多元函数微分学

多元函数的基本概念

多元函数极限

$$\lim_{(x,y) o(x_0,y_0)}f(x,y)=A$$

注意: 多元函数极限的趋向不再局限于一元函数极限的直线方向,而是推广到 x,y 组成的平面, $(x,y) o (x_0,y_0)$ 可以是平面上的任意方向

性质

- 1. 局部有界性
- 2. 保号性
- 3. 有理运算
- 4. 极限与无穷小的关系
- 5. 夹逼性

多元函数的连续性

$$\lim_{(x,y) o(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

连续的性质

- 1. 多元连续函数的和、差、积、商(分母不为零)仍然连续
- 2. 多元连续函数的复合函数仍然连续
- 3. 多元初等函数在其定义域内连续
- 4. 有界闭区间 D 上的连续函数在区域 D 上必能取得最大值和最小值(最大值定理)
- 5. 有界闭区间 D 上的连续函数在区域 D 上必能取得介于最大值和最小值之间的任意值(介值定理)

偏导数

偏导数定义

对 x 的偏导数: $f_x(x_0,y_0)=\lim_{\Delta x o 0}rac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}$ 对 y 的偏导数: $f_y(x_0,y_0)=\lim_{\Delta y o 0}rac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}$

偏导数的几何意义

1. $f_x(x_0,y_0)$ 表示曲面在点 (x_0,y_0) 处沿着 x 轴正方向的变化率

2. $f_y(x_0,y_0)$ 表示曲面在点 (x_0,y_0) 处沿着 y 轴正方向的变化率

高阶偏导数

$$egin{array}{l} rac{\delta}{\delta x} (rac{\delta f}{\delta x}) &= rac{\delta^2 f}{\delta x^2} = f_{xx}^{\prime\prime} \ rac{\delta}{\delta y} (rac{\delta f}{\delta y}) &= rac{\delta^2 f}{\delta y^2} = f_{yy}^{\prime\prime} \ rac{\delta}{\delta y} (rac{\delta f}{\delta x}) &= rac{\delta^2 f}{\delta y \delta x} = f_{yx}^{\prime\prime} \ rac{\delta}{\delta x} (rac{\delta f}{\delta y}) &= rac{\delta^2 f}{\delta x \delta y} = f_{xy}^{\prime\prime} \end{array}$$

定理 1 如果函数z=f(x,y)在两个二阶混合偏导数 $f_{xy}^{\prime\prime}$ 和 $f_{yx}^{\prime\prime}$ 在区域 D 内连续,则 $f_{xy}^{\prime\prime}=f_{yx}^{\prime\prime}$

全微分

全微分的定义

若 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=A\Delta x+B\Delta y+o(
ho)$,则称函数 z=f(x,y)在点 (x_0,y_0) 处可微分,且全微分为 $dz=A\Delta x+B\Delta y$

全微分可微分判别

1. 必要条件

如果z=f(x,y)在点 (x_0,y_0) 处可微,则在点 (x_0,y_0) 处 $\frac{\delta f}{\delta x}$, $\frac{\delta f}{\delta y}$ 必定存在,且 $dz=\frac{\delta f}{\delta x}dx+$ $\frac{\delta f}{\delta y}dy$

2. 充分条件

如果z=f(x,y)的偏导数 $\frac{\delta z}{\delta x}$, $\frac{\delta z}{\delta y}$ 在点 (x_0,y_0) 处连续,则在点 (x_0,y_0) 处可微分

用定义判定可微性

- 1. $f_x(x_0,y_0), f_y(x_0,y_0)$ 存在
 2. $\lim_{\Delta x o 0} rac{\Delta z A \Delta x B \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$

连续、可导、可微的关系

多元函数微分法

复合函数微分法

(一)复合函数的微分法

定理4 设 u = u(x,y), v = v(x,y) 在点 (x,y) 处有对 x 及对 y 的偏导数, 函数 z = f(u,v) 在对应点 (u,v) 处有<u>连续偏</u>导数,则 z = f[u(x,y),v(x,y)] 在点 (x,y) 处的两个偏导数存在,且有

$$\left(\frac{\partial z}{\partial x}\right) = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x},$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$$

全微分形式的不变性

设函数 z = f(u,v), u = u(x,y) 及 v = v(x,y) 都有连续的

一阶偏导数,则复合函数 z = f[u(x,y),v(x,y)] 的全微分

$$\mathbf{d} \, \mathbf{z} = \frac{\partial z}{\partial x} \, \mathbf{d} \, \mathbf{x} + \frac{\partial z}{\partial y} \, \mathbf{d} \, \mathbf{y} = \frac{\partial z}{\partial u} \, \mathbf{d} \, \mathbf{u} + \frac{\partial z}{\partial v} \, \mathbf{d} \, \mathbf{v}.$$

隐函数微分法

1) 由方程 F(x,y)=0 确定的隐函数 y=y(x)

$$y' = -\frac{F_x'}{F_y'}.$$

2) 由方程 F(x,y,z)=0 确定的隐函数 z=z(x,y)

若 F(x,y,z) 在点 $P(x_0,y_0,z_0)$ 的某一邻域内有连续

偏导数,且 $F(x_0,y_0,z_0)=0$, $F'_z(x_0,y_0,z_0)\neq 0$. 则方程

F(x,y,z)=0 在点 (x_0,y_0,z_0) 的某邻域可能一确定一个

有连续偏导数的函数 z = z(x,y), 并有

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}.$$

多元函数的极值与最值

无约束极值

极值的定义

若在点 (x_0,y_0) 的某邻域内恒成立不等式 $f(x,y) \leq f(x_0,y_0)$ $(f(x,y) \geq f(x_0,y_0))$,则称 f 在点 (x_0,y_0) 取得极大值(极小值),点 (x_0,y_0) 称为 f 的极大(极小)值点,极大值极小值统称为极值点

极值的必要条件

设 z=f(x,y)在 (x_0,y_0) 存在偏导数,且 (x_0,y_0) 为f(x,y)的极值点,则 $f_x'(x_0,y_0)=0$, $f_y'(x_0,y_0)=0$

极值的充分条件

设z=f(x,y)在点 $P_0(x_0,y_0)$ 的某邻域内有二阶连续偏导数,有 $f_x'(x_0,y_0)=f_y'(x_0,y_0)=0$ 记 $A=f_{xx}''(x_0,y_0)$, $B=f_{xy}''(x_0,y_0)$, $C=f_{yy}''(x_0,y_0)$, $D=AC-B^2$,则

1. 当
$$AC-B^2>0$$
且 $A>0$ 时,有极值 $egin{cases} A>0$ 极小值 $A<0$ 极大值

- 2. 当 $AC-B^2<0$ 时,无极值
- 3. 当 $AC B^2 = 0$ 时,不一定(一般用定义判断)

条件极值与拉格朗日乘数法

函数f(x,y)在条件 $\varphi(x,y)=0$ 下的极值

令
$$F(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$$

$$\left\{egin{aligned} F_x &= f_x'(x,y) + \lambda arphi_x'(x,y) = 0 \ F_y &= f_y'(x,y) + \lambda arphi_y'(x,y) = 0 \ F_\lambda &= arphi(x,y) = 0 \end{aligned}
ight.$$

colorred其他方法:同样可以采用

- 1. 消元法,将 $egin{cases} F_x = 0 \ F_y = 0 \end{cases}$ 联立,解出x,y,再代入arphi(x,y) = 0,解出 λ
- 2. 参数方程法,用三角函数表示 x,y

函数 f(x,y,z)在条件
$$egin{cases} arphi(x,y,z) = 0 \ \psi(x,y,z) = 0 \end{cases}$$
下的极值

令
$$F(x,y,z,\lambda,\mu)=f(x,y,z)+\lambda arphi(x,y,z)+\mu \psi(x,y,z)$$

最大最小值

求连续函数f(x,y)在有界闭区域D上的最大最小值

- 1. 求 f(x,y)在 D 内部可能的极值点
- 2. 求 f(x,y)在 D 的边界上的最大最小值
- 3. 比较