Introduction to Analogue Filter

Course Teacher

Alok Kumar Paul

Assistant Professor

Electrical & Electronic Engineering

Rajshahi University of Engineering & Technology

Filter

An electric filter is often a frequency selective circuit that passes a specified band frequencies and blocks or attenuates signals of frequencies outside this band.

Applications of Filter

The applications include:

- Filter Circuits are used to eliminate background Noise
- They are used in Radio tuning to a specific frequency
- Used in Pre-amplification, Equalization, Tone Control in Audio Systems
- They are also used in Signal Processing Circuits and Data Conversion
- Filter Circuits are extensively used in Medical Electronic Systems

<u>Filter</u>

An electric filter is often a frequency selective circuit that passes a specified band frequencies and blocks or attenuates signals of frequencies outside this band.

Classification of Filter

Filters may be classified in a number of ways:

- Analog or digital
- **♣** Passive or active
- **4** Audio (AF) or radio frequency (RF)

Filter

Analog Filter:

Analog filters are designed to process analog signals.

Digital Filter:

Digital filters process analog signals using digital techniques.

Passive Filter:

Elements used in passive filters are resistors, capacitors, and inductors.

Active Filter:

This kind of filter employs transistors or OP-AMP in addition to resistors and capacitors. Inductors are not often used in active filters, because they are bulky and costly and may have large internal resistive components.

Types of filter

- Low pass filter
- High pass filter
- Band pass filter
- Band reject filter

Frequency Response of Ideal Filters

Low pass Filter

High pass Filter

Band stop Filter

Band pass Filter

TABLE 14.5 Summary of the characteristics of filters.

Type of Filter	H(0)	$H(\infty)$	$H(\omega_c)$ or $H(\omega_0)$
Lowpass	1	0	$1/\sqrt{2}$
Highpass	0	1	$1/\sqrt{2}$
Bandpass	0	0	1
Bandstop	1	1	0

Ideal Frequency Response of four types of filter.

Cut off frequency

- Cutoff frequency is the frequency at which the output power is half of the input power.
- Or, at the frequency where the gain is down by 3 dB is called cut off frequency or 3dB frequency or 0.707 frequency or corner frequency or the break frequency. It is denoted by f_c

$$dB = 10\log_{10}\left(\frac{P_2}{P_1}\right)$$

At the cut off frequency,

$$dB_{cut-off} = 10\log_{10}\left(\frac{1}{2}\right) = -3$$

Low pass filter

• A low pass filter has a constant gain from 0Hz to a high cut off frequency (f_c). So that the band width also f_c .

• At f_c , gain is down by -3dB. After that $(f > f_H)$ it decreases with the increase in input frequency.

 $0 \rightarrow f_c$ is pass band

f>f_c is stop band

High pass filter

• This type of filter attenuates the output voltage for all frequency. Above f_c , the gain is constant.

• At f_c , gain is down by -3dB. After that $(f > f_H)$ it seems to be constant with the increase of input frequency.

 $0 \rightarrow f_c$ is stop band

f>f_c is pass band

Band pass filter

- Band pass filter passes only a band of frequencies while attenuating all frequencies outside the band.
- It has two cut off frequencies f_L and f_H.

Band width = f_H - f_L

f_L to f_H is pass band

f<f_L and f>f_H is stop band

f_c is called center frequency

Band reject filter

- Band reject filters reject a specified band of frequencies while passing all the frequencies outside the band.
- It has two cut off frequencies f_L and f_H

Band width = f_H - f_L

 f_L to f_H is stop band

 $f < f_L$ and $f > f_H$ is pass band, and f_c is called center frequency

It is also called band elimination filter or Notch filter.

RC Low Pass Filter

Fig. Circuit diagram.

• The voltage across the capacitor is $V_C = IX_C = I/\omega C$.

• Impedance,
$$Z_{RC} = (R^2 + (1/\omega C)^2)^{1/2}$$

• The voltage across the series combination is $IZ_{RC} = I(R^2 + (1/\omega C)^2)^{1/2}$

So, the gain is

$$Gain = \frac{V_{out}}{V_{in}} = \frac{V_C}{V_{series}} = \frac{1}{\sqrt{1 + (2\pi fRC)^2}}$$

• At the angular frequency $\omega = \omega_c = 1/RC$, the capacitive reactance $1/\omega C$ equals the resistance R

$$R = X_C$$

$$f_c = \frac{1}{2\pi RC}$$

RC Low Pass Filter/Math Problem

Determine what type of filter is shown in Fig. 14.39. Calculate the corner or cutoff frequency. Take R = 2 k&, L = 2 H, and C = 2 μF

The transfer function is

$$\mathbf{H}(s) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R \parallel 1/sC}{sL + R \parallel 1/sC}, \qquad s = j\omega$$
 (14.10.1)

But

$$R \left\| \frac{1}{sC} = \frac{R/sC}{R + 1/sC} = \frac{R}{1 + sRC} \right\|$$

Substituting this into Eq. (14.10.1) gives

$$\mathbf{H}(s) = \frac{R/(1+sRC)}{sL+R/(1+sRC)} = \frac{R}{s^2RLC+sL+R}, \qquad s = j\omega$$

or

$$\mathbf{H}(\omega) = \frac{R}{-\omega^2 R L C + i\omega L + R}$$
(14.10.2)

RC Low Pass Filter/Math Problem

Determine what type of filter is shown in Fig. 14.39. Calculate the corner or cutoff frequency. Take R = 2 k, L = 2 H, and $C = 2 \mu F$

Since $\mathbf{H}(0) = 1$ and $\mathbf{H}(\infty) = 0$, we conclude from Table 14.5 that the circuit in Fig. 14.39 is a second-order lowpass filter. The magnitude of \mathbf{H} is

$$H = \frac{R}{\sqrt{(R - \omega^2 R L C)^2 + \omega^2 L^2}}$$
 (14.10.3)

The corner frequency is the same as the half-power frequency, i.e., where **H** is reduced by a factor of $1\sqrt{2}$. Since the dc value of $H(\omega)$ is 1, at the corner frequency, Eq. (14.10.3) becomes after squaring

$$H^{2} = \frac{1}{2} = \frac{R^{2}}{(R - \omega_{c}^{2}RLC)^{2} + \omega_{c}^{2}L^{2}}$$

or

$$2 = (1 - \omega_c^2 LC)^2 + \left(\frac{\omega_c L}{R}\right)^2$$

Substituting the values of R, L, and C, we obtain

Activate V

$$2 = (1 - \omega_c^2 \, 4 \times 10^{-6})^2 + (\omega_c \, 10^{-3})^2$$

Assuming that ω_c is in krad/s,

$$2 = (1 - 4\omega_c)^2 + \omega_c^2$$
 or $16\omega_c^4 - 7\omega_c^2 - 1 = 0$

Solving the quadratic equation in ω_c^2 , we get $\omega_c^2 = 0.5509$, or

$$\omega_c = 0.742 \text{ krad/s} = 742 \text{ rad/s}$$

RC High Pass Filter

$$V_{out} = \frac{2\pi RfC}{\sqrt{1 + (2\pi RfC)^2}} V_{in}$$

At the angular frequency $\omega = \omega_0 = 1/RC$, the capacitive reactance $1/\omega C$ equals the resistance R

$$R = X_C$$

$$f_c = \frac{1}{2\pi RC}$$

Assignment

 Problem 1: Design a low pass filter using RL circuit.

o Problem 2: Design a High pass filter using RL circuit.

Band pass filter

$$V_{R1} = \frac{2\pi R_1 f_1 C_1}{\sqrt{1 + (2\pi R_1 f_1 C_1)^2}} V_{in} f_H = \frac{1}{2\pi R_1 C_1}$$

$$V_{out} = \frac{1}{\sqrt{1 + (2\pi f_2 R_2 C_2)^2}} V_{R1} \quad f_L = \frac{1}{2\pi R_2 C_2}$$

Band pass filter

$$Z_{eq}(s) = \frac{c}{sL + \frac{1}{sc}}$$
therefore $H(s) = \frac{\frac{s}{RC}}{s^2 + \frac{s}{RC} + \frac{1}{LC}}$

$$\omega_{c1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}};$$

$$V_i(s)$$
 $V_i(s)$
 $V_i(s)$
 $V_i(s)$
 $V_i(s)$
 $V_i(s)$
 $V_i(s)$
 $V_i(s)$

$$\omega_{c2} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

$$\beta = \omega_{c2} - \omega_{c1} = \frac{1}{RC}$$

$$\beta = \omega_{c2} - \omega_{c1} = \frac{1}{RC}$$

$$f_{c1}$$
 f_{c2}
 Δf_{3db}
 O

$$Q = \frac{\omega_o}{\beta} = \sqrt{\frac{CR^2}{L}}$$

$$f_o = \frac{1}{2\pi\sqrt{LC}}$$

It is also known as TUNED circuit, signal of a particular frequency can be selected by adjusting the capacitor or inductor.

Alok Kumar Paul, EEE, RUET

Band Reject or Notch Filter

$$H(s) = \frac{sL + \frac{1}{sC}}{R + sL + \frac{1}{sC}} = \frac{s^2 + \frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\beta = \omega_{c2} - \omega_{c1} = \frac{R}{L}$$

$$\beta = \omega_{c2} - \omega_{c1} = \frac{R}{L}$$
 $Q = \sqrt{\frac{L}{CR^2}}$ and $\omega_o = \sqrt{\frac{1}{LC}}$

Advantages of Active Filters over Passive Filters

1. Gain and frequency adjustment flexibility

An OP-APM is capable of providing a gain, the input signal is not attenuated as it is in a passive filter. In addition, the active filter is easier to tune or adjust.

2. No loading problem

The active filter does not cause loading of the source or load, because of the high input resistance and low output resistance

3. Cost

The active filters are more economical than passive filters.

Active Low pass filter

$$V_{1} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}V_{i} = \frac{1}{1 + j\omega RC}V_{i}$$

$$\frac{V_1}{R_1} = -\left(\frac{V_1 - V_0}{R_F}\right)$$

$$\Rightarrow \frac{V_0}{R_F} = \left(1 + \frac{R_F}{R_1}\right)V_1 = \left(1 + \frac{R_F}{R_1}\right)\frac{V_i}{1 + j\omega RC}$$

$$\frac{V_0}{V_i} = \frac{A_F}{1 + j\frac{\omega}{\omega_H}} \qquad f_H = \frac{1}{2\pi RC}$$

Active High pass filter

Active Band pass filter (Wide)

Active Band Reject filter

Design a low-pass active filter with a dc gain of 4 and a corner frequency of 500 Hz.

$$\omega_c = 2\pi f_c = 2\pi (500) = \frac{1}{R_f C_f}$$
 (14.12.1)

The dc gain is

$$H(0) = -\frac{R_f}{R_i} = -4 (14.12.2)$$

We have two equations and three unknowns. If we select $C_f = 0.2 \mu F$, then

$$R_f = \frac{1}{2\pi (500)0.2 \times 10^{-6}} = 1.59 \text{ k}\Omega$$

and

$$R_i = \frac{R_f}{4} = 397.5 \ \Omega$$

We use a 1.6-k Ω resistor for R_f and a 400- Ω resistor for R_i . Figure 14.42 shows the filter.

Design a highpass filter with a high-frequency gain of 5 and a corner frequency of 2 kHz. Use a $0.1-\mu F$ capacitor in your design.

Answer: R_i = 800 & and R_i = 4 k&.

Questions??