

PRÁCTICA NO. 7

Título de la práctica:	Programas de recursividad		
Objetivo:	Diseñar e implementar TAD's recursivo		
Descripción:	Programar funciones recursivas.		
Unidad:	III		
Departamental:	3		
Porcentaje dentro de la unidad:	10%		

Actividad:

Nombre:			N.L	Fecha:	
Grupo:	Aciertos:	Calificaciór	n:		
Contesta los siguientes puntos:					

- 1. Diseñar e implementar un TAD que permita obtener la serie Fibonacci por medio de recursividad.
- 2. La forma para calcular cuantas maneras diferentes tengo para elegir r cosas distintas de un conjunto de n cosas es:

$$C(n,r) = n! (r!*(n-r)!)$$

Donde la función factorial se define como

$$n! = n *(n-1)*(n-2)*...*2*1$$

Descubra una versión recursiva de la fórmula anterior y escriba una función recursiva que calcule el valor de dicha fórmula.

- 3. Escribir una función recursiva que devuelva la suma de los primeros N enteros.
- 4. Programe un método recursivo que transforme un número expresado en notación binaria a un número entero.
- 5. Programar un algoritmo recursivo que permita invertir un número. Ejemplo: N= 9345 Resultado: 5439