Unit04 demo correlation regression fuel consumption.ipynb

July 27, 2023

0.1 Importing the required packages

```
[1]: import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
import seaborn as sns
```

0.2 Load the data

```
[2]: # Reading the data df=pd.read_csv("FuelConsumption.csv")
```

```
[3]: # Take a look at the dataset df.head(10)
```

[3]:	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	\
0	2014	ACURA	ILX	COMPACT	2.0	4	
1	2014	ACURA	ILX	COMPACT	2.4	4	
2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5	6	
5	2014	ACURA	RLX	MID-SIZE	3.5	6	
6	2014	ACURA	TL	MID-SIZE	3.5	6	
7	2014	ACURA	TL AWD	MID-SIZE	3.7	6	
8	2014	ACURA	TL AWD	MID-SIZE	3.7	6	
9	2014	ACURA	TSX	COMPACT	2.4	4	

	TRANSMISSION	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY	\
0	AS5	Z	9.9	6.7	
1	M6	Z	11.2	7.7	
2	AV7	Z	6.0	5.8	
3	AS6	Z	12.7	9.1	
4	AS6	Z	12.1	8.7	
5	AS6	Z	11.9	7.7	
6	AS6	Z	11.8	8.1	
7	AS6	Z	12.8	9.0	
8	M6	Z	13.4	9.5	

	9	AS5	Z	10.6			7.5		
		FUELCONSUMPTION	COMB	FIJEL CONSTIMP	TION COMB ME	PG COSEMISS	COSEMISSIONS		
	0	-		FUELCONSUMPTION_COMB_MPG 33			196		
	1		9.6		2	29	221		
	2		5.9		4	18	136		
	3		11.1		2	25	255		
	4		10.6		2	27	244		
	5		10.0			28	230		
	6		10.1			28	232		
	7		11.1			25	255		
	8		11.6			24	267		
	9		9.2		3	31	212		
[]:									
[5]:	df.	corr()							
[5]:				MODELYEAR	ENGINESIZE	CYLINDERS	\		
[0].	MUD.	ELYEAR		NaN	NaN	NaN	`		
		INESIZE		NaN	1.000000				
		INDERS		NaN	0.934011				
		LCONSUMPTION_CI	ГҮ	NaN	0.832225				
		LCONSUMPTION_HW		NaN	0.778746	0.724594			
	FUE	LCONSUMPTION_CO	MB	NaN	0.819482	0.776788			
	FUE	LCONSUMPTION_CO	MB_MPG	NaN	-0.808554	-0.770430			
	C02	EMISSIONS		NaN	0.874154	0.849685			
				FUELCONSUMPTION_CITY		FUELCONSUMPTION HWY \			
	MOD	MODELYEAR		NaN		NaN			
	ENG	INESIZE			0.832225		0.778746		
	CYLINDERS			0.796473 0.724594		0.724594			
	FUELCONSUMPTION_CITY			1.000000 0.965718					
	FUELCONSUMPTION_HWY			0.965718	.965718 1.000000				
	FUELCONSUMPTION_COMB			0.995542		0.985804			
	FUELCONSUMPTION_COMB_MPG			-0.935613	_	-0.893809			
	C02	EMISSIONS		0.898039			0.861748		
	MODELYEAR		FUELCONSUM	PTION_COMB	FUELCONSUMF	PTION_COMB_MPG	\		
			NaN						
	ENG	INESIZE		0.819482		-0.808554			
		INDERS			0.776788		-0.770430		
		LCONSUMPTION_CI		0.995542		-0.935613			
		LCONSUMPTION_HW			0.985804		-0.893809		
		LCONSUMPTION_CO			1.000000		-0.927965		
		LCONSUMPTION_CO	MB_MPG		-0.927965		1.000000		
	CU2	EMISSIONS			0.892129		-0.906394		

CO2EMISSIONS MODELYEAR NaN ENGINESIZE 0.874154 CYLINDERS 0.849685 FUELCONSUMPTION_CITY 0.898039 FUELCONSUMPTION_HWY 0.861748 FUELCONSUMPTION_COMB 0.892129 FUELCONSUMPTION_COMB_MPG -0.906394 CO2EMISSIONS 1.000000

[8]: sns.pairplot(df)

[8]: <seaborn.axisgrid.PairGrid at 0x172deed7c10>


```
[9]: sns.pairplot(df, hue = "VEHICLECLASS")
```

[9]: <seaborn.axisgrid.PairGrid at 0x172e4900e80>


```
[14]: plt.figure(figsize=(12, 6))
heatmap = sns.heatmap(df.corr(), vmin=-1, vmax=1, annot=True, cmap='BrBG')
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12)
```

[14]: Text(0.5, 1.0, 'Correlation Heatmap')

0.3 Plot to check the linearity

4.900000

0.4 Data exploration

min

```
[5]: # Summarise the data
     print(df.describe())
     cdf=df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']]
     cdf.head(9)
           MODELYEAR
                        ENGINESIZE
                                                  FUELCONSUMPTION_CITY
                                       CYLINDERS
    count
               1067.0
                       1067.000000
                                     1067.000000
                                                            1067.000000
               2014.0
                          3.346298
                                        5.794752
                                                              13.296532
    mean
    std
                  0.0
                          1.415895
                                        1.797447
                                                               4.101253
               2014.0
                          1.000000
                                        3.000000
                                                               4.600000
    min
    25%
                          2.000000
               2014.0
                                        4.000000
                                                              10.250000
    50%
               2014.0
                          3.400000
                                        6.000000
                                                              12.600000
    75%
               2014.0
                          4.300000
                                        8.000000
                                                              15.550000
               2014.0
                          8.400000
                                       12.000000
                                                              30.200000
    max
           FUELCONSUMPTION_HWY
                                 FUELCONSUMPTION_COMB
                                                         FUELCONSUMPTION_COMB_MPG
                    1067.000000
                                           1067.000000
                                                                       1067.000000
    count
    mean
                       9.474602
                                             11.580881
                                                                         26.441425
    std
                       2.794510
                                              3.485595
                                                                          7.468702
```

4.700000

11.000000

```
25%
                       7.500000
                                               9.000000
                                                                         21.000000
    50%
                       8.800000
                                              10.900000
                                                                         26.000000
    75%
                      10.850000
                                              13.350000
                                                                         31.000000
                      20.500000
                                              25.800000
                                                                         60.000000
    max
            CO2EMISSIONS
    count
             1067.000000
              256.228679
    mean
    std
               63.372304
    min
              108.000000
    25%
              207.000000
    50%
              251.000000
    75%
              294.000000
              488.000000
    max
[5]:
        ENGINESIZE CYLINDERS
                                FUELCONSUMPTION_COMB
                                                        CO2EMISSIONS
     0
               2.0
                             4
                                                   8.5
                                                                  196
     1
               2.4
                             4
                                                   9.6
                                                                  221
               1.5
                             4
                                                   5.9
     2
                                                                  136
     3
               3.5
                             6
                                                  11.1
                                                                  255
     4
               3.5
                             6
                                                  10.6
                                                                  244
                             6
     5
               3.5
                                                  10.0
                                                                  230
                             6
     6
               3.5
                                                  10.1
                                                                  232
     7
               3.7
                             6
                                                  11.1
                                                                  255
     8
               3.7
                             6
                                                  11.6
                                                                  267
[6]: plt.scatter(cdf.FUELCONSUMPTION_COMB,cdf.CO2EMISSIONS, color='black')
     plt.xlabel("FUELCONSUMPTION_COMB")
     plt.ylabel("Emission")
     plt.show()
```



```
[7]: plt.scatter(cdf.ENGINESIZE,cdf.CO2EMISSIONS, color='blue')
plt.xlabel("Engine size")
plt.ylabel("Emission")
plt.show()
```



```
[8]: plt.scatter(cdf.CYLINDERS,cdf.CO2EMISSIONS, color='red')
  plt.xlabel("Cylinders")
  plt.ylabel("Emission")
  plt.show()
```


Which of the above variables do you think will work best to explain a linear relation with CO2 emission?

0.5 Demo 2. Regression

plt.xlabel("Engine size")
plt.ylabel("Emission")

plt.show()

0.6 Train-test data preparation

```
[9]: msk=np.random.rand(len(df))<0.8
    train=cdf[msk]
    test=cdf[~msk]

[10]: # Train data distribution
    plt.scatter(train.ENGINESIZE,train.CO2EMISSIONS, color='blue')</pre>
```


0.7 Using sklearn package for data modelling

```
[12]: from sklearn import linear_model
    regr=linear_model.LinearRegression()
    train_x=np.asanyarray(train[['ENGINESIZE']])
    train_y=np.asanyarray(train[['CO2EMISSIONS']])

    regr.fit(train_x, train_y)
    # The coefficients
    print('Coefficients:', regr.coef_)
    print('Intercept:', regr.intercept_)

    Coefficients: [[39.79714822]]
    Intercept: [122.88558355]

[13]: # Plot outputs
    plt.scatter(train.ENGINESIZE,train.CO2EMISSIONS,color='blue')
```

plt.plot(train_x,regr.coef_[0][0]*train_x + regr.intercept_[0],'-r')

```
[13]: Text(0, 0.5, 'Emission')
```

plt.xlabel("Engine size")
plt.ylabel("Emission")

0.8 Model evaluation

```
[18]: from sklearn.metrics import r2_score
    test_x=np.asanyarray(test[['ENGINESIZE']])
    test_y=np.asanyarray(test[['CO2EMISSIONS']])
    test_y_ = regr.predict(test_y)

[19]: print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_-test_y)))
    print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_-test_y)**2))
    print("R2-score: %.2f" % r2_score(test_y_,test_y))

Mean absolute error: 9933.38
    Residual sum of squares (MSE): 103641940.32
    R2-score: -18.82

[]:
```

0.9 Nonlinear regression

Importing reqired dataset

```
[20]: df=pd.read_csv("china_gdp.csv")
df.head(10)
```

```
[20]: Year Value
0 1960 5.918412e+10
```

```
1 1961 4.955705e+10
2 1962 4.668518e+10
3 1963 5.009730e+10
4 1964 5.906225e+10
5 1965 6.970915e+10
6 1966 7.587943e+10
7 1967 7.205703e+10
8 1968 6.999350e+10
9 1969 7.871882e+10
```

Plotting the dataset

```
[21]: plt.figure(figsize=(8,5))
    x_data,y_data=(df["Year"].values,df["Value"].values)
    plt.plot(x_data,y_data,'ro')
    plt.ylabel('GDP')
    plt.xlabel('Year')
    plt.show()
    # Normalisation
    xdata=x_data/max(x_data)
    ydata=y_data/max(y_data)
plt.plot(xdata,ydata,'b')
```


[21]: [<matplotlib.lines.Line2D at 0x199cce19a60>]

Roughly looking look at the data visualisation, it appears that the logistic function could be a good representation for this very dataset. The logistic function has the property of starting with a slow growth, increasing growth in the middle, and then decreasing again at the end

Implement the logistic function

```
[22]: def sigmoid(x,Beta_1,Beta_2):
    y=1/(1+np.exp(-Beta_1*(x-Beta_2)))
    return y
```

Fit the logistic function on this dataset and estimate the relevant parameters

```
[23]: from scipy.optimize import curve_fit
   popt,pcov=curve_fit(sigmoid,xdata,ydata)
   print("beta_1=%f,beta_2=%f"%(popt[0],popt[1]))

##

   x=np.linspace(1960,2015,55)
   x=x/max(x)
   plt.figure(figsize=(8,5))
   y=sigmoid(x,*popt)
   plt.plot(xdata,ydata,'ro',label='data')
   plt.plot(x,y,linewidth=3.0,label='fit')
   plt.legend(loc='best')
   plt.ylabel('GDP')
```

```
plt.xlabel('Year')
plt.show()
```

beta_1=690.451712,beta_2=0.997207

