- **Problem 1** (12.1). 1. Let R be a ring and M and R-module. Prove that r0 = 0 for $r \in R$. If R has the identity 1, then (-1)x = -x for $x \in M$.
 - 2. Let R be a ring and M, N, L be R-modules. Prove:
 - (a) $hom_R(M, N)$ is an abelian group under addition

$$(\phi + \psi)(m) = \phi(m) + \psi(m)$$

If R is commutative, hom(M, N) is an R-module with the R-action given by

$$(r\phi)(m) = r\phi(m)$$

- (b) If $\phi \in \text{hom}_R(M, N)$ and $\psi \in \text{hom}_R(N, L)$, then $\psi \circ \phi \in \text{hom}_R(M, L)$.
- (c) $hom_R(M, M)$ is a ring with identity with composition as multiplication.
- 3. Prove that $\hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m) \cong \mathbb{Z}_d$ where $d = \gcd(m, n)$.
- *Proof.* 1. Note that r0 = r(0+0) = r0 + r0. Subtract an r0 from each side and you get that 0 = r0 for all $r \in R$.

For the second part. We have that

$$0 = 0x = (1-1)x = 1x + (-1)x = x + (-1)x$$

which implies that (-1)x = -x.

2. (a) The group operation will be associative because it is adding group elements and the addition of group elements is associative. The identity will be the function z(m) = 0 as

$$(\phi + z)(m) = \phi(m) + 0 = \phi(m)$$

The inverse for $\phi \in \text{hom}(M, N)$ will be $\psi(m) = -\phi(m)$ as

$$(\phi + \psi)(m) = \phi(m) - \phi(m) = 0$$

Since we have all of the group axioms fulfilled $hom_R(M, N)$ is a group.

To show that $\hom_R(M,N)$ is an R-module when R is commutative we will verify the four axioms from the notes. We will have $r,s\in R$ with $\phi,\psi\in \hom_R(M,N)$, and $m\in M$ further down.

i. Start with $(r+s)\phi$. Then for an arbitrary element m we have

$$(r+s)\phi(m) = r\phi(m) + s\phi(m)$$

from the fact that N is an R-module.

ii. For the next we have

$$(rs)\phi(m) = r(s\phi(m))$$

which shows that

$$(rs)\phi = r(s\phi)$$

following from N being an R module.

iii. Next we have

$$r(\phi + \psi)(m) = r(\phi(m) + \psi(m)) = r\phi(m) + r\psi(m)$$

following from N being an R module which shows that

$$r(\phi + \psi) = r\phi + r\psi$$

iv. Finally

$$1\phi(m) = \phi(m)$$

as N is an R-module which implies that

$$1\phi = \phi$$

This completes the proof.

(b) We know that $\psi \circ \phi \in \text{hom}(M, L)$ because they are group homomorphisms. As such all we have to show is that the composition preserves the R-module structure. Let $r \in R$. Then from the fact that ϕ, ψ are R-module homomorphisms we have that

$$\psi \circ \phi(rm) = \psi(r\phi(m)) = r\psi \circ \phi(m)$$

which verifies that $\psi \circ \phi$ is a homomorphism of R-modules and as such $\psi \circ \phi \in \text{hom}_R(M,L)$.

(c) We know from above that $\hom_R(M, M)$ is a group under addition of maps, that the composition is well defined, and that composition is associative with identity (id_M) in general. Thus the only remaining portion to show is that composition distributes over addition of maps. Let $\phi, \psi, \varphi \in \hom_R(M, N)$. Then

$$\varphi \circ (\phi + \psi)(m) = \varphi(\phi(m) + \psi(m)) = \varphi \circ \phi(m) + \varphi \circ \psi(m)$$

Thus composition distributes over addition of maps and therefore $hom_R(M, M)$ forms a ring.

3. From a previous assignment we know that all homomorphisms in $\hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m)$ are of the form $\phi_k(x) = kx$. The maps ϕ_k will be in $\hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m)$ only when $nk \equiv 0 \mod m$ (nk = mq) for some $q \in \mathbb{Z}$. The number of ks that fulfill this requirement is $\gcd(m, n) = d$. Then consider the map ϕ_a where $a = \frac{m}{d}$. If we add ϕ_a to itself we will get $\frac{m}{a} = d$ different homomorphisms before reaching the identity. Since the group $\hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m)$ has d elements and is cyclic it must be isomorphic to \mathbb{Z}_d .

Problem 2 (12.2). Let A, B be submodules of an R-module M. Prove that A + B and $A \cap B$ are submodules of M. Moreover, the equality

$$A \cap (B+C) = B + (A \cap C)$$

holds for all R-submodules C if $B \subseteq A$.

Proof. As A, B are submodules of M they are also subgroups and as such $A + B, A \cap B$ are closed under the group operations. The only thing left to verify is that they are closed under the action of R.

Let $r \in R$ and $a + b \in A + B$ with $a \in A$ and $b \in B$. Then r(a + b) = ra + rb and since $ra \in A$ and $rb \in B$ we have that $r(a + b) = ra + rb \in A + B$. Therefore A + B is a submodule.

Next let $m \in A \cap B$. Then $rm \in A$ and $rm \in B$ which implies that $rm \in A \cap B$. Therefore $A \cap B$ is a submodule.

Now suppose that $B \subseteq A$ where A, B, C are submodules of M. Let $m \in A \cap (B + C)$. Then m = b + c where $b \in B$ and $c \in C$ and $b + c \in A$. However since $b \in A$, as $B \subseteq A$, we have that $c = (b + c) - b \in A$. Therefore $m = b + c \in B + (A \cap C)$ and thus $A \cap (B + C) \subseteq B + (A \cap C)$.

Let $m \in B + (A \cap C)$. Then m = b + c where $b \in B$ and $c \in A \cap C$. However since $B \subseteq A$ we have that $b \in A$ which implies that $b + c \in A$ and that $b + c \in B + C$. Thus $m \in A \cap (B + C)$ and therefore $B + (A \cap C) \subseteq A \cap (B + C)$.

Therefore if
$$B \subseteq A$$
 then $A \cap (B + C) = B + (A \cap C)$.

Problem 3 (12.4). Let M be an R-module.

- 1. For any submodules N_1, \ldots, N_n of M, their sum $N_1 + \cdots + N_n$ is the smallest submodule of M which contains $N_1 \cup \cdots \cup N_n$.
- 2. For any subset A of M, RA is the smallest submodule of M which contains A.
- *Proof.* 1. Since we are summing a finite number of submodules the fact that $N_1 + \cdots + N_n$ is a submodule follows from the previous problem. Let N be a submodule of M such that $\bigcup_i N_i \subseteq N$ and let $\sum_i k_i \in N_1 + \cdots + N_n$ with $k_i \in N_i$. Then $k_i \in N$ for all i. However since submodules are closed under addition we have that $\sum_i k_i \in N$. As this holds for an arbitrary element of $N_1 + \cdots + N_n$ it must be that $N_1 + \cdots + N_n \subseteq N$.

Therefore if N is a submodule such that $\bigcup_i N_i \subseteq N$ then $N_1 + \cdots + N_n \subseteq N$.

2. We know that RA will be a submodule from the notes. Let N be a submodule of M such that $A \subset N$ and let $ra \in RA$. Since $a \in N$ and N is a submodule then $ra \in N$ which implies that $RA \subset N$.

Therefore if $A \subseteq M$ then any submodule N that contains A will contain RA.

Problem 4 (12.5). Show that \mathbb{Z}_{p^e} , regarded as a \mathbb{Z} -module is not a direct sum of any two non-zero submodules, where p is a prime and e > 0. Does it hold for \mathbb{Z} ? Does it hold for \mathbb{Z}_{12} ?

Proof. Suppose that $\mathbb{Z}_{p^e} \cong \mathbb{Z}_{p^a} \oplus \mathbb{Z}_{p^b}$ where b, a > 0. The decomposition would have to be of this form because of the orders. However this is the same as implies that $\mathbb{Z}_{p^e} \cong \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$. However the group on the right is not cyclic which is a contradiction.

This does not hold for \mathbb{Z}_{12} as $\mathbb{Z}_{12} \cong \langle 3 \rangle + \langle 4 \rangle$.

This does hold for \mathbb{Z} as any submodules will be isomorphic to \mathbb{Z} and as such the direct sum would be $\mathbb{Z} \oplus \mathbb{Z}$ which is not isomorphic to \mathbb{Z} .

Problem 5 (12.7). Let R be a PID and p a prime in R.

1. If M is a finitely generated p-primary R-module, then M/pM is an R/(p)-module with the R-action given by

$$(r+(p))(x+pM) := rx + pM$$

Moreover, show that the mapping ϕ defined in

$$\phi(r_1x_1 + \dots + r_mx_m + pM) = (\bar{r}_1, \dots, \bar{r}_m)$$

is a R/(p)-module map.

2. Let $\phi: M_1 \to M_2$ be an isomorphism finitely generated p-primary R-modules. Prove that $\phi|_{pM_1}: pM_1 \to pM_2$ is an isomorphism of R-module. Show that the map $\bar{\phi}: M_1/pM_1 \to M_2/pM_2$ defined by

$$\bar{\phi}(m+pM_1) = \phi(m) + pM_2$$

is an isomorphism of R/(p)-vector spaces.

Proof. 1. M/pM is already a quotient group and as such we do not need to verify the group axioms. Thus the items that we need to check are

- (a)
- (b)
- (c)
- (d)

Now we will show that ϕ is an R-module map.

2. Since the map ϕ is injective we know that the restriction will be as well. Thus the only portion left to show is that $\phi(pM_1) = pM_2$. To show this

Since the map ϕ is an isomorphism and we are quotienting out by isomorphic submodules it then follows that $\bar{\phi}$ will be an isomorphism between M_1/pM_1 and M_2/pM_2 as it will respect the action of R/(p).

Problem 6 (12.8). 1. Find the Smith normal form of the integer matrix

$$\left[\begin{array}{ccc} 2 & 1 & 3 \\ 1 & -1 & 2 \end{array}\right]$$

2. Determine the invariant factor decomposition of \mathbb{Z}^3/K where K is generated by $f_1(2,1,-3)$ and $f_2=(1,-1,2)$.

Proof. 1. The Smith normal form of the above matrix is

$$\left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{ccc} -3 & 2 & -5 \\ 0 & 0 & 1 \\ 2 & -1 & 3 \end{array}\right)$$

2. The Smith normal form of the matrix with rows of f_1 , f_2 is

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

Which means that the invariant factor decomposition will be \mathbb{Z} .

Problem 7 (12.9). 1. Find a basis for the submodule K of $\mathbb{Q}[x]^3$ generated by

$$f_1 = (2x - 1, x, x^2 + 3), \quad f_2 = (x, x, x^2), \quad f_3 = (x + 1, 2x, 2x^2 - 3)$$

2. Find the invariant factors and elementary divisors of the $\mathbb{Q}[x]$ -module $\mathbb{Q}[x]^3/K$.

Proof. 1. The Smith normal form of the matrix with f_i s as rows will be

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & x & 0 \\
0 & 0 & 0
\end{array}\right)$$

Thus the basis will be (1, x)

2. The invariant factor will be x. The elementary divisor is x.

Problem 8 (12.11). Let F be a field and V an n-dimensional vector space over F with an ordered basis \mathcal{B} .

- 1. Let T be a linear operator on V. For any ordered basis \mathcal{B}' of V, the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$ are similar over F. Conversely, if $A \in M_n(F)$ is similar to $[T]_{\mathcal{B}}$ over F, there exists a basis \mathcal{B}' such that $[T]_{\mathcal{B}'} = A$.
- 2. Two F-linear operators S, T on V are similar if, and only if, the matrices $[T]_{\mathcal{B}}$ and $[S]_{\mathcal{B}}$ are similar.

Proof. 1. Let \mathcal{B} and \mathcal{B}' be ordered bases. Then there is an invertible matrix P that changes from one basis to the other $(\mathcal{B} = P\mathcal{B}')$. Then

$$[T]_{\mathcal{B}} = [T]_{P\mathcal{B}'} = P[T]_{\mathcal{B}'}P^{-1}$$

which shows that they are similar.

Now let $A \in M_n(F)$ and $A \sim [T]_{\mathcal{B}}$ over F. Then $A = P[T]_{\mathcal{B}}P^{-1}$ for an invertible matrix P. Let $\mathcal{B}' = P\mathcal{B}$. Then $[T]_{\mathcal{B}'} = A$ because of the prior part of this part.

2. Let S,T be similar linear transformations. Then there is an isomorphism of vector spaces $\varphi:V\to V$ such that $S=\varphi\circ T\circ \varphi^{-1}$. However given an ordered basis $\mathcal B$ we can express the prior equation as

$$[S]_{\mathcal{B}} = [\varphi]_{\mathcal{B}}[T]_{\mathcal{B}}[\varphi^{-1}]_{\mathcal{B}}$$

which shows that $[S]_{\mathcal{B}} \sim [T]_{\mathcal{B}}$.

Now suppose that $[S]_{\mathcal{B}} \sim [T]_{\mathcal{B}}$. Then there is an invertible matrix P such that $[S]_{\mathcal{B}} = P[T]_{\mathcal{B}}P^{-1}$ which shows that the matrix P corresponds to an isomorphism. It then follows that S and T are similar.

Therefore two F-linear operators are similar if and only if their matrices with respect to an ordered basis are similar.

Problem 9 (12.13). Find the rational canonical form of the matrix

$$A = \begin{bmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{bmatrix} \in M_3(\mathbb{Q})$$

Consider $A \in M_3(\mathbb{C})$ and find the Jordan canonical form of A.

To find the canonical form we start with

$$xI - A = \begin{pmatrix} 1+x & 2 & -6\\ 1 & x & -3\\ 1 & 1 & x - 4 \end{pmatrix}$$

which we then reduce to

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & x-1 & 0 \\
0 & 0 & x^2+2x-1
\end{array}\right)$$

Which gives us the rational canonical form

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)$$

in \mathbb{Q} . This will be the same as it is in \mathbb{C} since all of the polynomials had roots in \mathbb{Q} .