1

Mains.2.B.1-14

ai24btech11030 - Shiven Bajpai

Section - B

1)	Z.	and	w	are	two	non	zero	complex	numb	ers
	sı	ıch	that	t <i>z</i>	= u	anc	d Arg	$r(z) + Ar_{\delta}$	g(w) =	= π
	then z equals							[2002]		

- a) $\overline{\omega}$
- b) $-\overline{\omega}$
- c) ω
- d) $-\omega$
- 2) If |z-4| < |z-2|, its solution is given by [2002]
 - a) Re(z) > 0
- c) Re(z) > 3
- b) Re(z) < 0
- d) Re(z) > 2
- 3) The locus of the centre of a circle which touches the circle $|z - z_1| = a$ and $|z - z_2| = b$ externally (z, z_1, z_2) are complex numbers will [2002]
 - a) an ellipse
- c) a circle
- b) a hyperbola
- d) none of these
- 4) If z and w are two non-zero complex numbers such that |zw| = 1 and $Arg(z) - Arg(w) = \frac{\pi}{2}$ then $\overline{z}w$ is equal to [2003]
 - a) $-\iota$
- b) 1
- c) -1 d) ι
- 5) Let Z_1 and Z_2 be two roots of the equation Z^2 + aZ + b = 0, Z being complex. Further assume that the origin, Z_1 and Z_2 form an equilateral triangle. Then [2003]
 - a) $a^2 = 4b$ c) $a^2 = 2b$
 - b) $a^2 = b$
- d) $a^2 = 3b$
- 6) If $\left(\frac{1-\iota}{1+\iota}\right)^x = 1$ then

- a) x = 2n + 1, where n is any positive integer
- b) x = 4n, where n is any positive integer
- c) x = 2n, where n is any positive integer
- d) x = 4n + 1, where n is any positive integer
- 7) Let z and w be complex numbers such that \bar{z} + $\iota \overline{w} = 0$ and $arg(zw) = \pi$ then arg(z) equals [2004]

- a) $\frac{5\pi}{4}$ b) $\frac{\pi}{2}$ c) $\frac{3\pi}{4}$ d) $\frac{\pi}{4}$

- 8) If $z = x \iota y$ and $z^{\frac{1}{3}} = p + \iota q$, then $\frac{\frac{x}{p} + \frac{y}{q}}{p^2 + q^2}$ is equal
 - a) -2 b) -1 c) 2
- d) 1

9) If
$$|z^2 - 1| = |z|^2 + 1$$
, then z lies on [2004]

- a) an ellipse
- c) a circle
- b) the imaginary axis d) the real axis
- 10) If the cube roots of unity are 1, ω , ω^2 then the roots of the equation $(x-1)^3 + 8 = 0$, are [2004]
 - a) $-1, -1 + 2\omega, -1 2\omega^2$
 - b) -1, -1, -1
 - c) $-1, 1 2\omega, 1 2\omega^2$
 - d) $-1, 1 + 2\omega, 1 + 2\omega^2$
- 11) If z_1 and z_2 are two non-complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $arg(z_1) - arg(z_2)$ is equal to

 - a) $\frac{\pi}{2}$ b) $-\pi$ c) 0
- d) $\frac{\pi}{2}$
- 12) If $\omega = \frac{z}{z \frac{1}{3}t}$ and $|\omega| = 1$, then z lies on [2005]
 - a) an ellipse
- c) a straight line
- b) a circle
- d) a parabola
- 13) The value of $\sum_{k=1}^{10} \left(sin\left(\frac{2k\pi}{11}\right) + \iota cos\left(\frac{2k\pi}{11}\right) \right)$ is [2006]
 - a) ι
- b) 1 c) $-\iota$
- d) -1
- 14) If $z^2 + z + 1 = 0$, where z is a complex number, then the value of

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2$$
is [2006]

a) 18

b) 54

c) 6

d) 12