Усиление угловой дисперсии лазерных гармоник высокого порядка при взаимодействии с плотными плазменными кластерами

Л.А. Литвинов¹, А.А. Андреев^{1, 2}

 1 Санкт-Петербургский государственный университет, Санкт-Петербург 2 Физико-технический институт имени А.Ф.Иоффе, Санкт-Петербург

Аннотапия

Периодические поверхностные решетки и фотонные кристаллы являются отличными инструментами для дифракции и направления света. Однако этот метод менее эффективен в случае экстремального ультрафиолетового света из-за высокого поглощения любого материала в этом диапазоне частот. В работе исследуется возможность усиления угловой дисперсии излучения XUV-диапазона за счет рассеяния на подходящих сферических кластерах. В рамках работы была разработана аналитическая модель с использованием диэлектрической функции Друде плазмы и теории рассеяния Ми. Модель построена в квазистатическом приближении, так как время ионизации меньше длительности импульса, что значительно меньше времени разлета плазмы. В рамках модели мы используем предельные формы функций Бесселя, поскольку нас интересуют только частицы, размеры которых меньше длины волны падающего излучения. Оценены резонансные параметры мишени для десятой гармоники Ti:Sa лазер, найдено усиление рассеянного поля в резонансном случае по сравнению с лазерной гармоникой. Используя те же условия резонанса для одного кластера, мы моделируем дифракцию на массиве таких кластеров с помощью кода CELES. Полученные результаты показывают значительное усиление рассеянного поля в резонансном случае для больших углов и соответствуют теории дифракции Брэгга-Вульфа. При помощи particle-in-cell моделирования была подтвеждена квазистационарность плотности плазменных кластеров, что дает возможность значительно упростить расчет структур, подходящих для управления высокими гармониками лазерного излучения в XUV-диапазоне с помощью ионизированного кластерного газа.

- 1 Введение
- 2 Аналитическая модель
- 3 Стационарные вычисления
- 3.1 Одиночный кластер
- 3.2 Оправдание стационарной модели

В общем случае расчет взаимодействия высокоинтенсивного импульса лазерного излучения с группой плотных сферических кластеров, расположенных в трехмерном пространстве, требует длительных и сложных нестационарных вычислений ввиду того, что распределение электронной плотности кластеров в результате взаимодействия с лазерным импульсом изменяется с течением времени.

Для проверки масштабов изменения электронной плотности в рассматриваемом случае было проведено моделирование эволюции распределения электронной плотности в одномерном пространстве отдельного кластера. Для моделирования был взят код LPIC++ [1].

В качестве источника был задан фронтальный линейно поляризованный лазерный импульс с длиной волны $\lambda_{10}=83$ нм и длительностью τ . Период лазерного излучения, соответствующий лазерной гармонике, равен $T=\lambda_L c^{-1}\approx 2.8$ фс, поэтому длина импульса в моделировании была взята $\tau=10T=28$ фс, время моделирования t=20T=56 фс. Плазма представлена 2000 частицами в каждой ячейке, занятой мишенью, расположенной в центре бокса шириной $w_{box}\approx 2\lambda_{10}$; электронная плотность мишени в критических единицах равна $n_{el}=4.4n_c$. Относительная амплитуда импульса a_0 равна:

$$I_h \lambda_{10}^2 = \alpha_0^2 \times 1.37 \cdot 10^{14} \text{BT} \cdot \text{MKM}^2 / \text{cm}^2$$

$$\alpha_0 = \frac{\lambda_{10}}{\sqrt{1.37} \cdot 1 \text{MKM}} \approx 7 \cdot 10^{-4}$$
(1)

В качестве мишеней были взяты одиночные кластеры радиуса a от 9 до 50 нм (рис. 1).

в: Завимость средней суммарной толщины переходного слоя при $0 \le t \le 10T$ в зависимости от радиуса мишени.

Рис. 1: Взаимодействие одномерной мишени с 10-ой гармоникой, λ_{10} = 83 нм.

По полученным результатам моделирования была расчитана средняя суммарная толщина переходного слоя в процессе взаимодействия со внешним импульсом h_{tr} в зависимости от радиуса мишени a (рис. 1в). Условие квазистационарности в таком случае принимает вид $h_{tr} \ll 2a$, что соблюдается при $a \ge 20$ нм. Для ближайших по порядку гармоник величины h_{tr} при аналогичных радиусах слабо отличаются.

3.3 Множество кластеров

В рамках в рамках стационарной теории рассеяния Ми было рассмотрено множество кластеров в виде протяженного газового слоя с регулярной и квазирегулярной пространственной конфигурацией для исследования возможности рассеяния такими структурами на большие углы жёсткого ультрафиолетового излучения, в частности соответствующего гармоникам высокого порядка.

В качестве регулярного распределения была выбрана примитивная кубическая решетка с расстоянием между соседними узлами d. Квазирегулярное распределение было построено при помощи внесения случайных сдвигов координат узлов с произвольной нормой сдвига в диапазоне $0 \le |\Delta d| \le \eta d$, где $0 \le \eta < 0.5$ — степень нерегулярности. При $d = 2\lambda$:

$$2(1-\eta)\lambda \le d_{\text{irreg}} \le 2(1+\eta)\lambda \tag{2}$$

В квазирегулярном случае моделирование было проведено несколько раз с целью усреднения и получения обобщенной картины рассеянного поля. Для вычислений был использован программный код CELES [2].

3.3.1 Условие дифракции для решетки в пространстве

Условие дифракции в случае трехмерной регулярной решетки при упругом рассеянии принимает вид [3]:

$$\begin{cases}
(\mathbf{D}_{x}, \mathbf{e}_{\text{out}} - \mathbf{e}_{\text{in}}) = h\lambda \\
(\mathbf{D}_{y}, \mathbf{e}_{\text{out}} - \mathbf{e}_{\text{in}}) = k\lambda \\
(\mathbf{D}_{z}, \mathbf{e}_{\text{out}} - \mathbf{e}_{\text{in}}) = l\lambda
\end{cases}$$
(3)

где h,k,l — индексы Миллера представленные целыми числами, \mathbf{D}_i — вектор, соединяющий соседние узлы решетки вдоль направления i, \mathbf{e}_{in} — единичный вектор направления падающего излучения, \mathbf{e}_{out} — единичный вектор направления прошедшего излучения. Переходя к сферическим координатам, связанными с \mathbf{e}_{in} так, что в декартовом представлении $\mathbf{e}_{\text{in}} = \mathbf{e}_z$, выр. 3 можно преобразовать следующим образом, учитывая, что $|\mathbf{D}_x| = |\mathbf{D}_y| = |\mathbf{D}_z| = d$ для рассматриваемой кубической решетки:

$$\begin{cases}
\cos\theta_{0}\sin\Delta\theta\cos(\Delta\varphi-\varphi_{0}) - \sin\theta_{0}(\cos\Delta\theta-1) = \frac{h'\lambda}{d} \\
\sin\Delta\theta\sin(\Delta\varphi-\varphi_{0}) = \frac{k'\lambda}{d} \\
\sin\theta_{0}\sin\Delta\theta\cos\Delta\varphi + \cos\theta_{0}(\cos\Delta\theta-1) = \frac{l'\lambda}{d}
\end{cases}$$
(4)

где $\Delta\theta$, $\Delta\phi$ — углы, характеризующие отклонение направления прошедшего излучения относительно падающего, θ_0 , ϕ_0 — углы, характеризующие поворот мишени (решётки) в пространстве, h', h', l' — новые индексы Миллера (рис. 2).

Используя выр. 4, можем получить угловое распределение дифрагировавшего излучения. Наиболее интенсивные направления дифракции будут соответствовать минимальным по модулю индексам Миллера, тогда пусть k'=0:

$$\begin{cases} \Delta \varphi = \varphi_0 \\ \Delta \theta = \theta_0 + \arcsin\left(\frac{h'\lambda}{d} - \sin\theta_0\right), \\ l' = \frac{\lambda}{d} \left(\sin\theta_0 \sin\Delta\theta \cos\Delta\varphi + \cos\theta_0 \left(\cos\Delta\theta - 1\right)\right) \end{cases}$$
 (5)

Используя выр. 5, можно построить решения, соответствующие целым значениям l', которые отвечают различным порядкам прошедшего и отраженного излучения (рис. 4).

Для того, чтобы проверить достоверность полученной теории, смоделируем стационарное взаимодействие в случае регулярной решётки с радиусом кластеров a=20 нм и $d=2\lambda_{10}$ при $\varphi_0=0^\circ$, $\theta_0=14.78^\circ$, $\lambda=\lambda_{10}=83$

а: Проекция на плоскость xz.

6: Проекция на плоскость xy.

Рис. 2: Общая схема взаимодействия падающего излучения с решеткой. $\Delta \theta$ отсчитывается вокруг y против часовой стрелки, $\Delta \varphi$ — вокруг z против часовой стрелки.

нм, ширина гауссова пучка w = 1700 нм. Определим наиболее интенсивные направления рассеяния при помощи следующей интегральной характеристики рис. 36:

$$E_{\text{int}}(\theta, \varphi, w, a, b, \eta) = \int_{V(\theta, \varphi, w, a, b)} (|\mathbf{E}_s|_{\eta = \eta}^2) dV, \tag{6}$$

$$\mathbf{C} = \mathbf{C}(x, y, z, \theta, \varphi) = \begin{pmatrix} C_x \\ C_y \\ C_z \end{pmatrix} = M_y(\theta) M_z(\varphi) \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \tag{7}$$

$$V(\theta, \varphi, w, a, b) = \left\{ x, y, z : C_x^2 + C_y^2 \le w, a^2 \le x^2 + y^2 + z^2 \le b^2 \right\}, \tag{8}$$

где $M_y(\theta)$ — матрица поворота вокруг декартовой оси y на угол θ против часовой стрелки, $M_z(\phi)$ — матрица поворота вокруг декартовой оси z на угол ϕ против часовой стрелки, a и b — задают глобальный сферический слой для подсчета вдали от мишени, η — коэффициент нерегулярности решетки. В таком случае выр. 8 представляет собой область внутри цилиндра с радиусом w, наклоненного в соответствии с углами θ , ϕ и ограниченного сферическим слоем, что описывавает дифрагировавший пучок ширины w, отклоненный в направлении, заданном углами θ , ϕ .

Также построим пересечения целочисленных решений для h', k', l' с заданными θ_0 , ϕ_0 в осях $\Delta \phi$, $\Delta \theta$ при помощи выр. 4 (рис. 3a). Сравнивая полученные результаты можно заметить, что наиболее интенсивные направления дифракции по $E_{\rm int}$ отвечают наиболее близкому раположению кривых, соответствующих целочисленным значениям индексов Миллера.

Рис. 3: Вычисление $E_{\rm int}$ (выр. 6) и решение выр. 4 в целых индексах Миллера для a=20 нм и $d=2\lambda_{10}$ при $\varphi_0=0^\circ$, $\theta_0=14.78^\circ$, $\lambda=\lambda_{10}=83$ нм, ширина гауссова пучка w=1700 нм. Для наглядности построение было поделено на две проекции полусферических областей по $\Delta\theta$ с полюсами в 0 и π соответственно.

Рис. 4: Кривые, отвечающие различным дифракционным порядкам по l' при k'=0, $\Delta \varphi = \varphi_0$.

Список литературы

- [1] R. E. W. Pfund, R. Lichters, and J. M. ter Vehn, "LPIC++ a parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction," in *AIP Conference Proceedings*, AIP, 1998.
- [2] A. Egel, L. Pattelli, G. Mazzamuto, D. Wiersma, and U. Lemmer, "CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres," *J Quant Spectrosc Radiat*, vol. 199C, pp. 103–110, 2017.
- [3] C. Kittel, Introduction to Solid State Physics. Wiley, New York, 1986.