Unit-IV ANALYTIC FUNCTIONS

$$\mathbf{u}_{\mathbf{x}} = \mathbf{v}_{\mathbf{y}}$$
 and $\mathbf{u}_{\mathbf{y}} = -\mathbf{v}_{\mathbf{x}}$

$$f'(z) = u_x + iv_x$$

C-R Equations In Polar Coordinates:

$$u_r = \frac{1}{r} v_\theta \text{ and } v_r = -\frac{1}{r} u_\theta$$

$$\mathbf{f}'(\mathbf{z}) = e^{-i\theta} \left[\mathbf{u}_{\mathbf{r}} + \mathbf{i} \mathbf{v}_{\mathbf{r}} \right]$$

2. Milne Thomson Method

If u is given
$$f(z) = \int [u_x(z,0) - iu_y(z,0)] dz + ic$$

If v is given $f(z) = \int [v_y(z,0) + iv_x(z,0)] dz + c$

3.
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$$

4. Re[f(z)] = u =
$$\frac{f(z) + f(\overline{z})}{2}$$
 5. $|f(z)|^2 = f(z)f(\overline{z})$

6. Fixed point (Invariant points) are obtained by replacing w = z

7. Critical points are given by
$$\frac{dw}{dz} = 0$$
 and $\frac{dz}{dw} = 0$

8. Bilinear transformation which maps the points z_1 , z_2 and z_3 of **Z** – plane onto the points w_1 , w_2 and w_3 of **W**- plane is given by

$$\frac{(w-w_1)(w_2-w_3)}{(w_1-w_2)(w_3-w)} = \frac{(z-z_1)(z_2-z_3)}{(z_1-z_2)(z_3-z)}$$

9.

S.No.	Description	Z – plane	W - plane	Fig
1	Real axis	y = 0	$\mathbf{v} = 0$	
2	Imaginary axis	$\mathbf{x} = 0$	u = 0	←

3	Upper half plane	y > 0	v > 0	†
4	Lower half plane	y < 0	v < 0	
5	Right half plane	x > 0	u > 0	
6	Left half plane	x < 0	u < 0	
7	Unit circle with centre at the origin	z =1	w =1	
8	Interior of Unit circle with centre at the origin	z <1	w < 1	•
9	Exterior of Unit circle with centre at the origin	z > 1	w > 1	****
10	Circle with centre at a and radius r	z-a =r	w-a =r	