

## **Sequential Monte Carlo methods**

Lecture 15 – General Sequential Monte Carlo

Thomas Schön, Uppsala University 2017-08-29

# Summary of day 3

#### **Outline - Lecture 15**

**Aim:** Show how SMC can be used for a much wider class of problems than inference in state-space models.

#### **Outline:**

- 1. Summary of day 3
- 2. Examples of probabilistic models
- 3. General SMC formulation
- 4. Locally optimal proposals

1/19

# Summary of day 3

Simulate a Markov chain which is designed in such a way that its stationary distribution coincides with the target distribution.

An MCMC sampler generates the Markov chain  $\{x[m]\}_{m=1}^{M}$  by:

- Initialize: set x[1] arbitrarily.
- For m=2 to M: sample  $x[m] \sim \kappa(x[m-1], x^*)$ .

 $\kappa(x, x^*)$  is a **Markov kernel** on  $\mathcal{X}$ , i.e. a conditional distribution for the next state  $x^*$  given the current state x.

## Summary of day 3

#### Algorithm 1 Pseudo-marginal Metropolis Hastings

- 1. **Initialize** (m = 1): Set  $\theta[1]$  and run a particle filter for  $\hat{z}[1]$ .
- 2. For m = 2 to M, iterate:
- a. Sample  $\theta' \sim q(\theta \mid \theta[m-1])$ .
- b. Sample  $\hat{z}' \sim \psi(z \mid \theta', y_{1:T})$  (i.e. run a particle filter).
- c. With probability

$$\alpha = \min\left(1, \frac{\hat{z}'p(\theta')}{\hat{z}[m-1]p(\theta[m-1])} \frac{q(\theta[m-1] \mid \theta')}{q(\theta' \mid \theta[m-1])}\right)$$

set  $\{\theta[m], \hat{z}[m]\} \leftarrow \{\theta', \hat{z}'\}$  (accept candidate sample) and with prob.  $1 - \alpha$  set  $\{\theta[m], \hat{z}[m]\} \leftarrow \{\theta[m-1], \hat{z}[m-1]\}$  (reject candidate sample).

Summary of day 3

**Gibbs kernel:** This procedure defines a Markov kernel  $\kappa(x, x^*)$  with stationary distribution  $\pi(x)$ .

Particle Gibbs kernel: A Markov kernel  $\kappa_{N,\theta}(\mathbf{x}_{0:T},\mathbf{x}_{0:T}^{\star})$  on  $\mathcal{X}^{T+1}$ .

Particle Gibbs: Run a particle filter, but at each time step

- sample only N-1 particles in the standard way.
- set the Nth particle deterministically:  $x_t^N = x_t$  and  $a_t^N = N$ .
- At final time t = T, output  $\mathbf{x}_{0:T}^{\star} = \mathbf{x}_{0:T}^{b}$  with  $b \sim \mathcal{C}(\{w_{T}^{i}\}_{i=1}^{N})$

3/19

4/19

## Summary of day 3

- The algorithm stochastically "maps"  $x_{0:T}$  into  $x_{0:T}^{\star}$ .
- Implicitly defines a Markov kernel  $\kappa_{N,\theta}(x_{0:T}, x_{0:T}^*)$  on  $\mathcal{X}^{T+1}$  the particle Gibbs kernel.

**Examples of probabilistic models** 

## Phylogenetic trees

A phylogenetic (evolutionary) tree shows the inferred evolutionary relationships among various species based upon similarities and differences in their physical or genetic characteristics.



6/19

## Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  represents the conditional independency structure between random variables,

- 1. a set of vertices  $\mathcal V$  (nodes) represents the random variables
- 2. a set of edges  $\mathcal{E}$  containing elements  $(i,j) \in \mathcal{E}$  connecting a pair of nodes  $(i,j) \in \mathcal{V} \times \mathcal{V}$





7/19

## Gaussian process state-space model

The Gaussian process (GP) is a **non-parametric** and **probabilistic** model for nonlinear functions.

Non-parametric means that it does not rely on any particular parametric functional form to be postulated.

$$egin{aligned} X_t &= f(X_{t-1}) + V_t, \qquad ext{s.t.} \quad f(X) \sim \mathcal{GP}(0, \kappa_{\eta, f}(x, x')), \ Y_t &= g(X_t) + E_t, \qquad ext{s.t.} \quad g(X) \sim \mathcal{GP}(0, \kappa_{\eta, g}(x, x')). \end{aligned}$$

The model functions f and g are assumed to be realizations from Gaussian process priors and  $V_t \sim \mathcal{N}(0, Q)$ ,  $E_t \sim \mathcal{N}(0, R)$ .

**Task:** Compute the posterior  $p(f, g, Q, R, \eta, x_{0:T} | y_{1:T})$ .

#### **General SMC formulation**

## **Model specification**

SMC can be used to approximate a **sequence** of probability distributions on a sequence of probability spaces of **increasing dimension**.

Let  $\{\pi_k(\mathbf{x}_{1:k})\}_{k\geq 1}$  be an arbitrary sequence of target distributions

$$\pi_k(\mathbf{x}_{1:k}) = \frac{\widetilde{\pi}_k(\mathbf{x}_{1:k})}{Z_k}$$

- The domain of  $x_k$  is  $\mathcal{X}_k$ , and  $\mathcal{X}_{1:k} = \mathcal{X}_k \times \mathcal{X}_{1:k-1}$  for all k.
- $\widetilde{\pi}_k(x_{1:k})$  can be evaluated pointwise.
- The normalizing constant  $Z_k$  may be unknown.

Common tasks:

- 1. Approximate the normalization constant  $Z_k$ .
- 2. Approximate  $\pi_k(x_k)$  and compute  $\int \phi(x_k) \pi_k(x_k) dx_k$ .

9/19

#### ex) State space model

The sequence of target distributions  $\{\pi_k(x_{0:k})\}_{k=1}^n$  can be constructed in many different ways.

The most basic construction arises from **chain-structured graphs**, such as the state space model (SSM).



$$\overbrace{p(\mathbf{x}_{0:t} \mid \mathbf{y}_{1:t})}^{\pi_t(\mathbf{x}_{0:t})} = \underbrace{\frac{\widetilde{\pi}_t(\mathbf{x}_{0:t})}{p(\mathbf{x}_{0:t}, \mathbf{y}_{1:t})}}_{Z_{t=0}} \underbrace{\frac{\widetilde{\pi}_t(\mathbf{x}_{0:t})}{p(\mathbf{y}_{1:t})}}_{Z_{t=0}}$$

10/19

## General Sequential Monte Carlo

Sequential Monte Carlo approximates

$$\pi_k(\mathsf{x}_{0:k}) pprox \sum_{i=1}^N w_k^i \delta_{\mathsf{x}_{0:k}^i}(\mathsf{x}_{0:k}).$$

The weighted particle populations  $\{x_{0:k}^i, w_k^i\}_{i=1}^N$  are generated sequentially for k = 1, 2, ...

## **General Sequential Monte Carlo**



Assume that we have obtained  $\{x_{0:k-1}^i, w_{k-1}^i\}_{i=1}^N$ 

**Resampling:** Sample  $a_k^i$  with  $\mathbb{P}(a_k^i = j) = \nu_{k-1}^j$ , j = 1, ..., N.

**Propagation:**  $x_k^i \sim q_k(x_k | x_{1:k-1}^{a_k^i})$  and  $x_{0:k}^i = (x_{0:k-1}^{a_k^i}, x_k^i)$ .

Weighting:  $w_k^i \propto \frac{w_{k-1}^{a_k^i}}{\nu_{k-1}^{a_k^i}} \frac{\widetilde{\pi}_k(x_{0:k}^i)}{\widetilde{\pi}_{k-1}(x_{0:k-1}^{a_k^i})q_k(x_k^i \,|\, x_{0:k-1}^{a_k^i})}.$ 

The result is a new weighted set of particles  $\{x_{0:k}^i, w_k^i\}_{i=1}^N$ .

11/19

# SMC for probabilistic graphical models

## Recall - Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  represents the conditional independency structure between random variables,

- 1. a set of vertices  $\mathcal{V}$  (nodes) represents the random variables
- 2. a set of edges  $\mathcal{E}$  containing elements  $(i,j) \in \mathcal{E}$  connecting a pair of nodes  $(i,j) \in \mathcal{V} \times \mathcal{V}$





13/19

## Key idea

SMC methods are used to approximate a **sequence of probability distributions** on a sequence of spaces of increasing dimension.

#### Key idea:

- 1. Introduce a **sequential decomposition** of the PGM.
- 2. Each subgraph induces an intermediate target dist.
- 3. Apply SMC to the sequence of intermediate target dist.

Using an artificial sequence of intermediate target distributions for an SMC method is a powerful (quite possibly underutilized) idea.

**Key question:** Exactly how do we define  $\{\widetilde{\pi}_k(\mathbf{x}_{1:k})\}_{k>1}$ ?

# ex) Illustrating possible graph decomposition

Using a 2D lattice model from statistical physics,  $x \in (-\pi, \pi]$ .



14/19





$$p(x_{\mathcal{V}}) \propto e^{-\beta H(x_{\mathcal{V}})}, \qquad H(x_{\mathcal{V}}) = -\sum_{(i,j) \in \mathcal{E}} J_{ij} \cos{(x_i - x_j)},$$

The intermediate sequence of target distributions can be chosen

$$\widetilde{\pi}_k(x_{\mathcal{L}_k}) \propto \widetilde{\pi}_{k-1}(x_{\mathcal{L}_{k-1}}) e^{\kappa(x_{\mathcal{L}_{k-1}})\cos(x_k - \mu(x_{\mathcal{L}_{k-1}}))}.$$

 $\mathcal{L}_k$  – index to the nodes in the  $k^{\text{th}}$  intermediate target  $\widetilde{\pi}_k(\mathbf{x}_{\mathcal{L}_k})$ .

## SMC for graphical models – algorithm

#### Algorithm SMC for graphical models

1. Initialize (k = 1):

(a) Draw  $x_{\mathcal{L}_1}^i \sim q_1(\cdot)$ .

(b) Set  $w_1^i = W_1(x_{\mathcal{L}_1}^i)$ .

2. For k = 2 to K do:

(a) **Resampling:** Draw  $a_k^i$ ,  $\mathbb{P}(a_k^i = j) = \widetilde{w}_{k-1}^j / \sum_l \widetilde{w}_{k-1}^l$ .

(b) **Propagation:** Draw  $\xi_k^i \sim q_k(\cdot|x_{\mathcal{L}_{k-1}}^{a_k^i})$ , set  $x_{\mathcal{L}_k}^i = x_{\mathcal{L}_{k-1}}^{a_k^i} \cup \xi_k^i$ .

(c) Weighting: Set  $\widetilde{w}_k^i = W_k(x_{\mathcal{L}_k}^i)$ .

3. **End** 

 $\mathcal{L}_k$  – index to the nodes in the  $k^{\text{th}}$  intermediate target  $\widetilde{\pi}_k(\mathbf{x}_{\mathcal{L}_k})$ .

 $\xi_k^i$  – nodes added at step k.

Also provides an unbiased estimate of the normalizing constant! 16/19

#### ex) Classical XY-model



#### This model is borrowed from

John M. Kosterlitz and David J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. of Physics C: Solid State Physics, 6(7):1181–1203, 1973.

17/19

## What about stability?

**Recall:** for a state-space model we need exponential forgetting for the particle filter to be stable.

#### The same is true in the general case!

If there are **strong** and **long-ranging** dependencies among the variables  $X_{1:k}$  under the distribution  $\pi_k$ , then the asymptotic variance of SMC may be exponential in k.

#### However,

- In many applications we do have fast enough forgetting (though, it can be difficult to verify theoretically)
- Even if this is not the case, SMC can give good results for moderate values of *k*

## **Further reading**

#### SMC for phylogenetic trees:

Alexandre Bouchard-Côté. **Sequential Monte Carlo (SMC) for Bayesian phylogenetics**. *Bayesian phylogenetics: methods, algorithms, and applications,* 163–186, 2014.

#### SMC for graphical models:

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön. **Sequential Monte Carlo methods for graphical models**. *Advances in Neural Information Processing Systems (NIPS)*, Montreal, Canada, December, 2014.