LogBook 4/7 Υλοποίηση απλού delbruck bump για εξάσκηση με το cadence

11/7 ενασχόληση με κώδικα 28/7 ενασχόληση με κώδικα 3/8 ενασχόληση με κώδικα 4/8 ενασχόληση με κώδικα & WTA για 3 κλάσεις σε new thyroid

5/8 simulation για απλό inverter (δοκιμές προσομοίωσης & πως δουλεύουν οι προσομοιώσεις στο cadence) 6/8 δοκιμές simulations 7/8

Βελτίωση του WTA

8/8 Υλοποίηση συνολικού ταξινομητή με βάση την υλοποίηση που παρουσιάστηκε στο μάθημα, χρησιμοποιώντας το απλό Delbruck Bump

9/8 simulation ταξινόμησης->αποτυχία 16% accuracy ->αλλαγή παραμέτρων bump

Χαμηλό ρεύμα στο bump, αιτία ανάποδη η δυαδική συνδεσμολογία και λάθος διαστάσεις για το φορτίο στην έξοδο Παρατηρήσεις: μικρά w -> υψηλό iout

10/8 βελτίωση στο bump με sizing και επιπλέον δοκιμες

11/8 προσπάθεια classification με delbruck και κώδικας για εύρεση νο 12/8 >> 69% απλή ταξινόμηση ολων των δειγμάτων στην κλαση 0 πειραματισμός με αλλα bump. Παρατηρούμε την αδυναμία του Delbruck να ρυθμίσει τη διασπορά, αυτή είναι και η αιτία για τη χαμηλή ακρίβεια.

Δοκιμή fully tunable Delbruck με επιπλέον διαφορικό ζεύγος για ρύθμιση Vc

Παρατηρούμε, ότι η διασπορά αλλάζει

13/8 modified Bump

Καλύτερη ρύθμιση διασποράς κωδικας για νς, ταξινομηση 63%

14/8 δοκιμές νς, ντ ίδια ακρίβεια 15/8 δοκιμές νς, ντ ίδια ακρίβεια 16/8 sizing δοκιμές και αποτυχημένες ταξινομήσεις 17/8

Ικανοποιητικές Gaussian συναρτήσεις αλλά μεγάλο εύρος για vr και όχι αρκετά στενή καμπύλη

πρόβλημα με pA στην έξοδο

18/8 sizing δοκιμές

διαφορικά ζεύγη επηρεάζουν πόσο στενή είναι η gaussian, τα πλάτη στον correlator και στους καθρέπτες επηρεάζουν το ύψος. Επίσης το μήκος επηρεάζει το πλάτος και το ύψος.

ταξινόμηση δεν δουλεύει 19/8 δοκιμες vc,vr sizing, αλλά αποτυχημένη ταξινόμηση 21/8 δοκιμες vc,vr sizing, αλλά αποτυχημένη ταξινόμηση

22/8 Είχε πέσει η σύνδεση στο cadence οπότε ασχολήθηκα με latex/inkscape 23/8

Multiple W	inners pe	rcentage:	0.10769230	76923077		
/home/nass	/home/nassosliak/Desktop/avlsi					
Cadence Va	lidation	accuracy	is 0.923076	9230769231		
	preci	sion r	ecall f1-s	score suppo	ort	
0	.0	0.92	0.98	0.95	45	
1	.0	0.89	0.73	0.80	11	
2	.0	1.00	0.89	0.94	9	
accura	су			0.92	65	
macro a	vg	0.94	0.86	0.90	65	
weighted a	vg	0.92	0.92	0.92	65	
[[44 1 0						
[380						
[108]]					

Επιτυχημένη ταξινόμηση, αιτία αποτυχημένων ταξινομήσεων: τα Vin συνδέονταν όλα σε κοινό κόμβο γείωσης και επειδή στο cadence συνδέονται έως 3 καλώδια σε έναν κόμβο, τα υπόλοιπα ήταν στον αέρα.

Μέγιστη ακρίβεια που παρατηρήθηκε στο hardware ήταν 95%

24/8 Δοκιμή σε νέο dataset iris dataset

Cadence Validation accuracy is 0.666666666666666666666666666666666666					
0.0 1.00 1.00 1.00 15 1.0 0.50 1.00 0.67 15 2.0 0.00 0.00 0.00 15					
1.0 0.50 1.00 0.67 15 2.0 0.00 0.00 0.00 15					
1.0 0.50 1.00 0.67 15 2.0 0.00 0.00 0.00 15					
2.0 0.00 0.00 0.00 15					
accuracy 0.67 45					
accuracy 0.67 45					
accaracy 3107					
macro avg 0.50 0.67 0.56 45					
weighted avg 0.50 0.67 0.56 45					
[[15 0 0]					
[0 15 0]					
[0 15 0]]					
Python Validation accuracy is 0.822222222222222					
precision recall f1-score support					
0.0 1.00 1.00 1.00 15					
1.0 0.89 0.53 0.67 15					
2.0 0.67 0.93 0.78 15					
accuracy 0.82 45					
macro avg 0.85 0.82 0.81 45					
weighted avg 0.85 0.82 0.81 45					

Δεν πληροί τις προδιαγραφές, δοκιμές και με data augmentation και κανονικοποίηση, αλλά το χαμηλό software accuracy οφείλεται στα λίγα δείγματα.

wisconsin breast cancer

Cadence Validation accuracy is 0.9620853080568721						
	precision	recall	f1-score	support		
0	0.96	0.98		138		
1	0.96	0.93	0.94	73		
accuracy			0.96	211		
macro avg	0.96	0.95	0.96	211		
weighted avg	0.96	0.96	0.96	211		
[[135 3] [5 68]] Python Valida	ution accurac	v is 0.97	6303317535	545		
. ,	precision					
	precision	100000	11 30010	Suppor c		
0	0.99	0.97	0.98	138		
1	0.95	0.99	0.97	73		
accuracy			0.00	211		
accuracy	0.07	0.00	0.98			
macro avg	0.97	0.98		211		
weighted avg	0.98	0.98	0.98	211		

Πολύ ικανοποιητικά αποτελέσματα

Mean Power Consumption: 2.5346330397948947e-05

Παρατηρήθηκε, ότι μείωση του πλάτους των nmos του wta και αύξηση του lbias βελτιώνουν την ακρίβεια.

25/8

psrr

vsat margin δεν ικανοποιείται σε 1 nmos wta , 2 pmos correlator 26/8

psrr

Δοκιμές για ικανοποίηση προδιαγραφών θορύβου-ακρίβειας ->μικρό πλάτος στο wta μεγάλο ibias μειωση νο

Mean Power Consumption: 4.963683050342568e-05

Cadence Valid					
	precision	recall	f1-score	support	
0	0.99	0.98	0.98	138	
1	0.96	0.97	0.97	73	
accuracy			0.98	211	
macro avg	0.97	0.98	0.97	211	
weighted avg	0.98	0.98	0.98	211	
[[135 3]					
[2 71]]					
Python Valida	tion accuracy	y is 0.976	3033175355	45	
	precision	recall	f1-score	support	
0	0.99	0.97	0.98	138	
1	0.95	0.99	0.97	73	
accuracy			0.98	211	
macro avg	0.97	0.98	0.97	211	
weighted avg	0.98	0.98	0.98	211	
[[134 4]					
[1 72]]					

για τα bump ξεχωριστα ικανοποιουνται vsat margin και psrr

ικανοποιουνται οι προυποθεσεις

modified bump

27/8

20 iterations, ίδια ακρίβεια σε όλα, υποθέτουμε ότι ο ταξινομητής βρίσκεται σε τοπικό ελάχιστο

28/8

συγγραφή αναφοράς + κώδικας για γραφικές

29/8

αναφορά

30/8

δοκιμές για προσπάθεια μείωσης κατανάλωσης και πρόβλημα στην μεγαλύτερη συχνότητα >-140dB ο θόρυβος

Cadence Valid		-			
	precision	recatt	f1-score	support	
Θ	1.00	0.98	0.99	138	
1	0.96	1.00	0.98	73	
accuracy			0.99	211	
macro avg	0.98	0.99	0.98	211	
weighted avg	0.99	0.99	0.99	211	
[[135 3] [0 73]]					

Επιτεύχθηκε μεγαλύτερη ακρίβεια στο hardware έπειτα από δοκιμές, αλλά χρειάστηκε να μειωθεί για την ικανοποίηση του θορύβου.

Παρατηρήθηκε, ότι με αύξηση w και ibias μειώνεται ο θόρυβος, αλλά αυξάνεται η κατανάλωση.

31/8 αναφορά