Chapter 1

Digital Signal Processing

Dr. Andy W. H. Khong

1.1 Definition

₩

Digital signals

- discrete-time sequence
- sampling data at regular intervals
- Examples:
 - a) rainfall record for a given period
 - b) stock prices for a particular firm
 - c) grade distribution for a particular course in NTU

1.1 Definition

Data compression

Processing

- Representation
- Transformation
- Manipulation

VT earthquake Volcanic tremor Gain insights into VLP event LP event signal properties (frequency content) Noisy signal Reduce noise, Processed signal sharpen image

Analog Signals

Digital Signals

Transformation

Representation

1.3 Related Courses

Chapter 2

Discrete-Time Signals

Dr. Andy W. H. Khong

Chapter Aims

The aims of this chapter are to:

- 1. construct and compare the basic types of discrete signals
- 2. differentiate between different types of signal operations
- 3. formulate the process of sampling an analog signal
- 4. analyze and interpret properties of discrete signals

2.1 Introduction

Discrete-time signals

- sequence of numbers
- normally represented in a vector form notation, e.g., $\mathbf{x}[n]$
- ullet n is known as the sample index
- sometimes an arrow denotes the value when n=0
- if there is no arrow, the first element is taken n=0

2.2 Basic Signals

Some basic signals

• Impulse

$$\delta[n] = \left\{ egin{array}{ll} 0, & n
eq 0; \ 1, & n = 0. \end{array}
ight.$$

Unit step

$$u[n] = \left\{egin{array}{ll} 1, & n \geq 0; \ 0, & n < 0 \end{array}
ight.$$

Exponential

$$x[n] = A\alpha^n$$

2.2 Basic Signals

Sinusoid

$$x[n] = A\cos(\omega_0 n + \phi)$$

A: amplitude

 ω_0 : angular frequency (radian/sample)

 ϕ : phase

Complex sinusoid

$$x[n] = Ae^{\jmath(\omega_0 n + \phi)}$$

= $A\cos(\omega_0 n + \phi) + \jmath A\sin(\omega_0 n + \phi)$

• Signal shift (delay)

Expressing a signal using the impulse function

We can express x[n] by

$$x[n] = -1.3\delta[n-1] - 0.4\delta[n-2] + 0.3\delta[n-3] + \ldots + 3\delta[n-7]$$

More compactly, we can express a given signal as

$$x[n] = \sum_{k=0}^{\infty} A_k \delta[n-k]$$

 A_k : coefficent of time index k

Examples:

a) a unit step sequence can be expressed as

$$x[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

b) a unit impulse can be expressed as

$$egin{array}{lcl} \delta[n] &=& u[n] - u[n-1] \ &=& \displaystyle\sum_{k=0}^{\infty} \delta[n-k] - \displaystyle\sum_{k=1}^{\infty} \delta[n-k] \end{array}$$

Time reversal

Time scaling

This page is intentionally left blank.

A) Definition

An analog sinusoid is in the form of

$$x(t) = A\cos(2\pi ft)$$
$$= A\cos(\omega t)$$

Therefore, by definition,

f: analog frequency in cycles/sec (Hz)

 ω : angular (analog) frequency in rad/sec

A digital sinusoid is in the form of

$$x[n] = A\cos(2\pi f_0 n)$$
$$= A\cos(\omega_0 n)$$

Therefore, by definition,

 f_0 : digital frequency in cycles/sample

 ω_0 : angular (digital) frequency in rad/sample

B) Sampling

- Sampling a continuous-time signal at regular interval results in a discrete-time signal.
- We often write $x[n]=x_{\rm continuous}(nT_s)$ $T_s=1/f_s \ {\rm is \ the \ sampling \ period \ in \ sec}$ $f_s: \ {\rm sampling \ frequency \ in \ Hz}$
- A higher f_s implies that the analog signal is sampled more frequently.

$$x[n] = x_{\text{continuous}}(nT_s)$$

 $T_s = 1/f_s$ is the sampling period

 f_s : sampling frequency

• Therefore, samples are taken at regular time intervals $\dots, 0, T_s, 2T_s, \dots$

• This is equivalent to replacing the variable t in x(t) by nT_s where n is the sample index.

Example:

Consider an analog signal $x(t)=6\cos(20\pi t)$. Given a sampling rate of $f_s=200~{
m Hz}$, find the discrete representation of the signal.

A sampling rate of $f_s = 200 \text{ Hz}$ corresponds to a sampling period of $T_s = 1/200 = 0.005 \text{ sec.}$

This implies that we have a digital signal at sample index $\,n\,$ every 0.005 s.

Sampling x(t) at this period will result in

$$x[n] = 6\cos(20\pi \times nT_s)$$
$$= 6\cos(0.1\pi n)$$

In the above example, the analog signal is $x(t) = 6\cos(20\pi t)$ and therefore

$$f = 10 \text{ Hz}$$

 $\omega = 20\pi \text{ rad/s}$

Once sampled, the digital signal $x[n] = 6\cos(0.1\pi n)$ where

$$f_0 = 0.05 \text{ cycles/sample}$$

$$\omega_0 = 0.1\pi \text{ rad/sample}$$

The variable f_0 is sometimes known as the <u>normalized frequency</u> since, from the above, we can show that

$$f_0 = \frac{f}{f_s} = \frac{10}{200} = 0.05$$

From the above, since

$$\omega_0=2\pi f_0$$

$$f_0 = f/f_s$$

we will have

$$\omega_0 = 2\pi f/f_s$$

This means that the *angular frequency* of the digital signal is equivalent to the *normalized frequency* multiplied by a factor of 2π .

This page is intentionally left blank.

C) Identical signals

- Two discrete-time sinusoids of different frequencies may be identical
- Consider two angular frequencies $\,\omega_0\,$ and $\,\omega_0+2\pi\,$
- We can show that these two frequencies are identical by expressing

$$A_0 \cos[(\omega_0 + 2\pi)n + \phi] = A_0 \cos[(\omega_0 n + \phi) + 2\pi n]$$

= $A_0 \cos(\omega_0 n + \phi) \cos(2\pi n) - A_0 \sin(\omega_0 n + \phi) \sin(2\pi n)$
= $A_0 \cos(\omega_0 n + \phi)$

• For example, consider the case where we have an analog signal with frequency $f=200~{
m Hz}$. With a sampling rate of $f_s=1000~{
m Hz}$,

$$\omega_0 = 2\pi f/f_s$$

$$= 0.4\pi$$

$$\cos(\omega_0 n) = \cos(0.4\pi n)$$

• Another analog signal of frequency $f=1200~{
m Hz}, {
m with}$ a sampling rate of $f_s=1000~{
m Hz}$

$$\omega_0 = 2\pi f/f_s$$

$$= 2.4\pi$$

$$\cos[(\omega_0 + 2\pi)n] = \cos(2.4\pi n)$$

 Therefore, analog signals of different frequencies can have the same discrete signals.

D) Aliasing

 Consider an analog signal which contains 30 Hz and 170 Hz components, i.e.,

$$x(t) = 6\cos(2 \times \pi \times 30t) + 6\cos(2 \times \pi \times 170t)$$

Digitizing this signal with a sampling frequency of $f_s=200~{
m Hz}$

$$x[n]$$
 = $6\cos(60\pi nT_s) + 6\cos(340\pi nT_s)$
= $6\cos(0.3\pi n) + 6\cos(1.7\pi n)$
= $6\cos(0.3\pi n) + 6\cos((2\pi - 0.3\pi)n)$
= $6\cos(0.3\pi n) + 6\cos(0.3\pi n)$
= $12\cos(0.3\pi n)$

The above implies that the digital signal (generated by 2 analog signals) only contains <u>one</u> frequency $f_0=0.15$ which is a false representation of the analog signal!

30 Hz analog signal sampled at 200 Hz

170 Hz analog signal sampled at 200 Hz

$$x(t) = 6\cos(2 \times \pi \times 30t) + 6\cos(2 \times \pi \times 170t)$$

$$x[n] = 6\cos(60\pi nT_s) + 6\cos(340\pi nT_s)$$

$$= 6\cos(0.3\pi n) + 6\cos(0.3\pi n)$$

$$x(t) = 6\cos(2 \times \pi \times 30t) + 6\cos(2 \times \pi \times 170t)$$

$$x[n] = 6\cos(60\pi nT_s) + 6\cos(340\pi nT_s)$$

$$= 6\cos(0.3\pi n) + 6\cos(0.3\pi n)$$

- The aliasing problem occurs because we are sampling at 200 Hz which is less than the Nyquist rate for the 170 Hz signal.
- If we are to sample at 500 Hz, i.e., more than twice the highest frequency, we can see that

$$x[n] = 6\cos(60\pi nT_s) + 6\cos(340\pi nT_s)$$

= $6\cos(0.12\pi n) + 6\cos(0.68\pi n)$

 Note that when the analog signal is sampled without aliasing, i.e., the signal is sampled at least twice the frequency, we have

$$f_s \geq 2f$$

$$\Rightarrow f/f_s \leq 0.5$$

Since

$$\omega_0 = 2\pi f/f_s$$

we can therefore show that

$$\omega_0 \leq \pi$$

This implies that if the analog signal is to be faithfully represented, the maximum angular frequency of the digital signal is π .

- E) Periodicity of discrete sinusoids
 - The period of discrete sinusoids is given by

$$N=2\pi k f_s/\omega, \qquad k: {
m an integer}$$

The discrete signal will repeat itself after every $N=2\pi k f_s/\omega$ samples.

• Rational: Consider an analog signal $x(t) = A\cos(2\pi ft)$. The digital signal is given by

$$x[n] = A\cos\left(2\pi f n T_s
ight) = A\cos\left(2\pi rac{f}{f_s}n
ight) = A\cos\left(rac{\omega}{f_s}n
ight)$$

If x[n] is to repeat itself, say every N samples, then x[n] = x[n+N], i.e.,

$$x[n+N] = A\cos\left(\frac{\omega}{f_s}(n+N)\right) = A\cos\left(\frac{\omega}{f_s}n + \frac{\omega}{f_s}N\right)$$

Therefore x[n]=x[n+N] can occur if $\omega N/f_s$ is a multiple of 2π , i.e.,

$$rac{\omega N}{f_s}=2\pi k$$

Example:

Consider an analog signal given by $x(t) = 6\cos(20\pi t)$ and sampled at a sampling rate of $f_s = 200~{
m Hz}$.

For k = 1, the digital signal will repeat itself once every

$$N = \frac{2\pi f_s}{\omega}$$

$$= \frac{2\pi \times 200}{20\pi}$$

$$= 20 \text{ samples}$$

- F) High/low frequencies in digital signals
 - The interpretation of high and low frequencies is somewhat different for continuous-time and discrete-time sinusoids.
 - For continuous-time signal,

$$x(t) = A\cos(2\pi ft)$$
$$= A\cos(\omega t)$$

higher value of ω translates to higher frequency.

• For discrete-time signal,

$$x[n] = A\cos(2\pi f_0 n)$$
$$= A\cos(\omega_0 n)$$

oscillation becomes <u>more</u> rapid for increasing ω_0 when $0 \le \omega_0 \le \pi$ oscillation becomes <u>less</u> rapid for increasing ω_0 when $\pi \le \omega_0 \le 2\pi$

$$f_s = 2000 \; {\rm Hz}$$

oscillation of discrete signal (black vertical lines) becomes \underline{more} rapid for increasing ω_0 when $0 \leq \omega_0 \leq \pi$

$$f_s = 2000 \; {\rm Hz}$$

oscillation of discrete signal (black vertical lines) becomes \underline{less} rapid for increasing ω_0 when $\pi \leq \omega_0 \leq 2\pi$

2.5 Summary

A discrete-time signal can be expressed from a continuous-time signal by

$$x[n] = x_{\text{continuous}}(nT_s)$$

The normalized frequency in the digital domain is given by

$$f_0 = f/f_s = \omega_0/2\pi$$

and the maximum angular frequency of the digital signal corresponds to

$$\omega_0 \leq \pi$$

- The period of discrete sinusoid is given by $N=2\pi k f_s/\omega$.
- For a discrete-time signal oscillation becomes more rapid for increasing ω_0 when $0 \le \omega_0 \le \pi$. oscillation becomes less rapid for increasing ω_0 when $\pi \le \omega_0 \le 2\pi$.

This page is intentionally left blank.

