#Import some libraries import pandas as pd import numpy as np

from sklearn.impute import SimpleImputer

#Read Excel File

data=pd.read_excel('/content/Strikers_performance.xlsx')

data.head()

•	Striker_ID	Nationality	Footedness	Marital Status	Goals Scored	Assists	Shots on Target		Conversion Rate	Dribbling Success	Movement off the Ball	Hold-up Play	
0	1	Spain	Left-footed	No	17.483571	10.778533	34.795488	0.677836	0.166241	0.757061	50.921924	71.806409	15
1	2	France	Left-footed	Yes	14.308678	13.728250	31.472436	0.544881	0.192774	0.796818	61.396150	53.726866	19
2	3	Germany	Left-footed	No	18.238443	3.804297	25.417413	0.518180	0.160379	0.666869	65.863945	60.452227	20
3	4	France	Right-footed	No	22.615149	9.688908	20.471443	0.599663	0.184602	0.638776	88.876877	60.511979	22
4	5	France	Left-footed	Yes	13.829233	6.048072	29.887563	0.582982	0.105319	0.591485	75.565531	54.982158	13
4													•

View data type

data.dtypes

$\overline{\rightarrow}$	Striker_ID	int64
	Nationality	object
	Footedness	object
	Marital Status	object
	Goals Scored	float64
	Assists	float64
	Shots on Target	float64
	Shot Accuracy	float64
	Conversion Rate	float64
	Dribbling Success	float64
	Movement off the Ball	float64
	Hold-up Play	float64
	Aerial Duels Won	float64
	Defensive Contribution	float64
	Big Game Performance	float64
	Consistency	float64
	Penalty Success Rate	float64
	Impact on Team Performance	float64
	Off-field Conduct	float64
	dtype: object	

Describe Data

data.describe()

	Striker_ID	Goals Scored	Assists	Shots on Target	Shot Accuracy	Conversion Rate	Dribbling Success	Movement off the Ball	Hold-up Play	Aerial Duels Won	Defensive Contribution
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	494.000000	500.000000	500.000000	500.000000
mean	250.500000	15.036603	8.095660	25.759392	0.603319	0.199424	0.702133	69.790151	59.810879	19.529831	39.954865
std	144.481833	4.898554	2.933487	7.071724	0.098407	0.047978	0.100108	10.400347	10.167912	4.958031	9.921254
min	1.000000	0.000000	0.000000	4.726212	0.305961	0.049024	0.400886	40.705513	35.067292	4.961838	8.232962
25%	125.750000	11.498463	6.214125	20.782993	0.538806	0.166963	0.637285	62.668746	52.425012	16.395836	33.458187
50%	250.500000	15.063986	8.085595	25.838641	0.599109	0.199842	0.700354	69.617049	60.075293	19.741772	39.978322
75%	375.250000	18.183916	9.953727	30.283169	0.669977	0.233459	0.763227	76.953526	66.033512	22.856931	46.693579
max	500.000000	34.263657	15.897146	43.211782	0.919311	0.355496	1.000000	98.684031	92.430930	34.073272	71.129102
4											+

```
# Select data which is non numeric
non_numeric_data = data.select_dtypes(exclude=['number']).columns
non_numeric_data
→ Index(['Nationality', 'Footedness', 'Marital Status'], dtype='object')
# Select Data which is Numeric
numeric_data = data.select_dtypes(include=['number']).columns
numeric_data
Index(['Striker_ID', 'Goals Scored', 'Assists', 'Shots on Target',
            'Shot Accuracy', 'Conversion Rate', 'Dribbling Success',
            'Movement off the Ball', 'Hold-up Play', 'Aerial Duels Won', 'Defensive Contribution', 'Big Game Performance', 'Consistency',
            'Penalty Success Rate', 'Impact on Team Performance',
            'Off-field Conduct'],
           dtype='object')
# Fill the numeric missing values with strategy of median
imputer = SimpleImputer(missing_values = np.nan, strategy = 'median')
nw_imputer=imputer.fit(data[numeric_data])
numeric data imputed=nw imputer.transform(data[numeric data])
numeric_data_imputed
\rightarrow array([[ 1.
                         , 17.48357077, 10.77853264, ...,
                                                               0.92272738,
               8.57037016, 11.45138759],
                         , 14.30867849, 13.72824992, ...,
              2.
                                                               0.67898395.
               3.44463808, 8.24368893],
                        , 18.23844269,
              3.
                                           3.80429728, ...,
                                                               0.84385793,
               8.4294913 , 9.50683495],
            ſ498.
                         , 14.04830661,
                                           9.92252858, ...,
                                                               0.74726109.
              11.24911246, 6.32975099],
                        , 10.62190873,
            Γ499.
                                            6.28646303. ....
                                                               0.79948934.
              1.45237012, 11.3058261 ],
                             8.08600135,
                                           9.71774834, ..., 0.83987638,
            Γ500.
               6.64076056, 12.15555517]])
# Fill categorical missing value with strategy of most frequent
imputer = SimpleImputer(missing_values = np.nan, strategy = 'most_frequent')
nw_imputer=imputer.fit(data[non_numeric_data])
non_numeric_data_imputed=nw_imputer.transform(data[non_numeric_data])
non_numeric_data_imputed
['England', 'Left-footed', 'Yes'],
['England', 'Right-footed', 'Yes'],
['England', 'Left-footed', 'No']], dtype=object)
#Check the null values
data.isnull().sum()
₹
    Striker ID
     Nationality
     Footedness
     Marital Status
     Goals Scored
                                   0
     Assists
                                   0
     Shots on Target
     Shot Accuracy
                                   0
     Conversion Rate
                                   0
     Dribbling Success
     Movement off the Ball
                                    6
     Hold-up Play
                                    0
     Aerial Duels Won
                                    0
     Defensive Contribution
                                    0
     Big Game Performance
                                    2
     Consistency
                                    0
     Penalty Success Rate
                                    5
     Impact on Team Performance
```

```
Off-field Conduct dtype: int64
```

Removing null value

data['Big Game Performance'].fillna('Unknown',inplace=True)

data['Movement off the Ball'].fillna('Unknown',inplace=True)

data['Penalty Success Rate'].fillna('Unknown',inplace=True)

data.isnull().sum()

```
→ Striker_ID

    Nationality
                                 0
    Footedness
    Marital Status
    Goals Scored
    Assists
    Shots on Target
    Shot Accuracy
    Conversion Rate
    Dribbling Success
    Movement off the Ball
    Hold-up Play
                                 0
    Aerial Duels Won
                                  0
    Defensive Contribution
    Big Game Performance
                                 a
    Consistency
                                 0
    Penalty Success Rate
    Impact on Team Performance
                                 0
    Off-field Conduct
                                 0
    dtype: int64
```

Replace Unknown with -1 and convert it into given column into integer

data.replace('Unknown', -1, inplace=True)

₹

7		Goals	Assists	Shots	Movement off the	Hold- up	Aerial Duels	Defensive	Big Game	Impa
		Scored	A3313C3	Target	Ball	Play	Won	Contribution	Performance	Perfor
	0	17	10	34	50	71	15	30	6	
	1	14	13	31	61	53	19	26	6	
	2	18	3	25	65	60	20	24	3	
	3	22	9	20	88	60	22	44	6	
	4	13	6	29	75	54	13	37	8	
	495	17	7	39	89	60	28	39	4	
	496	9	13	39	78	39	15	47	6	
	497	14	9	33	69	56	25	71	5	
	498	10	6	32	68	76	9	48	2	
	499	8	9	29	66	63	14	31	10	
4										•

data.dtypes

₹	Striker_ID	int64
	Nationality	object
	Footedness	object
	Marital Status	object
	Goals Scored	float64
	Assists	float64
	Shots on Target	float64
	Shot Accuracy	float64

15/07/2024, 18:31

Conversion Rate	float64
Dribbling Success	float64
Movement off the Ball	float64
Hold-up Play	float64
Aerial Duels Won	float64
Defensive Contribution	float64
Big Game Performance	float64
Consistency	float64
Penalty Success Rate	float64
Impact on Team Performance	float64
Off-field Conduct	float64
dtvpe: object	

round(data.describe(),2)

		Striker_ID	Goals Scored	Assists	Shots on Target	Shot Accuracy	Conversion Rate	Dribbling Success	Movement off the Ball	Н
	count	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	51
	mean	250.50	15.04	8.10	25.76	0.60	0.20	0.70	68.94	ļ
	std	144.48	4.90	2.93	7.07	0.10	0.05	0.10	12.90	
	min	1.00	0.00	0.00	4.73	0.31	0.05	0.40	-1.00	;
	25%	125.75	11.50	6.21	20.78	0.54	0.17	0.64	62.25	;
	50%	250.50	15.06	8.09	25.84	0.60	0.20	0.70	69.45	(
	75%	375.25	18.18	9.95	30.28	0.67	0.23	0.76	76.93	(
	max	500.00	34.26	15.90	43.21	0.92	0.36	1.00	98.68	!
4										•

Import Libraries

import matplotlib.pyplot as plt
import seaborn as sns

Draw the pie chart of Footedness

Footedness= data['Footedness'].value_counts()
plt.figure(figsize=(10,6))
Footedness.plot(kind='pie',autopct='%1.2f%%')
plt.show()

₹

Draw the pie Countplot for Distribution of Footedness Across Nationalities

```
sns.countplot(x='Nationality', hue='Footedness',data=data, palette='viridis')
plt.title('Distribution of Footedness Across Nationalities')
plt.xlabel('Nationality')
plt.ylabel('Count')
plt.tight_layout()
plt.show()
```


Determine which nationality strikers have the highest average number of goals scored.

avg_hg_goal = data.groupby('Nationality') ['Goals Scored'].mean()
avg_hg_goal.sort_values(ascending=False)

```
Nationality
Brazil 15.804927
Spain 15.196491
France 14.900827
Germany 14.860242
England 14.465756
```

Name: Goals Scored, dtype: float64

 $\mbox{\tt\#}$ Calculate the average conversion rate for players based on their footedness.

avg_conversion_rate = data.groupby('Footedness')['Conversion Rate'].mean()
print(avg_conversion_rate)

footedness_by_nationality = pd.crosstab(data['Nationality'], data['Footedness'])
footedness_by_nationality

Footedness 0 0.198086

1 0.200592

Name: Conversion Rate, dtype: float64

Footedness 0 1

Nationality		
Brazil	42	53

Brazii	42	53
England	50	59
France	42	51
Germany	44	47
Spain	55	57

```
strikers from various nationalities. Before doing the appropriate test, must check
for the assumptions'''
# Correlation Matrix
num_variables = data.select_dtypes(include = ['number']).columns
correl_matrix = round(data[num_variables].corr(), 3)
correl_matrix
plt.figure(figsize=(18, 10))
sns.heatmap(correl_matrix, annot=True)
plt.title('Heatmap of Correlation Matrix')
plt.show()
# Shapiro Normality test
from scipy.stats import shapiro
import pandas as pd
df = data[['Nationality', 'Consistency']]
for nationality in df['Nationality'].unique():
   stat, p = shapiro(df[df['Nationality'] == nationality]['Consistency'])
   print(f'Nationality: {nationality}, p-value: {p}')
```


Nationality: Spain, p-value: 0.6272388696670532 Nationality: France, p-value: 0.4209076464176178 Nationality: Germany, p-value: 0.9636307954788208 Nationality: Brazil, p-value: 0.7303183674812317 Nationality: England, p-value: 0.9730228185653687

```
#Levene's test p-value
from scipy.stats import levene
grouped_data = [df[df['Nationality'] == nationality]['Consistency'] for
                nationality in df['Nationality'].unique()]
stat, p = levene(*grouped_data)
print(f'Levene's test p-value: {p}')
Fr Levene's test p-value: 0.8083990350934653
# One way Anova test
from scipy.stats import f_oneway
stat, p = f_oneway(*grouped_data)
print(f'ANOVA p-value: {p}')
ANOVA p-value: 0.19278675901599154
\ensuremath{^{\prime\prime\prime}} Check if there is any significant correlation between strikers
 Hold-up play and consistency rate. Must check for the assumptions.'''
# Pearson correlation test
from scipy.stats import pearsonr
stat, p = pearsonr(data['Hold-up Play'], data['Consistency'])
print(f'Pearson's correlation coefficient: {stat}, p-value: {p}')
Pearson's correlation coefficient: 0.14504436542869958, p-value: 0.001144397241805525
'''Check if strikers hold-up play significantly influences their consistency rate.'''
# Linear Regression
import statsmodels.api as sm
X = data['Hold-up Play']
y = data['Consistency']
x_constant = sm.add_constant(X)
model = sm.OLS(y, x\_constant).fit()
residuals = model.resid
sns.histplot(residuals, kde=True)
plt.title('Distribution of Residuals')
plt.xlabel('Residuals')
plt.show()
sm.qqplot(residuals, line='45')
plt.show()
```


Scatter Plot

```
fitted_vals = model.predict(x_constant)
sns.scatterplot(x=fitted_vals, y=residuals)
plt.axhline(0, linestyle='--', color='red')
plt.title('Residuals vs Fitted Values')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()
```


#Linear Regression Result
print(model.summary())

Dep. Variable:		Consistency	R-causeo	d.		0.021	
Model:		OLS	Adj. R-s		0.019		
Method:	1	east Squares	F-statis		10.70		
Date:		09 Jul 2024				0.00114	
Time:	iuc,	06:29:25	,	,		429.86	
No. Observations	•	500	ATC:	.1111004.		-855.7	
Df Residuals:	•	498	BIC:			-847.3	
Df Model:		1					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	0.6552	0.027	23.903	0.000	0.601	0.709	
Hold-up Play	0.0015	0.000	3.271	0.001	0.001	0.002	
Omnibus:	=======	 1.695	Durbin-W	======== latson:	=======	2.135	
Prob(Omnibus):		0.428	Jarque-B	Bera (JB):		1.734	
Skew:		-0.100	Prob(JB)	:		0.420	
Kurtosis:		2.792	Cond. No).		362.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

₹		Striker_ID	Nationality	Footedness	Marital Status	Goals Scored	Assists	Shots on Target		Conversion Rate	Dribbling Success	Movement off the Ball	Hold-up Play	
	0	1	Spain	Left-footed	No	17.483571	10.778533	34.795488	0.677836	0.166241	0.757061	50.921924	71.806409	15
	1	2	France	Left-footed	Yes	14.308678	13.728250	31.472436	0.544881	0.192774	0.796818	61.396150	53.726866	19
	2	3	Germany	Left-footed	No	18.238443	3.804297	25.417413	0.518180	0.160379	0.666869	65.863945	60.452227	20
	3	4	France	Right-footed	No	22.615149	9.688908	20.471443	0.599663	0.184602	0.638776	88.876877	60.511979	22
	4	5	France	Left-footed	Yes	13.829233	6.048072	29.887563	0.582982	0.105319	0.591485	75.565531	54.982158	13
	4													•

Encode the Footedness and marital status

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
data['Footedness'] = label_encoder.fit_transform(data['Footedness'])
data['Marital Status'] = label_encoder.fit_transform(data['Marital Status'])
data.head()
```


Make dummies of Nationality

```
dummies = pd.get_dummies(data['Nationality'])
processed_data = pd.concat([data, dummies], axis = 1)
processed_data = processed_data.drop('Nationality', axis = 1)
processed_data.head()
```


	Striker_ID	Footedness	Marital Status	Goals Scored	Assists	Shots on Target	Shot Accuracy	Conversion Rate		
0	1	0	0	17.483571	10.778533	34.795488	0.677836	0.166241		
1	2	0	1	14.308678	13.728250	31.472436	0.544881	0.192774		
2	3	0	0	18.238443	3.804297	25.417413	0.518180	0.160379		
3	4	1	0	22.615149	9.688908	20.471443	0.599663	0.184602		
4	5	0	1	13.829233	6.048072	29.887563	0.582982	0.105319		
5 rows × 29 columns										

 $\ensuremath{\mathrm{\#}}$ Kmean CLustering ,find no of Clusters were made

```
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
x = processed_data.select_dtypes(include=['number']).drop('Striker_ID', axis = 1)
wcss=[]
for i in range(1, 15):
    kmeans = KMeans(n_clusters = i, init = 'k-means++')
    kmeans.fit(x)
    wcss_score = kmeans.inertia_
    wcss.append(wcss_score)
plt.figure(figsize=(10,6))
plt.plot(range(1,15),wcss,marker='o')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```

```
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 📤
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from
      warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
      warnings.warn(
```


from sklearn.cluster import KMeans

```
final_kmeans = KMeans(n_clusters=2, init='k-means++')
final_kmeans.fit(x)
```

labels = final_kmeans.labels_

print(labels)

processed_data['clusters']= labels
processed_data.head()

	Striker_ID	Footedness	Marital Status	Goals Scored	Assists	Shots on Target		Conversion Rate
0	1	0	0	17.483571	10.778533	34.795488	0.677836	0.166241
1	2	0	1	14.308678	13.728250	31.472436	0.544881	0.192774
2	3	0	0	18.238443	3.804297	25.417413	0.518180	0.160379
3	4	1	0	22.615149	9.688908	20.471443	0.599663	0.184602
4	5	0	1	13.829233	6.048072	29.887563	0.582982	0.105319
5 ro	ws × 30 colum	ins						
4								

round(processed_data.groupby('clusters')['Total contribution score'].mean(),2)

clusters
0 104.92
1 126.53

1 126.53 Name: Total contribution score, dtype: float64

Mapping Clusters with Strikers type , assign 0:'Best strikers', 1:'Regular strikers'

mapping = {0:'Best strikers', 1:'Regular strikers'}
processed_data['Strikers types'] = processed_data['clusters'].map(mapping)
processed_data.head()

Delete cluster column

processed_data=processed_data.drop('clusters',axis=1)
processed_data.head()

```
<del>_</del>_
                                 Marital
                                              Goals
                                                                 Shots on
                                                                               Shot Conversion
         Striker_ID Footedness
                                                       Assists
                                   Status
                                             Scored
                                                                   Target Accuracy
                                                                                           Rate
                  1
                              0
      0
                                       0 17.483571 10.778533 34.795488
                                                                           0.677836
                                                                                        0 166241
                  2
                              0
                                        1 14.308678 13.728250 31.472436 0.544881
                                                                                        0.192774
      2
                  3
                               0
                                          18.238443
                                                      3.804297 25.417413 0.518180
                                                                                        0.160379
                                                      9.688908 20.471443
                                       0 22.615149
                                                                           0.599663
                                                                                        0.184602
                  5
                               0
                                       1 13 829233
                                                      6.048072 29.887563 0.582982
                                                                                        0.105319
     5 rows × 30 columns
mapping = {'Best strikers':0,'Regular strikers':1}
processed_data['Strikers types'] = processed_data['Strikers types'].map(mapping)
processed_data.head()
₹
                                 Marital
                                              Goals
                                                                 Shots on
                                                                               Shot Conversion
         Striker_ID Footedness
                                                       Assists
                                  Status
                                             Scored
                                                                   Target Accuracy
                                                                                           Rate
                              0
                                                                           0.677836
      0
                                       0 17.483571 10.778533 34.795488
                                                                                        0.166241
                  1
                  2
                              0
                                                     13.728250 31.472436
                                                                                        0.192774
                                        1 14 308678
                                                                           0.544881
      1
      2
                  3
                               n
                                          18 238443
                                                      3.804297 25.417413
                                                                                        0.160379
                                       0
                                                                           0.518180
      3
                  4
                               1
                                       0 22 615149
                                                      9.688908 20.471443
                                                                           0.599663
                                                                                        0.184602
                               0
                  5
                                          13.829233
                                                      6.048072 29.887563
                                                                           0.582982
                                                                                        0.105319
     5 rows × 30 columns
# Feature Selection
x = processed_data.drop(['Striker_ID', 'Strikers types'], axis = 1)
y = processed_data['Strikers types']
# Standarising Features With the help of Stanadrd Scaler
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaled_x=scaler.fit_transform(x)
scaled_x
⇒ array([[-1.07047781, -1.03252879, 0.50002889, ..., -0.47801802,
              -0.47169258, 1.86125917],
            [-1.07047781, 0.968496, -0.14874861, ..., 2.09197134,
              -0.47169258, -0.53727069],
            [-1.07047781, -1.03252879, 0.65428418, ..., -0.47801802,
              2.12002488, -0.53727069],
                                      , -0.20195464, ..., -0.47801802,
            [-1.07047781, 0.968496
              -0.47169258, -0.53727069],
            [\ 0.93416229,\ 0.968496\ ,\ -0.90212639,\ \ldots,\ -0.47801802,
            -0.47169258, -0.53727069],
[-1.07047781, -1.03252879, -1.4203297 , ..., -0.47801802,
              -0.47169258, -0.53727069]])
# Split the data set into Train and Test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(scaled_x,y,test_size=0.2,random_state=42)
```

```
# Apply ml model (logistic regression)
```


from scipy.stats import yeojohnson

```
def yeojohnson_transformation(data,col_name):
    transformed_data,_= yeojohnson(data[col_name])
    data[f'{col_name}_yeojohnson']=transformed_data
    stat,p_value=shapiro(data[f'{col_name}_yeojohnson'])
    kdeplot= sns.kdeplot(data[f'{col_name}_yeojohnson'])
    plt.title(f'yeojohnson Transformation of {col_name}')
    plt.show()
    print(f'p-value: {p_value}')
```

yeojohnson_transformation(data, 'Goals Scored')

