Optimization Methods

Optimization - Problem Motivation

- General case: find minimum or maximum of a function
- Example 1: find parameters of model to maximize likelihood of observed data
- Example 2: minimize squared distance between predicted and actual values

Cost Functions

- Many machine learning methods rely on optimizing a "cost function," for example:
 - o Linear Regression: $J(\theta) = \sum_{i=1}^{\infty} (h_{\theta}(x_i) x_i)^2$
 - o Logistic Regression: $\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1-y_i) \ln(1-h_{\theta}(x_i)))$
- Cost functions are the mathematical definition of your machine learning goal

Finding an Optimum

- Method from calculus: find where derivative equals zero
- This can be done numerically rather than analytically

The Gradient

 The gradient is the direction of steepest ascent:

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$$

Gradient Descent

- Popular method for optimizing cost functions
- Follows line of steepest descent on cost surface to find minimum

Gradient Descent Algorithm

 Summary: repeatedly take steps down the gradient until the cost function converges

Gradient Descent Algorithm

Mathematical Description:

Repeat until convergence:

$$\theta_{i+1,j} = \theta_{i,j} - \alpha \frac{\partial}{\partial \theta_{i,j}} J\left(\vec{\theta_i}\right)$$

 α =learning rate, i=iteration, j=feature

Gradient Descent Algorithm

(Pseudo)Python:

```
new_params = dict((i, 0) for i in xrange(k)) # initialize k parameters
while not has_converged:
    params = copy(new_params)
    for theta in params:
        new_params[theta] -= learning_rate*gradient(theta, params)
```

Note that the parameters are updated simultaneously!

Think about how this could be written in numpy without loops!

Gradient Descent Convergence

Choices of convergence criteria:

- max number of iterations
- change in cost function $\left(cost_{new} cost_{old}\right)/cost_{old} < \epsilon$

$$|\nabla f| < \epsilon$$

Gradient Descent - 3D Graphical Example

See IPython Notebook

Properties of Gradient Descent

- Requires differentiable and convex cost function
- Only finds global optimum on globally convex functions
- Convergence asymptotically
- Performs poorly without feature scaling

Stochastic Gradient Descent

Problem Motivation

Potential problems with Gradient Descent

- Memory constrained: data doesn't fit in memory
- Processor constrained: takes long time to compute cost function over many rows
- "Online" setting: data keeps coming in

Solution: use a subset of your data

Intuition - Linear Regression Example

Cost function is expected cost per observation:

$$E[J_i(\theta)] = \frac{1}{n} \sum_{i=1}^n (h_\theta(x_i) - y)^2$$

Random observation *i* has same expected cost:

$$E[J_i(\theta)] = (h_{\theta}(x_i) - y)^2$$

→ So you can minimize expected cost over randomly selected observations

SGD Algorithm

- SGD computes cost function using a different randomly chosen observation per iteration
- Otherwise the same algorithm as gradient descent
- Ex. linear regression:
 Instead of this:

$$J(\theta) = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$$

Use this, with randomly chosen observation:

$$J(\theta) = (h_{\theta}(x_i) - y_i)^2$$

Properties of SGD

- Converges faster on average than batch GD
- Can oscillate around optimum
- Can optimize over a changing cost function (e.g. online setting)

Variants of Gradient Descent/SGD

- "Batch" is another name for plain vanilla GD
- "Minibatch" SGD uses random subset of data
 - If the entire dataset doesn't fit in memory, train on random subset in each iteration
- SGD uses a single random observation per iteration
- "Online" SGD uses each observation as it's collected
 - Ex. every time a new transaction occurs, update your fraud model with that transaction
 - Can optionally discard old observations

Which Variant to Use?

 In practice, SGD is often preferred because it requires less memory and computation

See papers:

- "Large-Scale Machine Learning with Stochastic Gradient Descent" http://leon.bottou.org/publications/pdf/compstat-2010.pdf
- "The general inefficiency of batch training for gradient descent learning" http://axon.cs.byu.edu/papers/Wilson.nn03.batch.pdf

Newton-Raphson Method

- Optimization technique similar to gradient descent
- Root-finding method applied to cost function's s first derivative
- Sometimes just called "Newtons Method"

Newton's Method - Graphical Example

Newton-Raphson Method

Mathematical Description:

while J'(x) >threshold:

$$\theta_{i+1} = \theta_i - \frac{J'(\theta_i)}{J''(\theta_i)}$$

Python:

```
while f_prime(x) > threshold and iterations < max_iter:
    x = x - f_prime(x) / f_double_prime(x)</pre>
```

Comparison with Gradient Descent

Gradient Descent:

$$\theta_{i+1} = \theta_i - \alpha J'(\theta_i)$$

Newton-Raphson:

$$\theta_{i+1} = \theta_i - \frac{J'(\theta_i)}{J''(\theta_i)}$$

Newton-Raphson in Higher Dimensions

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [Hf(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$

Newtons Method vs Gradient Descent

- When Newton's Method works, it often takes many fewer iterations by accounting for 2nd order information
- Inverting the Hessian matrix can be computationally costly or impossible if the matrix is singular
- Newton can diverge with bad initial guess
- Key takeaway: there is no universally best optimization method