Supervised Learning: Classification, Part I

Noah Simon & Ali Shojaie

July 15-17, 2020 Summer Institute in Statistics for Big Data University of Washington

Classification

▶ Regression involves predicting a continuous-valued response.

- ► Regression involves predicting a continuous-valued response.
- Classification involves predicting a categorical / qualitative response:
 - Cancer versus Normal
 - ► Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3

- ► Regression involves predicting a continuous-valued response.
- Classification involves predicting a categorical / qualitative response:
 - Cancer versus Normal
 - ► Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3
- ► Classification problems tend to occur even more frequently than regression problems in biomedical applications.

- ► Regression involves predicting a continuous-valued response.
- Classification involves predicting a categorical / qualitative response:
 - Cancer versus Normal
 - ► Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3
- ► Classification problems tend to occur even more frequently than regression problems in biomedical applications.
- ▶ Just like regression,
 - ► Classification cannot be blindly performed in high-dimensions because you will get zero training error but awful test error;
 - Properly estimating the test error is crucial; and
 - ► There are a few tricks to extend classical classification approaches to high-dimensions, which we have already seen in the regression context!

Classification

Categorical / qualitative variables take values in an unordered set: e.g. eye color ∈ {brown, blue, green} email ∈ {spam, not spam}.

- ► We want to build a function that takes as input the feature vector *X* and predicts the value for *Y*.
- ► Often we are more interested in estimating the probability that *X* belongs to a given category.
- ► For example: we might want to know the probability that someone will develop diabetes, rather than to predict whether or not they will develop diabetes.

Can't We Just Use Linear Regression?

 Classify an emergency room patient on the basis of her symptoms to one of three conditions:

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

- ▶ If we apply linear regression, then the results will depend on the choice of coding . . . and the coding implies an ordering among the medical conditions.
- ► A classification approach is more appropriate.

- ► There are many approaches out there for performing classification.
- ► We will discuss 4: k-nearest neighbors, logistic regression, discriminant-based methods and support vector machines.

- ► Can I take a totally non-parametric (model-free) approach to classification?
- ► K-nearest neighbors:
 - 1. Identify the K observations whose X values are closest to the observation at which we want to make a prediction.
 - 2. Classify the observation of interest to the most frequent class label of those ${\cal K}$ nearest neighbors.

- ► Simple, intuitive, model-free.
- ► Good option when *p* is very small.
- ► Curse of dimensionality: when *p* is large, no neighbors are "near". All observations are close to the boundary.
- ► Do not use in high dimensions!

Logistic Regression

► Logistic regression is the straightforward extension of linear regression to the classification setting.

Logistic Regression

- ► Logistic regression is the straightforward extension of linear regression to the classification setting.
- ► For simplicity, suppose $y \in \{0,1\}$: a two-class classification problem.

Logistic Regression

- ► Logistic regression is the straightforward extension of linear regression to the classification setting.
- ► For simplicity, suppose $y \in \{0,1\}$: a two-class classification problem.
- ► The simple linear model $y = X\beta + \epsilon$ doesn't make sense for classification.

Logistic Regression

- ▶ Let $p(X) = \Pr(Y = 1|X)$.
- Suppose we want to use biomarker level to predict probability of cancer.
- ► Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

- ightharpoonup p(X) will lie between 0 and 1.
- ► Furthermore,

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

▶ This function of p(X) is called the logit or log odds.

Why Not Linear Regression?

- ► Left: linear regression.
- ► Right: logistic regression.

Multiple Logistic Regression

► Just like before:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_\rho X_\rho}}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_\rho X_\rho}}.$$

► And just like before:

$$\log\left(\frac{\rho(X)}{1-\rho(X)}\right) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p.$$

Example in R

```
xtr <- matrix(rnorm(1000*20),ncol=20)
beta <- c(rep(1,10),rep(0,10))
ytr <- 1*((xtr%*%beta + .2*rnorm(1000)) >= 0)
mod <- glm(ytr~xtr,family="binomial")
print(summary(mod))</pre>
```

Classification

K-Nearest Neighbors Logistic Regression Support Vector Machine

Three Ways to Extend Logistic to High Dimensions

Three Ways to Extend Logistic to High Dimensions

- 1. Variable Pre-Selection
- 2. Ridge Logistic Regression
- 3. Lasso Logistic Regression

Three Ways to Extend Logistic to High Dimensions

- 1. Variable Pre-Selection
- 2. Ridge Logistic Regression
- 3. Lasso Logistic Regression

How to decide which approach is best, and which tuning parameter value to use for each approach? Cross-validation or validation set approach.

What is an appropriate validation measure?

For classification without a probability or score:

Misclassification rate:

#test samples misclassified total # of test samples

What is an appropriate validation measure?

For probablistic classification

- ► Can still use misclassification rate.
- ► Like in continuous regression could use SSE:

$$\sum_{i\in\mathrm{test}}(y_i-\hat{p}_i)^2$$

► Often preferable to use "predictive [log]likelihood":

$$-\log\left[\prod_{i\in\mathrm{test}}\hat{p}_{i}^{y_{i}}\left(1-\hat{p}_{i}
ight)^{1-y_{i}}
ight]$$

► Can also use ROC-curve-based metric (eg. AUC)

Remember though; all of these must be conducted on a separate validation set.

Example in R: Lasso Logistic Regression

```
xtr <- matrix(rnorm(1000*20),ncol=20)
beta <- c(rep(1,5),rep(0,15))
ytr <- 1*((xtr%*%beta + .5*rnorm(1000)) >= 0)
cv.out <- cv.glmnet(xtr, ytr, family="binomial", alpha=1)
plot(cv.out)</pre>
```

Let's Try It Out in R!

Chapter 4 R Lab Skip part on LDA & QDA www.statlearning.com

Support Vector Machines

▶ Developed in around 1995.

- ▶ Developed in around 1995.
- ► Touted as "overcoming the curse of dimensionality."

- ▶ Developed in around 1995.
- ► Touted as "overcoming the curse of dimensionality."
- ▶ Does not automatically overcome the curse of dimensionality!!!

- ► Developed in around 1995.
- ► Touted as "overcoming the curse of dimensionality."
- Does not automatically overcome the curse of dimensionality!!!
- ► Fundamentally and numerically very similar to logistic regression.

- ► Developed in around 1995.
- ► Touted as "overcoming the curse of dimensionality."
- ▶ Does not automatically overcome the curse of dimensionality!!!
- ► Fundamentally and numerically very similar to logistic regression.
- ▶ But, it is a nice idea.

Separating Hyperplane

Classification Via a Separating Hyperplane

Blue class if $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > c$; red class otherwise.

Maximal Separating Hyperplane

Note that only a few observations are on the margin: these are the support vectors.

What if There is No Separating Hyperplane?

Support Vector Classifier: Allow for Violations

► The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".

- ► The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".
- ► However, linear regression, logistic regression, and other classical statistical approaches can also be applied to non-linear functions of the variables.

- ► The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".
- ► However, linear regression, logistic regression, and other classical statistical approaches can also be applied to non-linear functions of the variables.
- ► For historical reasons, SVMs are more frequently used with non-linear expansions as compared to other statistical approaches.

Non-Linear Class Structure

This will be hard for a linear classifier!

Try a Support Vector Classifier

Uh-oh!!

Much Better.

K-Nearest Neighbors Logistic Regression Support Vector Machine

Is A Non-Linear Kernel Better?

Is A Non-Linear Kernel Better?

► Yes, if the true decision boundary between the classes is non-linear, and you have enough observations (relative to the number of features) to accurately estimate the decision boundary.

Is A Non-Linear Kernel Better?

- ➤ Yes, if the true decision boundary between the classes is non-linear, and you have enough observations (relative to the number of features) to accurately estimate the decision boundary.
- ▶ No, if you are in a very high-dimensional setting such that estimating a non-linear decision boundary is hopeless.

► Bottom Line: Support vector classifier and logistic regression aren't that different!

- ► Bottom Line: Support vector classifier and logistic regression aren't that different!
- ► Neither they nor any other approach can overcome the "curse of dimensionality".

- ► Bottom Line: Support vector classifier and logistic regression aren't that different!
- ► Neither they nor any other approach can overcome the "curse of dimensionality".
- ► SVM uses a non-linear kernel... but could do that with logistic or linear regression too!

K-Nearest Neighbors Logistic Regression Support Vector Machine

► In SVMs, a tuning parameter controls the amount of flexibility of the classifier.

- ▶ In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- ► This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables.

- ► In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- ► This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables.
- ► Can get a sparse SVM using a lasso penalty; this yields a decision rule involving only a subset of the features.

- ► In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables.
- ► Can get a sparse SVM using a lasso penalty; this yields a decision rule involving only a subset of the features.
- ► Logistic regression and other classical statistical approaches could be used with non-linear expansions of features. But this makes high-dimensionality issues worse.

Let's Try It Out in R!

Chapter 9 R Lab www.statlearning.com

Discussion Questions

Suppose someone came to a statistical consulting service you were running and said...

I want to try and classify patients as having breast cancer, or not based on gene expression in serum.

I'm pretty excited because I just found two awesome datasets:

The first, from the Farnsworth Lab, has serum expression measured using RNA-seq in 5000 patients with breast cancer;

The second, from the Wernstrom Lab, has serum expression measured using microarrays on 5000 healthy patients.

I wanted to combine them to build my classifier

What concerns, if any, come to mind?

Suppose we want to classify patients as having cancer/not having

cancer using methylation on cf-dna fragments

In particular, say we initially consider 10000 cpg sites, and try to build a classification model that uses proportion of methylated fragments at each of those sites as features.

Would it make sense to run an SVM with a non-linear kernel here?

If we used cross-validation to select between both that SVM, and a LASSO-logistic regression, what might happen?