

RNN

2022.09.01 / 7기 김채은

0. 목차

1. RNN

- Recurrent Neural Networks
- RNN for Sentiment Classification
- RNN: Backprop

2. LSTM

- Long Short-Term Memory
- Cell State
- Forget Gate
- Input Gate
- Update
- Output Gate
- 그래서 어떻게 LSTM이 기울기 소실을 막을 수 있는데?

0. 목차

3. GRU

- LSTM의 간소화 버전, GRU
- GRU 구조
- Reset Gate
- Update Gate
- GRU Backpropagation

4. seq2seq

- Sequence to Sequence
- Teacher Forcing

5. Summary

Recurrent Neural Networks 순환 신경망

vs Feed Forward Neural Network

Sequence Data: 시점에 따라 달라지는 데이터 ex) 자연어처리, 시계열 데이터, 영상 처리

Recurrent Neural Networks 순환 신경망

Recurrent Neural Networks 순환 신경망

In each neuron of RNN, the output of previous time step is fed as input of the next time step.

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

Recurrent Neural Networks 순환 신경망

 $x_t \in \mathbb{R}^{|v|}$, $h_t \in \mathbb{R}^d$ where $|V| \gg d$

$$h_t = f(x_t, h_{t-1}; \theta) = \tanh(W_{xh}x_t + b_{xh} + W_{hh}h_{t-1} + b_{hh})$$

where $\theta = \{W_{xh}, b_{xh}, W_{hh}, b_{hh}\}$

Recurrent Neural Networks 순환 신경망

The state consists of a single "hidden" vector h:

RNN for Sentiment Classification

This movie is fun... [one-hot representation]

[hidden representation]

[class probabilities]

$$x_t \in R^{|v|}$$

 $h_t \in R^{|v|}$

 $\hat{y} = \text{sigmoid}(W_{\text{hy}}h_{\text{t}})$ where $W_{\text{hy}} \in R^{1 \times d}$

Class \in {positive, negative}

RNN for POS Tagging

Class ∈ {1.NN, 2.VB, ..., 36.JJ}

RNN: Backprop

 h_0 의 gradient를 구하려면 수많은 W들이 곱해져야함!

W의 Largest singular value > 1: Exploding gradients W의 Largest singular value < 1: Vanishing gradients

+) tanh의 기울기 소실 문제

RNN: Backprop

그림 6-3 "?"에 들어갈 단어는?: (어느 정도의) 장기 기억이 필요한 문제의 예

Tom was watching TV in his room. Mary came into the room. Mary said hi to ?

정답인 Tom을 맞추기 위해 학습 과정에서 예측값과 정답 간의 차이를 작게 만드는 방향으로 기울기 값을 역방향으로 전달하는 역전파과정을 수행할 것이다.

Long Short-Term Memory

순환 신경망의 문제: 은닉층을 거친 결과값을 재사용한다.

→ RNN의 기울기 소실 & 폭주 문제를 해결하기 위해 등장!

핵심: LSTM은 결과값이 다음 시점으로 넘어갈 때 결과값을 넘길지 말지 결정하는 단계가 추가된다!

Long Short-Term Memory

- 망각 게이트 Forget Gate: 과거의 기억을 남길 비율을 조정함
- 입력 게이트 Input Gate: 새로운 기억을 추가하는 비율을 조정함
- 출력 게이트 Output Gate: 기억 셀 내부를 출력에 반영하는 비율을 조정함

Cell State

정보가 전혀 바뀌지 않고 그대로 흐르게 하는 LSTM의 핵심 부분!

- State가 오래 경과하더라도 gradient가 잘 전파된다
- gate에 의해 정보가 추가되거나 제거되며, gate는 어떤 정보를 유지하고 버릴지 training

Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

과거의 기억을 남길 비율을 조정함

- h_{t-1}과 x_t를 받아 [0,1] 사이의 값을 C_{t-1}에 전달
- C_{t-1} == 1: 모든 정보를 보존해라!
- C_{t-1} == 0: 죄다 갖다 버려라!

Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

새로운 기억을 추가하는 비율을 조정함

- 현재 cell state값에 얼마나 더할지?
- 정말 필요한 정보만을 가져오자!

Update

 $C_{t-1} \rightarrow C_t$

Forget Gate: 얼마나 버릴지? Input Gate: 얼마나 더할지?

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

기억 셀 내부를 출력에 반영하는 비율을 조정함

그래서 어떻게 LSTM이 기울기 소실을 막을 수 있는데?

빨간색 동그라미는 뎃셈 연산

- 덧셈 연산은 이전으로부터 흘러들어오는 국소적인 미분값을 건드리지 않고 그냥 그대로 흘려 보낸다
 - → 기울기의 변화가 일어나지 않기 때문에 기울기 소실이 발생할 수 없다!

LSTM의 간소화 버전, GRU

그림 C-1 LSTM과 GRU 비교

LSTM의 단점 학습할 파라미터가 많아지면, 계산이 오래걸린다

GRU LSTM처럼 게이트의 기능은 유지하되, LSTM보다 파라미터 개수는 줄이자!

기억 셀(C)이 사라지고 은닉 상태 벡터(h)만 사용

 h_t

3. GRU

GRU 구조

Reset Gate (← Output Gate)

Update Gate = Input Gate + Forget Gate

Reset Gate

h_{t-1}을 얼마나 반영할지 결정 r == 0 : h_{t-1}을 모두 무시해!

$$r = \sigma(x_t W_x^{(r)} + h_{t-1} W_h^{(r)} + b^{(r)})$$

Update Gate 1 (Forget Gate 역할)

h_{t-1} 갱신: 불필요한 정보는 버리고 필요한 정보만 취사선택

$$z = \sigma(x_t W_x^{(r)} + h_{t-1} W_h^{(r)} + b^{(r)})$$

$$(1-z) \odot h_{t-1}$$

Update Gate 2 (Input Gate 역할)

새로운 기억

$$\tilde{h} = tanh(x_t W_x + (h_{t-1} \odot r)W_h + b)$$

Update Gate h_t 최종 계산식

GRU Backpropagation

Sequence to Sequence

시계열 데이터들을 다른 시계열 데이터들로 변환할 때 사용! ex) 변역, 음성 인식, ...

구조: Many to One(Encoder) + One to Many(Decoder)

Sequence to Sequence

Sequence to Sequence

Teacher Forcing

지금까지 말한 General Seq2Seq

t-1번째의 디코더 셀이 예측한 값을 t번째 디코더의 입력으로 넣어준다.

Teacher Forcing

만약 t-1번째 디코더 셀에서 잘못된 단어가 예측되어 t번째 디코더에 전달된다면?

Teacher Forcing

학습 vs 테스트

학습 시 입력으로 Ground Truth를 넣어준다.

Summary

✓ RNN

- 1) sequence data란?
- 2) input/output 수에 따라 다양하게 적용 가능
- 3) Backpropagation에서 기울기 소실 문제 발생

✓ LSTM

- 1) 결과값이 다음 시점으로 넘어갈 때 결과값을 넘길지 말지 결정하는 단계 추가
- 2) Cell state
- 3) 3개의 Gate: Forget, Input, Output

Summary

✓ GRU

- 1) LSTM의 간소화 버전 기억 셀(C)이 사라지고 은닉 상태 벡터(h)만 사용
- 2) 2개의 Gate: Reset, Update
- 3) GRU backpropagation

√ seq2seq

- 1) 구조: Many to One(Encoder) + One to Many(Decoder)
- 2) Teacher Forcing

Reference

여진영 교수님 빅데이터 강의안

핵심 딥러닝 입문: RNN, LSTM, GRU, VAE, GAN 구현 - 아즈마 유키나가

6기 안민용 선배님 - RNN 세션 강의 자료

https://wooono.tistory.com/223

https://wikidocs.net/152773

https://techblog-history-younghunjo1.tistory.com/481