Shaft		LOGO	
Producer:	Cirstocea Romeo	FXXX	
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024

This program allows to prove the bearing ability for shafts and axles. The calculation base is provided by DIN 743, edition of December 2012.

The proof of the bearing ability for shafts an axles is produced by defining a calculated safety. This safety is divided in the safety against fatigue fracture and the residual deformation (and flaw or forced break).

When calculating the avoidance of fatigue fracture, constant stress amplitudes being equivalent to damaging loads are taken as a basis. These ones are resulting from the predetermined loads. When proving against the residual deformation or forced break, designated as a safety against yielding, only the maximum occurring load is determinant. This one is resulting from the predetermined loads, too.

The calculation of factors of safety is related only to the point of a clear notch effect. For it, 9 calculable notches are at your disposal due to the graphical selection, principally.

The scope is limited to steels. Welded members should be calculated separately. But the utilized standard or the present program is ineffective for this purpose!

The calculation base for the module Shaft Calculation is provided by DIN 743, edition of December 2012, part 1-4 "Tragfähigkeitsberechnung von Wellen and Achsen" ("Calculation of bearing capacity of shafts and axles").

Input data:

Customer:

romeo

Shaft calculation in accordance with DIN 743 - extended version

Geometry scheme General shaft geometry

Calculation process

Dynamic and static strength proof

Geometry

Shaft geometry

Last updated: 05/16/2024 Page: 1 / 31

Shaft

Producer: Cirstocea Romeo

Verify by: Project:

MDESIGN 2022 - Secon... Program: Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Shaft geometry

Nr.	D _{a I}	D _{i I}	D _{a r}	D _{i r}	L	R _z	r	d:	t:	α_{σ}	α_{σ}	α_{rt}	n		n	P0	β_{σ}	$\beta_{ au}$	d
	mm	mm	mm	mm	mm	μm	mm	mm	mm	zd:	b:	:	zd :	b :	t :	zddBK	bdBK	dBK:	BK :
																•		y	m
																	y		m
1	28	0	28	0	42	3.2	1	0	0	0	0	0	0	0	0	0	0	0	0
2	40	0	40	0	40	1.6	0.8	39.4	0	0	0	0	0	0	0	0	0	0	0
3	50	0	50	0	10	6.3	1	0	0	0	0	0	0	0	0	0	0	0	0
4	39.75	0	39.75	0	39	3.2	1	0	0	0	0	0	0	0	0	Ó	0	0	0
	6		6											1					
5	50	0	50	0	10	6.3	0.8	39.4	0	0	0	0	0	0	0	0	0	0	0
6	40	0	40	0	23	1.6	0	0	0	0	0	0	0	0	0	0	0	0	0

Predetermine the diameter determinant for the heat treatment?

No

Calculation of the deflection for point Shaft speed Considering weight - horizontal or vertical Consider gyroscope effect?

Consider bearing stiffness?

x = 111.5 mm n:1000 1/min Horizontal shaft

No No

Bearing

N Type = r.	Position x = mm	Radial bearing stiffness c _r =	Torsional bearing stiffness $c_{\alpha} =$	Bending bearing stiffness $c_{\beta} =$
	1	N/m	N·m	N·m
1 Support bearing ->	70.5	1e+15	0	0
2 Support bearing <-	151.5	1e+15	0	0

Loading Data

Type of loading: tension-pressure

Dynamically pure cyclic Type of loading: bending Dynamically pure cyclic

05/16/2024 Page: 2 / 31 Last updated:

Shaft

Producer: Cirstocea Romeo

LOGO

Verify by:

Project:

Program:

MDESIGN 2022 - Secon...

Module version: 19.1.5

Date: 0

05/16/2024

Customer:

romeo

Type of loading: torsion

Dynamically pure cyclic

Factor for maximum loading (tension-pressure)
Factor for maximum loading (bending)
Factor for maximum loading (torsion)

1

1

Axial forces Fax

Nr.	Position x =	Amount =	Radius =	Angle α =
	mm	N	mm	0
1	111.5	-666	25.066	180

Radial forces F_r

Nr.	Position x =	Amount =	Angle α =
	mm	N	0
1	21	-1103.8303	270
2	111.5	-1103.8303	0
3	111.5	-3133.395	90

Torsion

Nr.	Position x =	Torsion moments M _t :	Power P:	Transition part =
	mm	N·mm	kW	
1	21	71620	0	drive
2	111.5	71620	0	takeoff

Specifications about the load/loadings

Loading case

Constant mean stress (loading case 1)

No

Calculation of finite-life fatigue strength?

 $S_{Dmin} = 1.2$ $S_{Fmin} = 1.2$

Minimum safety against fatigue fracture Minimum safety against residual deformation

OFMIN 112

Last updated: 05/16/2024

Page: 3 / 31

Shaft

Producer: Cirstocea Romeo

Verify by:
Project:

Program: MDESIGN 2022 - Secon...
Module version: 19.1.5
Date: 05/16/2024

Customer: romeo

Minimum safety against incipient crack with hard surface

 $S_{Gmin} = 1.2$

cemented

Material Data

Strength values according to MDESIGN database
Material designation 18MoCrS4
Material number 1.7323

Gage diameter ${\rm d_B} = 16 \qquad {\rm mm}$ For the gage diameter

Tensile strength $\sigma_{B'} \left(R_m \right) = 1100 \quad N/mm^2$ Yield stress $\sigma_{S'} \left(R_e \right) = 775 \quad N/mm^2$ Cyclic fatigue strength under bending stress $\sigma_{hW'} = 550 \quad N/mm^2$

Cyclic tension and pressure fatigue strength

Cyclic tension and pressure fatigue strength $\sigma_{\text{ZdW'}} = 440 \quad \text{N/mm}^2$ Cyclic torsional fatigue strength $\tau_{\text{HM'}} = 330 \quad \text{N/mm}^2$

Young's modulus $E = 215000 \text{ N/mm}^2$ Shear modulus $G = 83000 \text{ N/mm}^2$ Density $\rho = 7850$

Apply surface hardening to

Total shaft

Material group

Cemented steels

Heat treatment

trial hardened

Results:

Surface hardening

Calculation process: Dynamic and static strength proof

Summary

Minimum safety against yielding:

Position x = 42 mm

Amount $S_F = 21.109$ Minimum safety against fatique fracture:

Position x = 42 mm

Amount $S_D = 10.459$ Minimum safety against incipient crack with hard surface:

Last updated: 05/16/2024 Page: 4 / 31

LOGO

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Cirstocea Romeo

Shaft

Producer:

Position	x	=	42	mm
Amount	S_G	=	53.427	
Calculation results for point	x	=	111.5	mm
Deflection	y_{x}	=	0.002011	mm
Geometry				
Total shaft length	L	=	164	mm
Total shaft mass	m	=	1.513	kg
Mass moment of inertia of the shaft	J	=	0.00032	kg m²
Geometrical moment of inertia of the shaft	I	=	101.772	cm ⁴
Position of the centre of gravity	X_S	=	92.593	mm
in the X-axis				
Angle of torsion	φ	=	0.03	0

Additional shaft data:

Shaft fillet number	l mm	I _p cm⁴	W _t cm³	m kg] kg·m²	I cm⁴	W _b cm³
1	42	6.034	4.31	0.203	0	3.017	2.155
2	40	25.133	12.566	0.395	0.0001	12.566	6.283
3	10	61.359	24.544	0.154	0	30.68	12.272
4	39	24.525	12.338	0.38	0.0001	12.263	6.169
5	10	61.359	24.544	0.154	0	30.68	12.272
6	23	25.133	12.566	0.227	0	12.566	6.283

Loading Data

Calculation results for point	X	=	111.5	mm
Trand of aurice of the transplance force	0		2205 002	N
Trend of curve of the transverse force	Q_{x}	=	2385.982	N
Deflection	y_x	=	0.002011	mm
Angle of deflection	Θ	=	0.00045	0

Last updated: 05/16/2024 Page: 5 / 31

Shaft
Producer: Cirstocea Romeo

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5

Date: 05/16/2024

Customer: romeo

Supporting forces:

No.	Type	Positio n x	Radial force in the	Radial force in the	Result. radial force	Axial force in the	Tilting moment in the	Tilting moment in the	Result. tilting moment
		mm	Y-axis	Z-axis	R	X-axis	Y-axis	Z-axis	N·m
			R _y N	R _z N	N	R _{ax} N	N·m	N·m	
1	Support bearing ->	70.5	349.792	-231.038	419.205	666	0	0	0
2	Support bearing <-	151.5	768.874	2260.602	2387.77 9	0	0	0	0

Resulting maximum bending moment:		_	1	
Position	X	= /	111.5	mm
Amount	M_{bmax}	=_	95.464	N·m
Resulting maximum torsional moment:				
Position	X	=	21	mm
Amount	M _{tmax}	, F	71.62	N·m
Resulting maximum tension-pressure-force:				
Position	x	=	70.5	mm
Amount	F _{zdmax}	=	-666	N
Resulting maximum tension-pressure-stress:				
Position	X	=	92.074	mm
Amount	$\sigma_{\sf zdmax}$	=	-0.537	N/mm ²
Resulting maximum bending stress:				
Position	X	=	111.5	mm
Amount	σ_{bmax}	=	15.475	N/mm ²
Resulting maximum torsional stress:				
Position	X	=	21	mm
Amount	$ au_{tmax}$	=	16.616	N/mm²
Resulting maximum equivalent stress:				
Position	X	=	41.937	mm
Amount	σ_{vmax}	=	30.724	N/mm²
Resulting maximum deflection:				
Position	X	=	0	mm
Amount	y _{max}	=	0.010075	mm
Angle of the maximum deflection:				
Position	Х	=	1.406	mm
Amount	Θ	=	0.009676	0

Last updated: 05/16/2024 Page: 6 / 31

LOGO

Producer: Cirstocea Romeo

Shaft

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Minimum safety against yielding:

Position x = 42 mm

Amount $S_F = 21.109$

Minimum safety against fatigue fracture:

Position x = 42 mm

 $Amount S_D = 10.459$

Minimum safety against incipient crack with hard surface:

Position x = 42 mm

Amount $S_G = 53.427$

Parameter of cross-sections:

Tension-pressure force \textbf{F}_{zd} and tension/pressure stress σ_{zd}

No.	Type	Position	Result.	Amplitude	Mean	Maximu	Amplitude	Mean	Maximum
		х	F _{zdx}	F _{zda}	F _{zdm}	m	$\sigma_{\sf zda}$	$\sigma_{ m zdm}$	σ_{zdmax}
		mm	N	N	N /	F _{zdmax}	N/mm²	N/mm²	N/mm²
						N			
1	Shaft fillet	42	0	0	0	0	0	0	0
2	Fillet with recess	82	-666	-666	0	-666	-0.546	0	-0.546
3	Shaft fillet	92	-666	-666	0	-666	-0.537	0	-0.537
4	Shaft fillet	131	0	0	0	0	0	0	0
5	Fillet with recess	141	0	0	0	0	0	0	0
6	Calculation results	111.5	0	0	0	0	0	0	0
	for point x								
			7						

Last updated: 05/16/2024 Page: 7 / 31

Shaft Producer: Cirstocea Romeo

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Bending moment M_{b} and bending stress σ_{b}

No.	Туре	Position x mm	Result. M _{bx} N·m	Amplitude M _{ba} N·m	Mean M _{bm} N·m	Maximum M _{bmax} N·m	Amplitude σ_{ba} N/mm²	Mean σ _{bm} N/mm²	Maximum σ _{bmax} N/mm²
1	Shaft fillet	42	23.18	23.18	0	23.18	10.756	0	10.756
2	Fillet with recess	82	64.79	64.79	0	64.79	10.79	0	10.79
3	Shaft fillet	92	73.762	73.762	0	73.762	11.957	0	11.957
4	Shaft fillet	131	48.932	48.932	0	48.932	7.932	0	7.932
5	Fillet with recess	141	25.063	25.063	0	25.063	4.174	0	4.174
6	Calculation results for point x	111.5	95.464	95.464	0	95.464	15.475	0	15.475

Torsional moment \textbf{M}_t und Torsional stress τ_t

No.	Туре	Position x mm	Result. M _{tx} N·m	Amplitude M _{ta} N·m	Mean M _{tm} N·m	Maximum M _{tmax} N·m	Amplitude ^{au_{ta}} N/mm ²	Mean ^τ tm N/mm²	Maximum ^{\tau_{tmax}} N/mm ²
1	Shaft fillet	42	71.62	71.62	0	71.62	16.616	0	16.616
2	Fillet with recess	82	71.62	71.62	0	71.62	5.964	0	5.964
3	Shaft fillet	92	71.62	71.62	0	71.62	5.805	0	5.805
4	Shaft fillet	131	0	0	0	0	0	0	0
5	Fillet with recess	141	0	0	0	0	0	0	0
6	Calculation results for point x	111.5	71.62	71.62	0	71.62	5.805	0	5.805

Critical shaft speed values:

Last updated: 05/16/2024 Page: 8 / 31

Shaft

Producer: Cirstocea Romeo

Project:

Verify by:

Program:

MDESIGN 2022 - Secon...

Module version: 19.1.5

Date: 05/16/2024

Customer: romeo

Critical bending shaft speed values

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	264419.11	27689.9
2	669626.57	70123.13
3	1081236.57	113226.83
4	1723250.47	180458.37
5	2268583.55	237565.51

Critical torsional shaft speed values

No.	Critical shaft speed values n _b 1/min	Eigenfrequencies ω rad/s
1	705008.67	73828.34
2	1126827.44	118001.09
3	1713924.04	179481.71
4	2323507.03	243317.09
5	3008243.86	315022.56

14-1-		Data
MATE	riai	пата

Material parameter for	d _{max}	=	50	mm
Material designation		18MoCrS4		
Material number		1.7323		
Tensile strength	σ_{B}	=	876.823	N/mm²
Yield stress	σ_{S}	=	617.761	N/mm²
Cyclic tension and pressure fatigue	$\sigma_{\sf zdW}$	=	350.729	N/mm²
strength				
Cyclic fatigue strength under bending	σ_{bW}	=	438.411	N/mm²
stress				
Cyclic torsional fatigue strength	$ au_{tW}$	=	263.047	N/mm²
Technological dimension factor	$K_{1B}(d_{max})$	=	0.797	
(tensile strength)				
Technological dimension factor	$K_{1S}(d_{max})$	=	0.797	
(yield stress)				

Last updated: 05/16/2024 Page: 9 / 31

Shaft
Producer: Cirstocea Romeo

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5

Date: 05/16/2024

Customer: romeo

Proof of Strength

 $K_1(d)$ - Technological dimension factor

 $K_2(d)$ - Geometrical dimension factor

K_F - Influence factor of surface roughness

 $\alpha_{\sigma,~\tau}$ - Form factors

No.	Туре	Position	K _{1B} (d)	K _{1S} (d)	Tension	Bending	Tension-	Torsion	Tension	Bending	Torsion
		x			-	and	pressure	$K_{F_{\tau}}$		$\alpha_{\sigma b}$	$\alpha_{ au}$
		mm			pressur	torsion	,		pressur		
					е	K ₂ (d)	bending		e		
					K ₂ (d)		$K_{F\sigma}$		$\alpha_{\sigma z d}$		
1	Shaft fillet	42	0.84	0.84	1	0.91	0.93	0.96	2.6	2.31	1.68
2	Fillet with	82	0.8	0.8	1	0.89	0.97	0.98	3.01	2.69	1.86
	recess										
3	Shaft fillet	92	0.8	0.8	1	0.89	0.93	0.96	2.78	2.5	1.76
4	Shaft fillet	131	0.8	0.8	1	0.89	0.93	0.96	2.78	2.5	1.76
5	Fillet with	141	0.8	0.8	1	0.89	0.97	0.98	3.01	2.69	1.86
	recess						/				
6	Calculation	111.5	0.84	0.84	1	0.89	0.93	0.96	-	-	-
	results				6						
	for point x										

G' - Relative stress drop

 $n_{\sigma,\;\tau}$ - Bearing factor

No.	Туре	Position x mm	Tension- pressure G'zd 1/mm	Bending G' _b 1/mm	Torsion G' _t 1/mm	Tension- pressure no _{zd}	Bending n _{ob}	Torsion n_{τ}
1	Shaft fillet	42	2.49	2.49	1.15	1.32	1.32	1.21
2	Fillet with recess	82	3.11	3.11	1.44	1.35	1.35	1.24
3	Shaft fillet	92	2.51	2.51	1.15	1.32	1.32	1.21
4	Shaft fillet	131	2.51	2.51	1.15	1.32	1.32	1.21
5	Fillet with recess	141	3.11	3.11	1.44	1.35	1.35	1.24
6	Calculation results for point x	111.5	-	-	-	-	-	-

Last updated: 05/16/2024 Page: 10 / 31

Shaft			LOGO
Producer:	Cirstocea Romeo		FXXX
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024

Customer: romeo

 $\begin{array}{l} \beta_{\sigma z d d B K}, \ \beta_{\sigma b d B K}, \ \beta_{\tau d B K} \ \text{- Stress concentration factor at } d_{B K} \\ \beta_{\sigma z d}, \ \beta_{\sigma b}, \ \beta_{\tau} \ \text{- Stress concentration factors} \\ K_{\text{V}} \ \text{- Influence factor of surface hardening} \end{array}$

No.	Type	Position	Tension	Bendin	Torsion	Tension	Bending	Torsion	Tension	Bendin	Torsion
	,,	x	-	g	$\beta_{\tau dBK}$	-	$\beta_{\sigma b}$	$eta_{ au}$	-	g	$K_{V\tau}$
		mm	pressur	β_{σ}		pressur			pressur	K_{vb}	
			e	bdBK		е			е		
			β_{σ}			$\beta_{\sigma z d}$			K_{vzd}		
			zddBK								
1	Shaft fillet	42	-	-	-	1.98	1.76	1.39	1.1	1.1	1.1
2	Fillet with	82	-	-	-	2.23	1.99	1,5	1.1	1.1	1.1
	recess							· 			
3	Shaft fillet	92	-	-	-	2.11	1.9	1.45	1.1	1.1	1.1
4	Shaft fillet	131	-	-	-	2.11	1.9	1.45	1.1	1.1	1.1
5	Fillet with	141	-	-	-	2.23	1.99	1.5	1.1	1.1	1.1
	recess										
6	Calculation	111.5	-	-	-	1	1	1	1	1.1	1.1
	results										
	for point x					7					

Last updated: 05/16/2024 Page: 11 / 31

Shaft
Producer: Cirstocea Romeo

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5

Date: 05/16/2024

Customer: romeo

 ${\rm K}_{\sigma^{\boldsymbol{\prime}}}$ ${\rm K}_{\tau}$ - Total influence factor

 $\sigma_{\text{zdWK}}\text{, }\sigma_{\text{bWK}}\text{, }\tau_{\text{tWK}}\text{ - Cyclic fatigue strength of the notched part}$

K_{2F} - Static bearing effect

No.	Type	Position x mm	Tension - pressur e K_{σ}	Bending K _σ	Torsion K_{τ}	Tension - pressur e GzdWK N/mm²	Bending	Torsion s r _{tWK} N/mm ²	- pressur	Bendin g K _{2Fb}	Torsion K _{2Ft}
1	Shaft fillet	42	1.87	1.83	1.42	196.9 1	252.1	194.2	1	1	1
2	Fillet with recess	82	2.05	2.06	1.55	170.9 8	212.5 1	170.1 5	1	1	1
3	Shaft fillet	92	1.99	2.01	1.52	176.1 6	217.7 2	173.1 9	1	1	1
4	Shaft fillet	131	1.99	2.01	1.52	176.1 6	217.7 2	173.1 9	1	1	1
5	Fillet with recess	141	2.05	2.06	1.55	170.9 8	212.5 1	170.1 5	1	1	1
6	Calculation results for point x	111.5	1.08	1.1	1.06	341.5	420.7 3	260.0 7	1	1	1

 γ_{F} - Yield point rise

 $\sigma_{\text{zdFK}}\text{, }\sigma_{\text{bFK}}\text{, }\tau_{\text{tFK}}$ - Yield point of the part

No.	Туре	Position x mm	Tension- pressure YFzd	Bending γ _{Fb}	Torsion γFt	Tension- pressure σ_{ZdFK} N/mm ²	Bending	Torsion ⁷ tFK N/mm²
1	Shaft fillet	42	1	1	1	648.55	648.55	374.44
2	Fillet with recess	82	1	1	1	617.76	617.76	356.66
3	Shaft fillet	92	1	1	1	617.76	617.76	356.66
4	Shaft fillet	131	1	1	1	617.76	617.76	356.66
5	Fillet with recess	141	1	1	1	617.76	617.76	356.66
6	Calculation results for point x	111.5	1	1	1	649.4	649.4	374.93

Last updated: 05/16/2024 Page: 12 / 31

Shaft
Producer: Cirstocea Romeo

Verify by: Project:

Date:

05/16/2024

Module version: 19.1.5

Customer: romeo

Program:

Static safety

No.	Туре	Position X mm	S _F	In Point1 S _{F1}	in Point2 S _{F2}
1	Shaft fillet	42	21.11	-	-
2	Fillet with recess	82	40.28	0.	_
3	Shaft fillet	92	38.52	-	-
4	Shaft fillet	131	77.88		-
5	Fillet with recess	141	148	7-	-
6	Calculation results	111.5	35.19	-	-
	for point x				

 $\boldsymbol{\psi}$ - Influence factor of the mean stress sensitivitz

MDESIGN 2022 - Secon...

 $\sigma_{\text{mv}},\,\tau_{\text{mv}}$ - Comparative mean stress

No.	Type	Position x mm	Tension - pressur e \(\psi_{zd\sigma K} \)	Bending VboK	Torsion ΨτΚ	σ _{mv} N/mm 2	τ _{mv} N/mm 2	σ _{mv1} N/mm 2	τ _{mv1} N/mm 2	σ _{mv2} N/mm 2	τ _{mv2} N/mm 2
1	Shaft fillet	42	-	0.16	0.12	0	0	-	-	-	-
2	Fillet with recess	82	0.11	0.14	0.11	0	0	-	-	-	-
3	Shaft fillet	92	0.11	0.14	0.11	0	0	-	-	-	-
4	Shaft fillet	131	-	0.14	-	0	0	-	-	-	-
5	Fillet with recess	141		0.14	-	0	0	-	-	-	-
6	Calculation results for point x	111.5	<i>9</i> -	0.3	0.16	0	0	-	-	-	-

Last updated: 05/16/2024 Page: 13 / 31

Shaft		LOGO
Producer:	Cirstocea Romeo	FXXX
Verify by:		Project:
Program:	MDESIGN 2022 - Secon Module version: 19.1.5	Date: 05/16/2024

Customer: romeo

Alternating fatigue strength of the part (rated fatigue limit)

No.	Туре	Position X mm	Tension - pressur e GzdADK N/mm²	Bending	Torsion ^T tADK N/mm ²	-	g in Point1 o bADK1 N/mm	in Point1 ^T tADK1 N/mm 2	Tension - pressur e in Point2 σ zdADK2 N/mm²	Bendin g in Point2 o bADK2 N/mm 2	Torsion in Point2 TtADK2 N/mm 2
1	Shaft fillet	42	-	252.1	194.2	-	-	- /	-	-	-
2	Fillet with recess	82	170.98	212.51	170.15	-	-8)-	-	-	-
3	Shaft fillet	92	176.16	217.72	173.19	-		-	-	ı	-
4	Shaft fillet	131	-	217.72	-			-	-	-	-
5	Fillet with recess	141	-	212.51	-	-	-	-	-	-	-
6	Calculation results for point x	111.5	-	420.73	260.07	-/	-	-	-	-	-

Dynamic safety

No.	Туре	Position x mm	S _D	in Point1 S _{D1}	in Point2 S _{D2}
1	Shaft fillet	42	10.46	-	1
2	Fillet with recess	82	15.54	-	-
3	Shaft fillet	92	14.93	-	-
4	Shaft fillet	131	27.45	-	-
5	Fillet with recess	141	50.91	-	- 1
6	Calculation results for point x	111.5	23.24	-	-

Last updated: 05/16/2024 Page: 14 / 31

Shaft

Producer:
Cirstocea Romeo

Verify by:
Project:

Program:
MDESIGN 2022 - Secon...
Module version: 19.1.5
Date: 05/16/2024

Customer: romeo

Safety against incipient crack with hard surface

No.	Туре	Position x mm	S _G	In Point1 S _{G1}	in Point2 S _{G2}
1	Shaft fillet	42	53.43	0.	_
2	Fillet with recess	82	73.45	-	-
3	Shaft fillet	92	72.58		-
4	Shaft fillet	131	115.96	-	-
5	Fillet with recess	141	204.67	-	_
6	Calculation results	111.5	132.1	-	-
	for point x				

Last updated: 05/16/2024 Page: 15 / 31

Shaft Producer: Cirstocea Romeo Verify by: Project: Program: MDESIGN 2022 - Secon... Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Trend of curve of the transverse force in the Y-X-plane

Last updated: 05/16/2024 Page: 16 / 31

Shaft		LOGO	
Producer: Cirstocea Romeo			FONO
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Trend of curve of the transverse force in the Z-X-plane

Trend of curve of the transverse force (combined characteristic)

05/16/2024 Last updated: Page: 17 / 31

Shaft			LOGO
Producer:	Cirstocea Romeo	FXXX	
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Trend of curve of the bending moment curve in the Z-X plane

Last updated: 05/16/2024 Page: 18 / 31

Shaft			LOGO
Producer:	Cirstocea Romeo	FOZO	
Verify by:		Project:	
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Trend of curve of the bending moment (combined characteristic)

Trend of curve of the torsional moment

Last updated: 05/16/2024 Page: 19 / 31

Shaft			LOGO
Producer:	Cirstocea Romeo	FXXX	
Verify by:		Project:	
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Last updated: 05/16/2024 Page: 20 / 31

Shaft			LOGO
Producer:	Cirstocea Romeo	FXXX	
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Deflection and angle of deflection in the Z-X-plane

Deflection and angle of deflection (combined characteristic)

Last updated: 05/16/2024 Page: 21 / 31

Shaft		LOGO	
Producer: Cirstocea Romeo			FXXX
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

customer. Tomeo

Equivalent mean stress (normal stress)

Equivalent mean stress (shear stress)

Last updated: 05/16/2024 Page: 22 / 31

Shaft Producer: Cirstocea Romeo Verify by: Project: Program: MDESIGN 2022 - Secon... Module version: 19.1.5 Date: 05/16/2024

Customer: romeo

Last updated: 05/16/2024 Page: 23 / 31

Shaft

Producer: Cirstocea Romeo

Verify by:
Project:

Program: MDESIGN 2022 - Secon...
Module version: 19.1.5

Date: 05/16/2024

Safety against incipient crack with hard surface (Cross-section: SG=5*SGmin)

Customer:

romeo

Maximum value of the tension-pressure stress (combined characteristic)

Last updated: 05/16/2024 Page: 24 / 31

Shaft			LOGO
Producer:	Producer: Cirstocea Romeo		FXXX
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Maximum value of the bending stress (combined characteristic)

Maximum value of the torsional stress (combined characteristic)

Last updated: 05/16/2024 Page: 25 / 31

Shaft			LOGO	
Producer:	Producer: Cirstocea Romeo		FXXX	
Verify by:			Project:	
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024	
Customer	romeo			

Customer: romeo

Equivalent stress development (resultant)

Amplitude value of the tension-pressure stress (combined characteristic)

Last updated: 05/16/2024 Page: 26 / 31

Shaft			LOGO
Producer:	Producer: Cirstocea Romeo		FOAO
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Amplitude value of the bending stress (combined characteristic)

Amplitude value of the torsional stress (combined characteristic)

05/16/2024 Last updated: Page: 27 / 31

Shaft			LOGO
Producer:	Producer: Cirstocea Romeo		FOAO
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Customer: romeo

Mean value of the tension-pressure stress (combined characteristic)

Mean value of the bending stress (combined characteristic)

Last updated: 05/16/2024 Page: 28 / 31

Shaft			LOGO
Producer:	Producer: Cirstocea Romeo		FOAO
Verify by:			Project:
Program:	MDESIGN 2022 - Secon	Module version: 19.1.5	Date: 05/16/2024
Customer:	romeo		

Mean value of the torsional stress (combined characteristic)

Safety factor against yielding

05/16/2024 Last updated: Page: 29 / 31 Shaft
Producer: Cirstocea Romeo

Verify by: Project:

Program: MDESIGN 2022 - Secon... Module version: 19.1.5

Date: 05/16/2024

Customer: romeo

Last updated: 05/16/2024 Page: 30 / 31

Shaft

Producer: Cirstocea Romeo

Verify by:
Project:

Program: MDESIGN 2022 - Secon...
Module version: 19.1.5

Date: 05/16/2024

Page: 31 / 31

Calculation graphic Y-X-plane

Customer:

romeo

Calculation graphic Z-X-plane

Last updated: 05/16/2024