アルゴリズムとデータ構造

第11回 グラフの探索(1)

今日の内容

- グラフ
 - なんでグラフ?
 - グラフの数学的な定義
 - ネットワーク(重み付きグラフ)の定義
- グラフデータの取り扱い方
 - 隣接行列による表現
 - 隣接リストによる表現
- グラフの探索の仕方
 - 幅優先探索
 - 深さ優先探索

ケーニヒスベルクの橋

ケーニヒスベルクという街には プレーゲル川が流れ、 7つの橋が架かっていた

Q: 7つすべての橋を、それぞれちょうど 1 回ずつ渡って歩く コースって、ある?

A: ない。 その理由は...

図は、http://Wikipedia.org より

ケーニヒスベルクの橋

ケーニヒスベルクという街には プレーゲル川が流れ、 7つの橋が架かっていた

Q: 7つすべての橋を、それぞれちょうど1回ずつ渡って歩く コースって、ある?

川で別れる4つの土地を「頂点」、 橋を「(頂点を結ぶ)辺」に置き換える

街をグラフで表す

■ グラフが一筆書きできる条件は…

グラフの性質を調べる

なんでグラフ?

モノとモノのつながりを簡潔に記述し、解析できる!

アルゴリズムとデータ構造#11

グラフ (graph) G = (V, E)

頂点 (vertex) の集合 V と

頂点と頂点のペア

辺 (edge) の集合 $E \subseteq V \times V$ の組 (V, E) のこと

例)
$$V = \{v_0, v_1, v_2, v_3, v_4\}, E = \{e_0, e_1, e_2, e_3, e_4, e_5\}$$
のとき
ただし、 $e_0 = (v_0, v_1), e_1 = (v_1, v_2), e_2 = (v_0, v_2),$
 $e_3 = (v_2, v_3), e_4 = (v_3, v_4), e_5 = (v_4, v_0)$

無向グラフ (undirected graph) 有向グラフ (directed graph)

有向グラフの場合,辺(u,v) は頂点uから頂点vへの辺(**有向辺**)を表す無向グラフでは辺(u,v)を $\{u,v\}$ と書く場合もある

ネットワーク (network)

各辺 e_i に重み(整数値または実数値) w_i が付いたグラフのこと. 重み付きグラフ (weighted graph).

例)
$$V = \{v_0, v_1, v_2, v_3, v_4\}, E = \{e_0, e_1, e_2, e_3, e_4, e_5\}$$
のとき ただし、 $e_0 = (v_0, v_1), e_1 = (v_1, v_2), e_2 = (v_0, v_2), e_3 = (v_2, v_3), e_4 = (v_3, v_4), e_5 = (v_4, v_0)$ $w_0 = 2, w_1 = 3, w_2 = 4, w_3 = 2, w_4 = 1, w_5 = 2$

無向ネットワーク

有向ネットワーク

隣接行列 (adjacency matrix) による表現

有向グラフについて、各辺の有無を<mark>行列</mark>で表したもの (有向ネットワークの場合は重みを要素とした行列)

※ 無向グラフの場合は、各無向辺 (u, v) を2つの有向辺 (u, v), (v, u) に置き換えた 有向グラフとみなして表現する

隣接リスト (adjacency list) による表現

有向グラフについて、各辺の有無を<mark>連結リストの配列</mark>で表したもの(ネットワークの場合は重みを付加する)

※ 無向グラフの場合は、各無向辺 (u, v) を2つの有向辺 (u, v), (v, u) に置き換えた 有向グラフとみなして表現する

n = |V|, m = |E|

隣接行列と隣接リストの利点, 欠点

隣接行

列

利点

2頂点間に辺があるか否か を0(1)時間でチェック可能

欠点

O(n²)の記憶領域が必要

1つの頂点の隣接頂点を求めるのにO(n)時間必要

隣

接リス

利点

O(m)の記憶領域で済む

1つの頂点の隣接頂点を求めるのは、その隣接頂点数に比例した時間だけで可能

欠点

2頂点間に辺があるか否かをチェックするのに、隣接頂点数に比例した時間が必要

連結リストを線形 探索するから

休憩

■ ここで、少し休憩しましょう。

深呼吸したり、肩の力を抜いてから、 次のビデオに進んでください。

グラフの探索

頂点数nの入力グラフG = (V, E)が与えられたとき、そのすべての頂点を訪問すること.

- 入力グラフは、隣接リスト表現で与えられるとする
- 出力として, 訪問した頂点の並びを出力する. ただし, 同じ頂点は2回以上重複して出力しないものとする

応用

• ゲーム(迷路, 盤ゲーム), 画像処理, etc...

各種グラフ処理の 基本アルゴリズム

探索法には主に次の2つがある。

- 1. 幅優先探索 (Breadth-First Search, BFS)
- 2. 深さ優先探索 (Depth-First Search, DFS)

幅優先探索の考え方

基本的なアイデア

 ソース(スタート地点となる頂点)sから「波」を伝播させて、 波の「先端」(frontier)を横断的に訪問(展開)することで、 すべての頂点を探索する

特長

• ソースから近い順番に訪問できる

アルゴリズムの動き

- 1. ソースsを一つ決め、キュー(FIFO)に入れる
- 2. キューから一つ頂点 v を取り出して v をたどる
- 3. vの隣接頂点のうち未訪問(かつ未発見)の頂点をすべて キューに入れる
- 4. キューが空になるまで2と3を繰り返す

幅優先探索アルゴリズム BFS

```
Procedure BFS (G: グラフ)
1: for each v \in V do 状態[v] \leftarrow 白;
2: Q ← 空のキュー;
   状態[s] \leftarrow 赤; // ソースsは適当な頂点
4:
   Q.Enqueue(s);
   while (Q が空でない) do begin
6:
      v \leftarrow Q.Dequeue();
      vを出力する; // その頂点を処理
7:
      for each (vの隣接頂点u) do
8:
         if (状態[u]=白) then
9:
            状態[u] ← 赤;
10:
11:
             Q.Enqueue(u);
12:
         end if
      | 状態[v] ← 黒;
13:
14: end while
```

頂点vの状態の意味

色	意味
扣	未訪問
赤	発見済
黒	訪問済

最悪/平均の

時間計算量は O(n+m)

(n: 頂点数, m: 辺の本数)

幅優先探索の計算例

問い: 右図の隣接リスト表現で与えられるグラフ

GのBFSで出力される頂点リストを与えよ.

解答: a, b, f, g, h, d, c, e

ステップ	訪問 頂点 <i>v</i>	<i>v</i> の隣接 頂点リスト	キューQの 内容
0	-		<u>a</u>
1	а	b, f, g, h	<u>b</u> , f, g, h
2	b	d, c, ≭	<u>f</u> , g, h, <mark>d, c</mark>
3	f	null	g, h, d, c
4	g	null	<u>h</u> , d, c
5	h	8	<u>d</u> , c
6	d	null	<u>c</u>
7	С	ਕ , e	<u>e</u>
8	е	null	_

Gの隣接リスト表現

頂点	隣接リスト
a	b, f, g, h
b	d, c, f
С	d, e
d	null
e	null
f	null
g	null
h	g

深さ優先探索の考え方

基本的なアイデア

• ソース(スタート地点となる頂点) s から, 未発見の頂点を 優先的に可能な限り深い方へと探索する

特長

- メモリ使用量が少なくなることが多い
- 特に再帰版は実装が簡単

アルゴリズムの動き

- 1. ソース s を一つ決め, スタック(LIFO)に入れる
- 2. スタックから一つ頂点 v を取り出して v をたどる
- 3. *v*の隣接頂点のうち未訪問(かつ未発見)の頂点をすべて スタックに入れる
- 4. スタックが空になるまで2と3を繰り返す

深さ優先探索アルゴリズム DFS

幅優先探索 (BFS) と 見比べて、変わった 場所は?

```
Procedure DFS (G: グラフ)
1: for each v \in V do 状態[v] \leftarrow 白;
2: Q ← 空のスタック;
   状態[s] ← 赤; // ソースsは適当な頂点
  Q.Push(s);
4:
   while (Q が空でない) do begin
5:
      v \leftarrow Q.Pop();
6:
      vを出力する; // その頂点を処理
7:
      for each (vの隣接頂点u) do
8:
         if (状態[u]=白) then
9:
            状態[u] ← 赤;
10:
```

Q.Push(u);

end if

状態[v] ← 黒;

頂点vの状態の意味

色	意味
佃	未訪問
赤	発見済
黒	訪問済

最悪/平均の

時間計算量は O(n+m)

(n: 頂点数, m: 辺の本数)

14: end while

11:

13:

12:

深さ優先探索の計算例

問い: 右図の隣接リスト表現で与えられるグラフ

GのDFSで出力される頂点リストを与えよ.

解答: a, h, g, f, b, c, e, d

ステップ	訪問 頂点 <i>v</i>	<i>v</i> の隣接 頂点リスト	スタックQの 内容
0	-		<u>a</u>
1	а	b, f, g, h	b, f, g, <u>h</u>
2	h	8	b, f, g
3	g	null	b, <u>f</u>
4	f	null	<u>b</u>
5	b	d, c, ≭	d, <u>c</u>
6	С	≱ , e	d, <u>e</u>
7	е	null	<u>d</u>
8	d	null	-

頂点	隣接リスト
а	b, f, g, h
b	d, c, f
С	d, e
d	null
е	null
f	null
g	null
h	g

深さ優先探索アルゴリズム DFS (再帰版)

Procedure DFS (*G*: グラフ)

1: for each $(v \in V)$ do 状態 $[v] \leftarrow 白$;

2: *s* ←ソース頂点; // ソース*s*は適当な頂点

3: Visit(s); // 再帰手続きの開始

頂点vの状態の意味

色	意味
白	未訪問
黒	訪問済

Procedure Visit(v: 頂点)

1: *v* を出力する;

2: 状態[v] ← 黒;

3: for each (*v*の隣接頂点*u*) do

4: if (状態[*u*]=白) then

5: Visit(*u*); //再帰呼び出し

6: end if

7: end for

このアルゴリズム場合, 隣接リストの順に未訪問 の頂点を可能な限り深く 探索するので,スタックを 使うアルゴリズムとは出 力順が異なる点に注意

今日のまとめ

- グラフ
 - なんでグラフ?
 - グラフの数学的な定義
 - ネットワーク(重み付きグラフ)の定義
- グラフデータの取り扱い方
 - 隣接行列による表現
 - 隣接リストによる表現
- グラフの探索の仕方
 - 幅優先探索
 - 深さ優先探索