

Chapter 4

Block Ciphers and the Data Encryption Standard

Stream cipher

- Encrypt plaintext bit by bit or byte by byte
- Each unit is encrypted with a different key

$$E(\mathbf{k}_i, p_i) = c_i, 1 \le i \le m$$

- Examples
 - Vernam cipher
 - One-time pad
 - Autokeyed Vigenère cipher
 - Stream ciphers used in 4G/5G
 - SNOW 3G
 - AES-CTR
 - ZUC: 16-stage Linear Feedback Shift Register (LFSR)

Block cipher

- Encrypt plaintext block by block, typically, 128 bits
- Each unit is encrypted with the same key

$$E(\mathbf{k}, p_i) = c_i, 1 \le i \le m$$

- Examples
 - Playfair cipher
 - Hill cipher
 - DES
 - AES

(a) Stream cipher using algorithmic bit-stream generator

Design principles

- Claude Shannon
 - propose product cipher that alternates confusion and diffusion functions
 - each component introduces some level of security
 - accumulate full security from small security of each function
- Horst Feistel
 - propose a structure for easy encryption/decryption no matter what core functions are used
 - focus on design of secure core functions
 - components are substitution and permutation functions
 - Feistel structure is a practical realization of Shannon's principle

Diffusion and Confusion

- To counter "statistical analysis"
- Confusion
 - Complicate statistics relationship between of ciphertext and key
 - Even if the attacker gets some statistics of ciphertext, key is still too complex to deduce
- Diffusion
 - The statistical structure of the plaintext is dissipated into longrange statistics of ciphertext
 - Each plaintext digit affects many ciphertext digits

Feistel structure: 16 rounds

Feistel structure: one round

Feistel cipher: design features

- Block size
 - Larger block sizes mean greater security, but reduce encryption/decryption speed
- Key size
 - Larger key size means greater security, but decrease encryption/decryption speed
- Number of rounds
 - Multiple rounds offer increasing security, but decrease encryption/decryption speed
- Subkey generation algorithm
 - Greater complexity of subkey generation lead to greater difficulty of cryptanalysis

- Round function F
 - Greater complexity means greater resistance to cryptanalysis
- Fast software encryption/decryption
- Ease of analysis
 - Easy explanation enhances understanding of cipher. This leads to comprehensive analysis. More analysis means higher security

Data Encryption Standard (DES)

- FIPS-46, National Bureau of Standards (now NIST) ,1977
- Data Encryption Algorithm (DEA)
 - Plaintext, ciphertext: 64 bits
 - Key size: 56 bits
 - 16 rounds
 - Feistel cipher
- Replaced by Advanced Encryption Standard (AES) in 2001, FIPS 197

DES: initial permutation

- Initial permutation: IP (64 bits → 64 bits)
- Final permutation: IP^{-1} (64 bits \rightarrow 64 bits)

IP-1

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	(1)
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(40)	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES: single round

14 2024 Spring 14

DES: f function

DES: expansion function *E*

- Expansion permutation E: 32 bits → 48bits
- Input bits: 1 2 3 ... 32

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

DES: S-box

• The only non-linear relation between input and output

ź								٤	l_i							
1	14 0 4 15	$egin{array}{c} 4 \\ 15 \\ 1 \\ 12 \end{array}$	13 7 14 8	1 4 8 2	$2 \\ 14 \\ 13 \\ 4$	15 2 6 9	11 13 2 1	8 1 11 7	3 10 15 5	10 6 12 11	6 12 9 3	12 11 7 14	5 9 3 10	$9 \\ 5 \\ 10 \\ 0$	0 3 5 6	7 8 0 13
2	15 3 0 13	1 13 14 8	8 4 7 10	14 7 11 1	$6 \\ 15 \\ 10 \\ 3$	11 2 4 15	3 8 13 4	4 14 1 2	9 12 5 11	7 0 8 6	$\frac{2}{1}$ $\frac{1}{12}$ $\frac{7}{12}$	$13 \\ 10 \\ 6 \\ 12$	12 6 9 0	0 9 3 5	5 11 2 14	10 5 15 9
3	10 13 13 1	0 7 6 10	$9 \\ 0 \\ 4 \\ 13$	14 9 9 0	6 3 8 6	3 4 15 9	15 6 3 8	5 10 0 7	1 2 11 4	13 8 1 15	12 5 2 14	$7 \\ 14 \\ 12 \\ 3$	11 12 5 11	4 11 10 5	$2 \\ 15 \\ 14 \\ 2$	8 1 7 12
4	7 13 10 3	13 8 6 15	14 11 9 0	3 5 0 6	$0 \\ 6 \\ 12 \\ 10$	$6 \\ 15 \\ 11 \\ 1$	9 0 7 13	10 3 13 8	1 4 15 9	2 7 1 4	8 2 3 5	5 12 14 11	11 1 5 12	$12 \\ 10 \\ 2 \\ 7$	4 14 8 2	15 9 4 14
5	2 14 4 11	12 11 2 8	4 2 1 12	1 12 11 7	7 4 10 1	10 7 13 14	11 13 7 2	6 1 8 13	8 5 15 6	5 0 9 15	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3 4	14 8 0 5	9 6 14 3
6	$12 \\ 10 \\ 9 \\ 4$	1 15 14 3	$10 \\ 4 \\ 15 \\ 2$	15 2 5 12	9 7 2 9	$\begin{array}{c} 2 \\ 12 \\ 8 \\ 5 \end{array}$	6 9 12 15	8 5 3 10	0 6 7 11	13 0 14	3 13 4 1	4 14 10 7	14 0 1 6	7 11 13 0	5 3 11 8	11 8 6 13
7	$^{4}_{13}$ $^{1}_{6}$	11 0 4 11	2 11 11 13	14 7 13 8	15 4 12 1	0 9 3 4	8 1 7 10	13 10 14 7	3 14 10 9	12 3 15 5	9 5 6 0	7 12 8 15	5 2 0 14	10 15 5 2	6 8 9 3	$1 \\ 6 \\ 2 \\ 12$
8	13 1 7 2	$2 \\ 15 \\ 11 \\ 1$	8 13 4 14	4 8 1 7	$6 \\ 10 \\ 9 \\ 4$	15 3 12 10	11 7 14 8	1 4 2 13	10 12 0 15	9 5 6 12	$\frac{3}{6}$ $\frac{10}{9}$	14 11 13 0	5 0 15 3	0 14 3 5	12 9 5 6	7 2 8 11

DES: permutation function P

• Permutation function $P: 32 \ bits \rightarrow 32 \ bits$

16	7 15	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Key scheduling

Key scheduling

(a) Input Key								
1	2	3	4	5	6	7	8	
9	10	11	12	13	14	15	16	
17	18	19	20	21	22	23	24	
25	26	27	28	29	30	31	32	
33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	
49	50	51	52	53	54	55	56	
57	58	59	60	61	62	63	64	

	(13)	· crimute	u Choice	One (I	U 1)	
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(b) Permuted Choice One (PC-1)

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

- 28 positions in total
 - → re-position after 16 rounds
- Decryption: shift right

(d) Schedule of Left Shifts

DES Example

plaintext: 02468aceeca86420

key: of1571c947d9e859

ciphertext: dao2cd3a89ecac3b

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

DES security

- The core of security is the non-linear mapping of S-boxes
- Key size: to defend the brute-force attack
- Avalanche effect
- Bit independence effect

Avalanche effect

- A small change in either plaintext or key should produce a significant change in ciphertext
- In particular, one bit change in either plaintext or key
 - ⇒ half bits change in ciphertext

Fast avalanche effect

- Example: alternate the first bit of plaintext
- δ : number of different bits

Round		δ
	02468aceeca86420	1
0.0	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Exhaustive key search

Key size (bits)	Cipher	Number of keys	Time required at 109 decryptions/s	Time required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	5.3×10^{21} years	5.3×10^{17} years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$5.8 \times 10^{33} \text{years}$	5.8×10^{29} years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$9.8 \times 10^{40} \text{years}$	9.8×10^{36} years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	1.8×10^{60} years	1.8×10^{56} years
26 characters	Monoalphabetic	$26! \approx 4 \times 10^{26}$	6.3×10^9 years	6.3×10^6 years

S-box security

- Strict avalanche criterion (SAC)
 - When an input bit i is inverted, an output bit j of an S-box changes with probability 0.5
- Bit independence criterion (BIC)
 - When an input $bit\ i$ is inverted, output $bits\ j$ and k change independently, for all i,j and k

			Middle 4 bits of input														
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

Key schedule

- One subkey is generated in each round
- It is difficult to deduce individual subkeys and the main key from a subkey
- Meet the SAC and BIC conditions

DES: weakness

• Key complementation:

$$C = DES(P, K) \Rightarrow \overline{C} = DES(\overline{P}, \overline{K})$$

- Differential cryptanalysis

 - Chosen plaintext attack: need 247 pair of plaintexts and 237 DES calls
 - Significantly less than 255 exhaustive key search.
- 16 rounds are the boundary for current known attacks
- 56-bit is too small in current technology
 - Quantum computers reduces the key search to 2²⁸
 - Should use 3DES with 112-bit keys at least

Triple DES: EDE-DES

