Contents

Contents		Geometry: Line	16
Геmplates	2	•	
Const Big Prime Number	3	Geometry: Circle and Triangle	16
Miller Rabin Big Primality Test and Pollard's Rho Factoring	3	Geometry:The Great-Circle Distance(SPHERES)	17
Extended Euclidean Algorithm	3	Geometry: Polygon	17
Formulas and Theorems	4	Geometry: Convex hull	18
		Convex Hull Trick Dynamic	18
Strassen Matrix Multiplication Optimization	5	Knuth-Morris-pratt (Precompute & Checking)	19
Fast Fourier Transform	6	Manacher Algorithm (Palindrom)	19
Fast Walsh-Hadamart Transform	7	Z Algorithm	20
Chinese Remainder Theorem	7	Smallest String Rotation O(n)	20
Gaussian Elimination	7	•	
Simplex	8	Suffix Array + LCP	20
Maxflow Dinic	9	Aho-Corasick	20
Minimum Cost Max Flow (Negative Cost)	10	Palindromic Tree	22
Maximum Cardinality Bipartite Matching	11	KD-Tree	22
Blossom (Maximum Simple Graph Matching)	11	Link-Cut Tree / Splay Tree	23
•	12	Implicit Treap	24
Minimum Cut Stoer - Wagner		Policy-based Data Structure	25
Finding Cut Vertices & Cut Edges	13		
Biconnected Component	13	This is our team notebook for ACM-ICPC and other CP contests.	
Strongly Connected Component	14	Regards, Wiwit Rifa'i Luqman A. Siswanto	
Dominator Tree	14		
Geometry: Point	15	·	

1. Templates

```
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.BigInteger;
public class TEMPLATE {
 public static void main(String[] args) {
    InputStream inputStream = System.in;
    OutputStream outputStream = System.out;
    InputReader in = new InputReader(inputStream);
    PrintWriter out = new PrintWriter(outputStream);
   Task solver = new Task();
   solver.solve(1, in, out);
   out.close();
class Task
 public void solve(int testNumber, InputReader in, PrintWriter out)
class InputReader
 public BufferedReader reader;
 public StringTokenizer tokenizer;
 public InputReader(InputStream stream) {
    reader = new BufferedReader(new InputStreamReader(stream),
32768);
    tokenizer = null;
 public String next() {
    while (tokenizer == null || !tokenizer.hasMoreTokens()) {
        tokenizer = new StringTokenizer(reader.readLine());
     } catch (IOException e) {
        throw new RuntimeException(e);
    return tokenizer.nextToken();
```

```
public int nextInt() {
   return Integer.parseInt(next());
 public long nextLong() {
    return Long.parseLong(next());
 public double nextDouble() {
    return Double.parseDouble(next());
//stack resize
asm( "mov %0,%%esp\n" ::"q"(mem+10000000) );
//change esp to rsp if 64-bit system
//stack resize (linux)
#include <svs/resource.h>
void increase stack size() {
 const rlim t ks = 64*1024*1024;
  struct rlimit rl;
 int res=getrlimit(RLIMIT STACK, &rl);
 if(res==0){
  if(rl.rlim cur<ks){</pre>
     rl.rlim cur=ks;
     res=setrlimit(RLIMIT STACK, &rl);
// optimizer in source code (or change 03 to 02)
#pragma GCC optimize("03")
// improve cin-cout
ios base::sync with stdio(false);
// fast IO, can change getchar to getchar unlocked in linux
template <typename t>
t getnum()
 t res=0, mult=1;
  char c;
  while(1) {
    c=getchar(); if(c==' ' | | c=='\n') continue; else break;
 if(c=='-') mult*=-1; else res+=c-'0';
  while(1) {
   c=qetchar();
   if(c>='0' && c<='9') { res*=10; res+=c-'0'; }</pre>
```

```
else break;
}
return res*mult;
}
```

2. Const Big Prime Number

```
1e9 + 9, 1e9 + 87, 1e9 + 4207, 2e9 + 89, 2e9 + 143, 2e9 + 11, 2e9 + 1851, 2e9 + 2153, 252097800623, 1e15 - 11, 1e15 + 37,
```

3. Miller Rabin Big Primality Test and Pollard's Rho Factoring

```
vector<long long> A({2, 3, 5, 7, 11, 13, 17, 19, 23});
// if n < 3,825,123,056,546,413,051, it is enough to test <math>a = 2, 3, 5,
7, 11, 13, 17, 19, and 23.
long long largemul(long long a, long long b, long long n) {
 // assert(0 <= a && a < n && 0 <= b && b < n);
 long long r = 0;
 for (; b; b >>= 1, a <<= 1) {
   if (a >= n) a -= n;
   if (b & 1) {
    r += a;
     if (r >= n) r -= n;
  return r;
long long fastexp(long long a, long long b, long long n) {
 // assert(0 <= a && a < n && b >= 0);
 long long ret = 1;
 for (; b; b >>= 1, a = largemul(a, a, n))
   if (b & 1) ret = largemul(ret, a, n);
 return ret;
bool mrtest(long long n) {
 if (n == 1) return false;
 long long d = n-1;
 int s = 0;
  while ((d & 1) == 0) {
```

```
s++;
    d >>= 1;
  s--;
  if (s < 0) s = 0;
  for (int j = 0; j < (int)A.size(); j++) {</pre>
    if (A[j] >= n) continue;
    long long ad = fastexp(A[j], d, n);
    if (ad == 1) continue;
    bool notcomp = false;
    long long a2rd = ad;
    for (int r = 0; r <= s; r++) {
     if(a2rd == n-1) {notcomp = true; break;}
     a2rd = largemul(a2rd, a2rd, n);
    if (!notcomp) {
      return false:
  return true;
long long gcd(long long a, long long b) { return a ? gcd(b % a, a) :
b; }
long long pollard rho(long long n) {
 int i = 0, k = 2;
 long long x = 3, y = 3; // random seed = 3, other values possible
  while (1) {
    x = largemul(x, x, n)-1; // generating function
    if (x < 0) x += n;
    long long d = gcd(llabs(y - x), n); // the key insight
   if (d != 1 && d != n) return d;
    if (i == k) y = x, k <<= 1;
```

4. Extended Euclidean Algorithm

```
long long x, y, d; // ax + by = d
void extendedEuclidean(long long a, long long b) {
  if(b == 0) { x = 1; y = 0; d = a; return; }
  extendedEuclidean(b, a % b);
  long long xx, yy;
  xx = y;
  yy = x - (a/b)*y;
```

x = xx; y = yy;

5. Formulas and Theorems

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$$

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$$

$$\sum_{j=0}^{n} \binom{m}{j} \binom{n-m}{k-j} = \binom{n}{k}$$

$$\sum_{m=0}^{n} \binom{m}{j} \binom{n-m}{k-j} = \binom{n+1}{k+1},$$

$$\sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k+1}.$$

$$\sum_{j=0}^{m} \binom{m}{j}^{2} = \binom{2m}{m}.$$

$$\sum_{j=0}^{n} \binom{n-k}{k} = F(n+1).$$

$$\sum_{j=0}^{n} i^{2} \binom{n}{k}^{2} = n^{2} \binom{2n-2}{n-1}.$$

$$\sum_{k=0}^{n} i^{2} \binom{n}{k} \binom{n}{k} = 2^{n-q} \binom{n}{q}$$

Lucas' Theorem:

For non-negative integers m and n and a prime p, the following congruence relation holds:

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where
$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0$$
,
and $n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0$

are the base p expansions of m and n respectively. This uses the convention that $\binom{m}{n} = 0$ if m < n.

Example: (combinatrics in small mod wheren mod < n && mod < k)

```
int comb[mod][mod];
int c(int n, int k) {
  return n == 0? 1 : comb[n%mod][k%mod] * c(n/mod, k/mod) % mod;
}
```

Faulhaber's Formula:

$$(n+1)^{k+1} - 1 = \sum_{m=1}^{n} \left((m+1)^{k+1} - m^{k+1} \right) = \sum_{n=0}^{k} {k+1 \choose p} (1^p + 2^p + \dots + n^p)$$

Examples:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}=\frac{n^2+n}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{2n^{3} + 3n^{2} + n}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \frac{n^{4} + 2n^{3} + n^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$
$$= \frac{6n^{5} + 15n^{4} + 10n^{3} - n}{30}$$

$$1^{5} + 2^{5} + 3^{5} + \dots + n^{5} = \frac{n^{2}(n+1)^{2}(2n^{2} + 2n - 1)}{12}$$
$$= \frac{2n^{6} + 6n^{5} + 5n^{4} - n^{2}}{12}$$

$$1^{6} + 2^{6} + 3^{6} + \dots + n^{6} = \frac{n(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{42}$$
$$= \frac{6n^{7} + 21n^{6} + 21n^{5} - 7n^{3} + n}{42}$$

Cayley's Formula: There are n⁽ⁿ⁻²⁾ spanning trees of a complete graph with n label vertices.

Derangement: A permutation of the elements of a set that none of the elements appear in their original position. d(n) = (n-1)x(d(n-1) + d(n-2)) where d(0) = 1, d(1) = 0.

Erdos Gallai's Theorem: A sequence of non-negative numbers $d_1 \ge d_2 \ge ... \ge d_n$ can be the degree sequence of a **simple** graph on n vertices iff $\sum d_i$ is even

and
$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$
 is hold for $1 \leq k \leq n$.

Euler's Formula for **Planar Graph**: V - E + F = 2, where F is the number of faces of the Planar Graph.

Moser's Circle: Determine the number of pieces into a circle is divided if n points on its circumference are joined by chords with no three internally concurrent. Solution: $g(n) = {}^{n}C_{4} + {}^{n}C_{2} + 1$.

Pick's Theorem: provides a simple formula for calculating the area *A* of this polygon in terms of the number *i* of *lattice points in the interior*located in the polygon and the number *b* of *lattice points on the boundary* placed on the

$$A = i + \frac{b}{2} - 1.$$

polygon's perimeter

The number of spanning tree of a complete bipartite graph $K_{n, m}$ is $m^{n-1} \times n^{m-1}$

Burnside's lemma can be used to count the number of combinations so that one representative is counted for each group of symmetric combinations. Burnside's lemma state that the number of combinations is

 $\sum\limits_{k=1}^{n} \frac{c(k)}{n}$ where there are n ways to change the position of a combination, and there are c(k) combinations that remain unchanged when *k*th way is applied

Catalan Number:

$$C_n=inom{2n}{n}-inom{2n}{n+1}=rac{1}{n+1}inom{2n}{n}\quad ext{ for }n\geq 0,$$
 $C_0=1\quad ext{and}\quad C_{n+1}=\sum_{i=0}^n C_i\,C_{n-i}\quad ext{for }n\geq 0;\quad C_{n+1}=rac{2(2n+1)}{n+2}C_n,$

Cat(n) can represents:

- 1. The number of distinct binary trees with n vertices.
- 2. The number of expressions containing n pairs of parentheses which are corrcetly matched.
- 3. The number of different ways n+1 factors can be completly parenthesized, e.g. for n = 3 and 3+1=4 factors:{a, b, c, d}, we have (ab)(cd), a(b(cd)), ((ab)c)d, (a(bc))d, and a((bc)d).
- 4. The number of ways a convex polygon of n+2 sides can be triangulated.
- 5. The number of monothonic paths along the edges of an nxn grid, which do not pass above the diagonal.

6. Strassen Matrix Multiplication Optimization

Complexity:
$$O([7 + o(1)]^n) = O(N^{\log_2 7 + o(1)}) \approx O(N^{2.8074})$$
 $\mathbf{C} = \mathbf{A}\mathbf{B} \quad \mathbf{A}, \mathbf{B}, \mathbf{C} \in R^{2^n \times 2^n}$
 $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\ \mathbf{B}_{2,1} & \mathbf{B}_{2,2} \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} \mathbf{C}_{1,1} & \mathbf{C}_{1,2} \\ \mathbf{C}_{2,1} & \mathbf{C}_{2,2} \end{bmatrix}$
 $\mathbf{M}_1 := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) \quad \mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1}$
 $\mathbf{M}_3 := \mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) \quad \mathbf{M}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1})$
 $\mathbf{M}_5 := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2} \quad \mathbf{M}_6 := (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2})$
 $\mathbf{M}_7 := (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2})$
 $\mathbf{C}_{1,1} = \mathbf{M}_1 + \mathbf{M}_4 - \mathbf{M}_5 + \mathbf{M}_7 \quad \mathbf{C}_{1,2} = \mathbf{M}_3 + \mathbf{M}_5$
 $\mathbf{C}_{2,1} = \mathbf{M}_2 + \mathbf{M}_4 \quad \mathbf{C}_{2,2} = \mathbf{M}_1 - \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_6$

7. Fast Fourier Transform

```
/************ FFT dengan complex ***********/
typedef complex<double> cd;
typedef vector< cd > vcd;
// asumsi ukuran as = 2^k, dengan k bilangan bulat positif
vcd fft(const vcd &as) {
 int n = (int)as.size();
 int k = 0;
  while ((1 << k) < n) k++;
 vector< int > r(n);
  r[0] = 0;
  int h = -1;
 for(int i = 1; i<n; i++) {</pre>
   if((i \& (i-1)) == 0)
    h++;
   r[i] = r[i ^ (1 << h)];
   r[i] = (1 << (k-h-1));
  vcd root(n);
  for(int i = 0; i<n; i++) {</pre>
  double ang = 2.0*M PI*i/n;
   root[i] = cd(cos(ang), sin(ang));
  vcd cur(n);
  for (int i = 0; i < n; i++)
   cur[i] = as[r[i]];
  for(int len = 1; len < n; len <<= 1 ) {</pre>
   vcd ncur(n);
   int step = n/(len << 1);</pre>
   for(int pdest = 0; pdest <n;) {</pre>
    for(int i = 0; i<len; i++) {</pre>
       cd val = root[i*step]*cur[pdest + len];
       ncur[pdest] = cur[pdest] + val;
       ncur[pdest + len] = cur[pdest] - val;
        pdest++;
     pdest += len;
    cur.swap(ncur);
  return cur;
vcd inv fft(const vcd& fa) {
```

```
vcd res = fft(fa);
 for(int i = 0; i<nn; i++) {</pre>
   res[i] /= nn;
 reverse(res.begin() + 1, res.end());
 return res;
/******** FFT dengan Modular Aritmetic **********/
const int mod = 7340033;
const int root = 5;
const int root 1 = 4404020;
const int root pw = 1<<20;</pre>
void fft (vector<int> & a, bool invert) {
 int n = (int) a.size();
 for (int i=1, j=0; i<n; ++i) {</pre>
   int bit = n >> 1;
  for (; j>=bit; bit>>=1)
    j -= bit;
   j += bit;
   if (i < j)
     swap (a[i], a[j]);
 for (int len=2; len<=n; len<<=1) {</pre>
   int wlen = invert ? root 1 : root;
   for (int i=len; i<root pw; i<<=1)</pre>
     wlen = int (wlen * 111 * wlen % mod);
   for (int i=0; i<n; i+=len) {</pre>
     int w = 1;
     for (int j=0; j<len/2; ++j) {</pre>
      int u = a[i+j], v = int (a[i+j+len/2] * 111 * w % mod);
       a[i+j] = u+v < mod ? u+v : u+v-mod;
       a[i+j+len/2] = u-v >= 0 ? u-v : u-v+mod;
        w = int (w * 111 * wlen % mod);
 if (invert) {
  int nrev = reverse (n, mod);
   for (int i=0; i<n; ++i)</pre>
     a[i] = int (a[i] * 111 * nrev % mod);
```

Optimization Note: FFT for two polynomials simultaneously. Let A(x), B(x) be the polynomials with real quotients. Consider P(x) = A(x) + iB(x). Note that $\overline{P(\overline{x})} = A(x) - iB(x)$, thus $A(w_k) = \frac{P(w_k) + \overline{P(w_{n-k})}}{2}, B(w_k) = \frac{P(w_k) - \overline{P(w_{n-k})}}{2i}$

Now backwards. Assume we know values of A,B and know they have real quotients. Calculate inverse FFT for P=A+iB. Quotients for A will be real part and quotients for B will be imaginary part.

8. Fast Walsh-Hadamart Transform

```
// Walsh-Hadamart Matrix: This is for polynom multiplication but with
custom operation on the power of x instead of addition.
// xor : 1/sqrt(2) * {{1, 1}, {1, -1}}, inverse : same
// and : {{0, 1}, {1, 1}}, inverse : {{-1, 1}, {1, 0}}
// or : {{1, 1}, {1, 0}}, inverse : {{0, 1}, {1, -1}}
poly FWHT (poly P, bool inverse) { // example: xor
 for (len = 1; 2 * len <= degree(P); len <<= 1) {</pre>
    for (i = 0; i < degree(P); i += 2 * len) {</pre>
      for (j = 0; j < len; j++) {
        u = P[i + j];
        v = P[i + len + j];
        if (!inverse) {
          P[i + j] = u + v; // xor's matrix
          P[i + len + j] = u - v; // xor's matrix
        else {
          P[i + i] = u + v; // use inverse matrix here
          P[i + len + j] = u - v; // use inverse matrix here
  if (inverse) {
    for (i = 0; i < degree(P); i++)</pre>
      P[i] = P[i] / degree(P); // this for xor only
  return P;
//source:
https://csacademy.com/blog/fast-fourier-transform-and-variations-of-it
```

9. Chinese Remainder Theorem

```
// Chinese remainder theorem (special case): find z such that
//z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M=-1.
PII chinese remainder theorem (int x, int a, int y, int b) {
  int s, t;
  int d = extended euclid(x, y, s, t);
  if (a % d != b % d) return make pair (0,-1);
  return make pair (mod(s*b*x+t*a*y,x*y)/d, x*y/d);
// Chinese remainder theorem: find z such that
//z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm \ i \ (x[i]). Return (z,M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese remainder theorem (const VI &x, const VI &a) {
 PII ret = make pair(a[0], x[0]);
 for(int i =1; i < x.size(); i++) {</pre>
    ret = chinese remainder theorem(ret.second, ret.first, x[i],
    if(ret.second ==-1) break;
  return ret;
```

10. Gaussian Elimination

```
// 1 equation/column, return {has answer, N variable}
pair<book, vector<double>> gauss(vector< vector<double> >& A) {
  int n = A.size();
  for (int i=0; i<n; i++) {
    double maxEl = abs(A[i][i]);
    int maxRow = i;
    for (int k=i+1; k<n; k++) {
        if (abs(A[k][i]) > maxEl) {
            maxEl = abs(A[k][i]);
            maxRow = k;
        }
    }
    for (int k=i; k<n+1; k++) {
        double tmp = A[maxRow][k];
        A[maxRow][k] = A[i][k];
        A[i][k] = tmp;
    }
}</pre>
```

```
for (int k=i+1; k<n; k++) {
    double c = -A[k][i]/A[i][i];
    for (int j=i; j<n+1; j++) {
        if (i==j) {
            A[k][j] = 0;
        } else {
            A[k][j] += c * A[i][j];
        }
    }
}

vector<double> x(n);
for (int i=n-1; i>=0; i--) {
    if (abs(A[i][i]) < eps) return {false, x};
    x[i] = A[i][n]/A[i][i];
    for (int k=i-1;k>=0; k--) {
        A[k][n] -= A[k][i] * x[i];
    }
}
return {true, x};
}
```

11. Simplex

```
typedef long double LD;
typedef vector<LD> VD;
typedef vector<VD> VVD;
const LD EPS = 1e-9;
inline bool eq(LD a, LD b) { return fabs(a - b) < EPS; }</pre>
inline bool lt(LD a, LD b) { return a + EPS < b; }</pre>
inline bool le(LD a, LD b) { return a < b + EPS; }</pre>
struct simplex {
 VVD a;
 VD b, c, res;
 LD v;
 int n, m, status; // -2: not started, -1: fail, 0: ok, 1:
infinity;
 vector<int> left, up, pos;
 simplex() {}
 void set(VVD & A, VD & B, VD & C) {
   n = C.size(); m = A.size(); left.resize(m);
   up.resize(n); pos.resize(n); res.resize(n);
   status = -2; v = 0; a = A; b = B; c = C;
```

```
void pivot(int x, int y) {
  swap(left[x], up[y]);
 LD k = a[x][y];
  a[x][y] = 1;
  b[x] /= k;
  int cur = 0;
  for (int i = 0; i < n; i++) {</pre>
    a[x][i] = a[x][i] / k;
    if (!eq(a[x][i], 0))
      pos[cur++] = i;
  for (int i = 0; i < m; i++) {</pre>
    if (i == x || eq(a[i][y], 0)) continue;
    LD cof = a[i][y];
    b[i] -= cof * b[x];
    a[i][y] = 0;
    for (int j = 0; j < cur; j++)</pre>
      a[i][pos[j]] -= cof * a[x][pos[j]];
  LD cof = c[y];
  v += cof * b[x];
  c[y] = 0;
  for (int i = 0; i < cur; i++) {</pre>
    c[pos[i]] -= cof * a[x][pos[i]];
void solve() {
  for (int i = 0; i < n; i++)</pre>
    up[i] = i;
  for (int i = 0; i < m; i++)</pre>
   left[i] = i + n;
  while (1) {
    int x = -1;
    for (int i = 0; i < m; i++)</pre>
      if (lt(b[i], 0) && (x == -1 || b[i] < b[x])) {
        x = i;
    if (x == -1) break;
    int y = -1;
    for (int j = 0; j < n; j++)
      if (lt(a[x][i], 0)) {
        y = j;
        break;
```

```
if (y == -1) {
      status = -1;
      return;
      assert(false); // no solution
    pivot(x, y);
  while (1) {
   int v = -1;
   for (int i = 0; i < n; i++)</pre>
     if (lt(0, c[i]) && (y == -1 || (c[i] > c[y]))) {
          y = i;
    if ( \lor == -1 ) break;
    int x = -1;
   for (int i = 0; i < m; i++) {</pre>
      if (lt(0, a[i][y])) {
        if (x == -1 \mid | (b[i] / a[i][y] < b[x] / a[x][y])) {
          x = i;
    if (x == -1) {
     status = 1;
      return;
      assert(false); // infinite solution
    pivot(x, y);
  res.assign(n, 0);
  for (int i = 0; i < m; i++) {</pre>
   if (left[i] < n) {
     res[left[i]] = b[i];
   }
  status = 0;
// HOW TO USE ::
// -- call init(n, m)
// -- call solve()
// -- variables in "up" equals to zero
// -- variables in "left" equals to b
// -- max: c * x
// -- b[i] >= a[i] * x
// -- answer in "v"
// -- sertificate in "res"
```

12. Maxflow Dinic

```
struct Edge {
 int from, to, cap, flow, index;
 Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
};
struct Dinic {
 int N;
 vector<vector<Edge> > G;
 vector<Edge *> dad;
 vector<int> Q;
  Dinic (int N) : N(N), G(N), dad(N), Q(N) {}
  void AddEdge(int from, int to, int cap) {
    G[from].push back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push back(Edge(to, from, 0, 0, G[from].size() - 1));
 long long BlockingFlow(int s, int t) {
    fill(dad.begin(), dad.end(), (Edge *) NULL);
    dad[s] = &G[0][0] - 1;
    int head = 0, tail = 0;
    Q[tail++] = s;
    while (head < tail) {</pre>
     int x = O[head++];
     for (int i = 0; i < G[x].size(); i++) {</pre>
    Edge &e = G[x][i];
    if (!dad[e.to] && e.cap - e.flow > 0) {
     dad[e.to] = &G[x][i];
     Q[tail++] = e.to;
    if (!dad[t]) return 0;
    long long totflow = 0;
    for (int i = 0; i < G[t].size(); i++) {</pre>
     Edge *start = \&G[G[t][i].to][G[t][i].index];
     int amt = INF;
     for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
    if (!e) { amt = 0; break; }
    amt = min(amt, e->cap - e->flow);
```

```
if (amt == 0) continue;
   for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
   e->flow += amt;
   G[e->to][e->index].flow -= amt;
   }
   totflow += amt;
}

return totflow;
}

long long GetMaxFlow(int s, int t) {
   long long totflow = 0;
   while (long long flow = BlockingFlow(s, t))
   totflow += flow;
   return totflow;
}
```

13. Minimum Cost Max Flow (Negative Cost)

```
/** Max Flow Min Cost **/
/* complexity: O(min(E^2 V log V, E log V F)) */
const int maxnodes = 2010;
int nodes = maxnodes;
int prio[maxnodes], curflow[maxnodes], prevedge[maxnodes],
prevnode[maxnodes], q[maxnodes], pot[maxnodes];
bool inqueue[maxnodes];
const int INF = 1e9;
struct Edge {
 int to, f, cap, cost, rev;
vector<Edge> graph[maxnodes];
void addEdge(int s,int t,int cap,int cost) {
 Edge a ={t,0, cap, cost, graph[t].size()};
 Edge b = \{s, 0, 0, -\cos t, \operatorname{graph}[s] \cdot \operatorname{size}()\};
 graph[s].push back(a);
  graph[t].push back(b);
void bellmanFord(int s,int dist[]){
  fill(dist, dist + nodes, 1000000000);
```

```
dist[s]=0;
  int qt = 0;
  q[qt++]=s;
  for (int qh =0; (qh - qt) % nodes !=0; qh++) {
   int u = q[qh % nodes];
    inqueue[u]=false;
    for(int i =0; i <(int) graph[u].size(); i++) {</pre>
      Edge &e = graph[u][i];
     if(e.cap <= e.f)continue;</pre>
      int v = e.to;
      int ndist = dist[u] + e.cost;
      if(dist[v]> ndist) {
        dist[v] = ndist;
        if(!inqueue[v]){
          inqueue[v]=true;
          q[qt++% nodes] = v;
pair<int, int> minCostFlow(int s,int t,int maxf) {
 // bellmanFord can be safely commented if edges costs are
non-negative
 bellmanFord(s, pot);
 int flow =0;
 int flowCost =0;
  while(flow < maxf) {</pre>
   priority queue<11, vector<11>, greater<11>> g;
    q.push(s);
    fill(prio, prio + nodes, INF);
    prio[s]=0;
    curflow[s] = INF;
    while(!q.empty()){
     11 cur = q.top();
     int d = cur >> 32;
     int u = cur;
      q.pop();
      if(d != prio[u])continue;
      for(int i =0; i <(int) graph[u].size(); i++){</pre>
        Edge &e = graph[u][i];
        int v = e.to;
        if(e.cap <= e.f)continue;</pre>
        int nprio = prio[u] + e.cost + pot[u] - pot[v];
        if(prio[v]> nprio) {
          prio[v] = nprio;
```

```
q.push(((11) nprio << 32) + v);
          prevnode[v] = u;
          prevedge[v] = i;
          curflow[v] = min(curflow[u], e.cap - e.f);
   if(prio[t] == INF)break;
   for(int i =0; i < nodes; i++) pot[i]+= prio[i];</pre>
   int df = min(curflow[t], maxf - flow);
   flow += df:
   for(int v = t; v != s; v = prevnode[v]){
    Edge &e = graph[prevnode[v]][prevedge[v]];
     e.f += df;
     graph[v][e.rev].f -= df;
     flowCost += df * e.cost;
 return make pair(flow, flowCost);
/* usage example:
* addEdge (source, target, capacity, cost)
* minCostFlow(source, target, INF) -><flow, flowCost>
```

14. Maximum Cardinality Bipartite Matching

```
// The code below finds a augmenting path:
bool dfs(int v){// v is in X, it returns true if and only if there is
an augmenting path starting from v
  if(mark[v])
    return false;
mark[v] = true;
for(auto &u : adj[v])
    if(match[u] == -1 or dfs(match[u])) // match[i] = the vertex i is
matched with in the current matching, initially -1
    return matched[v] = u, match[u] = v, true;
return false;
}
```

An easy way to solve the problem is:

```
for(int i = 0; i < n; i ++) if(matched[i] == -1) {
  memset(mark, false, sizeof mark);</pre>
```

```
dfs(i);
}
```

But there is a faster way:

```
while(true) {
   memset(mark, false, sizeof mark);
   bool fnd = false;
   for(int i = 0; i < n; i ++) if(matched[i] == -1 && !mark[i])
      fnd |= dfs(i);
   if(!fnd)
      break;
}</pre>
```

15. Blossom (Maximum Simple Graph Matching)

```
V->number of vertices
E->number of edges
pair of vertices as edges (vertices are 1..V)
GIVES:
output of edmonds() is the maximum matching
match[i] is matched pair of i (-1 if there isn't a matched pair)
#include <bits/stdc++.h>
using namespace std;
const int M=505;
struct struct edge{int v;struct edge* n;};
typedef struct edge* edge;
struct edge pool[M*M*2];
edge top=pool,adj[M];
int V,E,match[M],qh,qt,q[M],father[M],base[M];
bool inq[M],inb[M],ed[M][M];
void add edge(int u,int v) {
 top->v=v, top->n=adj[u], adj[u]=top++;
 top->v=u,top->n=adj[v],adj[v]=top++;
int LCA(int root, int u, int v) {
  static bool inp[M];
 memset(inp, 0, sizeof(inp));
 while(1) {
   inp[u=base[u]]=true;
   if (u==root) break;
    u=father[match[u]];
```

```
while(1) {
   if (inp[v=base[v]]) return v;
   else v=father[match[v]];
void mark blossom(int lca,int u) {
 while (base[u]!=lca) {
   int v=match[u];
   inb[base[u]]=inb[base[v]]=true;
   u=father[v];
   if (base[u]!=lca) father[u]=v;
void blossom contraction(int s,int u,int v) {
 int lca=LCA(s,u,v);
 memset(inb,0,sizeof(inb));
 mark blossom(lca,u);
 mark blossom(lca, v);
 if (base[u]!=lca)
   father[u]=v;
 if (base[v]!=lca)
   father[v]=u;
 for (int u=0;u<V;u++)</pre>
   if (inb[base[u]]) {
     base[u]=lca;
     if (!inq[u])
       inq[q[++qt]=u]=true;
int find augmenting path(int s) {
 memset(ing, 0, sizeof(ing));
 memset(father,-1, sizeof(father));
 for (int i=0;i<V;i++) base[i]=i;</pre>
 ing[q[qh=qt=0]=s]=true;
 while (qh<=qt) {</pre>
   int u=q[qh++];
   for (edge e=adj[u];e;e=e->n) {
   int v=e->v;
   if (base[u]!=base[v]&&match[u]!=v)
     if ((v==s) | | (match[v]!=-1 && father[match[v]]!=-1))
       blossom contraction(s,u,v);
      else if (father[v]==-1) {
       father[v]=u;
        if (match[v] == -1)
          return v;
        else if (!inq[match[v]])
          inq[q[++qt]=match[v]]=true;
```

```
return -1;
int augment path(int s,int t) {
 int u=t, v, w;
 while (u!=-1) {
   v=father[u];
    w=match[v];
    match[v]=u;
    match[u]=v;
    u=w;
  return t!=-1;
int edmonds()
 int matchc=0;
  memset(match, -1, sizeof(match));
 for (int u=0;u<V;u++)</pre>
    if (match[u] == -1)
      matchc+=augment path(u, find augmenting path(u));
 return matchc;
int main() {
 int u, v;
 cin>>V>>E;
 while (E--)
   cin>>u>>v;
   if (!ed[u-1][v-1]) {
      add edge(u-1, v-1);
      ed[u-1][v-1]=ed[v-1][u-1]=true;
  cout<<edmonds()<<endl;</pre>
  for (int i=0;i<V;i++)</pre>
    if (i<match[i])</pre>
      cout<<i+1<<" "<<match[i]+1<<endl;
  return 0;
```

16. Minimum Cut Stoer - Wagner

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
//
// Running time:
```

```
// O(|V|^3)
// INPUT:
// - graph, constructed using AddEdge()
// OUTPUT:
// - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
const int INF =1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
 int N = weights.size();
 VI used(N), cut, best cut;
 int best weight =-1;
 for(int phase = N-1; phase >=0; phase--) {
   VI w = weights[0];
   VI added = used;
   int prev, last =0;
    for(int i =0; i < phase; i++) {</pre>
    prev = last;
    last =-1;
     for(int j =1; j < N; j++)</pre>
        if(!added[j]&&(last ==-1|| w[j]> w[last])) last = j;
      if(i == phase-1){
        for(int j =0; j < N; j++) weights[prev][j]+=</pre>
weights[last][j];
        for(int j =0; j < N; j++) weights[j][prev]=</pre>
weights[prev][j];
        used[last]=true;
        cut.push back(last);
        if(best weight ==-1|| w[last] < best weight) {</pre>
         best cut = cut;
          best weight = w[last];
      }else{
        for(int j =0; j < N; j++)</pre>
          w[j]+= weights[last][j];
        added[last]=true;
```

```
}
}
return make_pair(best_weight, best_cut);
}
```

17. Finding Cut Vertices & Cut Edges

```
// Tarjan version again, for undirected graph
void dfs(int v) {
 low[v] = num[v] = ++cntr;
 for(auto u : adj[v]) {
   if(num[u] == -1) {
      par[u] = v;
     if(v == Root) rootChild++;
      dfs(u);
      if(low[u] >= num[v])
        articulation vertex[v] = true;
      if(low[u] > num[v])
        printf("Edge (%d %d) is a bridge\n", v, u);
      low[v] = min(low[v], low[u]);
    else if(u != parent[v])
     low[v] = min(low[v], num[u]); //be careful!num[u] not low[u]
// Inside Main
cntr = 0;
num.assign(n, -1);
low.assign(n, 0);
par.assign(n, -1);
articulation vertex.assign(n, 0);
for (int i = 0; i<n; i++) if (num[i] == -1) {</pre>
 Root = i;
 rootChild = 0;
 dfs(i);
  articulation vertex[i] = (rootChild > 1);
```

18. Biconnected Component

```
void dfs(int v, int bef = -1) {
```

```
num[v] = low[v] = counter++;
 for (int u : adj[v]) {
   if (num[u] == -1) {
    edge.emplace back(v, u);
    if (v == root)
       childroot++;
     dfs(u, v);
     if (childroot > 1 && v == root) {
       artp[v] = 1;
       while (edge.size() > 0) {
         auto it = edge.back(); edge.pop back();
         block[nblock].push back(it);
         if (it == make pair(v, u))
           break;
       nblock++;
     if (low[u] >= num[v] \&\& v != root) {
       artp[v] = 1;
       while (edge.size() > 0) {
         auto it = edge.back(); edge.pop back();
         block[nblock].push back(it);
         if (it == make pair(v, u))
           break;
       nblock++;
     if (low[u] > num[v])
       bridge.emplace back(u, v);
     low[v] = min(low[v], low[u]);
   else if (bef != u && num[v] > num[u]) {
     low[v] = min(low[v], num[u]);
     edge.emplace back(v, u);
int main() {
 for (int i = 0; i < gr.n; i++) if (gr.num[i] == -1) {</pre>
   root = i;
   childroot = 0;
   edge.clear();
   dfs(i);
   artp[i] = childroot > 1;
   if (edge.size() > 0) {
    while (edge.size() > 0) {
       auto it = edge.back(); edge.pop back();
       block[nblock].push back(it);
```

```
    hblock++;
}
}
}
```

19. Strongly Connected Component

```
/***** Tarjan's SCC ****** for directed graph
vector< int > num, low, S, vis;
int cntr, numCC;
void tarjanSCC(int v) {
 low[v] = num[v] = ++cntr;
 vis[v] = 1;
 S.push back(v);
  for(auto u : adj[v]) {
  if(num[u] == -1)
     tarjanSCC(u);
   if(vis[u])
     low[v] = min(low[v], low[u]);
 if(low[v] == num[v]) {
   printf("SCC %d :", ++numCC);
     int u = S.back(); S.pop back(); vis[u] = 0;
     printf(" %d", u);
     if(u == v)
        break:
// In MAIN();
 num.assign(n_{i} -1);
 low.assign(n, 0);
 vis.assign(n, 0);
 cntr = numCC = 0;
  for(int i = 0; i<n; i++)</pre>
   if(num[i] == -1)
      tarjanSCC(i);
```

20. Dominator Tree

```
const int MAXN = 100010;
```

```
struct DominatorTree{
#define REP(i,s,e) for (int i=(s); i <=(e); i++)
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
 int n , m , s;
 vector< int > q[ MAXN ] , pred[ MAXN ];
 vector< int > cov[ MAXN ];
 int dfn[ MAXN ] , nfd[ MAXN ] , ts;
 int par[ MAXN ];
 int sdom[ MAXN ] , idom[ MAXN ];
 int mom[ MAXN ] , mn[ MAXN ];
 inline bool cmp( int u , int v )
 { return dfn[ u ] < dfn[ v ]; }
 int eval( int u ){
   if( mom[ u ] == u ) return u;
   int res = eval( mom[ u ] );
   if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
    mn[ u ] = mn[ mom[ u ] ];
   return mom[ u ] = res;
 void init( int n , int m , int s ){
   ts = 0; n = n; m = m; s = s;
   REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
 void addEdge( int u , int v ){
   g[ u ].push back( v );
   pred[ v ].push back( u );
 void dfs( int u ) {
   ts++;
   dfn[u] = ts;
   nfd[ts] = u;
   for( int v : q[ u ] ) if( dfn[ v ] == 0 ){
    par[v] = u;
     dfs( v );
 void build() {
  REP(i, 1, n){
    dfn[i] = nfd[i] = 0;
    cov[ i ].clear();
     mom[i] = mn[i] = sdom[i] = i;
   }
   dfs(s);
   REPD(i, n, 2)
    int u = nfd[ i ];
     if( u == 0 ) continue ;
     for( int v : pred[ u ] ) if( dfn[ v ] ){
       eval( v );
```

```
if( cmp( sdom[ mn[ v ] ] , sdom[ u ] ) )
         sdom[u] = sdom[mn[v]];
     cov[ sdom[ u ] ].push back( u );
     mom[ u ] = par[ u ];
     for( int w : cov[ par[ u ] ] ){
       eval( w );
       if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
        idom[w] = mn[w];
       else idom[ w ] = par[ u ];
     cov[ par[ u ] ].clear();
   REP(i, 2, n){
     int u = nfd[ i ];
     if( u == 0 ) continue ;
     if( idom[ u ] != sdom[ u ] )
       idom[ u ] = idom[ idom[ u ] ];
} domT;
```

21. Geometry: Point

```
typedef long double LD;
const LD EPS = 1e-9, PI = acos(-1);
inline bool eq(LD a, LD b) { return fabs(a-b) < EPS; }</pre>
inline bool lt(LD a, LD b) { return a + EPS < b; }</pre>
inline bool le(LD a, LD b) { return a < b + EPS; }</pre>
inline int sign(LD x) { return eq(x, 0) ? 0 : (x < 0 ? -1 : 1); }
struct point {
 point (LD x = 0, LD y = 0) : x(x), y(y) {}
 point operator+(const point& p) const { return point(x+p.x,
 point operator-(const point& p) const { return point(x-p.x,
y-p.y); }
 point operator*(LD s) { return point(x*s, y*s); }
 point operator/(LD s) { return point(x/s, y/s); }
 LD operator*(const point& p) const { return x*p.x + y*p.y; } //
 LD operator% (const point& p) const { return x*p.y - y*p.x; } //
 LD norm sq() { return *this * *this;
 LD norm() { return sqrt(*this * *this); }
 point rotate(LD cs, LD sn) { return point(x*cs-y*sn, x*sn+y*cs); }
```

```
point rotate(LD angle) { return rotate(cos(angle), sin(angle)); }
bool operator==(const point& p) const { return eq(x, p.x) && eq(y, p.y); }
bool operator<(const point& p) const { return eq(y, p.y) ? x < p.x
: y < p.y; }
};
int ccw(point a, point b, point c) { return sign((b - a) % (c - b));
}
LD dist(point a, point b) { return (b-a).norm(); }
LD dist2(point a, point b) { return (b-a).norm_sq(); }
LD angle(point a, point b) { return (b-a).norm_sq(); }
LD angle(point a, point o, point b) {
   point oa = a-o, ob = b-o;
   return acos(oa*ob/(oa.norm()*ob.norm()));
}
point bisector(point a, point b) { return a * b.norm() + b *
a.norm(); }</pre>
```

22. Geometry: Line

```
struct line {
  point a, ab; // p(t) = a + ab * t
 line(point ta, point tb) {
   if (tb < ta) swap(ta, tb);</pre>
   a = ta; ab = tb-ta;
 point b() { return a + ab; }
 bool isLine() { return ! (ab == point()); } // minor
  operator bool() { return ! (ab == point()); } // minor
  // Tine
 bool onLine(point p) {
   if (ab == point()) return a == p;
   return eq(ab % (p-a), 0);
 LD distLine(point p) {
   if (ab == point()) return dist(a, p);
    return fabs((p-a) % ab)/ab.norm();
 point projection(point p) {
   if (ab == point()) return a;
   return a + ab * ((p-a) * ab / ab.norm sq());
 point reflection(point p) {
    return projection(p) * 2.0 - p;
  // Segment
 bool onSegment(point p) {
    if (ab == point()) return a == p;
```

```
point pa = a-p, pb = b()-p;
    return eq(pa % pb, 0) && le(pa * pb, 0);
 LD distSegment(point p) {
   if (le((p-a) * ab, 0)) return dist(a, p);
    if (le(0, (p-b()) * ab)) return dist(b(), p);
    return distLine(p);
 point closestSegment(point p) {
    if (le((p-a) * ab, 0)) return a;
   if (le(0, (p-b()) * ab)) return b();
    return projection(p);
 bool areParallel(line 1) {
    return eq(ab % 1.ab, 0);
 bool areSame(line 1) {
    return are Parallel(1) && on Line(1.a) && 1.on Line(a);
};
bool areIntersect(line 11, line 12, point & res) {
 if (11.areParallel(12)) return 0;
 LD ls = (12.a - 11.a) \% 12.ab, rs = 11.ab \% 12.ab;
 res = 11.a + 11.ab * ls/rs;
 return 1;
```

23. Geometry: Circle and Triangle

```
// (Circle & Triangle)
vector<point> interCircle(point o1, LD r1, point o2, LD r2) {
   LD d2 = (o1 - o2).norm_sq();
   LD d = sqrt(d2);
   if (d < fabs(r1-r2)) return {};
   if (d > r1+r2) return {};
   point u = (o1+o2) * 0.5 + (o1-o2)*((r2*r2-r1*r1)/(2*d2));
   LD A = sqrt((r1+r2+d) * (r1-r2+d) * (r1+r2-d) * (-r1+r2+d));
   point v = point(o1.y-o2.y, -o1.x+o2.x) * (A / (2*d2));
   return {u+v, u-v};
}
// Heron's formula
LD heron(LD a, LD b, LD c) {
   LD s = (a + b + c) * 0.5;
   return sqrt(s * (s - a)) * sqrt((s-b) * (s-c));
}
// area by cross
```

```
LD areaTriangle(point a, point b, point c) {
 return fabs((a-b) % (c-b)) * 0.5;
LD rInCircle(double ab, double bc, double ca) {
 return heron(ab, bc, ca) / (0.5 * (ab + bc + ca));
LD rInCircle(point a, point b, point c) {
 return rInCircle(dist(a, b), dist(b, c), dist(c, a));
LD rCircumCircle(double ab, double bc, double ca) {// = BC / 2
 return ab * bc * ca / (4.0 * heron(ab, bc, ca));
LD rCircumCircle(point a, point b, point c) {
 return rCircumCircle(dist(a, b), dist(b, c), dist(c, a));
point inCenter(point &A, point &B, point &C) { // 内心
 LD = (B-C).norm(), b = (C-A).norm(), c = (A-B).norm();
 return (A * a + B * b + C * c) / (a + b + c);
point circumCenter(point &a, point &b, point &c) { // 外心
 point bb = b - a, cc = c - a;
 LD db = (bb).norm sq(), dc = (cc).norm sq(), d= 2*(bb % cc);
 return a-point(bb.y*dc-cc.y*db, cc.x*db-bb.x*dc) / d;
point othroCenter(point &a, point &b, point &c) { // 垂心
 point ba = b - a, ca = c - a, bc = b - c;
 LD y = ba.y * ca.y * bc.y
  A = ca.x * ba.y - ba.x * ca.y
   x0=(y+ca.x*ba.y*b.x-ba.x*ca.y*c.x) / A,
   y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
 return point(x0, y0);
point perp(const point& p) {
 return point(p.y, -p.x);
vector<pair<point, point> > tangent2Circle(point o1, double r1,
point o2, double r2) {
 vector<pair<point, point> > ret;
 LD d sq = (o1 - o2).norm sq();
 if( d sq < EPS ) return ret;</pre>
 LD d = sqrt(d sq);
 point v = (o2 - o1) / d;
 for( int sign1 = 1 ; sign1 >= -1 ; sign1 -= 2 ){
   LD c = (r1 - sign1 * r2) / d;
```

```
if( c * c > 1 ) continue;
LD h = sqrt(max( (LD) 0.0 , 1.0 - c * c ) );
for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
    point n;
    n.x = v.x * c - sign2 * h * v.y;
    n.y = v.y * c + sign2 * h * v.x;
    point p1 = o1 + n * r1;
    point p2 = o2 + n * ( r2 * sign1 );
    if( fabs( p1.x - p2.x ) < EPS and
        fabs( p1.y - p2.y ) < EPS )
        p2 = p1 + perp( o2 - o1 );
    ret.push_back( { p1 , p2 } );
}
return ret;
}</pre>
```

24. Geometry: The Great-Circle Distance (SPHERES)

25. Geometry: Polygon

```
// (Polygon)
double area(const vector< point > & P) {
   double result = 0.0;
   for(int i = 0; i+1 < (int)P.size(); ++i) {
      result += P[i] % P[i+1]; // cross(P[i], P[i+1]);
   }
   return fabs(result)/2.0;
}

// check if point p inside (CONVEX/CONCAVE) polygon vp
// 0 on boundary, -1 inside, 1 outside
int pointVsPolygon(point p, const vector< point >& vp) {
   int wn = 0, n = (int)vp.size() - 1;
```

```
for (int i = 0; i < n; i++) {
   int cs = ccw(vp[i+1], vp[i], p);
   if(cs == 0 \&\& (vp[i+1]-p) * (vp[i]-p) <= 0)
     return 0; // between(vp[i], p, vp[i+1])
   if(vp[i].y \le p.y) {
     if(vp[i+1].y > p.y \&\& cs > 0)
     if(vp[i+1].y \le p.y \&\& cs < 0)
       wn--;
  return wn == 0 ? 1 : -1;
// line segment p-q intersect with line A-B
point lineIntersectSeg(point p, point q, point A, point B) {
 double a = B.y - A.y;
 double b = A.x - B.x;
 double c = B.x * A.y - A.x * B.y;
 double u = fabs(a * p.x + b * p.y + c);
 double v = fabs(a * q.x + b * q.y + c);
 return point((p.x*v + q.x*u)/(u+v), (p.y*v + q.y*u)/(u+v));
// cuts polygon Q along the line formed by point a-> point b
// (note: the last point must be the same as the first point)
vector<point> cutPolygon(point a, point b, vector<point> Q) {
 vector<point> P;
 for (int i = 0; i < (int) \cdot 0 \cdot size(); i++) {
   double left1 = (b - a) % (Q[i] - a), left2 = 0.0;
   if(i != (int)Q.size()-1) left2 = (b - a) % (Q[i+1] - a);
   if(left1 > -EPS) P.push back(Q[i]);
   if(left1 * left2 < -EPS)
        P.push back(lineIntersectSeg(Q[i], Q[i+1], a, b));
   if(P.emptv()) return P;
    if(!(P.front() == P.back()))
        P.push back(P.front()); y
    return P;
```

26. Geometry: Convex hull

```
// Graham's Scan Algorithm
```

```
// need implement operator<,-,cross,ccw on Point's library
double dist2(point a, point b) {// norm sq(b - a)
  return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
point pivot;
bool angle cmp(point a, point b) {
 if(ccw(pivot, a, b) == 0)
    return dist2(a, pivot) < dist2(b, pivot);</pre>
 return ccw(pivot, a, b) > 0;
// hasil convexHull tidak siklik(P[0] != P.back())
void convexHull(vector<point> & P) {
 int i, j, n = (int) P.size();
 if(n < 3) {
    return;
  int PO = 0;
  for(i = 1; i < n; i++) {</pre>
   if(P[i] < P[PO]) {
      PO = i;
  swap(P[0], P[P0]);
  pivot = P[0];
  sort(++P.begin(), P.end(), angle cmp);
  // if point on boundary is included then uncomment this:
  // int k = (int) P.size() -1; while (k-1 > 0 \&\& ccw(P[0], P[k-1],
P.back()) == 0) k--;
  // reverse(P.begin() + k, P.end());
 vector<point> S;
  S.push back(P[0]);
  S.push back(P[1]);
  i = 2;
  while(i < n) {</pre>
    j = (int) S.size() - 1;
    // if point on boundary is included then ccw >= 0
   if(j < 1 \mid | ccw(S[j-1], S[j], P[i]) > 0) S.push back(P[i++]);
    else S.pop back();
  P = S;
```

27. Convex Hull Trick Dynamic

```
const ll is_query = -(1LL<<62);
struct Line {</pre>
```

```
11 m, b;
    mutable function<const Line*()> succ;
    bool operator<(const Line& rhs) const {</pre>
        if (rhs.b != is query) return m < rhs.m; // min: reverse it</pre>
        const Line* s = succ();
        if (!s) return 0;
       11 x = rhs.m;
        return b - s -> b < (s -> m - m) * x; // min: reverse it
};
struct HullDynamic : public multiset<Line> { // will maintain upper
hull for maximum
   bool bad(iterator y) {
        auto z = next(y);
        if (y == begin())
            if (z == end()) return 0;
            return y->m == z->m \&\& y->b <= z->b; // min: reverse it
        auto x = prev(v);
        if (z == end()) return y->m == x->m && y->b <= x->b; // min:
reverse it
        return (x->b - y->b)*(z->m - y->m) >= (y->b - z->b)*(y->m - y->m)
x->m); // beware overflow!
   void insert line(ll m, ll b) {
        auto y = insert({ m, b });
        y->succ = [=] { return next(y) == end() ? 0 : &*next(y); };
        if (bad(y)) { erase(y); return; }
        while (next(y) != end() \&\& bad(next(y))) erase(next(y));
        while (y != begin() && bad(prev(y))) erase(prev(y));
   ll eval(ll x) {
        auto l = *lower bound((Line) { x, is query });
        return 1.m * x + 1.b;
};
```

28. Knuth-Morris-pratt (Precompute & Checking)

Precompute:

```
Arrays.fill(a, 0);
for(int i = 1; i < n; i++) {
  int j = a[i - 1];
  while(j > 0 && s[i] != s[j]) j = a[j - 1];
  if(s[i] == s[j]) a[i] = j + 1;
}
```

Checking:

```
int[] b = computeKMP(pattern);
int j = 0;
for(int i = 0; i < text.length();) {
   if(pattern.charAt(j) == text.charAt(i)) {
      i++; j++;
   } else if(j > 0) {
      j = b[j - 1];
   } else {
      i++;
   }
   if(j == pattern.length()) {
      return i - pattern.length();
   }
}
return NOT_FOUND;
```

29. Manacher Algorithm (Palindrom)

```
Sumber: http://e-maxx.ru/algo/palindromes count
vector<int> d1 (n);
int l=0, r=-1;
for (int i=0; i<n; ++i) {</pre>
 int k = (i>r ? 0 : min (d1[1+r-i], r-i)) + 1;
 while (i+k < n \&\& i-k >= 0 \&\& s[i+k] == s[i-k]) ++k;
 d1[i] = k--;
 if (i+k > r)
   l = i-k, r = i+k;
vector<int> d2 (n);
1=0, r=-1;
for (int i=0; i<n; ++i) {</pre>
 int k = (i>r ? 0 : min (d2[1+r-i+1], r-i+1)) + 1;
 while (i+k-1 < n \&\& i-k >= 0 \&\& s[i+k-1] == s[i-k]) ++k;
 d2[i] = --k;
 if (i+k-1 > r)
   1 = i-k, r = i+k-1;
Sumber: http://codeforces.com/blog/entry/12143
vector< vector<int> > p(2, vector<int>(n,0)); //p[1][i] even,
p[0][i] odd palindrom center i
for (int z=0, l=0, r=0; z < 2; z++, l=0, r=0) {
 for (int i = 0; i < n; i++) {
    if (i < r) p[z][i] = min(r-i+!z, p[z][1+r-i+!z]);
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L-1 >= 0 \&\& R+1 < n \&\& s[L-1] == s[R+1]) p[z][i]++, L--,
```

```
R++;

if(R > r) l = L,r = R;

}
}
```

30. Z Algorithm

```
// z[k] = p tells us that s[0...p-1] equals s[k...k+p-1]
string s;
cin >> s;
int L = 0, R = 0;
int n = s.size();
for (int i = 1; i < n; ++i) {</pre>
if (i > R) {
   L = R = i;
   while (R < n \&\& s[R] == s[R-L]) ++R;
   Z[i] = R-L; --R;
 else {
   int k = i-L;
   if (Z[k] < R-i+1) Z[i] = Z[k];
    L = i;
     while (R < n \&\& s[R] == s[R-L]) ++R;
     Z[i] = R-L; --R;
```

31. Smallest String Rotation O(n)

```
string mcp(string s) {
   int n = s.length();
   s += s;
   int i=0, j=1;
   while (i < n & & j < n) {
      int k = 0;
      while (k < n & & s[i+k] == s[j+k]) k++;
      if (s[i+k] <= s[j+k]) j += k+1;
      else i += k+1;
      if (i == j) j++;
   }
   int ans = i < n ? i : j;
   return s.substr(ans, n);
}</pre>
```

32. Suffix Array + LCP

```
// suffix arrav
const int N = 1e5 + 5;
string s;
int sa[N], pos[N], lcp[N], tmp[N], gap, n;
bool cmp sa(int a, int b) {
 if(pos[a] - pos[b])
   return pos[a] < pos[b];</pre>
 a += qap; b += qap;
 return (a < n && b < n) ? pos[a] < pos[b] : a > b;
void build sa() {
 n = s.size();
 for(int i = 0; i<n; i++)</pre>
   sa[i] = i, pos[i] = s[i];
 for(gap = 1;; gap <<= 1)
   sort(sa, sa + n, cmp sa);
    for (int i = 1; i < n; i++) tmp[i] = tmp[i-1] + cmp sa(sa[i-1],
    for(int i = 0; i<n; i++) pos[sa[i]] = tmp[i];</pre>
    if(tmp[n-1] == n-1) break;
void build lcp() {
 for (int i = 0, k = 0; i < n; i++) if (pos[i] - n + 1) {
    for (int j = sa[pos[i] + 1]; s[j + k] == s[i + k]; k++);
   lcp[pos[i]] = k;
    if(k) k--;
```

33. Aho-Corasick

```
/** Aho-Corasick Dictionary Matching **/
const int NALPHABET = 26;

struct Node {
  Node** children, go;
  bool leaf;
  char charToParent;
  Node* parent, suffLink, dictSuffLink;
  int count, value;
```

```
Node(){
    children = new Node*[NALPHABET];
    go = new Node*[NALPHABET];
   for(int i = 0; i < NALPHABET; ++i) {</pre>
    children[i] = go[i] = NULL;
   parent = suffLink = dictSuffLink = NULL;
   leaf = false;
    count = 0;
};
Node* createRoot() {
 Node* node = new Node();
 node->suffLink = node;
 return node;
void addString(Node* node, const string& s, int value =-1) {
 for(int i = 0; i < s.length(); ++i){</pre>
   int c = s[i] - 'a';
   if(node->children[c] == NULL) {
    Node* n = new Node();
    n->parent = node;
    n->charToParent = s[i];
    node->children[c] = n;
   node = node->children[c];
  node->leaf = true;
  node->count++;
  node->value = value;
Node* suffLink(Node* node);
Node* dictSuffLink(Node* node);
Node* go(Node* node, char ch);
int calc(Node* node);
Node* suffLink(Node* node) {
 if (node->suffLink == NULL) {
   if (node->parent->parent == NULL) {
     node->suffLink = node->parent;
   } else {
     node->suffLink =
go(suffLink(node->parent), node->charToParent);
```

```
return node->suffLink;
Node* dictSuffLink(Node* node) {
 if(node->dictSuffLink == NULL) {
    Node* n = suffLink(node);
    if (node == n) {
      node->dictSuffLink = node;
      while (!n->leaf && n->parent != NULL) {
        n = dictSuffLink(n);
      node->dictSuffLink = n;
 return node->dictSuffLink;
Node* go(Node* node, char ch) {
 int c = ch - 'a';
 if (node->go[c] == NULL) {
   if (node->children[c] != NULL) {
      node->go[c] = node->children[c];
   } else {
      node->qo[c]= node->parent == NULL? node : qo(suffLink(node),
ch);
 return node->go[c];
int calc(Node* node) {
 if (node->parent == NULL) {
    return 0;
 } else {
    return node->count + calc(dictSuffLink(node));
int main() {
 Node* root = createRoot();
  addString(root, "a", 0);
  addString(root, "aa", 1);
  addString(root, "abc", 2);
  string s("abcaadc");
  Node* node = root;
  for (int i = 0; i < s.length(); ++i){</pre>
```

```
node = go(node, s[i]);
Node* temp = node;
while (temp != root) {
    if (temp->leaf) {
        printf("string (%d) occurs at position %d\n", temp->value,
    i);
    }
    temp = dictSuffLink(temp);
    }
}
return 0;
}
```

34. Palindromic Tree

```
* sfail: compressed fail links with same diff
* O(lgn): length of sfail link path
const int MAXN = 1e6+10;
struct PalT{
 int tot,lst;
 int nxt[MAXN][26], len[MAXN];
 int fail[MAXN], diff[MAXN], sfail[MAXN];
 char* s;
 int newNode(int 1, int fail) {
   int res = ++tot;
   fill(nxt[res], nxt[res]+26, 0);
   len[res] = 1, fail[res] = fail;
   diff[res] = 1 - len[ fail];
   if (diff[res] == diff[ fail])
     sfail[res] = sfail[ fail];
     sfail[res] = fail;
    return res;
  void push(int p) {
   int np = lst;
   int c = s[p] - 'a';
   while (p-len[np]-1 < 0 \mid \mid s[p] != s[p-len[np]-1])
    np = fail[np];
   if ((lst=nxt[np][c])) return;
   int nq f = 0;
    if (len[np]+2 == 1) nq f = 2;
    int tf = fail[np];
     while (p-len[tf]-1 < 0 \mid \mid s[p] != s[p-len[tf]-1])
       tf = fail[tf];
```

```
nq_f = nxt[tf][c];
}
int nq = newNode(len[np]+2, nq_f);
nxt[np][c] = nq;
lst=nq;
}
void init(char* _s){
    s = _s;
    tot = 0;
    newNode(-1, 1);
    newNode(0, 1);
    diff[2] = 0;
lst = 2;
}
} palt;
```

35. KD-Tree

```
const int MXN = 100005;
struct KDTree {
 struct Node {
   int x,y,x1,y1,x2,y2;
  int id,f;
  Node *L, *R;
 }tree[MXN];
  int n;
 Node *root;
  long long dis2(int x1, int y1, int x2, int y2) {
   long long dx = x1-x2;
   long long dy = y1-y2;
   return dx*dx+dy*dy;
  static bool cmpx(Node& a, Node& b) { return a.x<b.x; }</pre>
  static bool cmpy(Node& a, Node& b) { return a.y<b.y; }</pre>
  void init(vector<pair<int,int>> ip) {
    n = ip.size();
   for (int i=0; i<n; i++) {</pre>
      tree[i].id = i;
      tree[i].x = ip[i].first;
      tree[i].y = ip[i].second;
    root = build tree(0, n-1, 0);
 Node* build tree(int L, int R, int dep) {
   if (L>R) return nullptr;
    int M = (L+R)/2;
```

```
tree[M].f = dep%2;
  nth element(tree+L, tree+M, tree+R+1, tree[M].f ? cmpy : cmpx);
  tree[M].x1 = tree[M].x2 = tree[M].x;
  tree[M].y1 = tree[M].y2 = tree[M].y;
  tree[M].L = build tree(L, M-1, dep+1);
  if (tree[M].L) {
   tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
   tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
   tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
  tree[M].R = build tree(M+1, R, dep+1);
  if (tree[M].R) {
   tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
   tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
   tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
  return tree+M;
int touch(Node* r, int x, int y, long long d2) {
 long long dis = sgrt(d2)+1;
 if (x<r->x1-dis || x>r->x2+dis || y<r->y1-dis || y>r->y2+dis)
   return 0;
  return 1;
void nearest (Node* r, int x, int v, int &mID, long long &md2) {
 if (!r || !touch(r, x, y, md2)) return;
 long long d2 = dis2(r->x, r->y, x, y);
 if (d2 < md2 \mid | (d2 == md2 \&\& mID < r->id)) {
   mID = r->id;
   md2 = d2;
 }
  // search order depends on split dim
 if ((r->f == 0 \&\& x < r->x) | |
     (r->f == 1 && y < r->y)) {
  nearest(r->L, x, y, mID, md2);
   nearest(r->R, x, v, mID, md2);
   nearest(r->R, x, y, mID, md2);
   nearest(r->L, x, y, mID, md2);
int query(int x, int y) {
 int id = 1029384756;
```

```
long long d2 = 102938475612345678LL;
nearest(root, x, y, id, d2);
return id;
}
}tree;
```

36. Link-Cut Tree / Splay Tree

```
const int MXN = 100005;
const int MEM = 100005;
struct Splay {
 static Splay nil, mem[MEM], *pmem;
 Splav *ch[2], *f;
 int val, rev, size;
  Splay (): val(-1), rev(0), size(0)
 \{ f = ch[0] = ch[1] = &nil; \}
  Splay (int val) : val( val), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
 bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  { return f->ch[0] == this ? 0 : 1; }
 void setCh(Splay *c, int d) {
   ch[d] = c;
   if (c != &nil) c->f = this;
   pull();
 void push(){
    if(!rev ) return;
    swap(ch[0], ch[1]);
   if (ch[0] != &nil) ch[0]->rev ^= 1;
   if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev=0;
 void pull(){
   size = ch[0] -> size + ch[1] -> size + 1;
   if (ch[0] != &nil) ch[0]->f = this;
   if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x){
 Splav *p = x->f;
 int d = x->dir();
 if (!p->isr()) p->f->setCh(x, p->dir());
 else x->f = p->f;
       p->setCh(x->ch[!d], d);
 x->setCh(p, !d);
```

```
p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x){
 splayVec.clear();
 for (Splay *q=x;; q=q->f) {
    splayVec.push back(q);
    if (q->isr()) break;
  reverse (begin (splayVec), end (splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
   if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir())
     rotate (x->f), rotate (x);
    else rotate(x), rotate(x);
Splay* access(Splay *x) {
  Splay *q = nil;
 for (;x!=nil;x=x->f) {
   splay(x);
   x->setCh(q, 1);
   q = x;
  return q;
void evert(Splay *x){
 access(x); splay(x); x->rev ^= 1; x->push(); x->pull();
void link(Splay *x, Splay *y) {
// evert(x);
 access(x); splay(x); evert(y); x->setCh(y, 1);
void cut(Splay *x, Splay *y){
// evert(x);
 access(y); splay(y); y->push(); y->ch[0] = y->ch[0]->f = nil;
int N, Q;
Splay *vt[MXN];
int ask(Splay *x, Splay *y) {
access(x); access(v); splay(x);
 int res = x->f->val; if (res == -1) res=x->val;
 return res;
int main(int argc, char** argv){
 scanf("%d%d", &N, &Q);
  for (int i=1; i<=N; i++)</pre>
```

```
vt[i] = new (Splay::pmem++) Splay(i);
while (Q--) {
    char cmd[105];
    int u, v;
    scanf("%s", cmd);
    if (cmd[1] == 'i') {
        scanf("%d%d", &u, &v);
        link(vt[v], vt[u]);
    } else if (cmd[0] == 'c') {
        scanf("%d", &v);
        cut(vt[1], vt[v]);
    } else {
        scanf("%d%d", &u, &v);
        int res=ask(vt[u], vt[v]);
        printf("%d\n", res);
    }
}
```

37. Implicit Treap

```
* Treap uses implicit key
 * This Implementation : maintain array, can insert and delete in any
position, can reverse interval
#include <bits/stdc++.h>
using namespace std;
typedef struct item * pitem;
struct item
 int cnt, value, prior;
 bool rev;
 pitem l, r;
 item(int prior, int value) : cnt(1), rev(false), prior(prior),
value(value), 1(NULL), r(NULL) {}
};
int cnt(pitem t) {
 return t ? t->cnt : 0;
void upd cnt(pitem it) {
 if (it.)
    it->cnt = cnt(it->1) + cnt(it->r) + 1;
void push(pitem it) {
 if (it && it->rev) {
   it->rev = false;
    swap(it->l, it->r);
```

```
if (it->1) it->1->rev ^= true;
    if (it->r) it->r->rev ^= true;
void merge(pitem & t, pitem l, pitem r) {
 push(1);
 push(r);
 if (!l || !r)
  t = 1 ? 1 : r;
 else if (l->prior > r->prior)
   merge(1->r, 1->r, r), t=1;
   merge (r->1, 1, r->1), t = r;
 upd cnt(t);
void split(pitem t, pitem & 1, pitem & r, int key, int add = 0) {
 if (!t)
   return void (1 = r = 0);
 int cur key = cnt(t->1) + add;
 if (key <= cur key)</pre>
    split(t->1, 1, t->1, key, add), r = t;
    split(t->r, t->r, r, key, add + cnt(t->1) + 1), 1 = t;
  upd cnt(t);
void reverse(pitem t, int l, int r) {
 pitem t1, t2, t3;
 split(t, t1, t2, 1);
  split(t2, t2, t3, r-1+1);
 t2->rev ^= true;
 merge(t, t1, t2);
 merge(t, t, t3);
int main() {
 int n;
  scanf("%d", &n);
  srand(time(NULL));
 pitem root = NULL;
  for (int i = 0; i < n; i++) {</pre>
   int a;
   scanf("%d", &a);
   pitem cur = new item(rand(), a);
   if (root)
    merge(root, root, cur);
    else
     root = cur;
  int m;
```

```
scanf("%d", &m);
for (int i = 0; i < m; i++) {
  int l, r;
  scanf("%d %d", &l, &r);
  reverse(root, l, r);
  output(root);
}</pre>
```

38. Policy-based Data Structure