BIOPHARMA Due Diligence Process/Checklist

\$SAVA Failure as Primary Example

Contents

1	Market	1
2	Judgement	1
3	Starting from the Beginning	2
4	Chemistry and Biology	3
5	Pharmacodynamics (PD) and Pharmacokinetics (PK) and Clinical Data	4
6	Final Checklist	5

1 Market

- 1. Market efficiency in drug valuation:
 - Top 5% of known-effective medicines priced accordingly
 - Similarly for known-ineffective drugs (SAVA case shows occasional lag in market realization)
- 2. Holder analysis:
 - Determine market cap drivers: retail "lottery ticket" investors vs. experienced sector investors
- 3. Options market analysis:
 - Premiums as sentiment indicators for binary outcomes
- 4. Pipeline assessment:
 - Portfolio size and origin (internal development vs. patent acquisition)
- 5. FDA event dynamics:
 - Binary approval/rejection outcomes with pre-event volatility
 - Hedging strategies recommended

2 Judgement

1. Emotional discipline:

- Eliminate personal bias (e.g., affected family members)
- Hope is irrelevant to scientific assessment
- 2. Clinical trial determinism:
 - Outcomes governed by physics/biology, not chance
 - Proper trials reveal true efficacy (no "maybe" outcomes)
 - Statistical design accounts for individual variability

3 Starting from the Beginning

- 1. Inventor background:
 - Academic pedigree verification
- 2. Motivation analysis:
 - Scientific merit vs. financial lottery potential
- 3. Track record:
 - Previous project successes/failures
- 4. Approach novelty:
 - Historical precedent for methodology
- 5. Publication history:
 - Peer-reviewed chemistry work
 - Retraction history (especially if relevant to current research)
- 6. Historical timeline (Dr. Wang case study):
 - 1. 2000: Amyloid-/Alpha-7 research at J&J
 - 2. 2005: Oxytrex failure (opioid)
 - 3. 2008: Filamin A/MOR mechanism publication
 - 4. 2009: Retracted GSK drug claim
 - 5. 2010: Simufilam patent filing (pain)
 - 6. 2012: Amyloid-42/alpha7 inhibition claim
 - 7. 2015-16: Alpha7 agonist failures in Alzheimer's
- 7. Scientific transparency:
 - Journal publications (including chemistry details)
 - In-house medicinal chemistry capability
- 8. Legal scrutiny:
 - Active indictments (SAVA example)
 - Fraud allegations (company-related vs. unrelated)

4 Chemistry and Biology

Key Definitions

Crystal Structure Atomic arrangement in crystalline material

Co Crystal Multi-molecule crystalline structure with non-covalent bonds

Crystal Clear Evidence High-confidence binding validation (X-ray/cryo-EM + peer review)

SAR Structure-Activity Relationship (essential for rational drug design)

Ligand Target-binding molecule

Shape Complementarity Molecular lock-and-key fit principle

- 1. Binding event characterization
- 2. Molecular interaction requirements
- 3. Target-disease relevance
- 4. Hydrogen bond networks:
 - Typical protein binding mechanism
 - Functional disruption via competitive binding
- 5. Target validation:
 - Knockout studies (Filamin A case study)
 - Actin cytoskeleton implications
 - Toxicity/binding paradox
- 6. Pathway viability:
 - Literature consensus assessment
- 7. MoA basis:
 - FDA-approved vs. hypothetical mechanisms
 - Failure-derived hypotheses
- 8. Molecular sizing:
 - Small molecules:
 - * Hydrogen bonding requirements (Lipinski rules)
 - * Binding pocket compatibility
 - Large molecules:
 - * Reduced hydrogen bonding emphasis
 - * Multi-interaction dependence
- 9. Binding verification:
 - Crystallographic evidence
 - Peer-reviewed SAR
 - Binding site characteristics:

- * Known ligand precedent
- * Surface topology
- * Solvent exposure effects

10. Functional plausibility:

- Inhibition/activation mechanics

5 Pharmacodynamics (PD) and Pharmacokinetics (PK) and Clinical Data

Definitions

Pharmacodynamics Drug's biological effects (receptor binding, downstream effects)

Pharmacokinetics ADME properties (absorption, distribution, metabolism, excretion)

First Pass Hepatic pre-systemic metabolism

Efficacy Treatment's beneficial effect capacity

- 1. PD assessment:
 - Dose-response curve validation
 - Patent consistency check
- 2. PK optimization:
 - Administration route compatibility (Simufilam oral case)
 - Solubility/metabolic resistance
 - GI stability and first-pass effects
 - Half-life adequacy
 - Tissue distribution alignment
- 3. Trial evaluation:
 - Phase II:
 - * Efficacy signals vs. placebo
 - Phase IIb:
 - * Go/no-go for Phase III investment
 - * Blinded vs. open-label designs
 - Statistical rigor:
 - * p-value threshold (< 0.05)
 - * ADAS-Cog benchmarks (Alzheimer's)
 - Data transparency:
 - * Subgroup analysis pitfalls
 - * Post-hoc rationalization risks

- Publication status:
 - * Peer-reviewed journal validation
- Comparison validity:
 - * Controlled vs. open-label data
 - * Cross-trial reliability

6 Final Checklist

- 1. High-affinity binding with crystallographic validation
- 2. Optimal PK profile (half-life, distribution)
- 3. Molecular size appropriateness
- 4. Target-disease relevance and reproducibility
- 5. Phase data showing statistical significance (p < 0.05)
- 6. Comparison methodology validity
- 7. Historical success rates for disease target