Assignment #1

Name:		ID:	
Thi	s assignment has 5 questions, \mathbf{f}	for a total of 25 marks.	
	onyms: SOS (structural opera BG (big step), CBV (call by v		ntextual operational
0 1	mantics rules for a big-step, cal but write them all.		

Note: Use LATEX to typeset rules, use either the semantics package or the macros provided on my webpage. You can use the bussproof package to typeset whole big step reductions or typing derivations. You will likely have to split the same derivation tree into subtrees to fit all in one page. Give names to trees and refer to them in the bigger derivation for ease of reading.

 $^{^1}$ Here: <code>http://theory.stanford.edu/~mp/mp/CS358-2019_files/cmds.tex.</code>

- t = det
- 1. SM-CBV

2. SM-CBN

1. If $t \to t'$ then $t \leadsto t'$

2. If $t \rightsquigarrow t'$ then $t \rightarrow t'$

Write out a term t in STLC that will reduce to two different numbers once applied to terms t_1 and t_2 below, i.e., such that t t_1 and t t_2 respectively reduce to n_1 and n_2 such that $n_1 \neq n_2$. The reduction strategy is SOS-SM-CBV, recall that if n > m then m - n = 0. Write out the reductions too.

- $\bullet \ \ t_1 \stackrel{\mathsf{def}}{=} \lambda x.\, \lambda y.\, (2*x) (3*x) + ((\lambda z.\, y\,\, z\,\, x)\,\, 0)$
- $t_2 \stackrel{\text{def}}{=} \lambda x. \lambda y. (1+x) (3+x) + ((\lambda z. y \ z \ x) \ 1)$
- $1. \ t \stackrel{\mathsf{def}}{=}$
- 2. $t t_1$ reductions.

3. $t t_2$ reductions.