IN THE SPECIFICATION

Please amend the paragraph found on page 60, lines 16 to 61 as follows:

Furthermore, in a preferred embodiment spindle load adjustment means 186 operates in conjunction with lock in-position mechanism 226 (Fig. 11A to 11D) that locks or engages the film support means in a operational film feed state, and which can be disengaged (e.g., a control signal based on the processing of a button on the control panel shown in Figure 15B) to provide for movement of spindle 222 into a loading position. That is, lock mechanism 226 locks the spindle with loaded roll upon locking activation (e.g., following insertion of a new roller spindle 222 and the return of the roll to a ready to feed mode). Upon release activation, lock-in-position mechanism 226 releases film support means from its fixed or reel out state with the spindle axis parallel to driver roller 72 to enable adjustment to the new film roll load state. In a preferred embodiment, there is further provided a release facilitator [[221]] 864 (Fig. 11D) such as a light load wrapped torsion spring 865 or a compressed helical spring or solenoid driven pusher to initiate the rotation of the spindle toward the load state as illustrated by the rotation arrow in Figure 12. Thus, release facilitator means is provided such as an electrically activated pusher solenoid, a compressible elastomeric block, or some other rotation facilitator.

Please amend the paragraph found on page 61, lines 7 to 15 as follows:

With reference to Figures 16 and 17, there can be seen pivot support frame structure 227 (or the spindle-to-support connector 218) of spindle load adjustment means 218 to which the non-free or base end of the spindle is connected in a bearing portion of frame structure 227.

Spindle locking latch 226 (Fig. 6) locks spindle 222 with film roll 220 in its operational feed mode—automatically upon return rotation from a film load position. In addition, the release mechanism preferably comprises a capture spindle latch mechanism 858 (Figure 11A) that is solenoid 866 driven (button activated at display panel) into release and has a cam surface 860 (Figure 12) which rides over and latches a capture portion or latch reception component 860A (Figures 12 and 17) of the spindle mechanism when being returned into ready to reel out mode.

Please amend the paragraph bridging pages 128 and 129 as follows:

With reference back to the earlier described Figures 2 and 16-21 and the below described Figures 115 to 138, there is described a preferred embodiment of a film unwind system. of the present invention. Figures 115 and 116 provide a cross sectional view of the film support means 186 with support extension 222C of spindle 222 supporting film roll 220 locked in position thereon and with spindle supported engagement member 232 providing driving communication from the web tension drive transmission 238 directly to film roll via a film roll core insert. Under the present invention web tension is monitored and controlled with the controller sub-system illustrated in Figure 192 (preferably in conjunction with the controller subsystem 191 used for film advance and web tracking). Web tension motor 58 is mounted on spindle load adjustment means 218 (Fig. 16) that includes hinge section 242 or a support-tospindle connector for achieving the previously described spindle load rotation between a load and film unwind state. Figures 115 and 116 illustrate in greater detail the rotation drive arrangement for the spindle which includes web tension drive transmission 238 with main gear 900 encircling stationary support shaft extension 906 extending axially in and is received by hub pocket HP (Fig. 15) formed in load support structure 240 and is fixed there with fastener 908.

Attached to main gear (e.g., see fastener 911 in Figure 115) is stub shaft 910 which rotates together with main gear 900. Between fixed axial shaft 906 and the rotating stub shaft there is located first roller bearing 912. Stub shaft 910 includes a free end minor step down over which is slid and fixed in position the illustrated radially interior cylindrical extension sleeve 914. At the free end of fixed axial shaft 906 there is located a second roller bearing 915 which is in bearing contact with the rotating interior cylindrical extension sleeve 914.

Please amend the paragraph bridging pages 134 and 135 as follows:

Figures 125 to 129 provide additional views of embodiments of roll latch (or roll retention latch) 228 with the cross sectional view of Figure 128 illustrating its mounting on the end of cylindrical shaft 932. Roll latch 228 includes outer housing 966 having a handle adjustment slot 983, an upper handle reception recess 963, an interior central recess 969 for receiving axial adjusting and biased pivot ball contact plate 968. Plate 968 is shown attached to housing 966 by way of a plurality of springs 990 (Fig. 129) and slidingly received within cylindrical recess 972 formed in insert plug 974. Insert plug is attached (e.g., screw(s) 975) to the open end of tubular shaft 932 and has a Z-shaped cross section so as to share a common peripheral surface with that of shaft 932 at its outer end and to provide a stop or limit to plate 968. Housing 966 is fastened to plug 974 by way of fasteners 976. Ball end securement means 978 receives and captures the pivotable ball 980 of lever 982. Lever 982 has an opposite end section extending into an axial cavity in the handle 984. Handle 984 further includes a curved lower end 986 which functions in cam fashion to facilitate movement between a lock mode wherein the handle is in contact and fixed in position on a peripheral edge of the housing's cavity

963 and slot 983 and plate 968 is pulled axially within housing 966 so as to compress biasing springs 990. This positioning causes sliders SL to move causing an outward rotation of the radially adjustable retention members or catch levers 988 in to a roll lock position as shown in Figure 127.

Please amend the paragraph found on page 137, lines 5 to 15 as follows:

Figures 135 to 138 illustrate roll support core insert 977 which is preferably formed with a double walled cylindrical section 975 having an outwardly extending flange at a first end 973 which provides an insertion limitation means relative to the core as it is slid into position into the open end of the roll film core. In addition, double walled cylindrical section preferably has a plurality of strengthening spokes 971 circumferentially spaced about the circumference of the core plug and in between the respective walls of the double wall cylinder. Also, radial protrusions PT extend out and enhance fixation of roll core insert 977 within core 996 upon the forward transverse edge TE embedding in the softer material of the core. The combination of the two roll film core plugs provide sufficient axial support relative to the preferably cardboard or plastic roll core either in a suspended state relative to the outer cylindrical sleeve 918 or in frictional contact over the length of the outer spindle cylinder. An embodiment of the invention features a spindle that has two axially spaced film roll mounting surfaces 222A and 222B (Figure 115) of different diameter, with the interior one 222B being larger in diameter than the other mounting surface 222A which mounting surfaces are dimensioned relative to core inserts of the film roll which core inserts are dimensioned of different sizes at interior edges 977E and 985 (see Figures 134), so as to limit mounting of the film roll in only one axial orientation.