# Bases

Dédou

Octobre 2010

# Base d'un sous-espace vectoriel

#### Définition

Une base d'un sous-espace vectoriel de  $\mathbb{R}^n$ , c'est un système générateur libre de ce sous-espace vectoriel .

Comme sous-espace vectoriel de  $\mathbb{R}^n$ , on a  $\mathbb{R}^n$  tout entier, donc

#### Définition

Une base de  $\mathbb{R}^n$ , c'est un système générateur libre de  $\mathbb{R}^n$ .

# Bases de $\mathbb{R}^2$ : exemples

### Exemples

Comme base de  $\mathbb{R}^2$ , on a la base canonique ((1,0),(0,1)) mais y en a plein d'autres, comme ((2,3),(4,5)).

Ca s'écrit aussi en colonnes et ça se dessine.

## Toutes les bases de $\mathbb{R}^2$

### **Proposition**

- a) Tout système de deux vecteurs non proportionnels de  $\mathbb{R}^2$  en est une base.
- b) Inversement toute base de  $\mathbb{R}^2$  est constituée de deux vecteurs (non proportionnels).

Et ça se démontre. Mais nous, est-ce qu'on a le temps?

### Exo pour les surmotivés, à rendre en td

- a) Démontrez a).
- b) Démontrez b).

## $\overline{\mathsf{Bases}}$ de $\mathbb{R}^3$

### Proposition

- a) Tout système libre de trois vecteurs de  $\mathbb{R}^3$  en est une base.
- b) Inversement toute base de  $\mathbb{R}^3$  est constituée de trois vecteurs formant un système de rang trois.

Et ça se démontre. Mais nous, est-ce qu'on a le temps?

## Exo pour les surmotivés, à rendre en td

- a) Démontrez a).
- b) Démontrez b).

#### Exo 0 à consommer de suite

Donnez une base de  $\mathbb{R}^3$ .

# Bases triangulaires supérieures de $\mathbb{R}^3$

Le système

$$\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 7 \\ 8 \\ 7 \end{pmatrix}$$

est une base de  $\mathbb{R}^3$ , puisque son rang est 3 (il est échelonné).

# Bases triangulaires inférieures de $\mathbb{R}^3$

Le système

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 7 \\ 6 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$$

est une base de  $\mathbb{R}^3$ , sa matrice est triangulaire (inférieure).

## Bases faciles de $\mathbb{R}^3$ I

Le système

$$\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 7 \\ 6 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$

est une base de  $\mathbb{R}^3$ , car son rang est trois (facile).

# Bases faciles de $\mathbb{R}^3$ II

Le système

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 6 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$$

est une base de  $\mathbb{R}^3$ , car son rang est trois (facile).

## Bases de $\mathbb{R}^n$

### Proposition

- a) Tout système libre de n vecteurs de  $\mathbb{R}^n$  en est une base.
- b) Inversement toute base de  $\mathbb{R}^n$  est constituée de n vecteurs formant un système libre.

Et ça se démontre. Mais nous, on n'a pas le temps.

## Bases canoniques

### **Proposition**

La base canonique de  $\mathbb{R}^n$  en est bien une base.

Et ça se démontre. Et là, on prend le temps?

# Dégraisser en base : le problème

#### Problème

On a un système générateur d' un sous-espace vectoriel, et on veut extraire de ce système une base.

### Réponse

C'est toujours possible :

on élimine l'un après l'autre ceux des vecteurs qui sont combinaisons linéaires des autres.

Quand on a fini, le système obtenu est encore générateur de E, et en plus il est libre, donc c'est une base de E.

## Dégraisser en base : exemple

#### Exemple

On pose E := Vect((1,0,0,0),(1,1,0,1),(0,1,0,1)). On voit que le deuxième vecteur est la somme des deux autres, qui ne sont pas proportionnels. Donc E est de dimension 2 et admet ((1,0,0,0),(0,1,0,1)) pour base.

#### Exo 1

Donnez deux autres bases de cet E.

## Dégraisser en base : exo

### Exo 2

On pose E := Vect((1,6,2,4),(0,3,0,2),(2,0,4,0)). Extrayez de ((1,6,2,4),(0,3,0,2),(2,0,4,0)) deux bases de E.

## Bases dégraissées : conclusion

On le dit autrement :

Quand on a un système générateur d'un sous-espace vectoriel E, pour en extraire une base, c'est facile :

on selectionne les vecteurs l'un après l'autre en ne gardant que ceux qui font augmenter le rang.

# Engraisser en base : le problème

#### Problème

On a un système libre d' un sous-espace vectoriel E, et on veut compléter ce système en une base de E.

## Réponse

C'est toujours possible :

on ajoute l'un après l'autre des vecteurs de *E* qui ne sont pas combinaisons linéaires des autres.

Quand on a fini, le système obtenu est encore libre de E, et en plus il est générateur, donc c'est une base de E.

#### Problème

Mais où chercher ces vecteurs qu'on ajoute?

## Réponse

Il suffit de puiser dans une base de E.

# Comment engraisser un système libre

#### On le dit autrement :

Quand on a un système libre d'un sous-espace vectoriel E, pour trouver des vecteurs de E qui augmentent le rang du système, il suffit de les prendre dans une base de E.

Par exemple, si  $e_1$  et  $e_2$  sont deux vecteurs non proportionnels d'un sous-espace vectoriel E qui admet  $(b_1,b_2,b_3)$  comme base, alors l'un des trois systèmes

$$(e_1, e_2, b_1)$$
 ou  $(e_1, e_2, b_2)$  ou  $(e_1, e_2, b_3)$ 

est une base de E.



# Engraisser en base : exemple

### Exemple

On pose E := Vect((1,1,1),(0,2,2)). On peut complèter d'un tas de façons (0,1,1) en une base de E, notamment par ajout de (1,1,1), ou par ajout de (0,2,2).

## Bases engraissées : exo

## Exo 3

Complètez ((1,1,1),(0,1,1)) de deux façons en une base de  $\mathbb{R}^3$ .

# Comment engraisser un système libre

Quand on a un système libre d'un sous-espace vectoriel E, pour trouver des vecteurs de E qui augmentent le rang du système, il suffit de les prendre dans une base de E.

Par exemple, si  $e_1$  et  $e_2$  sont deux vecteurs non proportionnels d'un sous-espace vectoriel E qui admet  $(b_1, b_2, b_3)$  comme base, alors l'un des trois systèmes

$$(e_1, e_2, b_1)$$
 ou  $(e_1, e_2, b_2)$  ou  $(e_1, e_2, b_3)$ 

est une base de E.

## Bases engraissées : conclusion

On le dit autrement : Quand on a un système libre d'un sous-espace vectoriel E, pour le compléter en une base de E, c'est facile : on lui ajoute l'un après l'autre les vecteurs d'une base de E, en ne gardant que ceux qui font augmenter le rang.

## Le théorème de la base incomplète

On le dit encore autrement :

### Théorème

Tout système libre peut être complété en une base par ajout de vecteurs choisis dans une base donnée.

## Le cas de $\mathbb{R}^2$

Pour compléter un vecteur non nul v de  $\mathbb{R}^2$  en une base de  $\mathbb{R}^2$ , on peut prendre le vecteur qui manque dans la base canonique, autrement dit prendre (1,0) ou (0,1).

#### Exo 5

- a) Donnez un vecteur v qu'on ne peut compléter en une base qu'avec (1,0).
- b) Donnez-en qu'on peut compléter en une base avec les deux vecteurs de la base canonique.

# Compléter une base de $\mathbb{R}^n$

Pour compléter une base de  $\mathbb{R}^n$ , on peut prendre les vecteurs qui manquent dans la base canonique.

#### Exo 4

Complétez (1,2,0) en une base de  $\mathbb{R}^3$  par ajout de vecteurs de la base canonique.