

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES HELIUM ACTIVITY HELIUM RESEARCH CENTER INTERNAL REPORT

THE MEASUREMENT OF DIELECTRIC CONSTANTS	
FOR BINARY GAS MIXTURES	

BY

J.	C. Fra	anklin	

BRANCH

Branch of Fundamental Research

PROJECT NO. 6910

July 1969

HD 9660 .H43 M56 no.118

AMARILLO, TEXAS

Report No. 118

9660 1443 M56 no.113

HELIUM RESEARCH CENTER INTERNAL REPORT

THE MEASUREMENT OF DIELECTRIC CONSTANTS
FOR BINARY GAS MIXTURES

Ву

John L. Gordon and J. C. Franklin

BLM Library Denver Federal Center Bldg. 50, OC-521 P.O. Box 25047 Denver, CO 80225

BRANCH OF FUNDAMENTAL RESEARCH

Project 6910

July 1969

all denoted to 5 but noticed to make

BLM Library Deaver Federal Center Bldg. 50, OC-521 P.O. Box 25047 Deaver, CO 80225

INCHES OF FURTAMENTAL RESEARCH

1166 328 328

PREI VANE

CONTENTS

Page
Abstract
Introduction
Description of apparatus
Operating procedures
Calibration procedures
Data treatment
Conclusions
Acknowledgments
References
a. Literature
b. Equipment instruction manuals
Appendix - Dielectric constants of He-CO ₂ mixtures at 20°, 0°, and -10° C to 1,000 psia
ILLUSTRATIONS
Fig.
1. Block diagram of dielectric constant apparatus 6
2. Diagram of thermocouple system
3. Compressibility factors for carbon dioxide at 35° C 13
4. Clausius-Mosotti for carbon dioxide at 35° C 13
5. Clausius-Mosotti for helium-carbon dioxide mixtures at 35° C

CONTENTS

VI	
mintures at 20°, 0°, and -10° C to 1,000 psis 21	
Diagram of thermocouple system	

	FOR BINARY GAS RESTURES		Pag	<u>se</u>
	TABLES			
1.	Equipment used in the dielectric apparatus		. 7	7
2.	Clausius-Mosotti function at zero density, A, and related parameters for He-CO ₂ mixtures	•	. 1	7

The apparatus provides data of sufficient scenary for colonistics

Date report is intended to serve as an internal record of the order

constants for any mintures. Tarbuic and protocures described are there

PRAT.

TABLES

				CO2 mixtures			

THE MEASUREMENT OF DIELECTRIC CONSTANTS FOR BINARY GAS MIXTURES

ting procedures are discussed; howbyer, detalls for operation of indi-

John L. Gordon $\frac{1}{}$ and J. C. Franklin $\frac{1}{}$

ABSTRACT

This report describes the apparatus and operating procedures presently being used to determine dielectric constants for gases and gas mixtures to 65 atmospheres from 35° to -20° C. Dielectric constants and Clausius-Mosotti functions are tabulated in an appendix for He-CO₂ mixtures at three temperatures in the range.

The apparatus provides data of sufficient accuracy for calculation of dielectric virial coefficients over wide temperature ranges in a region where little or no data are now available.

This report is intended to serve as an internal record of the equipment used and of the procedures followed to measure capacitance, pressure, and temperature.

INTRODUCTION

The principal purpose of this report is to describe operating procedures used by the Physical Properties Section in measuring dielectric constants for gas mixtures. Methods and procedures described are those

^{1/} Research chemist, Helium Research Center, Bureau of Mines, Amarillo, Tex.

THE MALEUREMENT OF DISEASED CONSTANTS

48

Anglainers .O .L top Annessan a most

TOARTERA

This report describes the apparatus and operating procedures presently buting used to determine dislected; constants for games and sermixtures to 55 standards from 35° to -30° C. Dielectric constants and Claustus Moreotti functions are inhulated in an appendix to la-CO₂

The apparatus provides date of sufficient accuracy for calculation of distorted virial confidence over wide temporature ranges in a section share share and available.

These report to totanded to serve as an internal retord of the opening ment used and of the procedures followed to sensure capacitusces pressure, and conversions.

INTERDUCTION

The principal purpose of this report to to describe operating procoduces were by the Physical Properties Section in measuring distances
constants for one mixtures. Methods and propedures described are thuse

I managed abouter, Helfun Lauderch Concer, Surana of Mines, American

used to obtain the data tabulated in the Appendix. The apparatus is described in detail, including recent modifications, and general operating procedures are discussed; however, details for operation of individual equipment components are referred to the appropriate instruction manuals. Procedures are described for in situ calibrations. Calibrations obtained from the National Bureau of Standards or from manufacturers are not elaborated.

The macroscopic dielectric constant (e) of a gas is related to the polarizability of the gas molecules through the Clausius-Mosotti function,

$$CM = \frac{\varepsilon - 1}{\varepsilon + 2} \left(\frac{1}{\rho} \right) = \frac{4}{3} \pi N_o \chi^{(e)}, \qquad (1)$$

where ρ is the molar density, N_o is Avagadro's number, and $\chi^{(e)}$ is the polarizability for non-polar molecules. This expression can be expanded into an infinite series in $\rho,$

$$CM = A + B\rho + C\rho^2 + \cdots, \qquad (2)$$

with A, B, C, ... designated as "dielectric virial coefficients;" and, in this form it can be treated to give information with respect to intermolecular forces. Application of this virial concept to the dielectric properties of molecules will be the subject of a later report.

Dielectric constants have been reported only for single-component gases (2, 4, 5, 7), $\frac{2}{}$ primarily within the 20°-150° C range. The

^{2/} Underlined numbers in parentheses refer to items in the list of references at the end of this report; references 9-16 list pertinent manufacturer instruction manuals.

used to obtain the data tabulated in the Appendix. The apparatus is described in detail, including recent modifications, and general operating procedures are discussed; however, details for operation of individual equipment components are referred to the appropriate instruction manuals. Procedures are described for in situ calibrations. Calibrations obtained from the Marional Sureau of Standards or from manufacturers are staborated.

The macroscopic dislectric constant (s) of a gas is related to the polarizability of the gas molecules through the Clausius-Mosotti function,

$$\Omega I = \frac{s-1}{s+2} \left(\frac{1}{s}\right) = \frac{A}{3} \Pi B_0 X^{(0)},$$
 (1)

where p is the molar density, No is Avagadro's number, and x (c) is the polarizability for non-polar molecules. This expression can be expanded into an infinite series in p.

$$CM = A + Bp + Cp2 + \cdots$$
 (2)

with A, B, C, ... designated as "disloctric virial coefficients;" and, in this form it can be treated to give information with respect to intermolecular forces. Application of this virial concept to the disloctric properties of molecules will be the subject of a leter report.

Dielectric constants have been reported only for single-component gases (2, 4, 5, 7), 2 primarily within the 20°-150° C range. The

2/ Underlined numbers in parentheses refer to items in the list of references at the end of this report; references 9-16 list pertinent manufacturer instruction manuals.

dielectric constant data reported here include binary mixtures of He-CO $_2$ and both pure components at 20°, 0°, and -10° C.

Gas mixtures were prepared by the Branch of Laboratory Services from grade-A helium (99.995%) and commercially available carbon dioxide (99.95%) with no further purification. These mixtures were analyzed by mass spectrometry to an accuracy of 0.1 mole percent.

DESCRIPTION OF APPARATUS

Dielectric constants were determined by measuring the capacitance of a rigid, parallel-plate capacitor with(1) a vacuum dielectric, and(2) a gaseous dielectric at a known temperature, pressure, and composition.

The apparatus is shown in block diagram in figure 1. Specific equipment FIGURE 1.-Block diagram of dielectric constant apparatus.

components are listed in table 1. A 100-picofarad (pf) General Radio $\frac{3}{}$

3/ References to specific equipment used are made to facilitate understanding and do not imply endorsement by the Bureau of Mines.

type 1404-B reference standard capacitor (12) was removed from its hermetic can and mounted in a high-pressure test cell machined from 316 stainless steel. The capacitor was rigidly fixed to the top cap or lid of the cell, and coaxial lead wires were passed through the lid by means of two separate high-pressure packing glands. Three-terminal electrical connections were retained throughout the capacitance system. The cell lid was threaded into the cell, and a seal made by 0-ring compression. Copper tubing connections allowed gas inlet and evacuation. A packing gland pro-

dielectric constant data reported here include binary mixtures of Me-CO2 and both pure components at 20°, 0°, and -10° C.

Gas mixtures were prepared by the Branch of Laboratory Services from grade-A hellum (99.995%) and commercially available carbon dioxide (99.95%) with no further purification. These mixtures were analyzed by mass spectrometry to an accuracy of 0.1 mole percent.

DESCRIPTION OF APPARATUS

Dielectric constants were determined by measuring the capacitance of a rigid, parallel-place capacitor with(1) a vacuum dielectric, and(2) a gassous dielectric at a known temperature, pressure, and composition.

The apparatus is shown in block diagram in figure 1. Specific equipment

PIGURE 1 -Block diagram of delectric constant apparague.

components are itsted in table 1. A 100-picofared (pf) General Radio 3/ References to specific equipment used are made to facilitate under-standing and do not imply endorsement by the Sureau of Mines.

type 1404-8 reference standard capacitor (12) was removed from its harmetic can and monuted in a high-pressure test cell machined from 316 stainless steel. The capacitor was rigidly fixed to the top cap or 11d of the cell, and coaxial lead wires were passed through the 11d by means of two separate high-pressure packing glands. Three-terminal electrical cornections were retained throughout the capacitance system. The cell 11d was threaded into the cell, and a seal made by 0-ring compression. Copper tubing connections allowed gas inlet and evacuation. A packing gland pro-

- A. Temperature sensor
- B. 250 watt heater
- C. Bath thermocouple

- D. Cell thermocouple
- E. Bath stirrer
- F. Cooling coils

- Tomourature sensor
 - B. 250 wort heater
 - C. Both thermocouple

- D. Cell Inermocouple
 - E. Both stirrer
 - F. Cooling colls

vided for entrance of a thermocouple into the cell; this thermocouple was located near the capacitor ground base plate.

TABLE 1. - Equipment used in the dielectric constant apparatus

- 1. Bayley Instrument Company precision temperature controller, Model 250.
- 2. Electro Scientific Industries dekavider voltage divider, Model RV 622-754.
- 3. General Radio Company capacitance bridge, Type 1615-A, Serial No. 1294.
- 4. Instrulab, Inc., Evenvolt power supply, Model 209-NW-05.
- 5. Joseph P. Kaye ice-point calibration standard, Model RCS1.
- 6. Leeds and Northrup dc null detector, Model 9834-1-S.
- 7. Ruska Instrument Corporation deadweight gage, Model 2420, Serial No. 12487.

Hydraulic tests to 4,500 psig established a test-cell working pressure of 3,000 psig. To date, no gas pressures above 1,500 psig have been applied.

The cell was suspended in a 50-liter ethylene glycol-water (specific gravity = 1.1) constant-temperature bath. Copper cooling coils, F, carried liquid nitrogen to the bath system for cooling; a 250-watt, knifeblade heating element, B, supplied the heat input. A temperature controller (9) with nickel temperature sensor, A, adjusted the heater output to balance the cooling rate. The bath held a set temperature to within $\pm 0.005^{\circ}$ C. A steel lid on the dewar supported the suspended cell and all control equipment except the cooling coils and a double-propeller stirring shaft. An

TABLE 1. -Equipment used in the district constant apparatus

- 1. Bayley Instrument Company precision temperature controller,
 - 2. Electro Scientific Industries dekaylder voltage divider,
 - 3. Ceneral Fadio Company capacitance bridge, Type 1015-A. Serial No. 1294.
 - 4. Instrulab, Inc., Evenvelt power supply, Model 209-NW-05.
 - 5. Joseph P. Maye ice-point cultbrutton standard, Model MCSI
 - 6. Leads and Northwest de null detector, Model 9836-1-5.
 - 7. Surks Instrument-Corporation deschwight gage, Model 2420, Serial No. 11087.

Hydraulic tests to 4,500 psig established a test-cell working pressure of 3,000 psig. To date, no gas pressures above 1,500 psig bave been applied.

The cell was suspended in a 50-liter chylene glycol-water (apecific gravity = 1.1) constant-temperature bath. Copper cooling cells, F. carried liquid nitrogen to the bath system for cooling; a 350-watt, knifeblade hearing alement, B. supplied the heat input. A temperature controller (9) with nickel temperature sensor, A. adjusted the heater output to balance the cooling rate. The bath held a set temperature to within ±0.005° C. A steel lid on the down supported the suspended cell and all control equip-

air-driven motor provided vigorous stirring with low heat leak into the bath. Both dewar and lid were later insulated with polyurethane foam to reduce heat leak, lower liquid nitrogen requirements, and minimize atmospheric water condensation at low temperatures. However, this insulation was not essential to good temperature control because the large liquid mass of the bath offered high inertia to temperature fluctuations. Thermometer-probe excursions through the bath volume indicated a maximum thermal gradient of 0.004° C.

Gas was admitted to the test cell from a supply cylinder through a manifold of valves and copper tubing. A vacuum pump was attached to this manifold to reduce the cell pressure to less than 0.1 Torr. Vacuum pressures were measured with a Pirani gage. Variations in vacuum capacitance, $C_{\rm vac}$, were not observable at pressures below 0.1 Torr.

OPERATING PROCEDURES

Capacitance measurements were taken with a General Radio type 1615-A transformer ratio-arm capacitance bridge assembly having a precision of 1×10^{-4} pf. According to the manufacturer, this bridge has an absolute accuracy of 0.01 percent of reading without calibration. It was calibrated at the nominal value of all capacitance readings, so that its calibrated accuracy is limited by its precision. Three-terminal electrical connections and a dissipation-balancing network reduced lead capacitance and stray induction effects to a negligible level.

air-driven motor provided vigorous stirring with low heat lack into the bath. Both dewar and itd were later insulated with polyurethans foam to reduce heat last, lower liquid nitrogen requirements, and minimize atmospheric water condensation at low temperatures. However, this insulation was not assential to good temperature control because the large liquid mass of the bath offered high inertia to temperature fluctuations. Thermometer-probe excessions through the bath volume indicated a maximum thermal gradient of 0.004° C.

Cas was admitted to the test cell from a supply cylinder through a manifold of salves and copper tubing. A vacuum pump was attached to this manifold to reduce the cell presents to less than 0.1 Torr. Vacuum presents sures were measured with a Pitani gage. Variations in vacuum capacitance.

OFERATING PROCEDURES

Capacitance measurements were taken with a General Radio type 1615-A transformer rutio-arm capacitance bridge assembly having a precision of 1 x 10 to 10 percent of the menufacturer, this bridge has an absolute accuracy of 0/01 percent of reading without esibration. It was calibrated at the nominal value of all capacitance readings, so that its calibrated accuracy is limited by its precision. Three-terminal electrical connections and a dissipation-balancing network reduced lead capacitance and stray induction effects to a negligible level.

Before an initial capacitance was taken, the cell was evacuated and purged thoroughly, then re-evacuated for approximately 20 minutes to allow all gas to be removed (0.1 Torr) and to establish temperature equilibrium with the bath. When the bath and cell thermocouples indicated the same temperature, the vacuum capacitance ($^{\rm C}_{\rm Vac}$) was recorded. Repeating this procedure assured precision of reading corresponding to the bridge precision.

The dissipation factor, D, was measured simultaneously with gas capacitance, C, in the process of obtaining final capacitance balance on the bridge. D is a measure of the dissipative capacitance loss across a capacitor and along all associated electrical leads and connectors. D was quite small and did not affect the capacitance value if balanced by the bridge; that is, when the bridge was balanced with respect to D, there was no phase loss across the capacitor under measurement. Imbalance with respect to D resulted in a loss of bridge sensitivity to capacitance.

In all reported measurements, D was less than 10×10^{-6} . If any reading showed a D larger than this figure, purging was continued. A very large D (> 100×10^{-6}) invariably indicated a gas leak in the test cell or a liquid leak into a coaxial lead. Tests showed that D values as high as 20×10^{-6} did not affect the capacitance reading. All vacuum capacitance measurements had values of D less than 5×10^{-6} ; most were less than 1×10^{-6} .

After the desired gas mixture was admitted into the cell, and temperature stability had been regained, C was recorded. Repeatability tests Before an initial capacitance was taxen, the cell was evacuated and purged thoroughly, then re-evacuated for approximately 20 minutes to allow all gas to be removed (0.1 Tour) and to establish temperature equilibrium with the bath. When the bath and cell thermocouples indicated the same temperature, the vacuum capacitance (Cyac) was recorded. Repeating this procedure assured precision of reading corresponding to the bridge precision.

The dissipation factor, D, was measured simultaneously with gas capacitance, C, in the process of obtaining final capacitance belowe on the bridge. D is a measure of the dissipative department loss across a capacitant and along oil associated electrical leads and connectors. D was quite small and did not affect the capacitance value if belanced by the bridge; that is, when the bridge was belanced with respect to D, there was no phase loss across the capacitan under measurement. Inheleans with respect to D, there was no phase loss across the capacitan under measurement. Inheleans

rending showed a W larger than this figure, purging was continued. A very large D C> 100 × 10.0) invariably indicated a was lock in the test cell of a liquid lask into a coastal lend. Tests showed that W valves as bigh as 20 × 10.0 did not effect the capacitance reading. All vectom capacitance measurements and values of D less than 5 × 10.0; most were last than 1 × 10.0.0

After the desired ass winters was simitted into the cell, and tenperature stability had been regained, C was recorded; Sepentability tests were made by evacuating and refilling to approximately the same pressure.

Bath and cell temperatures were recorded as thermocouple millivolt (mv) readings. The thermocouples were copper-constantan referenced to an electronic ice bath (14) and calibrated as indicated under Calibration Procedures. Millivolt readings were converted to Celsius degrees through a calibration table. Interpolation errors were not present, because the calibrations were performed at precisely those temperatures to be used as isotherms. The electronic ice bath was stable to 0.001° C, referenced to the triple-point of water.

Figure 2 is a schematic diagram of the thermocouple system. The

FIGURE 2.-Diagram of thermocouple system.

output from a constant 100-mv dc power supply (13) was attenuated by a precision 6-dial Kelvin-Varley voltage divider (10) until the resultant voltage exactly matched the thermocouple voltage. Balance was indicated by a null detector (15). The divider dial reading was recorded as the thermocouple voltage. This entire system was electrically floated above ground potential, and was calibrated in situ. Temperatures are reported in the International Practical Temperature Scale and are considered accurate to 0.01° C.

Initially, pressures were measured with a 0-5,000 psia strain gage pressure transducer, and all pressures reported in the Appendix were thus obtained. A constant 10-volt dc power supply (13) was used, and both the power supply and transducer were maintained at 35°±0.5° C in an incubation oven. The transducer was calibrated in situ by taking parallel pressure

were made by evacuating and refilling to approximately the same pressure.

Bath and cell temperatures were recorded as thermocouple millivolt

(mv) readings. The thermocouples were copper-constant referenced to
an electronic ice bath (la) and calibrated as indicated under Calibration
Procedures, Millivolt readings were converted to Celsius degrees through
a calibration table. Interpolation errors were not present, because the
calibrations were performed at precisely those temperatures to be used as
isotherms. The electronic ice bath was stable to 0.001° C, referenced to
the triple-point of water.

Pigure 2 is a schematic diagram of the thermocouple system. The

FIGURE 2. -Diagram of thermocouple system.

output from a constant 100-mv dc power supply (13) was attenuated by a precision 6-dial Kalvin-Varley voltage divider (10) until the resultant voltage exactly matched the thermocouple voltage. Balance was indicated by a null detector (15). The divider dial resding was recorded as the thermocouple voltage. This entire system was electrically floated above ground potential, and was calibrated in situ. Temperatures are reported in the International Practical Temperature Scale and are considered accurate to 0.01° C.

Initially, pressures were measured with a 0-5,000 pela strain gage pressure transducer, and all pressures reported in the Appendix were thus obtained. A constant 10-voit de power supply (13) was used, and both the power supply and transducer were maintained at 35°10.5° C in an incubation oven. The transducer was calibrated in situ by taking parallel pressure

FIGURE 2. - Diagram of Thermocouple System.

measurements with a deadweight gage; however, small, erratic calibration shifts in the output response from this transducer reduced its precision significantly. Therefore, the pressures reported are estimated to be accurate to one psia. Because the CM function is highly sensitive to density, this accuracy in pressure is inadequate to enable extraction of "experimental" dielectric second virial coefficients.

Subsequent pressure measurements were improved by replacing the transducer with a deadweight gage having an accuracy of 0.01 percent of reading. Although the improved data are not reported here, the discussion of CM later in this report utilizes the 35° C portion of these data. The complete set will be reported later.

Wide fluctuations in laboratory room temperature affected data precision. Deadweight gage accuracy, bath-temperature controller set point, dc power supplies, and electronic components with high thermal coefficients were affected; therefore, no data were recorded on days when ambient temperatures fluctuated by more than 5° C.

CALIBRATION PROCEDURES

Thermocouples were calibrated <u>in situ</u>, by comparison with a platinum resistance thermometer (PRT) which had been calibrated by the National Bureau of Standards (NBS). The PRT resistance was measured with a Mueller bridge. An assumption had to be made that both thermocouples were at the same temperature when a calibration was made; therefore, the bath was regulated and held constant for more than two hours before making readings. The error due to this assumption is considered to be negligible, but has not been measured.

measurements with a deadweight gage; however, small, erratic calibration shifts in the output response from this transducer reduced its precision significantly. Therefore, the pressures reported are estimated to be accurate to one pela. Because the CH function is highly sensitive to density, this accuracy in pressure is inadequate to enable extraction of "experimental" dielectric second virial coefficients.

Subsequent pressure measurements were improved by replacing the transducer with a deadweight gage having an accuracy of 0.01 percent of reading. Although the improved data are not reported here, the discussion of CM later in this report utilizes the 35° C portion of these data. The complete set will be reported later.

Wide fluctuations in laboratory room temperature affected data precision. Deadweight gage accuracy, bath-temperature controller set point,
de power supplies, and electronic components with high thermal coefficients
were affected; therefore, no data were recorded on days when subjent temperatures fluctuated by more than 5° C.

CAETBRATION PROCEDURES

Thermocouples were calibrated in situ, by comparison with a platinum resistance thermometer (FRT) which had been calibrated by the National Bureau of Standards (NBS). The PRT resistance was measured with a Mueller bridge. An assumption had to be made that both thermocouples were at the same temperature when a calibration was made; therefore, the bath was regulated and held constant for more than two hours before making resulting.

The error due to this assumption is considered to be negligible, but has

The capacitance bridge was calibrated by adjusting it to indicate the exact value of a reference standard 100-pf capacitor certified by NBS. The reference standard was connected to the bridge terminals in the same manner as the test-cell "unknown" capacitor. Room temperature was adjusted to that specified on the capacitor certificate, or a temperature correction was applied to the capacitance value before calibration. Bridge internal autocalibration procedures (11, p. 49) were performed frequently. All calibrations and all experimental measurements were made with the bridge assembly operating at 30 volts and 1,000 Hz.

Ruska Instrument Corporation calibrated (traceable to NBS) the rotating-piston, oil deadweight gage (16) and the associated loading weights. The pressure transducer was calibrated by comparison with this deadweight gage over the experimental pressure range.

DATA TREATMENT

Five experimental variables were measured: (1) vacuum capacitance, C_{vac} ; (2) capacitance with gas dielectric, C; (3) dissipation factor, D; (4) gas pressure, P; and (5) cell temperature, T. It is shown in standard textbooks that the dielectric constant, ε , is given by

$$\varepsilon = \frac{C}{C_{\text{vac}}} = \frac{\varepsilon}{\varepsilon_{\text{vac}}},\tag{3}$$

where, by definition, $\epsilon_{\rm vac}$ equals unity. Gas mixture molar density was calculated from the simple gas law,

$$\rho = \frac{P}{ZRT},\tag{4}$$

The capacitance bridge was calibrated by adjusting it to indicate the exact value of a reference standard 100-pf capacitor certified by NBS. The reference standard was connected to the bridge terminals in the same manner as the test-cell "unknown" capacitor. Room temperature was adjusted to that specified on the capacitor certificate, or a temperature correction was applied to the capacitance value before calibration. Bridge internal autocalibration procedures (11, p. 49) were performed frequently. All calibrations and all experimental measurements were made with the bridge assembly operating at 30 volts and 1,000 Mz.

Rusks Instrument Corporation calibrated (tradeable to NBS) the rotating-piston, oil deadweight gage (16) and the associated loading weights. The pressure transducer was calibrated by comparison with this deadweight gage over the experimental pressure range.

THERMINET ATAM

Five experimental variables were measured: (1) vacuum capacitance,

Cyac; (2) capacitance with gam dielectric, C; (3) dissipation factor, D;

(4) gas pressure, P; and (5) cell temperature, T. It is shown in standard textbooks that the dielectric constant, e, is given by

$$e = \frac{C}{C_{\text{vac}}} = \frac{S}{s_{\text{vac}}}$$
 (3)

where, by definition, syac equals unity. Gas mixture molar density was calculated from the simple gas law,

where Z is the compressibility factor and R is the universal gas constant. Weems and Miller ($\underline{8}$) measured compressibility factors, Z, for each He-CO₂ mixture used in this study, at each isotherm reported and over the experimental range of pressures. Their smoothed Z's are claimed to be accurate to 0.1 percent. Comparison of their Z-data for CO₂ with those of Vukalovich, Kobelev, and Timoshenko (VKT)($\underline{6}$) and of their data for He with those of Miller, Brandt, and Stroud ($\underline{3}$) and those of Briggs as treated by Dalton ($\underline{1}$) showed agreement within 0.1 percent. Figure 3 shows this comparison

FIGURE 3.-Compressibility factors for carbon dioxide at 35° C.

for ${\rm CO}_2$. When the ${\rm CO}_2$ data of VKT were used to compute CM values, the CM vs ρ curve exhibited a minimum (fig. 4) which is not in accord with

FIGURE 4.-Clausius Mosotti for carbon dioxide at 35° C.

literature or previous experience. All He compressibility data gave essentially the same CM curve. The Z-data by Weems and Miller were used to compute densities from equation 4.

Table 2 and figures 4 and 5 are not based on the data in the Appendix. They represent the more accurate data taken after converting to deadweight pressure measurements. The Clausius-Mosotti functions shown in table 2 were calculated by fitting the isothermal, constant composition dielectric constants, ε -1, to a quadratic in the density, ρ :

$$\varepsilon - 1 = b\rho + c\rho^2. \tag{5}$$

Substitution of equation 5 into equation 1 gives

ESCROYS,

curve expristed a minimum (Elg. 4) which te nor in

FIGURE 3 — Compressibility Factors For Carbon Dioxide at 35°C.

FIGURE 3 - Compressibility Factors For Carbon Dioxide at 35°C.

FIGURE 4. — Clausius Mosotti For Carbon Dioxide at 35°C.

$$CM = \frac{\epsilon - 1}{\epsilon + 2} \left(\frac{1}{\rho} \right) = \frac{b + c\rho}{3 + b\rho + c\rho^2} = \frac{b + c\rho}{3} \left(1 - \frac{b\rho + c\rho^2}{3} \right)^{-1}$$

which can be expanded into the binomial series of equation 2,

$$CM = A + B\rho + C\rho^2 + \cdots, \qquad (2)$$

where A = $\frac{b}{3}$, B = $\frac{c}{3} - \frac{b^2}{9}$, etc.

The least-squares values for the constants b and c in equation 5 were applied to compute A and B of equation 2. A is the zero-density CM function; B is the dielectric second virial. The only assumptions required to estimate these virials are: (1) that equation 5 is the correct functional form for the density dependence of the dielectric constant, and (2) the errors are random, normally distributed, and have constant variance.

The lower CM value for helium, compared with reliable literature values, may be explained at least in part, by impurity content. The helium used here contained 12.3 ppm total impurities. A higher impurity content will cause the CM value to be higher. Figure 5 shows the linear composition

FIGURE 5.-Clausius-Mosotti for helium-carbon dioxide mixtures at 35° C.

dependence of CM extrapolated to zero density.

In order to estimate the standard error of the CM values reported in table 2, the "law" of propagation of uncertainties was applied in the form

$$CM = \frac{e-1}{e+2} \left(\frac{1}{\rho} \right) = \frac{b+c\rho}{3+b\rho+c\rho^2} = \frac{b+c\rho}{3} \left(1 - \frac{b\rho+c\rho^2}{3} \right)^{-1}$$

which can be expanded into the binomial series of equation 2,

$$CM = A + Bp + Cp^2 + \cdots$$
 (2)

where
$$A = \frac{b}{9}$$
, $B = \frac{c}{3} - \frac{b}{9}$, etc.

The least-squares values for the constants b and c in equation 5 were applied to compute A and B of equation 2. A is the sero-density CM function: B is the dielectric second virial. The only assumptions required to estimate these virials are: (1) that equation 5 is the correct functional form for the density dependence of the dielectric constant, and (2) the errors are random, normally distributed, and have constant variance.

The lower CM value for helium, compared with reliable literature values, may be explained at least in part, by impurity content. The helium used here contained 12.3 ppm total impurities. A higher impurity content will cause the CM value to be higher. Figure 5 shows the linear composition

FIGURE 5. -Clausius -Mosotti for helium-carbon dioxide mixtures at 35° C.

dependence of CM extrapolated to zero density.

In order to estimate the standard error of the CM values reported in table 2, the "law" of propagation of uncertainties was applied in the form

FIGURE 5. - Clausius-Mosotti For Helium-Carbon Dioxide Mixtures at 35°C.

FIGURE 5. - Clausius-Mosotti For Helium-Carbon Dioxide Mixtures at 35°C.

$$\sigma_{\text{CM}}^{2} \approx \sum_{i=1}^{n} \left(\frac{\partial \text{CM}}{\partial x_{i}}\right)^{2} \sigma_{x_{i}}^{2}, \text{ where CM = } f(x_{1}, x_{2}, x_{i}, \dots, x_{n})$$

$$= f(C_{p}, C_{\text{vac}}, P, T, Z)$$

where σ_{x_i} is the standard deviation of the mean of x_i

$$\sigma_{\rm CM}^2 \approx \left(\frac{\partial \rm CM}{\partial \rm C_p}\right)^2 \sigma_{\rm C_p}^2 + \left(\frac{\partial \rm CM}{\partial \rm C_{\rm vac}}\right)^2 \sigma_{\rm C_{\rm vac}}^2 + \left(\frac{\partial \rm CM}{\partial \rm P}\right)^2 \sigma_{\rm P}^2 + \left(\frac{\partial \rm CM}{\partial \rm T}\right)^2 \sigma_{\rm T}^2 + \left(\frac{\partial \rm CM}{\partial \rm Z}\right)^2 \sigma_{\rm Z}^2$$

Values for the partial derivatives and the standard deviations were determined at the conditions of a repeatedly-measured representative experimental point, viz 497 psia (33.88 atm), 308.15° K, and 50 mole percent helium, where the following values were used as mean x_i 's: $\overline{C}_p = 101.5 \text{ pf}$, $\overline{C}_{vac} = 99.89 \text{ pf}$, and $\overline{Z} = 0.9791$. Then

$$\left(\frac{\partial CM}{\partial C_{vac}}\right) = \frac{-3C_p}{\left(C_p + 2C_{vac}\right)^2} \left(\frac{ZRT}{P}\right) = -2.4518$$

$$\left(\frac{\partial CM}{\partial C_p}\right) = \frac{3C_{\text{vac}}}{\left(C_p + 2C_{\text{vac}}\right)^2} \left(\frac{ZRT}{P}\right) = 2.4119$$

$$\left(\frac{\partial CM}{\partial P}\right) = \left(\frac{C_p - C_{vac}}{C_p + 2C_{vac}}\right) \left(\frac{\gamma P^2 - 1}{P^2}\right) = -0.1207,$$

where $\gamma = 16.505 \times 10^{-7}$ atm⁻² in the pressure expansion Z=1+ β P+ γ P².

$$\sigma_{\text{CM}}^2 \approx \sum_{i=1}^{n} \frac{\left(\frac{\partial \text{CM}}{\partial x_i}\right)^2 \sigma_{x_i}^2}{\left(\frac{\partial \text{CM}}{\partial x_i}\right)^2 \sigma_{x_i}^2}, \text{ where } \text{CM} = \text{$f(x_1, x_2, x_1, \dots, x_n)$}$$

$$= \text{$f(c_p, c_{\text{vac}}, P, T, Z)$}$$

where σ_{x_i} is the standard deviation of the mean of x_i

$$\sigma_{\rm CM}^2 \approx \left(\frac{3 {\rm CM}}{3 {\rm C}_{\rm p}}\right)^2 \sigma_{\rm Cp}^2 + \left(\frac{3 {\rm CM}}{3 {\rm C}_{\rm vac}}\right)^2 \sigma_{\rm vac}^2 + \left(\frac{3 {\rm CM}}{3 {\rm P}}\right)^2 \sigma_{\rm p}^2 + \left(\frac{3 {\rm CM}}{3 {\rm T}}\right)^2 \sigma_{\rm T}^2 + \left(\frac{3 {\rm CM}}{3 {\rm C}}\right)^2 \sigma_{\rm Z}^2$$

Values for the partial derivatives and the standard deviations were determined at the conditions of a repeatedly-measured representative experimental point, viz 497 psia (33.88 atm), 308.15° K, and 50 mole percent helium, where the following values were used as mean x_1 's: \overline{C}_p = 101.5 pf, \overline{C}_{vac} = 99.89 pf, and \overline{Z} = 0.9791. Then

$$\left(\frac{6\text{CM}}{6\text{C}_{\text{vac}}}\right) = \frac{-3\text{C}_{\text{p}}}{\left(\text{C}_{\text{p}} + 2\text{C}_{\text{vac}}\right)^2} \left(\frac{\text{ZRT}}{\text{P}}\right) = -2.4518$$

$$\left(\frac{3\text{CM}}{3\text{C}_{p}}\right) = \frac{3\text{C}_{\text{vac}}}{\left(\text{C}_{p}+2\text{C}_{\text{vac}}\right)^{2}} \left(\frac{2\text{RT}}{\text{P}}\right) = 2.4119$$

$$\left(\frac{6\text{CM}}{6P}\right) = \left(\frac{C_p^{-C}\text{vac}}{C_p^{+2C}\text{vac}}\right)\left(\frac{vp^2-1}{p^2}\right) = -0.1207,$$

where $y = 16.505 \times 10^{-7}$ atm⁻² in the pressure expansion $Z=1+\beta P+\gamma P^2$.

$$\left(\frac{\partial CM}{\partial Z}\right) = \left(\frac{C_p - C_{vac}}{C_p + 2C_{vac}}\right) = 4.0960$$

$$\left(\frac{\partial CM}{\partial T}\right) = \left(\frac{C_p - C_{vac}}{C_p + 2C_{vac}}\right) = 0.0130$$

The standard deviations of the measured variables were determined to be:

$$\sigma_{C_p} = 1.4 \times 10^{-4} \text{ pf}$$

$$\sigma_{\text{C}_{\text{vac}}} = 2.2 \times 10^{-4}$$

$$\sigma_{\rm p} = 0.095 \text{ psia}$$

= 6.46 x 10⁻³ atm

$$\sigma_{Z} = 0.0005$$

$$\sigma_{\rm T} = 0.003^{\circ} \text{ K}$$

Thus.

$$\sigma_{\rm CM} \approx 2.3 \times 10^{-3} \frac{{\rm cm}^3}{{\rm mole}}$$

at the conditions stated, but not necessarily at any other point. Such a stipulation counters the required assumption stated above that the

$$\left(\frac{3CM}{3Z}\right) = \left(\frac{C_p - C_{VSC}}{C_p + 2C_{VSC}}\right) = 4.0960$$

$$\left(\frac{6\text{CM}}{6\text{T}}\right) = \left(\frac{c_p - c_{vac}}{c_p + 2c_{vac}}\right) = 0.0130$$

The standard deviations of the measured variables were determined to be:

at the conditions stated, but not necessarily at any other point. Such a stipulation counters the required assumption stated above that the

mathematics require constant variance; however, the error due to this factor is estimated to be less than the standard error.

TABLE 2.-Clausius-Mosotti function at zero density, A, and related parameters for He-CO₂ mixtures at 35° C

This was recom	Equat	ion 2	Equation 5
Comp., mole % He	A, cm ³ /mole	B, cm ⁶ /mole	b, $cm^3/mole$ c, cm^6/mol
100.00	1/0.5169	0.36	1.55058 1.90072
94.52	.8903	1.89	2.67083 8.04008
89.80	1.2136	. 28	3.64091 5.26211
74.30	2.2783	1.78	6.83479 20.90977
48.80	3.9903	15.36	11.97077 93.86374
24.58	5.6572	27.01	16.97154 177.0511
20.29	5.9643	28.93	17.89297 193.5145
7.50	6.8190	38.52	20.45703 255.0687
5.73	6.9529	41.61	20.85880 269.8743
0.00	<u>2</u> /7.3435	55.47	22.03037 328.1904

1/ Literature comparison:

ref 2, @ 23° C and 1 atm., CM = 0.5221

ref 5, @ 23° C and 1 atm., CM = .5225

2/ Literature comparison:

ref 4, @ 100°C and 1 atm., CM = 7.3460 ref 7, @ 25°C and 1 atm., CM = 7.3500

CONCLUSIONS

The dielectric constant apparatus, as presently operated, and without additional major improvements, is suitable for precise measurements
of gaseous (and possibly liquid) dielectric constants. Capacitance and
pressure can be measured easily and reproducibly, since replacing the
pressure transducer with a deadweight gage; and these measurements can be
made over wide ranges of temperature and pressure.

mathematics require constant variance; however, the error due to this factor is estimated to be less than the standard error.

TABLE 2.-Claustus-Mosotti function at zero density, A, and related parameters for He-CO, mixtures at 35° C

		Comp., mole % He
	1/0.5169 0.36 .8903 1.89 1.2136 .28 2.2783 1.78 3.9903 15.36 5.6572 27.01 5.9543 28.93 6.8190 38.52 6.9529 41.61	100.00 94.52 89.80 74.30 48.80 24.58 20.29 7.50 5.73

1/ Literature comparison:

ref 2, @ 23° C and I atm., CM = 0.5221

2/ Literature comparison:

ref 4, @ 100°C and 1 atm., CM = 7.3460

CONCLUSIONS

The dielectric constant apparatus, as presently operated, and without additional major improvements, is suitable for precise measurements
of gaseous (and possibly liquid) dielectric constants. Capacitance and
pressure can be measured easily and reproducibly, since replacing the
pressure transducer with a deadweight gage; and these measurements can be
made over wide ranges of temperature and pressure.

Calculation of our CM values presently depends on the availability of gas mixture P-V-T data which are frequently lacking or of unknown reliability. Therefore, a modification to incorporate gas density measurements in conjunction with capacitance would be a worthwhile improvement. This was recommended and has been recommended for programing.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to H. P. Richardson for his continued interest in this study and for his invaluable technical and theoretical advice; and to R. A. Guereca for his supervision, advice, and worthwhile editorial suggestions.

for Helium and Helium-Nitrogen Mixtures. Sumines Rept. of Inv. 5845, 1961, 11 pp.

Orcutt, Ronald Hayas. The Dielectric Constants of Compressed Argon, Carbon Dioxide and Ethylane at Temperatures of 50, 100, and 150° C.

Ph.D. Thesis, Brown University, Providence, R. L., 1965, 75 pp.

Oudemans, G. J., and R. H. Cole. Dielectric Constants and Patr Interactions in Caseous Helium and Argon. J. Chem. Phys., v. 31.

No. 3, September 1959, pp. 843-844.

Vukalovich, M. P., V. P. Kobelev, and N. T. Timoshenko. (Experimental

Study of Density of CO2 at 0-35" and Up to 300 Bars.) Teploenergetik

Warson, H. S., G. Gunda Rao, and K. L. Ramaswary. Dielectric Coeffi

cients of Gases. II. Proc. Roy. Soc. (London), Ber. A, v. 143, 1934,

cients of Gases. It. Proc. may. poc. (addition), see

Titles enclosed in parentheses are translations from the language

Calculation of our CM values presently depends on the availability of gas mixture P-V-T data which are frequently lacking or of unknown reliability. Therefore, a modification to incorporate gas dansity measurements in conjunction with capacitance would be a worthwhile improvement. This was recommended and has been recommended for programing.

A CHONOWILED CHENTS

The authors wish to express their appreciation to H. P. Richardson for his continued interest in this study and for his invaluable technical and theoretical advice; and to R. A. Guereca for his supervision, advice, and worthwhile editorial suggestions.

REFERENCES 4/

a. Literature

- 1. Dalton, B. J. Results Derived from 0° C Helium Compressibility Data Obtained by Briggs for the Case Where the Burnett Relationship (m-1) is Applied to the "Complete Set" of Data, $Z_r = 1 + \sum_{j=1}^{\infty} \theta_j P_r^j$. Helium j=1 Research Center Memorandum Report 109, October 1967, 220 pp.
- 2. Johnston, D. R., G. J. Oudemans, and R. H. Cole. Dielectric Constants of Imperfect Gases. I. Helium, Argon, Nitrogen, and Methane. J. Chem. Phys., v. 33, No. 5, November 1960, pp. 1310-1317.
- 3. Miller, J. E., L. W. Brandt, and L. Stroud. Compressibility Factors for Helium and Helium-Nitrogen Mixtures. BuMines Rept. of Inv. 5845, 1961, 11 pp.
- 4. Orcutt, Ronald Hayes. The Dielectric Constants of Compressed Argon, Carbon Dioxide and Ethylene at Temperatures of 50, 100, and 150° C. Ph.D. Thesis, Brown University, Providence, R. I., 1965, 76 pp.
- 5. Oudemans, G. J., and R. H. Cole. Dielectric Constants and Pair Interactions in Gaseous Helium and Argon. J. Chem. Phys., v. 31, No. 3, September 1959, pp. 843-844.
- 6. Vukalovich, M. P., V. P. Kobelev, and N. I. Timoshenko. (Experimental Study of Density of CO₂ at 0-35° and Up to 300 Bars.) Teploenergetika, v. 15, No. 4, 1968, pp. 81-82.
- 7. Watson, H. E., G. Gunda Rao, and K. L. Ramaswamy. Dielectric Coefficients of Gases. II. Proc. Roy. Soc. (London), Ser. A, v. 143, 1934, p. 579.

^{4/} Titles enclosed in parentheses are translations from the language in which the item was originally published.

REPERENCES -

stutterature .n

- Data Obtained by Sriggs for the Case Where the Burnett Relationship is Applied to the "Complete Set" of Data, Z, " 1 + [0]r. Helium Research Center Memorandum Report 109, October 1967, 220 pp.
- them. Phys., v. 33, No. 5, November 1950, pp. L310-1317.
 - . Miller, J. E., L. W. Brandt, and L. Stroud. Compressibility Pactors
 for Helium and Helium-Mitrogen Mixtures. Sumines Rept. of Inv. 3845,
 1961, 11 pp.
 - Garbon Dioxide and Ethylene at Temperatures of 50, 100, and 150° C.
 Ph.D. Thesis, Brown University, Providence, R. I., 1965, 76 pp.
 - 5. Oudename, G. J., and R. H. Cole. Dielectric Constants and Pair Interactions in Gaseous Hellow and Argon. J. Chem. Phys., v. 31.
- Study of Density of CO2 at 0-35" and Up to 300 Bars.) Teplocnergetike,
 - . Watson, H. E., G. Gunda Bao, and K. L. Ramaswamy. Dielectric Coeffitelents of Games. II. Proc. Roy. Soc. (London), Ser. A, v. 163, 1934.

A/ Titles enclosed in parenthenes are translations from the language in which the trem was originally published.

8. Weems, G. W., and N. L. Miller. Compressibility Factors for Helium and Carbon Dioxide Mixtures at 0°, 10°, 20°, 23°, and 35° C and to 900 psia. Helium Research Center Internal Report 109, October 1967, 43 pp.

b. Equipment Instruction Manuals

- 9. Bayley Instrument Co. Operating Instructions for Precision Temperature Controller Model 250.
- 10. Electro Scientific Industries Instruction Manual Kelvin Varley Resistive Voltage Divider Model RV 722, March 1964.
- 11. General Radio Company Type 1615-A Capacitance Bridge 1620-A Capacitance Measuring Assembly Operating Instructions, April 1966.
- 12. General Radio Company Experimenter, v. 37, No. 8, August 1963.
- 13. Instrulab Inc. Installation, Operating, and Service Instructions for Model 200-N Series Evenvolt Power Supply, March 1964.
- 14. Joseph Kaye & Co. Operating Instructions Model RCS1 and RCS4 Ice-Point Calibration Standard.
- 15. Leeds & Northrup 9834 and 9834-1-S Electronic D-C Null Detector Manual.
- 16. Ruska Instrument Corporation Ruska Dead Weight Gage Model 2400.5 (M-263) Serial No. 11330 Manual.

Weens, C. W., and N. L. Miller. Compressibility Pactors for Helium and Carbon Dioxide Mixtures at 0°, 10°, 20°, 23°, and 35° C and to 900 pala. Helium Research Center Internal Report 109, October 1967, 43 pp.

b. Equipment Instruction Manuals

- 9. Bayley Instrument Co. Operating Instructions for Precision Tempera-
 - 10. Electro Scientific Industries Instruction Manual Kelvin Varley
 Resistive Voltage Divider Model RV 722, March 1964.
 - 1. General Radio Company Type 1615-A Capacitance Bridge 1620-A Capaci-
 - 12. Ceneral Radio Company Experimenter, v. 37, No. 8, August 1963.
- 13. Instrulab Inc. Installation, Operating, and Service Instructions for Model 200-N Series Evenvolt Power Supply, March 1964.
 - 14. Joseph Kaye & Co. Operating Instructions Model RCS1 and RCS4 Ice-
 - 15. Leeds & Northrup 9834 and 9834-1-S Electronic D-C Null Detector
- 16. Ruska Instrument Corporation Ruska Dead Weight Gage Model 2400.5 (M-263) Serial No. 11330 Manual.

APPENDIX

Dielectric Constants of He-CO, Mixtures at 20°, 0°, and -10° C to 1,000 psia

The following tables record data, taken during 1967 and 1968, on the dielectric constants of gaseous mixtures of helium and carbon dioxide.

The dielectric constants are of high precision, but the pressure measurements were made with a pressure transducer having a 5,000-psia range and an accuracy of 0.1 percent of <u>fullscale</u> reading. Therefore, the CM values are of low precision. After testing the apparatus over these three isotherms, the pressure transducer was replaced with a high-precision deadweight gage before starting the next isotherm (35° C).

No experimental ε values have been reported in the literature for He-CO_2 mixtures. The density dependence of ε has not been studied below 50° C; therefore, the values tabulated below, although of relatively low precision, represent a first attempt to obtain data in a temperature-pressure-composition region not previously covered.

APPENDIX

Dielectric Constants of He-CO, Mixtures at 20°, 0°, and -10° C to 1,000 psia

The following tables record data, taken during 1967 and 1968, on the dielectric constants of gaseous mixtures of helium and carbon dioxide.

The dielectric constants are of high precision, but the pressure measurements were made with a pressure transducer having a 5,000-paia range and an accuracy of 0.1 percent of fullscale reading. Therefore, the CM values are of low precision. After testing the apparatus over these three isotherms, the pressure transducer was replaced with a high-precision deadweight gage before starting the next isotherm (35° C).

No experimental s values have been reported in the literature for the CO, mixtures. The density dependence of s has not been studied below

No experimental c values have been reported in the literature for the-CO₂ mixtures. The density dependence of c has not been studied below 50° C; therefore, the values tabulated below, although of relatively low precision, represent a first attempt to obtain data in a temperature-organistion region not previously covered.

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C

Pressure, (psia)	Density, (moles/cm) x 10 ⁵	Dielectric constant	CM ₃ (cm ³)			
Composition 100% He						
965.314	264.51	1.004105	0.5166			
962.540	263.77	1.004094	.5166			
957.055	262.32	1.004071	.5166			
949.581	260.33	1.004040	.5166			
770.646	212.51	1.003301	.5173			
754.411	208.14	1.003233	.5172			
693.929	191.83	1.002979	.5171			
604.168	167.51	1.002599	.5168			
400.079	111.67	1.001726	.5148			
205.592	57.75	1.000883	.5097			
146.237	41.16	1.000629	.5093			
77.026	21.73	1.000344	.5285			
16.959	4.79	1.000065	.4527			
95.776	27.00	1.000412	.5093			
288.918	80.94	1.001254	.5162			
473.769	131.92	1.002048	.5172			
1005.450	275.15	1.004275	.5172			
663.344	183.56	1.002851	5172			
518.527	144.17	1.002240	.5175			
286.633	80.31	1.001242	.5153			
64.406	18.18	1.000272	.4995			
39.788	11.24	1.000164	.4872			
368.660	103.01	1.001582	.5119			
467.882	130.31	1.002009	.5137			
701.001	193.74	1.003034	.5215			
823.121	226.59	1.003545	.5209			
823.941	226.81	1.003548	.5208			
775.196	213.73	1.003336	.5197			
688.622	190.40	1.002970	.5194			
191.317	53.77	1.000836	.518:			
24.155	6.82	1.000117	.5722			
23.758	6.71	1,000115	.5718			
130.624	36.78	1.000572	.518			
	146.63	1.002351	.5340			
527.534	205.51	1.003270	.5298			
744.616	177.43	1.002820	.529			
640.689 385.524	107.66	1.001710	.529			

			965.31A
	30040010		
		ar Ia	
.5093			
		80.31	
		53,77	
		6.82	
	1,001710		

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure,	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm)
(psia)	(mores/cm / x ro	Constant	
	Composition 10	00% He	
117.233	33.03	1.000516	0.5215
34.254	9.67	1.000155	.5347
19.366	5.47	1.000084	.5123
22.976	6.49	1.000113	. 5810
983.211	269.26	1.004199	.5191
906.329	284.82	1.003881	.5192
859.326	236.28	1.003702	.5217
799.536	220.27	1.003453	.5219
32.641	9.22	1.000179	.6480
27.616	7.80	1.000124	.5305
52.457	14.81	1.000232	.5229
72.236	20.38	1.000319	.5225
91.930	25.92	1.000405	.5216
83.963	23.68	1.000370	.5216
63.004	17.78	1.000294	.5519
63.004	17.78	1.000276	.5181
41.004	11.58	1.000179	. 5160
19.837	5.60	1.000083	. 4942
34.130	9.64	1.000140	.4847
52.296	14.76	1.000223	.5042
71.206	20.09	1.000309	.5134
93.394	26.33	1.000408	.5172
113.125	31.88	1.000494	.5173
133.119	37.48	1.000583	.5183
153.150	43.10	1.000671	.5189
168.566	47.41	1.000739	.5196
187.991	52.84	1.000825	. 5205
210.880	59.23	1.000926	.5213
	56.96	1.000890	.5210
202.737	51.14	1.000798	.5202
181.909	44.94	1.000700	.5192
159.728	39.91	1.000620	.5178
141.757	34.53	1.000534	.5162
122.595	28.64	1.000440	.5128
101.609 82.374	23.23	1.000355	.5100

1,000135		
	59,23	

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)
	Composition 10	00% He	
58.909	16.63	1.000251	0.5039
40.024	11.30	1.000165	.4872
62.346	17.59	1.000259	.4913
112.033	31.57	1.000475	.5023
161.429	45.41	1.000691	.5072
212.320	59.63	1.000912	.5099
232.529	65.26	1.001000	.5109
249.127	69.88	1.001071	.5110
269.103	75.44	1.001159	.5119
288.880	80.93	1.001245	.5126
310.844	87.02	1.001340	.5132
334.511	93.57	1.001443	.5139
322.044	90.12	1.001389	.5136
303.035	84.86	1.001308	.5137
284.162	79.62	1.001226	.5131
262.113	73.50	1.001131	.5127
241.567	67.78	1.001042	
49.740	14.04	1.000192	.4564
20.284	5.73	1.000060	. 3494
80.922	22.82	1.000329	.4811
114.379	32.23	1.000478	.4951
977.900	26.78	1.004157	.5166
112.977	31.83	1.000616	.6449
113.188	31.89	1.000616	.6437
19.465	5.50	1.000057	.3458
19.465	5.50	1.000055	. 3337
182.740	51.37	1.000796	.516
512.055	142.40	1.002215	.518
76.703	21.64	1.000413	.637
65.523	18.49	1.000349	.630
31.388	8.86	1.000152	. 572
31.450	8.88	1.000153	. 574
244.236	68.52	1.001038	.505
827.037	227.64	1.003523	.515
694.389	191.96	1.002969	.515

TABLE 1.- Dielectric constants for He-CO, system at 20° C (Con.)

1.000251	
1.001340	
	241,567
1,003523	

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
	Composition 10	00% He	
565.687	157.04	1.002429	0.5152
403.457	112.60	1.001735	.5133
122.371	34.47	1.000557	.5384
122.595	34.53	1.000561	.5413
46.712	13.19	1.000205	.5188
18.807	5.31	1.000076	.477
18.882	5.33	1.000076	.475
104.029	29.32	1.000489	.556
247.637	69.47	1.001120	.537
312.955	87.61	1.001404	.534
332.959	93.14	1.001492	.533
265.775	75.51	1.001191	.532
224.982	63.16	1.001007	.531
185.905	52.26	1.000831	.530
129.433	36.45	1.000575	.525
82.896	23.38	1.000448	.639
57.482	16.22	1.000306	629
19.576	5.53	1.000092	.555
791.928	218.23	1.003427	.522
187.805	52.79	1.000832	.525
62.495	17.64	1.000273	.516
19.701	5.56	1.000067	.401
34.738	9.81	1.000152	.517
1004.853	274.99	1.004283	.518
809.756	223.01	1.003472	.518
686.547	189.84	1.002955	.518
537.833	149.44	1.002322	.517
438.668	122.29	1.001896	.516
111.934	31.54	1.000473	.500
212.395	59.65	1.000910	.508
233.287	65.48	1.001000	.509
253.559	71.12	1.001088	.510
272.542	76.39	1.001171	.510
292.965	82.06	1.001259	.51
00 040			

TARLE 1 .- Dielectric constants for He-CO, system at 20° C (Con.)

	1,002429		
	1.001735		
			247,637
		10,78	
	1.000306		
			791.928
			34,738
			253,559
112.			
1261			

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)			
Composition 100% He						
313,526	87.76	1.001348	0.5119			
333.840	93.39	1.001436	.5125			
350.989	98.13	1.001509	.5125			
368.399	102.94	1.001585	.5132			
387.412	108.18	1.001668	.5136			
410.809	114.63	1.001769	.5141			
403.246	112.54	1.001737	.5141			
407.319	113.67	1.001782	.5223			
428.893	119.60	1.001877	.5228			
446.728	124.50	1.001952	. 5224			
466.863	130.03	1.002037	.5220			
491.247	136.71	1.002141	.5218			
515.806	143.43	1.002246	.5215			
533.981	148.39	1.002323	.5214			
549.138	152.53	1.002388	.5215			
574.087	159.33	1.002494	.5214			
594.961	165.01	1.002582	. 5212			
612.444	169.76	1.002656	.5212			
602.789	167.14	1.002614	.5210			
583.902	162.00	1.002534	.5210			
563.749	156.51	1.002448	.5210			
541.274	150.38	1.002352	.5209			
519.956	144.56	1.002261	.5209			
504.725	140.40	1.002196	.520			
392.180	109.50	1.001735	.527			
359.743	100.55	1.001592	.527			
334.995	93.71	1.001483	.527			
299.446	83.86	1.001327	.527			
267.973	75.12	1.001191	.528			
238.898	67.04	1.001062	.528			
209.962	58.97	1.000935	.528			
178.458	50.18	1.000795	.528			
147.441	41.50	1.000657	. 527			
120.199	33.86	1.000534	.526			
89.249	25.17	1.000395	.523			

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Coo.)

1,001368	
1.001668	
	533.981
	574.087

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

		With the second second	
Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
23,572	Composition 1	00% He	
30.073	8.49	1.000127	0.4990
56.068	15.83	1.000251	.5294
107.367	30.26	1.000474	.5229
153.163	43.10	1.000673	.5205
196.171	55.13	1.000859	.5195
808.090	222.56	1.003458	.5173
711.864	196.68	1.003057	.5176
610.679	169.28	1.002632	.5179
501.880	139.62	1.002173	.5183
402.712	112.40	1.001749	.5184
300.961	84.28	. 1.001313	.5192
114.962	32.39	1.000530	.5461
209.999	58.98	1.000958	.5415
999.306	273.52	1.004313	.5248
928.352	254.69	1.004018	.5252
807.655	222.45	1.003513	.5259
703.313	194.37	1.003073	5264
448.939	125.11	1.001991	.5301
400.613	111.82	1.001787	.5323
298.230	83.52	1.001334	.5322
242.051	67.92	1.001087	.5336
143.470	40.39	1.000650	.5363
360.128	100.65	1.001658	.5490
496.402	138.12	1.002256	.5442
607.784	168.49	1.002734	. 5404
761.360	210.01	1.003386	.5369
859.065	236.21	1.003795	.5349

TABLE 1 .- Dielectric constants for Me-CO, system at 20° C (Con.)

1.000.1	

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
Composition 94.72% He - 5.28% CO ₂			
23.572	6.66	1.0001482	0.7417
41.166	11.62	1.0002765	.7925
56.576	15.97	1.0003877	.8089
74.110	20.91	1.0005520	.8798
95.913	27.04	1.0007203	.8876
118.350	33.34	1.0009106	.9101
171.805	48.31	1.0013504	.9313
219.942	61.74	1.0017061	. 9205
204.214	57.36	1.0016870	.9798
267.576	74.99	1.0021579	.9584
57.197	16.14	1.0003937	.8126
57.098	16.11	1.0004227	.8741
57.197	16.14	1.0003987	.8229
57.085	16.11	1.0004017	.8307
125.300	35.29	1.0009056	.8551
163.390	45.95	1.0012192	.8839
209.341	58.78	1.0015558	.8816
262.920	73.69	1.0019425	.8779
303.556	84.97	1.0022601	.8859
	95.20	1.0025306	.8852
340.546	104.47	1.0027730	.8839
374.136	112.52	1.0029834	.8829
403.358	118.30	1.0031537	.8876
424.409	125.90	1.0033551	.8872
452.094	132.36		.886
475.657	141.95	1.0037789	.886
510.750	132.33	1.0035795	.900.
475.558	151.69	1.0040935	.898
546.480		1.0044211	.896
592.488	164.21	1.0047967	.893
645.436	178.56	1.0049550	.893
667.880	184.63	1.0050502	.891
682.060	188.46	1.0049841	.891
673.100	186.04	1.0049041	.892
596.054	165.18	1.0044271	.896
495.930	137.90	1.0037138	.896
485.023	134.92	1.00333291	.892
445.934	124.21	1.0028021	.891
374.918	104.68	1.0020021	.071

TABLE 1 .- Dielectric constants for He-CO, system at 20° C (Con.)

	1,0005520	
		57,085
		125.300
898.		

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)
	Composition 94.72% He -	- 5.28% CO ₂	
725.039	200.04	1.0052876	0.8795
337.590	94.38	1.0025146	. 8872
370.137	103.37	1.0027530	.8869
301.383	84.36	1.0022441	.8859
258.823	72.56	1.0019285	. 8853
192.186	54.00	1.0014286	.8813
117.407	33.07	1.0009146	.9214
86.631	24.43	1.0006702	. 9141
59.083	16.67	1.0004518	. 9028
41.736	11.78	1.0003115	.8808
25.656	7.25	1.0001863	.8565
16.388	4.63	1.0000891	.6414
24.998	7.06	1.0001552	.7325
37.480	10.58	1.0002494	.7852
51.377	14.50	1.0003917	. 8998
78.875	22.25	1.0005960	.892
91.446	25.78	1.0006882	.8894
81.320	22.93	1.0006091	.884
68.712	19.39	1.0005099	. 876
56.006	15.81	1.0004117	.867
43.536	12.29	1.0003135	.849
31.078	8.78	1.0002153	.817
29.465	8.32	1.0002434	. 974
	Composition 93.6% He	- 6.4% CO ₂	
37.952	10.72	1.0002644	.822
83.317	23.50	1.0006642	.941
114.528	32.26	1.0009186	. 948
147.975	41.64	1.0011901	.952
188.227	52.89	1.0015157	.954
211.277	59.32	1.0017001	. 954
245.887	68.96	1.0019806	. 956
293.785	82.26	1.0023643	. 957
365.071	101.97	1.0029333	. 957
394.428	110.06	1.0031868	. 964
62.967	17.77	1.0004788	.897
157.743	44.37	1.0012422	. 932

TABLE 1. - Dielectric constants for He-CO, system at 10° C (Con.)

1.0022661	
e - 6.4% co2 .	

TABLE 1.- Dielectric constants for $He-CO_2$ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)
(1014)	Composition 93.6% He	e - 6.4% CO _o	
	DOMESTICATE DV. 136 B	2	0.9417
256.042	71.78	1.0020297	.9437
311.291	87.11	1.0024685	.9470
411.232	114.68	1.0032619	.9473
425.440	118.59	1.0033741 1.0029654	.9461
373.739	104.36	1.0029634	.9447
333.145	93.15	1.0020428	.9427
288.396	80.77	1.0022802	.9403
229.662	64.45		.9530
182.529	51.30	1.0014676	.9468
133.218	37.51	1.0010659	.9345
95.404	26.89	1.0007543	.8972
52.978	14.95	1.0004027	.7379
17.926	5.06	1.0001122	.1962
6.016	1.70	1.0000100	.9724
113.163	31.88	1.0009305	
210.843	59.20	1.0017169	.9660
301.830	84.49	1.0024431	.9630
250.232	70.17	1.0020354	.9661
146.299	41.17	1.0012020	.9726
353.522	98.78	1.0028808	
301.880	84.50	1.0024691	.9731
331.841	92.79	1.0027085	.9720
285.764	80.04	1.0023429	.9749
224.150	62.91	1.0018471	.9779
181.003	50.88	1.0014964	.9798
122.272	34.44	1.0010207	.9875
76.021	21.44	1.0006440	1.0007
17.517	4.95	1.0001672	1.1258
11.524	3.25	1.0001172	1.1987
50.385	Composition 89.13% F	le - 10.87% CO ₂	
42.047	11.87	1.0005369	1.5066
60.522	17.08	1.0005830	1.1372
149.750	42.15	1.0015348	1.2129
214.728	60.32	1.0023573	1.3015
250.220	70.21	1.0027310	1.2953
348.505	97.47	1.0037549	1.2824

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Com.)

			Pressure,
	1.0029654		
ATET.			
		~ Composition 89.13% H	
		60.32	
		70.21	

6.0382 .

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)	
Composition 89.13% He - 10.87% CO ₂				
417.628	116.54	1.0044862	1.2811	
473.745	131.96	1.0050733	1.2793	
473.620	131.92	1.0050843	1.2824	
473.633	131.92	1.0050823	1.2819	
438.444	122.27	1.0047026	1.2800	
142.700	40.18	1.0015949	1.3223	
15.507	4.38	1.0001372	1.0433	
153.200	43.12	1.0015839	1.2236	
208.149	58.48	1.0021870	1.2455	
274.156	76.86	1.0028853	1.2499	
331.195	92.68	1.0034864	1.2523	
376.247	105.14	1.0039573	1.2529	
417.280	116.44	1.0043891	1.254	
454.293	126.62	1.0047738	1.2540	
480.924	133.92	1.0050513	1.255	
522.900	145.41	1.0054911	1.256	
563.401	156.46	1.0059309	1.261	
596.675	165.52	1.0062735	1.260	
646.244	178.97	1.0067824	. 1.260	
593.246	164.59	1.0062525	1.263	
702.157	194.10	1.0073745	1.263	
721.982	199.44	1.0075789	1.263	
670.726	185.60	1.0070479	1.262	
555.823	154.40	1.0058547	1.261	
498.005	138.60	1.0052526	1.260 1.259	
425.986	118.84	1.0044983		
333.902	93.43	1.0035325	1.258	
309.516	86.68	1.0032760	1.258	
261.964	73.47	1.0029093	1.318 1.2 8 1	
50.385	14.22	1.0005470		
28.746	8.12	1.0002985	1.224	
18.063	5.10	1.0002093	1.366	
17.641	4.98	1.0001693	1.131	
98.482	27.77	1.0010318	1.238	

1.0254866

TABLE 1.- Dielectric constants for Me-CO, system at 20° C (Con.)

	Density, (moles/cm3) x 105	
1.0050843		
	105,14	
1.0062735		
	118.84	
	86.68	
	22 . 14 . 22	
1.0001693		

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
	Composition 75.1% He	- 24.7% CO ₂	
89.832	25.37	1.0016910	2.2201
217.074	61.18	1.0041475	2.2565
298.825	84.09	1.0057194	2.2626
439.127	123.25	1.0084163	2.2698
567.874	158.96	1.0108848	2.2742
686.522	191.67	1.0131559	2.2778
779.236	217.10	1.0149241	2.2800
637.657	178.22	1.0122362	2.2791
515.173	144.37	1.0099220	2.2833
425.055	119.33	1.0081879	2.2808
34,031	Composition 48.7% Ho	e - 50.9% CO ₂	4,221
38.163	10.82	1.0012472	3.840
71.641	20.35	1.0024314	3.978
160.957	45.97	1.0055431	4.011
317.636	91.55	1.0111223	4.034
689.418	202.78	1.0247441	4.034
823.133	243.77	1.0298615	4.043
823.605	243.91	1.0298645	4.041
575.950	168.39	1.0204583	4.022
481.744	140.13	1.0169679	4.013
379.290	109.70	1.0132452	4.006
227.986	65.37	1.0078002	3.966
105.866	30.13	1.0035014	3.867
11.090	3.13	1.0004388	4.658
27.343	7.74	1.0009888	4.252
51.762	14.68	1.0018263	4.142
66.528	18.89	1.0023413	4.127
89.609	25.48	1.0031407	4.103
109.949	31.30	1.0038540	4.097
211.166	60.49	1.0074086	4.072
307.355	88.53	1.0104381	3.916
410.126	118.82	1.0145506	4.061
509.334	148.38	1.0181853	4.060
603.907	176.83	1.0215654	4.036
708.521	208.60	1.0254866	4.038
797.212	235.78	1.0288538	4.040

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Con.)

Dielectric		
1.0016910		
1,0084163		
1.0131559		
		779.236
		637.657
	10.82	
	20.35	
1.0145506		

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
	Composition 48.7% He	- 50.9% CO ₂	
757.904	223.71	1.0273701	4.0412
658.211	193.28	1.0236112	4.040
603.249	176.63	1.0215564	4.0390
553.723	161.70	1.0197551	4.045
454.256	131.93	1.0161025	4.046
351.225	101.42	1.0123646	4.046
248.159	71.24	1.0086879	4.053
148.608	42.41	1.0051895	4.071
123.736	35.26	1.0043269	4.084
93.630	26.63	1.0032820	4.102
67.211	19.09	1.0023683	4.132
34.031	9.64	1.0012222	4.221
11.053	3.12	1.0004327	4.610
650.789	Composition 24.7% He	- 74.6% CO ₂	6.937 6.944
98.457	28.36	1.0045713	5.364
211.240	62.17	1.0103629	5.536
372.174	113.11	1.0192131	5.625
494.738	154.27	1.0263571	- 5.645
657.416	212.46	1.0366248	5.676
847.166	286.22	1.0499351	5.720
844.194	285.01	1.0497819	5.727
783.897	260.86	1.0454349	5.719
673.112	218.31	1.0378280	5.703
581.604	184.81	1.0318832	5.690
270.679	80.60	1.0136439	5.616
127.906	37.04	1.0061352	5.508
210.359	61.90	1.0102467	5.498
157.445	45.86	1.0075137	5.447
237.768	70.34	1.0117495	5.545
322.926	97.16	1.0164030	5.596
131.456	38.10	1.0061913	5.405
183.721	53.78	1.0088732	5.482
284.373	84.91	1.0142270	5.558
349.250	105.65	1.0178266	5.59
440.319	135.73	1.0230651	5.62
516.589	161.84	1.0278318	5.67

TABLE 1.- Dielectric constants for Ha-CO₂ system at 20° C (Con.)

(moles/cm ³) x 10 ⁵ Composition 48.7% He	
	757.904
	553,723
	54.256
	123.736
-3.12	11.053
	211.240
	94.738
	557.416
	344.194
	403.183
	157.445
	322.926
	131.456
	183,721
	176.63 1.0215564 161.70 1.0197551 181.93 1.0161025 101.42 1.0123646 42.41 1.0086879 42.41 1.0084879 35.26 1.0043269 19.09 1.0023683 19.09 1.0023683 26.63 1.0023683 28.36 1.0023683 113.11 1.013629 1143.11 1.0356248 128.31 1.0356248 128.31 1.0356248 128.31 1.0356248 128.31 1.0356248 128.31 1.0356248 128.31 1.0356248 128.31 1.0356248 184.81 1.0356249 184.81 1.035632 10.45634349 184.81 1.035632 10.45634349 184.81 1.035632 10.45632 1.005132 170.34 1.0013623 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632 170.34 1.0013632

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

	Done (Fo	mulagrate	
Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)
10.107	Composition 24.7% He	e - 74.6% CO ₂	
578.336	183.64	1.0316889	5.6918
643.199	207.20	1.0358986	5.7067
708.968	231.83	1.0402715	5.7134
110.135	Composition 8.11% He	e - 91.89% CO ₂	
59.492	17.14	1.0035856	6.9613
109.874	32.19	1.0066713	6.8923
207.826	62.94	1.0130321	6.8713
302.141	94.69	1.0196423	6.8691
407.978	133.33	1.0277914	6.8838
506.390	172.81	1.0361629	6.8923
597.483	213.20	.1.0448499	6.9088
698.789	263.75	1.0559168	6.9375
733.292	282.64	1.0600655	6.9448
679.102	253.38	1.0536837	6.9380
565.464	198.52	1.0417676	6.9167
337.392	107.18	1.0223153	6.8888
253.162	77.92	1.0161830	6.8854
149.117	44.26	1.0091873	6.8974
61.379	17.70	1.0037112	6.9792
11.723	3.32	1.0007632	7.6419
121.775	35.81	1.0074375	6.9040
211.228	64.05	1.0132894	6.8854
310.646	97.67	1.0203002	6.8812 6.8882
403.308	131.55	1.0274342	6.901
496.974	168.86	1.0353736	6.914
595.048	212.06	1.0446472	6.930
675.896	251.72	1.0532637	6.9298
648.642	237.88	1.0502847	6.914
553.276	193.07	1.0405914	6.902
445.437	147.91	1.0309461	6.892
340.310	108.23	1.0225480	6.892
238.389	72.98	1.0151675	6.906
147.243	43.68	1.0090773	7.059
47.022	13.50	1.0028618	7.039

TABLE 1. - Dielectric constants for Ha-CO, system at 20° C (Con.)

			643,199
	1.0402715	231.83	
	2 - 91.89% CO2	Composition 8,11% He	
		17.14	59,492
	1.0066713	32,19	109.874
6,8713	1,0130321		207.826
		133,33	407.978
		122.81	506,390
		213.20	597.483
		263.75	698.789
			733.292
			679,102
			253,162
			149,117
		17.70	
	1,0007632		11.723
			121.775
			211,228
	1,0203002	97.67	
	1.0274342		
		168.86	496,974
	1.0466472		
	1.0502847		648,642
			553.276
6,892			238.389
			147.243

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)	
Composition 5.83% He - 94.17% CO ₂				
18.187	5.17	1.0010779	6.9388	
26.053	7.43	1.0015498	6.9445	
37.629	10.78	1.0022461	6.9391	
48.548	13.96	1.0029213	6.9677	
68.724	19.90	1.0041547	6.9490	
110.135	32.35	1.0067664	6.9546	
128.701	38.06	1.0079686	6.9600	
147.938	44.05	1.0092309	6.9631	
165.041	49.45	1.0103730	6.9678	
187.482	56.64	1.0119128	6.9829	
187.469	56.63	1.0119148	6.9846	
210.408	64.11	1.0134997	6.987	
228.110	69.97	1.0147650	6.9990	
249.289	77.09	1.0162587	6.991	
269.562	84.03	1.0177344	6.993	
291.103	91.52	1.0193373	6.997	
309.665	98.10	1.0207469	7.001	
328.240	104.78	1.0221835	7.004	
	110.80	1.0234839	7.009	
344.693	118.21	1.0250798	7.013	
364.624	126.56	1.0268831	7.017	
386.617	134.02	1.0284981	7.021	
405.879	131.13	1.0278739	7.020	
398.465	124.14	1.0263972	7.025	
380.308	116.41	1.0247182	7.019	
359.805	115.94	1.0247683	7.062	
358.551	115.92	1.0247683	7.063	
358.489	83.17	1.0177254	7.061	
267.091	83.20	1.0177264	7.060	
267.153	45.54	1.0096747	7.057	
152.691	14.56	1.0031107	7.113	
50.596	3.61	1.0008004	7.376	
12.728 109.986	32.31	1.0067874	6.986	
210.992	64.30	1.0135467	6.990	
301.706	95.26	1.0201548	7.004	
405.866	134.01	1.0285842	7.042	
439.500	147.39	1.0314915	7.047	
483.148	165.50	1.0354257	7.05	

TABLE 1.- Dielectric constants for He-CO2 system at 20° C (Con.)

Dielectric		
e - 94.17% CO ₂		
1.0010779	5,17	18.187
1.0015498		26.053
	13,96	
1.0041547	19,90	
		110.135
		147.938
	49.45	165.041
	56.64	
1.0134997	64.11	
	59.97	
		228.110
		269,562
		291.103
		309.665
	104.78	328.240
	118,21	
	134.02	
	131,13	
1.0247182		
		358.551
1.0247683		
	83.17	
	83.20	

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	(cm ³)		
Composition 5.83% He - 94.17% CO ₂					
522.950	182.82	1.0392146	7.0573		
562.730	201.01	1.0432430	7.0689		
603.398	220.61	1.0475729	7.0755		
639.707	239.10	1.0516824	7.0829		
687.031	264.78	1.0574279	7.0937		
711.926	279.10	1.0606658	7.1015		
674.641	257.87	1.0559142	7.0953		
633.109	235.67	1.0509331	7.0837		
568.247	203.61	1.0439052	7.0841		
532.702	187.20	1.0402676	7.0751		
488.241	167.67	1.0359978	7.0713		
433.203	144.85	1.0310107	7.0629		
393.745	129.30	1.0276335	7.0585		
353.870	114.19	1.0244066	7.0664		
316.705	100.62	1.0214732	7.0629		
288.346	90.56	1.0192963	7.0571		
211.848	64.58	1.0137692	7.0737		
157.916	47.19	1.0102768	7.2335		
132.734	39.31	1.0085647	7.2415		
101.125	29.61	1.0064759	7.2728		
73.204	21.23	1.0046585	7.3023		
42.741	12.26	1.0027390	7.4356		
20.693	5.89	1.0013574	7.6726		
25.966	7.41	1.0016420	7.3821		
11.177	3.17	1.0007593	7.9736		
57.855	16.69	1.0035906	7.1619		
88.442	25.78	1.0054941	7.0886		
128.080	37.87	1.0080497	7.0663		
163.700	49.02	1.0104091	7.0526		
207.020	63.00	1.0133725	7.0439		
245.341	75.76	1.0160935	7.0431		
287.688	90.33	1.0192312	7.0513		
487.259	167.25	1.0358988	7.0698		
564.197	201.70	1.0434897	7.0844		
644.156	241.43	1.0523319	7.1011		
707.066	276.26	1.0601813	7.1184		
680.457	261.10	1.0567620	7.1119		
	91.98				

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Con.)

		Pressure,
		522.950
	239,10	
7.1015		
	257,87	
	203.61	
	129,30	
7.0571		
		57,916
		32,734
		25.966
		57.855
		88.442
7.0513		
7,0698		
		64.197
		07.066
		80,457

.

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure,	Density,	Dielectric	CM ₃ ,
(psia)	$(\text{moles/cm}^3) \times 10^5$	constant	(cm ³)
(pala)	Composition 5.83% He	- 94.17% co ₂	
614.357	226.09	1.0489357	7.0987
535.572	188.49	1.0406194	7.0869
430.271	143.67	1.0307874	7.0700
379.178	123.71	1.0264164	7.0551
329.519	105.25	1.0224622	7.0609
255.012	79.04	1.0168388	7.0615
176.162	52.99	1.0112957	7.0775
97.737	28.59	1.0061232	7.1243
55.472	15.99	1.0034914	7.2694
39.168	11.22	1.0024775	7.3489
17.802	5.06	1.0011771	7.7418
594.613	216.29	1.0466913	7.0854
68.724	19.90	1.0041546	6.9488
89.088	25.98	1.0054349	6.9600
53.326	Composition 100°	% CO ₂	6.602
1/ 775			(0017
14.775	4.20	1.0007593	6.0217
14.862	4.22	1.0007593	5.9863
87.412	25.56	1.0054749	7.1254
353.435	116.64	1.0259822	7.3612
518.924	189.32	1.0428208	7.4331
703.972	301.75	1.0696164	7.5157
774.848	361.91	1.0852178	7.6319
604.081	235.29	1.0536755	7.4703
407.084	138.37	1.0311095	7.4170
212.841	65.61	1.0145063	7.3336
39.453	11.32	1.0023493	6.9087
115.173	34.06	1.0071140	6.9454
206.461	63.46	1.0136499	7.1362
294.927	94.47	1.0206697	7.2426
389.386	131.04	1.0289649	7.2974
149.948	44.98	1.0095655	7.0650
76.517	22.28	1.0045303	6.7667
76.381	22.24	1.0045583	6.8210
168.181	50.84	1.0108919	7.1143
183.684	55.90	1.0120229	7.1398
225.838	70.03	1.0151847	7.1911
288.098	91.98	1.0201267	7.2449
361.234	119.71	1.0264012	7.2871

TABLE 1.- Dielectric constants for He-CO, system at 20° C (Con.)

		Density, (moles/cm3) x 105	
			130.271
		105.25	
			176,162
			39.168
	1.0011771		
			194.613
		25.98	880.08
		Composition 10	
			14.775
			03.972
			74.848
			04,081
			07.084
			15,173
			06.461
7.2974			
7.0650		44.98	
			25,838
	1.0151847		25.838

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM, (cm ³)		
Composition 100% CO ₂					
448.020	156.03	1.0346883	7.3257		
745.151	335.00	1.0769184	7.4621		
653.539	266.09	1.0608781	7.4742		
628.473	250.03	1.0570742	7.4666		
592.165	228.37	1.0519288	7.4504		
526.006	192.86	1.0435926	7.4261		
463.994	163.21	1.0367230	7.4094		
425.105	146.02	1.0327498	7.3951		
368.175	122.46	1.0273038	7.3644		
313.663	101.41	1.0224630	7.3281		
267.265	84.48	1.0185949	7.2915		
186.898	56.96	1.0123706	7.2090		
103.607	30.49	1.0064217	7.0037		
53.326	15.38	1.0030516	6.6028		
53.412	15.41	1.0030566	6.6026		
49.442	14.24	1.0028302	6.6151		
91.235	26.72	1.0055752	6.9412		
129.408	38.49	1.0081850	7.0682		
165.301	49.91	1.0107196 -	7.1329		
207.740	63.89	1.0138333	7.1831		
245.639	76.86	1.0167336	7.2164		
287.862	91.89	1.0201218	7.2499		
326.365	106.20	1.0233447	7.2703		
363.481	120.60	1.0266056	7.2889		
11.437	3.24	1.0008175	8.3843		
29.515	8.44	1.0019676	7.7646		
11.785	3.34	1.0008375	8.3355		
11.549	3.28	1.0008205	8.3335		
30.433	8.70	1.0020237	7.7423		
51.911	14.97	1.0034103	7.5832		
50.782	14.64	1.0033592	7.6391		
40.570	11.65	1.0026809	7.6627		
88.120	25.77	1.0058137	7.5027		
130.910	38.96	1.0087541	7.4669		
165.264	49.90	1.0112036	7.4556		
210.048	64.67	1.0145227	7.4488		

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Con.)

		448.020
	266,09	53,539
	163.21	
	146.02	
	122.46	68,175
	101.41	
	15.38	
	3.28	
	8,70	
7.5832	14.97	51.911
	14.64	
		88,120
		30,910

TABLE 1.- Dielectric constants for He-CO₂ system at 20° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric	CM (cm ³)		
Composition 100% CO ₂					
186.017	56.67	1.0127304	7.4558		
144.127	43.13	1.0096968	7.4691		
105.369	31.03	1.0069949	7.4945		
207.342	63.76	1.0143494	7.4654		
165.773	50.06	1.0112787	7.4807		
123.041	36.50	1.0082401	7.5035		
81.059	23.64	1.0053578	7.5388		
42.133	12.10	1.0027911	7.6768		
11.735	3.33	1.0008445	8.4410		
56.874	16.43	1.0037369	7.5690		
110.308	32.55	1.0073345	7.4907		
154.007	46.28	1.0103901	7.4571		
205.046	62.99	1.0141560	7.4553		
110.445	32.60	1.0073042	7.4502		
212.171	65.39	1.0146486	7.4308		
302.600	97.30	1.0218837	7.4424		
394.801	133.26	1.0301065	7.4555		
497.905	179.05	1.0407102	7.4773		
592.202	228.39	1.0522706	7.4979		
707.390	304.36	1.0706113	7.5554		
804.286	391.60	1.0943882	7.7891		
757.730	346.06	1.0815236	7.6445		
651.662	264.86	1.0611465	7.5416		
547.076	203.68	1.0465861	7.5071		
440.580	152.74	1.0347082	7.4875		
332.996	108.73	1.0245612	7.4684		
233.038	72.50	1.0163093	7.4578		
143.780	43.02	1.0096772	7.4732		
43.982	12.64	1.0028999	7.6351		
11.772	3.34	1.0008324	8.2932		

TABLE 1. - Dielectric constants for He-CO, system at 20° C (Con.)

	Dielectric		Pressure, (psia)
		Composition 1	
7,4558			
7.4691			
		31.03	105.369
	1.0112787		
		36120	
		12,10	
		3.33	
			110,308
	1.00/3042		
	1.0301065		
		108.73	
		72.50	
		43.02	
		12.64	
		38.E	

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³)			
Composition 100% He						
1010.928	296.09	1.004614	0.5186			
918.010	269.75	1.0042053	.5189			
602.955	179.14	1.0027978	.5200			
300.146	90.14	1.0014144	.522			
11.603	3.52	1.0000691	.6542			
111.988	33.86	1.0005319	.523			
11.678	3.54	1.0000611	.574			
212.238	63.94	1.0009937	.517			
310.551	93.23	1.0014485	.517			
406.355	121.58	1.0018883	.517			
509.177	151.78	1.0023561	.517			
606.223	180.09	1.0027948	.516			
707.693	209.49	1.0032506	.516			
809.810	238.86	1.0037164	.517			
910.723	267.67	1.0041622	.517			
1013.615	296.85	1.004616	.517			
965.953	283.36	1.0044076	.517			
861.507	253.64	1.0039458	.517			
753.707	222.75	1.0034660	.518			
649.306	192.60	1.0029972	.518			
548.099	163.16	1.0025404	.518			
443.417	132.49	1.0020646	.519			
343,257	102.93	1.0016037	.519			
245.395	73.84	1.0011519	.519			
142.233	42.95	1.0006721	.521			
47.002	14.24	1 0000070	.532			
10.970	3.32	1.0000571	.571			
10.570	3.32					
		1.0075210				
	73.55					

TABLE 2. - Dielectric constants for He-CO, system at 0° C

		Density, (moles/cm ³) x 10 ⁵	
		Composition	
		296,09	
		90.14	
	1.0014485		
	1,0018883		
	1,0023561	151.78	
	1.0027948		
		209.49	
	1.0039458		
	1.0034660		
919			
		3,32	

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³)
	Composition 94.72% I	He - 5.28% CO ₂	-
115.247	34.84	1.0009316	0.8910
212.407	63.98	1.0017009	.8856
311.887	93.60	1.0024853	.8842
405.183	121.18	1.0032156	.8835
509.942	151.92	1.0040280	.8825
611.946	181.61	1.0048134	.8820
639.893	189.71	1.0050258	.8815
556.145	165.40	1.0044057	.8865
445.648	133.09	1.0035502	.8881
348.406	104.42	1.0027909	.8900
247.215	74.37	1.0019945	.8932
146.199	44.14	1.0011930	. 9004
44.937	13.62	1.0003866	.9461
25.308	7.67	1.0002274	.9873
132.895	40.15	1.0011470	.9518
291.127	87.44	1.0024022	.9149
422.173	126.19	1.0034250	.9036
583.479	173.35	1.0046691	.8963
478.141	142.62	1.0038467	.8978
326.663	97.98	1.0026566	.9029
180.121	54.32	1.0014855	.9111
77.398	23.43	1.0006571	.9346
11.859	3.59	1.0001252	1.1597
333,497	Composition 89.13% H	e - 10.87% CO ₂	2,414
114.217	34.54	1.0013233	1.2762
211.761	63.83	1.0024352	1.270
307.343	92.35	1.0035171	1.267
407.667	122.06	1.0046451	1.266
510.663	152.34	1.0057971	1.265
609.921	181.30	1.0069010	1.265
666.152	197.60	1.0075210	1.265
563.587	167.81	1.0063881	1.266
450.690	134.74	1.0051409	1.269
352.466	105.74	1.0040380	1.271
244.260	73.55	1.0028159	1.274

TABLE 2. - Dislectric constants for He-CO, system at 0° C (Con.)

		Densjey, (moles/cm ³) x 10 ⁵	Pressure, (psia)
			15.247
			12,407
	1.0024853	93.60	
		121,18	105.183
			145.648
		74,37	
		13.62	44.937
. 9036			
		142.62	
.9029			
			114.217
			211.761
		92.35	
	1,0057971		
		181.30	
1.2661	1.0063881		
	1.0028159		

TABLE 2.- Dielectric constants for $He-CO_2$ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
	Composition 89.13% He	e - 10.87% CO ₂	
146.820	44.35	1.0017079	1.2827
49.652	15.04	1.0005950	1.3176
26.983	8.18	1.0003335	1.3583
135.613	40.98	1.0015907	1.2929
230.046	69.30	1.0026666	1.281
485.632	145.01	1.0055396	1.271
631.319	187.51	1.0071594	1.269
327.818	98.43	1.0037685	1.274
73.415	22.23	1.0008695	1.303
11.065	3.35	1.0001492	1.481
250.332	Composition 73.03% H	e - 26.97% CO ₂	
118.635	35.95	1.0025885	2.397
712.846	213.93	1.0154638	2.397
607.051	182.54	1.0131788	2.395
504.688	152.03	1.0109650	2.395
399.309	120.50	1.0086860	2.395
303.580	91.75	1.0066145	2.397
200.105	60.57	1.0043736	2.403
97.848	29.66	1.0021587	2.423
50.570	15.34	1.0011329	2.460
160.969	48.75	1.0035652	2.434
255.086	77.15		2.420
353.497	106.76	1.0077544	2.414
453.237	136.65	1.0099182	2.411
556.903	167.61	1.0121661	2.409
655.079	196.81	1.0142928	2.409
534.838	161.03	1.0116822	2.408
380.581	114.89	1.0083344	2.41
224.485	67.93	1.0049355	2.417
120.795	36.61	1.0026756	2.43
77.795	23.59	1.0017390	2.45
28.546	8.66	1.0006591	2.53
11.300	3.43	1.0002814	2.73
347.809			

TABLE 2. - Dielectric constants for He-CO, system at Do. C (Con.)

		49.652
	8.18	
1,0037685		
	Composition 73.03% He	
1.0025885		
	161.03	
	114.69	

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³)
	Composition 48.8%	He - 51.2% CO ₂	
112.683	34.53	1.0042173	4.0649
209.321	64.66	1.0078546	4.0383
310.116	96.58	1.0117292	4.0320
405.424	127.23	1.0154707	4.0322
502.568	158.92	1.0193624	4.0351
605.863	193.10	1.0235867	4.0396
705.120	226.42	1.0277249	4.0441
659.558	211.07	1.0258186	4.0425
560.635	178.07	1.0217576	4.0433
460.818	145.24	1.0177066	4.0396
354.843	110.91	1.0135013	4.0393
250.112	77.52	1.0094363	4.0446
147.681	45.39	1.0055416	4.0619
48.044	14.64	1.0018312	4.1654
28.589	8.70	1.0011099	4.2508
81.820	25.01	1.0030633	4.0783
235.538	72.91	1.0088503	4.0338
478.618	151.06	1.0183927	4.0336
632.181	201.89	1.0246766	4.0408
371.123	116.15	1.0141424	4.0394
119.546	36.65	1.0044948	4.0809
11.454	3.48	1.0004868	4.6612
160 761 959 144	Composition 21.6%	He - 78.4% CO ₂	6,0201
116.128	36.25	1.0064692	5.9357
208.062	66.47	1.0118715	5.9294
302.898	99.23	1.0178218	5.9511
397.843	133.82	1.0242149	5.9833
502.514	174.28	1.0318541	6.0282
610.381	218.88	1.0405030	6.0858
704.133	260.36	1.0488194	6.1500
661.479	241.15	1.0449547	6.1219
566.308	200.28	1.0369058	6.0676
454.355	155.34	1.0282949	6.0146
347.809	115.35	1.0208290	5.9770
248.270	80.15	1.0143829	5.9525

TABLE 2. - Dielectric constants for Re-CO, system at Co C (Con.)

	, 85,89	
4.0322		
4,0425		

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM, (cm ³)
(psia)	(mores) em , a re		
	Composition 21.6% H	e - 78.4% CO ₂	
144.350	45.37	1.0081180	5.947
49.640	15.24	1.0027628	6.0342
29.018	8.86	1.0016348	6.1403
131.021	41.05	1.0073116	5.9225
290.593	94.88	1.0170194	5.945
429.402	145.75	1.0264457	5.9952
578.969	205.57	1.0378885	6.0669
676.741	247.96	1.0463011	6.1295
385.039	129.04	1.0234075	5.9994
236.576	76.14	1.0136746	5.9588
80.860	25.02	1.0044988	5.983
13.745	4.18	1.0008104	6.4510
48,044	Composition 8.11% He	e - 91.89% CO ₂	4.18 4.25
111.623	35.46	1.0073868	6.924
208.136	69.03	1.0143479	6.895
305.418	106.29	1.0221735	6.902
406.301	149.78	1.0314516 -	6.926
503.035	197.96	1.0418898	6.956
554.207	226.93	1.0483049	6.982
457.460	174.32	1.0368079	6.952
360.761	129.43	1.0271151	6.920
252.144	85.40	1.0178049	6.908
146.348	47.20	1.0098241	6.914
47.754	14.77	1.0031334	7.060
24.713	7.57	1.0016548	7.276
89.162	28.06	1.0058632	6.950
12.504	3.81	1.0008855	7.734
610,381	Composition 5.8% He	- 94.2% CO ₂	0.08
			7.074
112.132	35.78	1.0076132	7.074
206.498	68.92	1.0146413	7.040
300.837	105.59	1.0225290	
395.633	147.30	1.0316187	7.080
500.389	201.75	1.0436866	7.114

TABLE 2. - Dielectric constants for He-CO, system at 0° C (Con.)

		8.86	
			236,576
	1,0008104		13.745
			111.623
		106,29	305.418
			\$05.30I
			554,207
	1.0271151		360,761
			252.144
6.9147			146.348
			24,713
		3.81	
		35.78	
		105.59	
			500.389

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM ₃ , (cm ³)
	Composition 48.8% H	e - 51.2% CO ₂	
112.683	34.53	1.0042173	4.0649
209.321	64.66	1.0078546	4.0383
310.116	96.58	1.0117292	4.0320
405.424	127.23	1.0154707	4.0322
502.568	158.92	1.0193624	4.0351
605.863	193.10	1.0235867	4.0396
705.120	226.42	1.0277249	4.0441
659.558	211.07	1.0258186	4.0425
560.635	178.07	1.0217576	4.0433
460.818	145.24	1.0177066	4.0396
354.843	110.91	1.0135013	4.0393
250.112	77.52	1.0094363	4.0446
147.681	45.39	1.0055416	4.0619
48.044	14.64	1.0018312	4.1654
28.589	8.70	1.0011099	4.2508
81.820	25.01	1.0030633	4.0783
235.538	72.91	1.0088503	4.0338
478.618	151.06	1.0183927	4.0336
632.181	201.89	1.0246766	4.0408
371.123	116.15	1.0141424	4.0394
119.546	36.65	1.0044948	4.0809
11.454	3.48	1.0004868	4.6612
	Composition 21.6% H	He - 78.4% CO ₂	
116.128	36.25	1.0064692	5.9357
208.062	66.47	1.0118715	5.9294
302.898	99.23	1.0178218	5.951
397.843	133.82	1.0242149	5.9833
502.514	174.28	1.0318541	6.0282
610.381	218.88	1.0405030	6.0858
704.133	260.36	1.0488194	6.1500
661.479	241.15	1.0449547	6.1219
566.308	200.28	1.0369058	6.0676
454.355	155.34	1.0282949	6.0146
347.809	115.35	1.0208290	5.9770
248.270	80.15	1.0143829	5.952

TABLE 2.- Dielectric constants for He-CO, system at 0° C (Con.)

	96,58	

TABLE 2.- Dielectric constants for $He-CO_2$ system at 0° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³ ')
	Composition	100% CO ₂	
122.022	39.38	1.0088512	7.4685
211.984	71.98	1.0162148	7.4684
63.301	19.82	1.0044807	7.5216
100.987	32.24	1.0072414	7.4684
152.392	50.00	1.0112232	7.4539
202.289	68.29	1.0153423	7.4505
495.569	211.63	1.0492694	7.6346
494.823	211.15	1.0492154	7.6439
455.732	186.88	1.0430889	7.5767
411.628	161.95	1.0370405	7.5305
202.289	68.29	1.0153453	7.4519
495.569	211.63	1.0492704	7.6348
353.322	132.33	1.0300776	7.5011
302.686	109.10	1.0246923	7.4822
252.130	87.79	1.0198290	7.4789
204.362	69.07	1.0155577	7.4687
145.963	47.72	1.0107274	7.4659
98.791	31.50	1.0070982	7.4923
45.830	14.23	1.0032526	7.6104
21.064	6.46	1.0015236	7.8560
12.739	3.89	1.0009626	- 8.2424

• •

TABLE 2.- Dielectric constants for He-CO₂ system at 0° C (Con.)

	Dielectric		
		Composition	
7.4685 7.4684 7.5216 7.4684 7.4539 7.6346 7.6346 7.5767		39.38 71.98 19.82 32.24 50.00 68.29 211.63 211.15 186.88	122,022 211.984 63.301 100.987 152.392 202.289 495.569 494,823 455.732
		68.29 211.63 132.33 109.10 87.79 69.07 47.72 31.50 14.23 6.46	202.289 495.569 353.322 302.686 252.130 204.362 145.963 98.791 45.830 45.830 21.064

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	- (cm ³)
	Composition	100% He	
113.001	35.45	1.0005609	0.5272
207.118	64.76	1.0010197	.5247
305.021	95.02	1.0014916	.5229
403.966	125.39	1.0019725	.5240
505.992	156.46	1.0024623	.5241
604.441	186.23	1.0029352	.5248
703.847	216.07	1.0034070	.5249
802.035	245.33	1.0038658	.5245
908.132	276.71	1.0043567	.5240
1008.249	30.61	1.004815	.5235
954.456	290.33	1.0045680	.5236
852.923	260.41	1.0041012	.5242
749.762	229.78	1.0036214	.5247
648.717	199.55	1.0031475	.5252
550.157	169.85	1.0026807	.5256
442.841	137.26	1.0021688	.5263
344.357	107.12	1.0016929	.5264
244.571	76.36	1.0012111	.5284
162.396	50.86	1.0008114	.5316
39.329	12.37	1.0002073	.5584
23.472	7.39	1.0001292	. 5828
151.598	47.50	1.0007553	.5299
325.570	101.35		. 5235
478.974	148.26	1.0023241	.5221
625.478	192.56	1.0030133	.5210
	238.08	1.0037225	.5205
777.632	283.81	1.0044328	.5198
932.269	298.71	1.0046652	.5197
983.000	253.15	1.0039560	.5202
828.404	206.94	1.0032387	.5210
673.373	160.71	1.0025174	.5210
519.993	116.92	1.0018352	.5228
376.297	69.10	1.0010332	.524
221.108		1.0010079	.5372
69.990 11.710	21.99	1.0003540	.6246
	3.68	1 [[[]]]	. 0271

	Dielectric		
		95.02	
		125.39	
			151.598
			325,570
.5210			
.5216			

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM _(cm³)
	Composition 94.72% H	e - 5.28% CO ₂	
512.170	158.26	1.0042054	0.8844
407.920	126.55	1.0033659	.8855
297.178	92.58	1.0024663	.8872
199.141	62.27	1.0016619	.8890
98.808	31.01	1.0008464	. 9093
43.006	13.52	1.0003796	.9352
11.280	3.55	1.0001132	1.0618
162.004	50.73	1.0013443	.8828
254.755	79.49	1.0021007	.8802
353.203	109.80	1.0028971	.8786
452.198	140.05	1.0036885	.8768
550.372	169.82	1.0044719	.876
576.004	177.55	1.0046752	.876
486.282	150.41	1.0039630	.877
384.435	119.37	1.0031485	.878
227.568	71.08	1.0018873	.884
150.995	47.30	1.0012602	.887
	38.40	1.0010268	.890
122.450	24.08	1.0006481	.896
76.658 26.752	8.42	1.0002374	.939
1008.945	Composition 88.5% 1	He - 11.5% CO ₂	
116.691	36.62	1.0014435	1.313
211.368	66.11	1.0025946	1.307
304.802	95.02	1.0037195	1.303
405.933	126.10	1.0049337	1.302
505.711	156.54	1.0061558	1.308
602.644	185.90	1.0072858	1.303
702.459	215.92	1.0084389	1.299
807.261	247.21	1.0096610	1.298
903.025	275.59	1.0107780	1.298
1000.517	304.28	1,011902	1.298
956.898	291.47	1.0114021	1.299
860.673	263.06	1.0102881	1.299
753.197	231.10	1.0090379	1.299
649.230	199.94	1.0078198	1.300

TABLE 3. - Dielectric constants for Me-CO, system at -10° C (Con.)

			ressure, (psis)
0.8844			
		92.58	
	1,0028971		
.8763			
	1.0039630		
	1:0006481		
		8,42	
		231,10 .	
		· U1.152	

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM, (cm ³)
	Composition 88.5% He	e - 11.5% CO ₂	
551.267	170.36	1.0066657	1.3012
443.938	137.72	1.0053895	1.3020
349.304	108.72	1.0042585	1.3036
245.568	76.71	1.0030113	1.3070
143.610	45.02	1.0017801	1.3169
123.082	38.61	1.0015296	1.3196
77.650	24.40	1.0009737	1.3295
45.351	14.26	1.0005780	1.3500
23.762	7.48	1.0003165	1.4102
11.243	3.54	1.0001602	1.5084
90,935	Composition 71.91% He	e - 28.09% CO ₂	9.0020 4,3300
117.418	36.98	1.0027569	2.4823
214.293	67.46	1.0050098	2.4709
305.268	96.06	1.0071346	2.4697
404.499	127.21	1.0094547	2.4696
501.283	157.54	1.0117237	2.4709
593.779	186.47	1.0138845	2.4705
712.547	223.53	1.0166294	2.4660
792.785	248.51	1.0184976	2.4658
902.846	282.69	1.0211934	2.4814
1008.945	315.53	1.023707	2.4848
959.803	300.33	1.0225799	2.4873
860.369	269.51	1.0202417	2.4866
738.375	231.58	1.0173636	2.4848
640.588	201.09	1.0150666	2.4849
531.980	167.14	1.0125111	2.4846
436.083	137.11	1.0102521	2.4838
338.284	106.43	1.0079641	2.4876
238.723	75.15	1.0056339	2.4942
147.812	46.55	1.0035192	2.5169
303.840	95.61	1.0071546	2.4882
501.594	157.63	1.0117698	2.4790
747.735	234.49	1.0175279	2.4770
988.645	309.26	1.0231509	2.4761
678.318	212.86	1.0158139	2.4633

TABLE 3. - Dislectric constants for He-CO, system at -10° C (Con.)

	Dielectric	Density, (moles/cm ³) x 10 ⁵	Pressure, (psia)
	- 11.5% co ₂	Composition 88.5% He	
	1.0066657		551,267
1.3020			
	1.0042585	108.72	349.304
		76:71	
		24,40	
1.3500		14.26	
1.4102		7.48	
		3.54	
	- 28,09%, CO ₂	Composition 71.91% He	
	1.0184976		
	1.0211934		
	1,023707		
		300.33	
	1,0202417		
		231.58	738,375
		201.09	
		137.11	
	1,0079641	106.43	
		75.15	
2,5169		46.55	147.812
		95.61	
			501.594
		234.49	747.735
	1,0231509	309.26	
	1.0158139	212.86	678.318
		001111	010.00

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM, (cm ³)
	Composition 71.91% He	e - 28.09% CO ₂	
315.201	99.18	1.0074111	2.4845
73.860	23.26	1.0017801	2.5484
10.779	3.39	1.0003005	2.9489
84.780	Composition 51.98% H	e - 48.02% CO ₂	
468.216	153.10	1.0176522	3.8206
407.393	132.58	1.0152800	3.8219
298.067	96.18	1.0110716	3.8228
195.288	62.50	1.0072047	3.8327
90.935	28.86	1.0033489	3.8628
11.920	3.76	1.0004888	4.3330
605.248	200.00	1.0230838	3.8178
518.898	170.34	1.0196377	3.8178
703.734	234.28	1.0270918	3.8200
803.514	269.50	1.0312372	3.8236
909.225	307.35	1.0357211	3.8284
947.578	321.21	1.0373620	3.8294
861.774	290.29	1.0337035	3.8269
754.709	252.21	1.0292366	3.8266
643.397	213.22	1.0246616	3.8239
545.721	179.51	1.0207166	3.8204
449.224	146.67	1.0168998	3.8190
336.260	108.83	1.0125271	3.8208
239.641	76.97	1.0088566	3.8239
141.706	45.16	1.0052282	3.8518
48.014	15.18	1.0017932	3.9329
384,355	Composition 21.5% H	He - 78.5% CO ₂	6, 1098
115.308	37.63	1.0067499	5.965
209.004	70.31	1.0126083	5.951
298.973	103.79	1.0186800	5.962
394.564	142.03	1.0257024	5.980
490.960	184.00	1.0335142	6.004
544.118	208.91	1.0375022	5.909
469.595	174.36	1.0318543	6.025

TABLE 3 .- Dielectric constants for Ne-CO, system at -10° C (Com.)

		(moles/cm ²) x 10 ⁵	
		3.39	
	1,0176522		
3.8200			

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³)
	Composition 21.5% He	e - 78.5% CO ₂	
347.213	122.71	1.0222443	5.9979
245.960	83.79	1.0151197	5.9841
136.580	44.87	1.0080903	5.9933
43.336	13.83	1.0025485	6.1356
84.780	27.40	1.0049548	6.0161
287.712	99.47	1.0179136	5.9670
439.573	161.15	1.0292517	5.9918
525.508	200.03	1.0365746	6.0211
321.608	112.57	1.0203439	5.9830
120.223	39.29	1.0070865	5.9969
28.695	9.11	1.0017170	6.2722
11.461	3.62	1.0007383	6.7890
188.263	62.90	1.0112868	5.9587
119.615	39.09	1.0070243	5.9758
78.191	25.22	1.0045550	6.0098
55.930	17.92	1.0032577	6.0524
34.948	11.12	1.0020576	6.1591
23.161	7.34	1.0013844	6.2765
505.482	190.67	1.0348192	6.0171
368.671	131.37	1.0237818	5.9868
239.517	81.42	1.0146477	5.9674
161.539	53.50	1.0096159	5.9717
117.679	38.43	1.0069202	5.9879
77.186	24.89	1.0045099	6.0297
51.289	16.41	1.0029983	6.0836
34.452	10.96	1.0020336	6.1759
17.528	5.55	1.0010678	6.4086
553.510	213.47	1.0387260	5.9699
384.355	137.80	1.0254728	6.1098
261.702	89.65	1.0164509	6.0831
190.000	63.51	1.0116244	6.0766
128.054	41.95	1.0076915	6.0945
93.541	30.32	1.0055768	6.1193
41.636	13.28	1.0025054	6.2814
110.754	36.09	1.0064902	5.9808
209.178	70.37	1.0126428	5.9628
302.350	105.09	1.0189627	5.9768

TABLE 3.- Dielectric constants for He-CO, system at -10° C (Con.)

	44,87	
		287.712
		439.573
	53.50	

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM (cm ³)
	Composition 21.5% He	e - 78.5% CO ₂	
395.048	142.23	1.0258005	5.9949
494.662	185.69	1.0339064	6.0183
494.600	185.66	1.0339014	6.0183
430.121	157.07	1.0285462	6.0007
347.622	122.87	1.0222293	5.9859
232.168	78.72	1.0141644	5.9692
156.810	51.85	1.0093110	5.9664
103.854	33.77	1.0060705	5.9794
45.420	14.50	1.0026375	6.0544
43,683 .	Composition 11.67% H	e - 88.33% CO ₂	
45.135	14.48	1.0029943	6.8827
111.250	36.72	1.0074111	6.7108
150.927	50.70	1.0101940	6.6793
198.093	68.01	1.0136831	6.6751
243.440	85.47	1.0172174	6.6762
295.931	106.81	1.0215630	6.6813
342.196	126.79	1.0256662	6.6902
389.335	148.49	1.0301682	6.7045
375.426	141.93	1.0288328	6.7067
322.602	118.18	1.0239102	6.6904
	99.98	1.0201846	6.6844
279.481	77.85	1.0156847	6.6805
223.913	58.64	1.0118028	6.6828
172.822 117. 3 56	38.83	1.0078248	6.6980
	25.53	1.0051611	6.7249
78.464	8.33	1.0017470	6.9813
26.176 11.821	3.74	1.0008485	7.554
362,930	Composition 6.72% H	le - 93.28% CO ₂	
222 615	78.92	1.0167265	7.024
223.615	34.41	1.0073199	7.073
103.966	7.97	1.0018062	7.547
25.010	3.44	1.0008635	8.352
10.878	27.61	1.0058904	7.096
84.234 180.964	62.34	1.0132003	7.026

TABLE 3. - Dielectric constants for He-CO2 system at -10° C (Con.)

(cm ³)	Dielectric	Density, (moles/cm3) x 105	
		Composition 21,5% He	
	1.0258005		395.048
	1.0339064	185.69	494,662
	1.0339014	185.66	
	1.0285462	157.07	430.121
	1.0222293	122.87	
	1.0141644		232,168
	1.0093110		
	1.0060705	33.77	103.854
	1.0026375		
	- 88.33% CO2	Composition 11.67% He	
		- 14.48	45,135
6.7108	1.0074111		111.250
6.6793	1,0101940		150.927
6.6751	1.0136831	10.83	198.093
6.6762	1,0172174		243.440
6.6813		106.81	295.931
	1,0256662	126,79	
		89,98	
		77.85	
		58.64	
		38.83	
	1.0051611	25.53	78.464
6.9813	1,0017470	8.33	26.176
	1,0008485	3.74	
	2 - 93.28% CO2	Composition 6.72% He	
	1.0167265	78.92	223.615
		34.41	
7.5476	1:0018062		25.010
8.3527			10.878
7.0967	1.0058904		84.234

TABLE 3.- Dielectric constants for He-CO₂ system at -10° C (Con.)

Pressure, (psia)	Density, (moles/cm ³) x 10 ⁵	Dielectric constant	CM, (cm ³)
	Composition 6.72% He	e - 93.28% CO ₂	
273.025	99.32	1.0210642	7.0197
317.412	118.94	1.0252977	7.0304
375.936	147.10	1.0314335	7.0490
389.646	154.14	1.0329802	7.0543
354.390	136.39	1.0291094	7.0457
308.012	114.67	1.0243941	7.0336
247.773	88.72	1.0188172	7.0250
202.202	70.49	1.0149434	7.0307
149.364	50.59	1.0107219	7.0384
120.000	40.04	1.0084980	7.0545
43.683	14.04	1.0030674	7.2721
	Composition 1	00% co ₂	***************************************
51.183	16.59	1.0037646	7.5522
305.634	118.23	1.0268321	7.4973
268.722	100.67	1.0227760	7.4842
228.735	83.03	1.0187289	7.4719
185.140	65.14	1.0146557	7.4625
143.511	49.13	1.0110304	7.4550
104.790	35.04	1.0078738	7.4702
58.045	18.89	1.0042675	7.5186
24.791	7.92	1.0018312	7.7018
87.007	28.79	1.0064583	7.4606
125.292	42.41	1.0095007	7.4422
166.844	57.99	1.0130139	7.4478
203.895	72.68	1.0163287	7.4475
252.831	93.50	1.0211191	7.4758
283.781	107.67	1.0243688	7.4829
323.613	127.31	1.0289028	7.4950
342.909	137.49	1.0313080	7.5118
332.516	131.95	1.0300177	7.5078
187.498	66.08	1.0148721	7.4648
78.085	25.70	1,0057892	7.4920
13.153	4.17	1.0009947	7.9386

TABLE 3 .- Dielectric constants for He-CO, system at -10° C (Con.)

	(molan/cm ³) x 10 ⁵	(psia)
	154.14	
	. 50.59	
2 4.00 m		
	72.68	

