Due: Wednesday, November 16, end of day **My name**

what in these

1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n=1,2,3,\ldots$

(a)
$$a_n = 4n - 2$$

(b) $a_n = 1 + (-1)^n$ $(c) a_n = (\frac{1}{2})^n$ $(c) a_n = (\frac{1}{2})^n$ (c) a

(a) (4 points) What is ϵ : when ϵ (b) (4 points) Give a recursive definition of the reversal of a string.

(b) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^R$.

(c) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^Rw_1^R$.

3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string w is a palindrome. What is the can possely be the in construct four right to strong + chick with the strong + chick with the strong of intetime complexity of your algorithm?

4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among n integers. What is the time complexity of your algorithm?

5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.

• (3 points) Set up a recurrence relation for the salary of this employee n years after 2015.

• (4 points) Find an explicit formula for the salary of this employee n years after 2015.

• (3 points) What will the salary of this employee be in 2030?

aughhhh...

Due: Wednesday, November 16, end of day **My name**

1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n = 1, 2, 3, \dots$

 $b_{c}(s) = 4 - 2 = 2$ c. $a_1 = (\frac{1}{2})^n$ (a) $a_n = 4n-2$ recurrence: $a_n = a_{n-1} + 4$

$$\frac{1}{2} \qquad \qquad \frac{1}{2}$$

(b) $a_n = 1 + (-1)^n$ $a_n = 1 + (-1)^n = 1 - 1 = 0$

recorpte:
$$a_N = a_{N-1} \cdot \frac{1}{2}$$

(c) $a_n = (\frac{1}{2})^n$ necessite: an = an-2

2. For string $w = a_1 a_2 \cdots a_n$, the reversal of the string is defined as $w^R = a_n \cdots a_2 a_1$.

- (c) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^R w_1^R$.
- 3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string w is a palindrome. What is the time complexity of your algorithm?
- 4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among n integers. What is the time complexity of your algorithm?
- 5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.
 - (3 points) Set up a recurrence relation for the salary of this employee n years after 2015.
 - (4 points) Find an explicit formula for the salary of this employee n years after 2015.
 - (3 points) What will the salary of this employee be in 2030?

Due: Wednesday, November 16, end of day **My name**

- 1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n = 1, 2, 3, \ldots$
 - (a) $a_n = 4n 2$
 - (b) $a_n = 1 + (-1)^n$
 - (c) $a_n = (\frac{1}{2})^n$
- 2. For string $w = a_1 a_2 \cdots a_n$, the reversal of the string is defined as $w^R = a_n \cdots a_2 a_1$.
 - (a) (4 points) What is ε^R ? What is $(10110)^R$?
 - (b) (4 points) Give a recursive definition of the reversal of a string. 3412 or 4321 to
 - (c) (6 points) Use structural induction to prove that $(w_1 w_2)^R = w_2^R w_1^R$.
- 3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string wis a palindrome. What is the $(u_1, u_2)^R = u_1^R u_2^R u_3^R u_4^R u_4^R$
- 4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among *n* integers. What is the time complexity of your algorithm?
- 5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.
 - (3 points) Set up a recurrence relation for the salary of this employee n years after 2015.
 - (4 points) Find an explicit formula for the salary of this employee n years after 2015.
 - (3 points) What will the salary of this employee be in 2030?

Due: Wednesday, November 16, end of day **My name**

- 1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n = 1, 2, 3, \ldots$
 - (a) $a_n = 4n 2$
 - (b) $a_n = 1 + (-1)^n$
 - (c) $a_n = (\frac{1}{2})^n$
- 2. For string $w = a_1 a_2 \cdots a_n$, the reversal of the string is defined as $w^R = a_n \cdots a_2 a_1$.
 - (a) (4 points) What is ε^R ? What is $(10110)^R$?
 - (b) (4 points) Give a recursive definition of the reversal of a string.
 - (c) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^Rw_1^R$.
- 3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string w is a palindrome. What is the time complexity of your algorithm?
- 4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among n integers. What is the time complexity of your algorithm?
- 5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.
 - (3 points) Set up a recurrence relation for the salary of this employee *n* years after 2015.
 - (4 points) Find an explicit formula for the salary of this employee n years after 2015.
 - (3 points) What will the salary of this employee be in 2030?

if which == \ or white == 0

The whole == \ or white == 0

The whole = whole == 0

The whole == 0

The

return (where middle and corplation (wis spring)

recus cive!

Due: Wednesday, November 16, end of day **My name**

- 1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n = 1, 2, 3, \ldots$
 - (a) $a_n = 4n 2$
 - (b) $a_n = 1 + (-1)^n$
 - (c) $a_n = (\frac{1}{2})^n$
- 2. For string $w = a_1 a_2 \cdots a_n$, the reversal of the string is defined as $w^R = a_n \cdots a_2 a_1$.
 - (a) (4 points) What is ε^R ? What is $(10110)^R$?
 - (b) (4 points) Give a recursive definition of the reversal of a string.
 - (c) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^Rw_1^R$.
- 3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string w is a palindrome. What is the time complexity of your algorithm?
- 4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among n integers. What is the time complexity of your algorithm?
- 5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.
 - (3 points) Set up a recurrence relation for the salary of this employee n years after 2015.
 - (4 points) Find an explicit formula for the salary of this employee n years after 2015.
 - (3 points) What will the salary of this employee be in 2030?

And the Lan, ..., and

more an

for in refe (n)

complexity o(n)

if as > mex

without first (a, , ..., an)

is n = 2where we (a, , az)

reform max (an , foremax (a, , ..., and)

return met

recorçue!!

Due: Wednesday, November 16, end of day

My name

- 1. (6 points) Give a recursive definition for each of the following sequences $\{a_n\}$ for $n = 1, 2, 3, \ldots$
 - (a) $a_n = 4n 2$
 - (b) $a_n = 1 + (-1)^n$
 - (c) $a_n = (\frac{1}{2})^n$
- 2. For string $w = a_1 a_2 \cdots a_n$, the reversal of the string is defined as $w^R = a_n \cdots a_2 a_1$.
 - (a) (4 points) What is ε^R ? What is $(10110)^R$?
 - (b) (4 points) Give a recursive definition of the reversal of a string.
 - (c) (6 points) Use structural induction to prove that $(w_1w_2)^R = w_2^Rw_1^R$.
- 3. (10 points) A palindrome is a string that reads the same forward and backward, i.e., $w = w^R$. Give a recursive algorithm in pseudocode that checks whether a given string w is a palindrome. What is the time complexity of your algorithm?
- 4. (10 points) Give a recursive algorithm in pseudocode that finds the maximum number among *n* integers. What is the time complexity of your algorithm?
- 5. An employee joined a company in 2015 with a starting salary of \$50,000. Every year this employee receives a raise of \$1000 plus 4% of the salary of the previous year.
 - (3 points) Set up a recurrence relation for the salary of this employee n years after 2015.
 - (4 points) Find an explicit formula for the salary of this employee n years after 2015.
 - (3 points) What will the salary of this employee be in 2030?