Outils Mathématiques Année 2024-2025

Interrogation 1

6 Mars 2025 Durée : 1h

Attention : Lorsqu'un calcul est demandé, il est attendu que les étapes permettant d'aboutir au résultat soient détaillées. Plus généralement, toute réponse doit être justifiée.

Exercice 1 (Inversion matricielle)

1/ Soient
$$A = \begin{pmatrix} 2 & -2 \\ 1 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$.

Inverser les matrices A et B en appliquant la méthode du pivot.

On applique l'algorithme du pivot de Gauss. Commençons par la matrice A.

$$M_{0} = \begin{pmatrix} \boxed{2} & -2 & | & 1 & 0 \\ 1 & -2 & | & 0 & 1 \end{pmatrix} \quad L'_{2} = 2L_{2} - L_{1}$$

$$2L_{2} = \begin{pmatrix} 2 & -4 & | & 0 & 2 \end{pmatrix}$$

$$-L_{1} = \begin{pmatrix} -2 & 2 & | & -1 & 0 \end{pmatrix}$$

$$L'_{2} = \begin{pmatrix} 0 & -2 & | & -1 & 2 \end{pmatrix}$$

$$M_{1} = \begin{pmatrix} 2 & -2 & | & 1 & 0 \\ 0 & \boxed{-2} & | & -1 & 2 \end{pmatrix} \quad L'_{1} = L_{1} - L_{2}$$

$$L_{1} = \begin{pmatrix} 2 & -2 & | & 1 & 0 \end{pmatrix}$$

$$-L_{2} = \begin{pmatrix} 0 & 2 & | & 1 & -2 \end{pmatrix}$$

$$L'_{1} = \begin{pmatrix} 2 & 0 & | & 2 & -2 \end{pmatrix} \quad L'_{1} = \frac{1}{2}L_{1}$$

$$L'_{2} = \frac{-1}{2}L_{2}$$

$$M_{3} = \begin{pmatrix} 1 & 0 & | & 1 & -1 \\ 0 & 1 & | & \frac{1}{2} & -1 \end{pmatrix}$$

Donc A est inversible et son inverse est $A^{-1} = \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & -1 \end{pmatrix}$.

En ce qui concerne la matrice B, on a :

$$M_{0} = \begin{pmatrix} \boxed{1} & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & 0 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \quad L'_{3} = L_{3} - L_{1}$$

$$L_{3} = \begin{pmatrix} 1 & 1 & 1 & | & 0 & 0 & 1 \\ -L_{1} = \begin{pmatrix} -1 & -2 & 2 & | & -1 & 0 & 0 \\ -L_{1} = \begin{pmatrix} -1 & -2 & 2 & | & -1 & 0 & 0 \\ 0 & \boxed{1} & -2 & | & 0 & 1 & 0 \\ 0 & -1 & 3 & | & -1 & 0 & 1 \end{pmatrix} \quad L'_{1} = L_{1} - 2L_{2}$$

$$M_{1} = \begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & \boxed{1} & -2 & | & 0 & 1 & 0 \\ 0 & -1 & 3 & | & -1 & 0 & 1 \end{pmatrix} \quad L'_{3} = L_{3} + L_{2}$$

$$L_{3} = \begin{pmatrix} 0 & -1 & 3 & | & -1 & 0 & 1 \\ -1 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$L_{2} = \begin{pmatrix} 0 & 1 & -2 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 0 & 1 & 0 \\ 0 & 0 & \boxed{1} & | & -1 & 1 & 1 \end{pmatrix}$$

$$L_{1} = \begin{pmatrix} 1 & 0 & 2 & | & 1 & -2 & 0 \\ 0 & 1 & -2 & | & 0 & 1 & 0 \\ 0 & 0 & \boxed{1} & | & -1 & 1 & 1 \end{pmatrix}$$

$$L_{1} = \begin{pmatrix} 1 & 0 & 2 & | & 1 & -2 & 0 \\ 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$L_{1} = \begin{pmatrix} 1 & 0 & 2 & | & 1 & -2 & 0 \\ -2L_{3} = \begin{pmatrix} 0 & 0 & -2 & | & 2 & -2 & -2 \\ -2L_{3} = \begin{pmatrix} 0 & 0 & 2 & | & -2 & 2 & 2 \\ -2 & 2 & 0 & 1 & | & -2 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$M_{3} = \begin{pmatrix} 1 & 0 & 0 & | & 3 & -4 & -2 \\ 0 & 1 & 0 & | & -2 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

Donc *B* est inversible et son inverse est $B^{-1} = \begin{pmatrix} 3 & -4 & -2 \\ -2 & 3 & 2 \\ -1 & 1 & 1 \end{pmatrix}$.

$$2/ \text{ Soit } C = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

a) Calculer C^2 puis $C^2 - 3C$.

On a
$$C^2 = \begin{pmatrix} -2 & 3 & -3 \\ -3 & 4 & -3 \\ 3 & -3 & 4 \end{pmatrix}$$
 et $C^2 - 3C = -2I_3$.

b) En déduire que C est inversible et donner l'expression de son inverse C^{-1} .

Ainsi, on a $\frac{-1}{2}(C - 3I_3)C = I_3$.

Donc
$$C$$
 est inversible et $C^{-1} = \frac{-1}{2}(C - 3I_3) = \begin{pmatrix} \frac{3}{2} & \frac{-1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Exercice 2 (Diagonalisation)

Soit
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
.

1/ Calculer le polynôme caractéristique de la matrice A en le laissant sous forme factorisée. En déduire l'ensemble des valeurs propres de la matrice A.

Le polynôme caractéristique de A est $P_A(X) = (X-1)(X-2)(X-3)$. L'ensemble des valeurs propres de A est donc $\{1,2,3\}$.

2/ Trouver une base de chacun des sous-espaces propres de la matrice A.

Espace propre associé à la valeur propre $\lambda = 3$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. $AX = 3X$ si et seulement si :

$$\begin{cases} 3x = 3x \\ 2x + 2y = 3y \\ 4x + z = 3z \end{cases}$$
ssi
$$\begin{cases} 2x + 2y = 3y \\ 4x + z = 3z \end{cases}$$
ssi
$$\begin{cases} y = 2x \\ 2z = 4x \end{cases}$$
ssi
$$\begin{cases} y = 2x \\ z = 2x \end{cases}$$

Ainsi, AX = 3X si et seulement s'il existe $x \in \mathbb{R}$ tel que $X = \begin{pmatrix} x \\ 2x \\ 2x \end{pmatrix} = xe_1$ avec

$$e_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
. Donc (e_1) est base de $E_3(A)$.

Espace propre associé à la valeur propre $\lambda = 2$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. $AX = 2X$ si et seulement si :

$$\begin{cases} 3x = 2x \\ 2x + 2y = 2y \\ 4x + z = 2z \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ 2y = 2y \\ z = 2z \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$

Ainsi, AX = 2X si et seulement s'il existe $y \in \mathbb{R}$ tel que $X = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} = ye_2$ avec $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Donc (e_2) est base de $E_2(A)$.

Espace propre associé à la valeur propre $\lambda=1.$

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. $AX = X$ si et seulement si :

$$\begin{cases} 3x = x \\ 2x + 2y = y \\ 4x + z = z \end{cases} \quad \text{ssi} \quad \begin{cases} x = 0 \\ 2y = y \\ z = z \end{cases} \quad \text{ssi} \quad \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Ainsi, AX = X si et seulement s'il existe $z \in \mathbb{R}$ tel que $X = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = ze_3$ avec $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. (e_3) est base de $E_1(A)$.

3/ La matrice A est-elle diagonalisable? Justifier.

La famille $\underline{b' = (e_1, e_2, e_3)}$ est une base de vecteurs propres de A. La matrice A est donc diagonalisable.

Exercice 3 (Loi binomiale)

Rappel:

- On dit que la variable aléatoire X suit la **loi binomiale** de paramètres $n \in \mathbb{N}^*, p \in]0,1[$ et on note $X \sim \mathcal{B}(n,p)$ si X prend ses valeurs dans $\{0,1,...,n\}$ et si pour tout $k \in \{0,1,...,n\}, \mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- On rappelle la **formule du capitaine**. Pour $1 \le k \le n$, on a :

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

Soit $p \in [0, 1[$ et soit X une variable aléatoire suivant la loi Binomiale $\mathcal{B}(5; p)$.

1/ Calculer $\mathbb{E}(X)$.

On a:

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \mathbb{P}(X = k) \quad \text{formule de transfert}$$

$$= \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1 - p)^{n-k} \quad \text{1er terme nul}$$

$$= n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k} \quad \text{formule du capitaine}$$

$$= n \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l+1} (1-p)^{n-(l+1)} \quad \text{cdv } l = k-1$$

$$= n p \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l} (1-p)^{(n-1)-l}$$

$$= n p (p+(1-p))^{n-1} \quad \text{binôme de Newton}$$

$$= n p$$

$$= 5 p$$

2/ Calculer $\mathbb{E}(X(X-1))$.

Par ailleurs:

$$\mathbb{E}(X(X-1)) = \sum_{k=0}^{n} k(k-1)\mathbb{P}(X=k)$$

$$= \sum_{k=2}^{n} k(k-1)\mathbb{P}(X=k) \quad \text{on retire les termes nuls}$$

$$= \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k}$$

D'après la formule du capitaine (que l'on applique deux fois), on a pour $2 \le k \le n$:

$$k(k-1)\binom{n}{k} = n(k-1)\binom{n-1}{k-1} = n(n-1)\binom{n-2}{k-2}$$

Si bien que:

$$\mathbb{E}(X(X-1)) = n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} p^k (1-p)^{n-k}$$

$$= n(n-1) \sum_{l=0}^{n-2} \binom{n-2}{l} p^{l+2} (1-p)^{n-(l+2)} \quad \text{cdv } l = k-2$$

$$= p^2 n(n-1) \sum_{l=0}^{n-2} \binom{n-2}{l} p^l (1-p)^{(n-2)-l}$$

$$= p^2 n(n-1) (p+(1-p))^{n-2} \quad \text{binôme de Newton}$$

$$= p^2 n(n-1)$$

$$= 20p^2$$

3/ Calculer $\mathbb{V}(X)$.

En écrivant $X^2 = X(X-1) + X$, on a :

$$\begin{split} \mathbb{V}(X) &= \mathbb{E}(X^2) - \mathbb{E}(X)^2 \\ &= \mathbb{E}(X(X-1) + X) - \mathbb{E}(X)^2 \\ &= \mathbb{E}(X(X-1)) + \mathbb{E}(X) - \mathbb{E}(X)^2 \quad \text{lin\'earit\'e de l'esp\'erance} \\ &= p^2 n(n-1) + np - n^2 p^2 \\ &= n^2 p^2 - np^2 + np - n^2 p^2 \\ &= -np^2 + np \\ &= np(1-p) \\ \hline &= 5p(1-p) \end{split}$$

4/ Pour quelle valeur de p la variance de X est-elle maximale?

La variance de X s'écrit $\mathbb{V}(X) = -5p^2 + 5p$. Il s'agit d'une fonction polynomiale en p de degré 2, qui atteint son maximum sur]0,1[en $p=\frac{1}{2}.$

Bonus (Loi uniforme)

À ne faire que si la totalité des exercices précédents ont été traités.

Définition:

Soit $n \in \mathbb{N}^*$. On dit que la variable aléatoire X suit la **loi uniforme** sur $\{1, 2, ..., n\}$ et on note $X \sim \mathcal{U}(\{1, 2, ..., n\})$ si X prend ses valeurs dans $\{1, 2, ..., n\}$ et si pour tout $k \in \{1, 2, ..., n\}$, $\mathbb{P}(X = k) = 1/n$.

On pose n = 19. Soit $X \sim \mathcal{U}(\{1, 2, ..., n\})$.

1/ Calculer $\mathbb{E}(X)$.

On a:

$$\mathbb{E}(X) = \sum_{k=1}^{n} k \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{n} \frac{k}{n}$$

$$= \frac{1}{n} \frac{n(n+1)}{2} \quad \text{somme des premiers termes d'une suite arithmétique}$$

$$= \frac{n+1}{2}$$

$$= 10$$

 $\mathbf{2}/$ On admet que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$ Calculer $\mathbb{V}(X).$

On a d'abord :

$$\mathbb{E}(X^2) = \sum_{k=1}^n k^2 \mathbb{P}(X = k)$$

$$= \sum_{k=1}^n \frac{k^2}{n}$$

$$= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} \quad \text{indication de l'énoncé}$$

$$= \frac{(n+1)(2n+1)}{6}$$

Puis:

$$\begin{split} \mathbb{V}(X) &= \mathbb{E}(X^2) - \mathbb{E}(X)^2 \\ &= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} \;\; \text{par ce qui précède} \\ &= \frac{n^2-1}{12} \;\; \text{en mettant au même dénominateur} \\ &= 30 \end{split}$$