Analisi 1

Mattia Marini 12.09.22

Indice

Teoremi e Assiomi

Formule

Incomprensioni

Definizioni

0.1 Proprietà sviluppi taylor

0.1.1 Somma

Dati due due sviluppi di taylor

$$f(x) = P_1(x) + o(x^n)$$
 $g(x) = P_2(x) + o(x^n)$

allora lo sviluppo della somma di f(x) e g(x) è

$$P_1(x) + P_2(x) + o(x^n)$$

0.1.2 Prodotto

Dati due due sviluppi di taylor

$$f(x) = P_1(x) + o(x^n)$$
 $g(x) = P_2(x) + o(x^n)$

allora lo sviluppo del prodotto di f(x) e g(x) è

$$P_1(x) \cdot P_2(x) + o(x^n)$$

NB: quando si moltiplica P_1 con P_2 tutti i termini di grado > n vengono inglobati all'interno di $o(x^n)$, non serve quindi calcolarli

0.2 Composta

Dati due due sviluppi di taylor

$$f(x) = P_1(x) + o(x^n)$$
 $g(x) = P_2(x) + o(x^n)$

allora lo sviluppo della funzione composta f(g(x))

$$P_1(x) \cdot P_2(x) + o(x^n)$$

0.2.1 Esempi di sviluppi

Esempio 1

$$\cos x + 2\sin x$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$\sin x = x - \frac{x^3}{6} + o(x^4)$$

$$\cos x + 2\sin x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + 2x - \frac{x^3}{3} + o(x^4)$$

$$= 1 + 2x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{24} + o(x^4)$$

Esempio 2

 $\arctan x + \sinh x$

$$\arctan x \cdot \sinh x = \left(x - \frac{x^3}{2} + \frac{x^5}{5} + o\left(x^5\right)\right) \left(x + \frac{x^3}{6} + \frac{x^5}{120} + o\left(x^5\right)\right)$$
$$= x^2 - \frac{1}{6}x^4 + o\left(x^5\right)$$

NB: se venisse chiesto (come è purtroppo già accaduto) di dire quanto vale, ad esempio $f^{(4)}(0)$ non è conveniente derivare, ci si incasina. Bisogna invece

- $\circ\,$ Calcolare lo sviluppo di Taylor con n=4
- $\circ\,$ Realizzare che il coefficiente del termine di grado 4 è uguale a $\frac{f^{(4)}(0)}{4!}$

1 Convessità

Definizione 1: Convessità/concavità sottoinsiemi

Un sottoinsieme $A \subseteq \mathbb{R}$ si dice convesso se per ogni coppia di punti $x, y \in A$ allora

$$[x,y] \subseteq A$$

NB: ciò accade per 3 tipi di insieme:

- $\circ A \cong \mathbb{R}$
- o Ogni semiretta: $(-\infty, a)$ $(-\infty, a]$ $[a, +\infty)$ $(a, +\infty)$
- \circ Gli intervalli: (a,b) [a,b) (a,b] [a,b]

Definizione 2: Convessità geometrica

Sia $A \subseteq \mathbb{R}$ convesso. Una funzione $f: A \to \mathbb{R}$ si dice <u>convessa</u> se per ogni coppia di punto P, Q nel grafico di f tutto il segmento PQ sta sopra il grafico

Definizione 3: Convessità algebrica

Sia $A \subseteq \mathbb{R}$. Una funzione $f: A \to \mathbb{R}$ si dice convesso se $\forall a, b \in A \quad \forall \lambda \in [0, 1]$

$$f(\lambda a + (1 - \lambda) b) \le \lambda f(a) + (1 - \lambda) f(b)$$

Interpretazione geometrica:

∘ la quantità $\lambda a + (1 - \lambda) b$ con $\lambda \in [0, 1]$ posso esprimere ogni punto compreso fra a e b:

$$-\lambda = \frac{1}{2} \rightarrow \frac{a+b}{2}$$

$$-\lambda = 1 \rightarrow a$$

$$-\lambda = 0 \rightarrow b$$

0

- o Allo stesso modo la quantià $\lambda f(a) + (1 \lambda) f(b)$ esprime un punto compreso fra f(a) e f(b)
- o Per ogni valore di λ ottengo a sinistra f(c) mentre a destra ottengo g(c) dove g è la retta passante per a(f(a)), (b, f(b)) con $c \in [a, b]$

1.1 Convessità e derivata

Sia $A \subseteq \mathbb{R}$ convesso e sia $f: A \to \mathbb{R}$. Sappiamo che f''(x) esiste $\forall x \in A$. Posso affermare con certezza che:

- o se $f''(x) > 0 \forall x \in A \rightarrow f$ è strettamente crescente
- o se $f''(x) \ge 0 \forall x \in A \to f$ è debolmente crescente
- o f è debolmente crescente $\Rightarrow f''\left(x\right)\geq 0 \forall x\in A$

NB: è falso affermare che

 \circ se f è strettamente crescente $\Rightarrow f''(x) > 0$

basti pensare alla funzione x^4 . Pur essento a la sua derivata si annulla in 0

Teoria di integrazione

2.1 Come si indicano

$$\int_{a}^{b} f\left(x\right) \ dx$$

- $\circ \ [a,b]$ zona di integrazione, cioè l'insieme in cui integriamo
- $\circ f : [a, b]$ la funzione che si integra (integranda)
- o $\,dx$ simbolo che indica la variabile di integrazione
- \circ la funzione f è liminata in [a, b]

2.2 Significato geometrico

Come in figura, l'integrale rappresenta l'area sottesa al grafico della funzione fra a e b. In questo caso è:

$$\int_{a}^{b} f\left(x\right) \ dx$$

2.3 Definizione formale

- \circ Caso banale $\rightarrow \! \text{funzioni costanti}$
- \circ Caso semi-banale \rightarrow funzioni a gradino
- o Caso generale

Caso 1:

$$f(x) = \lambda \in \mathbb{R} \qquad \forall x \in [a, b]$$

In questo caso l'area è chiaramente l'area del rettangolo contenuto sotto f(x)

$$\int_{a}^{b} f(x) \ dx = (b - a) \lambda$$

Caso 2:

La funzione è costante su determinati sotto intervalli di $\left[a,b\right]$

L'area in questo caso è chiaramente la somma dell'area di ogni rettangolo creato da ogni sotto intervallo costante di f(x)

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} (b - a) \lambda_{k}$$

Caso 3

La funzione non è ne costante ne a scalini ma limitata

In questo caso procedo nel seguente modo:

- o Provo ad approssimare l'area del grafico sotteso alla funzione tramite funzione a scalini
- \circ Considero rispettivamente la funzione a gradini che stima l'area <u>dal sopra</u> e <u>dal sotto</u>
- o Sia $f:[a,b]\to\mathbb{R}$ limitata. Si dice integrale superiore di f in [a,b]

$$I^{+}\left(f,\left[a,b\right]\right)=\inf\left\{ \int_{a}^{b}p\left(x\right)\ dx:p:\left[a,b\right]\rightarrow\mathbb{R}\text{ f. a gradino t.c. }p\left(x\right)\geq f\left(x\right)\right\}$$

Analogamente si definisce l'integrale inferiore:

$$I^{-}\left(f,\left[a,b\right]\right)=\sup\left\{ \int_{a}^{b}p\left(x\right)\;dx:p:\left[a,b\right]\rightarrow\mathbb{R}\;\text{f. a gradino t.c. }p\left(x\right)\leq f\left(x\right)\right\}$$

Fatto generale molto intuitivo:

$$I^{+}(f,[a,b]) \ge I^{-}(f,[a,b])$$

• Se accade che $I^+(f, [a, b]) = I^-(f, [a, b])$ allora si dice che $f : [a, b] \to \mathbb{R}$ è integrabile su [a, b] e il valore ottenuto si indica con in simbolo

$$\int_{a}^{b} f(x) dx$$

2.4 Teoremi integrabilità

Teorema 1: Integritabilità funzione

I seguenti tipi di funzione sono integrabili:

- Tutte le funzioni monotone (anche non continue)
- o Tutte le funzioni continue
- o Tutte le funzione che hanno un numero finito di punti di discontinuità nei quali i limini destro e sinistro esistono

Dimostrazione per funzioni monotone:

- o Se per un dato $\epsilon < 0$ trovo una somma di Riemann superiore e una inferiore la cui differenza è < ϵ sono a cavallo
- o Divido il grafico di f(x) in n parti uguali e creo somma di Riemann dall'alto:
 - La somma di Riemann superiore prenderà come altezza di ogni intervallo il valore della funzione di destra
 - La somma di Riemann inferiore prenderà come altezza di ogni intervallo il valore della funzione di sinistra

2.5 Proprietà integrali

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \operatorname{con} c \in [a, b]$$
Se $f(x) \geq g(x) \forall x \in [a, b]$ allora
$$\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$$

- Calcolo di integrali e integrazione impropria
- 3.1 Teoremi e definizioni

Definizione 4: Primitiva di una funzione

Sia $f:[a,b]\to\mathbb{R}$ continua. Si dice <u>primitiva</u> di f una qualunque funzione $F:[a,b]\to\mathbb{R}$ tale che F è derivabile in [a,b] e vale

$$F'(x) = f(x) \quad \forall x \in [a, b]$$

Definizione 5: Funzione integrale

Sia $f:[a,b]\to\mathbb{R}$ continua. Si dife funzione integrale la funzione:

$$\Phi\left(x\right) = \int_{a}^{x} f\left(t\right) dt$$

NB: la funzione integrale gode delle seguenti proprietà:

$$\int_{a}^{b} f(x) dx = \Phi(b) = [\Phi(x)]_{a}^{b}$$
$$\int_{c}^{d} f(x) dx = \Phi(d) - \Phi(c)$$

Teorema 2: Teorema della media integrale

Sia $f:[a,b]\to\mathbb{R}$ continua. Allora esiste almeno un punto $c\in[a,b]$ tale che:

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Teorema 3: Teorema fondamentale del calcolo integrale

Sia $f:[a,b]\to\mathbb{R}$ continua. Sia Φ la sua funzione integrale. Allora

$$\Phi'(x) = f(x) \quad \forall x \in [a, b]$$

ossia Φ è primitiva di f

Dimostrazione:

 \circ Calcolo il rapporto incrementale di Φ per h>0

$$\frac{\Phi\left(x+h\right)-\Phi\left(x\right)}{h} = \frac{1}{h} \left[\int_{x}^{x+h} f\left(t\right) dt \ dt - \int_{a}^{x} f\left(t\right) \ dt \right]$$

o Noto che per addizione di integrali posso riscrivere il membro di destra come

$$\frac{1}{h} \int_{x}^{x+h} f(t) dt$$

o Per il teorema dei valori intermedi so che esiste un punto $\in [x, x+h]$ tale che $f(c) = \int_x^{x+h} f(x) \ dx$ quindi:

$$\frac{1}{h} \cdot h \cdot f(c)$$

- o Noto che se $h \to 0$ allora $c \to x$, per cui $f(c) \to f(x)$. Questa affermazione posso farla in quanto f(x) è continua
- $\circ\:$ Se applico il limite per $h\to 0$ al rapporto incrementale ottengo che

$$\Phi'(x) = \lim_{h \to 0} \frac{\Phi(x+h) - \Phi(x)}{h} = \lim_{h \to 0} f(c) = f(x)$$

ho quindi dimostrato che Φ è derivabile e che $\Phi'(x) = f(x)$ ossia che Φ è una primitiva di f

3.2 Integrazione di funzioni razionali

Una funzione razionale è una funzione del tipo

$$\frac{P\left(x\right)}{q\left(x\right)}$$

Per integrare una cosa di questo tipo devo seguire 4 passaggi:

- Divisione
- o Fattorizzazione del denominatore
- o Risolvere sistema lineare
- Integrazione

3.2.0 Divisione

Se il grado di P è < del grado di Q si passa al punto 2, altrimenti divido $P\left(x\right)$ per $Q\left(x\right)$ ottenendo:

$$\frac{P(x)}{Q(x)} = A(x) + \frac{R(x)}{P(x)}$$

nota che avendo diviso, la funzione $\frac{R(x)}{P(x)}$ ha il grado del numeratore < del grado del denominatore

Fattorizzazione: Scomporre il numeratore in prodotto di polinomi di primo e secondo grado con i termini di secondo grado che non sono ulteriormente scomponibili. Esempio bello:

$$x^{4} + 1 = x^{4} + 1 + 2x^{2} - 2x^{2} = (x^{2} + 1)^{2} - (\sqrt{2}x)^{2} = (x^{2} + 1 + \sqrt{2}x)(x^{2} + 1 - \sqrt{2}x)$$

3.2.0 Fattorizzazione e sistema lineare

L'obbiettivo è riscrivere la funzione razionale come somma di funzioni razionali. In generale posso avere i seguenti casi:

o Al denominatore ho solo termini di grado 1. La somma sarà del tipo

$$\frac{A}{P_1(x)} + \frac{B}{P_2(x)}$$

• Al denominatore ho dei termini di grado 2 non scomponibili. In questo caso, al di sopra di questi termini dovro avere un polinomio generico di grado 1:

$$\frac{A}{P_1(x)} + \frac{Bx + C}{P_2(x)}$$

• Se ho fattori con molteplicità > 1 devo seguire un metodo particolare spiegato dopo. In generale, ottengo qualcosa del tipo:

$$\frac{A}{P_{1}(x)} + \frac{Bx + C}{P_{2}(x)} + \frac{d}{dx} \left[\frac{Fx^{n-1} \dots + Mx + N}{(P_{1}(x))^{2} (P_{2}(x))^{3}} \right]$$

9

3.2.0 Esempio caso 1

$$\frac{P(x)}{Q(x)} = \frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

Devo cercare A e B in modo tale che venga soddisfatta l'uguaglianza fra i numeratori dei polinomi:

$$x = A(x+1) + B(x-1)$$

Svolgo i conti a destra e raccolgo:

$$A(x+1) + B(x-1) = Ax + A + Bx - B = (A+B)x + A - B$$

quindi ottengo il seguente sistema lineare eguagliando i coefficienti:

$$\begin{cases} A+B=1\\ A-B=0 \end{cases} \rightarrow A=\frac{1}{2} \quad B=\frac{1}{2}$$

3.2.0 Esempio caso 2

Se al denominatore ho fattori di grado $\neq 1$, dovrò trovare il valore di 3 costanti A, B, C. Es:

$$\frac{2x^2+3}{x^3-1} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$

eseguendo i conti e raccogliendo:

$$\frac{(A+B)x^{2} + (A-B+C)x + A - C}{(x-1)(x^{2} + x + 1)}$$

e ottengo il sistema lineare a 3 incognite:

$$\begin{cases} A + B = 2 \\ A - B + C = 0 \end{cases} \rightarrow A = \frac{5}{3} \quad B = \frac{1}{3} \quad C = -\frac{4}{3}$$
$$A - C = 3$$

Quindi, in generale, dove al denominatore ho un polinomio di grado 1 sopra avrò una costante, mentre se al denominatore ho un polinomio di grado 2, al numeratore ho un polinomio generico di grado 1:

$$\frac{x^3 + 5}{(2x+1)(x-3)(x-8)(x^2+1)(x^2+x+1)}$$

$$\frac{A}{2x+1} + \frac{B}{x-1} + \frac{C}{x-8} + \frac{Dx+E}{x^2+1} + \frac{Fx+G}{x^2+x+1}$$

quindi ottengo un sistema in tante incognite quanto è il grado del denominatore

3.2.0 Esempio caso 3

Se i fattori al denominatore hanno molteplicità > 1 procedo nel seguente modo:

$$\frac{P(x)}{(x+1)^4(x+5)^2(x+7)(x^2+1)^3} = \frac{A}{x+1} + \frac{B}{x+5} + \frac{C}{x+7} + \frac{Dx+E}{x^2+1} + \frac{d}{dx} \left[\frac{Fx^7 + Gx^6 + Hx^5 + Jx^4 + Kx^3 + Lx^2 + Mx + N}{(x+1)^3(x+5)(x^2+1)^2} \right]$$

Ossia:

- o Scrivo fattorizzazione del denominatore e la scrivo come somma, <u>ignorando la molteplicità</u> di ogni termine (occhio però a non trascurare il fatto che al numeratore del termini di secondo grado andrà un polinomio di primo)
- o A questo aggiungo la derivata di un polinomio in cui ho:
 - Al denominatore il prodotto dei polinomi che avevo originariamente al denominatore abbassati di un grado
 - Al numeratore la somma di n-1 polinomi generici di grado $0,\dots,n-1$ dove \overline{n} è il grado del denominatore

3.2.0 Integrazione

Svolti i passaggi spiegati precedentemente posso ritrovarmi 3 tipi di funzioni da integrare:

- Funzioni del tipo $\frac{k}{ax+c}$, integrate, diventano semplici logaritmi
- o Funzioni del tipo $\frac{P_1(x)}{P_2(x)}$ dove p_1 è di grado 1 e P_2 è grado 2 <u>non scomponibile</u>, integrate, diventano arcotangenti. Devo usare completamento del quadrato al denominatore

3.3 Trucchetti integrazione

3.3.0 Integrazione radici di polinomi di secondo grado

$$\boxed{\int \sqrt{1-x^2}}$$

Metodo trigonometrico

- \circ Sostituzione $x = \sin(y)$
- $\circ~$ Uso formule trigonometriche tenendo conto che $1-\sin^2{(y)}=\cos^2{y}$

Metodo della sostituzione

- o Scrivo come somma per differenza
- o Sostuisco l'intera radice con uno dei due termini = y e l'altro rimane invariato. Es $\sqrt{x^2-1} = \sqrt{(x+1)(x-1)} = y(x-1)$ i

11

Più in generale, se ho un polinomio con due radici reali λ, ρ , allora posso applicare la sostituzione:

$$\sqrt{\text{polinomio}} = y(x - \lambda) \text{ oppure } \sqrt{\text{polinomio}} = y(x - \rho)$$

$$\int \sqrt{x^2 + 1}$$

Metodo trigonometrico

- \circ Sostituzione $x = \sinh y$
- $\circ~$ Uso formule trigonometriche tenendo conto che $\sinh^2+1=\cosh^2$
- Posso integrare $\sinh^2 y$ in 3 modi:
 - Scrivendo esplicitamente il sinh tramite esponenziale
 - Scrivendo la formula di duplicazione $\sinh(2x)$
 - Utilizzo la formula per parti in maniera ciclica

Metodo della sostituzione

- Sostituzione $\sqrt{x^2 + 1} = y + x$
- \circ Noto che così facendo x^2 sparisce e dunque posso ricavare x in funzione di y

Nota che se il coefficiente di x^2 non è 1, la sostituzione da fare è diversa, ad esempio

$$\int \sqrt{ax^2 + bx + c} \, dx \to \sqrt{ax^2 + bx + c} = \sqrt{ax + y}$$

in modo tale che eseguendo il quadrato si elimini il termine di secondo grado

3.3.0 Sostituzioni parametriche

Possa "convertire" un seno o un cosno in un polinomio tramite le formule parametriche:

$$\sin x = \frac{2y}{y^2 + 1} \quad \cos x = \frac{1 - y^2}{y^2 + 1}$$

ponendo

$$y = \tan \frac{x}{2}$$

Inserendo tan $\frac{x}{2}$ all'interno delle due formule parametriche si può verificare che l'uguaglianza è verivicata. L'integrale di $\frac{1}{\sin(x)}$ può essere risolto in due modi:

- Formule parametriche
- o Moltiplicando e dividendo per seno, ricordando che $\sin^2 x = 1 \cos^2 x$ e ponendo $y = \cos x$

NB: i casi in cui le sostituzioni parametriche semplificano il tutto sono molto rari, quindi generalmente queste si usano come ultima spiaggia

$$\frac{1}{\cos^3(x)\sin^3(x)}$$

- o Sostituzioni parametriche (troopo complicati i conti)
- Uso formula di duplicazione: $\sin x \cos x = \frac{1}{2} \sin (2x)$.
 - Se la potenza ottenuta è dispari moltiplico e diviso per $\sin(2x)$, ottenento potenza pari al denominatore
 - La riscrivo usando che $\sin^2(2x) = 1 \cos^2(2x)$
 - Integro funzione razionale con molteplicità
- $\circ \text{ Scrivo } 1 = \sin^2(x) + \cos^2(x)$

3.4 Integrali imporpri

Ho due tipi di integrali impropri:

• Integrali calcolati su intervallo non limitato:

$$\int_{a}^{\infty} f(x) dx \int_{-\infty}^{a} f(x) dx$$

o Integrali calcolati su intervallo limitato [a,b]in cui <u>la funzione</u> non è limitata in x=a o x=b

Se l'integrale non ricade in nessuna di queste due categorie, posso ricondurlo ad una di esse spezzandolo in più parti.

3.4.0 Esempio 1

Per calcolare l'integrale seguente posso spezzarlo in due parti

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{a} e^{-x^2} dx + \int_{a}^{\infty} e^{-x^2} dx$$

in questo caso a deve essere necessariamente 0 in quanto in 0 la funzione non è definita

3.4.0 Esempio 2

Per calcolare l'integrale

$$\int_{-\infty}^{\infty} \frac{1}{x^4 - 1} \ dx$$

devo spezzarlo nei punti $\left(-\infty,-3\right),\left(-3,-1\right),\left(-1,0\right),\left(0,1\right),\left(1,3\right),\left(3,+\infty\right)$:

$$\int_{-\infty}^{\infty} \frac{1}{x^4 - 1} \, dx = \int_{-\infty}^{-3} \, dx + \int_{-3}^{1} \, dx + \int_{-1}^{0} \, dx + \int_{0}^{1} \, dx + \int_{1}^{3} \, dx + \int_{3}^{+\infty} \, dx$$

3.4.0 Esempio 3

3.4.0 Esempio 4

NB: un integrale improprio, essendo per definizione un limite, può non esistere. Ad esempio $\int_0^{+\infty} \sin{(x)} \ dx$ non esiste in quanto oscilla infinitamente

3.5 Teorema del confronto

Spesso, vogliamo determinare se un integrale improprio corverga o meno, ma non sappiamo calcolarne una primitiva. In questi casi torna utile il <u>teorema del comfronto</u>. L'idea è la seguente

- o Determino se funzioni campione delle quali so calcolare la primitiva convergono o meno
- o Utilizzo queste funzioni, confrontandole con quella di cui devo determinare la convergenza

In particolare, le funzione "campione" che useremo saranno funzioni del tipo

$$\frac{1}{x^{\alpha}}$$

in particolare queste funzioni vengono dette gli infiniti campione.

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$$

- $\circ\,$ Converge se $\alpha>1$
- $\circ~$ Diverge se $\alpha \leq 1$

Se invece considero l'integrale sull'intervallo (0,1) ho che:

$$\int_0^1 \frac{1}{x^\alpha} \, dx$$

- \circ Converge se $\alpha < 1$
- $\circ~$ Diverge se $\alpha \geq 1$

Ciò risulta chiaro se osserviami i grafici delle funzioni

Teorema 4: Criterio del confronto

Sia f(x) una funzione integranda, della quale voglio determinare l'ipotetica convergenza, su intervallo limitato o non. Sia g(x) un infinito campione del tipo $\frac{1}{x^{\alpha}}$. Se $0 \le f(x) \le g(x)$ almeno in un intorno del problema (estremi intervallo integrazione, $+\infty, -\infty$), allora:

se
$$\int_{E} g(x) dx$$
 converge $\Rightarrow \int_{E} f(x) dx$ converge

se
$$\int_{E} f(x) dx$$
 diverge $\Rightarrow \int_{E} g(x) dx$ diverge

Teorema 5: Teorema del confronto asintotico

Supponiamo che $f(x) \ge 0$ e g(x) > 0. Allora se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \neq 0, \infty$$

allora l'integrale delle due funzioni si comporta nello stesso modo (convergenza/divergenza è uguale)

Se
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = 0$$

- o Se $\int_{E}g\left(x\right) \ dx$ converge allora $\int_{E}f\left(x\right) \ dx$ converge
- o Altrimenti non so dire nulla

Se
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = +\infty$$

- o Se $\int_{E}g\left(x\right) \ dx$ diverge allora $\int_{E}f\left(x\right) \ dx$ diverge
- o Altrimenti non so dire nulla

3.5.0 Assoluta integrabilità

Questo teorema può essere utile per applicare il teorema del confronto su funzioni che non sono sempre ≥ 0 o ≤ 0 .

Teorema 6: Assoluta integrabilità

Se
$$\int_{E} |f(x)| dx$$
 converge $\Rightarrow \int_{E} f(x) dx$ converge

Se
$$\int_{E} |f(x)| dx$$
 diverge \rightarrow non posso affermare nulla

Ad esempio:

$$\int_0^{+\infty} \frac{\sin\left(x^2\right)}{x^3} \, dx$$

non posso utilizzare il teorema del confronto asistotico perchè il seno non è sempre positivo. Posso tuttavia analizzare la funzione

$$\int_0^{+\infty} \frac{|\sin\left(x^2\right)|}{x^3} \, dx$$

 $\circ\,$ Considero che la funzione integranda è maggiorata dalla funzione $\frac{2}{x^3}$

$$\frac{\left|\sin\left(x^2\right)\right|}{x^3} \le \frac{2}{x^3}$$

- o Siccome la funzione $\frac{2}{x^3}$ converge, allora anche $\frac{\left|\sin\left(x^2\right)\right|}{x^3}$ converge.
- \circ Se $\frac{\left|\sin\left(x^2\right)\right|}{x^3}$ converge, per il teorema della assoluta integrabilità, anche $\frac{\sin\left(x^2\right)}{x^3}$

3.6 Trucco dell'integrazione per parti

Se devo decretare la convergenza/divergenza di un integrale improprio posso utilizzare il metodo dell'integrazione per parti. Consideriamo il seguente esempio:

3.6.0 Esempio 1

$$\int_{1}^{+\infty} \frac{\sin x}{x} \, dx$$

non posso applicare il teorema del confronto in quanto ogni funzione $\frac{1}{x^{\alpha}}$ con $\alpha \geq 1$ è definitivamente minore di $\frac{\sin x}{x}$ e converge. Contrariamente, $\frac{1}{x}$ è definitivamente maggiore, però diverge per $x \to \infty$ e non posso dunque affermare nulla. Se integro per parti tuttavia:

$$\int \frac{\sin x}{x} dx = \frac{1}{x} \left(-\cos x \right) - \int -\frac{1}{x^2} \left(-\cos x \right)$$

applicando il limite posso decretare che l'integrale converge

3.6.0 Esempio 2

$$\int_0^{+\infty} \cos\left(x^2\right) dx$$

stranamente, questo integrale converge ad un numero reale. Non posso applicare assoluta integrabilità perchè, chiaramente, l'integrale del suo valore assoluto diverge. Provo moltiplicando e dividendo per x (in modo da ottenere la derivata della composta), per poi integrare per parti:

$$\int \cos(x^2) = \int \frac{1}{x} x \cos(x^2) = \left(-\frac{1}{x^2}\right) \left(\frac{1}{2} \sin(x^2)\right) - \int \left(-\frac{1}{x^2}\right) \frac{1}{2} \sin(x^2)$$

18

Visto che ogni membro converge, posso affermare che $\int_0^{+\infty} \cos(x^2) dx$ converge

4 Equazioni differenziali

4.1 Definizioni

Definizione 6: Equazione differenziale

Con il termine <u>equazione differenziale</u> si intende una relazione tra una <u>funzione</u> incognita e le sue <u>derivate</u>. Posso interpretarla come una funzione di più variabili:

$$F(t, u(t), u'(t), \dots, u^{(k)}(t)) = 0$$

dove $t,u\left(t\right),\ldots,u^{\left(k\right)}\left(t\right)$ sono le incognite dell'equazione differenziale

La soluzione di un'equazione differenziale è un'equazione che risolve l'uguaglianza specificata

- Ordine: l'ordine di un'equazione differenziale è uguale al massimo ordine di derivazione presente nell'equazione
- Eq diff. in forma normale: una eq. diff. si dice in forma normale se si può "isolare" la derivata di ordine massimo:

$$u^{(k)} = \Phi\left(u^{(k-1)}, \dots, u(t), t\right)$$

 \circ Eq. diff. autonoma: se la incognita t compare solo come incognita della funzione incognita (e non compe coefficiente):

$$u^{(k)} + u^{(k-1)} + \ldots + u' + u = 0$$

• Eq. diff. a variabili separabili: se è del <u>primo ordine</u>, scritta in <u>forma normale</u> e si può scrivere nella seguente forma:

$$u' = f(t) g(u)$$

 \circ Eq. diff. lineare: se la funzione u e le sue derivate non sono presenti all'interno di funzioni. Ha forma del tipo:

$$a_k(t) u^{(k)} + a_{k-1}(t) u^{(k-1)} + \ldots + a_1(t) u' + a_0(t) u = f(t)$$

- $-a_{0}\left(t\right) ,a_{1}\left(t\right) ,\ldots,a_{k}\left(t\right)$ sono detti <u>coefficienti</u>
- -f(t) è detto <u>termine noto</u>
- Se f(t) = 0 l'equazione lineare si dice
 omogenea
- Se $a_0\left(t\right), a_1\left(t\right), \ldots, a_k\left(t\right)$ sono costanti l'equazione è detta a coefficienti costanti

4.1.0 Esempio 1

$$f'\left(x\right) = f\left(x\right)$$

Quale equazione ha la derivata uguale alla equazione stessa? Esattamente l'esponenziale. Più precisamente le soluzioni di questa equazione sono <u>infinite</u> ed identificate dalla seguente funzione:

$$ke^x$$

4.1.0 Esempio 2

$$f'(x) = -f(x)^2$$

una qualsiasi soluzione del seguente tipo risolve la seguente eguaglianza:

$$f\left(x\right) = \frac{1}{t+c}$$

4.1.0 Esempio 3

$$f''(x) = -f(x)$$

noto che una soluzione è $n(x) = \cos(x)$. La famiglia delle soluzioni è $n(x) = c\cos(t)$, $c \in \mathbb{R}$. Ancora più in generale, ogni funzione del tipo:

$$f(x) = c_1 \cos t(x) + c_2 \cos(x)$$

soddisfa l'eguaglianza. Nota che il numero di parametri che ottengo dipende dall'<u>ordine</u> dell'equazione

4.2 Problemi di Cauchy

Negli esempi precedenti ho ottenuto le cosiddette <u>soluzioni generali</u> delle equazioni differenziali. Se impongo un'ulteriore condizione sulla condizione generale ottengo il valore della costante (o delle costanti) in corrispondenza del quale è risolto il problema di Cauchy.

4.2.0 Esempio 1

$$\begin{cases} u'(t) = u(t) \\ u(0) = 5 \end{cases}$$

- $\circ\,$ Condizione dell'equazione differenziale: ce^t
- Condizione iniziale: $u\left(0\right)=ce^{0}\rightarrow c=5$

Quindi la soluzione è $5e^t$

4.2.0 Esempio 2

$$\begin{cases} u' = -u^2 \\ u(5) = 7 \end{cases}$$

- $\circ\,$ Soluzione dell'equazione differenziale: $\frac{1}{t+c}$
- $\circ\,$ Condizione iniziale: $u\left(5\right)=7$

Nota che le condizioni delle equazioni differenziali ordinarie devono essere tante quanto è l'ordine dell'equazione differenziale: ottengo infatti un sistema in cui devo trovare il valore a tutte le costanti ottenute trovando la soluzione generale

4.2.0 Esempio 3

$$\begin{cases} u'' + 3u' = u^2 + t^2 \\ u(5) = 7 \\ u'(5) = 22 \end{cases}$$

è un problema di Cauchy.

$$\begin{cases} u'' + 3u' = u^2 + t^2 \\ u(5) = 7 \\ u'(6) = 22 \end{cases} \qquad \begin{cases} u'' + 3u' = u^2 + t^2 \\ u(5) = 7 \\ u''(5) = 22 \end{cases}$$

non sono problemi di Cauchy. Più in generale

Definizione 7: Problema di Cauchy

Data un'equazione differenziale ordinaria di ornine n, un problema di Cauchy associato deve:

- o Specificare le condizioni iniziali in uno stesso punto
- \circ Specificare le condizioni iniziali per le derivate di ordine $0, 1, \dots, n-1$

Teorema 7: Teorema di esistenza

Consideriamo il problema di Cauchy per una equazione differenziale ordinaria. Defininiamo la funzione:

$$u^{(k)} = \Phi(u, u', u'', \dots, u^{(k-1)}, t)$$

Se Φ è continua in ogni variabile allora esiste sempre almeno una soluzione

la funzione Φ è una funzione a più variabili. La sua continuità o la sua derivabilità si decreta "congelando" tutte le variabili meno che una e studiandone continuità/derivabilità

Teorema 8: Teorema di unicità

Consideriamo il problema di Cauchy per una equazione differenziale ordinaria. Defininiamo la funzione:

$$u^{(k)} = \Phi(u, u', u'', \dots, u^{(k-1)}, t)$$

Se Φ è derivabile in tutte le variabili, allora la soluzione è unica

il cosiddetto "pennello" di Peano è un problema di Cauchy che presenta infinite soluzioni:

$$\begin{cases} u' = 3 \left| u \right|^{\frac{2}{3}} \\ u(0) = 0 \end{cases}$$

La funzione $3|u|^{\frac{2}{3}}$ non è derivabile, quindi la soluzione non è unica. Nota che sia u=0 che $u=t^3$ sono soluzioni del problema. Il problema presenta più di una soluzione

4.3 Edo a variabili separabili

$$u' = f(t) g(u)$$

Per trovare la soluzione ci sono 3 passaggi:

- Separazione
- o Integrazione
- Ricavare

Esempio:

$$u' = t^3 u^2$$

 \circ Separo le variabili: metto tutto ciò che dipende da u a sinistra e tutto ciò che dipende da t a destra, usando questo trucchetto bovino:

$$\frac{du}{dt} = t^3 u^2 \to \frac{du}{u^2} = t_3 dt$$

o Integro da entrambe le parti:

$$\int \frac{du}{u^2} = \int t_3 dt \to -\frac{1}{u} = \frac{1}{4}t^4 + c$$

 \circ Ricavo u in funzione di t:

$$u\left(t\right) = \frac{-4}{t^4 + c} \quad c \in \mathbb{R}$$

Se all'edo è associato un problema di Cauchy è necessario studiare la soluzione: il dominio della soluzione varia in base al valore di c trovato. Per questa ragione devo restringere il dominio della funzione trovata.

Devo restringere il dominio della funzione trovata al massimo insieme di definizione che contiene il punto indicato nella condizione iniziale

4.4 Tempo di vita ed esempi

Definizione 8: Tempo di vita

Trovata la funzione u(t) soluzione di un problema di Cauchy, si dice tempo di vita l'estremo superiore dell massimo insieme di definizione contenente il punto t_0 che esprime la condizione di essistenza.

- \circ Se $T = +\infty$ si dice che f(t) ha esistenza globale nel futuro
- \circ Se $T < +\infty$ ci sono due casi:
 - Se $\lim_{x\to T^{-}} f(t) = \pm \infty \to \text{blow up}$
 - Se non c'è blow up ma u(t) esce dal dominio di una o più funzioni presenti nell'equazione differenziale \rightarrow <u>break down</u>. In genere (ma non sempre) questo si dtraduce nella seguente condizione

$$\lim_{x \to T^{-}} f'(t) = \pm \infty$$

4.4.0 Esempio Cauchy 1

 $\begin{cases} u' = t^3 u^2 \\ u(0) = -5 \end{cases}$

L'edo ha soluzione

$$u\left(t\right) = \frac{-4}{t^4 + c}$$

 \circ Determino c:

$$u\left(0\right) = -\frac{4}{c} \to c = \frac{4}{5}$$

quindi il problema di Cauchy ha soluzione $u\left(t\right)=-\frac{4}{t^{4}+\frac{4}{5}}$

• Il massimo dominio di definizione contentente 0 è \mathbb{R} , quindi u(t) ha <u>esistenza globale</u> sia nel passato che nel futuro

4.4.0 Esempio Cauchy 2

$$\begin{cases} u' = t^3 u^2 \\ u(0) = 0 \end{cases}$$

L'edo ha soluzione

$$u\left(t\right) = \frac{-4}{t^4 + c}$$

 \circ Determino c:

$$u\left(0\right) = -\frac{4}{c} = 0$$

Cosa faccio? Non posso risolvere l'equazione ottenuta.

In questo caso il problema di Cauchy <u>ha una soluzione</u>. Tale soluzione si ottiene risolvendo la condizione iniziale:

$$u\left(t\right) =0$$

in questo modo soddisfo sia la condizione iniziale $u\left(0\right)=0$ e l'equazione differenziale in quanto $u'=t^3u^2$

4.4.0 Esempio Cauchy 3

$$\begin{cases} u' = u^3 t^2 \\ u(0) = 5 \end{cases}$$

La soluzione dell'equazione differenzile è:

$$u\left(t\right) = \pm\sqrt{\frac{3}{c - 2t^3}}$$

Devo sceglere la radice positiva in quanto la condizione iniziale impone $u\left(0\right)=5$. Impongo la condizione iniziale e ottengo

$$\sqrt{\frac{3}{c}} \to c = \frac{3}{25}$$

Quindi il problema di Cauchy ha soluzione

$$u(t) = \sqrt{\frac{3}{\frac{3}{25} - 2t^3}} = \sqrt{\frac{75}{3 - 50t^3}}$$

Posso procedere ora studiando la soluzione:

$$3 - 50t^3 > 0 \to t < \sqrt[3]{\frac{3}{50}}$$

La funzione è quindi definita su $\left(-\infty, \sqrt[3]{\frac{3}{50}}\right)$. Posso dunque affermare che il <u>tempo di vita</u> della funzione è $T = \sqrt[3]{\frac{3}{50}}$. Visto che $\lim_{t \to \sqrt[3]{\frac{3}{50}}} u\left(t\right) = +\infty$ la funzione ha un <u>blow up</u>

4.4.0 Esempio Cauchy 4 parametrico

$$\begin{cases} u' = u^3 t^2 \\ u(0) = \alpha \end{cases}$$

Per quali valori di α ho esistenza globale nel futuro?

Eseguo tutti i passi fatti per trovare le soluzioni del problema di Cauchy rispetto al parametro α e ottengo:

$$u\left(t\right) = \pm\sqrt{\frac{3}{-2t^3 + \frac{3}{\alpha^2}}}$$

4.4.0 Esempio Cauchy 4

$$\begin{cases} u' = u \sin(t) \\ u(0) = -2 \end{cases}$$

• Separo:

$$\frac{du}{u} = \sin\left(t\right)dt$$

• Integro:

$$\int \frac{du}{u} = \int \sin(t) dt \to \log|u| = -\cos t (t) + c$$

 \circ Ricavo (tolgo il valore assoluto introducento \pm):

$$u(t) = \pm e^{-\cos(t) + c} = ce^{-\cos(t)}$$

 \circ Determino c

$$u\left(0\right) = -2 \to c = -2e$$

La soluzione al problema di Cauchy è quindi:

$$u(t) = -2e \cdot e^{-\cos(t)}$$

4.4.0 Esempio 6 Cauchy

$$\begin{cases} u' = -\frac{1}{u} \\ u(0) = 4 \end{cases}$$

• Separo:

$$\frac{du}{dt} = -\frac{1}{u} \to udu = -dt$$

o Integro e ricavo:

$$u\left(t\right) = \pm\sqrt{c - 2t}$$

 \circ Determino c

$$u(0) = \pm \sqrt{c} = 4 \rightarrow c = 14c = 14$$

La soluzione al problema di Cauchy è quindi:

$$u\left(t\right) = \sqrt{16 - 2t}$$

Studio la soluzione

- o L'intervallo massimale di esistenza del problema di Cauchy è $(-\infty, 8)$
- $\circ\,$ Il tempo di vita è T=8
- o Visto che $\lim_{t\to T^-} u(t) = 0$, non c'è blow-up, ma c'è break-down, infatti $-\frac{1}{u} = -\frac{1}{\sqrt{16-2t}}$ ha dominio $(-\infty,8]$, mentre la funzione soluzione, ossia $\sqrt{16-2t}$ ha dominio $(-\infty,8)$, ossia esce da dominio di definizione. Posso anche verificare con la derivata in questo caso:

$$\lim_{t \to 8^{-}} u\left(t\right) = -\infty$$