

2020 中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2020

架构融合 云化共建

[live 2020年10月22日 - 24日网络直播

内容分发下的流量弹性建模与最优流量规划

阿里巴巴大文娱内容智能 赵寅 (梵生) yinzhao.zy@alibaba-inc.com

内容分发 v.s. 商品/广告分发

SACC 2020 中国系统架构师大会

- 新热长视频
 - 内容数量相对较少但坑位更珍贵
 - 具有宣发诉求与商业诉求

电商/广告/短视频等

- 百万级内容池
- Feed流、沉浸流
- 追求极致效率: "千人千面"

延迟性,不确定性效果,利益冲突

即时性,效果导向,利益一致性

流量规划 vs 个性化分发

KA 内容

剧

影

待分发场

轮播

热播剧场

流量规划:将运营、商业调控等抓手数字化并约束个性化分发

SACC 2020

中国系统架构师大会

基本框架:内容流量弹性+最优流量规划中国系统架构

16 7 168

曝光 x, 点击 100

曝光 x, 点击 500

• 最大点击?过曝光 VS 欠曝光

- 流量弹性
 - 单位曝光能够带来的点击增量 (PV vs Click)
 - 弹性越高,表明潜在曝光收益高
- 近似假设
 - 单内容供给稳定
 - 分发策略稳定

- 流量弹性
 - 单位曝光能够带来的点击增量 (PV vs Click)
 - 弹性越高,表明潜在曝光收益高

- ✓ y:pv点击量
- ✓ x:pv曝光量
- ✓ r:增长
- / ym:点击饱和量
- ✓ y0:初始点击
- ✓ x0:初始曝光

参数拟合 r, ym

- 流量弹性- 扩展升级
 - 不确定性考虑:引入随机过程 (Stochastic Differential Equation: SDE)

$$\frac{\mathrm{dy}}{\mathrm{dx}} = r(1 - \frac{\mathrm{y}}{y_m})\mathrm{y}$$

 $r \rightarrow r + \beta dW$,其中,W代表标准布朗运动,dW是白噪声, β 是白噪声强度。那么点击量随曝光量的变化过程可以用如下的随机微分方程来描述:

$$dy / dx = (\mathbf{r} + \beta d\mathbf{W}) \times (1 - y / y_m)\mathbf{y}$$

SDE的Euler[1]数值格式解

$$y(x_{i+1}) = y(x_i) + \Delta y = y(x_i) + (r + \beta dW) \left(1 - \frac{y(x_i)}{y_m}\right) y$$

[1] Bernt Ø, Stochastic Differential Equations[M], New York: Springer, 2003

$$RMSE(\mathbf{y}, \hat{\mathbf{y}}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

RMSE对比 (越小效果越好)

Xuerui Wang, et al. 2011. Click through rate estimation for rare events in online advertising. In Online multimedia advertising: Techniques and technologies. IGI Global, 1–12.

Table 3: Comparison between pv-click-ctr model and smoothing CTR method on online data

	H .1	RMSE		
content index	# days	pv-click-ctr model	smoothing CTR	
1	15	0.0752	0.40144	
2	19	0.13875	0.18118	
3	27	0.12788	0.24273	
4	10	0.04989	0.20967	
5	32	0.15736	0.29446	
6	16	0.11209	0.22749	
7	24	0.13558	0.13774	
8	21	0.10277	0.18685	
9	15	0.04226	0.09936	

SDE vs ODE

平均 RMSE 10.47%

平均 RMSE 22.01%

SACC 2020

最优流量规划

最优流量规划目标

流量弹性模型

 x_{ijk} 内容i在抽屉j上位置k上的曝光分配量, r_{ij} CLICK 到VV的折算系数

最大化曝光公平

曝光公平形式化描述

$$\min \frac{\sum_{i=1}^{m} (p_i - P)^2}{m-1}$$

$$P = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ijk})}{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ijk}}, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

所有内容各个抽屉的平均ctr

最优流量规划约束

• 抽屉约束

单抽屉资源容量

抽屉j上的坑位集合

$$\sum_{i=1}^{m} x_{ijk} < \mathbf{C}(s_j), \forall j \in \{1, 2, ..., n\} \quad \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

• 每个抽屉的任意位置,曝光量不能超过该抽屉整体曝光总量

所有抽屉资源容量

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ijk} < R, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

每个资源位k分配到的所有内容量不得超过总体资源R (当前展示页最大曝光)

最优流量规划约束

• 坑位约束

- 18个坑位
- 坑位 pv 波动小
- 内容分配 pv < 坑位 pv
- 一个内容不能同时在两个坑位出现

坑位资源约束

抽屉j中坑位l的容量

$$\begin{split} x_{ijk} < \max\{ C(d_{jl}) | l \in \mathbb{Z}_{\Theta(s_j)} \}, \\ \forall i \in \{1,2,...,m\}, \forall j \in \{1,2,...,n\}, \forall k \in \mathbb{Z}_{\Theta(s_j)} \end{split}$$

Relaxation:不能超过该抽屉最大坑位曝光量

唯一性约束

 $\begin{aligned} \left| \mathbf{C}_{jk} \right| \leq k, \mathbf{C}_{jk} &= \{ x_{ijk} | x_{ijk} \geq \mathbf{C}(d_{jk}), 1 \leq i \leq m \}, \\ \forall j \in \{1, 2, ..., n\}, \forall k \in \mathbb{Z}_{\Theta(s_i)} \end{aligned}$

- 坑位容量具有递减性质
- 超过k号坑位的节目数目不能多于k

最优流量规划

• 多目标约束优化

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} f(x_{ijk}), k \in \mathbb{Z}_{\Theta(s_j)}$$

最小化CTR方差

$$\min \frac{\sum_{i=1}^{m} (p_i - P)^2}{m - 1}$$

$$p_{i} = \frac{\sum_{j=1}^{n} f(x_{ijk})}{\sum_{j=1}^{n} x_{ijk}}, \forall i \in \{1, 2, ..., m\}, \forall k \in \mathbb{Z}_{\Theta(s_{j})}$$

$$P = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ijk})}{\sum_{i=1}^{m} \sum_{i=1}^{n} x_{ijk}}, \forall k \in \mathbb{Z}_{\Theta(s_{j})}$$

难点:

- 1. 非线性问题, 非凸
- 2. 目标函数包含ODE方程,约束带有整数约束
- 3. 多目标优化

资源约束

$$\sum_{i=1}^{m} x_{ijk} < \mathbf{C}(s_j), \forall j \in \{1, 2, ..., n\}, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ijk} < R, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

$$x_{ijk} < \max\{\mathbf{C}(d_{jl}), l \in \mathbb{Z}_{\Theta(s_j)}\},$$

$$\forall i \in \{1, 2, ..., m\}, \forall j \in \{1, 2, ..., n\}, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

$$|\mathbf{C}_{jk}| \le k, \mathbf{C}_{jk} = \{x_{ijk} | x_{ijk} \ge \mathbf{C}(d_{jk}), 1 \le i \le m\},$$

$$\forall j \in \{1, 2, ..., n\}, \forall k \in \mathbb{Z}_{\Theta(s_j)}$$

相关方法:

- 1. HWM(High water Mark):二部图匹配问题的贪婪求解(启发式的次优解;忽略了每个item曝光点击非线性性)
- 2. SHALE:dual-primal 显示迭代求解(适用于凸问题,无法满足ODE下的最优化)

最优流量规划求解

$$\mathbf{x}_i = [x_{i,1}, x_{i,2}, ..., x_{i,n}],$$

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m].$$

多目标转单目标

Fitness Function
$$\max g(\mathbf{X}|\lambda) = \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} f(x_{ij}) + \lambda \underbrace{\frac{1}{\sum_{i=1}^{m} (p_i - P)^2}}_{m-1}$$

ODE 约束的数值解

历史PV值的集合

$$u_k = \underset{u_{\widetilde{k}}}{\operatorname{arg\,min}} \|u_{\widetilde{k}} - x_{i,j}\|, u_{\widetilde{k}} \in U$$

$$u_k = \underset{u_{\widetilde{k}}}{\arg\min} \|u_{\widetilde{k}} - x_{i,j}\|, u_{\widetilde{k}} \in U$$

$$f(x_{i,j}) = v_k + r(1 - \frac{v_k}{v_{max}})v_k(x_{i,j} - u_k)$$

ODE的局部线性逼近

注:简化起见,将抽屉j坑位k统一用j来代替

Genetic Algorithm

选择

交叉

变异

精英策略

$$\mathbf{X}_{i}^{k} = \begin{cases} \mathbf{X}_{u}^{k}, & F(\mathbf{X}_{u}^{k}) \ge F(\mathbf{X}_{i}^{k-1}) \\ \mathbf{X}_{i}^{k-1}, & otherwise \end{cases}$$

$$F(\mathbf{X}) = g(\mathbf{X}|\lambda)$$

最优流量规划结果

• 离线结果

在线数据的离线重放(30天实际数据)

算法收敛性

Table 6: Experiment results by different search strategies

	Ĭ	GA	L .	ĺ	GA/	E
run index	obj	vv	var	obj	vv	var
1	4362	4159	0.4900%	4273	4143	0.7633%
2	4253	3971	0.3534%	4172	4022	0.6621%
3	4292	4045	0.4032%	4255	4076	0.5531%
4	4089	3832	0.3884%	4066	3917	0.6661%
5	4226	4040	0.5333%	3927	3696	0.4315%
6	4285	4115	0.5829%	3988	3741	0.4025%
7	4347	4076	0.3669%	4266	4055	0.4725%
8	4211	4001	0.4736%	4151	4000	0.6555%
9	4268	4107	0.6202%	4086	3885	0.4940%
10	4294	4103	0.5224%	4215	4045	0.5858%

✓ GA/E:无精英策略

✓ Obj: 适应值

✓ w: 总W

✓ var: 内容ctr方差

obj +3.02%

vv +2.32%

var -11.82%

最优流量规划结果

• 线上实验

线上实验 (算法VS 人工固定坑位)

-- A/B test -----

- "最新热剧"电视剧频道
- 30% 流量作为实验桶
- 60% 流量作为对照桶

Evaluation Metrics

- 方差下降
- CTR 提升

$$CTR = \frac{\sum_{i=1}^{m} (click_i)}{\sum_{i=1}^{m} (pv_i)}$$

Table 7: A/B test result during 30 days for optimization strategy and manual strategy

day index	var		CT	R	
uay muex	manual	GA	manual	GA	%Lift
1	0.0333%	0.0166%	2.35%	3.03%	+28,94%
2	0.0301%	0.0259%	2.26%	2.82%	+24.90%
3	0.0492%	0.0261%	2.70%	2.88%	+6.82%
4	0.0544%	0.0432%	2.69%	3.48%	+29.33%
5	0.0347%	0.0201%	2.52%	2.96%	+17.74%
6	0.0447%	0.0238%	2.35%	2.99%	+27.53%
7	0.0369%	0.0198%	2.50%	5.35%	+114.439
8	0.0423%	0.0266%	2.61%	3.32%	+26.91%
9	0.0439%	0.0332%	2.63%	4.36%	+65.70%
10	0.0570%	0.0469%	2.96%	4.09%	+38.14%
11	0.0604%	0.0575%	2.72%	3.32%	+22.32%
12	0.0669%	0.0154%	2.69%	2.82%	+4.98%
13	0.0319%	0.0058%	2.00%	3.12%	+56.18%
14	0.0593%	0.0073%	2.50%	2.58%	+3.50%
15	0.0566%	0.0031%	2.14%	2.54%	+18.70%
16	0.0636%	0.0269%	2.72%	2.91%	+7.27%
17	0.0564%	0.0015%	2.58%	2.82%	+9.12%
18	0.0460%	0.0025%	2.35%	2.65%	+13.01%
19	0.0212%	0.0067%	1.72%	2.47%	+43.92%
20	0.0433%	0.0173%	2.31%	2.40%	+3.90%
21	0.0637%	0.0458%	2.10%	2.80%	+33.35%
22	0.0365%	0.0182%	2.13%	2.68%	+26.13%
23	0.0584%	0.0168%	2.61%	2.73%	+4.40%
24	0.0428%	0.0261%	2.20%	2.92%	+32.70%
25	0.0761%	0.0585%	2.97%	3.44%	+15.53%
26	0.0529%	0.0361%	2.58%	4.80%	+85.80%
27	0.0578%	0.0531%	2.62%	4.39%	+67.42%
28	0.0800%	0.0300%	3.10%	4.63%	+49.65%
29	0.0552%	0.0264%	2.57%	4.62%	+79.41%
30	0.0737%	0.0214%	2.95%	3.82%	+29.60%

Table 8: A/B test result during 7 weeks for optimization strategy and manual strategy

week index	var (%Reduce)	CTR (%Lift)
1	+79.21%	+13.96%
2	+74.80%	+20.93%
3	+78.93%	+45.23%
4	+52.14%	+18.41%
5	+66.98%	+39.29%
6	+22.63%	+60.59%
7	+33.60%	+51.59%
Average	+58.33%	+35.72%

最优流量规划结果

- 总结
 - 新热长视频宣发运营诉求下流量规划框架:适应内容分发特殊的宣发诉求
 - 提出了内容曝光敏感度模型,基于曝光敏感模型考虑宣发运营的多目标优化模型
 - 面向ODE约束下的GA求解策略
 - A/B分桶效果优于人工分配策略, 应用于优酷"轮播"、"最新热剧"等场景
- 规划
 - 全流量域资源优化(跨页面,多落地页的多宣发诉求)
 - 0样本弹性冷启动问题
 - 考虑(更新周期、圈层流量)的弹性建模
 - 优化算法效率提升: SQP等

Hang Lei, Yin Zhao, Longjun Cai. *Multi-objective Optimization for Guaranteed Delivery in Video Service Platform.* The 26th ACM SIGKDD Conference On Knowledge Discovery And Data Mining (KDD 2020)

