Minimal Models and Variable Assignments

LOGIC I Benjamin Brast-McKie November 9, 2023

QL Models

Interpretations: \mathcal{I} is an QL interpretation over \mathbb{D} *iff* both:

- $\mathcal{I}(\alpha) \in \mathbb{D}$ for every constant α in QL.
- $\mathcal{I}(\mathcal{F}^n) \subseteq \mathbb{D}^n$ for every *n*-place predicate \mathcal{F}^n .

Model: $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ is a model of QL *iff* \mathcal{I} is a QL interpretation over $\mathbb{D} \neq \emptyset$.

Variable Assignments

Assignments: A variable assignment $\hat{a}(\alpha) \in \mathbb{D}$ for every variable α in QL. *Singular Terms:* We may define the referent of α in $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ as follows:

$$\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = egin{cases} \mathcal{I}(\alpha) & ext{if } \alpha ext{ is a constant} \ \hat{a}(\alpha) & ext{if } \alpha ext{ is a variable.} \end{cases}$$

Variants: A \hat{c} is an α -variant of \hat{a} iff $\hat{c}(\beta) = \hat{a}(\beta)$ for all $\beta \neq \alpha$.

Semantics for QL

- (A) $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\mathcal{F}^{n}\alpha_{1},\ldots,\alpha_{n})=1$ iff $\langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_{1}),\ldots,\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_{n})\rangle\in\mathcal{I}(\mathcal{F}^{n}).$
- $(\forall) \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall \alpha \phi) = 1 \ \ \textit{iff} \ \ \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\phi) = 1 \ \text{for every α-variant \hat{c} of \hat{a}.}$
- $(\exists) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists \alpha \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi) = 1 \ \text{for some} \ \alpha\text{-variant} \ \hat{c} \ \text{of} \ \hat{a}.$
- $(\neg) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\neg \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) \neq 1.$
- $(\vee) \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi \vee \psi) = 1 \ \ \textit{iff} \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi) = 1 \ \text{or} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi) = 1 \ \text{(or both)}.$
- $(\wedge) \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi \wedge \psi) = 1 \ \ \textit{iff} \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi) = 1 \ \text{and} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi) = 1.$
- $(\supset) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi \supset \psi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 0 \ \text{or} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi) = 1 \ \text{(or both)}.$
- $\label{eq:poisson} (\equiv) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi \equiv \psi) = 1 \ \text{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi).$

Truth: $V_{\mathcal{I}}(\varphi) = 1$ *iff* $V_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for some \hat{a} where φ is a sentence of QL.

Assignment Lemmas

Lemma 1: If $\hat{a}(\alpha) = \hat{c}(\alpha)$ for all free variables α in a wff φ , then $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi)$.

• Goes by routine induction on complexity.

Lemma 2: For any sentence φ : $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for every v.a. \hat{a} over \mathbb{D} .

LTR: Assume $\mathcal{V}_{\mathcal{I}}(\varphi)=1$, so $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi)=1$ for some v.a. \hat{c} over $\mathbb D$.

- Let \hat{a} be any v.a. over \mathbb{D} .
- Since φ has no free variables, $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi)$ by Lemma 1.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for all v.a. \hat{c} over \mathbb{D} .

RTL: Assume $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for all v.a. \hat{a} over \mathbb{D} .

• Since $\mathbb D$ is nonempty, there is some v.a. $\hat a$, and so $\mathcal V_{\mathcal T}(\varphi)=1$.

Lemma 3: For any sentence $\varphi: \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1$ iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) \neq 1$ for some v.a. \hat{a} over \mathbb{D} .

Minimal Models

Task 1: Provide minimal models in which the following are true/false.

• Al loves everything, i.e., $\forall x Lax$.

True: Let \hat{a} be a v.a. over $\mathbb{D} = \{a\}$.

- Let \hat{c} be any *x*-variant of \hat{a} .
- So $\hat{c}(x) = a$ and $\mathcal{I}(a) = a$.
- Since $\mathcal{I}(L) = \{\langle a, a \rangle\}$, we know $\langle \mathcal{V}_{\mathcal{I}}^{\hat{c}}(a), \mathcal{V}_{\mathcal{I}}^{\hat{c}}(x) \rangle \in \mathcal{I}(L)$.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(Lax)=1$, and so $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall xLax)=1$.

False: Let $\mathbb{D} = \{a\}$ and $\mathcal{I}(L) = \emptyset$.

- Assume $V_{\mathcal{I}}(\forall x Lax) = 1$ for contradiction.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall x Lax) = 1$ for some v.a. \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(Lax)=1$ since \hat{a} is an x-variant of itself.
- So $\langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(a), \mathcal{V}_{\mathcal{I}}^{\hat{a}}(x) \rangle \in \mathcal{I}(L)$, and so $\mathcal{I}(L) \neq \varnothing$.
- Someone is dancing, i.e., $\exists x (Px \land Dx)$.

True: Let \hat{a} be a v.a. over $\mathbb{D} = \{a\}$ where a(x) = a.

- Since $\mathcal{I}(P) = \mathcal{I}(D) = \{\langle a \rangle\}$, we know $\langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(x) \rangle \in \mathcal{I}(P) = \mathcal{I}(D)$.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(Px) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(Dx) = 1$, and so $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(Px \wedge Dx) = 1$.
- Since \hat{a} is a x-variant of itself, $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists x(Px \wedge Dx)) = 1$.
- Thus $V_{\mathcal{I}}(\exists x(Px \wedge Dx)) = 1$.

False: Let $\mathbb{D} = \{a\}$ and $\mathcal{I}(P) = \emptyset$.

- Assume $V_{\tau}(\exists x(Px \land Dx)) = 1$ for contradiction.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists x(Px \wedge Dx)) = 1$ for some v.a. \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(Px \wedge Dx) = 1$ for some *x*-variant \hat{c} of \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(Px) = 1$, and so $\langle \mathcal{V}_{\mathcal{I}}^{\hat{c}}(x) \rangle \in \mathcal{I}(P)$.
- Thus $\mathcal{I}(P) \neq \emptyset$.
- No set is a member of itself. [contingent] $\neg \exists x (Sx \land x \in x)$
- There is a set with no members. [contingent] $\exists x (Sx \land \forall y (y \notin x))$
- Everyone loves someone. [contingent] $\forall x (Px \supset \exists y Lxy)$.
- The guests that remained were pleased with the party. [contingent] $\forall x (Rxp \supset Px)$.
- I haven't met a cat that likes Merra. [contingent] $\neg \exists x (Mbx \land Cx \land Lmx)$
- Kate found a job that she loved. [contingent] $\exists x (Fkx \land Jx \land Lkx)$
- Everything everything loves loves something. [contingent] $\forall x (\forall y L y x \supset \exists z L x z)$.

Quantifier Exchange

 $(\neg \forall) \ \neg \forall x \varphi \vDash \exists x \neg \varphi.$

LTR: Let $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ satisfy $\neg \forall x \varphi$.

- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\neg \forall x \varphi) = 1$ for some v.a. \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall x \varphi) \neq 1$.
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi) \neq 1$ for some *x*-variants \hat{c} of \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\neg \varphi) = 1$ for some *x*-variants \hat{c} of \hat{a} .
- So $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\exists x \neg \varphi) = 1$, and so $\mathcal{V}_{\mathcal{T}}(\forall x \neg \varphi) = 1$.

 $(\neg \exists) \ \neg \exists x \varphi \vDash \forall x \neg \varphi.$

LTR: Let $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ satisfy $\neg \exists x \varphi$.

- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\neg \exists x \varphi) = 1$ for some v.a. \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists x \varphi) \neq 1$.
- So $\mathcal{V}_{\tau}^{\hat{c}}(\varphi) \neq 1$ for all *x*-variants \hat{c} of \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\neg \varphi) = 1$ for all *x*-variants \hat{c} of \hat{a} .
- So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall x \neg \varphi) = 1$, and so $\mathcal{V}_{\mathcal{I}}(\forall x \neg \varphi) = 1$.

Arguments

Bigger: Regiment the following argument:

- Whenever something is bigger than another, the latter is not bigger than the former.
 ∀x∀y(Bxy ⊃ ¬Byx).
- ... Nothing is bigger than itself. $\neg \exists x Bx x$.

Proof: Let $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ be any model which satisfies the premise.

- So $\mathcal{V}_{\tau}^{\hat{a}}(\forall x \forall y (Bxy \supset \neg Byx)) = 1$ for some v.a. \hat{a} .
- Assume $V_T(\neg \exists x Bxx) \neq 1$ for contradiction.
- So $\mathcal{V}_{\tau}^{\hat{a}}(\neg \exists x B x x) \neq 1$ in particular.
- So $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\exists x B x x) = 1$.
- So $V_{\tau}^{\hat{c}}(Bxx) = 1$ for some *x*-variant \hat{c} of \hat{a} .
- So $\langle \mathcal{V}_{\tau}^{\hat{c}}(x), \mathcal{V}_{\tau}^{\hat{c}}(x) \rangle \in \mathcal{I}(B)$, and so $\langle \hat{c}(x), \hat{c}(x) \rangle \in \mathcal{I}(B)$.
- So $\mathcal{V}_{\mathcal{T}}^{\hat{c}}(\forall y(Bxy\supset \neg Byx))=1.$
- So $\mathcal{V}_{\tau}^{\hat{e}}(Bxy \supset \neg Byx) = 1$ for *y*-variant \hat{e} where $\hat{e}(y) = \hat{c}(x)$.
- So $\mathcal{V}_{\tau}^{\hat{e}}(Bxy) \neq 1$ or $\mathcal{V}_{\tau}^{\hat{e}}(\neg Byx) = 1$.
- So $\mathcal{V}_{\tau}^{\hat{e}}(Bxy) \neq 1$ or $\mathcal{V}_{\tau}^{\hat{e}}(Byx) \neq 1$.
- So $\langle \hat{e}(x), \hat{e}(y) \rangle \notin \mathcal{I}(B)$ or $\langle \hat{e}(y), \hat{e}(x) \rangle \notin \mathcal{I}(B)$.
- So $\langle \hat{c}(x), \hat{c}(x) \rangle \notin \mathcal{I}(B)$ or $\langle \hat{c}(x), \hat{c}(x) \rangle \notin \mathcal{I}(B)$ since $\hat{e}(x) = \hat{c}(x)$.
- So $\langle \hat{c}(x), \hat{c}(x) \rangle \notin \mathcal{I}(B)$, contradicting the above.

Love: Regiment the following argument:

- Cam doesn't love anyone who loves him back. $\forall x(Lxc \supset \neg Lcx)$.
- May loves everyone who loves themselves. $\forall y(Lyy \supset Lmy)$.
- . If Cam loves himself, he doesn't love May. $Lcc \supset \neg Lcm$.

Taller: Regiment the following argument:

- If a first is taller than a second who is taller than a third, then the first is taller than the third.
- $\forall x \forall y \forall z ((Txy \land Tyz) \supset Txz).$ Nothing is taller than itself.
 - $\neg \exists x T x x$.
- ... If a first is taller than a second, the second isn't taller than the first. $\forall x \forall y (Txy \supset \neg Tyx)$.