Database Systems: Homework 1 Key Due 18 September, 2013

1. (2 pts each) Consider the two tables T1 and T2. Show the results of the following relational algebra operations:

Table $T1$				
Р	Q	R		
10	a	5		
15	b	8		
25	a	6		

Table $T2$				
A	В	С		
10	b	6		
25	c	3		
10	b	5		

(a)
$$T1 \bowtie_{T1.P=T2.A} T2 \begin{vmatrix} 1 & 10 \\ 10 & 10 \\ 25 \end{vmatrix}$$

2	10	a	5	10	b	5
	25	a	6	25	С	3
	P	Q	R	A	В	С

(b)
$$T1 \bowtie_{T1.Q=T2.B} T2$$

	Р	Q	R	A	В	С
2	15	b	8	10	b	6
	15	b	8	10	b	5

(c)
$$T1 \bowtie_{T1.P=T2.A} T2$$

	Р	Q	R	A	В	С
	10	a	5	10	b	6
)	10	a	5	10	b	5
	15	b	8	ω	ω	ω
	25	a	6	25	c	3

(d)
$$T1 \bowtie_{T1.Q=T2.B} T2$$

	Р	Q	R	Α	В	$\mid C \mid$
)	15	b	8	10	b	6
_	ω	ω	ω	25	c	3
	15	b	8	10	b	5

(e)
$$T1 \cup T2$$

		-0	_
	10	a	5
	15	b	8
,	25	a	6
	10	b	6
	25	c	3
	10	b	5

P Q R

(f)
$$T1 \bowtie_{T1.P=T2.A \text{ AND } T1.R=T2.C} T2$$

,	Р	Q	R	A	В	С
_	10	a	15	10	b	15

- 2. Refer to figure 4.6, a schema diagram for a library database, for these questions:
 - (a) (6 pts) Write the SQL DDL statements to define this database. Include appropriate domains, constraints and referential triggered actions.

```
CREATE TABLE Book (
   Book_id
                                   PRIMARY KEY,
   Title
                     Varchar(200),
   Publisher_name
                    Varchar(200),
   FOREIGN KEY (Publisher_name) REFERENCES Publisher(Name)
      ON DELETE SET NULL
                            ON UPDATE CASCADE
);
CREATE TABLE Book_Authors (
   Book_id
                 Int
                                    NOT NULL,
   Author_name
                 Varchar(200)
                                    NOT NULL,
   PRIMARY KEY (Book_id, Author_name),
   FOREIGN KEY (Book_id) REFERENCES Book(Book_id)
      ON DELETE CASCADE
                           ON UPDATE CASCADE
);
CREATE TABLE Publisher (
             Varchar(200)
                               PRIMARY KEY,
             Varchar(400),
   Address
   Phone
             Decimal(20)
);
CREATE TABLE Book_Copies (
   Book_id
                 Int
                            NOT NULL,
   Branch_id
                 Char(4)
                            NOT NULL,
                  Int
   No_of_copies
                            DEFAULT 1,
   PRIMARY KEY (Book_id, Branch_id),
   FOREIGN KEY (Book_id) REFERENCES Book(Book_id)
      ON DELETE CASCADE
                           ON UPDATE CASCADE,
   FOREIGN KEY (Branch_id) REFERENCES Library_Branch(Branch_id)
      ON DELETE CASCADE
                           ON UPDATE CASCADE
);
CREATE TABLE Book_Loans (
   Book_id
               Int
                             NOT NULL,
   Branch_id
               Char(4)
                             NOT NULL,
   Card no
               Int
                             NOT NULL,
   Date_out
               Date,
   Due_date
               Date,
   PRIMARY KEY (Book_id, Branch_id, Card_no),
```

```
FOREIGN KEY (Book_id) REFERENCES Book(Book_id)
      ON DELETE RESTRICT
                            ON UPDATE CASCADE,
   FOREIGN KEY (Branch_id) REFERENCES Library_Branch(Branch_id)
      ON DELETE RESTRICT
                            ON UPDATE CASCADE,
   FOREIGN KEY (Card_no) REFERENCES Borrower(Card_no)
      ON DELETE RESTRICT
                            ON UPDATE CASCADE
);
CREATE TABLE Library_Branch (
                 Char(4)
   Branch id
                                 PRIMARY KEY,
   Branch_name
                 Varchar(200)
                                 NOT NULL,
                 Varchar(400)
   Address
);
CREATE TABLE Borrower (
   Card_no
                 Int
                                PRIMARY KEY,
   Name
                 Varchar(200)
                                NOT NULL,
                 Varchar(400),
   Address
   Phone
                 Decimal(20)
);
```

(b) (4 pts) Write the SQL DML statement to insert a new borrower, (328820001, "Marten Fisher", "123 Fake St, Springfield", 406 582 2400, in the database.

(c) (4 pts) The Bozeman branch has acquired a second copy of the book *Here Comes a Candle*. Write the SQL to update the database to increase the number of copies for that book by one.

```
UPDATE Book_Copies SET No_of_copies = No_of_copies+1
WHERE Book_id IN (
    SELECT Book_id FROM Book WHERE Title='Here Comes a Candle'
) AND Branch_id IN (
    SELECT Branch_id FROM Library_Branch WHERE Branch_name='Bozeman'
);
```

- 3. (4 pts each) Refer to figure 3.5, the schema diagram for the COMPANY database, for these questions:
 - (a) Write the SQL query to retrieve the names of all employees who work in the department that has the employee with the highest salary among all employees.

```
SELECT Fname, Minit, Lname
FROM Employee
WHERE Dno = (
    SELECT Dno
    FROM Employee
    WHERE Salary = (
        SELECT max(Salary)
        FROM Employee
)
);
```

(b) Write the SQL query to retrieve the names of all employees whose supervisor's supervisor has '888665555' for Ssn.

```
SELECT Fname, Minit, Lname
FROM Employee
WHERE Super_ssn IN (
    SELECT Ssn FROM Employee WHERE Super_ssn = 888665555
);
```

(c) Write the SQL query to retrieve the names of employees who make at least \$10,000 more than the employee who is paid the least in the company.

```
SELECT Fname, Minit, Lname
FROM Employee
WHERE Salary >= 10000+(SELECT min(Salary) FROM Employee);
```

- 4. (4 pts each) Refer again to figure 4.6, this time give relational algebra expressions for the following queries:
 - (a) How many copies of the book titled *The Lost Tribe* are owned by the library branch whose name is 'Sharpstown'?

```
Sharps_id \leftarrow \pi_{\text{Branch\_id}}(\sigma_{\text{Branch\_name='Sharpstown'}}(\text{Library\_Branch}))

Tribe_id \leftarrow \pi_{\text{Book\_id}}(\sigma_{\text{Title='The Lost Tribe'}}(\text{Book}))

Answer \leftarrow \pi_{\text{No\_of\_copies}}(\text{Book\_Copies} * \text{Sharps\_id} * \text{Tribe\_id})
```

```
Answer \leftarrow \pi_{\text{No\_of\_copies}}(\sigma_{\text{Branch\_name}='\text{Sharpstown'} \land \text{Title}='\text{The Lost Tribe'}}(\text{Book\_Copies} * \text{Library\_Branch} * \text{Book}))
```

-or-

(b) Retrieve the names of all borrowers who do not have any books checked out.

None_id
$$\leftarrow \pi_{\text{Card_no}}(\text{Borrower}) - \pi_{\text{Card_no}}(\text{Book_Loans})$$

Answer $\leftarrow \pi_{\text{Name}}(\text{Borrower} * \text{None_id})$

(c) Retrieve the names, addresses, and number of books checked out for all borrowers who have more than five books checked out.

5. **(6 pts)** In relational models, primary keys based on existing, meaningful attributes of the tuples are known as *natural keys*. Some database designers prefer to add an extra attribute that doesn't model anything about the miniworld; it is specifically generated solely to be a primary key. These are called *surrogate keys*. Discuss the advantages and disadvantages of both approaches.

Figure 4.6

Figure 3.5

EMPLOYEE Ssn Fname Minit Lname Bdate Address Sex Salary Super ssn Dno DEPARTMENT Dnumber Dname Mgr ssn Mgr start date **DEPT_LOCATIONS** Dnumber Diocation **PROJECT** Pnumber Plocation Pname Dnum WORKS_ON Essn Pno Hours Figure 3.5 Schema diagram for the DEPENDENT COMPANY relational Dependent name Essn Sex Bdate Relationship

database schema.