DIALOG(R)File 347:JAPIO (c) 2005 JPO & JAPIO. All rts. reserv.

07537977 **Image available**

METHOD FOR PREPARING SEMICONDUCTOR DEVICE

PUB. NO.:

2003-031814 [JP 2003031814 A]

PUBLISHED:

January 31, 2003 (20030131)

INVENTOR(s):

HIROKI MASAAKI

YAMAZAKI SHUNPEI

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.:

2002-077384 [JP 200277384]

FILED:

March 19, 2002 (20020319)

PRIORITY:

2001-079609 [JP 200179609], JP (Japan), March 19, 2001

(20010319)

INTL CLASS:

H01L-029/786; G02F-001/1368; G09F-009/00; H01L-021/66

ABSTRACT

PROBLEM TO BE SOLVED: To provide a method for preparing a semiconductor device including a non-contact checking process capable of confirming whether a circuit and a circuit element formed on a TFT board capable of preventing drop up production yield operate normally or not by reducing defects due to sticking of fine dust in the checking process for the mass production of the semiconductor device.

SOLUTION: By rectifying and shape forming the electromotive force generated by electromagnetic induction by using a primary coil on a check board and a secondary coil on an array substrate, power voltage and a driving signal are supplied to the circuit on the TFT board and the circuit element for driving them.

COPYRIGHT: (C)2003,JPO

Family list 3 family members for: JP2003031814 Derived from 3 applications.

- Method for making semiconductor device Publication info: CN1375859 A - 2002-10-23
- 2 METHOD FOR PREPARING SEMICONDUCTOR DEVICE Publication info: JP2003031814 A 2003-01-31
- Method of manufacturing a semiconductor device Publication info: US2002132383 A1 2002-09-19

Data supplied from the *esp@cenet* database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-31814

(P 2 0 0 3 - 3 1 8 1 4 A)

(43)公開日 平成15年1月31日(2003.1.31)

(51) Int.Cl. 7 HO1L 29/786	識別記号	F I デーマコート' (参え GO2F 1/1368 2H092
G02F 1/1368		G09F 9/00 352 4M106
G09F 9/00	352	H01L 21/66 C 5F110
H01L 21/66		29/78 624 5G435
		審査請求 未請求 請求項の数14 〇L (全28頁)
(21)出願番号	特願2002-77384(P2002-77384)	(71)出願人 000153878
		株式会社半導体エネルギー研究所
(22)出願日	平成14年3月19日(2002.3.19)	神奈川県厚木市長谷398番地
		(72)発明者 ▲ひろ▼木 正明
(31)優先権主張番号	特顧2001-79609(P2001-79609)	神奈川県厚木市長谷398番地 株式会社半
(32)優先日	平成13年3月19日(2001.3.19)	導体エネルギー研究所内
(33)優先権主張国	日本 (JP)	(72)発明者 山崎 舜平
		神奈川県厚木市長谷398番地 株式会社半
		導体エネルギー研究所内
		最終頁に続く

(54) 【発明の名称】半導体装置の作製方法

(57)【要約】

【課題】 半導体装置の量産化に向けて、検査工程で微細なゴミが付着することにより不良が発生する問題を減らし、歩留まりの低下を防ぐことができるTFT基板に形成された回路および回路素子が正常に動作するかどうかを確認できる非接触の検査工程を含む半導体装置の作製方法を提供することを目的とする。

【解決手段】 チェック基板に形成された1次コイルとアレイ基板に形成された2次コイルを用い、電磁誘導によって生じた起電力を整流化および整形することで電源電圧および駆動信号をTFT基板の回路および回路素子に供給し駆動させる。

【特許請求の範囲】

1

【請求項2】アレイ基板上に、TFT、2次コイル、整流回路および波形形成回路を形成する工程と、複数のTFTを電気的に接続し、前記2次コイルと前記整流回路もしくは前記2次コイルと前記波形整形回路とを接続する配線を形成する工程と、交流の電圧を印加された1次コイルを有するチェック基板と前記2次コイルが形成されたアレイ基板とを一定の間隔を保つように重ね、前記2下Tにおいて生じる電磁波の強さを測定した結果から前記TFTの欠陥を検査する工程と、前記アレイ基板上に形成された前記TFTと、前記2次コイル、前記整流回路および前記波形形成回路とを分断する工程と、を含むことを特徴とする半導体装置の作製方法。

【請求項3】アレイ基板上にTFT、2次コイル、整流回路および波形整形回路を形成する工程と、複数のTFTを電気的に接続し、前記2次コイルと前記整流回路もしくは前記2次コイルと前記波形整形回路とを接続する配線を形成する工程と、画素電極を形成する工程と、分断してTFT基板とする工程と、前記画素電極上に有機化合物層および電極を形成する工程と、を含む半導体装置の作製方法において、チェック基板を用いて前記アレイ基板を分断する工程の前にアレイ基板上に形成された複数のTFT基板の製品化の可否を確認する検査工程を含むことを特徴とする半導体装置の作製方法。

【請求項5】請求項1乃至請求項3のいずれか一において、前記2次コイルは、TFTのゲート電極を形成する 導電膜を用いて形成することを特徴とする半導体装置の 作製方法。

【請求項6】請求項1乃至請求項3のいずれかーにおいて、前記整流回路および前記波形整形回路は、外部信号入力端子に接続されていることを特徴とする半導体装置の作製方法。

【請求項7】請求項1乃至請求項3のいずれか一において、前記チェック基板と前記アレイ基板との間に気体または液体を流入することによって一定の間隔を制御し検査する工程を含むことを特徴とする半導体装置の作製方法。

【請求項8】請求項1乃至請求項3のいずれか一において、前記2次コイル、前記整流回路および前記波形整形回路は、アレイ基板を分断する工程において、TFT基板から電気的かつ物理的に切り離されることを特徴とする半導体装置の作製方法。

【請求項9】請求項1乃至請求項3のいずれかーにおいて、前記アレイ基板は、ガラス基板、石英、セラミック基板もしくはプラスチック基板のいずれを用いてもよいことを特徴とする半導体装置の作製方法。

【請求項10】請求項1乃至請求項3のいずれか一において、前記チェック基板は複数の1次コイルを有しており、前記アレイ基板は複数の2次コイルを有しており、前記1次コイルに駆動電源および駆動信号が供給されると、電磁誘導により前記2次コイルに生じた交流電圧を前記整流回路により直流化し、かつ前記波形整形回路により整形して駆動信号とし、前記アレイ基板上に形成された回路および回路素子に供給し、前記回路および前記回路素子の動作を検査する工程を含むことを特徴とする半導体装置の作製方法。

【請求項11】請求項1乃至請求項3のいずれか一において、前記チェック基板は1次コイルおよび電界により光学特性が変化する材料を有し、前記電界により光学特性が変化する材料は、液晶もしくはポッケルスセルであることを特徴とする半導体装置の作製方法。

【請求項12】請求項1乃至請求項3のいずれか一において、前記チェック基板が有するポッケルスセルは、NH,H,PO,、BaTiO,、KH,PO(KHP)、KD,PO,(D・KDP)、LiNbO,、ZnTeまたは2nOの結晶体であることを特徴とする半導体装置の作製方法。

【請求項13】請求項1乃至請求項3のいずれか一において、前記ポッケルスセルの屈折率の変化を観察することで、前記アレイ基板に複数形成されたTFT基板の製品化の可否を確認する検査工程を含むことを特徴とする半導体装置の作製方法。

【請求項14】請求項1乃至請求項3のいずれか一において、前記チェック基板は小型アンテナを有しており、前記小型アンテナによりアレイ基板上に形成された回路および回路素子から発生する電磁波の強度、スペクトルを測定するアンテナ(受信部)を用いて電磁波の強度、周波数を良品と比較することで前記アレイ基板上のTFT基板の製品化の可否を判断する検査工程を含むことを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

50 [0001]

【発明の属する技術分野】本発明は、半導体特性を用いた半導体素子、例えばトランジスタ、特に電界効果型トランジスタ、代表的にはMOS(Metal Oxide Semicond uctor)トランジスタや薄膜トランジスタ(Thin film transistor:TFT)といった半導体素子の検査工程を含む半導体装置の作製方法に関する。より具体的には、非接触型の検査装置及びそれを用いた検査方法に関する。また、このような半導体素子の検査工程を含む半導体装置の作製方法に関する。

[0002]

【従来技術】アクティブマトリクス型の液晶ディスプレイやELディスプレイは、一般的に各画素にTFTが設けられており、液晶ディスプレイの場合、この各画素に1つ形成されたTFTがスイッチング素子として機能しており、ELディスプレイの場合は、各画素に形成された複数のTFTの中で、スイッチング素子として機能するTFTと、電流制御を行うTFTとがある。

【0003】このようにひとつのディスプレイに多数の TFTが形成されるディスプレイを作製する工程におい て、製品として完成する前に、工程の早い段階で不良品 20 を見分ける検査工程を含むことは、不良品に対してその 工程以降を行わなくてよい、また不良品の早期発見によ りリペアしやすい等の理由により、コスト削減という観 点から見て、非常に有効な手段である。

【0004】例えば、ELディスプレイの場合、EL素 子が有する一方の電極(画素電極)とコンデンサとが、 トランジスタを間に介して接続されている場合がある。 発光素子の発光を制御するための回路または回路素子に 何らかの不具合が生じていても、ELディスプレイを完 成させて実際に表示を行うまで、その不具合の存在を確 30 認することが難しい。実際には製品にならないELパネ ルであっても、良品との区別をつけるために、発光素子 を形成し、パッケージングし、コネクターを取り付けて ELディスプレイとして完成させて検査を行っていた。 この場合、発光素子を形成する工程と、パッケージング する工程と、コネクターを取り付ける工程とが無駄にな るため、時間とコストを抑えることができない。また多 面取りの基板を用いてELパネルを形成する場合でも、 パッケージングしコネクターを取り付ける工程が無駄に なり、同様に時間とコストを抑えることができない。 【0005】そこで、半導体膜、絶縁膜または配線のパ ターン(以下、単にパターンと呼ぶ)の幅のばらつきに よって動作不良が生じている箇所や、ゴミまたは成膜不 良によって、配線が断線またはショートしている箇所を 検出したり、検査対象である回路または回路素子が正常 に動作するかどうかを確認するための検査が行われてい る。このような欠陥検査は、主に光学式検査方法と、プ

【0006】光学式検査方法は、基板上に形成されたパ 子を駆動させるための直流の電圧(以下、電源電圧と呼 ターンをCCD等で読み取り、基準となるパターンと比 50 ぶ)として用いることが可能である。また、2次コイル

ローブ検査方法とに大別される。

較して欠陥を識別する検査方法である。また、プローブ 検査方法は、基板側の端子に微細なピン(プローブ)を 立てて、プローブ間の電流または電圧の大きさによって 欠陥を識別する検査方法である。一般的に、前者は非接 触型検査方法と呼ばれ、後者は触針型検査方法と呼ばれ る。

[0007]

(3)

【発明が解決しようとする課題】TFT基板に配線を直接接続(接触)させた上記のような検査方法により製品10 にできる良TFT基板または製品できない不良TFT基板かが判断されている。しかし、これらの方法は、接続配線の取り付け、取り外し作業において、ゴミが基板に付着してしまう可能性が高い。さらに、配線に直接微細なピン(プローブ)を接触させて欠陥箇所を検出する方法では、配線に傷が付いてしまう可能性がある。上記した検査方法では、検査工程を行ったせいで、いたずらに不良品を増やしてしまうことがあり得る。

【0008】そこで、本発明において、アクティブマトリクス型のELディスプレイの量産化に向けて、ELディスプレイを完成させる前に、TFT基板に形成された回路および回路素子が正常に動作するかどうかを確認できる非接触の検査工程を含む半導体装置の作製方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明者は、アレイ基板に直接検査装置を接続しなくても、電磁誘導によってTFT基板の配線に起電力を生じさせることで、該配線に電流を流す方法を考えた。

【0010】具体的には、TFT基板を検査するための、検査用の基板(チェック基板)を別途用意する。チェック基板は1次コイルを有しており、検査対象とであるアレイ基板(TFT基板)は、2次コイルを有している

【0011】なお、1次コイルと2次コイルはともに、基板上に成膜した導電膜をパターニングすることで形成する。そして、本発明において1次コイル及び2次コイルは、中心に磁性体を設けて磁路としたコイルではなく、中心に磁性体を設けないコイルを用いる。

【0012】そして、チェック基板が有する1次コイル と、アレイ基板が有する2次コイルを一定の間隔を空けて重ね合わせ、1次コイルが有する2つの端子間に交流の電圧を印加することで、2次コイルが有する2つの端子間に起電力を生じさせる。なおチェック基板とアレイ基板との間隔は小さいほど望ましく、1次コイルと2次コイルを間隔の制御が可能な限り近づけたほうが良い。【0013】そして、2次コイルに生じた起電力である交流電圧を、TFT基板において整流化した後適当に平滑化することで、TFT基板が有する回路または回路素子を駆動させるための直流の電圧(以下、電源電圧と呼50 ぶ)として用いることが可能である。また、2次コイル

に生じた起電力である交流の電圧を、波形整形回路等で適当にその電圧の波形を整形することで、TFT基板が有する回路または回路素子を駆動させるための信号(以下、駆動信号と呼ぶ)として用いることが可能である。【0014】そして、この駆動信号または電源電圧がTFT基板に供給され、回路または回路素子が駆動する。回路または回路素子が駆動すると、回路または回路素子が駆動すると、回路または回路素子において微弱な電磁波、または電界が生じる。この微弱な電磁波または電界の様子を確認することで、多数の回路または回路素子の中から、正常に動作していない回路である。

【0015】なお回路または回路素子において生じる微弱な電磁波、または電界を確認する方法は、公知の方法を用いることができる。

【0016】本発明は上記構成によって、TFT基板に直接プローブを接続しなくてもTFT基板の製品化の可否を確認することができるため、検査工程で微細なゴミが付着することにより発生する不良を減らすことができ、歩留まりの低下を防ぐことができる。なおかつ、光 20学式検査方法と異なり、1回の検査工程でTFT基板の製品化の可否を判断することができるので、検査工程がより簡便化することができ、量産においても検査工程に時間を費やすことがない。さらに発光素子を無駄に形成することがなくなる。

[0017]

【発明の実施の形態】(実施形態1)本実施形態では、アレイ基板100に複数のTFT基板101を作製する工程、作製されたTFT基板の良否を確認する検査工程、および良品と判断されたTFT基板上に発光素子を 30形成する工程について、図1~5、図20~23を用いて順に説明する。

【0018】なお、本実施形態では、TFT基板上に発 帯電防止のために帯電防止膜を形成するとよい。この 光素子を形成する例を示すが、本発明は、発光素子を有 する発光装置(ELディスプレイ)だけでなく、液晶表 示装置等、半導体特性を用いた半導体素子、例えばトランジスタ、特に電界効果型トランジスタ、代表的にはM OS (Metal Oxide Semiconductor) トランジスタや薄 膜トランジスタ (Thin film transistor:TFT) といった半導体素子を用いた電気器具すべてに適応すること 40 れている。TFTの活性層にアルカリ金属が混入するが可能である。

【0019】まず、アレイ基板100上にTFTを含む駆動回路102、画素部103、トランス2次コイル、整流回路および波形整形回路104、外部信号入力端子105を形成する。なお、図2で示したTFTは、画素部103において発光素子に流れる電流を制御するためのTFTであり、本明細書中においては電流制御用TFTと称する。また、トランス2次コイルは、チェック基板に設けられたトランス1次コイルと用いることにより、非接触でTFT基板に駆動電源お上び駆動信号を供

給する手段であり、整流回路は、1次コイルから印加された交流電圧を直流化するための回路、波形形成回路は、1次コイルから印加された交流電圧を駆動信号の波形(もしくは、信号波形に近い形状)に修正するための回路である。

【0020】図3にアレイ基板100とチェック基板106との簡略回路図を示す。また、図4にアレイ基板100、チェック基板106の概略上面図を示す。

【0021】次いで、TFT201上に、層間絶縁膜202を形成し平坦化を行う。層間絶縁膜としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、エポキシ系樹脂膜、BCB(ベンゾシクロプテン)から選ばれた有機樹脂材料または、酸化シリコン膜、酸化窒化シリコン膜または窒化酸化シリコン膜から選ばれた無機絶縁材料を用いることができる。平均膜厚を1.0~2.0 μ m程度で形成する。

【0022】その後、所望のパターンのレジストマスクを形成し、TFT201のドレイン領域に達するコンタクトホールを形成して、配線204を形成する。配線材料としては、導電性の金属膜としてA1やTiの他、これらの合金材料を用い、スパッタ法や真空蒸着法で成膜した後、所望の形状にパターニングすればよい。

【0023】次いで、発光素子の陽極となる透明導電膜205を形成する。透明導電膜としては、代表的には酸化インジウム・スズ(ITO)または酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いて形成する。

【0024】続いて、透明導電膜205をエッチングして画素電極206を形成する。次いで、後のバンク(本明細書では、画素電極上に開口部を有し、かつ画素電極端部を覆って設けられた絶縁膜のことをバンクと称する)を形成するための有機絶縁膜を形成し、その表面に帯電防止のために帯電防止膜を形成するとよい。この膜を形成する理由としては、第1に、後に行われる検査工程の際にアレイ基板にゴミが付着するのを防ぐためである。

【0025】第2の理由は、以下の通りである。発光素子の電極材料には、TFTの特性に致命的な打撃を与えかねないAI、Mgといったアルカリ金属材料が用いられている。TFTの活性層にアルカリ金属が混入すると、TFTの電気的な特性が変動してしまい、経時的な信頼性の確保ができなくなってしまう。そこで、TFTの特性を損なわないようにするためには、TFTの作製工程処理室(クリーンルーム)と発光素子の作製工程処理室(クリーンルーム)とを離すことで、TFTの活性層がアルカリ金属によって汚染されないようにしている。そこで、その処理室移動の際に、アレイ基板にゴミが付着するのを防ぐためである。

板に設けられたトランス1次コイルと用いることによ 【0026】以上のような理由により、有機絶縁膜上に り、非接触でTFT基板に駆動電源および駆動信号を供 50 帯電防止膜を設ける。なお、本実施形態では、帯電防止 (5)

8

膜は水洗することで除去できる公知の帯電防止材料を用いて形成すればよい。なお、帯電防止膜を形成しなくても、なんらかの帯電防止のための手段を用いればよい。 ここまでの工程でのアレイ基板の概略図を図5に示す。

【0027】次いで、アレイ基板上に形成された回路および回路素子の動作確認をするために検査を行う。この検査工程について図1(図22)を用いて説明する。

【0028】アレイ基板には、TFTの作製と同一の工程において、2次コイル104a、整流回路104bおよび波形整形回路104cが形成されている。このアレ 10 イ基板上に、チェック基板106を設置する。

【0029】チェック基板は、非接触で(一定の間隔を保って)アレイ基板近傍に平面的に重ねられる基板であり、電源電圧および駆動信号を供給し、かつアレイ基板(TFT基板)の回路または回路素子の動作を電界、電磁界の変化で検出する基板である。

【0030】図3に示すように整流回路104bは、ダイオード601、コンデンサ602および抵抗603からなる。ダイオード601は、入力された交流電圧を整流化して直流電圧に変換する。本実施形態において、ア 20レイ基板上にTFTを形成する工程と同一の工程において整流回路のダイオードを形成するため、図3に示すように公知の方法でTFTをダイオードに代用している。

【0031】ここで、図20(A)に、ダイオード601において整流化される前の、交流の電圧の時間変化を示す。また、図20(B)に、整流化された後の電圧の時間変化を示す。図20(A)のグラフと図20(B)のグラフを比較してわかるように、整流化された後は、半周期毎に、電圧が0または一方の極性を有する値をとる、いわゆる脈流の電圧になっている。

【0032】図20(B)に示した脈流の電圧は、電源電圧として用いることができない。そこで通常では、コンデンサにおいて電荷を蓄えることによって、脈流を平滑化して直流の電圧に変換している。しかし、薄膜の半導体を用いて、脈流を十分に平滑化させることができる、大容量のコンデンサを形成するには、コンデンサ自体の面積が非常に大きくなり、現実的ではない。そこで、本発明では、整流化した後に位相の異なる脈流の電圧を合成(加算)し、電圧を平滑化する。上記構成により、コンデンサの容量が小さくても脈流を十分に平滑化40させることができ、さらには、コンデンサを積極的に設けなくとも、脈流を十分に平滑化させることができる。

【0033】なお図3では、4つのダイオード601から出力される、位相の異なる4つの脈流の信号を加算することで、電源電圧を生成していたが、本発明はこの構成に限定されない。位相分割の数はこれに限定されず、整流回路からの出力を、電源電圧として用いることができるぐらい平滑化することが可能であれば、位相分割の数は幾つでも良い。

【0034】図21に、複数の整流化された信号を加算 50 抗606、608、コンデンサ607、609を有し、

しすることで得られる、電源電圧の時間変化を示す。図21(A)は、4つの位相の異なる脈流の電圧を加算することで、1つの電源電圧が生成されている例を示している。

【0035】なお電源電圧は複数の脈流を加算して生成されるため、直流以外の成分であるリップルが存在している。リップルとは電源電圧の最も高い電圧と最も低い電圧との差を指す。リップルが小さければ小さいほど、電源電圧は直流に近づく。

【0036】図21(B)に、8つの位相の異なる脈流の電圧を加算することで得られる、電源電圧の時間変化を示す。図21(A)に示した電源電圧の時間変化と比較して、リップルが小さくなっていることがわかる。

【0037】図21 (C) に、16つの位相の異なる脈流の電圧を加算することで得られる、電源電圧の時間変化を示す。図21 (B) に示した電源電圧の時間変化と比較して、リップルが小さくなっていることがわかる。

【0038】このように、多くの位相の互いに異なる脈流を加算することで、電源電圧のリップルが小さくなり、より直流化されることがわかる。よって、位相分割の数が多ければ多いほど、整流回路104bから出力される電源電圧が平滑化されやすい。また、コンデンサ602の容量が大きければ大きいほど、整流回路104bから出力される電源電圧が平滑化されやすい。

【0039】整流回路104bにおいて生成された電源電圧は、端子604a、604bから出力される。具体的には、端子604aからグラウンドに近い電圧が出力され、端子604bからは正の極性を有する電源電圧が出力される。なお、ダイオードの陽極と陰極を逆に接続することで、出力される電源電圧の極性を逆にすることができる。端子にダイオードに対して、陽極と陰極が逆に接続されている場合は、出力の向きは逆になる。

【0040】なお、TFT基板上には様々な回路または回路索子(駆動回路、周辺論理回路等)が形成されており、各回路または回路索子の種類または用途によって、回路または回路素子に供給するべき電源電圧の高さが異なる。図3に示した整流回路104bでは、入力する交流の信号の振幅を調整することで、各端子に入力される電圧の高さを調整することができる。さらに、回路または回路素子によって接続する端子を変えることで、回路または回路素子に供給される電源電圧を変えることができる。

【0041】また、本発明で用いる整流回路104bは、図3に示した構成に限定されない。本発明で用いる整流回路104bは、入力された交流信号から直流の電源電圧を供給することができる回路であれば良い。

【0042】波形整形回路104cは、時間的に変化する量、すなわち電圧や電流等の波形を形成したり、整形したりするために用いる電子回路である。図3では、抵抗606、608、コンデンサ607、609を有し、

できる。

各回路素子を組み合わせて波形整形回路104cを構成 している。もちろん、波形整形回路は図3に示した構成 に限られない。本発明で用いる波形整形回路104c は、入力された交流の起電力から、具体的にはクロック 信号(CLK)、スタートパルス信号(SP)、ビデオ 信号(Video Signals)を生成し、出力す る。なお、波形整形回路104cから出力される信号は 上述したものに限定されず、モニターすることで欠陥箇 所を特定できる電磁波または電界を、TFT基板が有す る回路または回路素子において生じさせることができる 10 信号であれば、どのような波形の信号であっても良い。 【0043】チェック基板106は、トランス1次コイ ル107、電界の変化により光学特性が変化する材料 (ポッケルスセルもしくは液晶) 108、および電界の 変化により光学特性が変化する材料を挟むように透明導 電膜(代表的にはITO)109a、109bが形成さ れており、透明導電膜109bは接地されている。

【0044】チェック基板106に形成された1次コイ ル107とアレイ基板に形成された2次コイル104と は、中心に磁性体を設けて磁路としたコイルではなく、 チェック基板106とアレイ基板との間隔を近傍に保 ち、1次コイルが有する2つの端子間に交流電圧を印加 することで2次コイルが有する2つの端子間に起電力を 生じさせるものである。

【0045】2次コイルに生じた起電力である交流電圧 をアレイ基板に形成された整流回路により整流化し平滑 化することでアレイ基板が有する回路または回路素子を 駆動させるための直流電圧(以下、電源電圧と称する) として用いることができる。さらに、2次コイルに生じ た起電力である交流電圧をアレイ基板に形成された波形 30 整形回路により適当に電圧を信号波形に整形すること で、アレイ基板上の回路または回路素子を駆動させるた めの信号(以下、駆動信号と称する)として用いること ができる。

【0046】次に、1次コイル及び2次コイルの詳しい 構成について説明する。図23にコイルの拡大図を示 す。

【0047】図23(A)に示したコイルは、曲線を描 いて渦を巻いた状態になっており、コイルの両端にはコ イル用端子が形成されている。また、図23(B)に示 40 と、電気光学的特性が変化するという性質を利用した素 したコイルは矩形を描いて渦を巻いた状態になってお り、コイルの両端にはコイル用端子が形成されている。

【0048】なお、本発明で用いるコイルは、コイルが 有する配線全体が同一平面上に形成され、且つコイルが 有する配線が渦を巻いていれば良い。よって、コイルが 形成されている平面に対して垂直の方向から見たとき に、コイルの有する配線が曲線を描いていても、角のあ る形を描いていても良い。

【0049】また、コイルの巻数、線幅及び基板上に占

【0050】図1に示すとおり、チェック基板106が 有する1次コイル形成部と、アレイ基板 (TFT基板) 100が有する2次コイル形成部104は、一定の間隔 を空けて重ねられている。

【0051】1次コイル形成部と2次コイル形成部10 4とが重なっている部分の拡大図を、図23 (C) に示 す。図23 (C) において、1次コイル107と2次コ イル104は、配線の渦の巻く方向が同じになっている が、本発明はこの構成に限定されない。1次コイルと2 次コイルの渦の巻く方向が逆であっても良い。

【0052】チェック基板とアレイ基板とが一定の間隔 を保つため、本実施形態では、チェック基板に気体を一 定の圧力で流入させることで、チェック基板とアレイ基 板との間隔を保つ方法を用いる。この間隔は、実施者が 適宜決定すればよいが、本実施形態では、10~200 μmの間隔とするのが好ましい。また、気体を流入する ために、チェック基板には気体を流入させる穴110を 複数形成する。

【0053】アレイ基板とチェック基板との間隔を一定 に保つために気体以外にも絶縁性の液体を用いることも できる。

【0054】また、検査装置には、駆動電源および駆動 信号を入力する装置111、光源(ハロゲンランプ、放 電灯等の干渉性を有さない光源を用いればよい)112 a、光学系112b、ビデオカメラ113、画像処理装 置114が設けられており、TFTに電圧を印加する前 に、この光源112からの光を照射してポッケルスセル 表面からの光の様子を画像としてビデオカメラ113で 捉えて画像処理すればよい。

【0055】チェック基板106が有するアレイ基板 (TFT基板) に形成された回路または回路素子の動作 情報を検出する手段は、液晶もしくはポッケルスセル1 08のような電界の変化により光学特性の変化する材料 である。チェック基板106において、ポッケルス結晶 は第1電極109aと第2電極109bに挟まれている (図22)。

【0056】ポッケルスセルとは、電気光学効果(ポッ ケルス効果)を有する光学素子であって、電圧をかける 子である。この性質を利用し、結晶に交流電圧やパルス 電圧を加えて、光の変調やシャッター、円偏光の発生や 検出に用いることができる。具体的には、NH, H, PO .. BaTiO, KH, PO (KHP), KD, PO , (D・KDP), LiNbO, ZnTeまたはZnO の結晶体である。

【0057】アレイ基板上の回路または回路素子が駆動 して電界が変化し、その電界の変化によりポッケルスセ ルにおいて複屈折が生じて透過率が異なってみえる。す める面積は、必要に応じて設計者が適宜設定することが 50 なわち、正常な回路または回路素子と重なる部分のポッ

ケルスセルに比べて、欠陥のある回路または回路素子と 重なる部分のポッケルスセルは、明るく見えたり暗く見 えたりする。

【0058】例えば、画素に形成された欠陥が生じてい ない正常なTFTと欠陥が生じているTFTとでは、光 の透過率が異なる。これは、ポッケルスセルが有する強 誘電体結晶の光軸に対して垂直になるように素子基板を 配置すると、回路または回路素子において生じる電界に より、強誘電体結晶において複屈折が生じるためであ る。

【0059】この複屈折の、電界方向成分をもつ偏光に 対する屈折率は、電界の強さによって決まる。よって、 同じ構造を有し、なおかつ正常に動作している複数の回 路または回路素子においては、同じ強さの電界が生じて いるため、各回路または回路素子と重なる部分における 強誘電体結晶の屈折率は、ほぼ等しくなる。

【0060】しかし、欠陥のある回路または回路素子に おいて生じる電界は、他の正常な回路または回路素子に おいて生じる電界に比べて、強かったり弱かったりす る。よって、欠陥のある回路または回路素子と重なる部 20 分における強誘電体結晶の屈折率は、他の正常な回路ま たは回路素子と重なる部分における強誘電体結晶の屈折 率と異なる。よって、ポッケルスセルを通して素子基板 を見たときに、欠陥のある回路または回路素子と重なる 部分が、正常な回路または回路素子と重なる部分に比べ て、明るく見えたり、暗く見えたりする。

【0061】例えば、図1に示すように、アレイ基板に 対して垂直な方向における光を、偏光ビームスプリッタ ーなどの光学系を用いて分離し、その強度をモニターす ることで、ポッケルスセルの透過率を算出し、欠陥箇所 30 を検出することが可能である。なお、複数回にわたるモ ニターの結果に何らかの演算処理を施し、欠陥箇所を検 出するようにしても良い。

【0062】また、検査対象である全ての回路の出力を 検査専用回路に入力し、該検査専用回路において生じる 電界の強度を、電気光学素子を用いて測定することで、 欠陥の有無を特定したり、欠陥箇所そのものを特定した りしても良い。検査専用回路を用いることで、検査対象 である全ての回路または回路素子において、いちいちポ ッケルス・セルを用いてモニターする必要がなくなり、 検査工程を簡便化及び迅速化することができる。

【0063】なお、欠陥の検出は画素部に限定されず、 どの回路や回路素子においても本検査方法を適用するこ とができる。例えば、ポッケルスセルと、駆動回路や信 号線駆動回路を重ね合わせ、屈折率をモニターすること で、同じように欠陥箇所を検出することが可能である。 また素子基板上の引きまわし配線において生じる断線や ショートなどの欠陥も、同様に検出することが可能であ る。

上の各TFT基板に対して、製品化の可否を確認する。 この後、検査工程前に帯電防止膜を塗布した場合はこの 帯電防止膜を除去し、有機絶縁膜をエッチングしてバン ク207を形成し、230~350℃で加熱処理を行

【0065】次いで、アレイ基板100を分断してTF T基板101とする。アレイ基板上にTFT基板および 検査用回路(2次コイル、整流回路および波形整形回 路)をどのように形成するかは、実施者が適宜決定すれ 10 ばよいが、図5に示すようにTFT基板と検査工程で用 いた2次コイル、整流回路および波形整形回路が駆動回 路と電気的かつ物理的な接続を残さないように分断でき るようにしておくことが好ましい。

【0066】続いて、上記検査工程において、製品化可 能と判断されたTFT基板101の画素電極206上に 絶縁膜208、有機化合物層209、陰極210を形成 する。製品化できないと判断されたTFT基板は、製造 工程からはずし不良解析を行ったり、修復して製品化が 可能であれば修復し、再度検査工程に戻してもよい。

【0067】絶縁膜208は、ポリイミド、ポリアミ ド、アクリル等の有機樹脂絶縁膜をスピンコート法を用 いて、1~5nmの膜厚で形成する。有機化合物層209 は、発光層の他に正孔注入層として、正孔輸送層、正孔 阻止層、電子輸送層、電子注入層およびパッファー層と いった複数の層を組み合わせて積層し形成される。有機 化合物層209としての膜厚は、10~400m程度が 好ましい。陰極210は、有機化合物層209成膜後 に、蒸着法により形成する。陰極210となる材料とし ては、MgAgやAl-Li合金(アルミニウムとリチ ウムの合金)の他に、周期表の1族もしくは2族に属す る元素とアルミニウムとを共蒸着法により形成した膜を 用いても良い。なお、陰極210の膜厚は、80~20 0 nm程度が好ましい。

【0068】以上のようにして、アレイ基板100上に 複数形成されたTFT基板101を用いて発光装置を作 製することができる。

【0069】なお、本実施形態において、アレイ基板は ガラス基板を用いているが、石英基板またはプラスチッ ク基板を用いてもよい。ただし、プラスチック基板を用 40 いる場合は、基板の耐熱温度が低いため、プラスチック 基板が耐えうる温度で行える作製プロセスを実施者が適 宜決定すればよい。

【0070】なお、チェック基板およびアレイ基板に形 成されるコイルの巻き数、線幅、形状および基板上にし める面積は、実施者が適宜決定することができるが、1 次コイルの巻き数に対する2次コイルの巻き数の割合 は、1次コイルに印加される電圧が2次コイルに誘導さ れる電圧の割合に反比例することを考慮して設計するこ とが重要である。

【0064】以上のような検査工程により、アレイ基板 50 【0071】(実施形態2)本実施形態では、TFT基

板の他の検査方法について、図4、6を用いて説明する。

【0072】本実施形態において開示する検査方法は、アレイ基板上に形成されたTFT基板の回路および回路素子が動作する際に、電磁波が発生する。この電磁波の強度、周波数、ある時間毎の電磁波の強度、周波数を測定することでTFT基板の製品化の可否を確認する方法である。

【0073】あらかじめ、良品(製品化可能)と判断されたTFT基板の回路の電磁波の強度、周波数および時 10間毎の強度、周波数を測定して、TFT基板の製品化可否の判断の際の比較に用いればよい。

【0074】次いで、アレイ基板に形成されたTFT基板の回路および回路素子に電磁誘導を利用して、電源電圧および駆動信号を供給する。この時の電磁波の強度、周波数および時間毎(あるタイミング毎)の強度と周波数を電磁波の測定可能なアンテナを有するチェック基板を用いて測定する。

【0075】なお、チェック基板には、実施形態1と同様に1次コイルが形成されており、駆動電源および駆動 20 信号入力装置から1次コイルが有する2つの端子間に交流電圧を印加すると2次コイルが有する2つの端子間に起電力が生じる。

【0076】次いで、2次コイルに生じた起電力である 交流電圧をアレイ基板に形成された整流回路により整流 化し平滑化することでアレイ基板が有する回路または回 路素子を駆動させるための直流電圧(以下、電源電圧と 称する)として用いることができる。さらに、2次コイ ルに生じた起電力である交流電圧をアレイ基板に形成さ れた波形整形回路により適当に電圧を信号波形に整形す ることで、アレイ基板上の回路または回路素子を駆動さ せるための信号(以下、駆動信号と称する)として用い ることができる。

【0077】実施形態1で説明したように整流回路およ び波形整形回路により駆動電源および駆動信号が供給さ れると、TFT基板に形成された回路および回路素子が 動作し、電磁波が発生する。この発生した電磁波の強 度、スペクトルおよびタイミング毎の電磁波の強度、ス ペクトルをチェック基板に設けられたアンテナ303で 測定する。チェック基板301に設けられた電磁波セン 40 サー (アンテナともいう) 303は、計測周波数帯域が 1 MHz~1 GHzの公知のセンサー (アンテナ) を用 いればよい。また、チェック基板がアレイ基板に接触し ないようにするため、さらにアレイ基板上の回路または 回路素子が発する電磁波の測定再現性を向上させるため に、チェック基板が常にアレイ基板と一定の間隔を保つ 必要がある。本実施形態では、チェック基板に気体を一 定の圧力で吹き込みチェック基板とアレイ基板との間隔 を一定に保っている。この間隔は、実施者が適宜決定す

としている。気体を吹き込むために、チェック基板には 気体を吹き込む穴110が複数形成されている。アレイ 基板100およびチェック基板301におけるコイルと 端子の関係概略図は図4のとおりである。

【0078】アンテナ303は、アレイ基板に形成された微細な回路および回路素子から発生する電磁波の強度、周波数等の位置情報を得るのに必要な分解能にするため、チェック基板にアンテナを形成する間隔をなるべく狭くして、より多くの小型アンテナを形成することが好ましい。アンテナを形成する間隔は、画素サイズに合わせて最適な分解能が得られるように実施者が適宜決定すればよい。また、チェック基板とアレイ基板との間隔もなるべく狭く、本実施形態では100μm以下で、一定に保つことで分解能を向上させることができる。

【0079】本実施形態で開示する検査方法は、アレイ基板上に形成された回路および回路素子の動作を回路および回路素子が発する電磁波の強度、周波数、および時間毎の電磁波の強度、周波数を一度に測定して確認するため、短時間でTFT基板の良品確認をすることができる。

【0080】本実施形態で示した検査工程が終了したら、アレイ基板100をひとつひとつのTFT基板101に分断した後、製品化可能と判断されたTFT基板上に発光素子を形成してELディスプレイを作製したり、TFT基板と対向基板とを張り合わせて液晶を封入して液晶ディスプレイを作製したりすればよい。

【0081】このような検査工程を作製工程に組み込むことにより、不良画素または不良駆動回路を多数含んだTFT基板に関しては、発光素子の形成工程を行わないため、無駄に発光素子形成材料を用いることが無いため、製造コストを低減することができる。

【0082】また、非接触でアレイ基板に駆動電源また は駆動信号を送ることができるため、検査工程(または 検査工程準備)の際にアレイ基板にゴミが付着して汚染 されるという問題も解決することができる。

[0083]

【実施例】(実施例1)本実施例においては、本発明を用いて作製される発光素子について説明する。なお、ここでは、同一基板上に本発明の発光素子を有する画素部と、画素部の周辺に設ける駆動回路のTFT (nf) と、TFT基板の駆動を検査するためのトランスの2次コイル、整流回路および波形整形回路を同一基板上に作製する方法の一例について図 $7\sim10$ を用いて説明する。

度に耐えうる耐熱性を有するプラスチック基板を用いて もよい。

【0085】次いで、図7(A)に示すように、基板9 00上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜 などの絶縁膜から成る下地絶縁膜901を形成する。本 実施例では下地絶縁膜901として2層構造を用いる が、前記絶縁膜の単層膜または2層以上積層させた構造 を用いても良い。下地絶縁膜901の一層目としては、 プラズマCVD法を用い、SiH,、NH,、及びN,O を反応ガスとして成膜される酸化窒化珪素膜901aを 10 10~200nm (好ましくは50~100nm) 形成 する。本実施例では、膜厚50nmの酸化窒化珪素膜9 0 1 a (組成比Si=32%、O=27%、N=24 %、H=17%)を形成した。次いで、下地絶縁膜90 1の二層目としては、プラズマCVD法を用い、SiH 、、及びN、Oを反応ガスとして成膜される酸化窒化珪素 膜901bを50~200nm (好ましくは100~1 50 nm) の厚さに積層形成する。本実施例では、膜厚 100 n m の酸化窒化珪素膜901b (組成比Si=3 2%、O=59%、N=7%、H=2%)を形成した。 【0086】次いで、下地絶縁膜901上に半導体層9 02~906を形成する。半導体層906は、整流回路 においてTFTを変形させてダイオードを形成するため の半導体層である。なお、本明細書中において、チャネ ル形成領域、後のソース領域、ドレイン領域となるn型 不純物を高濃度に添加された領域を含む半導体層を活性 層ともいう。半導体層902~906は、非晶質構造を 有する半導体膜を公知の手段(スパッタ法、LPCVD 法、またはプラズマCVD法等)により成膜した後、公 知の結晶化処理(レーザー結晶化法、熱結晶化法、また 30 はニッケルなどの触媒を用いた熱結晶化法等)を行って 得られた結晶質半導体膜を所望の形状にパターニングし て形成する。この半導体層902~906の厚さは25 ~80 nm (好ましくは30~60 nm) の厚さで形成 する。結晶質半導体膜の材料に限定はないが、好ましく は珪素(シリコン)またはシリコンゲルマニウム(Si ₁ G e₁₋₁ (X=0.0001~0.02)) 合金などで 形成すると良い。本実施例では、プラズマCVD法を用 い、55nmの非晶質珪素膜を成膜した後、ニッケルを 含む溶液を非晶質珪素膜上に保持させた。この非晶質珪 40 素膜に脱水素化(500℃、1時間)を行った後、熱結 晶化(550℃、4時間)を行い、さらに結晶化を改善 するためのレーザーアニ―ル処理を行って結晶質珪素膜 を形成した。そして、この結晶質珪素膜をフォトリソグ ラフィー法を用いたパターニング処理によって、半導体 層902~906を形成した。

【0087】また、半導体層902~906を形成した後、TFTのしきい値を制御するために、半導体層902~906に微量な不純物元素(ポロンまたはリン)をドーピングしてもよい。

【0088】また、レーザー結晶化法で結晶質半導体膜 を作製する場合には、パルス発振型または連続発光型の エキシマレーザーやYAGレーザー、YVO、レーザー を用いることができる。これらのレーザーを用いる場合 には、レーザー発振器から放射されたレーザー光を光学 系で線状に集光し半導体膜に照射する方法を用いると良 い。結晶化の条件は実施者が適宜選択するものである が、エキシマレーザーを用いる場合はパルス発振周波数 300Hzとし、レーザーエネルギー密度を100~4 00mJ/cm¹(代表的には200~300mJ/cm 1)とする。また、YAGレーザーを用いる場合にはその 第2高調波を用いパルス発振周波数30~300kHz とし、レーザーエネルギー密度を300~600mJ/ c m¹ (代表的には350~500m J/c m²)とすると 良い。そして幅100~1000 μ m、例えば400 μ mで線状に集光したレーザー光を基板全面に渡って照射 し、この時の線状レーザー光の重ね合わせ率(オーバー ラップ率)を50~90%として行えばよい。

【0089】次いで、半導体層902~906を覆うゲ20 ート絶縁膜907を形成する。ゲート絶縁膜907はプラズマCVD法またはスパッタ法を用い、厚さを40~150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。

【0090】また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO.とを混合し、反応圧力40Pa、基板温度 $300\sim400$ ℃とし、高周波(13.56MHz)電力密度 $0.5\sim0.8W/cm^{1}$ で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後 $400\sim500$ ℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。

【0091】そして、ゲート絶縁膜907上にゲート電極を形成するための耐熱性導電層908を200~400nm (好ましくは250~350nm)の厚さで形成する。耐熱性導電層908は単層で形成しても良いし、必要に応じて二層あるいは三層といった複数の層から成る積層構造としても良い。耐熱性導電層にはTa、Ti、Wから選ばれた元素、または前記元素を成分とする合金か、前記元素を組み合わせた合金膜が含まれる。これらの耐熱性導電層はスパッタ法やCVD法で形成されるものであり、低抵抗化を図るために含有する不純物農度を低減させることが好ましく、特に酸素濃度に関しては30ppm以下とすると良い。本実施例ではW膜を30nmの厚さで形成する。W膜はWをターゲットとしてスパッタ法で形成しても良いし、6フッ化タングステン(WF・)を用いて熱CVD法で形成することもでき

る。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は $20\mu\Omega$ cm以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。このことより、スパッタ法による場合、純度 $99.9\sim99.9998$ のWターゲットを用い、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率 $9\sim20\mu\Omega$ cmを実現することができる。

【0092】一方、耐熱性導電層908にTa膜を用い る場合には、同様にスパッタ法で形成することが可能で ある。Ta膜はスパッタガスにArを用いる。また、ス パッタ時のガス中に適量のXeやKrを加えておくと、 形成する膜の内部応力を緩和して膜の剥離を防止するこ とができる。 α 相のTa膜の抵抗率は $20\mu\Omega$ cm程度 でありゲート電極に使用することができるが、 β 相のTa膜の抵抗率は180μΩcm程度でありゲート電極と するには不向きであった。TaN膜はα相に近い結晶構 造を持つので、Ta 膜の下地にTa N膜を形成すれば α 20 相のTa膜が容易に得られる。また、図示しないが、耐 熱性導電層908の下に2~20nm程度の厚さでリン (P) をドープしたシリコン膜を形成しておくことは有 効である。これにより、その上に形成される導電膜の密 着性向上と酸化防止を図ると同時に、耐熱性導電層90 8、909中に微量に存在しているアルカリ金属元素が 第1の形状のゲート絶縁膜907に拡散するのを防ぐこ とができる。いずれにしても、耐熱性導電層908は抵 抗率を $10\sim50\mu\Omega$ cmの範囲ですることが好まし

【0093】さらに、ゲート電極を形成する他の例として、第1の導電膜としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を用いてもよい。また、第1の導電膜をタングステン(W)膜で形成し、第2の導電膜をCu膜、第3の導電膜をチタン(Ti)膜とする組み合わせ、第1の導電膜をアルミニウム(A1)膜、第3の導電膜をチタン(Ti)膜とする組み合わせ、第1の導電膜を穿化タンタル(TaN)間で

(A1) 膜、第3の導電膜をチタン(Ti) 膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をA1膜とする組み合わせ、第1 40の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜、第3の導電膜をチタン(Ti)とする組み合わせとする3層構造のゲート電極を採用してもよい。

【0094】本実施例においては、第1層目の導電層 (第1導電膜908) にTaN膜、第2層目の導電層 (第2導電膜909) にW膜を形成した(図7 (A))。

【0095】次に、フォトリソグラフィーの技術を使用 ガスにCF、およびC1、を用い、それぞれのガス流量上してゲート電極を形成するためのレジストによるマスク 50 を30/30 (SCCM) とし、1Paの圧力でRF (13.

9 1 0 a および 2 次コイルを形成するためのレジストに よるマスク910bを形成する。そして、第1のエッチ ング処理を行う。第1のエッチング処理は、第1のエッ チング条件および第2のエッチング条件で行われる。 【0096】本実施例ではICPエッチング装置を用 い、エッチング用ガスにCl,とCF,O,を用い、それ ぞれのガス流量比を25/25/10とし、1Paの圧 力で3. 2W/cm²のRF(13.56MHz)電力を 投入してプラズマを形成して行う。基板側(試料ステー 10 \forall) $k = 2.24 \, \text{mW/cm}^2 \, \text{ORF} \, (1.3.56 \, \text{MHz})$ 電力を投入し、これにより実質的に負の自己バイアス電 圧が印加される。第1のエッチング条件によりW膜をエ ッチングする。続いて、レジストからなるマスクを除去 せずに第2のエッチング条件に変えてエッチング用ガス にCF,およびCl,を用いて、それぞれのガス流量比を 30/30(SCCM)とし、1Paの圧力でRF(13.56 MHz)電力を投入してプラズマを形成して行う。基板 側(試料ステージ)にも20WのRF(13.56MH z) 電力を投入し、実質的に負の自己バイアス電圧を印 加する。

【0097】第1のエッチング処理により第1のテーパ形状を有する導電層911~915が形成される。導電層911~915のテーパの角度は15~30°となるように形成される。残渣を残すことなくエッチングするためには、10~20%程度の割合でエッチング時間を増加させるオーバーエッチングを施すものとする。W膜に対する酸化窒化シリコン膜(ゲート絶縁膜907)の選択比は2~4(代表的には3)であるので、オーバーエッチング処理により、酸化窒化シリコン膜が露出した面は20~50nm程度エッチングされる。

【0098】そして、第1のドーピング処理を行い一導電型の不純物元素を半導体層に添加する。ここでは、レジストからなるマスク910を除去せずにn型を付与する不純物元素添加の工程を行う。半導体層 $902\sim90$ 6の一部に第1のテーパ形状を有する導電膜 $911\sim915$ をマスクとして自己整合的に不純物を添加し、第1のn型不純物領域 $916\sim920$ を形成する。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用い、イオンドープ法により第1のn型不純物領域 $916\sim920$ には $1\times10^{10}\sim1\times10^{11}$ atoms/ cm^3 の濃度範囲でn型を付与する不純物元素が添加される(図7(B))。

【0099】次にレジストからなるマスクを除去せずに第2のエッチング処理を行う。第2のエッチング処理は、第3のエッチング条件および第4のエッチング条件で行う。第2のエッチング処理も第1のエッチング処理と同様にICPエッチング装置により行い、エッチングガスにCF、およびC1、を用い、それぞれのガス流量比を30/30(SCCM)とし、1Paの圧力でRF(13

56MHz) 電力を投入してプラズマを形成して行う。 基板側(試料ステージ)にも20WのRF(13.56 MHz) 電力を投入し、実質的に負の自己バイアス電圧 を印加する。この第3のエッチング条件により、W膜お よびTaN膜とも同程度にエッチングされた導電膜92 1~925が形成される(図7(C))。

【0100】この後、レジストからなるマスクをそのま まに第4のエッチング条件に変えて、エッチング用ガス にCF,とC1,およびO,の混合ガスを用い、1Paの圧 カでRF電力(13.56MHz)電力を投入してプラ ズマを形成して行う。基板側 (試料ステージ) にも20 WのRF (13.56MHz) 電力を投入し、実質的に 負の自己バイアス電圧を印加する。この第4のエッチン グ条件でW膜をエッチングして、第2の形状の導電膜9 26~930を形成する(図7(D))。

【0101】なお、本実施例において2次コイルはゲー ト電極を形成するためのエッチング処理がすべて終了し た後に、渦巻き状のマスクを用いてエッチングして形成 すればよい。従って、ゲート電極を形成する領域は、エ ッチング処理中はマスクで覆っておく。また、渦巻き状 20 のマスクは、2次コイルが外径1mm、内径0.5mm になるように形成しているが、2次コイルの形状は円形 の渦巻きに限定されるものではなく、実施者が適宜決定 すればよい。また、各TFT基板に形成する2次コイル の数は、TFT基板の駆動電圧にあわせて実施者が適宜 決定すればよい。さらに、2次コイルを形成する方法 も、本実施例に限定されるものではなく、実施者が決定 すればよい。

【0102】次いで、第2のドーピング工程(第2の形 にn型不純物元素の添加)を行い、第1のn型不純物領 域916~920と接するチャネル形成領域側に第2の n型不純物領域933~937とを形成する。第2のn 型不純物領域における不純物濃度は、1×10' ~1× 10' atoms/cm となるようにする。この第2のドーピ ング工程においては、1層目の第2の形状の導電膜92 6a~930aのテーパ部を介しても半導体層にn型不 純物元素が添加されるような条件になっており、本明細 書において、1層目の第2の形状の導電膜926a~9 lappedの意味で付す) 領域、1層目の第2の形状の導電 膜926a~930aとは重ならない第2のn型不純物 領域をLoff(offはoffsetの意味で付す)ということと する(図8(A))。

【0103】次いで、図8(B)に示すように、後のp チャネル型TFTの活性層(チャネル形成領域およびソ ース・ドレイン領域となる高濃度に不純物が添加された 領域を含めた半導体層)となる半導体層902、90 5、906に一導電型とは逆の導電型の不純物領域93 9 (939a、939b)、940 (940a、940 50 好ましくは0.1ppm以下の窒素雰囲気中で400~

b) 及び933 (9323a、933b) を形成する。 第2の形状の導電層926、929、930をマスクと してp型を付与する不純物元素を添加し、自己整合的に 不純物領域を形成する。このとき、後のnチャネル型T FTの活性層となる半導体層903、904は、レジス トからなるマスク938a、938bを形成し全面を被 覆しておく。ここで形成されるp型不純物領域939、 940、941はジボラン(B, H₆)を用いたイオンド ープ法で形成し、p型不純物領域939、940、94 10 1のp型を付与する不純物元素の濃度は、2×10'°~ 2×10¹¹ atoms/cm¹ となるようにする。

【0104】p型不純物領域939、940、941に は詳細にはn型を付与する不純物元素が含有されている が、これらの不純物領域939、940、941のp型 を付与する不純物元素の濃度は、n型を付与する不純物 元素の濃度の1.5から3倍となるように添加されるこ とによりp型不純物領域でpチャネル型TFTのソース 領域およびドレイン領域として機能するために何ら問題 は生じない。

【0105】その後、図8(C)に示すように、第2の 形状を有する導電層926~930およびゲート絶縁膜 上に第1の層間絶縁膜942を形成する。第1の層間絶 縁膜942は窒化シリコン膜、酸化シリコン膜、酸化窒 化シリコン膜、またはこれらを組み合わせた積層膜で形 成すれば良い。いずれにしても第1の層間絶縁膜942 は無機絶縁材料から形成する。第1の層間絶縁膜942 の膜厚は100~200nmとする。第1の層間絶縁膜 942として酸化シリコン膜を用いる場合には、プラズ マCVD法でTEOSとO,とを混合し、反応圧力40 状の第1の導電膜926a~930aを介して半導体層 30 Pa、基板温度300~400℃とし、高周波(13. 56MHz) 電力密度 0.5~0.8 W/cm¹ で放電させて形 成することができる。また、第1の層間絶縁膜942と して酸化窒化シリコン膜を用いる場合には、プラズマC VD法でSiH,、N,O、NH,から作製される酸化窒 化シリコン膜、またはSiH,、N,Oから作製される酸 化窒化シリコン膜で形成すれば良い。この場合の作製条 件は反応圧力20~200Pa、基板温度300~40 0℃とし、高周波 (60MHz) 電力密度 0.1~1.0W /cm で形成することができる。また、第1の層間絶縁膜 30aと重なる第2のn型不純物領域をLov (ovはover 40 942としてSiH,、N,O、H,から作製される酸化 窒化水素化シリコン膜を適用しても良い。窒化シリコン 膜も同様にプラズマCVD法でSiH、NHから作製 することが可能である。

【0106】そして、それぞれの濃度で添加されたn型 またはp型を付与する不純物元素を活性化する工程を行 う。この工程はファーネスアニール炉を用いる熱アニー ル法で行う。その他に、レーザーアニール法、またはラ ピッドサーマルアニール法 (RTA法)を適用すること ができる。熱アニール法では酸素濃度が1ppm以下、

700℃、代表的には500~600℃で行うものであ り、本実施例では550℃で4時間の加熱処理を行っ た。また、基板900に耐熱温度が低いプラスチック基 板を用いる場合にはレーザーアニール法を適用すること が好ましい。

【0107】この加熱処理工程において、半導体層を結 晶化させる工程で用いた触媒元素 (ニッケル) が、ゲッ タリング作用を有する周期表の15族に属する元素(本 実施例ではリン) が高濃度に添加された第1のn型不純 物領域に移動(ゲッタリング)させ、チャネル形成領域 10 い。 における触媒元素の濃度を低減することができる。

【0108】活性化の工程に続いて、雰囲気ガスを変化 させ、3~100%の水素を含む雰囲気中で、300~ 450℃で1~12時間の加熱処理を行い、半導体層を 水素化する工程を行う。この工程は熱的に励起された水 素により半導体層にある10''~10''/cm'のダングリ ングボンドを終端する工程である。水素化の他の手段と して、プラズマ水素化(プラズマにより励起された水素 を用いる)を行っても良い。いずれにしても、半導体層 902~906中の欠陥密度を10''/cm'以下とするこ 20 とが望ましく、そのために水素を0.01~0.1atom ic%程度付与すれば良い。

【0109】そして、有機絶縁物材料からなる第2の層 間絶縁膜943を1.0~2.0μmの平均膜厚で形成 する。有機樹脂材料としては、ポリイミド、アクリル、 ポリアミド、ポリイミドアミド、BCB (ベンゾシクロ ブテン) 等を使用することができる。例えば、基板に塗 布後、熱重合するタイプのポリイミドを用いる場合に は、クリーンオープンで300℃で焼成して形成する。 また、アクリルを用いる場合には、2液性のものを用 い、主材と硬化剤を混合した後、スピナーを用いて基板 全面に塗布した後、ホットプレートで80℃で60秒の 予備加熱を行い、さらにクリーンオーブンで250℃で 60分焼成して形成することができる。

【0110】このように、第2の層間絶縁膜943を有 機絶縁物材料で形成することにより、表面を良好に平坦 化させることができる。また、有機樹脂材料は一般に誘 電率が低いので、寄生容量を低減できる。しかし、吸湿 性があり保護膜としては適さないので、本実施例のよう ン膜、酸化窒化シリコン膜、窒化シリコン膜などと組み 合わせて用いると良い。さらに、本実施例では、第2層 間絶縁膜943を有機絶縁物材料で形成したが、無機絶 縁材料を用いて形成し、その表面をCMP法等で平坦化 して得られる膜を第2層間絶縁膜としてもよい。

【0111】ところで、有機絶縁材料を用いて形成され る第2の層間絶縁膜943は、水分やガスを発生してし まう可能性がある。発光素子は水分やガス(酸素)で劣 化しやすいことが知られている。実際に層間絶縁膜に有

に発生する熱で、有機樹脂絶縁膜から水分やガスが発生 し、発光素子の劣化が起こりやすくなってしまうことが 考えられる。そこで、有機絶縁材料で形成された第2の 層間絶縁膜943上に絶縁膜944を形成する。なお、 絶縁膜944は、酸化シリコン膜、酸化窒化シリコン 膜、窒化シリコン膜などを用いて形成される。なおここ で形成される絶縁膜944はスパッタ法またはプラズマ CVD法を用いて形成すればよい。また、絶縁膜944 は、コンタクトホールを形成した後から形成してもよ

【0112】その後、所定のパターンのレジストマスク を形成し、それぞれの半導体層に形成されソース領域ま たはドレイン領域とする不純物領域に達するコンタクト ホールを形成する。コンタクトホールはドライエッチン グ法で形成する。

【0113】そして、導電性の金属膜をスパッタ法や真 空蒸着法で形成し、マスクでパターニングし、その後エ ッチングすることで、配線945~952を形成する。 図示していないが、本実施例ではこの配線を、そして、 膜厚50nmのTi膜と、膜厚500nmの合金膜(A 1とTiとの合金膜)との積層膜で形成した。

【0114】次いで、その上に透明性導電膜を80~1 20 nmの厚さで形成し、エッチングすることによって 画素電極(陽極)953を形成する(図9(A))。な お、本実施例では、透明電極として酸化インジウム・ス ズ(ITO)膜や酸化インジウムに2~20[%]の酸化 亜鉛(2n〇)を混合した透明導電膜を用いる。

【0115】また、陽極953は、ドレイン配線950 と接して重ねて形成することによって電流制御用TFT 30 のドレイン領域と電気的な接続が形成される。ここで、 陽極953に対して180~350℃で加熱処理を行っ

【0116】次に、図9(B)に示すように、陽極95 3上に有機絶縁膜954を形成する。

【0117】ここまでの工程でTFTが形成されたアレ イ基板が空気中のゴミに汚染されたり、破壊したりしな いように有機絶縁膜954上に、帯電防止作用を有する 極薄い膜(以下、帯電防止膜という)955を形成す る。帯電防止膜955は、水洗で除去可能な公知の材料 に、第1の層間絶縁膜942として形成した酸化シリコ 40 から形成する(図9(C))。本実施例では、スタティ サイド (ACL社製)を塗布して帯電防止膜955を形 成した。

【0118】次いで、ここまでの工程で作製されたアレ イ基板上のTFTの良否 (TFT基板の製品化の可否) を判断するための検査を行う。発光素子を形成する材料 は高価であるので、商品として出荷できないTFT基板 に発光素子を形成してしまうのは、製造コストの面で問 題がある。そこで、正常に駆動できないもしくは信号伝 達のできないTFT基板を見分けるために検査工程を組 機樹脂絶縁膜を用いて形成された発光装置が使用する際 50 み込む。検査方法は、実施形態1もしくは実施形態2に

示したような検査方法を適応すればよい。

【0119】TFT基板を発光素子を形成する処理室 (クリーンルーム) に運びこんだら、帯電防止膜955 を水洗して除去する。次いで、有機絶縁膜954をエッ チングして、画素(発光素子)に対応する位置に開口部 を有するバンク956を形成する。本実施例ではレジス トを用いてバンク956を形成する。本実施例では、バ ンク956の厚さを1μm程度とし、配線と陽極とが接 する部分を覆う領域がテーパ状になるように形成する (図10(A))。

23

【0120】なお、本実施例においては、パンク956 としてレジストでなる膜を用いているが、場合によって は、ポリイミド、ポリアミド、アクリル、BCB(ベン ゾシクロプテン)、酸化珪素膜等を用いることもでき る。バンク956は絶縁性を有する物質であれば、有機 物と無機物のどちらでも良いが、感光性アクリルを用い てバンク956を形成する場合は、感光性アクリル膜を エッチングしてから180~350℃で加熱処理を行う のが好ましい。また、非感光性アクリル膜を用いて形成 する場合には、180~350℃で加熱処理を行った 後、エッチングしてバンクを形成するのが好ましい。

【0121】次に、陽極表面に拭浄処理を行う。なお、 本実施例においては、ベルクリン(小津産業製)を用い て陽極953表面を拭うことにより、陽極953表面の 平坦化および表面に付着したゴミの除去を行う。拭浄の 際の洗浄液としては、純水を用い、ベルクリンを巻き付 けている軸の回転数は100~300rpmとし、押し 込み値は0.1~1.0mmとする(図10(A))。

【0122】次いで、バンク956および陽極953を イミド、ポリアミド、ポリイミドアミドなどの有機樹脂 膜をスピンコート法、蒸着法またはスパッタ法などを用 いて膜厚1~5nmで形成する。この絶縁膜を形成するこ とで、陽極953表面のクラック等を掩蔽することがで き、発光素子の劣化を防ぐことができる。

【0123】この後、公知の方法でアレイ基板を複数の TFT基板に分断する。この時、製品化するTFT基板 領域より外側に形成してある検査工程で用いたトランス 2次コイル、整流回路および波形形成回路を電気的かつ 物理的に分断しておくことが好ましい。なお、本実施例 40 の材料を用いても良い。 ではトランス2次コイル、整流回路および波形形成回路 を製品化するTFT基板領域より外側に形成したが、こ れらを形成する場所は実施者が適宜決定すればよく、本 実施例に限定されない。

【0124】次いで、製品化が可能なTFT基板の絶縁 膜957上に有機化合物層958、陰極959を蒸着法 により形成する。なお、本実施例では発光素子の陰極と してMgAg電極を用いるが、公知の他の材料であって も良い。なお、有機化合物層949は、発光層の他に正 孔注入層、正孔翰送層、電子翰送層、電子注入層及びパ 50 50nm)、陰極959の厚さは80~200nm(典

ッファー層といった複数の層を組み合わせて積層するこ とにより形成されている。本実施例において用いた有機 化合物層の構造について以下に詳細に説明する。

【0125】本実施例では、正孔注入層として、銅フタ ロシアニンを用い、正孔輸送層としては、α-NPDを 用いてそれぞれ蒸着法により形成する。

【0126】次に、発光層が形成されるが、本実施例で は発光層に異なる材料を用いることで異なる発光を示す 有機化合物層の形成を行う。なお、本実施例では、赤、

緑、青色の発光を示す有機化合物層を形成する。また、 成膜法としては、いずれも蒸着法を用いているので、成 膜時にメタルマスクを用いることにより画素毎に異なる 材料を用いて発光層を形成することは可能である。

【0127】赤色に発色する発光層は、Alq:にDC Mをドーピングしたものを用いて形成する。その他にも N, N'-ジサリチリデン-1,6-ヘキサンジアミナト) ジンク(II) (Zn(salhn))にEu錯体である (1,10-フェナントロリン) トリス(1,3-ジフェニ ループロパン-1,3-ジオナト)ユーロピウム (III) (Eu (DBM)」(Phen)をドーピングしたもの 等を用いることができるが、その他公知の材料を用いる こともできる。

【0128】また、緑色に発色する発光層は、CBPと Ir (ppy),を共蒸着法により形成させることがで きる。なお、この時には、BCPを用いて正孔阻止層を 積層しておくことが好ましい。また、この他にもアルミ キノリラト錯体(Alq.)、ベンゾキノリノラトベリ リウム錯体(BeBa)を用いることができる。さらに は、キノリラトアルミニウム錯体(Alq1)にクマリ 覆って絶縁膜957を形成する。絶縁膜957は、ポリ 30 ン6やキナクリドンといった材料をドーパントとして用 いたものも可能であるが、その他公知の材料を用いるこ ともできる。

> 【0129】さらに、青色に発色する発光層は、ジスチ リル誘導体であるDPVBiや、アゾメチン化合物を配 位子に持つ亜鉛錯体であるN, N' - ジサリチリデン-1,6-ヘキサンジアミナト) ジンク(II) (Zn(s) alhn)) 及び4,4'-ピス(2,2-ジフェニルー ピニル) - ピフェニル (DPVBi) にペリレンをドー ピングしたものを用いることもできるが、その他の公知

> 【0130】次に電子輸送層を形成する。なお、電子輸 送層としては、1,3,4-オキサジアゾール誘導体や 1,2,4-トリアゾール誘導体(TAZ)といった材料 を用いることができるが、本実施例では、1,2,4-ト リアゾール誘導体(TAZ)を用いて蒸着法により30 ~60 nmの膜厚で形成する。

> 【0131】以上により、積層構造からなる有機化合物 層が形成される。なお、本実施例における有機化合物層 958の膜厚は10~400nm (典型的には60~1

型的には100~150nm) とすれば良い。

【0132】有機化合物層を形成した後で、蒸着法により発光素子の陰極959が形成される。本実施例では発光素子の陰極となる導電膜としてMgAgを用いているが、Al-Li合金膜(アルミニウムとリチウムとの合金膜)や、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着法により形成された膜を用いることも可能である。

【0133】こうして図6(B)に示すような構造の発 光装置が完成する。なお、陽極953、有機化合物層9 10 58、陰極959と積層された部分960を発光素子と 称する(図10(B))。

【0134】pチャネル型TFT1000及びnチャネル型TFT1001は駆動回路102のTFTであり、CMOSを形成している。スイッチング用TFT1002及び電流制御用TFT1003は画素部103のTFTであり、駆動回路102のTFTと画素部103のTFTとは同一基板上に形成することができる。

【0135】なお、発光素子を用いた発光装置の場合、 駆動回路の電源の電圧が5~6V程度、最大でも10V 20 程度で十分なので、TFTにおいてホットエレクトロン による劣化は、あまり問題にならない。

【0136】なお、本実施例では発光装置のTFT基板 (TFT素子基板) に検査工程で用いるトランスの2次 コイルを形成する一例を示しているが、発光装置に限らず、液晶表示装置等、半導体素子からなる半導体装置の素子基板上に本発明を適用するためのトランスの2次コイルを作り込むことが可能である。

【0137】(実施例3)実施例1に従い、第2の層間 絶縁膜943まで形成する。次いで、実施例1における 30 絶縁膜944を形成するかわりに、第2の層間絶縁膜に プラズマ処理を行って第2の層間絶縁膜935表面を改 質させる方法について図11~13で説明する。

【0138】例えば、第2の層間絶縁膜943を水素、窒素、炭化水素、ハロゲン化炭素、弗化水素または希ガス(Ar、He、Ne等)から選ばれた一種または複数種の気体中でプラズマ処理することにより第2の層間絶縁膜943の表面に新たな被膜を形成したり、表面に存在する官能基の種類を変更させたりして、第2の層間絶縁膜943の表面改質を行うことができる。第2の層間40絶縁膜943あ面には、図11に示すように緻密化された膜943Bが形成される。本明細書において、この膜を硬化膜943Bと称する。これにより、有機樹脂膜からガスや水分が放出されるのを防ぐことができる。

【0139】さらに、本実施例のように表面改質を行った後、陽極(ITO)を形成するため、熱膨張率の異なる材料が直接接した状態で加熱処理されることがなくなる。したがって、ITOのクラック(亀裂)等の発生を防ぐことができ、発光素子の劣化を防止することもできる。なお、第2の層間絶縁膜943のプラズマ処理化

は、コンタクトホールを形成する前、後どちらでもよい。

【0140】なお、硬化膜943Bは、有機絶縁材料からなる第2の層間絶縁膜943の表面を水素、窒素、炭化水素、ハロゲン化炭素、弗化水素または希ガス(Ar、He、Ne等)から選ばれた一種または複数種の気体中でプラズマ処理することにより形成される。従って、硬化膜943B中には、水素、窒素、炭化水素、ハロゲン化炭素、弗化水素または希ガス(Ar、He、Ne等)の気体元素が含まれていると考えられる。

【0141】また、その他の例として図12に示すように実施例1に従い、第2の層間絶縁膜943まで形成した後、第2の層間絶縁膜943上に、絶縁膜944として、DLC膜943Cを形成してもよい。

【0142】DLC膜の特徴としては、1550cm⁻¹ あたりに非対称のピークを有し、1300cm⁻¹ あたりに肩をもつラマンスペクトル分布を有する。また、微小硬度計で測定した時に15~25GPaの硬度を示すほか、耐薬品性に優れるという特徴をもつ。さらに、DLC膜はCVD法もしくはスパッタ法にて成膜可能であり、室温から100℃以下の温度範囲で成膜できる。成膜方法はスパッタリング法、ECRプラズマCVD法、高周波プラズマCVD法またはイオンビーム蒸着法といった方法を用いれば良く、膜厚5~50m程度に形成すればよい。

【0143】また、その他の例として図13に示すように実施例1に従い、第2の層間絶縁膜943まで形成した後、第2の層間絶縁膜943表面にプラズマ処理を行い表面改質をして硬化膜943Bを形成した後、硬化膜943B上にDLC膜943Bを形成してもよい。なお、DLC膜943Cは、成膜方法はスパッタリング法、ECRプラズマCVD法、高周波プラズマCVD法またはイオンビーム蒸着法といった方法を用いて、5~50m程度の膜厚で形成すればよい。

【0144】(実施例5)実施例1の工程に従い、バンク956を形成した後、バンク956表面をプラズマ処理することでバンク956の表面改質を行う例について図14を用いて説明する。

【0145】バンク956は、有機樹脂絶縁膜を用いて 形成しているが、水分やガスを発生してしまい、実際に 発光装置を使用した際に生じる熱により水分やガスの発 生しやすくなってしまうという問題がある。

【0146】そこで、加熱処理を行った後、図14に示すようにバンク956の表面改質を行うためにプラズマ処理を行う。水素、窒素、ハロゲン化炭素、弗化水素または希ガスから選ばれた一種または複数種の気体中でプラズマ処理を行う。

【0147】これにより、バンク956表面が緻密化し、水素、窒素、ハロゲン化炭素、弗化水素または希ガ 50 スから選ばれた一種または複数種の気体元素を含む硬化 膜が形成され、内部から水分やガス(酸素)が発生する のを防ぐことができ、発光素子の劣化を防ぐことができ る。

27

【0148】なお、本実施例は、実施例1~実施例4の いずれとも組み合わせて用いることができる。

【0149】(実施例4)本発明は、TFTの形状に限 定されることなく適応することが可能である。本実施例 では、TFTにポトムゲート型TFTを形成した発光装 置の作製方法について図15、16を用いて説明する。

【0150】アレイ基板50上に、酸化シリコン膜、窒 10 化シリコン膜、酸化窒化シリコン膜から選ばれた材料で 下地絶縁膜51を形成し、ゲート電極を形成するために Ta、Ti、W、Mo、CrまたはAlから選ばれた元 素またはいずれかの元素を主成分とする導電膜を形成 し、所望の形状にパターニングしてゲート電極52を得 る。 次いで、ゲート絶縁膜は、酸化シリコン膜、窒化 シリコン膜または酸化窒化シリコン膜の単層、もしくは いずれかの膜の積層構造からなるゲート絶縁膜53を形 成する。続いて、非晶質半導体膜として公知の方法で非 晶質シリコン膜を10~1150nm厚に形成する。な お、ゲート絶縁膜53と非晶質シリコン膜とは、同じ成 膜法で形成することが可能であるため、両者を連続形成 してもよい。連続形成することで、一旦大気に曝すこと がなくなり、表面の汚染を防ぐことができ、作製するT FTの特性バラツキやしきい値電圧の変動を低減するこ とができる

【0151】次いで、結晶化のための処理を行い、結晶 質半導体膜54を得る。結晶化工程は、レーザ照射によ る方法、加熱処理による方法のいずれかまたは組み合わ せて行ってもよい。結晶化工程が終わったら、後の不純 30 物添加工程において結晶質シリコン膜(チャネル形成領 域)を保護する絶縁膜(図示せず)を100~400nm 厚で形成する。この絶縁膜は、不純物元素を添加する時 に結晶質シリコン膜が直接プラズマに曝されないように するためと、さらに、微妙な濃度制御を可能にするため に形成される。

【0152】次いで、レジストからなるマスクを用い て、後のTFTの活性層となる結晶質シリコン膜にn型 不純物元素を添加してTFTのソース領域およびドレイ ン領域55を形成する。

【0153】次いで、結晶質シリコン膜に添加された不 純物元素を活性化する工程を行う。なお、結晶化処理を 触媒元素を用いて行った場合は、活性化と同一工程にお いてシリコン膜に塗布した触媒元素の捕獲(ゲッタリン グ) も行うことができる。加熱処理の際の雰囲気とし て、ロータリーポンプやメカニカルブースターポンプに より排気を行って、減圧の雰囲気としてもよい。

【0154】次いで、結晶質シリコン膜上の絶縁膜を除 去し、結晶質シリコン膜を所望の形状にパターニングし た後、絶縁膜56を形成する。絶縁膜は、酸化シリコン 50 ように成膜されたDLC (Diamond Like Carbon) 膜、

膜、窒化シリコン膜、酸化窒化シリコン膜等の無機絶縁 膜または、ポリイミド、アクリル、ポリアミド、ポリイ ミドアミド、エポキシ系樹脂膜、BCB(ベンゾシクロ プテン) から選ばれた有機樹脂材料を用いて形成する。 【0155】その後、それぞれのTFTのソース領域ま たはドレイン領域に達するコンタクトホールを形成し て、各TFTを電気的に接続するための配線57をアル ミニウムまたはアルミニウムを主成分とする導電膜で形 成する。続いて、配線58を覆って層間絶縁膜58を形 成する。層間絶縁膜は、酸化シリコン膜、窒化シリコン 膜、酸化窒化シリコン膜等の無機絶縁膜または、ポリイ ミド、アクリル、ポリアミド、ポリイミドアミド、エポ キシ系樹脂膜、BCB(ベンゾシクロプテン)から選ば れた有機樹脂材料を用いて形成すればよい。

【0156】次いで、発光素子の陽極となる画素電極5 9を導電膜を用いて形成する。導電膜としては、クロ ム、モリブデン、タングステン、タンタルまたはニオブ から選ばれた金属を用いればよい(図15(A))。

【0157】続いて、後のバンク(本明細書では、画素 20 電極上に開口部を有し、かつ画素電極端部を覆って設け られた絶縁膜のことをバンクと称する)を形成するため の有機絶縁膜60を形成し(図15(B))、その表面 に帯電防止のために帯電防止膜61を形成するとよい。 これは、この後の検査工程の際にTFT基板にゴミが付 着するのを防ぐために設けている。

【0158】次いで、アレイ基板上に形成されたTFT の動作を検査して製品化可能であるか確認するための検 査工程を行う。検査方法としては、実施形態1または実 施形態2に示した方法を用いればよい。

【0159】検査工程終了後、帯電防止膜61を水洗等 により除去し、有機絶縁膜60をエッチングしてパンク 62を形成する(図15(C))。

【0160】次いで、上記検査工程において、製品化可 能と判断されたTFT基板上に有機化合物層63、陰極 64を形成する。

【0161】有機化合物層63は、発光層の他に正孔注 入層として、正孔輸送層、正孔阻止層、電子輸送層、電 子注入層およびバッファー層といった複数の層を組み合 わせて積層し形成される。有機化合物層63としての膜 40 厚は、10~400m程度が好ましい(図16

(A)).

【0162】有機化合物層63成膜後に、陰極64を形 成する。陰極64は、MgAgやAl-Li合金(アル ミニウムとリチウムの合金)を用いて極薄く(20m以 下) 1層目の陰極64aを成膜し、さらに重ねて、透明 導電膜64bを80~200m程度に成膜した2層構造 とした(図16(B))。

【0163】次いで、バンク62および陰極64を覆っ て保護膜65を形成した。保護膜としては、Arを含む

酸化シリコン膜、窒化シリコン膜のいずれかを用いて形 成すればよい(図16(C))。

【0164】以上のようにして、アレイ基板上に複数形 成されたTFT基板を用いて発光装置を作製することが

【0165】 (実施例5) 本実施例では、TFTの活性 層となる半導体膜を触媒元素を用いて結晶化させ、その 後、得られた結晶質半導体膜の触媒元素濃度を低減させ る方法について説明する。

【0166】図17 (a) において、基板1100は、 好ましくはバリウムホウケイ酸ガラスやアルミノホウケ イ酸ガラス、或いは石英などを用いることができる。基 板100の表面には、下地絶縁膜1101として無機絶 縁膜を10~200nmの厚さで形成する。好適な下地絶 縁膜の一例は、プラズマCVD法で作製される酸化窒化 シリコン膜であり、SiH、NH、N,Oから作製さ れる第1酸化窒化シリコン膜を50mmの厚さに形成し、 次いで、SiH,とN,Oから作製される第2酸化窒化シ リコン膜を100nmの厚さに形成したものを適用する。 下地絶縁膜1101はアレイ基板に含まれるアルカリ金 20 属がこの上層に形成する半導体膜中に拡散しないために 設けるものであり、石英を基板とする場合には省略する ことも可能である。

【0167】次いで、下地絶縁膜1101上に、窒化珪 素膜1102を形成する。この窒化珪素膜102は、後 の半導体膜の結晶化工程において用いる触媒元素(代表 的にはニッケル)が、下地絶縁膜1101に染みつくの を防ぐため、さらに下地絶縁膜1101の含まれる酸素 が悪影響を及ぼすのを防ぐのを目的に形成される。な お、窒化珪素膜1102は、プラズマCVD法で、1~ 30 5 nmの膜厚で形成すればよい。

【0168】次いで、窒化珪素膜1102上に非晶質半 導体膜1103を形成する。非晶質半導体膜1102 は、シリコンを主成分とする半導体材料を用いる。代表 的には、非晶質シリコン膜又は非晶質シリコンゲルマニ ウム膜などが適用され、プラズマCVD法や減圧CVD 法、或いはスパッタ法で10~100nmの厚さに形成す る。良質な結晶を得るためには、非晶質半導体膜110 3に含まれる酸素、窒素などの不純物濃度を5×10¹⁸ /cm²以下に低減させておくと良い。これらの不純物は非 40 晶質半導体の結晶化を妨害する要因となり、また結晶化 後においても捕獲中心や再結合中心の密度を増加させる 要因となる。そのために、髙純度の材料ガスを用いるこ とはもとより、反応室内の鏡面処理(電界研磨処理)や オイルフリーの真空排気系を備えた超高真空対応のCV D装置を用いることが望ましい。なお、下地絶縁膜11 01から非晶質半導体膜1103までは、大気解放せず に連続成膜することができる。

【0169】その後、非晶質シリコン膜1103の表面 に、結晶化を促進する触媒作用のある金属元素を添加す 50 晶質シリコン膜1105を形成する。

る(図17(b))。半導体膜の結晶化を促進する触媒 作用のある金属元素としては鉄(Fe)、ニッケル(N i)、コバルト(Co)、ルテニウム(Ru)、ロジウ ム (Rh)、パラジウム (Pd)、オスミウム (O s)、イリジウム (Ir)、白金 (Pt)、銅 (C u)、金(Au)などであり、これらから選ばれた一種 または複数種を用いることができる。代表的にはニッケ ルを用い、重量換算で1~100ppmのニッケルを含む 酢酸ニッケル塩溶液をスピナーで塗布して触媒含有層 1 104を形成する。この場合、当該溶液の馴染みをよく するために、非晶質シリコン膜1103の表面処理とし て、オゾン含有水溶液で極薄い酸化膜を形成し、その酸 化膜をフッ酸と過酸化水素水の混合液でエッチングして 清浄な表面を形成した後、再度オゾン含有水溶液で処理 して極薄い酸化膜を形成しておく。シリコンなど半導体 膜の表面は本来疎水性なので、このように酸化膜を形成 しておくことにより酢酸ニッケル塩溶液を均一に塗布す ることができる。

【0170】勿論、触媒含有層1104はこのような方 法に限定されず、スパッタ法、蒸着法、プラズマ処理な どにより形成しても良い。

【0171】非晶質シリコン膜1103と触媒元素含有 層1104とを接触した状態を保持したまま結晶化のた めの加熱処理を行う。加熱処理の方法としては、電熱炉 を用いるファーネスアニール法や、ハロゲンランプ、メ タルハライドランプ、キセノンアークランプ、カーボン アークランプ、高圧ナトリウムランプ、高圧水銀ランプ などを用いた瞬間熱アニール(Rapid Thermal Annealin g) 法(以下、RTA法と記す)を採用する。

【0172】RTA法で行う場合には、加熱用のランプ 光源を1~60秒、好ましくは30~60秒点灯させ、 それを $1\sim10回$ 、好ましくは $2\sim6$ 回繰り返す。ラン プ光源の発光強度は任意なものとするが、半導体膜が瞬 間的には600~1000℃、好ましくは650~75 0℃程度にまで加熱されるようにする。このような高温 になったとしても、半導体膜が瞬間的に加熱されるのみ であり、基板1100はそれ自身が歪んで変形すること はない。こうして、非晶質半導体膜を結晶化させ、図1 7 (c) に示す結晶質シリコン膜1105を得ることが できるが、このような処理で結晶化できるのは触媒元素 含有層を設けることによりはじめて達成できるものであ

【0173】その他の方法としてファーネスアニール法 を用いる場合には、加熱処理に先立ち、500℃にて1 時間程度の加熱処理を行い、非晶質シリコン膜1103 が含有する水素を放出させておく。そして、電熱炉を用 いて窒素雰囲気中にて550~600℃、好ましくは5 80℃で4時間の加熱処理を行い非晶質シリコン膜11 03を結晶化させる。こうして、図17 (c) に示す結

【0174】さらに結晶化率(膜の全体積における結晶 成分の割合)を髙め、結晶粒内に残される欠陥を補修す るためには、結晶質シリコン膜1105に対してレーザ 光を照射することも有効である。

【0175】このようにして得られる結晶質シリコン膜 1105には、触媒元素(ここではニッケル)が平均的 な濃度とすれば、1×10'°/cm'を越える濃度で残存し ている。触媒元素が残留していると、TFTの特性に悪 影響を及ぼす可能性があるため、半導体層の触媒元素濃 度を低減させる必要がある。そこで、結晶化工程に続い 10 て、半導体層の触媒元素濃度を低減させる方法について 説明する。

【0176】まず、図17(d)に示すように結晶質シ リコン膜1105の表面に薄い層1106を形成する。 本明細書において、結晶質シリコン膜1105上に設け た薄い層1106は、後にゲッタリングサイトを除去す る際に、結晶質シリコン膜1105がエッチングされな いように設けた層で、バリア層1106ということにす

とし、簡便にはオゾン水で処理することにより形成され るケミカルオキサイドをパリア層としても良い。また、 硫酸、塩酸、硝酸などと過酸化水素水を混合させた水溶 液で処理しても同様にケミカルオキサイドを形成するこ とができる。他の方法としては、酸化雰囲気中でのプラ ズマ処理や、酸素含有雰囲気中での紫外線照射によりオ ゾンを発生させて酸化処理を行っても良い。また、クリ ーンオープンを用い、200~350℃程度に加熱して 薄い酸化膜を形成しバリア層としても良い。或いは、プ ラズマCVD法やスパッタ法、蒸着法などで1~5nm 30 は、半導体膜の厚さ程度の距離であり、比較的短時間で 程度の酸化膜を堆積してパリア層としても良い。いずれ にしても、ゲッタリング工程時に、触媒元素がゲッタリ ングサイト側に移動できて、ゲッタリングサイトの除去 工程時には、エッチング液がしみこまない(結晶性シリ コン膜1105をエッチング液から保護する)膜、例え ば、オゾン水で処理することにより形成されるケミカル オキサイド膜、酸化シリコン膜(SiOx)、または多 孔質膜を用いればよい。

【0178】次いで、バリア層1106上にスパッタ法 でゲッタリングサイト1107として、膜中に希ガス元 40 素を1×10¹⁶/cm¹以上の濃度で含む第2の半導体膜 (代表的には、非晶質シリコン膜)を25~250nmの 厚さで形成する。後に除去されるゲッタリングサイト1 107は結晶質シリコン膜1105とエッチングの選択 比を大きくするため、密度の低い膜を形成することが好 ましい。

【0179】なお本実施例では、成膜圧力を0.2~ 1. 2 P a まで 0. 2 P a 間隔でふって順に成膜し、成 膜された膜中のArの濃度を測定した結果を図9に示 す。圧力以外の成膜条件は、ガス(Ar)流量を50

(sccm) 、成膜パワーを3kW、基板温度を150℃と している。

【0180】なお、希ガス元素は半導体膜中でそれ自体 は不活性であるため、結晶質シリコン膜1105に悪影 響を及ぼすことはない。また、希ガス元素としてはヘリ ウム(He)、ネオン(Ne)、アルゴン(Ar)、ク リプトン(Kr)、キセノン(Xe)から選ばれた一種 または複数種を用いる。本発明はゲッタリングサイトを 形成するためにこれら希ガス元素をイオンソースとして 用いること、またこれら元素が含まれた半導体膜を形成 し、この膜をゲッタリングサイトとすることに特徴を有 する。

【0181】ゲッタリングを確実に成し遂げるにはその 後加熱処理をすることが必要となる。加熱処理はファー ネスアニール法やRTA法で行う。ファーネスアニール 法で行う場合には、窒素雰囲気中にて450~600℃ で0.5~12時間の加熱処理を行う。また、RTA法 を用いる場合には、加熱用のランプ光源を1~60秒、 好ましくは30~60秒点灯させ、それを1~10回、 ${0177}$ バリア層 ${1106}$ の厚さは ${1\sim10}$ nm程度 ${20}$ 好ましくは ${2\sim6}$ 回繰り返す。ランプ光源の発光強度は 任意なものとするが、半導体膜が瞬間的には600~1 000℃、好ましくは700~750℃程度にまで加熱 されるようにする。

> 【0182】ゲッタリングは、被ゲッタリング領域(捕 獲サイト) にある触媒元素が熱エネルギーにより放出さ れ、拡散によりゲッタリングサイトに移動する。従っ て、ゲッタリングは処理温度に依存し、より高温である ほど短時間でゲッタリングが進むことになる。本発明に おいて、触媒元素がゲッタリングの際に移動する距離 ゲッタリングを完遂することができる(図17 (e)).

> 【0183】なお、この加熱処理によっても1×10¹ /cm²~1×10²¹/cm²、好ましくは1×10¹º/cm²~1 ×10¹¹/cm³、より好ましくは5×10¹⁶/cm³の濃度で 希ガス元素を含む半導体膜1107は結晶化することは ない。これは、希ガス元素が上記処理温度の範囲におい ても再放出されず膜中に残存して、半導体膜の結晶化を 阻害するためであると考えられる。

> 【0184】ゲッタリング工程終了後、ゲッタリングサ イト1107を選択的にエッチングして除去する。エッ チングの方法としては、C1F,によるプラズマを用い ないドライエッチング、或いはヒドラジンや、テトラエ チルアンモニウムハイドロオキサイド(化学式 (C H₁),NOH)を含む水溶液などアルカリ溶液によるウ エットエッチングで行うことができる。この時パリア層 1106はエッチングストッパーとして機能する。ま た、パリア層1106はその後フッ酸により除去すれば 良い。

【0185】こうして図17 (f) に示すように触媒元 50

素の濃度が 1×10^{17} /cm 以下にまで低減された結晶質シリコン膜1108を得ることができる。こうして形成された結晶質シリコン膜1108は、触媒元素の作用により細い棒状又は細い扁平棒状結晶として形成され、その各々の結晶は巨視的に見ればある特定の方向性をもって成長している。

【0186】本実施例は、実施形態1~2、実施例1~5に組み合わせて用いることができる。

【0187】(実施例6)本実施例では、実施例1~実施例6の作製工程を組み合わせて図6(B)に示した状 10態まで作製した発光パネルを発光装置として完成させる方法について図9を用いて詳細に説明する。

【0188】図9(A)は、TFT基板を封止した発光パネルの上面図、図9(B)は図9(A)をA-A'で切断した断面図である。点線で示された801はソース側駆動回路、802は画素部、803はゲート側駆動回路である。また、804は封止基板、805はシール剤であり、シール剤805で囲まれた内側は、空間807になっている。

【0189】なお、ソース側駆動回路801及びゲート 20 側駆動回路803に入力される信号を伝送するための配線(図示せず)により、外部入力端子となるFPC(フレキシブルプリントサーキット)809からビデオ信号やクロック信号を受け取る。なお、ここでは発光パネルにFPCが接続された状態を示しているが、FPCを介してIC(集積回路)が直接実装されたモジュールを本明細書中では、発光装置とよぶ。

【0190】次に、断面構造について図9(B)を用いて説明する。基板810の上方には画素部802、ゲート側駆動回路803が形成されており、画素部802は30電流制御用TFT811とそのドレインに電気的に接続された陽極812を含む複数の画素により形成される。また、ゲート側駆動回路803はnチャネル型TFT813とpチャネル型TFT814とを組み合わせたCMOS回路を用いて形成される。

【0191】また、陽極812の両端にバンク815が 形成された後、陽極812上に絶縁膜821、有機化合 物層816および陰極817が形成され、発光素子81 8が形成される。

【0192】なお、陰極817は全画素に共通の配線と 40 容量 (コンデンサ)が形成される。コンデンサ719 して機能し、接続配線808を経由してFPC809に は、電流供給線716と電気的に接続された半導体膜 電気的に接続されている。 20、ゲート絶縁膜と同一層の絶縁膜(図示せず)及

【0193】なお、シール剤805によりガラスからなる封止基板804が貼り合わされている。なお、シール剤805としては紫外線硬化樹脂や熱硬化性樹脂を用いるのが好ましい。また、必要に応じて封止基板804と発光素子818との間隔を確保するために樹脂膜からなるスペーサを設けても良い。シール剤805の内側の空間807には窒素や希ガス等の不活性ガスが充填されている。また、シール剤805はできるだけ水分や酸素を50

透過しない材料であることが望ましい。

【0194】以上のような構造で発光素子を空間807に封入することにより、発光素子を外部から完全に遮断することができ、外部から侵入する水分や酸素による発光素子の劣化を防ぐことができる。従って、信頼性の高い発光装置を得ることができる。

【0195】なお、本実施例における構成は、実施形態 $1\sim2$ 、実施例 $1\sim5$ の構成を組み合わせて実施することが可能である。

【0196】(実施例7) ここで、本発明を用いて形成される発光装置の画素部のさらに詳細な上面構造を図10(A)に、回路図を図10(B)に示す。図10において、基板上に設けられたスイッチング用TFT704は図6のスイッチング用(nチャネル型)TFT1002を用いて形成される。従って、構造の説明はスイッチング用(nチャネル型)TFT1002の説明を参照すれば良い。また、703で示される配線は、スイッチング用TFT704のゲート電極704a、704bを電気的に接続するゲート配線である。

【0197】なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。

【0198】また、スイッチング用TFT704のソースはソース配線715に接続され、ドレインはドレイン配線705に接続される。また、ドレイン配線705は電流制御用TFT706のゲート電極707に電気的に接続される。なお、電流制御用TFT706は図6の電流制御用(pチャネル型)TFT1003を用いて形成される。従って、構造の説明は電流制御用(pチャネル型)TFT1003の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。

【0199】また、電流制御用TFT706のソースは電流供給線716に電気的に接続され、ドレインはドレイン配線717に電気的に接続される。また、ドレイン配線717は点線で示される陽極(画素電極)718に電気的に接続される。

【0200】このとき、719で示される領域には保持容量(コンデンサ)が形成される。コンデンサ719は、電流供給線716と電気的に接続された半導体膜720、ゲート絶縁膜と同一層の絶縁膜(図示せず)及びゲート電極707との間で形成される。また、ゲート電極707、第1層間絶縁膜と同一の層(図示せず)及び電流供給線716で形成される容量も保持容量として用いることが可能である。

【0201】なお、本実施例の構成は、実施形態 $1\sim$ 2、実施例 $1\sim5$ の構成を組み合わせて実施することが可能である。

【0202】(実施例8)

【0203】本発明を用いて作製された発光装置を表示 部に用いた電気器具として、ビデオカメラ、デジタルカ メラ、ゴーグル型ディスプレイ(ヘッドマウントディス プレイ)、ナビゲーションシステム、音響再生装置(カ ーオーディオ、オーディオコンポ等)、ノート型パーソ ナルコンピュータ、ゲーム機器、携帯情報端末(モバイ ルコンピュータ、携帯電話、携帯型ゲーム機または電子 書籍等)、記録媒体を備えた画像再生装置(具体的には デジタルビデオディスク(DVD)等の記録媒体を再生 し、その画像を表示しうる表示装置を備えた装置)など 10 - 2609等を含む。本発明により作製した発光装置は が挙げられる。特に、斜め方向から画面を見る機会が多 い携帯情報端末は、視野角の広さが重要視されるため、 発光素子を有する発光装置を用いることが好ましい。そ れら電気器具の具体例を図11に示す。

【0204】図11(A)は表示装置であり、筐体20 01、支持台2002、表示部2003、スピーカー部 2004、ビデオ入力端子2005等を含む。本発明に より作製した発光装置は、表示部2003に用いること ができる。発光素子を有する発光装置は自発光型である ためバックライトが必要なく、液晶表示装置よりも薄い 20 表示部とすることができる。なお、表示装置は、パソコ ン用、TV放送受信用、広告表示用などの全ての情報表 示用表示装置が含まれる。

【0205】図11(B)はデジタルスチルカメラであ り、本体2101、表示部2102、受像部2103、 操作キー2104、外部接続ポート2105、シャッタ -2106等を含む。本発明により作製した発光装置は 表示部2102に用いることができる。

【0206】図11(C)はノート型パーソナルコンピ 203、キーボード2204、外部接続ポート220 5、ポインティングマウス2206等を含む。本発明に より作製した発光装置は表示部2203に用いることが できる。

【0207】図11(D)はモバイルコンピュータであ り、本体2301、表示部2302、スイッチ230 3、操作キー2304、赤外線ポート2305等を含 む。本発明により作製した発光装置は表示部2302に 用いることができる。

【0208】図11 (E) は記録媒体を備えた携帯型の 40 画像再生装置(具体的にはDVD再生装置)であり、本 体2401、筐体2402、表示部A2403、表示部 B2404、記録媒体(DVD等)読み込み部240 5、操作キー2406、スピーカー部2407等を含 む。表示部A2403は主として画像情報を表示し、表 示部B2404は主として文字情報を表示するが、本発 明により作製した発光装置はこれら表示部A、B240 3、2404に用いることができる。なお、記録媒体を 備えた画像再生装置には家庭用ゲーム機器なども含まれ

【0209】図11(F)はゴーグル型ディスプレイ (ヘッドマウントディスプレイ)であり、本体250 1、表示部2502、アーム部2503を含む。本発明 により作製した発光装置は表示部2502に用いること ができる。

【0210】図11(G)はピデオカメラであり、本体 2601、表示部2602、筐体2603、外部接続ポ ート2604、リモコン受信部2605、受像部260 6、バッテリー2607、音声入力部2608、操作キ 表示部2602に用いることができる。

【0211】ここで図11 (H) は携帯電話であり、本 体2701、筐体2702、表示部2703、音声入力 部2704、音声出力部2705、操作キー2706、 外部接続ポート2707、アンテナ2708等を含む。 本発明により作製した発光装置は、表示部2703に用 いることができる。なお、表示部2703は黒色の背景 に白色の文字を表示することで携帯電話の消費電力を抑 えることができる。

【0212】なお、将来的に有機材料の発光輝度が高く なれば、出力した画像情報を含む光をレンズ等で拡大投 影してフロント型若しくはリア型のプロジェクターに用 いることも可能となる。

【0213】また、上記電気器具はインターネットやC ATV(ケーブルテレビ)などの電子通信回線を通じて 配信された情報を表示することが多くなり、特に動画情 報を表示する機会が増してきている。有機材料の応答速 度は非常に高いため、発光装置は動画表示に好ましい。

【0214】また、発光装置は発光している部分が電力 ュータであり、本体2201、筐体2202、表示部2 30 を消費するため、発光部分が極力少なくなるように情報 を表示することが好ましい。従って、携帯情報端末、特 に携帯電話や音響再生装置のような文字情報を主とする 表示部に発光装置を用いる場合には、非発光部分を背景 として文字情報を発光部分で形成するように駆動するこ とが好ましい。

> 【0215】以上の様に、本発明を用いて作製された発 光装置の適用範囲は極めて広く、あらゆる分野の電気器 具に用いることが可能である。また、本実施例の電気器 具は実施形態1~2、実施例1~6に示した発光装置を その表示部に用いることができる。

[0216]

【発明の効果】本発明は、発光素子を有する発光装置 (ELディスプレイ) だけでなく、液晶表示装置等、半 導体特性を用いた半導体素子、例えばトランジスタ、特 に電界効果型トランジスタ、代表的にはMOS (Metal Oxide Semiconductor) トランジスタや薄膜トランジス タ (Thin film transistor:TFT) といった半導体素 子を用いた電気器具すべてに適応するが可能な検査装置 および検査方法を用いた検査工程を含んでいる。

【0217】本発明の半導体装置の作製方法に含まれる

検査工程では、TFT基板に非接触で駆動電源および駆 動信号を供給することができるため、従来の接触式の検 査方法で問題になっているTFT基板へのゴミの付着 や、検査装置によるTFT基板の損傷等の問題を回避す ることができる。

【0218】さらに、本発明に含まれる検査工程で用い るアレイ基板上の2次コイル、整流回路および波形整形 回路は、TFTの作製工程にならって形成すればよく、 TFT基板の作製工程において工程数を増やす必要がな

【0219】特に、ELディスプレイを作製する場合 は、TFT基板の良否を判断してから発光素子の作製を すればよいため、製品化できないTFT基板に高価な材 料を用いて発光素子を形成する必要がなくなり、無駄を 省くことができ、製造コストを低減することができる。

【図面の簡単な説明】

- 【図1】 チェック基板とアレイ基板の関係を示す図。
- 【図2】 発光装置の作製工程の簡略図。
- 【図3】 整流回路および波形整形回路の回路図。
- 【図4】 チェック基板およびアレイ基板の概略を示す 20 斜視図。 図。
- 【図5】 アレイ基板とTFT基板の関係を示す図。
- 【図6】 チェック基板とアレイ基板の関係図。

- 【図7】 本発明の実施の一例を示す図。
- 【図8】 本発明の実施の一例を示す図。
- 【図9】 本発明の実施の一例を示す図。
- 【図10】 本発明の実施の一例を示す図。
- 【図11】 本発明の実施の一例を示す図。
- 【図12】 本発明の実施の一例を示す図。
- 【図13】 本発明の実施の一例を示す図。
- 【図14】 本発明の実施の一例を示す図。
- 【図15】 本発明の実施の一例を示す図。
- 【図16】 本発明の実施の一例を示す図。
- - 【図17】 本発明の実施の一例を示す図。
 - 【図18】 本発明の実施の一例を示す図。
 - 本発明を用いて作製された発光装置を表示 【図19】 部に用いた電気器具を示す図。
 - 【図20】 交流から整流化されて脈流となった信号の 経時変化。
 - 【図21】 脈流の加算により生成された直流の信号の
 - 経時変化。
 - [図22] 検査時のアレイ基板とチェック基板を示す
- - 【図23】 コイルを拡大して示した図。
 - 【図24】 本発明の実施の一例を示す図。

【図1】

[図11]

[図2]

【図5】

【図6】

【図12】

【図7】

【図8】

(C) 層間絶縁膜形成/活性化

【図13】

周围她的表形成/原型她是直下"汉"中处理/吐口族形成/179分中4形成/配路、降槽形成

【図9】

【図10】

【図14】

[図16]

【図17】

【図21】

(B) ×8

(C) × 16

【図23】

[図24]

フロントページの続き

Fターム(参考) 2H092 JA24 JA46 KA05 KB24 KB25 MA04 MA05 MA08 MA14 MA17 MA19 MA30 NA29 NA30 PA01 4M106 AA20 AC02 AC04 AC09 AC11 AC12 BA20 CA70 5F110 AA24 BB02 BB04 CC02 DD01 DD02 DD03 DD13 DD14 DD15 DD17 EE01 EE02 EE03 EE04 EE06 EE09 EE14 EE15 EE23 EE28 EE44 EE45 FF02 FF04 FF28 FF30 FF36 GG01 GG02 GG13 GG25 GG32 GG43 GG45 GG47 HJ01 HJ04 HJ12 HJ23 HL03 HL04 HL06 HL07 HL11 HL23 HM15 NN03 NN22 NN23 NN24 NN27 NN34 NN35 NN72 NN73 NN80 PP02 PP03 PP29 PP34 PP35 QQ09 QQ11 QQ24 QQ25 QQ28 5G435 AA17 AA19 BB05 CC09 LL04

LL07 LL08 LL14

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

