

本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年11月 2日

出願番号 Application Number:

特顧2000-336391

出 願 人 Applicant(s):

セイコーエプソン株式会社

2001年11月30日

特許庁長官 Commissioner, Japan Patent Office 及川耕造

出証番号 出証特2001-3105725

特2000-336391

【書類名】 特許願

【整理番号】 J0081619

【提出日】 平成12年11月 2日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 27/00

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 石田 方哉

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 古沢 昌宏

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 森井 克行

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 横山 修

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 宮下 悟

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 下田 達也

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代表者】 安川 英昭

【代理人】

【識別番号】 100066980

【弁理士】

【氏名又は名称】 森 哲也

【選任した代理人】

【識別番号】 100075579

【弁理士】

【氏名又は名称】 内藤 嘉昭

【選任した代理人】

【識別番号】 100103850

【弁理士】

【氏名又は名称】 崔 秀▲てつ▼

【手数料の表示】

【予納台帳番号】 001638

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 有機エレクトロルミネッセンス装置及びその製造方法 【特許請求の範囲】

【請求項1】 少なくとも能動層が有機材料で構成されている有機薄膜トランジスタ素子と、該有機薄膜トランジスタ素子によって駆動される有機エレクトロルミネッセンス素子とを含むことを特徴とする有機エレクトロルミネッセンス装置。

【請求項2】 請求項1記載の有機エレクトロルミネッセンス装置において、基板をさらに含み、前記エレクトロルミネッセンス素子は前記基板と前記有機 薄膜トランジスタ素子との間に設けられていることを特徴とする有機エレクトロルミネッセンス装置。

【請求項3】 請求項1記載の有機エレクトロルミネッセンス装置において、基板をさらに含み、前記有機薄膜トランジスタ素子は前記基板と前記エレクトロルミネッセンス素子との間に設けられていることを特徴とする有機エレクトロルミネッセンス装置。

【請求項4】 1画素において、前記有機薄膜トランジスタ素子のソース領域の面積とドレイン領域の面積とを加えた面積が、発光材料が配置された領域の面積より大であることを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネッセンス装置。

【請求項5】 前記有機薄膜トランジスタ素子を構成するソース及びドレインは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有することを特徴とする請求項1~4のいずれかに記載の有機エレクトロルミネッセンス装置。

【請求項6】 前記ソース及びドレインの屈曲した形状部分を覆うようにゲートを設けたことを特徴とする請求項5記載の有機エレクトロルミネッセンス装置。

【請求項7】 前記ソース及びドレインの屈曲した形状部分は、互いに一定 距離を隔てて対向して設けられた櫛形状であることを特徴とする請求項5又は6 記載の有機エレクトロルミネッセンス装置。

【請求項8】 前記ソース及びドレインの屈曲した形状部分は、互いに一定

距離を隔てて対向して設けられた渦巻き形状であることを特徴とする請求項5又は6記載の有機エレクトロルミネッセンス装置。

【請求項9】 基板の上方に有機エレクトロルミネッセンス素子を形成するステップと、前記有機エレクトロルミネッセンス素子の上方に該有機エレクトロルミネッセンス素子を駆動する有機薄膜トランジスタ素子を形成するステップとを含むことを特徴とする有機エレクトロルミネッセンス装置の製造方法。

【請求項10】 基板の上方に有機薄膜トランジスタ素子を形成するステップと、前記有機薄膜トランジスタ素子の上方に該有機薄膜トランジスタ素子によって駆動され所定の表示を行う有機エレクトロルミネッセンス素子を形成するステップとを含むことを特徴とする有機エレクトロルミネッセンス装置の製造方法

【請求項11】 1 画素において、前記有機薄膜トランジスタ素子のソース 領域の面積とドレイン領域の面積とを加えた面積が、発光材料が配置された領域 の面積より大であることを特徴とする請求項9又は10記載の有機エレクトロル ミネッセンス装置の製造方法。

【請求項12】 前記有機薄膜トランジスタ素子を構成するソース及びドレインは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有することを特徴とする請求項9~11のいずれかに記載の有機エレクトロルミネッセンス装置の製造方法。

【請求項13】 前記ソース及びドレインの屈曲した形状部分を覆うように ゲートを設けたことを特徴とする請求項12記載の有機エレクトロルミネッセン ス装置の製造方法。

【請求項14】 前記ソース及びドレインの屈曲した形状部分は、互いに一定距離を隔てて対向して設けられた櫛形状であることを特徴とする請求項12又は13記載の有機エレクトロルミネッセンス装置の製造方法。

【請求項15】 前記ソース及びドレインの屈曲した形状部分は、互いに一定距離を隔てて対向して設けられた渦巻き形状であることを特徴とする請求項1 2又は13記載の有機エレクトロルミネッセンス装置の製造方法。

【請求項16】 少なくとも、前記有機薄膜トランジスタの形成と前記有機

エレクトロルミネッセンス素子の有機発光層の形成とを、液相プロセスによって 行うことを特徴とする請求項9~15のいずれかに記載の有機エレクトロルミネ ッセンス装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は有機エレクトロルミネッセンス装置及びその製造方法に関し、特に各種情報の表示を行う有機エレクトロルミネッセンス装置及びその製造方法に関する。

[0002]

【従来の技術】

被晶ディスプレイや有機エレクトロルミネッセンスディスプレイに代表されるフラットパネルディスプレイの各画素の駆動には薄膜トランジスタ(Thin film transistor; TFT)を用いることが主流となっているが、従来の薄膜トランジスタの能動層はシリコンなどに代表される無機半導体からなっている。

[0003]

【発明が解決しようとする課題】

しかしながら、従来の無機半導体薄膜トランジスタは柔軟性に乏しいため、任 意の形状を有するディスプレイを得ることが困難であった。また、従来の薄膜ト ランジスタの作製には複雑な工程と高真空装置などの高度な装置とが必要であっ た。

[0004]

そこで、本発明の第1の目的は柔軟性に富む有機半導体材料を用いた薄膜トランジスタにより駆動される有機エレクトロルミネッセンス装置を提供することである。第2の目的は液相プロセスなどの簡便な手法を用いて薄膜トランジスタ及び有機エレクトロルミネッセンス素子を作製する方法を提供することである。

[0005]

【課題を解決するための手段】

本発明による有機エレクトロルミネッセンス装置は、少なくとも能動層が有機 材料で構成されている有機薄膜トランジスタ素子と、該有機薄膜トランジスタ素 子によって駆動される有機エレクトロルミネッセンス素子とを含むことを特徴と する。有機薄膜トランジスタを採用して有機エレクトロルミネッセンス素子を駆 動することにより、特別な装置を必要とせず、全ての製造工程をインクジェット プロセスで行うことができ、製造コストを低減できる。

[0006]

なお、基板をさらに含み、前記エレクトロルミネッセンス素子が前記基板と前記有機薄膜トランジスタ素子との間に設けられている構造にしても良いし、前記有機薄膜トランジスタ素子が前記基板と前記エレクトロルミネッセンス素子との間に設けられている構造にしても良い。いずれの構造においても、基板、エレクトロルミネッセンス素子、有機薄膜トランジスタ素子は、各部分がそれぞれ接しているものではない。

[0007]

また、1 画素において、前記有機薄膜トランジスタ素子のソース領域の面積とドレイン領域の面積とを加えた面積が、発光材料が配置された領域(例えば図5中の発光層13)の面積より大であるようにする。また、前記薄膜トランジスタ素子を構成するソース及びドレインは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有するように構成する。そして、前記ソース及びドレインの屈曲した形状部分を覆うようにゲートを設ける。このように構成すれば、ゲート幅をより長くすることができ、有機薄膜トランジスタ素子でも充分に有機エレクトロルミネッセンス素子を駆動することができる。なお、前記ソース及びドレインの屈曲した形状部分は、互いに一定距離を隔てて対向して設けられた櫛形状か、渦巻き形状とする。

[0008]

本発明による有機エレクトロルミネッセンス装置の製造方法は、基板の上方に 所定の表示を行う有機エレクトロルミネッセンス素子を形成するステップと、前 記有機エレクトロルミネッセンス素子の上方に該有機エレクトロルミネッセンス 素子を駆動する有機薄膜トランジスタ素子を形成するステップとを含むことを特 徴とする。

[0009]

本発明による他の有機エレクトロルミネッセンス装置の製造方法は、基板の上方に有機薄膜トランジスタ素子を形成するステップと、前記有機薄膜トランジスタ素子の上方に該有機薄膜トランジスタ素子によって駆動され所定の表示を行う有機エレクトロルミネッセンス素子を形成するステップとを含むことを特徴とする。

[0010]

いずれの場合においても、前記表示を行う際の1 画素において、前記有機薄膜トランジスタ素子のソース領域の面積とドレイン領域の面積とを加えた面積が、発光材料が配置された領域の面積より大であるようにし、前記有機薄膜トランジスタ素子を構成するソース及びドレインは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有するように構成する。そして、前記ソース及びドレインの屈曲した形状部分を覆うようにゲートを設ける。このように構成すれば、ゲート幅をより長くすることができ、有機薄膜トランジスタ素子でも充分に有機エレクトロルミネッセンス素子を駆動することができる。なお、前記ソース及びドレインの屈曲した形状部分は、互いに一定距離を隔てて対向して設けられた櫛形状か、渦巻き形状とする。

[0011]

また、少なくとも、前記有機薄膜トランジスタの形成と前記有機エレクトロルミネッセンス素子の有機発光層の形成とを、液相プロセスによって行う。こうすることにより、真空チャンバーを用いることなく、有機エレクトロルミネッセンス装置を製造することができる。すなわち、インクジェット法、スピンコート法、ディッピング法など、周知の液相プロセスによって、有機薄膜トランジスタと有機エレクトロルミネッセンス素子の有機発光層とを形成すれば、真空チャンバーは不要となり、製造コストを低く抑えることができる。

[0012]

要するに、有機薄膜トランジスタを採用して有機エレクトロルミネッセンス素 子を駆動する構成を採用すれば、特別な装置を必要とせず、インクジェットプロ セス等の液相プロセスを用いて製造することができるのである。

[0013]

【発明の実施の形態】

次に、図面を参照して本発明の実施の形態について説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。

図1は本発明による有機エレクトロルミネッセンス装置の第1の実施形態の構成を示す断面図であり、表示のための1画素分が示されている。同図に示されているように、本実施形態による有機エレクトロルミネッセンス装置は、透明基板10上に、透明導電膜11と、発光層13及びその周りに設けられた絶縁膜12と、陰極層パターン14と、層間絶縁膜20と、互いに対向して設けられたドレイン31及びソース30と、有機半導体層32と、ゲート絶縁膜34と、ゲートライン33と、層間絶縁膜20aと、ソースライン35と、が順に積層された構造になっている。なお、層間配線22aはドレイン31と陰極層パターン14との間を電気的に接続し、層間配線22bはソース30とソースライン35とを電気的に接続している。

[0014]

同図に示されている構造においては、透明基板10側が表示面となり、発光層13による表示内容を、透明導電膜11と透明基板10とを介して観察することになる。すなわち、有機薄膜トランジスタを構成するゲートライン33並びにドレイン31及びソース30によって、発光層13を含むエレクトロルミネッセンス素子部分を駆動することにより、1画素分の表示を行うことができる。

[0015]

また、図2は本発明による有機エレクトロルミネッセンス装置の第2の実施形態の構成を示す断面図であり、表示のための1画素分が示されている。同図に示されているように、本実施形態による有機エレクトロルミネッセンス装置は、基板10の上に、ソースライン35と、層間絶縁膜20と、ゲートライン33と、ゲート絶縁膜34と、有機半導体層32と、互いに対向して設けられたドレイン31及びソース30と、層間絶縁膜20aと、層間配線22と、陰極パターン1

4と、発光層13と、透明導電膜11と、が順に積層された構造になっている。 なお、層間配線22aはドレイン31と陰極層パターン14との間を電気的に接続し、層間配線22bはソース30とソースライン35とを電気的に接続している。

[0016]

同図に示されている構造においては、透明導電膜11側が表示面となり、陰極パターン14の形状による発光層13の表示内容を、透明導電膜11を介して観察することになる。すなわち、有機薄膜トランジスタを構成するゲートライン33並びにドレイン31及びソース30によって、発光層13を含むエレクトロルミネッセンス素子部分を駆動することにより、1画素分の表示を行うことができる。

[0017]

次に、本発明の第1の実施形態による有機エレクトロルミネッセンス装置の製造手順について説明する。図3~図19は、有機エレクトロルミネッセンス装置の製造方法の各工程を示す図である。図3~図8及び図14~図19において、図(a)は平面図、図(b)は図(a)中のA-A部分の断面図である。図9~図13は、断面図である。

[0018]

まず、図3において、基板10にはガラス、石英、プラスティック(合成樹脂)等の透明な材料を用いる。また、透明導電膜11としては、ITO(indium tin oxide)が望ましい。ただし、ITO膜に限定されるものではなく、透明で導電性が高ければ、他の構成でも良い。また、本実施形態ではITO付きガラスを用いるとする。

[0019]

図4において、絶縁膜12は、陰極パターン14と透明導電層11とのリーク電流を防ぐために設ける。本実施形態ではSiO₂を用いている。絶縁性が確保されれば材料はこれに限らない。有機材料であるポリイミド樹脂等も使用できる。本実施形態では、原料としては、キシレンにポリシラザンを溶解した液体原料を用い、発光エリアとなる円筒形の孔以外の領域にのみインクジェット(I/J

)法を用いて形成する。ポリシラザン溶液を I / J 法で塗布した後、 2 5 0 ℃、 1 0 分間加熱して、所望の形状で、膜厚が 1 5 0 n mの S i 0 2 膜を形成した。 【 0 0 2 0 】

図5において、発光層13は正孔を注入するための正孔注入層と、発光するエレクトロルミネッセンス層との2層から形成しても良い。いずれの材料もI/J 法で形成される。スピンコート、蒸着等を使用して形成しても良い。

発光層13は絶縁膜12の円筒状の孔の内部に形成する。本実施形態では、エレクトロルミネッセンス層のみをI/J法により形成した。液体原料は、ポリフルオレン系高分子をキシレン溶媒に溶解した溶液をI/J法で塗布し、溶媒を乾燥・除去することにより発光層13を形成した。なお、発光層13の膜厚は約80nmである。この他、エレクトロルミネッセンス層には、ポリパラフェニレンピニレン(PPV)等の有機エレクトロルミネッセンス材料を用いることができる。

[0021]

図6において、陰極層パターン14は、金属にて形成する。材料は金、銀、銅等を用いる。I/J法によるパターンニングで形成する。他にアルミニウム等の金属を蒸着等の方法で形成しても良い。本実施形態では、金錯体をエタノール溶液に溶解した溶液を用いた。金錯体として、(CH₃)₃-P-Au-CH₃で示される材料を用い、その濃度は約2重量%とした。この溶液をI/J法により塗布した後に80℃で加熱し、膜厚が50nmの良好な伝導特性を示す金膜パターンが得られた。

[0022]

次に、図7に示されているように、層間絶縁膜20を形成する。層間絶縁膜20には、高分子材料であるポリビニルアルコール(PVA)、ポリイミド等を用いる。他に SiO_2 等の無機材料を使用しても良い。高分子材料の場合は、スピンコート、I/J法等で成膜できる。本実施形態では、PVA水溶液をスピンコート法により、膜厚1. 5μ mのPVA膜を形成した。

[0023]

ここで、図8に示されているように、層間配線を行うためのピアホール21 a

を形成する。ビアホールを形成するための詳細なプロセスが、図9から図13に 示されている。

まず、図9に示されているように、直下の層40の表面全面に、層間絶縁膜2 0を形成する。次に、図10に示されているように、層間絶縁膜20上に自己組 織化膜41を形成する。この自己組織化膜41は表面に撥水基であるフルオロア ルキル基を有する有機単分子膜である。ここに、図11に示されているように、 フォトマスク42を介して紫外光を照射すると、自己組織化膜41のうち紫外光 が照射された領域のみが除去されて、図12に示されているように自己組織化膜 パターン43が形成され、層間絶縁膜20が露出する。層間絶縁膜20をPVA 等の可溶性の髙分子で形成した場合には、図13に示されているように、所望の 溶媒に浸漬することにより層間絶縁膜20の一部を溶解・除去して層間絶縁膜の パターン44を形成することができる。本実施形態では純水を用いてPVAの一 部を溶解・除去した。図には示されていないが、PVAの一部を除去した後に、 基板全面に紫外光を照射することにより、基板表面に残る自己組織化膜を分解・ 除去した。紫外光を用いて円形形状の自己組織化膜パターン43を除去すること で、ビアホールを層間絶縁膜に形成することができる。これ以外のビアホール形 成手段としては、フォトリソグラフィーを用いたエッチングによる方法、I/J 法で層間絶縁膜が可溶な溶媒を吐出することによる方法等を用いることができる

[0024]

ビアホールの形成が完了したら、図14において、ビアホール中へ液体金材料のトルエン溶液をI/J法で塗布することにより層間配線22aを形成する。

次に、図15に示されているように、ソース30及びドレイン31を形成する

この場合、同図に示されているように、ソース30とドレイン31とは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有している。つまり、ソース30は、突出した形状部分30a~30dを有し、櫛形状になっている。ドレイン31も同様に、突出した形状部分31a~31dを有し、櫛形状になっている。そして、ソース30の突出した形状部分30a~30dと、ドレイン31の

突出した形状部分31 a ~ 31 d とが交互に配列され櫛形状が噛み合うように形成されている。このため、ソース30の櫛形状部分と、ドレイン31の櫛形状部分とが、互いに一定距離を隔てて対向して形成されていることになる。

[0025]

また、ドレイン31は陰極層に接続するように形成する。ソース30及びドレイン31の材料には金属、導電性高分子材料等を使用することができる。ソース30及びドレイン31は、I/J法によりパターンニングできる。本実施形態では液体金材料のトルエン溶液をI/J法により塗布した。これにより得られた金膜の膜厚は、約50nmである。

[0026]

さらに、図16に示されているように、有機半導体層32を形成する。この有機半導体層32は、有機材料のスピンコート、蒸着、I/J法等で形成できる。本実施形態では、アントラセンをキシレン溶媒に溶解した液体原料をスピンコートして、アントラセンからなる有機半導体膜を形成した。その膜厚は、200nmである。他に、テトラセン、ベンタセン、等の有機半導体材料を使用できる。

[0027]

次に、図17に示されているように、ゲート絶縁膜34を形成する。このゲート絶縁膜34には、層間絶縁膜と同様な材料を用いることができる。本実施形態ではPVA膜を用い、スピンコート法により1μmの膜厚に形成した。

さらに、図17に示されているように、ソース30及びドレイン31の屈曲した形状部分を覆うようにゲートライン33を形成する。つまり、ゲートライン33は、ソース30及びドレイン31の互いに一定距離を隔てて対向した状態で屈曲した形状部分を覆うことになる。これにより、ゲート幅をより長くすることができる。このゲートライン33は、ソース30及びドレイン31と同様に、液体金材料のトルエン溶液を用いて形成する。この液体金材料の溶媒には、トルエンを用いた。得られた金膜の膜厚は約50nmである。

[0028]

次に、図18に示されているように、層間絶縁膜20aを形成し、その後先述 したようにピアホール21bを形成する。ただし、今回は、PVA膜の一部を純 水で溶解・除去した後に、キシレンで有機半導体層の一部を溶解・除去して、ソ ースラインとソース30との間が電気的に接続可能になるようにした。

最後に、図19に示されているように、ソースライン35を形成する。ソースライン35はソース30に接続するように層間配線22bも併せて形成する。材料は、ソース30及びドレイン31と同様に液体金材料のトルエン溶液を用いて I/J法により形成する。得られた金膜の膜厚は約50nmである。以上で基本的なプロセスは終了である。なお、ソースライン35の上に保護膜等を形成しても良い。

[0029]

以上のように構成された有機エレクトロルミネッセンス装置において、ソース 3 0 及びドレイン 3 1 並びにゲートライン 3 3 は薄膜トランジスタを構成している。

次に、本発明の第2の実施形態による有機エレクトロルミネッセンス装置の製造手順について説明する。図20~図28は、有機エレクトロルミネッセンス装置の製造方法の各工程を示す図である。図20~図28において、図(a)は平面図、図(b)は図(a)中のA-A部分の断面図である。

[0030]

まず、図20に示されているように、基板10の上にソースライン35を形成する。このソースライン35は、液体金材料のトルエン溶液を用いてI/J法により形成する。得られた金膜の膜厚は約50nmである。さらに、層間絶縁膜20を形成する。この層間絶縁膜20は、PVA膜を用い、I/J法により1μmの膜厚に形成した。なお、ここで、ソースライン35上の一部の領域にはPVA膜が形成されないようにPVA膜の形成を行った。この層間絶縁膜20には、先述したようにビアホール21bを形成する。

[0031]

次に、図21に示されているように、ゲートライン33を形成する。このゲートライン33は、液体金材料のトルエン溶液を用いてI/J法により形成する。 得られた金膜の膜厚は約50nmである。さらに、ゲート絶縁膜34を形成する。 。ゲート絶縁膜34については、I/J法により1μmの膜厚にPVA膜を形成 した。ここで、ソースライン35上の一部の領域にはPVA膜が形成されないようにPVA膜の形成を行った。

[0032]

さらに、図22に示されているように、有機半導体層32を形成する。この有機半導体層32に用いる有機半導体材料は、上述した第1の実施形態の場合と同様である。この有機半導体層32は、I/J法により200nmの膜厚に形成した。ここで、ソースライン上の一部の領域には有機半導体膜が形成されないように有機半導体膜の形成を行った。

[0033]

次に、図23に示されているように、液体金材料のトルエン溶液をI/J法で 塗布することにより層間配線22bを形成する。この後、図24に示されている ように、ソース30及びドレイン31を形成する。

この場合、同図に示されているように、ソース30とドレイン31とは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有している。つまり、ソース30は、突出した形状部分30a~30dを有し、櫛形状になっている。ドレイン31も同様に、突出した形状部分31a~31dを有し、櫛形状になっている。そして、ソース30の突出した形状部分30a~30dと、ドレイン31の突出した形状部分31a~30dと、ドレイン31の突出した形状部分31a~31dとが交互に配列され櫛形状が噛み合うように形成されている。このため、ソース30の櫛形状部分と、ドレイン31の櫛形状部分とが、互いに一定距離を隔てて対向して形成されていることになる。この結果、ソース30及びドレイン31の屈曲した形状部分をゲートライン33が覆うことになり、ゲート幅をより長くすることができる。

[0034]

また、ソース30はソースライン35に接続するように形成する。本実施形態では液体金材料をI/J法によって塗布した。液体金材料の溶媒には、エタノールを用いた。得られた金膜の膜厚は約50nmである。

次に、図25に示されているように、層間絶縁膜20aを形成する。層間絶縁膜20aにはPVA膜を用い、I/J法により1μmの膜厚に形成した。ここで、ドレイン31上の一部の領域にはPVA膜が形成されないようにPVA膜の形

成を行った。この層間絶縁膜20aには、先述したようにビアホール21aを形成する。

[0035]

また、図26に示されているように、層間配線22aを形成する。本実施形態では、液体金材料のトルエン溶液をI/J法によって塗布した。続いて、同図に示されているように、ドレイン31と接続するように陰極パターン14を形成する。

さらに、図27に示されているように、発光層13を形成する。この発光層13はスピンコート法で形成する。この発光層13の材料は、第1の実施形態の場合と同様である。最後に、図28に示されているように、透明導電膜11を全面に形成する。この透明導電膜11は、スパッタ法を用いて形成した。その膜厚は150nmである。以上でプロセスは終了である。なお、透明導電膜11の上に透明な保護膜を形成しても良い。

[0036]

以上のように構成された有機エレクトロルミネッセンス装置において、ソース 3 0 及びドレイン 3 1 並びにゲートライン 3 3 は薄膜トランジスタを構成している。

上述した第1の実施形態及び第2の実施形態で得られる有機エレクトロルミネッセンス装置においては、有機薄膜トランジスタにより有機エレクトロルミネッセンス素子を制御することができる。

[0037]

上述した第1の実施形態及び第2の実施形態においては、薄膜トランジスタ素子を構成するソース及びドレインが、いずれも互いに一定距離を隔てて対向して設けられた櫛形状になっている。ソース及びドレインについては、互いに一定距離を隔てて対向させればゲート幅を長くすることができるので、櫛形状ではなく、渦巻き形状とし、互いに一定距離を隔てて対向してソース及びドレインを設ければ良い。渦巻き形状にする場合、渦巻き形状のソースと、その渦巻き形状と同じ方向にかつソースとは一定距離を隔てて渦を巻く渦巻き形状のドレインとを形成すれば良い。要するに、互いに一定距離を隔てて対向した状態で屈曲した形状

部分をソース及びドレインに設ければ、ゲート幅をより長くすることができ、有機再膜トランジスタ素子でも充分に有機エレクトロルミネッセンス素子を駆動することができる。

[0038]

請求項の記載に関し、本発明は更に以下の態様を採り得る。

- (1)有機薄膜トランジスタ素子と有機エレクトロルミネッセンス素子とを電気的に接続する層間配線を更に含むことを特徴とする請求項1~8のいずれかに 記載の有機エレクトロルミネッセンス装置。
- (2) 有機薄膜トランジスタ素子と有機エレクトロルミネッセンス素子とを電気的に接続する層間配線を設けるステップを更に含むことを特徴とする請求項9~16のいずれかに記載の有機エレクトロルミネッセンス装置の製造方法。

[0039]

【発明の効果】

以上説明したように本発明は、有機薄膜トランジスタを採用して有機エレクトロルミネッセンス素子を駆動することにより、特別な装置を必要とせず、全ての製造工程をインクジェットプロセスで行うことができ、製造コストを低減できるという効果がある。また、1 画素において、有機エレクトロルミネッセンス素子のサイズよりも有機薄膜トランジスタ素子のサイズの方が大であるようにし、薄膜トランジスタ素子を構成するソース及びドレインは互いに一定距離を隔てて対向した状態で屈曲した形状部分を有するように構成し、ソース及びドレインの屈曲した形状部分を覆うようにゲートを設けることにより、ゲート幅をより長くすることができ、有機薄膜トランジスタ素子でも充分に有機エレクトロルミネッセンス素子を駆動することができるという効果がある。

【図面の簡単な説明】

【図1】

本発明による有機エレクトロルミネッセンス装置の実施の第1の形態を示す断 面構成図である。

【図2】

本発明による有機エレクトロルミネッセンス装置の実施の第2の形態を示す断

面構成図である。

【図3】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第1の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図4】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第2の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図5】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造するための第3の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図6】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第4の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図7】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第5の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図8】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第6の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図9】

ビアホール形成手順の第1の工程を示す図である。

【図10】

ビアホール形成手順の第2の工程を示す図である。

【図11】

ビアホール形成手順の第3の工程を示す図である。

【図12】

ビアホール形成手順の第4の工程を示す図である。

【図13】

ビアホール形成手順の第5の工程を示す図である。

【図14】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第7の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図15】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第8の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図16】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第9の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図17】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第10の工程を示す図であり、図(a)は平面図、図(b)は断面図であ る。

【図18】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第11の工程を示す図であり、図(a)は平面図、図(b)は断面図であ る。

【図19】

本発明の第1の実施形態による有機エレクトロルミネッセンス装置を製造する ための第12の工程を示す図であり、図(a)は平面図、図(b)は断面図であ る。

【図20】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造するための第1の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図21】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第2の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図22】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第3の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図23】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第4の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図24】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第5の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図25】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第6の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図26】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第7の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図27】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造するための第8の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【図28】

本発明の第2の実施形態による有機エレクトロルミネッセンス装置を製造する ための第9の工程を示す図であり、図(a)は平面図、図(b)は断面図である

【符号の説明】

- 10 基板
- 11 透明導電膜
- 12 絶縁膜
- 13 発光層
- 14 陰極パターン
- 20, 20 a 層間絶縁膜
 - 21 ビアホール
- 22a, 22b 層間配線
 - 30 ソース
 - 31 ドレイン
 - 32 半導体層
 - 33 ゲートライン
 - 34 ゲート絶縁膜
 - 35 ソースライン
 - 4 1 自己組織化膜
 - 42 フォトマスク
 - 43 自己組織化膜パターン
 - 4.4 層間絶縁膜のパターン

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

(a)

(b)

【図5】

(a)

(b)

【図6】

【図7】

(a)

(b)

【図8】

(a)

(b)

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【書類名】 要約書

【要約】

【課題】 より製造コストの低い有機エレクトロルミネッセンス装置を実現する

【解決手段】 透明基板10上に、透明導電膜11と、発光層13及びその周りに設けられた絶縁膜12と、陰極層パターン14と、層間絶縁膜20と、互いに対向して設けられたドレイン31及びソース30と、有機半導体層32と、ゲート絶縁膜34と、ゲートライン33と、層間絶縁膜20aと、ソースライン35と、が順に積層された構造とする。そして、有機薄膜トランジスタを構成するゲートライン33並びにドレイン31及びソース30によって、発光層13を含むエレクトロルミネッセンス素子部分を駆動する。

【効果】 有機薄膜トランジスタ素子によって有機エレクトロルミネッセンス表示素子を駆動する構成を採用することにより、真空チャンバ等の特別な装置を必要とせず、インクジェットプロセス等を用いて製造することができるので、コストを低減できる。

【選択図】 図1

特2000-336391

[書類名] 手続補正書

【整理番号】 J0081619

【提出日】 平成12年11月 9日

【あて先】 特許庁長官殿

【事件の表示】

【出願番号】 特願2000-336391

. 【補正をする者】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100066980

【弁理士】

【氏名又は名称】 森 哲也

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 提出物件の目録

【補正方法】 追加

【補正の内容】

【提出物件の目録】

【包括委任状番号】 0014966

【プルーフの要否】 要

認定・付加情報

特許出願の番号 特願2000-336391

受付番号 50001449021

書類名 手続補正書

担当官 寺内 文男 7068

作成日 平成12年11月14日

<認定情報・付加情報>

【補正をする者】

【識別番号】 000002369

【住所又は居所】 東京都新宿区西新宿2丁目4番1号

【氏名又は名称】 セイコーエプソン株式会社

【代理人】 申請人

【識別番号】 100066980

【住所又は居所】 東京都千代田区神田鍛冶町三丁目7番地 村木ビ

ル8階

【氏名又は名称】 森 哲也

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住 所 東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社