Making Causal Critiques Day 3 - Assessing Causal Evidence

Jonathan Phillips

January 29, 2020

Solving the Problem of Causal Inference

- ▶ We cannot!
- But we can try and minimize the risks
- Selecting units that provide appropriate counterfactuals, avoiding:
 - ► Omitted variable bias
 - ► Selection Bias
 - Reverse Causation

- ► Field experiments provide confidence because treatment assignment is **controlled by the researcher**
- ► But still take place in real-world environments, so they identify (hopefully) meaningful treatment effects

▶ Why does randomization help us achieve causal inference?

- Why does randomization help us achieve causal inference?
 - A treatment assignment mechanism that balances potential outcomes
 - ► Every unit has **exactly the same** probability of treatment
 - ► No omitted variable bias
 - ► No self-selection
 - No reverse causation

- ▶ Why does randomization help us achieve causal inference?
 - ► We want to estimate:

$$E(Y_1 - Y_0) \tag{1}$$

- ▶ Why does randomization help us achieve causal inference?
 - ► We want to estimate:

$$E(Y_1 - Y_0) \tag{1}$$

► Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

Why does randomization help us achieve causal inference? ▶ We want to estimate:

 $E(Y_1 - Y_0)$

 $E(Y_1|D=1)$, $E(Y_0|D=0)$

Our data provides:

▶ With randomization, $Y_1, Y_0 \perp D$:

iizatioii,
$$I_1, I_0 \perp D$$
.

nization,
$$Y_1, Y_0 \perp D$$
:

$$E(Y_1) \tag{3}$$

$$E(Y_1|D=1) = E(Y_1)$$

$$E(Y_0|D=0) = E(Y_0)$$

$$E(Y_0|D=0$$

$$E(Y_0|D=0) = E(Y_0)$$

$$E(Y_1|D=1) - E(Y_0|D=0) = E(Y_1) - E(Y_0)$$

$$= E(Y_1 - Y_0) \tag{6}$$

(4)

(5)

(1)

(2)

► But these are just **expectations** (averages)

- But these are just expectations (averages)
 - On average, potential outcomes will be balanced
 - More likely in larger samples
 - We cannot verify potential outcomes
 - ▶ But we can assess balance in *observable* covariates
 - ▶ What if some covariates are imbalanced?

- Analysing field experiments
 - ► Comparison of means: t-test to test significance
 - Regression achieves the same thing
 - $ightharpoonup Y_i \sim \alpha + \beta D_i + \epsilon_i$
 - ► $Y_i = Y_{0i} + (Y_{1i} Y_{0i})D_i + \epsilon_i$
 - ▶ Just the conditional expectation function: E(Y|D=d)
 - ► Include covariates if:
 - ► There is residual imbalance
 - To increase precision of standard errors

- Assumptions
 - Compliance with randomization Treatment was truly random and accepted
 - ► **SUTVA** Treatment of one unit doesn't affect potential outcomes of other units
 - ► Excludability Effects of treatment assignment operate only through treatment
 - ▶ Depends if these effects are part of the causal chain

► Limitations of Field Experiments: **Answerable Questions**

- ► Limitations of Field Experiments: **Answerable Questions**
 - ► Small sample sizes still prevent inference
 - ► Ethics
 - ► Logistics/Finance
 - ► Some treatments can't be manipulated (history)
 - Lack of control over treatment content and context is it informative?
 - ► Long-term effects/adaptation?

► Limitations of Field Experiments: Internal Validity

- ► Limitations of Field Experiments: Internal Validity
 - ► No guarantee of actual balance (and Inefficient if we already know confounders)
 - Hawthorne effect: participants adapt behaviour in experiments
 - ► Biased measurement if not double-blind (non-excludability)
 - Average Treatment Effect can be skewed by Outliers
 - Always complications of non-compliance, SUTVA, attrition
 - ► Publication/Selection bias
 - Unbiased but imprecise; variation still high if lots of other variables also affect Y
 - ► Treatment assignment mechanism itself affects outcomes

- ► All these complications mean we need lots of assumptions and background knowledge
- ► Just as with other methodologies

► Causal Inference

- ► Causal Inference
- ► Why lab experiments?

- ▶ Causal Inference
- ▶ Why lab experiments?
 - ► Treatments we cannot administer in reality
 - ▶ Outcome measurements that are hard to take in reality
 - ► Random treatment assignment not permitted in reality

▶ **Treatment Assignment**: Same as a Field Experiment

- ▶ Treatment Assignment: Same as a Field Experiment
- ➤ **Treatment**: Not a manipulation of real world political or economic processes, but establishing controlled 'lab' conditions

- ▶ Treatment Assignment: Same as a Field Experiment
- ➤ **Treatment**: Not a manipulation of real world political or economic processes, but establishing controlled 'lab' conditions
 - The advantage: Control over context helps isolate mechanisms
 - ► The disadvantage: Can we generalize to the real world from this artificial context?

► What is a natural experiment?

- ► What is a natural experiment?
 - ► Treatment assignment is independent of potential outcomes
 - So randomized or 'as-if' random ('exogenous')

- ► What is a natural experiment?
 - ► Treatment assignment is independent of potential outcomes
 - So randomized or 'as-if' random ('exogenous')
 - ▶ BUT The researcher doesn't control the treatment assignment process or treatment itself
 - So not a field experiment
 - Can make possible analysis of questions that researchers might find unethical or impractical

Analysis Types and Assumptions

Week	Assumption:	Researcher Controls Treatment Assign- ment?	Treatment Assign- ment Inde- pendent of Potential Outcomes	SUTVA	Additional Assump- tions
	Controlled Experiments				
1	Field Experiments	√	✓	✓	
2	Survey and Lab Experiments	√	√	✓	Controlled Environment for treatment exposure
	Natural Experiments				
3	Randomized Natural Experiments	х	✓	✓	
4	Instrumental Variables	Х	✓	√	First stage and Exclusion Re- striction (Instrument explains treatment but not outcome)
5	Regression Discontinuity	Х	✓	√	Continuity of covariates; No manipulation; No compounding discontinuities
	Observational Studies				
6	Difference-in-Differences	Х	Х	√	No Time-varying confounders; Parallel Trends
7	Controlling for Confounding	Х	Х	√	Blocking all Back-door paths
8	Matching	Х	Х	✓	Overlap in sample characteristics

- ► Three types of natural experiments
 - ▶ 'Pure' natural experiments, where policy is as-if random
 - ► Instrumental Variables
 - ► Regression Discontinuities

- ► Because we don't control assignment, we need to verify the assumptions behind natural experiments
 - ► How do we know assignment was truly random?
 - ► How was the treatment applied? Consistently?
- We need 'Causal-process observations'

► Challenges due to lack of control over treatment:

- ► Challenges due to lack of control over treatment:
 - We must be lucky to 'find' natural experiments; what if the treatments/experiments that exist don't answer useful political economy questions?
 - ► The treatment and control groups produced by 'nature' may not produce treatment and control groups which differ in ways that represent a causal effect of interest (Sekhon and Titiunik 2012)
 - We also must be lucky to find a sample that is relevant and interesting - unlike a controlled trial we don't control the recipients either (eg. if we care about states, not municipalities, the audits are no use)

- ► Challenges due to lack of control over treatment:
 - Spillovers can be an issue treatment units affect control units' potential outcomes (eg. women's quotas discourage women in non-reserved seats)
 - ► Generalizability a very open question; what causal process does the experiment really capture?
 - ► The treatment assignment of a natural experiment might have unique effects (excludability)

► What can we do when the treatment assignment mechanism is not 'as-if' random?

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
- ► Natural experiments focus on a specific **part** of treatment assignment that is 'as-if' random

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
- ► Natural experiments focus on a specific **part** of treatment assignment that is 'as-if' random
- An 'instrument' is a variable which assigns treatment in an 'as-if' random way

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
- ► Natural experiments focus on a specific **part** of treatment assignment that is 'as-if' random
- An 'instrument' is a variable which assigns treatment in an 'as-if' random way
 - Or at least in a way which is 'exogenous' not related to confounders
 - ► Even if other confounding variables **also** affect treatment

➤ We can use the instrument to isolate 'as-if' random variation in treatment, and use that to estimate the effect of treatment on the outcome

- ➤ We can use the instrument to isolate 'as-if' random variation in treatment, and use that to estimate the effect of treatment on the outcome
- ▶ NOT the effect of the instrument on the outcome

- ► Example Instruments:
 - ► Rainfall for conflict
 - Sex-composition for effect of third child
 - ▶ Distance from the coast for exposure to slave trade

- ► Instrumental Variables Assumptions
 - ➤ **Strong First Stage:** The Instrument must **affect** the treatment

- Instrumental Variables Assumptions
 - ► Strong First Stage: The Instrument must affect the treatment
 - ► We can test this with a simple regression: Treatment ~ Instrument

- ► Instrumental Variables Assumptions
 - ► Strong First Stage: The Instrument must affect the treatment
 - ► We can test this with a simple regression: Treatment ~ Instrument
 - ► The instrument should be a significant predictor of treatment
 - ightharpoonup Rule-of-thumb: F statistic > 10

- Instrumental Variables Assumptions:
 - ► Exclusion Restriction: The Instrument ONLY affects the outcome through its effect on treatment, and not directly

- Instrumental Variables Assumptions:
 - ► Exclusion Restriction: The Instrument ONLY affects the outcome through its effect on treatment, and not directly
 - Formally, cov(Instrument, errors in main regression Y ~ D) = 0

- ► Instrumental Variables Assumptions:
 - ► Exclusion Restriction: The Instrument ONLY affects the outcome through its effect on treatment, and not directly
 - Formally, cov(Instrument, errors in main regression Y ~ D) = 0
 - ► We cannot test or prove this assumption!

- ► Instrumental Variables Assumptions:
 - ► Exclusion Restriction: The Instrument ONLY affects the outcome through its effect on treatment, and not directly
 - Formally, cov(Instrument, errors in main regression Y ~ D) = 0
 - We cannot test or prove this assumption!
 - Theory and qualitative evidence needed to argue that the instrument is not correlated with any other factors affecting the outcome
 - Sometimes, the exclusion restriction may be more credible if we include controls

► Instrumental Variables Methodology:

- ► Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument

- ► Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument
 - 2. Conduct 2-Stage Least Squares:

- ► Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument
 - 2. Conduct 2-Stage Least Squares:
 - ► Isolate the variation in treatment caused by the instrument: D ~ Instrument

- Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument
 - 2. Conduct 2-Stage Least Squares:
 - Isolate the variation in treatment caused by the instrument:
 D ~ Instrument
 - Save the predicted values from this regression: $\hat{D} = D \sim Instrument$

- Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument
 - 2. Conduct 2-Stage Least Squares:
 - ► Isolate the variation in treatment caused by the instrument: D ~ Instrument
 - Save the predicted values from this regression: $\hat{D} = D \sim Instrument$
 - ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$

- ► Instrumental Variables Methodology:
 - 1. Use an all-in-one package, eg. ivreg in the AER package
 - ► Specify the formula: Y D|Instrument
 - 2. Conduct 2-Stage Least Squares:
 - ► Isolate the variation in treatment caused by the instrument: D ~ Instrument
 - Save the predicted values from this regression: $\hat{D} = D \sim Instrument$
 - ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$
 - ► Interpret the coefficient on \hat{D}

► IV Interpretation:

- ► IV Interpretation:
 - ► Your coefficient is a causal estimate ONLY for units that were actually treated **because of the instrument**

- ► IV Interpretation:
 - ➤ Your coefficient is a causal estimate ONLY for units that were actually treated **because of the instrument**
 - ► They don't tell us about the causal effect for other units that never responded to the instrument

- ► IV Interpretation:
 - Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
 - They don't tell us about the causal effect for other units that never responded to the instrument
 - We call our causal effect estimate a 'Local Average Treatment Effect' (LATE)
 - 'Local' to the units whose treatment status actually changed

- ► IV Interpretation:
 - Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
 - They don't tell us about the causal effect for other units that never responded to the instrument
 - We call our causal effect estimate a 'Local Average Treatment Effect' (LATE)
 - 'Local' to the units whose treatment status actually changed
- Remember, those 'Local' units are not representative so we can't generalize