Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Matemática Discreta

Período: 2025/1

Professor: Anderson José de Oliveira

Aluno(a):

Matrícula:

ATENÇÃO: Respostas sem justificativa serão desconsideradas, todas as folhas entregues devem ser devolvidas, não será permitido o uso de celular, calculadora ou qualquer aparelho eletrônico.

PROVA 1 - MATEMÁTICA DISCRETA

Questão 1.

- (a) (1,0) A sentença $(\exists!x)(p(x))$ é equivalente a $(\exists x)(p(x)) \wedge (\forall x)(\forall y)[(p(x) \wedge p(y)) \rightarrow x = y]$, onde a primeira parte da conjunção se refere a existência de x e a segunda parte se refere a unicidade. Negue a sentença $(\exists!x)(p(x))$.
- (b) (1,0) Seja f uma função definida sobre o conjunto dos números reais. Dizemos que o limite de f(x) quando x tende a b é L se $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})(0 < |x b| < \delta \rightarrow |f(x) L| < \varepsilon)$. Negue a definição de limite de uma função de uma variável real.

Questão 2.

- (a) (1,0) Prove que o teorema na forma recíproca é equivalente ao teorema na forma contrária (via tabela-verdade e leis do cálculo proposicional).
- (b) (1,25) Prove que n é um número inteiro par se, e somente se, n-1 é um número inteiro ímpar. Qual técnica de demonstração você utilizou?
- (c) (1,25) Prove que \forall inteiros a,b e c, se a|b e a|c, então a|(b+c). Qual técnica de demonstração você utilizou?

Questão 3. (2,0) Sejam A, B, C subconjuntos do conjunto universo S. Prove que:

- (a) $A \cap B = B \cap A$.
- (b) $(A \cap B) (A \cap C) = A \cap (B C)$.
- (c) $(A \cap B)^c = A^c \cup B^c$.
- (d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Questão 4. (2,5) Diga se as sentenças a seguir são verdadeiras ou falsas, justificando suas respostas.

 O princípio do terceiro excluído é aquele que afirma que: "uma proposição não pode ser verdadeira e falsa."

- 2. Sendo a e b inteiros, se a|b e b|a, então a=b.
- 3. A proposição $p \to q \leftrightarrow p \land \sim q$ é uma contradição.
- 4. A sentença "Windows é sistema operacional e Pascal é linguagem de programação" é uma proposição.
- 5. $p \to (p \lor q) \Leftrightarrow F$.

Algumas propriedades:

- 1. $p \land q \Leftrightarrow q \land p$; $p \lor q \Leftrightarrow q \lor p$ Comutativas
- 2. $(p \land q) \land r \Leftrightarrow p \land (q \land r); (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ Associativas
- 3. $p \land p \Leftrightarrow p; \ p \lor p \Leftrightarrow p$ Idempotentes
- 4. $\sim \sim p \Leftrightarrow p$ Dupla negação
- 5. $\sim (p \to q) \Leftrightarrow p \land \sim q$ Negação da condicional
- 6. $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r); p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ Distributivas
- 7. $p \wedge V \Leftrightarrow p$ Tautologia
- 8. $p \lor V \Leftrightarrow V$ Tautologia
- 9. $p \land \sim p \Leftrightarrow F$ Contradição
- 10. $p \vee \sim p \Leftrightarrow V$ Tautologia
- 11. $p \wedge F \Leftrightarrow F$ Contradição
- 12. $p \vee F \Leftrightarrow p$ Contradição
- 13. O conjunto nulo é um subconjunto de qualquer conjunto.
- 14. $P \to Q, Q \to P, \sim P \to \sim Q, \sim Q \to \sim P$
- 15. $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q; \sim (p \land q) \Leftrightarrow \sim p \lor \sim q$ leis de De Morgan
- 16. $p \rightarrow q \Leftrightarrow \sim p \lor q$
- 17. $A \cup B = \{x : (x \in A) \lor (x \in B)\}$, sendo $A \subset S \in B \subset S$
- 18. $A \cap B = \{x : (x \in A) \land (x \in B)\}, \text{ sendo } A \subset S \in B \subset S$
- 19. $A B = \{x : (x \in A) \land (x \notin B)\}$, sendo $A \subset S \in B \subset S$
- 20. $A^c = \{x \in S : x \notin A\}$, sendo $A \subset S$

Boa Avaliação!!

"Espalhar boas vibrações por onde quer que passe, faz um grande bem para quem as emana espontaneamente, como também para quem as recebe. Em verdade, quem faz o bem, o recebe em dobro." (Regis Assunção)