

Computer Architecture and Logic Design (CALD) Lecture 16

Dr. Sorath Hansrajani

Assistant Professor

Department of Software Engineering

Bahria University Karachi Campus

Email: sorathhansrajani.bukc@bahria.edu.pk

Design Process of Synchronous Sequential Circuits

These slides were assembled by Mustafa Kemal Uyguroğlu, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Design Procedure

- Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

State	AB
S_0	0 0
S_1	0 1
S_2	1 0
S_3	1 1

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0.	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis using **D** Flip-Flops

$$A(t+1) = D_A(A, B, x)$$

= $\sum (3, 5, 7)$
 $B(t+1) = D_B(A, B, x)$
= $\sum (1, 5, 7)$
 $y(A, B, x) = \sum (6, 7)$

+

Design of Clocked Sequential Circuits with D F.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using **D** Flip-Flops

$$D_A(A, B, x) = \sum (3, 5, 7)$$

= $A x + B x$

$$D_B(A, B, x) = \sum (1, 5, 7)$$

= $A x + B'x$

$$y(A, B, x) = \sum (6, 7)$$
$$= A B$$

				3
	0	0	1	0
\overline{A}	0	1	1	0
_		$^{ extsf{\textsf}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	c	

			$oldsymbol{B}$		
	0	0	0	0	
$oldsymbol{A}$	0	0	1	1	
_		ر ر	\mathcal{C}		

Design of Clocked Sequential Circuits with *D* F.F.

■ *Example*:

Detect 3 or more consecutive 1's

Synthesis using **D** Flip-Flops

$$D_A = A x + B x$$

$$D_B = A x + B'x$$

$$y = A B$$

+ Flip-Flop Excitation Tables

Present		F.F.
State	State	Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F. Inj	F. put
Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

		(No change) (Reset)	
	10	(Set) (Toggle)	
_		(Reset) (Toggle)	
<		(No change) (Set)	

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

+

Design of Clocked Sequential Circuits with *JK* F.F.

■ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Ne Sta	ext ate		Flip- Inp	Flop outs	
A	B	<u>X</u>	A	B	J_A	K_{A}	J_{B}	K
0	 •••	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	X	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	X	0

Synthesis using JK F.F.

$$J_A(A, B, x) = \sum (3)$$

 $d_{JA}(A, B, x) = \sum (4,5,6,7)$
 $K_A(A, B, x) = \sum (4,6)$
 $d_{KA}(A, B, x) = \sum (0,1,2,3)$
 $J_B(A, B, x) = \sum (1,5)$
 $d_{JB}(A, B, x) = \sum (2,3,6,7)$
 $K_B(A, B, x) = \sum (2,3,6)$
 $d_{KB}(A, B, x) = \sum (0,1,4,5)$

Eastern Mediterranean University

+

Design of Clocked Sequential

Circuits with JK F.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using JK Flip-Flops

$$J_A = B x \qquad K_A = x'$$

$$J_B = x K_B = A' + x'$$

ı				3
	0	0	1	0
\overline{A}	X	X	X	X
		,	c	

			<i>I</i>	3	ı
	X	X	X	X	
\overline{A}	1	0	0	1	
		ι κ	r		

Design of Clocked Sequential

Circuits with TF.F.

■ Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		F.F. Input	
A	B	X	A	B	T_A	T_{B}
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Synthesis using T Flip-Flops

$$T_A(A, B, x) = \sum (3, 4, 6)$$

 $T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$

Design of Clocked Sequential

Circuits with TF.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using T Flip-Flops

$$T_A = A x' + A'B x$$

$$T_B = A'B + B \oplus x$$

