Modello relazionale

Index

- Introduzione
- Definizioni
- Relazioni e tabelle
 - Esempio
- Valori nulli
- Vincoli di integrità
 - Vincoli intrarelazionali
 - Esempio
 - Vincoli interrelazionali
 - Esempio
- Chiavi
- <u>Dipendenza funzionale</u>
 - Esempio

Introduzione

Il modello relazione venne proposto per la prima volta da Codd nel 1970 per favorire l'indipendenza dei dati, ma fu disponibile in DBMS reali solo a partire dal 1981. Questo modello è basato sulla nozione matematica di **relazione** le quasi si traducono in maniera naturale in **tabelle** (infatti useremo sempre il termine relazione invece di tabella). Dati e relazioni (riferimenti) tra dati di insiemi (tabelle) diversi sono rappresentati come **valori**

Definizioni

Il **dominio** un insieme possibilmente infinito di valori (es. insieme dei numeri interi, insieme delle stringhe di caratteri di lunghezza 20 ecc.). Siano $D1,D2,\ldots Dk$ domini, non necessariamente distinti. Il prodotto cartesiano di tali domini è denotato da:

è l'insieme

$$\{(v1,v2,\,\ldots vk)|v1\in D1,v2\in D2,\ldots Vk\in Dk\}$$

Una **relazione matematica** è un qualsiasi sottoinsieme del prodotto cartesiano di uno o più domini

Una relazione che è sottoinsieme del prodotto cartesiano di k domini si dice di **grado k** Gli elementi di una relazione sono detti **tuple**. Il numero di tuple in una relazione è la sua **cardinalità**. Ogni tupla di una relazione di grado k ha k componenti ordinate ma non c'è ordinamento tra le tuple

(i) Esempio

- supponiamo k=2
- $D1 = \{bianco, nero\}, D2 = \{0, 1, 2\}$
- $D1 \times D2 = \{(bianco, 0), (bianco, 1), (bianco, 2), (nero, 0), (nero, 1), ($

 $\{(\mathrm{bianco},0),(\mathrm{nero},0),(\mathrm{nero},2)\} \text{ sono una relazione di grado 2, cardinalità 3 e con tutple } (\mathrm{bianco},0),(\mathrm{nero},0),(\mathrm{nero},2)$ $\{(\mathrm{nero},0),(\mathrm{nero},2)\} \text{ è una relazione di grado 2, cardinalità 2 e con tuple } (\mathrm{nero},0),(\mathrm{nero},2)$

Relazioni e tabelle

Però a questo punto in che modo posso interpretare i dati nella tabella? Utilizzo una notazione anche per la tabella e le colonne Infatti uso:

- un attributo è definito da un nome A (che ne descrive il ruolo) e dal dominio dell'attributo a che indichiamo con dom(A) (la coppia dominio, nome di attributo è definita attributo)
- sia R un insieme di attributi. Un'ennupla su R è una **funzione** definita su R che associa ad ogni attributo A in R un elemento di dom(A)
- se t è un'ennupla su R ed A è un attributo in R, allora con t(A) indicheremo il valore assunto dalla funzione t in corrispondenza dell'attributo A
- con schema di relazione l'rappresento l'insieme degli attributi di una relazione $R(A1,A2,\ldots,Ak)$ (es. Info_Città(Città, Regione, Popolazione)). Questo rimane invariato nel tempo e descrive la struttura stessa della relazione. Per

schema di base di dati si intende un insieme di schemi di relazione con nomi differenti

- per **istanza** di una relazione con schema R(X) si indica l'insieme R di tuple su X . Questa contiene i valori attuali, che possono cambiare molto rapidamente nel tempo (corpo della relazione)
- con t[Ai] si indica il valore dell'attributo con nome Ai della tupla t (nell'esempio sotto se t è la seconda tupla, allora t[Cognome] = Bianchi)
- se Y è un sottoinsieme di attributi dello schema X di una relazione allora t[Y] è il sottoinsieme di valori nella tupla t che corrispondono ad attributi contenuti in Y. Questo è chiamato **restrizione** di t

Esempio

Valori nulli

I valori **NULL** rappresentano la mancanza di informazione o il fatto che l'informazione non è applicabile. Questo valore può essere assegnato a un qualunque dominio, indipendentemente da come è definito.

Tutti i valori NULL sono considerati diversi tra di loro (un valore NULL nel campo di una tupla è diverso dal valore NULL di un altro campo di una stessa tupla oppure dello stesso campo di un'altra tupla)

Vincoli di integrità

I vincoli di integrità sono delle proprietà che devono essere soddisfatte da ogni istanza della base di dati (sono legate allo schema). Questi descrivono proprietà specifiche del campo di applicazione, e quindi delle informazioni ad esso relative modellate attraverso la base di dati.

Una istanza di base di dati è corretta se soddisfa tutti i vincoli di integrità associati al suo schema

Esistono due tipi di vincoli:

- Vincoli intrarelazionali → definiti sui valori di singoli attributi (di dominio) o tra valori di attributi di una stessa tupla o tra tuple della stessa relazione
- Vincoli interrelazionali → definiti tra più relazioni

Vincoli intrarelazionali

Questi possono essere:

- Vincolo di chiave primaria (primary key) → unica e mai nulla
- Vincoli di dominio (es. ASSUNZIONE > 1980)
- Vincoli di unicità (unique)
- Vincoli di esistenza del valore per un certo attributo (not null)
- Espressioni sul valore di attributi della stessa tupla (es. data_arrivo < data_partenza)

Esempio

IMPIEGATO CODICE	COGNOME	NOME	RUOLO	ASSUNZIONI	E DIP
COD1	Rossi	Mario	Analista	1795	01
COD2	Bianchi	Pietro	Analista	1990	05
COD2	Neri	Paolo	Amministr atore	1985	01

DIPARTIMENTO NUMERO NOME

01 Progettazione02 Amministrazione

(ASSUNZIONE > 1980)

COD2 UNIQUE

DIP REFERENCES

DIPARTIMENTO.NUMERO

Studente references Studenti. Matricola vincoli inter-relazionali

Studenti

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Matricola unique

Vincoli di dominio

- ASSUNZIONE > 1980
- (Voto ≥ 18) AND (Voto ≤ 30)

Vincoli di tupla

(Voto = 30) OR NOT (Lode = "si")

Vincoli tra valori in tuple di relazioni diverse

- DIP REFERENCES DIPARTIMENTO.NUMERO
- Studente REFERENCES Studenti.Matricola

Vincoli interrelazionali

 Vincolo di integrità referenziale (foreign key) → quando porzioni di informazione in relazioni diverse sono correlate attraverso valori di chiave

Esempio

l'attributo Vigile della relazione INFRAZIONI e l'attributo Matricola (chiave) della relazione VIGILI

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	то	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

\ //			
V		ш	
W	ıч		

Matricola		Cognome Nome		
	3987	Rossi	Luca	
	3295	Neri	Piero	
	9345	Neri	Mario	
	7543	Mori	Gino	

gli attributi Prov e Numero di INFRAZIONI e gli attributi Prov e Numero (chiave) della relazione AUTO

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

Prov	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Chiavi

Una **chiave** di una relazione (non necessariamente unica) è un attributo o insieme di attributi (chiave **composta**) che identifica univocamente una tupla Un attributo per essere considerato una chiave deve rispettare queste condizioni:

1. per ogni istanza di una relazione R, non esistono due tuple distinte t1 e t2 che hanno gli stessi valori per gli attributi in un insieme X (chiavi), tali cioè che

$$t1[X] = t2[X]$$

2. nessun sottoinsieme proprio di X soddisfa la prima condizione

Una relazione potrebbe avere inoltre più chiavi alternative. Quella più usata o quella composta da numero minore di attributi viene scelta come chiave **primaria**. La chiave primaria non ammette valori nulli e ne deve esistere almeno una all'interno di ogni relazione (sono infatti le chiavi a consentire di mettere in relazione dati in tabelle diverse)

Si parla di chiave **minimale** quando una chiave non contiene un sottoinsieme di attributi che a sua volta è una chiave (si applica ai sottoinsiemi di super-chiave). Si parla di **super-chiave** quando un insieme di attributi contiene una chiave (una chiave è in senso improprio una super-chiave ma non il contrario)

Dipendenza funzionale

Una **dipendenza funzionale** stabilisce un particolare legame semantico tra due insiemi non-vuoti di attributi X e Y appartenenti ad uno schema R Tale vincolo si scrive $X \to Y$ e si legge X determina Y

diremo che una relazione r con schema R soddisfa la dipendenza funzionale $X \to Y$ se:

- 1. Ia dipendenza funzionale X o Y è applicabile ad R, nel senso che sia X sia Y sono sottoinsiemi di R
- 2. le ennuple in r che concordano su X concordano anche su Y, cioè per ogni coppia di ennuple t1 e t2 in r (se hanno la stessa X devono avere la stessa Y)

$$t1[X]=t2[X] o t1[Y]=t2[Y]$$

Esempio

Supponiamo di avere uno schema di relazione

Con i vincoli:

- un volo con un certo codice parte sempre alla stessa ora
- esiste un solo volo con un dato pilota, in un dato giorno, ad una data ora

I vincoli corrispondono alle dipendenze funzionali:

- $\bullet \ \, \mathbf{CodiceVolo} \to \mathbf{Ora}$
- $\bullet \ \, \{ Giorno, Pilota, Ora \} \rightarrow CodiceVolo$
- $\bullet \ \, \{ {\rm CodiceVolo}, {\rm Giorno} \} \rightarrow {\rm Pilota}$