C.L. Informatica, M-Z Bari, 29 Gennaio 2019 Traccia: X

Esercizio 1. Siano $E \in M_{3\times 3}(\mathbb{R})$ e $D \in M_{2\times 3}(\mathbb{R})$ le seguenti matrici

$$E = \begin{pmatrix} 2 & 1 & 0 \\ \frac{1}{2} & -2 & -1 \\ 3 & 0 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & -1 \end{pmatrix}.$$

- (1) Determinare, se possibile, $ED \in DE$.
- (2) Determinare, se possibile, il determinante di E e di D.
- (3) Determinare, se possibile, le matrici inverse di E e di D.

Esercizio 2. Date tre proposizioni T, Q e S, scrivere la tabella di verità di $(T \longrightarrow$ $Q) \wedge (Q \vee S)$. Inoltre, stabilire se la proposizione

$$\forall c \in \mathbb{Z} \quad \exists s \in \mathbb{Q} \quad \text{tale che} \quad \forall x \in \mathbb{R} \quad c = s + x^5.$$

è vera o falsa, motivandone la risposta, e scriverne la sua negazione.

Esercizio 3. In S_{10} , sia assegnata la seguente permutazione

$$h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 8 & 4 & 3 & 2 & 1 & 9 & 5 & 7 & 10 \end{pmatrix}.$$

- (1) Descrivere l'elemento h come prodotto di cicli disgiunti.
- (2) Stabilire se l'elemento h è pari o dispari.
- (3) Descrivere esplicitamente l'inverso di h.
- (4) Stabilire l'ordine di h nel gruppo S_{10} .
- (5) Descrivere esplicitamente gli elementi del sottogruppo generato da h.

Esercizio 4. Stabilire se le seguenti leggi

$$f\colon \mathbb{Z} \to \mathbb{R}$$
 tale che $\forall \ c \in \mathbb{Z}$ $f(c) = \frac{3}{2} - \frac{1}{2}c$ $h\colon \mathbb{R} \to \mathbb{R}$ tale che $\forall \ y \in \mathbb{R}$ $h(y) = \frac{4}{7}y^3 - \frac{2}{7}$

e

$$h: \mathbb{R} \to \mathbb{R}$$
 tale che $\forall y \in \mathbb{R}$ $h(y) = \frac{4}{7}y^3 - \frac{2}{7}$

sono funzioni, ed in tal caso se sono iniettive, suriettive o biettive. Inoltre calcolare, ove possibile, le composizioni $f \circ h$ e $h \circ f$ e le funzioni inverse h^{-1} e f^{-1} .

Esercizio 5. Determinare gli elementi invertibili e i divisori dello zero nell'anello $(\mathbb{Z}_{22},+,\cdot)$. Inoltre, determinare esplicitamente l'inverso degli eventuali elementi invertibili.

Esercizio 6. Dare la definizione di relazione di equivalenza \mathcal{R} su un insieme non vuoto A e di classe di equivalenza di un elemento. Dimostrare che

$$\forall a,b \in A \text{ si ha } [b]_{\mathscr{R}} \neq [a]_{\mathscr{R}} \Longleftrightarrow [a]_{\mathscr{R}} \cap [b]_{\mathscr{R}} = \emptyset.$$

C.L. Informatica, M-Z Bari, 29 Gennaio 2019 Traccia: B

Esercizio 1. Determinare gli elementi invertibili e i divisori dello zero nell'anello ($\mathbb{Z}_{26}, +, \cdot$). Inoltre, determinare esplicitamente l'inverso degli eventuali elementi invertibili.

Esercizio 2. Dare la definizione di relazione di equivalenza $\mathcal R$ su un insieme non vuoto A e di classe di equivalenza di un elemento. Dimostrare che

$$\forall a, b \in A \text{ si ha } [b]_{\mathscr{R}} \neq [a]_{\mathscr{R}} \iff [a]_{\mathscr{R}} \cap [b]_{\mathscr{R}} = \emptyset.$$

Esercizio 3. Stabilire se le seguenti leggi

$$h \colon \mathbb{N} o \mathbb{Q} \qquad ext{tale che} \qquad orall \ s \in \mathbb{N} \qquad h(s) = rac{2+3s}{2+s}$$

e

$$\begin{array}{ll} h\colon \mathbb{N} \to \mathbb{Q} & \quad \text{tale che} & \quad \forall \; s \in \mathbb{N} & \quad h(s) = \frac{2+3s}{2+s} \\ \\ g\colon \mathbb{Q} \to \mathbb{Q} & \quad \text{tale che} & \quad \forall \; e \in \mathbb{Q} & \quad g(e) = \frac{1}{9} + \frac{3}{5}e \end{array}$$

sono funzioni, ed in tal caso se sono iniettive, suriettive o biettive. Inoltre calcolare, ove possibile, le composizioni $g \circ h$ e $h \circ g$ e le funzioni inverse h^{-1} e g^{-1} .

Esercizio 4. In S_9 , sia assegnata la seguente permutazione

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3 & 7 & 9 & 4 & 8 & 5 & 6 & 2 \end{pmatrix}.$$

- (1) Determinare g come prodotto di cicli disgiunti.
- (2) Determinare l'ordine di g nel gruppo S_9 .
- (3) Determinare esplicitamente l'inverso di q.
- (4) Determinare esplicitamente gli elementi del sottogruppo generato da g.
- (5) Determinare se l'elemento g è pari o dispari.

Esercizio 5. Date tre proposizioni $P, S \in R$, scrivere la tabella di verità di $(P \vee S) \longrightarrow$ $(R \wedge S)$. Inoltre, stabilire se la proposizione

$$\forall x \in \mathbb{Q} \quad \exists b \in \mathbb{N} \quad \text{tale che} \quad \forall z \in \mathbb{R} \quad x + z^3 + b = 0.$$

è vera o falsa, motivandone la risposta, e scriverne la sua negazione.

Esercizio 6. Siano $C \in M_{3\times 2}(\mathbb{R})$ e $B \in M_{3\times 3}(\mathbb{R})$ le seguenti matrici

$$C = \begin{pmatrix} 2 & 1 \\ -1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & \frac{1}{3} \\ -2 & 1 & 3 \end{pmatrix}.$$

- (1) Calcolare, se possibile, $CB \in BC$.
- (2) Calcolare, se possibile, il determinante di C e di B.
- (3) Calcolare, se possibile, le matrici inverse di C e di B.

C.L. Informatica, M-Z Bari, 15 Gennaio 2019 Traccia: 3

Esercizio 1. Stabilire, usando il principio di induzione, se è vero che, per ogni $n \in \mathbb{N}$, si ha

$$\frac{1}{6} \sum_{i=0}^{n+1} \left(\frac{6}{7}\right)^i = \frac{7}{6} - \left(\frac{6}{7}\right)^{n+1}.$$

Esercizio 2. Risolvere, se possibile, il seguente sistema di congruenze lineari

$$\begin{cases}
41x \equiv 50 \pmod{4} \\
11x \equiv 17 \pmod{3} \\
5x \equiv 1 \pmod{7}.
\end{cases}$$

Esercizio 3. Dati i seguenti numeri complessi:

$$z_1 = 3 - \sqrt{3}i$$
, $z_2 = 3i - 4$.

- (1) Stabilire la parte reale e la parte immaginaria di z_1 e z_2 .
- (2) Stabilire il modulo di z_1 e z_2 .
- (3) Scrivere in forma algebrica il coniugato di z_1 e z_2 .
- (4) Determinare in forma algebrica i numeri complessi $\frac{1}{z_1}$, $z_1z_2 \in \frac{z_1}{z_2}$.

Esercizio 4. Si consideri sull'insieme $A=\mathbb{Q}\times\mathbb{Q}$ la seguente operazione $*:A\times A\to A,$ tale che

$$\forall (x,y), (a,b) \in A$$
 $(x,y)*(a,b) = (2+x+a, \frac{2}{7}by).$

- (1) Stabilire se l'operazione è commutativa.
- (2) Stabilire se l'operazione è associativa.
- (3) Stabilire, se esiste, l'elemento neutro della struttura algebrica (A, *).
- (4) Determinare , se esiste, in modo esplicito l'inverso di $(\frac{1}{2}, \frac{1}{2})$ in (A, *).
- Esercizio 5. (1) S Stabilire se esiste un grafo con 16 vertici, dei quali: 2 di grado 5, 4 di grado 4, 3 di grado 3, 2 di grado 2 e nessuno di grado maggiore. Se esiste, disegnare il grafico di un tale grafo.
 - (2) Stabilire se esiste un albero con 16 vertici, dei quali: 2 di grado 5, 4 di grado 4, 3 di grado 3, 2 di grado 2 e nessuno di grado maggiore. Se esiste, disegnare il grafico di un tale albero.

Esercizio 6. Siano $a, b, c \in \mathbb{Z}$. Dimostrare che l'equazione

$$ax + by = c$$

ammette soluzioni intere se e soltanto se $MCD(a, b) \mid c$.

C.L. Informatica, M-Z Bari, 15 Gennaio 2019 Traccia: A

Esercizio 1. Si consideri sull'insieme $A=\mathbb{Q}\times\mathbb{Q}$ la seguente operazione $*:A\times A\to A,$ tale che

 $\forall (y, x), (s, t) \in A$ $(y, x) * (s, t) = (\frac{7}{4}ys, 4 + t + x).$

- (1) Determinare se l'operazione è associativa.
- (2) Determinare se l'operazione è commutativa.
- (3) Determinare, se esiste, l'elemento neutro della struttura algebrica (A, *).
- (4) Descrivere, se esiste, in modo esplicito l'inverso di $(\frac{1}{4}, \frac{1}{4})$ in (A, *).

Esercizio 2. Siano $a, b, c \in \mathbb{Z}$. Dimostrare che se $c \mid a \in c \mid b$ allora per ogni $x, y \in \mathbb{Z}$ si ha che $c \mid xa + yb$.

Esercizio 3. Usando il principio di induzione stabilire se è vero che, per ogni $n \in \mathbb{N}$, si ha

$$\frac{1}{4} \sum_{i=0}^{n+1} \left(\frac{4}{5}\right)^i = \frac{5}{4} - \left(\frac{4}{5}\right)^{n+1}.$$

Esercizio 4. Risolvere, se possibile, il seguente sistema di congruenze lineari

$$\begin{cases} 31x \equiv 32 \pmod{3} \\ 3x \equiv 5 \pmod{4} \\ 15x \equiv 36 \pmod{7}. \end{cases}$$

- Esercizio 5. (1) Stabilire se esiste un grafo con 18 vertici, dei quali: 3 di grado 5, 3 di grado 4, 2 di grado 3, 3 di grado 2 e nessuno di grado maggiore. Se esiste, disegnare il grafico di un tale grafo.
 - (2) Stabilire se esiste un albero con 18 vertici, dei quali: 3 di grado 5, 3 di grado 4, 2 di grado 3, 3 di grado 2 e nessuno di grado maggiore. Se esiste, disegnare il grafico di un tale albero.

Esercizio 6. Dati i seguenti numeri complessi:

$$z_1 = 4 - 4i, \ z_2 = -2i - \sqrt{3}.$$

- (1) Scrivere in forma algebrica il coniugato di z_1 e z_2 .
- (2) Determinare la parte reale e la parte immaginaria di z_1 e z_2 .
- (3) Determinare il modulo di z_1 e z_2 .
- (4) Scrivere in forma algebrica i numeri complessi $\frac{1}{z_2}$, $z_1 z_2$ e $\frac{z_2}{z_1}$.