11/10/2022 LITERATURE REVIEW - FLIGHT DELAY PREDICTION MODEL

TEAM ID

PNT2022TMID18402

LITERATURE REVIEW

S.No	Author	Title of the paper	Year of publication	Algorithm/ Method	Results
1.	Guan	Flight Delay	18	Long- Short	Experimental
	Gui, Fan	Prediction Based	November	Term Memory	results show
	Liu,	on Aviation Big	2019	(LSTM) based	that long short-
	Jinlong	Data and		method,	term memory
	Sun, Jie	Machine		Random	(LSTM) is
	Yang,	Learning		Forest based	capable of
	Ziqi			model	handling the
	Zhou,				obtained
	Dongxu				aviation
	Zhao				sequence data,
					but overfitting
					problem occurs
					in our limited
					dataset.

Compared with the previous schemes, the proposed random forestbased model obtain can higher prediction accuracy (90.2% for the binary classification) and can overcome the overfitting problem.

2.	Kaiquan	A Deep Learning	12 August	Graph	Through	
	Cai, Yue	Approach for	2021	Convolutional	extensive	
	Li, Yi-	Flight Delay		Neural	experiments, it	
	Ping	Prediction		Network	has been shown	
	Fang,	Through Time-		(GCN)	that the	
	Yanbo	Evolving Graphs			proposed	
	Zhu,				approach	
					outperforms	
					benchmark	
					methods with a	
					satisfying	
					accuracy	

improvement at of the cost acceptable execution time. The obtained results reveal deep that learning approach based graphon structured inputs have great potentials the flight delay prediction problem.

3.	Zhen	A novel hybrid	September	Hybrid	The proposed	
	Guo, Bin	method for flight	2021	method of	RFR-MIC	
	Yu,	departure delay		Random	model exhibits	
	Mengyan	prediction using		Forest	good	
	Нао,	Random Forest		Regression	performance	
	Wensi	Regression and		and Maximal	compared with	
	Wang,	Maximal		Information	linear	
	Yu Jiang,				regression (LR),	

Fang	Information	Coefficient	k-nearest
Zong	Coefficient	(RFR-MIC)	neighbors (k-
			NN), artificial
			neural network
			(ANN), and
			standard
			Random Forest
			Regression
			(RFR). The
			results also
			show that flight
			information on
			multiple air
			routes can
			certainly
			improve the
			accuracy of
			flight departure
			delay
			prediction.

4.	Fan Liu,	Generalized	30	0	June	Gradient		Experimental	
	Jinlong	Flight Dela	y 20	020		boosting		results	show
	Sun,	Prediction				decision	tree	that	the
	Miao	Method Usin	ıg			(GBDT) b	ased	propose	d
	Liu, Jie	Gradient				model		GBDT-l	pased
	Yang,	Boosting						model	can
	Guan	Decision Tree						obtain	higher
	Gui							prediction	
								accuracy	
								(87.72% for the	
								binary	
								classification)	
								when l	nandling
								limited o	dataset.

REFERENCES

- https://ieeexplore.ieee.org/document/8903554
- https://ieeexplore.ieee.org/document/9512525
- https://www.sciencedirect.com/science/article/abs/pii/S1270963821003321
- https://ieeexplore.ieee.org/document/9129110