Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPATIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

3 Sistemi di controllo

3.6 Osservabilità, controllabilità e autovalori nascosti

Evoluzione libera e forzata

Consideriamo un sistema LTI TC

$$\begin{array}{rcl}
\dot{x} & = & Ax + Bu \\
y & = & Cx
\end{array}$$

Soluzione del sistema nel dominio di Laplace

$$X(s) = \underbrace{(sI - A)^{-1}x(0)}_{X_{\ell}(s)} + \underbrace{(sI - A)^{-1}BU(s)}_{X_{f}(s)}$$

$$Y(s) = \underbrace{C(sI - A)^{-1}x(0)}_{Y_{\ell}(s)} + \underbrace{C(sI - A)^{-1}BU(s)}_{Y_{f}(s)}$$

- $X_{\ell}(s)$ evoluzione libera dello stato dipende dalla matrice $(sI-A)^{-1}$
- $(sI-A)^{-1}$ ha come poli tutti e soli gli autovalori del sistema, radici del polinomio caratteristico

$$\varphi(s) = \det(sI - A)$$

Evoluzione forzata dello stato e autovalori controllabili

Evoluzione forzata dello stato

$$X_f(s) = (sI - A)^{-1}BU(s)$$

dipende dalla matrice $(sI - A)^{-1}B$

- \bullet Poli di $(sI-A)^{-1}B=$ autovalori controllabili del sistema, radici di $\varphi_c(s)$ polinomio caratteristico di controllo
- Autovalori non controllabili si cancellano nella moltiplicazione per B e non compaiono come poli in $X_f(s)$
- Per sistemi singolo ingresso dim(u) = 1

 - $\varphi_{\rm nc}(s) = \frac{\varphi(s)}{\varphi_{\rm c}(s)}$

Risposta libera e autovalori osservabili

• $Y_{\ell}(s)$ Risposta libera

$$Y_{\ell}(s) = C (sI - A)^{-1} x(0)$$

dipende dalla matrice $C(sI - A)^{-1}$

• Poli di $C(sI - A)^{-1}$ = autovalori osservabili del sistema

Definizione: un autovalore λ_i della matrice A si dice

- **osservabile** se compare come polo di $C(sI-A)^{-1}$ e quindi si vede nella risposta libera $Y_{\ell}(s)$
- **non osservabile** se non compare come polo di $C(sI-A)^{-1}$ (in quanto si cancella nel prodotto per C) e quindi non si vede nella risposta libera $Y_{\ell}(s)$

Polinomio caratteristico di osservazione

Possiamo fattorizzare il polinomio caratteristico come

$$\varphi(s) = \varphi_{\rm o}(s) \, \varphi_{\rm no}(s)$$

- $arphi_{
 m no}(s)=rac{arphi(s)}{arphi_{
 m o}(s)}$ ha come radici tutti e soli gli autovalori non controllabili
- Per sistemi singola uscita $\dim(y)=1$, $\varphi_{o}(s)$ si calcola come minimo comune multiplo dei denominatori degli elementi di $C(sI-A)^{-1}$
- Per sistemi con più uscite $\dim(y) > 1$ invece degli elementi di $C (sI A)^{-1}$ dobbiamo considerare i determinanti delle sottomatrici quadrate

Funzione di trasferimento e poli del sistema

Risposta forzata

$$Y_f(s) = C(sI - A)^{-1}BU(s)$$

dipende dalla funzione di trasferimento $G(s) = C(sI - A)^{-1}B$

- ullet Poli di $G(s) = \operatorname{poli} \operatorname{del} \operatorname{sistema}$
 - = autovalori del sistema che non si cancellano né nella moltiplicazione per C né in quella per B

Fatto 3.7

 $\{ Poli del sistema \} = \{ Autovalori controllabili \} \cap \{ Autovalori osservabili \}$

• Per sistemi SISO dim(u) = dim(y) = 1

$$G(s) = \frac{b(s)}{a(s)}$$

 \Rightarrow Poli del sistema = radici di a(s)

Autovalori nascosti

- ullet Autovalori non controllabili e/o non osservabili non compaiono come poli della G(s), quindi non si vedono in $Y_f(s)$, e sono detti **autovalori nascosti**
- Vale la relazione

$$\left\{ \begin{array}{c} \mathsf{Autovalori} \\ \mathsf{nascosti} \end{array} \right\} = \left\{ \begin{array}{c} \mathsf{Autovalori} \\ \mathsf{non\ controllabili} \end{array} \right\} \bigcup \left\{ \begin{array}{c} \mathsf{Autovalori} \\ \mathsf{non\ osservabili} \end{array} \right\}$$

• Per sistemi SISO $\dim(u) = \dim(y) = 1$, autovalori nascosti radici del polinomio

$$\varphi_h(s) = \frac{\varphi(s)}{a(s)}$$

dove il pedice h sta per hidden (nascosto)

Esempio di studio della controllabilità/osservabilità

Consideriamo il sistema LTI TC con

$$A = \left[\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array} \right] \qquad B = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det \begin{bmatrix} s - 1 & 0 \\ -1 & s + 1 \end{bmatrix} = (s - 1)(s + 1)$$

- Autvalori $\lambda_1 = 1$ e $\lambda_2 = -1$
- Matrice inversa

$$(sI - A)^{-1} = \frac{1}{\varphi(s)} \operatorname{Adj}(sI - A)$$

$$= \frac{1}{(s+1)(s-1)} \operatorname{Adj} \begin{bmatrix} s-1 & 0 \\ -1 & s+1 \end{bmatrix}$$

$$= \frac{1}{(s+1)(s-1)} \begin{bmatrix} s+1 & 0 \\ 1 & s-1 \end{bmatrix} = \begin{bmatrix} \frac{\frac{1}{s-1}}{(s-1)(s+1)} & \frac{1}{s+1} \end{bmatrix}$$

Esempio di studio della controllabilità/osservabilità

Per studiare la controllabilità

$$(sI - A)^{-1}B = \begin{bmatrix} \frac{1}{s-1} & 0\\ \frac{1}{(s-1)(s+1)} & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{s-1}\\ \frac{1}{(s-1)(s+1)} + \frac{1}{s+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1}\\ \frac{s}{(s-1)(s+1)} \end{bmatrix}$$

Polinomio caratteristico di controllo

$$\varphi_{c}(s) = (s-1)(s+1)$$

- $\Rightarrow \lambda_1 = 1 \text{ e } \lambda_2 = -1 \text{ autovalori controllabili}$
- ⇒ sistema completamente controllabile

Esempio di studio della controllabilità/osservabilità

Per studiare l'osservabilità

$$C(sI - A)^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{s-1} & 0 \\ \frac{1}{(s-1)(s+1)} & \frac{1}{s+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1} & 0 \end{bmatrix}$$

Polinomio caratteristico di osservazione

$$\varphi_0(s) = s - 1$$

- $\Rightarrow \quad \lambda_1 = 1$ autovalore osservabile e $\lambda_2 = -1$ autovalore non osservabile
- ⇒ sistema non completamente osservabile
- Funzione di trasferimento

$$G(s) = C (sI - A)^{-1} B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{s-1} & 0 \\ \frac{1}{(s-1)(s+1)} & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{s-1}$$

$$\Rightarrow$$
 $a(s) = s - 1$ $\varphi_h(s) = s + 1$

Nota: ho un solo polo in $p_1=1$ coincidente con l'unico autovalore controllabile e osservabile. L'altro autovalore $\lambda_2=-1$, seppur controllabile, è nascosto perché non osservabile.

3.7 Retroazione algebrica sull'uscita

Retroazione algebrica sull'uscita

Legge di controllo in retroazione algebrica sull'uscita

$$C: \quad u(t) = -K y(t) + H y^{\circ}(t)$$

- Controllo in feedback: -Ky(t) con F guadagno in feedback (retroazione)
- ullet Controllo in feedforward: $Hy^{\circ}(t)$ con H guadagno in feedforward
- ullet Informazione parziale: non abbiamo accesso allo stato x ma solo all'uscita y

Guadagno in feedback e in feedforward

Retroazione algebrica sull'uscita

$$u(t) = -K y(t) + H y^{\circ}(t)$$

- Guadagni K e H sono parametri di progetto da scegliere per soddisfare le specifiche di controllo
- In generale K e H matrici di dimensione $\dim(u) \times \dim(y)$
- Per sistemi SISO $\dim(u) = \dim(y) = 1$, K e H sono parametri scalari
- Poiché y=Cx, retroazione algebrica sull'uscita corrisponde a una particolare retroazione algebrica sullo stato con $F=K\,C$

$$u(t) = -K y(t) + H y^{\circ}(t)$$

= $-K C x(t) + H y^{\circ}(t)$

Nota: nel guadagno in retroazione algebrica sull'uscita abbiamo a disposizione meno parametri di progetto rispetto alla retroazione algebrica sullo stato (nel caso SISO possiamo scegliere solo lo scalare K invece del vettore riga F)

Sistema in ciclo chiuso

Processo

$$\mathcal{P}: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Controllore

$$C: \quad u(t) = -K y(t) + H y^{\circ}(t)$$

Sostituendo la legge di controllo nell'equazione del processo

$$\dot{x}(t) = Ax(t) + Bu(t)
= Ax(t) + B[-Ky(t) + Hy^{\circ}(t)] = (A - BKC)x(t) + BHy^{\circ}(t)$$

Sistema in ciclo chiuso

$$\mathcal{P}^*: \left\{ \begin{array}{l} \dot{x}(t) = (A - B K C)x(t) + B H y^{\circ}(t) \\ y(t) = C x(t) \end{array} \right.$$

Sistema in ciclo chiuso

Sistema in ciclo chiuso

$$\mathcal{P}^*: \begin{cases} \dot{x}(t) = A^*x(t) + B^*y^{\circ}(t) \\ y(t) = Cx(t) \end{cases}$$

$$con A^* = A - BKC e B^* = BH$$

- Sistema in ciclo chiuso: sistema LTI TC con ingresso y° e uscita y
- Matrice della **dinamica in ciclo chiuso** $A^* = A BKC$ dipende dal guadagno in feedback K

Sistema in ciclo chiuso

Sistema in ciclo chiuso

$$\mathcal{P}^*: \begin{cases} \dot{x}(t) = A^*x(t) + B^*y^{\circ}(t) \\ y(t) = Cx(t) \end{cases}$$

$$con A^* = A - BKC e B^* = BH$$

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \det(sI - A^*) = \det(sI - A + BKC)$$

Funzione di trasferimento in ciclo chiuso

in particolare le proprietà di stabilità del sistema

$$G_{y^{\circ}y}^{*}(s) = C(sI - A^{*})^{-1}B^{*} = C(sI - A + BKC)^{-1}BH$$

Nota: al variare del guadagno K possiamo **spostare gli autovalori** nel piano s possiamo utilizzare K per modificare il comportamento dinamico e

18/68

Funzione di trasferimento in ciclo chiuso

• Equazione del processo nel dominio di Laplace (supponendo x(0) = 0)

$$\mathcal{P}: \quad Y(s) = Y_f(s) = G(s) U(s)$$

• Equazione del controllore nel dominio di Laplace

$$C: U(s) = -KY(s) + HY^{\circ}(s)$$

Di conseguenza, per sistemi SISO

$$Y(s) = -K G(s) Y(s) + G(s) H Y^{\circ}(s) \quad \Rightarrow \quad Y(s) = \frac{G(s)}{1 + K G(s)} H Y^{\circ}(s)$$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\diamond}y}^{*}(s) = \frac{G(s)}{1 + KG(s)} H$$

Polinomio caratteristico in ciclo chiuso

• La funzione di trasferimento in ciclo chiuso può anche essere scritta come

$$G_{y^{\diamond}y}^{*}(s) = \frac{G(s)}{1 + K\,G(s)}H = \frac{b(s)/a(s)}{1 + K\,b(s)/a(s)}H = \frac{b(s)}{a(s) + K\,b(s)}H$$

- Si ricorda che vale la fattorizzazione $\varphi(s)=\varphi_h(s)\,a(s)$ con
 - ullet radici di a(s) = poli del sistema (autovalori controllabili e osservabili)
- Retroazione algebrica sull'uscita
 - modifica i poli del sistema assegnandoli come radici del polinomio

$$a^*(s) = a(s) + K b(s)$$

ullet non modifica gli autovalori nascosti del sistema, radici di $arphi_h(s)$

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) a^*(s) = \varphi_h(s) [a(s) + K b(s)]$$

Proprietà del sistema in ciclo chiuso

Fatto 3.8 Per sistemi LTI SISO, la legge di controllo in retroazione algebrica sull'uscita $u=-Ky+Hy^\circ$

assegna il polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) a^*(s) = \varphi_h(s) [a(s) + K b(s)]$$

assegna la funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{G(s)}{1 + KG(s)}H = \frac{b(s)}{a(s) + Kb(s)}H$$

- Poiché abbiamo solo il parametro scalare K a disposizione, i poli in ciclo chiuso non possono essere scelti liberamente, ma ci sono dei vincoli!

- $\bullet \ \, {\rm Carrello} \,\, {\rm di} \,\, {\rm massa} \,\, M \,\, {\rm soggetto} \,\, {\rm ad} \,\, {\rm una} \,\, \\ {\rm forza} \,\, {\rm esterna} \,\, u(t) \,\, \\$
- y(t) posizione del carrello al tempo t
- b coefficiente di attrito viscoso

 $\begin{tabular}{ll} \textbf{Obiettivo}: portare il carrello in una posizione desiderata Y_0 tramite il controllo u misurando solo la posizione y \\ \end{tabular}$

Problema di controllo con riferimento costante

$$y^{\circ}(t) = Y_0 \cdot 1(t)$$

Retroazione algebrica sull'uscita

$$u = -Ky + Hy^{\circ}$$

• Equazioni di stato per M=1 e b=1

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u(t)$$

$$y(t) = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} x(t)$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & -1 \\ 0 & s+1 \end{bmatrix} = s(s+1)$$

Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B = \frac{1}{s(s+1)}$$

- ullet Entrambi gli autovalori sono poli di G(s)
 - non ci sono autovalori nascosti (sistema completamente controllabile e osservabile)

$$a(s) = s(s+1)$$
 $b(s) = 1$ $\varphi_{h}(s) = 1$

- Applichiamo la retroazione sull'uscita $u = -Ky + Hy^{\circ}$
- Funzione di trasferimento in ciclo chiuso

$$G_{y^{\diamond}y}^{*}(s)=\frac{b(s)}{a(s)+K\,b(s)}H=\frac{1}{s^{2}+\,s+K}\,H$$

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) [a(s) + K b(s)] = s^2 + s + K$$

- Per Cartesio, stabilità asintotica in ciclo chiuso (specifica 1) quando tutti i coefficienti di $\varphi^*(s)$ hanno stesso segno \Rightarrow possiamo stabilizzare scegliendo K>0
- Poli in ciclo chiuso

$$p_{1,2}^* = -\frac{1}{2} \pm \frac{\sqrt{1-4\,K}}{2}$$

Nota: al variare di K i poli in ciclo chiuso non posso essere assegnati liberamente ma seguono un percorso prestabilito sul piano complesso detto **luogo delle radici**

Poli in ciclo chiuso

$$p_{1,2}^* = -\frac{1}{2} \pm \frac{\sqrt{1 - 4K}}{2}$$

• Per $K < 0 \Rightarrow 2$ poli reali

$$p_1 = -\frac{1}{2} - \frac{\sqrt{1 - 4K}}{2}$$

$$p_1 = -\frac{1}{2} - \frac{\sqrt{1-4K}}{2}$$
 $p_2 = -\frac{1}{2} + \frac{\sqrt{1-4K}}{2}$

- Luogo delle radici per K < 0
- Per K=0 si parte dai poli in anello aperto $p_1 = -1$ e $p_2 = 0$
- p_1 tende a $-\infty$ per $K \to -\infty$
- p_2 tende a $+\infty$ per $K \to -\infty$

Poli in ciclo chiuso

$$p_{1,2}^* = -\frac{1}{2} \pm \frac{\sqrt{1 - 4K}}{2}$$

- Per $0 < K \le \frac{1}{4}$ \Rightarrow 2 poli reali
- ullet Per $K>rac{1}{4}$ \Rightarrow 2 poli complessi coniugati

- Luogo delle radici per K > 0
- Per K=0 si parte dai poli in anello aperto $p_1=-1$ e $p_2=0$
- Per $K = \frac{1}{4}$ abbiamo 2 poli coincidenti in $-\frac{1}{2}$
- Per $K \to +\infty$ abbiamo 2 poli complessi coniugati con parte reale $-\frac{1}{2}$ e parte immaginaria tendente a $\pm\infty$

Luogo delle radici

- I poli in ciclo chiuso sono le radici di $a^*(s) = a(s) + K b(s)$
- ullet Luogo della radici descrive come si spostano nel piano complessi i poli in ciclo chiuso al variare del guadagno in feedback K
- Di solito due grafici: uno per K>0 e l'altro per K<0
- Per tracciare il luogo delle radici: MATLAB rlocus, Python control.root_locus
- Nell'esempio del controllo di posizione

Luogo delle radici per K>0

Luogo delle radici per K < 0

Buona posizione del problema di controllo

Polinomio caratteristico in anello aperto

$$\varphi(s) = \varphi_h(s) \, a(s)$$

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) \left[a(s) + K b(s) \right]$$

• Retroazione sull'uscita **non** modifica le radici di $\varphi_h(s)$, autovalori nascosti del sistema (non controllabili e/o non osservabili)

Definizione: un problema di controllo in retroazione sull'uscita si dice **ben posto** quando $\varphi_h(s)$ ha tutte radici con Re< 0

Nota: la buona posizione del problema di controllo è condizione necessaria per l'esistenza di un guadagno K stabilizzante ma in generale **non** sufficiente!

Controesempio

Consideriamo un sistema LTI TC con

$$G(s) = \frac{1}{s^2 - 1}$$

- e quindi $a(s) = s^2 1$ b(s) = 1
- Supponiamo che non ci siano autovalori nascosti, ossia $\varphi_{\mathbf{h}}(s)=1$ \Rightarrow problema di controllo in retroazione sull'uscita **ben posto**
- Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) [a(s) + K b(s)] = s^2 - 1 + K$$

- \Rightarrow non è possibile scegliere K in modo da rendere tutti i coefficienti di segno concorde (coefficiente del termine s sempre pari a 0
- \Rightarrow non esiste K stabilizzante
- Questo sistema non può essere stabilizzato mediante retroazione algebrica sull'uscita nonostante il problema di controllo sia ben posto

Nota: questo non vuol dire che il sistema non possa essere controllato, ma piuttosto che dobbiamo considerare strutture di controllo più generali!

Controesempio: luogo delle radici

Poli in ciclo chiuso

$$p_{1,2}^* = \pm \sqrt{1 - K}$$

 $\bullet\,$ Dal tracciamento del luogo delle radici si vede che per ogni K ho sempre almeno un polo con Re ≥ 0

Luogo delle radici per ${\cal K}>0$

Luogo delle radici per K < 0

Progetto della retroazione algebrica sull'uscita

Specifiche di progetto

- Specifica 1: stabilità asintotica in ciclo chiuso
- **Specifica 2:** guadagno in continua in ciclo chiuso unitario $G^*_{y^{\circ}y}(0)=1$
- Specifica 3: garantire un transitorio rapido e con escursioni dell'uscita il più possibile limitate

Guadagno in continua in ciclo chiuso

$$G_{y^{\diamond}y}^{*}(0) = \frac{b(0)}{a(0) + K b(0)} H$$

⇒ per soddisfare la specifica 2 dobbiamo porre

$$H = \frac{a(0) + K b(0)}{b(0)}$$

Progetto della retroazione algebrica sull'uscita

Progetto di un sistema di controllo in retroazione algebrica sull'uscita

- Si calcola $\varphi_h(s) = \varphi(s)/a(s)$
 - If $\varphi_h(s)$ asintoticamente stabile (non ci sono autovalori nascosti instabili) il problema di controllo è *ben posto* e si va al passo 2
 - **else** il problema di controllo *non* è ben posto Il progetto non può essere concluso e l'algoritmo termina
- If esiste K tale che $a^*(s)=a(s)+K\,b(s)$ asintoticamente stabile si fissa K (per soddisfare specifica 1 e possibilmente 3) si va al passo 3
 - else la retroazione statica sull'uscita non è sufficiente per stabilizzare Il progetto non può essere concluso e l'algoritmo termina
- $\textbf{If } b(0) \neq 0 \\ \text{si pone } H = \frac{a(0) + Kb(0)}{b(0)} \text{ (per avere inseguimento perfetto di un riferimento } y^{\circ} \text{ costante)}$
 - $\begin{tabular}{ll} \textbf{else} & \mbox{non \`e possibile inseguire un riferimento costante} \\ \mbox{si pone ad esempio } H = K \\ \end{tabular}$

Considerazioni finali

- Se l'algoritmo termina al passo 1 il problema di controllo **non** è ben posto perché ci sono autovalori nascosti con Re ≥ 0 In questo caso dobbiamo **modificare** B e/o C per garantire che gli autovalori a Re ≥ 0 non siano nascosti
- Autovalori nascosti = autovalori non controllabili e/o non osservabili
 - Autovalori non controllabili con Re ≥ 0
 ⇒ dobbiamo modificare B (cambiare/aggiungere variabili di controllo)
 - Autovalori non osservabili con Re ≥ 0
 ⇒ dobbiamo modificare C (cambiare/aggiungere sensori)
- Se l'algoritmo termina al passo 2 vuol dire che la retroazione statica sull'uscita non è sufficientemente potente per stabilizzare
 - ⇒ dobbiamo considerare leggi di controllo più generali: retroazione dinamica sull'uscita (controllore = sistema dinamico)
- Condizione $G^*_{y^\circ y}(0)=1$ (specifica 2) soddisfacibile $\Leftrightarrow b(0) \neq 0$ Se b(0)=0 e vogliamo mantenere l'uscita a un valore costante, dobbiamo modificare B e/o C in modo da modificare b(s)

Esempio di progetto

• Consideriamo un sistema LTI TC con funzione di trasferimento

$$G(s) = \frac{s+1}{s(s-1)}$$

Obiettivo: progettare un controllore in retroazione algebrica sull'uscita

$$u = -K y + H y^{\circ}$$

Nota: quando il processo $\mathcal P$ viene dato in termini di funzione di trasferimento G(s) si intende implicitamente che non ci siano autovalori nascosti $\varphi_{\rm h}(s)=1$ e quindi che $\varphi(s)=a(s)$

 $\begin{array}{ll} \bullet \ \ \text{Per il sistema considerato} & a(s) = s \, (s-1) & b(s) = s+1 \\ \Rightarrow & \text{polinomio caratteristico in cilco chiuso} \end{array}$

$$\varphi^*(s) = \varphi_h(s) [a(s) + K b(s)] = s (s - 1) + K (s + 1) = s^2 + (K - 1) s + K$$

ullet Per Cartesio, stabilità quando K>1 (tutti coefficenti di segno concorde)

Esempio di progetto

• Ad esempio prendiamo K=6 e quindi

$$\varphi^*(s) = s^2 + (K-1)s + K = s^2 + 5s + 6 = (s+2)(s+3)$$

- \Rightarrow autovalori in ciclo chiuso $\lambda_1^* = -2$ e $\lambda_2^* = -3$
- Guadagno in feedforward

$$H = \frac{a(0) + Kb(0)}{b(0)} = K = 6$$

Legge di controllo

$$u = -Ky + Hy^{\circ} = -6y + 6y^{\circ} = 6(y^{\circ} - y)$$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{b(s)}{a(s) + K b(s)} H = \frac{s+1}{s^{2} + (K-1)s + K} H = \frac{6(s+1)}{s^{2} + 5s + 6}$$

Nota: In generale, per fissare K possiamo usare i criteri algebrici per studiare cosa succede alle radici di $\varphi^*(s)$ al variare di K

Esempio di progetto

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = s^2 + (K - 1) s + K$$

ullet Per scegliere K, possiamo anche tracciare il luogo delle radici e fissare K in modo che i poli in ciclo chiuso garantiscano un transitario soddisfacente

Luogo delle radici per K>0

Luogo delle radici per K < 0

Esercizi proposti

Dato il sistema LTI SISO

$$\begin{cases} \dot{x}_1 & = x_3 + \alpha^2 u \\ \dot{x}_2 & = x_1 + 2\alpha u \\ \dot{x}_3 & = x_2 + u \\ y & = x_3 \end{cases}$$

- **O** Determinare il polinomio caratteristico $\varphi(s)$ e la funzione di trasferimento G(s) al variare di $\alpha \in \mathbb{R}$;
- lacktriangle Dire per quali valori di lpha il problema di controllo in retroazione sull'uscita è ben posto;

Si fissi ora $\alpha=2$ e si consideri la legge di controllo in retroazione algenrica sull'uscita $u=-K\,y+H\,y^\circ.$

- \bigcirc Dire per quali valori di K si ha stabilità asintotica in ciclo chiuso;
- **9** Progettare, se possibile, i due guadagni K e H in modo da avere stabilità asintotica in ciclo chiuso e inseguimento perfetto di un riferimento costante y° .
- **9** Fissati K e H come al punto precedente, calcolare per il sistema in ciclo chiuso il regime permanente in risposta a un segnale di riferimento $y^{\circ}(t) = 5\sin(t)1(t)$

Suggerimento:

$$\mathrm{Adj}(sI-A) = \left[\begin{array}{ccc} s^2 & 1 & s \\ s & s^2 & 1 \\ 1 & s & s^2 \end{array} \right]$$

3.8 Retroazione dinamica sull'uscita

Retroazione dinamica sull'uscita

ullet Consideriamo un processo ${\mathcal P}$ avente

$$G(s) = \frac{b(s)}{a(s)}$$
 $\varphi(s) = \varphi_h(s)a(s)$

$$\varphi^*(s) = \varphi_h(s)[a(s) + K b(s)]$$

- ullet Avendo a disposizione il solo parametro K, non possiamo assegnare liberamente i poli in ciclo chiuso
 - \Rightarrow anche quando problema di controllo ben posto [$\varphi_h(s)$ con tutte radici a Re< 0] non sempre esiste K stabilizzante

Idea: Consideriamo una legge di controllo più generale in cui il segnale di controllo u è una funzione dinamica dell'uscita u e del riferimento u°

⇒ retroazione dinamica sull'uscita del tipo (dominio di Laplace)

$$U(s) = -K(s) Y(s) + H(s) Y^{\circ}(s)$$

Retroazione dinamica sull'uscita

Legge di controllo in retroazione algebrica sull'uscita nel dominio di Laplace

$$C: \quad U(s) = -K(s) Y(s) + H(s) Y^{\circ}(s)$$

- K(s) guadagno in feedback e H(s) guadagno in feedforward sono **funzioni di trasferimento proprie** (grado numeratore \leq grado denominatore)
- ullet Controllore ${\cal C}={
 m sistema}$ dinamico con funzione di trasferimento $[-K(s)\;H(s)]$

$$U(s) = [-K(s) H(s)] \begin{bmatrix} Y(s) \\ Y^{\circ}(s) \end{bmatrix}$$

Retroazione dinamica sull'uscita

Scelta tipica

$$H(s) = H_f(s) K(s)$$

con $H_f(s)$ funzione di trasferimento propria e stabile (tutti i poli a Re< 0) detta **prefiltro**

• Legge di controllo

$$U(s) = -K(s) Y(s) + K(s) H_f(s) Y^{\circ}(s)$$

= K(s) [H_f(s) Y^{\circ}(s) - Y(s)]

Nota: prefiltro $H_f(s)$ deve essere stabile perché fuori dall'anello di retroazione

Leggi di controllo a 1 e 2 gradi di libertà

Nella retroazione dinamica sull'uscita

$$U(s) = K(s) \left[H_f(s) Y^{\circ}(s) - Y(s) \right]$$

si distinguono 2 casi

- **①** Controllo a 1 grado di libertà: $H_f(s) = 1$
 - in questo caso $H(s) = H_f(s)K(s) = K(s)$
 - azione di controllo

$$U(s) = K(s) \left[Y^{\circ}(s) - Y(s) \right]$$

funzione del solo **errore di inseguimento** $y^{\circ}(t) - y(t)$

- **②** Controllo a 2 grado di libertà: $H_f(s) \neq 1$
 - in questo caso $H(s) = H_f(s)K(s) \neq K(s)$
 - ullet azione di controllo dipende separatamente da y(t) e $y^{\circ}(t)$

Nota: nel seguito per semplicità $H_f(s) = H_f$ guadagno costante

Funzione di trasferimento in ciclo chiuso

• Equazione del processo nel dominio di Laplace (supponendo x(0) = 0)

$$\mathcal{P}: \quad Y(s) = Y_f(s) \, = \, G(s) \, U(s)$$

• Equazione del controllore nel dominio di Laplace

$$C: \quad U(s) = K(s) \left[H_f Y^{\circ}(s) - Y(s) \right]$$

Di conseguenza, per sistemi SISO

$$\begin{array}{rcl} Y(s) & = & -G(s)\,K(s)\,Y(s) + G(s)\,K(s)\,H_f\,Y^\circ(s) \\ & & & \downarrow \\ Y(s) & = & \frac{G(s)\,K(s)\,H_f}{1 + G(s)\,K(s)}\,Y^\circ(s) \end{array}$$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{K(s) G(s)}{1 + K(s) G(s)} H_{f}$$

Funzione di trasferimento in ciclo chiuso

ullet Funzione di trasferimento del processo ${\cal P}$

$$G(s) = \frac{b(s)}{a(s)}$$

con grado b(s) < grado a(s)

• Funzione di trasferimento in feedback del controllore

$$K(s) = \frac{q(s)}{p(s)}$$

con grado $q(s) \leq \operatorname{grado} p(s)$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{K(s)G(s)}{1 + K(s)G(s)} H_{f} = \frac{\frac{q(s)b(s)}{p(s)a(s)}}{1 + \frac{q(s)b(s)}{p(s)a(s)}} H_{f}$$

$$= \frac{\frac{q(s)b(s)}{p(s)a(s)}}{\frac{p(s)a(s) + q(s)b(s)}{p(s)a(s)}} H_{f} = \frac{q(s)b(s)}{p(s)a(s) + q(s)b(s)} H_{f}$$

Polinomio caratteristico in ciclo chiuso

Supponendo per semplicità $H_f(s) = H_f$, funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{q(s)b(s)}{p(s)a(s) + q(s)b(s)} H_{f}$$

- Si ricorda che vale la fattorizzazione $\varphi(s)=\varphi_h(s)\,a(s)$ con
 - ullet radici di a(s) = poli del sistema (autovalori controllabili e osservabili
 - radici di $\varphi_h(s)=$ autovalori nascosti (autovalori non controllabili e/o non osservabili)
- Retroazione algebrica sull'uscita
 - modifica i poli del sistema assegnandoli come radici del polinomio

$$a^*(s) = p(s)a(s) + q(s)b(s)$$

ullet non modifica gli autovalori nascosti del sistema, radici di $arphi_h(s)$

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) a^*(s) = \varphi_h(s) [p(s)a(s) + q(s)b(s)]$$

Proprietà del sistema in ciclo chiuso

Fatto 3.9 Per sistemi LTI SISO, la legge di controllo in retroazione dinamica sull'uscita $U(s)=K(s)[H_f\,Y^\circ(s)-Y(s)]$

assegna il polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) a^*(s) = \varphi_h(s) [p(s)a(s) + q(s)b(s)]$$

assegna la funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{K(s) G(s)}{1 + K(s) G(s)} H_{f} = \frac{q(s)b(s)}{p(s)a(s) + q(s)b(s)} H_{f}$$

Nota: si suppone che il controllore sia privo di autovalori nascosti (lo possiamo fare perché il controllore è progettato da noi)

Esempio di retroazione dinamica

Consideriamo un sistema LTI TC con

$$G(s) = \frac{1}{s^2 - 1}$$

e quindi $a(s) = s^2 - 1$ b(s) = 1

- Supponiamo che non ci siano autovalori nascosti, ossia $\varphi_{\mathbf{h}}(s)=1$ \Rightarrow problema di controllo in retroazione sull'uscita **ben posto**
- Come visto questo sistema **non** può essere stabilizzato con una retroazione algebrica sull'uscita $u=-Ky+Hy^\circ$
- Consideriamo invece un retroazione dinamica sull'uscita $U(s) = K(s)[H_f Y^{\circ}(s) Y(s)]$ con

$$K(s) = \frac{q(s)}{p(s)} = \frac{q_1 s + q_0}{s + p_0}$$

Nota: con la retroazione algebrica avevamo a disposizione 1 solo parametro K per assegnare i poli, con la retroazione dinamica abbiamo invece a disposizione 3 parametri $p_0,\,q_0,\,q_1$

Esempio di retroazione dinamica

Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \varphi_h(s) [p(s)a(s) + q(s)b(s)]$$

$$= (s+p_0)(s^2-1) + (q_1s+q_0)$$

$$= s^3 + p_0s^2 - s - p_0 + q_1s + q_0 = s^3 + p_0s^2 + (q_1-1)s - p_0 + q_0$$

- Al variare di p_0 , q_0 , q_1 possiamo assegnare in modo arbitrario il polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = (s+1)(s+10)^2 = (s+1)(s^2+20s+100) = s^3+21s^2+120s+100$$

Di conseguenza, eguagliando i due polinomi

$$\begin{cases} p_0 = 21 \\ q_1 - 1 = 120 \\ -p_0 + q_0 = 100 \end{cases} \Rightarrow \begin{cases} p_0 = 21 \\ q_1 = 121 \\ q_0 = 121 \end{cases}$$

Esempio di retroazione dinamica

• Con la scelta $p_0 = 21$, $q_0 = 121$, $q_1 = 121$

$$K(s) = \frac{q_1 s + q_0}{s + p_0} = \frac{121s + 121}{s + 21}$$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{q(s)b(s)}{p(s)a(s) + q(s)b(s)} H_{f} = \frac{121s + 121}{s^{3} + 21s^{2} + 120s + 100} H_{f}$$

• Per avere inseguimento perfetto di un riferimento costante dobbiamo imporre $G_{n^{\circ}n}^{*}(0)=1$

$$G_{y^{\circ}y}^{*}(0) = \frac{121}{100}H_{f} = 1 \quad \Leftrightarrow \quad H_{f} = \frac{100}{121}$$

Nota: il procedimento visto può essere ripetuto per qualsiasi funzione di trasferimento G(s) del processo

Scelta dell'ordine del controllore

• Consideriamo un processo con funzione di trasferimento

$$G(s) = \frac{b(s)}{a(s)}$$

con b(s) e a(s) polinomi coprimi con grado b(s) < grado a(s)

 Consideriamo un controllore in retroazione dinamica sull'uscita con funzione di trasferimento

$$K(s) = \frac{q(s)}{p(s)}$$

con grado $q(s) = \operatorname{grado} p(s) = n_K$ ordine del controllore

- $2n_K + 1$ parametri liberi in K(s)
- Procedendo come nell'esempio, si può dimostrare il seguente risultato

Fatto 3.10 Se ordine del controllore n_K tale che $n_K \geq \operatorname{grado} a(s) - 1$, allora i coefficienti di $a^*(s) = p(s)a(s) + q(s)b(s)$ possono essere scelti in modo arbitrario al variare di p(s) e q(s)

⇒ i poli in ciclo chiuso possono essere posizionati a piacere

Progetto della retroazione dinamica sull'uscita

Specifiche di progetto

- Specifica 1: stabilità asintotica in ciclo chiuso
- **Specifica 2:** guadagno in continua in ciclo chiuso unitario $G^*_{y^{\circ}y}(0)=1$
- Specifica 3: garantire un transitorio rapido e con escursioni dell'uscita il più possibile limitate

• Guadagno in continua in ciclo chiuso

$$G_{y^{\circ}y}^{*}(0) = \frac{q(0)b(0)}{p(0)a(0) + q(0)b(0)} H_f$$

⇒ per soddisfare la specifica 2 dobbiamo porre

$$H_f = \frac{p(0)a(0) + q(0)b(0)}{q(0)b(0)}$$

Progetto della retroazione dinamica sull'uscita

Progetto di un sistema di controllo in retroazione dinamica sull'uscita

- Si calcola $\varphi_h(s) = \varphi(s)/a(s)$ If $\varphi_h(s)$ asintoticamente stabile (non ci sono autovalori nascosti instabili) il problema di controllo è *ben posto* e si va al passo 2

 else il problema di controllo *non* è ben posto
 - Il progetto non può essere concluso e l'algoritmo termina
- ② Si prende un controllore di ordine $n_K \ge$ grado a(s)-1 Si fissano p(s) e q(s) per soddisfare specifica 1 e 3 con il vincolo $q(0) \ne 0$ (per evitare problemi nel soddisfacimento della specifica 2)
- **If** $b(0) \neq 0$ si pone $H_f = \frac{p(0)a(0) + q(0)b(0)}{q(0)b(0)}$ (per avere inseguimento perfetto di un riferimento y° costante)
 - else non è possibile inseguire un riferimento costante si pone ad esempio ${\cal H}_f=1$

Implementazione della retroazione dinamica sull'uscita

 Consideriamo la legge di controllo in retroazione dinamica sull'uscita dell'esempio

$$U(s) = K(s)[H_f Y^{\circ}(s) - Y(s)] = \frac{q_1 s + q_0}{s + p_0} [H_f Y^{\circ}(s) - Y(s)]$$

In termini di relazione ingresso-uscita del controllore

Nota: retroazione dinamica TC significa che l'azione di controllo u è generata in funzione di y° e y come soluzione di un'equazione differenziale

Implementazione della retroazione dinamica sull'uscita

- Nella pratica, anche per sistemi TC la legge di controllo si implementa con controllori digitali e quindi a TD (in ambito indutriale: PLC controllori a logica programmabile)
- L'equazione differenziale che implementa il controllore viene approssimata con un'equazione alle differenze (ad esempio con metodo di Eulero o metodi più raffinati)
- Questo equivale ad approssimare la fdt TC K(s) con una fdt TD $K_d(z)$ funzioni MATLAB c2d, Python control.sample_system
- \bullet In alternativa, possiamo discretizzare il processo $\mathcal P$ e progettare direttamente un controllore TD

3.9 Controllo PID e azione integrale

Progetto mediante taratura di parametri

 Consideriamo una legge di controllo in retroazione dinamica sull'uscita a 1 grado di libertà

$$U(s) = K(s) \left[Y^{\circ}(s) - Y(s) \right]$$

- ullet Per progettare la funzione di trasferimento del controllore K(s), in alternativa al metodo visto, si può procedere

 - e quindi ottimizzando tali parametri mediante tecniche di taratura
- Scelta tipica in ambito industriale: controllo PID

Nota: progetto mediante taratura di parametri non garantisce sempre di poter stabilizzare e soddisfare le specifiche ma è molto usato in pratica perché semplice

Controllo PID

Controllo PID (proporzionale-integrale-derivativo)

$$u(t) = K_P \left(y^{\circ}(t) - y(t) \right) + K_I \int_0^t \left(y^{\circ}(\tau) - y(\tau) \right) d\tau + K_D \frac{d}{dt} \left(y^{\circ}(t) - y(t) \right)$$

- Controllo = combinazione di 3 azioni:
 - Azione proporzionale:

$$K_P\left(y^\circ(t)-y(t)\right)$$

Azione integrale:

$$K_I \int_0^t (y^{\circ}(\tau) - y(\tau)) d\tau$$

Azione derivativa:

$$K_D \frac{d}{dt} (y^{\circ}(t) - y(t))$$

ullet 3 parametri di progetto: guadagno proporzionale K_P , guadagno integrale K_I e guadagno derivativo K_D

Funzione di trasferimento del PID

Controllo PID nel dominio del tempo

$$u(t) = K_P \left(y^{\circ}(t) - y(t) \right) + K_I \int_0^t \left(y^{\circ}(\tau) - y(\tau) \right) d\tau + K_D \frac{d}{dt} \left(y^{\circ}(t) - y(t) \right)$$

- \bullet Ricordiamo che nel dominio di Laplace: s operatore di derivazione e 1/s operatore di integrazione
- Controllo PID nel dominio di Laplace

$$U(s) = K_P \left(Y^{\circ}(s) - Y(s) \right) + \frac{K_I}{s} \left(Y^{\circ}(s) - Y(s) \right) + K_D s \left(Y^{\circ}(s) - Y(s) \right)$$
$$= \frac{K_D s^2 + K_P s + K_I}{s} \left(Y^{\circ}(s) - Y(s) \right)$$

Funzione di trasferimento del PID (ideale):

$$K(s) = \frac{K_D s^2 + K_P s + K_I}{s}$$

PID ideale e PID reale

• Se $K_D \neq 0$, grado denominatore < grado numeratore

$$K(s) = \frac{K_D s^2 + K_P s + K_I}{s}$$

- ⇒ funzione di trasferimento del PID impropria
- Questo succede perché per calcolare la derivata $\frac{d}{dt}(y^\circ(t)-y(t))$ dobbiamo conoscere cosa succederà nell'immediato futuro
- Per rendere il controllore PID proprio, si aggiunge un polo
 - ⇒ Funzione di trasferimento del PID (reale):

$$K(s) = \frac{K_D s^2 + K_P s + K_I}{s (1 + s \tau)}$$

 $con \tau > 0$

- Nella pratica
 - ullet prima si progettano i guadagni K_P , K_I , K_D considerando un PID ideale
 - poi si sceglie $\tau \ll 1$ in modo da non modificare in modo sostanziale le proprietà del sistema di controllo (polo in $-1/\tau$ con Re $\ll 0 \implies$ transitorio molto rapido)

Controllo PID: ruolo delle 3 azioni

Azione proporzionale:

$$K_P\left(y^{\circ}(t)-y(t)\right)$$

corrisponde a una retroazione algebrica sull'uscita con $K=H=K_P$

Azione integrale:

$$K_I \int_0^t (y^{\circ}(\tau) - y(\tau)) d\tau$$

serve per

- inseguimento perfetto di riferimenti y° costanti anche in assenza del prefiltro ($H_f=1$)
- reiezione perfetta di disturbi costanti

Azione derivativa:

$$K_D \frac{d}{dt} (y^{\circ}(t) - y(t))$$

serve per

- rendere l'azione di controllo più pronta (prevede il trend di evoluzione dell'errore di inseguimento)
- migliorare la stabilità in ciclo chiuso

Legge di controllo con azione integrale

ullet Consideriamo una legge di controllo in retroazione dinamica sull'uscita a 1 grado di libertà

$$U(s) = K(s) \left[Y^{\circ}(s) - Y(s) \right]$$

Funzione di trasferimento del controllore

$$K(s) = \frac{q(s)}{p(s)}$$

 $\operatorname{con} p(s)$ e q(s) polinomi coprimi

Definizione: un controllore in retroazione dinamica sull'uscita presenta **azione** integrale quando K(s) ha almeno un polo in 0, ossia

$$p(0) = 0$$

Effetto di un disturbo sul sistema in ciclo chiuso

- Consideriamo un disturbo d sull'ingresso
- Equazioni del processo e del controllore

$$Y(s) = G(s) [U(s) + D(s)]$$

$$U(s) = K(s) [Y^{\circ}(s) - Y(s)]$$

Interconnessione in retroazione tra processo e controllore

$$\begin{array}{lcl} Y(s) & = & G(s)\left\{K(s)\left[Y^{\circ}(s) - Y(s)\right] + D(s)\right\} \\ & & \downarrow \\ Y(s) & = & \frac{K(s)G(s)}{1 + K(s)G(s)}Y^{\circ}(s) + \frac{G(s)}{1 + K(s)G(s)}D(s) \end{array}$$

Funzioni di trasferimento in ciclo chiuso

ullet Funzione di trasferimento in ciclo chiuso tra riferimento y° e uscita y

$$G_{y^{\circ}y}^{*}(s) = \frac{K(s)G(s)}{1 + K(s)G(s)}$$

ullet Funzione di trasferimento in ciclo chiuso tra disturbo d e uscita y

$$G_{dy}^{*}(s) = \frac{G(s)}{1 + K(s)G(s)}$$

- $\bullet\,$ Denominatore delle funzioni di trasferimento in ciclo chiuso dipende dal **guadagno d'anello** K(s) G(s)

$$G_{y^{\circ}y}^{*}(s) = \frac{K(s)G(s)}{1 + K(s)G(s)} = \frac{b(s) q(s)}{a(s) p(s) + b(s) q(s)}$$

$$G_{d\,y}^*(s) = \frac{G(s)}{1 + K(s)G(s)} = \frac{b(s)\,p(s)}{a(s)\,p(s) + b(s)\,q(s)}$$

Regime permanente

Per il principo di sovrapposizione degli effetti, regime permanente complessivo

$$y_f^{\rm RP}(t) = y_f^{Y^{\circ}}(t) + y_f^{D}(t)$$

- $y_f^{Y^\circ}$ regime permanente in risposta al riferimento y°
- $ullet y_f^D$ regime permanente in risposta al disturbo d
- Supponiamo riferimento y° e disturbo d° costanti

$$y^{\circ}(t) = Y_0 1(t)$$
 $d(t) = D_0 1(t)$

⇒ regime permanente complessivo

$$y_f^{\text{RP}}(t) = [G_{y^{\circ}y}^*(0) Y_0 + G_{dy}^*(0) D_0] 1(t)$$

con

$$\begin{array}{lcl} G_{y^{\diamond}y}^{*}(0) & = & \frac{b(0)\,q(0)}{a(0)\,p(0) + b(0)\,q(0)} \\ \\ G_{dy}^{*}(0) & = & \frac{b(0)\,p(0)}{a(0)\,p(0) + b(0)\,q(0)} \end{array}$$

Proprietà dell'azione integrale

- Supponiamo
 - $b(0) \neq 0$
 - controllore con azione integrale, ossia p(0) = 0
- Guadagni in continua in ciclo chiuso

$$G_{y^{\circ}y}^{*}(0) = \frac{b(0) q(0)}{a(0) p(0) + b(0) q(0)} = 1$$

$$G_{dy}^{*}(0) = \frac{b(0) p(0)}{a(0) p(0) + b(0) q(0)} = 0$$

Regime permanente complessivo

$$y_f^{\text{RP}}(t) = [G_{y^{\circ}y}^*(0) Y_0 + G_{dy}^*(0) D_0] 1(t) = Y_0 1(t)$$

• L'uscita converge al valore desiderato Y_0 anche in presenza di un disturbo costante \Rightarrow **reiezione** perfetta del disturbo

Proprietà dell'azione integrale

Fatto 3.11 Consideriamo un controllore in retroazione dinamica sull'uscita a 1 grado di libertà

$$U(s) = K(s)[Y^{\circ}(s) - Y(s)]$$

con azione integrale e tale che $\varphi^*(s)$ sia asintoticamente stabile. Allora tale controllore garantisce

- inseguimento perfetto di un riferimento costante
- reiezione perfetta di un disturbo costante

- In presenza di azione integrale, il prefiltro non è necessario per soddisfare la specifica 2 (inseguimento perfetto)
 - \Rightarrow per questo motivo si pone $H_f=1$ considerando un sistema di controllo a 1 grado di libertà
- Questo approccio può essere applicato anche ad altri tipi di riferimenti/disturbi [esempio: inserendo un doppio integratore, ossia un polo doppio in 0 in K(s), si ottiene inseguimento perfetto di riferimenti a rampa $y^{\circ}(t) = Y^{\circ} \cdot t \cdot 1(t)$]

Scelta dell'ordine del controllore

- Possiamo modificare il progetto del controllo in retroazione dinamica sull'uscita inserendo anche l'azione integrale
- Consideriamo un controllore in retroazione dinamica sull'uscita con funzione di trasferimento

$$K(s) = \frac{q(s)}{p(s)}$$

con grado $q(s) = \text{grado } p(s) = n_K$ ordine del controllore

- $2n_K + 1$ parametri liberi in K(s)
- Imponiamo che il controllore abbia azione integrale ossia p(0)=0 \Rightarrow rimangono $2n_K$ parametri liberi

Fatto 3.12 Consideriamo un processo tale che $b(0) \neq 0$ e un controllore con azione integrale. Se ordine del controllore n_K tale che $n_K \geq \operatorname{grado} a(s)$, allora i coefficienti di $a^*(s) = p(s)a(s) + q(s)b(s)$ possono essere scelti in modo arbitrario al variare di p(s) e q(s)

⇒ i poli in ciclo chiuso possono essere posizionati a piacere

Esercizi proposti

Si consideri il sistema a retroazione in figura con

$$G(s) = \frac{3}{s^2 + 1}$$

- lacktriangle Progettare la funzione di trasferimento del controllore K(s) in modo tale che il sistema in ciclo chiuso sia asintoticamente stabile.
- Progettare un controllore con azione integrale tale che il sistema in ciclo chiuso sia asintoticamente stabile.
- Si supponga che

$$y^{\circ}(t) = 10 \cdot 1(t), \quad d(t) = 5 \cdot 1(t)$$

Per i controllori progettati ai punti a) e b), determinare il regime permanente per l'uscita y(t) e l'errore di inseguimento $y(t)-y^{\circ}(t)$ a regime.