Trabajo Práctico N° 4 - Año 2012

TEMA: Frecuencímetro Digital.

INTRODUCCIÓN

El objetivo de este Trabajo Práctico es que los alumnos analicen el funcionamiento de las distintas partes o módulos que conforman un Frecuencímetro Digital y respondan a un cuestionario sobre las características más significativas de este tipo de instrumentos.

Además se realizará un cuadro comparativo de las características técnicas más importantes de los frecuencímetros digitales de baja y alta frecuencia que tienen distintos fabricantes.

Esto servirá de introducción para realizar la práctica de laboratorio.

CUESTIONARIO A DESARROLLAR

1.- Unidad Contadora

- **1.1.-** La máxima velocidad de cuenta de la DCU (Unidad Contadora Decimal) está determinada por:
 - a.- La primera década (vista desde la entrada)
 - b.- Todas las décadas.
 - c.- La compuerta principal solamente.
- **1.2.-** Los Flip Flop de una DCU de 5 dígitos están en el estado siguiente:

El Display impulsado por la DCU mostrará el siguiente número decimal:

- a.- 74896 b.- 75169 c.- 96157
- **1.3.** Las referencias de tiempo en las salidas T_1 , T_5 , T_8 , del divisor de la base de tiempo que se muestra a continuación, son las siguientes:

Ingeniería Electrónica Asignatura: Medidas Electrónicas II

Trabajo Práctico N° 5 - Año 2010

Oscilador a Cristal y Divisor Base de Tiempo

A:	B:	C:
T1 = 10 μ seg	T1 = 10 μ seg	$T1 = 10 \mu seg$
T2 = 10 mseg	T2 = 100 mseg	T2 = 100 mseg
T3 = 10 seg	T3 = 100 seg	T3 = 1 seg

Indicar cuál es la salida válida A, B, o C, y porqué.

1.4. - Se requiere una exactitud de 10⁻⁷ de un Contador Digital que tiente un oscilador a cristal con un corrimiento de 3 x 10⁻⁹ / 24hs. El oscilador a cristal deberá ser recalibrado cada:

A: Semana B: Mes D: Año

Indicar la respuesta y explicar la misma.

2.- Modos de Operación:

2.1.- Un Contador está operando en Modo Frecuencia con la Base de Tiempo colocada en 10 mseg y el indicador de Dimensión en MHZ. Indicar entre que dígitos está el punto decimal:

a.- 6 y 7 b.- 7 y 8 c.- 4 y 5

2.2 - Una señal de 1,5 KHZ es aplicada a un Contador puesto para MULTIPLE PERIOD 10 ^{4.} La Resolución de la Base de Tiempo es 1 μseg.

¿Cuántos dígitos son necesarios para el display?

a.- 7 b.- 6 c.- 4

2.3.— Un Frecuencímetro Digital (o Contador Digital) normalmente trabaja con una frecuencia de clock interna de 1 MHZ, la cual es usada con un estándar externo de 4 MHZ. Para obtener un resultado correcto la lectura en el Modo frecuencia deberá ser:

a.- Multiplicada por 4b.- Multiplicada por 2c.- Multiplicada por 4

Indique la respuesta seleccionada y explique la misma.

Trabajo Práctico N° 4 - Año 2012

2.4.- Un contador de 8 dígitos con una exactitud de la base de tiempo de 10 ⁻⁸ y se usa un display con una exactitud de +/- 1 dígito para medir una señal de 400 HZ con la base de tiempo en 10 seg. La exactitud de la medición, entonces, deberá ser:

a.-
$$2,5 \times 10^{-8}$$

b.- 1×10^{-8}
c.- $2,5 \times 10^{-4}$

Indicar la respuesta seleccionada y explicar la misma.

3.- Exactitud

- **3.1**. Para una resolución dada la exactitud en la medición cuando se utiliza un prescaler de 10 times (veces) es:
 - A: Igual que
 - B: Mayor que
 - D: Inferior que la misma medición sin prescaler
- **3.2.** Un Convertidor heterodino está conectado para medir una frecuencia de 500 MHZ. El convertidor puede operar en pasos de frecuencias de 100 o 200 MHZ.
- ¿Cuál es la selección correcta para la mejor exactitud?
 - A: Pasos de 100 MHZ
 - B: Pasos de 200 MHZ
 - D: Indistinto
- **3.3.** Para reducir la ambigüedad de +/-1 cuenta, en un intervalo de tiempo de medición, se deberá:
 - A: Incrementar la frecuencia de Clock
 - B: Decrementar la frecuencia de Clock
 - D: Ajustar la estabilidad del clock
- 3.4 Medición de una señal con 100% de Amplitud Modulada será posible:
 - A: Usando cualquier contador.
 - B: Solamente con ayuda de un Contador con facilidades especiales.
 - D: Nunca es posible
- 3.5.- Una frecuencia de 10 KHZ, con una relación de S/R de 40 dB, es medida en:
 - A: modo de frecuencia con un tiempo de apertura de compuerta de 1 seg.
 - B: Modo Período con una resolución de 100 µseg
 - C: Modo de múltiple período con N =1000, siendo la precisión de Clock de 10⁻⁸.

Ingeniería Electrónica Asignatura: Medidas Electrónicas II

Trabajo Práctico N° 5 - Año 2010

4.- Cuadro Comparativo

Confeccionar un cuadro comparativo de las características técnicas más importantes de los frecuencímetros de baja y alta frecuencia.

5.- Trabajo de Laboratorio:

Instrumentos y generadores a utilizar

- Contador digital Fluke.
- Contador digital GOOD WILL.
- Osciloscopio digital GOOD WILL
- Generador de Funciones GOOD WILL

Alcance general

Consiste en mediciones sobre señales analógicas y señales digitales:

- Medición de período, frecuencia, ancho de pulso, ciclo de trabajo y relación de frecuencia sobre señales digitales con ambos tipos de contadores.
- Medición de desfijase y sensibilidad del instrumento sobre señales senoidales.

5.1.- Actividad1 a desarrollar:

Esquema de Medición

Condiciones de ensayo

- Generador de funciones:
 - Onda cuadrada
 - Amplitud 5Vpp
 - Frecuencia variable según tabla
- Contadores
- Modo frecuencia y período según tabla
- Gate time según tabla
- Acoplamiento DC

Trabajo Práctico N° 4 - Año 2012

Frecuencia de Ensayo	Contador Recíproco		Contador Universal		Modo	Gate time
	Indicación Display	Error	Indicación Display	Error		
					Frecuencia	1 Seg
10 HZ					Período	1 seg
					Frecuencia	0.01 Seg
					Período	0.01 Seg
					Frecuencia	1 Seg
1 KHZ					Período	1 seg
					Frecuencia	0.01 Seg
					Período	0.01 Seg
					Frecuencia	1 Seg
1 MHZ					Período	1 seg
					Frecuencia	0.01 Seg
					Período	0.01 Seg

Análisis de las mediciones

Justificar en cada caso, que tipo de seteo se debe realizar para cada contador, según la frecuencia.

Frecuencia de Ensayo	Contador Universal			Contador R	ecíproco	
	Modo: F ó T	Gate Time	Error	Modo: F ó T	Gate Time	Error
10 HZ						
1 KHZ						
1 MHZ						

Ingeniería Electrónica Asignatura: Medidas Electrónicas II

Trabajo Práctico N° 5 - Año 2010

5.2.- Actividad2 a desarrollar: Esquema de Medición

Condiciones de ensayo

Generador de funciones

- Onda cuadrada
- Amplitud 5Vpp
- Frecuencia 1 kHz
- Ancho de pulso variable según tabla

Contador

- Modo Intervalo de tiempo
- Gate time 0.1 seg.
- Flanco (slope) según tabla

Datos a obtener

Duty Ciclo requerido	Slope A+ Slope B+				Slope A+ Slope B+		Duty Cicle (calculado en base a las mediciones)	
	Display	Error	Display	Error	Display	Error	Valor	Error
10 HZ								
1 KHZ								
1 MHZ								

Análisis en base a las mediciones

- Analizar coincidencias con mediciones anteriores

Trabajo Práctico N° 4 - Año 2012

- Verificar el resultado de las mediciones para cada caso (es decir, la suma de los semi períodos debe ser igual al período)

5.3.- Actividad3 a desarrollar: Esquema de Medición

Condiciones de ensayo

Generador de funciones:

- Onda cuadrada
- Amplitud 5Vpp
- Frecuencia variable según tabla

Contador:

- Modo relación de frecuencia
- Gate time 0.1 seg.

Osciloscopio:

Usar la señal de calibración

Datos a obtener

Frecuencia del Generador	Lectura del display	Error
100 HZ		
1 KHZ		
10 KHZ		
100 KHZ		

Ingeniería Electrónica Asignatura: Medidas Electrónicas II

Trabajo Práctico N° 5 - Año 2010

Frecuencia de la señal de calibración				
Lectura del Display	Error			

Análisis de las mediciones

- Verificar los resultados de las mediciones
- Analizar el resultado en cada caso

5.4.- Actividad4 a desarrollar: Esquema de Medición

Condiciones de ensayo

Generador de funciones

- Onda senoidal
- Amplitud 10Vpp
- Frecuencia variable según tabla

Contador

- Modo Intervalo de tiempo y frecuencia ó período
- Gate time: el más conveniente (a criterio del alumno)
- Flanco (slope) CH A +
- Flanco (slope) CH B +

Osciloscopio

- Modo dual
- Disparo seteado de manera que se observe correctamente el desfasaje.

Trabajo Práctico N° 4 - Año 2012

- V/div y Base de tiempo: ajustar de acuerdo a la señal

Datos a obtener

Frecuencia en el Generador	Frecuencia medida		Intervalo de tiempo medido		Desfasaje calculado	
	Indicación del Display	Error	Indicación del Display	Error	Resultado	Error propagado
300 HZ						
1600 KHZ						
10 KHZ						

Análisis de las mediciones

De acuerdo a los desfasajes medidos, indicar qué medición se aproxima más a la frecuencia de corte del circuito RC.

5.5.- Actividad5 a desarrollar: Esquema de Medición

Condiciones de ensayo

Generador de funciones

- Onda senoidal
- Amplitud variable según tabla
- Frecuencia 1 kHz

Contador

- Modo frecuencia
- Gate time 0.01 seg.

Multímetro

- Modo Voltímetro AC

Ingeniería Electrónica Asignatura: Medidas Electrónicas II

Trabajo Práctico N° 5 - Año 2010

Amplitud Sugerida	Voltage AC		Lectura del Contador	La medicio	ón es valida
	Indicación del Display	Error		SI	NO
5V					
1V					
0.5V					
0.25V					
0.1V					

Análisis de las mediciones

En base a la tabla, indicar la sensibilidad del contador y comparar con las especificaciones

Conclusiones generales

Comparar el orden de magnitud de los errores obtenidos en las mediciones realizadas y compararlos con los errores obtenidos en las mediciones similares realizadas con osciloscopio.

	Frecuencia / Período	Desfasaje	Ancho de Pulso
Osciloscopio			
Contador			

ALUMNO :	
ALUMNO :	
FECHA DE INICIO://12	FECHA DE PRESENTACIÓN://12
CONFORMIDAD DEL DOCENTE:	
	10/10