Code ▼

Random Forest Model

Using varSeIRF package for variable selection using random forest

https://cran.r-project.org/web/packages/varSeIRF/varSeIRF.pdf

I normalized the pre-filtered gene counts of the 92 AIH and healthy patients (no liver transplants, no outliers and no complex cases) using cpm() function of EdgeR, log = TRUE.

I defined the two groups as AIH and healthy.

After this, I ran the random forest model with differing standard deviations, starting at 2 and subtracting 0.25 in every loop. As the standard deviation became less stringent (lower), the number of genes increased. I recorded the genes in a dataframe.

Hide

```
# load in genecounts and metadata
genecounts_rf <- genecountspc_filt</pre>
metadata_rf <- metadata_filt</pre>
# normalize gene counts
genecounts filt cpm <- cpm(genecountspc filt, log = TRUE)</pre>
# set up the column of interest, remove empty levels
metadata_rf$factors <- droplevels.factor(metadata_filt$case_hl_du)</pre>
#declare the factors for random forest model (AIH vs healthy)
RF_factors <- metadata_rf$factors
#initialize data frame, standard deviation, number of genes
RF results <-data.frame(stddev = integer(), num.genes = integer(), genes = character())
stddev = 2
num.genes = 0
#run random forest until I have more than 50 genes in a group
while (num.genes < 50) {
#random forest command
varselRF.AIH <- varSelRF(t(genecounts_filt_cpm), as.factor(RF_factors), c.sd = stddev, mtryFactor = 1, ntree</pre>
= 5000, ntreeIterat = 2000, vars.drop.num = NULL, vars.drop.frac = 0.2, whole.range = FALSE, recompute.var.i
mp = FALSE, verbose = TRUE, returnFirstForest = TRUE, fitted.rf = NULL, keep.forest = TRUE)
#store data into data frame
genes = genemap[match(varselRF.AIH$selected.vars, genemap$ensembl gene id),]$hgnc
num.genes = varselRF.AIH$best.model.nvars
\verb|genes_t| <- | data.frame(t(c(stddev, num.genes, paste(unlist(genes), collapse=', '))))| \\
colnames(genes_t) <- c("stddev", "num.genes", "genes")</pre>
RF_results<-rbind(RF_results,genes_t)</pre>
#reduce standard deviation by 0.25
stddev = stddev - 0.25
```

Hide

```
knitr::kable(RF_results)
```

stddev num.genes genes

2	2	PTOV1, GIGYF1
1.75	2	PTOV1, GIGYF1
1.5	2	FLYWCH1, GIGYF1
1.25	5	FLYWCH1, ARHGAP4, PTOV1, SLC4A10, GIGYF1
1	3	COL5A3, PTOV1, GIGYF1

stddev num.genes genes

0.75	5	FLYWCH1, COL5A3, PTOV1, SLC4A10, GIGYF1
0.5	99	TSPOAP1, MATK, NISCH, FLYWCH1, ZNF275, SUGP2, PDZD4, RASGRP2, MGAT4A, COL5A3, ARHGAP4, KLHL22, LMF2, ARFGAP1, PIGU, MIB1, CENPT, KLHDC4, CCDC130, PTOV1, TNPO2, ABCA2, EIF3A, EZH1, UST, ZAP70, STAT1, GBP1, CEP89, MTERF4, AGO3, IRF3, MPRIP, RRAS2, PRPF38B, STK26, TUT4, GOLGA1, SYTL2, USP8, MAPK8IP3, RHOT2, SGSM2, TMC6, IFITM3, PGGHG, ADAMTS10, SYTL1, SLC4A10, DDX46, FAM193B, GIGYF1, ADAM12, DGKZ, PLCH2, KLRF1, FCGR1A, DLG5, ZNF256, SCOC, TTC39B, TYSND1, DIP2A, CCDC78, MEGF6, TYW3, SNED1, INTS1, NEMF, TMEM170A, ENGASE, LENG8, TMC8, ABHD15, JMJD7-PLA2G4B, CEL, ZDHHC14, TBC1D10C, ANAPC2, DTX3, MTA1, ANO9, ZBTB37, MYBL1, NPIPB4, CCDC84, ZNF600, ANAPC7, SZT2, TPM2, DIO1, SCART1, CCNL2, AP5Z1, HAUS5, , C19orf84, MYO15B, DGKK