Emergency Department Management Problems

Emergency Room @ Maggiore Hospital

We will now consider a problem from the healthcare sector

We will use a dataset for the "Maggiore" hospital in Bologna

- In particular, we will focus on predicting arrivals
- ...To the Emergency Department (Pronto Soccorso)

A Look at the Dataset

We will start as usual by having a look at the dataset

In [21]: data = util.load_ed_data(data_file)
 data

Out[21]:

	year	ID	Triage	TkCharge	Code	Outcome
0	2018	1	2018-01-0100:17:33	2018-01-0104:15:36	green	admitted
1	2018	2	2018-01-0100:20:33	2018-01-0103:14:19	green	admitted
2	2018	3	2018-01-0100:47:59	2018-01-0104:32:30	white	admitted
51238	2018	51239	2018-01-0100:49:51	NaT	white	abandoned
51240	2018	51241	2018-01-0101:00:40	NaT	green	abandoned
•••		•••			•••	•••
95665	2019	95666	2019-10-31 23:26:54	2019-10-31 23:41:13	yellow	admitted
95666	2019	95667	2019-10-31 23:46:43	2019-11-0109:30:25	green	admitted
108622	2019	108623	2019-10-31 23:54:05	NaT	green	abandoned
95667	2019	95668	2019-10-31 23:55:32	2019-11-0100:18:46	yellow	admitted
108623	2019	108624	2019-10-3123:59:21	NaT	green	abandoned

108625 rows × 6 columns

A Look at the Dataset

```
      In [22]:
      data.iloc[:3]

      Out[22]:
      year ID Triage
      TkCharge
      Code Outcome

      0 2018 1 2018-01-0100:17:33 2018-01-0104:15:36 green admitted

      1 2018 2 2018-01-0100:20:33 2018-01-0103:14:19 green admitted

      2 2018 3 2018-01-0100:47:59 2018-01-0104:32:30 white admitted
```

- Each row refers to a single patient
- Triage is the arrival time of each patient
- TKCharge is the time when a patient starts the first visit
- code refers to the estimated priority (white < green < yellow < red)
- outcome discriminates some special conditions (people quitting, fast tracks)

A Look at the Dataset

Let's also have a look at the data types

```
In [23]: data.dtypes

Out[23]: year int64
    ID int64
    Triage datetime64[ns]
    TkCharge datetime64[ns]
    Code category
    Outcome category
    dtype: object
```

As we said, we will focus for on predicting arrivals

...Hence, it makes sense to sort rows by increasing triage time:

```
In [24]: data.sort_values(by='Triage', inplace=True)
```


Inter-Arrival Times

Let's check empirically the distribution of the inter-arrival times

- There is a number of very low inter-arrival times
- is is due to how triage is performed (bursts, rather than a steady flow)

Waiting Time

Here is the distribution of the waiting times

```
In [31]: | tmp = data[~data['TkCharge'].isnull()]
         wait time = tmp['TkCharge'].round('10min') - tmp['Triage'].round('10min')
         tmp = wait time.value counts().sort index().values
         tmp = pd.Series(index=np.arange(len(tmp)), data=tmp)
         util.plot bars(tmp, tick gap=10, figsize=figsize)
          10000
           8000
           6000
           4000
           2000
```


Code Distribution

The distribution of the priority codes

- Green code (low severity) form the majority of arrivals
- Yellow and red codes (mid and high severity) are in smaller numbers

Outcome Distribution

■ Abandons are infrequent, as are "fast track" patients

Arrival Distribution over Months

Let's look at the arrival distribution over months

- The low values for Nov. and Dec. are due to the 2019 series ending in October
- The distribution seems stable (but we are not plotting standard deviations!)

Arrival Distribution over Weekdays

Let's look at the distribution over weekdays

- Similarly to months, weekdays are likelly to have little predictive power
- ...But it's better not to rush conclusions (we still are not plotting the stddev!)

Arrival Distribution over Hours

Let's see now the arrival distribution over the hours of the day

- There is a clear pattern: the hour of the day will have strong predictive power
- Again, analyzing the standard deviation may provide better insights

Binning

In our two considered problems:

- We are not going to revise our decisions continuosly
- We are not interested in predicting the next arrival

Rather:

- We will take decisions at fixed intervals
- We care about the expected arrivals in a given horizon

Overall, we need to choose a meaningful time unit

In other words, we need to perform some kind of binning

- We used binning to downsample high-frequency data
- Here we will use binning to aggregate events with a variable frequency

Code-Based Counts

We will prepare the data to track counts for all priority codes

```
In [64]: codes = pd.get dummies(data['Code'])
          codes.set index(data['Triage'], inplace=True)
          codes.columns = codes.columns.to list()
          print(f'Number of examples: {len(codes)}')
          codes.head()
          Number of examples: 108625
Out[64]:
                            green red white yellow
           Triage
           2018-01-01 00:17:33 1
                                     0
                                           0
           2018-01-0100:20:33 1
                                           ()
           2018-01-0100:47:59 O
           2018-01-0100:49:51 0
                                           0
           2018-01-01 01:00:40 1
```

- The get_dummies function applies a one-hot encoding to categorical value
- The method generates a categorial column index (then converted to list)

Resampling

Then, we need to aggregate data with a specified frequency

- We used the resample iterator
- resample generater a dataframe with a dense index
- We chose 1 hours are our time unit

Computing Totals

We also compute the total number of arrivals for each interval

```
In [79]: cols = ['white', 'green', 'yellow', 'red']
           codes b['total'] = codes b[cols].sum(axis=1)
           codes b
Out[79]:
                               green red white yellow total
            Triage
            2018-01-0100:00:00 2
                                                0
            2018-01-0101:00:00 7
                                     1
                                          1
                                                       10
            2018-01-0102:00:00 4
                                          4
                                                       12
            2018-01-0103:00:00 7
            2018-01-0104:00:00 3
                                     0
                                                0
            2019-10-31 19:00:00 3
            2019-10-31 20:00:00 9
                                     0
                                                0
                                                       11
            2019-10-3121:00:00 3
            2019-10-31 22:00:00 1
            2019-10-31 23:00:00 5
                                          ()
             16056 \text{ rows} \times 5 \text{ columns}
```


The total count will be less noisy, if the individual terms are independent

Adding Time Information

Finally, we add time information (for later convenience)

```
In [81]: codes_bt = codes_b.copy()
    codes_bt['month'] = codes_bt.index.month
    codes_bt['weekday'] = codes_bt.index.weekday
    codes_bt['hour'] = codes_bt.index.hour
    codes_bt
Out[81]: green red white yellow total month weekday hour

Triage
2018-01-0100:00:00 2 0 2 0 4 1 0 0
```

	green	red	white	yellow	total	month	weekday	hour
Triage								
2018-01-0100:00:00	2	0	2	0	4	1	0	0
2018-01-0101:00:00	7	1	1	1	10	1	0	1
2018-01-01 02:00:00	4	1	4	3	12	1	0	2
2018-01-0103:00:00	7	0	1	1	9	1	0	3
2018-01-01 04:00:00	3	0	2	0	5	1	0	4
•••								
2019-10-31 19:00:00	3	1	0	4	8	10	3	19
2019-10-31 20:00:00	9	0	2	0	11	10	3	20
2019-10-31 21:00:00	3	0	0	2	5	10	3	21
2019-10-31 22:00:00	1	2	3	1	7	10	3	22
2019-10-31 23:00:00	5	0	0	2	7	10	3	23

16056 rows × 8 columns

Counts over Time

Our resampled series can be plotted easily over time

Let's see the total counts as an example:

Counts over Time

Our resampled series can be plotted easily over time

The same plot, for the red codes (the counts are significanly lower):

Variability

With our binned series, we can assess the count variability

Let's check it over different months:

The variability does not change much over different months

Variability

Here is the standard deviation over weekdays

■ There is a trend, but rather weak

Variability

...And finally over hours

Variance and mean seem to be quite correlated

