

Explanation of the Robot Controller Circuit

This	document	provides	an	explanation	of	the	schematic	diagram	for a	Robot	Controller	(version
1.0)	with											

its power supply circuitry. The circuit is designed for managing power distribution and regulation.

Top Section: 5V Input Protection and Load Switch

- 1. D1 (US1M) Rectifier Diode:
 - Prevents damage from reverse polarity by blocking current flow in case of incorrect input polarity.
 - Type: Fast-recovery rectifier diode.
- 2. D2 (SMAJ7.0A-13-F) TVS Diode:
 - Protects against voltage spikes by clamping excess voltage above 7V.
- 3. R1 (10k Resistor):
 - Pull-down resistor for stabilizing the MOSFET gate when no signal is present.
- 4. Q1 (SI3421DV-T1-GE3) N-Channel MOSFET:
 - Acts as a load switch to control power delivery.
 - Gate controls current flow between Source (S) and Drain (D).
- 5. C1 (22 uF Capacitor):
 - Provides decoupling and stabilizes the 5V input voltage.

Bottom Section: 5V to 3.3V Step-Down (Buck Converter)

1. U1 (TLV62568DBVR) - Buck Converter IC:
- Converts 5V input to a stable 3.3V output for low-voltage components.
- Key pins: VIN (input), SW (switch), FB (feedback), EN (enable), and GND.
2. L1 (2.2 uH Inductor):
- Maintains steady current by storing and releasing energy during switching.
3. Capacitors (C2, C3, C4, C5):
- Input capacitors (C2: 10 uF, C3: 0.1 uF) filter noise and stabilize input.
- Output capacitors (C4: 4.7 uF, C5: 0.1 uF) smooth the 3.3V output.
4. Resistors (R2, R3 - Feedback Voltage Divider):
- Sets the output voltage of the buck converter using the formula:
$V_{OUT} = V_{REF} * (1 + R2 / R3), where V_{REF} = 0.6V.$
3.3V Output Indicators

1. LED1 (Yellow LED):
- Indicates the presence of 3.3V output.
2. R55 (120 Ohm Resistor):
- Limits current through the LED to a safe level.
Overall Flow
1. The 5V input is protected against reverse polarity and overvoltage using D1 and D2.
1. The extripatio protected against reverse polarity and everyonage using by and bz.

- 2. The MOSFET (Q1) ensures controlled power delivery to the buck converter.
- 3. The buck converter (U1) steps down the voltage to 3.3V with the help of L1, capacitors, and feedback resistors.
- 4. An LED indicator (LED1) provides visual feedback when 3.3V is generated.

This design ensures a robust power supply for the Robot Controller, protecting it from common power-related issues.