

IEEE 802.15.4 Study

Yeon Hee Lee

Contents

- Introduction
 - IEEE 802.15.4
 - Device Type
 - Topology
- IEEE 802.15.4 MAC
- CSMA-CA mechanism
- Markov chain model of IEEE 802.15.4
- Future Work

IEEE 802.15.4

- a standard for the MAC and physical layer protocol of wireless networks দুধ্া ছিন্ন এ MAC과 물리 계층을 정의하는 표준
- for the low-rate wireless PAN(LR-WPAN) 저속 무선 개인 통신망을 위함
- for low power consumption and low cost communication network সমল্প Հոր, স্বাণ্ড ছে ১
- 대표적으로 'ZigBee' 라 불림
- uses CSMA-CA medium access mechanism
- supports star topology and peer-to-peer topology
- 두가지 종류의 device types
 - FFD(full-function device)
 - RFD(reduced-function device)

Device Type

- 저전력,저소비 네트워크 구성을 위해 FFD, RFD 두가지로 나뉨

FFD (full-function device)	RFD (reduced-function device)					
 PAN coordinator, coordinator, device로써 역할 수행 가능 RFD, FFD 모두와 통신 가능 (Routing) 	 End device로써 역할 수행 가능 Coordinator, Router에 붙어있는 간단한 기능의 제한된 Protocol의 저전력 장치를 지칭 오직 FFD와 통신 가능(RFD간 X) 메모리가 적게 들고 전력소비가 적어 FFD보다 가격이 저렴 					

Topology (네트워크의 물리적 연결 형태)

- Star topology
 - ✔ Single central controller(PAN coordinator)와 devices 간 통신
 - ✓ FFD와 RFD의 접속을 제어
 - ✓ 한 개의 PAN coordinator 존재

- Peer-to-peer topology
 - ✓ 범위 안의 어떤 devices 간에도 통신 가능
 - ✓ 다수의 coordinator 존재

● Full Function Device
○ Reduced Function Device

Communication Flow

Topology

- Cluster tree
 - ✓ Peer to peer network의 한 종류
 - ✓ 대부분의 Device가 Cluster tree network의 FFD
 - ✔ RFD는 leaf device 로서 네트워크의 끝 단에서 접속하게 됨

Superframe structure

- 1) Active period
- 2) Inactive period (coordinator → Low-power mode)

Figure 66—An example of the superframe structure

Superframe structure

1) Active period

- ✔ Active period는 같은 size의 16개 slot으로 나뉨
- ✓ Active period는 2가지 part로 나뉨
 - Contention Access period (CAP)
 - Contention Free period(CFP)

Figure 66—An example of the superframe structure

Active period

- CAP(Contention Access Period)
 - ✔ Beacon 다음으로 시작하며 device가 통신을 원하는 구간 (device간의 경쟁구간)
 - ✓ slotted CSMA-CA mechanism으로 동작

Figure 4—Superframe structure without GTSs

Figure 5—Superframe structure with GTSs

Active period

- CFP(Contention Free Period)
 - ✔ Optional 구간 (CAP의 상황에 따라 GTS 할당이 이루어지지 않을수도 있음=Option임)
 - ✓ Station에게 GTS(guranteed time slot)를 할당하여 비경쟁적으로 동작
 - PAN coordinator가 GTS 구간동안 통신할 Devices를 정해줌 (중앙통제)
 - ✔ GTS는 최대 7개까지 할당이 가능하며, 한 개 이상의 slot을 가짐

GTS(Guaranteed time slots)

- PAN coordinator가 최대 7개의 GTS 할당 가능
- 2개 이상의 Slot period를 차지할 수 있음

Figure 5—Superframe structure with GTSs

Figure 4—Superframe structure without GTSs

Superframe Structure

Beacon

- ✓ 각 Superframe의 첫 번째 slot에서 전송됨 (Superframe을 시작할 때 사용)
- ✓ 네트워크 안의 다른 device와 동기화를 위해 사용
- ✓ PAN coordinator가 전송
- ✔ 네트워크 정보 포함, 프레임 구조 및 보류중인 노드 메시지 알림

Figure 66—An example of the superframe structure

Superframe Structure

Superframe

- SD (Superframe Duration) : Superframe의 Active portion의 길이
 - ✓ SD = aBaseSuperframeDuration*2^{SO} symbols
- BI (Beacon Interval) : Beacon frame간 간격
 - ✓ BI = $aBaseSuperframeDuration*2^{B0}$ symbols
- BO (Beacon Order) : Superframe의 길이 결정
 - \checkmark $0 \le BO \le 14$

Figure 66—An example of the superframe structure

- SO (Superframe Order) : Superframe에서 Active 구간의 길이 결정
 - \checkmark 0 \leq SO \leq BO \leq 14
 - ▶ 만약, BO가 15이면 Superframe에서 1개의 unit slot 길이가 SD의 길이와 같아지므로 Beacon을 보내지 않고, 네트워크가 Non-beacon-enabled mode로 동작함

Superframe

- Symbol
 - ✔ PHY계층에 따라 달라지는 Bit의 mapping 단위
 - ✓ Ex) PHY 2450MHz Bit rate/Symbol rate = 4

Table 1—Frequency bands and data rates

PHY (MHz)	Frequency	Spreading	parameters	Data parameters				
	band (MHz)	Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols		
868/915	868-868.6	300	BPSK	20	20	Binary		
808/913	902–928	600	BPSK	40	40	Binary		
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS		
	902–928	1600	ASK	250	50	5-bit PSSS		
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal		
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal		
2450	2400–2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal		

• Superframe – SlotD 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16
- $\ensuremath{\mbox{\mbox{$\triangleleft$}}}: SlotD = aBaseSlotDuration \times 2^{SO}[symbols] \\ = 60 \times 2^{SO}[symbols] = 0.96 \times 2^{SO}[ms]$

• Why?

SlotD = aBaseSlotDuration * 2^{SO} symbols

= $60 \text{ sym} * 2^{SO} \text{ symbols}$

= 60 sym * 4 bit / 250 kbps = 0.96 ms

• Superframe – SD 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16
- \triangleleft : $\stackrel{SD}{=} aBaseSuperframeDuration \times 2^{SO}[symbols] = 960 \times 2^{SO}[symbols] = 15.36 \times 2^{SO}[ms]$

• Why?

SD = aBaseSuperframeDuration * 2^{SO} symbols

- = aBaseSuperframeDuration = A*B = 960 symbols = 3840 bits
- \rightarrow 960 sym * 4 bit / 250 kbps = 15.36 ms

• Superframe – BI 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16

• Why?

 $BI = aBaseSuperframeDuration * 2^{BO}$ symbols

- = aBaseSuperframeDuration = $A*B \rightarrow 960$ symbols = 3840 bits
- \rightarrow 960 sym * 4 bit / 250 kbps = 15.36 ms

Superframe

- Duty Cycle
 - ✓ 전체 구간에서의 Active 구간의 비율을 말함

$$\checkmark 2^{-(BO-SO)} = \frac{SD = aBaseSuperframeDuration*2^{SO} symbols}{BI = aBaseSuperframeDuration*2^{BO} symbols}$$

BO-SO	0	1	2	3	4	5	6	7	8	9	≥10
Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

Figure 66—An example of the superframe structure

CSMA-CA in IEEE 802.15.4

- CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
 - ✓ 반송파 감지 다중 접속 충돌 회피
 - ✓ 무선 LAN에서는 충돌 감지가 거의 불가능, 전송 전에 캐리어 감지를 해보고 일정 시간을 기다린 후에 가능한 충돌을 회피하는 방식

CSMA-CA in IEEE 802.15.4

- Slotted CSMA/CA (Carrier Sense Multiple Access with Collision Detection)
 - ✓ Beacon mode
 - ✓ device가 CAP 구간동안 data frames을 원할 때마다 랜덤 수의 backoff slots을 대기함
 - ✓ ACK, beacon frames은 CSMA-CA을 사용하지않고 전송됨
 - ✓ Backoff Boundary 설정

Unslotted CSMA-CA

- √ Non-beacon mode
- ✓ 다른 Device와 동기화되지 않음

Slotted CSMA-CA mechanism

Unslotted CSMA-CA mechanism

Slotted CSMA-CA

Parameter

√ NB

- backoff 시도 횟수
- 새로운 전송마다 0으로 초기화
- ✓ CW(Contension Window) 전송 시작전 활동이 없어야하는 슬롯 기간의 수를 정의
 - backoff period 횟수 (CCA 횟수)
 - 각 전송 시도전 2로 초기화
 - CCA(Clear Channel Assessment)를 할 때마다 하나씩 줄여지고,
 값이 0이 되었을 때 CCA를 하여 채널이 idle상태이면 전송 시작

✓ BE(Backoff Exponent)

- macMinBE로 초기화
- 채널평가를 시도하기전, 기기가 대기해야하는 슬롯기간의 수와 관련된
 백오프지수를 결정하기 위한 파라미터 값

Slotted CSMA-CA

In IEEE 802.15.4

- CW = 0 일 때, CCA 수행(매 slot time마다 수행하지 않음)
- CCA를 2번 수행 후, data 전송, 다른 device는 계속 count 진행
- CCA 수행 시, busy할 경우 [0, 2^BE-1] 중 임의의 값을 선택해 backoff 다시 수행

- Sofie Pollin, et al. "Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer" (2008)
 - Markov Model for IEEE 802.15.4.

transition probabilities:

$$P\{i, k | i, k+1\} = 1, k \ge 0$$

$$P\{0, k | i, 0\} = (1 - \alpha)(1 - \beta)/W_0, i < m$$

$$P\{i, k | i-1, 0\} = (\alpha + (1 - \alpha)\beta)/W_i,$$

$$i \le Im, k \le W_i - 1$$

$$P\{0, k | m, 0\} = (1 - \alpha)(1 - \beta)/W_0$$

$$(4)$$

^{*} $P\{a, b | a, b + 1\} \rightarrow \{a, b + 1\}$ 이 $\{a, b\}$ 가 될 확률

(1) Backoff counter 과정 : $b_{\underline{i},\underline{k}}$ ightharpoonup Backoff counter

→ Stage 횟수

 $(2) (1-\alpha)(1-\beta) \times \frac{1}{W_O}$ "Backoff counter의 횟수(W_O)중에 하나의 Stationary probability"를 의미

transition probabilities:

$$P\{i, k|i, k+1\} = 1, k \ge 0$$

$$P\{0, k|i, 0\} = (1 - \alpha)(1 - \beta)/W_0, i < m$$

$$P\{i, k|i-1, 0\} = (\alpha + (1 - \alpha)\beta)/W_i,$$

$$i \le lm, k \le W_i - 1$$

$$P\{0, k|m, 0\} = (1 - \alpha)(1 - \beta)/W_0$$

$$(4)$$

^{*} $P\{a, b | a, b + 1\} \rightarrow \{a, b + 1\}$ 이 $\{a, b\}$ 가 될 확률

$$(3) (\alpha + (1 - \alpha)\beta) \times \frac{1}{W_i}$$

 α : 1번째 CCA에서 실패할 확률 (1-lpha)eta : 2번째 CCA에서 실패할 확률

 $(4) \ P\{0,k|m,0\} = (1-\alpha)(1-\beta) imes rac{1}{W_0} \longrightarrow \{m,0\}$ 에서 전송 성공후 다시 backoff counter를 통해 $rac{1}{W_0}$ 가 선택될 확률

transition probabilities:

(5)
$$b_{i,0} = b_{i-1,0} (\alpha + (1-\alpha)\beta)$$
 $0 < i \le m$

 $< i \le m$ $b_{i-1,0}$ 에서 CCA 2번 실패후 다음 stage의 i,0으로 가는 것을 의미

(6)
$$b_{i,0} = b_{0,0} [(\alpha + (1 - \alpha)\beta)]^i \quad 0 < i \le m$$

(5) 식에
1 대입
$$\rightarrow b_{1,0} = b_{0,0}(\alpha + (1 - \alpha)\beta)$$

2 대입 $\rightarrow b_{2,0} = b_{1,0}(\alpha + (1 - \alpha)\beta)$
 $= b_{0,0}(\alpha + (1 - \alpha)\beta) (\alpha + (1 - \alpha)\beta)$
 $= b_{0,0}(\alpha + (1 - \alpha)\beta)^{2}$
 $= > b_{i,0} = b_{0,0}[(\alpha + (1 - \alpha)\beta)]^{i}$

transition probabilities:

$$(7) \ b_{i,k} = \frac{W_i - k}{W_i} \{ (1 - \alpha)(1 - \beta) \sum_{j=0}^{m} b_{j,0} \} \quad i = 0$$

$$(1 - \alpha)(1 - \beta)(b_{0,0} + b_{1,0} + b_{2,0} + \dots + b_{m,0}) \quad + b_{0,0} (1 - \alpha)(1 - \beta) + b_{0,0} (1 - \alpha)(1 - \beta) + \dots \quad + b_{m,0} (1 - \alpha)(1 - \beta) \}$$

 W_i 번째 stage에서 -k번째 Stationary probability가 선택될 확률

(8)
$$b_{i,k} = \frac{W_i - k}{W_i}$$
 $b_{i,0}$ $0 < i$ (5) $b_{i,0} = b_{i-1,0}(\alpha + (1-\alpha)\beta)$ 로 정의

CCA 2번 실패후 W; 번째 stage에서 -k번째 Stationary probability가 선택될 확률

transition probabilities:

transition probabilities:

- $-\tau$: 임의의 노드가 임의의 시간에서 전송할 확률
- (1 τ)ⁿ⁻¹ : 모든 n개의 device가 backoff states에 있을때, 주어진 device가 2번의 CCA 수행후 패킷을 성공적으로 전송하는 확률

 n-1개의 device가 전송하지 않는것

$$= b_{0,0} (1-\alpha)(1-\beta) + b_{1,0}(1-\alpha)(1-\beta) + b_{2,0}(1-\alpha)(1-\beta) + \dots + b_{m,0}(1-\alpha)(1-\beta)$$