1. What is Software? Types of Software with Example

Software is more than just a computer program. It includes:

- **Programs** (the code that runs),
- **Procedures** (how to use it),
- **Documentation and Data** (manuals, help files, settings, etc.) It helps the computer system to work and perform tasks.

Types of Software

There are **two major types** of software:

1. Generic Software (Buy)

- This type is already developed and sold to many people.
- It is called Commercial Off-The-Shelf software (COTS).
- Same software is used by thousands of users.
- It may not work exactly how you want it to.
- Example: Microsoft Word, Adobe Photoshop

2. Customized Software (Build)

- This is made specifically for one user or organization.
- It meets special needs of that customer.
- It is also called **Bespoke software**.
- Example: A bank may get special software built just for its internal operations.

Buy & Build Together

- Most of the time, personal users use **COTS software**.
- But companies may buy and then customize it for their needs.

2. What is Software Quality?

- According to standards:
 - o **ISO/IEC 9126:** Software quality means how well a product meets user needs.
 - o **IEEE Std 610:** It's about meeting both requirements and user expectations.

1. Functionality

Does the software do what it's supposed to do?

- Measures **how well** the software performs its required tasks.
- Includes things like correctness, security, and interoperability.

• Example: A banking app should correctly transfer money between accounts.

2. Reliability

Can the software be trusted to work under different conditions?

- Tells us how **dependable** the system is.
- How often does it fail? Can it recover from errors?
- Example: Autopilot software must not crash during flight, even if there's a minor fault.

3. Usability

Is the software easy to use and understand?

- Focuses on **user experience** ease of learning, using, and navigating the system.
- Example: A mobile app with a clean interface and intuitive icons is more usable.

4. Efficiency

Does the software use system resources wisely?

- Looks at **performance** like response time, memory usage, etc.
- **Example:** A photo editing app that runs smoothly without slowing down your device is efficient.

5. Maintainability

Can the software be easily fixed, updated, or improved?

- Concerns how **easy it is to modify** the system after it's deployed.
- **Example:** If you can easily fix a bug or add a feature without breaking other parts, that's maintainability.

6. Portability

Can the software work on different devices or environments?

- Measures how easily it can be transferred from one hardware or software environment to another.
- **Example:** A website that works on Chrome, Firefox, mobile, and desktop has high portability.

Q2. What are the challenges in software projects? Explain.

Answer:

In software projects, the main goal is to deliver the product **on time**, **within budget**, and with the **expected quality**. But achieving this is not easy. There are several challenges that make software development difficult.

The main challenges are:

1. Time

- Projects are often **delayed** and not completed on time.
- Managing schedules and meeting deadlines is a big issue.

2. Cost

- Many software projects become too expensive.
- They go **over budget** due to poor planning or unexpected problems.

3. Scope (Quality)

- Sometimes, the final product does not meet quality expectations.
- It may have many bugs or missing features.
- This happens due to unclear requirements or lack of proper testing.

Summary

These three major issues—time, cost, and quality—are known as the Project

Management Triangle.

Balancing all three is the biggest challenge in software developme

Give examples of software defects.

Answer:

A software defect is a problem or error in the software that causes it to behave unexpectedly or fail. Defects can be **very dangerous and costly**, especially in critical systems.

Here are two real-life examples of software defects:

1. Therac-25 Radiation Machine (1986)

- It was a radiation therapy machine used to treat cancer.
- Due to a **software defect**, the machine gave patients **massive overdoses of radiation**.
- This caused serious injuries and deaths.
- The bug was due to poor testing and no proper safety checks in the software.

2. Ariane 5 Rocket Failure (1996)

• The Ariane 5 rocket exploded just 40 seconds after launch.

- Cause: A **software bug** in the navigation system.
- The system tried to convert a large number into a small memory space, which caused a crash.
- The failure cost over \$370 million.

Conclusion:

These examples show that **software defects can lead to loss of money, property, and even human lives**. So, quality assurance and testing are very important in software development.

Q4. What is Software Testing? What are its goals and levels?

Answer:

What is Software Testing?

Software testing is the process of **executing a program** to find **errors or bugs**. It checks if the software works correctly and meets user requirements.

Goals of Software Testing:

- 1. To check if the software meets its requirements.
 - Make sure the software does what it's supposed to do.
- 2. To find errors and bugs.
 - Testing helps locate problems so they can be fixed early.
- 3. To test performance in real situations.
 - For example, testing how an autopilot system works under stress or emergency.

Levels of Software Testing:

There are **3 main levels** of testing:

1. Unit Testing

- Tests **individual parts** or modules of the software.
- Example: Testing a single function like "login".

2. Integration Testing

- Checks if different modules work together properly.
- Example: Does the login screen connect correctly to the user database?

3. System Testing

- Tests the complete software as a whole.
- It checks the full system behavior and performance.

Conclusion:

Software testing is a key part of software quality. It helps deliver **reliable and correct software** to users by finding and fixing problems early.

Q5. What is the role of testing in software development?

Answer:

Testing plays a very important role in software development. It helps ensure that the software is **correct, reliable, and ready for use**.

There are **two main types of testing activities** based on how the testing is done:

1. Static Analysis (Without Running the Program)

- In this method, we **check the code manually** or using tools without running it.
- This includes:
 - Code reviews
 - o Walkthroughs
 - o Formal inspections
- It is manual and time-consuming, but good for finding logical or design errors early.

2. Dynamic Analysis (Running the Program)

- In this method, the program is **executed with input values** to check its behavior.
- It helps find **runtime errors** like crashes, wrong output, etc.
- It is usually **automated and faster**, but may not catch all errors.

Best Practice: Use Both

- To get the best results, both static and dynamic analysis should be used.
- This way, we can **catch more defects** and improve software quality.

Conclusion:

Testing helps to find bugs early, reduce risks, and improve the **overall quality of the software**. It is a **key activity** in every phase of software development.

Q6. What is Software Quality Assurance (SQA)?

Answer:

Software Quality Assurance (SQA) is a set of planned and systematic activities that make sure the software meets quality standards and works properly.

It is not just testing — SQA covers the **entire software development process** to make sure the product is being built correctly at every stage.

Main Points about SQA:

1. Planned & Structured

o SQA is done using a proper plan and follows rules, methods, and standards.

2. Monitoring the Process

o It checks whether the team is following the correct steps while building the software.

3. Like an Umbrella

- o SQA covers all phases: requirement, design, coding, testing, and release.
- o It includes everything from process checks to reviews and audits.

4. Goal

To make sure that the final software product is **high-quality**, **meets user needs**, and is **free of defects**.

Conclusion:

SQA helps in building reliable and quality software by focusing on process improvement and early detection of issues during development.

Q7. What is Software Quality Control (SQC)?

Answer:

Software Quality Control (SQC) is the process of checking whether the software product follows the quality plan made during Software Quality Assurance (SQA).

It focuses on **reviewing the product** at different stages to find and fix problems before release.

Main Activities in SQC:

1. Review of Requirements

o Checking if user needs are clear and complete.

2. Design Reviews

o Making sure the software is designed properly and can be built correctly.

3. Code Reviews

o Reading the source code to find bugs or bad practices.

4. Testing the Product

o Running the software to catch any defects or failures.

5. Deployment Review

o Ensuring the final version is ready and stable for use.

Goal of SOC:

 To verify that the product is correct and matches the original plans and user requirements.

Conclusion:

While **SQA** focuses on improving the process, **SQC** focuses on checking the actual product. Both are important for building high-quality software

Q8. Differentiate between Software Quality Assurance (SQA) and Software Quality Control (SQC).

Answer:

SQA	SQC
Software Quality Assurance	Software Quality Control
Focuses on the process used to create the software.	Focuses on the product that is being developed.
It is preventive — aims to avoid defects by improving the process.	It is detective — aims to find defects in the product.
Done throughout the software development life cycle.	Done after or during product development (e.g., during testing).
Activities include planning, process monitoring, audits, reviews.	Activities include reviews, testing, inspections.
Example: Ensuring developers follow coding standards.	Example: Testing the final software for bugs.

Conclusion:

- SQA ensures quality is built into the process.
- SQC ensures quality is present in the final product. Both are necessary for delivering high-quality software.