Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

Max Vladymyrov and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science University of California, Merced

 $\verb|https://eecs.ucmerced.edu|\\$

August 30, 2012

Dimensionality reduction

Given a high-dimensional dataset $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_N) \subset \mathcal{R}^D$ find a low-dimensional representation $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \subset \mathcal{R}^d$ where $d \ll D$.

Can be used for:

- Data compression.
- ▶ Visualization.
- Detect latent manifold structure.
- ► Fast search.

Graph-based dimensionality reduction techniques

- ▶ Input: (sparse) affinity matrix W defined on a set of high-dimensional points Y.
- ▶ Objective function: minimization over the latent points **X**.
- Examples:
 - Spectral methods: Laplacian Eigenmaps (LE), LLE;
 - ✓ closed-form solution;
 - x results can be bad.
 - Nonlinear methods: SNE, t-SNE, elastic embedding (EE);
 - ✓ better results:
 - X slow to train, limited to small data sets.

COIL-20 Dataset

Rotations of 10 objects every 5°; input is greyscale images of 128 \times 128.

General Embedding Formulation (Carreira-Perpiñán 2010)

For $\mathbf{Y} \in \mathcal{R}^{D \times N}$ matrix of high-d points and $\mathbf{X} \in \mathcal{R}^{d \times N}$ low-d points

$$E(\mathbf{X}, \lambda) = E^{+}(\mathbf{X}) + \lambda E^{-}(\mathbf{X}) \qquad \lambda \geq 0$$

 $E^+(X)$ is the attractive term:

- often quadratic,
- minimal with coincident points;

$E^{-}(X)$ is the repulsive term:

- often very nonlinear,
- minimal with points separated infinitely.

Optimal embeddings balance both forces.

General Embedding Formulation: Special Cases

	$E^+({f X})$	$E^-(\mathbf{X})$
SNE: (Hinton&Roweis, '03)	$\sum_{n,m=1}^{N} p_{nm} \ \mathbf{x}_n - \mathbf{x}_m\ ^2$	$\sum_{n=1}^{N} \log \sum_{m=1}^{N} e^{-\ \mathbf{x}_n - \mathbf{x}_m\ ^2}$
t-SNE: (van der Maaten & Hinton,'08)	$\left \sum_{n,m=1}^{N} p_{nm} \log \left(1 + \left\ \mathbf{x}_{n} - \mathbf{x}_{m}\right\ ^{2}\right)\right $	$\log \sum_{n,m=1}^{N} (1 + \ \mathbf{x}_n - \mathbf{x}_m\ ^2)^{-1}$
EE: (Carreira-Perpiñán, '10)	$\sum_{n,m=1}^{N} w_{nm}^{+} \ \mathbf{x}_{n} - \mathbf{x}_{m}\ ^{2}$	$\sum_{n,m=1}^{N} w_{nm}^{-} e^{-\ \mathbf{x}_n - \mathbf{x}_m\ ^2}$
LE & LLE: (Belkin & Niyogi,'03) (Roweis & Saul,'00)	$\sum_{\substack{n,m=1\\\text{s.t. constraints}}}^{N} w_{nm}^{+} \ \mathbf{x}_{n} - \mathbf{x}_{m}\ ^{2}$	0

 w_{nm}^+ and w_{nm}^- are affinity matrices elements

Optimization Strategy

For every iteration k:

- 1. Choose positive definite \mathbf{B}_k .
- 2. Solve a linear system $\mathbf{B}_k \mathbf{p}_k = -\mathbf{g}_k$ for a search direction \mathbf{p}_k , where \mathbf{g}_k is the gradient.
- 3. Use line search to find a step size α for the next iteration $\mathbf{X}_{k+1} = \mathbf{X}_k + \alpha \mathbf{p}_k$.(e.g. with backtracking line search).

Convergence is guaranteed! (under mild assumptions)

How to choose good \mathbf{B}_k ?

Solve linear system $\mathbf{B}_k \mathbf{p}_k = -\mathbf{g}_k$:

$$\mathbf{B}_k = \mathbf{I} \text{ (grad. descent)} \xrightarrow{\text{more Hessian information}} \mathbf{B}_k = \nabla^2 E \text{ (Newton's method)}$$

We want \mathbf{B}_k :

- contain as much Hessian information as possible;
- positive definite (pd);
- ▶ fast to solve the linear system and scale up to larger *N*.

The Spectral Direction

The Hessian of the generalized embedding formulation is given by:

$$\nabla^2 E = 4(\mathbf{L}^+ - \lambda \mathbf{L}^-) \otimes \mathbf{I}_d + 8\mathbf{L}^{xx} - 16\lambda \operatorname{vec}(\mathbf{X}\mathbf{L}^q) \operatorname{vec}(\mathbf{X}\mathbf{L}^q)^T$$
 where \mathbf{L}^+ , \mathbf{L}^- , \mathbf{L}^{xx} , \mathbf{L}^q are graph Laplacians.

 $\mathbf{B} = 4\mathbf{L}^+ \otimes \mathbf{I}_d$ is a convenient Hessian approximation:

- ▶ block-diagonal and has d blocks of $N \times N$ graph Laplacian $4L^+$;
- ▶ always psd ⇒ global convergence under mild assumptions;
- constant for Gaussian kernel. For other kernels we can fix it at some X;
- equal to the Hessian of the spectral methods: $\nabla^2 E^+(\mathbf{X})$;
- "bends" the gradient of the nonlinear E using the curvature of the spectral E⁺;

The Spectral Direction (computation)

Solve $\mathbf{Bp}_k = \mathbf{g}_k$ efficiently for every iteration k (naively $\mathcal{O}(N^3d)$):

- ► Cache Cholesky factor of **L**⁺ in first iteration.
- ▶ (Further) sparsify the weights of L^+ with a κ -NN graph. Runtime is faster and convergence is still guaranteed.

	Cost per iteration
Objective function	$\mathcal{O}(N^2d)$
Gradient	$\mathcal{O}(N^2d)$
Spectral direction	$\mathcal{O}(N\kappad)$

This strategy adds almost no overhead when compared to the objective function and the gradient computation.

Experimental Evaluation: Methods Compared

Now:

- ► Gradient descent (GD), B = I (Hinton&Roweis, '03)
- fixed-point iterations (FP), $\mathbf{B} = 4\mathbf{D}^+ \otimes \mathbf{I}_d$ (Carreira-Perpiñán,'10)
- ▶ Spectral direction (SD), $\mathbf{B} = 4\mathbf{L}^+ \otimes \mathbf{I}_d$
- ► L-BFGS.

More experiments and methods at the poster:

- Hessian diagonal update;
- nonlinear Conjugate Gradient;
- some other interesting partial-Hessian update.

COIL-20. Convergence analysis, s-SNE

COIL-20 dataset of rotated objects (N = 720, D = 16384, d = 2). Run the algorithms 50 times for 30 seconds each initialized randomly.

MNIST. t-SNE

- ▶ $N = 20\,000$ images of handwritten digits (each a 28×28 pixel grayscale image, D = 784).
- ▶ One hour of optimization on a modern computer with one CPU.

Animation

Runtime (minutes)

Conclusions

- We presented a common framework for many well-known dimensionality reduction techniques.
- ▶ We presented the **spectral direction**: a new simple, generic and scalable optimization strategy that runs one to two orders of magnitude faster compared to traditional methods.
- ▶ Matlab code: http://eecs.ucmerced.edu/.

Ongoing work:

- ▶ The evaluation of E and ∇E remains the bottleneck $(\mathcal{O}(N^2d))$. We can use Fast Multipole Methods to speed up the runtime.
- Avoid line search, use constant, near-optimal step sizes.

MNIST. Embedding after 20 min of EE optimization

COIL-20. Convergence to the same minimum, s-SNE

We initialized \mathbf{X}_0 close enough to \mathbf{X}_∞ so that all methods have the same initial and final points.

COIL-20: Homotopy optimization for EE

Start with small λ where E is convex and follow the path of minima to desired λ by minimizing over \mathbf{X} as λ increases. We used 50 log-spaced values from 10^{-4} to 10^2 .

