EXPERIMENT -7

HARTLEY OSCILLATOR

<u>AIM</u>: To design a Hartley Oscillator with following specifications and to verify the phase shift (180°) and find the frequency of oscillations.

DESIGN SPECIFICATIONS:

Vcc =12v, R1=18.3k, R2=6.8k, Re=1k, Rc=2.2k, L1=L2=1mH, C=1 μ F, NPN transistor with β value 100.

APPARATUS:

- CRO is
- Regulated DC power supply
- Decade resistance Box
- Decade capacitance Box
- Decade inductance Box
- Resistors
- Capacitors
- Transistor
- Bread board, Single strand wires

SOFTWARE SIMULATION:

Software used: Multisim Analog Devices Edition 14.0

Procedure:

- 1. Switch ON the computer and open the Multisim software
- 2. Observe Design tool box, Instrumentation tool box, component tool box and its component functionality
- 3. From above tool boxes, Connect the circuit using the designed values of each and every component
- 4. Connect the output of amplifier to input of β -network[LC Combination] and output of β -network to input of amplifier.
- 5. Connect the Cathode Ray Oscilloscope (CRO) to the input and output terminals of the circuit.
- 6. Go to simulation button click it for simulation process.
- 7. From the CRO observe the following values:
- Frequency of Oscillations
- Phase Shift = 180°

SIMULATION OF THE DESIGN:

Hartley Oscillator Circuit

*** OBSERVATIONS:**

Phase Shift:

Conclusion:

From the above waveform we can conclude that the phase shift b/w input and output signal is 180°.

From the above values we can conclude that the frequency at which the oscillations are generated is decreased with increase in L and C.

HARDWARE SIMULATION:

Procedure:

- 1. Connect the circuit as per the circuit diagram.
- 2. Apply the supply voltage , V_{cc} =12V
- 3. Make sure that the transistor is operating point in active region by keeping V_{CE} half of V_{CC} .
- 4. Now note down the frequency of oscillations generated for different inductance values.
- 5. Now calculate the theoretical frequency of oscillations generated.

Observations:

Hartley Oscillator

The dety obtained	
Inductance(H)	Frequency(Hz)
1m	15.2K
2m	10.8K
3m	8.8K
4m	7.7K
5m	6.9K
6m	6.2K
7m	5.8K
1	345.1
5	105.5
10	61.1
100	12.8

Conclusion: We can conclude that practically and through simulation we have obtained the frequency of Oscillations generated by the Hartley Oscillator and established a relation b/w the Frequency of oscillations and the L and C Values present in the feedback(β) network.