▲ Try again once you are ready

Grade received 70%

Latest Submission Grade 70% To pass 80% or higher

Retake the assignment in 23h 44m

. In logistic regression given the input ${f x}$, and parameters $w\in \mathbb{R}^{n_x}, b\in \mathbb{R}$, how do we generate the output \hat{y} ?	1/1 point
$ \sigma(W\mathbf{x}) $ $ \cot h(W\mathbf{x} + b) $ $ W\mathbf{x} + b $ $ \sigma(W\mathbf{x} + b). $	
Suppose that $\hat{y}=0.9$ and $y=1$. What is the value of the "Logistic Loss"? Choose the best option. $\bigcirc \ \text{0.105}$ $\bigcirc \ \text{0.005}$	0 / 1 point
$\mathcal{L}(\hat{y},y) = -(\hat{y} \log y + (1-\hat{y}) \log(1-y))$ $+\infty$ Expand	
$igotimes$ Incorrect No. The "Logistic Loss" function is defined by $\mathcal{L}(\hat{y},y)=-(y\log\hat{y}+(1-y)\log(1-\hat{y}))$, to evaluate we must use $\hat{y}=0.9$ and $y=1$.	1/1 point
x = np.array([[[1], [2]], [[3], [4]]) What is the shape of x?	1/1point
(2, 2) (a) (2, 2, 1) (b) (1, 2, 2)	
Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1.	
. Consider the following random arrays a and b , and c : $a=np.random.randn(3,3) * a.shape=(3,3)$ $b=np.random.randn(2,1) * b.shape=(2,1)$ $c=a+b$	1/1 point
What will be the shape of c? cshape = (2, 1) cshape = (2, 3, 3) The computation cannot happen because it is not possible to broadcast more than one dimension	
cshape = (3,3) Correct Yes. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other.	

9. Consider the code snippet:

a.shape=(3,3)

b.shape = (3,3)

$$c = a**2 + b.T**2$$

Which of the following gives an equivalent output for c?

- for i in range(3): for j in range(3): c[i][j] = a[i][j]**2 + b[j][i]**2
- for i in range(3): c[i] = a[i]**2 + b[i]**2
- for i in range(3):
 for j in range(3):
 c[i][j] = a[i][j]**2 + b[i][j]**2
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!

⊗ Incorrec

No. Notice that to operate with b.T we need to use b[j][i].

10. Consider the following computational graph.

What is the output of J?

- \bigcirc (c-1),(a+c)
- $\bigcirc \quad (a-1), (b+c)$
- $\bigcirc \ ab+bc+ac$

∠^N Expand

⊘ Correct

Vers. J = u - v + w = ab - (a+c) + bc = ab - a + bc - c = a(b-1) + c(b-1) = (a+c)(b-1)

0/1 point

1/1 point