_5'} u_6^{a_6'} = u_0^{a_0} u_1^{a_1} u_2^{a_2'} u_3^{a_3'} u_4^{a_5'} u_5^{a_5'} u_6^{a_5'} = u_0^{a_0} u_1^{a_1} u_2^{a_5'} u_5^{a_5'} u_5^$

EZID Protocol: Presentation

$$\begin{split} & * R_2 \\ & = e(D_2,h)^{s_\mu}e(u_0,h_\theta)^{s_\alpha}e(u_0,h)^{s_\gamma}e(g_2,h)^{s_y} \prod_{i \in \overline{D}} \underbrace{e(u_i,h)^{s_i} \cdot (e(D_2,h_\theta) \left(\prod_{i \in DI} e(u_i,h)^{-s_i}\right) e(g_1,h)^{-1})^c} \\ & = e(D_2,h^{s_\mu}h_\theta^c)e(u_0,h_\theta)^{r_\alpha-c\cdot\alpha}e(u_0,h)^{r_\gamma-c\cdot\gamma}e\left(g_1^{-c}g_2^{r_\gamma-c\cdot y}\prod_{i \in \overline{D}} u_i^{r_i-c\cdot a_i},h\right)\left(e\left(\prod_{i \in DI} u_i^{-c\cdot a_i}u_i,h\right)\right) \\ & = e(D_2,h^{r_\mu+c\cdot\mu}h_\theta^c)e(u_0,h^\theta)^{-c\cdot\alpha}e(u_0,h)^{-c\cdot(\alpha\mu+z)}e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i = 1}^n u_i^{-c\cdot a_i},h\right)e(u_0,h_\theta)^{r_\alpha}e\left(g_2^{r_y}u_0^{r_\gamma}\prod_{i \in \overline{D}} u_i^{r_i},h\right) \\ & = e(D_2,h^{r_\mu}h^{(\theta+\mu)c})e(u_0,h)^{-c(\alpha\theta+\alpha\mu+z)}e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i = 1}^n u_i^{-c\cdot a_i},h\right)e\left(u_\theta^{r_\alpha}g_2^{r_y}u_0^{r_\gamma}\prod_{i \in \overline{D}} u_i^{r_i},h\right) \\ & = e(A\cdot u_0^\alpha,h^{(\theta+\mu)c})e(u_0,h)^{-c\alpha(\theta+\mu)}e(u_0,h)^{-ca_0}e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i = 1}^n u_i^{-c\cdot a_i},h\right)e\left(D_2^{r_\mu}u_\theta^{r_\alpha}g_2^{r_y}u_0^{r_\gamma}\prod_{i \in \overline{D}} u_i^{r_i},h\right) \\ & = e(A,h^{(\theta+\mu)c})e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i = 0}^n u_i^{-c\cdot a_i},h\right)e\left(D_2^{r_\mu}u_\theta^{r_\alpha}g_2^{r_y}u_0^{r_\gamma}\prod_{i \in \overline{D}} u_i^{r_i},h\right) \end{split}$$

$$= e\left(\left(g_{1}g_{2}^{y}\prod_{i=0}^{n}u_{i}^{a_{i}}\right)^{1/(\theta+\mu)},h^{(\theta+\mu)c}\right)e\left(g_{1}^{-c}g_{2}^{-c\cdot y}\prod_{i=0}^{n}u_{i}^{-c\cdot a_{i}},h\right)e\left(D_{2}^{r_{\mu}}u_{\theta}^{r_{\alpha}}g_{2}^{r_{y}}u_{0}^{r_{\gamma}}\prod_{i\in\overline{D}}u_{i}^{r_{i}},h\right)$$

$$= e\left(D_2^{r_\mu} u_\theta^{r_\alpha} g_2^{r_y} u_0^{r_\gamma} \prod_{i \in \overline{D}} u_i^{r_i}, h\right)$$

DAS Protocol: Presentation

 R_2 $= e(D_2, h)^{s_{\mu}} e(u_0, h_{\theta})^{s_{\alpha}} e(u_0, h)^{s_{\gamma}} e(g_2, h)^{s_{\gamma}} e(u_{\overline{i}}, h)^{s_{\overline{i}}} \cdot (e(D_2, h_{\theta}) \left(\left[\int_{i \in \mathbb{N}} e(u_i, h)^{-s_i} \right) e(g_1, h)^{-1} \right)^{c_1} e(g_1, h)^{s_{\gamma}} e(g_2, h)^{s_{\gamma}} e(g_2,$ $=e(D_2,h^{s_\mu}h^c_\theta)e(u_0,h_\theta)^{r_\alpha-c\cdot\alpha}e(u_0,h)^{r_\gamma-c\cdot\gamma}e\left(g_1^{-c}g_2^{r_\gamma-c\cdot\gamma}\prod_{i\in\mathbb{Z}}u_i^{r_i-c\cdot a_i},h\right)\left(e\left(\prod_{i\in\mathbb{Z}}u_i^{-c\cdot a_i},h\right)\right)$ $= e(D_2, h^{r_{\mu} + c \cdot \mu} h_{\theta}^c) e(u_0, h^{\theta})^{-c \cdot \alpha} e(u_0, h)^{-c \cdot (\alpha \mu + z)} e\left(g_1^{-c} g_2^{-c \cdot y} \prod_{i=1}^n u_i^{-c \cdot a_i}, h\right) e(u_0, h_{\theta})^{r_{\alpha}} e\left(g_2^{r_y} u_0^{r_{\gamma}} \prod_{i=1}^n u_i^{r_i}, h\right)$ $= e(D_2, h^{r_{\mu}}h^{(\theta+\mu)c})e(u_0, h)^{-c(\alpha\theta+\alpha\mu+z)}e(g_1^{-c}g_2^{-c\cdot y}\prod_{i=1}^n u_i^{-c\cdot a_i}, h)e(u_{\theta}^{r_{\alpha}}g_2^{r_{y}}u_0^{r_{\gamma}}\prod_{i\in\overline{D}}u_i^{r_i}, h)$ $= e\left(A \cdot u_0^{\alpha}, h^{(\theta+\mu)c}\right) e(u_0, h)^{-c\alpha(\theta+\mu)} e(u_0, h)^{-ca_0} e\left(g_1^{-c} g_2^{-c \cdot y} \prod_{i=1}^n u_i^{-c \cdot a_i}, h\right) e\left(D_2^{r_{\mu}} u_{\theta}^{r_{\alpha}} g_2^{r_y} u_0^{r_{\gamma}} \prod_{i \in \overline{D}} u_i^{r_i}, h\right)$ $= e(A, h^{(\theta+\mu)c})e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i=1}^n u_i^{-c\cdot a_i}, h\right)e\left(D_2^{r_\mu}u_\theta^{r_\alpha}g_2^{r_y}u_0^{r_\gamma}\prod_{i=1}^n u_i^{r_i}, h\right)$ $=e\left(\left(g_1g_2^{y}\prod_{i=1}^{n}u_i^{a_i}\right)^{\frac{1}{\theta+\mu}},h^{(\theta+\mu)c}\right)e\left(g_1^{-c}g_2^{-c\cdot y}\prod_{i=0}^{n}u_i^{-c\cdot a_i},h\right)e\left(D_2^{r_{\mu}}u_{\theta}^{r_{\alpha}}g_2^{r_y}u_0^{r_{\gamma}}\prod_{i\in\overline{D}}u_i^{r_i},h\right)$ $= e\left(D_2^{r_\mu} u_\theta^{r_\alpha} g_2^{r_y} u_0^{r_\gamma} u_{\overline{i}}^{r_{\overline{i}}}, h\right)$

EZID Protocol: Symbols and Terms

Symbols and Terms	Explanation
lpk	- Issuer's Public Key - Ipk= $(e,g,g_1,g_2,u,u_\theta=u^\theta,d,u_0,u_1,,u_n,h,h_\theta=h^\theta,H)$
usk	- User Private Key $a_0=z$, Attribute List (a_1,\ldots,a_n) , Issuer's Signature $\sigma=(A,\mu,y)$ - usk= $(\vec{a}=(a_0=z,a_1,\ldots,a_n),\sigma=(A,\mu,y))$
VC (Verifiable Credential)	- Issued to the user through the VC Issuance Protocol - User's attribute list (a_1, \dots, a_n) and Issuer's signature for them - $\sigma = (A, \mu, y)$
$s \stackrel{\$}{\leftarrow} S$	- Select an element s uniformly at random from the set S
DI	 Set of attribute indices selected for the "selective disclosure" feature in the VC Presentation phase DI=DI_D∪DI_R
DI_D	- Set of attribute indices selected for the "selective disclosure" feature in the VC Presentation phase that are directly exposed
DA	- Set of pairs of selected attribute indices and proof-related parameters for the "selective disclosure" feature in the VC Presentation phase
\overline{D}	- $\overline{D} = [1, n] \setminus DI$
<i>D</i> *	- $D^* = \overline{D} \cup \mathrm{DI}_R = [1, n] \backslash \mathrm{DI}_{\mathrm{D}}$

Thank you