20 вопрос

 $extit{Th:}$ Для любого многочлена $f\in F[x]$ и для любого ненуливого многочлена $g\in F[x]$ $\exists !$ многочлены g и r из F[x]: f=gq+r, где r=0 или deg(r)< deg(g). Многочлен q называется частным, а r - остаток f на g Док-во:

- 1. Существование: Если f=0 или n < m, где n=deg(f), m=deg(g), то положим q=0, r=f. В противном случае положим $f_1=f-\frac{a_0}{b_0}x^{n-m}g$, где a_0,b_0 коэффициенты при старших членах многочленов f,g соответственно $f_2=f_1-\frac{a_{01}}{b_0}x^{n_1-m}g$, $n_1=deg(f_1)$, а a_{01} коэффициент при старшем члене многочлена f_1 . $f_3=f_2-\frac{a_{02}}{b_0}x^{n_2-m}g$, где $n_2=deg(f_2)$, a_{02} коэффициент при страшем члене многочлена f_2 и т.д. Вычисления\$ будут продолжаться до тех пор, пока не будет получен многочлен $f_s=f_{s-1}-\frac{a_{0s-1}}{b_0}x^{n_{s-1}-m}g$ такой, что $f_s=0$ или $n_s=deg(f_s)< m$ суммируя равенства получаем $f_s=f-\frac{1}{b_0}(a_0x^{n-m}+a_{01}x^{n_1-m}+\cdots+a_{0s-1}x^{n_{s-1}-m})$. Легко видеть, что r и q удовлетворяет требуемым свойствам.
- 2. Единственность: Предположим, что нашлись многочлены r,r_1,q,q_1 такие, что $f=qg+r=q_1g+r_1$ причем $deg(r_1)< deg(g_1)$, deg(r)< deg(g). Докажем тогда, что $q=q_1$ и $r=r_1$. Действительно, из $f=qg+r=q_1g+r_1$ получаем $(q-q_1)g=r_1-r$. Если $q\neq q_1$, то $deg((q-q_1)g)\geq deg(g)$, что невозможно, т.к. $deg((r_1-r))< deg(g)$. Если же $q=q_1 \implies r_1=r$ чтд.

Пусть К - произвольное кольцо. $f=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_0$ - многочлен, где $a_i\in K$ $(i=0,1,\ldots,n)$ - коэффициенты многочлена, a_ix^{n-i} - член многочлена, n-i степень члена многочлена. Если $a_0\neq 0$, то n называется стпенью многочлена a_0x^n - старший член многочлена.

Стпень многочлена обозначается как deg(f). Многочлен f=0 называется нулевым, его степень неопределена.

Множество все многочленов с коэффициентами из кольца K обозначаются K[x]. Также это множество называется множеством многочленов над кольцом K.

Многочлены из K[x] можно складывать и умножать При этом снова получается многочлен из K[x].

 $extit{Утв:}$ Пусть многочлены f и g из K[x]. Тогда f+g=0 либо $deg(f+g) \leq max(deg(f),deg(g))$. Если f
eq 0,g
eq 0, то

 $deg(fg) \leq deg(f) + deg(g)$. Елсли при этом K не содержит делителей нуля, то deg(fg) = deg(f) + deg(g).