Projeções de curto prazo para número de hospitalizados por SRAG no município de São Paulo

Baseado nas notificações de SRAG Hospitalizados na base SIVEP Gripe

Observatório COVID-19 BR 04-05-2020 16h19min20s

Sumário executivo

- Este relatório usa notificações de casos de SRAG Hospitalizados na base SIVEP-Gripe do dia 04 de maio de 2020.
- Nesta base de dados, observamos 13588 casos hospitalizados de **SRAG**. Destes, 3551 estão hospitalizados em UTI. Corrigindo para o atraso de notificação, estimamos que o número de hospitalizados está entre 14153 e 15759, e número de casos em UTI está entre 3692 e 4202.
- No cenário pessimista, utilizando um crescimento **Exponencial**, a projeção para dia 16 de abril do total de casos hospitalizados é de entre 112866122 e 409930977, e de casos em UTI é de entre 6935671 e 22738414.
- No cenário otimista, utilizando um crescimento **Logístico**, a projeção para dia 16 de abril do total de casos hospitalizados é de entre 11936 e 18087, e de casos em UTI é de entre 3110 e 4792.

Projeções de número total de casos de SRAG hospitalizados

Tabela 1: Projeção do número de casos hospitalizados de SRAG para os próximos 7 dias no cenário pessimista.

Data	Previsto	Limite Inferior	Limite Superior
2031-04-10	259820685	111686580	405136007
2031-04-11	257738497	112095806	412443531
2031-04-12	257329303	112641809	402359789
2031-04-13	259375637	112642601	410460165
2031-04-14	261391974	113183529	416736439
2031-04-15	256498713	112630463	409293292
2031-04-16	260620841	112866122	409930977

Tabela 2: Projeção do número de casos hospitalizados de SRAG pra os próximos 7 dias no cenário otimista.

Data	Previsto	Limite Inferior	Limite Superior
2031-04-10	14667	12032	18249
2031-04-11	14690	11971	18236
2031-04-12	14673	11916	18185
2031-04-13	14684	11972	18233
2031-04-14	14698	11855	18271
2031-04-15	14749	11941	18260
2031-04-16	14709	11936	18087

Gráfico das projeções

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários.
 Média de intervalo de confiança de 95%.

Figura 1: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 7 dias para número de internações por SRAG.

Projeções de número de casos de SRAG hospitalizados em leitos de UTI

Tabela 3: Projeção do número de casos hospitalizados de SRAG em leitos de UTI para os próximos 7 dias no cenário pessimista.

Data	Previsto	Limite Inferior	Limite Superior
2031-04-10	14359859	6954363	22464219
2031-04-11	14406543	7010709	22304957
2031-04-12	14533398	7096664	22771691
2031-04-13	14473598	7002145	22646746
2031-04-14	14444336	6985650	22386699
2031-04-15	14570266	7042991	22850095
2031-04-16	14507882	6935671	22738414

Tabela 4: Projeção do número de casos hospitalizados de SRAG em leitos de UTI pra os próximos 7 dias no cenário otimista.

Data	Previsto	Limite Inferior	Limite Superior
2031-04-10	3874	3103	4806
2031-04-11	3886	3075	4775
2031-04-12	3894	3123	4787
2031-04-13	3881	3107	4802
2031-04-14	3872	3108	4795
2031-04-15	3863	3121	4755
2031-04-16	3880	3110	4792

Gráfico das projeções para número de casos de SRAG hospitalizados em leitos de UTI

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários. Média de intervalo de confiança de 95%.

Figura 2: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 7 dias para número de internações em UTI por SRAG.

Métodos

Correção do atraso de notificação pelo método de *Nowcasting*

Para corrigir o efeito de atraso da notificação de casos na tabela de notificações, nós utilizamos o método de nowcasting descrito em McGough et al. (2019). Esse método utiliza a diferença entre as datas de primeiro sintoma e notificação do caso no banco de dados para estimar o atraso de inclusão de novos casos no sistema de notificação. O pacote NobBS fornece o número de novos casos esperados por dia pelo modelo de atraso nas notificações.

Tempos de hospitalização em leito comum e UTI

Para modelar a ocupação dos hospitais, nós estimamos a distribuição de tempos entre aparecimento de sintomas e internação, internação e evolução, entrada e saída da UTI, e probabilidade de internação em UTI.

Estimando número de hospitalizados

O número estimado de hospitalizados por dia é dado pelos indivíduos notificados na tabela original do Sivep-Gripe + indivíduos não-observados mas esperados pelo *nowcast*, que são incluídos na tabela com datas de entrada e evolução simuladas a partir das distribuições de tempos. Esse modelo permite uma avaliação dinâmica da curva de hospitalizações já corrigida pelo atraso de notificação e tempos de permanência no hospital.

Projeções de curto prazo utilizando modelos estatísticos

Para realizar as projeções de curto prazo, nós ajustamos duas curvas ao número de casos hospitalizados. As curvas representam cenários diferentes: uma curva exponencial generalizada, que é adequada para modelar o começo de uma epidemia, com crescimento rápido, sendo portanto um cenário pessimista; e uma curva logística generalizada, que apresenta um crescimento que se desacelera com o tempo, representando um cenário otimista. Ambos os modelos são descritos em Wu et al. (2020).

Os modelos usados são dados pelas seguintes equações diferenciais, nas quais C(t) representa o número de hospitalizados, e os parâmetros são definidos como: r taxa de crescimento, p parâmetro de modulação do crescimento (pode variar entre 0 e 1, valores mais baixos correspondem a curvas de crescimento mais lento), e, no caso da logística, K, um parâmetro de assíntota da curva.

• Exponencial generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p$$

• Logística generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p \left(1 - \frac{C(t)}{K}\right)$$

Limitações

- O método de nowcasting utilizado assume que a dinâmica de inclusão de novos casos no banco de dados é parecida com o passado. Se o atraso de inclusão aumenta muito, o modelo vai subestimar quantidade de novos casos. O mesmo se aplica aos modelos de distribuição dos tempos de hospitalização e probabilidade de internação em UTI.
- As previsões de curto prazo utilizam curvas fenomenológicas que não se prestam a previsões de longo prazo, portanto não são adequadas para prever a dinâmica da epidemia numa escala de tempo maior. Em particular, o uso de uma curva logística não implica que uma assintota no número de hospitalizações é sugerida pelos dados.

Referências

McGough, Sarah, Michael A. Johansson, Marc Lipsitch, Nicolas A. Menzies (2019). Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. bioRxiv 663823; doi: https://doi.org/10.1101/663823

McGough, Sarah, Nicolas Menzies, Marc Lipsitch and Michael Johansson (2020). NobBS: Nowcasting by Bayesian Smoothing. R package version 0.1.0. https://CRAN.R-project.org/package=NobBS

Wu, Ke, Didier Darcet, Qian Wang, and Didier Sornette (2020). Generalized Logistic Growth Modeling of the COVID-19 Outbreak in 29 Provinces in China and in the Rest of the World. arXiv [q-bio.PE]. arXiv. http://arxiv.org/abs/2003.05681.

Observatório COVID-19 BR

O Observatório Covid-19 BR é uma iniciativa independente, fruto da colaboração entre pesquisadores com o desejo de contribuir para a disseminação de informação de qualidade baseada em dados atualizados e análises cientificamente embasadas.

Criamos um sítio com códigos de fonte aberta que nos permite acompanhar o estado atual da epidemia de Covid-19 no Brasil, incluindo análises estatísticas e previsões. Modelos estatísticos e matemáticos para previsões da epidemia estão em preparação

Site: https://covid19br.github.io/ Contato: obscovid19br@gmail.com

Comparação com previsões anteriores

Validação das previsões usando a base do dia 2020-05-03 contra observados atuais

Validação das previsões usando a base do dia 2020-05-02 contra observados atuais

Validação das previsões usando a base do dia 2020-05-01 contra observados atuais

Validação das previsões usando a base do dia 2020-04-30 contra observados atuais

Validação das previsões usando a base do dia 2020-04-29 contra observados atuais

Validação das previsões usando a base do dia 2020-04-28 contra observados atuais

Validação das previsões usando a base do dia 2020-04-27 contra observados atuais

