Vernetzende Überlegungen zu "Regression – Rekursion – Funktion"

Vortrag bei der Lehrerfortbildung anlässlich der Tagung des AK Vernetzungen im Mathematikunterricht Darmstadt, 3. Mai 2013

buerker@online.de

Gliederung

- Regression: Beispiele zur Gaußschen Methode der kleinsten Quadrate
- Rekursion: Beispiele zum exponentiellen und beschränkten Wachstum
- Lineare Rekursionsgleichung und explizite Funktionsdarstellung
- Sparen und Tilgen
- Schrittstabile Funktionen

Literatur

Beiträge im Vernetzungsband 3:

Bestimmung einer Ausgleichsgeraden nach dem Gauß'schen Minimumprinzip

Modellierung von Spar- und Tilgungsvorgängen

Das Begriffsdreieck Regression – Rekursion – Funktion

- Meraner Konferenz von 1905:
- Zentrale Rolle des Funktionsbegriffs im MU
- Bildungsstandards 2003:
 Funktionales Denken als Leitidee des MU

Regression: Von Daten zur Funktion

- Historisches Beispiel:
- Die Entdeckung des Kleinplaneten Ceres

Beispiel für eine lineare Regression

- Aufgabe:
- Gegeben seien die Punkte (Daten einer Messreihe)
- $P_1(0|2)$, $P_2(2|3)$, $P_3(4|5)$, $P_4(6|6)$.
- Bestimme die Ausgleichsgerade.

Spielerisches Ermitteln der Ausgleichsgerade

$$T(m, c) = (m \cdot 0 + c - 2)^{2} + (2m + c - 3)^{2} + (4m + c - 5)^{2} + (6m + c - 6)^{2}.$$

Zwei Variable!

Bedingung zwischen *m* und *c* notwendig!

Veranschaulichung der Ausgleichsgeraden in Dynageo

Schwerpunkt einer Punktwolke

Der Schwerpunkt einer Punktwolke wie z. B. $P_1(x_1|y_1), ..., P_n(x_n|y_n)$ ist $S(x_s|y_s)$ mit

$$x_{s} = 1/n \cdot (x_{1} + ... + x_{n})$$

$$y_{s} = 1/n \cdot (y_{1} + ... + y_{n})$$

Bei den gegebenen 4 Datenpunkten ist

S(3|4) der Schwerpunkt der Punktwolke.

Bedingung

 Der Schwerpunkt der Punktwolke liegt auf der Ausgleichsgeraden!

Punktprobe mit dem Schwerpunkt

- Schwerpunkt S(3|4)
- Punktprobe: 4 = 3m + c oder c = 4 3m

Zu minimierender Term

$$T(m, c) = (m \cdot 0 + c - 2)^{2} + (2m + c - 3)^{2}$$

$$+ (4m + c - 5)^{2} + (6m + c - 6)^{2}$$

$$T(m) = (m \cdot 0 + [4 - 3m] - 2)^{2}$$

$$+ (2m + [4 - 3m] - 3)^{2}$$

$$+ (4m + [4 - 3m] - 5)^{2}$$

$$+ (6m + [4 - 3m] - 6)^{2}$$

Vereinfachter Term

$$T(m) = 2(3m-2)^2 + 2(m-1)^2$$

= $20m^2 - 28m + 10$

Minimum des Terms für m = 0,7

Daraus: c = 1,9

Ausgleichsgerade: y = 0.7x + 1.9

Rekursion allgemein

- Umfangreiche Literatur
- Neueres Buch, schulmathematisch ausgerichtet:
 - Gernot Lorenz:
 - Funktionale Modellierung und Rekursion

Temperaturerhöhung

- Beispiel: Aus einem Kühlschrank wird ein Glas Wasser von 4°C herausgenommen und der Umgebungstemperatur von 20°C ausgesetzt. Der Temperaturzuwachs pro Zeiteinheit ist proportional zum Sättigungsmanko (= Differenz zwischen Umgebungstemperatur und aktueller Temperatur (Newtonsches Temperaturgesetz).
- Beschreibe den Temperaturverlauf

Daten

- Datenpunkte: (0|4), (1|12), (2|16), (3|18).
- Sättigungsmanko: 16 8 4 2
- p = 50%
- Temp.-zunahme:84

Rekursive Darstellung

```
• Rekursiv: M(n+1) = 0.5 \cdot M(n) oder

• T(n+1) = 20 - M(n+1)

• = 20 - 0.5 \cdot M(n)

• = 20 - 0.5 \cdot (20 - T(n))

• = 10 + 0.5 \cdot T(n)
```

lineare Rekursionsgleichung!

Explizite Darstellung

- Explizite Darstellung:
- Für die Werte des Sättigungsmankos gilt
- $M(n) = 16.0,5^n$

- Für die Temperaturwerte gilt dann:
- $T(n) = 20 16.0,5^n$

Vergleich rekursiv - explizit

- Rekursiv: $T(n+1) = 10 + 0.5 \cdot T(n)$
- Explizit: $T(n) = 20 16.0,5^n$

Hat eine Folge (a_n) mit linearer Rekursionsgleichung $a_{n+1} = qa_n + r$

stets eine explizite Darstellung der Form

$$n \rightarrow cq^n + d$$
?

Die Kapitalformel

Bekannt:

Ein Anfangskapital K₀ erhöht sich nach n Jahren durch Zinseszins mit Zinssatz p auf das Endkapital

$$K_n = K_0(1 + p)^n$$

Ein erweiterter Sparvorgang

- Ein Kapital Κ₀ erhöht sich beim Zinssatz p
- a) durch Zins und Zinseszins und
- b) durch eine jährlich konstante Sparrate r

Bestimme den Kapitalendwert nach n Jahren.

Rekursion

K_n = Kapital nach n Jahren

 K_{n+1} = Kapital nach n+1 Jahren

$$K_{n+1} = K_n + K_n p + r$$

Wie erhält man daraus eine explizite Darstellung?

Von der rekursiven zur expliziten Darstellung

$$K_{n+1} = K_n + K_n p + r$$

 $K_{n+1} = K_n + p(K_n + r/p)$

$$K_{n+1} + r/p = K_n + r/p + p(K_n + r/p)$$

$$K_{n+1} + r/p = K_n + r/p + p(K_n + r/p)$$

 $K_{n+1} + r/p = (K_n + r/p)(1 + p)$

Somit: $n \rightarrow K_n + r/p$ ist eine exponentielle Folge

$$K_n + r/p = (K_0 + r/p)(1 + p)^n$$

$$K_n = (K_0 + r/p)(1 + p)^n - r/p \text{ (expliz. Darst.!)}$$

$$= c \cdot a^n + d$$

25

Die Vermutung ist richtig!

Liegt einer rekursiv definierten Folge (a_n) eine lineare Rekursionsgleichung

$$a_{n+1} = (1+p)a_n + r, p \neq 0, p > -1$$

zu Grunde, so hat diese eine explizite Darstellung der Form

$$a_n = c(1+p)^n + d$$

Vergleich mit der finanzmathematischen Sparformel

$$K_{n+1} = K_n + K_n p + r = K_n q + r$$
 $(q = 1+p)$

$$K_n = K_{\cdot}q^n + r \cdot \frac{q^n - 1}{q - 1}$$

$$K_n = K_{\cdot}(1+p)^n + \frac{r}{p} \cdot (1+p)^n - \frac{r}{p}$$

$$K_n = (K + \frac{r}{p}) \cdot (1+p)^n - \frac{r}{p}$$

Vergleich der Formeln

Kapitalratenformel (Lämpel-Formel):

$$K_n = (K + \frac{r}{p})(1+p)^n - \frac{r}{p}$$

• Einfache Kapitalformel (r = 0, Max-Formel):

$$K_n = K_{\cdot}(1+p)^n$$

• Einfache Sparformel ($K_0 = 0$, Moritz-Formel):

$$K_n = \frac{r}{p}(1+p)^n - \frac{r}{p}$$

Näherungsformel für Verdopplungszeit

- $(1+p)^n = 2$:
- $n = \ln 2 / \ln(1+p)$
- Für kleine p gilt: In(1+p) ≈ p
- Somit: $n \approx 0.7 / p = 70 / Zinsfu$

Zahlenbeispiel

- Jemand spart am Ende eines jeden Jahres den Betrag von 400 Euro auf ein Sparkonto zum Zinssatz 4% an.
- Nach welcher Zeit erreicht das Guthaben 10 000 €?
- r = 400, p = 4%, r/p = 400 / 0,04 = 10 000.

- $10\ 000 \cdot 1,04^{n} 10\ 000 = 10\ 000$
- $10000 \cdot 1,04^n$ = $20\ 000$
- $70/4 \approx 17,5$
- Es dauert 17,5 Jahre, bis 10 000 Euro erreicht sind.

Neue Sichtweise der Kapitalformel

• 3-Säulen-Modell:

Kapital nach n Jahren:

$$K \cdot (1+p)^n$$

• Kapital in 2. und 3. Säule:

$$K_{\cdot}(1+p)^n-K_{\cdot}$$

Entwicklung der Moritz-Formel

Zum Ende des ersten Jahres: n = 1

Zum Ende des zweiten Jahres: n = 2

Vergleich Max – Moritz

Max Moritz

Gedachtes Anfangsguthaben so, dass $K_{q}p = r$

Vergleich Max – Moritz

Max Moritz K_o K_0p Zinseszins Zinseszins r/p Gedachtes Anfangsguthaben so, dass $K_{q}p = r$

Herleitung der Moritz-Formel mit dem 3-Säulen-Modell

Moritz-Formel

Angespartes Kapital nach n Jahren:
$$\frac{r}{p}(\mathbf{1}+p)^n - \frac{r}{p}$$

Max + Moritz = Lämpel

$$K_n = \underbrace{K \cdot (1+p)^n}_{\text{Max}} + \underbrace{\frac{r}{p} \cdot (1+p)^n - \frac{r}{p}}_{\text{Moritz}}$$

$$K_n = (K + \frac{r}{p}) \cdot (1 + p)^n - \frac{r}{p}$$

Lämpel

Tilgung eines Darlehens

- Abi-Aufgabe von 2000 (LK)
- Ein zu Jahresbeginn gewährtes Bankdarlehen
 S₀ = 200000 Euro wird in festen Jahresbeträgen von
 10000 Euro zurückbezahlt. Dieser Jahresbetrag ist
 am Ende eines jeden Jahres fällig und enthält den
 Zins und die Tilgung. Der Zinssatz beträgt 4% von
 der das Jahr über vorhandenen Restschuld S_n.
 Bestimme die Tilgungszeit.

Vom Sparen zum Tilgen

Sparen mit Zins und konstanter Sparrate:

$$K_{n+1} = K_n + K_n \cdot p + r$$

$$K_n = (K_1 + \frac{r}{p})(1+p)^n - \frac{r}{p}$$

• Tilgen:

 $S_n = Schuldenstand nach n Jahren$

$$S_{n+1} = S_n + S_n \cdot p - r$$
, $r = R\ddot{u}ckzahlrate$

$$S_n = (S, -\frac{r}{p})(1+p)^n + \frac{r}{p}$$
Bürker, 3.5.2013

Struktur der Tilgungsformel

$$S_n = (S_{\cdot} - \frac{r}{p})(1+p)^n + \frac{r}{p}$$

$$S(n) = c \cdot a^n + d$$

Tilgungszeit

$$\cdot = -\left(\frac{r}{p} - S_{\cdot}\right)(1+p)^{N} + \frac{r}{p}$$

$$\left(\frac{r}{p} - S_{\cdot}\right)(1+p)^{N} = \frac{r}{p}$$

Die Tilgungszeit N ist die Zeit, in der das virtuelle Anfangskapital $\frac{r}{p} - s$, auf den Wert $\frac{r}{p}$ anwächst.

Diskrete und kontinuierliche Modellierung

Exponentielles Wachstum eines Bestands:

```
- rekursiv-diskret: B(t+1) = B(t) + pB(t)
- B(t+1) - B(t) = pB(t)
```

 Der Zuwachs pro Zeiteinheit ist proportional zum aktuellen Bestand B(t)!

Diskrete Änderungsrate

Es sei f eine exponentielle Funktion mit $f(x) = ca^x$: Diskrete Änderungsrate:

$$\frac{f(x+h)-f(x)}{h} = \frac{ca^{x+h}-ca^x}{h} = \frac{a^h-1}{h} \cdot f(x)$$

Die diskrete Änderungsrate ist prop. zum Bestand f(x)

Momentane Änderungsrate

- kontinuierlich: $f(x) = ca^x$
- $f'(x) = ln(a) \cdot f(x)$
 - Die momentane Änderungsrate ist proportional zum aktuellen Bestand!

Das Proportionalitätsdreieck

Schrittstabile Funktionen

 Beim exponentiellen Wachstum ist die diskrete Änderungsrate proportional zur momentanen Änderungsrate, d.h. der Quotient

$$\frac{f(x+h)-f(x)}{f'(x)\cdot h}$$

- hängt nicht von x ab.
- Differenzierbare Funktionen f, bei denen dies der Fall ist, heißen schrittstabil.

Welche Funktionen sind schrittstabil?

Satz (Bürker 2007, in [Lorenz]):

Schrittstabile Funktionen sind

1. die linearen Funktionen

$$x \rightarrow mx + b$$

2. die additiv erweiterten Exponentialfunktionen der Form

$$x \rightarrow ca^x + d$$

Vielen Dank!!