PTO/SB/08A (10-01)

Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperviorit Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sheet

Substitute for form 1449APTO

1

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

of

8

	Application Number	10/077,784
	Filing Date	February 20, 2002
:	First Named Inventor	T rry L. Gilton
	Ari Unit	2818
	Buiminer Name	Not Yet Assigned
	Altorney Docket Number	M4065.0482/P482

Complete if Known

				TENT DOCUMENTS	
Examiner	Cite	Document Number	Publication Date	Name of Patentes or Applicant	Pages, Columns, Lines, Where Relevant
nitals*	No.	Number-Kind Code* (# Imoun)	MH-DD-YYYY	of Cited Document	Passages or Relevant Figures Appear
		5,761,115	06/02/1998	Kozicki et al.	
		6,084,796			
	AC:	5,914,893	06/22/1999	Kozicki et al.	
	AD	5,896,312	04/20/1999	Kozicki et al.	
	AE:	6,388,324	05/14/2002	Kozicki et al.	
	AF :	US 2002/0000666	01/03/2002	Kozicki et al.	
	AG	5,500,532	03/19/1996	Kozicki et al.	
×.	AH:	6,418,049	07/09/2002/	Kozicki et al.	
		5,751,012	05/12/1998	Wolstenholme et al.	
				Zahorik et al.	
			02/19/2202	Moore et al.	
	AL	F. 1948	Same to	the state of the s	
	AM			~	
	AN				
	AO				

		FORE	GN PATENT	DOCUMENTS		
		Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	
Examiner Initials*	No.	Country Code" -Number + Grid Code" (# Intoinn)	MM-DD-YYYY		Passages or Relevant Figures Appear	T
	BA	WO 02/21542	03/14/2002	Kozicki et al.		
			08/17/2000	Kozicki et al.		
		WO 97/48032	12/18/1997	Kozicki et al.		
,	BD	WO 99/28914	06/10/1999	Kozicki et al.		

Examiner	Date	
	Considered	
Signature	 CONSISTENCE	

[&]quot;EXAMINER: initial if reference considered, whether or not clastion is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). ² See attached kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³
Enter Office that lessed the document, by the two-letter code (MIPO Standard ST.3): ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁴ Kind of document by the appropriate symbols as indicated on the document under WiPO Standard ST, 16 if possible. ⁵ Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/088 (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Peperwork Reduction Act of 1995, no persons are required to res

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary) -

1				_
-	Sheet	2	of	8
ı			and the second second second second second	

-		Complete if Kn wn	
	1 00		
	Application Number	10/077,784	
•	Filing Date	February 20, 2002	
	First Named Inventor	Terry L. Gilton	
	Group Art Unit	2818	
	Examiner Name	Not Yet Assigned	
	Attorney Docket Number	M4065.0482/P482	

Examiner	Cita	include name of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of the	Г
nitials	Cite No.	item (book; magazina; journal; sentat symposium, catalog, etc); date, page(s), volume-tasue number(s),	₽ª
	CA	Abdel-All, A.; Elshaffe, A.; Elhawary, M.M.; DC electric-field effect in bulk and thin-film Ge5As38Te57; chalcogenide glass; Vacuum 59 (2000) 845-853.	T
	СВ	Adler D.: Moss S.C.: Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189	Γ
	CC	Adler; D.; Henisch; H.K.; Mott; S.N., The mechanism of threshold switching in amorphous alloys; Rev Mod Phys 50 (1978) 209-220.	Γ
	CD	Affil: M.A.; Labib; H.H.; El-Fazary; M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system S675G625-KSbx; Appl. Phys. A 55 (1992) 167-169.	
	CE	Affil;M.A.: Labib; H.H.: Fouad S.S.: El-Shazly; A.A.; Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x; Egypt, J. Phys. 17 (1986) 335-342.	
	CF	Alekperova; Sh.M.; Gadzhieva, G.S.; Current Voltage characteristics of Ag2Se single crystal near the phase transition, inorganic Materials 23 (1987) 137-139.	
V V	CG	Aleksiejunas, A.; Cesnys, A.; Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
ý.	СН	Angelia C.A. Mobile lons in amorphous solids Annua Rev. Phys. Chem. 43 (1992) 693-717.	Г
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state ionics (138-137 (2000) 1085-1089.	
	ငပ	Asahara; Y.; Izumitani, T.; Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst Solids 11 (1972) 97-104.	
	CK	Asokan S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in W.V. chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Baranovskii S.D.; Cordes; H.; On the conduction mechanism in lonic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
	СМ	Belin R. Talliades G. Pradel, A. Ribes M. Ion dynamics in superionic chalcogenide glasses complete conductivity spectra. Solid state lonics 136-137 (2000) 1025-1029.	L
	CN	Belin; R.; Zerouale; A.; Pradel, A.; Ribes; M., Ion dynamics in the argyrodite compound Ag7GeSe51: non-Armenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	co	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	Ι
	CP	Bernede J.C. Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	Γ
	co	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
	CR	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	L
	cs	Bernede; J.C.; Abachi, T.: Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	L
	СТ	Bernede: U.C.; Conan; A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	L
	CU	Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217:224.	
•	CV	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4l5, Solid State lonics 70/71, (1994) 72-76.	Γ

PTO/SB/088 (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U.S. Patentl'and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to asspond to a collection of information unless it contains a valid CMB control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete II Known 10/077,784 Application Number Filing Date F bruary 20, 2002 First Named Inventor Terry L. Gilton Group Art Unit 2818 4 Examiner Name Not Yet Assigned Attorney Docket Number M4065:0482/P482

	Glasses Asian dournal of Physics (2000) 9 709-72.
CX	Nature 410 (2001) 1070-1073
	Boolchand; R: Georgiev \ D: G.; Goodman; B.; Discovery of the Intermediate Phase in Chalcogenide Glasses; J. Optoelectronics and Advanced Materials; 3 (2001), 703
CZ	steps inichaicogenide glasses Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy (E) (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132.
CA1	Boolchand P: Enzweller: R:N: Tenhover, M: Structural ordering of evaporated amorphous chalcogenide alloy films: frole of thermal annealing. Diffusion and Defect Data Vol. 53-54 (1987) (1987) (1987)
CB1	
CC1	Bookchand 12: Grothaus U: Phillips: UC: Broken chemical order and phase separation in Gex Self-xiglasses Solidistate comm. 45 (1983), 183-185:
CD1	Boolchand P. Bresser W. Compositional trends In glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS Unity Cincinnati (October 28, 1999) 45221-0030.
CE1	Boolchand, P., Grothaus, J. Molecular, Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proceeding Conf. Privs. Semicond. (Eds. Chadl, and Hamson). 17th (1985) 833-36.
CF1	network(glasses/Phys/Rev/(Lett. 56)(1986) 2493-2496.
CG1	Bresser, Wall Bookhand, P., Suranyl, P., de Neufville, J.P., Intrinsically broken chalcogen chemical order in solichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196.
CH1	cluster size in GeSe2 glass; Hyperfine interactions 27 (1986) 389-392.
CI1	Cahen, D.; Gilet, J.; M.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room- Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274
ငျ	memory/switching/in/bulk/As-Te-Se glasses, U. Phys. D. Appl. Phys. 27 (1994) 2624-2627.
CK1	Chen, C:H: Tal: K:L: Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 87/(1980) 1075-1077.
CL1	chalcogenide/glasses/J*Am*(Ceram*Soc: 82 (1999) 2934-2936.
CM1	Je Non-Cryata Solida 2207(1997))249 253;
CN1	device #JIINon-Cryst4 Solids (8-10) (1972) 885-891
CO1	conduction in some amorphous semiconductors; J. Non-Cryst. Solids 8-10 (1972) 781-786.
CP1	Appi (Phys. 38)(1967))753-756
	Davis E:AMSemiconductors without form; Search 1: (1970) 152-155.
	Deamaley G. Stoneham A.M. Morgan, D.V., Electrical phenomena in amorphous oxide films Rep 3 Prog 1 Phys 33 (1970) 1129-1191.
CS1	Se; J-Non-Cryst (Solids;143 (1992) 162-180.
CT1	den Boer W.: Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.

PTC/SB/038 (10-01)
Approved for use through 10/31/2002.CM8 0651-0031
U. S. Patent and Tredemark Office: U.S. DEPARTMENT OF COMMERCE and to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Application Number 10/077,784 Filling Date February 20, 2002 First Named Inventor T my L. Gilton Group Art Unit 2818 Not Yet Assigned Exeminer Name

Complete If Known

(use as many sheets as necessary) . M

Substitute for form 1449B/PTO

Sheet		4	of		Attorney Docket Number	M4065.0482/P482	
	Ý	Cryst. S	olids:198-20	00 (1996) 829-832		ectronic properties, J. Non-	T
	CV1	Films	10 (1983) 10	07-113.		2-xSe1+x/n-SI diodes, Thin Solid	
-	CW1	x photo	conductivity,	J. Non-Cryst. Sol	lids 155 (1993) 171-179.	defects in amorphous GexSe1	
	CX1	chalcog	enide thin fil	ma Thin Solid File	ms 218 (1992)259-273.	todissolution in amorphous	Τ
	CY1	from "in	-situ" resista	ince measuremen	its vs time, Phys. Stat. Sc	n amorphous GeSe5.5 thin films ol. (a) 123 (1991) 451-460.	
	CZ1	Phys:70	DA (1996) 50	07-516.	14	s Ge21Se17Te62, Indian J.	T
•	CA2	Elliott, S material	.R., A unifie s, J. Non-Ci	ed mechanism for ryst: Solids 130 (1	metal photodissolution in 991) 85-97.	amorphous chalcogenide	T
	CB2	Elliott, S Non-Cry	R., Photod st. Solids 1.	issolution of metal 37-138 (1991) 103	ls in chalcogenide glasse 31-1034.	s: A unified mechanism, J.	
•	CC2	Elsamar state of	noudy,(M.M. thin films co	; Hegab, N.A.; Fa intaining Te As Ge	del, M., Conduction med SI, Vacuum 46 (1995) 7	hanism in the pre-switching 701-707.	
	CD2	El-Zahe	d, H.; El-Koi	rashy, A., Influenc	e of composition on the lims 376 (2000) 236-240.	electrical and optical properties	T
	CE2	chalcog	enide glass,	Vacuum 44 (199:		·	Τ
	CF2	43 (199	2) 253-257.			rties of Se75Ge7Sb18, Vacuum	1
	CG2	glasses,	Phys. Rev.	Lett. 78 (1997) 44	422-4425.	ffness threshold in Chalcogenide	
	CH2	on the e (1997) 1	lastic, plasti 37-143.	c and thermal beh	izvior of covalent glasse	P., Role of network connectivity s, J. Non-Cryst. Solids 222	
	CI2	photodif	fused amon	phous Ag-GeSe2	thin films, Phys. Rev. B 3	A., Structure and bonding in 38 (1988) 12388-12403.	
	CJ2	seleniun	n, Phys. Sta	it. Sol. (a) 64 (198	1) 311-316.	crystallization of amorphous	
	СК2	Solids 6	(1971) 49-7	71.		semiconductors, J. Non-Cryst.	
	CL2	Material	s Science 2	(1972) 697-744.		ictors, Annual Review of	
	CM2	synthes	zed by tem; / ASAP.	plating against nar	nowires of trigonal Se, J.	nanowires of Ag2Se can be Am. Chem. Soc. (2001)	
	CN2	on rever	sible phase 18.	transition phenon	nena in telluride glasses,	S., Nonvolatile memory based Jap. J. Appl. Phys. 28 (1989)	
•	CO2	of Ge-S	e chalcogen	T.; Keryvin, V.; Saide glasses below 002) 260-269.	angleboeuf, JC.; Serre, rTg: elastic recovery an	I.; Lucas, J., Indentation creep d non-Newtonian flow, J. Non-	
	CP2	Guin, J.	P.; Rouxel, bility of gen	T.; Sangleboeuf,	JC; Melscoet, I.; Lucas chalcogenide glasses, J	, J., Hardness, toughness, and . Am. Ceram. Soc. 85 (2002)	T
	CQ2	Gupta,		ctrical switching at 148-154.	nd memory effects in am	orphous chalcogenides, J. Non-	1

PTC/S8/88 (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless a contains a veild CMB control number.

E	JC 18
M 1	1 000 E
	RADE

Substitute for form 14498/PTO	\$ 1 m	Complete If Known
	Application Number	10/077,784
	Filing Date:	February 20, 2002
STATEMENT BY APPLICANT	First Named Inventor	Terry L. Gilton
	Group Art Unit	2818
(use as many sheets as necessary)	Examiner Name	Not Yet Assigned
Sheet 5. of 8.	Attorney Docket Number	M4065.0482/P482

	Haberland, D.R., Stiegler, H., New experiments on the charge-controlled switching effect in amorphous semiconductors, U. Non-Cryst Solids 8:10 (1972) 408-414.
CS2	Halfz/M.M.; Ibrahim, M.M.; DongolyM.; Hammad, F.H.; Effect of composition on the structure and electrical properties of As-Se-Cu glasses; J. Apply, Phys. 54 (1983) 1950-1954.
	Hajto U. Rose M.J. Osborne II.S. Snell, A.J., Le Comber, P.G.; Owen, A.E., Quantization effects in metal/devices line. J. Electronics 73 (1992) 911-913.
CU2 s	Halto J.: Hurt.: (Snell-A.J.: Turvey: K.: Rose M.: DC and AC measurements on metal/a- Si: (Junetal) room temperature (quantised resistance devices, J. Non-Cryst. Solids 266-269 (2000) (1058-1061:
CV2	Hajtord :: McAuley B.; Snell A.J.; Owen: A.E.; Theory of room temperature quantized resistance effects in metal a Si: H-metal thin film structures, J. Non-Cryst. Solids 198-200 (1988) 825-828;
CW2	Hajtord: OwenvA Es; Snell: A.J.; Le Comber, P.G.; Rose, M.J., Analogue memory and ballistic electron effects in metal-amorphous silicon structures, Phil. Mag. B 63 (1991) 349-369
CX2	Hayashi, T., Ono, Y., Fukaya, M., Kan, H., Polartzed memory switching in amorphous Se film Japan, U.Appis Phys. (3)(1974),1163-1164;
CAS	Hegab; N/A: Fadel; M.; Sedeek, K.; Memory switching phenomena in thin films of chalcogenide semiconductors. Vacuum 45 (1994) 459-462
CZ2	Hirose Y. Hirose H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous (AS2S3 films), J. Appl. Phys. 47 (1976) 2767-2772.
CA3	
CB3	Hosokawa S. Atomic and electronic structures of glassy GexSe1-x around the stiffness threshold composition U.Optoelectronics and Advanced Materials 3 (2001) 199-214.
CC3	Hu: J.; Snell; Ast.; Hajto; J.; Owen; A.E.; Constant current forming in Cr/p+a-/Si:H/V thin film devices; J. Non-Cryst; Solids:227-230 (1998) 1187-1191.
CD3	Hugu: Hajto; U. Snell, A.J. Owen, A.E.; Rose, M.J.; Capacitance anomaly near the metal- non-metal transition in Cr-hydrogenated amorphous SI-V thin-film devices, Phil. Mag. B. 74 (1998) 37-50.
CE3	Huggissnell, Adds Halto, J.; Owen, A.E.; Current-Induced Instability In Cr-p+a-Si:H-V thin film devices [Philimag Big0 (2000) 29-43.
CF3#	lizima, St; Sugl, M; (Kikuchi; M; Tanaka; K; Electrical and thermal properties of semiconducting glasses) As: Te-Ge, Solid State Comm: 8 (1970) 153-155.
	IshikawanR: Kkuchi M: Photovoltaic study on the photo-enhanced diffusion of Ag in amorphous films of Ge2S3, J. Non-Cryst Solids 35 & 38 (1980) 1061-1068.
СНЗ	lyetomiaHis Vashishta P. Kalla: R.K. Incipient phase separation in Ag/Ge/Se glasses: clustering of Agratoms (J. Non-Cryst. Solids 262 (2000) 135-142.
CI3	Jones G. Collins R.A. Switching properties of thin selenium films under pulsed blas, Thin Solid Films 40 (1977) 215-218.
CJ3	Jouille-AM: Manucchi, J.; On the DC electrical conduction of amorphous As2Se7 before switching Phys. Stat. Sol. ((a):13 (1972) K105-K109.
СКЗ	Joullies A.M. Marucchis J. Electrical properties of the amorphous alloy As2Se5, Mat. Res. Bull 8 (1973) 433-442:
CL3	Kaplan F. Adler D. Electrothermal switching in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 538-543.
СМЗ	Kawaguchil, Tr.; Maruno S.; Elliott, S.R.; Optical, electrical, and structural properties of amorphous Ag-Ge-S and Ag-Ge-Se films and comparison of photoinduced and thermally induced phenomena of both systems, U. Appl. Phys. 79 (1996) 9096-9104.
CN3	Kawaguchi T.: Masul, K.: Analysis of change in optical transmission spectra resulting from A photodoping in chalcogenide film, Japn. J. Appl. Phys. 26 (1987) 15-21.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patant and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of Information unless it contains a valid OMB control number.

Substitute for form 14498/PTO	Complete Il Known				
Same Same Same Articles	Application Number	10/077,784			
INFORMATION DISCLOSURE	Filing Date	F bruary 20, 2002			
STATEMENT BY APPLICANT	First Named Inventor	Terry L. Gilton			
	Group Art Unit	2818			
(use as many sheets as necessary)	Examiner Name	Not Yet Assigned			
Sheet 6	Attorney Docket Number	M4065.0482/P482			

eet	1	Altomoy Docket Number M4065.0482/P482
	7.7	Kawasaki M.; Kawamura J.; Nakamura Y.; Anlya M.; Ionic conductivity of Agx(GeSe3)1-x (0<=x<=0.57,1) glasses (Solid state Ionics) (123 (1999) 259-269;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CP3	Ruger G Thomas (AS) Rabes R: Grotzschel R: Sliver photodiffusion in amorphous Gex So 100-2, Ultron C vat Solida (1990) 168-193
	CQ3	Kolobov //AV/#(On)the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids (198-200)(1996)[728-731]
r ry	CR3	Kolobov/AN/ Lateralidiffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137:138 (1991) X1027:1030
1 22/17/	CS3	Korkinova, Tis:N:/Andreichin:RE-Chalcogenide:glass:polarization and the type of contacts, J. Non-Cryst Solids (194)(1996) 256-259
	СТЗ	Kotkata M.F. Afri M.A., Labib; H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSe II chalcogenide semiconductor films; Thin Solid Films; 240 (1994) 143-146.
la s	CU3	Lakshminarayan, K:N. Srivastava, K:K., Panwar, O.S.: Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19.
	CV3	Lal, M.; Goyal, N.; Chemical bond approach to study the memory and threshold switching chalcogenide glasses find an tournal of pure & appl phys. 29 (1991) 303-304.
	CW3	
	схз 🦠	Leung) W:: Cheung N:: Neureuther A-R:: Photoinduced diffusion of Ag in GexSe1-x glass, Appl Phys Leu 46(1985) 543-545:
	CY3	Matsushita; (15: Yamagamist :: Okuda; M.; Polarized memory effect observed on Se-SnO2 system; (2ap.): Appl; Phys; (11(1972)):1657; (662;
	CZ3 k	Matsushita T. Mamagami T. Okuda M. Polarized memory effect observed on amorphous selenium triin films (upn. U.Appi. Phys. 1 (1972) 606:
	CA4	
· See	CB4	Messoussis R. Bernede, J.C. Benhida S. Abachi, T. Latef, A., Electrical characterization of WSe structures (M. Ni Bi) Mat (Chem. And Phys. 28 (1991) 253-258.
	CC4	
7. 1	CD4	
-3.	CE4	Mitkova M.; Wang Y.; Boolchand P.; Dual chemical role of Ag as an additive in chalcogenide glasses Phys. Rev (Lett. 83(1999))3848-3851.
	CF4	Miyatani S: y: Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423 432
	CG4	Miyatanii Si-y-AElectrical properties of Ag2SeyJ. Phys., Soc. Japan 13 (1958) 317.
. 45		Miyatani S:-y lonic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996 1002
	CI4	Mott N.F. Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1
	CJ4	Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M.; Nonvolatile memory based on phase transitions in chalcogenide thin films, Upn. J. Appl. Phys. 32 (1993) 564-569.
	15	Nakayama K.; Kojima K.; Hayakawa F.; Imal, Y.; Kitagawa, A.; Suzuki, M.; Submicron monvoiatile memony cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-8161
	CL4	Nang: T.T.; Okuda M.; Matsushita; T.; Yokota, S.; Suzuki, A.; Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.
	CM4	

PTO/SB/088 (10-01)
Approved for use through 10/31/2002-OM8 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMS control number.

Substitute for from 14409 5775

Substitute for form 14498/PTO		Compl te if Known			
	Application Number	10/077,784			
INFORMATION DISCLOSURE	Filing Date	February 20, 2002			
STATEMENT BY APPLICANT	First Named Inventor	Terry L. Gilton			
	Group Airt Unit	2818			
(use as many sheets as necessary)	Examiner Name	Not Yet Assigned			
heet 7 of 8	Attorney Docket Number	M4065.0482/P482			

Sheet	· · · · ·	70.0	of	. 8		Attorney Dock	t Number	M406	5.0482/	P482	
	1	electrical s	witchl	ng in chalcoge	nide netw	ork glasses,	Phys. R	ev. B 5	4 (1996)	4413-4415.	
,	CN4			itine, J.A., The son electron o				terials t	o comput	er memories	•
	CO4			Fritzsche, H., I							
	CP4	Ovshinsky	S.R.;	Reversible ele 68) 1450-1453	ectrical sw						.
	CQ4	Owen, A.E.	::LeC	omber, P.G.; s	Sarrabayn						
٠	CR4	Owen, A.E	.; Firth	A.P., Ewen. alcogenide ser	P.J.S., Ph	oto-Induced	structur	al and p	hysico-c	hemical chan	ges
	CS4	Owen, A.E.	.; Le C	omber, P.G.; lectronics 73 (Hajto, J.;	Rose, M.J.;					
	CT4	Pearson, A	D; N	liller, C.E., Fila 969) 280-282.	mentary o	conduction is	n semico	nductin	g glass d	odes, App.	
	CU4	Pinto, R.; F	Ramar	nathan; K.V., E	lectric fiel					ims of the	
•	CV4	Popescu, (C., The	tem Ge-As-Se e effect of loca chalcogenide	I non-unife	ormities on t	hermal s	witching	and hig		ior
	CW4	Popescu, (C.; Crc	itoru, N., The Non-Cryst, So	contributio	on of the late	eral them				_
	CX4	Popov, A.I.	; Gell	er, I.KH.; Shen nium, Phys. St	netova, V.	K. Memory	and thre		witching	effects in	_
•	CY4	Prakash, S	.; Aso	kan, S.; Ghare), D.B., E	asily reversit	le memo	ory swite	ching in G	Se-As-Te	
•	CZ4	Rahman, S Eng. B12 (.; Siv	D: Appl. Phy arama Sastry,	G., Electr	onic switchin	ng in Ge	Bi-Se-T	e glasse	s, Mat. Sci. a	nd
	CA5	Ramesh, K	L; Asc	kan; S.; Sangi doped with Cu						n germanium	
	CB5	Rose,M.J.;	Hajto,	J.;Lecomber,P	.G.;Gage	,S.M.;Chol,V	V.K.;Sne	II,AJ.;C	wen,A.E	., Amorphou	3
	CC5	Rose,MJ.;	Snell;	A.J.;Lecomber	,P.G.;Haj	o,J.;Fitzgen	ald,A.G.;	Owen,A	.E., Aspe	ects of non-	
~ .1	CD5	Schuocker	. D.; F	lleder, G., On 1 s 29 (1978) 39	the reliabi						, J.
	CE5	Sharma, A	K.;Si	ngh, B., Electr dian Natn. Sci	ical condu	ctivity meas	urement	s of eve	porated	selenium film	is in
	CF5	Sharma, P	:, Stru	ctural, electric 35 (1997) 42	al and opt	ical properti	es of silv	er seler	ide films	, Ind. J. Of p	ure
· · · · · ·	CG5	Snell, A.J.;	Leco fects i	mber, P.G.; Han metal/a-Si:H	ajto, J.; Ro	se, M.J.; Ov mory device	ven, A.E es, J. No	.; Osboi n-Cryst.	me, I.L., A Solids 1	Analogue 37-138 (1991)
	CH5	Snell, A.J.; Analogue	Hajto nemo	, J.;Rose, M.J. ry effects in me 3, 1017-1021.	etal/a-SI:F						
	CI5	Steventon	A.G.,	Microfilament	s in amon	phous chalo	ogenide	memory	devices	J. Phys. D:	
-	CJ5	Steventon,	A.G.,	The switching 21 (1976) 31	mechani	sms in amor	phous d	nalcoge	nide men	nory devices,	, J.
	CK5	Stocker, H	J., Bu	lk and thin film ys. Lett. 15 (1	n switching		ry effect	s in sen	nloonduct	ing chalcoge	nide

PTO/SB/088 (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete If Kn wn Substitute for form 1449B/PTO 10/077,784 **Application Number** INFORMATION DISCLOSURE February 20, 2002 **Filing Date** STATEMENT BY APPLICANT Terry L. Gilton First Named Inventor 2818 Group Art Unit (use as many sheets as necessary) Not Yet Assigned Examiner Name Attorney Docket Number M4065.0482/P482 of

Sueer		0	OI	0	AU	mey Docker Numbe	1 104003.04	02/1402	
	CL5	(1990) 1	373-1377.		A			. Phys. Lett B 4	
	CM5	phenom 389.	enon in chalco	genide amo	iphous s		Solid State Co	mm. 8 (1970) 387-	
	CN5	(1973) 3	3-15.	a Artic		e I amorphous	-		
	CO5	(1972):1	13-120.	all de la laconi	and the second		*	on-Cryst. Solids 11	- 1
	CP5					enhanced phase ?) (1972) 4609-4		nd memory switching	9
٧	CQ5	J. Non-C	Cryst. Solids 26	1 (2000) 27	77-281.			AsxSe1-x systems,	
	CR5	glasses	Phys. Rev. B	48 (1993):1	4650-146	52.		nge order in As-Te	
	CS5	glasses relations	Ag-Ge-Se: lon	ic conduction in the conduction is a second conduction in the cond	on and ex iductors P		estigation, Tra	ilver chalcogenide insport-structure ernational	
~ 1	СТ5	Tregoue	t, Y.; Bernede Thin Solid Film	J.C., Silve is 57 (1979)	r moveme) 49-54.	. , .		ing and memory	T
-	CU5	Ge0.4S	e0.6, J. Non-C	ryst Solids	117-118	1990) 219-221.		zation of amorphou	s
	CV5	Uttecht,	R.; Stevenson formation in A	, H.; Sie, C s-Te-Ge gla	.H.; Grien ass, J. No	er, J.D.; Raghav n-Cryst. Solids 2	an, K.S., Elect (1970) 358-3	tric field induced 70.	
-	CD5	Viger, C	::Lefrancols, 0	3.; Fleury, C 1976) 267-2	3., Anoma 272.	lous behaviour	of amorphous	selenium films, J.	
	CX5	M syste	m, Mat. Chem:	And Phys.	21 (1989	447-454.		e thin-film M-GeSe-	
	CY5	Meta/si	licide antifuse;	IEEE electi	ron dev: L	en, KL.; Tigela: ett.:13 (1992)47	1-472.		
	CZ5	App. Pr	iys: Lett. 18 (19	970) 72-73.				semiconductors,	
•	CA6	Ag As0 145 (19	24S0.36Ag0.4 98) 2971-2974	0 Ag Syster	m prepare	4 i	lution of Ag, J.	Electrochem. Soc.	
	CB6	multifra	ctal aggregate	Ph.D. Dis	sertation,	le memory via e ASU 1998	. 1		
	CC6	Zhang, Tg, with behavio	M.; Mancini; S n average coon	; Bresser, \ dination nur dTg/d <m> </m>	W.; Boold	and, P., Variation, in network gla	sses: evidenc	nsition temperature, e of a threshold ==2.4), J. Non-Cryst	

Examiner		Date	1
	4 °		
Signature	1 1	Considered	
DIGITION 1		OCH SINGLIGHT	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

^{*}Applicant's unique citation designation number (optional). *Applicant is to place a check mark here if English language Translation is attached.