Matricule: Nom: Prénom:

test

Exercice 1

Donner une grammaire pour chacun des langages suivants :

- 1. $L_1=\{b^nwd^{2m+1}/n, m \ge 1, w \in \{0,1\}^* \text{ et } |w|=1[3]\}$
- 2. $L_2=\{b^nwd^{2m}/n, m \ge 0, w \in \{0,1\}^* \text{ et } n+|w|=m\}$
- 3. $L_3=\{b^nwd^{2m}u/n, m \ge 0, w, u \in \{0,1\}^* \text{ et } w^R \text{ est facteur droit de } u\}$
- 4. L_4 = l'ensemble des appels d'une fonction (avec ou sans paramètres) en langage C. L'alphabet terminal ={nom, val, \, , , ;, (,)} où
 - nom représente un nom de fonction ou celui d'un paramètre de type simple
 - val représente une valeur de type simple
 - \, est le méta-caractère,

Exercice 2

Soit une grammaire G=({a,b, c}, {S, A, B, D}, S, P) tq P est défini par :

$$S \rightarrow AB$$
 $A \rightarrow a^2Ab/a^2Ac/a$

$$B \rightarrow DBb/D$$
 $D \rightarrow d^2D/d$

Soit A un non-terminal, on note $L_G(A)$ l'ensemble des mots dérivables à partir du non-terminal A et défini comme suit : $L_G(A) = \{w \mid w \in T^* \text{ et } A \Rightarrow^* w\}$

- 1. Quel est le type de la grammaire G ? Expliquer.
- 2. Déterminer $L_G(A)$ et $L_G(B)$.
- 3. Donner le langage généré par la grammaire G.

Exercice 3

1. Donner un automate d'états fini simple pour chacun des langages suivants :

$$L_4 = \{a^n b^m w/n \ge 0, m \ge 1, w \in \{0,1\}^* \text{ et } |w| \text{ est paire } \}$$

$$L_5=\{a^nb^mw/n\geq 0, m\geq 1, w\in \{0,1\}+ \text{ et } n+m+|w| \text{ de longueur paire}\}$$

2. Donner une expression régulière pour chacun des langages L₄ et L₅.