스프린트 미션 3

개요

분석 목표

- 1. 자전거 대여 패턴을 분석하여 자전거 배치 및 운영 전략을 최적화하고, 대여 수요를 정확히 예측하는 것
 - 2. 대여 시스템의 효율성을 높이고 사용자 만족도를 증가시키는 방법을 찾는 것
 - 3. RMSLE (Root Mean Squared Logarithmic Error)를 최대한 낮추는 것

데이터 셋

자전거 대여 시스템

데이터 정보

컬럼명	데이터 타입	설명
datetime	datetime	자전거 대여 기록의 날짜 및 시간. 예시: 2011-01-01 00:00:00
season	int	계절 (1: 봄, 2: 여름, 3: 가을, 4: 겨울)
holiday	int	공휴일 여부 (0: 평일, 1: 공휴일)
workingday	int	근무일 여부 (0: 주말/공휴일, 1: 근무일)
weather	int	날씨 상황 (1: 맑음, 2: 구름낌/안개, 3: 약간의 비/눈, 4: 폭우/폭설)
temp	float	실측 온도 (섭씨)
atemp	float	체감 온도 (섭씨)
humidity	int	습도 (%)
windspeed	float	풍속 (m/s)
casual	int	등록되지 않은 사용자의 대여 수
registered	int	등록된 사용자의 대여 수
count	int	총 대여 수 (종속 변수)

train.csv 파일에는 count 컬럼이 포함되어 있으며, 예측 대상인 종속 변수입니다.

test.csv 파일에는 casual , registered , count 컬럼이 포함되어 있지 않습니다.

casual과 registered는 자전거 대여 수요를 예측하는데 참고하실만한 자료이며, count 는 두 컬럼간의 합입 니다.

데이터 분석

데이터 속성 파악

데이터 정보

```
# 훈련 데이터
train_df = pd.read_csv("/content/drive/MyDrive/.../train.csv")
train_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ----- -----
0 datetime 10886 non-null object
1 season 10886 non-null int64
2 holiday 10886 non-null int64
3 workingday 10886 non-null int64
4 weather 10886 non-null int64
5 temp 10886 non-null float64
6 atemp 10886 non-null float64
7 humidity 10886 non-null int64
8 windspeed 10886 non-null float64
9 casual 10886 non-null int64
10 registered 10886 non-null int64
11 count 10886 non-null int64
dtypes: float64(3), int64(8), object(1)
memory usage: 1020.7+ KB
```

데이터 요약 통계량

train_df.describe()

수치형 데이터 연관성 파악 - heatmap()

체감온도(atemp)와 회원(registered) / 비회원(casual) 데이터 연관 파악

체감 온도가 높아질수록 회원 및 비회원들의 자전거 대여율이 높아지는 경향이 있음

데이터 이상치 분석

1. weather

train_df[train_df['weather'] == 4]

- 계절: 봄
- 날씨: 폭우/폭설
- 기온: 8 ~ 11도
- 습도: 86% (엄청 습함)
- 전체 자전거 대여 대수: 164

- → 봄에 폭우: 이상기후 현상으로 가정
- → 폭우가 내렸는데 164대의 자전거 대여 발생?: 전체 데이터 대비 비중이 적으니 삭제

2. humidity

train_df[train_df['humidity'] == 0]

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
1091	2011-03-10 00:00:00	1	0	1	3	13.94	15.910	0	16.9979	3	0	3
1092	2011-03-10 01:00:00	1	0	1	3	13.94	15.910	0	16.9979	0	2	2
1093	2011-03-10 02:00:00	1	0	1	3	13.94	15.910	0	16.9979	0	1	1
1094	2011-03-10 05:00:00	1	0	1	3	14.76	17.425	0	12.9980	1	2	3
1095	2011-03-10 06:00:00	1	0	1	3	14.76	16.665	0	22.0028	0	12	12
1096	2011-03-10 07:00:00	1	0	1	3	15.58	19.695	0	15.0013	1	36	37
1097	2011-03-10 08:00:00	1	0	1	3	15.58	19.695	0	19.0012	1	43	44
1098	2011-03-10 09:00:00	1	0	1	3	16.40	20.455	0	15.0013	1	23	24
1099	2011-03-10 10:00:00	1	0	1	3	16.40	20.455	0	11.0014	0	17	17
1100	2011-03-10 11:00:00	1	0	1	3	16.40	20.455	0	16.9979	6	5	11
1101	2011-03-10 12:00:00	1	0	1	3	17.22	21.210	0	15.0013	4	30	34
1102	2011-03-10 13:00:00	1	0	1	3	17.22	21.210	0	15.0013	1	11	12
1103	2011-03-10 14:00:00	1	0	1	3	18.04	21.970	0	19.9995	0	12	12
1104	2011-03-10 15:00:00	1	0	1	3	18.04	21.970	0	15.0013	3	11	14
1105	2011-03-10 16:00:00	1	0	1	3	17.22	21.210	0	16.9979	1	20	21
1106	2011-03-10 17:00:00	1	0	1	2	18.04	21.970	0	26.0027	2	109	111
1107	2011-03-10 18:00:00	1	0	1	3	18.04	21.970	0	23.9994	2	80	82
1108	2011-03-10 19:00:00	1	0	1	3	18.04	21.970	0	39.0007	5	51	56
1109	2011-03-10 20:00:00	1	0	1	3	14.76	16.665	0	22.0028	9	29	38
1110	2011-03-10 21:00:00	1	0	1	3	14.76	17.425	0	15.0013	1	27	28
1111	2011-03-10 22:00:00	1	0	1	2	13.94	16.665	0	8.9981	4	30	34
1112	2011-03-10 23:00:00	1	0	1	3	13.94	17.425	0	6.0032	1	26	27

습도가 0 이면서, 날씨가 3 or 4인 경우

→ 말이 안되는 데이터라 판단하여 삭제

모델별 성능 비교

모델링 결과

긍정적 모델링

- 산점도의 점들이 대체로 대각선 주변에 밀집되어 오차가 적음.
- 저수요 구간(0~200)에 특히 예측이 잘 되어 있음:

아쉬운점

- 수요가 높은 일부 구간 (400 이상)에서 과소 예측 경향 존재
- 분산이 큼

제언

1. 출퇴근 시간대의 러시 아워 (Rush Hour) 공략

- 출퇴근 패스권
 - 출퇴근 시간(06:00 ~ 12:00 / 17:00 ~ 20:00)에 운행 거리 및 시간에 구애받지 않는 월 단위 구독 시스템 도입
- 1+n 이벤트
 - 。 계정에 등록된 친구, 지인과 같은 시간에 함께 대여 시 할인권 제공

2. 날씨 및 체감 온도에 따른 공략

- 자전거를 타기 가장 쾌적한 기온을 설정하여 해당 기온에 도달하면 자전거 대여 권유 알림 발송
 - 해당 알림을 통해 대여시 대여료 할인 및 위치기반 자전거 드라이브 코스 추천 시스템 개발