UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Sannolikhet & Martingaler

Rami Abou Zahra

Contents

1. <i>c</i>	σ-algebras & Measure spaces	2
1.1.	σ -algebras	2
1.2.	Measures	2
1.3.	Measure spaces	:
1.4.	Properties of measures	4

1. σ -ALGEBRAS & MEASURE SPACES

1.1. σ -algebras.

Definition 1.1 σ -algebra

A collection of subsets Σ of a set S is called a σ -algebra if:

- $\varnothing \in \Sigma$
- Is an algebra:
 - Closed under complements such that for $A \in \Sigma \Rightarrow A^c = S \setminus A \in \Sigma$
 - Closed under unions such that $A, B \in \Sigma \Rightarrow A \cup B \in \Sigma$
- Closed under countably infinite unions $A_i \in \Sigma$ for $i \in \mathbb{N}$, then $\bigcup_{i=1}^{\infty} A_i \in \Sigma$

Example:

 $\Sigma = \{\emptyset, S\}$ is a σ -algebra on any set S.

Another example is $\mathcal{P}(S)$, which denotes the powerset.

Another example is $S = \mathbb{N}$, then $\Sigma = \{\emptyset, \mathbb{N}, \{2k : k \in \mathbb{N}\}, \{2k+1 : k \in \mathbb{N}\}\}$

Remark:

There exists many equivalent definitions of a σ -algebra. For example, instead of the first axiom of $\varnothing \in \Sigma$, an equivalent definition could be " Σ is non-empty", since then $\exists A \in \Sigma \Rightarrow A^c \in \Sigma \Rightarrow A \cup A^c = S \in \Sigma \Rightarrow (A \cup A^c)^c = \varnothing \in \Sigma$

Remark:

Closed under unions \Rightarrow closed under finite unions since $A_1, \dots, A_n \in \Sigma \Rightarrow A_1 \cup A_2 \in \Sigma, A_1 \cup A_2 \cup A_3 = \underbrace{(A_1 \cup A_2)}_{\in \Sigma} \cup A_3$, thus by induction $A_1 \cup \dots \cup A_n \in \Sigma$

This does *not* imply Σ is closed under countable unions.

Counter-example:

Consider $S = [0, 1) \subseteq \mathbb{R}$. Let Σ be all finite unions of disjoint sets on the form [a, b) such that $0 \le a \le b < 1$ (if $a = b \Rightarrow \emptyset$).

First and all algebra axioms are fulfilled, but the last one is not since we evan consider $A_n = \left[\frac{1}{n}, 1\right]$.

Then $\bigcup_{i=2}^{\infty} = (0,1) \notin \Sigma$

An algebra Σ is an algebra in an algebraic sense.

The symmetric difference $A \triangle B = (A \backslash B) \cup (B \backslash A)$. This behaves like "+" on Σ and intersections behave like multiplication.

Just like one would expect from an algebra, the multiplication is distributive over addition, eg. $C \cap (A \triangle B) = (C \cap A) \triangle (C \cap B)$

1.2. Measures.

Let Σ be a σ -algebra on S, and let μ_0 be a function from Σ_0 to $[0,\infty] = [0,\infty) \cup \{\infty\}$, essentially a function that assigns some value to subsets of Σ .

Intuitively, a measure should increase if we measure something bigger.

Definition 1.2 Additive and σ -additive measures

A measure μ_0 is called *additive* if $\mu_0(A \cup B) = \mu_0(A) + \mu_0(B)$ where A, B are disjoint sets.

A measure μ_0 is called σ -additive if this holds for ocuntable unions, i.e if A_n are pairwise disjoint, then $\mu_0 \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mu_0(A_n)$

Remark:

We say that μ_0 is a measure if μ_0 is σ -additive and $\mu_0(\emptyset) = 0$

Example:

$$S = \{1, 2, \dots, 6\}, \ \Sigma = \mathcal{P}(S) \text{ and set } \mu_0(A) = \frac{1}{6} |A|. \text{ Note here that } \mu_0(S) = 1$$

Definition 1.3 Probability measures

All measures that sum up to 1 are called *probability measures*

Example:

$$S = \mathbb{N}, \ \Sigma = \mathcal{P}(S) \text{ and set } \mu_0(A \in \Sigma) = |A|. \text{ Here } \mu_0(S) = \infty$$

Example:

S = N,
$$\Sigma = \mathcal{P}(S)$$
 and set $\mu_0(A \in \Sigma) = \begin{cases} 0 & \text{if } |A| < \infty \\ \infty & \text{if } |A| = \infty \end{cases}$

This is an example of an additive but not σ -additive measure, since if $A_n = \{n\}$, then $\mu_0 (\bigcup_{n=1}^{\infty} A_n) = \infty$, but $\sum_{n=1}^{\infty} \mu_0(A_n) = -1$

1.3. Measure spaces.

Definition 1.4 Measure space triplet

A measure space is a triplet (S, Σ, μ) where S is some set, Σ is a σ -algebra over S, and μ is a σ -additive function $\mu: \Sigma \to [0, \infty]$ such that $\mu(\emptyset) = 0$

Definition 1.5 Probability space

If $\mu(S) = 1$, then the triplet is called a *probability space*.

Example: (finite measure space)

Let $S = \{s_1, \dots, s_k\}$ where $k \in \mathbb{N}$ be a set of outcomes. We also associate probabilities p_1, \dots, p_k to each s_1, \dots, s_k such that $\sum_i p_i = 1$. Let $\mu(A) = \sum_{s_i \in A} p_i \ \forall A \subseteq S$. If we let $\Sigma = \mathcal{P}(S)$, then (S, Σ, μ) is a measure and a probability space.

Example: (Lebesgue measure)

Let $S = \mathbb{R}$, $\Sigma = \mathcal{B}(\mathbb{R})$ be the Borel σ -algebra (smallest σ -algebra that makes open sets measureable, note that $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$) and let μ be something measuring length on finite unions of disjoint open intervals $A = (a_1, b_1) \cup \cdots \cup (a_n, b_n)$ such that $\mu(A) = |b_1 - a_1| + \cdots + |b_n - a_n|$

This μ is called the Lebesgue measure (\mathcal{L})

Restricting S to [0,1], then we have a probability measure

$$\mu = \mathcal{L}\mid_{[0,1]} (A) = \mathcal{L}(A \cap [0,1]) \Rightarrow ([0,1], \mathcal{B}([0,1], \mathcal{L}\mid_{[0,1]}))$$
 is a probability measure

This is a formulation of uniform random numbers in [0,1]

1.4. Properties of measures.

For a measure space, we have the following properties:

- $(1) \ \mu(A \cup B) \leq \mu(A) + \mu(B)$

$$(2) \ \mu(\bigcup A_i) \le \sum \mu(A_i)$$

$$(3) \ \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) - \mu(A_1 \cap A_2) - \dots - \mu(A_{n-1} \cap A_n) + \mu(A_1 \cap A_2 \cap A_3) \dots + (-1)^{n+1} \mu(A_1 \cap A_2 \cap A_n)$$

Note that for the first two points, we have previously assumed that A, B were disjoint. This would be the case for "joint" sets.

Consider
$$\mu(A) = \mu(A \setminus B \cup (A \cap B)) = \mu(A \setminus B) + \mu(A \cap B)$$
 and proceed.

Remark:

For point 4, check Math Stackexchange