exercice 43 de réduction

(avec une jolie erreur d'énoncé)

Léane Parent

28 octobre 2025

Exercice 43: (Mines-Ponts 2019)

Déterminer les matrices $A \in M_n(\mathbb{R})$ telles que $A^5 - 2A^4 - 2A^3 + A^2 + 4A + I_n = 0$, $\operatorname{tr}(A) = 0$ et $\det(A) = \pm 1$.

Dans tout l'exercice, on note P le polynôme annulateur décrit dans l'énoncé.

Cette correction se repose sur <u>Introduction à la théorie de Galois</u>¹, par Yves Laszlo, et de divers théorèmes trouvés sur wikipedia.org (on fait avec les sources qu'on trouve, et avec la flemme qu'on a).

0.1 Suggestion de correction

L'énoncé original utilisait probablement le polynôme $P(X) = X^5 - 2X^4 - 2X^3 + X^2 + 4X + 4$, qui se factorise aisément en $(X+1)(X-2)^2(X^2+X+1)$. Or, toutes ses racines sont de module supérieurs ou égaux à 1. Ainsi, pour avoir un déterminant égal à ± 1 , les valeurs propres de A ne peuvent être que $1, j, j^2$.

En trigonalisant dans $M_n(\mathbb{C})$, et en observant la trace, on déduit que les trois valeurs propres éventuelles ont nécessairement la même multiplicité. Ainsi, il ne peut exister une telle matrice que si 3|n. Si on note n=3k, on a alors, à similitude près :

(à noter que j'ai en réalité traité le cas complexe, mais j'admets avoir un peu la flemme de traiter le cas réel, mais si quelqu'un a envie de s'amuser, libre à lui)

 $^{1.\} https://www.cmls.polytechnique.fr/perso/laszlo/galois/galois.pdf$

1 Irréductibilité de P dans $\mathbb{Q}[X]$

P est unitaire, donc, d'après le lemme de Gauss ², si celui-ci est réductible, alors il est réductible dans $\mathbb{Z}[X]$.

De plus, si P est réductible, alors il l'est modulo 2. Supposons P réductible, et notons $P(X) = (X^3 + aX^2 + bX + c)(X^2 + dX + e)$. Il en découle, dans $\mathbb{F}_2[X]$ (en assimilant les entiers à leur congruence modulo 2 par la surjection canonique) :

$$X^5 + X^2 + 1 = (X^3 + aX^2 + bX + c)(X^2 + dX + e)$$

On en déduit :

$$0 = a + c \tag{1}$$

$$0 = d + ac + b \tag{2}$$

$$1 = e + da + cb \tag{3}$$

$$0 = db + ea \tag{4}$$

$$1 = eb \tag{5}$$

- (5) nous donne e = b = 1. On déduit de (4) que a = e = 1, d'où, d'après (1), c = 1. On a alors d = 1 d'après (3).
- (2) n'est alors plus vérifiée, ce qui est absurde : P n'est pas réductible modulo 2, donc pas réductible.

2 Calcul du groupe de Galois

On vérifie aisément par une étude de P qu'il admet exactement trois racines réelles distinctes, donc deux complexes non réelles conjuguées.

Or, P est de degré premier. Il vérifie ainsi les hypothèses d'un théorème, trouvé sur l'article Galois group de wikipedia (voir "symmetric group of prime order") : Si un polynôme irréductible de degré premier p admet exactement p-2 racines réelles, alors son groupe de Galois est S_p tout entier.

(Je n'ai pas trop de doutes sur le fait que ça se calcule plus explicitement, mais vous avez envie de le faire, vous?)

3 \mathbb{Q} -indépendance linéaire des racines de P

lemme: Si $V \subset \mathbb{Q}^5$ est un \mathbb{Q} -espace vectoriel stable par permutation, alors $V = \{0\}$, $\text{Vect}_{\mathbb{Q}}(1, \dots 1)$, ou contient $W = \{(q_1, \dots q_5) \mid q_1 + \dots q_5 = 0\}$.

démonstration : Supposons qu'il existe un élément $(q_1, \dots q_5) \in V$ admettant deux éléments distincts. Quitte à permuter, supposons $q_1 \neq q_2$.

Par stabilité par permutation, $(q_2, q_1, q_3, q_4, q_5) \in V$. Par différence, $(q_2-q_1, q_1-q_2, 0, 0, 0) \in V$, donc (1, -1, 0, 0, 0) également.

On en déduit par permutation que $(1,0,-1,0,0),\ldots(1,0,0,0,-1)\in V$. Or, ces éléments

^{2.} https://fr.wikipedia.org/wiki/Lemme_de_Gauss_(polyn%C3%B4mes)

^{3.} https://en.wikipedia.org/wiki/Galois_group, source: Lang, Serge. Algebra (Revised Third ed.). pp. 263, 273.

forment une base de W, donc $W \subset V$.

On note r_1, r_2, r_3, r_4 et r_5 les racines de P, avec $r_4, r_5 \notin \mathbb{R}$, et $L = \mathbb{Q}(r_1, \dots r_5)$ Soit $V = \{(q_1, \dots q_5) \in \mathbb{Q}^5 \mid q_1r_1 + \dots q_5r_5 = 0\}$, ie l'ensemble des coefficients de combinaisons linéaires rationnelles annulant les racines de P. On montre aisément que V est un \mathbb{Q} -espace vectoriel

```
Soit (q_1, \ldots, q_5) \in V. Soit \sigma \in \operatorname{Gal}(L/\mathbb{Q}).
On a q_1r_1 + \ldots q_5r_5 = 0, d'où, par composition par \sigma : q_1\sigma(r_1) + \ldots q_5\sigma(r_5) = \sigma(0) = 0.
(En effet, \sigma est un automorphisme laissant invariant les rationnels.)
Or, en assimilant \sigma à une permutation, on a \sigma(r_i) = r_{\sigma(i)}.
On en déduit que \sigma^{-1}(q_1, \ldots, q_5) \in V : V est stable par permutation (car \operatorname{Gal}(L/\mathbb{Q}) \cong S_5, donc \sigma^{-1} décrit S_5).
```

D'après le lemme ci-dessus, on a $V = \{0\}$, $\mathbb{Q}(1, \dots 1)$, ou contient W. En observant le coefficient en X^4 de P, on obtient $r_1 + \dots r_5 = 2$, d'où $V \neq \operatorname{Vect}_{\mathbb{Q}}(1, \dots 1)$. De plus, $r_1 - r_4 \notin \mathbb{R}$, donc $r_1 - r_4 \neq 0$. On en déduit que $(1, 0, 0, -1, 0) \notin V$, donc $W \not\subset V$.

Ainsi, $V = \{0\}$, ie $r_1, \dots r_5$ sont linéairement indépendants.

4 Conclusion

Soit A convenant. En trigonalisant (dans $M_n(\mathbb{C})$), on obtient une matrice dont la trace est combinaison linéaire (à coefficients naturels) des racines de P.

Or, par hypothèse, la trace de A est nulle, ce qui est absurde car les racines de P sont libres.

L'ensemble des matrices convenant est \emptyset .