Chemistry 1142 Spring 2013 Exam 4a

Name: KEY

Take a deep breath, and relax! First, answer the questions you know how to do and then work on the more difficult problems. Don't forget to show all your work, so I can give you as much credit as possible.

Good Luck!

Andy

Show all work to receive credit. Be sure to include units, and express answers to the correct number of significant figures / decimal places.

[12 pts.] Predict whether the following reactions have a positive, negative, or ≈ 0 value of ΔS . Q1.

a)
$$C_3H_8(g) + 7O_2(g) \rightarrow 3CO_2(g) + 4H_2O(1)$$
 $\Delta S < 0$ (reduction in #mol gas)

b)
$$C_2H_5OH(g) \rightarrow C_2H_5OH(l)$$
 $\triangle S < 0$ ("

d) N2O4(g) + CO2(g) - N2O5(g) + CO(g)
$$\Delta 5 \% 0$$
 (same # gas moleculus on each side)

[12 pts.] Calculate ΔG° at 15 °C and 105 °C for the reaction: Q2. $2CH_3CH_2OH(1) + 2O_2(g) \rightarrow 2CH_3CO_2H(1) + 2H_2O(1)$

> given the following data: $\Delta H^{\circ}_{f} / kJ \cdot mol^{-1}$

Q3. [8 pts.] Calculate
$$\Delta G^{\circ}$$
 for the process:

$$Ag^{+}(aq) + NH_{3}(aq) \longrightarrow Ag(NH_{3})_{2}^{+}(aq)$$
, if $K = 1.5 \times 10^{7}$ at 25 °C.

Q4. [12 pts.] Using the standard electrode potentials given on the back page of this exam, calculate E^{o}_{cell} for the following cells:

b)
$$Cr(s) | Cr^{3+}(aq) | | Cd^{2+}(aq) | Cd(s)$$

c)
$$Al(s) | Al^{3+}(aq) | | Cu^{2+}(aq) | Cu(s)$$

"Now, in the second law of thermodynamics..."

Q5. [20 pts.] Balance the following redox reactions using the half-reaction method.

a)
$$Zn(s) + ClO^{-}(aq) \rightarrow Zn(OH)_{2}(s) + Cl^{-}(aq)$$

(BASIC Conditions)

b)
$$MnO_2(s) + Cl^-(aq) \rightarrow Mn^{2+}(aq) + Cl_2(g)$$

(ACIDIC Conditions)

$$2Ce^{-\frac{0\times}{2}}Cl_2 + 2e^{-\frac{1}{2}}$$

$$2e^{-\frac{1}{2}}+4H^{\frac{1}{2}}+M_{1}N_{2} \xrightarrow{red} M_{1}^{2+}+2H_{2}O$$

Q6. [16 pts.] Calculate
$$E_{cell}$$
 for the following cell:

$$Al(s) | Al^{3+}(aq, 0.010 M) | | Zn^{2+}(aq, 2.50 M) | Zn(s)$$

Be sure to write out the overall balanced equation for the cell reaction as part of your answer. The cell operates at a temperature of 298 K.

$$(Al \rightarrow Al^{3+}+3e^{-})+2$$

$$(2e^{-}+Zn^{2+}\rightarrow Zn)+3$$

$$= \frac{8.3145 \frac{5}{\text{mol·k}} \times 298 \frac{0.010^{2}}{2.50^{3}}}{6 \times 96,500 \frac{9}{\text{mol}}} = \frac{0.010^{2}}{10.010^{2}}$$

Q7. [10 pts.] A particular chemical reaction is non-spontaneous at low temperatures, but becomes spontaneous at high temperatures. What can you say about the signs (+ve or -ve) of
$$\Delta S$$
 and ΔH ? Be sure to explain your answer.

$$\Delta G = +ve (low T)$$

$$\Delta G = -ve (highT)$$

$$\Delta G = -ve (highT)$$

|=-ve (hight) | lowT...
$$\triangle G \approx \triangle H$$
 | => $\triangle H = + ve$ | hight... $\triangle G \approx -T \triangle S$ | => $-T \triangle S = -ve$ | $\triangle S \approx + ve$

35A=35°/5

Q8. [10 pts.] Molten aluminum bromide is electrolyzed for 24 hours using an electric current of 35 A. Predict the mass of aluminum formed in the electrolytic cell.

BONUS Question

[5 pts.] CH₃OH has a boiling point of 65 °C. Predict the sign of ΔG° , ΔH° , and ΔS° for the process: CH₃OH(g) \longrightarrow CH₃OH(l) at a temperature of 63 °C. Explain your answer.

below bp, condensation is sport => $\Delta 6 = -ve$.

-or... we form IMFs => give off energy (heat)

Chemistry 1142 Spring 2013 Exam 4b

Name: KEY

Take a deep breath, and relax! First, answer the questions you know how to do and then work on the more difficult problems. Don't forget to show all your work, so I can give you as much credit as possible.

Good Luck!

Andy

Show all work to receive credit. Be sure to include units, and express answers to the correct number of significant figures / decimal places.

See Exam A

b)
$$MnO_2(s) + Cl^{-}(aq) \rightarrow Mn^{2+}(aq) + Cl_2(g)$$

See Exam A

(ACIDIC Conditions)

Q2. [12 pts.] Calculate ΔG° at 15 °C and 105 °C for the reaction: $2CH_{3}CH_{2}OH(l) + 2O_{2}(g) \rightarrow 2CH_{3}CO_{2}H(l) + 2H_{2}O(l)$

given the following data:

8		/ 1 1
Compound	$\Delta H_{\rm f}^{\circ} / {\rm kJ \cdot mol^{-1}}$	$S^{\circ} / J \cdot \text{mol}^{-1} \cdot K^{-1}$
CH ₃ CH ₂ OH(l)	-276.98	161.04
$O_2(g)$	0	205.0
$CH_3CO_2H(1)$	-484.2	159.83
$H_2O(1)$	-285.8	69.9

See exam A

Q3. [8 pts.] Calculate
$$\Delta G^{\circ}$$
 for the process:
 $Ag^{+}(aq) + NH_{3}(aq) \longrightarrow Ag(NH_{3})_{2}^{+}(aq)$, if $K = 1.5 \times 10^{7}$ at 25 °C.

See exam A

Q4. [12 pts.] Using the standard electrode potentials given on the back page of this exam, calculate E°_{cell} for the following cells:

a)
$$Zn(s) | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu(s)$$

b)
$$Cr(s) | Cr^{3+}(aq) | | Cd^{2+}(aq) | Cd(s)$$

c)
$$Al(s) | Al^{3+}(aq) | | Cu^{2+}(aq) | Cu(s)$$

See exam A

Q5. [12 pts.] Predict whether the following reactions have a positive, negative, or ≈ 0 value of ΔS .

a)
$$C_3H_8(g) + 7O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

b)
$$C_2H_5OH(g) \rightarrow C_2H_5OH(l)$$

c)
$$Fe_2O_3(s) + C(s) \rightarrow 2Fe(s) + \frac{3}{2}CO_2(g)$$

d)
$$N_2O_4(g) + CO_2(g) \rightarrow N_2O_5(g) + CO(g)$$

"Now, in the second law of thermodynamics..."

Q6. [16 pts.] Calculate $E_{\rm cell}$ for the following cell:

 $\label{eq:Al(s) | Al^{3+}(aq, 0.010 \ M) | Zn^{2+}(aq, 3.50 \ M) | Zn(s)} Al(s) | Al^{3+}(aq, 0.010 \ M) | Zn(s)$

Be sure to write out the overall balanced equation for the cell reaction as part of your answer. The cell operates at a temperature of 298 K.

See exam A.

 $Q = \frac{[A|^{3\dagger}]^2}{[2n^{2\dagger}]^3}$

Euer = [0.96V]

Q7. [10 pts.] A particular chemical reaction is spontaneous at low temperatures, but becomes non-spontaneous at high temperatures. What can you say about the signs (+ve or -ve) of ΔS and ΔH ? Be sure to explain your answer.

 $\Delta G = -ve (lowT)$ = tue (highT)

2A1203(e) -> L+A1(e) + 30261

Q8. [10 pts.] Molten aluminum oxide is electrolyzed for 24 hours using an electric current of 35 A.

Predict the mass of aluminum formed in the electrolytic cell.

35 A = 355/6

A13++3e- -- Al.

BONUS Question

[5 pts.] CH₃OH has a boiling point of 65 °C. Predict the sign of ΔG° , ΔH° , and ΔS° for the process: CH₃OH(g) \longrightarrow CH₃OH(l) at a temperature of 63 °C. Explain your answer.

See exam A

le 19.1 Standard Reduction Potentials at 25°C*

Half-Reaction	$E^{\circ}(V)$
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07
$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$	+1.82
$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77
$PbO_{2}(s) + 4H^{+}(aq) + SO_{4}^{2-}(aq) + 2e^{-} \longrightarrow PbSO_{4}(s) + 2H_{2}O$	+1.70
$Ce^{4+}(ag) + e^{\gamma i} \longrightarrow Ce^{3+}(ag)$	+1.61
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.36
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.33
$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23
$O_2(g) + 4H^+(ag) + 4e^- \longrightarrow 2H_2O$	+1.23
$Br_2(l) + 2e^{\alpha} \longrightarrow 2Br^{\alpha}(aq)$	+1.07
$NO_3(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96
$2Hg^{2+}(aq) + 2e^{-} \longrightarrow Hg_2^{2+}(aq)$	+0.92
$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.85
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68
$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59
$1_2(s) + 2e^- \longrightarrow 21^-(aq)$	+0.53
$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.34
$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	+0.15
$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13
$2H^{\dagger}(aq) + 2e^{-} \longrightarrow H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.25
$\operatorname{Co}^{2+}(aq) + 2e^- \longrightarrow \operatorname{Co}(s)$	-0.28
$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.31
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- \longrightarrow Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66
$Be^{2+}(aq) + 2e^{-} \longrightarrow Be(s)$	-1.85
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.37
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.87
$\operatorname{Sr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$	-2.89
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.90
$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
$\operatorname{Li}^+(aq) + e^- \longrightarrow \operatorname{Li}(s)$	-3.05

Useful Information

$$N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$$

Given:
$$ax^2 + bx + c$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \times 10^{-14} \text{ at } 25 \text{ °C}.$$

$$pH = -log[H_3O^+]$$

$$K_{a}K_{b} = K_{w}$$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

$$pH + pOH = 14.00 (at 25 °C)$$

$$R = 8.3145 \text{ J/mol K} = 0.08206 \text{ L atm/mol K}$$

$$M_1 V_1 = M_2 V_2$$

$$\Delta G = -nFE_{coll}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

$$E_{\text{cell}}^o = \frac{RT}{nF} \ln K$$

$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{RT}{nF} \ln Q \qquad E_{\text{cell}}^{\text{o}} = E_{\text{cathode}}^{\text{o}} - E_{\text{anode}}^{\text{o}} \qquad F = 96,500 \text{ C/mol e}^{-1}$$

$$E^{\mathbf{o}}_{\text{cell}} = E^{\mathbf{o}}_{\text{cathode}} - E^{\mathbf{o}}_{\text{anode}}$$

$$F = 96,500 \text{ C/mol e}^{-1}$$

$$R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$Q \text{ (charge)} = I \cdot t$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S = q/T$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q \qquad \qquad \Delta G^{\circ} = -RT \ln K$$

$$\Delta G^{\circ} = -RT \ln K$$

Periodic Table of the Elements

			1 0110	Jaio i	abic (JI 1110		10110									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
	43																16
1																	2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10,81	12.01	14_01	18.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	. 4	5	6	7	8	9	10	11	12	26.98	28.09	30,97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52 00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74 92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180,95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	68	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
(223)	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[205]		[289]		[293]

1	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140 91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
- [[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

le 19.1 Standard Reduction Potentials at 25°C*

Half-Reaction	$E^{\circ}(V)$
$F_{\gamma}(g) + 2e^{-} \longrightarrow 2F^{-}(aq)$	+2.87
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07
$Co^{3+}(aq) + e^{n} \longrightarrow Co^{2+}(aq)$	+1.82
$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70
$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.61
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	± 1.36
$Cr_2O_7^2(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.33
$MnO_2(s) + 4H^+(aq) + 2e^{-s} \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O$	+1.23
$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.07
$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96
$2Hg^{2+}(aq) + 2e^{-} \longrightarrow Hg_2^{2+}(aq)$	+0.92
$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.85
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68
$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.53
$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	± 0.34
$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	+0.15
$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13
$2H^{\dagger}(aq) + 2e^{-} \longrightarrow H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \longrightarrow Ni(s)$	-0.25
$Co^{2+}(aq) + 2e^- \longrightarrow Co(s)$	-0.28
$PbSO_4(s) + 2e^{-c} \longrightarrow Pb(s) + SO_4^{2-c}(aq)$	-0.31
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-1} \longrightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- \longrightarrow Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^- \longrightarrow Al(s)$	-1.66
$Be^{2+}(aq) + 2e^{-} \longrightarrow Be(s)$	-1.85
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.37
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.87
$\operatorname{Sr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$	-2.89
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.90
$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
$Li^+(uq) + e^- \longrightarrow Li(s)$	-3.05

Useful Information

$$N_{\Lambda} = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$$

Given:
$$ax^2 + bx + c$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O}^+][{\rm OH}^-] = 1.0 \times 10^{-14} \text{ at } 25 \text{ °C}.$$

$$pH = -log[H_3O^+]$$

$$K_{\rm a}K_{\rm b}=K_{\rm w}$$

$$K_{a}K_{b} = K_{w}$$

 $pH = pK_{a} + log \frac{Base}{Acid}$

$$pH + pOH = 14.00 (at 25 °C)$$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L atm/mol} \cdot \text{K}$$

$$M_1 \mathcal{V}_1 = M_2 \mathcal{V}_2$$

$$\Delta G = -nFE_{coll}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

$$E_{\text{cell}}^o = \frac{RT}{nF} \ln K$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q \qquad E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ} \qquad F = 96,500 \text{ C/mol e}^{-1}$$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}}$$

$$F = 96,500 \text{ C/mol e}^{-1}$$

$$R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$Q \text{ (charge)} = I \cdot t$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S = q/T$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

Periodic Table of the Elements

IA	IIA			olo i	GD10 (J. (1.10		.01.10				IIIA	IVA	VA	VIA	VIIA	VIIIA
1																	18
1	1																2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	θ	9	10
Li	Be											В	Ç	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16 00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	- 3	4		- 6	. 7	B	9	10	71	12	26.98	28 09	30.97	32.07	35,45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	48	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88,91	91.22	92.91	95,94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]

1	57	58	59	60	61	62	63	64	65	68	67	68	69	70
:*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
- 1	138.91	140.12	140.91	144.24	[145]	150.36	151,96	157.25	158.93	162.50	164 93	167.26	168.93	173.04
- 1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]