I read *Cuda By Example* by Sanders and Kandrot up to Chapter 7 to get an idea of how CUDA programming worked, and then proceeded to parallelize some algorithms so I can get first hand experience. I chose three algorithms: the SUMMA method for matrix multiplication (1), merge sort (2), and a most dominant peaks algorithm (MDPA) (3). For (1), I just experimented with the following three schemes given an arbitrary N x N matrix:

- 1. Have each block represent every element in the matrix
- 2. Have each block be a 2x2, sliding window that accumulates terms when doing the matrix multiply
- 3. Have each block be comprised of threads, where each thread in the block would be a single element in the matrix.

I implemented my own version of merge sort and is described as follows. Let us say that we have B blocks and T threads per block. Then, I divided the array A into B subarrays of size $\frac{length(A)}{B}$ note that the last block was either slightly larger or smaller than the other blocks in order to fill up the portion of A that did not evenly divide by B. Then, each subarray A_i , $0 \le i < B$ was further divided into subarrays A_{i_k} , $0 \le k < T$ where A_{i_k} corresponded to the kth subarray of the ith subarray of A. Specifically, I gave each block a portion of the array and inside each block, each thread had a portion of that subarray. Each thread was then sorted using an iterative sorting algorithm; I used insertion sort to do this. Once the threads were sorted, each thread within a single block was pairwise reduced via merging with the adjacent thread until the entire subarray in the block was sorted. The execution of these steps lead to B sorted subarrays. The final step was to do the merging step again, this time with 1 block and B threads. After this step, the array A was sorted.

The MDPA is described in Liu et al. 2004 under the section "Regions of Dominance," second paragraph. Essentially, the algorithm is a way to extract the most relevant peaks from an autocorrelation surface of a periodic pattern; these peaks are used to construct the lattice that describes the shape of the pattern.

The MDPA was parallelized in the step of the code when the minimum distances, D_i s are computed for each peak. This is because the preceding and ensuing step (sorting by height and by D_i , respectively) were not only already parallelized above, but they also could run efficiently on a serial machine in $\Theta(N \mid g \mid N)$ time. The parallelization for the distances is as follows. Let there be N peaks, and these peaks be described by the set $P = \{P_0, P_1, ..., P_{N-1}\}$. Then let there be M blocks and N threads such that N is a power of 2. The idea is that a block B_i calculates D for a set of points P_{B_i} , where P_{B_i} is either empty or nonempty, starting at P_1 . For example if M = N - 1, then $P_{B_i} = \{P_i\}$; if $M = \frac{N}{2} - 1$, then $P_{B_i} = \{P_i, P_{i+\frac{N}{2}-1}\}$. Each thread T_{k_i} in B_i represents a set of points $P_{T_{k_i}}$ that precede the current block's point P_{B_i} , where T_{k_i} is read as the t^{th} thread in the t^{th} block. If N = t, then $P_{T_{k_i}} = \{P_k\}$; if $N = \frac{t}{2} - 1$, then $P_{T_{k_i}} = \{P_k, P_{k+\frac{t}{2}-1}\}$. The idea is that given a block point P_i , each thread T_{k_i} evaluates to T_{k_i} where T_{k_i} is the T_{k_i} thread's minimum distance of its set of points with respect to T_{k_i} . Specifically if we label the set $T_{T_{k_i}} = T_{k_i}$

 $\{Q_0,Q_1,...Q_j\}$ where $Q_l \in P$, and if we define dist(A,B) as returning the square of the Euclidian distance of points A and B, then $D_{k_i} = \min\left(dist(P_i,Q_0),dist(P_i,Q_1),...,dist(P_i,Q_j)\right)$. Each D_{k_i} is stored in the k^{th} index of a shared array called minArray. Note that for threads having an empty set of $P_{T_{k_i}}$ points, $minArray[k] = \infty$. After each element of minArray is calculated, the array is pair-wise reduced until a single element remains in minArray[0]; this value is the minimum distance of point P_i . This process continues inside the block until we reach the end of its P_{B_i} set, for all the blocks.