# DeNovo assembly process

Gonzalo garcia Accinelli gonzalo.garcia@earlham.ac.uk



**Bernardo Clavijo** Group leader



Jon Wright
Wheat genomics



**Luis Yanes**Scientific programming and HPC



**Ben Ward**Tool development / Pop-genomics / Variation



Camilla Ryan Ph.D. Student



**Kat Hodgkinson** Visiting Ph.D. Student

Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK www.earlham.ac.uk











## From genome to assembly



Sampling

Lib preping

Sequencing

Assembling

The assembly is a model of the genome.

A tool for hypothesis testing.

Tool to understand the cell/organism/population/etc.

Ceci n'est pas une Genome



## Have an objective and work towards it



# All the information is already present in the experimental results.

Information can not be created if it's not in the sampled data is not recoverable

The assembly process is a reduction exercise

The assembly is just a probabilistic model of a genome, condensing the information from the experimental evidence.

## Conditions for a correct assembly

The right *motifs,*the correct number of times,
in correct order and position.



## Graphs, contigs and scaffolds

|          | Sequence origin                | <b>Expected quality</b> | Main quality driver                               |
|----------|--------------------------------|-------------------------|---------------------------------------------------|
| Unitig   | 1 element in the graph         | Very high               | Sequence data, cleanup, overlap detection         |
| Contig   | suported chain in the graph    | High                    | + graph complexity, single-read mapping & entropy |
| Scaffold | external-link group of contigs | Variable                | + pair reliability, parametrisation               |

- Graphs: assembler's representation
  - More information
  - Allow some back-tracking
  - Can encode support/ambiguity





#### Assembly process and tradeoffs



# How much can we stretch the spring while trusting the results





## Approaches for assembly

Paper assembly (?)

Overlap Layout Consensus

De Bruijn Graphs (DBG)

## Approaches for assembly

## Overlap Layout Consensus

## Overlap - Layout - Consensus



Finding defining and finding overlaps is key.





The layout can be quite difficult.

#### 3) Consensus

CCTATG-TAGTCAGTCG ATGCTAGTCAG

GCTAGTCGGTCGATCTACC

CAGTCGATCTGCCGGT

GTCAGTC-ATCTAC-GGTTAGCATTGC

Consensus CCTATGCTAGTCAGTCGATCTACCGGTTAGCATTGC

The consensus is constructed from the reads.

The method tracks every read.



## Short kmer introduction

The kmers of a sequence are all possible k-size subsequences of a sequence

```
start
for each position in sequence:
    kmer = sequence[position:position+k]
stop
```

L-k+1 kmers in a sequence

## ATCGATCACCTAGT 3-mers



ATCGATCACCTAGT 3-mers ATC\*\*\*\*\*\*\*\*\*\* ATC \*TCG\*\*\*\*\*\*\*\*\* TCG

ATCGATCACCTAGT 3-mers
ATC\*\*\*\*\*\*\*\*\*\*\*\*\*
\*TCG\*\*\*\*\*\*\*\*\*\*
TCG
\*\*CGA\*\*\*\*\*\*\*\*
CGA
\*\*\*GAT\*\*\*\*\*\*

\*\*\*ATC\*\*\*\*\*\*

ATC

ATCGATCACCTAGT 3-mers AT(\*\*\*\*\*\*\*\* ATC TCG \*T((3\*\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC TCA \* \* \* \* \* TCA \* \* \* \* \* \* \* \* \* \* \* (A( \* \* \* \* \* CAC

ATCGATCACCTAGT 3-mers AT(\*\*\*\*\*\*\*\* ATC \*T(G\*\*\*\*\*\*\* TCG CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC \* \* \* \* \* TCA \* \* \* \* \* TCA \* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* A(() \* \* \* \* \* ACC

ATCGATCACCTAGT 3-mers ATC \* \* \* \* \* \* \* \* \* \* ATC TCG \*T(G\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \*\*\*\*\*\*\* ATC \* \* \* \* \* TCA \* \* \* \* \* TCA\* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* ACC \* \* \* \* ACC CCT 

ATCGATCACCTAGT 3-mers ATC \* \* \* \* \* \* \* \* \* \* ATC TCG \*T(G\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC \* \* \* \* \* T(A \* \* \* \* \* TCA\* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* ACC \* \* \* \* ACC CCT \* \* \* \* \* \* \* C C T \* \* \* \* \* \* \* \* \* \* \* CTA \* \* CTA

ATCGATCACCTAGT ATC \* \* \* \* \* \* \* \* \* \*T((3\*\*\*\*\*\*\*\*\* \* \* \* GAT \* \* \* \* \* \* \* \* \* \* \* ATC \* \* \* \* \* \* \* \* \* \* \* TCA \* \* \* \* \* \* \* \* \* \* \* CAC \* \* \* \* \* \* \* \* \* \* \* \* ACC \* \* \* \* \* \* \* \* \* \* \* C C T \* \* \* \* \* \* \* \* \* \* \* CTA \* \* \* \* \* \* \* \* \* \* TAG\*

3-mers ATC TCG CGA GAT ATC TCACAC ACC CTATAG

```
ATCGATCACCTAGT
ATC * * * * * * * * * *
*T(G*******
* * * GAT * * * * * * *
*******
* * * * * TCA * * * * *
* * * * * * CAC * * * * *
* * * * * * * ACC * * * *
******CT***
* * * * * * * * CTA * *
* * * * * * * * TAG*
* * * * * * * * * AGT
```

3-mers ATC TCG CGA GAT ATC  $\mathsf{TCA}$ CAC ACC CTCTATAG A(-1)

Earlham Institute

# Back to DBG







>seq1
TTC<mark>TAA</mark>GT
>seq2
CGATTCTA



>seq1 TTCT<mark>AAG</mark>T >seq2 CGATTCTA



>seq1 TTCTA<mark>AGT</mark> >seq2 CGATTCTA











>seq1 TTCTAAGT >seq2 CG<mark>ATT</mark>CTA



>seq1 TTCTAAGT >seq2 CGA<mark>TTC</mark>TA



>seq1 TTCTAAGT >seq2 CGAT<mark>TCT</mark>A



>seq1 TTCTAAGT >seq2 CGATT<mark>CTA</mark>



>seq1 TTCTAAGT >seq2 CGATTCTA



CGA

>seq1 TTCTAAGT >seq2 CGATTCTA



CGAT

>seq1 TTCTAAGT >seq2 CGATTCTA



CGATT

>seq1 TTCTAAGT >seq2 CGATTCTA



#### **CGATTC**

>seq1 TTCTAAGT >seq2 CGATTCTA



#### CGATTCTAAGT

>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATTGTAAGT



#### CGATTCTAAGT

>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 <mark>CGA</mark>TTGTAAGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 C<mark>GAT</mark>TGTAAGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CG<mark>ATT</mark>GTAAGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGA<mark>TTG</mark>TAAGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGAT<mark>TGT</mark>AAGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATT<mark>GTA</mark>AGT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATTG<mark>TAA</mark>GT



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATTGT<mark>AAG</mark>T



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATTGTA<mark>AGT</mark>



>seq1 TTCTAAGT >seq2 CGATTCTA >seq3 CGATTGTAAGT



CGATTCTAAGT CGATTGTAAGT

#### Common structures











Clip tips

Remove low coverage nodes



- Olip tips
- Remove low coverage nodes
- Remove bubbles





- Clip tips
- Remove low coverage nodes
- Remove bubbles





Clip tips

Remove low coverage nodes

Remove bubbles

DBG assemblers work with frequencies



## Assembly QC

How do you QC your assemblies?



#### Back to Kmers

```
start
for each position in sequence:
    kmer = sequence[position:position+k]
stop
```



# ATCGATCACCTAGT 3-mers



ATCGATCACCTAGT 3-mers ATC\*\*\*\*\*\*\*\*\*\* ATC \*TCG\*\*\*\*\*\*\*\*\* TCG

ATCGATCACCTAGT 3-mers
ATC\*\*\*\*\*\*\*\*\*\*\*\*\*
\*TCG\*\*\*\*\*\*\*\*\*\*
TCG
\*\*CGA\*\*\*\*\*\*\*\*
CGA
\*\*\*GAT\*\*\*\*\*\*

\*\*\*ATC\*\*\*\*\*\*

ATC

ATCGATCACCTAGT 3-mers AT(\*\*\*\*\*\*\*\* ATC TCG \*T((3\*\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC TCA \* \* \* \* \* TCA \* \* \* \* \* \* \* \* \* \* \* (A( \* \* \* \* \* CAC

ATCGATCACCTAGT 3-mers AT(\*\*\*\*\*\*\*\* ATC \*T(G\*\*\*\*\*\*\* TCG CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC \* \* \* \* \* TCA \* \* \* \* \* TCA \* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* A(() \* \* \* \* \* ACC

ATCGATCACCTAGT 3-mers ATC \* \* \* \* \* \* \* \* \* \* ATC TCG \*T(G\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \*\*\*\*\*\*\* ATC \* \* \* \* \* TCA \* \* \* \* \* TCA\* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* ACC \* \* \* \* ACC CCT 

ATCGATCACCTAGT 3-mers ATC \* \* \* \* \* \* \* \* \* \* ATC TCG \*T(G\*\*\*\*\*\*\* CGA \* \* \* GAT \* \* \* \* \* \* \* GAT \* \* \* \* ATC \* \* \* \* \* \* ATC \* \* \* \* \* T(A \* \* \* \* \* TCA\* \* \* \* \* \* CAC \* \* \* \* \* CAC \* \* \* \* \* \* \* ACC \* \* \* \* ACC CCT \* \* \* \* \* \* \* C C T \* \* \* \* \* \* \* \* \* \* \* CTA \* \* CTA

ATCGATCACCTAGT ATC \* \* \* \* \* \* \* \* \* \*T((3\*\*\*\*\*\*\*\*\* \* \* \* GAT \* \* \* \* \* \* \* \* \* \* \* ATC \* \* \* \* \* \* \* \* \* \* \* TCA \* \* \* \* \* \* \* \* \* \* \* CAC \* \* \* \* \* \* \* \* \* \* \* \* ACC \* \* \* \* \* \* \* \* \* \* \* C C T \* \* \* \* \* \* \* \* \* \* \* CTA \* \* \* \* \* \* \* \* \* \* TAG\*

3-mers ATC TCG CGA GAT ATC TCACAC ACC CTATAG

```
ATCGATCACCTAGT
ATC * * * * * * * * * *
*T(G*******
* * * GAT * * * * * * *
*******
* * * * * TCA * * * * *
* * * * * * CAC * * * * *
* * * * * * * ACC * * * *
******CT***
* * * * * * * * CTA * *
* * * * * * * * TAG*
* * * * * * * * * AGT
```

3-mers ATC TCG CGA GAT ATC  $\mathsf{TCA}$ CAC ACC CTCTATAG A(-1)

Earlham Institute

#### Types of kmers

# 3-mers ATC TCG CGA GAT ATC TCA CAC ACC CTA TAG

- <u>Total</u>: total amount of kmers extracted from a sequence.
- <u>Distinct</u>: all different deduplicated kmers extracted from a sequence
- <u>Unique</u>: total of kmers that appear once in the counted set

| kmer  | Total # | Distinct # | Unique # |
|-------|---------|------------|----------|
| ATC   | 2       | 1          | 0        |
| TCG   | 1       | 1          | 1        |
| CGA   | 1       | 1          | 1        |
| GAT   | 1       | 1          | 1        |
| TCA   | 1       | 1          | 1        |
| CAC   | 1       | 1          | 1        |
| ACC   | 1       | 1          | 1        |
| CCT   | 1       | 1          | 1        |
| CTA   | 1       | 1          | 1        |
| TAG   | 1       | 1          | 1        |
| AGT   | 1       | 1          | 1        |
| Total | 12      | 11         | 10       |



## Reverse complement and canonical

The canonical form of each kmer is the lexicographically smaller of the forward and reverse-complement representations.

| kmer | Revcomp | Distinct # |
|------|---------|------------|
| ATC  | GAT     | ATC        |
| TCG  | CGA     | CGA        |
| CGA  | TCG     | CGA        |
| GAT  | ATC     | ATC        |
| ATC  | GAT     | ATC        |
| TCA  | TGA     | TCA        |
| CAC  | GTG     | CAC        |
| ACC  | GGT     | ACC        |
| CCT  | AAG     | AGG        |
| CTA  | TAG     | CTA        |
| TAG  | CTA     | CTA        |
| AGT  | ACT     | ACT        |



## Canonical count effect in types

| kmer  | Total # | Distinct # | Unique # |
|-------|---------|------------|----------|
| ATC   | 3       | 1          | 0        |
| CGA   | 2       | 1          | 0        |
| TCA   | 1       | 1          | 1        |
| CAC   | 1       | 1          | 1        |
| ACC   | 1       | 1          | 1        |
| AGG   | 1       | 1          | 1        |
| CTA   | 2       | 1          | 0        |
| ACT   | 1       | 1          | 1        |
| Total | 12      | 8          | 5        |

# Canonical ATC CGA CGA ATC ATC TCA CAC ACC AGG CTA



| kmer  | Total # | Distinct # | Unique # |  |
|-------|---------|------------|----------|--|
| ATC   | 3       | 1          | 0        |  |
| CGA   | 2       | 1          | 0        |  |
| TCA   | 1       | 1          | 1        |  |
| CAC   | 1       | 1          | 1        |  |
| ACC   | 1       | 1          | 1        |  |
| AGG   | 1       | 1          | 1        |  |
| CTA   | 2       | 1          | 0        |  |
| ACT   | 1       | 1          | 1        |  |
| Total | 12      | 8          | 5        |  |



| Frequency | # |
|-----------|---|
| 1         | 5 |
| 2         | 2 |
| 3         | 1 |

# Kmer spectra



## Kmer spectra

# Counting Kmers is easy... anyone can count



```
## Bash kmer counter as good as any other but slower
head -n 4 pe_reads_R1.fastq | bioawk -c'fastx' '{for (x=0; x<length($seq)=11+1; ++x}print
substr($seq, x, 11)}' | sort | uniq -c | awk '{print $1}' | sort -n | uniq -c</pre>
```

Any software that can count and compare is good

https://github.com/TGAC/KAT



# PhiX-174

5386 bp

https://www.ncbi.nlm.nih.gov/nuccore/NC\_001422.1?report=fasta

Create a kmer spectra for the phiX genome

kat hist --help





\$ kat hist -o phiX.hist phiX.fasta

```
# Title:27-mer spectra for: phiX.fasta
# XLabel:27-mer frequency
# YLabel:# distinct 27-mers
# Kmer value:27
# Input 1: phiX.fasta
###
1 5360
2 0
3 0
4 0
....
```



27-mar frequen

```
$ cat phiX.fasta phiX.fasta > phiX_twice.fasta
$ kat hist -o phiX_twice.hist phiX_twice.fasta
```

```
# Title:27-mer spectra for: phiX_twice.fasta
# XLabel:27-mer frequency
# YLabel:# distinct 27-mers
# Kmer value:27
# Input 1:phiX_twice.fasta
###
1 0
2 5360
3 0
4 0
...
```



## Specificity vs sensitivity

Specificity

Earlham Institute

#### Error resilience

Less proportion of the kmers affected by variation

Ability to detect differences

 $Alphabet = \{A, C, T, G\}$ 

Size of the universe? How many kmers of size K exist?

|                                         | K is odd        | K is even                 |  |
|-----------------------------------------|-----------------|---------------------------|--|
| Non-<br>canonical<br>representati<br>on | $4^k$           | $4^k$                     |  |
| Canonical<br>representati<br>on         | $\frac{4^k}{2}$ | $\frac{4^k + 4^{k/2}}{2}$ |  |

Calculate phiX spectras at k size -> 7/8/9/10/15 (groups)

```
$ kat hist -o phiX_8mer.hist -m 8 phiX.fasta
```

```
# Title:8-mer spectra for: phiX.fasta
# XLabel:8-mer frequency
# YLabel:# distinct 8-mers
# Kmer value:8
# Input 1:phiX.fasta
###
1 4159
2 491
3 67
4 8
5 1
6 0
7 0
8 0
9 0
```



```
# Title:9-mer spectra for: phiX.fasta
# XLabel:9-mer frequency
# YLabel:# distinct 9-mers
# Kmer value:9
# Input 1:phiX.fasta
###
1 4972
2 189
3 8
4 1
5 0
6 0
7 0
8 0
9 0
. . .
```



# K response



## K response



# Read sampling



It is somehow similar to "catting" genome files

Earlham Institute

# 1 Chromosome genome





Frequency



Frequency

The right *motifs,*the correct number of times,
in correct order and position.

Any ideas??







# Compare the copy number in the genome and the expected frequency in the reads



How many times the same kmer is counted in the assembly





~1.6Mbp

kat hist --help

Use the spectra to check the genome size (excel)

kat comp --help

Use kat plot spectra-cn to display the complete spectra



## Content check



#### KAT vs. CEGMA







# Guess the spectra-cn game

Figures in shared dir





#### Signatures in the spectra-cn





#### **Example:** A. thaliana assembly

Total TAIR CDSs: 27,416

• In contigs: 27,079 (98.77%)

Not in contigs: 337 (1.23%)

• Paths found in paths: 175 (51.93%)

Most of the rest have paths, just more complex



# Heterozygosity

Random heterozygous genome 1

What structure is this going to produce in the graph.

How the heterozygosity is going to appear up in the spectra-cn

Is the structure of the graph going to affect the spectra-cn?

kat comp hetero\_1 vs reference

kat comp hetero\_1 vs abyss assembly



Discarded heterozygous content Discarded homozygous content

Kmer sources does not have to be from the same sample,

#### 15 Strawberry cultivars (raw reads) vs Red Gauntlet (reference)



#### Kat sect

Kat sect is a tool to project kmers from a kmer set on top of a sequence



Hetero\_1 example
kat sect pe vs scaffolds
kat sect scaffolds vs scaffolds



Blue pe vs scaffolds Red scaffolds vs self

## The 10x "lost SNPs tale"

HGP: 21796



| SNP<br>No | Position on<br>scaffold | PS1 | PS2 | 10x reads<br>variant | short read<br>variant | w2rap<br>assembly |
|-----------|-------------------------|-----|-----|----------------------|-----------------------|-------------------|
| 1         | 24418                   | G   | Т   | GT                   | GT                    | Т                 |
| 2         | 33101                   | Α   | Т   | AG                   | AG                    | Α                 |
| 3         | 3822                    | Т   | G   | TG                   | TG                    | G                 |
| 4         | 2179                    | Α   | Α   | AG                   | AG                    | Α                 |
| 5         | 17217                   | G   | G   | GA                   | GA                    | A                 |
| 6         | 86982                   | Т   | Т   | TG                   | TG                    | T                 |
| 7         | 94675                   | Α   | Α   | AT                   | AT                    | T                 |
| 8         | 101651                  | С   | С   | CG                   | CG                    | G                 |
| 9         | 160945                  | Т   | Т   | TC                   | TC                    | С                 |
| 10        | 188553                  | С   | С   | СТ                   | CT                    | С                 |
| 11        | 208043                  | Α   | Α   | AG                   | AG                    | G                 |
| 12        | 198938                  | G   | G   | GC                   | GC                    | С                 |





# Skip-mers: higher entropy, higher sensitivity



**Figure 1.** Different SkipMer(m,n,k) cycles defined over the same sequence region, resulting in different combinations of bases. The shape of the underlying cyclic q-gram is defined by the variables m (used bases per cycle), n (cycle length), and k (total number of bases).





**Figure 3.** Effect of different combinations of *m* and *n*, while keeping *k* constant, for 2-way and 3-way skip-mer intersections. Only unique skip-mers are considered and skip-mers originating from sequence annotated with gene features on the first genome are classified as "*In gene*". The skip-mer shapes are sorted along the vertical axis according to total skip-mer span (*S*), with the largest span on top.