Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

Классификация текстовых данных

Студент Бахмутский М.В.

Группа М-ИАП-22

Руководитель Кургасов В.В.

Цель работы

Получить практические навыки решения задачи классификации текстовых данных в среде Jupiter Notebook. Научиться проводить предварительную обработку текстовых данных, настраивать параметры методов классификации и обучать модели, оценивать точность полученных моделей.

Задание кафедры

- 1) Загрузить выборки по варианту из лабораторной работы №2
- 2) Используя GridSearchCV произвести предварительную обработку данных и настройку методов классификации в соответствие с заданием, вывести оптимальные значения параметров и результаты классификации модели (полнота, точность, f1-мера и аккуратности) с данными параметрами. Настройку проводить как на данных со стеммингом, так и на данных, на которых стемминг не применялся.
- 3) По каждому пункту работы занести в отчет программный код и результат вывода.
- 4) Оформить сравнительную таблицу с результатами классификации различными методами с разными настройками. Сделать выводы о наиболее подходящем методе классификации ваших данных с указанием параметров метода и описанием предварительной обработки

Вариант 1

Вариант	Методы
1	KNN, RF, LR

Ход работы

- 1) Загрузить выборки по варианту из лабораторной работы №2
- pandas предоставляет специальные структуры данных и операции для манипулирования числовыми таблицами и временными рядами.
- numpy поддерживает многомерные массивы, высокоуровневые математические функций, предназначенные для работы с многомерными массивами
- pyplot это коллекция функций в стиле команд, которая позволяет использовать matplotlib почти так же, как MATLAB
- nltk пакет библиотек и программ для символьной и статистической обработки естественного языка, написанных на языке программирования Python.
- sklearn включает все алгоритмы и инструменты, которые нужны для задач классификации, регрессии и кластеризации, методы оценки производительности модели машинного обучения.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import MultinomialNB
from nltk.stem import *
from nltk import word_tokenize
import itertools
```

Рисунок 1 – Необходимые библиотеки

```
categories = ['comp.graphics', 'comp.os.ms-windows.misc', 'rec.autos']
remove = ['headers', 'footers', 'quotes']
twenty_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42, categories=categories, remove=remove)
twenty_test = fetch_20newsgroups(subset='test', shuffle=True, random_state=42, categories=categories, remove=remove)
```

Рисунок 2 – Выгрузка данных по варианту

2) Используя GridSearchCV произвести предварительную обработку данных и настройку методов классификации в соответствие с заданием,

вывести оптимальные значения параметров и результаты классификации модели (полнота, точность, f1-мера и аккуратности) с данными параметрами. Настройку проводить как на данных со стеммингом, так и на данных, на которых стемминг не применялся.

```
parameters = {
    'RandomForestClassifier': {
        'vect__max_features': (1000,5000,10000),
        'vect stop words': ('english', None),
        'tfidf use idf': (True, False),
        'clf__criterion': ['gini', 'entropy', 'log_loss'],
        'clf__max_depth': [3,5,10,None]
   },
    'LogisticRegression': {
        'vect__max_features': (1000,5000,10000),
        'vect__stop_words': ('english', None),
        'tfidf use idf': (True, False),
        'clf__penalty': ['l1','l2'],
        'clf C': [0.001,0.01,0.1,1,10,100,1000]
   },
    'KNeighborsClassifier': {
        'vect__max_features': (1000,5000,10000),
        'vect__stop_words': ('english', None),
        'tfidf use idf': (True, False),
        'clf n neighbors': (1, 3, 5, 10),
        'clf__p': (1, 2)
gs = \{\}
for clf, param in parameters.items():
    text_clf = Pipeline([
        ('vect', CountVectorizer()),
        ('tfidf', TfidfTransformer()),
        ('clf', eval(clf)())
    1)
    gs[clf] = GridSearchCV(text_clf, param, n_jobs=-1, error_score=0.0)
   gs[clf].fit(X = twenty_train['data'], y = twenty_train['target'])
```

Рисунок 3 – Сетки параметрического поиска

На данном рисунке представлено параметры и ограничения по которым будет проводится поиск по сетке

3) Оформим сравнительную таблицу с результатами классификации различными методами.

	precision	recall	f1-score	support
comp.graphics	0.83	0.74	0.78	389
comp.os.ms-windows.misc	0.83	0.76	0.79	394
rec.autos	0.79	0.94	0.86	396
2551112511			0.01	1170
accuracy	0.00	0.01	0.81	1179
macro avg	0.82	0.81	0.81	1179
weighted avg	0.82	0.81	0.81	1179
	precision	recall	f1-score	support
comp.graphics	0.84	0.85	0.84	389
comp.os.ms-windows.misc	0.90	0.74	0.81	394
rec.autos	0.84	0.97	0.90	396
accuracy			0.85	1179
macro avg	0.86	0.85	0.85	1179
weighted avg	0.86	0.85	0.85	1179
	precision	recall	f1-score	support
comp.graphics	0.59	0.35	0.44	389
comp.os.ms-windows.misc	0.61	0.37	0.46	394
rec.autos	0.46	0.82	0.59	396
accuracy			0.51	1179
-	0 FF	Q E1	0.49	1179
macro avg	0.55	0.51		
weighted avg	0.55	0.51	0.49	1179

Рисунок 4 — Итоговая таблица

Из полученных данных мы видим, что наилучшую классификацию показал логистический регрессионный классификатор с вероятностью 0,85

Вывод

В ходе выполнения данной лаборатоной работы были получены практические навыки решения задачи классификации текстовых данных в среде Jupiter Notebook. Научились проводить предварительную обработку текстовых данных, настраивать параметры методов классификации и обучать модели, оценивать точность полученных моделей.