

Agrégation des portefeuilles de contrats d'assurance vie

Est-il optimal de regrouper les contrats en fonction de l'âge, du genre, et de l'ancienneté des assurés?

Pierre-O. Goffard

Université d'été de l'Institut des Actuaires, Juillet 2015

Sommaire

Introduction

Provisions best estimate pour les contrats d'assurance vie de type épargne

Le processus d'agrégation

Backtesting du processus d'agrégation

Un peu de contexte

Solvabilité II

- Directive de l'UE qui définit un cadre prudentiel pour les compagnies d'assurance,
- → Réserve de capital afin de réduire le risque d'insolvabilité.
- ► Entrée en vigueur au 1^{er} Janvier 2016.

Calcul des provisions *Best Estimate* via un modèle ALM de projections des *cash-flows*

- ▶ Modélise les interactions entre l'actif et le passif,
- ▶ Tient compte de la valeur actuelle des garanties et des engagements.

Le défi des temps de calcul

- ▶ Simulations de Monte-Carlo + Approche contrat par contrat,
- ▶ Portefeuille de contrat AXA France (épargne) ⇒ 4 millions,
 - → Consommation importante de ressources informatiques.

Executive Summary

Qu'est ce qu'un model point?

Une procédure en deux étapes

- Step 1 Algorithme de classification statistique pour regrouper les contrats,
- Step 2 Construction d'un contrat représentatif pour chaque groupe.
 - Portefeuille de contrats agrégé de 4000 model points erreur relative sur le BEL de 0.05%,
 - ▶ Méthode officielle de construction des *model points* d'AXA France depuis la clôture de l'exercice 2013.

Valeur actuelle pour un contrat épargne

- ▶ $\{r_a(t)\}_{t\geq 0}$ et $\{r_d(t)\}_{t\geq 0}$ sont des processus stochastiques, régis par une mesure de probabilité \mathbb{P}_f , qui modélisent les taux d'accumulation et d'actualisation.
- ▶ Soit **F** un scénario financier généré à partir de \mathbb{P}_f ,

Valeur de l'épargne à l'instant t

$$SV^{\mathbf{F}}(t) = SV(0) \times exp\left(\int_0^t r_a(s) \mathrm{d}s\right),$$

Valeur actuelle de l'épargne à l'instant t

$$PSV^{\mathbf{F}}(t) = SV^{\mathbf{F}}(t) \times exp\left(-\int_{0}^{t} r_{d}(s)ds\right),$$

La probabilité de sortie

Soit $\tau|\mathbf{F}$ une variable aléatoire continue égale à l'instant de sortie (duration) du contrat causé par:

- ▶ Le décès ⇒ Âge et genre de l'assuré,
- ▶ Le rachat \Rightarrow Ancienneté et scénario financier **F**.

Soit T l'échéance du contrat ou l'horizon de projection,

Le véritable instant de sortie est $\tau | \mathbf{F} \wedge T = \min(\tau | \mathbf{F}, T)$, de loi de probabilité

$$d\mathbb{P}_{\tau|\mathbf{F}\wedge T}(t) = f_{\tau|\mathbf{F}}(t)d\lambda(t) + \overline{F_{\tau}}(T)\delta_{T}(t).$$

Provision best estimate théorique

Moyenne des cash flows sortants pondérés par leur probabilité d'occurence.

Pour le scénario F,

$$BEL^{\mathbf{F}}(0,T) = \mathbb{E}\left[PSV\left(\tau|\mathbf{F}\wedge T\right)\right]$$
$$= \int_{0}^{T} SV(0) \times \exp\left[\int_{0}^{t} (r_{a}(s) - r_{d}(s))ds\right] d\mathbb{P}_{\tau|\mathbf{F}\wedge T}(t).$$

Sur l'ensemble des scénarios financiers $(\mathbf{F}_1, \dots, \mathbf{F}_N)$,

$$BEL(0,T) = \frac{1}{N} \sum_{i=1}^{N} BEL^{\mathbf{F}_i}(0,T).$$

Les provisions *best estimate* en pratique

Approximations de l'intégrale par une méthode des rectangles,

$$BEL^{\mathbf{F}}(0,T) \approx \left[\sum_{t=0}^{T-1} p(t,t+1) \prod_{k=0}^{t} \frac{1+r_a(k,k+1)}{1+r_d(k,k+1)} \right] SV(0) + \left[p(T) \prod_{k=0}^{T-1} \frac{1+r_a(k,k+1)}{1+r_d(k,k+1)} \right] SV(0),$$

où

- le pas de temps est un an,
- Horizon de projection est de 30 ans,
- ightharpoonup p(t, t+1) est la probabilité de sortie entre t et t+1,
- ightharpoonup p(T) est la probabilité d'atteindre la fin de la projection,
- ▶ $r_a(k, k+1)$ et $r_d(k, k+1)$ désigne les taux forward d'accumulation et d'actualisation.

Aggregation Philosophy

BEL pour le portefeuille (C_1, C_2)

- ▶ Soit *C*₁ et *C*₂ deux contrats associés à des probabilités de sortie identiques au cours de la projection,
- $\triangleright SV_{MP}(0) = SV_{C_1}(0) + SV_{C_2}(0).$

Alors

$$BEL_{MP}^{\mathbf{F}}(0,T) = \sum_{i=1}^{2} BEL_{C_{i}}^{\mathbf{F}}(0,T).$$

▶ Valorisation exacte du portefeuille $(C_1, C_2)!$

L'idée est de se rapprocher au maximum de cette propriété d'additivité.

Première Aggrégation

Regroupement des contrats ayant

- Des probabilités de sortie identiques
- ▶ Des caractéristiques contractuelles identiques (Groupe ALM)
 - Ligne de produit,
 - Participation aux bénéfices,
 - ► Taux technique,
 - **.** . . .

Le problème de classification

Soit

$$\mathcal{P} = \{\mathbf{C}_i\}_{i \in 1, \dots, n}$$

un portefeuille appartenant au même groupe ALM. Le contrat

$$\mathbf{C}_i = (p_i(0,1), p_i(1,2), ..., p_i(T-1,T), p_i(T)),$$

est caractérisé par ses probabilités de sortie qui forment une trajectoire.

- ▶ Abandon de la dépendance au scénario financier,
- Distance euclidienne en guise de mesure de dissimilarité,
- Algorithme CAH et KMEANS,
- Pondération des contrats en fonction de leur provision mathématique initiale

$$w_{\mathbf{C}} = \frac{SV_{\mathbf{C}}(0)}{\sum_{\mathbf{C}\in\mathcal{P}}^{n} SV_{\mathbf{C}}(0)},$$

Ressemblance avec les données longitudinales.

Un Meli-Melo de trajectoires

Clustering Philosophy

Inertia = Within-Cluster Inertia + Between-Cluster Inertia

Algorithme K-Means

- Step 1 Nombre de classes,
- Step 2 Initialisation aléatoire des centres,
- Step 3 Chaque individu est assigné au centre le plus proche,
- Step 4 Calcul des nouveaux centres,
- Step 5 Itération des étapes 3 et 4 jusqu'à la convergence.

Classification Ascendante Hierarchique

- Step 1 Regroupement des deux contrats qui minimise l'augmentation d'inertie intra-classe, remplacement par le barycentre,
- Step 2 Itération de l'étape 1 jusqu'à ce qu'il ne reste plus qu'un seul groupe,
- Step 3 Élaguage de l'arbre!

Choix de la méthode de classification

La contrainte du nombre de *model points*

- ▶ Allocation d'un nombre de *model points* par groupe ALM en fonction de leur provision mathématique.
- Algorithme KMEANS plus adapté,
- L'initialisation aléatoire est problématique.
 - → CAH pour déterminer les centres initiaux.

Idée Nombre de *model points* ⇒ Compromis entre la provision mathématique et l'hétérogénéité des trajectoire au sein du groupe ALM.

Combination of AHC and K-Means Then BOOM!

L'étape d'agrégation: Deux méthodes

Le problème se résume à attribuer un âge et une ancienneté aux MPs.

Méthode Naïve

Moyenne pondérée par la PM de l'âge et de l'ancienneté au sein de chaque groupe.

Méthode Sioux

- Génération de toutes les trajectoires possibles,
- Calcul du barycentre des trajectoires dans chaque groupe,
- ► Attribution de la combinaison Âge/Ancienneté associée à la trajectoire la plus proche de la trajectoire barycentrique.

Le processus d'agrégation: Vue d'ensemble

Backtesting: Ouelques chiffres

- $\triangleright \mathcal{PF}_1$ désigne le portfeuille agrégé après la première agrégation,
- $\triangleright \mathcal{PF}_2$ désigne le portefeuille agrégé final.
- ► Erreur relative sur la provision *best estimate*,

$$\frac{BEL(\mathcal{PF}_2) - BEL(\mathcal{PF}_1)}{BEL(\mathcal{PF}_1)}$$

► Taux de compression,

$$\frac{\textit{Card}\left(\mathcal{PF}_{2}\right)-\textit{Card}\left(\mathcal{PF}_{1}\right)}{\textit{Card}\left(\mathcal{PF}_{1}\right)}.$$

PTF	Nombre de contrats	BEL (millions d'euros)
\mathcal{PF}_1	72 000	72 336
\mathcal{PF}_2	4 000	72 371

- ▶ Une erreur relative de 0.0485% soit 35 millions d'euros.
- ▶ Un taux de compression de -95% VS \mathcal{PF}_1 et -99.9% VS contrat par contrat.

Erreur globale au cours de la projection

Taux de compression VS Erreur relative produit par produit

Relative Error on the BEL by Product Lines

Conclusion et perspectives

Conclusion

- la procédure d'agrégation pour les portefeuille de contrat d'assurance vie individuel de type épargne est efficace,
 - → Facile à implémenter,
 - → Fondée théoriquement et efficace dans la pratique.
- La procédure d'agrégation joue un rôle clé dans le processus de valorisation d'AXA France
 - → Cela permet une valorisation ALM purement stochastique,
 - → Satisfaisant du point de vue des autorités de contrôle.

Des améliorations sont possibles

- Existence de mesures de dissimilarité potentiellement plus adaptées que la distance euclidienne,
- ▶ Relier le niveau d'erreur au nombre de MP
- ▶ Étude du compromis entre la provision mathématique et l'hétérogénéité du groupe ALM pour allouer le nombre de *model points*.

Du nombre de classe optimal

