

Project 4: West Nile Virus Prediction

DSI-28 10 June 2022 Adi, Calvin, Joel, Priscilla, Yong Lim

Agenda

X

- 1. Introduction and Problem Statement
- 2. Data Cleaning
- 3. Exploratory Data Analysis (EDA)
- 4. Feature Engineering
- 5. Modelling
- 6. Modelling Results
- 7. Cost-Benefit Analysis and Recommendations

- 8. Limitations and Future Steps
- **9.** Conclusions

01

Introduction and Problem Statement

West Nile Virus (WNV)

First case in USA

Illinois, September 2001

Symptoms

1 in 5 will suffer from symptoms ranging from fever to meningitis

West Nile Virus (WNV)

No Treatment

Currently no known medicine or vaccine for WNV

Prevention

Prevention at personal and state levels

Contract Summary Sheet

Contract (PO) Number: 53283

Specification Number: 134997

Name of Contractor: VECTOR DISEASE CONTROL INTERNATIONAL LLC

City Department: DEPARTMENT OF HEALTH

Title of Contract: MOSQUITO ABATEMENT SERVICES

Term of Contract: Start Date: 3/14/2018

Dollar Amount of Contract (or maximum compensation if a Term Agreement) (DUR): \$6,000,000.00

End Date: 3/13/2023

Brief Description of Work: MOSQUITO ABATEMENT SERVICES

Procurement Services Contract Area: PRO SERV CONSULTING \$250,000orABOVE

Please refer to the DPS website for Contact information under "Doing Business With The City",

Vendor Number: 56454025 Submission Date: January 22, 2018

Problem Statement

To prevent a WNV outbreak in Chicago, the Chicago Department of Public Health (CDPH) has tasked its data science team to develop a <u>predictive model to detect areas highly likely to have WNV</u>.

In addition, CDPH has requested for our expertise in advising the <u>areas and timings to spray pesticide</u> as part of the terms in the contract. The advice also includes data-driven <u>benefits</u> of spraying, and annual <u>costs</u> estimates to be used in their price negotiations for the new spraying contract.

02

Data Cleaning

Data Provided

٥	Λ
67	

Data	Description	Timeframe
Train	Data set to train predictive model	29 May 2007 to 26 Sep 2013
Test	Data set to produce prediction results	11 June 2008 to 2 Oct 2014
Spray	Time, date and location of previous sprays	29 Aug 2011 to 5 Sep 2013
Weather	Meteorological information of Chicago	1 May 2007 to 31 Oct 2014

Data Provided

Data Cleaning - Train Dataset

Removing duplicate records

Based on Date, Species and Trap

Data Cleaning - Weather Dataset

Replacing T

Trace replaced with value 0 for Total

Precipitation

Imputing missing PrecipTotal

Using previous observation

Imputing missing WetBulb

Using the 1/3 Rule

Imputing missing Tavg

Using Tmin and Tmax

03

Exploratory Data Analysis (EDA)

Temperature and rainfall

Peak temperature and rainfall occur around June-July-August each year.

WNV occurrence across the year

West Nile Virus detection in mosquitoes tend to peak in August and September

West Nile Virus use mosquitoes as transmission vectors

- Both West Nile
 Virus (WNV) cases
 and number of
 mosquitoes peak
 in July-August.
- Mosquito numbers peak first followed by WNV cases.
- Not surprising as mosquitoes are the vector carriers for the virus.

Mosquito numbers trend closely with temperature over the year

- Mosquito count increases with temperature, peaking in July-August
- Mosquito count decreases in later months as temperature drops
- Slight lag between mosquito count and temperature

Mosquito count tend to peak after rainfall

Peak in rainfall followed shortly by peak in mosquito numbers

Mosquito count increase with daytime

length

More mosquitoes are detected as day length increases

Culex Pipiens and Restuans species carry WNV

Mosquito species found with West Nile Virus:

- Culex Pipiens/ Restuans
- Culex Pipiens
- Culex Restuans

Spraying in response to WNV cases, as opposed to mosquito numbers

- Spraying counts increased almost instantaneously to emergence of WNV cases in July. (left)
- Increase in number of mosquitoes started much earlier in May. (right)
- Spraying may have started only in response to receiving reports of WNV cases

Disparity in spraying and actual WNV outbreak locations

- Areas sprayed with insecticide (green) and locations with WNV cases (red), from July to September (left to right)
- Sprayed area tend to cover much larger area than the neighbourhood, likely in expectation of WNV mosquito clusters
- However, there were many other areas with WNV cases which did not receive spraying.

04

Feature Engineering

Factors Affecting Mosquito Breeding

<u>Source 1</u>: Predicting Culex pipiens/restuans population dynamics by interval lagged weather data Source 2: When are mosquitos most active

Environment Added Features

Relative Humidity

Dp – Dewpoint Temp T – Ave Temp

Environment Dataset

Average Temperature
Dew Point
Precipitation
Wind Speed / Direction
Station Pressure
Sea Level
Rain / Thunderstorm / Mist

Location Added Features

Location Dataset

Latitude Longitude

Time Added Features

Species

Culex Pipens Culex Restuan

05 Modelling

Logistics Regression
Random Forest
AdaBoost
Gradient Boost
XgBoost
Support Vector Machine
KNN

Imbalance Target

Poor performance on the minority class

Synthetic Minority Oversampling Technique (SMOTE)

Source of illustration:

https://www.researchgate.net/publication/333423855_Evaluation_of_performance_of_drought_prediction_in_Indonesia_based_on_TRMM_and_MERRA-2_using_machine_learning_methods

Model Evaluation Metric - AUC ROC

- Evaluates how good the model distinguish the classes
- Higher AUC -> Better in predicting
 O class and 1 class
- Good Model -> Accurately predict the presence of the virus

Logistics Regression - Baseline Model

Source of illustration:

Logistics Regression - Baseline Model

ROC

0.7771

ROC

Random (Decision) Forest

ROC AUC (Train)

0.9169

ROC AUC (Validation)

Adaptive Boosting (a.k.a. AdaBoost)

ROC AUC (Train)

0.8752

ROC AUC (Validation)

Gradient Boosting

ROC AUC (Validation) 0.8808

eXtreme Gradient Boosting (a.k.a. XGBoost)

ROC AUC (Train)

0.8762

ROC AUC (Validation)

Support Vector Machine (a.k.a. SVM)

1-Dimensional Linearly

ROC AUC (Validation)

0.8772

k-Nearest Neighbours (a.k.a. k-NN)

ROC AUC (Train)

0.9361

ROC AUC (Validation)

0.8592

06

Modelling Results

Models Performance Summary

	ROC AUC							
Model	Train	Validation	delta	Test				
	(A)	(B)	(A) - (B)	(Kaggle)				
Logistic Regression	0.8388	0.8542	-0.0154	0.7228				
Random Forest	0.9169	0.8790	0.0379	0.6336				
Ada Boost	0.8752	0.8809	-0.0057	0.6514				
Gradient Boost	0.9065	0.8808	0.0257	0.6378				
Extreme Boost	0.8762	0.8799	-0.0037	0.6638				
Support Vector Machine	0.8930	0.8772	0.0158	0.6550				
k-Nearest Neighbours	0.9361	0.8592	0.0769	0.6208				

Top 10 AdaBoost Predictors

Why Logistic Regression outperforms all other models in this Test dataset?

Ensemble performs **no better** than best-performing member of the ensemble

- 1 top-performing model; and
- Other members do not offer any benefit or Ensemble is unable to harness their contribution effectively

Ensemble performs worse than best-performing member of the ensemble

1 top-performing model whose predictions are made worse by 1 or more poor-performing other models;
 and Ensemble is unable to harness their contributions effectively

- Jason Brownlee, PhD

Source: https://machinelearningmastery.com/why-use-ensemble-learning/

Cost-Benefit Analysis and Recommendations

Cost of Mosquito Abatement Program 2023

~USD 520,698*

which includes:

- Weekly Environmental Surveillance (~ 147 gravid traps)
- Conduct Larviciding (~ 190 acres)
- Conduct Adulticiding (~ 100 miles)

* based on Contract (PO) Number 17068
"SLE Vector Mosquito Abatement
Program" awarded to Vector Disease
Control International (VDCI)

Average Total Economic Cost for 2023: ~USD 2,800,100*

Average Cost Per Person: ~USD 176,071*

Assumption based on:

- Average of people infected of 17 throughout 2012-2021 *
- Average death rate of 2 throughout
 2014-2016 ⁺

^{*} Forecasted from data source: "Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease" (Source) paper by Centers for Disease Control and Prevention (CDC) dated 05 Mar 2014

^{*} Source: West Nile Virus Surveillance Reports

Benefits > Costs on Average by 4 times

→ Continue Mosquito Abatement Program

									"	V
\$	2012 \$	2013 \$	2014 \$	2015 \$	2016 💠	2017 💠	2018 \$	2019 \$	2020 \$	2021
Human Cases	22	1	6	16	49	6	42	2	11	1
Human Cases (Fatality)	-	-	-	3	2	1	ē.	7	(- 7)	

Source: West Nile Virus Surveillance Reports

Worst case scenario based on 2016 records, with 49 cases reported and 2 casualties,

the total lost instead would be: ~USD 8,434,382, a whooping

16 times from the 2023 abatement cost

Recommendations

At the location which has a high risk of West Nile Virus emergence (WnV case > 5), additional 800 acres => USD 77,920

Lower the Threshold to Activate Adulticiding

For the month of June and July, to suppress the population of mosquitoes, additional 100 miles => USD 12,060

Conduct Awareness Roadshow

Before the breeding season start. Helps to reduce potential breeding location, estimated cost ~USD 15,000

08

Limitations and Future Steps

Limitations

Train & Weather Dataset Range

→ Only includes data from 2007 to 2014. Weather conditions may changed since 2014

Train Dataset Size

→ Train dataset size is comparatively smaller compare to test dataset

Time Constraint

→ Limited time for hyperparameter tuning to obtain better performing model

Future Works

Effect of the New Spraying Schedule

→ To update the model with latest data and check if it is effective or the trend still persists

Data on Location and No of Larvaes

→ To study the trend on the larvaes found to have a better plan on early prevention

New Technique on Treating Features

→ PCA can be tested for treating the collinearity between existing features

09

Conclusion

Conclusions

AdaBoost

Estimated Costs

~USD 625,678

Targeted Mosquito Abatement Efforts

- 1. Increase Larviciding Initiation at high risk areas
- Lower the Threshold to Activate Adulticiding during June and July
- 3. Conduct Awareness Roadshow before May

Thank You

Be Ready, Stay Vigilant, & Abolish!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Benefits outweigh Costs by At Least 2x

\rightarrow Continue Program

\$	2012 \$	2013 \$	2014 \$	2015 \$	2016 \$	2017 💠	2018 \$	2019 \$		2021 \$
Human Cases	22	1	6	16	49	6	42	2	11	10
Human Cases (Fatality)		-	7	3	2	1	-	5		

Source: West Nile Virus Surveillance Reports

- From 2012 to 2021, most number of Human Cases resulting in Fatality = 3 (in year 2015)
- Assume all things constant,

- Cost of Mosquito Abatement Program's efforts for 2023 = **USD 520,698**
- Assumed worst scenario of all Human Cases result contracted Acute Flaccid Paralysis (AFP) & eventual fatality,

Benefit or economic burden caused by the West Nile Virus alleviated = USD 3,003,756 (= 3 x USD 1,001,252)

Recommendation: Continue with Mosquito Abatement Program's efforts for 2023 and beyond.

Mosquito Abatement Program Costs for 2023: USD 520,698

	Budget \$	Year 1 ♦	Year 2 ♦	Year 3 ♦	Year 4 ♦	Year 5 ♦	Option Year 6 🕏	Option Year 6 \$
		2018	2019	2020	2021	2022	2023	2024
	Estimated Annual Fee (USD)	448,819.70 *	462,284	476,153	490,808	505,532	520,698	536,319
<u>\</u>	CPI %		3.00%	3.00%	3.08%	3.00%	3.00%	3.00%

Source:

Total Economic Cost per Individual for 2023: ~USD 1,001,252

*	
V/3	ľ
X	
65,681	

	Acute Fla				
Initial Costs	Min	Median	Mean	Max	
Total inpatient hospital costs (USD)	7,013	28,756	97,154	365,681	
Total lost productivity (USD)	321	2,957	17,105	201,752	
Total initial costs (USD)	7,454	34,768	114,257	392,266	
			Erv v		
Long-Term Costs	Min	Median	Mean	Max	
Medical appointments (USD)	626	5,082	6,212	16,740	
		No.	100		
Additional care costs (USD)	0	385	1,824	8,470	

Medical appointments (USD)	626	5,082	6,212	16,740
Additional care costs (USD)	0	385	1,824	8,470
Medicines, equipment, or modifications (USD)	147	817	60,015	591,107
Subtotal of long-term medical costs (USD)	864	7,368	68,053	608,987
Lost productivity (USD)	0	9,373	38,184	197,991
Total long-term costs (USD)	864	31,322	106,236	608,987
	80	50		
Total Costs (USD)	8,318	66,090	220,493	1,001,252

Source: "Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease" (Source) paper by Centers for Disease Control and Prevention (CDC) dated 05 Mar 2014