This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publicacation Number WO 01/135772 A1

(51) International Patent Classification7:

- (21) International Application Number: PCT/US00/22812
- (22) International Filing Date: 18 August 2000 (18.08.2000)
- (25) Filing Language:

English

H04L 9/08

(26) Publication Language:

English

(30) Priority Data:

09/378.226

19 August 1999 (19.08.1999)

- (71) Applicant: VISTO CORPORATION [US/US]; 1937 Landings Drive, Mountain View, CA 94043 (US).
- (72) Inventor: RIGGINS, Mark, D.: 3002 89th Place SE, Mercer Island, WA 98040 (US).

- Agents: SOCKOL, Marc, A. et al.al.; Squire, Sanders & Dempsey L.L.P., 600 Hansen Way, P. Palo Alto, CA 94304-1043 (US).
- (81) Designated States (national): AE, A AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, C, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, C, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, C, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, M MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, T, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, Z, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RIRU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES; S, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patratent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NEJE, SN, TD, TG).

[Conontinued on next page]

(54) Title: SYSTEM AND METHOD FOR ENCRYPTING AND DECRYPTING FILES

(57) Abstract: A system and method distributute the task of decryption between a server and a client. To encrypt ot data, the client generates an encryption/decryption key. Namely, a 1a user interface obtains a password, generally from a user. A hint genenerator generates a hint. A key generator generates the key based on ti the password and the hint. In one embodiment, the key generator hahashes the password to generate a first secret, hashes the first secret to to generate a second secret, hashes the first secret with the hint to genenerate an intermediate index, and hashes the second secret and the is intermediate index to generate the key. An encryption engine can thethen use the key to encrypt data. The client then sends the encrypted :d data and possibly the hint for storage on the server. To decrypt the æ data, the key must be determined. Accordingly, the server knows so some information and the user knows some information for decryptinting the data. To generate the key, the decrypting client must first obobtain rights to retrieve the hint from the server and must obtain the pasassword from the user. Increased level of security is achieved.

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviatiotions, refer to the "Guidance Notes on Codes and Abbreviations" at appearing at the beginning of each regular issue of the PCT Gazazette.

SYSTEM AND METHOD FOR ENCRYPTING AND DECRYPTING FILES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer networks, and morere particularly to a system and method for encrypting and decrypting filess to enable secure exchange of information in a computer network.

2. Background Art

In its infancy, the Internet provided a research-oriented environmment where users and hosts were interested in a free and open exchange of information, and where users and hosts mutually trusted one another. HHowever, the Internet has grown drastically, currently interconnecting at least 1000,000 computer networks and millions of users. Because of its size and openraness, the Internet has become a target of data theft, data alteration and other missschief.

Virtually everyone that sends information over the Internet is vurulnerable. Before sending a file, companies balance the benefits and ease of transisferring a file over the Internet against the risks of potential unauthorized file access.

One of the most popular of current security techniques is privatete key file encryption and decryption. A file may be encrypted and decrypted usining a private key known to all authorized users. Thus, a file may be encrypted using the private key, forwarded over a computer network, and decrypted usining the private key by the end user. Accordingly, both the encrypting party and the decrypting party must know the private key.

This encryption and decryption security technique does not solveve problems and concerns of the roaming user. First, for example, a roamining user must maintain a portable record of all private keys so that he or she cann decrypt or re-encrypt files. Maintaining a portable record can be a time consumming and cumbersome process. Therefore, a system and method for encrypting a and decrypting files is needed to facilitate remote access to information rescources in

a computer network easily and securely (without sending keys over these network).

SUMMARY OF THE INVENTION

The present invention provides a system and method for encryppting and decrypting files to enable secure access to information resources in a computer network. The system and method distribute the task of decryption between a server and a client, thereby adding to the level of security. The system n and method provide recognizable benefits in a network having a trusted clidient (which performs the encryption), a server (which stores the encrypted d data and a hint), and an untrusted client (where the user is currently operating).

Decryption may be performed at the server or at the untrusted client, wwithout transferring the key or a password over the network.

To encrypt data, the trusted client generates an encryption/decry.yption key. That is, a user interface obtains a password, generally from a userer. A hint generator generates a hint, preferably, a pseudo-random number. A keyey generator generates a key based on the password and on the hint. In a n more secure, but more complex, embodiment enabling server-side or client-s-side decryption, the key equals H(H(H(P)), H(H(P), hint)). Namely, a key g generator hashes the password to generate a first secret, hashes the first secret to p generate a second secret, hashes the first secret with the hint to generate an interermediate index, and hashes the second secret and the intermediate index to generate the key. In a simpler, but less secure, embodiment facilitating client-side decryption, the key equals H(P, hint). Namely, a user interface obtains a password and a hint generator generates a hint. Then, a key generator h hashes the password and the hint to generate the key. An encryption engine caan then use the key to encrypt data. The client sends the encrypted data and there hint for storage on the server. Alternatively, the global server can generate and d store the same hint independently.

To decrypt encrypted data, the key must first be determined. Too generate the key, the server knows some information and the user knows some information. For data encrypted using the more secure encryption embadiment, client-side and server-side decryption are each possible.

In the client-side decryption case, a user interface obtains the ppassword from the user. A communications engine retrieves the hint from the seserver. An index generator hashes the password to generate the first secret, and hashes the hint and the first secret to generate the intermediate index. A key generator hashes the first secret to generate the second secret, and hashes the second secret and the intermediate index to generate the key. In the server-sidide decryption case, the communications engine forwards the intermediate index to the server. The server, which for this embodiment preferably learned the second secret during account setup, hashes the second secret and the intermediate index to generate the key. It will be appreciated that, because the server does not know the password or the first secret (which is only delerivable knowing the password), the server alone cannot compute the key.

For data encrypted using the simpler encryption embodiment, the remote client generates the key. A user interface obtains a password from the e user. A communications engine retrieves the hint and encrypted data from the e server. A key generator hashes the password and the hint to generate the key. It will be appreciated that any number of hashes can be performed on the variables to compute the key. For example, the password may be hashed to compute a secret, and the secret and key may be hashed to compute the key.

A first system in accordance with the present invention includeæs a user interface for obtaining a password; a key generator coupled to the user: interface for hashing a hint and the password to generate a key; an encryption energine coupled to the key generator for encrypting data using the key; and a communications module coupled to the engine for sending the encryptoted data and the hint to a server for storage.

A second system in accordance with the present invention includudes an encryption downloadable for deriving an encryption key from a passwword and a hint; a web server for interfacing with a client, for sending the encryptation downloadable to the client, for receiving encrypted data that was encrypted by the encryption downloadable from the client, and for receiving a hint corresponding to the encrypted data and needed to regenerate the key f from the client; and memory coupled to the web server for storing the hint and t the encrypted data.

A third system in accordance with the present invention includeles a user interface for obtaining a password; a communications module for receiving the encrypted data and a hint corresponding to the encrypted from a serverer; a key generator for hashing the password and the hint to generate a key for didecrypting the encrypted data.

A fourth system in accordance with the present invention includes a decryption downloadable for deriving a key from a password and a hinnt; encrypted data; a hint corresponding to the encrypted data; and a web s server for interfacing with a client, and for sending the decryption downloadable,e, the encrypted data and the hint to the client.

A fifth system in accordance with the present invention includess a user interface for obtaining a password; an index generator coupled to the ususer interface for generating an intermediate index from a hint received from a server and a secret derived from the password; and a communications e engine coupled to the index generator for sending the intermediate index to these server.

A sixth system in accordance with the present invention includeles a second secret corresponding to a user; a decryption downloadable for generating an intermediate index from a password and a hint; a web serence for receiving an indication of encrypted data to be decrypted, for transmittiting the decryption downloadable and a hint corresponding to the indication to a client, and for receiving an intermediate index from the client; and a server-reresident

module for deriving a key for decrypting the encrypted data from the s-second secret and the intermediate index.

One of ordinary skill will recognize that the key is never transmitted over computer network. It will be further appreciated that the passwoord is never transmitted over the internet. Thus, even if a hacker somehow o obtained the password, the hacker could not generate the key without obtaining g the proper hash functions and hint corresponding to the data from the servicer (which requires proper identification and authentication). It will be further apppreciated that, for server-side decryption in the more secure embodiment, the second secret is transmitted only once across the network, preferably, at account setup. The second secret, along with the first secret and the hint, are needed a at a later time to generate the key. Thus, it would be practically impossible for a hacker to obtain all the information needed to generate the key.

It will be even further appreciated that, by distributing parts of f the decryption function to the remote client and parts to the server, it is note possible for either site alone to decrypt data without acquiring additional information from the other site. One of ordinary skill will understand that by distriributing the decryption function between the remote client and server (referred d to as double indirection), it is not possible for the global server to decrypt thine file without acquiring additional information from the remote client and vivice versa. Hence, one of ordinary skill will understand that an unauthorized captuture of information during network transfer will fail to provide enough informmation to decrypt encrypted data. Therefore, the system and method provide a heightened level of data security.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a roaming-user network acaccess system in accordance with the present invention;

FIG. 2 is a block diagram illustrating details of an example commputer;

FIG. 3 is a block diagram illustrating details of the encryption 1 downloadable of FIG. 1;

- FIG. 4 is a block diagram illustrating details of the client decrypyption downloadable of FIG. 1;
- FIG. 5 is a block diagram illustrating details of the server decryption module of FIG. 1;
- FIG. 6 is a flowchart illustrating a method of file encryption in accordance with the present invention;
- FIG. 7 is a flowchart illustrating details of key generation and u use in accordance with FIG. 6;
- FIG. 8 is a flowchart illustrating a method of decrypting a file it in accordance with the present invention;
- FIG. 9 is a flowchart illustrating details of server decryption in a accordance with FIG. 8;
- FIG. 10 is a flowchart illustrating additional details of server delecryption in accordance with FIG. 9;
- FIG. 11 is a flowchart illustrating details of remote client decry yption in accordance with FIG. 8;
- FIG. 12 is a flowchart illustrating another method of encrypting data; and
 - FIG. 13 is a flowchart illustrating another method of decrypting data.

DETAILED DESCRIPTION

The following description illustrates general and specific principiles of the invention and is not to be considered limiting.

FIG. 1 is a block diagram illustrating an exemplary network sys/stem 100 for encrypting and decrypting data, in accordance with the present inverention. Network system 100 comprises a global server 105 coupled via computer network 110 to a local client 115 and to a remote client 120. The computer network 110 may include or be a part of the wide area network commononly referred to as the Internet. The global server 105 may be protected by v a global firewall (not shown), and the local client 115 and remote client 120 manay each be protected by a client firewall (not shown).

The global server 105 includes a computer system that has an erancryption downloadable 123, a client decryption downloadable 125, a server decryption module 130, a user database 135 and a web server 175. The user database 135 includes encrypted data 140, hints 145 and second secrets 150. It will'll be appreciated that global server 105 may also include security services (n'(not shown) for performing identification and authentication services to comnfirm user access privileges.

For the invention herein, a Downloadable is executable or interpretable application code, which is downloaded from a source computer and rurin on a destination computer. Further, the term "executable" includes "interpretable." A Downloadable is typically requested and executed by an ongoing proocess such as by an Internet browser or web client. Examples of Downloadalables include JavaTM applets designed for use in the JavaTM distributing envirinonment developed by Sun Microsystems, Inc., JavaScriptTM scripts also developed by Sun Microsystems, Inc., ActiveXTM controls designed for use in the AcactiveXTM distributing environment developed by the Microsoft Corporation, Visusual Basic also developed by the Microsoft Corporation and HTML. Downloadables may also include plugins, which add to the functionality of an already existiting application program. It will be appreciated that each Downloadable many

include one or more applets, one or more ActiveX controls, one or moore plugins, etc. or combinations thereof. Although preferable, it will be a further appreciated that the Downloadable need not be deleted upon logoff.

The local client 115 includes a computer system that has a browwser 165 and unencrypted data 170. The remote client 120 includes a computerer system that has a browser 155 and a data program 160 for viewing the unencrrypted (or decrypted) data 170. The local client 115 may be a "trusted" client, arand the remote client 120 may be an "untrusted" client. It will be appreciated d that the difference between the remote client 120 and the local client 115 is morerely that the user operates the local client 115 to encrypt data 170 and the user c operates the remote client 120 to request decryption of the data 140. The remote client 120 and local client 115 may be the same computer. The term "brows/ser" is being used herein to include any engine for communicating in a netwoork environment, possibly using File Transfer Protocol (FTP), HyperText 't Transfer Protocol (HTTP) and HyperText Markup Language (HTML). It will t be appreciated that local client 115 or remote client 120 may include a smmart telephone, a Personal Data Assistant (PDA) such as the Palm III™ sys/stem by the U.S. Robotics, Inc., a laptop computer, etc. Although not shown, ζ one skilled in the art will recognize that the local client 115 may also include an instance of the data program 160. Those skilled in the art will recognize that the data program 160 may be a data processing program, an e-mail prorogram, a network browser, a calendar program or another type of processing engine. Accordingly, the unencrypted data 170 may include files, e-mail, bookkmarks, calendar information or other type of data.

The encryption downloadable 123 enables the local client 115 t to encrypt the unencrypted data 170 and to store the encrypted data 140 on the glglobal server 105. A first method of encryption is discussed with reference to FIGs. 6 and 7. Generally, the encryption downloadable 123 generates two securets from a password and selects a random number hint 145. The encryption downloadable 123 then hashes the hint and the first secret to generate a an

and the second secret to generate the key, which is used to encrypt the e data 170. The encryption downloadable 123 then sends the encrypted data 140 aiand the hint 145 to the global server 105. Alternatively, the encryption downloadable 123 can send the encrypted data 140 to the global server 105, and the g global server 105 can generate and store the same hint 145 independently. It t will be appreciated that a hash function provides a non-reversible calculation a of result that prevents derivation of the original values. It will be appreciated that an embodiment where the server generates the hint, computes the key from the secrets and encrypts the data is also possible, and easily understood by y one skilled in the art from the teachings herein. It will be further appreciated that file encryption could be performed by the global server 105. For exammple, the unencrypted data 170 could be uploaded to the global server 105 via a a secure transmission line and encrypted at the global server 105.

Accordingly, to decrypt the encrypted data 140, the hint 145 ancid two secrets associated with the encrypted data 140 must be determined. To'o enable client-side decryption of encrypted data 140, the encryption downloadalable 123 stores the hint 145 on the global server 105. To enable server-side decryption of the encrypted data 140, the encryption downloadable 123 stores the b hint 145 and the second secret 150 on the global server 115. These two methodds of decryption are described with reference to FIGs. 8-11.

Other techniques of encryption and decryption, which allow a clclient site 115/120 to maintain some information and the server 105 to maintain o other information for decrypting data 140, are also possible in light of the teæachings herein. For example, in a simpler but less secure embodiment that facibilitates client-side decryption (described in greater detail with reference to FIGGs. 12 and 13), the key equals H(P, hint). Generally, a key generator hashes a a password and a hint to generate the key. The hint is stored on the globbal server and the password is known by the user. Accordingly, for decryption, tytwo-site responsibility is still needed to generate the key.

The client decryption downloadable 125 performs client-side delecryption, and is described with reference to FIGs. 8 and 11. Generally, the cliennt decryption downloadable 125 requests the password from the user on t the remote client 120 and uses the same hashing function to generate the titwo secrets. Using the secrets and the hint (downloaded from the global secreter 105), the decryption downloadable 125 uses the same hashing algorithm as the encryption downloadable 123 to generate the same key. The decryption downloadable 125 then uses the key to decrypt the encrypted file 140.

The server decryption module 130 performs server-side decryptotion, and is described with reference to FIGs. 8-10. Generally, the server decryption module 130 sends a downloadable (server decryption downloadable 5005, FIG. 5) and the hint 145 associated with the encrypted file 140 to the client 1 120. The decryption downloadable 505 is described in detail with reference to FFIG. 5. The downloadable requests the password from the user and uses the saiame hashing algorithm as the encryption downloadable to generate the first secret. The downloadable then uses the first secret and the hint 123 in the samme hashing algorithm as the encryption downloadable to generate the interermediate index. The downloadable then sends the index to the server decryption module 130, which uses the intermediate index and the second secret 150 to generate the key.

It will be appreciated that the second secret may have been storered on the global server 105 during the setup of the original account. That is, at a account setup, a downloadable having secret generation code may have been seent to the user, for example, at the local client 115, who inputs a password. The second downloadable then generates the second secret 150 and forwards the sesecond secret 150 to the global server 105. It will be appreciated that the second secret 150 alone is not enough to generate the key, since the intermediate index is not known. It will be appreciated that, for this embodiment, server-side or reclient-side decryption could be selected based on the security level of the communication channel between the client 120 and server 105, on clierent

terminal type (e.g., processor power), on the size of the file (e.g., the length of time it will take to download the file), or on user preferences. Furtherer, server-side or client-side decryption can be determined at the time of decryption, at the time of encryption, at account setup, or at any other time.

The web server 114 provides web page data and web page functionality to clients, such as to the remote client 116 or to the local client 124. PProviding web page functionality and data may include transmitting downloadables such as the encryption downloadable 123 and the client decryption downloadable 125 to the clients.

FIG. 2 is a block diagram illustrating a computer system 200 wwhich illustrates details of each of the global server 105, the local client 115 5 and the remote client 120. The computer system 200 includes a processor 2055, such as an Intel Pentium[®] microprocessor or a Motorola Power PC[®] microprocessor, coupled to a communications channel 220. The computer system 2000 further includes an input device 210 such as a keyboard and mouse, an output device 215 such as a Cathode Ray Tube (CRT) display, a communications delevice 225, data storage 230 such as a magnetic disk, and working memory 235 susuch as Random-Access Memory (RAM), each coupled to the communications channel 220. The communications channel 220 may be coupled to a computerer network 110. One skilled in the art will recognize that, although the data storagege 230 and working memory 235 are illustrated as separate units, data storagege 230 and working memory can be integrated or partially integrated units.

An operating system 240 controls processing by the processor 2 205, and is typically stored in data storage 230 and loaded into working memory 235 (as illustrated) for execution. Other programs and data 245 such as browsvsers, servers, downloadables, unencrypted or encrypted data, etc. may also b be stored in data storage 230 and loaded into working memory 235 (as illustrateæd) for execution by processor 205.

One skilled in the art will recognize that the computer system 2 200 may also include additional information, such as network connections, addiditional

memory, additional processors, LANs, input/output lines for transferriring information across a hardware channel, the Internet or an Intranet, etc.c. One skilled in the art will also recognize that the programs and data may be received by and stored in the system in alternative ways. For example, a computer-readable storage medium (CRSM) reader 250 such as a floppy disk drlrive, hard disk drive, CD-ROM reader, magneto-optical reader, CPU (for RAM)I), etc. may be coupled to the communications channel 220 for reading a computerer-readable storage medium (CRSM) 255 such as a magnetic disk, a hard disk, a n magneto-optical disk, RAM, etc. Accordingly, the computer system 200 may rereceive programs and data via the CRSM reader 250.

FIG. 3 is a block diagram illustrating details of the encryption downloadable 123. The encryption downloadable 123 includes a user:r interface 305, a key generator 310, an encryption engine 315, a global server communications engine 320 and a hint generator 325. The user interfeface 305 includes code for causing a computer to present information to and recquest information from the user. For example, the user interface 305 requesists identification and authentication information, and a password and identification of the unencrypted data 170 desired to be encrypted. The key generatctor 310 includes code for generating a key for encrypting data 170. As describibed above, the key generator 310 performs an algorithm of generating firstst and second secrets from a password, hashing the first secret and the hint 1445 to generate an intermediate index, and hashing the second secret and the : intermediate index to generate the key. During the key generation proocess, the key generator 310 requests the hint generator 325 to generate a randomm number, preferably of variable length, to be the hint 145. The encryption enginee 315 includes code for using the key and an encryption algorithm, e.g., symmetric algorithms, DES, triple DES, BlowFish, RC-5, etc., to encrypt the unerencrypted file 170. The global server communications engine 320 includes any c code needed for communicating with the global server 105, e.g., for sending the hint 145 and the encrypted file 140 and, if necessary, the second secret 150,0, to the

global server 105. It will be appreciated that the global server 105 majay include a hint generator (not shown) to generate the same hint as generated by y the hint generator 325. Accordingly, the local client 115 need not forward the e hint to the global server 105. A method of encrypting data is described in detatail with reference to FIGs. 6 and 7.

It will be appreciated that, for client-side decryption, the system may alternatively not generate a secret at all. Alternatively, the system mays perform any number of hashes of the variable password and variable hint. For r example, the key generator 310 may hash the password and the hint to generate e the key. When a request is received for client-side decryption, the client decryption downloadable and hint may be transmitted to the remote client 120. Till client decryption downloadable can request the password, and hash the hint ε and password to generate the key. A hacker obtaining the transmitted hint it has insufficient information to generate the key. Two secrets are generated for server-side decryption since the hint and intermediate index must be triransmitted across the network 110. A second level of indirection is therefore neededd. In either case, the task of decryption is distributed between the global server 105 and remote client 120, and the key is never transmitted across the network 110.

FIG. 4 is a block diagram illustrating details of the client decryption downloadable 125. The client decryption downloadable 125 includes a user interface 405, a key generator 410, a decryption engine 415 and a globbal server communications engine 420. The user interface 405 is similar to the ususer interface of the encryption downloadable 123, and includes code neededed for causing a computer to present information and request information from a user. For example, the user interface 405 requests identification and authentatication information, a password and identification of the encrypted data 140 toto be decrypted. The key generator 410 includes code for generating the keys using the same algorithm as the key generator 310 of the encryption downloadable 123. That is, preferably, the key generator 410 uses the password to generate the first and second secrets, hashes the hint and first secret to generate e the

intermediate index, and hashes the second secret and the intermediate r index to generate the key. Lastly, the decryption engine 415 includes code for r using the key and a decryption algorithm, e.g., symmetric algorithms, DES, triplole DES, BlowFish, RC-5, etc., which is associated with the encryption algorithm used by the encryption engine 315 of the encryption downloadable 123, to decrypt the encrypted data 140. The global server communications engine 4200 includes any code needed to communicate with the global server 105 to receive e hints 145 and encrypted data 140. A method of decryption is described in deletail with reference to FIGs. 8-11.

FIG. 5 is a block diagram illustrating details of the server decrytyption module 130. The server decryption module 130 includes a server decryption downloadable 505 and a server resident module 510. The server decry yption downloadable 505 includes a user interface 515, an index generator 52:20 and a global server communications engine 525. The server resident modulele 510 includes a key generator 530, a decryption engine 535 and a remote clidient communications engine 540. The user interface 525 is similar to the ususer interface 305 of the encryption downloadable 123 and to the user intertrface 405 of the client decryption downloadable 125. The user interface 515 inclcludes code for presenting information to and requesting information from these user, such as identification and authentication information, a password and identification of encrypted data 140 to be decrypted. The index generarator 520 preferably includes code for using the password to generate the first selecret, and for hashing the first secret and the hint to generate the intermediate indidex. The global server communications engine 525 includes code for communicicating with the global server 105, e.g., for receiving hints 145 and decrypted d data from the global server 105 and sending the intermediate index to the global 4 server 105.

The key generator 530 preferably includes code for hashing the e intermediate index and the second secret 150 previously stored on the g global server 105 to generate the key. It will be appreciated that the second sescret 150

may have been received at account creation, during a previous transaction or, if necessary, during this transaction. The decryption engine 535 is similalar to the decryption engine 415 of the client decryption downloadable 125, and d includes code for using the key and the decryption algorithm associated with the encryption algorithm performed by the encryption engine 315 to decrypt the encrypted data 140. The remote client communications engine 540 inaccludes any necessary code for sending the decrypted data to the remote client it 120, if so requested.

FIG. 6 is a flowchart illustrating a method 600 of encrypting dalata 170 in network system 100. Method 500 begins by the local client 115 in steep 610 requesting storage of data 170 on the global server 105. Step 610 mayly include contacting the global server 105 by its URL and selecting the data storage option from its web page. The web server 175 presenting the web page may further request identification of the data 170 on the local client 115 to b be encrypted and stored. The global server 105 in step 620 sends the encicryption downloadable 123 to the local client 115. Alternatively, the encryption downloadable 123 may be a permanently installed component, stored c on the local client 115 via, for example, a floppy drive or an internet link.

The local client 115 in step 630 executes the encryption downloadable 123, possibly using the applet-enabled browser 165, installation software initiated automatically, ActiveXTM controls, etc., to encrypt data 170. I Details of step 630 are described with reference to FIG. 7. The local client 115 ir in step 640 sends the encrypted data 140 and the hint 145 corresponding to the encrypted data 140 to the global server 105. It will be appreciated thatat, for global server decryption, the local client 115 in step 640 may also sended the second secret 150 associated with the user's password to the global sererver 105. However, preferably, the second secret 150 has been previously stored d on the global server 105 before initiation of this current request, such as at acccount setup. Method 600 then ends.

FIG. 7 is a flowchart illustrating details of step 630 as a methood 700 of encrypting data 170. Method 700 begins with the user interface 305 o of the encryption downloadable 123 in step 710 requesting the password from the user or, alternatively, from another computer or subroutine. It will be approreciated that the password chosen will not be transmitted over the computer neietwork 110, thereby increasing the level of security. The key generator 310 oof the encryption downloadable 123 in step 715 performs a one-way hash of f the password to generate a first secret, and in step 720 performs a one-wayay hash of the first secret to generate a second secret 150. It will be appreciated t that any two secrets can be used, however, two nested hashes of a password prerovides the best mode known for generating secrets and minimizing the data needded by a user. One of ordinary skill in the art will understand that each one wayay hash function provides a non-reversible calculation that prevents derivation n of the original password or input value or values.

The key generator 310 of the encryption downloadable 123 in sistep 725 instructs the hint generator 325 to generate a hint. The hint generator 325 generates a cryptographically semi-random number, preferably of varietable length, and forwards the number to the key generator 310 as the hint. The key generator 310 in step 730 performs a one-way hash using the hint and it the first secret to generate an intermediate index. The key generator 310 in step 735 performs a one-way hash function using the intermediate index and there second secret to generate the key. Accordingly, the encryption engine 315 in a step 740 encrypts the unencrypted data using the key. Method 630 then ends.

FIG. 8 is a flowchart illustrating a method 800 of decrypting enercypted data 140, in accordance with the present invention. Method 800 beginns with the browser 155 on the remote client 120 in step 810 requesting accessis to the encrypted data 140. It will be appreciated that remote client 116 may c only request a portion of encrypted data 140. In step 820, a determination is is made whether to perform client-side or server-side decryption. This determinination is preferably made by the original user setting a preference at account setetup or at

the time the encrypted data 140 being requested was placed on the glolobal server 105.

If server-side decryption is selected, then the global server 105 5 in step 830 executes the decryption algorithm, described in greater detail within reference to FIGs. 9 and 10. Method 800 then proceeds to step 840. I:If client-side decryption was selected, then the global server 105 in step 850 serends the client decryption downloadable 125, hint 145 and encrypted data to the remote client 120. The browser 155 in step 860 executes the client decryption downloadable 125. Method 800 then proceeds to step 840.

Then, in step 840, the remote client 120 can, for example, accesss the decrypted data. In another example, the remote client 120 in step 840 0 can attach the data to an e-mail and transmit the e-mail to another person. In yet another example, the remote client 120 in step 840 can encrypt the datata using another person's key, attach the data to an e-mail and transmit the e-mail to another person. It will be appreciated that, in either case where an e-mail is being sent, the global server 105 need not download the decrypted datata since the remote client 120 merely transmitting the e-mail and data to anotherer person. The global server 105 can perform these steps on behalf of the remote e client 120. Method 800 then ends.

FIG. 9 is a flowchart illustrating step 830 in greater detail as a n method 830 of server decryption. Method 830 begins with the global server 1005 in step 910 sending to the remote client 120 the server decryption downloadable 505 and hint 145 corresponding to the data selected. The remote client 1200 in step 920 executes the server decryption downloadable 505 to generate and d send the intermediate index to the global server 105, described in greater detail 1 with reference to FIG. 10. The key generator 530 of the server resident moodule 510 on the global server 105 in step 930 performs a one-way hash function n of the second secret 150 corresponding to the user of the remote client 120 arand the intermediate index to generate the key. It will be appreciated that step p 930 may include multiple hashes of the second secret, hints and index to generatate the

key. In the preferred embodiment, step 930 is more than concatenation of the second secret and intermediate index. Step 930 may conform to PKCSS standards or HMAC standards. The decryption engine 535 of the servicer resident module 510 on the global server 105 in step 940 uses the key to decrypt the requested encrypted data 140. In step 950, the global server 105 can, for example, send the decrypted data to the remote client 120 or alternatively enable the remote client 120 to perform some action on our manipulation of the decrypted data. Method 830 then ends.

FIG. 10 is a flowchart illustrating step 920 in greater detail, as a a method 920. Method 920 begins with the index generator 520 of the server deceryption downloadable 505 in step 1010 requesting the password from the user \mathbf{c} of the remote client 120. The index generator 520 in step 1020 performs a omne-way hash function of the password to compute the first secret, and in step 101030 performs a one-way hash function of the first secret and hint 145 to generate the intermediate index. The global server communications engine 525 of \mathbf{t} the server decryption downloadable 505 sends the index to the remote client communications engine 540 of the server resident module 510 on the g global server 105. Method 920 then ends.

FIG. 11 is a flowchart illustrating step 860 in greater detail, as a a method 860. Method 860 begins the key generator 405 of the client decryptions downloadable 125 in step 1110 requesting the password from the user \mathfrak{e} of the remote client 120. The key generator 405 in step 1120 performs a one-e-way hash function of the password to generate the first secret, and in step 11130 performs a one-way hash function of the first secret to generate the second secret. The key generator 410 in step 1140 performs a one-way hash function of the first secret and the hint 145 to generate the intermediate index, aland in step 1150 performs a one-way hash function of the second secret and ththe intermediate index to generate the key. The decryption engine 415 of \mathfrak{t} the client decryption downloadable 125 in step 1160 uses the key to decrypt the e encrypted data 140. Method 860 then ends.

One of ordinary skill will recognize that the key is never transmitted over computer network. It will be further appreciated that the passwoord is never transmitted over the internet. Accordingly, the key cannot be generated. Even if a hacker somehow obtained the password, the key could not be generated without obtaining the proper hash functions and hint corresponding to the data from the global server 105 (which requires proper identific:cation and authentication). It will be further appreciated that the second secret 1950 is transmitted only once across the network 110, and needed at the time t the data is to be decrypted.

It will be even further appreciated that, by distributing parts of **f** the decryption function to the remote client 120 and parts to the global serencer 105, it is not possible for either site alone to decrypt data without acquiring g additional information from the other site. One of ordinary skill will understand that by distributing the decryption function between the remote client and global server (referred to as double indirection), it is not possible for the global server to decrypt the file without acquiring additional information from the remote client. Hence, one of ordinary skill will understand that an unauthorized capture of information during network transfer will fail to provide enough information to decrypt encrypted data 140. Therefore, the syststem and method provide a heightened level of data security.

FIG. 12 is a flowchart illustrating a simple encryption method 1 1200, in accordance with the present invention. Method 1200 begins with the u user interface 305 in step 1205 requesting a password. The hint generator 3 325 in step 1210 generates a hint. The key generator 310 in step 1215 hashes:s the hint and the password to generate the key. The encryption engine 315 in ststep 1220 uses the key to encrypt data. Method 1200 then ends.

FIG. 13 is a flowchart illustrating a simple decryption method 1.1300 for decrypting data encrypted using encryption method 1200. Method 130:00 begins with the remote client 120 in step 1305 requesting access to encrypted data 140 stored on the server 105. The server 105 in step 1310 sends the encrypted data

140, the corresponding hint 145 and at least a portion of the client decreryption downloadable 125 to the remote client 120. The remote client 120 in s step 1315 executes the decryption downloadable 125. The user interface 405 in s step 1320 requests the password from the user. The key generator 410 in step 13:325 hashes the password and the hint to generate the key. The decryption e engine 415 in step 1330 uses the key to decrypt the encrypted data 140. Method 1300 then ends.

The foregoing description of the preferred embodiments of the p present invention is by way of example only, and other variations and modifications of the above-described embodiments and methods are possible in light of the foregoing teaching. Although the network sites are being described as a separate and distinct sites, one skilled in the art will recognize that these sites mmay be a part of an integral site, may each include portions of multiple sites, or r may include combinations of single and multiple sites. Further, components of this invention may be implemented using a programmed general purpose didigital computer, using application specific integrated circuits, or using a network of interconnected conventional components and circuits. Connections manay be wired, wireless, modem, etc. The embodiments described herein are nmot intended to be exhaustive or limiting. The present invention is limited d only by the following claims.

WHAT IS CLAIMED IS:

- 1 1. A method, comprising:
- 2 obtaining a hint;
- 3 obtaining a password;
- 4 performing a hashing algorithm on the hint and the password too generate
- 5 a key;
- 6 encrypting data using the key; and
- 7 sending the encrypted data to a server for storage.
- 1 2. The method of claim 1, wherein the step of performing a hashining
- 2 algorithm includes hashing the password.
- 1 3. The method of claim 1,
- wherein the step of performing a hashing algorithm includes hasashing the
- password to derive a first secret, hashing the first secret to derive a second
- 4 secret, hashing the hint and the first secret to generate an intermediate z index,
- and hashing the intermediate index and the second secret to generate thihe key.
- 1 4. A system, comprising:
- 2 a user interface for obtaining a password;
- a key generator coupled to the user interface for performing a hanshing
- 4 algorithm on a hint and the password to generate a key;
- an encryption engine coupled to the key generator for encrypting data
- 6 using the key; and
- a communications module coupled to the engine for sending there
- 8 encrypted data to a server for storage.
- 1 5. The system of claim 4, further comprising a hint generator for generating
- 2 the hint.

1 6. The system of claim 4, wherein the key generator hashes the parassword.

- 7. The system of claim 4, wherein the key generator hashes the parassword to
- derive a first secret, hashes the first secret to derive a second secret, harashes the
- 3 hint and the first secret to generate an intermediate index, and hashes tl the
- 4 intermediate index and the second secret to generate the key.
- 1 8. A system, comprising:
- 2 means for obtaining a hint;
- means for obtaining a password;
- 4 means for performing a hashing algorithm on the hint and the ppassword
- 5 to generate a key;
- 6 means for encrypting data using the key; and
- 7 means for sending the encrypted data to a server for storage.
- 1 9. The system of claim 8, wherein the system includes code stored d on a
- 2 computer-readable storage medium.
- 1 10. The system of claim 8, wherein the system includes code emboddied in a
- 2 carrier wave.

- 1 11. A method, comprising:
- 2 receiving a request to store encrypted data from a client;
- sending an encryption downloadable for deriving a key to encryrypt data to
- 4 the client;
- 5 receiving encrypted data that was encrypted by the encryption
- 6 downloadable from the client; and
- obtaining a hint, corresponding to the encrypted data and needeled for
- 8 regenerating the key; and
- 9 storing the hint and the encrypted data.
- 1 12. A system, comprising:
- an encryption downloadable for deriving an encryption key from a
- 3 password and a hint;
- a web server for interfacing with a client, for sending the encrypyption
- downloadable to the client, and for receiving encrypted data that was e encrypted
- 6 by the encryption downloadable from the client; and
- 7 memory coupled to the web server for storing a hint corresponding to the
- 8 encrypted data and needed to regenerate the key from the client and thehe
- 9 encrypted data.
- 1 Client-side decryption
- 2 13. A method, comprising:
- 3 obtaining a password;
- 4 receiving encrypted data and a hint corresponding to the encrypted data
- 5 from a server; and
- 6 performing a hashing algorithm on the password and the hint toto generate
- 7 a key for decrypting the encrypted data.
- 1 14. The method of claim 13, wherein the step of performing a hashining
- 2 algorithm includes hashing the password.

- 1 15. A system, comprising:
- a user interface for obtaining a password;
- a communications module for receiving the encrypted data and d a hint
- 4 corresponding to the encrypted data from a server;
- a key generator for performing a hashing algorithm on the pass sword and
- 6 the hint to generate a key for decrypting the encrypted data.
- 1 16. A system, comprising:
- 2 means for obtaining a password;
- means for receiving encrypted data and a hint corresponding to o the
- 4 encrypted data from a server; and
- 5 means for performing a hashing algorithm on the password and d the hint
- 6 to generate a key for decrypting the encrypted data.
- 1 17. The system of claim 16, wherein the system includes code storered on a
- 2 computer-readable storage medium.
- 1 18. The system of claim 16, wherein the system includes code embdodied in a
- 2 carrier wave.
- 1 19. A method, comprising:
- 2 receiving identification of encrypted data;
- sending a decryption downloadable for deriving a key from a paassword
- 4 and a hint to a client; and
- sending a hint corresponding to the encrypted data to the client. t.

- 1 20. A system, comprising:
- a decryption downloadable for deriving a key from a passwordd and a
- 3 hint;
- 4 encrypted data;
- a hint corresponding to the encrypted data; and
- a web server for interfacing with a client, and for sending the d decryption
- 7 downloadable, the encrypted data and the hint to the client.
- 1 Server-side decryption
- 2 21. A client-based method, comprising:
 - 3 obtaining a password;
 - deriving a first secret from the password;
 - receiving a hint corresponding to data to be decrypted from a seserver;
 - deriving an intermediate index from the first secret and the hinmt; and
 - 7 sending the intermediate index to the server.
 - 1 22. The method of claim 21, wherein deriving the first secret includes
 - 2 hashing the password.

1 23. The method of claim 21, wherein deriving an intermediate indexex

- 2 includes hashing the first secret and the hint.
- 1 24. A system, comprising:
- 2 a user interface for obtaining a password;
- an index generator coupled to the user interface for generating a an
- 4 intermediate index from a hint received from a server and a secret deririved from
- 5 the password; and
- a communications engine coupled to the index generator for seending the
- 7 intermediate index to the server.
- 1 25. The system of claim 24, wherein the index generator generate ththe
- 2 intermediate index by hashing the hint and the secret.
- 1 26. A system, comprising:
- 2 means for obtaining a password;
- means for deriving a first secret from the password;
- 4 means for receiving a hint corresponding to data to be decrypted from a
- 5 server;
- 6 means for deriving an intermediate index from the first secret annd the
- 7 hint; and
- 8 means for sending the intermediate index to the server.
- The system of claim 26, wherein the system includes code storered on a
- 2 computer-readable storage medium.
- 1 28. The system of claim 26, wherein the system includes code emboodied in a
- 2 carrier wave.

1	29	A server-based method,	comprising:
1	Z 2 .	A 301 vci-basea memos,	00p

- 2 receiving an indication of encrypted data to be decrypted;
- 3 transmitting to a client a hint corresponding to the indication, arand a
- 4 decryption downloadable for deriving an intermediate index from a pasassword
- 5 and the hint;
- 6 receiving the intermediate index from the client; and
- deriving a decryption key from a second secret corresponding toto the user
- 8 and the intermediate index.
- 1 30. A system, comprising:
- a second secret corresponding to a user;
- a decryption downloadable for generating an intermediate indexx from a
- 4 password and a hint;
- a web server for receiving an indication of encrypted data to be e
- 6 decrypted, for transmitting the decryption downloadable and a hint
- 7 corresponding to the indication to a client, and for receiving an intermediate
- 8 index from the client; and
- a server-resident module for deriving a key for decrypting the erencrypted
- 10 data from the second secret and the intermediate index.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

(SERVER DECRYPTION MODULE)

FIG. 5

(ENCRYPTION DOWNLOADABLE)

FIG. 7

SUBSTITUTE SHEET (RULE 26)

(SERVER DECRYPTION DOWNLOADABLE)

(REMOTE CLIENT DECRYPTION DOWNLOADABLE)

FIG. 11

SUBSTITUTE SHEET (RULE 26)

FIG. 13

INTERNATIONAL SEARCH REPORT

Interns al Application No to PCT/US 00/22812 2

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04L9/08										
110,	110,423, 33									
According to	International Patent Classification (IPC) or to both national classification	ion and IPC								
B. FIELDS S	SEARCHED'									
Minimum doo	cumentation searched (classification system followed by classification $H04L$	n symbols)								
		ch documents are included in the lields searched e and, where practical search terms used) vant passages Relielevant to claim No. ET AL) 1-:-30								
Documentati	on searched other than minimum documentation to the extent that su	ch documents are included ill lile libras so	эгслео							
Electronic da	ata base consulted during the international search (name of data base	e and, where practical, search terms used)								
EPO-Internal, WPI Data, PAJ										
C. DOCUME	C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category *	Citation of document, with indication, where appropriate, of the rele-	vant passages	Relifelevant to claim No.							
			1 : 20							
X	US 5 373 559 A (KAUFMAN CHARLES W 13 December 1994 (1994-12-13)		130							
	column 5. line 52 -column 6, line	52	İ							
	column 8, line 30 -column 13, line figure 5	e 17;								
A	CA 2 210 763 A (IBM CANADA)	·	3,7,7							
	17 January 1999 (1999-01-17)									
	abstract page 3, line 6 -page 4, line 19									
	page 8, line 1 - line 5		,							
A	EP 0 801 478 A (IBM)		1-:-30							
	15 October 1997 (1997-10-15)									
	abstract; figure 1 column 2, line 26 - line 50									
	column 5, line 1 - line 34		•							
Fun	her documents are listed in the continuation of box C.	od in the continuation of box C.								
1		T later document published after the inte	ater document published after the international fill filling date or priority date and not in conflict with the applicalication but							
consi	ent defining the general state of the art which is not dered to be of particular relevance	cited to understand the principle or the	ory underterlying the							
'E' earlier	document but published on or after the international date	cannot be considered novel or cannot	be considered to							
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	taimed invervention								
'O' document referring to an oral disclosure, use, exhibition or document is combined with one or more other susucn document.										
P docum	means ent published prior to the international filing date but than the priority date clairned	in the art.								
₹	actual completion of the international search	Date of mailing of the International sea	arch report it							
	11 December 2000	27/12/2000								
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2										
	NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Carnerero Álvaro, F								

INTERNATIONAL SEARCH REPORT

tniormation on patent family members

Intem: al Application No 4o
PCT/US 00/22812 2

Patent document cited in search report		Publication date	Patent tamily member(s)		Publication datate	
US 5373559	Α	13-12-1994	US	5491752 A	13-0:02-1996	
CA 2210763	Α	17-01-1999	NONE			
EP 0801478	Α	15-10-1997	US CA JP	5815573 A 2197915 A 10041932 A	29-0:09-1998 11-1:10-1997 13-0:02-1998	