Дифференциальные уравнения

Гуревич

Содержание

1	Однородное уравнение	2
2	Обобщенно-однородное уравнение	3
3	Уравнение в полных дифференциалах 3.0.1 Геометрический смысл решения уравнения в полных	3
	дифференциалах	4
4	Уравнения и ряды Тейлора	6
5	Практика	6
6	Численные методы	7
7	Существование и единственность решения	8

1 Однородное уравнение

$$\frac{dx}{dt} = f(\frac{x}{t})$$

Как искать его решение? Заменой $u(t) = \frac{x}{t}$. Тогда уравнение перепишется в виде $\frac{dx}{dt} = \frac{du}{dt}t + u$. В нем переемные разделяются: $\frac{du}{f(u)-u} = \frac{dt}{t}$. Итак, типы уравнений:

- 1. С разделяющимися переменными
- 2. Приводящиеся к виду $\frac{dx}{dt} = f(ax + bx + c)$
- 3. Првиодящиеся к виду $(a_1x + b_1t + c_1)dx + (a_2x + b_2x + c_2)dt = 0$

Подумаем, можно ли это последнее привести к однородному. Добавим условие $c_1^2+c_2^2\neq 0$ (иначе система уже однородна). В общем, если эти две прямые пересекаются в точке (x_*,t_*) , то можно ввести новые переменные, передвинув эту точку в начало координат: $x\mapsto x-x_*,\ t\mapsto t-t_*$. Тогда система перепишется без $c_1,\ c_2,\$ и таким образом будет однородной. Если прямые не пересекаются, то прямые лиюо совпадают, либо параллельны. Тогда введем замену (для любой прямой) $z(t)=a_1x+b_1t+c_1$. Так как прямые параллельны, то $\frac{a_1}{a_2}=\frac{b_1}{b_2}=k$, значит, мы можем выразить вторую прямую: $a_2x+b_2t+c_2=\frac{1}{k}(a_1x+b_1t+kc_2)=\frac{1}{k}(z-c_1+kc_2)$. Уравнение приводится к виду $z(t)dx+\frac{1}{k}(z-c_1+kc_2)dt=0$. Но у нас все равно многовато переменны. Выразим dx через z:

$$z(\frac{dz - b_1 dt}{a_1}) + \frac{1}{k}(z - c_1 + kc_2) = 0$$

Умножим на a_1k :

$$kzdz = kb_1zdt - a_1zdt - a_1(kc_2 - c_1)dt$$

Домножим на $\frac{1}{kzdt}$:

$$\frac{dz}{dt} = ((b_1 - \frac{a_1}{k})z - a_1(kc_2 - c_1))\frac{1}{z}$$

Finally, уравнение с разделяющимися переменными! ПОБЕДА!

2 Обобщенно-однородное уравнение

Определение 1 Обобщенно-однородное уравнение - уравнение вида

$$M(x,t)dx + N(x,t)dt = 0$$

причем M, N - такие. что $\exists n \in \mathbb{R}$: если $x = z^n(t)$, то уравнение $M(z^n, t)nz^{n-1}dz + N(z^n, t)dt = 0$ однородно.

Пример. Испортим однородное уравнения, чтобы сделать его обощеннооднородным. Роман придумал, чел харош.

Сведем и этого зверя к разделяющимся переменным.

$$\begin{cases} n(kz)^{n-1}M((kz)^n, kt) = k^m M(z^n, t)nz^{n-1} \\ N((kz)^n, kt) = k^m N(z^n, t) \end{cases}$$

3 Уравнение в полных дифференциалах

Напомним, что полный дифференциал dF(x,y) C^1 -гладкой функции равен $\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy$.

Определение 2 Уравнение в полных дифференциалах - уравнение вида

$$dF(x,y) = 0, F \in C^2(\Omega), \Omega \subset \mathbb{R}^2$$

Если мы знаем саму функцию, то решение находится мгновенно: dF(x,y) = const. Правда, оно неявное. Выразим y = y(x) по теореме о неявной функции.

Пример. $x^2 \sin t dt + 2x \cos t dx = 0$

Уравнение является уравнение в полных дифференциалах, если существуют такие функции, что $M=\frac{\partial F}{\partial x},~N=\frac{\partial F}{\partial y}$

Теорема 1 (необходимое условие представления в полных дифференциалах)

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial u}$$

Достаточное условие - $M_y = N_x$ в односвязной области

Доказательство. □

Как подбирать такие функции? Мы знаем, что $\frac{\partial F}{\partial x} = M(x,y)$. Проинтегрируем это равенство по x. Имеем $F = \int M(x,y)dx + \varphi(y)$. Проделаем то же самое по переменной y: $\frac{\partial F}{\partial y} = \frac{\partial}{\partial y}(\int M(x,y)dx) + \varphi' = N(x,y)$, откуда $\varphi = \int \left(N - \frac{\partial}{\partial y}(\int Mdx)\right)dy$. Чтобы проверить себя при решении, помним, что φ не зависит от x! Итак,

$$F = \int M(x,y)dx + \int \left(N - \frac{\partial}{\partial y} \left(\int Mdx\right)\right) dy$$

3.0.1 Геометрический смысл решения уравнения в полных дифференциалах

Так как z=z(x,y) - какая-то поверхность, то запись z=const - это линии уровня, которые можно спроецировать на плокость переменных и получить интегральные кривые.

Пример (модель Лотки-Вольтерра). Пусть x(t) - плотность карасей, y(t) - плотность щук в некотором пруду. Щуки сдерживают рост карасей, но от количества карасей зависит также и количество щук. Запишем систему:

$$\begin{cases} \dot{x} = x(a - by) \\ \dot{y} = y(-c + ex) \end{cases}$$

Лотка придумал эту систему для биоценозов, а Вольтерра - для химических реакций.

Давайте решим эту систему. Её расширенное фазовое пространство, вообще говоря, трехмерное, поэтому будем рассматривать фазовые кривые - проекции интегральных на плоскость независимых параметров. Они ориентированы в направлении роста параметра t. Найдем эти кривые, найдя решение уравнения $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-cy+exy}{ax-bxy}$. Переменные разделяются:

$$\frac{(a-by)dy}{y} = \frac{(-c+ex)dx}{x}$$

Представим его в полных дифференциалах:

$$d\left(a\ln y - by + c\ln x - ex\right) = 0$$

Значит, решение имеет вид $a \ln y - by + c \ln x - ex = h = const$. Выглядит очень сложно, но давайте попробуем построить изолинии. Введм функцию $F = \ln (y^a x^c) - by - ex$, и поищем её изолинии. Сначала найдем критические точки: $(x_*, y_*) = (\frac{c}{e}, \frac{a}{b})$ (получилась единственная точка). Определим тип критической точки (составим гессиан, посчитаем его знакоопределенность); получим, что это точка максимума. Линии уровня - какие-то окружности/эллипсы.

Упражнение. Доказать, что фазовые кривые замкнуты.

Теперь нам надо понять, куда закручиваются эти линии, как они ориентированы. Они закручиваются против часовой стрелки вокруг критической точки, кстати, область решения - первая координатная четверть. Чтобы избежать проблем с дискретностью, наши переменные - это плотность населения пруда.

Определение 3 Автономное $\mathcal{A}Y$ - дифференциальное уравнение, правая часть которого не зависит от времени.

Автономные уравнения не могут быть динамическими системами, так как они не зависят от времени, но можно искусственно этого достичь.

Пример. Нелинейный консервативный осциллятор. Рассмотрим маятник с координатами φ - отклонение от положения равновесия. Рассмотрим плоские колебания маятника массой m и длиной l. При повороте на малый угол движение можно представить как прямолинейное движение по касательной. Запишем второй закон Ньютона в проекции на касательную:

$$\vec{\tau}: m\frac{d^2x}{dt^2} = -mg\sin\varphi$$

Пусть Δx - длина дуги окружности, примерно равная малой части касательной. Тогда $\Delta x = l\Delta \varphi + o(\Delta \varphi)$. Получим уравнение $\frac{fx}{dt} = l\frac{d\varphi}{dt}$. Finally,

$$ml\frac{d^2\varphi}{dt^2} = -mg\sin\varphi$$

- уравнение колебания маятника. Оно нелинейное из-за синуса. Оно имеет порядок 2, значит, нам надо зафиксировать начальные условия: $\varphi(0)$, $\dot{\varphi}(0)$. Уравнение тогда превратится в систему

$$\begin{cases} \dot{\varphi} = \psi \\ \dot{\psi} = -\omega^2 \sin \varphi \end{cases}$$

Кстати, если мы напишем функцию Лагранжа и напишем уравнение Лагранжа для него, то получим это же уравнение.

Начнем решение. Сделаем замену $\dot{\varphi} = \psi$. Теперь введем фазовое пространство угол-скорость таким образом, чтобы близкие точки были близки. В угловых координатах мы склеим точки $\pi, -\pi$ у координат углов (точнее, создадим факторпространство по отношению $(\varphi, \psi) \sim (\varphi + 2\pi k, \psi)$). Получим, что фазовое пространство - цилиндр. Любая замкнутая кривая - это некоторая траектория (вообще говоря, определляемая уравнением). На цилиндре есть два типа замкнутых кривых - стягиваемые в точку и нестягиваемые. Вторые отвечают за движение через верх.

Продолжаем решение. Из системы имеем $\frac{d\psi}{d\varphi} = -\frac{\omega^2 \sin \varphi}{\psi}$. Полная энергия равна константе: $\frac{m\psi^2}{2} + \frac{mg}{l}(1 - \cos \varphi) = h$. Это мы вывели из формы уранвения в полных диференциалах. В общем, решаем. Получим

$$\varphi = \pm \sqrt{\frac{2}{m} \left(h - \frac{mg}{l} (1 - \cos \varphi) \right)}$$

Нарисуем фазовые траектории, и ещё функцию $F(\varphi) = \frac{mg}{l}(1-\cos\varphi)$. Уровни постоянной энергии - одномерные торы. Как и обычно с функцией Гамильтона. Из анализа фазовых траекторий можно выяснить, что период колебаний растет по мере увеличения энергии. Также есть два состояния равновесия: верхнее (неустойчивое) и нижнее (устойчивое).

4 Уравнения и ряды Тейлора

Пусть $\frac{dx}{dt} = f(t,x)$. Рассмотрим $x(t_0) = x_0$. Разложим в ряд Тейлора: $x(t) = x(t_0) + \frac{dx}{dt}(t_0)(t-t_0) + o(t-t_0)$. Отбросив члены высшего порядка (прямо как топовые физики), получим приближенное решение. Приближенные решение можно итерировать, и это будет широко известный **метод Эйлера** (первого порядка). $t_{k+1} = t_k + h$, $x_{k+1} = x_k + f(t_k, x_k)h$

5 Практика

Пример (№111). $(y+\sqrt{xy})dx=xdy$. Уравнение однородно (проверим умножением на k). Значит, делаем замену $u(x)=\frac{y}{x}$. Имеем $dy=u\cdot dx+du\cdot x$. Переменные разделяются: $\frac{dx}{x}=\frac{du}{\sqrt{u}}$

Пример (№113). (2x - 4y + 6)dx + (x + y - 3)dy. Переносим начало координат в точку пересечения.

Пример (№126). $y' = y^2 - \frac{2}{x^2}$. Это - обобщенно-однородное уравнение, то есть приводится к однородному заменой $y = z^m(x)$. $y' = mz^{m-1}z$ Далее $mz^{m-1}z = z^{2m} - \frac{2}{x^2}$ Теперь уравнение однородно. Введем замену $\frac{z}{x} = u$, z = ux. Получим $u'x + u = -1 + 2u^2$

Пример (№128). $\frac{2}{3}xyy' = \sqrt{x^6 - y^4} + y^2$. Пусть $y = z^m$. Идея: сделать так, чтобы под корнем степень у x и y была одинаковой.

Пример (№) $2xydx + (x^2 - y^2)dy = 0$. Подберем функцию, полным дифференицалом которого является это выражение; получим $F(x,y) = x^2y - \frac{1}{3}y^3$. Решние: F = C = const

Пример (№192). $(1 + y^2 \sin 2x) dx - 2y \cos^2 x dy$. Мы должны показать, что вторые производные равны. Тогда это значит, что $F_{xy} = F_{yx}$, и такая функция вообще существует на некотором диске (где правая часть не обращается в ноль). Интегируем два раза, и найдем эту функцию: $F(x,y) = x - y^2 \frac{1}{2} \cos 2x - \frac{y^2}{2} + C_0$. Итак, ответ: F = constПример (№202). $y^2 dx + (xy + \operatorname{tg} xy) dy = 0$. Является ли однородным, в

Пример (№202). $y^2dx + (xy + \operatorname{tg} xy)dy = 0$. Является ли однородным, в полных дифференциалах? Давайте раскроем скобки и сгруппируем: $y(ydx + xdy) + \operatorname{tg} xydy$. Это то же, что и $\frac{d(xy)}{\operatorname{tg} xy} + \frac{dy}{y} = 0$. Домножим на $\frac{1}{y\operatorname{tg} xy}$ и хаваем уравнение в полных дифференицалах бесплатно. То, на что домножили - интегрирующий множитель.

6 Численные методы

Сегодня поговорим о численных методах решения дифференциальных уравнений. Именно, задача Коши

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

имеет решение какое-то. Поскольку

$$x_{k+1} = x(t_{k+1}) = x(t_k + h) = x(t_k) + \frac{dx}{dt}|_{t_k} h + \frac{d^2x}{dt^2}|_{t_k} \frac{h^2}{2} + o(h^3)$$

Если мы рассмотрим конечные приращения h, то получим итеративную формулу

$$x_{k+1} = x_k + f(t_k, x_k)h$$

- метод Эйлера первого порядка, основанный на разложении функции в ряд Тейлора и отбрасывании членов высшего порядка. Таким образом, можно рассмотреть более точные методы, основынные на использовании членов высшего пордяка. Например, $\frac{d^2x}{dx} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{f(t_k + h, x_k + f(t_k, x_k)h) - f(t_k, x_k)}{h}$. Из этого мы получим метод Штермера. И так далее. Метод Рунге-Кутты - 4го порядка.

Пример. Супер-простая функция:

$$\begin{cases} \frac{dx}{dt} = x\\ x(0) = 1 \end{cases}$$

Это - определение обычной экспоненты. Решим методом Эйлера. Возьмем $t_1=h$. Далее, $x_1=1+f(t_0,x_0)\cdot h=1+h$. Далее, $t_2=t_1+h=2h$, $x_2=x_1+f(t_1,x_1)\cdot h=1+h+(1+h)h=(1+h)^2$. В общем виде, в точке $x_{k+1}=x_k(1+h)=(1+h)^{k+1}$ функция будет принимать значение $x_n=(1+h)^n=\left(1+\frac{T}{n}\right)^n\to e^T$. Неслучайно тут вылез замечательный предел - определение экспоненты.

7 Существование и единственность решения

Эту задачу можно решить с помощью ф.п. Пикара. Доспустим, у нас есть решение задачи Коши в виде непреывной функции f(t,x). Тогда мы можем проинтегрировать:

$$\int \frac{dx(t)}{dt} \equiv \int f(t, x)dt$$

Справа стоит набор первообразных:

$$x \equiv x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

Теорема 2 (лемма)

Задача Коши эквивалента решению интегрального уравнения

Доказательство. Пусть x(t) - решение задачи Коши. Тогда при подставновке в уравнение имеем

$$\frac{dx(t)}{dt} \equiv f(t, x(t))$$

Интегрируя, получим $x(t) = x_0 + \int\limits_{t_0}^t f(\tau, x(\tau)) d\tau$ - решение интегрального уравнения.

Обратно, пусть x(t) - непрерывное решение интегрального уравнения. Тогда, взяв производную, получим

$$\frac{dx}{dt} = f(t, x(t))$$

Подставив $t=t_0$ в интегральное уравнение, получим $x(t_0)=x_0$, т.е. x(t) - решение д.у. \square

На самом деле, это обман, так как мы прсото записали в другом виде все так же не решаемую задачу. Запишем последовательность Пикара $\{x_k(t)\}$:

 $x_0(t) = x_0, x_{k+1}(t) = x_0 + \int_{t_0}^t f(\tau, x_k(\tau)) d\tau$. Теперь нам надо бы доказать, что эта последовательность сходится к решению. Хм, где же нас обманули...

Теорема 3 (Коши-Пикара, или о существовании и единственности задачи Коши)

Пусть f(t,x), $\frac{\partial f}{\partial x}$ непрерывны в области $D \subset \mathbb{R}^2$. Тогда для любой точки $(t_0,x_0) \in D$ существует решение x(t) задачи Коши, определенное на отрезке $I_{\delta} = [t_0 - \delta, t_o + \delta], \delta = \frac{r}{\sqrt{1+m^2}}$, где r > 0 такое, что $B_r \subset D$ (замкнутый шар), $m = \max|f(t,x)|$, $(t,x) \in B_r$. Кроме того, если $\tilde{x}(t)$ другое решение задачи Коши, определенный на интервале $[t_0 - \tilde{\delta}, t_0 + \tilde{\delta}]$, то существует такое $\delta^* \in (0, \min(\delta, \tilde{\delta}))$, что $x(t) = \tilde{x}(t)$ для $t \in [t_0 - \delta^*, \delta^*]$.

Доказательство. Докажем, что последовательность Пикара корректно определена и её предел - непрерывная функция. Именно, каждый раз, когда мы вычисляем x_k , она непрерывна и не выходит за пределы области D, и поэтому снова интегрируема.

Рассмотрим

$$|x_1(t) - x_0(t)| = \left| \int_{t_0}^t f(\tau, x_0) d\tau \right| \le \left| \int_{t_0}^t m d\tau \right| \le m|t - t_0| \le m \frac{r}{\sqrt{1 + m^2}} \le r$$

- значит, график функции лежит в B_r , пока $t \in I_\delta$. По индукции доказывается, что $|x_k-x_0|\leqslant r$, значит, все эти приближения лежат в шаре и непрерывны. Потому что у первообразной есть производная, значит она

непрерывна. Итак, последовательность Пикара корректно определена и её члены - непрерывные функции.

Докажем, что последовательность сходится. Рассмотрим ряд $x_0(t)+x_1(t)-x_0(t)+x_2(t)-x_1(t)+...+x_k(t)-x_{k-1}(t)+...$ Частичные суммы S_n этого ряда сумма этого ряда как раз равны x_n . Если мы докажем, что если ряд сходится равномерно, то и последовтаельность Пиакара имеет непрерывный предел. Имеем $|f(t,x)-f(t,\tilde{)}| \leq L|\tilde{x}-x|$, где $L=\max\left|\frac{\partial f}{\partial x}(t,x)\right|$, $(t,x)\in B_r$. Итак, $|x_1-x_0| \leq m|t-t_0|$. Далее $|x_2-x_1| \leq \int\limits_{t_0}^t (f(\tau,x_1(\tau))-f(\tau,x_0))d\tau\right| \leq \left|\int\limits_{t_0}^t |f(\tau,x_1(\tau))-f(\tau,x_0)|d\tau\right| \leq \left|\int\limits_{t_0}^t L|x_2(\tau)-x_1|d\tau\right| \leq L\left|\int\limits_{t_0}^t \frac{Lm|x_2(\tau)-x_1|^2}{2}d\tau\right| \leq \frac{L^3m|t-t_0|^3}{6L}$. То есть, $|x_n-x_{n-1}| \leq \frac{m}{L}\frac{L^n(t-t_0)^n}{n!} \leq \frac{m}{L}\frac{L^n\delta^n}{n!}$. Где-то тут мы ссылаемся на теорему Лагранжа о среднем. Итак, мы оценили ряд из модулей сходящимся числовым рядом, следовтаельно, по признаку Вейерштрасса сумма ряда сходится равномерно:

$$\frac{m}{L} \sum_{n=1}^{\infty} \frac{L^n \delta^n}{n!} \Longrightarrow \frac{m}{L} \left(e^{L\delta} - 1 \right)$$

Обозначим $\lim_{n\to\infty} x_n = x^*(t)$. Тогда $|x^*(t) - x_k(t)| \to 0$. Теперь рассмотрим разницу $\left|\int\limits_{t_0}^t f(\tau, x^*(\tau))d\tau - \int\limits_{t_0}^t f(\tau, x_k(\tau))d\tau\right| \leqslant \int\limits_{t_0}^t L|x^* - x_k|d\tau$. Правая часть стремится к нулю, значит, и левая тоже. Поэтому, переходя к пределу по t при $k\to\infty$ в формуле $x_{k+1}(t)=x_0+\int\limits_{t_0}^t f(\tau, x_k(\tau))d\tau$, имеем $x^*=x_0+\int\limits_{t_0}^t f(\tau, x^*(\tau))d\tau$, то есть x^* - решение интегрального уравнения, а значит и задачи Коши.

Теперь докажем единственность. Пусть на интервале I_{δ}^* определено два решения, x и x^* . Тогда $|x^*(t)-x(t)|\leqslant \left|\int\limits_{t_0}^t f(\tau,x^*(\tau))-f(\tau,x(\tau)))d\tau\right|\leqslant L\int\limits_{t_0}^t |x^*(\tau)-x(\tau)|d\tau$. Пусть $t>t_0$. Положим $\Delta=\int\limits_{t_0}^t |x^*(\tau)-x(\tau)|d\tau$, тогда $\frac{d\Delta}{dt}\leqslant L\Delta$; $\Delta(t_2)\geqslant \Delta(t_2)$ для всех $t_2>t_2\geqslant t_0$. Кстати, $\frac{d\Delta}{dt}\leqslant L\Delta$ Значит,

существует инфинум $T=\inf\{t\geqslant t_0\}$. Рассмотрим случай, когда $T=t_0$ (самая жесткая оценка). Если это так, то пусть $(t_0+\varepsilon)=\Delta_\varepsilon$. Тогда $\Delta_\varepsilon>0$. Поставим задачу Коши:

$$\begin{cases} \frac{d\Delta}{dt} = L\Delta \\ \Delta(t_0 + \varepsilon) = \Delta_{\varepsilon} \end{cases}$$

Отсюда $\Delta = \Delta_{\varepsilon}e^{L(t-t_0-\varepsilon)}$. Для всех $t > t_0$, $\Delta(t) \leqslant \Delta_{\varepsilon}e^{L(t-t_0-\varepsilon)}$. Устремим $\varepsilon \to 0$. Тогда и $\Delta(t) = 0$ в пределе. Рассуждение при $t < t_0$ аналогично. \square Пример. Что можно сказать о решении задачи Коши для

$$\begin{cases} \frac{dx}{dt} = |x| \\ x(0) = x_0 \end{cases}$$

Теорема Коши-Пикара не работает в нуле, так как там функция не дифференцируема. Но не обманывают ли нас? $||x_1| - |x_2|| \le 1 \cdot |x_1 - x_2|$. Модуль - липшицева функция, поэтому условия теоремы работают. А если

$$\begin{cases} \frac{dx}{dt} = \sqrt{x} \\ x(0) = x_0 \end{cases}$$

Производная растет неограниченно, функция не липшецева: $|\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{\sqrt{x_1} + \sqrt{x_2}} \leqslant L|x_1 - x_2$ - при приближении к нулю $L \geqslant \frac{1}{\sqrt{x_1} + \sqrt{x_2}}$. Но это только в нуле. А не в нуле можно \Rightarrow решение сущетсвует и единственно. В общем, давайте зарешаем. Получаем $x = \frac{(t+C)^2}{4}, \ t+C>0$. По условию x(0)=0, откуда $x = \frac{t^2}{2}$. Но ведь ещё есть куча решений типа $x(t_0)=0, \ x=\frac{(t-t_0)^2}{4}, \$ и даже x=0.

Определение 4 Функция $\tilde{x}(t)$ определенная на интервале (a,b), называется продолжением решения вправо, если она совпадает c x(t) на некотором подинтервале.

Теорема 4 (о продолжении решения)

Пусть дано уравнение $\frac{dx}{dt} = f(t,x)$, $x(t_0) = x_0$, функции f(t,x), $\frac{\partial f}{\partial x}$ непрерывны на компакте $D \subset \mathbb{R}^2$ (причем в D лежит как минимум 1 шар), $x(t,t_0,x_0)$ - решение задачи Коши для $(t_0,x_0) \in D$. Тогда существует решение, определенное на отрезке [a,b], причем $(a,\tilde{x}(a,t_0,x_0)),(b,\tilde{x}(b,t_0,x_0)) \in D$. Иначе говоря, решение продолжается на границу компакта.

Доказательство. В силу теоремы о существовании и единственности решения, функция (x, t_0, x_0) определена на отрезке $[t_0 - \delta_0, t_0 + \delta_0]$, где $\delta_0 = \frac{r_0}{\sqrt{1+m^2}} = \frac{\rho(P_1, \partial D)}{\sqrt{1+m^2}}$.

Положим $t_1 = t_0 + \delta_0$, $x_1 = x(t_1, t_0, x_0), p_1(t_1, x_1)$. определим

$$\tilde{x}(t, t_0, x_0) = \begin{cases} x(t, t_0, x_0), & t \in [t_0 - \delta_0, t_0 + \delta_0]; \\ x(t, t_1, x_1), & t \in [t_1 - \delta_1, t_1 + \delta_1]; \end{cases}$$

Если (x_1, t_1) лежит на границе, то все хорошо. Если нет, то будем увеличивать шар, пока не достигнем границы множества (в силу компактности это всегда можно сделать).

Возможен вариант, когда последовательность δ_i стремится к нулю и сама не затрагивает границу компакта. Рассмотрим функцию, определенную на $t \in [t_0 - \delta_0, t + k + \delta_k]$. Последовательность t_k невозрастающая и ограниченная, поэтому существует и предел b. Функция \tilde{x} определена на объединении интервало $\bigcup_k [t_0 - \delta_0, t_k + \delta_k] = [t_0 - \delta_0, b)$. Воспользуемся непрерывностью функций: пусть $0 < h \ll 1$. Тогда $\forall \alpha, \beta \in (b - h, b): |\tilde{x}(\alpha, t_0, x_0) - \tilde{x}(\beta, t_0, x_0)| \leqslant m|\alpha - \beta| < mh$. Последовательность \tilde{x}_k фундаментальна, значит по критерию Коши у неё есть конечный предел. Положим этот предел значением функции в точке b: $x^* = \tilde{x}(b)$. Тогда функция непрерывна на $[t_0 - \delta_0, b]$. Вспомним про интегральное уравнение: заметим, что $\tilde{x}(x)$ удовлетворяет интегральному уравнению на интервале. Функция, дополненная на конце интервала, непрерывна и также удовлетворяет интегральному уравнению, поэтому в ней есть и производная (по эквивалентности определений).

Покажем, что точка b лежит на границе области D. Предположим противное, тогда она лежит во внутренности D. Тогда она лежит в нем вместе с некоторой 2ε -окрестностью с центром в $p^* = (t^*, x^*)$. Так как точки $p \to p^*$, то все $p_i, i > k$ лежат в ε -шаре точки p^* . Тогда расстояние до границы больше ε , и мы получаем противоречие с тем, что ряд из δ_k сходится и также удален от границы больше чем на ε . Значит, $p^* \in \partial D$. \square

Следствие. Пусть $D \subset \mathbb{R}^2$ - такое неограниченное замкнтуое подмножество плоскости, что для любых $(a,b): D_{a,b} = D \cap \{(t,x): a \leqslant t \leqslant b\}$ компактно, функции $f(t,x), \frac{\partial f}{\partial x}$ непрерывны на D. Тогда решение задачи Коши продолжается либо неограниченно, либо до выхода на границу D. Доказать самостоятельно.

Пример. $x' = t^3 - x^3$. Показать, что любое решение этого уравнения продолжается неограниченно вправо. Нарисуем изоклину x = t. Заметим, что если $t_0 > x_0$, то $x(t, t_0, x_0) \in D$.. Тогда в силу следствия решение продолжается на границу, на граница не достигается, то есть

Пример. $x' = 1 + x^2$. Его решение - x = tg(x + C), $C = arctg(x_0) - t_0$, поэтому его нельзя продолжить до бесконечности, так как каждое решение определено на конечном интервале $(C_0 - \frac{\pi}{2}, C_0 + \frac{\pi}{2})$.

Практика.

Пример (№199). $y^2 dx - (xy - x^3) dy = 0$. Раскроем скобки и перегруппируем слагаемые: $y(ydx - xdy) - x^3dy = 0$. Поделим все на x^2 , тогда получим: $-d\left(\frac{x}{y} - \frac{x}{y}dy = 0\right)$. Домножая на $-\frac{y}{x}$, получаем $d\left(\frac{1}{2}\left(\frac{y}{x}\right)^2\right) + dy = 0$. Итак, $d\left(\frac{1}{2}\left(\frac{y}{x}\right)^2 + y\right) = 0$ В общем, мы нашли интегрирующий множитель методом внимательного взгляда. Ответ: $\frac{1}{2} \left(\frac{y}{x} \right)^2 + y = const.$ Пример (№202). $d(\ln|\sin(xy)|) + \ln|y| = 0.$

Определение 5 Интегрирующий множитель - такая функция $\mu(z(x,y))$, что при домножении на неё уравнение становится уравнением в полных дифференциалах.

Тогда $\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}$. То есть $\frac{\partial\mu}{\partial z}\frac{\partial z}{\partial y}M=$ Получаем, что $\frac{d\mu}{\mu}=\frac{N_x-M_y}{z_yM-z_xN}=P(z)$. То есть, если интегрирующий множитель существует, то он удовлетворяет этому условию. Значит, $\mu=e^{\int P(z)dz}$. Пример (№212). $(2x^2y^3-1)ydx+(4x^2y^3-1)xdx=0$. Пусть z=xy.

Найдем интегрирующий множитель: $\mu = \frac{1}{(xy)^2}$.