Topology and Geometry Seminar

Spectral Sequences (II)

Xiong Rui

September 25, 2020

- Remind
- 2 Double complexes
- 3 Čech cohomology
- 4 Grothendieck SS
- 6 Applications
- 6 Thanks

Remind

Theorem

Each filtered (cochain) complex (C, \mathcal{F}) determines a spectral sequence E with

$$E_0^{pq} = \mathcal{F}^p C^{p+q} / \mathcal{F}^{p+1} C^{p+q}$$

$$E_1^{pq} = H^{p+q} (\mathcal{F}^p C / \mathcal{F}^{p+1} C).$$

If the filtration \mathcal{F} over C is lower bounded and upper exhaustive then E converges to $H^{\bullet}(C)$. More exactly,

$$E^{pq}_{\infty} \cong \mathcal{F}^p H^{p+q}(C,d)/\mathcal{F}^{p+1} H^{p+q}(C,d),$$

where \mathcal{F} is lower bounded and exhaustive filtration over $H^{\bullet}(C, d)$.

 $\sim \S$ Double complexes $\S \sim$

Double complexes

Recall the notion of double complex.

each square **anticommutes**, that is, $d_{\rightarrow}d_{\uparrow}+d_{\uparrow}d_{\rightarrow}=0$.

Double complex

We can take total of the double complex to be a complex

$$\mathsf{Tot} C = egin{cases} \mathsf{Tot}^{n+1} C = \bigoplus_{i+j=n+1} C^{ij} \ & \uparrow & d: d_{\uparrow} + d_{
ightarrow} \ & \mathsf{Tot}^n C = \bigoplus_{i+j=n} C^{ij} \end{cases}$$

Denote $H^{\bullet}(C) = H^{\bullet}(\operatorname{Tot}^{\bullet}C)$ the cohomology group of a double complex.

SS for double complexes

Theorem

Each double complex $(C^{\bullet \bullet}, d^{\rightarrow}, d^{\uparrow})$, determines two spectral sequences ${}^{\mathrm{I}}E$ and ${}^{\mathrm{II}}E$ with

$$\begin{array}{ll} {}^{\mathrm{I}}E_{1}^{pq} &= H^{q}(C^{p\bullet},d^{\uparrow}) & {}^{\mathrm{II}}E_{1}^{qp} &= H^{p}(C^{\bullet q},d^{\rightarrow}) \\ {}^{\mathrm{I}}E_{2}^{pq} &= H^{p}(H^{q}(C,d^{\uparrow}),d^{\rightarrow}). & {}^{\mathrm{II}}E_{2}^{qp} &= H^{q}(H^{p}(C,d^{\rightarrow}),d^{\uparrow}). \end{array}$$

If the double complex C lies in the first quadrant, or the third quadrant, then ${}^{\mathrm{I}}E$ and ${}^{\mathrm{I}}E$ converge to $H^{\bullet}(\mathrm{Tot}^{\bullet}(C))$.

Sketch of the proof

Let us only do the first one.

$$\mathcal{F}^p\mathsf{Tot}^{ullet}C=\mathsf{Tot}^{ullet}C_{\mathrm{I}\geq p},$$

by truncating the double complexes. Say $C_{I \ge p}^{ij} = C^{ij}$ when $i \ge p$ and zero otherwise.

Then (let us only do the first one)

$$E_0^{p\bullet} = \frac{\mathcal{F}_{\mathrm{I}}^p \mathsf{Tot}^{\bullet} C}{\mathcal{F}_{\mathrm{I}}^{p+1} \mathsf{Tot}^{\bullet} C} = \frac{\mathsf{Tot}^{\bullet} C_{\geq p}}{\mathsf{Tot}^{\bullet} C_{\geq p+1}} \cong \mathsf{Tot}^{\bullet} C_{\mathrm{I}=p} = C^{p\bullet},$$

the p-th column.

• Check d^1 carefully, it is exactly induced by d^{\rightarrow} .

 E_0

 E_1

Remarks

- One should be careful with the direction of the second spectral sequence. The best way is to using the transpose. If one insists, there will be a steep arrow (\rangle rather than \rangle).
- It also has homology version (similarly).

Čech cohomology

- It is very useful to use Čech cohomology to compute cohomology (especially in sheaf theory).
- Let $\mathcal{U} = \{U_i : i \in I\}$ be an open covering of X. Denote

$$U_{\mathbf{i}}=U_{i_0,\ldots,i_p}=U_{i_0}\cap\cdots\cap U_{i_p}.$$

Assume I is totally ordered, and $S^{\bullet}(-)$ be the complex of singular cohomology (of sheaves). Denote $q \geq 0, p \geq 0$,

$$C^{pq} = \prod_{\mathbf{i}=i_0<\dots< i_p} S^q(U_{\mathbf{i}}).$$

Čech cohomology (continued)

For each fixed p,

$$d^{\uparrow}:\prod_{\mathbf{i}}S^{q}(U_{\mathbf{i}})\rightarrow\prod_{\mathbf{i}}S^{q+1}(U_{\mathbf{i}})$$

is defined to be the differential of singular cohomology summand-wise, say $\prod_i d$.

For each fixed q,

$$d^{\rightarrow}: \prod_{\mathbf{i}: i_0 < \dots < i_p} S^q(U_{\mathbf{i}}) \rightarrow \prod_{\mathbf{j}: j_0 < \dots < j_{p+1}} S^q(U_{\mathbf{j}})$$

is defined by

$$(d\alpha)_{\mathbf{j}} = \sum_{k=0}^{p} (-1)^{k} \alpha_{j_0 < \dots < \widehat{j_k} < \dots < j_{p+1}} \big|_{U_{\mathbf{j}}}.$$

By switching the signs, C forms a double complex.

It is kind of "fat" simplicial cohomology.

Čech cohomology (continued)

 Define the Čech cohomology be the cohomology group of the following complex

$$\check{C}^{\bullet}: \check{C}^{p} = \prod_{\mathbf{i}: i_{0} < \dots < i_{p}} H^{0}(U_{\mathbf{i}})$$

with

$$d: \prod_{\mathbf{i}: i_0 < \dots < i_p} H^0(U_{\mathbf{i}}) \to \prod_{\mathbf{j}: j_0 < \dots < j_{p+1}} H^0(U_{\mathbf{j}})$$

defined by the same formula

$$(d\alpha)_{\mathbf{j}} = \sum_{k=0}^{p} (-1)^{k} \alpha_{j_{0} < \cdots < \widehat{j_{k}} < \cdots < j_{p+1}} |_{U_{\mathbf{j}}}.$$

• The combinatorial description of d is left to readers.

Čech cohomology Theorem

Theorem (Čech)

When all finite intersection of members in \mathcal{U} are acyclic (that is, only has zero cohomology), then Čech cohomology computes the cohomology.

The proof

- One can compute, for each q, d^{\rightarrow} is exact except the 0-term. Here we use the assumption that U is acyclic to make the "integral".
- The zeroth cohomology is homotopic to $S^{\bullet}(X)$ (recall how we prove the excision theorem) (if it is a sheaf, then just equal). This more or less equivalent to say, we can "glue" a section.

• So $H^{\bullet}(C) = H^{\bullet}(\operatorname{Tot}^{\bullet}(C)) = H^{\bullet}(X)$.

The proof (continued)

ullet On the other hand, if each U is acyclic and connected, then

0	0	0	
0	0	0	
Н ⁰ (Č)	$H^1(\check{C})$	Н ² (Č)	

• So $H^{\bullet}(C) = H^{\bullet}(\operatorname{Tot}^{\bullet}(C)) = H^{\bullet}(\check{C}).$

Remarks

- Čech cohomology is very important. If readers know sheaf theory, the Čech cohomology computes the cohomology both conceptually and efficiently.
- Firstly, if we denote $\check{H}^{\bullet}(\mathcal{U})$ the Čech cohomology with respect to \mathcal{U} , we can write

$$H^{\bullet}(X) = \underset{\mathcal{U} \text{ finer}}{\varinjlim} \check{H}^{\bullet}(\mathcal{U}),$$

for locally contractible space X. This is useful when showing two cohomology groups coincide.

• Secondly, if we have a nice decomposition into a contractible space (for example $\mathbb{C}P^n$), then the cohomology can be computed discretely.

Remind

• Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor between abelian categories. Assume \mathcal{A} has enough injective. Then the right derived functor R^iF is defined by

$$R^{i}F(M)=H^{i}(F(I^{\bullet})),$$

where $0 \to M \to I^{\bullet}$ is an injective resolution in A.

- If each I^{\bullet} is F-acyclic, that is, $R^{i}F(I)=0$ when i>0, it computes the same result (by the trick of dimension shift).
- We can define the left derived functor as well.
- ullet Examples in algebra like Hom and \otimes are well-discussed in any modern homological algebra. We should focus more on sheaves.

Grothendieck SS

• Consider now there are two functors with the assumptions

 \mathcal{A} and \mathcal{B} have enough injectives; F, G are both left exact; F sends injective objects to G-acyclic objects $A \xrightarrow{F} C$ s injective objects to G-acyclic objects jects.

$$\begin{array}{cccc}
A & \xrightarrow{GF} & C \\
F & \nearrow G & B
\end{array}$$

Theorem (Grothendieck)

There is a spectral sequence (of functors) E with

$$E_2^{pq} = R^p G \circ R^q F$$

converging to $R^{p+q}(G \circ F)$.

Proof

- The trick is using so-called **Hyper resolution**.
- Let $A \in \mathcal{A}$ be an object. Taking the resolution $0 \to A \to I^{\bullet}$ in \mathcal{A} .
- Then send I^{\bullet} to $F(I^{\bullet})$, we can find a double complex J in $\mathcal B$ to "resolve" it. That is,

$$F(I^{i}) \rightarrow J^{i \bullet}, \qquad R^{i}F(A) = H \left[F(I^{i}) \atop \downarrow \right] \rightarrow H \left[J^{\uparrow}_{\downarrow, \bullet} \atop \downarrow \right] := K,$$

$$\operatorname{im} \begin{bmatrix} F(I^{i+1}) \\ \uparrow \\ F(I^{i}) \end{bmatrix} \to \operatorname{im} \begin{bmatrix} J^{i+1,\bullet} \\ \uparrow \\ J^{i\bullet} \end{bmatrix}, \qquad \ker \begin{bmatrix} F(I^{i+1}) \\ \uparrow \\ F(I^{i}) \end{bmatrix} \to \ker \begin{bmatrix} J^{i+1,\bullet} \\ \uparrow \\ J^{i\bullet} \end{bmatrix},$$

are all injective resolutions. Actually, (J, d^{\uparrow}) is split. This is possible because of horseshoe lemma.

• Then send J to G(J), and do computation.

Proof (continued)

• On one hand, since $R^{\geq 1}G(F(I^{\bullet}))=0$ by assumption

So
$$H^{\bullet}(\operatorname{Tot}^{\bullet}(G(J))) = R^{\bullet}(G \circ F)$$
.

Proof (continued)

ullet On the other hand, since $R^{\geq 1}G(F(I^{ullet}))=0$ by assumption

As desired.

Remind

• Let Sh(X) be the abelian category of sheaves (of abelian group) over X. The functor of **taking global section**

$$\Gamma: Sh(X) \longrightarrow Sh(pt) = Ab, \qquad \mathcal{F} \longmapsto \mathcal{F}(X),$$

is left exact. We call and denote $R^i\Gamma(F) = H^i(X; \mathcal{F})$ the **cohomology group** of \mathcal{F} .

- Similarly, the compact global section Γ_c: Sh(X) → Sh(pt) is also left exact. We call RⁱΓ_c(F) = Hⁱ_c(X; F) the cohomology group of compact support.
- We will discuss this in length latter.

Remind (continued)

Theorem

Let \mathbb{Z}_X be the constant sheaf over a CW complex X, then

$$H^i(X; \mathbb{Z}_X) = H^i(X)$$
 $H^i_c(X; \mathbb{Z}_X) = H^i_c(X),$

the singular cohomology group (and with compact support).

• Essentially, $S^{\bullet}(-)$ is not a sheaf, but $S^{\bullet}_{\text{locally finite}}(-)$ is.

Leray Sequences

- Let $X \to Y$ be a topological map. The push forward f_* defined by $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$ sending the flasque sheaves to the flasque sheaves.
- This gives rise to

$$Sh(X)$$
 $\xrightarrow{\Gamma}$ $Sh(pt) = Ab$ $Sh(Y)$

So there is a spectral sequence

$$E_2^{pq} = H^p(Y; R^q f_* \mathcal{F}) \Longrightarrow H^{p+q}(X; \mathcal{F}).$$

Leray Sequences (continued)

ullet There is a description that $R^q f_* \mathcal{F}$ is the sheafication of

$$U\mapsto H^q(f^{-1}(U);\mathcal{F}|_{f^{-1}(U)}).$$

(Showing this satisfies the universal property of being the right derived functor of f_*).

• In particular, taking $\mathcal{F} = \mathbb{Z}_X$, and $X \to Y$ a fibre bundle with fibre F, $R^q f_* \mathcal{F}$ is a local constant sheaf, say the local system $\mathcal{H}^q(F)$, so the spectral sequence covers the Leray–Serre spectral sequence.

Remarks

- There is a lot of applications of Grothendieck spectral sequence in algebra, especially in homological algebra, which is easy to find. So I skip.
- We skip the discussion of the Cartan-Leray spectral sequences, which are very useful to compute the non-simply connected space.
- We skip the discussion of the Elienburg-Moore spectral sequneces, which are very useful to compute the fibre product.
- We skip the discussion of the Adams spectral sequences, which are very useful to compute the stable homotopy group.
- We will discuss the Atiyah-Hirzebruch spectral sequences later.

References

- Hartshorne, Algebraic Geometry. GTM 52.
 Even though it is an algebraic geometry book, it is also a good introduction of sheaves theory, see III.8 for what I claimed.
- Brown, Cohomology of groups. GTM 87.
 It has a good discussion of cohomology of finite groups and introduce the Cartan–Leray spectral sequences.
- Benson, cohomology and representation theory, II.
 It gives the sketch of construction of the Elienburg–Moore spectral sequences in a correct way.
- Fomenko, Fuchs, Homotopical Topology. GTM 273.
 Algebraic topology in term of spectral sequences.
- Hatcher, spectral sequences.
- Weibel, an introduction to homological algebra.
 It presents a lot of algebraic application of spectral sequences.

Next time

- The cohomology group of the Grassmannian.
- The topological definition of the Chern classes.
- The differential definition of the Chern classes.

