Порождающие модели белковых структур

Роман Сергеевич Клыпа Научный руководитель: к.ф.-м.н. С. В. Грудинин

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Постановка задачи

Задача генерации трехмерных объектов

Необходимо построить модель G, порождающую объекты согласно $p(\mathcal{M})$, где \mathcal{M} - $\mathbb{R}^{3M\times N}$.

Уменьшение размерности

Наличие твердых связей в $\mathbb{R}^{3M \times N}$ позволяет уменьшить пространство до SE(3) N , что можно отождествить с SO(3) $^N \times \mathbb{R}^{3N}$.

Score Matching

Вместо $p(\mathbf{x})$ моделируется $s_{\theta}(\mathbf{x})$:

$$\mathcal{L}(\theta) = \mathbb{E}_{p(\mathbf{x})} \left[\| s_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) \|^{2} \right]. \tag{1}$$

Генерация возможна с помощью алгоритма Ланжевена:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \mathbf{z}_i, \ i = 0, 1, ... K, \ \mathbf{z}_i \sim \mathcal{N}(0, I). \tag{2}$$

Цель исследования

Поставленные цели

- Предложить прямой и обратный диффузионные процессы для SO(3).
- ▶ Предложить способ обеспечить эквивариантность процессов $(g_1f(g_2) = f(g_1g_2))$.
- Показать преимущества предложенных методов на конкретной задаче.

Существующие подходы и их недостатки

- Предложенные ранее методы не гарантируют сходимость прямого процесса к шуму (Yim et al. 2023).
- Предложенные ранее методы являются эмпирическими.

Предлагаемый подход

Предложение 1 (Клыпа, 2024)

 $R \overset{\text{exp}}{\underset{\text{log}}{\rightleftharpoons}} r$

Прямой процесс на SO(3):

$$\mathbf{R}_t = \exp[d(t)\mathbf{r}_0\tilde{\mathbf{r}}(t)],\tag{3}$$

где d(t) - 'коэффициент дрифта', d(0)=1, d(1)=0. Обратный процесс:

$$\mathbf{R}_{t-dt} = \exp[\mathbf{r}_t * g^2(t)s(\mathbf{r}_t)dt * g(t)\sqrt{dt}\tilde{\mathbf{r}}(t)], \tag{4}$$

где $s(\mathbf{r}_t) = \nabla_{\mathbf{r}} \log p_t(\mathbf{r}_t | \mathbf{r}_0)$.

Здесь $\mathbf{R} \in SO(3)$, $\mathbf{r} \in \mathfrak{so}(3)$, $\tilde{\mathbf{r}}(t) \sim \mathsf{IGSO}_3(\mathsf{Id}, \sigma^2(t))$.

Функция $g(t)=\sqrt{rac{d}{dt}\sigma^2(t)}$ отвечает за масштабирование времени.

Предлагаемый подход

Теорема 1 (Клыпа, 2024)

Для прямого процесса (3):

$$p_t(\mathbf{R}_t|\mathbf{R}_0) = \mathsf{IGSO}_3(\mathbf{R}_t|exp[d(t)\mathbf{r}_0], \sigma^2(t)), \tag{5}$$

в частности $p_1(\mathbf{R}_1|\mathbf{R}_0) = \mathsf{IGSO}_3(\mathbf{R}_1|\mathbf{Id},\sigma^2(1)).$

Обратный процесс.

Эквивариантность и сходимость процессов

Теорема 2 (Клыпа, 2024)

Прямой процесс (3) эквивариантен относительно SO(3):

$$\mathbf{RR}_t(\mathbf{R}_0) = \mathbf{R}_t(\mathbf{RR}_0) \ \forall \mathbf{R} \in \mathsf{SO}(3).$$
 (6)

Если $s_{\theta}(\mathbf{r}_t)$ эквивариантен относительно SO(3), то обратный процесс (4) также эквивариантен:

$$RR_t(R_1) = R_t(RR_1) \ \forall R \in SO(3).$$
 (7)

Лемма 1 (Клыпа, 2024)

При $p(\mathbf{r}|\mathbf{r_0}) = \mathsf{IGSO}_3(\mathbf{r}|\mathbf{r_0},\sigma^2)$, процесс

$$\mathbf{r}_{i+1} = \mathbf{r}_i * \epsilon \nabla_{\mathbf{r}} \log p(\mathbf{r}|\mathbf{r}_0) * \sqrt{2\epsilon} \mathbf{z}_i, \ \mathbf{z}_i \sim \mathsf{IGSO}_3(\mathbf{Id}, \sigma^2)$$
 (8)

сходится к $p(\mathbf{r}|\mathbf{r_0})$ при $i \to \infty$.

Вычислительный эксперимент

Целевое распределение.

Генерация метода Yim et al. 2023.

Генерация метода Klypa, 2024.

Элементы группы SO(3) изображены в трехмерном пространстве при использовании представления axis-angle. Для наглядности полученные распределения были спроецированы на плоскость.

Применение к реальной задаче

Постановка задачи

Генерация 3D структур молекул РНК, при взаимодействии с протеином: $P(geom_{RNA}|geom_{pr}, seq_{pr}, seq_{RNA})$. Предполагается, что $geom_{RNA}, geom_{pr} \in SE(3)^N$.

Архитектура модели MolBinDif.

Применение к реальной задаче

Теорема 3 (Клыпа, 2024)

Архитектура модели MolBinDif эквивариантна относительно SO(3).

Результаты эксперимента

Процесс	↓ rRMSD _{rr} , Å	↓ rRMSD _{rp} , Å	\uparrow IDDT _{rr}	\uparrow IDDT _{rp}
Yim et al. 2023	10.7 ± 5.5	14.1 ± 7.8	$\textbf{0.17}\pm\textbf{0.06}$	0.10 ± 0.05
Klypa, 2024	11.1 ± 5.1	$\textbf{13.4}\pm\textbf{8.2}$	0.15 ± 0.06	0.11 ± 0.05

Таблица: Результаты эксперимента.

Выносится на защиту

- 1. Предложен новый порождающий процесс на SO(3).
- 2. Доказана эквивариантность процесса.
- 3. Продемонстрированы его преимущества относительно прошлых работ на демонстрационном примере.
- 4. Продемонстрирована его сходимость на реальных данных.

Публикации

 Roman Klypa, Kliment Olechnovič, Ben Shor, Dina Schneidman-Duhovny, Sergei Grudinin. MolBindDif: Protein-conditioned RNA structure diffusion

OpenReview preprint, ICML 2024