AMATH 351 Differential Equations and Applications

2021-08-17

First Order Differential Equations

| First Order ODE Concepts

- ullet Differential equations (DE) relationship between an unknown function y and its derivative
 - F(y(x), y'(x), y''(x), ...) = 0
- Order order of the highest order derivative in the DE
- Ordinary differential equation (ODE) contains derivative with respect to only 1 variable
- Partial differential equation (PDE) contains derivative with respect to multiple variables
- Linear unknowns of DE do not appear as argument of nonlinear functions or multiply with each other or themselves
- Valid solution a solution of an ODE that does not...
 - have a complex number
 - ullet have $\lim_{x o a}=\infty$ ($\lim_{x o\infty}=\infty$ is ok)
 - · have division by zero
 - have undefined operation (e.g. $\ln(-2)$)
- Interval of validity the largest interval where the solution is valid.
- ullet Distinct solution $y_1(x)
 eq y_2(x)$ for some x

| Existence and Uniqueness Theorem

- ✓ 1st order ODE
- ullet Consider the IVP y'=f(t,y), y(0)=0.
 - first order ODE only
- ullet If f and $rac{\partial f}{\partial y}$ are continuous for $|t| \leq a, |y| \leq b$,
 - ullet then there exists a $|t| \leq h \leq a$ such that there exists a unique solution $y(t) = \phi(t)$ of the IVP.

| Solving initial value problems (IVP)

Given some initial values $y(0)=a_0,y'(0)=a_1,\ldots,y^{(n)}(0)=a_n$. Solve the ODE $F(y(x),y'(x),y''(x),\ldots)=0$

- 1. Find the general solution to the ODE (or verify a given solution).
- 2. Plug in any initial values to determine the values of unknown constants in the ODE general solution.
- 3. Check if there is any additional prompt to do with the solution of the ODE.

| Solving ODEs using separation of variables

- ✓ 1st order
- Monlinear, linear
- ✓ Separable
- 1. Write the DE in the form of separable DE $\dfrac{dy}{dx}=g(x)h(y).$
- 2. Check if h(y)=0 generates trivial solutions.
- 3. Separate the x and y terms: $\dfrac{dy}{h(y)}=g(x)dx$. (Don't consider int. const.)
- 4. Integrate both sides and add constant of integration: $\int \frac{dy}{h(y)} = \int g(x) dx$.
 - 1. Solve for *y* for explicit solution.

| Solving ODEs using integrating factors

- ☑ 1st order
- 🗹 Linear
- 1. Write the DE in the form of y'(x) + p(x)y(x) = q(x).
- 2. Find the integrating factor $\mu(x) = \exp(\int p(x) dx)$.
- 3. The solution is in the form $y(x)=rac{\displaystyle\int \mu(x)q(x)dx+C}{\displaystyle\mu(x)}.$
- 4. IVP

| Solving exact ODEs

- ✓ 1st order
- Nonlinear, linear
- ☑ Exact
- 1. Write the DE in the form of $N(x,y)y^\prime + M(x,y) = 0$

1. Let
$$y = f(x, y)$$
.

2. Let
$$M(x,y)=rac{\partial f}{\partial x}$$
 , and $N(x,y)=rac{\partial f}{\partial y}$

- 2. Check if the DE is an exact DE by verifying $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$
- 3. Find the solution f(x,y) using one of the following methods:
 - Method A1

1. Find
$$f(x,y)=\int\partial f=\int M\ \partial x=f_{\mathrm{main}}(x,y)+h(y).$$
2. Solve for $h'(y)$ in $N=rac{\partial f}{\partial y}=rac{\partial f_{\mathrm{main}}}{\partial y}+h'(y).$

2. Solve for
$$h'(y)$$
 in $N=rac{\partial \widetilde{f}}{\partial y}=rac{\partial f_{ ext{main}}}{\partial y}+h'(y).$

- 3. Solve for h(y) and plug in f(x,y)
- Method A2

1. Find
$$f(x,y)=\int\partial f=\int N\ \partial y=f_{\min}(x,y)+g(x).$$
2. Solve for $g'(x)$ in $M=rac{\partial f}{\partial x}=rac{\partial f_{\min}}{\partial x}+g'(x).$

2. Solve for
$$g'(x)$$
 in $M=rac{\partial f}{\partial x}=rac{\partial f_{\mathrm{main}}}{\partial x}+g'(x)$

- 3. Solve for g(x) and plug in f(x, y)
- Method B
 - ullet Do not consider int. const. g(x) and h(y) in the following steps.

1. Find
$$f_1(x,y) \equiv \int \partial f = \int M \; \partial x \equiv f_{
m mixed-terms}(x,y) + f_{
m y-terms}(y)$$

2. Find
$$f_2(x,y) \equiv \int \partial f = \int N \ \partial y \equiv f_{
m mixed-terms}(x,y) + f_{
m x-terms}(x)$$

3. Match up the terms to get the solution

$$f(x,y) = f_{
m mixed-terms}(x,y) + f_{
m x-terms}(x) + f_{
m y-terms}(y) = C$$

4. IVP

| Solving ODEs using substitution

- ☑ 1st order
- ✓ Nonlinear, linear
- 1. Substitute function y with u to find an easy-to-solve ODE by...

1. Given DE
$$y^\prime=f(x,y)$$
,

- $\bullet\,$ write the DE in terms of y'
- ullet find the substitution u=u(x,y(x))
- ullet find the inverse substitution y=y(x,u(x))

2. By chain rule, find
$$u'=rac{\partial u}{\partial x}+rac{\partial u}{\partial y}y'.$$

3. Substitution (replace y^\prime with original ODE):

$$u' = rac{\partial u}{\partial x} + rac{\partial u}{\partial y} y' \stackrel{y'}{\longleftarrow} y' = f(x,y) \ u' = rac{\partial u}{\partial x} + rac{\partial u}{\partial y} f(x,y) \equiv F(x,y,u)$$

4. Substitution (replace \boldsymbol{y} with inverse substitution):

$$u' = F(x, y, u) \stackrel{y}{\longleftarrow} y(x, u(x))$$

 $u' = F(x, y(x, u), u) \equiv G(x, u)$

- 2. Solve the ODE $u^\prime=G(x,u)$ for u(x).
- 3. Substitution:

$$y(x,u(x)) \stackrel{u(x)}{\longleftarrow} u(x)$$

 $y(x)$

4. IVP

| Mathematical Modeling

| Radioactive decay

Description	Equations
DE of radioactive decay	$rac{dN}{dt} = -kN(t)$
Number of nuclei over time (solution)	$N(t) = N(0) e^{-kt} = N_0 e^{-kt}$
Half life	$N(au)=rac{N_0}{2}$
Decay constant	$k=rac{\ln 2}{ au}$
Radioactive dating	$t = rac{\ln \left(rac{N_1(t)}{N_2(t)}rac{N_2(0)}{N_1(0)} ight)}{\ln 2}rac{ au_1 au_2}{ au_1- au_2}$

| Other equations

Description	Equations
Logistic equation $(r,k>0)$	$P'(t) = r \left(1 - rac{P}{k} ight) P$
Bernoulli equation	$y^{\prime}+p(t)y=q(t)y^{n}$
General solutions of Bernoulli equation $(n=1,2,3)$	$egin{aligned} n &= 0: y(t) = rac{\int e^{\int p(t)dt}q(t)dt + C}{e^{\int p(t)dt}} \ n &= 1: y(t) = Ce^{\int q(t) - p(t)dt} \ n &= 2: y(t) = rac{-e^{-\int p(t)dt}q(t)dt + C} \end{aligned}$

| Stability and phase plane analysis

- 1. Plot P'(t) vs P(t).
- 2. Find fixed point P^st such that P'=0
 - ullet x-intercept of P'(t) vs P(t) plot
 - ullet a solution with initial value $P(0)=P^st$ is constant over time
- 3. Draw flow arrows near fixed points
 - \bullet P'>0 flows to the right
 - \bullet P'<0 flows to the left
- 4. Identify stability of fixed points by flow arrows
 - · stable solution approaches the fixed point
 - unstable solution diverges from the fixed point
 - semi-stable solution approaches the fixed point from one side and diverges from another
- 5. Sketch solution P(t) vs. t so that
 - ullet P increases in region flow to the right
 - ullet P decreases in region flow to the left
 - · solution approaches to stable fixed point
 - solution diverges from unstable fixed point

Second Order Differential Equations

| Second Order ODE Concepts

- ullet Second order linear differential equation r(x)y''+p(x)y'+q(x)y=g(x)
- Homogeneous g(x) = 0
- Non-homogeneous $g(x) \neq 0$
- ullet Linearly independent $c_1f(x)+c_2g(x)=0$ can only be satisfied by choosing $c_1=c_2=0$ for functions f,g
- ullet Wronskian W(f,g)(x)=fg'-f'g

| Principle of superposition

- 2nd order homogeneous ODE
- ullet Consider 2nd order homogeneous ODE r(x)y''+p(x)y'+q(x)y=0.
- ullet If Wronskian $W(y_1,y_2)
 eq 0$ (y_1 and y_2 are linearly independent solution of the ODE),
 - ullet then the general solution of the ODE is $y(x)=c_1y_1(x)+c_2y_2(x)$.

| Wronskian and linear (in)dependence

- ullet Two functions f and g are linearly dependent
 - if their Wronskian W(f,g)(x) = fg' f'g = 0.
- Corollary
 - two linearly independent functions f and g has $W(f,g)(x) \neq 0$.

Abel's theorem

- ullet If y_1 and y_2 be any two solutions of y''+p(x)y'+q(x)y=0,
 - ullet then $W(y_1,y_2)=xe^{-\int p(d)dx}.$
- Corollary: reduction of order formula
 - ullet Known y_1 , then $y_2=y_1\intrac{W}{u^2}dx$

| Euler's formula

- $ullet e^{ieta x}=\cos(eta x)+i\sin(eta x)$
- $e^{-i\beta x} = \cos(\beta x) i\sin(\beta x)$

| Solving 2nd order homogeneous constant coefficient ODEs

- 2nd order
- ☑ Linear
- 🗹 Constant coefficient
- 🗹 Homogeneous
- 1. Write the ODE in the form of ay'' + by' + cy = 0.
- 2. Write the characteristic equation $a\lambda^2 + b\lambda + c = 0$.
- 3. Solve the characteristic equation $\lambda_1, \lambda_2 = \dfrac{-b \pm \sqrt{b^2 4ac}}{2a}.$
 - ullet If $\lambda_1
 eq\lambda_2$ and $\lambda_1,\lambda_2\in\mathbb{R}$,
 - then the general solution is $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.
 - ullet If $\lambda_1=\lambda_2$, and $\lambda_1,\lambda_2\in\mathbb{R}$,
 - then the general solution is $y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$.
 - by Abel's theorem and reduction of order
 - ullet If $\lambda_1
 eq\lambda_2$, and $\lambda_1,\lambda_2\in\mathbb{C}$, where $\lambda_1,\lambda_2=lpha\pm ieta$,

 - then the general solution is $y(x)=c_1e^{\alpha x}\cos(\beta x)+c_2e^{\alpha x}\sin(\beta x)$,
 where $\alpha=-rac{b}{2a}$, $\beta=rac{\sqrt{4ac-b^2}}{2a}$.
 - · by Euler's formula

4. IVP

| Solving ODEs by reduction of order

- 2nd order
- ☑ Linear
- 🗹 Non-constant coefficient, constant coefficient
- 🗹 Homogeneous
- 0. Given a solution y_1 .
- 1. Write the ODE in the form of y'' + p(x)y' + q(x)y = 0.

- 2. Calculate the Wronskian by Abel's Theorem $W=ce^{-\int p(x)dx}$
- 3. Find y_2 by reduction of order formula $y_2=y_1\int \frac{W}{y_1^2}\,dx$.
- 4. Pick a convenient coefficient c (but $c \neq 0$).
- 5. Write the general solution $y(x)=c_1y_1(x)+c_2y_2(x)$.
- 6. IVP

| Solving Euler equation

- 2nd order
- ☑ Linear
- 🗹 Non-constant coefficient (of special type)
- ☑ Homogeneous
- 🗹 Euler equation
- 1. Write the ODE in the form of $x^2y'' + \alpha xy' + \beta y = 0$.
- 2. Write the indicial equation $s^2 + (\alpha 1)s + \beta = 0$.
- 3. Solve the indicial equation $s_1, s_2 = \dfrac{1-lpha\pm\sqrt{(lpha-1)^2-4eta}}{2}.$
 - ullet If $s_1
 eq s_2$ and $s_1, s_2 \in \mathbb{R}$,
 - then the general solution is $y(x) = c_1 x^{s_1} + c_2 x^{s_2}$.
 - ullet If $s_1=s_2$, and $s_1,s_2\in\mathbb{R}$,
 - then the general solution is $y(x) = c_1 x^{s_1} + c_2 \ln(x) x^{s_1}$.
 - · by Abel's theorem and reduction of order
 - ullet If $s_1
 eq s_2$, and $s_1, s_2 \in \mathbb{C}$, where $s_1, s_2 = \eta \pm i\mu$,
 - then the general solution is

$$y(x) = c_1 x^\eta \cos(\mu \ln(x)) + c_2 x^\eta \sin(\mu \ln(x))$$
,

- $y(x)=c_1x^{\eta}\cos(\mu\ln(x))+c_2x^{\eta}\sin(\mu\ln(x)),$ \bullet where $\eta=-rac{1-lpha}{2}$, $\mu=rac{\sqrt{4eta-(lpha-1)^2}}{2}$.
- by Euler's formula
- 4. IVP

| Solving nonhomogeneous ODEs by method of undetermined coefficients

- ☑ Linear
- 🗹 Constant coefficient
- 🗹 Nonhomogeneous
- 1. Write the ODE in the form of $L[y] \equiv ay'' + by' + cy = g(x)$.
- 2. Calculate the solution y_H to the homogeneous problem $L[y_H]=0$.
- 3. Guess a particular solution y_P to the nonhomogeneous problem $L[y_H] = g(x)$.
- 4. Substitute y_P into the ODE and solve for any constants.
- 5. Write the general solution $y(x) = y_H(x) + y_P(x)$.
- 6. IVP

| Rules for guessing y_H

- Consider each term of nonhomogeneity g(x) separately.
- Beware of the constants
 - Changes
 - $\alpha \to A$
 - $\beta \to B$

- ullet $P_n(x) o S_n(x)$ contains $lpha_i o A_i, orall n$
- $ullet \ Q_m(x)
 ightarrow T_m(x)$ contains $lpha_i
 ightarrow A_i, orall n$
- · No changes
 - k, ω
- If a term of guessed y_P conflicts with y_H , then multiply the term of guessed y_P (not the entire guess of y_P) by x.

Term of guessed particular solution y_{P}
A
Ae^{kx}
$S_n(x) = \sum\limits_{i=0}^n A_i x^i$
$e^{kx}S_n(x)$
$A\cos(\omega x) + B\sin(\omega x)$
$S_n(x)\cos(\omega x) + T_m(x)\sin(\omega x)$
$e^{kx}[S_n(x)\cos(\omega x)+T_m(x)\sin(\omega x)]$

| Solving nonhomogeneous ODEs by variation of parameters

- 🗹 2nd order
- ☑ Linear
- 🗹 Non-constant coefficient, constant coefficient
- 🗹 Nonhomogeneous
- 1. Write the ODE in the form of $L[y] \equiv y'' + p(x)y' + r(x)y = g(x)$.
- 2. Calculate the solution to the homogeneous problem $L[y_H]=0$

$$\bullet \ y_H = c_1 y_1 + c_2 y_2$$

- 3. Calculate the Wronskian $W(y_1,y_2)$
- 4. Calculate the particular solution y_P to the nonhomogeneous problem $L[y_H]=g(x)$

$$ullet y_P = -y_1 \int rac{g(x)y_2}{W(y_1,y_2)} dx + y_2 \int rac{g(x)y_1}{W(y_1,y_2)} dx$$

- 5. Write the general solution $y(x) = y_H(x) + y_P(x)$.
- 6. IVP

| Mechanical vibrations

- A mass on a spring moves vertically in a fluid bath on Earth.
- Newton's second law adds up all the forces

•
$$\sum F = mx''(t)$$

$$ullet F_{
m damper} = -\gamma x'(t)$$

•
$$F_{
m spring} = -kx(t)$$

- F_{external}
- ullet ODE: $mx''(t) + \gamma x'(t) + kx(t) = F_{
 m ext}(t)$

| Unforced oscillation

- ullet No external force on the system: $F_{
 m ext}(t)\equiv 0$
- ullet Homogeneous ODE: $egin{align*} mx'' + \gamma x' + kx = 0 \ \end{pmatrix} (m>0, \gamma, k\geq 0)$
 - Overdamped system

- $\bullet \gamma^2 4mk > 0$
- $\lambda_1
 eq \lambda_2 \in \mathbb{R}$
- ullet General solution: $x(t)=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}$
- · Critically damped system
 - $\gamma^2 4mk = 0$
 - $\lambda_1 = \lambda_2 \in \mathbb{R}$
 - ullet General solution: $x(t)=c_1e^{\lambda_1t}+c_2te^{\lambda_2t}$
- Underdamped system
 - $\gamma^2 4mk < 0$
 - $\lambda_1
 eq \lambda_2 \in \mathbb{C}$
 - ullet General solution: $x(t) = e^{-\gamma t/2m} [c_1 \cos(\omega t) + c_2 \sin(\omega t)]$
 - Undamped spring
 - $\gamma = 0$
 - ullet General solution: $x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$
 - ullet Phase-amplitude form: $x(t) = A\cos(\omega t arphi)$
 - ullet amplitude $A=\sqrt{c_1^2+c_2^2}$
 - ullet phase $arphi=rctan(c_2/c_1)$
 - ullet natural frequency $\omega=\sqrt{rac{k}{m}}$
 - ullet period $T=rac{2\pi}{\omega}$
 - Graph: oscillating wave with constant amplitude
 - Underdamped spring
 - $\gamma > 0$
 - ullet General solution: $x(t)=e^{-\gamma t/2m}[c_1\cos(\omega t)+c_2\sin(\omega t)]$
 - ullet Phase-amplitude form: $x(t) = A e^{-\gamma t/2m} \cos(\omega t arphi)$
 - ullet amplitude $A=\sqrt{c_1^2+c_2^2}$
 - ullet phase $arphi=rctan(c_2/c_1)$
 - ullet natural frequency $\omega=\sqrt{rac{k}{m}}$
 - ullet period $T=rac{2\pi}{\omega}$
 - Graph: oscillating wave with exponentially decreasing amplitude

| Forced oscillation

- ullet Has external force on the system: $F_{
 m ext}(t)
 eq 0$
- ullet Investigate a special case of oscillating external force $F_{
 m ext}(t) \equiv F_0 \cos(\Omega t)$
- ullet Non-homogeneous ODE: $egin{align*} mx'' + \gamma x' + kx = F_0 \cos(\Omega t) \end{bmatrix} (m,\gamma,k \geq 0)$
 - No damping, no resonance
 - $ullet \gamma = 0, \Omega
 eq \omega_0 = \sqrt{rac{k}{m}}$
 - ullet General solution: $x(t)=\left(c_1+rac{F_0}{m(\omega_0^2-\Omega_0^2)}
 ight)\cos(\omega_0 t)+c_2\sin(\omega_0 t)$
 - Graph: modulated wave + beats pattern
 - No damping, with resonance
 - $ullet \gamma = 0, \Omega = \omega_0 = \sqrt{rac{k}{m}}$
 - ullet General solution: $x(t)=c_1\cos(\omega_0 t)+\left(c_2+rac{F_0}{2\omega_0 m}t
 ight)\sin(\omega_0 t)$

Systems of Differential Equations

| Introduction to linear algebra

| Linear independence

- ullet Linear combination $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \ldots + c_n \mathbf{x}_n$
- ullet Linearly dependent vectors satisfy the equation $c_1\mathbf{x}_1+c_2\mathbf{x}_2+\ldots+c_n\mathbf{x}_n=\mathbf{0}$ such that the constants are not all zero
- Linearly independent vectors that are not linearly dependent
- Wronskian $W[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n]=\det([\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n])=\det(X)$
- · Checking linear independence
 - ullet If $W[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n]
 eq 0$
 - then they are linearly independent

| Matrix inversion

- ullet Inverse of a square matrix A^{-1} thats satisfies $AA^{-1}=A^{-1}A=I_n$
- Finding matrix inverse

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- · Solving systems of equations using inverse
 - $A\mathbf{x} = \mathbf{b}$
 - $\mathbf{x} = A^{-1}\mathbf{b}$

| Matrix determinant

· Finding matrix determinant

$$egin{aligned} \bullet \ A &= \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \det(A) = ad - bc \\ \bullet \ A &= \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} \end{aligned}$$

- Singular matrix matrix with a determinant of 0
- · Equivalent statements
 - $\det(A) = 0$
 - ullet A is singular
 - ullet A^{-1} does not exist
 - $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions
 - columns of A are linearly dependent
 - rows of A are linearly dependent

| Eigenvalues and eigenvectors of matrix

- Eigenvector vector ${\bf v}$ such that $A{\bf v}=\lambda {\bf v}$ for square matrix A
 - 0 is not an eigenvector by convention
- ullet Eigenvalue constant λ corresponding to the eigenvector ${f v}$
- · Finding eigenvalues and eigenvectors
 - 1. Solve for λ in $\det(A \lambda I) = 0$
 - 2. Substitute λ into $A\mathbf{v} = \lambda \mathbf{v}$ to find relationship between components of eigenvectors

| Systems of differential equations

| Rewriting ODEs into systems of 1st order ODEs

- 1. Define n auxiliary variables y_1 , ..., y_n for nth order ODE
 - 1. Let y_1 be the original function in the ODE
 - 2. Let $y_2=y_1^\prime$
 - 3. ...
 - 4. Let $y_n=y_{n-1}'$
- 2. Rearrange the ODE to isolate the highest order derivative, and write it in terms of the auxiliary variables.
- 3. Write a system of ODEs with derivatives of auxiliary variables on the left hand side and their expression on the right hand side in terms of the auxiliary variables
 - 1. $y_1' = y_2$ (by definition)
 - 2. ..
 - 3. $y_{n-1}'=y_n$ (by definition)
 - 4. $y_n'=$ highest order derivative in step 2

| Linear system of ODEs

$$egin{align*} egin{align*} egin{align*} y_1' &= a_{11}y_1 + a_{12}y_2 + \ldots + a_{1n}y_n + b_1 \ y_2' &= a_{21}y_1 + a_{22}y_2 + \ldots + a_{2n}y_n + b_2 \ dots \ y_n' &= a_{n1}y_1 + a_{n2}y_2 + \ldots + a_{nn}y_n + b_n \ \end{pmatrix} &= egin{align*} egin{align*} oldsymbol{y}' &= A oldsymbol{y} + oldsymbol{b} \ \end{pmatrix} \end{aligned}$$

$$\bullet \text{ where } \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

- ullet Homogeneous ${f b}={f 0}$
- ullet Nonhomogeneous $\mathbf{b}
 eq \mathbf{0}$
- Superposition principle
 - If the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent solutions of the homogeneous system $\mathbf{x}' = P\mathbf{x}$
 - $\bullet\,$ then the general solution x is the linear combination of them

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \ldots + c_n \mathbf{x}_n$$

| Solving homogeneous constant-coefficient systems of ODEs

- ☑ ODE system
- ✓ 1st order
- ☑ Linear
- 🗹 Constant coefficient
- ☑ Homogeneous
- 1. Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- 2. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvalues of λ by solving $\det(P-\lambda I_n)=0$
- 3. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvectors of by substitution of λ
- 4. Write the general solution
 - ullet < n distinct $\lambda \in \mathbb{R}$; n distinct real \mathbf{v}
 - General solution: $\mathbf{x} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \ldots + c_n \mathbf{v}_n e^{\lambda_n t}$
 - ullet $\leq n$ distinct $\lambda \in \mathbb{C}$; n distinct complex \mathbf{v}
 - ullet Known: $\mathbf{x}_1 = c_1 \mathbf{v}_1 e^{\lambda_1 t} = \mathrm{Re}(\mathbf{x}_1) + i \mathrm{Im}(\mathbf{x}_1)$

- ullet General solution: $\mathbf{x} = c_1 \mathrm{Re}(\mathbf{x}_1) + c_2 \mathrm{Im}(\mathbf{x}_1)$
- < n distinct λ ; < n distinct \mathbf{v}
 - General solution: $\mathbf{x} = c_1 \mathbf{v} e^{\lambda t} + c_2 (\mathbf{v} t e^{\lambda t} + \vec{\eta} e^{\lambda t})$
 - $\bullet\,$ Find $\vec{\eta}$ (relationship between its components) by substituting into the ODE

| Solving Euler systems

- ☑ Linear
- Non-constant coefficient (of special type)
- ☑ Homogeneous
- ☑ Euler system
- 1. Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- 2. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvalues of λ by solving $\det(P-\lambda I_n)=0$
- 3. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvectors of by substitution of λ
- 4. Write the general solution
 - $ullet \leq n$ distinct $\lambda \in \mathbb{R}$; n distinct real ${f v}$
 - General solution: $\mathbf{x} = c_1 \mathbf{v}_1 t^{\lambda_1} + \ldots + c_n \mathbf{v}_n t^{\lambda_n}$
 - · Other conditions are not discussed

Laplace Transform

| Laplace Transform Concepts

- ullet Laplace transform $\mathcal{L}f(t)=F(s)=\int_0^\infty e^{-st}f(t)\ dt$
- Heaviside function (unit step function)

$$ullet u_c(t) = u(t-c) = egin{cases} 0 & t < c \ 1 & t \geq c \end{cases}$$

| Properties of Laplace transform

- · Laplace transform is linear
 - $\mathcal{L}c_1f(t) + c_2g(t) = c_1\mathcal{L}f(t) + c_2\mathcal{L}g(t)$
- Laplace transforms of derivatives incorporate initial conditions
 - $\mathcal{L}f'(t) = sF(s) f(0)$

 - $\mathcal{L}f''(t) = s^2 F(s) sf(0) f'(0)$ $\mathcal{L}f^{(n)}(t) = s^n F(s) s^{n-1}f(0) \ldots f^{(n-1)}(0)$
- · Heaviside function has a simple Laplace transforms

•
$$\mathcal{L}u_c(t) = \frac{e^{-sc}}{s}$$

| Translation theorems

- Time domain translation
 - $\mathcal{L}f(t-c)u_c(t) = e^{-sc}\mathcal{L}f(t)$
 - $\bullet \ \mathcal{L}^{-1}e^{-sc}\mathcal{L}f(t)=f(t-c)u_c(t)$
- · Laplace domain translation
 - $\mathcal{L}e^{ct}f(t) = F(s-c)$
 - $\bullet \ \mathcal{L}^{-1}F(s-c) = e^{ct}f(t)$

| Solving ODEs with Laplace transform

1. Time domain: difficult ODE

ullet Laplace transform (t
ightarrow s)

2. Laplace domain: easy algebra problem

• Solve the algebra problem

3. Laplace domain: solution to algebra problem

ullet Inverse Laplace transform (s o t)

4. Time domain: solution of difficult ODE

• Problem solved

| Laplace transform table

Inverse L.T.	Laplace Transform	Inverse L.T.	Laplace Transform
f(t)	F(s)	f(t)	F(s)
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
t^n	$rac{n!}{s^{n+1}}$	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{3/2}}$
$\sin(at)$	$\frac{a}{s^2 + a^2}$	$t\sin(at)$	$\frac{2as}{(s^2+a^2)^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$	$t\cos(at)$	$rac{s^2 - a^2}{(s^2 + a^2)^2}$
$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$	$\cos(at) - at\sin(at)$	$rac{s(s^2-a^2)}{(s^2+a^2)^2}$
$\sin(at) + at\cos(at)$	$\frac{2as^2}{(s^2+a^2)^2}$	$\cos(at) + at\sin(at)$	$\frac{s(s^2+3a^2)}{(s^2+a^2)^2}$
$\sinh(at)$	$\frac{a}{s^2 - a^2}$	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$
$\cosh(at)$	$\frac{s}{s^2 - a^2}$	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	$e^{at}\sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	$e^{at}\cosh(bt)$	$\frac{s-a}{(s-a)^2-b^2}$
$u_c(t)$	$rac{e^{-sc}}{s}$		