MARKSCHEME

November 2001

CHEMISTRY

Higher Level

Paper 2

SECTION A

(a) (i) $M_r = 88/88.17$ 1. [1] $\Delta H_{\rm c}^{\ominus} = -3325 \pm 25 \text{ kJ mol}^{-1}$ (allow for ECF) [1] (no mark if minus sign missing; no penalty if units not given) The value should be (about) the same. [1] Same (number and type of) bonds are being broken and made. [1] (Do not accept "the compounds have the same relative molecular masses or same formula".) The reaction of methanol and oxygen has a high activation energy / OWTTE. (b) [1] When $E \ge E_a$ / OWTTE is provided, a (highly exothermic) reaction takes place. [1] heat evolved = 110 g × 4.20 J g⁻¹ °C⁻¹ × 21.4 °C (accept (44.6 – 23.2)) (c) (i) (Award [1] for correct ΔT; [1] for 110 g, **not** 100 g.) [2] = 9887 J (accept 9890 J, allow ECF) [1] (No double jeopardy if 100 g or 10 g used; no mark without unit.) (ii) $M_r = 40.0$; $\Delta H \text{ per mol} = -9887 \text{ J} \times \frac{40.0}{10.0} = -39.5 \text{ kJ mol}^{-1} (accept - 39.6)$ [1] (need minus sign for mark; no penalty if units not given) (iii) Heat loss to the surrounding (thus less ΔH) [1] Use a styrofoam/plastic cup **OR** insulate (and cover) beaker [1]

(Accept answer that says "calculate heat gained by glass calorimeter".)

2. (a) (i)
$$M_r = 44.01$$
; m_C in CO_2 produced $= \frac{12.01}{44.01} \times 5.470 = 1.493$ g [1]

Percentage
$$C = \frac{1.493}{2.036} \times 100 = 73.32 \%$$

(ii)
$$m_H = \frac{2.02}{18.02} \times 0.697 = 0.0781 \text{ g}$$

Percentage H =
$$\frac{0.0781}{2.036} \times 100 = 3.84 \%$$

(b) Percentage
$$O = 100 - 73.32 - 3.84 - 10.75 = 12.09 \%$$
 [1]

amount,
$$n = \frac{C}{12.01}$$
 $\frac{H}{1.01}$ $\frac{N}{14.01}$ $\frac{O}{16.00}$ (ECF if % oxygen not worked out)

$$= 6.1$$
 3.8 0.77 0.76 (divide by 0.76) [1]

$$=8:5:1:1$$
, thus C_8H_5NO [1]

(c) Empirical mass =
$$(8 \times 12) + (5 \times 1) + 14 + 16 = 131 \text{ g mol}^{-1}$$
 (allow for ECF) [1]

This is half the M_r **OR** $M_r = 2 \times M_{emp}$; thus molecular formula is $C_{16}H_{10}N_2O_2$. [1]

Cathode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ (state symbols needed) [1]

- (b) Remains the same as [Cu²⁺] does not change (reasoning needed)
 (ECF if reaction in 4 (a) is incorrect)

 [1]
- (c) $2H_2O(1) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$ (states **not** required) (Award [1] for balanced half equation and [1] for O_2 and H^+ as products.) [2]
- (d) The colour intensity decreases / changes
 The pH decreases / changes
 [1]
- (e) $C = At = 0.180 \text{ A} \times 1210 \text{ s} = 218 \text{ C}$ Number of Faradays, $F = \frac{218 \text{ C}}{96480 \text{ C}} \text{ (mole}^-\text{)} = 2.26 \times 10^{-3} \text{ mole}^-$ [1]

2 mole produce 1 mol Cu = 63.35 g Cu thus 2.26×10^{-3} mole gives $0.50 \times 63.35 \times 2.26 \times 10^{-3}$ g = 0.0715 g Cu [1]

SECTION B

5. (a) (i) Average $A_r = \frac{(32.00 \times 95.00) + (33.00 \times 0.76) + (34.00 \times 4.20) + (36.00 \times 0.020)}{100}$

[1]

(ii) Number of neutrons in ${}^{36}S = 36 - 16 = 20$ [1]

(Award [1] for increase from first to third I.E. and [1] for larger increase from third to fourth I.E.; for "I.E. keeps increasing" award only [1]) [2]

(ii) Boron:
$$1s^2 2s^2 2p^1 / [He] 2s^2 2p^1$$
 [1]
Aluminium: $1s^2 2s^2 2p^6 3s^2 3p^1 / [Ne] 3s^2 3p^1$ [1]

Al has an e in a higher / third energy level further away from the nucleus that is easier to remove. [1]

Magnesium:
$$1s^2 2s^2 2p^6 3s^2 / [Ne] 3s^2$$
 [1] $3p^1$ is easier to remove than $3s^2$ as it is higher in energy. [1]

(c) Spectrum showing discrete lines [1] converging at higher energy transition of (excited) electrons from higher energy levels to lower one(s). [1]

(Only one series need be shown to score mark.)

continued...

Question 5 continued

(d)	(i)	One valence electron / one electron in outer shell	
		Melting point low (compared to other metals)	[1]
		First I.E.: low; second I.E.: very high (<i>need both for mark</i>)	[1]
		For at least two full electron arrangements given.	[1]
	(ii)	Reactivity increases down the group	[1]
		as outer electrons are further from the nucleus so easier to remove.	[1]
		Description of reaction with water:	
		e.g. vigorous / highly exothermic.	[1]
		Gas produced / alkaline solution.	[1]
		Balanced equation, e.g. $2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$	[1]
		(must be balanced; state symbols not required.)	
		Description of reaction with chlorine:	
		e.g. vigorous / highly exothermic	[1]
		white solid formed	[1]
		Balanced equation, e.g. $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$	[1]
		(must be balanced, state symbols not required.)	

(Need lone pair on N for mark; must show valence electrons on F in each case. Accept dashes in place of pairs of dots, penalise only once if lone e^- pairs missing on F.)

(ii)	BF ₃ planar triangular	[1]		
	NF ₃ triangular pyramidal	[1]		
	BF_4^- tetrahedral $109\frac{1}{2}^{\circ}$ compared to 107° / bond angle in BF_4^- > bond angle in NF_3			
	Explanation: Lone electron pair on N produces extra repulsion that (slightly) pushes the bonding electrons closer together.	[1]		
(iii)	Hybridisation: mixing / merging (but not joining) of atomic orbitals (to form same number of new ones of lower energy)	[1]		
	$BF_3 sp^2$	[1]		
	NF ₃ sp ³ (hybridised orbitals)	[1]		
(iv)	'Polar bond' indicates that bonding electrons are not equally distributed between the atoms in the bond the more electronegative atom will have the greater electron density.	[1] [1]		
	B—F is a polar bond, because F is more electronegative than B N—F is a polar bond, because F is more electronegative than N OR both bonds are polar because F is the most electronegative element.			
	BF ₃ is a non-polar molecule due to its planar triangular shape / polarity of bonds is cancelled / because of symmetrical distribution of electron cloud.			
	NF ₃ is a polar molecule due to its (trigonal) pyramidal shape and polarity of bonds does not cancel / non-symmetrical distribution of electron cloud.	[1]		

continued...

[1]

Question 6 continued

- (b) (i) σ bonds involve overlap of orbitals end-on / along the molecular axis (it has axial symmetry around axis joining the two nuclei)/ overlap of s orbitals.
 π bonds result from overlapping of parallel p orbitals / sideways overlap.
 [1] Double bond: a σ bond and a π bond.
 [1] Triple bond: a σ bond plus two π bonds.
 - (ii) Delocalisation: when electron pairs are not confined to two adjacent bonding atoms but extend over **three or more** atoms.

(Award [1] for enthalpy diagram.)

Twice the number of bonds made and broken in 2 compared to 1, thus twice the energy given out.

[1]

Delocalisation present (only) in 3.

[1]

Thus 3 is more stable / less energy is given out.

[1]

[1]

[1]

The nucleophile can attach from either side producing an equal mixture of

enantiomers / racemic mixture (thus optically inactive).

Forming a planar carbocation.

continued...

8.	(a)	[H ₂ ($\frac{[g][CO(g)]}{H_2O(g)]}$ (state symbols not needed)	[1]
		mol	dm^{-3} (ECF if K_c expression incorrect)	[1]
			othermic. value of K_c increases with temperature (forward reaction is favoured).	[1] [1]
	(b)	(i)	The rate of the forward reaction:	
			Increase in temperature: increases rate of the forward reaction since it increases the number of collisions with $E \ge E_a$ (thus rate of forward and reverse reaction increases).	[1] [1]
			(Award [0] for "more frequent collisions" as this is not the main reason.)	
			Increase in pressure: Increases the rate of the forward reaction. An increase in pressure increases the concentration / the same amount of molecules in a smaller volume (thus rate increases)/ more frequent collisions.	[1] [1]
			Increase in surface area of $C(s)$: Increases rate of forward reaction. The reactive surface area of $C(s)$ increases / concentration of $H_2O(g)$ in contact with $C(s)$ increases (thus rate increases) / more frequent collisions.	[1] [1]
		(ii)	$[H_2O]$: $[H_2]$ ratio:	
			Increase in T: decreases ratio / more [H ₂] compared to [H ₂ O]. Favours forward / endothermic reaction by using up (some of the) heat supplied (no mark for saying "because of Le Chatelier's principle").	[1] [1]
			Increase in P: Increases the ratio / more $[H_2O]$ compared to $[H_2]$. 1 mol / volume of gas in the reactants, 2 mol / volume of gases in the products / increasing pressure will move position of equilibrium to the left to relieve	[1]
			pressure due to more volumes of gas (in the products).	[1]
			Increase in surface area of $C(s)$: No effect. Because $[C(s)]$ is constant / position of equilibrium is unchanged.	[1] [1]
		(iii)	The value of the equilibrium constant:	
			Increase in T: increases value of K_c .	[1]
			Increase in P: no effect on K_c (because K_c is only temperature dependent).	[1]
			Increase in surface area: no effect (K_c is only temperature dependent).	[1]

Question 8 continued

(c)	Correct diagram (reactants level, products level and activation energy) for an endothermic change (no double jeopardy) showing a lower E_a for the catalysed reaction.		
	Rate of forward reaction: Rate of reverse reaction: Equilibrium position:	increases increases unchanged	[1] [1] [1]