lecture 11:
Auti Symmetric: Haib & A if (a1b) & RA (b1a) & R -> a=1
Ex 12: - Res (a1b) a divides 63. A2 2t.
Symmetric: Haib EA A (aib) ER -> (bia) ER.
tab € Z [†] if a divide b → b divides a. (316) €R → (613) € R.
=. Not Symmetric.
Haib & A if (aib) ERA (bia) ER -> azb.
taib & Zt if a divides b 1 b divides a - 7 a = b. Which holds
Fr & (a1b) a2b} Symmetric. Reflexive. a7b. Anti Symmetric a7b. A2 Z AX. 9<5 a5b
Transitive: Haibic & A 1) (ab) ERA (bie) ER -> (aic) ER.
型以子: Az あの、2,3,4%
R2 9(2,2), (2,2), (2,2), (3,4), (4,1), (4,1), (4,4)} 1 1 1 1 a b b c.

Rz 9 (2,2)} Az 31,23 leplicine.
Symmetore.

Auti Symmetore.

I Yave, Here R= 9(a1b) (a1b) EFF. 2 AXA-RV. UI (1, -, Complement. Az & 1,2,33 Bz & 1,2,3,43. PK I子 | A N B | 12 | Pos (A N B) | 2 2 2 R12 \(\frac{1}{2}\left(\frac{1}{2}\right), (\frac{1}{2}\right), (\frac{1}2\right), (\frac{1}2\right), (\frac{1}2\right), (\frac{1}2\rig RIORIZÍ (212), (212), (313), (1,2), (213), (214)}.
RIORIZÍ ----R. - Rz = { (212), (313)} Rz - Rz = { (2,2), (2,3), (2,4)} EN 19: Piz q (a,b) (a7b) Ruzd(a,b) acb? FIDR2 2 3(91b) 1 a7b V 9 < b3. A2 R. 2 9 (a1b) a + b. RIAL 2 9 (a1b) 1 a7b 1 acb]. 7(7)= 4