Bài gi ng môn h c LOGIC M VÀ NG D NG

PGS.TS. Nguy n V n nh, Khoa CNTT, H c Vi n NN Vi t Nam

M u

Trong cu c s ng, con ng i truy n thông tin cho nhau ch y u b ng ngôn ng t nhiên. M c dù ngôn ng t nhiên th ng a ngh a, không chính xác, và không y , nh ng nó v n là ph ng ti n truy n thông tin m nh m và thông d ng nh t gi a con ng i v i nhau. V t qua t t c các h n ch ó c a ngôn ng t nhiên (thi u chính xác, không rõ ràng - vaguenees), con ng i th ng hi u úng và ít khi hi u sai nh ng i u mà ng i khác mu n nói v i mình. ây là i u mà máy móc nói chung và máy tính nói riêng không th th c hi n Tham v ng c a các nhà toán h c, logic h c và công ngh thông tin là mu n xây d ng cho máy móc kh n ng suy di n và x lý thông tin, t c là có kh n ng ho t ng nh b óc c a con ng i chúng có thonh n nhong monh lonh ca con ngo i thông qua ngôn ngo to nhiên và tho c thi nh ng nhi m v ó. Nh v y, v n t ra ây là làm th nào máy tính có th hi u và x lý c nh ng tri th c di n t b ng ngôn ng t nhiên. c i u này, tr ch t ng i ta c n ph i xây d ng m t lý thuy t logic toán cho phép mô t chính xác ý ngh a c a các m nh không rõ ràng, a ngh a.

Logic toán h c c i n nghiên c u các phép suy lu n v i các m nh có giá tr chân lý (úng/sai) rõ ràng. Ch ng h n ta có các m nh trong logic c i n:

- p: 'hôm nay tr i m a' , giá tr chân lý c a p là 'T'(úng) hay 'F' (sai) là có th xác nh c.
- q: 'hôm nay Trung ngh h c', s có giá tr chân lý duy nh t là T ho c F
- r: 'tu i c a Trung là 22' ...

V i nh ng m nh trên, logic c i n có th áp d ng các quy t c suy di n, ch ng h n quy t c modus ponens:

"n $u p \rightarrow q$ úng và p úng thì q úng"

do ón u có lu t'tr i m a thì SV ngh h c' thì n u có p: 'hôm nay tr i m a' là úng thì s suy ra q: 'hôm nay Trung ngh h c' là úng.

Tuy nhiên trong th c t , có nhi u m nh ch a nh ng thông tin không rõ ràng, không chính xác, ch ng h n ta th ng g p nh ng m nh :

- p': 'A là ng i l p trình gi i'
- q': 'l ng c a A là cao'
- r': 'A có c m tình v i B'

Nh ng m nh trên ây ch a nh ng thông tin không chính xác và không y (g i là các thông tin m), ch ng h n: nh th nào là l p trình gi i, cho nên không th có giá tr chân lý c a p', hay l ng c a A cao là bao nhiều, A c m tình v i B n m c nào? T t c nh ng m nh trên u không th có giá tr chân lý (úng/sai) rõ ràng (g i là các m nh 'm'). Chúng ta

c ng không th áp d ng quy t c modus ponens c a logic c i n v i các m nh 'm 'trên ây, suy ra 'A có l ng cao' là úng, dù r ng có lu t: 'ng i l p trình gi i thì có l ng cao'.

máy tính có th hi u c các tri th c di n t b ng ngôn ng t nhiên ch a ng nh ng thông tin 'm ', ng i ta c n ph i xây d ng m t lý thuy t logic m i, cho phép mô t chính xác ý ngh a c a các m nh có ch a các thông tin không rõ ràng, a ngh a.

Vào n m 1965, Giáo s Lotfi Zadeh - tr ng khoa i n t thu c tr ng i h c California, m t nhà toán h c và logic h c ng i Hà Lan, ã xây d ng thành công lý thuy t t p m và h th ng logic m . Phát minh này c a Zadeh ã cho phép con ng i có th l ng hóa giá tr các m nh m , nh ó truy n t m t s thông tin cho máy móc qua ngôn ng t nhiên, và chúng có th "hi u" khá chính xác n i dung c a nh ng thông tin ó. ây là m t b c ti n có tính t phá trong vi c phiên d ch hay l ng hóa nh ng m nh c a ngôn ng t nhiên, có ch a nh ng thông tin không chính xác và không y , (các thông tin "m") sang các ngôn ng hình th c, ngôn ng l p trình.

1.1 B TÚC CÁC KI NTH C V T PH P

nghiên c u các t p h p m (FUZZY SET) và logic m (FUZZY LOGIC) tr c h t ta nh c l i các ki n th c c b n v lý thuy t t p h p c i n (CRISP SET), các ánh x và các quan h trên các t p h p. ây là nh ng ki n th c n n t ng c a toán h c, h u h t nh ng ki n th c này sinh viên ngành Tin h c ã c h c t p trong các n m u c a b c i hoc, tuy nhiên, sinh viên c n ôn l i và ch c ch n r ng mình ã n m r t v ng nh ng ki n th c này tr c khi b t u môn h c Logic m và ng d ng.

1.1.1 Môt t ph p

M tt ph p c môt là m t nhóm các it ng không có s l pl i. M i it ng c at ph p c g i là m t ph n t c at ph p ó.

Các ch cái in hoa (có th kèm theo ch s): A, B, C,..hay A_1 , A_2 , A_3 ... th ng c dùng t tên cho t p h p. Các ch cái in th ng (có th kèm theo ch s): a, b, c,..hay a_1 , a_2 , a_3 ... th ng c dùng ch các ph n t c a t p h p.

• N u s ph n t c a t p h p là h u h n và không quá l n ta có th c t t p h p b ng cách li t kê t t c các ph n t c a nó gi a hai d u ngo c {...}, các ph n t trong t p h p c vi t cách nhau b i d u ph y ", " và không quan tâm n th t các ph n t trong m t t p h p.

N u ph n t x là thu c t p h p A, ta vi t $x \in A$ (c: x thu c A), n u trái l i, ta vi t $x \in A$. (c x không thu c A).

• Hait ph pb ng nhau là hait ph p có ch a các ph n t nh nhau.

Ch ng h n: Tâp h p A = $\{1, 2, 3, 4, 5\}$ là b ng t p h p B, v i B = $\{2, 1, 4, 3, 5\}$, ta vi t A = B.

Thí d 1.1 G i D là t p h p các ngày trong tu n, khi ó ta có th cho D b ng cách li t kê các ph n t c a nó:

D = {Mon, Tues, Wed, Thurs, Fri, Sat, Sun}

Ta có Mon \in D, Fri \in D, nh ng September \notin D.

Ngoài ra, t ph p: {Sat, Tues, Wed, Mon, Thurs, Fri, Sun} c ng b ng t ph p D.

N u m tt ph p ch a m ts khál n các ph n t, ho c là vô h n các ph n t, ng i ta có th không li t kết t c các ph n t c a t ph p, mà dùng cách c t t ph p theo m t s tính ch t c tr ng c a các ph n t c a nó.

Thí d 1.2 Có th cho m t s t p h p nh sau:

- $a/.D = \{x \mid x \mid a \mid m \mid t \mid ngay \mid trong \mid tu \mid n \}, D \mid a \mid t \mid p \mid cac \mid ngay \mid c \mid a \mid m \mid t \mid tu \mid n \mid 1$
- b/. $C = \{z \mid z = a + ib, v \mid ia, b \in R, i^2 = -1\}, C \mid at ph ps ph c,$
- c/. $X = \{x \mid x > 5\}$, X là t p các s th c có giá tr 1 n h n 5.
- Ta nóit ph p A làt ph p con c at ph p B và ký hi u là A ⊆ B, n u m i ph n t c a A c ng là ph n t c a B.

Ta nói t ph p A là t ph p con th c s c a t ph p B và ký hi u là $A \subset B$, n u A là t ph p con c a B, và B có ít nh t m t ph n t không thu c A. N u A có dù ch m t ph n t mà không ph i là ph n t c a B thì A không ph i là t p h p con c a t p h p B.

N u $A \subseteq B$ thì ta nói A b ch a trong B, hay B ch a A.

N u $A \subset B$ thì ta nói A b ch a th c s trong B, hay B th c s ch a A.

■ Hai t p h p A và B g i là b ng nhau khi và ch khi $A \subseteq B$ và $B \subseteq A$, và vi t A = B.

Ph ng pháp ch ng minh hai t p h p b ng nhau

ch ng minh 2 t p b ng nhau, A = B, ta s ch ng minh hai bao hàm th $c A \subseteq B$ và $B \subseteq A$. ch ng minh $A \subseteq B$ ta c n ch ra r ng: v i ph n t b t k $x \in A$ thì c ng có $x \in B$, v i bao hàm th c ng c l i $B \subseteq A$ c ng ch ng minh t ng t . (xem thí d 1.5)

- M ttr ngh p c bi t c a t p h p là "t p h p r ng", t p h p này không ch a b t k ph n t nào, và c ký hi u là Ø, hay { }. T p h p r ng c xem nh t p con c a m i t p h p.
- T ph pt tc cáct ph p con c at ph p A (k c chính t p A và t pr ng) g i là t p h p l y th a c a A, ký hi u 2^A, t ph p này c ng c ký hi u là P(A).
- L c l ng c a t p h p A là s ph n t c a A. Ký hi u l ng c a t p h p A là | A |. Rõ ràng ta có | 2^A | = $2^{|A|}$.

Thí d 1.3. M ts k t qu so sánh các t p h p:

a/.
$$\{1, 2, 3, 4\} \subseteq \{2, 1, 4, 5, 3\}$$

b/.
$$\{1, 2, 3, 4, 5\} = \{5, 1, 2, 3, 4\}$$

c/. Cho $A = \{1, 2, 3\}$ thì t ph pl y th a c a A là

$$2^{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Ta có
$$|2^A| = 2^{|A|} = 2^3 = 8 \text{ ph } n \text{ t}$$

Trong chuyên này, t nay v sau, cho ng n g n, ta dùng t "t p" thay cho "t p h p".

1.1.2 Các phép toán trên t p h p

Các t p h p c xét ây c xem nh là các t p con c a m t t p v tr X nào ó. Các phép toán xác nh trên t p h p là:

a. Ph n bù c a t p h p A trong X, ký hi u A, là t p các ph n t c a X mà không thu c A.

$$\overline{A} = \{ x \in X \mid x \notin A \}$$

b. H p c a A v a B, ký hi u $A \cup B$, là t p các ph n t thu c ít nh t m t trong hai t p A, B.

$$A \cup B = \{x \mid x \in A \text{ ho } c x \in B\}$$

c. Giao c a A v a B, ký hi $u A \cap B$, là t ph p các ph n t ng th i thu c c A v a B.

$$A \cap B = \{x \mid x \in A \text{ và } x \in B\}$$

d. Hi u c a A và B, ký hi u A \ B (ho c A - B), là t p các ph n t thu c A mà không thu c B

$$A \setminus B = \{x \mid x \in A \ va \ x \notin B\}$$

M t s tính ch t c a các phép toán trên t p h p:

Cho A, B, C là các t p con c a t p v tr X, có th ch ng minh c các tính ch t sau:

■ M t s tính ch t v ph n bù (ph nh):

$$\overline{\overline{A}} = A : \overline{X} = \emptyset : \overline{\emptyset} = X$$

Giao hoán:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

• K th p:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

■ Phân b:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• i ng u (công th c Demorgan):

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{1}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{2}$$

• L cl ng c a hait ph p:

$$|A| + |B| = |A \cup B| + |A \cap B|$$

1.1.3 Tich Decac c a các t p h p

Tích Decac (Descartes Product) c a hai t p A và B là m t phép ghép hai t p c t p h p m i, ký hi u A × B:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

D th y r ng l c l ng c a tích Decac $A \times B$ là: $|A \times B| = |A| \cdot |B|$

Có th m r ng tích Decac cho nhi u t p h p:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i, i = 1, 2, ...n\}.$$

Có th dùng ký hi u l y th a ch tích Decac c a cùng m t t p h p:

$$A^k = A \times A \times ... \times A \quad (k \mid n)$$

Thí d 1.4: Cho R là t p s th c, bi u di n các i m trên ng th ng, khi ó: $R^2 = \{(x, y) \mid x \in R, y \in R\} \text{bi u di n các i m trên m t ph ng,}$ $R^3 = \{(x, y, z) \mid x \in R, y \in R, z \in R\} \text{bi u di n các i m trong không gian,}$

Thí d 1.5: Ch ng minh công th c Demorgan th nh t: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Ta c n ch ng minh hai bao hàm th c: $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ và $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

• Ch ng minh $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ (a):

Gi s x là ph n t b t k mà $x \in \overline{A \cup B}$, khi ó $x \notin A \cup B$, suy ra $x \notin A$ và $x \notin B$, v y x $\in \overline{A} \cap \overline{B}$. Bao hàm th c (a) c ch ng minh.

• V i bao hàm th c $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ (b) ta c ng ch ng minh t ng t.

T (a) và (b) suy ra $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Các b n sinh viên t ch ng minh công th c Demorgan th hai nh là m t bài t p.

1.1.4 Quan h trên các t p h p

Trong nhi u v n , ta c n xem xét n m t m i quan h nào ó gi a các ph n t c a các t p h p. Tr ng h p n gi n nh t là xem xét quan h gi a hai ph n t c a m t t p h p. Nh ng c p ph n t nh v y t o nên m t t p con c a tích Decac $X \times X$, và c g i là m t quan h hai ngôi trên t p h p X.

Ta có nh ngh a hình th c cho m t quan h R trên t p X nh sau:

nh ngh a 1.1.

Chúng ta quan tâm n các tính ch t sau c a m t quan h hai ngôi R trên t p X:

- Ph nx: Quan h R có tính ph nx n u: aRa, $3a \ge X$
- i x ng: Quan h R có tính i x ng n u: aRb Ø bRa
- B c c u: Quan h R có tính b c c u n u: (aRb và bRc) Ø aRc

M i m t quan h có th có m t s ho c t t c ba tính ch t trên. M t quan h s c g i là quan h ph n x , quan h i x ng ho c quan h b c c u khi nó có tính ch t t ng ng.

Thí d **1.6.** Xét t p $X = \{1, 2, 3, 4\}$.

Ta xác nh các quan h:

a/. Ta xác nh m i quan h L gi a các ph n t c a X nh sau: v i a, $b \in X$, ta nói a có quan h L v i b, n u a nh h n b. V y quan h L trên X c xác nh b i t p h p:

$$L(X) = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

b/. Ta xác nh m i quan h D gi a các ph n t c a X nh sau: v i a, $b \in X$, ta nói a có quan h D v i b, n u a chia h t cho b. V y quan h D trên X c xác nh b i t p:

$$D(X) = \{(2, 1), (3, 1), (4, 1), (4, 2), (1, 1), (2, 2), (3, 3), (4, 4)\}$$

D th y r ng L là quan h b c c u trên X, nh ng không ph i là i x ng và ph n x , còn D là quan h ph n x và b c c u trên X, nh ng D không ph i là quan h i x ng.

Ng i ta quan tâm n m t lo i quan h c bi t, ó là quan h t ng ng.

nh ngh a 1.2.

M t quan h hai $ng \delta i$ R $tr \hat{e} n$ X c g i lange quan h t ng ng n u R lange quan h ph n x , i x ng va b c c u; t c lange q i m i ph n t a, b, c e X th i R th a c a c t t t:

- aRa, $3a \stackrel{.}{e} X$ (Tinh ph nx)
- $aRb \varnothing bRa (Tinh ix ng)$
- $(aRb \ va \ bRc) \varnothing \ aRc \ (Tinh \ b \ c \ c \ u)$

N u R là quan h t ng ng trên X thì m i c p ph n t thu c R(X) c g i là t ng ng v i nhau (theo quan h R).

Thí d 1.7. Xét t p m s t nhiên: $M = \{1, 2, ... m\}$, v i m i c p s a và b thu c M, ta nói a ng d v i b modulo k, n u a mod $k = b \mod k$, (0 < k < m), và ký hi u là:

D th y r ng n u $a \sim b \pmod{k}$ thì a - b là m t b i s c a k.

Có th thy r ng quan h $a \sim b \pmod{k}$ tha mãn c ba tính ch t ph n x, i x ng và b c c u, v y ay = b to man h t ng ng.

Ch ng h n, v i m = 5, k = 2. Ta có $M = \{1, 2, 3, 4, 5\}$, Xét quan h R trên M là quan h $a \sim b \pmod{2}$. Khi ó các s a, b th a quan h R là nh ng c p s khi chia cho 2 thì có cùng s d .

$$R(M) = \{(1, 3), (1, 5), (2, 4), (3, 5), (3, 1), (5, 1), (4, 2), (5, 3), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$$

Rõ ràng R thac 3 tính cht phn x, i x ng và b c c u, v y R là quan h t ng ng.

• Phân ho ch c a t p h p: M t quan h t ng ng có th xác nh m t cách chia t p X thành các t p con r i nhau g i là m t phân ho ch c a t p X. C th, ta có nh ngh a sau:

nh ngh a 1.3.

Phân ho ch c a t p h p X là t p P các t p con c a X: $P = \{X_1, X_2, ... X_k\}$, trong $\delta X_i \subsetneq X$, i = 1, 2, ..., k; $X_1 \hat{a} X_2 \hat{a} ... \hat{a} X_k = X$, $X_i \hat{a} X_j = \hat{a} v i i \hat{0} j$.

M t quan h t ng ng R trên t p h p X s chia t p X thành các l p t ng ng, sao cho hai ph n t thu c cùng m t l p là t ng ng v i nhau (theo quan h R). M t ph n t a c a t p X ph i thu c v úng m t l p t ng ng nào ó, ch a t t c nh ng ph n t t ng ng v i a, ký hi u l p này là C(a,R). Nh v y các l p t ng ng là các t p con r i nhau c a X, và ph kín t p X.

Do ó, m t quan h t ng ng R trên m t t p h p s xác nh m t phân ho ch trên t p h p ó, và ng c l i, m t phân ho ch b t k trên m t t p h p s t ng ng v i m t quan h t ng ng trên t p h p ó.

Tr l i thí d l.6, ch ng h n, v i m = 5, k = 2, ta có M = {1, 2, 3, 4, 5}, ta g i R là quan h t ng ng a~b (mod 2) trên M, thì R s chia t p M thành hai l p t ng ng là t p các ph n t khi chia cho 2 s có cùng s d :

$$C(1, R) = \{1, 3, 5\}$$

 $C(2, R) = \{2, 4\}$

Rõ ràng là $C(1, R) \cup C(2, R) = M$, và $C(1, R) \cap C(2, R) = \emptyset$ nên các l p t ng ng trên làm thành m t phân ho ch c a t p M, chia M thành t p con các s l và t p con các s ch n trong M.

• Quan h th t: ôi khi, ta còn chú ý n m t tính ch t khác c a các quan h , ó là tính ph n $i \times ng$. Quan h R có tính ph n $i \times ng$ n u: $(aRb \lor abRa) \varnothing (a = b)$. Ta có nh ngh a:

nh ngh a 1.4.

Quan h R trên t p X c g i là quan h th t n u nó có ba tính ch t: ph n x ph n i x ng và b c c u.

Thí d 1.8. Trên t p $X = \{1, 2, 3, 4\}$ xét quan h R: v i m i c p s a và b thu c X, ta nói aRb n u a b.

Ta có
$$R(X) = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,1), (2,2), (3,3), (4,4)\}$$

D th y r ng R là m t quan h th t trên t p X.

nh ngh a 1.5.

Bao óng P (P-closure) c a quan h R trên t p X, là m t quan h nh nh t ch a t t c các c p c a R, và nh ng c p c suy d n ra t các tính ch t trong P.

Ta xét hai lo i bao óng sau c a quan h R.

- Bao óng b c c u (bao óng truy n ng) c a R, ký hi u R^+ c xác nh nh sau:
- N u (a, b) \in R thì (a, b) c ng thu c R⁺.
- N u (a, b) $\in R^+$ và (b, c) $\in R$ thì (a, c) $\in R^+$.
- Bao óng ph $n \times va$ b $c \in u$ c a R, ký hi u R^* c xác nh nh sau:

$$R^* = R^+ \cup \{(a, a) \mid \forall a \in X\}$$

Thí d 1.9. Cho quan h $R = \{(1, 2), (2, 2), (2, 3), (3, 4)\}$ trên t p $X = \{1, 2, 3, 4\}$,

Ta có: $R^+ = \{(1, 2), (2, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)\}$

Ta có: $R^* = \{(1, 2), (2, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4), (1, 1), (2, 2), (3, 3), (4, 4)\}$

1.1.5 Ánh x trên các t ph p

Gi a các t p h p có th có s t ng ng gi a m t (nhi u) ph n t c a m t (nhi u) t p h p này v i các ph n t c a (các) t p h p khác, khi ó ta có m t ánh x gi a các t p h p ó. Tr ng h p n gi n nh t, ta có nh ngh a sau:

nh ngh a 1.6

Cho hait p h p A và B, $n u có m t quy t c f cho t ng ng m i ph n t <math>x \grave{e} A v$ i m t ph n t duy $nh t y \grave{e} B thì$ ta nói có m t ánh x f t A vào B, và ký hi u là:

$$f: A \to B$$

- Ph n t $y \in B$ mà t ng ng v i ph n t $x \in A$ c g i là nh c a x qua ánh x f, th ng c ký hi u là y = f(x).
- T p t t c nh ng giá tr $y \in B$ là nh c a x nào ó trong A, g i là nh c a A qua ánh x f, c ký hi u và xác nh nh sau:

$$f(A) = \{ y \stackrel{.}{\circ} B \mid c\acute{o} x \stackrel{.}{\circ} A \quad y = f(x) \}$$

- T nh ngh a ánh x trên \hat{a} y, chú ý r ng ánh x f ph i th a mãn hai tính ch t:
 - (i) M i ph n t $x \in A$ u có t ng ng v i m t ph n t $y \in B$. T p A còn c g i là mi n xác nh c a ánh x f. (không th có ph n t nào c a A không có t ng ng vào B)
 - (ii) Có th có hai ph n t khác nhau c a A cùng t ng ng v i m t ph n t c a B, nh ng m t ph n t c a A thì không th t ng ng v i hai ph n t khác nhau c a B.

N u vi ph m m t trong 2 tính ch t trên thì phép t ng ng f không ph i là m t ánh x.

nh ngh a 1.7

Cho ánh x ft A vào B, khi ó:

a/. Ánh x $f: A \to B$ cgilà n ánh n u nh c a các ph n t khác <math>nhau là khác <math>nhau.

Nói cách khác: ánh x f g i là n ánh $n u v i m i x_1, x_2 e A$, mà $x_1 \neq x_2$, thì $f(x_1) \neq f(x_2)$

b/. Ánh x $f: A \succeq B$ c g i là toàn ánh n u f(A) = B.

Nói cách khác: ánh x f g i là toàn ánh n u v i b t k yè B, có ít nh t m t ph n t xè A t ng ng v i y, t c là có x è A sao cho y = f(x).

c/. Ánh x $f: A \to B$ g i là song ánh n u fv a là n ánh v a là toàn ánh.

Chú ý:

1. N u $f: A \succeq B$ là m tánh x song ánh, thì t n t i ánh x ng c t B vào A, ký hi u $f^{-1}: B \succeq A$, ng m i ph n t $y \succeq B$ v i m t ph n t $x \succeq A$ mà y = f(x).

Ánh x ng cf^{-1} : $B \to A c$ ng là m t song ánh và ch ánh x song ánh m i có ánh x ng c

- 2. Ánh x n ánh còn c g i là 'ánh x 1-1'; ánh x toàn ánh còn g i là 'ánh x lên' và ánh x song ánh còn g i là ánh x '1-1' và 'lên'.
- 3. Ánh x $f: A \to B$ c ng c g i là m thàm t A vào B. Khi các t p A, B là các t p con c a t p s th c R, thì các ánh x c g i là các hàm s .

Thí d 1.10.

a/. G i A là t p các sinh viên trong 1 l p, B = $\{0, 1, 2, ..., 100\}$, phép t ng ng f ng m i sinh viên v i l giá tr trong B là i m thi môn ti ng Anh c a sinh viên ó (thang i m 100, không có

i m l). Rõ ràng f là m t ánh x t A vào B, vì v i m i sinh viên u có i m (th a mãn tính ch t (i), và m t sinh viên ch có m t i m duy nh t (th a mãn tính ch t (ii) c a ánh x).

b/. Phép t ng ng ng c l i t B vào A không ph i là ánh x, vì có th v i m t giá tr trong B ng v i nhi u sinh viên cùng nh n giá tr ó là i m (phá v tính ch t (ii) c a ánh x. Ngoài ra, có th có nh ng giá tr c a B không có sinh viên nào có i m nh v y (phá v tính ch t (i) c a ánh x). Phép t ng ng phá v ít nh t m t trong hai tính ch t trên thì không ph i là ánh x.

c/. N u g i C là t p các mã sinh viên c a l p, thì t ng ng g m i sinhh viên v i mã SV c a mình s là m t ánh x v a có tính n ánh, v a có tính toàn ánh, v y g là m t ánh x song ánh t A vào C. Ta có ánh x ng c t t p mã sinh viên C vào t p sinh viên A: g^{-1} : $C \to A$. Rỗ ràng ánh x g^{-1} c ng là m t song ánh.

Các b n sinh viên có th tìm thêm các thí d v các lo i ánh x.

1.2 CÁC KHÁINI M C S C A T P M

1.2.1. Khái ni m t p h p m

Khái ni m 'T ph pm' (Fuzzy Set) là m r ng c a khái ni m t ph p c i n, nh m áp ng nhu c u bi u di n nh ng trì th c không chính xác. Trong lý thuy t t ph p c i n (Crisp set), quan h thành viên c a các ph n t i v i m t t ph p c ánh giá theo ki u nh phân m t cách rõ ràng: m i ph n t u c a v tr tham chi u U là ch c ch n thu c t p A ho c ch c ch n không thu c t p A. Nh v y, xem m t ph n t có là là thành viên c a t p A hay không, ta gán cho ph n t ó giá tr 1 n u ph n t ó ch c ch n thu c A, và giá tr 0 n u nó không thu c v t p h p A, t c là ta có th xây d ng m t hàm thành viên (hay hàm thu c) ánh giá m t ph n t có thu c t p A hay không:

$$\forall u \in U, \sim_{A} (u) = \begin{cases} 1 & \text{if } u \in A \\ 0 & \text{if } u \notin A \end{cases}$$

Rõ ràng, hàm thu c μ_A s xác nh t p con c i n A trên t p v tr U. v i μ_A ch nh n giá tr trong t p h p $\{0,1\}$.

Ng c l i, lý thuy t t p m cho phép ánh giá nhi u m c khác nhau v kh n ng m t ph n t có th thu c v m t t p h p. Ta c ng dùng m t hàm thành viên (hàm thu c) xác nh các m c mà m t ph n t u thu c v t p A : $\forall u \in U, 0 \le \sim_A (u) \le 1$.

Ch ng h n, xét v tr tham chi u là các nhân viên trong 1 công ty, g i A là t p 'nh ng ng i có m c l ng t 6 tri u n 8 tri u ng, thì A là 1 't p rõ', g m t t c nh ng ng i có m c l ng S, mà $60000000 \le S \le 80000000$. Rõ ràng ai có l ng 5.990.000 hay 8.010.000 là không thu c t p A.

N u ta coi m c l ng t 6.000.000 tr lên là m c 'thu nh p cao', thì c nh ng ng i có m c l ng th p h n 6.000.000 vài ch c ngàn n vài tr m ngàn ng v n có th c xem là thu c t p h p 'nh ng ng i có thu nh p cao'. T p A trên là t p h p theo ngh a c i n (t p rõ), còn t p B: 'nh ng ng i có thu nh p cao' là t p m , m i ph n t c a v tr tham chi u u c gán m t giá tr ch m c thu c t p m này, ch ng h n m t nhân viên có m c l ng 6.800.000

có thu c vào t p B này là b ng 1 (ch c ch n là ng i có thu nh p cao), nh ng m t ng i có m c l ng 2.000.000 thì có th coi là thành viên c a t p này v i thu c r t th p, thu c s t ng d n v i nh ng ng i có m c l ng càng cao. Nh ng ng i có thu nh p d i 1.000.000 thì ch c ch n không th thu c t p B (m c i là thành viên i v i t p B là b ng 0).

Ta có nh ngh a hình th c cho m t t p con m trên m t v tr tham chi u nh sau:

nh ngh a 1.8.

$$\mu_A: U \stackrel{.}{\vdash} [0, 1]$$

T p con m A trên U xác nh b i hàm thu c μ_A : U \rightarrow [0, 1] có th c bi u di n nh sau:

• V i U là t p r i r c các giá tr, $U = \{u_1, u_2, ..., u_n\}$ t p m A trên U c bi u di n:

$$A = \{ \mu_A(u_1)/u_1, \ \mu_A(u_2)/u_2, ..., \ \mu_A(u_n)/u_n \ | \ u_i \in U, \ i = 1, 2, ..., n \}$$

■ V i U là mi n không m c, t p m A trên U c bi u di n b ng ký pháp:

$$A = \int_{U} \sim_{A}(u)/u$$

Ký pháp trong cách bi u di n th hai này không liên quan gì n tích phân, ch có ngh a r ng v i m i ph n t u c a mi n v tr U (U là mi n liên t c ho c không m c) u c gán v i m t thu c c a u vào t p m A.

N u hàm $\mu_A(u)$ cho k t qu 0 i v i ph n t $u \in U$ thì ph n t o không có trong t p o cho, k t qu o thì ph n t o hoàn toàn thu c t p o cho. Các giá tr trong kho ng m t o n 1 c tr ng cho các ph n t m , t c là m c o là thành viên c a ph n t o i v i t p h p do cho.

Tr ng h p c bi t, n u hàm $\mu_A(u)$ ch l y giá tr b ng 0 hay 1, t c là $\mu_A: U \to \{0, 1\}$, thì t p con m A là m t t p con c i n c a U. Nh v y, t p con c i n (t p rõ) là m t tr ng h p riêng c a t p con m .

Thí d 1.11. Xét t p U g m 8 c n h c ký hi u là u_1 , u_2 , u_3 , u_4 , u_5 , u_6 , u_7 và u_8 , m i c n h có s phòng t ng ng là 1, 2,...,8 phòng. G i A là t p h p g m các c n h "r ng", B là t p h p g m các c n h "thích h p cho 4 ng i". Ta xây d ng hàm thu c cho các t p m A và B nh sau:

 μ_A : $\mu_A(u_3) = 0.4$; $\mu_A(u_4) = 0.5$; $\mu_A(u_5) = 0.6$; $\mu_A(u_6) = 0.8$; $\mu_A(u_7) = 0.9$; $\mu_A(u_8) = 1.0$

 μ_B : $\mu_B(u_3) = 0.4$; $\mu_B(u_4) = 1.0$; $\mu_B(u_5) = 0.7$; $\mu_B(u_6) = 0.5$,

i v i các ph n t khác, các giá tr c a hàm thu c là b ng 0.

Nh v y có th bi u di n các t p m trên nh sau:

 $A = \{0.4/u_3; 0.5/u_4; 0.6/u_5; 0.8/u_6; 0.9/u_7; 1.0/u_8\}$

 $B = \{0.4/u_3; 1.0/u_4; 0.7/u_5; 0.5/u_6\}.$

N u g i C là t p các c n h có s phòng không quá 4 thì rõ ràng $C = \{u_1, u_2, u_3, u_4\}$ là m t t p con c i n (t p rõ) c a U, Tuy nhiên có th coi C là t p con m trên U v i hàm thu c μ_C nh sau:

 $\mu_C(u_1) = 1.0$; $\mu_C(u_2) = 1.0$; $\mu_C(u_3) = 1.0$; $\mu_C(u_4) = 1.0$, $\mu_C(u_5) = \mu_C(u_6) = \mu_C(u_7) = \mu_C(u_8) = 0$.

Bi u di n C d i d ng t p con m trên U:

$$C = \{1.0/u_1; 1.0/u_2; 1.0/u_3; 1.0/u_4\}$$

Thu t ng "T p m" là c d ch t "Fuzzy set", v i m c ích phân bi t v i "T p rõ" (Crisp Set). Th c ra ph i dùng thu t ng "T p con m" c a m t t p v tr nào ó. Tuy nhiên, cho g n ta có th dùng "T p m" thay cho "T p con m" mà không gây ra sai sót và hi u l m nào.

1.2.2 Các ctr ng c a t p m

Các c tr ng c a m t t p m A trên U, là nh ng thông tin mô t v các ph n t liên quan n t p m A, nh ng c tr ng này còn ch rõ s khác bi t c a t p m A, so v i nh ng t p con c i n khác c a U.

nh ngh a 1.9.

Giá cat pm A (Support) là t p các ph n t có giá tr hàm thu c l n h n 0 trong t p m A, c ký hi u và xác nh nh sau:

$$supp(A) = \{u \mid u \in U \mid \mu_A(u) > 0\}$$

nh ngh a 1.10.

Chi u cao c a t p m A (Hight) là giá tr l n nh t mà hàm thu c có th l y trong t p m A, c ký hi u và xác nh nh sau:

$$h(A) = \sup\{ \sim_{A} (u), u \in U \}$$

Chú ý r ng n u U là t p r i r c thì $h(A) = \max\{ \sim_A (u), u \in U \}$

nh ngh a 1.11.

T p m A g i là chu n hóa n u chi u cao c a nó h(A) = 1

Nh vyt pm A trên U cg i là chu n hóa, n u ch c ch n có ít nh t 1 ph n t c a U là th t s thu c A.

nh ngh a 1.12

H t nhân c a t p m A (Kernel) là t p các ph n t có giá tr hàm thu c b ng l, c ký hi u và xác nh nh sau:

$$ker(A) = \{u \mid u \geq U \mid \sim_A(u) = 1\}$$

Nh v y, t p m A có nhân khác r ng khi và ch khi A là t p m chu n hóa.

nh ngh a 1.13.

L c l ng c a t p m A c ký hi u và xác nh nh sau:

$$/A/=\sum_{u\in U} \sim_{\mathrm{A}}(u)$$

Chú ý r ng n u A là t p rõ thì $\mu_A(u) = 1$ v i m i u thu c A, t ng trên b ng s ph n t c a A, trùng v i nh ngh a l c l ng c a t p h p c i n.

nh ngh a 1.14

- nhát c t c a t p m A (hay t p m c c a A) là t p các ph n t có giá tr hàm thu c l n h n ho c b ng , v i \in [0, 1], c ký hi u và nh ngh a nh sau:

$$A = \{u \mid u \in U / \sim_A(u) \text{ f r}\}$$

Chú ý r ng α- nhát c t c a t p m A là 1 t p "rõ", các ph n t c a A hoàn toàn c xác nh.

Thí d 1.12. Xét t p m A trong thí d 1.11:

 $A = \{0.4/u_3; 0.5/u_4; 0.6/u_5; 0.8/u_6; 0.9/u_7; 1.0/u_8\}$

Giá, h t nhân, chi u cao, t p m c c a t p m A c xác nh nh sau:

 $supp(A) = \{u_3, u_4, u_5, u_6, u_7, u_8\}$

 $ker(A) = u_8$

h(A) = 1.0

A là t p m chu n hóa, do có h(A) = 1.

Nhát c t m c $\alpha = 0.5$ c a t p m A: $A_{0.5} = \{u_4, u_5, u_6, u_7, u_8\}; A_{0.9} = \{u_7, u_8\}$

1.2.3. S m và các t p con m l i

Khi U là m t t p s th c R (ho c là t p con c a t p R), bi u di n các giá tr b ng s nh chi u cao, kho ng cách, tr ng l ng, tu i tác, m c l ng, nhi t ...thì các t p con m trên U bi u di n các giá tr 'm ' nh g n, xa, cao, th p, n ng, nh , tr , già...Các t p con m trên R có hàm thu c là hàm l i c g i là các t p m l i, c tr ng cho các ' i l ng m ' trên t p s th c.

1.2.3.1 T pm livàs m

nh ngh a 1.15.

$$\mu_A(a + (1 - b)b) \int \min \{\mu_A(a), \mu_A(b)\}$$

■ T p con m A trên t p s th c c g i là m t s m, n u A là t p m l i và chu n hóa.

Trong chuyên này, chúng ta ch y u nghiên c u các t p con m trên v tr tham chi u là t p s th c R. Trong h u h t các tr ng h p, khi v tr tham chi u là t p s th c R, ta có th ng nh t khái ni m 't p con m ' và 's m '.

Thí d 1.13. Xét t p H các ngôi nhà 'g n bãi bi n't i m t a ph ng, thông th ng ta có th hi u cách bãi bi n 50m là g n, hay có th cách bãi bi n n 200m v n là g n, trên 200m thì tính ch t 'g n bãi bi n' s ít d n i, và t 500m tr lên thì không còn coi là g n bãi bi n n a. Có th bi u di n nh ng tri th c trên b ng m t t p m , n u g i A là t p kho ng cách n bãi bi n c a các ngôi nhà 'g n bãi bi n' thì A s là t p con m trên R, v i hàm thu c là:

$$\forall u \in R, \gamma_A(u) = \begin{cases} 1 & \text{if } 0 < u \le 200\\ \frac{500 - u}{300}, & \text{if } 200 < u < 500\\ 0 & \text{if } u \ge 500 \end{cases}$$

th c a s m A trong thí d 1.13 nh sau:

Hàm thu c μ_A trên $\mbox{ ây là } m$ t hàm l i, t p m $\mbox{ A xác}$ $\mbox{ nh b i } \mu_A$ là t p m l i, A là t p m chu n hóa, v y A $\mbox{ c g i là } m$ t s m .

1.2.3.2 Các ki u hàm thu c c a t p m

Ki u c a t p m ph thu c vào các ki u hàm thu c khác nhau. ã có nhi u ki u hàm thu c khác nhau c xu t. D i ây là m t s hàm thu c tiêu bi u.

1. T p m tam giác. Các t p m này xác nh b i hàm thu c v i 3 tham s là c n d i a, c n trên b và giá tr m (ng v i nh tam giác), v i a < m < b. Hàm thu c này c g i là hàm thu c tam giác, c g i là i x ng n u n u giá tr b - m b ng giá tr m - a, hay m = $\frac{a+b}{2}$

$$\sim_{A}(u) = \begin{cases}
0 & \text{if } u \le a, \text{ or } u \ge b \\
\frac{u - a}{m - a}, & \text{if } a < u < m \\
\frac{b - u}{b - m}, & \text{if } m < u < b \\
h & \text{if } u = m, v \text{ of } h \le 1
\end{cases}$$

th c a các hàm thu c tam giác (không i x ng và i x ng) có d ng:

Hình 1.2 Các t p m tam giác.

2. T p m hình thang. Hàm thu c c a t p m này g i là hàm thu c hình thang, xác nh b i b 4 giá tr a, b, c, d theo công th c sau:

th c a hàm thu c hình thang có d ng sau:

3. T pm L. Hàm thu c c a t p m này g i là hàm thu c L, c xác nh nh sau:

$$\sim_{A}(u) = \begin{cases}
h & \text{if } u \le a, \text{ v\'oi } h \le 1 \\
\frac{b-u}{b-a}, & \text{if } a < u < b \\
0 & \text{if } u \ge b
\end{cases}$$

th c a hàm thu c L có d ng sau:

Hàm thu c trong thí d 1.13 trên $\hat{a}y$ có d ng hàm thu c L, v i a = 100, b = 500.

4. T p m Gamma tuy n tính (hay L trái). Hàm thu c c a t p m này g i là hàm thu c Gamma tuy n tinh (hay hàm thu c 'L- trái', có d ng ng c v i hàm thu c L), c xác nh b i hai tham s a và b theo công th c sau:

$$\sim_{A}(u) = \begin{cases}
0 & \text{if } u \le a, \\
\frac{u - b}{b - a}, & \text{if } a < u < b, \\
h & \text{if } u \ge b, v \neq i, \\
\end{cases}$$

th c a hàm thu c gama tuy n tính có d ng sau:

Hình 1.5 T p m Gamma tuy n tính.

5. Hàm thu c Singleton. ây là hàm thu c cho t p A có úng m t ph n t u = m, có giá tr 0 t i t t c các i m trong t p v tr , ngo i tr t i i m m hàm có giá tr 1. Hàm thu c Singleton c a A ký hi u và xác nh nh sau:

$$SG_A(u) = \begin{cases} 1 & \text{if } u = m \\ 0 & \text{if } u \neq m \end{cases}$$

th c a hàm Singleton:

Hình 1.6 T p m Singleton.

Trong h u h t các tr $\,$ ng h p $\,$ ng d $\,$ ng lý thuy t t p m $\,$ thì v $\,$ tr $\,$ tham chi u là t p s $\,$ th $\,$ c R và các ki u c a hàm thu c th $\,$ ng g p các d ng trên, là nh $\,$ ng hàm l $\,$ i tuy n tính. Trong tr $\,$ ng h p t ng quát, ta có hàm thu c là các hàm l $\,$ i t ng quát, có th $\,$ tuy n tính ho c phi tuy n, các v n $\,$ lý thuy t t p m $\,$ d $\,$ i $\,$ ây $\,$ u $\,$ c trình bày v $\,$ i nh $\,$ ng hàm l $\,$ i t ng quát.

Ch ng h n, khi u là các s th c, ta có th v th hàm thu c μ_A cùng v i các c tr ng c a t p m A: giá , h t nhân, -nhát c t nh hình sau:

1.3 CÁC PHÉP TOÁN TRÊN T PM

T ng t nh lý thuy t t p h p, trên các t p m c ng nh ngh a các khái ni m b ng nhau, bao hàm nhau và m t s phép toán nh : phép h p, phép giao, tích Descartes, c a 2 t p m , là s m r ng các phép toán t ng ng trong lý thuy t t p h p c i n.

1.3.1 So sánh các t p m

so sánh các t p con m A, B trên cùng v tr tham chi u U, ta xem xét các hàm thu c c a nó.

nh ngh a 1.16.

Cho A và B là hai t p con m trên v tr tham chi u U v i hai hàm thu c t ng ng $là \sim_A và \sim_B$, khi o ta co:

- Hai t p m A và B g i là b ng nhau: ký hi u A = B, n u 3 u è U thì $\sim_A(u) = \sim_B(u)$.
- $T p m A ch a trong t p m B: ký hi u A \subseteq B, n u 3 u \rightleftharpoons U thì \sim_A(u) ½ \sim_B(u)$.

T nh ngh a 1.3, ta th y hai t p m là b ng nhau, khi m i ph n t c a t p này c ng thu c t p kia (v i cùng thu c) và ng c l i. i u này hoàn toàn t ng t khái ni m b ng nhau c a hai t p h p c i n. Ngoài ra, t p m A là t p con c a t p m B n u m t ph n t b t k thu c A thì c ng thu c B (v i thu c không th p h n thu c c a ph n t ó i v i A), i u này c ng t ng t nh i v i các t p h p c i n.

1.3.2 Các phép toán trên các t p m

C ng nh $\,v\,$ i các t p h p c $\,$ i n, ta có các phép toán h p, giao, l y ph n bù và tích Decac c a các t p con m . Các phép toán này $\,$ c $\,$ nh ngh a thông qua các hàm thu $\,$ c $\,$ a các t p con m .

1.3.2.1 Phép h p và phép giao c a các t p con m

nh ngh a 1.17.

 $H p c a hai t p m A và B trên U, ký hi u A â B, là m t t p m trên U v i hàm thu c c ký hi u <math>\sim_{A \hat{a} B}(u) và xác$ nh nh sau:

$$\exists u \grave{e} U$$
, $\sim_{A \hat{a} B}(u) = max \{\sim_A(u), \sim_B(u)\}$

th hàm thu c c a h p m A, B và t p m A â B c cho trong hình sau:

Hình 1.8 H p c a hai t p m A và B

nh ngh a 1.18.

Giao c a hai t p m A và B trên U, ký hi u A $\stackrel{\frown}{a}$ B, là m t t p m trên U v i hàm thu c c ký hi u \sim_A \cap_B (u) và c xác nh nh sau:

$$\exists u \in U$$
, $\sim_{A \preceq B}(u) = min\{\sim_A(u), \sim_B(u)\}$

th hàm thu c c a h p m A, B và t p m $A \stackrel{.}{\circ} B$ c cho trong hình sau:

Hình 1.9 Giao c a hai t p m A và B

M ts tính ch t c a phép h p và phép giao các t p m :

- 1. Giaocahait pm lic ng làmtt pm li, nh ngh pcahait pm lithì chach cã làt pm tm li.
- 2. Các tính ch $\,t\,$ giao hoán, $\,k\,$ th $\,p\,$ và phân $\,b\,$ c $\,a\,$ phép $\,h\,$ p và phép giao trong lý thuy $\,t\,$ t $\,p\,$ h $\,p\,$ c $\,i\,$ n $\,v\,$ n $\,$ úng $\,$ i $\,v\,$ i phép $\,h\,$ p, phép giao c $\,a\,$ các $\,t\,$ p $\,$ con $\,m\,$. $\,T\,$ c $\,$ là $\,n\,$ u $\,A,\,$ B, $\,C\,$ là các $\,t\,$ p $\,$ con $\,m\,$ trên $\,v\,$ tr $\,$ tham $\,$ chi $\,u\,$ U, ta có các công th $\,c\,$ sau:
 - Giao hoán:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

K th p:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

■ Phân b:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Nói chung, nh ng công th c c a t p h p c i n ch liên quan n phép h p và phép giao, thì c ng úng i v i các t p con m , ch ng h n: $A \cap B \subseteq A \subseteq A \cup B$, $A \cap U = A$, $A \cup U = U$, ...

1.3.2.2 Ph n bù c a m t t p con m

Trong t p h p c i n, ph n bù c a m t t p h p ch a nh ng ph n t không thu c t p ó (trên cùng t p v tr tham chi u). i v i t p con m A trên U, ph n bù c a A, ký hi u là \overline{A} , ch a nh ng ph n t v i thu c càng cao n u thu c c a ph n t này vào A càng nh . Nói cách khác, m t ph n t càng ít có kh n ng thu c vào t p m A thì càng có nhi u kh n ng thu c vào ph n bù \overline{A} , nh v y \overline{A} c ng là m t t p con m trên U, và c nh ngh a nh sau:

nh ngh a 1.19.

Ph n bù c a t p m A, ký hi u \overline{A} là m t t p con m trên U v i hàm thu c c ký hi u $\sim_{\overline{A}}(u)$ và xác nh nh sau:

$$3 u \stackrel{.}{\circ} U, \sim_{\overline{A}}(u) = 1 - \sim_{A}(u)$$

th hàm thu c c a tấp m A và t p m \overline{A} nh sau:

Hình 1.10 Ph n bù c a t p m A

M ts tính ch tc a phép l y ph n bù các t p m:

- 1. i v i các t p con c i n trên t p v tr U, ta luôn có A $\cap \overline{A} = \emptyset$ và A $\cup \overline{A} = U$, nh ng i v i các t p m thì hai tính ch t này nói chung không úng, t c là n u \overline{A} là ph n bù c a t p m A trên U thì:
 - $A \cap \overline{A} \neq \emptyset$, và
 - $A \cup \overline{A} \neq U$.

ây là i m khác nhau quan tr ng gi a các t p con c i n và các t p con m.

- 2. Các tính ch $\,t\,$ khác $\,$ i v $\,i\,$ ph $\,n\,$ bù c $\,a\,\,t\,$ p con c $\,$ i $\,n\,$ v n $\,$ úng cho các t p con m $\,$, t $\,c\,$ là n u A, B là các t p con m $\,$ trên U thì ta có :
 - M t s tính ch t v ph n bù (ph nh):

$$\overline{\overline{A}} = A$$
; $\overline{U} = \emptyset$; $\overline{\emptyset} = U$

• Các công th c i ng u (công th c De Morgan):

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{1}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{2}$$

Thí d 1.14. Tr l i các t p m A, B trong thí d 1.11:

A là t p h p các c n h "r ng". A = {0.4/u₃; 0.5/u₄; 0.6/u₅; 0.8/u₆; 0.9/u₇; 1.0/u₈}

B là t p h p các c n h "thích h p cho 4 ng i". B = $\{0.4/u_3; 1.0/u_4; 0.7/u_5; 0.5/u_6\}$

Khi ó ta có:

 $A \cup B = \{Các\ c\ n\ h\ thích\ h\ p\ cho\ 4\ ng\ i\ "ho\ c"\ r\ ng\}$

= $\{0.4/u_3; 1.0/u_4; 0.7/u_5; 0.8/u_6; 0.9/u_7; 1.0/u_8\}$

 $A \cap B = \{ \text{Các c } n \text{ h thích h p cho 4 ng i "và" r ng} \}$

= $\{0.4/u_3; 0.5/u_4; 0.6/u_5; 0.5/u_6\}$

 \overline{A} = {Các c n h không r ng}

= $\{0.6/u_3; 0.5/u_4; 0.4/u_5; 0.2/u_6; 0.1/u_7\}$

 $A \cap \overline{A} = \{0.4/u_3; 0.5/u_4; 0.4/u_5; 0.2/u_6; 0.1/u_7\} \neq \emptyset$

1.3.2.3 Tích Descartes c a các t p con m

Tr ch t ta nh ngh a tích Decac c a 2 t p con m A và B trên các v tr tham chi u t ng ng U và V, gi s U và V là c l p v i nhau.

nh ngh a 1.20.

Cho A và B là hai t p con m có các hàm thu c μ_A và μ_B trên các v tr tham chi u t ng ng U và V, khi ó tích Descartes c a A và B là m t t p con m ký hi u là AÎ B trên v tr tham chi u UÎ V, v i hàm thu c là $\mu_{A\hat{1} B}$ c xác nh nh sau:

$$\Im(u,v) \in U \times V, \mu_{A \times B}(u,v) = min\{\mu_A(u), \mu_B(v)\}$$

T ng t nh trong lý thuy t t p h p c i n, ta có th m r ng nh ngh a tích Decac cho k t p m trên các v tr tham chi u c l p:

nh ngh a 1.21.

Tích Descartes c a k t p m A_1 , A_2 ,... A_k trên các v tr tham chi u U_1 , U_2 ,..., U_k là m t t p con m ký hi u là A_1 Î A_2 Î ...Î A_k trên v tr tham chi u U_1 Î U_2 Î ...Î U_k , v i hàm thu c là μ_{AI} Î A_2 ...Î A_k c xác nh nh sau:

$$\exists \ u = (u_1, \ u_2, ... u_k) \ \grave{\in} \ U_1 \widehat{\mathsf{I}} \ \ U_2 \widehat{\mathsf{I}} \ ... \widehat{\mathsf{I}} \ \ U_k \ , \ \ \mu_{A1 \widehat{\mathsf{I}} \ A2.. \widehat{\mathsf{I}} \ Ak}(u) = \min \{ \mu_{AI}(u_1), \ \mu_{A2}(\ u_2), ..., \ \mu_{Ak}(\ u_k) \}$$

D a trên các $\,$ nh ngh a v $\,$ tích Descartes c a các t p con m $\,$, chúng ta s $\,$ nghiên c u các quan h $\,$ m $\,$ trong các ph $\,$ n sau.

Bàit p ch ng 1

1. Cho A, B, C là các t p con c i n c a t p v tr X, hãy ch ng minh các tính ch t sau:

a/.
$$\overline{\overline{A}} = A$$
; $\overline{X} = \emptyset$; $\overline{\emptyset} = X$

b/.
$$A \cup B = B \cup A$$
; $A \cap B = B \cap A$

$$c/. (A \cup B) \cup C = A \cup (B \cup C); (A \cap B) \cap C = A \cap (B \cap C)$$

$$d/A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

e/.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
; $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$f/. |A| + |B| = |A \cup B| + |A \cap B|$$

2. Cho A, B là các t p con c i n c a t p v tr X. Có th dùng hàm thu c bi u di n các t p con A, B nh sau:

$$\forall x \in X, \, \sim_A(x) = \begin{cases} 1 & \text{if } u \in A \\ 0 & \text{if } u \notin A \end{cases} \text{ và } \forall x \in X, \, \sim_B(x) = \begin{cases} 1 & \text{if } u \in B \\ 0 & \text{if } u \notin B \end{cases}$$

Hãy xây d ng các hàm thu c bi u di n các t p $A \cup B$; $A \cap B$ và \overline{A} .

3. Cho A, B, C là các t p con c i n c a t p v tr X. Hãy dùng hàm thu c ch ng minh các công th c sau, b ng cách ch ra r ng v i m i công th c thì hàm thu c c a t p h p v trái b ng hàm thu c c a t p h p v ph i.

$$a/.\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \ ; \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b/.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
; $\overline{A \cap B} = \overline{A} \cup \overline{B}$

- 4. V i nh ng tri th c cho trong thí d 1.13:
- a/. Hãy xây d ng và v th hàm thu c c a t p m B là kho ng cách n bãi bi n c a nh ng ngôi nhà 'không g n bãi bi n'. Hàm thu c này có ph i là hàm l i không?
- b/. Hãy xây d ng và v th hàm thu c c a t p m C là kho ng cách n bãi bi n c a nh ng ngôi nhà cách bi n kho ng 300 n 400 m, ch p nh n sai s n 50 m.
- c/. Xác nh t p m ch kho ng cách c a nh ng ngôi nhà không g n bãi bi n, nh ng cách bãi bi n kho ng 300-400m.
- 5. Cho A là t p con m trên t p v tr U, ch ng minh r ng v i m i α , $\alpha' \in [0, 1]$, n u $\alpha' \ge \alpha$ thì $A_{\alpha} \subseteq A_{\alpha'}$, v i A_{α} và $A_{\alpha'}$ là các nhát c t m c α và α' c a t p m A.

6. Cho A, B là các t p con m trên t p v tr U, ch ng minh r ng v i m i m c $\alpha \in [0, 1]$, nh ng nhát c t m c α c a các t p m A, B, A \cup B, A \cap B th a mãn các tính ch t sau:

a/.
$$(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$$

b/. $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$
c/. $n \ u \ A \supseteq B \ thì \quad A_{\alpha} \supseteq B_{\alpha}$

7. Xét t p U g m 5 ng c viên vào ch c v qu n c phân x ng, $U = \{u_1, u_2, u_3, u_4, u_5\}$, h c l a ch n theo hai tiêu chu n: A – trình nghi p v (m c lành ngh), và B – kinh nghi m ngh nghi p. T p th có ý ki n ánh giá v m c phù h p c a các ng viên v i các tiêu chu n A và B nh sau:

U	Tiêu chu n A	Tiêu chu n B
u_1	khá phù h p	t ng i phù h p
\mathbf{u}_2	hoàn toàn phù h p	khá phù h p
u_3	r t phù h p	hoàn toàn phù h p
u_4	ít phù h p	không phù h p
u_5	t ng i phù h p	r t phù h p

Các m c phù h p c x p lo i nh sau:

- hoàn toàn phù h p: m c phù h p 1;
- -rt phù h p: m c phù h p0.8;
- khá phù h p: m c phù h p 0.6;
- t ng i phù h p: m c phù h p 0.4;
- ít phù h $\,$ p: m $\,$ c $\,$ $\,$ phù h $\,$ p 0.2
- không phù h p: m c phù h p: 0;
- G i A và B là các t p con m nh ng ng i th a tiêu chu n A và B t ng ng. Vi t bi u di n c a các t p con này.
- a/. Tìm t p con m c a U nh ng ng viên th a ít nh t m t trong hai tiêu chu n
- b/. Th a c hai tiêu chu n.
- c/. Không th a tiêu chu n A.
- d/. Tìm nhát c t m c α c a t p m nh ng ng viên th a c 2 tiêu chu n, v i $\alpha = 0.6$ và $\alpha = 0.8$.