

Method for detecting rollover occurrences in a motor vehicle

Patent number: DE10118062
Publication date: 2002-10-24
Inventor: MATTES BERNHARD (DE); SCHMITT HANS-WALTER (DE)
Applicant: BOSCH GMBH ROBERT (DE)
Classification:
- **international:** B60R21/01
- **european:** B60R16/02B6A1; B60R21/01C
Application number: DE20011018062 20010411
Priority number(s): DE20011018062 20010411

Also published as:

- EP1249371 (A1)
- US6755274 (B2)
- US2002175016 (A)
- EP1249371 (B1)

Report a data error

Abstract not available for DE10118062

Abstract of corresponding document: US2002175016

A method for detecting rollover occurrences in a motor vehicle and activating appropriate restraining devices, the rate of rotation of the vehicle about at least one axis of rotation, in particular its longitudinal axis and/or its transverse axis, being measured with the aid of at least one rotation-rate sensor, and evaluated. The translational acceleration of the vehicle is considered in evaluating the rotation-rate sensor signal, in order to prevent malfunctions of the rotation-rate sensor caused by extreme translational accelerations from erroneously triggering restraining devices for a rollover event.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 101 18 062 A 1

⑯ Int. Cl. 7:
B 60 R 21/01

⑯ Aktenzeichen: 101 18 062.4
⑯ Anmeldetag: 11. 4. 2001
⑯ Offenlegungstag: 24. 10. 2002

DE 101 18 062 A 1

⑯ Anmelder:
Robert Bosch GmbH, 70469 Stuttgart, DE

⑯ Erfinder:
Mattes, Bernhard, 74343 Sachsenheim, DE;
Schmitt, Hans-Walter, 71287 Weissach, DE

⑯ Entgegenhaltungen:
DE 197 44 085 A1
DE 100 10 633 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Verfahren zum Erkennen von Überrollvorgängen bei einem Kraftfahrzeug

⑯ Die Erfindung betrifft ein Verfahren zum Erkennen von Überrollvorgängen bei einem Kraftfahrzeug und Auslösen von entsprechenden Rückhaltemitteln, wobei die Drehrate des Fahrzeugs um mindestens eine Drehachse, insbesondere seine Längsachse und/oder seine Querachse, mit Hilfe mindestens eines Drehratensensors erfasst wird und ausgewertet wird.

Es wird vorgeschlagen, die Translationsbeschleunigung des Fahrzeugs bei der Auswertung des Drehratensensor-signals zu berücksichtigen, um zu vermeiden, dass Störungen in der Funktionsweise des Drehratensensors, die durch extreme Translationsbeschleunigungen verursacht worden sind, zum fälschlichen Auslösen von Rückhaltemitteln für einen Überrollvorgang führen.

DE 101 18 062 A 1

Beschreibung

Stand der Technik

[0001] Die Erfindung betrifft ein Verfahren zum Erkennen von Überrollvorgängen bei einem Kraftfahrzeug und Auslösen von entsprechenden Rückhaltemitteln, wobei die Drehrate des Fahrzeugs um mindestens eine Drehachse, insbesondere seine Längsachse und/oder seine Querachse, mit Hilfe mindestens eines Drehratensensors erfasst wird und ausgewertet wird.

[0002] In der Praxis werden bevorzugt mikromechanische bzw. oberflächenmikromechanische Sensoren als Drehratensensoren eingesetzt, deren Funktionsweise auf dem Stimmgabelprinzip bzw. auf einem Linear- oder Rotationschwingerprinzip beruht.

[0003] Bei Drehratensensoren, deren Funktionsweise auf dem Rotationsschwingerprinzip beruht, wird die Coriolischleunigung erfasst, die aufgrund einer Drehbewegung des Fahrzeugs auf die Sensormasse wirkt. Der nachfolgende Vergleich zwischen einer Messung der Translationsbeschleunigung und einer Messung der Coriolischleunigung mit oberflächenmikromechanischen Sensoren, deren Sensormasse jeweils $2 \cdot 10^{-6}$ Gramm beträgt, zeigt, dass es sich bei der Coriolischleunigung um einen relativ kleinen physikalischen Effekt handelt.

[0004] Bei einer Translationsbeschleunigung von 3 g – was der Auflösungsgrenze eines 8 Bit-Analog-Digital-Wandlers entspricht – liegt die auf die Sensormasse des Beschleunigungssensors wirkende Kraft bei etwa $60 \cdot 10^{-10}$ Newton. Im Vergleich dazu beträgt die auf den Rand der Sensormasse wirkende Corioliskraft bei einer Drehbeschleunigung von $3^{\circ}/\text{s}$ – was ebenfalls der Auflösungsgrenze eines 8 Bit-Analog-Digital-Wandlers entspricht – bei etwa $4 \cdot 10^{-10}$ Newton. Damit ergibt sich für einen auf dem Rotationsschwingerprinzip beruhenden Drehratensensor eine ca. 15mal kleinere minimal zu messende Kraft als bei einem Beschleunigungssensor mit derselben Sensormasse. Derartige Drehratensensoren müssen also für die Messung minimaler Kräfte ausgelegt sein.

[0005] Translationsbeschleunigungen, wie sie beispielsweise in Crash-Situationen auftreten, können mechanische Fahrzeugresonanzen verursachen, die die Funktionsweise der voranstehend beschriebenen Drehratensensoren erheblich stören. Insbesondere in Aufprallsituationen kann dadurch der Fall eintreten, dass das Ausgangssignal des Drehratensensors fälschlicherweise eine Überrollsituation anzeigt und deshalb Rückhaltemittel ausgelöst werden, die in der tatsächlich vorliegenden Unfallsituation nicht sinnvoll sind und ggf. sogar ein zusätzliches Verletzungsrisiko für die Fahrzeuginsassen darstellen.

Vorteile der Erfindung

[0006] Mit der vorliegenden Erfindung wird vorgeschlagen, die Translationsbeschleunigung des Fahrzeugs bei der Auswertung des Drehratensensorsignals zu berücksichtigen, um zu vermeiden, dass Störungen in der Funktionsweise des Drehratensensors, die durch extreme Translationsbeschleunigungen verursacht werden sind, zum fälschlichen Auslösen von Rückhaltemitteln für einen Überrollvorgang führen. [0007] Erfindungsgemäß ist erkannt worden, dass bei einem Crash, der Störungen des Drehratensensors verursachen kann, in jedem Fall relativ große Translationsbeschleunigungen auftreten, während im Fall eines Überrollvorgangs keine derartig großen Translationsbeschleunigungen auftreten. Es ist ferner erkannt worden, dass im Fall eines Crashes stets Beschleunigungskomponenten in allen drei Hauptachsen des Fahrzeugs auftreten. Zur Realisierung des erfindungsgemäßen Verfahrens genügt deshalb schon das Erfassen von nur einer der Beschleunigungskomponenten, d. h. das Erfassen der Translationsbeschleunigung in nur einer

5 Richtung. Da Airbagsteuergeräte üblicherweise mit Beschleunigungssensoren zur Longitudinal- und Lateral-Aufprallerkennung ausgestattet sind, kann das erfindungsgemäße Verfahren in vorteilhafter Weise die vorhandene Hardware nutzen und die Ausgangssignale dieser Beschleunigungssensoren auswerten. Das erfindungsgemäße Verfahren zum Erkennen von Überrollvorgängen kann so auch einfach in das Airbagsteuergerät integriert werden.

[0008] Grundsätzlich kann die im Rahmen des erfindungsgemäßen Verfahrens erfasste Translationsbeschleunigung 15 bei der Auswertung der erfassten Drehrate in unterschiedlicher Weise sinnvoll berücksichtigt werden.

[0009] In einer Variante des erfindungsgemäßen Verfahrens wird anhand der erfassten Translationsbeschleunigung 20 geprüft, ob eine Crash-Situation vorliegt, die die Funktionsfähigkeit des Drehratensensors beeinträchtigen könnte. Dazu kann beispielsweise einfach ein Schwellwert für die Translationsbeschleunigung bestimmt werden. Immer dann, wenn die erfasste Translationsbeschleunigung oberhalb dieses Schwellwerts liegt, wird das Vorliegen einer Crash-Situation 25 angenommen, was wiederum bei der Auswertung der parallel erfassten Drehrate berücksichtigt wird.

[0010] In einer besonders vorteilhaften Variante des erfindungsgemäßen Verfahrens wird das Ausgangssignal des Drehratensensors, d. h. die erfasste Drehrate, zumindest für 30 ein vorgegebenes Zeitintervall ignoriert, wenn aufgrund der erfassten Translationsbeschleunigung vom Vorliegen einer Crash-Situation ausgegangen wird, wenn also beispielsweise die gleichzeitig erfasste Translationsbeschleunigung des Fahrzeugs oberhalb eines vorgegebenen Schwellwerts 35 liegt. Da bei Überrollvorgängen in der Regel keine hohen Translationsbeschleunigungen auftreten, wird die Möglichkeit eines Überrollvorgangs hier einfach von vornherein, unabhängig vom Ausgangssignal des Drehratensensors ausgeschlossen. Auf diese Weise kann eine Fehlauslösung von für 40 die tatsächliche Situation ungeeigneten Rückhaltemitteln zuverlässig vermieden werden.

Zeichnung

[0011] Wie bereits voranstehend ausführlich erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszustalten und weiterzubilden. Dazu wird einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die 50 nachfolgende Beschreibung eines Ausführungsbeispiels der Erfindung anhand der Zeichnung verwiesen.

[0012] Die einzige Figur zeigt ein Blockschaltbild zur Veranschaulichung des erfindungsgemäßen Verfahrens, das im hier erläuterten Ausführungsbeispiel in ein Airbagsteuergerät integriert ist.

Beschreibung des Ausführungsbeispiels

[0013] Das Airbagsteuergerät umfasst einen Mikroprozessor 1, dem verschiedene Sensorsignale zur Auswertung zugeführt werden. So werden dem Mikroprozessor 1 hier die Ausgangssignale a_x und a_y zweier Beschleunigungssensoren zugeführt, mit denen die Translationsbeschleunigungen des Fahrzeugs parallel zu seiner Längsachse und parallel zu seiner Querachse erfasst werden. Durch Auswertung der Signale a_x und a_y lassen sich Longitudinal- und Lateral-Aufprallsituationen erkennen. Im Fall einer Crash-Situation wird ein entsprechender Algorithmus zum Auslösen geeig-

Patentansprüche

neter Rückhaltemittel gestartet, die dann mit Hilfe eines Endstufen-ASIC 2, der über eine serielle Schnittstelle 3 mit dem Mikroprozessor 1 verbunden ist, angesteuert werden. So werden beispielsweise bei einem Seitenauftprall die Gurtstraffer 4 und die aufprallseitigen Seitenairbags 5 für Thorax und Kopf durch den im Mikroprozessor 1 ablaufenden Seitenauftprallalgorithmus ausgelöst.

[0014] Wie bereits erwähnt, ist im hier erläuterten Ausführungsbeispiel das erfindungsgemäße Verfahren zum Erkennen von Überrollvorgängen und Auslösen von entsprechenden Rückhaltemitteln in das Airbagsteuergerät integriert. Zum Erkennen von Überrollvorgängen wird die Drehrate ω_x des Fahrzeugs um eine Drehachse, hier seine Längsachse, mit Hilfe eines Drehratensensors erfasst und dem Mikroprozessor 1 zugeführt. Erfindungsgemäß wird bei der Auswertung der erfassten Drehrate ω_x die Translationsbeschleunigung a_x und/oder a_y berücksichtigt. Im vorliegenden Fall werden einfach die schon für die Longitudinal- und Lateral-Aufprallerkennung erfassten Translationsbeschleunigungen a_x und a_y auch bei der Auswertung der Drehrate ω_x genutzt. Eine gesonderte Erfassung der Translationsbeschleunigungen a_x und a_y nur für das erfindungsgemäße Verfahren ist hier nicht erforderlich.

[0015] Anhand der erfassten Translationsbeschleunigungen a_x und a_y wird nun geprüft, ob eine Crash-Situation vorliegt, die die Funktionsfähigkeit des Drehratensensors beeinträchtigen könnte. Dazu werden die erfassten Translationsbeschleunigungen a_x und a_y jeweils mit einem vorgegebenen Schwellwert verglichen. Liegen die Translationsbeschleunigungen a_x und a_y oberhalb der entsprechenden Schwellwerte, so wird angenommen, dass eine Crash-Situation vorliegt. In diesem Fall wird das Ausgangssignal des Drehratensensors, d. h. die erfasste Drehrate ω_x zumindest für ein vorgegebenes Zeitintervall ignoriert, auch wenn das Ausgangssignal ω_x des Drehratensensors eine Überrollsituation signalisiert.

[0016] Auch im Fall eines Seitenauftpralls mit anschließendem Rollover räumt das erfindungsgemäße Verfahren dem Seitenauftprallalgorithmus eine höhere Priorität ein als dem Überrollalgorithmus, da der Überrollalgorithmus zum Auslösen entsprechender Rückhaltemittel, wie z. B. des Überrollbügels 6, während des vorgegebenen Zeitintervalls nicht gestartet werden kann. Insgesamt erweist sich diese Priorisierung jedoch als vorteilhaft. Bei einem Seitenauftprall mit anschließendem Rollover werden nämlich ohnehin – durch den Seitenauftprallalgorithmus – die Gurtstraffer 4 und die aufprallseitigen Seitenairbags 5 ausgelöst, die auch im Falle eines entsprechenden Überrollvorgangs ausgelöst würden. Es erweist sich daher als unerheblich, wenn das Ausgangssignal ω_x des Drehratensensors für eine gewisse Zeit unterdrückt wird. Im Gegensatz dazu kann der Überrollalgorithmus bei einem nicht auslöserelevanten, also nur schwachen Seitenauftprall, der zu einem Überrollvorgang führt, die entsprechenden Rückhaltemittel korrekt auslösen, da das Ausgangssignal ω_x des Drehratensensors in diesem Fall nicht ignoriert sondern ausgewertet wird. In anderen Crash-Situationen, die die Funktionsweise des Drehratensensors beeinträchtigen, lässt sich durch das Ignorieren der erfassten Drehrate ω_x einfach und zuverlässig ein Fehlauslösen der Rückhaltemittel für den Überrollvorgang vermeiden.

[0017] Abschließend sei angemerkt, dass für die Effizienz des voranstehend beschriebenen erfindungsgemäßen Verfahrens die richtige Wahl der Schwellwerte für die Translationsbeschleunigungen a_x und a_y und die richtige Wahl der Dauer des Ignorierungsintervalls, d. h. des Zeitintervalls, innerhalb dessen das Ausgangssignal ω_x des Drehratensensors ignoriert wird, wesentlich ist.

1. Verfahren zum Erkennen von Überrollvorgängen bei einem Kraftfahrzeug und Auslösen von entsprechenden Rückhaltemitteln (4, 5, 6), wobei die Drehrate (ω_x) des Fahrzeugs um mindestens eine Drehachse, insbesondere seine Längsachse und/oder seine Querachse, mit Hilfe mindestens eines Drehratensensors erfasst wird und ausgewertet wird, dadurch gekennzeichnet, dass neben der Drehrate (ω_x) die Translationsbeschleunigung (a_x, a_y) des Fahrzeugs in mindestens einer Richtung erfasst wird und bei der Auswertung der erfassten Drehrate (ω_x) berücksichtigt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass anhand der erfassten Translationsbeschleunigung (a_x, a_y) geprüft wird, ob eine Crash-Situation vorliegt, die die Funktionsfähigkeit des Drehratensensors beeinträchtigen könnte.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass geprüft wird, ob die erfasste Translationsbeschleunigung (a_x, a_y) oberhalb eines vorgebbaren Schwellwerts für eine Crash-Situation liegt.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das Ausgangssignal (ω_x) des Drehratensensors, d. h. die erfasste Drehrate (ω_x), zumindest für ein vorgegebenes Zeitintervall ignoriert wird, wenn aufgrund der erfassten Translationsbeschleunigung (a_x, a_y) vom Vorliegen einer Crash-Situation ausgegangen wird.
5. Steuergerät zum Auslösen von Rückhaltemitteln in einem Kraftfahrzeug, wobei ein Verfahren zum Erkennen von Überrollvorgängen nach einem der Ansprüche 1 bis 4 durchgeführt wird.

Hierzu 1 Seite(n) Zeichnungen

Fig.