Power Engineering 3

Tutorial 3 (Transformers) Solutions

SPEED Laboratory

1

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject: TRANSFORMERS TUTORIAL 24/2/11 Date: 0 25 $Z_{15}' = \left(\frac{n_0}{n_0}\right)^2 Z_5 = 25^2 \times 1.6 =$ Where ZT = 50 + 180 + 1000 ZT = 1050 + 580 ZT = 1053 / 4.35° T, = 10,000 L0° = 9.5 L-4.35° $\bar{1}_{s} = \left(\frac{n_{s}}{n_{s}}\right)\bar{1}_{s} = 25 \times 9.5 L - 4.25^{\circ} = 237.5 L - 4.25^{\circ}$

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date: ·
$\nabla_{i} = T_{i}, Z_{i}$	RESISTIVE COMPONENT
=> V, = 9.5 L-4.	35 × 1000 / 0°
= V, = 9500 L-	- 4.35 °
$\overline{V}_{S} = \left(\frac{n_{s}}{n_{e}}\right)^{-1} \overline{V}_{i}$	= 1 x 9500 L-4.35°
=> Vs = 380L-4	⊃5°
IV) 1800 LOSS Piron	$= \frac{V_e^2}{R_c} = \frac{10,000^2}{50,000}$
	= 2 K W
COPPER LOSS F.	20 = 1, Rien = 9.52 x 50
	= 4512w = 4.51 kw
V) MAGNETISING CURRENT	To = Vp = 10,000 L00 = 1 L-900

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

()	T -	T, + T, +	7	
(vi)	Ιρ -	1, + 1, +	١٠	
	丁. =	9.5 L-4.25°	= 9.47 - 30.7	S
		1 L-90° =		
	īc =	Vp = 10,000	L0° = 0.2 L0° =	0.2+50
		Rc 50,000	Loo	
C=	10	= 9.47 - 50.	75 - 51 + 0.2	
_			75 = 9.83 L	
=)	p =	9.67 - 51.	75 = 4.83 <u>L</u>	10.3
()	V.	= T. e. =	9.56-4.250 *	50/00
(011)	Lie	4 1 - 109	.,,	30 20
-7	Ve.	er = 475.L	-4.35°	
		NOUTAGE DIO	- ACROSS Rieg	
	Vxie	= 1, j X,ea	= 9.5 L-4.55° x	80 L90°
	-,		5 . 50	
=2		= 760 L8		
	^	VOLTAGE DAGE	Assess X	

Transformer Tutorial Q1

Phasor Arithmetic:

$$V_{p} = V_{1} + V_{R1eq} + V_{X1eq}$$
 $I_{p} = I_{1} + I_{M} + I_{C}$

Scale 1cm = 1kV Scale 1cm = 2A

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

ıbject:						Date:	······································
2	VOLTAGE	Recues	7102	= ,	Vsoc -		× 100°/6
	2					380	× 100%
				-	5%		
	E88 Icienc	o =	OUTPU	_	90-41 90-41 +		× 100%
5)	Essiene		V515 (× 100%
=7	Essicience		380,				× 100%
Ð	E881ciene	2 =	93.1	3%		ne	ore Vs + 15 or in phase Since load is roughly Resource

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:			Date:	
<u></u>		KEFICIEUCY	IS WHEN COPP	ra Coss
		COSS 15 COS	DEPENDANT	- 1200 ·
	WANT	COPPER LOSS	, = 1RON (0)) =	7000W
	Thereso	1,2 Ries	- 2000	
		2000 =	40	
-	s ₁ =	6.32 A		
	Vol =	11,112,1	where 2+=	(Z's+50) + 580
=	12-1	6.32	= 1582.3	A, 80- Simplicity
=1	12+12	= 25036	.05	
=	(A,+5	0) + 802 =	2202602	

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

Subject:

SPEED Laboratory

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Date:

=> A,2 + 100 A, + 2500 + 6400 = 2507605
=> A,2 + 100 A, - 2494705 = 0
Solution $A_1 = -b^+(b^2 - \mu_{ac})^{\frac{1}{2}}$
⇒ A, = -100 + (10000 + 9978820) t
=> A, = -100 + 3160 Z
D A, = 1500 = 71s'
=> ACTUAL SECONDARY LOAD RESISTANCE
$Z_{L} = \left(\frac{\Omega_{s}}{\Omega_{p}}\right)^{2} \cdot Z_{1s'} = \left(\frac{1}{25}\right)^{2} \times 1530$
=> 2. = <u>2.45.1</u>

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:		Date:
G OPE	CIRCUIT TEST:	
1		ens Ratio
Ve	Bix MR. no	Voc 110
	=	2.09
P. =	. V ₀ ² ⇒ e _c =	Ve2 = 2202 Pin 20
=> Rc	= 1763 A	
Appara	en Pove S = Vole	= 230× 2 = 460VA
Q ² =	52-P2 = 4602-	302 = 210700
=> Q =	459 VA-	
Q =	$\frac{\sqrt{e^2}}{X_n} \Rightarrow X_n = \frac{\sqrt{e^2}}{\sqrt{e^2}}$	459

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:					Date:		
540 1	er Circu	111	0000	7			
	= 120		s (2)	er =	Pin =	200 22 ²	
	zy = 0		S = \	Volo =	40 × 27	· 880	VA
	: S ² -		8802	- 200'	- 7	14400	
	= 856		⇒ X,		On les	= 856	
=2/6		X.eq =	1.76	1			

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date: ·
(5)	Vrms-max = 4.44 N & Bmac Ac
	Ac is closs sectional Area to Show 08.
	Swx:
ລ	Ac = 20 × 10" × 30 × 10" = 600 × 10" m2 × ST4CK
=7	Vrms. max = 4.44 x 200 x 50 x 1.3 x 600 x 10 x 5 TACK
: 7	Van-194 = 34.6 V × 0.95 = 32.9 V
	ent max (Almi) (Area (mmi)
	Current Max = J x 40x25 x 0.8 - Fill Factor
	Ninse of Turns
=>	Current Max = 2 x 40 x 25 x 0.8
	200
=) (Current Max = 8A

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

Tel: +44 (0)141 330 3157 Fax: +44(0)141 330 3158 Email: saffron@elec.gla.ac.uk Web: www.speedlab.co.uk

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

bject:		<i>e</i> *			Date:	······
6	100	or Line	Volla	je = 1	2 KV	
	00	Lpur line	Volle	ige =	6.6 KV	
	w.	-ed as	ΥΔ	:		
	R.	45 5	1	R _s		
		*] } E	Ve		=) 5 <u>eco</u>	SOARY
	Y			/ _s		PRIMARY
		13 8			LINE By J	VOLTAGE
	B,-	13 8	1	— Bs		
		لم الم	4			
		Sp				
	BANK	RATIO =	VLP VLS	= 1200	00 = 1.8	8
	PHASE	RATIO =	75.	ANK CATI	= 1.05	51
	(TURNS	CATIO)				

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK