Prüfung Analysis 3

Nachname:

Vorname:

Matr.Nr.:

EIDESSTATTLICHE ERKLÄRUNG

Ich,	
Name:	
Matrikelnummer:	
Geburtsdatum:	
erkläre hiermit an Eides statt, dass ich derjenige_diejenige bin, de	r_die zu dieser Prüfung angemeldet ist
bzw. über die TUWEL Zugangsdaten an dieser Prüfung	
teilnimmt.	
Gleichzeitig erkläre ich, dass ich die Prüfungsaufgaben selbständig u	nd ohne fremde Hilfe löse und erarbeite
sowie keine unerlaubten Hilfsmittel verwende.	
Mir ist bekannt, dass eine wahrheitswidrige Erklärung eine Beurteilung mit "Nicht genügend" und straf-	
rechtliche Konsequenzen nach sich ziehen kann.	
Datum (TT.MM.JJJJ)	Unterschrift Antragsteller/in

Prüfung Analysis 3

Blümlinger 15. 6. 2021

Einsichtnahme 22. 6. 14:00 per Zoom (ID 294 115 9165)-

Ohne Unterlagen Taschenrechner oder Computer -

Ergebnisse in Kürze auf der Anmeldeseite

https://www.asc.tuwien.ac.at// blue/PrfAnm/Anmelc.php

Mündliche Prüfung bis spätestens 6 Monate nach der schriftlichen!

1 (6P): Berechnen Sie für a, b > 0 das Integral

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx$$

indem Sie den Integranden als $\int_a^b g(x,y) dy$ mit einer geeigneten Funktion g darstellen. Rechtfertigen Sie genau alle nichtelementaren Rechenschritte.

2 (10P): Sei f auf \mathbb{R} durch

$$f(x) = \operatorname{sgn}(x) \exp(-|x|)$$

definiert. Kann bzw. muß diese Funktion die Fouriertransformierte einer Funktion aus $L^1(\mathbb{R})$ oder $L^2(\mathbb{R})$ sein?

Bestimmen Sie danach gegebenenfalls eine Funktion g für die $f = \hat{g}$ bzw. $f = \mathscr{F}g$ gilt.

3 (10P): Zeigen Sie dass durch $\phi: (0,2\pi) \times (0,1) \to \mathbb{R}^3$,

$$\phi(\varphi, r) = (r\cos\varphi, r\sin\varphi, \varphi + r)^T$$

eine Mannigfaltigkeit M definiert wird.

Berechnen Sie das Flächenmaß von M.

4 (7P): Es sei für $A \subseteq \mathbb{R}^n$ die Mengenfunktion $\mathcal{W}^s_{\delta}(A)$ als

 $\inf\{\sum_{i\in I}c_i^s:\ A\subseteq \cup W_i,\ W_i\ \text{achsenparalleler Würfel der Kantenlänge}\ c_i<\delta 0\}$

definiert.

Zeigen Sie, dass $\mathcal{W}^s(A)=\lim_{\delta\to 0}\mathcal{W}^s_\delta(A)$ in $[0,\infty]$ existiert und dass

$$a\mathcal{H}^s(A) \le \mathcal{W}^s(A) \le b\mathcal{H}^s(A)$$

für geeignete positive Konstanten a,b gilt, wobei \mathcal{H}^s das s-dimensionale Hausdorffmaß bezeichnet.

5 (7P): Zeigen Sie, dass das Gleichungssystem

$$x = \frac{1}{\sqrt{1 + x^2 + y^4}}$$
$$y = \arctan(-x + y^3)$$

eine Lösung hat.