

华中科技大学计算机与科学技术学院 2023~2024 第一学期

" 计算机通信与网络 "考试试卷 (A卷)

考试方式		ì	闭卷	<u> </u>	考试	日期	2023	3-11-26	_ 考试	时长	1	50 分包	<u>† </u>
专	业班级				学	号			_ 姓	名			
	题号	_	=	三	四	五	六	七	八	九	+	总分	核对人
	分值	8	10	10	8	10	8	16	8	8	14	100	
	得分												

分 数	
评卷人	

一、考虑两台主机 A 和 B 由一条速率为 R bps 的链路相连。假设这两台主机相隔 m 米,沿该链路的传播速率为 s m/s。主机 A 向主机 B 发送长度 L 比特的分组。 试回答下面相关问题。(共 8 分)

- (1) 用 m 和 s 来表示传播时延 dprop。(1分)
- (2) 用 L 和 R 来确定该分组的传输时间 dtrans。(1分)
- (3) 忽略处理和排队时延,得出端到端时延的表达方式。(1分)
- (4) 假定主机 A 在时刻 t=0 开始传输该分组。在时刻 $t=d_{trans}$,该分组的最后一个比特在什么地方?分别假定 d_{prop} 大于 d_{trans} 和 d_{prop} 小于 d_{trans} ,在时刻 $t=d_{trans}$,该分组的第一个比特分别在什么地方?(4分)
 - (5) 假定 $s=2.5\times10^8$, L=120, R=56。求出使 d_{prop} 等于 d_{trans} 的距离 m。(1分)

解答内容不得超过装订

线

分 数	
评卷人	

二、假定两台主机 A 和 B 相隔 20~000km,由一条直接的 R=2~Mbps 的链路相连。假定跨越该链路的传播速率是 $2.5\times10^8~m/s$,试回答下面问题。(共 10~分)

(1) 计算带宽-时延积 R·tprop 并给出其解释 。(2分)

- (2) 在该链路上一个比特的宽度(以米计) 是多少?它比一个足球场更长吗? 用传播速率 s、带宽 R 和链路 m 的长度表示,推导出一个比特宽度的一般表达式。(2分)
- (3) 考虑从主机 A 到主机 B 发送一个 800 000 比特的文件。假定该文件作为一个大的报文连续发送。 在任何给定的时间,在链路上具有的比特数量最大值是多少?假定连续发送该文件,发送该文件需要多 长时间?假定现在该文件被划分为 20 个分组,每个分组包含 40 000 比特。假定每个分组被接收方确 认,确认分组的传输时间可忽略不计。最后,假定前一个分组被确认后,发送方才能发送分组。发送该 文件需要多长时间?比较采用以上两种不同发送方式的结果(6 分)

三、考虑向 N 个对等方发送 F=15 Gb 的一个文件。该服务器具有 $u_s=300$ Mbps 的上载速率,每个对等方具有 $d_i=2$ Mbps 的下载速率和上载速率 u_s 对 N=10、 100 和 1000 并且 u=300 kbps、700 kbps 和 2 Mbps,对于 N 和 u 的每种组合绘制

出确定最小分发时间的图表。需要分别针对客户-服务器分发和 P2P 分发两种情况制作。(10 分)

分 数	
评卷人	

四、假定主机 A 通过一条 TCP 连接向主机 B 发送两个紧接着的 TCP 报文段。第一个报文段的序号为 90,第二个报文段的序号为 110,试回答下面相关问题。(共 8 分)

- (1) 第一个报文段中有多少数据?(4分)
- (2) 假设第一个报文段丢失而第二个报文段到达主机 B。那么在主机 B 发往主机 A 的确认报文中,确认号应该是多少?(4分)

分 数	
评卷人	

五、主机 A 和 B 经一条 TCP 连接通信,并且主机 B 已经收到了来自 A 的最长为 126 字节的所有字节。假定主机 A 随后向主机 B 发送两个紧接着的报文段。第一 个和第二个报文段分别包含了 80 字节和 40 字节的数据。在第一个报文段中,序号

是 127,源端口号是 302,目的端口号是 80。无论何时主机 B 接收到来自主机 A 的报文段,它都会发送确认,试回答下面相关问题。(共 10 分)

- (1) 在从主机 A 发往 B 的第二个报文段中,序号、源端口号和目的端口号各是什么? (2分)
- (2)如果第一个报文段在第二个报文段之前到达,在第一个到达报文段的确认中,确认号、源端口号和目的端口号各是什么? (2分)
- (3)如果第二个报文段在第一个报文段之前到达,在第一个到达报文段的确认中,确认号是什么?(2分)
- (4) 假定由 A 发送的两个报文段按序到达 B。第一个确认丢失了而第二个确认在第一个超时间隔之后到达。画出时序图,显示这些报文段和发送的所有其他报文段和确认。(假设没有其他分组丢失。)对于图上每个报文段,标出序号和数据的字节数量;对于你增加的每个应答,标出确认号?(4 分)

线

六 假设测量的 5 个 SampleRTT 值是 106ms、120ms、140ms、90ms 和 115ms。 在获得了每个 SampleRTT 值后计算 EstimatedRTT,使用 α =0.125 并且假设在 刚获得前 5 个样本之后 EstimatedRTT 的值为 100ms。在获得每个样本之后,也

计算 DevRTT,假设 β =0.25,并且假设在刚获得前 5 个样本之后 DevRTT 的值为 5 ms。最后,在获得 这些样本之后计算 TCP TimeoutInterval。(共 8 分)

分 数	
评卷人	

七、考虑下图,基于 TCP Reno 协议,回答下列问题。在各种情况中,需要简要地论证你的回答。(共 16 分)

第5页 共8页

- (1) 指出 TCP 慢启动运行时的时间间隔和拥塞避免运行时的时间间隔。(2分)
- (2)分别指出在第 16 个和 22 个传输轮回之后,报文段的丢失是根据 3 个冗余 ACK 还是根据超时检测出来的?(3分)
- (3) 分别指出在第1个,第18个和第24个传输轮回里,ssthresh 的初始值设置分别为多少?(3分)
- (4) 在哪个传输轮回内发送第70个报文段? (2分)
- (5) 假定在第 26 个传输轮回后,通过收到 3 个余 ACK 检测出有分组丢失,拥塞的窗口长度和 ssthresh 的值应当是多少? (2 分)
- (6) 假定使用 TCP Tahoe(而不是 TCP Reno),并假定在第 16 个传输轮回收到 3 个余 ACK。在第 19 个传输轮回 ssthresh 和拥塞窗口长度是什么? (2 分)
- (7) 再次假设使用 TCP Tahoe, 在第 22 个传输轮回有一个超时事件。从第 17 个传输轮回到第 22 个传输轮回(包括这两个传输轮回),一共发送了多少分组? (2 分)

分 数	
评卷人	

八、IP 地址在网络传输中具有十分重要的作用,试回答下面相关的问题。(共8分)

- ─ (1) IP 地址 223.1.3.27 的 32 比特二进制等价形式是什么?(2 分)
- (2) 考虑向具有 700 字节 MTU 的一条链路发送一个 2400 字节的数据报。假定初始数据报标有标识号 422。将会生成多少个分片? (3分)
- (3) 在(2) 中,在生成相关分片的数据报中与分片相关的四个字段的值是多少?(3分)

分 数	
评卷人	

九、无线网络和移动网络发展迅猛,但在链路层和网络层与传统的有线网络差别很大,试回答下面相关的问题。(共8分)

- (1) 考虑 5 比特生成多项式, G=10011, 并且假设 D 的值为 1010101010。R 的值是什么?(3分)
- (2)使用 CSMA/CD 协议,适配器在碰撞之后等待 K 512 比特时间,其中 K 是随机选取的。对于 K=100,对于一个 10 Mbps 的广播信道,适配器返回到第二步要等多长时间?对于 100Mbps 的广播信道来说呢? (5分)

分 数	
评卷人	

十、考虑下图所示的网络。对于标明的链路开销,用 Dijkstra 的最短路算法计算 出从 x 到所有网络节点的最短路径。(14 分)

步骤	N'	D(v),p(v)	D(x),p(x)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X					
1						
2						
3						
4						
5						
6						