You Only Look Once: Unified, Real-Time Object Detection

2024.01.26 이은주

Intro

Classification

Cougar

Output: class probability

Classification + Localization

Cougar

Output: (x, y, w, h)

Object Detection

Cougar, Butterfly

Output : class probability + (x, y, w, h)

Object Detection

이미지 내 모든 위치를 object의 잠재영역으로 보고 각 후보 영역에 대해 class 예측. YOLO 계열, SSD 계열

2-Stage Detector - Regional Proposal와 Classification이 순차적으로 이루어짐.

후보 object 위치 제안 후, object class 예측. R-CNN계열

Yolo

Region proposal, feature extraction, classification, bbox regression

-> one stage detection으로 통합

Yolo 동작과정

예시) S = 4, B = 2, C = 20

Resized image 를 4x4 grid 로 분할

bbox#1

V

W h

Grid cell 마다 bbox 2개씩 예측

bbox의 중심좌표의 위치 (grid cell 기준)

Input image W, H 로 normalize

 p_c : $Pr(Object) * IOU_{pred}^{truth}$

cf. Pr(*Object*) : 물체가 bbox 내에 있으면 1, 없으면 0

Yolo 동작과정

예시) S = 4, B = 2, C = 20

Resized image 를 4x4 grid 로 분할

bbox의 중심좌표의 위치 (grid cell 기준)

Input image W, H로 normalize

 p_c : $Pr(Object) * IOU_{pred}^{truth}$

cf. Pr(*Object*) : 물체가 bbox 내에 있으면 1, 없으면 0

 $Pr(Class_i|Object)$

: 물체가 bbox 내에 있을 때, Grid cell에 있는 object가 i번째 class 에 속할 확률

Yolo 동작과정

Yolo Network

총 24개의 conv layer와 2개의 fc layer로 구성 앞의 20개의 conv layer에 대해서는 1000개 클래스의 ImageNet 데이터셋으로 pretrained 된 부분 뒤에 4개의 conv layer와 2개의 fc layer를 더 붙여서 Pascal VOC 데이터로 Fine tuning 시킨 과정 노란색으로 표시된 중간에 1x1 reduction layer로 연산량 감소

Training

Input Image

Groundtruth 중심점이 cell 6에 위치 즉, cell 6이 강아지 object 예측하는데 responsible한 cell이 된다.

학습시에는 예측된 bbox중 하나만 사용한다. (한 개 선정 기준 : IOU) 학습 단계에서 Groundtruth와 IOU가 가장 높은 예측 bbox 1개만 사용하여 진행

IOU blue < IOU yellow 이므로 cell 6에서 responsible한 tello box를 표시하여 loss function에 반영

Training

Train 단계 loss function : MSE

Regression loss

$$\begin{split} &\lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \end{split}$$

모든 grid cell에서의 gt box좌표 와 bbox좌표의 오차

Confidence loss

$$egin{aligned} &+\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{obj}}\left(C_i-\hat{C}_i
ight)^2\ &+\lambda_{ ext{noobj}}\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{noobj}}\left(C_i-\hat{C}_i
ight)^2 \end{aligned}$$

모든 grid cell에서 예측한 class 속할 확률 값과 gt값의 오차

Classification loss

$$+\sum_{i=0}^{S^2}\mathbb{1}_i^{\text{obj}}\sum_{c\in\text{classes}}(p_i(c)-\hat{p}_i(c))^2$$
 모든 grid cell의 confidence

score와 실제 정답과의 차이

i는 cell의 index , j는 bounding box predictor index

Object당 bbox개수가 많아지므로 NMS(알고리즘) 적용

NMS(Non-Maximum Suppression): 각 object에 대해 예측한 여러 bbox 중 가장 예측력 좋은 bbox만 남김 클래스 별로 각각 적용

32 = 4 * 4 (image size) * 2 (bbox 개수)

Input Image

Non-Maximum Suppression

나머지 bbox들은 bbox12와 IOU계산 나머지 bbox들은 IOU가 높아 NMS에 의해 제거 됨. bbox12와 bbox13의 IOU가 높다.

즉, 두 bbox는 같은 object를 detect한다는 의미. _

Class 강아지를 가장 잘 예측하는 bbox는 #12 로 결정

- 나머지 bbox는 bbox#12 와의 IOU 가 높아서 NMS에 의해 모두 제거됨.

2) 같은 class 속하는Object 가 2개인 경우

Non-Maximum Suppression

Bbox12와 bbox16은 IOU낮음.

즉, 두 bbox는 다른 object라는 의미. 제거x

Bbox#12 와 bbox#13의 IOU가 높으므로 NMS에 의해 제거됨.

클래스별로 NMS 알고리즘 수행하므로 강아지, 고양이 별도로 진행

Comparison to Other Real-Time Systems

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

속도(FPS) : Fast Yolo > Yolo > DPM, RCNN

One stage > Two stage

성능(mAP): Faster-RCNN > Fast-RCNN > Yolo > DPM

One stage < Two stage

Fast R-CNN + Yolo => mAP 3.2% 향상 (mean Average Precision)

	VOC 2007	Picasso		People-Art
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32
Poselets [2]	36.5	17.8	0.271	
D&T [4]	-	1.9	0.051	

AP성능은 Yolo가 다른 모델에 비해 좋음 (Average Precision)