

Acknoledgement

A Special

Thanks to

J. Han and M. Kamber.

Tan, Steinbach, Kumar

for their slides and books, which I have used for preparation of these slides.

Association Rule Mining

- What Is Pattern Discovery? Why Is It Important?
- Basic Concepts: Frequent Patterns and Association Rules
- Expressing Patterns in Compressed Forms: Closed Patterns vs. Max-Patterns
- Apriori
- Apriori : Improvements and Alternatives
- ECLAT
- ☐ FP Growth
- CLOSET+

What Is Pattern Discovery?

- What are patterns?
 - □ Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- □ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: Frequent Itemsets (Patterns)

- ☐ Itemset: A set of one or more items
- \square k-itemset: $X = \{x_1, ..., x_k\}$
- ☐ (absolute) support (count) of X: Frequency or the number of occurrences of an itemset X
- □ (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- □ An itemset X is *frequent* if the support of X is no less than a *minsup* threshold (denoted as σ)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- □ Let *minsup* = 50%
- ☐ Freq. 1-itemsets:
 - Beer: 3 (60%); Nuts: 3 (60%)
 - □ Diaper: 4 (80%); Eggs: 3 (60%)
- ☐ Freq. 2-itemsets:
 - {Beer, Diaper}: 3 (60%)

From Frequent Itemsets to Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: Itemset: $X \cup Y$, a subtle notation!

- \square Association rules: $X \rightarrow Y$ (s, c)
 - Support, s: The probability that a transaction contains $X \cup Y$
 - □ Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box c = sup(X \cup Y) / sup(X)
- □ **Association rule mining**: Find all of the rules, $X \rightarrow Y$, with minimum support and confidence
- ☐ Frequent itemsets: Let *minsup = 50%*
 - ☐ Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- ☐ Association rules: Let *minconf* = 50%
 - \square Beer \rightarrow Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%) (Q: Are these all rules?)

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- □ How many frequent itemsets does the following TDB₁ contain?
 - T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: (a_1): 2, (a_2): 2, ..., (a_{50}): 2, (a_{51}): 1, ..., (a_{100}): 1,
2-itemsets: (a_1, a_2): 2, ..., (a_1, a_{50}): 2, (a_1, a_{51}): 1 ..., ..., (a_{99}, a_{100}): 1,
```

99-itemsets: $\{a_1, a_2, ..., a_{99}\}$: 1, ..., $\{a_2, a_3, ..., a_{100}\}$: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

In total: $\binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2\frac{100}{1000} - 1$ sub-patterns!

A too huge set for any computer to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y ⊃ X, *with the same* support as X
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - □ Two: P_1 : "(a_1 , ..., a_{50}): 2"; P_2 : "(a_1 , ..., a_{100}): 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - \square You will still be able to say: "(a₂, ..., a₄₀): 2", "(a₅, a₅₁): 1"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- □ Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - □ One: P: "(a₁, ..., a₁₀₀): 1"
- Max-pattern is a lossy compression!
 - \square We only know (a₁, ..., a₄₀) is frequent
 - \square But we do not know the real support of $(a_1, ..., a_{40}), ...,$ any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

The Downward Closure Property of Frequent Patterns

- □ Observation: From $TDB_{1:} T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - We get a frequent itemset: $(a_1, ..., a_{50})$
 - Also, its subsets are all frequent: (a_1) , (a_2) , ..., (a_{50}) , (a_1, a_2) , ..., $(a_1, ..., a_{49})$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - ☐ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 
While (F_k != \emptyset) do { // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k
                        // return F_k generated at each level
```


The Apriori Algorithm—An Example

Database TDB

 Tid
 Items

 10
 A, C, D

 20
 B, C, E

 30
 A, B, C, E

 40
 B, E

minsup = 2

 C_I

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 F_1

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 C_2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

2nd scan

C_3	Itemset	
	{B, C, E}	

 $3^{\text{rd}} \operatorname{scan} \qquad F_3$

Itemset	sup
{B, C, E}	2

Apriori: Implementation Tricks

- How to generate candidates?
 - Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - \Box F_3 = {abc, abd, acd, ace, bcd}
 - \square Self-joining: F_3*F_3
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \Box acde is removed because ade is not in F_3
 - $\Box \quad C_4 = \{abcd\}$

bcd

self-join

acde

pruned

ace

<u>a</u>cd

Candidate Generation: An SQL Implementation

self-join

abcd

abd

abc

- Suppose the items in F_{k-1} are listed in an order
- Step 1: self-joining F_{k-1} insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from F_{k-1} as p, F_{k-1} as q
 - where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning for all *itemsets c in C_k* do for all *(k-1)-subsets s of c* do **if** *(s is not in F_{k-1})* **then delete** *c* **from** C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - Partitioning (e.g., Savasere, et al., 1995)

- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)

- Pruning by support lower bounding (e.g., Bayardo 1998)
- Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - ☐ Tree projection (Aggarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database (how?) and find local frequent patterns
 - Scan 2: Consolidate global frequent patterns (how to?)
- Why does this method guarantee to scan TDB only twice?

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): Reduce the number of candidates (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- □ Observation: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - □ {ab, ad, ae}
 - {bd, be, de}
 - ...

Itemsets	Count
{ab, ad, ae}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

- Frequent 1-itemset: a, b, d, e
- ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- □ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10},$
- Properties of Tid-Lists
 - \Box t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - \Box $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

ltem	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Idea: Frequent pattern growth (FPGrowth)
 - Find frequent single items and partition the database based on each such item
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Example: Construct FP-tree from a Transational DB

TID	Items in the Transaction	Ordered, frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

Scan DB once, find single item frequent pattern: Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

2. Sort frequent items in frequency descending order, f-list

3. Scan DB again, construct FP-tree

Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - □ Patterns containing p: p's conditional database: fcam:2, cb:1
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1
- p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

<u>Item</u>	Conditional pattern base
c	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Pattern-Base Recursively

Conditional pattern bases

f:3 c:3 f:3 f:3

am-cond.

FP-tree

- For each conditional pattern-base
 - Mine single-item patterns
 - Construct its FP-tree & mine it

```
p-conditional PB: fcam:2, cb:1 \rightarrow c:3
```

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

Actually, for single branch FP-tree, all frequent patterns can be generated in one shot

```
m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3
```

m-cond.

FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

 $a_1.in_1$

Scaling FP-growth by Database Projection

- What if FP-tree cannot fit in memory? DB projection
 - Project the DB based on patterns
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

CLOSET+: Mining Closed Itemsets by Pattern-Growth

Ex. Itemset merging:	If Y appears in every occurrence of X, then Y
is merged with X	

	d-proj. db:	{acef. acf}	\rightarrow acfo	l-proi. db:	{e}. thus	we get: acfd:2
_	J. J. J. J. J.	(<u> </u>	_ 0.0.0	.	() / ()	

	Many	other tricks	(but not detailed	here), such as
--	------	--------------	-------------------	----------------

Bottom-up p	hysical	ltree-r	roiection
Dottom up p	niyarcai	i ti CC p	n Ojeetioi i

- Top-down pseudo tree-projection
- Sub-itemset pruning
- Item skipping
- Efficient subset checking
- □ For details, see J. Wang, et al., "CLOSET+:", KDD'03

TID	Items
1	acdef
2	abe
3	cefg
4	acdf

Let minsupport = 2

a:3, c:3, d:2, e:3, f:3

F-List: a-c-e-f-d

Recommended Text and Reference Books

☐ Text Book:

➤ J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011

☐ Reference Books:

- ➤ H. Dunham. Data Mining: Introductory and Advanced Topics. Pearson Education. 2006.
- ➤ I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2000.
- ➤ D. Hand, H. Mannila and P. Smyth. Principles of Data Mining. Prentice-Hall. 2001.

#