

COMP7/8118 M50

Data Mining

Classification Basics

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work

What is a hipster?

• Examples of hipster look

• A hipster is defined by facial hair

Hipster or Hippie?

Facial hair alone is not enough to characterize hipsters

How to be a hipster

There is a big set of features that defines a hipster

Classification

- The problem of discriminating between different classes of objects
 - In our case: Hipster vs. Non-Hipster
- Classification process:
 - Find examples for which you know the class (training set)
 - Find a set of features that discriminate between the examples within the class and outside the class
 - Create a function that given the features decides the class
 - Apply the function to new examples.

Catching tax-evasion

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tax-return data for year 2011

A new tax return for 2012 Is this a cheating tax return?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

An instance of the classification problem: learn a method for discriminating between records of different classes (cheaters vs non-cheaters)

What is classification?

Classification is the task of learning a target function f that
maps attribute set x to one of the predefined class labels y

Why classification?

The target function f is known as a classification model

 Descriptive modeling: Explanatory tool to distinguish between objects of different classes (e.g., understand why people cheat on their taxes, or what makes a hipster)

Predictive modeling: Predict a class of a previously unseen record

Examples of Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying spam email, spam web pages, adult content
- Understanding if a web query has commercial intent or not

Classification is everywhere in data science.

General approach to classification

Training set consists of records with known class labels

Training set is used to build a classification model

• A labeled test set of previously unseen data records is used to evaluate the quality of the model.

 The classification model is applied to new records with unknown class labels

Illustrating Classification Task

Test Set

Evaluation of classification models

 Counts of test records that are correctly (or incorrectly) predicted by the classification model

Confusion matrix

Predicted Class

ctual Class		Class = 1	Class = 0
	Class = 1	f ₁₁	f ₁₀
	Class = 0	f ₀₁	f ₀₀
$\stackrel{\smile}{\sim}$			

Accuracy =
$$\frac{\text{\# correct prediction s}}{\text{total \# of prediction s}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate =
$$\frac{\text{# wrong prediction s}}{\text{total # of prediction s}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Classifiers to be covered

- Decision Tree
- Bayesian Model
- Nearest Neighbor Model
- Support Vector Machine
- Neural Network