Practice Final Exam

Engineering Analysis 1

Name	Section	

Clearly circle or box your solutions. Check that your exam booklet has 11 pages

You may leave answers as fractions, where appropriate.

1. (16 points total)

(a) The questions below are independent of each other and use the following matrices and

vectors:
$$B = \begin{bmatrix} 2 & 4 \\ 0 & 8 \end{bmatrix}$$
 $\mathbf{y} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}$

i. (2 points) Calculate $\mathbf{y}^T B^2$.

ii. (2 points) Calculate $\mathbf{u} \cdot \mathbf{v}$.

iii. (2 points) Find the orthogonal projection of \mathbf{u} onto \mathbf{v} .

(b) (3 points) Put A into reduced row echelon form, and circle the pivot positions.

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 2 & 0 & 3 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

(c) (4 points) Let
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. What is the determinant of P ?

(d) (3 points) Assume that you are given a MATLAB vector b with at least one element. Complete the loop below that sums all of the elements of b and put the result in bSum. Do **not** use the sum() function.

bSum = 0;

for _____

end

disp(bSum);

2.	` -	points, 1 point each) Circle True in every possible case, and	. ,	r False (F). Statements are only true when they e they are false.
	(a)	If $\ \mathbf{v}\ = 0$, then $\mathbf{v} = 0$.	Τ	F
	(b)	There is no vector in \mathbb{R}^n that i	s orthogo	onal to every other vector in \mathbb{R}^n .
	(c)	If $T(\mathbf{x}) = A\mathbf{x}$ is a one-to-one an	nd onto t	ransformation, then A must be a square matrix.
	(d)	For any matrix A , it is true that	at $A^T A =$ T	= <i>I</i> . F
	(e)	If \mathbf{y} is in Col A , then there is a that is mapped to \mathbf{y} .	a vector i T	in the domain of the transformation $T(\mathbf{x}) = A\mathbf{x}$
	(f)	If $T(\mathbf{x})$ is one-to-one, then the	domain o	of the transformation is the same as the range. \mathcal{F}
	(g)	If dim Nul $A = 1$, then $A\mathbf{x} = \mathbf{y}$	has an in	nfinite number solutions for any \mathbf{y} .
	(h)	If A is $m \times n$ and B is $p \times q$, to	hen AB i	is only defined if $n = p$.
	(i)	The line $x_2 = 3x_1 + 2$ is a subs	space of F	\mathbb{R}^2 .
	(j)	If \mathbf{y} and $A\mathbf{x}$ are both in \mathbb{R}^n , th	nen $\ \mathbf{y} -$	$A\mathbf{x}\ ^2 = \ \mathbf{y}\ ^2 + 2\mathbf{y} \cdot A\mathbf{x} - \ A\mathbf{x}\ ^2.$
			${ m T}$	F

3.	(12 points)	Write a	MATLAB	function	called	extrema	that	is]	passed	a single	matrix	A	and
	returns four	r argume	ents										

- 1) mx, the maximum value of A
- 3) mxNum, the number of times mx appears in A
- 2) mn, the minimum value of A
- 4) mnNum, the number of times mn appears in A

Do not use built-in MATLAB functions max, min, sort, or find. Use instead loops that examine all the elements of A, as in the script below that you should complete.

function			
mx=A(1,1);	mn=A(1,1);	<pre>mxNum=0;</pre>	mnNum=0;
for			
for			

end

end

- 4. (12 points total) Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}$ be a basis for the subspace W.
 - (a) (2 points) Are the two vectors in the set \mathcal{B} linearly independent?
 - (b) (1 point) What is the dimension of W?
 - (c) (3 points) Let $\mathbf{y} = \begin{bmatrix} 12 \\ 10 \\ 14 \end{bmatrix}$. What is $[\mathbf{y}]_{\mathcal{B}}$ (i.e. the coordinates of y with respect to the basis \mathcal{B})?

- (d) (1 point) Show that the two basis vectors are orthogonal.
- (e) (3 points) What is the best approximation to $\mathbf{u} = \begin{bmatrix} 6 \\ 10 \\ 8 \end{bmatrix}$ in subspace W?

(f) (2 points) What is the distance from \mathbf{u} to the nearest point in W?

5. (10 points total) Suppose you are given the matrix A and its reduced echelon form as follows:

- (a) (3 points) What is the dimension of the null space of A?
- (b) (4 points) What is a basis for the null space of A?

(c) (3 points) Denote the columns of A as \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 . Let \mathcal{B} be the basis $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4\}$ for the column space of A. If the coordinates of \mathbf{z} with respect to basis \mathcal{B} are $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$, calculate \mathbf{z} .

- 6. (8 points) Let $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.
 - (a) (4 points) Find all eigenvalues of A.

(b) (4 points) For each eigenvalue found in part (a), find a corresponding eigenvector.

- 7. (12 points) Let $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.
 - (a) (10 points) Find a least squares solution of the system Ax = b.

(b) (2 points) Is the solution from part (a) unique? Circle Yes (Y) or No (N):

Y N

- 8. (20 points) In this problem you will write two MATLAB functions to check various properties of an $n \times n$ (square) matrix A.
 - (a) Write a function isInvertible(A) that returns 1 if the matrix is invertible and 0 if the matrix is not invertible.
 - (b) Write a function isOrthonormal(A) that returns 1 if the columns of A are orthonormal and 0 if they are not.

In your function you MAY use any of the MATLAB functions listed below, if you wish. (We will not explain during the exam what they do.)

eye()	length()	min()	rank()	zeros()
inv()	max()	rref()	size()	det()

Do not perform any error checking.

function y = isInvertible(A)

```
function y = isOrthonormal(A)
[n,m]=size(A); y=1;
\% check that all columns have norm equal 1
for i=____
     if A(:,i)' * A(_____) ~=1
         y=0;
          break
      \quad \text{end} \quad
end
% check orthogonality
for k=1:n-1
      for j= _____
              if A(:,k)' * A(____) ~=0
                   y= ____;
                    break
              end
        end
end
```