

Control de noviembre de 2022

DEPARTAMENTO DE MATEMÁTICAS GRUPOS Y ANILLOS.

- 1. En las siguientes afirmaciones se pide determinar si son verdaderas o falsas. Si se determina que son verdaderas se debe hacer una demostración o justificar ampliamente la respuesta, de lo contrario, habrá que dar un contraejemplo.
 - a) Sean A, B anillos y $f: A \to B$ un homomorfismo de anillos. Para cualesquiera ideales $I, J \leq B$ se cumple:
 - 1) $f^{-1}(IJ) \subseteq f^{-1}(I)f^{-1}(J)$. 0,5 puntos

Respuesta: Falso. Un contraejemplo es el siguiente. Se considera $I = J = \mathbb{Z}_6 \cdot 3$. Se tiene que $I \cdot I = I$. Ahora $f^{-1}(II) = f^{-1}(I) = \mathbb{Z} \cdot 3$. Sin embargo $f^{-1}(I)f^{-1}(I) = \mathbb{Z} \cdot 9$.

2) $f^{-1}(IJ) \supseteq f^{-1}(I)f^{-1}(J)$.0,5 puntos

Respuesta: Verdadero. Para probarlo, basta considerar un sumando. Sea $a \in f^{-1}(I)$ y $b \in f^{-1}(J)$. Entonces $f(a)f(b) \in IJ$ de donde $f(ab) \in IJ$, así que $ab \in f^{-1}(IJ)$.

b) Sea $m \in \mathbb{Z}$ un entero que no es cuadrado perfecto (o sea, no es el cuadrado de algún número). El anillo $\mathbb{Z}[\sqrt{m}]$ nunca podrá ser un cuerpo. **1 punto**

Respuesta: Verdadero. Nótese que $2 \in \mathbb{Z}[\sqrt{m}]$ no tiene inverso en $\mathbb{Z}[\sqrt{m}]$.

2. Se pide probar que todo ideal propio de un anillo está contenido en un ideal maximal. 2 puntos

Respuesta: Es la Proposición 2.8 de los apuntes. ■

3. Sea A un anillo. Se pide probar que si A[X] es un dominio de ideales principales entonces A es un cuerpo. **2 puntos**

Respuesta: Es parte de la Proposición 3.13 de los apuntes. ■

4. Descomponer el anillo $\mathbb{R}[X]/(X^3-2X^2+X-2)$ como producto de cuerpos en $\{\mathbb{R},\mathbb{C}\}$. 2 puntos

Respuesta: Se tiene que $(X-2)(X^2+1)=X^3-2X^2+X-2$. Del Ejemplo 3.4(6) se tiene que $\mathbb{R}[X]/(X-2)\cong\mathbb{R}[2]=\mathbb{R}$ y $\mathbb{R}[X]/(X^2+1)\cong\mathbb{R}[i]=\mathbb{C}$.

Después de verificar las hipótesis, aplicamos el Teorema Chino de los Restos $\mathbb{R}[X]/(X^3-2X^2+X-2)\cong \mathbb{R}[X]/(X-2)\times \mathbb{R}[X]/(X^2+1)\cong \mathbb{R}\times \mathbb{C}$.

5. Sea D un DIP e $0 \neq I \leq D$ un ideal. Se pide probar que si el anillo cociente D/I es un dominio entonces es un cuerpo. **2 puntos**

Respuesta: Por la Proposición 2.6, sabemos que si D/I es dominio entonces I es ideal primo en D. Ahora, por la Proposición 2.24 todo ideal primo en D es maximal y nuevamente por la Proposición 2.6 se tiene que D/I es un cuerpo.