# Malaria Detection Deep Learning









### Agenda

- Problem statement
- Key Questions & Insights
- Approaches
- Final Solution Design
- Implementation Roadmap
- Benefits & Costs
- Risks & Challenges

## Treatable if Detected Early

#### **Developing Countries**

Young Children & Pregnant Women

People with malaria cases

400K
Deaths

## Why is Malaria Detection and Important Problem? Problem Statement

#### How is it being detected today?

- Traditional diagnosis requires a bloodsmear and costly analysis by a lab technician.
- Time consuming process that yields inaccurate results.
- Deep learning models can yield superior results in terms of accuracy.

## Key Questions

- What are the important KPI's?
  - Accuracy and Precision
- Can deep learning methods yield an acceptable accuracy and precision, without overfitting?
  - Yes!
- Is the data evenly distributed?
  - Yes ~14K parasitized cells and 14K uninfected cells
- What is our baseline for accuracy, time, and cost of the current approach?
  - TBD

## Key Insights

#### **Parasitized**



#### Uninfected



#### Attributes:

- Color
- Edges
- Hue
- Saturation

## Approaches

- Convolutional Neural Networks (CNN)
- Transfer Learning
- Batch Normalization
- Leaky ReLU
- Data Augmentation

## A Neural What? Convolutional Neural Networks



- Consists of a convolutional layer, a pooling layer, and a fully connected layer.
- Each convolutional layer scans the image for a specific feature, whether it's horizontal edges, vertical edges, etc.
- The essence of CNN is to reduce the image into a matrix of 1's and 0's that is easy to process, while retaining features good for prediction.

## Approaches

| Model    | Model Name                                  | Accuracy | Precision | Recall |
|----------|---------------------------------------------|----------|-----------|--------|
| Baseline | Simple CNN<br>(3 layers)                    | 94.58%   | 96%       | 94%    |
| Model 1  | CNN Model<br>(5 layers)                     | 94.69%   | 93%       | 95%    |
| Model 2  | CNN Model<br>Batch Normalization            | 95.19%   | 96%       | 94%    |
| Model 3  | CNN w/ Data<br>Augmentation &<br>Batch Norm | 95.58%   | 97%       | 93%    |
| Model 4  | Transfer Learning                           | 93.77%   |           |        |

## Final Solution Design

Model 3

Model 3 with Batch Normalization and Data
Augmentation had highest accuracy of 95.58% and precision of 96%.



## Implementation Roadmap

- Build software that contains an interface for HCP's to upload images of cells
- They will receive a quick output of which cells were infected. It will be up to the HCP to make a diagnosis.
- Data warehousing and storage decisions
- Easy to understand and intuitive interface



### Benefits and Costs

#### **Benefits:**

- Save time, money, and increase accuracy
- Malaria detection can be deployed at scale, meaning early detection, and better control of the disease.
- Save lives, improve economy, less disruptions to education, improve mental welfare and stability of nations.

#### Costs:

- Data warehousing, storage, and processing costs
- Software expense, hardware expenses
- Training, setup, and one-time startup costs
- Maintenance and ongoing costs
- Costs offset by savings from not paying a lab technician for manual process.

### Risks and Challenges

- Deploying a solution in a developing country where infrastructure and is limited
- There may be cost restraints or hardware/software compatibility restrictions
- If solution is too computationally expensive, costly, or complex, it might not get used at all
- Important to understand what limitations are, overcome obstacles, and make sure process can fit in with constraints of system.
- Perhaps a donor or sponsor may offset some start up costs
- If complexity needs to be reduced, model will still be close to 95% accurate.