# 사고영상 판단모델

캡스톤디자인 29팀 중간발표

### 목차

- 소개
  - 산학협력회사
  - 필요성
- 프로젝트진행
  - 데이터셋 이해
  - 데이터셋 처리
  - 모델개발
- 프로젝트 TODO

### 소개\_산학협력회사

**쏘카** 카셰어링 서비스

다양한 종류의 차량을 12,000대 지원







#### 쏘카 이용방법 알려드려요!

1 가입하기

스마트폰에 쏘카 앱을 다운로드 받고 자동차 운전면허증과 결제카드를 등록해 주세요. 쏘카는 만 **21세** 이상, 운전면허 취득 1년 이상부터 이용이 가능합니다.

② 예약하기

이용 시간을 설정하고 차량이 필요한 장소와 원하는 차종을 선택해 주세요. 가까운 쏘카존에서 예약하거나 내 집 앞으로 쏘카를 부를 수도 있습니다.

③ 차량찾기

차량이 주차된 쏘카존의 상세 정보를 쏘카 앱에서 확인하세요. 쏘카 앱 내 스마트키로 비상등을 켜거나 경적을 울려 쏘카를 보다 손쉽게 찾을 수 있습니다.

4 이용하기

탑승 전 외관, 내부, 기름양 등 차량 상태를 확인해 주세요. 쏘카 앱 내 스마트키로 간편하게 차량 문을 열고 닫을 수 있습니다.

5 반납하기

지정된 장소에 주차 후 차량 내 놓고 내리는 물건은 없는지 확인해 주세요. 차 문을 잠근 후 반납하기 버튼을 누르면 이용이 완료됩니다.

자잘한 사고들은 발견하기 어렵고, 자진신고하지 않는 경우도









사고의 책임은 누구에게?



블랙박스 영상·센서



큰 사고의 경우 블랙박스의 센서가 사고영상을 분류 할 수 있다

# 프로젝트진행\_데이터셋 이해:영상

차량 앞,뒤 사고영상, 일반영상 (블랙박스의 판단) 30 frame rate



모자이크 동영상 낮과 밤

시간오차 중요도 관점

데이터 누락

# 프로젝트진행\_데이터셋 이해:가속도센서

XYZ 3축 가속도2hz 단위로 수집

 모자이크

 동영상

 낮과 밤

 시간오차

 중요도 관점

 데이터 누락



# 프로젝트진행\_데이터셋이해:GPS데이터

좌표, 속도, 방향벡터 1hz 단위로 수집

모자이크 동영상 낮과 밤 시간 9 차

Hz단위로 수집

데이터 누락



동영상 = 시간 + 이미지

모자이크동영상낮과 밤시간오차중요도 관점데이터 누락

- 1. 특정hz마다 사고이미지인지 labeling 추가, 이미지 학습
- 2. 동영상 하나에 대해 RNN

경미한 사고는 영상에서 잘 드러나지 않는다

모자이크 동영상 낮과 밤

시간오차

중요도 관점

데이터 누락

Hz단위로 스지

- 1. 영상만 학습한 모델, 영상 외의 메타데이터를 활용한 모델 각각을 앙상블
- 2. 영상과 메타데이터를 합쳐 모델링
- 3. 메타데이터만 모델링

GPS데이터는 끊기는 경우가 있다.

모자이크<br/>동영상<br/>낮과 밤Hz 단위로<br/>수집시간오차<br/>중요도 관점수집데이터 누락

- 1. GPS 데이터는 입력에서 제외
- 2. 일부 누락되는 경우 평균값 등으로 임의로 대체

영상은 30hz, 메타데이터는 각각 2hz, 1hz 영상의 남은 28프레임은? 

 모자이크

 동영상

 낮과 밤

 시간오차

 중요도 관점

 데이터 누락

- 1. 영상을 1hz만큼만 사용한다
- 2. 비어있는 데이터를 선형적으로 임의 생성
- 3. 영상을 임의의 hz만큼 사용하고 임의로 데이터를 생성

### 프로젝트진행 데이터셋처리

영상이 길어서.. – time window window 안에 사고가? – target frame마다 사고 labeling window 안에서 추가할만한 것? – window 만큼의 ACC 평균 구하기



x변화량 Y변화량 Z변화량 AVG\_X AVG\_Y AVG\_Z AVG\_XYZ ACCIDENT

### 프로젝트진행 데이터셋처리

X, Y, Z 가속도 데이터 -> X, Y, Z 값의 변화량, 평균 값을 이용 Time window -> 하이퍼 파라미터

| timestamp | X     | у     | Z     | acci |
|-----------|-------|-------|-------|------|
| 46:00.5   | 0     | 0     | 0     | 0    |
| 46:01.0   | 0     | 0.04  | -0.03 | 0    |
| 46:01.5   | 0     | 0.03  | -0.01 | 0    |
| 46:02.0   | -0.01 | 0.01  | 0.01  | 0    |
| 46:02.5   | -0.05 | 0.01  | 0     | 0    |
| 46:03.0   | -0.03 | -0.02 | 0     | 0    |
| 46:03.5   | -0.03 | 0.04  | 0.02  | 0    |
| 46:04.0   | 0.04  | 0     | 0.01  | 0    |
| 46:04.5   | -0.02 | -0.01 | -0.08 | 0    |
| 46:05.0   | -0.07 | -0.02 | 0.03  | 0    |
| 46:05.5   | 0.62  | -0.46 | -0.57 | 1    |
| 46:06.0   | 0.13  | -0.42 | -0.08 | 0    |
| 46:06.5   | 0.03  | 0.04  | -0.03 | 0    |
| 46:07.0   | 0.01  | 0     | -0.02 | 0    |
| 46:07.5   | -0.01 | 0     | -0.05 | 0    |
| 46:08.0   | -0.07 | -0.01 | 0.02  | 0    |
| 46:08.5   | 0     | 0     | 0.04  | 0    |

| file_name                 | timestamp | X    | у    | z    | ave_x  | ave_y  | ave_z  | ave_xyz  | acci |
|---------------------------|-----------|------|------|------|--------|--------|--------|----------|------|
| 10688_20201127_184600_N_F | 46:00.5   | 0.01 | 0.07 | 0.07 | 0.0025 | 0.0175 | 0.0175 | 0.012500 | 0    |
| 10688_20201127_184600_N_F | 46:01.0   | 0.05 | 0.03 | 0.05 | 0.0125 | 0.0075 | 0.0125 | 0.010833 | 0    |
| 10688_20201127_184600_N_F | 46:01.5   | 0.07 | 0.05 | 0.03 | 0.0175 | 0.0125 | 0.0075 | 0.012500 | 0    |
| 10688_20201127_184600_N_F | 46:02.0   | 0.06 | 0.09 | 0.03 | 0.0150 | 0.0225 | 0.0075 | 0.015000 | 0    |
| 10688_20201127_184600_N_F | 46:02.5   | 0.09 | 0.13 | 0.03 | 0.0225 | 0.0325 | 0.0075 | 0.020833 | 0    |
| 10688_20201127_184600_N_F | 46:03.0   | 0.13 | 0.11 | 0.12 | 0.0325 | 0.0275 | 0.0300 | 0.030000 | 0    |
| 10688_20201127_184600_N_F | 46:03.5   | 0.18 | 0.06 | 0.21 | 0.0450 | 0.0150 | 0.0525 | 0.037500 | 0    |
| 10688_20201127_184600_N_F | 46:04.0   | 0.80 | 0.46 | 0.80 | 0.2000 | 0.1150 | 0.2000 | 0.171667 | 1    |
| 10688_20201127_184600_N_F | 46:04.5   | 1.23 | 0.49 | 1.20 | 0.3075 | 0.1225 | 0.3000 | 0.243333 | 1    |
| 10688_20201127_184600_N_F | 46:05.0   | 1.28 | 0.94 | 1.14 | 0.3200 | 0.2350 | 0.2850 | 0.280000 | 1    |
| 10688_20201127_184600_N_F | 46:05.5   | 0.61 | 0.54 | 0.55 | 0.1525 | 0.1350 | 0.1375 | 0.141667 | 1    |
| 10688_20201127_184600_N_F | 46:06.0   | 0.14 | 0.50 | 0.09 | 0.0350 | 0.1250 | 0.0225 | 0.060833 | 0    |
| 10688_20201127_184600_N_F | 46:06.5   | 0.10 | 0.05 | 0.11 | 0.0250 | 0.0125 | 0.0275 | 0.021667 | 0    |
| 10688_20201127_184600_N_F | 46:07.0   | 0.15 | 0.02 | 0.12 | 0.0375 | 0.0050 | 0.0300 | 0.024167 | 0    |
| 10688_20201127_184600_N_F | 46:07.5   | 0.16 | 0.03 | 0.14 | 0.0400 | 0.0075 | 0.0350 | 0.027500 | 0    |
| 10688_20201127_184600_N_F | 46:08.0   | 0.15 | 0.03 | 0.08 | 0.0375 | 0.0075 | 0.0200 | 0.021667 | 0    |
| 10688_20201127_184600_N_F | 46:08.5   | 0.10 | 0.03 | 0.06 | 0.0250 | 0.0075 | 0.0150 | 0.015833 | 0    |
| 10688_20201127_184600_N_F | 46:09.0   | 0.07 | 0.03 | 0.01 | 0.0175 | 0.0075 | 0.0025 | 0.009167 | 0    |

Time window = 2

### 멘토님의 말씀



### 멘토님의 말씀

성능이 잘 나오는 게 최고다

# 다 만들어서 돌려봐라!

모델에만 집중이 가능하다







### 프로젝트진행\_모델개발

```
영상 + 메타데이터 모델
CNN + RNN
메타데이터 모델 (영상모델과 앙상블)
1D CNN
Random Forest
Decision Tree
```

### 프로젝트진행\_모델개발:CNN + RNN

CNN: 영상의 지역적 특징 추출

RNN의 입력으로 Conv를 통과한 특징들과 메타데이터를 함께 사용



Dense를 통과한 특징과 metadata concat

예)LSTM

### 프로젝트진행\_모델개발:메타데이터 모델

Random Forest, Decision tree

• Window size : 2~60(영상 전체)

• Stride: 1 ~ window size

### 1d cnn



- 메타 데이터이기 때문에 1d cnn으로도 충분한 성능 기대
- Input -> Embedding -> layer -> activation f -> output
- Loss: binary Cross-Entropy

### 프로젝트진행\_모델개발:앙상블



HIDDEN LAYERS

CLASSIFICATION

- 영상 데이터에 나타나지 않는 사고 존재
- 메타 데이터에 가중치를 더 크게 부여하여 앙상블 또는 후처리 방식으로 영상 데이터 활용
- 영상 데이터에서 사고 detection 또는 흔들림 감지



### 프로젝트 TODO

영상 전처리 추가 메타 데이터 생성 Hyper parameter 조정 모델간의 성능 비교 Docker container 설정

# QnA

### 보조자료

#### 영상을 2hz로 사용한다 할 때 1 ~ 15를 대표하는 frame F1, F2 ... Fn ( n <= 15 )

