CSCI2400 Final Practice Problems

December 12, 2013

1 TLB and Virtual Memory

The following problem concerns the way virtual addresses are translated into physical addresses.

- The memory is byte addressable.
- Memory accesses are to **1-byte words** (not 4-byte words).
- Virtual addresses are 10 bits wide.
- Physical addresses are 14 bits wide.
- The page size is 64 bytes.
- The TLB is 2-way set associative with 8 total entries.
- The L1 Cache is direct mapped, with a 4-byte block size and 64 total bytes.

In the following tables, all numbers are given in hexadecimal and the left-most value is byte #0 and the right-most byte is byte #3, where applicable. The contents of the TLB, a portion of the page tables, and the 16 entries of the Cache are as follows:

	TI	ĹΒ			
Index	Tag	PPN	Valid		
0	1	0d	1		
	-	_	0		
1	1	18	1		
	3	0c	1		
2	2	16	1		
	-	_	0		
3	2	0e	1		
	-	_	0		

Pa	ge Tal	ole
VPN	PPNI	Present
000	019	1
001	001	1
002	03f	1
003	020	1
004	00d	1
005	018	1
007	001	1
008	015	1
009	000	1
00a	016	1
00b	00e	1
00c	03b	1
00d	00c	1
00f	039	1

	Cache										
Index	Valid	Tag	Data								
0	1	3b	BF3A02F3								
1	1	4a	E8E7BA4F								
2	1	12	23033CCA								
3	1	16	7AFB27EE								
4	1	2f	8F9F64E8								
5	1	3e	EA13BEFD								
6	1	2b	FEA8AAA6								
7	1	4c	BD501308								
8	1	0d	4D011D8E								
9	0	1b	7EFEB6ED								
10	1	2b	860DFCB3								
11	1	15	9D769441								
12	1	3a	62DA7A7D								
13	1	5b	C8D747DD								
14	1	6f	CA8DC445								
15	1	7a	90FAAF41								

1. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if they exist) that would be used to determine the following: (If a field doesn't exist, don't draw it on the diagram.)

VP	O	The v	virtua	ıl paş	ge off	set	T	ΓLBI	Th	e TLB	index
VP	N	The v	virtua	al pag	ge nu	mber	· 1	LBT	Th	e TLB	tag
9	8	7	6	5	4	3	2	1	0		

2. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be used to determine the following: PPO (The physical page offset) and PPN (The physical page number).

11	10	9	8	7	6	5	4	3	2	1	0

3. For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether the TLB misses and whether the entry is or is not in the page table. If the physical page number and address can not be determined, write "N/A". Then if a physical address exists indicate the cache translation parts, if its a cache hit, and a value if applicable. If any part can't be determined just write "N/A".

Virtual address: 0x28e

(a) Virtual address format (one bit per box)

9	8	7	6	5	4	3	2	1	0

(b) Address translation

Parameter	Value
VPN	0x
TLB Index	0x
TLB Tag	0x
TLB Hit? (Y/N)	
In Page Table? (Y/N)	
PPN	0x

(c) Physical address format (one bit per box)

11	10	9	8	7	6	5	4	3	2	1	0

(d) Cache Translation

Parameter	Value
PPN	0x
Block Offset	0x
Cache Index	0x
Cache Tag	0x
Cache Hit? (Y/N)	
Value	0x

Virtual address: 0x300

(a) Virtual address format (one bit per box)

9	8	7	6	5	4	3	2	1	0

(b) Address translation

Parameter	Value
VPN	0x
TLB Index	0x
TLB Tag	0x
TLB Hit? (Y/N)	
In Page Table? (Y/N)	
PPN	0x

(c) Physical address format (one bit per box)

11	10	9	8	7	6	5	4	3	2	1	0

(d) Cache Translation

Parameter	Value
PPN	0x
Block Offset	0x
Cache Index	0x
Cache Tag	0x
Cache Hit? (Y/N)	
Value	0x

2 Signals

```
pid_t pid;
int counter = 0;
void handler1(int sig) {
    counter ++;
    printf("counter = %d\n", counter);
    fflush(stdout); /* Flushes the printed string to stdout */
    kill(pid, SIGUSR1);
}
void handler2(int sig) {
    counter += 3;
    printf("counter = %d\n", counter); exit(0);
}
int main() {
    signal(SIGUSR1, handler1);
    if ((pid = fork()) == 0) {
        signal(SIGUSR1, handler2);
        kill(getppid(), SIGUSR1);
        while(1) {};
    } else {
        pid_t p;
        int status;
        if ((p = wait(&status)) > 0) {
            counter += 2;
            printf("counter = %d\n", counter);
        }
    }
}
```

1. What is the output of this program?