

### Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

# высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

«Радиотехнический»

КАФЕДРА

ИУ-5 «Системы обработки информации и управления»

## Лабораторная работа №2-3 по курсу

Технологии машинного обучения

**Темы работ:** "Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных."

"Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей."

| Выполнил:<br>Группа: |              | Лисин А. В.<br>РТ5-61Б |
|----------------------|--------------|------------------------|
| Дата<br>выполнения:  | « <u> </u> » | 2021 г.                |
|                      | Подпись:     |                        |
| Проверил:            |              |                        |
| Дата<br>проверки:    | « <u> </u> » | 2021 г.                |
|                      | Подпись:     |                        |

# Содержание

| Описание задания      | 3 |
|-----------------------|---|
| Ход выполнения работы | 3 |

## Описание задания

**Цель лабораторной работы №2:** изучение способов предварительной обработки данных для дальнейшего формирования моделей.

#### Задание:

- Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
  - обработку пропусков в данных;
  - кодирование категориальных признаков;
  - масштабирование данных.

**Цель лабораторной работы №3:** изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

#### Задание:

- Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- С использованием метода train\_test\_split разделите выборку на обучающую и тестовую.
- Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- Произведите подбор гиперпараметра К с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации.
- Сравните метрики качества исходной и оптимальной моделей.

# Ход выполнения работы

| ]:<br>]:       | Name 0 Type 0 Cat. 0 Power 259 Acc. 160 PP 1 TM 506 Effect 32 Prob. (%) 468 dtype: int64  Name 0 Type 0 Cat. 0 O Type 0 O Cat. 0 O Type 0 O Cat. 0                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ]:<br>]:<br>]: | data.dtypes  Name object Type object Cat. object Power float64 Acc. object PP float64 TM object Effect object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ]:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]:<br>]:       | 4 Acrobatics FLYING Physical 55.0 100 15.0 TM62 Stronger when the user does not have a held item. NaN  data.isnull().sum()  Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ]:             | Effect 32 Prob. (%) 468 dtype: int64  Преобразуем датасет к рабочему виду  #Логично, что если в таблице нет данных о точности способности, значит она работает гарантированно data['Acc.'][data['Acc.'].isnull()] = 100 #Аналогично с вероятностью действия способности data['Prob. (%)'][data['Prob. (%)'].isnull()] = 100 #Также логично, что если в таблице нет данных о силе способности, то она не наносит урон, а значит равна data['Power'][data['Power'].isnull()] = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | <pre><ipython-input-9-fed872aca1b6>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.h urning-a-view-versus-a-copy    data['Acc.'][data['Acc.'].isnull()] = 100 <ipython-input-9-fed872aca1b6>:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.h urning-a-view-versus-a-copy    data['Prob. (%)'][data['Prob. (%)'].isnull()] = 100</ipython-input-9-fed872aca1b6></ipython-input-9-fed872aca1b6></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ]:<br>]:       | <pre><ipython-input-9-fed872aca1b6>:6: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.hurning-a-view-versus-a-copy data['Power'][data['Power'].isnull()] = 0  data.shape  (607, 9)  #Почему то в некоторых строках значение "точности" равнялось бесконечности, что не имеет никакого смысла.</ipython-input-9-fed872aca1b6></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ]:             | <pre>for i in range(len(data['Acc.'])):     if(data['Acc.'][i] == '\omega'):         data['Acc.'][i] = 100  <ipython-input-11-a6b7b03823ce>:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.hurning-a-view-versus-a-copy     data['Acc.'][i] = 100  data.isnull().sum()</ipython-input-11-a6b7b03823ce></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ]:             | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ]:<br>]:<br>]: | Name       Type       Cat. Power Acc. PP TM       Effect Prob. (%)         516       Struggle NORMAL Physical 50.0 100 NaN NaN Only usable when all PP are gone. Hurts the user. 100.0         #Единственное пустое значение для PP у способности, которая работает, когда значение PP кончилось #Мы могли бы сделать его значение равно нулю, но это неправильно, потому что способность вместо этого ту #и поэтому она будет портить статистику, легче будет просто ее удалить data = data.drop(516, 0)         data.isnull().sum()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ]:             | Name       0         Type       0         Cat.       0         Power       0         Acc.       0         PP       0         TM       505         Effect       32         Prob. (%)       0         dtype: int64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ]:<br>]:       | #Также удалим Effect потому что это описания и после этого этапа они аткже не нужны data = data.dropna(axis=1, how='any')  #Столбец Name так же не имеет значения, поэтому удалим его data = data.drop('Name', 1)  data.isnull().sum()  Type 0 Cat. 0 Power 0 Acc. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ]:<br>]:       | <pre>PP     0 Prob. (%)     0 dtype: int64  data['PP'] = data['PP'].astype(int)     data['Power'] = data['Power'].astype(int) data['Prob. (%)'] = data['Prob. (%)'].astype(int)  data.dtypes  Type     object Cat.     object</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ]:             | Power int64 Acc. int64 PP int64 Prob. (%) int64 dtype: object  Кодирование категориальных признаков  data = pd.get_dummies(data)  data.head()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ]:             | Power         Acc.         PP         Prob. (%)         Type_BUG         Type_DARK         Type_DRAGON         Type_ELECTRIC         Type_FAIRY         Type_FIGHTING          Type_ICE           0         20         100         25         100         0         0         0         0         0          0           1         40         100         30         10         0         0         0         0         0         0          0           2         0         100         40         100         0         0         0         0         0          0           3         40         100         20         100         0         0         0         0         0          0           4         55         100         15         100         0         0         0         0         0         0          0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ]:<br>]:       | Macштабирование данных  from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer  data_unscaled = data.copy()  sns.displot(data=data, x="Power", kde = True) sns.displot(data=data, x="Acc.", kde = True) sns.displot(data=data, x="PP", kde = True)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ]:             | sns.displot(data=data, x="Prob. (%)", kde = True) <seaborn.axisgrid.facetgrid 0x7f4b69d47b80="" at="">  250 -  200 -</seaborn.axisgrid.facetgrid>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | 100 - 50 100 150 200 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 400 -<br>300 -<br>200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | 100 - 100 - 100 - 100 Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 150 -<br>125 -<br>tu 100 -<br>75 -<br>50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 25 - 0 - 10 20 30 40 PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | 300 -<br>200 -<br>100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | График Power соответствует нормальному распределению, за исключением перекоса на нулевом значении, поэтому примен MinMaxScaler  from sklearn.preprocessing import MinMaxScaler, StandardScaler  mms = MinMaxScaler() Power = mms.fit_transform(data[['Power']]) data["Power"] = Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ]:<br>]:       | <pre>sns.displot(data=data, x="Power", kde = True)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 100 -<br>50 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ]:             | Paccмотрим Acc.  sns.violinplot(data=data, x="Acc.", kde = True) <axessubplot:xlabel='acc.'></axessubplot:xlabel='acc.'>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 50 60 70 80 90 100<br>Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ]:<br>]:       | Видим "хвост", поэтому используем Z-оценку  ss = StandardScaler() Accuracy = ss.fit_transform(data[['Acc.']]) data["Acc."] = Accuracy  sns.violinplot(data=data, x="Acc.", kde = True) <axessubplot:xlabel='acc.'></axessubplot:xlabel='acc.'>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]:<br>]:       | -6 -5 -4 -3 -2 -1 0 1  Крафик PP соответствует нормальному распределению, поэтому применим MinMaxScaler  mms = MinMaxScaler()  PP = mms.fit_transform(data[['PP']])  data["PP"] = PP  sns.displot(data=data, x="PP", kde = True) <seaborn.axisgrid.facetgrid 0x7f4b69d87340="" at=""></seaborn.axisgrid.facetgrid>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 175 -<br>150 -<br>125 -<br>tun 100 -<br>75 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ]:             | sns.violinplot(data=data, x="Prob. (%)", kde = True)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ]:             | <pre><axessubplot:xlabel='prob. (%)'=""></axessubplot:xlabel='prob.></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ]:             | Box of the standard scaler () Probability = ss.fit_transform(data[['Prob. (%)']]) data["Prob. (%)"] = Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ]:             | <pre>sns.violinplot(data=data, x="Prob. (%)", kde = True)  <axessubplot:xlabel='prob. (%)'=""></axessubplot:xlabel='prob.></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]:             | Power         Acc.         PP         Prob. (%)         Type_BUG         Type_DARK         Type_DRAGON         Type_ELECTRIC         Type_FAIRY         Type_FIGHTING            0         0.08         0.44533         0.615385         0.470806         0         0         0         0         0         0            1         0.16         0.44533         0.743590         -2.464131         0         0         0         0         0         0         0            2         0.00         0.44533         1.000000         0.470806         0         0         0         0         0         0            3         0.16         0.44533         0.358974         0.470806         0         0         0         0         0         0            5 rows × 25 columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]:             | data_scaled = data.copy() <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ]:             | columns.append(column)  data_scaled = data_scaled[columns]  data_scaled.head()  Power Acc. Prob.(%) Type_BUG Type_DARK Type_DRAGON Type_ELECTRIC Type_FAIRY Type_FIGHTING Type_FIRE  0 0.08 0.44533 0.470806 0 0 0 0 0 0 0 0 0 0 0  1 0.16 0.44533 -2.464131 0 0 0 0 0 0 0 0 0  2 0.00 0.44533 0.470806 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ]:             | 3  0.16  0.44533  0.470806  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | 0.35 - 0.30 - 0.25 - 0.20 - 0.15 - 0.10 - 0.05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ]:             | <pre>x_columns = data_scaled.columns.tolist() x_columns.pop(x_columns.index(y_column))  data_scaled_x_train, data_scaled_x_test, data_scaled_y_train, data_scaled_y_test = train_test_split(data_scaled_x_test_split)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ]:             | <pre>from sklearn.neighbors import KNeighborsRegressor  knn_scaled = KNeighborsRegressor(n_neighbors = 15) knn_scaled.fit(data_scaled_x_train, data_scaled_y_train) knn_scaled_prediction = knn_scaled.predict(data_scaled_x_test)</pre> Обучим модель для произвольного гиперпараметра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ]:             | from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error, r2_score from sklearn.model_selection import ShuffleSplit, cross_val_score, cross_validate  print('Средняя абсолютная ошибка:', mean_absolute_error(data_scaled_y_test, knn_scaled_prediction)) print('Медианная абсолютная ошибка:', median_absolute_error(data_scaled_y_test, knn_scaled_prediction) print('Среднеквадратичная ошибка:', mean_squared_error(data_scaled_y_test, knn_scaled_prediction, squaprint('Коэффициент детерминации:', r2_score(data_scaled_y_test, knn_scaled_prediction))  Средняя абсолютная ошибка: 0.16896642876024318 Медианная абсолютная ошибка: 0.12820512820512825 Среднеквадратичная ошибка: 0.22033331013001045 Коэффициент детерминации: 0.005385464252665173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]:             | gs.fit(data_scaled_x_train, data_scaled_y_train)  GridSearchCV(cv=10, estimator=KNeighborsRegressor(),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ]:             | Лучшая модель: KNeighborsRegressor(n_neighbors=11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ]:             | Лучшее число ближайших соседей: {'n_neighbors': 11}  Лучшее значение средней квадратичной ошибки: -0.03849163209034105  print('Изменение качества тестовой выборки в зависимости от кол-ва соседей:\n') plt.plot(n_range, gs.cv_results_['mean_test_score'])  Изменение качества тестовой выборки в зависимости от кол-ва соседей:  [ <matplotlib.lines.line2d 0x7f4b6804fcd0="" at="">]</matplotlib.lines.line2d>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ]:             | Лучшее число ближайших соседей: {'n_neighbors': 11}  Лучшее значение средней квадратичной ошибки: -0.03849163209034105  print('Изменение качества тестовой выборки в зависимости от кол-ва соседей:\n') plt.plot(n_range, gs.cv_results_['mean_test_score'])  Изменение качества тестовой выборки в зависимости от кол-ва соседей:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | Лучшее число ближайших соседей: {'n_neighbors': 11}  Лучшее значение средней квадратичной ошибки: -0.03849163209034105  print('Изменение качества тестовой выборки в зависимости от кол-ва соседей:\n') plt.plot(n_range, gs.cv_results_['mean_test_score'])  Изменение качества тестовой выборки в зависимости от кол-ва соседей:  [ <matplotlib.lines.line2d 0x7f4b6804fcd0="" at="">]  -0.040 -0.045 -0.055 -0.050 -0.055 -0.060 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.070 -0.055 -0.050 -0.055 -0.050 -0.055 -0.050 -0.055 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -</matplotlib.lines.line2d> |
| ]:             | Лучшее значение средней квадратичной ошибки: -0.03849163209034105  print('Изменение качества тестовой выборки в зависимости от кол-ва соседей:\n') plt.plot(n_range, gs.cv_results_['mean_test_score'])  Изменение качества тестовой выборки в зависимости от кол-ва соседей:  [ <matplotlib.lines.line2d 0x7f4b6804fcd0="" at="">]  -0.040 -0.055 -0.050 -0.055 -0.060 -0.055 -0.070 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.051 -0.052 -0.053 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.05</matplotlib.lines.line2d> |