CS 231

Feature matching

Slide credit: Noah Svaley @ Cornell Univ. – CS4670

SIFT Example

Feature matching

Given a feature in I₁, how to find the best match in I₂?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I₂, find the one with min distance

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Simple approach: L₂ distance, ||f₁ f₂ ||
- can give good scores to ambiguous (incorrect) matches

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = ||f₁ f₂ || / || f₁ f₂' ||
 - f₂ is best SSD match to f₁ in l₂
 - f₂' is 2nd best SSD match to f₁ in I₂
 - gives large values for ambiguous matches

Feature matching example

51 matches

Feature matching example

58 matches

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

How can we measure the performance of a feature matcher?

feature distance

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition (e.g., Google Goggles)
- Indexing and database retrieval
- Robot navigation
- ... other

Object recognition (David Lowe)

3D Reconstruction

Reconstructed 3D cameras and points

Sony Aibo

SIFT usage:

- Recognize charging station
- Communicate with visual cards
- Teach object recognition

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

Questions?