Exercice N° 1 /

1) La longueur d'onde associée :

a) Cas d'un électron:

$$E_C = \frac{1}{2}m_e v^2 = eU \implies v = \sqrt{\frac{2eU}{m_e}}$$
(2)

$$(1) \ et \ (2) \Longrightarrow \lambda = \frac{h}{\sqrt{2m_e eU}} = \frac{6,62.10^{-34}}{\sqrt{2 \times 9,1.10^{-31} \times 10^4 \times 1,6.10^{-19}}} = 0,12.10^{-10} \ m = 0,12 \ A^\circ$$

b) Cas d'une balle :

$$\lambda = \frac{h}{m_b v_b} = \frac{6,62.10^{-34}}{2.10^{-3} \times 300} = 1,1.10^{-33} m$$

- c) Conclusion
- Pour l'électron, la longueur d'onde associée est de l'ordre des dimensions des particules microscopiques.
- Pour la balle, la longueur d'onde associée n'y a pas de signification physique à l'échelle macroscopique. Le postulat de De-Broglie n'est pas applicable dans ce cas.

2) <u>Incertitude de Heisenberg:</u>

$$\Delta p. \Delta x \ge \frac{h}{2\pi} \Longrightarrow m_e \Delta v. \Delta x \ge \frac{h}{2\pi} \Longrightarrow \Delta v = \frac{h}{2\pi m_e \Delta x}$$

$$\Delta v = \frac{6,62.10^{-34}}{2 \times 3,14 \times 9,1.10^{-31} \times 10^{-4}} = 1,2.10^6 \text{ m/s}$$

On remarque qu'à l'échelle microscopique, l'incertitude sur la vitesse est très importante, donc la localisation de l'électron est très difficile.

Exercice N° 2 /

1. Pour n = 3

(ℓ)	Sous-couche	m	Orbitale atomique
0	S	0	<i>3s</i>
1	P	-1, 0, +1	$3p_x$, $3p_y$, $3p_z$
2	d	-2, -1, 0, +1, +2	$3d_{xy}$, $3d_{xz}$, $3d_{yz}$, $3d_{x^2}$ - y^2 , $3d_{z^2}$

- 2. Nombre d'orbitales : 1 O.A (s) + 3 O.A (p) + 5 O.A (d) = 9 O.A
- 3. Nombre total d'électron : $9 \times 2 = 18$ électrons

U.Y. Médéa/Corrigé de la série d'exercices N° V/ CHIMIE I / 1ère Année L.M.D, ST (2021/2022)

- 4. Le nombre d'orbitales atomiques (O.A) pour chaque valeur de n est de n^2 . Chaque orbitale, ne peut contenir que deux électrons au maximum (*principe de Pauli*). Donc le nombre d'électrons maximum que peut contenir une couche de nombre quantique n est égal à $2n^2$.
- 5. Les nombres quantiques (n, ℓ , m et m_s) de l'électron $3s^1$

$$3s^{1} \begin{cases} n = 3 \\ \ell = 0 \\ m = 0 \\ m_{s} = +\frac{1}{2} \end{cases}$$

Exercice N° 3 /

- 1) Elément $_ZX \in au\ T.P$, ou $Z < 18\ et\ possède\ un\ électron\ célibataire$
- a) Les configurations électroniques possibles de cet élément sont :

b) L'élément $X \in à$ la 2° période (n = 2) et au groupe du brome $_{35}Br$

On écrit la configuration électronique du brome : [Ar] $4s^2 \ 3d^{10} \ 4p^5 \implies Groupe \ VII_A$

 $X \in (n = 2, Gr: VII_A)$, d'où Z(X) = 9, c'est le fluor (9F)

2) Eléments $_{Z}X \in à$ la 4° période au T.P et possèdent 3 électrons célibataires

Exercice N° 4 /

 $_{Z}X^{2+}$:

- a) L'argon (Ar), $3^{\text{ème}}$ gaz rare, sa structure électronique s'écrite : $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$, D'où Z(Ar)= 18 Z(X) = Z(Ar) + 2 + 7 + 2 = 18 + 11 = 29, l'élément X est le cuivre $_{29}$ Cu $_{29}$ Cu : [Ar] $4s^1$ $3d^{10}$
- b) L'élément $X \in à$ la 4° période (n = 4)et au groupe I_B
- c) $L'\acute{e}tain(Sn) \in \grave{a}\ la\ 5^{\circ}\ p\acute{e}riode\ (n=5)et\ au\ groupe\ IV_A: Sn: [Kr]\ 4d^{10}\ 5s^{2}\ 5p^{2}, [Ar]\ 4s^{2}\ 3d^{7}$ D'où Z(Sn) = 36 + 14 = 50.

Exercice N° 5 /

Eléments	Configuration électronique	Période, n	Groupe/S-groupe
9 F	1s ² 2s ² 2p ⁵	2	VII _A
₃₀ Zn	[Ar] 4s ² 3d ¹⁰	4	II_B
37 Rb	[Kr] 5s1	5	I _A
42 M 0	[Kr] 5s ¹ 4d ⁵	5	VI _B
54 Xe	[Kr] 4d ¹⁰ 5s ² 5p ⁶	5	VIII _A

Exercice N° 6 /

1°/ L'élément,
$$D~\in$$
 à la 4° période (n = 4)
et au groupe VI_B

$$_{\rm Z}$$
D: [Ar] $_{\rm Z}$ D: [Ar] $_{\rm Z}$ D, donc Z(D) = 24 $\Longrightarrow \frac{_4}{_3}X = 24 \Longrightarrow X = 18$ d'où Z(B) = X=18

$$Z(A) = X-1=17, Z(C) = X+1=19, Z(E) = 2X-1=35$$

Eléments	Configuration électronique	Période, n	Groupe/S-groupe
17 A	[Ne] 3 s ² 3p ⁵	3	VIIA
₁₈ B	[Ne] 3 s² 3p ⁶	3	VIII _A
₁₉ C	[Ne] 3s ² 3p ⁶ 4s ¹	4	I _A
24 D	[Ar] 4s ¹ 3d ⁵	4	V_{B}
35 E	[Ar] 3d ¹⁰ 4s ² 4p ⁵	4	VII _A

U.Y. Médéa/Corrigé de la série d'exercices N° V/ CHIMIE I / 1ère Année L.M.D, ST (2021/2022)

2°/ Classement des éléments par ordre du rayon atomique et d'énergie d'ionisation

• Même période : $Z \nearrow r_a$ et $E_i \nearrow$

<u>Pour n = 3</u>: $r_a(A) > r_a(B)$, $E_i(B) > E_i(A)$

<u>Pour n = 4</u>: $r_a(C) > r_a(D) > r_a(E)$, $E_i(E) > E_i(D) > E_i(C)$

• Même groupe: Z r_a E_i

Groupe VII_A : $r_a(E) > r_a(A)$, $E_i(A) > E_i(E)$

Groupe		I _A	VI _B	VII _A	VIII _A
Période	ī				Z
3				17 CI (A)	₁₈ Ar (B)
4	+	19 K (C)	₂₄ Cr (D)	35 Br (E)	

<u>Classement général</u>:

 \circ Rayon atomique : $r_a(C) > r_a(D) > r_a(E) > r_a(A) > r_a(B)$

o Energie d'ionisation : $E_i(B) > E_i(A) > E_i(E) > E_i(D) > E_i(C)$

Eléments	₁₇ A	₁₈ B	₁₉ C	₂₄ D	₃₅ E
r _a (A°)	0,97	0,88	2,77	1,85	1,12
E _i (kcal/mole)	300	363	100	146	273

3° a) L'élément B est le plus stable car sa couche de valence est saturée (gaz rare)

- c) Eléments paramagnétiques : A, C, D et E (ces éléments possèdent des électrons célibataires).
- d) Métaux de transitions : élément D, possède une sous-couche 3d insaturée.