Numerical Optimization

Chris Cornwell

Sept. 25, 2025

Approach to minimization of function g.

Approach to minimization of function g.

1. Start the process from some initial point $\mathbf{w}^{(0)}$.

Approach to minimization of function g.

- 1. Start the process from some initial point $\mathbf{w}^{(0)}$.
- 2. After t steps, with $\mathbf{w}^{(t)}$ as current input to g, update it to some $\mathbf{w}^{(t)}$, "going downhill" toward a stationary point.

Approach to minimization of function g.

- 1. Start the process from some initial point $\mathbf{w}^{(0)}$.
- 2. After t steps, with $\mathbf{w}^{(t)}$ as current input to g, update it to some $\mathbf{w}^{(t)}$, "going downhill" toward a stationary point.
- 3. Repeat Step (2) converging to a stationary point, in good scenario until you meet a **stopping condition** at some step T. The approximate stationary point (potentially a minimizer) is $\mathbf{w}^{(T)}$.

Outline

Gradient Descent

Newton's method - a second-order method

Examples and some convergence guarantees

Looking to minimize a loss (cost) function $\ell: \mathbb{R}^N \to \mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

¹For us, we will usually use $\theta_{*,*}$ a that is constant in t, meaning it is the same for all

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").¹

¹For us, we will usually use α_{++} that is constant in t, meaning it is the same for all

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

- In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").
- For each $t \geq 0$, iteratively assign

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha_{t+1} \nabla \ell(\mathbf{w}^{(t)}).$$

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

- In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").¹
- For each $t \geq 0$, iteratively assign

$$\label{eq:wtotal_transform} \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha_{t+1} \nabla \ell(\mathbf{w}^{(t)}).$$

As in the general optimization description, proceed until a stopping condition is met.

¹For us, we will usually use α_{++} that is constant in t, meaning it is the same for all

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

- In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").
- For each $t \ge 0$, iteratively assign

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha_{t+1} \nabla \ell(\mathbf{w}^{(t)}).$$

As in the general optimization description, proceed until a **stopping** condition is met.

More on stopping conditions later. For now, ...

¹ For us, we will usually use N_{t+1} that is constant in t, meaning it is the same for all

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

- In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").
- For each $t \ge 0$, iteratively assign

$$\label{eq:wtotal_transform} \boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \alpha_{t+1} \nabla \ell(\boldsymbol{w}^{(t)}).$$

As in the general optimization description, proceed until a **stopping condition** is met.

More on stopping conditions later. For now, ...

choose a ("small") threshhold value ε . Stop when, as part of the last update, the <u>change</u> in every parameter <u>divided by its size</u> is not more than ε .

¹For us, we will usually use n_{t+1} that is constant in t, meaning it is the same for all

Looking to minimize a loss (cost) function $\ell:\mathbb{R}^N\to\mathbb{R}$. Want to approximate stationary point for ℓ in \mathbb{R}^N , in order to minimize ℓ (hopefully).

- In addition to choosing initial $\mathbf{w}^{(0)} \in \mathbb{R}^N$, pick a **learning rate** $\alpha_{t+1} > 0$ for each step in the process (also called "step size").
- lacktriangle For each $t\geq$ 0, iteratively assign

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha_{t+1} \nabla \ell(\mathbf{w}^{(t)}).$$

As in the general optimization description, proceed until a **stopping condition** is met.

More on stopping conditions later. For now, ...

choose a ("small") threshhold value ε . Stop when, as part of the last update, the <u>change</u> in every parameter <u>divided by its size</u> is not more than ε . That is, stop when

$$\frac{|\omega_j^{(t)} - \omega_j^{(t-1)}|}{|\omega_j^{(t-1)}|} \le \varepsilon, \qquad \forall 1 \le j \le p.$$

Relation to Linear approximations

The update step in Gradient Descent uses the linear approximation to the loss function in order to make an update.

Relation to Linear approximations

The update step in Gradient Descent uses the linear approximation to the loss function in order to make an update.

Note: linear approximation is

$$h(\mathbf{w}) = \ell(\mathbf{w}^{(t)}) + \nabla \ell(\mathbf{w}^{(t)})^{\mathsf{T}}(\mathbf{w} - \mathbf{w}^{(t)}).$$

How does one change $\mathbf{w}^{(t)}$ to make $h(\mathbf{w})$ decrease the most? Want some (fixed length vector) $\Delta \mathbf{w}$ so that $h(\mathbf{w}^{(t)}) - h(\mathbf{w}^{(t)} + \Delta \mathbf{w})$ is as large as possible.

Relation to Linear approximations

The update step in Gradient Descent uses the linear approximation to the loss function in order to make an update.

Note: linear approximation is

$$h(\mathbf{w}) = \ell(\mathbf{w}^{(t)}) + \nabla \ell(\mathbf{w}^{(t)})^{\mathsf{T}}(\mathbf{w} - \mathbf{w}^{(t)}).$$

How does one change $\mathbf{w}^{(t)}$ to make $h(\mathbf{w})$ decrease the most? Want some (fixed length vector) $\Delta \mathbf{w}$ so that $h(\mathbf{w}^{(t)}) - h(\mathbf{w}^{(t)} + \Delta \mathbf{w})$ is as large as possible.

Since

$$h(\mathbf{w}^{(t)}) - h(\mathbf{w}^{(t)} + \Delta \mathbf{w}) = -\nabla \ell (\mathbf{w}^{(t)})^{\mathsf{T}} \Delta \mathbf{w}$$

this occurs when $\nabla \ell(\mathbf{w}^{(t)})^\mathsf{T} \Delta \mathbf{w}$ is as negative as possible, which is when $\Delta \mathbf{w}$ is in the opposite direction of $\nabla \ell(\mathbf{w}^{(t)})$; and so, our update is $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \Delta \mathbf{w} = \mathbf{w}^{(t)} - \alpha_{t+1} \nabla \ell(\mathbf{w}^{(t)})$.

Convergence

Does gradient descent converge to point at which loss function is minimized? Is it even guaranteed to converge?

Convergence

Does gradient descent converge to point at which loss function is minimized? Is it even guaranteed to converge? Short answer: No, not necessarily.

...so, in what cases can we guarantee such a thing?

To demonstrate the difficulty, imagine a "toy" loss function: $\ell: \mathbb{R} \to \mathbb{R}$ with $\ell(w) = w^2$. At each w we have $\nabla \ell = \left(\frac{d\ell}{dw}\right) = (2w)$.

To demonstrate the difficulty, imagine a "toy" loss function: $\ell: \mathbb{R} \to \mathbb{R}$ with $\ell(w) = w^2$. At each w we have $\nabla \ell = \left(\frac{d\ell}{dw}\right) = (2w)$.

Say learning rate: $\alpha_{t+1} > 1$ for all t. Then, at any $w^{(t)} > 0$, we get

$$\label{eq:wt} w^{(t+1)} = w^{(t)} - 2\alpha_{t+1}w^{(t)} < w^{(t)} - 2w^{(t)} = -w^{(t)},$$

and so $\mathbf{w}^{(t+1)} < -\mathbf{w}^{(t)}$ which means that $|\mathbf{w}^{(t+1)}| > |\mathbf{w}^{(t)}|.$

To demonstrate the difficulty, imagine a "toy" loss function: $\ell: \mathbb{R} \to \mathbb{R}$ with $\ell(w) = w^2$. At each w we have $\nabla \ell = \left(\frac{d\ell}{dw}\right) = (2w)$.

Say learning rate: $\alpha_{t+1} > 1$ for all t. Then, at any $w^{(t)} > 0$, we get

$$w^{(t+1)} = w^{(t)} - 2\alpha_{t+1}w^{(t)} < w^{(t)} - 2w^{(t)} = -w^{(t)},$$
and so $w^{(t+1)} < -w^{(t)}$ which means that $|w^{(t+1)}| > |w^{(t)}|$. Like

and so $w^{(t+1)} < -w^{(t)}$ which means that $|w^{(t+1)}| > |w^{(t)}|$. Likewise, if $w^{(t)} < 0$ then $|w^{(t+1)}| > |w^{(t)}|$.

To demonstrate the difficulty, imagine a "toy" loss function: $\ell: \mathbb{R} \to \mathbb{R}$ with $\ell(w) = w^2$. At each w we have $\nabla \ell = \left(\frac{d\ell}{dw}\right) = (2w)$.

Say learning rate: $\alpha_{t+1} > 1$ for all t. Then, at any $w^{(t)} > 0$, we get

$$w^{(t+1)} = w^{(t)} - 2\alpha_{t+1}w^{(t)} < w^{(t)} - 2w^{(t)} = -w^{(t)},$$

and so $w^{(t+1)} < -w^{(t)}$ which means that $|w^{(t+1)}| > |w^{(t)}|$. Likewise, if $w^{(t)} < 0$ then $|w^{(t+1)}| > |w^{(t)}|$.

So, get divergence when $\alpha_{t+1} > 1$. However, if $0 < \alpha_{t+1} < 1$, then (for the function $\ell(w) = w^2$, at least) it will converge to minimizer w = 0.

To demonstrate the difficulty, imagine a "toy" loss function: $\ell:\mathbb{R}\to\mathbb{R}$ with $\ell(w)=w^2$. At each w we have $\nabla\ell=\left(\frac{d\ell}{dw}\right)=(2w)$.

Say learning rate: $lpha_{t+1} > 1$ for all t. Then, at any $\mathbf{w}^{(t)} > 0$, we get

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - 2\alpha_{t+1}\mathbf{w}^{(t)} < \mathbf{w}^{(t)} - 2\mathbf{w}^{(t)} = -\mathbf{w}^{(t)}$$
 ,

and so $w^{(t+1)} < -w^{(t)}$ which means that $|w^{(t+1)}| > |w^{(t)}|$. Likewise, if $w^{(t)} < 0$ then $|w^{(t+1)}| > |w^{(t)}|$.

So, get divergence when $\alpha_{t+1} > 1$. However, if $0 < \alpha_{t+1} < 1$, then (for the function $\ell(w) = w^2$, at least) it will converge to minimizer w = 0.

Figure: Gradient descent on $\ell(w) = w^2$. Left: $\alpha = 1.05$; right: $\alpha = 0.95$.

Outline

Gradient Descent

Newton's method - a second-order method

Examples and some convergence guarantees

Newton's method

As before, we want to use approximations to get closer to a stationary point of $\ell: \mathbb{R}^N \to \mathbb{R}$, however we will now use a second order approximation:

$$h(\mathbf{w}) = \ell(\mathbf{w}^{(t)}) + \nabla \ell(\mathbf{w}^{(t)})^{\mathsf{T}}(\mathbf{w} - \mathbf{w}^{(t)}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{(t)})^{\mathsf{T}} \nabla^{2} \ell(\mathbf{w}^{(t)})(\mathbf{w} - \mathbf{w}^{(t)}).$$

Newton's method

As before, we want to use approximations to get closer to a stationary point of $\ell: \mathbb{R}^N \to \mathbb{R}$, however we will now use a second order approximation:

$$h(\mathbf{w}) = \ell(\mathbf{w}^{(t)}) + \nabla \ell(\mathbf{w}^{(t)})^{\mathsf{T}}(\mathbf{w} - \mathbf{w}^{(t)}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{(t)})^{\mathsf{T}} \nabla^{2} \ell(\mathbf{w}^{(t)})(\mathbf{w} - \mathbf{w}^{(t)}).$$

As a consequence from the recent homework, this has a stationary point at a solution to the linear equation

 $\nabla^2 \ell(\mathbf{w}^{(t)}) \mathbf{w} = \nabla^2 \ell(\mathbf{w}^{(t)}) \mathbf{w}^{(t)} - \nabla \ell(\mathbf{w}^{(t)}). \text{ Call that solution } \mathbf{w}^{(t+1)}.$

Repeat the above step until some stopping condition is met.

Newton's method - advantages and disadvantages

Advantage: When converging to a minimum of the function, Newton's method will converge in fewer steps.

Disadvantages: One has to compute the Hessian – more computation time and more storage needed. Solving the linear system can also have numerical issues and take more time.

Also, if ℓ is not convex (and $\mathbf{w}^{(t)}$ is not in a convex region for the function), then it may approach a maximum instead of minimum.

Outline

Gradient Descent

Newton's method - a second-order method

Examples and some convergence guarantees

Example with single-variable Linear regression

Least Squares cost function for Linear regression is determined by sample data $S = \{(x_i, y_i)\}_{i=1}^p$: given the data, the cost function is $g_S(b, w) = \sum_{i=1}^p (b + wx_i - y_i)^2$. In homework you found,

$$\nabla g_{\mathcal{S}}(b,w) = \left(2\sum_{i=1}^{P}(b+wx_i-y_i), 2\sum_{i=1}^{P}(b+wx_i-y_i)x_i\right).$$

Example with single-variable Linear regression

Least Squares cost function for Linear regression is determined by sample data $\mathcal{S}=\{(x_i,y_i)\}_{i=1}^P$: given the data, the cost function is $g_{\mathcal{S}}(b,w)=\sum_{i=1}^P(b+wx_i-y_i)^2$. In homework you found,

$$\nabla g_{\mathcal{S}}(b,w) = \left(2\sum_{i=1}^P (b+wx_i-y_i), \ 2\sum_{i=1}^P (b+wx_i-y_i)x_i\right).$$

Example: batch gradient descent working on the 'Example1.csv' data.

The LSR line, using closed form.

$$\triangleright$$
 $w^* \approx 1.520, b^* = -0.3346$:

Example with Linear regression

Least Squares cost function for Linear regression is determined by sample data $\mathcal{S} = \{(x_i, y_i)\}_{i=1}^P$: given the data, the cost function is $g_{\mathcal{S}}(b, w) = \sum_{i=1}^P (b + wx_i - y_i)^2$. In homework you found,

$$\nabla g_{\mathcal{S}}(b,w) = \left(2\sum_{i=1}^P (b+wx_i-y_i), \quad 2\sum_{i=1}^P (b+wx_i-y_i)x_i\right).$$

Example: batch gradient descent working on the 'Example1.csv' data.

Plot of selected lines found during batch GD updates; starting parameters m=0, b=0;

Example with Linear regression

Least Squares cost function for Linear regression is determined by sample data $\mathcal{S} = \{(x_i, y_i)\}_{i=1}^P$: given the data, the cost function is $g_{\mathcal{S}}(b, w) = \sum_{i=1}^P (b + wx_i - y_i)^2$. In homework you found,

$$\nabla g_{\mathcal{S}}(b,w) = \left(2\sum_{i=1}^P (b+wx_i-y_i), \quad 2\sum_{i=1}^P (b+wx_i-y_i)x_i\right).$$

Example: batch gradient descent working on the 'Example1.csv' data.

Plot of selected lines found during batch GD updates; starting parameters m=0, b=0; learning rate set to 0.1. Parameter values on iteration 208: m=1.519, b=-0.334.

Some notes on implementation of the gradient descent updates.

1. Each partial deriv. of q_S , can compute it in one line of code.

Some notes on implementation of the gradient descent updates.

1. Each partial deriv. of g_S , can compute it in one line of code. Presuming x, y are arrays of coordinates for data, current parameter values are b, w, the following gives partial derivatives:

```
partial_w = 2*np.sum( (w*x + b - y)*x )
partial_b = 2*np.sum( (w*x + b - y) )
```

Some notes on implementation of the gradient descent updates.

1. Each partial deriv. of g_S , can compute it in one line of code. Presuming x, y are arrays of coordinates for data, current parameter values are b, w, the following gives partial derivatives:

```
partial_w = 2*np.sum( (w*x + b - y)*x )
partial_b = 2*np.sum( (w*x + b - y) )
```

2. To implement GD, want more than one function – at the least, one to compute the gradient (given current parameters); another that performs update and checks for stopping. *Roughly...*

Some notes on implementation of the gradient descent updates.

1. Each partial deriv. of $g_{\mathcal{S}}$, can compute it in one line of code. Presuming x, y are arrays of coordinates for data, current parameter values are b, w, the following gives partial derivatives:

```
partial_w = 2*np.sum( (w*x + b - y)*x )
partial_b = 2*np.sum( (w*x + b - y) )
```

2. To implement GD, want more than one function – at the least, one to compute the gradient (given current parameters); another that performs update and checks for stopping. *Roughly*...

```
## Ir is learning rate; threshhold is for stopping;
input: X, y, lr, threshhold
params ← initial array of parameters
while (max of last_update > threshhold){
    grad ← compute_grad(params, X, y)
    last_update ← | grad / params | ## entrywise array division
    # handle params[i] near o
    params ← params - lr*grad
}
return params
```

If your loss function is differentiable and a **convex function**, and if have some "control" on size of the gradient then, by choosing α_{t+1} small enough, can guarantee convergence.

²Meaning: \exists a constant C s.t. for all \tilde{w}_1 , \tilde{w}_2 , $|\nabla g_{\mathcal{S}}(\tilde{w}_1) - \nabla g_{\mathcal{S}}(\tilde{w}_2)| \leq C|\tilde{w}_1 - \tilde{w}_2|$.

If your loss function is differentiable and a **convex function**, and if have some "control" on size of the gradient then, by choosing α_{t+1} small enough, can guarantee convergence.

Theorem

Suppose a loss function $g_{\mathcal{S}}: \mathbb{R}^{N+1} \to \mathbb{R}$ is differentiable and convex, and suppose that $\nabla g_{\mathcal{S}}$ is Lipschitz continuous² with some constant C>0 and that $\alpha_{t+1}=\alpha \leq 1/C$ (constant learning rate). Then, for a minimizer \tilde{w}^{\star} of $g_{\mathcal{S}}$,

$$g_{\mathcal{S}}(\tilde{\mathbf{w}}^{(t)}) - g_{\mathcal{S}}(\tilde{\mathbf{w}}^{\star}) \leq \frac{|\tilde{\mathbf{w}}^{(0)} - \tilde{\mathbf{w}}^{\star}|^2}{2\alpha t}.$$

²Meaning: \exists a constant C s.t. for all $\tilde{w}_1, \tilde{w}_2, |\nabla g_{\mathcal{S}}(\tilde{w}_1) - \nabla g_{\mathcal{S}}(\tilde{w}_2)| \leq C|\tilde{w}_1 - \tilde{w}_2|$.

If your loss function is differentiable and a **convex function**, and if have some "control" on size of the gradient then, by choosing α_{t+1} small enough, can guarantee convergence.

Theorem

Suppose a loss function $g_{\mathcal{S}}: \mathbb{R}^{N+1} \to \mathbb{R}$ is differentiable and convex, and suppose that $\nabla g_{\mathcal{S}}$ is Lipschitz continuous² with some constant C>0 and that $\alpha_{t+1}=\alpha \leq 1/C$ (constant learning rate). Then, for a minimizer \tilde{w}^{\star} of $g_{\mathcal{S}}$,

$$g_{\mathcal{S}}(\tilde{\mathbf{w}}^{(t)}) - g_{\mathcal{S}}(\tilde{\mathbf{w}}^{\star}) \leq \frac{|\tilde{\mathbf{w}}^{(0)} - \tilde{\mathbf{w}}^{\star}|^2}{2\alpha t}.$$

► The difference between $g_{\mathcal{S}}(\tilde{w}^{(t)})$ and the minimimum of $g_{\mathcal{S}}$ is bounded by a constant times 1/t.

²Meaning: \exists a constant C s.t. for all \tilde{w}_1 , \tilde{w}_2 , $|\nabla g_{\mathcal{S}}(\tilde{w}_1) - \nabla g_{\mathcal{S}}(\tilde{w}_2)| \leq C|\tilde{w}_1 - \tilde{w}_2|$.

Previous theorem requires using actual gradient of $g_{\mathcal{S}}$ in each update step. Here is a convergence guarantee that allows for a random vector \mathbf{D}_t , in place of $\nabla g_{\mathcal{S}}$, as long as $\mathbb{E}[\mathbf{D}_t|\tilde{w}^{(t)}] = \nabla g_{\mathcal{S}}(\tilde{w}^{(t)})$.

e.g., use this in alternate versions of gradient descent, e.g., "mini-batch gradient descent."

Previous theorem requires using actual gradient of $g_{\mathcal{S}}$ in each update step. Here is a convergence guarantee that allows for a random vector \mathbf{D}_t , in place of $\nabla g_{\mathcal{S}}$, as long as $\mathbb{E}[\mathbf{D}_t|\tilde{w}^{(t)}] = \nabla g_{\mathcal{S}}(\tilde{w}^{(t)})$.

e.g., use this in alternate versions of gradient descent, e.g., "mini-batch gradient descent."

Theorem

Suppose that $g_{\mathcal{S}}$ is differentiable and convex, that $\tilde{w}^{(0)} = \mathbf{0}$, and that for all t, $\alpha_{t+1} = \frac{1}{\sqrt{K}}$ for an integer K > 0. Finally, suppose that $|\mathbf{D}_t| \leq 1$ for all $1 \leq t \leq K$. Then, for a minimizer \tilde{w}^* of $g_{\mathcal{S}}$,

$$\mathbb{E}[g_{\mathcal{S}}(\bar{w})] - g_{\mathcal{S}}(\tilde{w}^{\star}) \leq \frac{1}{\sqrt{K}}$$

where \bar{w} is the average of $\tilde{w}^{(1)}$, $\tilde{w}^{(2)}$, ..., $\tilde{w}^{(K)}$.