ΙΔΙΟΤΗΤΕΣ ΑΠΟΦΑΣΙΣΙΜΩΝ ΓΛΩΣΣΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Μία μηχανή Turing θα λέμε ότι αποφασίζει μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- Τερματίζει με σχηματισμό (h, #Υ $\underline{\it \#}$) αν $w \in L$
- Τερματίζει με σχηματισμό (h, #N $\underline{\#}$) αν $w \notin L$

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την αποφασίζει λέγεται Turing-Αποφασίσιμη (ή Αναδρομική ή Επιλύσιμη ή Αποφασίσιμη Γλώσσα)

Κανονικές $L = \{ w \in \{0,1\}^* | w \pi εριεχει το 00 \}.$

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΦΑΣΙΣΙΜΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

H L₁ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M₁ $H L_2$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_2

Κλειστότητα των Αποφασισίμων Γλωσσών στην Ένωση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

1) Τρέχει την M₁ με είσοδο w. Αν η M₁ απαντήσει NAI, τότε η M' απαντά ΝΑΙ και τερματίζει. Αν η Μ₁ απαντήσει ΌΧΙ προχωράει στο βήμα 2: 2) Τρέχει την Μ2 με είσοδο w. Αν η η Μ2 απαντήσει ΝΑΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η Μ2 απαντήσει ΌΧΙ τότε απαντά ΌΧΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στην Τομή

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

1) Τρέχει την Μ₁ με είσοδο w. Αν η Μ₁ απαντήσει ΟΧΙ, τότε η Μ΄ απαντά ΟΧΙ και τερματίζει. Αν η Μ₁ απαντήσει ΝΑΙ προχωρά στο βήμα 2: 2) Τρέχει την Μ₂ με είσοδο w. Αν η η Μ2 απαντήσει ΟΧΙ, τότε η Μ' απαντά ΟΧΙ και τερματίζει. Αν η Μ₂ απαντήσει ΝΑΙ τότε η Μ' απαντά ΝΑΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στην Παράθεση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w_1w_2 .)
- Για κάθε δυνατό διαχωρισμό: Τρέχει την Μ₁ με είσοδο w₁ και την Μ₂ με είσοδο w₂. Αν και οι δύο μηχανές απαντήσουν ΝΑΙ, τότε η Μ' τερματίζει απαντώντας ΝΑΙ

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ' τερματίζει απαντώντας ΌΧΙ.

Κλειστότητα των Αποφασισίμων Γλωσσών στο

Συμπλήρωμα

Η L είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ με είσοδο w.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντάει ΌΧΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στο Αστέρι Kleene

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1.. | w | συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|
- Για κάθε δυνατό διαχωρισμό: Τρέχει την Μ διαδοχικά με 2. εισόδους $w_1, w_2, ..., w_k$. Αν η Μ απαντήσει NAI για όλες τις συμβολοσειρές τότε η Μ' τερματίζει απαντώντας ΝΑΙ.

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ΄ τερματίζει απαντώντας ΌΧΙ.