Random Fractals

Paul Dubois

Oxford University

10th March 2021

$$B_{i,j} = \left[\frac{i-1}{n}, \frac{i}{n}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right]$$

$$B_{i,j} = \left[rac{i-1}{n}, rac{i}{n}
ight] imes \left[rac{j-1}{n}, rac{j}{n}
ight]$$
 $arepsilon_{i,j} \in \{0,1\}$ with $\mathbb{P}\left(arepsilon_{i,j} = 1
ight) = p$ (i.e. $arepsilon_{i,j} \sim \mathcal{B}(p)$) $P = igcup_{i,j} B_{i,j}$ $Z = |\{(i,j) \mid \epsilon_{i,j} = 1\}|$ $D = rac{Z}{pn^2}$

$$B_{i,j}^d = \left[\frac{i-1}{n^d}, \frac{i}{n^d}\right] \times \left[\frac{j-1}{n^d}, \frac{j}{n^d}\right]$$

$$\begin{split} B_{i,j}^d &= \left[\frac{i-1}{n^d}, \frac{i}{n^d}\right] \times \left[\frac{j-1}{n^d}, \frac{j}{n^d}\right] \\ \varepsilon_{i,j}^d &\in \{0,1\} \text{ with } \mathbb{P}\left(\varepsilon_{i,j}^d = 1\right) = p \quad (\text{ i.e. } \varepsilon_{i,j}^d \sim \mathcal{B}(p)) \\ P_0 &= [0,1]^2 \quad ; \quad P_d = P_{d-1} \bigcap \left(\bigcup_{\substack{i,j \\ \varepsilon_{i,j}^d = 1}} B_{i,j}^d\right) \\ Z_d &= \left|\left\{(i,j) \mid \epsilon_{i,j}^d = 1\right\}\right| \\ D_d &= \frac{Z_d}{(pn^2)^d} \end{split}$$

Limit: $P_{\infty} \sim \operatorname{Perc}(n, p)$

$$P_{\infty} = \bigcap_{d \in \mathbb{N}} P_d$$
$$D_{\infty} = \lim_{d \to \infty} D_d$$

Limit: $P_{\infty} \sim \operatorname{Perc}(n, p)$

$$P_{\infty} = \bigcap_{d \in \mathbb{N}} P_d$$
$$D_{\infty} = \lim_{d \to \infty} D_d$$

$$D_{\infty} > 0 \iff P_{\infty} \neq \emptyset$$

 $\mathbb{E}(D_{\infty}) = 1$

Intuition

1*D*: Scale by $\lambda \iff$ Lengths multiplied by λ^1

- 1*D*: Scale by $\lambda \iff$ Lengths multiplied by λ^1
- 2*D*: Scale by $\lambda \iff$ Areas multiplied by λ^2

- 1*D*: Scale by $\lambda \iff$ Lengths multiplied by λ^1
- 2*D*: Scale by $\lambda \iff$ Areas multiplied by λ^2
- 3*D*: Scale by $\lambda \iff \text{Volumes multiplied by } \lambda^3$

```
1D: Scale by \lambda \iff Lengths multiplied by \lambda^1
2D: Scale by \lambda \iff Areas multiplied by \lambda^2
3D: Scale by \lambda \iff Volumes multiplied by \lambda^3
...

nD: Scale by \lambda \iff n-Dim. Volumes multiplies by \lambda^n \forall n \in \mathbb{N}
```

Intuition

```
1D: Scale by \lambda \iff Lengths multiplied by \lambda^1
2D: Scale by \lambda \iff Areas multiplied by \lambda^2
3D: Scale by \lambda \iff Volumes multiplied by \lambda^3
...
nD: Scale by \lambda \iff n-Dim. Volumes multiplies by \lambda^n \forall n \in \mathbb{N}
...
```

 αD : Scale by $\lambda \iff$ n-Dim. Volumes multiplies by $\lambda^{\alpha} \quad \forall \alpha \in \mathbb{R}^+$

Percolation dimensions

For $P \sim \text{Perc}(n, p)$, scaling by n gives pn^2 copies of P.

So $\dim(P) = pn^2$.

Crossings

straight

Blob

