Indexed and Fibred Sets

December 3, 2023

This chapter contains a discussion of the un/straightening equivalence in the context of sets, as well as a general discussion of indexed and fibred sets. In particular, it contains:

- 1. A discussion of indexed sets (i.e. functors $K_{\text{disc}} \rightarrow \text{Sets}$ with K a set), constructions with them like dependent sums and dependent products, and their properties (Sections 1 and 2);
- 2. A discussion of fibred sets (i.e. maps of sets $X \to K$), constructions with them like dependent sums and dependent products, and their properties (Sections 3 and 4);
- 3. A discussion of the un/straightening equivalence for indexed and fibred sets (Section 5).

Contents

1	Indexed Sets		2	
	1.1	Foundations	2	
	1.2	Morphisms of Indexed Sets	2	
	1.3	The Category of Sets Indexed by a Fixed Set	3	
	1.4	The Category of Indexed Sets	4	
2	Constructions With Indexed Sets			
		Change of Indexing		
		Dependent Sums		
		Dependent Products		
	2.4	Internal Homs	8	
	2.5	Adjointness of Indexed Sets	8	

3	Fibi	red Sets	9	
	3.1	Foundations	9	
	3.2	Morphisms of Fibred Sets	9	
	3.3	The Category of Fibred Sets Over a Fixed Base	10	
	3.4	The Category of Fibred Sets	11	
4	Con	structions With Fibred Sets	12	
	4.1	Change of Base	12	
	4.2	Dependent Sums	14	
	4.3	Dependent Products	15	
	4.4	Internal Homs	18	
	4.5	Adjointness for Fibred Sets	19	
5	Un/Straightening for Indexed and Fibred Sets			
	5.1	Straightening for Fibred Sets	19	
	5.2	Unstraightening for Indexed Sets	22	
	5.3	The Un/Straightening Equivalence	25	
6	Miscellany			
	6.1			
A	Oth	er Chapters	26	

1 Indexed Sets

1.1 Foundations

Let K be a set.

Definition 1.1.1.1. A *K*-indexed set is a functor $X: K_{disc} \rightarrow \mathsf{Sets}$.

Remark 1.1.1.2. By Categories, ??, a *K*-indexed set consists of a *K*-indexed collection

$$X^{\dagger}: K \to \mathrm{Obj}(\mathsf{Sets}),$$

of sets, assigning a set $X_x^{\dagger} \stackrel{\text{def}}{=} X_x$ to each element x of K.

1.2 Morphisms of Indexed Sets

Let $X \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 1.2.1.1. A morphism of K-indexed sets from X to Y^1 is a natural transformation

$$f: X \Longrightarrow Y, \quad K_{\mathsf{disc}} \underbrace{\int_{Y}^{X}}_{Y} \mathsf{Sets}$$

from X to Y.

Remark 1.2.1.2. In detail, a **morphism of** *K***-indexed sets** consists of a *K*-indexed collection

$$\{f_x\colon X_x\to Y_x\}_{x\in K}$$

of maps of sets.

1.3 The Category of Sets Indexed by a Fixed Set

Let K be a set.

Definition 1.3.1.1. The **category of** K**-indexed sets** is the category |Sets(K)| defined by

$$\mathsf{ISets}(K) \stackrel{\text{def}}{=} \mathsf{Fun}(K_{\mathsf{disc}}, \mathsf{Sets}).$$

Remark 1.3.1.2. In detail, the **category of** K**-indexed sets** is the category $\mathsf{ISets}(K)$ where

- Objects. The objects of ISets(K) are K-indexed sets as in Definition 1.1.1.1;
- *Morphisms*. The morphisms of ISets(*K*) are morphisms of *K*-indexed sets as in Definition 1.2.1.1;
- *Identities.* For each $X \in \text{Obj}(\mathsf{ISets}(K))$, the unit map

$$\mathbb{F}_X^{|\mathsf{Sets}(K)} : \mathsf{pt} \to \mathsf{Hom}_{|\mathsf{Sets}(K)}(X,X)$$

of ISets(K) at X is defined by

$$id_X^{|\mathsf{Sets}(K)|} \stackrel{\mathsf{def}}{=} \{id_{X_X}\}_{Y \in K};$$

• *Composition.* For each $X, Y, Z \in Obj(\mathsf{ISets}(K))$, the composition map

$$\circ_{X,Y,Z}^{\mathsf{ISets}(K)} \colon \mathsf{Hom}_{\mathsf{ISets}(K)}(Y,Z) \times \mathsf{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathsf{Hom}_{\mathsf{ISets}(K)}(X,Z)$$

of ISets(K) at (X, Y, Z) is defined by

$$\{g_x\}_{x\in K}\circ_{X,Y,Z}^{\operatorname{ISets}(K)}\{f_x\}_{x\in K}\stackrel{\operatorname{def}}{=}\{g_x\circ f_x\}_{x\in K}.$$

¹ Further Terminology: Also called a K-indexed map of sets from X to Y.

1.4 The Category of Indexed Sets

Definition 1.4.1.1. The **category of indexed sets** is the category |Sets defined as the Grothendieck construction of the functor |Sets: Sets^{op} \rightarrow Cats of Proposition 2.1.1.4:

$$ISets \stackrel{\text{def}}{=} \int^{Sets} ISets.$$

Remark 1.4.1.2. In detail, the **category of indexed sets** is the category |Sets where

- Objects. The objects of ISets are pairs (K, X) consisting of
 - *The Indexing Set.* A set *K*;
 - *The Indexed Set.* A *K*-indexed set *X* : K_{disc} → Sets;
- *Morphisms*. A morphism of ISets from (K,X) to (K',Y) is a pair (ϕ,f) consisting of
 - The Reindexing Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Indexed Sets. A morphism of K-indexed sets $f: X \to \phi_*(Y)$ as in the diagram

$$f: X \to \phi_*(Y),$$

$$K_{\text{disc}} \xrightarrow{\phi} K'_{\text{disc}}$$

$$X \xrightarrow{f} Y$$
Sets;

• *Identities.* For each $(K, X) \in Obj(ISets)$, the unit map

$$\mathbb{F}^{\mathsf{ISets}}_{(K,X)} \colon \mathsf{pt} \to \mathsf{ISets}((K,X),(K,X))$$

of ISets at (K, X) is defined by

$$id_{(K,X)}^{\mathsf{ISets}} \stackrel{\text{def}}{=} (id_K, id_X).$$

• *Composition.* For each $\mathbf{X} = (K, X)$, $\mathbf{Y} = (K', Y)$, $\mathbf{Z} = (K'', Z) \in \mathsf{Obj}(\mathsf{ISets})$, the composition map

$$\circ_{\textbf{X},\textbf{Y},\textbf{Z}}^{\mathsf{ISets}} \colon \mathsf{ISets}(\textbf{Y},\textbf{Z}) \times \mathsf{ISets}(\textbf{X},\textbf{Y}) \to \mathsf{ISets}(\textbf{X},\textbf{Z})$$

of ISets at (X, Y, Z) is defined by

$$(\psi, g) \circ (\phi, f) \stackrel{\text{def}}{=} (\psi \circ \phi, (g \circ id_{\phi}) \circ f),$$

as in the diagram

for each $(\phi, f) \in \mathsf{ISets}(\mathbf{X}, \mathbf{Y})$ and each $(\psi, g) \in \mathsf{ISets}(\mathbf{Y}, \mathbf{Z})$.

2 Constructions With Indexed Sets

2.1 Change of Indexing

Let $\phi: K \to K'$ be a function and let X be a K'-indexed set.

Definition 2.1.1.1. The **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X) \stackrel{\text{def}}{=} X \circ \phi_{\text{disc}}.$$

Remark 2.1.1.2. In detail, the **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X)_x \stackrel{\mathrm{def}}{=} X_{\phi(x)}$$

for each $x \in K$.

Proposition 2.1.1.3. The assignment $X \mapsto \phi^*(X)$ defines a functor

$$\phi^* : \mathsf{ISets}(K') \to \mathsf{ISets}(K),$$

where

• *Action on Objects.* For each $X \in \text{Obj}(\mathsf{ISets}(K'))$, we have

$$[\phi^*](X) \stackrel{\text{def}}{=} \phi^*(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K'))$, the action on Hom-sets

$$\phi_{X,Y}^* \colon \mathrm{Hom}_{\mathsf{ISets}(K')}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K)}(\phi^*(X),\phi^*(Y))$$

of ϕ^* at (X, Y) is the map sending a morphism of K'-indexed sets

$$f = \{f_x \colon X_x \to Y_x\}_{x \in K'}$$

from X to Y to the morphism of K-indexed sets defined by

$$\phi^*(f) \stackrel{\text{def}}{=} \left\{ f_{\phi(x)} : X_{\phi(x)} \to Y_{\phi(x)} \right\}_{x \in K}.$$

Proof. Omitted.

Proposition 2.1.1.4. The assignment $K \mapsto \mathsf{ISets}(K)$ defines a functor

ISets: Sets^{op}
$$\rightarrow$$
 Cats.

where

• *Action on Objects.* For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{ISets}](K) \stackrel{\text{def}}{=} \mathsf{ISets}(K);$$

• Action on Morphisms. For each $K, K' \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{ISets}_{K,K'} \colon \mathsf{Sets}^\mathsf{op}(K,K') \to \mathsf{Fun}(\mathsf{ISets}(K),\mathsf{ISets}(K'))$$

of ISets at (K, K') is the map defined by

$$\mathsf{ISets}_{K,K'}(\phi) \stackrel{\scriptscriptstyle \mathsf{def}}{=} \phi^*$$

for each $\phi \in \mathsf{Sets}^{\mathsf{op}}(K, K')$.

Proof. Omitted.

2.2 Dependent Sums

Let $\phi: K \to K'$ be a function and let X be a K-indexed set.

Definition 2.2.1.1. The **dependent sum of** X is the K'-indexed set $\Sigma_{\phi}(X)^2$ defined by

$$\Sigma_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(X),$$

and hence given by

$$\Sigma_{\phi}(X)_{x} \cong \underset{y \in \phi^{-1}(x)}{\coprod} X_{y}$$

for each $x \in K'$.

Proposition 2.2.1.2. The assignment $X \mapsto \Sigma_{\phi}(X)$ defines a functor

$$\Sigma_{\phi} : \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

² Further Notation: Also written $\phi_*(X)$.

• *Action on Objects.* For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Sigma_{\phi}](X) \stackrel{\text{def}}{=} \Sigma_{\phi}(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

$$\Sigma_{\phi|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K')}(\Sigma_{\phi}(X),\Sigma_{\phi}(Y))$$

of Σ_{ϕ} at (X,Y) is the map sending a morphism of $K\text{-}\mathrm{indexed}$ sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Sigma_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(f);$$

$$\cong \coprod_{y \in \phi^{-1}(X)} f_{y}.$$

Proof. Omitted.

2.3 Dependent Products

Let $\phi: K \to K'$ be a function and let X be a K-indexed set.

Definition 2.3.1.1. The **dependent product of** X is the K'-indexed set $\Pi_{\phi}(X)^3$ defined by

$$\Pi_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(X),$$

and hence given by

$$\Pi_{\phi}(X)_{x} \cong \prod_{y \in \phi^{-1}(x)} X_{y}$$

for each $x \in K'$.

Proposition 2.3.1.2. The assignment $X \mapsto \Pi_{\phi}(X)$ defines a functor

$$\Pi_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• *Action on Objects.* For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Pi_{\phi}](X) \stackrel{\text{def}}{=} \Pi_{\phi}(X);$$

³ Further Notation: Also written $\phi_!(X)$.

2.4 Internal Homs 8

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

$$\Pi_{\phi|X,Y} \colon \operatorname{Hom}_{|\mathsf{Sets}(K)}(X,Y) \to \operatorname{Hom}_{|\mathsf{Sets}(K')}(\Pi_{\phi}(X),\Pi_{\phi}(Y))$$

of Π_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Pi_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(f);$$

$$\cong \prod_{y \in \phi^{-1}(x)} f_{y}.$$

Proof. Omitted.

2.4 Internal Homs

Let *K* be a set and let *X* and *Y* be *K*-indexed sets.

Definition 2.4.1.1. The **internal Hom of indexed sets from** X **to** Y is the indexed set $\mathbf{Hom}_{|\mathsf{Sets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{ISets}(K)}(X,Y) \stackrel{\text{def}}{=} \mathsf{Sets}(X_x,Y_x)$$

for each $x \in K$.

2.5 Adjointness of Indexed Sets

Let $\phi \colon K \to K'$ be a map of sets.

Proposition 2.5.1.1. We have a triple adjunction

$$(\Sigma_{\phi} \dashv \phi^* \dashv \Pi_{\phi}): \quad \mathsf{ISets}(K) \underbrace{\longleftarrow_{\phi^*} - \mathsf{ISets}(K')}_{\Pi_{\phi}}.$$

Proof. This follows from Kan Extensions, ?? of ??.

3 Fibred Sets

3.1 Foundations

Let *K* be a set.

Definition 3.1.1.1. A *K*-fibred set is a pair (X, ϕ) consisting of

- The Underlying Set. A set X, called the **underlying set of** (X, ϕ) ;
- *The Fibration.* A map of sets $\phi: X \to K$.

3.2 Morphisms of Fibred Sets

Definition 3.2.1.1. A morphism of *K*-fibred sets from (X, ϕ) to (Y, ψ) is a function $f: X \to Y$ such that the diagram⁵

commutes.

⁴ Further Terminology: The **fibre of** (X, ϕ) **over** $x \in K$ is the set $\phi^{-1}(x)$ (also written ϕ_x) defined by

$$\phi^{-1}(x) \stackrel{\text{def}}{=} \text{pt} \times_{[x], K, \phi} X, \qquad \phi^{-1}(x) \xrightarrow{J} X$$

$$\downarrow \qquad \qquad \downarrow \phi$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

⁵ Further Terminology: The **transport map associated to** f **at** $x \in K$ is the function

$$f_x^*\colon \phi^{-1}(x)\to \psi^{-1}(x)$$

given by the dashed map in the diagram

3.3 The Category of Fibred Sets Over a Fixed Base

Definition 3.3.1.1. The **category of** K**-fibred sets** is the category FibSets(K) defined as the slice category Sets $_{/K}$ of Sets over K:

$$\mathsf{FibSets}(K) \stackrel{\mathsf{def}}{=} \mathsf{Sets}_{/K}.$$

Remark 3.3.1.2. In detail FibSets(K) is the category where

- *Objects.* The objects of FibSets(K) are pairs (X, ϕ) consisting of
 - The Fibred Set. A set X;
 - *The Fibration.* A function $\phi: X \to K$;
- *Morphisms*. A morphism of FibSets(K) from (X, ϕ) to (Y, ψ) is a function $f: X \to Y$ making the diagram

commute;

• *Identities.* For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, the unit map

$$\mathbb{1}_{(X,\phi)}^{\mathsf{FibSets}(K)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{FibSets}(K)}((X,\phi),(X,\phi))$$

of FibSets(K) at (X, ϕ) is given by

$$\mathrm{id}_{(X,\phi)}^{\mathsf{FibSets}(K)} \stackrel{\mathrm{def}}{=} \mathrm{id}_X,$$

as witnessed by the commutativity of the diagram

in Sets;

• Composition. For each $\mathbf{X}=(X,\phi)$, $\mathbf{Y}=(Y,\psi)$, $\mathbf{Z}=(Z,\chi)\in \mathrm{Obj}(\mathsf{FibSets}(K))$, the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}(K)} \colon \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{Y},\mathbf{Z}) \times \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Y}) \to \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Z})$$

of FibSets(K) at (X, Y, Z) is defined by

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}(K)} \stackrel{\text{def}}{=} \circ_{X,Y,Z}^{\mathsf{Sets}},$$

as witnessed by the commutativity of the diagram

in Sets.

3.4 The Category of Fibred Sets

Definition 3.4.1.1. The **category of fibred sets** is the category FibSets defined as the Grothendieck construction of the functor FibSets: Sets^{op} \rightarrow Cats of Proposition 4.1.1.3:

FibSets $\stackrel{\text{def}}{=} \int^{\text{Sets}} \text{FibSets}.$

Remark 3.4.1.2. In detail, the **category of fibred sets** is the category FibSets where

- Objects. The objects of FibSets are pairs $(K, (X, \phi_X))$ consisting of
 - The Base Set. A set K;
 - *The Fibred Set.* A *K*-fibred set ϕ_X : *X* → *K*;
- *Morphisms*. A morphism of FibSets from $(K,(X,\phi_X))$ to $(K',(Y,\phi_Y))$ is a pair (ϕ,f) consisting of
 - The Base Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Fibred Sets. A morphism of K-fibred sets

$$f: (X, \phi_X) \to \phi_Y^*(Y),$$

$$X \xrightarrow{f} Y \times_{K'} K$$

$$\phi_X \swarrow pr_2$$

$$K;$$

• *Identities.* For each $(K, X) \in Obj(\mathsf{FibSets})$, the unit map

$$\mathbb{F}_{(K,X)}^{\mathsf{FibSets}} \colon \mathsf{pt} \to \mathsf{FibSets}((K,X),(K,X))$$

of FibSets at (K, X) is defined by

$$\mathrm{id}_{(K,X)}^{\mathsf{FibSets}} \stackrel{\mathrm{def}}{=} (\mathrm{id}_K, \sim),$$

where \sim is the isomorphism $X \to X \times_K K$ as in the diagram

$$X \xrightarrow{\phi_X} X \times_K K$$

$$\downarrow^{p_{\mathbf{r}_2}}$$

$$K;$$

• Composition. For each $\mathbf{X} = (K, X), \mathbf{Y} = (K', Y), \mathbf{Z} = (K'', Z) \in \mathsf{Obj}(\mathsf{FibSets}),$ the composition map

$$\circ^{\mathsf{FibSets}}_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \colon \mathsf{FibSets}(\mathbf{Y},\mathbf{Z}) \times \mathsf{FibSets}(\mathbf{X},\mathbf{Y}) \to \mathsf{FibSets}(\mathbf{X},\mathbf{Z})$$

of FibSets at (X, Y, Z) is defined by

$$g \circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}} f \stackrel{\scriptscriptstyle\mathsf{def}}{=} (g \times_{K'} \mathrm{id}_K) \circ f$$

as in the diagram

for each $f \in \mathsf{FibSets}(\mathbf{X}, \mathbf{Y})$ and each $g \in \mathsf{FibSets}(\mathbf{Y}, \mathbf{Z})$.

4 Constructions With Fibred Sets

4.1 Change of Base

Let $f: K \to K'$ be a function and let (X, ϕ) be a K'-fibred set.

Definition 4.1.1.1. The **change of base of** (X, ϕ) **to** K is the K-fibred set $f^*(X)$ defined by

$$f^{*}(X) \xrightarrow{\operatorname{pr}_{2}} X$$

$$f^{*}(X) \stackrel{\operatorname{def}}{=} (K \times_{K'} X, \operatorname{pr}_{1}), \qquad \operatorname{pr}_{1} \downarrow \qquad \qquad \downarrow \phi$$

$$K \xrightarrow{f} K'.$$

Proposition 4.1.1.2. The assignment $X \mapsto f^*(X)$ defines a functor

$$f^* : \mathsf{FibSets}(K') \to \mathsf{FibSets}(K),$$

where

• Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K'))$, we have

$$f^*(X,\phi) \stackrel{\text{def}}{=} f^*(X);$$

• Action on Morphisms. For each $(X,\phi), (Y,\psi) \in \mathsf{Obj}(\mathsf{FibSets}(K')),$ the action on Hom-sets

$$f_{X|Y}^* \colon \operatorname{Hom}_{\mathsf{FibSets}(K')}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K)}(f^*(X),f^*(Y))$$

of f^* at $((X, \phi), (Y, \psi))$ is the map sending a morphism of K'-fibred sets

$$q: (X, \phi) \to (Y, \psi)$$

to the morphism of K-fibred sets given by the dashed morphism in the diagram

Proof. Omitted.

Proposition 4.1.1.3. The assignment $K \mapsto \mathsf{FibSets}(K)$ defines a functor

FibSets: Sets^{op}
$$\rightarrow$$
 Cats,

where

• *Action on Objects.* For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[FibSets](K) \stackrel{\text{def}}{=} FibSets(K);$$

• Action on Morphisms. For each $K, K' \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{Sets}_{/(-)|K,K'} \colon \mathsf{Sets}^{\mathsf{op}}(K,K') \to \mathsf{Fun}(\mathsf{FibSets}(K),\mathsf{FibSets}(K'))$$

of Sets_{/(-)} at (K, K') is the map sending a map of sets $f: K \to K'$ to the functor

$$\mathsf{Sets}_{/f} \colon \mathsf{Fib}\mathsf{Sets}(K') \to \mathsf{Fib}\mathsf{Sets}(K)$$

defined by

$$\mathsf{Sets}_{/f} \stackrel{\scriptscriptstyle\mathsf{def}}{=} f^*.$$

Proof. Omitted.

4.2 Dependent Sums

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

Definition 4.2.1.1. The **dependent sum**⁶ of (X, ϕ) is the K'-fibred set $\Sigma_f(X)^7$ defined by

$$\Sigma_f(X) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi))$$
$$\stackrel{\text{def}}{=} (X, f \circ \phi).$$

Proposition 4.2.1.2. Let $f: K \to K'$ be a function.

1. Functoriality. The assignment $X \mapsto \Sigma_f(X)$ defines a functor

$$\Sigma_f \colon \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

• Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, we have

$$\Sigma_f(X,\phi) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi));$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, the

$$\Sigma_f(\phi)^{-1}(x) \cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 4.2.1.2.

⁷ Further Notation: Also written $f_*(X)$.

⁶The name "dependent sum" comes from the fact that the fibre $\Sigma_f(\phi)^{-1}(x)$ of $\Sigma_f(X)$ at $x \in K'$ is given by

action on Hom-sets

$$\Sigma_{f|X,Y} \colon \mathrm{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \mathrm{Hom}_{\mathsf{FibSets}(K)}\big(\Sigma_f(X),\Sigma_f(Y)\big)$$

of Σ_f at $((X, \phi), (Y, \psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets defined by

$$\Sigma_f(g) \stackrel{\text{def}}{=} g$$
.

2. Interaction With Fibres. We have a bijection of sets

$$\Sigma_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Indeed, we have

$$\Sigma_{f}(\phi)^{-1}(x) \stackrel{\text{def}}{=} \operatorname{pt} \times_{[x], K', f \circ \phi} X$$

$$\cong \{(a, y) \in X \times K \mid f(\phi(a)) = x\}$$

$$\cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

4.3 Dependent Products

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

Definition 4.3.1.1. The **dependent product**⁸ **of** (X, ϕ) is the K'-fibred set $\Pi_f(X)^9$ consisting of $\Pi_f(X)^9$

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 4.3.1.3.

⁸The name "dependent product" comes from the fact that the fibre $\Pi_f(\phi)^{-1}(x)$ of $\Pi_f(X)$ at $x \in K'$ is given by

⁹ Further Notation: Also written $f_!(X)$.

¹⁰We can also define dependent products via the internal **Hom** in FibSets(K'); see Item 3 of

• The Underlying Set. The set $\Pi_f(X)$ defined by

$$\begin{split} \Pi_f(X) &\stackrel{\text{def}}{=} \coprod_{x \in K'} \Gamma^\phi_{f^{-1}(x)} \big(\phi^{-1} \big(f^{-1}(x) \big) \big) \\ &\stackrel{\text{def}}{=} \left\{ (x, h) \in \coprod_{x \in K'} \mathsf{Sets} \big(f^{-1}(x), \phi^{-1} \big(f^{-1}(x) \big) \big) \, \middle| \, \phi \circ h = \mathrm{id}_{f^{-1}(x)} \right\}; \end{split}$$

• The Fibration. The map of sets

$$\Pi_f(\phi) \colon \coprod_{x \in K'} \Gamma_{f^{-1}(x)}^{\phi} \left(\phi^{-1} \left(f^{-1}(x) \right) \right) \to K$$

defined by sending a map $h \colon f^{-1}(x) \to \phi^{-1}\big(f^{-1}(x)\big)$ to its index $x \in K$.

Example 4.3.1.2. Here are some examples of dependent products of sets.

1. *Spaces of Sections.* Let $K=X, K'=\operatorname{pt}$, and let $\phi\colon E\to X$ be a map of sets. We have a bijection of sets

$$\Pi_{!_X}(\phi) \cong \Gamma_X(\phi)$$

$$\cong \{ h \in \mathsf{Sets}(X, E) \mid \phi \circ h = \mathrm{id}_X \}.$$

2. Function Spaces. Let K = K' = pt. We have a bijection of sets

$$\mathsf{Sets}(X,Y) \cong \Pi_{!_X}(!_X^*(Y)).$$

Proposition 4.3.1.3. Let $f: K \to K'$ be a function.

1. Functoriality. The assignment $X \mapsto \Pi_f(X)$ defines a functor

$$\Pi_f : \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

• Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, we have

$$\Pi_f(X,\phi)\stackrel{\mathrm{def}}{=} \Pi_f(X);$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K))$, the

action on Hom-sets

$$\Pi_{f|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K')}(\Pi_f(X),\Pi_f(Y))$$

of Π_f at $((X, \phi), (Y, \psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets from

$$\Pi_f(X) \stackrel{\mathrm{def}}{=} \left\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \big(f^{-1}(x), \phi^{-1} \big(f^{-1}(x) \big) \big) \, \middle| \, \phi \circ h = \mathrm{id}_{f^{-1}(x)} \right\};$$

to

$$\Pi_f(Y) \stackrel{\mathrm{def}}{=} \left\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \big(f^{-1}(x), \psi^{-1} \big(f^{-1}(x) \big) \big) \, \middle| \, \psi \circ h = \mathrm{id}_{f^{-1}(x)} \right\};$$

induced by the composition

$$\begin{split} \mathsf{Sets} \big(f^{-1}(x), \phi^{-1} \big(f^{-1}(x) \big) \big) &= \mathsf{Sets} \big(f^{-1}(x), [\psi \circ g]^{-1} \big(f^{-1}(x) \big) \big) \\ &= \mathsf{Sets} \big(f^{-1}(x), g^{-1} \big(\psi^{-1} \big(f^{-1}(x) \big) \big) \big) \\ &\xrightarrow{g_*} \mathsf{Sets} \big(f^{-1}(x), g \big(g^{-1} \big(\psi^{-1} \big(f^{-1}(x) \big) \big) \big) \big) \\ &\xrightarrow{\iota_*} \mathsf{Sets} \big(f^{-1}(x), \psi^{-1} \big(f^{-1}(x) \big) \big), \end{split}$$

where $\iota \colon g\big(g^{-1}\big(\psi^{-1}\big(f^{-1}(x)\big)\big)\big) \hookrightarrow \psi^{-1}\big(f^{-1}(x)\big)$ is the canonical inclusion. ¹¹

2. Interaction With Fibres. We have a bijection of sets

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

$$\begin{split} \psi \circ [\Pi_f(g)](h) &\stackrel{\text{def}}{=} \psi \circ (g \circ h) \\ &= (\psi \circ g) \circ h \\ &= \phi \circ h \\ &= \operatorname{id}_{f^{-1}(x)}. \end{split}$$

¹¹Note that the section condition is satisfied: given $(x, h) \in \Pi_f(X)$, we have

4.4 Internal Homs 18

3. Construction Using the Internal Hom. We have

$$\Pi_f(X,\phi) = (K' \times_{\mathbf{Hom}_{\mathsf{FibSets}(K')}}(f,f) + \mathbf{Hom}_{\mathsf{Sets}/K'}(f,f \circ \phi), \operatorname{pr}_1), \qquad \prod_{\mathsf{pr}_1} \downarrow \qquad \qquad \downarrow \\ K' \xrightarrow{I} + \mathbf{Hom}_{\mathsf{FibSets}(K')}(f,f), \\ \Pi_f(X,\phi) = (K' \times_{\mathbf{Hom}_{\mathsf{FibSets}(K')}}(f,f) + \mathbf{Hom}_{\mathsf{FibSets}(K')}(f,f), \\ \Pi_f(X,\phi) = (K' \times_{\mathbf{Hom}_{\mathsf{FibSets}(K')}}(f,f) + \mathbf{Hom}_{\mathsf{FibSets}(K')}(f,f) + \mathbf{Hom}_{\mathsf{FibSets}(K$$

where the bottom map is defined by

$$I(x) \stackrel{\text{def}}{=} \mathrm{id}_{f^{-1}(x)}$$

for each $x \in K'$.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Indeed, we have

$$\begin{split} \Pi_{f}(\phi)^{-1}(x) &\stackrel{\text{def}}{=} \left\{ (y,h) \in \Pi_{f}(X) \, \middle| \, [\Pi_{f}(\phi)](h) = x \right\} \\ &\stackrel{\text{def}}{=} \left\{ (y,h) \in \Pi_{f}(X) \, \middle| \, y = x \right\} \\ &\cong \left\{ h \in \mathsf{Sets}(f^{-1}(x),\phi^{-1}(f^{-1}(x))) \, \middle| \, \phi \circ h = \mathrm{id}_{f^{-1}(x)} \right\} \\ &\cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y) \end{split}$$

for each $x \in K'$.

Item 3, Construction Using the Internal Hom: Omitted.

4.4 Internal Homs

Let *K* be a set and let (X, ϕ) and (Y, ψ) be *K*-fibred sets.

Definition 4.4.1.1. The **internal Hom of fibred sets from** (X,ϕ) **to** (Y,ψ) is the fibred set $\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)$ consisting of

• The Underlying Set. The set $\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y) \stackrel{\text{def}}{=} \coprod_{x \in K} \mathsf{Sets}(\phi^{-1}(x),\psi^{-1}(x));$$

• The Fibration. The map of sets¹²

$$\phi_{\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)} \colon \underbrace{\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)}_{X \in K} \to K$$

defined by sending a map $f: \phi^{-1}(x) \to \psi^{-1}(x)$ to its index $x \in K$.

4.5 Adjointness for Fibred Sets

Let $f: K \to K'$ be a map of sets.

Proposition 4.5.1.1. We have a triple adjunction

$$(\Sigma_f\dashv f^*\dashv \Pi_f)\colon \ \mathsf{FibSets}(K) \overset{\Sigma_f}{\longleftarrow} F\mathsf{ibSets}(K').$$

Proof. Omitted.

5 Un/Straightening for Indexed and Fibred Sets

5.1 Straightening for Fibred Sets

Let K be a set and let (X, ϕ) be a K-fibred set.

Definition 5.1.1.1. The **straightening of** (X, ϕ) is the *K*-indexed set

$$\operatorname{St}_K(X,\phi)\colon K_{\operatorname{\mathsf{disc}}}\to\operatorname{\mathsf{Sets}}$$

defined by

$$\operatorname{St}_K(X,\phi)_{r} \stackrel{\text{def}}{=} \phi^{-1}(x)$$

for each $x \in K$.

Proposition 5.1.1.2. Let *K* be a set.

$$\phi_{\mathbf{Hom}_{\mathsf{Fib}\mathsf{Sets}(K)}(X,Y)|x} \cong \mathsf{Sets}\Big(\phi^{-1}(x),\psi^{-1}(x)\Big)$$

for each $x \in K$.

The fibres of the internal **Hom** of FibSets(K) are precisely the sets Sets($\phi^{-1}(x), \psi^{-1}(x)$), i.e. we have

1. Functoriality. The assignment $(X, \phi) \mapsto \operatorname{St}_K(X, \phi)$ defines a functor

$$St_K : \mathsf{FibSets}(K) \to \mathsf{ISets}(K)$$

• Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, we have

$$[\operatorname{St}_K](X,\phi) \stackrel{\text{def}}{=} \operatorname{St}_K(X,\phi);$$

• *Action on Morphisms.* For each $(X, \phi), (Y, \psi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, the action on Hom-sets

$$\operatorname{St}_{K|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K)}(\operatorname{St}_K(X),\operatorname{St}_K(Y))$$

of St_K at (X, Y) is given by sending a morphism

$$f: (X, \phi) \to (Y, \psi)$$

of *K*-fibred sets to the morphism

$$\operatorname{St}_K(f) \colon \operatorname{St}_K(X, \phi) \to \operatorname{St}_K(Y, \psi)$$

of *K*-indexed sets defined by

$$\operatorname{St}_K(f) \stackrel{\text{def}}{=} \left\{ f_x^* \right\}_{x \in K},$$

where f_x^* is the transport map associated to f at $x \in K$ of Definition 3.2.1.1.

2. Interaction With Change of Base/Indexing. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{FibSets}(K') \stackrel{f^*}{\longrightarrow} \mathsf{FibSets}(K) \\ \\ \mathsf{St}_{K'} \downarrow & & & \mathsf{St}_K \\ \\ \mathsf{ISets}(K') \stackrel{f^*}{\longrightarrow} \mathsf{ISets}(K) \end{array}$$

commutes.

3. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{FibSets}(K) & \xrightarrow{\Sigma_f} & \mathsf{FibSets}(K') \\ & s_{\mathsf{t}_K} & & & \downarrow s_{\mathsf{t}_{K'}} \\ & \mathsf{ISets}(K) & \xrightarrow{\Sigma_f} & \mathsf{ISets}(K') \end{array}$$

commutes.

4. Interaction With Dependent Products. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{Sets}_{/K} & \xrightarrow{\Pi_f} \mathsf{FibSets}(K') \\ & & & & & & & & \\ \mathsf{st}_K & & & & & & \\ \mathsf{St}_{K'} & & & & & \\ \mathsf{ISets}(K) & \xrightarrow{\Pi_f} \mathsf{ISets}(K') & & & & \end{array}$$

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Change of Base/Indexing: Indeed, we have

$$\begin{aligned} \operatorname{St}_{K}(f^{*}(X,\phi))_{x} &\stackrel{\text{def}}{=} \operatorname{St}_{K}(K \times_{K'} X)_{x} \\ &\stackrel{\text{def}}{=} \left(\operatorname{pr}_{1}^{K \times_{K'} X}\right)^{-1}(x) \\ &= \left\{(k,y) \in K \times_{K'} X \middle| \operatorname{pr}_{1}^{K \times_{K'} X}(k,y) = x\right\} \\ &= \left\{(k,y) \in K \times_{K'} X \middle| k = x\right\} \\ &= \left\{(k,y) \in K \times X \middle| k = x \text{ and } f(k) = \phi(y)\right\} \\ &\cong \left\{y \in X \middle| \phi(y) = f(x)\right\} \\ &= \phi^{-1}(f(x)) \\ &\stackrel{\text{def}}{=} f^{*}(\phi^{-1}(x)) \\ &\stackrel{\text{def}}{=} f^{*}(\operatorname{St}_{K'}(X,\phi)_{x}) \end{aligned}$$

for each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K'))$ and each $x \in K$, and similarly for morphisms. *Item 3, Interaction With Dependent Sums*: Indeed, we have

$$\begin{aligned} \operatorname{St}_{K'} \big(\Sigma_f(X, \phi) \big)_x &\stackrel{\text{def}}{=} \Sigma_f(\phi)^{-1}(x) \\ & \cong \coprod_{y \in X} \phi^{-1}(y) \\ & f(y) = x \\ & \cong \Sigma_f \big(\phi^{-1}(x) \big) \\ & \stackrel{\text{def}}{=} \Sigma_f \big(\operatorname{St}_K(X, \phi)_x \big) \end{aligned}$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 4.2.1.2 for the first bijection, and similarly for morphisms.

Item 4, Interaction With Dependent Products: Indeed, we have

$$\begin{aligned} \operatorname{St}_{K'} \big(\Pi_f(X, \phi) \big)_x &\stackrel{\text{def}}{=} \Pi_f(\phi)^{-1}(x) \\ & \cong \prod_{y \in X} \phi^{-1}(y) \\ & f(y) = x \\ & \cong \Pi_f \big(\phi^{-1}(x) \big) \\ & \stackrel{\text{def}}{=} \Pi_f \big(\operatorname{St}_K(X, \phi)_x \big) \end{aligned}$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 4.3.1.3 for the first bijection, and similarly for morphisms.

5.2 Unstraightening for Indexed Sets

Let *K* be a set and let *X* be a *K*-indexed set.

Definition 5.2.1.1. The **unstraightening of** X is the K-fibred set

$$\phi_{\operatorname{Un}_K} \colon \operatorname{Un}_K(X) \to K$$

consisting of

• The Underlying Set. The set $Un_K(X)$ defined by

$$\operatorname{Un}_K(X) \stackrel{\mathrm{def}}{=} \coprod_{x \in K} X_x;$$

• The Fibration. The map of sets

$$\phi_{\operatorname{Un}_K} \colon \operatorname{Un}_K(X) \to K$$

defined by sending an element of $\coprod_{x \in K} X_x$ to its index in K.

Proposition 5.2.1.2. Let *K* be a set.

1. Functoriality. The assignment $X \mapsto \operatorname{Un}_K(X)$ defines a functor

$$Un_K : \mathsf{ISets}(K) \to \mathsf{FibSets}(K)$$

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\operatorname{Un}_K](X) \stackrel{\text{def}}{=} \operatorname{Un}_K(X);$$

Action on Morphisms. For each X, Y ∈ Obj(ISets(K)), the action on Homsets

$${\rm Un}_{K|X,Y}\colon {\rm Hom}_{{\sf ISets}(K)}(X,Y)\to {\rm Hom}_{{\sf FibSets}(K)}({\rm Un}_K(X),{\rm Un}_K(Y))$$
 of ${\rm Un}_K$ at (X,Y) is defined by

$$\operatorname{Un}_{K|X,Y}(f) \stackrel{\text{def}}{=} \coprod_{x \in K} f_x^*.$$

2. Interaction With Fibres. We have a bijection of sets

$$\phi_{\operatorname{Un}_K}^{-1}(x)\cong X_x$$

for each $x \in K$.

3. As a Pullback. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong K_{\operatorname{disc}} \times_{\operatorname{Sets}} \operatorname{Sets}_*, \qquad \bigcup_{\Xi} \begin{subarray}{c} \operatorname{Un}_K(X) \to \operatorname{Sets}_* \\ & & \downarrow^{\Xi} \\ & K_{\operatorname{disc}} \xrightarrow{X} \operatorname{Sets}. \end{subarray}$$

4. As a Colimit. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong \operatorname{colim}(X)$$
.

5. Interaction With Change of Indexing/Base. Let $f: K \to K'$ be a map of sets. The diagram

$$|\mathsf{Sets}(K') \xrightarrow{f^*} |\mathsf{Sets}(K)|$$

$$\mathsf{Un}_{K'} \downarrow \qquad \qquad \qquad \mathsf{Un}_{K}$$

$$\mathsf{FibSets}(K') \xrightarrow{f^*} |\mathsf{FibSets}(K)|$$

commutes.

6. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{ISets}(K) & \xrightarrow{\Sigma_f} & \mathsf{ISets}(K') \\ & & & \downarrow \\ \mathsf{Un}_K & & & \downarrow \\ \mathsf{TibSets}(K) & \xrightarrow{\Sigma_f} & \mathsf{FibSets}(K') \end{array}$$

commutes.

7. Interaction With Dependent Products. Let $f: K \to K'$ be a map of sets. The diagram

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Omitted.

Item 3, As a Pullback: Omitted.

Item 4, As a Colimit: Clear.

Item 5, Interaction With Change of Indexing/Base: Indeed, we have

$$\operatorname{Un}_{K}(f^{*}(X)) \stackrel{\operatorname{def}}{=} \operatorname{Un}_{K}(X \circ f)$$

$$\stackrel{\operatorname{def}}{=} \coprod_{x \in K} X_{f(x)}$$

$$\cong \left\{ (x, (y, a)) \in K \times \coprod_{y \in K'} X_{y} \middle| f(x) = y \right\}$$

$$\cong K \times_{K'} \coprod_{y \in K'} X_{y}$$

$$\stackrel{\operatorname{def}}{=} K \times_{K'} \operatorname{Un}_{K'}(X)$$

$$\stackrel{\operatorname{def}}{=} f^{*}(\operatorname{Un}_{K'}(X))$$

for each $X \in \operatorname{Obj}(\operatorname{ISets}(K'))$. Similarly, it can be shown that we also have $\operatorname{Un}_K(f^*(\phi)) = f^*(\operatorname{Un}_{K'}(\phi))$ and that $\operatorname{Un}_K \circ f^* = f^* \circ \operatorname{Un}_{K'}$ also holds on morphisms. *Item 6, Interaction With Dependent Sums*: Indeed, we have

$$\operatorname{Un}_{K'}(\Sigma_f(X)) \stackrel{\text{def}}{=} \coprod_{x \in K'} \Sigma_f(X)_x$$

$$\cong \coprod_{x \in K'} \coprod_{y \in f^{-1}(x)} X_y$$

$$\cong \coprod_{y \in K} X_y$$

$$\cong \operatorname{Un}_K(X)$$

$$\stackrel{\text{def}}{=} \Sigma_f(\operatorname{Un}_K(X))$$

for each $X \in \mathrm{Obj}(\mathsf{ISets}(K))$, where we have used Item 2 of Proposition 4.2.1.2 for the first bijection. Similarly, it can be shown that we also have $\mathrm{Un}_{K'}\big(\Sigma_f(\phi)\big) = \Sigma_f\big(\phi_{\mathrm{Un}_K}\big)$ and that $\mathrm{Un}_{K'} \circ \Sigma_f = \Sigma_f \circ \mathrm{Un}_K$ also holds on morphisms.

Item 7, Interaction With Dependent Products: Indeed, we have

$$\begin{aligned} \operatorname{Un}_{K'} \big(\Pi_f(X) \big) &\stackrel{\text{def}}{=} \coprod_{x \in K'} \Pi_f(X)_x \\ & \cong \coprod_{x \in K'} \prod_{y \in f^{-1}(x)} X_y \\ & \cong \left\{ (x, h) \in \coprod_{x \in K'} \operatorname{Sets} \Big(f^{-1}(x), \phi_{\operatorname{Un}_K}^{-1} \big(f^{-1}(x) \big) \Big) \, \middle| \, \phi \circ h = \operatorname{id}_{f^{-1}(x)} \right\} \\ & \stackrel{\text{def}}{=} \Pi_f \bigg(\coprod_{y \in K} X_y \bigg) \\ & \stackrel{\text{def}}{=} \Pi_f \big(\operatorname{Un}_K(X) \big) \end{aligned}$$

for each $X \in \mathrm{Obj}(\mathsf{ISets}(K))$, where we have used Item 2 of Proposition 4.3.1.3 for the first bijection. Similarly, it can be shown that we also have $\mathrm{Un}_{K'}\big(\Pi_f(\phi)\big) = \Pi_f\big(\phi_{\mathrm{Un}_K}\big)$ and that $\mathrm{Un}_{K'} \circ \Pi_f = \Pi_f \circ \mathrm{Un}_K$ also holds on morphisms.

5.3 The Un/Straightening Equivalence

Theorem 5.3.1.1. We have an isomorphism of categories

$$(\operatorname{St}_K \dashv \operatorname{Un}_K)$$
: $\operatorname{\mathsf{FibSets}}(K) \underbrace{\overset{\operatorname{\mathsf{St}}_K}{\bot}}_{\operatorname{Un}_K} \operatorname{\mathsf{ISets}}(K).$

Proof. Omitted.

6 Miscellany

6.1 Other Kinds of Un/Straightening

Remark 6.1.1.1. There are also other kinds of un/straightening for sets, where Sets is replaced by **Rel** or Span:

• Un/Straightening With **Rel**, I. We have an isomorphism of sets

$$Rel(A, B) \cong Sets(B \times A, \{true, false\}).$$

by the definition of a relation from *A* to *B*, Relations, Definition 1.1.1.1.

• Un/Straightening With **Rel**, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}}, \mathbf{Rel}) \stackrel{\mathrm{eq.}}{\cong} \mathsf{Cats}^{\mathsf{fth}}_{/K_{\mathsf{disc}}},$$

where $\mathsf{Cats}^\mathsf{fth}_{/K_\mathsf{disc}}$ is the full subcategory of $\mathsf{Cats}_{/K_\mathsf{disc}}$ spanned by the faithful functors; see [Nie04, Theorem 3.1].

• $Un/Straightening\ With\ Span,\ I.\ For\ each\ A,\ B\in Obj(Sets),$ we have a morphism of sets

$$\mathsf{Span}(A, B) \to \mathsf{Sets}(A \times B, \mathbb{N} \cup \{\infty\})$$

which assemble into an equivalence of categories between Span(Sets) and the category MRel of "multirelations"; see Spans, Remark 7.5.1.1.

• Un/Straightening With Span, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}},\mathsf{Span}) \stackrel{\mathrm{eq.}}{\cong} \mathsf{Cats}_{/K_{\mathsf{disc}}};$$

see [nLa23, Section 3].

Appendices

A Other Chapters

Set Theory

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category	Near-Rings
Globular Stuff	29. Near-Semirings
17. The Globe Category	30. Near-Rings
Cellular Stuff	Real Analysis
18. The Cell Category	31. Real Analysis in One Variable
Monoids	32. Real Analysis in Several Variables
19. Monoids	Measure Theory
20. Constructions With Monoids	33. Measurable Spaces
Monoids With Zero	34. Measures and Integration
21. Monoids With Zero	Probability Theory
22. Constructions With Monoids With	34. Probability Theory
Zero	Stochastic Analysis
Groups	35. Stochastic Processes, Martingales,
23. Groups	and Brownian Motion
24. Constructions With Groups	36. Itô Calculus
Hyper Algebra	37. Stochastic Differential Equations
25. Hypermonoids	Differential Geometry
26. Hypergroups	38. Topological and Smooth Manifolds
27. Hypersemirings and Hyperrings	Schemes
28. Quantales	39. Schemes