Derivativos de Renda Fixa

Parte 3: Opções de IDI e DI

Gestão de Títulos de Renda Fixa

André Catalão

24/03/2020

Objetivos

- Opção de IDI (Opção de Índice);
- Opção de DI1 (Opção de FRA);

Opção de IDI

- Ativo-Objeto: Índice IDI
 - Índice que representa a acumulação de CDI overnight a partir de uma data específica.

$$IDI_t = IDI_{t-1} \times (1 + cdi_{t-1})^{1/252}$$

Em forma de integral: $IDI_t = IDI_0 e^{\int_0^{t-1} r dt}$

• Atualmente, a data inicial para acumulação do índice, isto é t=0, tal que $IDI_0=100.000$ é 02/01/2009,

Definição Índice IDI

Anexo I

Definição do Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI)

O Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI) é definido como o valor teórico de 100.000,00 pontos na data de início de valorização fixada pela BM&F, quando passa a ser corrigido pela Taxa Média de Depósitos Interfinanceiros de Um Dia (DI), calculada pela Central de Custódia e de Liquidação Financeira de Títulos (Cetip) por meio da seguinte fórmula:

$$IDI_{t} = IDI_{t-1} \times \left(\frac{i_{t-1}}{100} + 1\right)$$

onde:

IDI_t = Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI) na data "t", com duas casas decimais;
 IDI_{t-1} = Índice de Taxa Média de Depósitos Interfinanceiros de Um Dia (IDI) na data "t-1", com duas casas decimais:

i_{t-1} = Taxa Média de Depósitos Interfinanceiros de Um Dia, referente ao dia anterior, calculada pela Cetip, expressa em percentual ao dia (taxa efetiva dia), com até sete casas decimais.

Opção de IDI

- Uma opção de Índice IDI envolve uma aposta sobre o valor do índice numa data T>t, onde t é a data de apreçamento.
- A projeção do índice a uma data futura envolve a taxa pré para o prazo, uma vez que esta representa a realização dos cdi overnight para o período futuro.

$$I_T = I_t \times (1 + pr\acute{e}(t, T))^T$$

• A opção, então permite operar a visão sobre a realização da taxa CDI.

Opção de IDI - Apreçamento

• Pressupomos modelo lognormal para a evolução do índice

$$dI_t = I_t r dt + I_t \sigma \sqrt{dt} dW_t$$

ullet Payoff de call e put de strike K, respectivamente, para o vencimento t_V

$$C\left(t_{V}\right) = max\left(I_{V} - K, 0\right)$$

$$P(t_V) = max(K - I_V, 0)$$

Opção de IDI - Apreçamento

• Preços para um dia t, da call e da put

$$C(t) = e^{-rT} [F_t \cdot N(d_1) - K \cdot N(d_2)]$$

$$P(t) = e^{-rT} [K \cdot N(-d_2) - F_t \cdot N(-d_1)]$$

$$F_t = I_t \cdot e^{rT}$$
 $d_1 = \frac{\ln\left(\frac{F}{K}\right) + \frac{\sigma^2 T}{2}}{\sigma\sqrt{T}}$ $d_2 = d_1 - \sigma\sqrt{T}$

$$N(x) = \int_{-\infty}^{x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$$

Opção de DI1

- Opção cujo ativo-objeto é a **taxa** do FRA de DI1 de prazo τ , que começa no vencimento da opção t_V e termina no vencimento t $'=t_V+\tau$.
 - É uma opção sobre um FRA forward, portanto. No mercado internacional, são os instrumentos caplet (call) e floorlet (put).
 - A B3 padroniza as opções.
 - Tipo1: opções em que o FRA DI1 tem 3 meses, a contar a partir do vencimento t_V ;
 - Tipo2: idem, 6 meses;
 - Tipo 3: idem, 12 meses;
 - Tipos 4 a 9: prazos de FRA estipulados pela B3.

Opção de DI1- Representação gráfica

Opção de DI1- Apreçamento

- O contrato é denominado em taxa;
- Mas aplicamos o modelo de Black76, para futuros, que é para preço;
- Então, devemos converter o strike em formato taxa, K_{tx} , para o formato de strike em preço, K;
- Uma opção de call (put) em taxa é uma opção put (call) em PU. Para uma call de PU (put é análoga), temos

$$Call_{PU}(t_V) = max\left(\frac{100.000}{(1 + tx(t_V, t_V + \tau)^{\tau})} - K, 0\right)$$

$$= max \left(PU(t_V, t_V + \tau) - K, 0 \right)$$

Opção de DI1 – Cálculo do FRA de DI1

$$(1 + tx(t_1, t_2))^{DU(t_1, t_2)} = \frac{(1 + tx(t_2))^{DU(t, t_2)}}{(1 + tx(t_1))^{DU(t, t_1)}}$$

$$PU(t_1, t_2) = 100.000 \times \frac{PU(t_2)}{PU(t_1)}$$

Opção de DI1- Apreçamento

Processo lognormal para PU do FRA usa a volatilidade de PU

$$dPU_t = PU_t \cdot r \cdot dt + PU_t \cdot \sigma_{PU} \cdot \sqrt{dt} \cdot dW_t$$

• Preço de call e put na data de apreçamento t

$$C(t) = e^{-rT} \left[F_t \cdot N(d_1) - K \cdot N(d_2) \right]$$

$$P(t) = e^{-rT} [K \cdot N(-d_2) - F_t \cdot N(-d_1)]$$

$$F_t = PU(t_V, t_V + \tau) \quad d_1 = \frac{\ln\left(\frac{F}{K}\right) + \frac{\sigma_{PU}^2 T}{2}}{\sigma\sqrt{T}} \quad d_2 = d_1 - \sigma_{PU} \cdot \sqrt{T}$$

Volatidade Taxa e Volatilidade Preço

• Definição de variância para uma variável x qualquer

$$\sigma^2 = E\left[x^2\right] - \left(E\left[x\right]\right)^2$$

Para o retorno de um preço,

$$PU = \frac{100.000}{(1+tx)^T}$$

$$\frac{dPU}{PU} = \frac{1}{PU} \times \frac{100.000}{(1+tx)^T} \times \frac{-T}{(1+tx)} \times dtx = \frac{-T \times tx}{(1+tx)} \times \frac{dtx}{tx}$$

Volatidade Taxa e Volatilidade Preço

$$\sigma_{PU}^{2} = E \left[\left(\frac{dPU}{PU} \right)^{2} \right] - \left(E \left[\frac{dPU}{PU} \right] \right)^{2}$$

$$= \left(\frac{T \times tx}{(1+tx)}\right)^2 \left(E\left[\left(\frac{dtx}{tx}\right)^2\right] - \left(E\left[\frac{dtx}{tx}\right]\right)^2\right)$$

$$= \left(\frac{T \times tx}{(1+tx)}\right)^2 \sigma_{tx}^2$$

Hedge de Opção de Juros

 Ideia: carteira da posição a ser protegida + Hedge deve ter variação nula quando o fator de risco a ser mitigado variar

$$Q \times P + Q_H \times P_H = V$$

$$Q \times dP + Q_H \times dP_H = dV$$

$$dV \equiv 0$$

$$Q \times dP = -Q_H \times dP_H$$

Variação de uma função: Expansão Taylor

• Em primeira ordem, uma função f da variável x tem variação descrita pela expansão de Taylor, quando x varia infinitesimalmente

$$f(x_1) - f(x_0) = df(x) = \frac{\partial f(x_0)}{\partial x} dx$$

$$dx = x_1 - x_0$$

A derivada pode ser calculada numericamente

$$\frac{\partial f(x_0)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2 \times \Delta x}$$

Hedge de Opção de Juros

• Em nosso caso, f é o preço e x é a taxa de juros. Precisamos a expansão para o preço do instrumento a ser protegido (opção) e o instrumento de hedge (contrato futuro)

$$dP = \frac{\partial P(tx_0)}{\partial tx} dtx \qquad dP_H = \frac{\partial P_H(tx_{H0})}{\partial tx_H} dtx_H$$

Supomos que as taxas deslocam-se paralelamente

$$dtx = dtx_H$$

Então

$$Q_{H} = -Q \times \left[\frac{\frac{\partial P(tx_{0})}{\partial tx}}{\frac{\partial P_{H}(tx_{H0})}{\partial tx_{H}}} \right]$$

Exemplo 1 – Opção de IDI

Em 26/03/2020, o índice IDI à vista tem valor 282.195,87. Uma opção call de IDI de strike 304.100,00 para o vencimento 03/01/2022 tem vol de preço de 1,89837% aa. A taxa de juros $(\exp/252)$ para o prazo é 4,34% a.a. Calcule o preço desta opção.

Solução. A curva de volatilidade segue o calendário de dias de mercado da bolsa, segundo os feriados de São Paulo (na planilha de feriados, o TRD). Há 436 dias úteis (T=436/252=1,730159). Para a contagem de dias de de juros, o calendário a ser seguido é o de feriados nacionais (na planilha, o BCB). Há 444 dias úteis (T=444/252=1,761905).

A taxa de juros no formato contínuo é r=ln(1+4,43%)=4,2484612. O futuro é $F=282.195,8\times exp(4,2484612\%\times 1,761905)=304.130,0039$. As demais variáveis usadas para a equação de preço são

Exemplo 1 – Opção de IDI

$$d_1 = \frac{ln\left(\frac{304.130,0039}{304.100,00}\right) + \frac{(1,89837\%)^2 \times 1,730159}{2}}{1,89837\% \times \sqrt{1,730159}} = 0,016436217209146$$

$$d_2 = 0,016436217209146 - 1,89837\% \times \sqrt{1,730159} = (0,0085340345591753)$$

$$N(d_1) = 0,506556842$$
 $N(d_2) = 0,496595434$

$$Call(t) = 2824,893476$$

Exemplo 2 – Opção de FRA de DI1

Em 26/03/2020, a opção put (taxa) do tipo 2 (DI1 de 6 meses) com vencimento Jan/21 tem vol de 26% para o strike 4.6%. Calcule seu preço.

Solução.

- A opção put em taxa é transformada para call de PU.
- Para a contagem de dias úteis para a volatilidade, usamos o calendário de dias de negociação de São Paulo (TRD, em nossa planilha de feriados). Já para a taxa de juros usamos o calendário nacional (BCB), da Anbima.
- Para o vencimento da opção, há 193 dias úteis $(T(t_V) = 193/252 = 0,765873)$ para os juros. A taxa exponencial é de tx = 3,4% a.a. $(\exp/252)$, o que resulta numa contínua r = ln(1+tx) = 3,3435%. O PU deste vencimento é $PU(t_V) = 100.000/(1+3,4\%)^{0,765873} = 97.471,8281$;

Exemplo 2 – Opção de FRA de DI1

- A data de vencimento do FRA de DI1 é em 6 meses após o vencimento de 04/01/2021, ou seja, em 01/07/2021. Para o cômputo de juros, há 316 dias úteis $(T(t, t_V + \tau) = 316/252 = 1, 253968)$ entre a data de apreçamento e a de vencimento deste DI1. A taxa de juros para este prazo é 3,79% a.a. $(\exp/252)$. O PU para o vencimento 01/07/2021 é, portanto, $PU(t_V + \tau) = 100.000/(1 + 3,79\%)^{1,253968} = 95.442,4328$. Logo, o FRA tem prazo de 316-193=123 dias úteis (T = 123/252 = 0,488095), e seu PU é $PU_{FRA}(t_V, t_V + \tau) = 100.000 \times PU(t_V + \tau)/PU(t_V) = 100.000 \times 95.442,4328/97.471,8281 = 97.917,9674$ e sua taxa é $tx_{FRA} = [100.000/PU_{FRA}(t_V, t_V + \tau)]^{(1/T(t_V, t_V + \tau))} 1 = 4,4049\%$
- O PU relativo ao strike é $K_{PU} = 100.000/(1+4,6\%)^{0,488095} = 97.828,79$. O número de dias úteis para a volatilidade, no calendário de trade (TRD), é 189 $(T(t_V) = 189/252 = 0,75000)$
- A volatilidade PU é

$$\sigma_{PU} = \frac{0,488095 \times 4,4049\%}{1+4,4049\%} \times 26\% = 0,535420\%$$

Exemplo 2 – Opção de FRA de DI1

$$d_1 = \frac{ln(\frac{97.917,9674}{97.828,79}) + \frac{(0,535420\%)^2 \times 0,75000}{2}}{0,535420\% \times \sqrt{0,75000}} = 0,19882152$$

$$d_2 = 0,19882152 - 0,535420\% \times \sqrt{0,75000} = 0,19418464$$

$$N(d_1) = 0,578798818$$
 $N(d_2) = 0,576984346$

$$Call_{PU}(t) = e^{-3.3435\% \times 193/252} \times [97.917, 9674 \times 0, 578798818 - 97.828, 79 \times 0, 576984346]$$

$$=223,331291$$

Exemplo 3 : Hedge de Opção de DI1

No exemplo de opção de DI1, calcule a quantidade de DI1 de vencimento Jul21 necessário para fazer hedge de 100 contratos de opção.

Solução.

Chocamos os preços da opção e do DI1 por bumps de 0.01% e -0.01%. Depois, como teste, damos um bump de 0,1% para ver a robustez do hedge. Obtemos que uma posição vendida (em PU) de 19,2754 de DI1 Jul21 produz o hedge. Os números estão resumidos na figura (2). No teste, o choque de 0,1% produz perda de 2.125,71 na opção e ganho de 2.220,27 no DI1 Jul21. Resultados melhores seriam alcançados se o hedge fosse montado a partir do FRA de DI1 Jan21 com o DI1 Jul21.

Exemplo 3: Hedge de Opção de DI1

Exercício

• Calcule a quantidade de DI1 Jan22 para imunizar 100 contratos da opção de IDI do exemplo 1.

Referências

Definição de Índices B3

http://www.bmf.com.br/bmfbovespa/pages/boletim1/bd_manual/indicadoresFinanceiros1.asp

Metodologia acumulação de DI

http://www.b3.com.br/pt_br/market-data-e-indices/indices/indices-de-segmentos-e-setoriais/di/metodologia-de-calcudo-acumulado-de-di/