单元-2.3-关系的表示和关系的 性质

第一编集合论第2章 二元关系 2.3 关系矩阵和关系图 2.4 关系的性质

内容提要

- 关系的表示
 - -集合
 - 关系矩阵
 - 关系图
- 关系的性质
 - 自反、反自反
 - 对称、反对称
 - 传递

关系矩阵

- $A=\{a_1,a_2,\ldots,a_n\}, R\subseteq A\times A$
- · R的关系矩阵

$$M(R)=(r_{ij})_{n\times n}$$

$$M(R)(i, j) = r_{ij} = \begin{cases} 1, & a_i R a_j \\ 0, & \text{ } \end{cases}$$

A={a,b,c}
 R₁={<a,a>,<a,b>,<b,a>,<b,c>}
 R₂={<a,b>,<a,c>,<b,c>}

$$M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

关系矩阵的性质

- 集合表达式与关系矩阵可唯一相互确定
- $M(R^{-1})=(M(R))^{T}$
 - 「表示矩阵转置
- $M(R_1 \circ R_2) = M(R_2) \bullet M(R_1)$
 - -●表示矩阵的"逻辑乘",加法用∨,乘法用∧

A={a,b,c}
 R₁={<a,a>,<a,b>,<b,a>,<b,c>}
 R₂={<a,b>,<a,c>,<b,c>}
 用M(R₁), M(R₂)确定M(R₁⁻¹), M(R₂⁻¹), M(R₁oR₁), M(R₁oR₂), M(R₂oR₁),
 从而求出它们的集合表达式.

•
$$M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

$$M(R_1^{-1}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$R_1^{-1} = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,b \rangle \}$$

$$R_2^{-1} = \{ , , \}$$

$$M(R_1 \circ R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$M(R_1 \circ R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$R_1 \circ R_2 = \{ < a, a >, < a, c > \}$$

$$M(R_2 \circ R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$R_2oR_1 = {(a,b), (a,c), (b,b), (b,c)}$$

关系图

- $A=\{a_1,a_2,\ldots,a_n\}, R\subseteq A\times A$
- R的关系图 G(R)
 - 以"o"表示A中元素(称为顶点),以"→"表示 R中元素(称为有向边)
 - 若a_iRa_j,则从顶点a_i向顶点a_j引有向边<a_i,a_j>

A={a,b,c}

$$R_2 = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,c \rangle \}$$

 $R_1^{-1} = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,b \rangle \}$

 $R_2^{-1} = \{ <b,a>, <c,a>, <c,b> \}$

 $R_1 \circ R_2 = {\langle a,a \rangle, \langle a,c \rangle \}.$

 $R_2 \circ R_1 = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,b \rangle, \langle b,c \rangle \}.$

讨论

- · 当A中元素标定次序后,对于R⊆A×A
 - -G(R)与R的集合表达式可唯一互相确定
 - R的集合表达式,关系矩阵,关系图三者均可唯一 互相确定
- 对于R⊆A×B
 - |A|=n,|B|=m,关系矩阵M(R)是n×m阶
 - -G(R)中边都是从A中元素指向B中元素

关系性质

- 自反性(reflexivity)
- 反自反性(irreflexivity)
- 对称性(symmetry)
- 反对称性(antisymmetry)
- 传递性(transitivity)

自反性

- R⊆A×A
- R是自反的 ⇔

$$\forall x(x \in A \rightarrow xRx)$$

 $\Leftrightarrow (\forall x \in A)xRx$

R是非自反的⇔∃x(x∈A∧¬xRx)

自反性举例

非自反

定理2.10

・定理2.10:

R是自反的

- $\Leftrightarrow I_{A} \subseteq R$
- ⇔ R-1是自反的
- ⇔ M(R)主对角线上的元素全为1
- ⇔ G(R)的每个顶点处均有环. #

反自反性

- R⊆A×A
- R是反自反的 ⇔

$$\forall x(x \in A \rightarrow \neg xRx)$$

$$\Leftrightarrow (\forall x \in A) \neg xRx$$

R是非反自反的 ⇔∃x(x∈A∧xRx)

反自反性举例

非反自反

定理2.11

・定理2.11:

R是反自反的

$$\Leftrightarrow I_A \cap R = \emptyset$$

⇔ R-1是反自反的

⇔ M(R)主对角线上的元素全为0

⇔ G(R)的每个顶点处均无环. #

自反性与反自反性

(自反且反自反: Ø上的空关系)

对称性

- R⊆A×A
- R是对称的 ⇔

$$\forall x \forall y (x \in A \land y \in A \land xRy \rightarrow yRx)$$

 $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \rightarrow yRx]$

R是非对称的⇔∃x∃y(x∈A∧y∈A∧xRy∧¬yRx)

对称性举例

定理2.12

・定理2.12:

R是对称的

 $\Leftrightarrow R^{-1}=R$

⇔ R-1是对称的

⇔M(R)是对称的

⇔ G(R)的任何两个顶点之间若有边,则 必有两条方向相反的有向边. #

反对称性

- R⊆A×A
- R是反对称的 ⇔

 $\forall x \forall y (x \in A \land y \in A \land xRy \land yRx \rightarrow x=y)$

 $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \land yRx \rightarrow x=y]$

R非反对称 ⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

反对称性举例

非反对称

定理2.13

- 定理2.13: R是反对称的
- $\Leftrightarrow R^{-1} \cap R \subseteq I_A$
- ⇔ R-1是反对称的
- ⇔在M(R)中,∀i∀j(i≠j∧r_{ij}=1→r_{ji}=0)
- ⇔在G(R)中, ∀a_i∀a_j(i≠j),若有有向边<a_i,a_j>,则 必没有<a_i,a_i>. #

对称性与反对称性

对称且反对称

传递性

- R⊆A×A
- R是传递的 ⇔

 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land xRy \land yRz \rightarrow xRz)$ $\Leftrightarrow (\forall x \in A)(\forall y \in A)(\forall z \in A)[xRy \land yRz \rightarrow xRz]$

R非传递 ⇔
 ∃x∃y∃z(x∈A∧y∈A∧z∈A∧xRy∧yRz∧¬xRz)

传递性举例

北京大学

定理2.14

- · 定理2.14: R是传递的
- ⇔ RoR⊆R ⇔ R-1是传递的
- $\Leftrightarrow \forall i \forall j, M(RoR)(i,j) \leq M(R)(i,j)$
- ⇔在G(R)中, $\forall a_i \forall a_j \forall a_k$, 若有有向边 $\langle a_i, a_j \rangle$ 和 $\langle a_j, a_k \rangle$, 则必有有向边 $\langle a_i, a_k \rangle$.

传递性

传递

非传递

在N={0,1,2,...}上

- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递
- |={<x,y>|x∈N∧y∈N∧x|y}反对称,传递(¬0|0)
- I_N={<x,y>|x∈N∧y∈N∧x=y}自反,对称,反对称,传递
- E_N={<x,y>|x∈N∧y∈N}=N×N自反,对称,传递.

R₂={<a,a>,<a,b>, <b,c>,<c,a>} 反对称

R₆={<a,b>,<b,a>, <b,c>,<a,a>}. 无任何性质 #

关系性质与关系运算

• 定理2.15: R₁,R₂⊆A×A

	自反	反自反	对称	反对称	传递
R ₁ ⁻¹ , R ₂ ⁻¹	V			√ ₍₄₎	
$R_1 \cup R_2$	V		V		
$R_1 \cap R_2$		√ ₍₂₎			$\sqrt{(5)}$
$R_1 \circ R_2$, $R_2 \circ R_1$	$\sqrt{(1)}$				
R_1-R_2 , R_2-R_1			$\sqrt{(3)}$		
$\sim R_1, \sim R_2$		W 19	\(\sqrt{(3 ')}\)		

定理2.15(1)证明

- R_1, R_2 自反 $\Rightarrow R_1 \circ R_2$ 自反
- 证明:∀x,

 $x \in A$

 $\Rightarrow xR_2x \wedge xR_1x$

 $\Rightarrow xR_1oR_2x$

 $\therefore R_1, R_2$ 自反 $\Rightarrow R_1 \circ R_2$ 自反.

定理2.15(2)证明

- R_1, R_2 反自反 $\Rightarrow R_1 \cap R_2$ 反自反
- 证明:(反证)若R₁∩R₂非反自反,则
 ∃x∈A,

$$x(R_1 \cap R_2)x$$

$$\Leftrightarrow xR_1x \wedge xR_2x$$

与R₁,R₂反自反矛盾!

∴ R_1, R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反. #

定理2.15(3)证明

- R_1, R_2 对称 $\Rightarrow R_1 R_2$ 对称
- 证明: ∀x,y∈A,

$$x(R_1-R_2)y$$

$$\Leftrightarrow xR_1y \land \neg xR_2y$$

$$\Leftrightarrow$$
 yR₁x $\land \neg$ yR₂x

$$\Leftrightarrow y(R_1-R_2)x$$

∴
$$R_1, R_2$$
对称 \Rightarrow R_1-R_2 对称. #

定理2.15(3′)证明

- R₁对称 ⇒ ~R₁对称
- 证明: ∀x,y∈A, x(~R₁)y
 - $\Leftrightarrow x(E_A-R_1)y \Leftrightarrow xE_Ay \land \neg xR_1y$
 - \Leftrightarrow yE_Ax $\land \neg$ yR₁x \Leftrightarrow y(E_A-R₁)x
 - \Leftrightarrow y($^{\sim}$ R₁)x
- ∴ R_1 对称 \Rightarrow $^{\sim}R_1$ 对称. #

定理2.15(4)证明

- R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称
- 证明: (反证) 若 R_1^{-1} 非反对称,则 $\exists x,y \in A$, $xR_1^{-1}y \wedge yR_1^{-1}x \wedge x \neq y$
 - \Leftrightarrow $yR_1x \land xR_1y \land x\neq y$
 - 与R₁反对称矛盾!
- ∴ R_1 反对称 \Rightarrow R_1^{-1} 反对称. #

定理2.15(5)证明

- R₁,R₂传递 ⇒ R₁∩R₂传递
- 证明: ∀x,y,z∈A,

$$x(R_1 \cap R_2)y \wedge y(R_1 \cap R_2)z$$

$$\Leftrightarrow (xR_1y \land xR_2y) \land (yR_1z \land yR_2z)$$

$$\Leftrightarrow (xR_1y \land yR_1z) \land (xR_2y \land yR_2z)$$

$$\Rightarrow xR_1z \land xR_2z \Leftrightarrow x(R_1 \cap R_2)z$$

小结

- M(R), G(R)
- 自反,反自反,对称,反对称,传递

