

Curso de Iniciación Científica para Jóvenes Talentos Nivel Pre-Avanzado Teoría de números

1. Aritmética Modular

1.1. Congruencias

Prueba 1.1. Escoja 3 y - 21, por ejemplo.

Prueba 1.2. 1. $(1 \equiv 4 \mod 3) \land (4 \equiv 2 \mod 2)$ no implica $1 \equiv 2 \mod 2$.

- 2. $2 \cdot 12 \equiv 2 \cdot 3 \mod 6$ no implica $12 \equiv 3 \mod 6$.
- 3. $1^2 \equiv 2^2 \mod 3$.

Prueba 1.3. 1. $2^7 \equiv 5 \pmod{41} \implies (2^7)^3 \equiv 5^3 \equiv 125 \equiv 2 \implies 2^{21} \cdot 21 \equiv 2 \cdot 21 \equiv 1 \implies 2^{20} \cdot 2 \cdot 21 \equiv 2^{20} \equiv 1 \pmod{41} \square$

- 2. $20^3 \equiv 8000 \equiv 9 \pmod{61} \implies 20^6 \equiv 9^2 \equiv 20 \implies 20^{15} \equiv (20^6)^2 \cdot 20^3 \equiv 20^2 \cdot 9 \equiv 34 \cdot 9 \equiv 306 \equiv 1 \pmod{61}$
- $3. \ 2^6 \equiv -1 (\mod 13) \implies 2^{12} \equiv 1 \implies 2^{60} \equiv 1 \implies 2^{70} \equiv 2^{10} \equiv -2^4 \equiv -16 \equiv -3. \ Del \ mismo \ modo, \ tenemos \ que \ 3^3 \equiv 1 (\mod 13) \implies 3^{69} \equiv 1 \implies 3^{70} \equiv 3 \implies 2^{70} + 3^{70} \equiv 0 \square$

Prueba 1.4. Note que $12|k!, \ \forall k \geq 4$. Luego $\sum_{i=1}^{99} i! \equiv 1! + 2! + 3! \mod 12 \equiv 1 + 2 + 6 \equiv 9$.

Prueba 1.5. Sea $k = \overline{a_1 a_2 \dots a_n}$ un numero cualquiera. Entonces $k = \sum_{i=1}^n 10^{i-1} \cdot a_i$. Note que $10^{2j} \equiv 1 \mod 11$ y $10^{2j+1} \equiv -1 \mod 11$, luego $k \equiv \sum_{i=1}^n (-1)^{i-1} \cdot a_i$. Lo cual representa la suma de las cifras en posiciones pares menos la suma de los numeros en posiciones impares.

Prueba 1.6. $a^2 \equiv 1 \mod 24 \iff (a-1)(a+1) \equiv 0 \mod 24$. Pero como a es impar, tanto a+1 como a-1 son pares y uno de ellos es multiplo de 4. Finalmente, como a no es multiplo de 3, uno de los numeros (a+1)o(a-1) es multiplo de 3. Eso implica que $(a+1)(a-1) \equiv 0 \square$.

Prueba 1.7. Simplemente note que $a - b|a^k - b^k$ (Caso conocido de factorización)

Prueba 1.8. Análogo al ejercicio anterior.

Prueba 1.9. Haciendo cuentas se puede llegar a que $2^{24} \equiv -1 \mod 97$. Lo cual implica que $2^{48} \equiv 1$. Vea que $2^4 \equiv 16 \mod 48$, $2^5 \equiv 32$, $2^6 \equiv 16$, y el ciclo se repite. Luego, como 2011 es impar, $2^{2011} \equiv 32 \mod 48$. Eso significa que $2^{2011} = 48k + 32 \implies 2^{2^{2011}} \equiv 2^{48k + 32} \mod 97 \equiv 2^{32} \equiv 2^{24} \cdot 2^8 \equiv -256 \equiv 35 \square$

Prueba 1.10. Note que si k = 3q, la cifra de las decenas de k solo se verá afectada por la cifra de las decentas de q y las ciras de las unidades de q. Procedemos por inducción. Los casos bases son satisfechos. Observe que si 3^k tiene como dígito de las decenas a a y como dígito de las unidades a b entonces a es par por hipótesis de inducción. 3^{k+1} tiene como dígito de las decenas al dígito de las unidades de 3*a mas el dígito de las decenas de 3*b. Note que estos dos dígitos mencionados anteriormente son siempre pares, puesto que $b \in \{1,3,7,9\} \implies 3b \in \{3,9,21,27\}$ y a es par. Eso concluye la inducción

1.2. Clases de residuos

Prueba 1.11. Observe los siguientes conjuntos: $\{0\}, \{1, -1\}, \{2, -2\}, \{3, -3\}, \{4, -4\}, \{5, -5\}$. Son seis conjuntos, y representan todos los residuos módulo 11, agrupados. Luego, como hay 7 numeros, algunos de los números (o sus reciprocos aditivos [el reciproco aditivo de a es -a]) caeran en el mismo conjunto, por palomar. Esto implica que hay dos cuya suma o diferencia es múltiplo de 11

Prueba 1.12. Aplique módulo 4 a la ecuación, lo cual implica que $1+2 \equiv 1 \mod 4$. Contradicción.

Prueba 1.13. Note que $n^3-1=(n-1)(n^2+n+1)$. Por el algoritmo de euclides, $(n+1,n^2+n+1)=1$. Luego, si $n+1|n^3-1 \implies n+1|n-1$. Lo cual es una contradicción, a menos que n=1.

Prueba 1.14. Veamos que n=1,2 satisfacen, luego podemos suponer que n>2. Observe que $2n-1|n^3+1\iff (2n-1,n^3-1)=2n-1, (\bullet,\bullet)$ denotando el máximo común divisor. Además, observe que $(a,bc)=(a,b)\cdot(a,c)$, para cualesquiera enteros positivos a,b,c. Vea que $(2n-1,n^3+1)=(2n-1,n+1)\cdot(2n-1,n^2+n-1)\leq 3\cdot(2n-1,n^2-3n+2)=3\cdot(2n-1,n-1)\cdot(2n-1,n-2)=3$. Donde usamos el algoritmo de euclides (a,b)=(a,a-b). Luego $n>2\implies 2n-1>3$ y por lo tanto $(2n-1,n^3+1)\neq 2n-1$.

1.3. División Modular

Prueba 1.15. Procedemos por absurdo. Sea a un divisor de cero invertible en \mathbb{Z}_n . Luego existen b y c tal que $(a \cdot b \equiv 1) \wedge (a \cdot c \equiv 0)$. Tenemos que $n|a \cdot c \implies n = (n, a \cdot c) = (n, a) \cdot (n, c) = (n, c)$. Note que (n, a) = 1 por el teorema 1.1 de la sección 1.3. Es decir n|c. Pero eso es una contradicción, por la definición de divisor del cero.

Prueba 1.16. (\iff) Es claro debido a la proposición 1.5 de la sección 1.1. (\implies) Multiplique ambos lados de la ecuación por $\frac{1}{a}$. (existe debido al teorema 1.1).

Prueba 1.17. Sea q = (n, a) > 1. Entonces $k = \frac{n}{q}$ es un entero con $k \not\equiv 0$ mód n debido a que 0 < k < n. Pero $a \cdot k \equiv 0$ mód n. Claramente, a es divisor del cero.

Prueba 1.18. Escoja el k del ejercicio anterior, y = 0.

Prueba 1.19. Defina $c = \frac{1}{a} \cdot \frac{1}{b}$ el candidato a inverso de $a \times b$. En efecto, $a \times b \times c \equiv a \cdot \frac{1}{a} \cdot b \cdot \frac{1}{b} \equiv 1$ mód $n \implies a \times b \in (\mathbb{Z}_n)^*$

Prueba 1.20.

$$7x \equiv 3 \mod 15 \tag{1}$$

$$13 \cdot 7x \equiv 3 \cdot 13 \mod 15 \tag{2}$$

$$x \equiv 9 \mod 15 \tag{3}$$

Para la segunda parte:

$$3x \equiv 7 \mod 15 \tag{4}$$

$$5 \cdot 3x \equiv 7 \cdot 3 \mod 15 \tag{5}$$

$$0 \equiv 6 \mod 15 \tag{6}$$

Prueba 1.21. Si a es su propio inverso, tenemos que $a^2 \equiv 1 \mod p$. Luego $(a-1)(a+1) \equiv 0 \mod p$. Como todos los residuos diferentes de cero son coprimos con p, sique que $a \equiv \pm 1 \mod p$.

2. Funcion Phi de Euler

Prueba 2.1. 1. $\varphi(2^k) = 2^k - 2^{k-1} = 2^{k-1}$

2. Vea el siguiente item

3.
$$\varphi(p^k) = p^k - p^{k-1}$$

Prueba 2.2. $\varphi(pq) = (p-1)(q-1)$

Prueba 2.3. Ejercicio para el lector

Prueba 2.4. Vea que $\varphi(n) = \prod_{i=1}^r p_i^{e_i-1}(p_i-1)$. Si hay algún p_i que es impar, p_i-1 es par, y caso contrario si $p_1=2, r=1$ entonces $\varphi(n)=2^{e_1-1}$. Como $n\geq 3 \implies e_i\geq 2 \implies 2|\varphi(n)$

Prueba 2.5. Solucion pendiente

Prueba 2.6. Sea $\varphi(a) = \prod_{i=1}^{r} p_i^{e_i-1}(p_i-1), \varphi(b) = \prod_{j=1}^{k} p_j^{v_j-1}(p_j-1).$ Como $a|b \implies (r \leq k) \land (e_i \leq v_i, \forall i \leq r).$ Por lo tanto, $\varphi(a)|\varphi(b).$

Prueba 2.7. Veamos que si $\varphi(n) = 4$, entonces ningún primo mayor a 5 puede dividir a n. Si 5|n, entonces n = 5. Luego, solo 2 y 3 dividen a $n = 2^a 3^b$. Luego $\varphi(n) = 2^a \cdot 3^{b-1}$. Vemos que b = 1, luego $n = 4 \cdot 3 = 12$. Si b = 0, entonces $a = 3 \implies n = 8$. Las soluciones son entonces n = 8, 12. (Falta revisar)

Prueba 2.8. Aplicaremos Inducción sobre n. Se pueden checar valores chicos, para corroborar el caso base. Por ejemplo, n=1,2,3,4,5. Supongamos que la fórmula se cumple para n, y sea q un primo cualquiera. Queremos probar que la fórmula es satisfecha para nq.

Sea v la máxima potencia de q que divide a n. $\sum_{d|nq} \varphi(d) = \sum_{d|n,d|\not q^v} \varphi(n) + \sum_{q^v|i} \varphi(q \cdot i) = n + \sum_{i|\frac{n}{q^v+1}} \varphi(q^v) \varphi(i) = n + \varphi(q^v+1) (\sum_{i|\frac{n}{q^v}}) \varphi(i) = n + q^v (q-1) \frac{n}{q^v} = n + (q-1) n = nq. \square$

3. EL teorema de Euler

Prueba 3.1. Suponga que el conjunto no es un sistema completo de residuos módulo n. Entonces existen i, j tal que $i \neq j$, $a \cdot r_i + b \equiv a \cdot r_j + b \mod n \implies a \cdot r_i \equiv a \cdot r_j \implies r_i \equiv r_j$, que es una contradicción

Prueba 3.2. Copie la prueba del ejercicio anterior y use el ejercicio 1.19 de la sección 1.3

Prueba 3.3. $a \cdot b^p - b \cdot a^p = ab(b^{p-1} - a^{p-1}) \equiv 0$ debido a que si uno de los dos numeros a o b son multiplos de p, el resultado final lo seá. Caso contraraio, el teorema de fermat garante que $a^{p-1} \equiv b^{p-1}$.

Prueba 3.4. $p^8 \equiv 1 \mod 240 \iff (p-1)(p+1)(p^2+1)(p^4+1) \equiv 0 \mod 240$. Veamos que todos los factores de la parte izquierda de la euivalencia son pares, luego $2^4|p^8-1$. Ademas, (p+1) o (p-1) son múltiplos de 3, luego $3|p^8-1$. Falta probar que $5|p^8-1$. Suponamos que $p \not\equiv \pm 1 \mod 5$. Entonces $p \equiv 2$ o $p \mod 5$. En cualquier caso, $p^2+1 \equiv 0 \mod 5$. Por lo que el resultado sique.

Prueba 3.5. Tome $m = \varphi(b) - 1$, $n = \varphi(a) - 1$. Entonces $a^m + b^n \equiv b^n \equiv 1 \mod a$. Del mismo modo, $a^m + b^n \equiv 1 \mod b$. Es decir, $(a|a^m + b^n - 1) \wedge (b|a^m + b^n - 1) \implies ab|a^m + b^n - 1 \implies a^m + b^n \equiv 1 \mod ab$.

Prueba 3.6. Supongamos que p no es primo. Es decir, $p = a \cdot b$ con 1 < a, b < p. Luego, $ab|(p-1)! \implies p|(p-1)! \implies (p-1)! \equiv 0 \mod p$. Contradicción.

Prueba 3.7. Supongamos que si. Primero observemos que podemos suponer que $a_p \equiv b_p \equiv 0$ mód p (Ya que solo debe haber un cero módulo p). Entonces $1 = (-1)^2 = (p-1)! \cdot (p-1)! = (\prod_{i=1}^{p-1} a_i) \cdot (\prod_{i=1}^{p-1} b_i) = \prod_{i=1}^{p-1} a_i b_i \equiv (p-1)! \equiv -1 \mod p$. Contradicción

Prueba 3.8. Veamos que con 4 2's y 1484 1's se puede lograr el cometido en (a). Para (b), note que $x^7 \equiv x \mod 7$. Luego, $1998 \equiv \sum_x x^7 \equiv \sum_x x \equiv 1492 \mod 7$, pero $1998 \not\equiv 1492 \mod 7$.

Prueba 3.9. Solucion en proceso

Prueba 3.10. a. Observe que $2 \equiv 2 \mod 7, 2^2 \equiv 4 \mod 7, 2^3 \equiv 1 \mod 7$, y el ciclo se repite. Luego, solo para $n \equiv 1 \mod 3$ se tiene que $2^n \equiv 1 \mod 7$.

b. $2^1+1\equiv 3\mod 7, 2^2+1\equiv 5\mod 7, 2^3+1\equiv 2\mod 7, 2^4+1\equiv 3\mod 7$. El ciclo se repite debido a que $2^k\equiv 2^{k+3}\mod 7$. Como en el primer ciclo no hubo ningún cero, tenemos que la ecuación $2^n+1\equiv 0\mod 7$ no tiene soluciones.

Prueba 3.11. Solucion en proceso

Prueba 3.12. Repita la prueba del ejercicio 4.2. Entonces, vea que el sistema es equivalente a $(p-1)! \equiv (p-1) \mod p, (p-1)! \equiv p-1 \mod (p-1)$. Lo cual es trivialmente verdadero.

4. Congruencias Lineales

Prueba 4.1.

$$4x + 20 \equiv 27x - 1 \mod 15$$
 (7)

$$21 \equiv 23x \mod 15 \tag{8}$$

$$21 \cdot 2 \equiv 46x \mod 15 \tag{9}$$

$$2 \equiv x \mod 15 \tag{10}$$

Prueba 4.2. $a \equiv b \mod n \iff n|a-b \iff p_i^{e_i}|a-b, \forall i \iff a \equiv b \mod p_i^{e_i}$

Prueba 4.3. Analicemos la tercera ecuación. 4xequiv20 mód 12 es equivalente a $(4x \equiv 20 \mod 4) \land (4x \equiv 20 \mod 3)$ que a su vez es equivalente a $x \equiv 2 \mod 3$. Entonces la cuarta ecuación puede ser ignorada, ya que es equivalente a la tercera ecuación. La segunda ecuación es $2x \equiv 8 \mod 4 \implies x \equiv 0 \mod 2$. La primera ecuación dice $x \equiv 0 \mod 5$. Juntando todo da $x \equiv 20 \mod 30$.

Prueba 4.4. Tome s=1848. Vea que 2011 es primo. Luego $2^{2000} \equiv \frac{1}{2^{10}} \cdot 2^{2010} \equiv \frac{1}{2^{10}} \cdot 2^{\varphi(2011)} \equiv \frac{1}{2^{10}} \equiv \frac{1}{1024} \equiv 1848 \mod 2011$.

Prueba 4.5. Un número es autoreplicante si $n^2 \equiv n \mod 10000 \implies n(n-1) \equiv 0 \mod 10000$. Como $n \ y \ n-1$ son coprimos, tenemos que $n=0,1 \mod 10000$. Es decir, $n=10000 \cdot k + p, p \in \{0,1\}$. Observe que ningún número d esta forma está entre $1000 \ y \ 9999$.

Prueba 4.6. Sea $\{p_i\}_{i\in\mathbb{N}}$ una enumeración de los primos. Considere el sistema de ecuaciones

$$x \equiv -1r \mod p_1^k \tag{11}$$

$$x \equiv -2r \mod p_2^k \tag{12}$$

$$\vdots \qquad \vdots \qquad \qquad (13)$$

$$x \equiv -rn \mod p_n^k \tag{14}$$

Debido a que todos los módulos son coprimos, podemos aplicar el TCR. Entonces existe x una solución al sistema de congruencias. Luego, tenemos una progresión aritmética $x+r, x+2r, \ldots x+rn$ tal que $p_i^k|x+ir, \forall i$.

Prueba 4.7. Solucion pendiente

Prueba 4.8. Sea $\{p_i\}_{i\in\mathbb{N}}$ una enumeración de los primos. Sea $q_i = \prod_{j=1}^n p_{(i-1)\cdot n+j}$. Considere el sistema de ecuaciones

$$x \equiv -1 \mod q_1 \tag{15}$$

$$x \equiv -2 \mod q_2 \tag{16}$$

$$\vdots \qquad \vdots \qquad (17)$$

$$x \equiv -k \mod q_n \tag{18}$$

ebido a que todos los módulos son coprimos, podemos aplicar el TCR. Entonces existe x una solución al sistema de congruencias. Luego, tenemos una progresión aritmética de razón 1 tal que $q_i|x+i$. Es decir, x+i tiene al menos n primos distintos en su desomposición

Prueba 4.9. Solucion en proceso

Prueba 4.10. Observe primero que los residuos cuadráticos módulo 8 son 0,1,4. Como los cuadrados deben ser de números impares, vemos que la suma de cinco (o nueve) elementos consecutios es congruente a 1 módulo 8. Sea $\{a_i\}_{i\leq 100}$ la secuencia. Entonces tome 9 elementos consecutivos, y tome un subconjunto de 5 elementos consecutivos de éste. Si substraemos el primer conjunto del segundo, tenemos que $a+b+c+d=p^2-q^2=(p-q)(p+q)\equiv 0\mod 8$ debido a que tanto p como q son impares. Podemos tomar estos cuatro elementos a, b, c, d como siendo consecutivos

$$v_1, v_2, v_3, v_4, v_5, a, b, c, d, e$$
 (19)

a+b+c+d. Sigue que $a+b+c+d\equiv 0 \mod 8$. Sigue que $v_1\equiv e\equiv 1 \mod 8$. Podemos transladar este raciocinio hacia la derecha y concluir que $a \equiv 1 \mod 8$. Asi, $a_i \equiv 1 \mod 8, \forall 10 \leq i \leq 90$. Pero entonces tenemos que $a+b+c+d\equiv 4\mod 8$, lo cual es una contradicción a una afirmación hecha mas arriba.

Prueba 4.11. Sea $\{p_i\}_{i\in\mathbb{N}}$ una enumeración de los primos. Escriba $a_i=\prod_{j>1}p_i^{e_{ij}}$. Escoja n numeros primos suficientemente grandes ($q_i, i \leq n$). Considere los siguientes sistemas de congruencias, para cada j:

$$v_j \equiv -e_{1j} \mod q_1 \tag{20}$$

$$v_j \equiv -e_{2j} \mod q_2 \tag{21}$$

$$\vdots \qquad \vdots \qquad (22)$$

$$v_j \equiv -e_{nj} \mod q_n \qquad (23)$$

$$v_j \equiv -e_{nj} \mod q_n \tag{23}$$

 $mos\ b = \prod_{j\geq 1} p_j^{v_j}.\ Tenemos\ que\ para\ j\ suficientemente\ grande,\ v_j = 0,\ debido\ a\ que\ a_i < \infty, \forall i.\ Tenemos\ enntonces\ el\ conjunto\ \{ba_1,ba_2,ba_3\dots ba_n\} = \{\prod_{j\geq 1} p_j^{e_{1j}+v_j},\prod_{j\geq 1} p_j^{e_{2j}+v_j},\cdots\prod_{j\geq 1} p_j^{e_{nj}+v_j}\}.$ Note que $v_j+e_{ij}\equiv 0\ \text{m\'od}\ q_i,\ entonces\ \{ba_1,ba_2,ba_3\dots ba_n\} = \{\prod_{j\geq 1} p_j^{k_{1j}\cdot q_1},\prod_{j\geq 1} p_j^{k_{2j}\cdot q_2},\cdots,\prod_{j\geq 1} p_j^{k_{nj}\cdot q_n}\} = \{\prod_{j\geq 1} p_j^{k_{2j}\cdot q_2},\cdots,\prod_{j\geq 1} p_j^{k_{nj}\cdot q_n}\}$ $\{s_1^{q_1}, s_2^{q_2}, \cdots s_n^{q_n}\}.$

5. Residuos Cuadraticos y el simbolo de Legendre