The Step Function

$$Xu(t) = 00 t < 0$$
 $Xu(t) = X 0 t > 0$
 $Xu(t-u) = x0 t < 0$
 $Xu(t-u) =$

Using a Step Function to Represent Finite Duration

The impulse function

The Laplace transform In circuit analysis, we use the Laplace transform to transform a set of integrodifferential equations in the time domain to a set of algebraic equations in the frequency domain.

We can therefore find the solution for an unknown quantity by solving a set of algebraic equations.

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st} dt.$$

$$\frac{v(t)}{R} + \frac{1}{L} \int_0^t v(x) \, dx + C \frac{dv(t)}{dt} = I_{dc}u(t).$$

$$\frac{V(s)}{R} + \frac{1}{L} \frac{V(s)}{s} + C[sV(s) - v(0^-)] = I_{dc} \left(\frac{1}{s}\right)$$

Side Note:

What is the distinction between the Laplace transform and the Fourier series?

==> The Laplace transform converts a signal to a complex plane.

==>The Fourier transform transforms the same signal into the jw plane and is a subset of the Laplace transform in which the real part is 0.

Functional Transform is the Laplace transform of a specific function.

 $\sin(\omega t)$, e^{-at}

Operational transform defines a general mathematical property of the Laplace transform, such as finding the transform of the derivative of f(t).

Lanlace Transform of Most Common Functions

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

IABLE 12.1	An Appreviated List of Laplace I	ransform Pairs
Type	$f(t) (t > 0^-)$	F(s)
(impulse)	$\delta(t)$	1
(step)	u(t)	$\left(\begin{array}{c} \frac{1}{s} \end{array}\right)$
(ramp)		$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	cos ωt	$\frac{s}{s^2 + \omega^2}$
(damped ramp	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosir	$e^{-at}\cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

Operational Laplace Transform

Addition and Subtraction

$$\mathscr{L}\left\{\frac{df(t)}{dt}\right\}$$

$$\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\}$$

Integration

$$\mathcal{L}\left\{\int_{0^{-}}^{t} f(x) \ dx\right\}$$

Translation in the Time Domain

$$\mathcal{L}\left\{f(t-a)u(t-a)\right\}$$

Translation in the Frequency Domain

$$\mathcal{L}\left\{e^{-at}f(t)\right\}$$

$$\mathcal{L}\left\{e^{-at}\cos\omega t\right\} = \frac{5 + \alpha}{5 + \alpha/2} + \omega^{2}$$

Scale Changing

$$\mathscr{L}\{f(at)\}$$

Operational Table

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} \frac{df(0^-)}{dt}$
		$-s^{n-3}\frac{df^2(0^-)}{dt^2}-\dots-\frac{d^{n-1}f(0^-)}{dt^{n-1}}$
Time integral	$\int_0^t f(x) dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a > 0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s+a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) \ du$