Nov23_PSP_12Apr

Nov23_PSP_12Apr

sudhakar venkatachalam	Suraj Devraye
Vijay V A	Vigneshwaran K
Piyush Kumar	Sarat Patel
Mateen	MD JASHIMUDDIN
Mayur Hadawale	Nitendra Rajput
Sai Sharath	kameswarreddy Yeddula
	Shaurya Srivastava
Manjunatha I	ALLEN GEOSHAN M
Harshil Dabhoya	Pranadarth S
Rajeev	Pushkar Deshpande
Gobika K	Pradeep Kumar Chandra
manikandan m	Prashant Kumar Soni
Yash Malviya	SIJU SAMSON
Kevin Theodore E	Mohammed Arshad
Robin Dhiman	Rsr Ram

Or one operation we can connect 2 ropes & the east is sum of length of both ropes.

Find win cost to connect all vopes

example

Have we gotten the best answer? No let us say we have 3 ropes of length -> x < y < z

Corse 1	Case 2	Case 3
connect ny, z	Connect N.z,y	connet y, z, x
K+4 ~ <	142	4+2
2+4+2	2+4+2	y+2+2

Observation

connect small length ropes at each stage to get men cost

Solution 1

Sort the Proper length of ropes and connect

total 008t = 4+7+11 + 18

Divis 1

Mentinum cost of connecting all ropes 1 2 3 4

Step 1: 1, 2, 8, 4
$$\longrightarrow$$
 Cost = 3

Step 2: 3,3, 4 \longrightarrow Cost = 6

Step 2: 6,4 \longrightarrow Cost = 10

total = 19

Connecting the ropes Optimization

we will not Heaps or priority and to solve the problem effectively

Prosertion of element → O(log n)

get whn / max element → O(log n)

Heaps / Proority Quene

Structure - Complete Brang Tree

All levels all completely filled. The last level can be an exception but should be filled from left to right

Type Min Heap 4 nodes data <= children nodes

Max Heap 4 nodes data >= children node

No relationship between left & right children

Example 1

Max Hegy

Array Implementation of Heaps

Visualize

5	12	20	25	13	24	22	35	34
Ð	ſ	2	3	4	5	Ь	7	8

parent	left	Regert	Endex
0	1	2	
1	3	4	
2	5	6	
3	7	8	

Gren parent Endex l

left child Endex = 28+1

right child Endex = 28+2

Given child Index i Cleft or Right)

parent Index = (1-1)

Ensuring in Men Heap

arr (3) <= arr (8) -> emap as

awiz z

Thre complexity of Preertion

O Clog (n)

pseudo code

Marsonne we have an expetting hear called hear

heaps. append (val)

?= heaps. length -1:

while 11>=0) &

pi= (P-1)/2',

if Cheaps CpiJ > heaps (17)

swap (heaps, þi, i)

l = Pi

Use

break;

'n

Extract MPn

en a men hear where do we have the least

element ?

ROOT NODE

swap with emallest child data

compare with

children and

swap with

smallest child

psendo code

swap (heap, 0, n-1); heap. remove (n-1); heapify (heap, 0); void heapify (heap (), ?) & while (29+1 < N) & I handle if right child exist or 1 not X = men Cheap Cit, heap (zit1), heap (zit2) Pf (x = = heap Ci7) break: else if (x = = heap (2i+1J) 8wap (heap, e, 2i+1) l= 21+1 else & Swap (heap, l, zitz) l= 21+2: Y

· T. C = O (log n)

Break till 10:40 pm

Bulld a Heap

Idea 1:

Build heap without sorting

Observations

井Nodes	1	2	3	4	D	6		
# leave	1	l	2	2	3	2)	,	0 0 0

nodes +1

Almost Half

$$= \frac{n}{2} \leq \frac{i}{2^{k}} \longrightarrow AGP$$

expanding 9

$$\frac{S}{2} = \frac{1}{2^{2}} + \frac{2}{2^{2}} + \frac{3}{2^{2}} + \cdots$$

$$\frac{S}{2} = \frac{1}{2^{2}} + \frac{2}{2^{3}} + \frac{3}{2^{4}} + \cdots$$

$$S-\frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^2}+\cdots$$

$$\frac{g}{2} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \longrightarrow GP$$

$$\frac{g}{2} = \frac{1/2}{1 - 1/2} = 1 \Rightarrow g = 2$$

pseudo code

Q→ Merge gèven k sorted arrays ento a stugle sorted array

example						Kan	rays	each	stre N
A =	2	3	Ø	11	15	NJ			
æ =	1	4	5	9		N	2N 7		
C =	2	5	ь	8	12	N		3 N	
D =	3	8				N			4N
		-	_						

Get smallest from all K arrays at every Step ans 4: Men Heap (3, A, 1) (ACID, reference, ?) (4,B,1) (5,0,1) Steps 1) Add zeroth endex values (3, D,0) to Pultfalleze the men Heap Final array 2) pick the smallest element from Heap and Prosert the next element from eame array T.c = O(x logn) X Ps count of all elements en array