Floor Localization

CS 435: Deep Learning

Course Project Milestone 1 Update

Aya Ashraf 02

Khaled Barie 21

Problem Statement

• Create a floor localization system that can predict a user's floor depending only on cellular signals

Related Work

- Floor Localization
 - SkyLoc
 - Addressed the floor localization problem using GSM
 - Uses a fingerprinting with a nearest neighbour classification approach
 - StoryTeller
 - Solves the same problem using Wi-Fi beacons, using a technique that is building independent
- 2D Localization
 - CellSense
 - OmniCell
 - MonoDCell

Progress

- Collected data from the campus in the Electrical Engineering building
 - Samples were collected from 6 floors of the building
 - o Data was collected using five different phones on two carriers, namely Vodafone and Orange
- Experimented with multiple architectures and produced initial results

Base Approach

- In our project, we aim to experiment with many approaches, gaining more intuition about the problem with each experiment
- We experimented with two architectures
 - A fully connected network with one RSS vector as input
 - A CNN that takes sequence of RSS vectors as input

CNN architecture for multivariate time series classification

Initial Results

Initial Results

• K = 0 represents classification accuracy

Within-	k-floor:	Accuracy
---------	----------	----------

K	Fully Connected		CNN	
	Vodafone	Orange	Vodafone	Orange
0	0.53	0.42	0.43	0.30
1	0.79	0.75	0.63	0.68
2	0.94	0.92	0.81	0.89
3	0.97	0.97	0.92	0.94
4	1.00	0.99	0.98	0.97
5	1	1	1	1

Next Steps

- 1. Data augmentation to increase test accuracy
- 2. Try other techniques/architectures to make training independent of mobile phone type
- 3. If applicable, collect data from other building and test it using our highest accuracy model
- 4. Write the final poster

Thank you.

