Introduction and housekeeping

Using Networks to Study Microbes

Outline

- Who are you?
- Introduction to the course
- Course schedule
- Tools
- Contact

Who are you?

Alberto Santos - Associate Professor and Head of the Data Science Platform at the Danish Technical University (DTU) - Denmark

Research Group Lead Multi-omics Network Analytics (MoNA)

Multi-omics

Using multimodal data to have a comprehensive view on (micro) biology problems

Network

Exploiting graphs to structure, represent, integrate and analyse data

Analytics

Applying Data Science and Machine Learning to answer complex biological questions

Who are you?

Yesid Cuesta-Astroz - Assistant profesor Instituto Colombiano de Medicina Tropical, Universidad CES

- Researcher ICMT CES
 - Pathogen genomics and bioinformatics
 - Working on the study of the biological diversity of microorganisms from omics approaches.
 - Modelling the host-pathogen interactions using protein-protein interaction networks.

Who are you?

Introduction

Introduction to the Course

Networks to Study Microbes

- Technological advances are making large-scale omics datasets available to study microbes and microbial communities
- We need computational methods to model and understand these complex data
- This course will provide an overview of omics data types and data
 resources available and how to integrate, analyse and interpret these data
 with networks

Introduction to the Course

What are networks?

- Data structures of components (nodes) connected by relationships (edges)
- These structures allow:
 - Quick integration of heterogeneous data based on relationships
 - Graph theory methods can be used to analyse and interpret data, e.g., topological properties can be used to explain:
 - The possible role of specific components
 - The flow of information
 - The robustness of the system
 - Visualize data

Networks

Weighted adjacency matrix

Schedule

Time	DAY 1	DAY 2	DAY 3
8:30-9:20	Introduction and Housekeeping	Working with Data in Python I	Analysing Networks I
9:20-10:10	An Omics View on Microbes	Working with Data in Python II	
10:10- 10:30	Coffee break	Coffee break	Coffee break
10:30- 11:20	An Omics View on Microbes	Visualizing Data in Python	Analysing Networks II
11:20- 12:10	Data Resources	Visualising Networks I	
12:10- 13:30	Lunch	Lunch	Lunch
13:30- 14:20	Introduction to Python I	Visualising Networks II	Team Project
14:20- 14:40	Coffee break	Coffee break	Coffee break
14:40- 16:00	Introduction to Python II	Network Exercises	Team Project
16:00- 16:50	Recap and Q & A	Recap and Q & A	Team Project Presentations and Q&A

Tools

Course Website

https://github.com/Multiomics-Analytics-Group/networks_to_study_microbes

- We use GitHub to maintain the contents of the course
- GitHub is a framework generally used to maintain and version control software development projects

 Version control is a system that records changes to a file or a set of files over time and who made them so that you can recall specific versions later

Basic Programming Python

- Python is a high-level, general-purpose programming language
- It is a good language for both beginners and advanced programmers:
 - Its design philosophy emphasises code readability
 - Many learning resources available
 - Large community behind (i.e. stackoverflow for questions)
 - Excellent Libraries available, especially for data science

Jupyter Notebooks

https://jupyter.org/

- Web-based development environment for creating, running and sharing
 Python (and other languages) code
- A notebook is an interactive document that combines live code, equations, text or markdown, and visualisations (output of your code)
- Notebooks are divided into cells that run sequentially! (Need to pay attention)
- It requires having Python installed on your local machine

Colab Notebooks

https://research.google.com/colaboratory/faq.html

- Google Colab is based on Jupyter Notebook open source project hosted on Google's servers
- Advantages:
 - Requires no setup to use (no python installation)
 - Provides free access to computing resources on Google's servers including GPUs
 - Notebooks can be shared just as you would with Google Docs or Sheets.
 - You can import existing Jupyter notebooks
- Own data and notebooks need to be accessed through Google Drive Need Google account

Cytoscape

https://cytoscape.org/

- An open source software platform for visualising and analysing complex networks
- Used for any kind of networks but specialised on biological domains:
 - e.g, Molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.
- Additional features are available as freely available Apps (https://apps.cytoscape.org/)

Relevant Links Extra readings and resources

- Network biology: understanding the cell's functional organisation. Albert-László Barabási & Zoltán N. Oltvai. Nature Reviews Genetics 2004 (https://www.nature.com/articles/nrg1272)
- Network analysis of protein interaction data Online tutorial EMBL EBI (https://www.ebi.ac.uk/training/online/courses/network-analysis-of-protein-interaction-data-an-introduction/)
- Network Biology: A short introduction to the core concepts https://www.youtube.com/watch?v=H1bGk8PGvf8
- Network Visualization: a short introduction to the core concepts of network layout and clustering https://www.youtube.com/watch?v=OunX7ISRbgA
- A Guide to Conquer the Biological Network Era Using Graph Theory. Mikaela Koutrouli, Evangelos Karatzas, David Paez-Espino, Georgios A. Pavlopoulos. Frontiers in Bioengineering and Biotechnology 2020 (https://www.frontiersin.org/articles/10.3389/fbioe.2020.00034/full)
- Python for Beginners https://www.python.org/about/gettingstarted/
- How to Use Jupyter Notebook: A Beginner's Tutorial https://www.dataquest.io/blog/jupyter-notebook-tutorial/
- Getting started with Python and Jupyter Notebooks https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb