Real Variables: Problem Set V

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set V of Real Variables 2015 at NYU.

1 Solutions

Question 6.33.

Solution. Let $\{f_n\}$ be a sequence of real-valued functions on [a,b] that converges pointwise on [a,b] to the real-valued function f. We wish to show that $TV(f) \leq \liminf TV(f_n)$. Fix $\epsilon > 0$. Let $P = \{x_0, ..., x_m\}$ be a partition of [a,b]. By the triangle inequality, it follows that

$$V(f,P) = \sum_{k=0}^{m-1} |f(x_{k+1}) - f(x_k)|$$

$$= \sum_{k=0}^{m-1} |f(x_{k+1}) + f_n(x_{k+1}) - f_n(x_{k+1}) - f(x_k) + f_n(x_k) - f_n(x_k)|$$

$$\leq \sum_{k=0}^{m-1} |f(x_{k+1}) - f_n(x_{k+1})| + |f_n(x_{k+1}) - f_n(x_k)| + |f(x_k) - f_n(x_k)|$$

$$\leq V(f_n, P) + \sum_{k=1}^{m} |f(x_k) - f_n(x_k)| + \sum_{k=0}^{m-1} |f(x_k) - f_n(x_k)|,$$

for any n. Define $N=\max(N_0,...,N_k)$, where $N_i(0 \le i \le k)$ corresponds to the convergence index for $\frac{\epsilon}{2m}$ at x_i . Then, it follows that

$$V(f, P) \leq TV(f_n),$$

for $n \geq N$. Consequently

$$V(f, P) \le \liminf_{n \to \infty} TV(f_n),$$

Since P was arbitrary, we obtain that

$$TV(f) \le \liminf_{n \to \infty} TV(f_n),$$

as desired. \square

Question 4. Royden 6.42.

Solution. Let f and g be real-valued functions, that are absolutely continuous functions on [a,b]. We wish to show that f+g is absolutely continuous on [a,b]. Fix $\epsilon>0$. As f and g are both absolutely continuous on [a,b], there exist $\delta_f,\delta_g>0$, such that for any finite disjoint open intervals $\{(a_k,b_k)\}_{k=1}^n$ in (a,b),

$$\sum_{k=1}^{n} [b_k - a_k] < \delta_f \implies \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \frac{\epsilon}{2}$$
$$\sum_{k=1}^{n} [b_k - a_k] < \delta_g \implies \sum_{k=1}^{n} |g(b_k) - g(a_k)| < \frac{\epsilon}{2}.$$

Define $\delta = \min(\delta_f, \delta_g)$. Let $\{(a_k, b_k)\}_{k=1}^n$ be a finite disjoint open intervals in (a, b), such that $\sum_{k=1}^n [b_k - a_k] < \delta$. It follows that

$$\sum_{k=1}^{n} |f + g(b_k) - f + g(a_k)| \leq \sum_{k=1}^{n} |f(b_k) - f(a_k)| + |g(b_k) - g(a_k)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since ϵ was arbitrary, we have shown that f + g is absolutely continuous on [a, b].

Let f be a real-valued function, that is absolutely continuous on [a,b]. We show that cf, for any $c \in \mathbb{R}$, is absolutely continuous on [a,b]. Let c=0. Then cf=0, which can trivially be shown to be absolutely continuous, as f(c)=0 for any $c\in [a,b]$. Suppose $c\neq 0$. As f is absolutely continuous on [a,b], there exists $\delta_f>0$, such that for any finite disjoint open intervals $\{(a_k,b_k)\}_{k=1}^n$ in (a,b),

$$\sum_{k=1}^{n} |b_k - a_k| < \delta_f \implies \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \frac{\epsilon}{|c|}.$$

Define $\delta = \delta_f$. Let $\{(a_k, b_k)\}_{k=1}^n$ be a finite disjoint open intervals in (a, b) such that $\sum_{k=1}^n [b_k - a_k] < \delta$. It follows that

$$\sum_{k=1}^{n} |cf(b_k) - cf(a_k)| = |c| \sum_{k=1}^{n} |f(b_k) - f(a_k)|$$

$$< |c| \frac{\epsilon}{|c|} = \epsilon.$$

Since ϵ was arbitrary, combined with the c=0 case, we have shown that cf, for any $c\in\mathbb{R}$, is absolutely continuous on [a,b].

Let f be a real-valued function, that is absolutely continuous on [a,b]. We wish to show that f^2 is absolutely continuous on [a,b]. As f is absolutely continuous, f is continuous on [a,b]. Hence, by the Extreme Value Theorem, there exists M such that $|f| \leq M$ on [a,b]. Fix $\epsilon > 0$. As f is absolutely continuous on [a,b], there exists $\delta_f > 0$, such that for any finite disjoint open intervals $\{(a_k,b_k)\}_{k=1}^n$ in (a,b),

$$\sum_{k=1}^{n} |b_k - a_k| < \delta_f \implies \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \frac{\epsilon}{2M}.$$

Define $\delta = \delta_f$. Let $\{(a_k, b_k)\}_{k=1}^{\infty}$ be a finite disjoint open intervals in (a, b) such that $\sum_{k=1}^{n} [b_k - a_k] < \delta$. It follows that

$$\sum_{k=1}^{n} |f^{2}(b_{k}) - f^{2}(a_{k})| = \sum_{k=1}^{n} |f(b_{k}) - f(a_{k})| |f(b_{k}) + f(a_{k})|$$

$$\leq 2M \sum_{k=1}^{n} |f(b_{k}) - f(a_{k})|$$

$$< 2M \frac{\epsilon}{2M} = \epsilon.$$

Since ϵ was arbitrary, we have shown that f^2 is absolutely continuous on [a,b].

Let f and g be real-valued functions, that are absolutely continuous on [a, b]. We wish to show that fg is absolutely continuous on [a, b]. Observe that

$$(f+g)^2 = f^2 + g^2 - 2fg,$$

which simplifies to

$$fg = -\frac{1}{2}((f+g)^2 + (-f^2) + (-g^2)).$$

As we have previously shown that a square of an absolutely continuous function is absolutely continuous, and a scalar multiple of an absolutely continuous function is absolutely continuous, we can deduce that fg is absolutely continuous on [a, b]. This completes the proof. \Box

Question 4. 6.45.

Solution. Let f be a real-valued function, that is absolutely continuous on \mathbb{R} . Let g be a real-valued function, that is absolutely continuous and strictly monotone on [a,b]. Without the loss of generality, we assume that g is strictly increasing. We wish to show that $f \circ g$ is absolutely continuous on [a,b]. Fix $\epsilon > 0$. As f is absolutely continuous on \mathbb{R} , it is also absolutely continuous on [g(a),g(b)], which is a non-degenerate closed interval, as g is strictly increasing. there exists δ_f , such that for any finite disjoint open intervals $\{(a_k,b_k)\}_{n=1}^\infty$ in (g(a),g(b)),

$$\sum_{k=1}^{n} [b_k - a_k] < \delta_f \implies \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon \ (*).$$

As g is absolutely continuous, there exists δ_g , such that for any finite disjoint open intervals $\{(a_k,b_k)\}_{n=1}^{\infty}$ in (a,b),

$$\sum_{k=1}^{n} [b_k - a_k] < \delta_g \implies \sum_{k=1}^{n} |g(b_k) - g(a_k)| < \delta_f.$$

Define $\delta = \delta_g$. Let $\{(a_k,b_k)\}_{k=1}^n$ be a finite disjoint open intervals in (a,b) such that $\sum_{k=1}^n [b_k - a_k] < \delta_g$. It follows that $\sum_{k=1}^n [g(b_k) - g(a_k)] < \delta_f$. As g is strictly increasing, we observe that $\{(g(a_k),g(b_k))\}_{k=1}^n$ form a finite disjoint open intervals in (g(a),g(b)). Therefore, from (*) it follows that

$$\sum_{k=1}^{n} |f \circ g(b_k) - f \circ g(a_k)| < \epsilon.$$

Since ϵ was arbitrary, we have shown that $f \circ g$ is absolutely continuous on [a, b]. \square