01076243 Digital Circuit Laboratory 2560/1

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 6 วงจรนับ

<u>วัตถุประสงค์</u>

- 1. สามารถออกแบบวงจรนับแบบ Synchronous ได้
- 2. สามารถสร้างวงจรนับที่ออกแบบโดยใช้ JK Flip Flop ได้
- 3. สามารถใช้งานไอซีวงจรนับหมายเลข 7493

<u>บทน้ำ</u> JK Flip Flop Characteristic Table

PRESET	\overline{CLEAR}	J	K	Clk	Q	\overline{Q}	State
0	1	X	X	X	1	0	Set
1	0	X	X	X	0	1	Reset
0	0	X	X	X	1	1	Unused
1	1	0	1	$\overline{}$	0	1	Reset
1	1	1	0	$\overline{}$	1	0	Set
1	1	0	0	X	Q	\overline{Q}	Unchanged
1	1	1	1	$igcup_{a}$	\overline{Q}	Q	Toggle

JK Flip Flop Excitation Table

Present State	Next State	Input		
Q	Q	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

Function Generator

Function Generator ดังรูปที่ 1 ใช้สำหรับสร้างสัญญาณรูปคลื่นต่างๆ ได้ 3 รูปแบบ คือ sine, triangle และ square สามารถปรับถี่ได้ 6 ย่านความถี่ (range) ครอบคลุมตั้งแต่ 0.2 Hz – 200 Hz โดยมี เอาต์พุต 2 แบบ คือ แบบ 0 – 10 Vp-p และ แบบ TTL ศึกษารายละเอียดเพิ่มเติมได้ในคู่มือ Logic Trainer ข้อ 2.6

รูปที่ 1 Function Generator

Hex to 7 Segment

ดังรูปที่ 2 ทำหน้าที่รับสัญญาณอินพุตเลขฐานสอง 4 บิต (DCBA) โดยมี D เป็น MSB แล้วแสดงผล ออกทาง 7 Segment (0-F)

รูปที่ 2 HEX to 7 Segment

7493 Synchronous 4-Bit Binary Counter

7493 คือ ไอซีที่ใช้เป็นวงจรนับแบบไบนารีขนาดสูงสุด 4 บิตแบบนับขึ้น โดยภายในบรรจุ JK Flip Flop เชื่อมต่อแบบ master/slave จำนวน 4 ตัว นอกจากนี้ไอซี 7493 มีสัญญาณรีเซต 2 สัญญาณ ได้แก่ $R_{0(1)}$ และ $R_{0(2)}$ เมื่อสัญญาณทั้งสองเป็นลอจิก 0 ทั้งคู่ JK Flip Flop ทุกตัวจะอยู่ในสถานะรีเซต ศึกษา รายละเอียดการทำงานเพิ่มเติมได้จาก datasheet

<u>การทดลอง</u>

1.	ให้นักศึกษาออกแบบวงจรนับขึ้นจาก 1 ไป 6 (0 1 2 3 4 5 0 1) แบบ Synchronous (1-to-6
	Synchronous Counter) โดยใช้ JK Flip Flop และดัดแปลงไอซีหมายเลข 7493 ให้สามารถนับขึ้นได้
	ในแบบเดียวกัน
	1.1 สร้างตารางค่าการนับ (Output)
	1.2 สร้างตารางความจริง (Truth Table) ของทุกๆ อินพุตของฟลิบฟลอบทุกตัว
	1.3 หาสมการอินพุตของฟลิบฟลอบด้วยวิธีพีชคณิตบูลีนหรือ K-Map
	1.4 อธิบายแนวทางการดัดแปลงไอซี 7493 ให้สามารถนับจาก 1 ไป 6
	1.5 วาดไดอะแกรมทั้งสองวงจร
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

•••••

Logic Diagram (JK Flip Flop)					
M. J.C. J. 7400					
Modified 7493					

2. สร้างวงจรตามไดอะแกรมที่ได้ออกแบบไว้ โดยต่อเอาต์พุตเข้ากับ HEX to 7 Segment และ/หรือ Logic Monitor และใช้สัญญาณนาฬิกาจาก Debounced Switch เพื่อบันทึกผล หลังจากนั้นให้ทดลองใช้ สัญญาณนาฬิกาจาก Function Generator แล้วสังเกตผล

ผลการทดลองวงจรนับที่ใช้ฟลิปฟลอป								
ลำดับ	P.S.				N.S.			7050
ត ២០				Clk				7SEG
1				Ţ				
2								
3								
4								
5								
6				J				
7								
8								
9								
10								
11								
12				1				
13								
14				1				
15								

ใบตรวจการทดลองที่ 6

วัน/เดือน/ปี	🗆 กลุ่มเช้า 🗀	กลุ่มบ่าย กลุ่มที่
1. รหัสนักศึกษา	ชื่อ-นามสกุล	
2. รหัสนักศึกษา	ชื่อ-นามสกุล	
การตรวจการทดลอง		🗌 บันทึกคะแนนแล้ว
การทดลองข้อ 1	ลายเซ็นอาจารย์	
การทดลองข้อ 2	ลายเซ็นอาจารย์	
คำถามท้ายการทดลอง		
สัญญาณนาฬิกาให้กับวงจรด้วยคว	s Counter ที่ใช้การทดลองนับครบรอบ ามถี่เท่าใด เพราะเหตุใด	
2. ไอซี 7493 ที่ใช้ในการทดลองเเ็	ป็นวงจรนับแบบ Synchronous หรือ A	synchronous พร้อมระบุเหตุผล
3. จงวาดรูปวงจร 1 to 6 Asynch	nronous Counter โดยสังเขป	