Lecture 14

Dimensionality Reduction II: Feature Extraction

[very] short version

STAT 479: Machine Learning, Fall 2018

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

Dimensionality Reduction Feature Selection Feature Extraction

Linear Methods

Nonlinear Methods

- Principal Component Analysis (PCA)
- Independent Component Analysis (ICA)
- Autoencoders (linear act. func.)
- Singular Vector Decomposition (SVD)
- Linear Discriminant Analysis (LDA) (Supervised)
- ...
- t-Distr. Stochastic Neigh. Emb. (t-SNE)
- Uniform Manifold Approx. & Proj. (UMAP)
- Kernel PCA
- Spectral Clustering
- Autoencoders (non-linear act. func.)
- ...

Goals of Dimensionality Reduction

- Reduce Curse of Dimensionality problems
- Increase storage and computational efficiency
- Visualize Data in 2D or 3D

1) Find directions of maximum variance

2) Transform features onto directions of maximum variance

3) Usually consider a subset of vectors of most variance (dimensionality reduction)

Principal Component Analysis (PCA) (in a nutshell)

Given design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$

find vector $lpha_i$ with maximum variance

repeat: find $lpha_{i+1}$ with maximum variance uncorrelated with $lpha_i$

(repeat k times, where k is the desired number of dimensions; $k \leq m$)

Principal Component Analysis (PCA) (in a nutshell)

Given design matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$

find vector $lpha_i$ with maximum variance

repeat: find $lpha_{i+1}$ with maximum variance uncorrelated with $lpha_i$

(repeat k times, where k is the desired number of dimensions; $k \leq m$)

Principal Component Analysis (PCA) (in a nutshell)

Collect vectors α_i in a projection matrix $\mathbf{A} \in \mathbb{R}^{m \times k}$ (Sorted from highest to lowest associated eigenvalue)

Compute projected data points: $\mathbf{Z} = \mathbf{X}\mathbf{A}$

Two approaches to solve PCA (on standardized data):

- 1. Constrained maximization (e.g., Lagrange multipliers)
- 2. Eigen-decomposition of covariance matrix directly

Usually useful to plot the explained variance (normalized eigenvalues)

Keep in mind that PCA is unsupervised!

6000 images from MNIST

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.

Idea: Map points near on a manifold to a near position in low-dimensional space

- Measure euclidean distance in <u>high</u> dim & convert to probability of picking a point as a neighbor (similarity is proportional to probability); use <u>Gaussian distribution</u> for density of each point
- 2. Same as 1. in **low** dimensionality but with **t distribution** (has heavier tails)
- 3. Minimize the difference of the conditional probabilities (KL-divergence)

Idea: Map points near on a manifold to a near position in low-dimensional space

- Great for visualizing datasets in 2D
- Need to analyze multiple perplexity values (tuning parameter related to standard deviation of the Gaussian, to balance local and global attention)
- Not deterministic
- More hyperparameters (learning rate epsilon)

Source: https://distill.pub/2016/misread-tsne/

Uniform Manifold Approximation and Projection (UMAP)

McInnes, L., & Healy, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Compared to t-SNE, UMAP seems to be

- faster
- deterministic
- better at preserving clusters

Reading Assignment

• Python Machine Learning, 2nd Edition.

Chapter 5: Compressing Data via Dimensionality Reduction