

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Latches, Flip-flops - 3

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Latches, Flip-flops - 3

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - Latches, Flip-flops 3
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Register
- Flip-Flop with Enable
- Flip-Flop with Reset

Register

Register

- An *n*-bit register consists of *n* flip-flops with their clock inputs connected together
- It can store *n*-bits of data
 - ► Also called an *n*-bit word

Register

Register

- An *n*-bit register consists of *n* flip-flops with their clock inputs connected together
- It can store *n*-bits of data
 - ► Also called an *n*-bit word

Register

DEC

Register

- An n-bit register consists of n flip-flops with their clock inputs connected together
- It can store *n*-bits of data
 - ► Also called an *n*-bit word

• Symbol (8-bit):

Register

OFC

Register

- An n-bit register consists of n flip-flops with their clock inputs connected together
- It can store *n*-bits of data
 - ▶ Also called an *n*-bit word

- Symbol (8-bit):
- A single D flip-flop can also be called a register

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

- clk signal above is gated
- Clock gating can cause timing problems
 - ★ Careful use can reduce power consumption

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

- Better approach:
 - Mux selects between old and new value

- clk signal above is gated
- Clock gating can cause timing problems
 - ★ Careful use can reduce power consumption

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Clock gating approach:

en Mux selects between old and new value clk

Better approach:

- clk signal above is gated
- Clock gating can cause timing problems
 - ★ Careful use can reduce power consumption

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Clock gating approach:

- clk signal above is gated
- Clock gating can cause timing problems
 - ★ Careful use can reduce power consumption

- Better approach:
 - Mux selects between old and new value

Symbol:

Flip-Flop with Enable

Flip-flop with additional enable (or load) signal that determines when new input stored

Clock gating approach:

- clk signal above is gated
- Clock gating can cause timing problems
 - ★ Careful use can reduce power consumption

- Better approach:
 - Mux selects between old and new value

Symbol:

• At the rising edge of *clk*:

		0 - 0
en	d	q
0	0	q_{prev}
0	1	q_{prev}
1	0	0
1	1	1

LATCHES, FLIP-FLOPS - 3 Resettable Flip-Flop

Resettable Flip-Flop

Flip-flop with additional **reset** signal used to store 0 irrespective of the input

LATCHES, FLIP-FLOPS - 3 Resettable Flip-Flop

Resettable Flip-Flop

Flip-flop with additional reset signal used to store 0 irrespective of the input

Logic Diagram:

Resettable Flip-Flop

Resettable Flip-Flop

Flip-flop with additional **reset** signal used to store 0 irrespective of the input

Logic Diagram:

Resettable Flip-Flop

Resettable Flip-Flop

Flip-flop with additional reset signal used to store 0 irrespective of the input

Logic Diagram:

Symbol:

At the rising edge of clk:

At the hong co				
d	q			
0	0			
1	1			
0	0			
1	0			
	0 1 0			

Think About It

• Construct a JK flip-flop with enable and reset signals