1. mājasdarbs

Lietišķie algoritmi, 2019.g. rudens Terminš: 2019-09-30

Ieteicamā lasāmviela. Guy Blelloch. Introduction to Data Compression. 2013, pp.16–19. Sk. https://bit.ly/3f9jzDD.

1.uzdevums (Aritmētiskais kods).

Dota ziņojumu kopa $S = \{A, B, C, D\}$ ar attiecīgajām varbūtībām $\{0.2, 0.5, 0.2, 0.1\}$.

- 1. Parādīt, kā iegūt aritmētisko kodu 6 ziņojumu virknei CBAABD uzkonstruēt tai atbilstošo intervālu $[l_6; l_6 + s_6) \in [0; 1]$ un atrast īsāko bitu virkni $d_1 d_2 \dots d_\ell$ (visi $d_k \in \{0, 1\}$, kur pierakstot binārā pieraksta daļskaitlim $D = 0.d_1 d_2 \dots d_\ell \dots$ galā jebkuru turpinājumu ar cipariem 0 vai 1, iegūtais skaitlis $d + \varepsilon$ pieder intervālam $[l_6; l_6 + s_6)$.
- 2. Noteikt, kādu ziņojumu virkni alfabētā S kodē skaitlis $D'' = 0.0011101011_2$.

2.uzdevums (Lempela-Ziva algoritms).

- 1. Ar LZ78 metodi nokodēt tekstu "abracadabra, abracadabra".
- 2. Atkodēt ar LZ78 metodi nokodētu tekstu a, b, c, d, 2, 5, a, 6, kur a, b un c apzīmē atbilstošos burtus, bet skaitļi vārdnīcas virkņu numurus.
- 3. Nokodēt (a) punkta tekstu "abracadabra, abracadabra" ar LZ77 metodi, kā logu lietojot visu nokodēto/atkodēto tekstu.

3. uzdevums (Berouza-Vīlera transformācija).

- 1. Kāds ir rezultāts (transformētā simbolu virkne un sākotnējās virknes pozīcija), lietojot Berouza-Vīlera transformāciju 14 simbolu virknei alusariirasula?
- 2. Kāds ir iepriekšējā piemērā iegūtās transformētās simbolu virknes pieraksts, izmantojot Move-to-Front kodēšanu?
- 3. Pēc BW transformācijas pielietošanas tika iegūta simbolu virkne mmmrvvauuuiibbbri. Kāda bija simbolu virkne pirms transformācijas (ņemot 4. virkni no atjaunotās tabulas)?

4.uzdevums (I-iespēja (atzīmei 10)).

Pieņemsim, ka ziņojumu kopai $S = \{x_1, x_2, \dots, x_n\}$ ar izveidots optimāls prefiksu kodējums. Šis kodējums jāpārraida, izmantojot minimālu bitu skaitu.

Pierādīt vai apgāzt šādu apgalvojumu: Jebkuru optimālu prefiksu kodējumu šai n ziņojumu kopai var nosūtīt, izmantojot ne vairāk kā $2n-1+n\lceil log_2n\rceil$ bitus. Šeit $\lceil x \rceil$ apzīmē noapaļošanu uz augšu jeb mazāko veselo skaitli, kas nav mazāks par x. Piemēram $\lceil 17 \rceil = 17$ un $\lceil 3.14 \rceil = 4$.

Ieteikums. Izmantojot 2n-1 bitus, var attēlot kodējumu koka virsotņu apstaigāšanas secību.