Nama : Teosofi Hidayah Agung

NRP : 5002221132

1. (a) Perlihatkan bahwa  $\mathbf{F}(x,y,z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$  adalah medan konservatif Solusi:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 z^3 & 2xyz^3 & 3xy^2 z^2 \end{vmatrix}$$
$$= \begin{bmatrix} 6xyz^2 - 6xyz^2 \end{bmatrix} \mathbf{i} - \begin{bmatrix} 3y^2z^2 - 3y^2z^2 \end{bmatrix} \mathbf{j} + \begin{bmatrix} 2yz^3 - 2yz^3 \end{bmatrix} \mathbf{k}$$
$$= 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k} = 0$$

 $\therefore F(x, y, z)$  adalah medan konservatif

(b) Carilah fungsi f(x,y,z)sedemikian sehingga  $\boldsymbol{F}(x,y,z) = \boldsymbol{\nabla} f(x,y,z)$  Solusi:

$$\begin{aligned} \boldsymbol{F}(x,y,z) &= \boldsymbol{\nabla} f(x,y,z) \\ y^2 z^3 \boldsymbol{i} + 2xyz^3 \boldsymbol{j} + 3xy^2 z^2 \boldsymbol{k} &= \frac{\partial f}{\partial x} \boldsymbol{i} + \frac{\partial f}{\partial y} \boldsymbol{j} + \frac{\partial f}{\partial z} \boldsymbol{k} \\ \begin{cases} \frac{\partial f}{\partial x} &= y^2 z^3 \\ \frac{\partial f}{\partial y} &= 2xyz^3 \end{cases} &\Longrightarrow \begin{cases} f(x,y,z) &= \int y^2 z^3 \, dx = xy^2 z^3 + g(y,z) \\ f(x,y,z) &= \int 2xyz^3 \, dy = xy^2 z^3 + h(x,z) \\ f(x,y,z) &= \int 3xy^2 z^2 \, dz = xy^2 z^3 + l(x,y) \end{cases} \end{aligned}$$

Ketiga persamaan di atas terpenuhi ketika g(y,z)=h(x,z)=l(x,y)=C dengan C adalah suatu konstanta sembarang.

$$\therefore f(x, y, z) = xy^2z^3 + C$$

2. Gunakan kebenaran Teorema Green untuk  $\boldsymbol{F}(x,y,z)=(x^2+y^2)\boldsymbol{i}+2xy\boldsymbol{j}$  dimana A adalah daerah empat persegi panjang yang dibatasi oleh:  $x=\pm a; y=0; y=b$  (hitung dengan Teorema Green dan secara langsung)

Solusi:



• Dengan Teorema Green

$$\begin{split} \oint_C \boldsymbol{F} \cdot d\boldsymbol{r} &= \iint_A \left( -\frac{\partial}{\partial x} (-2xy) - \frac{\partial}{\partial y} (x^2 + y^2) \right) \, dA \\ &= \iint_A (-2y - 2y) \, dA \\ &= -4 \int_{-a}^a \int_0^b y \, dy \, dx \\ &= -4 \int_{-a}^a \left[ \frac{1}{2} y^2 \right]_0^b \, dx \\ &= -2 \int_{-a}^a b^2 \, dx \\ &= -2b^2 [a - (-a)] = -4ab^2 \end{split}$$

• Secara langsung

$$\begin{split} \oint_C \boldsymbol{F} \cdot d\boldsymbol{r} &= \oint_C (x^2 + y^2) \, dx - 2xy \, dy \\ &= \int_{-a}^a (x^2 + 0) \, dx - 2x(0) d(0) + \int_0^b (0 + y^2) \, d(0) - 2ay dy \\ &+ \int_{-a}^a ((-x)^2 + b^2) \, d(-x) - 2xb \, d(0) + \int_0^b (0 + (-y)^2) \, d(0) - 2(-a)(-y) dy \\ &= \int_{-a}^a x^2 \, dx - \int_0^b 2ay \, dy - \int_{-a}^a x^2 \, dx - \int_{-a}^a b^2 \, dx - \int_0^b 2ay \, dy \\ &= -4a \int_0^b y \, dx - [b^2 x]_{-a}^a \\ &= -2ab^2 - 2ab^2 = -4ab^2 \end{split}$$

3. untuk menghitung  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  dengan  $\mathbf{F} = 2z\mathbf{i} + x\mathbf{j} + 3y\mathbf{k}$  dan C adalah batas luasan elips bidang z = x yang berada dalam silinder  $x^2 + y^2 = 4$  yang berorientasi searah dengan putaran jarum jam seperti yang digambarkan jika dilihat dari atas

Pertama-tama kita perlu mencari vektor normal dari permukaan elips bidang z=x. Didapat

$$m{n} = rac{m{i} - m{k}}{\|m{i} - m{k}\|} = rac{1}{\sqrt{2}} (m{i} - m{k})$$
. Sehingga dengan Teorema Stokes kita dapatkan

$$\begin{split} \oint_{C} \boldsymbol{F} \cdot d\boldsymbol{r} &= \iint_{S} (\boldsymbol{\nabla} \times \boldsymbol{F}) \cdot n \ d\boldsymbol{S} \\ &= \iint_{S} \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ 2z & x & 3y \end{vmatrix} \cdot \frac{1}{\sqrt{2}} (\boldsymbol{i} - \boldsymbol{k}) \ dS \\ &= \frac{1}{\sqrt{2}} \iint_{S} [(3 - 0)\boldsymbol{i} - (0 - 2)\boldsymbol{j} + (1 - 0)\boldsymbol{k}] \cdot (\boldsymbol{i} - \boldsymbol{k}) \ dS \\ &= \frac{1}{\sqrt{2}} \iint_{S} (3\boldsymbol{i} + 2\boldsymbol{j} + \boldsymbol{k}) \cdot (\boldsymbol{i} - \boldsymbol{k}) \ dS \\ &= \frac{1}{\sqrt{2}} \iint_{S} (3 - 1) \ dS \\ &= \sqrt{2} \iint_{S} dS \end{split}$$

 $\iint_S dS$  adalah luas permukaan elips bidang. Dengan rumus luas elips  $A=\pi ab$  dengan a dan b masing-masing adalah sumbu minor dan sumbu mayor elips. Pada gambar sebelumnya dapat dilihat bahwa sumbu minor a=2 dan untuk sumbu mayor dapat dihitung menggunkan Teorema Pythagoras yaitu  $b=\sqrt{2^2+2^2}=2\sqrt{2}$ . Sehingga

$$\iint_S dS = \pi(2)(2\sqrt{2}) = 4\pi\sqrt{2}$$

$$\therefore \oint_C \mathbf{F} \cdot d\mathbf{r} = \sqrt{2}(4\pi\sqrt{2}) = 8\pi$$

4. Diketahui medan vektor  $\boldsymbol{F}(x,y,z)=27\boldsymbol{i}+x\boldsymbol{j}+z^2\boldsymbol{k}$ . Dengan Teorema Gauss, hitung  $\iint_S \boldsymbol{F}\cdot d\boldsymbol{S}$  dengan S adalah permukaan benda padat berupa shell silinder (lihat gambar),  $1\leq x^2+y^2\leq 16$ ,  $0\leq z\leq 2$ .



Solusi:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \mathbf{\nabla} \cdot \mathbf{F} \, dV$$

$$= \iiint_{V} \partial_{x}(27) + \partial_{y}(x) + \partial_{z}(z^{2}) \, dV$$

$$= \iiint_{V} 0 + 0 + 2z \, dV$$

$$= 2 \iiint_{V} z \, dV$$

Dengan menggunakan koordinat silinder, didapatkan  $dV = |r| dr d\theta dz$  dengan |r| adalah jacobian dari koordinat silinder.

$$2\iiint_{V} z \, dV = 2 \int_{0}^{2\pi} \int_{1}^{4} \int_{0}^{2} z \, |r| \, dz \, dr \, d\theta$$

$$= 2 \int_{0}^{2\pi} \int_{1}^{4} \left[ \frac{1}{2} z^{2} \right]_{0}^{2} r \, dr \, d\theta$$

$$= 4 \int_{0}^{2\pi} \int_{1}^{4} r \, dr \, d\theta$$

$$= 4 \int_{0}^{2\pi} \left[ \frac{1}{2} r^{2} \right]_{1}^{4} d\theta$$

$$= 4 \int_{0}^{2\pi} \left[ \frac{1}{2} (4^{2} - 1^{2}) \right] d\theta$$

$$= 2 \int_{0}^{2\pi} 15 \, d\theta$$

$$= 2 \cdot 15 \cdot 2\pi = \boxed{60\pi}$$