Reconnaissance Races de Chiens

- 2. ÉTAPES SUIVIES
- 4. APPROCHE CLASSIQUE

3. DONNÉES

- 5. APPROCHE CNN CLASSIQUE
 - 6. APPROCHE CNN TRANSFERT LEARNING
 - 7. CONCLUSIONS ET PISTES D'AMELIORATIONS

PROBLEMATIQUE

 Une association de protection des animaux aimerait avoir un algorithme capable de classer les images en fonction de la race du chien présent sur l'image.

ÉTAPES SUIVIES

DONNÉES

<u>Classification d'image de</u> <u>races de chiens:</u>

Stanford Dogs Dataset 20580 pour 120 races

APPROCHE CLASSIQUE

- Prétraitement des images (filtres)
- Extraction de features (SIFT)
- Réduction de dimension (clustering)
 - Visual Bag-Of-Words
 - Classification

APPROCHE CNN CLASSIQUE

- Réseaux de neurones convolutionnels
- CNN à partir de zéro (from scratch)
 - Data Augmentation

ÉTAPES SUIVIES

APPROCHE CNN TRANSFERT LEARNING

Test de 5 réseaux de neurones pré-entrainés :

- 1. VGG16
- 2. ResNet50v2
- 3. Inception V3
- 4. Inception V4
 (InceptionResNet50v2) 3.
 5. Xception

APPROCHE CNN TRANSFERT LEARNING

- 1. En bloquant la base convolutionnelle et sans data augmentation.
- 2. En bloquant la base convolutionnelle et avec data augmentation.
- En bloquant uniquement les premières couches convolutionnelle et avec data augmentation.

COMPARAISON DES

MODELES ET

CONCLUSIONS

DONNÉES

20580

DOG PHOTOS

120

BREEDS

Pré-traitement:

- Redimensionnement 500x375px
- Passage en niveaux de gris
- Test de plusieurs filtres :
- ✓ Egalisateur d'histogrammes
- ✓ Filtres moyenneur, gaussien, médian, non-local mean
- ✓ Whitening

Pré-traitement:

Egalisation d'histogrammes Améliore le contraste Donne de la clarté aux détails

Pré-traitement : Filtre Moyenneur

Pré-traitement : Filtre Gaussien

100

200

300

Pré-traitement : Filtre Médian

Pré-traitement :

Non Local Means

Pré-traitement :

Whitening

Extraction de features

Caractéristiques d'une « bonne » feature:

- Répétable
- Distinctive
- Locale

EXTRACTION DE FEATURES: SIFT

CLUSTERING - KMEANS

- Nombre de descripteurs SIFT élevés :
- 1. 2 races : 272515
- 2. 3 races: 400 348
- 3. 5 races: 659 616
- Utilisation de K-MEANS pour réduire la dimension
- Nombre de clusters testés:
- 2 races : [10, 20, 50, 100, 125, 150, 175, 200]
- 3 races: [150, 225, 300, 375, 450, 600, 750]
- 5 races : [150, 225, 300, 375, 450, 600, 750]
- Pour chaque image, on détermine ensuite le nombre de descripteur dans chaque cluster : bag-of-words visuels

NOMBRE DE CLUSTERS OPTIMAL

APPROCHE CLASSIQUE

CLASSIFICATION – RÉGRESSION LOGISTIQUE

GRIDSEARCH pour trouver la meilleure valeur de C

2 RACES

3 RACES

5 RACES

CLASSIFICATION – RÉGRESSION LOGISTIQUE

Matrice de confusions 5 races - Filtre Non Local Means

CNN From Scratch, construction d'un réseau neuronal depuis zéro:

- Redimensionnement en 224*224
- Utilisation des images en couleurs
- Séparation Train / Validation / Test : 70 % / 15 % / 15 %

CNN From Scratch - 2 Races

Accuracy sur le jeu de test : 78,4%

SANS DATA AUGMENTATION

Accuracy sur le jeu de test : 78,4%

CNN From Scratch - 2 Races **OVERFITTING**

AVEC DATA AUGMENTATION

Accuracy sur le jeu de test : 80,3%

3 RACES: TEST ACCURACY 65,2%

5 RACES: TEST ACCURACY 42,6%

120 RACES: TEST ACCURACY 23,2%

Training loss

Validation loss

VGG-16

Couches de convolution

VGG-16

EXTRACTION DE FEATURES: 5 – RACES SANS DATA AUGMENTATION

EXTRACTION DE FEATURES: 5 – RACES AVEC DATA AUGMENTATION

Test accuracy: 65,7%

Test accuracy: 71,3%

VGG-16

EXTRACTION DE FEATURES: 120 - RACES SANS DATA AUGMENTATION

EXTRACTION DE FEATURES: 120 – RACES AVEC DATA AUGMENTATION

Test accuracy: 34,4%

Test accuracy: 17,8%

FINE TUNING

- On repart des poids obtenus précédemment avec l'extraction de features.
- On réentraîne les dernières couches de convolutions (Block 5)

FINE TUNING

- Même principe pour les autres modèles ResNet50v2, Inceptionv3, Inceptionv4 et Xception.
- 2. Sauf que la structure de ces réseaux étant plus complexe, l'ont « freeze » 90% des couches et on réentraîne avec nos propres couches + 10% restant du modèle

SFER LEARNING <u>comparaison des modèles</u>

CONCLUSIONS ET PISTES D'AMÉLIORATIONS

- 1. LES RESEAUX CONVOLUTIONNELS SONT PLUS EFFICACES QUE LES METHODES CLASSIOUES.
- 2. DATA AUGMENTATION PERMET D'EVITER L'OVER-FITTING SI LE NOMBRE DE DONNEES EST FAIBLE.
- 3. DATA AUGMENTATION PEUT AVOIR DES EFFETS DÉLÉTÈRES SI LES TRANSFORMATIONS APPLIQUÉES SONT TROP IMPORTANTES.
- 4. LE FINE TUNING PERMET D'AMELIORER LES PERFORMANCES DU MODELE.
- 5. ALLER PLUS LOIN DANS LE FINE TUNING EN BLOQUANT MOINS DE COUCHES
- 6. FAIRE VARIER LE NOMBRE ET LA STRUCTURE DES COUCHES (DROPOUT, DENSE, etc...) SUPPLEMENTAIRES EN SORTIE DES MODELES PRÉ-ENTRAÎNÉS.
- 7. FAIRE DE LA DATA AUGMENTATION SUR QUELQUES EPOCHS PUIS CONTINUER D'ENTRAINER SANS DATA AUGMENTATION DANS LA FOULÉE.
- 8. AVOIR PLUS DE DONNÉES EN ENTRÉE.

MERCI DE VOTRE ATTENTION