Class 12 Genome Informatics

Brittney Hayes

2024-02-19

Section 1. Proportion of G/G in a population

Downloaded a CSV file from Ensemble <

https://useast.ensembl.org/Homo_sapiens/Variation/Sample?db=core;r=17:39894595-39895595;v=rs8067378;vdb=variation;vf=959672880#373531 tablePanel

Here we read this CSV file

```
mxl <- read.csv("373531-SampleGenotypes-</pre>
Homo_Sapiens_Variation_Sample_rs8067378.csv")
head(mx1)
     Sample.. Male. Female. Unknown. Genotype.. forward. strand. Population.s.
##
Father
## 1
                       NA19648 (F)
                                                          A|A ALL, AMR, MXL
## 2
                       NA19649 (M)
                                                          G|G ALL, AMR, MXL
## 3
                       NA19651 (F)
                                                          A|A ALL, AMR, MXL
                                                          G|G ALL, AMR, MXL
                      NA19652 (M)
## 4
## 5
                                                          G|G ALL, AMR, MXL
                       NA19654 (F)
                                                          A|G ALL, AMR, MXL
## 6
                      NA19655 (M)
##
     Mother
## 1
## 2
## 3
## 4
## 5
## 6
table(mxl$Genotype..forward.strand.)
##
## A|A A|G G|A G|G
## 22 21 12
table(mxl$Genotype..forward.strand.)/nrow(mxl) * 100
```

```
##
## A|A A|G G|A G|G
## 34.3750 32.8125 18.7500 14.0625
```

Now let's look at a different population. I picked the GBR.

```
gbr <- read.csv("373522-SampleGenotypes-
Homo_Sapiens_Variation_Sample_rs8067378.csv")</pre>
```

Find proportion of G|G

```
round(table(gbr$Genotype..forward.strand.)/nrow(gbr) * 100,2)
##
## A|A A|G G|A G|G
## 25.27 18.68 26.37 29.67
```

This variant that is associated with childhood asthma is more frequent in the GBR population than the MXL population.

Let's now dig into this further.

Section 4. Population Scale Analysis

One sample is obviously not enough to know what is happening in a population. You are interested in assessing genetic differences on a population scale.

How many samples do we have?

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")</pre>
head(expr)
##
      sample geno
                       exp
## 1 HG00367 A/G 28.96038
## 2 NA20768 A/G 20.24449
## 3 HG00361 A/A 31.32628
## 4 HG00135 A/A 34.11169
## 5 NA18870 G/G 18.25141
## 6 NA11993 A/A 32.89721
nrow(expr)
## [1] 462
table(expr$geno)
## A/A A/G G/G
## 108 233 121
library(ggplot2)
```

Let's make a boxplot

ggplot(expr) + aes(geno, exp, fill = geno) + geom_boxplot(notch=TRUE)

