

Lab3: Sequential Circuit – AES operation

Advisor: Lih-Yih Chiou

Lecturer: David

Date: 2024/03/07

Outline

- Introduction
- Design Specifications
- System Description
- Criteria

LPHPLAR VLSI Design LAB

Introduction (1/2)

AES, a variant of Rijndael, features a consistent block size of 128 bits and supports key sizes of 128, 192, 256 bits. Most AES computations are done in a specific finite field.

Plaintext

49	20	6c	74
20	61	61	65
61	20	69	78
6d	70	6e	74

Ciphertext

71	13	4a	b8
f7	b8	fa	2f
a5	da	f9	a2
03	6e	67	c2

Flattened in column-major order (128-bit)

1 م	20	61	64	วก	61	20	70	60	61	60	60	7/	65	70	74
49	20	0.1	ou	20	OI	20	70	OC.	01	09	06	74	05	70	74

Introduction (2/2)

- AES encryption flow:
 - A total of 10 rounds are performed, with no MixColumns transformation required in the final round.
 - In this lab, we will focus on completing three operations in AES encryption.
 - These three operations are sequentially connected, each subsequent computation taking the previous computation result as its input.

Outline

- Introduction
- Design Specifications
- System Description
- Criteria

LPHPLHE VLSI Design LAE

Design Specifications (1/2)

Block Diagram

Design Specifications (2/2)

□ I/O information

Signal	I/O	width	Description
clk	1	1	Clock signal (positive edge trigger)
rst	I	1	Synchronous reset signal (active high)
valid	Ι	1	Specify that the testbench is transmitting matrix1 and matrix2.
matrix1	I	128	A 4*4 byte matrix, flattened in column-major order. (plaintext)
matrix2	I	128	A 4*4 byte matrix, flattened in column-major order. (key)
count	0	2	Display to testbench for the operation you are executing. ➤ Mode 0: In default mode, the outcome is meaningless. ➤ Mode 1: AddRoundKey ➤ Mode 2: ShiftRows ➤ Mode 3: MixColumns
matrix3	0	128	The result of each operation is a 4*4 byte matrix, flattened in column-major order.

Outline

- Introduction
- Design Specifications
- System Description
- Criteria

System Description (1/6)

- We consider plaintext as Matrix1 and key as Matrix2.
- Chaining three operations together, you need to directly change the mode pattern to inform testbench for which operation it is done currently.

System Description (2/6)

AddRoundKey: bitwise XOR operation

31	2d	2b	2c
29	23	21	22
2f	2c	2b	2e
35	30	28	2d

	54	49	65	74
)	68	73	63	4b
	69	41	72	65
	73	53	65	79

65	64	4e	58
41	50	42	69
46	6d	59	4b
46	63	4d	54

Matrix 1

Matrix 2

Matrix 3

System Description (3/6)

ShiftRows: shift array circularly

65	64	4e	58
41	50	42	69
46	6d	59	4b
46	63	4d	54

Current Matrix 3

Next Matrix 3

System Description (4/6)

MixColumns: matrix multiplication and XOR addition

2	3	1	1
1	2	3	1
1	1	2	3
3	1	1	2

Constant Matrix

Current Matrix 3

Next Matrix 3

1. Polynomial Multiplication:

- ightharpoonup {2}₁₆ * {65}₁₆ = {10}₂ * {01100101}₂ \rightarrow (x) * (x⁶ + x⁵ + x² + 1) = (x⁷ + x⁶ + x³ + x) \rightarrow {11001010}₂
- $\{1\}_{16} * \{54\}_{16} = \{1\}_{2} * \{1010100\}_{2}$ \rightarrow {1010100}₂

- \rightarrow {3}₁₆ * {50}₁₆ = {11}₂ * {1010000}₂ \rightarrow (x + 1) * (x⁶ + x⁴) = (x⁷ + x⁶ + x⁵ + x⁴) \rightarrow {11110000}₂
- $i > \{1\}_{16} * \{59\}_{16} = \{1\}_{2} * \{1011001\}_{2}$ \rightarrow {1011001}₂

2. Addition:

 $\{2\}_{16} * \{65\}_{16} + \{3\}_{16} * \{50\}_{16} + \{1\}_{16} * \{54\}_{16} + \{1\}_{16} * \{59\}_{16}$ = $\{11001010\}_2 \oplus \{11110000\}_2 \oplus \{1010100\}_2 \oplus \{1011001\}_2 = \{00110111\}_2 = \{37\}_{16}$

Appendix: Finite Field (1/2)

The finite field with pⁿ element is denote as GF(pⁿ), where p is a prime number, and n represents polynomials of a specific degree.

GF(3) used in integer:

 \rightarrow 4 = 1 (mod 3), 4+2 = 0 (mod 3), 1-2 = 2 (mod 3)

GF(5³) used in polynomials (mod to coefficient):

- \rightarrow $(3x^2 + 4x + 2) + (4x^2 + x + 1) = 7x^2 + 5x + 3 = 2x^2 + 3 \pmod{5}$
- \square p = 2, the finite field GF(2ⁿ) is a special case that addition is XOR logic and multiplication is AND logic.
 - → Addition: $(x+1) + (x^2+x) \rightarrow \{011\}_2 \oplus \{110\}_2 = \{101\}_2 \rightarrow x^2+1$
 - \rightarrow Multiplication: $(x+1) * (x^2+x+1) = x^3 + x^2 + x + x^2 + x + 1 \equiv x^3 + 1 \pmod{2}$

Appendix: Finite Field (2/2)

- ☐ MixColumns: GF(2⁸) used in polynomial
 - → In binary system, each pixel is represented by a 1-byte value.
 - → Limit polynomial coefficients to be 0 or 1. (coefficient mod by 2)
 - → Limit the degree of the polynomial by "modding" it by a polynomial of degree 8. (In AES the mod polynomial is $x^8 + x^4 + x^3 + x^1 + 1$)
- Example:
 - $(100000000)_2 => x^8$ (The degree exceeds 8) $x^8 = (x^8 + x^4 + x^3 + x + 1)*1 + (x^4 + x^3 + x + 1)$ AES modulus

$$x^8 \equiv x^4 + x^3 + x + 1 \pmod{x^8 + x^4 + x^3 + x^1 + 1}$$

System Description (5/6)

- The first pattern will be sent promptly upon the assertion of the 'rst' signal to a low state. And each pattern will be transmitted within a single cycle.
- Once the testbench detects that the output signal 'count' equals 3, the testbench will proceed to send the next pattern.

System Description (6/6)

- Once the output signal 'count' transitions to the specified operational mode, the testbench will promptly verify the value of 'matrix3'.
- It is not a requirement for each operation to be completed within a single clock cycle.
- ☐ The count signal should repeat in the order 0, 1, 2, 3

Outline

- Introduction
- Design Specifications
- System Description
- Criteria

Criteria (1/3)

- ☐ Grading policy(100%)
 - → Lab3
 - ◆ Simulation pass (90%)
 - ➤ AddRoundKey pass (10%)
 - ➤ ShiftRows pass (20%)
 - ➤ MixColumns pass (60%)
 - ◆ Report (10%)

Simulation result

Pass

> Failed

```
# AddRoundRey Operation: Correct, ShiftRows Operation: Correct, MixColumns Operation: Error

# # ------ Simulation report ------
# AddRoundRey Operation ERROR amount: 0
# ShiftRows Operation ERROR amount: 3072

# -> MixColumns Operation: the first error was detected in Pattern 0
# Your matrix:
# 7a 7b 35 20
# 7a 7b 35 20
# 7a 7b 35 20
# 7b 7a 0e 14
# 0e 29 3b 5e
Display the first detected error
# Golden matrix:
# 37 03 02 53
# 7a 7b 35 20
# 7b 7a 0e 14
# 0e 29 3b 5e
To reach operation and print
# To Ta 0e 14
# 0e 29 3b 5e
# To Ta 0e 14
# 0e 29 3b 5e
# To Ta 0e 14
# 0e 29 3b 5e
# To Ta 0e 14
# 0e 29 3b 5e
# To Ta 0e 14
# 0e 29 3b 5e
```


Your score

** Note: \$stop : C:/Users/david/Desktop/HDL_Lab3/tb.sv(150
Time: 184355 ns Iteration: 1 Instance: /testfixture

Criteria (3/3)

- Friendly reminder
 - → Please complete the assignment by your own, discussion with peers is recommended, but do not cheat.
 - → Warning! Any dishonesty found will result in zero grade.
 - → Warning! Any late submission will also receive zero.
 - Warning! Please make sure that your code can be compiled in Modelsim, any dead body that we cannot compile will also receive zero.
 - → Warning! Please submit your work according to the specified file format, making sure not to include any unnecessary files. Any unnecessary file found, will lead to 10% deduction from the overall score.
- Deadline: 2024/03/14 8:59 a.m.

Lab3 Requirement & file format

- File format
 - → We will only include 'tb.sv' in ModelSim project to verify your design. Be cautious about the other file path you included in top module 'aes.v'.

Thanks for your attention!!

