

Function Handles

MATLAB® Programming Techniques

Duy NGUYEN Engineering Development Group

What are function handles?

What are function handles?

Find a root of sin(x) near $x_0 = 3$:

What are function handles?

Find a root of sin(x) near x₀ = 3:
fun = @sin
x0 = 3
z = fzero(fun,x0)

■ Plot a parabola:

■ Plot a parabola:

Return information about a function handle:

■ Plot a parabola:

- Return information about a function handle: info = functions(myParabola)
- Get the variables stored in the function:

■ Plot a parabola:

- Return information about a function handle: info = functions(myParabola)
- Get the variables stored in the function: info.workspace{:}

■ Compute the following definite integral

$$g(a,b) = \int_a^b \cos(x) + \sqrt{\frac{x}{2}} \, \mathrm{d}x$$

Compute the following definite integral

$$g(a,b) = \int_a^b \cos(x) + \sqrt{\frac{x}{2}} \, \mathrm{d}x$$

fun =
$$@(x) cos(x) + sqrt(x/2)$$

g = $@(a, b) integral(fun, a, b)$
g(5, 10)

Changing the interface with anonymous functions

