## algorithm for computing the OG by iteration and projection

zh296

March 2021

## 1 Derivation

We start with the heat equation from equation 1.3 in "Drew's First Writeup". That equation states

$$M\dot{u} + Au = Bz \tag{1}$$

To make the notation more compatible with our current paper, we rewrite the equation with different letters and invert the mass matrix. Now, the differential equation is,

$$\dot{x}(t) = -M^{-1}Ax(t) + M^{-1}Bu(t) y(t) = Cx(t)$$
 (2)

Based on the above equation, the Lyapunov equation we want to solve is

$$(-M^{-1}A)P + P(-M^{-1}A)^{T} + CC^{T} = 0$$
(3)

The P in the above equation is the observability gramian.

Now, based on the "low rank smith" paper, we can rewirte the above equation as

$$P = (-M^{-1}A - \mu I)(-M^{-1}A + \mu I)^{-1}P(-M^{-1}A + \mu I)^{-1T}(-M^{-1}A - \mu I)^{T}$$
$$-2\mu(-M^{-1}A + \mu I)^{-1}CC^{T}((-M^{-1}A)^{T} + \mu I)^{-1}$$
(4)

Let's denote  $A_{\mu}=(-M^{-1}A-\mu I)(-M^{-1}A+\mu I)^{-1}$ . Then, we can simplify the above equation as

$$P = A_{\mu}PA_{\mu}^{T} - 2\mu(-M^{-1}A + \mu I)^{-1}CC^{T}((-M^{-1}A)^{T} + \mu I)^{-1}$$
(5)

Now, suppose we are inside the greedy algorithm and want to update the observability gramian with just one more sensor. We can write  $P_{next} = P_{pre} + D$ .

$$P_{pre} + D = A_{\mu}(P_{pre} + D)A_{\mu}^{T} - 2\mu(-M^{-1}A + \mu I)^{-1}(C_{pre} + C_{rank1})(C_{pre} + C_{rank1})^{T}((-M^{-1}A)^{T} + \mu I)^{-1}$$
(6)

When we do  $(C_{pre} + C_{rank1})(C_{pre} + C_{rank1})^T$ , the cross terms will cancel out. Furthermore, we know  $P_{pre}$  satisfies the Stein equation, which is equation 3.4 in the "low rank smith" paper. Therefore, we have

$$D = A_{\mu}DA_{\mu}^{T} - 2\mu(-M^{-1}A + \mu I)^{-1}C_{rank1}C_{rank1}^{T}((-M^{-1}A)^{T} + \mu I)^{-1}$$
(7)

Now, we use the infinite series expansion given in the stanford lecture,

$$D = \sum_{t=0}^{\infty} A_{\mu}^{t} (-2\mu(-M^{-1}A + \mu I)^{-1} C_{rank1} C_{rank1}^{T} ((-M^{-1}A)^{T} + \mu I)^{-1}) (A_{\mu}^{T})^{t}$$
(8)

or,

$$D = -2\mu \sum_{t=0}^{\infty} A_{\mu}^{t} (-M^{-1}A + \mu I)^{-1} C_{rank1} C_{rank1}^{T} ((-M^{-1}A)^{T} + \mu I)^{-1} (A_{\mu}^{T})^{t}$$
(9)

Now, we can write the D as

$$D = -2\mu(aa^T + bb^T + \dots) = -2\mu A_{sylvester} B_{sylvester}$$
(10)

Now, we have

$$det(P - 2\mu A_{sylester} B_{sylvester}) = det(P(I - 2\mu P^{-1} A_{sylvester} B_{sylvester}))$$

$$= det(P) det(I - 2\mu P^{-1} A_{sylvester} B_{sylvester})$$

$$= det(P) det(I - 2\mu B_{sylvester} P^{-1} A_{sylvester})$$
(11)

Now, a problem with the current formulation is that P is a low rank matrix and  $P^{-1}$  is numerically low rank. Therefore, instead of using  $logdet(P_{next})$  as the objective function, we propose the following. In each iteration of the greedy algorithm, we already know  $P_{pre}$  and can use its top eigenvectors form a subspace. We know that  $P_{pre}$  in this subspace spanned by its own top eigenvectors can be inverted stably. Therefore, the new objective is  $U'_{pre}P_{next}U_{pre}$ , where  $U_{pre}$  is obtained by performing a diagonalization of  $P_{pre} = U_{pre}\Sigma_{pre}U'_{pre}$ . Therefore,

$$Objective = det(U'_{pre}P_{next}U_{pre})$$

$$= det(U'_{pre}(P_{pre} + D)U_{pre})$$

$$= det(\Sigma_{pre,top} + U'_{pre}DU_{pre})$$

$$= det(\Sigma_{pre,top} - 2\mu U'_{pre}A_{sylester}B_{sylvester}U_{pre})$$

$$= det(\Sigma_{pre,top})det(I - 2\mu B_{sylvester}U_{pre}\Sigma_{pre,top}^{-1}U'_{pre}A_{sylvester})$$

$$(12)$$

## 2 Implementation Detail

We notice that  $A_{\mu}$ ,  $(-M^{-1}A + \mu I)^{-1}$ , and  $(-M^{-1}A)^T + \mu I)^{-1}$  are the same throughout the entire process. Therefore, we can compute those three matrices in advance. Furthermore, we can diagonalize  $A_{\mu} = A_{\mu v} A_{\mu d} A_{\mu v}^{-1}$ 

Now, we can write the D as

$$D = -2\mu (aa^{T} + bb^{T} + \dots) {13}$$

Furthermore, we have

$$D = -2\mu A_{sylvester} B_{sylvester} \tag{14}$$

$$A_{sylvester} = \begin{bmatrix} & | & | & \\ a & b & \dots \\ & | & | & \end{bmatrix}$$

$$B_{sylvester} = \begin{bmatrix} & - & a^T & - \\ - & b^T & - \\ & \vdots & & \end{bmatrix}$$

```
Algorithm 1: Optimal Sensor Placement With Approximate Observability Gramian
```

```
1.Initialize the algorithm with a very small set of sensors, selected\_obs.
2.Set \mu and max iteration for the Low Rank Smith method.
3.Set max terms for the infinite series and projection rank cutoff.
4.Compute A_{\mu}, which is A_{\mu} = (-M^{-1}A - \mu I)(-M^{-1}A + \mu I)^{-1}.
5.Diagonalize A_{\mu} so that A_{\mu} = V_{A_{\mu}}D_{A_{\mu}}V_{A_{\mu}}^{-1}.
6.Compute L = (-M^{-1}A + \mu I)^{-1} and R = (-M^{-1}A)^T + \mu I)^{-1}.

for i = 0, 1, 2, ... max sensor do

1. Use the Low Rank Smith method to diagonalize the current observability gramian, Q, such that Q = U_{pre}\Sigma_{pre}U_{pre}

for j not in selected_obs do

1. Initialize A_{sylvester,j} = L(:,j) and denote L(:,j) = l_j
2. Initialize B_{sylvester,j} = R(j:) and denote R(j:) = r_j

for k = 1, ... max terms do

1. A_{sylvester,column_k} = V_{A_{\mu}}D_{A_{\mu}}^kV_{A_{\mu}}^{-1}l_j.
2. Append A_{sylvester,column_k} = V_{A_{\mu}}D_{A_{\mu}}^kV_{A_{\mu}}^{-1}l_j.
3. B_{sylvester,row_k} = r_jV_{A_{\mu}}^{-1}/D_{A_{\mu}}^kV_{A_{\mu}}^{-1}.
4. Append B_{sylvester,row_k} as a new row to B_{sylvester,j}.
end
3. Compute the objective function, det(I - 2\mu B_{sylvester,j}U_{pre,top}\Sigma_{pre,top}^{-1}U_{pre,top}^{-1}A_{sylvester,j}) end
2. Select the ith sensor location based on the maximum value of the
```

- 2. Select the ith sensor location based on the maximum value of the objective function
- 3. Add this selected sensor to selected\_obs

end

Now, let's see the time complexity of the algorithm for adding one more sensor. The time complexity of diagonalizing the observability gramian at the first step of the i loop is bounded by  $O(n^3)$ 

The time complexity of computing a term in the infinity series is  $O(n^2)$  because  $l_j$  and  $r_j$  are rank 1 vectors. The rank of  $I-2\mu B_{sylvester,j} U_{pre,top} \Sigma_{pre,top}^{-1} U'_{pre,top} A_{sylvester,j}$  is determined by the maximum number of terms in the infinity series expansion, and the time complexity of forming this matrix is  $O(max\_terms\ n\ projection\_rank)$ .

Therefore, the overall time complexity for computing one objective function is bounded by  $O(kn^2)$ , and k is the maximum number of terms we choose in the infinity series. Therefore, the overall time complexity of adding a new sensor is  $O(kn^3)$ . If we choose k to be 1, which seems to work. Then the time complexity of finding a new sensor is  $O(n^3)$ . The most naive method is  $O(n^4)$ .