

gDNA extraction from Sterivex filters

Sophie Jurgensen, Alison Buchan, Gary LeCleir

Abstract

Contact Dr. Alison Buchan (abuchan@utk.edu) with any questions.

Citation: Sophie Jurgensen, Alison Buchan, Gary LeCleir gDNA extraction from Sterivex filters. protocols.io

dx.doi.org/10.17504/protocols.io.ijccciw

Published: 06 Aug 2017

Protocol

Preparation

Step 1.

Plug the outflow port of Sterivex cartridge using cha-seal clay.

Ensure that incubator is set to 65°C.

Place rotator in the incubator.

REAGENTS

Cha-seal tube sealing compound <u>CSX43510</u> by <u>Medline</u>

Sterivex[™] filter unit without filling bell <u>SVGP01050</u> by <u>Emd Millipore</u>

Labquake[™] Rotisserie Hybridization Rotator <u>M90615Q</u> by <u>Thermo Fisher Scientific</u>

Lysis

Step 2.

Add CTAB extraction solution to each cartridge using a needle and syringe.

1.7 ml Additional info: CTAB extraction solution

REAGENTS

CTAB extraction solution <u>C2190</u> by <u>Teknova</u> 3ml syringe <u>BD 309586</u> by <u>BD Biosciences</u> 22 gauge needle <u>Z192473</u> by <u>Sigma Aldrich</u>

NOTES

Sophie Jurgensen 20 Jun 2017

Dispense liquid slowly and be careful to avoid air bubbles that will clog the port.

Lysis

Step 3.

Add $65\mu L$ of Proteinase K (10mg/mL) and $65\mu L$ of Lysozyme (10mg/mL) to each cartridge using a needle and syringe.

Proteinase K <u>E00491</u> by <u>Thermo Fisher Scientific</u> Lysozyme <u>12671-19-1</u> by <u>Sigma Aldrich</u>

NOTES

Sophie Jurgensen 20 Jun 2017

These may be combined and added to each tube in a single aliquot.

Lysis

Step 4.

Add 162µL of filter-sterilized SDS (10%) to each tube. Invert to mix.

SDS, 10% Solution AM9822 by Life Technologies

Lysis

Step 5.

Cap open end of each cartridge with a luer lock cap and incubate in rotary agitator at 65°C for 2 hours.

Lysis

Step 6.

Label 2 sets of 2mL centrifuge tubes with sample name. One set will be kept and frozen (-20°C) while the other set will be used for further extraction.

Lysis

Step 7.

Using 3mL luer-lock syringe, attach to Sterivex cartridge and draw out fluid.

Depress 2mL of sample material into the first storage 2mL centrifuge tube, then pipette out $800\mu L$ of this solution into other labeled 2mL tube for further extraction.

Place the 1st 2mL tube into the freezer.

Start the cool-down sequence in the microcentrifuge (set to 4°C).

Precipitation

Step 8.

Add 800µL of phenol:chloroform:isoamyl alcohol (PCI, 25:24:1, pH 8.0) to each tube and vortex to mix.

AMOUNT

800 μl Additional info: P:C:I

REAGENTS

UltraPure[™] Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v) <u>15593031</u> by <u>Thermo Fisher</u> <u>Scientific</u>

NOTES

Sophie Jurgensen 20 Jun 2017

Do this step in a fume hood.

Precipitation

Step 9.

Centrifuge at 4°C, 10,000rpm for 5 minutes.

Transfer upper aqueous phase to a new 2mL centrifuge tube.

P NOTES

Sophie Jurgensen 20 Jun 2017

Be careful to not aspirate the interface between the aqueous phases. Do not attempt to remove all of the upper aqueous phase.

Precipitation

Step 10.

Add 800µL of chloroform: isoamyl alcohol (CI, 24:1) to each tube.

Invert and vortex to mix thoroughly, then centrifuge at 15,000rpm for 5 minutes.

Transfer upper aqueous phase to a new 2mL centrifuge tube.

AMOUNT

800 μl Additional info: C:I

Chloroform:Isoamyl alcohol 24:1 C0549 by Sigma Aldrich

NOTES

Sophie Jurgensen 20 Jun 2017

Repeat this step again. The second time, transfer the upper aqueous phase to a 1.5mL centrifuge tube.

Precipitation

Step 11.

Add 450µL of room temperature isopropanol (100%) to each tube, inverting gently to mix.

Incubate at room temperature for 2 hours to overnight.

■ AMOUNT

450 µl Additional info: Isopropanol

✓ Isopropanol by Contributed by users

Precipitation

Step 12.

Centrifuge the tubes at 10,000rpm for 20 minutes.

Carefully decant by pouring liquid out of the tube and into a small clean petri dish, then blot tubes dry using a paper towel on the benchtop. You can also aspirate the liquid using a pipette.

NOTES

Sophie Jurgensen 20 Jun 2017

The petri dish serves to catch the DNA pellet if it is accidentally poured out during this step.

Purification

Step 13.

Add 1.4mL of 70% ethanol to each tube and gently invert several times to mix.

Centrifuge at 10,000rpm for 5 minutes.

Pour off ethanol.

1.4 ml Additional info: ethanol

Ethanol by Contributed by users

Purification

Step 14.

Dry tubes in laminar hood for 10-15 minutes or until completely dry. Note that pellets may become dislodged from sides of tube, so take care not to invert tubes.

Purification

Step 15.

Add 50µL of sterile Nuclease free ultra-pure water to each tube and gently pipet to dissolve DNA.

■ AMOUNT

50 µl Additional info: nuclease free water

✓ Ultrapure Distilled, Nuclease Free Water by Contributed by users

P NOTES

Sophie Jurgensen 20 Jun 2017

It may be helpful to either pre-heat the water to 50°C or to incubate the tubes at 37°C for 1-2 hrs to facilitate dissolution.

Purification

Step 16.

Measure the DNA concentration using NanoDrop and freeze samples at -80°C. Record 260/280 ratio as well as DNA concentration.

REAGENTS

NanoDrop spectrophotometer ND-1000 by Thermo Fisher Scientific

NOTES

Sophie Jurgensen 25 Jul 2017

A 260/280 ratio of 1.8-2 is considered "pure" DNA.