Problema 1. Determinați idealele inelului \mathbb{Z}_{12} .

Soluţie: $\mathbb{Z}_{12} = \mathbb{Z}/12\mathbb{Z}$. Din teorema de corespondenţă idealele \overline{J} ale inelului \mathbb{Z}_{12} sunt în bijecţie cu idealele J, $12\mathbb{Z} \subset J \subset \mathbb{Z}$. Dintr-un rezultat de la curs ştim că toate idealele inelului \mathbb{Z} sunt de forma $n\mathbb{Z}$. Incluziunea $12\mathbb{Z} \subset n\mathbb{Z}$ implică n|12, de unde $n \in \{1, 2, 3, 4, 6, 12\}$.

Deci idealele $\overline{J} \subset \mathbb{Z}_{12}$ sunt $\mathbb{Z}/12\mathbb{Z}, 2\mathbb{Z}/12\mathbb{Z}, 3\mathbb{Z}/12\mathbb{Z}, 4\mathbb{Z}/12\mathbb{Z}, 6\mathbb{Z}/12\mathbb{Z}, 12\mathbb{Z}/12\mathbb{Z}$.

Problema 2. Determinați idealele (stângi/drepte/bilaterale) ale inelului de matrice $\mathcal{M}_2(\mathbb{Z}_2)$.

Soluţie: $\mathbb{Z}_2 = \{\hat{0}, \hat{1}\}, |\mathbb{Z}_2| = 2 \text{ de unde } |\mathcal{M}_2(\mathbb{Z}_2)| = 16.$ Voi scrie tabla înmulţirii pe $\mathcal{M}_2(\mathbb{Z}_2)$. Elementele inelului $\mathcal{M}_2(\mathbb{Z}_2)$ sunt $0 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, A_1 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, A_2 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, A_3 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, A_4 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, A_5 = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, A_6 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, I = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, A_7 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}, A_8 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, A_9 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{10} = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{11} = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{12} = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, A_{13} = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}, 1 = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}.$

Tabla înmulțirii este:

	0	A_1	A_2	A_3	A_4	A_5	A_6	I	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A_1	0	A_1	A_2	0	0	A_5	A_1	A_1	A_2	A_2	0	A_2	A_1	A_5	A_5	A_5
A_2	0	0	0	A_1	A_2	0	A_1	A_2	A_1	A_2	A_5	A_5	A_5	A_2	A_1	A_5
A_3	0	A_3	A_4	0	0	A_9	A_3	A_3	A_4	A_4	0	A_4	A_3	A_9	A_9	A_9
A_4	0	0	0	A_3	A_4	0	A_3	A_4	A_3	A_4	A_9	A_9	A_9	A_4	A_3	A_9
A_5	0	A_1	A_2	A_1	A_2	A_5	0	A_5	A_5	0	A_5	A_1	A_2	A_1	A_2	0
A_6	0	A_6	A_8	0	0	1	A_6	A_6	A_8	A_8	0	A_8	A_6	1	1	1
I	0	A_1	A_2	A_3	A_4	A_5	A_6	I	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	1
A_7	0	A_3	A_4	A_1	A_2	A_9	A_6	A_7	I	A_8	A_5	A_{12}	A_{13}	A_{10}	A_{11}	1
A_8	0	0	0	A_6	A_8	0	A_6	A_8	A_6	A_8	1	1	1	A_8	A_6	1
A_9	0	A_3	A_4	A_3	A_4	A_9	0	A_9	A_9	0	A_9	A_3	A_4	A_3	A_4	0
A_{10}	0	A_3	A_4	A_6	A_8	A_9	A_1	A_{10}	A_{11}	A_2	1	A_{13}	A_{12}	A_7	I	A_5
A_{11}	0	A_6	A_8	A_3	A_4	1	A_1	A_{11}	A_{10}	A_2	A_9	A_7	I	A_{13}	A_{12}	A_5
A_{12}	0	A_1	A_2	A_6	A_8	A_5	A_3	A_{12}	A_{13}	A_4	1	A_{11}	A_{10}	I	A_7	A_9
A_{13}	0	A_6	A_8	A_1	A_2	1	A_3	A_{13}	A_{12}	A_4	A_5	I	A_7	A_{11}	A_{10}	A_9
1	0	A_6	A_8	A_6	A_8	1	0	1	1	0	1	A_6	A_8	A_6	A_8	0

Ideale la dreapta: $\{0, A_1, A_2, A_5\}$, $\{0, A_3, A_4, A_9\}$, $\{0, A_6, A_8, 1\}$ Ideale la stânga: $\{0, A_1, A_3, A_6\}$, $\{0, A_2, A_4, A_8\}$, $\{0, A_5, A_9, 1\}$ Singulerele ideale bilaterale sunt 0 și inelul $\mathcal{M}_2(\mathbb{Z}_2)$.

Problema 3. Arătați că idealul generat de 2 și X în $\mathbb{Z}[X]$ nu este principal.

Soluție: Un ideal principal este un ideal generat de un singur element. Idealul generat de 2 şi X, I = <2, X> este diferit de tot inelul $\mathbb{Z}[X]$ (1 nu se scrie ca o combinație de 2 şi X cu coeficienți polinoame).

Presupunem că I=<2, X>=< f>, deci în particular $<2, X>\subset< f>\Rightarrow f|X$ și f|2. Din $f|X\Rightarrow f=\pm 1$ sau $f=\pm X$. Dar cum $I\neq \mathbb{Z}[X], f\neq \pm 1$, deci $f=\pm X$. Relația f|2 devine $\pm X|2$, ceea ce este o contradicție. Deci I nu este principal.

Problema 4. Fie A și B două inele comutative. Arătați că idealele inelului produs direct $A \times B$ sunt de forma $I \times J$ cu I ideal al lui A și J ideal a lui B.

Soluție: Demonstrăm că $I \times J$ este ideal în inelul $A \times B$.

Considerăm morfismul de inele $\varphi: A \times B \longrightarrow A/I \times B/J, \varphi(a,b) = (a+I,b+J)$. Este un morfism surjectiv de inele, iar $\operatorname{Ker}(\varphi) = I \times J$, este ideal în $A \times B$ (ca nucleul unui morfism de inele).

Demonstrăm acum că orice ideal din inelul $A\times B$ este produs direct de ideale din cele două inele. Fie $K\subset A\times B$, ideal. Considerăm morfismele proiecție pe cei doi factori $p:A\times B\longrightarrow A$ și $q:A\times B\longrightarrow B$.

Arătăm că $K = p(K) \times q(K)$.

Fie $(x, y) \in K$, (x, y) = (x, 0) + (0, y), deci $K \subset p(K) \times q(K)$.

Fie $(x, y), (x', y') \in K$, arbitrare și deci $(x, y') \in p(K) \times q(K)$ un element arbitrar.

 $(x, y') = (1, 0)(x, y) + (0, 1)(x', y') \in K$. De aici egalitatea $K = p(K) \times q(K)$.

Problema 5. Determinanți idealele inelului produs direct $\mathbb{Z} \times \mathbb{Q}$.

Soluție: Singurele ideale ale unui corp k sunt 0 și k. Deci, folosind **problema 4** idealele inelului $\mathbb{Z} \times \mathbb{Q}$ sunt $0, n\mathbb{Z} \times \mathbb{Q}, n \geqslant 1$.

Problema 6. Arătați că nu există morfisme de inele între $\mathbb{Z}[i]$ și \mathbb{Q} . $(i = \sqrt{-1})$.

Soluție: $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ este inelul întregilor lui Gauss.

Un morfism de inele $f: \mathbb{Z}[i] \longrightarrow \mathbb{Q}$ are proprietatea f(1) = 1 (1 este unitatea față de înmulțire atât în $\mathbb{Z}[i]$ cât și în \mathbb{Q}). f(2) = f(1+1) = f(1) + f(1) = 2.

Fie $f(i) = x \in \mathbb{Q}$, valoarea elementului i prin morfismul f.

Dar 2 = (1+i)(1-i). De aici $2 = f(2) = f((1+i)(1-i)) = f(1+i)f(1-i) = (f(1)+f(i))(f(1)-f(i)) = (1+x)(1-x) = 1-x^2$. Deci $x^2 = -1$ cu $x \in \mathbb{Q}$. Absurd.

Deci nu există morfism de inele $f: \mathbb{Z}[i] \longrightarrow \mathbb{Q}$.

Problema 7. Calculați tablele de adunare și înmulțire ale inelului factor $\mathbb{Z}[i]/<2>$. Câte ideale are acest inel?

Soluție: Avem următoarele clase în $\mathbb{Z}[i]/\langle 2 \rangle$.

- $a = 2p, b = 2q, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{0},$
- $a = 2p + 1, b = 2q, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{1},$
- $a = 2p, b = 2q + 1, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{i},$
- $a = 2p + 1, b = 2q + 1, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{1 + i}.$

Tabla adunării:

+	$\hat{0}$	î	\hat{i}	$\widehat{1+i}$
$ \begin{array}{c} $	$ \begin{array}{c} \hat{0} \\ \hat{1} \\ \hat{i} \\ 1+i \end{array} $			$ \begin{array}{c} \widehat{1+i} \\ \widehat{i} \\ \widehat{1} \\ \widehat{0} \end{array} $

Tabla înmulţirii:

Idealele inelului $\mathbb{Z}[i]/\langle 2 \rangle$ sunt $\hat{0}$, $\mathbb{Z}[i]/\langle 2 \rangle = \{\hat{0}, \hat{1}, \hat{i}, \widehat{1+i}\}$ şi $\langle 1+i \rangle = \{\hat{0}, \widehat{1+i}\}$. Deci inelul are trei ideale, toate bilaterale, inelul fiind comutativ.

Problema 8. Arătați că

- (i) funcția $f: \mathbb{Z}[i] \longrightarrow \mathbb{Z}_5, f(a+bi) = a+2b$ este morfism de inele.
- (ii) Inelul factor $\mathbb{Z}[i]/\langle 2-i \rangle$ este izomorf cu \mathbb{Z}_5 .

Solutie

$$\underbrace{(i)\ f((a+bi)+(c+di))}_{a+2b+c+2d} = f((a+c)+(b+d)i) = (a+c)+2(b+d) = a+2b+c+2d = a+2b$$

$$f((a+bi)\cdot(c+di)) = f((ac-bd) + (ad+bc)i) = (ac-bd)+2(ad+bc) = (ac+4bd)+2(ad+bc)$$
(în $\mathbb{Z}_5, -1 \equiv_5 4$) = $(a+2b)(c+2d) = (a+2b)\cdot(c+2d) = f(a+bi)\cdot f(c+di)$.
$$f(0) = \hat{0}, f(1) = \hat{1}.$$

(ii) Morfismul este surjectiv deoarece pentru $(\forall)\hat{x} \in \mathbb{Z}_5, (\exists)x + 0i \in \mathbb{Z}[i], \text{ a.i. } f(x + 0i) = x + 2 \cdot 0 = \hat{x}.$

"
$$Ker(f) = <2-i>$$
"

"
$$\subseteq$$
 " Fie $a + bi \in \mathbb{Z}[i] \Leftrightarrow \widehat{a + 2b} = \widehat{0} \in \mathbb{Z}_5 \Leftrightarrow a + 2b = 5k, k \in \mathbb{Z} \Leftrightarrow a = 5k - 2b.$

Deci un element arbitrar din Ker(f) este de forma $(5k-2b)+bi,b,k\in\mathbb{Z}$. Pentru a arăta incluziunea trebuie să vedem că $(5k-2b)+bi\in (2-i)$, adică trebuie să găsim $m,n\in\mathbb{Z}$ a.î. $(5k-2b)+bi=(m+ni)(2-i)\Leftrightarrow (5k-2b)+bi=(2m+n)+(-m+2n)i$.

Sistemul $\begin{cases} 2m+n &= 5k-2b \\ -m+2n &= b \end{cases}$. Înmulțim cu 2 ecuația a doua și adunăm cele două ecuații. Obținem n=k. Introducând în prima ecuație obținem m=2k-b.

Deci
$$(5k - 2b) + bi = ((2k - b) + ki)(2 - i) \in (2 - i)$$
.

"
$$\supseteq$$
" Este suficient să verificăm că $(2-i) \in \text{Ker}(f)$. $f(2-i) = 2 + 2(-1) = \widehat{2-2} = \widehat{0}$.

Din teorema fundamentală de izomorfism pentru inele rezultă că $\mathbb{Z}[i]/\langle 2-i \rangle \simeq \mathbb{Z}_5$.

Problema 9. Arătați că inelul factor $\mathbb{Z}[i]/\langle 2+2i\rangle$ nu este izomorf cu \mathbb{Z}_8 .

Soluție: Inelul \mathbb{Z}_8 are zero-divizori $\{\hat{2}, \hat{4}, \hat{6}\}$, dar și elementele nilpotente $\hat{2}$ cu ordinul de nilpotență 3 și $\hat{4}$ cu ordinul de nilpotență 2.

Arătăm că în $\mathbb{Z}[i]/\langle 2+2i\rangle$ nu există nilpotenți de ordin 2.

Considerăm $a+bi \notin <2+2i> \Leftrightarrow a,b$ nu sunt simultan pare (adică $a+bi\neq 0\in \mathbb{Z}[i]/<2+2i>$). Arătăm că $(a+bi)^2\neq 0$ în $\mathbb{Z}[i]/<2+2i>$.

Presupunem că $(a+bi)^2 = 0 \in \mathbb{Z}[i]/\langle 2+2i \rangle \Leftrightarrow (\exists)m, n \in \mathbb{Z} \text{ a.î. } (a+bi)^2 = (2+2i)(m+ni) \Leftrightarrow (a^2-b^2) + 2abi = 2(m-n) + 2(m+n)i.$

Cum a, b nu sunt simultan pare avem trei cazuri:

- a = 2p + 1, b = 2q
- $a^2 b^2 = 4p^2 + 4p + 1 4q^2$ este impar deci nu poate fi egal cu 2(m-n).
- a = 2p, b = 2q + 1

 $a^2 - b^2$ este impar (similar calcului de mai sus).

• a = 2p + 1, b = 2q + 1

$$a^2 - b^2 = 4p^2 + 4p + 1 - 4q^2 - 4q - 1 = 4(p^2 - q^2) + 4(p - q) = 4(p - q)(p + q + 1),$$

 $2ab = 2(2p + 1)(2q + 1).$

$$\begin{array}{lll} \text{Obţinem sistemul} \left\{ \begin{array}{lll} 2(m-n) & = & 4(p-q)(p+q+1) \\ 2(m+n) & = & 2(2p+1)(2q+1) \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \Leftrightarrow 2m - 2(p-q)(p+q+1) + (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \Leftrightarrow 2m - 2(p-q)(p+q+1) + (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \end{array} \right. \\ = \left\{ \begin{array}{ll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p$$

Adunând cele două ecuații obținem $2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \Leftrightarrow 2m-2(p-q)(p+q+1) = (2p+1)(2q+1)$, adică un număr par este egal cu un număr impar, ceea ce este absurd.

Deci $\mathbb{Z}[i]/<2+2i>$ nu are nilpotenți de ordin 2, deci nu poate fi izomorf cu \mathbb{Z}_8 , care elementul $\hat{4}$ nilpotent de ordin 2.