שיעור 11 דטרמיננטות וכלל קרמר

11.1 הגדרה של דטרמיננטה של מטריצה ריבועית

נדון רק במטריצה ריבועית.

הדטרמיננטה של מספר ממשי. באופן דומה, תסומן $A\in\mathbb{R}^{n\times n}$, תסומן הדטרמיננטה של מטריצה או מספר מחולב. או לפנא מספר מורכב. $A\in\mathbb{C}^{n\times n}$, היא מספר מורכב.

2 imes 2 הגדרה 11.1 דטרמיננטה של מטריצה ריבועית מסדר

 $A \in \mathbb{F}^{2 imes 2}$ נתוונה מטריצה

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

הדטרמיננטה של A מוגדרת

$$|A| = a_{11}a_{22} - a_{12}a_{21} .$$

דוגמה 11.1 דטרמיננטה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $|A| = 1 \cdot 4 - 2 \cdot 3 = -2$.

3 imes 3 הגדרה ביבועית מסדר של מטריצה ריבועית מסדר

 $A \in \mathbb{F}^{3 imes 3}$ נתוונה מטריצה

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

ניצן לחשב את הדטרמיננטה של A ע"י כל אחת מהשורות או ע"י כל אחת מהעמודות: שורה A

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} .$$

:2 שורה

$$|A| = -a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} .$$

שורה 3:

$$|A| = a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

עמודה 1:

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} .$$

יצמודה 2:

$$|A| = -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} .$$

עמודה 3:

$$|A| = a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

דוגמה 11.2 דטרמיננטה

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 6 & 0 & 7 \end{pmatrix},$$

$$|A| = 1 \cdot \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 4 \\ 6 & 0 \end{vmatrix}$$

$$= 1 \cdot (4 \cdot 7 - 5 \cdot 0) - 2(0 \cdot 7 - 5 \cdot 6) + 3 \cdot (0 \cdot 0 - 4 \cdot 6)$$

$$= 28 + 60 - 72,$$

$$= 16.$$

הגדרה 11.3 המינור

נתונה מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$. המינור ה-(i,j) של A מסומן ב- M_{ij} ומוגדר להיות הדטרמיננטה של . M_{ij} מחיקת המינור ה- M_{ij} נחמן ב- M_{ij} מחיקת שורה M_{ij} ומחיקת המתקבלת מ- M_{ij} מחיקת שורה ועמודה M_{ij} את המינור ה- M_{ij} נסמן ב- M_{ij} מחיקת שורה ועמודה מחיקת המינור ה- M_{ij} נסמן ב- M_{ij} מחיקת שורה אונה מחיקת מחיקת

דוגמה 11.3

$$.M_{32}$$
 , M_{23} , M_{12} , M_{11} את מצאו $A=egin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 6 & 0 & 7 \end{pmatrix}$ עבור

$$M_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} = 28 ,$$

$$M_{12} = \begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} = -30 ,$$

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 6 & 0 \end{vmatrix} = -12 ,$$

$$M_{32} = \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = 5 .$$

הגדרה 11.4 הקופקטור

נתונה מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ הקופקטור ה- (i,j) של A מסומן ב- ומוגדר להיות המינור ה- גרונה מטריצה (i,j) הקופקטור ה- $A\in\mathbb{F}^{n\times n}$ ומוגדר להיות המינור ה- (i,j)

$$C_{ij} = (-1)^{i+j} \cdot M_{ij} .$$

דוגמה 11.4

$$.C_{32}$$
 , C_{23} , C_{12} , C_{11} את מצאו את $A=egin{pmatrix} 1 & 2 & 3 \ 0 & 4 & 5 \ 6 & 0 & 7 \end{pmatrix}$ עבור

פתרון:

$$C_{11} = (-1)^{2} \cdot M_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 7 \end{vmatrix} = 28 ,$$

$$C_{12} = (-1)^{3} \cdot M_{12} = -\begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix} = 30 ,$$

$$C_{23} = (-1)^{5} \cdot M_{23} = -\begin{vmatrix} 1 & 2 \\ 6 & 0 \end{vmatrix} = 12 ,$$

$$C_{32} = (-1)^{5} \cdot M_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 .$$

n imes n דטרמיננטה של מטריצה ריבועית מסדר 11.5 הגדרה

תהי $A \in \mathbb{F}^{n \times n}$ מטריצה ריבועית.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} .$$

הדטרמיננטה של A, מסומנת ב- |A|. ניתן לחשב את הדטרמיננטה לפי שורה i

$$|A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$
,

A כאשר (i,j) -ה המינור ה- (i,j) של הא ו- C_{ij} הקופקטור ה- M_{ij} של המטריצה מיתן לחשב את הדטרמיננטה לפי עמודה i

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$
.

. למעשה, ניתן לחשב את |A| לפי שורה כלשהי או לפי עמודה כלשהי

דוגמה 11.5

. מצאו את הדטרמיננטה של המטריצה,
$$A = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{pmatrix}$$
נסמן

פתרון:

$$\begin{split} |A| &\stackrel{\text{diff}}{=} 1 \cdot M_{11} - 5 \cdot M_{12} + 0 \cdot M_{13} \\ &= 1 \cdot \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 5 \cdot \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} \\ &= -2 \; . \end{split}$$

....עשע....

$$|A| \stackrel{\mathsf{werf}}{=} -2 \cdot M_{21} + 4 \cdot M_{22} - (-1) \cdot M_{23}$$

$$= -2 \cdot \begin{vmatrix} 5 & 0 \\ -2 & 0 \end{vmatrix} - 4 \cdot \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix}$$

$$= -2.$$

$$|A| \stackrel{\mathsf{Vaite}}{=} 0 \cdot M_{13} - (-1) \cdot M_{23} + 0 \cdot M_{33}$$

$$= 0 \cdot \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$

$$= -2.$$

:הערה

סימני האיברים הם כך:

$$A = \begin{pmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \\ \vdots & & & \ddots \end{pmatrix}$$

דוגמה 11.6

חשבו את הדטרמיננטה של המטריצה הבאה:

$$A = \begin{pmatrix} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ה סמסטר א'

$$|A|$$
 $=$ $3 \cdot M_{11} - 0 \cdot M_{21} + 0 \cdot M_{31} - 0 \cdot M_{41} + 0 \cdot M_{51} - 0 \cdot M_{61}$ $= 3 \cdot \begin{vmatrix} 2 & -5 & 7 & 3 \\ 0 & 1 & 5 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 0 & -2 & 0 \end{vmatrix}$ $= 3 \cdot (-1)^{1+1} \cdot 2 \cdot \begin{vmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{vmatrix}$ $= 6 \cdot (-2) = -12$.

משפט 11.1 דטרמיננטה של מטריצה משולשית

. אם איברי האלכסון איברי האלכסון, או $|A|=a_{11}\cdot a_{22}\cdot \cdots \cdot a_{nn}$ אם איברי האלכסון מטריצה משולשית אז

הוכחה: תרגיל בית.

דוגמה 11.7

חשבו

$$\begin{vmatrix} 1 & 5 & 7 \\ 0 & 2 & 19 \\ 0 & 0 & 3 \end{vmatrix} .$$

פתרון:

$$\begin{vmatrix} 1 & 5 & 7 \\ 0 & 2 & 19 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 19 \\ 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 = 6.$$

משפט 11.2

אם $A \in \mathbb{R}^{n imes n}$ מטריצה ריבועית ו- B מטריצה מטריצה מטריצה אם אם אם מטריצה ריבועית ו

(1) החלפת 2 שורות, אז

$$|B| = -|A|.$$

אז $\alpha \neq 0$ אז בסקלר שורה בסקלר (2)

$$|B| = \alpha |A|.$$

(3) הוספת כפולה של שורה אחת לשורה אחרת, אז

$$|B| = |A|$$
.

הוכחה: תרגיל בית.

דוגמה 11.8

$$\begin{vmatrix} 3 & 6 \\ 8 & 4 \end{vmatrix}$$
 חשבו את

פתרון:

$$\begin{vmatrix} 3 & 6 \\ 8 & 4 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 \\ 8 & 4 \end{vmatrix} = 3 \cdot 4 \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 12 \cdot (1 \cdot 1 - 2 \cdot 2) = 12 \cdot (-3) = -36.$$

דוגמה 11.9

$$egin{bmatrix} 2 & 4 & 6 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \\ \end{bmatrix}$$
 חשבו את

פתרון:

$$\begin{vmatrix} 2 & 4 & 6 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 12 & 15 & 18 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot 3 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 28 & 32 & 40 \end{vmatrix} = 2 \cdot 3 \cdot 4 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 7R_1} 24 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{vmatrix}$$

$$=24 \cdot (-3) = -72$$
.

דוגמה 11.10

$$egin{bmatrix} 7 & 14 & 21 \ 28 & 35 & 42 \ 49 & 56 & 70 \ \end{bmatrix}$$
 חשבו את

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ה סמסטר א'

$$\begin{vmatrix} 7 & 14 & 21 \\ 28 & 35 & 42 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 28 & 35 & 42 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 49 & 56 & 70 \end{vmatrix} = 7 \cdot 7 \cdot 7 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$
$$= 7^{3} \cdot \left(1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 10 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 10 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} \right)$$
$$= 7^{3} \cdot \left(1 \cdot (50 - 48) - 2 \cdot (40 - 42) + 3 \cdot (32 - 35) \right)$$
$$= 7^{3} \cdot (-3) = -1029.$$

משפט 11.3

$$|\alpha A| = \alpha^n \cdot |A|$$

 $n \times n$ מסדר A כאשר

הוכחה: תרגיל בית.

:הערה

כל מטריצה ריבועית A (מסדר $n \times n$) ניתן להעביר למטריצה מדורגת ש"י ביצוע מספר סופי של פעולות שורה (lpha
eq 0 שורות מסוג החלפת שורה בסקלר שורה אחת לשורה אחרת (בלי פעולת הכפלת שורה בסקלר לכן

$$|A| = (-1)^k |B|$$

,כאשר א מספר החלפות השורות שביצענו. כמו כן מאחר ו- B משולשית עליונה כאשר ליונה,

$$|B| = b_{11} \cdot b_{22} \cdot \cdots \cdot b_{nn} .$$

משפט 11.4

תהי $A \in \mathbb{R}^{n imes n}$ מתקיים:

$$|A^t| = |A|$$
.

הוכחה: תרגיל בית.

דוגמה 11.11

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 , $|A| = -2$, $A^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, $|A^t| = -2$.

משפט 11.5 משפט המכפלה

ינה $A,B \in \mathbb{R}^{n \times n}$ מתקיים:

$$|A \cdot B| = |A| \cdot |B|$$
.

הוכחה: תרגיל בית.

דוגמה 11.12

$$AB$$
, AB

פתרון:

$$AB = \begin{pmatrix} 6 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 25 & 20 \\ 14 & 13 \end{pmatrix} ,$$

$$|A| = 12 - 3 = 9 ,$$

$$|B| = 8 - 3 = 5 ,$$

$$|AB| = 25 \cdot 13 - 20 \cdot 14 = 45 .$$

משפט 11.6

. מתקיים: $A \in \mathbb{R}^{n imes n}$ מתקיים:

$$|A^k| = |A|^k .$$

הוכחה: תרגיל בית.

דוגמה 11.13

$$|A|=-2$$
 נתונה $|A|=A=egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ מהי

פתרון:

$$|A^{2020}| = \underbrace{|A \cdot A \cdot \dots \cdot A|}_{2020} = \underbrace{|A| \cdot |A| \cdot \dots \cdot |A|}_{2020} = |A|^{2020}$$

 $|A^{2020}| = (-2)^{2020}$ ולכן

הגדרה 11.6 המטריצה של קופקטורים

n imes n נגדיר את המטריצה של קופקטורים מסדר . $A \in \mathbb{F}^{n imes n}$

$$C = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{pmatrix}$$

A של (i,j) -הקופקטור ה- C_{ij}

הגדרה 11.7 המטריצה המצורפת

תהי $\operatorname{adj}(A)$ שמסומנת n imes n שמסריצה מטריצה של A היא מטריצה המצורפת . $A \in \mathbb{F}^{n imes n}$

$$adj(A) = C^t$$

A כאשר C המטריצה של קופקטורים של

משפט 11.7 נוסחת קיילי המילטון

תהי $A\in\mathbb{F}^{n imes n}$ נניח ש- $A\in\mathbb{F}^{n imes n}$

$$A^{-1} = \frac{1}{|A|} \cdot C^t = \frac{1}{|A|} \cdot \text{adj}(A)$$
.

הוכחה: מעבר לקורס הזה.

דוגמה 11.14

$$A^{-1}$$
 את חשבו $A = egin{pmatrix} 1 & 3 & 4 \\ 2 & 4 & 3 \\ 1 & 5 & 0 \end{pmatrix}$ נתונה

$$\begin{split} M_{11} &= -15 \quad C_{11} = 15 \\ M_{12} &= -3 \quad C_{12} = 3 \\ M_{13} &= 6 \quad C_{13} = 6 \\ M_{21} &= -20 \quad C_{21} = 20 \\ M_{22} &= -4 \quad C_{22} = -4 \\ M_{23} &= 2 \quad C_{23} = -2 \\ M_{31} &= -7 \quad C_{31} = -7 \\ M_{32} &= -5 \quad C_{32} = 5 \\ M_{33} &= -2 \quad C_{33} = -2 \\ \\ C &= \begin{pmatrix} -15 & 3 & 6 \\ 20 & -4 & -2 \\ -7 & 5 & -2 \end{pmatrix} \quad \Rightarrow \quad \mathrm{adj}(A) = \begin{pmatrix} -15 & 20 & -7 \\ 3 & -4 & 5 \\ 6 & -2 & -2 \end{pmatrix} \quad . \\ |A| &= 1 \cdot (-15) + 3 \cdot 3 + 4 \cdot 6 = 18 \; . \end{split}$$

משפט 11.8 מטריצה הפיכה

 $A \in \mathbb{R}^{n imes n}$ תהי

אם ורק אם A הפיכה. $|A| \neq 0$

-הוכחה: נניח ש- A הפיכה. אז קיימת A^{-1} כך ש

$$A \cdot A^{-1} = I .$$

לכן לפי משפט 11.5:

$$|A \cdot A^{-1}| = |A| \cdot |A^{-1}| = 1$$
.

 $|A| \neq 0$ כלומר $|A| \cdot |A^{-1}| = 1$ כלומר

 $a^{-1}=rac{1}{|A|}$ אומרת אומרת קיים. אז ההופכית ש- $a\neq 0$ אז מכיוון ש- $a=|A|\in\mathbb{F}$ אז אומרת ומרת . $|A|\neq 0$ קיים. לכן לפי נוסחת קיילי המילטון(משםט 11.7) אומרת לכן A^{-1} קיימת. לכן לפי נוסחת קיילי המילטון

דוגמה 11.15

היעזרו במשפט 11.8 לעיל וקבעו האם המטריצה הבאה הפיכה:

$$\begin{pmatrix}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
-6 & 7 & -7 & 4 \\
-5 & -8 & 0 & 9
\end{pmatrix}$$

פתרון:

$$\begin{vmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9 \end{vmatrix} \xrightarrow{R_3 \to R_3 + 2R_1} \begin{vmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ 0 & 5 & -3 & -6 \\ -5 & -8 & 0 & 9 \end{vmatrix}$$

=0 .

לכן A לא הפיכה.

משפט 11.9

תהי $A \in \mathbb{R}^{n imes n}$ הפיכה, אז

$$|A^{-1}| = \frac{1}{|A|} \ .$$

 $|A|\neq 0$ ב- ולכן $|A|\cdot |A^{-1}|=1$ מתקיים משפט המכפלה, ולכן ולכן ולכן $|A\cdot A^{-1}|=|I|$ נחלק ב- $|A|\cdot A=I$ ונקבל

$$|A^{-1}| = \frac{1}{|A|} \ .$$

דוגמה 11.16

$$.|A|$$
 את את $.B=egin{pmatrix} -2&3e&\pi\\0&1&23\\0&0&-1 \end{pmatrix}$ כאשר את $A^3=2A^{-1}B$ מצאו את $A\in\mathbb{R}^{3 imes3}$

פתרון:

:דרך א

 $A\in\mathbb{R}^{3 imes 3}$. מאחר ו- $A^3=|2A^{-1}|\cdot|B|$ מאחר ו- $A^3=|2A^{-1}B|$. לפי הנתון $A^3=2A^{-1}B$. מלפי הנתון $A^3=2A^{-1}B$. מכאן, מכאן,

$$|A|^3 = 2^3 \cdot \frac{1}{|A|} \cdot |B|$$
,

ולכן

$$|A|^4 = 8 \cdot |B| = 8 \cdot 2 = 16$$
,

 $|A|=\pm 2$. ונקבל

דרך ב:

$$A \cdot (2A^{-1}B) = A \cdot A^3 \implies A^4 = (A \cdot 2A^{-2})B \implies A^4 = (2 \cdot AA^{-2})B \implies A^4 = (2 \cdot I)B$$

 $A^4 = 2B \implies |A^4| = |2B| \implies |A|^4 = 2^3 \cdot |B| \implies |A|^4 = 8 \cdot 2 = 16$.

דוגמה 11.17

ינה הפרך: $A,B\in\mathbb{R}^{n\times n}$ הוכח או הפרך:

$$|A + B| = |A| + |B|$$
.

פתרון:

הטענה איננה נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} ,$$

$$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ,$$

$$|A| = 0 , \qquad |B| = 0 ,$$

$$|A + B| = |I| = 1 ,$$

$$|A + B| \neq |A| + |B| .$$

דוגמה 11.18

 $.|A^{-1}B^2(B^t)^{-1}|$ את חשבו את $.A+3B^t=0$ שמתקיים כך הפיכות, הפיכות $A,B\in\mathbb{R}^{5\times 5}$

פתרון:

נשים לב שלא נכון לכתוב

$$A + 3B^t = 0 \implies |A + 3B^t| = |0| \implies |A| + |3B^t| = 0$$
.

נחשב

$$|A^{-1}B^{2}(B^{t})^{-1}| = |A^{-1}| \cdot |B^{2}| \cdot |(B^{t})^{-1}| = \frac{1}{|A|} \cdot |B|^{2} \cdot \frac{1}{|B^{t}|} = \frac{1}{|A|} \cdot |B|^{2} \cdot \frac{1}{|B|} = \frac{|B|}{|A|}.$$

לפי הנתון $A + 3B^t = 0$ ולכן

$$A = -3B^t \Rightarrow |A| = |-3B^t| \Rightarrow |A| = (-3)^5 |B^t| \Rightarrow |A| = -243 |B| \Rightarrow \frac{|B|}{|A|} = -\frac{1}{243}$$
.

דוגמה 11.19

תהיינה $X,Y \in \mathbb{R}^{3 imes 3}$ המקיימות

$$XY = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

X האם הפיכה (א)

$$X: X = egin{pmatrix} 2 & -1 & 0 \ 1 & -1 & 0 \ 4 & 0 & -6 \end{pmatrix}$$
 עבור (ב)

פתרון:

(א) נסמן
$$|A|=A$$
 (שים לב ש- -6 -שים לב ש- $XY=A$ (שים לפי משפט המכפלה, $A=\begin{pmatrix} 1&0&0\\0&3&0\\0&0&-2\end{pmatrix}$ (א) נסמן $|A|=|XY|=|X|\cdot|Y|$ בפרט, $|A|=|XY|=|X|\cdot|Y|$

נבל גער הנתון XY=A הוכחנו ש- X הפיכה, נכפול את שני האגפים משמאל בהופכית של X. נקבל לפי הנתון XY=A לאחר חישוב, נקבל ש- $XY=X^{-1}$

$$X^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 0 \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{6} \end{pmatrix}$$

לכן

$$Y = X^{-1}A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 0 \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 0 \\ 1 & -6 & 0 \\ \frac{2}{3} & -2 & \frac{1}{3} \end{pmatrix} .$$

11.2 כלל קרמר

משפט 11.10 כלל קרמר

"תהי $X \in \mathbb{F}^n$ מטריצה ריבועית הפיכה ויהי $A \in \mathbb{F}^{n imes n}$

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{pmatrix} , \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} .$$

לכל AX=b ניתן היחיד למערכת הפתרון היחיד לכל

$$x_i = \frac{|A_{ib}|}{|A|}$$

כאשר

$$A_{ib} = \begin{pmatrix} | & | & & | & | & | & | & | \\ a_1 & a_2 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \\ | & | & & | & | & | & | \end{pmatrix} ,$$

b -ב i -המטריצה המתקבלת מ- A ע"י החלפת העמודה ה- i ב-

הוכחה: תרגיל בית.

דוגמה 11.20

פתרו את המערכת הבאה בעזרת כלל קרמר:

$$x_1 + 2x_2 = 1$$

 $3x_1 + 4x_2 = 2$.

$$\begin{array}{ccc} x_1 + 2x_2 = & 1 \\ 3x_1 + 4x_2 = & 2 \end{array} \quad \Leftrightarrow \quad \underbrace{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{b}$$

. ולכן המטריצה הפיכה,
$$|A|=egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}=-2$$

$$|A_1(b)| = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0 ,$$

$$x_1 = \frac{|A_1(b)|}{|A|} = \frac{0}{-2} = 0 ,$$

$$|A_2(b)| = \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = -1 ,$$

$$x_2 = \frac{|A_2(b)|}{|A|} = \frac{-1}{-2} = \frac{1}{2} .$$