(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年7月14日(14.07.2005)

PCT

(10) 国際公開番号 WO 2005/064487 A1

(51) 国際特許分類7:

G06F 15/80

(21) 国際出願番号:

PCT/JP2004/019181

(22) 国際出願日:

2004年12月22日(22.12.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-431248

2003年12月25日(25.12.2003)

- (71) 出願人 および
- (72) 発明者: 古庄 晋二 (FURUSHO, Shinji) [JP/JP]; 〒 2210005 神奈川県横浜市神奈川区松見町4丁目 1101番地7コートハウス菊名804号 Kanagawa (JP).

- (74) 代理人: 吉田 聡 (YOSHIDA, Satoshi); 〒2330001 神 奈川県横浜市港南区上大岡東 2-2 4-4 Kanagawa (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR),

coincided are incremented by one.

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

国際調査報告書

(57) 要約: 本発明は、並列コンピュータのアーキテクチャを採用して大量のデータを情報処理する際に、複数の処理モジュール間でのデータ処理を少ない通信量で高速に実現する。各処理モジュールは、自処理モジュールのメモリに格納されている値のリストである第1のリストを情報処理システム内の他の処理モジュールへ送信し、他の処理モジュールから自処理モジュールへ送信された値のリストである少なくとも一つの第2のリストを受信し、第2のリスト中の値と第1のリスト中の値と一致した場合に、第1のリスト中の一致した値に対応したカウンタを1ずつ増やす。