SIDE-EFFECTS OF IMPROVING FORECAST ACCURACY WITH MORE DATA

PROF. DR. ROBERT BOUTE ARNOUD WELLENS, PH.D.

Inaccurate forecasting is expensive

Retailers are losing \$1.75 trillion over this

- Out-of-stocks account for \$634.1 billion in lost retail sales
- Overstocks contribute \$471.9 billion in lost revenues

Retailers struggle to utilize the mounds of customer data they've acquired over the past few years and accurately forecast demand.

Especially the product-store level is challenging

Grocery stores carry 40,000 more items than they did in the 1990s

Machine learning to the rescue? They outperform in the recent forecast competitions

But the winning ML methods are hard to implement

- Computational requirements are high
 - Small product portfolio: 2,000 SKUs x 15 stores x 14-day horizon = 420,000 forecasts/ day
 - Large portfolio: 60,000 SKUs x 15 stores x 14-day horizon = **12.6 million forecasts/day**
- Model complexity requires expert knowledge

Are we ready to trust a black box?

Result: Most retailers still use a simple statistical method

Simple.

We simplified the M5 winning LightGBM method

Decision-tree framework

Train a single global tree-based method

Use all available data 'as is'

Perform 'basic' feature engineering

Automate the hyperparameter tuning

Pilot in one store

- 4,523 food products
- Forecast the daily sales
- 104 different inputs
- Total data: >500 million training data points

Our simplified decision-tree framework (DTF) outperforms the best benchmark by 11.48%

- (Seasonal) Naive
- Moving Average
- Exponential Smoothing
- Croston's method
- ADIDA (temporal aggregation)
- Prophet
- Exponential Smoothing with Explanatory variables
- Prophet with Explanatory variables

Superior forecast accuracy requires 12.5% less inventory to achieve a 95% target service level

Only marginal gains with more sophisticated versions

Models	RMSSE	Improvement over ESX
Decision-tree framework (DTF)	0.501 ± 0.01	11.48 %
Recursive DTF (RDTF)	0.499 ± 0.01	11.84 %
Ensemble of DTF and RDTF	0.497 ± 0.01	12.19 %
DTF-I-1	0.503 ± 0.002	11.13%
DTF-I-2	0.514 ± 0.005	9.19%
DTF-sI-70	0.502 ± 0.003	11.31%
DTF-fs-sI-70	0.502 ± 0.002	11.31%
DTF-m5	0.491 ± 0.001	13.25%

Opening the Black Box.

Shapley values unveil the main contributors

The use of Explanatory data & Feature engineering provide the biggest "bang for the buck"

Methods	Accuracy gain by adding explanatory data & feature engineering
Decision-tree framework	+19.97%
Exponential smoothing	+5.98%
Prophet	+7.81%

But there is a side-effect...

Using explanatory variables leads to a higher bullwhip

Explanatory variables make the sales forecasts, and consequently the replenishment, more responsive

Conclusion

Machine Learning can be simplified and still outperform as long as:

- We invest in explanatory variables
- We invest in feature engineering

But there is a side-effect: using explanatory variables creates a **higher bullwhip** effect in the replenishment orders.

