A Brief History:

A Brief History: MapReduce

MapReduce use cases showed two major limitations:

- I. difficultly of programming directly in MR
- 2. performance bottlenecks, or batch not fitting the use cases

In short, MR doesn't compose well for large applications

Therefore, people built specialized systems as workarounds...

A Brief History: MapReduce

The State of Spark, and Where We're Going Next Matei Zaharia
Spark Summit (2013)

youtu.be/nU6vO2EJAb4

Unlike the various specialized systems, Spark's goal was to generalize MapReduce to support new apps within same engine

Two reasonably small additions are enough to express the previous models:

- fast data sharing
- general DAGs

This allows for an approach which is more efficient for the engine, and much simpler for the end users

The State of Spark, and Where We're Going Next Matei Zaharia
Spark Summit (2013)
youtu.be/nU6vO2EJAb4

used as libs, instead of specialized systems

Some key points about Spark:

- handles batch, interactive, and real-time within a single framework
- native integration with Java, Python, Scala
- programming at a higher level of abstraction
- more general: map/reduce is just one set of supported constructs

The State of Spark, and Where We're Going Next Matei Zaharia
Spark Summit (2013)
youtu.be/nU6vO2EJAb4

Spark Essentials: SparkContext

First thing that a Spark program does is create a SparkContext object, which tells Spark how to access a cluster

In the shell for either Scala or Python, this is the sc variable, which is created automatically

Other programs must use a constructor to instantiate a new SparkContext

Then in turn SparkContext gets used to create other variables

Spark Essentials: Master

The master parameter for a SparkContext determines which cluster to use

master	description
local	run Spark locally with one worker thread (no parallelism)
local[K]	run Spark locally with K worker threads (ideally set to # cores)
spark://HOST:PORT	connect to a Spark standalone cluster; PORT depends on config (7077 by default)
mesos://HOST:PORT	connect to a Mesos cluster; PORT depends on config (5050 by default)

Spark Essentials: Master

spark.apache.org/docs/latest/clusteroverview.html

Spark Essentials: Master

- I. connects to a *cluster manager* which allocate resources across applications
- 2. acquires executors on cluster nodes worker processes to run computations and store data
- 3. sends app code to the executors

Resilient Distributed Datasets (RDD) are the primary abstraction in Spark – a fault-tolerant collection of elements that can be operated on in parallel

There are currently two types:

- parallelized collections take an existing Scala collection and run functions on it in parallel
- Hadoop datasets run functions on each record of a file in Hadoop distributed file system or any other storage system supported by Hadoop

The State of Spark, and Where We're Going Next Matei Zaharia
Spark Summit (2013)
youtu.be/nU6vO2EJAb4

- two types of operations on RDDs: transformations and actions
- transformations are lazy (not computed immediately)
- the transformed RDD gets recomputed when an action is run on it (default)
- however, an RDD can be persisted into storage in memory or disk

Scala:

```
scala> val data = Array(1, 2, 3, 4, 5)
data: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val distData = sc.parallelize(data)
distData: spark.RDD[Int] = spark.ParallelCollection@10d13e3e
```

Python:

```
>>> data = [1, 2, 3, 4, 5]
>>> data
[1, 2, 3, 4, 5]
>>> distData = sc.parallelize(data)
>>> distData
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:229
```

Spark can create RDDs from any file stored in HDFS or other storage systems supported by Hadoop, e.g., local file system, Amazon S3, Hypertable, HBase, etc.

Spark supports text files, SequenceFiles, and any other Hadoop InputFormat, and can also take a directory or a glob (e.g. /data/201404*)

Scala:

```
scala> val distFile = sc.textFile("README.md")
distFile: spark.RDD[String] = spark.HadoopRDD@1d4cee08
```

Python:

```
>>> distFile = sc.textFile("README.md")
14/04/19 23:42:40 INFO storage.MemoryStore: ensureFreeSpace(36827) called
with curMem=0, maxMem=318111744
14/04/19 23:42:40 INFO storage.MemoryStore: Block broadcast_0 stored as
values to memory (estimated size 36.0 KB, free 303.3 MB)
>>> distFile
MappedRDD[2] at textFile at NativeMethodAccessorImpl.java:-2
```

Spark Essentials: Transformations

Transformations create a new dataset from an existing one

All transformations in Spark are *lazy*: they do not compute their results right away – instead they remember the transformations applied to some base dataset

- optimize the required calculations
- recover from lost data partitions

Spark Deconstructed: Log Mining Example

```
// load error messages from a log into memory
// then interactively search for various patterns
// https://gist.github.com/ceteri/8ae5b9509a08c08a1132
// base RDD
val lines = sc.textFile("hdfs://...")
// transformed RDDs
val errors = lines.filter( .startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()
// action 1
messages.filter( .contains("mysql")).count()
// action 2
messages.filter( .contains("php")).count()
```

Looking at the RDD transformations and actions from another perspective...

```
// load error messages from a log into memory
// then interactively search for various patterns
// https://gist.github.com/ceteri/8ae5b9509a08c08a1132

// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()
```


Spark Essentials: Transformations

transformation	description
map(func)	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which func returns true
flatMap(func)	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)
<pre>sample(withReplacement, fraction, seed)</pre>	sample a fraction <i>fraction</i> of the data, with or without replacement, using a given random number generator seed
union(otherDataset)	return a new dataset that contains the union of the elements in the source dataset and the argument
<pre>distinct([numTasks]))</pre>	return a new dataset that contains the distinct elements of the source dataset

Spark Essentials: Transformations

transformation	description
<pre>groupByKey([numTasks])</pre>	when called on a dataset of (K, V) pairs, returns a dataset of $(K, Seq[V])$ pairs
<pre>reduceByKey(func, [numTasks])</pre>	when called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function
<pre>sortByKey([ascending], [numTasks])</pre>	when called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument
<pre>join(otherDataset, [numTasks])</pre>	when called on datasets of type (K, V) and (K, W) , returns a dataset of $(K, (V, W))$ pairs with all pairs of elements for each key
<pre>cogroup(otherDataset, [numTasks])</pre>	when called on datasets of type (K, V) and (K, W), returns a dataset of (K, Seq[V], Seq[W]) tuples — also called groupWith
cartesian(otherDataset)	when called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements)

Spark Essentials: Actions

action	description
reduce(func)	aggregate the elements of the dataset using a function func (which takes two arguments and returns one), and should also be commutative and associative so that it can be computed correctly in parallel
collect()	return all the elements of the dataset as an array at the driver program – usually useful after a filter or other operation that returns a sufficiently small subset of the data
count()	return the number of elements in the dataset
first()	return the first element of the dataset – similar to take(1)
take(n)	return an array with the first n elements of the dataset – currently not executed in parallel, instead the driver program computes all the elements
<pre>takeSample(withReplacement, fraction, seed)</pre>	return an array with a random sample of num elements of the dataset, with or without replacement, using the given random number generator seed

Spark Essentials: Actions

action	description
saveAsTextFile(path)	write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file
saveAsSequenceFile(path)	write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. Only available on RDDs of key-value pairs that either implement Hadoop's Writable interface or are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).
countByKey()	only available on RDDs of type (K, V). Returns a 'Map' of (K, Int) pairs with the count of each key
foreach(func)	run a function <i>func</i> on each element of the dataset – usually done for side effects such as updating an accumulator variable or interacting with external storage systems

Spark Essentials: Actions

Scala:

```
val f = sc.textFile("README.md")
val words = f.flatMap(l => l.split(" ")).map(word => (word, 1))
words.reduceByKey(_ + _).collect.foreach(println)
```

Python:

```
from operator import add
f = sc.textFile("README.md")
words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))
words.reduceByKey(add).collect()
```

Spark Essentials: Persistence

Spark can persist (or cache) a dataset in memory across operations

Each node stores in memory any slices of it that it computes and reuses them in other actions on that dataset – often making future actions more than 10x faster

The cache is *fault-tolerant*: if any partition of an RDD is lost, it will automatically be recomputed using the transformations that originally created it

Spark Essentials: Persistence

transformation	description
MEMORY_ONLY	Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, some partitions will not be cached and will be recomputed on the fly each time they're needed. This is the default level.
MEMORY_AND_DISK	Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that don't fit on disk, and read them from there when they're needed.
MEMORY_ONLY_SER	Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than deserialized objects, especially when using a fast serializer, but more CPU-intensive to read.
MEMORY_AND_DISK_SER	Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk instead of recomputing them on the fly each time they're needed.
DISK_ONLY	Store the RDD partitions only on disk.
MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc	Same as the levels above, but replicate each partition on two cluster nodes.

Spark Essentials: Persistence

Scala:

```
val f = sc.textFile("README.md")
val w = f.flatMap(l => l.split(" ")).map(word => (word, 1)).cache()
w.reduceByKey(_ + _).collect.foreach(println)
```

Python:

```
from operator import add
f = sc.textFile("README.md")
w = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)).cache()
w.reduceByKey(add).collect()
```

Spark Essentials: Broadcast Variables

Broadcast variables let programmer keep a read-only variable cached on each machine rather than shipping a copy of it with tasks

For example, to give every node a copy of a large input dataset efficiently

Spark also attempts to distribute broadcast variables using efficient broadcast algorithms to reduce communication cost

Spark Essentials: Broadcast Variables

Scala:

```
val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar.value
```

Python:

```
broadcastVar = sc.broadcast(list(range(1, 4)))
broadcastVar.value
```

Spark Essentials: Accumulators

Accumulators are variables that can only be "added" to through an associative operation

Used to implement counters and sums, efficiently in parallel

Spark natively supports accumulators of numeric value types and standard mutable collections, and programmers can extend for new types

Only the driver program can read an accumulator's value, not the tasks

Spark Essentials: Accumulators

Scala:

```
val accum = sc.accumulator(0)
sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
accum.value
```

Python:

```
accum = sc.accumulator(0)
rdd = sc.parallelize([1, 2, 3, 4])
def f(x):
    global accum
    accum += x

rdd.foreach(f)
accum.value
```

Spark Essentials: Accumulators

Scala:

```
val accum = sc.accumulator(0)
sc.parallelize(Array(1, 2, 3, 4)).foreach(x \Rightarrow accum \Rightarrow x)
accum.value
                                                        driver-side
Python:
accum = sc.accumulator(0)
rdd = sc.parallelize([1, 2, 3, 4])
def f(x):
   global accum
   accum += x
rdd.foreach(f)
accum.value
```

Spark Essentials: (K,V) pairs

Scala:

```
pair = (a, b)

pair._1 // => a
pair. 2 // => b
```

Python:

```
pair = (a, b)

pair[0] # => a
pair[1] # => b
```

Java:

```
Tuple2 pair = new Tuple2(a, b);

pair._1 // => a
pair._2 // => b
```