# Uncertainty-Aware Optimization for Network Provisioning and Routing

Yingjie Bi

School of Electrical and Computer Engineering
Cornell University

Joint work with Kevin Tang

Mar 21, 2019

#### Outline

#### Introduction

Network and Traffic Mode

Stochastic Network Optimization

#### Introduction

Two main goals of traffic engineering:

- ▶ Accommodate the demands from customers.
- Minimize the network cost.

Previous approaches to handle traffic fluctuations in traffic engineering:

- Oblivious routing.
- Dynamic routing.

## Our Approach

- Combines the ideas from both oblivious routing and dynamic routing.
- Utilizes the different flexibility of network reconfiguration and characteristics of traffic demand in different timescales.
- Applies to wide-area backbone network.

# Our Approach

#### Long-term timescale:

- Typically within a few months.
- Operators can freely reconfigure the network.
- Very limited information on the demand side.

#### Short-term timescale:

- Approximately from an hour to several minutes.
- Operators cannot change the network topology but can adjust the routing.
- The traffic demand is more predictable.

#### Transient timescale:

- Seconds or below.
- Operators cannot perform any change to the network.
- Demand information is most complete.

### Outline

Introduction

Network and Traffic Model

Stochastic Network Optimization

#### **Notation**

- Number of links L = 5. Number of demands N = 2. Number of available paths for each demand  $K^1 = K^2 = 2$ .
- ▶ The paths of demand i are represented by

$$R^1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad R^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Put  $R_{lk}^i = 1$  if path k of demand i passes through link l.



#### **Notation**

- ightharpoonup Link capacity  $c = (c_1, \ldots, c_5)^T$ .
- ► The kth entry  $\alpha_k^i$  of vector  $\alpha^i$  is the split ratio of demand i on path k.



#### Traffic Model

We adopt the following traffic model (Tune and Roughan, 2013): The traffic volume of demand i

$$D^{i}(t) = L^{i}(t)S^{i}(t) + \sqrt{\beta^{i}L^{i}(t)S^{i}(t)}W^{i}(t),$$

where

- $ightharpoonup L^i(t)$  is the long-term trend.
- $\triangleright$   $S^{i}(t)$  is the seasonal component.
- $\triangleright$   $W^i(t)$  is the random fluctuations.
- $\triangleright$   $\beta^i$  is a constant called the peakedness of the traffic.

#### Traffic Model

#### Further assumptions on the traffic model:

Approximate the seasonal component  $S^{i}(t)$  by Q scenarios, i.e.,

$$S^i(t) = S^i_{q(t)},$$

where q(t) is a periodic and piecewise constant function whose value is an integer between 1 and Q.

 $\blacktriangleright$   $W^i(t)$  is assumed to be a white Gaussian process with zero mean and unit variance.

# Summary

#### Characteristics of the three timescales in network optimization:

| Timescale  | Typical     | Known                               | Decision             |
|------------|-------------|-------------------------------------|----------------------|
|            | Granularity | Information                         | Variables            |
| Long-term  | A month     | $L^{i}(t)$                          | $c_l, \alpha_k^i$    |
| Short-term | An hour     | $L^{i}(t), S^{i}(t)$                | $lpha_{m{k}}^{m{i}}$ |
| Transient  | A second    | $L^{i}(t), S^{i}(t),$<br>$W^{i}(t)$ | None                 |

#### Outline

Introduction

Network and Traffic Mode

Stochastic Network Optimization

# Short-Term Optimization

ightharpoonup The actual traffic  $Y_l$  on link l

$$Y_{l} = \sum_{i=1}^{N} \sum_{k=1}^{K^{i}} R_{lk}^{i} \alpha_{k}^{i} D^{i}.$$

The goal is to minimize the probability of link capacity violations, i.e.,

min 
$$\Pr\left(\bigcup_{l=1}^{L} \{Y_l > c_l\}\right)$$
  
s. t.  $\sum_{k=1}^{K^i} \alpha_k^i = 1, \quad \forall i = 1, \dots, N,$   
 $\alpha_k^i \ge 0, \quad \forall i = 1, \dots, N, \ k = 1, \dots, K^i.$ 

# Long-Term Optimization

- Assume  $p_l$  is the cost of link l per unit capacity.
- The goal is to minimize the aggregate cost while the violation probability is not exceeding  $\epsilon$ , i.e.,

$$\begin{aligned} & \min \quad \sum_{l=1}^{L} p_{l} c_{l} \\ & \text{s.t.} \quad \text{Pr} \left( \bigcup_{l=1}^{L} \{ Y_{l,q} > c_{l} \} \right) \leq \epsilon, \quad \forall q = 1, \dots, Q, \\ & \sum_{k=1}^{K^{i}} \alpha_{k,q}^{i} = 1, \quad \forall i = 1, \dots, N, \ q = 1, \dots, Q, \\ & \alpha_{k,q}^{i} \geq 0, \quad \forall i = 1, \dots, N, \ k = 1, \dots, K^{i}, \\ & q = 1, \dots, Q, \end{aligned}$$

where  $Y_{l,q}$  is the actual traffic on link l at scenario q.

# Approximate Solutions

- Both the short-term and long-term optimization problems are difficult to solve.
- For the long-term problem, constraint the violation probability of each link separately by setting

$$\Pr(Y_{l,q} > c_l) \le \epsilon/L, \quad l = 1, \ldots, L.$$

instead of the original probability constraints.

 $ightharpoonup Y_{l,q}$  is subject to Gaussian distribution whose mean  $y_{l,q}$  and variance  $b_{l,q}$  can be obtained from the split ratio  $\alpha_{k,q}^i$  and the traffic model.

# Approximate Solutions

Let f(x) be the survival function of standard normal distribution, i.e.,

$$f(x) = \Pr(X > x),$$

where X is subject to the standard normal distribution.

Define

$$A=\frac{1}{f^{-1}(\epsilon/L)}.$$

The above constraint

$$\Pr(Y_{l,q} > c_l) \le \epsilon/L$$

is equivalent to

$$\frac{c_l - y_{l,q}}{\sqrt{b_{l,q}}} \ge \frac{1}{A}.$$

This is a second-order cone constraint which can be handled efficiently by convex optimization techniques.

#### Performance Guarantees

#### Let

- > sol be the optimal value for the approximate problem and
- opt be the actual optimal cost.

Then the approximation ratio

$$\operatorname{sol}/\operatorname{opt} \leq A'/A = O(\sqrt{\log L/\log(1/\epsilon)}),$$

where

$$A=\frac{1}{f^{-1}(\epsilon/L)}, \quad A'=\frac{1}{f^{-1}(\epsilon)}.$$

#### Performance Guarantees

The actual dependence of the approximation ratio sol / opt on the number of links L and the violation probability  $\epsilon$ :



# Thank You!