Part of Speech Tagging

Outline

- What is part of speech tagging?
- Markov chains
- Hidden Markov models
- Viterbi algorithm
- Example

What is part of speech?

Why not learn something?

adverb adverb verb noun punctuation

mark, sentence closer

Part of speech (POS) tagging

• Part of speech tags:

lexical term	tag	example
noun	NN	something , nothing
verb	VB	learn, study
determiner	DT	the, a
w-adverb	WRB	why, where
	•••	

Why not learn something?

WRB RB VB NN .

Applications:

- Named entities
- Co-reference resolution
- Speech recognition

Speech recognition

Markov Chains

Example

 whether the following word in the sentence is a noun, a verb, or some other parts of speech Why not learn ...

verb verb?

noun?
...?

Visual Representation

 The likelihood of the next words part of speech tag in a sentence tends to depend on the part of speech tag of the previous word

Markov Chain

- Markov chain can be depicted as a directed graph
 - a graph is a kind of data structure that is visually represented as a set of circles connected by lines.
- The circles of the graph represents states of our model
- The arrows from state s1 to s2 represents the transition probabilities, the likelihood to move from s1 to s2

$$Q = \{q_1, q_2, q_3\}$$

Markov Chains and POS Tags

Transition probabilities

Why not **learn** something?

Transition probabilities

EPT Education

- A sequence of words with associated parts of speech tags we 0.2 can represent that sequence with a graph
- The parts of speech tags are events that can occur depicted by the states of the model graph.
- The weights on the arrows between the states define the probability of going from one state to another

Why not learn something?

Initial probabilities

Why not learn something?

NN? VB? O?

	NN	VB	0
π (initial)	0.4	0.1	0.5
NN (noun)	0.2	0.2	0.6
VB (verb)	0.4	0.3	0.3
O (other)	0.2	0.3	0.5

- The model graph can be represented as a Transition matrix with dimension n+1 by n when no previous state, we introduce an initial state π .
- The sum of all transition from a state should always be 1

Transition table and matrix

		NN	VB	0
	π (initial)	0.4	0.1	0.5
A =	NN (noun)	0.2	0.2	0.6
	VB (verb)	0.4	0.3	0.3
	O (other)	0.2	0.3	0.5

$$A = \begin{pmatrix} 0.4 & 0.1 & 0.5 \\ 0.2 & 0.2 & 0.6 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

States

$$Q = \{q_1, \dots, q_N\}$$

Transition matrix

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix}$$

Hidden Markov Models

- The hidden Markov model implies that states are hidden or not directly observable
- The hidden Markov model have a transition probability matrix A of dimensions (N+1,N)
 where N is number of hidden states
- The hidden Markov model have emission probabilities matrix B describe the transition from the hidden states to the observables(the words of your corpus)

hidden states

observables

the row sum of emission probabity for a hidden state is 1

The emission matrix

		going	to	eat	
B =	NN (noun)	0.5	0.1	0.02	
	VB (verb)	0.3	0.1	0.5	
'	O (other)	0.3	0.5	0.68	

$$\sum_{i=1}^{V} b_{ij} = 1$$

He lay on his back.

I'll be back.

States

Transition matrix

Emission matrix

$$Q = \{q_1, \dots, q_N\} \quad A = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N+1,1} & \dots & a_{N+1,N} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & \dots & b_{1V} \\ \vdots & \ddots & \vdots \\ b_{N1} & \dots & b_{NV} \end{pmatrix}$$

The Transition Matrix

- Transition matrix holds all the transition probabilities between states of the Markov model
 - C(t_{i-1},t_i) count all occurrences of tag pairs in your training corpus
 - C(t_{i-1},t_i) count all occurrences of tag t_{i-1}

1. Count occurrences of tag pairs

$$C(t_{i-1},t_i)$$

2. Calculate probabilities using the counts

$$P(t_i|t_{i-1}) \neq \frac{C(t_{i-1}, t_i)}{\sum_{j=1}^{N} C(t_{i-1}, t_j)}$$

The Transition Matrix

		NN	VB	0	
	π	1	0	2	
A =	NN (noun)	0	0	6	
	VB (verb)	0	0	0	
	O (other)	6	0	8	٦

e apply

<s> in a station of the metro

<s> the apparition of these faces in the crowd :

<s> petals on a wet, black bough.

Ezra Pound - 1913

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i) + \epsilon}{\sum_{j=1}^{N} C(t_{i-1}, t_j) + N * \epsilon}$$

The Emission Matrix

Count the co-occurrences of a part of speech tag with a specific word

		in	а	
	NN (noun)	0	***	
B =	VB (verb)	0	***	
	O (other)	2	***	

$$P(w_i|t_i) = \frac{C(t_i, w_i) + \epsilon}{\sum_{j=1}^{V} C(t_i, w_j) + N * \epsilon}$$
$$= \frac{C(t_i, w_i) + \epsilon}{C(t_i) + N * \epsilon}$$

The Viterbi Algorithm

The Viterbi algorithm is actually a graph algorithm

The goal is to to find the sequence of hidden states or parts of speech tags that have

the highest probability for a sequence

Why not learn something?

The Viterbi Algorithm

- The algorithm can be split into three main steps: the initialization step, the forward pass, and the backward pass.
- Given your transition and emission probabilities, we first populates and then use the auxiliary matrices C and D
 - matrix C holds the intermediate optimal probabilities
 - matrix D holds the indices of the visited states as we are traversing the model graph to find the most likely sequence of parts of speech tags for the given sequence of words, W₁ all the way to W_k.
 - C and D matrix have n rows (number of parts of speech tags) and k comlumns (number of words in the given sequence)

Initialization step

 The initialization step is one of three steps to populate the auxiliary matrices
 C and D is populated.

		W ₁	W_2	 W _K
C =	t ₁	C _{1,1}		
C =				
	t _N	C _{N,1}		

$$c_{i,1} = \pi_i * b_{i,cindex(w_1)}$$
$$= a_{1,i} * b_{i,cindex(w_1)}$$

		W ₁	W ₂	 W _K
D —	t ₁	d _{1,1}		
D =	•••			
	t _N	$d_{N,1}$		

$$d_{i,1} = 0$$

Forward Pass

For the C matrix, the entries are calculated by this formula:

$$C = \begin{bmatrix} & & \mathbf{w_1} & \mathbf{w_2} & \dots & \mathbf{w_K} \\ & \mathbf{t_1} & \mathbf{c_{1,1}} & \mathbf{c_{1,2}} & & \mathbf{c_{1,K}} \\ & \dots & & & & \\ & \mathbf{t_N} & \mathbf{c_{N,1}} & \mathbf{c_{N,2}} & & \mathbf{c_{N,K}} \end{bmatrix}$$

$$c_{i,j} = \max_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$d_{i,j} = \operatorname*{argmax}_{k} c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

For matrix D, save the k, which maximizes the entry in c_{i,i}.

Backward Pass

- The backward pass help retrieve the most likely sequence of parts of speech tags for your given sequence of words.
- First calculate the index of the entry, Ci,K, with the highest probability in the last column of C represents the last hidden state we traversed when we observe the word wi
- Use this index to traverse back through the matrix D to reconstruct the sequence of parts of speech tags multiply many very small numbers like probabilities leads to numerical issues
- Use log probabilities instead where numbers are summed instead of multiplied.

$$c_{i,j} = \max_k c_{k,j-1} * a_{k,i} * b_{i,cindex(w_j)}$$

$$\downarrow \\ log(c_{i,j}) = \max_k log(c_{k,j-1}) + log(a_{k,i}) + log(b_{i,cindex(w_j)})$$

Summary

- 1. From word sequence to POS tag sequence
- 2. Viterbi algorithm
- 3. Log probabilities