

SOLID BOND MODEL: MAXWELL MODEL

Bond properties:

$$L_b = L_1 - \sqrt{r_1^2 - r_b^2} - \sqrt{r_2^2 - r_b^2}$$
 (Recalculated in each step)

$$I = \frac{\pi \cdot R_b^4}{4}$$

$$J = \frac{\pi \cdot R_b^4}{2}$$

$$A_b = \pi \cdot R_b^2$$

$$k_n = E$$

$$k_t = \frac{E}{2(1+\nu)}$$

$$\tau_n = \eta/k_n$$

$$\tau_t = \eta/k_t$$

Contact vector:

$$\bar{r}_c = O_2 - O_1$$

$$\bar{r}_n = \frac{O_2 - O_1}{|O_2 - O_1|}$$

Velocities:

$$\bar{v}_{rel} = \bar{v}_2 - \bar{v}_1 - \frac{(\overline{\omega}_1 + \overline{\omega}_2) \times \overline{r_c}}{2}$$

$$\overline{\omega}_{rel} = \overline{\omega}_1 - \overline{\omega}_2$$

$$\overline{\omega}_{rel,n} = \bar{r}_n \cdot (\bar{r}_n \cdot \overline{\omega}_{rel})$$

$$\bar{v}_{rel,n} = \bar{r}_n \cdot (\bar{r}_n \cdot \bar{v}_{rel})$$

$$\overline{\omega}_{rel,t} = \overline{\omega}_{rel} - \overline{\omega}_{rel,n}$$

$$\Delta \bar{\delta}_{\omega n,b} = \bar{\omega}_{rel,n} \cdot \Delta t$$

$$\Delta \bar{\delta}_{\omega t,b} = \bar{\omega}_{rel,t} \cdot \Delta t$$

$$\Delta \bar{\delta_t} = \vec{v}_{rel,t} \cdot \Delta t$$

Forces and moments:

Forces and moments which are acting at the time point $(t + \Delta t)$ are calculated as increment to the values on the previous time step (t).

Normal direction

$$\bar{F}_{n,b}^{t+\Delta t} = T \cdot \bar{F}_{n,b}^{t} \cdot (1 - \Delta t / \tau_n) + \Delta \bar{\delta}_n \cdot k_n \cdot \frac{A_b}{L_{init}}$$

$$\bar{M}_{n,b}^{t+\Delta t} = T \cdot \bar{M}_{n,b}^{t} + \Delta \vec{\delta}_{\omega n,b} \cdot \frac{k_t}{L_{init}} \cdot J$$

Tangential direction

$$\bar{F}_{t,b}^{t+\Delta t} = T \cdot \bar{F}_{t,b}^{t} \cdot (1 - \Delta t / \tau_t) + \Delta \bar{\delta}_t \cdot k_t \frac{A_b}{L_{init}} ;$$

$$\overline{M}_{t,b}^{t+\Delta t} = T \cdot \overline{M}_{t,b}^{t} + \Delta \vec{\delta}_{\omega t,b} \cdot \frac{k_n}{l_{init}} \cdot I$$

$$M_{tot} = M_{t,b} + M_{n,b} + \frac{r_c}{2} \cdot F_{t,b}$$

Breakage criteria

The model has parameter consider breakage (1 - yes, 0 - no). If 0 value is specified, then no breakage can occurs. This breakage analysis can be disabled to improve computational performance.

$$\frac{F_{n,b}}{A_b} + \frac{M_{t,b} \cdot R_b}{I} = \sigma_{max}$$

$$\frac{F_{t,b}}{A_b} + \frac{M_{n,b} \cdot R_b}{I} = \tau_{max}$$

Literature

This model is a part of current research work – results will be published.

Symbol	Description
A_b	Cross-cut surface of the bond [m ²]
$\Delta \overline{\delta}_{\omega n,b}, \Delta \overline{\delta}_{\omega t,b}$	Increment of displacement (in current step) between particles in contact
	point due to the rotational velocities [m]
$\Delta \overline{oldsymbol{\delta}}_t$	Tangential displacement in the current step [m]
η	Dynamic viscosity [Pa s]
E	Young modulus for particle or bond [Pa]
I,J	Moments of inertia of the bond [m ³]
k_n, k_t	Spring constant [Pa]
L_b	Current bond length
L_{init}	Initial bond length [m]
o_1, o_2	Centers of contact partners [m]
r_1, r_2	Particle radii [m]
r_b	Bond radius [m]
T	Transformation matrix (to consider rotation of the bond) [-]
$\overline{\omega}_1,\overline{\omega}_2$	Rotation velocities of particles [rad/s]