Fast, Effective and Interpretable Deep Learning

Frederik Hvilshøj March 2, 2020

Table of contents

- 1. Introuction
- 2. Normalizing Flows
- 3. Explainability

Introuction

Introduction

- Deep Learning is leading paradigm in Machine Learning
- Much effort put into network design and efficiency
- · Models may be biased due to model constraints
- · Limited insights knowledge is based on intuition
- Explanations are important for sensitive tasks

This Project

- Explainability is based on heuristics
- Invertible functions give a higher level of insights

Normalizing Flows

Normalizing Flows

Goal: Learn a representation of a density p(x) directly.

Model: Maximize log-likelihood of the data with respect to the parameters of an invertible Neural Network.

$$\log(p_{\theta}(x)) = \log(p_{z}(f(x))) + \log(\det|\frac{\partial f(x)}{\partial x}|)$$

Constraints: invertible f(x) and tractable Jacobian.

$$\log\left(\det\left|\frac{\partial f_1(f_2(\dots f_k(x)))}{\partial x}\right|\right) = \sum_{i=1}^k \log\left(\det\left|\frac{\partial f_i(z_{i-1})}{\partial z_{i-1}}\right|\right)$$
$$z_1 = x, \quad z_i = f_{i-1}(z_{i-1})$$

Normalizing Flow Layers

```
Coupling layer c(x) = (x_1, x_2 + m(x_1)), for x = (x_1, x_2) [4]
Channel permutation Fixed channel permutations of 3D data [5]
1x1 convolutions Each spacial fiber multiplied by invertible matrix [8]
Periodic convolutions Circular convolutions over each channel [6]
```

What if Neural Networks had SVDs?

The Singular Value Decomposition

Definition

The Singular Value Decomposition of $W \in \mathbb{R}^{m \times n}$ is a factorization $W = U \Sigma V^T$, where U is an orthogonal $m \times m$ matrix, Σ is an $m \times n$ rectangular diagonal matrix, and V is an $n \times n$ orthogonal matrix.

Properties of the SVD

For out purposes, assume that *W* is a square, i.e., $W \in \mathbb{R}^{d \times d}$. Then:

$$U^{-1} = U^T$$
 and $V^{-1} = V^T$ $O(d^2)$
 $W^{-1} = (U\Sigma V^T)^{-1} = V\Sigma^{-1}U^T$ $O(d^2)$
 $det(W) = \prod_{i=1}^{d} \Sigma_{i,i}$ $O(d)$

Other fast computations are largest singular value, condition number, matrix exponential, and Cayley Map.

Use in Neural Networks

Neural Networks

Recall a simple fully-connected layer:

$$h_{\ell} = \sigma(Wh_{\ell-1}) = \sigma(U\Sigma V^{\mathsf{T}}h_{\ell-1})$$

- · Normalizing flows
- · Recurrent Neural Networks
- W-GAN

Gradients

$$W^{t+1} = W^{t} - \eta \frac{\partial L}{\partial W}$$
$$\Sigma^{t+1} = \Sigma^{t} - \eta \frac{\partial L}{\partial \Sigma}$$
$$U^{t+1} = U^{t} - \eta \frac{\partial L}{\partial U}$$

The Householder Matrix

Definition

For a vector $v \in \mathbb{R}^d$, the corresponding Householder matrix is defined as

$$H = I - 2\frac{vv^{T}}{||v||_{2}^{2}} \tag{1}$$

- Note LHS of Eqn. (1) takes $O(d^2)$ but RHS takes O(d).
- H stays orthogonal under gradient descent on v!

Lemma

The product of two orthogonal matrices is orthogonal.

Main Idea

Parametrize *U* and *V* as a product of Householder matrices [9].

$$U = H_1 \cdot H_2 \cdot \cdot \cdot H_d$$

When evaluating a NN, we need to compute

$$UX = H_1(H_2(\cdots(H_dX)))$$

with $X \in \mathbb{R}^{d \times m}$, where m is the batch size.

If we represent H_i s as matrices, this takes $O(d^3m)$ time (denoted parallel [9]). We can easily improve by representing H_i by its vectors v_i instead, $O(d^2m)$ (denoted sequential [9]).

Issues

Issues:

- The parallel algorithm is slow in theory.
- The sequential algorithm is not suited for GPUs.

We propose:

 $\boldsymbol{\cdot}$ Algorithm which is suited for GPUs and fast in theory.

Our Algorithm

Lemma

[3] For any m Householder matrices $H_1, ..., H_m$ there exists $W, Y \in \mathbb{R}^{d \times m}$ st.

$$I - 2WY^T = H_1 \cdots H_m$$
.

Both W and Y can be computed by m sequential Householder multiplications in $O(dm^2)$ time.

Complexity

Time:

$$P_1 \cdot P_2 \cdots P_{\frac{d}{m}} X$$
 $O(d^3m) \Rightarrow O(d^2m)$

sequential opetations:

$$O(\text{compute } I - 2WY^T + \text{multiply } P_i s) = O(d/m + m)$$

Experiments

3D Circular Convolutions

Algorithm: Forward O(hwc log hwc), Determinant O(hwc)

Require: Image/activations $X \in \mathbb{R}^{h \times w \times c}$ and kernel $K \in \mathbb{R}^{h \times w \times c}$.

- 1: $X = DFT_{3D}(X)$
- 2: $K = DFT_{3D}(K)$
- 3: $X = X \odot K$
- 4: $X = DFT_{3D}^{-1}(X)$

Comparison with Periodic Convolutions

For $X, K \in \mathbb{R}^{h \times w \times c}$ and $W \in \mathbb{R}^{c \times c \times h \times w}$

Circular 3D connvolutions

$$Z = F_{3D}^{-1}(F_{3D}(X) \odot F_{3D}(K))$$

Periodic convolutions

$$z_i = F_{2D}^{-1}(\sum_{j=1}^c F_{2D}(W_{i,j}) \odot F_{2D}(X_{:,:,j})),$$

Type	Params	Forward	Inverse
Periodic	$h \cdot w \cdot c^2$	O(hwc²)	O(hwc³)
3D-circular [†]	$h \cdot w \cdot c^2$	$O(hwc^2\log(hwc))$	$O(hwc^2\log(hwc))$

Improving Variational Auto-Encoders

Variational lower-bound:

$$\log p(x) \ge \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] + D_{KL} (q(z|x)||p(z))$$

where
$$q(z|x) = \mathcal{N}(\mu(x), diag(\sigma(x)))$$
.

With formalizing flow f, the equation becomes

$$\log p(x) \ge \mathbb{E}_{z \sim p(z|x)} \left[\log p(x|f(z)) + \log |Det \frac{\partial f(z)}{\partial z}| \right] + D_{KL} \left(q(z|x) || p(f(z)) \right)$$

[10] let $f(z) = H_k H_{k-1} \cdots H_1 z$ with each H_i being parametrized by the encoder.

Improving Variational Auto-Encoders

Method	$\leq \ln p(\mathbf{x})$
VAE	-93.89 ± 0.09
VAE+HF(T=1)	-87.77 ± 0.05
VAE+HF(T=10)	-87.68 ± 0.06
VAE+NF (<i>T</i> =10) [I7]	-87.5
VAE+NF (T=80) [I7]	-85.1
VAE+NICE $(T=10)$ [7]	-88.6
VAE+NICE $(T=80)$ [7]	-87.2
VAE+HVI (T=1) [20]	-91.70
VAE+HVI (T=8) [20]	-88.30

Figure 1: Comparison of the lower bound of marginal log-likelihood measured in nats of the digits in the MNIST test set. For the first three methods the experiment was repeated 3 times. Direct copy from [10].

Explainability

Explanations

Here we focus on explainability, characterized by

An active characteristic of a model, denoting any action or procedure taken by a model with the intent of clarifying or detailing its internal functions [1].

We consider attribution techniques and counterfactual explanations.

Attribution Techniques

- · Identifies contribution of each input feature wrt. the output
- "Gradient-like" computations
- · Based on different propagation rules

Figure 2: Direct copy from [7].

Counterfactual Explanations

Counterfactual explanations tries to answer the question

How can I make a minimal and realistic change to an input of the model such that the predicted outcome changes?

Common strategy

- 1. Start from the original input
- 2. Until prediction change
 - 2.1 Make small change to the input
 - 2.2 Query the classifier to gain information

Differences

- How to do update
- Information gained from classifier

Improving Explanations with Probabilistic Saliency
Estimation

Probabilistic Saliency Estimation [2]

Let $A \in \mathbb{R}^{h \times w \times c}$ be an attribution map, then we propose a refined attribution

$$\hat{A} = A \odot P$$

Experiment

Explanations Relies on Gradients

Issues

Generating Counterfactual Explanations

Construction

$$f(x) = \sigma\left(\beta^{\mathsf{T}} \mathsf{N} \mathsf{N}(x)\right)$$

$$f^{\dagger}(y) = NN^{-1} \left(f(x) - \frac{f(x)^{\mathsf{T}}\beta}{||\beta||} \right)$$

References i

- [1] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible Al. arXiv preprint arXiv:1910.10045, 2019.
- [2] Caglar Aytekin, Alexandros Iosifidis, and Moncef Gabbouj. Probabilistic saliency estimation. *Pattern Recognition*, 74:359–372, 2018.
- [3] Christian Bischof and Charles Van Loan. The WY Representation for Products of Householder Matrices. SIAM Journal on Scientific and Statistical Computing, 1987.
- [4] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-Linear Independent Components Estimation. In ICLR (Workshop), 2015.
- [5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In ICLR, 2019.
- [6] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging Convolutions for Generative Normalizing Flows. In *ICML*, 2019.

References ii

- [7] Pieter Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus Robert Müller, Dumitru Erhan, Been Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and Patternattribution. In ICLR, 2018.
- [8] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. In NeurIPS, 2018.
- Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections. In ICML, 2017.
- [10] Jakub M. Tomczak and Max Welling. Improving Variational Auto-Encoders using Householder Flow. *arXiv* preprint arXiv:1611.09630, 2016.