Important Definitions in Analysis

Name	Definition
Metric space	A metric space is a space (X, d) where X is the set S and d is the metric on X. such that for $x, y, z \in X$ we have 1. $d(x, y)$ is real valued, finite and non-negative 2. $d(x, y) \ge 0$ 3. $d(x, y) = d(y, x)$ 4. $d(x, y) + d(y, z) \ge d(x, z)$
space l^∞	Set of all bounded sequences of complex numbers. If $x=(a_1,a_2\dots a_i\dots)$ then $\forall\ i\in R$ $ a_i \leq C_x$ Where C_x can be a real number defined on X, and the distance metric is defined to be $d(x,y)=\sup_{i\in N} x_i-y_i $
Space l^p	If $x \in l^p$ and $x = \{a_1, a_2,\}$ then $\sum_{m=0}^{\infty} a_i ^p \ converges$ Distance metric is defined to be $d(x,y) = \left(\sum_{j=0}^{\infty} x_j - y_j ^p\right)^{\frac{1}{p}}$
Functional Space	Set of all real valued functions x, y, z which are functions of an independent variable t and are defined and continuous on a closed interval $J = [a, b]$. Metric is $d(x, y) = \max_{t=1} x(t) - y(t) $
Sequence Spaces	This is a space of all (bounded and unbounded) sequence of complex numbers and is defined by $d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{ \eta_j - \varepsilon_j }{1 + \eta_j - \varepsilon_j }$ Where $y = (\varepsilon_j) \forall j = 1$ to ∞ and Where $x = (\eta_j) \forall j = 1$ to ∞
Open set	A subset M of metric space X is said to be open if every ball around point $x \in M$ has atleast 1 element from M except from itself.
Topological space	Topological space is a (X,τ) set X and collection τ of subsets such that it follows T1) $\phi \in \tau, X \in \tau$ T2) The union of any members of τ is also a member of τ T3) Intersection of finitely many members of τ is also a member of τ Then the set τ is topology of X
Dense set	A subset M of X is said to be dense if $\overline{M}=X$ where \overline{M} is the closure of set M
Separable Set	X is said to be separable if it has countable subset which are dense in X. eg R as $\overline{R}=R$

· · · · · · · · · · · · · · · · · · ·	ping of T of X into Y is said to be isometric if it
preser	ves distance
	$d_Y(Tx_1, Tx_2) = d_X(x_1, x_2)$
Isometric Space A space	e Y is said to be isometric space with X if∃a
·	ve (1-1,onto) isometry from X to Y.
Homoeomorphic Spaces T:X->Y	
	etric spaces is said to be homoeomorphic spaces if
	exists a homeomorphism T st.
,	T is continuous
ļ ,	T-1 is continuous
·	T is bijective
	ence $x_n \in X$ is said to be convergent if there exists $x \in X$ such that
(A,u) a	$\lim_{n\to\infty} \ \llbracket d(x,x_n) \rrbracket \ = 0$
Cauchy Sequence A sequ	$\lim_{n\to\infty} \mathbb{I}u(X,X_n)\mathbb{I} = 0$ Hence $x_n \in (X,d)$ is said to be Cauchy or
	mental if for every $\epsilon > 0$ $\exists N = N(\epsilon)$ st
	$d(x_M, x_n) < \epsilon \forall m, n > N$
Complete A space	e is said to be complete if all Cauchy sequence
conve	ges.
Compact A met	ric space X is said to be compact if every sequence
	s a convergent subsequence
	et M of X is said to be compact if it is considered as
	quence i.e limit of convergent subsequence lies in M
· ·	ned Space is a space on which norm is defined. A
	s defined to be a real valued fn on X which has
Tollow	ing properties $Norm = X $
N1) II	$ X \geq 0$
	C = 0
	$ \alpha x = \alpha x $
	$ x+y \le x + y $
	plete normed space is called a Banach Space
·	be a sequence in normed space X if
	$+ x_2 + \cdots$ converges, then the series is called
	te convergence
Absolu	ite Convergence ↔ X is complete