## **Assignment: Neural Network Classifier**

Iris Dataset

#### **Importing Libraries and Dataset**

```
In [ ]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import tensorflow as tf
        from tensorflow import keras
        from sklearn.preprocessing import StandardScaler, LabelEncoder
        from sklearn.model_selection import train_test_split
        from sklearn.naive_bayes import GaussianNB
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Flatten, Dense, Dropout
        from tensorflow.keras import regularizers
In [ ]: df= pd.read_csv('./Dataset/iris.csv')
In [ ]: df.head()
Out[ ]:
           Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                              Species
        0
           1
                           5.1
                                          3.5
                                                                       0.2 Iris-setosa
                                                         1.4
                           4.9
                                          3.0
                                                         1.4
                                                                        0.2 Iris-setosa
        2
            3
                          4.7
                                          3.2
                                                         1.3
                                                                        0.2 Iris-setosa
                           4.6
                                          3.1
                                                         1.5
                                                                        0.2 Iris-setosa
                           5.0
                                          3.6
                                                         1.4
                                                                        0.2 Iris-setosa
        df.shape
In [ ]:
Out[]: (150, 6)
In [ ]: df.columns
Out[ ]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                'Species'],
               dtype='object')
In [ ]: df = df.drop(columns=['Id'])
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Column Non-Null Count Dtype ----0 SepalLengthCm 150 non-null float64 1 SepalWidthCm 150 non-null float64 PetalLengthCm 150 non-null float64 2 3 PetalWidthCm 150 non-null float64 150 non-null Species object dtypes: float64(4), object(1)

memory usage: 6.0+ KB

memory daage. 0.01 Ki

In [ ]: df.describe()

max

| Out[]: |       | SepalLengthCm | SepalWidthCm  | PetalLengthCm | PetalWidthCm  |
|--------|-------|---------------|---------------|---------------|---------------|
|        | count | 1.500000e+02  | 1.500000e+02  | 1.500000e+02  | 1.500000e+02  |
|        | mean  | -4.736952e-16 | -6.631732e-16 | 3.315866e-16  | -2.842171e-16 |
|        | std   | 1.003350e+00  | 1.003350e+00  | 1.003350e+00  | 1.003350e+00  |
|        | min   | -1.870024e+00 | -2.438987e+00 | -1.568735e+00 | -1.444450e+00 |
|        | 25%   | -9.006812e-01 | -5.877635e-01 | -1.227541e+00 | -1.181504e+00 |
|        | 50%   | -5.250608e-02 | -1.249576e-01 | 3.362659e-01  | 1.332259e-01  |
|        | 75%   | 6.745011e-01  | 5.692513e-01  | 7.627586e-01  | 7.905908e-01  |

3.114684e+00

## **Checking Null Values**

2.492019e+00

1.786341e+00

1.710902e+00

### **Visualizing Data**

```
In [ ]: sns.pairplot(df)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x17959498210>





# **Scaling**

```
In [ ]: std_scaler = StandardScaler()

In [ ]: features_to_scale = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']
    for feature in features_to_scale:
        df[feature] = std_scaler.fit_transform(df[feature].values.reshape(-1, 1))

In [ ]: df.head()
```

| Out[ ]: |   | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---------|---|---------------|--------------|---------------|--------------|-------------|
|         | 0 | -0.900681     | 1.032057     | -1.341272     | -1.312977    | Iris-setosa |
|         | 1 | -1.143017     | -0.124958    | -1.341272     | -1.312977    | Iris-setosa |
|         | 2 | -1.385353     | 0.337848     | -1.398138     | -1.312977    | Iris-setosa |
|         | 3 | -1.506521     | 0.106445     | -1.284407     | -1.312977    | Iris-setosa |
|         | 4 | -1.021849     | 1.263460     | -1.341272     | -1.312977    | Iris-setosa |

```
In [ ]: df.describe()
```

| Out[ ]: |       | SepalLengthCm | SepalWidthCm  | PetalLengthCm | PetalWidthCm  |
|---------|-------|---------------|---------------|---------------|---------------|
|         | count | 1.500000e+02  | 1.500000e+02  | 1.500000e+02  | 1.500000e+02  |
|         | mean  | 4.736952e-17  | -2.368476e-17 | 4.736952e-17  | 4.736952e-17  |
|         | std   | 1.003350e+00  | 1.003350e+00  | 1.003350e+00  | 1.003350e+00  |
|         | min   | -1.870024e+00 | -2.438987e+00 | -1.568735e+00 | -1.444450e+00 |
|         | 25%   | -9.006812e-01 | -5.877635e-01 | -1.227541e+00 | -1.181504e+00 |
|         | 50%   | -5.250608e-02 | -1.249576e-01 | 3.362659e-01  | 1.332259e-01  |
|         | 75%   | 6.745011e-01  | 5.692513e-01  | 7.627586e-01  | 7.905908e-01  |
|         | max   | 2.492019e+00  | 3.114684e+00  | 1.786341e+00  | 1.710902e+00  |

## **Categorical to Numerical**

```
In [ ]: df['Species'].unique()
Out[ ]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [ ]: le_object = LabelEncoder()
In [ ]: df['Species'] = le_object.fit_transform(df['Species'])
        df.head()
Out[]:
            SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
         0
                 -0.900681
                                                -1.341272
                                 1.032057
                                                               -1.312977
                                                                              0
         1
                 -1.143017
                                 -0.124958
                                                -1.341272
                                                               -1.312977
                                                                              0
         2
                                                                              0
                 -1.385353
                                 0.337848
                                                -1.398138
                                                               -1.312977
         3
                 -1.506521
                                 0.106445
                                                -1.284407
                                                               -1.312977
                                                                              0
                                                                              0
         4
                 -1.021849
                                 1.263460
                                                -1.341272
                                                               -1.312977
```

## Separating dependent and independent variables

```
In [ ]: X = df.drop('Species',axis=1)
y = df['Species']
In [ ]: X
```

|     | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-----|---------------|--------------|---------------|--------------|
| 0   | -0.900681     | 1.032057     | -1.341272     | -1.312977    |
| 1   | -1.143017     | -0.124958    | -1.341272     | -1.312977    |
| 2   | -1.385353     | 0.337848     | -1.398138     | -1.312977    |
| 3   | -1.506521     | 0.106445     | -1.284407     | -1.312977    |
| 4   | -1.021849     | 1.263460     | -1.341272     | -1.312977    |
| ••• |               |              | •••           |              |
| 145 | 1.038005      | -0.124958    | 0.819624      | 1.447956     |
| 146 | 0.553333      | -1.281972    | 0.705893      | 0.922064     |
| 147 | 0.795669      | -0.124958    | 0.819624      | 1.053537     |
| 148 | 0.432165      | 0.800654     | 0.933356      | 1.447956     |
| 149 | 0.068662      | -0.124958    | 0.762759      | 0.790591     |

150 rows × 4 columns

Out[ ]:

## **Train-Test Split**

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 42
In [ ]: X_train
```

| Out[ ]: |       | SepalLengthCm                                         | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|---------|-------|-------------------------------------------------------|--------------|---------------|--------------|
|         | 4     | -1.021849                                             | 1.263460     | -1.341272     | -1.312977    |
|         | 32    | -0.779513                                             | 2.420475     | -1.284407     | -1.444450    |
|         | 142   | -0.052506                                             | -0.819166    | 0.762759      | 0.922064     |
|         | 85    | 0.189830                                              | 0.800654     | 0.421564      | 0.527645     |
|         | 86    | 1.038005                                              | 0.106445     | 0.535296      | 0.396172     |
|         | •••   |                                                       |              |               |              |
|         | 71    | 0.310998                                              | -0.587764    | 0.137236      | 0.133226     |
|         | 106   | -1.143017                                             | -1.281972    | 0.421564      | 0.659118     |
|         | 14    | -0.052506                                             | 2.189072     | -1.455004     | -1.312977    |
|         | 92    | -0.052506                                             | -1.050569    | 0.137236      | 0.001753     |
|         | 102   | 1.522676                                              | -0.124958    | 1.217684      | 1.185010     |
|         | 112 r | ows × 4 columns                                       |              |               |              |
| In [ ]: | prin  | t(X_train.shape<br>t(y_train.shape<br>t(X_test.shape) |              |               |              |

```
In [ ]:
```

print(y\_test.shape)

(112, 4)

(112,)(38, 4)

(38,)

### **Saving Cleaned Dfs to CSV files**

```
In [ ]: X_train.to_csv('./Assignment6_Dataset/X_train.csv')
        y_train.to_csv('./Assignment6_Dataset/y_train.csv')
        X_test.to_csv('./Assignment6_Dataset/X_test.csv')
        y_test.to_csv('./Assignment6_Dataset/y_test.csv')
```

## Modelling

```
In [ ]: |
        ann_model = Sequential()
        ann_model.add(Dense(units=16, input_shape=(4,), activation='relu'))
```

c:\Users\Prasanna Pandhare\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src \layers\core\dense.py:88: UserWarning: Do not pass an `input\_shape`/`input\_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().\_\_init\_\_(activity\_regularizer=activity\_regularizer, \*\*kwargs)

In [ ]: ann\_model.summary()

#### Model: "sequential\_5"

| Layer (type)     | Output Shape | Param # |
|------------------|--------------|---------|
| dense_10 (Dense) | (None, 16)   | 80      |

**Total params:** 80 (320.00 B)

Trainable params: 80 (320.00 B)

| Epoch 1/100                                    |     |             |   |            |                           |
|------------------------------------------------|-----|-------------|---|------------|---------------------------|
| <b>4/4</b> ——————————————————————————————————— | 0s  | 2ms/step    | - | accuracy:  | 0.0000e+00 - loss: 9.2736 |
| •                                              | 0s  | 2ms/step    | _ | accuracy:  | 0.0000e+00 - loss: 9.1256 |
| Epoch 3/100                                    |     | 2 / /       |   |            | 0.0000 00 1 0.000         |
| Epoch 4/100                                    | US  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 9.6261 |
| 4/4                                            | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 9.4006 |
| Epoch 5/100                                    | ۵c  | 3ms/stan    |   | accuracy:  | 0.0000e+00 - loss: 9.0203 |
| Epoch 6/100                                    | 03  | эшэ/ эсер   |   | accuracy.  | 0.00000100 - 1033. 9.0203 |
|                                                | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 9.4112 |
| Epoch 7/100<br>4/4                             | 0s  | 3ms/step    | _ | accuracy:  | 0.0000e+00 - loss: 8.5975 |
| Epoch 8/100                                    |     |             |   |            |                           |
| 4/4 ———————————————————————————————————        | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 8.5718 |
| 4/4                                            | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 9.0637 |
| Epoch 10/100                                   | 95  | 4ms/sten    | _ | accuracy:  | 0.0000e+00 - loss: 8.8859 |
| Epoch 11/100                                   |     |             |   | _          |                           |
| <b>4/4</b> Epoch 12/100                        | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 8.7509 |
|                                                | 0s  | 4ms/step    | - | accuracy:  | 0.0000e+00 - loss: 8.6993 |
| Epoch 13/100<br>4/4                            | 0.5 | 2ms /s+on   |   | 2661102611 | 0.0000e+00 - loss: 8.4821 |
| Epoch 14/100                                   | 62  | Jilis/scep  | - | accuracy.  | 0.00000000 - 1055. 0.4021 |
|                                                | 0s  | 3ms/step    | - | accuracy:  | 0.0000e+00 - loss: 8.3567 |
| Epoch 15/100<br><b>4/4</b> ————————            | 0s  | 2ms/step    | _ | accuracy:  | 0.0000e+00 - loss: 8.5174 |
| Epoch 16/100<br>4/4                            | 0.5 | 2ms /ston   |   | 2661192614 | 0.0057 - loss: 8.0587     |
| Epoch 17/100                                   | 05  | ziiis/step  | - | accuracy.  | 0.0057 - 1055. 8.0587     |
| <b>4/4</b> ——————————————————————————————————— | 0s  | 3ms/step    | - | accuracy:  | 0.0036 - loss: 8.5691     |
| 4/4                                            | 0s  | 2ms/step    | - | accuracy:  | 0.0057 - loss: 8.4501     |
| Epoch 19/100<br>4/4                            | 0.5 | 2ms /s+on   |   | 2661102611 | 0.0092 - loss: 8.5611     |
| Epoch 20/100                                   | 62  | 21115/3 CEP | - | accuracy.  | 0.0092 - 1033. 8.3011     |
| <b>4/4</b> ——————————————————————————————————— | 0s  | 3ms/step    | - | accuracy:  | 0.0301 - loss: 7.8346     |
| -                                              | 0s  | 3ms/step    | - | accuracy:  | 0.0301 - loss: 8.3822     |
| Epoch 22/100<br>4/4                            | Q.c | 2ms /s+on   |   | accupacy:  | 0 0229 loss: 7 7257       |
| Epoch 23/100                                   |     |             |   | _          |                           |
| <b>4/4</b> ——————————————————————————————————— | 0s  | 3ms/step    | - | accuracy:  | 0.0092 - loss: 7.9099     |
| 4/4                                            | 0s  | 2ms/step    | - | accuracy:  | 0.0326 - loss: 7.0503     |
| Epoch 25/100<br>4/4                            | ۵c  | 3ms/stan    |   | accuracy:  | 0.0149 - loss: 6.9987     |
| Epoch 26/100                                   |     |             |   |            |                           |
| <b>4/4</b> ——————————————————————————————————— | 0s  | 2ms/step    | - | accuracy:  | 0.0387 - loss: 7.3272     |
| -                                              | 0s  | 2ms/step    | _ | accuracy:  | 0.0621 - loss: 6.7264     |
| Epoch 28/100<br>4/4                            | 0.5 | 2ms /ston   |   | 2661192614 | 0.0021   loss, 7.2022     |
| Epoch 29/100                                   | 05  | ollis/scep  | - | accuracy.  | 0.0631 - loss: 7.2022     |
|                                                | 0s  | 2ms/step    | - | accuracy:  | 0.0629 - loss: 6.4808     |
| Epoch 30/100<br>4/4                            | 0s  | 2ms/step    | - | accuracy:  | 0.0661 - loss: 6.6547     |
| Epoch 31/100                                   |     |             |   |            |                           |
| Epoch 32/100                                   | 05  | ziiis/step  | - | accuracy:  | 0.0775 - loss: 6.8226     |
|                                                | 0s  | 3ms/step    | - | accuracy:  | 0.0972 - loss: 6.5597     |
| Epoch 33/100<br>4/4                            | 0s  | 3ms/step    | _ | accuracy:  | 0.0997 - loss: 6.1699     |
|                                                |     | ,           |   | -          |                           |

| Epoch 34/100                                                   |                                                           |                  |
|----------------------------------------------------------------|-----------------------------------------------------------|------------------|
|                                                                | <b>0s</b> 2ms/step - accuracy: 0.1281 - loss: 5.9         | 9259             |
| Epoch 35/100<br>4/4                                            | <b>0s</b> 3ms/step - accuracy: 0.1685 - loss: 5.8         | 3126             |
| Epoch 36/100                                                   |                                                           |                  |
| <b>4/4</b> Epoch 37/100                                        | <b>0s</b> 3ms/step - accuracy: 0.1585 - loss: 5.7         | /25/             |
| 4/4                                                            | <b>0s</b> 2ms/step - accuracy: <b>0.1652</b> - loss: 5.3  | 3635             |
| Epoch 38/100<br>4/4 ———————————————————————————————————        | <b>0s</b> 2ms/step - accuracy: 0.2332 - loss: 5.4         | 1551             |
| Epoch 39/100                                                   |                                                           |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 2ms/step - accuracy: 0.2235 - loss: 5.4         | 1468             |
| 4/4                                                            | <b>0s</b> 2ms/step - accuracy: 0.2774 - loss: 5.6         | 5546             |
| Epoch 41/100<br>4/4                                            | <b>0s</b> 2ms/step - accuracy: 0.2543 - loss: 5.3         | 3415             |
| Epoch 42/100                                                   | · · · · · ·                                               |                  |
| 4/4 ———————————————————————————————————                        | <b>0s</b> 3ms/step - accuracy: 0.3125 - loss: 5.4         | 1982             |
| 4/4                                                            | <b>0s</b> 2ms/step - accuracy: 0.2926 - loss: 5.3         | 3124             |
| Epoch 44/100<br>4/4                                            | <b>0s</b> 2ms/step - accuracy: 0.3667 - loss: 4.8         | 3768             |
| Epoch 45/100                                                   |                                                           |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 3ms/step - accuracy: 0.3781 - loss: 4.9         | <del>)</del> 628 |
| 4/4                                                            | <b>0s</b> 3ms/step - accuracy: <b>0.3624</b> - loss: 5.1  | L053             |
| Epoch 47/100<br>4/4                                            | <b>0s</b> 2ms/step - accuracy: 0.4037 - loss: 4.2         | 2918             |
| Epoch 48/100                                                   |                                                           |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 3ms/step - accuracy: 0.4624 - loss: 3.5         | 1590             |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 3ms/step - accuracy: <b>0.4451</b> - loss: 3.7  | 7804             |
|                                                                | <b>Os</b> 3ms/step - accuracy: 0.4693 - loss: 3.1         | L537             |
| Epoch 51/100<br>4/4                                            | <b>Os</b> 2ms/step - accuracy: 0.4900 - loss: 3.4         | 1972             |
| Epoch 52/100                                                   |                                                           |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 2ms/step - accuracy: <b>0.5470</b> - loss: 3.4  | 1466             |
| 4/4                                                            | <b>0s</b> 2ms/step - accuracy: <b>0.5815</b> - loss: 2.9  | 9274             |
| Epoch 54/100<br>4/4                                            | <b>0s</b> 3ms/step - accuracy: 0.5955 - loss: 2.8         | 3630             |
| Epoch 55/100                                                   |                                                           |                  |
| Epoch 56/100                                                   | <b>0s</b> 2ms/step - accuracy: 0.6137 - loss: 2.7         |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 2ms/step - accuracy: <b>0.</b> 6464 - loss: 2.4 | 1981             |
|                                                                | <b>0s</b> 2ms/step - accuracy: 0.6454 - loss: 2.6         | 5175             |
| Epoch 58/100<br>4/4 ———————————————————————————————————        | <b>0s</b> 2ms/step - accuracy: 0.5746 - loss: 2.8         | 8809             |
| Epoch 59/100                                                   | ,                                                         |                  |
| <b>4/4</b> ———————————————————————————————————                 | <b>0s</b> 2ms/step - accuracy: 0.6302 - loss: 2.5         | 5447             |
| 4/4                                                            | <b>0s</b> 2ms/step - accuracy: 0.6260 - loss: 2.6         | 5648             |
| Epoch 61/100<br>4/4                                            | <b>0s</b> 3ms/step - accuracy: 0.6271 - loss: 2.7         | 7621             |
| Epoch 62/100                                                   | ,                                                         |                  |
| Epoch 63/100                                                   | <b>0s</b> 2ms/step - accuracy: 0.6125 - loss: 2.8         | 3238             |
|                                                                | <b>0s</b> 2ms/step - accuracy: 0.6396 - loss: 2.2         | 2649             |
| Epoch 64/100<br><b>4/4</b> ——————————————————————————————————— | <b>0s</b> 2ms/step - accuracy: 0.6187 - loss: 2.6         | 5078             |
| Epoch 65/100                                                   | <b>0s</b> 2ms/step - accuracy: 0.6365 - loss: 2.5         | 5872             |
| Epoch 66/100                                                   | ,                                                         |                  |
| 4/4                                                            | <b>0s</b> 3ms/step - accuracy: 0.6219 - loss: 2.2         | 2795             |

| Epoch 67/100                                            |                                             |            |
|---------------------------------------------------------|---------------------------------------------|------------|
|                                                         | <b>9s</b> 2ms/step - accuracy: 0.6115 - los | s: 2.3791  |
| Epoch 68/100<br><b>4/4</b>                              | <b>0s</b> 2ms/step - accuracy: 0.6292 - los | ss: 2.6258 |
| Epoch 69/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.6198 - los | 2 2010     |
| Epoch 70/100                                            |                                             |            |
| <b>4/4</b> ———————————————————————————————————          | Os 3ms/step - accuracy: 0.5813 - los        | ss: 2.3221 |
| •                                                       | <b>0s</b> 2ms/step - accuracy: 0.6557 - los | s: 2.2596  |
| Epoch 72/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.6411 - los | ·c· 1 0310 |
| Epoch 73/100                                            |                                             |            |
| <b>4/4</b> ———————————————————————————————————          | Os 3ms/step - accuracy: 0.6375 - los        | ss: 2.0386 |
| 4/4                                                     | <b>9s</b> 2ms/step - accuracy: 0.6202 - los | s: 2.2519  |
| Epoch 75/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.6113 - los | ss: 2.2735 |
| Epoch 76/100                                            | <b>9s</b> 2ms/step - accuracy: 0.6280 - los |            |
| Epoch 77/100                                            |                                             |            |
| <b>4/4</b> ———————————————————————————————————          | <b>9s</b> 2ms/step - accuracy: 0.6457 - los | s: 2.2491  |
| 4/4                                                     | <b>9s</b> 3ms/step - accuracy: 0.6528 - los | s: 2.0533  |
| Epoch 79/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.6704 - los | ss: 1.8613 |
| Epoch 80/100                                            |                                             |            |
| 4/4 ———————————————————————————————————                 | Os 2ms/step - accuracy: 0.6881 - los        | is: 2.1096 |
| 4/4 ———————————————————————————————————                 | Os 2ms/step - accuracy: 0.6885 - los        | s: 1.9978  |
| •                                                       | <b>0s</b> 2ms/step - accuracy: 0.7244 - los | s: 1.9831  |
| Epoch 83/100                                            | <b>9s</b> 2ms/step - accuracy: 0.7192 - los | ss: 1.8419 |
| Epoch 84/100                                            |                                             |            |
| Epoch 85/100                                            | Os 2ms/step - accuracy: 0.7088 - los        | is: 1.9594 |
| <b>4/4</b> ———————————————————————————————————          | Os 2ms/step - accuracy: 0.7280 - los        | ss: 1.8343 |
| 4/4                                                     | <b>9s</b> 2ms/step - accuracy: 0.6717 - los | s: 1.8315  |
| Epoch 87/100<br>4/4 ——————————————————————————————————— | <b>9s</b> 3ms/step - accuracy: 0.7128 - los | ss: 1.8672 |
| Epoch 88/100                                            |                                             |            |
| Epoch 89/100                                            | <b>9s</b> 3ms/step - accuracy: 0.7501 - los |            |
| <b>4/4</b> ———————————————————————————————————          | Os 2ms/step - accuracy: 0.7283 - los        | ss: 1.6355 |
| 4/4                                                     | <b>9s</b> 3ms/step - accuracy: 0.7229 - los | s: 1.6399  |
| Epoch 91/100<br>4/4                                     | <b>9s</b> 3ms/step - accuracy: 0.7563 - los | ss: 1.5349 |
| Epoch 92/100                                            |                                             |            |
| Epoch 93/100                                            | <b>Os</b> 3ms/step - accuracy: 0.7475 - los | .5: 1.0050 |
| <b>4/4</b> ———————————————————————————————————          | Os 2ms/step - accuracy: 0.7454 - los        | s: 1.3607  |
| 4/4                                                     | <b>9s</b> 2ms/step - accuracy: 0.7548 - los | s: 1.4429  |
| Epoch 95/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.6829 - los | ss: 1.6841 |
| Epoch 96/100                                            |                                             |            |
| Epoch 97/100                                            | Os 2ms/step - accuracy: 0.7302 - los        |            |
| <b>4/4</b> ———————————————————————————————————          | <b>9s</b> 3ms/step - accuracy: 0.7417 - los | s: 1.3400  |
| 4/4                                                     | <b>9s</b> 2ms/step - accuracy: 0.7515 - los | s: 1.4490  |
| Epoch 99/100<br>4/4                                     | <b>9s</b> 2ms/step - accuracy: 0.7365 - los | ss: 1.5199 |
| -                                                       | , ,,,                                       |            |

```
Epoch 100/100
4/4 — Os 2ms/step - accuracy: 0.6938 - loss: 1.5496

In []: ann_model.layers[0].get_weights()

Out[]: [array([[ 0.17535837,  0.5101146 ,  0.16120644,  0.10642558,  0.10033165,  0.86057078  0.2602838  0.2787637  0.19394796  0.04441752
```

```
0.06057078, 0.2602838, 0.2787637, 0.19394796,
                                                                0.04441752,
         0.20228055, 0.14076908, 0.17942774, 0.22564845,
         0.24094258],
       [-0.13264523, -0.28800833, -0.18984903, -0.15611121, -0.1198829]
        -0.5270991 , -0.08004733, -0.18823521, -0.18176961, -0.04904248,
        -0.08461405, -0.02305197, 0.07531834, -0.13541014, -0.02570221,
        -0.10873175],
       [0.27929708, -0.20344418, 0.12824382, -0.2488992, 0.06650526,
        -0.1911001 , -0.50332403, -0.20092003, -0.3431931 ,
                                                               0.03486646,
        -0.33007017, -0.22324774, -0.03233628, -0.01246677,
                                                               0.10821003,
        -0.10308858],
       [-0.5581435 , -0.27409038, 0.28306323, 0.21182123, 0.00958541,
        \hbox{-0.10071055,} \quad \hbox{0.25220865,} \quad \hbox{-0.18739675,} \quad \hbox{0.18569775,} \quad \hbox{0.06203302,}
         0.09555542, 0.10753948, 0.05318423, -0.30282757, -0.22942944,
        -0.20955935]], dtype=float32),
array([-0.0425511 , 0.05186893, -0.16988632, -0.25825125, -0.32543644,
       -0.4154884 , -0.21298742 , -0.2384223 , -0.25017217 , -0.25588143 ,
       -0.1694253 , -0.18081217, -0.1585924 , -0.25080898, -0.1426096 ,
       -0.22499906], dtype=float32)]
```

```
In [ ]: plt.plot(history.history['accuracy'])
    plt.title('Model Accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()
```

#### Model Accuracy



```
In [ ]: y_pred = ann_model.predict(X_test)
y_pred
```

```
Out[]: array([[2.3847711e-01, 2.7041084e-01, 6.0979426e-02, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [3.0495193e-02, 2.8102187e-02, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [1.8205562e-01, 7.4174660e-01, 1.0311769e+00, 7.2670877e-03,
                 1.5890363e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 3.2932997e-02, 4.7670901e-02, 0.0000000e+00, 0.0000000e+00,
                 1.8518081e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 5.6986872e-02, 9.4574869e-02, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [2.5633258e-01, 6.1943740e-01, 2.7943370e-01, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 2.6769906e-02,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 5.5447221e-05, 2.8052032e-03, 0.0000000e+00, 1.6883165e-03],
                [0.0000000e+00, 9.6360125e-02, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 1.2228264e-01, 5.2398634e-01, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 9.3015969e-02, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 1.3149711e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [1.9198468e-01, 6.4712775e-01, 4.4116232e-01, 7.5236827e-02,
                 0.0000000e+00, 5.3187191e-01, 0.0000000e+00, 9.5094562e-02,
                 1.2174535e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [7.8368798e-02, 2.4418026e-01, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 0.0000000e+00, 2.9027709e-01, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 4.0985629e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [1.8393525e-01, 1.1176239e-01, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [8.9934140e-02, 1.8673259e-01, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [1.9037101e-01, 9.5356956e-02, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 0.0000000e+00, 2.9248014e-02, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                [0.0000000e+00, 0.0000000e+00, 5.0361943e-01, 0.0000000e+00,
```

```
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
7.2406381e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[1.7064297e-01, 2.8988868e-01, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 2.4008468e-01, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[4.8340280e-02, 1.0275327e-02, 5.4770708e-03, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 5.5736423e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[5.9682574e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 2.1099249e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 2.7399058e-02, 5.2014911e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 2.3156525e-01, 3.9495465e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
4.2602652e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 5.3740602e-02, 5.3614461e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 1.9841209e-02, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
6.8747655e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[1.9246937e-01, 4.9773389e-01, 6.1348295e-01, 0.0000000e+00,
1.7173529e-02, 2.1657437e-02, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 5.1886308e-01, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.1247453e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[3.7173714e-02, 3.9691448e-02, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[1.1162487e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
3.0526355e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[7.9471558e-02, 4.0396589e-01, 9.8935068e-02, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
```

```
3.7956551e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                            [1.9541353e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                            [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                            [0.0000000e+00, 3.0701238e-01, 5.1422453e-01, 2.0384312e-02,
                              0.0000000e+00, 6.5996140e-02, 0.0000000e+00, 0.0000000e+00,
                              1.9136876e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                             [0.0000000e+00, 1.0428694e-01, 4.0912151e-02, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
                            [5.7955649e-02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
                              0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]],
                           dtype=float32)
In [ ]: y_pred_labels = np.argmax(y_pred, axis=1)
               y_pred_labels
Out[]: array([1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1,
                                                                                                                                         2,
                                                                                                                           0, 0,
                                                                                                                                                  2,
                              1, 0, 2, 0, 2, 0, 2, 12, 2, 2, 1, 0, 0, 12,
                              0, 2, 1, 0], dtype=int64)
In [ ]: accuracy_score(y_test, y_pred_labels)
Out[]: 0.7631578947368421
               precision_score(y_test, y_pred_labels, average = 'weighted')
In [ ]:
Out[]: 0.8038461538461538
In [ ]: recall_score(y_test, y_pred_labels, average = 'weighted')
            c:\Users\Prasanna Pandhare\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\m
            etrics\_classification.py:1469: UndefinedMetricWarning: Recall is ill-defined and being set to
            0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
                _warn_prf(average, modifier, msg_start, len(result))
Out[]: 0.7631578947368421
               f1_score(y_test, y_pred_labels, average = 'weighted')
Out[]: 0.7810275689223056
               target_names = ['Iris-setosa','Iris-versicolor','Iris-virginica','None']
In [ ]:
In [ ]: print(classification_report(y_true = y_test, y_pred = y_pred_labels, target_names = target_names =
```

|                 | precision | recall | f1-score | support |
|-----------------|-----------|--------|----------|---------|
| Iris-setosa     | 0.85      | 0.73   | 0.79     | 15      |
| Iris-versicolor | 0.70      | 0.64   | 0.67     | 11      |
| Iris-virginica  | 0.85      | 0.92   | 0.88     | 12      |
| None            | 0.00      | 0.00   | 0.00     | 0       |
|                 |           |        |          |         |
| accuracy        |           |        | 0.76     | 38      |
| macro avg       | 0.60      | 0.57   | 0.58     | 38      |
| weighted avg    | 0.80      | 0.76   | 0.78     | 38      |

c:\Users\Prasanna Pandhare\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\m etrics\\_classification.py:1469: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

c:\Users\Prasanna Pandhare\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\m etrics\\_classification.py:1469: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

c:\Users\Prasanna Pandhare\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\m etrics\\_classification.py:1469: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))