Рассмотрим последовательность с вкраплениями, задавемую следующим образом:

$$\tau_s - \nu_s,$$
 (1)

где au_s - длина серии, а u_s - количество серий длины au_s

Рассмотрим последовательность вида: ... $00 \underbrace{11...11}_{} 00...$:

При $\tau = 1$ вероятность на границе серий:

 $P = \frac{1}{4}(1-arepsilon)^2$ без вкраплений, $P = \frac{1}{4}(1+arepsilon)^2$ с вкраплениями.

При $\tau > 1$:

 $P=rac{1}{2^{ au+1}}(1-arepsilon)^2(1+arepsilon)^{ au-1}, au=2,3,...,s$ - без вкраплений $P=rac{1}{2^{ au+1}}(1-arepsilon)^2(1+arepsilon)^{ au-1}, au=2,3,...,s$ - если вкраплённый бит граничный $P=rac{1}{2^{ au+1}}(1-arepsilon)^2(1+arepsilon)^{ au-3}(1+arepsilon^2), au=3,...,s$ - если вкраплённый бит находится не на границе серии.

Рассмотрим отдельно первую и последнюю серии полученной последовательности:

 $P=rac{1}{2^{ au+1}}(1-arepsilon)(1+arepsilon)^{ au-1}, orall au$ - для первой серии без вкраплений, $P=rac{1}{2^{ au}}(1-arepsilon)(1+arepsilon)^{ au-1}, orall au$ - для последней серии без вкраплений.

Первая серия при наличии вкраплений:

При $\tau = 1$:

 $P = \frac{1}{4}$

При $\tau = 2$:

 $P = \frac{1}{8}(1 - \varepsilon)$ если первый бит серии с вкраплением,

 $P = \frac{1}{8}(1 - \varepsilon^2)$ если второй бит серии с вкраплением.

При $\tau > 2$: $P = \frac{1}{2^{\tau}+1}(1+\varepsilon)^{\tau-2}(1-\varepsilon) \text{ если первый бит серии с вкраплением}$ $P = \frac{1}{2^{\tau}+1}(1+\varepsilon)^{\tau-2}(1-\varepsilon^2) \text{ если последний бит серии с вкраплением}$ $P = \frac{1}{2^{\tau}+1}(1+\varepsilon)^{\tau-3}(1+\varepsilon^2)(1-\varepsilon) \text{ если вкроплённый бит находится не на границе серии}$

Последняя серия при наличии вкраплений:

При $\tau = 1$:

 $P = \frac{1}{2}$

При $\tau = 2$:

 $P = \frac{1}{4}(1 - \varepsilon^2)$ если первый бит серии с вкраплением,

 $P = \frac{1}{4}(1-\varepsilon)$ если второй бит серии с вкраплением.

При $\tau > 2$:

 $P=rac{1}{2^{ au}}(1-arepsilon^2)(1+arepsilon)^{ au-2}$ если вкроплённый бит является первым в серии $P=rac{1}{2^{ au}}(1-arepsilon)(1+arepsilon)^{ au-2}$ если вкроплённый бит является последним в серии $P=rac{1}{2^{ au}}(1-arepsilon)(1+arepsilon^2)(1+arepsilon)^{ au-3}$ если вкроплённый бит находится не на границе серии.

Тогда:

$$P = (1 - \delta)^T P_0 + \delta (1 - \delta)^{T-1} P_1 + O(\delta^2)$$
(2)

где P_0 - вероятность появления серий без вкраплений, P_1 - вероятность появления серий с одним вкраплением.

Тогда из вероятностей для серий без вкраплений получим:

$$P_{0} = \left(\sum_{k=1}^{s} \frac{1}{2^{\tau_{k}+1}} (1+\varepsilon)^{\tau_{k}-1} (1-\varepsilon) \nu_{k}\right) \left(\sum_{k=1}^{s} \frac{1}{2^{\tau_{k}+1}} (1+\varepsilon)^{\tau_{k}-1} (1-\varepsilon)^{2} \nu_{k}\right) \left(\sum_{k=1}^{s} \frac{1}{2^{\tau_{k}}} (1+\varepsilon)^{\tau_{k}-1} (1-\varepsilon) \nu_{k}\right);$$
(3)