zad2

December 10, 2019

```
[1]: import pandas as pd
     data = pd.read_csv("beauty.csv")
     data
[1]:
                     profnumber
                                   minority
                                                    beautyf2upper
                                                                     beautyflowerdiv
           tenured
                                               age
                  0
                                                                  6
     0
                                                36
                                                                                      5
                                                                  2
                                                                                      4
     1
                  1
                                           0
                                                59
                                                                  5
     2
                  1
                                3
                                           0
                                                51
                                                                                      5
     3
                  1
                                4
                                           0
                                                40
                                                                  4
                                                                                      2
     4
                  0
                                5
                                           0
                                                                  9
                                                                                      7
                                                31
                                           0
                                                32
                                                                  9
                                                                                      6
     458
                  0
                               93
     459
                                           0
                                                32
                                                                  9
                                                                                      6
                               93
     460
                                                42
                                                                                      3
                               94
                                           1
                                                                                      3
     461
                  0
                               94
                                                42
                                                                  7
                                           1
     462
                               94
                                                42
           beautyfupperdiv
                              beautym2upper
                                                beautymlowerdiv
                                                                   beautymupperdiv
     0
     1
                           4
                                            3
                                                                2
                                                                                   3
     2
                           2
                                                                2
                                            3
                                                                                   3
     3
                           5
                                            2
                                                                3
                                                                                   3
                           9
     4
                                            6
                                            5
                                                                7
     458
                           6
                                                                                   8
     459
                           6
                                            5
                                                                7
                                                                                   8
     460
                           8
                                            4
                                                                4
     461
                           8
                                                                4
                                            4
     462
           nonenglish
                        onecredit
                                     percentevaluating profevaluation
                                                                             students \
     0
                                  0
                                                55.81395
                                                                        4.7
                                                                                     43
                     0
     1
                     0
                                  0
                                                85.00000
                                                                        4.6
                                                                                     20
     2
                     0
                                  0
                                               100.00000
                                                                        4.1
                                                                                    55
     3
                     0
                                  0
                                                86.95652
                                                                        4.5
                                                                                     46
                     0
                                  0
     4
                                                87.50000
                                                                        4.8
                                                                                     48
```

	_	_		_	
458	0	0	42.85714	4.	1 21
459	0	0	60.46511	4.	5 86
460	1	0	77.61194	4.	4 67
461	1	0	81.81818	4.	4 66
462	1	1	80.00000	4.	1 35
	tenuretrack	blkandwhite	btystdvariance	btystdavepos	btystdaveneg
0	1	0	2.129806	0.201567	0.000000
1	1	0	1.386081	0.000000	-0.826081
2	1	0	2.537435	0.000000	-0.660333
3	1	0	1.760577	0.000000	-0.766312
4	1	0	1.693100	1.421450	0.000000
	•••	•••	•••	•••	•••
458	1	0	3.107088	1.143040	0.000000
459	1	0	3.107088	1.143040	0.000000
460	1	0	3.018447	0.332051	0.000000
461	1	0	3.018447	0.332051	0.000000
462	1	0	3.018447	0.332051	0.000000

[463 rows x 64 columns]

```
[2]: #Utwórz regresję przy użyciu piękna (zmienna btystdave), aby przewidzieć oceny⊔
→ kursu (courseevaluation), kontrolując różne
#inne dane wejściowe.
import statsmodels.api as sm

X = data['btystdave']
Y = data['courseevaluation']
X = sm.add_constant(X)
model = sm.OLS(Y, X).fit()
predictions = model.predict(X)

model.summary()
```

C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

[2]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

 Dep. Variable:
 courseevaluation R-squared:
 0.036

 Model:
 OLS Adj. R-squared:
 0.034

 Method:
 Least Squares F-statistic:
 17.08

 Date:
 Mon, 09 Dec 2019 Prob (F-statistic):
 4.25e-05

 Time:
 23:34:56
 Log-Likelihood:
 -375.32

 No. Observations:
 463
 AIC:
 754.6

 Df Residuals:
 461
 BIC:
 762.9

Df Model: 1
Covariance Type: nonrobust

=========	=======	========	=======			========
	coef	std err	t	P> t	[0.025	0.975]
const	4.0100	0.026	157.205	0.000	3.960	4.060
btystdave	0.1330	0.032	4.133	0.000	0.070	0.196
Omnibus:		15	.399 Durl	oin-Watson:		1.410
Prob(Omnibus):	0	.000 Jar	que-Bera (JB):	16.405
Skew:		-0	.453 Prol	o(JB):		0.000274
Kurtosis:		2	2.831 Cond	d. No.		1.29
========	=======	========	========		========	========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Coeffitients explanation:

Omnibus/Prob(Omnibus) – a test of the skewness and kurtosis of the residual . We hope to see a value close to zero which would indicate normalcy. The Prob (Omnibus) performs a statistical test indicating the probability that the residuals are normally distributed. We hope to see something close to 1 here.

Skew – a measure of data symmetry. We want to see something close to zero, indicating the residual distribution is normal. Note that this value also drives the Omnibus.

Kurtosis – a measure of "peakiness", or curvature of the data. Higher peaks lead to greater Kurtosis. Greater Kurtosis can be interpreted as a tighter clustering of residuals around zero, implying a better model with few outliers.

Durbin-Watson – tests for homoscedasticity. We hope to have a value between 1 and 2.

 $Jarque-Bera\ (JB)/Prob(JB)$ – like the Omnibus test in that it tests both skew and kurtosis. We hope to see in this test a confirmation of the Omnibus test.

Condition Number – This test measures the sensitivity of a function's output as compared to its input. When we have multicollinearity, we can expect much higher fluctuations to small changes in the data, hence, we hope to see a relatively small number, something below 30. source: www.accelebrate.com/blog/interpreting-results-from-linear-regression-is-the-data-appropriate

In statistics, the standard deviation (SD, also represented by the lower case Greek letter sigma for the population standard deviation or the Latin letter s for the sample standard deviation) is a measure of the amount of variation or dispersion of a set of values.[1] A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. source:

https://en.wikipedia.org/wiki/Standard_deviation

```
[4]: #Wykreślić residua względem dopasowanych wartości.

#Przypadek jet dwuwymiarowy więc użyję gotowej funkcji:
#Residua

import seaborn as sns

sns.set(style="whitegrid")

# Plot the residuals after fitting a linear model
sns.residplot(data['btystdave'], data['courseevaluation'], lowess=True, □
→color="r")
plt.show()
```


[11]: # Dopasuj niektóre inne modele, w tym piękno, a także inne zmienne wejściowe.⊔

→ Dla każdego modelu określ, jakie są predyktory

i jakie są dane wejściowe i wyjaśnij znaczenie każdego z jego współczynników.

#Model 2

#Predicting course-evaluation from beauty and professor-evaluation. Coeffitiens⊔

→ have been explained above.

```
X = data[['btystdave', 'profevaluation']]
Y = data['courseevaluation']
X = sm.add_constant(X)
model2 = sm.OLS(Y, X).fit()
predictions2 = model2.predict(X)
model2.summary()
```

[11]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

OLD Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Lea	evaluation OLS st Squares O Dec 2019 O0:12:19 463 460 2 nonrobust	<pre>Prob (F-statistic):</pre>		0.875 0.874 1606. 3.22e-208 97.136 -188.3 -175.9	
0.975]	coef	std err	t	P> t	[0.025	
const 0.173 btystdave 0.036 profevaluation 0.984	0.0309 0.0128 0.9506	0.072 0.012 0.017	0.427 1.084 55.504	0.669 0.279 0.000	-0.111 -0.010 0.917	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		103.892 0.000 -0.996 6.826	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.		1.792 358.857 1.19e-78 35.1	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[12]: from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np

```
fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(111, projection='3d')

xs = data['btystdave']
ys = data['profevaluation']
zs = predictions2
ax.scatter(xs, ys, zs, c='r', marker='o', label='Predicted data')

xs = data['btystdave']
ys = data['profevaluation']
zs = data['courseevaluation']
ax.scatter(xs, ys, zs, c='b', marker='^', label='Original data')

ax.set_xlabel('btystdave')
ax.set_ylabel('profevaluation')
ax.set_zlabel('courseevaluation')
plt.legend()
plt.show()
```



```
[19]: #Model 3
#Predicting professor-evaluation from age

X = data['age']
Y = data['profevaluation']
X = sm.add_constant(X)
model3 = sm.OLS(Y, X).fit()
predictions3 = model.predict(X)
model.summary()
```

[19]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	courseevaluation	R-squared:	0.036
Model:	OLS	Adj. R-squared:	0.034
Method:	Least Squares	F-statistic:	17.08
Date:	Tue, 10 Dec 2019	Prob (F-statistic):	4.25e-05
Time:	00:23:29	Log-Likelihood:	-375.32
No. Observations:	463	AIC:	754.6
Df Residuals:	461	BIC:	762.9
Df Modol:	1		

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const btystdave	4.0100 0.1330	0.026 0.032	157.205 4.133	0.000	3.960 0.070	4.060 0.196
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	C -C	0.000 Jaro 0.453 Prob	pin-Watson: que-Bera (JE p(JB): 1. No.	3):	1.410 16.405 0.000274 1.29
=========	=======	========				========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\footnote{1}{1}$

[]: