Time-varying Mixed Graphical Models

Jonas Haslbeck

Psychosystems lab University of Amsterdam, the Netherlands

Data Science Amsterdam Meetup

Amsterdam, March 28th

Multivariate System

Multivariate System

Gene Expressions

Voting Behavior of Members of Parliament

Symptoms of Mental Disorders

Sample observations

Recover the system

Sample observations

Approximate the system

True Model, Probability Distribution, Graphical Model

True Model $\frac{dD}{dt} = f(D)$ **Approximate**

Conditional Independence Network

$$P(X_1,\ldots,X_p,\theta)$$

Multivariate Probability Distribution

Conditional Independence Relations in a Graph

$$X_{A} \perp \!\!\! \perp X_{B} | X_{C}$$

$$X_{A} \perp \!\!\! \perp X_{C} | X_{B} \qquad \Longleftrightarrow$$

$$X_{C} \perp \!\!\! \perp X_{B} | X_{A}$$

Simple Example: Gaussian Graphical Model

$$\Sigma^{-1} = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 \\ X_1 & 3.45 & 0 & 0 & 3.18 \\ X_2 & 0 & 2.14 & 0 & 0.82 \\ X_3 & 0 & 0 & 3.21 & 1.05 \\ X_4 & 3.18 & 0.82 & 1.05 & 8.77 \end{pmatrix} \iff 1$$

$$P(X_1,\ldots,X_p) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

General Graphical Models

Study multivariate distribution as network

Mixed Exponential Graphical Models

Mixed Exponential Graphical Models: Construction

Conditional univariate members of the exponential family

$$P(X_s|X_{\setminus s}) = \exp\big\{E_s(X_{\setminus s})\phi_s(X_s) + C_s(X_s) - \Phi(X_{\setminus s})\big\},\,$$

factorize to a global multivariate distribution which factors according the graph defined by the conditional distributions if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + ... + \sum_{t_2,...,t_k \in N(s)} \theta_{t_2,...,t_k} \prod_{j=2}^{n} \phi_{t_j}(X_{t_j})$$

(Yang and colleagues, 2014)

Mixed Exponential Graphical Models: Construction

Conditional univariate members of the exponential family

$$P(X_s|X_{\setminus s}) = \exp\big\{E_s(X_{\setminus s})\phi_s(X_s) + C_s(X_s) - \Phi(X_{\setminus s})\big\},\,$$

factorize to a global multivariate distribution which factors according the graph defined by the conditional distributions if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + ... + \sum_{t_2,...,t_k \in N(s)} \theta_{t_2,...,t_k} \prod_{j=2}^{k} \phi_{t_j}(X_{t_j})$$

(Yang and colleagues, 2014)

Nodewise Graph Estimation

(Meinshausen & Buehlmann, 2006)

Algorithm: Estimating MGMs

For each node s:

- 1. Regress $X_{\setminus s}$ on X_s
 - $\blacktriangleright \ \min_{(\theta_0,\theta) \in \mathbb{R}^p} \left[\frac{1}{N} \sum_{i=1}^N (y_i \theta_0 X_{\backslash s;i}^T \theta)^2 + \frac{\lambda_n ||\theta||_1}{||\theta||_1} \right]$
 - ▶ Select λ_n using EBIC
- 2. Threshold Parameter Estimates

$$au_n \simeq \sqrt{d}||\theta||_2\sqrt{\frac{\log p}{n}}$$

Combine Estimates from both regressions

- ▶ AND-rule: Edge present if both parameters are nonzero
- ▶ OR-rule: Edge present if at least one parameter is nonzero

(Loh & Wainwright, 2013; Haslbeck & Waldorp, 2016)

Back to Applications

67 measurements of 150 gene expressions related to the immune system of Drosophila melanogaster (fruit fly) over its full life cycle

Votes of 623 members of the German parliament on 136 bills from Nov 2013 -April 2015

1476 measurements of 16 mood related variables of one individual over 238 consecutive days

Gene Expressions of Fruit Fly

67 Measurements of 150 genes expressions related to immune system of the fruit fly (Lebre et al., 2010)

Voting Behavior of Members of German Parliament

136 public votes, 623 members of parliament of 4 parties

Symptoms of Mental Disorder

1476 measurements of 16 mood related variables of one individual over 238 consecutive days (Kossakowski et al., 2017)

Does the Structure of the System change over time?

Back to Applications: time-varying?

67 measurements of 150 gene expressions related to the immune system of Drosophila melanogaster (fruit fly) over its full life cycle

Votes of 623 members of the German parliament on 136 bills from Nov 2013 -April 2015

1476 measurements of 16 mood related variables of one individual over 238 consecutive days

How to Estimate a time-varying Model?

Time-varying Model via weighted nodewise regression

Weighted cost function:

$$\min\nolimits_{(\theta_0,\theta) \in \mathbb{R}^p} \left[\frac{1}{N} \sum\nolimits_{i=1}^N \frac{\mathbf{w}_{i;t}}{\mathbf{v}_{i;t}} (y_{i;t} - \theta_{0;t} - X_{\backslash s;i}^T \theta_t)^2 + \lambda_n ||\theta_t||_1 \right]$$

What is the right bandwidth?

More Information for estimation

Higher sensitivity to change

Scaling:
$$\tau_n \asymp \sqrt{d}||\theta||_2\sqrt{\frac{\log p}{n}}$$

Data driven bandwidth selection

True Model: 6 variables, 4 time-varying parameters, N = 1000

Gene Expressions of Fruit Fly: Time-varying

Gene Expressions of Fruit Fly: Time-varying

Voting Behavior: time-varying Model

2013-11-28

Voting Behavior: time-varying Model

Symptoms of Mental Disorder: Time-varying

13/08/12

Network of Mental Disorder: Time-varying

On the direction of Influence

True Structure:

Instantaneous Influence

Influence over time (1h)

Time-varying Mixed Graphical Models

Summary

- ▶ Powerful way to gain insights into multivariate datasets
- ► Allows for mixed variables (e.g. categorical and continuous)
- ▶ Scales well for large p and allows for p > n
- Available via R-package mgm on CRAN

Contact

- ► Email: jonashaslbeck@gmail.com
- ▶ Website: http://jmbh.github.io

References

- Haslbeck, J., & Waldorp, L. J. (2015). mgm: Structure Estimation for time-varying Mixed Graphical Models in high-dimensional Data. arXiv preprint arXiv:1510.06871.
- Haslbeck, J., & Waldorp, L. J. (2015). Structure estimation for mixed graphical models in high-dimensional data. arXiv preprint arXiv:1510.05677.
- Lebre, S., Becq, J., Devaux, F., Stumpf, M. P., & Lelandais, G. (2010). Statistical inference of the time-varying structure of gene-regulation networks. BMC systems biology, 4(1), 130.
- Loh, P. L., & Wainwright, M. J. (2012, December). Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses. In NIPS (pp. 2096-2104).
- Meinshausen, N., & Bhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics. 1436-1462.
- Yang, E., Baker, Y., Ravikumar, P., Allen, G. I., & Liu, Z. (2014, April). Mixed Graphical Models via Exponential Families. In AISTATS (Vol. 2012, pp. 1042-1050).