Mathematical Analysis

Chapter 11 Normed Vector Spaces

P. Boily (uOttawa)

Winter 2022

Overview

The main aim of this chapter is to show that linear transformations between finite-dimensional normed vector spaces (n.v.s.) over \mathbb{K} are continuous.

Outline

11.1 - Normed Vector Spaces (p.3)

11.2 - Exercises (p.18)

11.1 - Normed Vector Spaces

Normed vector spaces were introduced in chapter 9.

Let $p \geq 1$ and $A \in \mathbb{M}_{m,n}(\mathbb{K})$. Define

$$||A||_p = \sup_{\|\mathbf{x}\|_p \le 1} ||A\mathbf{x}||_p.$$

It is not too hard to show that

$$||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}, \quad ||A||_{1} = \max_{1 \le j \le n} \left\{ \sum_{i=1}^{m} |a_{ij}| \right\}$$
 (1)

$$||A||_2 =$$
 largest singular value of A (2)

The operations of a normed vector space behave extremely well.

Proposition 139. Let E be a normed vector space over \mathbb{K} . The maps $+: E \times E \to E$ and $\cdot: \mathbb{K} \times E \to E$ are continuous.

Proof. Left as an exercise.

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be normed vector spaces over \mathbb{K} .

A map $T: E \to F$ is **linear** if

$$T(\mathbf{0}_E) = \mathbf{0}_F$$
 and $T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}), \ \forall a, b \in \mathbb{K}, \mathbf{x}, \mathbf{y} \in E.$

The set of all linear maps from E to F is denoted by L(E,F). For instance, if $E=\mathbb{K}^n$ and $F=\mathbb{K}^m$, then $L(E,F)\simeq \mathbb{M}_{m,n}(\mathbb{K})$.

Theorem 140. Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be two normed vector spaces over \mathbb{K} and let $f \in L(E, F)$. The following conditions are equivalent:

- 1. f is continuous over E
- 2. f is continuous at $\mathbf{0} \in E$
- 3. f is bounded over $\overline{B(\mathbf{0},1)}$
- 4. f is bounded over $S(\mathbf{0}, 1)$
- 5. $\exists M > 0$ such that $||f(\mathbf{x})||_F \leq M ||\mathbf{x}||_E$ for all $\mathbf{x} \in E$.
- 6. f is Lipschitz continuous
- 7. f is uniformly continuous

Proof. The implications 1. \Longrightarrow 2., 3. \Longrightarrow 4., 5. \Longrightarrow 6. \Longrightarrow 7. \Longrightarrow 1. are clear.

2. \Longrightarrow 3.: Let $\varepsilon = 1$. By continuity at $\mathbf{0}$, $\exists \delta > 0$ such that

$$||f(\mathbf{x}) - f(\mathbf{0})||_F = ||f(\mathbf{x})||_F \le 1$$

whenever $\|\mathbf{x} - \mathbf{0}\|_E = \|\mathbf{x}\|_E \le \delta$. Now, let $\mathbf{y} \in \overline{B(\mathbf{0}, 1)}$. Since f is linear, we have

$$||f(\mathbf{y})||_F = ||f(\frac{1}{\delta}\delta\mathbf{y})||_F = \frac{1}{\delta}||f(\delta\mathbf{y})||_F.$$

Since $\|\delta \mathbf{y}\|_E \leq \delta \|\mathbf{y}\|_E \leq \delta$. Consequently, $\|f(\delta \mathbf{y})\|_F \leq 1$ and

$$||f(\mathbf{y})||_F = \frac{1}{\delta}||f(\delta \mathbf{y})||_F \le \frac{1}{\delta}.$$

But $\mathbf{y} \in \overline{B(\mathbf{0},1)}$ is arbitrary, so that f is bounded by $\frac{1}{\delta}$ over $\overline{B(\mathbf{0},1)}$.

4. \Longrightarrow 5.: Since f is bounded over $S(\mathbf{0},1)$, $\exists N>0$ s.t. $||f(\mathbf{x})||_F\leq N$ whenever $||\mathbf{x}||_E=1$.

Suppose $\mathbf{y} \neq 0_E \in E$. Then, since f is linear we have

$$||f(\mathbf{y})||_F = \left| \left| f\left(||\mathbf{y}||_E \frac{\mathbf{y}}{||\mathbf{y}||_E} \right) \right| \right|_F = ||\mathbf{y}||_E \left| \left| f\left(\frac{\mathbf{y}}{||\mathbf{y}||_E} \right) \right| \right|_F.$$
(3)

However, $\left\|\frac{\mathbf{y}}{\|\mathbf{y}\|_E}\right\|_E = 1$ so that $\left\|f\left(\frac{\mathbf{y}}{\|\mathbf{y}\|_E}\right)\right\|_F \leq N$.

Substituting this last result in (3), we get that $||f(\mathbf{y})||_F \leq N||\mathbf{y}||_E$ for all $\mathbf{0} \neq \mathbf{y} \in E$.

When $\mathbf{y}=0$, the inequality remains valid since $f(\mathbf{0}_E)=\mathbf{0}_F$ and $0=\|\mathbf{0}_F\|_F\leq N\|\mathbf{0}_E\|_E=0$. This completes the proof.

If $f \in L(E, F)$ is continuous (that is, if $f \in L_c(E, F)$), it then makes sense to define

$$||f|| = \sup_{\|\mathbf{x}\|_E = 1} ||f(\mathbf{x})||_F = \sup_{\|\mathbf{x}\|_E \le 1} ||f(\mathbf{x})||_F.$$

With this definition, $(L_c(E,F), \|\cdot\|)$ is a normed vector space.

Furthermore, if $f \in L_c(E,F)$ and $g \in L_c(F,G)$ then $g \circ f \in L_c(E,G)$ and we have

$$||(g \circ f)(\mathbf{x})|| = ||g(f(\mathbf{x}))|| \le ||g|||f(\mathbf{x})|| \le ||g|||f|||\mathbf{x}|| \le M||\mathbf{x}||$$

for some M>0 and for all $\mathbf{x}\in E$. In particular, $\|f\circ g\|\leq \|f\|\|g\|$.

The composition thus defines a kind of multiplication on $L_c(E, E)$; together with this multiplication, $L_c(E, E)$ is a **normed algebra**.

Theorem 141. If F is a Banach space over \mathbb{K} , then so is $L_c(E,F)$.

Proof. Let $(f_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $L_c(E,F)$. For all $\mathbf{x}\in E$, $(f_n(\mathbf{x}))_{n\in\mathbb{N}}$ is a sequence in F. Fix such an \mathbf{x} . Thus, for all $p,q\in\mathbb{N}$,

$$||f_p(\mathbf{x}) - f_q(\mathbf{x})||_F = ||(f_p - f_q)(\mathbf{x})||_F \le ||f_p - f_q|||\mathbf{x}||_E.$$

Let $\varepsilon > 0$. Since (f_n) is a Cauchy sequence in $L_c(E, F)$, $\exists M \in \mathbb{N}$ such that $||f_p - f_q||_F \le \varepsilon$ whenever p, q > M.

As a result, $||f_p(\mathbf{x}) - f_q(\mathbf{x})||_F < \varepsilon ||\mathbf{x}||_E$ whenever p, q > M, so that $(f_n(\mathbf{x}))_{n \in \mathbb{N}}$ is a Cauchy sequence in F.

But F is complete so that $f_n(\mathbf{x}) \to f(\mathbf{x}) \in F$ for all $\mathbf{x} \in E$, which defines a map $f: E \to F$.

It remains only to show that $f \in L_c(E,F)$ and that $f_n \to f$ in $(L_c(E,F),\|\cdot\|)$.

The map f is linear as

$$f(a\mathbf{x} + b\mathbf{y}) = \lim_{n \to \infty} f_n(a\mathbf{x} + b\mathbf{y}) = \lim_{n \to \infty} \left[af_n(\mathbf{x}) + bf_n(\mathbf{y}) \right] = af(\mathbf{x}) + bf(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in E$, $a, b \in \mathbb{K}$.

Furthermore, f is continuous since, as the Cauchy sequence (f_n) is necessarily bounded, $\exists N>0$ such that $\|f_n\|\leq N$. Fix $\mathbf{x}\in E$ to get $\|f_n(\mathbf{x})\|_F\leq N\|\mathbf{x}\|_E$ for all n. As $n\to\infty$, we see that $\|f(\mathbf{x})\|_F\leq N\|\mathbf{x}\|_E$.

Finally, we need to show that $f_n \to f$ in $L_c(E, F)$.

Let $\varepsilon > 0$. Since (f_n) is a Cauchy sequence in $L_c(E, F)$, $\exists K > 0$ such that $||f_p - f_q|| < \varepsilon$ whenever p, q > K. Now, fix $\mathbf{x} \in E$. Then,

$$||f_p(\mathbf{x}) - f_q(\mathbf{x})||_F \le ||f_p - f_q|| ||\mathbf{x}||_E < \varepsilon ||\mathbf{x}||_E$$

whenever p, q > N. If we fix p and let $q \to \infty$, then we have

$$||f_p(\mathbf{x}) - f(\mathbf{x})||_F < \varepsilon ||\mathbf{x}||_E$$

whenever p > N. Since this holds for all $\mathbf{x} \in E$, we have $||f_p - f|| \le \varepsilon$ for all p > N, i.e. $f_n \to f$ in $L_c(E, F)$.

We have seen that the metrics d_p are equivalent in \mathbb{K}^n , for $p \geq 1$. Can the same be said about the norms?

In fact, we can say even more: not only are the p-norms equivalent, but all norms on \mathbb{K}^n are equivalent.

Proposition 142. Let E be a finite dimensional vector space over \mathbb{K} . All norms on E are equivalent.

Proof. Suppose $\dim_{\mathbb{K}}(E) = n < \infty$. If $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a basis of E, any $\mathbf{x} \in E$ can be written uniquely as a linear combination $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i$.

It is easy to see that the function $N_0: E \to \mathbb{R}$, where

$$N_0(\mathbf{x}) = \|\varphi(\mathbf{x})\|_{\infty} = \|(x_1, \dots, x_n)\|_{\infty} = \sup\{|x_i| \mid i = 1, \dots, n\},\$$

defines a norm on E. Let $N:E\to\mathbb{R}$ be any norm on E and set $a=\sum_{i=1}^n N(\mathbf{e}_i)$.

If $\mathbf{x} \in E$, we have

$$N(\mathbf{x}) = N\left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) \le \sum_{i=1}^{n} N(x_i \mathbf{e}_i) \le \sum_{i=1}^{n} |x_i| N(\mathbf{e}_i)$$
$$\le \sup_{i=1,\dots,n} |x_i| \sum_{i=1}^{n} N(\mathbf{e}_i) = N_0(\mathbf{x}) \cdot a$$

so that $N(\mathbf{x}) \leq aN_0(\mathbf{x})$ for all $\mathbf{x} \in E$.

But the map $\varphi: (E, N_0) \to (\mathbb{K}^n, \|\cdot\|_{\infty})$ is an **isometry** since $N_0(\mathbf{x}) = \|\mathbf{x}\|_{\infty}$ for all $\mathbf{x} \in E$, which means that it must be continuous (why?).

Since

$$\tilde{S} = \{(x_1, \dots, x_n) \in \mathbb{K}^n \mid ||(x_1, \dots, x_n)||_{\infty} = 1\} \subseteq_K \mathbb{K}^n,$$

then
$$S = \varphi^{-1}(\tilde{S}) = \{ \mathbf{x} \in E | N_0(\mathbf{x}) = 1 \} \subseteq_K E$$
.

But $N:(E,N_0)\to (\mathbb{R},|\cdot|)$ is also a continuous function: according to the Max/Min Theorem, $\exists \mathbf{x}^*\in S$ such that $N(\mathbf{x}^*)=\inf_{\mathbf{x}\in S}N(\mathbf{x})$.

Clearly, $N(\mathbf{x}^*) \neq 0$; otherwise we have $\mathbf{x}^* = \mathbf{0}$, which contradicts the fact that $\mathbf{x} \in S$ as $N_0(\mathbf{x}^*) = N_0(\mathbf{0}) = 0 \neq 1$. Hence $\inf_{\mathbf{x} \in S} N(\mathbf{x}) > 0$.

Write

$$\inf_{\mathbf{x} \in S} N(\mathbf{x}) = \frac{1}{b}$$

for the appropriate b > 0.

If $\mathbf{x} = \mathbf{0} \in E$, then

$$N(\mathbf{x}) = N(\mathbf{0}) = 0 \ge 0 = \frac{1}{b}N_0(\mathbf{0}) = \frac{1}{b}N_0(\mathbf{x}).$$

If $\mathbf{x} \neq \mathbf{0} \in E$, then $\frac{\mathbf{x}}{N_0(\mathbf{x})} \in S$ and

$$N(\mathbf{x}) = N\left(N_0(\mathbf{x})\frac{\mathbf{x}}{N_0(\mathbf{x})}\right) = N_0(\mathbf{x})N\left(\frac{\mathbf{x}}{N_0(\mathbf{x})}\right) \ge N_0(\mathbf{x}) \cdot \frac{1}{b}.$$

In both cases, $N_0(\mathbf{x}) \leq bN(\mathbf{x})$ for all $\mathbf{x} \in E$, and so any norm N on E is equivalent to the norm N_0 .

By transitivity, any such norms must then be equivalent to one another.

In general, this result is not valid if E is infinite-dimensional.

Corollary 143. Let E be a finite-dimensional vector space over \mathbb{K} and let $(F, \|\cdot\|_F)$ be any normed vector space over \mathbb{K} . If $f: E \to F$ is a linear mapping, then f is continuous.

Proof. Let $\{e_1, \dots, e_n\}$ be a basis of E. For any $\mathbf{x} \in E$, we have

$$||f(\mathbf{x})||_F = ||f(\sum x_i \mathbf{e}_i)||_F = ||\sum x_i f(\mathbf{e}_i)||_F$$

$$\leq \sum |x_i| ||f(\mathbf{e}_i)||_F \leq N_0(\mathbf{x}) \cdot \sum ||f(\mathbf{e}_i)||_F := aN_0(\mathbf{x}).$$

Then for any $\varepsilon > 0$, $\exists \delta = \frac{\varepsilon}{a}$ such that

$$||f(\mathbf{x}) - f(\mathbf{y})||_F = ||f(\mathbf{x} - \mathbf{y})||_F \le aN_0(\mathbf{x} - \mathbf{y}) < a\delta = \varepsilon$$

whenever $N_0(\mathbf{x} - \mathbf{y}) < \delta$, and so f is continuous.

Corollary 144. Any finite-dimensional vector space over \mathbb{K} is a Banach space.

Proof. This is an easy consequence of the facts that the map

$$\varphi: (E, N_0) \to (\mathbb{K}^n, \|\cdot\|_{\infty})$$

is an isometry and that $(\mathbb{K}^n, \|\cdot\|_{\infty})$ is a Banach space.

Corollary 145. Any finite-dimensional subspace of a normed vector space over \mathbb{K} is closed.

Corollary 146. The compact subsets of a finite-dimensional normed vector are the subsets that are both closed and bounded under the norm.

11.2 – Exercises

- 1. Show that (1) and (2) define norms over $\mathbb{M}_n(\mathbb{K})$.
- 2. Let E be a n.v.s. over \mathbb{R} and $A, B \subseteq E$. Denote $A+B = \{\mathbf{a}+\mathbf{b} \mid (\mathbf{a}, \mathbf{b}) \in A \times B\}$.
 - (a) If $A \subseteq_O E$, show that $A + B \subseteq_O E$.
 - (b) If $A \subseteq_K E$ and $B \subseteq_C E$, show that $A + B \subseteq_C E$. Is the result still true if A is only assumed to be closed in E?
- 3. Let E be a normed vector space over $\mathbb R$ and $\varphi:E\to\mathbb R$ be a linear functional on E.
 - (a) Show directly that φ is continuous on E if and only if $\ker \varphi \subseteq_C E$.
 - (b) i. Let F be a subspace of E. Show that the map $N:E/F o\mathbb{R}$ defined by

$$N([\mathbf{x}]) = \inf_{\mathbf{y} \in [\mathbf{x}]} \{ \|\mathbf{y}\| \}$$

is a **semi-norm** on the quotient space E/F. What more can you say if $F \subseteq_C E$? ii. Show part (a) again, using part (b)i.

- 4. Prove Proposition 139.
- 5. Prove Corollary 145.
- 6. Prove Corollary 146.
- 7. Let E be a normed vector space with a countably infinite basis. Show that E cannot be complete.
- 8. Let E be an infinite-dimensional normed vector space over \mathbb{R} . Show that $D(\mathbf{0},1)$ is not compact in E by showing that it is not pre-compact in E (by what name is this result usually known?).
- 9. If $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, define $\|\mathbf{x}\|_{\infty} = \sup\{|x_1|, \dots, |x_n|\}$. Show that $\mathbf{x} \mapsto \|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^n .
- 10. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and define the inner product $(\mathbf{x} \mid \mathbf{y}) = x_1 y_1 + \cdots + x_n y_n$. As seen in class, this inner product defines a norm $\|\mathbf{x}\| = \sqrt{(\mathbf{x} \mid \mathbf{x})}$. Show the **Parallelogram Identity**: $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 11. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Is it true that $\|\mathbf{x} + \mathbf{y}\|_{\infty} = \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$ if and only if $\mathbf{x} = c\mathbf{y}$ or $\mathbf{y} = c\mathbf{x}$ for some $c \geq 0$?

Solutions

2. Proof.

(a) We can write

$$A + B = \bigcup_{\mathbf{b} \in B} (A + \{\mathbf{b}\}).$$

If $A \subseteq_O E$, we obviously have $A + \{\mathbf{b}\} \subseteq_O E$ for any $\mathbf{b} \in B$.

Indeed, if $B(\mathbf{x}, \rho) \subseteq A$, then $B(\mathbf{x} + \mathbf{b}, \rho) \subseteq A + \{\mathbf{b}\}$. Thus A + B is a union of open sets: as a result, $A + B \subseteq_O E$.

(b) Let $(\mathbf{z}_n) = (\mathbf{x}_n + \mathbf{y}_n) \subseteq A + B$ be such that $\mathbf{z}_n \to \mathbf{z}$ where $(\mathbf{x}_n) \subseteq A$ and $(\mathbf{y}_n) \subseteq B$. Since $A \subseteq_K E$, there is a convergent subsequence $(\mathbf{x}_{\varphi(n)})$ with $\mathbf{x}_{\varphi(n)} \to \mathbf{x} \in A$.

Since $(\mathbf{z}_{\varphi(n)})$ converges to \mathbf{z} , the sequence $(\mathbf{y}_{\varphi(n)}) \subseteq B$ converges to $\mathbf{y} = \mathbf{z} - \mathbf{x}$. But $B \subseteq_C E$ so that $\mathbf{y} \in B$. Thus, $\mathbf{z} = \mathbf{x} + \mathbf{y} \in A + B$, which proves the desired result.

If A is only closed (and not compact), the result is false in general. Let $E=\mathbb{R}^2$, $A=\{(x,e^x)\mid x\in\mathbb{R}\}$ and $B=\mathbb{R}\times\{0\}$. Both $A,B\subseteq_C\mathbb{R}^2$ but $A+B=\mathbb{R}\times(0,\infty)$ is not closed in \mathbb{R}^2 .

3. Proof.

(a) If φ is continuous, then $\ker \varphi = \varphi^{-1}(\{0\}) \subseteq_C E$ since $\{0\} \subseteq_C \mathbb{R}$.

Conversely, suppose that $\ker \varphi \subseteq_C E$. If φ is not continuous, φ is unbounded on the unit sphere $S(\mathbf{0},1)$. Thus, $\exists (\mathbf{x}_n) \subseteq E$ such that $\|\mathbf{x}_n\| = 1$ for all $n \in \mathbb{N}$ and for which $|\varphi(\mathbf{x}_n)| \to \infty$.

Let $\mathbf{u} \in E$ be such that $\varphi(\mathbf{u}) = 1$: such a $\mathbf{u} \in E$ necessarily exists because φ is linear. Indeed, if $0 \neq \varphi(\mathbf{w}) = r \in \mathbb{R}$, then $\mathbf{w} \neq \mathbf{0}$.

Set $\mathbf{u} = \frac{\mathbf{w}}{\varphi(\mathbf{w})}$. Then

$$\varphi(\mathbf{u}) = \varphi\left(\frac{\mathbf{w}}{\varphi(\mathbf{w})}\right) = \frac{1}{\varphi(\mathbf{w})}\varphi(\mathbf{w}) = 1.$$

For any $n \in \mathbb{N}$, set $\mathbf{u}_n = \mathbf{u} - \frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)}$. Then

$$\varphi(\mathbf{u}_n) = \varphi(\mathbf{u}) - \varphi\left(\frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)}\right) = \varphi(\mathbf{u}) - \frac{\varphi(\mathbf{x}_n)}{\varphi(\mathbf{x}_n)} = \varphi(\mathbf{u}_n) - 1 = 0,$$

whence $\mathbf{u}_n \in \ker \varphi$ for all $n \in \mathbb{N}$. Note that $\mathbf{u}_n = \mathbf{u} - \frac{\mathbf{x}_n}{\varphi(\mathbf{x}_n)} \to \mathbf{u}$ since $|\varphi(\mathbf{x}_n)| \to \infty$ and $||\mathbf{x}_n|| = 1$ for all n. Since $\ker \varphi$, the limit $\mathbf{u} \in \ker \varphi$, i.e. $\varphi(\mathbf{u}) = 0$. But this contradicts the fact that $\varphi(\mathbf{u}) = 1$. Hence φ is continuous.

(b) i. Let $\mathbf{x} \in E$ and $\lambda \in \mathbb{R}$. Recall that $[\mathbf{x}] = \mathbf{x} + F$. Since $[\lambda \mathbf{x}] = \lambda [\mathbf{x}]$, we have

$$N(\lambda[\mathbf{x}]) = |\lambda|N([\mathbf{x}]).$$

It remains only to show that N satisfies the Triangle Inequality.

Let $\mathbf{x}, \mathbf{y} \in E$. For any $\mathbf{u}, \mathbf{v} \in F$, we have

$$N([\mathbf{x} + \mathbf{y}]) \le ||(\mathbf{x} + \mathbf{y}) + (\mathbf{u} + \mathbf{v})|| \le ||\mathbf{x} + \mathbf{u}|| + ||\mathbf{y} + \mathbf{v}||.$$

Thus

$$N([\mathbf{x} + \mathbf{y}]) \le \inf_{\mathbf{u}, \mathbf{v} \in F} \{ \|\mathbf{x} + \mathbf{u}\| + \|\mathbf{y} + \mathbf{v}\| \}$$
$$\le \inf_{\mathbf{u} \in F} \{ \|\mathbf{x} + \mathbf{u}\| \} + \inf_{\mathbf{v} \in F} \{ \|\mathbf{y} + \mathbf{v}\| \} = N([\mathbf{x}]) + N([\mathbf{y}]).$$

As such, N is a semi-norm on E/F.

Since $[\mathbf{x}] = \mathbf{x} + F$ for all $\mathbf{x} \in E$, $N([\mathbf{x}]) = \inf_{\mathbf{y} \in F} \{ \|\mathbf{x} - \mathbf{y}\| \} = d(\mathbf{x}, F)$. As a result, if $F \subseteq_C E$, $N([\mathbf{x}]) = 0$ if and only if $\mathbf{x} \in F$, i.e. $[\mathbf{x}] = \mathbf{0}$. Consequently, if $F \subseteq_C E$, N is a norm on E/F.

ii. Let $\varphi: E \to \mathbb{R}$ be a linear functional for which $\ker \varphi \subseteq_C E$. If $\varphi \equiv 0$, φ is clearly continuous. Otherwise, $\varphi(E) = \mathbb{R}$. Indeed, let $x \in \mathbb{R}$. If $\varphi(\mathbf{u}) = 1$ for some $\mathbf{u} \in E$, then $x\mathbf{u} \in E$, $\varphi(x\mathbf{u}) = x$ and φ is onto.

Let $\eta: E \to E/\ker \varphi$ be the canonical surjection $\eta(\mathbf{u}) = \mathbf{u} + \ker \varphi$. By the Isomorphism Theorem for vector spaces, it is possible to factor $\varphi = \psi \circ \eta$, where $\psi: E/\ker \varphi \to \mathbb{R}$ is linear.

According to Corollary 143, ψ is thus continuous, being linear. If N is the norm defined in (b)i. with $F = \ker \varphi$, we have

$$N([\mathbf{x}] - [\mathbf{y}]) = N([\mathbf{x} - \mathbf{y}]) \le ||\mathbf{x} - \mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in E$$

and so η is continuous Thus, ϕ is continuous being the composition of two continuous functions.

9. **Proof.** There are 4 conditions to verify:

- (a) $\|\mathbf{x}\|_{\infty} = \sup\{|x_1|, \dots, |x_n|\} \ge 0$ is clear since $|x_i| \ge 0$ for all i.
- (b) $\|\mathbf{x}\|_{\infty} = 0 \Longleftrightarrow \sup\{|x_1|, \dots, |x_n|\} = 0 \Longleftrightarrow |x_i| = 0, \ \forall i \Longleftrightarrow x_i = 0, \ \forall i \Longleftrightarrow \mathbf{x} = \mathbf{0}.$
- (c) If $a \in \mathbb{R}$, then

$$||a\mathbf{x}||_{\infty} = \sup\{|ax_1|, \dots, |ax_n|\} = |a|\sup\{|x_1|, \dots, |x_n|\} = |a||\mathbf{x}||_{\infty}.$$

(d) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then

$$\|\mathbf{x} + \mathbf{y}\|_{\infty} = \sup\{|x_1 + y_1|, \dots, |x_n + y_n|\} \le \sup\{|x_1| + |y_1|, \dots, |x_n| + |y_n|\}$$

$$\le \sup\{|x_1|, \dots, |x_n|\} + \sup\{|y_1|, \dots, |y_n|\} = \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}.$$

Thus, $\mathbf{x} \to \|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^n .

10. **Proof.** We have

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y} \mid \mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y} \mid \mathbf{x} - \mathbf{y})$$

$$= (\mathbf{x} \mid \mathbf{x}) + 2(\mathbf{x} \mid \mathbf{y}) + (\mathbf{y} \mid \mathbf{y})$$

$$+ (\mathbf{x} \mid \mathbf{x}) - 2(\mathbf{x} \mid \mathbf{y}) + (\mathbf{y} \mid \mathbf{y})$$

$$= 2(\mathbf{x} \mid \mathbf{x}) + 2(\mathbf{y} \mid \mathbf{y}) = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

Now, consider a parallelogram with vertices $\mathbf{0}, \mathbf{x}, \mathbf{y}, \mathbf{x} + \mathbf{y}$. Then the sum of squares of the lengths of the four sides is $2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$, while the sum of squares of the diagonals is $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2$.

11. **Solution.** No, it is not. Consider the following example in \mathbb{R}^2 : let $\mathbf{x}=(1,0)$ and $\mathbf{y}=(1,1)$. Then $\mathbf{x}+\mathbf{y}=(2,1)$ and

$$\|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty} = \|\mathbf{x} + \mathbf{y}\|_{\infty} = 2$$

but $\mathbf{x} \neq c\mathbf{y}$ for any $c \in \mathbb{R}$.

