# 一、基于 DeeplabV3 Plus 的行车视频检测

蔡畅威(21210980025)、汪加西(21210980069)

#### ◆ 问题介绍

使用以 Mobile-Net 为主干网络的 DeeplabV3+,对一段网络下载的行车视频作语义分割。 检测后视频由约六百张测试图片合成,时长 1 分 40 秒。视频及项目链接请见文末。









图 1: 部分图片的测试结果

## 二、 使用三种 Faster-RCNN 的目标检测

### ◆ 问题介绍

在 VOC 上训练主干网络为 resnet-50 的 Faster-RCNN。考虑以下三种方式

- 1. 随机初始化 resnet-50,即在调用 torchvision.models 时将 pretrained\_backbone 设置为 False;
- 2. 使用在 ImageNet 上训练好的 resnet-50 作为主干,将 pretrained\_backbone 设为 True;
- 3. 在 COCO 上预训练 Mask-RCNN,使用 Mask-RCNN 的 resnet-50 初始化 Faster-RCNN 的 主干。须首先从 torchvision 下载 Mask-RCNN-resnet50 模型,将其 backbone 的权重赋值 给 Faster-RCNN,即 fasterr.backbone = nn.Sequential(maskr.backbone)。



图 2(c): COCO 预训练

将数据集分为训练、测试,样本量分别为 4000 和 1000,使用 Adam 优化器,初始学习率均设为  $1\times 10^{-5}$  并在每个 epoch 后将学习率下调 20%。训练 12 个 epoch,每 20 个 iteration 在 train 上输出总损失,每个 epoch 后在 test 上输出总损失和 mAP。

如图 2 为三种训练方式下损失和 mAP 迭代, 其中 mAP 是在 IOU=0.5 时、对单张图片取平均计算的。可见在学习率等参数相同的情况下, COCO 预训练模型的效果最好: 其在第一个 epoch 后 mAP 达到 0.465, 高于 Imagenet 预训练 (0.263) 和随机初始化 (0.034)。在 12 个 epoch

内,三个模型 mAP 的最高值分别为 0.199、0.472 和 0.587,具体见表 1 (其中 epoch 表示达到最高 mAP 和最低损失所需的训练轮数)。为进一步比较三个模型,另取 3000 张测试图片,计算模型在各个检测类别上的 mAP,如表 2 (a)-(c)。

表 1: 三种训练方式下 Faster-RCNN 的 mAP 和损失

|              | $\max mAP$ | epoch | $\min loss$ | epoch |
|--------------|------------|-------|-------------|-------|
| 随机初始化        | 0.199      | 12    | 0.576       | 8     |
| Imagenet 预训练 | 0.472      | 12    | 0.429       | 6     |
| COCO 预训练     | 0.587      | 10    | 0.367       | 3     |

表 2(a): 随机初始化 Faster-RCNN 检测精度 (mAp=0.060)

| plane  | 0.143 | bus   | 0.072 | table  | 0.050 | plant         | 0.013 |
|--------|-------|-------|-------|--------|-------|---------------|-------|
| bike   | 0.083 | car   | 0.129 | dog    | 0.032 | sheep         | 0.040 |
| bird   | 0.017 | cat   | 0.035 | horse  | 0.117 | sofa          | 0.021 |
| boat   | 0.016 | chair | 0.013 | motor  | 0.125 | train         | 0.071 |
| bottle | 0.006 | cow   | 0.048 | person | 0.073 | $\mathrm{Tv}$ | 0.094 |

表 3(b): Imagenet 预训练 (mAp=0.439)

| plane  | 0.477 | bus   | 0.520 | table  | 0.290 | plant               | 0.376 |
|--------|-------|-------|-------|--------|-------|---------------------|-------|
| bike   | 0.485 | car   | 0.546 | dog    | 0.509 | sheep               | 0.431 |
| bird   | 0.407 | cat   | 0.567 | horse  | 0.500 | sofa                | 0.390 |
| boat   | 0.278 | chair | 0.296 | motor  | 0.482 | train               | 0.515 |
| bottle | 0.354 | cow   | 0.450 | person | 0.450 | $\operatorname{tv}$ | 0.455 |

表 4(c): COCO 预训练 (mAp=0.587)

| plane  | 0.652 | bus   | 0.678 | table  | 0.429 | plant | 0.446 |
|--------|-------|-------|-------|--------|-------|-------|-------|
| bike   | 0.559 | car   | 0.648 | dog    | 0.667 | sheep | 0.520 |
| bird   | 0.602 | cat   | 0.652 | horse  | 0.653 | sofa  | 0.558 |
| boat   | 0.457 | chair | 0.518 | motor  | 0.641 | train | 0.651 |
| bottle | 0.530 | cow   | 0.627 | person | 0.614 | tv    | 0.645 |



图 3(a): 使用 COCO 预训练 Faster-RCNN 的目标检测



图 3(b): Imagenet 预训练(左)、随机初始化(右)

使用三种模型对挑选出的图片作目标检测,如图 3 (a)、(b)。可见 COCO 预训练 Faster-RCNN 的检测效果较好,其对复杂图片 (如右下子图包含多个人、马且框有重叠) 也能准确识别。另外 两个模型的效果要稍差些,如图 3 (b) 左下角的物体被错误地识别为人,右子图未能检出图片 左侧的马头且框的置信度比较低。

### 三、使用 VIT 的 CIFAR-100 图像分类

### ◆ 问题介绍

所使用的 Transformer 网络模型为 VIT,来自论文 An Image is Worth  $16\times16$  words: Transformers for Image Recognition at Scale (Alexey, 2020) 中的 Vision Transformer。该模型 首先在大型数据集上预训练 VIT,再在规模较小的下游任务微调 (添加一个初始化全零,维度 为  $D\times K$  的前馈预测层,其中 K 为下游类的个数)。虽然 VIT 可处理任意长度的输入序列,但预训练得到的位置嵌入可能是混淆的。作者为此对预训练位置嵌入在原始图像中的坐标作二维插值,改善了位置嵌入的表示。我们使用官方 Github 提供的预训练模型,再在 CIFAR-100 任务上作微调。该模型版本为 VIT-B/16,与 resnet-101 参数量相近 (均为  $8.5\times10^8$  左右)。



图 4(a): 训练集上损失



图 4(b): 测试集上损失



图 4(c): 测试集上准确率

### ◆ 模型训练

设置 epoch 为 50, 学习率 0.001, batch 大小为 8, 使用 SGD 优化器。数据增强方法为:对每张训练图片,以各 1/3 的概率作 cutmix, cutout 和 mixup。图 4 (a)-(c) 为损失及准确率迭代情况。可见损失收敛速度较快,且由于预训练,模型准确率在前 3 个 epoch 内就已达到 0.6 以上。模型最终在测试集上准确率为 0.6662,高于 resnet:期中作业使用 resnet-18 的准确率仅为 0.5866, resnet-101 为 0.62 左右 (参考网络上另一项目)。

### ▶ 期末项目 (包含 1-3) 请见 Github repo:

https://github.com/pitter-patterz/final\_pj

### ▶ 视频 / 模型下载链接为:

https://pan.baidu.com/s/1ry7nWFbDlZJsGRP0xhusiw?pwd=sjwl (pwd:sjwl)

https://pan.baidu.com/s/1-OF-MkzxYYBQTXHPpctmdw?pwd=sjwl (pwd:sjwl)

https://pan.baidu.com/s/1Jl7Afbr-GDblsmgrd5dAMw (pwd:rjjb)