

COMPUTAÇÃO EVOLUCIONÁRIA

RELATÓRIO 3 Comparação do Algoritmo de Evolução Diferencial com Algoritmo de Colônia de Formigas.

Michelle Hanne Soares de Andrade

Belo Horizonte Julho, 2025.

SUMÁRIO

1- INTRODUÇÃO	3
2- IMPLEMENTAÇÃO DOS ALGORITMOS	4
3- DISCUSSÃO DOS RESULTADOS	16
5- REFERÊNCIAS	31

1- INTRODUÇÃO

O Algoritmo de Evolução Diferencial (DE), conforme descrito por Chakraborty (2008), é um método de otimização inteligente e biótico, proposto inicialmente por Storn & Price (1995). Ele simula a lei natural da "sobrevivência do mais apto" para resolver problemas de otimização, especialmente em espaços contínuos multidimensionais.

O DE mantém uma população de soluções candidatas e gera novas soluções por meio da combinação de indivíduos existentes, utilizando operações básicas de mutação, *crossover*, diferenciação e seleção. A mutação é realizada pela adição da diferença ponderada entre dois vetores de parâmetros a um terceiro vetor, criando um vetor mutado. Em seguida, ocorre o *crossover*, que combina componentes do vetor mutado com um vetor alvo para formar um vetor de teste (vetor ruído). Por fim, a seleção adota uma estratégia gulosa, onde o vetor de teste substitui o vetor alvo apenas se apresentar melhor desempenho segundo a função objetivo, garantindo que a população evolua rumo a soluções ótimas.

O Algoritmo de Colônia de Formigas (*Ant Colony Optimization* - ACO) é uma meta-heurística bioinspirada desenvolvida inicialmente por Marco Dorigo (Dorigo et al., 1991), com base no comportamento de formigas reais durante a busca por alimento. Essas formigas depositam uma substância chamada **feromônio** ao longo dos caminhos que percorrem, permitindo que outras formigas sigam as rotas mais promissoras com maior probabilidade.

A versão de otimização contínua utilizada neste trabalho foi o *Continuous* ACO (ACOR - *Ant Colony Optimization for Continuous Domains*) (SOCHA & DORIGO, 2008). O algoritmo substitui a ideia de trilhas discretas por uma distribuição probabilística de amostragem de soluções em torno das melhores já encontradas. O conceito de feromônio é representado por um arquivo de com as melhores soluções anteriores, a partir do qual novas soluções são geradas por meio de amostras Gaussianas. Os parâmetros utilizados foram: α (alpha), β (beta) e ρ (rho). Sendo α (alpha) a influência das soluções boas (peso do feromônio), β (beta) a exploração ao redor das soluções e ρ (rho) a taxa de esquecimento das antigas.

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

Este relatório apresenta a comparação entre os Algoritmos Genéticos, Evolução Diferencial e Colônia de Formigas para resolver o problema com " \mathbf{n} " variáveis. Considerando funções quadrática de max e min e a função Rastrigin para n=2.

2- IMPLEMENTAÇÃO DOS ALGORITMOS

O problema consiste na implementação de uma função quadrática e a função *Rastrigin*. Tendo como escopo os testes abaixo:

F1 – Quadrática tendo a restrição das variáveis no intervalo de $x = [-10 \ 10]$.

Teste $1 - Min f_1(x) = x^2$

Teste 2 – $Max f_1(x) = x^2$

F2 – Rastrigin tendo a restrição das variáveis no intervalo de x = [-5 5].

Teste $3 - Min f_2(x) = An + \sum_{i=0}^{n} [x_i^2 - A \cos(2x_i)]$. Considere A = 10.

Neste escopo, a função objetivo é composta de n=2 (duas dimensões), ou seja, x_1 e x_2 .

Função Objetivo:

 $f(x_1,x_2) = x_1^2 + x_2^2$

Os parâmetros adotados nas implementações foram:

População: 50

Gerações: 100

3

Mutação: 0,1

Cruzamento: 0,8

Para cada uma das heurísticas foram **30 execuções** para cada instância de teste. A seguir o Algoritmo Genético e suas classes

<u>Classe Individual:</u> Representa um único indivíduo (solução candidata) na população do algoritmo genético ou de evolução diferencial. Cada indivíduo possui um cromossomo (um conjunto de variáveis) e um valor de *fitness* associado.

- chromosome: vetor de variáveis reais que define a solução.
- fitness: valor da função objetivo para esse indivíduo.

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

- _generate_chromosome(): cria o vetor de variáveis com valores aleatórios dentro dos limites definidos.
- calculate_fitness(): avalia o indivíduo usando uma função objetivo e normaliza o valor caso seja um problema de minimização.

```
class Individual:
def __init__(self, n_variables, lower_bound, upper_bound):
self.n variables = n variables
self.lower bound = lower bound
self.upper_bound = upper_bound
self.chromosome = self._generate_chromosome()
self.fitness = 0.0
def _generate_chromosome(self):
return [random.uniform(self.lower bound, self.upper bound) for in
range(self.n variables)]
def calculate fitness(self, objective function, problem type):
self.fitness = objective function(self.chromosome)
if problem type == "min":
if self.fitness >= 0:
self.fitness = 1 / (1 + self.fitness)
def repr (self):
return f"Chromosome: {self.chromosome}, Fitness: {self.fitness:.4f}"
```

<u>Classe Genetic Alorithm:</u> Implementa o Algoritmo Genético (AG) para otimização. O AG é um algoritmo de busca meta-heurística inspirado no processo de seleção natural, que utiliza operadores como seleção, cruzamento (*crossover*) e mutação para evoluir uma população de soluções.

```
class GeneticAlgorithm:

def __init__(self, population_size, generations, crossover_rate,
mutation_rate,
n_variables, lower_bound, upper_bound, objective_function,
problem_type):

# Inicializa o algoritmo genético com seus parâmetros.
self.population_size = population_size
self.generations = generations
self.crossover_rate = crossover_rate
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
self.mutation_rate = mutation_rate
self.n_variables = n_variables
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.objective_function = objective_function
self.problem_type = problem_type
self.population = []
self.best_individual_overall = None
self.best_fitness_overall = float('-inf') if problem_type == "max" else
float('inf')
```

Cria a população inicial de indivíduos com cromossomos gerados aleatoriamente e avalia o *fitness*.

```
def _initialize_population(self):
    self.population = [Individual(self.n_variables, self.lower_bound,
    self.upper_bound) for _ in range(self.population_size)]
    self. evaluate population()
```

Avalia o fitness de cada indivíduo na população usando a função objetivo.

```
def _evaluate_population(self):
   for individual in self.population:
   individual.fitness = self.objective_function(individual.chromosome)
```

Seleciona dois pais da população usando o método de seleção por roleta, onde a probabilidade de um indivíduo ser selecionado é proporcional ao seu *fitness*. Para problemas de **minimização**, o *fitness* é ajustado para que valores menores do que a função objetivo tenham maior probabilidade de serem selecionados.

```
def _select_parents(self):
    fitness_values = [ind.fitness for ind in self.population]
    if self.problem_type == "min":

min_val = min(fitness_values)
    if min_val < 0: # # Se houver fitness negativos, shift para positivo antes de inverter a
    escala
    adjusted_fitness = [f - min_val + 1e-6 for f in fitness_values]
    else: # e todos os fitness são não-negativos, usa a técnica de maximização de 1/(1+f) ou
    (max_f-f)
    max_val = max(fitness_values)
    adjusted_fitness = [max_val - f + 1e-6 for f in fitness_values] #
    Adiciona um pequeno valor para evitar divisão por zero
    else: # Para maximização, usa o fitness diretamente (garantindo que seja positivo)</pre>
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
adjusted_fitness = [f + 1e-6 for f in fitness_values]
total_fitness = sum(adjusted_fitness)
if total_fitness == 0: # Caso todos os fitness sejam zero, seleciona aleatoriamente
para evitar erro.
return random.sample(self.population, 2)
probabilities = [f / total_fitness for f in adjusted_fitness]
parents = random.choices(self.population, weights=probabilities, k=2) #
Seleciona 2 pais com base nas probabilidades.
return parents[0], parents[1]
```

Realiza o cruzamento (*crossover*) entre dois pais para gerar dois filhos. Utiliza o *crossover* aritmético de ponto único, onde uma **porção do cromossomo** é combinada **linearmente entre os pais.** Os valores resultantes são truncados dentro dos limites.

```
def _crossover(self, parent1, parent2):
child1_chromosome = list(parent1.chromosome)
child2 chromosome = list(parent2.chromosome)
if random.random() < self.crossover rate:</pre>
crossover_point = random.randint(1, self.n_variables - 1) # Ponto onde o
cruzamento ocorre.
alpha = random.random()
for i in range(crossover point, self.n variables):
child1_chromosome[i] = alpha * parent1.chromosome[i] + (1 - alpha) *
parent2.chromosome[i]
child2_chromosome[i] = alpha * parent2.chromosome[i] + (1 - alpha) *
parent1.chromosome[i]
child1 chromosome = [max(self.lower bound, min(self.upper bound, val))
for val in child1 chromosome]
child2_chromosome = [max(self.lower_bound, min(self.upper_bound, val))
for val in child2 chromosome]
child1 = Individual(self.n variables, self.lower bound,
self.upper bound)
child1.chromosome = child1 chromosome
child2 = Individual(self.n variables, self.lower bound,
self.upper bound)
child2.chromosome = child2 chromosome
return child1, child2
```

Aplica mutação a um indivíduo com uma certa probabilidade. A mutação envolve a substituição **aleatória** de um gene no **cromossomo** por um **novo valor dentro** dos **limites do domínio.**

```
def _mutate(self, individual):
   if random.random() < self.mutation_rate:</pre>
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
mutation_point = random.randint(0, self.n_variables - 1)
individual.chromosome[mutation_point] =
random.uniform(self.lower_bound, self.upper_bound)
```

Executa o Algoritmo Genético por um número **especificado** de **gerações**. Em cada geração, uma **nova população é criada através de seleção, cruzamento e mutação, e o melhor indivíduo é selecionado.**

```
def run(self):
self._initialize_population()
history = [] # Armazena o melhor fitness de cada geração
for generation in range(self.generations):
new population = []
# Elitismo: o melhor indivíduo da geração atual é transferido
diretamente para a próxima população.
current best = max(self.population, key=lambda ind: ind.fitness) if
self.problem type == "max" else min(self.population, key=lambda ind:
ind.fitness)
# Atualiza o melhor indivíduo geral encontrado.
if self.best individual overall is None or \
(self.problem_type == "max" and current_best.fitness >
self.best fitness overall) or \
(self.problem_type == "min" and current_best.fitness <</pre>
self.best_fitness_overall):
# Cria uma cópia para evitar que alterações futuras no 'current best'
afetem 'best individual overall'.
self.best_individual_overall = Individual(self.n_variables,
self.lower bound, self.upper bound)
self.best individual overall.chromosome = list(current best.chromosome)
self.best individual overall.fitness = current best.fitness
self.best fitness overall = current best.fitness
new population.append(current best) # Adiciona o elite à nova população.
# Preenche o restante da nova população através de seleção, cruzamento
e mutação.
while len(new_population) < self.population_size:</pre>
parent1, parent2 = self. select parents()
child1, child2 = self._crossover(parent1, parent2)
self._mutate(child1)
self. mutate(child2)
new population.append(child1)
if len(new population) < self.population size:</pre>
new_population.append(child2)
self.population = new population
self._evaluate_population() # Reavalia a nova população.
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
# Registra o melhor fitness da geração atual para o histórico.
best_fitness_in_gen = max(self.population, key=lambda ind:
ind.fitness).fitness if self.problem_type == "max" else
min(self.population, key=lambda ind: ind.fitness).fitness
history.append(best_fitness_in_gen)
return self.best_individual_overall, history
```

<u>Classe DifferentialEvolution:</u> Implementa o algoritmo de Evolução Diferencial (DE), eficaz para otimização contínua. O DE utiliza operadores de mutação baseados em diferenças vetoriais e um operador de cruzamento para gerar novas soluções.

Parâmetros principais:

- D: número de variáveis.
- NP: tamanho da população.
- CR, F: taxa de *crossover* e fator de diferenciação.
- Demais parâmetros similares ao AG.

class DifferentialEvolution:

```
def __init__(self, D, NP, CR, F, generations, lower_bound, upper_bound, objective_function, problem_type):
self.D = D # Number of variables
self.NP = NP # Population size
self.CR = CR # Crossover rate
self.F = F # Differential weight
self.generations = generations
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.objective_function = objective_function
self.problem_type = problem_type
self.population = [] # Armazena os indivíduos da população.
self.best_individual_overall = None
self.best_fitness_overall = float('-inf') if problem_type == "max" else float('inf')
```

Inicializa o algoritmo de Evolução Diferencial. Cria a população inicial de indivíduos com cromossomos gerados aleatoriamente.

```
def _initialize_population(self):
self.population = [Individual(self.D, self.lower_bound,
self.upper_bound) for _ in range(self.NP)]
self. evaluate population()
```


COMPUTAÇÃO EVOLUCIONÁRIA – MMC.004

Avalia o *fitness* de cada indivíduo na lista fornecida. Se nenhuma lista for fornecida, avalia a população principal.

```
def _evaluate_population(self, individuals=None):
   if individuals is None:
   individuals = self.population
   for individual in individuals:
   individual.fitness = self.objective_function(individual.chromosome)
```

Aplica os operadores de mutação e cruzamento para gerar um **vetor de teste (Vetor Ruído)** para um indivíduo alvo. 1. Seleciona três indivíduos aleatórios distintos (a, b, c) da população. 2. Aplica mutação para criar um vetor doador: v = a + F * (b - c). 3. Realiza cruzamento binomial entre o indivíduo alvo e o vetor doador para criar o vetor de teste.

```
def mutate and crossover(self, target idx):
target individual = self.population[target idx]
indices = list(range(self.NP))
indices.pop(target idx)
if len(indices) < 3:</pre>
return target individual.chromosome # Retorna uma cópia do cromossomo
do alvo para evitar erro.
a idx, b idx, c idx = random.sample(indices, 3)
a = self.population[a idx].chromosome
b = self.population[b idx].chromosome
c = self.population[c idx].chromosome
# Mutação: Calcula o vetor doador.
donor_vector = [a[j] + self.F * (b[j] - c[j]) for j in range(self.D)]
# Cruzamento (Crossover): Cria o vetor de teste.
trial vector = list(target individual.chromosome)
j rand = random.randint(0, self.D - 1) # Garante que pelo menos uma dimensão
venha do vetor doador.
for j in range(self.D):
if random.random() < self.CR or j == j rand:</pre>
trial_vector[j] = donor_vector[j]
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
# Garante que os valores dos genes estejam dentro dos limites
definidos.
trial_vector[j] = max(self.lower_bound, min(self.upper_bound,
trial_vector[j]))
return trial vector
```

Executa o algoritmo de Evolução Diferencial por um **número especificado de gerações.** Em cada geração, cada indivíduo é submetido a mutação e cruzamento para criar um vetor de teste. O vetor de teste é então comparado com o indivíduo original, e o melhor é mantido para a próxima geração.

```
def run(self):
self. initialize population()
history = []
for generation in range(self.generations):
new population = []
for i in range(self.NP):
target_individual = self.population[i]
trial chromosome = self. mutate and crossover(i)
trial individual = Individual(self.D, self.lower bound,
self.upper bound)
trial individual.chromosome = trial chromosome
self._evaluate_population(individuals=[trial_individual])
if self.problem type == "min":
if trial individual.fitness < target individual.fitness:</pre>
new_population.append(trial_individual)
else:
new population.append(target individual)
else: # problem type == "max"
if trial individual.fitness > target_individual.fitness:
new population.append(trial individual)
else:
new population.append(target individual)
self.population = new population
#Atualiza o melhor indivíduo geral encontrado após a formação da nova
população.
current best = max(self.population, key=lambda ind: ind.fitness) if
self.problem_type == "max" else min(self.population, key=lambda ind:
ind.fitness)
if self.best individual overall is None or \
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
(self.problem_type == "max" and current_best.fitness >
self.best_fitness_overall) or \
  (self.problem_type == "min" and current_best.fitness <
    self.best_fitness_overall):
    self.best_individual_overall = Individual(self.D, self.lower_bound,
    self.best_individual_overall.chromosome = list(current_best.chromosome)
    self.best_individual_overall.fitness = current_best.fitness
    self.best_fitness_overall = current_best.fitness

# Registra o melhor fitness da geração atual para o histórico.
    best_fitness_in_gen = max(self.population, key=lambda ind:
    ind.fitness).fitness if self.problem_type == "max" else
    min(self.population, key=lambda ind: ind.fitness).fitness
    history.append(best_fitness_in_gen)
    return self.best_individual_overall, history</pre>
```

Classe Ant: Classe que define o comportamento de uma formiga individual da colônia.

- position: vetor de variáveis reais (a solução proposta pela formiga).
- fitness: valor da função objetivo para essa posição.

```
class Ant:
```

```
def __init__(self, n_variables, lower_bound, upper_bound):
self.position = [random.uniform(lower_bound, upper_bound) for _ in
range(n_variables)]
self.fitness = None
```

<u>Classe AntColonyOptimization:</u> Representa a lógica do algoritmo ACO para otimização em espaço contínuo.

- archive: histórico das melhores soluções anteriores (formigas de elite).
- alpha, beta, rho: parâmetros típicos de ACO (feromônio, influência heurística e taxa de evaporação).
- objective_function e problem_type: função de avaliação e tipo de problema (min/max).

class AntColonyOptimization:

```
def __init__(self, n_ants, generations, alpha, beta, rho, n_variables,
lower_bound, upper_bound, objective_function, problem_type):
self.n_ants = n_ants
self.generations = generations
self.alpha = alpha
self.beta = beta
self.rho = rho
self.n_variables = n_variables
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.objective_function = objective_function
self.problem_type = problem_type
self.archive = []
self.archive_limit = 50
```

Quando o *archive* ainda está vazio, gera uma solução totalmente aleatória. Posteriormente, a geração de novas soluções é baseada na distribuição normal (Gaussiana) centrada na média das melhores soluções já encontradas (intensificação). Essa implementação é típico do algoritmo *Ant Colony Optimization for Continuous Domains*.

```
def _generate_solution(self):
    if not self.archive:
    return [random.uniform(self.lower_bound, self.upper_bound) for _ in
        range(self.n_variables)]
    mean = np.mean([a.position for a in self.archive], axis=0)
    std = np.std([a.position for a in self.archive], axis=0)
    return [random.gauss(mu, s if s > 1e-5 else 0.1) for mu, s in zip(mean, std)]
```

O método run(self, snapshot_interval=14) executa o algoritmo por um número fixo de gerações. A cada geração:

- Gera um conjunto de novas soluções (Ants) com base na média/variância do archive.
- Avalia todas as formigas e ordena pelo fitness.
- Atualiza o archive com as melhores.
- Armazena a melhor solução (para convergência e gráficos).
- Salva snapshots das populações para o gráfico de curva de nível.

```
def run(self, snapshot_interval=14):
best_ant = None
best_fitness = float('-inf') if self.problem_type == "max" else
float('inf')
history = []
snapshots = {}

for gen in range(self.generations):
```


COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
ants = []
for in range(self.n ants):
ant = Ant(self.n variables, self.lower bound, self.upper bound)
ant.position = self. generate solution()
ant.position = [\min(\max(x, self.lower\_bound), self.upper bound) for x
in ant.position]
ant.fitness = self.objective function(ant.position)
ants.append(ant)
if self.problem type == "min":
ants.sort(key=lambda x: x.fitness)
ants.sort(key=lambda x: -x.fitness)
self.archive = ants[:self.archive limit]
if (self.problem type == "min" and ants[0].fitness < best fitness) or \</pre>
(self.problem type == "max" and ants[0].fitness > best fitness):
best ant = ants[0]
best fitness = ants[0].fitness
history.append(best fitness)
if gen % snapshot_interval == 0 or gen == self.generations - 1:
snapshots[gen] = ants
return best ant, history, snapshots
```

O método run_experiment_aco(...) executa 30 execuções independentes do algoritmo ACO, o que permite:

- Obter estatísticas de desempenho: melhor, pior, média, desvio-padrão.
- Observar a convergência média da população.
- · Os retornos são:
 - best, worst, avg, std: estatísticas de desempenho.
 - mean_gen, std_gen, best_gen, worst_gen: séries temporais (por geração).
 - results: lista com o melhor fitness de cada execução.
 - snapshots_list: populações salvas ao longo das execuções.

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

```
def run experiment aco(objective function, problem type, n variables,
lower bound, upper bound,
n ants=50, generations=100, alpha=1.0, beta=1.0, rho=0.1):
results = []
histories = []
snapshots list = []
for i in range(30):
aco = AntColonyOptimization(n ants, generations, alpha, beta, rho,
n variables, lower bound, upper bound, objective function,
problem type)
best solution, history, snapshots = aco.run()
results.append(best solution.fitness)
histories.append(history)
snapshots list.append(snapshots)
print(f"Execucao {i+1:02d} - Melhor: {best solution.fitness:.6f}")
best = min(results) if problem type == "min" else max(results)
worst = max(results) if problem type == "min" else min(results)
avg = np.mean(results)
std = np.std(results)
histories = np.array(histories)
return best, worst, avg, std, np.mean(histories, axis=0),
np.std(histories, axis=0), \
np.min(histories, axis=0) if problem type == "min" else
np.max(histories, axis=0), \
np.max(histories, axis=0) if problem type == "min" else
np.min(histories, axis=0), \
results, snapshots list
```

Função Quadrática: Função quadrática $(f(x) = sum(x_i^2))$. É uma função de teste simples e convexa, com mínimo global em x = [0, 0, ...] e valor 0. Para problemas de maximização com limites [-10, 10], o máximo é em x = [10, 10, ...] ou [-10, -10, ...] e valor 100 (para n=2).

```
def quadratic_function(x):
return sum(val**2 for val in x)
```

Função Rastrigin: É uma função de teste multimodal, com muitos mínimos locais, tornando a otimização mais desafiadora. O mínimo global está em x = [0, 0, ...] e tem valor 0.

```
def rastrigin function(x, A=10):
```


n = len(x)return A * n + sum(xi**2 - A * math.cos(2 * math.pi * xi) for xi in x)

A solução apresentada encontra-se no seguinte repositório do GitHub: https://github.com/mihanne/algoritmos_geneticos.

3- DISCUSSÃO DOS RESULTADOS

Foram executadas as 3 funções (quadrática de minimização e maximização e a Rastrigin) para cada Algoritmo (Genético, Diferencial e Colônia de Formigas). Cada instância foi executada **30 vezes** para apuração dos resultados. O ambiente de execução foi o Google Colab¹, executando Python 3, utilizando a CPU Padrão (13 GB de RAM).

Foram plotadas 8 curvas de convergência a cada 14 execuções do Algoritmo Diferencial e Colônia de Formigas. A seguir, são mostradas as tendências de convergência da função quadrática de minimização, $Min f_1(x) = x^2$.

No Algoritmo Diferencial, percebe-se a convergência para o mínimo global.

¹ - https://colab.research.google.com/

Para a função quadrática de maximização, $Max f_1(x) = x^2$, há tendência para que os indivíduos se desloquem para um dos quadrantes, atingindo a proximidade com a convergência. A seguir são apresentadas as curvas de nível para a maximização do Algoritmo Diferencial.

Para a função Rastringin de minimização, $Min\ f_2\ (x) = An\ +\ \sum_i^n=0[x_i^2\ -\ A\cos(2\pi x_i\)],$ há tendência para que os indivíduos se desloquem para o centro do

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

Já na execução do Algoritmo de Colônia de Formigas, a função quadrática de minimização, $Min\ f_1\ (x) = x^2$, também mostrou tendência para a convergência do mínimo. Porém, percebe-se que nem toda a população convergiu (Geração 98).

Já na função quadrática de maximização, $Max\ f_1\ (x) = x^2$, houve tendência de convergência para os pontos extremos do Algoritmo Colônia de Formigas.

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

No Algoritmo Colônia de Formigas, a função Rastringin de minimização, $Min\ f_2(x) = An + \sum_i e^n = 0[x_i^2 - A \cos(2\pi x_i)]$, há lenta tendência para que os indivíduos se desloquem para o centro do gráfico. Percebe-se que na geração 98 as "formigas" estão se deslocando para o centro, porém, ainda não atingiram.

Para a realização da comparação entre os dois Algoritmos (Genético, Diferencial e Colônia de Formigas), optou-se por executar a partir da mesma população inicial os testes, com o mesmo número de execuções (30) e de avaliações. Visando um olhar crítico, foram realizados **3 Testes com 30 execuções cada**. Em cada execução foi mantido o histórico e exibido o melhor resultado das iterações das gerações.

Percebe-se que há variação entre o melhor indivíduo de cada execução, principalmente entre o Algoritmo Genético nos testes das funções quadráticas (*Min* e *Max*) e na Rastrigin. O Algoritmo Colônia de Formigas, mostrou bom resultado na função de maximização. As tabelas a seguir mostram resultados das execuções.

1º Teste com 30 execuções

Tipo de Algoritmo	Função	Melhor	Pior	Média	Desvio Padrão
GA	$Min f_1(x) = x^2$	0.000007	0.045597	0.009889	0.013508
DE	$Min f_1(x) = x^2$	0.000000	0.000000	0.000000	0.000000
ACO	$Min f_1(x) = x^2$	0.000031	0.083291	0.011285	0.017090
GA	$Max f_1(x) = x^2$	199.207084	184.342699	194.664916	3.846131
DE	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000
ACO	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000
GA	Rastrigin	0.000003	1.048474	0.224991	0.297955
DE	Rastrigin	0.000000	0.000000	0.000000	0.000000
ACO	Rastrigin	0.004816	1.306397	0.420185	0.432844

Já a função Rastrigin no Algoritmo Colônia de Formigas teve piores resultados acima de 1 nos testes realizados. Enquanto que o Algoritmo Diferencial a função Rastrigin atingiu na maioria dos testes os valores melhor, pior e média igual a 0.

2º Teste com 30 execuções

Tipo de Algoritmo	Função	Melhor	Pior	Média	Desvio Padrão
GA	$Min f_1(x) = x^2$	0.000001	0.111996	0.010475	0.021005
DE	$Min f_1(x) = x^2$	0.000000	0.000000	0.000000	0.000000
ACO	$Min f_1(x) = x^2$	0.000004	0.002599	0.000493	0.000574
GA	$Max f_1(x) = x^2$	199.790970	187.253610	194.959857	3.052084
DE	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000
ACO	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000
GA	Rastrigin	0.000055	1.106831	0.249869	0.316016
DE	Rastrigin	0.000000	0.000007	0.000000	0.000001
ACO	Rastrigin	0.001263	0.996101	0.207767	0.237861

De modo geral, o comportamento do Algoritmo Genético teve pior resultado em comparação com o Algoritmo Diferencial em todos as funções, quadrática e Rastrigin.

3º Teste com 30 execuções

Tipo de Algoritmo	Função	Melhor	Pior	Média	Desvio Padrão
GA	$Min f_1(x) = x^2$	0.000004	0.070516	0.012095	0.016175
DE	$Min f_1(x) = x^2$	0.000000	0.000000	0.000000	0.000000
ACO	$Min f_1(x) = x^2$	0.000013	0.002888	0.000711	0.000664
GA	$Max f_1(x) = x^2$	198.813934	186.838045	195.230451	2.605209
DE	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

ACO	$Max f_1(x) = x^2$	200.000000	200.000000	200.000000	0.000000
GA	Rastrigin	0.000018	0.914972	0.151581	0.231012
DE	Rastrigin	0.000000	0.000007	0.000000	0.000000
ACO	Rastrigin	0.002259	0.870350	0.229367	0.226661

Figura de execução do 1º Teste na 25. função quadrática, $Min f_1(x) = x^2 no$ Algoritmo Genético.

Figura de execução do 1º Teste na execução da função quadrática, $Min f_1$ $(x) = x^2$ no Algoritmo Diferencial.

Figura de execução do 1º Teste na execução da função quadrática, $Min f_1$ $(x) = x^2$ no Algoritmo Colônia de Formigas.

Figura de execução do **1º Teste na** execução da função quadrática, *Max* $f_1(x) = x^2$ no **Algoritmo Genético.** 125

Figura de execução do 1° Teste na execução da função quadrática, $\frac{175}{150}$ Max f_1 (x) = x on Algoritmo $\frac{1}{2}$ Diferencial.

Figura de execução do 1° **Teste na** 200 execução da função quadrática, $Max f_1(x)$ 150 = x 2 no **Algoritmo Colônia de Formigas.** 125

Figura de execução do **1º Teste na** execução da função Rastrigin, $Min f_2$ (x) = $An + \sum_i n = 0[x_i^2 - A \cos(2\pi x_i)]$ no $\frac{6}{2}$ Algoritmo Genético.

Figura de execução do **1º Teste na** execução da função Rastrigin, $Min f_2$ $(x) = An + \sum_{i}^{n}=0[x_i^2 - A \cos(2\pi x_i)]$ no **§** Algoritmo Diferencial.

Figura de execução do **1° Teste na** execução da função Rastrigin, $Min f_2$ (x) = $An + \sum_{i}^{n}=0[x_i^2 - A \cos(2\pi x_i)]$ no Algoritmo Colônia de Formigas.

Realizou-se a contagem de acertos de cada teste realizado nas 30 execuções. Foi adotado como parâmetro a tolerância de 1e-3. As análises revelaram que o Algoritmo Diferencial obteve 100% de acerto em todos os testes. Já o Algoritmo Colônia de Formigas obteve sucesso na função de maximização.

1º Teste com 30 execuções

Função	Algoritmo Genético	Algoritmo Diferencial	Algoritmo de Colônia de Formigas
$Min f_1(x) = x^2$	10/30	30/30	26/30
$\operatorname{Max} f_1(x) = x^2$	0/30	30/30	30/30
$Min \ f_2(x) = An + \sum_{i}^{n} = 0[x_i^2 - A \cos(2x_i)]$	4/30	30/30	0/30

COMPUTAÇÃO EVOLUCIONÁRIA - MMC.004

2º Teste com 30 execuções

Função	Algoritmo Genético	Algoritmo Diferencial	Algoritmo de Colônia de Formigas
$Min f_1(x) = x^2$	22/30	30/30	22/30
$\operatorname{Max} f_1(x) = x^2$	0/30	30/30	30/30
Min $f_2(x) = An + \sum_{i}^{n} = 0[x_i^2 - A]$ $cos(2\pi x_i)]$	5/30	30/30	0/30

$3^{\underline{o}}$ Teste com 30 execuções

Função	Algoritmo Genético	Algoritmo Diferencial	Algoritmo de Colônia de Formigas
$Min f_1(x) = x^2$	20/30	30/30	26/30
$\operatorname{Max} f_1(x) = x^2$	0/30	30/30	30/30
Min $f_2(x) = An + \sum_{i}^{n} = 0[x_i^2 - A]$ $cos(2\pi x_i)]$	10/30	30/30	1/30

4- CONCLUSÃO

O relatório apresenta um estudo comparativo entre o Algoritmo Genético (AG), Algoritmo de Evolução Diferencial (DE) e Algoritmo Colônia de Formigas (ACO) na resolução de problemas de otimização envolvendo uma função quadrática e a função Rastrigin, ambas com duas variáveis. Os testes foram realizados com as mesmas condições iniciais e parâmetros, totalizando 30 execuções por algoritmo em cada caso. Os resultados demonstram uma clara superioridade do DE, que alcançou soluções ótimas com precisão (erro ≤ 1e-3) em 100% das execuções em todos os testes. O AG apresentou maior variabilidade nos resultados e acurácia significativamente inferior, especialmente nas tarefas de maximização da função quadrática e na função Rastrigin. Enquanto que o ACO foi eficiente na função de maximização, e demostrou resultados inferiores nas funções de minimização (quadrática e Rastrigin).

Desse modo, os resultados alcançados evidenciam a maior robustez e eficiência do DE em contextos de otimização contínua.

5- REFERÊNCIAS

CHAKRABORTY, Uday. Advances in Differential Evolution. Springer, 2008.

DORIGO, Marco; MANIEZZO, Vittorio; COLORNI, Alberto. **Ant System: an autocatalytic optimizing process**. *Technical Report 91-016*, Dipartimento di Elettronica, Politecnico di Milano, 1991.

SOCHA, Krzysztof; DORIGO, Marco. **Ant colony optimization for continuous domains**. *European Journal of Operational Research*, Amsterdam, v. 185, n. 3, p. 1155–1173, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0377221706006333. Acesso em: 14 jul. 2025.

STORNI, R.; PRICE, K. Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. ICSI Technical Report TR-95-012, março de 1995.