كويزات عملي

تجميع :

نور الجفري & فاطمة عاشور

Scanned with CamScanner


```
convert the following:
1)-(1101011001.0000111)2 = ( )16
    0011/0401/1001/-0000/1110
   3 5 9 .0 E - (359.0E)16
 2)-(441.126)_8 = ()_{10}
  1 * 8 + 4 * 8 + 4 * 8 + 1 * 8 + 2 * 8 + 6 * 8 =

1 * 8 + 4 * 8 + 4 * 8 + 0 · 125 + 0 · 03 1 25 + 0 · 00 5 8 5 9 3 75 = 288 · 1621
 Find the following
 1- 1101+1001 = 101/0
 2- 1010-111
    0011
```

REDMI NOTE 8 نور العين Answer the following questions:

Q1)-

i)- Draw a logic circuit (network) and truth table:

a)-
$$(A+C)\overline{(B+A)}\overline{C}$$

ii)- A system used 3 switches A,B,C a combination of switches determines whether x=1 depending on contain conditions, shown in the following table:

input	Binary values	Condition in system
	1	A> 1000
А	0	A<=1000
	1	B>750
В	0	B<=750
	1	C>15
C	0	C<=15

X=1 occurs when:

Either A <= 1000 and B<= 750 and C>15

or A>1000 or B>750

Draw the logic circuit and truth table to show all the possible situations for above syst

HADHRAMOUT UNIVERSITY COLLEGE OF COMPUTERS & INFORMATION TECHNOLOGY FINAL EXAMINATION

<=750

Model (A)

Examiner: Khadega Ali Binomar Baomar

Level: LEVEL 2

Department: IT

Subject: computer organization

Answer the following questions:

i)- Draw a logic circuit (network) and truth table

a)- BA+AC+BC

ii)- A system used 3 switches V,T,S a combination of switches determines whether x=1

depending on contain conditions, shown in the following table:

input	Binary values	Condition in system
٧	1	V> 1000
	0	V<=1000
T	1	T>750
	0	T<=750
S	1	S>15
	0	S<=15

X=1 occurs when:

Either V>1000 or S > 15

Or T > 750 or S <= 15

Or V<=1000 and T>750

Draw the logic circuit and truth table to show all the possible situations for above system.

(VORS)	OR	(TOF 5)	OR (VandT)
(V+5)	+ (7	+5)+	(V.T)

10	10	1	1	0	1	10	1 (V+5) + (T+5
0		-	10/	1	0	0	
1	0	1	1	0	1	1	
	-	1-	0		1	1	
0	0	0	1	1	1	0	

Scanned with CamScanner

HADHRAMOUT UNIVERSITY

Model (B)

Examiner: Khadega Ali Binomar Baomar

Level: LEVEL 2

Department: IT

Subject: computer organization

Answer the following questions:

Q1)-

i)- Draw a logic circuit (network) and truth table:

a)- A+(BCA)

ii)- A system used 3 switches A,B,C a combination of switches determines whether x=1 depending on contain conditions shown in the follable:

input	Binary values	Condition in system
	1	A> 1000
Α	0	A<=1000
В	1	B>750
	0	B<=750
	1	C>15
C	0	C<=15

X=1 occurs when:

Either A>1000 and B >750

Or A <=1000 and C<=15

And A>1000 and C>15

Draw the logic circuit and truth table to show all the possible situations for above system.

(A	B)	+ (A	E) in (A	(C)		1, - 1000 1 (A)	Control of the Contro
400	B	0	A 1 2	AAB Po	AC	(A C) (AC) (+4)	A a
00	1	1	1 0	000	0	00000	0000
1	6	01	0	100	0	0 0 1	0
1	1	1	0 1	1	0	0/10/	1

HADHRAMOUT UNIVERSITY COLLEGE OF COMPUTERS & INFORMATION TECHNOLOGY

100

Academic year: 2020/2

Day and Date: 14/1/202.

Examiner: Khadega Ali Binomar Baomar

Time allowed: 1.15

Exam Semester: The First

Level: LEVEL 2

Department: IT (General)

Subject: computer organization

Answer the following questions:

Q1)-

920-

12.6

30

fu

i)- Draw a logic circuit (network):

a)- AC+AB+AC

b)- $\overline{(A+B)}$ \overline{C} + ABC

ii)- A system used 3 switches A,B,C a combination of switches determines whether x=1

contain conditions, shown in the following table:

input	Binary values	Condition in system
	1	A> 1000
Α	0	A<=1000
	1	B>750
В	0	B<=750
	1	C>15
C	0	C<=15

X=1 occurs when:

Either A <= 1000

Or B>750 and C<=15

Or A>1000 and C>15

Draw the logic circuit and truth table to show all the possible situations for above system.

COODILICY

Q2) - find the following:

C 12	+	B 3	-	2010	=	2011
	CIRY			DOB		
	B,3H			UB D		. 4
	2010	7		TA 2	01	111
	DIA		P	1-1		
MOV	A,CI					7

اختبار نهائي عملي

تجميع :

نور الجفري & فاطمة عاشور

Scanned with CamScanner

COLLEGE OF COMPUTERS & INFORMATION TECHNOLOGY FINAL EXAMINATION

Academic year: 2021/2022

Day and Date: 8/3/2022

Examiner: Khadega Ali Binomar Baomar

Time allowed: 1.5 Hours

Model (B)

Exam Semester: The First

Level: LEVEL 2

Department: IT (General)

Subject: computer organization

Answer the following questions:	03	(11001.011) ==	(25-375)
Q1)-	-(1)	a)	(20

i) convert the following:

a)- $(11001.011)_2 = ()_{10}$

b)- $(217.60)_{10} = ()_2$

2x1+2x0+2x0+2x+2x+2x1+2x0+2x1+2x1

1+0+0+8+16+0+0-25+0-125 ١١١١ ٢ = 25-375

ii)- find the following: 10010-111

O2)i)- Draw a logic circuit (network): 0.8 x 2 = 1.6

a)- $\overline{(A+B)}$ \overline{C} + ABC

b)- A+B (AB)

(11011001.10011) ii)- A system used 3 switches A,B,C a combination of switches determines w

input	Binary values	hown in the following Condition in system
	1	A> 1000
Α	0	A<=1000
	1	B>750
В	0	B<=750
	1	C>15
С	0	C<=15

X=1 occurs when: Either A >1000 and C>15

Draw the logic circuit and truth table to show all the possible situations for above system.

Q3) - find the following:

2011	
8	٦

E 10

Sta Zollh 01,9 SUB 20156 Sta

hit

1011)

8+4=12-10=2

