Homework 3

B04902012 Han Sheng, Liu

Question 1. Construct a structure \mathcal{A} and a formula φ such that $\mathcal{A} \models \forall x \exists y \varphi$, but $\mathcal{A} \not\models \exists x \forall y \varphi$.

Solution.

Consider $A = \{T, F\}, \varphi = x \approx y$.

For every x, there must exist y such that $x \approx y$. Just simply pick x for y.

However, there does not exist x such that for every y, $x \approx y$. If y = T, then x must be T; if y = F, then x must be F.

Question 2. There are many ways to "encode" propositional calculus in first-order logic. One way is to view a propositional variable p as a relation symbol of arity 0 as explained in the class.

Here is another way. Let $L = \{c\}$ be a vocabulary that consists of only one constant symbol c. Given a propositional formula α using variables p_1, \ldots, p_k , consider the FO formula Φ obtained from α by changing every p_i with an atomic $x_i \approx c$. For example, if α is

$$p_1 \wedge \neg p_2$$
,

then Φ is

$$(x_1 \approx c) \land \neg (x_2 \approx c).$$

Prove that α is satisfiable (in the sense of propositional calculus) if and only if Φ is.

Solution.

Note that Φ and α are actually the same after replacing those $(x_i \approx c)$ with p_i in Φ . Also note that satisfying assignments and models have the same recursive definition.

 \Rightarrow :

 α is satisfiable. Thus, there exists an assignment w that satisfies α .

Now consider the following interpretation (A, val).

$$A = \{T, F\}, c = T, \operatorname{val}(x_i) = w(p_i).$$

Then $(\mathcal{A}, \mathsf{val}) \models (x_i \approx c)$ if and only if $w(p_i) = \mathsf{T}$.

Thus, $w \models \alpha \Rightarrow (\mathcal{A}, \mathsf{val}) \models \Phi$, because satisfying assignments and models have the same recursive definition.

⇐:

 Φ is satisfiable. Thus, there exists an interpretation $(\mathcal{A}, \mathsf{val})$ satisfying Φ .

Now consider the following assignment w for α .

$$w(p_i) = T$$
 if and only if $(\mathcal{A}, \mathsf{val}) \models (x_i \approx c)$.

Thus, $(A, val) \models \Phi \Rightarrow w \models \alpha$, because satisfying assignments and models have the same recursive definition.

Question 3. Consider a sentence of the following form:

$$\Phi := \exists x_1 \cdots \exists x_n \ \forall y_1 \cdots \forall y_m \ \varphi,$$

where φ is quantifier free and does *not* contain any function and constant symbol, and $n, m \geqslant 1$. Prove that if Φ is satisfiable, then there is a structure \mathcal{A} that satisfies Φ with $|A| \leqslant n$.

Solution.

 Φ is a sentence, so each variable in Φ is one of the x_i or y_i .

Let $\Phi' = \forall y_1 \cdots \forall y_m \varphi$, then every model of Φ is a model of Φ' , and vice versa.

Assume that Φ' is satisfiable, then there is a interpretation $(\mathcal{A}', \mathsf{val}) \models \Phi'$.

Let $X = \{ \mathsf{val}(x_i) \}$. Consider the substructure \mathcal{A} such that $A = A' \cap X$. It is obvious that $|A| \leq n$. Now prove that $(\mathcal{A}, \mathsf{val}) \models \Phi'$

$$\begin{split} (\mathcal{A}',\mathsf{val}) &\models \Phi' \Rightarrow \forall \ Y \in A'^m, (\mathcal{A}',\mathsf{val}[\bar{y} \mapsto Y]) \models \phi \\ &\Rightarrow \forall \ Y \in A^m, (\mathcal{A},\mathsf{val}[\bar{y} \mapsto Y]) \models \phi \ (\mathsf{because} \ A \subseteq A') \\ &\Rightarrow (\mathcal{A},\mathsf{val}) \models \Phi' \\ &\Rightarrow (\mathcal{A},\mathsf{val}) \models \Phi \end{split}$$

Question 4. Let $h: \mathcal{A} \to \mathcal{B}$ be a homomorphism. Define a relation \sim_h on A as follows: $a \sim_h a'$ if and only if h(a) = h(a'). Prove that \sim_h is an equivalence relation on A, and that \sim_h is, in fact, a congruence in \mathcal{A} .

Solution.

• Reflexive

$$\forall a \in A, h(a) = h(a).$$

Thus, $\forall a \in A, a \sim_h a.$

• Symmetric

$$\forall a, b \in A, a \sim_h b \Rightarrow h(a) = h(b)$$

 $\Rightarrow h(b) = h(a)$
 $\Rightarrow b \sim_h a$

• Transitive

$$\forall a, b, c \in A, a \sim_h b, b \sim_h c \Rightarrow h(a) = h(b), h(b) = h(c)$$

$$\Rightarrow h(a) = h(c)$$

$$\Rightarrow a \sim_h c$$

ullet Congruence

$$\forall a, b \in A, a \sim_h b \Rightarrow h(a) = h(b)$$
$$\Rightarrow f(h(a)) = f(h(b))$$
$$\Rightarrow h(f(a)) = h(f(b))$$
$$\Rightarrow f(a) \sim_h f(b)$$

Question 5. Let $h: \mathcal{A} \to \mathcal{B}$ be a strong and surjective homomorphism, and let \mathcal{A}/\sim_h be the factor of \mathcal{A} modulo \sim_h . Define a function $\xi: A/\sim_h \to B$, where $\xi([a]_{\sim_h}) = h(a)$. Prove that ξ is an isomorphism.

Solution.

Let $\mathcal{C} = \mathcal{A}/\sim_h$.

• ξ is a homomorphism

$$\forall R, \ f, \ c \in L,$$

$$for all \bar{a} \in A^{ar(f)} \, \xi(f^{\mathcal{C}}([\bar{a}]_{\sim_h}) = \xi([f^{\mathcal{A}}(\bar{a})]_{\sim_h}) =$$