типеИ

Християн Емилов Марков, ф.н. 00147

24 май 2017 г.

Съдържание

1	Производни	1
2	Комплексен анализ	1
3	Гама функция	2

Увод

Примерите за този изпит са взети от [1].

1 Производни

Правило за диференциране: $\{f[g[h(x)]]\}' = f'[g[h(x)]]g'[h(x)]h'(x)$. Производната от n-ти ред на произведението на функциите f(x) и g(x) се пресмята по формулата:

(1)
$$\frac{\mathrm{d}^n}{\mathrm{d} x^n} [f(x)g(x)] = \sum_{i=0}^n \binom{n}{i} f^{(i)}(x) g^{(n-i)}(x).$$

2 Комплексен анализ

Теорема 1 (за резидуумите) Нека f е аналитична функция в областта G с изключение на изолираните особени точки a_1, a_2, \ldots, a_m . Ако γ е затворена ректифицируема крива в G, която не минава през нито една от точките a_k , и ако $\gamma \approx 0$ в G, то

(2)
$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) Res(f; a_k).$$

Теорема 2 (за максимума) Нека G е ограничено отворено множество в \mathbb{C} и f е непрекъсната функция в G^- , която е аналитична в G. Тогава

$$\max |f(z)| : z \in G^- = \max\{|f(z)| : z \in dG\}.$$

3 Гама функция

 Γ ама функцията $\Gamma(z)$ се дефинира като

(3)
$$\Gamma(z) \equiv \lim_{n \to \infty} \frac{(n+1)^z n!}{z(z+1)\cdots(z+n)} \equiv \int_0^\infty e^{-t} t^{z-1} dt.$$

От (3) се вижда, че $\Gamma(1)=1.$ Може да се докаже, че за цели положителни числа n

$$\Gamma(n) = (n-1)\Gamma(n-1) = (n-1)(n-2)\Gamma(n-2) = \dots$$

= $(n-1)(n-2)\dots 1 = (n-1)!$.

Заключение

Теореми 1 и 2 се изучават във всеки курс по комплексен анализ, а формула (1) би трябвало да е известна на всеки студент по математика.

Литература

[1] www.ctan.org