Viacvrstvové perceptrónové siete (Multilayer Perceptron networks - MLP)

Zadania a postup riešenia k úlohám 4, 5, 6.

Úloha 4 - Klasifikácia do skupín pomocou MLP siete.

Na základe rozmiestnenia bodov (x, y, z) súradníc – vstupných parametrov do MLP siete realizovať klasifikáciu (zatriedenie) bodov do 5 skupín (tried)

6-2

Klasifikácia – MLP sieť

<u>Štruktúra MLP siete pre klasifikáciu, rozpoznávanie (patternnet)</u>

- Vstupy NS sú parametre na základe, ktorých realizujeme triedenie do skupín
- Výstupy NS prislúchajú k jednotlivým skupinám, t.j. počet výstupov sa rovná počtu skupín, rozsah výstupu je <0,1> a vyjadruje pravdepodobnosť zatriedenia do skupiny.
- Aktivačné funkcie vo všetkých vrstvách môžu byť "tansig" alebo "logsig", vo výstupnej vrstve sa často používa "softmax"
- Počty skrytých vrstiev ako aj počty neurónov v nich sa definuje experimentálne podľa zložitosti klasifikačnej úlohy.
- Chybová funkcia krížová entrópia (cross entropy)

Ukončenie procesu trénovania

- a) Dosiahnutie predpísanej presnosti modelu (globálnej chyby)
- b) Uskutočnenie predpísaného počtu epoch trénovania
- c) Stagnácia priebehu chyby (gradient chyby dosiahne def. úroveň)
- d) Alebo po úspešnom teste zovšeobecňovacej schopnosti n.s.

Proces trénovania je potrebné včas ukončiť, v opačnom prípade môže nastať stav <u>"pretrénovania"</u>, keď sa parametre n.s. už prestanú zlepšovať a začínajú na ne mať vplyv rôzne parazitné signály ako šum a pod., ktoré môžu následne zhoršiť vlastnosti siete (kopírovanie šumu ...).

Počas trénovania sa vyhodnocuje chyba na inom balíku dát, ak chyba začne od určitej etapy trénovania narastať – trénovanie sa zastaví

Proces trénovania – vyhodnotenie úspešnosti klasifikácie (kontingenčná tabuľka)

Nastavenie počtu neurónov a parametrov ukončenia trénovania, tak aby chyba na testovacích dátach klesla čo najnižšie a zastaviť trénovanie pri jej väčšom náraste.

Úloha 5 - Aproximácia nelineárnej funkcie pomocou MLP siete.

Pomocou MLP sieti aproximujeme závislosť výstupu funkcie y od vstupu x, y=f(x).

Aproximácia, modelovanie – MLP sieť

<u>Štruktúra MLP siete pre aproximáciu, modelovanie (fitnet)</u>

Aproximovaná funkcia, modelovaný systém: Y=F(X), Y-výstupy, X-vstupy, Y-nelineárna funkcia, $Y=[x_1,...,x_m]$, $Y=[y_1,...,y_n]$

- Vstupy NS sú vstupy systému (funkcie), výstupy NS sú výstupy systému (funkcie)
- Aktivačné funkcie v skrytých vrstvách sú "tansig" a vo výstupnej "purelin".
- Počty skrytých vrstiev ako aj počty neurónov v nich sa definuje experimentálne podľa zložitosti modelovaného systému.
- Chybová funkcia Stredná kvadratická odchýlka (MSE Mean square error)

Aproximácia nelineárnej funkcie y=f(x) z meraných dát pomocou UNS

```
[x,y]=simplefit_dataset;
net=fitnet(10);
```

net.divideFcn='divideint'; net.divideParam.trainRatio=0.8; net.divideParam.valRatio=0.1; net.divideParam.testRatio=0.1;

net.trainParam.goal = 1e-7; net.trainParam.show = 5; net.trainParam.epochs = 100; net=train(net,x,y);

Spôsoby generovania (rozdeľovania) trénovacích, validačných a testovacích dát

Typ funkcie na generovanie dát **net.divideFcn**

```
net.divideFcn='dividerand'; % náhodné rozdelenie
net.divideFcn='divideblock'; % rozdelenie po blokoch dát za sebou
net.divideFcn='divideint'; % je použitá každá n-tá vzorka
net.divideFcn='dividetrain'; % všetky dáta sú iba trénovacie
```

```
% parametre rozdelenia dát
net.divideParam.trainRatio=0.8;
net.divideParam.valRatio=0.1;
net.divideParam.testRatio=0.1;
```

Spôsoby generovania (rozdeľovania) trénovacích, validačných a testovacích dát

Typ funkcie na generovanie dát **net.divideFcn**

```
net.divideFcn='divideind'; % indexové rozdelenie
```

```
% parametre rozdelenia dát
net.divideParam.trainInd=1:2:n;
net.divideParam.valInd=2:2:n2;
net.divideParam.testInd=n2+1:2:n;
```

<u>Proces trénovania – vyhodnotenie kvality</u> <u>aproximácie (chyby SSE, MSE, MAE)</u>

Train: SSE1 = 1.1842e-04, MSE1 = 9.8686e-07, MAE1 = 0.0025

Test: SSE2 = 6.5177e-04, MSE2 = 8.0466e-06, MAE2 = 0.0183

Proces trénovania – malý počet neurónov

Odchýlka (chyba) na trénovacích aj testovacích datach je vysoká

Proces trénovania – velký počet neurónov

Odchýlka (chyba) na trénovacích datach je nízka (NS sa zafixuje na trénovacie data), ale na testovacích datach je chyba vysoká

Úloha 6 – Rozpoznávanie (diagnostika) ochorenia pomocou MLP siete.

Na základe nameraných príznakov z CTG vyšetrenia, MLP sieť hodnotí stav bábätka do troch skupín.

Výpočet úspešnosti klasifikácie, senzitivity a špecificity.

Štruktúra MLP siete – rovnaká ako pri klasifikácii

- Vstupy príznaky získané z kardiotokografického záznamu
- Výstupy 3 výstupy (triedy) stav (1-normálny, 2-podozrivý, 3-patologický)
- Štruktúra siete *patternet* s jednou (alebo dvoma) skrytými vrstvami
- Rozdelenie dát 60% trénovanie, 40% testovanie
- Nastavenie počtu neurónov a ukončovacích podmienok trénovania

Diagnostika ochorení pomocou NS

Proces trénovania – vyhodnotenie úspešnosti klasifikácie

Nastavenie počtu neurónov a parametrov ukončenia trénovania, tak aby chyba na testovacích dátach klesla čo najnižšie a zastaviť trénovanie pri jej väčšom náraste.

6-16

Vyhodnotenie úspešnosti klasifikácie

Kontingenčná tabulka

Postupovať podľa zadania:

- 10 spustení trénovania
- urobiť štatistiku úspešnosti
- podrobnejšie sa venovať najlepšej NS
- na porovnanie 2 iné štruktúry siete

Kontingencna - testovacie data				
1	645 75.9%	24 2.8%	4 0.5%	95.8% 4.2 %
Output Class	22 2.6%	89 10.5%	2 0.2%	78.8% 21.2%
	0 0.0%	5 0.6%	59 6.9%	92.2% 7.8%
	96.7% 3.3%	75.4% 24.6%	90.8% 9.2%	93.3% 6.7%
	^	∿ Target	Class	
Target Class				

Kontingonona toctovacio data

Naj. Úspešnosť klasifikácie (celková,trénovanie,testovanie): 97.2248 99.8433 93.2941 % Úspešnosť celkova klasifikácie (min, max, mean): 96.6604 97.2248 96.9755 % Úspešnosť trenovacie klasifikácie (min, max, mean): 99.7649 100.0000 99.8824 % Úspešnosť testovacie klasifikácie (min, max, mean): 91.8824 93.2941 92.6118 %

Úspešnosť klasifikácie, senzitivita (citlivosť), špecificita

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

specificity, selectivity or true negative rate (TNR)

$$ext{TNR} = rac{ ext{TN}}{ ext{N}} = rac{ ext{TN}}{ ext{TN} + ext{FP}} = 1 - ext{FPR}$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP} = 1 - FDR$$

negative predictive value (NPV)

$$NPV = \frac{TN}{TN + FN} = 1 - FOR$$

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

balanced accuracy (BA)

$$\mathrm{BA} = rac{TPR + TNR}{2}$$

F1 score

is the harmonic mean of precision and sensitivity

$$\mathrm{F_1} = 2 \cdot rac{\mathrm{PPV} \cdot \mathrm{TPR}}{\mathrm{PPV} + \mathrm{TPR}} = rac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$$

