Cálculo de Probabilidades I

Temas: 1 y 2

Grado en Matemáticas

Tutor Online: Sergio García Sánchez. CA Albacete

Tema 1: La experiencia del azar

- ▶ 1.1 El concepto de azar
 - Leyes ≠ Azar
 - Determinismo ≠ Aleatorio
- Entenderemos por <u>experimento aleatorio</u> cualquier situación que, realizada en las mismas condiciones, proporcione un resultado imposible de predecir a priori.
 - Lanzar un dado
 - Extraer una carta de una baraja
 - Se lanza una moneda. Si sale cara se extrae de una urna U1, con una determinada composición de bolas de colores, una bola y si sale cruz de extrae de una urna U2, con otra determinada composición de bolas de colores, una bola.

Tema 1: La experiencia del azar

1.2 La idea de probabilidad

- Frecuencia que presenta un suceso después de numerosas observaciones del fenómeno
- En un fenómeno aleatorio, la probabilidad de cada uno de los acontecimientos posibles es un número entre 0 y 1.
- No es sencillo asignar probabilidades a sucesos. Ejemplo 1.3 del libro de texto, páginas 9 y 10.

- ▶ 2.2 Espacio muestral y sucesos
 - Cuando se realiza un experimento aleatorio, diversos resultados son posibles. El conjunto de todos los resultados posibles se llama <u>espacio muestral</u> (Ω)
- Ejemplo:
 - Experimento aleatorio: Lanzar un dado
 - Espacio muestral: Ω = {1,2,3,4,5,6}

- Se llama <u>suceso</u> o evento a un subconjunto de dichos resultados. Distinguiremos entre <u>sucesos simples</u> (o indivisibles) y <u>compuestos</u> (o divisibles).
- ▶ Ejemplo: el suceso A = "que el resultado sea par": A = {2, 4, 6} es un suceso compuesto.
 - Suceso seguro = Ω

Suceso imposible: Ø (vacío)

- Se llama suceso <u>unión</u> de A y B, A U B, al formado por los resultados experimentales que están en A o en B (incluyendo los que están en ambos).
- Se llama suceso <u>intersección</u> de A y B, $A \cap B$, al formado por los resultados experimentales que están simultáneamente en A y B. Dos sucesos son mutuamente <u>excluyentes</u> o <u>incompatibles</u> si $A \cap B = \emptyset$, donde \emptyset es el conjunto vacío.
- Suceso **complementario**: $A^c = \Omega A$
- ► Inclusión: B ⊂ A.

Se lee: B incluido en A

▶ Observemos que un suceso y su complementario son siempre mutuamente excluyentes y su unión es todo el espacio E.

$$A \cap A^c = \emptyset, \quad A \cup A^c = E$$

La unión y la intersección de múltiples sucesos se define de forma similar:

$$\bigcup_{j=1}^m A_j = A_1 \cup A_2 \cup \dots \cup A_m \qquad \bigcap_{j=1}^m A_j = A_1 \cap A_2 \cap \dots \cap A_m$$

Diagramas de Venn

Unión $A \cup B$

Intersección $A \cap B$

$$A=\{1,3,5\}, B=\{5,6\}$$

 $\Omega = \{1,2,3,4,5,6\}$

Sigamos con el dado:

Sucesos A = Un número impar, B = Un número mayor que 4.

$$A^{c} = \{2, 4, 6\}$$
 $B^{c} = \{1, 2, 3, 4\}$
 $A \cup B = \{1, 3, 5, 6\}$ $A \cap B = \{5\}$
 $(A \cup B)^{c} = \{2, 4\}$ $(A \cap B)^{c} = \{1, 2, 3, 4, 6\}$

• 2.3 El concepto de probabilidad

La Teoría de la Probabilidad, como disciplina matemática, puede y debe ser desarrollada a partir de unos axiomas, de la misma manera que la Geometría o el Álgebra. Andrei Kolmogorov, Foundations of the Theory of Probability.

Definición axiomática de probabilidad

Se llama probabilidad a cualquier función P que asigna a cada suceso A del espacio muestral Ω un valor numérico P(A), verificando los siguientes axiomas:

- (1) No negatividad: $0 \le P(A)$
- (2) Normalización: $P(\Omega) = 1$
- (3) Aditividad: $P(A \cup B) = P(A) + P(B)$ si $A \cap B = \emptyset$ (donde \emptyset es el conjunto vacío).

2.4 Primeras propiedades de la probabilidad

- $Si A \subset B \subset \Omega$, entonces $P(A) \leq P(B)$
- $Si A \subset B \subset \Omega$, entonces $P(B-A) = P(B \cap A^c) = P(B) P(A)$
- Para cualquier $A \subset \Omega$, $P(A^c)=1 P(A)$
- $P(\emptyset) = 0$
- Sean A y B dos sucesos cualquiera, entonces $P(B)=P(B \cap A)+P(B-A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Si A_1 , A_2 , ... A_n son disjuntos dos a dos, es decir, $A_i \cap A_j = \emptyset$, entonces $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$
- En espacios de probabilidad finitos (Ω, P) , sea $\Omega = \{w_1, w_2, ..., w_n\}$ y $A = \{w_{il}, w_{il}, ..., w_{in}\}$ un suceso, entonces: $P(A) = P(\{w_{il}\}) + P(\{w_{il}\}) + ... + P(\{w_{in}\})$ con $P(\{w_l\}) + P(\{w_l\}) + ... + P(\{w_n\}) = 1$

