

计算机组成原理

第二章 数据表示

2.4 奇偶校验

1 奇偶校验的基本原理

1)增加冗余码(校验位)

有效信息(k位)

校验信息(r=1位)

2)编码:根据有效信息计算校验信息位,使校验码(数据+

1位校验信息)中1的个数满足奇/偶校验的要求

 $0001 \rightarrow 0001$ (偶校验) $P = D_1 \oplus D_2 \oplus D_3 \oplus D_4$

0001 \rightarrow 00010 (奇校验) $P=D_1\oplus D_2\oplus D_3\oplus D_4$

1 奇偶校验的基本原理

3)检错方法与电路

奇校验检错码:

$$G = C \oplus X_1 \oplus X_2 \oplus X_3 \oplus X_4 \oplus X_5 \oplus X_{\dots} \oplus X_n$$

G=0表示数据正常,否则表示出错

奇偶校验的基本原理

偶校验检错码:

$$G = C \oplus X_1 \oplus X_2 \oplus X_3 \oplus X_4 \oplus X_5 \oplus X_6 \oplus X_7$$

$$G=0表示数据正常,否则表示出错$$

- 2 奇偶校验的特点
 - •编码与检错简单
 - •编码效率高

- •不能检测偶数位错误,无错结论不可靠,是一种错误检测码
- •不能定位错误,因此不具备纠错能力

3

奇偶校验的码距

最小码距	检错	纠错
1	0	0
2	1	0
3	2	或 1
4	2	加 1
5	2	加 2
6	3	加 2
7	3	加 3

●举例说明奇/偶校验码距为 2 11000011 → **0**100001**0** •最小码距≥e+1:

可检测e个错误

•最小码距≥2t+1:

可纠正t个错误

•最小码距≥e+t+1:

可纠正t个错误,同时检测e个错误(e≥t)

第二章

2.4 奇偶校验

改进的奇/偶校

双向奇偶校验 方块校验 垂直水平校验

0110100	1	
1011010	0	
001011 <mark>1</mark>	1	
1110101	1	
1001011	0	
1000110	1	
(可纠错)▲		
0110100	1	
1011010	0	
01 10110	1	A
1110101	1	
10010 0 1	0	^
1000110	1	
△ △		
(可检错)		

•可检测出某行(列)上的奇数位 •可检出一部分偶数位错误 •不能检测出错码分布在矩形4个顶点上的错误 (不能检错) (可检错)

•可纠正1位错误

5 关于奇/偶校应用的讨论

•哪些场合应用奇偶校验?

哪条内存条具有错奇偶校验功能的内存条?

•工程上的应用

http://www.eepw.com.cn/article/280413.htm (关于串口奇偶校验配置的经验)

一般在同步传输方式中常采用奇校验,异步传输方式中常采用偶校验

000000

00000000 偶校验

00000001 奇校验

5 关于奇/偶校应用的讨论

