线性代数-12

主讲: 吴利苏

wulisu@sdust.edu.cn

2023年12月15日

向量组 $A:\alpha_1,\cdots,\alpha_m, B:\beta_1,\cdots,\beta_n$;

矩阵 $A = (\alpha_1, \dots, \alpha_m)$, $B = (\beta_1, \dots, \beta_n)$,

• 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.

向量组 $A: \alpha_1, \cdots, \alpha_m, B: \beta_1, \cdots, \beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.

向量组 $A:\alpha_1,\cdots,\alpha_m,B:\beta_1,\cdots,\beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.

向量组 $A:\alpha_1,\cdots,\alpha_m$, $B:\beta_1,\cdots,\beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.

向量组 $A:\alpha_1,\cdots,\alpha_m,B:\beta_1,\cdots,\beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.

向量组 $A:\alpha_1,\cdots,\alpha_m,B:\beta_1,\cdots,\beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$; 矩阵 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_n),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$; 矩阵 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_n),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.
- 个数大于维数向量组必线性相关.

向量组 $A: \alpha_1, \cdots, \alpha_m, B: \beta_1, \cdots, \beta_n$;

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A,\beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.
- 个数大于维数向量组必线性相关.
- 向量组 A 线性无关,再加向量 β 线性相关 $\Rightarrow \beta$ 可由向量组 A 线性表示,且表示唯一. ($\Leftrightarrow R(A,\beta) = R(A) = m$.)

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$; 矩阵 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_n).$

• 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{fR/(N) \otimes P} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B)$.

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$; 矩阵 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_n).$

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{fR/(N) \otimes P} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B)$.
- 同维数向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{c}{\sim} (O, B)$.

向量组 $A:\alpha_1,\dots,\alpha_m$, $B:\beta_1,\dots,\beta_n$; 矩阵 $A=(\alpha_1,\dots,\alpha_m)$, $B=(\beta_1,\dots,\beta_n)$.

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{\text{fR}(\chi)} B \Leftrightarrow \text{存在可逆阵 } P, Q, \ \text{使得 } PAQ = B \Leftrightarrow R(A) = R(B).$
- 同维数向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{\sim}{\sim} (O, B)$.
- 初等变换的角度看向量组等价:

 $(A, O) \xrightarrow{\text{in } \notin \text{Mos } (A, B)} \xrightarrow{\text{in } \notin \text{Mos } (O, B).$

向量组 $A:\alpha_1,\dots,\alpha_m$, $B:\beta_1,\dots,\beta_n$; 矩阵 $A=(\alpha_1,\dots,\alpha_m)$, $B=(\beta_1,\dots,\beta_n)$.

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{fR(\lambda) n \oplus f/N \oplus p} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B)$.
- 同维数向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{\circ}{\sim} (O, B)$.
- 初等变换的角度看向量组等价:

$$(A, O) \xrightarrow{\text{in } \notin \text{Mos } (A, B)} \xrightarrow{\text{in } \notin \text{Mos } (O, B).$$

• 如果 m = n, 则向量组 A, B 等价 \Leftrightarrow 矩阵 $A \stackrel{c}{\sim} B$.

向量组 $A: \alpha_1, \dots, \alpha_m, B: \beta_1, \dots, \beta_n$; 矩阵 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_n).$

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{\text{fR}/N} B \Leftrightarrow \text{存在可逆阵 } P, Q, \ \text{使得 } PAQ = B \Leftrightarrow R(A) = R(B).$
- 同维数向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{c}{\sim} (O, B)$.
- 初等变换的角度看向量组等价:

- 如果 m = n, 则向量组 A, B 等价 \Leftrightarrow 矩阵 $A \stackrel{c}{\sim} B$.
- 如果向量组 B 是向量组 A 的部分向量组,则向量组 A,B 等价 $\Leftrightarrow R(A) = R(B)$.

本次课内容

1. 最大无关组和向量组的秩

2. 向量组的秩和矩阵的秩

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$, 的一个部分组, 若

- 向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,

则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$, 的一个部分组, 若

- 向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$, 的一个部分组, 若

- 向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).
 - 最大无关组 A_0 和向量组 A 等价.

定义

最大无关组所含向量的个数 r 称为向量组 A 的秩, 记为 R_A 或 $R(\alpha_1,\cdots,\alpha_m)$.

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$, 的一个部分组, 若

- 向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).
 - 日114441日ね4然八

■ 最大无关组 A₀ 和向量组 A 等价.

定义

最大无关组所含向量的个数 r 称为向量组 A 的秩, 记为 R_A 或 $R(\alpha_1,\cdots,\alpha_m)$.

注: 只含零向量的向量组的秩规定为 0.

最大无关组的等价定义: 极大无关组

推论

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$ 的一个部分组, 若

- 向量组 A₀ 线性无关;
- 向量组 A 中任意一个向量都可由向量组 A₀ 线性表示,

则 A_0 为向量组 A 的一个最大无关组.

最大无关组的等价定义: 极大无关组

推论

设向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 是向量组 $A: \alpha_1, \cdots, \alpha_m$, 的一个部分组, 若

- 向量组 A₀ 线性无关;
- 向量组 A 中任意一个向量都可由向量组 A₀ 线性表示,

则 A_0 为向量组 A 的一个最大无关组.

例 (例 8)

全体 n 维向量构成的向量组记为 \mathbb{R}^n . e_1, \dots, e_n 为 \mathbb{R}^n 的一个最大无关组,故 \mathbb{R}^n 的秩为 n.

最大无关组的等价定义: 极大无关组

推论

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$, 的一个部分组, 若

- 向量组 An 线性无关;
- \bullet 向量组 A 中任意一个向量都可由向量组 A_0 线性表示,

则 A_0 为向量组 A 的一个最大无关组.

例 (例 8)

全体 n 维向量构成的向量组记为 \mathbb{R}^n . e_1, \cdots, e_n 为 \mathbb{R}^n 的一个最大无关组,故 \mathbb{R}^n 的秩为 n.

最大无关组的意义: 无限向量组用有限向量组 (最大无关组) 来表示.

例题 9

例

设

$$\begin{cases} x_1 + 2x_2 + x_3 - 2x_4 &= 0 \\ 2x_1 + 3x_2 - x_4 &= 0 \\ x_1 - x_2 - 5x_3 + 7x_4 &= 0 \end{cases}$$

的全体解向量构成的向量组为 S, 求 R_S .

R(A) 和 R_A 的关系

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

R(A) 和 R_A 的关系

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

所以, 定理 1-4 中矩阵的秩可以换为向量组的秩:

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 ⇔ R_A = R_(A,B).
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.
- 向量组 A 线性相关 ⇔ $R_A < m$.
- 向量组 A 线性无关 ⇔ $R_A = m$.

R(A) 和 R_A 的关系

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

所以, 定理 1-4 中矩阵的秩可以换为向量组的秩:

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.
- 向量组 A 线性相关 ⇔ $R_A < m$.
- 向量组 A 线性无关 $\Leftrightarrow R_A = m$.

因此,可以不用在意 R(A) 中的大写字母 A 是表示向量组,还是表示矩阵.

例题

例 (例 10)

设矩阵

$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix},$$

求矩阵 A 的列向量组的一个最大无关组,并把其余向量用最大无关组线性表示.

例 11

例 (例 11)

向量组 B 可由向量组 A 线性表示,且 $R_A = R_B$,证明:向量组等价.

(提示: 合并向量组.)

例 (P110: 12)

设向量组 $B: \beta_1, \dots, \beta_r$ 可由向量组 $A: \alpha_1, \dots, \alpha_s$ 线性表示为

$$(\beta_1, \cdots, \beta_r) = (\alpha_1, \cdots, \alpha_s) K_{s \times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

7/9

例 (P110: 12)

设向量组 $B: \beta_1, \dots, \beta_r$ 可由向量组 $A: \alpha_1, \dots, \alpha_s$ 线性表示为

$$(\beta_1,\cdots,\beta_r)=(\alpha_1,\cdots,\alpha_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

例 (P110: 12)

设向量组 $B: \beta_1, \dots, \beta_r$ 可由向量组 $A: \alpha_1, \dots, \alpha_s$ 线性表示为

$$(\beta_1,\cdots,\beta_r)=(\alpha_1,\cdots,\alpha_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

例 (P110: 12)

设向量组 $B: \beta_1, \dots, \beta_r$ 可由向量组 $A: \alpha_1, \dots, \alpha_s$ 线性表示为

$$(\beta_1,\cdots,\beta_r)=(\alpha_1,\cdots,\alpha_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

小结

- 向量组的秩、最大无关组.
- 求向量组的秩和最大无关组,用最大无关组表示其他向量.
- 向量组的秩和矩阵的秩的关系.

作业

 Page110-Page111: 10、13-(2)、14-(2)、16 (12 和 19 二选一)。

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2023年12月15日