Disaster Tweet Detection

Justin Bell

accuracy?

How can we build an NLP model that is able

to classify tweets as disasters with high

Data Wrangling

- Import data
- Check for balanced target classes
- Data cleaning
 - Converting text to lowercase
 - Regular expression string removal
 - Tokenized text
 - Remove stop words

EDA

- Create some plots:
 - Top 20 Words \rightarrow hbar plot
 - Words per Tweet → histogram
 - Word Cloud

Preprocessing

- Remove unused columns
- Remove one null row
- Split data into train/test sets
 - 0 80/20
- Create vectorizers
 - Count
 - TFIDE
- Fit with training features (tweets)
- Transformed training and test features

Modeling

- Tried 5 different classification models
 - Logistic Regression
 - Random Forest
 - o KNN
 - SVM
 - Gradient Boosting

Model Hyperparameters

Logistic Regression:

- penalty = I2
- max_iter = 500
- C = 0.1
- solver = lbfgs

Random Forest:

- n_estimators = 500
- n_jobs = -1

KNN:

- n neighbors = 6
- n_jobs = -1

SVM:

- C= 1
- gamma= 1

Gradient Boosting:

- n_estimators = 100
- max_depth = 10
- max_features = auto
- learning_rate = 0.1

Vectorizer	Model	Recall		
Count	Logistic Regression	0.54		
TFIDF	Logistic Regression	0.36		
Count	Random Forest	0.49		
TFIDF	Random Forest	0.49		
Count	KNN	0.20		
TFIDF	KNN	0.18		
Count	SVM	0.19		
TFIDF	SVM	0.44		
Count	Gradient Boosting	0.36		
TFIDF	Gradient Boosting	0.36		

Imbalanced/Balanced	Vectorizer	Model	Recall
Imbalanced	Count	Logistic Regression	0.54
Imbalanced	TFIDF	Logistic Regression	0.36
Imbalanced	Count	Random Forest	0.49
Imbalanced	TFIDF	Random Forest	0.49
Imbalanced	Count	KNN	0.20
Imbalanced	TFIDF	KNN	0.18
Imbalanced	Count	SVM	0.19
Imbalanced	TFIDF	SVM	0.44
Imbalanced	Count	Gradient Boosting	0.36
Imbalanced	TFIDF	Gradient Boosting	0.36
Balanced	Count	Logistic Regression	0.75
Balanced	TFIDF	Logistic Regression	0.77
Balanced	Count	Random Forest	0.78
Balanced	TFIDF	Random Forest	0.75
Balanced	Count	KNN	0.26
Balanced	TFIDF	KNN	0.20
Balanced	Count	SVM	0.29
Balanced	TFIDF	SVM	0.76
Balanced	Count	Gradient Boosting	0.72
Balanced	TFIDF	Gradient Boosting	0.70

Future Scope

- Best model can be used by disaster relief organizations
- Explore more models
 - Deep Learning Neural Networks
- Plot word clouds for subsetted data (TP, TN, FP, FN)
- Similar projects