Assignment 5

George Gkikas-Panousis 1820253079 Anastasios Dyoilis 1820253075 Vlad Kovalev 1820253050

April 30, 2025

Introduction

In this assignment we solve five exercises on context-free grammars and parsers:

- 1. LL(1) analysis for seven grammars.
- 2. Proving ambiguity for three small grammars.
- 3. LR(0) automaton and parse table.
- 4. LR(1) automaton and parse table.
- 5. Fixing and extending a partial C++ EBNF.

Problem 1: LL(1) Analysis

Compute FIRST and FOLLOW sets, then check the LL(1) conditions.

Grammar 1

$$S \rightarrow a\,A\,B\,C \mid \epsilon, A \rightarrow a \mid bbD, B \rightarrow a \mid \epsilon, C \rightarrow b \mid \epsilon, D \rightarrow c \mid \epsilon.$$

FIRST:

 $\mathrm{FIRST}(S) = \{a, \epsilon\}, \; \mathrm{FIRST}(A) = \{a, b\}, \; \mathrm{FIRST}(B) = \{a, \epsilon\}, \\ \mathrm{FIRST}(C) = \{b, \epsilon\}, \; \mathrm{FIRST}(D) = \{c, \epsilon\}.$

FOLLOW:

FOLLOW(S) = $\{\$\}$, FOLLOW(A) = $\{a, b, \$\}$, FOLLOW(B) = $\{b, \$\}$, FOLLOW(C) = $\{\$\}$, FOLLOW All intersections are empty and the ϵ checks pass. Grammar 1 is LL(1).

Grammar 2

$$A \to B \, C \, c \mid e \, D \, B, B \to \epsilon \mid b \, C \, D, C \to D \, a \, B \mid c \, a, D \to \epsilon \mid d \, D.$$

FIRST: FIRST(D) = $\{d, \epsilon\}$, but $d \in \text{FOLLOW}(D)$ conflict. Grammar 2 is NOT LL(1).

Grammar 3

Clarified as:

$$S \rightarrow '('X')' \mid '['E']' \mid F, X \rightarrow E')' \mid F' \mid ', E \rightarrow A, \quad F \rightarrow A, \quad A \rightarrow \epsilon.$$

Compute FIRST and FOLLOW (all disjoint, no conflicts). Grammar 3 is LL(1).

Grammar 4

$$S \to X b \mid Y d, X \to a X \mid \epsilon, \quad Y \to c Y \mid \epsilon.$$

FIRST $(Xb) = \{a, b\}$ vs FIRST $(Yd) = \{c, d\}$ disjoint, ϵ -cases OK. Grammar 4 is LL(1).

Grammar 5

$$S \to M \, N \, O \, P \, Q, \quad M, N, O, P, Q \to t \mid \epsilon$$

Each $t \notin FOLLOW$ LL(1). Grammar 5 is LL(1).

Grammar 6

Eliminate left recursion:

$$S \to A$$
, $A \to a B A'$, $A' \to d A' \mid \epsilon$, $B \to b$.

No conflicts LL(1). Grammar 6 is LL(1).

Grammar 7

$$S \to A a A b \mid B b B a, \quad A \to \epsilon, B \to \epsilon.$$

FIRST-sets $\{a\}$ vs $\{b\}$ LL(1). Grammar 7 is LL(1).

Problem 2: Ambiguity Proofs

Each grammar admits a string with two parse-trees:

• Grammar 1: $S \to a \mid aAb \mid abSb, A \to aAAb \mid bS$. String abab:

$$S \Rightarrow abSb \Rightarrow abab, \quad S \Rightarrow aAb \Rightarrow a(bS)b \Rightarrow abab.$$

• Grammar 2: $S \to AB \mid aaaB, A \to a \mid Aa, B \to b$. String aaab:

$$S \Rightarrow AB \Rightarrow AaB \Rightarrow aab$$
, $S \Rightarrow aaaB \Rightarrow aaab$.

• Grammar 3: $S \to xyXxX \mid xyXyy \mid yy, X \to xxX \mid yy \mid xx$. String xyxxxxyy by two different expansions of X.

All three are ambiguous.

Problem 3: LR(0) Automaton

Augmented Grammar

- 0. S' -> S
- 1. S -> A A
- 2. A -> a A
- 3. A -> b

SLR Parse Table

State	a	b	\$	A	S
0	s3	s4		2	1
1			acc		
2	s3	s4		5	
3	s3	s4		6	
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

where r1: $S \rightarrow AA$, r2: $A \rightarrow aA$, r3: $A \rightarrow b$.

Problem 4: LR(1) Automaton

Augmented Grammar

```
0. S' -> S
```

LR(1) ACTION / GOTO

State	a	b	g	d	е	\$	A	В	S
0	s1	s2							13
1			s11				3	4	
2			s12				6	5	
3				s7					
4					s9				
5				s8					
6					s10				
7						r1			
8						r2			
9						r3			
10						r4			
11				r5	r6				
12				r6	r5				
13	A 1	2.0	1.D.1	0.0	1 D	acc			

 $r1:S \rightarrow aAd, r2:S \rightarrow bBd, r3:S \rightarrow aBe, r4:S \rightarrow bAe, r5:A \rightarrow g, r6:B \rightarrow g.$

Problem 5: C++ Grammar Corrections

Below I show what I fixed (in red) and what I added (in blue).

```
<default-case> ::= default : <statement>*
<class-def> ::= class <var-name> { <member-list> } ;
<member-list> ::= <member> | <member-list><member>
<member>
              ::= <var-def> | <fun-def>
<try-catch>
              ::= try{<statement>*}catch(<type><var-name>){<statement>*}
Precedence-enforced expressions
<logical-or-expr>
                   ::= <logical-and-expr> ( "|| " <logical-and-expr> )*
                   ::= <equality-expr> ( "&&" <equality-expr> )*
<logical-and-expr>
<equality-expr>
                   ::= <relational-expr> (("=="|"!=") <relational-expr>) *
<relational-expr>
                   ::= <additive-expr> (("<"|"<="|">"|">=") <additive-expr>) *
                   ::= <multiplicative-expr> (("+"|"-") <multiplicative-expr>)*
<additive-expr>
<multiplicative-expr>::= <unary-expr> (("*"|"/"|"%") <unary-expr>)*
                    ::= ("-"|"!") <unary-expr> | "(" <expression> ")" | teral> |
<unary-expr>
```