# Sampling Methods

Chapter 9 (Ch10 from textbook)

Prof. Reza Azadeh

University of Massachusetts Lowell

### Generating Pseudo Random Numbers

- Computer-based vs. Hardware-based
- An early computer-based PRNG, suggested by John von Neumann in 1946, is known as the middle-square method.
  - 1. take any number
  - 2. square it
  - 3. get the middle digits as the "random number"
  - 4. use that number as the seed for the next iteration.

Example:  $1111 \to 01234321 \to 2343 \to ...$ 

### Motivation

- For most probabilistic models of practical interest, exact inference is intractable, and so we have to resort to some form of approximation.
- There exists a set of inference algorithms that rely on deterministic approximation (e.g., variational Bayes and expectation propagation).
- In this chapter, we study another category of inference algorithms that rely on numerical sampling, known as **Monte Carlo** techniques.

### Goals

- The Monte Carlo methods consider the overall problem of inferring the posterior distribution.
- For most situations the posterior distribution is required primarily for the purpose of evaluating expectations, for example for making predictions.
- In this chapter, we address the problem of finding the expectation of some function  $f(\mathbf{z})$  where  $\mathbf{z}$  can be discrete or continuous, or a combination of the two.

## Expectation (1)

Recall that for a discrete variable  $\mathbf{z}$ , we can write the expectation of  $f(\mathbf{z})$  as

$$\mathbb{E}[f] = \sum_{\mathbf{z}} f(\mathbf{z}) p(\mathbf{z})$$

and for a continuous variable  $\mathbf{z}$ , we can write the expectation of  $f(\mathbf{z})$  as

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

## Expectation (2)



Figure: a function f(z) whose expectation is to be evaluated with respect to a distribution p(z)

We suppose that such expectations are too complex to be evaluated exactly using analytical techniques.

## How sampling methods approach this problem?

The general idea behind sampling methods is to obtain a set of samples  $\mathbf{z}^{(l)}$  where  $l = 1, \dots, L$ , drawn independently from the distribution  $p(\mathbf{z})$ .

This allows the expectation to be approximated by a finite sum

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)}).$$

### Estimator's Mean

As long as the samples are drawn from the distribution  $p(\mathbf{z})$ , then

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$

and so the estimator  $\hat{f}$  has the correct mean.

### Estimator's Variance

The variance of the estimator is given by

$$\mathbb{V}[\hat{f}] = \frac{1}{L}\mathbb{E}[(f - \mathbb{E}[f])^2]$$

is the variance of the function  $f(\mathbf{z})$  under the distribution  $p(\mathbf{z})$ .

### Estimator's Accuracy and Subsequent Issues

- The accuracy of the estimator does not depend on the dimensionality of z, and high accuracy may be achieved with a relatively small number of samples.
- In practice, ten or twenty independent samples may suffice to estimate an expectation to sufficient accuracy.
- **Problem 1:** the samples might not be independent, and so the effective sample size might be much smaller than the apparent sample size.
- **problem 2:** if  $f(\mathbf{z})$  is small in regions where  $p(\mathbf{z})$  is large, and vice versa, then the expectation may be dominated by regions of small probability, implying that relatively large sample sizes will be required to achieve sufficient accuracy.

### Basic Sampling Algorithms

- We consider some simple strategies for generating random samples from a given distribution.
- We assume that we have access to an algorithm that generates pseudo-random numbers distributed uniformly over (0,1).

In Python, you can use numpy.random.rand(), numpy.random.random.sample(), or rng.random() where rng = np.random.default.rng().

# Standard Distributions (1)

We first consider how to generate random numbers from simple nonuniform distributions, assuming that we already have access to a source of uniformly distributed random numbers.

Suppose that z is uniformly distributed over the interval (0,1), and that we transform the values of z using some function f(.) so that y = f(z). The distribution of y will be governed by

$$p(y) = p(z) \left| \frac{dz}{dy} \right|$$

where, in this case, p(z) = 1.

**Goal:** Choose function f(z) such that the resulting values of y have some specific desired distribution p(y).

## Standard Distributions (2)

The indefinite integral of p(y) can be written as

$$z = h(y) \equiv \int_{-\infty}^{y} p(\hat{y}) d\hat{y}$$

Thus,  $y = h^{-1}(z)$ , and so we have to transform the uniformly distributed random numbers using a function which is the inverse of the indefinite integral of the desired distribution.

### Standard Distributions (3)



Figure: Geometrical interpretation of the transformation method for generating nonuniformly distributed random numbers. h(y) is the indefinite integral of the desired distribution p(y). If a uniformly distributed random variable z is transformed using  $y = h^{-1}(z)$ , then y will be distributed according to p(y)

## Box-Muller Method (1)

This method generates samples from a Gaussian distribution.

- 1. First suppose we generate pairs of uniformly distributed random numbers  $z_1, z_2 \in (-1, 1)$ , which we can do by transforming a variable distributed uniformly over (0, 1) using  $z \to 2z 1$ .
- 2. Next we discard each pair unless it satisfies  $z_1^2 + z_2^2 \le 1$ . This leads to a uniform distribution of points inside the unit circle with  $p(z_1, z_2) = 1/\pi$ .

## Box-Muller Method (2)



Figure: The Box-Muller method for generating Gaussian distributed random numbers starts by generating samples from a uniform distribution inside the unit circle.

# Box-Muller Method (3)

3. Then, for each pair  $z_1, z_2$ , we evaluate the quantities

$$y_1, y_2 = z_1(\frac{-2\ln r^2}{r^2})^{1/2}, z_2(\frac{-2\ln r^2}{r^2})^{1/2}$$

where  $r^2 = z_1^2 + z_2^2$ .

4. Then the joint distribution of  $y_1$  and  $y_2$  is given by:

$$p(y_1, y_2) = p(z_1, z_2) \left| \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \right|$$
$$= \left[ \frac{1}{\sqrt{2\pi}} \exp(-y_1^2/2) \right] \left[ \frac{1}{\sqrt{2\pi}} \exp(-y_2^2/2) \right]$$

So  $y_1$  and  $y_2$  are independent and each has a Gaussian distribution with zero mean and unit variance.

### Visualization of Box-Muller Method



Figure: Colored points in the unit square  $(z_1, z_2)$ , drawn as circles, are mapped to a 2D Gaussian  $(y_1, y_2)$ , drawn as crosses. The plots at the margins are the probability distribution functions of  $y_1$  and  $y_2$ . Source: Wikipedia

$$\mathcal{N}(0,1) \to \mathcal{N}(\mu, \sigma^2)$$

If y has a Gaussian distribution with zero mean and unit variance, then  $\sigma y + \mu$  will have a Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$ .

# $\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$

To generate vector-valued variables having a multivariate Gaussian distribution with mean  $\mu$  and covariance  $\Sigma$ , we can make use of the *Cholesky decomposition*, which takes the form  $\Sigma = \mathbf{L}\mathbf{L}^{\top}$ .

Then if  $\mathbf{z}$  is a vector valued random variable whose components are independent and Gaussian distributed with zero mean and unit variance, then  $\mathbf{y} = \boldsymbol{\mu} + \mathbf{L}\mathbf{z}$  will have mean  $\boldsymbol{\mu}$  and covariance  $\boldsymbol{\Sigma}$ .

#### Issues

The transformation technique depends on its success on the ability to calculate and then invert the indefinite integral of the required distribution. Such operations will only be feasible for a limited number of simple distributions, and so we must turn to alternative approaches in search of a more general strategy.

# Rejection Sampling (1)

- Problem: Suppose we wish to sample from a distribution  $p(\mathbf{z})$  that is not one the simple, standard distributions considered so far, and that sampling directly from  $p(\mathbf{z})$  is difficult.
- Assumption: Suppose we can easily evaluate  $p(\mathbf{z})$  for any given value of  $\mathbf{z}$ , up to some normalizing constant Z so that

$$p(z) = \frac{1}{Z_p}\tilde{p}(z)$$

where  $\tilde{p}(z)$  can readily be evaluated, but  $Z_p$  is unknown.

# Rejection Sampling (2)

- We need a simpler distribution q(z), sometimes called a **proposal distribution**, from which we can readily draw samples.
- We then introduce a constant k whose value is chosen such that  $kq(z) \geq \tilde{p}(z)$  for all values of z. The function kq(z) is called the comparison function.

## Rejection Sampling (3)



Figure: Samples are drawn from a simple distribution q(z) and rejected if they fall in the grey area between the unnormalized distribution  $\tilde{p}(z)$  and the scaled distribution kq(z). The resulting samples are distributed according to p(z), which is the normalized version of  $\tilde{p}(z)$ .

# Rejection Sampling (4)

Each step of rejection sampling involves generating two random numbers.

- 1. Generate a number  $z_0$  from the distribution q(z).
- 2. Generate a number  $u_0$  from the uniform distribution over  $[0, kq(z_0)]$ . This pair of random numbers has uniform distribution under the curve of the function kq(z).
- 3. If  $u_0 > \tilde{p}(z_0)$  then the sample is rejected (lies in the grey area), otherwise  $u_0$  is retained.
- 4. the remaining pairs then have uniform distribution under the curve of  $\tilde{p}(z)$ , and hence the corresponding z values are distributed according to p(z), as desired.

### Rejection Sampling - Example

Consider the task of sampling from a Gamma distribution

$$Gam(z|a,b) = \frac{b^a z^{a-1} \exp(-bz)}{\Gamma(a)}$$

which for a>1 has a bell-shaped form. A suitable proposal distribution is the Cauchy distribution because it too is bell-shaped and because we can use the transformation method, to sample from it.

The constant k must be selected as small as possible while still satisfying the requirement  $kq(z) \geq \tilde{p}(z)$ .

### Rejection Sampling - Example



Figure: Gamma distribution (green), scaled Cauchy distribution (red). Samples from the Gamma distribution can be obtained by sampling from Cauchy and then applying the rejection sampling criteria.

#### Issues

- In many instances where we might wish to apply rejection sampling, it proves difficult to determine a suitable analytic form for the envelope distribution q(z).
- An alternative approach is to construct the envelope function on the fly based on measured values of the distribution p(z).
- This idea results in the Adaptive Rejection Sampling algorithm.

## Importance Sampling (1)

- As mentioned before, one of the main reason for being able to sample from complicated probability distributions is to be able to evaluate expectations.
- Importance Sampling provides a method for approximating expectations directly but does not itself provide a mechanism for drawing samples from distribution p(z).

# Importance Sampling (2)

• Approximation of the expectation depends on being able to draw samples from the distribution p(z).

$$\mathbb{E}[f] = \int p(\mathbf{z}) f(\mathbf{z}) d\mathbf{z}.$$

• Assumption: It is impractical to sample from  $p(\mathbf{z})$  and we only can evaluate  $p(\mathbf{z})$  easily for any value of  $\mathbf{z}$ .

## Importance Sampling (3)

• One simplistic strategy is to discretize **z**-space into a uniform grid and to evaluate the integrand as a sum of the form

$$\mathbb{E}[f] \approx \sum_{l=1}^{L} p(\mathbf{z}^{(l)}) f(\mathbf{z}^{(l)}).$$

• An obvious problem is that the number of terms in the summation grows exponentially with the dimensionality of  $\mathbf{z}$ . Secondly, in high-dimensional problems, only a very small proportion of the samples will make significant contributions to the sum. And we prefer to choose samples to fall in regions where  $p(\mathbf{z})$  is large.

# Importance Sampling (4)

- Similar to rejection sampling, importance sampling is based on the use of a proposal distribution  $q(\mathbf{z})$  from which it is easy to draw samples.
- The expectation then can be expressed in the form of a finite sum over samples  $\{\mathbf{z}^{(l)}\}$  drawn from  $q(\mathbf{z})$ .

$$\begin{split} \mathbb{E}[f] &= \int p(\mathbf{z}) f(\mathbf{z}) d\mathbf{z} \\ &= \int \frac{p(\mathbf{z})}{q(\mathbf{z})} f(\mathbf{z}) q(\mathbf{z}) d\mathbf{z} \\ &\approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)}) \end{split}$$

# Importance Sampling (5)

- The quantities  $r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$  are known as *importance* weights, and they correct the bias introduced by sampling from the wrong distribution.
- Unlike rejection sampling, all of the generated samples are retained.



Figure: Sampling from a Beta distribution (red) with a uniform distribution as proposal. Number of samples: 100



Figure: Sampling from a Beta distribution (red) with a uniform distribution as proposal. Number of samples: 10,000



Figure: Sampling from a Beta distribution (red) with a uniform distribution as proposal. Number of samples: 100,000



Figure: Sampling from a Beta distribution (red) with a uniform distribution as proposal. Number of samples: 1,000,000