On a new class of non selfadjoint algebras

Yuan Wei AMSS

¹Institute of Mathematics

February 19, 2014(Chongqing University)

Notations

- ullet C: the field of complex numbers;
- \mathcal{H} : a separable Hilbert spaces, e.g. $l^2(\mathbb{Z}), \, l^2(\mathbb{Z}_n)$
- $\mathcal{B}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H} , e.g. $M_n(\mathbb{C})$

Notations

- ullet C: the field of complex numbers;
- \mathcal{H} : a separable Hilbert spaces, e.g. $l^2(\mathbb{Z}), l^2(\mathbb{Z}_n)$
- $\mathcal{B}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H} , e.g. $M_n(\mathbb{C})$

Notations

- ullet C: the field of complex numbers;
- \mathcal{H} : a separable Hilbert spaces, e.g. $l^2(\mathbb{Z})$, $l^2(\mathbb{Z}_n)$
- $\mathcal{B}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H} , e.g. $M_n(\mathbb{C})$

The Legacy of John Von Neumann

A self adjoint subalgebra $\mathfrak A$ of $\mathcal B(\mathcal H)$ is a von Neumann algebra if and only if $\mathfrak A''=\mathfrak A.$

A self adjoint subalgebra $\mathfrak A$ of $\mathcal B(\mathcal H)$ is a von Neumann algebra if and only if $\mathfrak A''=\mathfrak A.$

$$M_n(\mathbb{C}) \qquad \Leftrightarrow \qquad \mathscr{R}$$

A self adjoint subalgebra $\mathfrak A$ of $\mathcal B(\mathcal H)$ is a von Neumann algebra if and only if $\mathfrak A''=\mathfrak A.$

$$M_n(\mathbb{C}) \Leftrightarrow \mathscr{B}(\mathscr{H})$$

Finite dimensional Infinite dimensional

A self adjoint subalgebra $\mathfrak A$ of $\mathcal B(\mathcal H)$ is a von Neumann algebra if and only if $\mathfrak A''=\mathfrak A.$

$$M_n(\mathbb{C}) \Leftrightarrow \mathcal{B}(\mathcal{H})$$

Finite dimensional has trace does not have trace

A self adjoint subalgebra $\mathfrak A$ of $\mathcal B(\mathcal H)$ is a von Neumann algebra if and only if $\mathfrak A''=\mathfrak A.$

Examples:

$$M_n(\mathbb{C}) \Leftrightarrow \mathcal{B}(\mathcal{H})$$

Finite dimensional has trace does not have trace

Is there an infinite dimensional "finite" factor?

1934, Murray

Theorem

If $\mathfrak A$ is a factor and $E_1 \in \mathfrak A$ and $E_2 \in \mathfrak A'$, then $E_1 E_2 \neq 0$ if E_1 , $E_2 \neq 0$.

1934, Murray

Theorem

If $\mathfrak A$ is a factor and $E_1 \in \mathfrak A$ and $E_2 \in \mathfrak A'$, then $E_1 E_2 \neq 0$ if E_1 , $E_2 \neq 0$.

Figure: $l^2(\mathbb{Z}_4) \otimes l^2(\mathbb{Z}_5)$, $\mathfrak{A} \cong M_4(\mathbb{C})$, $\mathfrak{A}' \cong M_5\mathbb{C}$

1934, Murray

Theorem

If $\mathfrak A$ is a factor and $E_1\in \mathfrak A$ and $E_2\in \mathfrak A'$, then $E_1E_2\neq 0$ if $E_1,\ E_2\neq 0$.

Figure : $I^2(\mathbb{Z}_4) \otimes I^2(\mathbb{Z}_4) \oplus I^2(\mathbb{Z}_3) \otimes I^2(\mathbb{Z}_3) \oplus I^2(\mathbb{Z}_5) \otimes I^2(\mathbb{Z}_3)$

Bernstein's Theorem's analogy

Ranges of projections Cardinal numbers of sets

⇔
Partial isometries one-to-one correspondence

Bernstein's Theorem's analogy

Ranges of projections Cardinal numbers of sets

 \Leftrightarrow

Partial isometries one-to-one correspondence

Theorem

If E and F are projections in a von Neumann algebra $\mathfrak A$ such that $E \leq F$ and $F \leq E$, then $E \sim F$.

Factor Type Range of the dimension function $I_n(n < \infty)$ $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$

Factor Type Range of the dimension function $I_n(n < \infty)$ $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$ $\{0, 1, 2, \dots, \infty\}$

 $\begin{array}{lll} \text{Factor Type} & \text{Range of the dimension function} \\ I_n(n < \infty) & \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \\ I_{\infty} & \{0, 1, 2, \dots, \infty\} \\ II_1 & [0, 1] \end{array}$

 $\begin{array}{lll} \text{Factor Type} & \text{Range of the dimension function} \\ I_n(n < \infty) & \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\} \\ I_{\infty} & \{0, 1, 2, \dots, \infty\} \\ II_1 & [0, 1] \\ II_{\infty} & [0, \infty] \end{array}$

Factor Type Range of the dimension function $I_n(n < \infty)$ $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$ I_{∞} $\{0, 1, 2, \dots, \infty\}$ II_1 [0, 1] II_{∞} $[0, \infty]$ III $\{0, \infty\}$

Factor Type Range of the dimension function
$$I_n(n < \infty) \qquad \qquad \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$$

$$I_{\infty} \qquad \qquad \{0, 1, 2, \dots, \infty\}$$

$$II_1 \qquad \qquad [0, 1]$$

$$II_{\infty} \qquad \qquad [0, \infty]$$

$$III \qquad \qquad \{0, \infty\}$$

The immediate problem: obtain an example of a case other than type I.

Exmaple of II₁ factors:

Exmaple of II₁ factors:

$$\alpha$$
 is a binary number

$$\mathfrak{A} \\ M_x: (M_x f)(x,y) = x f(x,y) \\ L_\alpha: (L_\alpha f)(x,y) = f(x+\alpha,y) \\ R_\alpha: (R_\alpha f)(x,y) = f(x,y+\alpha)$$

Exmaple of II₁ factors:

$$\begin{split} \mathfrak{A} & \mathfrak{A}' \\ M_x : (M_x f)(x,y) = x f(x,y) & M_y : (M_y f)(x,y) = y f(x,y) \\ L_\alpha : (L_\alpha f)(x,y) = f(x+\alpha,y) & R_\alpha : (R_\alpha f)(x,y) = f(x,y+\alpha) \end{split}$$

$$\mathcal{T} r_{\mathfrak{A}}(A) = \langle A\xi, \xi \rangle, \qquad \xi(x,y) = \delta(x,y).$$

$$Tr_{\mathfrak{A}}(M_{x}L_{\alpha}) = \sum_{\beta} \int x \delta(x + \alpha, x + \beta) \delta(x, x + \beta) dx$$
$$= \int x \delta(x + \alpha, x) dx = 0 = Tr_{\mathfrak{A}}(L_{\alpha}M_{x})$$

Group factors

G: a discrete group, e.g.
$$\Pi = \bigcup_n S_n$$
.
 $I^2(G) = \{ \sum_{g \in G} a_g e_g | \sum_{g \in G} |a_g|^2 < \infty \}$

Group factors

G: a discrete group, e.g.
$$\Pi = \bigcup_n S_n$$
.
 $I^2(G) = \{ \sum_{g \in G} a_g e_g | \sum_{g \in G} |a_g|^2 < \infty \}$

Left regular representation
$$\mathfrak{A} = \{L_h | h \in G\}''$$

$$L_h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_{hg}$$

Right regular representation
$$\mathfrak{A}' = \{R_h | h \in G\}''$$

 $R_h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_{hg^{-1}}$

Group factors

G: a discrete group, e.g.
$$\Pi = \bigcup_n S_n$$
.
 $I^2(G) = \{ \sum_{g \in G} a_g e_g | \sum_{g \in G} |a_g|^2 < \infty \}$

Left regular representation
$$\mathfrak{A} = \{L_h | h \in G\}''$$

$$L_h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_h$$

$$\mathfrak{A} = \{L_h | h \in G\}''$$
 $h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_{hg}$

Left regular representation
$$\mathfrak{A} = \{L_h | h \in G\}'' \qquad \qquad \mathfrak{A}' = \{R_h | h \in G\}''$$

$$L_h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_{hg} \qquad R_h(\sum_{g \in G} a_g e_g) = \sum_{g \in G} a_g e_{hg^{-1}}$$

$$\mathit{Tr}_{\mathfrak{A}}(\mathit{A}) = \langle \mathit{Ae}_g, e_g
angle.$$

Proof.

Proof.

Suppose $g \in S_n$ and g(i) = j, $i, j \le n$.

Proof.

Suppose
$$g \in S_n$$
 and $g(i) = j$, $i, j \le n$.
Let $g_m = (j, n+m)$, $m = 1, 2, ...$

Proof.

Suppose $g \in S_n$ and $g(i) = j, i, j \le n$.

Let
$$g_m = (j, n+m), m = 1, 2, ...$$

Thus $g_m g g_m^{-1}(n+m) = i$ and $\{g_m g g_m^{-1} | m = 1, 2...\}$ is an infinite set of conjugates of g.

Proof.

Suppose $g \in S_n$ and $g(i) = j, i, j \le n$.

Let
$$g_m = (j, n+m), m = 1, 2, ...$$

Thus $g_m g g_m^{-1}(n+m) = i$ and $\{g_m g g_m^{-1} | m = 1, 2...\}$ is an infinite set of conjugates of g.

Fact:

Suppose $\mathfrak A$ is a type II_1 factor, then for any n > 0, there is a subalgebra $\mathfrak M$ of $\mathfrak A$ such that $\mathfrak M \cong M_n(\mathbb C)$.

Definition (Hyperfinite II₁ factor)

The hyperfinite II₁ factor R is a countably generated factor of type II₁ such that $\forall \varepsilon > 0$ and $\{A_1, \ldots, A_n\} \subset (R)_1$ (unit ball of R), there is a finite type I subfactor \mathcal{N} of R and $\{B_1, \ldots, B_n\} \subset (\mathcal{N})_1$ such that $||A_i - B_i||_2 < \varepsilon$ when $i \in \{1, \ldots, n\}$.

Definition (Hyperfinite II₁ factor)

The hyperfinite II₁ factor R is a countably generated factor of type II₁ such that $\forall \varepsilon > 0$ and $\{A_1, \ldots, A_n\} \subset (R)_1$ (unit ball of R), there is a finite type I subfactor \mathcal{N} of R and $\{B_1, \ldots, B_n\} \subset (\mathcal{N})_1$ such that $\|A_i - B_i\|_2 < \varepsilon$ when $i \in \{1, \ldots, n\}$.

Theorem

 L_{Π} is the only hyperfinite II₁ factor.

Constructions of hyperfinie II₁ factor

- For any amenable i.c.c group G, $L_G \cong R$;
- $\bullet \ R \cong M_{n_1}(\mathbb{C}) \bar{\otimes} M_{n_2}(\mathbb{C}) \bar{\otimes} M_{n_3}(\mathbb{C}) \bar{\otimes} \cdots$

- For any amenable i.c.c group G, $L_G \cong R$;
- $\bullet \ R \cong M_{n_1}(\mathbb{C})\bar{\otimes} M_{n_2}(\mathbb{C})\bar{\otimes} M_{n_3}(\mathbb{C})\bar{\otimes} \cdots$

- For any amenable i.c.c group G, $L_G \cong R$;
- $\bullet \ R \cong M_{n_1}(\mathbb{C})\bar{\otimes} M_{n_2}(\mathbb{C})\bar{\otimes} M_{n_3}(\mathbb{C})\bar{\otimes} \cdots$

$$M_{n_1}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes M_{n_3} \otimes I \subset \cdots$$
 The ascending family of finite dimensional algebras is dense in R .

- For any amenable i.c.c group G, $L_G \cong R$;
- $R \cong M_{n_1}(\mathbb{C}) \bar{\otimes} M_{n_2}(\mathbb{C}) \bar{\otimes} M_{n_3}(\mathbb{C}) \bar{\otimes} \cdots$

 $M_{n_1}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes M_{n_3} \otimes I \subset \cdots$ The ascending family of finite dimensional algebras is dense in R.

$$M_2(\mathbb{C})\otimes I'=\left(\begin{array}{c} \blacksquare \\ \blacksquare \end{array}\right)$$

- For any amenable i.c.c group G, $L_G \cong R$;
- $R \cong M_{n_1}(\mathbb{C}) \bar{\otimes} M_{n_2}(\mathbb{C}) \bar{\otimes} M_{n_3}(\mathbb{C}) \bar{\otimes} \cdots$

 $M_{n_1}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes M_{n_3} \otimes I \subset \cdots$ The ascending family of finite dimensional algebras is dense in R.

$$M_2(\mathbb{C})\otimes I'=\left(egin{array}{cccc} \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \blacksquare & \blacksquare & \blacksquare & \blacksquare \end{array}
ight)$$

- For any amenable i.c.c group G, $L_G \cong R$;
- $R \cong M_{n_1}(\mathbb{C}) \bar{\otimes} M_{n_2}(\mathbb{C}) \bar{\otimes} M_{n_3}(\mathbb{C}) \bar{\otimes} \cdots$

 $M_{n_1}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes I \subset M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes M_{n_3} \otimes I \subset \cdots$ The ascending family of finite dimensional algebras is dense in R.

$$M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes \cdots \otimes M_{n_k}(\mathbb{C}) \otimes \cdots \quad \Leftrightarrow \quad \Pi_{\rho} \rho^{a_{\rho}}$$

$$a_p = \sum_k b_p^k, n_k = \prod_p p^{b_p^k}$$

$$M_{n_1}(\mathbb{C}) \otimes M_{n_2}(\mathbb{C}) \otimes \cdots \otimes M_{n_k}(\mathbb{C}) \otimes \cdots \quad \Leftrightarrow \quad \Pi_p p^{a_p}$$

$$a_p = \sum_k b_p^k, n_k = \prod_p p^{b_p^k}$$

$$\begin{array}{lll} \mathfrak{A}_1 = \textit{M}_{n_1}(\mathbb{C}) \otimes \textit{M}_{n_2}(\mathbb{C}) \otimes \cdots \otimes \textit{M}_{n_k}(\mathbb{C}) \otimes \cdots & \Leftrightarrow & \Pi_p p^{a_p} \\ \mathfrak{A}_2 = \textit{M}_{m_1}(\mathbb{C}) \otimes \textit{M}_{m_2}(\mathbb{C}) \otimes \cdots \otimes \textit{M}_{m_k}(\mathbb{C}) \otimes \cdots & \Leftrightarrow & \Pi_p p^{b_p} \end{array}$$

Theorem (J. Glimm)

The C^* algebras A_1 and A_2 are isomorif and only if $\Pi_p p^{a_p} = \Pi_p p^{b_p}$.

Some results about hyperfinite factor of type II₁

Alain Connes (1976)

All subfactors of *R* are isomorto *R* or finite dimensional.

V. Jones (1983) The possible values of the index for subfactors of *R*:

$$\{4\cos^2(\frac{\pi}{n})|n=3,4,\ldots\}$$
$$\cup \{r \in \mathbb{R}|r \geq 4\} \cup \{\infty\}$$

Non-selfadjoint algebras

Definition (Kadison, Singer (1960))

If $\mathfrak M$ is a factor and $\mathfrak A$ a maximal abelian (selfadjoint) subalgebra of $\mathfrak M$, a subalgebra $\mathscr T$ of $\mathfrak M$ will be said to be "triangular in $\mathfrak M$ with diagonal $\mathfrak A$ when $\mathscr T\cap \mathscr T^*=\mathfrak A$.

Non-selfadjoint algebras

Definition (Kadison, Singer (1960))

If $\mathfrak M$ is a factor and $\mathfrak A$ a maximal abelian (selfadjoint) subalgebra of $\mathfrak M$, a subalgebra $\mathscr T$ of $\mathfrak M$ will be said to be "triangular in $\mathfrak M$ with diagonal $\mathfrak A$ when $\mathscr T\cap \mathscr T^*=\mathfrak A$.

Theorem

If $\mathfrak A$ is a maximal triangular algebra on a finite dimensional space, then there is an orthonormal basis such that $\mathfrak A$ is the algebra of all operators with upper triangular matrices relative to this basis.

Operator Theory: Invariant Subspace Problem asks whether every bounded operator on a (separable) Hilbert space has a (nontrivial) invariant subspace.

Operator Theory: Invariant Subspace Problem asks whether every bounded operator on a (separable) Hilbert space has a (nontrivial) invariant subspace.

Algebraic Version: Whether every abelian subalgebra of B(H) has a (common) invariant subspace.

Operator Theory: Invariant Subspace Problem asks whether every bounded operator on a (separable) Hilbert space has a (nontrivial) invariant subspace.

Algebraic Version: Whether every abelian subalgebra of B(H) has a (common) invariant subspace.

Kadison's Transitive Algebra Problem: If A is a transitive algebra on H (or A has no nontrivial invariant subspace), then is the weak-operator closure of A equals to B(H)?

Operator Theory: Invariant Subspace Problem asks whether every bounded operator on a (separable) Hilbert space has a (nontrivial) invariant subspace.

Algebraic Version: Whether every abelian subalgebra of B(H) has a (common) invariant subspace.

Kadison's Transitive Algebra Problem: If A is a transitive algebra on H (or A has no nontrivial invariant subspace), then is the weak-operator closure of A equals to B(H)?

The invariant subspace problem relative to a factor: If every operator in the factor $\mathfrak A$ has a non-trivial invariant subspace affiliated with $\mathfrak A$.

Some Results

Enflo(1976): There exists a Banach space and a bounded linear operator on it without any non-trivial invariant subspace.

Some Results

Enflo(1976): There exists a Banach space and a bounded linear operator on it without any non-trivial invariant subspace.

Arveson(1967) : If $\mathfrak A$ is a transitive operator algebra, and if $\mathfrak A$ contains a m.a.s.a, then $\mathfrak A = \mathcal B(\mathcal H)$.

Some Results

Enflo(1976): There exists a Banach space and a bounded linear operator on it without any non-trivial invariant subspace.

Arveson(1967) : If $\mathfrak A$ is a transitive operator algebra, and if $\mathfrak A$ contains a m.a.s.a, then $\mathfrak A = \mathscr B(\mathscr H)$.

Haagerup and H. Schultz(2006): If T in a II₁ factor $\mathfrak A$ has a non-Dirac Brown measure, then T has a non-trivial hyperinvariant subspace.

$$d_{\mu_T}(x+iy) = \frac{1}{2\pi} \nabla^2 log\Delta[T-(x+iy)I] dxdy, \Delta(T) = exp\tau(log|T|).$$

if
$$T \in M_n(\mathbb{C})$$
, $\Delta(T) = |det T|^{\frac{1}{n}}$ and $\mu_T = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$.

• \mathcal{L} : a set (lattice) of (orthogonal) projections in $\mathcal{B}(\mathcal{H})$.

$$Alg(\mathcal{L}) = \{ T \in \mathcal{B}(\mathcal{H}) : (I - P)TP = 0, \text{ for all } P \in \mathcal{L} \}$$

- a weak-operator closed subalgebra of $\mathcal{B}(\mathcal{H})$.
- \mathcal{S} : a subset of $\mathcal{B}(\mathcal{H})$,

$$Lat(\mathcal{S}) = \{ P \in \mathcal{B}(\mathcal{H}) : P \text{ a projection, } TP\mathcal{H} \subset P\mathcal{H}, \text{ for all } T \in \mathcal{S} \}$$

a strong-operator closed lattice of projections.

• \mathcal{L} : a set (lattice) of (orthogonal) projections in $\mathcal{B}(\mathcal{H})$.

$$\operatorname{Alg}(\mathcal{L}) = \{ T \in \mathcal{B}(\mathcal{H}) : (I - P)TP = 0, \text{for all } P \in \mathcal{L} \}$$

- a weak-operator closed subalgebra of $\mathscr{B}(\mathscr{H})$.
- \mathcal{S} : a subset of $\mathcal{B}(\mathcal{H})$,

$$\operatorname{Lat}(\mathcal{S}) = \{ P \in \mathcal{B}(\mathcal{H}) : P \text{ a projection, } TP\mathcal{H} \subset P\mathcal{H}, \text{ for all } T \in \mathcal{S}$$

– a strong-operator closed lattice of projections.

Example

$$\mathcal{L} = \{0, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, I\} \qquad Alg(\mathcal{L}) = \{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}\}$$

Example

$$\mathcal{L} = \{0, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, I\} \qquad \operatorname{Alg}(\mathcal{L}) = \{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}\}$$

A nest is a totally ordered subspace lattice.

Let $\mathcal{H} = L^2([0;1])$ with Lebesgue measure. For each $t \in [0;1]$. Let $N_t = \{t | t(x) = 0; x \in [t;1]\}$, then $\mathcal{N} = \{N_t | t \in [0;1]\}$ is a "continuous" nest.

If $\mathscr L$ is a nest, then $\mathrm{Alg}(\mathscr L)$ is called a nest algebra.

Kadison and Singer: Nest algebras are the only maximal triangular refexive algebra.

A subalgebra \mathfrak{A} of $\mathfrak{B}(\mathscr{H})$ which is refexive and maximal with respect to the diagonal subalgebra $\mathfrak{A} \cap \mathfrak{A}^*$ of \mathfrak{A} , in the sense that if there is another refexive subalgebra \mathfrak{B} of $\mathfrak{B}(\mathscr{H})$ such that $\mathfrak{A} \subset \mathfrak{B}$ and $\mathfrak{B} \cap \mathfrak{B}^* = \mathfrak{A} \cap \mathfrak{A}^*$, then $\mathfrak{A} = \mathfrak{B}$.

Kadison-Singer algebra

A subalgebra \mathfrak{A} of $\mathfrak{B}(\mathscr{H})$ which is refexive and maximal with respect to the diagonal subalgebra $\mathfrak{A} \cap \mathfrak{A}^*$ of \mathfrak{A} , in the sense that if there is another refexive subalgebra \mathfrak{B} of $\mathfrak{B}(\mathscr{H})$ such that $\mathfrak{A} \subset \mathfrak{B}$ and $\mathfrak{B} \cap \mathfrak{B}^* = \mathfrak{A} \cap \mathfrak{A}^*$, then $\mathfrak{A} = \mathfrak{B}$.

Kadison-Singer algebra

A subalgebra \mathfrak{A} of $\mathscr{B}(\mathscr{H})$ which is refexive and maximal with respect to the diagonal subalgebra $\mathfrak{A} \cap \mathfrak{A}^*$ of \mathfrak{A} , in the sense that if there is another refexive subalgebra \mathfrak{B} of $\mathscr{B}(\mathscr{H})$ such that $\mathfrak{A} \subset \mathfrak{B}$ and $\mathfrak{B} \cap \mathfrak{B}^* = \mathfrak{A} \cap \mathfrak{A}^*$, then $\mathfrak{A} = \mathfrak{B}$.

 $\mathrm{Alg}(\mathcal{L})$ is a KS-algebra \Leftrightarrow \mathcal{L} is a minimal refexive lattice that generates \mathcal{L}'' .

Kadison-Singer algebra

A subalgebra \mathfrak{A} of $\mathscr{B}(\mathscr{H})$ which is refexive and maximal with respect to the diagonal subalgebra $\mathfrak{A} \cap \mathfrak{A}^*$ of \mathfrak{A} , in the sense that if there is another refexive subalgebra \mathfrak{B} of $\mathscr{B}(\mathscr{H})$ such that $\mathfrak{A} \subset \mathfrak{B}$ and $\mathfrak{B} \cap \mathfrak{B}^* = \mathfrak{A} \cap \mathfrak{A}^*$, then $\mathfrak{A} = \mathfrak{B}$.

 $\operatorname{Alg}(\mathcal{L})$ is a KS-algebra \Leftrightarrow \mathcal{L} is a minimal refexive lattice that generates \mathcal{L}'' .

Kadison-Singer lattice

Kadison-Singer algebra

A subalgebra $\mathfrak A$ of $\mathscr B(\mathscr H)$ which is refexive and maximal with respect to the diagonal subalgebra $\mathfrak A\cap\mathfrak A^*$ of $\mathfrak A$, in the sense that if there is another refexive subalgebra $\mathfrak B$ of $\mathscr B(\mathscr H)$ such that $\mathfrak A\subset\mathfrak B$ and $\mathfrak B\cap\mathfrak B^*=\mathfrak A\cap\mathfrak A^*$, then $\mathfrak A=\mathfrak B$.

 $\operatorname{Alg}(\mathscr{L})$ is a KS-algebra \Leftrightarrow \mathscr{L} is a minimal refexive lattice that generates \mathscr{L}'' .

Kadison-Singer lattice

Theorem

Suppose \mathcal{L} is a KS-lattice for $\mathfrak{A} \subset \mathcal{B}(\mathcal{H})$, if α is a *-isomorof \mathfrak{A} , and $\alpha(\mathfrak{A}) \subset \mathcal{B}(\mathcal{K})$, then $\alpha(\mathcal{L})$ is also a KS-lattice for $\alpha(\mathfrak{A})$.

Exmaple

Let
$$\mathcal{L} = \{0, I, P_1, P_2\}.$$

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad P_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$Alg(\mathcal{L}) = \left\{ \begin{pmatrix} x+y & -y \\ 0 & x \end{pmatrix} | x, y \in \mathbb{C} \right\}$$

Exmaple

Let
$$\mathcal{L} = \{0, I, P_1, P_2\}.$$

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad P_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$Alg(\mathcal{L}) = \left\{ \begin{pmatrix} x+y & -y \\ 0 & x \end{pmatrix} | x, y \in \mathbb{C} \right\}$$

Are there abelian KS-algebras (of dimension ≥ 3)?

Exmaples of KS-lattice in $M_n(\mathbb{C})$

For any given $N = n_1 n_2 \cdots n_m$, $n_i \ge 2$, consider

$$M_N(\mathbb{C})\cong M_{n_1}\otimes M_{n_2}\otimes \cdots \otimes M_{n_m}(\mathbb{C}).$$

 $E_{ij}^{(k)}$, $i, j = 1, ..., n_k$, the standard matrix unit system for $M_{n_k}(\mathbb{C})$, for k = 1, 2, ..., m.

For $j = 1, ..., n_1 - 1$, define

$$P_{1j} = \sum_{i=1}^{j} E_{ii}^{(1)}, \qquad P_{1n_1} = \frac{1}{n_1} \sum_{s,t=1}^{n_1} E_{st}^{(1)}$$

For $1 < k \le m, j = 1, ..., n_k$.

$$P_{kj} = P_{k-1,n_{k-1}} + (I - P_{k-1,n_{k-1}}) \sum_{i=1}^{J} E_{ii}^{(k)}, (j = 1, \dots, n-1)$$

$$P_{kn_k} = P_{k-1,n_{k-1}} + (I - P_{k-1,n_{k-1}}) (\frac{1}{n_k} \sum_{i=1}^{n_k} E_{st}^{(k)})$$

Let $\mathcal{L}(n_1, n_2, ..., n_m)$ be the lattice generated by $\{P_{kj} | 1 \le k \le m, 1 \le j \le n_k\}$, then $\mathcal{L}(n_1, n_2, ..., n_m)$ is a KS-lattice.

Let $\mathcal{L}(n_1, n_2, ..., n_m)$ be the lattice generated by $\{P_{kj} | 1 \le k \le m, 1 \le j \le n_k\}$, then $\mathcal{L}(n_1, n_2, ..., n_m)$ is a KS-lattice.

$$\begin{split} \frac{N^2}{4} < \text{dim} \mathrm{Alg}(\mathcal{L}(n_1, n_2, \dots, n_m)) &= \frac{1}{2} N^2 [\frac{n_1 - 1}{n_1} + \frac{n_2 - 1}{n_1^2 n_2} + \cdots \\ &+ \frac{n_m - 1}{\prod_{i=1}^{m-1} n_i^2 m}] + 1 \leq \frac{N(N-1)}{2} + 1 \end{split}$$

Let
$$\mathfrak{A} = M_2^{(1)}(\mathbb{C}) \otimes M_2^{(2)} \otimes \cdots$$
.

$$P_{11} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
 $P_{12} = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}I \\ \frac{1}{2}I & \frac{1}{2}I \end{pmatrix}$

$$P_{21} = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad P_{22} = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & \frac{1}{2}I & \frac{1}{2}I \\ 0 & 0 & \frac{1}{2}I & \frac{1}{2}I \end{pmatrix}$$

$$\mathrm{Alg}(P_{11},P_{12}) = \{ \begin{pmatrix} A_1 & -A_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & A_2 \\ 0 & A_2 \end{pmatrix} \}$$

$$Alg(P_{11}, P_{12}, P_{21}, P_{22}) = \left\{ \begin{pmatrix} A_1 & -A_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \begin{pmatrix} A_2 & A_3 - A_2 \\ 0 & A_3 \end{pmatrix} \\ 0 & \begin{pmatrix} A_2 & A_3 - A_2 \\ 0 & A_3 \end{pmatrix} \end{pmatrix} \right\}$$

$$Alg(P_{11}, P_{12}, P_{21}, P_{22}) = \left\{ \begin{pmatrix} A_1 & -A_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \begin{pmatrix} A_2 & A_3 - A_2 \\ 0 & A_3 \end{pmatrix} \\ 0 & \begin{pmatrix} A_2 & A_3 - A_2 \\ 0 & A_3 \end{pmatrix} \end{pmatrix} \right\}$$

$$Alg(P_{11}, P_{12}, P_{21}, P_{22}) \cap Alg(P_{11}, P_{12}, P_{21}, P_{22})^* = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A & 0 & 0 \\ 0 & 0 & A & 0 \end{pmatrix}$$

Let \mathscr{L}_{∞} be the lattice generated by $\{P_{kj}|k \geq 1; 1 \leq j \leq 2\}$.

Theorem

Let τ be the trace state and \mathcal{L} be the strong-operator closure of L_{∞} , \mathcal{H} the Hilbert space obtained by GNS construction on (\mathfrak{A},τ) . Then we have that $\mathcal{L}=\operatorname{Lat}(\operatorname{Alg}(\mathcal{L}_{\infty}))$ is a KS-lattice. For any $r\in(0,1)$, if there are $a,l\in\mathbb{N}$ such that $r=\frac{a}{2^l}$, then there are two distinct projections in \mathcal{L} with trace value r; otherwise there is only one projection in \mathcal{L} with trace r.

S^2 as a Kadison-Singer lattice

Let L_{G_3} be the group von Neumann algebra acting on $l^2(G_3)$ (it is a factor of type II₁ with a unique normal faithful trace state), where $G_3 = Z_2 * Z_2 * Z_2$. If U_1, U_2, U_3 are canonical generators for L_{G_3} corresponding to the generators of G_3 with $U_j^2 = 1$. Then $\frac{l-U_j}{2}$, $j = 1, \ldots, 3$, are free projections. Let

$$\begin{split} Q_{\infty} &= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, Q_0 = \begin{pmatrix} H_1 & \sqrt{H_1(I - H_1)} \\ \sqrt{H_1(I - H_1)} & I - H_1 \end{pmatrix}, \\ Q_{-1} &= \begin{pmatrix} H_2 & \sqrt{H_2(I - H_2)} V \\ V^* \sqrt{H_2(I - H_2)} & V^*(I - H_2) V \end{pmatrix}. \end{split}$$

be three free projections. Let F_3 be the lattice generated by $\{Q_{\infty}, Q_0, Q_{-1}\}$.

Theorem

For any projection Q in $Lat(Alg(F_3)) \setminus \{0, I, Q_\infty\}$, there are K_z and U_z in $Q_\infty L_{G_2} Q_\infty$ such that

$$Q = Q_z = \begin{pmatrix} K_z & \sqrt{K_z(I - K_z)} U_z \\ U_z^z \sqrt{K_z(I - K_z)} & U_z^*(I - K_z) U_z \end{pmatrix},$$

where

$$\sqrt{K_z(I-K_z)^{-1}}U_z = (1-z)\sqrt{H_1(I-H_1)} - \sqrt{H_2(I-H_2)}V,$$

for some $z \in \mathbb{C}$. Moreover for any given z in \mathbb{C} , the polar decomposition determines U_z and K_z uniquely which give rise to a projection Q_z (in the above form) in Lat(Alg(F3)).

 $\text{Let } \mathscr{L} = \text{Lat}(\text{Alg}(\textit{F}_3)) \text{ and } \textit{G}[\mathscr{L}] = \{\alpha \in \textit{Aut}(\textit{L}_{\textit{G}_3}) | \alpha(\mathscr{L}) = \mathscr{L}\}.$

Let $\mathscr{L} = \text{Lat}(\text{Alg}(F_3))$ and $G[\mathscr{L}] = \{\alpha \in \text{Aut}(L_{G_3}) | \alpha(\mathscr{L}) = \mathscr{L}\}.$

Theorem

If $\alpha \in G[\mathcal{L}]$ such that $\alpha(Q_0) = Q_{z_1}$, $\alpha(Q_{\infty}) = Q_{z_2}$, $\alpha(Q_{-1}) = Q_{z_3}$, then $\forall z \in \mathbb{C}$, we have $\alpha(Q_z) = Q_{f(z)}$, where

$$f(z) = \frac{zz_2(z_3 - z_1) + z_1(z_3 - z_2)}{z(z_3 - z_1) + (z_3 - z_2)},$$

the unique Möobius transformation satisfies $f(0) = z_1, f(1) = z_2, f(\infty) = z_3$.

$$\alpha_1(Q_{\infty}) = Q_{\infty}, \ \alpha_1(Q_0) = Q_{-1}, \ \alpha_1(Q_{-1}) = Q_0, \ \text{then}$$

$$\alpha_1(Q_z) = Q_{-1-z}$$

$$\alpha_1(\textit{Q}_{\scriptscriptstyle \infty})=\textit{Q}_{\scriptscriptstyle \infty},\,\alpha_1(\textit{Q}_0)=\textit{Q}_{-1},\,\alpha_1(\textit{Q}_{-1})=\textit{Q}_0,$$
 then

$$\alpha_1(Q_z) = Q_{-1-z}$$

$$\alpha_2(Q_{\infty}) = Q_0, \ \alpha_1(Q_0) = Q_{-1}, \ \alpha_1(Q_{-1}) = Q_{\infty}, \ \text{then}$$

$$\alpha_1(Q_z) = Q_{\frac{-1}{1+z}}$$

For any $A \in GL_2(\mathbb{C})$, the Möbius transformation is defined as

$$A = \begin{pmatrix} a & b \\ c & c \end{pmatrix} g_A(z) = \frac{az+b}{cz+d}.$$

For any $A \in GL_2(\mathbb{C})$, the Möbius transformation is defined as

$$A = \begin{pmatrix} a & b \\ c & c \end{pmatrix} g_A(z) = \frac{az+b}{cz+d}.$$

Let $g(\neq I)$ be any Möbius transformation. We say

• g is parabolic if and only if $g \sim m_1$, $m_1(z) = z + 1$;

For any $A \in GL_2(\mathbb{C})$, the Möbius transformation is defined as

$$A = \begin{pmatrix} a & b \\ c & c \end{pmatrix} g_A(z) = \frac{az+b}{cz+d}.$$

Let $g(\neq I)$ be any Möbius transformation. We say

- g is parabolic if and only if $g \sim m_1$, $m_1(z) = z + 1$;
- g is loxodromic if and only if $g \sim m_k$, $m_k(z) = kz$, $|k| \neq 1$,

For any $A \in GL_2(\mathbb{C})$, the Möbius transformation is defined as

$$A = \begin{pmatrix} a & b \\ c & c \end{pmatrix} g_A(z) = \frac{az+b}{cz+d}.$$

Let $g(\neq I)$ be any Möbius transformation. We say

- g is parabolic if and only if $g \sim m_1$, $m_1(z) = z + 1$;
- g is loxodromic if and only if $g \sim m_k$, $m_k(z) = kz$, $|k| \neq 1$,
- g is elliptic if and only if $g \sim m_k$, $m_k(z) = kz$, |k| = 1, $k \neq 1$.

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

The closed subgroups of SO(3) are:

• Cyclic groups C_n ,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,
- Tetrahedral group T,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,
- Tetrahedral group T,
- Octahedral group O,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,
- Tetrahedral group T,
- Octahedral group O,
- Icosahedral group Y,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,
- Tetrahedral group T,
- Octahedral group O,
- Icosahedral group Y, and two infinite closed subgroups :
 - $C_{\infty} \approx SO(2)$ generated by an arbitrary rotation around an axis,

Theorem

 $G[\mathcal{L}]$ is isomorto a closed subgroup of SO(3).

- Cyclic groups C_n ,
- Dihedral groups $D_n(D_3 \approx S_3)$,
- Tetrahedral group T,
- Octahedral group O,
- Icosahedral group Y,
 and two infinite closed subgroups :
 - $C_{\infty} \approx SO(2)$ generated by an arbitrary rotation around an axis,
 - D_{∞} which is generated by C_{∞} and a rotation π around an axis orthogonal to the axis of rotation of C_{∞} .

Distance between Q_Z and Q_{∞}

$$\|\mathit{Q}_z - \mathit{Q}_\infty\|_2^2 = 1 - 2 \text{tr}(\mathit{Q}_z \mathit{Q}_\infty),$$

Distance between Q_z and Q_{∞}

$$||Q_z - Q_{\infty}||_2^2 = 1 - 2tr(Q_z Q_{\infty}),$$

$$d\mu_{\sqrt{\frac{K_z}{I-K_z}}}(t) = \frac{2}{\pi} \frac{|z| + |z+1|}{t^2 + (|z| + |z+1|)^2} \mathbf{1}_{(0,\infty)}(t) dt.$$

Distance between Q_7 and Q_{∞}

$$||Q_z - Q_{\infty}||_2^2 = 1 - 2tr(Q_z Q_{\infty}),$$

$$d_{\mu_{\sqrt{\frac{K_z}{1-K_z}}}}(t) = \frac{2}{\pi} \frac{|z| + |z+1|}{t^2 + (|z| + |z+1|)^2} \mathbf{1}_{(0,\infty)}(t) dt.$$

$$||Q_z - Q_\infty||_2 = \sqrt{\frac{1}{1 + |z| + |z+1|}}$$

$$||Q_z - Q_0||_2 = \sqrt{\frac{|z|}{1 + |z| + |z+1|}}$$

$$||Q_z - Q_{-1}||_2 = \sqrt{\frac{|z+1|}{1 + |z| + |z+1|}}$$

A distance formula

$$\textit{dist}(z_1,z_2) = \sqrt{\frac{2|z_1-z_2|}{(1+|z_1|+|z_1+1|)(1+|z_2|+|z_2+1|)}},$$

and

$$dist(\infty, z_2) = \sqrt{\frac{1}{(1+|z_2|+|z_2+1|)}},$$

$$dist(z_1, z_2) \leq \frac{1}{\sqrt{2}},$$

$$dist(z_1, z_2) \le \frac{1}{\sqrt{2}},$$
$$dist(z_1, z_2) = \frac{1}{\sqrt{2}} i$$

$$\begin{aligned} \textit{dist}(z_1, z_2) &\leq \frac{1}{\sqrt{2}}, \\ \textit{dist}(z_1, z_2) &= \frac{1}{\sqrt{2}} \text{ if and only if} \end{aligned}$$

•
$$z_1 = \infty$$
 and $z_2 \in [-1, 0]$ or

$$dist(z_1,z_2) \leq \tfrac{1}{\sqrt{2}},$$

$$dist(z_1, z_2) = \frac{1}{\sqrt{2}}$$
 if and only if

- $z_1 = \infty$ and $z_2 \in [-1, 0]$ or
- $z_1 = 0$ and $z_2 \in [-\infty, -1]$ or

$$dist(z_1,z_2) \leq \frac{1}{\sqrt{2}},$$

$$dist(z_1, z_2) = \frac{1}{\sqrt{2}}$$
 if and only if

- $z_1 = \infty$ and $z_2 \in [-1, 0]$ or
- $z_1 = 0$ and $z_2 \in [-\infty, -1]$ or
- $z_1 = -1$ and $z_2 \in [0, +\infty]$

Fuglede-Kadison-determinant

Let \mathfrak{M} be a II_1 factor, and τ be the unique normal faithful tracial state. For $T\eta\mathfrak{M}(T)$ is a closed, densely defined operators that affiliated with \mathfrak{M}), if

$$\tau(\log^+|T|) = \int_0^\infty \log^+(t) d\mu_{|T|} < \infty, \log^+(t) = \max(0, \log(t)),$$

the Fuglede-Kadison determinant Δ is defined by:

$$\Delta(T) = exp(\int_0^\infty log(t) d\mu_{|T|}(t)),$$

where $T = U|T| = U \int_0^\infty t dE_{|T|}(t)$.

 Δ has the following properties: $\Delta(ST) = \Delta(S)\Delta(T)$,

$$\Delta(\mathit{T}) = \Delta(\mathit{T}^*) = \Delta(|\mathit{T}|),$$

 $\Delta(U) = 1$, U is unitary.

$$\Delta$$
 has the following properties: $\Delta(ST) = \Delta(S)\Delta(T)$, $\Delta(T) = \Delta(T^*) = \Delta(|T|)$, $\Delta(U) = 1$, U is unitary.

$$\Delta(Q_{z_2}(I-Q_z)Q_{z_2}) = (\frac{2|z_2-z|}{(1+|z|+|z+1|)(1+|z_2|+|z_2+1|))})^2 = dist(z_1,z_2)^4.$$

$$\Delta$$
 has the following properties: $\Delta(ST) = \Delta(S)\Delta(T)$, $\Delta(T) = \Delta(T^*) = \Delta(|T|)$, $\Delta(U) = 1$, U is unitary.

$$\Delta(Q_{z_2}(I-Q_z)Q_{z_2}) = (\frac{2|z_2-z|}{(1+|z|+|z+1|)(1+|z_2|+|z_2+1|))})^2 = dist(z_1,z_2)^4.$$

Theorem

$$G[\mathscr{L}] \approx S_3$$
.

Thank You!

