Problema 34. Demostreu que, si G és un grup, llavors

$$G/Z(G) \simeq \operatorname{Int}(G)$$
.

En particular, si $Z(G) = \{1\}$, llavors $\mathrm{Int}(G) \simeq G$. Quin és el grup $\mathrm{Int}(G)$ quan G és abelià?

Nota 1: Es denota per $\operatorname{Int}(G)$ el conjunt d'automorfismes interns de G, és a dir, dels automorfismes φ_g definits per $\varphi_g(h) = ghg^{-1}$, per a $h \in G$ i $g \in G$.

Nota 2: Sabem que si G és un grup, el seu centre, $Z(G) := \{g \in G : gh = hg, \text{ per a tot } h \in G\}$, és un subgrup normal de G.

Solució. Sigui f l'aplicació següent:

$$f: G \longrightarrow \operatorname{Int}(G).$$

$$g \longmapsto \varphi_q$$

Si demostrem que:

- (1) f és morfisme de grups,
- (2) Int(G) = Im(f),
- (3) Z(G) = Ker(f),

podem aplicar el teorema d'isomorfia, que proporciona l'existència d'un isomorfisme \tilde{f} entre G/Z(G) i $\mathrm{Int}(G)$ tal que $\tilde{f}(g)=\varphi_g$; d'aquesta manera, obtenim que $G/Z(G)\simeq\mathrm{Int}(G)$.

(1) f és morfisme de grups: Volem demostrar que $f(g_1g_2) = f(g_1) \circ f(g_2), g_1, g_2 \in G$. Tenim que:

$$f(g_1g_2) = \varphi_{g_1g_2},$$

$$f(g_1) \circ f(g_2) = \varphi_{g_1} \circ \varphi_{g_2}.$$

Hem de veure que són iguals:

$$\forall h \in G, \, \varphi_{q_1q_2}(h) = g_1g_2hg_2^{-1}g_1^{-1} = \varphi_{q_1}(g_2hg_2^{-1}) = \varphi_{q_1}(\varphi_{q_2}(h)) = \varphi_{q_1} \circ \varphi_{q_2}(h).$$

Demostrada la igualtat anterior, tenim que f és morfisme de grups.

(2) Int(G) = Im(f).

Per definició, $\operatorname{Int}(G) = \{\varphi_g : g \in G\}$, de manera que, per la seva pròpia definició, f és exhaustiva.

(3) Z(G) = Ker(f).

 $g \in Ker(f) \Leftrightarrow \varphi_g = Id \Leftrightarrow \varphi_g(h) = h, \forall h \in G \Leftrightarrow ghg^{-1} = h, \forall h \in G \Leftrightarrow gh = hg, \forall h \in G \Leftrightarrow g \in Z(G).$

Cas particular: $Z(G) = \{1\}.$

Si $Z(G)=\{1\},$ llavors $G/Z(G)\simeq G$ (isomorfisme: $G\stackrel{Id}{\to} G$ és exhaustiu i $Ker(Id)=\{1\}).$

Cas particular: G abelià.

Quan G és abelià, G=Z(G) i |G/Z(G)|=1. Int(G) està format per un únic element que ha de ser necessàriament l'automorfisme indentitat, present en tots els subgrups d'automorfismes.