CSE-321

Deurin Alanci 14/04/052

HOMEWORK-1

$$T_3(n) = (n-2)!$$

$$T_{4} < T_{6} < T_{4} < T_{2} < T_{5} < T_{3}$$

$$T_u(n) = \ln^2 n$$

$$T_5(n) = 2^{2n}$$

$$T_{6}(n) = \sqrt[3]{n}$$

Lim
$$\frac{\ln^2 n}{\sqrt{n}} = \frac{\infty}{\infty}$$
 Believieliği L'hospital lim $\frac{2\ln n}{\sqrt{1-2l_3}} = \frac{\lim_{n\to\infty} \frac{6\ln n}{\sqrt{1-n}} = \frac{\infty}{\infty}$ Believieliği $\lim_{n\to\infty} \frac{2\ln n}{\sqrt{1-2l_3}} = \frac{\lim_{n\to\infty} \frac{6\ln n}{\sqrt{1-n}} = \frac{\infty}{\infty}$ Believieliği $\lim_{n\to\infty} \frac{2\ln n}{\sqrt{1-n}} = \frac{1}{2} = \frac{1}{2}$

$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n}} = \lim_{n\to\infty} \frac{18}{\sqrt[3]{n}} = 0$$

$$\lim_{n\to\infty} \frac{6n^{-1}}{\sqrt[3]{n}} = \lim_{n\to\infty} \frac{18}{\sqrt[3]{n}} = 0$$
Bung gire $T_{ij} \in O(T_6)$

$$\lim_{n\to\infty} \frac{\sqrt[3]{n}}{3n^4+3n^3+1} = \frac{\infty}{\infty} \text{ Belirsizliği L'hapital } \lim_{n\to\infty} \frac{\frac{1}{2}n^{-2/3}}{12n^3+9n^2} = \lim_{n\to\infty} \frac{\frac{1}{3}}{12n^3+9n^2} = \lim_{n\to\infty} \frac{\frac{1}{3}}{12n^3+9n^2} = \lim_{n\to\infty} \frac{1}{12n^3+9n^2} = \lim_{n$$

$$\lim_{n\to\infty} \frac{1}{3n^4+3n^3+1} = 0$$

$$\lim_{n\to\infty} \frac{\frac{1}{3}}{\frac{1}{9n^{1/3}}} = 0$$
Bungare $T_0 \in O(T_1)$

$$\lim_{n\to\infty} \frac{1}{\frac{1}{9n^{1/3}}} = 0$$

$$T_{4} \in O(T_{2}) \text{ prove.}$$

$$\lim_{n \to \infty} \frac{3n^{4} + 3n^{2} + 1}{3^{n}} = \frac{\infty}{\infty} \text{ Belieszligi L'hospital } \lim_{n \to \infty} \frac{12n^{5} \cdot 9n^{2}}{3^{n} \ln 3} = \lim_{n \to \infty} \frac{36n^{2} + 18n}{3^{n} \ln 3} = \lim_{n \to \infty} \frac{72n + 18}{3^{n} \ln 3}$$

$$\lim_{n \to \infty} \frac{3n^{4} + 3n^{2} + 1}{3^{n}} = \frac{\infty}{\infty} \text{ Belieszligi L'hospital } \lim_{n \to \infty} \frac{12n^{5} \cdot 9n^{2}}{3^{n} \ln 3} = \lim_{n \to \infty} \frac{72n + 18}{3^{n} \ln 3} = \lim_{n \to \infty} \frac{72n +$$

$$\frac{1}{1000} = \lim_{n \to \infty} \frac{72}{1149} = \frac{9}{9}$$
 Buna gore 7

$$\lim_{n\to\infty} \frac{3n^4 + 3n^3 + 2}{3^n} = \frac{9}{9}$$
Buno gore $T_n \in O(T_2)$

$$= \lim_{n\to\infty} \frac{72}{3^n \ln^4 3} = \frac{9}{9}$$
Buno gore $T_n \in O(T_2)$

$$= \lim_{n\to\infty} \frac{72}{3^n \ln^4 3} = \frac{9}{9}$$

$$= \lim_{n\to\infty} \left(\frac{3}{3}\right)^n = \frac{3}{4} \text{ say is } 0 \text{ i.e. } 1 \text{ arosinda olduğundan dolay}$$

$$T_n \in O(T_5) \text{ Prove } 0 = \lim_{n\to\infty} \left(\frac{3}{3}\right)^n = \frac{3}{4} \text{ say is } 0 \text{ i.e. } 1 \text{ arosinda olduğundan dolay}$$

$$\lim_{n\to\infty} \frac{3^{n}+3^{n}+2}{3^{n}} = 0$$
Buno gore $T_{n} \in O(T_{2})$

$$= \lim_{n\to\infty} \frac{72}{3^{n} \ln^{4}3} = 0$$

$$T_{Z} \in O(T_{5}) \text{ Prove.}$$

$$= \lim_{n\to\infty} \frac{3^{n}}{2^{n}} = \lim_{n\to\infty} \frac{3^{n}}{4^{n}} = \lim_{n\to\infty} \left(\frac{3}{4}\right)^{n} = 0$$

$$\lim_{n\to\infty} \left(\frac{3}{4}\right)^{n} = 0$$
Buno gore $T_{2} \in O(T_{5})$

$$\lim_{n\to\infty} \left(\frac{3}{4}\right)^{n} = 0$$
Buno gore $T_{2} \in O(T_{5})$

$$\lim_{n\to\infty} \left(\frac{3}{4}\right)^{n} = 0$$

$$=\lim_{n\to\infty}\frac{3^n}{2^{2n}}=\lim_{n\to\infty}\frac{1}{4^n}$$

$$\lim_{n\to\infty}\left(\frac{3}{4}\right)^2=\frac{1}{7}$$

$$\lim_{n\to\infty}\left(\frac{3}{4}\right)^2=\frac{1}{7}$$

$$\lim_{n\to\infty}\left(\frac{3}{4}\right)^2=\lim_{n\to\infty}\frac{n^2-n}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}=\lim_{n\to\infty}\frac{1}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}\lim_{n\to\infty}\frac{n^2-n}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}$$

$$\lim_{n\to\infty}\frac{1}{(n-2)!}=\lim_{n\to\infty}\frac{1}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}=\lim_{n\to\infty}\frac{1}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}\lim_{n\to\infty}\frac{n^2-n}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}$$

$$\lim_{n\to\infty}\frac{1}{(n-2)!}=\lim_{n\to\infty}\frac{1}{\sqrt{2\pi n}\cdot\left(\frac{n}{2}\right)^n}$$

$$\lim_{n\to\infty} \frac{1}{(n-2)!} = \lim_{n\to\infty} \frac{1}{(n-2)!}$$

$$|n| = \frac{1}{(n-1)!} \cdot \frac{1}{(n-2)!}$$

$$|n| = \frac{1}{(n-1)!} \cdot \frac{1}{(n-2)!}$$

$$|A| = \frac{n(n-1) \cdot (n-2)}{(n-2)!} = \frac{n!}{n(n-1)} - \frac{\text{Striling's}}{\text{Exemula}}$$

$$|A| = \frac{n(n-1) \cdot (n-2)}{(n-2)!} = \frac{n!}{(n-2)!} - \frac{n!}{(n-2)!} = \frac{n!}{(n-2)!} = \frac{n!}{(n-2)!}$$

2 defa L'hospital vygularsak;

lim
$$\frac{2}{n\to\infty} = \frac{2}{\infty} = \frac{2}{\infty} = \frac{2}{\infty}$$

Buna góre $T_5 \in O(T_3)$

Reproductive den olyan bir

$$(n-2)! = \frac{n(n-1)}{(n-2)!} \cdot \frac{(n-1)^n}{(n^2-n)!}$$

2-)a-) Verilen algoritma listenin en kökök ve en böyöt elemanın, bulur Bunlanı toplar ve ikiye bôlerek yeni bir sayı elde eder. Listenin iderisinde vara be sayiyi jeksa bu sayiya en yetin sayiyi dondurur. troits - Liste truit - fruits listesinin elemanbri watermelon __ Listenin en böyök elemoni plum -> Listenin en kügök elemanı orangeTime - While danguacino kontrol eden bir degisken b/Best Case Koddaki for loop bir kere galisir ve algoritmanın karmasıklığı -, O(n) dir. B(n) EO(n) Eger liste, en kuaŭk eleman sonda olacak sekilde shift edilmisse meydana gelin. Worst Case Fruits dángúsunde, dángú -> 1+2+3+4+---+n defa Galisir $\sum_{i=1}^{N} i = \frac{n \cdot (n+1)}{2} = \frac{n^2 + n}{2} = \Theta(n^2)$ Alt+aki d5ngi $\rightarrow \Theta(n)$ W(n) $= \Theta(n^2) + \Theta(n)$ Hverage Case

Eger liste, en kocot elemon sonda olmayacak sekilde shift edilmizse meybaa gelir. $P \rightarrow 0 \ P \ 123$ P = L[x] = P P = L[x] = P $= \frac{pn+p}{2} \in O(n) \quad A(n) \in O(n)$ $3-)a-)\sum_{i=0}^{n-1} (i^{2}\cdot 1)^{2} \quad i^{2}+1 \rightarrow Nondecreasing Function} \qquad n+1$ $\sum_{i=0}^{n} ((i-1)^{2}+1)^{2} \rightarrow \sum_{i=1}^{n} \frac{(i^{2}-2i+2)^{2}}{g(i)} \qquad \sum_{lower} \frac{(i^{2}-2i+2)^{2}}{Bound}$ $\sum_{i=1}^{n} \frac{(i^{2}-2i+2)^{2}}{g(i)} \qquad \sum_{lower} \frac{(i^{2}-2i+2)^{2}}{Bound}$ S(x2-2x+2)2dx $\int ((v_1)^2 - 2v)^2 dv = \int (v_1^2 + 2v_2^2 - 1 - 2v)^2 dv = \int (v_1^2 + 1)^2 dv = \int (v_1^2 + 1)^2 dv = \int (v_1^2 + 2v_2^2 + 1)^$ $= \frac{\sqrt{3}}{5} + \frac{2\sqrt{3}}{3} + 0 = \frac{(x-1)^5}{5} \Big|_{0}^{0} + \frac{Q(x-1)^3}{3} \Big|_{0}^{0} + x-1 \Big|_{0}^{0} \Big|_{0}^{1/2} \Big|_{0}^{1/2} + \frac{2\sqrt{3}}{3} \Big|_{0}^{1/2$ $=\frac{(n-1)^5-\left(-\frac{1}{3}\right)^5+\frac{9(n-1)^3-\left(-\frac{9}{3}\right)^3+n-4+4}{3}=\frac{(x-1)^5\left(-\frac{1}{3}\right)^5\left(-\frac{1}{3}\right)^5\left(-\frac{1}{3}\right)^5}{3}+\frac{9(x-1)^5\left(-\frac{9}{3}\right)^3+n-4+4}{3}$ (n-1)3, (1)3, (2)3, (2)3, (3)3, (3)6 = $(n-1)^{\frac{1}{5}} \left(\frac{1}{5}\right)^{\frac{1}{5}} + \frac{9(n-1)^3}{3} + \left(\frac{2}{3}\right)^3 + n$ Slower Second $g(n) \in O(n^5)$

b)
$$\sum_{i=2}^{n-1} \log(x_i) \rightarrow \text{Nondecreasing Function}$$
 $i=2$

$$\sum_{i=2}^{n-2} \log(x_i)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) - 2 \cdot \int_{2}^{n-2} \log(x_i + 1)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) - 2 \cdot \int_{2}^{n-2} \log(x_i + 1)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) - 2 \cdot \int_{2}^{n-2} \log(x_i + 1)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) \cdot 2 \cdot \int_{1}^{n-2} \log(x_i + 1)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) \cdot 2 \cdot \int_{1}^{n-2} \log(x_i + 1)^2 dx = (x_i + 1) \cdot (\log(x_i + 1)^2) \cdot 2 \cdot \int_{1}^{n-2} \log(x_i + 1) \cdot 2 \cdot \int_{1}^{n-2}$$

Devrim Akinci

141044052

```
13- 40 (f() ( ) ( ) x dx
  \int_{\frac{\pi^{2}}{2}}^{\frac{\pi^{2}}{2}} dx - \int_{\frac{\pi^{2}}{2}}^{\frac{\pi^{2}}{2}} = \frac{x^{3}}{6} \int_{0}^{0} - \frac{x^{2}}{4} \int_{0}^{1} - \frac{n^{3}}{6} - \frac{n^{2}}{4} \frac{7}{6}  Lower Bound
 \int_{\frac{\pi^{2}-x}{2}}^{\pi^{2}-x} dx = \int_{\frac{\pi^{2}-x}{2}}^{\pi^{2}-x} \frac{n^{2}}{2} = \frac{x^{3}}{6} \int_{1}^{n+1} - \frac{x^{2}}{4} \int_{1}^{n+1} \frac{(n+1)^{3}-1}{6} - \left[\frac{(n+1)^{3}-1}{4}\right]
                                                                     =\frac{(n+1)^3}{4}-\frac{(n+1)^2}{1}+\frac{1}{12}
\frac{n^{5}-n^{2}}{6} \leqslant f(n) \leqslant \frac{\left(n+1\right)^{3}-\left(n+1\right)^{2}+\frac{1}{12}}{6}
                                                                              Upper Bound
 f(u) \in O(u_2)
                                                                             C Code for option d
 C Code for option a int toplama (int n) }
                                                                               int toplama (int n) }
                                                                                  in+ 1 = 0;
     int i = 0;
                                                                                  int ) = 0;
                                                                                   int sum = 0;
     int sum = 0;
                                                                                   for (i=0; i <= n-1; i++) {
     int temp = 0;
     for (i=0; i <= n-1; i++) }
                                                                                        for (j=0; j<=1-1; J++)}
                                                                                             sum = sum + 1+1;
           temp = (i*i)+1;
           Sum = Sum + (temp * temp);
                                                                                     return sum;
     return sum;
4-) in+ fun (in+ n) {
  for (int i=n; i>0; i/=2) { } ((logn) } O(nlogn) 
for (int J=0; J(i; J++)) } O(2n)
         Count += 1;
                                                                          Disaridaki dángü, i'nin değeri her defasin-
 return count;
icerideki dongû \rightarrow n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots

n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots\right) = 2n
                                                                        \frac{n}{2^i} \le 1  n \le 2^i (Her iki torafın logari tması)
                                                                      da yarı yarıya ozalır.
                                                                                        logon ( i = logn ( i
                                                                          Igerideki dángú -> 2n
                                                                          Disandaki dángu - logn
                                                                         Algoritmanın Kormasıklığı
                                                                         0 (2n.logn) = 0 (nlogn)
```

Devrim Akinci 141044052

```
5-) a-) n³ € O(320) prove.
lim n3 - on Belicon ligi L'haspital
 lin 3n2 a Belinsizlia L'hospital
lim 60 = co Belirsizliği L'hospital
\lim_{n\to\infty} \frac{6}{8\ln^3 3 \cdot 3^{2n}} = 0 \lim_{n\to\infty} \frac{n^3}{3^{2n}} = 0 \text{ olduğundun dolayı}
\lim_{n\to\infty} \frac{6}{8\ln^3 3 \cdot 3^{2n}} = 0 \lim_{n\to\infty} \frac{n^3}{3^{2n}} = 0 \text{ olduğundun dolayı}
  b) n € o (loglogn) prove
    lim n = & Belirsizliği L'hospital
     \lim_{n\to\infty} \frac{1}{\log \log n} = \lim_{n\to\infty} \frac{1}{\log \log n} 
                                   Loga Laro
      C-) n2 log2 n € O(n!) prove
            \lim_{n\to\infty} \frac{n^2 \log^2 n}{(n!) \to \text{Stirling's Formula}} \qquad n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n
       \lim_{n\to\infty}\frac{\sigma^{3/2}\log^2n}{\sqrt{\sin\left(\frac{n}{e}\right)^n}}=\frac{\frac{3}{2}n\log^2n+\frac{n^{3/2}2\log n}{4n\log n}}{\sqrt{\sin\left(\frac{n}{e}\right)^n}}\int_{\mathbb{R}^n}\frac{\log^2n+\frac{n^{3/2}2\log n}{4n\log n}}{\sqrt{\log\left(\frac{n}{e}\right)^n}\int_{\mathbb{R}^n}\frac{1}{\log^2n}}=0, \sigma^1\log^2n+O(n!)
            \lim_{n\to\infty} \frac{\sqrt{\log^2 n}}{\sqrt{2\pi n}} = \frac{\infty}{\infty} \text{ Believillige L'hospital}
          lim Jon 100 100 lim Jarubric = lim Ja | x+ b ozelliginden.
         lim Jio | 1 + 1 = lim Jion + 7/10 = lim 20/10 = 0 Beliosieligi L'hospital
                \lim_{n\to\infty}\frac{90\sqrt{10}}{90}=\sqrt{10}=\lim_{n\to\infty}\frac{\sqrt{10n^2+7n+3}}{n}=\sqrt{10} olduğundan \sqrt{10n^2+7n+3}\in\Theta(n)
```