半导体表面与MIS结构

复旦大学 微电子学系

13307130163

李琛

June 17, 2015

Contents

1	半导	·体表面态	3
	1.1	理想表面	3
	1.2	实际表面	3
2	表面	i电场效应	4
	2.1	空间电荷层	4
	2.2	表面静电特性	4
	2.3	表面层的五种基本状态	4
3	MIS	结构C-V特性	4
	3.1	MIS电容结构能带图	4
	3.2	理想MIS结构C-V特性	4
	3.3	实际MIS结构C-V特性	4
4	Si –	Sio ₂ 系统性质	4

5	表面电导与迁移率	4	1
---	----------	---	---

6 表面电场的影响 4

1 半导体表面态

1.1 理想表面

理想表面的薛定谔方程有两组解,一组对应无限周期场,一组对应表面态

$$\varphi_1(x) = Aexp\left\{\frac{[2m_0(v_0 - E)]^{(1/2)}}{\hbar}x\right\}(x \le 0)$$

波函数在表面指数衰减,说明电子主要分布在表面附近 每个表面原子对应禁带中一个表面能级,这些能级组成表面能带 **悬挂键** 在表面的最外层的硅原子有一个未配对的电子,与之对应的就是表面态。

1.2 实际表面

- 青洁表面 超高真空下解理,有重构现象.
- **真实表面** 天然氧化层,界面态10¹⁰ 10¹² cm⁻² 空态下施主型俘获电子后呈电中性,受主型俘获电子后呈负电荷态
- 界面

- 不同导电类型 Si pn结(同质结) - M - O - S MOSFET

- 不同半导体 异质结 - 晶粒间界 多晶结构

- 金属-半导体 肖特基接触、欧姆接触

- 2 表面电场效应
- 2.1 空间电荷层
- 2.2 表面静电特性
- 2.3 表面层的五种基本状态
- 3 MIS结构C-V特性
- 3.1 MIS电容结构能带图
- 3.2 理想MIS结构C-V特性
- 3.3 实际MIS结构C-V特性
- 4 Si-Sio₂系统性质
- 5 表面电导与迁移率
- 6 表面电场的影响