BUSCA BINÁRIA

Prof. Alberto Costa Neto

MOTIVAÇÃO

- Até o momento vimos a busca sequencial.
 - É lenta, mas necessária se os itens (nós) não estão ordenados.

 Caso os itens estejam ordenados, existe a opção de utilizar uma busca mais eficiente: a busca binária

BUSCA BINÁRIA

- Como você procura por uma página em um livro?
- Ou por uma palavra em um dicionário?

Pense um pouco!

BUSCA BINÁRIA: DESENVOLVENDO A IDEIA

Tamanho = 11

2	3	5	10	15	20	23	50	85	98	100	
---	---	---	----	----	----	----	----	----	----	-----	--

A busca binária recebe este nome porque decide entre 2 partes do espaço de busca, eliminando metade do espaço a cada etapa.

BUSCA BINÁRIA: DESENVOLVENDO A IDEIA

Tamanho = 11

2	3	5	10	15	20	23	50	85	98	100	
---	---	---	----	----	----	----	----	----	----	-----	--

Passo 1: Calcular a posição do meio da lista

Passo 2: Verificar se o meio é igual ao que se procura e encerra em caso afirmativo.

Passo 3: Se não for e o valor procurado for menor que o meio, a busca passa a ser feita apenas do lado esquerdo. Caso contrário, apenas do lado direito.

Passo 4: Repetir o passo 1 até o espaço de busca ser igual a 1.

BUSCA BINÁRIA: DESENVOLVENDO A IDEIA

Tamanho = 11 Meio = 5 Inicio = 0 Fim = 10											
	2	3	5	10	15	20	23	50	85	98	100

Passo 1: Calcular a posição do meio da lista

Passo 2: Verificar se o meio é igual ao que se procura e encerra em caso afirmativo.

Passo 3: Se não for e o valor procurado for menor que o meio, a busca passa a ser feita apenas do lado esquerdo. Caso contrário, apenas do lado direito.

Passo 4: Repetir o passo 1 enquanto Inicio <= Fim e não encontrar o valor procurado.

COMO CALCULAR A POSIÇÃO DO MEIO?

COMO CALCULAR A POSIÇÃO DO MEIO?

• Basta somar Inicio com Fim e dividir o resultado por 2.

Meio =
$$(Inicio + Fim) / 2$$

• Com **Inicio** = 0 e **Fim** = 10:

Meio =
$$(0 + 10) / 2 = 5$$

• Com **Inicio** = 6 e **Fim** = 10:

Meio =
$$(6 + 10) / 2 = 8$$

SIMULANDO UMA PESQUISA BINÁRIA

Meio = 5 | Inicio = 0 | Fim = 10 | Buscando = 98

2 3 5 10 15 20 23 50 85 98 100

Passo 1: Meio = (0 + 10) / 2 = 5

Passo 2: Verificar se o meio é igual 98 (não é).

Passo 3: 98 é maior que o do meio (20). Então Inicio passa a ser igual a Meio + 1 (6) para restringir a busca aos maiores que 20.

Meio = 8 | Inicio = 6 | Fim = 10 | Buscando = 98

2	3	5	10	15	20	23	50	85	98	100
---	---	---	----	----	----	----	----	----	----	-----

Passo 1: Meio = (6 + 10) / 2 = 8

Passo 2: Verificar se o meio é igual 98 (não é).

Passo 3: 98 é maior que o do meio (85). Então Inicio passa a ser igual a Meio + 1 (9) para restringir a busca aos maiores que 85.

Meio = 9 | Inicio = 9 | Fim = 10 | Buscando = 98

2	3	5	10	15	20	23	50	85	98	100
---	---	---	----	----	----	----	----	----	----	-----

Passo 1: Meio = (9 + 10) / 2 = 9

Passo 2: Verificar se o meio é igual 98 (é). Achou! Fim!

SIMULANDO UMA PESQUISA BINÁRIA (VALOR INEXISTENTE)

Passo 1: Meio = (0 + 10) / 2 = 5

Passo 2: Verificar se o meio é igual 99 (não é).

Passo 3: 99 é maior que o do meio (20). Então Inicio passa a ser igual a Meio + 1 (6) para restringir a busca aos maiores que 20.

Meio = 8 | Inicio = 6 | Fim = 10 | Buscando = 99

2	3	5	10	15	20	23	50	85	98	100
---	---	---	----	----	----	----	----	----	----	-----

Passo 1: Meio = (6 + 10) / 2 = 8

Passo 2: Verificar se o meio é igual 99 (não é).

Passo 3: 99 é maior que o do meio (85). Então Inicio passa a ser igual a Meio + 1 (9) para restringir a busca aos maiores que 85.

Meio = 9 | Inicio = 9 | Fim = 10 | Buscando = 99

2	3	5	10	15	20	23	50	85	98	100
---	---	---	----	----	----	----	----	----	----	-----

Passo 1: Meio = (9 + 10) / 2 = 9

Passo 2: Verificar se o meio é igual 99 (não é).

Passo 3: 99 é maior que o do meio (98). Então Inicio passa a ser igual a Meio + 1 (10) para restringir a busca aos maiores que 98.

Meio = 10 | Inicio = 10 | Fim = 10 | Buscando = 99

2	3	5	10	15	20	23	50	85	98	100
---	---	---	----	----	----	----	----	----	----	-----

Passo 1: Meio = (10 + 10) / 2 = 10

Passo 2: Verificar se o meio é igual 99 (não é).

Passo 3: 99 é menor que o do meio (100). Então Fim passa a ser igual a Meio - 1 (9) para restringir a busca aos menores que 100.

Passo 4: Fim é menor que Inicio (busca sem sucesso)

SUGESTÕES DE ESTUDO

VELOSO, Paulo et al. Estrutura de Dados Editora Campos - 1984 / ISBN: 8570013523

• Seções 9.1 e 9.2

SUGESTÕES DE ESTUDO

Estruturas de Dados (Nina Edelweiss)

• Seção 3.1.4

Projeto de Algoritmos com implementações em Java e C++ (Nivio Ziviani)

• Seção 5.2

Estruturas de dados (Paulo Veloso)

• Seção 9.2