ÉCHANTILLONNEUR DE GIBBS

Warm-up

Soit (X,Y) un couple de variables de loi gaussienne centrée de matrice de covariance

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \,,$$

où $\rho \in (0,1)$. Écrire un échantillonneur de Gibbs permettant de simuler approximativement la loi de (X,Y).

Échantillonneur pour un mélange gaussien

Soit $K \geq 2$ et $n \geq 1$. On considère le vecteur aléatoire (θ, X, Z) où $X = (X_1, \ldots, X_n)$ et $Z = (Z_1, \ldots, Z_n)$ ayant la loi suivante.

- On simule $p=(p_1,\dots,p_K)$ un vecteur ayant la loi de densité proportionnelle à (loi de Dirichlet) $p\mapsto \prod_{k=1}^K p_k^{\gamma_k-1}$.
- On simule $s_{1:K}^2$, mutuellement indépendantes, et telles que pour tout $1 \le k \le K$, s_k^2 a une loi inverse-gamma de paramètres, $\lambda_k/2$ et $\beta_k/2$, i.e. de densité proportionnelle à $u \mapsto u^{-\lambda_k/2-1} \exp(-\beta_k/(2u))$ sur \mathbb{R}_+^* .
- Pour tout $1 \le k \le K$, la loi conditionnelle de m_k sachant s_k^2 est gaussienne de moyenne α_k et de variance s_k^2/λ_k .
- Conditionnellement à $\theta = (p_1, \dots, p_K, m_1, \dots, m_K, s_1^2, \dots, s_K^2)$, les $(Z_i, X_i)_{1 \leq i \leq n}$ sont indépendantes et telles que :
 - pour tout $1 \le k \le K$, $\mathbb{P}(Z_i = k | \theta) = p_k$;
 - conditionnellement à θ et Z_i , X_i suit une loi gaussienne de moyenne m_{Z_i} et de variance $s_{Z_i}^2$.

La densité jointe peut alors s'écrire :

$$\pi: (\theta, x, z) \mapsto \pi(p) \left\{ \prod_{k=1}^K \pi(s_k^2) \pi(m_k | s_k^2) \right\} \left\{ \prod_{i=1}^n \pi(z_i | \theta) \pi(x_i | z_i, \theta) \right\},$$

où $\pi(w_1|w_2)$ est une notation générique pour la densité de la loi conditionnelle de la variable W_1 sachant W_2 .

1. Montrer que la loi a posteriori de θ s'écrit :

$$\pi(\theta|x) \propto \pi(\theta) \prod_{i=1}^{n} \left(\sum_{k=1}^{K} p_k \varphi_{m_k, s_k^2}(x_i) \right),$$

où φ_{m_k,s_k^2} est la densité gaussienne de moyenne m_k et de variance s_k^2 .

- 2. Écrire la densité de la loi conditionnelle de Z sachant (X, θ) .
- 3. Écrire la densité de la loi conditionnelle de θ sachant (Z, X).
- 4. Écrire le pseudo-code de l'échantillonneur de Gibbs.