

Universidade Federal de Minas Gerais Departamento de Computação Disciplina: Organização de Computadores II

Professor: Omar Paranaíba Vilela Monitor: Laysson Oliveira Luz

Data: 26/09/2017

Trabalho Prático II

Na atividade anterior foi desenvolvido um banco de registradores, que é uma unidade capaz de armazenar dados de maneira organizada, baseado em endereços.

Como segundo trabalho prático deverá ser construída uma unidade lógico-aritmética (ULA), que deve ser conectada ao banco de registradores já construído, corrigindo-o para tenha 16 registradores e as devidas correções decorrentes desta, como por exemplo 4 bits de endereço e não 5 bits como anteriormente. Dessa forma, a unidade a ser desenvolvida tem tamanho de "palavra" de 16 bits. Isto é, deve receber como entrada dois operandos de 16 bits e gerar um valor resultante de 16 bits, estando assim de acordo com o banco de registradores.

O conjunto de instruções da ULA a ser desenvolvida é descrito e explicado na tabela abaixo.

CODOP	Instrução	Mnemônico	Operação
0	Add	Add \$s4, \$s3, \$s2	\$s4 = \$s3 + \$s2
1	Sub	Sub \$s4, \$s3, \$s2	\$s4 = \$s3 - \$s2
2	SIti	Slti \$s4, Imm, \$s2	if(\$s2 > Imm) ? \$s4 = 1 : \$s4 = 0
3	And	And \$s4, \$s3, \$s2	\$s4 = \$s3 & \$s2 (And Binário)

4	Or	Or \$s4, \$s3, \$s2	\$s4 = \$s3 \$s2 (Or Binário)
5	Xor	Xor \$s4, \$s3, \$s2	\$s4 = \$s3 ^ \$s2 (Xor Binário)
6	Andi	Andi \$s4, Imm, \$s2	\$s4 = \$s2 & Imm (And Binário)
7	Ori	Ori \$s4, Imm, \$s2	\$s4 = \$s2 Imm (Or Binário)
8	Xori	Xori \$s4, Imm, \$s2	\$s4 = \$s2 ^ Imm (Xor Binário)
9	Addi	Addi \$s4, Imm, \$s2	\$s4 = \$s2 + Imm
10	Subi	Subi \$s4, Imm, \$s2	\$s4 = \$s2 - Imm

Na tabela acima deve-se observar os seguinte detalhes:

- O CODOP (código de operação) de cada instrução é um número inteiro de 4 bits.
- Os endereços \$s4, \$s3 e \$s2 são endereços de registradores de 4
 bits cada um.
- Imm significa uma valor imediato de 4 bits.

O trabalho deverá ser desenvolvido com as ferramentas de descrição e simulação da Intel Altera, Quartus e ModelSim, respectivamente, e prototipado em FPGAs (DE2-115). Tais plataformas serão disponibilizadas pelo laboratório NanoComp. Em regime de aluguel controlado pelo monitor da disciplina.

Para a prototipação na FPGA algumas regras devem ser obedecidas, são estas:

• ENTRADA:

 Os botões KEY0 e KEY3 devem ser utilizados para alterar o valor mostrado no display de 7 segmentos, da seguinte forma:

- Se a chave KEY0 for apertada o conteúdo do registrador cujo endereço é passado nos switches de SW8 a SW11 será impresso nos displays HEX7 e HEX6, e o conteúdo do registrador cujo endereço é passado nos switches de SW4 a SW7 será impresso nos displays HEX5 e HEX4.
- Se a chave KEY3 for apertada os *switches* serão interpretados como uma instrução, onde o SW0 é o bit menos significativo e SW15 o bit mais significativo. Nesse caso:
 - SW0 a SW3 são os bits que endereçam um dos registradores operando da instrução.(\$s2, como mostrado na tabela de instruções)
 - SW4 a SW7 endereçam outro dos registradores operandos ou um valor imediato, dependendo da instrução.(\$s3 ou lmm, como mostrado na tabela de instruções)
 - SW8 a SW11 endereçam o registrador destino da instrução.(\$s4, na tabela de instruções)
 - SW12 a SW15 determinam que instrução deve ser realizada, isto é, o CODOP.

• SAIDA:

 Os resultados das operações deverão ser impressos no display de 7 segmentos. Conforme mostrado na figura:

Tomando a imagem acima como exemplo:

- → Se apertada a chave KEY0:
 - ◆ 03 é o conteúdo do registrador cujo endereço é passado nos switches de SW8 a SW11.
 - ◆ 06 é o conteúdo do registrador cujo endereço é passado nos switches de SW4 a SW7.
- → *Nesse caso o valor 3208 da figura não importa.
- → Se apertada a chave KEY3, vamos supor que a operação realizada seja add \$s4, \$s3, \$s2:
 - ◆ O conteúdo do registrador **\$s3** é 03, como mostrado nos displays HEX7 e HEX6, os mais à esquerda na figura.
 - ◆ O conteúdo do registrador \$s2 é 06, como mostrado nos displays HEX5 e HEX4 na figura.
 - ◆ 3208 é o resultado da soma.

*Vale ressaltar que a imagem é meramente ilustrativa, portanto o valor 3208 não equivale à soma 3 + 6 e foi utilizado apenas para exemplificar em quais displays o resultado deve ser mostrado.

AVALIAÇÃO:

Observe que o trabalho é composto por três critérios:

- 1. Descrição
- 2. Simulação
- 3. Prototipação

Portanto, a nota final do trabalho é composta pelas notas individuais de cada critério citado acima. Onde, os arquivos de descrição e simulação devem ser submetidos por meio da meta-turma no moodle, enquanto que a prototipação será avaliada por meio de apresentação ao monitor na sala 2310 em horários a serem marcados com o mesmo.