Remark 1. If H is infinite-dimensional and f is a bijective transformation of $\mathcal{G}^k(H)$ preserving the ortho-adjacency in both directions, then $X \to f(X^{\perp})^{\perp}$ is a bijective transformation of $\mathcal{G}_k(H)$ which also preserves the ortho-adjacency in both directions. If the latter transformation is induced by a unitary or anti-unitary operator U, then f is also induced by U.

The following example shows that the above statement fails for bijective transformations of $\mathcal{G}_{\infty}(H)$ preserving the ortho-adjacency relation in both directions. Let U be a non-identity unitary operator on H which preserves a certain connected component $\mathcal{C} \subset \mathcal{G}_{\infty}(H)$. Consider the bijective transformation f of $\mathcal{G}_{\infty}(H)$ defined as follows: f(X) = U(X) if $X \in \mathcal{C}$ and f(X) = X if $X \notin \mathcal{C}$. It is clear that f is ortho-adjacency preserving in both directions.

Theorem 1. Let f be a bijective transformation of $\mathcal{G}_{\infty}(H)$ which preserves the ortho-adjacency relation in both directions. Then the restriction of f to every connected component of $\mathcal{G}_{\infty}(H)$ is induced by a unitary or anti-unitary operator or it is the composition of the orthocomplementary map and a map induced by a unitary or anti-unitary operator.

The restrictions of f to distinct connected components can be related to different operators.

3. A CHARACTERIZATION OF ADJACENCY IN TERMS OF ORTHO-ADJACENCY

If $X, Y \in \mathcal{G}_{\infty}(H)$ are not ortho-adjacent and there is $Z \in \mathcal{G}_{\infty}(H)$ ortho-adjacent to both X, Y, then one of the following possibilities is realized:

- \bullet X, Y are adjacent;
- $X \cap Y$ is of codimension 2 in both X, Y.

Indeed, $X \cap Z$ and $Y \cap Z$ are hyperplanes of Z and X, Y are adjacent if these hyperplanes coincide; the same holds if the hyperplanes are distinct and their intersection is a proper subspace of $X \cap Y$; we obtain the second possibility only when the hyperplanes are distinct and their intersection coincides with $X \cap Y$.

Lemma 1. Let X, Y be compatible elements of $\mathcal{G}_{\infty}(H)$ whose intersection is of codimension 2 in both X, Y. Then there is $Z \in \mathcal{G}_{\infty}(H)$ ortho-adjacent to both X, Y. For every such Z there are precisely two elements of $\mathcal{G}_{\infty}(H)$ ortho-adjacent to each of X, Y, Z.

Proof. The orthogonal sum of $X \cap Y$, a 1-dimensional subspace of $X \cap (X \cap Y)^{\perp}$ and a 1-dimensional subspace of $Y \cap (X \cap Y)^{\perp}$ is an element of $\mathcal{G}_{\infty}(H)$ ortho-adjacent to both X, Y.

Let Z be an element of $\mathcal{G}_{\infty}(H)$ ortho-adjacent to both X,Y. The subspaces X,Y,Z are mutually compatible and there is an orthonormal basis B of H such that each of these subspaces is spanned by a subset of B. Then $X \cap Y$ and the 2-dimensional subspaces

$$X' = X \cap (X \cap Y)^{\perp}, \quad Y' = Y \cap (X \cap Y)^{\perp}$$

are also spanned by subsets of B. Furthermore, $X \cap Y$ is contained in Z and

$$P = Z \cap X', \quad Q = Z \cap Y'$$

are 1-dimensional. Let P' and Q' be the 1-dimensional subspaces which are the orthogonal complements of P in X' and Q in Y', respectively. Since each of the