1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Дисциплина: «Моделирование» Лабораторная работа №5

Тема работы:

«Исследование математической модели на основе технологии вычислительного эксперимента.»

Студент: Левушкин И. К.

Группа: ИУ7-62Б

Преподаватель: Градов В. М.

Цель работы

Получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа. Исследование проводится с помощью программы, созданной в лабораторной работе №4.

Исходные данные

1. Значения параметров (все размерности согласованы)

$$k(T) = a_1(b_1 + c_1 T^{m_1}), \, \text{Вт/см K},$$

 $c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2}, \, \text{Дж/см}^3 \text{К}.$

Порядки величин (как в лаб. работе №4):

$$a_1 = 0.0134, b_1 = 1, c_1 = 4.3510^{-4}, m_1 = 1,$$

$$a_2 = 2.049, b_2 = 0.56310^{-3}, c_2 = 0.52810^5, m_2 = 1.$$

$$\alpha(x) = \frac{c}{x - d}.$$

Порядки величин (как в лаб. работе №4):

$$\alpha_0 = 0.05 \; \mathrm{Bt/cm^2 \; K},$$

$$\alpha_N = 0.01 \; \mathrm{Br/cm^2} \; \mathrm{K},$$

$$l = 10 \text{ cm},$$

$$T_0 = 300 \text{ K},$$

$$R = 0.5 \text{ cm},$$

2. Поток тепла F(t) при x=0

$$F(t)=rac{F_{max}}{t_{max}}te^{-(rac{t}{t_{max}}-1)}$$
, где $F_{m}ax,t_{m}ax$ - амплитуда импульса потока и время ее достижения ($\mathrm{Br/cm^2}$ и с).

Результаты работы

Задание 1.

Провести исследование по выбору оптимальных шагов по времени τ и пространству h. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Рассмотреть влияние на получаемые результаты амплитуды импульса F_{max} и времени t_{max} (определяют крутизну фронтов и длительность импульса).

Точность расчета можно оценить разными способами.

- 1. Уменьшая шаги и наблюдая сходимость решений, как это делалось в лаб. работе №1.
- 2. Проверяя, соблюдается ли при выбранных h, τ баланс мощности после выхода на стационарное распределение температуры (в установившемся режиме), реализующееся при F(t) = const, т.е. в этом режиме должно выполняться условие: подводимая мощность равна отводимой. Имеем

$$\pi R^2(F_0 - F_N) = 2\pi R \int_0^l \int \alpha \left[T(x, t_m) - T_0 \right] dx,$$

окончательно

$$\frac{F_0 - F_N}{\frac{2}{R} \int_0^l \int \alpha \left[T(x, t_m) - T_0 \right] dx} - 1 \leqslant \varepsilon. \tag{1}$$

Задать точность ε примерно 10^-2 . Здесь t_m - время выхода на стационарный режим, т.е. когда температура перестает меняться с за-данной точностью (см. лаб. работу $N \cdot 4$).

Замечание. Варьируя параметры задачи, следует иметь ввиду, что решения, в ко-торых температура превышает значения примерно 2000К, физического смысла не имеют и практического интереса не представляют.

Решение

Начнем исследование по выбору оптимальных шагов по времени и пространству, проверяя выполнение неравенства (1) из 2 способа на следующем диапазоне шагов: по t: $\tau = 1, 2, ..., 10$ сек, по x: h = 0.1, 0.2, ..., 1 см. $F(t) = const = F_0$.

Ниже представлены результаты выполнения/не выполнения неравенства (1) на заданном диапазоне шагов в виде множества точек на графике $\tau(h)$, где точки (h_i, τ_i) означают, что при шагах $h = h_i, \tau = \tau_i$ неравенство выполняется.

Рис. 1: Выполнение неравенства (1) при определенных шагах

Отсюда видно, что при h>0.3 см, баланс мощности после выхода на стационарное распределение температуры не соблюдается. Также, из данного эксперимента вытекает, что баланс мощности после выхода на стационарное распределение температуры не зависит от шага по времени. Это обусловлено тем, что параметры неравенства (1) не зависят от τ .

Таким образом, остановимся на $h=0.3\ {
m cm}$ и начнем уменьшать шаги по времени.

Для функции $F(t)=rac{F_{max}}{t_{max}}te^{-(rac{t}{t_{max}}-1)},$ подберем $F_{max}=30~{\rm Br/cm^2},\,t_{max}=20$ с..

Поскольку график функции $F(t) = \frac{30}{20}te^{-(\frac{t}{20}-1)} \approx 0$ при t > 160 с. (рис. 2), то будем проводить измерения при $t_i = 18,72,144$ с. (поскольку при t > 160 стержень уже практически весь остынет и будет нечего сравнивать).

Рис. 2: График функции $F(t) = \frac{30}{20} t e^{-(\frac{t}{20}-1)}$

Ниже приведены 3 таблицы для $t_i=18,72,144$ с. соответственно.

Каждая колонка (кроме 1-ой) соответствует значениям функции $T(x,t_i)$ при шагах τ_k по t и h=0.3 см по x.

+		+		+		-+		+			-+		+		+
ī	х,см	T(t_i=18c),	tau = 9c	T(t_i=18	Bc), tau = 60	T(t_i	=18c), tau	= 3c	T(t_i=18c),	tau = 1c	T(t_i=180	:), tau	= 0.5c	T(t_i=18c),	tau = 0.25c
+								+							+
Ī	0.00	698.6	470	70	94.7200		711.0016	I	715.48	807	73	.6.6590		717.	2604 l
1	0.30	418.3	3414	42	20.1297		421.8280	I	423.0	352	42	3.3699		423.	5453
1	0.60	336.0	523] 33	36.0652		335.7837	- 1	335.4	113] 33	5.2971		335.	2377
1	0.90	311.1	1787] 33	10.8767		310.3318	- 1	309.7	716	30	9.5989		309.	5070
1	1.20	303.5	058	30	03.2774		302.9144	- 1	302.5	578	30	2.4482		302.	3897
1	1.50	301.1	L088	30	00.9848		300.8021	I	300.6	329	30	0.5826		300.	5560
1	1.80	300.3	5532] 30	00.2950		300.2157	I	300.1	482] 30	0.1294		300.	1197
1	2.10	300.1	132] 30	00.0881		300.0568	I	300.0	330	30	0.0269		300.	0239 l
T	2.40	300.0	365] 30	00.0263		300.0147	I	300.0	970] 30	0.0053		300.	0044
1	2.70	300.0	118] 30	00.0078	1	300.0037	- 1	300.0	914	30	0.0010	I	300.	0008

Рис. 3: Таблица T(x, 18). h = 0.3 см.

x,cm T(t	:_i=72c), tau =		_i=72c), tau =	6c T(t	_i=72c), tau =	3c T(1	t_i=72c), tau =	1c T(t		.5c T(t	_i=72c), tau = 0.25
0.00	475.2750	 	475.2583		475.0150	 	474.7235	+	474.6338	- 	474.5865
0.30	377.2207		377.5177		377.6289		377.5903		377.5658		377.5512
0.60	334.5280		334.9302		335.2299		335.3617		335.3849		335.3951
0.90	315.6171		315.9582		316.2606		316.4326		316.4709		316.4893
1.20	307.1179		307.3534		307.5833		307.7299		307.7652		307.7826
1.50	303.2566		303.4000		303.5499		303.6530		303.6790		303.6920
1.80	301.4907		301.5704		301.6581		301.7218		301.7385		301.7469
2.10	300.6810		300.7220		300.7688		300.8043		300.8138		300.8187
2.40	300.3099		300.3296		300.3525		300.3703		300.3752		300.3777
2.70	300.1403		300.1491		300.1593		300.1673		300.1696		300.1707
3.00	300.0632		300.0668		300.0708		300.0740		300.0748		300.0753
3.30	300.0283		300.0296		300.0309		300.0319		300.0322		300.0323
3.60	300.0126		300.0130		300.0133		300.0134		300.0134		300.0134
3.90	300.0056		300.0056		300.0056		300.0055		300.0054		300.0054
4.20	300.0024		300.0024		300.0023		300.0022		300.0021		300.0021

Рис. 4: Таблица T(x,72). h=0.3 см.

>							_i=144c), tau = 0.2
	0.00	310.8666	310.6081	310.3689	310.2208	310.1853	310.1678
	0.30	305.2961	305.0905	304.8990	304.7802	304.7516	304.7375
	0.60	302.7241	302.5850	302.4533	302.3707	302.3508	302.3410
	0.90	301.4626	301.3757	301.2913	301.2375	301.2244	301.2179
	1.20	300.8112	300.7600	300.7085	300.6748	300.6665	300.6624
	1.50	300.4604	300.4319	300.4018	300.3814	300.3763	300.3738
	1.80	300.2653	300.2503	300.2336	300.2218	300.2188	300.2173
	2.10	300.1542	300.1469	300.1382	300.1317	300.1300	300.1291
	2.40	300.0899	300.0867	300.0826	300.0793	300.0784	300.0779
	2.70	300.0524	300.0513	300.0496	300.0480	300.0476	300.0474
	3.00	300.0304	300.0302	300.0297	300.0292	300.0290	300.0289
	3.30	300.0176	300.0177	300.0177	300.0176	300.0176	300.0176
	3.60	300.0101	300.0103	300.0105	300.0106	300.0106	300.0106
	3.90	300.0057	300.0059	300.0062	300.0063	300.0063	300.0063

Рис. 5: Таблица T(x, 144). h = 0.3 см.

Фиксируя x_j и сравнивая на этой строке значения $T(x_j,t_i)$ при разных шагах τ в каждой таблице, придем к выводу, что наиболее оптимальный шаг по времени $\tau=1$ с., поскольку при $\tau>1$ значения T далеки от точного, а при $\tau<1$ различия уже незначительные (наблюдается сходимость решений).

Пример:

Фиксируем $x_j = 0.3$ см;

 $T(t_i=18)=418.3414,420.1297,421.8280,423.0352,423.3699,423.5453$ К при $\tau=9,6,3,1,0.5,0.25$ с. соответственно.

Далее, начнем уменьшать шаги по пространству h при $\tau=1$ с..

Ниже приведены 3 таблицы для $t_i = 18, 72, 144$ с. соответственно.

Каждая колонка (кроме 1-ой) соответствует значениям функции $T(x,t_i)$ при шагах h_k см по x и $\tau=1$ с. по t.

									T(t_i=18c),h=0.005см		
 0.00	 715.4807	-+ 	722.8159	+ 	716.3603	+ 	709.4603	-+- 	708.5146	+ 	707.7466
0.30	423.0352		481.9886		444.1038		414.0602		413.8101		413.6110
0.60	335.4113		349.4057		338.4945		330.1204		330.0570		330.0082
0.90	309.7716		312.6328		309.6169		307.7659		307.5653		307.4095
1.20	302.5578		302.9841		302.2030		301.6601		301.6566		301.6541
1.50	300.6329		300.3788		300.3495		300.3373		300.3365		300.3360
1.80	300.1482		300.0725		300.0650		300.0621		300.0619		300.0618
2.10	300.0330		300.0128		300.0110		300.0104		300.0104		300.0104
2.40	300.0070		300.0038		300.0024		300.0016		300.0016		300.0016

Рис. 6: Таблица T(x, 18). $\tau = 1$ с.

+	+		+		+		+		+		+		
	х,см	T(t_i=72c),h=0.3cm											
+ 	 0.00	474.7235	1	 475.1732	+ 	 473.8360	+ 	472.4725	+ 	472.2882		472.1389	
	0.30	377.5903		399.6132		385.7095		373.8286		373.7317		373.6542	
	0.60	335.3617		343.7813		337.6780		332.5178		332.4680		332.4285	
	0.90	316.4326		319.6933		316.9351		315.0193		314.7970		314.6218	
	1.20	307.7299		308.9947		307.7198		306.6657		306.6531		306.6432	
	1.50	303.6530		303.1922		303.1060		303.0495		303.0433		303.0385	
I	1.80	301.7218		301.4615		301.4168		301.3887		301.3858		301.3835	
	2.10	300.8043		300.6610		300.6383		300.6246		300.6232		300.6222	
	2.40	300.3703		300.3856		300.3237		300.2756		300.2750		300.2745	
	2.70	300.1673		300.1685		300.1402		300.1221		300.1200		300.1185	
	3.00	300.1673		300.0717		300.0590		300.0511		300.0502		300.0495	
	3.30	300.0740		300.0296		300.0241		300.0207		300.0203		300.0200	
	3.60	300.0319		300.0118		300.0095		300.0081		300.0079		300.0078	
	3.90	300.0134		300.0045		300.0036		300.0030		300.0030		300.0029	
	4.20	300.0055		300.0017		300.0013		300.0011		300.0011		300.0011	

Рис. 7: Таблица T(x,72). $\tau=1$ с.

+		+	+		-+-		+		+		+	
1						T(t_i=144c),h=0.05см 						
1	0.00	+ 310.2208		310.4836		 310.4870	+ 	310.4809	+ 	310.4799	+ 	310.4791
1	0.30	304.7802		306.1619		305.4092		304.7569		304.7562		304.7556
1	0.60	302.3707		302.9319		302.5935		302.3011		302.3006		302.3002
1	0.90	301.2375		301.4774		301.3153		301.2013		301.1880		301.1775
1	1.20	300.6748		300.7816		300.6994		300.6288		300.6286		300.6284
1	1.50	300.3814		300.3554		300.3513		300.3491		300.3489		300.3488
1	1.80	300.2218		300.2038		300.2010		300.1995		300.1993		300.1992
1	2.10	300.1317		300.1193		300.1174		300.1163		300.1162		300.1162
1	2.40	300.0793		300.0842		300.0758		300.0687		300.0687		300.0686
1	2.70	300.0480		300.0502		300.0451		300.0416		300.0412		300.0408
1	3.00	300.0480		300.0300		300.0269		300.0247		300.0245		300.0243
1	3.30	300.0292		300.0178		300.0159		300.0146		300.0145		300.0144
1	3.60	300.0176		300.0105		300.0094		300.0086		300.0085		300.0084

Рис. 8: Таблица T(x, 144). $\tau = 1$ с.

Фиксируя x_j и сравнивая на этой строке значения $T(x_j,t_i)$ при разных шагах h в каждой таблице, придем к выводу, что наиболее оптимальный шаг по пространству h=0.01 см, поскольку при h>1 значения T далеки от точного, а при h<1 различия уже незначительные (наблюдается сходимость решений).

Пример:

Фиксируем $x_i = 0.6$ см;

 $T(t_i = 18) = 335.4113, 349.4057, 338.4945, 330.1204, 330.0570, 330.0082 \text{ K}$

при h = 0.3, 0.1, 0.05, 0.01, 0.005, 0.001 см., соответственно.

Таким образом, оптимальные шаги:

 $\tau = 1.0 \text{ c.}$

h = 0.01 cm.

При этом F_{max} и t_{max} будут влиять на полученные результаты только в том случае, если сделать их слишком маленькими (близкими к 0). При уменьшении t_{max} будет меняться выбор, какие t_i нужно будет фиксировать для $T(x_j, t_i)$. Поскольку, если задать t_{max} очень маленьким (близким к 0), то стержень быстро остынет и сравнивать будет уже нечего на больших t_i .

Пример:

Зададим $t_{max}=0.7$ с.. Тогда график функции F(t) выглядит следующим образом:

Рис. 9: График функции $F(t) = \frac{30}{0.7} t e^{-(\frac{t}{20}-1)}$

Где видно, что уже при t=9 с. $F(t)\approx 0$. А значит уже при t>20 (когда стержень практически полностью остынет) температура по всей длине стержня будет практически равна 300 К. Поэтому придется сравнивать только при малых t_i . Соответственно, если уменьшить t_max на столько, что оно будет меньше тестируемого шага τ , то и сравнить ничего не получится.

То же самое касается и F_{max} . Если задать его значение близким к 0, то стержень в принципе не будет нагреваться и сравнивать будет нечего (рис. 10).

Рис. 10: График функции $F(t) = \frac{0.2}{19} t e^{-(\frac{t}{20}-1)}$

Задание 2.

 Γ рафик зависимости температуры T(0,t) при 3-4 значениях параметров a_2 и/или b_2 теплоемкости.

Решение

Ниже приведены графики температуры T(0,t) при 4 значениях параметров a_2 теплоемкости.

Рис. 11: График функции T(0,t) при $b_2=0.563e-3$

Как и указано в справке с ростом теплоемкости темп нарастания температуры снижается.

Задание 3.

График зависимости температуры T(0,t) (т.е. $npu \ x=0$) в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν (частота onpedennem cя количеством импульсов в 1 секунду).

Показать, что при большом количестве импульсов температурное поле начинает в точности воспроизводиться от импульса к импульсу.

Продемонстрировать, как по мере роста частоты импульсов размах колебаний температуры уменьшается (вплоть до нуля), т.е. реализуется квазистационарный режим, при котором в торец поступает постоянный поток $F_c = \nu \int_0^{t_u} F(t) dt$. Здесь t_u - длительность импульса, определяемая как момент времени, когда $\frac{F(t_u)}{F_{max}} \approx 0.05$. Если взять прямоугольные импульсы длительностью t_u , т.е. $F(t) = const = F_0$, то $F_c = \nu F_0 t_u$.

Справка. Полученное температурное поле должно совпасть с результатом расчета T(x) по программе лаб. работы №3 при $F_0 = F_c$, разумеется при всех одинаковых параметрах модели, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3.

Решение

Частотный режим реализуется следующим образом:

- Заводится массив $pulses_t$ для t_i , содержащий информацию о том, сколько прошло времени с момента запуска i- импульса.
- В момент времени $T = \frac{1}{\nu}$, заносится в массив текущее значение времени t. Затем происходит обнуление t (запускается следующий импульс).
- F(t) находится как сумма текущей волны и всех предыдущих, состояние которых лежит в массиве $pulses_t$.
- В конце каждой итерации по времени происходит увеличение всех элементов массива $pulses_t$ на τ (обновляется состояние каждого импульса).

Ниже приведен график зависимости T(0,t) в частотном режиме теплого нагружения при $\nu=0.01$ (т. е. второй импульс запускается, когда t=100 с.); $F_{max}=50~{\rm Br/cm^2}; t_{max}=20$ с.:

Рис. 12: График функции T(0,t) при $\nu=0.01.$ $F_{max}=50$ Вт/см²; $t_{max}=20$ с.

Видно, что во время достижения амплитуды второго импульса, температура больше, чем во время достижения первого импульса. Это говорит о том, что к этому моменту времени первый импульс еще не успел до конца затухнуть.

Ниже приведены графики зависимости T(0,t) в частотном режиме теплого нагружения с постепенным увеличением частоты от $\nu=0.05$ с. до $\nu=0.5$ 1/с. с шагом 0.05 1/с.. $F_{max}=5$ Вт/см²(уменьшено в 10 раз, поскольку в условиях задачи сказано, что решения, в которых температура превышает значения примерно 2000K, физического смысла не имеют и практического интереса не представляют.); $t_{max}=20$ с.:

График функции T(0,t) при $\nu=0.05~1/{\rm c}.$ $F_{max}=5~{\rm BT/cm^2};~t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.1~1/{\rm c}.$ $F_{max}=5~{\rm BT/cm^2};\,t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.15~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};\,t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.2~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};\,t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.25~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};\,t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.3~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};~t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu = 0.35$ 1/с. $F_{max} = 5$ Вт/см²; $t_{max} = 20$ с.

График функции T(0,t) при $\nu = 0.4 \text{ 1/c}$. $F_{max} = 5 \text{ BT/cM}^2$; $t_{max} = 20 \text{ c}$.

График функции T(0,t) при $\nu=0.45~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};~t_{max}=20~{\rm c}.$

График функции T(0,t) при $\nu=0.5~1/{\rm c}.$ $F_{max}=5~{\rm Br/cm^2};\,t_{max}=20~{\rm c}.$

Видно, что при $\nu=0.5~1/{\rm c}$ температурное поле в точности воспроизводиться от импульса к импульсу.

Возьмем k(x) из лаб. работы №3 вместо k(T). Остальные параметры оставим такими же. При $t_u=115.0$ с. $\frac{F(t_u)}{F_{max}}\approx 0.05$.

Следовательно, $F_c=0.5\int_0^{115.0}\frac{5}{20}te^{-(\frac{t}{20}-1)}dt=132.994$ К.

Ниже приведен график распределения T(0,t) при описанных выше параметрах.

Рис. 13: График функции T(0,t) при $\nu=0.5$. $F_{max}=5~{\rm Bt/cm^2};\,t_{max}=20;k(x)$ с.

Видно, что при установлении квазистационарного режима $T\approx 710$ K, что совпадает с результатом расчета T(x) по программе лаб. работы №3 при $F_0=F_c$.

Примечание:

Все измерения в текущем задании были сделаны при оптимальных шагах h=0.01 см.; au=1 с., полученных в задании 1.