Spectre à basse énergie des opérateurs de Toeplitz

Alix Deleporte Sous la direction de Nalini Anantharaman

Institut de Recherche Mathématique Avancée

4 avril 2018

Introduction

Spins sur Kagomé

Plan

- 1 La quantification de Toeplitz
 - Construction géométrique
 - Opérateurs de Toeplitz
- 2 Analyse du noyau de Szegő
 - Opérateurs intégraux de Fourier
 - Développement asymptotique du projecteur de Szegő
- 3 Localisation des fonctions propres à basse énergie
 - État de l'art
 - Critères sous-principaux
 - Perspectives

Mécanique classique	Mécanique quantique

Mécanique classique	Mécanique quantique
Variété symplectique M	Espace de Hilbert H

Mécanique classique	Mécanique quantique
Variété symplectique M	Espace de Hilbert H
Fonction $a \in C^{\infty}(M, \mathbb{R})$	Opérateur auto-adjoint $A \in L(H)$

Mécanique classique	Mécanique quantique
Variété symplectique M	Espace de Hilbert H
Fonction $a \in C^{\infty}(M, \mathbb{R})$	Opérateur auto-adjoint $A \in L(H)$
Flot hamiltonien de α	Flot de e ^{itA/ħ}

Mécanique classique	Mécanique quantique
Variété symplectique M	Espace de Hilbert H
Fonction $a \in C^{\infty}(M, \mathbb{R})$	Opérateur auto-adjoint $A \in L(H)$
Flot hamiltonien de α	Flot de e ^{itA/ħ}
Crochet de Poisson	Crochet de Lie

Mécanique classique	Mécanique quantique
Variété symplectique M	Espace de Hilbert H
Fonction $a \in C^{\infty}(M, \mathbb{R})$	Opérateur auto-adjoint $A \in L(H)$
Flot hamiltonien de α	Flot de e ^{itA/ħ}
Crochet de Poisson	Crochet de Lie

- Quantification : pour un modèle donné de mécanique classique, comment construire un modèle quantique associé?
- Semi-classique : le modèle quantique dépend d'un petit paramètre \hbar . Que dire de l'asymptotique $\hbar \rightarrow 0$?

Quantification de Weyl et quantification géométrique

Deux approches historiques différentes.

- 1 Annés 30 (motivations physiques):
 - variété $M = \mathbb{R}^{2n}$, symbole $\mathfrak{a}(\mathfrak{q},\mathfrak{p})$.
 - Espace de Hilbert $L^2(\mathbb{R}^n)$.
 - Opérateur associé : on remplace p par $-ih\nabla$.
 - Exemple : particule massive soumise à un potentiel :

$$|p|^2 + V(q) \leadsto -h^2 \Delta + V$$

Quantification de Weyl et quantification géométrique

Deux approches historiques différentes.

- 1 Annés 30 (motivations physiques):
 - variété $M = \mathbb{R}^{2n}$, symbole $\mathfrak{a}(\mathfrak{q},\mathfrak{p})$.
 - Espace de Hilbert $L^2(\mathbb{R}^n)$.
 - Opérateur associé : on remplace p par $-ih\nabla$.
 - Exemple : particule massive soumise à un potentiel :

$$|p|^2 + V(q) \leadsto -h^2 \Delta + V$$

- 2 Années 60 (motivations mathématiques):
 - Variété symplectique vérifiant $[\omega] \in H^2(M, 2\pi\mathbb{Z})$.
 - Polarisation : distribution lagrangienne P intégrable.
 - Espace de Hilbert : sections L² d'un fibré invariantes par P.
 - Exemple : représentations irréductibles de dimension finie d'un groupe de Lie compact.

■ Condition d'intégrabilité \Leftrightarrow Existence d'un fibré en droites complexes $L \to M$ avec une structure hermitienne h telle que $curv(h) = \omega$.

- Condition d'intégrabilité \Leftrightarrow Existence d'un fibré en droites complexes $L \to M$ avec une structure hermitienne h telle que $curv(h) = \omega$.
- Variété de Kähler (symplectique, complexe et riemannienne) : on prend pour polarisation T_{1,0}M.

- Condition d'intégrabilité \Leftrightarrow Existence d'un fibré en droites complexes $L \to M$ avec une structure hermitienne h telle que $curv(h) = \omega$.
- Variété de Kähler (symplectique, complexe et riemannienne): on prend pour polarisation T_{1,0}M.
- Espace de Hilbert : $H_0(M,L)$. Limite semi-classique : on remplace L par $L^{\otimes N}$, de courbure $N\omega$.

- Condition d'intégrabilité \Leftrightarrow Existence d'un fibré en droites complexes $L \to M$ avec une structure hermitienne h telle que $curv(h) = \omega$.
- Variété de Kähler (symplectique, complexe et riemannienne): on prend pour polarisation T_{1,0}M.
- Espace de Hilbert : $H_0(M,L)$. Limite semi-classique : on remplace L par $L^{\otimes N}$, de courbure $N\omega$.
- Kodaira : si M est compacte, dim $H_0(M, L^{\otimes N})$ est donnée par Riemann-Roch (polynôme en N de degré dim $_{\mathbb{C}} M$).

Quantification de Toeplitz

Définition

- Le projecteur de Szegő S_N est le projecteur orthogonal de $L^2(M, L^{\otimes N})$ dans $H_0(M, L^{\otimes N})$.
- Si $a \in C^{\infty}(M, \mathbb{R})$, l'opérateur de Toeplitz associé est

$$T_N(\alpha) = S_N \alpha : H_0(M, L^{\otimes N}) \mapsto H_0(M, L^{\otimes N}).$$

Exemple : \mathbb{C}^n

 On peut expliciter les espaces de Hardy et le projecteur de Szegő.

$$H_0(\mathbb{C}^n,L^{\otimes N})\simeq \left\{f \text{ entière , } \int_{\mathbb{C}^n}f(z)e^{-N|z|^2}<+\infty\right\}$$

$$S_{N}(z, w) = \frac{N^{n}}{\pi^{n}} \exp \left(-\frac{N}{2}|z - w|^{2} + iN\Im(z \cdot \overline{w})\right)$$

Exemple : \mathbb{C}^n

 On peut expliciter les espaces de Hardy et le projecteur de Szegő.

$$H_0(\mathbb{C}^n,L^{\otimes N})\simeq \left\{f \text{ entière , } \int_{\mathbb{C}^n}f(z)e^{-N|z|^2}<+\infty\right\}$$

$$S_{N}(z, w) = \frac{N^{n}}{\pi^{n}} \exp\left(-\frac{N}{2}|z - w|^{2} + iN\Im(z \cdot \overline{w})\right)$$

■ Recette de quantification :

$$T_{N}(z \mapsto \overline{z}^{\alpha}z^{\beta}) = N^{-\alpha}\partial^{\alpha}z^{\beta}.$$

Plan

- 1 La quantification de Toeplitz
 - Construction géométrique
 - Opérateurs de Toeplitz
- 2 Analyse du noyau de Szegő
 - Opérateurs intégraux de Fourier
 - Développement asymptotique du projecteur de Szegő
- 3 Localisation des fonctions propres à basse énergie
 - État de l'art
 - Critères sous-principaux
 - Perspectives

Théorème de la phase stationnaire

On veut étudier des intégrales de la forme

$$\int e^{iN\phi(x)}a(x)dx$$

dans la limite $N \to +\infty$, où ϕ et α sont des fonctions lisses.

Théorème de la phase stationnaire

On veut étudier des intégrales de la forme

$$\int e^{iN\phi(x)}a(x)dx$$

dans la limite $N \to +\infty$, où ϕ et α sont des fonctions lisses.

■ Là où $\nabla \varphi$ ne s'annule pas, on peut intégrer par parties autant qu'on veut, contribution $O(N^{-\infty})$.

Théorème de la phase stationnaire

On veut étudier des intégrales de la forme

$$\int e^{iN\phi(x)}a(x)dx$$

dans la limite $N \to +\infty$, où ϕ et α sont des fonctions lisses.

- Là où $\nabla \varphi$ ne s'annule pas, on peut intégrer par parties autant qu'on veut, contribution $O(N^{-\infty})$.
- Là où φ a un point critique de Morse, après un changement de variable, on a un développement asymptotique car

$$\int e^{iN|x|^2} a(x) dx = N^{-\frac{d}{2}} \sum_{k=0}^K \frac{N^{-k}}{k!} \Delta^k a(0) + O(N^{-k+1}).$$

Phases complexes

• Si φ est à valeurs complexes, l'équation $\nabla \varphi = 0$ peut ne pas avoir de solutions dans \mathbb{R}^d .

Phases complexes

- Si ϕ est à valeurs complexes, l'équation $\nabla \phi = 0$ peut ne pas avoir de solutions dans \mathbb{R}^d .
- Il faut prolonger ϕ et α de manière analytique, ou quasianalytique, dans \mathbb{C}^d , puis changer de contour d'intégration.

Phases complexes

- Si ϕ est à valeurs complexes, l'équation $\nabla \phi = 0$ peut ne pas avoir de solutions dans \mathbb{R}^d .
- Il faut prolonger ϕ et α de manière analytique, ou quasianalytique, dans \mathbb{C}^d , puis changer de contour d'intégration.

Énoncés précis beaucoup plus techniques.

Opérateurs intégraux de Fourier

Opérateurs à noyaux :

$$Af(x) = \int A(x,y)f(y)dy.$$

Opérateurs intégraux de Fourier

Opérateurs à noyaux :

$$Af(x) = \int A(x, y)f(y)dy.$$

Application de la phase stationnaire : étude des opérateurs à noyaux de la forme

$$A(x,y) = \int_{\xi \in E} e^{i\xi \cdot \Phi(x,y)} a(x,\xi,y) d\xi.$$

Opérateurs intégraux de Fourier

Opérateurs à noyaux :

$$Af(x) = \int A(x, y)f(y)dy.$$

 Application de la phase stationnaire : étude des opérateurs à noyaux de la forme

$$A(x,y) = \int_{\xi \in E} e^{i\xi \cdot \Phi(x,y)} a(x,\xi,y) d\xi.$$

■ Opérateurs différentiels : $\Phi(x,y) = x - y$, $E = \mathbb{R}^d$, et $\mathfrak a$ est un polynôme en ξ .

Expression du projecteur de Szegő

Théorème (Boutet-Sjöstrand, Shiffman-Zelditch)

Sur une variété Kähler compacte, dans les cartes locales, le projecteur de Szegő S_N correspond au N-ième mode de Fourier d'un OIF invariant par une action de \mathbb{S}^1 .

$$S_{N}(x,y) = e^{N\Phi(x,y)} \sum_{k=0}^{K} N^{n-k} a_{n}(x,y) + O(N^{-n-K-1}).$$

Conséquences

• On a $\Re\Phi(x,y) < 0$ si x < y donc S_N décroît très vite loin de la diagonale, comme pour le cas \mathbb{C}^d .

Conséquences

- On a $\Re\Phi(x,y) < 0$ si x < y donc S_N décroît très vite loin de la diagonale, comme pour le cas \mathbb{C}^d .
- Près de zéro on a

$$\Phi(x,y) = -\frac{1}{2}|x - y|^2 + i\Im(x \cdot \overline{y}) + O((x,y)^3),$$

donc le cas \mathbb{C}^d est un modèle local universel dans l'asymptotique $N \to +\infty$.

Exemples

 \mathbb{CP}^1 : dans la projection stéréographique, on a

$$S_{N}(z, w) = \frac{N}{\pi} \left(\frac{1 + z\overline{w}}{\sqrt{(1 + |z|^{2})(1 + |w|^{2})}} \right)^{N}.$$

$$S_{N}(z,w) = \frac{N}{\pi} \left(\frac{\sqrt{(1-|z|^2)(1-|w|^2)}}{1-z\overline{w}} \right)^{N}.$$

Plan

- 1 La quantification de Toeplitz
 - Construction géométrique
 - Opérateurs de Toeplitz
- 2 Analyse du noyau de Szegő
 - Opérateurs intégraux de Fourier
 - Développement asymptotique du projecteur de Szegő
- 3 Localisation des fonctions propres à basse énergie
 - État de l'art
 - Critères sous-principaux
 - Perspectives

Localisation

Définition

Une suite $(\mathfrak{u}_N)_{N\in\mathbb{N}}$ où chaque \mathfrak{u}_N est un élément de $H_0(M,L^{\otimes N})$ se *localise* sur un fermé $Z\subset M$ lorsque, pour tout ouvert V à distance non-nulle de Z, on a, quand $N\to +\infty$,

$$\int_V |u_N|_h^2 dVol = O(N^{-\infty}).$$

Example

Pour $x=(\mathfrak{m},\nu)\in L^*$, la forme $e^N_x:\mathfrak{u}\mapsto \langle \nu^{\otimes N},\mathfrak{u}(\mathfrak{m})\rangle_{L^*,L}$ est continue de $H_0(M,L^{\otimes N})$ dans \mathbb{C} . Son dual normalisé ψ^N_x , état cohérent en x, est localisé en x.

Localisation près du lieu minimal

Proposition

Soit $h \in C^{\infty}(M)$ et $E \in h(M)$.

 $Si\left(\mathfrak{u}_{N}\right)$ est une suite de fonctions propres normalisées de $T_{N}(h)$ avec valeur propre $\lambda_{N}=E+O(N^{-\varepsilon})$, alors (\mathfrak{u}_{N}) est localisée sur $\{h=E\}$.

Proof. Le développement du noyau de Szegő donne un calcul fonctionnel

$$T_N(f)T_N(g) = T_N(fg) + N^{-1}T_N(C_1(f,g)) + N^{-2}T_N(C_2(f,g)) + ...$$

Où C_i est un opérateur bidifférentiel de degré 2i. On peut donc estimer $\langle u_N, T_N((h-E)^{2n}), u_N \rangle$

Valeur caractéristique

Si q est une forme quadratique définie positive sur \mathbb{R}^{2n} , alors il existe une base symplectique $(e_i, f_i)_{1 \leqslant i \leqslant n}$ pour laquelle

$$Q\left(\sum x_i e_i + y_i f_i\right) = \sum_{i=1}^n \lambda_i (x_i^2 + y_i^2).$$

Proposition

$$\inf \operatorname{Sp} T_N(Q) = N^{-1} \left(\frac{\operatorname{tr}(Q)}{4} + \sum_{i=1}^n \lambda_i \right).$$

On pose $\mu(Q) = \inf Sp T_1(Q)$.

Cas d'un symbole à plusieurs puits

Que dire si h est minimale en des points critiques non-dégénérés?

Ce qu'on minimise, c'est le μ de la hessienne en ce point.

Cas d'un symbole à plusieurs puits

Que dire si h est minimale en des points critiques non-dégénérés?

Théorème (D.)

Les vecteurs propres de plus petite valeur propre se concentre uniquement en les points « minimaux ».

Ce qu'on minimise, c'est le μ de la hessienne en ce point.

Cas général

Théorème (D.)

Dès qu'il existe C, $\alpha > 0$ tel que, pour tout $t \geqslant 0$, on ait

$$dist(\{h \leqslant t\}, \{h = 0\}) \leqslant Ct^{\alpha},$$

alors les vecteurs propres d'énergie plus petite que min $Sp(T_N(h))+CN^{-\varepsilon}$ se concentrent uniquement sur

$$\{h(x) = 0, \mu(Hess(h)(x)) \text{ est minimal}\}$$

Cas particulier 1 : Morse-Bott

 On suppose que h s'annulle à l'ordre 2 sur une sous-variété Z de rang symplectique constant/

Cas particulier 1 : Morse-Bott

- On suppose que h s'annulle à l'ordre 2 sur une sous-variété Z de rang symplectique constant/
- On a une forme normale locale pour h à symplectomorphisme près.

Cas particulier 1 : Morse-Bott

- On suppose que h s'annulle à l'ordre 2 sur une sous-variété Z de rang symplectique constant/
- On a une forme normale locale pour h à symplectomorphisme près.
- Développement asymptotique de la première fonction propre et de la valeur propre associé, gap spectral $N^{-\frac{3}{2}}$.
- Loi de Weyl dans des fenêtres de taille jusque εN^{-1} .

Cas particulier 2 : Point de croisement

{h = 0} contient un nombre fini de points près duquel il est constitué de deux sous-variétés isotropes avec intersection transverse.

Cas particulier 2 : Point de croisement

- {h = 0} contient un nombre fini de points près duquel il est constitué de deux sous-variétés isotropes avec intersection transverse.
- On a une forme normale locale pour h à symplectomorphisme près.

Cas particulier 2 : Point de croisement

- {h = 0} contient un nombre fini de points près duquel il est constitué de deux sous-variétés isotropes avec intersection transverse.
- On a une forme normale locale pour h à symplectomorphisme près.
- Développement asymptotique de la première fonction propre et de la valeur propre associé, gap spectral $N^{-\frac{4}{3}}$.
- Loi de Weyl dans des fenêtres de taille jusque εN^{-1} .

Travaux en cours

1 Dynamique effective à petite énergie.

Travaux en cours

- 1 Dynamique effective à petite énergie.
- 2 Estimées exponentielles en régularité analytique.