A SHINY HAMMER AND MANY THINGS TO HIT

BIDIRECTIONAL TYPING IS NOT ONLY AN IMPLEMENTATION TECHNIQUE

Meven Lennon-Bertrand University of Strathclyde – June 27th 2023

SPECIFYING PROOF ASSISTANTS

SPECIFYING PROOF ASSISTANTS

SPECIFYING PROOF ASSISTANTS

THE HAMMER: BIDIRECTIONAL TYPING

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x:T} \qquad \frac{\Gamma,x:A\vdash t:B}{\Gamma\vdash \lambda x.t:A\to B} \qquad \frac{\Gamma\vdash t:A\to B \qquad \Gamma\vdash u:A}{\Gamma\vdash t u:B}$$

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$

checking: $\Gamma \vdash t \triangleleft T$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x:T}$$

$$\frac{}{\Gamma \vdash \star : 1}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x.t: A \to B}$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B}$$

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$

checking: $\Gamma \vdash t \triangleleft T$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x\triangleright T}$$

$$\Gamma \vdash \star : 1$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x.t: A \to B}$$

$$\frac{\Gamma, x: A \vdash t: B}{\vdash \lambda \ x \ t: A \to B} \qquad \frac{\Gamma \vdash t: A \to B \qquad \Gamma \vdash u: A}{\Gamma \vdash t \ u: B}$$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x:T}$$

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$

checking: $\Gamma \vdash t \triangleleft T$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x\triangleright T}\qquad \frac{}{\Gamma\vdash\star\triangleright 1}$$

$$\frac{\Gamma, x: A \vdash t \triangleleft B}{\Gamma \vdash \lambda x.t \triangleleft A \to B}$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \; u : B}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x.t: A \to B}$$

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$

checking: $\Gamma \vdash t \triangleleft T$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x\triangleright T} \qquad \frac{}{\Gamma\vdash \star\triangleright 1}$$

$$\frac{\Gamma, x: A \vdash t \triangleleft B}{\Gamma \vdash \lambda x.t \triangleleft A \to B}$$

$$\frac{\Gamma \vdash t \triangleright A \to B \qquad \Gamma \vdash u \triangleleft A}{\Gamma \vdash t \ u \triangleright B}$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B}$$

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$

checking: $\Gamma \vdash t \triangleleft T$

Similar meaning, different modes: input/output.

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x\rhd T}$$

$$\frac{}{\Gamma \vdash \star \triangleright 1}$$

$$\frac{\Gamma, x: A \vdash t \triangleleft B}{\Gamma \vdash \lambda x.t \triangleleft A \to B}$$

$$\frac{\Gamma, x: A \vdash t \triangleleft B}{\Gamma \vdash \lambda x. t \triangleleft A \to B} \qquad \frac{\Gamma \vdash t \triangleright A \to B}{\Gamma \vdash t u \triangleright B}$$

What about checking a variable? And $(\lambda x.\star) \star$?

Inference and checking

$$\Gamma \vdash t : T$$
 separates into

inference:
$$\Gamma \vdash t \triangleright T$$

checking:
$$\Gamma \vdash t \triangleleft T$$

$$\frac{(x:T\in\Gamma)}{\Gamma\vdash x\triangleright T} \qquad \frac{\Gamma,x:A\vdash t\triangleleft B}{\Gamma\vdash \lambda x.t\triangleleft A\to B} \qquad \frac{\Gamma\vdash t\triangleright A\to B}{\Gamma\vdash t\sqcup B}$$

$$\Gamma \vdash t \ u \triangleright B$$

$$\frac{\Gamma \vdash t \triangleright T \qquad T = T'}{\Gamma \vdash t \triangleleft T'} \qquad \frac{\Gamma \vdash t \triangleleft T}{\Gamma \vdash t :: T \triangleright T}$$

$$((\lambda x.\star)::1\to 1)\star$$

A typing judgment $\Gamma \vdash t : T$ has boundaries. What about their well-formation?

A typing judgment $\Gamma \vdash t : T$ has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

$$\frac{\vdash \Gamma \quad (x:A) \in \Gamma}{\Gamma \vdash x:A}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.t: \prod x: A.B}$$

A typing judgment $\Gamma \vdash t : T$ has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

$$\frac{\vdash \Gamma \quad (x:A) \in \Gamma}{\Gamma \vdash x:A}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.t: \prod x: A.B}$$

Uncautiousness? Well-formation as an invariant

$$\frac{(x:A)\in\Gamma}{\Gamma\vdash x:A}$$

$$\frac{\Gamma \vdash A : \Box \qquad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A : \exists x : A : B}$$

WELL-FORMATION MUST FLOW

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$ checking: $\Gamma \vdash t \triangleleft T$

WELL-FORMATION MUST FLOW

Inference and checking

 $\Gamma \vdash t : T$ separates into

inference: $\Gamma \vdash t \triangleright T$ checking: $\Gamma \vdash t \triangleleft T$

Similar meaning, different modes: input/output/subject.

The TYPOS discipline

- A rule is a server for its conclusion and a client for its premises.
- Modes guide invariant preservation
- In a conclusion, you assume inputs are well-formed, and ensure outputs are
- In a premise, you ensure inputs are well-formed, and assume outputs are

$$\frac{\vdash \Gamma \quad (x:T \in \Gamma)}{\Gamma \vdash x:T} \qquad \frac{\vdash \Gamma}{\Gamma \vdash \Box_{i}:\Box_{i+1}} \qquad \frac{\Gamma \vdash A:\Box_{i} \quad \Gamma, x:A \vdash B:\Box_{j}}{\Gamma \vdash \Pi x:A.B:\Box_{i\vee j}}$$

$$\frac{\Gamma, x:A \vdash t:B}{\Gamma \vdash \lambda x:A.t:\Pi x:A.B} \qquad \frac{\Gamma \vdash t:\Pi x:A.B \quad \Gamma \vdash u:A}{\Gamma \vdash t u:B[u]}$$

$$\frac{\Gamma \vdash t:T \quad \Gamma \vdash T \cong T'}{\Gamma \vdash t:T'}$$

$$\frac{\vdash \Gamma}{\Gamma \vdash \Box_{i} : \Box_{i+1}}$$

$$(x: T \in \Gamma)$$

$$\frac{\Gamma \vdash x \triangleright T}{\Gamma \vdash x \triangleright T}$$

$$\frac{\Gamma \vdash A : \Box_{i} \qquad \Gamma, x: A \vdash B : \Box_{j}}{\Gamma \vdash \Pi x: A.B : \Box_{i \lor j}}$$

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.t : \Pi x: A.B}$$

$$\frac{\Gamma \vdash t: \Pi x: A.B \qquad \Gamma \vdash u: A}{\Gamma \vdash t u: B[u]}$$

$$\frac{\Gamma \vdash t: T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t: T'}$$

$$\frac{\Gamma \vdash A : \Box_{i} \qquad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A.t : \Pi x : A.B}$$

$$(x: T \in \Gamma) \qquad \qquad \qquad \Gamma \vdash A \triangleright_{\Box} \Box_{i} \qquad \Gamma, x : A \vdash B \triangleright_{\Box} \Box_{j}$$

$$\frac{\Gamma \vdash A \triangleright_{\Box} \Box_{i} \qquad \Gamma, x : A \vdash t \triangleright B}{\Gamma \vdash \lambda x : A.t \triangleright \Pi x : A.B} \qquad \qquad \frac{\Gamma \vdash t : \Pi x : A.B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B[u]}$$

$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t : T'}$$

$$\frac{\Gamma \vdash t : \Pi x : A.B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B[u]}$$

$$(x: T \in \Gamma) \qquad \qquad \qquad \Gamma \vdash A \rhd_{\square} \Box_{i} \qquad \Gamma, x: A \vdash B \rhd_{\square} \Box_{j}$$

$$\Gamma \vdash x \rhd T \qquad \Gamma \vdash \Box_{i} \rhd \Box_{i+1} \qquad \qquad \Gamma \vdash \Pi x : A.B \rhd \Box_{i \lor j}$$

$$\frac{\Gamma \vdash A \rhd_{\square} \Box_{i} \qquad \Gamma, x: A \vdash t \rhd B}{\Gamma \vdash \lambda x : A.t \rhd \Pi x : A.B} \qquad \qquad \boxed{\Gamma \vdash t \rhd_{\Pi} \Pi x : A.B \qquad \Gamma \vdash u \vartriangleleft A}{\Gamma \vdash t u \rhd B[u]}$$

$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t : T'}$$

$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t : T'}$$

$$\frac{(x : T \in \Gamma)}{\Gamma \vdash x \triangleright T} \qquad \frac{\Gamma \vdash A \triangleright_{\square} \square_{i} \qquad \Gamma, x : A \vdash B \triangleright_{\square} \square_{j}}{\Gamma \vdash \Pi x : A . B \triangleright_{\square} \square_{j}}$$

$$\frac{\Gamma \vdash A \triangleright_{\square} \square_{i} \qquad \Gamma, x : A \vdash t \triangleright B}{\Gamma \vdash \lambda x : A . t \triangleright \Pi x : A . B} \qquad \frac{\Gamma \vdash t \triangleright_{\Pi} \Pi x : A . B \qquad \Gamma \vdash u \triangleleft A}{\Gamma \vdash t u \triangleright B[u]}$$

$$\frac{\Gamma \vdash t \triangleright T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t \triangleleft T'} \qquad \frac{\Gamma \vdash t \triangleright T \qquad T \to^* \Box_i}{\Gamma \vdash t \trianglerighteq_{\square} \Box_i} \qquad \frac{\Gamma \vdash t \triangleright T \qquad T \to^* \Pi x : A.B}{\Gamma \vdash t \trianglerighteq_{\Pi} \Pi x : A.B}$$

- Different modes command different computation judgments $(\rightarrow^* vs \cong)$
- · No free conversion thanks to the judgments' structure

Nothing's changed...

• Soundness: if $\vdash \Gamma$ and $\Gamma \vdash t \triangleright T$ then $\Gamma \vdash t : T$

Nothing's changed...

- Soundness: if $\vdash \Gamma$ and $\Gamma \vdash t \triangleright T$ then $\Gamma \vdash t : T$
- · Completeness: if $\Gamma \vdash t : T$, there exists T' such that $\Gamma \vdash t \triangleright T'$ and $\Gamma \vdash T' \cong T$

Nothing's changed...

- Soundness: if $\vdash \Gamma$ and $\Gamma \vdash t \triangleright T$ then $\Gamma \vdash t : T$
- · Completeness: if $\Gamma \vdash t : T$, there exists T' such that $\Gamma \vdash t \triangleright T'$ and $\Gamma \vdash T' \cong T$

Key: some sort of confluence.

Nothing's changed...

- Soundness: if $\vdash \Gamma$ and $\Gamma \vdash t \triangleright T$ then $\Gamma \vdash t : T$
- · Completeness: if $\Gamma \vdash t : T$, there exists T' such that $\Gamma \vdash t \triangleright T'$ and $\Gamma \vdash T' \cong T$

... unless it has!

Easy proofs of

- uniqueness of types/principality
- strengthening

NAIL I: CERTIFYING COQ'S KERNEL

Jww. the METACOQ team

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCω +

- Complex universes
- Very general (co-)inductive types
- Cumulativity/subtyping

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCω +

- Complex universes
- · Very general (co-)inductive types
- Cumulativity/subtyping

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCω +

- Complex universes
- Very general (co-)inductive types
- Cumulativity/subtyping

METACOQ: COQ, in COQ

Formalized meta-theory of PCUIC

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCw +

- · Complex universes
- Very general (co-)inductive types
- Cumulativity/subtyping

- Formalized meta-theory of PCUIC
- Normalization axiom to implement a certified type-checker

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCw +

- · Complex universes
- Very general (co-)inductive types
- Cumulativity/subtyping

- Formalized meta-theory of PCUIC
- Normalization axiom to implement a certified type-checker
- Extraction, meta-programming...

The Predicative Calculus of Universe-Polymorphic Inductive Constructions

CCw +

- Complex universes
- Very general (co-)inductive types
- Cumulativity/subtyping

- Formalized meta-theory of PCUIC
- · Normalization axiom to implement a certified type-checker
- · Extraction, meta-programming...

Soundness PCUIC Kernel

When starting the proof, we realized... it was false!

When starting the proof, we realized... it was false!

When starting the proof, we realized... it was false!

Ended up with a complete re-design of pattern-matching...

NAIL II: GRADUAL DEPENDENT TYPES

Jww. K. Maillard, N. Tabareau, and É. Tanter

Mixing static and dynamic typing

- · Static type system with a dynamic type?
- · Optimistic (static) typing & (dynamic) runtime checks

Mixing static and dynamic typing

- Static type system with a dynamic type ?
- Optimistic (static) typing & (dynamic) runtime checks

Subject reduction is broken?

$$\vdash (\lambda x: ?. x + 1) \text{ true } : \mathbf{N}$$

($\lambda x: ?. x + 1$) true $\rightarrow^* \text{ true } + 1$
 $\nvdash \text{ true } + 1$

Mixing static and dynamic typing

- Static type system with a dynamic type?
- · Optimistic (static) typing & (dynamic) runtime checks

Not in the cast calculus!

$$\vdash (\lambda x: ?.(\langle N \Leftarrow ? \rangle x) + 1) (\langle ? \Leftarrow B \rangle \text{ true}): N$$

Mixing static and dynamic typing

- · Static type system with a dynamic type?
- · Optimistic (static) typing & (dynamic) runtime checks

Not in the cast calculus!

$$\vdash (\lambda x: ?.(\langle N \Leftarrow ? \rangle x) + 1) (\langle ? \Leftarrow B \rangle \text{ true}): N$$

$$(\lambda x: ?.(\langle N \Leftarrow ? \rangle x) + 1) (\langle ? \Leftarrow B \rangle \text{ true}) \to^* (\langle N \Leftarrow ? \rangle \langle ? \Leftarrow B \rangle \text{ true}) + 1$$
$$\to^* (\langle N \Leftarrow B \rangle \text{ true}) + 1 \to^* \text{err}$$

Mixing static and dynamic typing

- · Static type system with a dynamic type?
- · Optimistic (static) typing & (dynamic) runtime checks

Not in the cast calculus!

$$(\lambda x: ?.(\langle N \leftarrow ? \rangle x) + 1) (\langle ? \leftarrow B \rangle \text{ true}) \rightarrow^* (\langle N \leftarrow ? \rangle \langle ? \leftarrow B \rangle \text{ true}) + 1$$
$$\rightarrow^* (\langle N \leftarrow B \rangle \text{ true}) + 1 \rightarrow^* \text{ err}$$

 $\vdash (\lambda x: ?.(\langle N \Leftarrow ? \rangle x) + 1) (\langle ? \Leftarrow B \rangle \text{ true}): N$

But we still want a cast-free source language...

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

Issues

• Non-transitivity: $S \sim ? \sim T$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

Issues

• Non-transitivity: $S \sim ? \sim T$

$$\frac{\Gamma \vdash t : S \qquad S \sim ?}{\Gamma \vdash t : ?} \qquad ? \sim T$$

$$\Gamma \vdash t : T$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

Issues

• Non-transitivity: $S \sim ? \sim T$

Solutions

· Bidirectional typing

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

Issues

• Non-transitivity: $S \sim ? \sim T$

Solutions

· Bidirectional typing

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

Issues

- Non-transitivity: $S \sim ? \sim T$
- · Computation needs checks

Solutions

· Bidirectional typing

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

Issues

- Non-transitivity: $S \sim ? \sim T$
- · Computation needs checks

Solutions

- · Bidirectional typing
- Type-directed elaboration

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T}$$

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

Issues

- Non-transitivity: $S \sim ? \sim T$
- · Computation needs checks

Solutions

- · Bidirectional typing
- Type-directed elaboration

$$\frac{\Gamma \vdash t : S \qquad S \sim T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \qquad S \sim T}{\Gamma \vdash t \triangleleft T}$$

$$\frac{\Gamma \vdash t \leadsto t' \triangleright S \qquad S \sim T}{\Gamma \vdash t \leadsto \langle T \Leftarrow S \rangle t' \triangleleft T}$$

Issues

- Non-transitivity: $S \sim ? \sim T$
- Computation needs checks

Solutions

- · Bidirectional typing
- Type-directed elaboration

NAIL III: LOGICAL RELATIONS

Jww. K. Maillard and L. Pujet

WHAT ABOUT CONVERSION?

It's bidirectional too!

WHAT ABOUT CONVERSION?

Conversion \cong checks, neutral comparison \approx infers

$$\frac{t \to^{\star} t' \qquad u \to^{\star} u' \qquad A \to^{\star} A' \qquad \Gamma \vdash t' \cong_{\mathsf{h}} u' \triangleleft A'}{\Gamma \vdash t \cong u \triangleleft A}$$

$$\frac{1, x: A \vdash f \ x \equiv g \ x \triangleleft B}{\Gamma \vdash f \cong_{\mathsf{h}} g \triangleleft \Pi \ x: A. \ B}$$

$$\frac{\Gamma, x: A \vdash f \ x \cong g \ x \triangleleft B}{\Gamma \vdash f \cong_{\mathsf{h}} g \triangleleft \Pi \ x: A. \ B} \qquad \frac{\Gamma \vdash m \approx n \triangleright_{\Pi} \Pi \ x: A. \ B}{\Gamma \vdash m \ t \approx n \ u \triangleright B[t]}$$

WHAT ABOUT CONVERSION?

Conversion \cong checks, neutral comparison \approx infers

$$\frac{t \to^{\star} t' \quad u \to^{\star} u' \quad A \to^{\star} A' \quad \Gamma \vdash t' \cong_{h} u' \triangleleft A'}{\Gamma \vdash t \cong u \triangleleft A}$$

$$\frac{\Gamma, x: A \vdash f x \cong g x \triangleleft B}{\Gamma \vdash f \cong_{h} g \triangleleft \Pi x: A. B} \qquad \frac{\Gamma \vdash m \approx n \triangleright_{\Pi} \Pi x: A. B \quad \Gamma \vdash t \cong u \triangleleft A}{\Gamma \vdash m t \approx n u \triangleright B[t]}$$

• logrel-coq: logical relations for dependent type theory, in Coq.

How to concretely translate the TypOS discipline?

How to concretely translate the TypOS discipline?

It's a custom induction principle!

How to concretely translate the TypOS discipline?

It's a custom induction principle!

To show \forall Γ t T, $[\vdash \Gamma] \Rightarrow [\Gamma \vdash T] \Rightarrow [\Gamma \vdash t \triangleleft T] \Rightarrow P \Gamma$ t T by induction on the last premise, you get extra help in induction steps.

How to concretely translate the TYPOS discipline?

It's a custom induction principle!

To show $\forall \ \Gamma$ t T, $[\ \vdash \ \Gamma] \Rightarrow [\Gamma \vdash T] \Rightarrow [\Gamma \vdash t \triangleleft T] \Rightarrow P \Gamma$ t T by induction on the last premise, you get extra help in induction steps.

Shown once and for all, used virtually everywhere.

NAIL IV: TYPE SYSTEMS EQUIVALENCE

Jww. K. Maillard, T. Laurent

SUBSUMPTIVE AND COERCIVE SUBTYPING

$$\text{SUB} \ \frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash t : T'} \qquad \text{VS} \qquad \frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash \operatorname{coe}_{T,T'} \ t : T'}$$

SUBSUMPTIVE AND COERCIVE SUBTYPING

SUB
$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash t : T'}$$

Good for users

VS

$$\operatorname{Coe} \frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash \operatorname{coe}_{T,T'} \ t : T'}$$

Good for meta-theory

SUBSUMPTIVE AND COERCIVE SUBTYPING

$$\frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash t : T'} \qquad \text{VS} \qquad \frac{\Gamma \vdash t : T \qquad \Gamma \vdash T \preceq T'}{\Gamma \vdash \operatorname{coe}_{T,T'} \ t : T'}$$
 Good for users
$$\qquad \qquad \operatorname{Good for meta-theory}$$

Subtle coherence issues...

SQUASHING COHERENCES

SQUASHING COHERENCES

- Key to sidestep coherence issues:
 - New equations for coe
 - uniqueness of (conversion) derivations

SQUASHING COHERENCES

Key to sidestep coherence issues:

- New equations for coe
- uniqueness of (conversion) derivations

Not just for subtyping: typed vs untyped conversion is similar...

BUILDING A GOOD HAMMER: ON ANNOTATIONS

Jww. N. Krishnaswami

How to design a complete bidirectional type system?

How to design a complete bidirectional type system?

Solution 1: Annotations

 $\lambda x: A. t$

COQ, LEAN...

All terms infer

How to design a complete bidirectional type system?

Solution 1: Annotations	Solution 2: Restricted terms	
$\lambda x: A. t$	$\lambda x. t$	
Coq, Lean	AGDA	
All terms infer	Neutrals infer Normal forms check	

How to design a complete bidirectional type system?

Solution 1: Annotations	Solution 2: Restricted terms	Solution 3: Free-standing annotations
$\lambda x: A. t$	$\lambda x. t$	$\lambda x. t$ and $t :: A$
Coq, Lean	AGDA	Conor, RED* family
All terms infer	Neutrals infer Normal forms check	Inferring terms Checking terms

How to design a complete bidirectional type system?

Solution 1: Annotations	Solution 2: Restricted terms	Solution 3: Free-standing annotations
$\lambda x: A. t$	$\lambda x. t$	$\lambda x. t$ and $t :: A$
Coq, Lean	AGDA	Conor, RED* family
All terms infer	Neutrals infer Normal forms check	Inferring terms Checking terms

Can we design a single system, with a single completeness proof?

$$c, A, B ::= \underline{i} \mid \Box_k \mid \Pi x : A.B \mid \lambda x. c$$
$$i ::= c :: A \mid x \mid i c \mid \lambda x : A. i$$

$$c, A, B ::= \underline{i} \mid \Box_k \mid \Pi x : A.B \mid \lambda x. c$$

$$i ::= c :: A \mid \underline{x} \mid \underline{i} \mid c \mid \lambda x : A. i$$
Solution 2

$$c, A, B ::= \underbrace{i}_{k} | \Pi x : A.B | \lambda x. c$$

$$i ::= c :: A | x | i c | \lambda x : A. i$$
Solution 3

$$c, A, B ::= \underline{i} \mid \Box_k \mid \Pi x : A.B \mid \lambda x. c$$
$$i ::= c :: A \mid x \mid i c \mid \lambda x : A. i$$

Complete, by construction.

$$c, A, B ::= \underline{i} \mid \Box_k \mid \Pi x : A.B \mid \lambda x. c \qquad \mid \Sigma x : A.B \mid \langle c, c \rangle \mid \mathbf{W} x : A.B \mid \sup(c, c)$$

$$i ::= c :: A \mid x \mid i c \mid \lambda x : A. i \qquad \mid i._1 \mid i._2 \mid \langle i, c \rangle_{x.B} \mid \operatorname{ind}_{\mathbf{W}}(i; x.A; c) \mid \sup_{x.B}(i, c)$$

Complete, by construction... and extends nicely.

MAKING IT WORK

Type annotations reduce (see observational equality, cast calculus, coercions...):

$$((\lambda x. t) :: \prod x: A.B) u \to (\lambda x: A. (t::B)) u \to (t[u::A]) :: B[u::A]$$

MAKING IT WORK

Type annotations reduce (see observational equality, cast calculus, coercions...):

$$((\lambda x. t) :: \prod x: A.B) u \rightarrow (\lambda x: A. (t :: B)) u \rightarrow (t[u :: A]) :: B[u :: A]$$

Plays natively well with bidirectional conversion:

$$\Gamma \vdash A \cong A'$$

$$\Gamma \vdash A \cong A'$$
 and $\Gamma \vdash c \cong c' \triangleleft A$

but
$$\Gamma \vdash n \approx n' \triangleright A$$

MAKING IT WORK

Type annotations reduce (see observational equality, cast calculus, coercions...):

$$((\lambda x. t) :: \prod x: A.B) u \rightarrow (\lambda x: A. (t::B)) u \rightarrow (t[u::A]) :: B[u::A]$$

Plays natively well with bidirectional conversion:

$$\Gamma \vdash A \cong A'$$

$$\Gamma \vdash A \cong A'$$
 and $\Gamma \vdash c \cong c' \triangleleft A$

but
$$\Gamma \vdash n \approx n' \triangleright A$$

(Stuck) annotations can/should be ignored (TT^{obs} again):

$$\frac{\Gamma \vdash n \approx n' \triangleright A}{\Gamma \vdash n :: A' \approx n' \triangleright A'}$$

WRAPPING UP

Bidirectional typing is good for meta-theory

- · Control over conversion
- · Unique, well-behaved derivations
- Always ready for implementation

WRAPPING UP

Bidirectional typing is good for meta-theory

- Control over conversion
- · Unique, well-behaved derivations
- Always ready for implementation

What now?

- · What kind of annotations do we want?
- · Algorithmic or semi-algorithmic conversion?
- A bidirectional logical framework?

$$\frac{\Gamma \vdash t \triangleright T \qquad \Gamma \vdash T \cong T'}{\Gamma \vdash t \triangleleft T'}$$

$$\frac{\Gamma \vdash t \triangleright T \qquad T \rightarrow^* \square_i}{\Gamma \vdash t \triangleright_{\square} \square_i}$$

$$\frac{\Gamma \vdash t \triangleright T \qquad T \rightarrow^{\star} \prod x : A.B}{\Gamma \vdash t \triangleright_{\Pi} \prod x : A.B}$$

THANK YOU!

(AND LET'S TALK!)

$$\frac{\Gamma, x: A \vdash f \ x \cong g \ x \triangleleft F}{\Gamma \vdash f \cong_{\mathsf{h}} g \triangleleft \Pi \ x: A. \ B}$$

$$\frac{\Gamma \vdash m \approx n \triangleright_{\Pi} \Pi x : A. B \qquad \Gamma \vdash t \cong u \triangleleft A}{\Gamma \vdash m t \approx n u \triangleright B[t]}$$

BIBLIOGRAPHY

- [AÖV18] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. "Decidability of Conversion for Type Theory in Type Theory". In: *Proc. ACM Program. Lang.* (Jan. 2018). DOI: 10.1145/3158111.
- [SH12] Vincent Siles and Hugo Herbelin. "Pure Type System conversion is always typable". In: *J. Funct. Program.* 22.2 (2012), pp. 153–180. DOI: 10.1017/S0956796812000044.
- [ACO7] Andreas Abel and Thierry Coquand. "Untyped Algorithmic Equality for Martin-Löf's Logical Framework with Surjective Pairs". In: Fundamenta Informaticae 77.4 (2007). TLCA'05 special issue., pp. 345–395. URL: http://fi.mimuw.edu.pl/abs77.html#15.
- [PT22] Loïc Pujet and Nicolas Tabareau. "Observational Equality: Now for Good". In: *Proc. ACM Program. Lang.* 6.POPL (Jan. 2022). DOI: 10.1145/3498693.
- [Tak95] M. Takahashi. "Parallel Reductions in λ -Calculus". In: Information and Computation 118.1 (1995), pp. 120–127. ISSN: 0890-5401. DOI: 10.1006/inco.1995.1057. URL: https://www.sciencedirect.com/science/article/pii/S0890540185710577.