

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Elementos de Máquinas		

Sexto Semestre	035064	85
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

BJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar el conocimiento para calcular y seleccionar los componentes estándar de sistemas mecánicos para construir prototipos que satisfagan los criterios de rendimiento requeridos en el diseño.

TEMAS Y SUBTEMAS

1. Conceptos básicos de los sistemas mecánicos y su relevancia en el diseño de productos

- 1.1 ¿Qué es una máquina?
- 1.2 Máquinas y mecanismos
- 1.3 Aplicaciones de la cinemática

2. Diferentes tipos de movimientos proporcionados por mecanismos

- 2.1 Tipos de movimiento
- 2.2 Grados de libertad
- 2.3 Eslabones, juntas y cadenas cinemáticas
- 2.4 Condición de Grashof

3. Cálculos específicos de mecanismos propuestos

- 3.1 Análisis de posición
- 3.2 Diseño para distintos tipos de carga

4. Selección de componentes y partes asociadas estándar

- 4.1 Engranes rectos, helicoidales, cónicos y de tornillo sin fin
- 4.2 Cuñas, acoplamientos y sellos
- 4.3 Cojinetes
- 4.4 Bandas, cadenas y poleas
- 4.5 Sujetadores
- 4.6 Resortes
- 4.7 Rodamiento

5. Cálculos de los componentes eléctricos específicos

- 5.1 Factores de selección de Motores eléctricos y controles
- 5.2 Motores de CA, monofásicos y trifásicos
- 5.3 Controles para motores CA y de corriente directa

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios Revisión bibliográfica del tema en libros y artículos científicos por los alumnos

Discusión de los diferentes temas en seminarios y prácticas de laboratorio

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%. Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso.

El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. Robert L. Mott. Diseño de elementos de máquinas. Pearson. México, 2009
- 2. Robert L. Norton. *Diseño de maquinaría*. Mc Graw Hill. México, 2007.
- 3. Juvinall, Robert C. Diseño de elementos de máquina. Ed. Limusa. México, 2004.

Consulta

- 1. Robert L. Norton. Diseño de Máquinas: un enfoque integrado. Ed. Pearson. México, 2014.
- 2. Robert L. Norton. *Diseño de maquinaria, síntesis y análisis de maquinaria y sus mecanismos*. Ed. Mc. Graw Hill. México, 2011.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Ingeniería mecánica o área afín.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico