

Espresso Explained

- How espresso works and what is behind this
 - espresso two-level Boolean function minimizer
 - Center for Electronic Systems Design, UC Berkeley
 - https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/
 - Previously UC Berkeley Design Technology Warehouse
 - Local web-page (slightly modified) http://mini.pld.ttu.ee/~lrv/espresso/
- Exact and heuristic minimization of Boolean functions
- Multi-Valued Logic
- Data encoding and main operations
 - Giovanni De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill.

Set of Boolean Functions

- Black box model of a combinational circuit
- Defined based on Boolean algebra (B,+,*,~), B={0,1}
- Logic functions (Boolean functions) can be
 - with multiple outputs (set of functions) $f: B^n \to B$ and $f: B^n \to B^m$
 - partially defined (incomplete) $f: B^n \to \{0,1,-\}^m$ (also $f: B^n \to \{0,1,*\}^m$)
 - depends how functions are used, e.g., impossible input combinations
 - ON-set $-F_f$ the domain of a function where f is true
 - OFF-set R_f the domain of a function where f is false
 - DC-set D_f the domain of a function where f is undefined (don't-care)
 - Defined for every component in a set of functions

Definitions and Representations

- variable
- literal variable and its inversion
- product / cube / conjunction multiplication of literals
- implicant / interval conjunction defining the value of a function (usually 1)
 - hypercube
- minterm implicant containing all input variables
 - a vertice (node) in hyper-cube
- truth table
 - list of all minterms
- implicant table / interval table / cover
 - set of implicants sufficient to define a function

abc	ху
000	10
001	11
101	11
110	10
111	10

abc	ху
00-	10
-01	11
1-1	10
11-	10

Definitions – Cover

- Minimum cover
 - a cover with the smallest number of implicants
 - global optimum
- Minimal cover | Irredundant cover
 - a cover not contained in any other cover
 - it is not possible to remove any of the implicants
 - local optimum
- Prime implicant not contained in any other implicant
- Prime cover a cover of prime implicants
- Essential prime implicant there is a minterm cover by only this implicant

essential implicants

 $x - \alpha \& \delta$

y – β

prime cover minimum cover

prime cover minimal cover

prime cover

Logic Function Minimization

- Exact methods (e.g. Quine-McCluskey method)
 - will find minimum cover(s)
 - often impossible for large functions
- Heuristic methods (MINI, PRESTO, ESPRESSO, ...)
 - will find minimal covers (can find minimum cover)
- Quine's theorem minimum cover is prime cover
 - → prime implicants are enough to find minimum cover
- Quine-McCluskey method
 - main steps [1] find all prime implicants, [2] find minimum cover
- Prime implicant table (chart)
 - exponential size! up to 2ⁿ minterms (can be grouped)
 - up to 3ⁿ/n prime implicants (some functions have less)

result

abcd

-101 1-01

0--0

-0-0

01--

10--

Finding Prime Implicants – Quine method

$$f = \overline{a} \overline{d} + \overline{a} b + a \overline{b} + a \overline{c} d$$

 $f(a,b,c,d) = \Sigma(0,2,4,5,6,7,8,9,10,11,13)$

start

- minterms are initial prime implicants
- implicants are combined pair wise
- covered (and duplicated) implicants are removed
- combining implicants and removing covered ones, this is continued until no more new implicants is generated

Scarc	100	piiabe		2	Pilabe
	abcd	abcd		abcd	abcd
-11	0000	-000		00 0	10 1
abcd	0010	0-10		0-00	1-01
0000	0100	-010		-000	101 -
0010	0101	010-		0 10	00
0100	0110	01-0		-010	0-0
0101	0111	100-		010	-0-0
0110	1000	10-0		01 0	-0-0
0111	\ 1001	01-1		100	01
1000	\\ \ 1010	-101	`	10-0	01-
1001	1011	011-		01 1	>10
1010	\ 1101	10-1		-101	> 10
1011	00-0	1-01		011	
1101	0-00	101-			

2nd phase

1st phase

© Peeter Ellervee cad - espresso - 7

Finding Prime Implicants – Quine-McCluskey method

- Constraints when finding prime implicants
 - minterms are grouped by the number of 1-s
 - only implicants from neighboring groups can be combined
 - compare the number of 1-s!
 - implicants covering don't-cares only have special notation (e.g. *)
 - the notation spreads when combining two implicants with the same notation
 - a hint an implicant covering only don't-cares is not needed in the implicant cover
 - irrelevant inputs can be taken into account when combining implicants
 - · only implicants depending on the same variables can be combined
- Finding the minimal/minimum cover of prime implicants
 - simplifying the task by identifying the essential primes and removing from the table
 - identifying duplicated minterms (covered by the same primes) and removing them too

Finding Prime Implicants

$$f = \overline{a} \overline{d} + \overline{a} b + a \overline{b} + a \overline{c} d$$

 $f(a,b,c,d) = \Sigma(0,2,4,5,6,7,8,9,10,11,13)$

minterms

1st stage 2nd stage

gr.	abcd		gr.	abcd		gr.	abcd
0	0000	*	0	-00-0-	*		
1	0010-	*		-0-00 -	* -	/	-0-0 D
	0100	*		-000	*		01 E
	1000	*	1	0-10	*		10 F
2	0101	*		-010	*	/	
	0110	*		010-	*/		
	1001	*		01-0	*		
	1010	*		100-	*	.	a aarramad
3	0111	*		10-0	*	^ - 1	s covered
	1011	* \	2	01-1	*		
	1101	* \ \		-101	A		
				011-	*		
				10-1	*		
				1-01	В		
				101-	*		

Finding Prime Implicant Cover

- Earlier methods to find cover
 - Petrick's method
 - implicants as product-of-sum (pos)
 - convert to sum-of-products (sop)
 - select the smallest product

• pos - (
$$\alpha$$
) (α + β) (β + γ) (δ) (γ + δ) = 1

- sop $\alpha\beta\delta$ + $\alpha\gamma\delta$ = 1
- Solutions $\{\alpha,\beta,\delta\}$ or $\{\alpha,\gamma,\delta\}$
- Similar to SAT (satisfiability) task

	abc	x
α	00-	1
β	-01	1
γ	1-1	1
δ	11-	1

abc	α	β	γ	δ	
000	1	0	0	0	
001	1	1	0	0	
101	0	1	1	0	
110	0	0	0	1	
111	0	0	1	1	

Example Task – Petrick's Method

prime implicants

abcd	A	В	С	D	E	F
0000	0	0	1	1	0	0
0010	0	0	1	1	0	0
0100	0	0	1	0	1	0
1000	0	0	0	1	0	1
0101	1	0	0	0	1	0
0110	0	0	1	0	1	0
1001	0	1	0	0	0	1
1010	0	0	0	1	0	1
0111	0	0	0	0	1	0
1011	0	0	0	0	0	1
1101	1	1	0	0	0	0
	•					

ACEF:
$$\mathbf{f} = \mathbf{b} \quad \mathbf{c} \quad \mathbf{d} + \mathbf{a} \quad \mathbf{d} + \mathbf{a} \quad \mathbf{b} + \mathbf{a} \quad \mathbf{b}$$

ADEF:
$$\mathbf{f} = \mathbf{b} \quad \mathbf{c} \quad \mathbf{d} + \mathbf{b} \quad \mathbf{d} + \mathbf{a} \quad \mathbf{b} + \mathbf{a} \quad \mathbf{b}$$

BCEF:
$$\mathbf{f} = \mathbf{a} \quad \mathbf{c} \quad \mathbf{d} + \mathbf{a} \quad \mathbf{d} + \mathbf{a} \quad \mathbf{b} + \mathbf{a} \quad \mathbf{b}$$

BDEF:

f = a c d + b d + a b + a b

(C+D)(C+D)(C+E)(D+F)(A+E)(C+E)(B+F)(D+F)(E)(F)(A+B)=1

(C+D)(C+E)(D+F)(A+E)(B+F)(E)(F)(A+B)=1

(CC+CE+DC+DE)(DA+DE+FA+FE)(BE+FE)(FA+FB)=1

(C+DE)(AD+AF+DE+EF)(BE+EF)(AF+BF)=1

(CAD+CAF+CDE+CEF+DEAD+DEAF+DEDE+DEEF)(BEAF+BEBF+EFAF+EFBF)=1

(ACD+ACF+CEF+DE)(BEF+AEF)=1

(ACDBEF+ACDAEF+ACFBEF+ACFAEF+CEFBEF+CEFAEF+DEBEF+DEAEF)=1

ACEF+ADEF+BCEF+BDEF=1

Example Task – Integer Linear Programming (ILP)

- Optimization using matrices
 - Implicant table is binary matrix A
 - Selected implicants are in binary vector x
 - The task find x that satisfies
 - $A \times 1$; select a sufficient number of columns to cover all lines
 - Minimize power of x

abc	α	β	γ	δ	
000	1	0	0	0	
001	1	1	0	0	
101	0	1	1	0	
110	0	0	0	1	
111	0	0	1	1	

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example Task – Solving with Table

Implicant Table / Implicant Chart

prime implicants

	abcd	A	В	C	D	E	F
	0000			+	+		
	0010			+	+		
_	0100			+		+	
	1000				+		+
	-0101					_	
	0110	Ů		_		<u>.</u>	
	1001			•		•	
	1010		'				<u>.</u>
					•		
*	0111					*	
*	1011						*
	1101	+	+				
		•					

E, F

* - essentials

abcd	A	В	C	D
0000			*	+
0010			*	+
0000 0010 1101	*	+		
'		7	۸,	С

		c				
	1	0	0	c^1		
b	1	1	1 ^E	1		
	0	1	0	0		
a	1	1	1 ^F	1		

$$f = b \overline{c} d + \overline{a} \overline{d} + \overline{a} b + a \overline{b}$$

$$A C E F$$

Heuristic Minimization

- Exact minimization is expensive
 - Finding all prime implicants takes memory and time
- Heuristic minimization
 - Avoids lacks of exact minimization(s)
 - Irredundant cover(s) with "reasonable" size(s)
 - Usable in many areas
 - Local (minimal) cover
 - initial cover is given
 - converting into prime cover
 - removing redundancy
 - Iterative improving
 - modifying implicants to improve size
 - extending/reducing is decided based on neighboring implicants

Heuristic Minimization – Main Operators

Expand

- converting implicants into prime implicants
- removing covered implicants

Reduce

 making implicants smaller while keeping cover correct

Reshape

modifying a pair of implicants by increasing one and reducing another

Irredundant

removing redundancy from the cover

task

0000	1
0010	1
0100	1
0101	1
0110	1
0111	1
1000	1
1001	1
1010	1
1011	1
1101	1

all prime implicants

00	a
-0-0	b
01	С
10	d
1-01	е
-101	f

Example

1	0	0	1
1	1	1	1
0	1	0	0
1	1	1	1

possible solutions

 ${a,c,d,e}$

 $\{b,c,d,e\}$

Example – Expand

0000	ехр
0010	ж
0100	ж
0101	
0110	ж
0111	
1000	
1001	
1010	
1011	
1101	

a
exp
х

00	a	0101
0101	ехр	01
)111	x	
L000		01
L001		covers
L010		[0100]
L011		[0110] 0111
		V

00	a
01	С
1000	exp
1001	
1010	ж
1011	
1101	

1	0	0	1
1	1	1	1
0	1	0	0
1	1	1	1

Example – Expand – All Steps

0000	exp
0010	x
0100	x
0101	
0110	x
0111	
1000	
1001	
1010	
1011	
1101	

00	a
0101	ехр
0111	x
1000	
1001	
1010	
1011	
1101	

00	a
01	С
1000	ехр
1001	
1010	x
1011	
1101	

00	a
01	C
-0-0	b
1001	ехр
1011	x
1101	

00	a
01	С
-0-0	b
10	d
1101	ехр

00	a
01	U
-0-0	b
10	d
1-01	е

{a,b,c,d,e}

1	0	0	1
	1	1	1
0	1	0	0
	1	1	1

Example – Reduce

00	xxxx
01	C
-0-0	b
10	d
1-01	е

Coverage analysis: -0-0 & 0000 = 0000 - covers

For comparison:

$$-0-0$$
 & $10-- = 10-0$ - does not cover

Example – Reduce – All Steps

00	xxxx
01	С
-0-0	b
10	d
1-01	е

01	C
-0-0	00-0
10	d
1-01	е

01	С
00-0	b'
10	d
1-01	1101

01	С
00-0	b′
10	d
1101	e'

{ b',c,d,e' }

Example – Reshape

01	01-1
00-0	00
10	d
1101	e'

01-1	c'
00	a
10	d
1101	e'

			1	
-	1	0	0	1
	1	1	1	1
	0	1	0	0
	1	1	1	

{ a,c',d,e' }

Example – Expand #2

01-1	exp
00	a
10	d
1101	e′

01	C
00	a
10	d
1101	ехр

01	С
00	a
10	d
-101	f

	•			
-	1	0	0	1
	1	1	1	J
	0	1	0	0
	1	1	1	1

Conclusion

MINI

- Expand: cover {a,b,c,d,e} prime cover, redundant (no implicants inside another implicants)
- Reduce: a is removed; b [-0-0] \rightarrow b' [00-0]; e [1-01] \rightarrow e' [1101]; cover (b',c,d,e')
- Reshape: {b',c} [00-0][01--] → {a,c'} [0--0][01-1]
- Expand #2: kate {a,c,d,f}; prime cover, no redundancy

Intuitive expansion

- in every implicant, replace '0' one '1' with '-' if possible
- remove all covered implicants
- problems correctness check & order of implicants

Correctness check

- Espresso, MINI intersection of expanded implicant against all 0-implicants (F_R) must be empty, inversion/complement needed
- Presto checking whether the expanded implicant is still in the union of 1- & *-implicants $(F_F \cup F_D)$, equal to recursive tautology check

Expand – heuristic hints

- Expanding first those intervals that are unlikely to be covered by the other implicants
- Weighted intervals larger weight hints to a smaller possibility to be covered ("sparsely populated neighborhood")
- Reduce heuristic hints
 - Weighted intervals smaller weight hints to a larger possibility to be covered ("densely populated neighborhood")
- Redundancy removal
 - Identifying essential intervals
 - Solving the cover problem heuristically
- Espresso
 - Find inversion
 - Identifying essential intervals/minterms (after expanding and redundancy removal)
 - Iteration expand, irredundant, reduce
 - Weight functions power of the cover & weighted sum of interval and literal count

Minimizing Sets of Functions

abcd	хy
10-0	10
1-1-	10
1-11	01
111-	01

functions separately

functions all together

Minimizing Sets of Functions

- Outputs are considered as an additional multi-valued input
- Same operations are used to find implicants

abc	хy
000	10
001	11
101	11
110	10
111	10

abc0	
0001	1
001-	1
101-	1
1101	1
1111	1

abc0	
00-1	1
-01-	1
11-1	1

abc	ху
00-	10
-01	11
11-	10

Minimizing Sets of Functions

abcd0	z
10-01	1
1-1-1	1
1-110	1
111-0	1

abcd0	Z
10-01	1
1-11-	1
111	1

with multi-valued logic

abcd xy 10-0 10 1-11 11 111- 11

with symbolic encoding

Multiple-Valued Logic - MVL

Post algebra

- Generalization of Boolean algebra
- Used as a mathematical base to design MVL logic gates
- Emil Leon Post (1897-1954), 1921 the first multi-valued logic
- Binary logic (B,*,+,~), B={0,1}
 - fully determined functions $f: B^n \to B$ and $f: B^n \to B^m$
 - incompletely determined functions $f: B^n \to \{0,1,-\}^m$ (also $f: B^n \to \{0,1,*\}^m$)
 - AND, OR, NOT full set of logic functions
- MV-logic ({P_i},MIN,MAX,literal), P_i={0,1,...,m_i-1}
 - incompletely determined functions $f: P_1xP_2x...xP_n \rightarrow P_m$ or also $f: P_1xP_2x...xP_n \rightarrow \{0,1,-\}^m$
 - MIN, MAX, literal full set of MVL-functions

Multi-Valued Logic – Operations

- MIN(x, y) minimal value of x and y [·]
 - · cmp. AND in binary logic
- MAX(x, y) maximal value of x and y [+]
 - · cmp. OR in binary logic
- literal unary operation $x_i^{\{ci\}} = m_i-1$, when $x_i=ci$, else 0
 - notation $x_1^{\{2\}} \equiv x_1^2$ and $x_1^{\{2\}} \equiv x_1^2$
- set literal $x_i^{\{S\}}$ = m_i -1, when $x_i \in S$, else 0
 - notation $x_3^{\{0,2\}} \equiv x_3^{\{0,2\}} \equiv x_3^{0,2}$
 - cmp. against binary logic $x_i^{\{0\}} == \bar{x}_i$, $x_i^{\{1\}} == x_i$, $x_i^{\{0,1\}} == -$ (don't-care)
- Shannon's expansion (Boole's expansion)
 - $f()=xf_{x}^{-}()+xf_{x}()$ / $f()=x^{0}f_{x^{0}}()+x^{1}f_{x^{1}}()+...+x^{m-1}f_{x^{m-1}}()$

Presentation Forms

Truth table

"·" – MIN "+" – MAX
$$x^{\{i\}}$$
 – x'i literal

Equation

$$f(x_1,x_2) = 1x_1^{\{1\}}x_2^{\{0\}} + 1x_1^{\{1\}}x_2^{\{1\}} + 2x_1^{\{0\}}x_2^{\{2\}} + 2x_1^{\{2\}}x_2^{\{2\}}$$

$$f(x_1,x_2) = 1x_1^{\{1\}}x_2^{\{0,1\}} + 2x_1^{\{0,2\}}x_2^{\{2\}}$$

Karnaugh map

x ₁ x ₂	0	1	2
0	0	1	0
1	0	1	0
2	2	0	2

Minimizing MV-Functions

- Nothing new!
- Given cover of ones (f) and don't-cares (d) (and zeros (r)) of function F
- Find the minimal sum-of-products form of function F
- Generate f+d prime implicants
- Create table of implicants
- Solve cover problem
 - Algorithms differ in details only

Functions with Multiple Outputs

- Binary functions with n variables and k outputs is converted into a function with n+1 inputs and 1 output; one of the input variables is MV: $\{0,1\}^n \to \{0,1\}^k \equiv \{0,1\}^n \times \{0,1,...,m-1\} \to \{0,1\}$
- Hong's theorem
 - every n-variable implicant plus corresponding outputs form an implicant in n+1-space
 - the number of outputs defines the number of values of the additional input
 - outputs defined by the implicant, form a set-literal in the additional input

Finding Prime Implicants

- Similar to finding implicants for a single function
 - difference in an exactly one input
 - compare against distributivity [(a+b)(a+c)==a(b+c)]
 - in practice, it makes sense to differ binary and MV inputs
- Difference in one binary input
 - exactly one binary input differs 0 in one and 1 in another (MV-parts are identical)
 - combining: $a^0b^0c^0e^0 + a^0b^1c^0e^0 = a^0c^0e^0 (b^0+b^1) = a^0b^{(0,1)}c^0e^0$
- Difference in MV input (~~outputs differ)
 - all binary inputs are identical
 - combining: $a^0b^1c^1e^0 + a^0b^1c^1e^1 = a^0b^1c^1 (e^0+e^1) = a^0b^1c^1e^{\{0,1\}}$
- Bit vector representation binary '0', '1' and '-'; positional encoding in MV part
 - $a^0b^0c^0e^0 + a^0b^1c^0e^0$: 000 100 + 010 100 => 0-0 100
 - $a^0b^1c^1e^0 + a^0b^1c^1e^1 : 011 100 + 011 010 => 011 110$

Example

abc	xyz
000	111
001	011
010	101
011	110
100	000
101	010
110	000
111	101

abc	xyz	
0-0	101	0
-11	100	0
00-	011	0
0-1	010	0
-01	010	0
111	001	0

Example (cont.)

abc	xyz
000	111
001	011
010	101
011	110
100	000
101	010
110	000
111	101

$$x(a,b,c)=abc+abc+abc+abc$$

$$y(a,b,c)=\overline{abc}+\overline{abc}+\overline{abc}+\overline{abc}$$

$$z(a,b,c)=\overline{abc}+\overline{abc}+\overline{abc}+\overline{abc}$$

f:
$$\{0,1\}x\{0,1\}x\{0,1,2\} \rightarrow \{0,1\}$$

$$o(a,b,c,e) = a^{0}b^{0}c^{0}e^{0} + a^{0}b^{1}c^{0}e^{0} + a^{0}b^{1}c^{1}e^{0} + a^{1}b^{1}c^{1}e^{0} + a^{0}b^{0}c^{0}e^{1} + a^{0}b^{0}c^{1}e^{1} + a^{0}b^{1}c^{1}e^{1} + a^{1}b^{0}c^{1}e^{1} + a^{0}b^{0}c^{0}e^{2} + a^{0}b^{0}c^{1}e^{2} + a^{0}b^{0}c^{1}e^{2} + a^{0}b^{1}c^{0}e^{2} + a^{1}b^{1}c^{1}e^{2}$$

abc	е	0
000	100	1
010	100	1
011	100	1
111	100	1
000	010	1
001	010	1
011	010	1
101	010	1
000	001	1
001	001	1
010	001	1
111	001	1

Example (cont.)

3.	7.	
$a^{0}h^{1}c^{1}e^{0} +$	$a^{0}h^{1}c^{1}h^{1} =$	$a^{0}h^{1}c^{1}e^{\{0,1\}}$

$$a^{0}b^{0}c^{0}e^{0} + a^{0}b^{1}c^{0}e^{0} + a^{0}b^{0}c^{0}e^{2} + a^{0}b^{1}c^{0}e^{2} = ...$$

$$... = a^{0}b^{\{0,1\}}c^{0}e^{0} + a^{0}b^{\{0,1\}}c^{0}e^{2} = a^{0}b^{\{0,1\}}c^{0}e^{\{0,2\}} = a^{0}c^{0}e^{\{0,2\}}$$

5. 9. 6. 10.
$$a^{0}b^{0}c^{0}e^{1} + a^{0}b^{0}c^{0}e^{2} + a^{0}b^{0}c^{1}e^{1} + a^{0}b^{0}c^{1}e^{2} = ...$$
... =
$$a^{0}b^{0}c^{0}e^{\{1,2\}} + a^{0}b^{0}c^{1}e^{\{1,2\}} = a^{0}b^{0}c^{\{0,1\}}e^{\{1,2\}} = a^{0}b^{0}e^{\{1,2\}}$$

Example – Minimizing

abc	е	0	
000	100	1	1
010	100	1	2
011	100	1	3
111	100	1	4
000	010	1	5
001	010	1	6
011	010	1	7
101	010	1	8
000	001	1	9
001	001	1	10

001 | 1 | 11

001 | 1 | 12

010

111

$$a^{0}b^{0}c^{0}e^{0} + a^{0}b^{1}c^{0}e^{0} + a^{0}b^{0}c^{0}e^{2} + a^{0}b^{1}c^{0}e^{2} = ...$$

$$... = a^{0}b^{\{0,1\}}c^{0}e^{0} + a^{0}b^{\{0,1\}}c^{0}e^{2} = a^{0}b^{\{0,1\}}c^{0}e^{\{0,2\}} = a^{0}c^{0}e^{\{0,2\}}$$

Example – Minimizing

abc	e	0	
000	100	1	1
010	100	1	2
011	100	1	3
111	100	1	4
000	010	1	5
001	010	1	6
011	010	1	7
101	010	1	8
000	001	1	9
001	001	1	10
010	001	1	11
111	001	1	12

minterms

gr.	abc	e	
0	000	100	*
	000	010	*
	000	001	*
1	010	100	*
	001	010	*
	001	001	*
	010	001	*
2	011	100	*
	011	010	*
	101	010	*
3	111	100	*
	111	001	*

1st phase

gr.	abc	е	
0	000	110	*
	000	101	*
	000	011	*
	0-0	100	*
	00-	010	*
	00-	001	*
	0-0	001	*
1	010	101	*
	001	011	*
	01-	100	A
	0-1	010	B
	-01	010	C
2	011	110	D
	-11	100	E
3	111	101	F

2nd phase

gr.	abc	e	
0	000	111	G
	0-0	101	H
	00-	011	I

Example – Minimizing

prime implicant table

abc	е	Α	В	С	D	E	F	G	Н	I
- 000	100							+	+	
- 000	010							+		-+
000	001							+	+	-
- 010	100	-							_	
01	010	•							•	
+ 001	010		'	'						<u> </u>
* 001	001									*
* 010	001								*	
011	100	+			+	+				
011	010		+		+					
* 101	010			*						
111	100					-	-			
* 111	001					•	*			

abc	e	A	В	D	E	G
011	100	+		*	+	
011	010		+	*		

abc	е	0	
011	110	1	
111	101	1	F
0-0	101	1	Н
00-	011	1	ı
-01	010	1	C

Example (after minimization)

$$o(a,b,c,e) = a^{0}b^{0}c^{0}e^{0} + a^{0}b^{1}c^{0}e^{0} + a^{0}b^{1}c^{1}e^{0} + a^{1}b^{1}c^{1}e^{0} + a^{0}b^{0}c^{0}e^{1} + a^{0}b^{0}c^{1}e^{1} + a^{0}b^{1}c^{1}e^{1} + a^{1}b^{0}c^{1}e^{1} + a^{0}b^{0}c^{0}e^{2} + a^{0}b^{0}c^{1}e^{2} + a^{0}b^{0}c^{1}e^{2} + a^{0}b^{1}c^{0}e^{2} + a^{1}b^{1}c^{1}e^{2}$$

Prime implicants & irredundant

$$o(a,b,c,e) = a^0b^1c^1e^{\{0,1\}} + a^1b^1c^1e^{\{0,2\}} + \\ + a^0b^{\{0,1\}}c^0e^{\{0,2\}} + a^0b^0c^{\{0,1\}}e^{\{1,2\}} + \\ + a^{\{0,1\}}b^0c^1e^1$$

$$o(a,b,c,e)=a^{0}b^{1}c^{1}e^{\{0,1\}}+a^{1}b^{1}c^{1}e^{\{0,2\}}+\\ +a^{0}c^{0}e^{\{0,2\}}+a^{0}b^{0}e^{\{1,2\}}+b^{0}c^{1}e^{1}$$

abc	е	0
011	110	1
111	101	1
0-0	101	1
00-	011	1
-01	010	1

Example (minimized binary functions)

$$o(a,b,c,e)=a^{0}b^{1}c^{1}e^{\{0,1\}}+a^{1}b^{1}c^{1}e^{\{0,2\}}+\\ +a^{0}c^{0}e^{\{0,2\}}+a^{0}b^{0}e^{\{1,2\}}+b^{0}c^{1}e^{1}$$

abc	е	0
011	110	1
111	101	1
0-0	101	1
00-	011	1
-01	010	1

abc	xyz
011	110
111	101
0-0	101
00-	011
-01	010

$$x(a,b,c) = \overline{abc} + \overline{abc} + \overline{ac}$$

$$y(a,b,c) = \overline{abc} + \overline{ab} + \overline{bc}$$

$$z(a,b,c) = \overline{abc} + \overline{ac} + \overline{ab}$$

	0	1	1
0	0	1	0

U		9	0
0	7	0	0

(1)	1	0	
0	0	1	0

Example #2

Example #2 (minimized)

1st phase

x_2x_1	$f_1f_2f_3f_4$
0 0	0 1 1 0
0 1	1 0 0 1
1 0	1 1 0 0

1 1 0 0

1 1

minterms

2nd phase gr. 21 1234

prime implicant table

	21	1234	A	В	C	D	E
	$\Delta \Delta$	0100		-			
	00	0 + 0 0	•	•			
*	00	0010	*				
	Λ1	1000					
	σ_{T}	T000			-	-	
*	01	0001			*		
*	10	1000					*
	1 ^	0100					
	<u> </u>	0700		-			-
	11	1000					
		1000				-	•
*	11	0100					*

3 implicants

Example #3

minterms

1st phase

2nd phase

gr. abc e

111

10

abc e	
000 10	1
001 11	1
101 11	1
110 10	1
111 10	1

prime implicant table

	abc	e	A	В	C	D
*	000	10	*			
	001	10	+			—
*	001	01				*
	101	10		-		-
*	_	01		·		*
*	110	10			*	
	111	10		-	+	
				•	•	

abc	е	0	
00-	10	1	A
11-	10	1	C
-01	11	1	D

abc	хy
00-	10
11-	10
-01	11

Example #4 – Don't-Cares

1st phase

abc	xyz
000	110
001	0-1
010	-0-
011	010
100	1-0
101	01-
110	101
111	-00

minterms gr. abc e 000 100 * 000 010 * 1 *001 010 * 001 001 * *010 100 * *010 001 * 100 100 * *100 010 * 2 011 010 * 101 010 * *101 001 * 110 100 * 110 001 * 3 *111 100 *

P.I.G.	-	
abc	е	
000	110	*
0-0	100	*
-00	100	*
00-	010	*
-00	010	*
001	011	*
*010	101	*
100	110	*
0-1	010	A
-01	010	*
-01	001	*
-10	100	*
-10	001	*
1-0	100	*
10-	010	*
101	011	*
110	101	*
11-	100	В
	abc 000 0-0 -00 00- -00 001 *010 100 0-1 -01 -10 1-0 10- 101 110	abc e 000 110 0-0 100 -00 100 00- 010 -00 010 001 011 001 100 -01 010 -01 010 -01 001 -10 100 -10 100 1-0 100 10- 010 10- 010 10- 010 101 011 110 101

2nd phase gr. abc e 0 -00 110 C --0 100 D -0- 010 E 1 -01 011 F -10 101 G

Example #4 – Don't-Cares

prime implicants & table

0-1 010	A	abc	е	A	В	С	D	E	F	G
11- 100		000	100			+	+			
-00 110		000	010			+		+		
0 100		001	001						+	
-0- 010		011	010	+						
-01 011		100	100			+	+			
-10 101		101	010					+	+	
-10 101	G	110	100		+		+			+
		110	001							+

	•	(<u> </u>	b	
	1	0	0		
a	1	0	-	1	_
C(1		1)	0	A
		1	0	0	G
F-	0	1	0	\bigcap	/
	0		0	1	

_	abc	e	A	В	С	D	E	F	G
	000	100			+	+			
	000	010			+		+		
*	001	001						*	
*	011	010	*						
	100	100			+	+			
	101	010					+	_	
		1.0					•	•	
_	110	100		+		+			+
*	110	001							*

abc		В	C	D	E
000	100		+	+	
000	100 010 100		+		+
100	100		+	+	
		l			

		_
abc	xyz	
0-0	010	A
-00	110	C
-01	011	F
-10	101	G

Example #5 – Heuristic Minimization

		::4:
abcd	klmn	initi
0000	0-00	
0001	11	
0010	1110	
0011	1101	
0100	0-11	
0101	0010	
0110	11	
0111	0000	
1000	0010	
1001	110-	
1010	0011	
1011	10-1	
1100	11	
1101	10	
1110	0100	
1111	01	

initial task...

		•				•					
		0	1	1	1			-	-	1	1
b		0	0	0	1		b	1	0	0	1
		1	•	0	0			1	•	•	(1)
а		0	1	1	0	k	а	0	1	0/	0
	_	,	d		. С	•			d		. С
\		9	d -	0	. с 1	- "		0	d	1	0
<u></u>		0	- 1				<u> </u>	0	1 0	1 0	
b		0 1 -	- 1	0		- "	b	0 1/	1 0 0	1 0 1	
b		0 1 -	- 1 0	0	1	_ _m	b a	0 1/- 0		_	0 -

How to start?

Cmp. essential prime implicants -> must be covered in any case -> "singles", then "pairs", ...

- 1) "singles" –
 the largest implicant to cover
 as many 1-s as possible
 of the output
- 2) "pairs" –
 the largest implicant
 to cover both outputs

Example #5 – Heuristic Minimization (cont.)

abcd	klmn
-10-	0010
10-0	0010
-1-0	0100
101-	00 <u>0</u> 1
0-10	1110
-001	<u>0</u> 10 <u>0</u>
00-1	<u>0</u> 101
-0-1	1000
110-	1000
-100	0001
1-11	0001

Next the yet uncovered...

Starting again where few ones are left...

Remove those that are already covered (dashed line)

There are more versions...

Data Structures and Algorithms

- What is needed?
- Functions $f(x_1, x_2, ..., x_i, ..., x_n)$
 - f = ab + bc + ac
- Cofactors $f_{xi} f(x_1, x_2, ..., 1, ..., x_n)$ & $f_{xi} f(x_1, x_2, ..., 0, ..., x_n)$
 - $f_a = b + c & f_a^- = bc$
- Shannon's expansion (Boole's expansion) $f(x_1, x_2, ..., x_i, ..., x_n) = x_i \cdot f_{xi} + x_i \cdot f_{xi}$
 - $f = ab + bc + ac = a f_a + a f_a = a (b+c) + a (bc)$
- Boole differential $\partial f/\partial x_i = f_{xi} \oplus f_{xi}$
 - shows how function depends on variable $x_i \partial f/\partial a = f_a \oplus f_a^- = (b+c) \oplus bc = bc + bc$

Matrix or Vector Representation

- Usually one line per implicant
- Different encodings exist
- Binary and multi-valued logic use the same idea one position per symbol

x	00	illegal
0	10	"0"
1	01	"1"
_	11	don't-care

Encoding Possibilities

and

(or)

legal?

$$1-0- = \overline{ac}$$

can not be'00'

$$1-0- = \overline{ac}$$

'|' of words '&' of words can not be '11'

$$1-0- = ac$$

can not be
$$\begin{array}{c} 0 \\ 0 \end{array}$$

('|' with itself)

(and vice versa...)

1

Function –
 f = ab + bc + ac

• AND - intersection

• OR – union

OR
$$- 11 01 11 = b$$

1

$$f = ab+bc+ac$$

$$f_a = b+c$$

$$f_a^- = bc$$

$$01 \ 01 \ 11 = ab$$

$$11 \ 01 \ 01 = bc$$

$$01 \ 11 \ 01 = ac$$

		(<u> </u>	b
_	0	0	1	0
a	0	1	1	1

- Cofactor
 - variable or its inversion
 - intersection
 - replace variable with don't-care
 - check coverage

$$01 \ 11 \ 11 = a$$

$$01 \ 01 \ 11 = ab$$

$$01 \ 01 \ 01 = abc$$

$$01 \ 11 \ 01 = ac$$

$$11 \ 01 \ 11 = b$$

$$11 \ 11 \ 01 = c$$

$$11 \ 01 \ 01 = bc$$

10 11 11 =
$$\bar{a}$$

$$00 \ 01 \ 11 = !!$$

$$10\ 01\ 01 = abc$$

$$00 \ 11 \ 01 = !!$$

$$11 \ 01 \ 01 = bc$$

Representing MV-Function / Set of Functions

- Literal set of legal values
 - implicant a line in the table
 - one bit per every value indicates whether the value is presented or not

abc	xyz
011	110
111	101
0-0	101
00-	011
-01	010

abc	е	0
011	{1,2}	1
111	{1,3}	1
0-0	{1,3}	1
00-	{2,3}	1
-01	{2}	1

abc	е	0
011	110	1
111	101	1
0-0	101	1
00-	011	1
-01	010	1

- two bits per (binary) input / one bit per output
- Compare against PLA implementation!

Exact Minimization – Example

minterms

!	gr.	abc	e	
	0	000	110	*
		000	101	*
		000	011	*
		0-0	100	*
		00-	010	*
		00-	001	*
		0-0	001	*
	1	010	101	*
		001	011	*
		01-	100	A
		0-1	010	В
		-01	010	С
	2	011	110	D
		-11	100	E
	3	111	101	F

gr.	abc	e	
0	000	111	G
	0-0	101	F
	00-	011]

Tautology

- Value of the function is always true
- Can be solved recursively
 - expansion by a variable
 - function is tautology when cofactors are tautologies
- Tautology:
 - one line (implicant) contains only ones (all don't-cares)
 - cover depends on one variable only and there is no column of 0-s
 - not tautology there is a column of 0-s in the cover

Covering

- Implicant A is covered by F if and only if F_A is tautology
 - that is, cofactor of function F by A is tautology

ab covered?

$$f_{ab}$$
01 01 11

11 11 01 = c
11 11 10 = c
tautology

Inversion / Complement

• Inversion
$$-\overline{f} = x \cdot \overline{f}_x + \overline{x} \cdot \overline{f}_x^ (f' = x \cdot f'_x + x' \cdot f'_{x'})$$

- select variable
- find cofactors
- invert cofactors

Simplifications

- empty cover inversion is universal cube (all don't-cares)
- there is row of 1-s in the cover inversion is empty (inversion of tautology)
- cover has only one implicant use De Morgan's law

1

• Inversion
$$-\bar{f} = x \cdot \bar{f}_x + \bar{x} \cdot \bar{f}_x^-$$

•
$$\overline{f} = a \overline{f}_a + \overline{a} \overline{f}_a$$

•
$$f_a = b + c$$
 $f_a^- = bc$

invert cofactors

•
$$\overline{f}_a = b \overline{f}_{ab} + \overline{b} \overline{f}_{ab}$$

•
$$f_{ab} = 1 = \bar{f}_{ab} = 0$$

•
$$f_{ab} = c => f_{ab} = c$$
 (De Morgan)

•
$$\overline{f}_a = b 0 + \overline{b} \overline{c} = \overline{b} \overline{c}$$

f_a			f_a^-		
11	01	11	11	01	01
11	11	01			

$$f_{ab}$$
 f_{ab}^{-}

11 11 11 11 11 01

 \overline{f}_{ab} \overline{f}_{ab}^{-}

00 00 00 11 11 10

 \overline{b} \overline{f}_{ab} \overline{b} \overline{f}_{ab}^{-}

00 00 00 11 10 10

invert cofactors (cont.)

•
$$f_a = b c$$

•
$$\overline{f}_{a} = (De Morgan) = \overline{b} + \overline{c}$$

•
$$\overline{f} = a \overline{f}_a + \overline{a} \overline{f}_a$$

$$f_a$$
 f_a f_a 11 01 01 11 10 11 11 10

$$a f_a$$
 $a f_{\overline{a}}$ $10 10 11 10 11 10$

f
01 10 10
10 10 11
10 11 10

	_	(b
	1	1	0	1
а	1	0	0	0

Espresso

- Expand heuristic hints
 - Expanding first those intervals that are unlikely to be covered by the other implicants
 - Weighted intervals larger weight hints to a smaller possibility to be covered ("sparsely populated neighborhood")
 - Calculating wights
 - find vector counting 1-s in columns
 - wight of an implicant sum of multiplications of vector and positions

- Reduce heuristic hints
 - Weighted intervals smaller weight hints to a larger possibility to be covered ("densely populated neighborhood")

Redundancy removal

- Identifying essential intervals
- Solving the cover problem heuristically
- Set of relatively essential implicants E^r
 - implicants covering minterms not covered by the other implicants
- Set of fully redundant implicants R^t
 - implicants covered by the relatively essential implicants
- Set of partially redundant implicants R^p
 - the rest of the implicants
- Espresso-Exact (exact minimizer)
 - Finding the exact cover using branch and bound method
 - Compact implicant table
 - minterms covered by the same implicants are seen as a single minterm


```
espresso (F, D) {
    R = complement ( F \cup D );
    F = expand (F, R);
    F = irredundant ( F, D );
    E = essentials (F, D);
    F = F - E;
    D = D \cup E;
    repeat {
        f_2 = cost(F);
        repeat {
            f_1 = |F|;
            F = reduce (F, D);
            F = expand (F, R);
            F = irredundant ( F, D );
        } until (|F| \ge f_1);
    } until ( cost(F) \ge f_2 );
    F = F \cup E;
    D = D - E;
    F = make_sparse ( F, D, R );
```


Example

result


```
D:
            | R:
                    (espr)
F:
-000
      110- | 011-
                    -0-1
-010
      11-1 | 01-0
                    011-
0101
            I 0-11
                    01-0
1110
            I - 0 - 1
            I -011
```

```
&: 11 01 11 11 & 11 01 11 11 -> 11 01 11 11  
11 01 11 11 & 11 11 10 11 -> 11 01 10 11 [covered, st.A&B=A]  
11 01 11 11 & 11 11 11 01 -> 11 01 11 01 [covered]  
...  
11 11 11 01 & 11 11 11 01 -> 11 11 11 01
```

```
-1--
---1
```

etc. etc.

Example (cont.)

• Expand: starting from the smallest (espresso starts from the largest)

```
-000: 11 10 10 10 =13

-010: 11 10 01 10 =13

0101: 10 01 10 01 =8 *

1110: 01 01 01 10 =10

33 22 22 31
```

- Removing a variable -> can not cover with any implicant from R!
 - few examples only, must be checked against all implicants

```
d -> 010-: 10 01 10 11 -> & 01-0: 10 01 11 10 = 0100: 10 01 10 10 !!
c -> 01-1: 10 01 11 01 -> & 0-11: 10 11 01 01 = 0111: 10 01 01 01 !!
b -> 0-01: 10 11 10 01 -> & -0-1: 11 10 11 01 = 0001: 10 10 10 01 !!
a -> -101: 11 01 10 01 -> & -011: 11 10 01 01 = -xx1: 11 00 00 01 0K
```

Next expand

```
-000: 11 10 10 10 =14

-010: 11 10 01 10 =14

-101: 11 01 10 01 =12

1110: 01 01 01 10 =11*

34 22 22 31
```


Example (cont.)

```
b -> 1-10: 01 11 01 10 -> & -0-1: 11 10 11 01 = 101x: 01 10 01 00 OK c -> 1--0: 01 11 11 10 -> & 01-0: 10 01 11 10 = x1-0: 00 10 11 10 OK
```

-000: 11 10 10 10 =16 -010: 11 10 01 10 =15*

-101: 11 01 10 01 =14 (can not be extended more)

1--0: 01 11 11 10 =17 34 32 32 31

 $c \rightarrow -0-0$: 11 10 11 10 \rightarrow & 011-: 10 01 01 11 = 0x10: 10 00 01 10 0K

Check coverage: A & B == A

-0-0: 11 10 11 10 & -000: 11 10 10 10 = -0-0: 11 10 11 10 [remove B]

• Result:

-0-0: 11 10 01 10 -101: 11 01 10 01 1--0: 01 11 11 10

Defining Output Polarity

- Single function
 - separate minimal cover by 1-s and 0-s
- Impractical with m outputs there are 2^m combinations
- Heuristic approach (Sasao 1984)
 - new function with 2m outputs extra m outputs are inverted
 - heuristic or exact minimization
 - new cover direct and inverted outputs
 - solving covering ~ Petrik's method

	f ₁	f ₂	f ₃	$\overline{\mathtt{f}}_{\mathtt{1}}$	$\overline{\mathtt{f}}_2$	$\overline{\mathbf{f}}_3$	(ad+bf)(ba+da)(a+b)=1
a	1	0	0	0	0	0	(ad+bf)(bc+dg)(e+h)=1
b	0	1	0	1	0	0	
С	0	1	0	0	0	0	
d	1	0	0	0	1	0	abcde+abcdh+adeg+adgh+
е	0	0	1	0	0	0	+bcef+bcfh+bdefg+bdfgh=1
f	0	0	0	1	0	0	
g	0	0	0	0	1	0	
h	0	0	0	0	0	1	adeg-> f_1 , \overline{f}_2 , f_3

Defining Output Polarity – Example

Direct outputs only

1111 1011

. е

.i 4		espresso
.04		.i 4
0000	1-00	.04
0001	01-0	.p 10
0010	11-1	-001 0100
0011	0-01	-100 1100
0100	1110	1-11 1001
0101	1010	10-0 0011
0110	-111	010- 1010
0111	01-0	-1-1 0010
1000	0011	0-10 0011
1001	-10-	0-1- 0100
1010	-0-1	-01- 0001
1011	1001	00 1000
1100	11-0	.e
1101	0-10	
1110	-000	

4 2-AND, 6 3-AND, 1 3-OR, 3 4-OR -- 41 literals in total

Defining Output Polarity – Example

Inverted outputs?

espresso -Dopoall

.i 4		Summary of possibilities
.p 9		0000 c=10(0) in=28 out=14 tot=42
_	0110	0001 c=10(0) in=29 out=16 tot=45
#ph.	0110	0010 c=11(0) in=29 out=14 tot=43
11-0	0001	0011 c=10(0) in=28 out=15 tot=43
10-0	1010	0100 c=10(0) in=28 out=15 tot=43
0111	1101	0101 c=10(0) in=28 out=16 tot=44
00_1	1100	0110 c=9(0) in=26 out=17 tot=43
		0111 c=9(0) in=25 out=17 tot=42
0-10	0110	1000 c=9(0) in=25 out=15 tot=40
-100	0110	1001 c=10(0) in=26 out=14 tot=40
0-0-	0001	1010 c=10(0) in=25 out=14 tot=39
-1-1	0010	1011 c=9(0) in=24 out=15 tot=39
		1100 c=9(0) in=25 out=17 tot=42
1-01	1101	1101 c=10(0) in=27 out=15 tot=42
. e		1110 c=11(0) in=29 out=16 tot=45
		1111 c=10(0) in=26 out=15 tot=41

		d c			
r	· —	_			ı
_	0	0	1	1	
b	0	0	lacksquare	1	
	0	0	1	0	
a	1		1	1	

2 2-AND, 6 3-AND, 1 4-AND, 3 4-OR, 1 5-OR -- 43 literals in total

Defining Output Polarity – Example

Not the number of implicants but the number of literals?

		d	d
.i 4	•••	с	c
.04	1011 c=9(0) in=24 out=15 tot=39		
0000 1-00	1111 c=10(0) in=26 out=15 tot=41	1 0 0 1	- 1 - 1
0001 00-0	1111 0 10(0) 111 10 000 15 000 11	b 1 1 0 - b	1 0 1 1
0010 10-1	Invert the second output?		1 - 0 0
0011 0-01		' 	
0100 1 <mark>0</mark> 10	.p 9	a 0 - 1 - a	0 1 0 0
0101 1 <mark>1</mark> 10	0101 1100		
0110 - 011	1-11 0001	_	_
$0111 \ 00-0$	-100 1010	dc	c
1000 0 <mark>1</mark> 11	-1-1 0010	m	n —
1001 -00-	-01- 0001	0 - 0 -	0 0 1 1
1010 - 1 -1	0-10 0011		0 0 0 1
1011 1 <mark>1</mark> 01	00 1000	b - - - b	0 0 1 0
1100 1 <mark>0</mark> -0	10-0 0111		0 0 1 0
1101 0-10	1-1- 1100	a 1 0 0 (- a	
1110 -100		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	·
1111 1 <mark>1</mark> 11	4 0 3370 4 2 3370 4 4 3370 4	2 05 2 4 05 20 111	
.e	4 2-AND, 4 3-AND, 1 4-AND, 1	1 3-OK, 3 4-OK 39 lite	rais in total

. е

Defining Output Polarity – Example

More possibilities from espresso

```
.i 4
.04
                  Use ".phase 1011"
.phase 1011
0000 1-00
                  No need to change outputs
0001 01-0
0010 11-1
0011 0-01
0100 1110
               .p 9
0101 1010
               0101 1100
0110 -111
               1-11 0001
0111 01-0
               -100 1010
1000 0011
               -1-1 0010
1001 -10-
               -01- 0001
1010 -0-1
               0-10 0011
1011 1001
               0--0 1000
1100 11-0
               10-0 0111
1101 0-10
               1-1- 1100
1110 -000
1111 1011
                   4 2-AND, 4 3-AND, 1 4-AND, 1 3-OR, 3 4-OR -- 39 literals in total
```

k		c	l	С
	1	0	0	1
b	1	1	0	Ŀ
	1	0	1	1
a	0	-	1	

		1	C
·		—	
0	0	1	(1)
0	0	0	1
0	0	1	0
1	-	1	1
	0	0 0 0	0 0 1

Symbolic Minimization and Encoding

- Symbols as 1-hot encoded words
- MVL minimizer treated as

ad-mode	op-code	control
INDEX	AND	CNTA
INDEX	OR	CNTA
INDEX	JMP	CNTA
INDEX	ADD	CNTA
DIR	AND	CNTB
DIR	OR	CNTB
DIR	JMP	CNTC
DIR	ADD	CNTC
IND	AND	CNTB
IND	OR	CNTD
IND	JMP	CNTD
IND	ADD	CNTC

Example – Getting Constraints

ad-mode	op-code	control
INDEX	AND	CNTA
INDEX	OR	CNTA
INDEX	JMP	CNTA
INDEX	ADD	CNTA
DIR	AND	CNTB
DIR	OR	CNTB
DIR	JMP	CNTC
DIR	ADD	CNTC
IND	AND	CNTB
IND	OR	CNTD
IND	JMP	CNTD
IND	ADD	CNTC

1	-hot	/ MV
100	1000	1000
100	0100	1000
100	0010	1000
100	0001	1000
010	1000	0100
010	0100	0100
010	0010	0010
010	0001	0010
001	1000	0100
001	0100	0001
001	0010	0001
001	0001	0010

.mv 3 0 3 4 4 100 1000 1000 100 0100 1000 100 0010 1000 100 0001 1000 010 1000 0100 010 0010 0010 010 0001 0010 001 1000 0100 001 0100 0001 001 0010 0001 001 0010 0001

.mv 3	3 0 3	4 4
.p 6		
001	1000	0100
001	0001	0010
010	1100	0100
010	0011	0010
001	0110	0001
100	1111	1000
. e		

espresso input espresso output

1	-hot	/ MV
100	1111	1000
010	1100	0100
001	1000	0100
010	0011	0010
001	0001	0010
001	0110	0001

Example – Encoding

1	-hot	/ MV
100	1111	1000
010	1100	0100
001	1000	0100
010	0011	0010
001	0001	0010
001	0110	0001

ad-md.	op-code	ctrl
INDEX	AND, OR, JMP, ADD	CNTA
DIR	AND, OR	CNTB
IND	AND	CNTB
DIR	JMP,ADD	CNTC
IND	ADD	CNTC
IND	OR,JMP	CNTD

Constraints as Literals

Literals

AND, OR, JMP, ADD AND, OR JMP, ADD OR, JMP

AND	00
OR	01
JMP	11
ADD	10

INDEX	00
DIR	01
IND	11

Encoded Cover

ad.	op.	ctrl
00		1000
01	0-	0100
11	00	0100
01	1-	0010
11	10	0010
11	-1	0001

© Peeter Ellervee cad - espresso - 72