GEL-2005Systèmes et commande linéaires

Examen #2

Lundi 14 décembre 2015, 8h30-10h20

Document permis: une feuille manuscrite recto-verso

Professeur: André Desbiens, Département de génie électrique et de génie informatique

Remarques:

- Accompagnez vos réponses d'unités lorsque c'est pertinent.
- Sauf pour la question 5 et la question bonus, les détails de vos calculs sont requis.

Nomenclature:

$$G(s) = G_c(s)G_p(s)$$

$$H(s) = \frac{G(s)}{1 + G(s)}$$

$$|G(j\omega_0)| = 1$$

Figure 1

Question 1 (20%)

La figure 2 montre la réponse en fréquences de G(s). Si on ajoutait à $G_c(s)$ un filtre dont la fonction de transfert est $\frac{1}{1+\tau s}$ (pour former un nouveau régulateur $G_c(s)\cdot\frac{1}{1+\tau s}$), quelle valeur de τ rendrait H(s) à la limite de la stabilité?

Supposez que G(s) est connu puisqu'on a pu tracer sa réponse en fréquences. Donnez les équations qui permettraient de calculer τ mais il n'est pas nécessaire de les résoudre. Par exemple :

$$\arctan(6\tau) + \angle G(j2) + |G(j6)| = \frac{\pi}{3}$$

Figure 2

Question 2 (20%)

Le système étudié est illustré à la figure 1 avec $r = d_y = d_m = 0$. Outre le fait que H(s) doit être stable, quelle caractéristique de $G_c(s)$ ou de G(s) est requise pour obtenir une erreur statique nulle suite à une perturbation d'entrée (d_u) en échelon? **Démontrez**. Comme c'est pratiquement toujours le cas, supposez que $\lim_{\omega \to 0} |G_p(j\omega)|$ ne tend pas vers zéro.

Question 3 (20%)

Le système étudié est illustré à la figure 1 avec $r = d_u = d_m = 0$, $G_c(s) = 2$ et $G_p(s) = \frac{0.5}{s}$. Si la perturbation est $d_y(t) = 2\cos\left[3(t-2) + 0.4\right]u_e(t-2)$ où $u_e(t)$ est l'échelon unitaire, quelle est l'amplitude de u en régime permanent?

Question 4 (13% + 7% = 20%)

Le système de commande cascade est illustré à la figure 3 où $G_{po}(s) = \frac{5}{1+20s}$ et $G_{pi}(s) = \frac{10e^{-2s}}{s}$.

- a) Concevez le régulateur interne $G_{ci}(s)$ qui respecte les spécifications suivantes :
 - régulateur proportionnel,
 - marge de gain de 7 dB.

Quelle est la fonction de transfert du régulateur?

- b) Dans le cas précis des données précédentes, c'est-à-dire :
 - $G_{po}(s)$ est un système du premier ordre stable,
 - $G_{pi}(s)$ est un système intégrateur avec un retard,
 - $G_{ci}(s)$ est un régulateur proportionnel qui conduit à une boucle stable,

est-il vraiment nécessaire que le régulateur externe $G_{co}(s)$ ait un intégrateur pour obtenir une erreur statique nulle suite à un échelon de consigne r? Justifiez très clairement.

Figure 3

Question 5 $(4 \times 5\% = 20\%)$

Les questions de ce numéro sont indépendantes. Écrivez vos réponses dans votre cahier ET à la page 6. Seules les réponses finales seront corrigées. La correction est binaire : 0% ou 5%. Une réponse sera jugée bonne si elle est à $\pm 5\%$ de la bonne valeur.

- a) Le système étudié est illustré à la figure 1 avec F(s) = 1 et la réponse en fréquences de G(s) est tracée à la figure 4. Si $r(t) = 3\cos(2t + 0.4)u_e(t)$, quelle est l'amplitude de y en régime permanent?
- b) Quel est le facteur de surtension (facteur de résonnance) de H(s)?
- c) Le système étudié est illustré à la figure 1 avec F(s) = 1 et la réponse en fréquences de G(s) est tracée à la figure 4. Par quel facteur doit-on multiplier G(s) pour que H(s) devienne à la limite de la stabilité?
- d) Le système étudié est stable et est celui illustré à la figure 3 avec $G_{pi}(s) = \frac{10e^{-2s}}{s}$, $G_{po}(s) = \frac{5}{1+20s}$, $G_{ci}(s)$ et $G_{co}(s)$ sont des régulateurs PI. Si $r = d_y = 0$ et que d_{yi} est un échelon unitaire, que vaut $u(\infty)$?

Bonus (+5%)

Le système étudié est illustré à la figure 1 avec F(s) = 1 et la réponse en fréquences de G(s) est tracée à la figure 4. Si r(t) est un échelon unitaire, quelle est l'erreur en régime permanent?

Bon succès!

Figure 4

N'OUBLIEZ PAS D'ÉCRIRE VOS RÉPONSES DANS VOTRE CAHIER \underline{ET} D'INSÉRER CETTE FEUILLE REMPLIE DANS VOTRE CAHIER

Nom:_					
Matricul	Matricule :				
Question	n 5				
	Réponse				
a)					
b)					
c)					
1)					
d)					
Bonus					
	Réponse				

Transformation de Laplace

F(s) sans pôles

$f(t)$ pour $t \ge 0^-$	F(s)	Pôles de $F(s)$
$\delta(t)$	1	Aucun

F(s) avec des pôles simples (réels ou conjugués)

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
1 ou $u_e(t)$	$\frac{1}{s}$	0
e^{-at}	$\frac{1}{s+a}$	-a
$\sin(\omega t + \phi)$	$\frac{[\sin\phi]s + \omega\cos\phi}{s^2 + \omega^2}$	$\pm j\omega$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$\pm j\omega$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\pm j\omega$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$-a \pm j\omega$

F(s) avec des pôles multiples

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
t	$\frac{1}{s^2}$	0 (double)
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, 3, \dots$ te^{-at}	$\frac{1}{s^n}$	0 (ordre n)
te^{-at}	$\frac{1}{(s+a)^2}$	-a (double)
$\frac{t^{n-1}}{(n-1)!}e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$	-a (ordre n)
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t^2}{2\omega}\sin(\omega t)$	$\frac{3s^2 - \omega^2}{(s^2 + \omega^2)^3}$	$\pm j\omega$ (triple)

Table 1: Transformées de Laplace

$$\mathcal{L}f'(t) \text{ (pour } t > 0) = s\mathcal{L}f(t) - f(0^+)$$
(1)

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}f(t) \tag{2}$$

$$f(0^{+}) = \lim_{s \to \infty} s \mathcal{L}f(t) \tag{3}$$

$$f(\infty) = \lim_{s \to 0} s \mathcal{L} f(t) \tag{4}$$

$$\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t)$$
(5)

$$\mathcal{L}\left[\int_0^t f_1(\tau)f_2(t-\tau)d\tau\right] = F_1(s)F_2(s) \tag{6}$$

Systèmes du second ordre

$$G(s) = \frac{K}{\frac{1}{\omega_n^2} s^2 + \frac{2z}{\omega_n} s + 1} \tag{7}$$

$$\omega_p = \omega_n \sqrt{1 - z^2} \tag{8}$$

$$\omega_R = \omega_n \sqrt{1 - 2z^2} \tag{9}$$

$$Q = \frac{|G(j\omega_R)|}{|G(j0)|} = \frac{1}{2z\sqrt{1-z^2}}$$
 (10)

Figure 1: Les dépassements de la réponse à l'échelon versus le coefficient d'amortissement

Figure 2: Le temps de réponse à $\pm 5\%$.

Figure 3: Le facteur de résonance versus le coefficient d'amortissement

Identification des systèmes

Туре	Modèle Fonction de transfert	Réponse à l'échelon	Paramètres
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	↓ U ↓ U ↓ U ↓ U ↓ U ↓ U ↓ U ↓ U ↓ U ↓ U	$K_p = \frac{y}{u}$ $T_1 = t_{63\%}$
II	$\frac{K_{p}e^{-s}}{1+T_{1}s}, T_{1} > 0$	<i>t</i> _{63%} <i>y</i>	$K_p = \frac{y}{u}$ $T_1 = t_{63\%}$
III	$\frac{K_p}{s}$	t t	$K_p = \frac{y}{t \ u}$
IV	$\frac{K_p e^{-s}}{s}$	t u	$K_p = \frac{y}{t \ u}$
V	$\frac{K_p}{(1+T_1s)^2}$, $T_1 > 0$	<i>t</i> _{73%} <i>y</i>	$K_p = \frac{y}{u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VI	$\frac{K_{p}e^{-s}}{(1+T_{1}s)^{2}}, T_{1} > 0$	<i>t</i> _{73%}	$K_p = \frac{y}{u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VII	$\frac{K_p(1-T_{0i}s)}{(1+T_1s)^2}, T_1 > 0, T_{0i} > 0$	y_{min}	$K_p = \frac{y}{u}$ Table 2
VIII	$\frac{K_{p}(1-T_{0i}s)e^{-s}}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0i} > 0$	y y y y y y y y y y y y y y y y y y y	$K_p = \frac{y}{u}$ Table 2

Modèle		Dánanga à l'ághalan	Paramètres
Type	Fonction de transfert	Réponse à l'échelon	Parametres
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	$K_p = -\frac{y}{u}$ Table 2
X	$\frac{K_p(1+T_{0s}s)e^{-s}}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$y_{max} \downarrow u \downarrow y$ t_{max}	$K_p = \frac{y}{u}$ Table 2
XI	$\frac{K_p}{\frac{1}{\omega_n^2}s^2 + \frac{2z}{\omega_n}s + 1}, 0 < z < 1, \omega_n > 0$	↓ v	$K_p = \frac{y}{u}$ z: dépassements (fig. 1) ω_n : ω_p ou $T_{5\%}$ (fig. 2)
XII	$\frac{K_{p}e^{-s}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	1 u y	$K_p = \frac{y}{u}$ z: dépassements (fig. 1) ω_n : ω_p ou $T_{5\%}$ (fig. 2)
XIII	$\frac{K_p}{(1+T_1s)s}, T_1 > 0$	$ \begin{array}{c} \downarrow \\ \downarrow \\$	$K_p = \frac{y}{t \ u}$
XIV	$\frac{K_{p}e^{-s}}{(1+T_{1}s)s}, T_{1} > 0$	$ \begin{array}{c} \downarrow \\ \downarrow \\$	$K_p = \frac{y}{t \ u}$

T	ypes VII et VII	II		Types IX et X	
- y _{min} / y	t_{min}/T_1	T_{0i} / T_1	y_{max}/y	t_{max}/T_1	T_{0s} / T_I
0.01	0.14	0.16	1.02	3.13	1.47
0.02	0.19	0.23	1.04	2.69	1.59
0.03	0.22	0.29	1.06	2.45	1.69
0.04	0.25	0.34	1.08	2.28	1.78
0.05	0.28	0.39	1.10	2.16	1.86
0.06	0.31	0.44	1.15	1.95	2.05
0.07	0.32	0.48	1.20	1.81	2.23
0.08	0.34	0.52	1.25	1.72	2.39
0.09	0.36	0.56	1.30	1.65	2.55
0.10	0.38	0.60	1.35	1.58	2.71
0.20	0.49	0.96	1.40	1.54	2.86
0.30	0.56	1.28	1.45	1.50	3.01
0.40	0.61	1.58	1.50	1.46	3.16
0.50	0.65	1.88	1.55	1.43	3.31
0.60	0.68	2.17	1.60	1.41	3.45
0.70	0.71	2.46	1.65	1.38	3.60
0.80	0.73	2.75	1.70	1.36	3.74
0.90	0.75	3.03	1.75	1.35	3.88
1.00	0.77	3.32	1.80	1.33	4.03
1.10	0.78	3.60	1.85	1.32	4.17
1.20	0.79	3.87	1.90	1.30	4.31
1.30	0.81	4.15	1.95	1.29	4.45
1.40	0.82	4.43	2.00	1.28	4.60
1.50	0.82	4.70	2.10	1.26	4.87
1.60	0.83	4.98	2.20	1.24	5.16
1.70	0.84	5.26	2.30	1.23	5.43
1.80	0.85	5.53	2.40	1.21	5.71
1.90	0.85	5.81	2.50	1.20	5.98
2.00	0.86	6.09	2.60	1.19	6.26
2.20	0.87	6.63	2.70	1.18	6.54
2.40	0.88	7.18	2.80	1.17	6.81
2.60	0.89	7.72	2.90	1.16	7.09
2.80	0.89	8.27	3.00	1.16	7.36
3.00	0.90	8.82	3.50	1.13	8.73
3.20	0.90	9.37	4.00	1.11	10.10
3.40	0.91	9.91	4.50	1.10	11.47
3.60	0.91	10.46	5.00	1.08	12.84
3.80	0.92	11.28	6.00	1.07	15.56
4.00	0.92	11.56	7.00	1.06	18.28
4.50	0.93	12.91	8.00	1.05	21.00
5.00	0.93	14.28	9.00	1.04	23.72

Table 2 : Paramètres des modèles VII à X

Réglage des régulateurs avec action intégrale

Modèle			Réglage			
Type	Fonction de transfert	K_c	$ T_i $	T_d	T_f	T_c
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	$\frac{T_1}{K_p T_H}$	T_1	-	-	-
II	$\frac{K_p e^{-\theta s}}{1+T_1 s}, T_1 > 0$	$\frac{T_1}{K_p(T_1+\theta)}$	T_1	-	-	-
	$1+T_1s$	équ. 13	équ. 11	-	-	-
III	$rac{K_p}{s}$	$\frac{\frac{4.2}{K_p T_r}}{T_1}$	$0.47T_{r}$	-	-	T_i
$V(\theta=0)$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)^2}, T_1 > 0$	$\frac{T_1}{K_p(T_1+ heta)}$	$1.5T_1$	-	-	-
VI $(\theta > 0)$	$(1+T_1s)^2$, $T_1 > 0$	équ. 13	équ. 11	-	-	-
VII $(\theta = 0)$	$\frac{K_p(1-T_{0i}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{oi} > 0$	$\frac{T_1}{K_p(T_1+T_{0i}+\theta)}$	$1.5T_{1}$	-	-	-
VIII $(\theta > 0)$	$(1+T_1s)^2$, $T_1 > 0$, $T_{0i} > 0$	équ. 13	équ. 11	-	-	-
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}$, $T_1 > 0$, $T_{0s} > 0$	$\frac{T_1}{K_p T_H}$ T_1	T_1	T_1	T_{0s}	
X	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}$, $T_1 > 0$, $T_{0s} > 0$	$\frac{T_1}{K_p(T_1+T_{0s}+\theta)}$	$1.5T_1$	-	T_{0s}	
	$(1+T_1s)^2$, $T_1 > 0$, $T_0s > 0$	équ. 13	équ. 11	-	T_{0s}	-
$\begin{array}{ c c } XIII & (\theta = 0) \\ XIV & (\theta > 0) \end{array}$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	équ. 18	équ. 16	-	-	T_i

Le régulateur est $G_c(s) = \frac{K_c(1+T_is)(1+T_ds)}{T_is(1+T_fs)}$. Le filtre sur la consigne est $F(s) = \frac{1}{1+T_cs}$. T_H est la constante de temps désirée de $H(s) = \frac{1}{1+T_Hs}$.

 T_r est le temps de réponse désiré de $\frac{Y(s)}{R(s)}$.

Table 2: Réglages des régulateurs à action intégrale

Méthode des contours - procédés stables asymptotiquement:

$$T_{i} = \begin{cases} \left(1 + 0.175 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} \leq 2\\ \left(0.65 + 0.35 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} > 2 \end{cases}$$

$$(11)$$

$$1.015 = \frac{-\pi}{2} + \arctan \omega_0 T_i - \arctan \omega_0 T_0 - \arctan \omega_0 T_1 - \arctan \omega_0 T_2 - \omega_0 \theta + \pi$$
 (12)

$$K_c = \frac{T_i}{K} \sqrt{\frac{(T_1 T_2)^2 \omega_0^6 + (T_1^2 + T_2^2) \omega_0^4 + \omega_o^2}{(T_i T_0)^2 \omega_0^4 + (T_i^2 + T_0^2) \omega_0^2 + 1}}$$
(13)

Méthode des contours - procédés avec une intégration:

$$A_{max} = \frac{10^{0.05M_r}}{\sqrt{10^{0.1M_r} - 1}} \tag{14}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1} \tag{15}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1}$$

$$T_i = \frac{16(T+\theta)}{(2\phi_{max} + \pi)^2}$$
(15)

$$\omega_{max} = \frac{1}{\sqrt{T_i(T+\theta)}}\tag{17}$$

$$K_{c} = \frac{T_{i}A_{max}}{K} \sqrt{\frac{T^{2}\omega_{max}^{6} + \omega_{max}^{4}}{T_{i}^{2}\omega_{max}^{2} + 1}}$$
(18)

Transformation de Laplace

F(s) sans pôles

$f(t)$ pour $t \ge 0^-$	F(s)	Pôles de $F(s)$
$\delta(t)$	1	Aucun

F(s) avec des pôles simples (réels ou conjugués)

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
1 ou $u_e(t)$	$\frac{1}{s}$	0
e^{-at}	$\frac{1}{s+a}$	-a
$\sin(\omega t + \phi)$	$\frac{[\sin\phi]s + \omega\cos\phi}{s^2 + \omega^2}$	$\pm j\omega$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$\pm j\omega$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\pm j\omega$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$-a \pm j\omega$

F(s) avec des pôles multiples

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
t	$\frac{1}{s^2}$	0 (double)
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, 3, \dots$ te^{-at}	$\frac{1}{s^n}$	0 (ordre n)
te^{-at}	$\frac{1}{(s+a)^2}$	-a (double)
$\frac{t^{n-1}}{(n-1)!}e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$	-a (ordre n)
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t^2}{2\omega}\sin(\omega t)$	$\frac{3s^2 - \omega^2}{(s^2 + \omega^2)^3}$	$\pm j\omega$ (triple)

Table 1: Transformées de Laplace

$$\mathcal{L}f'(t) \text{ (pour } t > 0) = s\mathcal{L}f(t) - f(0^+)$$
(1)

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}f(t) \tag{2}$$

$$f(0^{+}) = \lim_{s \to \infty} s \mathcal{L}f(t) \tag{3}$$

$$f(\infty) = \lim_{s \to 0} s \mathcal{L} f(t) \tag{4}$$

$$\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t)$$
(5)

$$\mathcal{L}\left[\int_0^t f_1(\tau)f_2(t-\tau)d\tau\right] = F_1(s)F_2(s) \tag{6}$$

Systèmes du second ordre

$$G(s) = \frac{K}{\frac{1}{\omega_n^2} s^2 + \frac{2z}{\omega_n} s + 1} \tag{7}$$

$$\omega_p = \omega_n \sqrt{1 - z^2} \tag{8}$$

$$\omega_R = \omega_n \sqrt{1 - 2z^2} \tag{9}$$

$$Q = \frac{|G(j\omega_R)|}{|G(j0)|} = \frac{1}{2z\sqrt{1-z^2}}$$
 (10)

Figure 1: Les dépassements de la réponse à l'échelon versus le coefficient d'amortissement

Figure 2: Le temps de réponse à $\pm 5\%$.

Figure 3: Le facteur de résonance versus le coefficient d'amortissement

Identification des systèmes

Туре	Modèle Fonction de transfert	Réponse à l'échelon	Paramètres
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	Δy Δt $t_{63\%}$	$K_{p} = \frac{\Delta y}{\Delta u}$ $T_{1} = t_{63\%}$
II	$\frac{K_p e^{-\theta s}}{1+T_1 s}, T_1 > 0$	$ \begin{array}{c c} & \Delta y \\ \hline & \Delta u \\ \hline & L_{63\%} \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$
III	$\frac{K_p}{s}$	Δt Δu	$K_{p} = \frac{\Delta y}{\Delta t \Delta u}$
IV	$\frac{K_{p}e^{-\theta s}}{s}$	$\begin{array}{c} & & & \Delta y \\ & & \Delta t \\ & & & \Delta u \end{array}$	$K_{p} = \frac{\Delta y}{\Delta t \Delta u}$
V	$\frac{K_p}{(1+T_1s)^2}$, $T_1 > 0$	$\begin{array}{c} & & & \Delta y \\ & & & \Delta u \end{array}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VI	$\frac{K_{p}e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0$	$ \begin{array}{c c} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VII	$\frac{K_p(1-T_{0i}s)}{(1+T_1s)^2}, T_1 > 0, T_{0i} > 0$	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2
VIII	$\frac{K_{p}(1-T_{0i}s)e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0i} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ Table 2

Modèle		Dánanga à llághalan	Donomètuca		
Type	Fonction de transfert	Réponse à l'échelon	Paramètres		
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2		
X	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{0s} > T_1$	$ \begin{array}{c c} & & & & & \\ & & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & \\$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2		
XI	$\frac{K_{p}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$		
XII	$\frac{K_{p}e^{-\theta s}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$		
XIII	$\frac{K_p}{(1+T_1s)s}, T_1 > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$		
XIV	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$		

Types VII et VIII			Types IX et X			
$-\Delta y_{min} / \Delta y$	t_{min}/T_1	T_{0i}/T_1	$\Delta y_{max} / \Delta y$	t_{max}/T_1	T_{0s}/T_1	
0.01	0.14	0.16	1.02	3.13	1.47	
0.02	0.19	0.23	1.04	2.69	1.59	
0.03	0.22	0.29	1.06	2.45	1.69	
0.04	0.25	0.34	1.08	2.28	1.78	
0.05	0.28	0.39	1.10	2.16	1.86	
0.06	0.31	0.44	1.15	1.95	2.05	
0.07	0.32	0.48	1.20	1.81	2.23	
0.08	0.34	0.52	1.25	1.72	2.39	
0.09	0.36	0.56	1.30	1.65	2.55	
0.10	0.38	0.60	1.35	1.58	2.71	
0.20	0.49	0.96	1.40	1.54	2.86	
0.30	0.56	1.28	1.45	1.50	3.01	
0.40	0.61	1.58	1.50	1.46	3.16	
0.50	0.65	1.88	1.55	1.43	3.31	
0.60	0.68	2.17	1.60	1.41	3.45	
0.70	0.71	2.46	1.65	1.38	3.60	
0.80	0.73	2.75	1.70	1.36	3.74	
0.90	0.75	3.03	1.75	1.35	3.88	
1.00	0.77	3.32	1.80	1.33	4.03	
1.10	0.78	3.60	1.85	1.32	4.17	
1.20	0.79	3.87	1.90	1.30	4.31	
1.30	0.81	4.15	1.95	1.29	4.45	
1.40	0.82	4.43	2.00	1.28	4.60	
1.50	0.82	4.70	2.10	1.26	4.87	
1.60	0.83	4.98	2.20	1.24	5.16	
1.70	0.84	5.26	2.30	1.23	5.43	
1.80	0.85	5.53	2.40	1.21	5.71	
1.90	0.85	5.81	2.50	1.20	5.98	
2.00	0.86	6.09	2.60	1.19	6.26	
2.20	0.87	6.63	2.70	1.18	6.54	
2.40	0.88	7.18	2.80	1.17	6.81	
2.60	0.89	7.72	2.90	1.16	7.09	
2.80	0.89	8.27	3.00	1.16	7.36	
3.00	0.90	8.82	3.50	1.13	8.73	
3.20	0.90	9.37	4.00	1.11	10.10	
3.40	0.91	9.91	4.50	1.10	11.47	
3.60	0.91	10.46	5.00	1.08	12.84	
3.80	0.92	11.28	6.00	1.07	15.56	
4.00	0.92	11.56	7.00	1.06	18.28	
4.50	0.93	12.91	8.00	1.05	21.00	
5.00	0.93	14.28	9.00	1.04	23.72	

Table 2 : Paramètres des modèles VII à X

Réglage des régulateurs avec action intégrale

	Modèle	Réglage					
Type	Fonction de transfert	K_c	$ T_i $	T_d	T_f	T_c	
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	$\frac{T_1}{K_p T_H}$	T_1	-	-	-	
II	$\frac{K_p e^{-\theta s}}{1+T_1 s}, T_1 > 0$	$\frac{T_1}{K_p(T_1+\theta)}$	T_1	-	-	-	
		équ. 13	équ. 11	-	-	-	
III	$rac{K_p}{s}$	$\frac{\frac{4.2}{K_p T_r}}{T_1}$	$0.47T_{r}$	-	-	T_i	
$V(\theta=0)$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)^2}, T_1 > 0$	$\frac{T_1}{K_p(T_1+ heta)}$	$1.5T_1$	-	-	-	
VI $(\theta > 0)$	$(1+T_1s)^2$, $T_1 > 0$	équ. 13	équ. 11	-	-	-	
VII $(\theta = 0)$	$\frac{K_p(1-T_{0i}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{0i} > 0$	$\frac{T_1}{K_p(T_1+T_{0i}+\theta)}$	$1.5T_{1}$	-	-	-	
VIII $(\theta > 0)$	$(1+T_1s)^2$, $T_1 > 0$, $T_{0i} > 0$	équ. 13	équ. 11	-	-	-	
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}$, $T_1 > 0$, $T_{0s} > 0$	$\frac{T_1}{K_p T_H}$ T_1	T_1	T_1	T_{0s}		
X	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{0s} > 0$	$\frac{T_1}{K_p(T_1+T_{0s}+\theta)}$	$1.5T_1$	-	T_{0s}		
		équ. 13	équ. 11	-	T_{0s}	-	
$\begin{array}{ c c c } XIII & (\theta = 0) \\ XIV & (\theta > 0) \end{array}$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	équ. 18	équ. 16	-	-	T_i	

Le régulateur est $G_c(s) = \frac{K_c(1+T_is)(1+T_ds)}{T_is(1+T_fs)}$. Le filtre sur la consigne est $F(s) = \frac{1}{1+T_cs}$. T_H est la constante de temps désirée de $H(s) = \frac{1}{1+T_Hs}$.

 T_r est le temps de réponse désiré de $\frac{Y(s)}{R(s)}$.

Table 2: Réglages des régulateurs à action intégrale

Méthode des contours - procédés stables asymptotiquement:

$$T_{i} = \begin{cases} \left(1 + 0.175 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} \leq 2\\ \left(0.65 + 0.35 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} > 2 \end{cases}$$

$$(11)$$

$$1.015 = \frac{-\pi}{2} + \arctan \omega_0 T_i - \arctan \omega_0 T_0 - \arctan \omega_0 T_1 - \arctan \omega_0 T_2 - \omega_0 \theta + \pi$$
 (12)

$$K_c = \frac{T_i}{K} \sqrt{\frac{(T_1 T_2)^2 \omega_0^6 + (T_1^2 + T_2^2) \omega_0^4 + \omega_o^2}{(T_i T_0)^2 \omega_0^4 + (T_i^2 + T_0^2) \omega_0^2 + 1}}$$
(13)

Méthode des contours - procédés avec une intégration:

$$A_{max} = \frac{10^{0.05M_r}}{\sqrt{10^{0.1M_r} - 1}} \tag{14}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1} \tag{15}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1}$$

$$T_i = \frac{16(T+\theta)}{(2\phi_{max} + \pi)^2}$$
(15)

$$\omega_{max} = \frac{1}{\sqrt{T_i(T+\theta)}}\tag{17}$$

$$K_{c} = \frac{T_{i}A_{max}}{K} \sqrt{\frac{T^{2}\omega_{max}^{6} + \omega_{max}^{4}}{T_{i}^{2}\omega_{max}^{2} + 1}}$$
(18)

Réponses:

$$\text{Q.1} \qquad \left|G'(j\omega_0)\right| = \frac{\left|G(j\omega_0)\right|}{\sqrt{1+\tau^2\omega_0^2}} = 1 \qquad , \qquad \angle G'(j\omega_0) = \angle G(j\omega_0) - \arctan(\tau\omega_0) = -\pi$$

- Q.2 $G_c(s)$ doit posséder au moins un intégrateur (voir notes de cours pour démonstration)
- Q.3 3.8
- Q.4 a) $G_{ci}(s) = 0.035$
 - b) Oui, car le système que contrôle $G_{co}(s)$ est $Y(s)/R_i(s)$ qui ne contient pas d'intégrateur. Pour une erreur statique nulle suite à un changement de consigne R(s), il faut un intégrateur dans G(s), donc il est nécessaire que $G_{co}(s)$ en ait un.
- Q.5 a) 4.23
 - b) 2.82
 - c) 7.9
 - d) 0
- Q.B 0.5