MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Properties of continuous functions > Q&A: February 10

Next: Ross § 19

Week 6:

- Homework 5 (due Sunday, February 14)
- Regrades of HW3 (Monday, February 8 Wednesday, February 10)

The maximum-value theorem Def. 18.7 Let f be a function and let Acdom(f). f is called bounded on A if Thm 18.1 Let f be a function, [a,b] < dom(f), f is continuous on [a,b] Then (i) (ii) Proof (i) Suppose that f is not bounded on [a,b] 1 (In) is bounded 2) YK Q & Ink & b 3 2 €[a,b], f cont. on [a,b]

The maximum-value theorem	
Proof (ii) Denote M :=	. By (i),
D M= sup {f/x): χε[a, b]}	
2 $\forall n \left(M-\frac{1}{n} \angle f(x_n) \leq M\right)$	
3 4 n (xne[a,b])	
4) yo ∈ [a,b] ⇒ f is contin	uous at yo
⇒ by	
(Exercise: prove that 7 x = [[a, b] s.t. \(\fixe\) (\(f(\fixe\))
Examples	
$1) f(x) = \frac{1}{x}$	2) $f(x) = x^2$
· continuous on (0,1]	cont on (0,1)
· unbounded on (0,1)	· no maximum
	on [0,1)

s.t a < b. Then

Then

Image of an interval Cor. 18.3 Let f be continuous on the interval I. Then $f(I) = \{f(x) : x \in I \}$ Proof If Yxe I f(z)=yo, then f(I)=yo. D Let y, ∠yz ∈ f(I). Then Let y∈(y1,y2). · If x1< x2, then

2 Let inff(I) < supf(I). Then yye (inff(I), supf(I))

Examples

1)
$$\sin:(0,2\pi) \rightarrow \mathbb{R}$$

$$Sin(0,2\pi)$$

$$sin((0,2\pi)) \subset [-1,1]$$

2)
$$f: [-1,1] \to \mathbb{R}$$
, $f(x) = sgn(x) = \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 0 \end{cases}$

$$= f\left(-\frac{1}{2}\right) < f(0) = 0$$

 $\{x \in (-\frac{1}{2},0) : f(x) = y\} = \emptyset$

$$-1 = f(-\frac{1}{2}) < f(0) = 0$$
But $\forall y \in (-1, 0)$

Continuity of strictly increasing functions. Def 18.8 Function f is called (strictly) increasing if $x < y \Rightarrow f(x) \le f(y)$ (f(x) < f(y)) (strictly) decreasing if x 2 y => f(x) = f(y) (f(x) > f(y)) Thm 18.5 Let q be strictly increasing function on interval J. If q(J) is an interval, then Proof Let xoE J, xo>inf J, xo< sup J. Then Verify the E-o definition of continuity. Fix E>0, E<Eo. Then Now, txe (x1,x2) Take Then

Inverse function Def 18.9 Function f: X > Y is called one-to-one (or bijection) and Example $Sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow [-1,1]$ is one-to-one sin: [0, π] → [0,1] is not one-to-one Def 18.10 Let $f:X \to Y$ be a bijection, Y = f(X). Then the function given by (is called the inverse of f. In particular Example · sin: [-1, 1] > [-1,1] • $f:[0,+\infty) \rightarrow [0,+\infty), f(x) = x^m$. If f is strictly increasing (decreasing) on X, then f: X → f(X) is a bijection

Continuity and the inverse function

Thm 18.4 Let f be a continuous strictly increasing function on some interval J. Then J = f(I) is an interval and $f' : J \to I$ is

 $f: J \rightarrow I$ is

Proof (1) f'' is strictly increasing: Take $y_1, y_1 \in J$, $y_1 \ge y_2$ Denote $x_1 = f'(y_1)$, $x_2 = f'(y_2)$. Then

If x, ≥ x2, then

② J is an interval: By Cor. 18.3 J is either an

a . Since f is strictly increasing, J is an

Dr

3 (1) + (2) +

One-to-one continuous functions Thm 18.6 Let f be a one-to-one continuous function on an interval I. Then f is or Proof. O If a < b < c then either 20 Otherwise, If f(b)>max{f(a),f(c)}, choose Then by Thm 18.2 . Similarly when f(b) < min {f(a), f(c)}. 2) Take any aokbo. If f(ao) < f(bo), then f is on]. 3) Similarly, if f(ao)>f(bo), then f is decreasing.

