

MATERIAŁY DO WYKŁADU Z NAPĘDU ELEKTRYCZNEGO Wykład IV – Komponenty układów napędowych

PROWADZĄCY DR HAB. INŻ. GRZEGORZ IWAŃSKI

IWANSKIG@ISEP.PW.EDU.PL

CZUJNIKI PRĘDKOŚCI OBROTOWEJ

Prądnica tachometryczna prądu stałego

Napięcie wytwarzane na zaciskach jest zależne od prędkości obrotowej

Na liniowość charakterystyki ma wpływ wartość rezystancji obciążenia

$$U = \frac{E}{1 + \frac{R_{tc}}{R_{ob}}}$$

CZUJNIKI PRĘDKOŚCI OBROTOWEJ

Prądnica tachometryczna prądu przemiennego - indukcyjna

Napięcie przemienne *e* (siła elektromotoryczna rotacji) wytwarzane w uzwojeniu roboczym ma tę samą częstotliwość co napięcie zasilania uzwojenia wzbudzenia, ale wartość proporcjonalną do prędkości obrotowej

CZUJNIKI PRĘDKOŚCI OBROTOWEJ

Prądnica tachometryczna prądu przemiennego – indukcyjna

Napięcie wyjściowe prądnicy tachometrycznej zależy od prędkości obrotowej oraz wartości i charakteru obciążenia

CZUJNIKI PRĘDKOŚCI OBROTOWEJ

Prądnica tachometryczna prądu przemiennego - synchroniczna

Zarówno amplituda jak i częstotliwość napięcia wyjściowego prądnicy tachometrycznej zależy od prędkości obrotowej. Amplituda dodatkowo od wartości i charakteru obciążenia

CZUJNIKI PRĘDKOŚCI OBROTOWEJ

Problemy z prądnicami tachometrycznymi:

Prądnica DC – szczotki i komutatory – ścieranie i konieczność wymiany.

Prądnice AC – bezszczotkowe, ale problem z identyfikacją kierunku prędkości.

Prądnice AC synchroniczne – problem przy pomiarach niskich prędkości ze względu na niską częstotliwość indukowanego napięcia.

W układach napędów przekształtnikowych najczęściej identyfikuje się

prędkość na podstawie zmiany położenia w czasie, tj. na podstawie wskazań czujników położenia kątowego wału – enkoderów absolutnych i inkrementalnych lub rezolwerów.

CZUJNIKI POŁOŻENIA KĄTOWEGO - REZOLWERY

Schematy rezolwera w wersji ze szczotkami i pierścieniami ślizgowymi oraz w wersji brushless

CZUJNIKI POŁOŻENIA KĄTOWEGO - REZOLWERY

Sygnały wejściowy i wyjściowe rezolwera

Sygnał wejściowy jest sygnałem sinusoidalnym o częstotliwości kilku kHz (np. 2kHz)
Sygnały wyjściowe są sygnałami o częstotliwości sygnału wejściowego zmodulowane wartością kąta położenia mechanicznego

Otrzymanie czystych sygnałów $sin(\theta_m)$ i $cos(\theta_m)$ wymaga demodulacji (odfiltrowania)

predkosc

CZUJNIKI POŁOŻENIA KĄTOWEGO - REZOLWERY

CZUJNIKI POŁOŻENIA KĄTOWEGO – ENKODER INKREMENTALNY

Sygnały impulsowe AB służą do określenia zmiany położenia i szybkości zmiany położenia. Indeks Z służy do określenia położenia bazowego (zerowego) – istotne w niektórych typach maszyn

CZUJNIKI POŁOŻENIA KĄTOWEGO – ENKODER ABSOLUTNY

Tarcza z kodem dwójkowym

Informacja o kącie absolutnym jest pamiętana w przypadku zaniku napięcia zasilania. W niektórych układach automatyki przemysłowej może

mieć to znaczenie.

OBLICZANIE PRĘDKOŚCI NA PODSTAWIE ZMIAN KĄTA

Prędkość wyliczana ze wzoru

$$\omega_m = \frac{d\theta}{dt}$$

zawiera piki powstające przy resecie wartości kąta. Wartość średnia prędkości wyznaczona w ten sposób jest równa zero

Te piki należy pominąć przy wyznaczaniu wartości prędkości.

CZUJNIKI POMIAROWE PRĄDU

Miernik prądu – urządzenie pomiarowe służące do wskazania wartości prądu (najczęściej wartości skutecznej), np. amperomierz

Czujnik prądu – urządzenie pomiarowe służące do wytworzenia sygnału analogowego niskonapięciowego lub słaboprądowego, lub sygnału cyfrowego do dalszego wykorzystania w obwodach sterowania

CZUJNIKI POMIAROWE PRĄDU – POMIAR Z BOCZNIKIEM

W układach małej mocy straty na boczniku są niewielkie i można zastosować te metode. Jeśli bocznik nie jest podpięty do masy układu może być wymagana separacja galwaniczna.

CZUJNIKI POMIAROWE PRĄDU – PRZEKŁADNIK PRĄDOWY

Przekładnik prądowy jest transformatorem o dużej liczbie zwojów strony wtórnej, pracującym w stanie zwarcia lub pod obciążeniem o niewielkiej rezystancji. Spadek napięcia na rezystorze jest miarą prądu. Szeroki zakres częstotliwości. Wyjście prądowe odporne na zakłócenia.

Nie przenosi składowej stałej a więc nie nadaje się do sterowania w układach, w których pod wpływem pracy układu może powstać składowa stała.

CZUJNIKI POMIAROWE PRĄDU – CZUJNIK HALLA

Układy pomiarowe z czujnikiem Halla i zintegrowanym wzmacniaczem najczęściej zasilane napięciem unipolarnym dają sygnał wyjściowy z offsetem dla zerowego prądu. Wyjście napięciowe jest dość podatne na zakłócenia. Trzeba mieć duże doświadczenie w projektowaniu układów przekształtnikowych i obwodów drukowanych przy stosowaniu takich układów w większych mocach

CZUJNIKI POMIAROWE PRĄDU – CZUJNIK HALLA Z PĘTLĄ

Dopasowanie rezystora pomiarowego według dokumentacji np. LA-55P http://www.lem.com/docs/products/la_55-p_e.pdf

Politechnika Warszawska Wydział Elektryczny - ISEP ZAKŁAD NAPĘDU ELEKTRYCZNEGO

POMIAR NAPIĘCIA DC

Pomiar napięcia na dzielnikach rezystancyjnych. Separację uzyskuje się przez zastosowanie optoizolatorów w torze pomiarowym. Metoda tania. W układach pomiarowych napięcia stosuje się również przetworniki napięcia pracujące na podobnej zasadzie jak układy pomiaru prądu z czujnikiem Halla i pętlą sprzężenia

KOMPONENTY OBWODU MOCY - MODUŁY TRANZYSTOROWE

600V, 75A, single switch TO-247

Politechnika Warszawska
Wydział Elektryczny - ISEP
ZAKŁAD NAPĘDU ELEKTRYCZNEGO

KOMPONENTY OBWODU MOCY – STEROWNIKI MODUŁÓW

Sterownik (driver) półmostka:
Wbudowany deadtime
Izolacja galwaniczna
Zabezpieczenie nadprądowe

KOMPONENTY OBWODU MOCY – OBWÓD DC

Materiały do Wykładu z Napędu Elektrycznego Wykład IV – Komponenty układów napędowych

PROWADZĄCY
DR HAB. INŻ. GRZEGORZ IWAŃSKI

IWANSKIG@ISEP.PW.EDU.PL