Chapitre: Fonction exponentielle

1. Définition de la fonction exponentielle

1.1. Théorème

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Remarque: L'existence et l'unicité d'une telle fonction sont admises.

1.2. Définition

Cette unique fonction f dérivable sur IR telle que f' = f et f(0) = 1 est appelée fonction exponentielle et on la note exp : $x \mapsto \exp(x)$ (fonction introduite par Jean Bernoulli en 1694).

On a donc $\exp^{x}(x) = \exp(x)$ et $\exp(0) = 1$. On admet que, pour tout réel x, $\exp(x) \neq 0$.

2. Propriétés de la fonction exponentielle

2.1. Relation fonctionnelle

On admet la propriété suivante : pour tous réels x et y, $\exp(x + y) = \exp(x)\exp(y)$ (la fonction exponentielle transforme les sommes en produits).

2.2. Conséquences : propriétés algébriques

Pour tout réel x:

- $\exp(x) > 0$;
- $\exp(x) \exp(-x) = 1$ et donc $\exp(-x) = \frac{1}{\exp(x)}$
- pour tous réels x et y, exp $(x-y) = \frac{\exp(x)}{\exp(y)}$
- pour tout réel x et tout entier relatif n, $\exp(nx) = [\exp(x)]^n$.

Démonstrations:

- $x = \frac{x}{2} + \frac{x}{2} \Rightarrow \exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) = \exp(\frac{x}{2})\exp(\frac{x}{2}) = [\exp(\frac{x}{2})]^2$ d'après la relation fonctionnelle $\Rightarrow \exp(x) \ge 0$ comme carré et comme $\exp(x) \ne 0$ pour tout réel x, $\exp(x) > 0$;
- $\exp(x) \exp(-x) = \exp[x + (-x)]$ d'après la relation fonctionnelle $\Rightarrow \exp(x) \exp(-x) = \exp(0) = 1 \Rightarrow \exp(-x) = \frac{1}{\exp(x)}$ en divisant par $\exp(x) \neq 0$
- $\exp(x-y) = \exp[x + (-y)] = \exp(x)\exp(-y)$ d'après la relation fonctionnelle $\Rightarrow \exp(x-y) = \exp(x)\frac{1}{\exp(y)}$ d'après le résultat précédent $\Rightarrow \exp(x-y) = \frac{\exp(x)}{\exp(y)}$;
- · on admet la dernière propriété

2.3. Nombre e et notation ex

On note e l'image de 1 par la fonction exponentielle : $\exp(1) = e$ (notation due à Leonhard Euler). Avec la calculatrice, on trouve : $e \approx 2,718\ 281\ 828\ 46$.

<u>Conséquence</u>: Pour tout entier relatif n et tout réel x, on a vu dans les propriétés algébriques que : $\exp(nx) = [\exp(x)]^n$. D'où, pour x = 1, on a : $\exp(n) = [\exp(1)]^n = e^n$.

On convient donc de prolonger cette notation à tout réel x, soit : $\exp(x) = e^x$ (e^x se lit donc « exponentielle x » ou « exponentielle de x » ou « e exposant x »).

Notation: Soit x un réel, on note e^x l'image de x par la fonction exponentielle, $\exp(x) = e^x$.

Propriétés avec la notation e^x : Pour tous réel x, y et tout entier relatif n,

$$e^{0} = 1 ; e^{x} > 0 ; e^{x+y} = e^{x} x e^{y} ; e^{-x} = \frac{1}{e^{x}} ; e^{x-y} = \frac{e^{x}}{e^{y}} ; (e^{x})^{n} = e^{nx}$$
 (résultats conformes aux règles de calcul sur les puissances)

2.4. Lien avec les suites géométriques

Propriété: Pour tout réel a, la suite (e^{na}) est une suite géométrique.

<u>Démonstration</u>: On pose $u_n = e^{na}$ pour tout entier naturel n. On a alors $u_{n-1} = e^{(n-1)a} = e^{na-a} = e^{na} \times e^a$ d'après la relation fonctionnelle. D'où, $u_{n+1} = e^a \times u_n$ pour tout entier naturel n. Donc $(u_n) = (e^{na})$ est une suite géométrique de raison $q = e^a$ et de premier terme $u_0 = e^{0xa} = e^0 = 1$. D'où, $u_n = u_0 \ q^n \Rightarrow e^{na} = 1 \times (e^a)^n = (e^a)^n$ (on retrouve la dernière propriété algébrique).

3. Etude de la fonction exponentielle

3.1. Sens de variation

La fonction exponentielle est strictement croissante sur IR car $\exp'(x) = \exp(x) > 0$ pour tout réel x.

Conséquences : Pour tous réels a et b, $e^a < e^b \Leftrightarrow a < b$; $e^a = e^b \Leftrightarrow a = b$.

3.2. Tableau de variation et courbe représentative

Tableau de variation:

x	- ∞	0	1	+ ∞
$\exp'(x) = \exp(x) = e^x$		+		
$\exp(x) = e^x$	0 /		- P	≯ +∞

Courbe représentative :

La tangente D au point d'abscisse 0 a pour équation : $y = e^0(x - 0) + e^0 = x + 1$.

La tangente Δ au point d'abscisse 1 a pour équation : $y = e^{1}(x-1) + e^{1} = ex$. 3.3. Fonctions $t \longrightarrow e^{-kt}$ et $t \longrightarrow e^{kt}$ (avec k > 0)

• Fonctions f_k définies sur \mathbb{R} par $f_k(t) = e^{-kt}$ avec k réel strictement positif. On a : f_k ' $(t) = -ke^{-kt}$ en appliquant la dérivée de la fonction $x \longrightarrow g(ax + b)$ est la fonction $x \longrightarrow ag'(ax + b)$ avec $g = \exp \operatorname{et} g' = \exp' = \exp$, a = -k et b = 0, x = t.

Comme k > 0, $f_k'(t) < 0$ sur \mathbb{R} . D'où le tableau de variations :

Pour tout k > 0, les courbes représentatives des fonctions f_k passent par le point A (0; 1).

Fonctions g_k définies sur \mathbb{R} par $g_k(t) = e^{kt}$ avec k réel strictement positif. On a : $g_k'(t) = ke^{kt}$ en appliquant la dérivée de la fonction $x \longrightarrow g(ax + b)$ est la fonction $x \longrightarrow ag'(ax + b)$ avec $g = \exp \operatorname{et} g' = \exp' = \exp$, a = k et b = 0, x = t.

Comme k > 0, $g_k'(t) > 0$ sur IR. D'où le tableau de variations :

t	- ∞	0	+ ∞
$g_k'(t)$		+	
$g_k(t)$	0 —		+00

Pour tout k > 0, les courbes représentatives des fonctions g_k passent par le point A (0 ; 1).

