NUMERICAL PROJECT: LENSTOOL

M2 ASTROPHYSICS - ROCHER ANTOINE
SUPERVISED BY RICHARD JOHAN

Faculté des Sciences et Technologies Université Claude Bernard Lyon 1

GRAVITATIONAL LENSING EFFECT

- Source behind a massive object
- Massive object deflects light rays
- Observer sees several images

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

GRAVITATIONAL LENSING

Gravitationslinsen (IV)

Eine asymmetrische Linse

Matthias Bartelmann, MPA Garching

GRAVITATIONAL LENSING

GRAVITATIONAL LENSING

LENSTOOL: INFORMATIONS

- Gravitational lensing simulation program
- Created by J.P. Kneib (1993)
- Public, open source, multi developers
- French collaboration : Toulouse,
 Marseille, Lyon
- Used by about 10 research teams around the world

LENSTOOL: RUNNING

INPUT: source / image positions

+ lens parameters

```
runmode
        reference
                     3 133.69 -1.36
       image
                 0 image wcs.cat
       end
grille
       nombre
                    100
       polaire
       nlentille
       end
potentiel 01
       profil
                    81
       x centre
                    0.0
       y centre
                    0.0
       ellipticite
                        0.65
       angle_pos
                       120.0
       core radius kpc
                       16.11
       cut radius kpc
                          1343.23
       v disp
                  800.0
       z_lens
                  0.4000
        end
```

OUTPUT: All images and source(s) positions

Red: Potential Blue: Images Yellow: Source

LENSTOOL: MODEL

Red: Potential Blue: Images Yellow: Source

LENSTOOL: MODEL

LENSTOOL: MODEL

LENSTOOL: SHEAR

- Environment effects create a deformation on images
- Modelisation by a shear in the image
- The Shear is described by a strength γ and an angle α

Objective Find the images with no shear

Model + vertical shear strength up to γ =0.2

LENSTOOL: SHEAR EFFECT

No Shear

Shear $\gamma = 0.2$

LENSTOOL: SHEAR EFFECT

γ decrease with the distance Shear is tangent to the potential

Distance

LENSTOOL: SCIENTIFIC INTEREST

G. Mahler et al 2018

LENSTOOL: POTENTIAL OPTIMISATION

```
potentiel 1
       profil
                   81
       x centre
                     0.0
       y centre
                     0.0
       ellipticite
                        0.65
       angle_pos
                    120.
       core radius 3.0
       cut radius
                    250.0
       v disp
                   800.
       z lens
                   0.4
       end
limit 1
                                  100.0 0.01
       x centre
       y centre
                                1.0 0.01
       ellipticite
                               0.75 0.01
       angle_pos
                        1 0. 180.0 0.1
       core_radius
                        0 0.1 4. 0.1
       cut radius
                           50. 500. 0.1
       v_disp
                        0 200. 1000. 0.1
       end
```

- Prior: uniform, gaussian
- Limit: min, max

•Iteration step, deviation 1σ

Find images for each case and compute χ^2

LENSTOOL: χ² CALCULATION

$$\chi^2 = \left(\frac{d_1}{\epsilon}\right)^2 + \left(\frac{d_2}{\epsilon}\right)^2 + \left(\frac{d_3}{\epsilon}\right)^2 + \left(\frac{d_4}{\epsilon}\right)^2$$

Di: separation distance in arcsec

ε: astrometric errors (0.1")

LENSTOOL: TEST PROCEDURE

INPUT

OPTIMIZATION

OUTPUT

1 potential optimizing
 Θ,ellipticity,...

- 2 potentials :
 - 1 fixed potential
 - 1 spherical potential optimizing: x, σ, y...

 $\gamma = 0.2$

Best model minimizing χ^2

LENSTOOL: RESULTS FOR 1 POTENTIAL

LENSTOOL: RESULTS FOR 2 POTENTIALS

LENSTOOL: RESULTS FOR 2 POTENTIALS

LENSTOOL: RESULTS

- Better results with 2 potentials
- Model is harder to reproduce with increasing shear

LENSTOOL: CURRENT LIMIT + OTHER MODELS

Red: SPH model

Blue: Semi-analytical model

CATS uses LENSTOOL

Meneghetti et al 2017

CONCLUSION

- Shear is important to understand the environment effect
- Good reproduction of images with shear when including a 2nd spherical potential
- Considering mass environment what would be the effect on the images ?

- Install C program with svn and compile with all libraries/dependencies
- Understand and use a scientific program
- Understand overall behaviour of the optimisation process for parametric model
- Data Analysis with python
- Visualisation with DS9