Generalizing some Hofstadter functions G, H and beyond

Pierre Letouzey, IRIF, U. Paris Cité

Joint work with Shuo Li (U. Winnipeg) & Wolfgang Steiner (IRIF)

One World Combinatorics on Words Seminar

March 11, 2025

Online ressources

```
Main page: https://github.com/letouzey/hofstadter_g
```

Includes these slides, the Coq files and links to two preprints:

```
Preprint about part 1: https://hal.science/hal-04715451
Preprint about part 2: https://hal.science/hal-04948022
(also on arXiv: 2410.00529 and 2502.12615)
```

Some nested recursions

From the book "Gödel, Escher, Bach":

Definition (Hofstadter's G function)

$$\begin{cases} G(0) = 0 \\ G(n) = n - G(G(n-1)) \end{cases}$$

for all $n \in \mathbb{N}_*$.

Some nested recursions

From the book "Gödel, Escher, Bach":

Definition (Hofstadter's G function)

$$\begin{cases} G(0) = 0 \\ G(n) = n - G(G(n-1)) \end{cases}$$

for all $n \in \mathbb{N}_*$.

For $k \in \mathbb{N}$, we generalize to k nested recursive calls:

Definition (the F_k functions)

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$

for all $n \in \mathbb{N}_*$

where $F_k^{(k)}$ is the k-th iterate $F_k \circ F_k \circ \cdots \circ F_k$.

Outline

- Morphic words and pointwise monotonicity
- Numerical systems and discrepancy
- The Coq formalization

Part 1

Morphic words and pointwise monotonicity

What about F_0 and F_1 and F_2 ?

- F_0 won't be considered : non-recursive, flat, boring.
 - ▶ For the rest of this talk, we assume $k \ge 1$.

What about F_0 and F_1 and F_2 ?

- \bullet F_0 won't be considered : non-recursive, flat, boring.
 - \blacktriangleright For the rest of this talk, we assume k > 1.
- F_1 is simply a division by 2 (rounded) :
 - ▶ $F_1(n) = n F_1(n-1) = 1 + F_1(n-2)$ when $n \ge 2$
 - Hence $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$.

What about F_0 and F_1 and F_2 ?

- \bullet F_0 won't be considered : non-recursive, flat, boring.
 - ▶ For the rest of this talk, we assume $k \ge 1$.
- F_1 is simply a division by 2 (rounded) :
 - ► $F_1(n) = n F_1(n-1) = 1 + F_1(n-2)$ when $n \ge 2$
 - Hence $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$.
- $F_2=G$ is already well studied, see OEIS A5206. In particular $F_2(n)=\lfloor (n+1)/\varphi \rfloor$ where φ is the Golden Ratio.

Basic properties

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$
 for all $n > 0$

- Well-defined since $0 \le F_k(n) \le n$
- $F_k(0) = 0$, $F_k(1) = 1$ then $n/2 \le F_k(n) < n$
- ullet $F_k(n+1)-F_k=0$ or 1: a succession of flats and steps
- ullet Hence each F_k is increasing, onto, but not one-to-one
- Never two flats in a row
- At most k steps in a row

Basic properties

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$
 for all $n > 0$

- Well-defined since $0 \le F_k(n) \le n$
- $F_k(0) = 0$, $F_k(1) = 1$ then $n/2 \le F_k(n) < n$
- $F_k(n+1) F_k = 0$ or 1: a succession of flats and steps
- Hence each F_k is increasing, onto, but not one-to-one
- Never two flats in a row
- ullet At most k steps in a row

 F_k may be coded as an infinite word of flats and steps, e.g.

Too coarse, no nice properties for k > 2.

A letter substitution and its morphic word

We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\begin{split} \mathcal{A} &\to \mathcal{A}^* \\ \tau_k: \ k \mapsto k1, \\ i \mapsto i{+}1 \quad \text{for } 1 \leq i < k. \end{split}$$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

A letter substitution and its morphic word

We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\begin{split} \mathcal{A} &\to \mathcal{A}^* \\ \tau_k: \ k \mapsto k1, \\ i \mapsto i{+}1 \quad \text{for } 1 \leq i < k. \end{split}$$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

For instance:

- $x_2 = 212212122122121212\cdots$ (Fibonacci word)
- $x_3 = 3123313123123312331 \cdots$

A letter substitution and its morphic word

We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\begin{split} \mathcal{A} &\to \mathcal{A}^* \\ \tau_k: \ k \mapsto k1, \\ i \mapsto i{+}1 \quad \text{for } 1 \leq i < k. \end{split}$$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

For instance:

- $x_2 = 212212122122121212\cdots$ (Fibonacci word)
- $x_3 = 3123313123123312331 \cdots$

Spoiler: the previous word $F_k = \bigcirc \bigcirc \bigcirc \cdots$ is actually a projection of x_k where letter 1 becomes \ominus and any other letter becomes \bigcirc .

Prior work

Note that τ_k is not novel, it can be seen as:

- A particular modified Jacobi-Perron substitution (see Pytheas Fogg)
- The substitution associated with the *Rényi expansion* of 1 in base $\beta_k = \operatorname{root}(X^k X^{k-1} 1)$ (see Frougny et al, 2004)
 - ▶ Hence the factor complexity of x_k is $n \mapsto (k-1)n+1$.

Length of substituted prefix

A useful notion relating F_k and x_k :

Definition (length L_k of substituted prefix)

$$L_k(n) := |\tau_k(x_k[0..n-1])|$$

where $x_k[0..n-1]$ is the prefix of size n of x_k .

Interestingly, the j-th iterate of L_k satisfies $L_k^j(n) = \left| \tau_k^j(x_k[0..n-1]) \right|$.

Theorem

For k, n, j > 0, the antecedents of n by F_k^j are $L_k^j(n-1)+1, \ldots, L_k^j(n)$.

The proof is pretty technical (thanks Wolfgang).

Corollary: $F_k(L_k(n)) = n \le L_k(F_k(n)) \in \{n, n+1\}$ (Galois connection).

Prop: $L_k(n) = n + F_k^{k-1}(n)$.

More relations between x_k and F_k

Consequences of the previous theorem:

- The letter $x_k[n]$ is 1 whenever $F_k(n+1) F_k(n)$ is 0.
- Counting letter 1 in $x_k[0..n-1]$ gives $n F_k(n)$.
- For $1 \le p \le k$, counting letters p and more gives F_k^{p-1} . In particular the count of letter k is F_k^{k-1} .
- Another point of view: $x_k[n] = \min(j, k)$ where j is the least value such that F_k^j is flat at n.

Letter frequencies

Let α_k be the positive root of $X^k + X - 1$ and $\beta_k = 1/\alpha_k$, positive root of $X^k - X^{k-1} - 1$.

Theorem

$$\lim_{n \to \infty} \frac{1}{n} F_k(n) = \alpha_k,$$

$$\lim_{n \to \infty} \frac{1}{n} L_k(n) = \beta_k,$$
frequency $(x_k, i) = \alpha_k^{k+i-1}$ for $1 \le i < k$,
frequency $(x_k, k) = \alpha_k^{k-1} = \beta_k - 1$.

Said otherwise, $F_k(n) = \alpha_k n + o(n)$ when $n \to \infty$. See Dilcher 1993 for a proof without morphic words.

Corollary

When n is large enough, $F_k(n) < F_{k+1}(n)$.

Monotony of the F_k family

Definition

Pointwise order for functions : $f \le h \iff \forall n \ge 0, f(n) \le h(n)$

Theorem

For all k, $F_k \leq F_{k+1}$

Monotony of the F_k family

Definition

Pointwise order for functions : $f \leq h \iff \forall n \geq 0, f(n) \leq h(n)$

Theorem

For all k, $F_k \leq F_{k+1}$

- Conjectured in 2018.
- First proof by Shuo Li (Nov 2023).
- Improved version by Wolfgang Steiner.
- The key lemma proves simultaneously $L_k(n) \ge L_{k+1}(n)$ and $L_k^j(n) < L_{k+1}^{j+1}(n)$ for $k,n \ge 1$ and $j \le k$.

Some key steps in the key lemma

When proving $L_k^j(n) < L_{k+1}^{j+1}(n)$ by induction on n, simultaneously with $L_k(n) \ge L_{k+1}(n)$:

• We deal with j = k via an ad-hoc equation:

$$L_{k+1}^{k+1}(n) - L_k^k(n) = L_{k+1}^k(n) - L_k^{k-1}(n).$$

- When j < k, consider the last letter on the right $x_{k+1}[n-1]$:
 - ▶ If it is k+1, even a k letter on the left leads to a smaller quantity:

$$|\tau_k^j(k)| < |\tau_{k+1}^{j+1}(k+1)|.$$

▶ If it is not k+1, the whole prefix $x_{k+1}[0..n-1]$ is the image by τ_{k+1} of a smaller prefix. Let m be its size. Induction hypothesis on this m: $L_k^{j+1}(m) < L_{k+1}^{j+2}(m)$ and $L_k(m) \geq L_{k+1}(m) = n$. And finally:

$$L_k^j(n) \leq L_k^j(L_k(m)) = L_k^{j+1}(m) < L_{k+1}^{j+2}(m) = L_{k+1}^{j+1}(n).$$

Pointwise monotonicity, summarized

Below, $f \to g$ whenever $f \le g$ pointwise:

$$k = 1 \qquad k = 2 \qquad k = 3 \qquad k = 4 \qquad k = 5$$

$$j = 1 \qquad F_1 = \lceil \frac{n}{2} \rceil \longrightarrow F_2 = G \longrightarrow F_3 \longrightarrow F_4 \longrightarrow F_5$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$j = 2 \qquad F_1^2 = \lceil \frac{n}{4} \rceil \longrightarrow F_2^2 \longrightarrow F_3^2 \longrightarrow F_4^2 \longrightarrow F_5^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$j = 3 \qquad F_1^3 = \lceil \frac{n}{8} \rceil \longrightarrow F_2^3 \longrightarrow F_3^3 \longrightarrow F_4^3 \longrightarrow F_5^3$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$j = 4 \qquad F_1^4 = \lceil \frac{n}{16} \rceil \longrightarrow F_2^4 \longrightarrow F_3^4 \longrightarrow F_4^4 \longrightarrow F_5^4$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$j = 5 \qquad F_5^5 = \lceil \frac{n}{22} \rceil \longrightarrow F_5^5 \longrightarrow F_5^5 \longrightarrow F_5^5$$

Pointwise monotonicity, summarized

Below, $f \to g$ whenever $f \le g$ pointwise:

Pointwise monotonicity, summarized

Below, $f \to g$ whenever $f \le g$ pointwise:

$$j = 1 \qquad F_{1} = \lceil \frac{n}{2} \rceil \longrightarrow F_{2} = G \longrightarrow F_{3} \longrightarrow F_{4} \longrightarrow F_{5}$$

$$0.5 \uparrow \qquad 0.618 \uparrow \qquad 0.682 \uparrow \qquad 0.724 \uparrow \qquad 0.754 \uparrow \qquad$$

k = 1 k = 2 k = 3 k = 4 k = 5

Remaining conjectures

The last n with $F_k(n) = F_{k+1}(n)$ seems $N_k := (k+1)(k+6)/2$.

- $\bullet \ \ \text{We proved} \ F_k(N_k) = F_{k+1}(N_k)$
- We proved $F_k(n) < F_{k+1}(n)$ for all $n > N_k$ and $k \le 5$.
- We conjecture $F_k(n) < F_{k+1}(n)$ for all $n > N_k$ and any k.

Remaining conjectures

The last n with $F_k(n) = F_{k+1}(n)$ seems $N_k := (k+1)(k+6)/2$.

- We proved $F_k(N_k) = F_{k+1}(N_k)$
- We proved $F_k(n) < F_{k+1}(n)$ for all $n > N_k$ and $k \le 5$.
- We conjecture $F_k(n) < F_{k+1}(n)$ for all $n > N_k$ and any k.

 N_k also appears to be the last contact between L_{k+1} and L_{k+2} .

Part 2

Numeration systems and discrepancy

Quiz ! $S \subset \mathbb{N}$ is said k-sparse if two elements of S are always separated by at least k. How many k-sparse subsets of $\{1..n\}$ could you form ?

Quiz ! $S \subset \mathbb{N}$ is said k-sparse if two elements of S are always separated by at least k. How many k-sparse subsets of $\{1..n\}$ could you form ?

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

Quiz ! $S \subset \mathbb{N}$ is said k-sparse if two elements of S are always separated by at least k. How many k-sparse subsets of $\{1..n\}$ could you form ?

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

- $A_{1,n}$: 1 2 4 8 16 32 64 128 256 512 ... (Powers of 2)
- $A_{2,n}$: 1 2 3 5 8 13 21 34 55 89 ... (Fibonacci)
- \bullet $A_{3,n}$: 1 2 3 4 6 9 13 19 28 41 ... (Narayana's Cows)
- $A_{4,n}$: 1 2 3 4 5 7 10 14 19 26 ...

Quiz ! $S \subset \mathbb{N}$ is said k-sparse if two elements of S are always separated by at least k. How many k-sparse subsets of $\{1..n\}$ could you form ?

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

- $A_{1,n}$: 1 2 4 8 16 32 64 128 256 512 ... (Powers of 2)
- $A_{2,n}$: 1 2 3 5 8 13 21 34 55 89 ... (Fibonacci)
- $A_{3,n}$: 1 2 3 4 6 9 13 19 28 41 ... (Narayana's Cows)
- \bullet $A_{4,n}$: 1 2 3 4 5 7 10 14 19 26 ...

Actually: $A_{k,n} = L_k^n(1) = |\tau_k^n(k)|$

Not new: Meek & Van Rees (84), Dilcher (93), Kimberling (95), Eriksen & Anderson (2012), ...

F_k is a bitwise right shift

Theorem (Zeckendorf)

Fix a k>0. All natural number can be written as a sum of $A_{k,i}$ numbers. This decomposition is unique when its indices i form a k-sparse set.

Theorem

 F_k is a right shift for such a decomposition : $F_k(\Sigma A_{k,i}) = \Sigma A_{k,i-1}$ (with the convention $A_{k,0-1} = A_{k,0} = 1$)

- ullet Beware, this shifted decomposition might not be k-sparse anymore
- Not so new: a variant of F_k is already known to be a right shift on these decompositions (Meek & van Rees, 1984).
- Key property: F_k is flat at n iff the decomposition of n uses $A_{k,0}=1$.
- More generally, F_k^j is flat at n iff $j > \operatorname{rank}(n)$ where $\operatorname{rank}(n)$ is the smallest index in the decomposition of n.

Discrepancy

Definition (Discrepancy)

$$\Delta_k := \sup_n |F_k(n) - \alpha_k n|$$

- $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$ hence $\Delta_1 = 0.5$
- $F_2(n)=\lfloor lpha_2\,(n+1)
 floor$ with $lpha_2=arphi-1pprox 0.618...$ hence $\Delta_2=arphi-1$

New results:

- $\Delta_3 < 1$
- $\Delta_4 < 2$
- For $k \geq 5$, $\sup_n (F_k(n) \alpha_k n) = +\infty$ and $\inf_n (F_k(n) \alpha_k n) = -\infty$ $(\Delta_k = \infty \text{ was already in Dilcher 1993}).$

Discrepancy

Definition (Discrepancy)

$$\Delta_k := \sup_n |F_k(n) - \alpha_k n|$$

- $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$ hence $\Delta_1 = 0.5$
- $F_2(n)=\lfloor lpha_2\,(n+1)
 floor$ with $lpha_2=arphi-1pprox 0.618...$ hence $\Delta_2=arphi-1$

New results:

- $\Delta_3 < 1$
- $\Delta_4 < 2$
- For $k \geq 5$, $\sup_n (F_k(n) \alpha_k n) = +\infty$ and $\inf_n (F_k(n) \alpha_k n) = -\infty$ $(\Delta_k = \infty \text{ was already in Dilcher 1993}).$

This proves two conjectures of OEIS:

- $F_3(n) \in |\alpha_3 n| + \{0, 1\}$
- $F_4(n) \in |\alpha_4 n| + \{-1, 0, 1, 2\}$

Solving the Fibonacci-like recurrences

Theorem

For all n:

$$A_{k,n} = \sum_{i=0}^{k-1} c_{k,i} \, r_{k,i}^n$$

where $r_{k,i}$ are the roots of $X^k-X^{k-1}-1$ and $c_{k,i}:=r_{k,i}^k/(kr_{k,i}-(k-1))$.

- This generalizes the Binet formula.
- Coefficients obtained by inversing a Vandermonde matrix.
- Trick: temporary consider $\tilde{A}_{k,n}$ with the same recursion but initial values $0\ 0\ \cdots\ 0\ 1.$
- Formula already known to Dilcher (1993).

Computing discrepancies

With $D_k(n)$ the Zeckendorf k-decomposition of n and $r_{k,i}$ the roots of $X^k - X^{k-1} - 1$ and $d_{k,i}$ suitable coefficients:

Theorem

$$F_k(n) - \alpha_k n = \sum_{q \in D_k(n)} \sum_{i=0}^{k-1} d_{k,i} r_{k,i}^q = \sum_{i=0}^{k-1} \left(d_{k,i} \sum_{q \in D_k(n)} r_{k,i}^q \right)$$

- One coefficient $d_{k,i}$ is null (the one for the positive root)
- For k < 5, all other roots have modulus strictly less than 1, leading to a finite discrepancy.
- For proving $\Delta_3 < 1$ and $\Delta_4 < 2$ we follow Rauzy and regroup some root powers together (up to k terms together). In these groups, a lot of cancellation happens.
- For $k \ge 5$, at least one non-real root has modulus 1 or more, leading to infinite discrepancy.

Serendipity: a Rauzy fractal

Let $\delta(n) := F_3(n) - \alpha_3 n$, then plot $(\delta(i), \delta(F_3(i)))$ for many i:

Summary

	F_1	F_2	F_3	F_4	F_5	F_k
						$k \ge 6$
Hofstadter's name		G	H			
$\begin{array}{c} \text{Mean slope } \alpha_k = \\ \text{root}(X^k + X - 1) \end{array}$	0.5	φ -1	≈ 0.682	≈ 0.724	≈ 0.754	α_k
Discrepancy $\sup F_k(n) - \alpha_k n $	0.5	φ -1	< 1	< 2	O(ln(n))	$O(n^a)$, $0 < a < 1$
Exact expression	$\lfloor \frac{n+1}{2} \rfloor$	$\lfloor \frac{n+1}{\varphi} \rfloor$	×	×	X	×
Almost expression			$ \begin{array}{c} \lfloor \alpha_3 n \rfloor + \\ \{0,1\} \end{array} $	$ \begin{array}{ c c } $	×	×
Almost additive	✓	✓	✓	✓	×	×
$\beta_k = \frac{1}{\alpha_k}$ is Pisot	✓	✓	✓	✓	√!	×

Here $\beta_2=\varphi\approx 1.618$ is the Golden Ratio.

And $eta_5 pprox 1.324$ is the Plastic Ratio, root of X^3-X-1 , smallest Pisot number.

Part 3

The Coq/Rocq formalization

Current status of the Coq formalization

- Freely accessible : https://github.com/letouzey/hofstadter_g
- Formalization of all results of part 1 and 2, and more.
- Quite large, about 30 000 lines. Lots of cruft, experiments, etc.
- Once installed, Coq rechecks the whole in 3 minutes.
- The discrete part is self-contained (nat, list, ...), no axioms.
- The part using $\mathbb R$ and $\mathbb C$ relies on 4 standard logical axioms (e.g. Excluded Middle) and two external libraries (Coquelicot, QuantumLib), with personal contributions and extensions.

Fibonacci-like recurrence

An example of direct definition (NB: "S" is Coq jargon for +1):

```
Fixpoint A (k n : nat) := match n with \mid 0 \Rightarrow 1 \mid S m \Rightarrow A k m + A k (m-(k-1)) end.

Compute A 1 8. (* 256 *)
```

Compute A 2 8. (* 55 *)

Fibonacci-like recurrence

An example of direct definition (NB: "S" is Coq jargon for +1):

```
\begin{split} & \text{Fixpoint A } (\texttt{k n : nat}) := \\ & \text{match n with} \\ & \mid \texttt{O} \Rightarrow \texttt{1} \\ & \mid \texttt{S m} \Rightarrow \texttt{A k m} + \texttt{A k } (\texttt{m-(k-1)}) \\ & \text{end.} \end{split}
```

```
Compute A 1 8. (* 256 *)
Compute A 2 8. (* 55 *)
```

Actually, some magic ensures that m-(k-1) is less than n hence a legal recursive call.

The nat datatype computes horribly slowly (in unary!), but mimics the Peano induction, which is handy in symbolic reasoning.

Fibonacci-like recurrence

Some corresponding proofs:

```
\texttt{Lemma A\_base k n} : \texttt{n} \leq \texttt{k} \to \texttt{A k n} = \texttt{n}{+}1.
Proof.
 induction n; auto.
 simpl. intros.
replace (n-(k-1)) with 0 by lia. simpl.
rewrite IHn: lia.
Qed.
Lemma A_rec k n : 1 \le k \to 1 \le n \to A k n = A k (n-1) + A k (n-k).
Proof.
 intros. destruct n; try lia.
simpl (A k (S n)). f_equal; f_equal; lia.
Qed.
```

Defining F_k

Coq rejects the $f(f(\cdots))$ subcalls (no "structural decrease"). To overcome this, we count "generations" via an extra parameter p.

```
Notation "f ^^ n" := (Nat.iter n f) (at level 30, right associativity). Fixpoint recf k p n := match p, n with  | S p, S n \Rightarrow S n - ((recf k p)^{^k}) n   | \_, \_ \Rightarrow 0  end. Definition f k n := recf k n n.
```

Definition f k n := recf k n n.

```
Compute f 1 256. (* 128 *)
Compute f 2 89. (* 55 *)
```

Then we ensure correctness by proving base and step equations for this f.

Alternative: predicative or inductive definitions, much more flexible but no computation.

A main result

```
Theorem f_grows k n : f q k \leq f (S k) n. Proof. ... Qed. Print Assumptions f_grows. (* Closed under the global context *) In the actual development, see theorem Thm_7_4' in Article1.v.
```

Alternative definition of F_k

More involved but faster: binary arithmetic plus memoization. Can be proved equivalent to f.

```
Definition f_array (k n : N) :=
N.peano_rect _
  (FlexArray.singleton 0)
  (fun n t ⇒ FlexArray.snoc t (N.succ n - N.iter k (FlexArray.get t) n))
  n.
Definition f_opt (k n : N) := FlexArray.get (f_array k n) n.
```

```
Compute f_opt 3 100000. (* = 68233 in less than 1s. *)
```

Finite and infinite words

Relatively generic definitions:

```
Notation letter := nat (only parsing).
Definition word := list letter. (* finite word *)
Definition sequence := nat \rightarrow letter. (* infinite word *)
Definition subst := letter \rightarrow word.
Definition apply: subst \rightarrow word \rightarrow word := \cdotflat_map _ _.
Definition napply (s:subst) n w := (apply s ^n) w.
Definition subst2seg s a := fun n \Rightarrow nth n (napply s n [a]) a.
Examples \tau_k and x_k:
Definition qsubst q (n:letter) := if n = ? q then [q; 0] else [S n].
Definition gseq q := subst2seq (qsubst q) q.
```

Example of a larger proof I

```
Lemma Lq_LSq q n :
L(Sq)1n < Lq1n
\land (0<n \rightarrow forall j, j< Sq \rightarrow Lqjn < L(Sq)(Sj)n).
Proof.
 induction n as [n IH] using lt_wf_ind.
destruct (Nat.eq_dec n 0) as [\rightarrow |N0]; [easy]].
destruct (Nat.eq_dec n 1) as [\rightarrow |N1].
 { clear NO IH. split; intros;
  rewrite !L S. !L O. !gseg g O. !gnsub gword. !gword len. !A base: lia. }
split.
— rewrite !Lq1_Cqq, ← !fs_count_q, ← Nat.add_le_mono_l.
  set (c := fs q q n).
  set(c' := fs(Sa)(Sa)n).
  destruct (Nat.eq_dec c' 0); try lia.
  replace c' with (S (c'-1)) by lia. change (c'-1 < c).
   apply (incr strmono iff (L incr (S a) (S a))).
   apply Nat.lt le trans with n; [apply steiner thm; lia]].
  transitivity (L q q c); [apply steiner_thm; lia]].
   destruct (Nat.eq dec q 0) as [\rightarrow |Q].
   + rewrite L_q_0. apply L_ge_n.
   + apply Nat.lt_le_incl, IH; try apply fs_lt; try apply fs_nonzero; lia.
 - intros _. destruct n; try easy.
   destruct (Nat.eq_dec (qseq (S q) n) (S q)) as [E|N].
  + intros j Hj. rewrite !L_S, E.
    rewrite qnsub_qword, qword_len.
     assert (Hx := qseq letters q n).
     set (x := qseq q n) in *.
     generalize (qnsub_len_le q j x Hx). rewrite !A_base by lia.
     destruct (IH n lia) as ( .IH').
     specialize (IH' lia i Hi).
     lia.
```

Example of a larger proof II

```
+ destruct (qsubst_prefix_inv (S q) (qprefix (S q) (S n)))
      as (v & w & Hv & E & Hw); try apply gprefix_ok.
    destruct Hw as [\rightarrow \mid \rightarrow ].
    2:{ rewrite take_S in Hv; apply app_inv' in Hv; trivial;
         destruct Hv as (_,[=E']); lia. }
    rewrite app_nil_r in Hv.
    red in E
    set (1 := length v) in *.
    assert (E' : L (S \alpha) 1 1 = S n).
     { now rewrite ← (aprefix length (S a) (S n)), Hv. E. }
     assert (H10: 1 <> 0). { intros \rightarrow . now rewrite L_0 in E'. }
    assert (H1: 1 < Sn).
     { rewrite ← E'. rewrite Lq1_Cqq.
       generalize (Cqq_nz (S q) 1). lia. }
    destruct (IH 1 H1) as (IH5, IH6). clear IH. rewrite E' in IH5.
    specialize (IH6 lia).
     assert (LT: forall j, j \leq q \rightarrow L q j (S n) < L (S q) (S j) (S n)).
     { intros j Hj. specialize (IH6 (S j) lia).
      rewrite ← E' at 2, rewrite L add, Nat.add 1 r.
      eapply Nat.le_lt_trans; [|apply IH6].
      rewrite ← (Nat.add_1_r j), ← L_add. apply incr_mono; trivial.
      apply L_incr. }
    intros j Hj. destruct (Nat.eq_dec j (S q)) as [\rightarrow |Hj'].
    * generalize (steiner_trick q (S n)).
       specialize (LT q (Nat.le_refl _)). lia.
     * apply LT. lia.
Qed.
```

Reals, Matrix, Polynomial, etc

- Due to the Coq standard definition of reals, this part uses 4 logical axioms (incl. excluded middle and functional extensionality).
- Example of library complement: the Vandermonde determinant.

```
\label{lemma Vandermonde_det n (1:list C):} \\ length \ l = n \rightarrow \\ \\ Determinant \ (Vandermonde \ n \ l) = multdiffs \ l. \\ \\
```

- A bit of interval arithmetic for computing bounds reliably (via rational approximation). For instance $\Delta_3 \leq 0.9959 < 1$.
- The proofs about Δ_3 automatically enumerate "sparse" subsets and find bounds for the corresponding 13 cases. Same for Δ_4 (69 cases).

Conclusion

About the Hofstadter F_k functions:

- Some remaining conjectures, seem to require new ideas.
- Is this specific to this particular recursion $X^k + X 1$? What about similar functions e.g. for Rauzy's Tribonacci? Unclear.

About the Coq/Rocq proof assistant:

- Proving this kind of study in Coq is doable, but still tricky and time consuming.
- Still critical parts to review manually: early definitions, final theorem statements, used axioms.
- Difficulty: lack of results in libraries (e.g. on complex, matrices, power series).