Loren	20	Beltra	me		08/	02/20	02 2			MAT	:	121	3728	36
Statis	tic to	he	homa	ex3	M									
2 tis	† :											mlently other		
			h						la	/				
def	× _n	= <u>1</u>	\(\sum_{i=1}^{\infty} \)	₹;	,		Yn =	<u>1</u>	\(\frac{2}{1} = 1\)	Y .				
def	test	Statis	t:c	S	= -	(/ _p .	- × _n)							
Valid	P-naln	٠	PA :=	1	- Ф	(()								
							ge Dins	, _}	1, ^A : p	1, > p	(<u>~</u>			
		•	Pg :=											
						agzinc	Ò	И,	: µ,	12 p	1,			
Obj.	t est	1 ₀ :	N* =	μγ	د	galhst	И, :	M y 7	r p.					
	\ i f	7, ;	$\langle \frac{\times}{\times} \rangle$	Ve	port	(⁾ A	[1]							
	1,6	$\frac{1}{\sqrt{n}}$	< X n	<i>(</i> t	רעים	PB	- - J							

Exemi	se 2
Sec	the file; Exercise 2. V
	It prints all the vegived gusphs
NOTE:	Which we order own dats the median is the point in the (n/2)+1 possition.
	Since We want to compile which is the maximum local sensitivity I want to achieve it I change K
	This can be visualize as moving the nille value to 0 or to the max value. This means that the
	The function Get-indices provides the indices of the potential new middle points
NOTE:	
	the Miximum

Exeversa	e 3			
We have	the popu	lation gospl	n (= (l	1,E)
and we	consider du	estimation		
	Z = 2	Si Ye		
Ving the	Horouitz T	hompson:	Mrosch:	
	2 =	E, Ye et E * 11e	probshi the e	lity that
	~ (1) (1) = p			
We 2/verdy	Computed	the vutex	Psiv in	clusion probability
	i, f } = P (ventex prir	{ , , } ; 5.	Impled")
tou all the	{ , 7 } { V			
	2 = I		as the	estimator to 2
Prove that	it is iv	geneval u	in hissed	

Le	t 's		Cov	ns ; d	cv		JN		е×	d M	ole		vh	eve		ÎI e	(1)	7	$\tilde{l}e$	(1)	
I	Ch.	60 J	e	to		Con	rid	eγ		the		Vn	/ ₂ b	eled		<u>ر</u> † ک	v s	Jm	olin (g :	
			\sim	(1)) =			1			r N	_ √	٤.								
	O		((c	=			7	_			n		1							
	ی		()	(1 _.) -	-		h	lv	1 - 1)											
				-				N_{ν}	(N	/ _v -	l)										
wl	nove		N	<i>/</i>	is	-	the]	NUM	bev	Of	_	Vev	tex	•						
,	1 _			N	v -	Σ		7		N	(n	-1)	_								
					<i>V</i> (/				$N_{ u}$	L IV _V	-									
1.																					
We	2	در	7	S	ee	tha	1,	1	h) (jon	evs 1	5	e (1,V	ng i						
					\sim 11 $_{o}$	(1)		7	ĵ.	(1	.)										