Master Universitario en Inteligencia Artificial Aplicada Bases de Datos e

Infraestructuras

uc3m

Estructura del Curso

- 0.- Introducción
- 1.- Diseño de BB.DD. Relacionales (estática)
- 2.- Operación de BB.DD. Relacionales (dinámica básica)
- 3.- SQL para consultas analíticas
- 4.- Otros elementos de las BBDD Relacionales

uc3m Tema 2: La Dinámica del Modelo Relacional

Estructura del Tema

- 1.- Fundamentos Teóricos: Álgebra Relacional
- 2.- Actualizando datos mediante SQL: el LMD
- 3.- Consultar datos mediante SQL: la instrucción SELECT

uc3m

Tema 2.1: Dinámica Relacional

- Una vez creada la BD, para poder utilizarla es necesario otro tipo de lenguaje de datos: el lenguaje de manipulación de datos (LMD)
- Existen dos tipos de LMD: algebraico (como SQL) y predicativo
- El Álgebra Relacional es un lenguaje algebraico (conjunto de operadores) que permiten describir transformaciones de los datos que el diseñador dispondrá para alcanzar un objetivo.
- El SGBD (p.e. Oracle) tendrá una copia (workspace) de los datos sobre la que aplicará esas operaciones para alcanzar el resultado deseado (como una receta de cocina).
- Los "ingredientes" son miembros de un conjunto...

uc3m Tema 2.1: Álgebra. Operadores Unarios (I)

Selección: escogemos las tuplas que cumplan una condición

Notación: opredicado (Relación)

Libros escritos por Dumas

Libros

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Asi-1	El Fin de la Eternidad	Asimov
Dum-2	El Conde de Montecristo	Dumas

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Dum-2	El Conde de Montecristo	Dumas

(se escogen filas)

¿Y los libros escritos por Dumas o Pérez-Reverte?

uc3m Tema 2.1: Álgebra. Operadores Unarios (II)

Proyección: subconjunto del esquema relación

Notación: π_{atrib1, atrb2..} (Relación)

Libros

Signat.	Título	Autor	
Dum-1	-1 Los Tres Mosqueteros Duma		
Per-1	El Capitán Alatriste	P-Reverte	
Asi-1	El Fin de la Eternidad	ernidad Asimov	
Dum-2	El Conde de Montecristo	Dumas	

π título, autor (*Libros*)

Título	Autor
Los Tres Mosqueteros	Dumas
El Capitán Alatriste	P-Reverte
El Fin de la Eternidad	Asimov
El Conde de Montecristo	Dumas

(se escogen columnas)

Si la proyección fuera por autor ¿cuántas tuplas tendría la nueva relación?

uc3m Tema 2.1: Álgebra. Renombrado: ρ

Renombrado: asigna el resultado de una expresión a un símbolo (vista o relación temporal con existencia limitada a la consulta definida)*.

Notación: $\rho_{\text{símbolo}}$ (Expresión), o también $S \equiv Expresión$

Sea Q el conjunto de los títulos de los libros escritos por Dumas

$$\rho_A$$
 (σ autor='Dumas' ($Libros$)

$$\rho_{\rm O}$$
 $(\pi_{\rm título} A)$

$$A \equiv \sigma_{\text{autor='Dumas'}} (Libros)$$

$$Q \equiv \pi_{titulo} A$$

*: para tablas temporales de mayor persistencia (sesión) se usa la asignación \leftarrow

uc3m Tema 2.1: Álgebra Relacional. Operador UNIÓN

Unión: todas las tuplas de ambas relaciones (compatibles), eliminándose todas las tuplas repetidas

Aventuras

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Asi-1	El Fin de la Eternidad	Asimov

Aventuras U Novelas

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Asi-1	El Fin de la Eternidad	Asimov
Dum-2	El Conde de Montecristo	Dumas
Ner-1	Veinte poemas de amor	Neruda

Libros de aventuras o novelas

uc3m Tema 2.1: Álgebra Relacional. INTERSECCIÓN

Intersección: todas las tuplas que estén en ambas (compatibles)

Aventuras

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Per-1	El Capitán Alatriste	P-Reverte

Aventuras Novelas

Novelas de aventuras

uc3m Tema 2.1: Álgebra Relacional. DIFERENCIA

<u>Diferencia</u>: tuplas que aparecen en la primera y no en la otra (compatibles)

Aventuras

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Per-1	El Capitán Alatriste	P-Reverte

Aventuras - Novelas

Libros de aventuras que no se consideran novelas

uc3m Tema 2.1: Álgebra Relacional. PRODUCTO

Producto cartesiano: tuplas de ambas en todas las combinaciones

Comidas

Especialidad	Región
Gazpacho	Andalucía
Cocido	Castilla
Pote	Galicia

Vinos

Denominación
Rioja
Rueda

Comidas × Vinos

Especialidad	Región	Denominación
Gazpacho	Andalucía	Rioja
Gazpacho	Andalucía	Rueda
Cocido	Castilla	Rioja
Cocido	Castilla	Rueda
Pote	Galicia	Rioja
Pote	Galicia	Rueda

Carta de comidas con los distintos vinos que se ofrecen

uc3m Tema 2.1: Álgebra Relacional. COMBINACIÓN

Combinación (simple join or inner join): tuplas del producto cartesiano que cumplen una expresión condicional genérica. La condición lleva operadores de comparación (=, >, <...)

¿Qué películas pueden ver los clientes del cine?

Clientes

Nombre	Edad
Fulano	29
Mengano	18
Zutano	9

Películas

Título	Calificación
Matrix	18
Sólo tu	0

Clientes θ Edad \geq Calificación Películas

Nombre	Edad	Título	Calificación
Fulano	29	Matrix	18
Fulano	29	Sólo tu	0
Mengano	18	Matrix	18
Mengano	18	Sólo tu	0
Zutano	9	Sólo tu	0

uc3m Tema 2.1: Algebra Relacional. COMBINACIÓN

Combinación Natural (equijoin): Caso particular del operador combinación donde la comparación es de igualdad. Notación: * ó 🖂

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064

Nombre de los empleados que son dueños de algún coche

Empleados * dueño Coches

DNI	Marca
569064	Seat Ibiza
383090	Ford Escort

Nombre Fulano Zutano

∏_{nombre} (Empleados *_{dueño} Coches)

• observar que se elimina la columna repetida

Nombre

Fulano

Zutano

uc3m Tema 2.1: Álgebra Rel. SEMI-COMBINACIÓN

Semi-Combinación: igual que cualquier combinación, pero sólo se toman las columnas del operando izquierdo (|*) o derecho (*|). *Notación*: left semijoin: |* ó ⋈ right semijoin: *| ó ⋈

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

	Nombre	DNI
\rightarrow	Fulano	569064
·	Zutano	383090

Empleados con coche

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064
Honda Civic	868015

	Marca	Dueño
\rightarrow	Ford Escort	383090
	Seat Ibiza	569064

Coches de nuestros empleados

Notaciones: igual que en la combinación natural

Equivalencia: $\bowtie \equiv \pi \bowtie$

uc3m Tema 2.1: Álgebra Rel. ANTI-COMBINACIÓN

Anti-Combinación: igual que la semi combinación, pero las tuplas que se incluyen son las que no cumplen la condición definida. Notación: left antijoin: > right antijoin: <

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

Empleados sin coche

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064
Honda Civic	868015

Coches que no son de nuestros empleados

Notaciones: igual que en la combinación natural

Equivalencia: $A \triangleright B \equiv A - (A \ltimes B)$

uc3m Tema 2.1: Álgebra Relacional: Outer Join

Combinación externa: extensión de la combinación, que incluye las tuplas que no encajan de la relación izquierda/derecha/ambas. Las columnas que no aplican, adoptan el valor nulo (NULL ó ω).

left outer join: $]* \circ \square$ right outer join: $*[\circ \square]$ full outer join: $]*[\circ \square]$

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064
Honda Civic	868015

Empleados y sus coches, en su caso

Coches con su dueño si es uno de nuestros empleados.

	Nombre	DNI	Marca
	Fulano	569064	Seat Ibiza
•	Zutano	383090	Ford Escort
	Mengano	434848	NULL

Marca	Dueño	Nombre
Ford Escort	383090	Zutano
Seat Ibiza	569064	Fulano
Honda Civic	868015	NULL

Empleados y coches,	
asociados como proceda •	
Empleados dueño Coches	

Nombre	DNI	Marca
Fulano	569064	Seat Ibiza
Zutano	383090	Ford Escort
Mengano	434848	NULL
NULL	868015	Honda Civic

^{uc3m} Tema 2.1: Solución Válida ≠ Solución Adecuada

El **renombrado** es como *utilizar vistas temporales*, es decir, workspaces temporales constantes auxiliares que facilitan la consulta principal. Así, mediante el renombrado, se puede aplicar la máxima de computación acuñada por Julio César: 'Divide y Vencerás'. Las consultas anidadas son costosas, y frecuentemente pueden ser evitadas gracias al renombrado.

La **combinación** (*join*) se deriva de dos operadores primitivos ($\sigma \times$), pero al combinar se realizan al mismo tiempo. Imagina que tienes 100 lectores y 20 libros calificados por edades, y necesitas listar todas las combinaciones posibles (200). ¿Tú escribirías las 2000 posibles y luego tacharías las 1800 incorrectas? ¿O sólo escribirías directamente las correctas?

uc3m Tema 2.1: Álgebra Rel: Conjuntos Ordenados

Orden: conjunto ordenado (lista) es el resultado de aplicar un orden (ORDER BY_{orden} ó T_{orden}) sobre una relación. Si orden omite la especificación de orden (sólo explicita atributos) se sobreentiende el orden ≤ sobre números y el orden lexicográfico sobre caracteres.

Si se opera una lista ordenada se obtiene una relación (sin orden).

Sobre una lista ordenada se pueden aplicar funciones (analíticas) de agregación: first, last, y rank(value), y la seudocolumna numrow.

Personas

Nombre	Edad	Nacionalidad
Fulano	29	Español
Mengano	49	Español
John Doe	73	Inglés
Smith	14	Inglés
Zutano	3	Español
Pelancejo	25	Español

 $\pi_{\text{first, last, rank (29)}}$ order by edad (Personas)

first	last	rank(29)
3	73	4

• orden inverso: ORDER BYDESC

uc3m Tema 2.2: Dinámica del SQL: DML

Las instrucciones SQL3 de manipulación pueden operar de tres modos:

- 1. Interactivo (proporcionando instrucciones SQL directamente).
- 2. SQL embebido: instrucciones imbuidas en lenguaje anfitrión (C, JAVA,...).
- 3. Módulos: llamadas explícitas a procedimientos desde procesos externos.

- Modificación de tuplas (UPDATE)

Consulta o *Query* (SELECT) Operaciones de - Recuperación

uc^{3m} Tema 2.2: INSERCIÓN en SQL

Inserción directa de valores:

```
INSERT INTO <nombre de la tabla>
      [(<nombre columna1>, ..., <nombre columnaN>)]
      VALUES (<valor1>, ..., <valorN>) [, (row2...) [...]];
```

Inserción masiva (desde otra tabla):

```
INSERT INTO <nombre de la tabla>
      [(<nombre columna1>, ..., <nombre columnaN>)]
      SELECT ... :
```

uc3m Tema 2.2: Borrado y Modificación SQL

```
DELETE [FROM] <tabla> [<alias>]
      [WHERE <condicion>]
DELETE stocks;
/* :peligroso? ;No tanto como DROP o TRUNCATE! */
DELETE FROM stocks WHERE f caducidad<SYSDATE;
UPDATE <tabla> SET
{ <columna> = {<expresion>|<subquery>}
  (<columna> [{, <columna>}]) = <subquery>}
      [WHERE <condicion>]
UPDATE persons SET age=25 WHERE name='Javi';
UPDATE stock a SET price = (SELECT a.price*b.change
                              FROM euro quote b
                              WHERE b.name='peseta');
```


uc3m Tema 2.2: Transacciones en SQL

- **Transacción**: conjunto de instrucciones de **actualización** que deben ser llevadas a cabo de modo atómico (como conjunto, "o todo o nada")
- <u>Instrucciones</u>: COMMIT (realizar) y ROLLBACK (deshacer)
 - [WORK] COMMIT
 - ROLLBACK [WORK] [TO [SAVEPOINT] <savepoint>]
 - SAVEPOINT <savepoint>

Uc3m Tema 2.3: Consultas en SQL

```
[WITH
     <simbolo> AS <subquery>
     [, <simbolo> AS <subquery> ... ] ]
SELECT [ALL|DISTINCT] <lista de selección>
     FROM < cláusula de origen>
     [WHERE <condición> ]
     [GROUP BY <expresión> [HAVING <condcn>]]
     [{UNION|UNION ALL|MINUS|INTERSECT} <query>]
     [ORDER BY <expresión> [ASC|DESC]] ;
```

uc3m Tema 2.3: la proyección en la query

- ➤ la proyección se refleja en la la de selección Lista de datos (del workspace) separados por comas.
- Puede ser todo el área de trabajo (*) o bien incluir:
 - atributos del esquema de relación del área de trabajo
 - pseudo-columnas, como ROWNUM y table.ROWID,...
 - constantes (como 1 o 'X') y variables ligadas (:NEW, ...)
 - funciones: aplicadas sobre lo anterior (o nularias)
 - aritméticas (+, -, ...), strings (||, SUBSTR, ...), codificación (CASE, NVL, ...), conversión (TO_CHAR, ...), sistema (SYSDATE, USER, ...), ...
 - de <u>agregación</u> (reciben un colectivo y devuelven un solo valor)
 - funciones compiladas (de usuario o procedentes de paquetes)
- Admite renombrado (alias): ... elemento [AS] alias ...

uc3m Tema 2.3: el área de trabajo (workspace)

- > workspace: es una tabla temporal (vinculada al origen)
- La cláusula FROM define el *área de trabajo* (que es una tabla)
- Puede componerse de una tabla base, o varias tablas combinadas.
- Dado que el área de trabajo es una tabla, un caso particular de tabla en la clausula FROM es otro área de trabajo, es decir, una consulta (subquery).
- Admite renombrado (obligatorio en self-joins): ... tabla alias ...
- Existen diversas combinaciones:
- · Combinación Elemental: el Producto Cartesiano

... FROM Gente CROSS JOIN Clientes... = FROM Gente, Clientes...

uc3m Tema 2.3: el área de trabajo

- > Consultas: clausula FROM y combinación natural
- Combinación General JOIN: todas las columnas de ambas tablas

```
... FROM people [INNER] JOIN clients
         [ ON (<col a>=<col b> [AND...] )]
```

- sin especificación: equijoin por todos los pares de columnas que reciben el mismo nombre en ambas tablas.
- con cláusula ON: solo las tuplas que cumplan la expresión (de =, !=, <, >, ...).
- Combinación Natural: no duplica las columnas incluidas en la igualdad

```
... FROM X NATURAL [INNER] JOIN Y...
```

Combinación Natural por pares de columnas que se llamen igual en ambas tablas

```
... FROM X [INNER] JOIN Y USING (<columns>)...
```

Combinación Natural por pares de columnas especificados (que se llaman igual...)

uc3m Tema 2.3: el área de trabajo

Combinación sin pérdidas, Combinación Externa (outer):

```
...FROM Gente {LEFT|RIGHT|FULL} [OUTER] JOIN Clientes
     [USING <columnas> | ON <col a>=<col b> [AND...]]
```

- Mismo uso que la (inner) JOIN; 'outer' es opcional (recomendable por claridad)
 - ... FROM X LEFT OUTER JOIN Y... Combinación Externa por la izquierda (respeta todas las tuplas de la primera tabla)
 - ... FROM X RIGHT JOIN Y... Combinación Externa por la derecha (respeta todas las tuplas de la segunda tabla)
 - ... FROM X FULL OUTER JOIN Y... Combinación Externa completa (mantiene todas las tuplas de ambas tablas)

uc3m Tema 2.3: la selección de tuplas

- > la expresión condicional (WHERE) puede ser...
 - una comparación de expresiones (=, !=, <, >, <=, >=)- los operandos pueden ser valores, expresiones, o incluso una subquery (!)
 - comprobación de inclusion test (en un rango):

```
<expresión> [NOT] BETWEEN <expresión> AND <expresión>
```

- comprobación de valor nulo: <expresión> IS [NOT] NULL
- test de semejanza (patrón): <expresión char> [NOT] LIKE <patrón>
- expresión lógica: {NOT, AND, OR} a partir de otras expresiones condicionales
- test de existencia: EXISTS subquery
- test de inclusión (en un conjunto dado, o en una subquery):

```
<expresión> [NOT] IN {<expresión list>|subquery}
```

SUBQUERIES en la cláusula WHERE: pueden ser ineficientes

- EXISTS se detiene en el primer encaje, pero se ejecuta **anidado** siempre.
- IN puede optimizarse (no ejecutar anidado); conviene moverlo a la cl. WITH
- NOT IN puede usarse en anti-combinaciones (si se hace de modo eficiente)

^{∪c3m} Tema 2.3: traducción Álgebra Rel. ↔ SQL

```
[WITH
     <símbolo> AS <subquery>
      [, <simbolo> AS <subquery> ... ] ]
SELECT [ALL|DISTINCT] <lista de selección>
     FROM < cláusula de origen:
      [WHERE <condición>
     -[GROUP BY <expresión> [HAVING <condcn>]]
      [{UNION|UNION ALL|MINUS|INTERSECT} <query>]
      [ORDER BY <expresión> [ASC|DESC]]
```

TAKE IT EASY... Learning is FUN!

- Para practicar SQL, mira esta página web:
 - sqlzoo.net

- Apps (en Android / IOS)
 - SoloLearn
 - SQL Practice PRO (exercises)
 - Pocket PLSQL, SQL Tutorial, Learn SQL queries,