Theorem: If T is a BFS tree for G=Cy, and KELi, yBELS, (K,y)EE

then i and j dirfer by <1

(11-i1<1)

Proof: W.log. (without loss of generality) i Si ie. if j Li, switch i and j so i Si

Proof by contradiction
assume i < j-1 which implies i & j

j>i+1

By the BFS algorithm, y \(\) Li+1

Edge (x,y) can't be stipped by the algorithm, so y must be in the next Level.

Contradiction of 17:11

Generic Search Algorithm: Add a connected component if possible

Output The connected component of the graph starting at node s, (CCS)

Explore (5) 1. $R \in \{53\}$ 2. While $\exists cu, v \in \{5, 1\}$ $u \in \{7, 1\}$ $u \notin \{7, 2\}$ $\exists \{7, 2\}$ $\exists \{7,$

3. Return R*ER

Theorem: R^* is the connected component of S (implies BFSCs) and DFSCs) return CC(S) as well)

Proof: If we show $R^* \subseteq CC(S)$ and $CC(S) \subseteq R^*$ then $R^* = CC(S)$

R*ECCO)

BR* CC(5): WER* > WECC(5)

w. is added to R*

path from S to w which implies they

are connected,

CC(5) ⊆ B*: W6CC(5) => WE B*

Proof by Contradiction

Assume the statement is false.

WE (C(s)) DX WECC(s)

WE R* XE WER*

Show a contradiction.

Since WER* then

(x,y) E F for some XER*, Y & Since there must be a path from s fo wo By the algorithm, the edge (x,y) must loe traversed and y should be in B*. X this contradicts the algorithm,