[n []	
.n []	<pre>import pandas as pd Old Data np.random.seed(123)</pre>
	<pre># Quantitative Response Y_old = np.random.normal(loc=50, scale=10, size=500) # Quantitative variables X1_old = np.random.normal(loc=30, scale=25, size=500) # Binary variables X2_old = np.random.uniform(low=0.0, high=1.0, size=500).round() # Multiclass categorical variables X3_old = np.random.uniform(low=0, high=4, size=500).round() # categories: 0,1,2,3,4</pre>
In []	New Data (with a big change in X1 distribution) np.random.seed(666) # Quantitative Response Y_new = np.random.normal(loc=50, scale=10, size=500)
	<pre># Quantitative variables X1_new = np.random.normal(loc=15, scale=60, size=500) # Binary variables X2_new = np.random.uniform(low=0.0, high=1.0, size=500).round()</pre>
[n []	
[n []	<pre>from mizani.formatters import percent_format</pre>
	<pre>df_Old_New = pd.concat([df_Old , df_New]) repeat_Old = ['Old Data']*len(df_Old) repeat_New = ['New Dta']*len(df_New) df_repeat_New = pd.DataFrame({"group": repeat_New}) df_repeat_Old = pd.DataFrame({"group": repeat_Old}) groups = pd.concat([df_repeat_Old , df_repeat_New]) df_Old_New_groups = pd.concat([df_Old_New , groups], axis=1) df_Old_New_groups</pre>
Out[]	
[n []	
	<pre>ggplot(df_Old_New_groups) + aes(x='X1' , y = after_stat('width*density')) + geom_histogram(fill="red", color="black", bins = 25) + labs(x = "X1", y = "Relative Frequency") + scale_x_continuous(breaks = range(int(df_Old_New_groups['X1'].min()) , int(df_Old_New_groups['X1'].max()) , 50)) + scale_y_continuous(breaks = np.arange(0, 0.5, 0.02)) + facet_wrap('group'))</pre>
	0.26 - 0.24 - 0.22 - 0.20 - 20 - 0.18 -
	0.10 - 0.10 - 0.00 - 0.
	0.04 - 0.02 - 0 - 171-121-71 -21 29 79 129 179 -171-121-71 -21 29 79 129 179 X1
Out[]	* <ggplot: (144229958650)=""> We are going to consider the following definition of PAI (instead of use the variance, we will use the standard deviation. if we would consider the PAI definition with the variance, the process to compute it would have been very similar) Where:</ggplot:>
	The numerator is computing by resampling methods using the model trained with the Old Data (for the response and the predictors) but predicting the response variable using the New Data for the predictors. The denominator is computing by resampling methods using the model trained Old Data (for the response and the predictors) and also predicting the response variable using the Old Data for the predictors.
	$PAI = \frac{\frac{1}{N}\sum_{i \in NewData}\widehat{Var}(\hat{y}_i)}{\frac{1}{n}\sum_{i \in OldData}\widehat{Var}(\hat{y}_i)}$ So, PAI is the quotient between the mean variance of the response predictions, using the model trained with the Old data but using the New data for the predictors to get the response predictions and the mean variance of the response predictions, using the model trained with the Old data for the predictors to get the response predictions
[n []	<pre>def varcharProcessing(X, varchar_process = "dummy_dropfirst"): dtypes = X.dtypes if varchar_process == "drop": X = X.drop(columns = dtypes[dtypes == np.object].index.tolist())</pre>
	<pre>elif varchar_process == "dummy": X = pd.get_dummies(X,drop_first=False) elif varchar_process == "dummy_dropfirst": X = pd.get_dummies(X,drop_first=True) else: X = pd.get_dummies(X,drop_first=True)</pre>
	<pre>X["intercept"] = 1 cols = X.columns.tolist() cols = cols[-1:] + cols[:-1] X = X[cols] return X</pre>
in [] in [] out[]	df_old['x3'] = df_old['x3'].astype('category') df_old Y
	1 59.973454 31.741019 0.0 3.0 2 52.829785 23.363859 0.0 4.0 3 34.937053 53.239612 1.0 1.0 4 44.213997 61.520532 1.0 3.0 495 55.678801 45.869078 1.0 2.0
	496 55.129828 56.747965 1.0 2.0 497 49.730774 7.266825 1.0 0.0 498 53.115815 41.756594 0.0 1.0 499 48.579493 2.214239 1.0 3.0
in []	
	df_Old_BOOT_SAMPLE = df_Old_sample(n=len(df_Old) , random_state=i , replace=True) # i-th boot sample X_old_BOOT_SAMPLE = df_Old_BOOT_SAMPLE[['X1', 'X2', 'X3']] y_old_BOOT_Sample = df_Old_BOOT_SAMPLE[['Y1'] X_old_BOOT_Sample = varcharProcessing(X_old_Boot_Sample, varchar_process = "dummy_dropfirst") # we train the model with i-th boot sample of the Old_Data: Model_train_Old_data = LinearRegression().fit(X_old_Boot_Sample, y_old_Boot_Sample) # y predictions using Model_train_old_data with the original Old_Data for the predictors X_old = df_Old[['X1', 'X2', 'X3']] X_old = varcharProcessing(X_old, varchar_process = "dummy_dropfirst") # La idea es que con cada iteracion el modelo cambia (los parametros) ya que ha sido entrenado con diferentes data set (las muestras bootstrap) # Pero las predicciones se hacen usando siempre el mismo data set (Old_Data), para asi asegurar que \hat(Y) i es siempre la prediccion de la respuesta # para el i-esimo individuo (cambiará porque al re-entrenar el modelo con las distintas muestras boot cambian los parametros de este, pero no cambia # el vector x_i de valores de los predictores del individuo i, con los que tambien se genera la prediccion # Por tanto si hubiese mucha variabilidad entre los valores obtenidos de \hat{Y}_i = \hat{\text{beta}} \times as deberia no a cambios en x_i (puesto que # en este programa no cambia), si no a cambios en \hat{\text{beta}} \times debidos a las diferentes muestras boot usadas para entrenar el modelo. # ien lugar del modelo de regresion lineal multiple usaesmos toro de la misma indo(basicamente un modelo que pueda ser entrenado con unos datos # y pueda realizar predicciones sobre una respuesta usando otros datos), la idea seria la misma.
	$ y_predictions_Old_Data[i, :] = Model_train_Old_data.predict(X_old) $
	$\widehat{y_k}^r$ is the response prediction for the k -th element of the original Old_Data_Set, obtained using the model trained with the r -th boot sample of Old_Data_Set $n = \text{len}(\text{Old}_Data_Set)$ $B = n^o$ of boot samples
	<pre>sy_predictions_Old_Data array([[49.42508598, 50.11472721, 48.97935105,, 50.27502977, 51.17601889, 47.40202062], [48.87265439, 50.14896569, 49.86794534,, 49.2737149 , 49.40472179, 49.47626932], [48.66618825, 50.95861995, 48.82043962,, 50.59214347, 48.66699903, 49.84584848], , [49.19061918, 51.17108553, 50.27997571,, 49.4269939 , 49.36788126, 51.11558309], [48.43534486, 50.99945593, 50.51160695,, 50.99576546, 47.97549545, 51.38434772], [49.00485734, 50.35848299, 50.47602223,, 49.57213947, 50.16560803, 49.00704667]])</pre>
In []	We compute the standard deviation of each column of the matrix , and we get an estimation of $Var(\hat{y_i})$ for $i=1,\ldots,n$: So, the i-th value of the following vector is $\widehat{Var}(\hat{y_i})$ # compute the variance by cols in an array
In []	Company Comp
Out[]	Now, we compute the mean of the previous vector: $\frac{1}{n} \cdot \sum_{i=1,\dots,n} \widehat{Var}(\hat{y_i})$
Out[]	y_predictions_Old_Data.var(axis=0).mean() 1.3526733933331723 PAI_denominator = y_predictions_Old_Data.var(axis=0).mean()
[n [] Out[]	PAI_denominator 1.3526733933331723 We repeat the previous process but now we get the response predictions for de predictors of the New_Data_Set (this is so important, taking into a count the PAI definitions). df_New['X2'] = df_New['X2'].astype('category')
in []	<pre>df_New['X3'] = df_New['X3'].astype('category') B=100 y_predictions_New_Data = np.zeros((B , len(df_New))) for i in range(0, B):</pre>
	<pre># i-th boot sample of the Old Data df_Old_BOOT_SAMPLE = df_Old.sample(n=len(df_Old) , random_state=i , replace=True) X_old_Boot_Sample = df_Old_BOOT_SAMPLE[['X1', 'X2', 'X3']] y_old_Boot_Sample = df_Old_BOOT_SAMPLE[['Y']]</pre>
	<pre>y_old_Boot_Sample = df_Old_BOOT_SAMPLE['Y'] X_old_Boot_Sample = varcharProcessing(X_old_Boot_Sample, varchar_process = "dummy_dropfirst") X_new = df_New[['X1', 'X2', 'X3']] y_new = df_New[['Y']]</pre>
	<pre>y_new = df_New['Y'] X_new = varcharProcessing(X_new, varchar_process = "dummy_dropfirst") Model_Old_Boot_Sample = LinearRegression().fit(X_old_Boot_Sample, y_old_Boot_Sample) # y predictions for the New Data using the model trained with the Old Data Boot_Sample</pre>
[n []	<pre># y predictions for the New Data using the model trained with the Old Data Boot Sample # For this step with sk-learn is necessary X_new (test_set) columns have the same name as X_old (train set) columns y_predictions_New_Data[i, :] = Model_Old_Boot_Sample.predict(X_new) PAI_numerator = y_predictions_New_Data.var(axis=0).mean()</pre>
[n []	2.406479599837219
[n []	PAI = PAI_numerator / PAI_denominator PAI 1.7790544352375588 Remember:
	$PAI = rac{rac{1}{N} \sum_{i \in NewData} \widehat{Var}(\hat{y}_i)}{rac{1}{n} \sum_{i \in OldData} \widehat{Var}(\hat{y}_i)}$
	Then, in mean, the variance of the response predictions using the New Data Set is 1.78 times greater than the variance of the response predictions using the Old Data Set. Following the interpretation "values less than 1.1 indicate no significant deterioration; values from 1.1 to 1.5 indicate a deterioration requiring further investigation, values exceeding 1.5 indicate the predictive accuracy of the model has deteriorated significantly" exposed in the paper The Population Accuracy Index: A New Measure of Population Stability for Model Monitoring, so, the PAI value that we have got (1.78) indicates that the predictive accuracy of the model has deteriorated significantly, so the model should be trained again using the New Data Set instead the Old.