# Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting

by Tomasz Serafin, Bartosz Uniejewski and Rafał Weron

Project authors: Natalia Czyżyk, Weronika Urbańczyk

#### **Datasets**

#### PJM

Hourly prices and day-ahead load 9 April 2013 to 2 April 2018 (1820 days) Northeastern United States





#### **Nord Pool**

Hourly system prices and day-ahead consumption 31 December 2013 to 31 July 2018 (1674 days) Denmark, Finland, Norway and Sweden

#### Calibration windows

Probabilistic forecasting calibration windows range between T = 14 and 364 days





\* - target day for which the predictive distributions are computed

## 1 2 3

#### Point forecasts expertDoW, nl Ziel and Weron model

$$X_{d,h} = \beta_{h,1} X_{d-1,h} + \beta_{h,2} X_{d-2,h} + \beta_{h,3} X_{d-7,h} + \beta_{h,4} X_{d-1,min} + \beta_{h,5} X_{d-1,max} + \beta_{h,6} X_{d-1,24} + \beta_{h,7} C_{d,h} + \sum_{i=1}^{7} \beta_{h,7+i} D_i + \varepsilon_{d,h}$$

| NP2018          | Forecasted value | Real value |
|-----------------|------------------|------------|
| day 1 hour 1    | 21,359           | 19,612     |
| day 1 hour 2    | 21,228           | 16,416     |
| day 1 hour 3    | 20,178           | 16,522     |
|                 |                  |            |
| day 728 hour 22 | 27,337           | 23,797     |
| day 728 hour 23 | 22,758           | 21,369     |
| day 728 hour 24 | 20,509           | 19,525     |

| Rolling calibration windows of lengths | MAE (NP2018) | MAE (PJM) |
|----------------------------------------|--------------|-----------|
| 56                                     | 2,44         | 3,80      |
| 84                                     | 2,34         | 3,79      |
| 112                                    | 2,31         | 3,73      |
| 714                                    | 2,06         | 4,16      |
| 721                                    | 2,06         | 4,17      |
| 728                                    | 2,05         | 4,18      |

### 1 2 3

#### Probabilistic forecasts for quantiles in range (0.01, 0.99)

Calibration windows range between T = 14 and 364 days

#### **QRA - Quantile Regression Averaging**

$$Y_{d,h} = [1 \hat{P}_{d,h}(56,T) \hat{P}_{d,h}(84,T) \hat{P}_{d,h}(112,T)$$

$$\hat{P}_{d,h}(714,T) \hat{P}_{d,h}(721,T) \hat{P}_{d,h}(728,T)]$$

$$Q_p(P_{d,h}) = Y_{d,h} w_q$$

QRA involves applying quantile regression to a pool of point forecasts

#### **QRM - Quantile Regression Machine**

$$Y_{d,h} = [1 \, \overline{P}_{d,h}(T)]$$

$$Q_p(P_{d,h}) = Y_{d,h} w_q$$

QRM first averages point predictions across the six calibration windows, then applies quantile regression to the combined forecast

### 1 2 3

#### Pinball score

$$PS(\hat{Q}_{q}(P_{d,h}), P_{d,h}, q) = \begin{cases} (1-q)(\hat{Q}_{q}(P_{d,h}) - P_{d,h}) & \text{for } P_{d,h} < \hat{Q}_{q}(P_{d,h}) \\ q(P_{d,h} - \hat{Q}_{q}(P_{d,h})) & \text{for } P_{d,h} \ge \hat{Q}_{q}(P_{d,h}) \end{cases}$$

|                   | 14   | 21   | 28   | 42   | 70   | 308  | 336  | 364  |
|-------------------|------|------|------|------|------|------|------|------|
| <b>NP2018 QRM</b> | 0,79 | 0,76 | 0,76 | 0,76 | 0,76 | 0,79 | 0,79 | 0,79 |
| <b>NP2018 QRA</b> | 1,31 | 1,01 | 0,92 | 0,86 | 0,83 | 0,79 | 0,79 | 0,80 |
| PJM QRM           | 1,29 | 1,26 | 1,25 | 1,24 | 1,24 | 1,26 | 1,25 | 1,24 |
| PJM QRA           | 2,02 | 1,65 | 1,51 | 1,41 | 1,32 | 1,25 | 1,25 | 1,31 |

#### **APS** results

#### **PJM QRA**



#### **PJM QRM**



#### Conclusions

Model for point forecasts proved to be well-performing, yielding an avarege MAE of 2.21 (NP2018) and 3.97 (PJM)

QRM is more time-efficient and yielding better results than QRA

For APS, the best results came from combinations of shortest and longest windows

We obtained mostly similar results to the original article, but some differences could be observed - mainly due to used languages and functions

### Thank you!

Do you have any questions?