TALLER

PARA EL VIERNES 20 DE NOVIEMBRE DE 2020

1. Demostrar que:

• El elemento idéntico de la suma, el cero 0, determinado en el axioma C3 es único.

Prueba

Supongamos que existen dos números reales 0 y 0´ que cumplen el axioma C3, Entonces

1. 0 + 0' = 0' Por Axioma C3 (Prop. Modulativa de la Suma)

2. 0 + 0' = 0 Por Axioma C3

3. 0 = 0' Por Prop. de Transitividad.

Luego 0 es único q. e. d (Quod erat demonstrandum: Lo que queríamos demostrar).

2. Demostrar que:

• El elemento idéntico del producto, el cero 1, determinado en el axioma C8 es único.

Prueba

Supongamos que existen dos números reales 1 y 1´ que cumplen el axioma C8, Entonces

1. 1 + 1' = 1' Por Axioma C8 (Prop. Modulativa del Producto)

2. 1 + 1' = 1 Por Axioma C8

3. 1 = 1' Por Prop. de Transitividad.

Luego $\mathbf{0}$ es único q.e.d

3. Demostrar que:

 $0 \neq 1$.

Prueba

Supongamos que 0 = 1

- 1. 0 = 0 Por identidad.
- 2. 0 + 0 = 0 + 0 Por Axioma C12 (Prop. de Uniformidad)
- 3. 0 + 0 = 0 Por Axioma C3 4. 1 + 1 = 0 Por Hipótesis
- 5. 2 = 0 Por C1 (Prop. Clausurativa de la Suma)
- 1. 0 = 0 Por identidad.
- 2. 0 + 0 + 0 = 0 + 0 + 0 Por Axioma C12 (Prop. de Uniformidad)
- 3. 0 + 0 + 0 = 0 Por Axioma C3 4. 1 + 1 + 1 = 0 Por Hipótesis
- 5. 3 = 0 Por C1 (Prop. Clausurativa de la Suma)
- $0 = 1 = 2 = 3 \dots$ $\rightarrow \leftarrow$ (Contradicción)

Entonces $0 \neq 1$

q.e.d

Si no fuera así, sería entonces 0 = 1 = 2 = 3 = ... y habría un solo número real.

4. Demostrar la Propiedad cancelativa de la adición.

Si a, b son números reales y a + b = a + c entonces b = c

Prueba

Supongamos que a + b = a + c

- 1. a + b = a + c Por Hipótesis
- 2. (-a) + (a + b) = (-a) + (a + c) Por Axioma C12
- 3. ((-a) + a) + b = ((-a) + a) + c Por Axioma C2
- 4. 0 + b = 0 + c Por Axioma C4
- 5. b = c Por Axioma C3

q.e.d

EJERCICIOS

Demostrar la Propiedad cancelativa de la multiplicación. 5.

Si a, b son números reales y $a \times b = a \times c$ entonces b = c

$$a \times b = a \times c$$

$$b = a$$

Prueba

Supongamos que $a \times b = a \times c$

- 1. $a \times b = a \times c$
- 3.
- $4. \quad 1 \times b = 1 \times c$
- 5. b = c

- Por Hipótesis
- Por Axioma C12
- Por Axioma C7
- Por Axioma C9
- Por Axioma C8

q.e.d

2.

6. Demostrar que el Inverso aditivo de un número real es único.

Prueba

Supongamos que existe $\forall a \in R$ (Para todo a que pertenece a los reales) $\exists (-a) \ y \ (-a)' \in R$ (Existe dos números inversos de a)

1.
$$(-a) + a = 0$$

Por C4

Por C4

3.
$$(-a) + a = (-a)' + a$$

Por Transitividad

Por T4

q.e.d

7. Demostrar que el Inverso multiplicativo de un número real es único.

Prueba

Supongamos que existe $\forall a \in R$ (Para todo a que pertenece a los reales) $\exists \left(\frac{1}{a}\right) \ y \left(\frac{1}{a}\right)' \in R$ (Existe dos números inversos multiplicativos de a)

5.
$$\left(\frac{1}{a}\right) \times a = 1$$

Por C9

Por C4

7.
$$\left(\frac{1}{a}\right) \times a = \left(\frac{1}{a}\right)' \times a$$

Por Transitividad

Por T5

q.e.d

8. Demostrar que Para todo par de números reales a y b, si a + b = 0 entonces b = -a.

Prueba

1.
$$a + b = 0$$

Por Hipótesis

2.

[(-a) + a] + b = -a

Por C12

3.
4.

Por C2 y C3

- -

Por C4

5.

Por C3

q.e.d

9. Demostrar que Para todo par de números reales a y b, si a \neq 0 y a \times b = 1.

Entonces: $b = \frac{1}{a}$

Prueba

- 1. $a \times b = 1$
- $2. \quad \frac{1}{a} \times (a \times b) = \frac{1}{a} \times 1$
- 3. $\left(\frac{1}{a} \times a\right) \times b = \frac{1}{a}$
- 4. $1 \times b = \frac{1}{a}$
- 5. $b = \frac{1}{a}$

Por Hipótesis

Por _____

Por _____

Por _____

Por _____

q.e.d

10. Demostrar que Para todo par de números reales a se tiene que $0 \times a = 0$.

Prueba

- 1. $0 \times a = 0 \times a$
- 2. _____
- 3.
- 4.
- 5.
- 6.
- 7. $0 = 0 \times a$

Por Hipótesis

Por _____

Por _____

Por _____

Por _____

Por _____

Por _____