

ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA HỆ THỐNG THÔNG TIN

Chương 3 Đại số quan hệ

GV: ThS. Nguyễn Đình Loan Phương

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán cơ bản
- 4. Các phép toán khác
- 5. Các thao tác cập nhật

1. Giới thiệu

- ♦ Thế nào là truy vấn CSDL?
 - Cho một CSDL, đưa ra các câu hỏi, nhận được các câu trả lời
 - Ví dụ:
 - Cho biết tất cả sinh viên có điểm trung bình > 8 thuộc các khoa.
 - Cho biết các khoa có hơn 100 sinh viên.
 - Trong các khoa, chọn sinh viên đạt điểm trung bình cao nhất trong năm học trước
- Ngôn ngữ truy vấn: là ngôn ngữ cho phép người dùng cập nhật và rút trích dữ liệu được lưu trong một mô hình dữ liệu.

1. Giới thiệu (tt)

♦ Có 2 loại xử lý

- Làm thay đổi dữ liệu (cập nhật)
 - Thêm mới, xóa và sửa
- Không làm thay đổi dữ liệu (rút trích)
 - Truy vấn (query)

◆ Thực hiện các xử lý

- Đại số quan hệ (Relational Algebra)
 - Biểu diễn câu truy vấn dưới dạng biểu thức
- Phép tính quan hệ (Relational Calculus)
 - Biểu diễn kết quả
- SQL (Structured Query Language)

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán cơ bản
- 4. Các phép toán khác
- 5. Các thao tác cập nhật

2. Đại số quan hệ

♦ Đại số quan hệ (ĐSQH)

- Có nền tảng toán học (cụ thể là lý thuyết tập hợp).
- Là một tập hợp các phép toán quan hệ để rút trích dữ liệu.

♦ Chức năng:

- Cho phép mô tả các phép toán rút trích dữ liệu từ các quan hệ trong cơ sở dữ liệu quan hệ.
- Cho phép tối ưu quá trình rút trích bằng các phép toán có sẵn của lý thuyết tập hợp.

2. Đại số quan hệ

- ♦ Biến là các quan hệ
 - Tập hợp (set)
- ♦ Toán tử là các phép toán (operations)
 - Trên tập hợp
 - Hội ∪ (union)
 - Giao ∩ (intersec)
 - Trừ (difference)
 - Rút trích 1 phần của quan hệ
 - Chọn σ (selection)
 - Chiếu π (projection)
 - Kết hợp các quan hệ
 - Tích Cartesian × (Cartesian product)
 - Kết ⋈ (join)
 - Đổi tên ρ

2. Đại số quan hệ (tt)

- ♦ Biểu thức ĐSQH
 - Là chuỗi các phép toán đại số quan hệ
 - Kết quả trả về là thể hiện của quan hệ

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán cơ bản
- 4. Các phép toán khác
- 5. Các thao tác cập nhật

Giới thiệu

- ♦Có năm phép toán cơ bản:
 - Chọn (σ) hoặc (:)
 - Chiếu (1) hoặc ([])
 - Tích (×)
 - Hiệu (-)
 - **Hội (∪)**

Giới thiệu

- Các phép toán khác không cơ bản nhưng hữu ích:

 - Kết (▷<)</p>
 - Chia (÷)
 - Phép bù (¬)
 - Đổi tên (\rho)
 - Phép gán (←)
- ◆Kết quả sau khi thực hiện các phép toán là các quan hệ, do đó có thể kết hợp giữa các phép toán để tạo nên phép toán mới.

Lược đồ CSDL QLNV

Các phép toán tập hợp

- ◆ Các phép toán thực hiện trên 2 quan hệ xuất phát từ lý thuyết tập hợp của toán học:
 - Phép hội R ∪ S
 - Phép giao R ∩ S
 - Phép trừ R S
- ♦ Các quan hệ R(A₁,A₂,...A_n) và S(B₁,B₂,...B_n) phải có tính khả hợp
 - Có cùng bậc (cùng số lượng thuộc tính)
 - Với mọi i, Dom(A_i) = Dom(B_i)
- ◆ Kết quả của ∪, ∩, và là một <u>quan hệ</u> có cùng tên thuộc tính với quan hệ đầu tiên (R)

Các phép toán tập hợp (tt)

♦ Ví dụ:

NVIEN_CH	TENNVC NGSINHC		PHAIC
	Tung	12/08/1955	Nam
	Hang	07/19/1968	Nu
	Nhu	06/20/1951	Nu
	Hung	09/15/1962	Nam

NVIEN_TV	TENNVT	NGSINHT	PHAIT
	Trinh	04/05/1986	Nu
	Khang	10/25/1983	Nam
	Phuong	05/03/1958	Nu
	Minh	02/28/1942	Nam
	Chau	12/30/1988	Nu

Bậc n=3 DOM(TENNVC) = DOM(TENNVT) DOM(NGSINHC) = DOM(NGSINHT) DOM(PHAIC) = DOM(PHAITNT)

Phép hội (Union)

- ♦ Cho 2 quan hệ R và S khả hợp
- ◆ Phép hội của R và S
 - Ký hiệu R ∪ S
 - Là một quan hệ gồm các bộ thuộc R hoặc thuộc S, hoặc cả hai (các bộ trùng lắp sẽ bị bỏ)

$$R \cup S = \{ t / t \in R \lor t \in S \}$$

♦ Ví dụ: Học viên được khen thưởng đợt 1 hoặc đợt 2

DOT1		
Mahv Hoten		
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Hoten		
Le Kieu My		
Tran Ngoc Han		

Mahv	Hoten	
K1101	Le Kieu My	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

Phép giao (intersection)

- ♦ Cho 2 quan hệ R và S khả hợp
- ◆ Phép giao của R và S
 - Ký hiệu R ∩ S
 - Là một quan hệ gồm các bộ thuộc R đồng thời thuộc S

$$R \cap S = \{ t / t \in R \land t \in S \}$$

♦ Ví dụ: Học viên được khen thưởng cả hai đợt 1 và 2

KT_D1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

KT_D2		
Mahv Hoten		
K1101 Le Kieu My		
K1114 Tran Ngoc Han		

Mahv	Hoten	
K1114	Tran Ngoc Han	

DOT1 ∩ DOT2

Phép trừ

- ◆ Cho 2 quan hệ R và S khả hợp
- ◆ Phép giao của R và S
 - Ký hiệu R S
 - Là một quan hệ gồm các bộ thuộc R và không thuộc S

$$R - S = \{ t / t \in R \land t \notin S \}$$

♦ Ví dụ: Học viên được khen thưởng đợt 1 nhưng không được khen thưởng đợt 2

DOT1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Mahv Hoten		
K1101 Le Kieu My		
K1114 Tran Ngoc Han		

Mahv	Hoten	
K1103	Le Van Tam	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT1 - DOT2

Phép chọn

- ♦ Được dùng để lấy ra các bộ của quan hệ R
- ◆ Các bộ được chọn phải thỏa mãn điều kiện chọn P
- lacktriangle Ký hiệu: $\sigma_P(R)$ hoặc R: P
- lacktriangle Dinh nghĩa: $\sigma_P(R) = \{t \mid t \in R \land P(t)\}$
- **♦** Trong đó:
 - R là một quan hệ
 - P là biểu thức điều kiện gồm các mệnh đề có dạng:
 - <tên thuộc tính> <phép so sánh> <hằng số>
 - <tên thuộc tính> <phép so sánh> <tên thuộc tính>
 - <phép so sánh> gồm < , > , ≤ , ≥ , ≠ , =
 - Các mệnh đề được nối lại nhờ các phép ∧ (AND), ∨(OR), ¬(NOT)

Phép chọn (tt)

- ♦ Kết quả trả về là một quan hệ
 - Có cùng danh sách thuộc tính với R
 - Có số bộ luôn ít hơn hoặc bằng số bộ của R
 - Không có kết quả trùng
- ♦ Phép chọn có tính chất giao hoán

$$\sigma_{P1}(\sigma_{P2}(R)) = \sigma_{P2}(\sigma_{P1}(R)) = \sigma_{(P1 \wedge P2)}(R)$$

Ví dụ phép chọn

♦ Cho biết các học viên nam

Quan hệ: HOCVIEN

■ Thuộc tính: Gioitinh

■ Điều kiện: Gioitinh='Nam'

$$\sigma_{\text{Gioitinh='Nam'}}(\text{HOCVIEN})$$

Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

Ví dụ phép chọn (tt)

♦ Tìm những học viên 'Nam' có nơi sinh ở 'TpHCM'

Quan hệ: HOCVIEN

Thuộc tính: Gioitinh, Noisinh

■ Điều kiện: Gioitinh='Nam' và Noisinh='TpHCM'

$$\sigma_{(Gioitinh='Nam')\land (Noisinh='TpHCM')}(HOCVIEN)$$

Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

Ví dụ phép chọn (tt)

- ♦ Cho biết các nhân viên ở phòng 4
- ♦ Cho biết các nhân viên có lương > 45000 hoặc sinh sau ngay '1/1/1970'
- ◆ Tìm các nhân viên có lương trên 25000 ở phòng 4 hoặc các nhân viên có lương trên 30000 ở phòng
 5

Phép chiếu

- Được dùng để lấy ra một vài cột (thuộc tính) của quan hệ R
- lackloss Ký hiệu: $\pi_{A_1,A_2,...,A_k}(R)$ hoặc $R[A_1,A_2,...,A_k]$
 - Trong đó, A_i là tên các thuộc tính được chiếu
- lacktriangle Định nghĩa: $\pi_{A_1,A_2,...,A_k}(R) = \{t[A_1,A_2,...,A_k] \mid t \in R\}$
- ♦ Kết quả trả về là một quan hệ
 - Có k thuộc tính
 - Có số thuộc tính luôn ít hơn hoặc bằng số thuộc tính của R
 - Các dòng trùng nhau chỉ lấy một
- ♦ Phép chiếu không có tính giao hoán

$$\pi_{A_1,A_2,...,A_k}(\pi_{A_1,A_2,...,A_l}(R)) = \pi_{A_1,A_2,...,A_k}(R), k \le l$$

Ví dụ phép chiếu

- ♦ Cho biết mã học viên và họ tên của các học viên
 - Quan hệ: HOCVIEN
 - Thuộc tính: Mahv, HoTen

 $\pi_{\mathsf{Mahv},\mathsf{HoTen}}$ (HOCVIEN)

Ví dụ phép chiếu (tt)

Tgia	ms_nv	ms_da	nvu	tgian
	N1	D1	Quan ly	12
	N2	D1	Phan tich	24
	N2	D2	Thiet ke	6
	N3	D3	Phan tich	10
	N3	D4	Tu van	48
	N4	D2	Thiet ke	18
	N5	D2	Phan tich	24
	N6	D4	Quan ly	48
	N7	D3	Lap trinh	36
	N7	D5	Thiet ke	23
	N8	D3	Quan ly	40

- 1. Chỉ trả về các thuộc tính nvu và tgian
- 2. Chỉ trả về thuộc tính ms_nv
- 3. Chỉ trả về thuộc tính ms_da

Cho biết kết quả trong mỗi trường hợp.

Phép chiếu tổng quát

- Mở rộng phép chiếu bằng cách cho phép sử dụng các phép toán số học trong danh sách thuộc tính
- ♦ Ký hiệu π_{F1, F2, ..., Fn} (E)
 - E là biểu thức ĐSQH
 - F1, F2, ..., Fn là các biểu thức số học liên quan đến
 - Hằng số
 - Thuộc tính trong E
- ♦ Ví dụ:
 - Cho biết họ tên của các nhân viên và lương của họ sau khi tăng 10%

 $\pi_{\text{HONV, TENNV, LUONG*1.1}}$ (NHANVIEN)

Chuỗi các phép toán

- ♦ Kết hợp các phép toán đại số quan hệ
 - Lồng các biểu thức lại với nhau

$$\pi_{A1, A2, ..., Ak}(\sigma_{P}(R)) \qquad \sigma_{P}(\pi_{A1, A2, ..., Ak}(R))$$

- Thực hiện từng phép toán một
 - B1: $\sigma_P(R)$
 - B2: $\pi_{A1, A2, ..., Ak}$ (Quan hệ kết quả ở B1)

Cần đặt tên cho quan hệ

Ví dụ kết hợp phép chiếu và phép chọn

♦ Tìm mã số, họ tên những học viên 'Nam' có nơi sinh ở 'TpHCM'

 $\pi_{\mathsf{Mahv},\mathsf{Hoten}}\sigma_{(\mathsf{Gioitinh='Nam'})\wedge(\mathsf{Noisinh='TpHCM'})}(\mathsf{HOCVIEN})$

Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

Phép gán

- ◆ Được sử dụng để nhận lấy <u>kết quả</u> trả về của một phép toán
 - Thường là kết quả trung gian trong chuỗi các phép toán
- ♦ Ký hiệu: ←
- ♦ Ví dụ:
 - B1: $S \leftarrow \sigma_P(R)$
 - B2: KQ $\leftarrow \pi_{A1, A2, ..., Ak}(S)$

 $R(HO,TEN,LUONG) \leftarrow \pi_{HONV,TENNV,LUONG}(NHANVIEN)$

Phép đổi tên

- ◆ Được dùng để đổi tên
 - Quan hệ

Xét quan hệ R(B, C, D)

 $\rho_S(R)$: Đổi tên quan hệ R thành S

■ Thuộc tính

 $\rho_{X,C,D}(R)$: Đổi tên thuộc tính B thành X

 $\rho_{S(X,C,D)}(R)$: Đổi tên quan hệ R thành S và thuộc tính B thành X

Ví dụ

- ♦ Cho biết họ và tên nhân viên làm việc ở phòng số 4
 - Quan hệ: NHANVIEN
 - Thuộc tính: HONV, TENNV
 - Điều kiện: PHG=4
- C1: $\pi_{HONV, TENNV}(\sigma_{PHG=4}(NHANVIEN))$

◆ C2:

$$NV_P4 \leftarrow \sigma_{PHG=4}(NHANVIEN)$$

$$KQ \leftarrow \pi_{HONV, TENNV}(NV_P4)$$

$$\kappa$$
 KQ(HO, TEN) $\leftarrow \pi_{\text{HONV, TENNV}}$ (NV_P4)

$$\rho_{\text{KQ(HO, TEN)}}(\pi_{\text{HONV, TENNV}}(\text{NV_P4}))$$

Ví dụ (tt)

♦ Cho biết tên của những nhân viên có lương < 50000

Nvien	ms_nv	ten_nv	cvu	luong
	N1	T. Vu	KS	30000
	N2	N. Thanh	TK	40000
	N3	V. Minh	PT	50000
	N4	T.Tram	KS	30000
	N5	P. Thao	KT	45000
	N6	M. Tuan	KS	50000
	N7	T. Tam	LT	60000
	N8	T. Thanh	LT	55000

```
\pi_{ten\_nv}(\sigma_{luong < 50000} \text{ Nvien})
\sigma_{luong < 50000}(\pi_{ten\_nv, luong} \text{ Nvien}))
\pi_{ten\_nv}(\sigma_{luong < 50000}(\pi_{ten\_nv, luong} \text{ Nvien}))
```

Hai truy vấn được gọi là tương đương nếu chúng đảm bảo trả về cùng một kết quả truy vấn với bất kỳ thể hiện CSDL nào.

Cho biết các truy vấn nào tương đương trong số các truy vấn trên.

Phép tích

Được dùng để kết hợp các bộ của các quan hệ lại với nhau

♦ Ký hiệu: R × S

- ♦ Kết quả trả về là một quan hệ Q
 - Mỗi bộ của Q là tổ hợp giữa 1 bộ trong R và 1 bộ trong S
 - Nếu R có u bộ và S có v bộ thì Q sẽ có u x v bộ
 - Nếu R có n thuộc tính và S có m thuộc tính thì Q sẽ có n + m thuộc tính ($R^+ \cap Q^+ \neq \emptyset$)

Phép tích (tt)

♦ Ví dụ:

HOCVIEN				
Mahv Hoten				
K1103 Le Van Tam				
K1114 Tran Ngoc Han				
K1203	Le Thanh Hau			

MONHOC
Mamh
CTRR
THDC
CTDL

HOCVIEN×**MONHOC**

Mahv	Hoten	Mamh
K1103	Le Van Tam	CTRR
K1114	Tran Ngoc Han	CTRR
K1203	Le Thanh Hau	CTRR
K1103	Le Van Tam	THDC
K1114	Tran Ngoc Han	THDC
K1203	Le Thanh Hau	THDC
K1103	Le Van Tam	CTDL
K1114	Tran Ngoc Han	CTDL
K1203	Le Thanh Hau	CTDL

Phép tích (tt)

♦ Ví dụ:

R	Α	В
	α	1
	β	2

S	В	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	-

unambiguous

$\mathbf{R} \times \mathbf{S}$	Α	R.B	Ś.B	С	D
	α	1	α	10	+
	α	1	β	10	+
	α	1	β	20	-
	α	1	γ	10	-
=	β	2	α	10	+
	β	2	β	10	+
	β	2	β	20	-
	β	2	γ	10	-

Phép tích (tt)

Nvien	ms nv	ten_nv	cvu	luong	ms_pb
	N1	T. Vu	KS	30000	P1
	N2	N. Thanh	TK	40000	P2
	N3	V. Minh	PT	50000	P1
	N4	T.Tram	KS	30000	P3
	N5	P. Thao	KT	45000	P4
	N6	M. Tuan	KS	50000	P4
	N7	T. Tam	LT	60000	P2
	N8	T. Thanh	LT	55000	null

Dan	ms_da	ten_da	nsach	ms_pb
	D1	Thiet bi	150000	P1
	D2	Phat trien CSDL	135000	P2
	D3	CAD/CAM	250000	Р3
	D4	Bao tri	310000	P2
	D5	CAD/CAM	500000	P2

Pban	ms pb	ten_pb	ms_tp
	P1	Quan ly	N8
	P2	Tu van	N7
	P3	Tai vu	N5
	P4	Phat trien	null

Phép tích (tt)

Pban × Dan

Pban.ms_pb	ten_pb	ms_tp	ms_da	ten_da	nsach	Dan.ms_pb
P1	Quan ly	N8	D1	Thiet bi	150000	P1
P1	Quan ly	N8	D2	Phat trien CSDL	135000	P2
P1	Quan ly	N8	D3	CAD/CAM	250000	P3
P1	Quan ly	N8	D4	Bao tri	310000	P2
P1	Quan ly	N8	D5	CAD/CAM	500000	P2
P2	Tu van	N7	D1	Thiet bi	150000	P1
P2	Tu van	N7	D2	Phat trien CSDL	135000	P2
P2	Tu van	N7	D3	CAD/CAM	250000	Р3
P2	Tu van	N7	D4	Bao tri	310000	P2
P2	Tu van	N7	D5	CAD/CAM	500000	P2
P3	Tai vu	N5	D1	Thiet bi	150000	P1
P3	Tai vu	N5	D2	Phat trien CSDL	135000	P2
P3	Tai vu	N5	D3	CAD/CAM	250000	Р3
P3	Tai vu	N5	D4	Bao tri	310000	P2
P3	Tai vu	N5	D5	CAD/CAM	500000	P2
P4	Phat trien	null	D1	Thiet bi	150000	P1
P4	Phat trien	null	D2	Phat trien CSDL	135000	P2
P4	Phat trien	null	D3	CAD/CAM	250000	P3
P4	Phat trien	null	D4	Bao tri	310000	P2
P4	Phat trien	null	D5	CAD/CAM	500000	P2

Phép kết

- Được dùng để tổ hợp 2 bộ có liên quan từ 2 quan hệ thành 1 bộ
- ♦ Ký hiệu R ⋈ S
 - $R(A_1, A_2, ..., A_n)$ và $(B_1, B_2, ..., B_m)$
- ♦ Kết quả của phép kết là một quan hệ Q
 - Có n + m thuộc tính $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$
 - Mỗi bộ của Q là tổ hợp của 2 bộ trong R và S, thỏa mãn một số điều kiện kết nào đó
 - Có dạng A_i θ B_j
 - A_i là thuộc tính của R, B_i là thuộc tính của S
 - A_i và B_i có cùng miền giá trị
 - θ là phép so sánh ≠, =, <, >, ≤, ≥

♦ Phân loại

- Kết theta (theta join) là phép kết có điều kiện
 - Ký hiệu R S
 - P gọi là điều kiện kết trên thuộc tính
- Kết bằng (equi join) khi P là điều kiện so sánh bằng
- Kết tự nhiên (natural join)
 - Ký hiệu R * S
 - $R^+ \cap Q^+ \neq \emptyset$
 - Kết trên tập thuộc tính cùng tên
 - Kết quả của phép kết tự nhiên bỏ bớt đi 1 cột giống nhau

◆ Ví dụ phép kết theta

$$R \bowtie^{B < D} S$$

Α	В	С	D	Е
1	2	3	3	1
1	2	3	6	2
4	5	6	6	2

$$R \bowtie^{P} S = \sigma_{P}(R \times S)$$

◆ Ví dụ phép kết bằng

R	А	В	С
	1	2	3
	4	5	6
	7	8	9

S	D	Е
	3	1
	6	2

	C = D	
R	\bowtie	S

А	В	С	D	Е
1	2	3	3	1
4	5	6	6	2

$$C=S.C$$
 $R \bowtie S$

R	А	В	С		
	1	2	3		
	4	5	6		
	7	8	9		

S	CS.C	DD	
	33	11	
	66	22	

$$\rho_{(S.C,D)}$$
 S

А	В	С	S.C	D
1	2	3	3	1
4	5	6	6	2

♦ Ví dụ phép kết tự nhiên

R	Α	В	С
	1	2	3
	4	5	6 9
	7	8	9

S	С	D
	3	1
	6	2

Ví dụ phép kết

♦ Với mỗi phòng ban, cho biết thông tin của người trưởng phòng

	TENPHG	i	MAPHG	ì	TRPH	TRPHG		NG_N	HANC	CHUC					
	Nghien cu	J	5		33344	333445555		05/22/1988							
	DieFillang	1	nAPHG	Т	RP18798			IPAKRE			/	TENNV		HONV	
	Quan ly Nghien cu	J 5	1	33	88866 3844555	555 5	5 05/2	06/19 2/1988	/198	1 3334	45555	Tung		Nguyen	
ľ	Dieu hanh		1 NNV	ΗΦΝ		l NŒ	SIŃH	1/1995	DCH	I	87987 6 5555	Hung PHAI Vinh	L	Nguyen JONG Pham	PHG
33	Quan ly 33445555	Tung	9	Nguy	3866555 en		/08/1	9/1981 955	638	NVC C		Nam	40	0000	5
99	99887777	Hang	g	Bui		07	/19/1	968	332	NTH (Q1	Nu	2!	5000	4
98	37654321	Nhu	PH	ONG	BAN	06	/20/1	951 RPHG= 962	291	HAMIL	PMV	Ι <mark>Έ</mark> Ν	4.	3000	4
98	37987987	Hung	g	Nguy	en	09	/15/1	962	Ba F	Ria VT		Nam	38	8000	4

- ♦ Với mỗi nhân viên, hãy cho biết thông tin của phòng ban mà họ đang làm việc
 - Quan hệ: NHANVIEN, PHONGBAN

NHANVIEN(HONV, TENNV, MANV, ..., **PHG**)
PHONGBAN(TENPHG, **MAPHG**, TRPHG, NG_NHANCHUC)

PHG=MAPHG

KQ ← NHANVIEN ⋈ PHONGBAN

KQ(HONV, TENNV, MANV, ..., PHG, TENPHG, MAPHG, ...)

- ♦ Với mỗi phòng ban hãy cho biết các địa điểm của phòng ban đó
 - Quan hệ: PHONGBAN, DDIEM_PHG

PHONGBAN(TENPHG, MAPHG, TRPHG, NGAY_NHANCHUC)
DDIEM_PHG(MAPHG, DIADIEM)

PHONGBAN * DDIEMPHG

◆ Cho biết nhân viên có lương hơn lương của nhân viên 'Tùng'

Quan hệ: NHANVIEN

■ Thuộc tính: LUONG

NHAN_VIEN(HONV, TENNV, MANV, ..., LUONG, PHG)

 $R1(LG) \leftarrow \pi_{LUONG}(\sigma_{TENNV='Tung'}(NHANVIEN))$

LUONG>LG

KQ ← NHAN_VIEN ► R1

KQ(HONV, TENNV, MANV, ..., LUONG, LG)

- ◆ Cho biết tên của các nhân viên làm cùng phòng với nhân viên Minh.
 - Tìm phòng ban mà nhân viên Minh làm việc
 - Tìm tất cả các nhân viên làm việc trong phòng ban trên

$$\pi_{\text{TENNV}}(\text{NHANVIEN} * \pi_{\text{PHG}}(\sigma_{\text{TENNV='Minh'}}(\rho_{\text{M}}(\text{NHANVIEN}))))$$

Bài tập

Cho biết:

- 1. Tìm tên và địa chỉ của các nhân viên thuộc phòng 'Nghien cuu'.
- 2. Tên nhân viên và tên phòng mà nhân viên đó làm việc.
- 3. Tên trưởng phòng và tên phòng mà người đó làm trưởng phòng.
- 4. Tên những trưởng phòng có ít nhất một thân nhân.
- 5. Cho biết tên những đề án có nhân viên Nguyen Van A và Nguyen Van B cùng tham gia.
- 6. Tên nhân viên không có thân nhân nào.
- 7. Tên những nhân viên phòng số 5 có tham gia vào đề án 'San pham X' và nhân viên này do 'Nguyen Thanh Tung' quản lý trực tiếp.

Phép chia

- ◆ Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- ♦ Ký hiệu R ÷ S
 - R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - $\quad \blacksquare \quad X \subseteq Z$
- ♦ Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> t_S∈S, tồn tại bộ t_R∈R thỏa 2 điều kiện
 - $\mathbf{t}_{R}(Y) = t$

Phép chia (tt)

♦ Ví dụ:

\mathbf{D}		
K	÷	

R	А	В	С	D	Е
	С	а	С	а	1
	С	а	е	а	1
	С	а	е	b	1
	d	а	е	а	1
	d	а	е	b	3
	е	а	е	а	1
	е	а	е	b	1
	е	а	d	b	1

S	D	Е
	а	1
	b	1

А	В	С	
С	а	е	
е	а	е	

Ví dụ

- ♦ Cho biết mã nhân viên tham gia tất cả các đề án
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV
- ♦ Cho biết mã nhân viên tham gia tất cả các đề án do phòng số 4 phụ trách
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV
 - Điều kiện: PHG=4

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán cơ bản
- 4. Các phép toán khác
- 5. Các thao tác cập nhật

Hàm kết hợp

- Nhận vào tập hợp các giá trị và trả về một giá trị đơn
 - AVG
 - MIN
 - MAX
 - SUM
 - COUNT
- ♦ Ví dụ:

R	А	В
	1	2
	3	4
	1	2
	1	2

$$SUM(B) = 10$$

$$AVG(A) = 1.5$$

$$MIN(A) = 1$$

$$MAX(B) = 4$$

$$COUNT(A) = 4$$

Phép gom nhóm

- Được dùng để phân chia quan hệ thành nhiều nhóm dựa trên điều kiện gom nhóm nào đó
- ♦ Ký hiệu:

G1, G2, ..., Gn
$$oldsymbol{\mathcal{J}}_{\mathsf{F1}(\mathsf{A1}),\,\mathsf{F2}(\mathsf{A2}),\,...,\,\mathsf{Fn}(\mathsf{An})}(\mathsf{E})$$

- E là biểu thức ĐSQH
- G1, G2, ..., Gn là các thuộc tính gom nhóm
- F1, F2, ..., Fn là các hàm
- A1, A2, ..., An là các thuộc tính tính toán trong hàm F

Phép gom nhóm (tt)

♦ Ví dụ:

R	А	В	С	
	α	2	7	
	α	4	7	
	β	2	3	
	γ	2	10	

 ${\cal J}_{\rm SUM(C)}({
m R})$

SUM_C
27

 ${}_{\mathsf{A}}\mathcal{J}_{\mathsf{SUM}(\mathsf{C})}(\mathsf{R})$

SUM_C	
14	
3	
10	

Phép gom nhóm (tt)

- ♦ Ví dụ: Xét quan hệ Nhanvien(honv, tenlot, tennv, manv, luong, ma_nql, phg). Cho biết:
 - Số lượng nhân viên trong công ty và lương trung bình

$$\mathcal{J}_{\text{COUNT}(MANV), AVG(luong)}(Nhanvien)$$

 Số lượng nhân viên và lương trung bình của từng phòng

$$\eta_{phg} \mathcal{J}_{COUNT(MANV),AVG(luong)}(Nhanvien)$$

Phép kết ngoài

- ◆ Mở rộng phép kết để tránh mất mát thông tin
 - Thực hiện phép kết
 - Lấy thêm các bộ không thỏa điều kiện kết

◆ Có 3 hình thức

- Left outer join (Mở rộng bên trái) R → S
 - Kết quả sẽ chứa tất cả các bộ R khớp với các bộ của S. Với mỗi bộ thuộc R, nếu không tìm thấy bộ nào khớp với S, thì các bộ này cũng xuất hiện trong kết quả cuối cùng và giá trị thuộc tính tương ứng của S sẽ được đặt là null.
- Right outer join (Mở rộng bên phải) R 💆 S
 - Kết quả sẽ chứa tất cả các bộ R khớp với các bộ của S. Với mỗi bộ thuộc S, nếu không tìm thấy bộ nào khớp với R, thì các bộ này cũng xuất hiện trong kết quả cuối cùng và giá trị thuộc tính tương ứng của R sẽ được đặt là null.
- Full outer join (Mở rộng 2 bên) R 🔀 S
 - Tất cả các bộ của R và S đều có trong kết quả cho dù chùng có bộ khớp với quan hệ kia hay không.

Ví dụ

- ◆ Cho biết họ tên nhân viên và tên phòng ban mà họ phụ trách nếu có
 - Quan hệ: NHANVIEN, PHONGBAN
 - Thuộc tinh: HONV, TENNV, TENPH

MANV=TRPHG

 $\pi_{\text{HONV,TENNV, TENPHG}}$ (NHANVIEN \implies PHONGBAN)

TENNV	HONV	TENPHG
Tung	Nguyen	Nghien cuu
Hang	Bui	null
Nhu	Le	null
Vinh	Pham	Quan ly

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán cơ bản
- 4. Các phép toán khác
- 5. Các thao tác cập nhật

Các thao tác cập nhật

- Nội dung của CSDL có thể được cập nhật bằng các thao tác
 - Thêm (insertion)
 - Xóa (deletion)
 - Sửa (updating)
- ◆ Các thao tác cập nhật được diễn đạt thông qua phép toán gán

 $R_{new} \leftarrow các phép toán trên <math>R_{old}$

Thao tác thêm

♦ Thao tác thêm được diễn đạt như sau:

$$R_{new} \leftarrow R_{old} \cup E$$

- R là quan hệ
- E là một biểu thức ĐSQH

◆ Ví dụ: Phân công nhân viên có mã 123456789 làm thêm đề án mã số 20 với số giờ là 10

PHANCONG \leftarrow PHANCONG \cup ('123456789', 20, 10)

Thao tác xóa

♦ Thao tác xóa được diễn đạt như sau:

$$R_{new} \leftarrow R_{old} - E$$

- R là quan hệ
- E là một biểu thức ĐSQH

♦ Ví dụ:

Xóa các phân công đề án của nhân viên 123456789

PHANCONG
$$\leftarrow$$
 PHANCONG $\sigma_{MANV='123456789'}$ (PHANCONG)

Xóa những phân công đề án có địa điểm ở 'HA NOI'

Thao tác sửa

♦ Thao tác sửa được diễn đạt như sau:

$$R_{\text{new}} \leftarrow \pi_{\text{F1, F2, ..., Fn}} (R_{\text{old}})$$

- R là quan hệ
- Fi là biểu thức tính toán cho ra giá trị mới của thuộc tính, thuộc tính thứ i có thể giữ nguyên nếu không muốn cập nhật

♦ Ví dụ:

■ Tăng thời gian làm việc cho tất cả nhân viên lên 1.5 lần

PHANCONG
$$\leftarrow \pi_{\text{MA_NVIEN, SODA, THOIGIAN*1.5}}$$
 (PHANCONG)

Tổng kết

- ◆ Đại số quan hệ là một tập hợp các phép toán để ánh xạ quan hệ thành quan hệ.
- Các phép toán cơ sở gồm: σ , π , \times , \cup , –
- ◆ Các phép toán khác định nghĩa trên các phép toán cơ sở: ∩, ⋈, ÷

BÀI TẬP

Lược đồ CSDL quản lý bán hàng gồm có các quan hệ sau:

KHACHHANG (MAKH, HOTEN, DCHI, SODT, NGSINH, DOANHSO, NGDK)

NHANVIEN (MANV, HOTEN, NGVL, SODT)

SANPHAM (MASP, TENSP, DVT, NUOCSX)

HOADON (SOHD, NGHD, MAKH, MANV, TRIGIA)

CTHD (SOHD, MASP, SL, GIA)

Mô tả các câu truy vấn sau bằng ĐSQH

- In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất có giá từ 30.000 đến 40.000
- In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.
- In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.
- 4. Tìm các số hóa đơn mua cùng lúc 2 sản phẩm có mã số "BB01" và "BB02".
- 5. In ra danh sách các sản phẩm (MASP,TENSP) do "Việt Nam" sản xuất không bán được trong năm 2006.
- 6. Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

In ra danh sách các sản phẩm (MASP, TENSP) do "Việt Nam" sản xuất có giá từ 30.000 đến 40.000.

 $SANPHAM : ((nuocsx = 'Viet Nam') \land (30.000 \le gia \le 40.000))[masp, tensp]$

$$\pi_{masp,tensp}\sigma_{(nuocsx='VietNam')\land(30.000\leq gia\leq40.000)}SANPHAM$$

♦ In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.

$$(KHACHHANG) \bowtie HOADON : (nghd = \#1/1/2007\#) [makh, hoten]$$

$$\pi_{masp,hoten}\sigma_{(nghd=\#1/1/2007\,\#)}(HOADON \bowtie KHACHHANG)$$

♦In ra danh sách các sản phẩm do "Việt Nam" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.

```
A \leftarrow SANPHAM : (nuocsx = 'VietNam')[masp, tensp]
B \leftarrow (SANPHAM \  \triangleright \triangleleft CTHD \  \triangleright \triangleleft HOADON : (nghd = \#1/1/2007\#))[masp, tensp]
C \leftarrow A \cup B
Hoặc \  A \leftarrow \pi_{masp, tensp} \sigma_{nuocsx = 'VietNam'}(SANPHAM)
B \leftarrow \pi_{masp, tensp} ((\sigma_{nghd = \#1/1/2007\#}(HOADON) \  \triangleright \triangleleft CTHD) \  \triangleright \triangleleft SANPHAM)
C \leftarrow A \cup B
```

◆ Tìm các số hóa đơn đã mua cùng lúc các sản phẩm có mã số "BB01" và "BB02".

$$A \leftarrow CTHD : (masp = 'BB01')[sohd]$$
 $B \leftarrow CTHD : (masp = 'BB02')[sohd]$
 $C \leftarrow A \cap B$

Hoặc
$$A \leftarrow \pi_{sohd}\sigma_{masp='BB01'}(CTHD)$$
 $B \leftarrow \pi_{sohd}\sigma_{masp='BB02'}(CTHD)$

 $C \leftarrow A \cap B$

♦In ra danh sách các sản phẩm do "Việt Nam" sản xuất không bán được trong năm 2006.

$$A \leftarrow \pi_{masp,tensp} \sigma_{nuocsx='VietNam'}(SANPHAM)$$

$$B \leftarrow ((SANPHAM \rhd \lhd CTHD) \rhd \lhd HOADON)$$

$$C \leftarrow \pi_{masp,tensp} \sigma_{(nuocsx='VietNam') \land (year(nghd)=2006)}(B)$$

$$D \leftarrow (A-C)$$

♦ Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

$$A \leftarrow \pi_{masp} \sigma_{nuocsx='Singapore'}(SANPHAM)$$
 $B \leftarrow \pi_{masp,sohd} \sigma_{nuocsx='Singapore'}(SANPHAM
ightharpoonup CTHD)$
 $C \leftarrow B \div A$