732A96/TDDE15 Advanced Machine Learning Graphical Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 3: Parameter Learning

Contents

- Parameter Learning for BNs
 - Maximum Likelihood
 - Expectation Maximization Algorithm
- ▶ Parameter Learning for MNs
 - Iterative Proportional Fitting Procedure

Literature

- Main source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapters 8 and 9.
- Additional source
 - Koski, T. J. T. and Noble, J. M. A Review of Bayesian Networks and Structure Learning. Mathematica Applicanda 40, 51-103, 2012.

Parameter Learning for BNs: Maximum Likelihood

• Given a sample $d_{1:N}$, the log likelihood function is

$$\begin{split} \log p(d_{1:N}|\theta,G) &= \log \left[\prod_{l} p(d_{l}|\theta,G) \right] = \log \left[\prod_{l} \prod_{i} p(d_{l}[X_{i}]|d_{l}[Pa_{i}],\theta) \right] \\ &= \log \left[\prod_{l} \prod_{i} \theta_{X_{i}=d_{l}[X_{i}]|Pa_{i}=d_{l}[Pa_{i}]} \right] = \log \left[\prod_{i} \prod_{j} \prod_{k} \theta_{X_{i}=k|Pa_{i}=j}^{N_{ijk}} \right] \\ &= \sum_{i} \sum_{j} \sum_{k} N_{ijk} \log \theta_{X_{i}=k|Pa_{i}=j} \end{split}$$

where N_{ijk} is the number of instances in $d_{1:N}$ with $X_i = k$ and $Pa_i = j$.

▶ To maximize the log likelihood function subject to the constraint $\sum_k \theta_{X_i=k|Pa_i=j} = 1$ for all i and j, we maximize

$$\sum_{i} \sum_{j} \sum_{k} N_{ijk} \log \theta_{X_i = k|Pa_i = j} + \sum_{i} \sum_{j} \lambda_{ij} \left(\sum_{k} \theta_{X_i = k|Pa_i = j} - 1 \right)$$

where λ_{ij} are called Lagrange multipliers.¹

• Setting to zero the derivative with respect to $\theta_{X_i=k|Pa_i=j}$ gives

$$\theta_{X:=k|Pa:=i} = -N_{iik}/\lambda_{ii}$$

▶ Replacing in the constraint gives $\lambda_{ij} = -N_{ij}$ and $\theta_{X_{i=k}|P_{a_{i}=j}}^{ML} = N_{ijk}/N_{ij}$.

¹Any stationary point of the Lagrangian function is a stationary point of the original function subject to the constraints. Moreover, the log likelihood function is concave.

Parameter Learning for BNs: Expectation Maximization Algorithm

- Let d_{1:N} be an incomplete sample, i.e. d_i[X_i] =? for some i and I. Let o_{1:N} denote the observed part of d_{1:N}, and u_{1:N} the unobserved part.
- ▶ The log likelihood function over $o_{1:N}$ is

$$\log p(o_{1:N}|\theta,G) = \log \prod_{l} \sum_{u_l} p(o_l,u_l|\theta,G) = \sum_{l} \log \sum_{u_l} p(o_l,u_l|\theta,G)$$

▶ To maximize it subject to the constraint $\sum_k \theta_{X_i=k|Pa_i=j}=1$ for all i and j, we maximize

$$\sum_{l} \log \sum_{u_l} p(o_l, u_l | \theta, G) + \sum_{i} \sum_{j} \lambda_{ij} \left(\sum_{k} \theta_{X_i = k | Pa_i = j} - 1 \right)$$

▶ Its derivative with respect to $\theta_{X_i=k|Pa_i=j}$ is

$$\sum_{l} \frac{\sum_{u_{l}:c_{l}[X_{i}]=k,c_{l}[Pa_{i}]=j} \prod_{i'} \theta_{X_{i'}=c_{l}[X_{i'}]|Pa_{i'}=c_{l}[Pa_{i'}]}}{\theta_{X_{i}=k|Pa_{i}=j} \sum_{u_{l}} p(o_{l},u_{l}|\theta,G)} + \lambda_{ij}$$

$$= \sum_{I} \sum_{u_{i}: c_{I}[X_{i}] = k, c_{I}[Pa_{i}] = j} \frac{p(u_{I}|o_{I}, \theta, G)}{\theta_{X_{i} = k|Pa_{i} = j}} + \lambda_{ij} = M_{ijk}/\theta_{X_{i} = k|Pa_{i} = j} + \lambda_{ij}$$

where $c_l = \{o_l, u_l\}$ and $M_{ijk} = \sum_l \sum_{u_l: c_l [X_i] = k, c_l [Pa_i] = i} p(u_l | o_l, \theta, G)$.

Setting the derivative to zero gives

$$\theta_{X_i=k|Pa_i=j} = -M_{ijk}/\lambda_{ij}$$

Peplacing this into the constraint gives $\lambda_{ij} = -M_{ij}$ and, thus, $\theta_{X_i=k|pa_i=j}^{ML} = M_{ijk}/M_{ij}$. No closed form solution but it suggests ...

5/10

Parameter Learning for BNs: Expectation Maximization Algorithm

EM algorithm

```
Set \theta to some initial values Repeat until \theta does not change Compute p(u_l|o_l,\theta,G) for all l /* E step */ Compute M_{ijk} Set \theta_{ijk} = M_{ijk}/M_{ij} /* M step */
```

- ▶ The EM algorithm increases $\log p(o_{1:N}|\theta,G)$ in each iteration. So, it is locally but not necessarily globally optimal.
- ▶ Note that computing $p(u_l|o_l, \theta, G)$ requires inference.

Parameter Learning for BNs: Expectation Maximization Algorithm

- As shown before, maximizing the log likelihood function over O is inefficient as no closed form solution exists.
- Moreover, it is ineffective due to multimodality, i.e. each completion of the data defines a unimodal function but their sum may be multimodal.
- Consider instead maximizing its expectation

$$E_{U_{1:N}}[\log p(o_{1:N}, u_{1:N}|\theta, G)] = \sum_{l} \sum_{u_{l}} p(u_{l}|o_{l}, \theta, G) \log p(o_{l}, u_{l}|\theta, G)$$

$$= \sum_{l} \sum_{u_{l}} p(u_{l}|o_{l}, \theta, G) \sum_{i} \log \theta_{X_{i}=c_{l}[X_{i}]|Pa_{i}=c_{l}[Pa_{i}]}$$

where $c_I = \{o_I, u_I\}$. Then

$$\mathbb{E}_{U_{1:N}}[\log p(o_{1:N}, u_{1:N}|\theta, G)] = \sum_{i} \sum_{i} \sum_{k} M_{ijk} \log \theta_{X_{i}=k|P_{a_{i}}=j}$$

where $M_{ijk} = \sum_{l} \sum_{u_l:c_l[X_i]=k,c_l[Pa_i]=j} p(u_l|o_l,\theta,G)$.

▶ Then, $\theta_{X_i=k|Pa_i=j}^{ML} = M_{ijk}/M_{ij}$. No closed form solution but it suggests the EM algorithm too.

Parameter Learning for MNs: Iterative Proportional Fitting Procedure

• Given a complete sample $d_{1:N}$, the log likelihood function is

$$\log p(d_{1:N}|\theta,G) = \sum_{K \in CI(G)} \sum_{k} N_k \log \varphi(k) - N \log Z$$

where N_k is the number of instances in $d_{1:N}$ with K = k. Then

$$\log p(d_{1:N}|\theta,G)/N = \sum_{K \in CI(G)} \sum_{k} p_{e}(k) \log \varphi(k) - \log Z$$

where $p_e(X)$ is the empirical probability distribution obtained from $d_{1:N}$.

▶ Let $Q \in Cl(G)$. The derivative with respect to $\varphi(q)$ is

$$\frac{\partial \log p(d_{1:N}|\theta,G)/N}{\partial \varphi(q)} = \frac{p_e(q)}{\varphi(q)} - \frac{1}{Z} \frac{\partial Z}{\partial \varphi(q)}$$

▶ Let $Y = X \setminus Q$. Then

$$\frac{\partial Z}{\partial \varphi(q)} = \sum_{y} \prod_{K \in Cl(G) \setminus Q} \varphi(k, \overline{k}) = \frac{Z}{\varphi(q)} \sum_{y} \prod_{K \in Cl(G) \setminus Q} \varphi(k, \overline{k}) \frac{\varphi(q)}{Z} = \frac{Z}{\varphi(q)} p(q | \theta, G)$$

where \overline{k} denotes the elements of q corresponding to the elements of $K \cap Q$.

Putting together the results above, we have that

$$\frac{\partial \log p(d_{1:N}|\theta,G)/N}{\partial \varphi(q)} = \frac{p_e(q)}{\varphi(q)} - \frac{p(q|\theta,G)}{\varphi(q)}$$

Parameter Learning for MNs: Iterative Proportional Fitting Procedure

Setting the derivative to zero gives ²

$$\varphi^{ML}(q) = \varphi(q)p_e(q)/p(q|\theta,G)$$

No closed form solution but ...

```
IPFP

Initialize \varphi(k) for all K \in CI(G)

Repeat until convergence

Set \varphi(k) = \varphi(k)p_e(k)/p(k|\theta,G) for all K \in CI(G)
```

- ▶ IPFP increases $\log p(d_{1:N}|\theta,G)$ in each iteration. So, it is globally optimal.
- Iterative coordinate ascend method.
- ▶ Note that computing $p(k|\theta, G)$ in the last line requires inference. Moreover, the multiplication and division are elementwise.
- Note also that Z needs to be computed in each iteration, which is computationally hard. This can be avoided by a careful initialization.

²The log likelihood function is concave.

Contents

- ▶ Parameter Learning for BNs
 - Maximum Likelihood
 - Expectation Maximization Algorithm
- Parameter Learning for MNs
 - Iterative Proportional Fitting Procedure

Thank you