Evaluating Predictorsof Heart Disease

Josiah Chung jchung03@uchicago.edu

Agenda

- 1. Overview
- 2. Preparing the Data
- 3. Methodology and Modeling
- 4. Conclusions and Recommendations

Overview - Problem Statement

The goal of this project is to **develop a model** that can predict whether someone is at risk for heart disease.

According to the CDC:

- Heart disease is the leading cause of death in the United States.
- About 695,000 people in the United States died from heart disease in 2021 (1 in every 5 deaths).
- Knowing what risk factors contribute to heart disease can help you take the steps to prevent it

Source: https://www.cdc.gov/heartdisease/about.htm

Data source: UCI Machine Learning Repository

Data Cleaning Steps:

- Importing and concatenating the data
- Resolving missing values
- Converting integer labels to categorical values
- Transforming target variable to binary
- Checking for data imbalance

Methodology and Modeling – Comparison of Models

Logistic Regression

• Accuracy: 0.792

• F1: 0.805

• AUC: 0.795

Random Forest

• Accuracy: 0.844

• F1: 0.864

• AUC: 0.839

XGBoost

Accuracy: 0.818

• F1: 0.829

• AUC: 0.822

Methodology and Modeling – Limitations

Random Forest (Validate)

• Accuracy: 0.844

• F1: 0.864

• AUC: 0.839

Overfitting?

- Random Search
- Model Choice
- Sample Size

Random Forest (Test)

• Accuracy: 0.766

• F1: 0.82

• AUC: 0.739

Conclusions and Recommendations

Choosing a Model

- Computational Efficiency
- Overfitting
- Explainability

Areas for Improvement

- Larger Dataset total of about 400 rows of data, closer to 370 after resolving nulls
- Including more features Exploring race,
 socioeconomic status, smoking history, etc.
- Feature selection L1/L2 logistic regression, stepwise selection
- Exploring more model types SVM's, KNN's, maybe neural networks

Thank You

6. Appendix

Appendix – Github

https://github.com/josiah-chung/heart_disease/tree/main

Appendix – Data features

Columns in data:

- age : age in years
- sex : sex (1 = male; 0 = female)
- cp : chest pain type
 - Value 1: typical angina
 - Value 2: atypical angina
 - Value 3: non-anginal pain
 - Value 4: asymptomatic
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- cho1: serum cholesterol in mg/dl
- fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- restecg: resting electrocardiographic results
 - Value 0: normal
 - Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
 - Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- thalach: maximum heart rate achieved
- exang: exercise induced angina (1 = yes; 0 = no)
- oldpeak : ST depression induced by exercise relative to rest
- slope : the slope of the peak exercise ST segment
 - Value 1: upsloping
 - Value 2: flat
 - Value 3: downsloping
- ca: number of major vessels (0-3) colored by flourosopy
- tha1: 3 = normal; 6 = fixed defect; 7 = reversable defect
- num: diagnosis of heart disease (angiographic disease status)
 - Value 0: < 50% diameter narrowing
 - Value 1, 2, 3, or 4: > 50% diameter narrowing

Appendix – Final Clean Data

	age	sex	ср	trestbps	chol	restecg	thalach	exang	oldpeak	num
0	40	М	atypical angina	140.0	289.0	normal	172.0	No	0.0	0
1	49	F	non-anginal pain	160.0	180.0	normal	156.0	No	1.0	1
2	37	М	atypical angina	130.0	283.0	ST-T abnorm	98.0	No	0.0	0
3	48	F	asymptomatic	138.0	214.0	normal	108.0	Yes	1.5	1
5	39	М	non-anginal pain	120.0	339.0	normal	170.0	No	0.0	0
6	45	F	atypical angina	130.0	237.0	normal	170.0	No	0.0	0
7	54	М	atypical angina	110.0	208.0	normal	142.0	No	0.0	0
8	37	М	asymptomatic	140.0	207.0	normal	130.0	Yes	1.5	1
9	48	F	atypical angina	120.0	284.0	normal	120.0	No	0.0	0
10	37	F	non-anginal pain	130.0	211.0	normal	142.0	No	0.0	0

Random Forest

```
params = {
    'n_estimators': [10, 50, 100],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5],
    'min_samples_leaf': [1, 2],
    'bootstrap': [True, False],
    'max_features': ['auto', 'sqrt']
}
```

XGBoost

```
params = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.05, 0.1],
    'max_depth': [3, 4, 5],
    'gamma': [0, 0.1],
    'colsample_bytree': [0.6, 0.7],
    'subsample': [0.6, 0.7]
}
```