Série 9 du jeudi 17 novembre 2016

Exercice 1 (* A rendre).

Soit $f:]a,b[\to \mathbb{R}$ une fonction dérivable sur]a,b[telle que

$$\lim_{\substack{x \to a \\ >}} f(x) = \lim_{\substack{x \to b \\ >}} f(x) = +\infty.$$

Démontrer qu'il existe $c \in]a, b[$ tel que f'(c) = 0.

Exercice 2.

Soit $f:]0, \infty[\to \mathbb{R}$ une fonction dérivable telle que

$$\lim_{x \to \infty} f'(x) = \ell > 0.$$

Montrer que $\lim_{x \to \infty} f(x) = \infty$.

Exercice 3.

Soient $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 . Calculer

$$\lim_{\substack{h \to 0 \\ \neq}} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}.$$

Exercice 4.

Calculer

1.)
$$\lim_{x \to 2} \frac{\sin(2x) - \sin(4)}{x - 2}$$

1.)
$$\lim_{\substack{x \to 2 \\ x \neq 0}} \frac{\sin(2x) - \sin(4)}{x - 2}$$
.
2.) $\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{6\sin x - 6x + x^3}{x^5}$.