21-484 Notes JD Nir jnir@andrew.cmu.edu January 25, 2012

Def. (p. 15-16) Let G be a graph and let u, v be two vertices of G.

- The <u>distance</u> between u and b is the length of a shortest path connecting u and v, if such a path exists. If there is no u-v path in G, then the distance is undefinted (sometimes it is ∞). notation: dist $_G(u,v)$ or dist $_G(u,v)$ or $_G(u,v)$ or $_G(u,v)$
- The maximal distance between any two verticies in G is the diameter of G, denoted diam(G)

Example: Seen: If G has n vertices and for every $u, v \in V(G)$ we have

$$\deg(u) + \deg(v) \ge n - 1$$

then G is connected.

In fact, $diam(G) \leq 2$.

<u>Proof:</u> Same proof: need to show: $\forall u, v \in V(G).\mathrm{dist}(u,v) \leq 2$

- $u = v \checkmark$
- $uv \in E(G) \checkmark$
- $uv \notin E(G)$ we've seen that this implies $\exists w \in V(G).uw, wv \in E(G)$ \checkmark

<u>Def:</u> (p. 43): Given a graph G with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$, the <u>degree sequence</u> of G to be $deg(v_1), deg(v_2), \dots, deg(v_n)$.

(p.31): an isolated vertex is a vertex of degree zero.

an end point (or a <u>leaf</u>) is a vertex of degree one.

the minimal degree of G is $\min_{v \in V(G)} \deg(v)$, denoted by $\delta(G)$.

the <u>maximal degree</u> of G is $\max_{v \in V(G)} \deg(v)$, denoted by $\Delta(G)$.

Claim: The degree sequence of any nontrivial graph has repetitions.

<u>Proof:</u> Let G be a graph with n vertices. Then $\delta(G) \geq 0$ and $\Delta(G) \leq n-1$.

- notice that if G has an isolated vertex, then $\Delta(G) \leq n-2$
- If $\Delta(G) = n 1$, then G does not contain an isolated vertex $(\delta(G) \ge 1)$.
- \Rightarrow For any graph $\Delta(G) \delta(G) \leq n 2$, so the range of possible degrees is of size $\leq n 1$.
- -Pigeon-Hole Principle

<u>Def.</u> (p. 43): A finite sequence of non-negative integers is called <u>graphical</u> if it is the degree sequence of some graph.

21-484 Graph Theory

Example: (2.9): Which of the following is graphical?

1. 3,3,2,2,1,1

- 2. 6,5,5,4,3,3,3,2,2 X sum of the degrees is odd
- 3. $7,6,4,4,3,3,3 \text{ X max degree} \leq n-1$
- 4. 3,3,3,1 X Each of the verticies of degree 3 must be connected to each other vertex, but the vertex of degree 1 can only be connected to one of them.

<u>Lemma:</u> (Theorem 2.10): A non-increasing sequence $S = d_1, d_2, \ldots, d_n$ $(n \ge 2)$ of non-negative integers, where $d_1 \ge 1$ is graphical if and only if the sequence

$$S_1 = d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n$$

is graphical.

<u>Proof:</u> If S_1 is graphical, then there is a graph G with degree sequence s_1 . Assume that $V(G) = \{v_2, \ldots, v_n\}$ and that $\deg(v_i) = \{ \begin{array}{cc} d_i - 1 & 2 \leq i \leq d_1 + 1 \\ d_i & d_1 + 2 \leq i \leq n \end{array} \}$

Construct G' by adding a vertex v_1 and the edges

$$v_i v_j \ 2 \le j \le d_1 + 1$$

Assume that s is graphical.

If G has a vertex such that $d(v_1) = d_1$ and the degrees of the neighbors of v_1 are d_2, \ldots, d_{d_1+1} , then removing v_1 yields a graph with degree sequene s_1 .

*Assume that there is no G such that G has a vertex v of degree d_1 and the degrees of the neighbors of v are d_2, \ldots, d_{d_1+1} .

Let G be a graph such that

- the degree sequence of G is S
- the maximal sum (over verticies of degree d_1) of the degrees of neighbors of a vertex of degree d_1 is maximal (over all graphs with degree sequence S).

Let $V(G) = \{v_1, \dots, v_n\}$, and assume that $\deg(v_1) = d_1$ and

 $\sum_{u \in N(v_1)} \deg(u) \text{ is maximal (over all such graphs and vertices of degree } d_1)$

- by (*) the degrees of the neighbors of v_1 are $\underline{\text{not}}\ d_2,\ldots,d_{d_1+1}$
 - $\rightarrow v_1$ has a neighbor v_s such that there is a non neighbor of v_1 , v_t , such that $\deg(v_t) > \deg(v_s)$.
 - $\rightarrow \exists v_r \text{ such that } v_r v_t \in E(G) \text{ but } v_r v_s \notin E(G).$

