

Reinforcement learning: From theory to implementation

Lei Zhang

Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf

Outline

Two-armed bandit task

Rescorla-Wagner value update

Choice rule

The data: PRL

Trial-by-trial model fitting

Hierarchical Bayesian estimate

Goals:

Understand how models are developed. Start here, know where you can go from it.

cognitive model

statistics computing

The very short history

1998 2018

Boom in Cognitive Modeling

cognitive model

statistics computing

Icebreaker

Please describe what RL is to you in I-2 sentences.

The keywords below may help:

reward

action

update

• • •

From RL to cognitive (neuro)science

statistics computing

Reinforcement learning (RL) exemplifies two (related) ways that computer science informs cognitive (neuro)science

conceptual

- how to characterize hard problems (formally analyzable tasks)
- optimal (typically intractable) solution
- approximate algorithms and their properties
 - algorithms as hypotheses
 - common process-level explanation for different kinds of data

analytical

- algorithms as likelihood functions for inference from data
- data analysis as statistical machine learning

statistics computing

2-armed bandit task

a simple task often used in the laboratory:

- repeated choice between N options (N-armed bandit)
- ...whose properties (reward amounts, probabilities) are learned through trial-and-error
- ...with a goal in mind: maximize the overall reward

statistics computing

2-armed bandit task

What can be your strategies:

- I. predict the value of each deck
- 2. choose the best
- 3. learn from outcome to update predictions (repeat)

How prediction is shaped by learning?

cognitive model

statistics computing

Modeling the 2-armed bandit task

how do you suggest to model this learning process?

suppose we ran this experiment on a person

our models are basically detailed hypotheses about behavior and about the brain... we can test these hypotheses!

statistics computing

cognitive model

statistics computing

One simplified experiment

choice presentation

action selection

outcome

Elements

statistics computing

what do we know?

Data: choice & outcome

what can we measure?

Summary stats: choice accuracy

what do we not know?

Learning algorithm: RL update

Rescorla-Wagner Value Update

statistics
computing

Cognitive Model

- cognitive process
- using internal variables and free parameters

Observation Model (Data Model)

- relate model to observed data
- has to account for noise

Rescorla & Wagner (1972)

Rescorla-Wagner Value Update

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

- learning rate

reward prediction error

value

- reward

cognitive model

statistics computing

Understand the learning rate

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

computing

Understand the learning rate

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

statistics

computing

Understand the learning rate

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

Rescorla-Wagner Value Update

cognitive model

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error:

$$PE = R_t - V_t$$

choice rule: greedy / ε-greedy / softmax

Choice rule: greedy

$$p(C = a) = \begin{vmatrix} 1, V(a) > V(b) \\ 0, V(a) < V(b) \end{vmatrix}$$

Choice rule: E-greedy

$$p(C=a) = \begin{vmatrix} 1 - \varepsilon, V(a) > V(b) \\ \varepsilon, V(a) < V(b) \end{vmatrix}$$

Choice rule: softmax

statistics computing

$$p(C=a) = \frac{e^{\tau^*V(a)}}{e^{\tau^*V(a)} + e^{\tau^*V(b)}} = \frac{1}{1 + e^{-\tau^*(V(a) - V(b))}}$$

statistics computing

Choice rule: direct comparison

Rescorla-Wagner Value Update

cognitive model

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE$$

Prediction error: $PE = R_t - V_t$

$$PE = R_t - V_t$$

choice rule (sigmoid /softmax):

$$p(C=a) = \frac{1}{1+e^{\tau*(v(b)-v(a))}}$$

- learning rate

reward prediction error

value

- reward

softmax temperature

cognitive model

statistics

computing

Generalizing RL framework

Palminteri et al. (2015)

Lockwood et al. (2016)

Swart et al. (2017)

Will et al. (2017)

The real task

statistics computing

PRL: probabilistic reversal learning

- PRL task
- nSub = 10
- nTrial = 80

./_data/_raw_data/sub01/raw
data sub01.txt


```
subjID, trialID, choice, outcome, correct
1,1,2,-1,1
1,2,1,1,1
1,3,1,1,1
1,4,1,1,1
1,5,2,-1,1
1,6,1,1,1
1,7,1,1,1
1,8,1,1,1
1,9,1,-1,1
1,10,2,-1,1
1,11,1,1,1
1,12,1,1,1
1,13,1,-1,2
```

Model-free analysis: summary stats

How often participants choose the more rewarding option?

computing

```
Exercise 1
```

```
.../RL tutorial/ scripts/MF analysis.R
```

TASK:

write a for loop

- ... which reads in each participant's raw data
- ... and reshape it in the "long format"

```
for ( j in 1:n) {
   read.table(file, header = T, sep = ",")
```

Model-based analysis: parameter estimate

Why estimate parameters?

- May measure quantities of interest (learning rates in different populations, how variance in the task affects learning rate etc.)
- Have to use these to generate hidden(latent) variables of interest (eg. prediction errors) in order to look for these in the brain

Parameter in light of data

cognitive model

statistics

computing

Likelihood

How plausible is the data given our parameter is true?

Prior

How plausible is our parameter before observing the data?

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Posterior

How plausible is our parameter given the observed data?

Evidence

How plausible is the data under all possible parameters?

cognitive model

computing

Estimation technique

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$$

Deterministic Approximation

→ Variational Bayes

Stochastic Approximation

→ Sampling Methods

- Rejection sampling
- Importance sampling
- Metropolis algorithm
- Gibbs sampling → JAGS
- HMC sampling*

Stan!

Let's watch a video!

cognitive model

statistics

computing

Stan and RStan

cognitive model statistics

computing

$$lpha \sim Uniform(0,1)$$
 $au \sim Uniform(0,3)$

$$p_t(C=A) = \frac{1}{1 + e^{\tau(V_t(B) - V_t(A))}}$$

$$V_{\scriptscriptstyle t+1}^{\scriptscriptstyle c} = V_{\scriptscriptstyle t}^{\scriptscriptstyle C} + lpha \left(R_{\scriptscriptstyle t} - V_{\scriptscriptstyle t}^{\scriptscriptstyle C}
ight)$$

Fitting Multiple Participants as ONE

cognitive model

statistics

Fitting Multiple Participants Independently

cognitive model

statistics

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Fixed effects

- all subjects are fitted with the same set of parameters
- worse model fit than "random effects"

Random effects

- each subject is fitted independently of the others
- best model fit for each subject
- parameter estimates can be noisy

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Simulation study

Hierarchical Bayesian

Maximum likelihood A

Actual values O

Ahn et al. (2011)

Fitting Multiple Participants

Fitting Multiple Participants

cognitive model

statistics

Fitting Multiple Participants

cognitive model

statistics

Hierarchical Structure

statistics computing

$$P(\Theta, \Phi \mid D) = \frac{P(D \mid \Theta, \Phi)P(\Theta, \Phi)}{P(D)} \propto P(D \mid \Theta)P(\Theta \mid \Phi)P(\Phi)$$

cognitive model

statistics

computing

Hierarchical RL Model

cognitive model

statistics

computing

HOW DID WE GET HERE?

The cognitive model per se is the same!

cognitive model

statistics

computing

Posterior Predictive Check

computing

```
.../RL tutorial/ scripts/MB analysis.R
```

TASK:

fit the simple RL model

... and plot the model predictions on top of data

```
library(rstan)
y pred = extract(f$fit, pars='y pred')$y pred
```

statistics computing

cognitive model statistics

computing

Workshops / Summer schools

- JAGS and WinBUGS Workshop @ Amsterdam, NL (annual)
- Model-based Neuroscience Summer School @ Amsterdam, NL (annual)
- <u>European Summer School on Computational and Mathematical</u>
 <u>Modeling of Cognition</u> @ multiple EU sites (biannual)
- Computational Psychiatry Course @ Zürich, CH (annual)
- London Computational Psychiatry Course @ London, UK (annual?)
- Methods in Neuroscience at Dartmouth Computational Summer School
 Dartmouth, US (annual)
- Brains, Minds & Machines Summer Course @ MIT, US (annual)

AN JEST ON

Happy Computing!