

32 位微控制器

RNG应用说明

适用对象

系列	产品型号	系列	产品型号
HC32L13	HC32L130E8PA	HC32F03	HC32F030E8PA
	HC32L130F8UA		HC32F030F8UA
	HC32L130J8TA		HC32F030F8TA
	HC32L136J8TA		HC32F030H8TA
	HC32L136K8TA		HC32F030J8TA
			HC32F030K8TA
HC32L07	HC32L072PATA	HC32F07	HC32F072PATA
	HC32L072KATA		HC32F072KATA
	HC32L072JATA		HC32F072JATA
	HC32L073PATA		
	HC32L073KATA		
	HC32L073JATA		
HC32L17	HC32L176PATA	HC32F17	HC32F176PATA
	HC32L176MATA		HC32F176MATA
	HC32L176KATA		HC32F176KATA
	HC32L176JATA		HC32F176JATA
	HC32L170JATA		HC32F170JATA
	HC32L170FAUA		HC32F170FAUA
HC32L19	HC32L196PCTA	HC32F19	HC32F196PCTA
	HC32L196MCTA		HC32F196MCTA
	HC32L196KCTA		HC32F196KCTA
	HC32L196JCTA		HC32F196JCTA
	HC32L190JCTA		HC32F190JCTA
	HC32L190FCUA		HC32F190FCUA

目 录

1	摘要	. 3
2	功能介绍	. 3
3	RNG 生成方式	. 4
	3.1 上电第一次生成随机数	. 4
	3.2 非上电第一次生成随机数	. 4
	3.3 样例参考	. 4
4	随机数主要应用	. 5
5	总结	. 5
6	其他信息	. 5
7	版本信息 & 联系方式	. 6

1 摘要

本篇应用笔记主要介绍华大半导体 MCU*的随机数发生器 RNG(Random Number Generator)的操作流程及应用。

本应用笔记主要包括:

- RNG 简介
- RNG生成方式
- RNG应用说明

注意:

一本应用笔记为华大半导体 MCU*的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

2 功能介绍

华大半导体 MCU*的 RNG 可以生成 64 位随机数,可使用内部模拟随机源。对于内部随机数的生成方式可进行软件配置,生成的 64 位随机数分别存储在 DATA0 和 DATA1 寄存器中。

* 支持型号见封面。

应用笔记 Page 3 of 6

3 RNG生成方式

如果需要自己配置随机数的生成方式,可参考该系列 MCU 用户手册中的软件操作流程进行。本例主要讲解如何使用驱动库进行随机数的生成。

3.1 上电第一次生成随机数

- 1. 打开随机数外设时钟使能;
- 2. 使用随机数初始化函数进行第一次随机数的生成;
- 3. 获取 64 位随机数。

3.2 非上电第一次生成随机数

- 1. 打开随机数外设时钟使能;
- 2. 使用随机数初始化函数进行第一次随机数的生成;
- 3. 使用随机数生成函数进行非上电第一次随机数生成;
- 4. 获取 64 位随机数。

3.3 样例参考

华大半导体(HDSC)官方同时提供了该模块的应用样例及驱动库,用户可通过打开样例的 工程进一步直观地熟悉该模块以及驱动库的应用,在实际开发中也可以直接参考样例和使用 驱动库来快速实现对该模块的操作。

应用笔记 Page 4 of 6

4 随机数主要应用

随机数在密码学中非常重要,保密通信中大量运用的会话密钥的生成即需要真随机数的参与。如果一个随机数生成算法是有缺陷的,那么会话密钥可以直接被推算出来。若果真发生这种事故,那么任何加密算法都失去了意义。

在华大半导体 MCU*中,生成的随机数可配合 AES 模块用于密钥生成或使用到安全相关的软件算法中,来增加安全性。

5 总结

以上章节简要介绍了华大半导体 MCU*的 RNG 的操作流程及样例参考,用户在实际应用开发中可根据实际情况参考本例进行 RNG 的生成和使用。

6 其他信息

技术支持信息: www.hdsc.com.cn

* 支持型号见封面。

应用笔记 Page 5 of 6

7 版本信息 & 联系方式

日期	版本	修改记录	
2018/6/19	Rev1.0	初版发布。	
2018/9/3	Rev1.1	更新支持的产品型号。	
2019/6/24	Rev1.2	更新支持的产品型号。	

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0060004C