

Longest Common Subsequences

Seminar 2

Joris LIMONIER May 31, 2021

Supervised by George KERCHEV

Table of Contents

- 1. Introduction
- 1.1 What are LCS?
- 1.2 Why are we interested in LCS?
- 2. How to find LCS?
- 2.1 Step A: Building the table
- 2.2 Step B: Crawling back up the table
- 3. Data analysis of LCS results
- 3.1 Average LCS length
- 3.2 Normal fit

1. Introduction

1. Introduction

1.1 What are LCS?

Notation

 $"LCS" = Longest \ Common \ Subsequence(s)$

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

 S_1 : A B A B B

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

 $S_1:$ A B A B B $S_2:$ A A B A B

 \implies The LCS between S_1 and S_2 is **A B A B**

Notation

"LCS" = Longest Common Subsequence(s)

Example 1

 $S_1:$ A B A B B $S_2:$ A A B A B

 \implies The LCS between S_1 and S_2 is **A B A B**

NB: LCS may not be unique, A A B B also works.

Example 2

What is the LCS of the following sequences ?

Example 2

What is the LCS of the following sequences?

Example 2 What is the LCS of the following sequences ?

1. Introduction

1. Illitoduction

1.2 Why are we interested in LCS?

• Bioinformatics: Compare sequences of nucleotides (DNA)

- Bioinformatics: Compare sequences of nucleotides (DNA)
- Natural Language Processing: Compare texts

- Bioinformatics: Compare sequences of nucleotides (DNA)
- Natural Language Processing: Compare texts
- Computer Science: Detect differences in texts

2. How to find LCS?

2. How to find LCS?

2.1 Step A: Building the table

Set-up

Let $S_1 = ABABB$ and $S_2 = AABAB$.

Set-up

Let $S_1 = ABABB$ and $S_2 = AABAB$.

• Make a table where S_1 and S_2 are the column and row names respectively.

	Α	В	Α	В	В
Α					
Α					
В					
Α					
В					

Set-up

Let $S_1 = ABABB$ and $S_2 = AABAB$.

- Make a table where S_1 and S_2 are the column and row names respectively.
- Add a row (resp. column) at the top (resp. left) of the table.
 Fill them with 0's.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0					
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0					
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1				
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	А	В	В
Ø	0	0	0	0	0	0
Α	0	1	1			
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1		
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0					
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1				
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1			
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2		
В	0					
Α	0					
В	0					

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0					
Α	0					
В	0					

Start from top-left corner. Move left to right, line by line.

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0					
В	0					

Start from top-left corner. Move left to right, line by line.

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0					

Start from top-left corner. Move left to right, line by line.

- If row and column names match, increment adjascent top-left-diagonal cell by 1.
- Else take the maximum of top and left cells.

	Ø	Α	В	А	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

 \implies The length of the LCS is 4.

2. How to find LCS?

2.2 Step B: Crawling back up the table

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS			

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

_CS			

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: __ __ __

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: __ _ B

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: __ A B

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: __ B A B

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: __ B A B

From the table, deduce LCS by starting from the bottom-right cell. Compare cell value with values of top and left cells.

- If cell value ∈ {top cell value, left cell value}, move to the one with maximum value.
- Else, add character to LCS and move 1 cell diagonally top-left.

	Ø	Α	В	Α	В	В
Ø	0	0	0	0	0	0
Α	0	1	1	1	1	1
Α	0	1	1	2	2	2
В	0	1	2	2	3	3
Α	0	1	2	3	3	3
В	0	1	2	3	4	4

LCS: A B A B

3. Data analysis of LCS results

3. Data analysis of LCS results

3.1 Average LCS length

Question

Given two sequences of the same length, what percentage do they have in common?

Question

Given two sequences of the same length, what percentage do they have in common?

Answer: $\approx 80\%$

Superadditivity

Let L_n be the length of the LCS between two sequences of length n.

Proposition

 $(\mathbb{E}[L_n])_{n\geq 1}$ is a superadditive sequence, that is

$$\mathbb{E}[L_{m+n}] \geq \mathbb{E}[L_m] + \mathbb{E}[L_n]$$

 S_1 : **A B A B** B S_2 : **A** A B **B B**

 S_1 : **A B A B** B S₃: **A** B S₂: **A** A **B** A B S₄: B **A**

A B A B B A B A B

A B A B B A B A B

3. Data analysis of LCS results

3.2 Normal fit

Thank you

Questions?

https://github.com/jorislimonier/LCS