Лабораторная работа 4.1.1

Геометрическая оптика

Рябов Олег, Шистко Степан Б04-302

15 апреля 2025 г.

Цель работы: изучение свойств оптических систем: определение фокусных расстояний линз, определение фокусных расстояний и положения главной и фокальной плоскостей сложной оптической системы, изучение аббераций оптических систем.

В работе используются: оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой, зрительная труба, кольцевые диафргамы, линейка.

1. Введение

Определения фокусных расстояний

Формула тонкой линзы имеет вид

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b},$$

где f — фокусное расстояние, a — расстояния от предмета до линзы, b — расстояние от изображения до линзы.

Для измерения фокусного расстояния тонкой собирающей линзы может использоваться схема с рис. 1. и формула (2).

$$f = \frac{L^2 - l^2}{4L}$$

Рис. 1: Схема измерения фокуса тонкой собирающей линзы

Также фокусное расстояние тонкой собирабщей линзы можно измерить с помощью зрительной трубы, настроенной на бесконечность. Если расположить линзу между предметом и трубой и найти четкое изображение предмета, то расстояние от линзы до предмета будет равно фокусному.

Для определения расстояние тонкой рассеивающей линзы поспользуемся схемой на рис. 2 и формулой тонкой линзы. Также можно восползоваться зриетльной трубой, настроенной на бесконечность. Если расположить предмет у нее в фокусе, то изображение переместиться в бесконечность, что можно проверить с помощью зрительной трубы.

Рис. 2: Схема измерения фокуса тонкой рассеивающей линзы

Для определения фокусного расстояние и положения главных плоскостей сложной оптической системы может использоваться метод Аббе: схема на рис. 3 и формула (3).

Рис. 3: Схема определения фокусного расстояние и положения главных плоскостей сложной оптической

$$f = \frac{\Delta x}{y/y_1 - y/y_2}$$

Пусть пучок света, попадающий в объектив, составляет с оптической осью угол φ_1 , а пучок, выходящий из окуляра, — угол φ_2 . Увеличение γ зрительной трубы по определению равно

$$\gamma = \frac{\tan \varphi_2}{\tan \varphi_1},$$

но также из рис. 3 следует, что

$$\gamma_K = \frac{f_1}{f_2} = \frac{D_1}{D_2},$$

где D_1 - ширина пучка, прошедшего через объектив, а D_2 - ширина пучка, вышедшего из окуляра

1.1. Моделирование трубы Галилея

Рис. 4: Ход лучей в трубе Галилея

1.2. Моделирование микроскопа

Рис. 5: Ход лучей в микроскопе

Ход лучей в микроскопе показан на рис. 6. Увеличение микроскопа вычисляется по формуле

$$\gamma_M = \Gamma_{o_b} \Gamma_{o_c} = \frac{\triangle}{f_1} \frac{L}{f_2},$$

Рис. 6: Схема микроскопа

2. Ход работы

2.1. Подготовка к работе

Работал я за установкой №3. Визуально определим, какие линзы являются собирающими, а какие – рассеивающими. Собирающие линзы: 1, 2, 3, 4; рассеивающая линза: 5. Откорректируем высоту линз. Линза 1 не опускается ниже определённого уровня, так что использовать её далее мы не будем.

Определим фокусные расстояния линз с помощью экрана. С помощью формулы тонкой линзы подбирая расстояния между экраном, линзой и источникм, находим оценочные фокусные расстояния линз. Для нахождения фокусного расстояния рассеивающей линзы, поставим вплотную к ней собирающую, оптическая сила будет суммой сил каждой из линз. Тогда получаем

F_1 , cm	F_2 , cm	F_3 , cm	F_4 , cm	F_5 , cm	F_6 , cm
7	12	16	22	-9	5

2.2. Определение фокусных расстояний линз с помощью зрительной трубы

Так как мы настроили зрительную трубу на бесконечность, то, если линза будет находится ровно на фокусном расстоянии от источника, то глядя в трубу мы будем видеть четкое изображение.

Для нахождения фокусного расстояние отрицательной линзы так же воспользуемся вспомогательной положительной, создавая для отрицательной линзы мнимый источник. Тогда фокусное расстояние отрицательной линзы будет $f=a_0$ - l

состояние	F_1 , cm	F_2 , cm	F_3 , cm	F_4 , cm	F_5 , cm	F_6 , cm
до переворота	7	15	20	29.6	-8	4.7
после переворота	8	15	19.5	29.2	-//-	5

Для оценки того, тонкие линзы или нет, развернем линзы на 180 градусов и посмотрим как изменится фокусное расстояние. В пределах прогрешности будем считать линзы тонкими.

2.3. Измерение фокусных расстояний линз по формуле тонкой линзы и методом Бесселя

Возьмем линзу 1. Поставим экран от источника на расстояние порядка 33.7 см. Поместим линзу в 2 положения на расстояниях s_1 и s_2 . Получаем $s_1=22.5$ см, $s_2=10.4$ см.

Тогда $l=s_2-s_1=11.5$ см (измерено более точно, с помощью нилейки на оптической скамье)

Тогда по приближенной формуле Бесселя:

$$f = \frac{L^2 - l^2}{4L} = 7.4$$
 см (после переворота так же)

При переворачивании линзы получим точно такой же результат.

2.4. Измерение фокусных расстояний методом Аббе

Установим линзу 1 между осветителем и транспорантом в соответствии со схемой. В качестве физического предмета будем рассматривать изображение квадрата с линейным размером y_0 . При изначальной установке размер изображения y_1 . Отодвинем осветитель на некоторое расстояние Δx см от линзы. Затем передвинем экран к линзе на расстояние $\Delta x'$ см до получения сфокусированного изображения с линейным размером y_2 .

y_0 , cm	2.1	2.1	2.1
y_1 , cm	4.2	4.2	4.2
y_2 , cm	2.1	6.3	1.8

Тогда вычислить фокусное расстояние можно по формуле (возьмём размер большего квадратика для лучшей точности):

$$f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = 7.6 \text{ cm}$$
 $f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = 8.3 \text{ cm}$
 $f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = 7.35 \text{ cm}$

Или, если считать размер предмета неизвестным, то:

$$f^2 = \Delta x \cdot \Delta x' \cdot \frac{y_2 y_1}{(y_2 - y_1)^2} \quad \Rightarrow \quad f = 7.7 \text{ cm}$$

$$f^2 = \Delta x \cdot \Delta x' \cdot \frac{y_2 y_1}{(y_2 - y_1)^2} \quad \Rightarrow \quad f = 7.9 \text{ cm}$$

$$f^2 = \Delta x \cdot \Delta x' \cdot \frac{y_2 y_1}{(y_2 - y_1)^2} \quad \Rightarrow \quad f = 7.3 \text{ cm}$$

2.5. Сборка и изучение подзорной трубы Галилея

Сделаем подзорную трубу Кеплера. Выберем 3 линзы: коллиматорную (4), объектив (2) и окуляр (5). Соберем модель телескопа Кеплера

Для этого для начала сымитируем удаленный объект. Для этого поставим длиннофокусную линзу и с помощью подзорной трубы, настроенной на бесконечность, найдем четкое изображение предмета.

После определим угловой размер объекта α_0 как кол-во рисок к числу укладывающихся периодов сетки (рис. 7).

Рис. 7: Определение углового размера удалённого объекта

После начнем собирать телескоп. Для этого поставим две линзы $f_{\rm ok}$ и $f_{\rm o6}$ (см. рис. 8) и с помощью подзорной трубы, двигая окуляр, найдём четкое изображение сетки. После чего аналогичным способом (по кол-ву рисок к одному квадратику) определим угловой размер изображения α в телескопе. После посчитаем угловое увеличение телескопа $\gamma = \alpha/\alpha_0$. Теоретическое значение увеличения при этом равно $\gamma_{\rm теор} = |f_{\rm o6}/f_{\rm ok}|$.

Также определить увеличение можно с помощью определения отношения диаметров изображения как $\gamma = D_{\rm o6}/D_{\rm o6}$ (см. рис. 9).

Коллиматор – 300 мм, объектив – 200 мм, окуляр – 150 мм. Получаем теоретическое увеличение $\gamma_{\text{теор}} = 1,4$. Посчитанное по кол-ву клеток в риске увеличение $\gamma = 1,5 \pm 0.4$ (погрешность большая, так как клетки были большими). Посчитанное с помощью размеров пятна $\gamma = 1,5 \pm 0.13$.

Рис. 8: Определение углового размера удалённого объекта в объективе телескопа

Рис. 9: Определение углового увеличения удалённого по размеру изображения

2.6. Сборка и изучение микроскопа

Рис. 10

Линзы использованные - 1 и 4 Полученное увеличение - 3.14, выставленое - 3

3. Вывод

Были исследованы различные способы нахождения фокусных расстояний линзы. Наиболее эффективным оказался метод с использованием подзорной трубы – все значения совпали в пределах погрешности. Также неплохо показал себя метод Бесселя и Аббе.

Также были собраны телескоп Кеплера и микроскоп и измерены их увеличения.