PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

<u>IEE239 - PROCESAMIENTO DE SEÑALES E IMÁGENES DIGITALES</u> Examen 2

(Primer semestre 2016)

Indicaciones generales:

- Duración: 3 horas.
- La evaluación es estrictamente personal.
- Solo está permitido el uso de tablas de transformadas y calculadoras científicas no programables.
- Indicar claramente el procedimiento seguido en cada pregunta.
- La presentación, la ortografía y la gramática influirán en la calificación.

Puntaje total: 20 puntos

Cuestionario:

Pregunta 1 (4 puntos)

Dada la imagen f(x, y) y el elemento estructural h(x, y):

$$f(x,y) = \begin{pmatrix} \frac{2}{4} & 6 & 5 & 4 & 7 & 3 & 2\\ 4 & 3 & 9 & 15 & 4 & 13 & 1\\ 1 & 8 & 10 & 12 & 9 & 11 & 1\\ 4 & 14 & 13 & 10 & 8 & 11 & 0\\ 5 & 0 & 9 & 8 & 15 & 14 & 6\\ 6 & 0 & 5 & 10 & 12 & 11 & 3\\ 3 & 5 & 1 & 4 & 7 & 3 & 6 \end{pmatrix}; \ h(x,y) = \begin{pmatrix} 0 & 1 & 0\\ 1 & \frac{1}{2} & 1\\ 0 & 1 & 0 \end{pmatrix};$$

- a) **Asumiendo resolución de intensidad de 4 bits**, aplicar la transformación logarítmica a f(x, y). Cuál es su efecto en el rango de intensidades?
- b) Asumiendo resolución de intensidad de 4 bits, hallar el bit plane 3 de f(x, y), donde el bit 0 corresponde al menos significativo. Luego, aplicar al resultado la operación morfológica $\alpha = I \cap \overline{(I \ominus h)}$.
- c) **Asumiendo resolución de intensidad infinita**, determinar magnitud y fase de la gradiente de f(x, y) a partir de máscaras **Sobel** para los pares $\{(0,0)\ (2,1)\ (3,3)\ (4,1)\ (4,6)\}$. Usar zero-padding en donde corresponda:

Pregunta 2 (4 puntos)

Dadas las funciones de **magnitud** y **fase** de $\nabla f_s(x, y)$ descritas en la Tabla 1 y Tabla 2, respectivamente:

- a) Hallar $f_{NH}(x, y)$, $f_{NL}(x, y)$ correspondientes al algoritmo de Canny.
- b) Hallar bordes a partir de umbralización por histéresis ($T_H = 56$, $T_L = 45$).

Nota: descartar cualquier discontinuidad ubicada en los límites de la imagen.

(x,y)	0	1	2	3	4	5	6	7	8	9	10
0	5	28	42	11	52	7	12	62	30	13	13
1	24	29	5	3	51	23	35	54	54	22	5
2	24	39	7	8	46	41	25	32	65	55	42
3	17	16	4	31	36	45	69	25	38	32	24
4	19	2	2	49	56	32	75	23	21	25	52
5	11	2	8	35	50	47	72	43	10	70	25
6	6	8	7	14	30	49	47	60	24	62	24
7	6	13	32	32	9	18	31	46	20	49	37
8	8	30	63	63	28	4	7	15	21	21	45
9	27	49	14	52	42	11	11	25	22	6	25
10	37	30	24	33	47	31	11	11	21	17	21

Tabla 1: $|\nabla f_s(x, y)|$.

(x , y)	0	1	2	3	4	5	6	7	8	9	10
0	1.77	0.86	0.96	-2.23	-1.59	1.57	-2.79	-1.27	-0.45	0.9	-1.49
1	1.57	1.93	2.5	-1.89	-1.57	-0.17	0.81	-1.17	-0.64	0.14	-0.93
2	0.61	1.03	2.16	-2.9	-2.49	-3.07	2.07	-1.08	-0.95	-0.29	-0.12
3	1	0.61	0.46	-1.57	-2.06	2.53	2.36	-2.94	-1.68	-1.01	-0.58
4	1.25	3.14	-2.03	-1.41	-1.19	0.45	1.74	2.45	-2.22	-1.82	3.03
5	1.19	2.68	1.17	-1.54	-1.07	-0.64	1.28	2.66	-1.47	-1.61	1.33
6	0.79	0.79	0.79	-2.16	-1.67	-1.17	0.21	1.37	-2.51	-1.39	-0.33
7	1.57	2.75	-2.89	-2.92	-1.93	-1.35	-0.88	0.65	0.93	-1.53	0.22
8	-2.36	-2.66	-3.01	2.8	-3.11	-2.55	-1.85	0.2	0.29	-0.82	0.79
9	-1.57	-1.69	-0.37	1.59	2.53	-3.05	2.03	2.82	3.14	2.6	1.61
10	-2.02	-1.57	-0.94	0.61	1.63	2.98	-2.23	1.11	2.19	2.7	2.08

Tabla 2: $\langle \nabla f_s(x, y)$ [radianes].

Pregunta 3 (4 puntos)

a) Determinar $f_1(x, y)$ si se sabe que su DFT 2D para M = N = 6 cumple con la siguiente expresión:

$$F_1(u,v) = \cos^2\left[\frac{\pi}{3}(3u+15v)\right] + \sin^2\left[\frac{\pi}{3}(22u+4v)\right] + 1;$$

b) Dada la imagen $f_2 \in R^{4\times 4}$ en su representación col-major y $F_2(u,v)$ su correspondiente DFT 2D para M=N=6:

$$f_2^{(CM)}(i) = \{ \underline{1} \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \};$$

A partir de la definición de DFT 2D, determinar la imagen g(x, y) si se sabe que su DFT 2D para M = N = 3 es $G(u, v) = F_2(2u, 2v)$

Pregunta 4 (4 puntos)

Dado un sistema LTI con respuesta al impulso h(x, y):

$$h(x,y) = \frac{1}{6} \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix};$$

- a) Determinar la función de transferencia del sistema y su espectro de magnitud.
- b) Evaluar el espectro de magnitud para las siguientes posiciones en frecuencia. Para ello, seleccionar valores de (M,N) adecuados. Luego, determinar de qué tipo de filtro se trata y qué orientación de bordes resaltará:

$$(\omega_{\mathcal{X}}, \omega_{\mathcal{Y}}) = \left\{ (0,0) \quad \left(0, \frac{5\pi}{7}\right) \quad \left(0, -\frac{5\pi}{7}\right) \quad \left(\frac{5\pi}{7}, 0\right) \quad \left(-\frac{5\pi}{7}, 0\right) \quad \left(\frac{5\pi}{7}, \frac{5\pi}{7}\right) \quad \left(-\frac{5\pi}{7}, -\frac{5\pi}{7}\right) \quad \left(\frac{5\pi}{7}, -\frac{5\pi}{7}\right) \right\}.$$

c) Se sabe que h(x, y) es un filtro separable. Determinar los dos filtros unidimensionales que lo componen. Luego, calcular la respuesta del sistema a la entrada f(x, y) a partir de dicha descomposición:

$$f(x,y) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix};$$

Pregunta 5 (4 puntos)

Dada la imagen f(x, y) con resolución de intensidad de 5 bits:

$$f(x,y) = \begin{pmatrix} \frac{6}{13} & 16 & 15 & 19 & 6 & 15 \\ 15 & 4 & 6 & 14 & 8 & 8 & 12 \\ 6 & 5 & 10 & 6 & 9 & 13 & 6 \\ 15 & 8 & 14 & 15 & 4 & 8 & 14 \\ 6 & 9 & 6 & 6 & 11 & 9 & 15 \\ 15 & 5 & 17 & 5 & 15 & 5 & 6 \\ 14 & 8 & 6 & 16 & 15 & 6 & 14 \end{pmatrix};$$

Aplicar el método de Umbralización de Otsu. Mostrar claramente su procedimiento y la imagen resultante.

Profesor del curso: Renán Rojas G.

San Miguel, 30 de junio del 2016.