ECC Summer School 2004 Hardware Implementation of ECC

Jan Pelzl

Communications Security Group

Ruhr-Universität Bochum

http://www.crypto.rub.de

Overview

	$\overline{}$	
	()	verview
_	v	VCIVICV

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

- 1. Introduction
 - Why Hardware Acceleration?
 - What is Hardware?
- 2. Hardware Design
 - Design Process
 - Example
- 3. Hardware for $GF(2^n)$
 - Number Representations
 - Addition, Subtraction
 - Squaring
 - Multiplication
 - Reduction
- 4. Hardware for GF(p)
 - Number Representations
 - Addition, Subtraction
 - Squaring, Multiplication
 - Reduction
- 5. Practical Performance
 - Examples

Why Hardware Acceleration?

Overview

Introduction Why Hardware Acceleration?

- What is Hardware?
- Tradeoff ASIC vs. FPGA

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Hardware (HW) acceleration required if conventional processors too slow.

- ⇒ two scenarios:
- 1. High end server with many (thousands) PK operations per second
 - → Let HW do computational expensive PK operations
 - → Example: SSL Server
- 2. Embedded device with low power CPU (cheap)
 - → HW extension to enable for PK cryptography
 - → Examples: Mobiles, low-end PDA, smart cards

What is Hardware?

Overview

Introduction

- Why Hardware Acceleration?
- What is Hardware?
- Tradeoff ASIC vs. FPGA

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Electronic circuit designed mainly for a single purpose (aka special purpose hardware).

- Application Specific Integrated Circuit (ASIC)
 (=chip for one special application)
- Field Programmable Gate Array (FPGA) (=reprogrammable circuit, additional logic)

Tradeoff ASIC vs. FPGA

Overview

Introduction
Why Hardware Acceleration
■ What is Hardware?
● Tradeoff ASIC vs. FPGA
Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Figure 1: Comparison ASIC vs. FPGA

Design Process

Overview

Introduction

Hardware Design

- Design Process
- Design Process (2)
- Example

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Objective: Project structure and interaction of different functional units onto specific hardware.

E.g., Functionality of an elliptic curve cryptosystem:

Design Process (2)

Overview

Introduction

Hardware Design

- Design Process
- Design Process (2)
- Example

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Different design methods available, e.g., use Gajski Y-Diagram to specify 3 approaches to the hardware:

Example

Overview

Introduction

Hardware DesignDesign Process

Design Process (2)

Example

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Processor Architecture for ECC (subsystems) [OP00]:

Number Representation

Overview

Introduction

Hardware Design

Hardware for $GF(2^{\mathcal{H}})$ Number Representation

- Addition, Subtraction
- Squaring
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

Most popular basis for numbers in $GF(2^n)$:

- Polynomial basis:
 - specified by an irreducible polynomial f(z) modulo 2 (field poynomial)
 - bit string $(a_{n-1}a_{n-2}...a_1a_0)$ represents polynomial $a_{n-1}z^{n-1}+...+a_1z+a_0$
 - ullet field arithmetic is implemented as polynomial arithmetic modulo f(z)
- Normal basis:
 - specified by an element θ
 - bit string $(a_{n-1}a_{n-2}...a_1a_0)$ represents element $a_0\theta + a_1\theta^2 + a_2\theta^{2^2} + ... + a_{n-1}\theta^{2^{m-1}}$
 - for special classes of normal basis (Type T low-complexity normal basis), efficient implementations possible

In HW, polynomial basis advantegeous. (focus here)

Addition, Subtraction

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Number Representation

Addition, Subtraction

- Squaring
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

In Hardware,

- \blacksquare addition and subtraction over $GF(2^n)$ by bitwise XOR
- variables of arbitrary bit length can be processed simultaneously

$$c = a \pm b = a \oplus b$$

Squaring

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

- Number Representation
- Addition, Subtraction
- Squaring
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

No complicated logic required, only routing of input bits to correct output positions:

$$c = a^2$$

Multiplication

Overview

Introduction

Hardware Design

Hardware for $GF(2^{n})$

- Number Representation
- Addition, Subtraction
- Squaring

Multiplication

- Multiplication (2)
- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

Array type multiplication:

- n multiplicand bits are processed in parallel
- multiplier bits are processed one bit each step
- polynomial multiplication and reduction are interleaved each step

The array type multiplication can be performed in two major ways:

- Least Significant Bit first (LSB first)
- Most Significant Bit first (MSB first)

Multiplication (2)

Overview

Introduction

Hardware Design

Hardware for $GF(2^m)$

- Number Representation
- Addition, Subtraction
- Squaring
- Multiplication

Multiplication (2)

- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

Let $A = \sum_{j=0}^{n-1} a_j z^j, B = \sum_{j=0}^{n-1} b_j z^j$, and $C = \sum_{j=0}^{n-1} c_j z^j$ the product of A and B.

LSB first multiplication:

$$C = AB \mod f(z)$$

$$= b_0 A + b_1 (A \cdot z \mod f(z))$$

$$+b_2 (A \cdot z^2 \mod f(z))$$

$$+ \dots + b_{n-1} (A \cdot z^{n-1} \mod f(z))$$

MSB first multiplication:

$$C = AB \mod f(z)$$

$$= (\dots(A \cdot b_{n-1} \cdot z \mod f(z))$$

$$+A \cdot b_{n-2}) \cdot z \mod f(z)$$

$$+\dots + A \cdot b_1) \cdot z \mod f(z) + A \cdot b_0$$

Multiplication (3)

Overview

Introduction

Hardware Design

Hardware for $GF(2^{n})$

- Number Representation
- Addition, Subtraction
- Squaring
- Multiplication
- Multiplication (2)

Multiplication (3)

Reduction

Hardware for GF(p)

Practical Performance

Digit Serial Multiplier (DSM):

- n multiplicand bits are processed in parallel
- D bits of multiplier are processed simultaneously each step \rightarrow total number of steps: $\lceil n/D \rceil$
- polynomial multiplication and reduction are interleaved each step
- Most Significant Digit first (MSD fist) multiplier
- Least Significant Digit first (LSD fist) multiplier

(For more details on $GF(2^n)$ multiplier in HW, refer to [SP98].)

Reduction

Overview

Introduction

Hardware Design

Hardware for $\overline{GF(2}^n$

- Number Representation
- Addition, Subtraction
- Squaring
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Reduction

Hardware for GF(p)

Practical Performance

- In case of addition/ subtraction: simply add f(z) to intermediate results if larger than f(z).
 - → can hardwire reduction polynomial
- In case of squaring by table lookup: shift and add f(z) to eliminate all bit positions with '1'.
 - → can hardwire reduction polynomial multiple times
- interleaved multiplication does not need additional reduction

Number Representation

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Number Representation

- Addition
- Addition (2) Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring Reduction

Practical Performance

Can express $a \in GF(p)$ in different ways:

- **binary form:** $a = (a_{n-1}...a_1a_0)_2 = a_{n-1}2^{n-1} + ... + a_12 + a_0$
- redundant bit representation (e.g., for carry save adders)
 - → uses more bits than necessary to represent number
- 2's complement for negative numbers:
 - Positive 2's complement numbers are represented as the simple binary.
 - Negative 2's complement numbers are represented as the binary number that when added to a positive number of the same magnitude equals zero.

integer		teger	2's complement
	signed	unsigned	
	5	5	0000 0101
	-5	251	1111 1011

Addition

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Number Representation

Addition

- Addition (2) Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Simple adder for two input bits (half-adder):

A_i	B_i	S_i	C_{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Addition (2)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition

Addition (2)

- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Simple adder for three input bits (full-adder):

A_i	B_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Addition (3)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)

Addition (3)

- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Carry Propagate Adder (CPA): Latency O(n)

Addition (4)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2) Addition (3)

Addition (4)

- Addition (5)
- Subtraction
- Multiplication Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring Reduction

Practical Performance

Carry Save Adder (CSA): Latency O(1)

Addition (5)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)

Addition (5)

- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- SquaringReduction

Practical Performance

Other methods for addition:

- Bit Serial Adder
 - → compute one bit at a time with fulladder
- Carry Completion Sensing Adder
 - → figures out when all carrys are computed
- Carry Look-Ahead Adder
 - → extra logic to compute carry bits in advance
- Carry Delay Adder
 - → two level CSA used for efficient multiplication

(See [Ç. K. Koç96] for overview of addition operations in HW.)

Subtraction

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)

Subtraction

- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Implement subtraction with addition:

$$a - b = a + b'$$

where b' is $\overline{b}+1$ and \overline{b} the bit wise complement of b. The highest carry bit af the addition is ignored.

Example: Let $a = 13_{10} = (1101)_2$ and $b = 6_{10} = (0110)_2$

$$\overline{b} = (1001)_2$$
 $b' = \overline{b} + 1 = 1010$
 $\Rightarrow a - b = a + b'$
 $= (1101)_2 + (1010)_2$
 $= (0111)_2 = 7_{10}$

Multiplication

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication

• Multiplication

- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- SquaringReduction
- Practical Performance

Different methods for modular multiplication:

Schoolbook:

- → add intermediate results
- → reduce in the end

Interleaved:

- → interleaved multiplication and reduction
- → keeps intermediate results small

Montgomery:

- → alternative residue number system (RNS)
- → interleaved multiplication and reduction

Multiplication (2)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2) Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication

Multiplication (2)

- Multiplication (3)
- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Interleaved multiplication with shift-add multiplication algorithm:

Require: $A < 2^k, B < 2^k$, modulus n

Ensure: $P = A \cdot B$ such that $0 \le P \le 3n$

1. P := 0

2: **for** i = 0 to k - 1 **do**

3: $P := 2P + A \cdot B_{k-1-i}$

4: $P := P \mod n$

5. end for

6: return P

Remark: Since $0 \le P \le 3n$ at most 2 subtractions of n are required in the end.

Multiplication (3)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)

Multiplication (3)

- Multiplication (4)
- Squaring
- Reduction

Practical Performance

Residue number system for Montgomery multiplication:

$$a \longmapsto a' = a \cdot r \pmod{n}$$
 where $\gcd(r, n) = 1$.

Montgomery product c' of residues a' and b' defined as

$$c' = a' \cdot b' \cdot r^{-1} \pmod{n}$$

Practice: Use $r = 2^k$ for fast computation (next slide)

Multiplication (4)

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)

Multiplication (4)

- Squaring
- Reduction

Practical Performance

Binary add-shift algorithm for Montgomery multiplication:

Require: $A' < 2^k, B' < 2^k$, modulus $n, r = 2^k$

Ensure: $U = A' \cdot B' \cdot 2^{-k}$ such that $0 \le P < 2n$

- 1: U := 0
- 2: **for** i = 0 to k 1 **do**
- 3: $U := U + A_i \cdot B$
- 4: **if** U is odd **then**
- 5: then U := U + n
- 6: end if
- 7: U := U/2
- 8: end for

Squaring

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)

Squaring

Reduction

Practical Performance

- \blacksquare in GF(p) usually done with multiplication HW
- special HW can make use of special structure
 - reuse intermediate results
 - but: increase in area

Reduction

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

- Number Representation
- Addition
- Addition (2)
- Addition (3)
- Addition (4)
- Addition (5)
- Subtraction
- Multiplication
- Multiplication (2)
- Multiplication (3)
- Multiplication (4)
- Squaring

Reduction

Practical Performance

Reduction following addition/ subtraction ($c = a \pm b$):

- if $a+b \ge n$, compute a+b-n
- if a-b < 0 compute a+n-b

Reduction following multiplication/ squaring ($c = a^2$ or $c = a \cdot b$):

- use interleaved or montgomery multiplication (reduction included)
- lacktriangle else: compute remainder of c/n

Timings

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

● Timings

Further Reading

Literature

Tradeoff time vs. area.

 \Rightarrow optimize area-time (AT) product

Timings for finite field/ ECC operations of some hardware platforms:

FPGA/ASIC	operation	time	reference
FPGA	512bit multiplication $GF(p)$	2.37ms	[BP99]
ASIC	160bit multiplication $GF(p)$	4.1s	[STK00]
FPGA	163bit ECC scalarmult. $GF(2^n)$	144s	[GCE ⁺ 01]
FPGA	191bit ECC scalarmult. $GF(p)$	3ms	[OP01]

Further Reading

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

Timings

Further Reading

Literature

- Excellent and brief overview of hardware adders and multipliers for arithmetic in GF(p) given in [Ç. K. Koç96]. Very useful!
- For fields $GF(2^n)$, refer to [SP98]. An overview over different types of multipliers over extensions fields of characteristic two and their optimization is presented.

Literature

Overview

Introduction

Hardware Design

Hardware for $GF(2^n)$

Hardware for GF(p)

Practical Performance

- Timings
- Further Reading
- Literature

References

[BP99] T. Blum and C. Paar. Montgomery modular multiplication on reconfi gurable hardware. In *Proceedigns of the* 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages 70–77, 1999.

[Ç. K. Koç. RSA Hardware Implementation. RSA Laboratories Technical Report TR-801, RSA Laboratories, Version 1.0 – April 19th, 1996.

[GCE⁺01] N. Gura, S. Chang, H. Eberle, G. Sumit, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila. An End-to-End Systems Approach to Elliptic Curve Cryptography. In Ç. K. Koç and C. Paar, editors, *Cryptographic Hardware and Embedded Systems* — *CHES 2001*, volume LNCS 1965, pages 351–366. Springer-Verlag, 2001.

[OP00] G. Orlando and C. Paar. A High-Performance Reconfi gurable Elliptic Curve Processor for $GF(2^m)$. In Ç. K. Koç and C. Paar, editors, *Cryptographic Hardware and Embedded Systems* — *CHES 2000*, volume LNCS 1965. Springer-Verlag, 2000.

[OP01] G. Orlando and C. Paar. A Scalable GF(p) Elliptic Curve Processor Architecture for Programmable Hardware. In Ç. K. Koç, D. Naccache, and C. Paar, editors, *Workshop on Cryptographic Hardware and Embedded Systems* — *CHES 2001*, volume LNCS 2162, pages 348–363. Springer-Verlag, May 14-16, 2001.

[SP98] L. Song and K. K. Parhi. Low energy digit-serial/parallel fi nite fi eld multipliers. *Journal of VLSI Signal Processing*, 19(2):149–166, June 1998.

E. Savas, A. F. Tenca, and C. K. Koç. A scalable and unified multiplier architecture for finite fields gf(p) and gf(2). In Ç. K. Koç and C. Paar, editors, *Cryptographic Hardware and Embedded Systems* — *CHES 2000*, volume LNCS 1965, pages 281–296. Springer-Verlag, 2000.

[STK00]