Part 1 Zeros of Famous Functions

ZoFF1.tex

Exercise 1 Which of the following are polynomial functions?

Select All Correct Answers:

(a)
$$f(x) = 0$$
 \checkmark

(b)
$$f(x) = -9$$
 \checkmark

(c)
$$f(x) = 3x + 1$$
 \checkmark

(d)
$$f(x) = x^{1/2} - x + 8$$

(e)
$$f(x) = -4x^{-3} + 5x^{-1} + 7 - 18x^2$$

(f)
$$f(x) = (x+1)(x-1) + e^x - e^x$$

(g)
$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$

(h)
$$f(x) = x^7 - 32x^6 - \pi x^3 + 45/84$$
 \checkmark

Exercise 2 Which of the following are rational functions?

Select All Correct Answers:

(a)
$$f(x) = 0$$
 \checkmark

(b)
$$f(x) = \frac{3x+1}{x^2-4x+5} \checkmark$$

(c)
$$f(x) = e^x$$

(d)
$$f(x) = \frac{\sin(x)}{\cos(x)}$$

(e)
$$f(x) = -4x^{-3} + 5x^{-1} + 7 - 18x^2$$

(f)
$$f(x) = x^{1/2} - x + 8$$

(g)
$$f(x) = \frac{\sqrt{x}}{x^3 - x}$$

ZoFF2.tex

2

Let f be the function given by the formula $f(x) = 5x^2 + 2$.

Exercise 3 • The graph of f is:

Multiple Choice:

- (a) a straight line.
- (b) a parabola opening upward. ✓
- (c) a parabola opening downward.
- (d) a growing exponential.
- (e) a decaying exponential.
- The domain of f is $(-\infty, \infty)$.
- The range of f is $[2, \infty)$.
- How many zeros does f have? 0
- The value of f(2) is $\boxed{22}$
- The formula for f(2+t) is: $5t^2+20t+22$
- The formula for $\frac{f(2+t)-f(2)}{t}$ is: 5t+20

ZoFF3.tex

Exercise 4 An object is moving along a horizontal line. Its position in meters is given by

$$s(t) = t^2 - 2$$

where t is in seconds.

Consider the points on the line below.

The point that corresponds to the position of the particle at t = 1 is B.

Exercise 4.1 The average velocity of the object on the interval [1, 3]. That is, calculate the average rate of change, $AV_{[1,3]}$.

$$AV_{[1,3]} = \boxed{4} m/s.$$

Exercise 4.1.1 The graph of y = s(t) is given below.

Assume that P and A are points on the graph of s(t). Then

$$P = (1, \boxed{-1})$$
 and $A = (3, \boxed{7})$.

Exercise 4.1.1.1 The secant line through P and A is shown in the figure below.

The slope of the secant line containing the points P and A is

$$m_{\rm sec} = \boxed{4}$$
.

What is the connection between the slope of this secant line and the average velocity of the object over the interval [1, 3]?

Multiple Choice:

- (a) m_{sec} is greater than $AV_{[1,3]}$.
- (b) m_{sec} equals $AV_{[1,3]}$. \checkmark
- (c) m_{sec} is less than $AV_{[1,3]}$.
- (d) There is no connection between m_{sec} and $AV_{[1,3]}$.

ZoFF4.tex

Exercise 5 The following is a rational function.

$$f(x) = \frac{x^3 - 2x + 1}{x - 1} - \frac{1}{2}x + 1.$$

How many zeros does this function have? 2

Exercise 5.1 List them in order from left to right.

$$x = \boxed{-1/2}$$
 and $x = \boxed{0}$

Hint: Try rewriting the function as a single fraction.

Exercise 6 The following is a rational function.

$$g(x) = \frac{1}{x+3} + \frac{1}{x-3} - \frac{x^2-3}{x^2-9}.$$

How many zeros does this function have? $\boxed{1}$

Exercise 6.1 It is at $x = \boxed{-1}$

Exercise 6.1.1 Why is x = 3 NOT a zero of g?

Multiple Choice:

- (a) Because g(3) is a nonzero number.
- (b) Because g(3) = 0.
- (c) Because x = 3 is not in the domain of g. \checkmark

Hint: Make sure to check your possible solutions are actually solutions.

Exercise 7 The following is a rational function.

$$h(x) = 1 - \frac{x^2 - 2x + 1}{x^3 + x^2 - 2x}.$$

How many zeros does this function have? 0

Feedback(attempt): What are you left with if you rewrite h as a single fraction and simplify? Are there any values of x making that resulting fraction zero?

ZoFF5.tex

Exercise 8 The following function involves radicals.

$$f(x) = 3x - 2 + \sqrt{6 - 9x}.$$

How many zeros does this function have? 2

Exercise 8.1 List them in order from left to right.

$$x = \boxed{-1/3}$$
 and $x = \boxed{2/3}$

Exercise 9 The following function involves radicals.

$$g(x) = x + 1 - \sqrt{3x + 7}.$$

How many zeros does this function have? | 1

Hint: Make sure to check your possible solutions are actually solutions.

Exercise 9.1 It is at $x = \boxed{3}$.

Exercise 10 The following function involves radicals.

$$h(x) = \sqrt{4 - x} + 3 - \sqrt{2x + 1}.$$

How many zeros does this function have?

1

Exercise 10.1 It is at $x = \boxed{4}$.

ZoFF6.tex

Exercise 11 The following is an exponential function.

$$f(x) = e^x - 5$$

How many zeros does this function have?

Exercise 11.1 It is at $x = \ln(5)$.

Hint: How do you bring the exponent of an exponential down? Remember that the natural logarithm is the inverse of the natural exponential function.

Exercise 12 The following is an exponential function.

$$g(x) = 4e^x - 9$$

How many zeros does this function have? 1

Exercise 12.1 It is at $x = \ln(9/4)$

Exercise 13 The following is an exponential function.

$$f(x) = 5^x + 8$$

How many zeros does this function have?

0

ZoFF7.tex

Exercise 14 The following is a logarithmic function.

$$f(u) = \log_3(u) - 3$$

How many zeros does this function have?

Exercise 14.1 It is at $u = \boxed{27}$

Hint: Remember that \log_3 is the inverse of the exponential function with base 3.

Exercise 14.1.1 Suppose $g(x) = \log_3(x^2 - 6x) - 3$. The function g will have value zero at an x-value if $x^2 - 6x = \boxed{27}$.

Hint: Notice that g is really just f with the u replaced by $x^2 - 6x$.

Exercise 14.1.1.1

How many zeros does the function g have? $\boxed{2}$

Exercise 14.1.1.1 List them in order from left to right.

$$x = \boxed{-3}$$
 and $x = \boxed{9}$

Exercise 15 The following is a logarithmic function.

$$f(u) = \log_7(u) - 1$$

How many zeros does this function have? 1

Exercise 15.1 It is at $u = \boxed{7}$.

Exercise 15.1.1 Suppose $g(x) = \log_7\left(\frac{14x}{2x-3}\right) - 1$. The g will have value zero at an x-value if $\frac{14x}{2x-3} = \boxed{7}$.

Exercise 15.1.1.1

How many zeros does the function g have? $\boxed{0}$