INTRODUCTION TO STATISTICS

LECTURE 1

• EVGENIYA Korneva

evgeniakorneva@gmail.com

- Education:
 - 2015 Bachelor of Applied Mathematics (Moscow, Russia)
 - 2016 Master of Artificial Intelligence (Leuven, Belgium)

• EVGENIYA Korneva

evgeniakorneva@gmail.com

- Education:
 - 2015 Bachelor of Applied Mathematics (Moscow, Russia)
 - 2016 Master of Artificial Intelligence (Leuven, Belgium)
- 2016 ... Doctoral researcher at KU Leuven

• EVGENIYA Korneva

evgeniakorneva@gmail.com

- Education:
 - 2015 Bachelor of Applied Mathematics (Moscow, Russia)
 - 2016 Master of Artificial Intelligence (Leuven, Belgium)
- 2016 ... Doctoral researcher at KU Leuven

Prague, Czech Republic

ABOUT THE COURSE

- Class: 09:00 12.20
 - two 10-minute break
- Office hours: 13.00 14.00
 - Want to talk?Send me an email first!
- Materials will be posted after class.

ABOUT THE COURSE

- Class: 09:00 12.20
 - two 10-minute break
- Office hours: 13.00 14.00
 - Want to talk?Send me an email first!
- Materials will be posted after class.

- Final grade:
 - 5 graded assignments (20 pts each)
 - mid-term exam (? December 11 or 12)
 - final exam
 (? December 17 or 18)
- First graded assignment out today.
 Deadline: this Thursday.
- Please complete the ENTRY TEST by tomorrow evening!

LET'S STRAT!

• How do you imagine Statistics?

- How do you imagine Statistics?
 - Can you think of any example of Statistics?

WE'RE ALL FOLLOWING THESE STATISTICS...

Percent of infected, deaths and recovered (Global)

- How do you imagine Statistics?
 - Can you think of any example of Statistics?
 - What is it?

- How do you imagine Statistics?
 - Can you think of any example of Statistics?

• What is it?

• Why do we need it?

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Vital in research, politics, management, business...

• Statistics is a collection of methods which help us to describe, summarize, interpret and analyse data.

• Vital in research, politics, management, business...

• There are different kinds of Statistics...

STATISTICS: EXAMPLE 1

STATISTICS: EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-female-leaders/

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

EXAMPLE 1

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-female-leaders/

WATCH THE VIDEO:

https://bit.ly/3fy8nzd

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

EXAMPLE 1

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

EXAMPLE 2

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-female-leaders/

WHAT'S THE DIFFERENCE BETWEEN THE TWO?

DESCRIPTIVE STATISTICS

Source: https://www.statista.com/chart/4467/female-employees-at-tech-companies/

INFERENTIAL STATISTICS

Source: https://www.statista.com/chart/20018/canada-most-comfortable-with-female-leaders/

DESCRIPTIVE VS INFERENTIAL STATISTICS

DESCRIPTIVE STATISTICS

• Describe the data at hand.

INFERENTIAL STATISTICS

• From the data at hand, make conclusions about a larger group.

DESCRIPTIVE STATISTICS

Describing the data at hand

DATA

• Statistic is all about data.

Percent of infected, deaths and recovered (Global)

DATA

• Statistic is all about data.

ACTIVE CASES

Percent of infected, deaths and recovered (Global

- But what kinds of data are there?
 - Important to know: different methods are applicable to different kinds of data.

QUANTITATIVE

measurable quantities

QUALITATIVE

QUANTITATIVE

measurable quantities

QUALITATIVE

- Air temperature (-1, 15, 21.5, ...)
- Shoe size (38, 39, 40, ...)
- Score for the final exam (100, 0, 85, ...)

QUANTITATIVE

measurable quantities

QUALITATIVE

- Air temperature (-1, 15, 21.5, ...)
- Shoe size (38, 39, 40, ...)
- Score for the final exam (100, 0, 85, ...)

- Eye colour (blue, brown, grey, ...)
- Political party you support (Republicans, Democrats, ...)
- Type of transport you use to commute (metro, bus, bike, ...)

• Consider variable SEX that takes two values:

'male' or 'female'.

NAME	SEX
Ann	Female
Bob	Male
Kate	Female
Nick	Male

• Consider variable SEX that takes two values:

'male' or 'female'.

- In a dataset
 - 'male' is represented as 0
 - 'female' is represented as 1.

NAME	SEX
Ann	Female
Bob	Male
Kate	Female
Nick	Male

NAME	SEX
Ann	1
Bob	0
Kate	1
Nick	0

Consider variable SEX that takes two values:

'male' or 'female'.

- In a dataset
 - 'male' is represented as 0
 - 'female' is represented as 1.

NAME	SEX
Ann	Female
Bob	Male
Kate	Female
Nick	Male

NAME	SEX
Ann	1
Bob	0
Kate	1
Nick	0

Is SEX a qualitative or a quantitative variable now?

QUANTITATIVE

measurable quantities

can be ordered

• Air temperature (-1, 15, 21.5, ...)

- Shoe size (38, 39, 40, ...)
- Score for the final exam (100, 0, 85, ...)

QUALITATIVE

can't be ordered

- Eye colour (blue, brown, grey, ...)
- Political party you support (Republicans, Democrats, ...)
- Type of transport you use to commute (metro, bus, bike, ...)

Discrete vs Continuous Variables

CONTINIOUS

DISCRETE

Discrete vs Continuous Variables

CONTINIOUS

take infinite number of values

DISCRETE

take finite number of values

Discrete vs Continuous Variables

CONTINIOUS

take infinite number of values

DISCRETE

take finite number of values

- Some quantitative variables:
 - height;
 - time to travel to work;
 - etc.

Discrete vs Continuous Variables

CONTINIOUS

take infinite number of values

DISCRETE

take finite number of values

- Some quantitative variables:
 - height;
 - time to travel to work;
 - etc.

- All qualitative variables.
- Some quantitative variables:
 - shoe size;
 - etc.

NOW, LET'S ANALYZE SOME DATA!

OUR DATASET

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

• You are considering joining a company.

OUR DATASET

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

• You are considering joining a company.

• What could you learn from the data available?

How old are the employees there? How much do they make?

Measures of center: mean and median

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

What is the mean age?

$$\frac{30 + 30 + 20 + 45 + 25 + 30 + 25 + 40 + 35 + 20}{10} = \textbf{30}$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	- 1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	- 1

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• What is the mean age?

$$\frac{30 + 30 + 20 + 45 + 25 + 30 + 25 + 40 + 35 + 20}{10} = \mathbf{30}$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	- 1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	- 1

• Sample mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• What is the mean age?

$$\frac{30 + 30 + 20 + 45 + 25 + 30 + 25 + 40 + 35 + 20}{10} = \textbf{30}$$

$$\frac{3+4+1+50+2+3+4+1+2+1}{10} = 7.2$$

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		- 1
4	Nick	M	45	CEO		50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		- 1
9	Laura	F	35	HR		2
10	Jack	M	20	PR		ı

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

What is the mean age?

$$\frac{30+30+20+45+25+30+25+40+35+20}{10}=\mathbf{30}$$

$$\frac{3+4+1+50+2+3+4+1+2+1}{10} = (7.2)$$

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		
4	Nick	M	45	CEO ou	tlier	50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		1
9	Laura	F	35	HR		2
10	Jack	M	20	PR		I

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

What is the mean age?

$$\frac{30+30+20+45+25+30+25+40+35+20}{10}=\mathbf{30}$$

$$\frac{3+4+1+50+2+3+4+1+2+1}{10} = (7.2)$$

SENSITIVE TO OUTLIERS (3)

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		
4	Nick	M	45	CEO ou	tlier	50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		I
9	Laura	F	35	HR		2
10	Jack	M	20	PR		1

• Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

What is the mean age?

$$\frac{30 + 30 + 20 + 45 + 25 + 30 + 25 + 40 + 35 + 20}{10} = \mathbf{30}$$

$$\frac{3+4+1+50+2+3+4+1+2+1}{10} = 7.1$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

• A value such that 50% of the data is lower than it, and 50% is higher.

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		- 1
4	Nick	M	45	CEO		50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		1
9	Laura	F	35	HR	R	
10	Jack	M	20	PR		ı

• A value such that 50% of the data is lower than it, and 50% is higher.

		FΛ				
3	4	50	 5	4	Z	

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		- 1
4	Nick	M	45	CEO		50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		-1
9	Laura	F	35	HR		2
10	Jack	М	20	PR		- 1

• A value such that 50% of the data is lower than it, and 50% is higher.

sort from min to max

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		- 1
4	Nick	M	45	CEO		50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		- 1
9	Laura	F	35	HR		2
10	Jack	М	20	PR		- 1

• A value such that 50% of the data is lower than it, and 50% is higher.

sort from min to max

What is the median salary?

take the value(s) in the middle

	NAME	SEX	AGE	POSITION	SAL (in \$1	
1	Ann	F	30	Manager		3
2	Bob	M	30	Manager		4
3	Kate	F	20	Secretary		- 1
4	Nick	M	45	CEO		50
5	John	M	25	HR		2
6	Alice	F	30	Manager		3
7	Joe	M	25	Manager		4
8	Dan	M	40	PR		- 1
9	Laura	F	35	HR		2
10	Jack	М	20	PR		- 1

• A value such that 50% of the data is lower than it, and 50% is higher.

sort from min to max

LESS SENSITIVE TO OUTLIERS ©

• A value such that 50% of the data is lower than it, and 50% is higher.

sort from min to max

What is the median salary?

Mean salary: 7.1

Median salary: 2.5

LESS SENSITIVE TO OUTLIERS ©

• A value such that 50% of the data is lower than it, and 50% is higher.

sort from min to max

What is the median salary?

What is the median age?

LESS SENSITIVE TO OUTLIERS ©

• A value such that 50% of the data is lower than it, and 50% is higher.

What is the median salary?

What is the median age?

					1				
20	20	25	25	30	30	30	35	40	45

LESS SENSITIVE TO OUTLIERS ©

• A value such that 50% of the data is lower than it, and 50% is higher.

What is the median salary?

What is the median age?

How different are the salaries? How different are the ages?

Measures of spread: variance and standard deviation, percentiles

SAMPLE VARIANCE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	l
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

 Sample variance: average squared distance from all the points to the mean:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

SAMPLE VARIANCE

Sometimes, **(n-1)** instead of **n**. We'll discuss the reasons for that later

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

 Sample variance: average squared distance from all the points to the mean:

$$Var(X) = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

SAMPLE VARIANCE
$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	М	25	Manager	4
8	Dan	М	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

SAMPLE VARIANCE
$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

What is the variance of age?

$$[(30-30)^{2} + (30-30)^{2} + (20-30)^{2} + (45-30)^{2} + (25-30)^{2} + (30-30)^{2} + (40-30)^{2} + (35-30)^{2} + (20-30)^{2} + (20-30)^{2}]/10 = 60$$

SAMPLE VARIANCE
$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	М	25	Manager	4
8	Dan	М	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

What is the variance of age?

$$[(30-30)^{2} + (30-30)^{2} + (20-30)^{2} + (45-30)^{2} + (25-30)^{2} + (30-30)^{2} + (25-30)^{2} + (40-30)^{2} + (35-30)^{2} + (35-30)^{2} + (20-30)^{2}]/10 = 60 YEARS^{2}$$

SAMPLEVARIANCE

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	М	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	Ī
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

What is the variance of age?

SAMPLE VARIANCE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

• Standard deviation: square root of variance:

$$std(X) = \sqrt{Var(X)}$$

SAMPLE VARIANCE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	ı

• Standard deviation: square root of variance:

$$std(X) = \sqrt{Var(X)}$$

What is the standard deviation of age?

SAMPLEVARIANCE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	ı

Standard deviation: root of variance:

$$std(X) = \sqrt{Var(X)}$$

• What is the standard deviation of age?

deviation of age?

std(AGE) =
$$\sqrt{60} \sim 7.8$$

SAMPLE VARIANCE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

• Standard deviation: square root of variance:

$$std(X) = \sqrt{Var(X)}$$

• What is the standard deviation of age?

$$std(AGE) = \sqrt{60} \sim 7.8 \text{ YEARS}$$

What positions are the most common there?

Measures of center: mode

MODE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

Mode: the most common value of a variable.

MODE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

- Mode: the most common value of a variable.
- What's the mode of POSITION?

'Manager'

MODE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

- Mode: the most common value of a variable.
- What's the mode of POSITION?

'Manager'

What's the mode of SEX?

MODE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	I
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	M	20	PR	I

- Mode: the most common value of a variable.
- What's the mode of POSITION?

'Manager'

What's the mode of SEX?'M'

Are men and women equally represented at each position?

Contingency tables

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	- 1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	1

Position / Sex	M	F	TOTAL
CEO	_	0	1
Manager	2	2	4
HR			
PR			
Secretary			
TOTAL			75

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	1

Position / Sex	M	F	TOTAL
CEO	_	0	1
Manager	2	2	4
HR	-	_	2
PR			
Secretary			
TOTAL			76

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	- 1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	1

Position / Sex	M	F	TOTAL
CEO	_	0	I
Manager	2	2	4
HR			2
PR	2	0	2
Secretary			
TOTAL			77

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	1

Position / Sex	M	F	TOTAL
CEO	_	0	1
Manager	2	2	4
HR		I	2
PR	2	0	2
Secretary	0	I	1
TOTAL			70

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	- 1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	1
9	Laura	F	35	HR	2
10	Jack	M	20	PR	1

Position / Sex	M	F	TOTAL
CEO	_	0	1
Manager	2	2	4
HR	-	_	2
PR	2	0	2
Secretary	0	_	1
TOTAL	6	4	10

Are men and women paid equally?

Pivot tables

PIVOT TABLE

	NAME	SEX	AGE	POSITION	SALARY (in \$1000)
1	Ann	F	30	Manager	3
2	Bob	M	30	Manager	4
3	Kate	F	20	Secretary	1
4	Nick	M	45	CEO	50
5	John	M	25	HR	2
6	Alice	F	30	Manager	3
7	Joe	M	25	Manager	4
8	Dan	M	40	PR	I
9	Laura	F	35	HR	2
10	Jack	М	20	PR	I

CATEGORICAL x NUMERIC VARIABLE

SEX x SALARY

Sex	Mean salary (in \$1000)
F	(3 + 1 + 3 + 2)/4 = 2.25
M	

PIVOT TABLE

SALARY NAME SEX AGE **POSITION** (in \$1000) 30 Manager Ann M Manager Bob 30 F 20 Secretary Kate 45 M CEO 50 Nick John 25 HR Alice 30 Manager 25 Manager Joe M 8 M PR Dan 40 F 35 HR Laura 10 Jack PR M 20

CATEGORICAL x NUMERIC VARIABLE

SEX x SALARY

Sex	Mean salary (in \$1000)
F	(3 + 1 + 3 + 2)/4 = 2.25
M	(4+50+2+4+1+1)/6=10.3

NOW, LET'S PRACTICE WITH SOME REAL DATA!

Summary statistics + basic plots in Python

TO SUM UP...

• Two branches of Statistics.

- Data types
 - numerical vs categorical;
 - continuous vs discrete.
- Descriptive Statistics
 - summary statistics;
 - tables;
 - plots.

TO SUM UP...

- Two branches of Statistics.
- Data types
 - numerical vs categorical;
 - continuous vs discrete.
- Descriptive Statistics
 - summary statistics;
 - tables;
 - plots.

Please complete the ENTRY TEST!

- Assignment 1 is online
 - 20 points
 - Deadline: Thursday 23:59.