Initiation à la Programmation

http://www.fil.univ-lille1.fr/portail

Cédric Lhoussaine

Ext. M3, bureau 217

Tél: 03 28 77 85 70

Mel: Cedric.Lhoussaine@lifl.fr

Responsable du cours: Éric Wegrzynowski Eric.Wegrzynowski@lifl.fr

Évaluation

- ✓ TD : note sur 20 de contrôle continu
- ✓ TP: note sur 20 (contrôle en fin de semestre)
- ✓ EX : note sur 20 pour l'examen en fin de semestre

Note finale = (TP + 3sup(EX, (2EX+TD)/3))/4

Qu'est-ce que l'informatique?

√ Une technologie

Un ordinateur est une machine universelle capable de traiter automatiquement des informations

✓ Un outil

Pour la gestion, les communications, l'enseignement, les loisirs, ...

✓ Une discipline scientifique

Algorithmique, Théorie des langages, Programmation, Systèmes et Architecture, Bases de données, ...

On distingue dans les systèmes informatiques deux éléments constitutifs distincts

Stockage des données* persistantes

Mémoires de masse

- DD (Disque Dur)
- Disquette, etc.
 - (*) textes, images, etc.

Stockage des données

Mémoire centrale

- ▶ RAM (Random Access Memory)
- ▶ ROM (Read Only Memory)

Traitement des données

Processeur

Communications

Unités d'Entrées/Sorties

(Modèle de Von Neumann ~1940) (Modèle théorique: Machine de Turing ~1936)

Assure la liaison entre ressources matérielles, utilisateur(s) et applications

- Gestion du processeur
- ▶ Gestion de la mémoire vive
- Gestion des E/S
- Gestion des applications
- Gestion des droits
- Gestion des fichiers
- Gestion des services réseaux

(Windows XX, Mac OS, Amiga OS, Solaris, GNU/Linux, FreeBSD, Palm OS, Symbian OS, ...)

Gestion des fichiers

Nom absolu du fichier Ex1: /home/dupont/Ex1

Fichiers

1 octet = 8 bits $(2^8 = 256 \text{ octets possibles})$

1 Ko = 1024 octets 1 Mo = 1024 Ko

Programmes spécialisés à destination des utilisateurs

- Traitement de texte
- Éditeur de texte
- ▶ Tableur
- Manipulation/Traitement d'images
- Lecteurs audio/vidéo
- Courrier électronique
- Système de fenêtrage
- Jeux

...

Applications

- ✓ Application = (ensemble de) programme(s) élaborés pour réaliser une tâche
- ✓ Programme = séquence d'instructions qu'un ordinateur peut interpréter et exécuter

Applications

Un langage (de programmation) spécifie l'ensemble des instructions disponibles.

Applications

Les programmes sont écrits dans des langages de hauts niveaux et compilés dans des programmes directement exécutables par l'ordinateur.

Objectifs

Initiation à la programmation impérative

- √ Analyse d'un problème
 - Identification des données et du résultat à atteindre
 - Représentation des données
- √ Résolution du problème
 - Recherche d'un algorithme de résolution
 - ▶ Implantation de l'algorithme

Programmation d'un robot manipulateur de cartes

- ✓ Unité cartes: ensemble des procédures et fonctions de manipulation de cartes (unités math, etc.)
- ✓ Il faut spécifier explicitement l'unité qu'on désire utiliser dans un programme Pascal.
- ✓ L'unité cartes contient
 - ▶ La définition (*codage*) des cartes
 - Les fonctions et procédures de manipulation (créer un tas, regarder la couleur d'une carte, ...)

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

Plusieurs étapes:

1. Analyse du problème

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

- 1. Analyse du problème
- 2. Codage (en Pascal)

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

- 1. Analyse du problème
- 2. Codage (en Pascal)
- 3. Tests

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

- 1. Analyse du problème
- 2. Codage (en Pascal)
- 3. Tests

Écrire un programme c'est décrire la suite des actions à réaliser pour passer d'une situation (ou configuration) initiale à une situation finale.

Plusieurs étapes:

- 1. Analyse du problème
- 2. Codage (en Pascal)
- 3. Tests

Exercice: Décrivez les actions à réaliser pour passer de la situation initiale à la situation finale ci-contre

Analyse

- ✓ Situation initiale

 Tas 1: 1 ♠ sur 1 ♣

 autres tas vides
- ✓ Situation finale

 Tas 2: 1 ♣ sur 1 ♠

 autres tas vides

Analyse

✓ Algorithme

Analyse

- **√** Algorithme
 - 1. déplacer la carte au sommet du tas 1 sur le tas 2

Analyse

- **√** Algorithme
 - 1. déplacer la carte au sommet du tas 1 sur le tas 2
 - 2. déplacer la carte au sommet du tas 1 sur le tas 2

Codage

Fichier texte: exo1.pas

```
// Auteur
// Date : 28/09/2005
// Objet : exo1 manipulation de cartes
// Etat initial : ...
// Etat final : ...
program nom du programme;
uses
   unités séparées par des virgules;
begin
   instructions
end.
```


Codage

Exemple: programmes pour les instructions de manipulation des cartes.

Ensemble des programmes annexes à utiliser

```
// Auteur
// Date : 28/09/2005
// Objet : exo1 manipulation de cartes
// Etat initial : ...
// Etat final : ...
program nom du program;
uses
   unités séparées par des virgules;
begin
   instructions
end.
```

Codage

Regroupement d'instructions encadrées par begin et end.

Bloc d'instructions

```
// Auteur
// Date : 28/09/2005
// Objet : exo1 manipulation de cartes
// Etat initial : ...
// Etat final : ...
program nom du programme;
uses
   unités séparées par des virgules;
begin
   instructions
end.
```

Représentation d'ensembles de tas

Chaîne de description de tas:

- \checkmark T (= \clubsuit), P (= \blacktriangledown), K (= \spadesuit), C (= \blacktriangledown)
- ✓ Si A et B sont des chaînes de descriptions de tas alors
 - ► AB (A surmonté de B)
 - ► A+B (A ou B)
 - ▶ [A] (A répété un nombre de fois positif *ou nul*) sont des chaînes de description de tas

Exemples de chaînes de description

Exercices:

Trouvez les ensembles de tas correspondant aux chaînes de description suivantes:

Exercices:

Parmi les tas suivants, lesquels appartiennent à [P+C][K]: Ø, PK, PCCK, PKKP, KKK, C, CCC

Même question pour [[P+C][K]]...

Pour l'initialisation des tas on utilise l'instruction de l'unité cartes:

```
InitTas(n, s);
```

où n est un numéro de tas et s une chaîne de description (''représente le tas vide).

```
Exemples:
InitTas(1, 'TT');
initialise le premier tas avec deux ♣.
```

```
InitTas(2, 'T+P');
```

initialise le deuxième tas avec aléatoirement un 🏶 ou un 🕭

Une unique instruction de l'unité cartes pour modifier la configuration des tas:

DeplacerSommet(n, p);

où n est le numéro du tas duquel on prend une carte et p celui du tas sur lequel on la pose.

Exemples:

DeplacerSommet(2,4);

déplace la carte au sommet du tas 2 sur le sommet du tas 4.

Une unique instruction de l'unité cartes pour modifier la configuration des tas:

DeplacerSommet(n, p);

où n est le numéro du tas duquel on prend une carte et p celui du tas sur lequel on la pose.

Attention:

DeplacerSommet(2,4);

Toujours s'assurer que le tas duquel on déplace une carte n'est pas vide. S'il est vide l'instruction DeplacerSommet déclenche l'exception Tas_Vide.

Exercice:

À l'aide des instructions InitTas et DeplacerSommet écrire un programme Pascal implantant l'algorithme précédent.

```
// Auteur
// Date : 28/09/2005
// Objet : exo1 manipulation de cartes
// Etat initial : ...
// Etat final : ...
program <nom du program>;
uses
    <unités séparées par des virgules>;
begin
    <instructions d'initialisation des tas>
    <instructions de déplacement>
end.
```

Solution

```
// Auteur Cédric Lhoussaine
// Date : 28/09/2005
// Objet : exo1 manipulation de cartes
// Etat initial :
// Tas1='TT' Tas2='' Tas3='' Tas4=''
// Etat final :
// Tas1='' Tas2='TT' Tas3='' Tas4=''
program Exo1;
uses cartes;
begin
   // Initialisation des tas
   InitTas(1, 'TP');
  InitTas(2, '');
InitTas(3, '');
   InitTas(4, '');
   // Déplacement des cartes
   DeplacerSommet(1,2);
   DeplacerSommet(1,2);
end.
```

Résumé

Systèmes informatiques

Résumé

Robot manipulateur de cartes

- ✓ Écrire un programme: *Analyse* (Algorithme), *Codage* (Pascal), *Tests* (en TP!)
- ✓ Structure d'un programme (entête, blocs, instructions, ...)
- ✓ Unité cartes (InitTas, DeplacerSommet)
- ✓ Représentation des tas (chaînes de description)
- ✓ Le premier programme Pascal