

SINGEL-CELL LI-ION AND LI-POL BATTERY PROTECTOR WITH MOSFET COMBO

General Description

The SDC6073 is a single-cell lithium-ion (Li-lon) and lithium-polymer (Li-Pol) battery protection IC that integrated an on-chip FET switch thus reducing manufacturing costs and increasing reliability. The device is designed to protect both Li-lon and Li-Pol battery packs from either overcharge, overdischarge, or over-current.

The device contains all required protection control circuits together with a very low resistive FET switch to minimize the number of external components. The IC incorporates overcharge voltage and current protections, overdischarge voltage and current protection, overtemperature protection, short circuit protection and operates with very low power. The IC contains the other special protection. That is Battery

reverse Protection and VM reverse Protection(VM>-5.5V).

The device is not only targeted for digital cellular phones, but also for any other Li-lon and Li-Pol bat-tery-powered information appliances requiring long-term battery life time.

Features

- 1. No External FETs Required
- 2. Equivalent $R_{DS(ON)}$: $29m\Omega(MSOP-8)$ or $34m\Omega(SOT23-6L)$ on Chip MOSFET-Switch
- 3. Battery reverse and VM reverse Protection(VM>-5.5V)
- 4. Over Temperature Protection
- 5. Only one external capacitor required in application
- 6. Overcharger Current Protection
- 7. Internal High Accuracy Voltage Detection Circuit

- Overcharge Detection Voltage: 3.9V to 4.4V (Applicable in 5mV Step)Accuracy: ± 25mV
- Overcharge Hysteresis Voltage: 0.0V to 0.4V Accuracy: ± 25mV
- Overdischarge Detection Voltage: 2.0V to 3.0V (10mV step)
 Accuracy: ± 50mV
- Overdischarge Hysteresis Voltage: 0.0V to 0.7V Accuracy: ± 50Mv
- 8. Delay Times (Overcharge Voltage: t_{CU} , Over-discharge Voltage: t_{DL} , Overdischarge Current 1: t_{ODC1} , Overdischarge Current 2: t_{ODC2} , Load Short-Circuit: t_{SHORT}) are generated by an internal circuit. No external capacitor is necessary. Accuracy: \pm 20%
- 9. Three Step Overcurrent Detection Circuit is included. (Overdischarge Current 1, Overdischarge Current 2 and Load Short-Circuiting)
- 10. Charger Detection Function
- 11. Overcharge Current Detection Function
- 12.Low current consumption
 - Operation mode: 2.0μA typ., 4.0μA max.
 - Power-down mode: 0.1µA max.
- 13. Small outline MSOP-8 or SOT23(6L) Package
- 14. RoHS Compliant and Lead (Pb)-Free

Applications

- Lithium-Ion Rechargeable Battery Packs
- Lithium Polymer Rechargeable Battery Packs

Package and Pin Configuration

Pin Description

Pin Number		Pin	I/O	Function Description
MSOP-8	SOT23-6L	Name	1/0	Function Description
1	6	VDD	J	Positive power input
2	-	VDD	I	Positive power input

Pin Number		Pin	I/O	Function Description	
MSOP-8	SOT23-6L	Name	1/0	Function Description	
3	4	VCC	I	Internal circuit power supply input	
4	2,5	GND	I	Ground pin	
5	-	TOT	0	Test mode output, connect to GND in normal operation	
6	3	TEN		Test mode enable, connect to GND in normal operation	
7	1	VM	I/O	Positive charge input, overcurrent detection	
8	-	VM	I/O	Positive charge input, overcurrent detection	

Functional Block Diagram

Absolute Maximum Ratings (note)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (between VDD and GND)	VDD	0	8.0	V
Charger Input Voltage (between VM and GND)	VMAX	VDD -10.0	10.0	V
Storage Temperature Range	TSTG	-55	125	$^{\circ}$
Power Dissipation	PMAX		500	mW

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage (between VDD and Gnd)	VDD	2.0	4.5	V
Charger input voltage (between VM and GND)	VMAX	-0.3	4.7	V
Operating Temperature Range	TOPR	-40	85	$^{\circ}$

Electrical Characteristics

(Typical and limits appearing in normal type apply for $T_A = 25^{\circ}C$)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Detection Voltage									
Overcharge Detection Voltage	Vcu	-	4.26	4.275	4.29	V			
Overcharge hysteresis voltage	VHC	-	0.15	0.175	0.2	V			
Overdischarge Detection Voltage	VDL	-	2.45	2.5	2.55	V			
Overdischarge hysteresis voltage	VHD	-	0.35	0.4	0.45	V			
Charger Detection Voltage	Vcha		VDD	VDD	VDD	V			
Charger Detection Voltage	VCHA	-	+0.1	+0.15	+0.2	V			
Detection Current	Detection Current								
Overcharge Current Detection Current	locc	V _{DD} =3.5V	2.1	3.0	3.9	Α			
Overdischarge Current 1 Detection Current	IODC1	VDD=3.5V	2.1	3.0	3.9	Α			
Overdischarge Current 2 Detection Current	lodc2	VDD=3.5V	4.5	6.0	7.0	Α			
Load short-circuiting detection voltage	V _{SHORT}	VDD=3.5V	1.2	1.25	1.3	V			

Electrical Characteristics(Continued)

(Typical and limits appearing in normal type apply for $T_A = 25^{\circ}C$)

Parameter	Symbol	Remarks		Min	Тур	Max	Unit
Current Consumption							
Current Consumption	IOPE	VDD=3.5V		1.0	1.5	3.0	
in Normal Operation		VM pin	floating	1.0	1.5	3.0	μA
Current Consumption in	IDDQ	VDD	=1.5V			0.23	μA
power Down	IDDQ	VM pin	floating			0.23	μΛ
VM Internal Resistance							
Internal Resistance	RVMD	VDD-2 5	/ \/\\\=1 O\/	10	20	20	kO.
between VM and VDD	RVIVID	VDD=3.5	/ VM=1.0V	13	20	30	kΩ
Internal Resistance	RVMS	VDD-2 0\	√ VM=1.0V	300	450	675	kO
between VM and GND	KVIVIS	VDD=2.0	V VIVI-1.0V	300	450	6/5	kΩ
FET on Resistance							
		VDD=2.6V	11/14/14/00/19/00		70/75		mΩ
Equivalent FET on	501	VDD=3.0V			65/70		
Resistance	RON	VDD=3.5V	IVM=1.0A/2.0A		60/65		
		VDD=4.0V			55/60		
Over Temperature Protection	า						
Over Temperature Protection	TSHD+				115		$^{\circ}\!\mathbb{C}$
Detection Delay Time						I	
Overcharge Voltage							
Detection Delay Time	tCU			0.6	0.7	0.9	S
Overdischarge Voltage							
Detection Delay Time	tDL			144	180	216	mS
Overdischarge Current 1							
Detection DelayTime	tODC1	VDD=3.5V		9.0	11	13.5	mS
Overdischarge Current 2	105.55	VDD=3.5V					_
Detection DelayTime	tODC2			4.48	5.38	6.45	mS
Load Short-Circuiting	1011077			0.00	450	000	_
Detection Delay Time	tSHORT	VDD=3.5V		300	450	600	μS
Overcharge Current	1000	VDD=3.5V		0.0	4.4	46.5	
Detection Delay Time	tOCC			9.0	11	13.5	mS

Operation State Diagram

Operation Timing Chart

Remark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition.

The charger is supposed to charge with constant current

Operation Timing Chart(Continued)

Typical Application

Remarks:

- 1. C1 is used for protecting power fluctuation. Recommend Value is $0.1\mu F$, minimum value $0.022\mu F$, and maximum value $1.0\mu F$.
- 2. The above connection diagram and constants may do not guarantee proper operation. Evaluate upon actual application and determine constants properly.

Precaution

Pay attention to the operating conditions of input/output voltage and load current so that the loss in the IC does not exceed the permissible loss (power dissipation) of the package.

Package Information

Comb a l	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0. 820	1. 100	0. 032	0. 043	
A1	0. 020	0. 150	0. 001	0. 006	
A2	0. 750	0. 950	0. 030	0. 037	
b	0. 250	0. 380	0. 010	0. 015	
С	0. 090	0. 230	0. 004	0. 009	
D	2. 900	3. 100	0. 114	0. 122	
е	0.650(BSC)		0.026	(BSC)	
E	2. 900	3. 100	0. 114	0. 122	
E1	4. 750	5. 050	0. 187	0. 199	
L	0. 400	0.800	0. 016	0. 031	
θ	0°	6°	0°	6°	