

The "Net Benefit" and the correlation between benefits and harms

Marc Buyse, ScD

IDDI, Louvain-la-Neuve Data Science Institute, Hasselt University Belgium

June 28, 2021

Problem

Benefit / risk assessments use *marginal* estimates that do not account for the correlation between the outcomes (benefits / risks)

Positive correlation

<u>Example</u>: skin rash in patients with EGFR-mutated advanced lung cancer receiving inhibitors of EGFR

No correlation

<u>Example</u>: cardiac toxicity in frail patients with advanced breast receiving anthracyclines

Negative correlation

<u>Example</u>: toxicities leading to treatment stop in enzyme-deficient patients with advanced colorectal cancer receiving irinotecan

Pairwise Comparisons

WINS
$$X_i > Y_j$$
LOSSES $X_i < Y_j$
TIES $X_i = Y_j$

(UNINFORMATIVE)

All Pairwise Comparisons

Net Benefit

Net Benefit =
$$\frac{\#Wins}{\#Pairs} - \frac{\#Losses}{\#Pairs}$$

= $2\theta - 1$
where θ is the « probabilistic index »

Net Benefit: probability that a random patient receiving Treatment does better than a random patient receiving Control, minus the probability of the opposite situation

Win Ratio

$$Win Ratio = \frac{\#Wins}{\#Losses}$$

$$0 < Win Ratio < \infty$$

Win Odds

Win Odds =
$$\frac{\#Wins + \#Ties/2}{\#Losses + \#Ties/2}$$
$$= \frac{\theta}{1-\theta}$$

$$0 < Win Odds < \infty$$

The Net Benefit is a U-statistic

$$X_{i} (i = 1, ..., m)$$

$$Y_{j} (j = 1, ..., n)$$

$$u_{ij} = \begin{cases} +1 & \text{if } (X_{i}, Y_{j}) \text{ pair is a win} \\ -1 & \text{if } (X_{i}, Y_{j}) \text{ pair is a loss} \\ 0 & \text{otherwise} \end{cases}$$

$$U = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}$$

U, the Net Benefit, is unbiased and efficient in situations of practical interest

GENERALIZATIONS 1 - Thresholds of Clinical Relevance

WINS	$X_i - Y_j > \tau$
LOSSES	$X_i - Y_j < -\tau$
TIES	$ X_i - Y_j < \tau$

GENERALIZATIONS 2 – Outcomes of Any Type

- denotes « better outcome »
- < denotes « worse outcome »

WINS
$$X_i > Y_j$$

LOSSES
$$X_i \prec Y_j$$

GENERALIZATIONS 3 – Multiple Prioritized Outcomes

Prioritized outcome 1		Prioritized outcome 2	Pairwise comparison	
	win	ignored	win	
	loss	ignored	loss	
	uninformative or tie	win	win	
)	uninformative or tie	loss	loss	
	uninformative or tie	tie	tie	
	uninformative or tie	uninformative	uninformative	

Benefit/Risk Analyses

Erlotinib

569 advanced pancreatic cancers

FOLFORINOX

342 advanced pancreatic cancers

Nab-Paclitaxel

861 advanced pancreatic cancers

Benefit: Longer OS

Risk: Severe Toxicity

	Erlotinib		FOLFORINOX		Nab-Paclitaxel	
Worst Toxicity	Erlotonib	Gem	FOLFORINOX	Gem	Gem+NabP	Gem
None	10%	23%	4%	1%	9%	22%
Grade 1-2	59%	57%	27%	39%	36%	54%
Grade 3-5	31%	20%	69%	60%	55%	24%
	11%		9%		31%	

Clinical Thresholds for OS

Ref: Buyse & Péron, In: Piantadosi & Meinert (eds.), Principles and Practice of Clinical Trials, 2021

Conclusions

The Net Benefit, estimated with Generalized Pairwise Comparisons

- is flexible
- can incorporate multiple prioritized outcomes
- can incorporate thresholds of clinical relevance
- provides a mathematically correct benefit / risk assessment
- is meaningful to patients

Selected References

Buyse M. Generalized pairwise comparisons for prioritized outcomes in the two-sample problem. *Stat Med* **29**:3245-3257, 2010.

Péron J, Roy P, Ozenne B, Roche L, Buyse M. The net chance of a longer survival as a patient-oriented measure of benefit in randomized clinical trials. *JAMA Oncology* 2:901-5, 2016.

Buyse M, Saad E, Burzykowski T, Péron J. Assessing treatment benefit in immune-oncology. *Stat in Biosciences* **12**:83-103, 2020.

Verbeeck J, Deltuvaite-Thomas V, Berckmoes B, , Burzykowski T, Aerts M, Thas O, Buyse M, Molenberghs G. Unbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics. *Stat Meth Med Res* **30**:747-68, 2021.

Buyse M, Saad ED, Peron J, Chiem JC, De Backer M, Cantagallo E, Ciani O. The net benefit of a treatment should take the correlation between benefits and harms into account. *J Clin Epidemiol* doi:https://doi.org/10.1016/j.jclinepi.2021.03.018 , 2021.