Basic Algorithms CSCI-UA.0310

Homework 10

Due: April 26th, 4:00 PM EST

Instructions

Please answer each **Problem** on a separate page. Submissions must be uploaded to your account on Gradescope by the due date and time above.

Please note that no late submission will be accepted for this homework.

Problems To Submit

Problem 1 (25 points)

- (a) Assume that all edge weights of an undirected connected graph G are 1. Develop an O(|V| + |E|)-time algorithm to find the minimum spanning tree (MST) of G. Justify the correctness of your algorithm and its run-time.
- (b) Now assume that all the edge weights are 1, except for a single edge $e_0 = \{u_0, v_0\}$ whose weight is w_0 (note that w_0 might be either larger or smaller than 1). Show how to modify your solution in part (a) to compute the MST of G. What is the run-time of your algorithm and how does it compare to the run-time you obtained in part (a)?

Problem 2 (25 points)

Suppose we are given an undirected graph G with weighted edges and a minimum spanning tree T of G. In each of the following cases, we change the weight of one edge e of G, and obtain the new undirected weighted graph G'. Justify why T remains an MST of the new graph G' in each of these cases.

- (a) The weight of one edge $e \in T$ is decreased.
- (b) The weight of one edge $e \notin T$ is increased.

Problem 3 (25 points)

Provide a counterexample to the following false claim. Fully justify your answer.

If a directed graph G contains cycles (i.e., is not acyclic), then topological sort produces a vertex ordering that minimizes the number of "bad" edges that are inconsistent with the ordering produced. More precisely, a bad edge is an edge going from a vertex later in the ordering to an earlier vertex.

Problem 4 (25 points)

A directed graph G is called *semi-connected* if, for all pairs of vertices u and v in G, we have a path from u to v or a path from v to u (or both).

Note: Recall that in a connected graph, we must have a path from u to v and a path from v to u.

- (a) Develop an algorithm which, given a directed graph G = (V, E), determines whether G is semi-connected. Your algorithm must run in O(|V| + |E|) time.
- (b) Justify the correctness and run-time of your algorithm.

Hint: First, solve the problem when G is acyclic (DAG). Then, generalize your solution by noting that any directed graph can be decomposed into a DAG of strongly connected components (as seen in the lecture).