

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves

rogerioag@utfpr.edu.br

Aula 015

<u>ULA</u>

Unidade Lógica e Aritmética

Unidade Lógica e Aritmética

- Realiza as operações lógicas e aritméticas
 - add, sub, and, or...
- Faz os cálculos.
- Trata de inteiros.
- Pode tratar de números de ponto flutuante (reais).
- Pode ser FPU separada (coprocessador matemático).
- Pode estar em chip de FPU separado (486DX +).

Unidade Lógica e Aritmética

Como a informação é representada num processador?

- A representação de um dado corresponde aos dígitos que escrevemos para simbolizá-lo.
- Exemplos:

Valor (quantidade) 12

Representações:

```
Hexadecimal ⇒ C
Romano ⇒ XII
Binário ⇒ 1100
```


Números de Ponto Fixo (Inteiros)

Números de Ponto Fixo <u>Sem Sinal</u>: usam representação binária convencional

Exemplo:

Binário Decimal

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

O valor do número é inteiro. Nenhum bit é usado para representar sinal.

Números de Ponto Fixo (Inteiros)

Números de Ponto Fixo Com Sinal

Existem 4 Métodos de Representação:

- 1. Sinal Magnitude
- 2. Complemento de 1
- 3. Complemento de 2
- 4. Notação em Excesso

Números de Ponto Fixo (Inteiros)

Representação Sinal Magnitude:

- Em decimal para representarmos as quantias +12 e -12⇒usamos os sinais + e – para indicar se o número é positivo ou negativo
- Em Sinal Magnitude: Bit mais significativo (mais à esquerda) indica o sinal do número representado
 - O indica número positivo
 - 1 indica número negativo

Os bits restantes representam a Magnitude (valor do dado)

Números de Ponto Fixo (Inteiros)

Exemplo na Representação Sinal Magnitude:

$$+12_{10} \Rightarrow 00001100_{2}$$
 $-12_{10} \Rightarrow 10001100_{2}$
Só muda o bit de sinal

Os bits restantes representam a Magnitude (valor do dado)

Números de Ponto Fixo (Inteiros)

Observações para a Representação Sinal Magnitude:

1. Há 2 representações para o número 0

$$+0_{10} \Rightarrow 00000000_{2}$$

 $-0_{10} \Rightarrow 10000000_{2}$

- -Pode gerar erros de programação
- -Requer hardware mais complexo para comparar com os dois 0s.

Dificulta testes

Números de Ponto Fixo (Inteiros)

Observações para a Representação Sinal Magnitude:

2. Intervalo de representação é menor, isto é, a quantidade de números representáveis é menor

011	+3			
010	+2			
001	+1			
000	+0			
100	-0			
101	-1			
110	-2			
111	-3			

Exemplo: $2^3 = 8$

Isso significa que com 3 bits poderíamos representar até 8 valores diferentes, mas devido às duas representações do valor 0 (+0 e -0) podemos representar até 7 valores diferentes

<u>Números de Ponto Fixo (Inteiros)</u>

Representação em Complemento de 1:

- Na representação em Complemento de 1 nós complementamos (invertemos) todos os bits 1 por 0 e os bits 0 por 1
- Exemplo:

$$+12_{10} \Rightarrow 00001100_{2}$$
 $-12_{10} \Rightarrow 11110011_{2}$

Os números positivos também têm ó bit mais significativo em 0 e os números negativos em 1

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 1:

1. Há também 2 representações para o número 0

$$+0_{10} \Rightarrow 00000000_{2}$$
 $-0_{10} \Rightarrow 11111111_{2}$

- -Pode gerar erros de programação
- -Requer hardware mais complexo para comparar com os dois 0s.

Dificulta testes

A! = 111111111

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 1:

2. Intervalo de representação é menor, isto é, a quantidade de números representáveis é menor

011	+3			
010	+2			
001	+1			
000	+0			
111	-0			
110	-1			
101	-2			
100	-3			

Exemplo: $2^3 = 8$

Isso significa que com 3 bits poderíamos representar até 8 valores diferentes, mas devido às duas representações do valor 0 (+0 e -0) podemos representar até 7 valores diferentes

Números de Ponto Fixo (Inteiros)

Representação em Complemento de 2:

- Na representação em Complemento de 2 nós complementamos (invertemos) todos os bits 1 por 0 e os bits 0 por 1 e somamos 1 ao resultado do Complemento de 1
- Exemplo:

$$+12_{10} \Rightarrow 00001100_{2}$$

Em Complemento de 2 os números <u>positivos</u> também têm o bit mais significativo em 0 e os números <u>negativos</u> em 1

-12₁₀ em Complemento de 2

Representação em Complemento de 2

- Método Alternativo
- Troque todos os bits à esquerda do bit 1 menos significativo.
- Passos:
 - 1.Comece à direita com o LSB e escreva os bits como eles aparecem até o primeiro 1 (inclusive ele).
 - 2. Tome o complemento de 1 dos bits restantes.
- Exemplo:

$$+12_{10} \Rightarrow 00001100_2$$

-12₁₀ em Complemento de 2

Números de Ponto Fixo (Inteiros)

Observações para a Representação Complemento de 2:

1. Há somente 1 representação para o número 0

$$+\mathbf{0}_{10} \Rightarrow \mathbf{00000000}_{2}$$

$$-0_{10} \Rightarrow C1 = 11111111_{2}$$
 $+1$
 $-0_{10} = 10000000_{2}$
 $-0_{10} = Complemento de 2$

Carry é ignorado na conversão do número

<u>Números de Ponto Fixo (Inteiros)</u>

Observações para a Representação Complemento de 2:

2. Intervalo de representação é <u>maior</u> que dos outros métodos de representação anteriores porque só há uma representação para o Zero

011	+3			
010	+2			
001	+1			
000	+0			
000	-0			
111	-1			
110	-2			
101	-3			
100	-4			

Intervalo maior: 8 representações diferentes

Números de Ponto Fixo (Inteiros)

Representação em Excesso (Bias ou Deslocamento):

- A representação em Excesso tem o efeito de deslocar o número a ser representado, de forma que, o menor valor (negativo) corresponda à representação com todos os bits em zero e os valores sejam representados em ordem crescente, a partir do menor
- Exemplo em <u>Excesso de 128</u>:

$$+12_{10} \Rightarrow +12+128 = 140 = 10001100_{2}$$
 $-12_{10} \Rightarrow -12+128 = 116 = 01110100_{2}$

Números de Ponto Fixo (Inteiros)

Observações para a Representação Excesso:

- 1. Há somente 1 representação para o número 0
- 2. Intervalo de representação maior

```
+127_{10} \Rightarrow +127+128 = 255 = 11111111_{2}
...

0_{10} \Rightarrow +0+128 = 128 = 10000000_{2}
...

-127_{10} \Rightarrow -127+128 = 1 = 00000001_{2}
-128_{10} \Rightarrow -128+128 = 0 = 00000000_{2}
```

Com 8 bits podese representar 28=256

números (de 0 a 255)

Ordem crescente facilita comparações entre os números

Resumo das Representações de Dados

Decimal	Sem Sinal	Sinal Magnitude	Complement o de 1	Complemen to de 2	Excesso de 4
+7	111				
+6	110				
+5	101				
+4	100				
+3	011	011	011	011	111
+2	010	010	010	010	110
+1	001	001	001	001	101
+0	000	000	000	000	100
-0	-	100	111	000	100
-1	-	101	110	111	011
-2	-	110	101	110	010
-3	-	111	100	101	001
-4	-			100	000

Números em Ponto Flutuante (Reais)

Problema: Ponto Fixo requer uma quantidade muito grande de dígitos para representar números muito grandes ou muito pequenos

 Exemplo: Para representar 1 Trilhão ⇒ Requer 40 bits à esquerda do ponto fixo

• **Exemplo:** Para representar 1 Trilhonésimo no mesmo processador ⇒ Requer 40 bits à direita do ponto fixo

No total precisamos de 80 bits por número

Números em Ponto Flutuante (Reais)

- Exemplo: Número de Avogrado +6,023x10²³
- Intervalo: 10²³
- Precisão: 6,023 (3 dígitos de precisão)
- Representação do Número em Notação Científica:

Números em Ponto Flutuante (Reais)

- Obs: Há várias maneiras de se representar o mesmo número
- Exemplos:

$$3584,1x10^{\circ} = 3,5841x10^{\circ} = 0,35841 \times 10^{\circ}$$

Várias representações dificultam cálculos e comparações

Necessidade de Normalização da representação

<u>Números em Ponto Flutuante (Reais)</u>

Normalização: o ponto é deslocado ("flutua") para a esquerda do dígito diferente de 0 mais à esquerda (bit mais significativo), e o expoente é ajustado

Exemplo:

0,35841 x 10⁴ ← Forma Normalizada

 Obs: Para representar 0 usa-se a mantissa com todos os valores em 0

Números em Ponto Flutuante (Reais)

Observações para representação em Ponto Flutuante:

- Para representar 0 usa-se a mantissa com todos os valores em 0
- Em binário, não há necessidade de se armazenar o dígito 1 "mais significativo" da mantissa (já se sabe que ele é 1) ⇒ esse bit é chamado de "bit escondido". Sobra mais espaço para o número ser representado ⇒ aumenta a precisão

Números em Ponto Flutuante (Reais)

Padrão IEEE 754

- 1980: Padronização da representação em Ponto Flutuante pela IEEE (Institute of Electrical and Electronics Engineers)
- Padronização:
 - -Facilita a troca de dados entre diferentes computadores
 - -Facilita os algoritmos aritméticos de PF, pois tratam os os números sempre no mesmo formato
 - -Melhora a precisão dos números representados devido ao bit escondido

Números em Ponto Flutuante (Reais)

<u>Padrão IEEE 754</u> (ANSI/IEEE 754-1985)

- São três formas:
 - **Precisão Simples:** 32 bits **(S** → 1, **E** → 8, **M** → 23**)**
 - **E** é representado em excesso de 127 e **M** efetivamente possui 24 bits, um bit escondido.
 - **Precisão Dupla:** 64 bits {**S** → 1, **E** → 11, **M** → 52}
 - **E** é representado em excesso de 1023 e **M** efetivamente possui 53 bits, um bit escondido.
 - Precisão estendida: 80 bits {S → 1, E → 15, M → 64}
 - **E** é representado em excesso de 16383 e **M** possui 64 bits, não tem bit escondido.

Números em Ponto Flutuante (Reais)

Padrão IEEE 754

- Exceções:
 - O número *0,0* é representado por *0s* em todas as posições.
 - E *infinito* é representado com *1s* em todas as posições do expoente e *0s* em todas as posições da mantissa.

Formatos do Padrão IEEE 754

Precisão simples

Exemplo: converter o número decimal para binário

$$3,248 \times 10^4 = 32480 = 11111110111100000_2 = 1,1111110111100000 \times 2^{14}$$

O MSB não ocupa a posição de um bit porque ele é sempre 1

111110111000000000000000

Expoente (polarizado → em excesso de 127):

$$14+127=141=10001101_2$$

O número completo representado em ponto flutuante:

S Expoente

Mantissa

Aritmética Computacional

Revisão Adição e Subtração

Aritmética Computacional

Circuito Somador $S = A \oplus B \oplus C_{in}$ $C_{out} = AB + BC_{in} + AC_{in}$ A \bigoplus B \bigoplus C_{in} B \bigoplus C_{in} C_{in} **BC**_{in} AB+BC_{in}+AC AB

Somador de 4 bits

Somador Ripple-Carry

Soluções

Circuito Subtrator

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = \overline{A}B + BC_{in} + \overline{A}C_{in}$$

ULA: Somador e Subtrator

ULA com 2 circuitos para efetuar a adição e a subtração

ULA: Somador e Subtrator

Circuito Somador

C_{out}

Circuito Subtrator

ULA: Somador e Subtrator

Circuito Somador/Subtrator

Somador Convencional

Somador Ripple-Carry

Somador Convencional: Atrasos para propagar o carry

Somador Carry Lookahead

CL: Lógica para antecipar o carry sem passar pelo somador

Expressão do Carry do Somador

$$C_{i+1} = A_i B_i + A_i C_i$$

+ $B_i C_i$
1. Fatorando a expressão

$$C_{i+1} = A_i B_i + C_i (A_i + B_i)$$

2. Chamando A_iB_i de G_i e A_i+B_i de P_i

$$C_{i+1} = G_i + P_i C_i$$

3. Substituindo os índices para obter os carries para um somador de 4 bits

$$C_1 = G_0 + P_0 C_0$$

4. Para simplificar a análise, vamos considerar $C_0=0$ para soma

$$C_1 = G_0$$

<u>Expressão do Carry do Somador</u>

$$C_2 = G_1 + P_1C_1$$

5. Substituindo $C_1 = G_0$

$$C_2 = G_1 + P_1G_0$$

6. Obtendo C₃

$$C_3 = G_2 + P_2C_2$$

7. Substituindo $C_2 = G_1 + P_1G_0$

$$C_3 = G_2 + P_2(G_1 + P_1G_0) \Rightarrow C_3 = G_2 + P_2G_1 + P_2P_1G_0$$

8. Obtendo C₄

$$C_4 = G_3 + P_3C_3 \Rightarrow C_4 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0) \Rightarrow C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2G_1$$

Multiplicação e Divisão

Aritmética Computacional

Multiplicação em Binário:

Exemplo

a) 0 b) 0 c) 1 d) 1
$$\frac{0}{0} \times \frac{1}{0} \times \frac{1}{0} \times \frac{0}{0} \times \frac{1}{1} \times \frac{0}{0} \times \frac{0}{1} \times \frac{0}{0} \times \frac{0$$

Aritmética Computacional

Multiplicação em Binário:

Cada dígito do Multiplicador, a partir da direita deve multiplicar o Multiplicando gerando um produto parcial

Quando o bit da direita do Multiplicador é 0 ⇒ Produto Parcial é 0

Quando o bit da direita do Multiplicador é 1 ⇒ Produto Parcial é o próprio Multiplicando

Cada Produto Parcial é deslocado 1 bit à esquerda em relação ao produto parcial anterior

```
1 1 0 1 Multiplicando (M)

x1 0 1 1 Multiplicador (Q)

1 1 0 1

1 1 0 1

1 1 0 1

Produtos Parciais

1 0 0 0 1 1 1 1 Produto
```


Multiplicação Binária

Algoritmo de Multiplicação

- Registrador M ← Multiplicando
 Pogistrador O ← Multiplicador
- 2. Registrador Q ← Multiplicador
- 3. Registrador $A \leftarrow 0$
- 4. Registrador $C \leftarrow 0$
- 5. Bit q₀ do Multiplicador é testado

```
Se q_0=0 {
```

- Não soma M e A (o produto parcial não é somado ao Multiplicando)
- Desloca os registradores C/A/Q para a direita

```
Se q<sub>0</sub>=1 {
```

- Soma M e A resultado fica em A)
- Desloca os registradores C/A/Q para a direita

}

- 6. Repete o passo 5, n vezes (n = n° de bits de M e Q)
- 7. Produto (resultado final) está armazenado em A e Q

Multiplicação Binária

1101

Exemplo:

1101 ← Multiplicando (M)

x1011

0

0000

1011 ← Multiplicador (Q)

C

Α

Q

0

0000

1011 $q_0 = 1 \Rightarrow A + M$

C

A

Q

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

$$n=1$$
 $\begin{cases} C \\ 0 \end{cases}$

$$n=1\begin{cases} C & A & Q \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{cases} \neq A+M$$

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

x1011

$$n=1 \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

1 1 0 1desloca para a direita

Multiplicação Binária

1101

x1011

Exemplo:

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

$$n=1 \begin{cases} 0 & 1101 & 1011 \\ 0 & 0110 & 1101 \\ 0 & 1001 & 1101 \\ 0 & 1001 & 1110 \\ 0 & 1001 & 1110 \\ 0 & 1001 & 1110 \\ 0 & 0110 & 0110 \\ 0 &$$

Multiplicação Binária

1101

Exemplo:

1 1 0 1 Multiplicando (M)

$$n=1 \begin{cases} 0 & 1101 & 1011 \\ 0 & 0110 & 1101 \\ 0 & 0011 & 1101 \\ 0 & 1001 & 11101_{0}=0 \Rightarrow \text{N}\~ao soma A+M, desloca} \end{cases}$$

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

$$n=1 \begin{cases} 0 & 1101 & 1011 \\ 0 & 0110 & 1101 \end{cases}$$

$$n=2 \begin{cases} 1 & 0011 & 1101 \\ 0 & 1001 & 1110 \end{cases}$$

$$n=3 \begin{cases} 0 & 0100 & 1111 q_0=1 \Rightarrow A+M \end{cases}$$

$$n=4 \begin{cases} 1 & 0001 & 1111 \end{cases}$$

Multiplicação Binária

1101

Exemplo:

1 1 0 1Multiplicando (M)

x1011

$$n=1 \begin{cases} 0 & 1101 & 1011 \\ 0 & 0110 & 1101 \\ 0 & 0111 & 1101 \\ 0 & 1001 & 1110 \\ \\ n=3 \begin{cases} 0 & 0100 & 1111 \\ 0 & 1000 & 1111 \\ 0 & 1000 & 1111 \\ \end{pmatrix} desloca para a direita$$

Produto

Exercício

Faça a multiplicação de 0010₂ (M) x 0011₂ (Q)

Algoritmo de Multiplicação

- 1. Registrador M ← Multiplicando
- 2. Registrador Q ← Multiplicador
- 3. Registrador $A \leftarrow 0$
- 4. Registrador $C \leftarrow 0$
- 5. Bit q₀ do Multiplicador é testado

```
Se q_0 = 0 {
```

- Não soma M e A (o produto parcial não é somado ao Multiplicando)
- Desloca os registradores C/A/Q para a direita

```
}
Se q₀=1{
```

- Soma M e A resultado fica em A)
- Desloca os registradores C/A/Q para a direita

}

- 6. Repete o passo 5, n vezes (n = nº de bits de M e Q)
- 7. Produto (resultado final) está armazenado em A e Q

Multiplicação Binária

0010

0 0 1 0 ← Multiplicando (M)

x0011

C

A

Q

$$0 \ 0 \ 1 \ 1 \ q_0 = 1 \Rightarrow A + M$$

C

Α

Q

Multiplicação Binária

$$n=1 \begin{cases} C & A & Q \\ 0 & 0 & 1 & 0 \end{cases} \qquad 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{cases} q_0=1 \Rightarrow A+M$$

Multiplicação Binária

0 0 1 0Multiplicando (M)

$$n=1\begin{cases} 0\\0\\0\end{cases}$$

A 0 0 1 0 0 0 0 1

0011

0 0 0 1desloca para a direita

Multiplicação Binária

Multiplicação Binária

$$n=1 \begin{cases} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & desloca para a direita \end{cases}$$

Multiplicação Binária

Multiplicação Binária

Multiplicação Binária

Aritmética Computacional

```
Divisão:
```

Exemplo

```
Dividendo (Q)
1001010
```

```
Divisor (M)
1 0 0 0
```

Quociente

Resto

Aritmética Computacional

Divisão:

Divisão: - Verifica quantas vezes o divisor pode ser subtraído do dividendo

- Para cada tentativa de subtração insere 1 dígito no quociente

Aritmética Computacional

Divisão:

Aritmética Computacional

Divisão:

Aritmética Computacional

Divisão:

Aritmética Computacional

Divisão:

Aritmética Computacional

Divisão:

Aritmética Computacional

Divisão:

-Para verificar se o divisor "cabe" no dividendo faz-se uma subixidão:

do-

- -Se o resultado é negativo significa que ainda não dá para dividir, restaura-se o valor do dividendo e insere 0 no quociente.
- -Se o resultado é positivo significa que dá para dividir, então insere-se 1 no quociente.

Algoritmo de Divisão

- 1. Registrador Q ← Dividendo
- 2. Registrador M ← Divisor
- 3. Registrador $A \leftarrow 0$
- 4. Bit mais significativo de M (m₄) é zerado
- 5. Desloca os Registradores A e Q para a esquerda
- 6. Subtrai A-M para saber se o divisor "cabe" no dividendo
- 7. Bit a₄ do Dividendo (Registrador A) é testado

```
Se a_4=0 {
```

- Não soma A e M
- $q_0 \leftarrow 1$ significa que é possível subtrair o divisor do dividendo

```
}
Se a
```

```
Se a<sub>4</sub>=1 {
```

- Soma A e M para restaurar o dividendo
- $q_0 \leftarrow 0$ (significa que ainda não é possível fazer a divisão)

}

- 8. Repete os passos 5 a 7, n vezes ($n = n^{\circ}$ de bits de M e Q)
- 9. Quociente está armazenado em Q e o resto em A

Divisão Binária

Exemplo:

```
0 0 0 1 1 ← Divisor (M)

0 0 0 0 0

0 1 1 1 ← Dividendo (Q)

A Q
```

Divisão Binária

Exemplo:

n=1

```
0\ 0\ 1\ 1  \leftarrow Divisor (M)
```

00000

0111 ← Dividendo (Q)

A

00000

1 1 1 0desloca A e Q para a esquerda

Divisão Binária 0 0 0 1 1 ← Divisor (M) 0 0 0 0 0 0 1 1 1 ← Dividendo (Q) A Q 0 0 0 0 0 1 1 1 0desloca A e Q para a esquerda

Exemplo:

1 1 1 0 1 1 1 1 0 A-M (Compl. 2 de M e soma)

1 1 1 0A+M (restaura divisor)

Divisão Binária ← Divisor (M) **Exemplo:** 00000 **0 1 1 1** ← Dividendo (Q) 00000 1 1 1 0desloca A e Q para a esquerda **11101 1110A-M** (Compl. 2 de M e soma) 1110A+M (restaura divisor) **111 0** Zera $q_0 (q_0 \leftarrow 0)$ 00000 00001 1 1 0 Odesloca A e Q para a esquerda **1 1 0 0** A-M (Compl. 2 de M e soma)

Divisão Binária **Divisor (M) Exemplo:** 00000 **0 1 1 1** ← Dividendo (Q) 00000 1 1 1 0desloca A e Q para a esquerda **1 1 1 0 1 1 1 1 0 A-M** (Compl. 2 de M e soma) 1 1 1 0A+M (restaura divisor) 00000 **111 0** Zera $q_0 (q_0 \leftarrow 0)$ 00000 00001 1 1 0 Odesloca A e Q para a esquerda **1 1 0 0** A-M (Compl. 2 de M e soma) 1 1 0 0A+M (restaura divisor)

Divisão Binária **Divisor (M) Exemplo:** 00000 **0 1 1 1** ← Dividendo (Q) 0 0 0 0 0 1 1 1 0 desloca A e Q para a esquerda 1 1 1 0 1 1 1 1 0 A-M (Compl. 2 de M e soma) 1 1 1 0A+M (restaura divisor) 00000 **111 0** Zera $q_0 (q_0 \leftarrow 0)$ 00000 00001 1 1 0 Odesloca A e Q para a esquerda **1 1 0 0** A-M (Compl. 2 de M e soma) 1 1 0 0A+M (restaura divisor) **1 1 0 0** Zera $q_0 (q_0 \leftarrow 0)$ 00001

Divisão Binária

Exemplo:

n=3

 $00011 \leftarrow Divisor(M)$

00000

0 1 1 1 ← Dividendo (Q)

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

Divisão Binária

Exemplo:

$$00011 \leftarrow Divisor(M)$$

Δ

00011

00000

0 1 1 1 ← Dividendo (Q)

Q

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

0 0 0 0 0 1 0 0 0 A-M (Compl. 2 de M e soma)

1001
$$q_0 \leftarrow 1$$

Divisão Binária $00011 \leftarrow Divisor(M)$ **Exemplo:** 0 0 0 0 0 0 0 1 1 1 ← Dividendo (Q) 0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda 1000A-M (Compl. 2 de M e soma) 1001 $q_0 \leftarrow 1$ $a_4=1$ $a_4=$

<u>Divisão Binária</u>

Exemplo:

$$0\ 0\ 1\ 1$$
 \leftarrow Divisor (M)

Q

$$a_4 = 0 \longrightarrow 0 0 0 1 1$$

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

1 0 0 0 A-M (Compl. 2 de M e soma)

$$n=4 \begin{cases} a_4 = 1 \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

0 0 1 Odesloca A e Q para a esquerda

0 0 1 0 A-M (Compl. 2 de M e soma)

0 0 1 0A+M (restaura divisor)

Exercício

Faça a divisão 0111₂ (Q) : 0010₂ (M)

Algoritmo de Divisão

- 1. Registrador Q ← Dividendo
- 2. Registrador M ← Divisor
- 3. Registrador $A \leftarrow 0$
- 4. Bit mais significativo de M (m₄) é zerado
- 5. Desloca os Registradores A e Q para a esquerda
- 6. Subtrai A-M para saber se o divisor "cabe" no dividendo
- 7. Bit a₄ do Dividendo (Registrador A) é testado

```
Se a_4=0 {
```

- Não soma A e M
- $q_0 \leftarrow 1$ significa que é possível subtrair o divisor do dividendo

```
}
```

```
Se a<sub>4</sub>=1 {
```

- Soma A e M para restaurar o dividendo
- $q_0 \leftarrow 0$ (significa que ainda não é possível fazer a divisão)

}

- 8. Repete os passos 5 a 7, n vezes (n = nº de bits de M e Q)
- 9. Quociente está armazenado em Q e o resto em A

Divisão Binária

```
0 0 0 1 0 ←Divisor (M)
```

00000

n=1

0 1 1 1 → Dividendo (Q)

0 0 0 0 0 1 1 1 0 desloca A e Q para a esquerda


```
0 0 0 1 0 Divisor (M)

0 0 0 0 0

0 1 1 Dividendo (Q)

A Q

1 1 1 0desloca A e Q para a esquerda

1 1 1 1 1 0 A-M (Compl. 2 de M e soma)
```


Divisão Binária

0 0 0 1 0 ←Divisor (M) 00000 **0 1 1 1 ←Dividendo (Q)** 00000 1 1 1 0desloca A e Q para a esquerda 11110 **1 1 1 0** A-M (Compl. 2 de M e soma) 1110A+M (restaura divisor) 00000 **1110** Zera $q_0 (q_0 \leftarrow 0)$ 00000 1 1 0 Odesloca A e Q para a esquerda 00001 **1100**A-M (Compl. 2 de M e soma)

Divisão Binária

0 0 0 1 0 ← Divisor (M) 00000 **0 1 1 1 ←Dividendo (Q)** 00000 1 1 1 0desloca A e Q para a esquerda 11110 **1110**A-M (Compl. 2 de M e soma) 1110A+M (restaura divisor) 00000 **111 0** Zera $q_0 (q_0 \leftarrow 0)$ 00000 00001 1 1 0 Odesloca A e Q para a esquerda **1 1 0 0** A-M (Compl. 2 de M e soma) 00001 1 1 0 0A+M (restaura divisor)

Divisão Binária

0 0 0 1 0 ←Divisor (M) 00000 **0 1 1 1 ← Dividendo (Q)** 0 0 0 0 0 1 1 1 0desloca A e Q para a esquerda **11110 1110A-M** (Compl. 2 de M e soma) 1 1 1 0A+M (restaura divisor) 00000 **111 0** Zera $q_0 (q_0 \leftarrow 0)$ 00000 00001 1 1 0 Odesloca A e Q para a esquerda **1 1 0 0** A-M (Compl. 2 de M e soma) 00001 1 1 0 0A+M (restaura divisor) **1 1 0 0** Zera $q_0 (q_0 \leftarrow 0)$ 00001

Divisão Binária

```
0 0 0 1 0 ←Divisor (M)
```

00000

n=3

0 1 1 1 ⊕ Dividendo (Q)

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

Divisão Binária

0 1 1 1 ← Dividendo (Q)

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

0 0 0 0 1 1 0 0 0 A-M (Compl. 2 de M e soma)

Divisão Binária

0 1 1 1 ← Dividendo (Q)

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

0 0 0 0 1 1 0 0 0 A-M (Compl. 2 de M e soma)

1001
$$q_0 \leftarrow 1$$

$$00010 \quad \text{Divisor (M)}$$

$$00000 \quad 0111 \quad \text{Dividendo (Q)}$$

$$A \quad Q$$

$$1000 \text{desloca A e Q para a esquerda}$$

$$1000 \text{A-M (Compl. 2 de M e soma)}$$

$$00001 \quad 1001 \quad q_0 \leftarrow 1$$

Divisão Binária

Q

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

1000A-M (Compl. 2 de M e soma)

$$\begin{array}{c}
0 & 0 & 0 & 1 & 1 \\
a_4 = 0 \longrightarrow 0 & 0 & 0 & 1
\end{array}$$

0 0 0 1 1 Odesloca A e Q para a esquerda

→ 0 0 0 0 1 0 1 0 A-M (Compl. 2 de M e soma)

Divisão Binária

00001

0 0 0 1 1 1 0 0 0 desloca A e Q para a esquerda

1000A-M (Compl. 2 de M e soma)

100 1
$$q_0 \leftarrow 1$$

0 0 1 Odesloca A e Q para a esquerda

0 0 1 1
$$q_0 \leftarrow 1$$

Resto

Quociente

Exercícios

Faça a multiplicação de 0110₂ (M) x 0011₂ (Q)

Faça a divisão de 1110₂ (Q) : 0110₂ (M)

Aritmética de ponto flutuante (+/-)

- Verifique zero.
- Alinhe significandos (ajustando expoentes).
- Soma ou subtraia significandos.
- Normalize resultado.

Fluxograma da adição e subtração de ponto flutuante

Aritmética de ponto flutuante (* e /)

- Verifique zero.
- Soma/subtraia expoentes.
- Multiplique/divida significandos (observe sinal).
- Normalize.
- Arredonde.
- Todos os resultados intermediários devem ser em armazenamento de tamanho duplo.

Multiplicação em Ponto Flutuante

Divisão em Ponto Flutuante

Resumo da Aula de Hoje

<u>Tópicos mais importantes:</u>

- Aritmética Computacional
- Circuitos Aritméticos
 - Circuito Multiplicador
 - Circuito Divisor
- Entregar folha com:
 - Nome
 - RA
 - Data de Hoje
 - Resumo

Referências

 Notas de Aulas do Prof. João Angelo Martini do DIN-UEM.

