Exercices: Barbara Tumpach Relecture: François Lescure

Théorème de Carathéodory, calcul d'aire et de volume

1 Théorème de Carathéodory

Exercice 1

Le but de cet exercice est de prouver le Théorème de Carathéodory.

Définition. Une mesure extérieure sur un ensemble Ω est une application $m_*: \mathscr{P}(\Omega) \to [0, +\infty]$ telle que

- (i) $m_*(\emptyset) = 0$;
- (ii) (monotonie) $A \subset B \Rightarrow m_*(A) \leq m_*(B)$;
- (iii) (σ-sous-additivité) Pour toute suite d'ensembles $\{A_i\}_{i\in\mathbb{N}^*}\subset \mathscr{P}(\Omega)$ on a

$$m_*\left(\bigcup_{i=1}^{\infty}A_i\right)\leq \sum_{i=1}^{\infty}m_*(A_i).$$

Théorème de Carathéodory Soit m_* une mesure extérieure sur Ω . Un ensemble $A \subset \Omega$ est dit m_* -mesurable si pour tout $Q \subset \Omega$ on a

$$m_*(Q) \geq m_*(Q \cap A) + m_*(Q \cap A^c).$$

Notons $\mathscr{M}_{m_*} \subset \mathscr{P}(\Omega)$ l'ensemble des parties m_* -mesurables. Alors

- 1. \mathcal{M}_{m_*} est une σ -algèbre.
- 2. $m = m_*|_{\mathscr{M}_{m_*}}$ est une mesure sur $(\Omega, \mathscr{M}_{m_*})$.
- 3. L'espace mesuré $(\Omega, \mathcal{M}_{m_*}, m)$ est complet, i.e. si $E \in \mathcal{M}_{m_*}$ et m(E) = 0, alors tout sous-ensemble $A \subset E$ appartient à \mathcal{M}_{m_*} .

Début de l'exercice :

- 1. (a) Rappeler la définition d'une σ -algèbre.
 - (b) Vérifier que \emptyset et $\Omega \in \mathcal{M}_{m_*}$, et $A \in \mathcal{M}_{m_*} \Rightarrow A^c \in \mathcal{M}_{m_*}$.
 - (c) Soit $\{A_i\}_{i\in\mathbb{N}^*}$ un suite quelconque d'ensembles m_* -mesurables. On pose $B_1=\emptyset$, $B_2=A_1$ et $B_j=\bigcup_{i=1}^{j-1}A_i$, pour $j\geq 2$. Soit Q un sous-ensemble de Ω . Montrer par récurrence que l'assertion (P_k) suivante est vérifiée pour tout $k\geq 1$:

$$(P_k)$$
 $m_*(Q) = m_*(Q \cap B_{k+1}^c) + \sum_{j=1}^k m_*(Q \cap B_j^c \cap A_j).$

(d) Soit $A = \bigcup_{j=1}^{\infty} A_j$. Déduire de la question précédente que

$$m_*(Q) \geq m_*(Q \cap A^c) + \sum_{i=1}^{\infty} m_*(Q \cap B_j^c \cap A_j).$$

e) En remarquant que $Q \cap A = \bigcup_{j=1}^{\infty} (Q \cap B_j^c \cap A_j)$, montrer :

$$m_*(Q \cap A^c) + m_*(Q \cap A) \leq m_*(Q),$$

et conclure.

- 2. (a) Rappeler la définition d'une mesure.
 - (b) En utilisant la question 1.d), montrer la σ -additivité de m.
- 3. Montrer que *m* est complète.

Correction ▼ [005928]

Exercice 2

On définit la mesure extérieure de Lebesgue sur $\mathbb{R}, m_* : \mathscr{P}(\mathbb{R}) \to \mathbb{R}$, par la formule

$$m_*(A) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \mid A \subset \bigcup_{i=1}^{\infty}]a_i, b_i[\right\}.$$

Montrer qu'il s'agit bien d'une mesure extérieure.

Correction ▼ [005929]

Exercice 3

On définit $m_*:\mathscr{P}(\Omega)\to\mathbb{R}$ par

$$m_*(A) = \begin{cases} 0 & \text{si } A = \emptyset \\ 1 & \text{sinon.} \end{cases}$$

- 1. Montrer que m_* est une mesure extérieure.
- 2. Quels sont les ensembles m_* -mesurables?
- 3. Vérifier le théorème de Carathéodory sur cet exemple.

Correction ▼ [005930]

2 Aire de \mathcal{S}_{n-1} et volume de \mathcal{B}_n

Exercice 4

- 1. Calculer $\int_{-\infty}^{+\infty} e^{-x^2} dx$.

 Indication: On pourra d'abord calculer $\int_{\mathbb{R}^2} e^{-(x^2+y^2)} dxdy$ en passant en coordonnées polaires.
- 2. Calcul de l'aire de la sphère unité de \mathbb{R}^n . Soit $\mathscr{S}_{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n, \sum_{i=1}^n x_i^2 = 1\}$ la sphère unité de \mathbb{R}^n . On note \mathscr{A}_{n-1} son aire. Calculer

$$\int_{\mathbb{R}^n} e^{-\sum_{i=1}^n x_i^2} dx_1 \dots dx_n$$

en fonction de \mathcal{A}_{n-1} . En déduire l'expression de \mathcal{A}_{n-1} en fonction de la fonction Γ :

$$\Gamma(s) := \int_0^{+\infty} x^{s-1} e^{-x} dx.$$

3. Calcul du volume de la boule unité de \mathbb{R}^n . Soit $\mathscr{B}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n, \sum_{i=1}^n x_i^2 \leq 1\}$ la boule fermée de rayon 1 dans \mathbb{R}^n . On note \mathscr{V}_n son volume. Montrer que $\mathscr{V}_n = \frac{\mathscr{A}_{n-1}}{n}$. En déduire que :

$$\mathscr{V}_n = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}.$$

4. *Application*: Que vaut l'aire de la sphère de rayon R dans \mathbb{R}^2 ? \mathbb{R}^3 ? Que vaut le volume de la boule de rayon R dans \mathbb{R} ? \mathbb{R}^2 ? \mathbb{R}^3 ?

Correction ▼ [005931]

Exercice 5

Cet exercice fournit une autre méthode de calcul du volume de la boule unité \mathcal{B}_n de \mathbb{R}^n et de l'aire de la sphère $\mathcal{S}_{n-1} \subset \mathbb{R}^n$. On conserve les notations de l'exercice précédent.

- 1. Montrer que $\mathcal{V}_n = I_n \cdot \mathcal{V}_{n-1}$, où $I_n = \int_0^{\pi} (\sin \theta)^n d\theta$.
- 2. Vérifier que $I_n = \frac{n-1}{n}I_{n-2}$.
- 3. Calculer \mathcal{V}_n pour $n = 1, 2, \dots, 7$.
- 4. Calculer \mathcal{A}_{n-1} pour $n = 1, 2, \dots, 6$.

Correction ▼ [005932]

Correction de l'exercice 1

- 1. (a) cf cours.
 - (b) clair.
 - (c) Soit $\{A_i\}_{i\in\mathbb{N}^*}$ un suite quelconque d'ensembles m_* -mesurables. On pose $B_1=\emptyset$, $B_2=A_1$ et $B_j=\bigcup_{i=1}^{j-1}A_i$, pour $j\geq 2$. Soit Q un sous-ensemble de Ω . Montrons par récurrence que l'assertion (P_k) suivante est vérifiée pour tout $k\geq 1$:

$$(P_k) \qquad m_*(Q) = m_*(Q \cap B_{k+1}^c) + \sum_{i=1}^k m_*(Q \cap B_j^c \cap A_j).$$

- Pour k=1, (P_1) dit simplement que $m_*(Q)=m_*(Q\cap A_1^c)+m_*(Q\cap A_1)$. Ceci est une conséquence de la m_* -mesurabilité de A_1 et de fait que

$$m_*(Q) \le m_*(Q \cap A_1^c) + m_*(Q \cap A_1)$$

(on applique la σ -sous-additivité de m_* à $C_1 = Q \cap A_1^c$, $C_2 = Q \cap A_1$ et $C_i = \emptyset$ pour $i \ge 3$.)

- Montrons que (P_k) ⇒ (P_{k+1}) :

Puisque A_{k+1} est m_* -mesurable, on a :

$$m_*(Q \cap B_{k+1}^c) = m_*(Q \cap B_{k+1}^c \cap A_{k+1}^c) + m_*(Q \cap B_{k+1}^c \cap A_{k+1}).$$

Or
$$B_{k+1}^c \cap A_{k+1}^c = (B_{k+1} \cup A_{k+1})^c = B_{k+2}^c$$
. Ainsi:

$$m_*(Q \cap B_{k+1}^c) = m_*(Q \cap B_{k+2}^c) + m_*(Q \cap B_{k+1}^c \cap A_{k+1}). \tag{1}$$

Supposons que l'assertion (P_k) soit vérifiée, alors

$$m_*(Q) = m_*(Q \cap B_{k+1}^c) + \sum_{i=1}^k m_*(Q \cap B_j^c \cap A_j),$$

et d'après (1)

$$m_*(Q) = m_*(Q \cap B_{k+2}^c) + m_*(Q \cap B_{k+1}^c \cap A_{k+1}) + \sum_{j=1}^k m_*(Q \cap B_j^c \cap A_j)$$

$$= m_*(Q \cap B_{k+2}^c) + \sum_{j=1}^{k+1} m_*(Q \cap B_j^c \cap A_j),$$

qui n'est autre que (P_{k+1}) .

- En conclusion, comme (P_1) est vrai et $(P_k) \Rightarrow (P_{k+1})$, il en découle que l'assertion (P_k) est vraie pour tout k > 1.
- (d) Comme $B_{k+1} \subset A$, on a $Q \cap B_{k+1}^c \supset Q \cap A^c$ et, par monotonie de m_* ,

$$m_*(Q \cap B_{k+1}^c) \ge m_*(Q \cap A^c).$$

La condition (P_k) entraı̂ne alors que pour tout k:

$$m_*(Q) \geq m_*(Q \cap A^c) + \sum_{i=1}^k m_*(Q \cap B_j^c \cap A_j).$$

Donc, en faisant tendre k vers $+\infty$:

$$m_*(Q) \ge m_*(Q \cap A^c) + \sum_{j=1}^{\infty} m_*(Q \cap B_j^c \cap A_j).$$

(e) On a : $Q \cap A = \bigcup_{j=1}^{\infty} (Q \cap B_j^c \cap A_j)$ et par σ -sous-additivité de m_* :

$$m_*(Q \cap A^c) + m_*(Q \cap A) = m_*(Q \cap A^c) + m_* \left(\bigcup_{j=1}^{\infty} (Q \cap B_j^c \cap A_j) \right)$$

$$\leq m_*(Q \cap A^c) + \sum_{j=1}^{\infty} m_*(Q \cap B_j^c \cap A_j)$$

$$\leq m_*(Q).$$

On en conclut que $A = \bigcup_{j=1}^{\infty} A_j$ est m_* -mesurable.

- 2. (a) cf cours.
 - (b) Soit $\{A_i\}_{i\in\mathbb{N}^*}$ une suite d'éléments m_* -mesurables, deux à deux disjoints. Choisissons $Q=A=\bigcup_{j=1}^{\infty}A_j$, alors $Q\cap A^c=\emptyset$ et $Q\cap B_j^c\cap A_j=A_j$ pour tout j. D'après la question 1.d),

$$m_*(Q) \geq \sum_{i=1}^{\infty} m_*(A_j).$$

D'après la σ -sous-additivité de m_* , il vient :

$$m_*(Q) = \sum_{j=1}^{\infty} m_*(A_j).$$

3. Soit E un ensemble m_* -mesurable tel que $m_*(E) = 0$ et B un sous-ensemble de E. Comme $Q \cap B^c \subset Q$, on a par monotonie de m_* l'inégalité $m_*(Q \cap B^c) \leq m_*(Q)$. Comme $Q \cap B \subset E$, on a aussi $m_*(Q \cap B) = 0$. On en déduit que

$$m_*(Q) \ge m_*(Q \cap B^c) + m_*(Q \cap B).$$

Ainsi B est m_* -mesurable et m est complète.

Correction de l'exercice 2

Il est clair que $m_*(\emptyset) = 0$ et que si $A \subset B \subset \mathbb{R}$, alors $m_*(A) \leq m_*(B)$, il faut donc uniquement démontrer que m_* est σ -sous-additive.

Soit $\{A_n\}_{n\in\mathbb{N}}\subset\mathscr{P}(\mathbb{R})$, fixons $\varepsilon>0$ et notons $A=\bigcup_{n=1}^{\infty}A_n$. Par définition de l'infimum, pour tout $n\in\mathbb{N}$, on peut trouver une suite $\{(a^n,b^n)\}$ telle que $A\subset\mathbb{R}$ but a^n,b^n et

trouver une suite
$$\{(a_i^n,b_i^n)\}$$
 telle que $A_n\subset\bigcup_{i=1}^\infty]a_i^n,b_i^n[$ et

$$\sum_{i=1}^{\infty} (b_i^n - a_i^n) \le m_*(A_n) + \frac{\varepsilon}{2^n}$$

Comme $A \subset \bigcup_{i,n}]a_i^n, b_i^n[$, on a

$$m_*(A) \le \sum_{n,i} (b_i^n - a_i^n) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} (b_i^n - a_i^n) \le \sum_{n=1}^{\infty} (m_*(A_n) + \frac{\varepsilon}{2^n}) = \varepsilon + \sum_{n=1}^{\infty} m_*(A_n).$$

On a donc la σ -sous-additivité $m_*(A) \leq \sum_{n=1}^{\infty} m_*(A_n)$ puisque ε est arbitraire.

Correction de l'exercice 3

1. Il est clair que $m_*(\emptyset) = 0$ et que m_* est monotone. Soit maintenant $\{A_i\}_{i \in \mathbb{N}} \subset \mathscr{P}(\Omega)$. Si parmi les A_i il existe au moins un ensemble A_j non vide, on a

$$m_*(\bigcup_i A_i) = 1 = m_*(A_j) \le \sum_i m_*(A_i).$$

Si tous les A_i sont vides, alors $\bigcup_i A_i = \emptyset$, et donc

$$m_*(\bigcup_i A_i) = 0 = \sum_i m_*(A_i).$$

Ainsi m_* est σ -sous-aditive et par consequent m_* est une mesure extérieure.

2. Les seuls ensembles mesurables sont \emptyset et Ω , puisque si $A \in \mathscr{P}(\Omega)$ est tel que $A \neq \emptyset$ et $A \neq \Omega$, alors, pour tout $Q \in \mathscr{P}(\Omega)$ non vide et non inclus dans A, on a $A \cap Q \neq \emptyset$ et $A^c \cap Q \neq \emptyset$, et donc

$$m_*(A \cap Q) + m_*(A^c \cap Q) = 1 + 1 = 2 \neq m_*(Q) = \begin{cases} 1 \\ 0 \end{cases}$$

3. Il est clair que l'ensemble des parties m_* -mesurables de Ω , $\mathcal{M}_{m_*} = \{\emptyset, \Omega\}$, est une σ -algèbre. Il est facile de voir aussi que

$$\mu = m_*|_{\mathcal{M}_{m_*}}, \mu(\emptyset) = 0, \ \mu(\Omega) = 1,$$

est une mesure sur $(\Omega, \mathcal{M}_{m_*})$.

Correction de l'exercice 4 A

1. Soit $I = \int_{-\infty}^{+\infty} e^{-x^2} dx$. On a:

$$I^2 = \int_{\mathbb{D}^2} e^{-(x^2 + y^2)} \, dx \, dy.$$

L'application $\Phi: \mathbb{R}_+^* \times]0, 2\pi[\to \mathbb{R}^2 \setminus \{(x,0), x \ge 0\}$ définie par :

$$\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$$

est un \mathscr{C}^1 -difféomorphisme. De plus

$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx dy = \int_{\mathbb{R}^2 \setminus \{(x,0), x \ge 0\}} e^{-(x^2+y^2)} \, dx dy$$

car l'ensemble $\{(x,0), x \ge 0\}$ est négligeable. On en déduit que :

$$I^{2} = \int_{r=0}^{+\infty} \int_{\theta=0}^{2\pi} e^{-r^{2}} r dr d\theta = 2\pi \left[\frac{-e^{-r^{2}}}{2} \right]_{0}^{+\infty} = \pi.$$

Ainsi $I = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

2. Calcul de l'aire de la sphère unité de \mathbb{R}^n . Soit $\mathscr{S}_{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n, \sum_{i=1}^n x_i^2 = 1\}$ la sphère unité de \mathbb{R}^n . On note \mathscr{A}_{n-1} son aire. D'après la question précédente, on a :

$$\int_{\mathbb{R}^n} e^{-\sum_{i=1}^n x_i^2} \, dx_1 \dots dx_n = \pi^{\frac{n}{2}}.$$

D'autre part, puisque l'aire de la sphère de rayon r dans \mathbb{R}^n vaut $r^{n-1}\mathscr{A}_{n-1}$, il vient :

$$\int_{\mathbb{R}^n} e^{-\sum_{i=1}^n x_i^2} dx_1 \dots dx_n = \mathscr{A}_{n-1} \int_0^{+\infty} e^{-r^2} r^{n-1} dr.$$

En posant le changement de variable $x = r^2$, on obtient :

$$\int_{\mathbb{R}^n} e^{-\sum_{i=1}^n x_i^2} dx_1 \dots dx_n = \frac{1}{2} \mathscr{A}_{n-1} \int_0^{+\infty} e^{-x} x^{\frac{n}{2}-1} dx,$$

d'où:

$$\mathscr{A}_{n-1} = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}.$$

3. Calcul du volume de la boule unité de \mathbb{R}^n . Soit $\mathscr{B}_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n, \sum_{i=1}^n x_i^2 \leq 1\}$ la boule fermée de rayon 1 dans \mathbb{R}^n . On note \mathscr{V}_n son volume. On a :

$$\mathcal{V}_n = \int_0^1 r^{n-1} \mathcal{A}_{n-1} dr = \mathcal{A}_{n-1} \left[\frac{r^n}{n} \right]_0^1 = \frac{\mathcal{A}_{n-1}}{n}.$$

On en déduit que :

$$\mathscr{V}_n = rac{2\pi^{rac{n}{2}}}{n\Gamma\left(rac{n}{2}
ight)}.$$

Ce qui se réduit à :

$$\mathscr{V}_n = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} + 1\right)}$$

en utilisant l'identité : $\Gamma(s+1) = s\Gamma(s)$.

4. *Application*: L'aire de la sphère de rayon R dans \mathbb{R}^2 vaut

$$\mathscr{A}_1 R = \frac{2\pi}{\Gamma(1)} R = 2\pi R,$$

qui est bien le périmètre du cercle de rayon R dans le plan. Sachant $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, l'aire de la sphère de rayon R dans \mathbb{R}^3 vaut

$$\mathscr{A}_2 R^2 = \frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})} R^2 = \frac{2\pi\sqrt{\pi}}{\frac{1}{2}\Gamma(\frac{1}{2})} R^2 = 4\pi R^2$$

qui est bien l'aire de la sphère S^2 .

Le volume de la boule de rayon R dans \mathbb{R} vaut

$$\mathscr{V}_1 R = rac{2\pi^{rac{1}{2}}}{\Gamma\left(rac{1}{2}
ight)} R = rac{2\sqrt{\pi}}{\sqrt{\pi}} R = 2R,$$

qui est bien la longueur du segment [-R,R].

Le volume de la boule de rayon R dans \mathbb{R}^2 vaut

$$\mathcal{V}_2 R^2 = \frac{2\pi}{2\Gamma(1)} R^2 = \pi R^2,$$

qui est bien l'aire du disque de rayon R.

Le volume de la boule de rayon R dans \mathbb{R}^3 vaut

$$\mathscr{V}_3 R^3 = \frac{\mathscr{A}_2}{3} R^3 = \frac{4}{3} \pi R^3.$$

Correction de l'exercice 5

1. On a

$$\mathcal{V}_{n} = \int_{\mathcal{B}_{n}} dx_{1} \dots dx_{n} = \int_{-1}^{1} dx_{1} \int_{\sum_{i=2}^{n} x_{i}^{2} \le 1 - x_{1}^{2}} dx_{2} \dots dx_{n}$$

$$= \mathcal{V}_{n-1} \int_{-1}^{1} \left(\sqrt{1 - x_{1}^{2}} \right)^{n-1} dx_{1}$$

Posons $x_1 = \cos \theta$, pour $\theta \in [0, \pi]$. Alors $\sqrt{1 - x_1^2} = |\sin \theta| = \sin \theta$ et $dx_1 = -\sin \theta \ d\theta$. On a donc

$$\mathscr{V}_n = -\mathscr{V}_{n-1} \int_{\pi}^{0} (\sin \theta)^n d\theta = \mathscr{V}_{n-1} \int_{0}^{\pi} (\sin \theta)^n d\theta = I_n \cdot \mathscr{V}_{n-1}.$$

2. On a

$$I_{n} = \int_{0}^{\pi} (\sin \theta)^{n} d\theta = \int_{0}^{\pi} (\sin \theta)^{n-1} \sin \theta \ d\theta =$$

$$= \left[-\cos \theta (\sin \theta)^{n-1} \right]_{0}^{\pi} + (n-1) \int_{0}^{\pi} (\sin \theta)^{n-2} (\cos \theta)^{2} \ d\theta =$$

$$= (n-1) \int_{0}^{\pi} (\sin \theta)^{n-2} (1 - (\sin \theta)^{2}) \ d\theta = (n-1)(I_{n-2} - I_{n}).$$

Donc $I_n = \frac{n-1}{n} \cdot I_{n-2}$.

3. On a $I_0 = \pi$, $I_1 = 2$. Donc $I_2 = \frac{\pi}{2}$, $I_3 = \frac{4}{3}$, $I_4 = \frac{3\pi}{8}$, $I_5 = \frac{16}{15}$, $I_6 = \frac{15\pi}{48}$, $I_7 = \frac{32}{35}$. Comme $\mathcal{V}_1 = 2$ on trouve :

$$\mathscr{V}_2=\pi,\ \mathscr{V}_3=\frac{4\pi}{3},\ \mathscr{V}_4=\frac{\pi^2}{2},\ \mathscr{V}_5=\frac{8\pi^2}{15},\ \mathscr{V}_6=\frac{\pi^3}{6},\ \mathscr{V}_7=\frac{16}{105}\pi^3.$$

4. On a
$$\mathcal{V}_n = \int_0^1 \int_{\mathscr{S}_{n-1}} r^{n-1} dr d\sigma = \frac{1}{n} \mathscr{A}_{n-1}$$
, d'où $\mathscr{A}_{n-1} = n \mathscr{V}_n$. Donc on a

$$\mathscr{A}_1 = 2\pi, \ \mathscr{A}_2 = 4\pi, \ \mathscr{A}_3 = 2\pi^2, \ \mathscr{A}_4 = \frac{8}{3}\pi^2, \ \mathscr{A}_5 = \pi^3, \ \mathscr{A}_6 = \frac{16}{15}\pi^3.$$