

Guía de actividades y rúbrica de evaluación - Tarea 3 -**Derivadas**

Anexo 3 - Ejercicios Tarea 3

A continuación, se presentan los ejercicios asignados para el desarrollo de Tarea 3 - Derivadas. Cada estudiante debe escoger un literal (A, B, C, D o E) y desarrollar los ejercicios propuestos para este literal únicamente.

EJERCICIOS

1. De acuerdo con la definición de derivada de una función, es:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Calcular la derivada de las siguientes funciones aplicando la definición de derivada, es decir, siguiendo el proceso del límite, luego evaluar en un punto x (escogido por el estudiante) y, finalmente mediante GeoGebra graficar la recta tangente a la función original y su pendiente en el punto x escogido, realizar su comprobación y análisis gráfico. Recuerde que uno de los elementos a evaluar en la actividad es al análisis gráfico en GeoGebra.

Tabla 1 Grupo de ejercicios 1

Ejercicios	Funciones Asignadas	
А	$f(x) = -\frac{1}{2}x^2 + 4x + 5$	
В	$f(x) = -2x^3 + 6x - 8$	
С	$f(x) = -3x^2 + 4x + 5$	
D	$f(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$	
E	$f(x) = \frac{4}{3}x^3 - \frac{1}{5}x^2$	

Nota. Calcular la derivada de las siguientes funciones aplicando la definición de derivada. Fuente autor.

2. Calcule la derivada de las siguientes funciones aplicando las reglas de derivación (Regla de la cadena y Algebra de derivadas), luego evaluar en un punto x (escogido por el estudiante) y, finalmente realizar la gráfica y la comprobación mediante GeoGebra. Recuerde que uno de los elementos a evaluar en la actividad es al análisis gráfico a través de esta aplicación.

Tabla 2 *Grupo de ejercicios 2*

Ejercicios	Funciones Asignadas	
А	$f(x) = \ln(3x^3 + 2) - \cos(5x^2 + 2x)$	
В	$f(x) = \sin(3x)\cos(4 - x^2) - 5x$	
С	$f(x) = \cos(3x - 5x^2 + 6)^3$	
D	$f(x) = \frac{e^{\frac{1}{2}x+1}}{e^{x+2}}$	
E	$f(x) = ln\left(\frac{cos(1-x^2)}{x^2}\right)$	

Nota. Calcular la derivada de las funciones propuestas aplicando las reglas de derivación. Fuente autor.

3. Calcule la derivada implícita de las siguientes funciones.

Tabla 3

Grupo de ejercicios 3

Ejercicios	Funciones Asignadas	
А	$y^3 + \sqrt{xy} - x^2 = -2$	
В	$e^{xy} + x = sen(y)$	
С	$x^2y^2 + xseny = 4$	
D	$x^5y - \cos(x) + 10x^5y^2 = 1$	
E	$\left(x^2y + sen(x^3)\right)^2 = -4$	

Nota. Calcular la derivada implícita de las respectivas funciones. Fuente autor.

4. Calcule las siguientes derivadas de orden superior.

Tabla 4 Grupo de ejercicios 4

Ejercicios	Funciones Asignadas	Derivada de orden superior
Α	$f(x) = e^{-2x} + \cos(x^3)$	$f^{\prime\prime\prime}(x)=?$
В	$f(x) = \cos(2x) - 7x^2$	$f^{\prime\prime\prime}(x)=?$
С	$f(x) = e^{sen 2x}$	$f^{\prime\prime\prime}(x)=?$
D	$f(x) = (3x+2)^2 + lnx^2$	f'''(x) = ?
Ε	$f(x) = \ln(x^2 - x)$	f'''(x) = ?

Nota. Calcular las derivadas de orden superior para cada función. Fuente autor.

EJERCICIOS DE APLICACIÓN.

5. A continuación, se presentan el enunciado que deberá resolver y sustentar por medio de video, representando la función y su respuesta en GeoGebra.

Tabla 5 Grupo de ejercicios 5

Ejercicio	Ejercicios de Aplicación	
А	Para la función $f(x)$ dada calcular las coordenadas de los puntos máximos, mínimos y de inflexión:	
	$f(x) = x^3 - \frac{2}{3}x^2 - 1$	
В	Una empresa de alquiler de autos cobra a sus clientes p dólares por día, donde $60 \le p \le 150$. Se concluye que el número de autos que se alquilan por día puede modelarse mediante la función lineal $n(p) = 750 - 5p$. ¿Cuánto debe cobrar la empresa a cada cliente para maximizar sus ingresos?	
С	De una lámina de 130 cm x 70 cm. Se desea construir una caja sin tapa, del mayor volumen posible recortando cuadrados iguales de las esquinas de la lámina y doblando hacia arriba las salientes para tomar las caras laterales. ¿Cuál es el volumen máximo que puede contener?	
	Figura 1	
	Lámina de 130 cm x 70 cm	
	x x 70 cm	
	130 cm Nota. En la figura se muestran las dimensiones de la lámina. Fuente autor.	

D	 Teniendo en cuenta que la primera derivada de una función posición x(t) es la velocidad y la segunda derivada es la aceleración. Resuelva. 1. Un camión viaja en línea recta y su distancia con respecto a la estación está dada por: x(t) = 6t² - 2t³ + 15 A) Cuál es la velocidad para cualquier tiempo. B) Cuál es la velocidad para t=0 y t=2
	a) Halle la aceleración del camión para cualquier tiempo.
	Máximo de una Función Dada: Dada la función
E	a) $f(x) = 3x^3 - 10x^2 + 4x + 5$, encuentra el valor de x
	que maximiza $f(x)$.
	. /

Nota. Sustentar a través de video, el desarrollo de los problemas de aplicación propuestos. Fuente autor.

- 6. Participar en la conferencia indicada en la red de curso, relacionado con aplicaciones de las matemáticas en diferentes disciplinas. Dejar evidencia de su participación de forma presencial, sincrónica o asincrónica mediante un informe que tendrá las siguientes partes:
- Nombre de la conferencia
- Nombre del conferencista o expositor
- Objetivo de la conferencia
- Resumir con sus propias palabras el aprendizaje de la conferencia. Dicho resumen, deberá ser mínimo de 200 palabras y máximo de 300 palabras.
- Se deberá presentar el enlace de la conferencia y tres pantallazos de varios momentos.
- El informe se realiza en el mismo Anexo 3 Ejercicios Tarea **3** de los ejercicios al finalizar.

La conferencia se indicará durante el desarrollo del periodo a través de la mensajería del campus y en el foro de noticias del curso se publicará la invitación y el enlace que contiene la grabación de este.

Esta conferencia puede ser en el marco de un congreso, workshop o cualquier tipo de charla o evento académico, según se indique desde la red de curso.