Expt 4 - Current Source, Current Mirror, and Differential Pair

EE 230 Analog Circuits Lab
Joseph John
2021-22/I

Summary

- Expt 3 Frequency Response of a CE Amp
 - Common Mistakes
- Expt 4 Current Source, Current Mirror, and Differential Pair

Frequency Response of a CE Amp

• f₁ – Low Freq Cut Off

• f_H – High Freq Cut Off

Expt 4

• Current Source,

Current Mirror, and

• Differential Pair

Part A: BJT Current Source (using a Zener diode and a *pnp* transistor)

- Features
- I_L can be changed by changing RE

 Works for reasonably large values of R_L

Current source Characteristics

Voltage Sources – Ideal vs Practical

Current Sources – Ideal vs Practical

BJT Current Source

Operation

 Ideally should work for any value of R_L

- $R_L \uparrow$, $V_L \uparrow$
- BJT will saturate for high R_I values

 For a given circuit there is an R_{Lmax}

Part B: Current Source (using a Current Mirror)

- Current sources extensively used
- IC biasing
- Active loads

- Current Sources made of BJT arrays (ICs)
- Advantage
 - Monolithic
 - Better matching of V_{BE}

LM 3046 npn Arrays

- 5 npn BJTs
- DC to 120 MHz
- One diff pair

- Monolithic design
 - V_{BF} match (+/- 5 mV)

- I_C up to 10 mA
- V_{CF} up to 10V
- Max Power Diss: 300 mW (single BJT)

Measured Results

• $Vcc = 12 V, R = 10 k\Omega, V_{BF} = 0.7 V$

• V_0 : 1 V , I_0 = 1.125 mA

• V_0 : 5 V , I_0 = 1.2 mA

Part C: Differential Pair

 Identical BJTs (hence IC BJT arrays preferred)

Circuit symmetric

Current switching

• R_F for simple Diff pair

 R_E may be replaced with a current source

Single-ended Gain

- $V_{in1} 50 \text{mVp-p}$
- 1 kHz

- $V_{02} 3.6 \text{ Vp-p}$
- Voltage Gain: 72 V/V

Both Outputs

- $V_{in1} 50 \text{mVp-p}$
- 1 kHz

• V_{01} and V_{02} – 3.6 Vp-p

Voltage Gain: 68 V/V

Both Outputs (Overlapped) – V_{O2} inverted

V_{O1} and V_{O2} together

Common-mode Operation

•
$$V_{in1} = V_{in2} = 5 \sin \omega t$$

 Differential Output (Through DSO Math Operation)