

Help sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

☆ Course / 9 Convergence, Accuracy, and an IVP Solver / 9.2 Accuracy and Convergence

	Previous				Next >	
_						
9	.2.1 Accura	cy and	Conver	gence		
	Bookmark this pa					

MO2.4	MO2.6
14102.4	14102.0

As the timestep is decreased, i.e. $\Delta t
ightarrow 0$, we would like our numerical method to better approximate the exact solution to the model equations. Let's define the error in our approximation at timestep n to be:

$$e^n \equiv v^n - u(t^n) \tag{9.1}$$

Since this is $\underline{u}\left(t^{n}
ight)$ is in general an M-dimensional vector of states, then so are \underline{v}^n and \underline{e}^n . We can define the components of this error then,

$$e_m^n = v_m^n - u_m \left(t^n \right) \tag{9.2}$$

(9.3)

Discussions

All posts sorted by recent activity

© All Rights Reserved

for each m=0 to M-1. Then, to measure the r the entire simulation (i.e. over all timesteps),

we'll take the maximum magnitude,

edX

$$\underline{\mathsf{About}} \qquad \qquad (e_m)_{\max} = \max_n |e_m^n|$$

Affiliates

edX for Business

Then, in terms of these error definitions, we desire Cather the maximum error in each state goes to zero as $\Lambda t \rightarrow 0$. This concept is known as convergence and is stated mathematically as follows:

Legation 2 (Convergence).

Terms of Service & Honor Code

Prily aumerical method for an Initial Value Problem is

Accounting the property $t=t_I$ to t_F if for all m,

Trademark Policy

$$rac{ ext{Sitemap}}{ ext{Cookie Policy}}(e_m)_{ ext{max}} o 0 \qquad ext{as} \qquad \Delta t o 0.$$

Your Privacy Choices

While convergence is a clear requirement for a good

Compression that the method converges is also important. This rate is known as the order of accuracy. Contact Us

Help Center Definition 3 (Order of Accuracy).

Media Kit A method has an order of accuracy of $m{p}$ if, for all $m{m}$,

$$\Delta t
ightarrow 0,$$

Some important comments:

 $\left(e_{m}
ight)_{ ext{max}}=C\Delta t^{p} \qquad ext{as} \qquad \Delta t
ightarrow 0.$