Maß- und Integrationstheorie

2. Hausaufgabenblatt

Abgabe bis Freitag, 8. Mai, 18:00 Uhr

Aufgabe 1: 4 Punkte

Sei $\mathfrak D$ ein System von Teilmengen von der Grundmenge Ω . Betrachte die folgenden Eigenschaften:

- i) $\Omega \in \mathfrak{D}$,
- ii) $A \in \mathfrak{D} \Rightarrow A^c \in \mathfrak{D}$,
- ii') $A, B \in \mathfrak{D}, A \subset B \Rightarrow B \setminus A \in \mathfrak{D},$
- iii) $(A_n) \subset \mathfrak{D}$, A_n paarweise disjunkt $\Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{D}$,
- iii') $(A_n) \subset \mathfrak{D}, \ A_n \subset A_{n+1}$ für alle $n \in \mathbb{N} \ \Rightarrow \ \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{D}.$

Zeige die Äquivalenzen

$$i)$$
, $ii)$, $iii) \iff i)$, $ii')$, $iii) \iff i)$, $ii')$, $iii')$

und die Implikation

$$i)$$
, $ii)$, $iii) \implies i)$, $ii)$, iii').

Zeige außerdem, dass die Umkehrung der letzten Implikation im Allgemeinen nicht gilt.

Hinweis: Für das Gegenbeispiel reicht eine Grundmenge mit drei Elementen.

Aufgabe 2: 6 Punkte

Sei $\mu \colon \mathfrak{S} \to [0, \infty]$ eine σ -additive Mengenfunktion auf einem Semiring \mathfrak{S} über der Grundmenge Ω und sei $\mu(\emptyset) = 0$. Sei weiterhin die Funktion $\mu^* \colon \mathfrak{P}(\Omega) \to [0, \infty]$ definiert durch

$$\mu^*(A) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(A_n) \mid (A_n) \subset \mathfrak{S}, \bigcup_{n \in \mathbb{N}} A_n \supset A \right\}.$$

Dann ist μ^* ein äußeres Maß auf Ω (siehe Vorlesung). Zeige die folgenden Aussagen:

- i) Zu jedem $A \subset \Omega$ existiert ein $B \in \sigma(\mathfrak{S})$ mit $A \subset B$ und $\mu^*(A) = \mu^*(B)$.
- ii) Für alle $A, B \subset \Omega$ gilt die Ungleichung

$$\mu^*(A \cup B) + \mu^*(A \cap B) < \mu^*(A) + \mu^*(B).$$

Falls A oder $B \mu^*$ -messbar ist, gilt sogar Gleichheit.