UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2015/1 Prova da área II

1	2	3	4	Total

Nome:	Cartão:	

Regras a observar:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.
- Mantenha a caderno de questões grampeado.
- ullet Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Tabela do operador $\vec{\nabla} :$

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{ abla}\cdot\left(\vec{ abla} imes f ight)=0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$

• Questão 1 (2.5 pontos) Considere uma mosca que viaja a partir do ponto $P_0(2,0,0)$ descrevendo um percurso dado pela curva $C: \vec{r} = (2\cos(2t))\vec{i} + (5\sin(2t))\vec{j} + t\vec{k}$.

 $(2\cos(2t))\vec{i} + (5\sin(2t))\vec{j} + t\vec{k}$.
a) (1.0) Calcule os vetores velocidade e aceleração da curva no ponto $\left(-\sqrt{2}, \frac{5\sqrt{2}}{2}, \frac{11\pi}{8}\right)$ e esboce-os no gráfico ao lado.

c) (1.0) Use a definição do vetor binormal \vec{B} para justificar que \vec{B} pode ser calculado pela expressão

$$\vec{B} = \frac{\vec{r}' \times \vec{r}''}{|\vec{r}' \times \vec{r}''|}.$$

e calcule-o no ponto $t = \frac{\pi}{8}$.

- Questão 2 (2.5 pontos) Considere uma partícula com uma trajetória dada pela hélice elíptica $C: \vec{r} = (2\cos(2t))\vec{i} + (5\sin(2t))\vec{j} + t\vec{k},$ $0 \le t \le \pi$, sujeita a um campo de forças $\vec{F} = -zy\vec{i} + zx\vec{j} + z^2\vec{k}$.
 - a) (0.6) Verfique se o campo \vec{F} é conservativo e, caso afirmativo, calcule o potencial.
 - b) (0.7) Calcule a integral de linha

$$\int_C \vec{F} \cdot d\vec{r}.$$

c) (0.6) Discuta se o trabalho realizado pela partícula por dois caminhos diferentes pode ser o mesmo. Calcule a integral de linha

$$\int_D \vec{F} \cdot d\vec{r},$$

onde D é a reta que liga os pontos (2,0,0) e $(2,0,\pi).$

d) (0.6) Use o teorema fundamental para integral de linha para discutir a coerência dos itens a), b) e c).

- Questão 3 (2.5 pontos) Considere o campo vetorial $\vec{F} = xz\vec{i} + x\vec{j} + \frac{y^2}{2}\vec{k}$, a superfície S_1 formada pelo parabolóide $z = 1 x^2 y^2$, $z \ge 0$ e a superfície S_2 formada pelo cone $z = 1 \sqrt{x^2 + y^2}$, $0 \le z \le 1$, ambas orientada no sentido côncavo-convexo.
 - a) (1.5) Calcule as seguintes integrais de superfície:

$$\iint_{S_1} \left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} dS$$

e

$$\iint_{S_2} (\nabla \times F) \cdot ndS.$$

e $\iint_{S_2} \left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} dS.$ convertendo-as em integrais duplas iteradas (sem usar os teoremas de Stokes e divergência).

b) (1.0) Use o teorema de Stokes para justificar o resultado do item a). É possível conhecer o fluxo rotacional do campo \vec{F} através da superfície $z=0,\,x^2+y^2\leq 1$ usando o resultado do item a)?

• Questão 4 (2.5 pontos) Seja V a região limitada pela superfície cilíndrica $x^2+y^2=1$ e os planos z=0 e z=2. Considere a orientação positiva das superfícies que limitam V para fora do cilindro. Dado o campo vetorial $\vec{F}=xy\vec{i}+\vec{j}+(x^2+y^2)z\vec{k}$, calcule o fluxo através da superfície lateral S do cilindro,

$$\phi = \iint_S \vec{F} \cdot \vec{n} dS,$$

de duas formas distintas:

- a) (1.0) Transformando em integrais duplas iteradas (sem usar os teoremas de Stokes e Divergência). Dica: Quebre a superfície em duas, cada uma da forma y = f(x, z).
- b) (1.5) Usando o teorema da divergência e as integrais nas outras superfícies da região.