Package 'LearnBayes'

August 29, 2013

beta.select									 									9
betabinexch									 									9
betabinexch0									 								. 1	0
bfexch									 								. 1	1
bfindep							 		 								. 1	2
binomial.beta.mix																	. 1	2
birdextinct																	. 1	3
birthweight																		4
blinreg																	. 1	5
blinregexpected .																		6
blinregpred																		7
bprobit.probs																•		8
bradley.terry.post																•		9
breastcancer																•		9
calculus.grades .																•		0
cancermortality .																•		21
careertraj.setup .																•		1
cauchyerrorpost.																•		2
chemotherapy																		.2
ctable																		.3 !3
																		د. 4
darwin																		.4 !4
discint																		.4 !5
discrete.bayes																		
discrete.bayes.2 .																		6
dmnorm																		7
dmt																		7
donner																		8
election																		9
election.2008																		9
footballscores																		0
gibbs																		0
groupeddatapost.																		1
hearttransplants .																		2
hiergibbs																		3
histprior																		3
howardprior																		4
impsampling																		5
indepmetrop																		6
iowagpa																		7
jeter2004																		7
laplace																		8
lbinorm																		9
logctablepost									 								. 4	0
logisticpost																		0
logpoissgamma .																		-1
logpoissnormal .																		2
marathontimes																	. 4	3
mnormt.onesided									 								. 4	.3

R	topics	documented:
---	--------	-------------

mnormt.twosided	44
mycontour	45
normal.normal.mix	46
normal.select	47
normchi2post	47
normpostpred	48
normpostsim	49
ordergibbs	5 0
obetap	5 0
bbetat	51
odisc	52
odiscp	5 2
poissgamexch	5 3
poisson.gamma.mix	54
predplot	55
prior.two.parameters	55
puffin	56
rdirichlet	57
reg.gprior.post	57
regroup	58
J I E	59
rigamma	60
mnorm	60
rmt	61
robustt	62
rtruncated	63
rwmetrop	64
schmidt	65
simcontour	66
sir	66
sluggerdata	67
soccergoals	68
stanfordheart	69
strikeout	69
studentdata	7 0
ransplantpost	71
riplot	71
weibullregpost	72

4 baseball.1964

achievement

School achievement data

Description

Achievement data for a group of Austrian school children

Usage

achievement

Format

A data frame with 109 observations on the following 7 variables.

Gen gender of child where 0 is male and 1 is female

Age age in months

IQ iq score

math1 test score on mathematics computation

math2 test score on mathematics problem solving

read1 test score on reading speed

read2 test score on reading comprehension

Source

Abraham, B., and Ledolter, J. (2006), Introduction to Regression Modeling, Duxbury.

baseball.1964

Team records in the 1964 National League baseball season

Description

Head to head records for all teams in the 1964 National League baseball season. Teams are coded as Cincinnati (1), Chicago (2), Houston (3), Los Angeles (4), Milwaukee (5), New York (6), Philadelphia (7), Pittsburgh (8), San Francisco (9), and St. Louis (10).

Usage

baseball.1964

bayes.influence 5

Format

A data frame with 45 observations on the following 4 variables.

Team.1 Number of team 1 **Team.2** Number of team 2

Wins.Team1 Number of games won by team 1 **Wins.Team2** Number of games won by team 2

Source

www.baseball-reference.com website.

bayes.influence

Observation sensitivity analysis in beta-binomial model

Description

Computes probability intervals for the log precision parameter K in a beta-binomial model for all "leave one out" models using sampling importance resampling

Usage

```
bayes.influence(theta,data)
```

Arguments

theta matrix of simulated draws from the posterior of (logit eta, log K)

data matrix with columns of counts and sample sizes

Value

summary vector of 5th, 50th, 95th percentiles of log K for complete sample posterior summary.obs matrix where the ith row contains the 5th, 50th, 95th percentiles of log K for

posterior when the ith observation is removed

Author(s)

Jim Albert

```
data(cancermortality)
start=array(c(-7,6),c(1,2))
fit=laplace(betabinexch,start,cancermortality)
tpar=list(m=fit$mode,var=2*fit$var,df=4)
theta=sir(betabinexch,tpar,1000,cancermortality)
intervals=bayes.influence(theta,cancermortality)
```

6 bayes.probit

bayes.model.selection Bayesian regression model selection using G priors

Description

Using Zellner's G priors, computes the log marginal density for all possible regression models

Usage

```
bayes.model.selection(y, X, c, constant=TRUE)
```

Arguments

y vector of response valuesX matrix of covariatesc parameter of the G prior

constant logical variable indicating if a constant term is in the matrix X

Value

mod.prob data frame specifying the model, the value of the log marginal density and the

value of the posterior model probability

converge logical vector indicating if the laplace algorithm converged for each model

Author(s)

Jim Albert

Examples

```
data(birdextinct)
logtime=log(birdextinct$time)
X=cbind(1,birdextinct$nesting,birdextinct$size,birdextinct$status)
bayes.model.selection(logtime,X,100)
```

bayes.probit Simulates from a probit binary response regression model using data augmentation and Gibbs sampling

Description

Gives a simulated sample from the joint posterior distribution of the regression vector for a binary response regression model with a probit link and a informative normal(beta, P) prior. Also computes the log marginal likelihood when a subjective prior is used.

bayesresiduals 7

Usage

```
bayes.probit(y,X,m,prior=list(beta=0,P=0))
```

Arguments

y vector of binary responses

X covariate matrix

number of simulations desired

prior list with components beta, the prior mean, and P, the prior precision matrix

Value

beta matrix of simulated draws of regression vector beta where each row corresponds

to one draw

log.marg simulation estimate at log marginal likelihood of the model

Author(s)

Jim Albert

Examples

```
response=c(0,1,0,0,0,1,1,1,1,1)
covariate=c(1,2,3,4,5,6,7,8,9,10)
X=cbind(1,covariate)
prior=list(beta=c(0,0),P=diag(c(.5,10)))
m=1000
s=bayes.probit(response,X,m,prior)
```

bayesresiduals

Computation of posterior residual outlying probabilities for a linear regression model

Description

Computes the posterior probabilities that Bayesian residuals exceed a cutoff value for a linear regression model with a noninformative prior

Usage

```
bayesresiduals(lmfit,post,k)
```

Arguments

1mfit output of the regression function lm

post list with components beta, matrix of simulated draws of regression parameter,

and sigma, vector of simulated draws of sampling standard deviation

k cut-off value that defines an outlier

8 bermuda.grass

Value

vector of posterior outlying probabilities

Author(s)

Jim Albert

Examples

```
 \begin{array}{l} {\rm chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)} \\ {\rm temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)} \\ {\rm X=cbind(1,chirps)} \\ {\rm lmfit=lm(temp^X)} \\ {\rm m=1000} \\ {\rm post=blinreg(temp,X,m)} \\ {\rm k=2} \\ {\rm bayesresiduals(lmfit,post,k)} \\ \end{array}
```

bermuda.grass

Bermuda grass experiment data

Description

Yields of bermuda grass for a factorial design of nutrients nitrogen, phosphorus, and potassium.

Usage

bermuda.grass

Format

A data frame with 64 observations on the following 4 variables.

y yield of bermuda grass in tons per acre

Nit level of nitrogen

Phos level of phosphorus

Pot level of potassium

Source

McCullagh, P., and Nelder, J. (1989), Generalized Linear Models, Chapman and Hall.

beta.select 9

beta.select Selection of Beta Prior Given Knowledge of Two Quantile	es
---	----

Description

Finds the shape parameters of a beta density that matches knowledge of two quantiles of the distribution

Usage

```
beta.select(quantile1, quantile2)
```

Arguments

quantile1 list with components p, the value of the first probability, and x, the value of the

first quantile

quantile2 list with components p, the value of the second probability, and x, the value of

the second quantile

Value

vector of shape parameters of the matching beta distribution

Author(s)

Jim Albert

Examples

```
# person believes the median of the prior is 0.25 # and the 90th percentile of the prior is 0.45 quantile1=list(p=.5,x=0.25) quantile2=list(p=.9,x=0.45) beta.select(quantile1,quantile2)
```

betabinexch

Log posterior of logit mean and log precision for Binomial/beta exchangeable model

Description

Computes the log posterior density of logit mean and log precision for a Binomial/beta exchangeable model

Usage

```
betabinexch(theta,data)
```

10 betabinexch0

Arguments

data a matrix with columns y (counts) and n (sample sizes)

Value

value of the log posterior

Author(s)

Jim Albert

Examples

n=c(20,20,20,20,20)
y=c(1,4,3,6,10)
data=cbind(y,n)
theta=c(-1,0)
betabinexch(theta,data)

betabinexch0 Log posterior of mean and precision for Binomial/beta exchangeable

model

Description

Computes the log posterior density of mean and precision for a Binomial/beta exchangeable model

Usage

```
betabinexch0(theta,data)
```

Arguments

theta vector of parameter values of eta and K

data a matrix with columns y (counts) and n (sample sizes)

Value

value of the log posterior

Author(s)

Jim Albert

bfexch 11

Examples

```
n=c(20,20,20,20,20)
y=c(1,4,3,6,10)
data=cbind(y,n)
theta=c(.1,10)
betabinexch0(theta,data)
```

bfexch

Logarithm of integral of Bayes factor for testing homogeneity of proportions

Description

Computes the logarithm of the integral of the Bayes factor for testing homogeneity of a set of proportions

Usage

```
bfexch(theta,datapar)
```

Arguments

theta value of the logit of the prior mean hyperparameter

datapar list with components data, matrix with columns y (counts) and n (sample sizes),

and K, prior precision hyperparameter

Value

value of the logarithm of the integral

Author(s)

Jim Albert

```
y=c(1,3,2,4,6,4,3)
n=c(10,10,10,10,10,10,10)
data=cbind(y,n)
K=20
datapar=list(data=data,K=K)
theta=1
bfexch(theta,datapar)
```

12 binomial.beta.mix

	bfindep	Bayes factor against independence assuming alternatives close to in- dependence
--	---------	--

Description

Computes a Bayes factor against independence for a two-way contingency table assuming a "close to independence" alternative model

Usage

```
bfindep(y,K,m)
```

Arguments

matrix	of	counts
	matrix	matrix of

K Dirichlet precision hyperparameter

m number of simulations

Value

bf value of the Bayes factor against hypothesis of independence

nse estimate of the simulation standard error of the computed Bayes factor

Author(s)

Jim Albert

Examples

```
y=matrix(c(10,4,6,3,6,10),c(2,3))
K=20
m=1000
bfindep(y,K,m)
```

binomial.beta.mix

Computes the posterior for binomial sampling and a mixture of betas prior

Description

Computes the parameters and mixing probabilities for a binomial sampling problem where the prior is a discrete mixture of beta densities.

birdextinct 13

Usage

```
binomial.beta.mix(probs,betapar,data)
```

Arguments

probs vector of probabilities of the beta components of the prior

betapar matrix where each row contains the shape parameters for a beta component of

the prior

data vector of number of successes and number of failures

Value

probs vector of probabilities of the beta components of the posterior

betapar matrix where each row contains the shape parameters for a beta component of

the posterior

Author(s)

Jim Albert

Examples

```
probs=c(.5, .5)
beta.par1=c(15,5)
beta.par2=c(10,10)
betapar=rbind(beta.par1,beta.par2)
data=c(20,15)
binomial.beta.mix(probs,betapar,data)
```

birdextinct

Bird measurements from British islands

Description

Measurements on breedings pairs of landbird species were collected from 16 islands about Britain over several decades.

Usage

birdextinct

14 birthweight

Format

A data frame with 62 observations on the following 5 variables.

species name of bird speciestime average time of extinction on the islandsnesting average number of nesting pairs

size size of the species, 1 or 0 if large or small

status staus of the species, 1 or 0 if resident or migrant

Source

Pimm, S., Jones, H., and Diamond, J. (1988), On the risk of extinction, American Naturalists, 132, 757-785.

birthweight

Birthweight regression study

Description

Dobson describes a study where one is interested in predicting a baby's birthweight based on the gestational age and the baby's gender.

Usage

birthweight

Format

A data frame with 24 observations on the following 3 variables.

age gestational age in weeks

gender gender of the baby where 0 (1) is male (female)

weight birthweight of baby in grams

Source

Dobson, A. (2001), An Introduction to Generalized Linear Models, New York: Chapman and Hall.

blinreg 15

Description

Gives a simulated sample from the joint posterior distribution of the regression vector and the error standard deviation for a linear regression model with a noninformative or g prior.

Usage

```
blinreg(y,X,m,prior=NULL)
```

Arguments

У	vector of responses
X	design matrix
m	number of simulations desired
prior	list with components c0 and beta0 of Zellner's g prior

Value

beta	matrix of simulated draws of beta where each row corresponds to one draw
sigma	vector of simulated draws of the error standard deviation

Author(s)

Jim Albert

```
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
m=1000
s=blinreg(temp,X,m)
```

16 blinregexpected

h1;	nragaynaatad
DII	nregexpected

Simulates values of expected response for linear regression model

Description

Simulates draws of the posterior distribution of an expected response for a linear regression model with a noninformative prior

Usage

```
blinregexpected(X1, theta. sample)
```

Arguments

X1 matrix where each row corresponds to a covariate set

theta.sample list with components beta, matrix of simulated draws of regression vector, and

sigma, vector of simulated draws of sampling error standard deviation

Value

matrix where a column corresponds to the simulated draws of the expected response for a given covariate set

Author(s)

Jim Albert

```
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
m=1000
theta.sample=blinreg(temp,X,m)
covset1=c(1,15)
covset2=c(1,20)
X1=rbind(covset1,covset2)
blinregexpected(X1,theta.sample)
```

blinregpred 17

blinregpred	Simulates values of predicted response for linear regression model

Description

Simulates draws of the predictive distribution of a future response for a linear regression model with a noninformative prior

Usage

```
blinregpred(X1, theta.sample)
```

Arguments

X1 matrix where each row corresponds to a covariate set

theta.sample list with components beta, matrix of simulated draws of regression vector, and

sigma, vector of simulated draws of sampling error standard deviation

Value

matrix where a column corresponds to the simulated draws of the predicted response for a given covariate set

Author(s)

Jim Albert

```
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1)
temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3)
X=cbind(1,chirps)
m=1000
theta.sample=blinreg(temp,X,m)
covset1=c(1,15)
covset2=c(1,20)
X1=rbind(covset1,covset2)
blinregpred(X1,theta.sample)
```

18 bprobit.probs

bprobit.probs

Simulates fitted probabilities for a probit regression model

Description

Gives a simulated sample for fitted probabilities for a binary response regression model with a probit link and noninformative prior.

Usage

```
bprobit.probs(X1,fit)
```

Arguments

X1 matrix where each row corresponds to a covariate set

fit simulated matrix of draws of the regression vector

Value

matrix of simulated draws of the fitted probabilities, where a column corresponds to a particular covariate set

Author(s)

Jim Albert

```
response=c(0,1,0,0,0,1,1,1,1,1)
covariate=c(1,2,3,4,5,6,7,8,9,10)
X=cbind(1,covariate)
m=1000
fit=bayes.probit(response,X,m)
x1=c(1,3)
x2=c(1,8)
X1=rbind(x1,x2)
fittedprobs=bprobit.probs(X1,fit$beta)
```

bradley.terry.post 19

bradley.terry.post

Log posterior of a Bradley Terry random effects model

Description

Computes the log posterior density of the talent parameters and the log standard deviation for a Bradley Terry model with normal random effects

Usage

```
bradley.terry.post(theta,data)
```

Arguments

theta vector of talent parameters and log standard deviation

data matrix with columns team1, team2, wins by team1, and wins by team2

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
data(baseball.1964)
team.strengths=rep(0,10)
log.sigma=0
bradley.terry.post(c(team.strengths,log.sigma),baseball.1964)
```

breastcancer

Survival experience of women with breast cancer under treatment

Description

Collett (1994) describes a study to evaluate the effectiveness of a histochemical marker in predicting the survival experience of women with breast cancer.

Usage

breastcancer

20 calculus.grades

Format

A data frame with 45 observations on the following 3 variables.

time survival time in months

status censoring indicator where 1 (0) indicates a complete (censored) survival time

stain indicates by a 0 (1) if tumor was negatively (positively) stained

Source

Collett, D. (1994), Modelling Survival Data in Medical Research, London: Chapman and Hall.

calculus.grades

Calculus grades dataset

Description

Grades and other variables collected for a sample of calculus students.

Usage

calculus.grades

Format

A data frame with 100 observations on the following 3 variables.

grade indicates if student received a A or B in class

prev.grade indicates if student received a A in prerequisite math class

act score on the ACT math test

Source

Collected by a colleague of the author at his university.

cancermortality 21

cancermortality	Cancer mortality data
-----------------	-----------------------

Description

Number of cancer deaths and number at risk for 20 cities in Missouri.

Usage

```
cancermortality
```

Format

A data frame with 20 observations on the following 2 variables.

- y number of cancer deaths
- n number at risk

Source

Tsutakawa, R., Shoop, G., and Marienfeld, C. (1985), Empirical Bayes Estimation of Cancer Mortality Rates, Statistics in Medicine, 4, 201-212.

careertraj.setup Setup for Career Trajectory Application

Description

Setups the data matrices for the use of WinBUGS in the career trajectory application.

Usage

```
careertraj.setup(data)
```

Arguments

data	data matrix for ballplayers with variables Player, Year, Age, G, AB, R, H, X2B,
	X3B HR RBI BB SO

Value

player.names	vector of player names
У	matrix of home runs for players where a row corresponds to the home runs for a player during all the years of his career
n	matrix of AB-SO for all players
X	matrix of ages for all players for all years of their careers
Т	vector of number of seasons for all players
N	number of players

22 cauchyerrorpost

Author(s)

Jim Albert

Examples

```
data(sluggerdata)
careertraj.setup(sluggerdata)
```

cauchyerrorpost

Log posterior of median and log scale parameters for Cauchy sampling

Description

Computes the log posterior density of (M,log S) when a sample is taken from a Cauchy density with location M and scale S and a uniform prior distribution is taken on (M, log S)

Usage

```
cauchyerrorpost(theta,data)
```

Arguments

theta vector of parameter values of M and log S data vector containing sample of observations

Value

value of the log posterior

Author(s)

Jim Albert

```
data=c(108, 51, 7, 43, 52, 54, 53, 49, 21, 48)
theta=c(40,1)
cauchyerrorpost(theta,data)
```

chemotherapy 23

chemotherapy

Chemotherapy treatment effects on ovarian cancer

Description

Edmunson et al (1979) studied the effect of different chemotherapy treatments following surgical treatment of ovarian cancer.

Usage

chemotherapy

Format

A data frame with 26 observations on the following 5 variables.

```
patient patient number
```

time survival time in days following treatment

status indicates if time is censored (0) or actually observed (1)

treat control group (0) or treatment group (1)

age age of the patient

Source

Edmonson, J., Felming, T., Decker, D., Malkasian, G., Jorgensen, E., Jefferies, J., Webb, M., and Kvols, L. (1979), Different chemotherapeutic sensitivities and host factors affecting prognosis in advanced ovarian carcinoma versus minimal residual disease, Cancer Treatment Reports, 63, 241-247.

ctable

Bayes factor against independence using uniform priors

Description

Computes a Bayes factor against independence for a two-way contingency table assuming uniform prior distributions

Usage

```
ctable(y,a)
```

Arguments

y matrix of counts

a matrix of prior hyperparameters

24 discint

Value

value of the Bayes factor against independence

Author(s)

Jim Albert

Examples

```
y=matrix(c(10,4,6,3,6,10),c(2,3))
a=matrix(rep(1,6),c(2,3))
ctable(y,a)
```

darwin

Darwin's data on plants

Description

Fifteen differences of the heights of cross and self fertilized plants quoted by Fisher (1960)

Usage

darwin

Format

A data frame with 15 observations on the following 1 variable.

difference difference of heights of two types of plants

Source

Fisher, R. (1960), Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd.

discint

Highest probability interval for a discrete distribution

Description

Computes a highest probability interval for a discrete probability distribution

Usage

```
discint(dist, prob)
```

discrete.bayes 25

Arguments

dist probability distribution written as a matrix where the first column contain the

values and the second column the probabilities

prob probability content of interest

Value

prob exact probability content of interval set set of values of the probability interval

Author(s)

Jim Albert

Examples

```
x=0:10
probs=dbinom(x,size=10,prob=.3)
dist=cbind(x,probs)
pcontent=.8
discint(dist,pcontent)
```

discrete.bayes

Posterior distribution with discrete priors

Description

Computes the posterior distribution for an arbitrary one parameter distribution for a discrete prior distribution.

Usage

```
discrete.bayes(df,prior,y,...)
```

Arguments

df name of the function defining the sampling density

prior vector defining the prior density; names of the vector define the parameter values

and entries of the vector define the prior probabilities

y vector of data values

... any further fixed parameter values used in the sampling density function

Value

prob vector of posterior probabilities

pred scalar with prior predictive probability

26 discrete.bayes.2

Author(s)

Jim Albert

Examples

```
prior=c(.25,.25,.25,.25)
names(prior)=c(.2,.25,.3,.35)
y=5
n=10
discrete.bayes(dbinom,prior,y,size=n)
```

discrete.bayes.2

Posterior distribution of two parameters with discrete priors

Description

Computes the posterior distribution for an arbitrary two parameter distribution for a discrete prior distribution.

Usage

```
discrete.bayes.2(df,prior,y=NULL,...)
```

Arguments

df	name of the function defining the sampling density of two parameters
prior	matrix defining the prior density; the row names and column names of the matrix
	define respectively the values of parameter 1 and values of parameter 2 and the
	entries of the matrix give the prior probabilities
у	y is a matrix of data values, where each row corresponds to a single observation
	any further fixed parameter values used in the sampling density function

Value

```
prob matrix of posterior probabilities
pred scalar with prior predictive probability
```

Author(s)

Jim Albert

```
p1 = seq(0.1, 0.9, length = 9)
p2 = p1
prior = matrix(1/81, 9, 9)
dimnames(prior)[[1]] = p1
dimnames(prior)[[2]] = p2
discrete.bayes.2(twoproplike,prior)
```

dmnorm 27

dmnorm	The probability density function for the multivariate normal (Gaussian) probability distribution
	stant, producting and relative

Description

Computes the density of a multivariate normal distribution

Usage

```
dmnorm(x, mean = rep(0, d), varcov, log = FALSE)
```

Arguments

x vector of length d or matrix with d columns, giving the coordinates of points where density is to evaluated

mean numeric vector giving the location parameter of the distribution

varcov a positive definite matrix representing the scale matrix of the distribution log a logical value; if TRUE, the logarithm of the density is to be computed

Value

vector of density values

Author(s)

Jim Albert

Examples

```
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
x <- c(2,14,0)
f <- dmnorm(x, mu, Sigma)
```

dmt

Probability density function for multivariate t

Description

Computes the density of a multivariate t distribution

Usage

```
dmt(x, mean = rep(0, d), S, df = Inf, log=FALSE)
```

28 donner

Arguments

X	vector of length d or matrix with d columns, giving the coordinates of points
	where density is to evaluated
mean	numeric vector giving the location parameter of the distribution
S	a positive definite matrix representing the scale matrix of the distribution
df	degrees of freedom
log	a logical value; if TRUE, the logarithm of the density is to be computed

Value

vector of density values

Author(s)

Jim Albert

Examples

donner

Donner survival study

Description

Data contains the age, gender and survival status for 45 members of the Donner Party who experienced difficulties in crossing the Sierra Nevada mountains in California.

Usage

donner

Format

A data frame with 45 observations on the following 3 variables.

```
age age of personmale gender that is 1 (0) if person is male (female)survival survival status, 1 or 0 if person survived or died
```

Source

Grayson, D. (1960), Donner party deaths: a demographic assessment, Journal of Anthropological Assessment, 46, 223-242.

election 29

election

Florida election data

Description

For each of the Florida counties in the 2000 presidential election, the number of votes for George Bush, Al Gore, and Pat Buchanan is recorded. Also the number of votes for the minority candidate Ross Perot in the 1996 presidential election is recorded.

Usage

election

Format

A data frame with 67 observations on the following 5 variables.

county name of Florida county

perot number of votes for Ross Perot in 1996 election

gore number of votes for Al Gore in 2000 election

bush number of votes for George Bush in 2000 election

buchanan number of votes for Pat Buchanan in 2000 election

election.2008

Poll data from 2008 U.S. Presidential Election

Description

Results of recent state polls in the 2008 United States Presidential Election between Barack Obama and John McCain.

Usage

election.2008

Format

A data frame with 51 observations on the following 4 variables.

State name of the state

M.pct percentage of poll survey for McCain

O.pct precentage of poll survey for Obama

EV number of electoral votes

Source

Data collected by author in November 2008 from www.cnn.com website.

30 gibbs

toot	hall	scores	

Game outcomes and point spreads for American football

Description

Game outcomes and point spreads for 672 professional American football games.

Usage

footballscores

Format

A data frame with 672 observations on the following 8 variables.

year year of game

home indicates if favorite is the home team

favorite score of favorite team

underdog score of underdog team

spread point spread

favorite.name name of favorite team

underdog.name name of underdog team

week week number of the season

Source

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003), Bayesian Data Analysis, Chapman and Hall.

gibbs

Metropolis within Gibbs sampling algorithm of a posterior distribution

Description

Implements a Metropolis-within-Gibbs sampling algorithm for an arbitrary real-valued posterior density defined by the user

Usage

```
gibbs(logpost,start,m,scale,...)
```

groupeddatapost 31

Arguments

logpost function defining the log posterior density

start array with a single row that gives the starting value of the parameter vector

m the number of iterations of the chain

scale vector of scale parameters for the random walk Metropolis steps

... data that is used in the function logpost

Value

par a matrix of simulated values where each row corresponds to a value of the vector

parameter

accept vector of acceptance rates of the Metropolis steps of the algorithm

Author(s)

Jim Albert

Examples

```
data=c(6,2,3,10)
start=array(c(1,1),c(1,2))
m=1000
scale=c(2,2)
s=gibbs(logctablepost,start,m,scale,data)
```

groupeddatapost

Log posterior of normal parameters when data is in grouped form

Description

Computes the log posterior density of (M,log S) for normal sampling where the data is observed in grouped form

Usage

```
groupeddatapost(theta,data)
```

Arguments

theta vector of parameter values M and log S

data list with components int.lo, a vector of left endpoints, int.hi, a vector of right

endpoints, and f, a vector of bin frequencies

Value

value of the log posterior

32 hearttransplants

Author(s)

Jim Albert

Examples

```
int.lo=c(-Inf,10,15,20,25)
int.hi=c(10,15,20,25,Inf)
f=c(2,5,8,4,2)
data=list(int.lo=int.lo,int.hi=int.hi,f=f)
theta=c(20,1)
groupeddatapost(theta,data)
```

hearttransplants

Heart transplant mortality data

Description

The number of deaths within 30 days of heart transplant surgery for 94 U.S. hospitals that performed at least 10 heart transplant surgeries. Also the exposure, the expected number of deaths, is recorded for each hospital.

Usage

hearttransplants

Format

A data frame with 94 observations on the following 2 variables.

- e expected number of deaths (the exposure)
- y observed number of deaths within 30 days of heart transplant surgery

Source

Christiansen, C. and Morris, C. (1995), Fitting and checking a two-level Poisson model: modeling patient mortality rates in heart transplant patients, in Berry, D. and Stangl, D., eds, Bayesian Biostatistics, Marcel Dekker.

hiergibbs 33

hiergibbs	Gibbs sampling for a hierarchical regression model	

Description

Implements Gibbs sampling for estimating a two-way table of means under a hierarchical regression model.

Usage

```
hiergibbs(data,m)
```

Arguments

data matrix with columns observed sample means, sample sizes, and values of

two covariates

m number of cycles of Gibbs sampling

Value

beta matrix of simulated values of regression vector

mu matrix of simulated values of cell means

var vector of simulated values of second-stage prior variance

Author(s)

Jim Albert

Examples

```
data(iowagpa)
m=1000
s=hiergibbs(iowagpa,m)
```

histprior

Density function of a histogram distribution

Description

Computes the density of a probability distribution defined on a set of equal-width intervals

Usage

```
histprior(p,midpts,prob)
```

34 howardprior

Arguments

p vector of values for which density is to be computed

midpts vector of midpoints of the intervals
prob vector of probabilities of the intervals

Value

vector of values of the probability density

Author(s)

Jim Albert

Examples

```
midpts=c(.1,.3,.5,.7,.9)
prob=c(.2,.2,.4,.1,.1)
p=seq(.01,.99,by=.01)
plot(p,histprior(p,midpts,prob),type="l")
```

howardprior

Logarithm of Howard's dependent prior for two proportions

Description

Computes the logarithm of a dependent prior on two proportions proposed by Howard in a Statistical Science paper in 1998.

Usage

```
howardprior(xy,par)
```

Arguments

xy vector of proportions p1 and p2

par vector containing parameter values alpha, beta, gamma, delta, sigma

Value

value of the log posterior

Author(s)

Jim Albert

impsampling 35

Examples

```
param=c(1,1,1,1,2)
p=c(.1,.5)
howardprior(p,param)
```

impsampling

Importance sampling using a t proposal density

Description

Implements importance sampling to compute the posterior mean of a function using a multivariate t proposal density

Usage

```
impsampling(logf,tpar,h,n,data)
```

Arguments

logf f	function that defines the logarithm of the density of interest
•	list of parameters of t proposal density including the mean m, scale matrix var, and degrees of freedom df
h f	function that defines h(theta)
n r	number of simulated draws from proposal density

data data and or parameters used in the function logf

Value

est	estimate at the posterior mean
se	simulation standard error of estimate
theta	matrix of simulated draws from proposal density
wt	vector of importance sampling weights

Author(s)

Jim Albert

```
data(cancermortality)
start=c(-7,6)
fit=laplace(betabinexch,start,cancermortality)
tpar=list(m=fit$mode,var=2*fit$var,df=4)
myfunc=function(theta) return(theta[2])
theta=impsampling(betabinexch,tpar,myfunc,1000,cancermortality)
```

36 indepmetrop

indepmetrop	Independence Metropolis independence chain of a posterior distribution

Description

Simulates iterates of an independence Metropolis chain with a normal proposal density for an arbitrary real-valued posterior density defined by the user

Usage

```
indepmetrop(logpost,proposal,start,m,...)
```

Arguments

logpost	function defining the log posterior density
proposal	a list containing mu, an estimated mean and var, an estimated variance-covariance matrix, of the normal proposal density
start	vector containing the starting value of the parameter
m	the number of iterations of the chain
	data that is used in the function logpost

Value

par a matrix of simulated values where each row corresponds to a value of the vector

parameter

accept the acceptance rate of the algorithm

Author(s)

Jim Albert

```
\label{eq:data} \begin{split} & \text{data=c(6,2,3,10)} \\ & \text{proposal=list(mu=array(c(2.3,-.1),c(2,1)),var=diag(c(1,1)))} \\ & \text{start=array(c(0,0),c(1,2))} \\ & \text{m=1000} \\ & \text{fit=indepmetrop(logctablepost,proposal,start,m,data)} \end{split}
```

iowagpa 37

iowagpa

Admissions data for an university

Description

Students at a major university are categorized with respect to their high school rank and their ACT score. For each combination of high school rank and ACT score, one records the mean grade point average (GPA).

Usage

iowagpa

Format

A data frame with 40 observations on the following 4 variables.

gpa mean grade point average

n sample size

HSR high school rank

ACT act score

Source

Albert, J. (1994), A Bayesian approach to estimation of GPA's of University of Iowa freshmen under order restrictions, Journal of Educational Statistics, 19, 1-22.

jeter2004

Hitting data for Derek Jeter

Description

Batting data for the baseball player Derek Jeter for all 154 games in the 2004 season.

Usage

jeter2004

38 laplace

Format

A data frame with 154 observations on the following 10 variables.

Game the game number

AB the number of at-bats

R the number of runs scored

H the number of hits

X2B the number of doubles

X3B the number of triples

HR the number of home runs

RBI the number of runs batted in

BB the number of walks

SO the number of strikeouts

Source

Collected from game log data from www.retrosheet.org.

laplace

Summarization of a posterior density by the Laplace method

Description

For a general posterior density, computes the posterior mode, the associated variance-covariance matrix, and an estimate at the logarithm at the normalizing constant.

Usage

```
laplace(logpost,mode,...)
```

Arguments

logpost function that defines the logarithm of the posterior density

mode vector that is a guess at the posterior mode

... vector or list of parameters associated with the function logpost

Value

mode current estimate at the posterior mode

var current estimate at the associated variance-covariance matrix

int estimate at the logarithm of the normalizing constant converge indication (TRUE or FALSE) if the algorithm converged

lbinorm 39

Author(s)

Jim Albert

Examples

```
logpost=function(theta,data)
{
s=5
sum(-log(1+(data-theta)^2/s^2))
}
data=c(10,12,14,13,12,15)
start=10
laplace(logpost,start,data)
```

lbinorm

Logarithm of bivariate normal density

Description

Computes the logarithm of a bivariate normal density

Usage

```
lbinorm(xy,par)
```

Arguments

xy vector of values of two variables x and y

par list with components m, a vector of means, and v, a variance-covariance matrix

Value

value of the kernel of the log density

Author(s)

Jim Albert

```
mean=c(0,0)
varcov=diag(c(1,1))
value=c(1,1)
param=list(m=mean,v=varcov)
lbinorm(value,param)
```

40 logisticpost

logctablepost	Log posterior of difference and sum of logits in a 2x2 table
108000010000	208 posicitor of difference and sum of tostis in a 2x2 table

Description

Computes the log posterior density for the difference and sum of logits in a 2x2 contingency table for independent binomial samples and uniform prior placed on the logits

Usage

```
logctablepost(theta,data)
```

Arguments

theta vector of parameter values "difference of logits" and "sum of logits")

data vector containing number of successes and failures for first sample, and then

second sample

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
s1=6; f1=2; s2=3; f2=10
data=c(s1,f1,s2,f2)
theta=c(2,4)
logctablepost(theta,data)
```

logisticpost

Log posterior for a binary response model with a logistic link and a uniform prior

Description

Computes the log posterior density of (beta0, beta1) when yi are independent binomial(ni, pi) and logit(pi)=beta0+beta1*xi and a uniform prior is placed on (beta0, beta1)

Usage

```
logisticpost(beta,data)
```

logpoissgamma 41

Arguments

beta vector of parameter values beta0 and beta1

data matrix of columns of covariate values x, sample sizes n, and number of successes

y

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
x = c(-0.86,-0.3,-0.05,0.73)
n = c(5,5,5,5)
y = c(0,1,3,5)
data = cbind(x, n, y)
beta=c(2,10)
logisticpost(beta,data)
```

logpoissgamma

Log posterior with Poisson sampling and gamma prior

Description

Computes the logarithm of the posterior density of a Poisson log mean with a gamma prior

Usage

```
logpoissgamma(theta,datapar)
```

Arguments

theta vector of values of the log mean parameter

datapar list with components data, vector of observations, and par, vector of parameters

of the gamma prior

Value

vector of values of the log posterior for all values in theta

Author(s)

Jim Albert

42 logpoissnormal

Examples

```
data=c(2,4,3,6,1,0,4,3,10,2)
par=c(1,1)
datapar=list(data=data,par=par)
theta=c(-1,0,1,2)
logpoissgamma(theta,datapar)
```

 ${\tt logpoiss normal}$

Log posterior with Poisson sampling and normal prior

Description

Computes the logarithm of the posterior density of a Poisson log mean with a normal prior

Usage

```
logpoissnormal(theta,datapar)
```

Arguments

theta vector of values of the log mean parameter

datapar list with components data, vector of observations, and par, vector of parameters

of the normal prior

Value

vector of values of the log posterior for all values in theta

Author(s)

Jim Albert

```
data=c(2,4,3,6,1,0,4,3,10,2)
par=c(0,1)
datapar=list(data=data,par=par)
theta=c(-1,0,1,2)
logpoissnormal(theta,datapar)
```

marathontimes 43

Description

Running times in minutes for twenty male runners between the ages 20 and 29 who ran the New York Marathon.

Usage

marathontimes

Format

A data frame with 20 observations on the following 1 variable.

time running time

Source

www.nycmarathon.org website.

mnormt.onesided	Bayesian test of one-sided hypothesis about a normal mean
-----------------	---

Description

Computes a Bayesian test of the hypothesis that a normal mean is less than or equal to a specified value

Usage

```
mnormt.onesided(m0,normpar,data)
```

Arguments

m0	value of the normal mean to be tested
normpar	vector of mean and standard deviation of the normal prior distribution
data	vector of sample mean, sample size, and known value of the population standard

deviation

Value

BF	Raves	factor	in support	of the	null hypothesis
וט	Dayes	ractor	III support	or the	mum my pouncois

 44 mnormt.twosided

Author(s)

Jim Albert

Examples

```
y=c(182,172,173,176,176,180,173,174,179,175)
pop.s=3
data=c(mean(y),length(data),pop.s)
m0=175
normpar=c(170,1000)
mnormt.onesided(m0,normpar,data)
```

mnormt.twosided

Bayesian test of a two-sided hypothesis about a normal mean

Description

Bayesian test that a normal mean is equal to a specified value using a normal prior

Usage

```
mnormt.twosided(m0, prob, t, data)
```

Arguments

mO	value of the mean to be tested
prob	prior probability of the hypothesis
t	vector of values of the prior standard deviation under the alternative hypothesis
data	vector containing the sample mean, the sample size, and the known value of the population standard deviation

Value

bf vector of values of the Bayes factor in support of the null hypothesis

vector of posterior probabilities of the null hypothesis

Author(s)

Jim Albert

mycontour 45

Examples

```
m0=170
prob=.5
tau=c(.5,1,2,4,8)
samplesize=10
samplemean=176
popsd=3
data=c(samplemean,samplesize,popsd)
mnormt.twosided(m0,prob,tau,data)
```

mycontour

Contour plot of a bivariate density function

Description

For a general two parameter density, draws a contour graph where the contour lines are drawn at 10 percent, 1 percent, and .1 percent of the height at the mode.

Usage

```
mycontour(logf,limits,data,...)
```

Arguments

logf	function that defines the logarithm of the density
limits	limits (xlo, xhi, ylo, yhi) where the graph is to be drawn
data	vector or list of parameters associated with the function logpost
	further arguments to pass to contour

Value

A contour graph of the density is drawn

Author(s)

Jim Albert

```
m=array(c(0,0),c(2,1))
v=array(c(1,.6,.6,1),c(2,2))
normpar=list(m=m,v=v)
mycontour(lbinorm,c(-4,4,-4,4),normpar)
```

46 normal.normal.mix

normal.normal.mix	Computes the posterior for normal sampling and a mixture of normals prior
-------------------	---

Description

Computes the parameters and mixing probabilities for a normal sampling problem, variance known, where the prior is a discrete mixture of normal densities.

Usage

```
normal.normal.mix(probs,normalpar,data)
```

Arguments

probs vector of probabilities of the normal components of the prior

normalpar matrix where each row contains the mean and variance parameters for a normal

component of the prior

data vector of observation and sampling variance

Value

probs vector of probabilities of the normal components of the posterior

normalpar matrix where each row contains the mean and variance parameters for a normal

component of the posterior

Author(s)

Jim Albert

```
probs=c(.5, .5)
normal.par1=c(0,1)
normal.par2=c(2,.5)
normalpar=rbind(normal.par1,normal.par2)
y=1; sigma2=.5
data=c(y,sigma2)
normal.normal.mix(probs,normalpar,data)
```

normal.select 47

normal.select	Selection of Normal Prior Given Knowledge of Two Quantiles	

Description

Finds the mean and standard deviation of a normal density that matches knowledge of two quantiles of the distribution.

Usage

```
normal.select(quantile1, quantile2)
```

Arguments

quantile1 list with components p, the value of the first probability, and x, the value of the

first quantile

quantile2 list with components p, the value of the second probability, and x, the value of

the second quantile

Value

mean of the matching normal distribution

sigma standard deviation of the matching normal distribution

Author(s)

Jim Albert

Examples

```
# person believes the 15th percentile of the prior is 100
# and the 70th percentile of the prior is 150
quantile1=list(p=.15,x=100)
quantile2=list(p=.7,x=150)
normal.select(quantile1,quantile2)
```

normchi2post

Log posterior density for mean and variance for normal sampling

Description

Computes the log of the posterior density of a mean M and a variance S2 when a sample is taken from a normal density and a standard noninformative prior is used.

48 normpostpred

Usage

```
normchi2post(theta,data)
```

Arguments

theta vector of parameter values M and S2
data vector containing the sample observations

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
parameter=c(25,5)
data=c(20, 32, 21, 43, 33, 21, 32)
normchi2post(parameter,data)
```

normpostpred

Posterior predictive simulation from Bayesian normal sampling model

Description

Given simulated draws from the posterior from a normal sampling model, outputs simulated draws from the posterior predictive distribution of a statistic of interest.

Usage

```
normpostpred(parameters, sample.size, f=min)
```

Arguments

parameters list of simulated draws from the posterior where mu contains the normal mean

and sigma2 contains the normal variance

sample.size size of sample of future sample f function defining the statistic

Value

simulated sample of the posterior predictive distribution of the statistic

Author(s)

Jim Albert

normpostsim 49

Examples

```
# finds posterior predictive distribution of the min statistic of a future sample of size 15
data(darwin)
s=normpostsim(darwin$difference)
sample.size=15
sim.stats=normpostpred(s,sample.size,min)
```

normpostsim

Simulation from Bayesian normal sampling model

Description

Gives a simulated sample from the joint posterior distribution of the mean and variance for a normal sampling prior with a noninformative or informative prior. The prior assumes mu and sigma2 are independent with mu assigned a normal prior with mean mu0 and variance tau2, and sigma2 is assigned a inverse gamma prior with parameters a and b.

Usage

```
normpostsim(data,prior=NULL,m=1000)
```

Arguments

data vector of observations

prior list with components mu, a vector with the prior mean and variance, and sigma2,

a vector of the inverse gamma parameters

m number of simulations desired

Value

mu vector of simulated draws of normal mean sigma2 vector of simulated draws of normal variance

Author(s)

Jim Albert

```
data(darwin)
s=normpostsim(darwin$difference)
```

50 pbetap

ordergibbs

Gibbs sampling for a hierarchical regression model

Description

Implements Gibbs sampling for estimating a two-way table of means under a order restriction.

Usage

```
ordergibbs(data,m)
```

Arguments

data data matrix with first two columns observed sample means and sample sizes m

number of cycles of Gibbs sampling

Value

matrix of simulated draws of the normal means where each row represents one simulated draw

Author(s)

Jim Albert

Examples

```
data(iowagpa)
m = 1000
s=ordergibbs(iowagpa,m)
```

pbetap

Predictive distribution for a binomial sample with a beta prior

Description

Computes predictive distribution for number of successes of future binomial experiment with a discrete distribution for the proportion.

Usage

```
pbetap(ab, n, s)
```

Arguments

ab vector of parameters of the beta prior size of future binomial sample n

vector of number of successes for future binomial experiment

pbetat 51

Value

vector of predictive probabilities for the values in the vector s

Author(s)

Jim Albert

Examples

```
ab=c(3,12)
n=10
s=0:10
pbetap(ab,n,s)
```

pbetat

Bayesian test of a proportion

Description

Bayesian test that a proportion is equal to a specified value using a beta prior

Usage

```
pbetat(p0,prob,ab,data)
```

Arguments

p0	value of the proportion to be tested
prob	prior probability of the hypothesis

ab vector of parameter values of the beta prior under the alternative hypothesis

data vector containing the number of successes and number of failures

Value

bf the Bayes factor in support of the null hypothesis
post the posterior probability of the null hypothesis

Author(s)

Jim Albert

```
p0=.5
prob=.5
ab=c(10,10)
data=c(5,15)
pbetat(p0,prob,ab,data)
```

52 pdiscp

pdisc

Posterior distribution for a proportion with discrete priors

Description

Computes the posterior distribution for a proportion for a discrete prior distribution.

Usage

```
pdisc(p, prior, data)
```

Arguments

p vector of proportion valuesprior vector of prior probabilities

data vector consisting of number of successes and number of failures

Value

vector of posterior probabilities

Author(s)

Jim Albert

Examples

```
p=c(.2,.25,.3,.35)
prior=c(.25,.25,.25,.25)
data=c(5,10)
pdisc(p,prior,data)
```

pdiscp

Predictive distribution for a binomial sample with a discrete prior

Description

Computes predictive distribution for number of successes of future binomial experiment with a discrete distribution for the proportion.

Usage

```
pdiscp(p, probs, n, s)
```

poissgamexch 53

Arguments

р	vector of proportion values		
probs	vector of probabilities		

n size of future binomial sample

s vector of number of successes for future binomial experiment

Value

vector of predictive probabilities for the values in the vector s

Author(s)

Jim Albert

Examples

```
p=c(.1,.2,.3,.4,.5,.6,.7,.8,.9)
prob=c(0.05,0.10,0.10,0.15,0.20,0.15,0.10,0.10,0.05)
n=10
s=0:10
pdiscp(p,prob,n,s)
```

poissgamexch

Log posterior of Poisson/gamma exchangeable model

Description

Computes the log posterior density of log alpha and log mu for a Poisson/gamma exchangeable model

Usage

```
poissgamexch(theta,datapar)
```

Arguments

theta vector of parameter values of log alpha and log mu

datapar list with components data, a matrix with columns e and y, and z0, prior hyper-

parameter

Value

value of the log posterior

Author(s)

Jim Albert

54 poisson.gamma.mix

Examples

```
e=c(532,584,672,722,904)
y=c(0,0,2,1,1)
data=cbind(e,y)
theta=c(-4,0)
z0=.5
datapar=list(data=data,z0=z0)
poissgamexch(theta,datapar)
```

poisson.gamma.mix

Computes the posterior for Poisson sampling and a mixture of gammas prior

Description

Computes the parameters and mixing probabilities for a Poisson sampling problem where the prior is a discrete mixture of gamma densities.

Usage

```
poisson.gamma.mix(probs,gammapar,data)
```

Arguments

probs vector of probabilities of the gamma components of the prior

gammapar matrix where each row contains the shape and rate parameters for a gamma

component of the prior

data list with components y, vector of counts, and t, vector of time intervals

Value

probs vector of probabilities of the gamma components of the posterior

gammapar matrix where each row contains the shape and rate parameters for a gamma

component of the posterior

Author(s)

Jim Albert

```
probs=c(.5, .5)
gamma.par1=c(1,1)
gamma.par2=c(10,2)
gammapar=rbind(gamma.par1,gamma.par2)
y=c(1,3,2,4,10); t=c(1,1,1,1,1)
data=list(y=y,t=t)
poisson.gamma.mix(probs,gammapar,data)
```

predplot 55

predplot

Plot of predictive distribution for binomial sampling with a beta prior

Description

For a proportion problem with a beta prior, plots the prior predictive distribution of the number of successes in n trials and displays the observed number of successes.

Usage

```
predplot(prior,n,yobs)
```

Arguments

prior vector of parameters for beta prior

n sample size

yobs observed number of successes

Author(s)

Jim Albert

Examples

```
prior=c(3,10) # proportion has a beta(3, 10) prior
n=20 # sample size
yobs=10 # observed number of successes
predplot(prior,n,yobs)
```

prior.two.parameters

Construct discrete uniform prior for two parameters

Description

Constructs a discrete uniform prior distribution for two parameters

Usage

```
prior.two.parameters(parameter1, parameter2)
```

Arguments

parameter1 vector of values of first parameter parameter2 vector of values of second parameter 56 puffin

Value

matrix of uniform probabilities where the rows and columns are labelled with the parameter values

Author(s)

Jim Albert

Examples

```
prior.two.parameters(c(1,2,3,4),c(2,4,7))
```

puffin

Bird measurements from British islands

Description

Measurements on breedings of the common puffin on different habits at Great Island, Newfoundland.

Usage

puffin

Format

A data frame with 38 observations on the following 5 variables.

Nest nesting frequency (burrows per 9 square meters)

Grass grass cover (percentage)

Soil mean soil depth (in centimeters)

Angle angle of slope (in degrees)

Distance distance from cliff edge (in meters)

Source

Peck, R., Devore, J., and Olsen, C. (2005), Introduction to Statistics And Data Analysis, Thomson Learning.

rdirichlet 57

				-	
rd	7	rı	cr	١	Δt
ıu	_	1 1	CI.	14	. – ι

Random draws from a Dirichlet distribution

Description

Simulates a sample from a Dirichlet distribution

Usage

```
rdirichlet(n,par)
```

Arguments

n number of simulations required

par vector of parameters of the Dirichlet distribution

Value

matrix of simulated draws where each row corresponds to a single draw

Author(s)

Jim Albert

Examples

```
par=c(2,5,4,10)
n=10
rdirichlet(n,par)
```

reg.gprior.post

Computes the log posterior of a normal regression model with a g prior.

Description

Computes the log posterior of (beta, log sigma) for a normal regression model with a g prior with parameters beta0 and c0.

Usage

```
reg.gprior.post(theta, dataprior)
```

58 regroup

Arguments

theta vector of components of beta and log sigma

dataprior list with components data and prior; data is a list with components y and X, prior

is a list with components b0 and c0

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
data(puffin)
data=list(y=puffin$Nest, X=cbind(1,puffin$Distance))
prior=list(b0=c(0,0), c0=10)
reg.gprior.post(c(20,-.5,1),list(data=data,prior=prior))
```

regroup

Collapses a matrix by summing over rows

Description

Collapses a matrix by summing over a specific number of rows

Usage

```
regroup(data,g)
```

Arguments

data a matrix

g a positive integer beween 1 and the number of rows of data

Value

reduced matrix found by summing over rows

Author(s)

Jim Albert

```
data=matrix(c(1:20),nrow=4,ncol=5)
g=2
regroup(data,2)
```

rejectsampling 59

rejectsampling	Rejecting sampling using a t proposal density	

Description

Implements a rejection sampling algorithm for a probability density using a multivariate t proposal density

Usage

```
rejectsampling(logf,tpar,dmax,n,data)
```

Arguments

logf	function that defines the logarithm of the density of interest
tpar	list of parameters of t proposal density including the mean m, scale matrix var, and degrees of freedom df
dmax	logarithm of the rejection sampling constant
n	number of simulated draws from proposal density
data	data and or parameters used in the function logf

Value

matrix of simulated draws from density of interest

Author(s)

Jim Albert

```
data(cancermortality)
start=c(-7,6)
fit=laplace(betabinexch,start,cancermortality)
tpar=list(m=fit$mode,var=2*fit$var,df=4)
theta=rejectsampling(betabinexch,tpar,-569.2813,1000,cancermortality)
```

60 rmnorm

rigamma

Random number generation for inverse gamma distribution

Description

Simulates from a inverse gamma (a, b) distribution with density proportional to \$y^(-a-1) exp(-b/y)\$

Usage

```
rigamma(n, a, b)
```

Arguments

b

n number of random numbers to be generated

inverse gamma rate parameter

a inverse gamma shape parameter

Value

vector of n simulated draws

Author(s)

Jim Albert

Examples

```
a=10
b=5
n=20
rigamma(n,a,b)
```

rmnorm

Random number generation for multivariate normal

Description

Simulates from a multivariate normal distribution

Usage

```
rmnorm(n = 1, mean = rep(0, d), varcov)
```

rmt 61

Arguments

n number of random numbers to be generated

mean numeric vector giving the mean of the distribution

varcov a positive definite matrix representing the variance-covariance matrix of the dis-

tribution

Value

matrix of n rows of random vectors

Author(s)

Jim Albert

Examples

```
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
x <- rmnorm(10, mu, Sigma)
```

rmt

Random number generation for multivariate t

Description

Simulates from a multivariate t distribution

Usage

```
rmt(n = 1, mean = rep(0, d), S, df = Inf)
```

Arguments

n number of random numbers to be generated

mean numeric vector giving the location parameter of the distribution

S a positive definite matrix representing the scale matrix of the distribution

df degrees of freedom

Value

matrix of n rows of random vectors

Author(s)

Jim Albert

62 robustt

Examples

robustt

Gibbs sampling for a robust regression model

Description

Implements Gibbs sampling for a robust t sampling model with location mu, scale sigma, and degrees of freedom \boldsymbol{v}

Usage

```
robustt(y,v,m)
```

Arguments

У	vector of data values
V	degrees of freedom for t model
m	the number of cycles of the Gibbs sampler

Value

mu	vector of simulated values of mu
s2	vector of simulated values of sigma2
lam	matrix of simulated draws of lambda, where each row corresponds to a single draw

Author(s)

Jim Albert

```
data=c(-67,-48,6,8,14,16,23,24,28,29,41,49,67,60,75) fit=robustt(data,4,1000)
```

rtruncated 63

rt	rı	ınc	`at	ed

Simulates from a truncated probability distribution

Description

Simulates a sample from a truncated distribution where the functions for the cdf and inverse cdf are available.

Usage

```
rtruncated(n,lo,hi,pf,qf,...)
```

Arguments

n	size of simulated sample
lo	low truncation point
hi	high truncation point
pf	function containing cdf of untruncated distribution
qf	function containing inverse cdf of untruncated distribution
	parameters used in the functions pf and qf

Value

vector of simulated draws from distribution

Author(s)

Jim Albert

```
# want a sample of 10 from normal(2, 1) distribution truncated below by 3
n=10
lo=3
hi=Inf
rtruncated(n,lo,hi,pnorm,qnorm,mean=2,sd=1)
# want a sample of 20 from beta(2, 5) distribution truncated to (.3, .8)
n=20
lo=0.3
hi=0.8
rtruncated(n,lo,hi,pbeta,qbeta,2,5)
```

rwmetrop

rwmetro	n
I WILLE LI O	v

Random walk Metropolis algorithm of a posterior distribution

Description

Simulates iterates of a random walk Metropolis chain for an arbitrary real-valued posterior density defined by the user

Usage

```
rwmetrop(logpost,proposal,start,m,...)
```

Arguments

logpost function defining the log posterior density

proposal a list containing var, an estimated variance-covariance matrix, and scale, the

Metropolis scale factor

start vector containing the starting value of the parameter

m the number of iterations of the chain... data that is used in the function logpost

Value

par a matrix of simulated values where each row corresponds to a value of the vector

parameter

accept the acceptance rate of the algorithm

Author(s)

Jim Albert

```
data=c(6,2,3,10)
varcov=diag(c(1,1))
proposal=list(var=varcov,scale=2)
start=array(c(1,1),c(1,2))
m=1000
s=rwmetrop(logctablepost,proposal,start,m,data)
```

schmidt 65

schmidt

Batting data for Mike Schmidt

Description

Batting statistics for the baseball player Mike Schmidt during all the seasons of his career.

Usage

schmidt

Format

A data frame with 18 observations on the following 14 variables.

Year year of the season

Age Schmidt's age that season

G games played

AB at-bats

R runs scored

H number of hits

X2B number of doubles

X3B number of triples

HR number of home runs

RBI number of runs batted in

SB number of stolen bases

CS number of times caught stealing

BB number of walks

SO number of strikeouts

Source

Sean Lahman's baseball database from www.baseball1.com.

66 sir

simco	ntour
3111100	ncour

Simulated draws from a bivariate density function on a grid

Description

For a general two parameter density defined on a grid, simulates a random sample.

Usage

```
simcontour(logf,limits,data,m)
```

Arguments

logf	function that defines the logarithm of the density
limits	limits (xlo, xhi, ylo, yhi) that cover the joint probability density
data	vector or list of parameters associated with the function logpost
m	size of simulated sample

Value

X	vector of simulated draws of the first parameter
y	vector of simulated draws of the second parameter

Author(s)

Jim Albert

Examples

```
\label{eq:meanray} $$ m=array(c(0,0),c(2,1))$ $$ v=array(c(1,.6,.6,1),c(2,2))$ $$ normpar=list(m=m,v=v)$ $$ s=simcontour(lbinorm,c(-4,4,-4,4),normpar,1000)$ $$ plot(s$x,s$y)
```

sir

Sampling importance resampling

Description

Implements sampling importance resampling for a multivariate t proposal density.

Usage

```
sir(logf,tpar,n,data)
```

sluggerdata 67

Arguments

logf	function defining	logorithm o	f density of interest
IUgi	Tunction denining	, ioganiinii o	i delisity of iliterest

tpar list of parameters of multivariate t proposal density including the mean m, the

scale matrix var, and the degrees of freedom df

n number of simulated draws from the posterior data data and parameters used in the function logf

Value

matrix of simulated draws from the posterior where each row corresponds to a single draw

Author(s)

Jim Albert

Examples

```
data(cancermortality)
start=c(-7,6)
fit=laplace(betabinexch,start,cancermortality)
tpar=list(m=fit$mode,var=2*fit$var,df=4)
theta=sir(betabinexch,tpar,1000,cancermortality)
```

sluggerdata

Hitting statistics for ten great baseball players

Description

Career hitting statistics for ten great baseball players

Usage

sluggerdata

Format

A data frame with 199 observations on the following 13 variables.

Player names of the ballplayer

Year season played

Age age of the player during the season

G games played

AB number of at-bats

R number of runs scored

H number of hits

68 soccergoals

X2B number of doubles

X3B number of triples

HR number of home runs

RBI runs batted in

BB number of base on balls

SO number of strikeouts

Source

Sean Lahman's baseball database from www.baseball1.com.

soccergoals

Goals scored by professional soccer team

Description

Number of goals scored by a single professional soccer team during the 2006 Major League Soccer season

Usage

soccergoals

Format

A data frame with 35 observations on the following 1 variable.

goals number of goals scored

Source

Collected by author from the www.espn.com website.

stanfordheart 69

stanfordheart

Data from Stanford Heart Transplanation Program

Description

Heart transplant data for 82 patients from Stanford Heart Transplanation Program

Usage

stanfordheart

Format

A data frame with 82 observations on the following 4 variables.

survtime survival time in months

transplant variable that is 1 or 0 if patient had transplant or not

timetotransplant time a transplant patient waits for operation

state variable that is 1 or 0 if time is censored or not

Source

Turnbull, B., Brown, B. and Hu, M. (1974), Survivorship analysis of heart transplant data, Journal of the American Statistical Association, 69, 74-80.

strikeout

Baseball strikeout data

Description

For all professional baseball players in the 2004 season, dataset gives the number of strikeouts and at-bats when runners are in scoring position and when runners are not in scoring position.

Usage

strikeout

Format

A data frame with 438 observations on the following 4 variables.

- r number of strikeouts of player when runners are not in scoring position
- n number of at-bats of player when runners are not in scoring position
- s number of strikeouts of player when runners are in scoring position
- m number of at-bats of player when runners are in scoring position

70 studentdata

Source

Collected from www.espn.com website.

studentdata

Student dataset

Description

Answers to a sheet of questions given to a large number of students in introductory statistics classes

Usage

studentdata

Format

A data frame with 657 observations on the following 11 variables.

Student student number

Height height in inches

Gender gender

Shoes number of pairs of shoes owned

Number number chosen between 1 and 10

Dvds name of movie dvds owned

ToSleep time the person went to sleep the previous night (hours past midnight)

WakeUp time the person woke up the next morning

Haircut cost of last haircut including tip

Job number of hours working on a job per week

Drink usual drink at suppertime among milk, water, and pop

Source

Collected by the author during the Fall 2006 semester.

transplantpost 71

	7		
trans	b⊥an	itpost	:

Log posterior of a Pareto model for survival data

Description

Computes the log posterior density of (log tau, log lambda, log p) for a Pareto model for survival data

Usage

```
transplantpost(theta,data)
```

Arguments

theta vector of parameter values of log tau, log lambda, and log p

data matrix with columns survival time, transplant indicator, time to transplant,

and censoring indicator

Value

value of the log posterior

Author(s)

Jim Albert

Examples

```
data(stanfordheart)
theta=c(0,3,-1)
transplantpost(theta,stanfordheart)
```

triplot

Plot of prior, likelihood and posterior for a proportion

Description

For a proportion problem with a beta prior, plots the prior, likelihood and posterior on one graph.

Usage

```
triplot(prior, data, where="topright")
```

72 weibullregpost

Arguments

prior vector of parameters for beta prior

data vector consisting of number of successes and number of failures

where the location of the legend for the plot

Author(s)

Jim Albert

Examples

```
prior=c(3,10) # proportion has a beta(3, 10) prior
data=c(10,6) # observe 10 successes and 6 failures
triplot(prior,data)
```

weibullregpost

Log posterior of a Weibull proportional odds model for survival data

Description

Computes the log posterior density of (log sigma, mu, beta) for a Weibull proportional odds regression model

Usage

```
weibullregpost(theta,data)
```

Arguments

theta vector of parameter values log sigma, mu, and beta

data data matrix with columns survival time, censoring variable, and covariate matrix

Value

value of the log posterior

Author(s)

Jim Albert

```
data(chemotherapy)
attach(chemotherapy)
d=cbind(time,status,treat-1,age)
theta=c(-.6,11,.6,0)
weibullregpost(theta,d)
```

Index

*Topic datasets	blinregpred, 17
achievement,4	bprobit.probs, 18
baseball.1964,4	bradley.terry.post, 19
bermuda.grass,8	careertraj.setup,21
birdextinct, 13	cauchyerrorpost, 22
birthweight, 14	ctable, 23
breastcancer, 19	discint, 24
calculus.grades, 20	discrete.bayes, 25
cancermortality, 21	discrete.bayes.2,26
chemotherapy, 23	dmnorm, 27
darwin, 24	dmt, 27
donner, 28	gibbs, 30
election, 29	groupeddatapost, 31
election.2008,29	hiergibbs, 33
footballscores, 30	histprior, 33
hearttransplants, 32	howardprior, 34
iowagpa, 37	impsampling, 35
jeter2004,37	indepmetrop, 36
marathontimes, 43	laplace, 38
puffin, 56	lbinorm, 39
schmidt, 65	logctablepost, 40
sluggerdata, 67	logisticpost, 40
soccergoals, 68	logpoissgamma, 41
stanfordheart, 69	logpoissnormal, 42
strikeout, 69	mnormt.onesided, 43
studentdata, 70	mnormt.twosided,44
*Topic models	mycontour, 45
bayes.influence, 5	normal.normal.mix,46
bayes.model.selection, 6	normal.select,47
bayes.probit, 6	normchi2post,47
bayesresiduals,7	normpostpred, 48
beta.select,9	normpostsim, 49
betabinexch, 9	ordergibbs, 50
betabinexch0, 10	pbetap, 50
bfexch, 11	pbetat, 51
bfindep, 12	pdisc, 52
binomial.beta.mix, 12	pdiscp, 52
blinreg, 15	poissgamexch, 53
blinregexpected, 16	poisson.gamma.mix, 54

74 INDEX

predplot, 55	discint, 24
prior.two.parameters, 55	discrete.bayes, 25
rdirichlet, 57	discrete.bayes.2,26
reg.gprior.post,57	dmnorm, 27
regroup, 58	dmt, 27
rejectsampling, 59	donner, 28
rigamma, 60	
rmnorm, 60	election, 29
rmt, 61	election.2008,29
robustt, 62	
rtruncated, 63	footballscores, 30
rwmetrop, 64	
simcontour, 66	gibbs, 30
sir, 66	groupeddatapost, 31
transplantpost, 71	haanttmananlanta 22
triplot, 71	hearttransplants, 32
weibullregpost, 72	hiergibbs, 33
weibulii egpost, 72	histprior, 33
achievement, 4	howardprior, 34
active velicite, 4	impsampling, 35
baseball.1964,4	indepmetrop, 36
bayes.influence, 5	
bayes.model.selection, 6	iowagpa, 37
bayes.model.selection, o	jeter2004,37
bayesresiduals, 7	Jetel 2004, 37
-	laplace, 38
bermuda.grass, 8	lbinorm, 39
beta.select, 9	logctablepost, 40
betabinexch, 9	logisticpost, 40
betabinexch0, 10	logpoissgamma, 41
bfexch, 11	logpoissnormal, 42
bfindep, 12	208pc2cc
binomial.beta.mix, 12	marathontimes, 43
birdextinct, 13	mnormt.onesided, 43
birthweight, 14	mnormt.twosided, 44
blinreg, 15	mycontour, 45
blinregexpected, 16	,
blinregpred, 17	normal.normal.mix,46
bprobit.probs, 18	normal.select,47
bradley.terry.post, 19	normchi2post, 47
breastcancer, 19	normpostpred, 48
	normpostsim, 49
calculus.grades, 20	•
cancermortality, 21	ordergibbs, 50
careertraj.setup, 21	
cauchyerrorpost, 22	pbetap, 50
chemotherapy, 23	pbetat, 51
ctable, 23	pdisc, 52
	pdiscp, 52
darwin, 24	plot.bayes (discrete.bayes), 25

INDEX 75

```
plot.bayes2 (discrete.bayes.2), 26
poissgamexch, 53
poisson.gamma.mix, 54
predplot, 55
print.bayes (discrete.bayes), 25
prior.two.parameters, 55
puffin, 56
rdirichlet, 57
reg.gprior.post, 57
regroup, 58
rejectsampling, 59
rigamma, 60
rmnorm, 60
rmt, 61
robustt, 62
rtruncated, 63
rwmetrop, 64
schmidt, 65
simcontour, 66
sir, 66
sluggerdata, 67
soccergoals, 68
stanfordheart, 69
strikeout, 69
studentdata, 70
summary.bayes (discrete.bayes), 25
transplantpost, 71
triplot, 71
weibullregpost, 72
```