

KAYA - Wearable E-Textiles for Telemedicine

Adityaraj Yerule, Shehjar Sadhu, Nick Constant, Kunal Mankodiya Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI

Parkinson's Disease(PD) Motor Detection

Parkinson's disease is a neurological disorder causing slowness, rigidity, tremor in patients. These symptoms are barely noticeable on the on-set of PD. Our goal is to quantify these symptoms and build a portable feedback mechanism for doctors and patients.

Edge Analytics

Finger Tap

(Normal person)

Finger Tap

1 Imu(Inertial Measurement Unit - 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer)
with Bluetooth Low Energy(Ble) nano 1.5

Edge Computing

By Applying Machine learning techniques we aim to classify six hand exercises specified by Unified Parkinson's Disease rating scale(UPDRS).

4 Finger Tap

Shehjar Sadhu

This Confusion matrix shows that finger tap was classified as finger to nose 20% of the time. This is due to the similarity of finger movement in the two exercises.

Sensor Selection

Comparison between PD and non PD patients. We notice here that

the non PD finger taps have a dent on each finger tap, and

continuous ups and down indicate tremor.

Flex sensors give information about the bending in the fingers by changing the resistance and imu sensors give the values of acceleration and gyration in all three directions.

	important factors to be looked over for signal processing.									
Exercise Names	Most Important device type	Thumb	Index	AccX	AccY	AccZ	GyrX	GyrY	GyrZ	
Hands Hold Out	lmu					x				
Finger to Nose	lmu		x	x						
Finger Tap	Flex	x								
Close Grip	Flex		х							
Hand Flip	lmu						х			
Resting Hands on Thighs	lmu	х	х	х	х	х				

Result and Conclusion

Feature Selection

Frequency Domain

Time Domain

Statistical

Dominant Frequency

Mean FrequencyMedian Frequency

Variance in Peak

Maximum Value

Minimum Value

Bandwidth

Max PeakMin PeakMean Power

Variance

Dominant Frequency Magnitude

Classifiers	Accuracy	Hyperparameters		
Cosine KNN	71.70%	K = 5 , Distance metric = "Cosine"		
Weighted KNN	75.00%	K = 5 , Distance metric = "Euclidean"		
Linear Discriminant Analysis	78.30%			
Naive Bayes (Kernel)	78.30%			
Fine Tree	88.30%	Max number of splits = 30		
Medium Tree	88.30%	Max number of splits = 20		
Coarse Tree	88.30%	Max number of splits = 30		
Naive Bayes (Gaussian)	86.70%			
SVM (One vs All)	87.00%	Kernel = Quadratic		
SVM (One vs All)	88.30%	Kernel = Fine Gaussian		
SVM (One vs All)	90.00%	Kernel = Linear		

Confusion Matrix

True class

	Closed Grip	Finger Tap	Finger to Nose	Hand Flip	Hands Hold Out	Resting Hands
Closed Grip	90%	10%				
Finger Tap		90%	10%			
Finger to Nose		20%	60%		20%	
Hand Flip				100%		
Hands Hold Out					100%	
Resting Hands on Thighs						100%