Задание 4. Малорастворимая соль

В школьной таблице растворимости солей, кислот и оснований в воде все соединения натрия и калия хорошо растворимы в воде. Однако, существуют соли этих металлов, которые обладают низкой растворимостью. Одной из таких солей является соль X.

Для получения соли \mathbf{X} 1,000 г металла \mathbf{M} сожгли при 300 °C в избытке хлора (реакция I). Образовавшиеся красно-коричневые кристаллы аккуратно растворили в воде и добавили к концентрированному раствору соли \mathbf{Y} (реакция 2). Выпадающую в осадок соль \mathbf{X} отфильтровали, высушили и взвесили. В итоге получили 2,492 г.

- 1. Рассчитайте состав соли \mathbf{Y} , если дополнительно известно, что при добавлении к 1,49 г соли \mathbf{Y} избытка раствора нитрата серебра выпадает 2,87 г белого творожистого осадка (реакция 3).
- 2. Определите металл \mathbf{M} и соль \mathbf{X} , если содержание неметалла в соли \mathbf{X} равно 43,83 %.
 - 3. Напишите уравнения реакций 1-3.
- 4. Напишите уравнение реакции растворения металла \mathbf{M} в царской водке, если в качестве одного из продуктов образуется кислота \mathbf{Z} , в составе которой присутствует анион соли \mathbf{X} .

Задание 4. Малорастворимая соль

Решение:

1. Выпадение белого творожистого осадка позволяет предположить, что соль \mathbf{Y} – это хлорид, тогда

$$MeCl_n + nAgNO_3 \rightarrow Me(NO_3)_n + nAgCl;$$

$$\eta$$
 (AgCl) = 2,87 / 143,5 = 0,02 моль.

$$M(\text{MeCl}_n) = \frac{1,49 \times n}{0.02} = 74,5n$$
 г/моль, тогда

M(Me) = 39n, при n = 1 получаем M(Me) = 39 г/моль, следовательно Y -хлорид калия (KCl).

2. Так как Y — хлорид калия, следовательно, X — также соль калия, а неметалл в её составе — это хлор. Найдём массовую долю металла M в соли X:

$$\omega(M) = \frac{1}{2.492} \times 100 \% = 40,13 \%.$$

Предположим, что в состав соли X входят три элемента, тогда

$$\omega(K) = 100 - 40,13 - 43,83 = 16,04 \%.$$

Для соли состава $K_x M_y Cl_z$, найдём соотношение калия и хлора

$$x: z = \frac{16,04}{39}: \frac{43,83}{35,5} = 0,41:1,235 = 1:3$$

тогда

$$M(M) = \frac{35,5 \times 3k}{0,4383} \times 0,4013 = 97,5k$$
 г/моль.

При k = 2, M(M) = 195 г/моль, что соответствует платине (Pt), следовательно, $\mathbf{X} - \mathbf{K_2}[\mathbf{PtCl_6}]$.

3, Уравнения реакций:

Pt +
$$2Cl_2 \rightarrow PtCl_4$$
,
PtCl₄ + $2KCl \rightarrow K_2[PtCl_6]$,
KCl + AgNO₃ \rightarrow AgCl + KNO₃.

4. Уравнение реакции растворения Рt в царской водке:

$$3Pt + 18HCl + 4HNO_3 \rightarrow 3H_2[PtCl_6] + 4NO + 8H_2O$$

или

$$Pt + 6HCl + 4HNO_3 \rightarrow H_2[PtCl_6] + 4NO_2 + 4H_2O.$$

Система оценивания:

Пункт	Критерий	Оценка
1	Вывод о том, что исследуемая соль У – хлорид	0,5 балла
	Расчёт v(AgCl)	0,5 балла
	Вывод формулы соли Ү:	
	с расчётом	1 балл
	без расчёта	0 баллов
	Всего за п.1	2 балла
2	Расчёт массовой доли М в X	1 балл
	Определение металла М:	
	с расчётом	1 балла
	без расчёта	0 баллов
	Формула соли Х	1 балл
	Всего за п.2	3 балла
3	За каждое уравнение реакции	1 балл
	с неправильными коэффициентами	0,5 балла
	Всего за п.3	3 балла
4	Уравнение реакции	2 балла
	с неправильными коэффициентами	1 балл
	Всего за п.4	2 балла

Всего за задачу – 10 баллов