Course No:	se No: NA Course Name: Applied Mathematics III						Course Code: BMAS 0109					
Batch:		Programme:	Semester:		T	P	J	Credits	Contact H	Irs.		
		B. Tech. (CSE- AIML) II Year	III/IV						Per Wee	k: 4		
2023-2027		And		4	0	0	0	4	Total Ho	urs: 40		
		B. Tech. (CSE - Hons.) II year										
Total Evalu	Examination Duration:											
	Mid Term (2 hours), End Term (3 hours)											
Mid Term:	wid Term (2 nours), End Term (3 nours)											
End Term:	Pre-requisite of course: NIL											
Internal Assessment: 20 Marks												
Course		make the students understand the	_						_			
Objective	_		neir applications in modelling and problem solving.									
	After studying these topics, the students will be able to:											
Course		CO1: Understand partial differentiation and its applications										
		CO2: Expand a real valued function of several variables in Taylor's series										
Outcomes		CO3: Calculate Jacobian and know its applications										
	CO4: Use Lagrange's method of multipliers in determining the extrema of functions											
		CO5: Evaluate double and triple integrals and study their applications										
		CO6: Apply numerical integration to solve definite integrals										
		CO7: Find the gradient of a scalar field and divergence, curl of a vector field										
		CO8: Know various integral theorems related to line, surface and volume integrals										
	CO9: Solve ordinary differential equations of first and higher orders											
	CO10: Numerically solve the initial value problems using Runge-Kutta IV order method											
COURSE SYLLABUS												
Module No	-	Со	ntent							Hours		
	[Course Outcome(s) No.: 1, 2, 3, 4, 5 and 6]											
	Differential Calculus: Introduction, Calculation of higher order derivatives,						5,					
I	Pai	Partial Derivatives and its Interpretation in multiple dimensions, Euler's theorem,							, 20			
	Cor	Composite functions, Total derivatives, Expansion of function of several variables by										
	Tay	Taylor's series, Jacobian and its applications, Extrema of functions of several										
	var	variables, Lagrange's method of multipliers.										
	Int	Integral Calculus: Beta and Gamma functions, Double and Triple Integrals in										
	Cartesian and polar coordinate systems, Errors and their analysis, types of error,											
	Numerical integration by Trapezoidal and Simpson's rules (without proofs).											
	[Co	[Course Outcome(s) No.: 7, 8, 9 and 10]										
	Vector Calculus: Scalar and vector point functions, Gradient, divergence, curl and									d		
II	their applications, Line, surface and volume Integrals, Green's, Gauss' divergence											
										20		
	Ordinary Differential Equations: Introduction, Linear differential equation of first								t l			
	order, Exact and reducible to exact differential equations, Linear differential											
		equation of nth order with constant coefficients, Complementary function and										
	_	particular integral, Simultaneous differential equations, Numerical solution of										
	_	first order initial value problems by Runge-Kutta IV order method.										
		Applications of calculus and ordinary differential equations in modelling and										
			umerenda	ıı e	qua	auc	1115	111 11100	cillig all	ı		
	hi.(oblem solving.										

Text Books:

- Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2011.
- M. K. Jain, S. R. K. Iyengar and R. K. Jain, Advanced Engineering Mathematics, Narosa Publishing House, New Delhi, 2002.
- W. E. Boyce and R. D. Prima, Elementary Differential Equations, John Wiley & Sons, 2009.
- ➤ B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 2014.
- S. S. Sastry, Introductory Methods of Numerical Analysis, PHI, 2012.

Reference Books:

- T. M. Apostol, Calculus, Volume I, John Wiley & Sons, Inc., USA, 1967.
- T. M. Apostol, Calculus, Volume II, Xerox Corporation, USA, 1969.
- ➤ G. B. Thomas and R. Finney, Calculus and Analytic geometry, Addison Wesley, USA, 1995.