NOMBRE DÉRIVÉ - FONCTION DÉRIVÉE

1. NOMBRE DÉRIVÉ

DÉFINITION

Soit f une fonction définie sur un intervalle I et soient 2 réels x_0 et $h \neq 0$ tels que $x_0 \in I$ et $x_0 + h \in I$.

Le **taux de variation** (ou **taux d'accroissement**) de la fonction f entre x_0 et $x_0 + h$ est le nombre :

$$T = \frac{f(x_0 + h) - f(x_0)}{h}$$

DÉFINITION

Une fonction f est **dérivable** en x_0 si et seulement si le nombre $\frac{f(x_0 + h) - f(x_0)}{h}$ a pour limite un certain réel l lorsque h tend vers 0.

l est appelée **nombre dérivé** de f en x_0 , on le note $f'(x_0)$.

On écrit :
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
.

REMARQUES

- Le quotient $\frac{f(x_0 + h) f(x_0)}{h}$ est le taux d'accroissement de f entre x_0 et $x_0 + h$.
- « *le nombre* $\frac{f(x_0 + h) f(x_0)}{h}$ *a pour limite un certain réel l lorsque h tend vers 0* » signifie que $\frac{f(x_0 + h) f(x_0)}{h}$ se rapproche de *l* lorsque *h* se rapproche de 0.

Une définition plus rigoureuse de la notion de limite sera vue en Terminale.

• On peut également définir le nombre dérivé de la façon suivante :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(cela correspond au changement de variable $x = x_0 + h$)

EXEMPLE

Calculons le nombre dérivé de la fonction $f: x \mapsto x^2$ pour x = 1.

Ce nombre se note f'(1) et vaut :

$$f'(1) = \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h} = \lim_{h \to 0} \frac{2h + h^2}{h} = \lim_{h \to 0} 2 + h$$

Or quand *h* tend vers 0, 2 + h tend vers 2; donc f'(1) = 2.

REMARQUE:

Interprétation graphique du nombre dérivé :

Soit \mathcal{C}_f la courbe représentative de la fonction f.

Lorsque h tend vers 0, B "se rapproche" de A et la droite (AB) se rapproche de la tangente \mathcal{T} .

Le nombre dérivée $f'(x_0)$ est le coefficient directeur de la tangente à la courbe \mathscr{C}_f au point d'abscisse x_0 .

PROPRIÉTÉ

Soit f une fonction dérivable en x_0 de courbe représentative \mathcal{C}_f , l'équation de la tangente à \mathcal{C}_f au point d'abscisse x_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

DÉMONSTRATION

D'après la propriété précédente, la tangente à \mathcal{C}_f au point d'abscisse x_0 est une droite de coefficient directeur $f'(x_0)$. Son équation est donc de la forme :

$$y = f'(x_0) x + b$$

On sait que la tangente passe par le point A de coordonnées $(x_0; f(x_0))$ donc :

$$f(x_0) = f'(x_0) x_0 + b$$

$$b = -f'(x_0) x_0 + f(x_0)$$

L'équation de la tangente est donc :

$$y = f'(x_0) x - f'(x_0) x_0 + f(x_0)$$

Soit:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

2. FONCTION DÉRIVÉE

DÉFINITION

Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable** sur I si et seulement si pour tout $x \in I$, le nombre dérivé f'(x) existe.

La fonction qui à $x \in I$ associe le nombre dérivé de f en x s'appelle la **fonction dérivée** et se note f'

PROPRIÉTÉS

Dérivée des fonctions usuelles :

Fonction	Dérivée	Ensemble de déri- vabilité
$k \ (k \in \mathbb{R})$	0	R
x	1	R
$x^n (n \in \mathbb{N})$	nx^{n-1}	R
$\frac{1}{x^n} (n \in \mathbb{N})$	$-\frac{n}{x^{n+1}}$	$\mathbb{R}-\{0\}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[

PROPRIÉTÉS

Formules de base:

Si u et v sont 2 fonctions dérivables sur un intervalle I. Sur cet intervalle :

Fonction	Dérivée
u + v	u' + v'
$ku \ (k \in \mathbb{R})$	ku'
$\frac{1}{u} (avec \ u(x) \neq 0 \text{ sur } I)$	$-\frac{u'}{u^2}$
uv	u'v + uv'
$\frac{u}{v}$ (avec $v(x) \neq 0$ sur I)	$\frac{u'v - uv'}{v^2}$
\sqrt{u} (avec $u \geqslant 0$ sur I)	$\frac{u'}{2\sqrt{u}} \text{ lorsque } u > 0$

EXEMPLE

On cherche à calculer la dérivée de la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{x}{x^2 + 1}$$

On pose

$$u(x) = x \text{ et } v(x) = x^2 + 1$$

On a alors

$$u'(x) = 1$$

$$\nu'(x) = 2x$$

car la dérivée de la fonction $x \mapsto x^2$ est la fonction $x \mapsto 2x$ (formule nx^{n-1} avec n=2) et la dérivée de la fonction constante $x \mapsto 1$ est la fonction nulle.

La dérivée du quotient est donc :

$$f'(x) = \frac{u'(x) v(x) - u(x) v'(x)}{v(x)^2} = \frac{1 \times (x^2 + 1) - x \times 2x}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$$

REMARQUES

• Si le dénominateur d'une fraction est constant, il est très maladroit d'utiliser la formule

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Par exemple pour dériver $f(x) = \frac{x^2 + 1}{5}$ on écrira :

$$f(x) = \frac{1}{5} \times \left(x^2 + 1\right)$$

donc $f'(x) = \frac{1}{5} \times (2x)$ (formule (ku)' = ku')

$$f'(x) = \frac{2x}{5}$$

• De même, si le numérateur d'une fraction est constant on utilisera, de préférence, la formule :

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

Par exemple, si $f(x) = \frac{5}{x^2 + 1}$

$$f(x) = 5 \times \frac{1}{x^2 + 1}$$
 donc :

$$f'(x) = 5 \times \left(-\frac{2x}{\left(x^2 + 1\right)^2} \right) = -\frac{10x}{\left(x^2 + 1\right)^2} \text{ (formule } \left(\frac{1}{u}\right)' = -\frac{u'}{u^2} \text{ avec } u(x) = x^2 + 1 \text{ donc } u'(x) = 2x)$$

3. FONCTION DÉRIVÉE ET SENS DE VARIATIONS

THÉORÈME

Soit f une fonction définie sur un intervalle I.

- f est croissante sur I si et seulement si $f'(x) \ge 0$ pour tout $x \in I$
- f est décroissante sur I si et seulement si $f'(x) \le 0$ pour tout $x \in I$

REMARQUE

Si f'(x) > 0 (resp. f'(x) < 0) sur I, alors f est **strictement** croissante (resp. décroissante) sur I.

Mais la réciproque est fausse. Une fonction peut être strictement croissante sur I alors que sa dérivée s'annule sur I. C'est le cas par exemple de la fonction $x \mapsto x^3$ qui est strictement croissante sur $\mathbb R$ alors que sa dérivée $x \mapsto 3x^2$ s'annule pour x = 0

EXEMPLE

Reprenons la fonction de l'exemple précédent.

$$f(x) = \frac{x}{x^2 + 1}$$

$$f'(x) = \frac{1 - x^2}{(x^2 + 1)^2}$$

Le dénominateur de f'(x) est toujours strictement positif.

Le numérateur de f'(x) peut se factoriser : $1 - x^2 = (1 - x)(1 + x)$

Une facile étude de signe montre que f' est strictement négative sur $]-\infty;-1[$ et $]1;+\infty[$ et est strictement positive sur]-1;1[.

Par ailleurs,
$$f(-1) = -\frac{1}{2}$$
 et $f(1) = \frac{1}{2}$

On en déduit le tableau de variations de f (que l'on regroupe habituellement avec le tableau de signe de f') :

