

Phase-3

Student Name: HemaKanitha S

Register Number: 410723104025

Institution: Dhanalakshmi College of Engineering

Department: Computer Science and Engineering

Date of Submission: 13-05-2025

Github Repository Link: https://github.com/Hemakanitha1036/Nm-

HemaKanitha-

Predicting air quality levels using advanced Machine Learning algorithms for Environmental Insights

1. Problem Statement

This project aims to accurately predict air quality levels by leveraging advanced machine learning models on environmental and meteorological data. Develop a machine learning model to accurately forecast Air Quality Index (AQI) and pollutant concentrations, enabling early warnings, informed decision-making, and improved public health.

2. Abstract

- To develop a predictive model for air quality using historical environmental data, focusing on key pollutants such as PM2.5, PM10, NO2, and CO levels.
- The primary objective is to accurately forecast air quality index (AQI) values to support timely decision-making and public health advisories.
- The approach involves data collection from publicly available air quality datasets, followed by preprocessing, feature selection, and model training

using machine learning algorithms such as Random Forest and Gradient Boosting.

• This work contributes to proactive air quality management and can be integrated into real-time monitoring systems.

3. System Requirements

• Hardware:

Processor: Intel Core i5 or higher (or equivalent AMD processor)

RAM: Minimum 8 GB (16 GB recommended for large datasets)

Storage: At least 50 GB free space (for datasets, models, and software)

Software:

Programming Language: Python **Data Processing:** Pandas, NumPy

Visualization: Matplotlib, Seaborn, Plotly Machine Learning: Scikit-learn, XGBoost. Environment: jupyter Anaconda, google colab

4. Objectives

The objective of air quality prediction using machine learning is to accuratelyforecast pollution levels (like PM2.5, PM10, NO2, CO, etc.) in the air based onvarious environmental, weather, and traffic-related features. Estimate future levels of pollutants such as PM2.5, PM10, NO2, SO2, CO, andO3. This helps in early warning systems for public health. Use featureimportance to identify which factors (e.g., temperature, humidity, wind speed, traffic levels) most affect air quality. Provide forecasts to the public via apps or websites so they can take precautions.

5. Flowchart of Project Workflow:

6. Dataset Description

• Source: Kaggle-AirQualityPrediction

• Type: public

• Size and structure: 4000 rows and 23 columns

• Dataset link: https://www.kaggle.com/datasets/khushikyad001/air-quality-data/data

df	df.head()														
	Date	Time	CO(GT)	NOx(GT)	NO2(GT)	03(GT)	SO2(GT)	PM2.5	PM10	Temperature	 WindDirection	CO_NOx_Ratio	NOx_NO2_Ratio	Temp_Humidity_Index	AirQualityIndex
0	2024- 01-01	00:00	3.807947	172.026768	144.333317	118.120832	1.215679	147.349671	208.803124	28.564580	 209.984267	0.022008	1.183671	3.541778	343.353046
1	2024- 01-01	01:00	9.512072	241.824266	137.769318	15.325830	1.016178	40.979839	145.595579	6.793192	 319.534890	0.039173	1.742635	0.727989	206.282028
2	2024- 01-01	02:00	7.346740	228.288118	20.055086	44.377036	24.140910	72.594740	26.155000	24.436552	 274.644300	0.032042	10.842422	7.378322	140.170920
3	2024- 01-01	03:00	6.026719	47.016072	184.591909	139.488603	2.435392	134.339724	276.367944	26.463951	 312.266023	0.125515	0.253330	21.684266	307.928588
4	2024- 01-01	04:00	1.644585	45.625591	114.125968	95.634768	48.752095	99.007422	294.295449	10.530331	 21.392120	0.035272	0.396310	9.627596	370.134556

5 rows × 23 columns

7. Data Preprocessing

- Remove duplicates and handled missing values.
- Encoded categorical variables using Label Encoding.
- Scaled numeric features using Standard Scaler.

• Description of data:

<pre>df.describe()</pre>														
	CO(GT)	NOx(GT)	NO2(GT)	O3(GT)	SO2(GT)	PM2.5	PM10	Temperature	Humidity	Pressure	 WindDirection	CO_NOx_Ratio	NOx_NO2_Ratio	Temp_Humidity_I
count	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	 4000.000000	4000.000000	4000.000000	4000.00
mean	5.025385	148.126633	100.213189	89.914815	26.081045	104.765999	153.591417	17.305228	54.626284	999.862679	 179.571724	0.082564	3.412176	9.41
std	2.874632	85.999247	57.074947	52.003484	14.059684	56.344868	83.080911	12.943632	25.844003	28.897118	 104.738760	0.215593	7.996062	8.98
min	0.100115	1.009185	1.010513	1.055442	1.012370	5.009384	10.031967	-4.996963	10.000498	950.018004	 0.033694	0.000389	0.006021	-4.82
25%	2.514242	73.636615	51.326622	44.179487	14.220565	56.544378	82.200105	6.092531	31.970628	975.018939	 86.409827	0.017033	0.719052	2.55
50%	5.054973	146.440690	99.508855	88.956924	26.321359	105.502686	154.714484	17.184773	55.113650	999.857722	 179.401393	0.034021	1.467460	6.97
75%	7.524652	221.823697	149.666167	136.333683	37.833728	153.751364	222.969347	28.573093	76.311009	1024.763352	 272.370032	0.065973	2.789423	14.75
max	9.997205	299.838744	199.934968	179.986544	49.993700	199.980691	299.911727	39.987944	99.981043	1049.926869	 359.984504	4.078615	131.169948	39.37

8 rows × 21 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4000 entries, 0 to 3999
Data columns (total 23 columns):

#	Column		Null Count	Dtype
	D-1-		11	
0	Date		non-null	object
1	Time	4000	non-null	object
2	CO(GT)	4000	non-null	float64
3	NOx(GT)	4000	non-null	float64
4	NO2(GT)	4000	non-null	float64
5	03(GT)	4000	non-null	float64
6	S02(GT)	4000	non-null	float64
7	PM2.5	4000	non-null	float64
8	PM10	4000	non-null	float64
9	Temperature	4000	non-null	float64
10	Humidity	4000	non-null	float64
11	Pressure	4000	non-null	float64
12	WindSpeed	4000	non-null	float64
13	WindDirection	4000	non-null	float64
14	CO_NOx_Ratio	4000	non-null	float64
15	NOx_NO2_Ratio	4000	non-null	float64
16	Temp_Humidity_Index	4000	non-null	float64
17	AirQualityIndex	4000	non-null	float64
18	CO_MA3	4000	non-null	float64
19	NO2_MA3	4000	non-null	float64
20	03_MA3	4000	non-null	float64
21	DayOfWeek	4000	non-null	int64
22	Hour	4000	non-null	int64
d+vn	os: float64(19) int6	1/2)	object(2)	

dtypes: float64(19), int64(2), object(2)

memory usage: 718.9+ KB

• Handle missing values:

```
df.isnull().sum()
Date
                         0
Time
                         0
CO(GT)
                         0
NOx(GT)
                         0
NO2(GT)
                         0
03(GT)
                         0
S02(GT)
                         0
PM2.5
                         0
                         0
PM10
Temperature
                         0
Humidity
Pressure
WindSpeed
WindDirection
CO_NOx_Ratio
                         0
NOx_NO2_Ratio
Temp_Humidity_Index
                         0
AirQualityIndex
                         0
CO_MA3
                         0
NO2_MA3
                         0
03_MA3
                         0
DayOfWeek
                         0
Hour
                         0
dtype: int64
```

• Code to check for Duplicate values:

```
print(df.duplicated().sum())
```


8. Exploratory Data Analysis (EDA)

• Pie Chart Visualisation:

• Histogram visualization:

• Correlation Matrix Heatmap:

• Box Plot Visulaisation:

9. Feature Engineering

- Create new features to improve model accuracy. Bar plots or box plots of newly created features (e.g., pollutant ratios like PM2.5/PM10).
- plot pollution level by hour of day, day of week. Helps see if certain times are more polluted.
- Combined weighted score of multiple pollutants.


```
#standard scaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[['Temperature', 'Pressure', 'Humidity']] = scaler.fit_transform(df[['Temperature', 'Pressure', 'Humidity']])
df[['Temperature', 'Pressure', 'Humidity']].head()
```

	remperature	Pressure	Humidity
0	0.864726	1.436303	-1.636355
1	-0.816229	1.560145	-1.701307
2	0.562484	-1.712565	-0.930544
3	0.719234	-0.620507	1.063046
4	-0.502728	1.159175	1.414653

Townsendors December Unwidited

10. Model Building

Air quality prediction is a critical task that involves forecasting the concentration of pollutants in the air, such as particulate matter (PM), nitrogen dioxide(NO2),ozone (O3), and others. Select and implement at least 2 Machine learning. E.g., Logistic Regression, Decision Tree, Random Forest, KNN, etc.

```
# Random Forest Algorithm
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
df = pd.read_csv("AirQualityData.csv")
le = LabelEncoder()
for col in df.select_dtypes(include='object').columns:
    df[col] = le.fit_transform(df[col])
X = df.drop('Time', axis=1)
y = df['Time']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test,y_pred))
```


Accuracy: 0.94625

Classification Report:

ciassificacion	Report.			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	43
1	1.00	1.00	1.00	35
2	0.97	1.00	0.99	37
3	1.00	0.97	0.98	30
4	0.94	1.00	0.97	33
5	0.97	0.97	0.97	30
6	1.00	0.93	0.96	44
7	0.96	0.96	0.96	25
8	0.90	1.00	0.95	37
9	0.85	0.85	0.85	34
10	0.91	0.81	0.86	37
11	0.77	0.84	0.81	32
12	0.92	0.92	0.92	24
13	1.00	0.94	0.97	35
14	0.82	0.96	0.89	28
15	0.91	0.88	0.90	34
16	0.91	0.91	0.91	32
17	0.91	0.86	0.89	36
18	0.97	0.92	0.95	39
19	1.00	1.00	1.00	33
20	1.00	1.00	1.00	32
21	1.00	1.00	1.00	27
22	1.00	1.00	1.00	32
23	1.00	1.00	1.00	31
accuracy			0.95	800
macro avg	0.95	0.95	0.95	800
weighted avg	0.95	0.95	0.95	800

#Scaler standarisation:

```
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
mae = mean_absolute_error(y_test,y_pred)
mse = mean_squared_error(y_test,y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Absolute Error (MAE):", mae)
print("Mean Squared Error (MSE):", mse)
print("R-squared (R²):",r2)
Mean Absolute Error (MAE): 3.8
Mean Squared Error (MSE): 22.525
R-squared (R²): 0.5378960499472312
```

#KNN Algorithm

```
#svm algorithm with confusion matrix
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import confusion matrix
from sklearn.preprocessing import LabelEncoder
df = pd.read_csv('AirQualityData.csv')
df = df.dropna()
df['Temperature'] = df['Temperature'].astype(str)
X = df['Temperature']
y = df['Date']
le = LabelEncoder()
y = le.fit_transform(y)
vectorizer = TfidfVectorizer()
X_tfidf = vectorizer.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y, test_size=0.2, random_state=42)
svm_clf = svm.SVC(kernel='linear')
svm_clf.fit(X_train, y_train)
y_pred = svm_clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:")
print(confusion_matrix(y_test,y_pred))
ccuracy: 0.00375
onfusion Matrix:
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 1 0]
[000...000]
[000...000]]
```


#SVM algorithm

```
#svm algorithm with confusion matrix
 import pandas as pd
 from sklearn.feature_extraction.text import TfidfVectorizer
 from sklearn.model_selection import train_test_split
 from sklearn import svm
 from sklearn.metrics import confusion_matrix
 from sklearn.preprocessing import LabelEncoder
 df = pd.read_csv('AirQualityData.csv')
 df['Temperature'] = df['Temperature'].astype(str)
 X = df['Temperature']
y = df['Date']
 le = LabelEncoder()
y = le.fit_transform(y)
 vectorizer = TfidfVectorizer()
 X_tfidf = vectorizer.fit_transform(X)
 X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y, test_size=0.2, random_state=42)
 svm_clf = svm.SVC(kernel='linear')
 svm_clf.fit(X_train, y_train)
y_pred = svm_clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
 print("Confusion Matrix:")
 print(confusion_matrix(y_test,y_pred))
Accuracy: 0.00375
Confusion Matrix:
[[000 ... 000]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 1 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
```

11. Model Evaluation

- Evaluation metrics:
 - o accuracy:94%
 - o F1-score:0.95

• Visuals:

- Confusion matrix
- Classification report
- Precision
- o Recall

• K means cluster:

```
#k means clustering
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
df = pd.read_csv('AirQualityData.csv')
df_numeric = df.select_dtypes(include=[np.number])
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df_numeric)
inertia = []
k_range = range(1, 11)
for k in k range:
   kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(scaled data)
   inertia.append(kmeans.inertia_)
plt.plot(k_range, inertia, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('Elbow Method For Optimal k')
plt.grid(True)
plt.show()
kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(scaled_data)
print(df[['Cluster']].value_counts())
pca = PCA(n_components=2)
reduced_data = pca.fit_transform(scaled_data)
plt.figure(figsize=(8, 5))
plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=df['Cluster'], cmap='viridis')
plt.title('K-Means Clusters (PCA 2D)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.colorbar(label='Cluster')
plt.show()
```


Cluster

0 1522 1 1350 2 1128

Name: count, dtype: int64

#Time series Composition:

12. Deployment

The trained air quality prediction model was deployed as a REST API using Flask. The deployment process involved the following steps:

Model Saving:

After training, the model was saved using the joblib library for future use without retraining.

• API Development:

A lightweight Flask application was created to serve predictions. The app accepts input parameters (such as temperature, humidity, etc.) via POST requests and returns the predicted PM2.5 level.

• Testing Locally:

The API was run locally on localhost:5000 to ensure the model correctly receives input and returns valid predictions.

13. Source code

```
import pandas as pd
from sklearn.model selection
import train test split from sklearn.preprocessing
import LabelEncoder, StandardScaler
from sklearn.ensemble
import RandomForestClassifier from sklearn.metrics
import classification report, confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read csv('AirQualityData.csv')
df.head()
df.info( )
df.describe( )
df.isnull().sum()
```



```
df.drop duplicates()
df.drop duplicates( ).sum( )
#Box Plot:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv('AirQualityData.csv')
df.plot(kind='box', figsize=(20,16), subplots=True, layout=(1,
len(df.select dtypes(include='number').columns)), sharey=False)
plt.show()
#Histogram:
import matplotlib.pyplot as plt
df.hist(figsize=(15,9))
plt.show()
#Pie chart:
import matplotlib.pyplot as plt
df['Time'].value counts().plot(kind='pie', autopct='%1.1f%%')
```

#Correlation Heat Matrix:

plt.show()


```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
corr matrix = df.corr(numeric only=True)
plt.figure(figsize=(10, 8))
sns.heatmap(corr matrix, annot=True, cmap='coolwarm', fmt=".2f",
linewidths=0.5)
plt.title('Correlation Matrix Heatmap')
plt.show()
# Scatter plot
plt.figure(figsize=(10,6))
sns.scatterplot(x=df['Date'], y=df['CO(GT)'], alpha=0.3)
plt.title('Date vs CO(GT)')
plt.xlabel('Date')
plt.ylabel('CO(GT)')
plt.show()
#Time series Decomposition
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal decompose
date range = pd.date range(start='2020-01-01', periods=365, freq='D')
import numpy as np
```



```
data = np.random.normal(loc=50, scale=10, size=365) + np.sin(np.linspace(0, 3.14*2, 365))*10

df = pd.DataFrame({'date': date_range, 'PM2.5': data})

df.set_index('date', inplace=True)

decomposition = seasonal_decompose(df['PM2.5'], model='additive', period=30)

fig = decomposition.plot()

fig.set_size_inches(10,8)

plt.show()
```

14. Future scope

- Real-time Prediction and Monitoring: The model can be integrated with IoT-enabled air quality sensors to provide real-time AQI forecasting and alerts for specific regions.
- Expansion to More Pollutants and Weather Factors: Future versions can incorporate additional pollutants (like O₃, SO₂) and meteorological parameters (wind speed, humidity) to improve prediction accuracy.
- **Geospatial Analysis:** Adding GIS capabilities can help visualize AQI across regions, aiding in targeted environmental policy-making.
- **Mobile and Web Applications:** A user-friendly interface (dashboard or app) can be developed for the public to monitor air quality and receive health advisories.

13. Team Members and Roles

NAMES	ROLES	RESPONSIBILITY		
Narmadha D	Member	Data collection and Prepocessing		
Mohana priya K	Member	EDA and Feature Engineering		
Abinaya B	Leader	Model building and Evalution		
Hema kanitha S	Member	Data Visualisation and Interpretation		