4 1 N

Intégrales multiples, curvilignes. Analyse vectorielle.

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

1	Inte	égrales doubles
	1.1	Intégrale double sur un rectangle
	1.2	Extension de la définition
	1.3	Propriétés
		1.3.1 Nullité de l'intégrale double sur un domaine réduit à une courbe
		1.3.2 Intégrale sur la réunion de deux domaines
		1.3.3 Linéarité
		1.3.4 Croissance
	1.4	Formule de Fubini
	1.5	Changement de variables
2	Inte	égrales triples
	2.1	Intégrale triple sur un pavé
	2.2	Extension de la définition
	2.3	Propriétés
		2.3.1 Nullité de l'intégrale triple sur un domaine réduit à une surface
		2.3.2 Intégrale sur la réunion de deux domaines
		2.3.3 Linéarité
		2.3.4 Croissance
	2.4	Formules de Fubini, par piles, par tranches.
	2.5	Changement de variables
3	Air	e d'un morceau de surface.
	3.1	<u>Définition</u>
	3.2	Rappels, interprétations
	3.3	Exemples
4	Inte	égrales curvilignes 11
	4.1	Intégrale d'une forme différentielle, le long d'un arc
	4.2	Intégrale curviligne d'une fonction, le long d'un arc
5	Elé	ments d'analyse vectorielle
	5.1	Ouvert connexe
	5.2	Ouvert étoilé
	5.3	Champ de scalaires, champ de vecteurs
	5.4	Gradient d'un champ de scalaires
		5.4.1 Définition
		5.4.2 Propriétés
	5.5	Potentiels, circulation d'un champ de vecteurs
		5.5.1 Potentiels scalaires
		5.5.2 Circulation d'un champ de vecteur le long d'un chemin
		5.5.3 Recherche d'un potentiel scalaire
	5.6	Formule de Green-Riemann
		5.6.1 Théorème
		5.6.2 Cas particulier
		5.6.3 Application au calcul d'aires planes

2

Intégrales multiples, curvilignes. Analyse vectorielle

1 Intégrales doubles

1.1 Intégrale double sur un rectangle

Définition 1.1.1.

Pour une fonction f de \mathbb{R}^2 vers \mathbb{R} , continue sur un rectangle $R = [a, b] \times [c, d]$, on a :

$$\int_{x=a}^{b} \left(\int_{y=c}^{d} f(x,y) \, dy \right) \, dx = \int_{y=c}^{d} \left(\int_{x=a}^{b} f(x,y) \, dx \right) \, dy$$

La valeur commune de ces deux intégrales est par définition l'intégrale double de f sur R et se note

$$\iint_{R} f \quad \text{ou encore} \quad \iint_{(x,y) \in R} f(x,y) \, dx \, dy$$

Exemple 1.1.0.1.

$$\iint_{(x,y)\in[0,1]^2} \frac{xy^2}{1+x^2y^2} dx dy = \int_{y=0}^1 \left(\int_{x=0}^1 \frac{xy^2}{1+x^2y^2} dx \right) dy = \int_{y=0}^1 \left(\frac{1}{2} \ln(1+y^2) \right) dy = \dots$$

$$= \int_{x=0}^1 \left(\int_{y=0}^1 \frac{xy^2}{1+x^2y^2} dy \right) dx = \int_{x=0}^1 \left(\frac{1}{x} - \frac{\arctan x}{x^2} \right) dx = \dots$$

Réponse parmi : $2 \ln(2) + \pi$; $\ln(2) + \frac{\pi}{2}$; $\frac{1}{2} \ln(2) - 1 + \frac{\pi}{4}$; $\frac{\pi}{2} - \ln(2)$.

Théorème 1.1.1. (cas particulier : variables séparables, sur un pavé)

 $Lorsque\ la\ fonction\ f\ est\ telle\ que$

$$f(x,y) = g(x) h(y)$$
 pour $(x,y) \in R = [a,b] \times [c,d],$

où g est continue sur [a,b] et h continue sur [c,d],

$$\iint_{(x,y)\in R} f(x,y) \ dx \ dy = \left(\int_{x=a}^{b} g(x) \ dx \right) \left(\int_{y=c}^{d} h(y) \ dy \right)$$

Exemple 1.1.0.2.

$$\iint_{[0,1]\times[2,3]} \frac{x\,y}{1+x+y+x\,y}\,dx\,dy = \iint_{[0,1]\times[2,3]} \frac{x}{1+x}\,\frac{y}{1+y}\,dx\,dy = \left(\int_{x=0}^{1} \frac{x}{1+x}\,dx\right)\,\left(\int_{y=2}^{3} \frac{y}{1+y}\,dy\right)$$

1.2 Extension de la définition

Définition 1.2.1. (Intégrale sur un domaine simple)

Soit A une partie du plan, constituée des points (x,y) de \mathbb{R}^2 tels que

 $a\leqslant x\leqslant b \ \text{ et } \ \varphi_1(x)\leqslant y\leqslant \varphi_2(x) \ \ \text{ où } \varphi_1 \text{ et } \varphi_2 \text{ sont des fonctions continues sur } [a,b].$

fétant une fonction continue sur A, l'intégrale double de f sur A est définie par :

$$\iint_A f = \iint_{(x,y)\in A} f(x,y) \, dx \, dy = \int_{x=a}^b \left(\int_{y=\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, dy \right) \, dx$$

Exemple 1.2.0.3. Intégration de $(x,y) \longmapsto x^2 y^2$ sur le disque D de centre O et de rayon 1:

$$\iint_{(x,y)\in D} x^2 y^2 dx dy = \int_{x=-1}^1 x^2 \left(\int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y^2 dy \right) dx = \int_{x=-1}^1 \frac{2}{3} x^2 (1-x^2)^{3/2} dx = \dots$$

Réponse parmi : $\frac{\pi}{6}$; $\frac{\pi}{24}$; $\frac{3\pi}{12}$; $\frac{3\pi}{4} - \ln(2)$.

Exemple 1.2.0.4. $\iint_{(x,y)\in D} \frac{1}{1+x+y} dx dy$ où $D = \{(x,y) \mid 0 \le x \le y \le 1\}.$

Réponse parmi : $\ln(3) - \ln(2)$; $\frac{3}{2} \ln(3) - 2 \ln(2)$; $6 \ln(2) - \frac{2}{3} \ln(3)$.

1.3 Propriétés

1.3.1 Nullité de l'intégrale double sur un domaine réduit à une courbe

Si la partie A est réduite à une courbe, par exemple :

- $A = [a, b] \times [c, c]$ (rectangle $(a, b] \times [c, d]$ lorsque c = d)
- $A = \{(x,y) \mid a \leqslant x \leqslant b \text{ et } y = \varphi(x)\}$ où φ est continue sur [a,b] (domaine tel que $\varphi_1(x) \leqslant y \leqslant \varphi_2(x)$ lorsque $\varphi_1 = \varphi_2 = \varphi$),

pour une fonction f, continue sur un ouvert contenant A,

$$\iint_A f(x,y) \, dx \, dy = 0$$

1.3.2 Intégrale sur la réunion de deux domaines

Soient A et B deux domaines et f une fonction continue sur A et B.

$$\iint_{A \cup B} f(x,y) \ dx \ dy = \iint_{A} f(x,y) \ dx \ dy + \iint_{B} f(x,y) \ dx \ dy - \iint_{A \cap B} f(x,y) \ dx \ dy$$

En particulier, lorsque A et B sont disjoints ou d'intersection réduite à une courbe.

$$\iint_{A \cup B} f(x, y) \, dx \, dy = \iint_{A} f(x, y) \, dx \, dy + \iint_{B} f(x, y) \, dx \, dy - 0$$

Exemple 1.3.2.1. Aire de la partie du plan limitée par les paraboles d'équations $x = y^2$ et $-x + 2 = y^2$.

Réponse parmi : $\frac{8}{3}$; $\frac{3}{4}$; $\frac{14}{3}$.

1.3.3 Linéarité

Pour f et g continues sur le domaine A et λ réel,

$$\iint_A \lambda f + g = \lambda \iint_A f + \iint_A g$$

1.3.4 Croissance

Pour f et g continues sur le domaine A,

si, pour tout
$$(x,y) \in A$$
, $f(x,y) \leqslant g(x,y)$, alors $\iint_A f \leqslant \iint_A g$.

1.4 Formule de Fubini

Théorème 1.4.1.

Soit A une partie du plan admettant les deux définitions suivantes :

$$A = \{(x, y) \in \mathbb{R}^2 , a \leqslant x \leqslant b, \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$$

$$A = \{(x, y) \in \mathbb{R}^2 , c \leqslant y \leqslant d, \psi_1(y) \leqslant x \leqslant \psi_2(y)\}$$

où φ_1 , φ_2 (respectivement ψ_1 , ψ_2) sont des fonctions continues sur [a,b] (resp. [c,d]) vérifiant $\varphi_1(x) \leqslant \varphi_2(x)$ pour tout x de [a,b] (resp. $\psi_1(y) \leqslant \psi_2(y)$ pour tout y de [c,d]).

Pour une fonction f, continue sur A, on a:

$$\iint_A f(x,y) dx dy = \int_{x=a}^b \left(\int_{y=\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx$$
$$= \int_{y=c}^d \left(\int_{x=\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$$

Admis.

Exemple 1.4.0.1.

- 1. $D = \{(x,y) \mid 0 \le y \le x \le 1\}$. Représenter D et calculer $\iint_D \frac{dx \, dy}{(1+x^2)(1+y^2)}$ Réponse parmi : $\frac{2}{3} + 3\pi$; $\frac{\pi}{4} + \ln(2)$; $\frac{\pi^2}{32}$.
- 2. $D=\{(x,y)\mid 0\leqslant x\;,\;y^2+2\,x\leqslant 1\}$. Représenter D et calculer $\iint_D (x^2+y^2)\;dx\;dy$ Réponse parmi : 3 ; 6/35 ; 2/5.
- 3. $D = \{(x,y) \mid x \ge 0 \text{ et } 2y^2 + x 2 \le 0 \}$. Représenter D et calculer $\iint_D \frac{xy^2}{1+y^2} dx dy$ Réponse parmi : $\frac{64}{5} 4\pi$; $\frac{1}{5} + \ln(2)$; 3/8.

1.5 Changement de variables

Théorème 1.5.1.

Soient D une partie fermée bornée et Φ une fonction de classe \mathcal{C}^1 sur D, bijective de D sur $\Phi(D)$.

- 1. $\Phi(D)$ est une partie fermée bornée
- 2. Pour une fonction f, continue sur $\Phi(D)$,

$$\iint_{\Phi(D)} f(x,y) \, dx \, dy = \iint_{D} \left(f \circ \Phi \right) (u,v) \, \left| D J_{\Phi}(u,v) \right| \, du \, dv$$

 $(où\ (x,y)=\Phi(u,v)\ et\ DJ_{\Phi}(u,v)\ est\ le\ déterminant\ Jacobien\ de\ \Phi\ en\ (u,v)).$

On étendra ce résultat au cas où D est un fermé borné privé d'une partie où l'intégrale est nulle (un ou plusieurs points, un ou plusieurs segments par exemple).

Admis.

En particulier, on s'intéressera aux changement de variable ramenant à l'intégrale d'une fonction à variables séparées sur un pavé $[a,b] \times [c,d]$ (un ou plusieurs cotés pouvant être exclus).

Passage en coordonnées polaires :

$$\text{L'application} \left\{ \begin{array}{ccc} \Phi: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & & (r,\theta) & \longmapsto & \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \right. \text{ est de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}^2.$$

- 1. Φ est une bijection de $]0, +\infty[\times[0, 2\pi[$ sur $\mathbb{R}^2\setminus\{(0,0)\}$
- 2. Φ est une bijection de classe \mathcal{C}^1 de $]0, +\infty[\times]0, 2\pi[$ sur $\mathbb{R}^2\setminus\{(x,y)\mid x\geqslant 0\;,\;y=0\}$

$$DJ_{\Phi}(r,\theta) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r$$

Lorsque $\Phi(D)$ est un secteur du disque de rayon R centré en O, avec $\begin{cases} 0 \leqslant R_1 \leqslant r \leqslant R_2 \\ \theta_1 \leqslant \theta \leqslant \theta_2 \end{cases}$,

$$\iint_{\Phi(D)} f(x,y) \, dx \, dy = \iint_{D} (f \circ \Phi)(r,\theta) \, |r| \, dr \, d\theta = \iint_{D} f(r \cos \theta, r \sin \theta) \, |r| \, dr \, d\theta$$
$$= \iint_{(r,\theta) \in [R_1,R_2] \times [\theta_1,\theta_2]} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta \quad \text{(on a imposé } r \geqslant 0)$$

Exemple 1.5.0.2.

Soit D le quart de disque de centre O, de rayon a > 0, contenu dans le premier quadrant. Calculer

$$I = \iint_D x \, y \, \sqrt{x^2 + y^2} \, dx \, dy$$

- 1. Représenter graphiquement D.
- 2. En intégrant par la formule de Fubini, par rapport à y puis par rapport à x,

$$I = \iint_D x \, y \, \sqrt{x^2 + y^2} \, dx \, dy = \int_{x=0}^a x \, \left(\int_{y=0}^{\sqrt{a^2 - x^2}} y \, \sqrt{x^2 + y^2} \, dy \right) \, dx = \cdots$$

3. En coordonnées polaires, on pose : $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \text{ avec } (r,\theta) \in \Delta = [0,a] \times \left[0,\frac{\pi}{2}\right] \text{ , d'où : }$

$$I = \iint_{\Delta} f \circ \Phi(r, \theta) \left| DJ_{\Phi}(r, \theta) \right| dr d\theta = \iint_{\Delta} r^{3} \cos \theta \sin \theta \sqrt{\cos^{2} \theta + \sin^{2} \theta} |r| dr d\theta$$
$$= \int_{r=0}^{a} r^{4} dr \int_{\theta=0}^{\pi/2} \cos \theta \sin \theta d\theta = \dots = \frac{a^{5}}{10} \quad (\text{à v\'erifier}) .$$

Exemple 1.5.0.3. Intégration sur le disque D de centre O et de rayon 1:

$$\iint_D x^2 \, y^2 \, dx \, dy = \int_{r=0}^1 r^5 \, dr \, \int_{\theta=0}^{2 \, \pi} \, \cos^2 \! \theta \, \sin^2 \theta \, d\theta$$

Réponse parmi : $\frac{\pi}{6}$; $\frac{\pi}{24}$; $\frac{3\pi}{12}$; $\frac{3\pi}{4} - \ln(2)$.

Exemple 1.5.0.4. Aire de la partie intérieure d'une ellipse de paramètre a et b.

On pourra se placer dans un repère adapté et utiliser un changement de variables <u>inspiré</u> du passage en coordonnées polaires, en explicitant le déterminant jacobien.

2 Intégrales triples

2.1 Intégrale triple sur un pavé

Définition 2.1.1.

Soit f une fonction de \mathbb{R}^3 vers \mathbb{R} , continue sur un pavé $P=[a,b]\times [c,d]\times [u,v]$. En notant $R=[a,b]\times [c,d]$, on a la propriété :

$$\iint_{(x,y)\in R} \left(\int_{z=u}^{v} f(x,y,z) \, dz \right) \, dx \, dy = \int_{z=u}^{v} \left(\iint_{(x,y)\in R} f(x,y,z) \, dx \, dy \right) \, dz$$

La valeur commune de ces deux intégrales est par définition l'intégrale triple de f sur P et se note

$$\iiint_P f \qquad \text{ou encore} \qquad \iiint_{(x,y,z) \in P} f(x,y,z) \, dx \, dy \, dz$$

Exemple 2.1.0.5.

$$\begin{split} \iiint_{(x,y,z)\in[0,1]^3} \frac{1}{1+x+y+z} \, dx \, dy \, dz &= \int_{z=0}^1 \left(\iint_{(x,y)\in[0,1]^2} \frac{1}{1+x+y+z} \, dx \, dy \, \right) \, dz \\ &= \int_{z=0}^1 \left(\int_{y=0}^1 \left(\int_{x=0}^1 \frac{1}{1+x+y+z} \, dx \, \right) \, dy \right) \, dz \\ &= \int_{z=0}^1 \left((z+3) \, \ln \left(\frac{3+z}{2+z} \right) - (z+1) \, \ln \left(\frac{2+z}{1+z} \right) \right) \, dz = \dots \end{split}$$

 $\text{R\'eponse parmi}: \quad 2\,\ln(6) + 2\,\pi \;\; ; \quad \ln(2) + \frac{\pi}{2} \;\; ; \quad \frac{1}{2} - 1 + \frac{\ln(2)}{4} \;\; ; \quad \frac{3}{4} - \ln(2) \;\; ; \quad 22\,\ln(2) - \frac{27}{2}\,\ln(3).$

Théorème 2.1.1. (cas particulier : variables séparables, sur un pavé)

Lorsque la fonction f est telle que

$$f(x, y, z) = g(x) h(y) k(z) \qquad pour(x, y, z) \in R = [a, b] \times [c, d] \times [u, v],$$

où g est continue sur [a,b], h continue sur [c,d] et k continue sur [u,v],

$$\iiint_R f(x,y,z) \ dx \ dy \ dz = \left(\int_{x=a}^b g(x) \ dx \right) \left(\int_{y=c}^d h(y) \ dy \right) \left(\int_{z=u}^v k(z) \ dz \right)$$

Exemple 2.1.0.6.

$$\iiint_{[0,1]^2\times[2,3]} x\,y\;dx\,dy\,dz = \left(\int_{[0,1]} x\,dx\right)\; \left(\int_{[0,1]} y\,dy\right)\; \left(\int_{[2,3]} 1\,dz\right)$$

2.2 Extension de la définition

Définition 2.2.1. (Intégrale sur un domaine simple)

Soit D un domaine borné du plan et A la partie de l'espace, constituée des points (x, y, z) de \mathbb{R}^3 tels que

$$(x,y) \in D$$
 et $\varphi_1(x,y) \leqslant z \leqslant \varphi_2(x,y)$

où φ_1 et φ_2 sont des fonctions continues sur D.

f étant une fonction continue sur A, l'intégrale triple de f sur A est

$$\iiint_A f = \iiint_A f(x, y, z) \, dx \, dy \, dz = \iint_{(x, y) \in D} \left(\int_{z = \varphi_1(x, y)}^{\varphi_2(x, y)} f(x, y, z) \, dz \right) \, dx \, dy$$

Exemple 2.2.0.7. Volume de la partie A de l'espace limitée par le plan d'équation z = 0 et le paraboloïde d'équation $z = 1 - x^2 - y^2$:

La partie du paraboloïde située au dessus du plan d'équation z=0 est entièrement décrite lorsque $(x,y)\in D$ où D est le disque plan de centre O et de rayon 1.

$$\iiint_A 1 \, dx \, dy \, dz = \iint_{(x,y)\in D} \left(\int_{z=0}^{1-x^2-y^2} \, dz \right) \, dx \, dy = \iint_D \left(1 - x^2 - y^2 \right) \, dx \, dy = \dots$$

Réponse parmi : $\frac{\pi}{6}$; $\frac{\pi}{2}$; $\frac{3\pi}{8}$; $\frac{3\pi}{4} - \ln(2)$.

2.3 Propriétés

2.3.1 Nullité de l'intégrale triple sur un domaine réduit à une surface

Si la partie A est réduite à une surface, par exemple :

- $A = [a, b] \times [c, d] \times [u, u]$ (pavé $(a, b] \times [c, d] \times [u, v]$ lorsque u = v)
- $A = \{(x, y, z) \mid (x, y) \in D \text{ et } z = \varphi(x, y)\}$ où φ est continue sur D (domaine tel que $\varphi_1(x, y) \leqslant z \leqslant \varphi_2(x, y)$ lorsque $\varphi_1 = \varphi_2 = \varphi$),

pour une fonction f, continue sur un ouvert contenant A,

$$\iiint_A f(x, y, z) \, dx \, dy \, dz = 0.$$

2.3.2 Intégrale sur la réunion de deux domaines

Soient A et B deux domaines et f une fonction continue sur A et B.

$$\iiint_{A \cup B} f = \iiint_A f + \iiint_B f - \iiint_{A \cap B} f$$

En particulier, lorsque A et B sont disjoints ou d'intersection réduite à une surface,

$$\iiint_{A \cup B} f(x, y, z) \, dx \, dy \, dz = \iiint_{A} f(x, y, z) \, dx \, dy \, dz + \iiint_{B} f(x, y, z) \, dx \, dy \, dz - 0$$

Exemple 2.3.2.1. Volume de la partie fermée bornée A de l'espace, limitée inférieurement par le cône d'équation $x^2 + y^2 = (z + a)^2$ et supérieurement par la sphère de centre $\Omega = (0, 0, a)$ et de rayon $a\sqrt{2} > 0$.

On pourra constater que les surfaces limitantes sont de révolution autour de Oz et représenter, par exemple, la coupe par le plan d'équation x = 0. On obtiendra le volume cherché par différence :

$$\iiint_A 1 \, dx \, dy \, dz = \iiint_{A_1} 1 \, dx \, dy \, dz - \iiint_{A_2} 1 \, dx \, dy \, dz = \dots$$

Réponse parmi : $\frac{a^3 \pi}{6}$; $a + \frac{\pi \sqrt{2}}{2} + \frac{\pi}{4}$; $a^3 \left(\frac{10 \pi}{3} - \frac{4 \pi \sqrt{2}}{3} \right)$; $a^2 \frac{3 \pi}{4} - a \ln(2)$.

2.3.3 Linéarité

Pour
$$f$$
 et g continues sur le domaine A et λ réel,
$$\iiint_A \lambda f + g = \lambda \iiint_A f + \iiint_A g$$

2.3.4 Croissance

Pour f et g continues sur le domaine A,

si, pour tout
$$(x, y, z) \in A$$
, $f(x, y, z) \leqslant g(x, y, z)$, alors $\iiint_A f \leqslant \iiint_A g$.

2.4 Formules de Fubini, par piles, par tranches.

Théorème 2.4.1. Intégration par piles.

Soit A une partie de l'espace admettant la définition suivante :

$$A = \{(x, y, z) \in \mathbb{R}^3 , (x, y) \in D , \varphi_1(x, y) \leqslant z \leqslant \varphi_2(x, y)\}$$

où $\begin{cases} D \text{ est une partie born\'ee du plan,} \\ \varphi_1 \text{ et } \varphi_2 \text{ sont des fonctions continues sur } D \text{ v\'erifiant } \varphi_1(x,y) \leqslant \varphi_2(x,y) \text{ pour tout } (x,y) \text{ de } D. \end{cases}$

Pour une fonction f, continue sur A, on a:

$$\iiint_A f(x,y,z) \, dx \, dy \, dz = \iint_{(x,y)\in D} \left(\int_{z=\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,z) \, dz \right) \, dx \, dy$$

Admis.

Remarque. On a des formules symétriques pour $\begin{cases} x \text{ variant entre } \varphi_1(y,z) \text{ et } \varphi_2(y,z), \text{ avec } (y,z) \in D', \\ y \text{ variant entre } \varphi_1(x,z) \text{ et } \varphi_2(x,z), \text{ avec } (x,z) \in D''. \end{cases}$

Théorème 2.4.2. Intégration par tranches.

Soit A une partie de l'espace telle que

$$A = \bigcup_{z \in [u,v]} d_z$$

où, d_{λ} est une partie bornée plane, intersection de A avec le plan d'équation $z = \lambda$.

Pour une fonction f, continue sur A, on a:

$$\iiint_A f(x,y,z) \, dx \, dy \, dz = \int_{z=u}^v \left(\iint_{(x,y)\in d_z} f(x,y,z) \, dx \, dy \right) \, dz.$$

Admis.

 $Remarque. \ \, \text{On a des formules symétriques entre} \, \begin{cases} \text{des plans d'équations} \,\, x=a \,\, \text{et} \,\, x=b, \\ \text{des plans d'équations} \,\, y=c \,\, \text{et} \,\, y=d. \end{cases}$

Exemple 2.4.0.1. Soit $D = \{(x, y, z) \mid x^2 + y^2 - x \le 0 \text{ et } 0 \le z \le 1\}.$

Représenter graphiquement D et calculer $\iiint_D \frac{dx \, dy \, dz}{(x^2 + y^2 + 1)^2}.$

Réponse parmi : $\pi \ln(3)$; $\pi - \frac{\pi}{\sqrt{2}}$; π^2 ; $\pi\sqrt{5}$.

Exemple 2.4.0.2. Calculer le volume de chacune des deux parties bornées de l'espace, délimitée par

$$\begin{cases} \text{ le plan } xOy \ , \\ \text{ le plan d'équation } y=x \ , \\ \text{ le plan d'équation } x+y+z=2, \\ \text{ le cylindre d'équation } y=x^2. \end{cases}$$

Il faut impérativement représenter graphiquement ces parties en perspective 3D, par exemple en représentant, dans le plan xOy les domaines limités par la droite d'équation y=x, la parabole d'équation $y=x^2$ et la droite d'équation x+y=2, puis en "s'élevant" à partir de ces domaines, selon l'axe Oz, jusqu'au plan d'équation x+y+z=2 ...

Deux réponses, parmi : $\frac{58}{15}$; $\frac{11}{60}$; $\frac{\pi}{2}$; $\frac{\sqrt{2}}{3} + \frac{\pi}{4}$; $\frac{\ln 2}{2} + \frac{4}{5}$; ...

2.5 Changement de variables

Théorème 2.5.1.

Soient D une partie fermée bornée de \mathbb{R}^3 , et Φ une fonction de classe \mathcal{C}^1 sur un ouvert contenant D, telle que Φ soit une bijection, de classe \mathcal{C}^1 , de D sur $\Phi(D)$.

- 1. $\Phi(D)$ est une partie fermée bornée de \mathbb{R}^3 .
- 2. Pour une fonction f, continue sur $\Phi(D)$,

$$\iiint_{\Phi(D)} f(x,y,y) \, dx \, dy \, dz = \iiint_{D} (f \circ \Phi)(u,v,w) \, \left| DJ_{\Phi}(u,v,w) \right| \, du \, dv \, dw$$

 $(où(x,y,z) = \Phi(u,v,w) \text{ et } DJ_{\Phi}(u,v,w) \text{ est le déterminant Jacobien de } \Phi \text{ en } (u,v,w)).$

On étendra ce résultat au cas où D est un fermé borné privé d'une partie où l'intégrale est nulle (un ou plusieurs points, un ou plusieurs segments, une partie de surface par exemple).

Admis.

En particulier, on s'intéressera aux changement de variable ramenant à l'intégrale d'une fonction à variables séparées sur un pavé $[a,b] \times [c,d] \times [u,v]$ (une ou plusieurs faces pouvant être exclues).

Exemple 2.5.0.3. Passage en coordonnées cylindriques : $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \text{ avec } \begin{cases} r \in [0, +\infty[$ $\theta \in [0, 2\pi[$ $z \in \mathbb{R}$

Exemples de calcul : Soit A la partie intérieure au cylindre d'équation $x^2 + y^2 = 1$ et comprise entre les plans d'équations z = 0, x + y + z = 2.

- 1. Représenter graphiquement A. Calculer le volume de A (réponse parmi π^2 , 2π , 3π , $\frac{\pi}{2}$).
- 2. Calculer $\iiint_A y^2 (x+z) dx dy dz$ (réponse parmi $\frac{3\pi^2}{2}$, $2\pi^2$, $\frac{13\pi}{24}$, $\frac{5\pi}{8}$).

Exemple 2.5.0.4. Passage en coordonnées sphériques : $\begin{cases} x = r \sin \phi \cos \theta \\ y = r \sin \phi \sin \theta \\ z = r \cos \phi \end{cases}$ avec $\begin{cases} r \in [0, +\infty[$ $\theta \in [0, 2\pi[$ $\phi \in [0, \pi[$

Figure obligatoire. ATTENTION! Les formules des coordonnées sphériques ne sont pas partout les mêmes! Les noms des angles, les intervalles de variation utilisés peuvent varier d'une discipline à l'autre (mathématiques, sciences physiques, mécanique) et, par conséquent,

la formule du jacobien n'est pas partout la même!

d'où la nécessité d'accompagner les formules d'une <u>figure illustrative</u>, <u>de préciser les intervalles</u> de variation des paramètres et de <u>recalculer</u> le jacobien!

Exemples de calcul : Soit B la boule de centre O et de rayon a > 0;

- 1. retrouver le volume de B . .
- 2. calculer $\iiint_{B} \frac{dx \, dy \, dz}{1 + x^{2} + y^{2} + z^{2}}$ (réponse parmi $a^{3} \pi$, $(4 \pi \pi^{2}) \, a^{3}$, $4 \, a \, \pi 4 \, \pi$ arctan a, $4 \, \pi + \pi \, \ln(1 + a)$).

Exemple 2.5.0.5. $D = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1 \right\}$ (domaine limité par un ellipsoïde).

Représenter graphiquement D et calculer $\iiint_D x^2 y^2 z^2 dx dy dz$ (réponse parmi $\frac{4 a^3 b^3 c^3 \pi}{945}$, $\frac{a^2 b^3 c^3}{45}$, $\frac{5 \pi (a^3 + b^3 + c^3)}{12}$, $\pi \frac{a b^2 + a c^2 + b a^2 + b c^2 + c a^2 + c b^2}{6}$). (on pourra s'inspirer du changement de variables utilisant les coordonnées sphériques).

■ 10 **▶**

3 Aire d'un morceau de surface.

3.1 Définition

Définition 3.1.1.

Soit (S) une surface (nappe paramétrée) de $\mathbb{R}^3,$ admettant comme paramétrage :

$$(u,v) \longmapsto M(u,v) : \begin{cases} x = \alpha(u,v) \\ y = \beta(u,v) \\ z = \gamma(u,v) \end{cases}$$
 $(u,v) \in D$

où D une partie fermée bornée de \mathbb{R}^2 , α , β et γ sont des fonctions de classe \mathcal{C}^1 sur D.

L'aire de S est définie par l'intégrale :

$$\underbrace{\iint_{(S)} d\sigma}_{\text{notation}} = \underbrace{\iint_{(u,v)\in D} \left\| \frac{\overrightarrow{\partial M}}{\partial u}(u,v) \wedge \frac{\overrightarrow{\partial M}}{\partial v}(u,v) \right\|_{2} du dv}_{\text{moyen effectif de calcul}}$$

La définition ci-dessus est indépendante du paramétrage admissible de (S). (ide, d'un paramétrage obtenu par un changement de variables qui est une bijection de classe \mathcal{C}^1).

3.2 Rappels, interprétations

- Vecteur normal à (S) en un point M(u, v) régulier :
 - $\left(\frac{\overrightarrow{\partial M}}{\partial u}(u,v), \frac{\overrightarrow{\partial M}}{\partial v}(u,v)\right)$ est une base du plan tangent à (S) en M(u,v)
 - $\overrightarrow{V}_n(u,v) = \frac{\overrightarrow{\partial M}}{\partial u}(u,v) \wedge \frac{\overrightarrow{\partial M}}{\partial v}(u,v)$ est un vecteur normal au plan tangent à (S) en M(u,v)
 - $\bullet \ \left\| \overrightarrow{V}_n(u,v) \right\|_2 = \left\| \frac{\overrightarrow{\partial M}}{\partial u}(u,v) \wedge \frac{\overrightarrow{\partial M}}{\partial v}(u,v) \right\|_2 = \left\| \frac{\overrightarrow{\partial M}}{\partial u}(u,v) \right\|_2 \left\| \frac{\overrightarrow{\partial M}}{\partial v}(u,v) \right\|_2 \left| \sin \psi \right|$ où ψ est l'angle formé par les deux vecteurs $\frac{\overrightarrow{\partial M}}{\partial u}(u,v)$ et $\frac{\overrightarrow{\partial M}}{\partial v}(u,v)$.
- $M(u+du,v)-M(u,v)=\overline{\frac{\partial M}{\partial u}}(u,v)\ du+o(du)$; $M(u,v+dv)-M(u,v)=\overline{\frac{\partial M}{\partial v}}(u,v)\ dv+o(dv)$ L'aire du parallèlograme plan construit sur les points M(u,v), M(u+du,v), M(u,v+dv) est "équivalente" (ou "assimilable"), lorsque du et dv tendent vers 0, à $d\sigma=\left\|\frac{\overline{\partial M}}{\partial u}(u,v)\wedge \overline{\frac{\partial M}{\partial v}}(u,v)\right\|_2 du\ dv$.

3.3 Exemples

Exemple 3.3.0.6. Retrouver l'aire d'une sphère . . . (facile, mais on pourra vérifier ainsi que l'on a compris).

Exemple 3.3.0.7. Aire de la portion du cylindre d'équation $x^2 + y^2 = 1$, comprise entre les plans d'équations respectives z = 0 et x + y + z = 1 (réponse parmi π , $\frac{4\pi}{3}$, $4 - \pi$, $\pi(\sqrt{2} - 1)$, $2 + \frac{3\pi}{2}$, $\frac{\pi^2}{3}$).

Exemple 3.3.0.8. Fenêtre de Viviani ...

Soit la sphère (S), de centre O et de rayon a>0 et le cylindre (Σ) d'équation $x^2+y^2-a\,y=0$.

- 1. Trouver l'aire de la portion du cylindre (Σ) interceptée par (intérieure à) la sphère (S) (réponse parmi $a, a^2 a, \pi a^2, 4 a^2, a^2 (\pi 2), 2 a^2 \pi 4 a^2$).
- 2. Trouver l'aire de la portion de la sphère (S) interceptée par le (intérieure au) cylindre (Σ) (réponse parmi $a, a^2 a, \pi a^2, 4 a^2, a^2 (\pi 2), 2 a^2 \pi 4 a^2$).

On représentera en perspective (S), (Σ) et la courbe intersection de (S) et (Σ) ... puis on pourra définir des paramétrage à partir de l'équation polaire du cercle de base de (Σ) .

Intégrales curvilignes 4

Intégrale d'une forme différentielle, le long d'un arc

Définition 4.1.1.

Soit (Γ) un arc paramétré de \mathbb{R}^2 (ou de \mathbb{R}^3), continu et de classe \mathcal{C}^1 par morceaux, admettant comme

$$t \longmapsto M(t) : \begin{cases} x(t) \\ y(t) \\ (z(t)) \end{cases} \quad t \in [a, b] \text{ (avec } a < b)$$

où x, y (et z) sont des fonctions continues et de classe C^1 sur [a, b].

Etant données des fonctions P, Q (et R) définies et continues sur un ouvert \mathcal{U} contenant (Γ) , l'intégrale curviligne de la forme différentielle P dx + Q dy + R dz, le long de l'arc (Γ) ,

notée
$$\int_{(\Gamma)} P \, dx + Q \, dy \quad \Big(+ R \, dz \Big)$$
, est définie par :

$$\begin{split} \int_{\left(\Gamma\right)} \, P \, dx + Q \, dy \quad \left(+R \, dz \right) &= \int_{\left(\Gamma\right)} \, P \big(x, y \left(, z \right) \big) \, dx + Q \big(x, y \left(, z \right) \big) \, dy \quad \left(+R \big(x, y, z \big) \, dz \right) \\ &= \int_{t=a}^{b} \left[\, P \big(x(t), y(t) \left(, z(t) \right) \big) \, x'(t) + Q \big(x(t), y(t) \left(, z(t) \right) \big) \, y'(t) \quad \left(+R \big(x(t), y(t), z(t) \big) \, z'(t) \, \right) \, \right] \, dt. \end{split}$$

Remarque. Il s'agit de la *circulation*, le long de (Γ) , du *champ de vecteur*

$$\overrightarrow{V}:\left(x,y\left(,z\right)\right)\longmapsto P\left(x,y\left(,z\right)\right)\overrightarrow{i}+Q\left(x,y\left(,z\right)\right)\overrightarrow{j}\left(+R\left(x,y\left(z\right)\right)\overrightarrow{k}\right)$$

et cette circulation se note aussi : $\int_{C} \langle \overrightarrow{V}(M) | \overrightarrow{dM} \rangle$ (voir ci-après, champs de vecteurs).

La définition ci-dessus est indépendante du paramétrage admissible de (Γ) . (ide, d'un paramétrage obtenu par un changement de variable qui est une bijection de classe \mathcal{C}^1).

Par exemple, on peut utiliser comme paramétrage admissible

- le paramétrage par une abscisse curviligne,
- pour un arc plan, le paramétrage par l'angle α formé par la tangente avec Ox,

Exemple 4.1.0.9.

1. Soit C_1 le cercle de centre O et de rayon r > 0.

Calculer
$$\int_{\mathcal{C}_1} \frac{x \, dx + y \, dy}{x^2 + y^2}$$
; $\int_{\mathcal{C}_1} \frac{x \, dy - y \, dx}{x^2 + y^2}$ (réponses parmi $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, 3\pi$).

Que remarque t'on?

2. Soit
$$C_2$$
 le cercle de centre $\Omega=(2\,r,0)$ et de rayon r (avec $r>0$). Calculer $\int_{C_2} \frac{x\,dx+y\,dy}{x^2+y^2}$; $\int_{C_2} \frac{x\,dy-y\,dx}{x^2+y^2}$ (réponses parmi $0,\,\frac{\pi}{2},\,\pi,\,\frac{3\,\pi}{2},\,2\,\pi,\,3\,\pi$).

Que remarque t'on?

4.2 Intégrale curviligne d'une fonction, le long d'un arc

Définition 4.2.1.

Soit (Γ) un arc paramétré de \mathbb{R}^3 (ou de \mathbb{R}^3), continu et de classe \mathcal{C}^1 par morceaux, admettant comme paramétrage :

$$t \longmapsto M(t) : \begin{cases} x(t) \\ y(t) \\ (z(t)) \end{cases}$$
 $t \in [a, b] \text{ (avec } a < b)$

où x, y (et z) sont des fonctions continues et de classe C^1 sur [a, b].

Etant donnée une fonction f, définie et continue sur un ouvert \mathcal{U} contenant (Γ) ,

l'intégrale curviligne de la fonction f, le long de (Γ) , notée $\int_{(\Gamma)} f(M) ds$, est définie par :

$$\begin{split} \int_{(\Gamma)} f\left(M\right) ds &= \int_{(\Gamma)} f\left(M(s)\right) ds = \int_{(\Gamma)} f\left(M\left(s(t)\right)\right) \frac{ds}{dt}(t) \ dt \\ &= \int_{(\Gamma)} f\left(M\right) \left\| \frac{\overrightarrow{dM}}{dt} \right\|_2 \ dt = \int_{(\Gamma)} f\left(M(t)\right) \left\| \frac{\overrightarrow{dM}}{dt}(t) \right\|_2 \ dt \\ &= \int_{t=a}^b f\left(x(t), y(t) \quad \left(, z(t)\right)\right) \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} \quad \left(+ \left(z'(t)\right)^2 \right) \ dt. \end{split}$$

Remarques.

- Lorsque f est la fonction constante $M \longmapsto 1$, on obtient la longueur de l'arc $(\Gamma) : \int_{(\Gamma)} ds$.
- Plus généralement, lorsque l'arc (Γ) modélise un "fil pesant", où la densité linéique de masse en M est f(M), $\int_{(\Gamma)} f(M) ds$ représente la masse du fil.

Exemple 4.2.0.10. Soit C la totalité de la frontière (en 3 morceaux) du quart de disque de centre O et de rayon r, situé dans le premier quadrant.

On suppose que la densité linéique de masse de $\mathcal C$ en (x,y) est $x^2+2\,y^2$ $u.\ell.$

Calculer la masse m de C et les coordonnées de son centre de gravité G.

Réponse (à vérifier) :
$$m = \frac{3\pi r^3}{4} + r^3$$
, $x_G = \frac{19}{3} \frac{r}{3\pi + 4}$, $y_G = \frac{26}{3} \frac{r}{3\pi + 4}$.

5 Eléments d'analyse vectorielle

5.1 Ouvert connexe

Définition 5.1.1.

Un ouvert \mathcal{O} , non vide, est dit connexe s'il n'est pas la réunion de deux ouverts non vides disjoints. (intuitivement, un ouvert connexe est un ouvert en "un seul morceau").

5.2 Ouvert étoilé

Définition 5.2.1.

Un ouvert \mathcal{O} , non vide, est dit étoilé s'il existe un point m_0 de \mathcal{O} tel que pour tout point m de \mathcal{O} , le segment $[m_0, m]$ est contenu dans \mathcal{O} .

(intuitivement, du point m_0 on voit tous les autres points de \mathcal{O} en restant dans \mathcal{O}).

Exemples:

- Ouvert de \mathbb{R}^2 en forme "d'étoile" avec un point central (au moins),
- L'ensemble R^2 , privé d'une demi-droite est un ouvert étoilé.

5.3 Champ de scalaires, champ de vecteurs

- Un champ de scalaires, défini sur un ouvert \mathcal{U} de \mathbb{R}^2 (ou de \mathbb{R}^3), est une application de \mathcal{U} vers \mathbb{R} .
- Un champ de vecteurs, défini sur un ouvert \mathcal{U} de $E = \mathbb{R}^2$ (ou \mathbb{R}^3), est une application de \mathcal{U} vers E.

5.4 Gradient d'un champ de scalaires

5.4.1 Définition

Définition 5.4.1.

Soit f un champ de scalaires, de classe \mathcal{C}^1 sur l'ouvert \mathcal{U} de \mathbb{R}^2 (ou de \mathbb{R}^3).

Le gradient du champ de scalaires f, noté $\overrightarrow{grad} f$, est le champ de vecteurs défini sur \mathcal{U} par :

$$\forall M \in \mathcal{U}, \forall \overrightarrow{u} \in E, \quad df_M(\overrightarrow{u}) = \langle (\overrightarrow{grad} f)(M) | \overrightarrow{u} \rangle$$

ou encore par :
$$\forall M \in \mathcal{U}$$
, $\left(\overrightarrow{\operatorname{grad}} f\right)(M) = \frac{\partial f}{\partial x}(M)\overrightarrow{i} + \frac{\partial f}{\partial y}(M)\overrightarrow{j} \quad \left(+\frac{\partial f}{\partial z}(M)\overrightarrow{k}\right)$

Interprétation :

$$df_{M}(\overrightarrow{u}) = \langle (\overrightarrow{grad} f)(M) | \overrightarrow{u} \rangle$$
 est la dérivée de f en M , selon le vecteur \overrightarrow{u} .

Remarque. On écrira le plus souvent $\overrightarrow{\operatorname{grad}} f(M)$ et même $\overrightarrow{\operatorname{grad}} f_M$ à la place de $\left(\overrightarrow{\operatorname{grad}} f\right)(M)$.

<u>Preuve</u>. (de l'équivalence entre les deux écritures, dans \mathbb{R}^3)

Avec
$$\overrightarrow{u} = u_x \overrightarrow{i} + u_y \overrightarrow{j} + u_z \overrightarrow{k}$$
, on a $df_M(\overrightarrow{u}) = \frac{\partial f}{\partial x}(M) \ u_x + \frac{\partial f}{\partial y}(M) \ u_y + \frac{\partial f}{\partial z}(M) \ u_x$, ce qui s'interprète comme le produit scalaire des vecteurs $\frac{\partial f}{\partial x}(M) \overrightarrow{i} + \frac{\partial f}{\partial y}(M) \overrightarrow{j} + \frac{\partial f}{\partial z}(M) \overrightarrow{k}$ et \overrightarrow{u} .

5.4.2 Propriétés

Théorème 5.4.1.

1. Champ de scalaires défini sur une partie de \mathbb{R}^2 .

Soit f un champ de scalaires de classe C^1 sur l'ouvert \mathcal{U} de \mathbb{R}^2 et, pour $k \in \mathbb{R}$, la courbe (Γ_k) , d'équation cartésienne implicite f(x,y) = k.

En un point M de (Γ_k) tel que $\overrightarrow{\operatorname{grad}} f(M) \neq \overrightarrow{0}$, $\overrightarrow{\operatorname{grad}} f(M)$ est orthogonal à la tangente en M à (Γ_k) .

2. Champ de scalaires défini sur une partie de \mathbb{R}^3 .

Soit f un champ de scalaires de classe C^1 sur l'ouvert U de \mathbb{R}^3 et, pour $k \in \mathbb{R}$, la surface (S_k) , d'équation cartésienne implicite f(x,y) = k.

En un point M de (S_k) tel que $\overrightarrow{\operatorname{grad}} f(M) \neq \overrightarrow{0}$, $\overrightarrow{\operatorname{grad}} f(M)$ est orthogonal au plan tangent en M à (S_k) .

Preuve. Déjà vu en début d'année.

Exemple 5.4.2.1. On pose $f(x,y) = -2x^2 + 3xy + y^2$ et $\overrightarrow{u} = \cos\alpha \overrightarrow{i} + \sin\alpha \overrightarrow{j}$ (avec $\alpha \in [0,\pi]$).

- 1. Soit (C) la conique d'équation f(x,y) = 1.
 - Déterminer les points de (C) en lequels (C) admet une tangente parallèle à Ox ou à Oy.
 - En déduire la nature de (C) (cela ne peut pas être ..., donc c'est ...).
- 2. Déterminer α pour que, au point $M(1,0), \langle \overrightarrow{grad} f(M) \mid \overrightarrow{u} \rangle$ soit maximal (reponse parmi $0, 2\pi \arctan \frac{3}{4}, \frac{\pi}{3}, \frac{3\pi}{4}$).

Potentiels, circulation d'un champ de vecteurs

Potentiels scalaires 5.5.1

Définition 5.5.1.

Un champ de vecteurs \overrightarrow{V} , défini sur un ouvert \mathcal{U} de \mathbb{R}^2 (ou de \mathbb{R}^3), dérive sur \mathcal{U} d'un potentiel scalaire s'il existe un champ de scalaires f, de classe \mathcal{C}^1 sur \mathcal{U} , tel que $\overrightarrow{V} = -\overrightarrow{\operatorname{grad}} f$.

Si
$$\overrightarrow{V} = -\overrightarrow{\operatorname{grad}} f$$
, on dit que $\left| \begin{array}{c} f \text{ est } \underline{\operatorname{un}} \text{ potentiel scalaire de } \overrightarrow{V}, \\ \overrightarrow{V} \text{ est un "champ de gradients"}. \end{array} \right|$

Remarques.

- Le signe est une convention (voir cours de Physique)
- Deux potentiels scalaires de \overrightarrow{V} diffèrent d'une constante.

Théorème 5.5.1.

1. Un champ de vecteurs \overrightarrow{V} , de classe \mathcal{C}^1 sur un ouvert étoilé \mathcal{U} de \mathbb{R}^2 ,

$$\overrightarrow{V}: (x,y) \longmapsto P(x,y)\overrightarrow{i} + Q(x,y)\overrightarrow{j}$$

dérive d'un potentiel scalaire sur \mathcal{U} si et seulement si $\frac{\partial Q}{\partial r} - \frac{\partial P}{\partial u} = 0$.

2. Un champ de vecteurs \overrightarrow{V} , de classe \mathcal{C}^1 sur un ouvert étoilé \mathcal{U} de \mathbb{R}^3 ,

$$\overrightarrow{V}: (x,y,z) \longmapsto P(x,y,z)\overrightarrow{i} + Q(x,y,z)\overrightarrow{j} + R(x,y,z)\overrightarrow{k}$$

 $d\acute{e}rive\ d'un\ potentiel\ scalaire\ sur\ \mathcal{U}\ si\ et\ seulement\ si\ \begin{cases} \dfrac{\partial R}{\partial y}-\dfrac{\partial Q}{\partial z}=0\\ \\ \dfrac{\partial P}{\partial z}-\dfrac{\partial R}{\partial x}=0\\ \\ \dfrac{\partial Q}{\partial z}-\dfrac{\partial P}{\partial z}=0 \end{cases}.$

Preuve. Admis

Circulation d'un champ de vecteur le long d'un chemin

Définition 5.5.2.

Soit \overrightarrow{V} un champ de vecteurs de classe \mathcal{C}^0 sur un ouvert \mathcal{U} de \mathbb{R}^2 (ou de \mathbb{R}^3),

$$\overrightarrow{V}: \quad \left(x, y\left(, z\right)\right) \quad \longmapsto \quad P\left(x, y\left(, z\right)\right) \overrightarrow{i} + Q\left(x, y\left(, z\right)\right) \overrightarrow{j} \qquad \left(+R\left(x, y, z\right) \overrightarrow{k}\right)$$

La circulation du champ \overrightarrow{V} le long d'un chemin (Γ) continu, de classe \mathcal{C}^1 , orienté, contenu dans \mathcal{U} ,

$$\underbrace{\int_{(\Gamma)} <\overrightarrow{V}(M) \mid \overrightarrow{dM}>}_{\text{notation}} = \underbrace{\int_{(\Gamma)} P(x, y(z)) dx + Q(x, y(z)) dy}_{\text{intégrale curviligne}} \left(+R(x, y, z) dz \right)$$

Avec $\overrightarrow{V}(M) = P(M) \overrightarrow{i} + Q(M) \overrightarrow{j} + R(M) \overrightarrow{k}$ et (Γ) paramétrée par $t \longmapsto M(t) = x(t) \overrightarrow{i} + y(t) \overrightarrow{j} + z(t) \overrightarrow{k}$, on a dx(t) = x'(t) dt, dy(t) = y'(t) dt, dz(t) = z'(t) dt et $\overrightarrow{dM}(t) = \left(x'(t) \overrightarrow{i} + y'(t) \overrightarrow{j} + z'(t) \overrightarrow{k}\right) dt$. Alors,

$$\int_{(\Gamma)} \ < \ \overrightarrow{V}(M) \ \big| \ \overrightarrow{dM} \ > = \int_{t=a}^b \Big(\ P\big(M(t)\big) \ x'(t) + Q\big(M(t)\big) \ y'(t) + R\big(M(t)\big) \ z'(t) \, \Big) \, dt$$

Exemple 5.5.2.1. Circulation du champ Newtonien, $M \longmapsto \overrightarrow{V}(M) = \frac{OM}{\left\|\overrightarrow{OM}\right\|^3}$,

Sur un chemin (Γ) , continu, de classe \mathcal{C}^1 , orienté, d'extrémité A et B, contenu dans un ouvert $\underline{\text{\'etoil\'e}} \ \Omega \ \text{ne contenant pas l'origine} \ , \quad \int_{\widehat{AB}} < \overrightarrow{V}(M) \, \big| \, \overrightarrow{dM} > = \cdots = \frac{1}{\left\| \overrightarrow{OA} \right\|} - \frac{1}{\left\| \overrightarrow{OB} \right\|}$

(champ de vecteurs qui dérive du potentiel scalaire $M \longmapsto \frac{-1}{\|\overrightarrow{OM}\|}$).

Théorème 5.5.2.

Un champ de vecteurs \overrightarrow{V} , de classe \mathcal{C}^1 sur un ouvert <u>étoilé</u> \mathcal{U} , dérive d'un potentiel scalaire sur \mathcal{U} si et seulement si sa circulation sur tout chemin fermé de classe C^1 inclus dans $\mathcal U$ est nulle.

<u>Preuve</u>. Admis.

5.5.3 Recherche d'un potentiel scalaire

Soit $\overrightarrow{V} = (x, y, z) \longmapsto X(x, y, z) \overrightarrow{i} + Y(x, y, z) \overrightarrow{j} + Z(x, y, z) \overrightarrow{k}$ un champ de vecteur, de classe \mathcal{C}^1 sur un ouvert étoilé \mathcal{U} et dérivant d'un potentiel scalaire f sur \mathcal{U} .

1. f est solution du système différentiel : $\begin{cases} \frac{\partial f}{\partial x} = -X(x,y,z) & (1) \\ \frac{\partial f}{\partial y} = -Y(x,y,z) & (2) \\ \frac{\partial f}{\partial z} = -Z(x,y,z) & (3) \end{cases}$

$$\frac{\partial f}{\partial z} = -Z(x, y, z) \tag{3}$$

- 2. de l'équation (1), on déduit que $f(x, y, z) = G(x, y, z) + \alpha(y, z)$ (G connue, α inconnue);
- 3. en reportant ce résultat dans les équations (2) et (3), on obtient $\begin{cases} \frac{\partial \alpha}{\partial y} = \cdots \\ \frac{\partial \alpha}{\partial z} = \cdots \end{cases}$
- 4. de l'équation (4), on déduit que $\alpha(y,z) = H(y,z) + \beta(z)$ (*H* connue, β inconnue);
- 5. en reportant ce résultat dans l'équation (5), on obtient $\frac{\partial \beta}{\partial z} = \dots$ d'où $\beta(z) = K(z) + cte$ (K connue, cte arbitaire)
- 6. Finalement, f(x, y, z) = G(x, y, z) + H(y, z) + K(z) + cte.

Exemple 5.5.3.1. Soit le champ de vecteur $V_1:(x,y)\longmapsto \frac{x}{x^2+y^2}\overrightarrow{i}+\frac{y}{x^2+y^2}\overrightarrow{j}$.

- 1. Vérifier que V_1 dérive d'un potentiel scalaire sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et préciser ce potentiel.
- 2. Soit \mathcal{C} un cercle de rayon r>0, n'entourant pas O (et ne contenant pas O). Calculer la circulation de V_1 le long de C (c'est immédiat).
- 3. Calculer la circulation de V_1 le long du cercle de centre O et de rayon $r > 0 \quad (0, \pi, 2\pi?)$.

Exemple 5.5.3.2. Soit le champ de vecteur $V_2:(x,y)\longmapsto \frac{-y}{x^2+y^2}\overrightarrow{i}+\frac{x}{x^2+y^2}\overrightarrow{j}$.

- 1. Vérifier que V_2 dérive d'un potentiel scalaire sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et préciser ce potentiel.
- 2. Soit $\mathcal C$ un cercle de rayon r>0, n'entourant pas O (et ne contenant pas O). Calculer la circulation de V_2 le long de \mathcal{C} (c'est immédiat).
- 3. Calculer la circulation de V_2 le long du cercle de centre O et de rayon $r>0 \quad (0,\,\pi,\,2\,\pi\,?).$

Exemple 5.5.3.3. Déterminer les potentiels scalaires du champ de vecteur \overrightarrow{V} défini sur $\mathbb{R}^3\setminus\{O\}$ par :

$$\overrightarrow{V}(x,y,z) = -\frac{xz}{(x^2 + y^2 + z^2)^{3/2}} \overrightarrow{i} - \frac{yz}{(x^2 + y^2 + z^2)^{3/2}} \overrightarrow{j} + \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}} - \frac{z^2}{(x^2 + y^2 + z^2)^{3/2}}\right) \overrightarrow{k}$$

Quelle est la circulation de \overrightarrow{V} sur un cercle de l'espace qui ne passe pas par O?

5.6 Formule de Green-Riemann

5.6.1 Théorème

Théorème 5.6.1. (Formule de Green-Riemann)

Soient y_1 et y_2 deux fonctions de \mathbb{R} vers \mathbb{R} , continues sur [a,b]

- de classe C^1 par morceaux sur [a, b]
- telles que $\forall x \in [a, b], y_1(x) \leq y_2(x)$

Soit le domaine plan $D = \{(x,y) \mid a \leqslant x \leqslant b \text{ et } y_1(x) \leqslant y \leqslant y_2(x)\}$ dont la frontière (Γ) est orientée positivement.

Pour deux fonctions P et Q, de classe C^1 sur un ouvert contenant D, on a :

$$\int_{(\Gamma)} P(x,y) dx + Q(x,y) dy = \iint_{D} \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx dy$$

Preuve. (application de la formule de Fubini) :

$$\iint_{D} \frac{\partial P}{\partial y}(x,y) \, dx \, dy = \int_{x=a}^{b} \left(\int_{y=y_{1}(x)}^{y_{2}(x)} \frac{\partial P}{\partial y}(x,y) \, dy \right) \, dx = \int_{x=a}^{b} \left(P(x,y_{2}(x) - P(x,y_{1}(x))) \, dx \right) \, dx$$

$$= -\int_{x=b}^{a} P(x,y_{2}(x)) \, dx + \int_{x=a}^{b} P(x,y_{1}(x)) \, dx = -\int_{(\Gamma)}^{a} P(x,y) \, dx$$

et on a un résultat analogue pour l'autre ...

Remarque. Lorsque D est un domaine délimité par une courbe (fermée, continue et de classe C^1 par morceaux) qui ne respecte pas les hypothèses du théorème, par exemple :

- courbe possédant des points doubles (ou multiples),
- courbe possédant plus de deux arcs superposés,

pour calculer $\iint_D \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx dy$ à l'aide d'intégrales curvilignes, on pourra découper D en plusieurs parties, de façon à ce que chacune de ces parties vérifie les hypothèses d'application de la formule de Green-Riemann.

5.6.2 Cas particulier

On retrouve, partiellement, un résultat déjà vu (et admis) :

Théorème 5.6.2.

Soit un champ de vecteurs \overrightarrow{V} , de classe \mathcal{C}^1 sur un ouvert étoilé \mathcal{U} de \mathbb{R}^2 .

 $Si \overrightarrow{V}$ dérive d'un potentiel scalaire sur \mathcal{U} alors sa circulation sur tout chemin fermé de classe \mathcal{C}^1 inclus dans \mathcal{U} est nulle.

Preuve.

 $V:=(x,y)\longmapsto P(x,y)\overrightarrow{i}+Q(x,y)\overrightarrow{j}$ dérive d'un potentiel scalaire sur l'ouvert étoilé $\mathcal U$ si et seulement si $\frac{\partial Q}{\partial x}(x,y)-\frac{\partial P}{\partial y}(x,y)=0$ en tout point de $\mathcal U$.

5.6.3 Application au calcul d'aires planes

Aire d'une partie plane D, limitée par deux courbes continues, \mathcal{C}^1 par morceaux, superposées et orientées positivement, dont la réunion est un arc continu (Γ) , fermé, sans points doubles et \mathcal{C}^1 par morceaux :

$$\iint_D 1 \, dx \, dy = \frac{1}{2} \int_{(\Gamma)} x \, dy - y \, dx \quad \text{avec } P = \frac{x}{2} \text{ et } Q = -\frac{y}{2}$$

$$= \int_{(\Gamma)} x \, dy \quad \text{avec } P = 0 \text{ et } Q = x$$

$$= -\int_{(\Gamma)} y \, dx \quad \text{avec } P = -y \text{ et } Q = 0$$

Lorsque (Γ) est définie par l'équation polaire $\rho = r(\theta)$, pour $\theta \in [\theta_1, \theta_2]$, avec $x = r(\theta) \cos \theta$ et $y = r(\theta) \cos \theta$, la première formule conduit à :

$$\iint_D 1 \, dx \, dy = \frac{1}{2} \int_{(\Gamma)} r^2 \, d\theta \qquad \left(= \frac{1}{2} \int_{\theta = \theta_1}^{\theta_2} \, r^2(\theta) \, d\theta \right)$$

Remarque. lorsque la partie du plan, dont on cherche l'aire, est limitée par une courbe \mathcal{C} qui présente des points doubles ou multiples, des circonvolutions, on sera amené à découper cette partie en morceaux satisfaisant aux conditions d'applications de la formule de Green Riemann, ce qui conduit à la recherche

- des points multiples de C,
- ullet des points de $\mathcal C$ où la tangente est parallèle à un des axes de coordonnées.

Exemple 5.6.3.1. Calcul de l'aire de la partie du plan limitée par l'astroïde d'équations paramétriques

$$\begin{cases} x = a\cos^3 t \\ y = b\sin^3 t \end{cases} \quad t \in [0, 2\pi] \quad (a \text{ et } b \text{ \'etant des constantes}, \ a > 0 \text{ et } b > 0)$$

Après représentation graphique de l'astroïde, grâce aux symétries, on ne calcule que l'aire de la partie située dans le premier quadrant, en intégrant sur le contour (Γ) de cette partie, décomposé en 3 arcs :

- \widehat{OI} étant le segment joignant O à I=(a,0) $(y=cte,\,x\,dy=0),$
- $\widehat{J0}$ étant le segment joignant J=(0,a) à O $(x=0, x\,dy=0)$,
- \widehat{IJ} étant la partie de l'astroïde joignant I à J, orientée positivement.

$$\mathcal{A} = 4 \left(\int_{\widehat{OI}} x \, dy + \int_{\widehat{IJ}} x \, dy + \int_{\widehat{IJ}} x \, dy \right) = 0 + 4 \int_{t=0}^{\pi/2} a \cos^3 t \, \left(3 \, b \sin^2 t \, \cos t \right) dt + 0$$

$$= 12 \, a \, b \int_{t=0}^{\pi/2} \cos^4 t \, \sin^2 t \, dt = \cdots \, (\text{réponse parmi } \pi \, a \, b, \, \frac{3 \, \pi \, a \, b}{8}, \, \pi \, \frac{a^2 + a \, b + b^2}{3} \, \right).$$

Exemple 5.6.3.2. Calcul de l'aire de la partie du plan limitée par la cardioïde d'équation polaire

$$r = a(1 + \cos \theta)$$
 (où a est une constante, $a > 0$)

Après représentation graphique, réponse parmi parmi πa^2 , $\frac{3 a^2 \pi}{2}$, $2 \pi \frac{a^2}{3}$.

Exemple 5.6.3.3. Calcul de l'aire de la partie du plan limitée par la courbe $\mathcal C$ d'équation cartésienne

$$(x^2 + y^2)^2 - x^2 + y^2 = 0$$

On détermine une représentation polaire de \mathcal{C} $(x = \rho(\theta) \cos \theta, y = \rho(\theta) \sin \theta)$ ou paramétrique (coupe par les droites y = tx) de \mathcal{C} . Après représentation graphique, réponse parmi 1, 2, π , 3, 4.

$$<$$
 \mathcal{FIN} $>$