

Self Supervised Learning Methods for Imaging

Part 4: Learning with equivariance

Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

Learning Approach

Recall:

Proposition: Any reconstruction function $f(y) = A^{\dagger}y + g(y)$ where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A is measurement consistent.

Symmetry Prior

Idea: Most natural signals sets \mathcal{X} are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set \mathcal{X} is invariant to $\left\{T_g \in \mathbb{R}^{n \times n}\right\}_{g \in G}$ if

$$\forall x \in \mathcal{X}, \ \forall g \in G, \ T_g x \in \mathcal{X}$$

Other symmetries: rotations, permutation, amplitude

Symmetry Prior

Equivariant Imaging [Chen et al., 2021]

For all $g \in G$ we have

$$y = Ax = AT_g T_g^{-1} x = A_g x'$$

- We get multiple virtual operators $\{A_g\}_{g \in G}$ 'for free'!
- Each AT_g might have a different nullspace

Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping *f* from observed measurements possible only if

$$\operatorname{rank}(\mathbb{E}_g T_g^{\mathsf{T}} A^{\mathsf{T}} A T_g) = n,$$

and thus if $m \ge \max \frac{c_j}{s_j} \ge \frac{n}{|G|}$ where s_j and c_j are dimension and multiplicity of irreps.

(Non)-Equivariant Operators

Theorem [T. et al., 2023]: The full rank condition requires that A is not equivariant: $AT_g \neq \tilde{T}_g A$

$$\operatorname{rank}(\mathbb{E}_{g} T_{g}^{\mathsf{T}} A^{\mathsf{T}} A T_{g}) = \operatorname{rank}(A^{\mathsf{T}}(\mathbb{E}_{g} \tilde{T}_{g}^{\mathsf{T}} \tilde{T}_{g}) A) = \operatorname{rank}(A^{\mathsf{T}} A) = m < n$$

Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have $f(AT_gx) = T_gf(Ax)$, i.e. $f \circ A$ should be G-equivariant

Equivariant Imaging

How can we enforce equivariance in practice [Chen, 2021]?

$$\mathcal{L}_{EI}(\mathbf{y}, f) = \mathbb{E}_g || T_g \widehat{\mathbf{x}} - f(A T_g \widehat{\mathbf{x}})||^2$$

where $\hat{x} = f(y)$ is used as reference

Proposition [T. & Pereyra, 2024]: For linear and measurement consistent Af(Ax) = Ax reconstruction, we have

$$\mathcal{L}_{EI}(\mathbf{y}, f) = ||\mathbf{x} - f(\mathbf{y})||^2 + bias$$

where the *bias* term is small if $f \circ A$ is **not** equivariant.

Combining Losses

Robust Equivariant Imaging [Chen et al., 2022]

unbiased estimator of 'noiseless' measurement consistency

• SURE can be replaced by any other noise-robust loss (eg. Noise2Void, etc.)

MRI

- Operator A is a subset of Fourier measurements (x2 downsampling)
- Dataset is approximately rotation invariant

Signal x

Measurements y

Computed Tomography

- Operator *A* is (non-linear variant) sparse radon transform
- Mixed Poisson-Gaussian noise
- Dataset is approximately rotation invariant

Noisy measurements y

Clean signal x

W

Image Deblurring

- Operator A is isotropic blur with Gaussian noise
- Dataset is approximately scale invariant

References

The full reference list for this tutorial can be found here:

https://tachella.github.io/projects/selfsuptutorial/

