A Presentation on The Matrix Equation Ax = b

Niraj Raj Kharel

Roll No 16

The Matrix Equation Ax = b

The matrix equation Ax = b represents a system of linear equations, where A is a matrix of coefficients, x is a vector of unknown variables, and b is a vector of constants. This fundamental equation is crucial in linear algebra and has widespread applications in science, engineering, and mathematics.

teachoo.com

Matrix

If a number is multiplied to matrix, it is multiplied to each element of the matrix

$$2\begin{bmatrix} 9 & 2 & 1 \\ 5 & -1 & 6 \\ 4 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \times 9 & 2 \times 2 & 2 \times 1 \\ 2 \times 5 & 2 \times (-1) & 2 \times 6 \\ 2 \times 4 & 2 \times 0 & 2 \times (-2) \end{bmatrix}$$

Determinant

If a number is multiplied to determinant, it is multiplied to either one row, or one column

$$\begin{vmatrix} 9 & 2 & 1 \\ 5 & -1 & 6 \\ 4 & 0 & -2 \end{vmatrix} = \begin{vmatrix} 2 \times 9 & 2 \times 2 & 2 \times 1 \\ 5 & -1 & 6 \\ 4 & 0 & -2 \end{vmatrix}$$
Or

What is a Matrix Equation?

Definition

A matrix equation is a system of linear equations expressed in matrix form. It allows for the concise representation and manipulation of multiple equations simultaneously.

Components

The matrix equation Ax = b consists of a matrix A, a vector of unknown variables x, and a vector of constants b.

Applications

Matrix equations are widely used in fields such as physics, engineering, economics, and computer science to solve complex systems of linear equations.

Solving for the Unknown Vector x

Compute the inverse of the matrix A, if it exists, using techniques like Gaussian elimination or matrix decomposition.

$$\begin{bmatrix} 5 & -4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

$$5x - 4y = 8$$
$$1x + 2y = 6$$

Interpreting the Solution

1 Unique Solution

If the matrix A is invertible, the matrix equation Ax = b has a unique solution $x = A^-1$ b.

2 Infinitely Many Solutions

If the matrix A is not invertible, the matrix equation Ax = b may have infinitely many solutions or no solution at all.

3 No Solution

If the matrix equation Ax
= b is inconsistent,
meaning the system of
linear equations has no
common solution, then
there is no solution for x.

Conditions for a Unique Solution

Invertible Matrix A

For the matrix equation Ax = b to have a unique solution, the matrix A must be invertible, meaning its determinant is non-zero.

Consistent System

The system of linear equations represented by the matrix equation must be consistent, meaning the equations have at least one common solution.

Number of Equations = Number of Variables

The number of linearly independent equations in the system must be equal to the number of unknown variables for a unique solution to exist.

Rank and Nullity of the Matrix A

Rank

The rank of a matrix A is the number of linearly independent rows or columns in the matrix, which determines the number of linearly independent equations in the system.

Nullity

The nullity of a matrix A is the dimension of the null space of A, which represents the number of linearly independent solutions to the homogeneous equation Ax = 0.

e 1: Gauss E

ninate x from the 2nd and

$$\begin{bmatrix} 2 & -4 & 5 & 36 \\ 3 & 5 & 7 & 7 \\ 5 & 3 & -8 & -31 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 5 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix}
 -4 & 5 & 36 \\
 -1 & 14.5 & 61 \\
 13 & -20.5 & -121
 \end{bmatrix}$$

Solving with Gaussian Elimination

Step 1

Convert the matrix A into row echelon form using Gaussian elimination.

Step 2

Identify the pivot columns, which represent the linearly independent columns of A.

Step 3

Solve for the unknown variables by back-substitution, starting with the last equation.

Applications of Matrix Equations

Linear Systems

Matrix equations are used to solve systems of linear equations in fields like physics, engineering, and economics.

Image Processing

Matrix equations are employed in image processing algorithms, such as image transformation, filtering, and compression.

Quantum Mechanics

In quantum mechanics, matrix equations are used to describe the behavior of subatomic particles and wave functions.

EXAMPLE TIME