# Рубежный контроль №1

Студент группы ИУ5-21М Жизневский Павел Вариант 3. Набор данных 3.

#### Задание

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных с использованием библиотек Matplotlib и Seaborn. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков? Проведите корреляционный анализ. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

# Решение

#### Импорт библотек и загрузка данных

```
In [0]:
       import numpy as np
       import pandas as pd
       import seaborn as sns
       import matplotlib.pyplot as plt
       %matplotlib inline
       sns.set(style="ticks")
       from sklearn.datasets import *
       /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Us
       e the functions in the public API at pandas.testing instead.
         import pandas.util.testing as tm
In [0]: def make_dataframe(ds_function):
           ds = ds_function()
          return df
In [0]: data = make_dataframe(load_wine)
```

#### Проверим загруженные данные

```
In [0]: data.head()
Out[0]:
              alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/o
           0
                14.23
                             1.71 2.43
                                                     15.6
                                                                127.0
                                                                                2.80
                                                                                           3.06
                                                                                                                  0.28
                                                                                                                                    2.29
                                                                                                                                                   5.64
                                                                                                                                                         1.04
                13.20
                             1.78 2.14
                                                     11.2
                                                                100.0
                                                                                2.65
                                                                                           2.76
                                                                                                                  0.26
                                                                                                                                    1.28
                                                                                                                                                   4.38 1.05
           2
                13.16
                             2.36 2.67
                                                     18.6
                                                                101.0
                                                                                2.80
                                                                                           3.24
                                                                                                                  0.30
                                                                                                                                   2.81
                                                                                                                                                   5.68 1.03
                14.37
                             1.95 2.50
                                                     16.8
                                                                113.0
                                                                                3.85
                                                                                           3.49
                                                                                                                  0.24
                                                                                                                                   2.18
                                                                                                                                                   7.80 0.86
                13.24
                             2.59 2.87
                                                    21.0
                                                                118.0
                                                                                2 80
                                                                                           2 69
                                                                                                                  0.39
                                                                                                                                    1.82
                                                                                                                                                   4.32 1.04
```

#### Оценим данные

```
In [0]: for col in data.columns:
             # Количество пустых значений - все значения заполнены
            temp_null_count = data[data[col].isnull()].shape[0]
            print('{} - {}'.format(col, temp_null_count))
        alcohol - 0
        malic_acid - 0 ash - 0
        alcalinity_of_ash - 0
        magnesium - 0
        total_phenols - 0
        flavanoids - 0
        nonflavanoid_phenols - 0
        proanthocyanins - 0
        color_intensity - 0
        od280/od315_of_diluted_wines - 0
        proline - 0
        target - 0
```

#### Нет пропусков

```
In [0]: data.dtypes
                                         float64
float64
Out[0]: alcohol
        malic_acid
        ash
                                         float64
        alcalinity_of_ash
                                         float64
        magnesium
                                         float64
        total_phenols
                                         float64
        flavanoids
                                         float64
        nonflavanoid_phenols
                                         float64
        proanthocyanins
                                         float64
        color_intensity
                                         float64
        hue
od280/od315_of_diluted_wines
                                         float64
                                         float64
        proline
                                         float64
        target
                                         float64
        dtype: object
```

Типы данных пригодны для анализа

```
In [0]: print('Bcero ctpok: {}'.format(data.shape[0])+', cton6μoB: {}'.format(data.shape[1]))
Bcero ctpok: 178, cton6μoB: 14
```

# Парные диаграммы:

Построим парные диаграммы для визуального анализа зависимостей в данных



Out[0]: <seaborn.axisgrid.PairGrid at 0x7fac59b08da0>



В результате быстрого визуального анализа полученных диаграмм выявлена наиболее явная зависимость между содержанием фенолов (total\_phenols) и flavanoids (флавоноидами)

Гистограмма величины осдака в образцах вин

```
In [0]: fig, ax = plt.subplots(figsize=(10,10))
print(sns.distplot(data['ash']))
```

AxesSubplot(0.125,0.125;0.775x0.755)



Из гистограммы заметно, что большинство сортов вин содержат в среднем 2-2,5мг золы. Данное распределение близко к нормальному.

Зависимость содержания спирта от класса вина

```
In [0]: sns.jointplot(x="target", y="alcohol", data=data)
Out[0]: <seaborn.axisgrid.JointGrid at 0x7fac54b34e80>
```



Таким образом, из диаграммы очевидно, что в винах 1го класса наименьшее содержание спирта.

# Корреляционный анализ

Проведем корреляционный анализ для установления возможных зависимостей между параметрами

# In [0]: data.corr()

Out[0]:

|                              | alcohol   | malic_acid | ash       | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyaı |
|------------------------------|-----------|------------|-----------|-------------------|-----------|---------------|------------|----------------------|--------------|
| alcohol                      | 1.000000  | 0.094397   | 0.211545  | -0.310235         | 0.270798  | 0.289101      | 0.236815   | -0.155929            | 0.136        |
| malic_acid                   | 0.094397  | 1.000000   | 0.164045  | 0.288500          | -0.054575 | -0.335167     | -0.411007  | 0.292977             | -0.220       |
| ash                          | 0.211545  | 0.164045   | 1.000000  | 0.443367          | 0.286587  | 0.128980      | 0.115077   | 0.186230             | 900.0        |
| alcalinity_of_ash            | -0.310235 | 0.288500   | 0.443367  | 1.000000          | -0.083333 | -0.321113     | -0.351370  | 0.361922             | -0.197       |
| magnesium                    | 0.270798  | -0.054575  | 0.286587  | -0.083333         | 1.000000  | 0.214401      | 0.195784   | -0.256294            | 0.236        |
| total_phenols                | 0.289101  | -0.335167  | 0.128980  | -0.321113         | 0.214401  | 1.000000      | 0.864564   | -0.449935            | 0.612        |
| flavanoids                   | 0.236815  | -0.411007  | 0.115077  | -0.351370         | 0.195784  | 0.864564      | 1.000000   | -0.537900            | 0.652        |
| nonflavanoid_phenols         | -0.155929 | 0.292977   | 0.186230  | 0.361922          | -0.256294 | -0.449935     | -0.537900  | 1.000000             | -0.365       |
| proanthocyanins              | 0.136698  | -0.220746  | 0.009652  | -0.197327         | 0.236441  | 0.612413      | 0.652692   | -0.365845            | 1.000        |
| color_intensity              | 0.546364  | 0.248985   | 0.258887  | 0.018732          | 0.199950  | -0.055136     | -0.172379  | 0.139057             | -0.025       |
| hue                          | -0.071747 | -0.561296  | -0.074667 | -0.273955         | 0.055398  | 0.433681      | 0.543479   | -0.262640            | 0.295        |
| od280/od315_of_diluted_wines | 0.072343  | -0.368710  | 0.003911  | -0.276769         | 0.066004  | 0.699949      | 0.787194   | -0.503270            | 0.519        |
| proline                      | 0.643720  | -0.192011  | 0.223626  | -0.440597         | 0.393351  | 0.498115      | 0.494193   | -0.311385            | 0.330        |
| target                       | -0.328222 | 0.437776   | -0.049643 | 0.517859          | -0.209179 | -0.719163     | -0.847498  | 0.489109             | -0.499       |
| 4                            |           |            |           |                   |           |               |            |                      | <b>&gt;</b>  |

Тепловая карта для удобства визуальной оценки:

In [0]: sns.heatmap(data.corr())



Отметим, что присутствует высокая корреляция между содержанием флавоноидов и оттенком вина. Также наблюдается зависимость (корреляция) между содержанием пролина и спирта. Рассмотрим данные зависимости подробнее

```
In [0]: sns.scatterplot(x="flavanoids", y="hue", data=data)
```

Out[0]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fac529dfbe0>



```
In [0]: sns.jointplot(x="flavanoids", y="hue", data=data, kind="kde", space=0, color="g")
sns.jointplot(x="proline", y="alcohol", data=data, kind="kde", space=0, color="purple")
```

Out[0]: <seaborn.axisgrid.JointGrid at 0x7fac517d5e10>



Также построим гистограммы и диаграмму рассеяния для общего количества фенолов и числа флавоноидов, у которых высокий коэффициент корреляции:

```
In [0]: sns.distplot(data["total_phenols"], color="r")
```

Out[0]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fac50f47860>

750 1000 1250 1500 1750 2000

11

250 500



```
In [0]: sns.distplot(data["flavanoids"], color="#10e7b1")
```

Out[0]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fac50e9eef0>



```
In [0]: sns.jointplot(x="total_phenols", y="flavanoids", data=data, kind="reg", color="orange")
```

Out[0]: <seaborn.axisgrid.JointGrid at 0x7fac51112c18>



Из данного графика очевидна зависимость между общим числом фенолов и количеством флавоноидов

В датасете присутствует набор признаков, по которым прослеживается четкая кластеризация (т.е. можно отнести вино к определеннному классу). На основе этих принаков и обучающей выборки потенцально можно разработать нейронную сеть для решения задачи классификации вина по показателям химических и физических свойств.