Vetores e Geometria Analítica

Pedro H A Konzen

20 de março de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre vetores e geometria analítica.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença Prefácio				i
				ii
				iii
Sı	ımár	io		iv
1	Vetores			1
	1.1	_	entos orientados	
	1.2	1.1.1 Vetore	Exercícios	
	1.2	1.2.1	Adição de vetores	
		1.2.2	Vetor oposto	
		1.2.3	Subtração de vetores	
		1.2.4	Multiplicação de vetor por um escalar	
		1.2.5	Propriedades das operações com vetores	
2	Bases e coordenadas			11
	2.1	Deper	ndência linear	. 11
		2.1.1	Combinação linear	. 11
		2.1.2	Dependência linear	. 11
		2.1.3	Observações	. 12
\mathbf{R}	espo	stas do	os Exercícios	16
\mathbf{R}	eferê	ncias l	Bibliográficas	17
Ín	Índice Remissivo			

Capítulo 1

Vetores

1.1 Segmentos orientados

Sejam dois pontos A e B sobre uma reta r. O conjunto de todos os pontos de r entre A e B é chamado de **segmento** AB.

Figura 1.1: Esboço de um segmento AB.

Associado a um segmento AB, temos seu **comprimento** (ou tamanho), o qual é definido como sendo a **distância** entre os pontos $A \in B$. A distância entre os ponto $A \in B$ é denotada por |AB| ou |BA|.

A direção de um segmento AB é a direção da reta que fica determinada pelos pontos A e B.

Exemplo 1.1.1. Consideremos os segmentos esboçados na Figura 1.2. Os segmentos AB e CD têm as mesmas direções, mas comprimentos diferentes. Já, o segmento EF tem direção diferente dos segmentos AB e CD.

Figura 1.2: Esboço referente ao Exemplo 1.1.1.

Se A e B são o mesmo ponto, então chamamos AB de **segmento nulo** e temos |AB| = 0. Um segmento nulo não tem direção.

Observemos que um dado segmento AB é igual ao segmento BA. Agora, podemos associar a noção de **sentido** a um segmento, escolhendo um dos pontos como sua **origem** e o outro como sua **extremidade**. Ao fazermos isso, definimos um **segmento orientado**. Mais precisamente, um segmento orientado AB é o segmento definido pelos pontos A e B, sendo A a origem e B a extremidade. Veja a Figura 1.3.

Dizemos que dois dados segmentos orientados não nulos $AB \in CD$ têm a **mesma direção** quando as retas $AB \in CD$ forem paralelas ou coincidentes.

Exemplo 1.1.2. Consideremos os segmentos orientados esboçados na Figura 1.4. Observemos que os segmentos orientados $AB \in CD$ têm a mesma direção. Já o segmento orientado EF tem direção diferente dos segmentos $AB \in CD$.

Sejam dados dois segmentos orientados AB e CD de mesma direção, cujas retas AB e CD não sejam coincidentes. Então, as retas AB e CD determinam um único plano e a reta AC determina dois semiplanos (veja a Figura

Figura 1.3: Esboço de um segmento orientado AB.

Figura 1.4: Esboço referente ao Exemplo 1.1.2.

 $\ref{eq:continuous}$). Assim sendo, dizemos que os segmentos AB e CD têm **mesmo sentido** quando os pontos B e D estão ambos sobre o mesmo semiplano.

Para analisar o sentido de dois segmentos orientados e colineares, escolhemos um deles e construímos um segmento orientado de mesmo sentido a este, mas não colinear. Então, analisamos o sentido dos segmentos orientados originais

Figura 1.5: Esboço de dois segmentos orientados AB e CD de mesmo sentido.

com respeito ao introduzido.

Dois segmentos orientados não nulos são **equipolentes** quando eles têm o mesmo comprimento, mesma direção e mesmo sentido. Veja o exemplo dado na Figura 1.6.

Figura 1.6: Esboço de dois segmentos orientados AB e CD equipolentes.

1.1.1 Exercícios

E 1.1.1. Mostre que dois segmentos orientados AB e CD são equipolentes se, e somente se, os pontos médios de AD e BC são coincidentes.

1.2 Vetores

Dado um segmento orientado AB, chama-se **vetor** AB e denota-se \overrightarrow{AB} , qualquer segmento orientado equipolente a AB. Cada segmento orientado equipolente a AB é um representado de \overrightarrow{AB} . A Figura 1.7 mostra duas representações de um dado vetor \overrightarrow{AB} .

Figura 1.7: Esboço de duas representações de um mesmo vetor.

O **módulo** (ou **norma**) de um vetor \overrightarrow{AB} é o valor de seu comprimento e é denotado por $|\overrightarrow{AB}|$.

Dois **vetores** são ditos **paralelos** quando qualquer de suas representações têm a mesma direção. De forma análoga, definem-se **vetores coplanares**, **vetores não coplanares**, **vetores ortogonais**, além de conceitos como **ângulo entre dois vetores**, etc. Veja a Figura 1.8.

Observemos que na Figura 1.8(direita) os vetores foram denotados por \vec{a} , \vec{b} e \vec{c} , sem alusão aos pontos que definem suas representações como segmentos orientados. Isto é costumeiro, devido a definição de vetor.

Figura 1.8: Esquerda: esboços de vetores paralelos e de vetores ortogonais. Direita: esboços de vetores coplanares.

1.2.1 Adição de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . Sejam, ainda, uma representação \overrightarrow{AB} qualquer de u e a representação \overrightarrow{BC} do vetor \vec{v} . Então, define-se o vetor soma $\vec{u} + \vec{v}$ como o vetor dado por \overrightarrow{AC} . Veja a Figura 1.9.

Figura 1.9: Representação geométrica da adição de dois vetores.

1.2.2 Vetor oposto

Um **vetor** \vec{v} é dito ser **oposto** a um dado vetor \vec{u} , quando quaisquer representações de \vec{u} e \vec{v} são segmentos orientados de mesmo comprimento e mesma direção, mas com sentidos opostos. Neste caso, denota-se por $-\vec{u}$ o vetor oposto a \vec{u} . Veja a Figura 1.10.

Figura 1.10: Representação geométrica de vetores opostos.

1.2.3 Subtração de vetores

Sejam dados dois vetores \vec{u} e \vec{v} . A subtração de \vec{u} com \vec{v} é denotada por $\vec{u} - \vec{v}$ e é definida pela adição de \vec{u} com $-\vec{v}$, i.e. $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$. Veja a Figura 1.11.

1.2.4 Multiplicação de vetor por um escalar

A multiplicação de um número real $\alpha > 0$ (escalar) por um vetor \vec{u} é denotado por $\alpha \vec{u}$ e é definido pelo vetor de mesma direção e mesmo sentido de \vec{u} com norma $\alpha |\vec{u}|$. Quando $\alpha = 0$, define-se $\alpha \vec{u} = \vec{0}$, i.e. o vetor nulo (geometricamente, representado por qualquer ponto).

Observação 1.2.1. • Para $\alpha < 0$, temos $\alpha \vec{u} = -(-\alpha \vec{u})$.

• $|\alpha \vec{u}| = |\alpha| |\vec{u}|$.

Figura 1.11: Representação geométrica da subtração de \vec{u} com \vec{v} , i.e. $\vec{u} - \vec{v}$.

Figura 1.12: Representações geométricas de multiplicações de um vetor por diferentes escalares.

1.2.5 Propriedades das operações com vetores

As operações de adição e multiplicação por escalar de vetores têm propriedades importantes. Para quaisquer vetores $\vec{u},\,\vec{v}$ e \vec{w} e quaisquer escalares α e β temos:

• comutatividade da adição: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$;

- associatividade da adição: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w});$
- elemento neutro da adição: $\vec{u} + \vec{0} = \vec{u}$;
- existência do oposto: $\vec{u} + (-\vec{u}) = \vec{0}$;
- associatividade da multiplicação por escalar: $\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u}$;
- distributividade da multiplicação por escalar:

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v},\tag{1.1}$$

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}; \tag{1.2}$$

• existência do elemento neutro da multiplicação por escalar: $1\vec{u} = \vec{u}$.

Exercícios

E 1.2.1. Na figura abaixo, temos $\vec{u} = \overrightarrow{GJ}$ e $\vec{v} = \overrightarrow{AK}$. Assim sendo, escreva os vetores \overrightarrow{RS} , \overrightarrow{NI} , \overrightarrow{AG} , \overrightarrow{NQ} , \overrightarrow{AT} e \overrightarrow{PE} em função de \vec{u} e \vec{v} .

E 1.2.2. Sejam \overrightarrow{CA} , \overrightarrow{CM} e \overrightarrow{CB} os vetores indicados na figura abaixo. Mostre que $\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$.

E 1.2.3. Sejam \overrightarrow{A} , B, C, D, E e G os pontos dados na figura abaixo. Escreva o vetor \overrightarrow{DG} em função dos vetores \overrightarrow{AB} e \overrightarrow{AD} .

Capítulo 2

Bases e coordenadas

2.1 Dependência linear

2.1.1 Combinação linear

Dados vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ e números reais c_1, c_2, \ldots, c_n , com n inteiro positivo, chamamos de

$$\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n \tag{2.1}$$

uma **combinação linear** de $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$. Neste caso, também dizemos que \vec{u} é **gerado** pelos vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ ou, equivalentemente, que estes vetores **geram** o vetor \vec{u} .

Exemplo 2.1.1. Sejam dados os vetores \vec{v} , \vec{w} e \vec{z} . Então, temos:

- $\vec{u}_1 = \frac{1}{2}\vec{u} + \sqrt{2}\vec{z}$ é uma combinação linear dos vetores \vec{v} e \vec{z} .
- $\vec{u_2} = \vec{u} 2\vec{z}$ é uma outra combinação linear dos vetores \vec{v} e \vec{z} .
- $\vec{u_3} = 2\vec{u} \vec{w} + \pi \vec{z}$ é uma combinação linear dos vetores \vec{u}, \vec{w} e \vec{z} .
- $\vec{u_4} = \frac{3}{2}\vec{z}$ é uma combinação linear do vetor \vec{z} .

2.1.2 Dependência linear

Dois ou mais vetores dados são **linearmente dependentes** (abreviação, l.d.) quando um deles for combinação linear dos demais.

Exemplo 2.1.2. No exemplo anterior (Exemplo ??), temos:

- $\vec{u_1}$ e $\vec{u_2}$ dependem linearmente dos vetores \vec{u} e \vec{z} .
- $\vec{u_3}$ depende linearmente dos vetores \vec{u} , \vec{v} e \vec{z} .
- Os vetores $\vec{u_4}$ e \vec{z} são linearmente dependentes.

Dois ou mais vetores dados são **linearmente independentes** (abreviação, l.i.)quando eles não são linearmente dependentes.

2.1.3 Observações

Dois vetores

Dois vetores quaisquer $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ são l.d. se, e somente se, qualquer uma das seguinte condições é satisfeita:

• um deles é combinação linear do outro, i.e.

$$\vec{u} = \alpha \vec{v}$$
 ou $\vec{v} = \beta \vec{u}$; (2.2)

- \vec{u} e \vec{v} têm a mesma direção;
- \vec{u} e \vec{v} são paralelos.

Observação 2.1.1. O vetor nulo $\vec{0}$ é l.d. a qualquer vetor \vec{u} . De fato, temos

$$\vec{0} = 0 \cdot \vec{u},\tag{2.3}$$

i.e. o vetor nulo é combinação linear do vetor \vec{u} .

Observação 2.1.2. Dois vetores não nulos \vec{u} e \vec{v} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} = 0 \Rightarrow \alpha = \beta = 0. \tag{2.4}$$

De fato, se $\alpha \neq 0$, então podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v},\tag{2.5}$$

i.e. o vetor \vec{u} é combinação linear do vetor \vec{v} e, portanto, estes vetores são l.d.. Isto contradiz a hipótese de eles serem l.i.. Analogamente, se $\beta \neq 0$, então podemos escrever

$$\vec{v} = -\frac{\alpha}{\beta}\vec{u} \tag{2.6}$$

e, então, teríamos \vec{u} e \vec{v} l.d..

Três vetores

Três vetores quaisquer \vec{u} , \vec{v} e \vec{w} são l.d. quando um deles pode ser escrito como combinação linear dois outros dois. Sem perda de generalidade, isto significa que existem constantes α e β tais que

$$\vec{u} = \alpha \vec{v} + \beta \vec{w}. \tag{2.7}$$

Afirmamos que se \vec{u} , \vec{v} e \vec{w} são l.d., então \vec{u} , \vec{v} e \vec{w} são coplanares. Do fato de que dois vetores quaisquer são sempre coplanares, temos que \vec{u} , \vec{v} e \vec{w} são coplanares caso qualquer um deles seja o vetor nulo. Suponhamos, agora, que \vec{u} , \vec{v} e \vec{w} são não nulos e seja π o plano determinado pelos vetores \vec{v} e \vec{w} . Se $\alpha=0$, então $\vec{u}=\beta\vec{w}$ e teríamos uma representação de \vec{u} no plano π . Analogamente, se $\beta=0$, então $\vec{u}=\alpha\vec{v}$ e teríamos uma representação de \vec{u} no plano π . Por fim, observemos que se $\alpha,\beta\neq0$, então $\alpha\vec{v}$ tem a mesma direção de \vec{v} e $\beta\vec{w}$ tem a mesma direção de \vec{v} . Isto é, $\alpha\vec{v}$ e $\beta\vec{w}$ admitem representações no plano π . Sejam \overrightarrow{AB} e \overrightarrow{BC} representações dos vetores $\alpha\vec{v}$ e $\beta\vec{w}$, respectivamente. Os pontos A, B e C pertencem a π , assim como o segmento AC. Como $\overrightarrow{AC}=\vec{u}=\alpha\vec{v}+\beta\vec{w}$, concluímos que \vec{u} , \vec{v} e \vec{w} são coplanares.

Reciprocamente, se \vec{u} , \vec{v} e \vec{w} são coplanares, então \vec{u} , \vec{v} e \vec{w} são l.d.. De fato, se um deles for nulo, por exemplo, $\vec{u} = \vec{0}$, então \vec{u} pode ser escrito como a seguinte combinação linear dos vetores \vec{v} e \vec{w}

$$\vec{u} = 0\vec{v} + 0\vec{w}.\tag{2.8}$$

Neste caso, \vec{u} , \vec{v} e \vec{w} são l.d.. Também, se dois dos vetores forem paralelos, por exemplo, $\vec{u} \parallel \vec{v}$, então temos a combinação linear

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.9}$$

E, então, \vec{u} , \vec{v} e \vec{w} são l.d.. Agora, suponhamos que \vec{u} , \vec{v} e \vec{w} são não nulos e dois a dois concorrentes. Sejam, então $\overrightarrow{PA} = \vec{u}$, $\overrightarrow{PB} = \vec{v}$ e $\overrightarrow{PC} = \vec{w}$ representações sobre um plano π . Sejam r e s as retas determinadas por PA e PC, respectivamente. Seja, então, D o ponto de interseção da reta s com a reta paralela a r que passa pelo ponto B. Seja, também, E o ponto de interseção da reta r com a reta paralela a s que passa pelo ponto B. Sejam, então, α e β tais que $\alpha \vec{u} = \overrightarrow{PE}$ e $\beta \vec{w} = \overrightarrow{PD}$. Como $\vec{v} = \overrightarrow{PB} = \overrightarrow{PE} + \overrightarrow{PD} = \alpha \vec{u} + \beta \vec{w}$, temos que \vec{v} é combinação linear de \vec{u} e \vec{w} , i.e. \vec{u} , \vec{v} e \vec{w} são l.d..

Observação 2.1.3. Três vetores dados \vec{u} , \vec{v} e \vec{w} são l.i. se, e somente se,

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = 0 \Rightarrow \alpha = \beta = \gamma = 0. \tag{2.10}$$

De fator, sem perda de generalidade, se $\alpha \neq 0$, podemos escrever

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v} - \frac{\gamma}{\alpha}\vec{w},\tag{2.11}$$

e teríamos \vec{u} , \vec{v} e \vec{w} vetores l.d..

Quatro ou mais vetores

Quatro ou mais vetores são sempre l.d.. De fato, sejam dados quatro vetores \vec{a} , \vec{b} , \vec{c} e \vec{d} . Se dois ou três destes forem l.d. entre si, então, por definição, os quatro são l.d.. Assim sendo, suponhamos que três dos vetores sejam l.i. e provaremos que, então, o outro vetor é combinação linear desses três.

Sem perda de generalidade, suponhamos que \vec{a} , \vec{b} e \vec{c} são l.i.. Logo, eles não são coplanares. Seja, ainda, π o plano determinado pelos vetores \vec{a} , \vec{b} e as representações $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$ e $\vec{d} = \overrightarrow{PD}$.

Figura 2.1: Quatro vetores são l.d..

Consideremos a reta r paralela a \overrightarrow{PC} que passa pelo ponto D. Então, seja E o ponto de interseção de r com o plano π . Vejamos a Figura ??. Observamos

que o vetor \overrightarrow{PE} é coplanar aos vetores \overrightarrow{PA} e \overrightarrow{PB} e, portanto, exitem números reais alpha e β tal que

 $\overrightarrow{PE} = \alpha \overrightarrow{PA} + \beta \overrightarrow{PB}. \tag{2.12}$

Além disso, como \overrightarrow{ED} tem a mesma direção e sentido de $\overrightarrow{PC}=\overrightarrow{c},$ temos que

$$\overrightarrow{ED} = \gamma \overrightarrow{PC} \tag{2.13}$$

para algum número real γ . Por fim, observamos que

$$\overrightarrow{PD} = \overrightarrow{PE} + \overrightarrow{ED}$$

$$= \alpha \overrightarrow{PA} + \beta \overrightarrow{PB} + \gamma \overrightarrow{PC}$$

$$= \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}.$$

Exercícios

Em construção ...

Resposta dos Exercícios

E 1.1.1. Propriedades de congruência entre ângulos determinados por retas paralelas cortadas por uma transversal e congruência entre triângulos provam o enunciado.

Referências Bibliográficas

[1] D.A. de Mello and R.G. Watanabe. Vetores e uma iniciação à geometria analítica. Livraria da Física, 2. edition, 2011.

Índice Remissivo

```
ângulo
   entre vetores, 5
combinação linear, 11
comprimento, 1
distância, 1
equipolentes, 4
extremidade, 2
linearmente
   dependente, 11
   independentes, 12
módulo, 5
mesmo sentido, 3
norma, 5
origem, 2
segmento, 1
segmento nulo, 2
segmento orientado, 2
vetor
   oposto, 7
vetores
   coplanares, 5
   não coplanares, 5
   ortogonais, 5
   paralelos, 5
```