

计算机组成与系统结构

第二章运算方法和运算器(4)

吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院

运算方法与运算器

第二章剩余教学安排

- 上节课
 - 定点数 (理论+硬件)
 - 乘法 (重点)
 - 除法 (重难点)
- 本节课
 - 浮点数
 - 加减、乘除法
 - 运算器总线结构

习题课(第一/二章)下周

第二章 运算方法和运算器

- 复习: 浮点表示法 (IEEE 754)
- 浮点加、减法
- 浮点乘、除法
- 浮点运算器流水线结构
- 运算器总线结构

IEEE 754标准——32位浮点数

- 基数R=2,基数固定,采用隐含方式来表示它。
- 32位的浮点数:
 - S数的符号位,1位,在最高位,0表示正数,1表示负数
 - M是尾数, 23位,在低位部分,采用纯小数表示
 - E是阶码, 8位, 采用移码表示。移码比较大小方便
 - 注意:
 - 关于尾数:尾数域最左位(最高有效位)总是1,故这一位不予存储,而认为隐藏在小数点的左边。
 - 关于阶码:由于采用移码,将浮点数的指数真值e变成 阶码E时,应将指数e加上一个固定的偏移值 127(01111111),即E=e+127。

	31	30	23 22		θ
32位浮点数	S		E	М	

IEEE 754总结: 浮点数转十进制

- 将16进制转换为2进制,根据标准得到S、E、M
 - S: 1位、E: 8位、M: 23位
- 写出实际指数e、实际尾数1.M
 - 指数e=阶码E-127 (移码)
 - 实际尾数为1.M(省略尾数多余的0)
- 写出二进制表达式,并计算十进制
 - x=(符号位+/-)1.M ×2^e
 - 根据R进制基本公式,计算x的十进制

	31	30	23	22	θ
32位浮点数	S		E	М	

IEEE 754总结: 十进制转浮点数

- 十进制转二进制
 - 十进制转二进制(整数、小数分别转换)
- 写出浮点数的标准公式,得到S、1.M、e
 - x=(符号位+/-)1.M ×2^e
 - 写出S=0/1、1.M、e
- 写出M、E
 - 写出M(注意省略开头1)、E=e+127
- 写出浮点数表示
 - 根据格式写出S、E、M的二进制,并写出二进制格式
 - 二进制转换16进制

	31	30	23	22	θ
32位浮点数	S		E	М	

IEEE 754习题

某C语言程序变量num声明为float型(IEEE 754标准)。「GDB调试该程序,观察到num存放在起始地址为0x400508的内存中,内容依次为0x00、0x80、0xC5、0xC2(注意:

该计算机存储方式为小端模式)。

回答下列问题:

- 1)变量num的754标准存储格式为_____(十六进制)。
- 2) 该浮点数的符号位为_____, 指数为____。
- 3) num的十进制值为____。

IEEE 754习题——解答

某C语言程序变量num声明为float型(IEEE 754标准)。

GDB调试该程序,观察到num存放在起始地址为0x400508的内存中,内容依次为0x00、0x80、0xC5、0xC2(注意:该计算机存储方式为小端模式——数据低字节存放在内存低地址空间中)。

- 1) 变量num的754标准存储格式为_____(十六进制) C2 C5 80 00H(小端模式)
- 3)num的十进制值为____。
 -1.M *2⁶=-(1.100010._(右移6位)11)₂=-(98.75)₁₀

大小端模式

多字节数据在内 存里一定是占连 续的几个字节 最高有效 字节(MSB) 最低有效 字节(LSB)

4字节 int: 01 23 45 67 H

ΛΟΛΛΙΤ

19088743 D

0000 0001 0010 0011 0100 0101 0110 0111 B

 $\triangle 0 \triangle 1 TT$

便于人类阅读

大端方式

	U8UUH	U8U1H	U8U2H	U8U3H	
•••	01H	23H	45H	67H	•••

便于机器处理

小端方式

	H0080	0801H	0802H	0803H	
•••	67H	45H	23Н	01H	•••

第二章 运算方法和运算器

- 复习: 浮点表示法 (IEEE 754)
- 浮点加、减法(重点)
- 浮点乘、除法
- 浮点运算器流水线结构
- 运算器总线结构

浮点加减法运算 (若无特殊说明,非754标准)

- 设有两个浮点数 x 和 y , 它们分别为
 - $\mathbf{x} = 2^{\mathbf{E} \mathbf{x}} \cdot \mathbf{M}_{\mathbf{x}}$
 - $y = 2^{Ey} \cdot M_y$
 - E_x和E_y分别为数×和y的阶码
 - M_x和M_y为数x和y的尾数
- 两浮点数进行加法和减法的运算规则是
 - $x \pm y = (M_x 2^{Ex Ey} \pm M_y) 2^{Ey}$
 - 设E_x<=E_y
 - 不失一般性,统一成较大数阶码

浮点加减法运算运算步骤

- 1) 操作数检查 (避免无效操作)
- 2) 比较阶码并完成对阶(小阶向大阶对齐)
- 3) 尾数加减运算
- 4) 结果规格化 (规范化, 最高位为1)
- 5/6) 舍入处理/溢出判断

$$x \pm y = (M_x 2^{Ex - Ey} \pm M_y) 2^{Ey}$$

浮点加减法示例——补码

[例] 设 $x=2^{010}\times0.11011011,y=-2^{100}\times0.10101100$, 求x+y

(采用补码计算,尾数精度为8位)

浮点加减法示例——补码 (1)

[例] 设 $x=2^{010}\times0.11011011,y=-2^{100}\times0.10101100$, 求x+y

(采用补码计算,尾数精度为8位)

- 1、0操作数检查(非0)
- 2、对阶: 阶码对齐后才能加减。规则是阶码小的向阶码大的数对齐;
 - 若△E=0,表示两数阶码相等,即Ex=Ey;
 - 若△E>0,表示Ex>Ey;
 - 若△E<0,表示Ex>Ey。
 - 当Ex≠Ey时,要通过尾数的移动以改变Ex或Ey,使之相等。
- $[x]_{\text{pp}} \rightarrow Ex = 00010$, Mx = 0.11011011
- [y]_≅→Ey=00100, My=1.01010100(补码,取反加一);
- 对阶,x向y对齐
- [x]_{浮,对阶}→Ex=00100, Mx=0.00110110(11), 尾数精度8位

浮点加减法示例——补码 (2)

- 3、尾数相加(带符号位)
 - 0.00110110(11)

+ 1.01010100

1. 1 0 0 0 1 0 1 0 (11)

- 4、规格化
 - 纯小数格式应为 (+/-) 0.1XXXXX
 - 规则
 - 尾数右移1位,阶码加1
 - 尾数左移1位,阶码减1

左移 v.s. 右移?

浮点加减法示例——补码 (3)

0.00110110(11) + 1.01010100

1.10001010(11)

S>0	规格化形式	S<0	规格化形式
真值	0.1× × ×	真值	-0.1 × × ×
原码	0.1 × × ×	原码	1.1 × × ×
补码	0.1 × × ×	补码	1.0 × × ×

补码: 带符号判定移位(方式2)

Ex=00100

- 4、规格化
- 规则
 - 尾数右移1位,阶码加1
 - 尾数左移1位,阶码减1
- 左规处理,结果为1.00010101(10),阶码为00011

建议:转回原码,确认规格化结果是否正确(方式1)

浮点加减法示例——补码 (4)

- 5、舍入处理(对阶和向右规格化时)
 - 就近舍入(0舍1入): 类似"四舍五入"
 - 朝0舍入: 截尾
 - 朝十∞舍入:正数多余位不全为0,进1;负数,截尾
 - 朝一∞ 舍入: 负数多余位不全为0,进1;正数,截尾
 采用0舍1入法处理,得到1,00010110

1.00010101(10)

6、溢出判断和处理

阶码符号位为00,不溢出。得最终结果为 $x+y=2^{011}\times(-0.11101010)$

浮点加减法示例——原码计算

[例] 设x = 0.5₁₀, y=-0.4375₁₀, 尾数用原码, 求(x+y)_浮

浮点加减法示例——原码计算

[例] 设x = 0.5₁₀, y=-0.4375₁₀, 尾数用原码, 求(x+y)_浮

1、写出操作数 (浮点数格式)

$$x=0.1_2=0.1_2 \times 2^0=1.000 \times 2^{-1}$$

 $y=-0.0111_2=-0.0111_2 \times 2^0=-1.110 \times 2^{-2}$

- 2、对阶: y阶码更小, 调整y使对齐 y=-1.110 × 2⁻² =-0.111 (尾数右移1位) × 2⁻¹
- 3、尾数相加

$$x+y=1.000-0.111=0.001$$
 ($\times 2^{-1}$)

4、规格化

5、舍入操作

尾数有效位为4位,不进行舍入操作

$$x=0.1101 \times 2^{01}$$
; $y=-0.1010 \times 2^{11}$

尾数和阶符都采用**补码**表示,都采用**双符号位**表示法,尾数有效位4位,就近舍入规则。 求x+y=?

- \bigcirc -0.1011 × 2⁰¹
- -0.1011×2^{10}
- -0.1101×2^{01}
- -0.1101 × 2¹⁰

习题求解过程

```
x=0.1101 \times 2^{01}; y=-0.1010 \times 2^{11}
```

[x]_浮=0001, 00.1101 (双符号位补码)

 $[y]_{\nearrow}=0011, 11.0110$

对阶: x向y对齐, 小数点左移2位

 $[x]_{\beta} = 0011, 00.0011 (01)$

尾数和为11.1001 (01)

规格化 (小数点右移1位) 11.0010(10), 阶码减1→0010

舍入(就近舍入) 11.0011

 $x+y=-0.1101*2^{10}$

扩展: 补码四舍五入 (-0.5问题)

对如下补码进行四舍五入:

1) 11 0010.11

2) 11 0010.01

原码: 11 1101.01

11 1101.11

真值: -13.25

-13.75

四舍五入: -13

-14

原码: 11 1101

11 1110

补码: 11 0011

11 0010

规律: 0舍1入(就近舍入)

建议: 在补码形式下, 进行舍入处理

扩展: 补码四舍五入 (-0.5问题)

对如下补码进行四舍五入:

3) 11 0010.10

原码: 11 1101.10

真值: -13.5

四舍五入: -13

原码: 11 1101

补码: 11 0011

输入	:	
1 2 3 4	<pre>import numpy as np print(np.round(0.5)) print(np.round(1.5))</pre>	
输出	:	python3.5
1 2		

注:不同编译器对round定义不同

规律: 0舍1入(就近舍入)

第二章 运算方法和运算器

- 复习: 浮点表示法 (IEEE 754)
- 浮点加、减法
- 浮点乘、除法
- 浮点运算器流水线结构
- 运算器总线结构

浮点乘法和除法运算

设有两个浮点数 x 和 y:

$$x = 2^{E \times \cdot M_x}$$
$$y = 2^{E y} \cdot M_y$$

- $\mathbf{x} \times \mathbf{y} = 2^{(\mathbf{E} \times + \mathbf{E} \mathbf{y})} \cdot (\mathbf{M}_{\mathbf{x}} \times \mathbf{M}_{\mathbf{y}})$
- $\mathbf{x} \div \mathbf{y} = 2^{(\mathbf{E} \times \mathbf{E} \mathbf{y})} \cdot (\mathbf{M}_{\mathbf{x}} \div \mathbf{M}_{\mathbf{y}})$
- 乘除运算分为四步(**无对阶、符号位单独处理**)
 - ① 0操作数检查
 - ② 阶码加减操作
 - 3 尾数乘除操作
 - ④ 结果规格化和舍入处理

浮点乘法示例——原码计算

[例] 设x = 0.5₁₀, y=-0.4375₁₀, 尾数用原码, 求(x × y)_浮

1、写出操作数 (浮点数格式)

$$x=0.1_2=0.1_2*2^0=1.000*2^{-1}$$

 $y=-0.0111_2=-0.0111_2*2^0=-1.110*2^{-2}$

2、阶码相加

$$-1+-2=-3$$

3、尾数相乘

$$x \times y=1.110 \ (\times 2^{-3})$$

4、规格化与确定符号

$$x \times y = -1.110 \times 2^{-3}$$

第二章 运算方法和运算器

- 复习: 浮点表示法 (IEEE 754)
- 浮点加、减法
- 浮点乘除法
- 浮点运算器流水线结构
- 运算器总线结构

浮点运算流水线

- 提高并行性的两个渠道:
 - 空间并行性
 - 增加冗余部件,如增加多操作部件处理机和超标 量处理机
 - 时间并行性
 - 改善操作流程如:流水线技术

- 另一种类比: 大厨→控制+运算
- 非流水线: 大厨单线程工作: 洗、切、炒 (3T)
- 流水线: 洗、洗/切、洗/切/炒.....(最好为T)

流水线浮点运算器——时空图

$$A = a \times 2^{P}$$
, $B = b \times 2^{q}$

在4级流水线加法器中实现上述浮点加法时, 分为以下操作:

- (1) 求阶差
- (2) 对阶
- (3)相加
- (4) 规格化

流水线技术原理

- 在流水线中必须是连续的任务,只有不断的提供任务才能充分发挥流水线的效率
- 把一个任务分解为几个有联系的子任务。每个子任务由 一个专门的功能部件实现
- 在流水线中的每个功能部件之后都要有一个缓冲寄存器, 或称为锁存器(各级流水独立)
- 流水线中各段的时间应该尽量相等,否则将会引起"堵塞"和"断流"的现象
- 流水线需要有装入时间和排空时间,只有当流水线完全 充满时,才能充分发挥效率

流水线原理——理想情况加速比

- 流水线加速比 (k级流水, 执行n条指令, Ck)
 - 假设各级执行时间相等, 不考虑缓存器延迟
 - 非流水线, 串行执行T_L=nkτ (每一级时间)
 - 流水线方式, T_k=k τ +(n-1) τ
 - 加速比, $C_k = T_L/T_k = nk/(k+n-1)$
 - 当 $n \rightarrow \infty$, $C_k = k$ (最多提升k倍性能)

流水线原理——非理想情况

 设过程段 S_i所需的时间为τ_i,缓冲寄存器的延时为τ_l, 线性流水线的时钟周期定义为

$$\tau = \max\{\tau_i\} + \tau_l = \tau_m + \tau_l$$

• 流水线处理的频率为 f = 1/τ

流水线原理——非理想情况

 设过程段 S_i所需的时间为τ_i,缓冲寄存器的延时为τ_i, 线性流水线的时钟周期定义为

$$\tau = \max\{\tau_i\} + \tau_l = \tau_m + \tau_l$$

• 流水线处理的频率为 f = 1/τ

$$C_k = T_L / \tau$$

某4级流水线浮点加法器,各级所需时间为:求阶差 $\tau 1 = 70 \text{ns}$,对阶 $\tau 2 = 60 \text{ns}$,相加 $\tau 3 = 90 \text{ns}$,规格化 $\tau 4 = 80 \text{ns}$,缓冲寄存器L的延时为 $\tau 1 = 10 \text{ns}$ 。

求: 1) 加速比; 2) 若各级流水线时间均为75ns (含缓冲器) 加速比为?

流水线计算例题 (1)

某4级流水线浮点加法器,各级所需时间为:求阶差 $\tau 1 = 70 \text{ns}$,对阶 $\tau 2 = 60 \text{ns}$,相加 $\tau 3 = 90 \text{ns}$,规格化 $\tau 4 = 80 \text{ns}$,缓冲寄存器L的延时为 $\tau 1 = 10 \text{ns}$ 。

求: 1) 加速比; 2) 若各级流水线时间均为75ns(含缓冲器)加速比为?

解答:

1) 流水加法器时钟周期为:

 $\tau = \max\{\tau_i\} + \tau_l = \tau_m + \tau_l = 90 + 10 = 100 \text{ns}$ 同样电路非流水线时间为70 + 60 + 90 + 80 = 300 ns 加速比为Ck = 300/100 = 3

流水线计算例题 (2)

某4级流水线浮点加法器,缓冲寄存器L的延时为τ1=10ns。

求: 2) 若各级流水线时间均为75ns(含缓冲器)加速比为?

解答:

2) 流水加法器时钟周期为75ns 不含缓冲每一级时间为75-10=65ns 同样电路非流水线时间为65 × 4=260ns 加速比为Ck=260/75=3.466...... 或 加速比为300/75=4

第二章 运算方法和运算器

- 复习: 浮点表示法 (IEEE 754)
- 浮点加、减法
- 浮点乘除法
- 浮点运算器流水线结构
- 运算器总线结构

内部总线

- 内部总线
 - 机器内部各部份数据传送频繁,可以把寄存器 间的数据传送通路加以归并,组成总线结构
 - 分类
 - 所处位置
 - 内部总线 (CPU内)
 - 外部总线 (系统总线)
 - 逻辑结构
 - 单向传送总线
 - 双向传送总线

带缓冲的双向数据总线

- 三态门逻辑电路
 - 高阻态 (等效断路)
 - 连通态 (输出0/1)
 - 开关功能
 - 数据选择器、总线结构
- 4位带缓冲双向数据总线
 - 8个三态缓冲器(发送、接收)
 - 控制端
 - 发送信号
 - 接收信号

(a) 带有缓冲器的双向数据总线

单总线结构运算器

- 特点: 所有部件连接到同一总线上, 控制简单
- 性能
 - 同一时刻仅允许一个操作数出现在总线上
 - 数据存入A、B寄存器: 2个时钟周期
 - 结果输出: 1个时钟周期

单总线 A B 特 殊 寄存器

双总线结构运算器

- 特点: ALU输入端由不同总线连接
- 性能
 - 两个操作数可同时送入ALU
 - 数据输入: 1个时钟周期
 - 结果输出: 1个时钟周期

三总线结构运算器

- 特点: ALU输入端、输出端由不同总线连接
- 性能
 - 1个时钟周期,进行输入输出
 - 选通脉冲,考虑ALU延迟
 - 总线旁路器:操作数不需要修改

第二章总结

- 硬件部分:
 - 延迟分析/超前进位
 - 加减乘除法器设计
 - 总线结构
- 理论部分:
 - 原、反、补、移
 - IEEE 754 浮点数
 - 逻辑运算
 - 溢出判断
 - 定点加减乘除法
 - 浮点加减法

运算方法与运算器

终止条件: 除数有效位

注意: 纯小数、带符号循环移位

加减交替法

恢复余数法

定点除法

运算方法 (定点)

运算器 (定点)

数符S: 1位

尾数M: 23位, 最高位1省略

IEEE 754标准

阶码E: 8位、移码、E=e+127

真值: (-1)^S (1.M) 2^(E-127)

零操作数检查

对阶 (小数点对齐)

尾数加减(补码)

结果规格化 (转换回原码,数值最高位为1)

舍入处理(四舍五入、去尾)

结果溢出判断

运算方法 (浮点)

运算方法 (加减)

