BE 175/275: Machine learning & data-driven modeling in bioengineering

Discussion 7

Topics

- Hidden Markov Model
- Homework: Implementation of HMMs on real-world heart rate data.

a Hidden Markov model of an unstable coin

From the Nature paper

So, what is so "Markov" about it?

• Markov Property: The future depends only on the present state and does not depend on past history.

•
$$P(X_n|X_{n-1}) = P(X_n|X_{n-1}, X_{n-2}, X_{n-3}, ...)$$

	State Observable	State not fully observable	
Autonomous	Markov Chain	Hidden Markov Model	
Controlled	Markov Decision Process	Partially observable MDP	

Markov Chain

- State at time t is the value of X_t
- State space is the set of values that each X_t can take
- Trajectory is a particular set of values for X₀, X₁, X₂, ...
- Transition probability $p_{ij} = \mathbb{P}(X_{t+1} = j \mid X_t = i)$.
- Transition matrix $P = (p_{ij})$

Example from Rachel Fewster

What is hidden in the Hidden Markov Model?

- HMM as a 5-tuple
 - $\lambda(S, O, p, q, \pi)$
- States (S)
- Observations (O)
- Transition probabilities (p)

$$p(S_t = j \mid S_{t-1} = i) = p_{ij}$$

Emission probabilities (q)

$$p(O_t = y \mid S_t = i) = q_i^y$$

Initial probabilities (π)

$$p(S_1 = i) = \pi_i$$

Many diagrams of HMM

States and observations

• State sequence, observation sequence

Many diagrams of HMM

• State transition

Three fundamental problems of HMM

- **Evaluation** Given an HMM $\lambda(p, q)$ and an observation sequence O, determine the likelihood P(O | λ).
 - Forward Algorithm
- **Decoding** Given an observation sequence O and an HMM $\lambda(p, q)$, discover the best hidden state sequence S.
 - One time point: Forward Backward Algorithm
 - Sequence: Viterbi Algorithm
- **Learning** Given an observation sequence O and the set of states in the HMM, learn the HMM parameters p, q.
 - Expectation Maximization Baum-Welch Algorithm

In class example

- States (S): H, S, A
- Observations (O): B, W, F
- Transition probabilities (p_{ss})

	р	Н	S	Α	t
	Ι	0.5	0.3	0.1	
t+1	S	0.3	0.6	0.1	
	Α	0.2	0.1	0.8	

• Emission probabilities (q_s^O)

q	Н	S	Α
В	0	0	0.9
W	0.8	1	0
F	0.2	0	0.1

• Initial probability (π_s)

π	Н	S	Α
	1	0	0

Dynamic Programming

- Expedite computation by storing the result of previous calculations (Memoization)
- In Forward-Backward algorithm
 - The probability of observing this series before/after current time point AND the current state is k

$$p(S_t=k,\{O_t\}_{t=1}^T) = p(O_1,\ldots,O_t,S_t=k,O_{t+1},\ldots,O_T)$$

$$= p(O_1,\ldots,O_t,S_t=k)p(O_{t+1},\ldots,O_T|S_t=k)$$
 Compute recursively
$$\alpha_t^k$$

$$\beta_t^k$$

• In Viterbi algorithm

Forward Algorithm

- Find the probability of observing "wagging, food, barking" in the first three days?
 - Initialize: $\alpha_1^k = p(O_1 \mid S_1 = k)p(S_1 = k) \ \forall k$
 - lterate: for $t = 2, \ldots, T$

$$\alpha_t^k = p(O_t \mid S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k \mid S_{t-1} = i) \ \forall k$$

Termination:

$$p\left(\{O_t\}_{t=1}^T\right) = \sum_k \alpha_T^k$$

Saving α along the way

Forward-Backward Algorithm

• If you observe "wagging, food, barking, food" in the first four days, what is the probability that it is **angry** at day 3?

	Initialize:	$\beta_T^k =$	1	$\forall k$
--	-------------	---------------	---	-------------

lterate: for $t = T-1, \ldots, 1$

$$\beta_t^k = \sum_i p(S_{t+1} = i \mid S_t = k) p(O_{t+1} \mid S_{t+1} = i) \beta_{t+1}^i \ \forall k$$

▶ Termination: $p(S_t = k, \{O_t\}_{t=1}^T) = \alpha_t^k \beta_t^k$

$$p(S_t = k \mid \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)} = \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i}$$

р	Η	S A	
Н	0.5	0.3	0.1
S	0.3	0.6	0.1
Α	0.2	0.1	0.8
p	Н	S	Α
В	0	0	0.9
W	0.8	1	0
F	0.2	0	0.1
π	Н	S	Α
	1	0	0

Viterbi algorithm

• If you observe "wagging, food, barking" in the first three days, what are the most likely emotion states of your dog these days?

• Translate to math:
$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$$

 Intuition: How do we find the "shortest" (optimal) path from beginning to the red node?

Viterbi path

Viterbi algorithm

- when we choose the best i
- Define V_t^k as the probability of the most probable Viterbi path of $O_1O_2...O_t$ ends at state k then we have

$$V_1^k = p(O_1|S_1=k)p(S_1=k)$$

 $V_t^k = p(O_t|S_t=k) \max_i p(S_t=k|S_{t-1}=i)V_{t-1}^i$

Eventually, traceback each step to find the path

Baum-Welch Algorithm

- We have a series of observation for our dog, what are the parameters of our HMM?
- Challenge: we have two unknowns
 - How does the HMM assign states
 E-step If we know the parameters, we can use forward-backward to assign states given observation
 - The parameters in this HMM

 M-step If we know the states, we can estimate the parameters by MLE (counting!) T_{T-1}

$$p_{ij} = rac{\sum_{t=1}^{T-1} \xi_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)}$$
 $q_i^k = rac{\sum_{t=1}^{T} \delta_{O_t = k} \gamma_i(t)}{\sum_{t=1}^{T} \gamma_i(t)}$

- Expectation-Maximization (EM) algorithm!
 - Recursive, local optimization

Homework: Implementation of HMMs on real-world heart rate data

- Take heart rate data from one day of an individual and predict which state the person is in over the course of a day.
- Install the HMM package using pip install hmmlearn
- Set 3 states: model = hmmlearn.hmm.GaussianHMM(n_components = 3)
- (3) How do we know a dataset is normally distributed?
- (6) Fit HMM. Use the transformation you validated in (3)
 - model.fit(data)
 - states = model.predict(data)
- (7) Use HMM to predict on your moving window averaged data