i: Kann nicht in die Form $f(x) = c \cdot a^x$ gebracht werden und ist daher keine Gerade bei logarithmischer y-Achse.

= 5 +
$$\frac{-x}{100}$$
 · $\log(2e)$ = 5 - $\frac{\log(2e)}{100}$ ·x

$$iii: \quad \mu(\kappa) = \left(\frac{30 \, \text{s}}{2 \, \text{s}}\right)^2 = \frac{30 \, \text{s}}{2 \, \text{s}} = \frac{30 \, \text{s}}{2 \, \text{s}} = \frac{30000 \, \text{s}}{2 \, \text{s}} = \left(\frac{30000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{300000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{30000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{300000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{3000000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{300000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{3000000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{30000000 \, \text{s}}{2 \, \text{s}}\right)^2 = \left(\frac{3000000000000$$

II:
$$y = log(f(x)) = log(c \cdot x^a) = log(c) + log(x^a) = log(c) + a \cdot log(x)$$

Kenstanter

Y-Achse nobschnitt

i:
$$f(x) = \frac{5}{\sqrt[3]{2x^{2}}} = \frac{5}{(2x^{2})^{4/3}} = \frac{5}{\sqrt{2^{4/3} \cdot x^{2/3}}} = \frac{5}{\sqrt{2^{4/3}}} \cdot x^{-2/3}$$

$$\Rightarrow$$
 $c = \frac{5}{2^{4/3}}$ $\alpha = -\frac{2}{3}$

$$\Rightarrow$$
 y - Achsenabschnitt: $\log\left(\frac{5}{2^{4/3}}\right)$

- ii: Kann nicht in die Form $f(x) = c \cdot x^a$ gebracht werden und ist daher keine Gerade bei logarithmischen Achsen.
- iii: Kann nicht in die Form $f(x) = c \cdot x^q$ gebracht werden und ist daher keine Gerade bei logarithmischen Achsen.