Machine Learning for Economic Analysis Problem Set 6

Jonas Lieber*

Due: 11:59pm Wed, March 6, 2024

Problem 1. Coordinate Descent for Regularized Regression

In ps6.csv, you are given $(Y_1, X_1), \ldots, (Y_n, X_n)$. Consider some $\alpha \in [0, 1]$ and $\lambda \geq 0$. The purpose of this problem is to minimize the function

$$f(y, X, \beta, \lambda, \alpha) = \frac{1}{n} \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \left(\alpha \|\beta\|_1 + (1 - \alpha) \frac{1}{2} \|\beta\|_2^2 \right)$$
$$= \frac{1}{n} \frac{1}{2} \|Y - \beta_0 \mathbf{1}_{n \times 1} - X\beta\|_2^2 + \lambda \left(\alpha \|\beta\|_1 + (1 - \alpha) \frac{1}{2} \|\beta\|_2^2 \right)$$

- 1. Getting rid of the Ridge penalty by "data-augmentation"
 - (a) For any two vector $z_1 \in \mathbb{R}^{m_1}$, $z_2 \in \mathbb{R}^{m_2}$, we define the vector $z = (z_1, z_2) \in \mathbb{R}^{m_1+m_2}$. Show that

$$||z||_2^2 = ||z_1||_2^2 + ||z_2||_2^2$$

(b) Show that for $\tilde{y} = (y, 0_p)$, $\tilde{I} = (1_{n \times 1}, 0_{p \times 1})^t$ and $\tilde{X} = (X^t, \sqrt{(1-\alpha)\lambda}I_p)^t$ we have

$$f(y, X, \beta, \lambda, \alpha) = \frac{1}{2n} \left\| \tilde{y} - \tilde{I}\beta_0 - \tilde{X}\beta \right\|_2^2 + \lambda \alpha \left\| \beta \right\|_1.$$

In the rest of the question, we will consider only the LASSO problem and denote the outcome by y (instead of \tilde{y}), the regressors/features by X (instead of \tilde{X}).

- (c) Why is this useful?
- ${\it 2. \ Coordinate \ Descent \ Update}$
 - (a) Suppose that we are given a candidate value $\tilde{\beta}$. For some $j \in \{1, ..., p\}$, we consider the problem

$$\min_{\beta} f(y, X, \beta, \alpha) \quad s.t. \quad \beta_l = \tilde{\beta}_l \text{ for all } l \neq j.$$
 (1)

Describe this program in words.

^{*}Department of Economics, Yale University. jonas.lieber@yale.edu

(b) Implement a function that takes $y, X, \lambda, \alpha, \tilde{\beta}, j$ and returns β_j^* , the j-th component of the argmin in problem (1). It is given by

$$\beta_j^* = \frac{1}{x_j^t x_j} S(\hat{y}^t x_j, \alpha \lambda),$$

where S is the soft-thresholding function, i.e. for $a, b \in \mathbb{R}$,

$$S(a,b) = sign(a)(|a| - b)_+,$$

where

$$sign(a) = \begin{cases} -1 & \text{if } a < 0\\ 0 & \text{if } a = 0\\ 1 & \text{if } a > 0, \end{cases}$$

and

$$(a)_{+} = \begin{cases} a & \text{if } a > 0, \\ 0 & \text{if } a \le 0, \end{cases}$$

and \hat{y} is a vector given by

$$\hat{y}_i = \tilde{\beta}_0 + \sum_{\substack{l=1\\l\neq j}} x_{i,j} \tilde{\beta}_j.$$

- (c) Plot the functions S(z,1) and S(z,0) $z \in [-3,3]$. Interpret these functions.
- 3. Implement a function for cyclic coordinate descent by using this update for j=0 (which λ is used here?) and then $j=1,\ldots,p$, then again $j=1,j=1,\ldots,p$.
- 4. Add an option in this function for an active set strategy: After cycling through the βs , you cycle only through the non-zero parameters until you have convergence for these parameters. Only then you cycle through all βs again.
- 5. Compute the λ sequence of the glmnet package:
 - (a) Choose a length l of the sequence, with default l = 100.
 - (b) Define λ_{max} as

$$\lambda_{\max} = \max_{j \in \{1, \dots, p\}} \left| \frac{(x_j - \bar{x}_j)^t y}{\sqrt{\frac{1}{n}(x_j - \bar{x}_j)^t (x_j - \bar{x}_j)}} \right|.$$

¹Hints: One of these two functions relates to coordinate descent for OLS. Why? How "likely" is it that either function is zero (for example if z is uniformly distributed between −3 and 3)? How is this related to sparsity of the estimates?

(c) Choose a small $\delta > 0$, with default $\delta = 0.0001$ and set

$$\lambda_{\min} = \delta \lambda_1$$
.

- (d) Take an equidistant sequence of length l from $log(\lambda_{min})$ to $log(\lambda_{max})$. The exponential of this sequence is the lambda sequence.
- 6. Add an option in your cross-validation sequence to use "warm-starts": As a starting point for the highest value of λ , use $\beta = 0$. As you move to smaller λ values, use the minimizer for the next higher λ as a starting value.
- 7. Run Lasso with this grid and 5-fold CV. Plot the parameter estimates as a function of λ (all in one plot). Report the running time with and without active set strategy and with and without warm starts for cross-validation.
- 8. Run Ridge with this grid and 5-fold CV. Plot the parameter estimates as a function of λ. Report the running time with and without active set strategy and with and without warm starts for cross-validation.
- 9. Now we consider the elastic net. As a grid for α , use $0, 0.1, 0.2, \ldots, 0.9, 1$. Run the elastic net where you cross-validate both α and λ with 5-fold CV. Report the running time with and without active set strategy and with and without warm starts for cross-validation.
- 10. Which estimator(s) leads to sparse estimates?
- 11. (graduate students & groups of 3 only) Now benchmark your implementation of coordinate descent for OLS (which λ do you have to choose?) with your implementation for gradient descent from problem set 4 using reg.csv from problem set 4. Redo the plot from problem set 4 with batch gradient descent and cyclic coordinate descent. ²

Problem 2. Kernel Ridge

1. Consider ps6.csv again. Consider the Ridge estimator for $\lambda = 1$. Show numerically that

$$(X'X + \lambda I_p)^{-1}X'y = X'(XX' + \lambda I_n)^{-1}y.$$

When do you prefer which formula?

- 2. Now consider the DGP from problem 1 of problem set 1 again. Using an RBF kernel with $\sigma = 1$, use a kernel Ridge regression of y on x and plot the estimated function together with the true function and the data for $\lambda = 0.1, 0.5, 1, 5, 10$.
- 3. In Using an RBF kernel with $\sigma = 1$, use a kernel Ridge regression of y on x and plot the estimated function together with the true function and the data for $\sigma = 0.1$ and $\lambda = 0.005$. Briefly compare this plot to the plot of fitted functions in problem set 1.

²Hint: It is important to think about what to use on the x-axis. What is the number of iterations for cyclic coordinate descent? A single coordinate update? 10 coordinate updates? A cycle of coordinate updates? One way to make these two comparable in the plot might be to use time on the x-axis.