Schémas VF pour les équations fly perboliques scalaine en dimension d

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad \forall (x,t) \in \Omega \times (0,T)$$

$$\frac{1}{\sqrt{(x,t)}} = 0 \quad$$

Ve Ci(nx(o,TI) $u^{p} \in L^{\infty}(\mathcal{J}u \times (v, T))$ Prop: Simt 1 C (R) alon il existe une solution faible entopique unique u e La (nx (0,T). De plu elle vénifie le principe du maximum min (min $u^{\circ}(y)$ min $u^{\circ}(y)$) $\leq M(x,+) \leq Max (max <math>u^{\circ}(y)$, $max u^{\circ}(y,s)$ $y \in \Omega$ $(y,s) \in \Sigma^{-}(+)$ $(y,s) \in \Sigma^{-}(+)$

 $\frac{Rg}{dt}$: lien avec le modèle en divinension 1: $\vec{V} = \vec{e}_x$ $|\partial t u(x,t) + \partial x f(u(x,t)) = 6$

Disnétisation VF

VR = { NR & L'(r) +.q. MR(x) = UK Yn & K & MR } on note UK l'inconnue dishete dans la maille K au temps th

$$U_{r}^{*} = \frac{1}{101} \int_{0}^{\infty} W^{2}(x, t^{*}) d\sigma(x)$$

$$t^{*} = \begin{cases} t^{*} & \text{ni } \text{ Euler } \text{ implicate} \\ t^{*-1} & \text{ni } \text{ explicite} \end{cases}$$

On note
$$\sqrt{k\sigma} = \frac{1}{\Delta t^n} \int_{t^{n-1}}^{t^n} \int_{\sigma} \vec{\nabla}(x,t) \cdot \vec{n}_{k\sigma} d\sigma$$
 $Rq: \text{ on a } \sqrt{k\sigma} + \sqrt{k\sigma} = 0$
 $\sqrt{k\sigma} = \frac{1}{\Delta t^n} \int_{t^{n-1}}^{t^n} \vec{\nabla}(x,t) \cdot \vec{n}_{k\sigma} d\sigma = -\sqrt{k\sigma}$
 $\sqrt{k\sigma} = \frac{1}{\Delta t^n} \int_{t^{n-1}}^{t^n} \vec{\nabla}(x,t) \cdot \vec{n}_{k\sigma} d\sigma = -\sqrt{k\sigma}$

$$\frac{1}{\Delta f} \int_{f^{n-1}}^{f^{n}} \int_{K} \left(\frac{\partial f u(x,+)}{\partial f} + \frac{\partial f u(x,+)}{\partial f} \right) dx dt = 0$$

$$\int_{K} \frac{u(x,+) - u(x,+)}{\Delta f} dx + \sum_{\sigma \in F_{K}} \underbrace{\left(\frac{1}{\Delta f^{\sigma}} \int_{f^{n-1}}^{f^{n}} \int_{\sigma} \frac{f(u(x,+))}{\sqrt{(x,+)}} \right) dx dt}_{hoti} = 0$$

$$\frac{\int_{K} \frac{u(x,+) - u(x,+)}{\Delta f^{\sigma}} dx + \sum_{\sigma \in F_{K}} \underbrace{\left(\frac{1}{\Delta f^{\sigma}} \int_{f^{n-1}}^{f^{n}} \int_{\sigma} \frac{f(u(x,+))}{\sqrt{(x,+)}} \right) dx dt}_{hoti} = 0$$

$$\frac{\int_{K} \frac{u(x,+) - u(x,+)}{\Delta f^{\sigma}} dx + \int_{K} \underbrace{\left(\frac{1}{\Delta f^{\sigma}} \int_{f^{n-1}}^{f^{n}} \int_{\sigma} \frac{f(u(x,+))}{\sqrt{(x,+)}} \right) dx dt}_{hoti} = 0$$

$$\frac{\int_{K} \frac{u(x,+) - u(x,+)}{\Delta f^{\sigma}} dx + \int_{K} \underbrace{\left(\frac{1}{\Delta f^{\sigma}} \int_{f^{n}} \frac{f(u(x,+))}{\sqrt{(x,+)}} \right) dx}_{hoti} dx dt}_{hoti} = 0$$

$$\frac{\int_{K} \frac{u(x,+) - u(x,+)}{\Delta f^{\sigma}} dx + \int_{K} \underbrace{\left(\frac{1}{\Delta f^{\sigma}} \int_{f^{n}} \frac{f(u(x,+))}{\sqrt{(x,+)}} \right) dx}_{hoti} dx}_{hoti} dx dt}_{hoti} = 0$$

=> Equation du schéma VF dans la maille 4 au pas de temps n:

$$|x| \frac{u^{n}_{k} - u^{n-1}_{k}}{\Delta t^{n}} + \sum_{\sigma \in F_{k}} \overline{T}_{k\sigma}^{n} (u^{*}_{k}) = 0$$

$$\forall k \in M_{k}$$

$$\forall n = 1,..., m$$

flux "certinu" som la face of, sortant de K hote $\overline{T}_{k\sigma}^{n}(u)$

-> disnétisation: flux humérique sur la face o sontant de k'note Fr (Uh) pour le Schema en temps d'Eule implieut ni x=h et d'Eule explicit m *=n-1.

Propriétés: (1) Conservativité du flux:
$$\overline{T_{K\sigma}}(v,w) + \overline{T_{\Gamma}}(w,v) = 0$$
 $\overline{T_{\kappa}}^{lnt}$

(2) Consistance: $\overline{T_{K\sigma}}(v,v) = f(v) \sqrt{r}$

(2) exact sur le constants (1) $\overline{T_{\kappa\sigma}}(v,v) = f(v) \sqrt{r}$

(3)

Schima VF:

(IK)
$$\frac{u_{K}-u_{K}^{h-1}}{\Delta h} + \sum_{\sigma=k|l} \frac{1}{k_{\sigma}} \left(u_{K}^{*},u_{L}^{*}\right) + \sum_{\sigma=k|l} \frac{1}{k_{\sigma}} \left(u_{K}^{*},u_{L}^{*}\right) + \sum_{\sigma=k|l} \frac{1}{k_{\sigma}} \left(u_{K}^{*},u_{L}^{*}\right) = 0$$

(CI. $u_{K}=\frac{1}{|K|} \int u^{l}(x) dx$
 $\forall k \in M_{s}$
 $\forall k \in M_{s}$

Rappel du las d=1 pour l'équation $\partial + U(x,+1) + \partial x \int (U(x,+1)) = 0 \rightarrow \int \ln x = x$ 4. (u) - f(u/xiti)) flux nombrique: $\mp(v,w)$, flux monotone deux points

• Consistant: $\mp(v,v) = f(v) \forall v \in R(v)$ • monotone: $\mp(v,w)$ 1. Lipschitz par rappet à vet ur avec des constants de Lipschitz notés $\frac{ex}{x}$: sifet a ordinant $\rightarrow T(N, W) = f(N)$ sifest décarisant -> F(v,w) = f(w, $F(x,w) = f(x) + f(w) + D(x-w) \quad \text{and} \quad y > \text{Cipp}$

Proposition: | Soit F(N, W) Un flux monotone danx points point f(N), alons $\overline{F}_{K\sigma}(N, W) = \int F(N, W) \frac{\sqrt{N}}{\sqrt{N}}$ si \sqrt{N} si \sqrt{N} \sqrt{N} \sqrt{N} $\int F(w,v) \sqrt{k\sigma} \qquad \text{si} \quad \sqrt{k\sigma} \leq 0$ est un flux manatone deux points pour le modèle hyperbolique en dimension d. " f(v)" on note $a^{\dagger} = \max(a, 0)$, $\bar{a} = \min(a, 0)$ avec les notations: $a^{\dagger} + a^{-} = a$ $f_{k_{\sigma}}^{h}(x,w) = F(x,w)(V_{k_{\sigma}}^{h})^{+} + F(w,v)(V_{k_{\sigma}}^{h})^{-}$

Dreuve: Consuvativité: $F_{\kappa\sigma}(\kappa, w) + F_{\zeta\sigma}(w, v) =$

on a $\left[V_{K\sigma} + V_{L\sigma} = 0 \right]$

 $(\sqrt{\kappa}\sigma)^{+} = (-\sqrt{\kappa}\sigma)^{+} = -(\sqrt{\kappa}\sigma)^{-}$ $(V_{K\sigma})^{-} = (-V_{L\sigma})^{+} = -(V_{L\sigma})^{+}$

+ F(w,v) VLo + F(v,w) VLo $= \left(-f(v,w) + f(v,w)\right)\left(V_{L\sigma}\right)$ $+(-f(w,v)+f(w,v))(V_{L0})^{+}=0$

T(N,W) VKO + F(W,V) VKO

Consistance:
$$\frac{1}{4}$$
 $\frac{1}{4}$ \frac

· Man construction cure permutation de variable vet ur en fonction du signe de VKG principe du maximum disret.

$$(1) \begin{array}{c} (1) \begin{array}{c} (1) \begin{array}{c} (1) \end{array}{c} \\ (2) \end{array}{c} \\ (3) \begin{array}{c} (2) \end{array}{c} \\ (3) \begin{array}{c} (2) \end{array}{c} \\ (4) \end{array}{c} \\ (4) \begin{array}{c} (2) \end{array}{c} \\ (4) \begin{array}{c} (2) \end{array}{c} \\ (4) \begin{array}{c} (2) \end{array}{c} \\ (4) \end{array}{c} \\ (4) \begin{array}{c} (2) \end{array}{c} \\$$

 $+ \sum_{\sigma = kl} \left(\mp (u_{k}^{*}, u_{\sigma}^{*})(V_{k\sigma}^{n})^{+} + \mp (u_{\sigma}^{*}, u_{k}^{*})(V_{k\sigma}^{n})^{-} - \mp (u_{k}^{*}, u_{k}^{*})(V_{k\sigma}^{n})^{+} + (V_{k\sigma}^{n})^{-} \right) = 0$

$$\Delta t^{h} \leq \min_{k \in M_{h}} \frac{|k|}{\sum_{\sigma k \sigma} (V_{k\sigma}^{h})^{T} + b_{RF} (-V_{k\sigma}^{h})^{-}}} \neq$$

$$\frac{1}{\Delta t^{n}} \int_{t^{n-1}}^{t^{n}} \int_{K}^{t} \partial_{t} u(x,t) + \text{Div}\left(f(u(x,t)) \vec{V}(x)\right) dxdt = \frac{1}{\Delta t^{n}} \int_{t^{n-1}}^{t^{n}} \int_{K}^{t} (t^{1}(x) f(u(x,t))) dxdt = \frac{1}{\Delta t^{n}} \int_{t^{n-1}}^{t^{n}} \int_{K}^{t} (t^{1}(x) f(u(x,t))) dxdt = \frac{1}{\Delta t^{n}} \int_{t^{n-1}}^{t^{n}} \int_{K}^{t^{n}} (t^{1}(x) f(u(x,t))) dxdt = \frac{1}{\Delta t^{n}} \int_{t^{n}}^{t^{n}} \int_{K}^{t^{n}} (t^{1}(x) f(u(x,t)) dxdt = \frac{1}{\Delta t^{n}} \int_{K}^{t^{n}} \int_{K}^{t^{n}} (t^{1}(x) f(u(x,t)) dxdt = \frac{1}{\Delta t^{n}} \int_{K}^{t^{n}} (t^$$

Dishétisation avec Eula explication + VF:

$$|x| \frac{u_{k}^{n} - u_{k}^{n}}{\Delta t^{n}} + \sum_{\sigma \in F_{k}} \frac{1}{t_{k\sigma}(u_{k}^{n-1})} = \int_{k} e^{t}(x) f(c(x)) + h^{-1}(x) f(u_{k}^{n-1}) dx$$

$$|x| \frac{u_{k}^{n} - u_{k}^{n}}{\Delta t^{n}} + \sum_{\sigma \in F_{k}} \frac{1}{t_{k\sigma}(u_{k}^{n-1})} = \int_{k} e^{t}(x) f(c(x)) + h^{-1}(x) f(u_{k}^{n-1}) dx$$

$$|x| \frac{u_{k}^{n} - u_{k}^{n}}{\Delta t^{n}} + \sum_{\sigma \in F_{k}} \frac{1}{t_{k\sigma}(u_{k}^{n-1})} = \int_{k} e^{t}(x) f(c(x)) + h^{-1}(x) f(u_{k}^{n-1}) dx$$