Lecture 9: Monte Carlo estimates of various statistics

Professor Ilias Bilionis

Application - Propagating uncertainties through an ordinary differential equation

Example ODE: Exponential decay exp-rested decay rate const.

Consider the ODE:

$$\dot{y} = \frac{\partial y}{\partial t} = -Qy$$

With initial conditions:

The solution is:

Example ODE: Assigning random variables (a)

- Start with the decay rate coefficient a.
- We know that it is positive.
- Assume that we know that $\mathbb{E}[a] = 0.1$.
- What random variable should we assign to it?

F[a] =
$$\lambda^{-1}$$
 = 10.
maximum entropy principle: selecting a distribution that is unbiased of also satisfies constraints

Example ODE: Assigning random variables (a)

Example ODE: Assigning random variables (y_0)

- Take the initial condition y_0 .
- We know that it is positive.
- Assume that we know that $\mathbb{E}[y_0] = 10$ and $\mathbb{V}[y_0] = 1$.
- What random variable should we assign to it?

Table should we assign to it?

$$y_{s} \sim L_{g}N_{s}m_{s}(t, s^{2})$$
 $F[y_{s}] = exp\{t+\frac{1}{2}s\} = 10$
 $V[y_{s}] = [e^{s^{2}}-1] \cdot exp\{2t+s^{2}\} = 1$
 $V[y_{s}] = [e^{s^{2}}-1] \cdot exp\{2t+s^{2}\} = 1$

(2)

Example ODE: Assigning random variables (y_0)

Example ODE: Sampling possible random paths

Example ODE: Estimating the CDF at y(t = 1)

Example ODE: Estimating the PDF and quantiles at y(t = 1)

Example ODE: Estimating the PDF and quantiles at y(t = 1)

Example ODE: Summarizing uncertainty with the mean and the variance

