

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/32

Paper 3 Theory (Core)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 shows red blood cells.

Fig. 1.1

(ii) A component of the blood is needed to clot the blood. State the name of this component.		(i)	State the function of red blood cells.	
State the name of this component. [1] (b) Fig. 1.2 shows a diagram of a different type of human blood cell.				[1]
(b) Fig. 1.2 shows a diagram of a different type of human blood cell.		(ii)	A component of the blood is needed to clot the blood.	
(b) Fig. 1.2 shows a diagram of a different type of human blood cell.			State the name of this component.	
				[1]
The diameter XY in the diagram of the cell is 30 mm.	(b)	Fig.	1.2 shows a diagram of a different type of human blood cell.	
		The	diameter XY in the diagram of the cell is 30 mm.	

Fig. 1.2

The actual diameter **XY** of the cell is 0.015 mm.

Calculate the magnification of the cell shown in Fig. 1.2.

magnification =[2]

Wa	ter is transported to the cells of the body by the blood.	
Cor	mplete the sentence about movement of water into and out of cells.	
Wa	ter diffuses through a permeable membrane by	[2]
Wa	ter is also transported through plants.	
(i)	Fig. 1.3 shows the pathway taken by water through the cells of a root.	
	Cor Wa	Water is transported to the cells of the body by the blood. Complete the sentence about movement of water into and out of cells. Water diffuses through a

Fig. 1.3

Identify structures **P**, **Q** and **R** shown in Fig. 1.3.

(ii)

F	
Q	
R	
K	[3]
Transport of water in plants involves transpiration.	
State two factors that increase the rate of transpiration.	
1	
2	
	[2]

[Total: 11]

2 (a) A teacher puts a small piece of sodium onto water in a water trough, as shown in Fig. 2.1.

Fig. 2.1

The students observe the reaction between sodium and water.

The teacher repeats the experiment using potassium instead of sodium.

(i)	Describe one similarity in the reactions of potassium and of sodium with water.	
		[1]
(ii)	Describe one difference between the observations for the reactions of potassium and sodium with water.	l of
	Explain the reason for this difference.	
	difference	
	explanation	
		[2]
Iron	is in a collection of metals in the Periodic Table shown on page 20.	
(i)	Name this collection of metals.	
		[1]
(ii)	State one physical property of iron that is also a physical property of sodium.	
		[1]
(iii)	State one property of iron that is not a property of sodium.	
		- 4 -

© UCLES 2020 0653/32/M/J/20

(b)

(c)	The metals aluminium, copper and iron can be recycled.
	State one reason, other than cost, why these metals can be recycled.
	[1

(d) An atom of aluminium is represented by the symbol shown.

 $^{27}_{13}$ Al

(i) Complete Fig. 2.2 to show the electronic structure of this atom.

Fig. 2.2

[2]

(ii)	Describe how this atom forms an aluminium ion, Al^{3+} .
	[1]
	[Total: 10]

3 Fig. 3.1 shows a square sheet of metal.

The dimensions of the largest face are $20 \, \text{cm} \times 20 \, \text{cm}$.

Fig. 3.1 (not to scale)

(a) (i) The thickness of the sheet is 1.1 cm.

Show that the volume of the sheet is 440 cm³.

[1]

(ii) The mass of the sheet is 1800 g.

Calculate the density of the metal.

density =
$$g/cm^3$$
 [2]

(iii) The sheet lying flat on the ground in Fig. 3.1 exerts pressure on the ground.

Fig. 3.2 shows the sheet standing on one edge on the ground.

Fig. 3.2 (not to scale)

Explain why th sheet in Fig. 3.	•	3.2 exerts a	much greate	er pressure on	tne ground tha	an tne
					•••••	
						[2]

(b) The weight of the metal plate is 18 N.

The metal plate is lifted from the ground with an upwards force of 20 N.

(i) Calculate the resultant force on the metal plate.

(ii) Fig. 3.3 shows a speed–time graph for the plate as it is lifted from the ground until it stops moving again.

Fig. 3.3

Describe the motion of the plate between the points shown on Fig. 3.3.

A and B	
B and C	
C and D	[2]

[Total: 8]

4 (a) Fig. 4.1 shows the human alimentary canal and associated organs.

Fig. 4.1

(i) Identify parts **A** and **B** shown in Fig. 4.1.

Α	
R	
	ro.
	[2]

- (ii) Use a label line and the letter **X** to show a possible position of a salivary gland in Fig. 4.1.
- (b) Large food molecules are made from smaller molecules.

Table 4.1 shows some large molecules and the smaller molecules they are made from.

Table 4.1

large molecules	smaller molecules
glycogen	
	amino acids
oils	and

© UCLES 2020 0653/32/M/J/20

Complete Table 4.1.

(c) Fig. 4.2 shows a graph of the activity of two enzymes **A** and **B** from the alimentary canal.

Fig. 4.2

(i)	Describe the effect of changes in pH on the activity of enzyme B .
	Use data from Fig. 4.2 to support your answer.
	[2]
(ii)	The stomach produces hydrochloric acid to kill bacteria in food.
	Identify which enzyme A or B works best in the stomach.
	Explain your answer.
	enzyme
	explanation
	[1]
	[Total: 9]

•	(a)	A lic	quid fuel contains atoms of carbon and hydrogen only.	
		(i)	State the type of compound which contains atoms of carbon and hydrogen only.	
				. [1]
		(ii)	Deduce the naturally occurring substance from which this liquid fuel is obtained.	
				. [1]
		(iii)	Deduce the type of chemical bond that forms between atoms of carbon and atom hydrogen.	
	(b)	Pro	pene is a gas at room temperature and pressure.	. [1]
	()		. 5.1 shows the structure of a molecule of propene.	
		9.	H H H	
			I H	
			Fig. 5.1	
		(i)	Deduce the formula of propene.	
				. [1]
		(ii)	Describe the effect, if any, of propene on aqueous bromine.	
		(iii)	Complete the word equation for the complete combustion of propene.	
	ŗ	orope	ne + + + + +	
				[2]
		(iv)	Propene is transported as a liquid.	
			Describe the difference between gaseous propene and liquid propene in terms of separation of the molecules and the motion of the molecules.	f the
			separation	
			motion	
			[Tota	[2] al: 9]

6 Fig. 6.1 shows a man holding a glass rod in one hand and a metal rod in the other hand. He holds both rods so that their ends are in a hot flame.

Fig. 6.1

(a) After some time, the man suddenly drops the metal rod because it becomes too hot.He can hold the glass rod for a much longer time.

(i)	State the method of thermal energy transfer along the metal rod to the man's hand.
	[1]
(ii)	State the method of energy transfer which does not require a medium to travel through.
	[1]
(iii)	Explain why the man can hold the glass rod for much longer than he can hold the meta rod.
	[1]

(b) The man now uses tongs to hold the two rods.

The temperature of the hot flame is gradually increased to a maximum of 900 °C.

At 500 °C, the end of the glass rod softens and melts, but the end of the metal rod does not melt.

The end of the metal rod melts before the maximum flame temperature is reached.

Table 6.1 shows the melting points of some metals.

Table 6.1

metal	melting point/°C
aluminium	660
copper	1083
iron	1535
silver	962
zinc	420

Identify the metal from which the metal rod is made.

.....[1]

(c) A metal bar is made of a strip of copper and a strip of iron fixed together. Fig. 6.2 shows the metal bar at room temperature.

Fig. 6.2

Fig. 6.3 shows what happens to the bar when it is heated in the flame.

Fig. 6.3

Suggest why the bar bends when it is heated.

(d) (i) Fig. 6.4 shows a musical instrument called tubular bells. The instrument is made of different lengths of metal tubing.

Fig. 6.4

The instrument is played by hitting the tubes with a plastic hammer.

Shorter metal tubes produce musical notes at a higher pitch than longer tubes.

Complete the sentences using words from the list.

Each word may be used once, more than once or not at all.

	larger	higher	longer	
	lower	shorter	smaller	
	than the frequency of the so When the same longer tube	ound wave emitted is hit harder with the	ne plastic hammer, the sound w	ave it
(ii)			note emitted by each tube can	[2] change.
,	•	-	e when the temperature rises.	9
	Give a reason for your answ			

[Total: 9]

7 (a) Fig. 7.1 shows the male reproductive organs.

Fig. 7.1

	identity the name and function of part Z snown in Fig. 7.1.	
	name	
	function	
		[2
(b)	Humans reproduce by sexual reproduction.	
	Some organisms reproduce by asexual reproduction.	
	State two ways in which sexual reproduction is different from asexual reproduction.	
	1	
	2	
		[2

(c) Chlamydia, gonorrhea and HIV are sexually transmitted infections (STIs).

Fig. 7.2 shows the percentage of new cases of chlamydia, gonorrhea and HIV for one country in one year.

Fig. 7.2

(i) State the age group with the lowest percentage of HIV cases.

age group = years [1]

(ii) The country made this statement about the data.

Young adults aged 20–24 years are at *greatest* risk of sexually transmitted infections.

Identify evidence from Fig. 7.2 that supports this statement.

.....[1

(iii) Describe **one** way in which the spread of sexually transmitted infections is controlled.

[Total: 7]

[1]

8 (a) Copper chloride is made in the reaction between excess solid copper carbonate and dilute hydrochloric acid.

The word equation for this reaction is shown.

(i)	Describe how	unreacted	copper	carbonate	IS	removed	trom	the	mixture	when	the
	reaction is com	plete.									

F	- 4	-
	17	- 1
	11	- 1

(ii) Suggest how solid copper chloride is obtained from the aqueous copper chloride that forms.

· ·	e 4 T	
	111	1
		1

(iii) State the test for carbon dioxide and the positive test result.

test		
roci	l t	

[2]

(b) Chlorine is produced when electricity is passed through concentrated aqueous sodium chloride, as shown in Fig. 8.1.

Fig. 8.1

[4]
111
F . 1

(ii) Identify the solvent and the solute through which electricity is passed during this process.

solute[1]

ement in the same group of the Periodic Table as chlorine that has a point than chlorine.	Identify one element in the higher melting point than chlo	
[1]		
[Total: 7]		

9 Fig. 9.1 shows a simple circuit containing two identical lamps **A** and **B**.

Fig. 9.1

(a) (i) The switch in Fig. 9.1 is open. Circle the correct configuration of the lamps.

lamp **A**: ON/OFF lamp **B**: ON/OFF [1]

(ii) The switch shown in Fig. 9.1 is now closed. Circle the correct configuration of the lamps.

lamp **A**: ON/OFF lamp **B**: ON/OFF [1]

(b) (i) Name the type of circuit arrangement of the two lamps in this circuit.

.....[1]

(ii) Draw the circuit diagram for the circuit pictured in Fig. 9.1.

(c)		en both lamps are lit, ammeter 1 shows the total current in the circuit. The reading on meter 1 is 0.60A.
	(i)	Suggest the reading on ammeter 2.
		Explain your answer.
		reading =
		explanation
		[2]
	(ii)	The combined resistance of lamps ${\bf A}$ and ${\bf B}$ when both are lit is $2.5\Omega.$
		Calculate the potential difference (p.d.) across the cell.
		potential difference =V [2]
		[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	■	Δ Ε 2	helium 4	10	Ne	neon 20	18	Αľ	argon 40	36	첫	krypton 84	54	×e	xenon 131	98	R	radon			
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	П	iodine 127	85	Αt	astatine -			
	5			8	0	oxygen 16	16	ഗ	sulfur 32	8	Se	selenium 79	52	Б	tellurium 128	84	Ро	polonium	116		livermorium —
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium —
	=			2	Ф	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	П	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium —
										29	D C	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Gro										27	ပိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
				_						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	B	bohrium
					loc	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	Q N	niobium 93	73	<u>a</u>	tantalum 181	105	Ор	dubnium -
					ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	峜	rutherfordium -
										21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_			ဇ	<u></u>	lithium 7	7	Na	sodium 23	19	\prec	potassium 39	37	Вb	rubidium 85	55	S	caesium 133	87	ŗ	francium

57 58 59 60 61 62 63 64 65 66 67 68 69 70 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Fr Tm Yb Inflamman centum presectoymium procedium procedium
58 59 60 61 62 63 64 65 66 67 68 Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er 140 141 144 - 150 157 159 163 167 167 90 91 92 93 94 95 96 97 98 99 100 Th Pa U Np Pu Am Cm Bk Cf Es Fm thorium protectinum uranium putonium putoniu
58 59 60 61 62 63 64 65 66 67 Ce Pr Nd Pm Sm Eu Gd Tb Dy HO cerium praseodymium promethium smnarium europium gadolinium terbium dysprosium holmium 140 141 144 - 150 157 159 163 165 90 91 92 93 94 95 96 97 98 99 Th Pa U Np Pu Am Cm BK Cf Es thoritum protectinum unanium puttonium
SB 59 60 61 62 63 64 65 66 66 Ce Pr Nd Pm Sm Eu Gd Tb Dy certum praseodymium neodymium promethium samarium europium gadodnium tertuium dysprosium 140 141 144 - 150 157 159 163 90 91 92 93 94 95 96 97 98 Th Pa U Np Pu Am Cm Bk Cf thorium protectinum uranium neptunium puttonium americium berkelium berkelium earlfornium
SB 59 60 61 62 63 64 65 Ce Pr Nd Pm Sm Eu Gd Tb certium praseodymlum pracedymlum promethium samartum europium gadointium terrbum retrbum retrbum <t< td=""></t<>
58 59 60 61 62 63 64 Ce Pr Nd Pm Sm Eu Gd certium praseodymium promethium samartium europium gadolinium 140 141 144 - 150 152 157 90 91 92 93 94 95 96 Th Pa U Np Pu Am Cm thoritum protectinum uranium neptunium puntonium americium curium tr
58 59 60 61 62 63 Ce Pr Nd Pm Sm Eu certium praseodymium promethium samarium europium 140 141 144 - 150 152 90 91 92 93 94 95 Th Pa U Np Pu Am thorium protectinum uranium neptunium prutonium americium
58 59 60 61 62 Ce Pr Nd Pm Sm certum prassodymium neodymium promethum samartum 140 141 144 - 150 90 91 92 93 94 Th Pa U Np Pu thorium protectinum uranium neptunium putonium a
58 59 60 61 Ce Pr Nd Pm cerium praseodymium neodymium promethum 140 141 144 - 90 91 92 93 Th Pa U Np thorium protectinium urranium neptunium 232 231 238 -
58 59 60 Ce Pr Nd certum 141 144 90 91 92 Th Pa U thorium protectinium uranium 232 231 238
Ce Pr certum praseodymium 140 141 90 91 Th Pa thorium protactinium 232 231
Ce centum p 140 90 90 Th thorium 232
La lanthanum 139 89 AC actinum

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).