EMSE 6035: Marketing of Technology

Uncertainty & Design of Experiments

John Paul Helveston, Ph.D.

Assistant Professor

Engineering Management & Systems Engineering

The George Washington University

Background: Estimating Utility Model Coefficients Using Maximum Likelihood Estimation

$$\tilde{u}_{j} = \boldsymbol{\beta}' \mathbf{x}_{j} + \tilde{\varepsilon}_{j}$$

$$= \beta_{1} x_{j1} + \beta_{2} x_{j2} + \dots + \tilde{\varepsilon}_{j}$$

Weights that denote the *relative* value of attributes

$$x_{j1}, x_{j2}, \dots$$

Estimate β_1 , β_2 , ..., by minimizing the negative log-likelihood function:

minimize –
$$\ln(\mathcal{L}) = -\sum_{j=1}^{J} y_j \ln[P_j(\boldsymbol{\beta}|\mathbf{x})]$$

with respect to β

 $y_j = 1$ if alternative j was chosen $y_j = 0$ if alternative j was not chosen

 \rightarrow Produces point estimates: $\widehat{\beta}$...but these estimates are not precisely known

The certainty of $\widehat{\beta}$ is inversely related to the curvature of the log-likelihood function

Greater variance in $\ln(\mathcal{L})$, Less certainty in $\hat{\beta}$

Less variance in $ln(\mathcal{L})$, Greater certainty in $\hat{\beta}$

The certainty of $\widehat{\beta}$ is inversely related to the curvature of the log-likelihood function

Covariance of $\widehat{oldsymbol{eta}}$

It is common to report $\widehat{\beta}$ with its standard errors:

Std. Err.
σ_1
σ_2
:
σ_m

We use standard errors to report uncertainty about $\widehat{oldsymbol{eta}}$

Est.	Std. Err.
\hat{eta}_1	σ_1
\hat{eta}_2	σ_2
•	•
\hat{eta}_m	σ_m

A 95% confidence interval is approximately $[\hat{\beta} - 2\sigma, \hat{\beta} + 2\sigma]$

Practice Question 1

Suppose we estimate a model and get the following results:

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} -0.4, 0.5 \end{bmatrix} \qquad \nabla_{\boldsymbol{\beta}}^2 \ln(\mathcal{L}) = \begin{bmatrix} -6000 & 60 \\ 60 & -700 \end{bmatrix}$$

- a) Use the hessian to compute the standard errors for $\widehat{\beta}$.
- b) Use the standard errors to compute a 95% confidence interval around $\widehat{\beta}$.

Hints:

- 1. The covariance matrix is computed as $-\left[\nabla_{\beta}^{2}\ln(\mathcal{L})\right]^{-1}$
- 2. Use the matrix() function to construct a matrix in R.
- 3. Use the solve() function to compute the inverse of a matrix in R.
- 4. Use the diag() function to get the numbers along the diagonal of a matrix in R.

Design of Experiments

Main Average change in the dependent

Effects: variable associated with a change in an

attribute level.

Example:

$$ME(a) = \left(\frac{A + AB + AC + ABC}{4}\right) - \left(\frac{I + B + C + BC}{4}\right)$$

Main Average change in the dependent

Effects: variable associated with a change in an

attribute level.

Example:

$$ME(a) = \left(\frac{A + AB + AC + ABC}{4}\right) - \left(\frac{I + B + C + BC}{4}\right)$$

Effects: Difference in the main effect of one attribute based on the value of another attribute.

Example:

INT(ab) =
$$\frac{1}{2} \left[\left(\frac{AB + ABC}{2} \right) - \left(\frac{B + BC}{2} \right) \right]$$

$$- \frac{1}{2} \left[\left(\frac{A + AC}{2} \right) - \left(\frac{I + C}{2} \right) \right]$$

Design of experiment affects amount of available information

Design: Full Factorial

a	b	c	Effect
-	-	-	I
+	-	-	A
-	+	-	В
-	-	+	C
+	+	-	AB
+	-	+	AC
-	+	+	BC
+	+	+	ABC

Balanced: For each attribute, all levels appear an

equal number of times.

Orthogonal: For each pair of attributes, all pairs of

levels appear together an equal number

of times.

Fractional Factorial Designs

Main effects of a and b are confounded

$$ME(a) = ME(b) = \left(\frac{AB + ABC}{2}\right) - \left(\frac{I + C}{2}\right)$$

To find other confounded effects, multiply by (a=b):

$$c(a=b)$$
 $ac = bc$
 $b(a=b)$ $ab = I$
 $ac(a=b)$ $c = abc$

Fractional Factorial Designs

a	b	c	Effect	Balanced?	Yes
+	-	-	A	Orthogonal?	Vac
-	+	-	В	Orthogonar:	163
-	-	+	C		
+	+	+	ABC		

None of the main effects are confounded, but each main effect is confounded with a two-way interaction:

Designing your experiment / conjoint survey

Practice Question 2

Consider the following experiment design:

a	b	c	Effect
+	-	-	A
_	+	_	В
+	_	+	AC
-	+	+	BC

- a) Is the design balanced? Is it orthogonal?
- b) Write out the equation to compute the main effect for a, b, and c.
- c) Are any main effects confounded? If so, what are they confounded with?