移动虚拟化技术与Android安全 - 艾奇伟

目前主要的移动安全威胁

应用安全威胁

- ・金融支付威胁
- ・企业业务威胁
- ·个人应用威胁 游戏。。。
- ・个人隐私

数据安全威胁

- ・个人隐私数据
- ・企业业务数据

移动安全的两大隐患

应用对 数据的 攻击

终端侧主要的安全解决方法

景瓷 場送 層蓋 系统数据 应用

虚拟化技术是终端侧实现隔离的基础技术

Android 虚拟化类型

Framework App Hypervisor Wrapper Virtualization, (双系统) (应用打包) (框架虚拟化)

这一刀切在哪里

App Wrapper

Framework Virtualization

Hypervisor

Hypervisor

□技术方案

-基于CPU和内核的准虚拟 化(Paravirtualization) -主要工作集中在Host Kernel, Guest Kerne l和HAL

□优点

- -应用、框架、库存Runtime基本不受影响
- -性能和体验良好
- -VM之间高度隔离

□缺点

- -开发量大
- -与硬件高度相关,需针对硬件移植
- -VM之间资源共享困难
- -对硬件资源要求高

App Wrapper

- 技术方案
- -针对Android App的安全封装
- -为App提供或替换API,提供互相隔离的服务
- 优点
- -对操作系统要求低
- -无特殊硬件要求
- -轻量
- 缺点
- -安全性差,存在大量共用的服务和资源
- -App需改造或重新打包,对App兼容性差 ,对资源有很多限制

Framework Virtualization

• 技术方案

_XC, _namespace等内核技术创 个互相隔离的进程环

- 在隔离的环境分别运行服务和APP 改造HAL和服务以公用硬件资源和实 观必要的namespace间通讯

• 优点

- -对APP兼容性高,不需要移植
- -应用隔离和资源共用可以调整
- -对硬件无特殊要求

缺点

- -针对不同硬件和Android发行版仍有 一些移植的工作量 -HAL的资源共享和调度还有一定的工

Hypervisor vs Framework Virtualization

Xen(有硬件辅助),Hypervisor

kvm(有硬件辅助),Hypervisor

Lxc(原生linux), Framework Virtualization

硬件辅助的Hypervisor模式

	ARM	X86
VMM	Υ	Υ
vIRQ(后期加上)	Υ	Υ
vMMU(后期加上)	Υ	Υ
vIOMMU(后期加上)	Υ	Υ

硬件辅助的Hypervisor模式

VMM	VIRTUAL MACHINE MONITOR
VIRO	VIRTUAL INTERRUPT REQUEST
VMMU	VIRTUAL MEMORY MANAGEMENT
VIOMMU	VIRTUAL IO MMU

硬件辅助下Hypervisor的实现原理

硬件辅助下Hypervisor的实现原理

Hypervisor性能测试

	Bare Metal A	Bare Metal B	Bare Metal Avg	KVM A	KVM B	KVM Avg	KVM to Bare Metal相对 裸机	Xen A	Xen B	Xen Avg	Xen to Bare Metal
C-Ray	35.32	35.38	35.35	35.64	35.68	35.66	0.87%	36.13	36.13	36.13	2.16%
POV-Ray	230.05	229.99	230.02	232.74	232.14	232.44	1.04%	236.33	235.45	235.89	2.49%
Smallpt	160	160	160	162	162	162	1.23%	168	167	167.5	4.48%
Blowfish	3028	3024	3026	2993	2990	2991.5	-1.15%	2839	2873	2856	-5.95%
DES	7374000	7375667	7374833.5	7270667	7273000	7271833.5	-1.42%	6858667	6963667	6911167	-6.71%
MD5	49568	49528	49548	48882	48917	48899.5	-1.33%	46428	46879	46653.5	-6.20%
OpenSSL	397.73	397.63	397.68	394.6	393.3	393.95	-0.95%	387.5	389	388.25	-2.43%
7-Zip	12483	12452	12467.5	12196	12063	12129.5	-2.79%	11854	11904	11879	-4.95%
Timed MAFFT Alignment	7.76	7.8	7.78	7.78	7.81	7.795	0.19%	8.5	8.34	8.42	7.60%
CLOMP	3.3	3.3	3.3	3.28	3.29	3.285	-0.46%	3.09	3.16	3.125	-5.60%
PostMark	3658	3676	3667	3791	3857	3824	4.11%	3205	3205	3205	-14.41%
性能降低							1.85%				6.31%

性能表现很好,是吧?请注意,测试所用是功能软件(如加密,解密等。请看下边

一个虚拟网卡的IRQ性能测试

Xgmac IRQ rate on guest (IRQ/s)

分析

在所有硬件辅助都已经使用的情况下, 网络中断响应能力已经下降50% 核心是: I/O

若存在大量的设备I/O性能会更加劣化

移动虚拟化技术

交互是移动设备的核心, 所以,存在大量的 I/O. 所以我们现在选择 lxc, 不是kvm,不是xen

结构示意

增加device namespace支持

基于device namespace更改设备驱动

使用mount namespce

使用pid namespace

使用所有linux kernel中存在的namespace

使用cgroup控制资源

而后, 我们有了containers

我们完成了

- containers控制中心,
 create, start, stop, info, destroy, etc.
- □ containers交互代理.
- □ 新的device namespace
- □ 修改所有相关 linux kernel device drivers

所以, 合二为一

方案说明

- □ 新平台移植只需修改linux kernel平台相关device drive
- □ 原平台各版本的android原则上不需修改
- □ 同时启动不同版本的android需额外存储空间约330M
- □ 同时启动相同版本的android不需额外存储空间
- □ 每多启动一个android新增约170M内存
- □ 每多启动一个android性能损失约%0.1(粗测)

测试

我们正在做

向更多的手机移植我们的方案

新的FOTA机制

新的DDMS支持samsung s4, nexsus 5, 定制 手机

我们也许会做

□ ARM/KVM, 加入VFIO, 以及所有设备virtIO化, 到这个时候 I/O 将不再成为瓶颈

安全吗?

Hypervisor: 虚拟机逃逸

Framework Virtualization: 内核漏洞

参考

- http://www.linux-kvm.org/page/KVM_Forum_2014
- http://systems.cs.columbia.edu/files/wpid-asplos2014kvm.pdf
- https://major.io/2014/06/22/performance-benchmarks-kvmvs-xen/
- https://encrypted-tbn3.gstatic.com/images? q=tbn:ANd9GcQGOKrjfmh1sHTnTMB-H-2Y4Ry77kxfuvMlmk1MKMccAsaKz0hN

Kiwi.e4gle 🎎

北京 朝阳

谢谢!

扫一扫上面的二维码图案,加我微信