

신호변환과 신호변환기

2018년 2학기

Kyungsik Chang j3trio@ajou.ac.kr

목 차

- 1. 디지털 데이터 ⇒ 디지털 신호 : 코딩(부호화)
- 2. 디지털 데이터 ⇒ 아날로그 신호 : 디지털 변조
- 3. <u>아날로그 데이터⇒ 디지털 신호 : Digitization</u>
- 4. 아날로그 데이터 ⇒ 아날로그 신호 : 아날로그 변조

학습목표

- > 정보는 디지털이나 아날로그의 형태로 존재,
- 전송매체를 통해 전송할 수 있는 신호 또한 디지털이나 아날로그의 두가지 형태로 존재 하므로
- > 각 신호에 대한 부호화 방식과 부호화 장비에 대해 학습
- <u>디지털 데이터 ⇒ 디지털 부호화에 대해 이해한다.</u>
- 2. 디지털 데이터 ⇒ 아날로그 부호화에 대해 이해한다.
- 3. 아날로그 데이터⇒ 디지털 부호화에 대해 이해한다.
- 4. 아날로그 데이터 ⇒ 아날로그 부호화에 대해 이해한다.

1. 디지털 데이터 ⇒ 디지털 신호(1/17)

- □ 부호화(Encoding) : 정보를 전송로에 의해 전송될 수 있는 신호의 형태로 바꾸어 주는 것
- 부호화 이유 : 전송매체에서 보낼수 있는 신호형태와 정보의 표현 형태가 다른경우에 정보를 전송 가능한 형태로 변환해야 전송가능
- □ 복호화(Decoding) : 수신측에서 원래의 정보로 복원
- □ 신호변환기 : 부호화와 복호화를 수행하는 기기 (DSU/CSU, 모뎀, 코덱 등)
- 🗅 🛾 0 과 1로 표현된 디지털 정보를 디지털 신호로 표현
- ᄀ 디지털-디지털 부호화 과정

1. 디지털 데이터 ⇒ 디지털 신호(2/17)

□ 디지털-디지털 부호화 종류

1. 디지털 데이터 ⇒ 디지털 신호(3/17)

- □ 단극형 (Unipolar)
 - ✓ 단극형 부호화 : 0,1을 표현하기 위해 (+)나, (-)전압중 하나만 사용
 - ▶ 일반적으로 0은 0전압이나 아무것도 흐르지 않는 휴지(idle)상태,
 - ▶ 1을 나타내기 위해서는(+)나, (-)전압 중 하나를 사용
 - ✓ 단순하고 구현 비용이 저렴, 직류성분 존재와 동기화 문제로 거의 사용되지 않음

1. 디지털 데이터 ⇒ 디지털 신호(4/17)

□ 단극형 부호화의 문제점

- ✓ 직류성분(DC Component) 문제
 - ▶ 단극형 부호화 신호의 평균크기는 0이 아닌 상수값을 가짐.
 - ▶ 따라서, 주파수가 0인 직류성분이 생기게 되고, 이 때문에 변압기와 같이 직류성분을 다룰 수 없는 기기를 통과하지 못하는 문제가 발생 됨.
 - ▶ 교류의 경우, 트랜스 포머를 통한 신호의 간접접속이 가능 ---> 전기적 격리(간섭을 줄임).
- ✓ 동기화 문제
 - ▶ 신호가 연속된 0 이나 1 인 경우 신호의 변화가 없으므로 수신측에서 각 비트의 시작과 끝을 결정할 수 없는 문제 발생
 - 별도의 선로로 클럭 신호를 보냄으로 동기화 문제를 해결할 수 있으나
 비용이 많이 들기 때문에 사용 안함

1. 디지털 데이터 ⇒ 디지털 신호(5/17)

□ 극형 (Polar)

- ✓ 극형 부호화는 (+) 와 (-) 전압 두 개의 레벨 사용 → 평균 전압 크기가 단극형에 비해 줄어들어 직류성분 문제 완화 가능
- ✓ NRZ (Non-Return to Zero)
 - ▶ 단거리, 저속 통신에 사용
 - NRZ-L (Non-Return to Zero Level)
 - ▶ 단극형과 유사한 수준의 장단점 (단극 : +/-와 0, 극형 : +와 -)
 - * CPU내 또는 모듈간 데이터 전송에 사용

0을 위해 (-)전압을 사용하면, 1은 (+)전압을 사용하여 표현

1. 디지털 데이터 ⇒ 디지털 신호(6/17)

- ✓ NRZ-I (Not-Return to Zero Invert)
 - 신호레벨의 반전을 통해 신호를 나타내며,
 - ▶ 반전이 있는 경우는 '1'
 - ▶ 반전이 없는 경우는 '0'을 나타 냄.
 - ▶ 장 점
 - 신뢰성 향상 : Bit시작점에서 천이를 검사하는 것이 정확
 - ▶ 도선을 잘못 연결하여도 극성을 유지
 - 동기문제 다소 해결(1이면 반전)

- 단점
 - '0'이 연속으로 발생시, 단극형의 문제 상존
- ▶ 단점 해결 위해 Ethernet에서는 4B/5B와 NRZ-I 병용

1. 디지털 데이터 ⇒ 디지털 신호(7/17)

- ✓ RZ (Return to Zero) : (+), 0, (-) 3개의 전압레벨 사용
 - > 동기화를 위해 각 Bit마다 한번의 신호전이 발생
 - 0 일 경우 (-)전압으로 시작해서 중간에 0 레벨로 복귀
 - 1 일 경우 (+)전압으로 시작해서 중간에 0 레벨로 복귀
 - > 장점: 매 비트마다 신호의 변화가 발생 하므로 동기화 문제를 해결,
 - 단점: 하나의 비트를 부호화하기 위해 두번의 신호변화가 필요하므로 상대적으로 많은 대역폭 사용

1. 디지털 데이터 ⇒ 디지털 신호(8/17)

- ✔ Biphase : 동기화 문제를 해결하는 방법중 하나 임.
 - ▶ 전압 레벨이 RZ와 같이 0전압 레벨로 돌아가는 것이 아니라,
 - ▶ 중간에 다른 전압 레벨로 전환
 - ▶ 장단점 : RZ와 유사
 - ▶ Manchester와 차등 Manchester방식이 있음

* 10M Ethernet에서 사용

1. 디지털 데이터 ⇒ 디지털 신호(9/17)

- ➤ Differential Manchester : 동기화를 위해 비트 중간에서 전압이 바뀌는 것은 맨체스트와 같지만 정해진 패튼이 없고,
 - 0 인 경우 이전 패턴 유지
 - 1 인 경우 패턴이 반대로 바뀜
 - * Token Ring 에서 사용

1. 디지털 데이터 ⇒ 디지털 신호(10/17)

(예제) 비트 흐름이 01101001신호를 맨체스트와 차등 맨체스트를 이용하여 '부호화' 하여 보세요.

0인경우 : (+)를 (-)로

1인경우 : (-)을 (+)로

0인경우: 이전 패튼유지 1인경우: 패튼이 반대로

13

1. 디지털 데이터 ⇒ 디지털 신호(11/17)

- □ 양극형 (Bipolar) : AMI, B8ZS, HDB3 등 3개의 부호화 기법
 - ✓ 하나의 논리상태를 나타내기 위해 (+), 0, (-) 3개의 전압을 모두 사용
 - ✓ Bipolar AMI (Bipolar Alternate Mark Inversion)
 - ▶ 처음에 1을 표시 위해 (+)전압레벨이 사용 되었다면
 - ▶ 다음에 1이 나오면 이때는 (-)전압레벨을 사용하여 표현
 - 0 전압은 0을 나타내고 (+), (-)전압은 1을 표현
 - 연속적인 0이 오면 동기화 문제 발생
 - ▶ 동기화 문제를 해결하기 위해 B8ZS 와 HDB3 사용

1. 디지털 데이터 ⇒ 디지털 신호(12/17)

✔ B8ZS : 미국사용, 연속해서 8개의 0이 나오면 0대신에 '알려진 비트패튼' 을 사용함.

수신측에서 000-+0+-나, 000+-0-+와 같은 비트패튼을 수신하면 대체코드로 인식하고 8개의 0스트링으로 바꿔 넣는다.

1. 디지털 데이터 ⇒ 디지털 신호(13/17)

- ✓ HDB3 : 유럽사용, 연속적인 0이 3개이상 나오지 않도록 신호생성
 - ▶ 연속해서 0이 4개 나타나면 1이 나타난 횟수에 따라
 - 홀수이면, +0000대신에 +000+를, 0000대신에 000-를 전송하고
 - 짝수이면, +0000대신에 +-00-를, 0000대신에 -+00+를 전송한다.

1. 디지털 데이터 ⇒ 디지털 신호(14/17)

- □ mBnB형태 블록 코드형
 - ✓ M비트 길이의 데이터를 n비트 길이의 코드로 변환하는 방식
 - ✓ 주로 비트 동기화 문제 해결하기 위해 사용
 - ✓ 4B/5B, 8B/10B, 64B/66B, 1024B/1027B 등
 - ✓ 4B/5B : 1980년대 FD야 통신에 사용하고자 개발
 - ▶ 4비트 길이의 그룹단위를 5비트 길이의 코드 비트로 변환하는 방식
 - ▶ '0' 또는 '1'이 연속되어 전송되지 않도록 코드화
 - ➤ 100Base-FX

1. 디지털 데이터 ⇒ 디지털 신호(15/17)

4B/5B + NRZ-I 코드 변환표

데이터 비트 (4비트)	코드 비트 (5비트)	NRZI
0000	11110	
0001	01001	
0010	10100	
0011	10101	
0100	01010	
0101	01011	
0110	01110	
0111	01111	
1000	10010	
1001	10011	
1010	10110	
1011	10111	
1100	11010	
1101	11011	
1110	11100	
1111	11101	

1. 디지털 데이터 ⇒ 디지털 신호(16/17)

- ✓ 8B/10B
 - > 8비트 단위를 10비트의 코드로 변환시키는 블록 코드
 - ▶ '0'과 '1'의 발생비율을 평균적으로 같게 함으로써 DC Balance 문제 해결
 - > 1000Base-X(Gigabit Ethernet), USB3.0

■ Multilevel형

- ✓ 3개 이상의 전압레벨을 사용하는 방식
- ✓ 2B1Q, MLT-3 방식
- ✓ 2B1Q(2 Binary 1 Quarternary)
 - ▶ 2진 데이터 4개(00, 01, 11, 10)를 1개의 4진 심볼(-3, -1, +1, +3)로 변환하는 방식
 - > xDSL변조 방식

1. 디지털 데이터 ⇒ 디지털 신호(17/17)

- □ 신호 변환기 (Signal Conversion Device)
 - ✓ DSU (Digital Service Unit)
 - ▶ 전송 : Unipolar 신호를 변형된 Polar/Bipolar 로 바꿔서 전송
 - ▶ 수신 : 변형된 Polar/Bipolar 신호를 Unipolar 로 바꿔서 수신
 - ▶ 고속, 양질의 디지털 전송장치
 - * CSU (Channel Service Unit) : 64Kbps를 1채널로 간주
 - ▶ T1 또는 E1 트렁크를 수용할 수 있는 장비
 - > T1은 64Kbps 24채널, E1은 64Kbps 30채널
 - ▶ 멀티플렉서가 채널들을 모아서 한꺼번에 전송하는 트렁크 방식으로 전송

2. 디지털 데이터 ⇒ 아날로그 신호(1/14)

- □ 디지털 정보를 아날로그 신호로 전송
- □ 디지털-아날로그 변조 과정

2. 디지털 데이터 ⇒ 아날로그 신호(3/14)

- ✓ 변조(Modulation)의 정의
 - ▶ 원하는 영상, 음성 신호에 따라 반송파 (carrier) 신호의 진폭, 주파수, 위상 정보를 변경하여 변조된 신호를 얻는 과정 *아날로그 변조(AM, FM, PM 등)는 아날로그 데이터에서 아날로그 신호로, 디지털 변조(ASK, FSK, PSK, QAM 등)는 디지털 데이터에서 아날로그신호로의 변조이며, 펄스 변조(PAM, PPM, PWM 등)는 아날로그 데이터에서 디지털 신호로의 변조이다.
 - 반송파 신호 : 영상, 음성 신호를 전달하는 신호

2. 디지털 데이터 ⇒ 아날로그 신호(2/14)

□ 디지털 변조 종류

2. 디지털 데이터 ⇒ 아날로그 신호(4/14)

- □ 진폭편이변조 (ASK)
 - ✓ 진폭의 변화로만 0 과 1 을 표현
 - ✓ 1신호요소 당 1비트의 신호 전송
 - ✔ 장점 : 회로 구성이 간단하고 가격이 저렴
 - ✓ 단점 : 잡음이나 신호의 변화에 약함

2. 디지털 데이터 ⇒ 아날로그 신호(5/14)

- □ 변조의 종류(D → A)
 - ✓ 진폭 편이 변조 (Amplitude Shift Key, ASK)
 - 정보 신호에 따라 반송파의 진폭을 변화시키는 변조 방식
 - ▶ 진폭(A)이 정보신호에 따라 변화

2. 디지털 데이터 ⇒ 아날로그 신호(6/14)

- □ 주파수편이변조 (FSK)
 - ✓ 주파수의 변화로만 0 과 1을 표현
 - ✓ 1신호요소 당 1비트의 신호 전송
 - ✓ 진폭편이변조 방식보다 잡음에 강하고 회로도 간단하여 데이터 전 송에 많이 사용

2. 디지털 데이터 ⇒ 아날로그 신호(7/14)

- □ 변조의 종류(D → A)
 - ✓ 주파수 편이 변조 (FSK)
 - 반송파의 진폭은 일정하게 하고 정보 신호에 따라 반송파의 주파수를 변화시키는 변조방식
 - > 주파수(f)가 정보신호에 따라 변화
 - ●장점: 잡음 특성이 진폭변조에 비해 상대적으로 우수
 - ●단점: 진폭변조에 비해 더 넓은 전송 대역폭이 필요

2. 디지털 데이터 ⇒ 아날로그 신호(8/14)

□ 위상편이변조 (PSK)

- ✓ 위상의 변화로만 0 과 1을 표현
- ✓ 위상의 변화를 다양하게 해서 한 위상에 여러 비트 표현 가능
- ✓ 위상을 계속 늘리면 위상차가 작아져 잡음에 의한 신호 지연이 자주 발생
- ✓ 위상의 종류

위 상	설 명
2 위상	0은 0°, 1은 180°로 위상을 표현
4 위상	90°간격으로 위상을 표시하므로 2비트의 조합가능 (00,01,10,11)
8 위상	45°간격으로 위상을 표시하므로 3비트의 조합가능 (000,001,010,011,100,101,110,111)

2. 디지털 데이터 ⇒ 아날로그 신호(9/14)

✓ 2-PSK

PSK 방식은 주로 1,200 ~ 4,800bps의 모뎀에 적용되며,

✓ 4-PSK

모뎀규격은 ITU-T의 V.22, V.26, V.27 등이 있다.

2. 디지털 데이터 ⇒ 아날로그 신호(10/14)

- □ 변조의 종류(D → A)
 - ✓ 위상 편이 변조 (PSK)
 - 반송파의 진폭은 일정하게 하고 정보 신호가 반송파의 위상을 변화시키는 변조방식
 - > 위상(θ)이 정보신호에 따라서 변화
 - ▶ 장점 : 잡음 특성이 진폭변조에 비해 상대적으로 우수
 - 단점 : 진폭변조에 비해 더 넓은 전송 대역폭이 필요

2. 디지털 데이터 ⇒ 아날로그 신호(11/14)

- □ 직교진폭변조 (QAM)
 - ✓ 위상편이변조와 진폭편이변조의 복합형태

직교진폭변조는 고속전송에 사용되나, 진폭편이변조와 같이 잡음에 약하고 위상의 변화보다 많은 편이 차이를 요구하기 때문에 직교진폭변조 시스템 에서는 항상 진폭편이변조보다 위상편이가 많이 쓰인다

2. 디지털 데이터 ⇒ 아날로그 신호(12/14)

✓ 8-QAM 신호의 시간영역

각각의 신호는 3비트를 나타내므로 8-QAM을 사용하여 1,200bps를 내기 위해서는 400boud만이 필요하다

2. 디지털 데이터 ⇒ 아날로그 신호(13/14)

□ 케이블 모뎀

✓ 기존 케이블TV 망을 이용하여 데이터 통신 서비스 제공

케이블 모뎀 장점: 56Kbps모뎀이나

ISDN대비 빠른 접속속도 보장, 월정액으로

요금저렴, 항상 온라인 상태, 전화와 인터넷 서비스 제공자(ISP)

무관하게 사용

단점: 동시사용시 속도저하

케이블 모뎀의 변조방식: QPSK(Quadrature PSK)와 QAM방식 사용, QPSK방식은 4개의 위상으로 2개의 디지털 신호를 전송하는 방식으로 4-PSK방식이라고도 한다

2. 디지털 데이터 ⇒ 아날로그 신호(14/14)

- □ DSL(Digital Subscriber Line) 모뎀
 - ✓ 모뎀을 의미
 - ✓ 기존의 전화망과 같은 동선을 이용해 여유 대역폭을 활용
 - ✓ xDSL은 전송거리, 상향과 하향 전송속도, 비율, 응용서비스 등의 기준으로 구분

구분	HDSL	SDSL	ADSL	VDSL
최대 전송속도 (하항/상항)	1,5 / 2Mbps	1,5 / 2Mbps	8 Mbps/640kbps	13~52Mbps/ 1,6~6,4Mbps
변조방식	2B1Q CAP	2B1Q CAP	DMT / CAP	DMT / QAM
전송거리	3,6km	3km	5,4km	1,5km

3.아날로그 데이터 ⇒ 디지털 신호(1/15)

- □ 아날로그 데이터를 디지털 신호로 변환
- □ 아날로그-디지털 부호화 과정

3.아날로그 데이터 ⇒ 디지털 신호(2/15)

□ 신호의 변환(Analog-to-Digital)

3.아날로그 데이터 ⇒ 디지털 신호(3/15)

- □ 신호의 변환(Analog-to-Digital)
 - ✓ 표본화 (Sampling)
 - ▶ 시간영역에서 연속신호를 이산신호로 만들어줌
 - ▶ 연속적인 아날로그 신호를 일정한 시간 간격으로 측정
 - ➤ 표본화를 통해 만들어진 이산신호는 디지털 신호(0,1)가 아님

3.아날로그 데이터 ⇒ 디지털 신호(4/15)

- □ 펄스코드변조 (PCM)
 - ✓ 표본화

- ✓ 나이퀴스트의 샘플링 정리
 - ▶ 최고의 주파수를 fc 라고 하면 적어도 1/2fc 의 주기 펄스로 정보 추출

3.아날로그 데이터 ⇒ 디지털 신호(5/15)

- □ 신호의 변환(Analog-to-Digital)
 - ✓ 양자화 (Quantization)
 - 표본화에서 얻어진 이산 신호의 크기(진폭)을 한정된 값에 할당
 - 2-bit Converter
 - $> 2^2 = 4$
 - 이산신호의 크기를 4가지(2,4,6,8) 값으로 나누어진 범위 내에 할당
 - $> 0 \le V < 2, 2 \le V < 4, 4 \le V < 6, 6 \le V < 8$

3.아날로그 데이터 ⇒ 디지털 신호(6/15)

- □ 신호의 변환(Analog-to-Digital)
 - ✓ 양자화 (Quantization)
 - 3-bit Converter
 - $> 2^3 = 8$
 - ▶ 이산신호의 크기를 8가지(1,2,3,4,5,6,7,8) 값으로 나누어 진 범위내에 할당
 - $V \le V \le 1$, $1 \le V \le 2$, $2 \le V \le 3$, $3 \le V \le 4$, $4 \le V \le 5$, $5 \le V \le 6$, $6 \le V \le 7$, $7 \le V \le 8$

3.아날로그 데이터 ⇒ 디지털 신호(7/15)

- q 신호의 변환(Analog-to-Digital)
 - ✓ 양자화 (Quantization)
 - 근사화에 의해 에러 발생→Quantization error
 - 비트가 증가할 수록 샘플링된 이산신호의 크기를 할당할 수 있는 범위가 증가되어 Quantization error가 감소됨
 - 비트가 증가할 수록 아날로그 값에 더 근접한 표현이 가능
 - 출력 비트 수→ A/D Converter의 Resolution(분해능)

3.아날로그 데이터 ⇒ 디지털 신호(8/15)

- ✔ 양자화
 - > 양자화 잡음 : 원파형과 양자화 파형과의 오차

3.아날로그 데이터 ⇒ 디지털 신호(9/15)

- □ 신호의 변환(Analog-to-Digital)
 - ✓ 부호화 (Coding)
 - > 한정된 값에 2진 코드를 부여하는 과정
 - ▶ 2-bit Converter : $0 \le V < 2 \Rightarrow 00$, $2 \le V < 4 \Rightarrow 01$, $4 \le V < 6 \Rightarrow 10$, $6 \le V < 8 \Rightarrow 11$

예) 1.2→00, 3.6 →01

3.아날로그 데이터 ⇒ 디지털 신호(10/15)

- □ 신호의 변환(Analog-to-Digital)
 - ✓ 부호화 (Coding)
 - > 3-bit Converter : $0 \le V < 1 \Rightarrow 000, 1 \le V < 2 \Rightarrow 001, 2 \le V < 3 \Rightarrow 010, 3 \le V < 4 \Rightarrow 011, 4 \le V < 5 \Rightarrow 100, 5 ≤ V ≤ 6 ⇒ 101, 6 ≤ V < 7 ⇒ 110, 7 ≤ V < 8 ⇒ 111$

예) 1.2 →001 , 3.6 →011

3.아날로그 데이터 ⇒ 디지털 신호(11/15)

✓ 부호화

3.아날로그 데이터 ⇒ 디지털 신호(12/15)

3.아날로그 데이터 ⇒ 디지털 신호(13/15)

- ✓ 재 생
 - 펄스 유무만을 판단하여 유효 펄스만 재생되어 복호기로 전달
- ✓ 복 호

3.아날로그 데이터 ⇒ 디지털 신호(14/15)

✓ 재구성

3.아날로그 데이터 ⇒ 디지털 신호(15/15)

- □ 신호 변환기
 - ✓ 코덱: 인코더와 디코더의 합성어
 - ▶ 인코더 : 음성 또는 영상의 아날로그 신호를 디지털 신호로 변환
 - ▶ 디코더 : 디지털 신호를 음성 또는 영상으로 변환
 - ▶ 코덱(송신부) = ADC(PCM Chip) + Source Encoder + Chan' Encoder)
 - * PCM은 코덱 장비에 집적회로로 구성

4.아날로그 데이터 ⇒ 아날로그 신호(1/4)

- □ 아날로그 변조의 목적
 - ✓ 효율적인 전송을 위해 보다 높은 반송 주파수 필요(안테나길이 축소)
 - ✓ 주파수 분할 다중화가 가능하기 위해 필요
- □ 아날로그-아날로그 부호화 과정

4.아날로그 데이터 ⇒ 아날로그 신호(2/4)

□ 아날로그-아날로그 부호화 과정

4.아날로그 데이터 ⇒ 아날로그 신호(3/4)

- □ 진폭 변조 방식 (AM)
 - ✓ 반송파의 진폭만 변조시켜 전송
- □ 주파수 변조 방식 (FM)
 - ✓ 반송파의 주파수만 변조시켜 전송
- □ 위상 변조 방식 (PM)
 - ✓ 반송파의 위상만 변조시켜 전송

4.아날로그 데이터 ⇒ 아날로그 신호(4/4)

□ 아날로그 변조

학습목표(복습)

- > 정보는 디지털이나 아날로그의 형태로 존재,
- 전송매체를 통해 전송할 수 있는 신호 또한 디지털이나 아날로그의 두가지 형태로 존재 하므로
- > 각 신호에 대한 부호화 방식과 부호화 장비에 대해 학습
- □지털 데이터 ⇒ 디지털 부호화에 대해 이해한다.
- 2. 디지털 데이터 ⇒ 아날로그 부호화에 대해 이해한다.
- 3. 아날로그 데이터⇒ 디지털 부호화에 대해 이해한다.
- 4. 아날로그 데이터 ⇒ 아날로그 부호화에 대해 이해한다.

감사합니다.

Q & A