	<pre>import scipy.stats as stats import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.ensemble import PandomForestPegressor PandomForestClassifier</pre>
	<pre>from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score, accuracy_score, classification_report import joblib df = pd.read_csv('insurance (1).csv') df.head()</pre>
Out[1]:	age sex bmi children smoker region charges 0 19 0 27.900 0 1 southwest 16884.92400 1 18 1 33.770 1 0 southeast 1725.55230
	2 28 1 33.000 3 0 southeast 4449.46200 3 33 1 22.705 0 0 0 Orthwest 21984.47061
In [2]:	#Categorical variables df['smoker'] = df['smoker'].map({'yes': 1, 'no': 0}) # Binary encoding for smoker df['sex'] = df['sex'].map({'male': 0}) # Binary encoding for gender
Out[2]:	<pre>df['region'] = pd.Categorical(df['region']).codes # Convert region to numerical labels df.head()</pre>
	0 19 NaN 27.900 0 NaN 3 16884.92400 1 18 NaN 33.770 1 NaN 2 1725.55230 2 28 NaN 33.000 3 NaN 2 4449.46200
	3 33 NaN 22.705 0 NaN 1 21984.47061 4 32 NaN 28.880 0 NaN 1 3866.85520
In [8]:	<pre># Correlation anlysis correlation_matrix = df.corr() plt.figure(figsize=(8,6)) sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5) plt.title("Correlation Heatmap of Insurance Dataset")</pre>
	plt.show() correlation_with_charges = correlation_matrix["charges"].sort_values(ascending=False) print(correlation_with_charges) Correlation Heatmap of Insurance Dataset
	0.11 0.00 0.30
	10.04 0.01 1.00 0.02 0.07 0.02 0.07
	- 0.00 0.16 0.02 1.00 -0.01 -0.2
	9 0.30 0.20 0.07 -0.01 1.00 -0.00
	age sex bmi children smoker region charges charges 1.000000 age 0.299008 bmi 0.198341 children 0.067998
	region -0.006208 sex NaN smoker NaN Name: charges, dtype: float64
	<pre># Convert correlation matrix to long format for Tableau correlation_long = correlation_matrix.unstack().reset_index() correlation_long.columns = ['Variable_1', 'Variable_2', 'Correlation'] # Save correlation data for Tableau</pre>
	correlation_long.to_csv("correlation_data_for_tableau.csv", index=False) print("Correlation data exported successfully.") Correlation data exported successfully.
In [14]:	<pre># Anova Tests anova_smoker = stats.f_oneway(df[df['smoker'] == 1]['charges'],</pre>
	<pre>df[df['sex'] == 0]['charges']) anova_region = stats.f_oneway(*[df[df['region'] == i]['charges'] for i in range(df['region'].nunique())]) C:\Users\navne\anaconda3\Lib\site-packages\scipy\stats_stats_py.py:4102: DegenerateDataWarning: at least one input has length 0 if _f_oneway_is_too_small(samples):</pre>
	<pre>#Chi-Sq Test for Smoker vs Region contingency_table = pd.crosstab(df['smoker'], df['region']) chi2_test = stats.chi2_contingency(contingency_table)</pre>
	<pre># T-Test for BMI differences between smokers and non-smokers ttest_bmi_smoker = stats.ttest_ind(df[df['smoker'] == 1]['bmi'], df[df['smoker'] == 0]['bmi']) # Regression Analysis (Linear Regression) import statsmodels.api as sm</pre>
	<pre>X = df[['age', 'bmi', 'children', 'smoker', 'sex', 'region']] y = df['charges'] X = sm.add_constant(X) # Add constant term for intercept model = sm.OLS(y, X).fit() regression_summary = model.summary()</pre>
	<pre># Machine Learning: Predictive Analytics X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Linear Regression Model lr model = LinearRegression()</pre>
In [19]:	<pre>lr_model = LinearRegression() lr_model.fit(X_train, y_train) y_pred_lr = lr_model.predict(X_test) # Random Forest Model rf_model = RandomForestRegressor(n_estimators=100, random_state=42)</pre>
In [108	rf_model.fit(X_train, y_train) y_pred_rf = rf_model.predict(X_test) #Model Evaluation metrics = {
	"Linear Regression MAE": mean_absolute_error(y_test, y_pred_lr), "Linear Regression MSE": mean_squared_error(y_test, y_pred_lr), "Linear Regression R2": r2_score(y_test, y_pred_lr), "Random Forest MAE": mean_absolute_error(y_test, y_pred_rf), "Random Forest MSE": mean_squared_error(y_test, y_pred_rf),
	<pre>"Random Forest R2": r2_score(y_test, y_pred_rf) } # Display results print("ANOVA, T-Test & Chi-Square Test Results:") print({</pre>
	"Smoker vs. Charges (ANOVA p-value)": anova_smoker[1], "Sex vs. Charges (ANOVA p-value)": anova_sex[1], "Region vs. Charges (ANOVA p-value)": anova_region[1], "Smoker vs. Region (Chi-Square p-value)": chi2_test[1], "BMI Difference by Smoking Status (T-Test p-value)": ttest_bmi_smoker[1]
	<pre>print("\nRegression Analysis Summary:") print(regression_summary) print("\nPredictive Model Evaluation:") print(metrics)</pre>
	ANOVA, T-Test & Chi-Square Test Results: {'Smoker vs. Charges (ANOVA p-value)': 8.271435842182967e-283, 'Sex vs. Charges (ANOVA p-value)': 0.03613272100596256, 'Region vs. Charges (ANOVA p-value)': 0.0308933560705201, 'Smoker vs. Region (Chi-Square p-value)': 0.06171954 839170547, 'BMI Difference by Smoking Status (T-Test p-value)': 0.8909850280013041} Regression Analysis Summary: OLS Regression Results
	Dep. Variable: charges R-squared: 0.751 Model: OLS Adj. R-squared: 0.750 Method: Least Squares F-statistic: 668.1 Date: Fri, 24 Jan 2025 Prob (F-statistic): 0.00 Time: 19:46:45 Log-Likelihood: -13548.
	Df Residuals: 1331 BIC: 2.715e+04 Df Model: 6 Covariance Type: nonrobust
	Df Residuals: 1331 BIC: 2.715e+04 Df Model: 6 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const -1.182e+04 955.130 -12.371 0.000 -1.37e+04 -9941.729 age 257.2881 11.886 21.647 0.000 233.971 280.605 bmi 332.5701 27.722 11.997 0.000 278.186 386.954
	Df Residuals:
	Df Residuals: 1331 BIC: 2.715e+04 Df Model: 6 Covariance Type: nonrobust Coef std err t P> t [0.025 0.975] Const -1.182e+04 955.130 -12.371 0.000 -1.37e+04 -9941.729 age 257.2881 11.886 21.647 0.000 233.971 280.605 bmi 332.5701 27.722 11.997 0.000 278.186 386.954 children 479.3694 137.644 3.483 0.001 209.346 749.393 smoker 2.382e+04 411.843 57.839 0.000 2.3e+04 2.46e+04 sex -131.1106 332.811 -0.394 0.694 -784.001 521.780 region -353.6400 151.927 -2.328 0.020 -651.682 -555.598
	Df Readules: 1331 BIC: 2.715e-04 Df Model: 6 Covariance Type: nonrobust
In [21]:	Df Redail 1
In [21]:	1
In [21]:	De Rescausa: 131 BIT: 2.13244 Toward Node: 6 Toward Node: 7 Cord tid etc 1 Po 1 (0.023 0.375) Communication 1.132413 555.15 (12.53) 0.000 (1.374.05 0.901.755 Communication 1.132413 10.1327 Communication 1.132413 10.
In [21]: In []: In []: In []:	C Near Near C
In [21]: In []: In []: In [23]: In [25]:	## Feedback: 127 127
In [21]: In []: In []: In [23]: In [27]: In [29]:	## Members 130 Proc 2.1 mark 2.1 mar
In [21]: In []: In []: In [23]: In [27]: In [29]:	M Secritus 1
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]:	State Stat
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]:	# Magnified 18 18 18 18 18 18 18 1
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]:	# SCHEAM STATE
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]: In [31]:	Part Part Section Part Part Section Part Section Part Section Part Section Part Section Part Part Section Part Par
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]: In [35]:	Property
In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]:	Property
In [21]: In []: In [23]: In [27]: In [27]: In [31]: In [35]:	Series 18
In [21]: In [21]: In [23]: In [27]: In [27]: In [31]: In [35]:	Property
In [21]: In [21]: In [23]: In [25]: In [27]: In [31]: In [35]:	Property
In [21]: In [21]: In [23]: In [25]: In [27]: In [31]: In [33]: In [35]:	See the second s
In [21]: In [21]: In [23]: In [25]: In [27]: In [31]: In [33]: In [35]:	Mary Mary Mary Mary Mary Mary Mary Mary
In [21]: In [21]: In [23]: In [25]: In [27]: In [31]: In [33]: In [35]:	Martin M
In [21]: In [2]: In [2]: In [23]: In [27]: In [31]: In [35]: In [37]:	# Marked Property Service
In [21]: In [21]: In [2]: In [23]: In [27]: In [27]: In [31]: In [33]: In [37]: In [37]:	# MINING PART
In [21]: In [21]: In [2]: In [23]: In [27]: In [27]: In [31]: In [33]: In [37]: In [37]: In [41]: In [43]: In [43]:	Part
In [21]: In [21]: In []: In []: In [23]: In [27]: In [29]: In [31]: In [31]: In [37]: In [37]: In [41]: In [43]: In [43]: In [45]:	Part
In [21]: In [2]: In [2]: In [2]: In [27]: In [27]: In [31]: In [35]: In [37]: In [47]: In [47]: Out [47]: Out [47]:	Martin
In [21]: In [21]: In [3]: In [23]: In [25]: In [27]: In [37]: In [37]: In [41]: In [43]: In [47]: In [55]:	Mary
In [21]: In [21]: In []: In []: In [23]: In [27]: In [27]: In [33]: In [33]: In [37]: In [41]: In [47]: In [47]:	Martin

In [1]: import pandas as pd

In [85]: # Example Usage

Low Risk

print(predict_risk(45, 30.5, 2, 1)) # Predicts risk based on input values

In [87]: # Display count of high risk and low risk individuals
high_risk_count = (df['predicted_risk'] == 1).sum()
low_risk_count = (df['predicted_risk'] == 0).sum()

import seaborn as sns

print(f"High Risk Count: {high_risk_count}")
print(f"Low Risk Count: {low_risk_count}")

High Risk Count: 647

Low Risk Count: 691