Erasmus School of Economics

Machine Learning

FEM31002

Introduction

Part 4

Ilker Birbil

birbil@ese.eur.nl

Stratification

Cross-Validation (CV)

one data point

Leave-One-Out Cross-Validation (LOOCV)

$$\delta = 1 - \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

k-Fold Cross-Validation

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

2 afus erasmus universiteit rotterdam

Bias-Variance Trade-off

Test Error

Variance 1

Bias 🗸

$$\left(\frac{k-1}{k}\right)n$$
: training set size

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Recall:
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

k-fold Cross-Validation

$$i = 1, \dots, k$$

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Repeated Holdout vs. k-fold Cross-Validation

Bootstrap

- with replacement
- training set sample size is n
- the rest (out-of-bag) can be used for testing
- training set can be used for testing (resubstitution)
- allows collection of statistics (e.g., variance of regression parameters)
- plays nicely with small data sets

Statistics

optimistic bias

$$\delta^h = \frac{1}{b} \sum_{j=1}^b \delta_j^h$$
holdout
accuracy

pessimistic bias

$$\delta^{\bullet} \pm t \sqrt{\frac{1}{b-1} \sum_{j=1}^{b} (\delta_{j}^{\bullet} - \delta^{\bullet})^{2}}$$

confidence interval (under normality assumption)

Example: $b = 100, t_{95} = 1.984$

.632 Estimate

$$\mathbb{P}(\text{a sample is chosen}) = 1 - \left(1 - \frac{1}{n}\right)^n \underset{n>>0}{\approx} 0.632$$

$$\delta = \frac{1}{b} \sum_{j=1}^{b} (0.632 \ \delta_j^h + 0.368 \ \delta_j^r)$$

$$= 0.632 \ \delta^h + 0.368 \ \delta^r$$
slightly optimistic bias

The case where the convex combination weights are not fixed but evaluated with the dataset is called the .632+ Bootstrap Method (Efron and Tibshirani, 1997).

Model Selection

(algorithm is fixed, its 'best' parameters are sought)

Three-way Holdout

$$j=1,\ldots,m$$

$$j^* = \arg\max\{\delta_j : j = 1, \dots, m\}$$

Data Final Training Data Final Model

k-fold Cross-Validation

$$j^* = \arg\max\{\delta_j : j = 1, \dots, m\}$$

Model Selection Notes

- Overall generalization performance depends on the test set
- *k*-fold CV takes a long time with large datasets (or slow algorithms)
- Three-way holdout is faster when dataset is large
- Holdout method is occasionally called as 2-fold CV (not exactly true)
- There is no universal *k* value in *k*-fold CV (usually 5 or 10, though)

■ Roughly: LOOCV (small dataset), *k*-fold CV or three-way holdout (large dataset)

Algorithm Selection

2 afus Erasmus universiteit rotterdam

Model Comparison

- Comparing two models
 - Difference tests based on *z*-scores
 - McNemar Test
- Comparing multiple models
 - Cochran *Q* Test
 - *F*-test
 - Paired *t*-tests, combined *F*-tests
 - Nested cross-validation
- And more...

Comparing Two Models

McNemar Test

Test statistic:
$$\chi^2 = \frac{(|b-c|-1)^2}{b+c}$$

- 1. Pick a significance level (e.g., 0.05)
- 2. Evaluate *p*-value
- 3. Accept or reject the null hypothesis

Nested k-fold Cross-Validation

$$s = 1, \dots, r$$

 δ_{ℓ} : Performance of algorithm $\ell = 1, \ldots, K$

Then select the best performing algorithm (model) among K

Outline

- Overview of the course
- Supervised Learning vs. Unsupervised Learning
- Train-test errors and overfitting
- Bias vs. Variance
- Bayes Classifier vs. K-Nearest Neighbor (KNN)
- Cross validation and bootstrap
- Model evaluation and algorithm comparison