Heuristic (Informed) Search

(Where we try to choose smartly)

Russell and Norvig: Chap. 3, Sect. 3.5

Slides from Jean-Claude Latombe at Stanford University (used with permission)

Search Algorithm #2

- 1. INSERT(N, FRONTIER)
- 2. Repeat:

- Recall that the ordering of nodes in **FRONTIER** defines the search strategy
- a. If EMPTY?(ERONTIER) then return failure
- b. N = POP (FRONTIER)
- c. S = STATE(N)

Expansion of N

- d. If GOAL?(s) then return path or goal state
- e. For every state s' in SUCCESSORS(s)
 - Create a new node N' as a child of N
 - INSERT(N', FRONTIER)

Are We Smart Yet?

- So far we've been "blundering about in the dark" Let's try to be smarter!
- Informed strategies could find solutions more efficiently than uninformed ones
- We'll consider a new kind of search called Best-First Search, which chooses nodes for expansion based on an evaluation function

Best-First Search

- It exploits state description to estimate how "good" each search node is
- ◆ An evaluation function f maps each node N of the search tree to a real number:
 f(N) ≥ 0

[Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more promising N]

Best-first search sorts the FRONTIER in increasing f

[Arbitrary order is assumed among nodes with equal f]

Best) First Search

t exploits state description to estimate how "good" each search node is

*Best" does not refer to the quality of the generated path of the search Best-first search does not generate optimal paths in general

bde N

[Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more promising N]

Best-first search sorts the FRONTIER in increasing f

[Arbitrary order is assumed among nodes with equal f]

How to construct f?

- Typically, f(N) estimates:
 - either the cost of a solution path through N
 - Then f(N) = g(N) + h(N), where
 - g(N) is the cost of the path from the initial node to N
 - h(N) is an estimate of the cost of a path from N to a goal node
 - or the cost of a path from N to a goal node
 - Then f(N) = h(N)
 ▶ Greedy best-search
- But there are no limitations on f.
 Any function of your choice is acceptable.
 But will it help the search algorithm?

How to construct f?

- Typically, f(N) estimates:
 - either the cost of a solution path through N
 - Then f(N) = g(N) + h(N), where
 - g(N) is the cost of the path from the initial node to N
 - to a goal node

 h(N) is an estimate of the cost of the

or the cost of a path from N to function

- Then f(N) = h(N)
- But there are no limitations on f.
 Any function of your choice is acceptable.
 But will it help the search algorithm?

Heuristic Function

The heuristic function h(N) ≥ 0 estimates the cost to go from STATE(N) to a goal state

Its value is independent of the current search tree; it depends only on STATE(N) and the goal test GOAL?

Example:

5		8
4	2	1
7	3	6

Goal state

5

3

6

STATE(N)

 $h_1(N)$ = number of misplaced numbered tiles = 6 [Why is it an estimate of the distance to the goal?]

Other Examples

5		8
4	2	1
7	3	6

STATE(N)

Goal state

- $h_1(N)$ = number of misplaced numbered tiles = 6
- h₂(N) = sum of the (Manhattan) distance of every numbered tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
- $h_3(N) = sum of permutation inversions$

$$= n_5 + n_8 + n_4 + n_2 + n_1 + n_7 + n_3 + n_6$$

$$= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0$$

= 16

8-Puzzle f(N) = h(N) = number of misplaced tiles

The white tile is the empty tile

8-Puzzle $f(N) = h(N) = \Sigma$ distances of tiles to goals

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$

 $h_2(N) = |x_N - x_g| + |y_N - y_g|$

(L₂ or Euclidean distance)

(L₁ or Manhattan distance)

f(N) = h(N) = straight distance to the goal

How Good is Best-First?

- If the state space is infinite, in general the search is not complete
- If the state space is finite and we do not discard nodes that revisit states, in general the search is not complete
- If the state space is finite and we discard nodes that revisit states, the search is complete, but in general is not optimal

Admissible Heuristic

- Let h*(N) be the cost of the optimal path from N to a goal node
- The heuristic function h(N) is admissible if:

$$0 \le h(N) \le h^*(N)$$

An admissible heuristic function is always optimistic!

Admissible Heuristic

- Let h*(N) be the cost of the optimal path from N to a goal node
- The heuristic function h(N) is admissible if:

$$0 \le h(N) \le h^*(N)$$

An admissible heuristic fund optimistic!

G is a goal node

► h(G) = 0

5	8 8 8 8 8	8
4	2	1
7	3	6
		į

 1
 2
 3

 4
 5
 6

 7
 8

STATE(N)

Goal state

- ♦ h₁(N) = number of misplaced tiles = 6 is ???
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position

$$= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$$

is ???

 \spadesuit h₃(N) = sum of permutation inversions

$$= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16$$

is ???

5		8
4	2	1
7	3	6
1 1	ž.	

 1
 2
 3

 4
 5
 6

 7
 8

STATE(N)

Goal state

- h₁(N) = number of misplaced tiles = 6 is ADMISSIBLE
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position

$$= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$$

is ????

 $h_3(N) = sum of permutation inversions$

$$= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16$$

is ???

5	**************************************	8
4	2	1
7	3	6

STATE(N)

Goal state

- h₁(N) = number of misplaced tiles = 6 is ADMISSIBLE
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position

= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is ADMISSIBLE

 \bullet h₃(N) = sum of permutation inversions

$$= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16$$

is ???

5		8
4	2	1
7	3	6
1 1	1	1

STATE(N)

Goal state

- h₁(N) = number of misplaced tiles = 6 is ADMISSIBLE
- ♦ h₂(N) = sum of the (Manhattan) distances of every tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
 is ADMISSIBLE
- ♦ $h_3(N) = sum of permutation inversions$ = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 is NOT ADMISSIBLE

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$
 is ADMISSIBLE

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_2(N) = |x_N-x_g| + |y_N-y_g|$$
 is ???

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_2(N) = |x_N-x_g| + |y_N-y_g|$$

$$h^*(I) = 4\sqrt{2}$$

 $h_2(I) = 8$

is admissible if moving along diagonals is not allowed, and not admissible otherwise

How to create admissible h?

- An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints)
- In robot navigation:
 - The Manhattan distance corresponds to removing the obstacles
 - The Euclidean distance corresponds to removing both the obstacles and the constraint that the robot moves on a grid

A* Search (most popular algorithm in AI)

- 1. f(N) = g(N) + h(N), where:
 - g(N) = cost of best path found so far to N
 - h(N) = admissible heuristic function
- 2. for all arcs: $c(N,N') \ge \varepsilon > 0$
- 3. SEARCH#2 algorithm is used
 - ▶ Best-first search is then called A* search

Result #1

A* is complete and optimal
[This result holds if nodes revisiting states are not discarded]

Proof (1/2)

If a solution exists, A* terminates and returns a solution

- For each node N on the fringe, $f(N) = g(N) + h(N) \ge g(N) \ge d(N) \times \epsilon$, where d(N) is the depth of N in the tree
- As long as A* hasn't terminated, a node K on the fringe lies on a solution path

Proof (1/2)

If a solution exists, A* terminates and returns a solution

- For each node N on the fringe, $f(N) = g(N) + h(N) \ge g(N) \ge d(N) \times \epsilon$, where d(N) is the depth of N in the tree
- As long as A* hasn't terminated, a node K
 on the fringe lies on a solution path
- Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path

Proof (2/2)

Whenever A* chooses to expand a goal node, the path to this node is optimal

- C*= h*(initial-node)[cost of the optimal solution path]
- G': non-optimal goal node in the fringe $f(G') = g(G') + h(G') = g(G') > C^*$
- A node **K** in the fringe lies on an optimal path:

$$f(K) = g(K) + h(K) \le C^*$$

Optimistic estimate $h(N) \le h^*(N)$

-So, G' will not be selected for expansion

8-Puzzle f(N) = g(N) + h(N)with h(N) = number of misplaced tiles

f(N) = h(N), with h(N) = Manhattan distance to the goal (not A*)

8	7	6	5	4	3	2	3	4	5	6
		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

f(N) = h(N), with h(N) = Manhattan distance to the goal (not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

f(N) = g(N) + h(N), with h(N) = Manhattan distance to goal (A*)

8+3	7+4	6+3	5+6	4+7	3+8	2+9	3+10	4	5	6
7+2		5+6	4+7	3+8						5
6+1			3	2+9	1+10	O+11	1	2		4
7+0	6+1									5
8+1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4	5	6

Best-First Search

An evaluation function f maps each node N of the search tree to a real number:

$$f(N) \geq 0$$

Best-first search sorts the FRINGE in increasing f

A* Search (most popular algorithm in AI)

- 1. f(N) = g(N) + h(N), where:
 - g(N) = cost of best path found so far to N
 - h(N) = admissible heuristic function
- 2. for all arcs: $c(N,N') \ge \varepsilon > 0$
- 3. SEARCH#2 algorithm is used
 - ▶ Best-first search is then called A* search

Result #1

A* is complete and optimal
[This result holds if nodes revisiting states are not discarded]