

Recent subjects

- Explicit geometries: not only triangles!
 - Point clouds are the simples example of explicit geometry

Object generation

Modeling:

- Interactive tools
- Computer Aided (Geometric) Design
- Measured:
 - Scanning devices
 - Cameras
 - Sensors (Kinnect, etc)

Result: point cloud

- Inherently unorganized set of points located on a surface / boundary
- Can appear as an recognisable shape to humans – but that's because of the developed "connect-the-dots" abilities of our brains
- From the CG point of view:
 - Inefficient storage
 - Difficult to display realistically
 - Very difficult to process efficiently

Geometry processing

 Collecting/producing a point cloud can be just a beginning of a whole process!

Surface reconstruction

Goal:

- Connect the points of a point cloud with triangles
- ...such that the triangles form a closed triangular mesh

 — ...that represents the scanned boundary surface (geometrically and topologically)

Connect the dots

- Creating arbitrary edges between dots does not yield good results
- We can derive conditions from our real life experience
 - Condition 1: the surface should be minimal
 - Condition 2: the resulting surface should be topologically equivalent to the scanned surface, e.g. it must have a well-defined interior
- Methods: Voronoi diagrams, Poisson reconstruction, visual hull, marching cubes, etc...

How to justify this? Think about the sampling theory and the Nyquist frequency!

Point cloud generation as sampling

- The sampling rate of the scanning process needs to be sufficiently high to capture all topological information
- Shannon theorem: The sampling rate has to be, at least, twice the frequency of the highest frequency to be reconstructed from the signal (≡ the Nyquist frequency)

Sampling vs. surface

- Upsampling (e.g. interpolation, subdivision)
 - Increase resolution
 - Close-ups, shading, making "prettier" surfaces
- Downsampling (e.g. interpolation, decimation)
 - Efficient L.O.D.-based display, reducing noise
- Resampling (e.g. distribution analysis, grid fitting)
 - Storage efficiency, producing more regular mesh for calculations, removing outliers

Voronoi diagrams

 Surface reconstruction can be based on Voronoi diagrams (Georgy Voronoi, 1868-1908)

Voronoi Diagram Intro Part 2 - Construction Algorithms https://www.youtube.com/watch?v=Y5X1TvN9TpM

Voronoi Explained

https://www.youtube.com/watch?v=I-07BXzNdPw

Voronoi diagrams

- Let's start with a set of points $\{x_j \in \mathbb{R}^3\}$
- A Voronoi region of a point x_i is defined as

$$S_i = \{ y \in \mathbb{R}^3 : ||y - x_i||_2 < ||y - x_j||_2 \text{ for all } j \neq i \}$$

(= the set of points which are closer to point j than to any other point)

- The set of Voronoi regions for all points make up the Voronoi diagram
- Voronoi diagram induces a partition on a given space
- Voronoi regions are convex polytopes (geometric objects with "flat" sides)

Voronoi diagrams

• If two Voronoi regions i and j share a common edge, the points x_i and x_j are called natural neighbours

Delaunay tetrahedrization

 Connecting all natural neighbors in a Voronoi diagram leads to a Delaunay tetrahedrization (Boris Delaunay, 1890-1980)

 Delaunay tetrahedrization partitions the convex hull of the point cloud

The convex hull
is the smallest convex
polytope that includes
all points of the point cloud

Delaunay tetrahedrization

 How to deal with non-convex shapes?

- To reconstruct surfaces of non-convex objects, we need to carve out concave regions off the convex hull
- Carving can be performed using a sphere with radius α, so-called α-shapes

Rendering point clouds

Rendering can be also done without surface reconstruction

Rendering point clouds

- It is usually done by adding a volume around every point
 - Done in an isotropic fashion, it leads to spheres
 - The size of the spheres must be chosen appropriately such that the spheres overlap minimally but still do not exhibit holes between them
 - This is, again, driven by the sampling rate!

Rendering point clouds

- How to estimate a good sphere radius?
 - The size of the spheres must be determined locally
 - It can be estimated by computing distances to neighboring points
 - natural neighbors
 - k nearest neighbors with fixed k
 - k nearest neighbors with variable k
 - k nearest neighbors with angle criterion

- Rather than drawing isotropic extensions, one would like to draw extensions only in directions tangential to the surface
- Spheres are replaced by spherical disks
- The disks are called splats
- This approach is called splatting

- Splats can be regarded as the intersection between the sphere and the tangential plane in the respective point
 - How to obtain the latter?
 - We can also express this problem in terms of normal vector

- Fitting a plane through the current point (x) and its neighbours $(y_{1...5})$ such that the distances from the points to the plane is minimal in the least squares sense
- Let $y_0 = x$ and the plane by given by $a_1x+a_2y+a_3z+a_4=0$. Ideally, we would like to have for i=1,...,n that

$$\mathbf{y}_{i}\mathbf{A} = 0 \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{y}_{0} \\ \vdots \\ \mathbf{y}_{n} \end{bmatrix}$$

• We can use the least square approach to find the solution: $\mathbf{Y}^{\top}\mathbf{Y}\mathbf{A} = \mathbf{0}$

- In case of anisotropic sampling, circular splats can be replaced by elliptical splats
- To produce nicer transitions between splats, the splats are drawn with increasing transparency towards their border
- Transparency transition can be determined using Gaussian filters

Thank you!

• Questions?

