Marine Control Systems II

Lecture 3: Nonlinear control

Roger Skjetne

Department of Marine Technology Norwegian University of Science and Technology

TMR4243

Goals of lecture

- Learn to specify *control problems*, *control objectives*, and the "Problem Formulation" in your reports.
- Understand the stabilization problem of a nonlinear plant.
- Understand how the control design model is related to or motivates a control design method.
- ▶ Be able to explain the difference between *local*, *regional*, *global*, and *semiglobal stabilization*.
- ▶ Be able to explain *practical stabilization* vs. *stabilization*.
- Explain the main types of control objectives: regulation, tracking, path-following, and maneuvering.
- Understand constructive control, and the concept of a Control Lyapunov Function (CLF)
 - Learn to apply Sontag's formula as a feedback control law.

Literature

- Note on "Mathematical Notations and Preliminaries"
- Khalil, H. K. (2015). Nonlinear Control:
 - Chapters: 8, 9.1-9.2, 9.7, and intro of 10.
- Lecture presentation.

Control specifications

Important to specify and evaluate the system design:

- Control to a setpoint reference or follow reference trajectories.
- Reduce load disturbances.
- Do not inject too much measurement noise.
- Sensitivity and robustness to modeling errors.
- Limitations and constraints.
- Quantitative descriptions:
 - Time and frequency domains.
 - Many classical specifications were geared towards response to reference signals.
 - Important to consider response to disturbances.

Limitations and constraints

Many factors limit the achievable performance:

- Nonlinear effects such as magnitude and rate saturations.
- Measurement noise.
- Disturbances e.g. sudden environmental loads.
- Dynamics with nonminimum phase characteristics.
- Time delays.

In the **Problem Formulation**, one must design a philosophy that:

- Respects the limitations and constraints.
- Proposes a modification to the process, if possible.
- Prepares the problem so that it is ready for a Control and/or Observer design.

In all cases one should not formulate unrealistic specifications.

What should be specified in a Problem Formulation?

The *Problem Formulation* prepares the control problem for design. It should as minimum describe:

- The system setup and the design model(s), incl. simplifying assumptions:
 - Derive the design model if necessary, or state it from a reference.
 - Clarify specifically the states, the control input(s), the output(s) to control, and the measured states (measurements).
 - Note that the control design model and observer design model could be different.
- Limitations and constraints to be respected.
- The control objective in textual and mathematical terms, as relevant.
- Any performance and robustness specifications.
- Guidance setup, assumptions, feasibility, and details related to the:
 - reference point,
 - desired trajectory,
 - desired path and speed along the path, etc.
- Any autonomy considerations?

What should be specified in a Problem Formulation?

For the design model it is important to specify:

- ▶ The states $x \in \mathbb{R}^n$.
- ▶ The control input(s) $u \in \mathbb{R}^m$.
- ▶ The controlled output(s) y = h(x), $h : \mathbb{R}^n \to \mathbb{R}^p$, e.g. position and/or heading of a vessel (ref. work space vs. configuration space).
- ▶ The measured states z = k(x), $k : \mathbb{R}^n \to \mathbb{R}^q$, e.g., position and heading of a vessel, possibly accelerations and angular rates?

In addition, the *Problem Statement* should clarify other aspects:

- Available measurements to the control law, that is,
 - is it a full-state feedback design or
 - output feedback with an observer?
- Any system constraints.
- Possibly a cost function for optimization (in optimal control) or as a key performance indicator (KPI).
- Specific care taken to internal state stability (minimum vs. nonminimum phase systems).

What should be specified in a Problem Formulation?

When all aspect of the control problem has been described and specified, the *Problem Statement* comes as the conclusion of the Problem Formulation.

This should as minimum describe:

- Reference the control system with inputs and outputs.
- ▶ Reference the control objective related to a guidance system.
- Repeat the need for observer design for filtering and state estimation.
- In mathematical terms, state the control task, e.g. "The control objective is to design a control law for u such that

$$\lim_{t \to \infty} |y(t) - y_d(t)| = 0,$$

while keeping all system states stable."

Nonlinear plant

Typically the high-fidelity simulation model

$$\dot{\xi} = F(\xi, u)$$

is too complex, unnecessarily realistic, and of too high fidelity to base a model-based control design upon.

In other cases, since the state-space representation is not unique, it is desired to transform the model into another more convenient representation.

In any case, we seek justifiable simplifications to transform the process model into a simplified **design model** that control or observer design can be based upon. This is typically achieved by linearization or by some method of model reduction.

Given a high-fidelity state ξ , a reduced state for control design is often determined $x \in \{\xi\}$ as a subset of ξ . E.g., for DP we use $\eta_{3DOF} = \{x, y, z, \phi, \theta, \psi\}$ and $\nu_{3DOF} = \{u, v, w, p, q, r\}$. All state reduction must be justified.

Nonlinear plant

After model reduction, consider the nonlinear control design model

$$\dot{x} = f(x, u), \quad y = h(x)$$

where for each $t \ge 0$:

- $ightharpoonup x(t) \in \mathbb{R}^n$ is the state vector,
- $ightharpoonup u(t) \in \mathbb{R}^p$ is the control,
- $lackbox{ iny} y(t) \in \mathbb{R}^m$ is the output to control, and
- $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are smooth functions.

Control design (continuous control) is to construct a, possibly dynamic, control law

$$\dot{\xi} = g(t, x, \xi)$$

$$u = \kappa(t, x, \xi)$$

in order to solve a specified control problem.

Stabilization

We want to stabilize

$$\dot{x} = f(x, u)$$

at an equilibrium $x = x_0$, where f is locally Lipschitz.

The **Steady State Problem** is then to find u_0 s.t.

$$0 = f(x_0, u_0)$$

Let $x_{\delta} = x - x_0$ and $u_{\delta} = u - u_0$. Then

$$\dot{x}_{\delta} = f(x_{\delta} + x_0, u_{\delta} + u_0) := f_{\delta}(x_{\delta}, u_{\delta})$$

for which $f_{\delta}(0,0) = 0$.

State feedback stabilization: Design $u_{\delta} = \alpha(x_{\delta})$, α locally Lipschitz, s.t. $x_{\delta} = 0$ is stable for $\dot{x}_{\delta} = f_{\delta}(x_{\delta}, \alpha(x_{\delta}))$, which by

$$u = u_0 + \alpha(x_\delta)$$

implies that $x = x_0$ is stable for $\dot{x} = f(x, u_0 + \alpha(x_\delta))$.

Linearization

A common technique for further model simplification is linearization:

Linearized model:

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where

$$A = \frac{\partial f(x, u)}{\partial x} \Big|_{x=x_0, u=u_0}, \quad B = \frac{\partial f(x, u)}{\partial u} \Big|_{x=x_0, u=u_0}$$
$$C = \frac{\partial h(x)}{\partial x} \Big|_{x=x_0}$$

Linear state feedback control

Suppose the entire state vector x is available, i.e., C=I. Assume (A,B) is stabilizable - i.e., controllable or every uncontrollable eigenvalue has a negative real part. Then linear state feedback control is to find a matrix K such that (A-BK) is Hurwitz. Control law:

$$u = -Kx$$

How do you find K?

- Trial and Error e.g., on a sea trials.
- Eigenvalue/Pole placement.
- Eigenvalue-Eigenvector placement.
- Linear Quadratic Regulator (LQR).
- Derivative-free optimization (DFO).
- Artificial intelligence (AI).

Linear state feedback control

The linearized closed-loop system:

$$\dot{x} = (A - BK)x$$

is obviously GES.

The original system,

$$\dot{x} = f(x, -Kx)$$

is, on the other hand, typically only LES. Its region of convergence (ROC) may be difficult to quantify.

Example 1

We consider an inverted pendulum on a cart,

$$L\ddot{\theta} - \ddot{p}\cos\theta = g\sin\theta$$

$$(M+m)\ddot{p} - mL\ddot{\theta}\cos\theta + mL\dot{\theta}^2\sin\theta = u$$

where θ is the angle from upright position, p is the position of the cart, u is a control force input on the cart, m is the point mass of the pendulum, M is the mass of the cart, and L is the pendulum length.

If the control objective is to control $(x, \theta) \to (x_0, 0)$, then the steady state problem is given by $u_0 = 0$.

...Example 1

Linearizing these equations, we get

$$L\ddot{\theta} - \ddot{p} = g\theta$$

$$(M+m) \ddot{p} - mL\ddot{\theta} = u.$$

Let $x_1 = \operatorname{col}\left(\theta,p\right)$ and $x_2 = \operatorname{col}\left(\dot{\theta},\dot{p}\right)$, then we get

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \begin{bmatrix} \frac{g}{L} + \frac{gm}{LM} & 0\\ \frac{gm}{M} & 0 \end{bmatrix} x_1 + \begin{bmatrix} \frac{1}{LM} \\ \frac{1}{M} \end{bmatrix} u$$

Other typical classes suitable for feedback control

Various model-based nonlinear design techniques exist for equally various classes of control models:

- Feedback linearizable systems.
- Strict feedback form.
- Parametric strict feedback form.
- Feedforward systems.
- Cascaded systems.
- Interconnections of passive systems.
- etc.

Strict feedback form

 \triangleright Strict feedback form of vector relative degree n:

$$\dot{x}_{1} = G_{1}(x_{1}) x_{2} + f_{1}(x_{1}) + W_{1}(x_{1}) \delta_{1}(t)$$

$$\dot{x}_{2} = G_{2}(x_{1}, x_{2}) x_{3} + f_{2}(x_{1}, x_{2}) + W_{2}(x_{1}, x_{2}) \delta_{2}(t)$$

$$\dot{x}_{n} = G_{n}(x_{1}, \dots, x_{n}) u + f_{n}(x_{1}, \dots, x_{n}) + W_{n}(x_{1}, \dots, x_{n}) \delta_{n}(t)$$

$$y = h(x_{1})$$

- $x_i(t) \in \mathbb{R}^m$, i = 1, ..., n, are the states, $y(t) \in \mathbb{R}^m$ is the output, $u(t) \in \mathbb{R}^m$ is the control.
- $\delta_i(\cdot)$ are unknown bounded disturbances.
- $G_i(x_1,\ldots,x_i)$ and $h^{x_1}(x_1):=\frac{\partial h}{\partial x_1}(x_1)$ are invertible, $h(x_1)$ is a diffeomorphism, and G_i , f_i , and W_i are smooth.
- ► This system is prepared for a *backstepping* design or *feedback linearization* (for $\delta_i = 0$).

Parametric strict feedback form

► Parametric strict feedback form of vector relative degree n :

$$\dot{x}_{1} = G_{1}(x_{1}) x_{2} + f_{1}(x_{1}) + \Phi_{1}(x_{1}) \varphi$$

$$\dot{x}_{2} = G_{2}(x_{1}, x_{2}) x_{3} + f_{2}(x_{1}, x_{2}) + \Phi_{2}(x_{1}, x_{2}) \varphi$$

$$\vdots$$

$$\dot{x}_{n} = G_{n}(x_{1}, \dots, x_{n}) u + f_{n}(x_{1}, \dots, x_{n}) + \Phi_{n}(x_{1}, \dots, x_{n}) \varphi$$

$$y = h(x_{1})$$

- $x_i \in \mathbb{R}^m, \ i = 1, \dots, n$, are the states, $y \in \mathbb{R}^m$ is the output, $u \in \mathbb{R}^m$ is the control, and $\varphi \in \mathbb{R}^p$ is a vector of constant unknown parameters.
- $G_i(x_1,\ldots,x_i)$ and $h^{x_1}(x_1):=\frac{\partial h}{\partial x_1}(x_1)$ are invertible for all \bar{x}_i , the map $h(x_1)$ is a diffeomorphism, and G_i , f_i , and Φ_i are smooth.
- This system is prepared for an adaptive backstepping design.

Strict feedforward form

Nonlinear plant in strict feedforward form:

$$\dot{x}_{1} = f_{1}(x_{1}, \dots, x_{n}) + G_{1}(x_{1}, \dots, x_{n}) u$$

$$\dot{x}_{2} = f_{2}(x_{2}, \dots, x_{n}) + G_{2}(x_{2}, \dots, x_{n}) u$$

$$\vdots$$

$$\dot{x}_{n} = f_{n}(x_{n}) + G_{n}(x_{n}) u$$

where $x_i \in \mathbb{R}^m$, $i=1,\ldots,n$ are the states and $u \in \mathbb{R}^m$ is the control. The matrices $G_i(\,\cdot\,)$ are invertible for all x, and G_i and f_i are smooth.

► This system is prepared for a *feedforwarding control* design.

Time-invariant cascaded systems

Nonlinear plant in cascaded form:

$$\Sigma_1: \quad \dot{x}_1 = f_1(x_1, x_2)$$

 $\Sigma_2: \quad \dot{x}_2 = f_2(x_2, u)$

where $x_1 \in \mathbb{R}^n$, $x_2 \in \mathbb{R}^m$, and $u \in \mathbb{R}^p$ is the control. The function f_1 is continuously differentiable in (x_1, x_2) .

▶ The control objective is now to find a control $u = \alpha(x_1, x_2)$ or $u = \alpha(x_2)$ such that the cascaded interconnection is GAS or GS.

Time-invariant passive systems

Nonlinear plant in interconnected form:

$$\Sigma_1: \qquad \dot{x}_1 = f_1(x_1, x_2, u_1)$$

 $\Sigma_2: \qquad \dot{x}_2 = f_2(x_2, x_1, u_2)$

where $x_1 \in \mathbb{R}^n$, $x_2 \in \mathbb{R}^m$, and (u_1, u_2) are the controls.

► The control objective is now to find a controls $u_1 = \alpha_1 (x_1, x_2, w_1)$ and $u_2 = \alpha_2 (x_2, x_1, w_2)$ such that the interconnection is passive.

Notions of stabilization

From [Khalil, 2015, Ch. 9.1], [Khalil, 2002a, Lecture 25], we have for

$$\dot{x} = f(x, u), \qquad u = \alpha(x)$$

- **Local stabilization:** The origin of $\dot{x} = f(x, \alpha(x))$ is LAS (e.g., by linearization).
- ▶ **Regional stabilization:** The origin of $\dot{x} = f(x, \alpha(x))$ is LAS, and a given region \mathcal{G} is a subset of the ROC ($\forall x(0) \in \mathcal{G}$, $\lim_{t \to \infty} x(t) = 0$). E.g., $\mathcal{G} \subset \Omega_c := \{V(x) \le c\}$ where Ω_c is an estimate of the ROC.
- ▶ Global stabilization: The origin of $\dot{x} = f(x, \alpha(x))$ is GAS.
- ▶ **Semiglobal stabilization:** The origin of $\dot{x} = f(x, \alpha(x))$ is LAS, and α can be designed so that any specified compact set can be included in the ROC.
 - ► Typically, $u = \alpha(p, x)$ such that for any compact set \mathcal{G} , the parameter p can be set to ensure $\mathcal{G} \subset \mathsf{ROC}$.

Notions of stabilization

What is the difference between *Global stabilization* and *Semiglobal stabilization*?

Practical stabilization

Consider

$$\dot{x} = f(x, u) + \delta(t, x, u)$$

$$f(0, 0) = 0, \qquad \delta(t, 0, 0) \neq 0$$

$$|\delta(t, x, u)| \le \delta_0 < \infty, \quad \forall x \in D_x, \ u \in D_u, \ t \ge 0$$

There is no control $u = \alpha(x)$ with $\alpha(0) = 0$ that renders the origin of

$$\dot{x} = f(x, \alpha(x)) + \delta(t, x, \alpha(x))$$

ULAS, since the origin is not an equilibrium point.

Practical stabilization

Definition

[Khalil, 2015, Def. 10.1] The system

$$\dot{x} = f(x, u) + \delta(t, x, u)$$

is practically stabilizable if for any $\varepsilon>0, \, \exists u=\alpha(x)$ such that the solutions of

$$\dot{x} = f(x, \alpha(x)) + \delta(t, x, \alpha(x))$$

are uniformly ultimately bounded by ε , that is,

$$|x(t)| \le \varepsilon, \qquad \forall t \ge T$$

Typically, $u=\alpha(p,x)$ such that for any $\varepsilon>0$, the parameter p can be set to ensure that ε is an ultimate bound.

Practical stabilization

With practical stabilization, one can again have

- Local practical stabilization,
- Regional practical stabilization,
- Global practical stabilization, or
- Semiglobal practical stabilization

depending on allowable region of the initial state.

Regulation

For your system

$$\dot{x} = f(x, u), \qquad f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$$

 $y = h(x), \qquad h: \mathbb{R}^n \to \mathbb{R}^m$

let the control objective be to regulate the output y(t) to a constant output *reference* y_{ref} or to regulate the state x(t) to a constant state reference x_{ref} (i.e., h=I).

In other words, to asymptotically stabilize a designed equilibrium

$$y(t) = y_{ref} \quad \text{or} \quad x(t) = x_{ref}$$

Note in regulation that the reference y_{ref} may typically be piecewise constant and reset to new values intermittently.

Often a *reference filter* is used to change the reference point smoothly to avoid step responses.

Tracking

For your system

$$\dot{x} = f(x, u),$$
 $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$
 $y = h(x),$ $h: \mathbb{R}^n \to \mathbb{R}^m$

let the control objective be for the output y(t) to track a desired output $y_d(t)$, that is, to asymptotically stabilize

$$y = y_d(t) = h_d(x_d(t)).$$

Note in tracking that both the time evolution $y_d(t)$ and its dynamic motion $\dot{y}_d(t)$, $\ddot{y}_d(t)$, etc. is specified in one combined package, called the *desired trajectory*.

A *guidance system* or a *reference filter* typically generates the desired trajectory and its necessary derivatives.

Path-following

For your system

$$\dot{x} = f(x, u), \qquad f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$$

 $y = h(x), \qquad h: \mathbb{R}^n \to \mathbb{R}^m$

let a *desired path* for the output y be specified in some way. The method for specifying the path is important because it affects the control design.

In path-following, the important task is to stay on and follow the path. The dynamic motion along the path (time scheduling, speed, acceleration, etc.) is less important.

...Path-following

Let the path be specified by the set of points

$$\mathcal{P} = \{ y \in \mathbb{R}^m : |h_p(y)| \le \varepsilon \}.$$

Then the path-following control objective is for the output y(t) to enter and stay within \mathcal{P} at the same time as the speed satisfies $|\dot{y}(t)| \geq U_0 > 0$.

A guidance system is used to generate/specify the path.

Here the path was specified by a maximum and minimum constraint for deviating from the curve $h_p(y)=0$, as sort of following a road. Typically, however, the path is specified by a continuous curve as elaborated next . . .

...Path-following

Typically, the path-following objective is to stay on and follow a curve perfectly, i.e., the set

$$\mathcal{P} = \{ y \in \mathbb{R}^m : h_p(y) = 0 \}.$$

This curve can be parametrized by discrete points (waypoints), by straight lines and circular arcs, or continuously. The latter implies a continuous parametrization such as

$$\mathcal{P} = \{y \in \mathbb{R}^m : \exists s \in \mathbb{R} \text{ such that } y = y_d(s)\}.$$

In this case one can typically generate motion for s(t) such that the path-following control objective becomes a tracking task $y(t) \to y_d(s(t))$. However, this eliminates some of the flexibility in the path-following control problem.

Maneuvering

For your system

$$\dot{x} = f(x, u), \qquad f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$$

 $y = h(x), \qquad h: \mathbb{R}^n \to \mathbb{R}^m$

let the control objective be to follow a desired path continuously parametrized by the curve $s\mapsto y_d(s)$.

Moreover, let the speed (or dynamic behavior) along the path be specified by some function U(t) such that $|\dot{y}(t)| \to U(t)$.

This problem can be translated into the following problem statement ...

...Maneuvering

The Maneuvering Problem is comprised of the two tasks, in prioritized order:

1. **Geometric Task:** -for some absolutely continuous function s(t), force the output y to converge to the desired parametrized path $y_d(s)$, i.e.,

$$\lim_{t \to \infty} |y(t) - y_d(s(t))| = 0.$$

... Maneuvering

- 2. Dynamic Task: Satisfy one or more of the assignments:
 - 0.1 *Time Assignment:* -force s to converge to a desired time assignment $\tau(t)$,

$$\lim_{t \to \infty} |s(t) - \tau(t)| = 0.$$

0.2 Speed Assignment: -force \dot{s} to converge to a desired speed assignment $\upsilon(s,t)$,

$$\lim_{t \to \infty} |\dot{s}(t) - \upsilon(s(t), t)| = 0.$$

0.3 Acceleration Assignment: -force \ddot{s} to converge to a desired acceleration assignment $\alpha(\dot{s}(t),s(t),t)$,

$$\lim_{t \to \infty} |\ddot{s}(t) - \alpha(\dot{s}(t), s(t), t)| = 0.$$

...Maneuvering

It follows for a speed assignment that The Maneuvering Problem is to construct a dynamic control law

$$\dot{s} = \omega(t, x, s)$$

$$u = \kappa(t, x, s)$$

to render the set

$$\mathcal{A} = \{ (\tau, x, s) \in \mathbb{R}_{>0} \times \mathbb{R}^n \times \mathbb{R} : \quad h(x) = y_d(s), \ \omega(\tau, x, s) = \upsilon(s, \tau) \}$$

UGAS for the closed-loop system

$$\dot{s} = \omega(t, x, s)$$

$$\dot{x} = f(x, \kappa(t, x, s)).$$

Control Lyapunov Function (CLF)

See [Khalil, 2002a], Lecture 30, on Control Lyapunov Functions. Consider

$$\dot{x} = f(x) + G(x)u, \qquad f(0) = 0,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, and $G : \mathbb{R}^n \to \mathbb{R}^{n \times m}$.

Suppose there exist a continuous state feedback law $\psi(x): \mathbb{R}^n \to \mathbb{R}^m$ s.t. x=0 for $\dot{x}=f(x)+G(x)\psi(x)$ is LAS.

Then by the converse Lyapunov theorem, there is a V(x) s.t.

$$V^{x}(x) \left[f(x) + G(x)\psi(x) \right] < 0, \qquad \forall x \in D \setminus \{0\}.$$

If $u=\psi(x)$ is globally stabilizing, $D=\mathbb{R}^n$ and V(x) is radially unbounded.

...Control Lyapunov Function (CLF)

$$\begin{split} V^x(x)\left[f(x)+G(x)\psi(x)\right] < 0, & \forall x \in D\backslash\{0\} \\ & \quad \ \ \, \downarrow \\ V^x(x)G(x) = 0 \text{ for } x \in D\backslash\{0\} & \Rightarrow \quad V^x(x)f(x) < 0 \end{split}$$

This implies the Small Control Property:

Since $\psi(x)$ is continuous and $\psi(0)=0$, then for any $\varepsilon>0$, $\exists \delta>0$ so that for $|x|<\delta$, $x\neq 0$, there is u with $|u|<\varepsilon$ such that

$$V^x(x)\left[f(x) + G(x)u\right] < 0$$

...Control Lyapunov Function (CLF)

See [Khalil, 2002b, Khalil, 2015].

Definition

A continuously differentiable positive definite function V(x) is called a **Control Lyapunov Function** (CLF) for $\dot{x} = f(x) + G(x)u$ if

- 1. $V^x(x)G(x) = 0$ for $x \in D \setminus \{0\}$ implies $V^x(x)f(x) < 0$.
- 2. V(x) satisfies the *Small Control Property*.

If V(x) is radially unbounded and satisfies 1. with $D = \mathbb{R}^n$, then it is a Global CLF.

The system $\dot{x} = f(x) + G(x)u$ is stabilizable by a continuous state feedback control ONLY IF it has a CLF.

Sontag's formula

See [Khalil, 2002b, Khalil, 2015].

Theorem

Let V(x) be a CLF for $\dot{x}=f(x)+G(x)u$. Then the origin x=0 is stabilizable by $u=\psi(x)$, where

$$\psi = \begin{cases} -\frac{\left[V^x f + \sqrt{(V^x f)^2 + ((V^x G)(V^x G)^\top)^2}\right]}{(V^x G)(V^x G)^\top} (V^x G)^\top, & \text{if } V^x G \neq 0 \\ \textbf{0,} & \text{if } V^x G = 0 \end{cases}$$

This is called **Sontag's formula**.

The control law $\psi(x)$ is continuous for all $x \in D$ including x = 0.

If f and G are smooth, then ψ is smooth for $x \neq 0$.

If V is a global CLF, then $u = \psi(x)$ is globally stabilizing.

...Sontag's formula

Sketch of proof:

We have $V^x(x)[f(x) + G(x)\psi(x)]$.

If $V^xG=0$ then $\dot{V}=V^x(x)f(x)<0$ for $x\neq 0$ by definition of the CLF.

If $V^xG \neq 0$ then

$$\dot{V} = V^{x} f - \left[V^{x} f + \sqrt{(V^{x} f)^{2} + ((V^{x} G)(V^{x} G)^{\top})^{2}} \right] \frac{(V^{x} G)(V^{x} G)^{\top}}{(V^{x} G)(V^{x} G)^{\top}}
= V^{x} f - \left[V^{x} f + \sqrt{(V^{x} f)^{2} + ((V^{x} G)(V^{x} G)^{\top})^{2}} \right]
= -\sqrt{(V^{x} f)^{2} + ((V^{x} G)(V^{x} G)^{\top})^{2}} < 0, \quad \forall x \neq 0.$$

How to find a CLF?

- If you know of any control law $u = \psi(x)$ with an associated Lyapunov function V(x), then this is a CLF.
- Systematic design methods:
 - Feedback linearization.
 - Backstepping.

Example 1

Consider

$$\dot{x} = ax - bx^3 + u, \qquad a, b > 0$$

such that $f(x)=ax-bx^3$ and G(x)=1. By feedback linearization we would choose

$$u = \psi_{FL} = -ax + bx^3 - kx, \qquad k > 0$$

such that $\dot{x} = -kx$.

Now $V(x) = \frac{1}{2}x^2$ is a CLF:

$$V^xG = x$$
 and $V^xf = ax^2 - bx^4$

We get that $V^xG=0$ only for x=0.

Moreover, for any $\varepsilon>0$ there should exist $\delta>0$ where $|x|<\delta\Rightarrow\exists\,|u|<\varepsilon$ s.t.

$$V^{x}(x) [f(x) + G(x)u] = ax^{2} - bx^{4} + xu < 0.$$

...Example 1

Let, for instance, u=-ax and $\delta=\frac{\varepsilon}{a}.$ Then $|x|<\delta$ gives

$$|u| = |-ax| = a |x| < a\delta = \varepsilon.$$

Hence, the small control property is satisfied.

Sontag's formula gives for $V^xG = x \neq 0$

$$u = \psi_{SF} = -\frac{\left[ax^2 - bx^4 + \sqrt{(ax^2 - bx^4)^2 + x^4}\right]}{x}$$
$$= -\frac{x^2(a - bx^2)}{x} - \frac{\sqrt{x^4(a - bx^2)^2 + x^4}}{x}$$
$$= -ax + bx^3 - x\sqrt{(a - bx^2)^2 + 1}$$

...Example 1

We analyze:

Method	Control law	Closed-loop
FL	$u_{FL} = -ax + bx^3 - kx$	$\dot{x} = -kx$
CLF	$u_{SF} = -ax + bx^3 - \sqrt{(a - bx^2)^2 + 1}x$	$\dot{x} = -\sqrt{(a-bx^2)^2 + 1}x$
$FL: x \ll 1$	$u_{FL} \approx -(a+k)x$	$\dot{x} \approx -kx$
$CLF \colon x \ll 1$	$u_{SF} \approx -(a + \sqrt{a^2 + 1})x$	$\dot{x} \approx -\sqrt{a^2 + 1}x$
$FL: x \gg 1$	$u_{FL} \approx bx^3$	$\dot{x} \approx -kx$
$CLF \colon x \gg 1$	$u_{SF} \approx -ax$	$\dot{x} \approx -bx^3$

Preparations for next lecture

ISS and Feedback linearization:

- ► Khalil, H. K. (2015). Nonlinear Control:
 - Chapters: 4.2-4.4 and 9.1-9.4.
- Lecture presentation.

Bibliography

Khalil, H. K. (2002a).

Lecture notes on nonlinear systems. Michigan State Univ.

Khalil, H. K. (2002b).

Nonlinear Systems.
Prentice-Hall, Inc, New Jersey, 3 edition.

Khalil, H. K. (2015).

Nonlinear Control.

Pearson Education Ltd., global edition.