PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Praça da Liberdade

Disciplina	Curso	Turno	Período
Projeto e Análise de Algoritmos	Engenharia de Software	Noite	3°
Professor			
Felipe Cunha (felipe@pucminas.br)			

It always seems impossible until it's done.

Nelson Mandela

Lista 01

- 1. O que significa dizer que uma função g(n) é O(f(n))?
- 2. Suponha um algoritmo A e um algoritmo B com funções de complexidade de tempo $a(n) = n^2 n + 549$ e b(n) = 49n + 49, respectivamente. Determine quais são os valores de n pertencentes ao conjunto dos números naturais para os quais A leva menos tempo para executar do que B.
- 3. Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:
 - $3n^3 + 2n^2 + n + 1 = O(n^3)$
 - $7n^2 = O(n)$
 - $2^{n+2} = O(2^n)$
 - $2^{2n} = O(2^n)$
 - $\bullet \ 5n^2 + 7n = \Theta(n^2)$
 - $6n^3 + 5n^2 \neq \Theta(n^2)$
 - $9n^3 + 3n = \Omega(n)$

Para os exercícios abaixo considere que:

- (a) todas as variáveis e constantes são inteiras e positivas, a menos que sejam explicitamente identificadas de outra forma;
- (b) as funções f(n) e g(n) são positivas e $f(n) \prec g(n)$ do ponto de vista de crescimento assintótico;
- (c) $p(n) = \sum_{i=0}^g a_i n^i$ é um polinômio de grau g, as constantes $a_i (1 \le i \le g)$ reais, sendo $a_g \ne 0$, e k uma constante.

Para cada afirmação diga se é verdadeira ou falsa, provando ou fornecendo um contraexemplo:

4. Se $k \ge g$, então $p(n) = O(n^k)$.

- 5. Se $k \leq g$, então $p(n) = \Omega(n^k)$.
- 6. Se k = g, então $p(n) = \Theta(n^k)$.
- 7. Se k > g, então $p(n) = o(n^k)$.
- 8. Se k < g, então $p(n) = \omega(n^k)$.
- 9. Se $k \ge g$, então $p(n) = O(n^g)$.
- 10. Se $k \leq g$, então $p(n) = \Omega(n^g)$.
- 11. Se k = g, então $p(n) = \Theta(n^g)$.
- 12. Se k > g, então $p(n) = o(n^g)$.
- 13. Se k < g, então $p(n) = \omega(n^g)$.
- 14. $f(n) + g(n) = \Theta(f(n))$.
- 15. f(n) + g(n) = O(f(n)).
- 16. $f(n) + g(n) = \Omega(g(n))$.
- 17. $f(n) + g(n) = \Theta(g(n))$.
- 18. $g(n) = \Theta(\frac{g(n)}{2})$.
- 19. $g(n) = O(\frac{g(n)}{2})$.
- 20. $f(n) = \omega(g(n))$.
- 21. $f(n) = \omega(\frac{g(n)}{2}).$