

IFSP – SÃO JOÃO DA BOA VISTA CIÊNCIA DA COMPUTAÇÃO

Sistemas Operacionais

SEMANA 10

Prof.: Ederson Borges

Tópicos

- Comunicação entre Processos
 - Objetivos
 - Escopo da comunicação
 - Aspectos da comunicação
 - Mecanismo de comunicação
 - Atividades

Comunicação entre Processos

Objetivos

- Implementações de aplicativos normalmente demandam diversas tarefas sendo executadas de forma concorrente
- Uma tarefa interdepende da outra
- Existe cooperação entre as tarefas para atingir o objetivo da aplicação

- EXEMPLOS:

- Navegador Web
- Editor de Texto

- Objetivos
 - Além disso, existem outros objetivos
 - Atender usuários simultâneos
 - Multiprocessadores
 - Modularidade
 - Aplicação interativa

- Objetivos
 - Atender usuários simultâneos
 - Servidores (banco de dados / e-mail) sequenciais atendem um usuário por vez
 - Gera atrasos para outros usuários
 - São implementados com vários processo (threads)
 - Atendimento simultâneo de usuários

Comunicação entre Processos

- Multiprocessadores
 - Atualmente os computadores, mesmo pessoais, possuem mais de um núcleo (ou possuem formas de simular)
 - Programas puramente sequenciais utilizam um único núcleo
 - Em diversos programas Tarefas podem ser executadas em paralelo
 - Tarefas podem ser "escalonadas" em diferentes núcleos

Comunicação entre Processos

- Modularidade
 - Aplicações muito complexas podem exigira melhores organizações internas
 - Criar diferentes módulos podem facilitar essa organização
 - Cada módulo assumiria uma responsabilidade específica

Comunicação entre Processos

- Aplicações interativas
 - A maioria dos aplicativos para desktop envolvem interação com o usuário
 - Só que durante a execução de uma ação, o aplicativo não deve ficar "bloqueado"
 - Para isso diferentes tarefas cuidam de atividades diferentes
 - Um navegador Web, ao mesmo tempo que pesquisa, abre nova aba, entra em outro site....

Comunicação entre Processos

- Ao finalizar uma ação, uma tarefa, muitas vezes, precisa se "comunicar" com o solicitante da tarefa
- Desta forma irá compartilhar as informações adquiridas
- Existe a necessidade de uma coordenação entre as tarefas para que os resultados sejam consistentes e sejam transmitidos entre as tarefas

- Escopo da comunicação
 - Tarefas que cooperam trocam informações
 - Navegador Web
 - Usuário solicita para acessar um site
 - » É criada uma tarefa para baixar os dados do site e apresentar na tela
 - Usuário clica no botão de parar a navegação
 - » A tarefa que controla o evento do botão precisar enviar a solicitação de parada para a tarefa que baixa os dados

- Escopo da comunicação
 - Tarefas que cooperam trocam informações
 - Ctrl+c e Ctrl+v
 - Um usuário copia um texto da Web
 - » Existe uma tarefa que armazena os dados copiados
 - O usuário cola o texto em um editor de texto
 - » Existe uma tarefa que recebe os dados colados

- Escopo da comunicação
 - Comunicação entre tarefas
 - Simples ou Complexa?
 - Depende....

- Escopo da comunicação
 - Já vimos que tarefas em um mesmo processo compartilham áreas de memória
 - Neste caso basta utilizar uma área de memória conhecida entre as tarefas
 - Mas e quando as tarefas estão em processos distintos?
 - Núcleo do sistema operacional entra em ação
 - Chamadas de sistema
 - Muitas vezes a comunicação é em REDE
 - » De um computador para outro

Comunicação entre Processos

Escopo da comunicação

Figura 8.1: Comunicação intraprocesso $(t_i \to t_j)$, interprocessos $(t_j \to t_k)$ e intersistemas $(t_k \to t_l)$.

- Aspectos da comunicação
 - Existem diversas maneira de implementação a comunicação
 - Algumas considerações
 - Formato dos dados
 - Sincronismo de comunicação
 - Buffers
 - Número de emissores/transmissores envolvidos

- Aspectos da comunicação
 - Vamos ver sobre comunicação
 - Comunicação direta ou indireta
 - Sincronismo
 - Formato de envio
 - Capacidade dos canais
 - Confiabilidade dos canais
 - Número de participantes

- Aspectos da comunicação
 - Comunicação direta ou indireta
 - Comunicação direta
 - Um emissor envia os dados para um receptor conhecido
 - Comunicação indireta
 - Emissor e receptor n\u00e3o precisam se conhecer
 - Não existe interação direta entre eles
 - Existirá um canal de comunicação criado pelo SO

- Aspectos da comunicação
 - Comunicação direta ou indireta

Figura 8.2: Comunicação direta (esquerda) e indireta (direita).

- Aspectos da comunicação
 - Sincronismo
 - Sobre o canal de comunicação
 - Síncrona
 - Assíncrona
 - Semissíncrona

- Aspectos da comunicação
 - Síncrona
 - Bloqueante
 - Operações de envio e recepção bloqueiam (suspendem) as tarefas envolvidas
 - Somente após a conclusão da comunicação que as tarefas saem deste estado

- Aspectos da comunicação
 - Síncrona

Figura 8.3: Comunicação síncrona.

- Aspectos da comunicação
 - Assíncrona
 - Não bloqueante
 - Caso a comunicação não seja possível em que a operação (envio ou recebimento) é invocada o sistema retorna com um erro
 - Existem casos de envio e recebimento assíncrono
 - Necessita criar um canal (buffer) para armazenar dados da comunicação

- Aspectos da comunicação
 - Assíncrona

Figura 8.4: Comunicação assíncrona.

- Aspectos da comunicação
 - Semissíncrona
 - Semibloqueante
 - Funciona como síncrona (bloqueante) por prazo predefinido
 - Ao final do prazo caso a comunicação não tenha ocorrido
 - ERRO
 - Neste caso existe um parâmetro para enviar e receber dados (prazo)
 - Enviar(dados, destino, prazo)
 - Receber(dados, origem, prazo)

- Aspectos da comunicação
 - Semissíncrona

Figura 8.5: Comunicação semissíncrona.

- Aspectos da comunicação
 - Formato de Envio
 - Sequência de Mensagens
 - Mensagens independentes
 - Com conteúdo próprio
 - Fluxo sequencial
 - Contínuo
 - Sequência de um mesmo dado
 - » Como um arquivo de acesso sequencial

- Aspectos da comunicação
 - Formato de Envio
 - Sequência de Mensagens
 - Cada mensagem é um pacote
 - Pacotes s\u00e3o recebidos "inteiros" pelo receptor

- Aspectos da comunicação
 - Formato de Envio
 - Sequência de Mensagens

Figura 8.6: Comunicação baseada em mensagens.

- Aspectos da comunicação
 - Formato de Envio
 - Fluxo contínuo
 - Emissor escreve em um canal
 - Receptor lê os dados na sequencia que foram enviados
 - Podem ser lidos byte a byte ou em grandes blocos
 - » Critério do receptor

- Aspectos da comunicação
 - Formato de Envio
 - Fluxo contínuo

Figura 8.7: Comunicação baseada em fluxo de dados.

- Aspectos da comunicação
 - Capacidade dos canais
 - O sincronismo pode ser afetado pela presença de buffer
 - A capacidade do *buffer* é classificada como:
 - Nula
 - Infinita
 - Finita

- Aspectos da comunicação
 - Capacidade dos canais
 - Nula
 - Não existe armazenamento de dados
 - Tem que ser feita transferência direta dos dados

- Aspectos da comunicação
 - Capacidade dos canais
 - Infinita
 - Emissor pode enviar os dados
 - » Armazenados em buffer do canal enquanto receptor não consumir
 - » Obviamente existe um limite, mas é uma forma simplificada de dizer que existe espaço suficiente para diversas comunicações

- Aspectos da comunicação
 - Capacidade dos canais
 - Finita
 - Existe uma capacidade imposta para envio de dados sem que ocorra o consumo
 - Ao tentar enviar novos dados em um canal que já ultrapassou seu limite, o emissor ficará bloqueado
 - » Deverá ser consumido o conteúdo do canal, ou então retornará indicativo de erro

Comunicação entre Processos

- Aspectos da comunicação
 - Capacidade dos canais
 - Finita

Figura 8.8: Comunicação bloqueante usando um canal com capacidade 2.

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Canal confiável
 - Transporta todos os dados na ordem
 - Entrega os dados nessa ordem
 - Sem falhas
 - Canal não-confiável
 - Falhas...

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Possíveis falhas
 - Perda de dados
 - Perda de integridade
 - Perda da ordem

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Perda de dados
 - Os dados não chegam ao receptor
 - Perda de mensagens ou sequências de bytes

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Perda de integridade
 - Ocorrem modificações nos dados enviados
 - Chegam no receptor de modo alterado

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Perda da ordem
 - Os dados enviados chegam no receptor
 - Canal não garante que a ordem seja a correta
 - Necessitaria implementar um canal ordenado (FIFO)

- Aspectos da comunicação
 - Confiabilidade dos canais
 - Canais em um mesmo processo (diferentes threads) são normalmente confiáveis
 - Mesma área de memória
 - Canais de comunicação entre computadores são não-confiáveis
 - Redes de computadores
 - » UDP (menos confiável) ou TCP (mais confiável)

- Aspectos da comunicação
 - Confiabilidade dos canais

Figura 8.9: Comunicação com canais não confiáveis.

- Aspectos da comunicação
 - Número de participantes
 - Até agora falamos de 1 receptor e 1 emissor
 - Existem situações em que existem vários emissores/receptores
 - Exemplo:
 - » Chats

- Aspectos da comunicação
 - Número de participantes
 - 1:1
 - Um emissor e um receptor
 - M:N
 - Existem duas situações
 - » Mensagens recebidas por apenas um receptor
 - » Mensagens recebidas por vários receptores

- Aspectos da comunicação
 - Número de participantes
 - M:N

Figura 8.10: Comunicação M:N através de um mailbox.

- Aspectos da comunicação
 - Número de participantes
 - M:N

Figura 8.11: Comunicação M:N através de um barramento de mensagens.

Comunicação entre Processos

Atividades

 Explique como processos que comunicam por troca de mensagens se comportam em relação à capacidade do canal de comunicação, considerando as semânticas de chamada síncrona e assíncrona.

Comunicação entre Processos

Atividades

- Sobre as afirmações a seguir, relativas mecanismos de comunicação, indique quais são incorretas, justificando sua resposta:
 - 1. Canais com capacidade finita somente são usados na definição de algoritmos, não sendo implementáveis na prática.
 - 2. Na comunicação direta, o emissor envia os dados diretamente a um canal de comunicação.
 - 3. Na comunicação por fluxo, a ordem dos dados enviados pelo emissor é mantida do lado receptor.
 - 4. Na comunicação por troca de mensagens, o núcleo transfere pacotes de dados do processo emissor para o processo receptor.

- Mecanismos de comunicação
 - Como são feitas as implementações para a comunicação entre as tarefas?
 - Existem diversas formas implementadas pelos SOs
 - Cada SO pode implementar sua própria forma de comunicação

Comunicação entre Processos

Pipes

- Canal de comunicação unidirecional
- A resposta de um processo é utilizada como entrada para outro processo
- Mecanismo muito utilizado por sistemas UNIX Like

- Pipes
 - Exemplo

- Pipes
- who | grep marcos | sort
 - São dois pipes |
 - who gera uma lista de usuário conectados
 - grep marcos filtra as linhas que possuem a palavra "marcos"
 - sort ordena as linhas recebidas
- RESULTADO: uma lista ordenada das linhas que contenham a palavra "marcos"

Comunicação entre Processos

Pipes

Figura 9.1: Comunicação através de pipes.

- Pipes
 - A comunicação é feita entre dois processos (1:1)
 - De forma UNIDIRECIONAL
 - Primeiro comando
 - Segundo comando
 - Terceiro comando
 - Síncrono
 - Com capacidade finita
 - Em Linux são armazenados até 64KBytes
 - Existem chamadas de sistema pelo pipe

Comunicação entre Processos

Pipes

- Pipes só existe durante sua execução
 - Não são mantidos na memória
- Pipes nomeados
 - Permanecem desde sua criação
 - Devem ser destruídos explicitamente
 - Tem um nome, é encontrado pelos processos por este nome
 - Linux permite a criação de pipes nomeados em linha de comando

Comunicação entre Processos

Pipes

```
# cria um pipe nomeado, cujo nome é/tmp/pipe
   $ mkfifo /tmp/pipe
3
   # mostra o nome do pipe no diretório
   $ ls -1 /tmp/pipe
   prw-rw-r-- 1 maziero maziero 0 sept. 6 18:14 pipe
   # envia dados (saída do comando date) para o pipe nomeado
   $ date > /tmp/pipe
10
   # EM OUTRO TERMINAL, recebe dados do pipe nomeado
11
   $ cat < /tmp/pipe</pre>
   Thu Sep 6 2018, 18:01:50 (UTC+0200)
14
   # remove o pipe nomeado
   $ rm /tmp/pipe
```


- Filas de mensagens
 - Conceito do mailbox
 - Envio e recepção ordenada de mensagens tipadas entre processos
 - UNIX System V
 - Ainda é suportada por diversos sistemas
 - Windows
 - MailSlots

- Filas de mensagens
 - Comunicação entre vários processos
 - N:M
 - N:1
 - Confiáveis
 - Capacidade finita
 - Podem ser síncronas ou assíncronas

- Memória compartilhada
 - Chamadas de sistema envolve a troca de contexto
 - Pesado para o Sistema Operacional
 - Sistemas Operacionais Modernos utilizam mecanismos para o compartilhamento de áreas de memória entre processos
 - Shared memory áreas
 - Gerenciadas pelo núcleo
 - Mas o acesso é direto do processo para esta área
 - Núcleo apenas gerencia o envio dos dados
 - A leitura é feita pelo processo

Comunicação entre Processos

Memória compartilhada

Figura 9.2: Criação e uso de uma área de memória compartilhada.

- Memória compartilhada
 - Deve-se observar que não existe nenhuma forma de coordenação ou sincronização implícita no acesso à área de memória compartilhada. Assim, dois processos podem escrever sobre os mesmos dados simultaneamente, levando a possíveis inconsistências