L1S2 - Analyse 2

Exercice 1. Soit la suite $(z_n)_{n\in\mathbb{N}^*}$ définie par $z_n=e^{i\pi/4}+\frac{1}{n}e^{in/4}$

1) Prouver que cette suite est bornée. 2) Prouver qu'elle converge et déterminer sa limite.

Exercice 2. Soit (u_n) une suite complexe. Les propriétés suivantes sont-elles équivalentes?

- 1) La suite (u_n) est convergente.
- 2) La suite $(\overline{u_n})$ est convergente.

Exercice 3. 1) Déterminer l'expression explicite des suites définies par récurrence par

- a) $u_0 = 1$ et $u_{n+1} = u_n + 2i$.
- b) $v_0 = 1 + i$ et $v_{n+1} = e^{i\pi/6}v_n$.
- c) $w_0 = 0$ et $w_{n+1} = \frac{i}{4}w_n + 1$.
- 2) Dire dans chacun des cas si c'est une suite bornée, si elle converge et si oui, quelle est sa limite.

Exercice 4. On définit la suite de nombres complexes (z_n) de permier terme z_0 appartenant à \mathbb{C} et pour tout $n \in \mathbb{N}$: $z_{n+1} = \frac{z_n + |z_n|}{4}$. 1) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un réel négatif?

- 2) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un réel positif?
- 3) On suppose désormais que z_0 n'estpas un nombre réel. Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$? Justifier.

Exercice 5. Le plan complexe est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On définit la suite de nombres complexes (z_n) par $z_0 = 10$ et, pour tout $n \in \mathbb{N}$,

$$z_{n+1} = \frac{i}{6} z_n \,.$$

- 1) Déterminer explicitement z_n .
- 2) Soit A_n le point d'affixe $z_n, n \in \mathbb{N}$. Montrer que O, A_n et A_{n+2} sont alignés.
- 3) La suite (z_n) est-elle convergente? Si oui, donner sa limite.
- 4) En déduire qu'à partir d'un certain rang tous les points A_n appartiennent au disque de centre O et de rayon 1.

Exercice 6. Le plan complexe est rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$. On définit la suite de nombres complexes (z_n) par $z_0 = 1$ et, pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{1}{3}z_n + \frac{2}{3}i$. Pour tout $n \in \mathbb{N}$, on note $u_n = z_n - i$.

- 1) Vérifier que (u_n) est une suite géométrique dont on donnera la raison.
- 2) En déduire la forme explicite de (z_n) .
- 3) Montrer que (z_n) est une suite convergente et donner sa limite.
- 4) Pour $n \in \mathbb{N}$, déterminer les coordonnées du point A_n d'affixe z_n . En déduire que le point A_n appartient à la droite d'équation réduite : y = -x + 1.

Exercice 7. Soit la suite $(S_n)_{n\in\mathbb{N}^*}$ définie par $S_n=\sin\frac{\pi}{n}+\sin\frac{2\pi}{n}+\ldots+\sin\frac{(n-1)\pi}{n}$. Quelle est la limite de la suite $\left(\frac{S_n}{n}\right)_{n\in\mathbb{N}^*}$?

Exercice 8. Le plan complexe est muni d'un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$. On pose $z_0 = 2$ et, pour tout entier naturel n, $z_{n+1} = \frac{1+\mathrm{i}}{2}z_n$. On note A_n le point du plan d'affixe z_n .

1) Pour tout entier naturel n, on pose $u_n = |z_n|$. Justifier que la suite (u_n) est une suite géométrique puis établir que, pour tout enfler naturel n,

$$u_n = 2\left(\frac{1}{\sqrt{2}}\right)^n.$$

2) A partir de quel rang n_0 tous les points A_n appartiennent-ils au disque de centre O et de rayon 0,1?