eGaN® FET DATASHEET EPC2216

EPC2216 – Automotive 15 V (D-S) Enhancement Mode Power Transistor

 V_{DS} , 15 V $R_{DS(on)}$, 26 m Ω I_D , 3.4 A AEC-Q101

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings					
	PARAMETER	VALUE	UNIT			
W	Drain-to-Source Voltage (Continuous)					
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	18	V			
I _D	Continuous (T _A = 25°C)	3.4	Α			
	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	28	A			
W	Gate-to-Source Voltage	6	٧			
V _{GS}	Gate-to-Source Voltage	-4				
T _J	Operating Temperature -40 to 150		°C			
T _{STG}	Storage Temperature	-40 to 150				

Thermal Characteristics					
	PARAMETER TYP UNIT				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	5.7			
R _{0JB} Thermal Resistance, Junction-to-Board		39	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	97			

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

EPC2216 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 0.85 mm x 1.2 mm

Applications

- High Speed DC-DC conversion
- Lidar/Pulsed Power Applications
- Lidar for Augmented Reality Applications

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

Static Characteristics (T _J = 25°C unless otherwise stated)							
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.1 \text{ mA}$	15			V	
I _{DSS}	Drain-Source Leakage	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$		0.01	0.1	mA	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V, T}_{J} = 25^{\circ}\text{C}$		0.004	0.5	mA	
I_{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V, T}_{J} = 125^{\circ}\text{C}$		0.02	1	mA	
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 \text{ V, } T_{J} = 25^{\circ}\text{C}$		0.01	0.1	mA	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.7	1	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 1.5 \text{ A}$		20	26	mΩ	
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.9		V	

[#] Defined by design. Not subject to production test.

All measurements were done with substrate connected to source.

EPC2216 eGaN® FET DATASHEET

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance [#]			98	118	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 7.5 \text{ V}, V_{GS} = 0 \text{ V}$		20		
C _{OSS}	Output Capacitance [#]			66	99	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+-75VV 0V		69		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 7.5 \text{ V, } V_{GS} = 0 \text{ V}$		71		
R_{G}	Gate Resistance			0.5		Ω
Q_{G}	Total Gate Charge [#]	$V_{DS} = 7.5 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 1.5 \text{ A}$		0.87	1.1	
Q _{GS}	Gate-to-Source Charge			0.21		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 7.5 \text{ V}, I_D = 1.5 \text{ A}$		0.13		
Q _{G(TH)}	Gate Charge at Threshold			0.16		nC
Q _{OSS}	Output Charge [#]	$V_{DS} = 7.5 \text{ V}, V_{GS} = 0 \text{ V}$		0.53	0.8	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 2: Transfer Characteristics

Figure 4: $R_{DS(on)}$ vs. V_{GS} for Various Temperatures

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

eGaN® FET DATASHEET **EPC2216**

Figure 5a: Capacitance (Linear Scale)

Figure 5b: Capacitance (Log Scale)

Figure 6: Output Charge and Coss Stored Energy

Figure 7: Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

All measurements were done with substrate shortened to source

eGaN® FET DATASHEET EPC2216

Figure 12: Transient Thermal Response Curves

t_p, Rectangular Pulse Duration, seconds

t_p, Rectangular Pulse Duration, seconds

EPC2216 eGaN® FET DATASHEET

TAPE AND REEL CONFIGURATION

	EPC2216 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (note 2)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (note 2)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Die is placed into pocket solder bump side down (face side down)

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Part		Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking line 3		
EPC2216	2216	YYYY	ZZZZ		

eGaN® FET DATASHEET **EPC2216**

DIE OUTLINE

Solder Bump View

	Micrometers			
DIM	MIN	Nominal	MAX	
Α	820	850	880	
В	1170	1200	1230	
c		400		
d	187	208	229	
e	185	200	215	
f	210	225	240	

Side View

RECOMMENDED **LAND PATTERN**

(measurements in μ m)

Solder mask opening

200 μm

The land pattern is solder mask defined Solder mask is 10 µm smaller per side than bump

Pad 1 is Gate;

Pads 2, 5 are Drain;

Pads 3, 4, 6 are Source

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Stencil opening

250 μm rounded square (60 deg)

4 mil stencil stainless laser cut

Recommended stencil should be 4 mil (100 µm)

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

thick, must be laser cut, openings per drawing.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice. Revised May, 2020