FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	
curso Mestrado Int. em Enga	Informática e Computação ata 22,07,2010 Ano 1º Semestre 2º
Nome Jaime E. Villate	Ano Semestre 2
Nome Jainie E. XIIIait	
Ponto 1	
1 No instante em que	o fio é cortado:
マイ ヤ	= tensão no fio da direita
40° P	= peso da esfera
P V	= tensão no fio da direita = peso da esfera
Nos instantes sequint	es, v + 0, e actuará também
a força de resistênci vector velocidade:	les, v ≠0, e actuará também a do ar, Fr, o posta ao
Fred AT	0 ≥ 40°
"FELO	.
. 45	
No instante inicial a tangente 21	aceleração tem a direcção
	Convém portante usas
40"	Convém, portanto, usar os eixos tangente (+)
B 40 A at	e normal (n) indicados na figura
7 40'3	na figura

$$\begin{cases} \Sigma F_t = ma & \text{Pcos40}^\circ = ma \\ \Sigma F_n = o & \text{T-Psin40}^\circ = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a = g\cos 40^\circ = 7.51 \frac{m}{52} \\ T = mg \sin 40^\circ = 3.78 \text{ N} \end{cases}$$

$$\Rightarrow \begin{cases} \Omega = \frac{dV}{2} = -X - X^2 \end{cases}$$

$$\begin{array}{ccc}
\textcircled{b} & F=0 & \Rightarrow & -X(1+X)=0 & \Rightarrow X=0, V, X=1 \\
ponto & 1=(0,0) & ponto & 2=(-1,0) \\
& (\times, V) & \\
\end{array}$$

Nos dois lados de X=-1, a força aponta para fora do ponto \Rightarrow (-1,0) é ponto instável (ponto de sela).

Nos dois lados de X=0, a força aponta para o ponto \Rightarrow (0,0) \in ponto estável(centro)

Também podia concluir-se o mesmo no gráfico U(x):

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

MIEIC

Data 22/07/2010

Ano 1º Semestre 2º

Disciplina FÍSICA 1 Nome Jaime E. Villate

Perguntas

3. D

6. D

9. D

12. E

15. D

4. D

7. C

10. C

13. E

16. A

5. E **8.** C

11. B

14. B

17. D