MAA355 - Lista 1

Pedro Maciel Xavier 116023847

13 de abril de 2021

Questão 1.: Seja V um K-espaço vetorial, $W_1, W_2 \subset V$ subespaços tais que $W_1 + W_2 = V$ e $W_1 \cap W_2 = \{0\}$. Mostre que $\forall \alpha \in V$ α se escreve de forma única $\alpha = \alpha_1 + \alpha_2, \alpha_1 \in W_1, \alpha_2 \in W_2$.

Vamos supor por absurdo que $\exists \alpha \in V$ que não se escreve de forma única como $\alpha = \alpha_1 + \alpha_2, \alpha_1 \in W_1, \alpha_2 \in W_2$, isto é, $\alpha = \beta_1 + \beta_2, \alpha_1 \neq \beta_1 \in W_1, \alpha_2 \neq \beta_2 \in W_2$. Logo, $\beta_1 + \beta_2 = \alpha_1 + \alpha_2$ e, portanto, $\gamma = \alpha_1 - \beta_1 = \alpha_2 - \beta_2$. É certo que, como W_i são espaços vetoriais, $\alpha_i - \beta_i \in W_i$, i = 1, 2. Por fim, $\gamma \neq 0$ pertence tanto a W_1 como a W_2 e $\{\gamma\} \subseteq W_1 \cap W_2$ é a contradição que buscávamos.

Questão 2.: Seja V um K-espaço vetorial. Mostre que se $\exists \alpha_1, \ldots, \alpha_n \in V$ tais que $\langle \alpha_1, \ldots, \alpha_n \rangle = V$ então $\dim_K V < \infty$.

Se V for um K-espaço vetorial de dimensão infinita,

Questão 3.: Seja V um K-espaço vetorial, $\mathbf{T} \in \operatorname{End}_K V$. Prove que a) e b) são equivalentes.

- a) Im $\mathbf{T} \cap \ker \mathbf{T} = \{0\}$
- b) Se $\mathbf{T}^2 \alpha = 0$ então $\mathbf{T} \alpha = 0$
- a) \Longrightarrow b) $\mathbf{T}^2\alpha=0$ é o mesmo que dizer que $\mathbf{T}(\mathbf{T}\alpha)=0$, ou seja, $\mathbf{T}\alpha\in\ker\mathbf{T}$. Naturalmente, $\mathbf{T}\alpha\in\operatorname{Im}\mathbf{T}$ e, portanto, $\mathbf{T}\alpha\in\operatorname{Im}\mathbf{T}\cap\ker\mathbf{T}=\{0\}$. Logo, se $\mathbf{T}^2\alpha=0$ então $\mathbf{T}\alpha=0$.
- a) \Leftarrow b) Seja $\beta \in \text{Im } \mathbf{T} \cap \text{ker } \mathbf{T}$. Como $\beta \in \text{Im } \mathbf{T}$, $\beta = \mathbf{T}\alpha$ para algum $\alpha \in V$. Por outro lado, $\beta \in \text{ker } \mathbf{T}$ significa que $\mathbf{T}\beta = 0$. Por conseguinte, $\mathbf{T}\beta = \mathbf{T}(\mathbf{T}\alpha) = \mathbf{T}^2\alpha = 0$ então $\beta = \mathbf{T}\alpha = 0$. Isso conclui a prova.

Questão 4.: Seja V um K-espaço vetorial com $\dim_K V < \infty$ e $\mathbf{T} \in \operatorname{End}_K V$. Suponha que o posto de \mathbf{T}^2 é o mesmo que o posto de \mathbf{T} . Mostre que

$$\operatorname{Im} \mathbf{T} \cap \ker \mathbf{T} = \{0\}$$

Questão 5.: Sejam $m, n \ge 1$ inteiros, K um corpo e $f_1, \ldots, f_m \in (K^n)^*$. Para $\alpha \in K^n$ definimos

$$\mathbf{T}\alpha = (f_1\alpha, \dots, f_m\alpha)$$

Mostre que $\mathbf{T}:K^n\to K^m$ é uma transformação K-linear. Mostre também que $\forall \mathbf{T}\in \mathrm{Hom}_K\,(K^n,K^n)$ é desta forma.