

NATIONAL BUREAU OF STANDARDS REPORT

10314

IMPACT TESTS ON GYPSUM WALLBOARDS

A Report
Prepared for
Office of Research and Technology
Department of Housing and Urban Development

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics²—Radio Engineering²—Time and Frequency²—Astrophysics²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information³—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

4213461

December 2, 1970

NBS REPORT

10314

IMPACT TESTS ON GYPSUM WALLBOARDS

A Report

Prepared for

Office of Research and Technology

Department of Housing and Urban Development

By

H. S. Lew

The present report covers the results of impact tests on gypsum wallboards, and the second part, which will be issued when the test program is completed, will cover the results of tests of wallboards having a taped horizontal seam, as well as the results reported in this report.

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS
for use within the Government. Before and review. For this reason, the publication, whole or in part, is not authorized by the Bureau of Standards, Washington, D.C. The Report has been specifically prepared

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

Accounting documents intended for additional evaluation of this Report, either in the office of the Director, National Institute of Standards and Technology, or for its own use.

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

PREFACE

The results of impact tests on gypsum wallboards on wood studs are presented in this report. The wallboards used in the tests were those products readily available commercially, and included products of several manufacturers.

This report is the first of two reports that deal with the impact energy absorption capacity of gypsum wallboards.

The present report covers the results of tests of solid wallboards; and the second report, which will be issued when the test program is completed, will cover the results of tests of wallboards having a taped horizontal joint, as well as the results reported in this report.

All tests reported herein were carried out at the Structures Laboratory of the Building Research Division of the National Bureau of Standards.

TABLE OF CONTENTS

	<u>Page</u>
PREFACE	ii
SI Conversion Units	iv
1. INTRODUCTION	1
1.1 General	1
1.2 Gypsum Wallboard	2
2. DESCRIPTION OF TESTS	4
2.1 Test Program	4
2.2 Test Variables	5
2.3 Test Specimen	6
2.4 Test Setup	7
2.5 Test Procedure	8
3. TEST RESULTS AND DISCUSSIONS	10
3.1 Test Data	10
3.2 Effect of Type of Wallboard on Impact Strength	11
3.3 Effect of Thickness of Wallboard and Spacing of Studs on Impact Strength	12
4. DESIGN CONSIDERATION AND EVALUATION TECHNIQUE OF IMPACT STRENGTH	15
4.1 Design Consideration	15
4.2 Techniques of Evaluating Impact Strength	16
5. CONCLUSIONS	18
6. ACKNOWLEDGMENTS	20
7. TABLES AND FIGURES	21
8. REFERENCES	37

TABLE OF CONTENTS

225	PAGE
11	16
12	16
13	16
14	17
15	17
16	17
17	17
18	17
19	17
20	17
21	17
22	17
23	17
24	17
25	17
26	17
27	17
28	17
29	17
30	17
31	17
32	17
33	17
34	17
35	17
36	17
37	17
38	17
39	17
40	17
41	17
42	17
43	17
44	17
45	17
46	17
47	17
48	17
49	17
50	17
51	17
52	17
53	17
54	17
55	17
56	17
57	17
58	17
59	17
60	17
61	17
62	17
63	17
64	17
65	17
66	17
67	17
68	17
69	17
70	17
71	17
72	17
73	17
74	17
75	17
76	17
77	17
78	17
79	17
80	17
81	17
82	17
83	17
84	17
85	17
86	17
87	17
88	17
89	17
90	17
91	17
92	17
93	17
94	17
95	17
96	17
97	17
98	17
99	17
100	17
101	17
102	17
103	17
104	17
105	17
106	17
107	17
108	17
109	17
110	17
111	17
112	17
113	17
114	17
115	17
116	17
117	17
118	17
119	17
120	17
121	17
122	17
123	17
124	17
125	17
126	17
127	17
128	17
129	17
130	17
131	17
132	17
133	17
134	17
135	17
136	17
137	17
138	17
139	17
140	17
141	17
142	17
143	17
144	17
145	17
146	17
147	17
148	17
149	17
150	17
151	17
152	17
153	17
154	17
155	17
156	17
157	17
158	17
159	17
160	17
161	17
162	17
163	17
164	17
165	17
166	17
167	17
168	17
169	17
170	17
171	17
172	17
173	17
174	17
175	17
176	17
177	17
178	17
179	17
180	17
181	17
182	17
183	17
184	17
185	17
186	17
187	17
188	17
189	17
190	17
191	17
192	17
193	17
194	17
195	17
196	17
197	17
198	17
199	17
200	17
201	17
202	17
203	17
204	17
205	17
206	17
207	17
208	17
209	17
210	17
211	17
212	17
213	17
214	17
215	17
216	17
217	17
218	17
219	17
220	17
221	17
222	17
223	17
224	17
225	17
226	17
227	17
228	17
229	17
230	17
231	17
232	17
233	17
234	17
235	17
236	17
237	17
238	17
239	17
240	17
241	17
242	17
243	17
244	17
245	17
246	17
247	17
248	17
249	17
250	17
251	17
252	17
253	17
254	17
255	17
256	17
257	17
258	17
259	17
260	17
261	17
262	17
263	17
264	17
265	17
266	17
267	17
268	17
269	17
270	17
271	17
272	17
273	17
274	17
275	17
276	17
277	17
278	17
279	17
280	17
281	17
282	17
283	17
284	17
285	17
286	17
287	17
288	17
289	17
290	17
291	17
292	17
293	17
294	17
295	17
296	17
297	17
298	17
299	17
300	17
301	17
302	17
303	17
304	17
305	17
306	17
307	17
308	17
309	17
310	17
311	17
312	17
313	17
314	17
315	17
316	17
317	17
318	17
319	17
320	17
321	17
322	17
323	17
324	17
325	17
326	17
327	17
328	17
329	17
330	17
331	17
332	17
333	17
334	17
335	17
336	17
337	17
338	17
339	17
340	17
341	17
342	17
343	17
344	17
345	17
346	17
347	17
348	17
349	17
350	17
351	17
352	17
353	17
354	17
355	17
356	17
357	17
358	17
359	17
360	17
361	17
362	17
363	17
364	17
365	17
366	17
367	17
368	17
369	17
370	17
371	17
372	17
373	17
374	17
375	17
376	17
377	17
378	17
379	17
380	17
381	17
382	17
383	17
384	17
385	17
386	17
387	17
388	17
389	17
390	17
391	17
392	17
393	17
394	17
395	17
396	17
397	17
398	17
399	17
400	17
401	17
402	17
403	17
404	17
405	17
406	17
407	17
408	17
409	17
410	17
411	17
412	17
413	17
414	17
415	17
416	17
417	17
418	17
419	17
420	17
421	17
422	17
423	17
424	17
425	17
426	17
427	17
428	17
429	17
430	17
431	17
432	17
433	17
434	17
435	17
436	17
437	17
438	17
439	17
440	17
441	17
442	17
443	17
444	17
445	17
446	17
447	17
448	17
449	17
450	17
451	17
452	17
453	17
454	17
455	17
456	17
457	17
458	17
459	17
460	17
461	17
462	17
463	17
464	17
465	17
466	17
467	17
468	17
469	17
470	17
471	17
472	17
473	17
474	17
475	17
476	17
477	17
478	17
479	17
480	17
481	17
482	17
483	17
484	17
485	17
486	17
487	17
488	17
489	17
490	17
491	17
492	17
493	17
494	17
495	17
496	17
497	17
498	17
499	17
500	17
501	17
502	17
503	17
504	17
505	17
506	17
507	17
508	17
509	17
510	17
511	17
512	17
513	17
514	17
515	17
516	17
517	17
518	17
519	17
520	17
521	17
522	17
523	17
524	17
525	17
526	17
527	17
528	17
529	17
530	17
531	17
532	17
533	17
534	17
535	17
536	17
537	17
538	17
539	17
540	17
541	17
542	17
543	17
544	17
545	17
546	17
547	17
548	17
549	17
550	17
551	17
552	17
553	17
554	17
555	17
556	17
557	17
558	17
559	17
560	17
561	17
562	17
563	17
564	17
565	17
566	17
567	17
568	17
569	17
570	17

SI Conversion Units

In view of present accepted practice in this country in this technological area, common U.S. units of measurements have been used throughout this report. In recognition of the position of the USA as a signatory to the General Conference on Weights and Measures, which gave official status to the metric SI system of units in 1960, the author assists readers interested in making use of the coherent system of SI units, by giving conversion factors applicable to U.S. units used in this paper.

Length	1 in	=0.0254* meter
	1 ft	=0.3048* meter
Area	1 in ²	=6.4516* x 10 ⁻⁴ meter ²
	1 ft ²	=0.09290 meter ²
Force	1 lb(1bf)	= 4.448 newton
	1 kip	= 4448 newton

*Exactly

CONTINUATION OF

Table of values of the function $\pi(x)$ for $x \leq 10^6$, where $\pi(x)$ denotes the number of primes less than or equal to x . The values are given to the nearest integer. The first column gives the value of x and the second column gives the corresponding value of $\pi(x)$.

x	$\pi(x)$
1000	168
10000	1229
100000	9592
1000000	78498

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1

19700 76230,0+ 11 1 125000
19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000
19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

19700 76230,0+ 11 1 125000

125000

1. INTRODUCTION

1.1 General

Gypsum wallboards used as an interior sheathing material in conventional wood-frame houses has virtually replaced lath and plaster on wood studs in recent years. However, while gypsum wallboards are widely used, sufficient engineering data are not available on impact strength of these wallboards. Thus, on the basis of the present state-of-the-art, the present Guide Criteria for the Design and Evaluation of Operation BREAKTHROUGH Housing Systems were developed.

The criteria covering the impact strength of interior space dividers (Criterion B.1.3.1.e)[1]¹ is given as follows:

Walls should resist the following loads with a maximum residual deflection not exceeding 10 percent of total maximum net deflection or $\ell/4000$, whichever is greater, measured 24 hours after removal of the superimposed load, and with no damage to surfaces, finishes, supports or subsystems:

An impact energy of 60 ft-lb, applied horizontally at any location five consecutive times, except in the case where the wall consists of stiffening elements supporting a surface cover. In the latter case, the wall should resist the 60 ft-lb impact energy delivered five

¹Numerals in bracket refer to corresponding items in Reference.

consecutive times to the surface cover coincident with the axis of the stiffening element and a 30 ft-lb impact energy delivered five consecutive times to the surface cover at any other location.

In specific cases, where local repairs of surface covers may be readily accomplished without leaving objectionable traces, using available materials and methods that do not require specialized skills, the 30 ft-lb impact energy may be reduced to 7.5 ft-lb.

The last stipulation reducing the impact energy from 30 ft-lb to 7.5 ft-lb was made to reflect the estimated performance of 1/2 in thick gypsum wallboards on studs spaced at 24 in center-to-center. It should be noted that this stipulation relates to the requirement on failure rather than to the requirement on residual deflection.

Accordingly, the purposes of this investigation were to develop engineering data on the impact energy absorption capacity of gypsum wallboards and to compare the performance of wallboard systems with the above stated criterion.

1.2 Gypsum Wallboard

Most gypsum wallboards available commercially are manufactured in compliance with ASTM C-36-68[2]. The counterpart Federal Specification is F.S. SS-L-30c.

Two types of gypsum wallboards are available for use in fire rated assemblies. These are identified by the ASTM Standard Specification as either Regular or Type X. The Regular-type wallboards have regular cores and the Type-X wallboards have fire-retardant cores. Within the Type-X category, some manufacturers produce two or more grades of wallboards improving the fire rating by varying the fiber content in the gypsum. However, this gradation within the Type-X category is not recognized by the ASTM Standard Specification.

2. DESCRIPTION OF TESTS

2.1 Test Program

Tests were conducted to establish a minimum level of performance of gypsum wallboards subjected to impact, using the evaluation method described in the ASTM E-72 Impact Load Test. The following three criteria were used to establish the level of performance.

CRITERION I: The level of impact energy which will not cause any observable damage on both faces of wallboard in five consecutive applications of a constant impact on one location.

CRITERION II: The level of impact energy which will cause damage on the unexposed face of wallboard but will not cause any observable damage on the exposed face in five consecutive applications of a constant impact on one location.

CRITERION III: The level of impact energy which will cause damage on both the exposed face and the unexposed face in one application of impact.

All tests were designed to establish these criteria for each group of specimens characterized by the same variables.

2.2 Test Variables

Three variables were used in designing the test program. They were the type of wallboard, either Regular (or Ordinary)² or Type X; the thickness of wallboard; and the spacing of studs. As mentioned previously, some manufacturers produce two or more grades of Type X wallboards; however, in this test program, all Type-X wallboards were considered as one grade.

Although a wide range of partition assemblies can be made by combining the above variables in different ways, only those partition assemblies found in conventional house construction were selected for testing. Reference was made to the FHA Minimum Property Standards for one and two living

²In this report, Ordinary-type refers to Regular-type specified in ASTM C-36-68.

units[3] in determining the thickness of wallboards and the spacing of studs. The matrix format of table 1 illustrates the various combinations of variables used for the tests reported herein.

2.3 Test Specimen

The test specimens were fabricated using a single full-sized sheet of wallboard (4x8 ft) nailed on 2x4 in (nominal dimensions) wood-stud frames. The layout of the frame is shown in figure 1. To simulate walls or partitions having wallboards on both side, 4x1/8 in plywood strips were nailed on the opposite side of the frame. This scheme facilitated visual inspection of the backside of the wallboard during the test.

The wallboard was nailed to the frame by 1 3/8 in long threaded wallboard nails. The nails were spaced at 6 in o.c. along the top and bottom plates, and at 8 in o.c. on the vertical studs. All nails along the edges of the panel had a minimum edge distance of 3/8 in.

Based on the variables used the test panels were designated as follows:

3/8 - ORD - 16
1/2 - ORD - 24

1/2 - ORD - 16
1/2 - X - 24
1/2 - X - 16
5/8 - ORD - 24
5/8 - X - 24.

The fraction of an inch indicates the thickness of the wallboard. ORD and X denote the type of the wallboard, Ordinary (Regular type) and Type X, respectively. The last two numbers represent the spacing of the studs.

2.4 Test Setup

The test setup, which is similar to the one suggested in ASTM E-72 Test, is illustrated in figure 2. It consisted of a test frame, a 60 lb sandbag and a bag-release device mounted on a hand-operated forklift. The test specimen was placed in a vertical position to simulate service conditions. Impact was delivered to the specimen by the sandbag as a pendulum released from a predetermined height. The specification of the bag conformed to the description given in ASTM E-72 sect. 12.2.2.1, with the exception that it was made of a heavy canvas instead of Indian-tanned lace leather. For each drop the bag was released by suddenly opening the hinged doors of the bag holding device, thus eliminating wobbling of the bag. A photograph showing the actual test setup is shown in figure 3.

The impact was delivered between two studs at each test section. The magnitude of impact was varied by adjusting the height of drop of the bag. The height was measured from the point of impact of the center of gravity of the bag where it strikes the test section to this same point when the bag was in the raised position (fig. 2).

By halving the test panel vertically, the impact was delivered to two locations, each measured 24 in from the upper and the lower edge of the panel, respectively (positions A and B in fig. 2). Thus, it was possible to conduct four tests at 2x2 grid points on panels which had studs spaced at 24 in o.c. and six tests at 3x2 grid points on panels which had studs spaced at 16 in o.c.

2.5 Test Procedure

To establish Criterion I and II, as defined in sect. 2.1, five impacts of a constant magnitude were delivered to one point. For Criterion III a single impact was delivered. Only one test was made at each test section, even though a tested section appeared without any damage.

In evaluating each criterion, the initial magnitude of the impact for a test section was selected arbitrarily for each

group of identical specimens. In subsequent tests the magnitude of impact was determined by the preceding one.

In order to minimize the number of tests, the staircase (or "up-and-down") method of testing[4] was followed. This method of testing allowed a faster convergence to the critical impact strength for each criterion.

3. TEST RESULTS AND DISCUSSIONS

3.1 Test Data

A total of 317 tests was made in the present test series. The frequency distribution of tests according to heights of drop of the sandbag are shown for each type of test panel in figures 4 through 10. The number of tests made to establish the three criteria for each type ranged from 32 tests for test panels 1/2-ORD-24 to 70 tests for test panels 1/2-ORD-16. For the latter, which was the first group tested, a large number of tests were needed as no precedent test data were available for guidance. With the exception of tests on panels 1/2-ORD-16, an average of about 41 tests was required to evaluate the criteria.

The number of tests made to establish each criterion for each type of test panel is indicated in figures 4 through 10. The heights and the corresponding magnitudes of impact energy are listed in table 2. It is seen in the table that the critical impact strengths for Criterion II and Criterion III are about two and four times that for Criterion I. These relationships as expressed by the ratio of impact strength for one criterion to that for the other two are shown in figures 11 and 12. The mean of the ratios of the impact strength for Criterion I to Criterion III

and the same for Criterion II to III are 0.264 and 0.505, respectively. Thus, the test results indicate that, if the impact strength for any one criterion is established, the other two criteria can be derived by using the ratios of the impact strengths.

3.2 Effect of Type of Wallboard on Impact Strength

Since the fiber content is greater in Type X wallboards than in Regular wallboards, it is expected that the impact strength of Type X wallboards would be greater than that of Regular wallboards. The variation in strength can be seen in table 3, in which the ratios of the impact strength of Type X wallboards to that of Regular wallboards are listed. It is apparent that, in all cases, the strength of the Type X wallboards exceeded the strength of the Regular wallboards. The increase in the strength ranged from 17 percent to as much as 133 percent. When the averages of increase in the strength are compared among the three ratios listed in table 3, the amount of the increase in the strength is inversely proportional to the stiffness (EI/ℓ) of the panel, where E is the modulus of elasticity, I is the moment of inertia of the cross section of the wallboard and ℓ is the span between two supports (or the spacing of studs).

3.3 Effect of Thickness of Wallboard and Spacing of Studs on Impact Strength

Both the thickness of wallboard and the spacing of studs simultaneously influence the impact strength of the wallboard through the stiffness. Thus, the effects of these two variables on the impact strength are considered together.

In flexural members the deflection is governed by the stiffness of the member. As a result, under external forces a flexible member would deflect more than a stiff member. Consequently, the work done during deflection by the external forces or the energy stored in the member is greater in the flexible member than the stiff member.

For members of the same material, the stiffness can be expressed as the ratio of the moment of inertia, I , to the span, ℓ , since the modulus of elasticity, E , is constant. Since the energy absorption capacity is inversely proportional to the stiffness, and considering a unit width of the wallboard, the energy absorption capacity can be expressed as a function of ℓ/t^3 , where t is the thickness of the wallboard.

In figure 13 the impact strength for each criterion of the wallboards tested are plotted as a function of the ratio of

ℓ/t^3 . The results of wallboards of the Regular type are connected by solid lines; and those of Type X are connected by broken lines. It is seen in the figure that, as the ratio of ℓ/t^3 becomes smaller, the impact strength increases rapidly. On the other hand, beyond the ratio of ℓ/t^3 equal to 200, any further increase in this ratio does not result in appreciable decrease in the impact strength. This figure also shows that for identical assemblies of test panels, Type X wallboards have greater impact strength than Regular wallboards.

For the case where only the thickness of wallboards is considered, table 4 lists the ratios of the impact strengths of two different thicknesses of wallboards. It is apparent that a substantial increase in the strength results from an increase in thickness. On the average, an increase in the thickness of wallboard by 1/8 in will yield an increase in the impact strength of about 90 percent.

The impact strength as affected only by the spacing of studs is shown in table 5. Listed in the table are the ratios of two impact strengths of wallboards, one having studs spaced at 16 in o.c. and the other having studs spaced at 24 in o.c. It is seen that the increase in the strength by decreasing the stud spacing was not as great as was the

increase in the strength by increasing the thickness. On the average, reducing the spacing of studs from 24 in o.c. to 16 in o.c. increased the impact strength by 22 percent. These results (tables 4 and 5) suggest that increasing the thickness of wallboards is more effective in increasing the impact strength than is reducing the spacing of studs.

4. DESIGN CONSIDERATION AND TECHNIQUES OF EVALUATING IMPACT STRENGTH

4.1 Design Consideration

Three criteria were used to establish the level of performance of wallboards against impact (refer to sect. 2.1). Among the three, Criterion II is the one specified in the present design and evaluation criteria for Operation BREAKTHROUGH Housing Systems. From the user's point of view, this criterion is reasonable in that five consecutive applications of constant impact would cause damage only to the unexposed face of the wallboard. As long as no damage appears on the exposed face, the function of the wallboard is not impaired. Furthermore, in real situations it is highly improbable that one location would be subjected to impact for five times. Thus, requiring the wallboards to perform at a level more severe than Criterion II would be unrealistic. However, the choice between Criterion I and Criterion II must be left to the user and the designer. On the other hand, if the magnitude of impact is so high that it causes damage on both surfaces of the wallboard, Criterion III provides the information.

The intent of the BREAKTHROUGH Guide Criterion B.1.3.1.(e)[1] (also refer to sect. 1.1) is to provide a minimum resistance

against human impact on partitions. At present, the magnitude of impact exerted on partitions by a person being pushed against it has not been defined. The purpose of 7.5 ft-lb impact specified in the BREAKTHROUGH Guide criterion is to include partition assemblies which are being used in conventionally built houses. This value is indicated on figure 14 with Criterion II of Regular wallboards as a limiting value. In this figure the shaded area (acceptable region) includes most partition assemblies found in current practice. The one assembly which would not be included in the shaded area is 3/8 in wallboards on studs space at 16 in o.c. The usefulness of figure 14 is that it enables one to estimate an expected level of wallboard partition systems performance which does not conform to present practice, i.e., spacing the studs at 16 or 24 in o.c. for ratios of ℓ/t^3 between 100 and 200.

4.2 Techniques of Evaluating Impact Strength

The impact strengths of different assemblies of gypsum-wallboard panels were presented and discussed in sect. 3.1. It was shown that the impact strength for one criterion could be used to express the strength of the same panel for the other two criteria. Thus, if the strength for one criterion is evaluated, the others can be obtained by multiplying appropriate factors.

It was found in the present series of tests that, of the three criteria, Criterion III was the most convenient one to establish within a minimal time frame for the sake of expediency. Thus, the impact strength for Criterion III may be evaluated. Upon establishing the strength for Criterion III and by taking 25 percent and 50 percent of the impact strength for Criterion III, conservative estimates of the strength for Criterion I and II can be made.

5. CONCLUSIONS

An investigation was conducted to evaluate the impact strength of gypsum wallboards nailed on wood studs. A total of 317 tests was made on various partition assemblies. Three levels of performance of gypsum wallboards against impact were evaluated. The following conclusions are based on the results of this investigation:

- 1) For the criterion that five consecutive applications of impact at one location would limit damages only to the unexposed face and leave no trace of damage on the exposed face (Criterion II), the impact strength of most partition assemblies used in conventionally-built houses would exceed the 7.5 ft-lb limiting value specified in the criteria for the design and evaluation of Operation BREAKTHROUGH Housing Systems. The assembly which would not meet the 7.5 ft-lb criterion is that comprised of 3/8 in wallboard nailed on studs spaced at 16 in o.c.
- 2) Type X wallboard has greater impact strength than Regular wallboard. The increase in the strength of Type X wallboards over that of Regular wallboards is inversely proportional to the stiffness of the wallboard on the framing members.
- 3) The impact strength can be increased more effectively by increasing the thickness of wallboard, rather than by decreasing the spacing of studs.
- 4) The amount of impact energy which will cause damage to both faces of the wallboard with one application is twice the amount which will cause damage to only the

unexposed face with five applications of a constant impact on one location and is four times the amount which will not cause any observable damage on either faces with five applications of a constant impact on one location.

6. ACKNOWLEDGMENTS

The tests reported herein were carried out at the Structures Laboratory of the National Bureau of Standards. The tests were performed by Messrs. F. Rankin, J. Seiler and L. Payton. Their assistance is appreciated.

The author wishes to thank Dr. E. V. Leyendecker, Messrs. Thomas W. Reichard and Charles W. Yancey of the Structures Section, for reviewing the report.

7. TABLES AND FIGURES

Test Variables (1)		Thickness of Wallboards (in)		
		$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$
Type of Wallboard	ORDINARY*	+	+	+
	TYPE - X	Not Used in Practice	+	+
Spacing of Studs	16 in c/c	+	+	Not Used in Practice
	24 in c/c	Not Used in Practice	+	+

* Ordinary refers to regular type of wallboards as defined in ASTM C-36-68.

TABLE 1 TEST PROGRAM

SPECIMEN	CRITERION			CRITERION		
	I	II	III	I	II	III
	Height of Drop (in)			Energy Delivered (lb-ft)		
$\frac{3}{8}$ - ORD - 16	$\frac{3}{4}$	1	2	3.75	5.00	10.00
$\frac{1}{2}$ - ORD - 24	$\frac{3}{4}$	$1 \frac{1}{2}$	$2 \frac{3}{4}$	3.75	7.50	13.75
$\frac{1}{2}$ - ORD - 16	1	2	4	5.00	10.00	20.00
$\frac{1}{2}$ - X - 24	$1 \frac{3}{4}$	$2 \frac{3}{4}$	$5 \frac{3}{4}$	8.75	13.75	28.75
$\frac{1}{2}$ - X - 16	$1 \frac{3}{4}$	3	$6 \frac{3}{4}$	8.75	15.00	33.75
$\frac{5}{8}$ - ORD - 24	$1 \frac{1}{2}$	4	7	7.50	20.00	35.00
$\frac{5}{8}$ - X - 24	$1 \frac{3}{4}$	5	10	8.75	25.00	50.00

TABLE 2 TEST RESULTS

CRITERIA STRENGTH RATIO	Cri I	Cri II	Cri III	AVERAGE
<u>1/2 - X - 24</u> <u>1/2 - ORD - 24</u>	2.33	1.83	2.09	2.08
<u>1/2 - X - 16</u> <u>1/2 - ORD - 16</u>	1.75	1.50	1.69	1.65
<u>5/8 - X - 24</u> <u>5/8 - ORD - 24</u>	1.17	1.25	1.43	1.28

TABLE 3 EFFECT OF TYPE OF WALLBOARD
ON IMPACT STRENGTH

CRITERIA STRENGTH RATIOS	Cri I	Cri II	Cri III	AVERAGE
<u>1/2 - ORD - 16</u> <u>3/8 - ORD - 16</u>	1.33	2.00	2.00	1.78
<u>5/8 - ORD - 24</u> <u>1/2 - ORD - 24</u>	2.00	2.67	2.55	2.41
<u>5/8 - X - 24</u> <u>1/2 - X - 24</u>	1.00	1.82	1.74	1.52

TABLE 4 EFFECT OF THICKNESS OF WALLBOARD
ON IMPACT STRENGTH

CRITERIA STRENGTH RATIOS	Cri I	Cri II	Cri III	AVERAGE
<u>1/2 - ORD - 16</u> <u>1/2 - ORD - 24</u>	1.33	1.33	1.45	1.37
<u>1/2 - X - 16</u> <u>1/2 - X - 24</u>	1.00	1.09	1.17	1.07

TABLE 5 EFFECT OF SPACING OF STUDS
ON IMPACT STRENGTH

SPECIMENS

3/8-ORD-16

1/2-ORD-16

1/2-X-16

SPECIMENS

1/2-ORD-24

1/2-X-24

5/8-ORD-24

5/8-X-24

FIGURE 1 TEST PANELS

FIGURE 2 TEST SETUP

FIGURE 3 PHOTOGRAPH OF TEST SETUP

FIGURE 4 DISTRIBUTION OF TESTS OF
TEST PANELS 3/8 - ORD - 16

FIGURE 5 DISTRIBUTION OF TESTS OF
TEST PANELS 1/2 - ORD - 24

FIGURE 6 DISTRIBUTION OF TESTS OF
TEST PANELS 1/2 - ORD - 16

FIGURE 7 DISTRIBUTION OF TESTS OF
TEST PANELS 1/2 - X - 24

FIGURE 8 DISTRIBUTION OF TESTS OF
TEST PANELS 1/2 - X - 16

FIGURE 9 DISTRIBUTION OF TESTS OF
TEST PANELS 5/8 - ORD - 24

FIGURE 10 DISTRIBUTION OF TESTS OF
TEST PANELS 5/8 - X - 24

FIGURE 11 RATIOS OF IMPACT STRENGTH FOR CRITERION I
TO IMPACT STRENGTH FOR CRITERION III

FIGURE 12 RATIO OF IMPACT STRENGTH FOR CRITERION II
TO IMPACT STRENGTH FOR CRITERION III

FIGURE 14 COMPARISON OF VIBRATION ABSORPTION TEST RESULTS CRITERIA WITH TEST RESULTS

July 14

8. REFERENCES

1. Building Research Division, "Guide Criteria for the Design and Evaluation of Operation BREAKTHROUGH Housing Systems," National Bureau of Standards, Report No. 10200, 1 March 1970.
- 2 American Society for Testing and Materials, "1970 Annual Book of ASTM Standards - Part 9, Cement; Lime; Gypsum," November, 1970.
3. Federal Housing Administration, "Minimum Property Standards for One and Two Living Units," FHA No. 300, November, 1966.
4. American Society for Testing and Materials, "A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data," ASTM Special Technical Publication No. 91-A (Second Edition), 1963.

REFERENCES

1. "Bottling Research Division," Guide Circular for the
Design and Evaluation of Operation PREVENTION Manufacture
Systems," Bureau of Standards, Report No.
10500, 4 March 1970.

2. American Society for Testing and Materials, "1970
Annual Book of ASTM Standards - Part 9, Cement & Fines;
Oxides," November, 1970.

3. "Pesticide Homologs Iodates
and the AIA," Final Guidance Document for the
Evaluation of Pesticide Iodates
November, 1980.

4. American Society for Testing and Materials, "A Guide
to the Evaluation of the Statistical Analysis of
Batch Test Data," ASTM Special Technical Publication
No. STP-A-18, Second Edition, 1962.

