## Chapitre 5 : Fonctions dérivées

Cours 3 : Sens de variation

#### R. KHODJAOUI

Lycée J.J. HENNER - Première D

Lundi 9 décembre 2019





Lundi 9 décembre 2019

## Sommaire

Signe de la dérivée

2 Extremum



#### Théorème

Soit f une fonction dérivable sur un intervalle I et f' sa dérivée.

- △ Si f' < 0 sur I, sauf peut-être pour quelques valeurs où elle s'annule alors f est strictement décroissante sur I.
- $\angle$  Si f' est nulle sur I alors f est constante sur I.





Lundi 9 décembre 2019

#### Théorème

Soit f une fonction dérivable sur un intervalle I et f' sa dérivée.

- $\angle$  Si f' est nulle sur I alors f est constante sur I.

## Exemple 1

Soit f la fonction affine définie par f(x) = -3x + 1, f est dérivable sur  $\mathbb{R}$  et sa dérivée f' a pour expression f'(x) = -3.

Chapitre 5

| J     | r         | 1 | J         |
|-------|-----------|---|-----------|
| x     | $-\infty$ |   | $+\infty$ |
| f'(x) |           | _ |           |
| f(x)  | \         |   | `*        |



#### Théorème

Soit f une fonction dérivable sur un intervalle I et f' sa dérivée.

### Exemple 2

Soit f la fonction carré, f est dérivable sur  $\mathbb{R}$  et pour tout  $x \in \mathbb{R}$ , f'(x) = 2x.

| $2x = 0 \Leftrightarrow x = 0.$ |       |           |   |   |   |           |  |  |  |
|---------------------------------|-------|-----------|---|---|---|-----------|--|--|--|
|                                 | x     | $-\infty$ |   | 0 |   | $+\infty$ |  |  |  |
|                                 | f'(x) |           | _ | 0 | + |           |  |  |  |
|                                 | f(x)  |           |   | 0 |   | *         |  |  |  |



#### Théorème

Soit f une fonction dérivable sur un intervalle I et f' sa dérivée.

- 🖾 Si f' > 0 sur I, sauf peut-être pour quelques valeurs où elle s'annule alors f est strictement croissante sur I.
- △ Si f' < 0 sur I, sauf peut-être pour quelques valeurs où elle s'annule alors f est strictement décroissante sur I.
- $\angle$  Si f' est nulle sur I alors f est constante sur I.

#### Exercice

- $\blacksquare$  Démontrer que la fonction cube est strictement croissante sur  $\mathbb{R}.$
- Etudier les variations de la fonction f définie sur [-2; 1, 5] par  $f(x) = x^3 3x + 1$ .





Soit f une fonction dérivable sur un intervalle I et  $x_0$  un réel de I.

- Dire que  $x_0$  est un maximum local (resp. minimum local) de f, signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant  $x_0$  tel que, pour tout  $x \in J$ ,  $f(x) \leq f(x_0)$  (resp.  $f(x) \geq x_0$ ).
- $\square$  Dire que  $x_0$  est un extremum local signifie que  $f(x_0)$  est un maximum local ou un minimum local.





Soit f une fonction dérivable sur un intervalle I et  $x_0$  un réel de I.

- Dire que  $x_0$  est un maximum local (resp. minimum local) de f, signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant  $x_0$  tel que, pour tout  $x \in J$ ,  $f(x) \leq f(x_0)$  (resp.  $f(x) \geq x_0$ ).
- $\square$  Dire que  $x_0$  est un extremum local signifie que  $f(x_0)$  est un maximum local ou un minimum local.

### Propriété 1

f est une fonction dérivable sur un intervalle ouvert I et  $x_0$  est un réel de I.

- $\not \in$  Si  $f(x_0)$  est un extremum local de f, alors  $f'(x_0) = 0$ .
- 🗷 Attention : la réciproque est fausse.





Soit f une fonction dérivable sur un intervalle I et  $x_0$  un réel de I.

- Dire que  $x_0$  est un maximum local (resp. minimum local) de f, signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant  $x_0$  tel que, pour tout  $x \in J$ ,  $f(x) \leq f(x_0)$  (resp.  $f(x) \geq x_0$ ).
- Dire que  $x_0$  est un extremum local signifie que  $f(x_0)$  est un maximum local ou un minimum local.

### Propriété 1

f est une fonction dérivable sur un intervalle ouvert I et  $x_0$  est un réel de I.

- $\triangle$  Si  $f(x_0)$  est un extremum local de f, alors  $f'(x_0) = 0$ .
- Attention : la réciproque est fausse.

#### Exercice 1

Justifier que le fonction cube est un exemple illustrant le fait que la réciproque de la propriété 1 est fausse.





Soit f une fonction dérivable sur un intervalle I et  $x_0$  un réel de I.

- Dire que  $x_0$  est un maximum local (resp. minimum local) de f, signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant  $x_0$  tel que, pour tout  $x \in J$ ,  $f(x) \leq f(x_0)$  (resp.  $f(x) \geq x_0$ ).
- $\square$  Dire que  $x_0$  est un extremum local signifie que  $f(x_0)$  est un maximum local ou un minimum local.

### Propriété 2

Soit f une fonction dérivable sur un intervalle ouvert I et  $x_0$  est un réel de I.



Soit f une fonction dérivable sur un intervalle I et  $x_0$  un réel de I.

- Dire que  $x_0$  est un maximum local (resp. minimum local) de f, signifie que l'on peut trouver un intervalle ouvert J inclus dans I et contenant  $x_0$  tel que, pour tout  $x \in J$ ,  $f(x) \leq f(x_0)$  (resp.  $f(x) \geq x_0$ ).
- $\square$  Dire que  $x_0$  est un extremum local signifie que  $f(x_0)$  est un maximum local ou un minimum local.

### Propriété 2

Soit f une fonction dérivable sur un intervalle ouvert I et  $x_0$  est un réel de I.

#### Exercice 2

Justifier que le fonction  $f: x \mapsto \frac{1}{3}x^3 - x + 1$  admet deux extremums locaux sur  $\mathbb{R}$ .





Lundi 9 décembre 2019

# FIN

Revenir au début



