Chinmay	Mittal
(2020CS1	0336)

Assignment 1 | COL703 Logic for Computer Science

September 10, 2023

Question 1

Let $\phi \leftrightarrow \psi$ be defined as $(\phi \to \psi) \land (\psi \to \phi)$

Introduction Rule (\leftrightarrow_i)

$$\frac{\phi \to \psi \quad \psi \to \phi}{\phi \leftrightarrow \psi}$$

Elimination Rules $(\leftrightarrow_{e1}, \leftrightarrow_{e2})$

$$\frac{\phi \leftrightarrow \psi}{\phi \to \psi}$$

$$\frac{\phi \leftrightarrow \psi}{\psi \to \phi}$$

Proofs

1	$\phi \rightarrow \psi$	
Ι.	$\omega \rightarrow \omega$	

Premise

2.
$$\psi \to \phi$$

Premise

3.
$$(\phi \to \psi) \land (\psi \to \phi)$$

 $\wedge_i 1, 2$

4.
$$\phi \leftrightarrow \psi$$

Definition of \leftrightarrow from 3.

1. $\phi \leftrightarrow \psi$

Premise

2. $(\phi \to \psi) \land (\psi \to \phi)$

Definition of \leftrightarrow from 1.

3. $\phi \rightarrow \psi$

 $\wedge_{e1} 2$

1. $\phi \leftrightarrow \psi$

Premise

2. $(\phi \to \psi) \land (\psi \to \phi)$

Definition of \leftrightarrow from 1.

3. $\psi \rightarrow \phi$

 \wedge_{e2} 2

Part (a)

1. $(p \to r) \land (q \to r)$

Premise

 $2. \quad (p \to r)$

 $\wedge_{e1} 1$

3. $p \wedge q$

Assumption

4. p

 \wedge_{e1} 3

5. r

MP 4, 2

6. $(p \land q) \rightarrow r$

 \rightarrow_i 3-5

Hence $(p \to r) \land (q \to r) \vdash (p \land q) \to r$

Part (b)

1. $p \to (q \land r)$

Premise

- 2.
- _____

Assumption

- 3.
- $q\wedge r$

MP 2,1

4.

 \wedge_{e1} 3

5. $p \rightarrow q$

 $\rightarrow_i 2$ -4

6.

' 1 -

7. $q \wedge r$

MP 6,1

Assumption

8. *r*

 \wedge_{e2} 7

 $p \rightarrow r$

- $\rightarrow_i 6-8$
- 10. $(p \to q) \land (p \to r)$
- $\wedge_i 5,9$

Hence $(p \to (q \land r)) \vdash (p \to q) \land (p \to r)$

We show that the set of connectives $\{\leftrightarrow, \neg\}$ is inadequate

Lemma: Consider any formula f over the set of propositions $\{x_1, x_2 \dots x_n\}$ using the connectives $\{\leftrightarrow, \neg\}$. Then either f does not depend on x_i or flipping the value (i.e. $T \to F$ or $F \to T$) of x_i will also flip the value of f.

Proof: By structural induction on f

Base Case: f is a propositional atom from the set of $\{x_1, x_2 \dots x_n\}$ Then either f does not depend on x_i or otherwise $f = x_i$ in which case flipping the value of x_i will also flip the value of f

Induction Step:

- Either $f = \neg \phi$, by the induction hypothesis, either ϕ does not depend on x_i in which case f does not depend on x_i or otherwise flipping the value of x_i will flip the sign of ϕ and hence also f
- Or $f = \alpha \leftrightarrow \beta$
 - If both α and β do not depend on x_i then f does not depend on x_i
 - If only one of α or β depends on x_i , then flipping value of x_i will value sign of one of α or β which will flip the value of $\alpha \leftrightarrow \beta$ (Follows trivially from the truth table of \leftrightarrow)
 - If both α and β depend on x_i , then flipping value of x_i will flip the value of both α and β and the value of f will remain unchanged, hence f will not depend on the value of x_i (Follows trivially from the truth table of \leftrightarrow)

Consider the formula $p \vee q$, Clearly, the value of this formula depends on q (when p is T flipping the value of q does not flip the value of the formula, Hence $p \vee q$ cannot be expressed using the connectives $\{\leftrightarrow, \neg\}$ and thus this set of connectives is not adequate

Part (a)

Consider the valuation p = T, q = F, r = TLHS

- When r = T and q = F we have $\neg q$ evaluates to T and $r \land \neg q$ evaluates to T (This is the only assignment which makes this formula T)
- When p = T and q = F $p \lor q$ evaluates to T
- When $r = T \neg r$ evaluates to F and $p \lor q = T$ hence, $\neg r \to p \lor q$ evaluates to T (if r = T, q = F any valuation of p will make this formula T)

Hence in this valuation all formulas to the left of \vdash evaluates to T RHS

• When r = T and q = F $r \to q$ evaluates to F (only valuation in which this formula becomes F, and this fact was used to find the required valuation)

Hence the formula to the RHS of \vdash evaluates to F in this valuation Hence the sequent is invalid

Part (b)

Consider the Following Valuation p = T, q = F, r = T

- When q = F, r = T $q \to r$ evaluates to T
- When p = T and $(q \to r) = T$ we have $p \to (q \to r)$ evaluates to T

Hence the LHS of \vdash evaluates to T

- When $r = T, q = F \ r \rightarrow q$ evaluates to F
- When p = T and $(r \to q) = F$ $p \to (r \to q)$ evaluates to F

Hence the RHS of \vdash evaluates to F

The way we find this valuation is that for the RHS to evaluate to F, only possible way is that p=T and $(r \to q) = F$, and the only possible way $(r \to q) = F$ is when q=F, r=THence the sequent is invalid

Let ϕ be the set of all formulas of propositional logic, this is a countably infinite set and hence can be enumerated as follows, $\phi = \{\alpha_0, \alpha_1, \ldots\}$

Part (a)

We define the infinite sequence as follows

- $X_0 = X$
- $X_{i+1} = X_i \cup \alpha_i$ if $X_i \cup \alpha_i$ is satisfiable and X_i otherwise where $i \geq 0$

by construction $X_0 \subseteq X_1 \subseteq X_2 \dots$

Let $Y = \bigcup_{i>0} X_i$ We claim that Y is an extension of X and is a maximal FSS

Let us say that Y is not a FSS. This means that there exists $Z \subseteq_{fin} Y$ which is not satisfiable.

Let $Z = \{\alpha_{i1}, \alpha_{i2}, \alpha_{i3}, \dots \alpha_{in}\}$ where the indices correspond to the enumeration of ϕ

 $Z \subseteq_{fin} X_{j+1}$ where $j = max(i_1, i_2, \dots, i_n)$ and since X_{j+1} is satisfiable, Z is satisfiable which is a contradiction, hence Y is an FSS

To show that Y is maximal, let us show that if $\beta (= \alpha_j) \notin Y$, then $Y \cup \beta$ is not an FSS.

Since $\alpha_j \notin Y$, α_j was not added in the $j+1^{th}$ step of our construction. This means that $X_j \cup \alpha_j$ is not satisfiable. In other words there exists a finite subset $(X \cup \{\alpha_j\})$ of $Y \cup \{\alpha_j\}$ which is not satisfiable hence $Y \cup \{\alpha_j\}$ is not an FSS.

This shows that every FSS can be extended to a maximum FSS.

Part (b)

We need to show that if X is a maximal FSS, then for every formula α , $\alpha \in X$ iff $\neg \alpha \notin X$

Clearly $\{\alpha, \neg \alpha\} \not\subseteq X$. This is because, since $\alpha \vee \neg \alpha$ is a thesis, which means $\neg \neg (\alpha \vee \neg \alpha)$ is a thesis which means $\neg (\alpha \wedge \neg \alpha)$ is a thesis and hence X is not an FSS (since there eixsts a finite subset which is not satisifaible) which is a contradiction.

Hence it is enough to show that at least one of α or $\neg \alpha$ is in X.

If neither α nor $\neg \alpha$ is in X, then this means that there exists $B \subseteq_{fin} X$ and $C \subseteq_{fin} X$ where $B = \{\beta_1, \beta_2 \dots \beta_n\}$ and $C = \{\gamma_1, \gamma_2 \dots \gamma_m\}$ such that $\{\alpha\} \cup B$ and $\{\neg \alpha\} \cup C$ are not satisfiable.

Thus $\neg(\alpha \land \beta_1 \land \dots \land \beta_n)$ and $\neg(\neg \alpha \land \gamma_1 \land \dots \land \gamma_m)$ are valid, hence $\neg \alpha \lor \neg(\beta_1 \land \beta_2 \dots \land \beta_n)$ and $\neg \neg \alpha \lor \neg(\gamma_1 \land \gamma_2 \dots \land \gamma_m)$ are valid

Hence $\alpha \to \neg(\beta_1 \land \beta_2 \dots \beta_n)$ and $\neg \alpha \to \neg(\gamma_1 \land \gamma_2 \dots \gamma_m)$

We have shown in class that, $(\alpha \to \beta) \to ((\delta \to \gamma) \to ((\alpha \lor \delta) \to (\beta \lor \gamma)))$

Using the previous two facts and $\alpha \vee \neg \alpha$ (lem) we get, $\neg(\beta_1 \wedge \beta_2 \dots \beta_n) \vee \neg(\gamma_1 \wedge \gamma_2 \dots \gamma_m)$ is valid which means $\neg((\beta_1 \wedge \beta_2 \wedge \dots \beta_n) \wedge (\gamma_1 \wedge \gamma_2 \wedge \dots \gamma_m))$ is valid.

This means that $B \cup C \subseteq_{fin} X$ and is not satisfiable which is a contradiction, hence one of α or $\neg \alpha \in X$

Part (c)

 (\Rightarrow) We are given that $\alpha \cup \beta \in X$, let us assume that $\alpha \notin X$ and $\beta \notin X$

Thus there exists $A = \{\alpha_1, \alpha_2, \dots\} \subseteq_{fin} X$ and $B = \{\beta_1, \beta_2 \dots\} \subseteq_{fin} X$ such that $\{\alpha\} \cup A$ and $\{\beta\} \cup B$ are not satisfiable

Hence by the definition of satisfiability we have $\neg(\alpha \land (\alpha_1 \land \dots \land \alpha_n))$ and $\neg(\beta \land (\beta_1 \land \dots \land \beta_m))$ are valid

Thus we get $\alpha \to \neg(\alpha_1 \land \dots \land \alpha_n)$ and $\beta \to \neg(\beta_1 \land \dots \land \beta_m)$

Using the above fact and $(\alpha \to \beta) \to ((\delta \to \gamma) \to ((\alpha \lor \delta) \to (\beta \lor \gamma)))$ we get that $\alpha \lor \beta \to \neg(\alpha_1 \land \dots \land \alpha_n) \lor \neg(\beta_1 \land \dots \land \beta_m))$

Hence $\alpha \vee \beta \rightarrow \neg((\alpha_1 \wedge \alpha_2 \dots \alpha_n) \wedge (\beta_1 \wedge \dots \beta_m))$

This means that $A \cup B \cup \{\alpha \lor \beta\} \subseteq_{fin} X$ and is not satisfiable which is a contradiction, hence either $\alpha \in X$ or $\beta \in X$

(\Leftarrow) It is enough to show that if $\alpha \in X$ then $\alpha \vee \beta \in X$, the other part of this proof which is if $\beta \in X$ then $\alpha \vee \beta \in X$ can be shown symmetrically

Let us prove this by contradiction i.e. we assume $\alpha \in X$ and $\alpha \vee \beta \notin X$, thus there exists $C = \{\gamma_1, \gamma_2 \dots \gamma_n\} \subseteq_{fin} X$ such that $\neg((\alpha \vee \beta) \wedge (\gamma_1 \wedge \dots \gamma_n))$ is valid

Thus $\alpha \vee \beta \to \neg(\gamma_1 \wedge \ldots \gamma_n)$ which means $\alpha \to \neg(\gamma_1 \wedge \ldots \gamma_n)$ which means that $\neg(\alpha \wedge (\gamma_1 \wedge \ldots \gamma_n))$ is valid and hence $\{\alpha\} \cup C \subseteq_{fin} X$ and is not satisfiable, which is a contradiction.

Thus we show that if $\alpha \in X$ then $\alpha \vee \beta \in X$

Part (d)

Consider the valuation v_X to be the set $\{p \in \mathcal{P} | p \in \mathcal{X}\}$ where \mathcal{P} is the set of all propositions, i.e. $v_X(p) = T$ iff $p \in X$

We show that for this valuation $v_X \vDash \alpha$ iff $\alpha \in X$

We prove this by structural induction on α

Base Case: α is a propositional atom i.e. $\alpha = p \in \mathcal{P}$ by definition, $v_X \models p$ iff $p \in X$ Induction Step:

• If $\alpha = \neg \beta$,

if $\beta \in X$ then $v_X \vDash \beta$ and $v_X \not\vDash \alpha$, because we have shown that if $\beta \in X$ $\alpha \notin X$.

If $\beta \notin X$ then $\alpha \in X$ and since $v_X \not\vDash \beta$ we have $v_X \vDash \alpha$

Thus for this case we have shown that $v_X \vDash \alpha$ iff $\alpha \in X$

• $\alpha = \beta \vee \gamma$

If $\beta \notin X$ and $\gamma \notin X$ then we have $\alpha \notin X$, since $v_X \not\vDash \beta$ and $v_X \not\vDash \gamma$ we have $v_X \not\vDash \alpha$

if $\beta \in X$ or $\gamma \in X$, then we have $\alpha \in X$ and since either $v_X \vDash \beta$ or $v_X \vDash \gamma$ we have $v_X \vDash \alpha$

Thus for this case also we have shown that $v_X \vDash \alpha$ iff $\alpha \in X$

Hence we have shown that for this particular valuation $v_X \models \alpha$ iff $\alpha \in X$

Finite Satisfiability

Here we state the result of finite satisfiability which was proved in class, Let $X \subseteq \phi$ Then X is satisfiable iff every $Y \subseteq_{fin} X$ is satisfiable

Part (e)

Consider the valuation v_X to be the set $\{p \in \mathcal{P} | p \in \mathcal{X}\}$ where \mathcal{P} is the set of all propositions, i.e. $v_X(p) = T$ iff $p \in X$

From the result shown in part (d), we can say that this valuation simultaneously satisfies all formulas in X Hence consider any $Y \subseteq_{fin} X$, this valuation satisfies all formulas in Y and since Y is finite $v_X \models Y$ From (finite satisfiability) we have $v_X \models X$ iff $\forall Y \subseteq_{fin} X \ v_X \models Y$ which we have shown above, Hence $v_X \models X$

Part (f)

We need to show that $X \vDash \alpha$ iff $Y \subseteq_{fin} X$ and $Y \vDash \alpha$

 (\Leftarrow)

Becasue if there exists a valuation v such that $v \models X$ then $v \models Y$ (since $Y \subseteq_{fin} X$) and hence $v \models \alpha$ (since $Y \models \alpha$) hence $X \models \alpha$

 (\Rightarrow)

 $X \models \alpha$ means that $X \cup \{\neg \alpha\}$ is not satisfiable. From finite satisfiability we have that $Y \subseteq_{fin} X \cup \{\neg \alpha\}$ is not satisfiable, $Y \setminus \{\neg \alpha\} \subseteq_{fin} X$ and $(Y \setminus \{\neg \alpha\}) \cup \{\neg \alpha\}$ is not satisfiable

Thus $Y \setminus \{ \neg \alpha \} \vDash \alpha$