Name! Ryhar Rathi Scholar 10:- 2012174 Subject! - Maths-IV

91 i) solution Potal number of people: ? mays + 2 girls = 5

Total number of comite of I membery than Can be made from 5 people = 503

New, Probability of 1 boy = P(1) = 34x 262

Now, Inobability of 2 hoys = P(2) = 3(2 x 24)

= 3×2=6

Also, Probability of I hoys = P(3) =

:. Potal probability of atleast one hoy = $3 + 6 + 1 = \frac{16}{16} = 1$.

```
2012174
Q 1.1i) solution
  Total number of balls = 28
 There are 4 options,
                             (DR, 3W), (3R, OW)
    (2R,1W), 12W, IR),
 : Total number of ways of = 56 Cz
       electing 3 balls
Now, pleantaing a color of matthing pairs)
         = P(2 red) + P(3 red) + P(2 white) + P(3 white)
         = 342. 624 + 2262 * 346 + 342 * 626 + 0263 346
         = 17 x 33 x 22 + 11 x 21 x 34 + 34 x 33 x 32 + 22 x 21 x 20
                       56 ×55×54
         = 12342 + 7854 + 5984+1540
                      27720
           27720 = 1
27720 = 1
   : Answer is 1.
```

3

3

2012174. 92. solution Number of choes = 20(10 pairs) For one boy Number of persibilities of shoes from different pains: 4, 3, 2 For 4 different pains, No of possibilities = 104 x 24 x 24 x 24 For I different pairs, Possibilities = 10c3 x 3c2 x 24 x 24 = 120x3x4 - 1440 For 2 different pairs, lossibilities = 1erz = 45. Cotal number of ways to store shoes = 20 Cy = 4845 .. No of possible students shoes parked in same $= \left(\frac{4 \times 1680}{4845} + 3 \times \frac{1440}{4845} + \frac{45 \times 2}{4845}\right) / 3$ $= \frac{6720 + 4320 + 90}{4845 \times 3} = \frac{11130}{14535} = 0.765$

3

)

2

)

... Ahove probability for 5-boxes = 0.765 x5 = 3.825 drs.

Given, let Temp= X, No. of coff drinks = Y

Temp	75	81	85	los	93	113	121	125
No. of cold drinks	35	45	59	15	43	79	87	95

		4		7 1 1 1 1 1 1
×	1 4	x.Y	x2	y2
75	35	2675	5625	1225
81	45	3645	6561	2025
85	59	5015	7225	3481
105	75	7875	11025	5625
93	43	3999	8649	1849
113	79	8927	12769	6241
121	87	10527	14641	7569
125	95	11875	15625	3025
EX= 798	IY: 518	1 21 (12 3)		

$$X = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{798}{8} = 99.75$$

$$\int_{\lambda}^{2} = \sum_{i=1}^{n} x_{i}^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right)^{2}$$

$$= 82120 - \left(\frac{798}{8} \right)^{2} - 2519.5$$

$$\int_{\lambda}^{2} = \sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i}^{2} \right)^{2}$$

$$= 37040 - \left(\frac{518}{8} \right)^{2} - 3499.5$$

$$\operatorname{Cov}(x_{1}y_{1}) = \sum_{i=1}^{n} x_{i}^{2} y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right) \left(\sum_{i=1}^{n} y_{i}^{2} \right)$$

$$= 54488 - 798 \times 518$$

$$= 2817.5$$
Now, $h = \operatorname{Cov}(x_{1}y_{1}) = 2817.5$

= 2817.5

- 0.9488

This is a strong positive co-relation which means that high X variable score (Temp) go with high Y variable (cold drinks Number) scores and vice versa.

84. solution

3

3

$$f_{xy} = \begin{cases} 2x - xy, & 0 < x < 1, & 0 < y < 2 \\ 0, & \text{otherwise} \end{cases}$$

$$f_{y}(y) = \begin{cases} 1 \\ 2x - xy dx \\ 2 = 0 \end{cases}$$

$$= \frac{\chi^2 - \frac{\chi^2}{2}y|_0^1}{1} = \frac{1 - \frac{y}{2}}{2}$$

$$P(n < \frac{1}{2} | y < 1) = \frac{p(2 < \frac{1}{2}, y < 1)}{p(y < 1)}$$

$$= \int_{y=0}^{1} \int_{x=0}^{1} (2x - \frac{n^{2}y}{2}) dx dy$$

$$= \int_{1}^{1} (1 - \frac{y}{2}) dy$$

$$= \int_{1}^{1} n^{2} - \frac{n^{2}y}{2} \int_{0}^{1/2} dy$$

2012174,

$$M = 65$$
, $\sigma = 9$

$$P(x), \frac{1}{\sigma\sqrt{2x}}e^{-1/2}\left(\frac{x-y}{\sigma}\right)^{2}$$

Let
$$Z = \frac{\chi - M}{\sigma}$$
 $Z < \frac{54 - 65}{9}$

or, $Z < -\frac{11}{9}$

or $Z < -1.22$

$$Z = \frac{\chi - \mu}{6}$$
or, $Z > \frac{80 - 65}{9}$
or $Z > 1.667$

95 (Dont.... From (D) and (D) 0.55 LZ L 2.33 P(0.55 LZ L 2.33) = P(Z(2.33)-P(Z(0.55)) = 0.9901-0.7123 = 0.2778. Percentage Gores for 170 (M(16) = 0.2778 × 100% = 27.78%.

Thank You