1.

a.

| Frequency |
|-----------|
| 6         |
| 2         |
| 4         |
| 3         |
| 4         |
| 1         |
| 20        |
|           |

b.



c.

| Character | Code |
|-----------|------|
| S         | 01   |
| h         | 0011 |
| e         | 10   |
| \blank    | 000  |
| 1         | 11   |
| a         | 0010 |

she sells sea shells  $\rightarrow$ 

2.

- a.  $n > m \rightarrow$  The number of jobs is more than the number of machines. If there are m machines, and m is strictly less than n, then there must be at least one machine with 2 jobs (pigeonhole principle). If we order in descending order, then the first job to be assigned to a machine with a pre-existing job is the m+1 job. Since the ordering is descending, we know that the time of the m+1 job  $(t_{m+1})$  is at least as great as all of the jobs that came before it  $(t_1 \ge t_2 \ge ... \ge t_{m+1})$ . Because there are now at least 2 jobs assigned to this machine, and the first job was at least as long as the second, we can say that  $T^* \ge 2t_{m+1}$ .
- b. Let l be the last job scheduled on machine k. Right before I was scheduled: the load on machine k was  $T_k t_l$  and the load on k was minimal.

From class, we derived that  $T_k \le t_l + \frac{1}{m} \sum_j t_j$ . We also know that  $2t_{m+1} \le T^* \to 1$ 

 $t_{m+1} \le T^*/2$ . Since I was the last job, we can say that  $t_l \le t_{m+1}$ . Combining:  $t_l \le t_{m+1} \le T^*/2$ , showing that  $t_l$  is bounded ( $t_l \le T^*/2$ ).

By Lemma 2,  $\frac{1}{m} \sum_{j} t_{j}$  is also bounded  $\frac{1}{m} \sum_{j} t_{j} \leq T^{*}$ .

Substituting:  $T_k \le T^*/2 + T^* \rightarrow T \le 3T^*/2$ 

```
3.
         a. Opt(i):
             if i = 0 then
                       result \leftarrow 0
             else
                       result \leftarrow \infty
                       for k in [0 ... i) do
                               penaltyForLastDay \leftarrow (200 - (a_i - a_k))^2
                               penaltyForPreviousDays \leftarrow Opt(k)
                                result \leftarrow min(result, penaltyForLastDay + penaltyForPreviousDays)
             return result
         b. Opt(i):
             if T[i] = \bot then
                       if i = 0 then
                                T[i] \leftarrow 0
                       else
                                T[i] \leftarrow \infty
                                for k in [0..i) do
                                         penaltyForLastDay \leftarrow (200 - (a_i - a_k))^2
                                         penaltyForPreviousDays \leftarrow Opt(k)
                                         T[i] \leftarrow \min(result, penaltyForLastDay +
                                                  penaltyForPreviousDays)
             return T[i]
             This algorithm will execute operations up to n for each n, making run time without
             memoization n(n+1)/2 or just O(n^2).
         c. Opt(n):
             for i in [0 ... n)
                       T[i] \leftarrow 0
                                      // default value
             for i in [0 ... n)
                      result \leftarrow \infty
                       for k in [0..i) do
                               penaltyForLastDay \leftarrow (200 - (a_i - a_k))^2
                               penaltyForPreviousDays \leftarrow T[i]
                                if penaltyForLastDay + penaltyForPreviousDays < result
                                         result = penaltyForLastDay + penaltyForPreviousDays
                       T[i] = result
             return T[i]
             For the same reason as in (b), we can see that this is also O(n^2)
         d. Sol(i):
             if i = 0 then
                       return emptyList()
```

else

for 
$$k$$
 in  $[0..i)$  do  
if  $T[i-k] + (200 - (a_i - a_k))^2 = T[i]$  then  
return  $concat(Sol(i-k), k)$ 

This algorithm can be implemented in linear time (O(n)), if the concat operation is also linear. This can be achieved with a linked list data structure storing out answer.

```
4. Opt(t):

if T[t] = \bot

if |t| = 0

T[t] \leftarrow \text{true}
else

for i in [0..k)

if t.\text{substring}(0, |s_i|) = s_i and Opt(t.\text{substring}(|s_i|, t))

T[t] \leftarrow \text{true}
else

T[t] \leftarrow \text{false}
```

return T[t]

Invoke Opt(t) and have the set of s tiles as a global variable

The running time would be  $O(|t| * \sum_{j} |s_{j}|)$ , as for the length of t, we consider subproblems where we compare all tiles. This would optimized for runtime if we can implement substring in a contant time.

5. First, we create an m by n matrix where we create an extra row and column for gaps. Fill each of the entries in that column and row with the score of the gap (0, 1, 2, 3 ....) and continue to increment down for all n and m.

6. 
$$Opt(t_0...t_j)$$
:
$$T[0] = t_0$$
for  $j$  in  $[1..n]$ 

$$T[j] \leftarrow \max(t_j)$$

```
\begin{aligned} Opt(n): \\ incr &= 0 \\ optPenalty &= 0 \\ \text{for } i \text{ in } [0 \dots n) \text{ incrementing } i \text{ by } incr \text{ do} \\ & \min Penalty &= \infty \\ & \text{for } k \text{ in } [0 \dots n) \text{ do} \\ & \text{ if } 200 - (a_k - a_i))^2 < \min Penalty \\ & incr &= k - i \\ & \min Penalty &= \min (\min Penalty \ , \ (200 - (a_k - a_i))^2 \ ) \\ & optPenalty &= \min Penalty \\ & \text{return } optPenalty \end{aligned}
```