Rotational Motion: Spinning Top (Reading: Chapter 10.9 - 10.10)

Help:

 ${\bf i}$ Comparing components of angular momentum in the space frame and body frame. More vegetables.

10.49 Starting from Equation (10.100) for \vec{L} , verify that L_z is correctly given by Equations (10.102) and (10.103).

$$\vec{L} = (-\lambda_1 \dot{\phi} \sin \theta) \vec{e}_1' + \lambda_1 \dot{\theta} \vec{e}_2' + \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) \vec{e}_3$$
(10.100)

$$L_z = \lambda_1 \dot{\phi} \sin^2 \theta + \lambda_3 (\dot{\psi} + \dot{\phi} \cos \theta) \cos \theta \tag{10.102}$$

$$= \lambda_1 \dot{\phi} \sin^2 \theta + L_3 \cos \theta \tag{10.103}$$

- ii Chandler wobble for a symmetric top.
- **10.52** Consider the rapid steady precession of a symmetric top predicted in connection with (10.112).
- (a) Show that in this motion the angular momentum \vec{L} must be very close to the vertical. [*Hint*: Use (10.100) to write down the horizontal component L_{hor} of \vec{L} . Show that if $\dot{\phi}$ is given by the right side of (10.112), L_{hor} is exactly zero.]
- (b) Use this result to show that the rate of precession Ω given in (10.112) agrees with the free precession rate Ω_s found in (10.96).