10/562101

Europäisches Patentamt European Patent Office Office européen des brevets

MAILED 2 4 JUN 2004

WIPO

PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03101916.9

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 03

03101916.9

Demande no:

Anmeldetag:

Date of filing:

27.06.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Method and arrangement for temperature calibration

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G01K/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

DESCRIPTION

10

Method and arrangement for temperature calibration

The invention concerns a method for calibrating a temperature setting curve on a semiconductor chip, further it relates to an arrangement for calibrating the temperature setting curve.

For adjusting appropriate parameters of a chip a reliable temperature value is needed. This temperature value is extracted from a characteristic signal and a temperature setting curve for the semiconductor chip.

Having the exact temperature of the chip is very important, because a lot of parameters for operating the chip are related to the actual temperature, so the parameters are adapted to the actual temperature value if the temperature is vacillating. For example, for driving a display arrangement certain voltages are necessary. The supplied voltage values are dependent on the chip temperature, which is different under certain circumstances and environmental conditions. So the actual temperature of the chip is measured for adapting the required voltages.

One possibility to calibrate the temperature curve of the sensor is to calibrate only the offset or the slope of the curve. The disadvantage of this approach is that the temperature readout is only accurate at one temperature point (the calibration point). If the slope of the temperature setting curve is not accurate, the measured temperature will have a mismatch with the actual temperature. To get an accurate result of the measurement, the slope must be calibrated as well.

It is known to calibrate a temperature setting curve of a chip by using two temperature points. To get these temperature points, the chip or device has to be brought to two different temperatures. Bringing the chip on two different temperatures requires a lot time, which is longer than the overall testing time.

So it is an object of the invention to provide a method and an arrangement for calibrating the temperature setting curve on a semiconductor chip in a very short time, by maintaining the required accuracy.

The object is solved by the features of the independent claims.

The solution is based on the thought, that the temperature extracting unit could be misleaded. To achieve this misleading a signal generation unit is provided, which is able to generate a first signal and a signal offset. A first temperature point is obtained, by reading the first signal, which is proportional to the temperature. To get a second temperature point the signal generation unit generates a signal offset which is combined with the first signal, so the extraction unit reads a second signal, which corresponds to a second temperature, whereby this second temperature does not exist on the chip, since it is only virtually.

15

Thus the temperature extracting unit can calculate two temperature points, the first temperature point based on the first signal, which is proportional to the first actual temperature and the second temperature point based on the second signal which is a combination of the first signal and the signal offset. This second signal is proportional to a second temperature point or a so called virtual temperature point. By knowing these two temperature points it is possible to calculate the slope and the course of the real temperature curve of the particular chip. Out of this knowledge calibration values can be calculated to get a very accurate temperature curve.

25 This type of temperature calibration can be used in any on-chip temperature sensors.

One aspect of the present invention regards a signal generation unit which generates a current signal I_{ptat1} . This first current signal I_{ptat1} is supplied to the temperature extraction unit, wherein the first temperature point T_1 is calculated. The operation of the signal generation unit is then switched to the second current signal I_{ptat2} , so a current offset I_{virt} is generated and combined with the first current signal I_{ptat1} . This resulting second current signal I_{ptat2} is supplied to the temperature extraction unit, which calculates the second temperature point T_2 and further

calibrates the temperature setting curve. A current based architecture is easy to realize, thereby providing high accuracy, whereas only a small chip area is required.

A further aspect of the present invention regards an embodiment, wherein the first signal is realized as a voltage V_{peat} , to be supplied to the temperature extraction unit. For calibrating the chip a voltage offset V_{virt} is generated by the signal generation unit and combined with the first voltage V_{peat} . This resulting second voltage V_{peat} is supplied to the temperature extraction unit, wherein the second or virtual temperature point T_2 is calculated, facilitating the calibration of the temperature setting curve. Depending of the signal extraction unit and the reference signal it can be an advantage to use a voltage based architecture. But it is easier to combine currents than voltages keeping the best possible accuracy.

A further aspect of the present invention regards an embodiment, wherein the first signal is realized as a frequency f_{prac} , which is proportional to the temperature. The calculation of the second temperature point T_2 is performed similar to the first and second above mentioned embodiments. The using of a frequency can be advantageous, if the available reference signal is a frequency, however using a frequency is more difficult than combining voltage or current signals.

- 20 The object of the invention is also solved by a method for calibrating a temperature setting curve of a temperature sensor arrangement on a semiconductor chip, the method comprising:
 - reading a first signal (I_{ptatl}, V_{ptatl}, f_{ptatl}), which is proportional to the actual temperature T₁ of the chip
- generating a signal offset (I_{virt}, V_{virt}, f_{virt}), which is combined with the first signal
 (I_{ptat1}, V_{ptat1}, f_{ptat1}) defining a second signal (I_{ptat2}, V_{ptat2}, f_{ptat2})
 - extracting a first actual temperature T₁ from the first signal (I_{ptat1}, V_{ptat1}, f_{ptat1}) and a second temperature T₂ from the second signal (I_{ptat2}, V_{ptat2}, f_{ptat2})

In a further embodiment of the resulting temperatures (T_1, T_2) are used for providing calibration parameters to the chip.

Further it is possible to calculate the calibration parameters on-chip or off-chip depending on the application.

Further it is possible that additional signal offsets $(I_{vir2}, V_{vir2}, f_{vir2})$ are provided for calculating more than two temperature points T_n , so a non linear temperature setting curve can be calibrated.

In a further embodiment the signal offset $(I_{vir}, V_{vir}, f_{vir})$ is subtracted from first signal $(I_{peatl}, V_{peatl}, f_{peatl})$ or added to the first signal $(I_{peatl}, V_{peatl}, f_{peatl})$ defining the second signal $(I_{peatl}, V_{peatl}, f_{peatl})$, which is provided to the temperature extraction unit (3).

In order that the invention may be well understood, there will now be described some embodiments thereof, given by way of example, references being made to the accompanying drawings, in which:

15

- Fig. 1 shows a block diagram of an on chip temperature sensor;
- Fig. 2 shows a first embodiment of a signal generation unit according to the present invention;

20

- Fig. 3 shows an alternative embodiment of a signal generation unit according to the present invention;
- Fig. 4 shows an alternative embodiment for signal generation unit in accordance with the present invention.

Figure 1 shows a block diagram of an on chip temperature sensor according to the present invention. The signal generation unit 2 generates a first signal, which is proportional to the temperature. This first signal is supplied to the temperature extraction unit 3 for calculating a first temperature point. Further the signal generation unit 2 generates during the calibration procedure a signal offset, which is combined to the first signal defining the second signal. By supplying the second signal to the temperature extraction unit 3 the

temperature extraction unit 3 will be misleaded. The temperature extraction unit 3 calculates a second temperature point without heating the chip on a second temperature.

The signals supplied to the temperature extraction unit 3 are converted, e.g. in AD-converter 4 and the temperature extraction unit 3 calculates the actual temperature out of the supplied signal in a digital manner, by using schemes, which are implemented. These schemes are programmed and based on formulas, which will be explained in more detail below.

By this way the calibration of the temperature setting curve is performed in a very short time, e.g. during testing procedure only by having a single temperature point. The effort in particularly the chip area for generating the signal offset in the signal generation unit 2 is very low.

Figure 2 shows a first embodiment according to the present invention. Here the first signal is realized as a current signal I_{ptat1} if the switch 21 is open. During the calibration procedure a first current I_{ptat1} is supplied to the temperature extraction unit 3, calculating a first temperature point T_1 . This temperature value T_1 corresponds to the real and uncalibrated chip temperature. After calculating this temperature value T_1 the switch 21 is closed and the second current I_{ptat2} is generated. After the switch 21 is closed a voltage ΔVbe_2 appears between the two bipolar transistors BT1 und BT2. This voltage ΔVbe_2 will be converted in a current I_{ptat2} that is corresponding to the virtual and uncalibrated temperature T_2 .

In the following the functionality of the bandgap circuitry will be shortly described. The OPAMP sets the voltages of the PMOS transistors P1-P4 gates in such a way that the difference between the two OPAMP-inputs is regulated to zero.

In the following the formulas for calculating the respective temperature points are discussed.

At temperature
$$T_{test}$$
: $\Delta vbe_{Ttest} = Vbe1 - Vbe2 = (kT/q) ln (n1 * n2) | T=T_{test}$ (1)

Formula (1) is for calculating the first temperature point, whereas, $\Delta vbe_{Test} = Voltage between BT1 und BT2 during first temperature T_{test}$

20

25

30

Vbe1 = Basis emitter voltage BT1

Vbe2 = Basis emitter voltage BT2

k = Bolzmann constant

T = absolute Temperature (K)

5 q = charge of an electron

10

20

n₁, n₂, n₃= multiplication factors, how many unity transistors are connected in parallel

x = variable depending on parameters like accuracy, size of circuitry etc.

The multiplication factors n_1 , n_2 , n_3 are selected in dependency on the required accuracy and the available chip area and the current consumption. The advantage of having a high value for the multiplication factor n_2 is a high Δ vbe leading to a good precision. However a high n_2 requires a lot of chip area for realizing of the bipolar transistor BT2. The advantage of having a high value for the multiplication factor n_1 is a high Δ vbe leading also to a good precision. The high current consumption is disadvantageous in that case, further it requires a slightly more chip area. But selecting n_1 too big will result in lower precision due to the mismatch of the current mirror. Taking a high value for the multiplication factor n_3 will lead to a higher precision, because the two temperature points are more separated, so the signal offset is higher. The drawback is an increased chip area and a higher current consumption during the calibration. A good compromise for accuracy, chip area and current consumption will be achieved with n_1 =10, n_2 =24, n_3 =17.

The formula (2) is used for calculating the second temperature point T_2 (switch 21 closed).

For T at temperature T_{test} :

25
$$\triangle vbe_2 = Vbe1 - Vbe2 = (k*T/q)*ln ((n_1+n_3)*n_2) | T=T_{test}$$
 (2)

Using formula (1) and formula (2) the virtual temperature T_2 can be calculated with formula (3)

30
$$T_2 = T_{rest} * ln ((n1+n3) * n2) / ln (n1 * n2)$$
 (3)

The current signal, which is proportional to the temperature is measured and based on the physical rule

$$I_{\text{put}} = \Delta v b e / R \tag{4}$$

Figure 3 shows an alternative embodiment according the present invention.

In this embodiment a first voltage V_{pust} is generated and supplied to the temperature extraction unit 3. For generating a second voltage or a virtual voltage the switch 21 is closed and the V_{pust} is supplied to the temperature extraction unit 3 which corresponds to T_2 .

By using this architecture a virtual temperature point can be generated. With this virtual temperature point T_2 and the T_{test} point it is possible to calculate the slope of the uncalibrated temperature curve, thereby making the calibration possible during chip testing at one single temperature, which saves time.

A further embodiment for signal a generation unit 2 for generating a virtual temperature is shown in Figure 4. In this embodiment the current I $_{par2}$ is subtracted by closing the switch 21. Thereby the second temperature T_2 will be below T_1 . There are no changes required in the temperature extraction unit 3. Following formulas corresponds to Fig.4:

For
$$T_2$$
 at temperature T_{test} : $\Delta vbe_2 = Vbe_1 - Vbe_2 = (k*T/q)*ln ((n_1-n_3)*n_2) | T=T_{test}$ (4)

Using Formula (1) and formula (4) the virtual temperature T₂ can be calculated with formula (5)

$$T_2 = T_{test} * ln ((n_1-n_3) * n_2) / ln (n_1 * n_2)$$

5

10

15

20

25

This embodiment is advantageous because T_2 is smaller than T_{Test} . Since the temperature T_{Test} during the test procedure is typically 85 degrees, a smaller T_2 than T_{Test} will make the behaviour of the system closer to normal operation mode. However the current copy through the current mirrors introduces additional error leading to a less precise calibration.

CLAIMS

- 1. Arrangement on a semiconductor chip for calibrating temperature setting curve having
- a signal generation unit (2) for providing a first signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$, which is proportional to the actual temperature T_1 of the chip; and
- whereby a signal offset (I_{virt}, V_{virt}, f_{virt}) is creatable by the signal generation unit (2), which is combined with the first signal (I_{ptat1}, V_{ptat1}, f_{ptat1}) defining a second signal (I_{ptat2}, V_{ptat2}, f_{ptat2});
 - a signal extraction unit (3) receiving the first signal (I_{ptat1}, V_{ptat1}, f_{ptat1}) and second signal (I_{ptat2}, V_{ptat2}, f_{ptat2}) for calculating a first temperature point (T₁) based the first signal (I_{ptat1}, V_{ptat1}, f_{ptat2}) and a second temperature point (T₂) based second signal (I_{ptat2}, V_{ptat2}, f_{ptat2}).
 - 2. Arrangement as claimed in claim 1, whereby the first signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$, which is proportional to the actual temperature (T_1) of the chip, is a current (I_{ptatl}) , a voltage (V_{ptatl}) or a frequency (f_{ptatl}) .
- 3. Arrangement as claimed in claim 1, whereby the first signal $(I_{ptat1}, V_{ptat1}, f_{ptat1})$ and the second signal $(I_{ptat2}, V_{ptat2}, f_{ptat2})$ are convertible into digital signals, whereby the temperature extraction unit (3) calculates the first and second temperature points (T_1, T_2) for calibrating the temperature setting curve.
- 4. Method for calibrating a temperature setting curve of a temperature sensor arrangement on a semiconductor chip, the method comprising:
- reading a first signal (I_{ptatl}, V_{ptatl}, f_{ptatl}), which is proportional to the actual temperature (T₁) of the chip

25

20

10

15

- generating a signal offset (I_{virt} , V_{virt} , f_{virt}), which is combined with the first signal ($I_{ptat,1}$, $V_{ptat,1}$, $f_{ptat,1}$) defining a second signal ($I_{ptat,2}$, $V_{ptat,2}$, $f_{ptat,2}$)
- extracting a first actual temperature T₁ from the first signal (I_{ptat1}, V_{ptat1}, f_{ptat1}) and a second temperature (T₂) from the second signal (I_{ptat2}, V_{ptat2}, f_{ptat2})

5. Method as claimed in claim 4, whereby the resulting temperatures (T_1, T_2) are used for providing calibration parameters to the chip.

6. Method as claimed in claim 5, whereby calculating calibration parameters can beperformed on-chip or off-chip.

7. Method as claimed in claim 4, whereby additional signal offsets (I_{vir2} , V_{vir2} , f_{vir2}) are provided for calculating more than two temperature points (T_n) and calibrating a non linear temperature setting curve.

8. Method as claimed in claim 4, whereby the signal offset $(I_{vir}, V_{vir}, f_{vir})$ is subtracted from first signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$ or added to the first signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$ defining the second signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$, which is provided to the temperature extraction unit (3).

20

15

5

ABSTRACT

Method and arrangement for temperature calibration

The invention concerns to an arrangement on a semiconductor chip for calibrating temperature setting curve having a signal generation unit (2) for providing a first signal (I_{pust1} , V_{pust1} , f_{pust1}), which is proportional to the actual uncalibrated temperature T_1 of the chip. To avoid bringing the chip on a second temperature it is proposed to read a first signal (I_{pust1} , V_{pust1} , f_{pust1}), which is proportional to the actual uncalibrated temperature T_1 of the chip and generate a signal offset (I_{virt} , V_{virt} , f_{virt}), which is combined with the first signal (I_{pust1} , V_{ptat1} , f_{pust2}) defining a second signal (I_{pust2} , V_{pust2} , f_{pust2}) and to extract a first actual temperature T_1 from the first signal (I_{pust1} , V_{ptat1} , f_{pust2}) and a second uncalibrated temperature T_2 from the second signal (I_{pust2} , V_{pust2} , f_{pust2}).

15 Fig. 2

1 / 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.