

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Курсовой проект

по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студе	нт гр.			
Б9121-01.03.02с	П			
Держапольский Ю.В.				
(Ф.И.О.)		(подпись)		
Проверил доцент, к.ф-м.н. $\frac{\text{Колобов A.Г.}}{(\Phi.\text{И.О.})} {}$				
	2024 5			

г. Владивосток

Содержание

1	Вве	дение	3			
2	Осн	овная часть	5			
	2.1	Постановка задачи	5			
	2.2	Описание алгоритма	5			
	2.3	Описание тестов, использованных для отладки	6			
	2.4	Вычислительные эксперименты	6			
		2.4.1 Анализ погрешностей приближённых решений	6			
	2.5	Оценка количества арифметических операций	6			
	2.6	Оценка временных ресурсов	7			
	2.7	Проверка	7			
	2.8	Доп	7			
3	Зак.	лючение	8			
4	Спи	сок использованных источников	9			
5	При	Приложения				
6 Решение теоретических задач						
	6.1	Задание 1	11			
		6.1.1 Постановка задачи	11			
		6.1.2 Решение	11			
	6.2	Задание 2	12			
		6.2.1 Постановка задачи	12			
		6.2.2 Решение	12			

1. Введение

Объектом исследования являются численные методы решения задач линейной алгебры, а также программное обеспечение, реализующее эти методы.

Цель работы — ознакомиться с численными методами решения систем линейных алгебраических уравнений, нахождения обратных матриц, решения проблемы собственных значений, решить предложенные типовые задачи, сформулировать выводы по полученным решениям, отметить достоинства и недостатки методов, сравнить удобство использования и эффективность работы каждой использованной программы, приобрести практические навыки и компетенции, а также опыт самостоятельной профессиональной деятельности, а именно:

- создать алгоритм решения поставленной задачи и реализовать его, протестировать программы;
- освоить теорию вычислительного эксперимента; современных компьютерных технологий;
- приобрести навыки представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

Работа над курсовым проектом предполагает выполнение следующих задач:

- дальнейшее углубление теоретических знаний обучающихся и их систематизацию;
- получение и развитие прикладных умений и практических навыков по направлению подготовки;
- овладение методикой решения конкретных задач;
- развитие навыков самостоятельной работы;

- развитие навыков обработки полученных результатов, анализа и осмысления их с учетом имеющихся литературных данных;
- приобретение навыков оформления описаний программного продукта;
- повышение общей и профессиональной эрудиции.

Изученный студентом в ходе работы материал должен способствовать повышению его качества знаний, закреплению полученных навыков и уверенности в выборе путей будущего развития своих профессиональных способностей.

2. Основная часть

2.1. Постановка задачи

Пусть даны известные квадратная матрица A, вектор f и неизвестный вектор x размерностями n. Нужно найти вектор x в матричном уравнении Ax = f, используя метод отражений.

2.2. Описание алгоритма

Метод отражений состоит в выполнении (n-1) шагов, в результате чего матрица A приводится к верхней треугольной форме и в последующей решении системы с такой матрицей.

Для этого на каждом шаге k будем находить вектор нормали p, характеризующий ортогональную матрицу отражения P, которая обнулит все поддиагональные элементы k-того столбца.

Обозначим вектор нормали и матрицу на шаге k: $p^{(k)}, A_k = \left(a_{ij}^{(k)}\right)$, тогда

$$p_k^{(k)} = a_{kk}^{(k-1)} + \sigma_k \sqrt{\sum_{l=k}^n \left(a_{lk}^{(k-1)}\right)^2}, \quad \sigma_k = \begin{cases} 1, & a_{kk}^{(k-1)} \ge 0, \\ -1, & a_{kk}^{(k-1)} \le 0, \end{cases}$$

$$p_i^{(k)} = 0, \quad i = 0, \dots, k-1; \qquad p_i^{(k)} = a_{ik}^{(k-1)}, \quad i = k+1, \dots, n;$$

Определение матрицы $P_k=I-\frac{2p^{(k)}\left(p^{(k)}\right)^*}{\left(p^{(k)},p^{(k)}\right)}$. Будем применять данную матрицу с обоих сторон уравнения. Связь шагов $A_k=P_kA_{k-1},\ f^{(k)}=P_kf^{(k-1)}$.Запишем явные формулы элементов матрицы A_k и вектора $f^{(k)}$:

$$a_{kk}^{(k)} = -\sigma_k \sqrt{\sum_{l=k}^n \left(a_{lk}^{(k-1)}\right)^2}, \quad a_{ij}^{(k)} = a_{ij}^{(k-1)} - 2p_i^{(k)} \frac{\sum_{l=k}^n \left(p_l^{(k)} a_{lj}^{(k-1)}\right)}{\sum_{l=k}^n \left(p_l^{(k)}\right)^2},$$

$$f_i^{(k)} = f_i^{(k-1)} - 2p_i^{(k)} \frac{\sum_{l=k}^n \left(p_l^{(k)} f_l^{(k-1)}\right)}{\sum_{l=k}^n \left(p_l^{(k)}\right)^2}; \quad i = k, \dots, n, \quad j = k+1, \dots, n.$$

В результате выполнения всех (n-1) шагов получится система $A_{n-1}x=f^{(n-1)}$, где матрица A_{n-1} является верхней треугольной, поэтому вектор x можно найти последовательно снизу вверх:

$$x_n = \frac{f_n^{(n-1)}}{a_{nn}^{(n-1)}}, \quad x_i = \frac{f_i^{(n-1)} - \sum_{j=i+1}^n a_{ij}^{(n-1)} x_j}{a_{ii}^{(n-1)}}, \quad i = n-1, \dots, 1.$$

2.3. Описание тестов, использованных для отладки

Для тестирования были использованы данные:

$$A = \begin{pmatrix} 10.9 & 1.2 & 2.1 & 0.9 \\ 1.2 & 11.2 & 1.5 & 2.5 \\ 2.1 & 1.5 & 9.8 & 1.3 \\ 0.9 & 2.5 & 1.3 & 12.1 \end{pmatrix}, \quad f = \begin{pmatrix} -7. \\ 5.3 \\ 10.3 \\ 24.6 \end{pmatrix}, \quad x = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

2.4. Вычислительные эксперименты

2.4.1. Анализ погрешностей приближённых решений

2.5. Оценка количества арифметических операций

Оценим количество арифметических операций метода отражений:

- 1. Почти во всех формулах используется сумма $\sum_{l=k}^n$, которая использует (n-k) операций сложения, что в итоге даёт $\frac{n(n-1)}{2}$ операций сложения и всех операций внутри суммы.
- 2. Для вычисления k-того элемента вектора p во всем методе используется $n-1+\frac{n(n-1)}{2}$ операций сложения и столько же умножения, а также n операций вычисления корня.
- 3. Для вычисления матрицы A.

- 2.6. Оценка временных ресурсов
- 2.7. Проверка
- 2.8. Доп

3. Заключение

В этой лабораторной работе была проведена работа по программированию и тестированию алгоритма выбора главного элемента для решения системы линейных алгебраических уравнений.

4			
4.	Список	использованных	к источников

ист

5. Приложения

Приложения

6. Решение теоретических задач

6.1. Задание 1

6.1.1. Постановка задачи

Найдите соотношение эквивалентности, связывающее норму $M(A) = n \max_{1 \leq i,j \leq n} |a_{ij}| \ {\rm c} \ ||A||_{\infty}. \ \Pi {\rm posepste} \ {\rm экспериментально}.$

6.1.2. Решение

$$||Ax||_{\infty} = \max_{i} \left| \sum_{j} a_{ij} x_{j} \right| \le \max_{i,j} |a_{ij}| \sum_{j} |x_{j}| = \max_{i,j} |a_{ij}| \cdot ||x||_{1}$$

Отсюда получаем: $\max_{i,j} |a_{ij}| \geq \frac{||Ax||_{\infty}}{||x||_{1}}$. Равенство достигается, когда все элементы матрицы одинаковые. Имеем: $\max_{i,j} |a_{ij}| = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}}$. Далее будем использовать неравенство: $||x||_{\infty} \leq ||x||_{1} \leq n||x||_{\infty}$. Полу-

Далее будем использовать неравенство: $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$. Получим оценку снизу:

$$M(A) = n \max_{i,j} |a_{ij}| = n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}} \ge \sup_{x \neq 0} \frac{n||Ax||_{\infty}}{n||x||_{\infty}} = ||A||_{\infty}.$$

Теперь получим оценку сверху:

$$M(A) = n \max_{i,j} |a_{ij}| = n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{1}} \le n \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = n||A||_{\infty}.$$

Таким образом, получили следующее соотношение эквивалентности:

$$||A||_{\infty} \le M(A) \le n||A||_{\infty}$$

Проверим его экспериментально:

6.2. Задание 2

6.2.1. Постановка задачи

Докажите теоретически и проверьте экспериментально, что число обусловленности $\mu(A)=\mu(\alpha A)$, где число $\alpha \neq 0$.

6.2.2. Решение

Для доказательства по определению распишем число обусловленности.

$$\mu(\alpha A) = ||\alpha A|| \cdot ||(\alpha A)^{-1}|| = |\alpha| \cdot ||A|| \cdot |\alpha^{-1}| \cdot ||A^{-1}|| = 1 \cdot ||A|| \cdot ||A^{-1}|| = \mu(A)$$

Равенство доказано.

100

7

Проверим его экспериментально. Для этого используется код в листинге

IIII.					
	№	Размер матриц	Кол-во матриц	α	\log_{10} макс. разности
	1	5	10000	4	$-\infty$
	2	5	10000	10	-6
	3	5	100000	Rand(0.1, 100)	-5
	4	10	10000	4	$-\infty$
	5	10	10000	10	-6
	6	100	1000	4	$-\infty$

10

-5

1000