LAB JJ A problem 1: Must every dense graph be connected? NO, it doesn't messecuting need to be connected to be proof: Let G is a graph with IVI vertices and IEI edges and is disconnected. Collab Components G, , Gg, Gz. , Gk each lios v.E. sonce, 9+95 possible that all those components he complete graphs ma = m,+m2+m3 -- mx so the graph G has O(n2) no sedges which is equal with the amount expected by dense graphs.

A STATE	
	Step 2: remove min cus
	M remove (W)
	Vertices adjacent to u: X, w, y
	process x:
	greedylen = AEU3+wt(Uxx)=1+3=4
	greedylen < AINJ ? NO (XIR)
	DIRECTOR 1178
	greedylen = AEU7+ w+Cu,w) = 3+4=5 (4,3) (w,3)
	greedylen < AEW3?NO
	process y:
	greedylen = Acustust (U14) = 1+2=3 ACUS O
	ALES 2
	Old = ACy 3 ACy 3 ACW 3 ACW 3 ACW 3 ACW 3 ACW 3
	Quapolatekey ((x,01d),(Y,3) ALY) 3
	x= {v, u 3
	M= 9x, y, w3
	Stp 3; removemen (x)
	M. remove (x)
	Vertice adjoant X: Y
	process y:
	greedylen = AENJ+wt (X,4) = 2+2=4.
	greedylen CATYJ 2 NO
	x= 9 V, u, x 3
A STATE OF	A (W13) M= f y2 W 9
	Arvi O
	ALWI 2 (YIS)
	ACUJ I
	ACU 13
	Step 4: removemin (w) (V,3) remove (4)
	M. remove (w) x- gv, u, x, w, y}
	vertices adjacent to w: No m= 17
	x- {v, u, x, w 3
	M= 843 0
	ACX 2
	ACUJ 3 ACUJ 1
	ACYJ 3

