# Expanded Optimization for Discovering Optimal Lateral Handling Bicycles

Jason K. Moore and Mont Hubbard
Mechanical and Aerospace Engineering
University of California, Davis
One Shields Avenue, Davis, CA, USA 95817
e-mail: jkm@ucdavis.edu, mhubbard@ucdavis.edu

## **Abstract**

We introduced a method of optimizing four geometric parameters of a bicycle's design to minimize the so called Handling Quality Metric (HQM) [3]. Here we expand that method to optimize all X geometric and inertial parameters of the benchmark parameterimization of the linear Whipple-Carvallo bicycle model under constraints that guarantee a physically realizable bicycle. This improves over the prior work by expanding the search space with many more parameters and the guarantee of realizability.

#### 1 Introduction

Physical design features of ground vehicles can affect their lateral handling qualities. Geometry, mass, and mass distribution of the vehicle's primary components as well as tire characteristics are primary contributors to poor and good handling due to their important influence on the vehicle's dynamics. In past work, we have presented a theoretical and computational framework for assessing the lateral task-independent handling qualities of simplified single track vehicle designs [1, 4]. In subsequent work, we showed that minimizing our proposed handling quality metric (HQM) can produce theoretically optimal handling designs when only four geometric parameters are explored as the optimization variables [3]. The present work's goal is to expand this optimization problem to all of the geometry, mass, and inertial parameters present in the linear Whipple-Carvallo bicycle model [2]. This broadens the search space considerably but we constrain it so that only realizable optimal bicycle designs are discovered. To do so, we formulate a constrained optimization problem and use derivative-free optimization to discover optimal, yet realizable, bicycle designs.

# 2 Bicycle Model Parameterization

Our problem formulation relies on a new bicycle model parameterization that reflects both a reformulation of and addition to the benchmark parameterization of the linear Whipple-Carvallo bicycle model [2]. We call this the "principal parameterization" as opposed to the "benchmark parameterization". This parameterization differs from the benchmark parameterization in three ways. Firstly, the person and rear frame are treated as separate rigid bodies each with their on inertial parameters. Secondly, we express the inertial parameters of each rigid body in terms of central principal radii of gyration to decouple the mass from the inertia terms. Lastly, we introduce two simple dimensional parameters that define the geometric extents of the person which are used to constrain the location of the person's body. Table 1 provides the parameters and the reference values which are derived from the measurements of a Batavus Browser Bicycle and the rider Jason presented in [4]. This parameterization can be transformed into the benchmark parameterization readily, but not vice versa.

**Table 1**. Full set of 47 principal parameters and their default values derived from the measurements in [4].

| Variable                   | Value    | Units                | Description                                    |
|----------------------------|----------|----------------------|------------------------------------------------|
| $\overline{c}$             | 0.068581 | m                    | Trail                                          |
| w                          | 1.1210   | m                    | Wheelbase                                      |
| $\lambda$                  | 0.39968  | $\operatorname{rad}$ | Steer axis tilt                                |
| g                          | 9.81     | ${ m ms^{-2}}$       | Acceleration due to gravity                    |
| v                          | 3.0      | ${ m ms^{-1}}$       | Forward speed                                  |
| Rear Wheel [R]             |          |                      | •                                              |
| $m_R$                      | 3.11     | kg                   | mass                                           |
| $r_R$                      | 0.34096  | m                    | Rear wheel radius                              |
| $x_R$                      | 0        | m                    | Rear wheel mass center                         |
| $y_R$                      | 0        | $\mathbf{m}$         | Rear wheel mass center                         |
| $z_R$                      | -0.34096 | $\mathbf{m}$         | Rear wheel mass center                         |
| $k_{Raa}$                  | 0.17050  | $\mathbf{m}$         | Rear wheel central principal radii of gyration |
| $k_{Rbb}$                  | 0.17050  | $\mathbf{m}$         | Rear wheel central principal radii of gyration |
| $k_{Ryy}$                  | 0.22136  | $\mathbf{m}$         | Rear wheel central principal radii of gyration |
| Front Wheel [F]            |          |                      |                                                |
| $m_F$                      | 2.02     | kg                   | Mass                                           |
| $r_F$                      | 0.34353  | m                    | Radius                                         |
| $x_F$                      | 1.1210   | m                    | Mass center                                    |
| $y_F$                      | 0.0      | m                    | Mass center                                    |
| $z_F$                      | -0.34353 | m                    | Mass center                                    |
| $k_{Faa}$                  | 0.20917  | m                    | Central principal radius of gyration           |
| $k_{Fbb}$                  | 0.20917  | m                    | Central principal radius of gyration           |
| $k_{Fyy}$                  | 0.27179  | m                    | Central principal radius of gyration           |
| Person [P]                 |          |                      |                                                |
| $l_P$                      | 1.7280   | m                    | Body length                                    |
| $w_P$                      | 0.48300  | m                    | Body width                                     |
| $m_P$                      | 83.500   | kg                   | Mass                                           |
| $x_P$                      | 0.31577  | m                    | Mass center                                    |
| $y_P$                      | 0.0      | m                    | Mass center                                    |
| $z_P$                      | -1.0990  | m                    | Mass center                                    |
| $k_{Paa}$                  | 0.36797  | m                    | Central principal radius of gyration           |
| $k_{Pbb}$                  | 0.15276  | m                    | Central principal radius of gyration           |
| $k_{Pyy}$                  | 0.36717  | m                    | Central principal radius of gyration           |
| $\alpha_P$ Front Frame [H] | 0.18618  | rad                  | Principal axis angle                           |
|                            | 2 2200   | 1 .                  | M                                              |
| $m_H$                      | 3.2200   | kg                   | Mass<br>Mass center                            |
| $x_H$                      | 0.86695  | m                    | Mass center                                    |
| $y_H$                      | 0.0      | m                    | Mass center                                    |
| $z_H$                      | -0.74824 | m                    | Mass center                                    |
| $k_{Haa}$                  | 0.29556  | m                    | Central principal radius of gyration           |
| $k_{Hbb}$                  | 0.14493  | m                    | Central principal radius of gyration           |
| $k_{Hyy}$                  | 0.27630  | m                    | Central principal radius of gyration           |
| $\alpha_H$ Rear Frame [D]  | 0.36995  | rad                  | Principal axis angle                           |
|                            | 0.0000   | 1                    | 76                                             |
| $m_D$                      | 9.8600   | kg                   | Mass                                           |
| $x_D$                      | 0.27595  | m                    | Mass center                                    |
| $y_D$                      | 0 52504  | m                    | Mass center                                    |
| $z_D$                      | -0.53784 | m                    | Mass center                                    |
| $k_{Daa}$                  | 0.28587  | m                    | Central principal radius of gyration           |
| $k_{Dbb}$                  | 0.22079  | m                    | Central principal radius of gyration           |
| $k_{Dyy}$                  | 0.36539  | m                    | Central principal radius of gyration           |
| $\alpha_D$                 | 1.1722   | $\operatorname{rad}$ | Principal axis angle                           |

#### 3 Bounds and Constraints

The optimal principal parameters are subject to a set of constraints designed to ensure that a physically realizable bicycle is obtained form the opimization procedure. These constraints are made up of bounds on the free parameters and both equality and inequality constraints among the parameters. Below the basic constraint concepts presented and grouped by the associated rigid body or collection thereof:

**Total** The resulting combination of the five rigid bodies.

- The physical extents of the rigid bodies must exist above the ground plane.
- Both bicycle and rider are symmetric about the rider's sagittal plane.
- The mass of each bicycle rigid body is positive, greater than a minimum value, and the total mass is below a reasonably lift-able amount.
- The wheels cannot overlap.
- The bicycle cannot topple forward during hard braking or backward during hard acceleration.

Wheels Both front and rear wheels have identical constraints.

- Wheel radius and mass must be greater than a minimum value.
- Wheels are inertially wheel-like, i.e. symmetric about each plane and most of the mass is at the rim.

Frames Front frame (handlebar + fork) and rear frame

- The mass and inertia of the frames are positive and large enough to be constructed from materials in a space frame of specified minimal density.
- The rear frame is planar in nature and the front frame's moments of inertia are consitently dependent.

**Rider** A single rigid body represents the rider.

- Rider mass is that of an average person.
- The rider's joint angles are fixed in a nominal configuration typical of upright bicycling and the resulting mass distribution is derived from standard body segment estimation methods.

These bounds, equality, and inequality constraints are presented mathematically in tables 2, 3, 4 respectively and explained in more detail in the following sections.

## Rear Frame [D]

Several constraints are set for the rear frame. We constrain the rear frame to be planar,  $g_1$ , and symmetric with respect to the XZ plane. We prevent the rear frame from penetrating the ground by limiting the inertial spread with respect to its mass center,  $c_{12}$ , but also set a minimum inertial spread to ensure a frame can span from the rear wheel to the mass center of the rear frame,  $c_9$ . The spread factor in  $c_{12}$  of 1.4 is based on the ratio of geometrical spread of a typical bicycle frame and its radius of gyration. Several parameters are bounded. We require the rear frame mass to be positive, the center of mass not penetrate the ground, and we allow for any angular orientation of the XZ principal directions but limit the angle to  $-\frac{\pi}{2} \le \alpha_D \le \frac{\pi}{2}$  as angle beyond that are redundant.

 Table 2. Free parameter upper and lower bounds

| Min                                                                                               | •                                       | Parmeter       |                                         | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-\infty$                                                                                         | <u> </u>                                | $\overline{w}$ | <u> </u>                                | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | c              | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\pi/2$                                                                                          | $\leq$                                  | $\lambda$      | $\leq$                                  | $\pi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0                                                                                               | $\leq$                                  | $m_D$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | $x_D$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | $z_D$          | $\leq$                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{c} -\infty \\ -\infty \\ -\pi/2 \\ 1.0 \\ -\infty \\ -\infty \\ 0.0 \end{array} $ | $\leq$                                  | $k_{Daa}$      | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0                                                                                               | $\leq$                                  | $k_{Dbb}$      | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $0.0$ $-\pi/2$ $-\infty$ $-\infty$ $-\pi/2$ $0.25$ $-\infty$ $-\infty$ $0.0$                      | $\leq$                                  | $\alpha_D$     | $\leq$                                  | $ \begin{array}{c} \infty \\ \pi/2 \\ \infty \\ \infty \\ 0.0 \\ \infty \\ \infty \\ \pi/2 \\ \infty \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $-\infty$                                                                                         | $\leq$                                  | $x_P$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | $z_P$          | $\leq$                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-\pi/2$                                                                                          | $\leq$                                  | $\alpha_P$     | $\leq$                                  | $\pi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.25                                                                                              | $\leq$                                  | $m_H$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | $x_H$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\infty$                                                                                         | $\leq$                                  | $z_H$          | $\leq$                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0                                                                                               | $\leq$                                  | $k_{Haa}$      | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0                                                                                               | $\leq$                                  | $k_{Hbb}$      | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0                                                                                               | $\leq$                                  | $k_{Hyy}$      | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-\pi/2$                                                                                          | $\leq$                                  | $\alpha_H$     | $\leq$                                  | $\pi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.127                                                                                             | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | $r_R$          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $ \begin{array}{ccc} \pi/2 & \infty & \\ \infty & \infty & \\ 0.0 & \infty & \\ \infty & \infty & \\ \pi/2 & \infty & \\ \infty \infty $ |
| 1.0                                                                                               | $\leq$                                  | $m_R$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.127                                                                                             | $\leq$                                  | $r_F$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0                                                                                               | $\leq$                                  | $m_F$          | $\leq$                                  | $\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 Table 3. Equality constraints

| Constraint            | Equation                                 | Description           |
|-----------------------|------------------------------------------|-----------------------|
| $g_1$                 | $I_{Dyy} = \sqrt{I_{Dxx}^2 + I_{Dzz}^2}$ | Rear frame is planar. |
| $g_2$                 | $k_{Ryy} = r_R$                          | Rear wheel is a ring  |
| $g_3$                 | $k_{Raa} = k_{Ryy}/2$                    | Rear wheel is a ring  |
| $g_4$                 | $k_{Rbb} = k_{Ryy}/2$                    | Rear wheel is a ring  |
| $g_5$                 | $k_{Fyy} = r_F$                          | Front wheel is a ring |
| $g_6$                 | $k_{Faa} = k_{Fyy}/2$                    | Front wheel is a ring |
| <i>g</i> <sub>7</sub> | $k_{Fbb} = k_{Fyy}/2$                    | Front wheel is a ring |

**Table 4**. Inequality constraints

| Constraint   | Equation                                          | Description                          |
|--------------|---------------------------------------------------|--------------------------------------|
| $c_1$        | $\sqrt{I_{Hxx}^2 + I_{Hzz}^2} \ge I_{Hyy}$        | Consistent moments of inertia.       |
| $c_2$        | $0 \ge z_P + l_P/2\cos\alpha_P$                   | Person cannot penetrate ground.      |
| $c_3$        | $0 \ge z_P + w_P/2\sin\alpha_P$                   | Person cannot penetrate ground.      |
| $c_4$        | $0 \ge z_P - l_P/2\cos\alpha_P$                   | Person cannot penetrate ground.      |
| $c_5$        | $0 \ge z_P - w_P/2\sin\alpha_P$                   | Person cannot penetrate ground.      |
| $c_6$        | $x_T \ge  z_T /4$                                 | Maximum acceleration of $1/4g$ .     |
| $c_7$        | $w - x_T \ge 3/4 z_T $                            | Maximum deceleration of $3/4g$ .     |
| $c_8$        | $2k_{Hyy} \ge \sqrt{(x_H - w)^2 + (z_H + r_F)^2}$ | Minimal inertial spread.             |
| $c_9$        | $2k_{Dyy} \ge \sqrt{(x_D - 0)^2 + (z_D + r_R)^2}$ | Minimal inertial spread.             |
| $c_{10}$     | $w \ge r_F + r_R$                                 | Non-overlapping wheels.              |
| $c_{11}$     | $25 \text{kg} \ge m_D + m_H + m_R + m_F$          | Maximum bicycle mass.                |
| $c_{12}$     | $-z_D \ge 1.4k_{Dyy}$                             | Rear frame cannot penetrate ground.  |
| $c_{13}$     | $-z_H \geq 1.4k_{Hyy}$                            | Front frame cannot penetrate ground. |
| $c_{14,,21}$ | $0 \ge s_1, \dots, s_8$                           | Closed loop stability.               |

## **3.1** Person [P]

We assume that the person's joint configurations are such that they are in a nominal configuration for pedaling, i.e. an average normal everyday riding position on a typical bicycle, i.e. they stayed in the same configuration as they were seated on the Batavus Browser bicycle. The person is assumed to be symmetric about the XZ plane. We allow the rider to be rotated about the Y axis and positioned anywhere within the plane of symmetry above the ground.

To prevent the rider from being positioned and oriented such that their body is not penetrating the the ground we introduce two dimensions that define a cross whose apex is at the center of mass of the person and the cross axes are parallel to the principal axes in the XZ plane.  $l_P/2$  is the distance along the principal axis to the tip of the toes and  $w_P$  is the distance along the second principal axes to the tip of the hands. Constraints  $c_2, \ldots, c_5$ .

## 3.2 Front Frame

The front frame is symmetric about the XZ plane so  $I_{Hxy}, I_{Hyz} = 0$ . We allow for any angular orientation of the XZ principal directions but limit the angle to  $-\frac{\pi}{2} \le \alpha_H \le \frac{\pi}{2}$ . We prevent the rear frame from penetrating the ground by limiting the inertial spread with respect to its mass center,  $c_{13}$ , but also set a minimum inertial spread to ensure a frame can span from the rear wheel to the mass center of the rear frame,  $c_8$ . The spread factor in  $c_{13}$  of 1.4 is based on the ratio of geometrical spread of a typical bicycle frame and its radius of gyration. The front frame is not planar but is narrow with respect to the XZ plane, which is enforced by constraint  $c_1$ .

## 3.3 Front [F] and Rear [R] Wheels

We enforce the assumption that both wheels have moments of inertia of that of a simple ring,  $g_2 \dots g_7$  and that mass and radius should be greater than a minimal size based on small purchable spoked wheel with tire.

## 3.4 Total Bike [T]

The trail and wheelbase can take on any real values. The steer axis tilt is limted to 180 degrees. We introduce a constraint  $c_{10}$  that prevents the wheels from physically overlapping and require that the bicycle be liftable by an average person,  $c_{11}$ . Finally, we require that the bicycle not topple forward during hard breaking or backward during hard acceleration.

$$-\frac{3g}{4} < \text{acceleration} < \frac{g}{4} \tag{1}$$

This translates to two constraints,  $c_6$ ,  $c_7$  that bound the total center of mass  $(x_T, z_T)$  in a triangle in the XZ plane. Lastly, we constrain the eight closed loop eigenvalues associated with the controller in [1] to be stable, i.e. have negative real parts. These are expressed in constraints  $c_{14}, \ldots, c_{21}$ . Closed loop stability is required for the HQM to provide a meaningful result.

## 4 Free parameters

The above constraints leaves 23 of the 47 parameters free for optimizing which we collect in the vector  $\mathbf{p} \in \mathbb{R}^{23}$  and define as:

$$\mathbf{p} = \begin{bmatrix} w & c & \lambda & m_D & x_D & z_D & k_{Daa} & k_{Dbb} & \alpha_D & x_P & z_P & \alpha_P \\ m_H & x_H & z_H & k_{Haa} & k_{Hbb} & k_{Hyy} & \alpha_H & r_R & m_R & r_F & m_F \end{bmatrix}$$
(2)

## 5 Optimization

Our objective in the optimization is to minimize the peak HQM value subject to the bounds,  $\mathbf{p}^L, \mathbf{p}^U$ , and the constraints  $\mathbf{g}(\mathbf{p}), \mathbf{c}(\mathbf{p})$ . Given a set of bicycle model parameter values we generate a bandwidth limited human-like controller using the methods in [4]. Once the closed loop stable controller is constructed, the HQM can be computed as per the definition in [1] and the scaler peak value returned as the objective J. This problem is presented as a non-linear programming problem in the following equation.

$$\label{eq:minimize} \begin{aligned} & \text{minimize} \quad J(\mathbf{p}) = max(\text{HQM}(\mathbf{p})) \\ & \text{subject to} \\ & & \mathbf{g}(\mathbf{p}) \leq \mathbf{0} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

We make use of the derivative-free optimizer CMA-ES [?] to find solutions to this problem. The optimization supports parameter bounds and equality constraints but does not support inequality constraints. To get around this limitation we move the inequality constraints into the objective function an penalize the objective if the constraints are violated with the following rules:

$$J(\mathbf{p}) = \begin{cases} max(\mathsf{HQM}(\mathbf{p})) & \text{if} \quad any(\mathbf{g}(\mathbf{p})) < 0\\ 30 + ||\mathbf{g}_{+}(\mathbf{p})||/10 & \text{if} \quad any(\mathbf{g}(\mathbf{p})) \ge 0 \text{ and } ||\mathbf{g}_{+}(\mathbf{p})|| < 30\\ ||\mathbf{g}_{+}(\mathbf{p})|| & \text{if} \quad any(\mathbf{g}(\mathbf{p})) \ge 0 \text{ and } ||\mathbf{g}_{+}(\mathbf{p})|| \ge 30 \end{cases}$$
(4)

where  $||\mathbf{g}_{+}||$  is the norm of the positive elements of  $\mathbf{g}$ .

This creates a discontinuous objective function but in practice the CMS-ES algorithm is able to move into the parameter space where all the constraints are satisfied and find a (local) minima. For our purposes, this sufficiently finds parameter values that produce an optimally handling design.

Table 5. Peak HQM values for the reference bicycle and the optimal bicycles at each speed.

| Speed [m/s] | Reference Peak HQM | Optimal Peak HQM | Percent Improvement |
|-------------|--------------------|------------------|---------------------|
| 3           | 13.0753            | 2.0118           | 85%                 |
| 5           | 4.5213             | 0.0115           | 100%                |
| 7           | 3.0434             | 0.0220           | 99%                 |
| 9           | 2.3377             | 0.8386           | 64%                 |

#### 6 Results

We discover four bicycles for four different design speeds (3, 5, 7, and 9 m/s) that have an optimally low HQM, see Table 5 and satisify all constraints and parameter boundaries. We belive these bicycles to be physically realizable with minor differences. The most striking feature is that all of the bicycle are larger that the reference bicycle in some way. The 3 m/s bicycle places both the rider's mass center and the rear frame's mass center close to 3 meters above the ground plane. The 5 and 7 m/s bicycles have wheelbase values that are simlar to the reference bicycle, but 3 and 9 m/s have very large wheel bases. The 9 m/s bicycle is very large overall. Only the 5 m/s bicycle is of a scale close to a typical bicycle. It is noteable that the 9 m/s bicycle has signficant negative trail.

## 7 Discussion and Conclusion

#### References

- [1] HESS, R., MOORE, J. K., AND HUBBARD, M. Modeling the Manually Controlled Bicycle. *IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans 42*, 3 (Feb. 2012), 545–557.
- [2] MEIJAARD, J. P., PAPADOPOULOS, J. M., RUINA, A., AND SCHWAB, A. L. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463*, 2084 (Aug. 2007), 1955–1982.
- [3] MOORE, J., HUBBARD, M., AND HESS, R. A. An Optimal Handling Bicycle. In *Proceedings* of the 2016 Bicycle and Motorcycle Dynamics Conference (Sept. 2016), Figshare.
- [4] MOORE, J. K. *Human Control of a Bicycle*. Doctor of Philosophy, University of California, Davis, CA, Aug. 2012.



**Figure 1**. Depcitions of the bicycle geometry and geometric representations of the inertial quanties for the reference bicycle and four optimal solutions at 3, 5, 7, and 9 m/s. Five rigid bodies are shown for each bicycle: front wheel (oragne), rear wheel (purple), rear frame (blue), front frame (green), and person (red). The solid black lines represent the essential bicycle geometry. The dotted black line represents the steer axis. The solid colored curves represent the contours of solid ellipsoids with equivalent inertia as the principal inertia of the associated rigid body. The dotted colored lines represent the extents of the centerial radii of gyration of each rigid body.



Figure 2.