PROVA (PARTE 1)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

28 de agosto de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.EA + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova,
- EA é a pontuação total dos exercícios de aquecimentos, e
- $-\ EB$ é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (1) Teoria da Computação, (2) Modelos de Computação e (3) Problemas Decidíveis.

3.7		
NT		
IN Om O'		
T TOTTIO.		

Primeiro Teste

1. (5,0 pt) Esta questão diz respeito à MT M_1 cujo diagrama de estados, em sua versão simplificada, é apresentado na figura abaixo.

Dê a sequência de configurações nas quais M_1 entra quando iniciada sobre cada cadeia de entrada indicada nos itens abaixo:

- (a) 1#1
- (b) 10#11
- 2. (5,0 pt) Mostre que a classe de linguagens decidíveis é fechada sob a operação de concatenação.

Segundo Teste

- 3. (5,0 pt) Dê a descrição, em nível de implementação, da MT que decide a linguagem $A = \{\omega \mid \omega \text{ contém duas vezes mais 0s que 1s}\}$. Admita que o alfabeto é o conjunto $\{0,1\}$.
- 4. (5,0 pt) Considere o problema de se determinar se um AFD e uma expressão regular são equivalentes. Expresse esse problema como uma linguagem e mostre que ele é decidível.

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.