Modelamiento y optimización en tratamientos del cáncer

Cristóbal Álvarez C. Eduardo Carriel O. Felipe Pérez S.

Departamento de Matemática Universidad Técnica Federico Santa María

7 de Enero de 2020

- Motivación
- 2 Introducción
- Objetivos
- Modelo
 - Planteamiento del modelo.
- Discretizaciones
 - Parametrización del control del modelo
- Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- Conclusiones y extensiones del trabajo

Motivacion

- Durante decadas el cancer ha sido la seguna causa de muerte (no natural) a nivel mundial.
- ② Cerca de 8 millones de personas mueren al año a causa de este padecimiento.
- ⑤ En su tratamiento y diagnóstico, diversas variables pueden ser estudiadas matemáticamente.

Introducción

- El cáncer es la anomalía en que las células crecen de una manera desproporcional a las otras, provocando diversas complicaciones.
- 2 Dependiendo de su eventual dispersión, se clasifican en benignos y malignos.
- La quimioterapia, es el tratamiento contra el cáncer, pero debido a su agresividad, debe administrarse controladamente, aquí entra la matemática.

Objetivos

- Analizar el crecimiento del cáncer en el cuerpo humano.
- Plantear el efecto de la quimioterapia en el tratamiento del cáncer.
- Lograr aplicar una quimioterapia óptima para la disminución del tamaño del tumor de un paciente con datos reales.

- Motivación
- 2 Introducció
- Objetivos
- Modelo
 - Planteamiento del modelo.
- Discretizacione
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- 10 Conclusiones y extensiones del trabajo

Planteamiento

$$N(t) = \lambda N(t) \ln(\theta/N(t))$$
 (1)

$$N(0) = N_0 \tag{2}$$

Planteamiento

$$N(t) = \lambda N(t) \ln(\theta/N(t))$$
 (1)

$$N(0) = N_0 \tag{2}$$

$$v(t) = u(t) - \gamma v(t) \tag{3}$$

$$v(0) = v_0 = 0 \tag{4}$$

Planteamiento

$$N(t) = \lambda N(t) ln(\theta/N(t))$$
 (1)

$$N(0) = N_0 \tag{2}$$

$$v(t) = u(t) - \gamma v(t) \tag{3}$$

$$v(0) = v_0 = 0 (4)$$

$$\dot{N}(t) = \lambda N(t) \ln(\theta/N(t)) - k(v - v_{th}) H(v - v_{th}) N$$
 (5)

Restricciones

$$0 \le v(t) \le v_{max}, \forall t \in [0, T]$$
(6)

$$\int_0^T v(s)ds \le v_{cum} \tag{7}$$

$$N(t_{i+1}) \le \eta N(t_i), \forall i = 0, 1, ..., M$$
 (8)

Variables

- y(t): Indicador del tamaño del tumor: $y(t) = In(\theta/N(t))$
- v(t): Concentración de medicamento en el tiempo t
- $\mu(t)$: La variable de decisión, la cual es una función continua por partes, indicando la inyección de medicamento en el tiempo t.
- $H(v(t) v_{th})$ La función de Heaviside, la cual es igual a 1 si $v(t) \ge v_{th}$ y 0 en otro caso.

Parámetros

- *k* : Constante positiva que indica la proporción de células cancerígenas eliminadas por unidad de concentración de medicamento y unidad de tiempo.
- v_{th}: Es el limite inferior de concentración de medicamentos, en el cual el numero de células cancerígenas eliminadas es mas chico que el numero de células cancerígenas reproducidas.
- N_0 : Cantidad inicial de tumores, la cual comúnmente es 10^{10}
- \bullet γ : La cantidad de reducción de concentración de medicamento por unidad de tiempo.

Parámetros

- v_{max} : La cantidad máxima de concentración de medicamentos permitidos en cualquier tiempo t.
- v_{cum} : La cantidad máxima de concentración de medicamento acumulado.
- $oldsymbol{\circ}$ η : Un numero positivo menor que 1 que indica la mínima variación deseada de reducción del tamaño de tumores entre dos inspecciones.
- *M* : El numero de inspecciones del tamaño del tumor.

Modelo

$$\min J = -y(T)$$

st
$$y(t) = -\lambda y(t) + k(v(t) - v_{th})H(v(t) - v_{th})$$
 (9)

$$y(0) = \ln(\theta/N_0) \tag{10}$$

$$v(t) = \mu(t) - \gamma v(t) \tag{11}$$

$$v(0) = v_0 = 0 \tag{12}$$

$$0 \le v(t) \le v_{max}, \forall t \in [0, T]$$
(13)

$$\int_0^T v(s)ds \le v_{cum} \tag{14}$$

$$N(t_{i+1}) \le \eta N(t_i), \forall i = 0, 1, ..., M$$
 (15)

- Motivación
- 2 Introducció
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizaciones
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- Conclusiones y extensiones del trabajo

Parametrización del control del modelo

Nuestro vector de parámetros de control sera $\sigma = (\sigma_1, ..., \sigma_n)^T \in \mathbb{R}^n$, es decir nuestra variable de control $\mu(t)$ sera una función constante a trozos de la siguiente manera.

$$u(t) = \begin{cases} \sigma_1 & \text{si} & 0 = t_0 \le t < t_1 \\ \sigma_2 & \text{si} & t_1 \le t < t_2 \\ \vdots & \vdots & \\ \sigma_n & \text{si} & t_{n-1} \le t < t_n = T \end{cases}$$

$$(16)$$

Teorema

La restricción de la máxima concentración de medicamentos 13 se satisface si y solo si

$$v(t_i) \leq v_{max} \quad \forall i = 0, 1, ..., n$$

- Motivación
- 2 Introducció
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizacione
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- 10 Conclusiones y extensiones del trabajo

Existencia de mínimos

veamos que podemos definir $v^* : [0, T] \to \mathbb{R}$, satisfaciendo:

$$\int_0^T v^* ds = v_{cum}$$

$$v(x) = \left\{egin{array}{lll} 0 & \emph{si} & 0 \leq t \leq t^* \ & \ v_{max} & \emph{si} & t^* \leq t < T \end{array}
ight.$$

se puede considerar la solución

$$y(t) = y_0 e^{-\lambda t} + k \int_0^t (v(s) - v_{th}) H(v(s) - v_{th}) e^{-\lambda(t-s)} ds$$

y de aquí intuir la siguiente función:

$$y^{*}(t) = y_{0}e^{-\lambda t} + k \int_{0}^{t} (v^{*}(s) - v_{th})H(v^{*}(s) - v_{th})e^{-\lambda(t-s)}ds$$
 (17)

Teorema

En consideración de las definiciones anteriores para y, y^*, v^* y σ se tiene:

$$y^* \geq y(T)$$

$$\min_{\sigma \in \mathbb{R}^n} J(\sigma) = -y(T)$$
, $\sigma = (\sigma_1, ..., \sigma_n) \in \mathbb{R}^n$ (18)

- Motivación
- 2 Introducción
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizacione
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- 10 Conclusiones y extensiones del trabajo

Discretización en control óptimo

Sea x(t) el estado de un sistema dinámico, u(t) el control, consideremos el problema de control óptimo general

$$\min \varphi(x(t_0), x(t_f)) \quad t_0, t_f \text{fijos} \tag{19}$$

sujeto a la ecuación diferencial

$$x'(t) = f(t, x(t), u(t)) \quad t \in [t_0, t_f]$$

el control y las restricciones del estado

$$c(t,x(t),u(t))\leq 0$$
 $t\in [t_0,t_f]$

y las condiciones de borde

$$\psi(x(t_0),x(t_f))=0$$

Este problema está definido en un espacio infinito dimensional y queremos encontrar discretizaciones del estado y control x_h , u_h tales que el problema anterior sea finito dimensional de programación no lineal.

NLP asociado

Si J es una función de costo entonces el NLP asociado al problema de control óptimo es

- Minimizar $J(x_h, u_h)$
- Sujeto a $G(x_h, u_h) \leq 0$
- $H(x_h, u_h) = 0$

Esquema de diferencia finita

El método de elementos finitos se usa para discretizar ecuaciones diferenciales (EDP - EDO), para una EDO de primer orden se puede ver como un esquema

Dado:

$$\frac{dx}{dt} = f(t, x), \quad x(t_0) = x_0$$
discretizar t y x tal que
$$x(t_0 + kh) = x_k$$

$$x_{k+1} = x_k + hf(t_{k+1}, x_{k+1})$$

$$t_{k+1} = t_k + h$$

Donde h es el paso que consideraremos uniforme, es decir, h = T/n con n la cantidad de elementos finitos.

- Motivación
- 2 Introducció
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizaciones
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- Conclusiones y extensiones del trabajo

Método de colocación ortogonal

El método de colocación consiste en aproximar la solución x del problema de valor inicial

$$x'(t) = f(t, x(t), u(t)) \quad x(t_i) = x_i$$

en $[t_i, t_{i+1}]$ por un polinomio $p:[t_i, t_{i+1}] \to \mathbb{R}$ de grado s. Para esto se considera el procedimiento:

- Definir puntos de colocación $\{\tau_j\}_{j=1}^s$ con $t_i \leq \tau_j \leq t_{j+1} \quad \forall j \in \{1, \dots, s\}.$
- Definir condiciones de colocación

$$p(t_i) = x_i, p'(\tau_k) = f(\tau_k, p(\tau_k), u(\tau_k)), \quad k = 1, ..., s$$

• Definir $x_{i+1} = p(t_{i+1})$.

Observación: Pyomo admite a p como un polinomio de Lagrange con raíces de Radau[1] o Legendre[2].

Pyomo y configuración del modelo

Con el software Pyomo [3],[4] se da solución al problema de control óptimo mediante el método de colocación ortogonal con la configuración:

- Cantidad de elementos finitos (nfe): 12
- Puntos de colocación (ncp): 6
- Polinomio interpolador (scheme): Lagrange Radau.
- Solver: Interior Point OPTimizer

Además las integrales se discretizan por el método del trapecio[5].

Esto significa que se tomará como elemento finito 1 día a la semana y la restricción de tiempos característicos (15) será cada 3 semanas[6].

Variable de control u

Presentaremos resultados para un control constante a tramos y otro de tipo salto.

(a) Control constante a tramos $u^{\rm tramos}$

(b) Control tipo salto u^b

Estado del sistema N(t)

Notemos que el sistema N(t) con cada uno de los controles anteriores se comporta de forma idéntica.

Toxicidad v(t)

La toxicidad presenta un comportamiento diferente dependiendo del control pues dado que *u* son inyecciones en el cuerpo en el primer control no se satura la toxicidad del cuerpo, mientras que en el segundo control si se logra saturar.

- Motivación
- 2 Introducción
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizaciones
 - Parametrización del control del modelo
- 6 Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- Conclusiones y extensiones del trabajo

Mayor supervisión en decrecimientos

Supervisar en mayor cantidad el tratamiento se puede formular como un conjunto de restricciones, las cuales en este problema se modelaron cada 3 semanas, ahora haremos supervisión de decrecimiento durante cada semana y observemos que la cantidad de células cancerígenas logra disminuir a un 0.05% del total por lo que a mayor supervisión tenemos mayor decrecimiento de esta población

Análisis de sensibilidad

Figure: Tiempos característicos semanales

- Motivación
- 2 Introducción
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizacione
 - Parametrización del control del modelo
- Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- 10 Conclusiones y extensiones del trabajo

La tasa de reducción nos ayuda a controlar el tamaño de la población celular en los tiempos caracteristicos, por lo tanto al realizar una variación sobre estos parámetros podemos observar que a menor valor de η el tratamiento es más exigente con el paciente y en el caso límite $\eta=1$ presenta oscilaciones.

$\eta = 1$, $\eta = 0.25$, $\eta = 0.125$

- Motivación
- 2 Introducció
- Objetivos
- 4 Modelo
 - Planteamiento del modelo.
- Discretizacione
 - Parametrización del control del modelo
- Existencia de mínimos
 - Existencia de mínimos
- Métodos numéricos

- Método de elementos finitos
- Método de colocación
- 8 Solución numérica
- 9 Análisis de sensibilidad
 - Cambio de tiempos característicos
 - Variación en la tasa de reducción en tiempos característicos (η)
 - Restricción sobre los grados de libertad del control
- Conclusiones y extensiones del trabajo

Variación de la cantidad de puntos de colocación

Dado que el control tenia solo un punto de colocación para que fuese constante a trozos daremos la opción de regular los grados de libertad dando 6 puntos de colocación. Con esto podemos notar que el control posee saltos y posee rangos donde se activa y otros donde se desactiva, esto se puede notar en las siguientes figuras

(d) Control con 6 puntos de colocación

Extensiones

- Considerar las diferentes fases de ciclos celulares en el modelo.[7]
- Tomar en consideración la variable espacial en un proceso de difusión. (Salidas de tumor primario por el sistema linfático sanguíneo).

Conclusiones

- Es posible caracterizar los tratamientos por quimioterapias para cada persona ajustando parámetros del modelo a partir de constantes fisiológicas, con esto se puede automatizar el proceso de una quimioterapia y brindar soluciones para planificaciones de terapias.
- Supervisar un tratamiento sin saturar la toxicidad de una persona activando y
 desactivando las inyecciones da mejores resultados que solo considerar un tratamiento de
 inyecciones constantes.
- El modelo de Gompertz que representa un crecimiento de células tumorales se puede estabilizar en una cantidad finita de tiempos mediante la teoría del control óptimo.

Muchas gracias por su atención!

Bibliografía

- W. Gautschi and S. Li, "Gauss—radau and gauss—lobatto quadratures with double end points." Journal of Computational and Applied Mathematics, vol. 34, no. 3, pp. 343 – 360, 1991. [Online]. Available:
 - http://www.sciencedirect.com/science/article/pii/037704279190094Z
- L. T. Biegler, "Nonlinear programming concepts, algorithms, and applications to chemical processes." in MOS-SIAM Series on Optimization, 2010.
- W. E. Hart, J.-P. Watson, and D. L. Woodruff, "Pyomo: modeling and solving mathematical programs in python," Mathematical Programming Computation, vol. 3. no. 3. pp. 219–260, 2011.
- W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, and J. D. Siirola, Pyomo-optimization modeling in python, 2nd ed. Springer Science & Rusiness Media 2017 vol 67