2º SEMESTRE: CÁLCULO NUMÉRICO CON FORTRAN.

TEMARIO:

- Sistemas lineales. Directos e iterativos.
- 2. Cálculo de autovalores.
- 3. Derivación e integración numérica.
- 4. Solución de ecuaciones y sistemas no lineales.
- 5. Solución numérica de ecuaciones diferenciales.

Interpretación geométrica:

- Función continua f(x) en un intervalo cerrado [a,b]
- Calcular el área entre la curva y = f(x) y el eje OX

Interpretación geométrica:

- Función continua f(x) en un intervalo cerrado [a,b]
- Calcular el área entre la curva y = f(x) y el eje OX

Integral de Riemann

Fórmulas de Newton-Cotes

 Se divide el intervalo de integración en subintervalos. Inicialmente todos tendrán la misma longitud (equiespaciados).

$$[a,b] = [a = x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, x_n = b]$$
 $x_{i+1} - x_i = b = \frac{b-a}{n}$

- Se sustituye la función a integrar en cada intervalo por una aproximación de la función fácilmente integrable.
- Aproximación polinómica

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} p_{m}(x) dx$$
$$p_{m}(x) = a_{m}x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$$

 Se determinan los coeficientes de los polinomios de forma que la función y el polinomio coincidan hasta el orden deseado.

Fórmulas de Newton-Cotes

 Orden 0: Se sustituye la función por una constante (Riemann)

$$\int_{I} f(x) dx = \int_{I} k dx$$

 Orden 1: Lineal. Se usa una recta calculada a partir de los extremos.

$$\int_{I} f(x) dx = \int_{I} (ax + b) dx$$

 Orden 2: Parabólica. Se usan tres puntos del intervalo

$$\int_{I} f(x) dx = \int_{I} (ax^{2} + bx + c) dx$$

Fórmulas de Newton-Cotes: Riemann

- Fórmula de orden 0: Se sustituye la función por una constante.
- n subintervalos de tamaño: $h = \frac{b-a}{n}$
- n+1 puntos:

$$Area = \int f(x) dx \approx \int k dx = \sum_{I} \int_{I_i} k dx$$

$$\int_{f(x_{3})}^{f(x_{5})} f(x_{6}) \int_{x_{i}}^{x_{i+1}} f(x_{i}) dx = (x_{i+1} - x_{i}) f(x_{i}) = h \cdot f(x_{i})$$

$$\int_{x_{0}}^{f(x_{3})} f(x_{2}) \int_{x_{i}}^{f(x_{2})} f(x_{i}) dx = (x_{i+1} - x_{i}) f(x_{i}) = h \cdot f(x_{i})$$

$$x_{0} = a \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7} = b \quad x$$

$$Area \approx \sum_{i} Area_{i} = \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) f(x_{i}) = \sum_{i=0}^{n-1} h \cdot f(x_{i})$$

Fórmulas de Newton-Cotes: Riemann

- Fórmula de orden 0: Se sustituye la función por una constante.
- n subintervalos de tamaño: $h = \frac{b-a}{n}$
- n+1 puntos:

$$Area = \int f(x) dx \approx \int k dx = \sum_{I} \int_{I} k dx$$

$$\int_{x_{i}}^{x_{i+1}} f(x_{i+1}) dx = (x_{i+1} - x_{i}) f(x_{i+1}) = h \cdot f(x_{i+1})$$

Area
$$\approx \sum_{i} Area_{i} = \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) f(x_{i+1}) = \sum_{i=0}^{n-1} h \cdot f(x_{i+1})$$

Fórmulas de Newton-Cotes: Riemann

- Fórmula de orden 0: Se sustituye la función por una constante.
- n subintervalos de tamaño: $h = \frac{b-a}{n}$
- n+1 puntos:

$$Area = \int f(x) dx \approx \int k dx = \sum_{I} \int_{I} k dx$$

$$\int_{x_i}^{x_{i+1}} f\left(\frac{x_{i+1} + x_i}{2}\right) dx = (x_{i+1} - x_i) f\left(\frac{x_{i+1} + x_i}{2}\right) = h \cdot f(x_i + h/2)$$

Area
$$\approx \sum_{i} Area_{i} = \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) f(\frac{x_{i+1} + x_{i}}{2}) = \sum_{i=0}^{n-1} h \cdot f(\frac{x_{i+1} + x_{i}}{2})$$

Fórmulas de Newton-Cotes: Trapecio

• Fórmula de orden 1: Se sustituye la función por una aproximación lineal.

$$A_{i} = \frac{f(x_{i+1}) + f(x_{i})}{2} (x_{i+1} - x_{i}) = \frac{(x_{i+1} - x_{i})}{2} (f(x_{i+1}) + f(x_{i})) = \frac{h}{2} \cdot (f(x_{i+1}) + f(x_{i}))$$

Fórmulas de Newton-Cotes: Trapecio

- Fórmula de orden 1: Se sustituye la función por una aproximación lineal.
- n subintervalos de tamaño: $h = \frac{b-a}{n}$
- n+1 puntos: $\boldsymbol{x}_i = \boldsymbol{a} + \boldsymbol{i}\boldsymbol{h}, \ \ \boldsymbol{i} = 0,...,\boldsymbol{n}$

$$I \approx \sum_{k=1}^{n} I_{i} = \frac{h}{2} \sum_{k=1}^{n} (f_{i-1} + f_{i}) = \frac{h}{2} (f_{0} + 2f_{1} + 2f_{2} + \dots + 2f_{n-1} + f_{n}) = h \left(\frac{f_{0} + f_{n}}{2} + \sum_{i=1}^{n-1} f_{i} \right)$$

• Error de truncamiento: $O(h^2)$

Fórmulas de Newton-Cotes: Trapecio

• Otra forma de ver el método es pensar que buscamos aproximar el valor exacto de la integral de la función original por la integral de su aproximación de primer orden:

$$\int_{x_{i}}^{x_{i+1}} f(x) dx \approx \int_{x_{i}}^{x_{i+1}} P^{1}(x) dx$$

$$P^{1}(x) = \text{Polinomio que pasa por } (x_{i}, f(x_{i})) y(x_{i+1}, f(x_{i+1})) \text{ con } x_{i+1} = x_{i} + h$$

$$\int_{f(x_{i+1})}^{f(x_{i+1})} P^{1}(x) dx = f(x_{i}) h + \frac{f(x_{i+1}) - f(x_{i})}{h} \left[\frac{x_{i+1}^{2} - x_{i}^{2}}{2} - hx_{i} \right] = \frac{h}{2} \left(f(x_{i+1}) + f(x_{i}) \right)$$

$$I \approx \sum_{k=1}^{n} I_{i} = \frac{h}{2} \sum_{k=1}^{n} (f_{i-1} + f_{i}) = \frac{h}{2} (f_{0} + 2f_{1} + 2f_{2} + \dots + 2f_{n-1} + f_{n}) = h \left(\frac{f_{0} + f_{n}}{2} + \sum_{i=1}^{n-1} f_{i} \right)$$

Fórmulas de Newton-Cotes: Trapecio

• También podemos pensar que buscamos que se verifique:

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx w_1 f(x_i) + w_2 f(x_{i+1})$$

 Es decir, ya que conocemos el valor de la función en dos puntos podemos exigir que la aproximación de la integral sea exacta para polinomios de orden 0 y 1:

$$\int_{x_{i}}^{x_{i+1}} 1 dx = w_{1} + w_{2} \Rightarrow x_{i+1} - x_{i} = w_{1} + w_{2} \Rightarrow h = w_{1} + w_{2}$$

$$\int_{x_{i}}^{x_{i+1}} x dx = w_{1}x_{i} + w_{2}x_{i+1} \Rightarrow \frac{x_{i+1}^{2} - x_{i}^{2}}{2} = w_{1}x_{i} + w_{2}x_{i+1}$$

Fórmulas de Newton-Cotes: Trapecio

$$\int_{x_{i}}^{x_{i+1}} 1 dx = w_{1} + w_{2} \Rightarrow x_{i+1} - x_{i} = w_{1} + w_{2} \Rightarrow h = w_{1} + w_{2}$$

$$\int_{x_{i}}^{x_{i+1}} x dx = w_{1}x_{i} + w_{2}x_{i+1} \Rightarrow \frac{x_{i+1}^{2} - x_{i}^{2}}{2} = w_{1}x_{i} + w_{2}x_{i+1}$$

De la primera
$$w_1 = h - w_2$$

De la primera
$$w_1 = h - w_2$$

$$\frac{(x_{i+1} + x_i)}{2} (x_{i+1} - x_i) = (h - w_2) x_i + w_2 x_{i+1}$$

$$\frac{(x_{i+1} + x_i)}{2} h = h x_i + w_2 (x_{i+1} - x_i) = h x_i + w_2 h \Rightarrow$$

$$\Rightarrow w_2 = \frac{(x_{i+1} + x_i)}{2} - x_i = \frac{(x_{i+1} - x_i)}{2} = \frac{h}{2} \rightarrow w_1 = w_2 = \frac{h}{2}$$

$$\int_{0}^{x_{i+1}} f(x) dx \approx \frac{h}{2} f(x_i) + \frac{h}{2} f(x_{i+1})$$

Fórmulas de Newton-Cotes: Simpson

- Fórmula de orden 2: Se sustituye la función por una aproximación parabólica.
- 2n subintervalos de tamaño: $h = \frac{b-a}{n}$
- 2n+1 puntos: $x_i = a + ih$, i = 0,...,n

Fórmulas de Newton-Cotes: Simpson

f(x)

- Fórmula de orden 2: Se sustituye la función por una aproximación parabólica.
- 2n subintervalos de tamaño: $h = \frac{b-a}{n}$
- 2n+1 puntos: $\mathbf{x}_i = \mathbf{a} + i\mathbf{h}, \ \ i = 0,...,\mathbf{n}$

• También podemos pensar que buscamos que se verifique:

$$\int_{x_{i-1}}^{x_{i+1}} f(x) dx \approx w_1 f(x_{i-1}) + w_2 f(x_i) + w_3 f(x_{i+1})$$

 Ya que conocemos el valor de la función en tres puntos podemos exigir que la aproximación de la integral sea exacta para polinomios de orden 0, 1 y 2:

Fórmulas de Newton-Cotes: Simpson

- Fórmula de orden 2: Se sustituye la función por una aproximación parabólica.
- 2n subintervalos de tamaño: $h = \frac{b-a}{n}$
- 2n+1 puntos: $x_i = a + ih$, i = 0,...,n

$$P_2(x) = f(a)\frac{(x-m)(x-b)}{(a-m)(a-b)} + f(m)\frac{(x-a)(x-b)}{(m-a)(m-b)} + f(b)\frac{(x-a)(x-m)}{(b-a)(b-m)}.$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

IMPLEMENTAR INTEGRACIÓN NUMÉRICA: Trabajo para casa

TODOS LOS GRUPOS

Implementar los métodos de integración vistos en clase (Riemann, Trapecio, Simpson)

Calcular el valor de la siguiente integral utilizando los distintos métodos con distinto número de puntos:

$$\int_{-10}^{10} \exp(-x^2) dx \approx \sqrt{\pi}$$

TRABAJO POR GRUPO (1/2)

Próxima semana

Hacer un estudio de los errores cometidos por los distintos métodos.

- Riemann
- Trapecio
- Simpson

Convergencia de los métodos al disminuir el tamaño de los subintervalos. (Explicación teórica + resultados numéricos) (Pintar con Matplotlib error frente a tamaño de subintervalo)

TRABAJO POR GRUPO (1/2)

Próxima semana

Investigar e implementar el método de Riemann y el método del trapecio (aproximación lineal) a problemas de dos variables.

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin(x+y) dx dy$$

$$\int_a^b \int_c^d f(x,y) dx dy \approx$$

$$\int_a^b \sum_{i=0}^{n-1} h \cdot f(x_i,y) dy \approx$$

$$\sum_{i=0}^{n-1} h \cdot \sum_{i=0}^{n-1} h \cdot f(x_i,y_i)$$

M Number of boxes:

 $nx \cdot ny = 4$

riemannsum = 3.887

integral = 3.908

TRABAJO POR GRUPO

- ESTARÉ DISPONIBLE 22 Y 23 DE MARZO PARA RESOLVER DUDAS.
- CONTACTAR POR EMAIL PARA HORARIO CONCRETO.