电磁学实验报告

姓名: 蒋薇 学院及专业: 计算机学院(工科试验班) 学号: 2110957 组别: C 组

座号: 10 实验日期: 2022.05.17 星期二 早上

实验题目: 直流双臂电桥

一: 实验原理

- **1**: 支流双臂电桥适用范围: 低阻(**10**^{^-5}~ **10** Ω)
- 2: 四端法

将分流电阻连接如图,微安表内阻一般为 10^2~10^3 Ω 等级,接线电阻一般为 10^-3~10^-2 Ω 数量级,导线在连接处的接触电阻一般为 10^-6~10^-3 Ω 数量级,在电阻体上 Y、Y'两点焊出两个接头再与微安表相连接,在焊接时测量好 Y、Y'间的阻值正好等于所需的分流电阻的阻值。易看出,A、B、P、P'四点的接触电阻及 AY、BY'两段接线电阻都已归给微安表支路而被忽略,这样就保证了分流的精确。因此低电阻都做成四个接头,称作"四端结构"。使用时,外侧两个

接头 J、J'串入工作电路并流过很大电流,故称作"电流接头";中间与 Y、Y'相连的两个接头 P、P'称作"电压接头"。Y、Y'间的阻值可做成精确而稳定的已知阻值

3: 推到测量公式

低阻均做成四端结构,那么测量低阻也就归结为如何测出低阻上 Y、Y'间的阻值。测量电路如图所示,其中 RO 为标准低阻,Rx 为待测低阻。四个比例臂电阻 R1、R1'、R2、R2'一般都有意做成几十欧姆以上的阻值,因此它们所在桥臂中接线电阻和接触电阻的影响便可忽略。两个低阻相邻电压接头间的电阻设为 r,常称为"跨桥电阻"。当电流计 G 指零时,电桥达到平衡,于是由基尔霍夫定律可写出下面三个回路方程:

$$I_1 R_1 = I_0 R_0 + I_1' R_1'$$

$$I_1 R_2 = I_0 R_x + I_1' R_2'$$

$$(I_0 - I_1')r = I_1' (R_1' + R_2')$$

式中 I1、I2、I3 分别为电桥平衡时通过电阻 R1、R0、R1'的电流。整理有

$$R_1 R_x = R_2 R_0 + (R_2 R_1' - R_1 R_2') \frac{r}{R_1' + R_2' + r}$$

如果电桥的平衡是在保证 R2R1'-R1R2'=0,即 R1/R2=R2/R1 的条件下调得的,

那么 Rx=(R2/R1)*R0

已知 RO 和比值 R2/R1 就可算出 Rx。由此知双臂电桥的测量平衡条件为

$$\frac{R_2}{R_1} = \frac{R_2}{R_1} = \frac{R_x}{R_0}$$

4: 实验电路图

5: 双臂电桥灵敏度

双臂电桥平衡后,将比例臂电阻 R2、R2'同步地偏调 \triangle R2= \triangle R2',若电流计示数改变 \triangle I,则灵敏度为 S=。由分析得出,提高通入双桥的电流 I、选用电流常量 C 和内阻 Rg 均小的电流计、减小(R1+R2)及 R1'、R2'阻值以及尽量使 R0 和 Rx 阻值接近,可以使(R1/R2+Rx/R0)最小,都能提高双臂电桥的灵敏度。

- 二:数据处理
- 1: 铜棍电阻率的测量
 - (1) 不确定度 Ub = 0.5 / 3 = 0.17

铜棍长度(两个电压接头之间): I=(459.00 ± 0.17)mm

(2)铜棍直径测量

1	测量次	数	1	2	3	4	5	平均值
-	直	径	5.003	4.999	5.002	5.004	5.002	5.002
	(mm)							

祥本标准编差
$$S_{Mi} = \sqrt{\frac{5}{121}} \frac{1d_1 d_1^2}{4} = \sqrt{(0.001)^2 + (0.002)^2 + 0^2 + (0.002)^2 + 0^2} = 0.0018$$
 mm
$$\frac{1}{121} \frac{1}{121} \frac$$

d (Cu) = (5.0020 \pm 0.0011)mm

(3)调节电桥平衡

电桥状态	R2(= R2')	Rx	\triangle R2(= \triangle R2')	ΔΙ	S
数据记录	409.0 Ω	4.09* 10-4	10 Ω	1.9nA	77.71

Rx的总相对不确定度为

$$\rho x = \sqrt{(1+k)2(\rho 22 + \rho 12)} + k2(\rho 2'2 + \rho 1'2) + \rho 02 + (0.1/5)2)$$

$$= \sqrt{((1+0.1)^2(0.1\%^2 + 0.1\%^2) + 0.1^2(0.1\%^2 + 0.1\%^2) + 0.1\%^2 + (0.1/77.71)^2)}$$

= 0.00226

$$R_{x} = \frac{R_{2}}{R_{1}} \times R_{0} = \frac{409.0}{1000} \times |0^{-3}| = 4.09 \times |0^{-4}\Omega$$

$$S = \frac{\Delta I}{\Delta R_{2}/R_{2}} = \frac{1.9 \times 409}{10} = 77.71 \text{ nA}$$

$$P = \frac{7.85}{4} \times \frac{10^{-8}}{4} \times \frac{10^{-4}}{4} \times \frac{10^{-4}}{4}$$

$$\Delta$$
 Rx = ρ x *R 测 = 0.00226 * 4.09 * 10⁻⁴ = 9.232 * 10 -7 Ω 则电阻值 Rx = (4.09 * 10 ⁻⁴ \pm 9.232 * 10 ⁻⁷) Ω

$$R = \frac{\rho L}{S}, \ \rho = \frac{RS}{L}, \ S = \frac{\pi d^2}{4}, \ \rho = \frac{\pi}{4} \frac{Rd^2}{L}$$
取对数: $\ln \rho = \ln \left(\frac{\pi}{4} \frac{Rd^2}{L} \right) = \ln \frac{\pi}{4} + \ln R + 2 \ln d - \ln L$

$$\frac{d\rho}{\rho} = \frac{dR}{R} + 2 \frac{dd}{d} - \frac{dL}{L}$$

$$\left(\frac{u_\rho}{\rho} \right)^2 = \left(\frac{u_R}{R} \right)^2 + \left(2 \frac{u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2 \leftrightarrow$$

$$u_\rho = \rho \sqrt{\left(\frac{u_R}{R} \right)^2 + \left(2 \frac{u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2} \leftrightarrow$$

电阻率=(1.751 ± 0.0041)*10⁻⁸ Ω . m

2: 铁棍电阻率的测量

不确定度 Ub = 0.5 / 3 = 0.17

(1)铁棍长度(两个电压接头之间): I=(398.0 ±0.17)mm

(2)铁棍直径测量

测量次数	1	2	3	4	5	平均值
直 径	5.008	5.013	5.012	5.010	5.007	5.010
(mm)						

d (Fe) =
$$(5.0100 \pm 0.0038)$$
 mm

(3)调节电桥平衡

电桥状态	R2=R2'/Ω	Rx/Ω	Δ R2= Δ R2'	ΔI (nA)	S
			(Ω)		
数据记录	15250.0 Ω	1.5250*10-2	1000 Ω	10	152.50

Rx 的总相对不确定度为 ρ x = $\sqrt{(1+k)2(\rho 22 + \rho 12)} + k2(p2' 2+ \rho 1'2) + \rho 02 + (0.1/ S)2)$ = $\sqrt{((1+0.1)^2(0.1\%^2 + 0.1\%^2)} + 0.1^2(0.1\%^2 + 0.1\%^2) + 0.1\%^2 + (0.1/152.50)^2)$ = $1.94 * 10^{-3} \Omega$

则电阻值 Rx = (1.5250 * 10^{-2} ± 2.96 * 10^{-5}) Ω

$$\begin{split} \mathbb{R} &= \frac{\rho L}{S}, \;\; \rho = \frac{RS}{L}, \;\; S = \frac{\pi d^2}{4}, \;\; \rho = \frac{\pi}{4} \frac{R d^2}{L} \end{split}$$
 取对数: $\ln \rho = \ln \left(\frac{\pi}{4} \frac{R d^2}{L} \right) = \ln \frac{\pi}{4} + \ln R + 2 \ln d - \ln L \longleftrightarrow$ 取微分:
$$\frac{d\rho}{\rho} = \frac{dR}{R} + 2 \frac{dd}{d} - \frac{dL}{L} \longleftrightarrow$$

$$\left(\frac{u_\rho}{\rho} \right)^2 = \left(\frac{u_R}{R} \right)^2 + \left(2 \frac{u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2 \longleftrightarrow$$

$$u_\rho = \rho \sqrt{\left(\frac{u_R}{R} \right)^2 + \left(2 \frac{u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2} \longleftrightarrow$$

$$R_{5} = P_{5} R_{301} = 1.94 \times |0^{\frac{1}{5}} \times 1.5250 \times |0^{-2}] = 2.96 \times |0^{-5} \Omega$$

$$R_{5} = (R_{301}) \pm \Delta R_{5}) \Omega = (1.5250 \times |0^{-2}] \pm 2.96 \times |0^{-5}| \Omega$$

$$P = \frac{\pi}{4} \times \frac{1.5250 \times |0^{-2}] \times (5.000 \times |0^{-5}|^{\frac{1}{5}})}{0.398} = 6.7.52 \times |0^{-7} \Omega - m$$

$$P = \frac{\pi}{4} \times \frac{1.5250 \times |0^{-7}] \times (5.000 \times |0^{-5}|^{\frac{1}{5}})}{0.398} + \left[2\left(\frac{0.0038}{5.0|00}\right)\right]^{\frac{1}{4}} + \frac{(0.1)^{\frac{1}{5}}}{(398)^{\frac{1}{5}}} = 0.0188 \times |0^{-7}|$$

$$P = (7.52 \pm 0.0188) \times |0^{-7}| \Omega \cdot m$$

电阻率=(7.5200± 0.0038)*10⁻⁷Ω.m

3: 铝棍电阻率的测量

不确定度 Ub = 0.5 / 3 = 0.17

(1)铝棍长度(两个电压接头之间): I=(450.0 ±0.17)mm

(2)铝棍直径测量

测量次数	1	2	3	4	5	平均值
直 径	4.999	5.004	5.006	5.005	5.001	5.0030
(mm)						

$$d(AI) = (5.0030 \pm 0.0015) \text{ mm}$$

(3)调节电桥平衡

电桥状态	R2(= R2')	Rx	\triangle R2(= \triangle R2')	ΔΙ	S
数据记录	695.0 Ω	6.95 *10 -4	7	1.1	107.8

Rx 的总相对不确定度为

$$\rho \quad x = \sqrt{(1 + k)2(\rho 22 + \rho 12)} + k2(\rho x)$$

p2' 2+
$$\rho$$
 1'2) + ρ 02 + (0.1/S)2)

=
$$\sqrt{((1+0.1)^2(0.1\%^2+0.1\%^2)+0.1^2(0.1\%^2+0.1\%^2)+0.1\%^2+(0.1/107.8)^2)}$$

= 3.48 * 10⁻³ Ω

$$R_{x} = \frac{R_{x}}{R_{x}} R_{0} = \frac{6.95 \times 10^{3}}{10^{3}} \times 10^{-3} = 6.95 \times 10^{-4} \Omega$$

$$\Delta R_{x} = P_{x} R_{0} = \frac{6.95 \times 10^{-4}}{10^{3}} \times \frac{3.48 \times 10^{-3}}{10^{3}} = 2.51 \times 10^{-6} \Omega$$

$$R_{x} = 16.95 \times 10^{-4} + \frac{2.51 \times 10^{-6}}{10^{3}} \Omega$$

$$R_{x} = \frac{3.14}{4} \times \frac{6.95 \times 10^{-4} \times (5.0030 \times 10^{-3})^{2}}{0.45} = \frac{3.03 \times 10^{-8} \Omega \cdot m}{0.45}$$

$$Up = \frac{3.03 \times 10^{-8}}{1.1 \times 10^{-10}} \times \frac{(2.51 \times 10^{-6})^{2}}{(6.95 \times 10^{-4})^{2}} + \frac{0.17}{0.450}^{2} + (2 \times \frac{0.0015}{5.0030})^{2}$$

$$= \frac{1.1 \times 10^{-10}}{1.1 \times 10^{-10}} \times \frac{1.1 \times$$

则电阻值 Rx = (6.95 * 10 -4 ±2.51 * 10-6) Ω

电阻率 ρ = $(3.03 \pm 0.01)*10^{-8} \Omega.m$

1:样品阻值测量

样品	平衡时(R1 = R2)(Ω)	改变 Δ R2= Δ R2′(Ω)	电流变化: △I(nA)
Cu	409.0	10	1.9
Fe	15250.0	1000	10
Al	695.0	7	1.1

2:样品尺寸测量

样品	长度 L (cm)
Cu	40.000 + 0.017
Fe	39.800 +- 0.017
Al	45.000+- 0.017

直径	d1(mm)	d2(mm)	d3(mm)	d4(mm)	d5(mm)	d(mm)
样品						
Cu	5.003	4.999	5.002	5.004	5.002	5.002
Fe	5.008	5.013	5.012	5.010	5.007	5.010
Al	4.999	5.004	5.006	5.005	5.001	5.003

3:灵敏度、电阻及电阻率的计算

结果	灵敏	电阻	电阻率
样品	度	(Ω)	(Ω.m)
	(nA)		
Cu	77.71	4.09 * 10 ⁻⁴ ± 9.232 * 10 ⁻⁷	(1.751 ± 0.0041) * 10 ⁻⁸
Fe	152.50	1.5250 * 10 ⁻² ±2.96 * 10 ⁻⁵	(7.5200± 0.0038)*10 ⁻⁷
Al	107.8	6.95 * 10 -4 ±2.51 * 10-6	3.03 ± 0.01) * 10 ⁻⁸