Percolation Theory

Marco Bertenghi

University of Zurich

March 19, 2018

Motivation

Understand a simplistic (probabilistic) model for a porous stone. Develop a Toolbox for your daily percolation need.

- 1 Framework and Definitions
- 2 Broadbent-Hammersley Theorem
- 3 Harris-FKG inequality
- 4 Russo's formula
- **5** Exponential decay

• G = (V, E) simple graph.

- G = (V, E) simple graph.
 - $V = \mathbb{Z}^d$, E set of edges with e := xy, $x, y \in \mathbb{Z}^d$ that attain unit euclidean distance, i.e. $||x y||_1 = 1$.

- G = (V, E) simple graph.
 - $V = \mathbb{Z}^d$, E set of edges with e := xy, $x, y \in \mathbb{Z}^d$ that attain unit euclidean distance, i.e. $||x y||_1 = 1$.
- Edges are called **bonds**.

- G = (V, E) simple graph.
 - $V = \mathbb{Z}^d$, E set of edges with e := xy, $x, y \in \mathbb{Z}^d$ that attain unit euclidean distance, i.e. $||x y||_1 = 1$.
- Edges are called **bonds**.
- We let \mathbb{Z}^d refer to the lattice and its vertex set.

• $\Omega = \{0, 1\}^E$ state space.

- $\Omega = \{0,1\}^E$ state space.
- Percolation configuration:
 - $\omega(e) = 1 \leadsto e$ is open.
 - $\omega(e) = 0 \leadsto e$ is closed.

- $\Omega = \{0,1\}^E$ state space.
- Percolation configuration:
 - $\omega(e) = 1 \leadsto e$ is open.
 - $\omega(e) = 0 \leadsto e$ is closed.
- \mathcal{F} is σ -algebra generated by events depending only on finitely many edges.

- $\Omega = \{0,1\}^E$ state space.
- Percolation configuration:
 - $\omega(e) = 1 \leadsto e$ is open.
 - $\omega(e) = 0 \leadsto e$ is closed.
- \mathcal{F} is σ -algebra generated by events depending only on finitely many edges.
- Percolation measure: $\mathbb{P}_p(\text{Bernoulli}(p))^{\otimes E}$

Definition

We declare each bond of the lattice \mathbb{Z}^d to be **open** with probability $p \in [0,1]$ and **closed** otherwise (i.e. with probability q = 1 - p). Bonds are open or closed independently of all other bonds.

Definition

A path (of length n) in \mathbb{Z}^d is a sequence of vertices (x_1, \ldots, x_n) such that (x_i, x_{i+1}) is a bond of \mathbb{Z}^d . A path is called **open** if all its edges are open and in this case we say that the path connects x_0 with x_n . A path is called **closed** if all its edges are closed.

Definition

A path (of length n) in \mathbb{Z}^d is a sequence of vertices (x_1, \ldots, x_n) such that (x_i, x_{i+1}) is a bond of \mathbb{Z}^d . A path is called **open** if all its edges are open and in this case we say that the path connects x_0 with x_n . A path is called **closed** if all its edges are closed.

Remark

In percolation we often care about open paths, because such paths simulate where water can flow.

Definition

Consider the random subgraph of \mathbb{Z}^d which contains only the open edges of \mathbb{Z}^d . The connected components of this graph are called **open clusters**. We denote C(x) to be the open cluster that contains the vertex x.

Definition

Consider the random subgraph of \mathbb{Z}^d which contains only the open edges of \mathbb{Z}^d . The connected components of this graph are called **open clusters**. We denote C(x) to be the open cluster that contains the vertex x.

Remark

By translation invariance of the lattice and the probability measure, the distribution of C(x) is independent of the choice of x. We let C(0) = C be the open cluster that contains the origin.

Definition

We define the **percolation probability** $\theta(p)$ as the probability that the origin belongs to an infinite open cluster, i.e.

$$\theta(p) := \mathbb{P}_p(|C| = \infty)$$

Lemma

There exists a **critical value** $p_c = p_c(d)$ such that $\theta(p) = 0$ for $p < p_c$ and $\theta(p) > 0$ for $p > p_c$. Moreover, the critical value is decreasing w.r.t. the dimension, i.e. $p_c(d+1) \leq p_c(d)$.

Proof: Blackboard

Lemma

There exists a **critical value** $p_c = p_c(d)$ such that $\theta(p) = 0$ for $p < p_c$ and $\theta(p) > 0$ for $p > p_c$. Moreover, the critical value is decreasing w.r.t. the dimension, i.e. $p_c(d+1) \leq p_c(d)$.

Proof: Blackboard

Remark

The one-dimensional case is not interesting because there we have $p_c = 1$.

Definition

The parameter set $p < p_c$ is called the **sub-critical phase**, the set $p > p_c$ is called the **supercritical phase**.

Definition

A self-avoiding path of length n is a sequence of edges e_1, \ldots, e_n with $e_i \neq e_j$ for $i \neq j$ and such that e_i and e_{i+1} share an endpoint for every $1 \leq i < n$. Let $\sigma(n)$ denote the number of self-avoiding paths in \mathbb{Z}^d of length n, we define the connective constant of \mathbb{Z}^d as

$$\lambda(d) = \lim_{n \to \infty} \sigma(n)^{1/n}.$$

Definition

Let G be a graph, we define its dual G^* as the graph which has as vertices the faces of G and as vertices pairs of faces which are adjacent.

Figure: The red graph is the dual graph of the blue graph, and vice versa.

Theorem (Broadbent-Hammersley)

For $d \geq 2$ we have

$$0 < \lambda(d)^{-1} \le p_c(d) \le p_c(2) < 1.$$

Theorem (Broadbent-Hammersley)

For $d \geq 2$ we have

$$0 < \lambda(d)^{-1} \le p_c(d) \le p_c(2) < 1.$$

Remark

Later: $p_c(2) \le (1 - \lambda(2)^{-1})$.

Proof of Theorem: Blackboard.

$$\theta(p_c) = 0$$
 on \mathbb{Z}^d for every $d \geq 3$.

Conjecture

$$\theta(p_c) = 0$$
 on \mathbb{Z}^d for every $d \geq 3$.

• Kesten: $p_c(2) = 1/2$ and $\theta(p_c) = 0$.

$$\theta(p_c) = 0$$
 on \mathbb{Z}^d for every $d \geq 3$.

- Kesten: $p_c(2) = 1/2$ and $\theta(p_c) = 0$.
- Hara and Slade (1990) for $d \ge 19$ (lace expansion).

$$\theta(p_c) = 0$$
 on \mathbb{Z}^d for every $d \geq 3$.

- Kesten: $p_c(2) = 1/2$ and $\theta(p_c) = 0$.
- Hara and Slade (1990) for $d \ge 19$ (lace expansion).
 - Lace expansion expected to only work for $d \geq 6$.

$$\theta(p_c) = 0$$
 on \mathbb{Z}^d for every $d \geq 3$.

- Kesten: $p_c(2) = 1/2$ and $\theta(p_c) = 0$.
- Hara and Slade (1990) for $d \ge 19$ (lace expansion).
 - Lace expansion expected to only work for $d \geq 6$.
- State of the art: shown for $d \ge 11$.

Harris-FKG inequality

Definition

Let $\omega, \omega' \in \Omega$ be two configurations. We say $\omega \leq \omega'$ if $\omega(e) \leq \omega'(e)$ for all bonds $e \in \mathbb{Z}^d$. We say a RV $X : \Omega = \{0,1\}^E \to \mathbb{R}$ is increasing if for $\omega \leq \omega'$ we have $X(\omega) \leq X(\omega')$. An event $A \in \mathcal{A}$ is increasing if 1_A is increasing.

Definition

Let $\omega, \omega' \in \Omega$ be two configurations. We say $\omega \leq \omega'$ if $\omega(e) \leq \omega'(e)$ for all bonds $e \in \mathbb{Z}^d$. We say a RV $X : \Omega = \{0,1\}^E \to \mathbb{R}$ is increasing if for $\omega \leq \omega'$ we have $X(\omega) \leq X(\omega')$. An event $A \in \mathcal{A}$ is increasing if 1_A is increasing.

Remark

Heuristically, increasing events are favoured by opening up edges.

Example

The following events are increasing:

$$A = \{ |C| = \infty \}$$

Example

The following events are increasing:

- $A = \{ |C| = \infty \}$
- $\bullet x \longleftrightarrow y$

Example

The following events are increasing:

- $A = \{ |C| = \infty \}$
- $\bullet \ x \longleftrightarrow y$
- $B = \{|C_x| \ge 5\}$

Example

The following events are increasing:

- $A = \{ |C| = \infty \}$
- $\bullet \ x \longleftrightarrow y$
- $B = \{|C_x| \ge 5\}$

The following event is neither \nearrow nor \searrow :

• $C = \{ |C| = 5 \}.$

Standard coupling of percolation:

- Let $(X_e)_{e \in E}$ be a seq of i.i.d. RV, $X_e \sim \text{unif}[0,1]$.
 - Random label on each edge of percolation model.

Standard coupling of percolation:

- Let $(X_e)_{e \in E}$ be a seq of i.i.d. RV, $X_e \sim \text{unif}[0,1]$.
 - Random label on each edge of percolation model.
- For all $p \in [0,1]$ we define $\omega_p = (\omega_p(e))_{e \in E}$ by

$$\omega_p(e) = 1_{X_e \le p}$$
, for all $e \in E$.

Standard coupling of percolation:

- Let $(X_e)_{e \in E}$ be a seq of i.i.d. RV, $X_e \sim \text{unif}[0,1]$.
 - Random label on each edge of percolation model.
- For all $p \in [0,1]$ we define $\omega_p = (\omega_p(e))_{e \in E}$ by

$$\omega_p(e) = 1_{X_e \le p}$$
, for all $e \in E$.

Proposition (increasing coupling)

Fix $p \leq p'$. There exists a probability measure \mathbb{P} on $[0,1]^E$ which coincides with \mathbb{P}_p on $\{0,1\}^E$ such that $\omega_p \leq \omega_{p'}$ \mathbb{P} -a.s.

Harris-FGK

Lemma

If X is an increasing RV in $L^1(\mathbb{P}_p) \cap L^1(\mathbb{P}_q)$ then we have

$$\mathbb{E}_p(X) \leq \mathbb{E}_q(X), \text{ for } p \leq q.$$

Harris-FGK

Lemma

If X is an increasing RV in $L^1(\mathbb{P}_p) \cap L^1(\mathbb{P}_q)$ then we have

$$\mathbb{E}_p(X) \leq \mathbb{E}_q(X), \text{ for } p \leq q.$$

Remark

 $A = \{|C| = \infty\}$ is increasing $\leadsto \theta(p) = \mathbb{P}_p(|C| = \infty)$ is increasing.

Proof of Lemma: Blackboard.

Theorem (FKG inequality)

For increasing random variables X, Y in $L^2(\Omega, \mathbb{P}_p)$, we have

$$\mathbb{E}_p(XY) \ge \mathbb{E}_p(X)\mathbb{E}_p(Y).$$

Theorem (FKG inequality)

For increasing random variables X, Y in $L^2(\Omega, \mathbb{P}_p)$, we have

$$\mathbb{E}_p(XY) \ge \mathbb{E}_p(X)\mathbb{E}_p(Y).$$

Remark

We obtain for positive events $\mathbb{P}_p(A \cap B) \geq \mathbb{P}_p(A)\mathbb{P}_p(B)$ or equivalently $\mathbb{P}_p(A \mid B) \geq \mathbb{P}_p(A)$.

Proof of Theorem: Blackboard.

Corollary

We can improve the bound of $p_c(2)$ as follows

$$p_c(2) \le (1 - \lambda(2)^{-1}).$$

Proof: Blackboard.

Definition

Let $A \in \mathcal{A}$ be an event and $\omega \in \Omega$ a configuration. We say that an edge $e \in \mathbb{Z}^d$ is **pivotal** for the pair (A, ω) if $1_A(\omega) = 1_A(\widetilde{\omega_e})$ where $\widetilde{\omega_e}$ is the unique configuration which agrees with ω except at the edge e.

Definition

Let $A \in \mathcal{A}$ be an event and $\omega \in \Omega$ a configuration. We say that an edge $e \in \mathbb{Z}^d$ is **pivotal** for the pair (A, ω) if $1_A(\omega) = 1_A(\widetilde{\omega_e})$ where $\widetilde{\omega_e}$ is the unique configuration which agrees with ω except at the edge e.

Remark

Pivotal edges are the edges that are essential for an event A to occur.

Example

$$A = \{|C| = \infty\}.$$

Example

$$A = \{ |C| = \infty \}.$$

e is pivotal for A iff, when e is removed from the lattice, one endvertex of e is in a finite open cluster containing the origin, the other endvertex is an infinite open cluster.

Example

$$A = \{ |C| = \infty \}.$$

e is pivotal for A iff, when e is removed from the lattice, one endvertex of e is in a finite open cluster containing the origin, the other endvertex is an infinite open cluster.

Question

Let d=2, how would a pivotal edge for the event $x \longleftrightarrow y$ look like?

Theorem (Russo's formula)

Let A be an increasing event, depending only on finitely many edges of \mathbb{Z}^d . Then $p \mapsto \mathbb{P}_p(A)$ is differentiable, and

$$\frac{d}{dp}\mathbb{P}_p(A) = \sum_{e \in F} \mathbb{P}_p(e \text{ is pivotal for } A)$$

where $F \subset E$ is a finite subset.

Proof: Blackboard.

Exponential decay

Exponential decay

One major application of Russo's formula is to prove that in the subcritical regime $(p < p_c)$, the connection probabilites decay exponentially fast with distance.

Exponential decay

One major application of Russo's formula is to prove that in the subcritical regime $(p < p_c)$, the connection probabilites decay exponentially fast with distance.

Theorem (Exponential decay)

For all $d \geq 2$, we have in the subcritical regime $p < p_c$, that there exists a constant c = c(p) > 0 such that for all $n \geq 1$

$$\mathbb{P}_p(0\longleftrightarrow \partial B_n) \le e^{-cn},$$

where $B_n := \{-n, ..., n\}^d$ denotes the box of size n around the origin.

Thank you