

สำนักพอสมุล มหาวิทยาลัยเทก ใน โลยีพระจองแลล้าของรี

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2551

วิชา ENE 34 ่ำ Control Systems สอบ วันพุธที่ 1 ตุลาคม พ.ศ. 2551 ภาควิชาวิศวกรรมอิเล็กทรอนิกส์ ปีที่ 3 (ปกติ) เวลา 13:00 -16:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 9 หน้า (รวมใบปะหน้า) รวม 90 คะแนน
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้<u>เลขนัยสำคัญ 2 ตำแหน่ง</u>
- 3. <u>อนุญาต</u>ให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบได้
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา

ชื่อ-สกุลรหัสประจำตัว	เลขที่นั่งสอบ		
ผศ.ดร.วุฒิชัย อัศวินชัยโชติ			
ผพ.ต.ว. รุพมาย ยพ.รหาย เกต ผู้ออกข้อสอบ โทร. 0-2470-9061			

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมุการประจำภาควิชาแล้ว

(ผศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ–นามสกุล	รหัสประจำตัว	สานักหอกัจุ เลขที่นั่งสอบ
		มหาวิทยาลัยเทกโนโลยีพระจอบเกล้า จ นบุรี

ข้อ 1. (15 คะแนน) จงพิจารณารูปภาพด้านล่าง

ก. (5 คะแนน) จงหา Transfer Function ของ อินพุท R(s) กับ สัญญาณ Y(s)

ข. (10 คะแนน) ระบบจะมีเสถียรภาพหรือไม่ ถ้ากำหนดให้ $K_1=K_2=1$

ข้อ 2. (20 คะแนน): จงพิจารณารูปข้างล่างต่อไปนี้

(a)(10 คะแนน) จงจับคู่ open-loop system กับ รูป root locus ที่ให้มาด้านบนว่า ตรงกับรูปใด พร้อมทั้งให้เหตุผล

i)
$$\frac{K}{s+a}$$
; $a>0$

ii)
$$\frac{K}{s^3 + a_2 s^2 + a_1 s + a_0}$$
; all $a_i > 0$, $a_2 a_1 - a_0 > 0$

iii)
$$\frac{K}{s^3 + a_2 s^2 + a_1 s + a_0}$$
; all $a_i > 0$, $a_2 a_1 + a_0 > 0$

iv)
$$\frac{1}{(s+a)^2(s-b)}$$
; $a > 0$, $b > 0$

(b)(10 คะแนน) จงจับคู่รูปสัญญาณ response ด้านล่าง กับ รูป root locus ที่ให้มาด้านบนว่า ตรงกับรูปใด พร้อม ทั้งให้เหตุผล

مأ	
ชื่อ-นามส	กล

ูรหัสประจำตัว_

สานีก็หย่านุพ

เลขที่นั่งสอบ____**ถ้านี้ก็หย่กมุพ มหาวิทยาลัยเทคโนโลยีพระจ**อมเก**ล้าชนบุรี**

ข้อ 3. (35 คะแนน): จงพิจารณาระบบควบคุมต่อไปนี้

(a) (5 คะแนน) ระบบนี้ BIBO stable หรือไม่ เพราะเหตุใด

(b) (5 คะแนน) ระบบนี้สามารถใช้ pure controller $G_c(s) = K_\rho$ เพื่อที่จะควบคุมให้ ระบบมีเสถียรภาพได้หรือไม่ เพราะเหตุใด

ชื่อ-นามสกุล	รหัสประจำตัว	เลขที่นั่งสอบ
		มหาวิทยาลัยเทคโนโลยีพระจอมแกล้าชน ช

- (c) (25 คะแนน) จงออกแบบ phase-lead controller จนกระทั่งได้ closed-loop system มี specification ดังนี้
 - i) Peak overshoot น้อยกว่า 5 % ลำหรับ unit step input
 - ii) Rise-time น้อยกว่า 2.5 วินาที่ สำหรับ unit step input

(Hint: ใช้ root locus)

ข้อ 4. (20 คะแนน)

(A) พิจารณาระบบควบคุมต่อไปนี้ (10 คะแนน)

จงเขียน Bode Diagram ของระบบข้างบน

- (B) จงตอบคำถามต่อไปนี้ (10 คะแนน)
- ก. (5 คะแนน)

Why feedback ?

ข. (5 คะแนน) จงบอกข้อดีและข้อเสียของตัวควบคุมแบบ Phase Lead และ Phase Lag