Классификация записей из микроблогов с помощью Википедии

Абишев Т. М.

545 группа, математико-механический факультет, СПбГУ

Научный руководитель: Барашев Д. В.

Доцент, математико-механический факультет, СПбГУ

Рецензент: Шалымов Д. С.

Доцент, математико-механический факультет, СПбГУ

Введение

- Микроблоги как источник данных
 - Выборы
 - Кассовые сборы
- Классификация записей
 - По тематике
 - Спам/не спам
 - Содержательные/не содержательные

Постановка задачи

- Построить классификатор записей из микроблогов
- Который будет использовать
 - Википедию
 - Контекст

Построение контекста

- Использование других записей автора как контекст для классификации
- Алгоритм
 - Кластеризуем записи автора
 - Для каждого кластера классифицируем все записи по отдельности
 - Помечаем кластер «большинством» голосов

Использование контекста

- Находим наиближайший кластер к классифицируемой записи
- Результатом является метка кластера

Выделение признаков из текста

- Для классификации необходимы признаки
- Традиционный подход bag of words
- Короткая длина записей как проблема
- Использование Википедии как вариант решения проблемы

Выделение признаков на основе Википедии

- Нахождение релевантных тексту страниц в Википедии
- Над-категории релевантных страниц как признаки текста

Тестовые данные и критерии качества

- Размеченные тестовые данные
 - Математика/физика/биология/химия/программирование (тематическая)
 - Новости/личное/предложения от компаний (целевая)
 - Количество записей 1500
- Оценка результатов
 - Точность, полнота
 - F-мера среднее гармоническое точности и полноты

Участники забега

- Алгоритмы классификации
 - Наивный байесовский
 - SVM метод опорных векторов
 - J48 метод для построения дерева принятия решений
- Алгоритмы кластеризации
 - kmeans на 20 кластеров
 - kmeans на 100 кластеров
 - xmeans от 10 до 200 кластеров
- 12 вариантов классификаторов, 2 способа выделения признаков из текста

Результаты экспериментов

- Наилучшие результаты показал алгоритм SVM
- Использование «Википедии» ухудшает «базовую» классификацию, но улучшает «контекстную»
- Наиболее подходящим алгоритмом кластеризации является xmeans
- Использование контекста дает больший прирост для «тематической» выборки, чем для «целевой»
- Наименьшее улучшение наивный байесовский алгоритм

Результаты экспериментов

 Результат для тематической выборки и алгоритма SVM

Результаты

- Создан алгоритм классификации записей из микроблогов
 - Использующий контекст записи
 - Использующий «Википедию» для извлечения признаков из текста
- Алгоритм показал хорошие результаты и продемонстрировал улучшение в сравнении с традиционным подходом для классификации записей