

HybridBERT4Rec: A Hybrid Recommender System Based on BERT

Sequential Content-Based and Collaborative Filtering

Leon Knorr | December 4, 2023

Table of Contents

- 1. Recap
 - Sequential Modelling
 - HybridBERT4Rec
- 2. The Setting
- 3. Model Adaption
- 4. Evaluation

Recap The Setting Model Adaption Evaluation 000

Recap: Sequential Modelling & HybridBERT4Rec

Recap

The Setting

Model Adaption

Traditional CBF VS Sequential CBF

Figure 1: Example history for Alice in traditional CBF [1]

models general user preference

Recap ○●○ The Setting

Model Adaption

Traditional CBF VS Sequential CBF

Figure 1: Example history for Alice in traditional CBF [1]

- models general user preference
- **BUT:** User preferences change over time! [2]

Recap

The Setting

Model Adaption

Traditional CBF VS Sequential CBF

(Alice)

Figure 1: Example history for Alice in traditional CBF [1]

- models **general** user preference
- BUT: User preferences change over time! [2]

Figure 2: Example history for Alice in sequential CBF [1]

- Considers the order of historical interactions
- Allows the modelling of "temporary spikes" of interests, as well as the general preferences [2]

Recap

The Setting

Model Adaption

HybridBERT4Rec Architecture

Figure 3: High level overview of HybridBERT4Recs Architecture. [1]

Recap

The Setting

Model Adaption

The Setting

Recap

The Setting ●○

Model Adaption

The Setting

Figure 4: The Setting, consisting of a user collection U and their histories h(u), a collection of learning objectives T and a collection of exercises X, which can be used to predict a ranking R(u) for a given user u.

Recap oo The Setting Model Adaption Evaluation oo oo oo oo

Model Adaption

Recap

The Setting

Model Adaption ●○○○

CBF-HybridBERT4Rec

- $H(u) := (\{(x_i, t_j, s_k) | (x_i, t_j) \in R_{t,x}\}, \leq)$, with $s_{k-1} \leq s_k$
- $I(u) := (\{x_i | (x_i, t_j, s_k) \in H(u)\}, \leq)$
- $ightharpoonup \overrightarrow{R_{u,t}}$: the interaction probability distribution of all items with the user u over the target item

Figure 5: CBF-HybridBERT4Rec architecture and input in the described setting

Recap The Setting Model Adaption Evaluation oo oo oo oo

CF-HybridBERT4Rec

- \bullet $u \in N \iff d_{u,t} = d_{u_m,t} \land$ $(x, t) \in \{(x, t) | (x, t, s_k) \in H(u)\}, \text{ with }$ $U_m \in U, U \in U, t \in T, N$ being the set of neighbors for target (masked) user u_m and learning objective t
- \blacksquare $\overrightarrow{R_{t}}_{n}$: a user-similarity probability distribution of all users over the target (masked) user

Figure 6: CF-HybridBERT4Rec architecture and input in the described setting

The Setting Model Adaption **Evaluation** Recap

Bringing It All Together

Algorithm 1 HybridBERT4Rec in an E-Learning Setting

```
1: for all u_m \in U do

2: r_{x,u_m} = \operatorname{cbf_hybridbert4rec}(H(u_m))

3: for all (x,t) \in R_{t,x} do

4: r_{u,x} = \operatorname{cf_bert4rec}(u_m,t,x)

5: \hat{r}_{u,x} = \operatorname{prediction_layer}(r_{x,u},r_{u,x})

6: end for
```

- Yields a rating $\hat{r}_{u,x}$ for each exercise and for each user
- Construct an overall rating of exercises by sorting the ratings
- Construct a topic specific rating by filtering for a topic and sorting the ratings

7: end for

Evaluation

Recap

The Setting

Model Adaption

Evaluation •oo

The Problem

- No given Test data with relevance annotations!
- Annotating the whole collection requires $U \times T \times X$ relevance annotations
- **INFEASIBLE** for large *U*, *X* and *T*

Pooling

- For most queries only N << X documents are relevant</p>
- \Rightarrow We only annotate the top N results of every query
- $\Rightarrow U \times T \times N$ relevance annotations needed
- Compute P@K, R@K, NDCG etc.
- Shortcoming: Scores are only approximations!

Recap The Setting Model Adaption Evaluation 00

References

- [1] Chanapa Channarong et al. "HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT". In: *IEEE Access* 10 (2022), pp. 56193–56206. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2022.3177610. (Visited on 11/02/2023).
- [2] Shoujin Wang et al. "Sequential Recommender Systems: Challenges, Progress and Prospects". In: (2019), pp. 6332–6338. (Visited on 11/02/2023).

References