NAVAL POSTGRADUATE SCHOOL Monterey, California

MCTSSA Software Reliability Handbook

Volume IV

Schneidewind Software Reliability and Metrics Model Tool List

by

Norman F. Schneidewind

12 May 1997

Approved for public release; distribution is unlimited.

Prepared for:

U.S. Marine Corps

Tactical Systems Support Activity Camp Pendleton, CA 92244-5171 19970918 133

NAVAL POSTGRADUATE SCHOOL Monterey, California

RADM M.J. Evans Superintendent

Richard Elster Provost

This report was prepared for and funded by the U.S. Marine Corps, Systems Support Activity, Camp Pendleton, CA 92255-5171.

Reproduction of all or part of this report is authorized.

manti Lekseidewind

This report was prepared by:

Norman F. Schneidewind

Department of Systems Management

Reviewed by:

Reuben T. Harris, Chairman Systems Management Department D.W.Netzer, Associate Provost and

Dean of Research

Released by:

Form Approved

	REPORT DOCUME	ENTATION PAGE		
				OMB No 0704-0188
collection of informa	aining the data needed, and completin ition, including suggestions for reducit	ig and reviewing the collection of info ng this burden, to Washington Headq	rmation. Send con uarters Services. D	ne time for reviewing instructions, searching existing data sources, nments regarding this burden estimate or any other aspect of this Directorate for information Operations and Reports, 1215 Jefferson Davis action Project (0704-0188), Washington, DC 20503.
1. AGENCY USE	ONLY (Leave blank)	2. REPORT DATE 12 May 1997		ORT TYPE AND DATES COVERED
Volume IV	ware Reliability Handbook Software Reliability and Me		5. FUNDING RLACH	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Systems Management Naval Postgraduate School Monterey, CA 93943-5000				8. PERFORMING ORGANIZATION REPORT NUMBER NPS-SM-97-005
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Marine Corps Tactical Systems Support Activity Box 555171 Building 31345 Camp Pendleton, CA 92255-5171				10. SPONSORING/MONITORING AGENCY REPORT NUMBER
	TARY NOTES essed in this report are those or position of the Departmen			ment.
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.				12b. DISTRIBUTION CODE
The purpose of to Serves as a retained aids in apply	ying the software reliability and software the software reliability the software reliabili	ting standard software relia	bility practices	s at Marine Corps Tactical Systems Support Activity
This handbook of Volume I: Volume II: Volume III: Volume IV:	Data Collection Demonstra Integration of Software Mo	eering Process and Modelin	ng for a Single ity Modeling f ability	

14. SUBJECT TERMS			15. NUMBER OF PAGES
			23
			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF
OF REPORT	OF THIS PAGE	OF ABSTRACT	ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

MCTSSA SOFTWARE RELIABILITY HANDBOOK

VOLUME IV

SCHNEIDEWIND SOFTWARE RELIABILITY AND METRICS MODELS TOOL LIST

12 May 1997

Revised: 15 July 1997

Dr. Norman F. Schneidewind

Code SM/Ss Naval Postgraduate School Monterey, CA 93943

Voice: (408) 656-2719 Fax: (408) 656-3407

Email: schneidewind@nps.navy.mil

TABLE OF CONTENTS

NTRODUCTION	4
OFTWARE RELIABILITY MODEL EQUATIONS	
OF I WARE RELIABILITY MODEL EQUATIONS	5
NOTATION	5
EQUATIONS IMPLEMENTED IN SMERFS	
	6
Parameter Estimation	
N. 4 - 14	
Method 1	
Method 2	
Failures in an Interval Range	/
· · · · · · · · · · · · · · · · · · ·	7
Maximum Failures	
Remaining Failures	
Time to Next Failure	
Mean Square Error Criterion for Remaining Failures, Maximum Failures, and Total Test T	ime
Mean Square Error Criterion for Time to Next Failure(s)	
EQUATIONS IMPLEMENTED IN STATGRAPHICS	
Cumulative Failures	
Fraction of Remaining Failures:	
Operational Quality	
Total Test Time to Achieve Specified Remaining Failures)
	9
Time to Next N Failures and Remaining Failures Tradeoffs	9
Mean Square Error Criterion for Failure Counts	9
Criteria for Safety	
Risk Assessment	10

DISTRIBUTED SYSTEM MODEL EQUATIONS

***************************************	11
NOTATION	13
System Nodes	13
Node Failure Probabilities	13
Node Failure Count	13
Types of Software Defects	13
System Failure Probability Components	13
System Failure Probability	14
EQUATIONS IMPLEMENTED USING DEFECT CONTROL SYSTEM DATABASE	14
Node Failure Count	14
EQUATIONS IMPLEMENTED USING WINDOWS CALCULATOR	14
Node Failure Probabilities	14
System Failure Probability Components	14
EQUATION IMPLEMENTED IN STATGRAPHICS	15
System Failure Probability	15
EQUATION IMPLEMENTED IN SMERFS	16
Time to Failure Prediction	16
METRICS MODELS FOLLATIONS	
METRICS MODELS EQUATIONS	17
NOTATION	17
EQUATIONS IMPLEMENTED IN STATGRAPHICS	1/
	17
EQUATION IMPLEMENTED USING WINDOWS CALCULATOR	1/
·······································	1 2
PREDICTABILITY VALIDATION MODEL	10
	21
NOTATION	21
EQUATIONS IMPLEMENTED IN STATGRAPHICS	
	0.1

INTRODUCTION

The following is a complete listing, as of this date, of *Schneidewind Software Reliability Model* equations and *Schneidewind Software Metrics Model* equations divided into tool implementation categories (i.e., *SMERFS*, *Statgraphics*, *Defect Control System* Database, and *Windows* Calculator). The purpose is to show which equations are implemented in which tool. The list is divided as follows:

o SOFTWARE RELIABILITY MODEL EQUATIONS

- NOTATION
- EOUATIONS IMPLEMENTED IN SMERFS
- EQUATIONS IMPLEMENTED IN STATGRAPHICS
 - * TABLE 1

o DISTRIBUTED SYSTEM MODEL EQUATIONS

- NOTATION
- EQUATIONS IMPLEMENTED USING DEFECT CONTROL SYSTEM DATABASE
- EQUATIONS IMPLEMENTED USING WINDOWS CALCULATOR
- EQUATIONS IMPLEMENTED IN STATGRAPHICS
 - * TABLE 2
- EQUATION IMPLEMENTED IN SMERFS

METRICS MODELS EQUATIONS

- DISCRIMINATIVE POWER VALIDATION MODEL
 - * NOTATION
 - * EQUATIONS IMPLEMENTED IN STATGRAPHICS
 - * EQUATION IMPLEMENTED USING WINDOWS CALCULATOR
 - ** TABLE 3
- PREDICTABILITY VALIDATION MODEL
 - * NOTATION
 - * EQUATIONS IMPLEMENTED IN STATGRAPHICS
 - ** TABLE 4

The reason for TABLES 1...4 is that the syntax of the *STATGRAPHICS* equation editor does not correspond identically to that in the equation notation (e.g., no Greek symbols, subscripts, and superscripts available). Also the limited space available for a *STATGRAPHICS* equation definition does not always allow these definitions to be identical to the mathematical definitions. Thus in order to use the *STATGRAPHICS* package, it is necessary to see the equations as they are written, using its syntax. The tables define the syntax.

SOFTWARE RELIABILITY MODEL EQUATIONS

NOTATION

α	failure rate at the beginning of interval s				
β	negative of derivative of failure rate divided by failure rate (i.e., relative failure rate)				
F(i)	predicted failure count in the range [1,i]; used in computing MSE _r				
\mathbf{F}_{ij}	observed failure count during interval j since interval i; used in computing MSE _T				
F(t)	predicted failure count in the range [1, t]				
F_t	given number of failures to occur after interval t; used in predicting $T_F(t)$				
$F(t_1,t_2)$	predicted failure count in the range $[t_1, t_2]$				
F(∞)	predicted failure count in the range [1,∞]; maximum failures over the life of the software				
i	current interval				
j	next interval j>i where F _{ij} >0				
J	maximum $j \le t$ where $F_{ij} > 0$				
MSE_{F}	mean square error criterion for selecting's for failure count predictions				
MSE_r	mean square error criterion for selecting s for remaining failure predictions				
MSE_T	mean square error criterion for selecting s for time to next failure predictions				
p(t)	fraction of remaining failures predicted at time t				
Q(t)	operational quality predicted at time t; the complement of p(t); the degree to which software is				
	free of remaining faults (failures)				
r_c	critical value of remaining failures; used in computing RCM r(t _t)				
r(t)	remaining failures predicted at time t				
$r(t_t)$	remaining failures predicted at total test time t _t				
$\Delta r(T_F,t)$	reduction in remaining failures that would be achieved if the software were executed for a time				
	T _F , predicted at time t				
RCM $r(t_t)$	risk criterion metric for remaining failures at total test time t _t				
RCM T _F (t _t	risk criterion metric for time to next failure at total test time t _t				
s	starting interval for using observed failure data in parameter estimation				
s*	optimal starting interval for using observed failure data, as determined by MSE criterion				
t	cumulative time in the range [1,t]; last interval of observed failure data; current interval				
t _m	mission duration (end time-start time); used in computing RCM T _F (t _t)				

t _t	total test time (observed or predicted)
$T_{F}(t)$	time to next failure(s) predicted at time t
$T_{\rm F}(t_{\rm t})$	time to next failure predicted at total test time t,
$\mathrm{T_{F}}(\triangle r,t)$	time to next N failures that would be achieved if remaining failures were reduced by Δr , predicted
	at time t
T_{ij}	time since interval i to observe number of failures F_{ij} during interval j; used in computing MSE_T
X_k	number of observed failures in interval k
X_{i}	observed failure count in the range [1,i]
X_{s-1}	observed failure count in the range [1,s-1]
$X_{s,i}$	observed failure count in the range [i,s-1]
$X_{s,i}$	observed failure count in the range [s,i]
$X_{s,t}$	observed failure count in the range [s,t]
$X_{s,t1}$	observed failure count in the range [s,t ₁]
X_t	observed failure count in the range [1,t]
X_{t1}	observed failure count in the range [1,t ₁]

EQUATIONS IMPLEMENTED IN SMERFS

Parameter Estimation

The log of the likelihood function is:

$$\begin{split} \log \ L = & X_{t}[\log \ X_{t} - 1 - \log(1 - exp(-\beta t))] + X_{s-1}[\log(1 - exp(-\beta (s-1)))] \\ + & X_{s,t}[\log(1 - exp(-\beta))] - \beta \sum_{k=0}^{t-s} (s+k-1)x_{s+k} \end{split}$$

This function is used to derive the equations for estimating α and β for each of the three methods. In the equations that follow, α and β are *estimates* of the population parameters.

Method 1

Use all of the failure counts from interval 1 through t (s=1). This method is used if it is assumed that all of the historical failure counts from 1 through t are representative of the future failure process. The following two equations are used to estimate β and α , respectively.

$$\frac{1}{\exp(\beta)-1} \cdot \frac{t}{\exp(\beta t)-1} = \sum_{k=0}^{t-1} k \frac{X_{k-1}}{X_t}$$

$$\alpha = \frac{\beta X_t}{1 - \exp(-\beta t)}$$

Method 2

Use failure counts only in the intervals s through t $(1 \le s \le t)$. This method is used if it is assumed that only the historical failure counts from s through t are representative of the future failure process. The following two equations are used to estimate β and α , respectively.

$$\frac{1}{\exp(\beta)-1} \frac{t_{-S+1}}{\exp(\beta(t_{-S+1}))-1} = \sum_{k=0}^{t_{-S}} k \frac{X_{s,k}}{X_{s,t}}$$

$$\alpha = \frac{\beta X_{s,t}}{1 - \exp(-\beta(t-s+1))}$$

Method 2 is equivalent to Method 1 for s=1.

Method 3

Use the cumulative failure count in the interval 1 through s-1 and individual failure counts in the intervals s through t $(2 \le s \le t)$. This method is used if it is assumed that the historical cumulative failure count from 1 through s-1 and the individual failure counts from s through t are representative of the future failure process. This method is intermediate to Method 1, which uses all the data, and Method 2, which discards "old" data. The following two equations are used to estimate β and α , respectively.

$$\frac{(s-1)X_{s-1}}{\exp(\beta(s-1))-1} + \frac{X_{s,t}}{\exp(\beta)-1} - \frac{tX_{t}}{\exp(\beta t)-1} = \sum_{k=0}^{t-s} (s+k-1)x_{s-k}$$

$$\alpha = \frac{\beta X_t}{1 - \exp(-\beta t)}$$

Method 3 is equivalent to Method 1 for s=2.

Failures in an Interval Range

Predicted failure count in the range $[t_1, t_2]$:

$$F(t_1,t_2)=(\alpha/\beta)[1-\exp(-\beta((t_2-s+1)))]-X_{s+1}$$

Maximum Failures

Predicted failure count in the range $[1,\infty]$ (i.e., maximum failures over the life of the software):

$$F(\infty) = \alpha/\beta + X_{s-1}$$

(Note: Implemented in SMERFS but the user must make the manual correction of adding X_{s-1} to the quantity α/β that SMERFS computes).

Remaining Failures

Predicted remaining failures r(t) at time t:

$$r(t)=(\alpha/\beta)-X_{s,t}=F(\infty)-X_t$$

(Note: Implemented in SMERFS but the user must make the manual correction of adding X_{s-1} to the quantity α/β - X_t that SMERFS computes).

Time to Next Failure

Predicted time for the next F_t failures to occur, when the current time is t:

$$T_{F}(t) = [(\log[\alpha/(\alpha - \beta(X_{s,t} + F_{t})])/\beta] - (t-s+1)$$

for
$$(\alpha/\beta) > (X_{s,t} + F_t)$$

Mean Square Error Criterion for Remaining Failures, Maximum Failures, and Total Test Time (For Method 2 and Method 1 (s=1))

Mean Square Error (MSE_r) criterion for number of remaining failures, etc.:

$$MSE_{r} = \frac{\sum_{i=s}^{t} [F(i)-X_{i}]^{2}}{t-s+1}$$

where

$$F(i)=(\alpha/\beta)[1-\exp(-\beta((i-s+1)))]+X_{s-1}$$

Mean Square Error Criterion for Time to Next Failure(s) (For Method 2 and Method 1 (s=1))

Mean Square Error criterion for $time\ to\ next\ failure(s)$:

$$MSE_{T^{=}} \frac{\sum_{i=s}^{J-1} \left[\left[\log \left[\alpha/(\alpha - \beta(X_{s,i} + F_{ij})) \right] / \beta - (i-s+1) \right] - T_{ij} \right]^{2}}{(J-s)}$$

for
$$(\alpha/\beta) > (X_{g_i} + F_{ij})$$

EQUATIONS IMPLEMENTED IN STATGRAPHICS

Cumulative Failures

Predicted failure count in the range [1, t]:

$$F(t)=(\alpha/\beta)[1-\exp(-\beta((t-s+1)))]+X_{s-1}$$

Remaining Failures

Predicted *remaining failures* as a function of *total test time* t_i : $r(t_i)=(\alpha/\beta)(\exp-\beta[t_i-(s-1)])$

Fraction of Remaining Failures:

Fraction of remaining failures predicted at time t:

$$p(t)=r(t)/F(\infty)$$

Operational Quality

Operational quality predicted at time t:

$$Q(t)=1-p(t)$$

Total Test Time to Achieve Specified Remaining Failures

Predicted total test time required to achieve a specified number of remaining failures at t_t , $r(t_t)$: $t_t = [\log[\alpha/(\beta[r(t_t)])]/\beta + (s-1)$

Time to Next N Failures and Remaining Failures Tradeoffs

Time to next N failures that would be achieved if remaining failures were reduced by Δr , predicted at time $T_F(\Delta r,t)=(-1/\beta)[\log[1-((\beta\Delta r/\alpha)(\exp(\beta(t-s+1))))]]$

for
$$((\beta \Delta r/\alpha)(\exp(\beta(t-s+1))))<1$$
.

Reduction in remaining failures that would be achieved if the software were executed for a time T_F predicted at time t:

$$\Delta r(T_F,t)=(\alpha/\beta)[\exp(-\beta(t-s+1))][1-\exp(-\beta(T_F))]$$

Mean Square Error Criterion for Failure Counts (For Method 2 and Method 1 (s=1))

Mean Square Error criterion for failure counts:

$$MSE_{F} = \frac{\sum_{i=s}^{t} \left[\alpha/\beta(1-exp(-\beta(i-s+1)))-X_{s,i}\right]^{2}}{t-s+1}$$

Criteria for Safety

- 1) predicted remaining failures $r(t_t) < r_c$, where r_c is a specified critical value, and
- 2) predicted time to next failure $T_F(t_t) > t_m$, where t_m is mission duration.

Risk Assessment

Risk criterion metric for remaining failures at total test time t:

RCM
$$r(t_1) = (r(t_1)-r_c)/r_c = (r(t_1)/r_c)-1$$

Risk criterion metric for time to next failure at total test time t_i:

RCM
$$T_F(t_t) = (t_m - T_F(t_t))/t_m = 1 - (T_F(t_t))/t_m$$

Note: Although *Criteria for Safety* and *Risk Assessment* equations are not covered in the other volumes of the handbook, they are listed here because they are part of the *Schneidewind Software Reliability Model*. These items are covered in: Norman F. Schneidewind, "Reliability Modeling for Safety Critical Software", IEEE Transactions on Reliability, Vol. 46, No.1, March 1997, pp.88-98.

TABLE 1: STATGRAPHICS (SGPLUS) EQUATION IMPLEMENTATIONS SOFTWARE RELIABILITY MODEL EQUATIONS

		•	
Math Notation	Sgplus Notation	Statgraphics Definition	Sgplus Function
α	alpha	Beginning failure rate	From SMERFS
β	beta	Relative failure rate	From SMERFS
Δľ	deltaR	Delta Remaining Failures	Given value
f(t)	d	Predicted Failure Rate	(alpha)*(EXP(-(beta*(i-(s-1)))))
F(i)	f	Predicted Cumulative Failures	((alpha/beta)*(1-EXP((-beta)*((i-s)+1))))+Xs
F_{ij}	Fij	Number of failures at j since i in MSEtf	From failure data
F _t	Fij	Number of failures to occur after interval t in tf	Given value
F(t)	Ft	Predicted Maximum Failures	(alpha/beta)+(Xs)
i	i	Execution time index	From failure data
J	J	Maximum j≤t where Fij>0	From failure data
m(i)	mi	Predicted failures in intervals	(alpha/beta)*(EXP(-(beta*(i-s))))* (1-EXP(-(beta)))
MSE _F	MSE	MSE: Cumulative Failures	(SUM(((EVAL f)-Xsi)^2))/((t-s)+1)
MSE _r	MSEr	MSE: Remaining Failures	SUM (((EVAL f)-Xt)^2)/((t-s)+1)
MSE _T	MSEtf	MSE: Time to Failure	(SUM(((EVAL tf)-Tij)^2))/((J-s))
p(t)	р	Fraction Remaining Failures	(Rtt)/(EVAL Ft)
Q(t)	Q	Predicted Program Quality	(1-(EVAL p))
r _c	Rc	Remaining Failures Criterion	Given value

r(t)	r	Predicted remaining failures using Xt	(alpha/beta)-(Xst)
r(t _t)	rt	Predicted remaining failures, given tt	(alpha/beta)*(EXP(-beta*(tt-(s-1))))
None	R	Predicted remaining failures using p	p*(EVAL Ft)
None	Rtt	Number of remaining failures in computing p and tt	Given value
$\Delta r(T_F,t)$	dR	Predicted delta Remaining Failures	(alpha/beta)*(EXP(-(beta*(i-(s-1)))))* (1-(EXP(-(beta*TR))))
RCM r(t _t)	riskR	Risk of Remaining Failure	((EVAL rt)-Rc)/Rc
RCM T _F (t _t)	riskT	Risk of Time to Failure	(tm-(EVAL tf))/tm
s	s	First failure interval	From SMERFS
t	t	Execution time	From failure data
t _t	tt	Predicted Total Test Time, given Rtt	((LOG(alpha/(beta*Rtt)))/beta)+(s-1)
T _F (t)	tf	Predicted Time to Failure	((1/beta)*(LOG(alpha/(alpha-(beta*(Xsi+Fij)))))) -(i-(s-1))
$T_{F}(\Delta r,t)$	Tf	Time to Failure for delta Remaining Failures	(-1/beta)*(LOG(1-((beta/alpha)*(deltaR)* (EXP(beta*(i-(s-1)))))))
T_{ij}	Tij	Time since i to fail at j	From failure data
t _m	tm	Time to Failure Criterion	Given value
$T_{\mathtt{F}}$	TR	Given Tf for Predicted delta Remaining Failures	Given value
X_{s-1}	Xs	Observed failure count in the range [1,s-1]	From failure data
$X_{s,i}$	Xsi	Observed failure count in the range [s,i]	From failure data
$X_{s,t}$	Xst	Observed failure count in the range [s,t]	From failure data
X_{t}	Xt	Observed failure count in the range [1,t]	From failure data

DISTRIBUTED SYSTEM MODEL EQUATIONS

NOTATION

System Nodes

N_{cc}: Number of Critical Client nodes

N_{nc}(t): Number of Non-Critical Client nodes

N_{cs}: Number of Critical Server nodes

N_{ns}(t): Number of Non-Critical Server nodes

 $N(t)=N_{cc}+N_{nc}(t)+N_{cs}+N_{ns}(t)$: Total number of nodes

Node Failure Probabilities

p_{cc}: probability of a software defect causing a critical client node to fail

p_{nc}: probability of a software defect causing a non-critical client node to fail

p_{cs}: probability of a software defect causing a critical server node to fail

p_{ns}: probability of a software defect causing a non-critical server node to fail

p_{sw}: probability of a node failure due to software

Node Failure Count

i: identification of an interval of operating time of the software

 $f_{cc}(i)$: critical client node failure count in interval i

 $f_{nc}(i)$: non-critical client node failure count in interval i

f_{cs}(i): critical server node failure count in interval i

f_{ns}(i): non-critical server node failure count in interval i

d(i): total defect count in interval i

D: total defect count across all intervals

Types of Software Defects (Examples Only)

S: Software Defect

G: General Protection Fault

N: Network Related Defect

C: System Crash

System Failure Probability Components

t: cumulative time in the range [1,t]; last interval of observed failure data; current interval

 P_{cc} : probability that one or more critical clients N_{cc} fail, given that the software fails

 $P_{nc}(t)$: probability that all non-critical clients $N_{nc}(t)$ have failed by time t, given that the software fails

PCS: probability that one or more critical servers N_{cs} fail, given that the software fails

P_{ns}(t): probability that all non-critical servers N_{ns}(t) have failed by time t, given that the software fails

System Failure Probability

P_{sys}/node fails (t): probability of a system failure by time t, given that a node fails

EQUATIONS IMPLEMENTED USING DEFECT CONTROL SYSTEM DATABASE (Examples Only)

Node Failure Count

 $f_{cc}(I)$ =COUNT as failures WHERE (S\G\N\notC) in interval I

 $f_{nc}(I)$ =COUNT as failures WHERE (S\G\notN\notC) in interval I

 $f_{cs}(I)$ =COUNT as failures WHERE (S \land notG \land N \land C) in interval I

 $f_{ns}(I)$ =COUNT as failures WHERE (S \land notG \land notN \land C) in interval I

d(I)=total defect count in interval I

 $D = \sum_{i} d(I)$

EQUATIONS IMPLEMENTED USING WINDOWS CALCULATOR

Node Failure Probabilities

Probability of a software defect causing a critical client node to fail:

$$p_{cc} = \sum_i f_{cc}(I)/D$$

Probability of a software defect causing a non-critical client node to fail:

$$p_{nc}\!\!=\!\!\sum_{i}\!f_{nc}(I)\!/D$$

Probability of a software defect causing a critical server node to fail:

$$_{PCs} = \sum_{i} f_{cs}(I)/D$$

Probability of a software defect causing a non-critical server node to fail:

$$p_{ns} = \sum_i f_{ns}(I)/D$$

Probability of a node failure due to software:

$$p_{sw}\!\!=\!\!p_{cc}\!\!+\!\!p_{nc}\!\!+\!\!p_{Cs}\!\!+\!\!p_{ns}$$

System Failure Probability Components

Probability that one or more critical clients N_{cc} fail, given that the software fails:

$$P_{cc} = 1 - (1 - p_{cc})^{Ncc}$$

Probability that all non-critical clients $N_{nc}(t)$ have failed by time t, given that the software fails:

$$P_{nc}(t)=(p_{nc})^{Nnc(t)}$$

Probability that one or more critical servers N_{cs} fail, given that the software fails:

$$P_{cs} = 1 - (1 - p_{cs})^{Ncs}$$

Probability that all non-critical servers N_{ns}(t) have failed by time t, given that the software fails:

$$P_{ns}(t)\!\!=\!\!(p_{ns})^{Nns(t)}$$

EQUATION IMPLEMENTED IN STATGRAPHICS

System Failure Probability

Probability of system failure, by time t, given a node failure:

$$P_{\text{sys}}/\text{node fails}(t) = [P_{\text{cc}}][P_{\text{nc}}(t)] + [P_{\text{cs}}][P_{\text{ns}}(t)] =$$

$$[1\text{-}(1\text{-}p_{cc})^{Ncc}][(p_{nc})^{Nnc(t)}] + [1\text{-}(1\text{-}p_{cs})^{Ncs}][(p_{ns})^{Nns(t)}]$$

Probability of Client Failure Probability of Server Failure

TABLE 2: STATGRAPHICS (SGPLUS) EQUATION IMPLEMENTATIONS DISTRIBUTED SYSTEM MODEL EQUATIONS

Math Notation	Sgplus Notation	Statgraphics Definition	Sgplus Function
N_{cc}	Ncc	Number of critical clients	From system configuration (constant)
N _{nc} (t)	Nnc	Number of non-critical clients	From system configuration (vector as a function of time)
N _{cs}	Ncs	Number of critical servers	From system configuration (constant)
$N_{ns}(t)$	Nns	Number of non-critical servers	From system configuration (vector as a function of time)
p_{cc}	pcc	Probability of critical client failure	From Windows Calculator
p _{nc} (t)	pnc	Probability of non- critical client failure	From Windows Calculator
P _{cs}	pcs	Probability of critical server failure	From Windows Calculator
p _{ns} (t)	pns	Probability of non- critical server failure	From Windows Calculator
P _{sys} /node fails(t)	Psys	Probability System Failure/Node Failure	((1-(1-pcc)^Ncc)*((pnc)^Nnc))+ ((1-(1-pcs)^Ncs)*((pns)^Nns))

EQUATION IMPLEMENTED IN SMERFS

Time to Failure Prediction

Predicted time for the next F_t failures to occur, when the current time is t, for each of the four types of node failures:

$$T_{F}(t) = [(\log[\alpha/(\alpha - \beta(X_{s,t} + F_{t})])/\beta] - (t-s+1)$$
 for $(\alpha/\beta) > (X_{s,t} + F_{t})$

METRICS MODELS EQUATIONS

DISCRIMINATIVE POWER VALIDATION MODEL

NOTATION

Defined in Table 3.

EQUATIONS IMPLEMENTED IN STATGRAPHICS

Maximum vertical difference between the CDFs of two samples (e.g., the CDFs of M_{ij} for $\textit{drcount} \le F_c$ and $\textit{drcount} > F_c$):

$$K\text{-}S(M_{cj})\text{=}max\{[CDF(M_{ij}/(F_{i} {\le} F_{c})]\text{-}[CDF(M_{ij}/(F_{i} {>} F_{c})]\}$$

Module count, based on BDFs of F_i and M_{ij} , that are calculated over the \boldsymbol{n} modules for \boldsymbol{m} metrics:

$$C_{11} = COUNT FOR ((F_i \le F_c) \land (M_{i1} \le M_{c1}) ... \land (M_{ij} \le M_{cj}) ... \land (M_{im} \le M_{cm}))$$

$$C_{12} = CO \overset{n}{\underset{i-1}{U}} NT \ FOR \ ((F_i \leq F_e) \land ((M_{i1} > M_{e1}) ... \lor (M_{ij} > M_{ej}) ... \lor (M_{\underline{im}} > M_{\underline{cm}})))$$

$$C_{21} = COUNT FOR ((F_i > F_c) \land (M_{i1} \leq M_{c1}) ... \land (M_{ij} \leq M_{cj}) ... \land (M_{im} \leq M_{cm}))$$

$$C_{22} = COUNT FOR ((F_i > F_c) \land ((M_{i1} > M_{c1}) ... \lor (M_{ij} > M_{cj}) ... \lor (M_{im} > M_{cm})))$$

Proportion of Type 1 Misclassifications:

$$P_1 = C_{21}/n$$

Proportion of Type 2 Misclassifications:

$$P_2 = C_{12}/n$$

Proportion of Type 1+Type 2 Misclassifications:

$$P_{12} = (C_{21} + C_{12})/n$$

Proportion of low quality (i.e., drcount>0) software correctly classified:

$$LQC=C_{22}/n_2$$

Remaining Factor RF (e.g., remaining drcount). This is the sum of F_i not caught by inspection:

$$RF = \sum_{i=1}^{n} F_{i} FOR (F_{i} > F_{c}) \land (M_{i1} \le M_{c1}) ... \land (M_{ij} \le M_{cj}) ... \land (M_{im} \le M_{cm}))$$

Proportion of RF, where TF is the total F_i prior to inspection:

RFP=RF/TF

$$TF = \sum_{i=1}^{n} F_{i}$$

Density of RF:

RFD=RF/n

Proportion of modules remaining that have F_i>F_c:

RMP=RFM/n,

where RFM is given by:

$$RFM = COUNT FOR ((F_i > 0) \land (M_{i1} \leq M_{c1}) ... \land (M_{ij} \leq M_{cj}) ... \land (M_{im} \leq M_{cm}))$$

Proportion of modules that must be inspected:

$$I=(C_{12}+C_{22})/n$$

Wasted inspection:

$$RI=C_{22}/C_{12}$$

EQUATION IMPLEMENTED USING WINDOWS CALCULATOR

Quality Inspection Ratio:

QIR=
$$(|\Delta RFP|/RFP_i)/(\Delta I/I_i)$$

TABLE 3: STATGRAPHICS (SGPLUS) AND WINDOWS CALCULATOR EQUATION IMPLEMENTATIONS SOFTWARE METRICS MODELS EQUATIONS

DISCRIMINATIVE POWER VALIDATION MODEL Math Sgplus Statgraphics Definition Sgplus Function Notation Notation C_{11} C11 Module count for C11 SUM ((drcount LE Dc) AND (M1 LE M1c) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (sample EO Ss)) C12 Module count for C12 C_{12} SUM ((drcount LE Dc) AND ((M1 GT M1c) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) AND (sample EO Ss)) C21 C_{21} Module count for C21 SUM ((drcount GT Dc) AND (M1 LE M1c) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (sample EQ Ss)) C22 C_{22} Module count for C22 SUM ((drcount GT Dc) AND ((M1 GT M1c) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) AND (sample EQ Ss)) Quality factor critical value F_c Dc Given value \mathbf{F}_{i} drcount Vector of quality factor From quality factor data (example) values I Ţ Proportion of modules (((EVAL C12)+(EVAL C22))/n)*100 % that must be inspected ΔΙ Difference in two successive None Windows Calculator computation values of I i Module name Module index From metrics file Metric name Metric index From metrics file j $K-S(M_{ci})$ maxcdfdiff Maximum vertical difference MAX (EVAL (cdfdiff)), where cdfdiff= between two CDFs (ABS(m1-m2))/100 & m1, m2=metric vectorsLQC LQC Proportion of low quality ((EVAL C22)/(EVAL n2))*100 % software correctly classified M_{ci} M1c...M4c Vector of j metric From metrics data and K-S test critical values M1...M4 Matrix of modules and M_{ii} From metrics data and K-W test metrics Count of accepted SUM ((M1 LE M1c) AND (M2 LE M2c) AND (M3 LE N_1 N1 M3c) AND (M4 LE M4c) AND (sample EO Ss)) modules

	1	-	
N ₂	N2	Count of rejected modules	SUM (((M1 GT M1c) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) AND (sample EQ Ss))
n	n	Number of modules in sample	Given value
\mathbf{n}_1	n1	Count of high quality modules	(EVAL C11)+(EVAL C12)
n_2	n2	Count of low quality modules	(EVAL C21)+(EVAL C22)
\mathbf{P}_1	P1	Proportion of Type 1 misclassifications	((EVAL C21)/n)*100 %
\mathbf{P}_{2}	P2	Proportion of Type 2 misclassifications	((EVAL C12)/n)*100 %
P ₁₂	P12	Proportion of Type 1+Type 2 misclassifications	(((EVAL C12)+(EVAL C21))/n)*100 %
QIR	None	Quality Inspection Ratio	Windows Calculator computation
RF	RF	Remaining Quality Factor	SUM (drcount SELECT ((M1 LE M1c) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (drcount GT Dc) AND (sample EQ Ss)))
RFD	RFD	Density of RF	(EVAL RF)/n
RFP	RFP	Proportion of RF	((EVAL RF)/(EVAL TF))*100 %
ΔRFP	None	Difference in two successive values of RFP	Windows Calculator computation
RFM	RFM	Count of modules with Remaining Quality Factor	SUM ((drcount GT Dc) AND (M1 LE M1c) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (sample EQ Ss))
RMP	RMP	Proportion of RFM	((EVAL RFM)/n)*100 %
RI	RI	Wasted Inspection	(EVAL C22)/(EVAL C12)
None	Ss	Sample Identification	Given value
TF	TF	Total Quality Factor	SUM (drcount SELECT sample EQ Ss)
χ^2_{c}	χ ² c	Critical value of Chi-Square	Function of C11, C12, C21, and C22

PREDICTABILITY VALIDATION MODEL

NOTATION

Defined in Table 4

EQUATIONS IMPLEMENTED IN STATGRAPHICS

Proportion of modules with F_i>0 in the Validation Sample prior to inspection and correction of defects:

$$p_n = (COUNT FOR F_i > 0)/n$$

Two-sided confidence limits of p_n, used as predicted limits of p_n' in the Application Sample:

$$CLp_n = p_n \pm Z_{\alpha/2} \sqrt{\frac{(p_n)(1-p_n)}{n}}$$

Proportion of modules **not flagged** for inspection (i.e., contained in N_1) with $F_i>0$ in the Validation Sample: $pN_1=RFM/N_1$

One-sided upper confidence limit of pN₁, used as predicted limit of pN₁' in the Application Sample:

$$ULpN_1=pN_1+Z_{\alpha\sqrt{\frac{(pN_1)(1-pN_1)}{N_1}}}$$

Proportion of modules **flagged** for inspection (i.e., contained in N_2) with $F_i>0$ in the Validation Sample: $pN_2=((p_n)(n)-(RFM))/N_2$

One-sided lower confidence limit of pN2, used as predicted limit of pN2' in the Application Sample:

$$LLpN_2 = pN_2 - Z_{\alpha}\sqrt{\frac{(pN_2)(1-pN_2)}{N_2}}$$

Proportion of quality factor that occurs on modules **not flagged** for inspection (i.e., contained in N_1) in the Validation Sample:

 d_1 =RF/TF (same as RFP if RFP is expressed as a proportion)

One-sided upper confidence limit of d₁, used as predicted limit of d₁' in the Application Sample

$$ULd_1=d_1+Z_{\alpha}\sqrt{\frac{(d_1)(1-d_1)}{TF}}$$

Proportion of quality factor that occurs on modules **flagged** for inspection (i.e., contained in N_2) in the Validation Sample:

$$d_2 = 1 - d_1$$

One-sided lower confidence limit of d₂, used as predicted limit of d₂' in the Application Sample:

$$LLd_2=d_2-Z_{\alpha}\sqrt{\frac{(d_2)(1-d_2)}{TF}}$$

Expected quality factor count (e.g., drcount) that occurs on modules **not flagged** for inspection (i.e., contained in N_1 ') in the Application Sample:

$$D_1 = (RF/N_1)(N_1')$$

Expected quality factor count (e.g., drcount) that occurs on modules **flagged** for inspection (i.e., contained in N_2 ') in the Application Sample):

$$D_2 = ((TF-RF)/N_2)(N_2')$$

TABLE 4: STATGRAPHICS (SGPLUS) EQUATION IMPLEMENTATIONS SOFTWARE METRICS MODELS EQUATIONS PREDICTABILITY VALIDATION MODEL Math Sgplus Statgraphics Definition Sgplus Function Notation Notation pn Proportion of modules with (SUM((drcount GT 0) AND (sample EQ Ss)))/n p_n F:>0 CLp, CLpn Two-sided confidence limits ((EVAL pn)+(Z*(SQRT (((EVAL pn)*of pn (1-(EVAL pn))/n)))Proportion of modules not pN_1 pN1 (EVAL RFM)/(EVAL N1) flagged for inspection ULpN₁ ULpN1 Upper Confidence limit of ((EVAL pN1)+(Z*(SQRT (((EVAL pN1)*pN1 (1-(EVAL pN1)))/(EVAL N1))))) pN_2 pN2 Proportion of modules ((n*(EVAL pn))-(EVAL RFM))/(EVAL N2) flagged for inspection LLpN₂ LLpN2 Lower confidence limit of ((EVAL pN2)-(Z*(SQRT (((EVAL pN2)*pN1 (1-(EVAL pN2)))/(EVAL N2))))) d, d1 Proportion of quality factor (EVAL RF)/(EVAL TF) count that occurs on modules not flagged for inspection ULd, ULd1 Upper confidence limit of d1 ((EVAL d1)+(Z*(SQRT (((EVAL d1)* (EVAL d2))/(EVAL TF))))) d2 \mathbf{d}_2 Proportion of drcount that (1-EVAL (d1)) occurs on modules flagged for inspection Lower confidence limit of d2 LLd_2 LLd2 ((EVAL d2)-(Z*(SQRT (((EVAL d1)* (EVAL d2))/(EVAL TF))))) D_1 D1 Expected quality factor count ((EVAL RF)/(EVAL N1))*N1a that occurs on modules not flagged for inspection D_2 D2Expected quality factor count (((EVAL TF)-(EVAL RF))/(EVAL N2))*N2a that occurs on modules flagged for inspection N_1 SUM ((M1 LE M1c) AND (M2 LE M2c) AND (M3 LE Nla Count of accepted modules in Application Sample M3c) AND (M4 LE M4c) AND (sample EQ Ss)) N_2 N2a Count of rejected modules in SUM (((M1 GT M1c) OR (M2 GT M2c) OR (M3 GT M3c) Application Sample OR (M4 GT M4c)) AND (sample EO Ss)) Z_{α} Z Standardized difference Given value based on choice of α between variable and mean of

normal distribution

DISTRIBUTION LIST

Agency	No. of Copies
Defense Technical Information Center 8725 John J. King Rd., STE 0944 Ft. Belvoir, VA 22314	2
Dudley Knox Library, Code 013 Naval Postgraduate School Monterey, CA 93943	2
Office of Research Administration, Code 91 Naval Postgraduate School Monterey, CA 93943	1
Department of Systems Management Library, Code SM/Eb Naval Postgraduate School 555 Dyer Rd Rm 239 Bldg. 330 Monterey, CA 93943	1
Commanding Officer Marine Corps Tactical Systems Support Activity Box 555171 Camp Pendleton. CA 92055-5171	1
Capt. Kenneth Warburton Marine Corps Tactical Systems Support Activity Box 555171 Bldg. 31345	5
Camp Pendleton, CA 92055-5171 Dr. Norman F. Schneidewind Naval Postgraduate School Code SM/Ss Monterey, CA 93943	10