Lecture

- Section 3: Digital Logic: Combinational and Sequential Circuits
 - 2 weeks followed by Quiz #3
 - 1. Boolean Algebra ⇔ Digital Circuits
 - 2. Combinational Circuits: half adder, full adder, decoders, multiplexers, BCD-7 segment
 - 3. Sequential Circuits: Latches, Registers, and Memory
 - 4. Pipeline Architecture: MIPS

Models of Computation

Turning Machines	Recursively Enumerable	TM(Q, Σ, Γ, q0, δ)
Linear Bounded Automata	Context Sensitive Languages	LBA(Q, Σ, Γ , q0, δ)
Pushdown Automata	Context Free Languages	PDA(Q, Σ, Γ , δ , q0, z0, F)
Finite State Automata	Regular Expressions	FA(Q, Σ, δ, q0, F)
Sequential Circuits		
Combinational Logic	Boolean Algebra	

Combinational Logic

- Based upon Boolean Algebra
 - o all inputs and outputs restricted to True (1) and False (0)
- Operations are restricted to: AND (*), OR (+), NOT (')
- Equivalent to Digital Logic, with gates:

- Can be used as a building blocks: ⇒
 - \circ XOR: A \oplus B is equivalent to (A + B) * (A' + B')
- Example: Half-Adder

Boolean Algebra ⇔ Digital Circuits

- Circuit: a digital realization of a function: y = f(), y = f(x), y = f(a,b), ...
- Values:
 - True (T), 1, +5v
 - False (F), 0,
- Functions:
 - o zero inputs: clear (0), set (1)
 - one input: clear, invert, id, set

#Inputs

Input

Combinations

Output

Combinations

Two Input Functions

- 16 different functions can be created: 2²
- List of functions:
- Definitions: <u>Truth Table</u>:

А	В	0	nor	↔	Α'	→	B'	'equ iv	nan d	l I and I	equi v	В	\rightarrow	A	←	or	1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1 1	1	1	1	1	1	1	1

fold line

clear	set		
nor	or		
↔	←		
A'	А		
<i>→</i> >	\rightarrow		
В'	В		
neq	equiv		
nand	and		

Boolean Algebra to Circuits

- Clear: 0 −
- Set: 1 -
- A: A -
- A': -> A
- A + B: A B
- A * B: A B
- A ⊕ B:
 A ⊕ B:

 A ⊕ B: (A + B) * (A' + B 		Α	\bigoplus	B:	(A +	B) 3	* (A'	+ B'
--	--	---	-------------	----	------	------	-------	------

		•	•	•
Α	В	xor	and	or
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	1	1

Truth Table Reduced to a Circuit

- Generate a circuit as a sum of products
- Values: 0, 1
- Functions: Not ('), And (*), Or (+)
- Example: Implication: A → B
 - o If B is true then A must also be true!
- Consider the Truth Table
- Evaluate each row:
- Combine all rows that are true
 - Output = A'B' + AB' + AB

Α	В	Output	
0	0	1	A'B'
0	1	0	A'B
1	0	1	AB'
1	1	1	AB

Bob: (ABC')'

More Complex Reduction

А	В	С	Bob	Sally
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

Circuit to Boolean Algebra

- One Formula for each output
- Work Backwards, Divide and Conquer!

```
Output = ( ) * ()
```

Output =

Output =

$$3*(5+6) == 3*5 + 3*6$$

Simplification ⇔ Minimization

- The above method can yield large circuits
 - Unnecessary large circuits, like programs, are bad:
 - require larger chips
 - require more time to evaluate
 - generate more heat
- Two approaches:
 - Use algebraic properties to rewrite the formulas
 - Use Karnaugh maps to visualize patterns of simplification
- Algebraic Properties:
 - o associative, commutative, distributive
 - o complement (A*A' \Leftrightarrow 0), De Morgan's law : A' * B' \Leftrightarrow (A + B)'
 - O A' + A ⇔ 1
- Example
 - \circ R = A'*B + A*B

$$R = A'*B + A*B$$

$$R = B*A' + B*A$$

$$R = B^*(A' + A)$$

$$R = B * 1$$

$$R = B$$

Karnaugh Map

Truth Table: R = A'*B + A*B

Α	В	Output
0	0	0
0	1	1
1	0	0
1	1	1

'(A'B')
A'B
'(AB')
AB

Karnaugh Map: for two variables

		E	3
		0	1
۸	0	0	1
Α	1	0	1

- Find groups that contain only 1s
- Group size must be in power of two (1, 2, 4, 8)
- R = B

3-Variable Karnaugh Map

A	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

output = B' + AC

output =
$$B' + ABC$$

Rules for K-maps

- Groups only contains 1s
- Group size must be a power of two
- Groups must be rectangular, no diagonals
- Groups can overlap
- Groups can wrap
- For Minimization:
 - Use the largest group
 - Use the fewest number of groups
 - But all 1s must be contained in at least one group.

		ВС				
		00	01	11	10)
А	0	0	1	1	1	
	1	1	0	0	1	

output = A'C + AB' + A'BC'

		ВС			
		00	01	11	10
Α	0	1			1
	1	1			1

ВС					
00	01	11	10		
1			1		
1			1		