

General information

Designation

Acer saccharum (L)

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O						
Material family	Natural					
Base material	Wood (hardwood)					
Renewable content	100			%		
Composition detail (polymers and natural mate	erials)					
Wood	100			%		
Price						
Price	* 1.34	-	2.01	USD/kg		
Physical properties						
Density	640	-	780	kg/m^3		
Mechanical properties						
Young's modulus	* 12.5	-	15.3	GPa		
Yield strength (elastic limit)	* 50	-	61.1	MPa		
Tensile strength	* 91.2	-	111	MPa		
Elongation	* 1.97	-	2.4	% strain		
Compressive strength	48.6	-	59.4	MPa		
Flexural modulus	11.4	-	13.9	GPa		
Flexural strength (modulus of rupture)	98	-	120	MPa		
Shear modulus	* 0.93	-	1.13	GPa		
Shear strength	14.5	-	17.7	MPa		
Bulk modulus	* 1.08	-	1.2	GPa		
Poisson's ratio	* 0.35	-	0.4			
Shape factor	5.2					
Hardness - Vickers	* 6.78	-	8.28	HV		
Hardness - Brinell	* 52.6	-	64.3	MPa		
Hardness - Janka	* 6.78	-	8.28	kN		
Fatigue strength at 10^7 cycles	* 29.4	_	35.9	MPa		

Mechanical loss coefficient (tan delta)	* 0.0067	-	0.0082	
Differential shrinkage (radial)	0.17	-	0.23	%
Differential shrinkage (tangential)	0.25	-	0.32	%
Radial shrinkage (green to oven-dry)	4.3	-	5.3	%
Tangential shrinkage (green to oven-dry)	8.9	-	10.9	%
Volumetric shrinkage (green to oven-dry)	13.2	-	16.2	%
Work to maximum strength	102	-	125	kJ/m^3

Impact & fracture properties

Fracture toughness	* 5.8	- 7.1	MPa.m^0.5
--------------------	-------	-------	-----------

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.31	-	0.37	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 2	-	11	μstrain/°C

Electrical properties

Electrical resistivity	3.1e14	-	3.79e14	μohm.cm
Dielectric constant (relative permittivity)	* 6.95	-	8.5	
Dissipation factor (dielectric loss tangent)	* 0.082	-	0.1	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m

Magnetic properties

Optical properties

Transparency	Opaque
--------------	--------

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

Shape

BEDOPIACK					
		Highly f	lamr	nable	
Primary production energy, CO2 and water					
Embodied energy, primary production		11.6	-	12.8	MJ/kg
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Ham MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	nmond and Jo	ones, 2008)	; 11.6	MJ/kg (Hubb	ard and Bowe, 2010); 23.7
CO2 footprint, primary production		0.574	-	0.633	kg/kg
Sources	/ka (Hamman	d and lane	200	8): 0 000 kg/	ka (Hubbard and Dawa
0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/		* 665	5, 200	735	I/kg
vvaici usage		000		7 00	1/Kg
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)		* 1.2	-	1.32	MJ/kg
Coarse machining CO2 (per unit wt removed)		* 0.0898	-	0.0993	kg/kg
Fine machining energy (per unit wt removed)		* 7.7	-	8.51	MJ/kg
Fine machining CO2 (per unit wt removed)		* 0.577	-	0.638	kg/kg
Grinding energy (per unit wt removed)		* 14.9	-	16.5	MJ/kg
Grinding CO2 (per unit wt removed)		* 1.12	-	1.24	kg/kg
Recycling and end of life Recycle		×			
•		8.55	_	9.45	%
Recycle fraction in current supply Downcycle		0.55	-	9.45	70
Combust for energy recovery		V			
Heat of combustion (net)		* 19.8	_	21.3	MJ/kg
Combustion CO2		* 1.69		1.78	kg/kg
				1.70	kg/kg
Diodograde		٧			
Landfill Biodegrade Notes		√ √			
Warning					
All woods have properties which show variation; they de	pend princ	cipally on	grow	th conditio	ns and moisture conter
Links					
ProcessUniverse					
Reference					
Chana					