Text Analysis

Topic Models

Dirk Hovy

dirk.hovy@unibocconi.it

Goals for Today

- Understand what information topic models can and can not provide
- Learn about the Latent Dirichlet Allocation (LDA) model
- Understand the parameters influencing the output
- Learn about evaluation criteria

What Gets Funded?

What do People Want in Smart Devices?

Latent Dirichlet Allocation

How to Generate Documents

- Draw a topic distribution θ 0,14 0,14
 - 0,14 0,14 0,29 0,29 0,14

- For i in N:
 - Draw a topic from θ
 - Sample a word from the word distribution z

Opics per Document $\theta = P(topic | document)$

Document 2 0,04 0,13 0,13 0,04 Document 2 0,14 0,14 0,29 0,29 0,14 Document 3 0,17 0,17 0,17 0,33 0,17 Document 4 0,47 0,20 0,07 0,07 0,20 0,79 Document N 0,04 0,11 0,04 0,04	7	Topic 1	Topic 2	Topic 3	Topic 4	B Topic 5 1
0,04 0,13 0,13 0,04 Document 2 0,14 0,14 0,29 0,29 0,14 Document 3 0,17 0,17 0,17 0,33 0,17 Document 4 0,47 0,20 0,07 0,07 0,20	Document N	0,04	0,11	0,04	0,04	
Document 2 0,04 0,13 0,13 0,04 Document 2 0,14 0,14 0,29 0,29 0,14 Document 3 0,17 0,17 0,17 0,33 0,17 Document 4 0,47 0,20 0,07 0,07 0,20	•••					
0,04 0,13 0,13 0,04 Document 2 0,14 0,14 0,29 0,29 0,14 Document 3 0,04	Document 4					
0,04 0,13 0,13 0,04 Document 2 0,04 0,20 0,20	Document 3	0,17	0,17	0,17	0,33	0,17
	Document 2	0,14	0,14	0,29	0,29	0,14
0,65	Document 1	0,04	0,13	0,13	0,65	0,04

Plate Notation

Dirichlet Distributions

"DISTRIBUTION GENERATOR"

Evaluating LDA

CONTENT-BASED

[apple, banana, pear, lime, orange]

[apple, banana, foot, lime, orange]

WHICH ONE'S WRONG?

Word and Topic Intrusion

Choose a word that is not related to others								
Oloud	time	O music	o sound	O quality	speaker			
	We	ORD 11	VTRUS	5101				
TOPIC INTRUSION								
Which group of words does not describe the following sentence:								
I get my morning facts and news all in one easy to use system.								
easy, use, setup, simple, install								
O control, command, system, integration, smart								
music, weather, news, alarm, timer								
price, buy, sale, deal, item								

Training and Parameters

Preprocessing

- Be aggressive:
 - lemmatization,
 - stopwords,
 - replace numbers/user names,
 - join collocations
 - use TFIDF
- use minimum document frequency 10, 20, 50, or even 100
- use maximum document frequency 50% 10%

Training

- Goal: Find distributions θ and z
- In LM: use MLE (count and divide)
- In topic models: ??? (can't count what you don't see)

P(DATA) STOPS CHANGING

Initialize θ and z randomly

Repeat until convergence:

"Hallucinate" topics from current θ and z

Count hallucinated topics

Normalize

Parameters: K

Coherence Scores

Parameters: α

MORE UNIFORM: EVERY TOPIC IN EVERY DOCUMENT

0,21 0,19 0,20 0,21 0,19

MORE PEAKED:

ONE DOMINANT TOPICIDOC

0,04

0,04

0,04

0.01

1.0

Parameters: B

ALL WORDS FOR ALL TOPICS

WORDS ARE HIGHLY TOPIC-SPECIFIC

0.01

Bocconi

Caveats!

Topic models ALWAYS need manual assessment, because:

- Random initialization: no two models are the same!
- More likely models ≠ more interpretable topics
- "Interpretable" is subjective
- Topics are not stable from run to run

Topic or Not?

- "pasta, pizza, wine, sauce, spaghetti"
- "BLEU, Bert, encoder, decoder, transformer"

Author Topic Models

Learn separate topic distribution for external factors

Wrapping Up

Take-Home Points

- LDA is one architecture for topic models
- Model document generation conditioned on latent topics
- Topic models are stochastic: each run is different
- Preprocessing and parameters influence performance
- Results need to be interpreted!

