Сравнение по модулю идеала

• Пусть K — коммутативное кольцо, I — идеал в K.

Коммутативное кольцо:

- 1) Ассоциативность +
- 2) Коммутативность +
- 3) Ноль
- 4) Обратный элемент по +
- 5) Дистрибутивность
- 6) Ассоциативность *
- 7) Коммутативность *

Идеал:

I подкольцо К (I \subset K, одни и те же операции + и *) и выполнено: $\forall x \in K$ и $\forall a \in I$: $ax \in I$, то есть при "перемножении" любого элемента из идеала на любой элемент из кольца, мы остаёмся в пределах идеала.

Определение 1.5. Пусть A — произвольное кольцо. Подмножество $I \subset A$ называется udeanom, если выполнено следующее:

I1: $\forall x, y \in I \ x + y \in I$;

I2: $\forall x \in I - x \in I$:

I3: $\forall x \in I, a \in A$ верно, что $ax \in I$.

Определение

Пусть $a, b \in K$. Тогда $a \equiv_I b$ (или, что то же самое, $a \equiv b \pmod{I}$), если и только если $a - b \in I$.

Лемма 10

 \equiv_I — отношение эквивалентности (то есть, рефлексивно, симметрично и транзитивно).

Доказательство. \bullet $a \equiv_I a$, так как $a-a=0 \in I$.

- ullet Если $a\equiv_I b$, то $a-b\in I$. Значит, $b-a\in I$, откуда $b\equiv_I a$.
- ullet Если $a \equiv_I b$ и $b \equiv_I c$, то $a-b, b-c \in I$. Значит, $a-c = (a-b) + (b-c) \in I$, откуда $a \equiv_I c$.

(Рефлексивность: xRx выполнено для $\forall x \in X$

Симметричность: из xRy следует yRx

Транзитивность: из xRy и yRz следует xRz)

Комментарии к доказательству: 0 лежит в кольце по определению; в кольце по определению лежит обратный элемент; кольцо по определению замкнуто по сложению

Определение

Вычет по модулю идеала I — это класс эквивалентности по \equiv_I .

ullet Различные вычеты не пересекаются. Кольцо K разбито на вычеты.

То есть все элементы кольца разбиваются по кучкам (классам) и для каждой кучки (класса) находится такое I, что выполнено определение отношения эквивалентности для любых двух элементов из кучки.

Факторкольцо

- Для $a \in K$ вычет, состоящий из элементов кольца, сравнимых с a, как правило, будем обозначать через \overline{a} .
- ullet Из определения следует, что $\overline{a}=a+I=\{a+x\,:\,x\in I\}.$

Определение

- ullet Пусть K коммутативное кольцо, I идеал в K. Φ акторкольцо $K/I := \{ \overline{a} : a \in K \}.$
- $\overline{a} + \overline{b} := \overline{a+b}$; $\overline{a} \cdot \overline{b} := \overline{ab}$.

Лемма 11

+ и \cdot в K/I определены корректно.

Доказательство. • Пусть $a\equiv_I a'$, то есть, $\overline{a}=\overline{a'}$. Это означает, что $a-a'\in I$. Докажем, что от замены a на a' результат + и не изменится:

$$\overline{a}+\overline{b}=\overline{a'}+\overline{b}\iff a+b\equiv_I a'+b\iff a+b-(a'+b)=a-a'\in I;$$

$$\overline{a} \cdot \overline{b} = \overline{a'} \cdot \overline{b} \iff ab \equiv_I a'b \iff ab - (a'b) = (a - a')b \in I \iff a - a' \in I.$$

Комментарии к доказательству: а и а' сравнимы по модулю I и $\bar{a}=\bar{a}'$ это просто одна и та же запись. Потом добавили \bar{b} к обеим частям равенства. Далее сказали, что $\bar{a}+\bar{b}=\overline{a+b}$, аналогично $\bar{a}'+\bar{b}=\overline{a'+b}$ (это факторкольцо)

Теорема 1

- \bullet K/I с определенными выше + и \cdot коммутативное кольцо.
- Если K кольцо с 1, то K/I тоже. Если при этом $a \in K$ обратимый элемент в K, то \overline{a} обратимый в K/I.

Доказательство. • Так как $\overline{a} + \overline{b} = \overline{a+b}$, из ассоциативности и коммутативности + в K следует ассоциативность и коммутативность + в K/I.

- Так как $\overline{a} \cdot \overline{b} = \overline{ab}$, из ассоциативности и коммутативности умножения в K следует ассоциативность и коммутативность умножения в K/I.
- Дистрибутивность: $\overline{a}(\overline{b} + \overline{c}) = \overline{a(b+c)} = \overline{ab+ac} = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$.
- Ноль это $\overline{0}$.
- ullet Обратный по сложению: $-\overline{a}:=\overline{-a}$.
- ullet Единица: если $1 \in K$, то $\overline{1}$ единица в K/I.
- ullet Если $a\in K$ обратимый, то $(\overline{a})^{-1}:=\overline{a^{-1}}$ обратный в K/I.

Для коммутативного кольца:

1) Accoциативность + (a+b)+c = a+(b+c)

$$(a+b)+c\equiv_{l}a+(b+c)$$
 то есть $\overline{(a+b)+c}=\overline{a+(b+c)}$ то есть $\overline{(a+b)}+\overline{c}=\overline{a}+\overline{(b+c)}$, откуда $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})$

2) Коммутативность + a+b = b+a a+l+b+l = b+l+a+l

 $a+b\equiv_{l}b+a$, то есть $\overline{a+b}=\overline{b+a}$, откуда $ar{a}+ar{b}=ar{b}+ar{a}$

- 3) Ноль
- 4) Обратный элемент по +
- 5) Дистрибутивность
- 6) Ассоциативность *

$$(ab)c\equiv_I a(bc)$$
 то есть $\overline{(ab)c}=\overline{a(bc)}$ то есть $\overline{(ab)}\overline{c}=\overline{a}\overline{(bc)}$, откуда $\left(\bar{a}\bar{b}\right)\bar{c}=\bar{a}(\bar{b}\bar{c})$

7) Коммутативность * ab = ba; $ab\equiv_I ba$, то есть $\overline{ab}=\overline{ba}$, откуда $\bar{a}\bar{b}=\bar{b}\bar{a}$