Name - Jasvender Chauhan Roll No - 4549 Course - B.Sc. Prog. with Electronics Submitted to - Mr. Sandeep kumar Sir Numerical Method (Assignment) $y_0 = 1$, $y_0 = 1$ y(1.2) = ? $\chi_1 = \chi_0 + \chi h = (1 + 0)$ $2 = 1 + 2 \times 0.1$ = 1 + 0.2 = 1.2Euler method (1) $y_{n+1} = y_n + hf(x_n, y_n)$ put n=0 $y_1 = y_0 + hf(x_0, y_0)$ = |+0.1 (-12) = | -0. | = 0.9 $y_2 = y_1 + n \neq (x_1, y_1)$ $= 0.9 + 0.1 (0.9)^2$ = 0.819 Hence, y(1.2) = 0.819

(ii) Backward Fuler method

$$y = y_0 + hf(x_c, y_c) = |+0 \cdot |(-1)^2 = 0.9$$
 $y_1(1) = y_0 + \frac{h}{2}[f(x_c, y_c) + f(x_1, y_c)]$
 $= |+0 \cdot |[f(x_c, y_c)] = |+0$

$$y_2 = y_1 + x (x_{3/2}, y_{3/2})$$

$$x_1 = x_0 + y_h = |+ 0| = |-|$$

$$\chi_2 = \chi_0 + 0.2 = 1 + 0.2 = 1.2$$

Now

$$y_1 = y_0 + hf(x_0, y_0) = 0 + 0.1(x_0, y_0)$$

$$y'_1 = y_0 + \frac{x}{2} (f(x_0, y_0) + f(x_1, y_1))$$

$$= 0 + 0.1 [(x_0, y_0) + (x_1, y_1)]$$

$$= 0.05 \left[1 + 0 + 1.1 + 0.1 \right) = 0.1$$

$$y_2 = y_2 + h \neq (x_1, y_1)$$

$$- y_1 + h(x_1) = 0.1 + 0.1(1.1 + 0.11)$$

$$\frac{y'}{2} = y + \frac{h}{2} \left[f(x_1 + y_1) + f(x_2 + y_2) \right]
= 0.11 + 0.1 \left[(x_1 + y_1) + (x_2 + y_2) \right]
= 0.11 + 0.1 \left[(1.1 + 0.11) + (1.2 + 0.23) \right]
= 0.11 + 0.1 \left[2 \left[2.64] \right]$$

 $\frac{Sy}{Sx} = x^3 + 3y$

$$x_0 = 0$$
 $y_0 = 1$
 $h = 0.2$
 $y(6.2) = 2$

using Euler method $4_1 = x_0 + 0.2 = 0.2$

$$\chi_2 = \chi_0 + 2h = 6 + 2 \times 6.2 = 0.4$$

$$y_1 = y_0 + hf(x_0, y_0) = y_0 + h(x_0^3 + 3y_0)
 = 1 + 0.2 (0^3 + 3x_1) = 1 + 0.2 \times 3
 [y_1 = 1 + 0.6 = 1.6]$$

 $y_2 = y_1 + h \neq (x_1, y_1)$ $= y_1 + h(x_1^3 + 3y_1)$ y = 1.6+0.2 (0.23 + 3×1.6) J2 = 2.5616 Ay. (5) 9=1,2 As Plies b/w 1& (x+1). $M_0 = 0$, $M_3 = 0$ Equation is Mp-1 + 4 Mp + Mp+1 = 6 (yp-1-2 yp-1-yp+1) put 1=1 $4M_1 + M_2 = 6(3-2 \times 10 + 29)$ $4M_1 + M_2 = 6(3-20+29)$ $4M_1 + M_2 = 72 - 0$ put P=2 $M_1 + 4M_2 + M_3 = \frac{6}{32} (y_1 - 2y_2 + y_3)$ M, +4M2 = 6 (10-2x29+65) $M_1 + 4M_2 = 6(10 - 58 + 65)$ M, +4M, = 102 - (11)

From D & 1 M X4 - (1) 16 M, +4M2 - M, -4M2 = 288-102 15 M, = 186 M, = 12.4 From (1) 12.4 + 4M2 = 102 4M, = 89.6 M2 = 22.4 we know that So, we will know from equation for each internal $f(u) = \frac{(xp+1-u)^3}{6n} Mp + \frac{(x-up)^3 Mp+1}{6n}$ $\frac{\chi_{i+1}^2 - \chi}{h} \left(y_i - \frac{h^2}{b} M_i \right) + \frac{\chi - \chi_i}{h} \left(y_i + 1 - \frac{h^2}{b} M_i + 1 \right)$ Put 9=0 x: Lx Lx, that means 16262 $(x_1-x)^3$ $M_0 - (x-x_0)^3$ $M_1 + 2x_1-x_1$ $(y_0 - \frac{h^2}{6}M_0)$ + 21-x (9, + 12 M1) (2-4)3 x0 + (4-1)3 12.4 +2-4 (3-6 x0) + 4-1 (10-1 X12.4)

$$= 2.06 (x-1)^3 + (2-4)^3 + (4-1)(7.933)$$

=
$$2^{-1}$$
 $(2^3 - 1 - 34)(x-1)$

$$= 2.06x^3 - 6.184^2 + 11.114 - 9.993$$

$$x_2$$
 $\angle x \angle x_3$ $3 \angle x \angle y$

$$f(x) = \frac{(x_3-x)^2}{6h} M_2 + \frac{(u-x_2)^3}{6h} M_3$$

$$+\frac{23-4}{h}\left(y_2-\frac{h^2}{6}M_3\right)$$

$$\frac{1}{h} = \frac{2 - \chi_2}{h} \left(\frac{y_3 - h^2}{6} M_3 \right)$$

=
$$(y-x)^3$$
 3.733 + $(3.x)(25.266)$ + $(x-3)(65)$

$$= [64-x^3-124(4-x)]_{3.7333} + (3-x)(25.266) + (x-3) 65$$

$$= (64 - x^3 - 48x + 124^2) \cdot 3 \cdot 7333 \cdot + (3-x)(25 \cdot 266) + (3\cdot 3)(65)$$

$$f(x) = 238.912 - 3.733x^3 - 179.184x + 44.796x^2 + 75.798 - 25.266x + 65x - 195$$

C

C

000

500

C

C

Hence, which spline valid Pn (3,4) is

 $f(4) = -3.733x^2 + 44.796x^2 - 139.45x + 119.7$

From the given data
Case I:- 0 24 21

 $\rho_{i}(4) = \frac{4.-4}{2i-2i} f(40) + \frac{2-20}{2i-20} f(21)$

= 2-1 X1 + 4-0 X2

P(4) = (1-4)+24= 1-x+24

P, (4) = 14+1.

Cox T = 1/2 X L2

P2(4) = 4-4, A(40) + 4-40 A(41).

 $\frac{4-2}{1-2}$ \times 2 + $\frac{2-1}{2-1}$ \times 5

=(2-x)2+5(x-1)

= 4-24+54-5

 $\rho_2(4) = 3x - 1$.

Case - III. - 2 CX 23

 $P_3(z) = \frac{x-x_1}{x_0-x_1} f(x_0) + \frac{x-x_0}{x_1-x_0} f(y_1)$

P3(x) = 2-3 ×5 + 2-2 ×10

$$= (3-x)5 + (x-2)10$$

$$= 15-54+104-20 = 54-5$$

Hence
$$g$$

$$\begin{cases}
5x+1 & 6 \leq x \leq 1 \\
9(4) = 3x-1 & 0 \leq x \leq 2
\end{cases}$$

$$\begin{cases}
5u-5 & 0 \leq x \leq 3
\end{cases}$$

Now, interpointing at
$$0 = 7 p(4) = 0.5 + 1 = 1.5$$

(1)
$$x = 1.5$$

 $= 7 p(x) = 3 \times 1.5 - 1 = 3.5$