${\bf Handbook}$ of Electrochemical Impedance Spectroscopy

DIFFUSION IMPEDANCES

 ${\rm ER@SE/LEPMI} \\ {\rm J.-P.~Diard,~B.~Le~Gorrec,~C.~Montella}$

Hosted by Bio-Logic @ www.bio-logic.info

October 3, 2017

Contents

1	Mass transfer by diffusion, Nernst boundary condition					
	1.1	1 General diffusion equations				
	1.2	Semi-i	infinite diffusion	6		
		1.2.1	Semi-infinite linear diffusion	6		
		1.2.2	Semi-infinite radial cylindrical diffusion (outside)	7		
		1.2.3	Semi-infinite spherical diffusion	8		
	1.3	Bound	led diffusion condition (linear diffusion)	8		
		1.3.1	Randles circuit	10		
		1.3.2	Corrosion equivalent circuit	10		
	1.4	Analy	tical approximation	12		
		1.4.1	Analytical approximation #1	12		
		1.4.2	Analytical approximation $\#2$	12		
	1.5	Radia	l cylindrical diffusion	13		
		1.5.1	Finite-length diffusion outside a cylinder	13		
		1.5.2	Semi-infinite outside a cylinder	13		
	1.6	Spheri	ical diffusion	13		
		1.6.1	Finite-length difusion outside a sphere $\# 1 \dots \dots \dots$	14		
		1.6.2	Finite outside sphere # 2	14		
		1.6.3	Infinite outside sphere	14		
2	Mas	Mass transfer by diffusion, restricted diffusion				
	2.1	General diffusion equations				
	2.2	Linear	diffusion and modified linear diffusion	19		
		2.2.1	Linear diffusion	19		
		2.2.2	Modified restricted diffusion impedance	20		
		2.2.3	Anomalous diffusion impedance	21		
	2.3	Cyline	drical diffusion	21		
	2.4	Spher	ical diffusion	22		
3	Ger	ischer	and diffusion-reaction impedance	25		
	3.1		ther and modified Gerischer impedance	25		
		3.1.1	Gerischer impedance	25		
		3.1.2	Modified Gerischer impedance #1	26		
		3.1.3	Modified Gerischer impedance #2	27		
		3.1.4	Modified Gerischer impedance #3	27		
		3.1.5	Havriliak-Negami impedance	28		
	3.2		ion-reaction impedance	30		
		3.2.1	Reduced impedance #1	30		
		3.2.2	Reduced impedance #2	30		

4 CONTENTS

4 Appendix		pendix	33	
	4.1	Table bounded diffusion and diffusion-reaction impedance	34	
	4.2	Table restricted diffusion impedance	35	

Chapter 1

Mass transfer by diffusion, Nernst boundary condition

1.1 General diffusion equations

From:

$$\frac{\partial \Delta c(x,t)}{\partial t} = D \, x^{1-d} \frac{\partial}{\partial x} \left(x^{d-1} \frac{\partial \Delta c(x,t)}{\partial x} \right)$$

where Δ denotes a smal deviation (or excursion) from the initial steady-state value, d=1 corresponds to a planar electrode, d=2 to a cylindrical electrode (radial diffusion) and d=3 to a spherical electrode [5, 32] (Fig. 1.1), it is obtained, using the Nernstian boundary condition $\Delta c(r_{\delta})=0$:

$$Z^*(u) \propto \frac{\Delta c(r_0, \mathrm{i}\, u)}{\Delta J(r_0, \mathrm{i}\, u)} = \frac{\mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\, u}\, \rho)\, \mathrm{K}_{d/2-1}(\sqrt{\mathrm{i}\, u}) - \mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\, u})\, \mathrm{K}_{d/2-1}(\sqrt{\mathrm{i}\, u}\, \rho)}{\sqrt{\mathrm{i}\, u}\, (\mathrm{I}_{d/2}(\sqrt{\mathrm{i}\, u})\, \mathrm{K}_{d/2-1}(\sqrt{\mathrm{i}\, u}\, \rho) + \mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\, u}\, \rho)\, \mathrm{K}_{d/2}(\sqrt{\mathrm{i}\, u}))}$$

where u is a reduced frequency and $\rho = r_{\delta}/r_0$. $I_n(z)$ gives the modified Bessel function of the first kind and order n and $K_n(z)$ gives the modified Bessel function of the second kind and order n [47]. $I_n(z)$ and $K_n(z)$ satisfy the differential equation:

$$-y(n^2+z^2) + zy' + z^2y'' = 0$$

Figure 1.1: Planar difusion (left), outside [18] (or convex [28]) diffusion ($\rho = r_{\delta}/r_0 > 1$, middle), and central (or concave) diffusion ($\rho < 1$, right).

1.2 Semi-infinite diffusion

1.2.1 Semi-infinite linear diffusion

$$d = 1, \ \Delta c(\infty) = 0$$

Impedance [43, 4]

Figure 1.2: Warburg element [46].

$$\begin{split} Z_{\mathrm{W}}(\omega) &= \frac{(1-\mathrm{i})\ \sigma}{\sqrt{\omega}} = \frac{\sqrt{2}\,\sigma}{\sqrt{\mathrm{i}\,\omega}},\ \mathrm{Re}\ Z_{\mathrm{W}}(\omega) = \frac{\sigma}{\sqrt{\omega}},\ \mathrm{Im}\ Z_{\mathrm{W}}(\omega) = -\frac{\sigma}{\sqrt{\omega}}\\ \sigma &= \frac{1}{n^2\,F\,f\,X^*\,\sqrt{2\,D_{\mathrm{X}}}},\ f = \frac{F}{R\,T},\ X^*: \mathrm{bulk\ concentration},\ \sigma\ \mathrm{unit:}\ \Omega\ \mathrm{cm}^2\ \mathrm{s}^{-1/2} \end{split}$$

Reduced impedance

$$Z_{\rm W}^*(u) = Z_{\rm W}(\omega) = \frac{1}{\sqrt{{\rm i}\, u}}, \ u = \frac{\omega}{2\,\sigma^2}, \ {\rm Re}\ Z_{\rm W}(u) = \frac{1}{\sqrt{2\, u}}, \ {\rm Im}\ Z_{\rm W}(u) = -\frac{1}{\sqrt{2\, u}}$$

Figure 1.3: Nyquist diagram of the reduced Warburg impedance.

Randles circuit

The equivalent circuit in Fig. 1.4 was initially proposed by Randles for a redox reaction $O + ne \leftrightarrow R$ [37].

$$\sigma = \sigma_{\rm O} + \sigma_{\rm R}$$

Figure 1.4: Randles circuit for semi-infinite linear diffusion.

Impedance

$$Z(\omega) = \frac{1}{\mathrm{i}\,\omega\,C_{\mathrm{dl}} + \frac{1}{R_{\mathrm{ct}} + \frac{(1-\mathrm{i})\,\sigma}{\sqrt{\omega}}}} = \frac{-\mathrm{i}\,((1-\mathrm{i})\,\sigma + \sqrt{\omega}\,R_{\mathrm{ct}})}{-\mathrm{i}\,\sqrt{\omega} + (1-\mathrm{i})\,\sigma\,\omega\,C_{\mathrm{dl}} + \omega^{\frac{3}{2}}\,C_{\mathrm{dl}}\,R_{\mathrm{ct}}}$$

$$\operatorname{Re} Z(\omega) = \frac{\sigma + \sqrt{\omega} R_{\rm ct}}{\sqrt{\omega} \left(1 + 2 \sigma \sqrt{\omega} C_{\rm dl} + 2 \sigma^2 \omega C_{\rm dl}^2 + 2 \sigma \omega^{\frac{3}{2}} C_{\rm dl}^2 R_{\rm ct} + \omega^2 C_{\rm dl}^2 R_{\rm ct}^2 \right) }$$

$$\operatorname{Im} Z(\omega) = \frac{-\sigma - 2 \sigma^2 \sqrt{\omega} C_{\rm dl} - 2 \sigma \omega C_{\rm dl} R_{\rm ct} - \omega^{\frac{3}{2}} C_{\rm dl} R_{\rm ct}^2 }{\sqrt{\omega} \left(1 + 2 \sigma \sqrt{\omega} C_{\rm dl} + 2 \sigma^2 \omega C_{\rm dl}^2 + 2 \sigma \omega^{\frac{3}{2}} C_{\rm dl}^2 R_{\rm ct} + \omega^2 C_{\rm dl}^2 R_{\rm ct}^2 \right) }$$

Reduced impedance "The frequency response of the Randles circuit can be described in terms of two time constants for faradaic (τ_f) and diffusional (τ_d) processes" [45] (Fig. 1.5).

$$Z^*(u) = \frac{Z(u)}{R_{\rm ct}} = \frac{(1+{\rm i})\ T\ ({\rm i}+u)}{-T\ \sqrt{2\,u} + (1+{\rm i})\ (-1+T+{\rm i}\,u)\ u}$$

$$u = \tau_{\rm d}\,\omega,\ \tau_{\rm d} = R_{\rm ct}^2/\left(2\,\sigma^2\right),\ T = \tau_{\rm d}/\tau_{\rm f},\ \tau_{\rm f} = R_{\rm ct}\,C_{\rm dl}$$

$${\rm Re}\ Z^*(u) = \frac{T^2\left(-\left(\sqrt{2}\ (-1+u)\right) + 2\,u^{\frac{3}{2}}\right)}{2\,\sqrt{2}\,T\,u\ (1-T+u) + 2\,\sqrt{u}\,\left(T^2 + (-1+T)^2\,u + u^3\right)}$$

$${\rm Im}\ Z^*(u) = \frac{T\ \left(\sqrt{2}\,T\ (-1-u) - 2\,\sqrt{u}\,\left(1-T+u^2\right)\right)}{2\,\sqrt{2}\,T\,u\ (1-T+u) + 2\,\sqrt{u}\,\left(T^2 + (-1+T)^2\,u + u^3\right)}$$

$$\lim_{u\to 0} {\rm Re}\ Z^*(u) = 1 - \frac{1}{T} + \frac{1}{\sqrt{2}\,u},\ \lim_{u\to 0} {\rm Im}\ Z^*(u) = -\frac{1}{\sqrt{2}\,u}$$

1.2.2 Semi-infinite radial cylindrical diffusion (outside)

$$d=2, \ \Delta c(\infty)=0$$

$$Z^*(u) = \frac{K_0(\sqrt{i u})}{\sqrt{i u} K_1(\sqrt{i u})}$$

$$\lim_{u \to 0} -\text{Im } Z^*(u) = \frac{\pi}{4}, \text{ Re } Z^*(u_c) = \frac{\pi}{4} \Rightarrow u_c = 0.542$$
(Fig. 1.6)

Figure 1.5: a: Nyquist diagram of the reduced impedance for the Randles circuit (Fig. 1.4). Semi-infinite linear diffusion. $T=1,2,5,10,16.4822,10^2,10^4$. Line thickness increases with T. One apex for T>16.4822. The arrows always indicate the increasing frequency direction. b: Extrapolation of the low frequency limit plotted for T=5.

Figure 1.6: Reduced impedance for semi-infinite radial diffusion outside a cicrcular cylinder. Dot: reduced characteristic angular frequency: $u_c = 0.542$.

1.2.3 Semi-infinite spherical diffusion

$$d=3, \ \Delta c(\infty)=0$$

$$Z^*(u) = \frac{1}{1 + \sqrt{\mathrm{i}\,u}}, \ u = r_0^2 \, \omega/D$$
 Re $Z^*(u) = \frac{2 + \sqrt{2\,u}}{2\,\left(1 + \sqrt{2\,u} + u\right)}, \ \mathrm{Im} \ Z^*(u) = -\frac{\sqrt{u}}{\sqrt{2}\,\left(1 + \sqrt{2\,u} + u\right)}$

(Fig. 1.7)

1.3 Bounded diffusion condition (linear diffusion)

$$\Delta c(r_{\delta}) = 0$$

"Originally derived by Llopis and Colon [25], and subsequently re-derived by Sluyters [41] and Yzermans [49], Drossbach and Schultz [14], and Schuhmann [40]" [4].

Figure 1.7: Reduced impedance for spherical (outside) diffusion. Dot: reduced characteristic angular frequency: $u_c = 1$, Re $Z^*(u_c) = 1/2$, Im $Z^*(u_c) = (1 - \sqrt{2})/2$.

- IUPAC terminology: bounded diffusion [42]
- Finite-length diffusion with transmissive boundary condition [21, 27]

$$\begin{split} Z_{\mathrm{W}_{\delta}}^*(u) &= \frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}},\; u = \tau_{\mathrm{d}}\,\omega,\; \tau_{\mathrm{d}} = \delta^2/D,\; \gamma = \sqrt{2\,u} \\ &\lim_{u \to 0} Z_{\mathrm{W}_{\delta}}^*(u) = 1,\; \lim_{u \to \infty} \sqrt{\mathrm{i}\,u}\; Z_{\mathrm{W}_{\delta}}^*(u) = 1 \\ \mathrm{Re}\; Z_{\mathrm{W}_{\delta}}^*(\gamma) &= \frac{\sin(\gamma) + \sinh(\gamma)}{\gamma\; (\cos(\gamma) + \cosh(\gamma))},\; \mathrm{Im}\; Z_{\mathrm{W}_{\delta}}^*(\gamma) = \frac{\sin(\gamma) - \sinh(\gamma)}{\gamma\; (\cos(\gamma) + \cosh(\gamma))} \end{split}$$

Figure 1.8: Bounded diffusion impedance.

Figure 1.9: Nyquist diagram of the reduced bounded diffusion impedance. $(u = \pi^2/2 [39])$.

Figure 1.10: Randles circuit for bounded diffusion.

1.3.1 Randles circuit

Impedance

$$Z_{\rm f}(u) = R_{\rm ct} + R_{\rm d} \, \frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}, \ u = \tau_{\rm d}\,\omega, \ \tau_{\rm d} = \delta^2/D$$

$$\operatorname{Re}\, Z_{\rm f}(\gamma) = R_{\rm ct} + R_{\rm d} \, \frac{\sin(\gamma) + \sinh(\gamma)}{\gamma \, \left(\cos(\gamma) + \cosh(\gamma)\right)}, \ \gamma = \sqrt{2\,u}$$

$$\operatorname{Im}\, Z_{\rm f}(\gamma) = R_{\rm d} \, \frac{\sin(\gamma) - \sinh(\gamma)}{\gamma \, \left(\cos(\gamma) + \cosh(\gamma)\right)}$$

$$Z(u) = \frac{Z_{\rm f}(u)}{1 + \mathrm{i}\left(u/\tau_{\rm d}\right)C_{\rm dl}Z_{\rm f}(u)} = \frac{R_{\rm ct} + R_{\rm d}\frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}}{1 + \mathrm{i}\left(u/\tau_{\rm d}\right)C_{\rm dl}\left(R_{\rm ct} + R_{\rm d}\frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}\right)}$$

Reduced impedance

(Fig. 1.11)

$$Z^*(u) = \frac{Z(u)}{R_{\rm ct} + R_{\rm d}} = \frac{1 + \frac{\tanh\sqrt{\mathrm{i}\,u}}{\rho\,\sqrt{\mathrm{i}\,u}}}{\left(1 + \frac{1}{\rho}\right)\left(1 + \mathrm{i}\,u\,T + \mathrm{i}\,u\,\frac{T}{\rho}\,\frac{\tanh\sqrt{\mathrm{i}\,u}}{\rho\,\sqrt{\mathrm{i}\,u}}\right)}$$
$$\rho = R_{\rm ct}/R_{\rm d}, \ T = \tau_{\rm f}/\tau_{\rm d}, \ \tau_{\rm f} = R_{\rm ct}\,C_{\rm dl}$$

1.3.2 Corrosion equivalent circuit

Corrosion of a metal M with limitation by mass transport of oxidant (Fig. 1.12) on a rotating disk electrode (RDE) [33].

$$Z(u) = \frac{R_{\rm ct} R_{\rm d} \frac{\tanh \sqrt{\mathrm{i} u}}{\sqrt{\mathrm{i} u}}}{R_{\rm ct} + R_{\rm d} \frac{\tanh \sqrt{\mathrm{i} u}}{\sqrt{\mathrm{i} u}}}, \ u = \tau_{\rm d} \omega, \ \tau_{\rm d} = \delta^2 / D$$

$$(1.1)$$

Figure 1.11: Impedance diagram array for the Randles circuit with bounded diffusion (Fig. 1.10).

Figure 1.12: Equivalent circuit for corrosion of a metal M with limitation by mass transport of oxidant. $R_{\rm ct}$: charge transfer of the reaction of metal oxidation.

$$Z^*(u) = (1+\alpha)\frac{Z(u)}{R_{\rm d}} = (1+\alpha)\frac{\frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}}{1+\alpha\frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}}, \ \alpha = \frac{R_{\rm d}}{R_{\rm ct}}$$
(1.2)

Two limiting cases (Fig. 1.13):

• $\alpha \ll 1$:

$$Z^*(u) \approx \frac{\tanh \sqrt{\mathrm{i} u}}{\sqrt{\mathrm{i} u}}, \ u_{c1} = 2.541, \ \mathrm{quarter \ of \ lemniscate}, \ \mathrm{(Fig. \ 1.8)}$$
 (1.3)

• $\alpha \gg 1$:

$$Z^*(u) \approx \frac{\alpha}{\alpha + \sqrt{\mathrm{i}\,u}}, \ u_{\mathrm{c2}} = \alpha^2, \ \mathrm{quarter\ of\ circle}, \ (\mathrm{Fig.\ 1.7})$$
 (1.4)

Figure 1.13: Nyquist diagram of the corrosion equivalent circuit. Large black dot : $u_{c1} = 2.541$, small red dot : $u_{c2} = \alpha^2$.

1.4 Analytical approximation

1.4.1 Analytical approximation #1

[12], Fig. 1.14.

$$Z^*(u) = \frac{\sqrt{\gamma + i u}}{\sqrt{\gamma} (1 + i u)}, \ \gamma = 1.877$$

$$(1.5)$$

Figure 1.14: Nyquist diagram of the analytical approximation #1 (Eq. (1.5)).

1.4.2 Analytical approximation #2

[29], Fig. 1.15.

$$Z^*(f) = \frac{Z(f)}{R_{\rm d}} = \frac{\sqrt{\gamma^2 + \tau_{\rm d} i 2\pi f}}{\gamma + \tau_{\rm d} i 2\pi f}, \, \tau_{\rm d} = \frac{\delta_{\rm d}^2}{D}$$
(1.6)

where γ and τ_d depend on the Schmidt number Sc. For Sc \in [10², 10⁵]:

$$\gamma = \frac{1.9930 - 1.6319 \,\mathrm{Sc}^{-1/3}}{1 - 0.7248 \,\mathrm{Sc}^{-1/3}} \tag{1.7}$$

$$\tau_{\rm d} = \frac{1.61173^2}{\Omega} {\rm Sc}^{1/3} (1 + 0.2980 \, {\rm Sc}^{-1/3} + 0.14514 \, {\rm Sc}^{-2/3} + 0.07020 \, {\rm Sc}^{-1})^2 \ (1.8)$$

Figure 1.15: Nyquist diagram of the analytical approximation #2 (Eqs. (1.6)-(1.8), $Sc = 10^3$, $\Omega = 2000 \text{ tr min}^{-1}$) and change of f_c with Sc.

1.5 Radial cylindrical diffusion

d = 2 [18] (Fig. 1.1)

1.5.1 Finite-length diffusion outside a cylinder

$$Z^*(u) = \frac{\mathrm{I}_0(\sqrt{\mathrm{i}\,u}\,\rho)\,\mathrm{K}_0(\sqrt{\mathrm{i}\,u}) - \mathrm{I}_0(\sqrt{\mathrm{i}\,u})\,\mathrm{K}_0(\sqrt{\mathrm{i}\,u}\,\rho)}{\mathrm{Log}(\rho)\,\sqrt{\mathrm{i}\,u}\,\left(\mathrm{I}_1(\sqrt{\mathrm{i}\,u})\,\mathrm{K}_0(\sqrt{\mathrm{i}\,u}\,\rho) + \mathrm{I}_0(\sqrt{\mathrm{i}\,u}\,\rho)\,\mathrm{K}_1(\sqrt{\mathrm{i}\,u})\right)}$$

$$u = r_0^2 \omega/D, \ \rho = r_\delta/r_0$$

Fig. 1.16 rectifies erroneous Figs. 7 and 8 in [30].

1.5.2 Semi-infinite outside a cylinder

$$\lim_{\rho \to \infty} Z^*(u) = \frac{\mathrm{K}_0(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{K}_1(\sqrt{\mathrm{i}\,u})}$$

(Fig. 1.6)

1.6 Spherical diffusion

$$d = 3$$
 [18] (Fig. 1.1)

Figure 1.16: Central ($\rho < 1$) and outside ($\rho > 1$) cylindrical diffusion impedance. $\rho = r_{\delta}/r_0 = 10^{-2}, 10^{-1}, 0.4, 1.01, 2, 5, 20, 100$. The thickness increases with ρ . Dots: reduced characteristic angular frequency (apex of the impedance arc): $u_c = 0.514484, 1.22194, 4.74992, 25516., 3.40142, 0.298271, 0.0186746, 0.000800438.$

1.6.1 Finite-length difusion outside a sphere, reduced impedance # 1

(Fig. 1.17)

$$Z^*(u) = \frac{1}{(1 - 1/\rho) \left(1 + \sqrt{i u} \coth(\sqrt{i u} (-1 + \rho))\right)}, \ u = r_0^2 \omega/D, \ \rho = r_\delta/r_0$$

Figure 1.17: Central $(\rho < 1)$ and outside $(\rho > 1)$ spherical diffusion impedance. $\rho = r_{\delta}/r_0 = 0.1, 0.4, 0.91, 1.1, 2, 5, 50$. Line thickness increases with ρ . Dots: reduced characteristic angular frequency: $u_c = r_0^2 \, \omega/D = 0.3632, 3.095, 289, 275.8, 4.547, 0.6927, 1$. Change of $\log u_c$ with ρ .

1.6.2 Finite outside sphere, reduced impedance # 2

(Fig. 1.18)

$$Z^*(u) = \frac{1+\delta}{\delta + \sqrt{i u} \coth(\sqrt{i u})}, \ u = (r_\delta - r_0)^2 \omega / D, \ \delta = (r_\delta - r_0) / r_0$$

1.6.3 Infinite outside sphere

(Fig. 1.7)
$$\lim_{\rho\to\infty} Z^*(u) = \frac{1}{1+\sqrt{\mathrm{i}\,u}},\ u=r_0^2\,\omega/D$$

Figure 1.18: Central ($\delta<0$) and outside ($\delta>0$) spherical diffusion impedance. $\delta=(r_{\delta}-r_{0})/r_{0}=-0.99, -0.8, -0.5, -0.1, 0.1, 1, 3, 100$. Line thickness increases with δ . Dots: reduced characteristic angular frequency: $u_{c}=(r_{\delta}-r_{0})^{2}\,\omega/D=0.0299, 0.577, 1.37, 2.32, 2.76, 4.55, 8.33, <math>10^{4},\ u_{c}$ increases with δ . Change of $\log u_{c}$ with δ .

Re
$$Z^*(u) = \frac{2 + \sqrt{2u}}{2(1 + \sqrt{2u})}$$
, Im $Z^*(u) = -\frac{\sqrt{u}}{\sqrt{2}(1 + \sqrt{2u} + u)}$

 $16 CHAPTER\ 1.\ MASS\ TRANSFER\ BY\ DIFFUSION,\ NERNST\ BOUNDARY\ CONDITION$

Chapter 2

Mass transfer by diffusion, restricted diffusion

2.1 General diffusion equations

From:

$$\frac{\partial \Delta c(x,t)}{\partial t} = D \, x^{1-d} \frac{\partial}{\partial x} \left(x^{d-1} \frac{\partial \Delta c(x,t)}{\partial x} \right)$$

where Δ denotes a smal deviation (or excursion) from the initial steady-state value, d=1 corresponds to a planar electrode, d=2 to a cylindrical electrode (radial diffusion) and d=3 to a spherical electrode [5, 32] (Fig. 1.1), it is obtained, using the condition $\Delta J(r_{\delta})=0$:

$$Z^*(u) \propto \frac{\Delta c(r_0, \mathrm{i}\, u)}{\Delta J(r_0, \mathrm{i}\, u)} = \frac{\mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\, u})\, \mathrm{K}_{d/2}(\sqrt{\mathrm{i}\, u}\, \rho) + \mathrm{I}_{d/2}(\sqrt{\mathrm{i}\, u}\, \rho)\, \mathrm{K}_{d/2-1}(\sqrt{\mathrm{i}\, u})}{\sqrt{\mathrm{i}\, u}\, (\mathrm{I}_{d/2}(\sqrt{\mathrm{i}\, u}\, \rho)\, \mathrm{K}_{d/2}(\sqrt{\mathrm{i}\, u}) - \mathrm{I}_{d/2}(\sqrt{\mathrm{i}\, u})\, \mathrm{K}_{d/2}(\sqrt{\mathrm{i}\, u}\, \rho))}$$

Terminology [31]: bounded system [19], finite-space diffusion [1, 2], finite length diffusion [22], restricted diffusion [10, 9, 13], reflective boundary condition [35], impermeable boundary [48], impermeable barrier condition [18], impermeable surface [11].

Figure 2.1: Restricted diffusion impedance. d=1: thin planar layer, d=2: cylinder, d=3: sphere.

Internal cylinder and sphere with null radius, $r_0 = 0$.

$$Z^*(u) = \frac{\mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_{d/2}(\sqrt{\mathrm{i}\,u})}$$

Fig. 2.2.

Figure 2.2: Nyquist diagram of the reduced impedance for the restricted diffusion impedance $Z^*(u)$ plotted for d=1, 2, 3. d=1: thin planar layer, d=2: cylinder, d=3: sphere. Dots: reduced characteristic angular frequency: $u_{c1}=3.88, u_{c2}=11.7, u_{c3}=22.3$.

Fig. 2.3.

$$u \to 0 \Rightarrow Z^*(u) \approx \frac{1}{d+2} - \frac{\mathrm{i}\,d}{u}$$

Figure 2.3: Low frequency equivalent circuit for restricted diffusion impedance. $R^* = 1/(d+2)$, $C^* = 1/d$.

High frequency limit

Fig. 2.4.

$$u \to \infty \Rightarrow Z^*(u) \approx \frac{1}{\sqrt{\mathrm{i}\,u}}, \lim_{u \to \infty} \sqrt{\mathrm{i}\,u}\,Z^*(u) = 1$$

$$\mathbb{W}_{\delta,\mathsf{d}}$$
 \approx $\mathbb{W}_{\delta,\mathsf{d}}$

Figure 2.4: High frequency equivalent circuit for restricted diffusion impedance.

2.2 Linear diffusion and modified linear diffusion

2.2.1 Linear diffusion

d = 1

$$Z^*(u) = \frac{{\rm I}_{d/2-1}(\sqrt{{\rm i}\,u})}{\sqrt{{\rm i}\,u}\,{\rm I}_{d/2}(\sqrt{{\rm i}\,u})} = \frac{{\rm I}_{-1/2}(\sqrt{{\rm i}\,u})}{\sqrt{{\rm i}\,u}\,{\rm I}_{1/2}(\sqrt{{\rm i}\,u})} = \frac{\coth\sqrt{{\rm i}\,u}}{\sqrt{{\rm i}\,u}}$$

Reduced characteristic angular frequency: $u_{c1} \approx 3$ (d(d+2)) [5], 5.12 [3], 4 [8], 3.88 [7].

$$\lim_{u \to 0} Z^*(u) = \frac{1}{3} + \frac{1}{\mathrm{i} u}, \lim_{u \to \infty} \sqrt{\mathrm{i} u} Z^*(u) = 1$$

$$u = \tau_{\mathrm{d}} \omega, \ \tau_{\mathrm{d}} = \delta^2 / D, \ \gamma = \sqrt{2 u}$$

$$\operatorname{Re} Z^*(\gamma) = \frac{\sin(\gamma) - \sinh(\gamma)}{\gamma \left(\cos(\gamma) - \cosh(\gamma)\right)}; \ \operatorname{Im} Z^*(\gamma) = \frac{\sin(\gamma) + \sinh(\gamma)}{\gamma \left(\cos(\gamma) - \cosh(\gamma)\right)}$$

Low frequency limit

Equivalent circuit: Fig. 2.5 (1).

$$Z^*(u) = \frac{Z(u)}{R_{\rm d}} \Rightarrow \lim_{\omega \to 0} Z(\omega) = \frac{R_{\rm d}}{3} + \frac{R_{\rm d}}{\tau_{\rm d} \, \mathrm{i} \, \omega} = R_{\rm lf} + \frac{1}{C_{\rm lf} \, \mathrm{i} \, \omega}, \ R_{\rm lf} = \frac{R_{\rm d}}{3}, \ C_{\rm lf} = \frac{\tau_{\rm d}}{R_{\rm d}}$$

Figure 2.5: Low frequency equivalent circuit for restricted diffusion impedance. $R_{\rm lf} = R_{\rm d}/3$, $C_{\rm lf} = \tau_{\rm d}/R_{\rm d}$.

Randles circuit for restricted linear diffusion

Impedance

$$Z_{\rm f}(u) = R_{\rm ct} + R_{\rm d} \, \frac{\coth \sqrt{{\rm i}\, u}}{\sqrt{{\rm i}\, u}}, \ Z(u) = \frac{Z_{\rm f}(u)}{1 + {\rm i}\, (u/ au_{
m d}) \, C_{
m dl} \, Z_{
m f}(u)}, \ u = au_{
m d} \, \omega, \ au_{
m d} = \delta^2/D$$

The For unit problems, don't forget the Farad unit: $F = s/\Omega$.

Figure 2.6: Randles circuit for restricted diffusion.

2.2.2 Modified restricted diffusion impedance

 \sqrt{iu} replaced by $(iu)^{\frac{\alpha}{2}}$ (α : dispersion parameter) [8, 7, 38], Fig. 2.7.

Figure 2.7: Nyquist diagram of the reduced modified restricted diffusion impedance, plotted for $\alpha = 0.8$. u_c depends on α [7].

$$Z^*(u) = \frac{\coth\left(\mathrm{i}\,u\right)^{\frac{\alpha}{2}}}{\left(\mathrm{i}\,u\right)^{\frac{\alpha}{2}}}, \ u = \tau_\mathrm{d}\,\omega, \ \tau_\mathrm{d} = \delta^2/D$$

$$\operatorname{Re}\,Z^*(u) = \frac{u^{-\alpha/2}\left(\sin\left(\frac{\pi\alpha}{4}\right)\sin\left(2u^{\alpha/2}\sin\left(\frac{\pi\alpha}{4}\right)\right) - \cos\left(\frac{\pi\alpha}{4}\right)\sinh\left(2u^{\alpha/2}\cos\left(\frac{\pi\alpha}{4}\right)\right)\right)}{\cos\left(2u^{\alpha/2}\sin\left(\frac{\pi\alpha}{4}\right)\right) - \cosh\left(2u^{\alpha/2}\cos\left(\frac{\pi\alpha}{4}\right)\right)}$$

$$\operatorname{Im}\,Z^*(u) = \frac{u^{-\alpha/2}\left(\cos\left(\frac{\pi\alpha}{4}\right)\sin\left(2u^{\alpha/2}\sin\left(\frac{\pi\alpha}{4}\right)\right) + \sin\left(\frac{\pi\alpha}{4}\right)\sinh\left(2u^{\alpha/2}\cos\left(\frac{\pi\alpha}{4}\right)\right)\right)}{\cos\left(2u^{\alpha/2}\sin\left(\frac{\pi\alpha}{4}\right)\right) - \cosh\left(2u^{\alpha/2}\cos\left(\frac{\pi\alpha}{4}\right)\right)}$$

Equivalent circuit: Fig. 2.8.

$$u \to 0 \Rightarrow Z^*(u) \approx \frac{1}{3} + \frac{1}{(\mathrm{i}\,u)^{\alpha}}$$

$$Z^*(u) = \frac{Z(u)}{R_{\rm d}} \Rightarrow \lim_{\omega \to 0} Z(\omega) = \frac{R_{\rm d}}{3} + \frac{R_{\rm d}}{(\mathrm{i}\,\tau_{\rm d}\,\omega)^{\alpha}} = R_{\rm lf} + \frac{1}{Q_{\rm lf}\,(\mathrm{i}\,\omega)^{\alpha}}, \ R_{\rm lf} = \frac{R_{\rm d}}{3}, \ Q_{\rm lf} = \frac{\tau_{\rm d}^{\alpha}}{R_{\rm d}}$$

$$\mathbb{R}_{\alpha}$$
 \approx \mathbb{R}_{lf}

Figure 2.8: Low frequency equivalent circuit for modified restricted diffusion impedance. $R_{\rm lf}=R_{\rm d}/3,\ Q_{\rm lf}=\tau_{\rm d}^{\alpha}/R_{\rm d}.\ Q_{\rm lf}$ unit : $\frac{s^{\alpha}}{\Omega}=\frac{s}{\Omega}\frac{s^{\alpha}}{s}=F\ s^{\alpha-1}.$

2.2.3 Anomalous diffusion impedance

[6], Fig. 2.9.

$$Z(\omega) = R_{\rm d} \frac{\coth\left(\mathrm{i}\,\omega\,\tau_{\rm d}\right)^{\gamma/2}}{\left(\mathrm{i}\,\omega\,\tau_{\rm d}\right)^{1-\gamma/2}}, \ \gamma \le 1$$
$$Z(u)^* = \frac{Z(\omega)}{R_{\rm d}} = \frac{\coth\left(\mathrm{i}\,u\right)^{\gamma/2}}{\left(\mathrm{i}\,u\right)^{1-\gamma/2}}, \ u = \omega\,\tau_{\rm d}, \tau_{\rm d} = \left(\frac{\delta^2}{D}\right)^{1/\gamma}$$

The D unit $(D/\text{cm}^2 \text{ s}^{-\gamma})$ depends on γ .

$$\operatorname{Re} Z^*(u) = \frac{u^{\frac{\gamma}{2}-1} \left(\cos \left(\frac{\pi \gamma}{4}\right) \sin \left(2 u^{\gamma/2} \sin \left(\frac{\pi \gamma}{4}\right)\right) - \sin \left(\frac{\pi \gamma}{4}\right) \sinh \left(2 u^{\gamma/2} \cos \left(\frac{\pi \gamma}{4}\right)\right)\right)}{\cos \left(2 u^{\gamma/2} \sin \left(\frac{\pi \gamma}{4}\right)\right) - \cosh \left(2 u^{\gamma/2} \cos \left(\frac{\pi \gamma}{4}\right)\right)}$$

$$\operatorname{Im} Z^*(u) = \frac{u^{\frac{\gamma}{2}-1}\left(\sin\left(\frac{\pi\gamma}{4}\right)\sin\left(2u^{\gamma/2}\sin\left(\frac{\pi\gamma}{4}\right)\right) + \cos\left(\frac{\pi\gamma}{4}\right)\sinh\left(2u^{\gamma/2}\cos\left(\frac{\pi\gamma}{4}\right)\right)\right)}{\cos\left(2u^{\gamma/2}\sin\left(\frac{\pi\gamma}{4}\right)\right) - \cosh\left(2u^{\gamma/2}\cos\left(\frac{\pi\gamma}{4}\right)\right)}$$

2.3 Cylindrical diffusion

 $d=2, \delta$: cylinder radius

$$Z^*(u) = \frac{\mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_{d/2}(\sqrt{\mathrm{i}\,u})} = \frac{\mathrm{I}_0(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_1(\sqrt{\mathrm{i}\,u})}$$

$$\lim_{u \to 0} Z^*(u) = \frac{1}{4} - \frac{2\,\mathrm{i}}{u}, \lim_{u \to \infty} \sqrt{\mathrm{i}\,u}\,Z^*(u) = 1$$

$$u = \tau_{\mathrm{d}}\,\omega, \ \tau_{\mathrm{d}} = \delta^2/D$$

Figure 2.9: Nyquist diagram of the reduced anomalous diffusion impedance. Left: $\gamma = 0.8$, right: change of Nyquist diagram with γ (γ : 1, 0.9, 0.8, 0.7, 0.6). Dots: u = 5 [6].

Equivalent circuit: $R_{lf}+C_{lf}$.

$$Z^*(u) = \frac{Z(u)}{R_{\rm d}} \Rightarrow \lim_{\omega \to 0} Z(\omega) = \frac{R_{\rm d}}{4} + \frac{2R_{\rm d}}{\tau_{\rm d} \, \mathrm{i} \, \omega} = R_{\rm lf} + \frac{1}{C_{\rm lf} \, \mathrm{i} \, \omega}, \ R_{\rm lf} = \frac{R_{\rm d}}{4}, \ C_{\rm lf} = \frac{\tau_{\rm d}}{2R_{\rm d}}$$

2.4 Spherical diffusion

 $d=3, \delta$: sphere radius

$$\begin{split} Z^*(u) &= \frac{\mathrm{I}_{d/2-1}(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_{d/2}(\sqrt{\mathrm{i}\,u})} = \frac{\mathrm{I}_{1/2}(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_{3/2}(\sqrt{\mathrm{i}\,u})} = \frac{1}{-1+\sqrt{\mathrm{i}\,u}\,\coth\sqrt{\mathrm{i}\,u}} \\ &\lim_{u\to 0} Z^*(u) = \frac{1}{5} - \frac{3\,\mathrm{i}}{u}, \ \lim_{u\to \infty} \sqrt{\mathrm{i}\,u}\,Z^*(u) = 1 \\ &u = \tau_\mathrm{d}\,\omega, \ \tau_\mathrm{d} = \delta^2/D, \ \gamma = \sqrt{2\,u} \\ \mathrm{Re}\ Z^*(\gamma) &= \frac{2\,\cos(\gamma) - 2\,\cosh(\gamma) + \gamma\,\sin(\gamma) + \gamma\,\sinh(\gamma)}{(-2+\gamma^2)\,\cos(\gamma) + (2+\gamma^2)\,\cosh(\gamma) - 2\,\gamma\,\left(\sin(\gamma) + \sinh(\gamma)\right)} \\ \mathrm{Im}\ Z^*(\gamma) &= \frac{\gamma\,\left(\sin(\gamma) - \sinh(\gamma)\right)}{(-2+\gamma^2)\,\cos(\gamma) + (2+\gamma^2)\,\cosh(\gamma) - 2\,\gamma\,\left(\sin(\gamma) + \sinh(\gamma)\right)} \end{split}$$

Equivalent circuit: $R_{lf}+C_{lf}$.

$$Z^*(u) = \frac{Z(u)}{R_{\rm d}} \Rightarrow \lim_{\omega \to 0} Z(\omega) = \frac{R_{\rm d}}{5} + \frac{3R_{\rm d}}{\tau_{\rm d}\,\mathrm{i}\,\omega} = R_{\rm lf} + \frac{1}{C_{\rm lf}\,\mathrm{i}\,\omega}, \ R_{\rm lf} = \frac{R_{\rm d}}{5}, \ C_{\rm lf} = \frac{\tau_{\rm d}}{3R_{\rm d}}$$

24CHAPTER 2. MASS TRANSFER BY DIFFUSION, RESTRICTED DIFFUSION

Chapter 3

Gerischer and diffusion-reaction impedance

3.1 Gerischer and modified Gerischer impedance

3.1.1 Gerischer impedance

$$Z_{\rm G}^*(u) = \frac{1}{\sqrt{1 + i u}}$$
 (3.1)

"In view of the earliest derivation of such an impedance by Gerischer, [15] it seems a good idea to name it the "Gerischer impedance" $Z_{\rm G}$ " [42, 44].

Figure 3.1: Reduced Gerischer impedance. Some caracteristic values are given in [23, 24]. Phase angle for dashed lines : $-\pi/8$, $-\pi/6$ and $-\pi/4$ respectively.

$$\lim_{u\to 0} Z_{\mathrm{G}}^*(u) = 1, \ \lim_{u\to \infty} \sqrt{\mathrm{i}\, u}\, Z_{\mathrm{G}}^*(u) = 1$$

26CHAPTER 3. GERISCHER AND DIFFUSION-REACTION IMPEDANCE

$$\operatorname{Re} Z_{\mathrm{G}}^{*}(u) = \frac{\cos(\frac{\arctan(u)}{2})}{(1+u^{2})^{1/4}} = \frac{\sqrt{\sqrt{1+u^{-2}}+u^{-1}}}{\sqrt{2}\sqrt{1+u^{-2}}\sqrt{u}}$$

$$\operatorname{Im} Z_{\mathrm{G}}^{*}(u) = -\frac{\sin(\frac{\arctan(u)}{2})}{(1+u^{2})^{1/4}} = -\frac{\sqrt{\sqrt{1+u^{-2}}-u^{-1}}}{\sqrt{2}\sqrt{1+u^{-2}}\sqrt{u}}$$

$$\frac{\operatorname{dIm} Z_{\mathrm{G}}^{*}(u)}{\operatorname{d}u} = \frac{-2+\sqrt{1+u^{-2}}u}{2\sqrt{2}\sqrt{1+u^{-2}}} = 0 \Rightarrow u_{c} = \sqrt{3}$$

Diagnostic criterion [16, 34] Re $Y_G^*(u)^2 - \operatorname{Im} Y_G^*(u)^2 = 1$

3.1.2 Modified Gerischer impedance #1

$$Z_{G\alpha}^*(u) = \frac{1}{\sqrt{1 + (i u)^{\alpha}}}$$

Figure 3.2: Reduced modified Gerischer impedance. $\alpha=0.5,0.6,0.7,0.8,0.9,1.$ Line thickness increases with α . Dots: characteristic frequency u_c at the apex of the impedance arc. Change of u_c for the modified Gerischer impedance (solid line) and change of $\sqrt{3}/\alpha$ with α (dashed line). $u_c \approx \sqrt{3}/\alpha$ for $\alpha \in [0.53,1]$ ($|(u_c-\sqrt{3}/\alpha)|/u_c<5\%$).

$$\operatorname{Re} Z_{\mathrm{G}\alpha}^*(u) = \frac{\cos(\frac{1}{2}\arctan(\frac{u^{\alpha}\,\sin(\frac{\pi\,\alpha}{2})}{1+u^{\alpha}\,\cos(\frac{\pi\,\alpha}{2})}))}{\left(1+u^{2\,\alpha}+2\,u^{\alpha}\,\cos(\frac{\pi\,\alpha}{2})\right)^{\frac{1}{4}}}$$

$$\operatorname{Im} Z_{\mathrm{G}\alpha}^*(u) = -\frac{\sin(\frac{1}{2}\arctan(\frac{u^{\alpha}\,\sin(\frac{\pi\,\alpha}{2})}{1+u^{\alpha}\,\cos(\frac{\pi\,\alpha}{2})}))}{\left(1+u^{2\,\alpha}+2\,u^{\alpha}\,\cos(\frac{\pi\,\alpha}{2})\right)^{\frac{1}{4}}}$$

3.1.3 Modified Gerischer impedance #2

$$Z_{\mathrm{G}\alpha2}^*(u) = \frac{1}{\left(1 + \mathrm{i}\,u\right)^{\alpha/2}}, \ \alpha \in [0, 1]$$

$$\operatorname{Re} Z_{\mathrm{G}\alpha2}^*(u) = \left(u^2 + 1\right)^{-\alpha/4} \cos\left(\frac{1}{2}\alpha \arctan(u)\right)$$

$$\operatorname{Im} Z_{\mathrm{G}\alpha2}^*(u) = -\left(u^2 + 1\right)^{-\alpha/4} \sin\left(\frac{1}{2}\alpha \arctan(u)\right)$$

Figure 3.3: Reduced modified Gerischer impedance #2. $\alpha = 0.5, 0.6, 0.7, 0.8, 0.9, 1$ ($\alpha = 1$: Gerisher impedance Eq. (3.1)). Line thickness increases with α . Dots: characteristic frequency u_c at the apex of the impedance arc. Change of u_c for the modified Gerischer impedance #2.

3.1.4 Modified Gerischer impedance #3

[36, 26], Fig. 3.4.

$$\begin{split} Z_{\mathrm{G}\alpha 3}^*(u) &= \frac{1}{\left(1+\mathrm{i}\,u\right)^{\alpha}}, \ \alpha \in [0,1] \\ \mathrm{Re}\ Z_{\mathrm{G}\alpha 3}^*(u) &= \left(u^2+1\right)^{-\alpha/2}\cos\left(\alpha\arctan(u)\right) \\ \mathrm{Im}\ Z_{\mathrm{G}\alpha 3}^*(u) &= -\left(u^2+1\right)^{-\alpha/2}\sin\left(\alpha\arctan(u)\right) \end{split}$$

Figure 3.4: Reduced modified Gerischer impedance #3. $\alpha = 0.3$, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ($\alpha = 0.5$: Gerisher impedance Eq. (3.1)). Line thickness increases with α . Dots: characteristic frequency u_c at the apex of the impedance arc. Change of u_c for the modified Gerischer impedance #3.

3.1.5 Havriliak-Negami impedance

[17, 20], Fig. 3.5.

$$Z_{\rm HN}^*(u) = \frac{1}{(1+(\mathrm{i}u)^\alpha)^\beta} \tag{3.2}$$

$$\operatorname{Re} Z_{\rm HN}^*(u) = \left(u^{2\alpha} + 2\cos\left(\frac{\pi\alpha}{2}\right)u^\alpha + 1\right)^{-\beta/2}\cos\left(\beta\arctan\left(\frac{\sin\left(\frac{\pi\alpha}{2}\right)u^\alpha}{\cos\left(\frac{\pi\alpha}{2}\right)u^\alpha + 1}\right)\right) \tag{3.3}$$

$$\operatorname{Im} Z_{\rm HN}^*(u) = -\left(u^{2\alpha} + 2\cos\left(\frac{\pi\alpha}{2}\right)u^\alpha + 1\right)^{-\beta/2}\sin\left(\beta\arctan\left(\frac{\sin\left(\frac{\pi\alpha}{2}\right)u^\alpha}{\cos\left(\frac{\pi\alpha}{2}\right)u^\alpha + 1}\right)\right) \tag{3.4}$$

- $\beta = 1/2 \Rightarrow$ modified Gerischer impedance #1 (cf. § 3.1.2, p. 26)
- $\alpha = 1 \Rightarrow$ modified Gerischer impedance #2, (cf. § 3.1.3, p. 27), #3, (cf. § 3.1.4, p. 27)

Figure 3.5: Impedance diagram array for the reduced Havriliak-Negami impedance. $u_c = \sqrt{3} \ (\alpha = 1, \beta = 1/2), \ u_c = 2 + \sqrt{3} \ (\alpha = \beta = 1/2), \ u_c = 1 \ (\beta = 1, \forall \alpha).$

3.2 Diffusion-reaction impedance

3.2.1 Reduced impedance #1

$$\begin{split} Z^*(u) &= \frac{\sqrt{\lambda}}{\tanh\sqrt{\lambda}} \frac{\tanh\sqrt{\mathrm{i}\,u + \lambda}}{\sqrt{\mathrm{i}\,u + \lambda}} \\ \lim_{u \to 0} Z^*(u) &= 1, \ \lim_{u \to \infty} \sqrt{\mathrm{i}\,u + \lambda} \, Z^*(u) = \sqrt{\lambda} \, \coth\sqrt{\lambda} \\ \lambda \to 0 \Rightarrow Z^*(u) \approx Z^*_{\mathrm{W}\delta}(u) &= \frac{\tanh\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}, \ \lambda \to \infty \Rightarrow Z^*(u) \approx Z^*_{\mathrm{G}}(u/\lambda) = \frac{1}{\sqrt{1 + \mathrm{i}\,u/\lambda}} \end{split}$$

Figure 3.6: Diffusion-reaction reduced impedance #1. $\lambda = 10^{-3}, 1, 10^3$. Line thickness increases with λ . $u_c = 2.542, 3.657, 1732$. Change of $\log u_c$ with $\log \lambda$ for the diffusion-reaction reduced impedance #1. $\lambda \to 0 \Rightarrow u_c \to 2.54, \lambda \to \infty \Rightarrow u_c \approx \lambda \sqrt{3}$.

$$\operatorname{Re} Z^{*}(u) = \frac{\sqrt{\lambda} \operatorname{coth}(\sqrt{\lambda}) \left(\sinh(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} c a_{u\lambda} \right) c a_{u\lambda} + \sin(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} s a_{u\lambda} \right) s a_{u\lambda} \right)}{\left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} \left(\cos(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} s a_{u\lambda} \right) + \cosh(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} c a_{u\lambda} \right) \right)}$$

$$c a_{u\lambda} = \cos(\frac{\arctan(\frac{u}{\lambda})}{2}), \ s a_{u\lambda} = \sin(\frac{\arctan(\frac{u}{\lambda})}{2})$$

$$\operatorname{Im} Z^{*}(u) = \frac{\sqrt{\lambda} \operatorname{coth}(\sqrt{\lambda}) \left(\sin(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} s a_{u\lambda} \right) c a_{u\lambda} - \sinh(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} c a_{u\lambda} \right) s a_{u\lambda} \right)}{\left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} \left(\cos(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} s a_{u\lambda} \right) + \cosh(2 \left(u^{2} + \lambda^{2}\right)^{\frac{1}{4}} c a_{u\lambda} \right) \right)}$$

3.2.2 Reduced impedance #2

$$Z^*(u) = \frac{\sqrt{\lambda} \coth \sqrt{\lambda} \tanh \sqrt{(1+iu) \lambda}}{\sqrt{(1+iu) \lambda}}$$

$$\lim_{u \to 0} Z^*(u) = 1, \lim_{u \to \infty} \sqrt{(1+iu) \lambda} Z^*(u) = \sqrt{\lambda} \coth \sqrt{\lambda}$$

$$\lim_{\lambda \to 0} Z^*(u) = Z_{W\delta}(u/\lambda) = \frac{\tanh \sqrt{iu/\lambda}}{\sqrt{iu/\lambda}}, \lim_{\lambda \to \infty} Z^*(u) = Z_G^*(u) = \frac{1}{\sqrt{1+iu}}$$

$$\operatorname{Re} Z^*(u) = \frac{\coth(\sqrt{\lambda}) \left(\sinh(2(1+u^2)^{\frac{1}{4}} \sqrt{\lambda} ca_u) ca_u + \sin(2(1+u^2)^{\frac{1}{4}} \sqrt{\lambda} sa_u) sa_u\right)}{(1+u^2)^{\frac{1}{4}} \left(\cos(2(1+u^2)^{\frac{1}{4}} \sqrt{\lambda} sa_u) + \cosh(2(1+u^2)^{\frac{1}{4}} \sqrt{\lambda} ca_u)\right)}$$

Figure 3.7: Diffusion-reaction reduced impedance #2. $\lambda = 10^{-4}, 1, 10^3$. Line thickness increases with λ . $u_c = 25407, 3.657, 1.732$. Change of $\log u_c$ with $\log \lambda$ for the diffusion-reaction reduced impedance #2. $\lambda \to 0 \Rightarrow u_c \approx 1/(2.54 \, \lambda), \lambda \to \infty \Rightarrow u_c \to \sqrt{3}$.

$$ca_{u} = \cos\left(\frac{\arctan(u)}{2}\right), \ sa_{u} = \sin\left(\frac{\arctan(u)}{2}\right)$$

$$\operatorname{Im} Z^{*}(u) = \frac{\coth(\sqrt{\lambda})\left(\sin(2\left(1+u^{2}\right)^{\frac{1}{4}}\sqrt{\lambda}\,sa_{u}\right)ca_{u} - \sinh(2\left(1+u^{2}\right)^{\frac{1}{4}}\sqrt{\lambda}\,ca_{u}\right)sa_{u}\right)}{\left(1+u^{2}\right)^{\frac{1}{4}}\left(\cos(2\left(1+u^{2}\right)^{\frac{1}{4}}\sqrt{\lambda}\,sa_{u}\right) + \cosh(2\left(1+u^{2}\right)^{\frac{1}{4}}\sqrt{\lambda}\,ca_{u})\right)}$$

$32 CHAPTER\ 3.\ GERISCHER\ AND\ DIFFUSION-REACTION\ IMPEDANCE$

Chapter 4

Appendix

34

Table bounded diffusion and diffusion-reaction 4.1 impedance

Table 4	.1: Bounded diffusion and o	diffusion-reaction impedance.
Denomination	Reduced impedance	Nyquist impedance diagram
Warburg	$Z_{\rm W}^* = \frac{1}{\sqrt{\mathrm{i}u}}$	$0 \\ 0 \\ 0$ 1
Bounded diffusion	$Z_{\mathbf{W}_{\delta}}^{*} = \frac{\tanh\sqrt{\mathrm{i}u}}{\sqrt{\mathrm{i}u}}$	$0 \\ 0 \\ 0 \\ 1$
Semi-∞ spherical diffusion	$Z^* = \frac{1}{1 + \sqrt{\mathrm{i}u}}$	$u_{c}=1$ 0 $-\pi/4$ 1
Semi-∞ cylindrical diffusion	$Z^* = \frac{\mathrm{K}_0(\sqrt{\mathrm{i}u})}{\sqrt{\mathrm{i}u}\mathrm{K}_1(\sqrt{\mathrm{i}u})}$	$u_c = 0.542$ $u_c = 0.542$ $u_c = 0.542$
Gerischer	$Z_{\rm G}^* = \frac{1}{\sqrt{1 + \mathrm{i}u}}$	$u_{c} = \sqrt{3}$ $-\pi/4$ 0
Modified Gerischer	$Z_{G\alpha}^* = \frac{1}{\sqrt{1 + (i u)^\alpha}}$	$u_{c} \approx \sqrt{3} / \alpha$ 0 0 1

4.2 Table restricted diffusion impedance

Table 4.2: Restricted diffusion impedance.

Denomination Reduced Nyquist impedance diagram impedance

Restricted linear diffusion

$$Z_{\mathrm{M}\delta,1}^* = \frac{\coth\sqrt{\mathrm{i}\,u}}{\sqrt{\mathrm{i}\,u}}$$

Restricted cylindrical diffusion

$$Z_{\mathrm{M}\delta,2}^* = \frac{\mathrm{I}_0(\sqrt{\mathrm{i}\,u})}{\sqrt{\mathrm{i}\,u}\,\mathrm{I}_1(\sqrt{\mathrm{i}\,u})}$$

Restricted spherical diffusion

$$Z_{\mathrm{M}\delta,3}^* = \frac{1}{-1 + \sqrt{\mathrm{i}\,u}\,\coth\sqrt{\mathrm{i}\,u}}$$

Table 4.3: Restricted diffusion impedance/continued.

Denomination	Reduced impedance	Nyquist impedance diagram
Modified linear restricted diffusion	$Z^* = \frac{\coth(i u)^{\alpha/2}}{(i u)^{\alpha/2}}$	1.2 0.9 $u_c \approx 5.1$ 0.6 $u_c \approx 5.1$ 1/3 0.6 Re Z^*
Anomalous linear restricted diffusion	$Z^* = \frac{\coth(i u)^{\gamma/2}}{(i u)^{1-\gamma/2}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Bibliography

- [1] AOKI, K., TOKUDA, K., AND MATSUDA, H. J. Electroanal. Chem. 146 (1983), 417.
- [2] AOKI, K., TOKUDA, K., AND MATSUDA, H. *J. Electroanal. Chem.* 160 (1984), 33.
- [3] Armstrong, R. D. J. Electroanal. Chem. 198 (1986), 177.
- [4] Armstrong, R. D., Bell, M. F., and Metcalfe, A. A. The A. C. impedance of complex electrochemical reactions. In *Electrochemistry*, vol. 6. The Chemical Society, Burlington House, London, 1978, ch. 3, pp. 98–127.
- [5] BARRAL, G., DIARD, J.-P., AND MONTELLA, C. Étude d'un modèle de réaction électrochimique d'insertion. I-Résolution pour une commande dynamique à petit signal. *Electrochim. Acta* 29 (1984), 239–246.
- [6] BISQUERT, J., AND COMPTE, A. Theory of the electrochemical impedance of anomalous diffusion. *J. Electroanal. Chem.* 499 (2001), 112–120.
- [7] CABANEL, R., BARRAL, G., DIARD, J.-P., B. LE GORREC, AND MONTELLA, C. Determination of the diffusion coefficient of an inserted species by impedance spectroscopy: application to the H/H_xNb₂O₅ system. J. Appl. Electrochem. 23 (1993), 93–97.
- [8] Cabanel, R., Chaussy, J., Mazuer, J., Delabouglise, G., Joubert, J.-C., Barral, G., and Montella, C. Electrochemichromism of $\mathrm{Nb_2O_5}$ thin films obtained by oxydation of magneton-sputerred $\mathrm{NbN_x}$. J. Electrochem. Soc. 137 (1990), 1444–1451.
- [9] CHEN, J. S., DIARD, J.-P., DURAND, R., AND MONTELLA, C. Hydrogen insertion reaction with restricted diffusion condition. I- Potential step-EIS theory and review for the direct insertion mechanism. J. Electroanal. Chem. 406 (1996), 1–13.
- [10] CONTAMIN, O., LEVART, E., MAGNER, C., PARSONS, R., AND SAVY, M. J. Electroanal. Chem. 179 (1984), 41.
- [11] CRANK, J. The Mathematics of Diffusion, 2 ed. Clarendon Press, Oxford, 1975.
- [12] Deslouis, C., Gabrielli, C., and Tribollet, B. An analytical solution of the nonsteady convective diffusion equation for rotating electrodes. J. Electrochem. Soc. 130, 10 (1983), 2044 – 2046.

38 BIBLIOGRAPHY

[13] DIARD, J.-P., B. LE GORREC, AND MONTELLA, C. Cinétique électrochimique. Hermann, Paris, 1996.

- [14] DROSSBACH, P., AND SCHULTZ, J. Electrochim. Acta 11 (1964), 1391.
- [15] GERISCHER, H. Z. Physik. Chem. (Leipzig) 198 (1951), 286.
- [16] GORODYSKII, A., MANZHOS, A., AND BABAK, E. On the method for the calculation of Gerischer impedance and its diagnostic criteria. *Elec*trokhimiya 18 (2011), 1057.
- [17] HAVRILIAK, S., AND NEGAMI, S. A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia 14, 1 (1966), 99 – 117.
- [18] JACOBSEN, T., AND WEST, K. Diffusion impedance in planar cylindrical and spherical symmetry. *Electrochim. Acta* 40 (1995), 255–262.
- [19] KELLER, H. E., AND REINMUTH, W. H. Anal. Chem. 44 (1972), 434.
- [20] Kumar, N. http://impedance-spectroscopy.blogspot.fr/2014/12/mathematica-test.html. last visited 10-2-17.
- [21] LASIA, A. Electrochemical Impedance Spectroscopy and its Applications. In *Modern Aspects of Electrochemistry*, vol. 32. Kluwer Academic/Plenum Publishers, 1999, ch. 2, pp. 143 248.
- [22] Lasia, A., and Grégoire, D. J. Electrochem. Soc. 142 (1995), 3393.
- [23] LEVART, E., AND SCHUHMANN, D. Sur la détermination générale de l'impédance de concentration (diffusion convective et réaction chimique) pour une électrode à disque tournant. J. Electroanal. Chem. 53 (1974), 77–94.
- [24] LEVILLAIN, E., DEMORTIER, A., AND LELIEUR, J. Electrochemical impedance of solutions of polysulfides in liquid ammonia: experimental evidence for the Gerischer impedance. *J. Electroanal. Chem.* 394, 1-2 (1995), 103 115.
- [25] LLOPIS, J., AND COLON, F. In *Proceedings of the Eighth Meeting of the C.I.T.C.E.* (London, 1958), C.I.T.C.E., Butterworths, p. 144.
- [26] Los, P., Rami, A., and Lasia, A. Hydrogen evolution reaction on Ni-Al electrodes. *J. App. Electrochem.* 23 (1993), 135 140.
- [27] MACDONALD, J. R. Impedance spectroscopy. Emphasing solid materials and systems. John Wiley & Sons, 1987.
- [28] Mahon, P. J., and Oldham, K. B. Convolutive modelling of electrochemical processes based on the relationship between the current and the surface concentration. *J. Electroanal. Chem.* 464 (1999), 1–13.
- [29] MICHEL, R., AND MONTELLA, C. Diffusion—convection impedance using an efficient analytical approximation of the mass transfer function for a rotating disk. *Journal of Electroanalytical Chemistry* 736 (2015), 139 146.

BIBLIOGRAPHY 39

[30] Mohamedi, M., Bouteillon, J., and Poignet, J.-C. Electrochemical impedance spectroscopy study of indium couples in LiCl-KCl eutectic at 450°C. *Electrochim. Acta* 41 (1996), 1495–1504.

- [31] Montella, C. Review and theoretical analysis of ac-av methods for the investigation of hydrogen insertion. I. Diffusion formalism. *J. Electroanal. Chem.* 462 (1999), 73 87.
- [32] Montella, C. EIS study of hydrogen insertion under restricted diffusion conditions. I. Two-step insertion reaction. *J. Electroanal. Chem.* 497 (2001), 3–17.
- [33] MONTELLA, C., DIARD, J.-P., AND B. LE GORREC. Exercices de cinétique électrochimique. II. Méthode d'impédance. Hermann, Paris, 2005.
- [34] POTOTSKAYA, V., AND GICHAN, O. On the theory of the generalized Gerischer impedance for an electrode with modeling roughness. *Electrochim. Acta* 235 (2017), 583 594.
- [35] RAISTRICK, D., MACDONALD, J. R., AND FRANCESCHETTI, D. R. Impedance Spectroscopy. Wiley, New York, 1987, p. 60.
- [36] RAMI, A., AND LASIA, A. Kinetics of hydrogen evolution on Ni-Al alloy electrodes. J. App. Electrochem. 22 (1992), 376 382.
- [37] RANDLES, J. E. Kinetics of rapid electrode reactions. *Discuss. Faraday Soc. 1* (1947), 11. 1947, a great year for equivalent circuits, wine (in France) and men (in France).
- [38] ROOT, M. J. Electrochemical impedance of AgO/Zn and HgO/Zn cells. J. Appl. Electrochem. 26 (1996), 547–549.
- [39] SANCHEZ, S., CASSAIGNON, S., VEDEL, J., AND MEIER, H. G. Copper diffusion in solid copper sulfide electrode. *Electrochim. Acta.* 41 (1996), 1331 – 1339.
- [40] SCHUHMANN, D. Compt. rend. 262 (1966), 1125.
- [41] SLUYTERS, J. H. PhD thesis, Utrecht, 1956.
- [42] SLUYTERS-REHBACH, M. Impedance of electrochemical systems: Terminology, nomenclature and representation-Part I: Cells with metal electrodes and liquid solution (IUPAC Recommendations 1994). Pure & Appl. Chem. 66 (1994), 1831–1891.
- [43] SLUYTERS-REHBACH, M., AND SLUYTERS, J. H. Sine wave methods in the study of electrode processes. In *Electroanalytical Chemistry*, A. J. Bard, Ed., vol. 4. Marcel Dekker, Inc., New York, 1970, ch. 1, pp. 1–128.
- [44] SLUYTERS-REHBACH, M., AND SLUYTERS, J. H. In *Comprehensive Treatise of Electrochemistry*, B. C. E. Yeager, J. O'M Bockris and S. S. Eds., Eds., vol. 9. Plenum Press, New York and London, 1984, p. 274.
- [45] Vandernoot, T. J. Limitations in the analysis of ac impedance data with poorly separated faradaic and diffusional processes. *J. Electroanal. Chem.* 300 (1991), 199–210.

40 BIBLIOGRAPHY

[46] Warburg, E. Uber das Verhalten sogenannter unpolarisierbarer Electroden gegen Wechselstrom. Ann. Phys. Chem. 67 (1899), 493–499.

- [47] WOLFRAM, S. Mathematica Version 3. Cambridge University Press, 1996.
- [48] YANG, T.-H., AND PYUN, S.-I. Electrochim. Acta 41 (1996), 843.
- [49] YZERMANS, A. B. PhD thesis, Utrecht, 1965.