# My title\*

# My subtitle if needed

First author A

Another author

 $March\ 29,\ 2024$ 

First sentence. Second sentence. Third sentence. Fourth sentence.

# Table of contents

| 1  | Introduction                                                                                                           | 2         |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| 2  | Data2.1 Financial Statement Data2.2 Stock Exchange Data                                                                |           |  |  |  |
| 3  | Model           3.1         Model set-up                                                                               |           |  |  |  |
| 4  | Results                                                                                                                |           |  |  |  |
| 5  | Discussion5.1 First discussion point5.2 Second discussion point5.3 Third discussion point5.4 Weaknesses and next steps | Ĉ         |  |  |  |
| Αŗ | ppendix                                                                                                                | 10        |  |  |  |
| Α  | Additional data details                                                                                                | 10        |  |  |  |
| В  | Model details  B.1 Posterior predictive check                                                                          | <b>10</b> |  |  |  |

<sup>\*</sup>Code and data are available at: LINK.

| В.2     | Diagnostics | <br> | <br> | 10 |
|---------|-------------|------|------|----|
| Referen | ices        |      |      | 11 |

#### 1 Introduction

You can and should cross-reference sections and sub-sections.

The remainder of this paper is structured as follows. ?@sec-data....

#### 2 Data

Public companies whose stock are traded on exchanges, must disclose certain financial metrics in their quarterly and yearly financial statements. Investors then use these metrics to help inform their decision when selecting companies to invest in. Some of the most important metrics investors look at are Earnings Per Share, Net Income, and Dividends (Shakespeare 2020). Investments take the form of buying shares or stocks which allows the investor to own a fraction of the company.

The data used for analysis is obtained through Walton Research Data Services (WRDS) by the University of Pennsylvania. WRDS provides access to Compustat, a database of financial, statistical, and market information on global companies since 1962. Our data comes from Compustat's North America Fundamentals Annual database, which contains both financial data from all public North American companies, collected by Compustat from each company's annual financial statements or from stock exchanges (Figure 1). This Data is cleaned and analysed in R Core Team (2022) with assistance from Wickham et al. (2019), Richardson et al. (2024), Arel-Bundock (2022), Gabry and Mahr (2024), David Robinson (2023), Auguie (2015), Goodrich et al. (2024), and Xie (2023).

| Year | Tic | EPS  | Dividends | Net_Income | Price |
|------|-----|------|-----------|------------|-------|
| 2014 | ABT | 1.49 | 1363      | 2284       | 45.02 |
| 2015 | ABT | 2.92 | 1464      | 4423       | 44.91 |
| 2016 | ABT | 0.94 | 1547      | 1400       | 38.41 |
| 2017 | ABT | 0.27 | 1947      | 477        | 57.07 |
| 2018 | ABT | 1.33 | 2047      | 2368       | 72.33 |
| 2019 | ABT | 2.06 | 2343      | 3687       | 86.86 |

Figure 1: Data from Compustat North America Fundamentals Annual. EPS, Dividends, and Net Income are financial statement data while Price are stock exchange data, and Year and Tic can be found on both.

#### 2.1 Financial Statement Data

Earnings per share, net income, and dividends are items that are found on financial statements. Specifically, EPS and net income can be found on the income statement while dividends can be found on the statement of retained earnings. This data is likely unbiased and free from error as financial statements are required by law to be audited (verified by an independent third party).

EPS is a commonly used measure of a given company's value in USD; it is calculated as net income divided by the number of shares of stock. A higher EPS indicates greater value as investors are willing to pay more for a company's shares if they think the company has higher profits relative to its share price (Shakespeare 2020). We expect earnings to be positively correlated with stock price.

Net income is used to measure profitability or how much income the company gets to keep after expenses are paid for. Higher net income means that the company is profitable by either

#### 2.2 Stock Exchange Data

The price is the amount that each share costs to buy, it is determined by supply and demand for a company. For example, if investors believe a company is profitable, they will buy shares with the goal of eventually sharing in said profit, increasing demand and driving up share price.

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

::: {#tbl-summary-statistics .cell tbl-cap=' '} ::: {.cell-output-display}

| summary_stats | earnings_per_share | net_income | dividends | price   |
|---------------|--------------------|------------|-----------|---------|
| Min           | -11.80             | -22819.00  | 0.00      | 2.67    |
| 1st Quartile  | 2.30               | 3003.10    | 353.50    | 62.60   |
| Median        | 4.56               | 7120.00    | 2972.00   | 113.91  |
| Mean          | 6.20               | 11752.12   | 4029.56   | 192.22  |
| 3rd Quartile  | 7.40               | 14728.00   | 6249.50   | 190.92  |
| Max           | 112.00             | 99803.00   | 25999.00  | 3334.30 |

Note:

::: :::



Figure 2: Bills of penguins



Figure 3: Relationship between me and ur mom

Talk way more about it.

## 3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

#### 3.1 Model set-up

Define  $y_i$  as the number of seconds that the plane remained a loft. Then  $\beta_i$  is the wing width and  $\gamma_i$  is the wing length, both measured in millimeters.

Simple Model

$$y = \beta_0 + \beta_1 X + \epsilon \tag{1}$$

$$Y \sim \text{Normal}(\beta, \sigma^2)$$
 (2)

Where Y is the stock price and X is earnings per share.

We run the model in R (citeR?) using the rstanarm package of (rstanarm?). We use the default priors from rstanarm.

Multivariable Model

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 - \beta_3 X_3 + \epsilon \tag{3}$$

$$Y \sim \text{Normal}(\beta, \sigma^2)$$
 (4)

Where X1 is EPS, X2 is net income, and X3 is dividends.

#### 3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance  $\theta$ .

Table 1: Explanatory models of flight time based on wing width and wing length

|              | Net_Income |
|--------------|------------|
| (Intercept)  | 27.249     |
|              | (11.472)   |
| EPS          | 26.591     |
|              | (1.055)    |
| Num.Obs.     | 483        |
| R2           | 0.569      |
| R2 Adj.      | 0.568      |
| AIC          | 6526.5     |
| BIC          | 6539.0     |
| Log.Lik.     | -3260.248  |
| $\mathbf{F}$ | 635.550    |
| RMSE         | 206.66     |

# 4 Results

Our results are summarized in Table 1.



and wing length'} ::: {.cell-output-display}

::: :::

Table 2: Explanatory models of flight time based on wing width and wing length



Table 3: Explanatory models of flight time based on wing width and wing length

|               | EPS Only  | With Net Income |
|---------------|-----------|-----------------|
| (Intercept)   | 27.25     | 60.74           |
|               | (11.47)   | (11.57)         |
| EPS           | 26.59     | 30.93           |
|               | (1.05)    | (1.13)          |
| $Net\_Income$ |           | -0.01           |
|               |           | (0.00)          |
| Num.Obs.      | 483       | 483             |
| R2            | 0.569     | 0.620           |
| R2 Adj.       | 0.568     | 0.618           |
| AIC           | 6526.5    | 6468.0          |
| BIC           | 6539.0    | 6484.7          |
| Log.Lik.      | -3260.248 | -3229.981       |
| F             | 635.550   | 391.501         |
| RMSE          | 206.66    | 194.10          |

Table 4: priors

|                     | Non-scaled priors | Auto-scaling priors |
|---------------------|-------------------|---------------------|
| (Intercept)         | -100.48           | 60.85               |
| EPS                 | 24.32             | 30.86               |
| ${\bf Net\_Income}$ | 0.00              | -0.01               |
| Num.Obs.            | 483               | 483                 |
| R2                  | 0.438             | 0.619               |
| R2 Adj.             | 0.208             | 0.586               |
| Log.Lik.            | -3410.327         | -3230.747           |
| ELPD                | -3424.6           | -3248.6             |
| ELPD s.e.           | 82.7              | 74.4                |
| LOOIC               | 6849.2            | 6497.1              |
| LOOIC s.e.          | 165.5             | 148.8               |
| WAIC                | 6850.8            | 6501.0              |
| RMSE                | 270.70            | 194.10              |

#### prior\_summary(model\_rstanarm\_2)

```
Priors for model 'model_rstanarm_2'
Intercept (after predictors centered)
  Specified prior:
    ~ normal(location = 0, scale = 2.5)
  Adjusted prior:
    ~ normal(location = 0, scale = 788)
Coefficients
  Specified prior:
    ~ normal(location = [0,0], scale = [2.5,2.5])
  Adjusted prior:
    ~ normal(location = [0,0], scale = [88.11, 0.05])
Auxiliary (sigma)
  Specified prior:
    ~ exponential(rate = 1)
  Adjusted prior:
    ~ exponential(rate = 0.0032)
See help('prior_summary.stanreg') for more details
```

## 5 Discussion

#### 5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

#### 5.2 Second discussion point

## 5.3 Third discussion point

## 5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

## **Appendix**

## A Additional data details

#### **B** Model details

#### **B.1** Posterior predictive check

In Figure 4a we implement a posterior predictive check. This shows...

In Figure 4b we compare the posterior with the prior. This shows...



- (a) Posterior prediction check
- (b) Comparing the posterior with the prior

Figure 4: Examining how the model fits, and is affected by, the data

#### **B.2 Diagnostics**

Figure 5a is a trace plot. It shows... This suggests...

Figure 5b is a Rhat plot. It shows... This suggests...

"



Figure 5: Checking the convergence of the MCMC algorithm

#### References

Arel-Bundock, Vincent. 2022. "modelsummary: Data and Model Summaries in R." *Journal of Statistical Software* 103 (1): 1–23. https://doi.org/10.18637/jss.v103.i01.

Auguie, Baptiste. 2015. gridExtra: Miscellaneous Functions for "Grid" Graphics. http://CRAN.R-project.org/package=gridExtra.

David Robinson, Simon Couch, Alex Hayes. 2023. "Broom: Convert Statistical Objects into Tidy Tibbles." https://broom.tidymodels.org/.

Gabry, Jonah, and Tristan Mahr. 2024. "Bayesplot: Plotting for Bayesian Models." https://mc-stan.org/bayesplot/.

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2024. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Richardson, Neal, Ian Cook, Nic Crane, Dewey Dunnington, Romain François, Jonathan Keane, Dragos Moldovan-Grünfeld, Jeroen Ooms, Jacob Wujciak-Jens, and Apache Arrow. 2024. Arrow: Integration to 'Apache' 'Arrow'. https://github.com/apache/arrow/.

Shakespeare, Catherine. 2020. "Reporting Matters: The Real Effects of Financial Reporting on Investing and Financing Decisions." *Accounting and Business Research* 20 (5). https://doi.org/10.1080/00014788.2020.1770928.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Xie, Yihui. 2023. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.