

Livro Matemática C

Pedro Borges

MARÇO/2015

Sumário

1 Conjuntos Numéricos			•	
2	Grandezas Proporcionais Expressões Algébricas			
3				
	3.1	Expressões Algébricas	9	
	3.2	Operações com monômios e polinômios	11	
	3.3	Produtos Notáveis	14	
	3.4	Fatoração	15	
	3.5	Expressões algébricas fracionárias	17	
		3.5.1 Menor Múltiplo Comum (MMC) com expressões algébricas:	17	
		3.5.2 Operações com frações algébricas	18	
	3.6	RESPOSTAS DOS EXERCÍCIOS PROPOSTOS	19	
4	Equações de primeiro e segundo grau			
	4.1	Introdução	23	
	4.2	Solução da equação	24	
	4.3	Equação do 1º Grau	26	
	4.4	Equação do 2º Grau	28	
		4.4.1 Solução da equação do 2º Grau incompleta	28	
		4.4.2 Solução da Eq. do 2º grau completa	29	
		4.4.3 Método do produto e soma	31	
	4.5	RESPOSTAS DOS EXERCÍCIOS PROPOSTOS	34	
5	Fun	ção do primeiro grau	37	

4		SUMÁRIO
6	Função do segundo grau	39
7	Inequações	41
8	Potências e funções exponenciais	43
9	Logarítmos e função logarítmica	45
10	Trigonometria e funções trigonométricas	47
11	Outras Funções	49

Conjuntos Numéricos

Grandezas Proporcionais

Expressões Algébricas

3.1 Expressões Algébricas

A Matemática é uma linguagem e como tal, expressa alguma coisa. Ao calcular a área de um retângulo com 3 cm de comprimento e 4 cm de largura, escrevemos $3 \cdot 4$ (três vezes quatro) e estamos expressando a soma de 4+4+4. Tanto $3 \cdot 4$ como 4+4+4 são expressões numéricas, cujo significado particular é o número de cm^2 do retângulo.

Para escrever de modo geral a área de qualquer quadrado de lado x, usamos x^2 . Esta expressão com *letras* e *números*, chamamos de *expressão algébrica*.

Exemplo 3.1.1. O lado do quadrado pode ser expresso pela letra x e isso significa que o lado é variável, ou seja, pode assumir diferentes valores positivos.

Se x = 2 cm o quadrado tem todos os lados iguais a 2 cm e é aproximadamente do tamanho de um ladrilho de revestimento de paredes.

Se x = 2,2 m, o quadrado tem todos os lados iguais a 2,2 m e é aproximadamente do tamanho de banheiro.

Se $x = 1 \ hm \ (100m)$, o quadrado tem todos os lados iguais a $1 \ hm$ e é aproximadamente do tamanho de uma quadra de cidade.

Devemos observar que o lado do quadrado expresso por x é variável, ou seja, pode assumir diferentes valores.

Para cada valor de x proposto acima, o perímetro (P) de todos os quadrados, pode ser escrito com uma equação algébrica:

$$P = 4x$$
.

Dizemos que 4x é a expressão algébrica do perímetro de qualquer quadrado de lado x. Nesse caso, o número 4 é uma constante (coeficiente, parte numérica) e x é a variável (parte literal)

As expressões algébricas recebem nomes específicos em função do número de termos: 1 termo = **monômios**. Exemplos: $7x^3$; $3m^2n^4$

- 2 termos = **binômios**. Exemplos: x + 1; $7x^3 4x$; 4y 3; $x^2 1$
- 3 termos = **trinômios**. Exemplos: $x^4 x^3 + 3$; $x^2 2x + 3$

Mais do que 3 termos = **polinômios**. Exemplo: $2x^4 - 3x^3 + 3x^2 + 2$.

Definição 3.1.1. Dois monômios são semelhantes se as partes literais forem idênticas.

Exemplo 3.1.2. (a) Os monômios $7x^3$ e $3x^3$ são semelhantes, pois as partes literais são idênticas;

(b) Os monômios $2ab^2$ e $2a^3b$ não são semelhantes, pois as partes literais são diferentes

EXERCÍCIOS 3.1

- 3.1.1 Use variáveis para expressar o perímetro e a área de:
 - (a) Quadrados
 - (b) Retângulos em que um lado é o dobro do outro
 - (c) Retângulos em que a diferença dos lados é 2 cm
 - (d) Retângulos em que um lado é 5 cm maior do outro
- 3.1.2 Determine a expressão algébrica do perímetro do retângulo

3.1.3 Determine a expressão algébrica do perímetro da figura:

- 3.1.4 Determine o perímetro da figura do Ex 3.1.3 para x = 4.
- 3.1.5 O valor de x poderia ser 1 na figura do Ex 3.1.3 ?
- 3.1.6 Calcule o valor numérico das expressões com os respectivos valores das variáveis:

a)
$$7x^3 + x^2 - 3x + 1$$
 para $x = -2$

c)
$$\frac{x+1}{x^2}$$
 para $x = 2$

a)
$$7x^3 + x^2 - 3x + 1$$
 para $x = -2$
b) $-x^4 + 5x - \frac{1}{3}$ para $x = -1$
c) $\frac{x+1}{x^2-2}$ para $x = 2$
d) $\frac{x+1}{x^2-x+1}$ para $x = \frac{1}{2}$

d)
$$\frac{x+1}{x^2-x+1}$$
 para $x = \frac{1}{2}$

3.2 Operações com monômios e polinômios

Adição e subtração de monômios e polinômios

Só é possível adicionar ou subtrair monômios semelhantes.

Para adicionar ou subtrair monômios, soma-se ou subtrai-se os coeficientes e mantem-se a parte

Para adicionar/subtrair polinômios, soma-se ou subtrai-se os monômios semelhantes.

Exemplo 3.2.1. (a) $3x^2 + 5x^2 - 2x^2 = (3+5-2)x^2 = 6x^2$

(b)
$$5y-7x-8y+6x = (5-8)y+(-7+6)x = -3y-x$$

(c)
$$(x^2 + 5x - 3) - (2x^2 + 2x - 8) = -x^2 + 3x + 5$$

Multiplicação e divisão de monômios

Multiplica-se ou divide-se os coeficientes e usa-se a propriedade da multiplicação/divisão de potências de mesma base para multiplicar a parte literal.

Exemplo 3.2.2. (a) $(-3x^2) \cdot (7x^2) = -21x^4$

(b)
$$(25x^4y^2) \div (5x^2y) = 5x^2y$$

(c)
$$(10x^2) \div (2x) = 5x$$

(d)
$$(12x^3 + 6x^2 - 5x) \div (-2x) = -6x^2 - 3x + \frac{5}{2}$$
.

Exemplo 3.2.3. Multiplique 12 · 15

Solução: Vamos escrever 12 = 10 + 2 e 14 = 10 + 4. Para multiplicar usamos a propriedade distributiva da multiplicação em relação à adição:

$$(10+2) \cdot (10+4) = 10 \cdot 10 + 10 \cdot 4 + 2 \cdot 10 + 2 \cdot 4 = 100 + 40 + 20 + 8 = 168.$$

Ou, na forma de algoritmo:

$$1d + 4u$$

$$10 + 2$$

$$2d + 8u$$

$$1c + 4d$$

$$1c + 6d + 8u = 168 u$$

Exemplo 3.2.4. Multiplique os polinômios: $(x^3 + 6x^2 - 5x) \cdot (x - 2)$

Solução: A multiplicação de dois polinômios segue o mesmo algoritmo da multiplicação de dois números decompostos como soma, como no Ex 3.2.3

$$x^{3} + 6x^{2} - 5x$$

$$x - 2$$

$$-2x^{3} - 12x^{2} + 10x$$

$$x^{4} + 6x^{3} - 5x^{2}$$

$$x^{4} + 4x^{3} - 17x^{2} + 10x$$

Exemplo 3.2.5. Divida os polinômios: $(x^3 + 6x^2 - 5x) \div (x - 2)$.

Solução: A divisão de polinômios é semelhante ao algoritmo da divisão de dois números inteiros.

$$\begin{array}{c|ccccc}
 x^3 + 6x^2 - 5x & x - 2 \\
 -x^3 + 2x^2 & x^2 + 8x \\
 & - - - - - \\
 & +8x^2 - 5x \\
 & -8x^2 + 16x \\
 & - - - - \\
 & +11x
 \end{array}$$

A divisão dos polinômios dá $x^2 + 8x$ e o resto é +11x

EXERCÍCIOS 3.2

- 3.2.1 Explique porque podemos cancelar a em $\frac{a \cdot b}{a}$ e não podemos em $\frac{a+b}{a}$.
- 3.2.2 Verifique se as igualdades são verdadeiras (justifique sua resposta):

a)
$$a^2 + a^3 = a5$$

$$a^3 = a5$$
 d) $2m^2 - 3m^2 = -m^2$
 $a^3 = x^6$ e) $x^3 \cdot x^3 = 2x^6$

b)
$$x^3 \cdot x^3 = x^6$$

c)
$$y^3: y^3 = 1$$
 f) $10y^3: 2y^2 = 5y$

3.2.3 Resolva as operações com as expressões algébricas:

a)
$$3x^2 + \frac{1}{3}x^2 - 2x^2$$

b)
$$ab^2 - \frac{1}{2}ab^2 + \frac{1}{4}ab^2$$
 g) $(y^2 - \frac{1}{5} \cdot (5y - 2))$

c)
$$y^3 - \frac{3}{4}y^3 + 2y^3$$

h)
$$7a^3b^2x^2 : 14a^2bx$$

f) $a^2b \cdot ab^3 \cdot a^3b$

d)
$$x(xy + 2x + 3y)$$

i)
$$(2x^3 + 5x^2 + 2x) : (x + \frac{1}{2})$$

e)
$$(x-3)(x^2 - \frac{1}{3}x + 3)$$

j)
$$\frac{1}{2}m^3n^2:\frac{1}{4}m^2n+mn$$

3.2.4 Dados os polinômios A = 2x + 1; B = x - 3 e $C = 2x^2 + 5x + 2$, resolva:

a)
$$A+B$$

c)
$$A \cdot B$$

a)
$$A + B$$
 c) $A \cdot B$ e) $C - x \cdot A$

g)
$$C:B$$

b)
$$B+C-A$$
 d) $A\cdot C$

h)
$$A \cdot B - C$$

- 3.2.5 Um lado de um retângulo é expresso por x + 3 e outro por 2x:
 - a) Determine a expressão algébrica do perímetro.
 - b) Determine a expressão algébrica da área.
 - c) Para que valor de *x* o perímetro é 18*cm*?
 - d) Se a área é $56cm^2$, qual é o valor de x?
 - e) Qual é o valor de x para que os lados sejam iguais?
- 3.2.6 A área de um retângulo é expressa por $x^2 + 2x 3$ e um dos lados por x 1. Determine a expressão algébrica do outro lado.
- 3.2.7 O lado de um cubo é expresso por x + 1. Determine a expressão algébrica:
 - a) Do volume
 - b) Da área de uma face
 - c) Da área superficial

3.2.8 Com base na figura, determine as expressões algébricas do perímetro e da área.

- 3.2.9 O lado de um quadrado é expresso por x + 3:
 - a) Determine a expressão algébrica da área.
 - b) Calcule a área para x = 1.
 - c) x pode ser zero?
 - d) Qual o valor de x para que a área seja nula.
- 3.2.10 Calcule os valores da área do quadrado do Ex 3.2.9 para x = -3, -2, -1, 0, 1, 2, 3

3.3 Produtos Notáveis

Produtos notáveis são produtos especiais de polinômios. São chamados "notáveis" porque aparecem seguidamente em problemas de Matemática.

Quadrado da soma de dois termos: $(a+b)^2 = a^2 + 2ab + b^2$

Quadrado da diferença de dois termos: $(a-b)^2 = a^2 - 2ab + b^2$

Produto da soma pela diferença: $(a+b) \cdot (a-b) = a^2 - b^2$

Cubo da soma de dois termos: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Cubo da diferença de dois termos: $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

EXERCÍCIOS 3.3

3.4. FATORAÇÃO

3.3.1 $(x+5)^2$	$3.3.6 (x+1)^3$	3.3.11 $(x+1)(x+2)$
3.3.2 $(2x-3)^2$	3.3.7 $(2x-5)^3$	3.3.12 $(x-1)(x+3)$
3.3.3 $(x+\frac{1}{2})^2$	3.3.8 $(x-3)(x+3)$	3.3.13 $(2a-b)(2a+b)$
3.3.4 $(3-x)^2$	3.3.9 $(m+3n)(m+3n)$	3.3.14 $(a+b+1)^2$
3.3.5 $(\frac{1}{2}x+2)^2$	3.3.10 $(x+\frac{1}{2})(x-\frac{1}{2})$	3.3.15 $(x+\frac{1}{4})(x+2)$

3.4 Fatoração

Fatores são os termos de uma multiplicação e **fatorar** é transformar um número ou expressão algébrica em um produto de fatores.

Exemplos:

- a) O número 12 fatorado é 3 · 4, onde 3 e 4 são fatores.
- b) Podemos decompor números em fatores primos, por exemplo: $24 = 2 \cdot 2 \cdot 2 \cdot 3$. Os números 2 e 3, nesse caso são fatores, onde o fator 2 aparece três vezes.
- c) Na expressão $3x^2a^3$, 3, x^2 e a^3 são fatores.

Fatoração com Fator Comum:

Algumas expressões algébricas têm *fatores comuns* (fatores que estão presentes em mais de uma expressão algébrica) que se pode colocar em evidência (colocar em separado, na forma de fatores). Vejamos os exemplos:

a)
$$3x + 6y = 3x + 2 \cdot 3y = 3 \cdot (x + 2y)$$
. Observemos que o 3 é fator comum aos dois monômios.

b)
$$4ab^3 - 2a^3b + 10ab^4 = 2ab \cdot (2b^2 - a^2 + 5b^3)$$
. Observemos que o 2ab é fator comum aos três monômios

c)
$$2an + 2bn - am - bm$$
. (Fatoração por agrupamento)

Nos dois primeiros termos o fator comum é 2n e nos dois últimos o fator comum é -m.

$$2an + 2bn - am - bm = 2n(a+b) - m(a+b)$$

A expressão resultante tem mais um fator comum: (a+b). Então:

$$2an + 2bn - am - bm = (a+b)(2n-m).$$

Fatoração do Trinômio Quadrado Perfeito (TQP):

Um trinômio é *quadrado perfeito (TQP)* se foi originado pelo quadrado da soma ou subtração de dois termos.

$$a^2 + 2ab + b^2 = (a+b)^2$$

(Quadrado da soma de dois termos)

$$a^2 - 2ab + b^2 = (a - b)^2$$

(Quadrado da diferença de dois termos)

Observemos que o trinômio foi transformado (fatorado) em um produto onde os fatores são ($a \pm b$). Chamando a de "primeiro termo do binômio" e b de "segundo termo do binômio", dizemos que o trinômio $a^2 + 2ab + b^2$ é o quadrado do primeiro, mais duas vezes o primeiro vezes o segundo mais o quadrado do segundo.

Fatoração da Diferença de dois quadrados:

$$a^2 - b^2 = (a+b) \cdot (a-b)$$

(Produto da soma pela diferença de dois termos)

Exemplo 3.4.1. Verifique se $x^2 + 2x + 1$ é um TQP.

Solução: Se o trinômio dado é um TQP então o primeiro termo do binômio (a+b) deve ser $a=\sqrt{x^2}=x$; o segundo termo do binômio (a+b) deve ser $b=\sqrt{1}=1$.

Teste do segundo termo do trinômio: $2 \cdot a \cdot b = 2 \cdot x \cdot 1 = 2x$ deve ser igual ao *segundo termo do trinômio*. O que de fato ocorre, neste caso. Assim,

$$(x+1)^2 = x^2 + 2x + 1.$$

Portanto, o polinômio dado é um TQP ■

Exemplo 3.4.2. Verifique se $x^2 + 2x + 4$ é um TQP.

Solução: Se o trinômio dado é um TQP então o primeiro termo deve ser $a = \sqrt{x^2} = x$ e o segundo termo $b = \sqrt{4} = 2$.

Teste do segundo termo do trinômio: $2 \cdot a \cdot b = 2 \cdot x \cdot 2 = 4x$, que é diferente de 2x. Portanto, o trinômio dado não é um TQP

Exemplo 3.4.3. Complete o trinômio $x^2 - 4x + 1 = 0$, de modo que obtenha-se um TQP.

Solução: Para se obter um TQP na identidade dada, o primeiro termo do binômio (a+b) deve ser $a=\sqrt{x^2}=x$. O segundo termo "b" pode ser obtido, sabendo que

$$2 \cdot x \cdot b = -4x$$

(duas vezes o primeiro termo, vezes o segundo termo é igual ao segundo termo do trinômio)

Assim,
$$b = -2$$
 e o TOP é $(x-2)^2 = x^2 - 4x + 4$.

Para obter o TQP no lado esquerdo da identidade dada, basta adicionar (+3) em ambos os lados:

$$x^2 - 4x + 1 + (+3) = 0 + (+3)$$

$$x^2 - 4x + 4 = 3$$

EXERCÍCIOS 3.4

3.4.1 Fatore as expressões algébricas:

a)
$$x^2 - x$$

b)
$$a^3b^2 - ab + ab^2$$

c)
$$9x^2 - 12x + 4$$

d)
$$9 + 6x + x^2$$

e)
$$x^2 + x + \frac{1}{4}$$

f)
$$x^2 - 25$$

g)
$$16x^2 - \frac{4}{9}$$

h)
$$ax + bx + ay + by$$

i)
$$6 + 3x + 2y + xy$$

j)
$$x^3 + 1$$

3.4.2 Verifique se os trinômios são quadrados perfeitos:

a)
$$x^2 + 4x + 16$$

c)
$$4y^2 - 12y + 9$$

b)
$$x^2 + 6x + 9$$

d)
$$9x^2 - 6x + 3$$

3.4.3 Adicione constantes nas equações de modo a obter trinômios quadrados perfeitos no lado esquerdo da igualdade:

a)
$$x^2 + 6x + 10 = 0$$

c)
$$9x^2 - 12x + 5 = 0$$

b)
$$4x^2 + 4x + 3 = 0$$

d)
$$x^2 + 10x + 12 = 0$$

3.5 Expressões algébricas fracionárias

Expressões algébricas fracionárias são expressões com variáveis no denominador.

Exemplos:

1)
$$\frac{a+b}{b}$$

2)
$$\frac{x^2+3x+5}{x-1}$$

3)
$$\frac{ab^2 - 5a + b}{a + b}$$

3.5.1 Menor Múltiplo Comum (MMC) com expressões algébricas:

Para encontrar o MMC de números são conhecidos dois métodos:

Encontre o MMC(6,8):

a) Usando conjuntos de múltiplos:

Os múltiplos de 6 são: M(6)=6,12,18, 24,30,36,42, 48,54,60,66, 72,78,...

Os múltiplos de 8 são: M(8)=8,16, 24,32,40, 48,56,64, 72,80,...

Examinando os conjuntos de múltiplos de 6 e 8, observa-se que existem vários múltiplos comuns, mas o menor deles é 24. Então, MMC(6,8) = 24.

b) Usando decomposição em fatores primos:

- 1°) decompor os números em fatores primos;
- 2°) o MMC é o produto de todos os fatores, porém aqueles que se repetirem, escolhe-se apenas os de potência maior.

$$6 = 2 \cdot 3$$
 e $8 = 2^3$

Os fatores são 2, 3 e 2^3 . Como o fator 2 se repetiu, escolhemos apenas 2^3 .

Então, MMC $(6,8) = 2^3 \cdot 3 = 24$.

O MMC de expressões algébricas é calculado pelo método da decomposição.

Exemplo 3.5.1. Determine o MMC das expressões algébricas:

a) ab^2ea^3b .

Os fatores são: a; a^3 ; b e b^2 . Então, o MMC $(ab^2, a^3b) = a^3b^2$

b)
$$x^2 + 2x + 1$$
 e $2(x + 1)$:

Fatorando a primeira expressão, temos: $x^2 + 2x + 1 = (x+1)^2$. Os fatores são: $(x+1)^2$; 2 e (x+1). Então o MMC das expressões dadas é $2(x+1)^2 \blacksquare$

3.5.2 Operações com frações algébricas

As operações com frações algébricas seguem as mesmas regras das operações com frações numéricas e polinômios.

Exemplo 3.5.2. Resolva as operações com as frações algébricas:

a)
$$\frac{a}{b} + \frac{2a}{b^2} =$$

O MMC $(b, b^2) = b^2$. Aplicando o algoritmo da adição de frações, temos:

$$\frac{a}{b} + \frac{2a}{b^2} = \frac{ab+2a}{b^2} = \frac{a(b+2)}{b^2}$$

b)
$$\frac{x}{x+2} \cdot \frac{x+1}{x^2-1} =$$

Ao invés de multiplicas diretamente, podemos fazer simplificações reescrevendo o denominador da segunda fração como: $(x^2 - 1) = (x + 1)(x - 1)$. Assim,

$$\frac{x}{x+2} \cdot \frac{x+1}{x^2-1} = \frac{x}{x+2} \cdot \frac{x+1}{(x+1)(x-1)} =$$

Cancelando os fatores iguais (propriedade do cancelamento), temos:

$$\frac{x}{x+2} \cdot \frac{x+1}{x^2-1} = \frac{x}{x+2} \cdot \frac{1}{x-1} = \frac{x}{(x+2)(x-1)}$$

EXERCÍCIOS 3.5

3.5.1 Simplifique as frações algébricas usando a propriedade do cancelamento:

a)
$$\frac{21x^4}{15x}$$

c)
$$\frac{a^2-a}{a^2-2a+1}$$

e)
$$\frac{x^3+4x^2-21x}{x^2-9}$$

b)
$$\frac{x^2}{x^2-x}$$

d)
$$\frac{y+2}{4y^2-16}$$

$$f) \ \frac{a^3 + 3a^2 - 5a - 15}{a^2 + 3a}$$

3.5.2 Resolva as adições e subtrações com frações algébricas:

a)
$$\frac{1}{3x} + \frac{x+1}{x^2}$$

c)
$$\frac{1}{y^2-1} - \frac{1}{y+1}$$

c)
$$\frac{1}{y^2-1} - \frac{1}{y+1}$$
 e) $\frac{x}{x+3} + \frac{1}{x^2+6x+9}$

b)
$$\frac{2}{x} + \frac{1}{x+1} - \frac{x}{x-1}$$
 d) $\frac{2}{a} + \frac{a}{a^2+1}$

d)
$$\frac{2}{a} + \frac{a}{a^2 + 1}$$

f)
$$\frac{x}{x^2-25} - \frac{x-1}{2x-10}$$

3.5.3 Multiplique as frações algébricas usando a propriedade do cancelamento:

a)
$$\frac{4}{x-1} \cdot \frac{x^2-1}{16}$$

c)
$$\frac{1}{x} \cdot \frac{x^2 - 6x + 9}{x + 1} \cdot \frac{x^2 + x}{x - 3}$$
 e) $\frac{x^3 - 1}{2x^2} \cdot \frac{4x}{x^2 + x + 1}$

e)
$$\frac{x^3-1}{2x^2} \cdot \frac{4x}{x^2+x+1}$$

b)
$$\frac{x+4}{1-x^2} \cdot \frac{1-x}{x^2-16}$$

d)
$$\frac{4x^2-2}{x^2} \cdot \frac{6x^2-6}{4x^4-4x^2+1}$$
 f) $\frac{y+3}{7} \cdot \frac{21}{2y+6}$

f)
$$\frac{y+3}{7} \cdot \frac{21}{2y+6}$$

3.5.4 Resolva as operações com frações algébricas:

a)
$$\frac{\frac{1}{x}}{\frac{x+1}{x^3}}$$

d)
$$\frac{1}{2y+5} - \frac{y}{4y^2+20y+25}$$

b)
$$\frac{x}{3x+1} + \frac{x+1}{9x^2-1}$$

e)
$$\frac{1}{x} \cdot \frac{x^3}{x-2} + \frac{1}{x^2-4}$$

c)
$$\frac{a}{a-1} : \frac{a^3}{a^3-a}$$

f)
$$\frac{x}{x-3} - \frac{1}{x^2 - 6x + 9} : \frac{6x^2 - 36x + 54}{2x - 6}$$

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS 3.6

RESPOSTAS 3.1

a)
$$P = 4x$$
; $A = x^2$

c)
$$P = 4x - 4$$
; $A = x^2 - 2x$

b)
$$P = 6x$$
; $A = 2x^2$

d)
$$P = 4x + 10$$
; $A = x^2 + 5x$

3.1.2
$$P = 4x + 6$$

3.1.3
$$P = 4x$$

$$3.1.4 P = 16cm$$

3.1.5 Não. Se x = 1cm, a figura não seria fechada.

b)
$$\frac{-19}{3}$$
 c) $\frac{3}{2}$

c)
$$\frac{3}{2}$$

RESPOSTAS 3.2

- 3.2.1 Só podemos cancelar quando o mesmo número ou variável está sujeito a operações inversas. Neste caso, a multiplicação por a pode ser cancelada com a divisão por a.
- 3.2.2 a) Falsa. A soma dos expoentes, quando as bases são iguais, só é feita se a operação entre as potências for a multiplicação.
 - b) Verdadeira. Na multiplicação de potências de mesma base conserva-se a base e soma-se os expoentes.
 - c) Verdadeira. Na divisão de potências de mesma base, conserva-se a base e subtrai-se os expoentes.
 - d) Verdadeira.
 - e) Falsa. Multiplica-se os coeficientes ao invés de somá-los.
 - f) Verdadeira.

3.2.3 a)
$$\frac{4}{3}x^2$$

d)
$$x^2y + 2x^2 + 3xy$$
 h) $\frac{1}{2}abx$

h)
$$\frac{1}{2}abx$$

b)
$$\frac{3}{4}ab^2$$

e)
$$x^3 - \frac{10}{3}x^2 + 4x - 9$$

f) a^6b^5 i) $2x^2 + 4x$

i)
$$2x^2 + 4x$$

c)
$$\frac{9}{4}y^3$$

g)
$$5y^3 - 2y^2 - y + \frac{2}{5}$$

3.2.4 a)
$$3x - 2$$

d)
$$4x^3 + 12x^2 + 9x + 2$$

g)
$$2x + 11$$
; $R = 35$

b)
$$2x^2 + 4x - 2$$

c) $2x^2 - 5x - 3$

e)
$$4x + 2$$

e)
$$4x + 2$$

f)
$$x+2$$

h)
$$-10x - 5$$

3.2.5 a)
$$6x + 6$$

a)
$$6x + 6$$
 b) $2x^2 + 6x$ c) $2cm$

$$3.2.6 x + 3$$

a)
$$x^3 + 3x^2 + 3x + 1$$
 b) $x^2 + 2x + 1$

b)
$$x^2 + 2x + 1$$

c)
$$6x^2 + 12x + 6$$

3.2.8
$$P = 4x + 10$$
; $A = x^2 + 5x$

3.2.9 a)
$$x^2 + 6x + 9$$

d)
$$-3$$

3.2.10 Respectivamente 0; 1; 4; 9; 16; 25; 36

RESPOSTAS 3.3

3.3.1
$$x^2 + 10x + 25$$

3.3.2
$$4x^2 - 12x + 9$$

3.3.3
$$x^2 + x + 14$$

3.3.4
$$x^2 - 6x + 9$$

3.3.5
$$\frac{1}{4}x^2 + 2x + 4$$

3.3.6
$$x^3 + 3x^2 + 3x + 1$$

$$3.3.7 8x^3 - 60x^2 + 150x + 125$$

3.3.8
$$x^2 - 9$$

3.3.9
$$m^2 + 6mn + 9n^2$$

3.3.10
$$x^2 - 14$$

3.3.11
$$x^2 + 3x + 2$$

3.3.12
$$x^2 + 2x - 3$$

3.3.13
$$4a^2 - b^2$$

3.3.14
$$a^2 + b^2 + 2ab + 2a + 2b + 1$$

3.3.15
$$x^2 + \frac{9}{4}x + \frac{1}{2}$$

RESPOSTAS 3.4

3.4.1 a) x(x-1)

e) $(x+\frac{1}{2})^2$

i) (3+y)(2+x)

- b) $ab(a^2b 1 + b)$
- f) (x+5)(x-5)
- j) $(x^2+1)(x-1)$

c) $(3x-2)^2$

g) $(4x + \frac{2}{3})(4x - \frac{2}{3})$

d) $(x+3)^2$

- h) (x+y)(a+b)
- 3.4.2 a) Não é um TQP.
 - b) É um TQP: $(x+3)^2$

- c) É um TQP: $(2y-3)^2$
- d) Não é um TQP.

- 3.4.3 a) -1
- b) -2
- c) -1
- d) 13

RESPOSTAS 3.5

3.5.1 a) $\frac{21}{15}x^3$

c) $\frac{a}{a-1}$

e) $\frac{x(x+7)}{x+3}$

b) $\frac{x}{x-1}$

d) $\frac{1}{4v-8}$

f) $\frac{a^2-5}{a}$

- 3.5.2 a) $\frac{4x+3}{3x^2}$
 - b) $\frac{-x^3+2x^2-x-2}{x(x+1)(x-1)}$
- c) $\frac{1-(y-1)}{(y+1)(y-1)}$

e) $\frac{x^2+3x+1}{(x+3)^2}$

d) $\frac{3a^2+2}{a(a^2+1)}$

f) $\frac{-x^2-2x+5}{2(x^2-25)}$

- 3.5.3 a) $\frac{x+1}{4}$
 - b) $\frac{1}{x^2 3x 4}$

- c) x 3
- d) $\frac{6(x^2-1)}{x^2}$

- e) $\frac{2(x-1)}{x}$ f) $\frac{3}{2}$

- 3.5.4 a) $\frac{x^2}{x+1}$
 - b) $\frac{3x^2+1}{9x^2-1}$

- c) $\frac{a+1}{a}$
- d) $\frac{y+5}{(2y+5)^2}$

- e) $\frac{x^3 + 2x^2 + 1}{x}$
- f) 1

Equações de primeiro e segundo grau

4.1 Introdução

Ao escrever problemas em linguagem matemática, geralmente utilizamos equações. Vejamos alguns exemplos:

Exemplo 4.1.1. A renda de uma família é a soma das rendas do pai (P), da mãe (M) e de uma filha (F). Sabe-se que a renda total é R\$ 4.500,00 e somando a renda do pai e da mãe, obtém-se R\$ 3.100,00. Qual é a renda do filha ?

Solução: Escrevendo a renda como uma equação temos:

$$R = P + M + F \tag{4.1}$$

Sabemos que P + M = R\$ 3.100,00, e R = R\$ 4.500,00. Substituindo P + M e R na equação, temos:

$$4500 = 3100 + F \tag{4.2}$$

Para que o lado esquerdo da Eq. (2) seja igual ao lado direito, F = 1.400

Na Eq. (2) temos uma equação com uma letra, cujo valor desconhecemos, mas que desejamos determinar. Chamamos esta letra de *incógnita*.

Exemplo 4.1.2. O perímetro de um quadrado mede 12 cm. Quanto mede cada lado?

Solução: Chamaremos de *x* (*incógnita*, a grandeza desconhecida) o lado do quadrado e escrevemos uma equação para o perímetro:

$$P = 4 \cdot x \tag{4.3}$$

Substituindo 12 no lugar de P obtemos uma equação com uma incógnita.

$$2 = 4 \cdot x$$

Novamente temos uma equação com uma incógnita. É fácil verificar que o lado do quadrado mede x = 3 cm

Exemplo 4.1.3. a) O dobro de um número mais 3 é igual a 5. Que número é esse?

b) O dobro de um número mais 3 é igual a 6. Que número é esse?

Solução: a) Chamando esse número de *x*, podemos escrever:

$$2x + 3 = 5 (4.4)$$

Novamente temos uma equação com uma incógnita. Para que o lado esquerdo da Eq. (4) seja igual ao lado direito, x = I.

b) Com o mesmo procedimento do item (a), podemos escrever:

$$2x + 3 = 6 (4.5)$$

A solução nesse caso, não é tão óbvia. Neste capítulo vamos estudar operações algébricas para encontrar o valor da incógnita de equações algébricas. A solução é x = 3/2. Substitua esse valor de x na equação dada e verifique se ambos os lados da equação são iguais

Podemos elaborar equações de vários tipos:

$$3 \cdot (5+8) = 10+29$$
 (Equação numérica)
 $2+3x+x^2+5x^3+x^4=0$ (Equação polinomial de 4º grau)
 $\frac{1}{1+x^2}=0$ (Equação racional)
 $3^{x+1}=2$ (Equação exponencial)

Neste capítulo vamos estudar as soluções das equações polinomiais de 1º e 2º Grau.

4.2 Solução da equação

O(s) valor(es) da incógnita que torna ambos os lados iguais é a solução de uma equação. Para resolver equações é necessário conhecer suas propriedades.

Propriedade fundamental das equações:

Se em ambos os lados da equação for realizada a mesma operação, a equação permanece verdadeira (é mantida a identidade da equação).

Exemplo 4.2.1. Consideremos uma equação numérica: 5 = 5.

Evidentemente é uma equação verdadeira pois 5 é igual a 5!

25

1. Se adicionarmos +10 em ambos os lados, temos

$$+10 + 5 = 5 + 10$$

+15 = +15. A identidade foi mantida.

2. Se adicionarmos -10 em ambos os lados, temos

$$-10 + 5 = 5 + (-10)$$

-5 = -5. A identidade foi mantida.

3. Se multiplicarmos por 7 em ambos os lados, temos

$$7 \cdot 5 = 5 \cdot 7$$

(a) = 35. A identidade foi mantida.

4. Se dividirmos por 4 em ambos os lados, temos

 $\frac{5}{4} = \frac{5}{4}$. A identidade foi mantida

Exemplo 4.2.2. Dada a equação 3x = 2x + 5, determine o valor de x.

Solução: Usando a propriedade fundamental, se adicionarmos -2x em ambos os lados da equação dada, temos:

$$-2x + 3x = 2x + 5 - 2x$$

$$x = 5$$

Para resolver uma equação, precisamos isolar a incógnita em um dos lados. Os *princípios aditivo* e *multiplicativo* derivam da propriedade fundamental e a tornam mais prática.

Princípio aditivo

Adicionando constantes ou variáveis em ambos os lados, a solução da equação permanece a mesma.

Exemplo 4.2.3. Dada a equação 2x = x + 12, determine o valor de x.

Solução: Observemos que a solução é x = 12. Precisamos reunir as expressões que contem x em um lado da equação. Adicionando -x em ambos os lados, obtemos:

$$-x + 2x = x - x + 12$$

x = 12. Observemos que a solução permaneceu a mesma x = 12

Princípio multiplicativo Multiplicando (ou dividindo) ambos os lados por constantes ou variáveis (diferente de zero), a solução da equação permanece a mesma.

Exemplo 4.2.4. Dada a equação 2x = -12, determine o valor de x.

Solução: Observemos que a solução é x = -6. Multiplicando ambos os lados por $\frac{1}{2}$, obtemos:

$$\frac{1}{2} \cdot 2x = -12 \cdot \frac{1}{2}$$

x = -6. Observemos que a solução permaneceu a mesma, x = -6

4.3 Equação do 1º Grau

As equações polinomiais têm a forma de polinômios de uma incógnita igualados a zero:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots + a_n x^n = 0$$
 (4.6)

O grau de uma equação polinomial é o grau do maior expoente da incógnita. Assim,

2 + 3x = 0 é uma equação de 1º grau

 $4+5x+x^2=0$ é uma equação do 2º grau

 $3+2x+x^2+5x^3+2x^4=0$ é uma equação do 4º grau e assim por diante.

Definição 4.3.1. A equação do 1º Grau tem a forma

$$ax + b = 0 (4.7)$$

Onde a e b são números reais e x é uma incógnita.

Exemplo 4.3.1. Mostre que a equação x + 3x + 3(x-1) = 5 pode ser reduzida à forma

$$ax + b = 0$$
.

Solução: Multiplicando a constante 3 pelo conteúdo do parêntesis, temos:

x + 3x + 3x - 3 = 5. Adicionando os termos semelhantes e adicionando +3 em ambos os lados da equação, temos:

7x - 3 + 3 = 5 + 3ou adicionando (-8), temos:

7x - 8 = 0. Portanto, a equação dada é do 1º Grau

Exemplo 4.3.2. Mostre que a equação $\frac{x-3}{2} = \frac{x+3}{3} + 3$ pode ser reduzida à forma

ax + b = 0 e resolva a equação.

Solução: Multiplicando toda equação por *6*, temos:

$$6\left(\frac{x-3}{2}\right) = 6\left(\frac{x+3}{3} + 3\right)$$

Efetivando os produtos, temos:

3x-9=2x+6+18 . Adicionando -2x e -24 em ambos os lados, temos:

x - 33 = 0. Portanto, a equação dada é do 1º Grau.

Para resolver a equação, basta adicionar +33 em ambos os lados.

$$x = 33$$

Observemos que nas equações de 1º Grau existe apenas uma solução.

27

EXERCÍCIOS 4.3

4.3.1 Uma estratégia para resolver equações fracionárias de apenas um termo em cada lado da igualdade é multiplicando os meios e os extremos (lembrar de proporções):

Se $\frac{a}{b} = \frac{c}{d}$ então $a \cdot d = b \cdot c$. (a e d são os extremos e b e c são os meios)

- a) Use essaestratégia para resolver a equação $\frac{x}{2} = \frac{2}{3}$
- b) A estratégia poderia ser usada para resolver $\frac{x}{2} = \frac{2x}{3} + \frac{1}{2}$?
- 4.3.2 Resolva a equação $\frac{x+1}{4} = x + \frac{1}{2}$
 - (a) Multiplicando ambos os lados pelo MMC dos denominadores
 - (b) Adicionando os termos do lado direito e igualando o produto dos meios e dos extremos.
- 4.3.3 Determine a solução das equações:
 - (a) x + 3 = 1
 - (b) 3x 3 = x + 1
 - (c) 3(x+2) = 9
 - (d) 2(3x+3) = 3x
 - (e) 2(x-2x) = 4(x-1)
 - (f) $\frac{x-1}{2} = \frac{x-4}{3}$
 - (g) $\frac{x+5}{4} = \frac{3x+3}{6}$
 - (h) $\frac{12}{r} = \frac{3}{r} + \frac{3}{2}$
 - (i) $3(x+5) = \frac{x-20}{2}$
 - (j) $\frac{1}{2} = \frac{x-2}{3}$
- **4.3.4** Resolva a equação $\frac{x}{5} + \frac{x-1}{10} = \frac{1}{2}$:
 - (a) Adicionando as frações do lado esquerdo e depois resolvendo para x;
 - (b) Multiplicando toda a equação pelo MMC dos denominadores e depois resolvendo para *x*.
- 4.3.5 Resolva as equações:
 - (a) $\frac{x}{3} + \frac{x-1}{2} = \frac{1}{3}$ b) $\frac{1}{2} = \frac{x}{5} + 2x$ c) $\frac{x}{2} + \frac{2x}{3} = \frac{1}{6}$
 - $(d)\frac{x+1}{2} + \frac{3x}{4} = \frac{5x}{2}$ e) $\frac{5}{x+1} = \frac{3}{x+2}$ f) $\frac{1}{x+1} = \frac{2}{x+1} + \frac{1}{2}$
- 4.3.6 Determine:
 - (a) Um número mais sua metade e mais 5 é 8. Que número é este?

- (b) Um número mais sua metade e mais 5 é 3. Que número é este?
- (c) A terça parte de um número, mais a metade desse número menos 1 é 1/3. Que número é este?
- 4.3.7 O lado de um quadrado mede x + 2cm, onde x é uma variável real. Qual é o valor de x, sabendo-se que o perímetro é 12 cm?
- 4.3.8 A largura e o comprimento de um retângulo medem xcm e (x+3)cm, respectivamente. Qual é o valor de x, para que o perímetro seja:
 - (a) P = 10 cm
 - (b) P = 12 cm
- 4.3.9 A largura de um retângulo é dada pela expressão 3x 1 e o comprimento por $x + \frac{1}{2}$. Qual é o valor de x, se a largura é a metade do comprimento?
- 4.3.10 O comprimento de um campo de futebol é 30m maior do que a largura. Quais são as dimensões do campo, se o perímetro é 340m?
- **4.3.11** Os lados, em sequência, de um triângulo diferem entre si por *2 cm*. Quanto mede cada lado se o perímetro é 12 cm?

4.4 Equação do 2º Grau

Definição 4.4.1. as equações de segundo grau têm a forma

$$a_0 + a_1 x + a_2 x^2 = 0$$
, para $a_2 \neq 0 \blacksquare$ (4.8)

4.4.1 Solução da equação do 2º Grau incompleta

Se a_0 e/ou a_1 forem iguais a zero, a solução da Eq. (8) pode ser obtida facilmente usando a propriedade fundamental das equações. Vejamos os casos 1, 2 e 3:

Caso 1: Se $a_0 = a_1 = 0$. Nesse caso a Eq. (8) tem a forma:

$$a_2x^2=0$$

e a única solução é x = 0

Caso 2: $a_0 \neq 0$ e $a_1 = 0$. Nesse caso a Eq. (8) tem a forma:

$$a_0 + a_2 x^2 = 0. (4.9)$$

Adicionando $(-a_0)$ em ambos os lados, temos:

29

$$a_2 x^2 = -a_0 (4.10)$$

Dividindo a Eq. (10) por a_2 e em seguida aplicando raiz quadrada em ambos os lados, temos:

$$x = \pm \sqrt{-\frac{a_0}{a_2}}. (4.11)$$

Como a raiz quadrada de números negativos não é número real (é número complexo), podemos afirmar que *x* será real, somente se

$$-\frac{a_0}{a_2} \ge 0 \blacksquare \tag{4.12}$$

Caso 3: $a_1 \neq 0$ e $a_0 = 0$. Nesse caso a Eq. (8) tem a forma:

$$a_1 x + a_2 x^2 = 0. (4.13)$$

Colocando o fator comum x em evidência, temos:

$$x \cdot (a_1 + a_2 x) = 0 \tag{4.14}$$

Esse produto de dois termos será zero somente se um ou os dois termos forem nulos. Assim, teremos duas soluções possíveis: x_1 e x_2 .

- 1. $x_1 = 0$ ou
- 2. $a_1 + a_2x_2 = 0$. Resolvendo para x, temos:

$$x = -\frac{a_1}{a_2}$$

A solução da equação de 2º grau, nesse caso, é

$$x_1 = 0$$

e
$$x_2 = -\frac{a_1}{a_2}$$
.

4.4.2 Solução da Eq. do 2º grau completa

Quando nenhum coeficiente da equação de segundo grau for nulo, a solução pode ser obtida por fatoração do trinômio, completando o quadrado perfeito. Lembremos que

binômio trinômio
$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$
(quadrado do primeiro, mais
duas vezes o primeiro vezes o segundo, mais
primeiro segundo
termo termo

Vejamos dois exemplos:

Exemplo 4.4.1. Determine as raízes da equação $x^2 + 6x + 9 = 0$.

Solução: Nesse caso, temos um TQP, pois a = x e b=3. Portanto,

 $2ab = 2 \cdot x \cdot 3 = 6x$ que é igual ao termo intermediário do trinômio. Assim,

 $x^2 + 6x + 9 = (x+3)^2 = 0$. Aplicando raiz quadrada em ambos os lados, temos:

x + 3 = 0. Adicionando (-3) em ambos os lados, temos:

x = -3 é a raiz da equação dada

Exemplo 4.4.2. Determine as raízes da equação $x^2 + 5x + 6 = 0$.

Solução: Nesse caso, NÃO temos um TQP, pois se a = x e $b = \sqrt{6}$ não temos uma identidade, comparando com o termo intermediário do trinômio:

$$2ab = 2 \cdot x \cdot \sqrt{6} \neq 5x.$$

Para obter um trinômio, vamos usar a = x e determinar b, tal que

$$5x = 2ab = 2 \cdot x \cdot b$$
 ou

$$5 = 2 \cdot b$$

$$b = 5/2$$
.

Adicionando $b^2 = (5/2)^2$ em ambos os lados da equação dada, obtemos:

$$x^2 + 5x + \left(\frac{5}{2}\right)^2 + 6 = \left(\frac{5}{2}\right)^2$$
. Adicionando (-6) em ambos os lados e reescrevendo, temos

$$x^2 + 5x + \left(\frac{5}{2}\right)^2 = \frac{1}{4}$$
. Fatorando o TQP obtido, temos:

 $(x+\frac{5}{2})^2=\frac{1}{4}$. Aplicando raiz quadrada em ambos os lados, temos:

$$x + \frac{5}{2} = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}$$
. Adicionando (-5/2) em ambos os lados e operando, temos:

 $x=\pm \frac{1}{2}-\frac{5}{2}$. Finalmente, as soluções da equação dada são:

$$x_1 = -2$$
 e $x_2 = -3$

O processo desenvolvido no Ex. 5.2 pode ser generalizado da seguinte maneira:

Inicialmente, para evitar o uso de sub-índices, vamos usar $A=a_2$; $B=a_1$ e $C=a_0$ e reescrever a Eq. (7):

31

$$Ax^2 + Bx + C = 0. (4.15)$$

Para que o coeficiente de x^2 seja 1, vamos dividir a Eq. (8) por A.

$$\frac{Ax^2 + Bx + C}{A} = \frac{0}{A}$$
 ou $x^2 + \frac{B}{A}x + \frac{C}{A} = 0$ (4.16)

Para obter o TQP, vamos usar a = x e determinar b, tal que:

$$\frac{B}{A}x = 2ab = 2xb$$
. Então $b = \frac{B}{2A}$.

Adicionando ($b^2 = \left(\frac{B}{2A}\right)^2$) em ambos os lados da Eq. (16), temos

 $x^2 + \frac{B}{A}x + \left(\frac{B}{2A}\right)^2 + \frac{C}{A} = \left(\frac{B}{2A}\right)^2$. Fatorando o TQP obtido e adicionando (-C/A) em ambos os lados, temos:

 $\left(x + \frac{B}{2A}\right)^2 = \left(\frac{B}{2A}\right)^2 - \frac{C}{A}$. Operando o lado direito e aplicando raiz quadrada em ambos os lados, temos:

$$x + \frac{B}{2A} = \sqrt{\frac{B^2 - 4AC}{4A^2}}$$
. Adicionando $-\frac{B}{2A}$ em ambos os lados, temos:

$$x = \pm \sqrt{\frac{B^2 - 4AC}{4A^2}} - \frac{B}{2A} \quad \text{ou}$$

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$
 ou $x = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$ (4.17)

com os coeficientes da Eq. (8)

A Eq. (17) é conhecida como a Fórmula de Baskhara e a expressão no radicando da Eq. (17)

$$\Delta = B^2 - 4 \cdot A \cdot C$$

chama-se discriminante e é simbolizada pela letra grega delta maiúscula (Δ)

As equações do 2° grau tem sempre duas soluções, x_1 e x_2 . Da fórmula de Baskhara, podemos tirar a seguinte conclusão, sobre o número de soluções das equações do 2° grau:

- 1. Se $\Delta = B^2$ -4AC = 0 as soluções são reais e idênticas: $x_1 = x_2$
- 2. Se $\Delta = B^2$ -4AC > 0 as soluções são reais e distintas: $x_1 \neq x_2$
- 3. Se $\Delta = B^2$ -4AC < 0 as soluções não são reais.

4.4.3 Método do produto e soma

A equação

$$x^{2} + (a+b) \cdot x + a \cdot b = 0 \tag{4.18}$$

é gerada pelo produto

$$(x+a) \cdot (x+b) = 0.$$
 (4.19)

Observemos na Eq. (19) que se os termos entre parênteses forem nulos, a equação será uma identidade. Ou seja,

- 1. Se x + a = 0 temos uma solução da Eq. (18): $x_1 = -a$.
- 2. Se x + b = 0 temos outra solução da Eq. (18): $x_2 = -b$.

Assim, as soluções da Eq. (18) poder ser determinadas desde que encontremos dois números a e b, tal que

$$a + b = B$$
 (soma)

$$a \cdot b = C$$
 (produto)

Exemplo 4.4.3. Encontre as soluções de $x^2 + x - 6 = 0$.

Solução: Temos que encontrar números a e b, tal que

$$a + b = 1$$
 (4.20)

$$a \cdot b = -6$$
.

A solução é obtida por tentativas, por isso o método é eficiente quando as soluções são inteiras. Nesse caso, a = -2 e b = 3 satisfazem as Eq. (20), portanto as soluções são $x_1 = 2$ e $x_2 = -3$.

Observemos que as soluções têm o *sinal oposto* dos números a e b

EXERCÍCIOS 4.4

- 4.4.1 Para que $Ax^2 + Bx + C = 0$ seja uma equação de 2º grau, o coeficiente A pode ser nulo? e os coeficientes B e C?
- 4.4.2 Verifique se o valor de *x* dado é solução da respectiva equação:

a)
$$x^2 9 = 0$$
 para $x = -3$ c) $2x^2 + x - 3 = 0$ para $x = 1$

b)
$$x^2 - 6x + 9 = 0$$
 para $x = -3$ d) $5x^2 + 3x - 5/2 = 0$ para $x = 1/2$

4.4.3 Resolva as equações usando apenas as propriedades das equações (sem usar a fórmula de Baskhara):

a)
$$x^2 - 16 = 0$$

$$b) x^2 + 2x = 0$$

a)
$$x^2 - 16 = 0$$
 b) $x^2 + 2x = 0$ c) $-2x^2 + 18 = 0$

d) -
$$x^2 + 8x = 0$$

d)
$$-x^2 + 8x = 0$$
 e) $-3x^2 + 6x = 0$ f) $2x^2 = 0$

4.4.4 Determine B para que as expressões sejam trinômios quadrados perfeitos:

a)
$$x^2 + Bx + 16 = 0$$
 b) $x^2 - Bx + 9 = 0$ c) $4t^2 - Bt + 9 = 0$

4.4. EQUAÇÃO DO 2º GRAU

33

d)
$$9x^2 + Bx + 25 = 0$$
 e) $16s^2 - Bs + 4 = 0$ f) $36x^2 + Bx + 9 = 0$

e)
$$16s^2 - Bs + 4 = 0$$

f)
$$36x^2 + Bx + 9 = 0$$

4.4.5 Resolva as equações usando fatoração do trinômio:

a)
$$x^2 + 4x - 5 = 0$$

b)
$$x^2 + x - 12 = 0$$

a)
$$x^2 + 4x - 5 = 0$$
 b) $x^2 + x - 12 = 0$ c) $x^2 - 14x + 40 = 0$

d)
$$x^2 - 12x + 36 = 0$$
 e) $x^2 - 3x - 8 = 0$ f) $3x^2 - 2x - 2 = 0$

e)
$$x^2 - 3x - 8 = 0$$

f)
$$3x^2 - 2x - 2 = 0$$

4.4.6 Resolva as equações usando o método de produto e soma:

a)
$$x^2 + 4x + 4 = 0$$

b)
$$x^2 + x - 12 = 0$$

a)
$$x^2 + 4x + 4 = 0$$
 b) $x^2 + x - 12 = 0$ c) $x^2 - 3x - 10 = 0$

d)
$$x^2 - 7x + 10 = 0$$
 e) $x^2 + 10x + 21 = 0$ f) $x^2 - x - 2 = 0$

e)
$$x^2 + 10x + 21 = 0$$

f)
$$x^2 - x - 2 = 0$$

4.4.7 Verifique se o método produto e soma é eficiente para a solução de:

a)
$$2x^2 - 4x - 30 = 0$$

a)
$$2x^2 - 4x - 30 = 0$$
 b) $3x^2 + 8x + 12 = 0$

4.4.8 Resolva as equações usando a fórmula de Baskhara:

a)
$$x^2 - 2x - 8 = 0$$

b)
$$4x^2 + 4x + 1 = 0$$

a)
$$x^2 - 2x - 8 = 0$$
 b) $4x^2 + 4x + 1 = 0$ c) $-x^2 + 7x - 6 = 0$

d)
$$2x^2 - x + 3 = 0$$

d)
$$2x^2 - x + 3 = 0$$
 e) $x^2 + 5/2x + 1 = 0$ f) $x^2 - 8 = 0$

f)
$$x^2 - 8 = 0$$

4.4.9 Determine o valor de x para que a área da figura seja 7,5 cm². (medidas do desenho em centímetros)

- 4.4.10 Invente uma equação de 2º grau tal que o discriminante seja nulo.
- 4.4.11 Invente uma equação de 2º grau tal que:
 - a) As soluções sejam reais e idênticas
 - b) As soluções não sejam reais (complexas)
 - c) As soluções sejam reais e distintas
- 4.4.12 Resolva as equações usando qualquer método:

a)
$$x(x-1)+3(x^2-1)=0$$

a)
$$x(x-1)+3(x^2-1) = 0$$
 c) $(x+1)^2 + (x-1)^2 = 0$

b)
$$2x(x-4)+2(x-1)=0$$

b)
$$2x(x-4)+2(x-1)=0$$
 d) $(x+2)^2+2(x+1/2)^2=0$

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS 4.5

RESPOSTAS 4.3

- **4.3.1** a) x = 4/3
 - b) Até poderia ser usada a estratégia, porém somente após realizar a adição do lado direito.
- 4.3.2 $x = -\frac{1}{3}$
- 4.3.3 a -2 b) 2 c) 1 d) -2 e) 4/6

- f) -5 g) 3 h) 6 i) -10 j) 7/2
- 4.3.4 x = 2.

- **4.3.5** a) x = 1 b) $x = \frac{5}{22}$ c) $x = \frac{1}{7}$ d) x = 2/5 e) $x = -\frac{7}{2}$ f) x = -3.
- 4.3.6 a) 2 b) $-\frac{4}{3}$ c) $\frac{8}{5}$
- 4.3.7 x = 1cm
- 4.3.8 a) x = 1cm b) $x = \frac{3}{2}cm$
- 4.3.9 $x = \frac{1}{2}$;
- 4.3.10 Comprimento=100m e largura=70m;
- 4.3.11 2cm, 4cm e 6 cm.

RESPOSTAS 4.4

- 4.4.1 Não pois sem o coeficiente A a equação se torna de 1° grau. Os coeficientes B e C podem ser nulos.
- 4.4.2 a) sim, b) não, c) o valor de x é solução da equação, d) o valor de x não é solução da equação
- 4.4.3 a) $x = \pm 4$
- d) x' = 0; x'' = 8
 - b) x' = 0; x'' = -2 e) x' = 0; x'' = 2
 - c) $x = \pm 3$ f) x = 0

- 4.4.4 a) 8
- d) 30
- b) 6 e) 16
- c) 12
- f) 36

4.5. RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

4.4.5 a)
$$x' = 1; x'' = -5$$
 d) $x' = 6; x'' = 6$

d)
$$x' = 6$$
; $x'' = 6$

b)
$$x' = 3; x'' = -4$$

b)
$$x' = 3; x'' = -4$$
 e) $x = \pm \sqrt{\frac{41}{4}} + \frac{3}{2}$

c)
$$x' = 10; x'' = 4$$
 f) $x = \frac{1 \pm \sqrt{7}}{3}$

f)
$$x = \frac{1 \pm \sqrt{7}}{3}$$

4.4.6 a)
$$x' = x$$
" = -2 d) $x' = 2$; x " = 5

d)
$$x' = 2$$
; $x'' = 5$

b)
$$x' = 3:x$$
" = -4

b)
$$x' = 3; x'' = -4$$
 e) $x' = -3; x'' = -7$

c)
$$x' = -2; x'' = 5$$
 f) $x' = -1; x'' = 2$

f)
$$x' = -1: x'' = 2$$

- 4.4.7 a) O método é eficiente porque as raízes são inteiras.
 - b) O método do produto e soma não é eficiente pois as raízes não são inteiras.

4.4.8 a)
$$x' = 4$$
; $x'' = -2$ d) $\frac{1 \pm \sqrt{-23}}{4}$

d)
$$\frac{1 \pm \sqrt{-23}}{4}$$

b)
$$x' = -\frac{1}{2}$$
; $x'' = -\frac{1}{2}$

b)
$$x' = -\frac{1}{2}; x'' = -\frac{1}{2}$$
 e) $x' = -\frac{1}{2}; x'' = -2$

c)
$$x' = 1$$
; $x'' = 6$ f) $\frac{\pm \sqrt{-32}}{2}$

f)
$$\frac{\pm \sqrt{-32}}{2}$$

4.4.9
$$x \cong 0,4364$$

4.4.12 a)
$$x' = 1; x'' = 0,75$$

b)
$$x' \cong 3,302...; x'' \cong -0,302...$$

c)
$$\pm \sqrt{-1}$$

d)
$$\frac{-2\pm\sqrt{-2}}{2}$$

Função do primeiro grau

Função do segundo grau

Inequações

Potências e funções exponenciais

Logarítmos e função logarítmica

Trigonometria e funções trigonométricas

Outras Funções