Lecture 2

Michael Brodskiy

Professor: M. Onabajo

September 9, 2024

• Current-Amplifier Model

Figure 1: Reference Figure for Current-Amplifier Model

- Parameters
 - * i_i is the input current, which ideally comes from a current source
 - * R_i and R_o are the input and output resistances, respectively
 - * A_{isc} is the short-circuit current gain
- Current gain with load impedance at the output: $A_i = i_o/i_i$
- Application of Thévenin to Norton transformation
 - The connection of R_o is changed, but the value remains the same
- $A_{isc} = i_{osc}/i_i$ is obtained with a short-circuit at the output terminals
 - where: $i_{osc} = A_{vo}v_i/R_o$ and $i_i = v_i/R_i$
 - After substituting: $A_{isc} = A_{vo}(R_i/R_o)$

• Transconductance-Amplifier Model

Figure 2: Reference Figure for Transconductance-Amplifier Model

- Parameters

- * R_i and R_o are the input and output resistances, respectively
- * G_{msc} is the short-circuit transconductance gain
- Transconductance gain with load impedance: $G_m = i_o/v_i$
- The units of G_{msc} and G_m are Siemens (S = A/V)
- During model conversions: obtain G_{msc} with the same short-circuit load procedure as outlined for A_{isc}

• Transresistance-Amplifier Model

Figure 3: Reference Figure for Transresistance-Amplifier Model

- Parameters

- * R_i and R_o are the input and output resistances, respectively
- * R_{moc} is the open-circuit transfesistance gain
- Transresistance gain with load impedance: $R_m = v_o/i_i$
- The units of R_{moc} and R_m are Ohms (Ω)
- During model conversions from Norton to Thévenin equivalent output stages, analyze the models with open-circuit loads:
 - * Transresistance-amplifier: $R_{moc} = v_{ooc}/i_i$
 - * Voltage-amplifier: $A_{vo} = v_{ooc}/v_i$, v_{ooc} is the open-circuit output voltage

• Conservation of Energy During Amplification

Figure 4: Amplifier Energy Conservation

- $-P_i$ is the available power from the input signal source
- $-\ P_s$ is the available power from the DC supply/supplies
- $-P_o$ is the output power delivered to the load
- P_d is the power dissipated in the amplifier (loss)

$$P_i + P_s = P_o + P_d$$

- Amplifier efficiency:

$$\eta = \frac{P_o}{P_s} \cdot 100\%$$

- Note: for input/output power calculations, RMS values must always be used
- Differential Amplification

Figure 5: Differential Amplifier Model

- Differential input signal: $v_{id} = v_{i1} v_{i2}$
- Differential voltage gain: A_d
- $-v_o = A_d v_{id}$
- Common-mode (average) input signal: $v_{icm} = \frac{1}{2}(v_{i1} + v_{i2})$

- Output in the presence of differential and common-mode input signals
 - * $v_o = A_d v_{id} + A_{cm} v_{cm}$, where A_{cm} is the common-mode gain
 - * In many applications, we want: $A_{cm} = 0$ (ideal case) or $A_{cm} << A_d$

• Common-Mode Rejection

Figure 6: Common-Mode Rejection Calculation

- Common-mode rejection ratio (CMRR) in decibels:

$$CMRR = 20\log\left(\frac{A_d}{A_{cm}}\right)$$

- * Indicates the capacity of the amplifier to attenuate the common-mode input signal relative to the differential input signal
- * In many applications, a high CMRR is desired \rightarrow *i.e.*, the amplifier rejects (reduces) the common-mode input signal components