Test Temas 1, 2 y 3 Inferencia Estadística

Sean
$$(X_1,\dots,X_6)$$
, (Y_1,\dots,Y_6) muestras aleatorias simples independientes de dos poblaciones, $N(7,\sigma^2)$ y $N(10,\sigma^2)$, respectivamente, con medias muestrales X e Y . Calcular (sin interpolación) $P(Z>1.8298)$ siendo $Z=\frac{\bar{X}-\bar{Y}+3}{\sum_{i=1}^6(X_i-\bar{X})^2+\sum_{i=1}^6(Y_i-\bar{Y})^2}\sqrt{\frac{1}{10}}$ $(A^{\frac{1}{8}}2^{\frac{1}{8}}9^{\frac{1}{8}}\cdot A^{\frac{1}{8}})$ $(A^{\frac{1}{8}}$

$$ullet$$
 b. $F_{X_{(n)}}(x)=e^{n(x+ heta)},\;\;x<- heta$ \odot c. $F_{X_{(1)}}(x)=1-e^{n(x+ heta)},\;\;x<- heta$

$$\bigcirc$$
 d. $f_{X_{(1)}}(x) = n(1-e^{x+ heta})^{n-rac{1}{2}}$ $x<- heta$

$$(X_1,\cdots,X_n)$$
 una muestra aleatoria simple de $X o \{P_{\theta},\ \theta\in\Theta\}$ y $T\equiv T(X_1,\cdots,X_n)$ un estadístico sufi. Por ser trons. Grunivoca.

- \bigcirc a. Si T es suficiente y completo, cualquier transformación de T también lo es.
- igcup C c. Si T es completo y $E_{ heta}[T^2]=1, \ orall heta \in \Theta$, entonces $P_{ heta}(T=1)=1, \ orall heta \in \Theta$.
- lacksquare d. Si $\ln T$ es suficiente y completo, T también lo es.
- , E°C BIEXBION (42))

completo: E[g(T)] =0 40

 $F(x) = (F(x))^n$

Po [a(T)=0]

Sea (X_1,\ldots,X_n) una muestra aleatoria simple de X con $E[X]=\mu$ y $Var[X]=\sigma^2$. Los momentos muestrales no centrados (A_k) y centrados (B_k) verifican:

• a.
$$E[A_1] = \mu y Var[A_1] = \sigma^2/n$$
. To pers on los a puntes (pg. 10 pd.)

$$igodots$$
 b. $E[A_1]=\mu$ y $Var[B_2]=\sigma^2$.

$$igcup ext{c. } E[B_1] = 0 ext{ y } Var[A_2] = \sigma^2.$$

$$\bigcirc$$
 d. $E[B_1]=0$ y $E[B_2]=\sigma^2$.

Sea (X_1, \cdots, X_n) una muestra aleatoria simple

de una variable X con función de densidad $f_{ heta}(x) = heta x^{ heta-1}$, 0 < x < 1 , $\cos heta > 0$.

a. $\prod_{i=1}^{n} X_{i}$ no recoge toda la

información de la muestra sobre el parámetro.

b. Ninguna de las otras respuestas es correcta.

 $\begin{array}{c} \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente y} \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente y} \\ \end{array} \\ \begin{array}{c} \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente y} \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente y} \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficiente para } \theta. \\ \\ \sum_{i=1}^{n} \ln X_{i} \text{ es un estadístico suficie$

Teorema: Si se tiene una v.a. $X \leadsto \{F_{\theta}, \theta \in \Theta\}$ con familia de funciones asociadas, $\{f_{\theta}(x), \theta \in \Theta\}$, siendo f.d.d. o f.m.p. según el caso, donde la familia de distribuciones es exponencial k-paramétrica, entonces la familia de distribuciones asociadas a (X_1, \ldots, X_n)

ENR. y complete (troins, biuniv) d. $\sum_{i=1}^{n} \ln X_i$ es un estadístico suficiente, pero no completo. (vor α dos cittimo de

la perenna anterior

Sea (X_1, \dots, X_n) una muestra aleatoria simple

de una variable X con función de densidad $\frac{\theta}{x} (\ln x)^{\theta-1}, \quad 1 < x < e, \ {
m con} \ heta > 0.$

o a. Ninguna de las otras respuestas es correcta.

O b. $\ln(\prod_{i=1}^{n} X_i)$ es un estadístico suficiente y completo.

 \circ C. $\prod\limits_{i=1}^{n} \ln X_i$ es un estadístico suficiente y completo.

O d. Conocido el valor de $\sum\limits_{i=1}^n \ln X_i$, la muestra no proporciona información adicional sobre el parámetro.

Sea

 (X_1,\cdots,X_n) una muestra aleatoria simple de $X o \{P_\theta,\ \theta\in\Theta\}$ y $T\equiv T(X_1,\cdots,X_n)$ un estadístico muestral:

- a. Si T>0 v T^2 es suficiente, entonces \sqrt{T} también lo es.
- O b. Si T no es suficiente, su distribución condicionada a cualquier realización muestral depende de θ .
- \bigcirc c. Si T es completo y $E_{\theta}[T] = E_{\theta}[T^2], \ \forall \theta \in \Theta$, entonces $P_{\theta}(T=0) = 1, \ \forall \theta \in \Theta$.
- \bigcirc d. Si T es suficiente, cualquier transformación de Ttambién lo es

Sea (X_1, \dots, X_n) una m.a.s. de X_n variable aleatoria con función de densidad

 $f_{\theta}(x) = \theta x^{\theta-1}, \quad 0 < x < 1,$ y sean $X_{(1)}=\min X_i$ y $X_{(n)}=\max X_i$. Las funciones de distribución, $F_{X_{(i)}}$, y de densidad, $f_{X_{(i)}}$, verifican

- a. $f_{X_{(n)}}(x) = n\theta x^{n\theta-1}, \ 0 < x < 1$
- igodots b. $F_{X_m}(x) = 1 x^{n heta}, \ \ 0 < x < 1$
- \bigcirc c. $F_{X_{t-1}}(x) = (1-x^{\theta})^n, \ 0 < x < 1$
- 0 d. $f_{X_{tot}}(x) = n heta(1-x^ heta)^{n-1}, \ \ 0 < x < 1$

Sean $(X_1,\ldots,X_6), (Y_1,\ldots,Y_6)$ muestras aleatorias simples independientes de dos poblaciones, $\mathcal{N}(10,\sigma^2)$ y $\mathcal{N}(12,\sigma^2)$, respectivamente, con medias muestrales \bar{X} e \bar{Y} . Calcular (sin interpolación) P(Z > 0.57863) siendo

O b. 0.995

Sea (X_1,\ldots,X_n) una muestra aleatoria simple de X con $E[X]=\mu_Y Var[X]=\sigma^2$. Los momentos muestrales no centrados (A_k) y centrados (B_k) verifican:

- \bigcirc a. $E[B_1]=0$ y $Var[A_1]=\sigma^2$.
- lacksquare b. $E[A_1]=\mu$ y $E[B_1]=0$.

Apuntes

- \bigcirc c. $E[A_1] = \mu$ y $Var[A_1] = \sigma^2$.
- \bigcirc d. $E[B_1] = 0$ y $E[B_2] = \sigma^2$.

Sean $(X_1,\cdots,X_n),(Y_1,\cdots,Y_m)$ muestras independientes de poblaciones normales con medias μ_1,μ_2 y varianzas $\sigma_1^2=\sigma_2^2=\sigma^2$. Las medias y cuasivarianzas muestrales, $\bar{X},\bar{Y},S_1^2,S_2^2$, verifican:

$$\bigcirc \ \text{a.} \ \frac{\sum\limits_{i=1}^{m-1}(Y_i-\mu_2)^2}{\sigma^2} \leadsto \chi^2(m).$$

lacksquare b. $rac{\sqrt{n}(ar{X}-\mu_1)}{c} \leadsto t(n-1).$

Ta610 1

- $\bigcirc \text{ c. } \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{\sigma \sqrt{1/(n+m)}} \rightsquigarrow \mathcal{N}(0,1).$
- \bigcirc d. $\frac{S_2^2}{S_1^2} \leadsto F(n-1,m-1)$.

Sea (X_1, \dots, X_n) una m.a.s. de X_i variable aleatoria con función de densidad

$$f_{ heta}(x) = e^{x+ heta}, \;\; x < - heta,$$

y sean $X_{(1)}=\min X_i$ y $X_{(n)}=\max X_i$. Las funciones de distribución, $F_{X_{(n)}}$, y de densidad, $f_{X_{(n)}}$, verifican:

- O a. $F_{X_{(n)}}(x)=e^{nx+\theta}, \ x<- heta$
- lacksquare b. $f_{X_{(n)}}(x)=ne^{n(x+ heta)}, \;\; x<- heta$

 \bigcirc d. $f_{X_{(1)}}(x)=n(1-e^{x+ heta})^{n-1},\;\;x<- heta$

 \bigcirc c $F_{X_{(1)}}(x) = 1 - e^{n(x+\theta)}, \ x < -\theta$ $f_{g(m)}(x) = n \ (F(x))$ f(x)

Sea (X_1, \cdots, X_n) una muestra aleatoria simple

de una variable X con función de densidad $\frac{\theta}{-}(\ln x)^{\theta-1}, \ 1 < x < e, \ \cos \theta > 0.$

a. Ninguna de las otras respuestas es correcta. b. $\sum_{i=1}^{n} \ln X_i$ es un estadístico suficiente y completo.

^{C.} El estadístico $\prod_{i=1}^n (\ln X_i)^{\theta-1}$ recoge toda la información de la muestra sobre el parámetro.

• d $\prod_{i=1}^n \ln X_i/n$ es un estadístico suficiente y $\bigcap_{i=1}^n \ln X_i/n$ es

Sean (X_1, \dots, X_n) , (Y_1, \dots, Y_m) muestras independientes de poblaciones normales con medias μ_1 , μ_2 y varianzas $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Las medias y cuasivarianzas muestrales, \bar{X} , \bar{Y} , S_1^2 , S_2^2 , verifican:

 \bullet a. $\frac{S_1^2}{S_2^2} \leadsto F(n,m)$.

• b. $(\bar{X} - \bar{Y}) \rightsquigarrow \mathcal{N}\left(\mu_1 - \mu_2, \ \sigma^2 \frac{n+m}{nm}\right)$.

o c. $\frac{\bar{X} - \mu_1}{S_1/\sqrt{n}} \rightsquigarrow \mathcal{N}(0,1)$.

 \bullet d. $\frac{nS_1^2}{\sigma^2} \leadsto \chi^2(n)$. Table 2 ,

Sea (X_1,\cdots,X_n) una muestra aleatoria simple de una variable X con función de densidad $f_{ heta}(x) = heta/x^{ heta+1}, \;\; x > 1$, con heta > 0

- a. Ninguna de las otras respuestas es correcta.
- ullet b. $\sum\limits_{i=1}^{n}\ln X_{i}$ es un estadístico completo, pero
- $^{\circ}$ C. El estadístico $\prod\limits_{i=1}^{n}X_{i}^{ heta+1}$ recoge toda la información de la muestra sobre el parámetro.
- $\stackrel{ ext{d.}}{\prod_{i=1}^n} X_i/n$ es un estadístico suficiente y completo.

Sean $(X_1,\cdots,X_n),(Y_1,\cdots,Y_m)$ muestras independientes de poblaciones normales con medias μ_1,μ_2 y varianzas $\sigma_1^2=\sigma_2^2=\sigma^2$. Las medias $\sigma_1^2=\sigma_2^2=\sigma^2$. Las medias $\sigma_1^2=\sigma_2^2=\sigma^2$.

Tables 1

 $egin{aligned} egin{aligned} ar{a}.\left(ar{Y}-ar{X}
ight) \leadsto \mathcal{N}\left(\mu_1-\mu_2,\;\sigma^2rac{n+m}{nm}
ight) \end{aligned}$

b. $\sum_{i=1}^{n} (X_i - \bar{X})^2 \longrightarrow \chi^2(n-1).$

c. $\frac{\bar{X}-\mu_1}{S_1/\sqrt{n-1}} \rightsquigarrow t(n-1)$.

d. $\frac{S_1^2}{S^2} \rightsquigarrow F(n, m)$.

muestral:

es.

Sea

 (X_1,\cdots,X_n) una muestra aleatoria simple de $X \to \{P_{\theta}, \; \theta \in \Theta\}$ y $T \equiv T(X_1, \cdots, X_n)$ un estadístico

lacksquare a. Si T>0 y T^3 es suficiente, entonces $\ln T$ también lo

- ullet b. Si T es suficiente, entonces T^2 también lo
- ullet c. Si T es completo y $E_{ heta_0}[T^3]=0$, entonces $P_{\theta_0}(T=0)=1.$
- ullet d. Si T es suficiente para $\{P_{ heta},\ heta\in\Theta\}$, lo es para $\{P_{ heta},\ heta\in\Theta'\}$, para cualquier $\Theta' \supseteq \Theta$.

-> tacx = exb(mQ-(Q+V)mx)

en TII; = Zen I; and, y compl. TB; func. biuntione de luTS;

= > completo

TTB: sufi. y compl.

 X_n) una muestra aleatoria simple de $X o \{F_{ heta},\ heta\in\Theta\}$ y $T\equiv T(X_1,\cdots,X_n)$ un est