Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Beugung und Interferenz von Laserlicht

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer:

Versuchsdatum: 09.03.2015

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung						
2	The	orie		3		
	2.1 Laserprinzip					
	2.2		ing und Interferenz			
		2.2.1	Doppelspalt	3		
		2.2.2	Einzelspalt und Steg	3		
		2.2.3	Kreisblende	4		
		2.2.4	Mehrfachspalt	4		
3	B Durchführung					
4	2.2.1 Doppelspalt		4			
5	5 Diskussion					
6	Anh	ang		4		
Lit	iteratur					

1 Einleitung

2 Theorie

2.1 Laserprinzip

Abbildung 1: Niveauschema des Helium-Neon-Lasers. [LP2, Datum: 02.01.15]

2.2 Beugung und Interferenz

2.2.1 Doppelspalt

$$I(\varepsilon) = I_0 \cdot \cos^2(\varepsilon) \tag{1}$$

2.2.2 Einzelspalt und Steg

$$I(\varepsilon) = I_0 \cdot \operatorname{sinc}^2(\varepsilon) \tag{2}$$

2.2.3 Kreisblende

$$I(\varepsilon) = I_0 \cdot \left(\frac{J_1(\varepsilon)}{\varepsilon}\right)^2 \tag{3}$$

2.2.4 Mehrfachspalt

$$I(\varepsilon) = I_0 \cdot \operatorname{sinc}^2\left(\frac{\pi \alpha D}{\lambda}\right) \cdot \left(\frac{\sin(N\varepsilon)}{\sin(\varepsilon)}\right)^2 \tag{4}$$

3 Durchführung

Abbildung 2: Aufbau. [LP2, Datum: 02.01.15]

- 4 Auswertung
- 5 Diskussion
- 6 Anhang

Literatur

[LP2] Lehrportal der Universität Göttingen. https://lp.uni-goettingen.de/get/text/4346.