

# **Agenda**

- OpenShift Enterprise 3
  - Overview
  - Concepts
- OpenShift Enterprise 3 "How it Works"
- OpenShift Enterprise 3 Demo
  - Docker Image Deployments
  - Scale
  - Source to Image
  - New Builds
- OpenShift Enterprise 3 RoadMap

# **Community Powered Innovation**





#### **OPENSHIFT STACK V3**

- Standard containers API
- Container-optimized OS
- Web-scale orchestration
- Expanded choice of services
- Enhanced developer and operator experience
- Industry standard PaaS stack!

#### **USER EXPERIENCE**

(OpenShift)

#### CONTAINERIZED SERVICES

(xPaaS + Docker Hub + Marketplace)

#### ORCHESTRATION

(Kubernetes)

#### **CONTAINER API**

(Docker)

#### CONTAINER HOST

(RHEL + Atomic)

**Docker Image**: Defines a filesystem for running an isolated Linux process (typically an application

**Docker container**: Running instance of a Docker image with its own isolated filesystem, network, and process spaces

**Pod**: Kubernetes object that groups related Docker containers that need to share network, filesystem or memory together for placement on a node. Multiple instances of a Pod can run to provide scaling and redundancy.

**Replication Controller**: Kubernetes object that ensures N (as specified by the user) instances of a given Pod are running at all times.

**Service**: Kubernetes object that provides load balanced access to multiple pods. Services are accessible only inside the OpenShift environment (non-user facing).

A single pod with two containers each exposing a port on pod's IP address



#### Three different pods each running a set of related containers



Multiple instances of a single pod are load balanced and accessed via a Service



#### Services balance Pods

A Service is an IP:Port that provides balanced access across a group of pods. Services are available inside the OpenShift environment, but are not public-facing.

#### Replication Controllers ensure availability

An RC ensures that N copies of a pod exist at all times. Automated manipulation of RCs is how OpenShift achieves autoscaling.

#### EXAMPLE: PHP APPLICATION INTERACTING WITH MYSQL DATABASE



#### **Massive Supported Ecosystem**

Software Collections & JBoss CVE Fixes Bug Patches Support Life Cycle Technical Support



Red Hat Certified Containers
CVE Fixes
Bug Patches
Technical Support



Any Docker Registry
Supported Container API
Supported Execution



#### **Application Design Freedom**





- 1.) Deploy Just a Database Service
- 2.) Cluster Services
- 3.) Share File System Between App Instances
- 4.) Start Deployment in the Frontend or Backend
- 5.) Increased Routing Control
- 6.) Dependable IP addressing

#### **DevOps Experience**



# When Docker is Enough: new-app

# **Integrated Docker Builds**





# **Persistent Remote Storage**

#### **Define Storage Volumes**

- Member of the Cluster
- Backed by an actual storage entity
- Such as NFS, GCE pDisk, Amazon EBS

#### **Manage Volume Claims**

- Member of the Namespace
- Resource controlled by the Project Quota

#### **Map Volumes to Pods**

- Volume to a Pod
- Mounts the file system to the volume
- Volume can unmount without lost of data



spec:

capacity:

**size: 10** 

awsElasticBlockStore: volumeId: "abc123"

spec:

accessModes:

 ReadWriteOnce ReadOnlyMany

spec:

containers:

- image: dockerfile/nginx

name: myfrontend volumeMounts:

- mountPath: "/var/www/html"

name: mypd



# **OpenShift Runs on Your Choice of Infrastructure**





# **Nodes Are Instances of RHEL Where Apps Will Run**







# **App Services Run In Docker Containers On Each Node**







#### **Pods Runs One or More Docker Containers As a Unit**





# **Masters Leverage Kubernetes to Orchestrate Nodes / Apps**







#### **Master Provides Authenticated API for Users & Clients**







# Master Uses etcd Key-Value Data Store for Persistence







#### **Master Provides Scheduler for Pod Placement on Nodes**







# **Pod Placement Is Determined Based on Defined Policy**







#### Services Allow Related Pods To Connect To Each Other





# Pods Can Attach to Shared Storage for Stateful Services





#### **Routing Layer Routes External App Requests to Pods**





#### **Developers Access OpenShift Via Web, CLI or IDE**









# **Administration & Container Management with CloudForms**





#### **Expanded OpenStack Integration**



- Automating deployment of OpenShift clusters, add & remove Kubernetes Nodes
- Networking provider integration with Neutron
- Storage integration with OpenStack Cinder (Block) and Manila (File)
- Manage OpenStack and OpenShift with CloudForms



# Integration (Fuse), Mobile (FeedHenry) & Decision/Rules (BRMS) Services



Application Container Services

- JBoss Enterprise Application Platform
- JBoss Web Server / Tomcat
- JBoss Developer Studio



Integration Services

- Fuse \*
- A-MQ
- Data Virtualization \*



**Business Process Services** 

- Business Process Management \*
- Business Rules Management System \*



Red Hat Mobile /

FeedHenry \*

**Services** 

\* Coming Soon



#### **OpenShift Online & OpenShift Dedicated**



by Red Hat'



**DEDICATED** 

by Red Hat

- OpenShift 3 Public Cloud services managed by Red Hat
  - OpenShift Dedicated dedicated clusters (Nodes & Masters) for each customer
  - Deploy and run your applications on your own dedicated infrastructure Integrate with on-premise services
  - Available now in Tech Preview
- OpenShift Online will also be migrating to v3 (1HCY2016)



#### **OpenShift 3 Tentative Release Schedule**

#### 3.0 - June 2015

- Docker container runtime & image packaging format
- Kubernetes orchestration & mgt.
- Source-to-Image & Docker builds
- JBoss EAP 6.4, JWS 3.0, A-MQ 6.2
- SCL images (Node, Python, PHP, Ruby...)
- Shared storage volumes for stateful apps
- Projects & team collaboration
- OAuth & enterprise auth integration (LDAP)
- Enhanced Web, CLI and IDE interfaces
- Manual scaling

#### 3.1 - Q4CY15

- Metric-driven autoscaling
- Integration Service / Fuse 6.x
- Mobile Service / FeedHenry
- Decision Service / BRMS (?)
- Cache Service / JDG (?) Eclipse IDE completion
- Web/CLI UX enhancements
- SCL 2 image updates
- External service bridge/registry (?)
- CloudForms Provider

Additional storage plugins

- Networking enhancements
- Enhanced logging / ELK (?)
- **CPU/Memory Overcommit**
- Better Master HA
- Job Controller
- LDAP teams integration enhancements
- Better CI integration



- Auto-scaling basic
- F5 and External Routing Examples
- Reference architectures
- Bug fixes

- Idling (?)
- **Expanded Fabric8 Integration**
- Non-SNI / non-HTTP routing
- Git hosting
- OpenStack Network & Storage Integrations
- **CloudForms Active Management**
- More TBD



