Discrete Math for Computer Science

Peter Schaefer

Freshman Fall

Contents

1	\mathbf{Log}	ic
	1.1	Propositions and Logical Operations
	1.2	Evaluating Compound Propositions
	1.3	Conditional Statements
	1.4	Logical Equivalence
	1.5	Laws of Propositional Logic
	1.6	Predicates and Quantifiers
	1.7	Quantified Statements
	1.8	DeMorgan's law for Quantified Statements
	1.9	Nested Quantifiers
	1.10	More Nested Quantifiers
	1.11	Logical Reasoning
	1.12	Rules of Inference with Propositions
	1.13	Rules of Interence with Quantifiers

1 Logic

1.1 Propositions and Logical Operations

Proposition: a statement that is either <u>true</u> or <u>false</u>.

Some examples include "It is raining today" and " $3 \cdot 8 = 20$ ".

However, not all statements are propositions, such as "open the door"

Name	Symbol	alternate name	p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \oplus q$
NOT	Г	negation	Τ	Т	F	T	T	F
AND	\wedge	conjunction	Τ	F	F	F	T	T
OR	V	dijunction	\mathbf{F}	Т	T	F	T	Т
XOR	\oplus	exclusive or	\mathbf{F}	F	Γ	F	F	F

XOR is very useful for encryption and binary arithmetic.

1.2 Evaluating Compound Propositions

p: The weather is bad. $p \wedge q$: The weather is bad and the trip is cancelled

q: The trip is cancelled. \triangleright $p \lor q$: The weather is bad or the trip is cancelled

r: The trip is delayed. $p \wedge (q \oplus r)$: The weather is bad and either the trip is cancelled or delayed

Order of Evaluation \neg , then \land , then \lor , but parenthesis always help for clarity.

1.3 Conditional Statements

 $p \to q$ where p is the hypothesis and q is the conclusion

Format	Terminology				
$ \begin{array}{c} p \to q \\ \neg q \to \neg p \\ q \to p \\ \neg p \to \neg q \end{array} $	given contrapostive converse inverse	given inverse	$\begin{array}{c} p \rightarrow q \\ \neg p \rightarrow \neg q \end{array}$	1 1	contrapostive converse

Order of Operations: $p \land q \rightarrow r \equiv (p \land q) \rightarrow r$

- 1.4 Logical Equivalence
- 1.5 Laws of Propositional Logic
- 1.6 Predicates and Quantifiers
- 1.7 Quantified Statements
- 1.8 DeMorgan's law for Quantified Statements
- 1.9 Nested Quantifiers
- 1.10 More Nested Quantifiers
- 1.11 Logical Reasoning
- 1.12 Rules of Inference with Propositions
- 1.13 Rules of Interence with Quantifiers