

Lecture 21: The BJT Voltage Amplifier

- Relating V_{out} to V_{in}
- Node notation for V_{CC}
- Voltage transfer function
- AC signal amplification

An interesting question

Notice

1. Cut-off regime

When
$$V_{BE} < V_{on}$$
, thus $I_c \approx 0$

2. Active regime

When
$$V_{BE} \ge V_{on}$$
, thus $I_c = \beta I_B$
 $V_{CE} > V_{CE,sat}$

3. Saturation regime

When
$$V_{BE} \ge V_{on}$$
, and $V_{CE} = V_{CE,sat}$

$$I_c = I_{C,sat}$$

Calculating V_{out} from V_{in} (revisited)

CHECK THE I_{C,sat} FIRST

$$I_{C,sat} = rac{V_{CC} - V_{CE,sat}}{R_C}$$
 $= rac{6 - 0.2}{1k} = 5.8mA$
 $I_{B,sat} = rac{I_{C,sat}}{eta} = 58\mu A$
 I_{B} at onset of saturation

Calculating V_{out} from V_{in} (revisited)

$$V_{in} = 0.3V$$
 $I_B = 0A$
 $I_C = 0A$
 $V_{out} = 6V$

Calculating V_{out} from V_{in} (revisited)

$$V_{in} = 1V$$
 $I_B = \frac{1 - 0.7}{30k} = 10\mu A$
 $I_C = \beta I_B = 1mA$
 $I_C < I_{C,sat}$
 $V_{out} = 6 - (1k)(1m) = 5V$

I

Calculating V_{out} from V_{in} (revisited)

$$V_{in} = 2.5V$$
 $I_B = \frac{2.5 - 0.7}{30k} = 60 \mu A$
 $I_C = \beta I_B = 6mA > I_{C,sat}$
 $V_{out} = V_{C,sat} = 0.2V$

Calculating V_{out} from V_{in} (revisited)

$$V_{in} = 3.5V$$
 $I_B = \frac{3.5 - 0.7}{30k} = 93\mu A$
 $I_C = \beta I_B = 9.3mA > I_{C,sat}$
 $V_{out} = V_{C,sat} = 0.2V$

Review of BJT operating regimes

$$A. \quad V_{in} = \frac{V_{CC} - V_{CE,sat}}{R_C}$$

$$B. \quad V_{in} = V_{CC} + V_{BEon}$$

$$C. \quad V_{in} = V_{CE,sat} + I_B R_B$$

$$D. \quad V_{in} = V_{CC} - I_C R_C + I_B R_B$$

E.
$$V_{in} = V_{BEon} + \frac{R_B}{\beta R_C} (V_{CC} - V_{CE,sat})$$

Regime	Vin	Ів	Ic	Vc

L21Q2: What is the formula for minimum V_{IN} which causes saturation?

Review of BJT operating regimes

Regime	Vin	IB	lc	VCE
CUTOFF	$V_{in} < V_{BE,ON}$	0	0	V_{CC}
ACTIVE	$V_{BE,ON} \le V_{in} \le V_{in,SAT}$	$(V_{in} - V_{BE,ON})/R_B$	$I_C = \beta I_B$	$V_{CC} - R_C I_C$
SATURATION	$V_{in} > V_{in,SAT}$	$(V_{in} - V_{BE,ON})/R_B$	$I_{CE,SAT}$	$V_{CE,SAT}$

L21Q2: What is the formula for minimum V_{IN} which causes saturation?

A.
$$V_{in} = \frac{V_{CC} - V_{CE,sat}}{R_C}$$

B.
$$V_{in} = V_{CC} + V_{BEon}$$

C.
$$V_{in} = V_{CE,sat} + I_B R_B$$

$$D. V_{in} = V_{CC} - I_C R_C + I_B R_B$$

E.
$$V_{in} = V_{BEon} + \frac{R_B}{\beta R_C} (V_{CC} - V_{CE,sat})$$

$$V_{in,sat} = V_{BEon} + R_B \times \frac{I_C}{\beta} = V_{BEon} + R_B \times \frac{1}{\beta} \times \frac{V_{CC} - V_{CE,sat}}{R_C} = V_{BEon} + R_B \times \frac{I_{C,sat}}{\beta} = V_{BEon} + R_B \times \frac{I_{B,sat}}{\beta}$$

Voltage transfer characteristics

L21Q3: What are the four values V_{o1} , V_{o2} , V_{i1} , V_{i2} ?

L21Q4: What is the $\frac{\Delta V_{out}}{\Delta V_{in}}$ slope in the active region?

L21Q3: What are the four values V_{o1} , V_{o2} , V_{i1} , V_{i2} ?

= 2.44V

$$V_{o1} = V_{CC} = 6V$$

$$V_{o2} = V_{CE,sat} = 0.2V$$

$$V_{i,2} = V_{BEon} + \frac{R_B}{\beta R_C} \left(V_{CC} - V_{CE,sat} \right) = 0.7 + \frac{30k}{(100)(1k)} (6 - 0.2)$$

L21Q4: What is the $\frac{\Delta V_{out}}{\Delta V_{in}}$ slope in the active region?

$$V_{o1} = 6V$$

$$V_{o2} = 0.2V$$

$$V_{i1} = 0.7V$$

$$V_{i2} = 2.44V$$

$$\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{V_{o2} - V_{o1}}{V_{i2} - V_{i1}} = \frac{0.2 - 6}{2.44 - 0.7} = -3.\overline{3}$$

MORE on incremental Voltage Gain

$$G_V = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{-\Delta I_C R_C}{\Delta I_B R_B} = -\beta \frac{R_C}{R_B}$$

$$G_V = -\beta \frac{R_C}{R_B} = -100 \frac{1k}{30k} = -3.\overline{3}$$

Same as previous result

$$\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{V_{o2} - V_{o1}}{V_{i2} - V_{i1}} = -3.\overline{3}$$

Active regime for signal amplification

Q7:

- A. Active only
- B. Cutoff and active
- C. Active and saturation
- D. Saturation only
- E. Cutoff, active, and saturation

L21Q5: If $V_{IN} = 1.2 + 0.2\cos(2\pi 100t)$ what is the equation for V_{out} ?

L21Q6: What is different if $V_{in} = 1.2 + 0.6\cos(2\pi 100t)$?

L21Q7: What transistor regimes are entered if $V_{in} = 1.1 + 0.3\cos(\omega t)$?

What is the Voltage Gain?

What is the Voltage Gain?

Voltage gain is not β

$$G_V = \frac{V_{o2} - V_{o1}}{V_{i2} - V_{i1}}$$

$$G_V = \frac{0.2 - 7.2}{1.7 - 0.7} = -7$$

$$V_{out} = G_V(V_{in} - V_{i1}) + V_{o1}$$
$$V_{out} = G_V(V_{in} - V_{i2}) + V_{o2}$$

Find the formula for V_{out}

$$V_{IN}(t) = A_i + B_i \cos(\omega t)$$
$$V_{out}(t) = A_o + B_o \cos(\omega t)$$

$$A_o = V_{o2} + G_V(V_{i1} - A_i)$$
 $A_o = V_{o2} + G_V(A_i - V_{i2})$
For this specific problem
 $A_o = 0.2 - 7(0.7 - 1.2)$
 $= 3.7V$

Find the formula for V_{out}

Find the formula for V_{out}

$$V_{IN}(t) = A_i + B_i \cos(\omega t)$$

$$V_{out}(t) = A_o + B_o \cos(\omega t)$$

$$B_o = G_V B_i$$

For this specific problem

$$B_i = 0.2$$

 $B_o = -7B_i = -1.4$

Consider

 $V_{i.1}=0.7\ V$

 $V_{i2} = 1.7 V$

1

L21Q5: If $V_{IN} = 1.2 + 0.2\cos(2\pi 100t)$ what is the equation for V_{out} ?

$$V_{OUT} = 3.7 - 1.4\cos(2\pi 100t)$$

L21Q6: If $V_{IN} = 1.2 + 0.6\cos(2\pi 100t)$ what is the equation for V_{out} ?

L21Q6: If $V_{IN} = 1.2 + 0.6\cos(2\pi 100t)$ what is the equation for V_{out} ?

$$G_V = -7$$

$$V_{IN} = 1.2 + 0.6\cos(2\pi 100t)$$

$$V_{OUT} = 7.2V$$

$$\{V_{in} \le 0.7V\}$$

$$V_{OUT} = 3.7 - 4.2\cos(2\pi 100t) \quad \{0.7 \le V_{in} \le 1.7V\}$$

$$\{0.7 \le V_{in} \le 1.7V\}$$

$$V_{OUT} = 0.2V$$

$$\{V_{in} \ge 1.7V\}$$

L21Q7: What transistor regimes are entered if

$$V_{in} = 1.1 + 0.3\cos(\omega t)$$
?

Q7:

- A. Active only
- B. Cutoff and active
- C. Active and saturation
- D. Saturation only
- E. Cutoff, active, and saturation

$$V_{in,min} = 1.1 - 0.3 = 0.8V > V_{i1}$$

$$V_{in.max} = 1.1 + 0.3 = 1.4V < V_{i2}$$

MORE About current in BJTs

- In the Active Region $I_C = \beta I_B$
- The KVL for a BJT $I_C + I_B I_E = 0$
- Combine the two expressions to obtain

$$I_E = (1 + \beta)I_B$$

$$I_C = \frac{\beta}{1+\beta} I_E$$
 where $\alpha = \frac{\beta}{1+\beta}$ \Rightarrow $I_C = \alpha I_E$

• α quantifies the % of electrons originating from the emitter which are able to reach the collector

MORE on BJT common emitter amplifiers

PRACTICAL DESIGN

Single battery bias

MORE on BJT common emitter amplifiers

PRACTICAL DESIGN

- Single battery bias
- Coupling capacitors for A.C. signal components

MORE on BJT common emitter amplifiers

PRACTICAL DESIGN

- Single battery bias
- Coupling capacitors for A.C. signal components

- Resistor conducts for D.C. current
 - Capacitor bypasses resistor for A.C. signal so emitter is effectively connected to ground

With DC bias

Without DC bias

The output may be distorted Since a large part of locates outside the active regime.

FIND THEVENIN EQUIVALENT

L21 Learning Objectives

- a. Explain the voltage transfer curve (V_{out} vs. V_{in})
- b. Find the transition points on the voltage transfer curve
- c. Find the slope of the active region in the transfer curve
- d. Determine the operating regions for an AC+DC input
- e. Evaluate and AC+DC output for linear amplification

Lecture 22: Exercises

- We will use this lecture to catch up, if needed
- We will also do multiple exercises
- Slides may be distributed in lecture