4.4: Indeterminate Forms and l'Hôspital's Rule

The limit $\lim_{x\to a} \frac{f(x)}{g(x)}$ is an

- (a) indeterminate form of the type $\frac{0}{0}$ if $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$.
- (b) indeterminate form of the type $\frac{\infty}{\infty}$ if $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$.

Example 1. State the type of indeterminate form of the following limits

(a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

(c)
$$\lim_{x \to 1} \frac{x^2 - x}{x - 1}$$

(b)
$$\lim_{x \to \infty} \frac{\ln x}{x - 1}$$

(d)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

L'Hôspital's Rule: Suppose f and g are differentiable and $g'(x) \neq 0$ on an open interval that contains a (except possibly at a). If $\lim_{x\to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided this limits exists or is $\pm \infty$. L'Hôspital's Rule is also valid for one-sided limits and for limits at infinity or negative infinity; that is, " $x \to a$ " can be replaced by any of the symbols $x \to a^+, x \to a^-, x \to \infty$, or $x \to -\infty$.

Example 2. Evaluate the limits in Example 1.

Example 3. Evaluate $\lim_{x\to\infty} \frac{e^x}{x^2}$.

Example 4. Evaluate $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$.

Example 5. Evaluate $\lim_{x\to 0} \frac{\tan x - x}{x^3}$.

Example 6. Evaluate $\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$.

Indeterminate Products

The limit $\lim_{x\to a} [f(x)\cdot g(x)]$ is an **indeterminate form of the type** $0\cdot\infty$ if $\lim_{x\to a} f(x)=0$ and $\lim_{x\to a} g(x)=\pm\infty$. This limit can be rewritten in an indeterminate form of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by rewriting the product fg as

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$.

Example 7. Evaluate $\lim_{x\to 0^+} x \ln x$.

Example 8. Evaluate $\lim_{x\to\infty} x \sin \frac{\pi}{x}$.

Indeterminate Differences

The limit $\lim_{x\to a}[f(x)-g(x)]$ is an **indeterminate form of the type** $\infty-\infty$ if $\lim_{x\to a}f(x)=\infty$ and $\lim_{x\to a}g(x)=\infty$. This limit sometimes may be rewritten in an indeterminate form of the type $\frac{0}{0}$ or $\frac{0}{\infty}$ by combining f and g with a common denominator.

Example 9. Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$

Example 10. Evaluate $\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$

Indeterminate Powers

The limit $\lim_{x\to a} [f(x)]^{g(x)}$ is an

- (a) indeterminate form of the type 0^0 if $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$.
- (b) indeterminate form of the type ∞^0 if $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$.
- (c) indeterminate form of the type 1^{∞} if $\lim_{x\to a} f(x) = 1$ and $\lim_{x\to a} g(x) = \pm \infty$.

These limits can be rewritten in terms of an indeterminate product by rewriting f^g as

$$f^g = e^{g \ln f}.$$

Example 11. Evaluate $\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$.

Example 12. Evaluate $\lim_{x\to 0^+} x^x$.