Spark

Zaharia et al., "Resilient Distributed Datasets:

A Fault-Tolerant Abstraction for In-Memory Cluster Computing", Proc. NSDI 2012

Another Abstraction: Spark

- Let's think of just having a big block of RAM, partitioned across machines...
 - And a series of operators that can be executed in parallel across the different partitions
- That's basically Spark's resilient distributed datasets (RDDs)
 - Spark programs are written by defining functions to be called over items within collections
 - (similar model to LINQ, FlumeJava, Apache Crunch, and several other environments)

Spark: Transformations and actions

- RDDs are read-only, partitioned collections
- Programmer starts by defining a new RDD based on data in stable storage
 - Example: lines = spark.textFile("hdfs://foo/bar");
- Programmer can create more RDDs by applying transformations to existing ones
 - Example: errors = lines.filter(_.startsWith("ERROR"));
- Only when an action is performed does Spark do actual work:
 - Example: errors.count()
 - Example: errors.filter(_contains("HDFS")).
 map(split("\t")(3)).collect()

Programming Model

Resilient distributed datasets (RDDs)

- Immutable, partitioned collections of objects
- Created through parallel transformations (map, filter, groupBy, join, ...) on data in stable storage
- Can be cached for efficient reuse

Actions on RDDs

Count, reduce, collect, save, ...

Spark: Lineage

- Spark keeps track of how RDDs have been constructed
 - Result is a lineage graph
 - Vertexes represent RDDSs, edges represent transformati

- What could this be useful for?
 - Fault tolerance: When a machine fails, the corresponding piece of the RDD can be recomputed efficiently
 - How would a multi-stage MapReduce program achieve this?
 - Efficiency: Not all RDDs have to be 'materialized' (i.e., kept in RAM as a full copy)

Spark Examples

```
def sample(p):
    x, y = random(), random()
    return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)).map(sample) \
    .reduce(lambda a, b: a + b)</pre>
```

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

```
textFile = sc.textFile("hdfs://...")
# Creates a DataFrame having a single column named "line"
df = textFile.map(lambda r: Row(r)).toDF(["line"])
errors = df.filter(col("line").like("%ERROR%"))
# Counts all the errors
errors.count()
# Counts errors mentioning MySQL
errors.filter(col("line").like("%MySQL%")).count()
# Fetches the MySQL errors as an array of strings
errors.filter(col("line").like("%MySQL%")).collect()
```

Spark Operations

Transformations (define a new RDD)

map
filter
sample
groupByKey
reduceByKey
sortByKey

flatMap
union
join
cogroup
cross
mapValues

Actions

(return a result to driver program)

collect reduce count save lookupKey

Spark: Implementation

- Developer writes a driver program that connects to a cluster of workers
 - Driver defines RDDs, invokes actions, tracks lineage
 - Workers are long-lived processes that store pieces of RDDs in memory and perform computations on them
 - Many of the details will sound familiar: Scheduling, fault detection and recovery, handling stragglers, etc.

What can you do easily in Spark?

- Global aggregate computations that produce program state – compute the count() of an RDD, compute the max diff, etc.
- Loops!
- Built-in abstractions for some other common operations like joins
- See also Apache Crunch / Google FlumeJava for a very similar approach

Logistic Regression Performance Example

Example: Logistic Regression

Goal: find best line separating two sets of points

Example: Logistic Regression

```
val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p =>
    (1 / (1 + \exp(-p.y*(w \text{ dot } p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)
  w -= gradient
println("Final w: " + w)
```