ACTIVITÉ 1

1. Pour chaque triangle, mesurer (au millimètre près) l'hypoténuse, le côté adjacent et le côté opposé. Puis, compléter le tableau en utilisant le schéma de droite.

Triangle	Hypoté- nuse	Côté adjacent	Côté opposé	côté adjacent hypoténuse	côté opposé hypoténuse	côté opposé côté adjacent
ABB'						
ACC'						
ADD'						
AEE'						

- 2. Que remarque-t-on?
- **3.** Mesurer l'angle $\widehat{B'AB}$.
- 4. À l'aide de la calculatrice, effectuer les calculs suivants.

a.
$$\cos(\widehat{B'AB})$$
.

b.
$$\sin(\widehat{B'AB})$$
.

c.
$$tan(\widehat{B'AB})$$
.

Note. Vérifiez bien que votre calculatrice est en mode « degrés »!

5. Que peut-on conclure?

D'après pysa.free.fr.

- 1. On considère le triangle *ABC* ci-contre.
 - **a.** Écrire la formule permettant de calculer le cosinus de l'angle \widehat{BCA} dans le triangle ABC.
 - **b.** En utilisant la question précédente, trouver un nombre a qui vérifie $CA = \cos(\widehat{BCA}) \times a$.
 - **c.** Sachant que $\widehat{BCA} = 53,13^\circ$, calculer une valeur approchée de CA avec la calculatrice. Vérifier l'exactitude de votre calcul en mesurant la longueur CA sur la figure ci-dessus.

2. En vous inspirant de la question **1.**, calculer une valeur approchée de la longueur manquante **?** dans chacun des triangles *ABC* ci-dessous (qui ne sont pas représentés en grandeur réelle).

- 1. On considère le triangle *ABC* ci-contre.
 - a. Quels sont les deux côtés de ce triangle dont on connaît la mesure? À quoi correspondent-ils par rapport à l'angle \widehat{CBA} ?
 - **b.** Quel est donc le rapport dont on peut connaître la valeur : $\cos(\widehat{CBA})$, $\sin(\widehat{CBA})$ ou $\tan(\widehat{CBA})$? Quelle est sa valeur exacte?
 - c. Déterminer une valeur approchée de l'angle \widehat{CBA} arrondie au degré près.

La calculatrice sait donner une valeur approchée de la mesure de l'angle dont on connaît le cosinus, le sinus ou la tangente. Par exemple, si $\sin(\alpha) = \frac{1}{2}$, alors, en utilisant la calculatrice comme ci-dessous;

on en déduit que $\alpha = 30$.

2. En vous inspirant de la question **1.**, retrouver une valeur approchée des angles inconnus **?** dans chacun des triangles *ABC* ci-dessous (qui sont ceux de l'activité précédente, toujours pas représentés en grandeur réelle).

D'après Myriade 3^{ème} 2020.