

FÖRELÄSNING 8

MULTIPOLUTVECKLINGEN Fredrik Jonsson, Uppsala Universitet, 28 november 2024

Multipolutveckling av fält

- Formalism för att projicera ut olika bidrag ("moment") till elektromagnetiska fält.
- Ofta förekommande för karakterisering av antenner.
- Molekyler som interagerar med elekromagnetiska fält agerar som "antenner" vilka kan beskrivas utifrån deras multipolutvecklingar,
- Basen för beskrivning av ε_r i konstitutiva relationen $\mathbf{P} = \varepsilon_0 \varepsilon_r \mathbf{E}$ (hur material polariseras av elektriska fält) eller $\mathbf{B} = \mu_0 \mu_r \mathbf{H}$ (hur material magnetiseras av magnetiska fält).
- Oftast fokus på elektrisk dipol-approximation, men vissa fenomen, som optisk aktivitet, kan bara beskrivas om högre ordningars termer tas med.

Vi kommer här att i huvudsak använda de generella uttrycken för elektrisk skalär potential och vektorpotentialen, som^1

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathbb{R}^3} \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV', \qquad \mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \iiint_{\mathbb{R}^3} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV',$$

där $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m är den elektriska permittiviteten för vakuum (electric permittivity of vacuum), samt $\mu_0 = 1.257 \times 10^{-6}$ N/A² den magnetiska permeabiliteten för vakuum (vacuum magnetic permeability). I dessa uttryck är ρ den eletriska laddningsdensiteten (C/m³) och **J** den eletriska strömtätheten (A/m²). Vi använder här de generella, tredimensionella uttrycken för potentialerna för att öva på deras tillämpningen, samt för att bygga upp en generell verktygslåda för att problemlösning inom elektromagnetisk fältteori.

För att rekapitulera själva vitsen med att använda den skalära potentialen och vektorpotentialen, så kan vi ur dessa extrahera de statiska (ej tidsberoende) elektriska och magnetiska fälten som²

$$\mathbf{E} = -\nabla \Phi - \underbrace{\frac{\partial \mathbf{A}}{\partial t}}_{\mathbf{0}}, \quad \mathbf{B} = \nabla \times \mathbf{A}.$$

Vi kan också konstatera att SI-enheterna för den skalära potentialen och vektorpotentialen är

$$\begin{split} [\Phi] &= \frac{[\rho][dV']}{[\varepsilon_0][\mathbf{x}]} = \frac{(C/m^3)m^3}{(F/m)m} = \{ F = C/V \} = V, \\ [\mathbf{A}] &= \frac{[\mu_0][\mathbf{J}][dV']}{[\mathbf{x}]} = \frac{(N/A^2)(A/m^2)m^3}{m} = N/A. \end{split}$$

¹ För formulering av skalära potentialen $\Phi(\mathbf{x})$ samt vektorpotentialen $\mathbf{A}(\mathbf{x})$ från en generell laddningsdistribution, se Griffiths Ekv. (10.26), s. 445.

² Recap på ursprunget för vektorpotentialen: $\nabla \cdot \mathbf{B} = 0 \quad \Leftrightarrow \quad \exists \mathbf{A} : \mathbf{B} = \nabla \times \mathbf{A}$.

Multipolutveckling för skalär potential för en elektrisk dipol

Ett av de enklaste testobjekten inom elektromagnetism är den elektriska dipolen,³ bestående av en positiv och negativ laddning separerade ett avstånd L. Även för en elektrisk dipol finns det (paradoxalt) termer av multipolmoment då vi lämnar approximationen att den skalära elektriska potentialen enbart ges av skalärprodukten mellan dipolmomentet och ortsvektorn till observationspunkten. Vi betraktar en klassisk elektrisk dipol med två laddningar +q or -q separerade avståndet L=2b. Dipolen kan beskrivas med en laddningsfördelning enligt distributionen

$$\rho(\mathbf{x}) = (+q)\delta(\mathbf{x} - b\mathbf{e}_z) + (-q)\delta(\mathbf{x} + b\mathbf{e}_z)$$

$$\mathbf{x} - b\mathbf{e}_z$$

$$z = L/2 + \mathbf{x}$$

$$z = 0$$

$$b$$

$$z = -L/2 - \Delta r \approx b \cos \theta$$

$$-q$$

Elektrisk skalär potential från denna specifika distribution av två punktkällor (vi utgår här ifrån den generella tre-dimensionella volymintegralen av en laddningsdensitet $\rho(\mathbf{x})$, bara för att illustrera hur vi kan tillämpa denna även för lokaliserade punktladdningar):

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \iiint_V \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'$$

$$= \frac{1}{4\pi\varepsilon_0} \left(\frac{(+q)}{|\mathbf{x} - b\mathbf{e}_z|} + \frac{(-q)}{|\mathbf{x} + b\mathbf{e}_z|} \right)$$

$$= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - b\cos\theta} - \frac{1}{r + b\cos\theta} \right)$$

$$= \left\{ \text{ Definiera } \varepsilon \equiv (b/r)\cos\theta \right\}$$

$$= \frac{q}{4\pi\varepsilon_0 r} \left(\frac{1}{1 - \varepsilon} - \frac{1}{1 + \varepsilon} \right)$$

$$= \left\{ \text{ Taylor-utveckling f\"or litet } \varepsilon \right\}$$

$$= \frac{q}{4\pi\varepsilon_0 r} \left((1 + \varepsilon + \varepsilon^2 + \varepsilon^3 + \dots) - (1 - \varepsilon + \varepsilon^2 - \varepsilon^3 + \dots) \right)$$

$$= \frac{q}{2\pi\varepsilon_0 r} \left(\varepsilon + \varepsilon^3 + \varepsilon^5 + \dots \right)$$

$$= \frac{q}{2\pi\varepsilon_0} \left(\underbrace{\frac{b\cos\theta}{r^2} + \frac{(b\cos\theta)^3}{r^4}}_{\text{oktopol}} + \underbrace{\frac{(b\cos\theta)^5}{r^6}}_{\text{dotriacontapol}} + \dots \right)$$

³ The English prefixes bi-, derived from Latin, and its Greek variant di- both mean "two". The Latin prefix is far more prevalent in common words, such as bilingual, biceps, and biped; the more technical Greek di- appears in such words as diphthong and dilemma.

Skalär potential $\Phi(x,y)$ för en elektrisk dipol.

Skalär potential $\Phi(x,y)$ för en elektrisk dipol med fältlinjer för $\mathbf{E}(x,y) = -\nabla \Phi(x,y)$.

Exempel på multipoler

Som en relativt enkel illustration av multipoler kan vi konstruera olika multipolmoment utifrån diskreta laddningar.

Linjär elektrisk kvadrupol

Kvadratisk elektrisk kvadrupol

3D kubisk elektrisk oktopol

Planär dubbel-kvadratisk elektrisk oktopol

En intressant övning är att gå igenom dessa specifika multipoler och upprepa den geometriska analysen för dipolen, för att på så sätt extrahera styrkan på de olika multipolmomenten.

Multipolutveckling för skalär potential för en linjär elektrisk kvadrupol

Låt oss göra en liten ändring på den elektriska dipolen i föregående exempel, och istället lägga en punktladdning -2q i centrum med två punktladdningar +q på diametralt motsatt sida om denna. Denna konfiguration kan beskrivas med distributionen

$$\rho(\mathbf{x}) = (+q)\delta(\mathbf{x} - b\mathbf{e}_z) + (-2q)\delta(\mathbf{x}) + (+q)\delta(\mathbf{x} + b\mathbf{e}_z),$$

precis analogt med det föregående fallet för den elektriska dipolen.

På exakt samma sätt som tidigare, med den enda skillnaden att vi nu har tre laddningar (källtermer) för den skalära potentialen $\Phi(\mathbf{x})$, så har vi att

$$\begin{split} \Phi(\mathbf{x}) &= \frac{1}{4\pi\varepsilon_0} \iiint\limits_V \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \, dV' \\ &= \frac{1}{4\pi\varepsilon_0} \left(\frac{(+q)}{|\mathbf{x} - b\mathbf{e}_z|} + \frac{(-2q)}{|\mathbf{x}|} + \frac{(+q)}{|\mathbf{x} + b\mathbf{e}_z|} \right) \\ &= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - b\cos\theta} - \frac{2}{r} + \frac{1}{r + b\cos\theta} \right) \\ &= \left\{ \text{ Definiera } \varepsilon \equiv (b/r)\cos\theta \right. \right\} \\ &= \frac{q}{4\pi\varepsilon_0 r} \left(\frac{1}{1 - \varepsilon} - 2 + \frac{1}{1 + \varepsilon} \right) \\ &= \left\{ \text{ Taylor-utveckling f\"or litet } \varepsilon \right. \right\} \\ &= \frac{q}{4\pi\varepsilon_0 r} \left((1 + \varepsilon + \varepsilon^2 + \varepsilon^3 + \dots) - 2 + (1 - \varepsilon + \varepsilon^2 - \varepsilon^3 + \dots) \right) \\ &= \frac{q}{2\pi\varepsilon_0 r} \left(\varepsilon^2 + \varepsilon^4 + \varepsilon^6 + \dots \right) \\ &= \frac{q}{2\pi\varepsilon_0} \left(\underbrace{\frac{(b\cos\theta)^2}{r^3}}_{\text{kvadrupol}} + \underbrace{\frac{(b\cos\theta)^4}{r^5}}_{\text{hexadecapol}} + \underbrace{\frac{(b\cos\theta)^6}{r^7}}_{\text{hexacontatetrapol}} + \dots \right) \end{split}$$

I denna serieutveckling återfinns nu endast udda potenser av avståndet r, varav den dominerande termen på stora avstånd kommer att vara den som går som $O(1/r^3)$, svarande mot en elektrisk kvadrupol. Värt att notera är att i denna serieutveckling återfinns $inqen\ dipolterm$.

Klassificering av multipolmoment

Multipolutvecklingen klassificeras term för term av hur beroendet av avståndet $r = |\mathbf{x} - \mathbf{x}'|$ mellan källpunkt \mathbf{x}' och fältpunkt \mathbf{x} ser ut:

- Monopol (1-pol): $\Phi(\mathbf{x}) \sim 1/r$
- Dipol (2-pol): $\Phi(\mathbf{x}) \sim 1/r^2$
- Kvadrupol (4-pol): $\Phi(\mathbf{x}) \sim 1/r^3$
- Oktopol (8-pol): $\Phi(\mathbf{x}) \sim 1/r^4$
- Hexadecapol (16-pol): $\Phi(\mathbf{x}) \sim 1/r^5$
- Dotriacontapol (32-pol): $\Phi(\mathbf{x}) \sim 1/r^6$
- Hexacontatetrapol (64-pol): $\Phi(\mathbf{x}) \sim 1/r^7$
- . . .

Sammanfattningsvis så har en klassisk elektrisk dipol samtliga multipolmoment som är jämna, det vill säga dipol ($\Phi \sim 1/r^2$), oktopol ($\Phi \sim 1/r^4$), dotriacontapole ($\Phi \sim 1/r^6$), etc.

Skalär potential och elektriskt fält för en linjär elektrisk kvadrupol

Skalär potential $\Phi(x,y)$ för en linjär elektrisk kvadrupol.

Skalär potential $\Phi(x,y)$ för en elektrisk linjär kvadrupol med fältlinjer för $\mathbf{E}(x,y) = -\nabla \Phi(x,y)$.

Skalär potential och elektriskt fält för en kvadratisk elektrisk kvadrupol

Skalär potential $\Phi(x,y)$ för en kvadratisk elektrisk kvadrupol.

Skalär potential $\Phi(x,y)$ för en kvadratisk elektrisk kvadrupol med fältlinjer $\mathbf{E}(x,y) = -\nabla \Phi(x,y)$.

Multipolutveckling för generella laddningsfördelningar (i termer av skalär potential)

Betrakta en generell laddningsfördelning enligt figur. Laddningsfördelningen kan vara en generell distribution i 3D, men även i kombinationer av 2D (ytladdningar, skärmar, jordplan), 1D (linjeladdningar, antenner) eller 0D (punktladdningar). Vi kommer i det följande att använda en geometri i vilken laddningstätheten $\rho(\mathbf{x})$ är lokaliserad i närheten av origo (vilket gör det enklare att rätt av tillämpa en serieutveckling för laddningsdensiteten i en Taylor-serie), enligt figur.

Skalär (elektrisk) potential $\Phi(\mathbf{x})$ från punktkälla q i \mathbf{x}' :

$$\Phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 |\mathbf{x} - \mathbf{x}'|}$$

Skalär (elektrisk) potential från distributionen $\rho(\mathbf{x})$ ges analogt genom att helt enkelt summera upp alla bidrag från samtliga $\rho(\mathbf{x}')dV'$ i volymen V:

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \iiint\limits_V \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \, dV'$$

I denna integral så kan vi se det som att vi summerar upp alla element dV's infinitesimala laddningar $dq = \rho(\mathbf{x}')dV'$ (eller strömtätheter $\mathbf{J}(\mathbf{x}')dV$ i fallet med vektorpotentialen \mathbf{A}), viktade med en faktor

$$f(\mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

som kort och gott är det inversa geometriska avståndet mellan källpunkten \mathbf{x}' och fältpunkten (observationspunkten) \mathbf{x} . Vi kan, om vi så vill, se detta som en summation av potentialbidragen från alla infinitesimala elektriska *monopoler* som ryms i volymen V.

Liksom i det enkla fallet med dipolen, siktar vi här mot en serieutveckling av denna viktfunktion för att enklare kunna tolka de termer som blir resultatet. För att rekapitulera, så var serieutvecklingen i fallet med dipolen i grund och botten en serieutveckling av position för källtermerna, med "litet separations-avstånd L i förhållande till avståndet till observationspunkten \mathbf{x} ". Vi önskar därmed att uttrycka serieutvecklingen i koordinaten \mathbf{x}' för källan $\rho(\mathbf{x}')$. Generellt har vi att en Taylor-utveckling i tre dimensioner ges av

$$f(\mathbf{x}') = f(\mathbf{0}) + \sum_{k=1}^{3} x_k' \frac{\partial f(\mathbf{x}')}{\partial x_k'} \bigg|_{\mathbf{x}' = \mathbf{0}} + \frac{1}{2} \sum_{j=1}^{3} \sum_{k=1}^{3} x_j' x_k' \frac{\partial^2 f(\mathbf{x}')}{\partial x_j' \partial x_k'} \bigg|_{\mathbf{x}' = \mathbf{0}} + \dots$$

Föreläsning 8

För "viktfunktionen" $f(\mathbf{x}')$ har vi att

$$f(\mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}},$$

$$\frac{\partial f(\mathbf{x}')}{\partial x_k'} = \frac{\partial}{\partial x_k'} \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$

$$= -\frac{1}{2} \frac{-2(x_k - x_k')}{((x - x')^2 + (y - y')^2 + (z - z')^2)^{3/2}} = \dots = \frac{x_k - x_k'}{|\mathbf{x} - \mathbf{x}'|^3},$$

$$\frac{\partial^2 f(\mathbf{x}')}{\partial x_j' \partial x_k'} = \frac{\partial^2}{\partial x_j' \partial x_k'} \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$

$$= \frac{\partial}{\partial x_j'} \frac{x_k - x_k'}{((x - x')^2 + (y - y')^2 + (z - z')^2)^{3/2}}$$

$$= \frac{\frac{\partial (x_k - x_k')}{\partial x_j'} ((x - x')^2 + (y - y')^2 + (z - z')^2)^{3/2} - (x_k - x_k') \frac{\partial ((x - x')^2 + (y - y')^2 + (z - z')^2)^{3/2}}{\partial x_j'}$$

$$= \dots$$

$$= \frac{3(x_j - x_j')(x_k - x_k') - \delta_{jk}((x - x')^2 + (y - y')^2 + (z - z')^2)}{((x - x')^2 + (y - y')^2 + (z - z')^2)^{5/2}}$$

$$= \frac{3(x_j - x_j')(x_k - x_k') - \delta_{jk}(x - x_j')^2}{|\mathbf{x} - \mathbf{x}'|^5}$$

För koefficienterna i Taylor-utvecklingen innebär detta specifikt att

$$f(\mathbf{0}) = \frac{1}{|\mathbf{x}|}, \qquad \frac{\partial f(\mathbf{x}')}{\partial x_k'} \bigg|_{\mathbf{x}' = \mathbf{0}} = \frac{x_k}{|\mathbf{x}|^3}, \qquad \frac{\partial^2 f(\mathbf{x}')}{\partial x_j' \partial x_k'} \bigg|_{\mathbf{x}' = \mathbf{0}} = \frac{3x_j x_k - \delta_{jk} |\mathbf{x}|^2}{|\mathbf{x}|^5},$$

och vår Taylor-utveckling av viktsfunktionen bistår direkt med respektive multipol-termer i uttrycket för skalära elektriska potentialen som

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \iiint_V \left(\frac{1}{|\mathbf{x}|} + \sum_{k=1}^3 \frac{x_k}{|\mathbf{x}|^3} x_k' + \frac{1}{2} \sum_{j=1}^3 \sum_{k=1}^3 \frac{3x_j x_k - \delta_{jk} |\mathbf{x}|^2}{|\mathbf{x}|^5} x_j' x_k' + \dots \right) \rho(\mathbf{x}') dV'$$

$$= \frac{1}{4\pi\varepsilon_0} \left(\frac{1}{|\mathbf{x}|} \iiint_V \rho(\mathbf{x}') dV' + \sum_{k=1}^3 \frac{x_k}{|\mathbf{x}|^3} \iiint_V x_k' \rho(\mathbf{x}') dV' \right)$$

$$+ \frac{1}{2} \sum_{j=1}^3 \sum_{k=1}^3 \frac{3x_j x_k - \delta_{jk} |\mathbf{x}|^2}{|\mathbf{x}|^5} \iiint_V x_j' x_k' \rho(\mathbf{x}') dV' + \dots \right)$$

$$= \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\mathbf{x}|} + \sum_{k=1}^3 \frac{x_k p_k}{|\mathbf{x}|^3} + \frac{1}{2} \sum_{j=1}^3 \sum_{k=1}^3 \frac{(3x_j x_k - \delta_{jk} |\mathbf{x}|^2) Q_{jk}}{|\mathbf{x}|^5} + \dots \right)$$

Notera att för dipoltermen utgörs skalära potentialen av en $skalärprodukt \mathbf{x} \cdot \mathbf{p}$, medan kvadrupoltermen svarar mot en matrisprodukt från vilken spåret ("trace") subtraheras, $3\mathbf{x}^{\mathrm{T}}\mathbb{Q}\mathbf{x} - |\mathbf{x}|^{2} \operatorname{Tr}[\mathbb{Q}]$.

Analysen för vektorpotentialen $\mathbf{A}(\mathbf{x})$ följer på samma sätt, med en helt och hållet analog serieutveckling av "viktfunktionen" $f(\mathbf{x}')$ för den elektriska strömdensiteten $\mathbf{J}(\mathbf{x})$.

Dipolapproximationen för stationära laddningsfördelningar och strömmar

För att sammanfatta ges den stationära skalära potentialen $\Phi(\mathbf{x})$ och vektorpotentialen $\mathbf{A}(\mathbf{x})$ från en laddnings- och strömtäthet i närheten av origo, i dipolapproximation och på långt avstånd från källan, som

$$\Phi(\mathbf{x}) \approx \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\mathbf{x}|} + \frac{\mathbf{p} \cdot \mathbf{x}}{|\mathbf{x}|^3} \right), \qquad \mathbf{A}(\mathbf{x}) \approx \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^3},$$

där

$$q = \iiint\limits_{V} \rho(\mathbf{x}') \, dV', \qquad \mathbf{p} = \iiint\limits_{V} x_k' \rho(\mathbf{x}') \, dV' \qquad , \qquad \mathbf{m} = \underbrace{\frac{1}{2} \iiint\limits_{V} \mathbf{x}' \times \mathbf{J}(\mathbf{x}') \, dV'}_{\text{magnetiskt dipolmoment [Am$^2]}}.$$

Från dessa ges de *statiska* elektriska och magnetiska fälten som⁴

$$\mathbf{E}(\mathbf{x}) = -\nabla \Phi(\mathbf{x}), \qquad \mathbf{B}(\mathbf{x}) = \nabla \times \mathbf{A}(\mathbf{x}).$$

Man kan här fråga sig varför multipolutvecklingen för vektorpotentialen \mathbf{A} börjar med dipolmomentet, som går som $\sim 1/|\mathbf{x}|^3$, och inte som den skalära potentialen innehåller någon term som går som $\sim 1/|\mathbf{x}|^2$. Svaret på denna fråga är självfallet att vektorpotentialen, som är direkt länkad till magnetfältet genom $\mathbf{B} = \nabla \times \mathbf{A}$, till skillnad från det elektrostatiska fallet aldrig kan involvera magnetiska monopoler, varför monopoltermer också saknas för just vektorpotentialen.

⁴ Notera att Ekv. (8.1.5) i Olov Ågrens *Elektromagnetism* (Studentlitteratur, 2014) definierar magnetiska fältet utifrån en konstruerad *magnetisk skalär potential* istället för vektorpotentialen. Vektorpotentialen är här dock mest naturlig att använda, utifrån den grundläggande egenskapen $\nabla \cdot \mathbf{B} = 0 \Leftrightarrow \mathbf{B} = \nabla \times \mathbf{A}$ hos magnetiska fältet, med \mathbf{A} som vektorpotentialen.