Image Processing

Lecture 3

Introducing Image Processing

Image Sampling and Quantization لنذ عيناتالصورة والمعمية

Digitized principle. مبدأ التحويل الرقمي

Image Sampling and Quantization لنذ عيناتالصورة والحمية

Image Sampling and Quantization لنذ عناتالصورة والعمية

Image Sampling and Quantization

- An image may be continuous with respect to the x- and y-coordinates, and also in amplitude. To convert it to digital form, we have to sample the function in both coordinates and in amplitude.
- Digitizing the coordinate values is called *sampling*.
- Digitizing the amplitude values is called *quantization*.

أخذ عينات الصورة والكمية

- قد تكون الصورة متصلة فيما يتعلق بإحداثيات x و y ، و كذلك في السعة لتحويلها إلى شكل رقمي ، يتعين علينا أخذ عينة من الوظيفة في كل من الإحداثيات والسعة.
 - _ يسمى رقمنة قيم الإحداثيات بأخذ العينات.
 - سمى رقمنة قيم السعة بالتكمية.

Representing Digital Images

- An image f(x, y) is sampled so that the resulting digital image has M rows and N columns.
- The values of the coordinates (x, y) now become *discrete* quantities.
- Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
- The next coordinate values along the first row of the image are represented as (x, y)=(0, 1)

تمثيل الصور الرقمية

- يتم أخذ عينات من الصورة f(x, y) بحيث تحتوي الصورة الرقمية الناتجة على صفوف M وأعمدة N.
- قيم الإحداثيات (x, y) أصبحت الآن كميات منفصلة.
 - وبالتالي، فإن قيم الإحداثيات في الأصل هي (x, y)=(0, 0).
- يتم تمثيل قيم الإحداثي التالية على طول الصنف الأول من الصورة (x, y)=(0, 1).

Representing Digital Images تـمثيل الصور المقمية

The notation introduced in the preceding paragraph allows us to write the complete $M \times N$ digital image in the following compact matrix form:

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}.$$
(2.4-1)

In some discussions, it is advantageous to use a more traditional matrix notation to denote a digital image and its elements:

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}.$$
(2.4-2)

Clearly, $a_{ij} = f(x = i, y = j) = f(i, j)$, so Eqs. (2.4-1) and (2.4-2) are identical matrices.

Representing Digital Images

- This digitization process requires decisions about values for M, N, and for the number, L, of discrete gray levels allowed for each pixel (M, N and L are positive integers).
- Due to processing, storage, and sampling hardware considerations, the number of gray levels typically is an integer power of 2:

$$L=2^k$$

- The Gray levels is in the interval [0,L-1].
- Dynamic range of an image: the range of values spanned by the gray scale.

(high dynamic range)

تمثيل الصور الرقمية

Lتتطلب عملية الرقمنة هذه قرارات حول قيم M و N ولعدد M وللمستويات الرمادية المنفصلة المسموح بها لكل بكسل (M, M) معي أعداد صحيحة موجبة).

نظرًا لاعتبارات المعالجة والتخزين وأخذ العينات للأجهزة ، يكون عدد المستويات الرمادية عادةً قوة عددية 2:

 $L=2^k$

- مستويات الرمادي في الفاصل الزمني [L-1,0].
- النطاق الديناميكي للصورة: نطاق القيم الممتد بمقياس رمادي. (نطاق ديناميكي عالٍ)

Representing Digital Images

- The number, b, of bits required to store an image is: b = M x N x K
- When $M=N:b=N^2K$
- We have 4-bits, 8-bits, ..., images.

N/k	1(L=2)	2(L=4)	3(L=8)	4(L=16)	5(L=32)	6(L = 64)	7(L = 128)	8(L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

تمثيل الصور الرقمية

- $b=M_{X}$ العدد $b=M_{X}$ من البتات المطلوبة لتخزين الصورة هو $b=M_{X}$
 - M = N: b = N2 Kعندما
 - لدینا 4 بتات ، 8 بتات ، ... ، صور .

N/k	1(L=2)	2(L=4)	3(L=8)	4(L=16)	5(L=32)	6(L = 64)	7(L = 128)	8(L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Spatial and Gray-Level Resolution

- Sampling is the principal factor determining the *spatial resolution* of an image.
- Spatial resolution is the smallest discernible detail in an image.
- Or, it is simply the smallest number of discernible line pairs per unit distance; for example, 100 line pairs per millimeter.
- Gray-level resolution refers to the smallest discernible change in gray level.

الدقة المكانية والمستوى الرمادي

- الخذ العينات هو العامل الأساسي الذي يحدد الدقة المكانية للصورة.
- الدقة المكانية هي أصغر التفاصيل التي يمكن تمييزها في الصورة.
- او، هو ببساطة أصغر عدد من أزواج الخطوط التي يمكن تمييزها لكل وحدة مسافة ؛ على سبيل المثال ، 100 زوج خط لكل مليمتر.
 - يشير دقة مستوى الرمادي إلى أصغر تغيير يمكن تمييزه في مستوى الرمادي.

Spatial and Gray-Level Resolution المفاتية والمستوى المادي

Zooming and Shrinking Images

- Zooming requires two steps: the creation of new pixel locations, and the assignment of gray levels to those new locations.
- Simple method is Pixel replication. It is used when we want to increase the size of an image an integer number of times (Exp 2,3,..).
- Pixel interpolation such as nearest neighbor interpolation. It is used when we want to increase the size of an image real number of times (Exp 1.3,2.3,..).
- bilinear interpolation is another kind of Pixel interpolation and the best.

تكبير وتصغير الصور

- يتطلب التكبير / التصغير خطوتين: إنشاء مواقع بكسل جديدة ، وتعيين مستويات رمادية لتلك المواقع الجديدة.
 - الطريقة البسيطة هي تكرار البيكسل. يتم استخدامه عندما نريد زيادة حجم صورة عددًا صحيحًا من المرات
 - الاستيفاء بالبيكسل مثل أقرب أقرب جار. يتم استخدامه عندما نريد زيادة حجم الصورة عدد المرات الحقيقي (Exp 1.3,2.3).
 - الاستيفاء ثنائي الخطوط هو نوع آخر من الاستيفاء بالبيكسل و هو الأفضل.

Zooming and Shrinking Images تـكبير وتصغير المصور

Image shrinking is the reverse of image zooming تقلص المصورة هو عكس تكبير المصورة

Some Relationships Between Pixels

Neighbors of a Pixel:

- 4-neighbors) of a pixel p at coordinates (x, y) have coordinates: (x+1, y), (x-1, y), (x, y+1), (x, y-1).
- (4-*diagonal* neighbors): have coordinates (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
- 4-diagonal neighbors together with the 4-neighbors, are called the 8-*neighbors* of p.

بعض العلاقات بين البيكسل

جيران بكسل:

- (x,y) لها إحداثيات: (x,y) لها إحداثيات:
- (x+1, y), (x-1, y), (x, y+1), (x, y-1).
 - (4 جيران قطري): إحداثيات
- (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
- يُطلق على الجيران ذو الأربعة أقطار مع الجيران الأربعة اسم الجيران 8 لـ p.

Some Relationships Between Pixels

Neighboring Connectivity:

two pixels are connected if they are neighbors and if their gray levels satisfy a specified criterion of similarity.

Adjacency: let V a sub set of [0,L-1]

- (a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set $N_4(p)$.
- (b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set $N_8(p)$.
- (c) m-adjacency (mixed adjacency). Two pixels p and q with values from V are m-adjacent if
 - (i) q is in $N_4(p)$, or
 - (ii) q is in $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V.

بعض العلاقات بين البيكسل

- الاتصال المجاور:

يتم توصيل وحدتي بكسل إذا كانا متجاورين وإذا كانت مستوياتهما الرمادية تفي بمعيار تشابه محدد.

- الجوار: دع V مجموعة فرعية من [L-1,0]

- (a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set $N_4(p)$.
- (b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set $N_8(p)$.
- (c) m-adjacency (mixed adjacency). Two pixels p and q with values from V are m-adjacent if
 - (i) q is in $N_4(p)$, or
 - (ii) q is in $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V.

Some Relationships Between Pixels

Adjacency:

Path: A (*digital*) path (or curve) from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates:

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$$

According to one of the adjacency types.

بعض العلاقات بين البيكسل

الملاصقة (الارتباط):

المسار: المسار (الرقمي) (أو المنحنى) من بكسل مع إحداثيات (x, y) إلى بكسل م إحداثيات (s, t) هو سلسلة من وحدات البيكسل المميزة مع الإحداثيات:

$$(x_n, y_n), ..., (x_1, y_1), (x_0, y_0)$$

وفقًا لأحد أنواع الجوار.

Some Relationships Between Pixels

Connectivity in a region :

Let S represent a subset of pixels in an image. Two pixels p and q are said to be *connected* in S if there exists a path between them consisting entirely of pixels.

Connected Set:

For any pixel p in S, the *set* of pixels that are connected to it in S is called a *connected component*. If it only has one connected component, then set S is called a *connected set*

بعض العلاقات بين البيكسل

الاتصال في منطقة:

لنفترض أن S تمثل مجموعة فرعية من وحدات البيكسل في الصورة. يُقال إن وحدتي بكسل و q متصلتان في S إذا كان هناك مسار بينهما يتكون بالكامل من وحدات البيكسل.

المجموعة المتصلة:

بالنسبة لأي بكسل في S ، تسمى مجموعة البيكسل المتصلة به في S مكونًا متصلًا. إذا كان يحتوي على مكون واحد فقط متصل ، فإن المجموعة S تسمى مجموعة متصلة.

Some Relationships Between Pixels

Region:

Let R be a subset of pixels in an image. We call R a region of the image if R is a connected set.

- **Boundary** (also called border or contour):
 - A boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R.
- **Edge:** is not closed path.

بعض العلاقات بين البيكسل

: Region منطقة

لنفترض أن R مجموعة فرعية من وحدات البيكسل في الصورة نسمي R منطقة من الصورة إذا كانت R مجموعة مجموعة متصلة.

- الحدود أو المحيط) Boundary (وتسمى أيضًا الحدود أو المحيط) (also called border or contour):
- حدود المنطقة R هي مجموعة البيكسل في المنطقة التي لها جيران واحد أو أكثر ليسوا في R.
 - الحواف Edge : ليس مسارًا مغلقًا.

Distance Measures لجراءلتالمسافة

For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D is a distance function or metric if

(a)
$$D(p,q) \ge 0$$
 $(D(p,q) = 0$ iff $p = q)$,

(b)
$$D(p, q) = D(q, p)$$
, and

(c)
$$D(p,z) \leq D(p,q) + D(q,z)$$
.

The Euclidean distance between p and q is defined as

$$D_e(p,q) = \left[(x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}.$$
 (2.5-1)

For this distance measure, the pixels having a distance less than or equal to some value r from (x, y) are the points contained in a disk of radius r centered at (x, y). The D_4 distance (also called city-block distance) between p and q is defined as

$$D_4(p,q) = |x - s| + |y - t|. (2.5-2)$$

Image Operations on a Pixel Basis

- Division, addition, subtraction, ...
- arithmetic and logic operations are similarly defined between corresponding pixels in the images involved.

عمليات الصورة على أساس البيكسل

- القسمة والجمع والطرح ...
- يتم تعريف العمليات الحسابية والمنطقية بالمثل بين وحدات البيكسل المقابلة في الصور المعنية.