Национальный исследовательский ядерный университет «МИФИ»

Институт интеллектуальных кибернетических систем КАФЕДРА КИБЕРНЕТИКИ

БДЗ

по курсу "Математическая статистика" студента группы Б20-504 Яковлева Андрея

Вариант № 12

Оценка: _		
- Толпись•		

1. Описательные статистики

1.1. Выборочные характеристики

Анализируемый признак 1 — Appraisal price3 (D3)

Анализируемый признак 2 – Nitric oxides concentration (D9)

Анализируемый признак 3 — Weighted distances to five city employment centres (D10)

а) Привести формулы расчёта выборочных характеристик

Выборочная хар-ка	Формула расчета
Объём выборки	n
Среднее	
	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Выборочная дисперсия	
	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^{2}$
Выборочное	
среднеквадратическое	$S = \sqrt{S^2}$
отклонение	
Выборочный коэффициент	n
асимметрии	$A_s = \frac{m_3}{S^3}$, где $m_3 = \frac{1}{n} * \sum_{i=1}^n (x_i - \bar{x})^3$
Выборочный эксцесс	20
	$E_k = rac{m_4}{{ m S}^4}$, где ${ m m}_4 = rac{1}{{ m n}} * \sum_{i=1}^n ({ m x}_i - ar{{ m x}})^4$

б) Рассчитать выборочные характеристики

Выборочная хар-ка	Признак 1	Признак 2	Признак 3
Среднее	1260.444	6.230	4.779
Выборочная дисперсия	150972.870	0.196	2.571
Выборочное	388.552	0.443	1.603
среднеквадратическое			
отклонение			
Выборочный коэффициент	1.349	1.229	0.479
асимметрии			
Выборочный эксцесс	1.374	2.767	-0.142

1.2. Группировка и гистограммы частот

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

а) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
7	Формула Скотта: $h = 3.5 S n^{-\frac{1}{3}}$ и $k = \frac{x_n - x_1}{h}$	277

б) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Накопл.	Относит.
интервала	граница	граница		частота	частота	накопл.
						частота
1	690	967	24	0.205	24	0.205
2	967	1244	50	0.427	74	0.632
3	1244	1521	22	0.188	96	0.821
4	1521	1798	9	0.077	105	0.897
5	1798	2075	4	0.034	109	0.932
6	2075	2352	5	0.043	114	0.974
7	2352	2629	3	0.026	117	1

в) Построить гистограммы частот и полигоны частот

г) Построить график эмпирической функции распределения

2. Интервальные оценки

2.1. Доверительные интервалы для мат. ожидания

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

Оцениваемый параметр – математическое ожидание

а) Привести формулы расчёта доверительных интервалов

Граница доверительного интервала	Формула расчета
Нижняя граница	$\bar{X} - \frac{S}{\sqrt{n}} t_{1 - \frac{\alpha}{2}}(n - 1)$
Верхняя граница	$\bar{X} + \frac{S}{\sqrt{n}} t_{1 - \frac{\alpha}{2}}(n - 1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	1166.77	1189.6	1201.14
Верхняя граница	1354.11	1331.29	1319.75

2.2. Доверительные интервалы для дисперсии

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

Оцениваемый параметр – дисперсия

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$(n-1)S^2$
	$\overline{\chi_{1-\frac{\alpha}{2}}^2(n-1)}$
Верхняя граница	$\frac{(n-1)S^2}{2}$
	$\chi^2_{\frac{\alpha}{2}}(n-1)$
	_

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	109218.02	117556.83	122156.99
Верхняя граница	215632.25	197121.34	188456.11

2.3. Доверительные интервалы для разности мат. ожиданий

Анализируемый признак 1 – Appraisal price2 (D2)

Анализируемый признак 2 – Appraisal price3 (D3)

Объёмы выборок – 117

Оцениваемый параметр – m1 - m2

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$(\bar{X}_1 - \bar{X}_2) - t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Верхняя граница	$(\bar{X}_1 - \bar{X}_2) + t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	-224.467	-192.969	-176.952
Верхняя граница	36.501	5.003	-11.014

2.4. Доверительные интервалы для отношения дисперсий

Анализируемый признак 1 - Appraisal price 2 (D2)

Анализируемый признак 2 – Appraisal price3 (D3)

Объёмы выборок – 117

Оцениваемый параметр – $\frac{\sigma_1^2}{\sigma_2^2}$

а) Привести формулы расчёта доверительных интервалов

Граница доверительного интервала	Формула расчета
-	c ²
Нижняя граница	$\frac{S_1}{S_2^2} f_{\frac{\alpha}{2}}(n_2 - 1, n_1 - 1)$
Верхняя граница	$\frac{S_1^2}{S_2^2} f_{1-\frac{\alpha}{2}}(n_2 - 1, n_1 - 1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	0.6	0.68	0.72
Верхняя граница	1.58	1.4	1.32

3. Проверка статистических гипотез о математических ожиданиях и дисперсиях

3.1. Проверка статистических гипотез о математических ожиданиях

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

Статистическая гипотеза —
$$\frac{H_{_{0}}: m=m_{_{0}}}{H^{'}: m\neq m_{_{0}}}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$\frac{\bar{X}-m_0}{S/\sqrt{n}}$
Закон распределения статистики критерия при условии истинности основной гипотезы	T(n-1)
Формулы расчета критических точек	$\pm t_{1-\frac{\alpha}{2}}(n-1)$
Формула расчета p-value	$\min(F_{z}(z), 1 - F_{z}(z)) * 2$

б) Выбрать произвольные значения то и проверить статистические гипотезы

m_0	Уровень	Выборочное	p-value	Статистическое	Вывод
	значимости	значение		решение	
		статистики			
		критерия			
1100	0.1	4.467	1.85	Н0 отвергается	$m \neq 1100$
			* 10 ⁻⁵		
1400	0.1	-3.885	0.00017	Н0 отвергается	$m \neq 1400$
1250	0.1	0.291	0.7717	Н0 принимается	m = 1250

3.2. Проверка статистических гипотез о дисперсиях

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

Статистическая гипотеза —
$$\frac{H_{_{0}}:\sigma=\sigma_{_{0}}}{H^{'}:\sigma\neq\sigma_{_{0}}}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$\frac{(n-1)S^2}{\sigma_0^2}$
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi^2(n-1)$
Формулы расчета критических точек	$\chi^{2}_{\alpha/2}(n-1)$ $\chi^{2}_{1-\alpha/2}(n-1)$
Формула расчета <i>p-value</i>	$\min(F_z(z), 1 - F_z(z)) * 2$

б) Выбрать произвольные значения σ_0 и проверить статистические гипотезы

σ ₀	Уровень значимости	Выборочное значение статистики критерия	p-value	Статистическое решение	Вывод
320	0.1	301.444	0.017	Н0 отвергается	$\sigma \neq 320$
340	0.1	434.079	0.035	Н0 отвергается	$\sigma \neq 340$
390	0.1	114.156	0.938	Н0 принимается	$\sigma = 390$

3.3. Проверка статистических гипотез о равенстве математических ожиданий

Анализируемый признак 1 - Appraisal price 2 (D2)

Анализируемый признак 2 – Appraisal price3 (D3)

Объёмы выборок – 117

Статистическая гипотеза —
$$\frac{H_0: m_1 = m_2}{H_0: m_1 \neq m_2}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\sigma_1^2/n_1 + \frac{\sigma_2^2}{n_2}/n_2}}$

Закон распределения статистики критерия при условии истинности основной гипотезы	N(0,1)
Формулы расчета критических точек	$\pm N_{1-\frac{\alpha}{2}}(0,1)$
Формула расчета p-value	$\min(F_z(z), 1 - F_z(z)) * 2$

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	1.863	0.064	Н0 принимается	$m_1 = m_2$
0.05			Н0 принимается	$m_1 = m_2$
0.1			Н0 отвергается	$m_1 \neq m_2$

3.4. Проверка статистических гипотез о равенстве дисперсий

Анализируемый признак 1 – Appraisal price2 (D2)

Анализируемый признак 2 – Appraisal price3 (D3)

Объёмы выборок – 117

Статистическая гипотеза —
$$\frac{H_0:\sigma_1=\sigma_2}{H:\sigma_1\neq\sigma_2}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$\frac{S_1^2}{S_2^2}$
	S_2^2
Закон распределения статистики	$F(n_1-1,n_2-1)$
критерия при условии истинности	
основной гипотезы	
Формулы расчета критических точек	$F_{\frac{\alpha}{2}}(n_1, n_2); F_{\left(1 - \frac{\alpha}{2}\right)}(n_1, n_2)$
Формула расчета <i>p-value</i>	$\min(F_z(z), 1 - F_z(z)) * 2$

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	1.028	0.883	Н0 принимается	$\sigma_1 = \sigma_2$
0.05			Н0 принимается	$\sigma_1 = \sigma_2$
0.1			Н0 принимается	$\sigma_1 = \sigma_2$

4. Критерии согласия

Анализируемый признак – Appraisal price3 (D3)

Объём выборки – 117

4.1. Критерий хи-квадрат

Теоретическое распределение – нормальное.

Статистическая гипотеза — $H_{_0}$: $F\left(x\right)$ \square N

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$\sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$	k-число интервалов <i>ni</i> — число элементов в i-м интервале
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi^{2} (k - r - 1)$	рі - вероятности попадания в і-й интервал при условии истинности H0
Формула расчета критической точки	$\chi_{1-a}^{2}(k-r-1)$	n – объем выборки
Формула расчета <i>p-value</i>	$1-\chi^{2}\left(z,k-r-1\right)$	r — число неизвестных параметров распределения

б) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
7	$h = 3.5 Sn^{-\frac{1}{3}}$ и $k = \frac{x_n - x_1}{h}$	277

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Вероятность
интервала	граница	граница		частота	попадания в интервал
					при условии
					истинности основной
					гипотезы
1	690	967	24	0.205	0.15
2	967	1244	50	0.427	0.26
3	1244	1521	22	0.188	0.27
4	1521	1798	9	0.077	0.17
5	1798	2075	4	0.034	0.065
6	2075	2352	5	0.043	0.015
7	2352	2629	3	0.026	0.0021

г) Построить гистограмму относительных частот и функцию плотности теоретического распределения на одном графике

График относительных частот уменьшен в 400 раз.

д) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	53.132	$7.99*10^{-11}$	<i>H</i> ₀ отвергается	F(D3) ∉ N
0.05	53.132	$7.99*10^{-11}$	<i>H</i> ₀ отвергается	F(D3) ∉ N
0.1	53.132	$7.99 * 10^{-11}$	H_0 отвергается	F(D3) ∉ N

4.2. Проверка гипотезы о нормальности на основе коэффициента асимметрии и эксцесса (критерий Харке-Бера)

Статистическая гипотеза — $H_{_0}$: $F\left(x\right)$ \square N

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$n(\frac{S^2}{6} + \frac{K^2}{24})$	n — объем выборки
Закон распределения статистики критерия при условии истинности основной гипотезы	χ² (2)	$S = \frac{\mu_3}{\sigma^3}$ – коэффициент асимметрии
Формула расчета критической точки	$\chi^{2}_{1-a}(2)$	$K = \frac{\mu_4}{\sigma^4} - 3$ - коэффициент эксцесса
Формула расчета <i>p-value</i>	$1-\chi^{2}(z,2)$	μ_i - i-й центральный момент σ – стандартное отклонение

б) Проверить статистические гипотезы

Уровень значимости	Выборочное значение статистики	p-value	Статистическое решение	Вывод
0.01	критерия 46.639	$7.45 * 10^{-11}$	H_0 отвергается	F(D3) ∉ N
0.05			<i>H</i> ₀ отвергается	F(D3) ∉ N
0.1			<i>H</i> ₀ отвергается	F(D3) ∉ N

Вывод (в терминах предметной области)

В результате проведённого в п.4 статистического анализа обнаружено, что оценочная
стоимость домов (D3) не является нормально распределенной величиной.

5. Проверка однородности выборок

Анализируемый признак 1 – Appraisal price3 (D3)

Анализируемый признак 2 – Appraisal price2 (D2)

Объёмы выборок – 117

5.1 Критерий знаков

Статистическая гипотеза — $H_0: F_1(x) = F_2(x)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	2 5 62 25	
	$2\sqrt{n} (H - 0.5)$	n – объем выборок
Закон распределения статистики	N(0,1)	Н = К/п – частота
критерия при условии истинности		успеха
основной гипотезы		
Формула расчета критической точки		К – число знаков «+» в
	$\pm N_{1-a/2} (0,1)$	последовательности
	,_ 、 ,	знаков разностей
Формула расчета <i>p-value</i>		
	$\min(F_{z}(z), 1 - F_{z}(z)) * 2$	

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01			H_0 отвергается	$F_1(x) \neq F_2(x)$
0.05	8.23	$2.22 * 10^{-16}$	H_0 отвергается	$F_1(x) \neq F_2(x)$
0.1			Н₀ отвергается	$F_1(x) \neq F_2(x)$

5.2. Критерий хи-квадрат

Статистическая гипотеза — $H_0: F_1(x) = F_2(x)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных обозначений
Формула расчета статистики критерия	$n_X n_Y \sum_{i=1}^k \frac{1}{m_i^X + m_i^Y} (\frac{m_i^X}{n_X} - \frac{m_i^Y}{n_Y})^2$	n1 – число элементов в 1- ой выборке
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi^2 (k-1)$	n2 – число элементов во 2- ой выборке
Формула расчета критической точки	$\chi_{1-a}^{2}(k-1)$	$m^{X}{}_{i}$ — частота первой выбороки в і — й группе
Формула расчета p-value	$1-\chi^{2}\left(z,k-1\right)$	$m^{Y}_{\ i}$ — частота второй выбороки в і — й группе

б) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов
7	$k = [1 + \log_2 n]$	

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Частота	Относит.	Относит.
интервала	граница	граница	признака 1	признака 2	частота	частота
					признака 1	признака 2
1	594	940.4	20	36	0.17	0.307
2	940.4	1190.9	43	41	0.37	0.35
3	1190.9	1441.29	26	21	0.22	0.18
4	1441.29	1691.71	14	6	0.12	0.05
5	1691.71	1942.14	4	4	0.03	0.034
6	1942.14	2192.57	4	4	0.03	0.034
7	2192.57	2443	6	5	0.05	0.043

г) Построить гистограммы относительных частот на одном графике

д) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01			H_0 принимается	$F_1(x) = F_2(x)$
0.05	2.56	0.633	H_0 принимается	$F_1(x) = F_2(x)$
0.1			<i>H</i> ₀ принимается	$F_1(x) = F_2(x)$

Вывод (в терминах предметной области)

В результате проведённого в п.5 статистического анализа не удалось определить, имеют ли выборки оценочная стоимость домов D2 и оценочная стоимость домов D3 одинаковые распределения. Критерий хи-квадрат принял гипотезу однородности. Критерий знаков отклонил ее. Следовательно, в одной из проверок была допущена ошибка, либо первого рода в критерии знаков, либо ошибка второго рода в критерии хи-квадрат.

6. Таблицы сопряжённости

Факторный признак x – Corner location (D8)

Результативный признак *y* – Nitric oxides concentration (D12)

Объёмы выборок –117

Статистическая гипотеза – H_0 : $F_Y(y|X=x_1)=\cdots=F_Y(y|X=x_k)=F_Y(y)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$\sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(n_{ij} - m_{ij}\right)^{2}}{m_{ij}}$	К – кол-во вариантов факторного признака
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi 2 ((k-1)(l-1))$	l— кол-во вариантов результативного признака
Формула расчета критической точки	$\chi^{2}_{1-a}((k-1)(l-1))$	n_{ij} — частота в эмпирической т.с.
Формула расчета p-value	1 - χ 2 (z, $(k-1)(l-1)$)	m_{ij} — частота в теоретической т.с.

б) Построить эмпирическую таблицу сопряжённости

x y	N	Y	Σ
N	67	23	90
Y	12	15	27
Σ	79	38	117

в) Построить теоретическую таблицу сопряжённости

x y	N	Y	Σ
N	60.77	29.23	90
Y	18.23	8.77	27
Σ	79	38	117

г) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	8.52	0.004	H_0 отвергается	Между D8 и D12 есть
				статистическая связь
0.05			H_0 отвергается	Между D8 и D12 есть
				статистическая связь
0.1			H_0 отвергается	Между D8 и D12 есть
				статистическая связь

Вывод (в терминах предметной области)

В результате проведённого в п.6 статистического анализа обнаружено, что
расположением угла (D3) и концентрацией оксидов азота (D12) есть статистическая
связь.

7. Дисперсионный анализ

Факторный признак x — Location in sector of city (D7)

Результативный признак у – Appraisal price3 (\$hundreds) (D3)

Число вариантов факторного признака – 3

Объёмы выборок – 117

Статистическая гипотеза – D7 влияет на D3

а) Рассчитать групповые выборочные характеристики

No	Вариант факторного	Объём	Групповые	Групповые
Π/Π	признака	выборки	средние	дисперсии
1	north	41	1462.610	179213.116
2	south	45	1125.356	88750.629
3	other	31	1189.161	113448.651

б) Привести формулы расчёта показателей вариации, используемых в дисперсионном анализе

Источник вариации	Показатель вариации	Число степеней свободы	Несмещенная оценка
Факторный признак	$D_b^* = \frac{1}{n} \sum_{k=1}^K n_k (\bar{x}_k - \bar{x})^2$	K - 1	$\frac{n}{K-1}D_b^*$
Остаточные признаки	$D_{\omega}^* = \frac{1}{n} \sum_{k=1}^K n_k \widetilde{\sigma_k^2}$	n - K	$\frac{n}{n-K}D_{\omega}^*$
Все признаки	$D_X^* = \frac{1}{n} \sum_{k=1}^K \sum_{i=1}^{n_k} (x_i^k - \bar{x})^2$	n - 1	$\frac{n}{n-1}D_X^*$

в) Рассчитать показатели вариации, используемые в дисперсионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный			
признак	22687	2	1327214
Остаточные			
признаки	126995	114	129203
Все признаки			
	149682	116	150972

г) Проверить правило сложения дисперсий

Показатель	$D_{\mathit{межгp}}$	$D_{\mathit{внутригр}}$	Dоби $ ho$	$D_{\mathit{межер}} + D_{\mathit{внутригр}}$
Значение	22687	126995	149682	149682

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Эмпирический коэффициент	D_b^*	0.15
детерминации	$\eta^{z} = \frac{1}{D_{X}^{*}}$	
Эмпирическое корреляционное	D.*	0.39
отношение	$\eta = \left \frac{D_b}{D^*} \right $	
	$\sqrt{D_X}$	

е) Охарактеризовать тип связи между факторным и результативным признаками

Между выборками D7 и D3 имеется умеренная связь.

ж) Указать формулы расчёта показателей, используемых при проверке статистической гипотезы дисперсионного анализа

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$D_{*}^{*}/(K-1)$	К – кол-во вар-в
	$\frac{D_b^*/(K-1)}{D_\omega^*/(n-K)}$	факторного признака
Закон распределения статистики	F(K-1,n-K)	п-объем выборки
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки		D_b^* - межгрупповая
	$F_{1-\alpha}(K-1,n-K)$	дисперсия
		_
Формула расчета <i>p-value</i>	1-F(z,K-1,n-K)	D_{ω}^{*} - внутригрупповая дисперсия

з) Проверить статистическую гипотезу дисперсионного анализа

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01			H_0 отвергается	D7 влияет на D3
0.05	10.18	8.5e-05	H_0 отвергается	D7 влияет на D3
0.1			H_0 отвергается	D7 влияет на D3

Вывод (в терминах предметной области)

В результате проведённого в п.7 статистического анализа обнаружено, что
расположение дома относительно города (D7) оказывает влияние на оценочную
стоимость дома (D3).

8. Корреляционный анализ

8.1. Расчёт парных коэффициентов корреляции

Анализируемый признак 1 – Appraisal price2 (D2)

Анализируемый признак 2 – Square feet of living space (D4)

Объёмы выборок – 117

а) Рассчитать точечные оценки коэффициентов корреляции

	Формула расчета	Значение
Линейный коэффициент корреляции	$\frac{\frac{1}{n}\sum_{i}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sigma_{X}^{*}\sigma_{y}^{*}}$	0.831
Ранговый коэффициент корреляции по Спирмену	$\frac{\sum_{i=1}^{n} (r_i - \bar{r})(s_i - \bar{s})}{\sqrt{\sum_{i=1}^{n} (r_i - \bar{r})(s_i - \bar{s})}}$	0.853
Ранговый коэффициент корреляции по Кендаллу	$\frac{4Q}{n(n-1)}-1$	0.665

б) Привести формулы расчёта доверительного интервала для линейного коэффициента корреляции

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\rho_{XY}^* + \frac{\rho_{XY}^* (1 - (\rho_{XY}^*)^2)}{n} - u_{1-\alpha/2} \frac{1 - (\rho_{XY}^*)^2}{\sqrt{n}}$
Верхняя граница	$\rho_{XY}^* + \frac{\rho_{XY}^* (1 - (\rho_{XY}^*)^2)}{n} + u_{1 - \frac{\alpha}{2}} \frac{1 - (\rho_{XY}^*)^2}{\sqrt{n}}$

в) Рассчитать доверительные интервалы для линейного коэффициента корреляции

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	0.74	0.77	0.78
Верхняя граница	0.89	0.88	0.87

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициентов корреляции

Статистическая	Формула расчета статистики	Закон распределения статистики
гипотеза	критерия	критерия при условии
		истинности основной гипотезы

$H_0: \rho = 0$	$\rho_{XY}^* \sqrt{n-2}$	T(n-2)
$H': \rho \neq 0$	$\sqrt{1-(\rho_{XY}^*)^2}$ $\sqrt{1-(\rho_{XY}^*)^2}$	
$H_0: r^{(cn)} = 0$	$\frac{\tilde{\rho}_{XY}^{(sp)}}{\sqrt{n-2}}$	T(n-2)
$H': r^{(cn)} \neq 0$	$\sqrt{1-\left(\tilde{\rho}_{XY}^{(sp)}\right)^2}\sqrt{n-2}$	
$H_{0}:r^{(\kappa e H)}=0$	\tilde{z} $9n(n+1)$	N(0, 1)
$H': r^{(\kappa e_H)} \neq 0$	$\tilde{\tau}_{XY}\sqrt{\frac{3n(n+1)}{2(2n+5)}}$	

д) Проверить значимость коэффициентов корреляции

Статистическая	Уровень	Выборочное	p-value	Статистическое	Вывод
гипотеза	значимости	значение		решение	
		статистики			
		критерия			
$H_0: \rho = 0$	0.1	28.75	0	H_0 отвергается	$p \neq 0$
$H': \rho \neq 0$					
$H_0: r^{(cn)} = 0$	0.1	33.68	0	H_0 отвергается	$r^{(cn)} \neq 0$
$H': r^{(cn)} \neq 0$					
$H_{0}:r^{(\kappa e H)}=0$	0.1	10.72	0	H_0 отвергается	$r^{(\text{KeH})} \neq 0$
$H': r^{(\kappa e H)} \neq 0$					

8.2. Расчёт множественных коэффициентов корреляции

Анализируемый признак 1 – Appraisal price2 (D2)

Анализируемый признак 2 – Square feet of living space (D4)

Анализируемый признак 3-D6 Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access)

Объёмы выборок – 117

а) Рассчитать матрицу ранговых коэффициентов корреляции по Кендаллу

Признак	D2	D4	D6
Признак			
D2	1	0.67	0.33
D4	0.67	1	0.304
D6	0.33	0.304	1

б) Рассчитать матрицу значений p-value для ранговых коэффициентов корреляции по Кендаллу (статистическая гипотеза $H_0: r^{(\kappa e n)} = 0, \ H': r^{(\kappa e n)} \neq 0$)

Признак	D2	D4	D6
Признак			
D2	_	0	1.44e-07
D4	0	_	9.25e-07

D6	1.44e-07	9.25e-07	_

в) Рассчитать точечную оценку коэффициента конкордации

	Формула расчета	Значение
Коэффициент конкордации	$rac{12}{k^2(n^3-n)} \sum_{i=1}^n \left(\sum_{j=i}^k R_{ij} - rac{k(n+1)}{2} ight)^2$ R_{ij} — ранг і элемента в X_j выборке	12.895

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициента конкордации

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия		W – коэффициент
	n(k-1)W	конкардации
2	. 2 (: 1)	
Закон распределения статистики	$\chi 2 (n-1)$	n – размер выборок
критерия при условии истинности		
основной гипотезы		1
Формула расчета критической точки	_	k – число выборок
	$\chi^2_{1-\alpha}(n-1)$	
Формула расчета <i>p-value</i>	$1-\chi^2(z,n-1)$	
	1 χ (2,11 1)	

д) Проверить значимость коэффициента конкордации

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	3017.43	0.0	H_0 отвергается	D2,D4,D6 - связаны
0.05			H_0 отвергается	D2,D4,D6 - связаны
0.1			H_0 отвергается	D2,D4,D6 - связаны

Вывод (в терминах предметной области)

В результате проведённого в п.8 статистического анализа обнаружено, что оценочная стоимость дома (D2), площадь дома (D4) и наличие признаков (D6) статистически связаны, в том числе и попарно.

9. Регрессионный анализ

9.1 Простейшая линейная регрессионная модель

Факторный признак *x* – Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access) (D6) Результативный признак *y* – Appraisal price1 (\$hundreds) (D1)

Уравнение регрессии — $f(x) = \beta_0 + \beta_1 x$

9.1.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
βο	$\widetilde{\beta_0} = \bar{y} - \rho_{XY}^* \frac{\sigma_Y^*}{\sigma_X^*} \bar{x}$	661
β_1	$\widetilde{eta_1} = ho_{XY}^* rac{\sigma_Y^*}{\sigma_X^*}$	114

б) Записать точечную оценку уравнения регрессии

$$f(x) = 114x + 661$$

в) Привести формулы расчёта показателей вариации, используемых в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная
вариации		степеней	оценка
	_	свободы	
Факторный признак	$D^*_{Y X} = \frac{1}{n} \sum_{i=1}^n (f(x_i, \beta_0, \dots \beta_{k-1}) - \bar{y})^2$	k - 1	$\frac{n}{k-1}D^*_{Y X}$
Остаточные признаки	$D_{\text{resY}}^* = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, \beta_0, \dots \beta_{k-1}))^2$	n – k	$\frac{n}{n-k}\mathrm{D}^*_{\mathrm{resY}}$
Все признаки	$D^*_{Y} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$	n - 1	$\frac{n}{n-1}D^*_{Y}$

г) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	

Факторный признак	25345	1	2965347
Остаточные признаки	118150	115	120205
Все признаки	143495	116	144732

д) Проверить правило сложения дисперсий

Показатель	$D_{ m perp}$	D_{ocm}	$D_{oби \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$D_{perp} + D_{ocm}$
Значение	25345	118150	143495	143495

е) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Коэффициент детерминации	$R_{Y X}^2 = \frac{D_{Y X}}{D_Y}$	0.176
Корреляционное отношение	$R_{Y X} = \sqrt{\frac{D_{Y X}}{D_Y}}$	0.42

ж) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Связь, определяемая простейшей линейной регрессией – слабая.

9.1.2. Интервальные оценки линейной регрессионной модели

а) Привести формулы расчёта доверительных интервалов для параметров линейной регрессионной модели

Параметр	Границы	Формула расчета
	доверительного	
	интервала	
β_0	Нижняя граница	
		$\widetilde{\beta_0} - t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{\sum_{i=1}^n x_i^2}{n^2 D_X^*}}$
	Верхняя граница	
		$\widetilde{\beta_0} + t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{\sum_{i=1}^n x_i^2}{n^2 D^*_X}}$
βι	Нижняя граница	$\widetilde{\beta_1} - t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{1}{nD^*_X}}$

	Верхняя граница	$\widetilde{\beta_1} + t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{1}{nD_X^*}}$
--	-----------------	---

б) Рассчитать доверительные интервалы для параметров линейной регрессионной модели

Параметр	Границы	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
	доверительного			
	интервала			
β_0	Нижняя	435	490	518
	граница			
	Верхняя	887	831	803
	граница			
β_1	Нижняя	106	109	110
	граница			
	Верхняя	121	118	117
	граница			

в) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы доверительного	Формула расчета
интервала	
Нижняя граница $f_{low}(x)$	$\widetilde{f(x)} - t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{n^2D_X^*}}$
Верхняя граница $f_{high}(x)$	$\widetilde{f(x)} + t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{n^2D^*_X}}$

г) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha=0.1$

д) Построить график остатков $\varepsilon(x) = y - f(x)$

9.1.3. Проверка значимости линейной регрессионной модели

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

Выражение	Пояснение
	использованных
	обозначений

Формула расчета статистики критерия	$\frac{{R_{Y X}^*}^2}{(1 - {R_{Y X}^*}^2)/(n-2)}$	${R_{Y X}^*}^2$ - коэффициент детерминации
Закон распределения статистики критерия при условии истинности основной гипотезы	F(1, n-2)	n – размер выборки
Формула расчета критической точки	$F_{1-\alpha}(1,n-2)$	
Формула расчета p-value	1-F(z,1,n-2)	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	24.7	2.4e-06	H_0 отвергается	Регрессионная модель
				значима
0.05			H_0 отвергается	Регрессионная модель
				значима
0.1			H_0 отвергается	Регрессионная модель
				значима

9.2 Линейная регрессионная модель общего вида

Факторный признак x – Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access) (D6) Результативный признак y – Appraisal price1 (\$hundreds) (D1)

Уравнение регрессии — квадратичное по *x*: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

9.2.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
βο	$F = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ & \dots \\ 1 & x_n & x_n^2 \end{pmatrix}$	640
β1	$\tilde{\beta} = (F^T F)^{-1} F^T y$	128
β_2		-1.92

б) Записать точечную оценку уравнения регрессии

$$f(x) = -1.92x^2 + 128x + 640$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник вариации	Показатель вариации	Число степеней свободы	Несмещенная оценка
Факторный признак	25381	2	1484787
Остаточные признаки	118114	114	121222
Все признаки	143495	116	144732

г) Проверить правило сложения дисперсий

Показатель	$D_{ m perp}$	D_{ocm}	D_{o би $_{i}}$	$D_{perp} + D_{ocm}$
Значение	25381	118114	143495	143495

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Коэффициент детерминации	$R_{Y X}^2 = \frac{D_{Y X}}{D_Y}$	0.176
Корреляционное отношение	$R_{Y X} = \sqrt{\frac{D_{Y X}}{D_Y}}$	0.42

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Связь, определяемая регрессией – слабая.

- 9.2.2. Интервальные оценки линейной регрессионной модели
- а) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы доверительного	Формула расчета
интервала	
Нижняя граница $f_{low}(x)$	$\widetilde{f(x)} - t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\varphi^{T}(x)(F^{T}F)^{-1}\varphi(x)}$
Верхняя граница $f_{high}(x)$	$\widetilde{f(x)} + t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\widetilde{D}_{resY}}\sqrt{\varphi^{T}(x)(F^{T}F)^{-1}\varphi(x)}$

б) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha=0.1$

в) Построить график остатков $\varepsilon(x) = y - f(x)$

9.2.3. Проверка значимости линейной регрессионной модели

Статистическая гипотеза —
$$\frac{H_{_{0}}:\beta_{_{1}}=\beta_{_{2}}=0}{H':\textit{не }H_{_{0}}}$$

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$\frac{{R_{Y X}^*}^2/(k-1)}{(1-{R_{Y X}^*}^2)/(n-k)}$	${R_{Y X}^*}^2 - \ $ коэффициент детерминации
Закон распределения статистики критерия при условии истинности основной гипотезы	F(k-1, n-2)	n – размер выборки
Формула расчета критической точки	$F_{1-\alpha}(k-1,n-2)$	
Формула расчета <i>p-value</i>	1 - F(z, k-1, n-2)	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	12.25	1.5e-05	H_0 отвергается	Регрессионная модель
				значима
0.05			H_0 отвергается	Регрессионная модель
				значима
0.1			H_0 отвергается	Регрессионная модель
				значима

9.3 Множественная линейная регрессионная модель

Факторный признак 1 x_1 – Number out of 11 features (dishwasher, refrigerator, microwave, disposer, washer, intercom, skylight(s), compactor, dryer, handicap fit, cable TV access) (D6) Факторный признак 2 x_2 – Nitric oxides concentration (D9)

Результативный признак y – Appraisal price1 (\$hundreds) (D1)

Уравнение регрессии – $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр Формула расчета	Значение
--------------------------	----------

βο	$F = \begin{pmatrix} 1 & x_1^1 & x_1^2 \\ 1 & x_2^1 & x_2^2 \\ & \dots \\ 1 & x_n^1 & x_n^2 \end{pmatrix}$	-222
β_1	$\tilde{\beta} = (F^T F)^{-1} F^T y$	112
β_2		143

б) Записать точечную оценку уравнения регрессии

$$f(x) = 112x_1 + 143x_2 - 222$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	29719	2	1738569
признак			
Остаточные	113776	114	116770
признаки			
Все признаки	143495	116	144732

г) Проверить правило сложения дисперсий

Показатель	$D_{\it perp}$	D_{ocm}	$D_{o ar{o} u \mu}$	$D_{perp} + D_{ocm}$
Значение	29719	113776	143495	143495

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Множественный коэффициент детерминации	$R_{Y X_1,X_2}^{2} = 1 - \frac{D_{res}}{D_Y}$	0.21
Множественное корреляционное отношение	$R_{Y X_{1},X_{2}}^{*} = \sqrt{\frac{\left(\rho_{YX_{1}}^{*}\right)^{2} + \left(\rho_{YX_{2}}^{*}\right)^{2} - 2\rho_{YX_{1}}^{*}\rho_{YX_{2}}^{*}\rho_{X_{1}X_{2}}^{*}}{1 - \left(\rho_{X_{1}X_{2}}^{*}\right)^{2}}}$	0.45

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Связь, определяемая регрессией – умеренная

9.4. Выводы

а) Сводная таблица показателей вариации для различных регрессионных моделей

Источник	Простейшая	Линейная модель	Множественная
вариации	линейная	с квадратичным	линейная модель
	модель	членом	
Факторный	25345	25551	29716
признак			
Остаточные	118150	117944	113779
признаки			
Все признаки	143495	143495	143495

б) Сводная таблица свойств различных регрессионных моделей

Свойство	Простейшая	Линейная модель	Множественная
	линейная модель	с квадратичным	линейная модель
		членом	
Точность	17.6%	17.8%	21%
Значимость	Да	Да	Да
Адекватность	Нет	Нет	Нет
Степень тесноты связи	Слабая	Слабая	Умеренная

Вывод (в терминах предметной области)

В результате проведённого в п.9 статистического анализа обнаружено, что ни одна из предложенных регрессионных моделей адекватно не отражает реальную зависимость оценочной стоимости (D1) от наличия функций (D6) и от концентрации NO2 (D9).