Regid POTPTO

DEC 2004 12.06.03

日本国特許庁 JAPAN PATENT OFFICE

10/517302

REC'D 0 1 AUG 2003

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 6月12日

出 願 番 号 Application Number:

特願2002-171532

[ST. 10/C]:

[JP2002-171532]

出 願 人
Applicant(s):

字呂電子工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月11日

今井康

Best Available Copy

.

【書類名】 特許願

【整理番号】 TUH14001

【あて先】 特許庁長官殿

【国際特許分類】 H01R 24/02

【発明の名称】 プラグ付き同軸ケーブル

【請求項の数】 5

【発明者】

【住所又は居所】 東京都品川区南大井5丁目27番10号 宇呂電子工業

株式会社内

【氏名】 小平 眞

【特許出願人】

【識別番号】 000120076

【氏名又は名称】 字呂電子工業株式会社

【代理人】

【識別番号】 100083552

【弁理士】

【氏名又は名称】 秋田 収喜

【電話番号】 03-3893-6221

【手数料の表示】

【予納台帳番号】 014579

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【発明の名称】 プラグ付き同軸ケーブル

【特許請求の範囲】

【請求項1】 中心導体の周囲に絶縁体を介在させて外部導体が設けられた同軸ケーブルと、前記中心導体と電気的に接続された中心コンタクト及び前記外部導体と電気的に接続された外部コンタクトを有するプラグからなるプラグ付き同軸ケーブルにおいて、

前記中心コンタクト及び前記外部コンタクトは、前記中心導体の軸方向と直交する方向の軸を回転軸として、前記中心コンタクトと前記中心導体及び前記外部コンタクトと前記外部導体のそれぞれの電気的接続を保ちながら回転することを特徴とするプラグ付き同軸ケーブル。

【請求項2】 中心導体の周囲に絶縁体を介在させて外部導体が設けられた同軸ケーブルと、前記中心導体と電気的に接続された中心コンタクト及び前記外部導体と電気的に接続された外部コンタクトを有するプラグからなるプラグ付き同軸ケーブルにおいて、

前記プラグは、

前記コンタクト部と、

前記中心コンタクトと前記中心導体とを電気的に接続する中心導体接続部材、 前記外部コンタクトと前記外部導体とを電気的に接続する外部導体接続部材、前 記中心導体接続部材と前記外部導体接続部材とを電気的に絶縁する絶縁部材を有 する本体部とからなり、

前記コンタクト部が、前記中心コンタクトの軸方向と直交する方向の軸を回転軸として、前記中心コンタクトと前記中心導体接続部材の電気的接続及び前記外部コンタクトと前記外部導体接続部材のそれぞれの電気的接続を保ちながら回転することを特徴とするプラグ付き同軸ケーブル。

【請求項3】 前記外部コンタクトは、

前記円筒状導体部の一端に、前記外部導体接続部材と電気的に接続され、かつ、回転の支点となる一対の突起を有し、前記突起の一方から前記円筒状導体部の内部空間に連通するように開口しており、

前記中心導体接続部材との接続部が、前記回転軸上であり、かつ、前記外部コンタクトの中心軸から前記開口部が設けられた突起の方向に折れ曲がっていることを特徴とする請求項2に記載のプラグ付き同軸ケーブル。

【請求項4】 前記外部導体接続部材は、2つ以上の導体部品からなり、 前記2つ以上の導体部品により、前記外部コンタクトの突起の挟んで支持固定 していることを特徴とする請求項3に記載のプラグ付き同軸ケーブル。

【請求項5】 前記絶縁部材は、前記中心導体接続部材と前記外部導体接続部材とが同軸構造を維持するように設けられていることを特徴とする請求項3または請求項4に記載のプラグ付き同軸ケーブル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、プラグ付き同軸ケーブルに関し、特に、テレビアンテナと受像機を 接続するプラグ付き同軸ケーブルに適用して有効な技術に関するものである。

[0002]

【従来の技術】

従来、データ伝送用のケーブルには、銅のしん線(以下、中心導体と称する)の周囲に、絶縁体を介在させて、例えば、網状の銅線などの外部導体を設けた同軸ケーブルがある。このとき、前記外部導体は、前記中心導体の周囲に円筒状に設けられており、ノイズを遮蔽する効果を持つ。そのため、前記同軸ケーブルは、テレビ信号などの高周波信号を伝送するケーブルとして広く使用されてる。

[0003]

また、前記同軸ケーブルを前記テレビアンテナや受像機などに接続するときには、前記同軸ケーブルの中心導体と電気的に接続された中心コンタクト及び前記外部導体と電気的に接続された外部コンタクトを有するプラグが設けられたプラグ付き同軸ケーブルを用いる。このとき、前記プラグ付き同軸ケーブルには、図21(a)に示すように、前記中心コンタクト201の軸方向201Xと前記同軸ケーブル1の引き出し方向1Xが平行なストレートタイプと、図21(b)に

[0.004]

前記ストレートタイプのプラグ付き同軸ケーブルの場合、例えば、家庭などの 壁面にあるテレビ受信用の端子に接続したときに、前記同軸ケーブル1の壁面か らのふくらみが大きくなる。そのため、ふくらんだ部分に足などが引っかかり、 転倒したりケーブルが抜けたりする可能性が高い。また、前記テレビ受信用の端 子が、例えば、家具の裏側にある場合には、同軸ケーブル1に無理な力をかけて 曲げると断線するため、前記同軸ケーブル1のふくらみを考慮したスペースを確 保しなければならない。

[0005]

一方、前記ライトアングルタイプのプラグ付き同軸ケーブルの場合、前記中心 コンタクト201の軸方向201Xと同軸ケーブル1の引き出し方向1Xが直角 になっているため、壁面に接続したときに、同軸ケーブル1のふくらみが小さく 、家具の裏などの狭いスペースでも邪魔にならない。

[0006]

【発明が解決しようとする課題】

しかしながら、前記従来の技術では、前記プラグ付き同軸ケーブルは、前記中 心コンタクト201の軸方向201Xと同軸ケーブル1の引き出し方向1Xの位 置的な関係が固定されているため、用途と使用する場所に合わせて、前記ストレ ートタイプあるいは前記ライトアングルタイプのいずれかを選ばなければならな い。そのため、例えば、引越しやレイアウトの変更により、例えば、ストレート タイプのプラグ付き同軸ケーブルを使いにくい状況になった場合、新たにライト アングルタイプのプラグ付き同軸ケーブルを買わなくてはならない。すなわち、 従来のプラグ付き同軸ケーブルでは、用途や使用する場所に対する適用性の自由 度が低いという問題があった。

[0007]

本発明の目的は、プラグ付きの同軸ケーブルにおいて、用途や使用する場所へ の適用性の自由度を高くすることが可能な技術を提供することにある。

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。

[0009]

【課題を解決するための手段】

本願において開示される発明の概要を説明すれば、以下の通りである。

[0010]

(1)中心導体の周囲に絶縁体を介在させて外部導体が設けられた同軸ケーブルと、前記中心導体と電気的に接続された中心コンタクト及び前記外部導体と電気的に接続された外部コンタクトが設けられたプラグからなるプラグ付き同軸ケーブルにおいて、前記中心コンタクト及び前記外部コンタクトは、前記中心導体の軸方向と直交する方向の軸を回転軸として、前記中心コンタクトと前記中心導体及び前記外部コンタクトと前記外部導体のそれぞれの電気的接続を保ちながら回転するプラグ付き同軸ケーブルである。

[0011]

前記(1)の手段によれば、前記コンタクト部が回転することにより、用途や使用する場所に合わせて、例えば、前記中心コンタクトの軸方向とケーブルの引き出し方向が平行な状態でも使えるし、前記中心コンタクトの軸方向とケーブルの引き出し方向が直角の状態でも使える。また、電気的接続を保ちながら回転することにより、前記中心コンタクトの軸方向とケーブルの引き出し方向が平行な状態や、前記中心コンタクトの軸方向とケーブルの引き出し方向が直角の状態に限らず、前記コンタクト部が回転可能な範囲であれば、自由な角度にして使用することができる。そのため、従来のプラグ付き同軸ケーブルと比べて、用途や使用場所への適用性の自由度を高くすることができる。

[0012]

(2) 中心導体の周囲に絶縁体を介在させて外部導体が設けられた同軸ケーブルと、前記中心導体と電気的に接続された中心コンタクト及び前記外部導体と電気的に接続された外部コンタクトを有するプラグからなるプラグ付き同軸ケーブルにおいて、前記プラグは、前記コンタクト部と、前記中心コンタクトと前記中

[0013]

前記(2)の手段によれば、前記(1)の手段と同様に、用途や使用する場所に合わせて、例えば、前記中心コンタクトの軸方向とケーブルの引き出し方向が平行な状態、前記中心コンタクトの軸方向とケーブルの引き出し方向が直角の状態の他、自由な角度にして使用することができる。そのため、従来のプラグ付き同軸ケーブルと比べて、用途や使用場所への適用性の自由度を高くすることができる。

[0014]

また、前記(2)の手段において、前記外部コンタクトは、前記円筒状導体部の一端に、回転の支点となる一対の突起を有し、かつ、前記突起の一方から前記円筒状導体部の内部空間に連通するように開口しておき、前記中心コンタクトは、前記中心導体接続部材との接続部が、前記回転軸上であり、かつ、前記外部コンタクトの中心軸から前記開口部が設けられた突起の方向に折り曲げることにより、前記中心コンタクトと前記中心導体接続部材の電気的接続、及び前記外部コンタクトと前記外部導体接続部材の電気的接続を保ちながら回転させることができる。

[0015]

このとき、前記外部導体接続部材は、2つ以上の導体部品からなり、 前記2つ以上の導体部品により、前記外部コンタクトの突起の挟んで支持固定する。

[0016]

またこのとき、前記プラグの本体部の前記絶縁部材は、前記中心導体接続部材

[0017]

以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に 説明する。

[0018]

なお、実施例を説明するための全図において、同一機能を有するものは、同一符号を付け、その繰り返しの説明は省略する。

[001,9]

【発明の実施の形態】

(実施例1)

図1乃至図3は、本発明による実施例1のプラグ付き同軸ケーブルの概略構成を示す模式図であり、図1はプラグ付き同軸ケーブルの外観を示す平面図、図2はプラグ付き同軸ケーブルの内部構造を説明するための断面図で図1と同じ方向から見た図、図3はプラグ付き同軸ケーブルの内部構造を説明するため断面図で図1の紙面右側から見た図である。

[0020]

図1乃至図3において、1は同軸ケーブル、101は中心導体、102は絶縁体、103は外部導体(網状導体)、104は外被、2はプラグ、201は中心コンタクト、202は外部コンタクト、203は中心導体接続部材、204は外部導体接続部材、205は第1絶縁部材、206は圧入リング、207は内バネ、208は第2絶縁部材、209は絶縁カバーである。

[0021]

本実施例1のプラグ付き同軸ケーブルは、図1に示すように、中心導体101の周囲に絶縁体102を介在させて外部導体(網状導体)103が設けられた同軸ケーブル1と、中心コンタクト201と外部コンタクト202が設けられたプラグ2とからなる。このとき、前記プラグ2はプッシュオン式であり、前記中心コンタクト201及び前記外部コンタクト202は、他の同軸ケーブルもしくは家庭(部屋)や電子機器の壁面などに設けられた接栓座に差し込み接続する接続

[0022]

またこのとき、前記中心コンタクト201と前記中心導体101は、図2に示すように、前記プラグ2の内部に設けられた中心導体接続部材203により電気的に接続されている。また、前記外部コンタクト202と前記外部導体103も、図2に示すように、前記プラグ2の内部に設けられた外部導体接続部材204により電気的に接続されている。

[0023]

また、前記中心コンタクト201は、図2に示すように、第1絶縁部材205 と圧入リング206により、前記外部コンタクト202との相対的な位置を維持 するよう固定されている。また、前記外部コンタクト202の円筒状導体部20 2Aの内側には、前記接栓座との接触を良好にするための内バネ207が設けら れている。

$[0\ 0\ 2\ 4\]$

また、前記中心導体接続部材203と前記外部導体接続部材204は、第2絶 縁部材208を介在させて同軸構造を維持するように設けられている。

[0025]

また、前記中心コンタクト201は、図2に示したように、前記中心導体接続部材203との接続部が、前記中心コンタクト201の主軸(以下、第1の軸と称する)201Xと直交する方向の軸(以下、第2の軸と称する)RXと重なるように折り曲げられている。また、前記中心コンタクト201と前記中心導体接続部材203は、機械的には接触した状態であり、前記中心コンタクト201は、前記第2の軸RXを回転軸として回転運動をすることができるようになっている。

[0026]

また、前記外部コンタクト202は、図2に示したように、円筒状の導体部202Aの一端、言い換えると、前記外部導体接続部材204との接続部に、回転の支点となる突起202Bが設けられている。このとき、前記突起202Bは、図3に示したように、前記外部コンタクト202が前記第2の軸RXを回転軸と

[0027]

また、前記外部導体接続部材204の外側には、外装用の絶縁カバー209が 設けられている。

[0028]

図4乃至図11は、本実施例1のプラグ付き同軸ケーブルの組み立て方法を説 明するための模式図である。

[0029]

本実施例1のプラグ付き同軸ケーブルを組み立てるときには、まず、例えば、 図4(a)及び図4(b)に示したような外部コンタクト202を準備する。前 記外部コンタクト202は、円筒状の導体部202Aの一端に、前記円筒状導体 部202Aの中心軸と直交する方向の軸(第2の軸)RXが回転軸となるような 一対の突起202Bを有する回転支点部を設ける。またこのとき、図4(b)に 示したように、前記突起202Bの一方から前記円筒状導体部202Aの内部空 間に連通するように開口しておく。

[0030]

次に、図5に示すように、L字型の中心コンタクト201を半割構造の第1絶 縁部材205で挟み、前記外部コンタクトの円筒状導体部202Aに挿入する。 このとき、前記中心コンタクト201の、前記中心導体接続部と接続される部分 が、前記突起201Bの開口している方向を向き、かつ、前記第2の軸RXと重 なる状態にして圧入リング206を押し込み前記第1絶縁部材205を固定する

[0031]

次に、例えば、図6に示すように、前記外部コンタクトの円筒状導体部202 Aに内バネ207を挿入する。

[0032]

また、前記外部コンタクト202に前記中心コンタクト201を挿入、固定す

[0033]

このとき、まず、図7に示したように、カシメリング210に前記同軸ケーブル1を通し、前記外部導体103と前記絶縁体102の間に保持リング211を挿入する。前記カシメリング210は、前記同軸ケーブル1を外部導体接続部材204で挟んだときにかしめて、前記同軸ケーブル1の外部導体103と前記外部導体接続部材204の電気的接続を確実にするためのリングである。また、前記保持リング211は、前記カシメリング210でかしめたときに前記同軸ケーブル1の絶縁体102が変形してインピーダンスが変化するのを防ぐためのリングである。

[0034]

またこのとき、前記中心導体接続部材203は、前記同軸ケーブル1の中心導体101との接続部は、図7に示したように、樋状にしておき、前記同軸ケーブル1の中心導体101をはめてはんだ付けする。また、前記中心導体接続部材203の、前記中心コンタクト201の接続部は、ばね状になるようスリ割を入れておく。

[0035]

また、前記同軸ケーブル1の中心導体101と前記中心導体接続部材203を接続した後、図7に示すように、前記中心導体101及び前記中心導体接続部材203を、半割構造の第2絶縁部材208で挟む。

[0036]

次に、図8に示すように、前記同軸ケーブル1を接続した中心導体接続部材203と、前記外部コンタクト202に挿入、固定された中心コンタクト201とを接続する。このとき、前記中心コンタクト201は、回転運動をさせるため、はんだ付けなどの機械的な接続はしないでおく。また、このとき、前記中心導体接続部材203を挟んだ第2絶縁部材208は、前記外部コンタクト202の突起202Bに設けられた開口部に挿入して、前記第2絶縁部材208と前記第1絶縁部材205を密着させる。

次に、図9に示すように、2つに分割された外部導体接続部材204A,204Bにより、前記外部コンタクト202の突起202B、前記中心導体接続部材203(第2絶縁部材208)、ならびに前記同軸ケーブル1の外部導体103を挟み、ネジなどで固定する。その後、前記カシメリング210で、前記外部導体接続部材204A,204Bと同軸ケーブル1の外部導体103の接触部を固定する。

[0038]

またこのとき、図10に示すように、第1外部導体接続部材204Aには溝を設け、第2外部導体接続部材204Bには、前記第1外部導体接続部材204Aの溝と対応する突起を設けておく。前記溝及び突起を設けておくことにより、前記第1外部導体接続部材204Aと前記第2外部接続部材204Bを固定したときに、図11(a)及び図11(b)に示すように、前記第1外部導体接続部材204Aと前記第2外部導体接続部材204Aと前記第2外部導体接続部材204Aと前記第2外部導体接続部204Bに隙間ができにくく、前記同軸ケーブルの絶縁体102及び前記第2絶縁部材208の全周囲を前記外部導体接続部材204A,204Bでシールドすることができる。そのため、前記同軸ケーブル1の中心導体101及び前記中心導体接続部材203からの信号の漏れを防ぐことができる。

[0039]

最後に、前記外部導体接続部材204A,204Bの外側に、前記外装用の絶縁カバー209を取り付けると、図1に示したようなプラグ付き同軸ケーブルが得られる。

[0040]

図12は、本実施例1のプラグ付き同軸ケーブルの作用効果を説明するための 模式図であり、図12(a)及び図12(b)はプラグ付き同軸ケーブルの使用 状態を示す側面図である。

[0041]

本実施例1のプラグ付き同軸ケーブルでは、前記外部コンタクト202は、前 記外部導体接続部材204A,204Bとの接続部に突起202Bが設けられて

[0042]

以上説明したように、本実施例1のプラグ付き同軸ケーブルによれば、前記プラグの中心コンタクト201及び外部コンタクト202が、前記同軸ケーブル1の中心導体101及び外部導体103との電気的接続を保ちながら回転することにより、用途や使用環境に合わせて中心コンタクト201の主軸201Xと同軸ケーブル1の引き出し方向1Xの角度を調節することができる。そのため、例えば、本実施例1のプラグ付き同軸ケーブル1本で、従来のストレートタイプ、ライトアングルタイプの使い分けができ、用途や使用する場所への適用性の自由度を高くすることができる。

[0043]

(実施例2)

図13乃至図16は、本発明による実施例2のプラグ付き同軸ケーブルの概略 構成を示す模式図であり、プラグ付き同軸ケーブルの組み立て手順を説明するた めの斜視図である。

[0044]

本実施例2のプラグ付き同軸ケーブルは、前記実施例1のプラグ付き同軸ケーブルと同様で、図1に示したように、同軸ケーブル1の端部に、前記中心コンタクト201及び前記外部コンタクト202を有するプラグ2が取り付けられてい

[0045]

以下、図13乃至図16に沿って、本実施例2のプラグ付き同軸ケーブルの組 み立て方法について説明する。

[0046]

まず、図4及び図5に示したように、前記実施例1で説明した手順に沿って、回転の支点となる突起202Bを有する前記外部コンタクト202に、前記第1 絶縁部材205で挟んだL字型の中心コンタクト201を挿入し、圧入リング206で固定し、内バネ(図示しない)を挿入したコンタクト部を準備する。

[0047]

次に、図13に示すように、中心導体接続部材203を半割構造の第2絶縁部材208で挟み、前記中心導体接続部材203と前記中心コンタクト201を接続する。このとき、前記実施例1で説明したように、前記中心導体接続部材203の前記中心コンタクト201との接続部は、ばね状になるようにスリ割を設けておく。また、前記中心導体接続部材203の、前記同軸ケーブルの中心導体との接続部にも、ばね状になるようにスリ割を設けておく。

[0048]

次に、図14に示すように、前記中心導体接続部材203を接続したコンタクト部を、前記外部コンタクト202の突起202B及び前記中心導体接続部材203(第2絶縁部材208)の外形と対応した溝が設けられた第1外部導体接続部材204Aにはめ込む。このとき、前記第1外部導体接続部材204Aの、同軸ケーブル1を取り付ける部分には、図14に示したように、ケーブル固定用の管204Cを設けておく。

[0049]

次に、図15に示すように、前記第1外部導体接続部材204Aの管204C から同軸ケープル1を挿入して、前記同軸ケーブル1の中心導体101と前記中 心導体接続部材203を接続する。このとき、前記第1外部導体接続部材の管2

[0050]

次に、図16に示すように、前記第1外部導体接続部材204Aに、第2外部導体接続部材204Bをかぶせ、ねじなどで固定する。このとき、前記同軸ケーブル1の中心導体101と前記中心導体接続部材は、はんだなどによる接続をしていないため、前記同軸ケーブル1が抜ける可能性がある。そのため、接続の同軸ケーブル1を通した管204Cの部分は、カシメリング210でかしめて、前記同軸ケーブル1が抜けないように固定する。

[0051]

以上説明したように、本実施例2のプラグ付き同軸ケーブルによれば、前記実施例1のプラグ付き同軸ケーブルと同様に、前記中心コンタクト及び前記外部コンタクトを回転させることができる。そのため、例えば、本実施例2のプラグ付き同軸ケーブル1本で、従来のストレートタイプ、ライトアングルタイプの使い分けができ、用途や使用する場所への適用性の自由度を高くすることができる。

[0052]

(実施例3)

図17乃至図20は、本発明による実施例3のプラグ付き同軸ケーブルの概略構成を示す模式図であり、プラグ付き同軸ケーブルの組み立て手順を説明するための斜視図である。

[0053]

本実施例3のプラグ付き同軸ケーブルも、前記実施例1のプラグ付き同軸ケーブルと同様で、図1に示したように、同軸ケーブル1の端部に、前記中心コンタクト201及び前記外部コンタクト202を有するプラグ2が取り付けられている。また、前記中心コンタクト201及び前記外部コンタクト202も、前記実施例1のプラグ付き同軸ケーブルと同様に、前記第1の軸201Xと直交する第2の軸RXを回転軸として回転させることができる。

[0054]

[0055]

まず、図4及び図5に示したように、前記実施例1で説明した手順に沿って、回転の支点となる突起202Bを有する前記外部コンタクト202に、前記第1 絶縁部材205で挟んだL字型の中心コンタクト201を挿入し、圧入リング206で固定し、内バネ207を挿入したコンタクト部を準備する。

[0056]

次に、図17に示すように、中心導体接続部材203を半割構造の第2絶縁部材208で挟み、前記中心導体接続部材203と前記中心コンタクト201を接続する。このとき、前記実施例2のプラグ付き同軸ケーブルと同様に、前記中心導体接続部材203の前記中心コンタクト201との接続部は、ばね状になるようにスリ割を設けておく。また、前記中心導体接続部材203の、前記同軸ケーブルの中心導体との接続部にも、ばね状になるようにスリ割を設けておく。

[0057]

次に、図18に示すように、前記中心導体接続部材203を接続したコンタクト部を、前記外部コンタクト202の突起202B及び前記中心導体接続部材203(第2絶縁部材208)と対応した溝が設けられた第1外部導体接続部材204Aにはめ込む。

[0058]

このとき、本実施例3のプラグ付き同軸ケーブルでは、前記実施例1、実施例2の場合と異なり、前記第1外部導体接続部材204Aは、前記第1の軸201 Xと第2の軸(回転軸)RXとを含む平面と平行な面で分割されている。またこのとき、前記第1外部導体接続部材204Aの、同軸ケーブル1を取り付ける部分には、図18に示したように、ケーブル固定用の管204Cが設けられている

[0059]

次に、図19に示すように、前記第1外部導体接続部材204Aの管204C から同軸ケーブル1を挿入して、前記同軸ケーブル1の中心導体101と前記中

[0060]

次に、図20に示すように、前記第1外部導体接続部材204Aに、第2外部 導体接続部材204Bをかぶせ、ねじなどで固定する。このとき、前記同軸ケー ブル1の中心導体101と前記中心導体接続部材203とは、はんだなどで接続 固定されていないため、抜ける可能性が高い。そのため、前記カシメリング21 0で同軸ケーブル1と第1外部導体接続部材の管204Cの接続部分をかしめて 固定する。

[0061]

以上説明したように、本実施例3のプラグ付き同軸ケーブルによれば、前記実施例1のプラグ付き同軸ケーブルと同様に、前記中心コンタクト及び前記外部コンタクトを回転させることができる。そのため、例えば、本実施例2のプラグ付き同軸ケーブル1本で、従来のストレートタイプ、ライトアングルタイプの使い分けができ、用途や使用する場所への適用性の自由度を高くすることができる。

[0062]

以上、本発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において、種々変更可能であることはもちろんである。

[0063]

【発明の効果】

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下の通りである。

[0064]

プラグ付きの同軸ケーブルにおいて、用途や使用する場所への適用性を高くすることができる。

【図面の簡単な説明】

【図1】

本発明による実施例1のプラグ付き同軸ケーブルの概略構成を示す模式図である。

【図2】

本実施例1のプラグ付き同軸ケーブルの内部構造を示す模式図であり、図1と 同じ方向から見た図である。

【図3】

本実施例1のプラグ付き同軸ケーブルの内部構造を示す模式図であり、図1の 紙面右方向から見た図である。

【図4】

本実施例1のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図5】

本実施例1のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図 である。

【図6】

本実施例 1 のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図7】

本実施例1のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図 である。

【図8】

本実施例1のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図9】

本実施例 1 のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図10】

本実施例 1 のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図11】

本実施例 1 のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図12】

本実施例1のプラグ付き同軸ケーブルの使用方法を説明するための模式図である。

【図13】

本発明による実施例2のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図14】

本実施例2のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図15】

本実施例2のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図16】

本実施例2のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図 である。

【図17】

本発明による実施例3のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図18】

本実施例3のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図 である。

【図19】

本実施例3のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図である。

【図20】

本実施例3のプラグ付き同軸ケーブルの組み立て方法を説明するための模式図

【図21】

従来のプラグ付き同軸ケーブルの概略構成を示す模式図である。

【符号の説明】

1…同軸ケーブル、101…中心導体、102…絶縁体、103…外部導体(網状導体)、104…外被、2…プラグ、201…中心コンタクト、202…外部コンタクト、203…中心導体接続部材、204…外部導体接続部材、204 A…第1外部導体接続部材、204 B…第2外部導体接続部材、204 C…同軸ケーブル固定用の管、205…第1絶縁部材、206…圧入リング、207…内バネ、208…第2絶縁部材、209…絶縁カバー、210…カシメリング、211…保持リング。

図面

【図1】

【図4】

(a)

【図5】

図5

【図6】

【図9】

【図11】

図11

(a)

(b)

【図16】

【図17】

【図19】

【書類名】

要約書

【要約】

【課題】 プラグ付きの同軸ケーブルにおいて、用途や使用する場所への適用性 を高くする。

【解決手段】 中心導体の周囲に絶縁体を介在させて外部導体が設けられた同軸 ケーブルと、前記中心導体と電気的に接続された中心コンタクト及び前記外部導 体と電気的に接続された外部コンタクトを有するプラグからなるプラグ付き同軸 ケーブルにおいて、前記中心コンタクト及び前記外部コンタクトは、前記中心導 体の軸方向と直交する方向の軸を回転軸として、前記中心コンタクトと前記中心 導体及び前記外部コンタクトと前記外部導体のそれぞれの電気的接続を保ちなが ら回転するプラグ付き同軸ケーブルである。

【選択図】

認定·付加情報

特許出願の番号 特願2002-171532

受付番号 50200854239

書類名 特許願

担当官 第四担当上席 0093

作成日 平成14年 6月14日

<認定情報・付加情報>

【提出日】 平成14年 6月12日

特願2002-171532

出願人履歴情報

識別番号

[000120076]

1. 変更年月日

1994年 5月17日

[変更理由]

住所変更

住 所

東京都品川区南大井5丁目27番10号

氏名 字

宇呂電子工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.