Mi-parcours du cours d'optimisation différentiable

Durée: 1 heure

Les documents ainsi que les calculatrices ne sont pas autorisés.

Exercice 0.1

Montrer que les deux fonctions suivantes admettent des dérivées partielles en (0,0) dans toutes les directions de \mathbb{R}^2 sans pour autant être continues en (0,0) pour

1.

$$f(x,y) = \begin{cases} y^2 \log |x| & \mathbf{si} \ (x,y) \neq (0,0) \\ 0 & \mathbf{si} \ (x,y) = (0,0). \end{cases}$$

2.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \mathbf{si} \ (x,y) \neq (0,0) \\ 0 & \mathbf{si} \ (x,y) = (0,0). \end{cases}$$

Correction de l'exercice 0.1

1. [2pts] Soit $(u, v) \in \mathbb{R}^2 - \{(0, 0)\}$, on a quand $h \to 0$ et $h \neq 0$

$$\frac{f((0,0) + h(u,v)) - f((0,0))}{h} = v^2 h \log|hu| \to 0.$$

Donc f est dérivable en (0,0) selon (u,v) et $f'_{(u,v)}((0,0))=0$. Par ailleurs, f n'est pas continue en (0,0) vue que $f(1/n,1/\sqrt{\log n})=-1\neq f((0,0))=0$ pour tout $n\to 0$ alors que $((1/n,1/\sqrt{\log n}))_n$ tend vers (0,0) quand $n\to\infty$.

2. [2pts] Soit $(u, v) \in \mathbb{R}^2 - \{(0, 0)\}$, on a quand $h \to 0$ et $h \neq 0$

$$\frac{f((0,0)+h(u,v))-f((0,0))}{h}=\frac{hu^2v}{h^2u^4+v^2}\to 0.$$

donc f est dérivable en (0,0) dans toutes les directions. Par ailleurs, $f(1/n,1/n^2) = 1/2 \neq f(0,0)$ pour tout $n \geq 0$, alors f n'est pas continue en (0,0).

Exercice 0.2

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Calculer le gradient de g dans les cas suivants :

1.
$$g(x,y) = f(y,x)$$

- **2.** q(x) = f(x, x)
- **3.** g(x,y) = f(y, f(x,x))
- **4.** g(x) = f(x, f(x, x))

Correction de l'exercice 0.2

1. [1pt] On a pour tout $(x, y) \in \mathbb{R}^2$,

$$\nabla g(x,y) = \begin{pmatrix} \partial_2 f(y,x) \\ \partial_1 f(y,x) \end{pmatrix}$$

2. [1pt] On a pour tout $x \in \mathbb{R}$,

$$\nabla g(x) = \partial_{(1,1)} f(x,x) = \left\langle \nabla f(x,x), (1,1) \right\rangle = \partial_1 f(x,x) + \partial_2 f(x,x).$$

3. [2pts] On applique ici la "chain rule" en utilisant le calcul des gradients précédent. On a $g(x,y) = f \circ \varphi(x,y)$ où $\varphi(x,y) = (y,f(x,x))$ qui a pour matrice Jacobienne

$$J(\varphi)(x,y) = \begin{pmatrix} 0 & 1\\ \langle \nabla f(x,x), (1,1) \rangle & 0 \end{pmatrix}$$

On a

$$\nabla g(x,y) = J(\varphi)(x,y)^{\top} \nabla f(\varphi(x,y)) = \begin{pmatrix} 0 & \langle \nabla f(x,x), (1,1) \rangle \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \partial_1 f(y, f(x,x)) \\ \partial_2 f(y, f(x,x)) \end{pmatrix}$$
$$= \begin{pmatrix} \langle \nabla f(x,x), (1,1) \rangle \partial_2 f(y, f(x,x)) \\ \partial_1 f(y, f(x,x)) \end{pmatrix}$$

4. [2pts] On applique ici la "chain rule" en utilisant le calcul des gradients précédent. On a $g(x) = f \circ \varphi(x)$ où $\varphi(x) = (x, f(x, x))$ qui a pour matrice Jacobienne

$$J(\varphi)(x) = \begin{pmatrix} 1 \\ \langle \nabla f(x,x), (1,1) \rangle \end{pmatrix}$$

On a

$$\nabla g(x) = J(\varphi)(x)^{\top} \nabla f(\varphi(x)) = \left(1 \left\langle \nabla f(x, x), (1, 1) \right\rangle \right) \left(\frac{\partial_1 f(x, f(x, x))}{\partial_2 f(x, f(x, x))} \right)$$
$$= \partial_1 f(x, f(x, x)) + \left\langle \nabla f(x, x), (1, 1) \right\rangle \partial_2 f(x, f(x, x))$$

Exercice 0.3

Une entreprise fabrique deux types de boisson, les types X et Y. Le type X se vend 1 euro au litre; quant au type Y, il se vend à 3 euros le litre. Le coût de fabrication, exprimé en euros, est donné par la fonction suivante :

$$C(x,y) = 5x^2 + 5y^2 - 2xy - 2x - 1000$$

où x est le nombre de litres du type X et y est le nombre de litres du type Y. On suppose que les boissons fabriquées sont toutes écoulées sur le marché.

- 1. Soit $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$. Déterminer le profit P(x,y) réalisé par l'entreprise lorsqu'elle a vendu x litres du modèle X et y du modèle Y.
- 2. Etudier la convexité de -P sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.
- 3. La capacité de production de l'entreprise est au total de 20 litres par jour. En supposant que l'entreprise tourne à plein régime (càd, elle produit 20 litres par jour), trouver la répartition optimale entre les boissons de type X et de type Y permettant de maximiser le profit quotidien. Calculer dans ce cas le profit réalisé.
- 4. Le conseil d'administration de l'entreprise s'interroge sur la pertinence de produire à plein régime. Il se demande s'il ne peut pas augmenter le profit en produisant moins. Pouvez-vous conseiller le conseil d'administration?

Correction de l'exercice 0.3

1. [1pt] La fonction profit est donnée par

$$P(x,y) = x + 3y - C(x,y) = -5x^2 - 5y^2 + 2xy + 3(x+y) + 1000.$$

2. [2pts] Pour étudier la convexité d'une fonction de classe C^2 , il suffit d'étudier sa Hessienne. Pour tout $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$, on a

$$\nabla^2 P(x,y) = \begin{pmatrix} -10 & 2 \\ 2 & -10 \end{pmatrix} := H$$

et H a deux valeurs propres λ_1 et λ_2 solution de $\lambda_1 + \lambda_2 = \text{Tr}(H) = -20$ et $\lambda_1 * \lambda_2 = \det(H) = 96$. On a donc $\lambda_1 = -8$ et $\lambda_2 = -12$. Alors P est strictement concave et donc -P est strictement convexe.

3. [4pts] On veux maximiser le profit sous les contraintes que x + y = 20 (càd l'entreprise tourne à plein régime) et $x, y \ge 0$ (on produit un nombre positif de litres de boisson). On est alors amener à résoudre un problème d'optimisation sous contrainte de la forme

$$\min_{(x,y)\in K} f(x,y) \tag{1}$$

où f(x,y) = -P(x,y) et la contrainte K est donnée par

$$K = \{(x,y) \in \mathbb{R}^2 : g_1(x,y) = 0, h_1(x,y) \le 0 \text{ et } h_2(x,y) \le 0\}$$

où $g_1(x,y) = x + y - 20$, $h_1(x,y) = -x$ et $h_2(x,y) = -y$. La contrainte est un compact de \mathbb{R}^2 et la fonction objectif est continue donc d'après Weierstrass, le problème (1) admet au moins une solution. Par ailleurs, f est strictement convexe et la contrainte K est convexe donc cette solution est unique. De plus, la contrainte est qualifiée (en tout point) vue que g_1, h_1, h_2 sont des fonctions affines. Par ailleurs, la fonction objectif est de classe \mathcal{C}^1 et convexe alors d'après KKT, $u^* = (x^*, y^*) \in K$ est solution de (1) si et seulement si il existe λ_1, μ_1, μ_2 tels que

KKT1
$$\nabla f(u^*) + \lambda_1 \nabla g_1(u^*) + \mu_1 \nabla h_1(u^*) + \mu_2 \nabla h_2(u^*) = 0$$

KKT2 $\mu_1, \mu_2 \ge 0$
KKT3 $\mu_1 h_1(u^*) = 0$ et $\mu_2 h_2(u^*) = 0$.

On voit que satisfaire aux contraintes KKT1, 2, 3 et $(x,y) \in K$ est équivalent à résoudre le système

$$\begin{cases}
10x - 2y - 3 + \lambda_1 - \mu_1 = 0 \\
10y - 2x - 3 + \lambda_1 - \mu_2 = 0 \\
\mu_1, \mu_2 \ge 0 \\
\mu_1x = 0, \mu_2y = 0 \\
x \ge 0, y \ge 0, x + y = 20.
\end{cases}$$

On peut d'abord essayer x > 0 et y > 0. Dans ce cas, $\mu_1 = \mu_2 = 0$ et donc le système précédant a pour unique solution x = y = 10. Par unicité de la solution de (1), (10, 10) est l'unique solution du problème. Le profit atteint vaut P(10, 10) = 260.

4. [3pts] Le problème est identique au précédent sauf qu'on change la contrainte d'égalité " $g_1(x,y) = 0$ " par " $h_3(x,y) \le 0$ " où $h_3(x,y) = x + y - 20$. Les CNS de KKT deviennent alors équivalentes à

$$\begin{cases}
10x - 2y - 3 + \mu_3 - \mu_1 = 0 \\
10y - 2x - 3 + \mu_3 - \mu_2 = 0
\end{cases}$$

$$\mu_1, \mu_2, \mu_3 \ge 0$$

$$\mu_1x = 0, \mu_2y = 0, \mu_3(x + y - 20) = 0$$

$$x \ge 0, y \ge 0, x + y \le 20.$$

On essaie d'abord x > 0, y > 0 et x + y < 20 (càd la solution est strictement à l'intérieure de la contrainte). Dans ce cas $\mu_1 = \mu_2 = \mu_3 = 0$ et en résolvant le système précédant, on obtient que x = y = 3/8 est solution du problème. Pour ce choix, le profit est $P(3/8, 3/8) = 8009/8 \approx 1001.125$ qui est bien plus grand que P(10, 10) = 260 quand l'usine tourne à plein régime. Le conseil à donner au CA est donc bien de produire 3/8-ième de litre de X et de Y et de ne pas faire tourner l'usine à plein régime.