

QUÍMICA NIVEL MEDIO PRUEBA 2

Miércoles 4 de mayo de 2005 (tarde)

1 hora 15 minutos

Número de convocatoria del alumno								
0	0							

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste una pregunta de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen el número de la pregunta que ha contestado y la cantidad de hojas que ha utilizado.

2205-6129 9 páginas

SECCIÓN A

Conteste todas las preguntas en los espacios provistos.

1. En solución acuosa, el hidróxido de potasio reacciona con ácido clorhídrico de acuerdo con la siguiente ecuación.

$$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$$
.

Los siguientes datos provienen de un experimento para determinar la variación de entalpía de esta reacción.

50,0 cm³ de una solución de KOH de concentración 0,500 mol dm³ se mezclaron rápidamente en un recipiente de cristal con 50,0 cm³ de solución de ácido clorhídrico de concentración 0,500 mol dm³.

Temperatura inicial de cada solución = 19,6 °C

Temperatura final de la mezcla = 23,1 °C

(a)	Indique si la reacción es exotérmica o endotérmica. Justifique su respuesta.	[1]
(b)	Explique por qué las soluciones se mezclaron rápidamente.	[1]
(c)	Calcule la variación de entalpía de esta reacción, en kJ mol ⁻¹ . Suponga que la capacidad	F 43
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]
	calorífica especifica de la solución es igual a la del agua.	[4]

(Esta pregunta continúa en la siguiente página)

(Pregunta 1	: continuación)
-------------	-----------------

(d)	Identifique la principal fuente de error del procedimiento experimental descrito arriba. Explique cómo es posible minimizarlo.	[2]
(e)	Se repitió el experimento, pero con una solución de HCl de concentración 0,510 mol dm ⁻³ en vez de 0,500 mol dm ⁻³ . Explique e indique cuál podría ser la variación de temperatura.	[2]

Véase al dorso Véase al dorso

2.	La c	composición porcentual en masa de un hidrocarburo es $C = 85,6\%$ e $H = 14,4\%$.			
	(a)	Calcule la fórmula empírica del hidrocarburo.			
	(b)	Una muestra de 1,00 g del hidrocarburo a 273 K de temperatura y presión de $1,01\times10^5$ Pa (1,00 atm) ocupa un volumen de 0,399 dm ³ .			
		(i) Calcule la masa molar del hidrocarburo.	[2]		
		(ii) Deduzca la fórmula molecular del hidrocarburo.	[1]		
	(c)	Explique por qué la combustión incompleta de los hidrocarburos es dañina para los seres humanos.	[2]		

3.	Cuando una pequeña cantidad de un gas fuertemente oloroso como el amoníaco se libera en el aire, se puede detectar a varios metros de distancia en poco tiempo.						
	(a)	Use la teoría cinética molecular para explicar por qué sucede esto.	[2]				
	(b)	Indique y explique cómo varía el tiempo necesario para detectar el gas cuando la temperatura aumenta.	[2]				
1.	(a)	Identifique dos características de las moléculas que colisionan para reaccionar en fase gaseosa.	[2]				
	(b)	En muchas reacciones, la velocidad aproximadamente se duplica por cada 10°C de aumento de temperatura. Indique dos razones que justifiquen este aumento e identifique cuál de las dos es la más importante.	[3]				

Véase al dorso Véase al dorso

5. Escriba las fórmulas estructurales de los isómeros de fórmula molecular C_4H_{10} e indique el nombre de cada uno. [4]

2205-6129

[3]

SECCIÓN B

Conteste **una** pregunta. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

6. (a) Las letras **W**, **X**, **Y** y **Z** representan cuatro elementos consecutivos de la tabla periódica. El número de electrones en el mayor nivel energético ocupado es:

Escriba la fórmula de

- (i) un compuesto iónico formado a partir de W e Y, indicando las cargas. [2]
- (ii) un compuesto covalente que contenga **X** y **Z**. [1]
- (b) Indique el número de protones, electrones y neutrones presentes en el ion ${}_{7}^{15}$ N³⁻. [2]
- (c) Indique qué tipo de enlaces forman el compuesto SiCl₄. Dibuje la estructura de Lewis de este compuesto.
- (d) Resuma los principios de la teoría de la repulsión del par electrónico de valencia (TRPEV). [3]
- (e) (i) Use la TRPEV para predecir y explicar la forma y los ángulos de enlace de las moléculas: SCl₂ y C₂Cl₂. [6]
 - (ii) Deduzca si cada molécula es o no polar. Justifique su respuesta. [3]

2205-6129 Véase al dorso

7.	(a)	Indique y explique las tendencias en los radios atómicos y la energía de ionización				
		(i)	para los metales alcalinos desde el Li al Cs.	[4]		
		(ii)	para los elementos del tercer período desde el Na al Cl.	[4]		
	(b)	(i)	Describa tres semejanzas y una diferencia entre la reacción del litio y el potasio con agua.	[4]		
		(ii)	Esciba una ecuación que represente una de estas reacciones. Sugiera cuál será el valor de pH de la solución resultante y escriba una razón que justifique su respuesta.	[3]		
	(c)	Clas	ifique cada uno de los siguientes óxidos como ácido, básico o anfótero.			
		(i)	óxido de aluminio	[1]		
		(ii)	óxido de sodio	[1]		
		(iii)	dióxido de azufre	[1]		
	(d)	Escr	iba una ecuación para representar cada reacción entre el agua y el			
		(i)	óxido de sodio.	[1]		
		(ii)	dióxido de azufre.	[1]		

8. Hay varios compuestos cuya fórmula molecular es $C_3H_6O_2$.

Tres de ellos, A, B y C, tienen las siguientes propiedades:

A es soluble en agua y es ácido

B y **C** son neutros y no reaccionan con bromo.

(a)	Escr	iba la fórmula estructural de cada uno de estos compuestos y nómbrelos.	[6]
(b)	(i)	Explique la solubilidad en agua y la acidez de A.	[2]
	(ii)	Escriba una ecuación que represente la reacción de A con solución de hidróxido de sodio.	[1]
	(iii)	Explique por qué B y C no reaccionan con bromo.	[1]
(c)	Indi	que y explique qué compuesto, A, B o C tiene el mayor punto de ebullición.	[2]
(d)	(i)	Nombre a qué clase de compuestos pertenecen B y C e indique un uso de esta clase de compuestos.	[2]
	(ii)	Nombre las dos clases de compuestos usados para formar B o C e indique el otro producto que se forma en esta reacción.	[3]
(e)	bron	era la fórmula estructural de un isómero de $C_3H_6O_2$ que reacciona rápidamente con no. Nombre este tipo de reacción y describa una observación que se pueda realizar nte la reacción.	[3]