Autor: Kamil Król Numer indeksu: 244949

Sprawozdanie

1. Wprowadzenie

Do realizacji zadań wybrałem język Python3.7.

2. Zadanie 1

2.1. Opis programu

Stworzony przeze mnie program umożliwia zakodowanie wiadomości do ramki i jej odkodowanie. Ramka rozpoczyna się i kończy ustaloną sekwencją bitów: 0111110. Aby uniknąć w dalszej części ramki sekwencji zamykającej/otwierającej stosuje się tzw. rozpychanie bitów. Zapobiega ono błędom polegającym na zinterpretowaniu części wiadomości jako sekwencji zamykającej ramkę. Po sekwencji rozpoczynającej ramkę znajduje się rozepchana wiadomość, a następnie rozepchane pole kontrolne crc. Funkcję obliczającą wartości crc wziąłem z biblioteki zlib. Na końcu ramki znajduje się sekwencja zamykająca ramkę.

2.2. Prosty test programu

Wybrałem krótką wiadomość, która zawiera w sobie sekwencję zamykającą/otwierająca i ciąg jedynek długości 10. Wiadomość:

11100110011111110011111111111

Ręcznie zakodowana wiadomość (bez pola crc):

Ramka obliczona przez program:

Program zadziałał zgodnie z oczekiwaniami. Odkodowana wartość:

11100110011111110011111111111

Program poprawnie odkodował wiadomość.

2.3. Test ze zmianą zaszyfrowanej ramki

Poniżej kodowana wiadomość.

Kodowanie wiadomości.

Ramka powstała na skutek powyższego kodowania

Wprowadzamy zmianę w ramce.

Próba odkodowania.

decode()
ERROR: CRC VALUE IS INCORRECT
'ERROR'

Odkodowanie poprawnej ramki.

2.4. J

3. Zadanie 2

3.1. Opis

Kanał odpowiada za propagowanie sygnału. Dana stacja może nadać sygnał jeżeli widzi, że kanał komunikacyjny (komórka nad nią) jest wolny. Każda stacja ma określony stopień gadatliwości. W sytuacji kiedy zajdzie kolizja dwie stacje, które brały w niej udział losują szczeliny czasowe zgodnie ze wzorem.

$$T = t * R(2^{\min\{k,10\}})$$

Gdzie R(x) to losowa liczba całkowita z zakresu [0,x], k to ilość prób, a t to minimalna długość komunikatu.

Jeżeli ilość prób przekroczy 15 to uznaję, że kanał uległ przeciążeniu. Po wylosowaniu szczeliny stacje czekają.

3.2. Proponowany model kanału

Wybrałem kanał długości 15, ze stacjami na pozycjach 2 i 7.

Fragment symulacji, podczas której doszło do kolizji.

3.3. Wpływ ilości stacji na ilość kolizji

Długość kanału to 30. Stacje są rozłożone równomiernie.

Ilość stacji	Ilość kolizji
2	5
4	15
6	21
8	29
10	34

3.4. Wpływ długości kanału na ilość kolizji

Umieściłem 2 stacje na końcach kanałów o różnych długościach.

Długość kanału	Ilość kolizji
30	6
100	3
200	2
400	1
800	1
1000	1

Wyniki są inne od tych jakie oczekiwałem. Wynika to z faktu, że czas każdej próby jest zawsze taki sam (3000 interwałów czasowych), w związku z tym przy dłuższych kanałach wylosowane szczeliny czasowe są dłuższe, a więc stacje dłużej pozostają bezczynne.

3.5. Wpływ gadatliwości stacji na ilość kolizji

Do testu przyjąłem długość kanału równą 50. Gadatliwość stacji to prawdopodobieństwo tego ze w danym interwale czasowym stacja zacznie nadawać. Stacji jest 3 odpowiednio na pozycjach 2, 15, 47.

Gadatliwość wszystkich stacji	Ilość kolizji	Ilość sukcesów
0.05	9	22
0.2	13	22
0.5	14	20

