1. Bivariate Statistics

- a. $\mu F = (56.8929 \ 164.7143) \& \mu M = (75.8977 \ 178.0114)$
- b. μ is the mean of the vector Male/Female. Two components of the vector are Body Mass in Kg and Body Height in cm.

c.

cov(Female) =		
47.0515	19.9421	
19.9421	32.0257	

cov(Male) =		
141.3802	41.3000	
141.5002	41.5000	
41.3000	41.4826	
	.2025	

d. cov(Female) =

· .		
	47.0515	19.9421
	This is the variance of	This is the covariance Of Weight to
	Weight of the Female	the Height of Female students
	Students	
	19.9421	32.0257
	This is the covariance Of	This is the variance of Height of the
	Weight to the Height of	Female Students
	Female students	

e. The calculation of Covariance shows that weight of the body increases with the increase in height.

2. Pattern Recognition

a.

Test Sample	Female Probabilities	Male Probabilities
(60,169) ^T	0.0036	7.3004e-004
$(71,174)^{T}$	4.5724e-004	0.0020
(70,173) ^T	6.5733e-004	0.0018

- 1. Sample $(60,169)^T$ is most likely a Female.
- 2. Sample $(71,174)^T$ is most likely a Male.
- 3. Sample $(70,173)^T$ is most likely a Male.

b.

Test Sample	Female Probabilities * 0.8	Male Probabilities * 0.2
(60,169) [™]	0.0029	1.4601e-004
$(71,174)^{T}$	3.6580e-004	4.0490e-004
(70,173) ^T	5.2587e-004	3.6316e-004

- 1. Sample $(60,169)^T$ is most likely a Female.
- 2. Sample $(71,174)^T$ is most likely a Male.
- 3. Sample $(70,173)^T$ is most likely a Female.

c.

Test Sample	Female Probabilities * 0.8 * 2.0	Male Probabilities * 0.2 * 0.5
$(60,169)^{T}$	0.0057	7.3004e-005
$(71,174)^{T}$	7.3159e-004	2.0245e-004
(70,173) ^T	0.0011	1.8158e-004

- 1. Sample (60,169)^T is most likely a Female.
- 2. Sample $(71,174)^T$ is most likely a Female.
- 3. Sample $(70,173)^T$ is most likely a Female.

^{*}under the condition of Equal Prior Probability and Equal Miscalculation Cost

^{*}under the condition of Equal Miscalculation Cost