Universidad San Carlos De Guatemala Centro Universitario De Occidente División De Ciencias De La Ingeniería Lenguajes Formales y de Programación Ing. Oliver Sierra

Tema: Proyecto 1

Yefri Marconi González Vicente 202030028

Expresiones Regulares.

-Identificador: Son las palabras que cumplen el iniciar con una letra y pueden estar seguidas de muchas letras o muchos dígitos.

$$([A-Z]|[a-z]).([a-z]|[A-Z]|[0-9])^*$$

-Número: Son palabras que cumplen con tener al menos un dígito o más, y solo puede contener dígitos.

$$[0-9]+$$

-Decimal: Son palabras que cumplen con tener al menos un dígito o más, seguido de un punto, seguido de uno o más dígitos.

-Puntuación: Ser alguno de los signos de puntuación

-Operador: Ser alguno de los operadores aritméticos

-Agrupacion: Ser alguno de los signos de agrupación

$$[(() | ()) | ([) | (]) | (\{) | (\})]$$

AFD(Autómata Finito Determinista)

Expresión regular : ([A-Z]|[a-z]).([a-z]|[A-Z]|[0-9])*

Ejemplo:

Bafddfadf fdsafaKDF123 adsf32faAD

1.Conjuntos de estados Q={S1,S2}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma = \{[A-Z], [a-z], [0-9]\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

∂(S1,[A-Z]|[a-z])=S2

 ∂ (S1,[0-9])=Error

 $\partial(S2,[A-Z]|[a-z],[0-9])=S2$

Expresión regular : [0-9]+

Ejemplo

121232

1.Conjuntos de estados

Q={S1,S2}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma = \{[0-9]\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

 $\partial(S1,[0-9])=S2$ $\partial(S2,[0-9])=S2$

Expresión regular : [0-9]+.[.].[0-9]+

Ejemplo: 10021.1 300453.3232

1.Conjuntos de estados

Q={S1,S2,S3,S4}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma = \{[0-9], (.)\}$

4. Estados de Aceptación

F={S3}

5. Función de Transición

 $\partial(S1,[0-9])=S2$ $\partial(S1,(.))=Error$

 $\partial(S2,[0-9])=S2$ $\partial(S2,(.))=S3$

 $\partial(S3,[0-9])=S4$ $\partial(S3,(.))=ERROR$

 $\partial(S4,[0-9])=S4$ $\partial(S4,(.))=ERROR$

Expresión regular : [(,)|(.)|(:)|(;)]

Ejemplo:

;

1.Conjuntos de estados

Q={S1,S2}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma {=} \{(:),(.),(,),(;)\}$

4. Estados de Aceptación

F={S2}

5.Función de Transición

∂(S1,[,])=S2

∂(S1,[.])=S2

 $\partial(S1,[;])=S2$

∂(S1,[:])=S2

Expresión regular : [(-) | (+) | (*) | (/) | (%)]

Ejemplo:

_

+

%

1.Conjuntos de estados

Q={S1,S2}

2. Estado Inicial

S1

3.Alfabeto

$$\Sigma = \{(+), (-), (*), (/), (\%)\}$$

4. Estados de Aceptación

F={S2}

5. Función de Transición

Expresión regular : $[(() | ()) | ([) | (]) | (\{) | (\})]$

```
Ejemplo:
```

(

}

1.Conjuntos de estados

Q={S1,S2}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma {=} \{((),()),([),(]),(\{),(\})\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

 $\partial(S1,[(])=S2 \partial(S1,[)])=S2$

∂(S1,[[])=S2 ∂(S1,[]])=S2

 $\partial(S1,[\{])=S2 \partial(S1,[\}])=S2$

Automata Finito Determinista para todos los token

 $\mathsf{A} \text{=} (() \mid ()) \mid ([) \mid (]) \mid (\{) \mid (\})$

O=(+) | (-) | (*) | (/) | (%)

P=(.) | (,) | (;) | (:)

1.Conjuntos de estados

Q={S1,S2,S3,S4,S5,S6,S7,S8}

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma = \{A,P,O,([A-Z]),([a-z]),([0-9]),(.)\}$

4. Estados de Aceptación

F={S2,S3,S5,S6,S7,S8}

5.Función de Transición

$\frac{\partial(S1,[A-Z] [a-z])}{=S2}$	$\partial(S1,[0-9]) = S3$	∂(S1,O)= <mark>S7</mark>	∂(S1,P)= <mark>S6</mark>	∂(S1,A)= <mark>S8</mark>	∂(S1,[.])= S6
$\begin{array}{c} \partial(S2,[A-Z] [a-z]) \\ = & S2 \end{array}$	$\partial(S2,[0-9])=S2$	∂(S2,O)=Error	∂(S2,P)=Error	∂(S2,A)=Error	∂(S2,[.])= Error
∂(S3,[A-Z] [a-z]) =Error	∂(S3,[0-9])=S3	∂(S3,O)=Error	∂(S3,P)=Error	∂(S3,A)=Error	∂(S3,[.])= S4
∂(S4,[A-Z] [a-z]) =Error	∂(S4,[0-9])=S5	∂(S4,O)=Error	∂(S4,P)=Error	∂(S4,A)=Error	∂(S4,[.])= Error
∂(S5,[A-Z] [a-z]) =Error	∂(S5,[0-9])=S5	∂(S5,O)=Error	∂(S5,P)=Error	∂(S5,A)=Error	∂(S5,[.])= Error
∂(S6,[A-Z] [a-z]) =Error	∂(S6,[0-9])= Error	∂(S6,O)=Error	∂(S6,P)=Error	∂(S6,A)=Error	∂(S6,[.])= Error
∂(S7,[A-Z] [a-z]) =Error	∂(S7,[0-9])= Error	∂(S7,O)=Error	∂(S7,P)=Error	∂(S7,A)=Error	∂(S7,[.])= Error
∂(S8,[A-Z] [a-z]) =Error	∂(S8,[0-9])= Error	∂(S8,O)=Error	∂(S8,P)=Error	∂(S8,A)=Error	∂(S8,[.])= Error