

Network Applications

- E-mail
- WWW
- Instant messaging
- Remote login
- P2P file sharing
- Multi-user network games
- Streaming audio/video
 - You Tube, Hulu, Netflix

- Voice over IP (e.g. Skype)
- Real-time video conferencing
- Grid computing
- On-line Social Network
 - Facebook, Twitter, etc...
- E-Commerce
- Distributed Databases
- Search

Note: different applications may have different

- · Requirements (delay, loss, Throughput, jitter bounds, security)
- · Number of participants (unicast, multicast, broadcast, etc...)
- Architecture (client-server, p2p, flat, hierarchical, hybrid, etc...)
- · All applications can communicate over a single shared network

Creating a Networked Application

Write programs that:

- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software

No need to write software for network-core devices

- network-core devices do not run user applications

Client Server Architecture

Server:

- Always-on host
- Permanent IP address
- Data centers for scaling

Clients:

- Communicate with server
- May be intermittently connected
- May have dynamic IP addresses
- Do not communicate directly with each other

P2P Architecture

- No always-on server
- arbitrary end systems directly communicate
- Peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- Peers are intermittently connected and change IP addresses (e.g. Gnutella)
 - complex management

P2P: Centralized Directory

original "Napster" design

- 1) when peer connects, it informs central server:
 - * IP address
 - content
- 2) Alice queries for "Hey Jude"
- 3) Alice requests file from Bob

file transfer is decentralized, but locating content is highly centralized

P2P Case Study: Skype Architecture

- Proprietary application-layer protocol with encrypted msgs
- Skype Peers connect to each other for a VoIP call
- Super Nodes are Skype Peers with special functionality (Usernames-to-IP Address mappings)
- SN Overlay Network
- Skype Login Server

Cloud Computing (EE542)

· Elastic resources

- Expand and contract resources
- Pay-per-use
- Infrastructure on demand

Multi-tenancy

- Multiple independent users
- Security and resource isolation
- Amortize the cost of the (shared) infrastructure
- · Flexible service management

Cloud Computing Service Models

· Software as a Service

- Provider licenses applications to users as a service
- E.g., customer relationship management, e-mail, ...
- Avoid costs of installation, maintenance, patches..

· Platform as a Service

- Provider offers platform for building applications
- = E.g., Google's App-Engine
- Avoid worrying about scalability of platform

· Infrastructure as a Service

- Provider offers raw computing, storage, and network
- E.g., Amazon's Elastic Computing Cloud (EC2)
- Avoid buying servers and estimating resource needs

Azure

CDN: Content Delivery Networks

- Proactive content replication
 - Content provider (e.g., CNN)
 contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

Case Study: Netflix Architecture

>Netflix is the single largest source of Internet Traffic

>Consume ~ 30% of Peak Downlink Traffic

Network Software (I)

- NOS include special functions for connecting hosts into a network
- NOS manages network resources and services
- NOS provide network security for multiple users
- Most common Client/Server NOS include:
 - UNIX
 - Microsoft NT/Windows 2000
 - Novell Netware
 - LINUX
 - OS/2
 - Others

Network Software (II)

- Network hosts communicate through the use of client software called "Shells, Redirectors, Requesters"
- Network Protocols (such as TCP/IP, SPX/IPX, NETBEUI, etc..) enables data transmission across the network
- Client software resides on top of the network protocols.

Network Hardware

- Users accessing network resources must have a Pathway to those resources.
- Host connect to networks using expansion cards known as Network Interface Cards (NICs), a.k.a. Adapter Cards.
- Network cards communicate by sending signals through the medium (Twisted pair, Coax, Fiber, Radio, etc..)

Links: Medium + Adapter Cards

Communication Medium

Network Adapter

Network Classifications

- Networks can be classified based on Coverage into
 - LANs: Local Area Networks
 - WANs: Wide Area Networks
 - Others including MAN (Metropolitan Area Networks, PAN (Personal Area Networks), Home Networks, etc...
- Networks could also be classified as Switched or Shared (Broadcast) networks
- Networks could also be classified based on their functionalities for example Backbone Networks,
 Content Delivery Networks, Overlay Networks,
 etc..

Switched vs. Broadcast Networks

a. LAN with a common cable (past)

b. LAN with a switch (today)

Local Area Networks (I)

Single building LAN

Multiple building LAN

Local Area Networks (II)

EE450, USC, Zahid

Metropolitan Area Network

Wide Area Networks

Home Networks

Typical home network components

- ADSL or cable modem
- Router/firewall/NAT
- Ethernet

Backbone Networks

Overlay Networks

- Logical network built on top of physical network
 - Overlay link is tunnel through underlying network
- Many logical networks may coexist at once
 - Over the same underlying network
- Nodes are often end hosts
 - Acting as intermediate nodes that forward traffic
- Who controls the nodes providing service?
 - The party providing the service
 - Distributed collection of end users

Wireless Networks

Wireless LANs (802.11)

- · Access Point (AP)
 - Base station that communicates with the wireless hosts
- Basic Service Set (BSS)
 - Coverage of one AP
 - AP acts as the master
 - Identified by an
 "network name" known
 as an SSID

SSID: Service Set Identifier

BSS 2

Ad-Hoc Wireless Mesh

Ad hoc mode

- · No base stations
- Nodes can only transmit to other nodes within link coverage
- Nodes self-organize and route among themselves
- Can create multi-hop wireless networks, instead of a wired backend

Sensor Networks

- Smart structures
- Search and rescue
- Homeland security
- Event detection
- Battlefield surveillance

- Energy (transmit and processing) is driving constraint
- Data flows to centralized location
- Low per-node rates but tens to thousands of nodes
- Intelligence is in the network rather than in the device

Future Wireless Networks

Ubiquitous Communication Among People and Devices

EE450, USC, Zahid

Next-generation Cellular Wireless Internet Access Wireless Multimedia Sensor Networks Smart Homes/Spaces Automated Highways In-Body Networks All this and more ...