Homogeneous and nonhomogeneous DEs

We want to study (and solve!) linear differential equations. To do so, it will be useful to differentiate between two different subclassifications of linear differential equations.

Definition

· A linear differential equation of the form

$$a_n(x)rac{d^ny}{dx^n} + a_{n-1}(x)rac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)rac{dy}{dx} + a_0(x)y = 0$$

is called homogeneous.

· A linear differential equation of the form

$$a_n(x)rac{d^ny}{dx^n} + a_{n-1}(x)rac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)rac{dy}{dx} + a_0(x)y = b(x)$$

with $b(x) \neq 0$ is called **nonhomogeneous**.

In other words, if a linear differential equation fails to be homogeneous, it is nonhomogeneous.

Note: Sometimes nonhomogeneous linear differential equations are called inhomogeneous.

Discussion, comments, and examples:

Math45-Module-08-Video-02

WeBWorK module 08 exercises:

• Problems 4

Relevant Wikipedia articles:

• <u>Homogeneous linear differential equations</u>
(https://en.wikipedia.org/wiki/Homogeneous_differential_equation#Homogeneous_linear_differential_equations)