Решетки, алгоритмы и современные проблемы криптографии. LLL-алгоритм

Шокуров А.В.

25 февраля 2025 г.

Решетки

В дальнейшем, если не оговорено другое, под решеткой будем понимать подгруппы группы \mathbb{Z}^m . Это означает, в частности, что базис решетки составляют целочисленные векторы

$$B = \left(\begin{array}{ccc} b_{1,1} & \dots & b_{1,n} \\ \dots & \dots & \dots \\ b_{m,1} & \dots & b_{m,n} \end{array}\right),$$

векторы-столбцы линейно независимы и составляют базис решетки ранга n в линейно пространстве \mathbb{R}^m .

Входом всех рассматриваемых далее задач будут целочисленные матрицы и целочисленные векторы. В процессе решения задач, все промежуточные данные будут рациональными числами.

При исследовании вычислительной сложности задач аппроксимации на решетках удобно их формулировать как задачи с обязательствами. Это понятие обобщает понятие задач распознавания и весьма удобно для исследования сложности соответствующих задач аппроксимации.

Задача с обязательством представляет пару непересекающихся языков $(\Pi_{\it YES},\Pi_{\it NO})$, т.е. $\Pi_{\it YES},\Pi_{\it NO}\subseteq \Sigma^*$ и $\Pi_{\it YES}\cap\Pi_{\it NO}=\emptyset$.

Определение

Алгорим решает задачу с обязательством (Π_{YES}, Π_{NO}) , если для входа $I \in \Pi_{YES} \cup \Pi_{NO}$ он правильно определяет выполняется ли $I \in \Pi_{YES}$ или $I \in \Pi_{NO}$. Поведение алгоритма для $I \notin \Pi_{YES} \cup \Pi_{NO}$ (в том случае если не выполняется обязательство) не специфицируется, т.е. в этом случае ответ может быть каким угодным.

Задачи распознавания — частный случай задач с обязательством: для таких задач выполняется соотношение $\Pi_{\textit{NO}} = \Sigma^* \setminus \Pi_{\textit{YES}}$. Определим задачи с обязательствами ассоциированные с задачами SVP и CVP.

Определение

Задача с обязательством $\mathit{G_{AP}SVP}_{\gamma}$, где γ — функция ранга решетки, определяется так

- YES соответствует парам (\mathbf{B} , r), где $\mathbf{B} \in \mathbb{Z}^{m \times n}$ задает базис решетки, а $r \in \mathbb{Q}$ такое число, что для некоторого $\mathbf{z} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ выполняется неравенство $\|\mathbf{B}\mathbf{z}\| \leq r$.
- NO соответствует парам (**B**, r), где **B** $\in \mathbb{Z}^{m \times n}$, а $r \in \mathbb{Q}$ такое число, что для некоторого $\mathbf{z} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ выполняется неравенство $\|\mathbf{B}\mathbf{z}\| > \gamma r$.

Определение

Задача с обязательством $G_{AP}CVP_{\gamma}$, где γ — функция ранга решетки, определяется так

- YES соответствует тройкам (\mathbf{B} , \mathbf{t} , r), где $\mathbf{B} \in \mathbb{Z}^{m \times n}$ задает базис решетки, $\mathbf{t} \in \mathbb{Z}^n$, а $r \in \mathbb{Q}$ такое число, что для некоторого $\mathbf{z} \in \mathbb{Z}^n$ выполняется неравенство $\|\mathbf{B}\mathbf{z} \mathbf{t}\| \leq r$.
- NO соответствует тройкам ($\mathbf{B}, \mathbf{t}, r$), где $\mathbf{B} \in \mathbb{Z}^{m \times n}$, $\mathbf{t} \in \mathbb{Z}^n$, а $r \in \mathbb{Q}$ такое число, что для некоторого $\mathbf{z} \in \mathbb{Z}^n$ выполняется неравенство $\|\mathbf{Bz} \mathbf{t}\| > \gamma r$.

Задача с обязательством $G_{AP}SVP_{\gamma}$ и задача нахождения приближенного решения с множителем γ эквивалентны в следующем смысле. Пусть алгоритм ${\mathcal A}$ находит приближение для задачи SVP с множителем γ . Тогда можно решить задачу $\mathsf{G}_{\mathsf{AP}}\mathsf{SVP}_\gamma$ так. На входе алгоритма (\mathbf{B},r) алгоритм $\mathcal A$ находит аппроксимацию $r' = ||x|| \in [\lambda_1, \gamma \lambda_1]$ кратчайшего вектора. Если $r' > \gamma r$, тогда $\lambda_1 > r$, т.е. пара (\mathbf{B}, r) в задаче $\mathsf{G}_{\mathsf{AP}}\mathsf{SVP}_\gamma$ не соответствует ответу YES, а поскольку $(\mathbf{B}, r) \in \Pi_{\mathsf{YES}} \cup \Pi_{\mathsf{NO}}$ на этой паре принимается значение NO. Если же выполняется неравенство $r' < \gamma r$, из условия выполнения обязательства $(\mathbf{B},r)\in\Pi_{\mathsf{VFS}}\cup\Pi_{\mathsf{NO}}$ заключаем, что на паре (\mathbf{B},r) принимается значение YES.

Пусть теперь имеется оракул \mathcal{A} , решающий задачу $\mathsf{G}_{\mathsf{AP}}\mathsf{CVP}_\gamma$. Заметим, что при невыполнении обязательства, оракул может выдать любой ответ. Пусть $u \in \mathbb{Z}$ верхняя граница $\lambda(\mathbf{B})^2$, например, u квадрат длины базисного вектора. В этом случае всегда $\mathcal{A}(\mathbf{B},\sqrt{u}) = \mathit{YES}$, а $\mathcal{A}(\mathbf{B},0) = \mathit{NO}$. Далее, используя бинарный поиск найдем такое целое $r \in \{0,\ldots,u\}$, что $\mathcal{A}(\mathbf{B},\sqrt{r}) = \mathit{YES}$, а $\mathcal{A}(\mathbf{B},\sqrt{r-1}) = \mathit{NO}$. Тогда $\lambda_1(\mathbf{B})$ лежит в полуинтервале $[\sqrt{r},\gamma\sqrt{r})$. Аналогичное рассуждение применимо к задаче нахождения ближайшего вектора.

Класс NP можно расширить на задачи с обязательствами.

Определение

Задача $(\Pi_{\mathit{YES}}, \Pi_{\mathit{NO}})$ лежит в NP, если существует отношение $R \subset \Sigma^* \times \Sigma^*$, такое что $(x,y) \in R$ подтверждается за полиномиальное время от |x| и для каждого $x \in \Pi_{\mathit{YES}}$ существует такой y, что $(x,y) \in R$, а для $x \in \Pi_{\mathit{NO}}$ нет такого y, что $(x,y) \in R$.

Дополнением задачи распознавания $(\Pi_{\it YES},\Pi_{\it NO})$ является задача $(\Pi_{\it NO},\Pi_{\it YES},)$. Класс задач распознования языков, дополнение которых лежит в $\it NP$, называется классом $\it coNP$. Соответственно этот класс расширяется на класс дополнений к задачам с обязательствами из класса $\it NP$.

Определение

Сведением по Карпу задачи $(\Pi_{\rm YES},\Pi_{\rm NO})$ к $(\Pi'_{\rm YES},\Pi'_{\rm NO})$ называется функция $f:\Sigma^*\to\Sigma^*$, преобразующая ответы YES в YES, а NO в NO.

Если алгоритм А решает задачу (Π'_{YES},Π'_{NO}) , то этот же алгоритм может решить задачу (Π_{YES},Π_{NO}) . А именно, пусть $I\in (\Pi_{YES},\Pi_{NO})$. Применяя к $f(I)\in (\Pi'_{YES},\Pi'_{NO})$ алгоритм A, получим ответ для I. Заметим, что f(I) — задача с обязательством, т.е. $f(I)\in (\Pi'_{YES},\Pi'_{NO})$ и если для f(I) ответ YES тогда и только тогда, когда для I ответ YES.

Задача с обязательством A называется NP-трудной, если любая задача с обязательством B из класса NP сводится эффективно к задаче A.

Ортогонализация Грамма-Шмидта

Пусть $\mathbf{b}_1, \ldots, \mathbf{b}_n$ — базис, тогда ортогональные векторы \mathbf{b}_i^* определяются формулами

$$\mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{b}_{j}^{*}$$

$$\mu_{i,j} = \frac{(\mathbf{b}_{i}, \mathbf{b}_{j}^{*})}{(\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*})}.$$

Как выполняется алгоритм Гаусса? Какие действия выполняются?

- 1. Приведение базиса: $b_2:=b_2-cb_1$, где $c=\left\lfloor rac{(\mathbf{b}_1,\mathbf{b}_2)}{(\mathbf{b}_1,\mathbf{b}_1)}
 ight
 floor.$
- 2. Перестановка: if $\|\mathbf{b}_1\| > \|\mathbf{b}_2\|$ then swap $(\mathbf{b}_1, \mathbf{b}_2) := (\mathbf{b}_2, \mathbf{b}_1)$.
- 3. **if** $(\mathbf{b}_1, \mathbf{b}_2)$ не приведенный базис **repeat**.

Приведенный базис

Определение

Базис В $=(b_1,\ldots,b_n)\in\mathbb{R}^{m imes n}$ называется δ -LLL-приведенным относительно параметра $rac{1}{4}<\delta<1$, если

- ullet $|\mu_{ij}| \leq 1/2$ при i>j, где μ_{ij} коэффициенты Грамма-Шмидта,
- $m{Q}$ для любой последовательной пары векторов b_i, b_{i+1} выполняется неравенство

$$\delta \|\pi_i(b_i)\|^2 \leq \|\pi_i(b_{i+1})\|^2,$$

где π_i — проекция на оболочку **span** $(b_i^*,b_{i+1}^*,\ \dots,b_n^*)$

$$\pi_i(\mathbf{x}) = \sum_{i=1}^n \frac{(\mathbf{x}, \mathbf{b}_i^*)}{(\mathbf{b}_i^*, \mathbf{b}_i^*)}.$$

Иначе это условие задается соотношением

$$\delta \|b_i^*\|^2 \le \|b_{i+1}^* + \mu_{i+1,i}b_i^*\|^2 = \|b_{i+1}^*\|^2 + \mu_{i+1,i}^2\|b_i^*\|^2.$$

Свойства приведенного базиса

Теорема

Пусть $b_1, \ldots, b_n - \delta$ -LLL-приведенный базис решетки L. Тогда

$$\|b_j\| \leq \left(rac{4}{4\delta-1}
ight)^{(i-1)/2} \|b_i^*\| \ \mathit{npu} \ 1 \leq j \leq i \leq \mathit{n},$$

$$||b_1|| \leq \left(\frac{4}{4\delta - 1}\right)^{(n-1)/4} (\det L)^{1/n},$$

$$ullet$$
 если $\mathbf{x}
eq 0$ — элемент решетки, то $\|\mathbf{b}_1\| \leq \left(rac{4}{4\delta-1}
ight)^{(n-1)/2} \|\mathbf{x}\|,$

$$egin{align*} egin{align*} egin{align*} \mathbf{e} & e c extit{л} u \ & e k mopы решетки } \mathbf{x}_1, & \dots, \mathbf{x}_t - extit{л} u he egin{align*} \mathbf{e} & d \ & e \ \mathbf{x}_1 \|_1, & \dots, \|\mathbf{x}_t\|_2 \end{bmatrix} & \mathbf{m} \mathbf{x} \mathbf{x}_1 \|_1, & \dots, \|\mathbf{x}_t\|_2 \end{bmatrix} & \mathbf{n} \mathbf{p} \mathbf{u} \ 1 \leq \mathbf{j} \leq \mathbf{t}. \end{aligned}$$

Доказательство. Согласно определению приведенного базиса выполняется неравенство

$$\|\mathbf{b}_{i+1}^*\|^2 \ge \left(\delta - \mu_{i+1,i}^2\right) \|\mathbf{b}_i^*\|^2 \ge \left(\delta - \frac{1}{4}\right) \|\mathbf{b}_i^*\|^2$$

для всех $1 \leq i < n$. Следовательно, для всех $1 \leq j \leq i < n$ выполняются неравенства $\|\mathbf{b}_j^*\|^2 \leq \left(\frac{4}{4\delta-1}\right)^{i-j} \|\mathbf{b}_j^*\|^2$. Введем обозначение $\tau = \frac{4}{4\delta-1}$. Тогда ввиду ограничения на параметр δ , получаем, что $\tau > \frac{4}{3}$.

Поэтому из условия приведенности базиса

$$\begin{split} \|\mathbf{b}_{i+1}\|^2 &= \|\mathbf{b}_{i+1}^*\|^2 + \sum_{j=1}^{l} \mu_{i+1,j}^2 \|\mathbf{b}_{j}^*\|^2 \\ &\leq \|\mathbf{b}_{i+1}^*\|^2 + \sum_{j=1}^{i} \frac{1}{4} \cdot \left(\frac{4}{4\delta - 1}\right)^{i+1-j} \|\mathbf{b}_{i+1}^*\|^2 \\ &= \|\mathbf{b}_{i+1}^*\|^2 + \sum_{j=1}^{i} \frac{1}{4} \cdot \tau^{i+1-j} \|\mathbf{b}_{i+1}^*\|^2 \\ &= \left(1 + \frac{1}{4} \tau \frac{\tau^i - 1}{\tau - 1}\right) \cdot \|\mathbf{b}_{i+1}^*\|^2 \\ &\leq \tau^i \cdot \|\mathbf{b}_{i+1}^*\|^2, \end{split}$$

т.к.
$$\left(1+\frac{1}{4}\tau\frac{\tau'-1}{\tau-1}\right)\leq \tau^i$$
 при $\tau>\frac{4}{3}$. Следовательно,

$$\|\mathbf{b}_{j}\|^{2} \leq au^{j-1} \|\mathbf{b}_{j}^{*}\|^{2} \leq au^{i-1} \|\mathbf{b}_{j}^{*}\|^{2}$$

при $1 \leq j \leq i \leq n$. Формула 2 теоремы доказана.

Из полученного неравенства выводим

$$\prod_{i=1}^{n} \|\mathbf{b}_{i}\|^{2} \leq \prod_{i=1}^{n} \tau^{i-1} \prod_{i=1}^{n} \|\mathbf{b}_{i}^{*}\| = \tau^{n(n-1)/2} \cdot (\det L)^{2}.$$

Поскольку первая половина неравенства 1 представляет собой, доказанное ранее неравенство Адамара, соотношение 1 доказано. Для доказательства соотношения 3 воспользуемся соотношениями 2. Перемножая соотношения

$$\|\mathbf{b}_1\| \le \tau^{\frac{i-1}{2}} \|\mathbf{b}_i^*\|,$$

получим

$$\|\mathbf{b}_1\|^n \leq \prod_{i=1}^n \left(\tau^{\frac{i-1}{2}}\|\mathbf{b}_i^*\|\right) = \tau^{\frac{n(n-1)}{4}} \cdot \det L.$$

Соотношение 3 доказано.

Докажем соотношение 4. Поскольку \mathbf{x} — вектор решетки, имеют место разложения

$$\mathbf{x} = \sum_{i=1}^{n} r_i \mathbf{b}_i = \sum_{i=1}^{n} r_i' \mathbf{b}_i^*,$$

причем все $r_k \in \mathbb{Z}$. Пусть k — максимальное целое, для которого $r_k \neq 0$. Тогда из определения процесса ортогонализации следует, что выполняется равенство $r_k = r_k'$, и в частности $\|r_k\| = \|r_k'\| \geq 1$. Воспользовавшись соотношением 2, получаем

$$\tau^{n-1} \|\mathbf{x}\|^2 \ge \tau^{n-1} \|r_k'\|^2 \|\mathbf{b}_k^*\|^2 \ge \tau^{k-1} \|\mathbf{b}_k^*\|^2 \ge \|\mathbf{b}_1\|^2.$$

Соотношение 4 доказано.

Докажем соотношение 5. Выразим векторы \mathbf{x}_{j} через элементы базиса \mathbf{b}_{i}

$$\mathbf{x}_j = \sum_{i=1}^n r_{i,j} \mathbf{b}_i, \ r_{i,j} \in \mathbb{Z}.$$

Для каждого j обозначим через k(j) наибольшее целое число k, для которого $r_{k,j} \neq 0$. Перенумеруем векторы \mathbf{x}_j так, чтобы $k(1) \leq k(2) \leq \ldots k(t)$. Тогда для всех $1 \leq j \leq t$ выполняются неравенства $\|\mathbf{x}_j\|^2 \geq \|\mathbf{b}_{k(j)}^*\|^2$. Выполняется неравенство $j \leq k(j)$ для всех $1 \leq j \leq t$, поскольку векторы $\mathbf{x}_1, \ldots, \mathbf{x}_t$ линейно независимы. Воспользовавшись этим неравенством и уже доказанным соотношением $\mathbf{2}$, получаем

$$\|\mathbf{b}_{i}\|^{2} \leq \tau^{k(j)-1} \cdot \|\mathbf{b}_{k(i)}^{*}\|^{2} \leq \tau^{n-1} \cdot \|\mathbf{b}_{k(i)}^{*}\|^{2} \leq \tau^{n-1} \cdot \|\mathbf{x}_{i}\|^{2}.$$

Свойства приведенного базиса

Следствие

Если
$$B=(b_1,\ \dots,b_n)\in\mathbb{R}^{m\times n}-\delta$$
—LLL-приведенный базис с $\delta\in(1/4,1)$, то $\|b_1\|\leq \left(2/\sqrt{4\delta-1}\right)^{n-1}\lambda_1$. В частности, если $\delta=1/4+(3/4)^{n/(n-1)}$, то $\|b_1\|\leq \left(2/\sqrt{3}\right)^n\lambda_1$.

LLL(Lenstra, Lenstra, Lovasz)-алгоритм

Вход: Базис решетки $\mathbf{B}=(b_1,\ \dots,b_n)\in\mathbb{Z}^{m\times n}$ Выход: \mathbf{B} — LLL-приведенный базис решетки.

(loop):

Строим ортогональный базис Грамма-Шмидта (b_1^*, \ldots, b_n^*) для базиса (b_1, \ldots, b_n) .

```
for i=1, \ldots, n for j=i-1, \ldots, 1 b_i:=b_i-c_{i,j}b_j где c_{i,j}=\left\lfloor (b_i,b_j^*)/(b_j^*,b_j^*) \right
ceil if \delta \|\pi_i(b_i)\|^2>\|\pi_i(b_{i+1})\|^2 для некоторого i then \mathrm{swap}(b_i,b_{i+1}) go to (loop) else B — выход Stop
```

Корректность алгоритма

Отметим, что выполняемые в алгоритме преобразования переводят базис решетки в базис той же решетки, причем в процессе редукции (до перестановки векторов) соответствующий ортогональный базис ${\bf B}^*$ не изменяется. При выполнении процедуры ортогонализации редуцированного базиса все промежуточные значения $|\mu_{i,i}| \leq 1/2$ при i > jсохраняются. В случае же перестановки базисных векторов нужно заново строить ортогональный базис. В том случае, если перестановка не требуется, алгоритм заканчивает работу и в результате получается приведенный базис решетки. Поэтому, для доказательства полиномиальности алгоритма необходимо сначала доказать, что алгоритм заканчивает выполнение за конечное число шагов и оценить их число, а также оценить сложность выполнения каждого шага.

Доказательство корректности алгоритма

Из определения процедуры ортогонализации Грамма-Шмидта следует

Лемма

Пусть j < i. При преобразовании базиса решетки

$$\varphi_{i,j}: B = (\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n) \to B' = (\boldsymbol{b}_1', \ldots, \boldsymbol{b}_n'),$$

по формуле

$$arphi_{i,j}(m{b}_k) = \left\{ egin{array}{ll} m{b}_k & ext{при} & k
eq i \ m{b}_k - c_{k,i}m{b}_i & ext{при} & k = i \end{array}
ight.,$$

где $c_{k,j} = \lfloor (\pmb{b}_k, \pmb{b}_j^*)/(\pmb{b}_j^*, \pmb{b}_j^*) \rfloor$, ортогональный базис Грамма-Шмидта нового базиса не изменяется.

Доказательство корректности алгоритма

Из определения коэффициентов $c_{k,j} = \left\lfloor (\mathbf{b}_k, \mathbf{b}_j^*)/(\mathbf{b}_j^*, \mathbf{b}_j^*)
ight
ceil$

Лемма

Пусть j < i. При преобразовании базиса решетки

$$arphi_{i,i}: B = (oldsymbol{b}_1, \, \ldots, oldsymbol{b}_n)
ightarrow B' = (oldsymbol{b}'_1, \, \ldots, oldsymbol{b}'_n),$$

заданном формулой

$$arphi_{i,j}(m{b}_k) = \left\{egin{array}{ll} m{b}_k & ext{при} & k
eq i \ m{b}_k - c_{k,j} m{b}_j & ext{при} & k = i \end{array}
ight.,$$

 $arphi_{i,j}$

 $u |\mu'_{i,i}| \leq 1/2.$

соотношения
$$\mu'_{k,m}=\left\{egin{array}{ll} \mu_{k,m} & ext{при} & k
eq i \ \mu_{k,m} & ext{при} & k=i>m>j. \end{array}
ight.$$

где $c_{k,j} = \lfloor (\pmb{b}_k, \pmb{b}_i^*)/(\pmb{b}_i^*, \pmb{b}_i^*) \rfloor$, для всех k > m выполняются

Доказательство корректности алгоритма

Отметим, что выполняемые в алгоритме преобразования переводят базис решетки в базис той же решетки, причем в силу доказанных выше двух лемм, если алгоритм заканчивает работу, то в результате получается δ -LLL приведенный базис решетки.

Поэтому, для доказательства корректности алгоритма достаточно убедиться, что алгоритм заканчивает выполнение за конечное число шагов. Мы докажем, что алгоритм останавливается за конечное время, а также его полиномиальность относительно длины входа. Для этого потребуется оценить число обращений к циклу (loop), а также сложность выполнения каждого шага.

Целозначные функции d_i

Зададим целозначные положительные функции d_i на базисах решетки формулами

$$d_i(\mathbf{b}_1, \ldots, \mathbf{b}_i) = \left| egin{array}{ccc} (\mathbf{b}_1, \mathbf{b}_1) & \cdots & (\mathbf{b}_1, \mathbf{b}_i) \ \cdots & \cdots & \cdots \ (\mathbf{b}_i, \mathbf{b}_1) & \cdots & (\mathbf{b}_i, \mathbf{b}_i) \end{array}
ight|.$$

Согласно доказанному ранее об объеме основного параллелипипеда выполняется равенство

$$d_i(\mathbf{b}_1, \ldots, \mathbf{b}_i) = \prod_{j=1}^n \|\mathbf{b}_j^*\|^2.$$

Целозначная функция *D*

неизменной.

Свяжем теперь с базисом $\mathbf{b}_1, \ldots, \mathbf{b}_n$ натуральное число

$$D = D(\mathbf{b}_1, \ldots, \mathbf{b}_n) = \prod_{i=1}^n d_i(\mathbf{b}_1, \ldots, \mathbf{b}_i).$$

Заметим, что если в процессе выполнения алгоритма не выполняется перестановка векторов, то величины d_i , являющиеся квадратами детерминантов базисов соответствующих решеток не изменяются. Следовательно, и величина D в этом случае остается

25/42

Шаг алгоритма, переставляющий векторы

Рассмотрим теперь шаг алгоритма, на котором выполняется перестановка двух соседних элементов базиса. А именно, пусть векторы $\mathbf{b}_1, \ldots, \mathbf{b}_i$ определяют приведенный базис в решетке $\mathbf{span}(\mathbf{b}_1, \ldots, \mathbf{b}_i)$, порожденной этими векторами. Пусть также векторы $\mathbf{b}_1, \ldots, \mathbf{b}_{i+1}$ представляют базис, для которого выполняется условие 1, но не выполняется условие 2 определения δ LLL-приведенности. Тогда на этом шаге алгоритма выполняется перестановка

Тогда на этом шаге алгоритма выполняется перестановка базисных векторов и получается базис

$$(\tilde{\mathbf{b}}_1, \ldots, \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_{i+1}, \ldots, \tilde{\mathbf{b}}_n) = (\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}, \mathbf{b}_{i+1}, \mathbf{b}_i, \mathbf{b}_{i+2}, \ldots, \mathbf{b}_n).$$

Изменение величины *D*

Посмотрим, как изменится при этом значение величины D. Отметим, что значения d_k при $k \neq i$ остаются неизменными, поскольку соответствующие решетки не меняются. Поэтому

$$\frac{D(\tilde{\mathbf{b}}_1, \ldots, \tilde{\mathbf{b}}_n)}{D(\mathbf{b}_1, \ldots, \mathbf{b}_n)} = \prod_{k=1}^n \frac{d_k(\tilde{\mathbf{b}}_1, \ldots, \tilde{\mathbf{b}}_k)}{d_k(\mathbf{b}_1, \ldots, \mathbf{b}_k)} = \frac{d_i(\tilde{\mathbf{b}}_1, \ldots, \tilde{\mathbf{b}}_i)}{d_i(\mathbf{b}_1, \ldots, \mathbf{b}_i)}$$

$$= \frac{\left(\prod\limits_{j=1}^{i-1} \|\mathbf{b}_{j}^{*}\|^{2}\right) \|\pi_{i}(\mathbf{b}_{i+1})\|^{2}}{\prod\limits_{j=1}^{i} \|\mathbf{b}_{j}^{*}\|^{2}} = \frac{\|\pi_{i}(\mathbf{b}_{i+1})\|^{2}}{\|\mathbf{b}_{i}^{*}\|^{2}}.$$

Измение величины *D*

Поскольку выполняется перестановка, второе условие δ -LLL приводимости не выполняется, т.е.

условие
$$\delta$$
-LLL приводимости не выполняется, т.е. $\frac{\|\pi_i(\mathbf{b}_{i+1})\|^2}{\|\mathbf{b}_i^*\|^2} = \frac{\|\pi_i(\mathbf{b}_{i+1})\|^2}{\|\pi_i(\mathbf{b}_i)\|^2} \leq \delta$. Поэтому выполняется неравенство

 $D(\tilde{\mathbf{b}}_1, \ldots, \tilde{\mathbf{b}}_n) \leq \delta D(\mathbf{b}_1, \ldots, \mathbf{b}_n).$

Пусть $D_0 = D(d_1, \ldots, d_n)$ — значение целозначной функции D на исходном базисе решетки на входе LLL -алгортима, а D_k — соответствующее значение после k -й итерации (loop). Тогда из формулы 1 следует соотношение $D_k \leq \delta^k D_0$.

(1)

Оценка числа итераций в цикле (loop)

Поскольку ${\it D}$ — целозначная положительная функция и $\delta < 1$, выполняется неравенство

$$k \le \frac{\log D_0}{\log(1/\delta)}.$$

Поскольку D_0 вычислима за полиномиальное время от длины входа, значение $\log D_0$ полиномиально от длины входа. Следовательно, если $\delta < 1$ — константа, то число итераций полиномиально от длины входа.

Полиномиальность сохраняется для последовательности δ_n

Следующая лемма показывает, что для некоторой возрастающей функции δ_n , для которой $\lim_{n \to \infty} \delta_n = 1$, число итераций остается полиномиальным.

Лемма

Если $\delta_n = (1/4) + (3/4)^{n/(n-1)}$, то для всех c > 1 существует такое N, что для всех n > N выполняется неравенство $(\log(1/\delta_n))^{-1} \le n^c$.

выполняется равенство $1 - \delta_n = (3/4) - (3/4)^{n/(n-1)} = (3/4) \left(1 - (3/4)^{1/(n-1)} \right)$

соотношению
$$\frac{1-2^{-\left(\frac{1}{n}\right)^c}}{(3/4)(1-(3/4)^{1/(n-1)})}\leq 1.$$

Следовательно, доказываемое неравенство эквивалентно

Доказательство. Неравенство $(\log(1/\delta_n))^{-1} \le n^c$ эквивалентно неравенству $1 - 2^{-\left(\frac{1}{n}\right)^c} < 1 - \delta_n$. Согласно определению δ_n

Чтобы доказать это соотношение, достаточно проверить, что выполняется равенство

выполняется равенство
$$1-2^{-\left(\frac{1}{n}\right)^c} = 0$$

 $\lim_{n \to \infty} \frac{1 - 2^{-\left(\frac{1}{n}\right)^{c}}}{(3/4)(1 - (3/4)^{1/(n-1)})} = 0.$

$$\lim_{n\to\infty}\frac{1-2}{(3/4)(1-(3/4)^{1/(n-1)})}=0. \tag{3}$$
 Сделаем замену переменных $x=1/(n-1)$. Тогда подставляя

n = 1 + 1/x в соотношение 3, получим эквивалентное равенство

$$\lim_{x \to 0} \frac{1 - 2^{-\left(\frac{x}{x+1}\right)^c}}{(3/4)(1 - (3/4)^x)} = 0.$$

(2)

Для вычисления предела воспользуемся правилом Лопиталя. Имеем

$$\lim_{x \to 0} \frac{1 - 2^{-\left(\frac{x}{x+1}\right)^c}}{(3/4)(1 - (3/4)^x)} = \lim_{x \to 0} \frac{2^{-\left(\frac{x}{x+1}\right)^c} \frac{c \ln 2}{(1+x)^2} \left(\frac{x}{1+x}\right)^{c-1}}{\frac{3}{4} \left(\frac{3}{4}\right)^x \ln(4/3)} = 0.$$

Из доказанной леммы получаем, что δ_n -LLL алгоритм находит приближение кратчайшего вектора решетки с точностью до множителя $(2\sqrt{3})^n$ за полиномиальное относительно длины входа число итераций.

Полиномиальность

Число арифметических операций, выполняемых в каждом цикле полиномиально. Поэтому, чтобы получить полиномиальную оценку времени выполнения алгоритма, достаточно проверить, что размеры всех чисел, получаемых в процессе выполнения алгоритма, полиномиальны относительно длины входа. Поскольку при выполнении LLL -алгоритма операции производятся над рациональными числами, достаточно проверить полиномиальность размеров их числителей и знаменателей.

Ортогонализация Грамма-Шмидта

Из формул ортогонализации Грамма-Шмидта следует, что $\mathbf{b}_i - \mathbf{b}_i^* \in \text{span}(\mathbf{b}_1, \ldots, \mathbf{b}_{i-1})$, т.е.

$$\mathbf{b}_i - \mathbf{b}_i^* = \sum_{i=1}^{i-1} v_{i,j} \mathbf{b}_j \tag{4}$$

для некоторых вещественных (рациональных) чисел $v_{i,i}$. Для любого t < i выполняется равенство

$$m{v}_{i,j}$$
. Для любого $t < i$ выполняется равенство $(m{b}_i,m{b}_t) = \sum_{i=1}^{i-1} m{v}_{i,j}(m{b}_j,m{b}_t).$ (5)

(5)

Система линейных уравнений для коэффициентов $oldsymbol{v}_{i,j}$

Составим матрицу $B_t=(\mathbf{b}_1,\ \dots,\mathbf{b}_t)$ из столбцов и вектор-столбец $\mathbf{v}_i=(\mathbf{v}_{i,1},\ \dots,\mathbf{v}_{i,i-1})'$. Объединяя уравнения (5) при $t=1,\ \dots,i-1$, получим систему линейных уравнений

$$\mathbf{b}_i'B_{i-1} = \mathbf{v}_i'B_{i-1}'B_{i-1}.$$

Детерминант системы равен $\det(B'_{i-1}B_{i-1})=d_{i-1}$. Согласно правилу Крамера компоненты вектора $d_{i-1}v_i$ целые числа.

Оценка для знаменателей

Поскольку из равенства (4) следует соотношение

$$d_{i-1}\mathbf{b}_{i}^{*}=d_{i-1}\mathbf{b}_{i}+\sum_{j=1}^{r-1}(d_{i-1}v_{i,j})\mathbf{b}_{j},$$
 (6)

знаменатели рациональных векторов \mathbf{b}_{i}^{*} являются делителями целых чисел d_{i-1} . Представим теперь коэффициенты $\mu_{i,j}$, используемые в процедуре ортогонализации, как дроби:

ортогонализации, как дроои:
$$\mu_{i,j} = \frac{(\mathbf{b}_i, \mathbf{b}_j^*)}{(\mathbf{b}_i^*, \mathbf{b}_i^*)} = \frac{d_{j-1}(\mathbf{b}_i, \mathbf{b}_j^*)}{d_{j-1} \|\mathbf{b}_i^*\|^2} = \frac{(\mathbf{b}_i, d_{j-1}\mathbf{b}_j^*)}{d_j},$$

поскольку
$$d_j = \prod\limits_{k=1}^j \|\mathbf{b}_k^*\|^2$$
. Поэтому знаменатели μ_{ij} делят d_i .

Оценка для знаменателей

Ранее было показано, что размер представления начального значения D_0 целозначной функции $D = \prod_{i=1}^n d_i$ полиномиален относительно длины входа и эта величина уменьшается в процессе выполнения LLL -алгоритма.

Поэтому знаменатели всех рациональных чисел (поскольку знаменатели μ_{ij} делят d_j) в процессе выполнения алгоритма имеют полиномиальный размер относительно длины входа.

Полиномиальность размеров числителей

Согласно определению выполняются соотношения $|\mu_{i,i}| \le 1/2$. Отметим, что при i > 1 из целочисленности вектора $d_i \mathbf{b}_i^*$ (см. соотношение (6)) следует, что $\|\mathbf{b}_{i}^{*}\| \geq 1/d_{i}$. Также выполняются

соотношения
$$\|\mathbf{b}_1^*\| = \|\mathbf{b}_1\| \geq 1$$
 и $d_i = \prod_{j=1}^l \|\mathbf{b}_j^*\|^2$.

Следовательно,

$$\|\mathbf{b}_{i}^{*}\|^{2} = \frac{d_{i}}{\prod\limits_{j=1}^{i-1} \|\mathbf{b}_{j}^{*}\|^{2}} \leq d_{i} \prod\limits_{j=1}^{i-2} d_{j}^{2} \leq D.$$

Полиномиальность размеров числителей

Поэтому

$$\|\mathbf{b}_i\|^2 = \|\mathbf{b}_i^*\|^2 + \sum_{i=1}^{l-1} \mu_{i,j}^2 \|\mathbf{b}_j^*\|^2 \le D + (n/4)D \le nD.$$

Следовательно, длины числителей также имеют полиномиальнцю длину относительно длины входа и LLL -алгоритм с $\delta_n=(1/4)+(3/4)^{n/(n-1)}$ выполняется за полиномиальное время от длины входа.

Теорема существования приведенного базиса

Таким образом доказана

Теорема

Существует полиномиальный алгоритм, находящий для базиса В решетки LLL -приведенный базис решетки $\mathcal{L}(B)$ с параметром $\delta_n = (1/4) + (3/4)^{n/(n-1)}$.

Теперь из леммы 3 следует

Теорема

Существует полиномиальный алгоритм, находящий для базиса В решетки ненулевой вектор решетки $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ длины не более чем $(2/\sqrt{3})^n \lambda_1$.

Аппроксимация решения задачи CVP

Задача ACVP (Approximate CVP). Пусть задан вектор $\mathbf{b} \in \mathbb{R}^m$ и n-мерная решетка с базисом $(\mathbf{b}_1, \ldots, \mathbf{b}_n)$, $(n \leq m)$. Требуется найти вектор $\mathbf{b}_0 \in \mathcal{L}(\mathbf{b}_1, \ldots, \mathbf{b}_n)$, для которого выполнено соотношение

$$\|\mathbf{b} - \mathbf{b}_0\| \le 2(2/\sqrt{3})^n \min_{\mathbf{x} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n)} \|\mathbf{x} - \mathbf{b}\|.$$

ACVP-алгоритм

Вход: Базис решетки $B=(\mathbf{b}_1,\ \dots,\mathbf{b}_n)\in\mathbb{Z}^{m\times n}$ и вектор $\mathbf{t} \in \mathbb{Z}^m$

Выход: Вектор решетки $\mathbf{x} \in \mathcal{L}(\mathbf{b}_1, \ldots, \mathbf{b}_n)$, для которого выполняется соотношение

$$\|\mathbf{x} - \mathbf{t}\| \leq 2(2/\sqrt{3})^n \min_{\mathbf{y} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n)} \|\mathbf{y} - \mathbf{t}\|.$$

Выполнить LLL -алгоритм (найти приведенный базис).

базис).
$$\mathbf{b}:=\mathbf{t}$$

$$\mathbf{for}\,j=n,\;\ldots,1$$

$$c_i=\left\lfloor (\mathbf{b},\mathbf{b}_i^*)/(\mathbf{b}_i^*,\mathbf{b}_i^*)\right\rceil$$

 $\mathbf{b} := \mathbf{b} - c_i \mathbf{b}_i$ x := t - b - выход