Design XOR Gate

Fatema Nagori

Table of Content

Introduction

Design

Implementation

Test

Conclusion

References

Introduction

Our black box for the "XOR" function now has three neurons in it. A collection of neurons connected together is a "network" of neurons. Thus, the "XOR" function has been created using a "neural network".

Design

The truth-table for the "XOR" function.

OR	NAND	XOR		
X Y Z1	X Y Z2	X Y Z3		
<u>-</u>				
0 0 0	0 0 1	0 0 0 0		
0 1 1 AND	0 1 1 =	0 1 1		
1 0 1	1 0 1	1 0 1		
1 1 1	1 1 0	1 1 0		

Implementation

Step 2: Using the following rules to design your own AND Gate, OR Gate, and NAND Gate

The forward/backward process

- Forward process

Calculate the output Z for the given input (X,Y).

- Backward process

Adjust weights

+ If the output Z is too low, increase the weights by 0.5

which had inputs that were "1".

+ If the output Z is too high, decrease the weights by 0.5

which had inputs that were "1".

Using step activation function

$$Z := (W0 * C + W1 * X + W2 * Y >= T)$$

where T := 1.0

if
$$(W0 * C + W1 * X + W2 * Y >= T)$$

then output is 1

- else output = 0
- The bias C for Gates is 1.0

Implementation

Step 3: Solve for Z1 := X "AND" Y

```
Z := (W0 * C + W1 * X + W2 * Y >= T) where T := 1.0.
```

```
Z := (0.0 * 1 + 0.5 * X + 0.5 * Y >= 1.0)
==> Z := (Y >= -1.0 * X + 2.0)
```

Solve for Z1 := X "OR" Y

```
Z := (W0 * C + W1 * X + W2 * Y >= T) where T := 1.0.
```

Desired "OR" Function	Loop 1 W0=0.0 W1=W2=0.5 Function	Loop 2 W0=0 W1=W2=1 Function
C X Y Z	C X Y Z	C X Y Z
1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1	1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1	1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1

$$Z := (0.0 * 1 + 1 * X + 1 * Y >= 1.0)$$

==> $Z := (Y >= -1.0 * X + 1.0)$

Solve for Z1 := X "NAND" Y

where T := 1.0.

$$==> Z := (Y >= -1.0 + X)$$

	Loop 1 W0=0.0 W1=W2=0.5 Function	W0=0.5 W1=W2=0.5	W1=W2=0.5
1 0 0 1 1 0 1 1 1 1 0 1	C X Y Z 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1	1 0 0 0 1 0 1 1 1 1 0 1	1 0 0 1 1 0 1 1 1 1 0 1
W0=1 $W1=0$, $W2=0$	Loop 5 W0=1 W1=-0.5,W2=0 Function	W0=1 W1=W2=0.0	W0=1 $W1=0$, $W2=-0.5$
1 0 0 1 1 0 1 1 1 1 0 1	C X Y Z 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0	1 0 0 1 1 0 1 1 1 1 0 1	1 0 0 1 1 0 1 0 1 1 0 1
Loop 8 W0=1.5 W1=0.W2=-0.5 Function C X Y Z 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1	W0=1.5 W1=-0.5,W2=-0 Function C X Y Z 1 0 0 1 1 0 1 1 1 1 0 1	.5	

Step 4: Please prove that your designed XOR Gate work

$$Z := (0.5 * (2.0 >= 1.0) + 0.5 * (0.5 >= 1.0) >= 1.0)$$

$$Z := (0.5 * 1.0 + 0.5 * 0 >= 1.0)$$

$$Z := (0.5 >= 1.0)$$

$$Z := 0$$

Z := 1

· X=1, Y=0

$$Z := (0.5 * (1.0 * 1.0 + 1.0 * 0 >= 1.0) + 0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 0 >= 1.0) >= 1.0)$$
 $Z := (0.5 * (1.0 >= 1.0) + 0.5 * (1.0 >= 1.0) >= 1.0)$
 $Z := (0.5 * (True) + 0.5 * (True) >= 1.0)$
 $Z := (0.5 * 1 + 0.5 * 1 >= 1.0)$
 $Z := (0.5 + 0.5 >= 1.0)$
 $Z := (1.0 >= 1.0)$
 $Z := (True)$

Z := 1

```
X=0, Y=1
Z := (0.5 * (1.0 * 0 + 1.0 * 1.0 >= 1.0) + 0.5 * (1.5 + -0.5 * 0 + -0.5 * 1.0 >= 1.0) >= 1.0)
Z := (0.5 * (1.0 >= 1.0) + 0.5 * (1.0 >= 1.0) >= 1.0)
Z := ( 0.5 * (True) + 0.5 * (True) >= 1.0 )
Z := (0.5 * 1 + 0.5 * 1 >= 1.0)
Z := (0.5 + 0.5 >= 1.0)
Z := (1.0 >= 1.0)
Z := ( True)
```

Z := 0

X=0, Y=0Z := (0.5 * (1.0 * 0 + 1.0 * 0 >= 1.0) + 0.5 * (1.5 + -0.5 * 0 + -0.5 * 0 >= 1.0) >= 1.0) $Z := (0.5 * (0 \ge 1.0) + 0.5 * (1.5 \ge 1.0) \ge 1.0)$ Z := (0.5 * (False) + 0.5 * (True) >= 1.0)Z := (0.5 * 0 + 0.5 * 1 >= 1.0)Z := (0.5 >= 1.0)Z := (False)

CONCLUSION:

The neural network equation can be created by combining neural equations.

OR		NAND			XOR					
X	Υ	Z1		X	γ	Z2		X	γ	Z3
0	a l	0		0	a	 1		0	a	0
0	1	1	AND	0	0	1	=	0	0	1
1	0	1		1	0	1		1	0	1
1	1	1		1	1	0		1	1	0

REFERENCES

PROF Chang's Material

THANK YOU

