"While the eyes of the world now look into space, to the moon and to the planets beyond..."

John F. Kennedy, April 11, 1970

GRCon 2019

GNU Radio Enhancements for Space-Based Research

Mike Piscopo, Director of Professional Services

September 2019

Introduction

Mike Piscopo

- Delta Risk LLC Director Cybersecurity Professional Services
- Worked with GNU Radio Since about 2013
- Authored a Number of Add-on Modules (gr-correctiq, Ifast, grnet, clenabled,...)
- BS Aerospace Engineering Virginia Tech
- Aerospace Contractor Real-time distributed centrifuge team
- Developer embedded C++ and later application architect
- Network Field Engineer and IT architect
- Amateur Radio
- Licensed Remote Pilot (Drones)

What We'll Cover

- Enhancing the Basics Between Good Antennas and Flowgraph Logic
- Polar Orbiters Multiple Remote Receivers and Enhanced Doppler Correction
- New Open Source Tools for Pointing Antennas at Celestial Targets (Moon, Mars, and RA)
- Work from the Berkeley/SETI/GNU Radio Hackathon at the Allen Telescope Array

Polar Orbiting Scenario

- [Re]Started with ISS SSTV Event
- Passes occurred at different relative angles
- Sometimes the house is in the way
- Would be nice to go about my day and analyze the data when I had time
- Record IQ streams for troubleshooting, but only when there was a signal

- Problem 1: Intelligent recording
- Problem 2: Split signal coverage

Smarter Storage – New gr-filerepeater Blocks

Smarter Storage

Time-of-Day / Cycle Control

More Complex Decision Logic

Debugging:

When did state messages occur?

Message to File
File:
Add Timestamp: No
File Disposition: Append

Bringing Doppler and Az/El into GNURadio

Refactored GPredict Doppler

Doppler Blocks

Setting a Variable From a Message

Message Pair to Var Variable: dopplerfreq

Az/El Blocks

NOTES

- ✓ All blocks output state:1/0 pair
- ✓ Gpredict sends AOS/LOS at horizon
- ✓ NOTE: If Gpredict connects in the middle of a pass, no AOS is sent
- ✓ File sink does have a flag to set start recording state on/off

GPredictDoppler – Complex Recording Rule

- Gpredict-Doppler Velocity-based Doppler
- Gr-mesa Auto-Doppler Correct Block

Split Coverage Problem: Auto-Select The Best Signal

Relevant gr-mesa Blocks

- Source Selector
- Refactored IO Selector
- Max Power Block

- Extensible: source selector looks for a "decisionvalue" dictionary entry in the message
- New IO Selector rewritten in C++ Messages or variable updates to control ports
- Source Selector output is UI friendly (message pair "inputport" index)

Distributed Antennas – Watching the Transition (NOAA-19)

The Result – Processed With wxtoimg Running Under Wine

Hurricane Dorian 09/06/2019 – Low-Res APT

"Gray Thing on The Deck"

"House" -----

"Black Can in Front"

Signals From Celestial Targets, Moons, or Their Orbiters

"NASA: Return To the moon by 2024!"

- Really far away
- Need to know where to look
- They're constantly moving
- Hand-tracking is tough (and distracting)
- GPredict only supports satellites with TLE's (Earth-based model), not celestial bodies
- Problem 1: Pointing at the Moon, Mars,...
- Problem 2: Pointing based on RA / Dec Radio Astronomy

Pointing at Solar System Targets - SkyTrack

- Solution: skytrack.py for Solar System Targets
 - Python-based uses the new skyfield module
 - Can interface via hamlib/rotctl to rotators
 - "Looks" to GNU Radio and rotctld just like GPredict
 - GitHub: https://github.com/ghostop14/skytrack.git

Quick Command: ../skytrack.py --body=moon --lat=<lat> --long=<long> -rotor=127.0.0.1:4533 --azoffset=-12.0 --delay=120

Offset-tuned LRO telemetry integration with too small an antenna (0.9m)

Pointing at Celestial Targets – By RA / Dec

- RA / Dec Celestial Coordinates
- Targets so far they're relatively fixed
- Trivia: RA=0: Point where sun appears to cross the celestial equator from S->N "Vernal Equinox"
- Earth Moves and Rotates Continuously
- Az / El is Location and Date/Time Dependent
- Solution: radecl.py (part of Skytrack repo)
 - Takes RA, Dec, Lat and Long as Inputs
 - Outputs local Az / El Based on [Current] Time for rotator control (hamlib/rotctld/GNU Radio compatible)

The Celestial Sphere. (Image Courtesy of the Lunar and Planetary Institute)

Allen Telescope Array - The Ultimate Remote Feed!

- Raw SDR Potential!
 - 42 6m Dishes, 2 feeds/dish (H/V)
 - Frequencies 500 MHz 10 GHz (log periodic feed)
 - Cryo-cooled feed to reduce system noise
 - 104.8576 MCS/s (8-bit signed) per polarization
 - Beamformer 1.677 / 3.354 Gbps, Jumbo UDP Frames
 - RFCBs Downconverted constant IF (629.1456 MHz center)
- Several Groups focusing on:
 - Metadata SigMF
 - Array beamformer stream ingestion into GNURadio and Array Control
 - Tapping new USRP hardware directly into antenna feeds
 - Detecting Voyager-2
 - Working on GNU Radio 3.8 and some OOT ports

Allen Telescope Array Beamformer Feed

- New! GRNet PCAP UDP Source for Playback (tcpdump –i eth0 –w pcap_src.pcap "udp")
- New! Gr-correctiq has a SwapIQ block (more intuitive than multiply-conjugate for beginners)
- New! GR-ATA (Work in Progress) ATA stream block based on GRNet UDP source, Examples
- New! GRNet csdr-style Type Converters (SC8 and SC16 <-> FC32, direct SC8 decimator)
- Completely refactored the GRNet UDP source block for speed and flexibility
- Tested at full speed (104.8576 MCS/s) with very few missed packets
- UDP Source Sink Optional Headers (64-bit sequence, ATA, CHDR)
- Defined Packet Size
- Optional Notifications on Missed Frames

From a PCAP of Beamformer Captured While On-site

UDP Source (grnet) Port: 2k Header: 64-bit Sequence Number UDP Packet Data Size: 1.472k Notify Missed Frames: No Src Os If No Data: No

UDP PCAP Source (grnet)
File: ...localhost_50000.pcap
Traffic For UDP Port: 50k
Header: Old ATA Header
UDP Packet Data Size: 4.16k
Notify Missed Frames: Yes
Repeat File: Yes

Inverted Spectrum

SwapIQ
Interleaved Signed8 To Complex

SwapIQ in

Gr-CorrectIQ

ATA Live (grnet UDP wrapper)

GR-ATA Example Record

Q & A

- Download code at https://github.com/ghostop14 or via pybombs
- GR 3.8 conversions already complete (master and maint-3.7 branches)
- GNU Radio Mailing List
- GNU Radio Slack Channel