

Week 4 Quiz

TOTAL POINTS 10

1.	Whi	ch of these algorithms can be used to count the number of connected components in a graph?	1 point
	0	Count the number of times a breadth first traversal is started on every vertex of a graph that has not been visited by a previous breadth first traversal.	
	0	Count the number of times a depth first traversal is started on every vertex of a graph that has not been visited by a previous breadth first traversal.	
	\bigcirc	All of the above	
	0	None of the above	
2.	Whi	ch elements encountered by a breadth first search can be used to detect a cycle in the graph?	1 point
	\bigcirc	Discovered edges that were previously unexplored by the traversal have been added to the breadth-first traversal.	
	\bigcirc	Unexplored edges to unexplored vertices that remain so after completion of the breadth first search.	
	\bigcirc	Previously visited vertices that have been encountered again via a previously unexplored edge.	
	\bigcirc	Unexplored vertices that have been encountered by the traversal of a previously unexplored edge.	
3.	A br	readth first traversal starting at vertex v1 of a graph can be used to find which ones of the following?	1 point
	0	The shortest path (in terms of # of edges) between vertex v1 and any other vertex in the graph.	
	0	The shortest path (in terms of # of edges) between any two vertices in the graph.	
	0	All of the above.	
	\bigcirc	None of the above.	
4.	Whi	ch traversal method has a better run time complexity to visit every vertex in a graph?	1 point
	\bigcirc	Breadth First Traversal	
	0	Depth First Traversal	
	0	Both have the same run time complexity.	
	0	Neither traversal method will necessarily visit every vertex in a graph.	
5.	grap	breadth first traversal of a connected graph returns a spanning tree for that graph that contains every vertex. If the oh has weighted edges, which of the following modifications is the simplest that produces a minimum spanning tree the graph of weighted edges.	1 point
	0	The queue is replaced by a priority queue that keeps track of the total weight encountered by the current traversal plus each of the edges that connects a vertex to the current breadth first traversal.	
	\bigcirc	No modification is necessary because a breadth first traversal always returns a minimum spanning tree.	
	\bigcirc	An ordinary breadth first traversal is run from each vertex (as its start vertex) and the resulting spanning tree with the least total weight is the minimum spanning tree.	

	The queue is replaced by a priority queue that keeps track of the least-weight edge that connects a vertex to the current breadth first traversal.	
6.	True of false: a connected directed graph with no cycles is a tree.	1 point
	○ True	
	○ False	
7.	For which situation described here can Dijkstra's algorithm sometimes fail to produce a shortest path? You would want t avoid using Dijkstra's algorithm in this situation.	0 1 point
	A connected graph where all of the edges have the same positive weight.	
	A connected graph where some of the edge weights are zero and the rest are positive.	
	A connected graph where there are multiple paths that have the same overall path cost (distance), and all of the edge weights are non-negative.	
	A connected graph where some of the edge weights are negative and some have weight zero.	
8.	Which of the following is a true statement about Dijkstra's algorithm? Assume edge weights (if any) are non-negative.	1 point
	Oijkstra's algorithm finds the shortest unweighted path, if it exists, between a start vertex and any other vertex, but only for an undirected graph.	
	Oijkstra's algorithm finds the shortest weighted path, if it exists, between a start vertex and any other vertices, but only for an undirected graph.	
	Oijkstra's algorithm finds the shortest weighted path, if it exists, between a start vertex and any other vertices in a directed graph.	
	Dijkstra's algorithm finds the shortest weighted path, if it exists, between all pairs of vertices in a directed connected graph.	
9.	Which of the following is the optimal run time complexity to find the shortest path, if it exists, from a vertex to all of the other vertices in a weighted, directed graph of n vertices and m edges.	1 point
	O(n)	
	O(m + lg n)	
	O(m + n)	
	O(m + n lg n)	
10	. Suppose you are given an undirected simple graph with unweighted edges, and for a particular specification of three vertices u,v , and w , you want to find the shortest path from u to w that goes through v as a landmark. What is the most efficient method that can find this?	1 point
	igcup Two runs of Dijkstra's algorithm, first from u and then from v .	
	igcup A single run of breadth-first search from v .	
	igcup Three runs of breadth-first search: once each from u,v , and w .	
	igcup A single run of Dijkstra's algorithm from $u.$	
	I, Jiarong Yang , understand that submitting work that isn't my own may result in permanent failure	4 P P

of this course or deactivation of my Coursera account.

Save

Submit