Digital Electronics and Microprocessors

Class 4

CHHAYADEVI BHAMARE

Alternate Logic-Gate Representations

- □ To convert a standard symbol to an alternate:
 - Invert each input and output (add an inversion bubble where there are none on the standard symbol, and remove bubbles where they exist on the standard symbol.
 - Change a standard OR gate to and AND gate, or an AND gate to an OR gate.

Alternate Logic-Gate Representations

- □ The equivalence can be applied to gates with any number of inputs.
- □ No standard symbols have bubbles on their inputs. All of the alternate symbols do.
- □ The standard and alternate symbols represent the same physical circuitry.

Alternate Logic-Gate Representations

- □ Active high an input or output has no inversion bubble.
- □ Active low an input or output has an inversion bubble.
- □ An AND gate will produce an active output when all inputs are in their active states.
- □ An OR gate will produce an active output when any input is in an active state.

Which Gate Representation to Use

- □ Using alternate and standard logic gate symbols together can make circuit operation clearer.
- When possible choose gate symbols so that bubble outputs are connected to bubble input and nonbubble outputs are connected to nonbubble inputs.

Which Gate Representation to Use

- □ When a logic signal is in the active state (high or low) it is said to be asserted.
- □ When a logic signal is in the inactive state (high or low) it is said to be unasserted.
- □ A bar over a signal means asserted (active) low.
- ☐ The absence of a bar over a signal means asserted (active) high.

Example

This circuit does not facilitate an understanding of how the circuit functions

A	В	C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	D	Z 0 0 0 1 0 0 0 0 1 1 1 1 1
0	0	0	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0 1 1 1 1	1	0	1
1	1	1	1	1

Example continued

Output Z will go high whenever either A=B=1 or C=D=1 (Or both)

Example continued

Output Z will go low only when A or B is low and C or D is low

Example

when the output of the logic ckt in fig goes low it activates another logic ckt. Modify the ckt diagram to represent the circuit operation more effectively

Alternate gate representation

- Because Z is to be active low, the symbol for OR gate 2 must be changed to its alternate symbol. The new OR gate2 symbol has bubble inputs, and so the AND gate and OR gate symbols must be changed to bubled outputs.
- □ The inverter has already bubble output

Example

□ The logic ckt in fig is being used to activate an alarm when its output Z goes High. Modify the circuit diagram so that it represents the ckt operation more effectively.

Alternate logic ckt

Algebraic Simplification

- □ Place the expression in SOP form by applying DeMorgan's theorems and multiplying terms.
- □ Check the SOP form for common factors and perform factoring where possible.
- □ Note that this process may involve some trial and error to obtain the simplest result.

Designing Combinational Logic Circuits

- □ To solve any logic design problem:
 - Interpret the problem and set up its truth table.
 - Write the AND (product) term for each case where the output equals 1.
 - Combine the terms in SOP form.
 - Simplify the output expression if possible.
 - Implement the circuit for the final, simplified expression.

Example application: - Majority Circuit

A logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH.

Step 1 Set up the truth table

Step 2 Write the AND term for each case where the output is a 1.

	X	C	Ъ	A
	0	0	0	0
	0	1	0	0
	0	0	1	0
$\rightarrow \overline{A}BC$	1	1	1	0
	0	0	0	1
→ ABC	1	1	0	1
→ ABC	1	0	1	1
<i>→ ABC</i>	1	1	1	1

Step 3 Write the SOP form the output

$$X = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Step 4 Simplify the output expression (ref. p. 119 of T1)

$$X \equiv \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

 $X \equiv \overline{A}BC + ABC + A\overline{B}C + ABC + AB\overline{C} + ABC$
 $= BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$
 $= BC + AC + AB$

Step 5 Implement the circuit

Karnaugh Map Method

- □ A graphical method of simplifying logic equations or truth tables. Also called a K map.
- □ Theoretically can be used for any number of input variables, but practically limited to 5 or 6 variables.
- □ K Map shows the relationship between inputs& outputs

Karnaugh Map Method

- □ The truth table values are placed in the K map as shown in the next page.
- Adjacent K map square differ in only one variable both horizontally and vertically. \overline{AB} , \overline{AB} , \overline{AB} , \overline{AB}
- □ A SOP expression can be obtained by ORing all squares that contain a 1.

	X	В	Α
→ AB	1	0	0
	0	1	0
	0	0	1
→ AB	1	1	1

$$\left\{ x = \overline{AB} + AB \right\}$$

Karnaugh maps and truth tables for three variables.

A	В	C	X	
0	0	0	1 → ABC	
0	0	1	1 → ABC	
0	9	0	1 → ABC	6
0	1	1	0	X = ABC + ABC
1	0	0	0	+ ABC + ABC
1	0	1	0	
1	1	0	1 → ABC	
1	1	1	0	
		11	<u> </u>	(b)

	Č	С
AB	1	1
АВ	1	0
AB	1	o
ĀВ	0	0

Karnaugh maps and truth tables for four variables.

ABCD	X					
0 0 0 0	0		CD	CD	CD	CD
0 0 0 1	1 → ABCD		1110000		-	2447.34
0 0 1 0	0	AB	0	1	0	0
0 0 1 1	0					
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	0	AB	0	1	0	0
0 1 0 1	1 → ABCD X = ABCD + ABCD + ABCD + ABCD	AU	O	1184	U)
0 1 1 0	0 1 + ABCD + ABCD		CT or			
0 1 1 1	0	AB	0	1	1	0
1 0 0 0	0					
1 0 0 1	0	ĀΒ	0	0	0	0
1 0 1 0	0	1.7.7				
1 0 1 1	0					
1 1 0 0	0					
1 1 0 1	1 → ABCD					
1 1 1 0	0					
1 1 1 1	1 → ABCD					