0000

Moment cinétique

Préreguis et constantes utiles

Coordonnées polaires, projections, produit vectoriel, moment d'une force.

Projections préparatoires

Entraînement 1.1 — Calculs de produits scalaires.

On considère les vecteurs suivants où \overrightarrow{P} et \overrightarrow{T} sont verticaux.

Calculer les produits scalaires en fonction des normes ($\|\vec{P}\|$, $\|\vec{T}\|$, etc.) ainsi que des différents angles apparaissant sur les schémas.

a)
$$\vec{P} \cdot \vec{e_{\theta}}$$

b) $\vec{N} \cdot \vec{e_{y}}$
d) $\vec{T} \cdot \vec{e_{r}}$
f) $\vec{N} \cdot \vec{e_{\theta}}$

c)
$$\vec{R} \cdot \vec{e_y} \dots$$

e)
$$\overrightarrow{N} \cdot \overrightarrow{e_r} \dots$$

b)
$$\vec{N} \cdot \vec{e_y} \dots$$

d)
$$\vec{T} \cdot \vec{e_r} \dots$$

f)
$$\vec{N} \cdot \vec{e_{\theta}} \dots$$

Entraînement 1.2 — Projections dans une base.

En utilisant la formule donnant la décomposition d'un vecteur \vec{v} dans une base orthonormée $(\vec{e_1}, \vec{e_2})$ sous la forme $\vec{v} = (\vec{v} \cdot \vec{e_1}) \vec{e_1} + (\vec{v} \cdot \vec{e_2}) \vec{e_2}$, décomposez les vecteurs présents dans le schéma de l'exercice précédent dans chaque base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ et $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$.

- a) \vec{P} dans la base $(\vec{e_x}, \vec{e_y})$
- b) \overrightarrow{P} dans la base $(\overrightarrow{e_r}, \overrightarrow{e_{\theta}})$
- c) \vec{T} dans la base $(\vec{e_x}, \vec{e_y})$

I) \overrightarrow{T} dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$	
--	--

- e) \vec{R} dans la base $(\vec{e_x}, \vec{e_y})$
- f) \vec{R} dans la base $(\vec{e_r}, \vec{e_\theta})$
- g) \overrightarrow{N} dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$
- h) \overrightarrow{N} dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$

Produit vectoriel

Entraînement 1.3 — Produits vectoriels à partir de décompositions.

En utilisant toujours le schema du premier exercice et les décompositions du deuxième, donner l'expression des produits vectoriels suivants :

a)
$$\vec{P} \wedge \vec{R}$$
 ... b) $\vec{T} \wedge \vec{e_r}$... c) $\vec{e_x} \wedge \vec{N}$...

b)
$$\vec{T} \wedge \vec{e_r}$$
 ...

c)
$$\overrightarrow{e_x} \wedge \overrightarrow{N} \dots$$

A.N. Entraînement 1.4 — Produits vectoriels à partir des coordonnées.

On donne les deux vecteurs suivants de \mathbb{R}^3 définis de manière numérique :

$$\vec{A} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 et $\vec{B} = \begin{pmatrix} 6\\5\\4 \end{pmatrix}$

Calculer les produits vectoriels

a)
$$\vec{A} \wedge \vec{B}$$

b)
$$(\vec{B} + \vec{A}) \wedge \vec{A}$$

Moment cinétique

A.N. Entraînement 1.5 — Bataille de chiffres.

0000

Parmi les quatre planètes décrites dans le tableau ci-dessous, laquelle a le moment cinétique de rotation autour du Soleil qui est le plus important?

	Masse	Distance au Soleil	Vitesse sur l'orbite
Mercure	$3 \times 10^{26} \mathrm{g}$	$58 \times 10^9 \mathrm{m}$	$170 \times 10^3 \mathrm{km} \cdot \mathrm{h}^{-1}$
Vénus	$5 \times 10^{27} \mathrm{g}$	$1.1\times10^{10}\mathrm{cm}$	$35\times10^3\mathrm{m\cdot s^{-1}}$
Terre	$6 \times 10^{21} \mathrm{t}$	$150000000{\rm km}$	$30\mathrm{km\cdot s^{-1}}$
Mars	$6 \times 10^{23} \mathrm{kg}$	$230 \times 10^6 \mathrm{km}$	$87\times10^5\mathrm{cm\cdot h^{-1}}$

Entraînement 1.6 — Un moustique allumé.

On considère un moustique M dont le vecteur vitesse de norme v fait un angle $\alpha \in \left[\frac{\pi}{2}; \pi\right]$ avec le vecteur \overrightarrow{OM} comme représenté dans le schéma ci-dessous.

Que vaut le moment cinétique du moustique M par rapport à O?

Moment d'une force

Entraînement 1.7 — Fil accroché au mur.

On considère un mur auquel est accroché un filin duquel on tire depuis un point A. Il s'agit de trouver le moment de la force \vec{F} par rapport aux axes (Oz) et (Az).

a)
$$\mathcal{M}_{Oz}(\vec{F})$$

b)
$$\mathcal{M}_{\mathrm{A}z}(\vec{F})$$

Entraı̂nement 1.8 — Planche de cirque.

On considère une planche homogène de masse m appuyée sur un cylindre. Calculons le moment du poids de cette planche par rapport aux divers points intéressant du système.

- a) $\overrightarrow{\mathcal{M}}_{A}(\overrightarrow{P})$...
- b) $\overrightarrow{\mathcal{M}_{\mathrm{O}}}(\overrightarrow{P})$..
- c) $\overrightarrow{\mathcal{M}}_{\mathrm{I}}(\overrightarrow{P})$...

Exercice récapitulatif

Entraînement 1.9 — Basculement d'une barre en T.

0000

On considère trois masses m réparties aux trois sommets d'un triangle OAB isocèle en B et reliées par des tiges sans masse de sorte que OA = IB = a avec I le milieu du segment [OA]. Le baricentre G des trois masses se situe sur le segment [IB] de sorte que GB = $\frac{2}{3}a$. On notera P et F les normes des deux forces représentées sur le schéma.

- a) Écrire le vecteur \overrightarrow{OB} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$
- b) Écrire le vecteur \overrightarrow{OG} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$
- c) Écrire le vecteur \overrightarrow{P} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$
- d) Écrire le vecteur \overrightarrow{F} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$
- e) Calculer $\overrightarrow{\mathcal{M}_{\mathcal{O}}}(\overrightarrow{F})$
- f) Calculer $\overrightarrow{\mathcal{M}_{\mathcal{O}}}(\overrightarrow{P})$
- g) En supposant qu'il y ait équilibre entre les deux moments, déterminer l'expression $\tan \alpha$ dans ce cas.

Réponses mélangées

$$\|\vec{P}\| \|\vec{R}\| \cos(\theta + \alpha) \vec{e_z} \quad aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right) \vec{e_z} \quad \vec{P} = -\|\vec{P}\| \vec{e_y}$$

$$P(-\sin\alpha \vec{e_X} - \cos\alpha \vec{e_Y}) \quad -\ell F \sin\alpha \cos\alpha \quad -mg\left(\ell - \frac{L}{2}\cos\alpha\right) \vec{e_z}$$

$$-\|\vec{T}\| \vec{e_y} \quad F(-\cos\alpha \vec{e_X} + \sin\alpha \vec{e_Y}) \quad \frac{3P - 6F}{3F + 2P} \quad 0$$

$$-mg\left(\ell - \frac{L}{2}\cos\alpha\right) \vec{e_z} \quad -\|\vec{P}\| \cos\theta \quad \|\vec{R}\| \sin(\theta + \alpha)$$

$$aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right) \vec{e_z} \quad -\|\vec{T}\| \cos(\zeta) \quad \begin{pmatrix} -7\\14\\-7 \end{pmatrix}$$

$$\|\vec{R}\| (\cos(\theta + \alpha) \vec{e_x} + \sin(\theta + \alpha) \vec{e_y}) \quad \|\vec{N}\| \sin(\beta) \quad \frac{a}{2} \vec{e_X} + \frac{a}{3} \vec{e_Y}$$

$$\frac{mgL}{2} \cos\alpha \vec{e_z} \quad \|\vec{N}\| (-\sin(\beta + \zeta) \vec{e_x} + \cos(\zeta + \beta) \vec{e_y}) \quad \|\vec{N}\| \cos(\zeta + \beta) \vec{e_z}$$

$$La \ \text{Terre} \quad \vec{T} = \|\vec{T}\| (-\cos(\zeta) \vec{e_r} + \sin(\zeta) \vec{e_\theta}) \quad \|\vec{N}\| \cos(\beta)$$

$$\frac{a}{2} \vec{e_X} + a \vec{e_Y} \quad mrv\sin(\alpha) \vec{e_z} \quad \|\vec{R}\| (\cos(\alpha) \vec{e_r} + \sin(\alpha) \vec{e_\theta})$$

$$\|\vec{N}\| \cos(\zeta + \beta) \quad \begin{pmatrix} 7\\-14\\7 \end{pmatrix}$$

$$\|\vec{N}\| \cos(\zeta + \beta) \quad \begin{pmatrix} 7\\-14\\7 \end{pmatrix}$$

$$\|\vec{N}\| (\cos(\beta) \vec{e_r} + \sin(\beta) \vec{e_\theta}) \quad -\|\vec{T}\| \sin(\zeta) \vec{e_z}$$

► Réponses et corrigés page 7

Fiche nº 1. Moment cinétique

Réponses

Corrigés

1.1 a)
$$\vec{P} \cdot \vec{e_{\theta}} = ||\vec{P}|| \times ||\vec{e_{\theta}}|| \times \cos(\pi + \theta) = -||\vec{P}|| \cos \theta$$

1.1 c)
$$\vec{R} \cdot \vec{e_y} = ||\vec{R}|| \times ||\vec{e_y}|| \times \cos\left(\frac{\pi}{2} - (\theta + \alpha)\right) = ||\vec{R}|| \sin(\theta + \alpha)$$

1.1 d)
$$\overrightarrow{T} \cdot \overrightarrow{e_r} = ||\overrightarrow{T}|| \times ||\overrightarrow{e_r}|| \times \cos(\pi + \zeta) = -||\overrightarrow{T}|| \cos(\zeta)$$

1.1 f)
$$\vec{N} \cdot \vec{e_{\theta}} = ||\vec{N}|| \times ||\vec{e_{\theta}}|| \times \cos\left(\beta - \frac{\pi}{2}\right) = ||\vec{N}|| \sin(\beta)$$

1.3 a)
$$\vec{P} \wedge \vec{R} = -\|\vec{P}\| \vec{e_y} \wedge \|\vec{R}\| (\cos(\theta + \alpha) \vec{e_x} + \sin(\theta + \alpha) \vec{e_y}) = -\|\vec{P}\| \|\vec{R}\| \cos(\theta + \alpha) \vec{e_y} \wedge \vec{e_x} + \vec{0}$$

1.3 b)
$$\vec{T} \wedge \vec{e_r} = ||\vec{T}||(-\cos(\zeta)\vec{e_r} + \sin(\zeta)\vec{e_\theta}) \wedge \vec{e_r} = ||\vec{T}||\sin(\zeta)\vec{e_\theta} \wedge \vec{e_r} = -||\vec{T}||\sin(\zeta)\vec{e_z}$$

1.3 c)
$$\overrightarrow{e_x} \wedge \overrightarrow{N} = \overrightarrow{e_x} \wedge ||\overrightarrow{N}|| (-\sin(\beta + \zeta) \overrightarrow{e_x} + \cos(\zeta + \beta) \overrightarrow{e_y}) = ||\overrightarrow{N}|| \cos(\zeta + \beta) \overrightarrow{e_x} \wedge \overrightarrow{e_y}$$

1.4 a)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \land \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \times 4 - 3 \times 5 \\ 3 \times 6 - 1 \times 4 \\ 1 \times 5 - 2 \times 6 \end{pmatrix} = \begin{pmatrix} -7 \\ 14 \\ -7 \end{pmatrix}$$

1.4 b)
$$\begin{bmatrix} \binom{6}{5} \\ 4 \end{bmatrix} + \binom{1}{2} \\ 3 \end{bmatrix} \land \binom{1}{2} \\ 3 \end{bmatrix} = \binom{7}{7} \land \binom{1}{2} \\ 3 \end{bmatrix} = \binom{7 \times 3 - 7 \times 2}{7 \times 1 - 7 \times 3} \\ 7 \times 2 - 7 \times 1 \end{pmatrix} = \binom{7}{-14} \\ 7 \end{pmatrix}$$

On aurait aussi pu voir que comme $\vec{A} \wedge \vec{A} = \vec{0}$, cela revient à $\vec{B} \wedge \vec{A} = -\vec{A} \wedge \vec{B}$.

Commençons par tout remettre dans les bonnes unités pour pouvoir calculer le produit $m \times r \times v$ qui correspond au moment cinétique puisque le rayon vecteur est bien perpendiculaire à la vitesse pour une orbite circulaire.

	Masse en kg	Distance en m	Vitesse en $m \cdot s^{-1}$	Moment cinétique en kg \cdot m $^2 \cdot s^{-1}$
Mercure	3×10^{23}	6×10^{10}	5×10^4	$3 \times 6 \times 5 \times 10^{37} = 9 \times 10^{38}$
Vénus	5×10^{24}	1.1×10^{11}	3.5×10^4	$5 \times 1.1 \times 10^{39} \times \frac{7}{2} \approx 2 \times 10^{40}$
Terre	6×10^{24}	1.5×10^{11}	3×10^4	$6 \times \frac{3}{2} \times 3 \times 10^{39} = 2.7 \times 10^{40}$
Mars	6×10^{23}	$2,\!3\times10^{11}$	$2,4 \times 10^4$	$\leq 6 \times 10^{38} \times \frac{5}{2} \times \frac{5}{2} \approx 3.7 \times 10^{39}$

C'est bien la Terre qui gagne finalement le concours du plus grand moment cinétique.

1.6 Le vecteur vitesse s'écrit dans la base $(\vec{e_r}, \vec{e_\theta})$ comme $\vec{v} = v(\cos\alpha \vec{e_r} + \sin\alpha \vec{e_\theta})$. Le produit

vectoriel avec \overrightarrow{OM} s'écrit alors

$$\overrightarrow{OM} \wedge \overrightarrow{m} \overrightarrow{v} = r \overrightarrow{e_r} \wedge m v(\cos \alpha \overrightarrow{e_r} + \sin \alpha \overrightarrow{e_\theta}) = m r v \sin \alpha \overrightarrow{e_r} \wedge \overrightarrow{e_\theta}$$

.

1.7 a) D'une part, on commence par déterminer l'expression du vecteur \overrightarrow{F} dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$. On a ici en notant F la norme du vecteur : $\overrightarrow{F} = F(\cos\alpha \overrightarrow{e_x} - \sin\alpha \overrightarrow{e_y})$. D'autre part, en notant M le point d'action de \overrightarrow{F} , on a que $\overrightarrow{OM} = \ell \sin\alpha \overrightarrow{e_y}$. On peut alors calculer

$$\overrightarrow{\mathcal{M}_{\mathrm{O}}}(\overrightarrow{F}) = \overrightarrow{\mathrm{OM}} \wedge \overrightarrow{F} = \ell \sin \alpha \, \overrightarrow{e_y} \wedge F(\cos \alpha \, \overrightarrow{e_x} - \sin \alpha \, \overrightarrow{e_y}) = \ell F \sin \alpha \cos \alpha \, (-\overrightarrow{e_z})$$

1.8 a) Dans cette configuration, le bras de levier vaut $\frac{L}{2}\cos\alpha$ et le point fait tourner dans le sens trigonométrique autour de A, de sorte que $\overrightarrow{\mathcal{M}_{\rm A}}(\overrightarrow{P}) = \frac{mgL}{2}\cos\alpha \overrightarrow{e_z}$.

-

- **1.8** b) Cette fois-ci, le poids fait tourner dans le sens horaire autour de O avec un bras de levier complémentaire du précédent de $\ell \frac{L}{2}\cos\alpha$, d'où le résutat.
- 1.8 c) Même chose que précédemment, I et O étant à la verticale l'un de l'autre.
- **1.9** a) On décompose $\overrightarrow{OB} = \overrightarrow{OI} + \overrightarrow{IB} = \frac{a}{2} \overrightarrow{e_X} + a \overrightarrow{e_Y}$.
- **1.9** b) On décompose $\overrightarrow{OG} = \overrightarrow{OI} + \overrightarrow{IG} = \frac{a}{2} \overrightarrow{e_X} + \frac{a}{3} \overrightarrow{e_Y}$.
- **1.9** c) $\vec{P} = (\vec{P} \cdot \vec{e_X}) \vec{e_X} + (\vec{P} \cdot \vec{e_Y}) \vec{e_Y} = P \left[\cos \left(\frac{\pi}{2} + \alpha \right) \vec{e_X} + \cos(\pi + \alpha) \vec{e_Y} \right] = P(-\sin \alpha \vec{e_X} \cos \alpha \vec{e_Y})$
- **1.9** d) $\vec{F} = (\vec{F} \cdot \vec{e_X}) \vec{e_X} + (\vec{F} \cdot \vec{e_Y}) \vec{e_Y} = F \left[\cos(\pi + \alpha) \vec{e_X} + \cos\left(\frac{3\pi}{2} + \alpha\right) \vec{e_Y} \right] = F(-\cos\alpha \vec{e_X} + \sin\alpha \vec{e_Y})$
- 1.9 g) Pour qu'il y ait équilibre, la somme des deux moments doit s'annuler. Les deux étant suivant $\overrightarrow{e_z}$, on doit avoir

$$aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right) + aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right) = 0$$

En divisant par $a\cos\alpha$, il vient

$$\frac{F \tan \alpha}{2} + F - \frac{P}{2} + \frac{P \tan \alpha}{3} = 0$$

On obtient donc

$$\tan \alpha = \frac{\frac{P}{2} - F}{\frac{F}{2} + \frac{P}{2}} = \frac{3P - 6F}{3F + 2P}$$

.....