1. Модели данных

- Концептуальная модель
- Логическая модель
- Физическая модель

Компоненты концептуальной модели – объекты предметной области и их взаимосвязи. Концептуальная модель – это модель предметной области.

Концептуальная модель не предусматривает выбор конкретной системы управления базами данных (СУБД).

СУБД влияет на формирование логической модели и предопределяет физическую модель. Логическая модель – это версия концептуальной модели, которая может быть обеспечена конкретной СУБД.

2. Взаимосвязи в модели данных

- Один к одному (1:1)
- Один ко многим (1 : M)
- Многие ко многим (М : М)

1:1 – взаимно однозначное соответствие одного объекта другому.

1 : М – одному объекту одного типа соответствует несколько объектов другого типа. Например, один продавец обслуживает несколько покупателей, но не наоборот.

М: М – одному объекту одного типа соответствует несколько объектов другого типа и наоборот. Например, каждый продавец может оформлять несколько заказов с каждым покупателем.

3. Реляционные базы данных

Реляционная база данных (БД) – это такое средство хранения и доступа к данным, которое позволяет конечному пользователю не учитывать все тонкости процессов размещения и обработки данных компьютером. Реляционная БД – реализация логической реляционной модели данных.

До реляционных БД использовались иерархические и сетевые БД. Преимущество – обеспечивают более быстрый доступ к данным по сравнению с реляционными БД. Недостаток – сложный процесс доступа к конкретным данным для решения конкретных задач.

Отношение – двумерная структура данных, которая в БД обычно представлена в виде таблицы. Атрибуты, или столбцы, содержат информацию в этой структуре. Значения данных о конкретном объекте хранятся в кортеже, или в строке таблицы. Между двумя или несколькими таблицами могут быть определены связи. Для однозначного определения строки таблицы используют первичный ключ – атрибут (или группа атрибутов), который содержит уникальные данные (не допускаются NULL-значения, если ключ не составной). Таблица имеет только один первичный ключ.

Связь между таблицами устанавливается при помощи общего атрибута.

Таблица DEPT (Отделы)

DNUM		DNAME	LOCA	TION			
10		TÉ2	LONDO	N			
20	PR	OJECTS	TÓNDO	N			
(PK)					์ _	блица Е МР	Р (Работники)
		ENUM	ENAME	SALA	ARY	DNUM	
		1001	ТОММ	150	00	10	
		1002	KATE	120	00	20	
		1003	BILL	120	00	20	
		(PK)				(FK)	

Реляционные базы данных имеют следующие преимущества:

- Простой процесс создания таблиц
- Удобство ввода данных в таблицы, модификации и удаления данных
- Возможность создания связей между таблицами

4. Проектирование реляционных баз данных

Концептуальная модель – основа для создания логической модели, которая может быть реализована средствами реляционной СУБД.

Нормализация отношений – это процесс разработки концептуальной модели при проектировании реляционных БД. В результате нормализации элементы данных группируются в таблицы, представляющие объекты и их взаимосвязи.

Ненормализованное отношение

№ про- дав- ца	№ поку па- теля	№ зака- за	Дата заказа	Сумма заказа	Имя про- давца	Город продав- ца	Комис сия про- давца	Имя покупа- теля	Гор-од покупа- теля	Рей- тинг покупа -теля
SNUM	CNUM	ONUM	ODATE	AMT	SNAME	SCITY	СОММ	CNAME	CCITY	RATING
1001	2001 2006	3003 3008 3011	03.10.1990 05.10.1990 06.10.1990	767,19 4723,00 9891,88	Peel	London	0,12	Hoffman Clemens	London London	100 100
1002	2003 2004	3005 3007 3010	03.10.1990 04.10.1990 06.10.1990	5160,45 75,75 1309,95	Serres	San Jose	0,13	Liu Grass	San Jose Berlin	200 300
1003	2002	3009	04.10.1990	1713,23	Axelrod	New York	0,10	Giovanni	Rome	200
1004	2007	3002	03.10.1990	1900,10	Motika	London	0,11	Pereira	Rome	100
1007	2008	3001 3006	03.10.1990 03.10.1990	18,69 1098,16	Rifkin	Barcelona	0,15	Cisneros	San Jose	300

- на пересечении некоторых столбцов и строк более одного значения
- трудно выявить первичный ключ, что затрудняет однозначное определение неключевых атрибутов по значению первичного ключа

Первая нормальная форма

№ про- дав- ца	№ поку па- теля	№ зака- за	Дата заказа	Сумма заказа	Имя про- давца	Город продав- ца	Комис сия про- давца	Имя покупа- теля	Гор-од покупа- теля	Рей- тинг покупа -теля
SNUM	CNUM	ONUM	ODATE	AMT	SNAME	SCITY	СОММ	CNAME	CCITY	RATING
1001	2001	3003	03.10.1990	767,19	Peel	London	0,12	Hoffman	London	100
1001	2006	3008	05.10.1990	4723,00	Peel	London	0,12	Clemens	London	100
1001	2006	3011	06.10.1990	9891,88	Peel	London	0,12	Clemens	London	100
1002	2003	3005	03.10.1990	5160,45	Serres	San Jose	0,13	Liu	San Jose	200
1002	2004	3007	04.10.1990	75,75	Serres	San Jose	0,13	Grass	Berlin	300
1002	2004	3010	06.10.1990	1309,95	Serres	San Jose	0,13	Grass	Berlin	300
1003	2002	3009	04.10.1990	1713,23	Axelrod	New York	0,10	Giovanni	Rome	200
1004	2007	3002	03.10.1990	1900,10	Motika	London	0,11	Pereira	Rome	100
1007	2008	3001	03.10.1990	18,69	Rifkin	Barcelona	0,15	Cisneros	San Jose	300
1007	2008	3006	03.10.1990	1098,16	Rifkin	Barcelona	0,15	Cisneros	San Jose	300

Первичный ключ (Primary Key, PK)

- на пересечении столбцов и строк только по одному значения
- есть продублированные значения в столбцах SNUM, CNUM, SNAME, SCITY, COMM, CNAME, CCITY и RATING.
- в состав первичного ключа включен атрибут ONUM. В каждой строке его значение уникально, и, зная это значение, можно однозначно определить значение любого другого атрибута в строке.

Аномалия включения (тип 1). На работу принят новый продавец, и он еще не обслужил ни одного покупателя, т.е. не заключил ни одного заказа. Запись с данными о новом продавце не может быть добавлена в БД.

Аномалия включения (тип 2). Обратился новый покупатель, ему назначили продавца, но заказ еще не оформлен. Запись с данными о новом покупателе и о назначении его конкретному продавцу не может быть добавлена в БД.

Аномалия обновления. Если один из покупателей, например Grass, изменил место жительства, необходимо внести изменения в нескольких кортежах (записях). При неудачном выполнении такого изменения в одних кортежах наименование города будет изменено, а в других останется прежним – путаница при выборке данных по этому покупателю гарантирована.

Аномалия удаления. Если заказ, заключенный продавцом Motika с Pereira, по каким-либо причинам аннулирован, то его нужно удалить из БД. Но тогда будет потеряна информация как о продавце Motika, так и о покупателе Pereira. Ведь это единственный заказ с их участием.

Переход от первой нормальной формы ко второй нормальной форме устраняет указанные аномалии. Суть перехода – в разбивке одной таблицы на несколько таблиц. В каждой таблице неключевые атрибуты должны зависеть только от ключа.

Вторая нормальная форма

Во второй нормальной форме все неключевые элементы должны полностью зависеть от первичного ключа. Данное требование выполняется при разбивке на три таблицы – ПРОДАВЕЦ, ПОКУПАТЕЛЬ и ЗАКАЗ.

Таблица ПРОДАВЕІ	ЕЦ
------------------	----

		•	
Nº	Имя	Город	Комиссия
продавца	продавца	продавца	продавца
SNUM	SNAME	CITY	COMM
1001	Peel	London	0,12
1002	Serres	San Jose	0,13
1003	Axelrod	New York	0,10
1004	Motika	London	0,11
1007	Rifkin	Barcelona	0,15
<u>-</u>			

Таблица ПОКУПАТЕЛЬ

		таолица по	
Nº	Имя	Город	Рейтинг
покупателя	покупателя	покупателя	покупателя
CNUM	CNAME	CITY	RATING
2001	Hoffman	London	100
2002	Giovanni	Rome	200
2003	Liu	San Jose	200
2004	Grass	Berlin	300
2006	Clemens	London	100
2007	Pereira	Rome	100
2008	Cisneros	San Jose	300

Nº	Дата	Сумма	Nº	Nº
заказа	заказа	заказа	покупателя	продавца
ONUM	ODATE	AMT	CNUM	SNUM
3001	03.10.1990	18,69	2008	1007
3002	03.10.1990	1900,10	2007	1004
3003	03.10.1990	767,19	2001	1001
3005	03.10.1990	5160,45	2003	1002
3006	03.10.1990	1098,16	2008	1007
3007	04.10.1990	75,75	2004	1002
3009	04.10.1990	1713,23	2002	1003
3008	05.10.1990	4723,00	2006	1001
3010	06.10.1990	1309,95	2004	1002
3011	06.10.1990	9891,88	2006	1001
_				

- все отношения (таблицы) во второй нормальной форме являются и отношениями в первой нормальной форме.
- в каждой таблице любой неключевой атрибут полностью зависит только от своего первичного ключа.

Аномалия включения. До тех пор пока не оформлен заказ, данные о том, какому продавцу назначен покупатель, внести невозможно.

Аномалия удаления. При удалении заказа может быть потеряна информация о назначении покупателя продавцу, если удаляется их единственный заказ.

Причина аномалий, присущих второй нормальной форме, в наличии функциональной зависимости одного неключевого элемента от другого неключевого элемента. В таблице ЗАКАЗ атрибут SNUM зависит от атрибута CNUM.

Аномалии второй нормальной форму устраняются при переходе к третьей нормальной форме. Суть перехода та же – разбивка одной таблицы на несколько других. В отдельную таблицу выделяются те атрибуты, которые могут существовать в БД независимо от остальных атрибутов таблицы.

Третья нормальная форма

В таблицах ПРОДАВЕЦ и ПОКУПАТЕЛЬ нет аномалий, связанных с функциональной зависимостью неключевых элементов, поэтому они уже находятся в третьей нормальной форме.

Таблица ЗАКАЗ разбивается на две таблицы: таблица ЗАКАЗ и таблица ПРОДАВЕЦ-ПОКУПАТЕЛЬ.

Таблица ЗАКАЗ

Nº	Дата	Сумма	Nº
заказа	заказа	заказа	покупателя
ONUM	ODATE	AMT	CNUM
3001	03.10.1990	18,69	2008
3002	03.10.1990	1900,10	2007
3003	03.10.1990	767,19	2001
3005	03.10.1990	5160,45	2003
3006	03.10.1990	1098,16	2008
3007	04.10.1990	75,75	2004
3009	04.10.1990	1713,23	2002
3008	05.10.1990	4723,00	2006
3010	06.10.1990	1309,95	2004
3011	06.10.1990	9891,88	2006
1			

Таблица ПРОДАВЕЦ-ПОКУПАТЕЛЬ

Nº	Nº
покупателя	продавца
CNUM	SNUM
2001	1001
2002	1003
2003	1002
2004	1002
2006	1001
2007	1004
2008	1007
*	
PK	

Таблица ПРОДАВЕЦ-ПОКУПАТЕЛЬ содержит информацию о назначении покупателей продавцам.

При разработке учебной базы данных использован вариант из трех таблиц: ПРОДАВЕЦ, ПОКУПАТЕЛЬ и ЗАКАЗ. Таблица ЗАКАЗ оставлена во второй нормальной форме. Изменена таблица ПОКУПАТЕЛЬ, в которую добавлена информация о назначении покупателей продавцам.

	Таблица	ПРОДАВЕЦ
--	---------	----------

· aominga i i	. ~~,.~~~		
Nº	Имя	Город	Комиссия
продавца	продавца	продавца	продавца
SNUM	SNAME	CITY	СОММ
1001 🔍	`	London	0,12
1002 `	Serres	San Jose	0,13
1003	\ Axelrod \	New York	0,10
1004	Motika	London	0,11
1007	Rifkin	Barcelona	0,15
	,		

Таблица ПОКУПАТЕЛЬ

Внешний ключ	(Earaian	Kov	EK/
CDUCMUNIN VIIDA	ti Oleigii	rvey,	1 f\

таолица покупалель						
Nº	Имя `、	Город	Рейтинг	Nº		
покупателя	покупателя	покупателя	покупателя -	продавца		
CNUM	CNAME `	CITY	RATING	`_SNUM		
2001	Hoffman	`,London	100	1001		
2002	`、Giovanni	Rome	200	1003		
2003	`Ļiu	San Jose	200	1002		
2004	Grass	Berlin	300	1002		
2006	Clemens	Londan	100	1001		
2007	Pereira	Rome \	100	1004		
2008	Cisneròş	San Josè、	300	1007		
1	1					

		•	••
Таблица	3Al	(A	3

Nº	Дата	Сумма	`, Nº	`\ Nº
заказа	заказа	заказа	покупателя	продавца
ONUM	ODATE	AMT	CNUM	SNUM
3001	03.10.1990	18,69	2008	1007
3002	03.10.1990	1900,10	2007	1004
3003	03.10.1990	767,19	2001	1001
3005	03.10.1990	5160,45	2003	1002
3006	03.10.1990	1098,16	2008	1007
3007	04.10.1990	75,75	2004	1002
3009	04.10.1990	1713,23	2002	1003
3008	05.10.1990	4723,00	2006	1001
3010	06.10.1990	1309,95	2004	1002
3011	06.10.1990	9891,88	2006	1001

Правила Э.Ф.Кодда

- 1. Данные хранятся в столбцах и строках таблиц
- 2. Доступ к данным можно получить, указав имя таблицы, имя столбца и ключ
- 3. СУБД должна обрабатывать пропущенные значения (пустые данные). Для обозначения пустых данных используется ключевое слово NULL
- 4. СУБД должна включать оперативный каталог, содержащий сведения о самой базе данных
- 5. Для определения данных, их обработки и других операций определяется специальный подъязык. В настоящее время таким языком является SQL
- 6. Должны поддерживаться представления таблиц, или виртуальные таблицы, которые строятся динамически по запросам
- 7. Должна быть включена транзакций. Транзакция поддержка обеспечивает коллективное изменение или отмену всех связанных изменений данных. Транзакции имеют четыре свойства: атомарность, согласованность, изолированность и продолжительность (ACID). Атомарность - транзакция либо выполняется полностью, либо не выполняет ничего. Согласованность - с каждой транзакцией БД переходит одного согласованного состояния И3 другое согласованное состояние данных. Изолированность - изменения, происходящие в процессе транзакции, не видны пользователям до завершения транзакции. Продолжительность - сделанные в процессе транзакции изменения должны сохраниться в БД
- 8. Физическое хранение данных отделено от пользователя. Пользователь имеет дело только с логической структурой БД
- 9. Логическую структуру данных можно изменять с минимальным воздействием на пользователей и программы
- 10. Правила целостности данных хранятся в каталоге БД. Любые их изменения не должны влиять на прикладные программы
- 11. Приложения должны работать в распределенной среде (когда данные хранятся в различных местах)
- 12. СУБД должна обеспечивать безопасность и целостность базы данных

Язык SQL

В реляционных базах данных применяется язык SQL – декларативный язык структурированных запросов (Structured Query Language).

- Используется для доступа к данным всеми категориями пользователей
- Обеспечивает обработку данных в виде групп записей (результирующих наборов), а не отдельных записей, как в процедурных языках
- Все операторы SQL выполняются базой данных и являются сложными и мощными процедурами

Корпорация Oracle разработала расширение языка SQL – процедурный язык PL/SQL, который содержит операторы управления ходом выполнения программы и используется для создания прикладных программ.

5. Корпоративные информационные системы

5.1. Архитектуры

- Клиент-сервер
- Интернет/Интранет.

5.2. Конфигурации баз данных

Параллельные базы данных

Распределенные базы данных

6. Архитектура Oracle

- База данных
- Экземпляр

6.1. Логическая структура базы данных

- одно или несколько табличных пространств
- пользовательские объекты базы данных (например, таблицы, представления, индексы, кластеры, последовательности и хранимые процедуры)

6.1.1. Табличные пространства

6.1.2. Схемы и объекты схем

<u>Схема</u> – это набор объектов.

Объекты схемы – это логические структуры, которые непосредственно связаны с данными БД.

- Таблица это основная единица хранения данных в базе данных
 Oracle
- Представления это взгляд пользователя на данные,
 принадлежащие одной или нескольким таблицам
- Последовательность строит последовательный список уникальных чисел для числовых столбцов таблиц базы данных
- Программные единицы процедуры, функции и пакеты
- Синоним это альтернативное имя таблицы, представления, последовательности или программной единицы
- Индексы, кластеры и хеш-кластеры это необязательные структуры,
 связанные с таблицами. Ускоряют обработку данных

Блоки данных, экстенты и сегменты – логические структуры для выделения дискового пространства под объекты БД.

6.2. Физические структуры

- Файлы данных. Каждая база данных Oracle имеет несколько (от одного и более) физических файлов данных. Файлы данных базы данных содержат все данные БД
- Журнальные файлы. Каждая база данных Oracle имеет набор из двух и более журнальных файлов. Набор журнальных файлов БД называется журналом базы данных. Главным назначением журнала является сбор и хранение всех изменений, сделанных в данных
- Управляющие файлы. Каждая БД Oracle имеет управляющий файл.
 Управляющий файл хранит информацию о физической структуре БД

6.3. Экземпляр базы данных Oracle

Экземпляр – это структуры Oracle в физической памяти и набор процессов, которые выполняют специфические операции, связанные с работой БД.

7. Среды разработки приложений Oracle

- SQL*Plus
- Oracle APEX (Oracle, Inc., USA)

Вход в OracleEPEX выполняется по ссылке https://apex.oracle.com/en/learn/getting-started/

Начальная страница OracleAPEXпоказана на рисунке 1.

Рис. 1.

Для выполнения лабораторных работ необходимо создать на сайте https://apex.oracle.com свою рабочую область (WorkSpace). Инструкция по созданию рабочей области содержится в файле «Среда разработки Oracle APEX» на ЭИОС в разделе «Практические задания».

Лабораторные работы выполняются с использованием учебной базы данных (БД). Инструкция по созданию учебной базы данных содержится в файле «Создание учебной БД в Oracle APEX» на ЭИОС в разделе «Практические задания».

При создании учебной БД и при выполнении лабораторных работ в АРЕХ используются в основном:

- Страница SQL Commands для работы в режиме командной строки (рис. 2)
- Страница SQL Scripts для выполнения сценариев (скриптов) (рис. 3)
- Страница Object Browser для работы с объектами БД (рис.4)

Выбор названных страниц выполняется из пункта горизонтального меню SQL Workshop

Рис. 2. Страница SQL Commands

Рис. 3. Страница SQL Scripts

Рис. 4. Страница Object Browser