Model pretnji IOT sistema

I. Tokovi podataka analiziranog modula:

Analiziran modul predstavlja aplikaciju za podršku Smart Home pametnih uređaja. Aplikacija pruža sljedeće funkcionalnosti:

- registrovanje nekretnina
- registrovanje pametnih uređaja
- upravljanje pametnim uređajima
- pregled trenutnog stanja uređaja
- dodavanje člana porodice

Softver se sastoji od:

- klijentske aplikacije, izrađene u *React* tehnologiji
- serverske aplikacije, izrađene u *Go Gin* radnom okviru
- aplikacije koja simulira rad uređaja, pisane u Go programskom jeziku
- *MySQL* baze podataka
- AWS S3 *bucket* servisa u svrhu skladištenja fotografija
- *InfluxDB* baze u svrhu skladištenja *timeseries* podataka (podaci iz simulacije koji imaju vremensku odrednicu kada je mjerenje izvršeno)

Slika 1 prikazuje dijagram za analiziran modul (m) procesne komponente (mP), skladišta (mS), tokove podataka (mT) i eksterne entitete (mE).

II. Resursi i pretnje visokog nivoa:

1. Manipulacija podacima u realnom vremenu i napad na IoT uređaje

l. Napad na IoT uređaje
— 1.1 Otmica IoT uređaja
1.1.1 Zloupotreba slabih lozinki ili nezaštićenih autentifikacionih mehanizama
1.1.2 Napad na mrežni sloj (npr. Man-in-the-Middle napad)
1.1.3 Exploitacija ranjivosti u firmware-u uređaja
— 1.2 Napadi na komunikaciju između uređaja
1.2.1 Sniffing (presretanje) podataka u tranzitu
1.2.2 Manipulacija paketima (npr. replay attack)
1.3 Napadi na backend servis (oblak) koji prikuplja podatke
— 1.3.1 SQL injection u sistemu za analizu podataka
1.3.2 Napad na API-je koji prikupljaju podatke od IoT uređaja
2. Manipulacija podacima u realnom vremenu
2.1 Lažno slanje podataka sa IoT uređaja
2.1.1 Generisanje lažnih podataka (falsifikovanje senzornih vrednosti)
2.1.2 Preusmeravanje podataka prema napadaču (npr. DNS spoofing)
2.2 Umetanje zlonamernih podataka u sistem
2.2.1 Napadi sa malicioznim paketima (npr. buffer overflow napadi)
2.2.2 Manipulacija podacima koji se koriste za kontrolu uređaja
2.3 Distorzija ili blokiranje podataka
2.3.1 Negacija podataka (denial of data integrity)
2.3.2 Pretvaranje podataka u lažne informacije (npr. proizvodnja pogrešnih podataka za
odluke)
3. Napadi na kontrolu uređaja
3.1 Preuzimanje kontrole nad uređajem
3.1.1 Zloupotreba administratorskog pristupa uređaju 3.1.2 Korišćenje ranjivosti u operativnom sistemu uređaja
3.1.2 Korišćenje ranjivosti u operativnom sistemu uređaja
3.1.3 Korišćenje povlastica na mreži za preuzimanje kontrole (privilegije povišene na
uređajima)
3.2 Onemogućavanje uređaja (DoS napad)
3.2.1 Preopterećenje uređaja sa zahtevima
3.2.2 Korišćenje botnet mreže za napad na uređaje
4. Odbrana od napada
4.1 Ojačavanje autentifikacije
4.1.1 Korišćenje jakih lozinki i dvofaktorske autentifikacije (2FA)
4.1.2 Implementacija TLS/SSL za autentifikaciju uređaja
4.2 Sigurnost komunikacije
4.2.1 Šifrovanje podataka u tranzitu (npr. SSL/TLS)
4.2.2 Verifikacija integriteta podataka (npr. HMAC ili digitalni potpisi)

4.3 Praćenje i detekcija anomalija
4.3.1 Uvođenje sistema za detekciju napada (IDS/IPS)
4.3.2 Praćenje svih komunikacija između uređaja i backend-a
4.4 Sigurnost firmware-a
4.4.1 Redovno ažuriranje firmware-a i zakrpe za uređaje
4.4.2 Verifikacija autentičnosti firmware-a (npr. digitalni potpisi)
4.5 Sigurnost backend servisa
4.5.1 Korišćenje API rate limiting i autentifikacije za pristup podacima
4.5.2 Sigurnost baza podataka sa enkripcijom i pravilima pristupa

Stablo za prijetnju 1 napad 2 - manipulacija podacima u realnom vremenu

Slika 1

Kasnije ćemo se upoznati sa detaljnom analizom DNS *spoofing* napada, konkretno za uređaj pametna kapija.

Slika 2

U nastavku teksta će biti prikazano stablo napada na kontrolu uređaja.

TODO: dodati stablo

2. Napad sa zlonamernim uređajem

Slika 3 predstavlja stablo pretnji. Ovo stablo pretnji prikazuje grupu napada koja može da se izvrši sa zlonamernim uređajem, kao i mitagacije za te napade.

Radi lakšeg razumevanja i pojašnjenja ozbiljnosti ovih napada, *Tabela 1* pojašnjava metode i ciljeve za svaki napad iz grupe napada sa zlonamernim uređajem.

Tip napada	Metoda	Cilj
Ubacivanje fizičkog uređaja	Fizičko ubacivanje uređaja u mrežu	Preopterećenje mreže, širenje lažnih podataka
Kompromitovanje uređaja	Kompromitovanje postojećeg uređaja	Prisluškivanje, manipulacija, širenje malvera
Lažna autentifikacija	Imitacija uređaja bez interakcije sa originalnim uređajem	Prisluškivanje, manipulacija
Zlonamerni softver	Instalacija malvera na uređaj	DDoS, manipulacija, širenje napada

Tabela 1

TODO

Dalje u radu razmatraće se podstablo pretnji vezano za device spoofing napad. Kako se vrsi kroz mqtt protokol. kako izgleda https za mqtt koji konf parametri postoje

Slika 3

III. Dubinska analiza napada i mitigacija

A. DNS spoofing

Uvod - objašnjenje napada

DNS (*Domain Name Server*) *spoofing* će biti objašnjen na primjeru iskorištavanja informacija o pametnoj kapiji.

DNS *spoofing* napad podmeće lažnu IP adresu na koju preusmjerava sve DNS zahtjeve. U kontekstu pametne kapije, može da dobija informacije kada je kapija otvorena i da šalje lažnu informaciju o trenutnom stanju kapije na *frontend*.

Realizacija napada

Podmetanje lažnog MQTT brokera je jedan od načina da se realizuje ovaj napad. U nastavku teksta će detaljnije biti objašnjena realizacija DNS *spoofing*-a.

Napad će biti objašnjen kroz tri etape njegove realizacije:

- 1. Priprema napada može se koristiti alat poput *ettercap* i *dnspoof* da presretne DNS zahtjeve. Postavlja lažni DNS server ili modifikuje odgovore pravog servera, preusmjeravajući *backend* sadržaj ka svojoj IP adresi.
- 2. Postavljanje zlonamjernog softvera napadač kreira zlonamjerni *backend* koji emulira originalni. Na ovom serveru napadač mijenja podatke za kapiju. Npr. prikazuje da je zatvorena, iako je otvorena.
- 3. Realizacija napada kada uređaj na mreži traži DNS zapis za *backend* server, lažni DNS server odgovara sa IP adresom napadača. Saobraćaj između *frontend*-a i *backend*-a sada ide ka malicioznom softveru.

Slika 4 prikazuje primjer koda koji je potreban za realizaciju DNS *spoofing napada*. Napadač može koristiti *dnssproof* za presretanje DNS saobraćaja. Prvo se vrši konfigurisanje hosts fajla: dodjela IP svog zlonamjernog servera servera originalnom DNS nazivu. Komanda:

192.168.1.100 backend.smart-home.local

Pokretanje *dnsproof*-a:

sudo dnsspoof -i eth0

```
import paho.mqtt.client as mqtt
BROKER HOST = "0.0.0.0" # ip address of attacker
BROKER PORT = 1883
# actual states of the gate
gate_status = {"state": "closed", "plates": []}
/def on connect(client, userdata, flags, rc):
    client.subscribe("home/gate/status")
    client.subscribe("home/gate/plates")
/def on message(client, userdata, msg):
    global gate status
    topic = msg.topic
    payload = msg.payload.decode()
    if topic == "home/gate/status":
        print(f"Actual state: {payload}")
        gate_status["state"] = payload
        # manipulating with state of the gate
        # always display that gate is closed
        manipulated status = "closed"
        client.publish("home/gate/status", manipulated status)
        print(f"Fake state: {manipulated status}")
    elif topic == "home/gate/plates":
        print(f"Actual license plates: {payload}")
        gate_status["plates"].append(payload)
```

Slika 4

Odbrana od napada

- **DNSSEC** dodaje kriptografske potpise DNS zahtjevima, omogućavajući provjeru autentičnosti
- Koristiti HTTPS ili MQTT sa TLS da šifruje saobraćaj između komponenti
- Provjera sertifikata *backend* servisa. *Backend* mora imati validne sertifikate, a *frontend* mora provjeravati autentičnost sertifikata

Rekapitulacija

Napadač koristi DNS *spoofing* da *frontend* preusmjer ka zlonamjernom softveru. Na zlonamjernom softveru mijenja informacije o kapiji kako bi sakrivao stvarni status. Kod iznad ilustuje kako bi napadač simulirao lažni MQTT server. Implementacija određenih bezbjednosnih mjera, poput TLS-a i DNSSEC-a, ključna je za zaštitu sistema od ovakvih napada.