Understanding (Exact) Dynamic Programming through Bellman Operators

Ashwin Rao

ICME, Stanford University

January 25, 2019

Overview

- Value Functions as Vectors
- Bellman Operators
- 3 Contraction and Monotonicity
- Policy Evaluation
- 6 Policy Iteration
- **6** Value Iteration
- Policy Optimality

Value Functions as Vectors

- Assume State pace S consists of n states: $\{s_1, s_2, \ldots, s_n\}$
- Assume Action space \mathcal{A} consists of m actions $\{a_1, a_2, \ldots, a_m\}$
- This exposition extends easily to continuous state/action spaces too
- We denote a stochastic policy as $\pi(a|s)$ (probability of "a given s")
- Abusing notation, deterministic policy denoted as $\pi(s) = a$
- ullet Consider *n*-dim space \mathbb{R}^n , each dim corresponding to a state in $\mathcal S$
- ullet Think of a Value Function (VF) $oldsymbol{v}\colon \mathcal{S} o \mathbb{R}$ as a vector in this space
- With coordinates $[\mathbf{v}(s_1), \mathbf{v}(s_2), \dots, \mathbf{v}(s_n)]$
- ullet Value Function (VF) for a policy π is denoted as $oldsymbol{v}_\pi: \mathcal{S} o \mathbb{R}$
- ullet Optimal VF denoted as $oldsymbol{v}_*: \mathcal{S}
 ightarrow \mathbb{R}$ such that for any $s \in \mathcal{S}$,

$$\mathbf{v}_*(s) = \max_{\pi} \mathbf{v}_{\pi}(s)$$

Some more notation

- ullet Denote \mathcal{R}^a_s as the Expected Reward upon action a in state s
- ullet Denote $\mathcal{P}^a_{s,s'}$ as the probability of transition s o s' upon action a
- Define

$$\mathsf{R}_{\pi}(s) = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a}|s) \cdot \mathcal{R}_{\mathsf{s}}^{\mathsf{a}}$$

$$\mathsf{P}_{\pi}(s,s') = \sum_{a \in \mathcal{A}} \pi(a|s) \cdot \mathcal{P}_{s,s'}^{a}$$

- ullet Denote $old R_\pi$ as the vector $[old R_\pi(s_1), old R_\pi(s_2), \ldots, old R_\pi(s_n)]$
- Denote \mathbf{P}_{π} as the matrix $[\mathbf{P}_{\pi}(s_i,s_{i'})], 1 \leq i,i' \leq n$
- ullet Denote γ as the MDP discount factor

Bellman Operators ${f B}_{\pi}$ and ${f B}_{st}$

- We define operators that transform a VF vector to another VF vector
- Bellman Policy Operator ${\bf B}_{\pi}$ (for policy π) operating on VF vector ${\bf v}$:

$$\mathbf{B}_{\pi}\mathbf{v} = \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \cdot \mathbf{v}$$

- ${\bf B}_{\pi}$ is a linear operator with fixed point ${\bf v}_{\pi}$, meaning ${\bf B}_{\pi}{\bf v}_{\pi}={\bf v}_{\pi}$
- Bellman Optimality Operator \mathbf{B}_* operating on VF vector \mathbf{v} :

$$(\mathbf{B}_*\mathbf{v})(s) = \max_{a} \{\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^a \cdot \mathbf{v}(s')\}$$

- $f B_*$ is a non-linear operator with fixed point $f v_*$, meaning $f B_*f v_*=f v_*$
- Define a function G mapping a VF \mathbf{v} to a deterministic "greedy" policy $G(\mathbf{v})$ as follows:

$$G(\mathbf{v})(s) = \underset{a}{\operatorname{arg max}} \{\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} \cdot \mathbf{v}(s')\}$$

• $\mathbf{B}_{G(\mathbf{v})}\mathbf{v} = \mathbf{B}_*\mathbf{v}$ for any VF \mathbf{v} (Policy $G(\mathbf{v})$ achieves the max in \mathbf{B}_*)

Contraction and Monotonicity of Operators

- Both ${\bf B}_{\pi}$ and ${\bf B}_{*}$ are γ -contraction operators in L^{∞} norm, meaning:
- For any two VFs $\mathbf{v_1}$ and $\mathbf{v_2}$,

$$\begin{split} \|\mathbf{B}_{\pi}\mathbf{v_1} - \mathbf{B}_{\pi}\mathbf{v_2}\|_{\infty} &\leq \gamma \|\mathbf{v_1} - \mathbf{v_2}\|_{\infty} \\ \|\mathbf{B}_{*}\mathbf{v_1} - \mathbf{B}_{*}\mathbf{v_2}\|_{\infty} &\leq \gamma \|\mathbf{v_1} - \mathbf{v_2}\|_{\infty} \end{split}$$

- So we can invoke Contraction Mapping Theorem to claim fixed point
- We use the notation $\mathbf{v_1} \leq \mathbf{v_2}$ for any two VFs $\mathbf{v_1}, \mathbf{v_2}$ to mean:

$$\mathsf{v}_1(s) \leq \mathsf{v}_2(s)$$
 for all $s \in \mathcal{S}$

- Also, both \mathbf{B}_{π} and \mathbf{B}_{*} are monotonic, meaning:
- For any two VFs $\mathbf{v_1}$ and $\mathbf{v_2}$,

$$\mathbf{v}_1 \leq \mathbf{v}_2 \Rightarrow \mathbf{B}_{\pi} \mathbf{v}_1 \leq \mathbf{B}_{\pi} \mathbf{v}_2$$

 $\mathbf{v}_1 \leq \mathbf{v}_2 \Rightarrow \mathbf{B}_{*} \mathbf{v}_1 \leq \mathbf{B}_{*} \mathbf{v}_2$

Policy Evaluation

- ullet ${f B}_{\pi}$ satisfies the conditions of Contraction Mapping Theorem
- ullet ${f B}_{\pi}$ has a unique fixed point ${f v}_{\pi}$, meaning ${f B}_{\pi}{f v}_{\pi}={f v}_{\pi}$
- This is a succinct representation of Bellman Expectation Equation
- \bullet Starting with any VF v and repeatedly applying $\textbf{B}_{\pi},$ we will reach \textbf{v}_{π}

$$\lim_{N
ightarrow \infty} \mathbf{B}_{\pi}^{N} \mathbf{v} = \mathbf{v}_{\pi}$$
 for any VF \mathbf{v}

• This is a succinct representation of the Policy Evaluation Algorithm

Policy Improvement

- Let π_k and \mathbf{v}_{π_k} denote the Policy and the VF for the Policy in iteration k of Policy Iteration
- Policy Improvement Step is: $\pi_{k+1} = G(\mathbf{v}_{\pi_k})$, i.e. deterministic greedy
- Earlier we argued that $\mathbf{B}_*\mathbf{v} = \mathbf{B}_{G(\mathbf{v})}\mathbf{v}$ for any VF \mathbf{v} . Therefore,

$$\mathbf{B}_* \mathbf{v}_{\pi_k} = \mathbf{B}_{G(\mathbf{v}_{\pi_k})} \mathbf{v}_{\pi_k} = \mathbf{B}_{\pi_{k+1}} \mathbf{v}_{\pi_k} \tag{1}$$

• We also know from operator definitions that $\mathbf{B}_*\mathbf{v} \geq \mathbf{B}_{\pi}\mathbf{v}$ for all π, \mathbf{v}

$$\mathbf{B}_* \mathbf{v}_{\pi_k} \ge \mathbf{B}_{\pi_k} \mathbf{v}_{\pi_k} = \mathbf{v}_{\pi_k} \tag{2}$$

• Combining (1) and (2), we get:

$$\mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_{\mathbf{k}}} \geq \mathbf{v}_{\pi_{\mathbf{k}}}$$

• Monotonicity of $\mathbf{B}_{\pi_{k+1}}$ implies

$$\begin{split} \mathbf{B}_{\pi_{k+1}}^{N} \mathbf{v}_{\pi_k} &\geq \dots \mathbf{B}_{\pi_{k+1}}^2 \mathbf{v}_{\pi_k} \geq \mathbf{B}_{\pi_{k+1}} \mathbf{v}_{\pi_k} \geq \mathbf{v}_{\pi_k} \\ \mathbf{v}_{\pi_{k+1}} &= \lim_{N \to \infty} \mathbf{B}_{\pi_{k+1}}^{N} \mathbf{v}_{\pi_k} \geq \mathbf{v}_{\pi_k} \end{split}$$

Policy Iteration

- ullet We have shown that in iteration k+1 of Policy Iteration, ${f v}_{\pi_{{f k}+1}} \geq {f v}_{\pi_{{f k}}}$
- If $\mathbf{v}_{\pi_{\mathbf{k}+1}} = \mathbf{v}_{\pi_{\mathbf{k}}}$, the above inequalities would hold as equalities
- ullet So this would mean ${f B}_*{f v}_{\pi_{f k}}={f v}_{\pi_{f k}}$
- But B_{*} has a unique fixed point v_{*}
- ullet So this would mean $oldsymbol{v}_{\pi_{oldsymbol{k}}} = oldsymbol{v}_*$
- \bullet Thus, at each iteration, Policy Iteration either strictly improves the VF or achieves the optimal VF \textbf{v}_*

Value Iteration

- B_{*} satisfies the conditions of Contraction Mapping Theorem
- B_* has a unique fixed point v_* , meaning $B_*v_*=v_*$
- This is a succinct representation of Bellman Optimality Equation
- \bullet Starting with any VF \boldsymbol{v} and repeatedly applying \boldsymbol{B}_* , we will reach \boldsymbol{v}_*

$$\lim_{N o\infty} \mathbf{B}_*^N \mathbf{v} = \mathbf{v}_*$$
 for any VF \mathbf{v}

• This is a succinct representation of the Value Iteration Algorithm

Greedy Policy from Optimal VF is an Optimal Policy

ullet Earlier we argued that $B_{G(oldsymbol{v})}oldsymbol{v}=B_*oldsymbol{v}$ for any VF $oldsymbol{v}$. Therefore,

$$\mathsf{B}_{G(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{B}_*\mathsf{v}_*$$

• But \mathbf{v}_* is the fixed point of \mathbf{B}_* , meaning $\mathbf{B}_*\mathbf{v}_* = \mathbf{v}_*$. Therefore,

$$\mathsf{B}_{G(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{v}_*$$

• But we know that $\mathbf{B}_{G(\mathbf{v}_*)}$ has a unique fixed point $\mathbf{v}_{G(\mathbf{v}_*)}$. Therefore,

$$\mathbf{v}_* = \mathbf{v}_{G(\mathbf{v}_*)}$$

- ullet This says that simply following the deterministic greedy policy $G(\mathbf{v}_*)$ (created from the Optimal VF \mathbf{v}_*) in fact achieves the Optimal VF \mathbf{v}_*
- ullet In other words, $G(\mathbf{v}_*)$ is an Optimal (Deterministic) Policy