8. Transition Models

- The distribution of the observed response at time j, Y_{ij} , is modeled conditionally as an explicit function of the past responses $\mathcal{H}_{ij} = (Y_{i1}, \dots, Y_{ij-1})$ and covariates X_{ij} .
- Typically, a Markov model is assumed, that is, Y_{ij} only depends on q (the order of the Markov process) previous responses

$$P(Y_{ij}|\mathcal{H}_{ij}) = P(Y_{ij}|Y_{ij-1}, \cdots, Y_{ij-q}).$$

 For notational convenience, we assume that the observational times are equally spaced. If they are not, we need stronger assumptions about the functional form of the time dependence.

Model Specification

 \bullet $Y_{ij}|\mathcal{H}_{ij}$ is assumed to be independent from the

exponential family:

$$f(y_{ij}|\mathcal{H}_{ij}) = \exp\{[y_{ij}\theta_{ij} - b(\theta_{ij})]/\phi + c(y_{ij},\phi)\}.$$

 \bullet Conditional mean $\mu^c_{ij} = E(Y_{ij}|\mathcal{H}_{ij}) = \dot{b}(\theta_{ij})$ satisfies

$$g(\mu_{ij}^c) = X_{ij}^T \beta + \sum_{r=1}^q f_r(\mathcal{H}_{ij}; \alpha)$$

for some functions $f_r(\cdot)$.

Conditional variance

$$v_{ij}^c = var(Y_{ij}|\mathcal{H}_{ij}) = \ddot{b}(\theta_{ij})\phi$$

satisfies

$$v_{ij}^c = v(\mu_{ij}^c)\phi.$$

Examples

• Continuous response: linear regression with autoregressive errors.

$$Y_{ij} = X_{ij}^T \beta + \sum_{r=1}^q \alpha_r (y_{ij-r} - X_{ij-r}^T \beta) + \epsilon_{ij},$$

where ϵ_{ij} are iid zero-mean Gaussian r.v.'s.

• Binary responses:

$$g(\mu_{ij}^c) = \operatorname{logit}(\mu_{ij}^c) = X_{ij}^T \beta + \sum_{r=1}^q \alpha_r y_{ij-r}.$$

The interpretation of the regression coefficients depends on the order q.

• Count responses: q = 1

$$\log(\mu_{ij}^c) = X_{ij}^T \beta + \alpha(\log y_{ij-1}^* - X_{ij-1}^T \beta)$$

where

$$y_{ij-1}^* = \max(y_{ij-1}, c), \quad 0 < c < 1$$

which leads to

$$\mu_{ij}^c = e^{X_{ij}^T \beta} \left(\frac{y_{ij-1}^*}{\exp(X_{ij-1}^T \beta)} \right)^{\alpha}.$$

- The constant c prevents $y_{ij-1} = 0$ from being an absorbing state (otherwise $Y_{ij-1} = 0 => Y_{ik} = 0$ for all $k \geq j$).
- For $\alpha < 0$, a response at time t-1 greater than $e^{X_{t-1}^T\beta}$ (not its expected value) decreases the expectation for the current response. When $\alpha > 0$ the opposite occurs (positive correlation).

Fitting Transitional Models

- For weak stationary Gaussian process, the marginal distribution of $Y_i = (Y_{i1}, \cdots, Y_{in})$ can be fully determined from the conditional model without additional unknown parameters.
- When the marginal distribution of Y_i is not fully specified by the conditional model, we can estimate β and α by maximizing the conditional likelihood, which is (for one subject i)

$$\mathcal{L}_{i}^{c}(\beta,\alpha) = f(Y_{iq+1},\cdots,Y_{in}|Y_{i1},\cdots,Y_{iq};\beta,\alpha)$$
$$= \prod_{j=q+1}^{n} f(Y_{ij}|Y_{ij-1},\cdots,Y_{ij-q};\beta,\alpha).$$

- If $f_r(\mathcal{H}_{ij}; \alpha) = \alpha_r f_r(\mathcal{H}_{ij})$ where f_r is known (does not depend on unknown parameters β or α), we can simply regress Y_{ij} on $(X_{ij}, f_1(\mathcal{H}_{ij}), \cdots, f_r(\mathcal{H}_{ij}))$.
- In general, $f_r(\mathcal{H}_{ij}; \alpha)$ may include α and (perhaps

implicitly) β . The conditional score function is

$$S^{c}(\delta) = \frac{\partial \mathcal{L}^{c}(\delta)}{\partial \delta} = \sum_{i=1}^{m} \prod_{j=q+1}^{n} \frac{\partial \mu_{ij}^{c}}{\partial \delta} \left(v_{ij}^{c} \right)^{-1} \left(y_{ij} - \mu_{ij}^{c} \right)$$

where $\delta=(\beta,\alpha)$. The derivative $\partial\mu_{ij}^c/\partial\delta$ depends on both β and α .

- ullet Intuitively we can use an iterative algorithm to estimate δ .
 - Given current estimate of δ , calculate $\partial \mu_{ij}^c/\partial \delta$ and v_{ij}^c .
 - Update δ by solving the estimating equation.
- Statistical package developed for GEE of marginal models can be utilized, and this approach shares the same robustness property enjoyed by GEE for marginal models.
- The calculations of $\hat{\mu}^c_{ij}$ and $\partial \mu^c_{ij}/\partial \delta$ are recursive and need to be carried out in turn for $j=q+1,\cdots,n$

- If q is large relative to n_i , the use of transitional models with conditional likelihood could be inefficient.
- If the conditional mean is correctly specified but the conditional variance is not, we can use empirical variance estimates to get consistent inferences about δ .
- When the Markov assumption does not hold, remarkably we can still get consistent estimate of β but that is a "right answer to the wrong question".

Transition models for Binary Responses data

 A first-order Markov chain is characterized by the transition matrix

$$\begin{pmatrix} \pi_{00} & \pi_{01} \\ \pi_{10} & \pi_{11} \end{pmatrix}$$
.

Two possible states: 1 (disease), 0 (no disease) and π_{ab} : transition probability from state a to state b.

 We can model the transition probabilities as function of covariates using separate regressions

$$\log it P(Y_{ij} = 1 | Y_{ij-1} = 0, x_{ij}) = x_{ij}^T \beta_0,
\log it P(Y_{ij} = 1 | Y_{ij-1} = 1, x_{ij}) = x_{ij}^T \beta_1.$$

This is equivalent to the transition model

$$logit P(Y_{ij} = 1 | y_{ij-1}) = x_{ij}^{T} \beta + y_{ij-1} x_{ij}^{T} \alpha$$

where $\beta = \beta_0$ and $\alpha = \beta_1 - \beta_0$.

• The transition probabilities are

$$\pi_{01} = \frac{e^{x_{ij}^T \beta_0}}{1 + e^{x_{ij}^T \beta_0}}, \quad \pi_{00} = 1 - \pi_{01}$$

$$\pi_{11} = \frac{e^{x_{ij}^T \beta_1}}{1 + e^{x_{ij}^T \beta_1}}, \quad \pi_{10} = 1 - \pi_{11}$$

• We can test whether certain covariates have effects on the transition probabilities by testing $H_0: \alpha = (\alpha_0, 0)$.

Marginalized Likelihood Models

- ullet In marginal models, the interpretation of the marginal regression coefficients eta^M does not depend on the specification of the dependence structure.
- We have been using GEE for estimation in marginal models.
 - GEE yields consistent estimator for β^M even when the dependence model is misspecified.
 - Valid inference is achieved by using empirical variance estimates.
 - GEE for marginalized models is computationally efficient.
- Likelihood-based inference is still attractive.
 - MLE can be more efficient.
 - The likelihood can be used for comparing models.
 - The existence of likelihood allows flexible modeling of missing at random (MAR).
- The idea of marginalized likelihood models is to use a random effects/latent variable/transition model

only for the dependence structure. It allows likelihood-based inference and retains the advantage of marginal models.

- A marginalized likelihood model is appropriate when the dependence structure and subject specific effects are not of interest.
- A marginalized model has two parts:
 - Marginal regression model

$$g(E(Y_{ij}|X_i)) = x_{ij}^T \beta^M.$$

- Dependence model: for some variable A_{ij} ,

$$g\{E(Y_{ij}|X_i, A_{ij})\} = \Delta_{ij}(X_i) + \gamma_{ij}^T A_{ij},$$

- ullet A_{ij} is introduced to account for the dependence.
 - Marginalized log-linear model:

$$A_{ij} = \{Y_{ij} : k \neq j\}.$$

 Marginalized latent variable (random effects) model:

$$A_{ij} = U_i$$
.

- Marginalized transition model:

$$A_{ij} = \{Y_{ik} : k < j\} = \mathcal{H}_{ij}.$$

• $\Delta_{ij}(X_i)$ is a function of the marginal means μ_{ij}^M and dependence parameters γ_{ij} . It is chosen such that

$$\mu_{ij}^{M} = E_{A_{ij}} \left[E(Y_{ij}|X_i, A_{ij}) \right]$$

$$= E_{A_{ij}} \left[g^{-1} \left(\Delta_{ij}(X_i) + \gamma_{ij}^T A_{ij} \right) \right]$$

$$= g^{-1}(x_{ij}^T \beta^M).$$

• We need solve the above integral equation for $\Delta_{ij}(X_i)$ to evaluate to the likelihood for (β^M, γ) .

Example: Madras Schizophrenia Study

- A longitudinal study where schizophrenia symptoms (e.g., thoughts disorder presence yes/no) were recorded monthly in the first year following hospitalization.
- 86 subjects: covariates include age, gender and time.
- 17 subjects only have partial follow-up. There is evidence suggesting the dropout is not missing completely at random (MCAR).
- We are interested in factos that correlate with the course of illness, in particular, the interactions "time \times age-at-onset" and "time \times gender".
- For "thoughts", the serial correlation decays with time interval.

Figure 1: MADRAS Study: Thoughts

Calculation of (crude) lorelogram:

```
tmp <-cbind(y[1:(n-lag)],y[(lag+1):n])
  tmp <-na.omit(tmp)
  tt[1,1] <-sum(tmp[,1]+tmp[,2]==0)
  tt[2,2] <-sum(tmp[,1]+tmp[,2]==2)
  tt[1,2] <-sum(tmp[,2]+tmp[,1]==1)
  tt[2,1] <-sum(tmp[,2]+tmp[,1]==-1)
  ttall[i,,,lag] <-tt
}

}

ttacross <- apply(ttall,c(2,3,4),sum)

library(vcd)
plot(oddsratio(ttacross),ylim=c(-1,4.5),xlab="Time Lag (month)",
  main="MADRAS Study: Thoughts")</pre>
```

Madras Study: Models

- Covariates: age at enrollment, time (t, months after follow-up), gender, time by gender, time by age.
- GLMM with random intercept:

$$\log \operatorname{ic}(\mu_{ij}^c) = x_{ij}^c \beta^c + b_{0i},$$
$$b_{0i} \sim N(0, G).$$

GLMM with random intercept and random slope for time:

$$\begin{split} \log &\mathrm{id}(\mu_{ij}^c) = x_{ij}^T \beta^c + b_{0i} + b_{1i} t_{ij}, \\ \gamma_{ij1} &= \alpha_{1,0} \left(\begin{array}{c} b_{0i} \\ b_{1i} \end{array} \right) \sim N \left(0, \left(\begin{array}{cc} G_{11} & R \\ R & G_{22} \end{array} \right) \right). \end{split}$$

GLMM with autocorrelated random effects:

$$\begin{array}{rcl} \text{logit}(\mu_{ij}^c) & = & x_{ij}^T \beta^c + U_{ij}, \\ \\ U_{ij} & \sim & N(0,G), \\ \\ Cor(U_{ij},U_{ik}) & = & \rho^{\left|t_{ij}-t_{ik}\right|}. \end{array}$$

There are $n_i=12$ random effects. When $\rho=1$, reduced to a single random intercept model.

• GEE with independent, exchangeable or AR(1) working variance.

$$\operatorname{logit}(\mu_{ij}^{M}) = x_{ij}^{T} \beta^{M}.$$

• MTM: The marginalized transition models have the same mean model:

$$\operatorname{logit}(\mu_{ij}^{M}) = x_{ij}^{T} \beta^{M}.$$

For dependence:

- MTM(1): First order transition model:

$$\begin{array}{rcl} \text{logit}(E(Y_{ij}|x_{ij},\mathcal{H}_{ij})) & = & \Delta_{ij} + \gamma_{ij1}y_{ij-1}, \\ \\ \gamma_{ij1} & = & \alpha_{10}. \end{array}$$

- MTM(2): Second order transition model:

$$\begin{array}{rcl} \operatorname{logit}(E(Y_{ij}|x_{ij},\mathcal{H}_{ij})) & = & \Delta_{ij} + \gamma_{ij1}y_{ij-1} + \gamma_{ij2}y_{ij-2}, \\ \\ \gamma_{ij1} & = & \alpha_{10} + \alpha_{11}1_{j=1} \\ \\ \operatorname{or} & \\ \gamma_{ij1} & = & \alpha_{10} + \alpha_{11}1_{j=1} + \alpha_{12}t, \\ \\ \gamma_{ij2} & = & \alpha_{20}. \end{array}$$