

Automates finis avec sortie

Les automates finis comme modèles mathématiques des ordinateurs

Définition: Machine de Moore

Une machine de Moore est défini par:

- 1. un ensemble fini non vide d'états q_0 , q_1 , q_2 , ... avec un état q_0 désigné comme état de départ (ou initial)
- 2. un alphabet Σ des lettres d'entrées
- 3. un alphabet Γ des caractères de sorties
- 4. Une table de sortie qui indique pour chaque état le caractère de sortie (ou imprimé) dès qu'on rentre à cet état.
- 5. Une table de transition qui fait correspondre à chaque pair (état, lettre de Σ) un état «l'état dans lequel on passe ».

(état, lettre de Σ) $\xrightarrow{\text{transition}}$ état

$$\Sigma = \{a,b\}$$

$$\Gamma = \{0, 1\}$$

états	Contin	Prochain état			
	Sortie	Après entrée a	Après entrée b		
-q ₀	1	q_1	q ₃		
q_1	0	q_3	q_1		
q_2	0	q_0	q_3		
q_3	1	q_3	q_2		

Entrée		а	а	а	b	а	b	b	а	а	b	b
État	q_0	q_1	q_2	q_2	q_3	q_1	q_0	q_0	q_1	q_2	q_3	q_0
Sortie	0	0	0	0	1	0	0	0	0	0	1	0

imprimer 1 ≈ état final

les mots qui se terminent par aab

Définition: Machine de Mealy

Une machine de Mealy est défini par:

- 1. un ensemble fini non vide d'états q_0 , q_1 , q_2 ,... avec un état q_0 désigné comme état de départ (ou initial)
- 2. un alphabet Σ des lettres d'entrées
- 3. un alphabet Γ des caractères de sorties
- 4. Une table de sortie qui indique pour chaque état le caractère de sortie (ou imprimé) dès qu'on rentre à cet état.
- 5. Une table de transition qui fait correspondre à chaque pair (état, lettre de Σ) un état «l'état dans lequel on passe » ainsi que le caractère de sortie (ou imprimé) .

état entrée/sortie état

Abréviation

Une machine d'incrémentation

Machine de Moore → Machine de Mealy

- <u>Définition</u>: Soit Mo une machine de Moore qui imprime x au départ. Soit Me une machine de Mealy. Les deux machines sont équivalentes si pour tout mot d'entrée, quand le mot émis de Me est w, le mot émis de Mo est xw.
- <u>Théorème</u>: Pour toute machine de Moore, il existe une machine de Mealy tel que les deux machines sont équivalentes.
- **Preuve**: Par un algorithme constructif

Exemple: Machine de Moore Machine de Mealy

Machine de Mealy → Machine de Moore

<u>Théorème</u>: Pour toute machine de Mealy, il existe une machine de Moore tel que les deux machines sont équivalentes.

Preuve: Par un algorithme constructif

Une copie de l'état pour chaque lettre de Γ qui étiquette une flèche rentrante

Machine de Mealy → Machine de Moore

- Il faut considérer
 - 1. les flèches qui rentrent
 - 2. les flèches qui sortent
 - 3. les boucles

Machine de Mealy → Machine de Moore

S'il n'y a pas une flèche qui rentre, choisir une lettre quelconque de Γ.

Choisir une copie quelconque de q_0 comme nouvel état de départ.

Exemple: Machine de Mealy Machine de Moore

Exemple: Une machine de Mealy qui décrit un circuit

q0: A=0, B=0

q1: A=0,B=1

q2: A=1,B=0

q3: A=1,B=1

Transitions:

Nouveau B = Ancien A

Nouveau A = Entrée NAND (Ancien A OR Ancien B)

Sortie = Entrée OR (ancien B)

Exemple: Une machine de Mealy qui décrit un circuit

état	Entr	ée 0	Entrée 1		
d'origine	Nouvel état	Sortie	Nouvel état	Sortie	
q_0	q_2	0	q_2	1	
q_1	q_2	1	q_0	1	
q_2	q_3	0	q_1	1	
q_3	q_3	1	$q_{\mathtt{1}}$	1	

q0: A=0, B=0 q1: A=0,B=1

q2: A=1,B=0

q3: A=1,B=1

Transitions:

Nouveau B = Ancien A

Nouveau A = Entrée NAND (Ancien A OR Ancien B)

Sortie = Entrée OR (ancien B)

Exemple: Une machine de Mealy qui décrit un circuit

état	Entr	ée 0	Entrée 1		
d'origine	Nouvel état	Sortie	Nouvel état	Sortie	
q_0	q_2	0	q_2	1	
q_1	q_2	1	q_0	1	
q_2	q_3	0	q_1	1	
q_3	q_3	1	q_1	1	

	Automate fini	Graphe Trans.	GTG	Machines de Moore	Machines de Mealy
état début	1	≥1	≥1	1	1
état final	≥0	≥0	≥0	0	0
labels sur les arêtes	lettres de Σ	mots de Σ*	Exp. Reg. sur Σ	lettres de Σ	i/o, i∈Σ, o∈Γ
# de trans. de chaque état	1 transition pour chaque lettre de Σ	≥0	≥0	1 transition pour chaque lettre de Σ	1 transition pour chaque lettre de Σ
Déterministe?	oui	non	non	oui	oui
Sortie?	non	non	non	oui	oui

Markey Wall Markey Walls and Markey Walls and Markey Walls

Question?