

CONCEPTION D'UN SYSTÈME D'ACQUISITION SANS-FIL DE SIGNAUX BIOLOGIQUES

VINCENT PÉROT MOHAMAD SAWAN

VINCENT.PEROT@POLYMTL.CA MOHAMAD.SAWAN@POLYMTL.CA

Coût unitaire (\$)

25,38

7,58

3,19

0,0014

0,0025

0,40

0,32

0,658

2,53

Coût total (\$)

25,38

7,58

3,19

0,01

0,01

0,40

0,32

1,97

7,59

46,45

PRÉSENTATION DU PROJET

MISE EN CONTEXTE

De nombreux systèmes d'acquisition des signaux biologiques existent et sont très utilisés dans le domaine du biomédical. Ils aident les médecins à effectuer leurs diagnostiques et permettent d'observer:

- L'activité neuronale (électroencéphalogramme)
- Le rythme cardiaque (électrocardiogramme)
- L'activité musculaire (électromyogramme)
- Le mouvement des yeux (électrooculographie)

tains inconvénients:

- Ils sont câblés ce qui entraine une limitation du confort du patient
- Ils sont reliés à une station d'acquisition ce qui entraine une limitation de la mobilité du patient.

OBJECTIF DU PROJET

- Acquérir l'électrocardiogramme (ECG) d'un individu.
- Transmettre de manière sans-fil l'ECG à un téléphone intelligent.
- Afficher l'ECG en temps réel sur le télé-
- Le système doit être portatif et nonvisible

SPÉCIFICATIONS TECHNIQUES

- Consommation inférieure à 10 mW au repos et 25 mW lors des transmissions.
- Durée de vie supérieure à 24 heures sur une batterie CR2032.
- Cependant, ces systèmes présentent cer
 Dimensions inférieures à 10 cm x 5 cm x
 - 4 cm. Bande passante allant de 0,2 Hz à 150
 - Échantillonnage à une fréquence mini-
 - Coût total inférieur à 100 \$.

male de 200 Hz.

CIRCUIT ANALOGIQUE D'AMPLIFICATION

APPLICATION ANDROID

PROGRAMME DU **MICROCONTRÔLEUR**

Code Bluetooth:

AUTRES RÉSULTATS

Critère

Consommation

Durée de vie

Dimensions

Bande passante

Echantillonnage

Coût

CALCUL DU COÛT TOTAL

Quantité

Composant

RFD22301

INA122PA

TLC277CP

Résistances

Condensateurs

Pile CR2032

Etui à CR2032

Electrodes

Câbles

Total

DISCUSSION

Avantages:

- Basse consommation et longue durée de vie.
- Système compact et portable.
- Coût bas pour un système ECG.

Inconvénients:

- Obtention des ECG uniquement.
- Résolution inférieure aux systèmes professionnels.
- Sensibilité aux mouvements du sujet.

MÉTHODOLOGIE DE CONCEPTION

DIAGRAMME DE FLOT DE DONNÉES

ARCHITECTURE DU SYSTÈME

RÉSULTATS

ÉLECTROCARDIOGRAMME AU REPOS

ÉLECTROCARDIOGRAMME PENDANT UN EFFORT

RÉPONSE EN FRÉQUENCE DU CIRCUIT D'AMPLIFICATION

POUR ALLER PLUS LOIN...

Résultat

6,2 mW au repos

12,2 mW en transmis-

sion

55 ~ 109 heures

7 cm x 5 cm x 3 cm

0,16 Hz – 154 Hz

~ 300 Hz

46,45\$

RÉSUMÉ DU PROJET

Un prototype fonctionnel a été réalisé:

- Il permet d'acquérir un ECG et l'envoyer de manière sans-fil à un téléphone intelligent.
- Il est compact ce qui permet de le porter sans altérer le confort ni l'apparence.
- Il est peu cher ce qui permet de le déployer à grande échelle.
- Il ne permet pas d'acquérir certains signaux biologiques comme l'activité neuronale ou musculaire.

DÉVELOPPEMENTS ULTÉRIEURS

- Développement d'applications Android et iOS pour le domaine du fitness et de la santé.
- Miniaturisation du prototype en réalisant un PCB avec des composantes montées en surface. La taille pourrait être comparable à celle d'une pièce de monnaie.
- Ajouter plus de capteurs pour les électroencéphalogrammes, l'oxymétrie, ou la spectroscopie proche-infrarouge.