Probability

Abhyas Kumar Kanaujia

Contents

1	Prol	Probability 1				
	1.1	Types	1			
		1.1.1 Mutually Exclusive Event	1			
		1.1.2 Non-Mutually Exclusive Event	2			
		1.1.3 Independent Event	2			
		1.1.4 Dependent Event (Conditional Probability)	2			
	1.2	Formulae for Probability	2			
	1.3	Concept of coin	3			
		1.3.1 Coins and $p = q = \frac{1}{2}$	3			
		1.3.2 Denominator	3			
	1.4	Concept of Dice	3			
		1.4.1 Sum Of Dice Problem	3			
		1.4.2 Denominator	5			
	1.5	Concept of Leap Year	5			
	1.6	Concept of Cards	6			
		1.6.1 Denominator	7			
	1.7	Concept of Truth and Lie	7			
	1.8	Concpet of Turn	7			
	1.9	Concept of Lottery	8			
	1.10	Concept of Chess Board	8			
		AP Formula	8			
		Odds	8			
		1.12.1 Odds in Favour	8			
		1.12.2 Odds Against	9			
	1.13	Formula for Binomial Distribution	9			
		Bayes Theorem	9			
		Rinomial Distribution	Q			

iv CONTENTS

Chapter 1

Probability

1.1 Types

- 1. Equally Likey Event
- 2. Mutually Exclusive Event
- 3. Non-Mutually Exclusive Event
- 4. Independent Event
- 5. Dependent Event

1.1.1 Mutually Exclusive Event

No common points between E_1 and E_2

$$E_1 \cap E_2 = \phi \tag{1.1}$$

Formula

$$P(A \cup B) = P(A) + P(B) \tag{1.2}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$P(A \cup B) = P(A \text{ or } B) = P(A + B)$$

Non-Mutually Exclusive Event 1.1.2

At least one common point between E_1 and E_2

$$E_1 \cap E_2 \neq \phi \tag{1.3}$$

Fromula

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{1.4}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$-P(B \cap C) - P(C \cap A) + P(A \cup B \cap C)$$
$$P(A \cup B) = P(A) + P(B) - P(A \cup B)$$

Happening of exactly one out of two event

$$P(\text{One out of two}) = P(A) + P(B) - 2P(A \cap B) \tag{1.5}$$

Independent Event 1.1.3

$$P(A \cap B) = P(A) \cdot P(B) \tag{1.6}$$

Dependent Event (Conditional Probability) 1.1.4

Probability of happening of A based on previous event B.

$$P(A/B) = \frac{P(A \cap B)}{P(B)} \tag{1.7}$$

Similarly,

$$P(B/A) = \frac{P(B \cap A)}{P(A)}$$

Formulae for Probability 1.2

Probability of Happening =
$$\frac{\text{No. of Fav. Cases}}{\text{No. of Total Cases}}$$
 (1.8)

$$P(H) = \frac{\text{Fav. Cases}}{\text{Fav. Cases}}$$
 (1.9)

$$P(H) = \frac{\text{Fav. Cases}}{\text{Fav. Cases} + \text{Unfav. Cases}} \tag{1.9}$$

Probability of not Happening =
$$\frac{\text{No. of Unfav. Cases}}{\text{No. of Total Cases}}$$
 (1.10)

$$P(\overline{H}) = \frac{\text{UnFav. Cases}}{\text{Fav. Cases} + \text{UnFav. Cases}}$$
 (1.11)

$$P(\overline{H}) = \frac{\text{UnFav. Cases}}{\text{Fav. Cases} + \text{UnFav. Cases}}$$
(1.11)

$$P(H) + P(\overline{H}) = 1 \tag{1.12}$$

$$0 \le P(H) \le 1$$

where 0 is impossible event and 1 is sure event.

$$P(\text{At least once Happening}) = 1 - P(\overline{H})$$
 (1.13)

1.3 Concept of coin

Coins and $p = q = \frac{1}{2}$ 1.3.1

n coins thrown at random, getting exactly r successes

$$P(x=r) = \frac{{}^{n}C_{r}}{2^{r}} \tag{1.14}$$

At least one

$$1 - q^n \tag{1.15}$$

1.3.2 Denominator

Total number of outcomes for tossing n coins is

$$2^n \tag{1.16}$$

Either head or tail in each coin.

Concept of Dice 1.4

Sum Of Dice Problem 1.4.1

Two Dice

Figure 1.1: Pyramid of Sum of Two Dice

Three Dice

\mathbf{Sum}	Favourable Cases	Sun
3	1	18
4	3	17
5	6	16
6	10	15
7	15	14
8	21	13
9	25	12
10	27	11

 $Sum = 6 \times 6 \times 6 = 216$

1.4.2 Denominator

Total number of outcomes for rolling n dice is

$$6^n (1.17)$$

Either one of six values in each die.

Common denominators

- 1 die = 6 outcomes
- 2 dice = 36 outcomes
- 3 dice = 216 outcomes

1.5 Concept of Leap Year

Non Leap Year \rightarrow 365 Days \rightarrow 1 odd Days Leap Year \rightarrow 366 Days \rightarrow 2 odd Days

$$P(52 \text{ Sundays}) = 1 \rightarrow \text{Sure event}$$

 $P(54 \text{ Sundays}) = 0 \rightarrow \text{Impossible event}$

Each week day at least 52 times Non Leap Year \rightarrow One week day 53 times, rest 52 times Leap Year \rightarrow 2 week days 53 times, rest 52 times

6

Non Leap Year

Sun/Mon/Tue/Wed/Thur/Fri/Sat = 1

$$\therefore P(53 \text{ Sun}) = \frac{1}{7} \text{ etc.}$$

Leap Year

Sun-Mon/Mon-Tue/Tue-Wed/Wed-Thur/Thur-Fri/Fri-Sat/Sat-Sun = 1

$$\therefore P(53 \text{ Sun}) = \frac{1}{7}$$

$$P(53 \text{ Sun or Mon}) = \frac{3}{7}$$

1.6 Concept of Cards

Total 52 Cards:

- 1. by Color
 - 26 Red (Heart and Diamond)
 - $26~\mathrm{Black}$ (Spade and Club)
- 2. By Suite
 - 13 Hearts (Red)
 - 13 Diamond (Red)
 - 13 Club (Black)
 - 13 Spade (Black)
- 3. By Type in each suite
 - 10 Number Cards $(A, 2, \dots, 10)$
 - 3 Face Cards (Jack(J), Queen(Q), King(K))
 - 4 Winning/Power/Respective Cards (A, J, Q, K)

Value of Power Cards

• $A \rightarrow 1$

7

- $J \rightarrow 11$
- $Q \rightarrow 12$
- $K \rightarrow 13$

1.6.1 Denominator

Total number of ways of drawing 1 card at random = ${}^{52}C_1 = 52$ Total number of ways of drawing 2 cards at random = ${}^{52}C_2 = 1326$

1.7 Concept of Truth and Lie

At least one of A and B speaks the truth = $P(A)P(\overline{B}) + P(\overline{A})P(B)$ Same formula for when they contradict eachother.

1.8 Concpet of Turn

If A and B take turn doing a task then Probability that A will win first is

$$P(A \text{ wins first}) = P(A_1) + P(\overline{A_1})P(\overline{B_1})P(A_2) + P(\overline{A_1})P(\overline{B_1})P(\overline{A_2})P(\overline{B_2})P(A_3) + \dots$$

Use infintie GP.

General Formula for n people

$$P(A) = \frac{2^{n-1}}{2^n - 1} \tag{1.18}$$

$$P(B) = \frac{P(A)}{2} \tag{1.19}$$

$$P(C) = \frac{P(B)}{2} \tag{1.20}$$

until n-th Person.

See notes for Map making.

1.9 Concept of Lottery

See notes

1.10 Concept of Chess Board

See notes

Memorize Answers

Two squares are choosen at random on a chess-board, the Probability that they have a side in common is $\frac{1}{18}$

1.11 AP Formula

See notes.

Out of (2n+1)

$$P(AP) = \frac{3n}{4n^2 - 1} \tag{1.21}$$

Out of (2n+2)

$$P(AP) = \frac{3}{4n+2} \tag{1.22}$$

1.12 Odds

These formulae are derived from

$$P(H) = \frac{FC}{FC + UFC}$$
$$P(\overline{H}) = \frac{UFC}{FC + UFC}$$

1.12.1 Odds in Favour

Odds in Favour of an event =
$$\frac{\text{Num. of Fav. Cases}}{\text{Num. of Unfav Cases}}$$
 (1.23)

1.12.2 Odds Against

Odds in Favour of an event =
$$\frac{\text{Num. of Unfav. Cases}}{\text{Num. of Fav Cases}}$$
 (1.24)

1.13 Formula for Binomial Distribution

Only applicable for Independent event.

From n trials, r success, p Probability of happening and q Probability of not happening then

$$P(X = r) = {}^{n}C_{r}q^{n-r}p^{r} (1.25)$$

This is obtianed from $(q+p)^n$

1.14 Bayes Theorem

Probability of occurrence of an event related to any condition.

$$P(A/B) = \frac{P(A)P(B/A)}{P(B)}$$
 (1.26)

1.15 Binomial Distribution

$$(q+p)^n (1.27)$$

$$P(X = r) = {}^{n}C_{r}q^{n-r}p^{r}$$
(1.28)

$$Mean = np (1.29)$$

$$S.D = \sigma = npq \tag{1.30}$$

$$Var = \sigma^2 = \sqrt{npq} \tag{1.31}$$