

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Winter-Semester 2020/2021

Lineare Algebra I

Übungsblatt 0 02.11.20

Dieses Übungsblatt geht noch nicht in die Bewertung ein.

Aufgabe 1 (Aussagenlogik)

Wir definieren eine neue Art, zwei Aussagen zu kombinieren, durch die folgende Wahrheitstabelle:

$$\begin{array}{c|ccc} \mathcal{A} & \mathcal{B} & \mathcal{A} \mid \mathcal{B} \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & w \end{array}$$

- a) Zeigen Sie, dass $\mathcal{A} \mid \mathcal{B}$ zu $\neg (\mathcal{A} \wedge \mathcal{B})$ äquivalent ist.
- b) Zeigen Sie, dass die Aussagen $\neg \mathcal{A}$ und $\mathcal{A} \mid \mathcal{A}$ äquivalent sind.
- c) Stellen Sie, ähnlich wie in b), die Aussagen $\mathcal{A} \wedge \mathcal{B}$, $\mathcal{A} \vee \mathcal{B}$, $\mathcal{A} \implies \mathcal{B}$ und $\mathcal{A} \iff \mathcal{B}$ nur mithilfe des Symbols |, mit Klammern und mit \mathcal{A} und \mathcal{B} dar.

Aufgabe 2 (Operationen auf Mengen)

Es seien A, B, C, D beliebige Mengen und I eine nichtleere Menge. Weiterhin sei für jedes $i \in I$ die Menge M_i eine Teilmenge von D. Zeigen Sie:

- a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. Bemerkung: Dies lässt sich auch aus den De Morgan'schen Gesetzen ableiten.
- b) $A \times \bigcap_{i \in I} M_i = \bigcap_{i \in I} (A \times M_i)$.
- c) $\bigcup_{i \in I} \mathcal{P}(M_i) \subseteq \mathcal{P}(\bigcup_{i \in I} M_i)$.
- d) Gilt in c) auch die umgekehrte Inklusion ("⊇")? Belegen Sie Ihre Behauptung.

Aufgabe 3 (Injektive und bijektive Abbildungen)

Entscheiden Sie für die Abbildungen

$$f_1 \colon \mathbb{Z} \to \mathbb{Z}$$
 $f_2 \colon \mathbb{Z} \to \mathbb{Z}$ $f_3 \colon \mathbb{N} \to \mathbb{Z}$ $z \mapsto \left\lfloor \frac{z}{2} \right\rfloor$ $z \mapsto \left\lfloor \frac{z}{2} \right\rfloor$ $z \mapsto \left\lfloor \frac{1-z}{2} \right\rfloor$ $z \text{ ungerade}$

jeweils, ob sie injektiv, surjektiv und/oder bijektiv sind.

Dabei definiert $\lfloor x \rfloor$ für $x \in \mathbb{R}$ die größte Zahl $z \in \mathbb{Z}$, die $z \leq x$ erfüllt. Beachten Sie, dass die natürlichen Zahlen \mathbb{N} (zumindest in dieser Vorlesung) nicht die 0 enthalten.

Aufgabe 4 (Satz von Beatty)

Es seien $a,b\in\mathbb{R}\setminus\mathbb{Q}$ mit a,b>0 und $\frac{1}{a}+\frac{1}{b}=1$. Außerdem seien die folgenden Mengen definiert:

$$A \coloneqq \{ \left\lfloor a \cdot n \right\rfloor \mid n \in \mathbb{N} \}, \qquad \qquad B \coloneqq \{ \left\lfloor b \cdot m \right\rfloor \mid m \in \mathbb{N} \}.$$

Beachten Sie dabei auch die Definitionen aus Aufgabe 3. Beweisen Sie die folgenden Aussagen:

- a) Für alle $n, m \in \mathbb{N}$ gilt $\lfloor a \cdot n \rfloor < a \cdot n < \lfloor a \cdot n \rfloor + 1$ und $\lfloor b \cdot m \rfloor < b \cdot m < \lfloor b \cdot m \rfloor + 1$. (*Hinweis*: Kann $a \cdot n$ oder $b \cdot m$ eine ganze Zahl sein?)
- b) Es gibt keine Zahlen $n, m \in \mathbb{N}$, sodass $\lfloor a \cdot n \rfloor = \lfloor b \cdot m \rfloor$ gilt.
- c) Es gilt $A \cap B = \emptyset$.
- d) Es gilt $A \cup B = \mathbb{N}$.

 $\begin{array}{l} \textit{Hinweis:} \ \text{Was wäre, wenn es Zahlen} \ z, m, n \in \mathbb{N} \ \text{g\"abe,} \\ \text{die} \ \lfloor a(n-1) \rfloor < z < z+1 \leq \lfloor an \rfloor \ \text{und} \ \lfloor b(m-1) \rfloor < z < z+1 \leq \lfloor bm \rfloor \ \text{erf\"ullen w\"urden?} \end{array}$

Dieses Blatt geht noch nicht in die Bewertung für den Übungsschein ein, aber Sie können es trotzdem abgeben, um zu erfahren, wie die Bewertung wäre.

Abgabe bis Montag, den 09.11.20 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.