电梯控制时序逻辑设计

- 成员及分工
- 功能介绍
- 设计过程
 - 。变量定义
 - 。队列原理
 - 。次态转移
 - 。次态表达式
 - 。状态转移表
 - 。逻辑电路
- 仿真检验
 - 。 verilog代码实现
 - 。仿真结果
 - 。 仿真分析:

成员及分工

组长:

华佳彬 负责时序线路逻辑构思设计,仿真代码实现及仿真检验分析,设计报告撰写

组员:

崔林浩 负责逻辑电路设计与绘制

胡君皓负责展示ppt制作

张佳鹏 负责ppt展示讲解

功能介绍

电梯控制时序逻辑设计,模拟电梯运行的时序逻辑,接收目的楼层输入,同时用队列逻辑 FIFO(First In First Out)实现了多人使用时的排队控制.

设计过程

变量定义

时序线路定义的变量如下:

逻辑变量	实际含义	位数,表示范围
S	当前楼层	3,[1,7]
X	输入楼层	3,[0,7]

逻辑变量	实际含义	位数,表示范围
y_1	目标楼层	3,[0,7]
y_2	等待目标楼层	3,[0,7]

为简化设计过程的繁琐度,所有变量用3位表示,等待队列容量为2.(该规模状态表已经足够庞大,同时能够基本实现电梯上下运行的排队控制)其中除S没有0值外,其他变量为0时表示无效值,即不用响应.

队列原理

 y_1 表示目标楼层,即当前楼层需要前往的楼层, y_2 存储的是当前前往楼层未到达时候的楼层输入.若用0和1表示 y_1y_2 值是否有效,故有3种可能,分别为 00,10,11.时序逻辑为 X 每次会进入最左边的无效值即进入队尾.而当 X 进入时,即意味着最左边的有效值被移出队首,而移出队首的原因即当前楼层到达了目标楼层,即 S 等于 y_1 .总体逻辑如上,除此之外还需要考虑当后三个变量出现无效值的处理.

次态转移

对于 y_1^{n+1} , y_1 如果为0时,直接将 X 赋值给 y_1^{n+1} ,否则先判断 S 与 y_1 是否相等,不相等则不变.相等时若 y_2 值有效即不为0时,将 y_2 赋值给 y_1^{n+1} ,若 y_2 为0,则将 X 赋值给 y_1^{n+1} .

对于 y_2^{n+1} , y_1 不为0时才有可能需要用到 y_2 ,因此当 y_1 不为0时,如果 y_1 与 S 不相等, y_2 有有效值时不变,否则将 X 赋值给 y_2^{n+1} . 如果 y_1 与 S 相等且 y_2 值有效,此时 y_2 的值被赋给了 y_1^{n+1} ,而 X 赋给 y_2^{n+1} .

对于 S, 当 y_1 值有效时,只需要向目标楼层加一或减一即可,若相等则不变.

次态表达式

由于次态表达式较为复杂,将复用表达式记为记号.

记
$$T_A$$
 为 A 不为0,即 $T_A = A_3 + A_2 + A_1$

记
$$F_A$$
为 A 为 0 ,即 $F_A = \overline{A_3} \overline{A_2} \overline{A_1}$

记
$$E_{A,B}$$
 为 $A = B$,即 $E_{A,B} = (A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)$

记
$$N_{A,B}$$
为 $A!=B$,即 $N_{A,B}=A_3\oplus B_3+A_2\oplus B_2+A_1\oplus B_1$

记
$$G_{A,B}$$
 为 $A>B$, 即 $G_{A,B}=A_3A_2A_1\overline{B_3B_2B_3}+A_3A_2\overline{A_1}(B_3\overline{B_2}+\overline{B_3})+$

$$\underline{A_3}\overline{A_2}\underline{A_1}(\underline{B_3}\overline{B_2}\ \overline{B_1} + \overline{B_3}) + A_3\overline{A_2}\ \overline{A_1}\ \overline{B_3} + \overline{A_3}A_2A_1(\overline{B_3}B_2\overline{B_1} + \overline{B_3}\ \overline{B_2}) +$$

$$\overline{A_3}A_2\overline{A_1}\ \overline{B_3}\ \overline{B_2}$$

记
$$L_{A,B}$$
为 $A < B$,即 $L_{A,B} = N_{A,B}\overline{G_{A,B}}$

由于表达式使用的 $G_{y_1,S}$ 的 S 的取值范围不包括0,故表达式省略了一项.

次态表达式如下:

$$egin{aligned} y_{13}^{n+1} &= F_{y_1} X_3 + T_{y_1} \left(N_{y_1,S} y_{13} + E_{y_1,S} (T_{y_2} y_{23} + F_{y_2} X_3)
ight) \ y_{12}^{n+1} &= F_{y_1} X_2 + T_{y_1} \left(N_{y_1,S} y_{12} + E_{y_1,S} (T_{y_2} y_{22} + F_{y_2} X_2)
ight) \ y_{11}^{n+1} &= F_{y_1} X_1 + T_{y_1} \left(N_{y_1,S} y_{11} + E_{y_1,S} (T_{y_2} y_{21} + F_{y_2} X_1)
ight) \end{aligned}$$

$$y_{23}^{n+1} = T_{y_1}(N_{y_1,S}(F_{y_2}X_3 + T_{y_2}y_{23}) + E_{y_1,S}T_{y_2}X_3) \ y_{22}^{n+1} = T_{y_1}(N_{y_1,S}(F_{y_2}X_2 + T_{y_2}y_{22}) + E_{y_1,S}T_{y_2}X_2) \ y_{21}^{n+1} = T_{y_1}(N_{y_1,S}(F_{y_2}X_1 + T_{y_2}y_{21}) + E_{y_1,S}T_{y_2}X_1) \ S_3^{n+1} = F_{y_1}S_3 + T_{y_1}(E_{y_1,S}S_3 + G_{y_1,S}(S_3 + S_2S_1) + L_{y_1,S}S_3(S_1 + S_2)) \ S_2^{n+1} = F_{y_1}S_2 + T_{y_1}(E_{y_1,S}S_2 + G_{y_1,S}(S_2 \oplus S_1) + L_{y_1,S}(S_2 \odot S_1)) \ S_1^{n+1} = F_{y_1}S_1 + T_{y_1}(E_{y_1,S}S_1 + G_{y_1,S}S_1 + L_{y_1,S}S_1)$$

状态转移表

完整状态表共有8*7*(1+7*8)=3192行,在此节选前100列。(完整状态转移表见附件xlsx文件)

X	S	y_1	y_2	S^{n+1}	y_1^{n+1}	y_2^{n+1}
0	1	0	0	1	0	0
0	1	1	0	1	0	0
0	1	1	1	1	1	0
0	1	1	2	1	2	0
0	1	1	3	1	3	0
0	1	1	4	1	4	0
0	1	1	5	1	5	0
0	1	1	6	1	6	0
0	1	1	7	1	7	0
0	1	2	0	2	2	0
0	1	2	1	2	2	1
0	1	2	2	2	2	2
0	1	2	3	2	2	3
0	1	2	4	2	2	4
0	1	2	5	2	2	5
0	1	2	6	2	2	6
0	1	2	7	2	2	7
0	1	3	0	2	3	0

X	S	y_1	y_2	S^{n+1}	y_1^{n+1}	y_2^{n+1}
0	1	3	1	2	3	1
0	1	3	2	2	3	2
0	1	3	3	2	3	3
0	1	3	4	2	3	4
0	1	3	5	2	3	5
0	1	3	6	2	3	6
0	1	3	7	2	3	7
0	1	4	0	2	4	0
0	1	4	1	2	4	1
0	1	4	2	2	4	2
0	1	4	3	2	4	3
0	1	4	4	2	4	4
0	1	4	5	2	4	5
0	1	4	6	2	4	6
0	1	4	7	2	4	7
0	1	5	0	2	5	0
0	1	5	1	2	5	1
0	1	5	2	2	5	2
0	1	5	3	2	5	3
0	1	5	4	2	5	4
0	1	5	5	2	5	5
0	1	5	6	2	5	6
0	1	5	7	2	5	7
0	1	6	0	2	6	0

X	S	y_1	y_2	S^{n+1}	y_1^{n+1}	y_2^{n+1}
0	1	6	1	2	6	1
0	1	6	2	2	6	2
0	1	6	3	2	6	3
0	1	6	4	2	6	4
0	1	6	5	2	6	5
0	1	6	6	2	6	6
0	1	6	7	2	6	7
0	1	7	0	2	7	0
0	1	7	1	2	7	1
0	1	7	2	2	7	2
0	1	7	3	2	7	3
0	1	7	4	2	7	4
0	1	7	5	2	7	5
0	1	7	6	2	7	6
0	1	7	7	2	7	7
0	2	0	0	2	0	0
0	2	1	0	1	1	0
0	2	1	1	1	1	1
0	2	1	2	1	1	2
0	2	1	3	1	1	3
0	2	1	4	1	1	4
0	2	1	5	1	1	5
0	2	1	6	1	1	6
0	2	1	7	1	1	7

X	S	y_1	y_2	S^{n+1}	y_1^{n+1}	y_2^{n+1}
0	2	2	0	2	0	0
0	2	2	1	2	1	0
0	2	2	2	2	2	0
0	2	2	3	2	3	0
0	2	2	4	2	4	0
0	2	2	5	2	5	0
0	2	2	6	2	6	0
0	2	2	7	2	7	0
0	2	3	0	3	3	0
0	2	3	1	3	3	1
0	2	3	2	3	3	2
0	2	3	3	3	3	3
0	2	3	4	3	3	4
0	2	3	5	3	3	5
0	2	3	6	3	3	6
0	2	3	7	3	3	7
0	2	4	0	3	4	0
0	2	4	1	3	4	1
0	2	4	2	3	4	2
0	2	4	3	3	4	3
0	2	4	4	3	4	4
0	2	4	5	3	4	5
0	2	4	6	3	4	6
0	2	4	7	3	4	7

X	S	y_1	y_2	S^{n+1}	y_1^{n+1}	y_2^{n+1}
0	2	5	0	3	5	0
0	2	5	1	3	5	1
0	2	5	2	3	5	2
0	2	5	3	3	5	3
0	2	5	4	3	5	4
0	2	5	5	3	5	5
0	2	5	6	3	5	6
0	2	5	7	3	5	7
0	2	6	0	3	6	0
0	2	6	1	3	6	1

逻辑电路

整体

局部左

仿真检验

verilog代码实现

电梯控制模块

```
`timescale 1ns / 1ps
module Elevator(S,y1,y2,X,clk,res);
input clk,res;
input[2:0] X;
output y1,y2,S;
reg[2:0] y1,y2,S;
always@(posedge clk)
                               // 复位赋初始状态
if(~res)begin
   S <= 3'b001;
   y1 <= 3'b000;
   y2 <= 3'b000;
end
else begin
    if (y1==3'b000)begin
       y1 = X;
   end
    else begin
       //y1==S 即到达目的楼层
        if(y1==S)begin
            if(y2!=3'b000)begin
               y1 = y2;
               y2 = X;
           end
            else begin
               y1 = X;
           end
       end
       else begin
       // y1!=S 即未到达目的楼层
        if(y2==3'b000)begin
           y2 = X;
        end
        end
    end
    // 对 S 当前楼层进行上下移动
    if (y1!=3'b000)begin
       if(y1>S)begin
           S = S+1;
        end
        else if(y1<S)begin
           S = S-1;
        end
    end
 end
endmodule
```

```
`timescale 1ns / 1ps
module Elevator_tb;
reg clk,res;
reg[2:0] X;
wire[2:0] S,y1,y2;
// 模块实例化
Elevator Elevator(.S(S),.y1(y1),.y2(y2),.clk(clk),.res(res),.X(X));
initial begin
   clk <= 0;res <= 0;X <= 0;
   #10 res<=1;
  #5 X <= 2;
  #10 X <= 5;
  #10 X <= 3;
  #10 X <= 0;
  #40 X <=1 ;
   #10 $stop;
end
// 每隔10时钟单位进行一次激励
always #5 clk<=~clk;</pre>
endmodule
```

仿真结果

状态转移表如下:

clk	S	y_1	y_2	X
5ns	1	0	0	0
15 ns	2	2	0	2
25~ns	3	5	0	5
35~ns	4	5	3	3
45 ns	5	5	3	0
55~ns	4	3	0	0
65~ns	3	3	0	0
75 <i>ns</i>	3	0	0	0
85 ns	2	1	0	1

仿真分析:

15 ns 时输入为2, 电梯往上运行到2楼;25 ns 时输入为5,同时上一目的地已经到达, 5楼成为当前目标,电梯往上运行到3楼;35 ns 时,输入为3,但是当前目标为 5,故仍向上运行到4楼,并将3楼作为等待的下一个目标楼层.45 ns 时,电梯向上运行到5楼,成功到达目的地,此时无输入;55 ns 时,同样无输入,上一次等待的目的楼层3楼变成当前目的楼层,并往下运行至4楼;65 ns 时,向下运行到目的楼层3楼,仍无输入,此时目的楼层和下一个目的楼层皆为无效值0;75 ns 时,无输入,电梯停在3楼;85 ns 时,输入为1,电梯启动向下运行.

可以从上述仿真结果看到,该时序逻辑线路实现了基本的电梯上下运行控制,并能够对多人使用进行有效的排队控制.