CLAIMS

1. An epoxy resin composition comprising: an epoxy resin (A); and an epoxyresin curing agent (B) including a phenol resin (F) represented by one of the general formulas (3) to (5), the phenol resin (F) containing at least one of a structural unit X, which is represented by the following general formula (1) obtained by reaction between a phenol-based compound and a biphenyl isomer or a mixture of biphenyl isomers, and a structural unit Y, which is represented by the following general formula (2) obtained by reaction between a phenol-based compound and a benzene isomer or a mixture of benzene isomers, the sum of the number of repetitions of the structural unit X and the number of repetitions of the structural unit Y (n or m+m') being more than 10 to less than 75, the general formulas being:

$$X = CH_2 CH_2 CH_2 CH_2 (R^3)_r$$

(where R¹, R², and R³ each independently represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, each r independently represents an integer from 0 to 4, and r' represents an integer from 0 to 3);

$$Y = \begin{pmatrix} (R^4)_s & OH \\ (R^5)_{s'} & OH \end{pmatrix}$$
(2)

(where R⁴ and R⁵ each independently represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, s represents an integer from 0 to 4, and s' represents an integer from 0 to 3);

$$(R^6)_t$$

$$X \longrightarrow H$$
(3)

or

$$(R^6)_t$$
 $(R^6)_t$
 $(R^6)_t$
 (A)

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is more than 10 to less than 75);

$$(R^6)_t$$
 $Y - H$ (5)

or

$$(R^6)_t \qquad \qquad (R^6)_t \qquad \qquad (6)$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is more than 10 to less than 75); and

$$(R^6)_t$$
 X M Y M Z M (7)

or

$$(R^6)_t$$
 $(R^6)_t$ $(R^6)_t$ (8)

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, m and m' are each independently 1 to 74, m+m' is more than 10 to less than 75, and Z represents one of X and Y).

2. The epoxy resin composition according to Claim 1, wherein the epoxy resin (A) includes an epoxy compound (G) represented by one of the general formulas (11) to (16), the epoxy compound (G) containing at least one of a structural unit X', which is represented by the following general formula (9) obtained by epoxidation of a product by reaction between a phenol-based compound and a biphenyl isomer or a mixture of biphenyl isomers, and a structural unit Y', which is represented by the following general formula (10) obtained by epoxidation of a product by reaction between a phenol-based compound and a benzene isomer or an mixture of benzene isomers, the sum of the number of repetitions of the structural unit X' and the number of repetitions of the structural unit Y' (n or m+m') being 0 to 10, the general formulas being:

$$X' = \begin{pmatrix} (R^1)_r & (R^2)_r & OCH_2CHCH_2 \\ (R^3)_r & CH_2 & (R^3)_r \end{pmatrix}$$
(9)

(where R¹, R², and R³ each independently represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, each r independently represents an integer from 0 to 4, and r' represents an integer from 0 to 3);

$$Y' = \begin{pmatrix} (R^4)_s & CH_2 \\ (R^5)_{s'} & CH_2 \end{pmatrix}$$

$$(1 0)$$

(where R⁴ and R⁵ represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, s represents an integer from 0 to 4, and s' represents an integer from 0 to 3);

$$(R^6)_t$$
 $(R^6)_t$
 X'
 H
(11)

or

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is 0 to 10);

$$(R^6)_t$$
 $(R^6)_t$
 Y^t
 H
(13)

or

or

$$(R^6)_t \qquad (R^6)_t \qquad (R^6$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is 0 to 10); and

$$(R^6)_t \qquad (R^6)_t \qquad (R^6$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, m and m' are each independently 1 to 9, m+m' is 1 to 10, and Z' represents one of X' and Y').

- 3. The epoxy resin composition according to Claim 1 or 2, further comprising an inorganic filler (C).
- 4. The epoxy resin composition according to Claim 3, wherein the inorganic filler (C) is aluminum hydroxide (C').
- 5. The epoxy resin composition according to Claim 4, wherein the 50 mass% average particle diameter (D_{50}) of the aluminum hydroxide (C') is 0.5 to 20 μ m.
- 6. The epoxy resin composition according to one of Claims 1 to 5, further comprising a curing promotion catalyst (D).
- 7. The epoxy resin composition according to one of Claims 1 to 6, further comprising one of a phenoxy resin containing an epoxy group and a phenoxy resin containing no epoxy group.
- 8. The epoxy resin composition according to one of Claims 1 to 7, further comprising a rubber component as a flexibilizer.

9. The epoxy resin composition according to one of Claims 1 to 8, further comprising a silane coupling agent.

, ()

- 10. The epoxy resin composition according to one of Claims 1 to 9, further comprising a mercapto compound.
- 11. The epoxy resin composition according to one of Claims 1 to 10, further comprising at least one of a nitrogen-containing curing agent and an inorganic flame retardant.
- 12. A varnish solution comprising: an organic solvent; and the epoxy resin composition according to one of Claims 1 to 11 which is dissolved or dispersed therein.
- 13. A prepreg material comprising: a resin sheet in a semi-cured state, obtained after a process including impregnating a base material with the varnish solution according to Claim 12, followed by removal of the solvent.
 - 14. A laminate comprising: the prepreg material according to Claim 13.
- 15. A copper-clad laminate comprising: the prepreg material according to Claim 13; and a copper foil which is adhered to one surface thereof.
- 16. A copper foil provided with a resin, produced by a process comprising the step of: applying the varnish solution according to Claim 12 onto a surface of a copper foil.
 - 17. A printed circuit board comprising: a copper foil; and a resin material

laminated thereto, the resin material being only formed of an epoxy resin composition or being formed of a base material containing an epoxy resin, said epoxy resin composition containing the epoxy resin composition according to one of Claims 1 to 11 and being in a semi-cured state or in a cured state.

- 18. The printed circuit board according to Claim 17, wherein the resin material includes a prepreg material comprising a resin sheet in a semi-cured state, which is obtained after a process including the steps of: impregnating a base material with a varnish solution which contains an organic solvent and an epoxy resin composition dissolved or dispersed therein; and removing the solvent therefrom.
- 19. The printed circuit board according to Claim 17, wherein the resin material includes the epoxy resin composition applied on the copper foil.
- 20. An epoxy resin composition comprising: an epoxy resin (A) and an epoxy-resin curing agent (B), the epoxy resin (A) including an epoxy compound (H) represented by one of the general formulas (35) to (40), the epoxy compound (H) containing at least one of a structural unit X', which is represented by the above general formula (9) obtained by reaction between a phenol-based compound and a biphenyl isomer or a mixture of biphenyl isomers, and a structural unit Y', which is represented by the above general formula (10) obtained by reaction between a phenol-based compound and a benzene isomer or an mixture of benzene isomers, the sum of the number of repetitions of the structural unit X' and the number of repetitions of the structural unit Y' (n or m+m') being more than 10 to less than 75, the general formulas being:

$$(R^6)_t$$
 (X^7-H)
(35)

or

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

$$(R^6)_t$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is more than 10 to less than 75);

$$(R^6)_t$$
 $(R^6)_t$
 (R^7)
 $(R^6)_t$
 $(R^6)_t$

or

$$(R^6)_t \qquad (R^6)_t \qquad (R^6$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is more than 10 to less than 75); and

or

$$(R^{6})_{t}$$

$$(R^{6})_{t}$$

$$(R^{6})_{t}$$

$$(R^{6})_{t}$$

$$(R^{6})_{t}$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, m and m' are each independently 1 to 74, m+m' is more than 10 to less than 75, and Z' represents one of X' and Y').

21. The epoxy resin composition according to Claim 20, wherein the epoxyresin curing agent (B) includes a phenol resin (F') represented by one of the following general formulas (21) to (26), the number of repeating units (n or m+m') being 0 to 10, the general formulas being:

$$(R^6)_t$$
 $X \longrightarrow H$
(21)

or

$$(R^6)_t$$

$$(R^6)_t$$

$$(22)$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is 0 to 10);

$$(R^6)_t$$
 $Y - H$ (23)

or

$$(R^6)_t$$
 $(R^6)_t$ (24)

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, and n is 0 to 10); and

$$(R^6)_t$$
 X m' Z — H (25)

or

$$(R^6)_{t}$$

$$(R^6)_{t}$$

$$(R^6)_{t}$$

$$(2 6)$$

(where R⁶ represents hydrogen or a monovalent substituent having 1 to 3 carbon atoms, t represents an integer from 0 to 4, m and m' are each independently 1 to 9, m+m' is 1 to 10, and Z represents one of X and Y).

- 22. The epoxy resin composition according to Claim 20 or 21, further comprising an inorganic filler (C).
- 23. The epoxy resin composition according to Claim 22, wherein the inorganic filler (C) is aluminum hydroxide (C').
- 24. The epoxy resin composition according to Claim 23, wherein the 50 mass% average particle diameter (D_{50}) of the aluminum hydroxide (C') is 0.5 to 20 μm .
- 25. The epoxy resin composition according to one of Claims 21 to 24, further comprising a curing promotion catalyst (D).
- 26. The epoxy resin composition according to one of Claims 21 to 25, further comprising one of a phenoxy resin containing an epoxy group and a phenoxy resin containing no epoxy group.
- 27. The epoxy resin composition according to one of Claims 21 to 25, further comprising a rubber component as a flexibilizer.

- 28. The epoxy resin composition according to one of Claims 21 to 27, further comprising a silane coupling agent.
- 29. The epoxy resin composition according to one of Claims 21 to 28, further comprising a mercapto compound.
- 30. The epoxy resin composition according to one of Claims 21 to 29, further comprising at least one of a nitrogen-containing curing agent and an inorganic flame retardant.
- 31. A varnish solution comprising: an organic solvent; and the epoxy resin composition according to one of Claims 21 to 30 which is dissolved or dispersed therein.
- 32. A prepreg material comprising: a resin sheet in a semi-cured state, obtained after a process including impregnating a base material with the varnish solution according to Claim 31, followed by removal of the solvent.
 - 33. A laminate comprising: the prepreg material according to Claim 32.
- 34. A copper-clad laminate comprising: the prepreg material according to Claim 32; and a copper foil which is adhered to one surface thereof.
- 35. A copper foil provided with a resin, produced by a process comprising the step of: applying the varnish solution according to Claim 31 onto a surface of a copper foil.
- 36. A printed circuit board comprising: a copper foil; and a resin material laminated thereto, the resin material being only formed of an epoxy resin

composition or being formed of a base material containing an epoxy resin, said epoxy resin composition containing the epoxy resin composition according to one of Claims 21 to 30 and being in a semi-cured state or in a cured state.

- 37. The printed circuit board according to Claim 36, wherein the resin material includes a prepreg material comprising a resin sheet in a semi-cured state, which is obtained after a process including the steps of: impregnating a base material with a varnish solution which contains an organic solvent and an epoxy resin composition dissolved or dispersed therein; and removing the solvent therefrom.
- 38. The printed circuit board according to Claim 36, wherein the resin material includes the epoxy resin composition applied on the copper foil.
- 39. An epoxy resin composition comprising: an epoxy resin (A), the epoxyresin curing agent (B); and aluminum hydroxide (C'),

wherein the epoxy-resin curing agent (B) is a phenol resin (E) containing at least one of a structural unit X, which is represented by the following general formula (1) obtained by reaction between a phenol-based compound and a biphenyl isomer or a mixture of biphenyl isomers, and a structural unit Y, which is represented by the following general formula (2) obtained by reaction between a phenol-based compound and a benzene isomer or an mixture of benzene isomers,

the epoxy resin (A) is an epoxy compound (E') of the phenol resin (E), and the aluminum hydroxide (C') has a 50 mass% average particle diameter (D₅₀) of 1 to 10 μm, the general formulas being:

$$X = \begin{pmatrix} (R^1)_r & (R^2)_r & OH \\ (R^3)_{r'} & CH_2 & OH \end{pmatrix}$$
(1)

(where R¹, R², and R³ each independently represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, each r independently represents an integer from 0 to 4, and r' represents an integer from 0 to 3); and

$$Y = \begin{pmatrix} (R^4)_s & OH \\ (R^5)_{s'} & CH_2 \end{pmatrix}$$
(2)

(where R⁴ and R⁵ each independently represent hydrogen or a monovalent substituent having 1 to 3 carbon atoms, each s independently represents an integer from 0 to 4, and s' represents an integer from 0 to 3).

- 40. The epoxy resin composition according to Claim 39, further comprising a curing promotion catalyst (D).
- 41. The epoxy resin composition according to Claim 39 or 40, further comprising one of a phenoxy resin containing an epoxy group and a phenoxy resin containing no epoxy group.
- 42. The epoxy resin composition according to one of Claims 39 to 41, further comprising a rubber component as a flexibilizer.
- 43. The epoxy resin composition according to one of Claims 39 to 42, further comprising a silane coupling agent.
- 44. The epoxy resin composition according to one of Claims 39 to 43, further comprising a mercapto compound.
 - 45. The epoxy resin composition according to one of Claims 39 to 44, further

comprising at least one of a nitrogen-containing curing agent and an inorganic flame retardant.

- 46. A varnish solution comprising: an organic solvent; and the epoxy resin composition according to one of Claims 39 to 45 which is dissolved or dispersed therein.
- 47. A prepreg material comprising: a resin sheet in a semi-cured state, obtained after a process including impregnating a base material with the varnish solution according to Claim 46, followed by removal of the solvent.
 - 48. A laminate comprising: the prepreg material according to Claim 47.
- 49. A copper-clad laminate comprising: the prepreg material according to Claim 46; and a copper foil which is adhered to one surface thereof.
- 50. A copper foil provided with a resin, produced by a process comprising the step of: applying the varnish solution according to Claim 45 onto a surface of a copper foil.
- 51. A printed circuit board comprising: a copper foil; and a resin material laminated thereto, the resin material being only formed of an epoxy resin composition or being formed of a base material containing an epoxy resin, said epoxy resin composition containing the epoxy resin composition according to one of Claims 1 to 13 and being in a semi-cured state or in a cured state.
- 52. The printed circuit board according to Claim 51, wherein the resin material includes a prepreg material comprising a resin sheet in a semi-cured state, which is obtained after a process including the steps of: impregnating a base material

with a varnish solution which contains an organic solvent and an epoxy resin composition dissolved or dispersed therein; and removing the solvent therefrom.

53. The printed circuit board according to Claim 51, wherein the resin material includes the epoxy resin composition applied on the copper foil.