CLASSICAL FOURIER ANALYSIS: INTERPOLATION OF L^p SPACES

YANNIS BÄHNI

DEFINITION 1.1. Let (X, μ) and (Y, ν) be measure spaces. Further let T be an operator defined on a linear space of complex-valued measurable functions on X and taking values in the set of all complex-valued, finite almost everywhere, measurable functions on Y. Then T is called linear if for all functions f and g in the domain of T and all $z \in \mathbb{C}$

$$T(f+g) = T(f) + T(g)$$
 $T(zf) = zT(f)$

holds and quasi-linear if

$$|T(f+g)| \le K(|T(f)| + |T(g)|)$$
 $|T(zf)| = |z||T(f)|$

holds for some constant K > 0. If K = 1, T is called sublinear.

A complex-valued function f is said to be *holomorphic* in $\Omega \subseteq \mathbb{C}$ open, if f'(z) exists for any $z \in \Omega$. By a region we shall mean a nonempty connected open subset of the complex plane. The proof of Hadamard's three lines lemma heavily relies on a restatement of the maximum modulus theorem (see [Rud87, p. 212]) found in [Rud87, p. 253].

THEOREM. Let $\Omega \subseteq \mathbb{C}$ be a bounded region and f be a continuous function on $\overline{\Omega}$ which is holomorphic in Ω . Then

$$|f(z)| \le \sup\{|f(z)| : z \in \partial\Omega\}$$

for every $z \in \Omega$. If equality holds at one point $z \in \Omega$, then f is constant.

LEMMA 1.1. (Hadamard's three lines lemma) Let F be a holomorphic function in the strip $S := \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 1\}$, continuous and bounded on \overline{S} , such that $|F(z)| \leq B_0$ when $\operatorname{Re} z = 0$ and $|F(z)| \leq B_1$ when $\operatorname{Re} z = 1$, for some $0 < B_0, B_1 < \infty$. Then $|F(z)| \leq B_0^{1-\theta} B_1^{\theta}$ when $\operatorname{Re} z = \theta$, for any $0 < \theta < 1$.

Proof. For $z \in \overline{S}$ define

$$G(z) := \frac{F(z)}{B_0^{1-z}B_1^z}$$
 $G_n(z) := G(z)e^{(z^2-1)/n}, \ n \in \mathbb{N}_{>0}$

G(z) and $G_n(z)$ are holomorphic in S by

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

$$G'(z) = \frac{F'(z) - F(z)\log(B_1/B_0)}{B_0^{1-z}B_1^z} \qquad G'_n(z) = G'(z)e^{(z^2-1)/n} + \frac{2}{n}zG_n(z)$$

and $e^z \neq 0$ for every $z \in \mathbb{C}$. Further, we have

$$\left|B_0^{1-z}B_1^z\right| = \left(B_0^{1-z}B_0^{1-\overline{z}}B_1^zB_1^{\overline{z}}\right)^{1/2} = B_0^{1-\mathrm{Re}\,z}B_1^{\mathrm{Re}\,z}$$

Consider $0 \leqslant \operatorname{Re} z \leqslant 1$ and $B_0 \geqslant 1$. Then $B_0^{1-\operatorname{Re} z} \geqslant 1$ and $B_0^{1-\operatorname{Re} z} \geqslant B_0$ in the case $B_0 < 1$. Similarly, $B_1^{\operatorname{Re} z} \geqslant 1$ if $B_1 \geqslant 1$ and $B_1^{\operatorname{Re} z} \leqslant B_1$ if $B_1 < 1$. Hence

$$|B_0^{1-z}B_1^z| \geqslant \min\{1, B_0\} \min\{1, B_1\} > 0 \tag{1}$$

for all $z \in \overline{S}$. Since F is bounded on \overline{S} , we have $|F(z)| \leq L$ for some L > 0 and all $z \in \overline{S}$. Thus by (1)

$$|G(z)| = \frac{|F(z)|}{|B_0^{1-z}B_1^z|} \le \frac{L}{\min\{1, B_0\}\min\{1, B_1\}} =: M$$

for every $z \in \overline{S}$. Fix $n \in \mathbb{N}_{>0}$ and write $z := x + iy \in \overline{S}$. Then

$$|G_n(z)| \le M \left(e^{\left(x^2 + 2ixy - y^2 - 1\right)/n} e^{\left(x^2 - 2ixy - y^2 - 1\right)/n} \right)^{1/2} = M e^{-y^2/n} e^{\left(x^2 - 1\right)/n} \le M e^{-y^2/n}$$
 for $0 \le x \le 1$. Thus

$$\lim_{y \to \pm \infty} \sup\{|G_n(z)| : 0 \leqslant x \leqslant 1\} = 0$$

by the pinching-principle. Hence there exist $C_0, C_1 \in \mathbb{R}$, such that

$$\sup\{|G_n(z)|:0\leqslant x\leqslant 1\}\leqslant 1$$

when $y > C_0$ or $y < C_1$. Letting

$$C(n) := \max\{|C_0| + 1, |C_1| + 1\}$$

we conclude $|G_n(z)| \le 1$ for all $0 \le x \le 1$ when $|y| \ge C(n)$. Now consider the rectangle $R := (0,1) \times (-C(n),C(n))$. We have $|G_n(z)| \le 1$ on the lines $[0,1] \times \{\pm C(n)\}$. By

$$|G_n(iy)| = \frac{|F(iy)|}{\left|B_0^{1-iy}B_1^{iy}\right|}e^{-(y^2+1)/n} \leqslant 1 \qquad |G_n(1+iy)| = \frac{|F(1+iy)|}{\left|B_0^{-iy}B_1^{1+iy}\right|}e^{-y^2/n} \leqslant 1$$

we have $|G_n(z)| \leq 1$ on the lines $\{0\} \times [-C(n), C(n)], \{1\} \times [-C(n), C(n)]$. Thus $|G_n(z)| \leq 1$ on ∂R . Since $|G_n(z)|$ is continuous on \overline{R} , holomorphic in R and R is a bounded region, the maximum modulus theorem implies

$$|G_n(z)| \leq \sup \{|G_n(z)| : z \in \partial R\} \leq 1$$

for every $z \in R$. Therefore $|G_n(z)| \leq 1$ on \overline{R} and so $|G_n(z)| \leq 1$ on \overline{S} . Since inequalities are preserved by limits and the modulus is a continuous function, we have that $|G(z)| = \lim_{n \to \infty} |G_n(z)| \leq 1$ for $z \in \overline{S}$. We conclude by

$$|F(\theta+it)| = |G(\theta+it)| \left| B_0^{1-\theta-it} B_1^{\theta+it} \right| \leqslant B_0^{1-\theta} B_1^{\theta}$$
 whenever $0 < \theta < 1, \ t \in \mathbb{R}$.

FIGURE 1. Sketch of the rectangle \overline{R} .

For two measure spaces (X, μ) , (Y, ν) let Σ_X and Σ_Y denote the set of all finitely simple functions on X, Y respectively. The proof uses the following theorem found in [Fol99, p. 189].

Theorem. Let p, q be conjugate exponents. Suppose that g is a measurable function on X such that $fg \in L^1$ for all $f \in \Sigma_X$, and

$$M_q(g) = \sup \left\{ \left| \int_X fg d\mu \right| : f \in \Sigma_X, ||f||_{L^p} = 1 \right\} < \infty$$

Also, suppose either that $\{g \neq 0\}$ is σ -finite or that μ is semifinite. Then $g \in L^q$ and $M_q(g) = \|g\|_{L^q}$.

THEOREM 1.1. (Riesz-Thorin Interpolation Theorem) Suppose that (X, μ) , (Y, ν) are measure spaces and $1 \leq p_0, p_1, q_0, q_1 \leq \infty$. If $q_0 = q_1 = \infty$, suppose also that ν is semifinite. Let T be a linear operator defined on Σ_X and taking values in the set of measurable functions on Y, such that

$$||T(f)||_{L^{q_0}} \le M_0 ||f||_{L^{p_0}} \qquad ||T(f)||_{L^{q_1}} \le M_1 ||f||_{L^{p_1}}$$
 (2)

for all $f \in \Sigma_X$ and $0 < M_0, M_1 < \infty$. Then for all $0 \le \theta \le 1$ we have

$$||T(f)||_{L^q} \leqslant M_0^{1-\theta} M_1^{\theta} ||f||_{L^p} \tag{3}$$

for all $f \in \Sigma_X$, where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$$
 $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$

Proof. If either $\theta = 0$ or $\theta = 1$, the estimate (3) follows directly from the hypotheses (2) on T. Thus we may assume $0 < \theta < 1$. Furthermore, if $f \in \Sigma_X$, $||f||_{L^p} = 0$, then f = 0 μ -a.e. and either one of the hypotheses on T in (2) implies T(f) = 0 μ -a.e. and thus the estimate (3) holds trivially. Therefore we can assume $||f||_{L^p} \neq 0$. Fix

$$f :\equiv \sum_{j=1}^{n} a_j e^{i\alpha_j} \chi_{A_j} \in \Sigma_X \qquad g :\equiv \sum_{k=1}^{m} b_k e^{i\beta_k} \chi_{B_k} \in \Sigma_Y$$

where $a_j, b_k > 0$ and $\alpha_j, \beta_k \in \mathbb{R}$ for every $j = 1, \dots, n, k = 1, \dots, m$ such that $||g||_{L^{q'}} \neq 0$ (recall q' := q/(q-1)). Define

$$P(z) := \frac{p}{p_0}(1-z) + \frac{p}{p_1}z$$
 $Q(z) := \frac{q'}{q'_0}(1-z) + \frac{q'}{q'_1}z$

for $z \in \mathbb{C}$ (since either $p = \infty$ implies $p_0 = p_1 = \infty$ or q = 1 implies $q_0 = q_1 = 1$, the functions P, Q are well-defined). Further let

$$f_z :\equiv \sum_{j=1}^n a_j^{P(z)} e^{i\alpha_j} \chi_{A_j} \qquad g_z :\equiv \sum_{k=1}^m b_k^{Q(z)} e^{i\beta_k} \chi_{B_k}$$
 (4)

and

$$F(z) := \int_{Y} T(f_z) g_z d\nu \tag{5}$$

By the linearity of the operator T we have

$$F(z) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{P(z)} b_{k}^{Q(z)} e^{i\alpha_{j}} e^{i\beta_{k}} \int_{Y} T(\chi_{A_{j}}) \chi_{B_{k}} d\nu$$

and by Hölder's inequality

$$\left| \int_{Y} T(\chi_{A_{j}}) \chi_{B_{k}} d\nu \right| \leq \int_{Y} \left| T(\chi_{A_{j}}) \chi_{B_{k}} \right| d\nu$$

$$= \left\| T(\chi_{A_{j}}) \chi_{B_{k}} \right\|_{L^{1}}$$

$$\leq \left\| T(\chi_{A_{j}}) \right\|_{L^{q_{0}}} \left\| \chi_{B_{k}} \right\|_{L^{q'_{0}}}$$

$$\leq M_{0} \left\| \chi_{A_{j}} \right\|_{L^{p_{0}}} \left\| \chi_{B_{k}} \right\|_{L^{q'_{0}}}$$

$$\leq M_{0} \mu \left(A_{j} \right)^{1/p_{0}} \nu \left(B_{k} \right)^{1/q'_{0}}$$
(6)

for each $j=1,\ldots,n,\ k=1,\ldots,m$ (even in the cases where either $p_0=\infty$ or $q_0'=\infty$, or both, by observing that $\|\chi_A\|_{L^\infty}\leqslant 1$ for any measurable set A). Thus the function F is well-defined on $\mathbb C$. Let $t\in\mathbb R$. For $p,p_0\neq\infty$

$$||f_{it}||_{L^{p_0}} = \left(\sum_{j=1}^n \int_{A_j} |f_{it}|^{p_0} d\mu + \int_{X \setminus \bigcup_{j=1}^n A_j} |f_{it}|^{p_0} d\mu\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n \left| a_j^{P(it)} e^{i\alpha_j} \right|^{p_0} \int_X \chi_{A_j} d\mu\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n a_j^{p_0 \operatorname{Re} P(it)} \mu (A_j)\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n a_j^{p_\mu} (A_j)\right)^{p/(p_0 p)}$$

$$= ||f||_{L^p}^{p/p_0}$$

holds. Let $p_0 = \infty$, $p \neq \infty$. Then $||f_{it}||_{L^{\infty}} = 1$ since $\left|a_j^{P(it)}\right| = a_j^{p/p_0} = 1$ and that there exists some index j, such that $\mu(A_j) \neq 0$. If $p = \infty$, then $p_0 = p_1 = \infty$ and thus P(it) = 1. By the same considerations we have $||g_{it}||_{L^{q'_0}} = ||g||_{L^{q'_0}}^{q'/q'_0}$. Hence

$$|F(it)| \leqslant \int_{Y} |T(f_{it})g_{it}| d\nu$$

$$= ||T(f_{it})g_{it}||_{L^{1}}$$

$$\leqslant ||T(f_{it})||_{L^{q_{0}}} ||g_{it}||_{L^{q'_{0}}}$$

$$\leqslant M_{0} ||f_{it}||_{L^{p_{0}}} ||g_{it}||_{L^{q'_{0}}}$$

$$= M_{0} ||f||_{L^{p}}^{p/p_{0}} ||g||_{L^{q'}}^{q'/q'_{0}}$$

by Hölder's inequality. In an analogous manner we derive

$$||f_{1+it}||_{L^{p_1}} = ||f||_{L^p}^{p/p_1} \qquad ||g_{1+it}||_{L^{q'_1}} = ||g||_{L^{q'}}^{q'/q'_1}$$

and thus

$$|F(1+it)| \leq M_1 ||f||_{L^p}^{p/p_1} ||g||_{L^{q'}}^{q'/q_1'}$$

Further by estimate (6)

$$|F(z)| \leq \sum_{j=1}^{n} \sum_{k=1}^{m} \left| a_{j}^{P(z)} \right| \left| b_{k}^{Q(z)} \right| \left| \int_{Y} T(\chi_{A_{j}}) \chi_{B_{k}} d\nu \right|$$

$$\leq M_{0} \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{\operatorname{Re} P(z)} b_{k}^{\operatorname{Re} Q(z)} \mu \left(A_{j} \right)^{1/p_{0}} \nu \left(B_{k} \right)^{1/q'_{0}}$$

$$\leq M_{0} \sum_{j=1}^{n} \sum_{k=1}^{m} \max \left\{ 1, a_{j}^{p/p_{0} + p/p_{1}} \right\} \max \left\{ 1, b_{k}^{q'/q'_{0} + q'/q'_{1}} \right\} \mu \left(A_{j} \right)^{1/p_{0}} \nu \left(B_{k} \right)^{1/q'_{0}}$$

Hence F is bounded on \overline{S} by some constant depending on f and g only. By

$$F'(z) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{P(z)} \log(a_{j}) \left(\frac{p}{p_{1}} - \frac{p}{p_{0}}\right) b_{k}^{Q(z)} e^{i\alpha_{j}} e^{i\beta_{k}} \int_{Y} T(\chi_{A_{j}}) \chi_{B_{k}} d\nu$$
$$+ \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{P(z)} b_{k}^{Q(z)} \log(b_{k}) \left(\frac{q'}{q'_{1}} - \frac{q'}{q'_{0}}\right) e^{i\alpha_{j}} e^{i\beta_{k}} \int_{Y} T(\chi_{A_{j}}) \chi_{B_{k}} d\nu$$

it is immediate, that F is an entire function and thus holomorphic in S and continuous on \overline{S} . Therefore, Hadamard's three lines lemma yields

$$|F(z)| \leqslant \left(M_0 \|f\|_{L^p}^{p/p_0} \|g\|_{L^{q'}}^{q'/q'_0}\right)^{1-\theta} \left(M_1 \|f\|_{L^p}^{p/p_1} \|g\|_{L^{q'}}^{q'/q'_1}\right)^{\theta} = M_0^{1-\theta} M_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}}$$
 for Re $z = \theta$, $0 < \theta < 1$. We have

$${T(f) \neq 0} = \bigcup_{n=1}^{\infty} {|T(f)| > 1/n}$$

and by Chebychev's inequality either

$$\nu\left(\{|T(f)| > 1/n\}\right) \leqslant n^{q_0} \|T(f)\|_{L^{q_0}}^{q_0}$$

or

$$\nu\left(\{|T(f)| > 1/n\}\right) \leqslant n^{q_1} \|T(f)\|_{L^{q_1}}^{q_1}$$

whenever $q_0 \neq \infty$ or $q_1 \neq \infty$. Therefore, the set $\{T(f) \neq 0\}$ is σ -finite unless $q_0 = q_1 = \infty$. Further we have $P(\theta) = Q(\theta) = 1$. Thus by

$$M_{q}(T(f)) = \sup \left\{ \left| \int_{Y} T(f)gd\nu \right| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} = 1 \right\}$$
$$= \sup \left\{ |F(\theta)| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} = 1 \right\}$$
$$\leqslant M_{0}^{1-\theta} M_{1}^{\theta} \|f\|_{L^{p}}$$

we conclude

$$||T(f)||_{L^q} = M_q(T(f)) \leqslant M_0^{1-\theta} M_1^{\theta} ||f||_{L^p}$$

for any $f \in \Sigma_X$.

Remark. A more general version of the Riesz-Thorin interpolation theorem can be found in [Fol99, pp. 200–202]. There, a linear map

$$T: L^{p_0} + L^{p_1} \to L^{q_0} + L^{q_1}$$

is considered. This follows using a density argument from the current version of the theorem and will not be prooven here.

Remark. Using the previous remark, a standard application of the Riesz-Thorin interpolation theorem is to proove Young's inequality [Gra14, pp. 22–23].

LEMMA 1.2. (Hadamard's three lines lemma, extension) Let F be a holomorphic function in the strip $S := \{z \in \mathbb{C} : 0 < \text{Re}z < 1\}$ and continuous on \overline{S} , such that for some $0 < A < \infty$ and $\tau_0 \in (0, \pi)$ we have $\log |F(z)| \leq Ae^{\tau_0 |\text{Im }z|}$ for every $z \in \overline{S}$. Then

$$|F(z)| \leqslant \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log |F(it+iy)|}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log |F(1+it+iy)|}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right)$$
whenever $z := x + iy \in S$.

Proof. Only a sketch will be given here. The core of the proof is the exploitation of the mapping

$$h(z) := \frac{1}{\pi i} \log \left(i \frac{1+z}{1-z} \right)$$

defined for $z \in \{z \in \mathbb{C} : |z| \leq 1\} \setminus \{\pm 1\}$ together with an application of a version of Fatou's lemma on the Poisson integral formula and the maximum principle for subharmonic functions. However, the main part of the proof is spent on a nice representation of the result obtained by the previous technical part. A change of variable is used to get the stated form of the upper bound.

Definition 1.2. (Analytic family, admissible growth) Let (X, μ) , (Y, ν) be two σ finite measure spaces and for every $z \in \overline{S}$ we have an associated linear operator T_z

which is defined on Σ_X and taking values in the space of all measurable functions on Y such that

$$\int_{Y} |T_z(\chi_A)\chi_B| \, d\nu < \infty$$

whenever $\mu(A), \nu(B) < \infty$. The family $(T_z)_{z \in \overline{S}}$ is said to be analytic if for all $f \in \Sigma_X$, $g \in \Sigma_Y$ we have that

$$z \mapsto \int_Y T_z(f)gd\nu$$

is analytic in S and continuous on \overline{S} . Further, an analytic family $(T_z)_{z \in \overline{S}}$ is called of admissible growth, if there is a constant $\tau_0 \in (0,\pi)$, such that for all $f \in \Sigma_X$, $g \in \Sigma_Y$ a constant $0 < C(f,g) < \infty$ exists with

$$\log \left| \int_{Y} T_{z}(f) g d\nu \right| \leqslant C(f,g) e^{\tau_{0} |\operatorname{Im} z|}$$

for all $z \in \overline{S}$.

THEOREM 1.2. (Stein's Theorem on Interpolation of Analytic Families of Operators) Let $(T_z)_{z\in\overline{S}}$ be an analytic family of admissible growth, $1 \leq p_0, p_1, q_0, q_1 \leq \infty$ and suppose that M_0 , M_1 are positive functions on the real line such that for some $\tau_1 \in (0,\pi)$

$$\sup \left\{ e^{-\tau_1|y|} \log M_0(y) : y \in \mathbb{R} \right\} < \infty \qquad \sup \left\{ e^{-\tau_1|y|} \log M_1(y) : y \in \mathbb{R} \right\} < \infty \quad (7)$$

Fix $0 < \theta < 1$ and define

$$\frac{1}{p} := \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \qquad \frac{1}{q} := \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$$
 (8)

Further suppose that for all $f \in \Sigma_X$ and $y \in \mathbb{R}$ we have

$$||T_{iy}(f)||_{L^{q_0}} \le M_0(y)||f||_{L^{p_0}} \qquad ||T_{1+iy}(f)||_{L^{q_1}} \le M_1(y)||f||_{L^{p_1}}$$
 (9)

Then for all $f \in \Sigma_X$ we have

$$||T_{\theta}(f)||_{L^q} \leqslant M(\theta)||f||_{L^p}$$

where for 0 < x < 1

$$M(x) = \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log M_0(t)}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log M_1(t)}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right)$$

Proof. As mentioned in Terence Tao's blog, Fefferman once noted, that this proof can be obtained from that of the Riesz-Thorin theorem 1.1 simply by adding a single letter of

the alphabet. Indeed, this is truly the case, since all hypotheses made in the theorem incorporate the same proof as in the Riesz-Thorin theorem. The only heavy and technical part is the proof of the extension of Hadamard's three lines lemma 1.2.

THEOREM 1.3. (The Marcinkiewicz Interpolation Theorem) Let (X, μ) be a σ -finite measure space, (Y, ν) another measure space and $0 < p_0 < p_1 \le \infty$. Further let T be a sublinear operator defined on

$$L^{p_0} + L^{p_1} := \{ f_0 + f_1 : f_0 \in L^{p_0}(X, \mu), f_1 \in L^{p_1}(X, \mu) \}$$

and taking values in the space of measurable functions on Y. Assume that there exist $0 < A_0, A_1 < \infty$ such that

$$\forall f \in L^{p_0}(X, \mu) \ \|T(f)\|_{L^{p_0, \infty}} \leqslant A_0 \|f\|_{L^{p_0}} \tag{10}$$

$$\forall f \in L^{p_1}(X, \mu) \ \|T(f)\|_{L^{p_1, \infty}} \leqslant A_1 \|f\|_{L^{p_1}} \tag{11}$$

Then for all $p_0 and for all <math>f \in L^p(X, \mu)$ we have the estimate

$$||T(f)||_{L^p} \leqslant A \, ||f||_{L^p} \tag{12}$$

where

$$A := 2\left(\frac{p}{p - p_0} + \frac{p}{p_1 - p}\right)^{1/p} A_0^{\frac{\frac{1}{p} - \frac{1}{p_1}}{\frac{1}{p_0} - \frac{1}{p_1}}} A_1^{\frac{\frac{1}{p_0} - \frac{1}{p}}{\frac{1}{p_0} - \frac{1}{p_1}}}$$
(13)

Proof. Again, only a sketch of the proof will be given here. The proof has the following structure.

(i.) $p_1 < \infty$.

a. Split f using the two cut-off functions

$$f_0(x; \alpha, \delta) := \begin{cases} f(x), & |f(x)| > \delta \alpha, \\ 0, & |f(x)| \leqslant \delta \alpha. \end{cases}$$
$$f_1(x; \alpha, \delta) := \begin{cases} f(x), & |f(x)| \leqslant \delta \alpha, \\ 0, & |f(x)\rangle \delta \alpha. \end{cases}$$

for some $\alpha, \delta > 0$.

- **b.** Estimate the distribution function $d_{T(f)}$ at α using the sublinearity of T and the splitting obtained in **a.**.
- **c.** Estimate $||T(f)||_{L^p}^p$ using the representation (see [Gra14, p. 5])

$$||f||_{L^p}^p = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\lambda(\alpha)$$

(ii.) $p_1 = \infty$.

- **a.** Using the same splitting as in part (i.) of the function f, we show that $\mu(\{|T(f_1)| > \alpha/2\}) = 0.$ **b.** Estimate the distribution function $d_{T(f_0)}$ at α . **c.** Estimate $\|T(f)\|_{L^p}^p$ as in (i.) part **c.**.