

Quantum BC team

Abhishek Kajal
Incoming M.A.Sc. student
at UBC ECE

Ph.D. student at UBC Chemistry

Dawn Mao

Ph.D. student at UBC Chemistry

Elham Torabian

Gideon Uchehara

Ph.D. student at UBC ECE

Mobile Ad-Hoc Networks on Mars

Idea: Use a fleet of autonomous nano-sensors to collectively explore areas

Problem : Short connection range of sensor poses a problem for global communication

Mobile Ad-Hoc Networks on Mars

Define a **virtual backbone** of nodes in transmitter mode

Remaining nodes save energy by only doing the sensing task

Global communication is guaranteed

Connected Dominant Set

Graph G = (V, E)

Connected Dominant Set (CDS) is a subset D ⊂ V such that

- All vertices in **D** are connected
- Each node in V/D is a neighbor of at least one node in D

Finding the CDS of a graph is NP-hard i.e. **O(1.9407**ⁿ)

Technical goal: Find a "good" CDS of a graph using the capabilities of neutral atoms and Pulser

The challenge

Start with a **simple graph** for which the solution can be easily verified

Develop solution to determine the CDS of the graph using neutral atom quantum computing

Generalize the approach to more complicated graphs

Map the sensors/graph to **neutral atom** coordinates

Use **QAOA** and **Pulser** to find a **Maximally Independent Set (MIS)**

Use the **MIS** solution to determine the **CDS**

Results

Encoded problem

Hybrid quantum -classical optimization

MIS using QAOA and Pulser

Fast parameter optimization using **Bayesian** optimization

MIS solution

Results

Classical post-processing

Iterative greedy search

CDS solution

Considerations for scalability

- Due to the reconfigurable nature of neutral atom arrays, our approach is scalable to the number of neutral atoms in a quantum computer
- We can easily extend our approach to non-planar graphs by using 3D neutral atom arrays
- The iterative greedy algorithm to obtain a
 CDS from the MIS solution has a
 complexity of O(n²) << O(1.9407ⁿ)

Quantum advantage

- Finding the MIS/CDS of a graph is NP-hard . O(1.9407")
- We **offload** the expensive computation to QPU and perform efficient optimization and post-processing classically
- Neutral atoms are a natural platform for finding MIS and thus CDS to solve our use case

Summary

Our contribution.:

We developed a heuristic solution to find the Connected Dominating
 Set of a graph using Neutral Atom Quantum Computing and Pulser

Application to use-case:

- In a real-world scenario, we found that the **sensor positions** can be mapped to **neutral atom positions** and our approach can be used to find a **virtual backbone**

- Quantum advantage:

- NP-hard problem to solve i.e. O(1.9407ⁿ) can be solved efficiently

Appendix

Outline

- 1. Problem background
- 2. Connected Dominant Set (CDS)
- 3. Our solution
- 4. Considerations for scalability
- 5. Future outlook

MANETs on Mars: Problem

Global communication

guaranteed if all sensors are in transmit mode, but

- drains sensor battery
- redundant nodes spreading the same information

Must have in presentation

- Contribution on top of the existing use cases
 - QAOA for a new graph problem did not find existing work
 - Implementation of the code on actual hardware
- Application to industry
 - In real-world scenario, the positions of the sensors has to be mapped to neutral atoms and the rydberg blockade radius set accordingly
- Quantum advantage
 - NP-hard problem to solve
 - Existing approach O(1.9407ⁿ)

Perseverance on Mars

Finding **Martian** sources of water is crucial for human exploration of Mars

Perseverance landed in the **Jezero Crater** in February 2020 and searching for signs of microbial life under the surface

Curiosity landed in the **Gale Crater** in August 2012 and searching for signs of water and organic life

Problem: The area to search is large and progress is slow. For e.g. Perseverance has only explored a thin line of 11.76 km in 2 years.

Connected Dominant Set

Finding the CDS of a graph is NP-hard

Best exact classical algorithm : O(1.9407ⁿ)

Technical goal: Find a "good"
CDS of a graph using the
capabilities of neutral atoms
and Pulser

QAOA

Original cost function:

$$C(z_1,\ldots,z_N) = -\sum_{i=1}^N (z_i) + U\sum_{< i,j>} z_i z_j$$

Cost function with weighted nodes:

$$C(z_1,\ldots,z_N) = -\sum_{i=1}^N (\hspace{-0.5em} w_i \hspace{-0.5em} z_i) + U \sum_{< i,j>} z_i \hspace{-0.5em} z_j$$

w_i = degree of the ith node

Graph G = (V, E)

Maximally Independent Set (MIS) is a subset MIS ⊂ V such that

- None of the vertices in MIS are connected
- Each node in V/MIS is a neighbor of at least one node in MIS

Original cost function:

$$C(z_1,\ldots,z_N) = -\sum_{i=1}^N (z_i) + U\sum_{< i,j>} z_i z_j$$

Cost function with weighted nodes:

$$C(z_1,\ldots,z_N) = -\sum_{i=1}^N (\hspace{-0.5em} w_i \hspace{-0.5em} z_i) + U \sum_{< i,j>} z_i \hspace{-0.5em} z_j$$

w_i = degree of the ith node

Graph G = (V, E)

Maximally Independent Set (MIS) is a subset MIS ⊂ V such that

- None of the vertices in MIS are connected
- Each node in V/MIS is a neighbor of at least one node in MIS

Iteratively add vertices to the **MIS** solution to obtain a **CDS**

QAOA

Results