

Nota de Aula de Laboratório: Conversores Buck/ Boost/ Buck-Boost

Introdução

O conteúdo desta nota de aula refere-se à informações básicas e procedimentos recomendados para o manuseio de um kit didático em aulas de laboratório sobre o funcionamento e características gerais de conversores CC/CC (fontes chaveadas).

Esse kit didático foi concebido de tal forma que permite facilmente, através da manipulação de *jumpers*, a utilização de qualquer uma das três configurações básicas de conversores CC/CC: Buck (*Step-Down*), Boost (*Step-Up*) ou Buck-Boost (*Step-Down/Step-Up*).

Basicamente, o kit didático é composto de três sub-circuitos, como se pode ver na Figura 1, os quais são dedicados a: geração do sinal de PWM (em vermelho), comando do chaveamento do transistor MOSFET de potência (em laranja) e por uma matriz de componentes (em amarelo). Estes sub-circuitos estão dispostos em linha, da esquerda para a direita, com o intuito de facilitar o entendimento e torná-lo mais didático, pois se assemelha a circuitos apresentados em livros.

Figura 1. Lay-out da placa do kit didático.

Circuitos Integrados Utilizados

• SG-3524

O SG3524 é o circuito integrado (CI) responsável pela geração do sinal de PWM. Na figura 2 pode-se observar o diagrama funcional do SG3524. Logo abaixo, na tabela 1, encontra-se a relação dos pinos utilizados na placa e suas respectivas legendas.

Figura 2. Esquema do circuito integrado do SG3524.

Pino	Descrição		
RT	Resistor de temporização.		
CT	Capacitor de temporização.		
GND	Terra.		
COMP	Acesso direto à saída do		
	amplificador.		
EMIT1	Emissor do transistor 1.		
COL1	Coletor do transistor 1.		
COL2	Coletor do transistor 2.		
EMIT2	Emissor do transistor 2.		
VCC	Tensão de alimentação.		
REF	Tensão de saída de referência.		
OUT			

Tabela 1. Legenda dos pinos do SG3524.

• IR-2111

O IR2111 é o CI responsável pelo comando de chaveamento do MOSFET. Na figura 3 pode-se observar o diagrama funcional do IR2111. Em seguida, na tabela 2, encontra-se a relação dos pinos utilizados na placa e suas respectivas legendas.

Figura 3. Esquema eletrônico do circuito integrado IR2111.

Tabela 2. Legenda dos pinos do IR211 que são utilizados na placa.

Tabela de Jumpers

Jumper	Função	
J1	Ajuste de frequência de operação.	
J2	Seleção do comando do SG3524 entre on board (potenciômetro) ou	
	externo (entrada analógica).	
J3	Seleção da geração de PWM entre on board (SG3524) ou externa	
	(microcontrolador).	
J4, 5, 6, 7,	Jumpers de seleção da configuração da placa.	
8, 9 e 10.	Junipers de seleção da comiguração da placa.	

Tabela 3. Tabelas dos Jumpers presentes na placa.

Faixa de Operação

Conversor	Razão cíclica	Faixa de operação
Buck	0 a 100%	0 a 12V
Boost	0 a 100%	12 a 24V*
Buck-Boost	0 a 100%	0 a 24V*

Tabela 1. Razão cíclica e faixa de operação dos conversores.

*Cuidado: Não ultrapassar 24V, risco de queimar os componentes!

Sugestões

- Visualizar a tensão de referencia do circuito integrado SG3524. Observe a influência do ajuste do potenciômetro.
- Visualizar a tensão correspondente a forma de onda "Dente de Serra" do SG3524. Observe a influencia do ajuste do potenciômetro.
- 3. Visualizar as tensões de entrada e saída do SG3524.
- 4. Visualizar as tensões de entrada e saída do IR2111.
- 5. Verificar a relação entre as tensões de saída do SG3524 e saída do IR2111.
- Verifique se os resistores ligados à saída do SG3524, influenciam na razão cíclica.
- 7. Verificar a corrente do indutor.
- Para um valor fixo de razão cíclica, substitua esse valor na equação da modelagem matemática para o regime permanente, e observe se o valor calculado é igual ao valor encontrado no osciloscópio.