Title here

Author 1 *
Department of YYY, University of XXX
and
Author 2
Department of ZZZ, University of WWW
July 27, 2020

Abstract

Friedman & Tukey commented on their intial paper on projection pursuit in 1974 that "the technique use for maximising the projection index strongly influences both the statistical and the computational aspects of the procedure." While many projection pursuit indices have been proposed in the literature, few concerns the optimisation procedure. In this paper, we developed a system of diagnostics aiming to visually learn how the optimisation procedures find its way towards the optimum. This diagnostic system can be applied to more general to help practitioner to unveil the black-box in randomised iteartive (optimisation) algorithms. An R package, ferrn, has been created to implement this diagnostic system.

Keywords: optimisation, projection pursuit, guided tourr, visual, diagnostics, R

^{*}The authors gratefully acknowledge . . .

1 Introduction

In an optimization problem the goal is to find the best solution within the space of all feasible solutions which typically is represented by a set of constraints. The problem consists on optimizing an objective function $f: S \to \Re$ with $S \in \Re^n$ in a reduced spaced given by the problem constraints to either minimize or maximize a function.... Gradient based optimization has been typically used to solve such problems. However, there are many situations where derivatives of an objective function are unavailable or unreliable and therefore traditional methods based on derivatives are not the best option to solve an optimization problem.

Derivative free methods provides another option to optimise the objective function without evaluating any gradient or Hessian information and a particular class of methods: direct search, has gained its popularity through its conceptual simplicity. However, the whole searching process in the algorithm remains a black-box. Plots are usually used to evaluate and compare the performance of different algorithms but it can easily become tedious because the code will have to be modified significantly when comparing different parameters in the algorithms. For example, a categorical variable with 5 levels can be easily mapped onto colour while mapping another categorical variable with 30 levels will not make the plot informative. Thus the plot needs to be re-designed to better suits the characteristics of the parameter (whether the parameter is a scalar or a matrix? whether the parameter is quantitative or categorical? If categorical, how many levels does the parameter have?). This motivates the design of a visual diagnostic framework for optimisation algorithms based on the idea of a global object.

The paper is organised as follows. Section 2 gives a general literature review of optimisation, specifically derivative free optimisation. Section 4 presents the new idea of constructing a systematic visual framework that diagnoses the components of an optimisation procedure (parameters, searching path, etc). The rest of the paper serves as a comprehensive example of using the visual diagnostics on one particular problem: projection pursuit guided tour. Some background knowledge of projection pursuit guided tour is provided in Section 3. Section ?? applies the concepts proposed in section 4 in the tour problem and sets up the data. The last section, Section ??, presents the visual diagnostic

plots and explains how they can help to understand different aspects of the optimisation in tour.

2 Derivative free optimisation

Given an objective function f, one way of optimising it is to equate its gradient to zero. In modern optimisation problems, gradient information can be hard to evaluate or sometimes even impossible and Derivative-Free Optimisation (DFO) methods can be useful to approach these problems. One common class of methods in DFO is Direct-search methods. Coined by Hooke & Jeeves (1961), direct search methods don't require any gradient or Hessian information and has gained its popularity through its simplicity in use and reliability in solving complicated practical problems. Depends on whether a random sample is used in the search, this class of methods can be further classified as stochastic or deterministic. The stochastic version of the direct-search methods will be the main optimisation procedure analysed in this paper.

[How about adding more details into derivative free methods? ppp]

2.1 Difficulties

[Are we using projection pursuit/guided tour to better understand the convergence of optimization algorithms visually in combination with the algorithms discussed below? Or we are focusing on the optimisation problem only within the project pursuit context? Some of the problems listed below are also applicable to optimization problem in general too. ppp]

Below listed several issues in projection pursuit optimisation. Some are general optimisation problems, while others are more specific for PP optimisation.

• Finding global maximum: Although finding local maximum is relatively easy with developed algorithms, it is generally hard to guarantee global maximum in a problem where the objective function is complex or the number of decision variables is large. Also, there are discussions on how to avoid getting trapped in a local optimal in the literature.

- optimising non-smooth function: When the objective function is non-differentiable, derivative information can not be obtained, which means traditional gradient- or Hessian- based methods are not feasible. Stochastic optimisation method could be an alternative to solve these problems.
- computation speed: The optimisation procedure needs to be fast to compute since tours produces real-time animation of the projected data.
- consistency result in stochastic optimisation: In stochastic algorithm, researchers usually set a seed to ensure the algorithm producing the same result for every run. This practice supports reproducibility, while less efforts has been made to guarantee different seeds will provide the same result.
- high-dimensional decision variable: In projection pursuit, the decision variable includes all the entries in the projection matrix, which is high-dimensional. Researcher would be better off if they can understand the relative position of different projection matrix in the high-dimensional space.
- role of interpolation in PP optimisation: An optimisation procedure usually involves iteratively finding projection bases that maximises the index function, while tour requires geodesic interpolation between these bases to produce a continuous view for the users. It would be interesting to see if the interpolated bases could, in reverse, help the optimisation reach faster convergence.

Think about how does your package help people to understand optimisation

- diagnostic on stochastic optim
- vis the progression of multi-parameter decision variable
- understanding learning rate neighbourhood parameter
- understand where the local & global maximum is found trace plot see if noisy function

3 Projection pursuit guided tour

From Section 3, we presents a comprehensive case study on how to use the visual diagnostics to explore the optimisation in a specific problem: projection pursuit guided tour. Section 3 aims to provide non-experts with an overview of the problem content and the existing optimisation procedures used in projection pursuit guided tour. For those who are already familiar with the techniques, feel free to skip this section.

The optimisation problem we're interested in is in the context of projection pursuit. Coined by Friedman & Tukey (1974), projection pursuit is a method that detects the interesting structure (i.e. clustering, outliers and skewness) of multivariate data via projecting it in lower dimensions. Let $\mathbf{X}_{n\times p}$ be a data matrix, an n-d projection can be seen as a linear transformation $T: \mathbb{R}^p \to \mathbb{R}^d$ defined by $\mathbf{P} = \mathbf{X} \cdot \mathbf{A}$, where $\mathbf{P}_{n\times d}$ is the projected data and $\mathbf{A}_{p\times d}$ is the projection basis. Define $f: \mathbb{R}^{p\times d} \to \mathbb{R}$ be an index function that maps the projection basis \mathbf{A} onto a scalar value I, this function is commonly known as the projection pursuit index (PPI) function, or the index function and can be used to measure the "interestingness" of the projection. A number of index functions have been proposed in the literature including Legendre index (Friedman & Tukey 1974), Hermite index (Hall et al. 1989), natural Hermite index (Cook et al. 1993), chi-square index (Posse 1995), LDA index (Lee et al. 2005) and PDA index (Lee & Cook 2010).

As Friedman & Tukey (1974) noted "..., the technique use for maximising the projection index strongly influences both the statistical and the computational aspects of the procedure." A suitable optimisation procedure is needed to find the projection angle that maximises the PPI and the quality of the optimisation largely affect the interesting projections one could possibly observe.

Projection pursuit is usually used in conjunction with a tour method called *guided tour*. Tour explores the multivariate data *interactively* via playing a series of projections, that form a *tour path* and guided tour uses the path that is geodesically the shortest. Details of the mathematical construction of a tour path can be found in Buja et al. (2005). [Maybe add the sketch for illustrating tour path.] Guided tour, along with other types of tour, has been implemented in the *tourr* package in R, available on the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/tourr/ (Wickham et al. 2011).

Figure 1: An illustration of the tour path

3.1 Optimisation problem and existing algorithms

Now we begin to formulate the optimisation problem. Given a randomly generated starting basis \mathbf{A}^0 , projection pursuit finds the final projection basis $\mathbf{A}^J = [\mathbf{a}_1, \dots, \mathbf{a}_d]$, where \mathbf{a}_i is a $p \times 1$ vector, satisfies the following optimisation problem:

$$\arg\max_{\mathbf{A}\in\mathcal{A}} f(\mathbf{X}\cdot\mathbf{A}) \tag{1}$$

$$s.t.\mathcal{A} = \{ \forall \mathbf{a}_i, \mathbf{a}_j \in \mathbf{A} : ||\mathbf{a}_i|| = 1 \text{ and } \mathbf{a}_i \mathbf{a}_j = 0 \}$$
 (2)

via an iterative search of target basis: $\{\mathbf{A}^0, \mathbf{A}^1, \mathbf{A}^2, \dots \mathbf{A}^J\}$.

There are three existing methods for optimising PPI function and we review them below.

Posse (1995) proposed a stochastic direct search method, a random search algorithm. Given a current basis \mathbf{A}_{cur} , a candidate basis \mathbf{A}_t is sampled in the neighbourhood defined by the radius of the p-dimensional sphere, α of the current basis \mathbf{A}_t by $\mathbf{A}_t = \mathbf{A}_{\text{cur}} + \alpha \mathbf{A}_{rand}$. If the candidate basis has a higher index value than the current basis, it is outputted as the target basis \mathbf{A}_t along with other metadata and the current iteration stops. If no basis is found to have higher index value after the maximum number of tries l_{max} , the algorithm stops with nothing outputted. c is the halfing parameter and when c > 30, the neighbourhood parameter α in the next iteration will be reduced by half. The algorithm for a random search is summarised in Algorithm 1.

Cook et al. (1995) explained the use of a gradient ascent optimisation with the assumption that the index function is continuous and differentiable. Since some indices could be non-differentiable, the computation of derivative is replaced by a pseudo-derivative of evaluating five randomly generated directions in a tiny nearby neighbourhood. Taking a step on the straight derivative direction has been modified to maximise the projection pursuit index along the geodesic direction. See Algorithm 2 for a summarisation of the steps.

Simulated annealing (Bertsimas et al. 1993, Kirkpatrick et al. (1983)) is a non-derivative procedure based on a non-increasing cooling scheme T(t). Given an initial T_0 , the temperature at iteration t is defined as $T(t) = \frac{T_0}{log(t+1)}$. The simulated annealing algorithm works as follows. Given a neighbourhood parameter α and a randomly generated orthonormal basis A_{rand} , a candidate basis is constructed as $\mathbf{A}_{t+1} = (1 - \alpha)\mathbf{A}_t + \alpha \mathbf{A}_{rand}$. If the in-

Algorithm 1: random search

```
input: The current projection basis: \mathbf{A}_{\text{cur}}; The index function: f
   output: The target basis: \mathbf{A}_{t+1}
 1 initialisation;
 2 Set l = 1;
 з while l < l_{\max} do
        Generate \mathbf{A}_l = \mathbf{A}_{\text{cur}} + \alpha \mathbf{A}_{\text{rand}} ensuring \mathbf{A}_l is orthonormal;
 4
        Compute I_l = f(\mathbf{A}_l);
 5
        if I_l > I_{cur} then
 6
             return A_l;
 7
        else
 8
          c = c + 1;
 9
10
        l = l + 1;
11
12 end
```

dex value of the candidate basis is larger than the one of the current basis, the candidate basis becomes the target basis. If it is smaller, the candidate is accepted with probability $P = \min \left\{ \exp \left[\frac{I_{t+1} - I_t}{T(t)} \right], 1 \right\}$ where I_t and I_{t+1} are the index value of the current and candidate basis respectively. The algorithm can be summarised as in Algorithm 3.

Below listed several features characterise the optimisation procedures needed in projection pursuit

- Being able to handle non-differentiable PPI function: The PPI function could be non-differentiable, thus derivative free methods are preferred.
- Being able to optimise with constraints: The constraint comes from projection matrix being an orthonormal matrix.
- Being able to find both local and global maximum: Although the primary interest is to find the global maximum, local maximum could also reveal structures in the data that are of our interest.

```
Algorithm 2: search geodesic
```

```
{\bf input}\; : The current projection basis: {\bf A}_{\rm cur}; The index function: f
    output: The target basis: A_{**}
 1 initialisation;
 2 Set l = 1;
 3 while l < l_{\rm max} do
        Generate ten bases in five random directions: \mathbf{A}_l : \mathbf{A}_{l+9} within a small
 4
          neighbourhood dist;
        Find the direction with the largest index value: \mathbf{A}_* where l < * < l + 9;
 5
        Construct the geodesic \mathcal{G} from \mathbf{A}_{cur} to \mathbf{A}_*;
 6
        Find A_{**} on the geodesic \mathcal{G} that has the largest index value;
 7
        Compute I_{**} = f(\mathbf{A}_{**}), p_{\text{diff}} = (I_{**} - I_{\text{cur}})/I_{**};
 8
        if p_{diff} > 0.001 then
            return A_{**};
10
        end
11
        l = l + 1;
12
13 end
```

```
Algorithm 3: simulated annealing
```

```
input: The current projection basis: \mathbf{A}_{\text{cur}}; The index function: f
    output: The global object; The target basis: A^{j}
 1 initialisation;
 2 while l < l_{\rm max} do
 3
         Set l = 0;
         Generate \mathbf{A}_l = (1 - \alpha)\mathbf{A}_{cur} + \alpha\mathbf{A}_{rand} ensuring \mathbf{A}_l is orthonormal;
 4
         Compute I_l = f(\mathbf{A}_l) and T(l) = \frac{T_0}{\log(l+1)};
         if I_l > I_{cur} then
             return A_l;
 7
         else
 8
             Compute P = \min \left\{ \exp \left[ \frac{I_{\text{cur}} - I_l}{T(l)} \right], 1 \right\};
 9
              Draw D from a uniform distribution: D \sim \text{Unif}(0, 1);
10
             if P > D then
11
                  \mathbf{return}\ \mathbf{A}_l\ ;
              end
13
         end
14
         l = l + 1;
16 end
```

4 Visual diagnostic system

[I would expand this section more as the core contribution. ppp]

4.1 Motivation

Random search methods has a black-box mechanism and focuses solely on finding the global maximum point, while the projection pursuit problem we have aims at *exploring* the data and thus is interested in how the algorithm finds its maximum. This motivates us to develop a visual diagnostic system for exploring the optimisation searching path.

The necessity of developing such a system rather than simply producing different diagnostic plots is because the diagnostics of each variable requires a different function and these functions can't be scaled to other problems. Thus we want to establish a set of rules that can generalise the diagnostic of iterative algorithms.

The idea of generalising all the diagnostic plots under one framework is inspired by the concept of grammar of graphic (Wickham 2010), which powers the primary graphical system in R, ggplot2 (Wickham 2016). In grammar of graphic, plots are not defined by its appearance (i.e. boxplot, histogram, scatter plot etc) but by "stacked layers". By this design, ggplot doesn't need to develop a gazillion of functions that each produces a different type of plot. Instead, it aesthetically maps the variables to the geometric objects and builds the plot through different layers.

4.2 Global object

Ggplot requires a data frame that contains all the variables to plot and a global object is constructed as the data frame supplied to the visual diagnostic plots to better suit the characters of iterative optimisation algorithms. Given an optimisation algorithm, two primary variables of interest are the decision variable: \mathbf{A} and the value of the objective function: I, which is the projection basis and index value repsectively in projection pursuit. State: S is another variable of great importance since it labels \mathbf{A} and I by the stage they are in the whole search-and-interpolate process.

Iterators indexes the data collected and prescribes the the natural ordering of each observation in different levels. t is a unique identifier that has an increment of one for each observation and j is the counter for each search-and-interpolate round. [add a bit more for l after decide whether to combine l and k.]

There are other parameters that are of our interest and we denote them as V_p . In projection pursuit, this includes $V_1 =$ method, denoting the name of the searching method used and $V_2 =$ alpha, which is a neighbourhood parameter that controls the size in sampling candidate bases. A sketch of the global object for projection pursuit guided tour is presented in Figure 2. The full data structure can thus be shown as in Equation 3.

_									_
t	A	I	S	j	l	k	V_1	•••	V_p
1	\mathbf{A}_1	I_1	S_1	1	1	*	$V_{1,1}$		$V_{p,1}$
2	\mathbf{A}_2	I_2	S_2	2	1	*	$V_{1,2}$		$V_{p,2}$
3	\mathbf{A}_3	I_3	S_3	2	2	*	$V_{1,3}$		$V_{p,3}$
÷	:	:	:	:	:	:	:		÷
÷	:	:	:	2	l_1	*	:		÷
:	:	:	:	2	*	1	:		:
÷	:	:	:	2	*	2	:		÷
:	:	÷	÷	:	:	•	:		:
÷	:	÷	÷	2	*	k_1	÷		:
:	:	:	:	:	÷	:	:		:
T	\mathbf{A}_T	I_T	S_T	J	l_J	*	$V_{1,T}$		$V_{p,T}$

4.3 Simulated data

We first simulate some random variables of size 1000 with different structures. x1, x8, x9 and x10 are simulated from normal distribution with zero mean and variance of one as in equation 4. When using projection pursuit to explore the data structure based on its departure from normality, the entry in the projection basis for these variables should be close to zero in theory. x2 to x7 are mixture of normal distribution with different weights and locations. Equation 5 to 10 show the distribution of each variables and Figure 3 shows

Global Object value of objective decision function iterators iterators other paramters of interest variable basis index_val tries qool method alpha info id k_loop matrix scalar scalar

Figure 2: The global object in projection pursuit guided tour.

the histogram of each variable except x3. All the variables are then scaled to ensure the mixture has variance of one.

$$x_1 \stackrel{d}{=} x_8 \stackrel{d}{=} x_9 \stackrel{d}{=} x_{10} \sim \mathcal{N}(0, 1)$$
 (4)

$$x_2 \sim 0.5\mathcal{N}(-3,1) + 0.5\mathcal{N}(3,1)$$
 (5)

$$\Pr(x_3) = \begin{cases} 0.5 & \text{if } x_3 = -1 \text{ or } 1\\ 0 & \text{otherwise} \end{cases}$$
 (6)

$$x_4 \sim 0.25 \mathcal{N}(-3, 1) + 0.75 \mathcal{N}(3, 1)$$
 (7)

$$x_5 \sim \frac{1}{3}\mathcal{N}(-5,1) + \frac{1}{3}\mathcal{N}(0,1) + \frac{1}{3}\mathcal{N}(5,1)$$
 (8)

$$x_6 \sim 0.45 \mathcal{N}(-5, 1) + 0.1 \mathcal{N}(0, 1) + 0.45 \mathcal{N}(5, 1)$$
 (9)

$$x_7 \sim 0.5\mathcal{N}(-5,1) + 0.5\mathcal{N}(5,1)$$
 (10)

We form our first dataset using variable x1, x2, x8, x9 and x10 and supply it to one of the above algorithm, say search_geodesic in the tourr package. When the optimisation ends, the global object will be stored and printed (it can be turned off by supplying argument print = FALSE). Additional messages during the optimisation can be displayed by verbose = TRUE. Below shows the first five rows of the global object. The global object meets the definition of tidy data introduced in (Wickham et al. 2014) where each observation forms a row, each variable forms a column and each type of observational unit forms a table. The adoption of tidy data makes it easier for data wrangling and visualisation, which powers the visual diagnostics system introduced in this paper.

Figure 3: The distribution of simulated data except x3

A tibble: 5 x 8 ## basis index_val tries info loop method alpha id ## st> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <int> ## 1 <dbl[,1] [5 x 1]> 0.5 0.749 NA <NA> 1 1 start ## 2 <dbl[,1] [5 x 1]> 0.5 2 0.730 1 random_search 1 search_bett~ ## 3 <dbl[,1] [5 x 1]> 2 search_bett~ 3 0.743 1 random_search 0.5 ## 4 <dbl[,1] [5 x 1]> 0.736 1 random_search 3 search_bett~ 0.5 4 ## 5 <dbl[,1] [5 x 1]> 4 search_bett~ 5 0.747 1 random_search 0.5

5 Visual diagnostics

Below we will present several examples of diagnosing different aspects of the projection pursuit optimisation. We will present:

- 1) static plots to explore the index value,
- 2) animated plots to explore the projection basis and,
- 3) a self-contained example to optimise a complex index function.

In the first two sections, we will first provide a toy example that is easy to grasp and then more examples that can help us to understand the algorithm and parameter choice. Remember the research question we raised earlier, the purpose of visual diagnostics is to understand:

- Whether the algorithm has successfully found the maximum and how the index value changes throughout the algorithm?
- How does the searching space look like, that is, geometrically, where are the projection bases located in the space?

The first question can be answered using a static plot with x-axis showing the progression of the optimisation and y-axis showing the value of the objective function. The second question can be addressed via visualising the rotating high dimensional space or its

projection on the reduced 2D space. Thus animated visualisation is needed to perceive the optimisation path in the searching space.

Since the global object is already tidy, not further tidying steps is needed, while certain data wrangling steps (Wickham & Grolemund 2016) are still needed to transform the global object into desirable format for one particular visualisation. To emphasize on this good practice of data analysis, we will describe the transformation steps needed for each diagnostic plots before stepping into visualisation.

5.1 Explore the value of objective function

5.1.1 Searching points

A primary interest of diagnosing an optimisation algorithm is to study how it finds its optimal progressively. We could plot the index value across its natural ordering, however, different iterations may have different number of points and, towards the end of the search there could easily be hundreds of bases being tested before the target basis is found. In the plot, points from those iterations towards the end will occupy the vast majority of the plot space. This motivates to use summarisation. Rather than knowing the index value of every basis, we are more interested to have a general summary of all the index value in that iteration and more importantly, the basis with the largest index value (since it prescribes the next geodesic interpolation and future searches).

Boxplot is a suitable candidate that provides five points summary of the data, however it has one drawback: it doesn't report the number of point in each box. We may risk losing information on how many points it takes to find the target basis by displaying the boxplot alone for all tries. Thus, the number of point in each iteration is displayed at the bottom of each box and we provide options to switch iteration with small number of points to a point geometry, which is achieved via an cutoff argument. A line geometry is also added to link the points with the largest index value in each iteration. This helps to visualise the improvement made in each iteration. Using the concept of gramma of graphics (Wickham 2010), the plot for exploring index value can be defined in three layers as:

• Layer 1: boxplot geom

- data: group by j and filter the observations in the group that have count greater than cutoff = 15.
- x: j is mapped to the x-axis
- y: the statistical transformed index value: $Q_q(I_T \cdot \mathbb{1}(S = \text{search}))$ is mapped to the y-axis where q takes one of 0, 25, 50, 75, 100 and $Q_q(x)$ finds the qth-quantile for the vector x. $\mathbb{1}(.)$ is the identity operator.
- Layer 2: point geom
 - data: group by j and filter the observations in the group that have count less than cutoff = 15.
 - x: j is mapped to the x-axis
 - y: I is mapped to the y-axis
- Layer 3: line geom
 - data: filter the points with the highest index value in group j
 - x: j is mapped to the x-axis
 - y: I is mapped to the y-axis

Toy example: exploring searching points We choose variable x1, x2, x3, x8, x9 and x10 to perform a 2D projection with tour. Parameter search_f = tour::search_better and max.tries = 500 is used. The index value of the searching points are shown in Figure 4. Label at the bottom indicates the number of observations in each iteration and facilitates the choice of cutoff argument (by default cutoff = 15). We learn that the search_better quickly finds better projection basis with higher index value at first and the takes longer to find a better one later.

5.1.2 Interpolating points

Sometimes, rather than explore the searching points, we may be interested in explore the points on the interpolation path (target and interpolating points) since these points will be played by the tour animation. Since interpolation paths are geodesically the shortest, a summarisation using boxplot geometry is no longer needed. The slightly modified plot definition is shown below:

Figure 4: A comparison of plotting the same search points with different plot designs. The left plot doesn't efficiently use the plot space to convey information from the plot while the right plot provides good summarisation of data and number of points in each tries.

- Layer 1: point geom
 - data: filter the observations with S = interpolation and mutate t to be the row number of the subsetted tibble
 - x: t is mapped to the x-axis
 - y: I is mapped to the y-axis
- Layer 2: line geom
 - using line geometry for the same data and aesthetics

A more complex example: Interruption We use the same dataset as the toy example above to explore the search function search_better and we want to learn how the index value changes on the interpolation path for holes index. From the left panel of Figure 5, we observe that when interpolating from the current basis to the target basis, the index value may not be monotone: we could reach a basis with higher index value than the target basis on the interpolation path. In this sense, we would be better off using the basis with

Figure 5: Trace plots of the interpolated basis with and without the interruption. The interruption stops the interpolation when the index value starts to decrease at id = 60. The implementation of the interuption finds an ending basis with higher index value using fewer steps.

the highest index value on the interpolation path as the current basis for the next iteration (rather than using the target basis). Hence, an interruption is constructed to accept the interpolating bases only up to the one with the largest index value. After implementing this interruption, the search finds higher final index value with fewer steps as shown in the right panel of Figure 5.

5.1.3 Polishing points

In principle, all the optimisation routines should result in the same output for the same problem while this may not be the case in real application. This motivates the creation of a polishing search that polishes the final basis found and achieves unity across different methods.

search_polish takes the final basis of a given search as a start and uses a brutal-force approach to sample a large number of basis (n_sample) in the neighbourhood. Among those sampled basis, the one with the largest index value is chosen to be compared with

the current basis. If its index value is larger than that of the current basis, it becomes the current basis in the next iteration. If no basis is found to have larger index value, the searching neighbourhood will shrink and the search continues. The polishing search ends when one of the four stopping criteria is satisfied:

- 1) the chosen basis can't be too close to the current basis
- 2) the percentage improvement of the index value can't be too small
- 3) the searching neighbourhood can't be too small
- 4) the number of iteration can't exceed the max.tries

The usage of search_polish is as follows. After the first search, the final basis from the interpolation is extracted and supplied to the second search as the start argument. search_polish is used as the search function. All the other arguments should remain the same.

Slight variation of plot definition due to the addition of polishing points is as follows:

• Layer 1: point geom

- data: filter the observations with S = interpolation; bind the global object from optimisation and interpolation and form polishing; mutate t to be the row number of the binded tibble.
- x: t is mapped to the x-axis
- y: I is mapped to the y-axis
- colour: V is mapped to the colour aesthetic

• Layer 2: line geom

Another example: Polish Again using the same data, we are interested to compare the effect of different max.tries in the 2D projection setting. max.tries is a hyperparameter that controls the maximum number of try before the search ends. The default value of 25 is suitable for 1D projection while we suspect it may not be a good option for the 2D case and hence want to compare it with an alternative, 500. As shown in Figure 6, both trials attain the same index value after polishing while the small max.tries of 25 is not sufficient for search_better to find its global maximum and we will need to adjust the max.tries argument for the search to sufficiently explore the parameter space.

Figure 6: Breakdown of index value when using different max.tries in search better in conjunction with search polish. Both attain the same final index value after the polishing while using a max.tries 25 is not sufficient to find the ture maximum.

5.2 Explore searching space

In projection pursuit, the projection bases $\mathbf{A}_{p\times d}$ are usually of dimension $p\times d$ and hence can't be visualised in a 2D plot. An option to explore the searching space of these bases is to explore a reduced space via principal component analysis (PCA). The visualisation can thus be defined as

• Layer 1: point geom

- data: subset the basis of interest and arrange into a matrix format; perform PCA
 on the basis matrix and compute the projected basis on the first two principal
 components; bind the variables from the original global object and form a tibble
- x: the projected basis on the first principal component
- y: the projected basis on the second principal component
- colour: V is mapped to the colour aesthetic

Figure 7: PCA plot of search geodesic colouring by info allows for better understanding of each stage in the geodesic search

5.2.1 A toy example: understand different stage of search_geodesic

Example: understand search_geodesic [feel like this example is merely explaining search geodesic algorithm, so maybe introduce the animated plot here? xxx] search_geodesic is a two-stage ascending algorithm with four different stages in the search and a PCA plot useful to understand how the algorithm progresses and the relative position of each basis in the PCA projected 2D space. Starting from the start basis, a directional search is conducted in a narrow neighbourhood on five random directions. The best one is picked and a line search is then run on the geodesic direction to find the target basis. The starting and target bases are then interpolated. In the next iteration, the target basis becomes the current basis and then procedures continues.

5.2.2 A more complex example: Choosing the initial value for polishing parameter

Example: initial value for polishing alpha search_polish is a brutal-force algorithm that evaluate 1000 points in the neighbourhood at each loop. Setting an appropriate initial value for polish_alpha would avoid wasting search on large vector space that are not likely to produce higher index value. The default initial value for polishing step is 0.5 and we are interested in whether this is an appropriate initial value to use after search_geodesic. The problem is a 1D projection of the small dataset using search_geodesic and followed by search_polish. The top-left panel of Figure 8 displays all the projection bases on the first two principal components, coloured by the polish_alpha. We can observe that rather than concentrating on the ending basis from search_geodesic as what polishing step is designed, search_polish searches a much larger vector space, which is unnecessary. Thus a customised smaller initial value for polish_alpha would be ideal. One way to do this is to initialised polish_alpha as the projection distance between the last two target bases. The top-right panel of Figure 8 shows a more desirable concentrated searching space near the ending basis. Both specifications of initial value allow the searches to reach the same ending index values.

While explore the reduced space is an initial attempt to understand the searching space, there are existing technology for rotating a higher dimensional space for visualisation. Geozoo is an option. It generates random points on the high dimensional space and we can overlay it with the points on the optimisation path to visualise the spread of it on the high-D sphere.

[add example from geozoo]

Figure 8: PCA plot of two different polish alpha initialisations. A default polish alpha = 0.5 searches a larger space that is unnessary while a small customised initial value of polish alpha will search near the ending basis. Both intialisations reach the same ending index values.

5.3 A comprehensive example of diagnosing a noisy index function

The interpolation path of holes index, as seen in Figure 5, is smooth, while this may not be the case for more complicated index functions. kol_cdf index, an 1D projection index function based on Kolmogorov test, compares the difference between the 1D projected data, $\mathbf{P}_{n\times 1}$ and a randomly generated normal distribution, y_n based on the empirical cumulated distribution function (ECDF). Denotes the ECDF function as F(u) with subscript indicating the variable, the Kolmogorov statistics defined by

$$\max\left[F_{\mathbf{P}}(u) - F_y(u)\right]$$

can be seen as a function of the projection matrix $\mathbf{A}_{p\times 1}$ and hence a valid index function.

5.3.1 Explore index value

Figure 9 compares the tracing plot of the interpolating points when using different optimisation algorithms: search_geodesic and search_better. One can observe that

- The index value of kol_cdf index is much smaller than that of holes index
- The link of index values from interpolation bases are no longer smooth
- Both algorithms reach a similar final index value after polishing

Polishing step has done much more work to find the final index value in search_geodesic than search_better and this indicates kol_cdf function favours of a random search method than ascent method.

Now we enlarge the dataset to include two informative variables: x2 and x3 and remain 1D projection. In this case, two local maximum appear when projection matrix being [0, 1, 0, 0, 0, 0] and [0, 0, 1, 0, 0, 0].

Using different seeds in search_better allows us to find both local maximum as in Figure 10. Comparing the maximum of both, we can see that the global maximum happens when x2 is found. It is natural to ask then if there is an algorithm that can find the global maximum without trying on different seeds? search_better_random manages to do it via

Figure 9: Comparison of two different searching methods: search_geodesic and search_better on 1D projection problem for a noisier index: kol_cdf. The geodesic search rely heavily on the polishing step to find the final index value while search better works well.

a metropolis-hasting random search as shown in Figure 11, although at a higher cost of number of points to evaluate.

5.3.2 Explore searching space

We can also plot the searching points of all the three algorithms in the searching space and explore their relative position against each other using principal components. As shown in Figure 12, the bases from better1 and better2 only search a proportion of the searching space while better_random produces a more exhaustive search. The large overlapping of better1 and better_random is explained by the fact that both algorithms finds x2 in the end.

6 Implementation: Ferrn package

Everything is coded up in a package. Package structure

Figure 10: The trace plot search better in a 1D projection problem with two informative variables using different seeds (without polishing). Since there are two informative variables, setting different value for seed will lead search better to find either of the local maximum.

Figure 11: Using search better random for the problem above will result in finding the global maximum but much larger number of iteration is needed.

Figure 12: The projected projection basis using principal components. The bases from better1 and better2 only search a proportion of the searching space while better_random produces a more exhausive search. The large overlapping of better1 and better_random is explained by the fact that both algorithms finds x2 in the end.

7 Conclusion

References

- Bertsimas, D., Tsitsiklis, J. et al. (1993), 'Simulated annealing', Statistical science 8(1), 10–15.
- Buja, A., Cook, D., Asimov, D. & Hurley, C. (2005), 'Computational methods for high-dimensional rotations in data visualization', *Handbook of statistics* **24**, 391–413.
- Cook, D., Buja, A. & Cabrera, J. (1993), 'Projection pursuit indexes based on orthonormal function expansions', *Journal of Computational and Graphical Statistics* **2**(3), 225–250.
- Cook, D., Buja, A., Cabrera, J. & Hurley, C. (1995), 'Grand tour and projection pursuit',

 Journal of Computational and Graphical Statistics 4(3), 155–172.
- Friedman, J. H. & Tukey, J. W. (1974), 'A projection pursuit algorithm for exploratory data analysis', *IEEE Transactions on computers* **100**(9), 881–890.
- Hall, P. et al. (1989), 'On polynomial-based projection indices for exploratory projection pursuit', *The Annals of Statistics* **17**(2), 589–605.
- Hooke, R. & Jeeves, T. A. (1961), "direct search" solution of numerical and statistical problems', *Journal of the ACM (JACM)* 8(2), 212–229.
- Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983), 'Optimization by simulated annealing', science **220**(4598), 671–680.
- Lee, E., Cook, D., Klinke, S. & Lumley, T. (2005), 'Projection pursuit for exploratory supervised classification', *Journal of Computational and graphical Statistics* **14**(4), 831–846.
- Lee, E.-K. & Cook, D. (2010), 'A projection pursuit index for large p small n data', *Statistics* and Computing **20**(3), 381–392.
- Posse, C. (1995), 'Projection pursuit exploratory data analysis', Computational Statistics & data analysis **20**(6), 669–687.

Wickham, H. (2010), 'A layered grammar of graphics', Journal of Computational and Graphical Statistics 19(1), 3–28.

Wickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York.

URL: https://ggplot2.tidyverse.org

Wickham, H., Cook, D., Hofmann, H. & Buja, A. (2011), 'tourr: An R package for exploring multivariate data with projections', *Journal of Statistical Software* **40**(2), 1–18.

URL: http://www.jstatsoft.org/v40/i02/

Wickham, H. & Grolemund, G. (2016), R for data science: import, tidy, transform, visualize, and model data, "O'Reilly Media, Inc.".

Wickham, H. et al. (2014), 'Tidy data', Journal of Statistical Software 59(10), 1–23.