Team Project
Group ID: 64, Paper ID: 79

<u>Code</u>
<u>Final Report</u>

Zerui Tian - zeruit2@illinois.edu Yixing Zheng - yixingz3@illinois.edu

Intro to Paper:

Disease Inference with Symptom Extraction and Bidirectional Recurrent Neural Network

- This paper aims to provide a new effective disease inference method utilizing symptoms extracted from Electronic Medical Records (EMR) data.
- The relationship between symptoms and diseases is represented by the term frequency-inverse document frequency (TF-IDF) model. And a bidirectional recurrent neural network (Bi-LSTM) is utilized to model the symptom sequences in EMR data.
- This combination of models shows a significant improvement in disease inference - 4\% to 10\% on average improvement from the two baseline models (in the paper, DeepLabeler and WordVec + Bi-LSTM).

Fig.1. Overview of disease inference process.

Methodology

Data:

The <u>IMDB data set</u>

Models:

- Proposed
 - o TF-IDF + Bi-LSTM
- Baseline
 - WordVec + Bi-LSTM
 - o Replaced DeepLabeler with
 - Glove + Bi-LSTM
 - o Introduced additional model:
 - Regular Embedding Layer

Embedding methodology

• TF-IDF:
$$W_{i,j} = TF_{i,j} * \log \frac{N}{D_i}$$

 Word2Vec: It is used to find embedding vectors such that similar words are close together and dissimilar words are far apart.

 GloVe: It essentially reduces the dimensionality of the co-occurrence matrix and learns the low-dimensional representation of the word.

Network Structure

Bi-LSTM

```
# Create Bi-LSTM model
class BiLSTM(nn.Module):
 def init (self, embed size, num hiddens, num layers):
   super(BiLSTM, self). init ()
    self.embedding = nn.Embedding(len(vocab),embed size)
    self.LSTM = nn.LSTM(input size=embed size, hidden size=num hiddens, num layers, bidirectional=True)
    self.fc = nn.Linear(4*num hiddens, 2)
    self.dropout = nn.Dropout(0.8)
 def forward(self, inputs):
   #inputs = inputs.float()
   embeddings = self.embedding(inputs.permute(1,0))
   outputs, = self.LSTM(embeddings)
   outputs = self.dropout(outputs)
   result = torch.cat((outputs[0], outputs[-1]), -1)
   result = self.fc(result)
   return result
```

Results for TF-IDF

Results for GloVe

Results for Word2Vec

Results - Mean

Claim verified: TF-IDF + Bi-LSTM performs better than the baseline models with ~4% - 10% improvement.

Model	Loss	Train Acc	Test Acc	Runtime
TF-IDF + Bi-LSTM	0.0738	0.9108	0.8345	~10 Mins
Glove + Bi-LSTM	0.1836	0.6814	0.6776	~10 Mins
WordVec + Bi-LSTM	0.1528	0.7929	0.8042	~10 Mins
Embedding	0.1429	0.8331	0.7682	~10 Mins

Results - Last Epoch

Model	Loss	Train Acc	Test Acc	Runtime
TF-IDF + Bi-LSTM	0.0208	0.917	0.827	~1 Min
Glove + Bi-LSTM	0.0363	0.843	0.840	~1 Min
WordVec + Bi-LSTM	0.0285	0.885	0.881	~1 Min
Embedding	0.0128	0.955	0.811	~1 Min