Directed Acyclic Graph

Directed Acyclic Graph

- ◆ DAG Directed graph with no cycles.
- Good for modeling processes and structures that have a partial order:
 - a > b and $b > c \Rightarrow a > c$.
 - » But may have a and b such that neither a > b nor b > a.
- Can always make a **total order** (either a > b or b > a for all $a \ne b$) from a partial order.

DAG of dependencies for putting on goalie equipment.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

- \Rightarrow : Show that back edge \Rightarrow cycle.
 - » Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
 - » Therefore, there is a path $v \sim u$, so $v \sim w$ is a cycle.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

- \Leftarrow : Show that cycle \Rightarrow back edge.
 - » c: cycle in G, v: first vertex discovered in c, (u, v): preceding edge in c.
 - » At time d[v], vertices of c form a white path $v \sim u$. Why?
 - » By white-path theorem, *u* is a descendent of *v* in depth-first forest.
 - » Therefore, (u, v) is a back edge.

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a **total order** that extends this partial order.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- **3. return** the linked list of vertices

Time: $\Theta(V + E)$.

Example: On board.

Linked List:

Comp 122,

Correctness Proof

- Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - » *u* is gray.
 - » Is v gray, too?
 - No, because then v would be ancestor of u.
 - \Rightarrow (*u*, *v*) is a back edge.
 - \Rightarrow contradiction of Lemma 22.11 (dag has no back edges).
 - » Is v white?
 - Then becomes descendant of u.
 - By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - » Is v black?
 - Then *v* is already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - Therefore, f[v] < f[u].

Strongly Connected Components

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.

Component Graph

- $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}).$
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.
- G^{SCC} for the example considered:

GSCC is a DAG

Lemma 22.13

Let C and C' be distinct SCC's in G, let $u, v \in C$, $u', v' \in C'$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.

Transpose of a Graph

- G^{T} = transpose of G.
 - » $G^{\mathrm{T}} = (V, E^{\mathrm{T}}), E^{\mathrm{T}} = \{(u, v) : (v, u) \in E\}.$
 - » G^{T} is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^{T} have the *same* SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^{T} .)

Algorithm to detrermine SCCs

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- 3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

Example: On board.

(Courtesy of Prof. Jim Anderson)

How does it work?

Idea:

- » By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- » Because we are running DFS on G^T , we will not be visiting any v from a u, where v and u are in different components.

Notation:

- » d[u] and f[u] always refer to first DFS.
- » Extend notation for d and f to sets of vertices $U \subseteq V$:
- $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
- » $f(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)

SCCs and DFS finishing times

Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

- Case 1: d(C) < d(C')
 - » Let x be the first vertex discovered in C.
 - » At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - » By the white-path theorem, all vertices in C and C' are descendants of x in depthfirst tree.
 - » By the parenthesis theorem, f[x] = f(C) > f(C').

SCCs and DFS finishing times

Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

- Case 2: d(C) > d(C')
 - » Let y be the first vertex discovered in C'.
 - » At time d[y], all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, f[y] = f(C').
 - » At time d[y], all vertices in C are also white.
 - By earlier lemma, since there is an edge (*u*, *v*), we cannot have a path from *C* to *C'*.
 - » So no vertex in *C* is reachable from *y*.
 - » Therefore, at time f[y], all vertices in C are still white.
 - » Therefore, for all $w \in C$, f[w] > f[y], which implies that f(C) > f(C').

SCCs and DFS finishing times

Corollary 22.15

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

- $(u, v) \in E^{\mathrm{T}} \Rightarrow (v, u) \in E$.
- Since SCC's of G and G^T are the same, f(C') > f(C), by Lemma 22.14.

Correctness of SCC

- When we do the second DFS, on G^T , start with SCC C such that f(C) is maximum.
 - » The second DFS starts from some $x \in C$, and it visits all vertices in C.
 - » Corollary 22.15 says that since f(C) > f(C') for all $C \neq C'$, there are no edges from C to C' in G^T .
 - » Therefore, DFS will visit *only* vertices in *C*.
 - » Which means that the depth-first tree rooted at *x* contains *exactly* the vertices of *C*.

Correctness of SCC

- ◆ The next root chosen in the second DFS is in SCC C' such that f (C') is maximum over all SCC's other than C.
 - » DFS visits all vertices in C, but the only edges out of C' go to C, which we've already visited.
 - » Therefore, the only tree edges will be to vertices in C'.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - » vertices in its SCC—get tree edges to these,
 - » vertices in SCC's *already visited* in second DFS—get *no* tree edges to these.