TD3

Recherche Opérationnelle Modélisation

Exercice 1

Une entreprise fabrique deux produits P_1 et P_2 . La fabrication de ces produits nécessite du temps de travail (main d'oeuvre), du temps-machine et de la matière première. Les coefficients techniques de production ainsi que les prix de vente par unité de produit sont fournis dans le tableau suivant :

	P_1	P_2
Quantité de "travail" (exprimés en heures) nécessaire à le fabrication d'une unité.	0.75 h	0.5 h
Quantité de "temps-machine" (en h.) nécessaire à la fabrication d'une unité	1.5 h	0.8 h
Quantité de matière première (exprimée en nombre d'unité u) nécessaire à la fabrication d'une unité de produit	2u	1u
Prix de vente par unité (exprimé en unités monétaires : u.m)	15 u.m	8 u.m

Chaque semaine 400 unités de matière première au plus, peuvent être achetées à un prix de 1.5 u.m par unité.

L'entreprise emploie 4 personnes qui travaillent chacune 40 heures par semaine. La nature de leur travail est la main d'oeuvre. Ces personnes peuvent effectuer des heures supplémentaires qui sont payées à 6 u.m. l'unité.

Chaque semaine, la disponibilité en temps machine est de 320h.

En absence de publicité, la demande hebdomadaire du produit P_1 serait de 50 unités, celle de P_2 de 60 unités; mais on peut réaliser de la publicité pour développer les ventes, chaque unité monétaire dépensée en publicité sur P_1 (respectivement sur P_2) augmente la demande hebdomadaire de P_1 (resp. p_2) de 10 unités (resp. de 15 unités). Les frais de publicité ne doivent pas dépasser 100 u.m par semaine.

Les quantités de P_1 et P_2 fabriquées doivent rester inférieures ou égales à la demande réelle (comptetenu de la publicité).

On définit les 6 variables suivantes :

- $-X_1$: nombre d'unités du produit 1 fabriquées par semaine.
- X₂: nombre d'unités du produit 2 fabriquées par semaine.
- HS: nombre total d'heures supplémentaires effectuées par semaine.
- $-\ MP$: nombre d'unités de matière première achetées par semaine.
- PUB₁: nombre d'unités monétaires dépensées en publicité sur P₁
- $-\ PUB_2$: nombre d'unités monétaires dépensées en publicité sur P_1

L'entreprise désire fixer la valeur de chacun de ces variables de manière à maximiser son bénéfice :

Bénéfice = Chiffre de vente - Somme des coûts variables

Le salaire (coût des heures normales) des quatre personnes est un coût fixe pour l'entreprise.

Question : modéliser le problème à l'aide des six variables qui sont proposées, sous forme de programme linéaire. La résolution n'est pas demandée.

Exercice 2

Un fabriquant désire produire 100 kg d'une préparation de base pour crème glacée. Cette préparation doit contenir 21.5 kg de matière grasse, 21 kg de sucre, 1.2 kg d oeuf et 56,3 kg d'eau. Les ingrédients

dont il dispose figure en tête des colonnes du tableau ci-dessous; les constituants figurent en ligne. Ce tableau précise également les pourcentages (en poids) de chaque constituant dans chaque ingrédient ainsi que le coût, au kg, de chaque ingrédient.

Constituants	Ingrédients						
	Crème	Jaune d'oeuf	Lait entier en poudre	Jaune d'oeuf	Sirop de sucre de canne	Eau	
· · · ·	40	50	12	30			
Matière grasse	40	90		14	70		
Sucre				40			
Oeuf		40	2 1 1 1		30	100	
Eau	60	10	88	16		1	
Coût au kg (en F)	3	4	1	2	0,80	0,00	

Le fabriquant désire déterminer la composition du mélange de coût minimal. Ecrire le programme linéaire correspondant à ce problème.

Exercice 3

Une raffinerie peut traiter trois pétroles bruts n°1, n°2 et n°3.

Par distillation fractionnée dans les "toppings" ces bruts donnent des coupes qui sont des ensembles d'hydrocarbures ayant des températures d'ébullition comprises entre les limites fixées.

On obtient par exemple:

- des gaz
- une gazoline 0-80°C
- une benzine 80-130°C
- -un naphta léger 130-160°C
- un naphta lourd 160-190°C
- un kérosène 190-230 $^{\circ}\mathrm{C}$
- un gasoil léger 230-310°C
- un gasoil lourd 310-400°C
- un fuel-oil $> 400^{\circ}$ C

Ces coupes subissent ensuite des traitements complémentaires (épuration, désulfuration, cracking, reforming catalytique) pour devenir des bases qui, convenablement mélangées, permettront d'obtenir les produits commerciaux désirés.

C'est ainsi que la raffinerie considérée fabrique cinq catégories de produits finis :

- des gaz et des gaz liquéfiés
- des essences
- du pétrole
- du gasoil

Les rendements de pétroles bruts traités sont précisés dans le tableau ci-après (qui explicite les quantités produites à partir d'une tonne de brut) :

	Matière première		
Part State	Brut nº1 Afrique	Brut nº2 Moyen-Orient	Brut nº3 Amérique
Production en t.		Brack H = - y	0.06
Gaz et gaz liquéfiés	0,02	0.05	0.30
Essences	0,20	0,25	0.04
Pétrole	0.08	- 1	-7-
	0.40	0.25	0,30
Gasoil	0,1-0	0.50	0,30
Fuel-oil	0.30	0,50	1
Total	1	1	1

La raffinerie peut produire au maximum, au cours d'une année :

- 300 000 t. de gaz et gaz liquéfiés
- 1 050 000 t. d'essences
- 180 000 t. de pétrole
- 1 350 000 t. de gasoil

- 1 800 000 t. de fuel-oil

(Sa production est limitée par la capacité de certaines unités de traitement, par les possibilités de ventes et par les stockages disponibles).

La raffinerie réalise un bénéfice de 4 unités monétaires par tonnes de brut $n^{o}1$, de 5 unités monétaires par tonne de brut $n^{o}2$ et de 5 unités monétaires par tonne de brut $n^{o}3$.

Formuler de problème par un programme linéaire.

Exercice 4

On désire déterminer la composition, à coût minimal, d'un aliment pour bétail qui est obtenu en mélangeant au plus trois produits brut :

- Orge,
- arachide,
- sésame.

L'aliment ainsi conditionné devra comporter (pour se conformer aux exigences de la clientèle) au moins

- 22% de protéines,
- 3.6% de graisses,

On a indiqué ci-dessous les pourcentages de protéines et de graisses contenues, respectivement, dans l'orge, les arachides et le sésame, ainsi que le coût par tonne de chacun des produits bruts :

produit brut	orge	arachides	sésame	pourcentage requis
pourcentages de protéines	12%	52%	42%	22%
pourcentages de graisses	2%	2%	10%	3.6%
coût par tonne	25	41	39	

Questions:

- 1. On notera $x_j = (j = 1, 2, 3)$ la fraction de tonne de produit brut j contenu dans une tonne d'aliment. Formuler le problème algébriquement.
- 2. Montrer qu'il est possible de réduire la dimension du problème. Le résoudre géométriquement.

Exercice 5

Un atelier peut fabriquer trois types d'articles :

- l'article A_1 à la cadence de 35 objets à l'heure.
- l'article A_2 à la cadence de 45 objets à l'heure.
- l'article A_3 à la cadence de 20 objets à l'heure.

Cette fabrication utilise une machine-outil unique, disponible 200 heures par mois.

Le bénéfice unitaire pour l'article A_1 est de 60 euros par objet, pour A_2 de 40 euros, pour A_3 de 80 euros. Ces objets sont vendus en totalité à des grossistes; on a observé qu'on ne pouvait écouler, par mois, plus de 4900 objets du type A_1 , ni plus de 5400 objets du type A_2 , ni plus de 2000 objets du type A_3 .

D'autre part, chaque objet doit être vérifié avant sa commercialisation; une équipe de trois techniciens est chargée de cette mission; chaque technicien travaille 170 heures par mois. La vérification d'un objet du type A_1 prend quatre minutes, du type A_2 , trois minutes, du type A_3 , deux minutes.

Question : Montrer qu'une contrainte est redondante (c'est-à-dire qu'elle est impliquée par une ou plusieurs autres). Interpréter géométriquement cette redondance.

 $\underline{\text{Question}}: \text{Classer alors les produits par bénéfice horaire décroissants et faire une résolution économique de ce problème.}$