

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA PROFESOR: REINALDO ARELLANO

Ayudante: Daniel Gálvez Primer semestre 2024

Modelos Probabilísticos - EYP1025/1027 Ayudantía 8

1. Muestre que

$$\min_{c \in \mathbb{R}} \ \mathbb{E}(|X - c|) = \mathbb{E}(|X - m|)$$

donde m es la mediana de X.

2. Sea X una v.a con fdp dada por

$$f_X(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}(\alpha - 1)!}, \quad x > 0$$

con $\alpha \in \mathbb{N}$, $\beta > 0$.

(a) Suponga que g(x) es una función suave con buen comportamiento. Muestre que

$$\mathbb{E}[g(X)(X - \alpha\beta)] = \beta \mathbb{E}[Xg'(X)]$$

- (b) Considere el caso de $\beta = 1$. Calcule $\mathbb{E}\left(\frac{1}{X} + X\right)$ y $Var(3X + \pi)$.
- 3. Sea X con distribución exponencial de parámetro λ , esto es

$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- (a) Calcule $\mathbb{E}(I_{\{x>5\}})$. Con I la función indicatriz.
- (b) Encuentre $f_X(X|X>5)$
- (c) En clases se vio que si X es continua con $\mathcal{X} = \mathbb{R}^+$, entonces

$$\mathbb{E}(X) = \int_{\mathbb{R}^+} [1 - F_X(x)] dx \tag{1}$$

En base a esto encuentre una expresión similar para calcular $\mathbb{E}(X|X>5)$ y verifique que el resultado coincide con el calculo usual de la esperanza. Note que el resultado visto en clases solo aplica para x>0, y nosotros tenemos x>5. ¿Cree que la formula 1 cambia en algo?

- (d) Generalice el resultado en (b), es decir, si X es una v.a continua, encuentre una expresión para $f_X(X|X>a)$.
- 4. Si X es una v.a con densidad $f_X(x)$ y recorrido \mathcal{X} , muestre que

$$\exp\left\{\int_{\mathcal{X}} x f_X(x) dx\right\} \le \int_{\mathcal{X}} e^x f_X(x) dx$$

5. Sea X una v.a con fdp dada por

$$f_X(x) = \begin{cases} kx^2, & \text{si } |x| < 1\\ 0, & \text{e.o.c} \end{cases}$$

- (a) Encuentre el valor de k tal que $f_X(x)$ sea efectivamente una fdp.
- (b) Calcule $\mathbb{E}(X)$ e interprete este resultado.
- (c) Calcule $\mathbb{E}(X^{2n+1})$
- (d) **Propuesto:** Calcule $M_X(t)$ y con esto $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ y Var(X).