

planetmath.org

Math for the people, by the people.

consequence operator determined by a class of subsets

 ${\bf Canonical\ name} \quad {\bf Consequence Operator Determined By AClass Of Subsets}$

Date of creation 2013-03-22 16:29:45 Last modified on 2013-03-22 16:29:45

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 10

Author rspuzio (6075)

 $\begin{array}{lll} Entry \ type & Theorem \\ Classification & msc \ 03G25 \\ Classification & msc \ 03G10 \\ Classification & msc \ 03B22 \end{array}$

Theorem 1. Let L be a set and let K be a subset of $\mathcal{P}(L)$. The the mapping $C \colon \mathcal{P}(L) \to \mathcal{P}(L)$ defined as $C(X) = \cap \{Y \in K \mid X \subseteq Y\}$ is a consequence operator.

Proof. We need to check that C satisfies the defining properties.

Property 1: Since every element of the set $\{Y \in K \mid X \subseteq Y\}$ contains X, we have $X \subseteq C(X)$.

Property 2: For every element Y of K such that $X \subseteq Y$, it also is the case that $C(X) \subseteq Y$ because an intersection of a family of sets is a subset of any member of the family. In other words (or rather, symbols),

$${Y \in K \mid X \subseteq Y} \subseteq {Y \in K \mid C(X) \subseteq Y},$$

hence $C(C(X)) \subseteq C(X)$. By the first property proven above, $C(X) \subseteq C(C(X))$ so C(C(X)) = C(X). Thus, $C \circ C = C$.

Property 3: Let X and Y be two subsets of L such that $X \subseteq Y$. Then if, for some other subset Z of L, we have $Y \subset Z$, it follows that $X \subset Z$. Hence,

$${Z \in K \mid Y \subseteq Z} \subseteq {Z \in K \mid X \subseteq Z},$$

so $C(X) \subseteq C(Y)$.