

Index

아이디어

데이터 수집 및 전처리

구현 과정

결과 및 개선 방향

우리나라 반려동물 양육가구 비율

펫팸족 절반, 자신보다 '반려동물'에게 돈 더 쓴다 [HI★PICK] 태연·키·가비... 스타만큼 유명한 '견플루언서'

*자료:엠브레인 트렌드모니터

나의 반려동물이 내가 원하는 모양의 이모티콘으로 나올 수 있다면…?

02. 데이터 수집 및 전처리

총 70,828 개의 데이터

총 46,845 개의 데이터

총 216 개의 데이터

실제 강아지,고양이 데이터 수집

총 3,239 개의 데이터

총 3,499 개의 데이터

텍스트 제거

도면 생성

귀와 얼굴이 잘리지 않은 216개의 데이터 확보

Generator Network

Discriminator Network

CartoonGAN Loss

$$\mathcal{L}(G, D) = \mathcal{L}_{adv}(G, D) + \omega \mathcal{L}_{con}(G, D)$$

$$\mathcal{L}_{adv}(G,D) = \mathbb{E}_{c_i \sim S_{data}(c)}[\log D(c_i)] \\ + \mathbb{E}_{e_j \sim S_{data}(e)}[\log (1-D(e_j))] \\ + \mathbb{E}_{p_k \sim S_{data}(p)}[\log (1-D(G(p_k)))].$$
Generated Cartoon image —>0

→ Adversarial Loss

이모지의 특성을 반영하여 "Edge-Smoothing"이 추가되었다.

Canny Edge 검출 – 영역확장 – Gaussian Smoothing

$$\mathcal{L}(G,D) = \mathcal{L}_{adv}(G,D) + \omega \mathcal{L}_{con}(G,D)$$

→ Content Loss

Input 사진의 내용을 유지하도록 강제한다. Content Loss의 영향은 w를 통해 조절된다.

W=10을 사용

이미지 contrast에 의존도 가 높음을 개선하기 위함. 학습의 Stability를 높이기 위함. Feature vector 추출 성능을 개선하기 위함.

Generator Network

Discriminator Network

Pix2Pix Loss

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

→ Adversarial Loss

BCE Loss를 사용한 우리에게 익숙한 기본 GAN Loss이다.

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

→L1 Loss

이미지가 흐리게 나오는 문제를 개선하기 위해 L1 distance를 사용한다.

람다를 통해 최적의 loss 탐색

2 Data Augmentation

데이터의 부족으로 다양성을 주기 위함.

3 openCV를 통한 사후 개선

선이 흐리게 나오는 결과를 개선하기 위함.

학습 안정성 개선을 위함.

CNN모델에 존재하는 Feature Map을 활용하여 Content 정보를 담고 있는 이미지와 Style 정보를 담고 있는 이미지를 학습한다.

StyleTransfer Loss

$$\mathcal{L}_{total} = \alpha \mathcal{L}_{content} + \beta \mathcal{L}_{style}$$

$$\mathcal{L}_{\text{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$
.

→ Content Loss

P벡터 이미지의 feature map 과 x 노이즈 벡터 이미지의 feature map이 같아지도록 하는 Loss

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l,$$

→ Style Loss

Style 이미지 a의 Gram 매트릭스와 X 벡터 이미지 의 Gram 매트릭스가 같아지도록 하는 Loss

* Style : 서로 다른 특징 간의 상관관계

* Gram 매트릭스 : CNN 채널에서 나온 activation들 의 상관관

계를 표현한 행렬

04.결과 및 개선방향

활용 방향

- 이모티콘의 선이 너무 둥글고 경계가 명확하지 않았던 점.
- 이모티콘의 스타일이 너무 다양하고 하나의 스타일에 대한 데이터가 너무 적었던 점.
- Style Transfer에 줄무늬와 얼룩무늬가 적용이 안되었던 점.
- 실제와 이모티콘 사이의 차이가 너무 커 오차를 줄이는 데 어려움이 있었음.
- **5** 데이터 전처리가 너무 복잡하고 수작업이 너무 많았던 점.

