Exercise

Exercise

You need to sample from the distribution with p.d.f.

$$p(x) \propto x^{a-1} \mathbb{1}(0 < x < b)$$

where a, b > 0. Assume you can generate $\mathrm{Uniform}(0,1)$ random variables. How would you draw samples from p(x)?

Solution

If we can get the c.d.f. and invert it, we can use the inverse c.d.f. method. First, let's find the normalizing constant of the p.d.f. For any c > 0,

$$(1.0) \qquad \qquad \cdot \frac{^{2}}{n} = \frac{^{3}}{n} \left| \frac{^{2}}{n} = xb^{1-n}x \right|^{2}$$

since a > 0. In particular, $\int_0^b x^{a-1} dx = b^a / a$, so

$$(d > x > 0) \mathbb{I}^{1-n} x \frac{n}{nd} = (x)q$$

Thus, for $c\in(0,b),$ the c.d.f. is

$$y(q/\sigma) = \frac{p_v}{v^\sigma} \frac{\sigma}{v} = \frac{p_v}{v} \int_0^0 \frac{r}{v} dv = x = x p_{1-v} x_\sigma \int_0^0 \frac{p_v}{v} dv = x = x p_{1-v} x_\sigma \int_0^0 \int_0^0 dv = x \int$$

using Equation ?? again. To solve for F^{-1} , we set u=F(x) for $u\in(0,1)$ and solve for x:

$$x = {}_{v/\mathbb{I}} nq$$
$$q/x = {}_{v/\mathbb{I}} n$$
$$q(q/x) = n$$

Thus, if $U \sim U^{1/3} d$ and (1,0) minorinU $\sim U$ it , and T