Layered Graph Drawing

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 15.05.2018

Drawing Directed Graphs

Previously we studied mostly undirected graphs except for trees and series-parallel graphs. What if our input graph is directed but neither a tree nor series-parallel?

What is a suitable set of constraints and aesthetic criteria?

Assumptions: simple, directed graph

- e straight edges
- · New wossings
- · læge angles
- general edge direction, e.g.
- · identify and show structures like cycles...

Layered Graph Layout

Input: directed graph D = (V, A)

Output: drawing of D that emphasizes its hierarchical structure

Layered Graph Layout

Input: directed graph D = (V, A)

Output: drawing of D that emphasizes its hierarchical structure

Criteria:

- many edges pointing upward (or some other direction)
- ideally short, straight and vertical edges
- vertices placed on (few) horizontal layers
- few edge crossings
- evenly distributed vertices

Layered Graph Layout

Input: directed graph D = (V, A)

Output: drawing of D that emphasizes its hierarchical structure

Criteria:

- many edges pointing upward (or some other direction)
- ideally short, straight and vertical edges
- vertices placed on (few) horizontal layers
- few edge crossings
- evenly distributed vertices

Examples

acılıı

Java profiler

Java profiler JProfiler via yFiles

Examples

acılıı

Storyline layout

Politics data visualization from ABC news, Australia

Examples

acilii

Greek mythology family relations

winner GD contest 2016 (Klawitter & Mchedlidze)

Step 1: Break Cycles

What would you do?

Idea: ■ find maximum acyclic subgraph

reverse the directions of the other edges

Idea: In find maximum acyclic subgraph

reverse the directions of the other edges

Maximum Acyclic Subgraph

input: directed graph D = (V, A) $A' \subseteq A$

output: acyclic subgraph D' = (V, A') with |A'| maximum

Idea: ■ find maximum acyclic subgraph

reverse the directions of the other edges

Maximum Acyclic Subgraph

input: directed graph D = (V, A)

output: acyclic subgraph D' = (V, A') with |A'| maximum

Minimum Feedback Arc Set (FAS)

input: directed graph D = (V, A)

output: $A_f \subset A$, s.t. $D_f = (V, A \setminus A_f)$ acyclic and $|A_f|$

minimum

Idea: ■ find maximum acyclic subgraph

reverse the directions of the other edges

Maximum Acyclic Subgraph

input: directed graph D = (V, A)

output: acyclic subgraph D' = (V, A') with |A'| maximum

Minimum Feedback Arc Set (FAS)

input: directed graph D = (V, A)

output: $A_f \subset A$, s.t. $D_f = (V, A \setminus A_f)$ acyclic and $|A_f|$

minimum

Minimum Feedback Set (FS)

input: directed graph D = (V, A)

output: $A_f \subset A$, s.t. $D_f = (V, A \setminus A_f \cup \text{rev}(A_f))$ acyclic and

 $|A_f|$ minimum

Idea: ■ find maximum acyclic subgraph

reverse the directions of the other edges

Maximum Acyclic Subgraph

input: directed graph D = (V, A)

output: acyclic subgraph D' = (V, A') with |A'| maximum

Minimum Feedback Arc Set (FAS)

input: directed graph D = (V, A)

output: $A_f \subset A$, s.t. $D_f = (V, A \setminus A_f)$ acyclic and $|A_f|$

minimum

Minimum Feedback Set (FS)

input: directed graph D = (V, A)

output: $A_f \subset A$, s.t. $D_f = (V, A \setminus A_f \cup \text{rev}(A_f))$ acyclic and

 $|A_f|$ minimum

All three problems are NP-hard!

Heuristic 1 (Berger, Shor 1990)

Heuristic 1 (Berger, Shor 1990)

$$A' := \emptyset;$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|A' := A' \cup N^{\rightarrow}(v);$

else

$$A' := A' \cup N^{\leftarrow}(v);$$

remove v and N(v) from D

return
$$D' = (V, A')$$

 $N^{\to}(v) := \{(v, u) : (v, u) \in A\}$ $N^{\leftarrow}(v) := \{(u,v): (u,v) \in A\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

- lacksquare D' is a DAG (directed acyclic graph)
- \blacksquare $A \setminus A'$ is a feedback arc set (not necessarily minimum)
- Why are there no cycles in D'?
- Is $D'' = (V, A' \cup rev(A \setminus A'))$ acyclic?
- What is the running time?
- What do we know about |A'|?

Martin Nöllenburg · Graph Drawing Algorithms: Layered Graph Drawing

Heuristic 1 (Berger, Shor 1990)

$$A' := \emptyset;$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|A' := A' \cup N^{\rightarrow}(v);$

else

$$A' := A' \cup N^{\leftarrow}(v);$$

remove v and N(v) from D

return
$$D' = (V, A')$$

$$N^{\to}(v) := \{(v, u) : (v, u) \in A\}$$

 $N^{\leftarrow}(v) := \{(u, v) : (u, v) \in A\}$
 $N(v) := N^{\to}(v) \cup N^{\leftarrow}(v)$

- lacksquare D' is a DAG (directed acyclic graph)
- \blacksquare $A \setminus A'$ is a feedback arc set (not necessarily minimum)
- lacksquare running time O(|V|+|A|)
- $\blacksquare |A'| \ge |A|/2$


```
\mathbf{1} \ A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$


```
\mathbf{1} \ A' := \emptyset;
```

- 2 while $V \neq \emptyset$ do
- while V contains a sink v do
- $\mathbf{4} \quad | \quad A' \leftarrow A' \cup N^{\leftarrow}(v)$
 - remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$


```
1 A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $\mathbf{4} \quad | \quad A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $\mathbf{4} \quad | \quad A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

3 while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$

remove all isolated vertices from V: $\{V, n, m\}_{iso}$


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{sink}$

remove all isolated vertices from $V: \{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

6


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{sink}$

remove all isolated vertices from V: $\{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

 $A' \leftarrow A' \cup N^{\rightarrow}(v)$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

6

8

10

11

12


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$

remove all isolated vertices from $V: \{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

 $A' \leftarrow A' \cup N^{\rightarrow}(v)$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

6

8

10

11

12


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\mathsf{sink}}$

remove all isolated vertices from V: $\{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

6

8

10

11

12


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$

remove all isolated vertices from V: $\{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let
$$v \in V$$
 maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

6

8

10

11

12


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{\text{sink}}$

remove all isolated vertices from $V: \{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

 $A' \leftarrow A' \cup N^{\rightarrow}(v)$

remove v and N(v): $\{V, n, m\}_{\{=,<\}}$

6

8

10

11

12

Heuristic 2 (Eades, Lin, Smyth 1993)


```
A' := \emptyset;
```

2 while $V \neq \emptyset$ do

while V contains a sink v do

 $A' \leftarrow A' \cup N^{\leftarrow}(v)$

remove v and $N^{\leftarrow}(v)$: $\{V, n, m\}_{sink}$

remove all isolated vertices from $V: \{V, n, m\}_{iso}$

while V contains a source v do

$$A' \leftarrow A' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$: $\{V, n, m\}_{\text{source}}$

if $V \neq \emptyset$ then

let $v \in V$ maximize $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$

 $A' \leftarrow A' \cup N^{\rightarrow}(v)$

 $\text{remove } v \text{ and } N(v) \colon \{V, n, m\}_{\{=,<\}} \qquad \max_{v \in V} |V^-(v)| - |V^-(v)| \geq 0$

Observation.

6

10

11

12

13

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A'with $|A'| \ge |A|/2 + |V|/6$ in O(|A|) time.

- none in the beginning - line 13:

- line 9:

no! because a would have been a sink before

no! same asgrument

yes, when removing (u,v)

=) nico - mank

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A'with $|A'| \ge |A|/2 + |V|/6$ in O(|A|) time.

. after removing one
$$v \in V_{-}$$
 there is a velex u with $|N^{-}(u)| - |N^{-}(u)| > 0$
onext removed we kex is in $V_{\text{sink}} \cup V_{\text{source}} \cup V_{\text{c}}$

Theorem: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A' with $|A'| \geq |A|/2 + |V|/6$ in O(|A|) time.

how many edges are in A?

Nor
$$u \in V_2$$
: $\frac{deg(u)}{2}$

Nor $u \in V_2$: $\frac{deg(u)}{2}$

Nor

Theorem: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A' with $|A'| \geq |A|/2 + |V|/6$ in O(|A|) time.

as doubly finhed hist running time define backets B_n+3,..., Bo,..., Bn-3 inte Bi o put vertices with $|N^{-2}(v)| - |N^{-2}(v)| = i$ o sources, sinks, isolated into their own sets initialize Mosets in O(1A1) time · each step takes $O(\deg(v))$ [includes update of neighbors and shift to next or previous bucket]

Theorem: Let D=(V,A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A' with $|A'| \geq |A|/2 + |V|/6$ in O(|A|) time.

Further techniques:

$$\qquad |A'| \geq |A| \left(1/2 + \Omega \left(\frac{1}{\sqrt{\deg_{\max}(D)}} \right) \right) \text{ (Berger, Shor 1990)}$$

exact solution using integer linear programming and branch-and-cut (Grötschel et al. 1985)

Theorem: Let D = (V, A) be a connected, directed graph without 2-cycles. Heuristic 2 computes an edge set A'with |A'| > |A|/2 + |V|/6 in O(|A|) time.

Further techniques:

 $|A'| \ge |A| \left(1/2 + \Omega\left(\frac{1}{\sqrt{\deg_{\max}(D)}}\right)\right) \text{ (Berger, Shor 1990)}$ exact solution using integer linear programming and

branch-and-c/t (Grötschel et al. 1985)

For $|A| \in O(|V|)$ Heuristic 2 is at least as good.

Example

Example

Overview

Step 2: Assign Layers

What would you do?

-> topological sorting

Layer Assignment

Input: directed acyclic graph D = (V, A)

Output: partition of V into disjoint subsets (layers) L_1, \ldots, L_h

s.t. $(u,v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Define: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Layer Assignment

Input: directed acyclic graph D = (V, A)

Output: partition of V into disjoint subsets (layers) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_i \Rightarrow i < j$

Define: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Some optimization criteria:

- \blacksquare minimize the number h of layers (= height of the layouts)
- lacktriangle minimize the width, i.e., $\max\{|L_i| \mid 1 \leq i \leq h\}$
- minimize the longest edge, i.e., $\max\{j-i \mid (u,v) \in A, u \in L_i, v \in L_j\}$
- lacksquare minimize the total edge length (pprox number of dummy vertices)

Height Minimization

Idea: assign each vertex v to the layer L_i for which i is the length of the longest simple path from a source to v

- lacksquare all predecessors are below v
- \blacksquare the total height h is minimal

Height Minimization

Idea: assign each vertex v to the layer L_i for which i is the length of the longest simple path from a source to v

- lacksquare all predecessors are below v
- \blacksquare the total height h is minimal

Algorithm

- $L_1 \leftarrow$ set of all sources of D
- lacksquare set y(u)=1 for all $u\in L_1$
- lacksquare while $D
 eq \emptyset$
 - \blacksquare remove L_1 from D and assign $L_1 \leftarrow$ new set of sources
 - \blacksquare set $y(u) \leftarrow \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$ for all $u \in L_1$

Height Minimization

Idea: assign each vertex v to the layer L_i for which i is the length of the longest simple path from a source to v

- lacksquare all predecessors are below v
- \blacksquare the total height h is minimal

Algorithm

- \blacksquare $L_1 \leftarrow$ set of all sources of D
- \blacksquare set y(u)=1 for all $u\in L_1$
- \blacksquare while $D \neq \emptyset$
 - \blacksquare remove L_1 from D and assign $L_1 \leftarrow$ new set of sources
 - set $y(u) \leftarrow \max_{v \in N^{\leftarrow}(u)} \{y(v)\} + 1$ for all $u \in L_1$

Can we implement this idea in linear time O(|V| + |A|)?

Ves! Topological sorting of week set

Example

Example

Minimizing Total Edge Length

Can be formulated as an integer linear program:

min	$\sum_{(u,v)\in A} (y(v) - y(u))$	
	$y(v) - y(u) \ge 1$	$\forall (u,v) \in A$
	$y(v) \ge 1$	$\forall v \in V$
	$y(v) \in \mathbb{Z}$	$\forall v \in V$

Minimizing Total Edge Length

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in A}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u)\geq 1 & \forall (u,v)\in A \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

One can show that:

- constraint matrix is totally unimodular
- lacksquare \Rightarrow solution of the relaxed linear program is integral
- total edge length can be minimized in polynomial time

Announcements

- The class on June 12 is shifted to Monday, June 11 in the same time slot 9:00–11:00 in seminar room 186.
- Student presentations from exercise groups will take place on July 3, 10:00–12:00 and 13:00–15:00.
- We are running an experimental online study on human vs. machine drawings of small graphs. You are all invited to participate:

http://tinyurl.com/turingGD

oral exams: early July or late September