Доп. задачи из книг "Сборник задач по математическому анализу". Том 3. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упражнениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Дифференциал, производная по направлению и градиент

- **1.** Найдите значение дифференциала функции u в точке M_0 на векторе смещения hесли: **a)** $u = x\sqrt{1+y^3}$, $M_0(2,2)$, $\vec{h} = (0,1/2)$; **б)** $u = x^{2y}$, $M_0(4,1)$, $\vec{h} = (1/10,1/5)$. Cm. c. 66 - c. 67, $N_{2}13 - N_{2}18$ [1], $N_{2}8.45$ [2].
- **2.** а) Найдите производную функции $f(x,y) = x x^2y + y^4$ в точке A(1,1) по направлению вектора AB, где B(4, -2).
- **б)** Найдите производную функции $f(x,y) = x^2 xy + y^2$ в точке A(1,1) по направлению $(\cos \alpha, \sin \alpha)$ и выясните, при каком α эта производная принимает минимальное значение, максимальное значение и нулевое значение.
- Cm. c. 71 c. 72, $N_{\overline{2}}37 N_{\overline{2}}49$ [1], $N_{\overline{2}}8.217 N_{\overline{2}}8.223$ [2].
- **3.** Найдите угол наклона поверхности $z = x^2 + 4y^2$ в направлении её максимального возрастания в точке (2, 1, 8).
 - 4. Покажите, что функция

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

имеет производные по всем направлениям в точке (0,0), но не дифференцируема в этой точке.

Матрица Якоби

- 5. Найдите матрицу Якоби отображения:
- a) $x = u^2 + v^2 + w^2$, y = u + v + w; 6) $x = r \cos \varphi \cos \psi$, $y = r \sin \varphi \cos \psi$, $z = r \sin \psi$. См. с. 78 - c. 79, N = 101 - N = 107 [1], N = 8.13 - N = 8.32 [2].

Производные и дифференциалы высших порядков, смешанные производные

- **6.** Покажите, что функция $u=\ln(x^2+y^2)$ удовлетворяет уравнению $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial u^2}=0.$ Cm. c. 70, $N_{2}31 - N_{2}32$ [1], $N_{2}8.7 - N_{2}8.12$ [2].
- 7. Найдите частные производные указанного порядка: а) $u=\sin\frac{x}{y},\ \frac{\partial^3 u}{\partial x^3},\ \frac{\partial^3 u}{\partial x\partial y^2};$ б) $u=e^{x^2+y^2+z^2},\ \frac{\partial^3 u}{\partial x^2\partial y},\ \frac{\partial^3 u}{\partial x\partial y\partial z}.$ Cm. c. 92, $N_{\underline{0}}8 - N_{\underline{0}}13$ [1], $N_{\underline{0}}8.1$ [2].
 - 8. Найдите дифференциалы первого и второго порядков для следующих функций:
- a) u = xy + yz + zx; 6) $u = \cos(e^x y)$. Cm. c. 92 c. 93, $N^014 N^019$ [1], $N^08.39 N^08.44$ [2].
 - **9.** Найдите дифференциалы порядка n:
- a) u = xy + yz + zx, n = 3; 6) $u = \frac{x^2}{y+1}$, n = 2; B) $u = \sin(x^2 + y^2)$, n = 3. См. с. 93 - c. 94, N = 20 - N = 26 [1], N = 8.39 - N = 8.44 [2].
 - **10.** Покажите, что $f''_{xy}(0,0) \neq f''_{yx}(0,0)$, если:

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

1

Какое условие теоремы Шварца нарушено?

Домашнее задание 15

- **1.** Найдите значение дифференциала функции u в точке M_0 на векторе смещения \dot{h} :
- a) $u = x^3y xy^3$, $M_0(1,2)$, $\vec{h} = (-1/2, 4/5)$; 6) $u = \sqrt[3]{4x^2 + y^2}$, $M_0(1,2)$, $\vec{h} = (-1/5, 3/10)$.
- **2. а)** Найдите производную функции $f(x,y) = x^3 x^2y + y^3 1$ в точке A(2,1) по направлению, образующему угол $\pi/6$ с осью Ox.
- **б)** Найдите производную функции u(x,y,z) = xy + yz + xz в точке M(-1,2,2) по направлению вектора $\overrightarrow{a} = (-2, 1, 2)$.
 - 3. Найдите матрицу Якоби отображения:
- a) $x = u \cos v$, $y = u \sin v$; 6) $x = u \ln \left(\frac{v}{v}\right)$, $y = v \ln \left(\frac{w}{v}\right)$, $z = w \ln \left(\frac{u}{v}\right)$.
 - 4. Найдите частные производные указанного порядка:
- а) $u=x^3\sin\sin y+y^3\sin z+z^3\sin x, \ \frac{\partial^3 u}{\partial x^3}, \ \frac{\partial^3 u}{\partial x\partial y\partial z};$ б) $f=\cos(e^{2y}-2x), \ \frac{\partial^3 f}{\partial y\partial x^2};$ 5. Покажите, что функция $u=\left(\frac{x}{y}\right)^{z/y}$ удовлетворяет уравнению $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0.$
 - **6.** Найдите дифференциалы порядка *п* для следующих функций:
- **a)** $u = \ln xyz, \ n = 2;$
- **б)** $u = x^y + y^x, \ n = 2;$
- **B)** $u = x \cos y + y \sin x, \ n = 3;$
- Γ) $u = \ln(x + y + z), n = 2024;$
- д) $u = \ln(x^x y^y z^z), n = 4.$

Дополнительные вопросы к коллоквиуму

(Дифференцируемость и производные высших порядков)

- 1. (1 балл) (**Теорема Шварца**). Пусть в некоторой окрестности точки (x_0, y_0) существуют смешанные частные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ функции f, которые непрерывны в этой точке. Докажите, что тогда $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$.
 - 2. (1 балл) Покажите, что функция

$$f(x,y) = \begin{cases} (x^2 + y^2)\cos\frac{\pi}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

дифференцируема в точке (0,0), но её частные производные разрывны в этой точке.

3. (1,5) балла) Приведите пример функции, разрывной в точке (0,0), но всюду на \mathbb{R}^2 имеющей частные производные, которые являются неограниченными функциями в любой окрестности точки (0,0).