word2vec

Kristian Wichmann

May 19, 2017

1 A simple neural network

Consider a feed forward neural network with one hidden layer, as shown in figure 1. The input layer consists of a row¹ vector x of dimension D_x , i.e. $x \in \mathbb{R}^{1 \times D_x}$. The hidden layer has h neurons with a sigmoid activation function:

$$h = \sigma(xW^{(1)} + b^{(1)}) = \sigma(z^{(1)}), \quad z^{(1)} = xW^{(1)} + b^{(1)}$$
 (1.1)

So $h \in \mathbb{R}^{1 \times H}$, $W^{(1)} \in \mathbb{R}^{D_x \times H}$, $b^{(1)} \in \mathbb{R}^{1 \times H}$. The output layer has D_y softmax neurons:

$$\hat{y} = s(hW^{(2)} + b^{(2)}) = s(z^{(2)}), \quad z^{(2)} = hW^{(2)} + b^{(2)}$$
 (1.2)

Similarly $\hat{y} \in \mathbb{R}^{1 \times D_y}, W^{(2)} \in \mathbb{R}^{H \times D_y}, b^{(2)} \in \mathbb{R}^{1 \times D_y}.$

 $^{^{1}\}mathrm{Note}$ that this is different from the column vector convention usually used.

Figure 1: The neural network.

1.1 Error function

Assuming a labelled dataset x with the correct label c encoded as a one-hot vector $t \in \mathbb{R}^{1 \times D_y}$, so $t_i = \delta_{ic}$. We will use the cross-entropy error function:

$$J(x) = -\sum_{i=1} t_i \log \hat{y}_i \tag{1.3}$$

Since t is one-hot encoded, only the correct label c will contribute to the sum, so:

$$J(x) = -\log \hat{y}_c \tag{1.4}$$

This does not mean that the other components of \hat{y} will not matter, since the softmax indirectly depends on all components.

1.1.1 Derivative with respect to input

We now wish to compute the derivative of J(x) with respect to x. In shorthand, the chain rule gives us:

$$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial h} \frac{\partial h}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial x}$$
(1.5)

Writing out indices explicitly:

$$\frac{\partial J}{\partial x_m} = \sum_{i=1}^{D_y} \sum_{j=1}^{D_y} \sum_{k=1}^{H} \sum_{l=1}^{H} \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(2)}} \frac{\partial z_j^{(2)}}{\partial h_k} \frac{\partial h_k}{\partial z_l^{(1)}} \frac{\partial z_l^{(1)}}{\partial x_m}$$
(1.6)

Let's compute these partial derivatives one by one:

$$\frac{\partial J}{\partial \hat{y}_i} = -\frac{\partial}{\partial \hat{y}_i} \log \hat{y}_c = -\frac{\delta_{ic}}{\hat{y}_c} \tag{1.7}$$

The second is a standard result for the softmax function:

$$\frac{\partial \hat{y}_i}{\partial z_j^{(2)}} = s_i(z^{(2)})(\delta_{ij} - s_j(z^{(2)})) = \hat{y}_i(\delta_{ij} - \hat{y}_j)$$
(1.8)

And:

$$\frac{\partial z_j^{(2)}}{\partial h_k} = W_{kj}^{(2)} \tag{1.9}$$

The fourth uses a standard result for the sigmoid:

$$\frac{\partial h_k}{\partial z_l^{(1)}} = \delta_{kl} \sigma(z_l^{(1)}) (1 - \sigma(z_l^{(1)})) = \delta_{kl} h_l (1 - h_l)$$
 (1.10)

And finally:

$$\frac{\partial z_l^{(1)}}{\partial x_m} = W_{ml}^{(1)} \tag{1.11}$$

Inserting, letting the delta functions cancel, and renaming indices, this becomes:

$$\frac{\partial J}{\partial x_i} = -\sum_{i=1}^{H} \sum_{k=1}^{D_y} W_{ij}^{(1)} h_j (1 - h_j) W_{jk}^{(2)} (\delta_{kc} - \hat{y}_k)$$
 (1.12)

But since $t_i = \delta_{ic}$ this is the same as:

$$\frac{\partial J}{\partial x_i} = \sum_{j=1}^{H} \sum_{k=1}^{D_y} W_{ij}^{(1)} h_j (1 - h_j) W_{jk}^{(2)} (\hat{y}_k - t_k)$$
 (1.13)

We may rephrase this is terms of *errors* for the different layers. The error in the output layer is:

$$\delta_k^{(2)} = \hat{y}_k - t_k \tag{1.14}$$

And the backpropagated error in the hidden layer is:

$$\delta_j^{(1)} = \sum_{k=1}^{D_y} h_j (1 - h_j) W_{jk}^{(2)} \delta_k^{(2)}$$
(1.15)

Now equation 1.13 can be rewritten as:

$$\frac{\partial J}{\partial x_i} = \sum_{j=1}^{H} \sum_{k=1}^{D_y} W_{ij}^{(1)} h_j (1 - h_j) W_{jk}^{(2)} \delta_k^{(2)} = \sum_{j=1}^{H} W^{(1)} \delta_j^{(1)}$$
(1.16)

2 The word2vec algorithm

Imagine a large corpus of consecutive tokens (words) of length T. Each token comes from a vocabulary of size W. We wish to encode the tokens as vectors. To do this, we look at the words surrounding a given word in the corpus probabilistically. If c is the center word, we can consider the probability of a word j places away being o. We denote this probability $p_j(u|c)$. If we have each word represented by vectors, an appropriate model for the probability could be a softmax over the entire vocabulary size:

$$p(o|c) = \frac{\exp(u_o^t v_c)}{\sum_{w=1}^W \exp(u_w^t v_c)}$$
 (2.1)