Name: Ophelia Doan - Ceilidh Torrance Student#: V00897179 - V00885432

Homework 1-CSC 320 Spring 2020

1. (a) DFA for L_1 :

(b) DFA for L_2 :

(c) DFA for $L_1 \cup L_2$:

2. Transition table for the DFA:

$$\begin{split} E(1) &= \{1,3\} = A \\ \delta(A,a) &= E(\{2\}) = \{1,2,3\} = B \\ \delta(A,b) &= E(\{2,3\}) = \{1,2,3\} = B \\ \delta(B,a) &= E(\{2,3\}) = \{1,2,3\} = B \\ \delta(B,b) &= E(\{2,3\}) = \{1,2,3\} = B \end{split}$$

	a	b
A	В	В
В	В	В

Transition diagram for the DFA.

start
$$\rightarrow$$
 A a, b B a, b

3. Convert the following regular expression to an NFA: $(((00)^*(11)) \cup 01)^*$.

$$R_1 = (00)^*$$
:

 $R_2 = 11$:

 $R_3 = 01$:

 $R_{12} = R_1 R_2$:

 $R = (R_{12} \cup R_3)^*$:

4. (20 Marks) Use the procedure given in class to convert the following DFA to a regular expression

(a) Start and end states have no incomings and outgoings respectively

- (b) Remove intermediate states
 - i. Remove state 1

ii. Remove state 2

iii. Remove state 3

The regular expression of the given DFA is: $(a*b)(a \cup b)(b(a*b)(a \cup b) \cup a*)*$.

5. For languages A and B, define the *interleave* of A and B to be the language

$$\{w \mid w = a_1b_1 \dots a_kb_k \text{ where } a_1 \dots a_k \in A, b_1 \dots b_k \in B, \text{ and } a_i, b_i \in \Sigma, 1 \le i \le k\}$$

Give a construction that shows that the regular languages are closed under the mix operation. Construction: Let $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$, $M_B = (Q_B, \Sigma_B, \delta_B, q_B, F_B)$, and $M = (Q, \Sigma, \delta, q_0, F)$:

- (a) $Q = Q_A \times Q_B \cup q_0$: all possible states of M_A and M_B ;
- (b) $\Sigma = \Sigma_A \times \Sigma_B$: M accepts the string of the interleave of M_A and M_B and the empty string;
- (c) δ , or the transition function, follows the manner below:
 - i. $\delta((a,b,A),x) = (\delta(a,x),b,B)$: If the current state of M_A is a, the current state of M_B is b, and the next character should be in M_A , then when x is read, we change the current state of M_A to $\delta(a,x)$, and keep the current state of M_B . The next character at this point will be in M_B ;
 - ii. Similarly for $\delta((a, b, B), x) = (\delta(b, x), a, A)$;
 - iii. $\delta(q_0,\varepsilon)=q_0$
- (d) $q_0 \in Q \cap F$: q_0 is the startstate and one of acceptstates;
- (e) $F = F_A \times F_B \cup q_0$: M accepts a string if after processing the whole string, both DFAs are in accept states, or in the start state q_0 (the string is empty).