Poisson Image Editing

Yang Zhuoyu

Patrick Pérez

Michel Gangnet

Andrew Blake

Microsoft Research UK

Goals

• Seamlessly copy (clone) opaque or transparent source image regions into a target image.

Input Data

Mask

Source

Target

Output Data

Guided interpolation notations

S, a closed subset of R^2 , be the image definition domain.

 Ω , a closed subset of S with boundary $\partial\Omega$.

 f^* , a known scalar function defined over S minus the interior of Ω

f, an unknown scalar function defined over the interior of Ω . v, a vector field defined over Ω .

Guided interpolation notations

Unknown function *f* interpolates in domain Ω the target function f*, under guidance of vector field v, which might be or not the gradient field of a source function g.

Membrane interpolant

• The simplest interpolant f of f^* over Ω is the membrane interpolant defined as the solution of the minimization problem:

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}, \tag{1}$$

where $\nabla \cdot = \left[\frac{\partial \cdot}{\partial x}, \frac{\partial \cdot}{\partial y}\right]$ is the gradient operator.

Euler-Lagrange Equation

• Using a fundamental equation of calculus of variations, Euler-Lagrange Equation, to solve the minimizer. Below is the result.

$$\Delta f = 0 \text{ over } \Omega \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega},$$
 (2)

where
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 is the Laplacian operator.

Guidance field

- The route proposed in the Poisson image editing is to modify the problem by introducing further constraints in the form of a guidance field as explained below.
- A guidance field is a vector field *v* used in an extended version of the minimization problem (1) above:

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}, \tag{3}$$

Poisson Equation

• The solution of (3) is the unique solution of the following Poisson equation with Dirichlet boundary conditions:

$$\Delta f = \text{div} \mathbf{v} \text{ over } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega},$$
 (4)

where div**v** =
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
 is the divergence of **v** = (u, v)

• This is the fundamental machinery of Poisson editing of color images: three Poisson equations of the form (4) are solved independently in the three color channels of the chosen color space.

Discrete Poisson solver

 The variational problem (3), and the associated Poisson equation with Dirichlet boundary conditions (4), can be discretized and solved as below:

for all
$$p \in \Omega$$
, $|N_p|f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$. (7)

• For each pixel p in S, let N_p be the set of its 4-connected neighbors which are in S, and let $\langle p,q \rangle$ denote a pixel pair such that $q \in N_p$.

Discrete Poisson solver

• Note that for pixels p interior to Ω , that is, $N_p \subset \Omega$, there are no boundary terms in the right hand side of (7), which reads:

$$|N_p|f_p - \sum_{q \in N_p} f_q = \sum_{q \in N_p} v_{pq}.$$
 (8)

Importing gradients

• The basic choice for the guidance field *v* is a gradient field taken directly from a source image. Denoting by *g* this source image, the interpolation is performed under the guidance of

$$\mathbf{v} = \nabla g,\tag{9}$$

• and (4) now reads

$$\Delta f = \Delta g \text{ over } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}.$$
 (10)

Importing gradients

• As for the numerical implementation, the continuous specification (9) translates into

for all
$$\langle p, q \rangle$$
, $v_{pq} = g_p - g_q$, (11)

• which is to be plugged into (7).

Mixing gradients

• With the tool described in the previous section, no trace of the target image f^* is kept inside Ω . However, there are situations where it is desirable to combine properties of f^* with those of g, for example to add objects with holes, or partially transparent ones, on top of a textured or cluttered background.

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})|, \\ \nabla g(\mathbf{x}) & \text{otherwise.} \end{cases}$ (12)

Mixing gradients

• The discrete counterpart of this guidance field is:

$$v_{pq} = \begin{cases} f_p^* - f_q^* & \text{if } |f_p^* - f_q^*| > |g_p - g_q|, \\ g_p - g_q & \text{otherwise,} \end{cases}$$
(13)

Implementation(Opaque)

- Let $p_1, p_2, \dots p_i \dots p_{n-1}, p_n$ be n unknown pixels in target image.
- For each p interior to Ω , there is a equation

$$4f_p - f_{q1} - f_{q2} - f_{q3} - f_{q4} = 4g_p - g_{q1} - g_{q2} - g_{q3} - g_{q4}$$

• If p is not interior to Ω , e.g., q1 is out of Ω

$$4f_p - f_{q2} - f_{q3} - f_{q4} = 4g_p - g_{q1} - g_{q2} - g_{q3} - g_{q4} + f_{q1}^*$$

Direct

Opaque

Transparent

Direct

Opaque

Transparent

Direct Opaque Transparent

Direct Opaque Transparent

Source code on my Github

