Wentworth Institute of Technology Electrical Engineering and Technology

ELEC 820: Feedback and Control Lab #4: Design of PID Controllers

Objective:

• To design PI, PD, and PID controllers using Root Locus

Design Problems:

1. **PI Controller Design (4 points):** Design a PI controller to drive the step response error to zero. The system should operate with a percent overshoot of 30%.

2. **PD Controller Design (4 points):** The following system operates with a dominant-pole damping ratio of 0.707. Design a PD controller so that the settling time is reduced by a factor of 2.

$$\frac{K(s+6)}{(s+2)(s+3)(s+5)}$$

3. **PD Controller Design (4 points):** Design a PD controller for the system shown below to reduce the settling time by a factor of 4 while continuing to operate with 20% overshoot.

$$\frac{K}{s(s+5)(s+15)}$$

4. **PID Controller Design (8 points):** Design a PID controller for the system shown below to operate with a peak time that is two-thirds of the uncompensated system at 20% overshoot and with zero steady-state error for a step input.

Complete the tables and Provide detailed hand computations for the key steps of all PD designs in Problems 2~4: (θ, z_c, K)

Problem 1	Design a $\underline{\mathbf{PI}}$ controller to drive the step response error to zero. The system should operate with a percent overshoot of 30%. $\frac{K}{(s+1)(s+3)(s+10)}$
The PI- Compensated system	$\frac{1}{(s+1)(s+3)(s+10)}$ PI Controller
Plot the step responses of the original and the PI- compensated systems together	
Conclusion about whether or not the design specifications are satisfied	
Matlab code to generate the plot above	

Problem 2 The PD- Compensated	The following system operates with a dominant-pole damping ratio of 0.707. Design a \underline{PD} controller in the form of $K(s+z_c)$ so that the settling time is reduced by a factor of 2. $\frac{K(s+6)}{(s+2)(s+3)(s+5)}$ $\frac{s+6}{(s+2)(s+3)(s+5)}$
System	PD Controller
Desired Pole Locations	$P_{\text{desired}} =$
Angle contributed by the PD zero	$\theta =$
Compute z_c via geometry	$z_c =$
The controller gain	K =
Plot the step responses of the original and the PD-compensated systems together	
Conclusion about whether or not the design specifications are satisfied	
Matlab code that generates the plot above	

Problem 3	Design a <u>PD</u> controller for the system shown below to reduce the settling time by a factor of 4 while continuing to operate with 20% overshoot. $\frac{K}{s(s+5)(s+15)}$
The PD- Compensated System	$\frac{1}{s(s+5)(s+15)}$ PD Controller
Desired Pole Locations	$P_{\text{desired}} =$
Angle contributed by the PD zero Compute z_c via	$ heta = $ $z_c =$
geometry The controller gain	K =
Plot the step responses of the original and the PD-compensated systems together	
Conclusion about whether or not the design specifications are satisfied	
Matlab code that generates the plot above	

Problem 4: Given the following system that operates at 20% overshoot, design a <u>PID</u> controller that satisfies the following design specifications:

• The peak time can be reduced to be two-thirds without significantly affecting the %OS

• The steady-state error becomes 0 for a ramp input.

	Analysis of the original system to determine the de	esired pole locations
1	Plot the root locus and find the value of K such that the	
1	original system operates at the specified %OS	
2	The closed-loop transfer function of the original system	
2		
3	Can the original system have a valid 2 nd -order	
	approximation?	
4	The dominant poles of the original system	Pdominant =
5	The desired poles of the PD-compensated system	Pdesired =
	Design the PD controller in the form of h	$K(s+z_c)$
6	Compute the angle contributed by the introduced PD-zero	$\theta =$
7	Compute z_c using geometry	$z_c =$
8	Compute the controller gain	K =
9	The designed PD-controller is	$K(s+z_c) =$
10	Plot the step responses of the original and the PD-compensated systems. Are the design specifications satisfied for the transient?	
	Design a PI controller in the form of $\frac{K}{2}$	$\frac{s(s+0.06)}{s}$
11	Plot the root locus and find the value of K such that the	K =
	PID-compensated system operates at the specified %OS	n –
12	The closed-loop transfer function of the PID-compensated	
14	system	
13	Does the PID-compensated system have a valid 2 nd -order	
13	approximation?	

	Validate your design by plotting the step responses of all	
14	three systems (the original, the PD-compensated, and the	
	PID-compensated) in one figure. Are the design	
	specifications satisfied for the transient?	
	Is the design specification satisfied for the steady-state?	
	How can you show it?	
15		
	Referring to the following structure, what is your designed	
	PID controller?	
16	$\frac{1}{s(s+4)(s+12)} \longrightarrow K(s) =$	=