Week 7. 쉽고 강력한 데이터프레임 라이브러리 - Pandas

pandas 데이터 입출력

Pandas에서 구조화하여 입출력 할 수 있는 데이터의 종류는 다음과 같음

- CSV
- Clipboard
- Excel
- JSON
- HTML
- Python Pickling
- HDF5
- SAS
- STATA
- SQL query
- Google BigQuery

여기서는 중요하다고 생각하는 csv, html, json, sas 파일을 주로 다루려고 함.

CSV(Comma Separated Values) 파일 입출력

인터넷 상의 csv 파일은 파일 path 대신 URL을 지정하면 다운로드하여 import

In [1]: import pandas as pd import numpy as np

The [18]: # nd need table('data(nandas 1 csyl' sen=' ')

Out[18]:

	а	b	С	d	message
0	1	2	3	4	hello
1	5	6	7	8	world
2	9	10	11	12	foo

Out[19]:

d e f message2

a b c d message

1 2 3 4 hello

In [20]: df2.to_csv('data/pandas-1-output.csv', index=True, header=True)

인터넷 상의 데이터베이스 자료 입력

world

다음과 같은 인터넷 상의 자료는 pandas_datareader 패키지의 DataReader 을 써서 바로 pandas로 입력 가능

- Yahoo! Finance
- Google Finance
- St.Louis FED (FRED)
- Kenneth French's data library
- World Bank
- Google Analytics

Out[24]:

	Div	Date	HomeTeam	AwayTeam	FTHG	FTAG	FTR	HTHG	HTAG	HTR		BbAv<2.5	Bb
0	E0	13/08/16	Burnley	Swansea	0	1	А	0	0	D	•••	1.61	32
1	E0	13/08/16	Crystal Palace	West Brom	0	1	А	0	0	D	•••	1.52	33
2	E0	13/08/16	Everton	Tottenham	1	1	D	1	0	I	•••	1.77	32
3	E0	13/08/16	Hull	Leicester	2	1	Н	1	0	I	•••	1.67	31
4	E0	13/08/16	Man City	Sunderland	2	1	Н	1	0	Н		2.48	34
5	E0	13/08/16	Middlesbrough	Stoke	1	1	D	1	0	Н		1.53	32
6	E0	13/08/16	Southampton	Watford	1	1	D	0	1	Α		1.75	33
7	E0	14/08/16	Arsenal	Liverpool	3	4	А	1	1	D		1.99	31
8	E0	14/08/16	Bournemouth	Man United	1	3	А	0	1	Α	•••	1.76	33
9	E0	15/08/16	Chelsea	West Ham	2	1	Н	0	0	D		2.01	33

 $10 \text{ rows} \times 65 \text{ columns}$

In [27]: import pandas_datareader.data as web import datetime

start = datetime.datetime(2015, 1, 1)
end = datetime.datetime(2016, 6, 30)

df = web.DataReader("KRX:005930", 'google', start, end)
df.tail(10)

Out[27]:

	Open	High	Low	Close	Volume
Date					
2016-06-17	1410000.0	1435000.0	1410000.0	1426000.0	328256
2016-06-20	1427000.0	1448000.0	1426000.0	1431000.0	268408
2016-06-21	1432000.0	1449000.0	1426000.0	1448000.0	193560
2016-06-22	1446000.0	1450000.0	1431000.0	1445000.0	177102
2016-06-23	1444000.0	1445000.0	1427000.0	1430000.0	224121
2016-06-24	1445000.0	1445000.0	1360000.0	1400000.0	408920
2016-06-27	1400000.0	1405000.0	1385000.0	1398000.0	236573
2016-06-28	1390000.0	1404000.0	1379000.0	1399000.0	213829
2016-06-29	1408000.0	1412000.0	1391000.0	1396000.0	208090
2016-06-30	1408000.0	1445000.0	1397000.0	1425000.0	272883

In [8]: df.describe()

Out[8]:

	Open	High	Low	Close	Volume
count	3.690000e+02	3.690000e+02	3.690000e+02	3.690000e+02	3.690000e+02
mean	1.286794e+06	1.299163e+06	1.273528e+06	1.286168e+06	2.312324e+05
std	1.011217e+05	1.006842e+05	9.993101e+04	1.004128e+05	1.024175e+05
min	1.068000e+06	1.074000e+06	1.033000e+06	1.067000e+06	9.177900e+04
25%	1.224000e+06	1.251000e+06	1.216000e+06	1.229000e+06	1.721340e+05
50%	1.287000e+06	1.298000e+06	1.272000e+06	1.284000e+06	2.039380e+05
75%	1.360000e+06	1.372000e+06	1.345000e+06	1.359000e+06	2.634640e+05
max	1.510000e+06	1.510000e+06	1.486000e+06	1.503000e+06	1.198180e+06

In [30]: %matplotlib inline
 import matplotlib.pyplot as plt
 plt.plot(df['Open'])

Out[30]: [<matplotlib.lines.Line2D at 0x89bc510>]

In [36]: plt.scatter(df['Close'],df['Volume'])

Out[36]: <matplotlib.collections.PathCollection at 0x8f63810>

In [37]: df['Open'].hist(bins=20)

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x89152b0>


```
In [10]: df.boxplot(column=['Open','Low','High'], return_type='dict')
Out[10]: {'boxes': [<matplotlib.lines.Line2D at 0x806a6b0>,
            <matplotlib.lines.Line2D at 0x807b490>,
           <matplotlib.lines.Line2D at 0x80865f0>],
           'caps': [<matplotlib.lines.Line2D at 0x8076590>,
            <matplotlib.lines.Line2D at 0x8076a50>,
            <matplotlib.lines.Line2D at 0x80826f0>,
            <matplotlib.lines.Line2D at 0x8082bb0>,
           <matplotlib.lines.Line2D at 0x808c850>,
            <matplotlib.lines.Line2D at 0x808cd10>],
           'fliers': [<matplotlib.lines.Line2D at 0x8076fb0>,
            <matplotlib.lines.Line2D at 0x8086550>,
           <matplotlib.lines.Line2D at 0x80916b0>],
           'means': [],
           'medians': [<matplotlib.lines.Line2D at 0x8076af0>,
           <matplotlib.lines.Line2D at 0x8082c50>,
            <matplotlib.lines.Line2D at 0x808cdb0>],
           'whiskers': [<matplotlib.lines.Line2D at 0x806ac90>,
            <matplotlib.lines.Line2D at 0x806ad30>,
           <matplotlib.lines.Line2D at 0x807bd50>,
            <matplotlib.lines.Line2D at 0x807bdf0>,
           <matplotlib.lines.Line2D at 0x8086eb0>,
           <matplotlib.lines.Line2D at 0x8086f50>]}
          1500000
          1400000
          1300000
          1200000
          1100000
```

High

pandas 데이터 합성

1000000

Open

Merge

merge 명령은 두 데이터 프레임의 공통 열 혹은 인덱스를 기준으로 데이터베이스 테이블 조인(join)과 같이 두 개의 테이블을 합친다.

merge 명령으로 두 데이터프레임 합치면, 공통 열을 기준으로 데이터를 찾아서 합친다.

```
pd.merge(df1, df2, how='방식', on=['key1','key2'])
```

how

- outer: null 이 있어도 양쪽 데이터를 모두 보여줌, 이름이 같은 열은 모두 기준 열로 사용된다.
- left, right: left는 첫번째 데이터프레임 기준 merge

on

• 명시적 기준열 설정

Out[4]:

	data1	key
0	0	b
1	1	b
2	2	а
3	3	С
4	4	а
5	5	а
6	6	b

Out[5]:

	data2	key
0	0	а
1	1	b
2	2	d

In [6]: pd.merge(df1, df2) Out[6]: data1 key data2 0 b b 6 b 3 2 0 4 0 а 5 а In [7]: pd.merge(df1, df2, how='outer') Out[7]: data1 key data2 0.0 1.0 1.0 1.0 6.0 1.0 b 3 2.0 0.0 4 4.0 0.0 5 5.0 0.0 6 3.0 NaN NaN d 2.0 In [8]: | pd.merge(df1, df2, how='left') Out[8]: data1 key data2 0 b 1.0 b 1.0 0.0 а 3 3 NaN 4 4 0.0 5 5 0.0 а

기준열이 데이터 프레임마다 다르다면?

b

1.0

6 6

각각의 데이터프레임에 대해 다르게 정하려면 left_on , right_on , left_index , right_index 인수를 사용함

```
In [13]: pd.merge(df1, df2, left_on='key1', right_on="k1")
```

Out[13]:

		key1	key2	lval	k1	k2	rval
0	(foo	one	1	foo	one	4
1		foo	one	1	foo	one	5
2		foo	two	2	foo	one	4
3		foo	two	2	foo	one	5
4		bar	one	3	bar	one	6
5		bar	one	3	bar	two	7

Join

merge 대신 사용 할 수 있음(똑같이 사용)

Concat

concat 명령을 사용하면 기준 열(key column)을 사용하지 않고 단순히 데이터를 추가한다.

기본적으로는 아래에 데이터 행을 덧붙이지만 (인덱스가 중복됨) axis=1 로 인수를 설정하면 인덱스 기준으로 옆으로 데이터 열를 덧붙인다.

```
In [9]: s1 = pd.Series([0, 1], index=['a', 'b'])
    s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
    s3 = pd.Series([5, 6], index=['f', 'g'])
```

```
In [10]: pd.concat([s1, s2, s3])
Out[10]: a
              0
              1
              2
         d
              3
              4
         e
         f
              5
         g
         dtype: int64
In [11]: s4 = pd.concat([s1, s2, s3], axis=1)
Out[11]:
         a 0.0
                NaN NaN
         b 1.0
                 NaN NaN
          c NaN 2.0
                     NaN
         d NaN 3.0
                     NaN
         e NaN 4.0
                     NaN
         f NaN NaN 5.0
         g NaN NaN 6.0
In [17]: s4.isnull().sum(axis=0)
Out[17]: 0
              5
              4
         2
              5
         dtype: int64
In [18]: s4.fillna(method='pad')
Out[18]:
         a 0.0 NaN NaN
          b 1.0 NaN NaN
            1.0 2.0
                    NaN
         d 1.0 3.0
                    NaN
           1.0 4.0
                    NaN
                    5.0
            1.0 4.0
            1.0 4.0
                    6.0
```

In [20]: s4.fillna(s4.mean(axis=0)) Out[20]: 3.0 5.5 0.0 3.0 5.5 b 1.0 2.0 5.5 0.5 d 0.5 3.0 5.5 0.5 4.0 5.5 0.5 3.0 5.0 3.0 6.0 pandas 기본 연산 • 연산 방향: axis=1 인 경우 행방향 np.random.seed(1) In [88]: df = pd.DataFrame(np.random.randint(10, size=(4, 8))) Out[88]: 6 5 5 8 9 0 0 6 9 2 5 2 9 0

: 0 1 2 3 4 5 6 7 sum 0 5 8 9 5 0 0 1 7 35 1 6 9 2 4 5 2 4 2 34 2 4 7 7 9 1 7 0 6 41 3 9 9 7 6 9 1 0 1 42 In [90]: # 刻 합계 df.ix['Total'] = df.sum(axis=0) df

Out[90]:

	0	1	2	3	4	5	6	7	sum
0	5	8	9	5	0	0	1	7	35
1	6	9	2	4	5	2	4	2	34
2	4	7	7	9	1	7	0	6	41
3	9	9	7	6	9	1	0	1	42
Total	24	33	25	24	15	10	5	16	152

그룹 연산

그룹 연산은 피봇 테이블과 달리 키에 의해서 결정되는 데이터가 복수개가 있어도 괜찮다. 대신 연산을 통해 복수개의 그룹 데이터에 대한 대표값을 정한다. 이를 split-apply-combine 연산이라고도 한다.

- split 단계
 - 특정 Key 값에 따라 데이터 그룹을 만든다.
- apply 단계
 - 각각의 그룹에 대해 원하는 연산을 하여 대표값을 생성한다.
 - count(), mean(), median(), min(), max()
 - sum(), prod(), std(), var(), quantile()
 - first(), last()
- Combine 단계
 - 그룹의 Key 값에 대해 원하는 연산의 결과를 Value로 지정한 dict를 생성한다.

groupby 명령의 인수

groupby 명령에서 Key 인수로 입력할 수 있는 값은 다음과 같다.

- 열 또는 열의 리스트
- 행인덱스
- 사전/함수: Column의 값을 사전에 매핑(mapping)하거나 함수 처리하여 나온 결괏값을 키로 인식

문제!

- 1. key1 값에 따른 data1의 평균은?
- 2. 복합 key (key1, key2) 값에 따른 data1의 평균은?

Out[96]:

	data1	data2	key1	key2
0	-0.416758	-0.841747	а	one
1	-0.056267	0.502881	а	two
2	-2.136196	-1.245288	b	one
3	1.640271	-1.057952	b	two
4	-1.793436	-0.909008	а	one

0.400157

0.978738

2.240893

Name: data1, dtype: float64

two one

two

b

특별한 group 별 연산

● 통계: describe()

• 그룹을 대표하는 하나의 값을 계산 : agg(), aggregate()

• 대표값으로 필드를 교체 : transform()

• 그룹 전체를 변형하는 계산 : apply()

In [54]: tips = pd.read_csv('data/tips.csv')

tips.head()

Out[54]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [55]: # 식사대금와 팁의 비율

tips['tip_pct'] = tips['tip'] / tips['total_bill']

tips.head()

Out[55]:

	total_bill	tip	sex	smoker	day	time	size	tip_pct
0	16.99	1.01	Female	No	Sun	Dinner	2	0.059447
1	10.34	1.66	Male	No	Sun	Dinner	3	0.160542
2	21.01	3.50	Male	No	Sun	Dinner	3	0.166587
3	23.68	3.31	Male	No	Sun	Dinner	2	0.139780
4	24.59	3.61	Female	No	Sun	Dinner	4	0.146808

In [56]: tips.describe()

Out[56]:

	total_bill	tip	size	tip_pct
count	244.000000	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672	0.160803
std	8.902412	1.383638	0.951100	0.061072
min	3.070000	1.000000	1.000000	0.035638
25%	13.347500	2.000000	2.000000	0.129127
50%	17.795000	2.900000	2.000000	0.154770
75%	24.127500	3.562500	3.000000	0.191475
max	50.810000	10.000000	6.000000	0.710345

```
tips['total_bill'].groupby([tips.sex]).count()
Out[69]: sex
          Female
                     87
         Male
                    157
         Name: total_bill, dtype: int64
In [70]: #성별과 날짜
          tips['total_bill'].groupby([tips.sex, tips.day]).count()
Out[70]: sex
                  day
                           9
          Female
                  Fri
                  Sat
                          28
                          18
                  Sun
                  Thur
                          32
                          10
         Male
                  Fri
                          59
                  Sat
                  Sun
                          58
                  Thur
                          30
         Name: total_bill, dtype: int64
In [79]: gs_pct = tips['tip_pct'].groupby([tips.sex, tips.day])
          gs_pct.mean()
Out[79]: sex
                  day
          Female
                  Fri
                          0.199388
                          0.156470
                  Sat
                  Sun
                          0.181569
                          0.157525
                  Thur
         Male
                  Fri
                          0.143385
                          0.151577
                  Sat
                          0.162344
                  Sun
                  Thur
                          0.165276
         Name: tip_pct, dtype: float64
In [81]: # column 이름을 결과 별로 바꿀 수도 있음.
          gs_pct.agg({'tip_mean' : 'mean', 'standard_dev' : 'std'})
Out[81]:
                       standard_dev tip_mean
                  day
          sex
                  Fri
                       0.042170
                                    0.199388
                       0.060243
                                    0.156470
                  Sat
          Female
                  Sun
                       0.071430
                                    0.181569
                  Thur 0.030689
                                    0.157525
                  Fri
                       0.036228
                                    0.143385
                  Sat
                       0.046944
                                    0.151577
          Male
                       0.088529
                                    0.162344
                  Sun
```

Thur 0.045866

In []:

0.165276

In [69]: #성별 데이터