Discrete Mathematics and Logic Lecture 6

Andrey Frolov

Innopolis University

Functions

Definitions

A set
$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$
 is called a function, if
$$\forall x \,\exists^{\leq 1} y \, (x, y) \in X \times Y.$$

The set $\{x \mid f(x) \text{ is defined}\}\$ is called the support.

The set $f(X) = \{f(x) \mid x \in X\}$ is called the image.

Functions

Definitions

Let $f: X \to Y$ be a function.

• f is called total, if the support equals to the domain, i.e.,

$$\forall x\,\exists!y\,(x,y)\in X\times Y,$$

• f is called surjective, if the range equals to the image, i.e.,

$$\forall y \in Y \ \exists x \in X \ f(x) = y,$$

• f is called injective, if

$$\forall x_1, x_2 (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)),$$

• f is called bijection, if it is a total surjective injection.

Definition

 $\forall A, B \ (A \text{ and } B \text{ has the same cardinality} \leftrightarrow |A| = |B|)$, if there is a bijection $f: A \to B$ (total surjective injection).

Definition

 $\forall A, B \ (|A| \leq |B|)$, if there is a injection $f : A \rightarrow B$.

$$0 < 1 < 2 < 3 < 4 < \dots < |\mathbb{N}| = \omega < 2^{\omega}$$

Proposition

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cap B| \leq \min\{|A|, |B|\}$
- $|A \setminus B| = |A| |A \cap B| \ge |A| |B|$
- $|\overline{A}| = |\mathbf{U}| |A|$
- $|A \times B| = |A| \cdot |B|$

Theorem

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{i,j=1}^{n} |A_{i} \cap A_{j}| + \sum_{i,j,k=1}^{n} |A_{i} \cap A_{j} \cap A_{k}| - \cdots + (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots A_{n}|$$

The illustration for n = 3.

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| -$$

$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| +$$

$$+|A_1 \cap A_2 \cap A_3|$$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example

There are 100 students in a group. 75 students like Discrete Math, 45 students like Math Analysis. How many students like the both courses?

$$|A \cup B| = 100$$

$$|A| = 75$$

$$|B| = 45$$

$$|A \cap B| = |A| + |B| - |A \cup B| = 75 + 45 - 100 = 20$$

- Combinatorics is the study of collections of objects.
- Combinatorial proof

- Combinatorics is the study of collections of objects.
- Combinatorial proof

$$|A \cup B| = |A| + |B| \text{ (if } |A \cap B| = \emptyset)$$

$$|A \times B| = |A| \cdot |B|$$

Two events are mutually exclusive, i.e., they cannot be done at the same time.

Theorem (Sum Rule)

lf

- an event e₁ can be done in n₁ ways,
- an event e₂ can be done in n₂ ways,
- e₁ and e₂ are mutually exclusive, then
- the number of ways of the both events occurring is $n_1 + n_2$

Sum Rule

Example

In cafe there are the 3 varieties of coffee: Espresso, Latte, Cappuccino; and the 3 varieties of tee: Green tea, Black tee, Flower tee.

The cafe has 3 + 3 = 6 different varieties.

Two events are not mutually exclusive.

Theorem (Product Rule)

lf

- an event e_1 can be done in n_1 ways,
- an event e₂ can be done in n₂ ways,
- e₁ and e₂ are not mutually exclusive, then
- the number of ways of the both events occurring is $n_1 \cdot n_2$

Example

In cafe there are the 3 varieties of coffee: Espresso, Latte, Cappuccino; and the 3 sizes: Small, Medium, Large.

The cafe has $3 \cdot 3 = 9$ different varieties.

	Small	Medium	Large
Espresso	Small Espresso	Medium Espresso	Large Espresso
Latte	Small Latte	Medium Latte	Large Latte
Capp.	Small Cappuccino	Medium Cappuccino	Large Cappuccino

```
begin
  for i:=1 to n do func1(i);
  for j:=1 to m do func2(j);
end.
```

```
begin
  for i:=1 to n do func1(i);
  for j:=1 to m do func2(j);
end.
```

$$n + m$$

```
begin
  for i:=1 to n do
    for j:=1 to m do func(i,j);
end.
```

Example

```
begin
  for i:=1 to n do
    for j:=1 to m do func(i,j);
end.
```

 $n \cdot m$

Exercises

- 1) Count all of the numbers that have exactly 3 digits; and the numbers that have at most 2 digits.
- 2) How many possible outcomes are there from a game cube; two game cubes?

$${a,b,c,d} = {d,b,c,a}$$

 $(a,b,c,d) \neq (d,b,c,a)$

$${a, b, c, d} = {d, b, c, a}$$
 ${a, b, c, d} \neq (d, b, c, a)$
 ${x, x, x, x} = {x}$
 ${x, x, x, x} \neq (x, x, x) \neq (x, x) \neq x$

$$\{a, b, c, d\} = \{d, b, c, a\}$$
$$(a, b, c, d) \neq (d, b, c, a)$$
$$\{x, x, x, x\} = \{x\}$$
$$(x, x, x, x) \neq (x, x, x) \neq (x, x) \neq x$$

Let
$$A = \{a, b, c\}$$
.
 $A^2 = \{(a, a), (a, b), (b, a), (b, b)\}$
Without repetitions: $\{(a, b), (b, a)\}$ – permutations.

Definition

A permutation of a set of distinct objects is an ordered arrangement of these objects.

Theorem

The number of k permutations (k-permutations) of a set with n distinct objects is

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1}(n-i)$$

Theorem

The number of k permutations of a set with n distinct objects is

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1}(n-i)$$

Example

Let $A = \{a, b, c\}$.

2-permutations: (a, b), (a, c), (b, a), (b, c), (c, a), (c, b)

$$P(3,2) = 3 \cdot 2 = 6$$

Theorem

The number of k permutations of a set with n distinct objects is

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1}(n-i)$$

Example

How many 3-letter words can you form from the letters of the word "HOW"?

3-permutations: HOW, HWO, OHW, OWH, WHO, WOH.

$$P(3,1) = 3 \cdot 2 \cdot 1 = 6$$

Theorem

The number of k permutations of a set with n distinct objects is

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1}(n-i)$$

Proof by induction (by k)

Let
$$A = \{a_1, ..., a_n\}$$

1)
$$k = 1$$
. $P(n, 1) = n$
1-permutations: $(a_1), (a_2), \dots, (a_n)$.

Proof by induction

- 2) Suppose that there is k_0 such that $P(n, k_0) = n(n-1)(n-2)\cdots(n-k_0+1)$.
- 3) We need to prove the theorem for $k_0 + 1$.

$$(k_0+1)$$
-permutations: $(\underbrace{a_{i_1},a_{i_2},\ldots,a_{i_{k_0}}}_{k_0- ext{permutations}}, \underbrace{a}_{k_0})$

$$\mathbf{a} \neq a_{i_j}$$
 for $1 \leq j \leq k_0$

So, for any k_0 -permutation there are $n-k_0$ many elements a

Proof by induction

Therefore,

$$P(n, k_0 + 1) = P(n, k_0) \cdot (n - k_0) =$$

$$= n(n-1)(n-2) \cdots (n - k_0 + 1)(n - k_0) =$$

$$= n(n-1)(n-2) \cdots (n - k_0 + 1)(n - (k_0 + 1) + 1) =$$

$$= \prod_{i=0}^{(k_0+1)-1} (n-i)$$

Notation

We use n! (n factorial) to denote the number of permutations of n objects.

$$n! = n(n-1)(n-2)\cdots 2\cdot 1$$

For convenient, 0! = 1

Definition (by induction)

- 1. Let 0! = 1.
- 2. Suppose that k! is defined.

3. Let
$$(k+1)! = (k+1) \cdot k!$$

Intuitively, why 0! = 1

$$(k+1)! = \frac{(k+2)!}{k+2}$$

$$k! = \frac{(k+1)!}{k+1}$$
...
$$2! = \frac{3!}{3}$$

$$1! = \frac{2!}{2}$$

$$0! = \frac{1!}{1} = 1$$

Notation

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1) =$$

$$= n(n-1)(n-2)\cdots(n-k+1)\frac{(n-k)(n-k-1)\cdots 2\cdot 1}{(n-k)(n-k-1)\cdots 2\cdot 1} = \frac{n!}{(n-k)!}$$

$$P(n,k) = \frac{n!}{(n-k)!}$$
$$P(n,n) = n!$$

```
Example
begin
  for i:=1 to n do
    for j:=1 to n do
    if (i<>j) then func(i,j);
end.
```

Example

```
begin
 for i:=1 to n do
   for j:=1 to n do
     if (i <> j) then func(i,j);
```

end.

$$n \times (n-1)$$

Exercise

```
begin for i:=1 to n do for j:=i to m do func(i,j); end.
```

Exercise

```
begin
  for i:=1 to n do
    for j:=i to m do func(i,j);
end.
```

How many times the function "func" works?

Thank you for your attention!