Tweakable Blockciphers and Beyond Birthday Bound Security

Bart Mennink
Radboud University (The Netherlands)

8th Asian Workshop on Symmetric Key Cryptography November 15, 2018

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockciphers in OCBx

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, index) is unique for every evaluation
 - Different blocks always transformed under different tweak

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - ullet Tweak (N, index) is unique for every evaluation
 - Different blocks always transformed under different tweak
- Change of tweak should be efficient

Tweakable Blockcipher Designs

Tweakable Blockcipher Designs in CAESAR

Dedicated

KIASU, Joltik, SCREAM,

Deoxys

Blockcipher-Based

CBA, COBRA, iFeed, Marble OMD, POET, SHELL, AEZ, OTR, COPA/ELmD, OCB

Permutation-Based

Prøst, **Minalpher**

Dedicated Tweakable Blockciphers

- Hasty Pudding Cipher [Sch98]
 - AES submission, "first tweakable cipher"
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY framework [JNP14]
 - Four CAESAR submissions
 - SKINNY & MANTIS

Tweakable Blockcipher Security

- ullet \widetilde{E}_k should look like random permutation for every t
- ullet Different tweaks \longrightarrow pseudo-independent permutations

Tweakable Blockcipher Security

- ullet \widetilde{E}_k should look like random permutation for every t
- ullet Different tweaks \longrightarrow pseudo-independent permutations
- ullet ${\cal D}$ tries to determine which oracle it communicates with

$$\mathbf{Adv}^{\mathrm{stprp}}_{\widetilde{E}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\widetilde{E}_k, \widetilde{E}_k^{-1}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\widetilde{\pi}, \widetilde{\pi}^{-1}} = 1 \right] \right|$$

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

ullet Consider a blockcipher E with $\kappa ext{-bit}$ key and $n ext{-bit}$ state

How to mingle the tweak into the evaluation?

• Consider a blockcipher E with κ -bit key and n-bit state

How to mingle the tweak into the evaluation?

blend it with the key blend it with the state

- Blending tweak and key works...
- ... but: careful with related-key attacks!

- Blending tweak and key works...
- ... but: careful with related-key attacks!
- For \oplus -mixing, key can be recovered in $2^{\kappa/2}$ evaluations
- ullet Scheme is insecure if E is Even-Mansour

- Blending tweak and key works...
- ... but: careful with related-key attacks!
- For \oplus -mixing, key can be recovered in $2^{\kappa/2}$ evaluations
- Scheme is insecure if E is Even-Mansour
- TWEAKEY blending [JNP14] is more advanced

• Simple blending of tweak and state does not work

- Simple blending of tweak and state does not work
 - $\widetilde{E}_k(t,m) = \widetilde{E}_k(t \oplus C, m \oplus C)$

- Simple blending of tweak and state does not work
 - $\widetilde{E}_k(t,m) = \widetilde{E}_k(t \oplus C, m \oplus C)$
- ullet Some secrecy required: h

- Simple blending of tweak and state does not work
 - $\widetilde{E}_k(t,m) = \widetilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- ullet Still does not work if adversary has access to \widetilde{E}_k^{-1}

- Simple blending of tweak and state does not work
 - $\widetilde{E}_k(t,m) = \widetilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- ullet Still does not work if adversary has access to \widetilde{E}_k^{-1}
 - $\widetilde{E}_k^{-1}(t,c) \oplus \widetilde{E}_k^{-1}(t \oplus C,c) = h \otimes C$

- Simple blending of tweak and state does not work
 - $\widetilde{E}_k(t,m) = \widetilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- ullet Still does not work if adversary has access to \widetilde{E}_k^{-1}
 - $\widetilde{E}_k^{-1}(t,c) \oplus \widetilde{E}_k^{-1}(t \oplus C,c) = h \otimes C$
 - Two-sided masking necessary

- Two-sided secret masking seems to work
- Can we generalize?

- Two-sided secret masking seems to work
- Can we generalize?
- ullet Generalizing masking? Depends on function f

- Two-sided secret masking seems to work
- Can we generalize?
- ullet Generalizing masking? Depends on function f
- ullet Variation in masking? Depends on functions f_1,f_2

- Two-sided secret masking seems to work
- Can we generalize?
- ullet Generalizing masking? Depends on function f
- ullet Variation in masking? Depends on functions f_1,f_2
- ullet Releasing secrecy in E? Usually no problem

- Releasing secrecy in E? Usually no problem

- ullet \widetilde{E}_k should "look like" random permutation for every t
- ullet Consider adversary ${\mathcal D}$ that makes q evaluations of $\widetilde E_k$

- ullet \widetilde{E}_k should "look like" random permutation for every t
- ullet Consider adversary ${\mathcal D}$ that makes q evaluations of $\widetilde E_k$
- Step 1: How many evaluations does D need at most?
 - Boils down to finding generic attacks

- ullet \widetilde{E}_k should "look like" random permutation for every t
- ullet Consider adversary ${\mathcal D}$ that makes q evaluations of $\widetilde E_k$
- Step 1: How many evaluations does D need at most?
 - Boils down to finding generic attacks
- Step 2: How many evaluations does D need at least?
 - Boils down to provable security

• For any two queries (t, m, c), (t', m', c'):

$$m \oplus f_1(t) = m' \oplus f_1(t') \Longrightarrow c \oplus f_2(t) = c' \oplus f_2(t')$$

• For any two queries (t, m, c), (t', m', c'):

$$m \oplus f_1(t) = m' \oplus f_1(t') \Longrightarrow c \oplus f_2(t) = c' \oplus f_2(t')$$

Unlikely to happen for random family of permutations

• For any two queries (t, m, c), (t', m', c'):

$$m \oplus f_1(t) = m' \oplus f_1(t') \Longrightarrow c \oplus f_2(t) = c' \oplus f_2(t')$$

- Unlikely to happen for random family of permutations
- ullet Implication still holds with difference C xored to m,m'

• For any two queries (t, m, c), (t', m', c'):

$$m \oplus f_1(t) = m' \oplus f_1(t') \Longrightarrow c \oplus f_2(t) = c' \oplus f_2(t')$$

- Unlikely to happen for random family of permutations
- ullet Implication still holds with difference C xored to m,m'

Scheme can be broken in $\approx 2^{n/2}$ evaluations

- The fun starts here!
- More technical and often more involved

- The fun starts here!
- More technical and often more involved
- Typical approach:
 - ullet Consider any transcript au an adversary may see
 - Most au's should be equally likely in both worlds
 - Odd ones should happen with very small probability

- The fun starts here!
- More technical and often more involved
- Typical approach:
 - ullet Consider any transcript au an adversary may see
 - Most au's should be equally likely in both worlds
 - Odd ones should happen with very small probability

All constructions of this kind: secure up to $\approx 2^{n/2}$ evaluations

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Tweakable Blockciphers Based on Masking

Blockcipher-Based

Permutation-Based

Tweakable Blockciphers Based on Masking

Blockcipher-Based

Permutation-Based

much larger: 256-1600 bits

Original Constructions

• LRW₁ and LRW₂ by Liskov et al. [LRW02]:

- h is XOR-universal hash
 - $\bullet \ \ \mathsf{E.g.}, \ h(t) = h \otimes t \ \mathsf{for} \ n\mathsf{-bit} \ \mathsf{``key''} \ h$

Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:

ullet $(lpha,eta,\gamma,N)$ is tweak (simplified)

Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- ullet Used in OCB2 and ± 14 CAESAR candidates

Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:

• Permutation-based variants in Minalpher and Prøst

(generalized by Cogliati et al. [CLS15])

- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

Gray Code Masking

• OCB1 and OCB3 use Gray Codes:

- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha 1) \oplus 2^{\mathsf{ntz}(\alpha)}$

Gray Code Masking

OCB1 and OCB3 use Gray Codes:

- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha 1) \oplus 2^{\mathsf{ntz}(\alpha)}$
 - Single XOR
 - Logarithmic amount of field doublings (precomputed)
- More efficient than powering-up [KR11]

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

• φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs
- Simpler, constant-time (by default), more efficient

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	arphi
128	8	16	$(x_1,\ldots,x_{15},(x_0 \ll 1) \oplus (x_9 \gg 1) \oplus (x_{10} \ll 1))$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 11) \oplus x_1 \oplus (x_1 \ll 13))$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0\ll 5)\oplus (x_3\gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
:	:	! !	

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	arphi
128	8	16	$(x_1,\ldots,x_{15},(x_0\ll 1)\oplus(x_9\gg 1)\oplus(x_{10}\ll 1))$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 11) \oplus x_1 \oplus (x_1 \ll 13))$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0 <\!\!< 5) \oplus (x_3 \gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
	:	:	

Work exceptionally well for ARX primitives

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any
$$(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Application to AE: OPP

- Offset Public Permutation (OPP)
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM masking
- Security against nonce-respecting adversaries
- 0.55 cpb with reduced-round BLAKE2b

Application to AE: MRO

- Misuse-Resistant OPP (MRO)
- Fully nonce-misuse resistant version of OPP
- 1.06 cpb with reduced-round BLAKE2b

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Beyond Birthday Bound Tweakable Blockciphers

- "Birthday bound" $2^{n/2}$ security at best
- Overlying modes inherit security bound

Beyond Birthday Bound Tweakable Blockciphers

- "Birthday bound" $2^{n/2}$ security at best
- Overlying modes inherit security bound
- ullet If n is large enough \longrightarrow no problem
- ullet If n is small \longrightarrow "beyond birthday bound" solutions
 - Tweak-rekeying [Min09,Men15,WGZ+16,JLM+17,Cog18,LL18]
 - Cascading (now)

Cascading LRW2's

- LRW₂[ho]: concatenation of ho LRW₂'s
- ullet $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent

Cascading LRW2's

- LRW₂[ρ]: concatenation of ρ LRW₂'s
- ullet $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent

"Cascaded LRW₂" = LRW₂[2]

- ho=2: secure up to $2^{2n/3}$ queries [LST12,Pro14]
- $ho \geq 2$ even: secure up to $2^{
 ho n/(
 ho + 2)}$ queries [LS13]
- Best attack: 2^n queries

Cascading TEM's

- $\mathsf{TEM}[\rho]$: concatenation of ρ TEM 's
- ullet $P_1,\ldots,P_
 ho$ and $h_1,\ldots,h_
 ho$ independent

Cascading TEM's

- TEM[ρ]: concatenation of ρ TEM's
- ullet $P_1,\ldots,P_{
 ho}$ and $h_1,\ldots,h_{
 ho}$ independent
- $\rho=2$: secure up to $2^{2n/3}$ queries [CLS15]
- $\rho \geq 2$ even: secure up to $2^{\rho n/(\rho+2)}$ queries [CLS15]
- Best attack: $2^{\rho n/(\rho+1)}$ queries [BKL+12]

State of the Art

State of the Art

n

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Improved Attack

• GCL (Generalized Cascaded LRW₂):

- f_i are arbitrary functions
- $p_i := E_{k_i}$ are random permutations

Improved Attack

• GCL (Generalized Cascaded LRW₂):

- f_i are arbitrary functions
- $p_i := E_{k_i}$ are random permutations

Generic distinguishing attack in $2n^{1/2}2^{3n/4}$ evaluations

• Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'

- Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that

$$m_1 \oplus f_1(t) = m'_2 \oplus f_1(t')$$

 $c'_2 \oplus f_3(t') = c_3 \oplus f_3(t)$
 $m_3 \oplus f_1(t) = m'_4 \oplus f_1(t')$

- Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that

$$m_1 \oplus f_1(t) = m'_2 \oplus f_1(t')$$

 $c'_2 \oplus f_3(t') = c_3 \oplus f_3(t)$
 $m_3 \oplus f_1(t) = m'_4 \oplus f_1(t')$

• Necessarily,

$$c_1 \oplus f_3(t) = c_4' \oplus f_3(t')$$

- Distinguisher \mathcal{D} makes various queries for two different tweaks: t and t'
- Suppose it makes 4 queries such that $m_1\oplus f_1(t)=m_2'\oplus f_1(t')$ $c_2'\oplus f_3(t')=c_3\oplus f_3(t)$ $m_3\oplus f_1(t)=m_4'\oplus f_1(t')$
- Necessarily,

$$c_1 \oplus f_3(t) = c_4' \oplus f_3(t')$$

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

• Stated differently:

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

• But \mathcal{D} does not know $f_1(t) \oplus f_1(t')$

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

- But \mathcal{D} does not know $f_1(t) \oplus f_1(t')$
- Choose the m_i 's and m_i' 's such that for any d, there are 2^n quadruples such that $m_1 \oplus m_2' = m_3 \oplus m_4' = d$ (costs $2^{3n/4}$ queries for both t and t')

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

- But \mathcal{D} does not know $f_1(t) \oplus f_1(t')$
- Choose the m_i 's and m_i' 's such that for any d, there are 2^n quadruples such that $m_1 \oplus m_2' = m_3 \oplus m_4' = d$ (costs $2^{3n/4}$ queries for both t and t')
- $\mathbb{E}[\text{solutions to } c_2' \oplus c_3 = c_1 \oplus c_4']$? 2 if $d = f_1(t) \oplus f_1(t')$, 1 otherwise

$$m_1 \oplus m'_2 = m_3 \oplus m'_4 = f_1(t) \oplus f_1(t')$$

 $c'_2 \oplus c_3 = c_1 \oplus c'_4 = f_3(t) \oplus f_3(t')$

- ullet But ${\mathcal D}$ does not know $f_1(t) \oplus f_1(t')$
- Choose the m_i 's and m_i' 's such that for any d, there are 2^n quadruples such that $m_1 \oplus m_2' = m_3 \oplus m_4' = d$ (costs $2^{3n/4}$ queries for both t and t')
- $\mathbb{E}[\text{solutions to } c_2' \oplus c_3 = c_1 \oplus c_4']$? 2 if $d = f_1(t) \oplus f_1(t')$, 1 otherwise
- Extend the number of queries by factor $n^{1/2}$ to eliminate false positives

Improved Attack: Verification

Theoretical Verification

- Assuming $n \geq 27$, the success probability of $\mathcal D$ is at least 1/2
- ullet Analysis consists of properly bounding $\mathbf{Pr}\left[\mathcal{D}^{\widetilde{E}_k}=1
 ight]$ and $\mathbf{Pr}\left[\mathcal{D}^{\widetilde{\pi}}=1
 ight]$

Improved Attack: Verification

Theoretical Verification

- ullet Assuming $n\geq 27$, the success probability of ${\cal D}$ is at least 1/2
- ullet Analysis consists of properly bounding $\mathbf{Pr}\left[\mathcal{D}^{\widetilde{E}_k}=1
 ight]$ and $\mathbf{Pr}\left[\mathcal{D}^{\widetilde{\pi}}=1
 ight]$

Experimental Verification

- ullet Small-scale implementation for n=16,20,24
- ullet N_d is the number of hits $c_2'\oplus c_3=c_1\oplus c_4'$

			N_d in real world for $d=$		N_d in ideal world for $d=$	
n	$n^{1/2}\approx$	q	$f_1(t) \oplus f_1(t')$	random	$f_1(t) \oplus f_1(t')$	random
16	2	$4\cdot 2^{12}$	256.593750	129.781250	127.093750	127.375000
20	2	$4\cdot 2^{15}$	265.531250	133.312500	125.625000	128.750000
24	2	$4\cdot 2^{18}$	246.750000	131.375000	120.625000	129.875000

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Improved Security Bound

Cascaded LRW₂:

- E_{k_i} are SPRP-secure
- ullet h_i are 4-wise independent XOR-universal hash
- ullet No tweak is queried more than $2^{n/4}$ times

Improved Security Bound

Cascaded LRW₂:

- E_{k} are SPRP-secure
- h_i are 4-wise independent XOR-universal hash
- No tweak is queried more than $2^{n/4}$ times

Cascaded LRW₂ is secure up to $\approx 2^{3n/4}$ evaluations

Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

ullet Replace E_{k_i} by random permutations p_i

Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

ullet Replace E_{k_i} by random permutations p_i

Step 2: Patarin's H-Coefficient Technique

- Main task: given q evaluations of cascaded LRW₂, derive lower bound on $\#\{(p_1, p_2)\}$
- Lower bound should hold for the "most likely" transcripts

Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

- 2 unknowns: $X:=p_1(m\oplus h_1(t))$ and $Y:=p_2^{-1}(c\oplus h_2(t))$
- 1 equation: $X \oplus Y = h_1(t) \oplus h_2(t)$

Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

- 2 unknowns: $X:=p_1(m\oplus h_1(t))$ and $Y:=p_2^{-1}(c\oplus h_2(t))$
- 1 equation: $X \oplus Y = h_1(t) \oplus h_2(t)$
- Lower bound on $\#\{(p_1,p_2)\}$ related to the number of choices (X,Y)

Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

ullet r_1 unknowns for p_1 , r_2 unknowns for p_2 , and q equations

Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

- r_1 unknowns for p_1 , r_2 unknowns for p_2 , and q equations
- Two potential problems:
 - (i) Graph contains circle
 - (ii) Graph contains path of even length whose labels sum to 0 (degeneracy)

Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

- r_1 unknowns for p_1 , r_2 unknowns for p_2 , and q equations
- Two potential problems:
 - (i) Graph contains circle
 - (ii) Graph contains path of even length whose labels sum to 0 (degeneracy)
- If neither of these occurs: one "free choice" for each tree

Improved Security Bound: Proof Idea (4)

Step 5: Patarin's Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible (p_1,p_2) is at least

$$\frac{2^n!2^n!}{2^{nq}} \cdot \left(1 - \frac{4q}{2^n}\right)$$

Improved Security Bound: Proof Idea (4)

Step 5: Patarin's Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible (p_1,p_2) is at least

$$\frac{2^n!2^n!}{2^{nq}} \cdot \left(1 - \frac{4q}{2^n}\right)$$

- Lower bound on $\#\{(p_1,p_2)\}$ sufficient to derive $2^{3n/4}$ security (some technicality involved)
- Violation of (i), (ii), or (iii) with probability at most $O(q^4/2^{3n})$

Improved Security Bound: Proof Idea (4)

Step 5: Patarin's Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively large tree, the number of possible (p_1,p_2) is at least

$$\frac{2^n!2^n!}{2^{nq}} \cdot \left(1 - \frac{4q}{2^n}\right)$$

- Lower bound on $\#\{(p_1, p_2)\}$ sufficient to derive $2^{3n/4}$ security (some technicality involved)
- Violation of (i), (ii), or (iii) with probability at most $O(q^4/2^{3n})$
- We apply mirror theory up to the first iteration

Improved Security Bound: Bottlenecks

Excessively Large Tree

- Badness probability relies on
 - tweak limitation
 - 4-wise independence of hash functions

Mirror Theory

- · Mirror theory developed for comparison with PRF, not with PRP
- Problem mitigated due to tweak limitation

Outline

Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers

- State of the Art
- Tight Security of Cascaded LRW₂?
- Improved Attack
- Improved Security Bound

Conclusion

Conclusion

Tweakable Blockciphers: Simple and Powerful

- Myriad applications to AE, MAC, encryption, ...
- Trade-off between security and efficiency
- Beyond birthday bound security achieved using
 - Extra randomness
 - Extra state size

Conclusion

Tweakable Blockciphers: Simple and Powerful

- Myriad applications to AE, MAC, encryption, . . .
- Trade-off between security and efficiency
- Beyond birthday bound security achieved using
 - Extra randomness
 - Extra state size

Challenges

- Tightness of cascaded LRW₂ without side conditions?
- Longer cascades of LRW₂[ρ] and TEM[ρ]?
- Many further open problems in BBB security

Thank you for your attention!

SUPPORTING SLIDES

Updated State of the Art on LRW₂[ρ]

Updated State of the Art on $LRW_2[\rho]$

Updated State of the Art on $LRW_2[\rho]$

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - ullet Each conversation defines a transcript au

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Basic idea:
 - ullet Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts
 - Remaining transcripts occur with small probability

- ullet ${\cal D}$ is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au

- ullet ${\cal D}$ is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

- D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$rac{\mathbf{Pr}\left[\mathcal{O} \; \mathsf{gives} \; au
ight]}{\mathbf{Pr}\left[\mathcal{P} \; \mathsf{gives} \; au
ight]} \geq 1 - arepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for \mathcal{P}

- D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$rac{\mathbf{Pr}\left[\mathcal{O} \; \mathsf{gives} \; au
ight]}{\mathbf{Pr}\left[\mathcal{P} \; \mathsf{gives} \; au
ight]} \geq 1 - arepsilon$$

Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for \mathcal{P}

Trade-off: define bad transcripts smartly!

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- \bullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o\{1,\ldots,r\}$

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o\{1,\ldots,r\}$

Goal

• Lower bound on the number of solutions to \mathcal{P} such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$

Patarin's Result

• Extremely powerful lower bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin Patarin	CRYPTO 2003 CRYPTO 2004	Feistel Feistel	Suboptimal
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoΡ	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoΡ	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoΡ	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Patarin Patarin Patarin Cogliati, Lampe, Patarin	ePrint 2010/287 ePrint 2010/293 ePrint 2013/368 FSE 2014	XoP Feistel XoP XoP ^d	Concrete bo

Mirror Theory

Patarin's Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	Suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	Optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	AFRICACRYPT 2008	Benes	
Patarin	ePrint 2010/287	ΧoP	Concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Iwata, Mennink, Vizár	ePrint 2016/1087	CENC	

Mirror Theory

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi: \{a_1, b_1, \dots, a_q, b_q\} \rightarrow \{1, \dots, r\}$

Graph Based View

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$
 and $\lambda_1 \neq \lambda_2$

• 2^n choices for P_a

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$
 and $\lambda_1 \neq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If $\lambda_1, \lambda_2 \neq 0$ and $\lambda_1 \neq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)
- Fixes $P_c = \lambda_2 \oplus P_b$ (which is $eq P_a, P_b$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = rac{\lambda_1}{P_c} = rac{\lambda_2}{P_c}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_c \\ \hline P_c & \lambda_2 & P_c \end{array}$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

• 2^n choices for P_a (which fixes P_b)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_c \end{array}$$
 $P_c = \begin{array}{ccc} \lambda_2 & P_c \end{array}$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If $\lambda_1,\lambda_2
eq 0$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_c & \\ P_c & \lambda_2 & P_c \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$
- At least $2^n 4$ choices for P_c (which fixes P_d)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

ullet Assume $\lambda_i
eq 0$ and $\lambda_i
eq \lambda_j$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

ullet Assume $\lambda_i
eq 0$ and $\lambda_i
eq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

ullet Assume $\lambda_i
eq 0$ and $\lambda_i
eq \lambda_j$

If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

If
$$\lambda_1 \oplus \lambda_2 \oplus \lambda_3 = 0$$

- One redundant equation, no contradiction
- Still counted as circle

Mirror Theory: Two Problematic Cases

Circle

Degeneracy

Mirror Theory: Main Result

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet System of equations $P_{a_i}\oplus P_{b_i}=\lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o\{1,\ldots,r\}$

Main Result

If the system of equations is circle-free and non-degenerate, the number of solutions to \mathcal{P} such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$ is at least

$$\frac{(2^n)_r}{2^{nq}}$$

provided the maximum tree size ξ satisfies $(\xi-1)^2 \cdot r \leq 2^n/67$

General Setting

• Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$

General Setting

- Adversary gets transcript $\tau = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$

General Setting

- Adversary gets transcript $\tau = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0||x_i) =: P_{a_i}$ and $x_i \mapsto p(1||x_i) =: P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=y_i$

General Setting

- Adversary gets transcript $\tau = \{(x_1, y_1), \dots, (x_q, y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=y_i$
- Inputs to p are all distinct: 2q unknowns

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i
 - → Call this a bad transcript
- Maximum tree size 2

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- ullet Non-degenerate: provided that $y_i
 eq 0$ for all i
 - → Call this a bad transcript
- Maximum tree size 2
- If $2q \leq 2^n/67$: at least $\frac{(2^n)_{2q}}{2^{nq}}$ solutions to unknowns

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f\right]$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad}\right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad}\right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - ullet $\Pr\left[\mathsf{XoP}\ \mathsf{gives}\ au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - ullet $\Pr\left[\mathsf{XoP}\ \mathsf{gives}\ au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$
 - $\mathbf{Pr}\left[f \text{ gives } \tau\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad}\right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - $\Pr[\mathsf{XoP} \ \mathsf{gives} \ \tau] \ge \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$ • $\Pr[f \ \mathsf{gives} \ \tau] = \frac{1}{2nq}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - $\Pr[\mathsf{XoP} \ \mathsf{gives} \ \tau] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$ • $\Pr[f \ \mathsf{gives} \ \tau] = \frac{1}{2^{nq}}$

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \le q/2^n$$

New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory Mennink, Neves, CRYPTO 2017

- Refurbish and modernize mirror theory
- Prove optimal PRF security of:

