Relatório 1º projecto ASA 2024/2025

Grupo: AL030

Aluno(s): Francisco Pestana (ist1109625)

Descrição do Problema e da Solução

O problema consiste na criação de um algoritmo que determine como adicionar parênteses em uma sequência de inteiros (ex. 2 2 2 2 1 3) de forma a obter um resultado desejado, usando operações definidas por uma tabela de operadores binários. O algoritmo utiliza duas matrizes sxs, sendo s a dimensão da sequência de elementos a colocar parêntesis:

Ambas as matrizes são de entradas x(i,j) onde i e j são dois índices de uma sub-sequência (por exemplo, para i = 1 e j = 3, a sub-sequência seria 2 2 2).

- 1. **Matriz de Resultados**: Para cada subsequência delimitada por índices *i,j* regista os possíveis valores que podem ser obtidos.
- 2. **Matriz de Detalhes**: Armazena informações das combinações, como o valor gerado, os operandos e o índice de divisão

Para resolver o problema, primeiro é preenchida a diagonal principal da matriz com os casos de sub_sequências unitárias, em seguida, são explorados todas as combinações de tamanho dois (2) até m (tamanho da sequência). Isto garante que a matriz é preenchida pelas diagonais. Em seguida, explora subsequências crescentes até cobrir o intervalo completo, dividindo-as em duas partes com base em um índice de divisão. Para cada divisão são iteradas todas as combinações possíveis na parte esquerda e na parte direita. Cada combinação é registada como também os seus dados. Ao final, verifica se o resultado desejado está presente na subsequência completa. Caso esteja, reconstrói a expressão utilizando a matriz de detalhes para identificar as divisões e operandos, e uma função recursiva de reconstrução que se chama recursivamente a ela própria tanto do lado esquerdo como direito utilizando o índice de divisão. Se não for possível encontrar o resultado, a saída indica essa impossibilidade.

Análise Teórica

• Leitura do Input:

Ler n e s O(1) Ler tabela nxn O(n^2) Ler sequência O(s) Ler o resultado a encontrar O(1) **Total:** O(n^2 + s)

Processamento de dados para o algoritmo principal:

Criar matrizes sxs $O(s^2)$ Preencher diagonal principal das matrizes O(s)**Total:** $O(s^2)$

• Algoritmo principal:

for (size len = 2 to size len = s), O(s)
for (sub-sequence of size len) O(s)
for (each separation index i) O(s)
for (combination on left side) O(n) (n resultados diferentes)
for (combination on right side) O(n)
calculate and register results

Total: $O(s^3 \times n^2)$

Relatório 1º projecto ASA 2024/2025

Grupo: AL030

Aluno(s): Francisco Pestana (ist1109625)

Reconstrução da expressão:

```
for (results in details matrix) O(n)
if (expected result)
base case
leftpart = recursive call to left side
rightpart = recursive call to right side O(s)
return ( leftpart + rightpart)

Total: O(s \times n)

Complexidade global: O(s^3 \times n^2)
```

Avaliação Experimental dos Resultados

Foram cronometrados sucessivos inputs de dimensão crescente (matrizes de entrada de dimensão 5 <= n <= 100, com acrésimos de 5; e sequencias de dimensão 10 <= s <= 1000, com acrésimos de 25)

O gráfico apresenta certa lineariedade até um ponto, onde os problemas se tornam muito extensos, onde se vê uma "estabilização". Esta "estabilização" resulta dos parametros de restrição de iterações/computações, os quais reduzem o tempo de execução, redução que é mais evidente quando os problemas são significativamente maiores (por exemplo, para uma tabela de entrada de dimensão 10, mas uma sequencia de dimensão 1000, cada entrada da tabela é operada só o número de vezes necessário até encontrar 10 valores diferentes)