Games and duality

- Two-person, zero-sum game
- Matrix games
- MiniMax Theorem
- Duality

A 2-person, zero-sum game

Elements of a game:

- Players
- Actions & strategies
- Payoffs

• Pure strategy:
$$x = (1,0)$$
 and $y = (0,1)$

• Mixed strategy: $x = (\frac{1}{2}, \frac{1}{2})$ and $y = (\frac{1}{2}, \frac{1}{2})$

Not optimal

Not optimal

• Y expects
$$P_y = -10(\frac{1}{4}) + 20(\frac{1}{4}) + 10(\frac{1}{4}) - 10(\frac{1}{4}) = 2.5$$

• **X** expects
$$P_x = ... = 2$$
.

Goal:

Find strategies so that each player is happiest (not to deviate)

Saddle point:

- X has maximized her profit
- Y has minimized his loss

Matrix Games

Still two players X and Y. But now each has n and m strategies.

Payoffs: $a_{ij} = \text{amount } \mathbf{Y} \text{ pays } \mathbf{X}$

X Strategy: Choose x subj to $\sum_{i} x_{i} = 1$, $x_{i} \geq 0$

Y Strategy: Choose y subj to $\sum_i y_i = 1$, $y_i \ge 0$

Probability of outcome: (i,j) occurs w/ probability $x_j y_i$ and payoff a_{ij}

Total expected payoff: $\sum_{i} \sum_{j} a_{ij} x_{j} y_{i}$

Matrix Notation

Payoffs:
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

X Strategy: Choose
$$x$$
 subject to $e^Tx = 1$, $x \ge 0$
Y Strategy: Choose y subject to $e^Ty = 1$, $y \ge 0$

Total expected payoff:

$$y^{T}Ax = \begin{bmatrix} y_1, \dots, y_m \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= a_{11}x_1y_1 + \cdots + a_{mn}x_ny_m$$

Player Y's Analysis

Suppose \mathbf{Y} chooses y as his strategy

• Then **X** will best defend by choosing x to

$$\max_{x} y^{T}Ax$$
 (maximize expected payoff)

• Y should then choose y to

$$\min_{y} \max_{x} y^{T} A x$$

Player ${\bf Y}$ chooses his strategy to protect against the worst possible case: When ${\bf X}$ knows what ${\bf Y}$ will do.

Solving for Y's Strategy

Y:
$$\min_{y} \max_{x} y^{T} A x$$
 subj to $e^{T} x = 1, \quad x \ge 0$ subj to $e^{T} y = 1, \quad y \ge 0$

The inner (X's) problem: Given y, choose x to

From LP theory, a **basic optimal solution** exists $\Rightarrow x^*$ has only 1 nonzero component (equal to 1)

Is **Y**'s problem an LP?

Solving for Y's Strategy: LP Formulation

Y: Choose *y* to

minimize maximize
$$(y^T A)_j$$

subject to $e^T y = 1$, $y \ge 0$

Reformulate as an LP:

$$\begin{array}{ll} \underset{y,\nu}{\text{minimize}} & \nu \\ \text{subject to} & \nu e \geq A^T y \\ & e^T y = 1, \quad y \geq 0 \end{array}$$

Player X's Analysis

(Player X's analysis is symmetric to Y's analysis)

- Suppose **X** chooses *x* as her strategy
- Then Y will best defend by choosing y to

minimize
$$y^T Ax$$
 (minimize expected payoff)

• X should then choose x to

$$\max_{x} \min_{y} \min_{y} y^{T} Ax$$

Player **X** choose her strategy to protect against the worst possible case:

When Y knows what X will do.

Solving for X's Strategy

X:
$$\max_{x} \min_{y} \sup_{y} y^{T} Ax$$

subject to
$$e^T x = 1$$
, $x \ge 0$
subject to $e^T y = 1$, $y \ge 0$

The inner (Y's) problem: Given x, choose y to

minimize
$$y^T(Ax)$$

subject to $e^Ty = 1$, $y \ge 0$

$$\iff$$
 minimize $(Ax)_i$

From LP theory, a basic optimal solution exists

 $\Rightarrow y^*$ has only 1 nonzero component (equal to 1)

X: Choose x to

maximize minimize
$$(Ax)_i$$

subject to $e^T x^i = 1, x \ge 0$

Analysis Summary

Player ${\bf X}$ chooses her strategy to protect against worst possible case: ${\bf Y}$ knows what ${\bf X}$ will do.

$$\begin{array}{c|c}
\text{maximize minimize } y^T A x & \Longrightarrow & x^*
\end{array}$$

Player \mathbf{Y} chooses his strategy to protect against worst possible case: \mathbf{X} knows what \mathbf{Y} will do.

$$\begin{array}{ccc}
\text{minimize maximize } y^T A x & \Longrightarrow & y^* \\
\end{array}$$

$$\mathbf{X}$$
's worst-case expected win $\stackrel{\leq}{=}$ \mathbf{Y} 's worst-case expected loss \geq

The **MiniMax Theorem**: Equality holds.

X and Y are Dual

X's Problem

$$\begin{array}{c|c}
\text{maximize minimize } y^T A x \\
\downarrow & \downarrow \\
\vdots & \vdots \\
\end{array}$$

$$\begin{array}{ll} \underset{x,\lambda}{\text{maximize}} & \lambda \\ \text{subject to} & \lambda e \leq Ax \\ & e^T x = 1, \quad x \geq 0 \end{array}$$

(X's worst-case expected win)

Weak duality: $P_x^* \leq P_y^*$

Strong duality: $P_{\nu}^* = P_{\nu}^*$

Y's Problem

$$\begin{array}{c}
\text{minimize maximize } y^T A x \\
\downarrow \\
\uparrow \\
\end{array}$$

Dual pair of LPs

$$\begin{array}{ll} \underset{y,\nu}{\text{minimize}} & \nu \\ \text{subject to} & \nu e \geq A^T y \\ & e^T y = 1, \quad y \geq 0 \end{array}$$

(Y's worst-case expected loss)

Proved the MiniMax Theorem