Universidade Federal do Espírito Santo Departamento de Informática **Profa. Claudine Badue** Algoritmos Numéricos I

Lista de Exercícios Teóricos 2

Exercício 1 [Campos, 2007; Exercícios 4.6 e 4.7]

Seja a tabela:

	i	x_i	y_i
	1	1.4	4.2
	2	2.1	2.3
	3	3.0	1.9
	4	4.4	1.1

- a) Calcular os coeficientes do modelo $y = b_0 + b_1 x.$
- b) Calcular o coeficiente de determinação r^2 do modelo.
- c) Determinar a variância residual σ^2 do modelo.

Exercício 2 [Campos, 2007; Exercícios 4.29]

Repita o exercício anterior usando o modelo:

- a) $y = b_0 + b_1 x + b_2 x^2$; b) $y = ax^b$;
- c) $y = ab^x$; e
- d) $v = ae^{bx}$

Exercício 3 [Ruggiero e Lopes, 2009; Exercícios 7.1]

- a) Calcule a integral $\int_{1}^{2} e^{x} dx$ pela regra do trapézio usando quatro e seis divisões de [a, b].
- b) Calcule pela regra do 1/3 de Simpson.

Exercício 4 [Ruggiero e Lopes, 2009; Exercícios 7.2]

- a) Usando a integral do exercício anterior, com quantas divisões do intervalo, no mínimo, podemos esperar obter erros menores que 10^{-5} pela regra do trapézio?
- b) E pela regra do 1/3 de Simpson?

Exercício 5 [Ruggiero e Lopes, 2009; Exercícios 7.5]

- a) Qual o erro máximo cometido na aproximação de $\int_0^4 (3x^3 - 3x + 1) dx$ pela regra do trapézio usando quatro subintervalos?
- b) E pela regra do 1/3 de Simpson?

Exercício 6 [Ruggiero e Lopes, 2009; Exercício 7.17]

Considere a integral:

$$\int_0^{\pi} (e^x + \operatorname{sen}(x) + 2) dx.$$

- a) Estime I pela regra do 1/3 de Simpson usando $h = \frac{\pi}{4}$.
- b) Estime I por Quadratura Gaussiana usando 2 pontos.
- c) Sabendo que o valor exato de *I* (usando 4 casas decimais) é 30.4239, quantos pontos seriam necessários para que a regra do trapézio obtivesse a mesma precisão que a estimativa obtida para I em (b)?

Exercício 7 [Ruggiero e Lopes, 2009; Exercício 2.19]

O polinômio $p(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$ tem seus cinco zeros reais, ξ_1 , ξ_2 , ..., ξ_5 , todos no intervalo (-1,1). Encontre as duas primeiras aproximações para:

- a) $\xi_1 \in (-1, -0.75)$ pelo método de Newton com $x_0 = -0.8$;
- b) $\xi_2 \in (-0.75, -0.25)$ pelo método da bisseção;
- c) $\xi_3 \in (-0.25, 0.25)$ pelo método da posição falsa; e
- d) $\xi_5 \in (0.8, 1)$ pelo método da secante.

Exercício 8 [Ruggiero e Lopes, 2009; Exemplo da página 46]

Se desejarmos encontrar ξ , o zero da função $f(x) = x \log(x) - 1$ que está no intervalo [2,3] com precisão $\varepsilon = 10^{-2}$,

iterações, no mínimo, devemos efetuar pelo método da bisseção?

Exercício 9 [Ruggiero e Lopes, 2009; Exercício 2.15]

Seja $f(x) = e^x - 4x^2$ e ξ sua raiz no intervalo (0, 1). Tomando $x_0 = 0.5$, encontre ξ com $\varepsilon = 10^{-4}$, usando o método de Newton.

Exercício 10 [Ruggiero e Lopes, 2009; Exercício 8.17]

Considere o PVI:

$$\begin{cases} y' = (yx^2 - y) \\ y(0) = 1. \end{cases}$$

- a) Encontre a solução aproximada usando o método de Euler com h = 0.5 e h = 0.25, considerando $x \in [0, 1]$;
- b) Repita o item (a) usando o método de Euler modificado;
- c) Repita o item (a) usando o método de Euler melhorado.

Exercício 11 [Ruggiero e Lopes, 2009; Exercício 8.20]

a) Escreva a equação de 2ª ordem

$$\begin{cases} y''(x) = 2(\exp(2x) - y^2)^{1/2} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

como um sistema de equações de 1^a ordem.

b) Resolva-o para $x \in [0, 0.6]$ usando h = 2 pelo método de Euler.

Referências

F. F. Campos. *Algoritmos Numéricos*. Livros Técnicos e Científicos, Segunda Edição, 2007.

M. A. G. Ruggiero & V. L. da R. Lopes. *Cálculo Numérico: Aspectos Teóricos e Computacionais*. Pearson Makron Books, Segunda Edição, 2009.