4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4.1. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ

4.1.1. Задача Коши для одного обыкновенного дифференциального уравнения.

Рассматривается задача Коши для одного дифференциального уравнения первого порядка разрешенного относительно производной

$$y' = f(x, y)$$

 $y(x_0) = y_0$ (4.1)

Требуется найти решение на отрезке [a,b], где $x_0 = a$.

Введем разностную сетку на отрезке $\left[a,b\right]$ $\Omega^{(k)}=\left\{x_k=x_0+hk\right\}, \quad k=0,1,...,N$, $h=\left|b-a\right|/N$.

Точки x_k - называются *узлами* разностной сетки, расстояния между узлами – *шагом* разностной сетки (h) , а совокупность значений какой либо величины заданных в узлах сетки называется *сеточной функцией* $y^{(h)} = \{y_k, k = 0,1,...,N\}$.

Приближенное решение задачи Коши (4.1) будем искать численно в виде сеточной функции $y^{(h)}$. Для оценки погрешности приближенного численного решения $y^{(h)}$ будем рассматривать это решение как элемент N+1- мерного линейного векторного пространства с какой либо нормой. В качестве погрешности решения принимается норма элемента этого пространства $\delta^{(h)} = y^{(h)} - [y]^{(h)}$, где $[y]^{(h)}$ - точное решение задачи (1) в узлах расчетной сетки. Таким образом $\varepsilon_h = \|\delta^{(h)}\|$.

4.1.2. Одношаговые методы

Метод Эйлера (явный).

Метод Эйлера играет важную роль в теории численных методов решения ОДУ, хотя и не часто используется в практических расчетах из-за невысокой точности. Вывод расчетных соотношений для этого метода может быть произведен несколькими способами: с помощью геометрической интерпретации, с использованием разложения в ряд Тейлора, конечно разностным методом (с помощью разностной аппроксимации производной), квадратурным способом (использованием эквивалентного интегрального уравнения).

Рассмотрим вывод соотношений метода Эйлера геометрическим способом. Решение в узле x_0 известно из начальных условий рассмотрим процедуру получения решения в узле x_1 рис.4.1.

График функции $y^{(h)}$, которая является решением задачи Коши (1), представляет собой гладкую кривую, проходящую через точку (x_0,y_0) согласно условию $y(x_0)=y_0$, и имеет в этой точке касательную. Тангенс угла наклона касательной к оси Ох равен значению производной от решения в точке x_0 и равен значению правой части дифференциального уравнения в точке (x_0,y_0) согласно выражению $y'(x_0)=f(x_0,y_0)$. В случае небольшого шага разностной сетки h график функции и график касательной не успевают сильно разойтись друг от друга и можно в качестве значения решения в узле x_1 принять значение касательной y_1 , вместо значения неизвестного точного решения y_{1ncm} . При этом допускается погрешность $|y_1-y_{1ncm}|$ геометрически представленная отрезком CD на рис.4.1. Из прямоугольного треугольника ABC находим CB=BA tg(CAB) или $\Delta y = hy'(x_0)$. Учитывая, что $\Delta y = y_1 - y_0$ и заменяя производную $y'(x_0)$ на правую часть дифференциального уравнения , получаем соотношение $y_1 = y_0 + hf(x_0, y_0)$. Считая теперь точку (x_1, y_1) начальной и повторяя все предыдущие рассуждения, получим значение y_2 в узле x_2 .

Переход к произвольным индексам дает формулу метода Эйлера:

$$y_{k+1} = y_k + hf(x_k, y_k) (4.2)$$

Погрешность метода Эйлера.

На каждом шаге метода Эйлера допускается *покальная* погрешность по отношению к точному решению, график которого проходит через крайнюю левую точку отрезка. Геометрически локальная погрешность изображается отрезком CD на первом шаге, C'D' на втором и т.д. Кроме того, на каждом шаге, начиная со второго, накапливается *глобальная* погрешность представляющая собой разность межу численным решением и точным решением исходной начальной задачи (а не локальной). Глобальная погрешность на втором шаге изображена отрезком C'E' на рис.4.1.

Локальная ошибка на каждом шаге выражается соотношением $\varepsilon_k^h = \frac{y''(\xi)}{2}h^2$, где $\xi \in [x_{k-1}, x_k]$. Глобальная погрешность метода Эйлера $\varepsilon_{TJI}^h = Ch$ в окрестности h=0 ведет себя как линейная функция, и, следовательно, метод Эйлера имеет первый порядок точности относительно шага h.

Модификации метода Эйлера.

Неявный метод Эйлера

Если на правой границе интервала использовать точное значение производной от решения (т.е. тангенса угла наклона касательной), то получается неявный метод Эйлера первого порядка точности.

$$y_{k+1} = y_k + hf(x_{k+1}, y_{k+1}) (4.3)$$

В общем случае нелинейное относительно y_{k+1} уравнение (4.3) численно решается с помощью одного из методов раздела 2, например, методом Ньютона или его модификациями.

Метод Эйлера - Коши

В данном методе на каждом интервале расчет проводится в два этапа. На первом (этап прогноза) определяется приближенное решение на правом конце интервала по методу Эйлера, на втором (этап коррекции) уточняется значение решения на правом конце с использованием полусуммы тангенсов углов наклона на концах интервала

$$\widetilde{y}_{k+1} = y_k + hf(x_k, y_k)
y_{k+1} = y_k + \frac{h(f(x_k, y_k) + f(x_{k+1}, \widetilde{y}_{k+1})}{2}
x_{k+1} = x_k + h$$
(4.4)

Этот метод имеет второй порядок точности.

Неявный метод Эйлера – Коши

Если на правой границе интервала использовать точное значение производной к решению (т.е. тангенса угла наклона касательной), то получается неявный метод Эйлера-Коши (метод трапеций) второго порядка точности.

$$y_{k+1} = y_k + \frac{h(f(x_k, y_k) + f(x_{k+1}, y_{k+1}))}{2}$$

$$x_{k+1} = x_k + h$$
(4.5)

Метод Эйлера-Коши с итерационной обработкой

Комбинация (4.3), (4.4) и (4.5) дает метод формально второго порядка точности, но более точного в смысле абсолютной величины погрешности приближенного решения, чем исходные методы.

$$y_{k+1}^{(0)} = y_k + hf(x_k, y_k)$$

$$y_{k+1}^{(i)} = y_k + \frac{h(f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(i-1)}))}{2}$$

$$x_{k+1} = x_k + h$$
(4.6)

В формуле (6) правые верхние индексы в круглых скобках обозначают номер итерации, при этом начальное приближение $y_{k+1}^{(0)}$ определяется по методу Эйлера. Метод Эйлера-Коши с итерационной обработкой представляет собой реализацию метода простой итерации для решения нелинейного уравнения (5) в неявном методе Эйлера. Выполнять простые итерации до полной сходимости нет смысла, поэтому рекомендуется выполнять 3-4 итерации.

Первый улучшенный метод Эйлера

Данный метод использует расчет приближенного значения производной от решения в точке на середине расчетного интервала. Значение производной в середине получают применением явного метода Эйлера на половинном шаге по х.

$$y_{k+1/2} = y_k + \frac{h}{2} f(x_k, y_k)$$

$$y_{k+1} = y_k + h f(x_{k+1/2}, y_{k+1/2})$$

$$x_{k+1} = x_k + h$$

$$x_{k+1/2} = x_k + h/2$$
(4.7)

Данная модификация метода Эйлера имеет второй порядок точности.

Методы Рунге-Кутты

Все рассмотренные выше явные методы являются вариантами методов Рунге-Кутты.

Семейство явных методов Рунге-Кутты p-го порядка записывается в виде совокупности формул:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = \sum_{i=1}^p c_i K_i^k$$

$$K_i^k = h f(x_k + a_i h, y_k + h \sum_{j=1}^{i-1} b_{ij} K_j^k)$$

$$i = 2,3....p$$
(4.8)

Параметры a_i, b_{ij}, c_i подбираются так, чтобы значение y_{k+1} , рассчитанное по соотношению (4.8) совпадало со значением разложения в точке x_{k+1} точного решения в ряд Тейлора с погрешностью $O(h^{p+1})$

Метод Рунге-Кутты третьего порядка точности

Один из методов Рунге-Кутты третьего порядка $(p=3,a_1=0,a_2=\frac{1}{3},a_3=\frac{2}{3},b_{21}=\frac{1}{3},b_{31}=0,b_{32}=\frac{2}{3},c_1=\frac{1}{4},c_2=0,c_3=\frac{3}{4})$ имеет вид:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = \frac{1}{4} (K_1^k + 3K_3^k)$$

$$K_1^k = hf(x_k, y_k)$$

$$K_2^k = hf(x_k + \frac{1}{3}h, y_k + \frac{1}{3}K_1^k)$$

$$K_3^k = hf(x_k + \frac{2}{3}h, y_k + \frac{2}{3}K_2^k)$$
(4.9)

Метод Рунге-Кутты четвертого порядка точности

Метод Рунге-Кутты четвертого порядка $(p=4,a_1=0,a_2=\frac{1}{2},a_3=\frac{1}{2},a_4=1,b_{21}=\frac{1}{2},b_{31}=0,b_{32}=\frac{1}{2},b_{41}=0,b_{42}=0,b_{43}=\frac{1}{2},c_1=\frac{1}{6},$ $c_2=\frac{1}{3},c_3=\frac{1}{3},c_3=\frac{1}{6})$

является одним из самых широко используемых методов для решения Задачи Коши:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = \frac{1}{6} (K_1^k + 2K_2^k + 2K_3^k + K_4^k)$$

$$K_1^k = hf(x_k, y_k)$$

$$K_2^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_1^k)$$

$$K_3^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_2^k)$$

$$K_4^k = hf(x_k + h, y_k + K_3^k)$$

$$(4.10)$$

Контроль точности на каждом шаге h.

Основным способом контроля точности получаемого численного решения при решении задачи Коши является методы основанные на принципе Рунге-Ромберга-Ричардсона.

Пусть y^h решение задачи Коши (1) полученое методом Рунге-Кутты p — го порядка точности с шагом h в точке x+2h. Пусть y^{2h} решение той же задачи в точке x+2h, полученное тем же методом, но с шагом 2h. Тогда выражение

$$\ddot{y} = y^h + \frac{y^h - y^{2h}}{2^p - 1}$$
(4.11)

аппроксимирует точное решение в точке x+2h y(x+2h) с p+1-ым порядком.

Второе слагаемое в выражении (4.11) оценивает главный член в погрешности решения y^h , то есть $R^h = \frac{y^h - y^{2h}}{2^p - 1}$. Контроль точности может быть организован следующим образом. Выбирается значение шага h и дважды рассчитывается решение в точке x+2h, один раз с шагом h, другой раз с шагом 2h. Рассчитывается величина R^h и сравнивается с заданной точностью ε . Если величина R^h меньше ε , то можно продолжать вычисления с тем же шагом, в противном случае необходимо вернуться к решению в точке x, уменьшить шаг h и повторить вычисления.

Вычислительная стоимость такого контроля точности достаточно велика, особенно для многостадийных методов. Поэтому можно использовать более грубый способ

контроля правильности выбора шага h. В случае метода Рунге-Кутты четвертого порядка точности следует на каждом шаге h рассчитывать параметр

$$\theta^k = \left| \frac{K_2^k - K_3^k}{K_1^k - K_2^k} \right| \tag{4.12}$$

Если величина θ^k порядка нескольких сотых единицы, то расчет продолжается с тем же шагом, если θ^k больше одной десятой, то шаг следует уменьшить, если же θ^k меньше одной сотой, то шаг можно увеличить.

Таким образом с помощью определения величин θ^k или R^h можно организовать алгоритм выбора шага h для явного метода Рунге-Кутты.

4.1.3. Решение задачи Коши для системы обыкновенных дифференциальных уравнений.

Рассматривается задача Коши для системы дифференциальных уравнений первого порядка разрешенных относительно производной

$$\begin{cases} y_1' = f_1(x, y_1, y_2, \dots, y_n) \\ y_2' = f_2(x, y_1, y_2, \dots, y_n) \\ \dots \\ y_n' = f_n(x, y_1, y_2, \dots, y_n) \end{cases}$$
(4.13)

Система (4.13) в более компактном виде записывается в векторной форме

$$\overline{y}' = \overline{F}(x, \overline{y})
\overline{y}(x_0) = \overline{y}_0$$
(4.14)

Здесь $\overline{y}(x) = (y_1, y_2,, y_n)^T$ - вектор столбец неизвестных функций, $\overline{F} = (f_1, f_2,, f_n)^T$ - вектор функция правых частей.

К векторному дифференциальному уравнению (4.14) можно применить все методы рассмотренные выше в данном разделе (благодаря линейной структуре всех рассмотренных методов). При этом в формулах (4.2)-(4.14) все величины векторные кроме переменной x и шага h.

Рассмотрим задачу Коши для системы двух ОДУ первого порядка, где уравнения записаны в развернутом виде

$$\begin{cases} y' = f(x, y, z) \\ z' = g(x, y, z) \end{cases}$$

$$y(x_0) = y_0$$

$$z(x_0) = z_0$$

$$(4.15)$$

Формулы метода Рунге-Кутты 4-го порядка точности для решения (4.15) следующие:

$$y_{k+1} = y_k + \Delta y_k$$

$$z_{k+1} = z_k + \Delta z_k$$

$$\Delta y_k = \frac{1}{6} (K_1^k + 2K_2^k + 2K_3^k + K_4^k)$$

$$\Delta z_k = \frac{1}{6} (L_1^k + 2L_2^k + 2L_3^k + L_4^k)$$

$$K_1^k = hf(x_k, y_k, z_k)$$

$$L_1^k = hg(x_k, y_k, z_k)$$

$$K_2^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_1^k, z_k + \frac{1}{2}L_1^k)$$

$$L_2^k = hg(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_1^k, z_k + \frac{1}{2}L_1^k)$$

$$K_3^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_2^k, z_k + \frac{1}{2}L_2^k)$$

$$L_3^k = hg(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_2^k, z_k + \frac{1}{2}L_2^k)$$

$$K_4^k = hf(x_k + h, y_k + K_3^k, z_k + L_3^k)$$

$$L_4^k = hg(x_k + h, y_k + K_3^k, z_k + L_3^k)$$

$$L_4^k = hg(x_k + h, y_k + K_3^k, z_k + L_3^k)$$

Контроль правильности выбора шага h в случае использования метода Рунге-Кутты четвертого порядка точности для системы (4.15) может быть организован с помощью вычисления на каждом шаге h параметров

$$\theta_{1}^{k} = \left| \frac{K_{2}^{k} - K_{3}^{k}}{K_{1}^{k} - K_{2}^{k}} \right|;$$

$$\theta_{2}^{k} = \left| \frac{L_{2}^{k} - L_{3}^{k}}{L_{1}^{k} - L_{2}^{k}} \right|$$
(4.17)

Если величины θ_i^k (i=1,2) порядка нескольких сотых единицы, то расчет продолжается с тем же шагом, если больше одной десятой, то шаг следует уменьшить, если же меньше одной сотой, то шаг можно увеличить

Решение задачи Коши для ОДУ второго и более высокого порядков.

Задача Коши для ОДУ п – го порядка ставится следующим образом

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$

$$y(x_0) = y_0$$

$$y'(x_0) = y_{01}$$

$$y''(x_0) = y_{02}$$

$$\dots$$

$$y^{(n-1)}(x_0) = y_{0(n-1)}$$

$$(4.18)$$

здесь $y^{(m)} = \frac{d^m y}{dx^m}$ производная m порядка от решения, m=1,2,...,n.

Основной прием используемый при решении задач типа (4.8) заключается в введении новых переменных и сведении задачи (4.8) для ОДУ высокого порядка к решению системы ОДУ первого порядка (4.13).

Введем новые переменные

$$z_1 = y'$$

 $z_2 = y''$
......
 $z_{n-1} = y^{(n-1)}$

тогда задачу (4.8) можно переписать в виде системы п ОДУ первого порядка.

$$\begin{cases} y' = z_{1} \\ z_{1}' = z_{2} \\ z_{2}' = z_{3} \\ \dots \\ z_{n-2}' = z_{n-1} \\ z_{n-1}' = f(x, y, z_{1}, \dots, z_{n-1}) \end{cases}$$

$$y(x_{0}) = y_{0}$$

$$z_{1}(x_{0}) = y_{01}$$

$$z_{2}(x_{0}) = y_{02}$$

$$\dots \\ z_{n-1}(x_{0}) = y_{0(n-1)}$$

$$(4.19)$$

Полученная система, состоящая из n ОДУ первого порядка с соответствующими начальными условиями решается любым из описанных методов.

Пусть необходимо решить задачу Коши для ОДУ второго порядка:

$$y'' = f(x, y, y')$$

$$y(x_0) = y_0$$

$$y'(x_0) = y_{01}$$
(4.20)

Путем введения замены z = y', сведем (4.18) к системе

$$\begin{cases} y' = z \\ z' = f(x, y, z) \end{cases}$$

$$y(x_0) = y_0$$

$$z(x_0) = y_{01}$$
(4.21)

, которую можно решить, например, с использованием метода (4.16).

Пример 4.1 Явным методом Эйлера с шагом h=0.1 получить численное решение дифференциального уравнения $y' = (y+x)^2$ с начальными условиями y(0) = 0 на интервале [0, 0.5]. Численное решение сравнить с точным решением $y = \tan(x) - x$.

Решение

Итак, исходя из начальной точки $x_0=0$, $y_0=0$ рассчитаем значение y_1 в узле x_1 =0.1 по формулам (4.2) $y_1=y_0+hf(x_0,y_0)=0+0.1(0+0)^2=0$. Аналогично получим решение в следующем узле x_2 =0.2; $y_2=y_1+hf(x_1,y_1)=0+0.1(0+0.1)^2=0.001$. Продолжим вычисления и, введя обозначения $\Delta y_k=hf(x_0,y_0)$ и $\varepsilon_k=\left|y_{ucm}(x_k)-y_k\right|$, где $y_{ucm}(x_k)$ - точное решение в узловых точках, получаемые результаты занесем в таблицу.

Таблица 4.1

k	X	у	Δy_k	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0	0.000000000	0.000000000	0.000000000	0.000000000	0.0000
1	0.100000000	0.000000000	0.001000000	0.000334672	0.3347E-03
2	0.200000000	0.001000000	0.004040100	0.002710036	0.1710E-02
3	0.300000000	0.005040100	0.009304946	0.009336250	0.4296E-02
4	0.400000000	0.014345046	0.017168182	0.022793219	0.8448E-02
5	0.500000000	0.031513228		0.046302490	0.1479E-01

Решением задачи является табличная функция (оставлены 5 значащих цифр в каждом числе)

Таблица 4.2

k	0	1	2	3	4	5
\boldsymbol{x}_k	0.00000	0.1000	0.200000	0.3000000	0.400000	0.500000
\mathcal{Y}_k	0.00000	0.000	0.001000	0.0050401	0.014345	0.031513

Пример 4.2. Решить задачу из примера 4.1 методом Эйлера-Коши (4.4).

Решение

Исходя из начальных значений $x_0=0$, $y_0=0$, рассчитаем значение y_1 в узле $x_1{=}0.1$ по формулам (4.4)

$$\begin{aligned} \widetilde{y}_1 &= y_0 + hf(x_0, y_0) = 0 + 0.1(0 + 0)^2 = 0 \\ f(x_1, \widetilde{y}_1) &= (0 + 0.1)^2 = 0.01 \\ y_1 &= y_0 + 0.5h(f(x_0, y_0) + f(x_1, \widetilde{y}_1)) = 0 + 0.5*0.1*(0 + 0.01) = 0.0005 \end{aligned}$$

Аналогично получим решение в остальных узлах. Продолжая вычисления и вводя обозначение $\Delta y_k = 0.5h(f(x_k,y_k) + f(x_{k+1},\widetilde{y}_{k+1}))$ получаемые результаты занесем в таблицу.

Таблица 4.3

k	\boldsymbol{x}_k	\mathcal{Y}_k	$\widetilde{{\mathcal Y}}_k$	Δy_k	${\cal Y}_{ucm}$	${\cal E}_k$
0	0.0	0.000000000		0.000500000	0.000000000	0.000000000

1	0.1	0.000500000	0.00000	0.002535327	0.000334672	0.1653E-03
2	0.2	0.003035327	1.510025E-003	0.006778459	0.002710036	0.3253E-03
3	0.3	0.009813786	7.157661E-003	0.013594561	0.009336250	0.4775E-03
4	0.4	0.023408346	1.941224E-002	0.023615954	0.022793219	0.6151E-03
5	0.5	0.047024301	4.133581E-002		0.046302490	0.7218E-03

Решением задачи является табличная функция (оставлены 5 значащих цифр в каждом числе)

Таблица 4.4

k	0	1	2	3	4	5
x_{k}	0.00000	0.100000	0.2000000	0.3000000	0.4000000	0.500000
${\mathcal Y}_k$	0.00000	0.000500	0.0030353	0.0098138	0.023408	0.047024

Пример 4.3. Решить задачу из примера 4.1 первым улучшенным методом Эйлера (4.7).

Решение

Стартуем из начальной точки $x_0=0\,,\;y_0=0\,$ и рассчитаем значение $y_{1/2}\,$ в узле $x_{1/2} = x_0 + h/2 = 0.05$ по формулам (4.4)

 $y_{1/2} = y_0 + \frac{h}{2} f(x_0, y_0) = 0 + \frac{0.1}{2} (0+0)^2 = 0$. Затем определим величину правой части (величину производной от решения) в середине интервала $[x_0, x_1]$

 $f(x_{1/2}, y_{1/2}) = (0 + 0.05)^2 = 0.0025$. Окончательно рассчитаем значение функции в узле x_1 $y_1 = y_0 + hf(x_{1/2}, y_{1/2}) = 0 + 0.1*0.0025 = 0.00025$.

Аналогично получим решение в остальных узлах. Продолжая вычисления и вводя обозначение $\Delta y_k = hf(x_{k+1/2}, y_{k+1/2})$, получаемые результаты занесем в таблицу.

Таблица 4.5

k	\boldsymbol{x}_k	${\cal Y}_k$	$y_{k+1/2}$	Δy_k	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0	0.0	0.000000000	0.000000000	0.000250000	0.000000000	0.000000000
1	0.1	0.000250000	0.0007525031	0.002272632	0.000334672	0.8467E-04
2	0.2	0.002522632	0.0045734025	0.006480762	0.002710036	0.1874E-03
3	0.3	0.009003393	0.0137775483	0.013233410	0.009336250	0.3329E-03
4	0.4	0.022236804	0.0311509998	0.023150628	0.022793219	0.5564E-03
5	0.5	0.045387432			0.046302490	0.9151E-03

Решением задачи является табличная функция (оставлены 5 значащих цифр в каждом числе)

- 1	(a)	ωп	Ш	ra	4	ŀ
_	ıa	OJ.	LYLL	ца	ᇽ.	ľ

 Taomiqu									
k	0	1	2	3	4	5			

\boldsymbol{x}	k	0.00000	0.100000	0.2000000	0.3000000	0.4000000	0.500000
y	k	0.00000	0.000250	0.0025226	0.0090033	0.022237	0.045387

Пример 4.4. Решить задачу из примера 4.1 методом Рунге-Кутты 4-го порядка (4.10).

Решение

Вычислим значения вспомогательных величин $K_1^0 = hf(x_0, y_0) = 0.1(0+0)^2 = 0$;

$$\begin{aligned} y_0^1 &= y_0 + \frac{1}{2}K_1^0 = 0 + \frac{1}{2}0 = 0 \\ K_2^0 &= hf(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}K_1^0) = 0.1(0 + \frac{1}{2}*0 + 0 + \frac{1}{2}*0.1)^2 = 0.00025; \\ y_0^2 &= y_0 + \frac{1}{2}K_2^0 = 0 + \frac{1}{2}0.00025 = 0.000125 \\ K_3^0 &= hf(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}K_2^0) = 0.1(0 + \frac{1}{2}*0.00025 + 0 + \frac{1}{2}*0.1)^2 = 0.000251251; \\ y_0^3 &= y_0 + K_3^0 = 0 + 0.000251251 = 0.000251251 \\ K_4^0 &= hf(x_0 + h, y_0 + K_3^0) = 0.1(0 + 0.000251251 + 0 + 0.1)^2 = 0.001005031; \end{aligned}$$

Найдем приращение функции на первом интервале

$$\Delta y_0 = \frac{1}{6}(K_1^0 + 2K_2^0 + 2K_3^0 + K_4^0) = \frac{1}{6}(0 + 2*0.00025 + 2*0.000251251 + 0.001005031) = 0.000334588$$
 и значение функции в первом узле

$$y_1 = y_0 + \Delta y_0 = 0 + 0.000334588 = 0.000334588$$
;

Аналогично получим решение в остальных узлах.

Таблица 4.7

	лица т.		1	1		1	
k/i	\boldsymbol{x}_k	${\cal Y}_k^i$	K_i^k	Δy_k	θ^k	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0/1	0.0	0.0000000	0.000000000			0.000000	0.0000000
0/2	0.05	0.0000000	0.000250000				
0/3	0.05	0.0001250	0.000251252				
0/4	0.1	0.00025125	0.001005031	0.000334589	0.005006		
1/1	0.1	0.000334589	0.001006703			0.00033467	0.8301E-07
1/2	0.15	0.000837941	0.002275208				
1/3	0.15	0.001472193	0.002294383				
1/4	0.2	0.002628972	0.004105850	0.002375289	0.015116		
2/1	0.2	0.002709878	0.004109129			0.002710036	0.1573E-06
2/2	0.25	0.004764443	0.006490492				
2/3	0.25	0.005955124	0.006551303				
2/4	0.3	0.009261181	0.009564248	0.006626161	0.025535		
3/1	0.3	0.009336039	0.009568879			0.009336250	0.2103E-06
3/2	0.35	0.014120479	0.013258372				
3/3	0.35	0.015965225	0.013393055				
3/4	0.4	0.022729094	0.017869989	0.013456954	0.036504		

4/1	0.4	0.022792993	0.017875391			0.022793219	0.2259E-06
4/2	0.45	0.031730689	0.023206446				
4/3	0.45	0.034396216	0.023463969				
4/4	0.5	0.046256962	0.029839667	0.023509315	0.048306		
5	0.5	0.046302308				0.046302490	0.1823E-06

Решением задачи является табличная функция (оставлены 7 значащих цифр в каждом числе)

Таблица 4.8

k	0	1	2	3	4	5
x_k	0.00000	0.1000	0.200000	0.3000000	0.400000	0.500000
\mathcal{Y}_k	0.00000	0.000334589	0.002709878	0.009336039	0.02279299	0.04630231

Пример 4.5. На интервале [0,1] с шагом h=0.2 решить задачу Коши методом Рунге-Кутты 4 порядка.

$$\begin{cases} (x^2 + 1)y'' = 2xy' \\ y(0) = 1 \\ y'(0) = 3 \end{cases}$$

Численное решение сравнить с аналитическим решением $y_{ucm}(x) = x^3 + 3x + 1$.

Решение

Аналогично (4.18-4.21) введением новой переменной z = y' решение исходной начальной задачи для дифференциального уравнения второго порядка сводится к решению системы двух дифференциальных уравнений первого порядка.

$$\begin{cases} y' = z \\ z' = \frac{2xz}{x^2 + 1} \end{cases}$$
$$y(0) = 1$$
$$z(0) = 3$$

Данную систему решим методом Рунге-Кутты с использованием формул (4.16).

Вычислим значения вспомогательных величин:

$$K_1^0 = hf(x_0, y_0, z_0) = hz_0 = 0.2 * 3 = 0.6; \ L_1^0 = hg(x_0, y_0, z_0) = h\frac{2x_0z_0}{x_0^2 + 1} = 0.2\frac{2 * 0 * 3}{0^2 + 1} = 0;$$

$$K_{2}^{0} = hf(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{1}^{0}, z_{0} + \frac{1}{2}L_{1}^{0}) = 0.2(3 + \frac{1}{2}0) = 0.6;$$

$$L_{2}^{0} = hg(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{1}^{0}, z_{0} + \frac{1}{2}L_{1}^{0}) = 0.2\frac{2(0 + 0.1)(3 + \frac{1}{2}0)}{(0 + 0.1)^{2} + 1} = 0.11881188;$$

$$K_{3}^{0} = hf(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{2}^{0}, z_{0} + \frac{1}{2}L_{2}^{0}) = 0.2(3 + \frac{1}{2}*0.1881188) = 0.611881188;$$

$$L_{3}^{0} = hg(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{2}^{0}, z_{0} + \frac{1}{2}L_{2}^{0}) = 0.2\frac{2(0 + 0.1)(3 + \frac{1}{2}0.11881188)}{(0 + 0.1)^{2} + 1} = 0.121164592;$$

$$K_{4}^{0} = hf(x_{0} + h, y_{0} + K_{3}^{0}, z_{0} + L_{3}^{0}) = 0.2(3 + 0.12116459) = 0.62423292;$$

$$L_{4}^{0} = hg(x_{0} + h, y_{0} + K_{3}^{0}, z_{0} + L_{3}^{0}) = 0.2\frac{2(0 + 0.2)(3 + 0.121164592)}{(0 + 0.2)^{2} + 1} = 0.240089584;$$

Найдем приращения функций на первом интервале

$$\Delta y_0 = \frac{1}{6} (K_1^0 + 2K_2^0 + 2K_3^0 + K_4^0) = \frac{1}{6} (0.6 + 2 * 0.6 + 2 * 0.611881188 + 0.62423292) = 0.607999216$$

$$\Delta z_0 = \frac{1}{6}(L_1^0 + 2L_2^0 + 2L_3^0 + L_4^0) = \frac{1}{6}(0.0 + 2*0.11881188 + 2*0.121164592 + 0.240089584) = 0.1200071$$
и значения функций в первом узле

$$y_1 = y_0 + \Delta y_0 = 1 + 0.607999216 = 1.607999216$$
;
 $z_1 = z_0 + \Delta z_0 = 3 + 0.1200071 = 3.1200071$;

Аналогично получим решения в остальных узлах, результаты вычислений занесем в таблицу.

Таблица 4.9

k	x_k	${\cal Y}_k$	\boldsymbol{z}_k	Δy_k	Δz_k	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0	0.0	1.0000000	3.000000000	0.607999216	0.1200E+00	1.000000000	0.00000
1	0.2	1.607999216	3.120007088	0.655995430	0.3600E+00	1.607999216	0.784E-6
2	0.4	2.263994646	3.480019051	0.751991317	0.6000E+00	2.263994646	0.535E-5
3	0.6	3.015985963	4.080024218	0.895987662	0.8400E+00	3.015985963	0.140E-4
4	0.8	3.911973624	4.920018746	1.087984366	0.1080E+01	3.911973624	0.264E-4
5	1.0	4.999957990	6.000004180			5.000000000	0.420E-4

Решением задачи является табличная функция (оставлены 5 значащих цифр в каждом числе)

Таблица 4.10

	таолица т.т.	O .				
k	0	1	2	3	4	5
x_k	0.00000	0.200000	0.4000000	0.6000000	0.8000000	1.000000
\mathcal{Y}_k	1.0000000	1.607999216	2.263994646	3.015985963	3.911973624	4.99995799

4.1.4. Решение дифференциальных уравнений с запаздывающим аргументом

Многие процессы в живой и неживой природе описываются моделями представленными дифференциальными уравнениями с запаздывающими аргументами. Наиболее часто такие модели используют при исследовании динамики развития популяций, процесса кроветворения, динамики различных автогенераторов, механизмов изменения рыночной конъюнктуры и т.п. Решение подобных уравнений обладает определенной спецификой.

Рассмотрим для простоты случай одного дифференциального уравнения с единственным запаздывающим аргументом a.

$$y' = f(x, y(x), y(x-a))$$

$$y(x_0) = y_0$$
 (4.22)

Пусть имеется решения в точке $y_k = y(x_k)$. Опишем процедуру нахождения решения в точке $x_k = x_k + h$ модифицированным методом Эйлера (4.7) второго порядка точности. В этом методе надо использовать значение решения в точке x_k и предварительное решение в точке $x_{k+1/2} = x_k + h/2$. Соответственно от этих точек надо брать запаздывание a, то есть надо найти значение решения в точках $x_k - a, x_k + h/2 - a$. Для примера опишем процедуру определения значения $y(x_k - a)$. Если $x_k - a$ лежит левее начальной точки x_0 , то $y(x_k - a)$ определяется из начальных условий (в этом случае должно быть задано поведение решения на интервале левее точки x_0 , достаточном для определения значения в точке $x_k - a$. Если $x_k - a$ совпадает с одним из узлов правее x_0 , тогда $y(x_k - a)$ принимает значение функции в этом узле.

Если величина $x_k - a$ не совпадает ни с одним узловым значением $x_m, x_m = 0,1,2,...$, то она лежит внутри некоторого отрезка $[x_j, x_{j+1}]$ и можно по значениям y в трех узлах, например, в x_{j-1}, x_j, x_{j+1} построить интерполяционный многочлен P_3 для определения приближенного значения $y(x_k - a) \approx P_3(x_k - a)$.

Таким образом, схема расчета значения решения в новой точке для системы (4.22) будет выглядеть так:

$$y_{k+1/2} = y_k + \frac{h}{2} f(x_k, y_k, y(x_k - a))$$

$$y_{k+1} = y_k + h f(x_{k+1/2}, y_{k+1/2}, y(x_{k+1/2} - a))$$

$$x_{k+1} = x_k + h$$

$$x_{k+1/2} = x_k + h/2$$
(4.23)

Пример 4.6. Улучшенным методом Эйлера с шагом h=0.1 получить численное решение дифференциального уравнения $y' = A_1 y(x)(1 - y(x - A_2)/A_3)$ с начальными условиями y(0) = 2.0 на интервале [0, 4] с шагом h = 0.4 $A_1 = 1.6$, $A_2 = 0.5$, $A_3 = 10$ (здесь A_2 - константа характеризующая запаздывание аргумента).

Данное уравнение может описывать динамику одновидовой популяции (в этом случае A_1 - коэффициент экспоненциального роста, A_3 - емкость среды обитания, A_2 - возраст производителей, x- время). Смысл модели в следующем: скорость роста популяции зависит не только от общей численности y(x) в любой момент времени x, определяемой емкостью среды обитания A_3 , но и от количества взрослых особей в момент времени $x-A_2$. Данное уравнение может также описывать цикличность деловой активности на фондовом рынке.

Решение

Решение будем проводить с использованием формул (4.23). Значение решения в точке $x_0-A_2=0.0-0.5=-0.5$, лежащей левее точки x_0 , примем равным начальному значению $y_0=2.0$, то есть $y(x_0-A_2)=2.0$. Определим величину функции в точке $x_{1/2}=x_0+h/2=0.0+0.1=0.1$ по методу Эйлера $y_{1/2}=y_0+h/2f(x_0,y_0,y(x_0-A_2))=2.0+0.1*1.6*2.0*(1.0-2.0/10.0)=2.256$. В середине первого шага считаем значение функции с запаздывающим аргументом $x_0+h/2-A_2=0.0+0.1*0.5=-0.4$, $y(x_0+h/2-A_2)=2.0$ и затем значение решения в точке 1

 $y_1 = y_0 + hf(x_{1/2}, y_{1/2}, y(x_{1/2} - A_2)) = 2.0 + 0.2 * 1.6 * 2.256 * (1.0 - 2.0/10.0) = 2.577536$. Продолжая таким образом вычисления и используя квадратичную интерполяцию (многочлен Лагранжа) для нахождения значения функции для запаздывающего аргумента, когда значения $x_k - A_2$ или $x_k + h/2 - A_2$ будут лежать правее, чем точка x_0 , получим решения в последующих точках. Результаты вычислений занесены в таблицу (4.11), в которой для удобства использованы следующие обозначения:

$$\begin{split} \Delta \widetilde{y}_k &= \frac{h}{2} f(x_k, y_k, y(x_k - A_2)) \;, \qquad x_{k+1/2} = x_k + \frac{h}{2} \;, \qquad y_{k+1/2} = y_k + \Delta \widetilde{y}_k \;, \\ \hat{x}_k &= x_k + h/2 - A_2 \;, \qquad \hat{y}_k = y(x_k + h/2 - A_2) \;, \qquad \Delta y_k = h f(x_k + \frac{h}{2}, y_k + \Delta \widetilde{y}_k, \hat{y}_k) \end{split}$$

Таблица 4.11

k	x_k	${\cal Y}_k$	$x_k - A_2$	$y(x_k - A_2)$	$\Delta \widetilde{oldsymbol{y}}_k$	$x_{k+1/2}$	$\mathcal{Y}_{k+1/2}$	\hat{x}_k	$\hat{{\mathcal{Y}}}_k$	Δy_k
0	0.0	2.0	-0.5	2.0	0.256000	0.1	2.25600	-0.4	2.0	0.577536
1	0.2	2.57754	-0.3	2.0	0.329925	0.3	2.90746	-0.2	2.0	0.744310
2	0.4	3.32185	-0.1	2.0	0.425196	0.5	3.74704	0.0	2.0	0.959243
3	0.6	4.28109	0.1	2.26792	0.529627	0.7	4.81072	0.2	2.57754	1.142636
4	0.8	5.42372	0.3	2.92282	0.614154	0.9	6.03788	0.4	3.32185	1.290300
5	1.0	6.71402								

Решением задачи является табличная функция (оставлены 6 значащих цифр)

Таблица 4.12

k	0	1	2	3	4	5
x_k	0.00000	0.200000	0.4000000	0.6000000	0.8000000	1.000000
\mathcal{Y}_k	2.0	2.57754	3.32185	4.28109	5.42372	6.71402

Замечание. Как правило, в отличие от Примера 4.6, в данных задачах с запаздывающим аргументом интересуются поведением решения на достаточно больших интервалах времени. При этом выполняется от сотен до тысяч шагов по времени, что приводит к необходимости использовать компьютер.

4.1.5. Многошаговые методы. Метод Адамса.

Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем узле, как это имеет место в одношаговых методах, а от нескольких предыдущих узлах. Многие многошаговые методы различного порядка точности можно конструировать с помощью квадратурного способа (т.е. с использованием эквивалентного интегрального уравнения).

Решение дифференциального уравнения y'=f(x,y) удовлетворяет интегральному соотношению:

$$y_{k+1} = y_k + \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$
 (4.24)

Если решение задачи Коши получено в узлах вплоть до k-го, то можно аппроксимировать подынтегральную функцию, например: интерполяционным многочленом какой-либо степени. Вычислив интеграл от построенного многочлена на отрезке $\left[x_k, x_{k+1}\right]$ получим ту или иную формулу Адамса. В частности, если использовать многочлен нулевой степени (то есть заменить подынтегральную функцию ее значением на левом конце отрезка в точке x_k), то получим явный метод Эйлера. Если проделать то же самое, но подынтегральную функцию аппроксимировать значением на правом конце в точке x_{k+1} , то получим неявный метод Эйлера.

Метод Адамса

При использовании интерполяционного многочлена 3-ей степени построенного по значениям подынтегральной функции в последних четырех узлах получим метод Адамса четвертого порядка точности:

$$y_{k+1} = y_k + \frac{h}{24} (55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}), \qquad (4.25)$$

где $f_{\scriptscriptstyle k}$ значение подынтегральной функции в узле $x_{\scriptscriptstyle k}$.

Метод Адамса (4.25) как и все многошаговые методы не является самостартующим, то есть для того, что бы использовать метод Адамса необходимо иметь решения в первых четырех узлах. В узле x_0 решение y_0 известно из начальных условий, а в других трех узлах x_1, x_2, x_3 решения y_1, y_2, y_3 можно получить с помощью подходящего одношагового метода, например: метода Рунге-Кутты четвертого порядка (4.10).

Метод Адамса-Бэшфортса-Моултона

Данный метод типа предиктор—корректор позволяет повысить точность вычислений метода Адамса за счет двойного вычисления значения функции f(x,y) при определении y_{k+1} на каждом новом шаге по x .

Этап предиктор

Аналогично методу Адамса по значениям в узлах $x_{k-3}, x_{k-2}, x_{k-1}, x_k$ рассчитывается "предварительное" значение решения в узле x_{k+1} .

$$\hat{y}_{k+1} = y_k + \frac{h}{24} (55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}), \tag{4.26}$$

С помощью полученного значения \hat{y}_{k+1} рассчитывается "предварительное" значение функции $f_{k+1} = f(x_{k+1}, \hat{y}_{k+1})$ в новой точке.

Этап корректор

На корректирующем этапе по методу Адамса 4-го порядка по значениям в узлах $x_{k-2}, x_{k-1}, x_k, x_{k+1}$ рассчитывается "окончательное" значение решения в узле x_{k+1} .

$$y_{k+1} = y_k + \frac{h}{24} (9f_{k+1} + 19f_k - 5f_{k-1} + f_{k-2}), \tag{4.27}$$

Пример 4.7. Методом Адамса с шагом h=0.1 получить численное решение дифференциального уравнения $y' = (y+x)^2$ с начальными условиями y(0) = 0 на интервале [0, 1.0]. Численное решение сравнить с точным решением $y = \tan(x) - x$.

Решение

Данная задача на первой половине интервала совпадает с задачей из примера 4.4. Поэтому для нахождения решения в первых узлах беем использовать результаты решения этой задачи методом Рунге-Кутты четвертого порядка (4.10) приведенные в примере 4.4.

Таблица 4.13

k	\boldsymbol{x}_k	${\cal Y}_k$	$f(x_k, y_k)$	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0	0.0	0.0000000	0.000000000	0.000000	0.0000000
1	0.1	0.000334589	0.010067030	0.00033467	0.8301E-07
2	0.2	0.002709878	0.041091295	0.002710036	0.1573E-06
3	0.3	0.009336039	0.095688785	0.009336250	0.2103E-06
4	0.4	0.022715110	0.178688064	0.022793219	0.781090E-04
5	0.5	0.046098359	0.298223418	0.046302490	0.204131E-03
6	0.6	0.083724841	0.467479658	0.084136808	0.411968E-03
7	0.7	0.141501753	0.708125200	0.142288380	0.786628E-03

8	0.8	0.228133669	1.057058842	0.229638557	0.150489E-02
9	0.9	0.357181945	1.580506443	0.360158218	0.297627E-02
10	1.0	0.551159854	2.406096892	0.557407725	0.624787E-02

Решением задачи является табличная функция располагающаяся во втором и третьем столбцах таблицы 4.13.

Пример 4.8. Методом Адамса-Бэшфортса-Моултона с шагом h=0.1 получить численное решение начальной задачи из Примера 4.7.

Решение

Как и в предыдущем примере в первых трех узлах после начального решение получаем методом Рунге-Кутты 4-го порядка. Начиная с четвертого узла (k=4)на каждом шаге в расчетах y_{k+1} используем соотношения (4.26),(4.27).

Таблица 4.14

k	x_k	$\hat{{oldsymbol{\mathcal{Y}}}}_k$	${\mathcal Y}_k$	$f(x_k, y_k)$	${\cal Y}_{ucm}$	$\boldsymbol{\mathcal{E}}_k$
0	0.0	-	0.0000000	0.000000000	0.000000	0.0000000
1	0.1	-	0.000334589	0.010067030	0.00033467	0.8301E-07
2	0.2	-	0.002709878	0.041091295	0.002710036	0.1573E-06
3	0.3	-	0.009336039	0.095688785	0.009336250	0.2103E-06
4	0.4	0.022715110	0.02279808	0.17875822	0.022793219	0.4863E-05
5	0.5	0.046197407	0.04631491	0.29845998	0.046302490	0.1242E-04
6	0.6	0.083978353	0.08416105	0.46807634	0.084136808	0.2424E-04
7	0.7	0.142027364	0.142331883	0.70952300	0.142288380	0.4350E-04
8	0.8	0.229171282	0.229714203	1.06031134	0.229638557	0.7565E-04
9	0.9	0.359247335	0.360288001	1.58832585	0.360158218	0.1298E-03
10	1.0	0.555451403	0.557625580	2.42619745	0.557407725	0.2179E-03

Решением задачи является табличная функция располагающаяся во втором и четвертом столбцах таблицы 4.14.

Решение полученное методом Адамса-Бэшфортса-Моултона несколько точнее, чем решение методом Адамса.

4.2. Численные методы решение краевой задачи для ОДУ

Примером краевой задачи является двухточечная краевая задача для обыкновенного дифференциального уравнения второго порядка.

$$y'' = f(x, y, y')$$
 (4.28)

с граничными условиями, заданными на концах отрезка [a,b].

$$y(a) = y_0$$

 $y(b) = y_1$ (4.29)

Следует найти такое решение y(x) на этом отрезке, которое принимает на концах отрезка значения y_0, y_1 . Если функция f(x, y, y') линейна по аргументам y, y', то задача (4.28),(4.29) - линейная краевая задача, в противном случае — нелинейная.

Кроме граничных условий (4.29) называемых граничными условиями первого рода, используются еще условия на производные от решения на концах - граничные условия второго рода:

$$y'(a) = \hat{y}_0$$

 $y'(b) = \hat{y}_1$ (4.30)

или линейная комбинация решений и производных - граничные условия третьего рода:

$$\alpha y(a) + \beta y'(a) = \hat{y}_0$$

$$\delta y(b) + yy'(b) = \hat{y}_1$$
(4.31)

где $\alpha, \beta, \delta, \gamma$ - такие числа, что $|\alpha| + |\beta| \neq 0, |\delta| + |\gamma| \neq 0$.

Возможно на разных концах отрезка использовать условия различных типов. В данном пособии рассматриваются два приближенных метода решения краевой задачи:

- метод стрельбы (пристрелки);
- конечно-разностный метод.

4.2.1. Метод стрельбы

Суть метода заключена в многократном решении задачи Коши для приближенного нахождения решения краевой задачи.

Пусть надо решить краевую задачу (4.28), (4.29) на отрезке [a,b]. Вместо исходной задачи формулируется задача Коши с уравнением (4.28) и с начальными условиями

$$y(a) = y_0$$

 $y'(b) = \eta$, (4.32)

где η - некоторое значение тангенса угла наклона касательной к решению в точке x=a .

Положим сначала некоторое начальное значение параметру $\eta = \eta_0$, после чего решим каким либо методом задачу Коши (4.28),(4.32). Пусть $y = y_0(x,y_0,\eta_0)$ решение этой задачи на интервале [a,b], тогда сравнивая значение функции $y_0(b,y_0,\eta_0)$ со значением y_1 в правом конце отрезка можно получить информацию для корректировки угла наклона касательной к решению в левом конце отрезка. Решая задачу Коши для нового значения $\eta = \eta_1$, получим другое решение со значением $y_1(b,y_0,\eta_1)$ на правом конце. Таким образом, значение решения на правом конце $y(b,y_0,\eta)$ будет являться функцией одной переменной η . Задачу можно сформулировать таким образом: требуется найти такое значение переменной η^* , чтобы решение $y(b,y_0,\eta^*)$ в правом конце отрезка совпало со значением y_1 из (4.29). Другими словами решение исходной задачи эквивалентно нахождению корня уравнения

$$\Phi(\eta) = 0$$
, (4.33)
где $\Phi(\eta) = y(b, y_0, \eta) - y_1$.

Уравнение (4.33) является "алгоритмическим" уравнением, так как левая часть его задается с помощью алгоритма численного решения соответствующей задачи Коши. Но методы решения уравнения (4.33) аналогичны методам решения нелинейных уравнений, изложенным в разделе 2. Следует заметить, что так как невозможно вычислить производную функции $\Phi(\eta)$, то вместо метода Ньютона следует использовать метод секущих, в котором производная от функции заменена ее разностным аналогом. Данный разностный аналог легко вычисляется по двум приближениям, например η_k и η_{k+1} . Следующее значение искомого корня определяется по соотношению

$$\eta_{j+2} = \eta_{j+1} - \frac{\eta_{j+1} - \eta_j}{\Phi(\eta_{j+1}) - \Phi(\eta_j)} \Phi(\eta_{j+1})$$
(4.34)

Итерации по формуле (4.34) выполняются до удовлетворения заданной точности.

Пример 4.9. Методом стрельбы решить краевую задачу $y'' = e^x + \sin y$ с граничными условиями 1-го рода y(0) = 1, y(1) = 2 на отрезке [0,1].

Решение

Заменой переменных z = y' сведем дифференциальное уравнение второго порядка к системе двух дифференциальных уравнений первого порядка.

$$\begin{cases} y' = z \\ z' = e^x + \sin y \end{cases}$$

Задачу Коши для системы с начальными условиями на левом конце $y(0)=1,y'(0)=\eta$ будем решать методом Рунге-Кутта 4-го порядка точности с шагом h=0.1 до удовлетворения условия на правом конце $\left|y(1.0,1.0,\eta_k)-2.0\right|=\left|\Phi(\eta_k)\right|\leq \varepsilon$, где $\varepsilon=0.0001,$ и $y(1.0,1.0,\eta_k)$ - значение решения задачи Коши в правом конце отрезка при $b=1.0,y(0)=y_0=1.0,$ η_k - значение первой производной к решению в левом конце отрезка на k – ой итерации.

Примем в качестве первых двух значений параметра η следующие: η_0 = 1.0, η_1 = 0.8. Дважды решим задачу Коши с этими параметрами методом Рунге-Кутта с шагом h = 0.1, получим два решения $y(1.0,1.0,\eta_0)$ = 3.168894836, $y(1.0,1.0,\eta_1)$ = 2.97483325. Вычислим новое приближение параметра η по формуле (4.34)

$$\eta_2 = 0.8 - \frac{0.8 - 1.0}{2.97483325 - 3.168894836} (2.97483325 - 2.0) = -0.204663797;$$

Решая задачу Коши с параметром η_2 , получим решение $y(1.0,1.0,\eta_2)=1.953759449$ и так далее.

$$\begin{split} &\eta_3 = -0.204663797 - \frac{-0.204663797 - 0.8}{1.953759449 - 2.97483325}(1.953759449 - 2.0) = -0.159166393 \,; \\ &y(1.0,1.0,\eta_3) = 2.001790565; \quad \left| \Phi(\eta_3) \right| = 0.001790565 \geq \varepsilon \,; \\ &\eta_4 = -0.159166393 - \frac{-0.159166393 - (-0.204663797)}{2.001790565 - 1.953759449}(2.001790565 - 2.0) = -0.160862503 \,; \\ &y(1.0,1.0,\eta_4) = 2.0000003115; \quad \left| \Phi(\eta_4) \right| = 0.0000003115 \leq \varepsilon \,; \end{split}$$

Вычисления заносим в таблицу 4.15

j	$\eta_{_{j}}$	$y(1.0,1.0,\eta_j)$	$\left \Phi(\eta_{_{j}})\right $
0	+1.000000000	3.168894836	1.168894836
1	+0.800000000	2.974483325	0.974483325
2	-0.204663797	1.953759449	0.046240551
3	-0.159166393	2.001790565	0.001790565
4	-0.160862503	2.000003115	0.000003115

Приближенным решением краевой задачи будем считать табличную функцию, полученную в результате решения задачи Коши с параметром η_4 и приведенную в таблице 4.16.

Таблица 4.16

x_k	0.0	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000	0.70000	0.80000	0.90000	1.000
\mathcal{Y}_k	1.0	0.99328	1.00601	1.03942	1.09497	1.17434	1.27944	1.41236	1.57528	1.77045	2.000

4.2.2. Конечно-разностный метод решения краевой задачи

Рассмотрим двухточечную краевую задачу для линейного дифференциального уравнения второго порядка на отрезке [a,b]

$$y'' + p(x)y' + q(x)y = f(x)$$
(4.35)

$$y(a) = y_0, y(b) = y_1$$
 (4.36)

Введем разностную сетку на отрезке [a,b] $\Omega^{(h)} = \{x_k = x_0 + hk\}, k = 0,1,...,N,$ h = |b-a|/N. Решение задачи (4.35),(4.36) будем искать в виде сеточной функции $y^{(h)} = \{y_k, k = 0,1,...,N\},$ предлагая, что решение существует и единственно. Введем разностную аппроксимацию производных следующим образом:

$$y'_{k} = \frac{y_{k+1} - y_{k-1}}{2h} + O(h^{2});$$

$$y''_{k} = \frac{y_{k+1} - 2y_{k} + y_{k-1}}{h^{2}} + O(h^{2});$$
(4.37)

Подставляя аппроксимации производных из (4.37) в (4.35),(4.36) получим систему уравнений для нахождения y_k :

$$\begin{cases} y_0 = y_a \\ \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p(x_k) \frac{y_{k+1} - y_{k-1}}{2h} + q(x_k) y_k = f(x_k), k = 1, N - 1 \\ y_N = y_b \end{cases}$$
(4.38)

Приводя подобные и учитывая, что при задании граничных условий первого рода два неизвестных y_0, y_N уже фактически определены, получим систему линейных алгебраических уравнений с трехдиагональной матрицей коэффициентов

$$\begin{cases} (-2 + h^{2}q(x_{1})y_{1} + (1 + \frac{p(x_{1})h}{2})y_{2} = h^{2}f(x_{1}) - (1 - \frac{p(x_{1})h}{2})y_{a} \\ (1 - \frac{p(x_{k})h}{2})y_{k-1} + (-2 + h^{2}q(x_{k}))y_{k} + (1 + \frac{p(x_{k})h}{2})y_{k+1} = h^{2}f(x_{k}) \\ (1 - \frac{p(x_{N-1})h}{2})y_{N-1} + (-2 + h^{2}q(x_{N-1}))y_{N-1} = h^{2}f(x_{N-1}) - (1 + \frac{p(x_{N-1})h}{2})y_{b} \end{cases}$$

$$(4.39)$$

Для системы (4.39) при достаточно малых шагах сетки h и $q(x_k) < 0$ выполнены условия преобладания диагональных элементов

$$\left| -2 + h^2 q(x_k) \right| > \left| 1 - \frac{p(x_k)h}{2} \right| + \left| 1 + \frac{p(x_k)h}{2} \right|,$$
 (4.39)

что гарантирует устойчивость счета и корректность применения метода прогонки для решения этой системы.

В случае использования граничных условий второго и третьего рода аппроксимация производных проводится с помощью односторонних разностей первого и второго порядков.

$$y_{0}' = \frac{y_{1} - y_{0}}{h} + O(h);$$

$$y_{N}' = \frac{y_{N} - y_{N-1}}{h} + O(h)$$

$$y_{0}' = \frac{-3y_{0} + 4y_{1} - y_{2}}{2h} + O(h^{2});$$

$$y_{N}' = \frac{y_{N-2} - 4y_{N-1} + 3y_{N}}{2h} + O(h^{2});$$
(4.41)

В случае использования формул (4.40) линейная алгебраическая система аппроксимирует дифференциальную задачу в целом только с первым порядком (из-за аппроксимации в граничных точках), однако сохраняется трех диагональная структура матрицы коэффициентов. В случае использования формул (4.41) второй порядок аппроксимации сохраняется везде, но матрица линейной системы не трехдиагональная.

Пример 4.10. Решить краевую задачу
$$\begin{cases} y'' - xy' - y = 0 \\ y(0) = 1 \qquad \text{с шагом } h = 0.2. \\ y'(1) + 2y(1) = 0 \end{cases}$$

Здесь
$$p(x)=x$$
, $q(x)=1$, $f(x)=0$, $N=5$, $x_0=0, x_1=0.2, x_2=0.4, x_3=0.6$, $x_4=0.8, x_5=1.0$

Во всех внутренних узлах отрезка [0,1] после замены производных их разностными аналогами получим

$$(1-0.1x_k)y_{k-1} + (-2.04)y_k + (1+0.1x_k)y_{k+1} = 0, k = 1,...,4$$

На левой границе $y_0 = 1$, на правой границе аппроксимируем производную односторонней разностью 1-го порядка:

$$\frac{y_5 - y_4}{0.2} + 2y_5 = 0.$$

С помощью группировки слагаемых, приведения подобных членов и подстановки значений x_k и с учетом $y_0 = 1$ получим систему линейных алгебраических уравнений.

$$\begin{cases} -2.04y_1 + 1.02y_2 = -0.98 \\ 0.96y_1 - 2.04y_2 + 1.04y_3 = 0 \\ 0.94y_2 - 2.04y_3 + 1.06y_4 = 0 \\ 0.92y_3 - 2.04y_4 + 1.08y_5 = 0 \\ + y_4 - 1.4y_5 = 0 \end{cases}$$

В данной трехдиагональной системе выполнено условие преобладания диагональных элементов и можно использовать метод прогонки (раздел 1.1.2).

В результате решения системы методом прогонки получим следующие значения: $y_5 = 0.2233205, y_4 = 0.31265, y_3 = 0.43111, y_2 = 0.58303, y_1 = 0.77191.$

Решением краевой задачи является табличная функция

Таблица 4.17

k 0 1 2 3 4 5	k	0	1	2	3	4	5
---------------------------	---	---	---	---	---	---	---

x_k	0	0.2	0.4	0.6	0.8	1.0
${\mathcal Y}_k$	1.0	0.77191	0.58303	0.43111	0.31265	0.22332