Lista 1: Otimização I

A. Ramos *

August 15, 2017

Abstract

Lista em constante atualização.

- 1. Funções com valores extendidos, semicontinuidade inferior
- 2. Existência de soluções, coercividade
- 3. Convexidade
- 1. Considere a função $f: \mathbb{R}^n \to \mathbb{R}$ definida como $f(x) = x^T A x + b^T x + c$, com A simetrico e $b \neq 0$.
 - \bullet Mostre que f admite solução se, e somente se A é definida positiva.
- 2. Mostre a existencia de autovalores para matrices simetricas. Para isso, faça o seguinte:
 - (a) Seja $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ uma função contínua tal que $f(\alpha x) = f(x)$, para todo $\alpha > 0$ e $x \neq 0$. Mostre que f admite solução.
 - (b) Seja A uma matriz simetrica e defina $f(x):=\frac{x^TAx}{\|x\|^2}$, para $x\neq 0$. Prove que f tem solução
 - (c) Calcule $\nabla f(x)$, mostre que as soluções são os autovetores de A. Qual é a relação dos autovalores com inf f(x)?
- 3. Denote por $\operatorname{Sym}^m(\mathbb{R})$ o conjunto das matrizes reais simetricas de ordem $m \times m$, por $\operatorname{Sym}_+^m(\mathbb{R})$ o conjunto das reais matrizes simetricas de $m \times m$ semidefinida positiva e por $\operatorname{Sym}_{++}(\mathbb{R})$ o conjunto de matrizes reais simetricas de $m \times m$ definidas positivas.
 - Prove que $\operatorname{Sym}^m(\mathbb{R})$ é um espaço de Hilbert, considerando o seguinte produto interno $\langle X,Y\rangle:=\operatorname{tr}(XY)$, onde $\operatorname{tr}(A)$ é o traço da matriz A.
 - Mostre que $\operatorname{Sym}_{+}^{m}(\mathbb{R})$ is a cone fechado convexo, cujo interior é $\operatorname{Sym}_{++}^{m}(\mathbb{R})$.

Seja $C \in \operatorname{Sym}_{++}^m(\mathbb{R}), \ \eta > 0, \ A_i \in \operatorname{Sym}_{+}^m(\mathbb{R}), \ e \ b_i \in \mathbb{R}, \ para \ todo \ i = 1, \ldots, n.$ Mostre que o problema de minimizar

minimizar
$$\langle X, C \rangle + \eta \beta(X)$$
 sujeito a $X \in \operatorname{Sym}_{++}^m(\mathbb{R})$, e $\langle X, A_i \rangle = b_i, \forall i$

admite solução, onde

$$\beta(X) = -\ln \det(X)$$
 para $X \in \operatorname{Sym}_{++}^m(\mathbb{R})$ ($\beta(X)$ é chamado de barreira funcional)

Para isso prove que os conjunto de niveis de $\langle X, C \rangle + \eta \beta(X)$ são compactos, e concluia. Um roteiro é o seguinte:

- (a) Seja $c \in \mathbb{R}_+$. Mostre que $\beta(t) := ct \ln(t), t > 0$ tem conjuntos de niveis compacto.
- (b) Verifique que $||X||^2 = \operatorname{tr}(X^2) = \sum_{i=1}^m \lambda_i^2(X)$, onde $\lambda_1(X) \leq \lambda_2(X) \leq \cdots \leq \lambda_m(X)$ são os autovalores (com multiplicidade) da matriz X.
- (c) Seja $X \in \operatorname{Sym}^m(\mathbb{R})$ e denote por $\lambda(X)$ o vetor em \mathbb{R}^m cujas componentes são $\lambda_i(X)$, i = 1, ..., m. Use a desigualdade de Fan ¹, para encontrar um limitante inferior para $\langle X, C \rangle = \operatorname{tr}(XC)$ em função dos autovalores de $X \in C$.
- (d) Use os itens anteriores para mostrar que conjunto de niveis de $\langle X,C\rangle + \eta\beta(X)$ são compactos.

Esse tipo de problema aparece naturalmente quando estudamos o método de ponto interiores para programação semidefinida positiva (SDP programming).

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

¹Sempre temos que $\operatorname{tr}(XY) \leq \lambda(X)^T \lambda(Y)$ para todo $X,Y \in \operatorname{Sym}^m(\mathbb{R})$. A igualdade vale se, e somente se existe uma matriz ortogonal U tal que $UXU^T = Diag\lambda(X)$ e $UYU^T = Diag\lambda(Y)$. A desigualdade de Fan pode ser interpretada como um refinamento da desigualdade de Cauchy-Schwarz.

4. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função derivável tal que

$$\lim_{\|x\| \to \infty} \frac{f(x)}{\|x\|} = \infty.$$

Mostre que para todo $y \in \mathbb{R}^n$, existe um $x \in \mathbb{R}^n$ tal que $\nabla f(x) = y$. Em outras palavras, $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ é surjetiva.

5. Sejam $f, g: (X, \tau) \to \mathbb{R} \cap \{+\infty\}$ funções com valores extendidos e $x^* \in X$. Mostre que

$$\liminf_{x \to x^*} (f(x) + g(x)) \ge \liminf_{x \to x^*} f(x) + \liminf_{x \to x^*} g(x), \text{ se a soma da direita não \'e } \infty - \infty.$$

- 6. Seja (X, τ) um espaço topológico.
 - (a) Mostre que δ_C é τ -lsc se, e somente se C é τ -fechado.
 - (b) Mostre que $\operatorname{epi}(f)$ é fechado na topologia produto $X \times \mathbb{R}$ se, e somente se $f: X \to \mathbb{R} \cup \{+\infty\}$ é τ -lsc.
 - (c) Mostre que $\sup\{f_i: i \in I\}$ é τ -lsc se $f_i: X \to \mathbb{R} \cup \{+\infty\}$ é τ -lsc, $\forall i \in I$. Em particular, mostre que o supremo de funções τ -contínuas é no máximo τ -lsc, fornecendo um exemplo onde o supremo de funções contínuas não é continua.
 - (d) Prove que $\sum_{i=1}^m \alpha_i f_i$ é τ -lsc se f_i é τ -lsc e $\alpha_i \in \mathbb{R}_+$, $\forall i$. Isto é, a combinação positiva de funções τ -lsc é τ -lsc.
- 7. Seja (X,d) um espaço métrico e $f:(X,d)\to\mathbb{R}\cup\{+\infty\}$. Mostre que f é lsc se para todo $(x,\lambda)\in X\times\mathbb{R}$ temos que $f(x)\leq\lambda$ sempre que $f(x)\in X\times\mathbb{R}$ temos que $f(x)\in X$
- 8. Principio Variational de Ekeland. O seguinte teorema é uma pequena variação de teorema apresentado em aula. Seja (X,d) um espaço metrico completo, $f:X\to\mathbb{R}\cap\{+\infty\}$ uma função lsc e limitada inferiormente. Suponha que existe $\varepsilon>0$ e $z\in X$ tal que

$$f(z) \le \inf f + \varepsilon$$
.

Então, para todo $\lambda > 0$, existe um elemento $z_{\lambda} \in X$ com as seguintes propriedades:

(a)

$$d(z_{\lambda}, z) \leq \lambda, \qquad f(z_{\lambda}) + \frac{\varepsilon}{\lambda} d(z_{\lambda}, z) \leq f(z)$$

(b) Para todo $y \neq z_{\lambda}$, temos que

$$f(z_{\lambda}) < f(y) + \frac{\varepsilon}{\lambda} d(z_{\lambda}, y)$$

Para provar o teorema use os seguinte passos. A ideia é construir indutivamente uma sequência $\{z^n\}$ (com $z^0=z$) de Cauchy, cujo limite seja o ponto z_λ desejado. Seja z^n conhecido. Então, defina

$$S_{n+1} := \{ x \in X : x \neq z^n \ e \ f(x) + \frac{\varepsilon}{\lambda} d(x, z^n) \le f(z^n) \}.$$

Se $S_{n+1}=\emptyset$, faça $z^{n+1}:=z^n$. Caso contrário, escolha $z^{n+1}\in S_{n+1}$ tal que

$$f(z^{n+1}) < \inf_{x \in S_{n+1}} f(x) + \frac{1}{2} (f(z^n) - \inf_{x \in S_{n+1}} f(x)).$$

- (a) Mostre que é possível, encontrar z^{n+1} em ambos casos.
- (b) Mostre que existe $\sum_{n=0}^{\infty} d(z^{n+1}, z^n)$ e como consequência que $\{z^n\}$ é uma sequência de Cauchy.
- (c) Prove que se $S_n = \emptyset$ para algum $n \in \mathbb{R}$, então $S_m = \emptyset$ para todo $m \ge n$, e assim $z_\lambda := z^n$ satisfaz as condições requeridas.

Suponha, a partir de agora que $S_n \neq \emptyset$, para todo $n \in \mathbb{N}$ e denote por z_{λ} o limite de $\{z^n\}$

- (a) Mostre que $S_{n+1} \subset S_n$ para todo $n \in \mathbb{N}$ e que $z_{\lambda} \in \cap_{n \in \mathbb{N}} S_n$ (aqui usamos que f é lsc).
- (b) Verifique a designaldade $f(z^{n+1}) \inf\{f(x) : x \in S_{n+1}\} \le f(z^n) f(z^{n+1})$, prove que $f(z^n) f(z^{n+1}) \to 0$, e use ditas propriedades para provar que $\bigcap_{n \in \mathbb{N}} S_n := z_{\lambda}$.
- (c) Use que $\bigcap_{n\in\mathbb{N}}S_n:=z_\lambda$, para mostrar que se $y\neq z_\lambda$ (i.e. $y\notin \bigcap_{n\in\mathbb{N}}S_n$), temos que $f(z_\lambda)< f(y)+\frac{\varepsilon}{\lambda}d(z_\lambda,y)$. Complete a prova.
- 9. Existência de pontos aproximadamente estacionários. Seja $f: \mathbb{R}^m \to \mathbb{R}$ uma função derivável. Suponha que existe $x \in \mathbb{R}$ tal que $f(x) < \inf f + \varepsilon$ para certo $\varepsilon > 0$. Mostre que para todo $\lambda > 0$, existe um x^* com $||x^* x|| \le \lambda$ e $||\nabla f(x^*)|| \le \varepsilon/\lambda$. O ponto x^* é chamado de ponto aproximadamente estacionário.

Ainda mais, use o resultado anterior para provar que se inf $f > -\infty$ e f derivável, existe uma sequência $\{x^n\}$ tal que $f(x^n) \to \inf f$ e $\|\nabla f(x^n)\| \to 0$.

10. Teorema de Ponto Fixo de Caristi. Seja (X,d) um e. m. completo e $\Phi:(X,d)\to\mathbb{R}\cup\{+\infty\}$ uma função lsc com limitada inferiormente. Se $T:X\rightrightarrows X$ é uma multifunção (i.e. T(x) é um subconjunto de X) tal que

$$\Phi(y) \le \Phi(x) - d(x, y) \quad \forall x \in X, y \in T(x).$$

Então, existe um $x^* \in X$ tal que $x^* \in T(x^*)$. Dica: Use o principio variacional de Ekeland.

- 11. Teorema do ponto fixo de Banach. Seja (X,d) e. m. completo e $T:X\to X$ uma contração, isto é, existe $\eta\in[0,1)$ tal que $d(T(x),T(y))\leq \eta d(x,y)$ para todo $x,y\in X$. Então, $x^*\in X$ tal que $x^*=T(x^*)$. Dica: Use o teorema de ponto fixo de Caristi com $\Phi(x):=(1-\eta)^{-1}d(x,T(x))$.
- 12. Condição de Palais-Smale Seja $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^1 . Dizemos que f satisfaz a condição de Palais-Smale se para toda sequência $\{x^k\}$ tal que

$$f(x^k)$$
 converge para algum número α e $\nabla f(x^k) \to 0$,

a sequência $\{x^k\}$ tem uma subsequência convergente.

Prove que se f é limitada inferiormente e satisfaz a condição de Palais-Smale. Então, f deve ser coerciva.

- 13. Seja X um espaço vetorial real.
 - (a) Mostre que δ_C é convexo se, e somente se C é convexo.
 - (b) Mostre que epi(f) é convexo se, e somente se $f: X \to \mathbb{R} \cup \{+\infty\}$ é convexo.
 - (c) Mostre que $\sup\{f_i: i \in I\}$ é convexo se $f_i: X \to \mathbb{R} \cup \{+\infty\}$, $\forall i \in I$. Dê um exemplo de que $\inf\{f_i: i \in I\}$ não é necessáriamente convexo, mesmo se I fosse finito.
 - (d) Se $f: X \to \mathbb{R} \cup \{+\infty\}$ é convexo. Prove que lev $_{\gamma}(f)$ é convexo para todo $\gamma \in \mathbb{R}$. Dê um exemplo onde a implicação reversa não vale.
 - (e) Mostre que f é convexa se, e somente se $f(\sum_{i=1}^n \alpha_i x_i) \leq \sum_{i=1}^n \alpha_i f(x_i)$, para todo $x_i \in \text{dom}(f)$, $\alpha_i \geq 0$ e $\sum_{i=1}^n \alpha_i = 1$.
- 14. (slope inequality) Seja f uma função com $dom(f) = \mathbb{R}$. Então, f é convexa em [a, b] se, e somente se para todos $x_0 < x < x_1$ em [a, b], temos que

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x_0)}{x_1 - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}.$$

Faça um esboço dessas desigualdades.

- 15. (Testes de convexidade usando derivadas). Seja $f: \mathbb{R}^n \to \mathbb{R}$ diferenciável. Então, f é convexa se, e somente se algumas das siguentes condições valem:
 - $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle, \forall x, y$
 - $\nabla f(x)$ é mononota. i.e. $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0, \, \forall x, y$
 - $\nabla^2 f(x) \ge 0$, para todo x. (aqui assumimos que f é duas vezes diferenciável)

Com essas ferramentas, facilmente podemos provar que $-\log(x)$, $\exp(x)$, (a entropia) $S(x) := -x \log(x)$, se $1 \ge x \ge 0$; S(0) = 0, $f(x) := x^{-\alpha}$, $\alpha > 0$, $x \in (0, \infty)$ são funções convexas.

16. Use a convexidade $x \to |x|^p$ para provar a designaldade das médias generalizada (generalized mean inequality), isto é,

$$\left(\sum_{i=1}^{n} \alpha_{i} x_{i}^{p}\right)^{1/p} \leq \left(\sum_{i=1}^{n} \alpha_{i} x_{i}^{q}\right)^{1/q}$$

para todo $\alpha_i \ge 0$, com $\sum_{i=1}^n \alpha_i = 1$, $x_i > 0$, $\forall i \in p \le q$, com $|p| + |q| \ne 0$. Como caso particular, prove a desigualdade de Young: Para todo $x,y \ge 0$, $p,q \in (1,\infty)$, tal que 1/p + 1/q = 1 temos que

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q.$$

- 17. Seja f uma função convexa com valores reais extendidos.
 - (a) Mostre que o conjunto das soluções é convexa.
 - (b) Mostre que todo minimizador local é, de fato, um minimizador global
- 18. Seja A um subconjunto de (X,d). Mostre que $d_A(x) := \inf\{d(x,a) : a \in A\}$ é uma função Lipschitziana com constante de Lipschiz igual a 1.

- 19. Seja X um espaço finito dimensional com produto interno $\langle \cdot, \cdot \rangle$. Considere $C \neq \emptyset$ um conjunto fechado e convexo.
 - (a) Seja $x \in X$. Mostre que o problema

$$\min\{\|x - c\| : c \in C\}$$

admite uma *única* solução, qual é denotada por $\operatorname{proj}_C(x)$, a projeção de x sobre o conjunto C. O valor otimo é denotado por $d_C(x)$. Se escolhemos x = 0, $\operatorname{proj}_C(0)$ representa o elemento de C com norma minima.

(b) A projeção está caracterizada por uma desigualdade variacional. Isto é, mostre que

$$x^* := \operatorname{proj}_C(x)$$
 se, e somente se $\langle x - x^*, c - x^* \rangle \leq 0$, para todo $c \in C$.

Se C é um subespaço vetorial, a desigualdade anterior se reduz a dizer que $x - x^* \perp C$.

(c) Em general, pode não existir elemento de norma minima. Seja X=C[0,1] o conjunto das função continua com a norma do supremo. Seja C o conjunto das funções $f\in X$ tal que

$$\int_0^{1/2} f(t)dt - \int_{1/2}^1 f(t)dt = 1.$$

Mostre que C é um conjunto não vazio, fechado e convexo, mas que não admite elemento de norma minima. (o problema aqui é que X não é reflexivo)