Скелетное представление толстых линий для классификации изображений

Григорьев А.Д., Коробов Н.С., Куцевол П.Н., Лукоянов А.С. и Жариков И.

Московский физико-технический институт

Курс: Машинное обучение (практика, В. В. Стрижов)/весна 2019

Цель исследования

Задача

Для данной выборки растровых изображений рукописных цифр построить модель, оптимальным образом классифицирующую изображенный символ.

Проблема

При высоком качестве классификации, существующие решения являются относительно ресурсоемкими. Долгое время обучения и предсказания, большие объемы занимаемой памяти критичны для мобильных устройств.

Решение

Альтернативное представление растрового изображения - скелетное представление толстых линий. Такое представление снизит требования к ресурсам для обучения классификатора, а также повысит качество.

Предлагается: скелеты, графы, классификация

Существующие решения

Решения сверточными нейронными сетями

- Yanai K., Tanno R., Okamoto K. Efficient mobile implementation of a cnn-based object recognition system //Proceedings of the 24th ACM international conference on Multimedia. – ACM, 2016. – C. 362-366.
- Wan L. et al. Regularization of neural networks using dropconnect //International conference on machine learning. – 2013. – C. 1058-1066.

Решения графовыми нейронными сетями

- Battaglia P. W. et al. Relational inductive biases, deep learning, and graph networks //arXiv preprint arXiv:1806.01261. – 2018.
- Fey M. et al. SplineCNN: Fast geometric deep learning with continuous B-spline kernels //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – 2018. – C. 869-877.

Формальная постановка задачи классификации

Дана выборка из пар бинарного изображения $I \in \mathbb{R}^{n \times m \times 1}$ и класса изображения y:

$$D = (I_i, y_i) \ i = \{1, \dots, n\}. \tag{1}$$

Бинарное изображение представляется в виде скелета с помощью функции:

$$s(I): \mathbb{R}^{n \times m \times 1} \to \underbrace{\{\mathbb{R}^p, \mathbb{R}^p, \dots, \mathbb{R}^p\}}_{I \text{ pas}},$$
 (2)

где p - размерность пространства параметров скелета. Задана функция g отображающая скелет s(I) в граф G(E,V), где каждой вершине v_i соответсвует вектор признаков $h_i \in \mathbb{R}^k$ и вектор координат $x_i \in \mathbb{R}^d$, где d - размерность пространства (2 для изображений), а k - количество признаков.

Выборка D изображений I с ответами y отображается в выборку графовых представлений:

$$D_G = (g(s(I_i)), y_i) \ i = \{1, \dots, n\}. \tag{3}$$

Оптимизация параметров

Модель классификации - суперпозиция функций $f \circ g \circ s$, где $f: G(E,V) \to \mathbb{R}^C$ — нейросеть, а C — число классов. В качестве f выберем графовые нейронные сети из множества: {MPNN, MoNet, k-GNN, SplineCNN}. Функции g и s зафиксируем. Задача имеет вид:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} L(D_G, \mathbf{w}|f), \tag{4}$$

где L - функция потерь Cross Entropy Loss

$$L(D_G, \mathbf{w}|f) = -\sum_{j=1}^n y_j \log \sigma(f(G_j(E, V)))_j$$
 (5)

$$\sigma(z)_j = \frac{\exp z_j}{\sum_k^C \exp z_k},\tag{6}$$

где σ - Softmax.

Message Passing Neural Network

Входные данные — графовые структуры, каждой из вершин сопоставляется вектор признаков h. Для каждой из вершин T раз происходит обмен информации с ее соседями с помощью функции передачи сообщения M с обновлением вектора признаков в каждой вершине с помощью функции U. Затем следует фаза вычитки информации из графа по всем вершинам — R.

$$m_{v}^{t+1} = \sum_{w \in N(v)} M_{t}(h_{v}^{t}, h_{w}^{t}, e_{vw})$$
 (7)

$$h_{v}^{t+1} = U_{t}(h_{v}^{t}, m_{v}^{t+1}) \tag{8}$$

$$\hat{y} = R(h_v^T | v \in G) \tag{9}$$

k-GNN

Пусть (G,I) — граф с заданной раскраской. Для каждого слоя $t\geq 0$ k—GNN вычисляется вектор признаков $f_k^{(t)}(s)$ $\forall s\in [V(G)]^k$, где $[V(G)]^k$ — множество всех подмножеств V(G) мощности k. σ — функция активации.

$$f_k^{(t)}(s) = \sigma(f_k^{(t-1)}(s) \cdot W_1^{(t)} + \sum_{w \in N(v)} f_k^{(t-1)}(s) \cdot W_2^{(t)})$$
 (10)

MoNet

Входные данные – граф G(E,V), каждой из вершин v_i которого сопоставлен вектор координат $u_i \in \mathbb{R}^d$ и вектор признаков $f_i \in \mathbb{R}^k$. Для каждой вершины по всем ее соседям вычисляется множество весов \mathbf{w} в обобщенном пространстве координат:

$$w_{\mu,\Sigma}(u) = \exp(-\frac{1}{2}(u-\mu)^T \Sigma^{-1}(u-\mu)),$$
 (11)

где Σ и μ - обучаемые параметры. Тогда операция свертки выглядит как:

$$(f \star g) = \sum_{j=1}^{J} \sum_{k=1}^{n} g_{j} w_{\mu_{k}, \Sigma_{k}}(u(j, k)) f_{k}$$
 (12)

SplineCNN

Модификация подхода MoNet. Функцией весов являются B-spline с обучаемыми коэффициентами с которыми суммируется заранее выбранная базисная функция.

Fey M. et al. SplineCNN: Fast geometric deep learning with continuous B-spline kernels, 2018

Вычислительный эксперимент

Цель эксперимента

Сравнить альтернативные модели классификации изображений с предложенным с точки зрения времени обучения до сходимости, времени вычисления класса, требуемой для обучения памяти и точности классификации.

Базы данных

- MNIST Skeleton база данных скелетных представлений картинок MNIST.
- MNIST Superpixels 75 база данных графовых представлений над super pixel, полученных из базы данных MNIST.

Метрики

Метрики эксперимента

Точность классификации – accuracy. Время обучения до сходимости – время до остановки изменения функции потерь по некоторому порогу в секундах. Время вычисления класса – время на предобработку изображения + время на работу классификатора в секундах . Требуемая для обучения память – данные профилировщика о загруженности видео-памяти.

База данных: примеры изображений рукописных цифр

Скелетное представление цифры 9

Super pixels 75 и графовое представление над ними

Результаты эксперимента

Зависимость ассигасу от времени обучения в секундах

Результаты эксперимента

Точность классификации по метрике accuracy

	MPNN	k-GNN	MoNet	SplineCNN
Skeleton				0.9413
Superpixel	0.9521	0.8143	0.9302	0.9724

Использование GPU в процессе обучения в Гб

	MPNN	k-GNN	MoNet	SplineCNN
Skeleton	1.50	0.34	0.32	0.73
Superpixel	10.76	0.85	1.54	1.04

Время предсказания на тесте с batch size 1 в секундах

	MPNN	k-GNN	MoNet	SplineCNN
Skeleton			56.2	38.8
Superpixel	211.3	26.23	140.79	17.9

Результаты, выносимые на защиту

- Предложен метод увеличения эффективности нейронных сетей в задаче распознования символов, основанный на упрощении входных данных.
- Показана эффективность предложенного метода в терминах используемой во время обучения памяти при осутствии существенного уменьшения качества по сравнению со стандартным подходом.
- Проведено сравнение времени обучения и предсказания нейросетей, работающих со скелетами и суперпикселями соответсвенно.