Homework - Reactor Operation at Power

1. A ramp reactivity insertion occurs as shown below:

Complete the following table and draw the reactivity, inverse period, and power profiles as a function of time.

Time	ρ(t)	ρ̈(t)	τ(t)	Power *
0-	0 mbeta	0	∞	Steady
0+	0 mbeta	20 mβ/s		
10-	200 mbeta	20 mβ/s		
10+	200 mbeta	0 mβ/s		
50-	200 mbeta	0 mβ/s		
50+	200 mbeta	-10 mβ/s		
70-	0 mbeta	-10 mβ/s		3 . €
70+	0 mbeta	0 mβ/s	_	

^{*} Indicate if steady, rising, falling, etc.

- 2. A step reactivity insertion of 200 mbeta occurs with reactor power at 1 kW. What will the power be after 1 minute?
- 3. If the operator takes no action for the reactor in problem #2. What (if any) inherent safety features will come into effect and why? Indicate which occurs first.
- Why is a dropped rod accident of serious concern? After all, it makes the reactor subcritical.
- 5. Why does Xenon peak on shut down of a reactor?