Session 4

49-781 Data Analytics for Product Managers Spring 2018

Section 1

Interactive Terms

Interactive Terms

So far, we have been using individual predictors as main terms.

It's possible that there is a joint effect of predictors, and that it's really the co-existence of two predictors that impacts the outcome.

An **interactive effect** between predictors is an additional change to the response that occurs at particular combination of predictors.

Interaction can be between categorical, numeric or a combination of variables. (There could also be more than two variables)

One Categorical, One Continuous

```
"","id","chol","stab.glu","hdl","ratio","glyhb","location","age","gender","height","weight","frame","bp.1s","bp.1d","bp.2s","bp.2d","waist","hip","time.ppn"
"1",1000,203,82,56,3.5999999,4.30999994,"Buckingham",46,"female",62,121,"medium",118,59,NA,NA,29,38,720
"2",1001,165,97,24,6.9000001,4.44000006,"Buckingham",29,"female",64,218,"large",112,68,NA,NA,46,48,360
"3",1002,228,92,37,6.19999981,4.63999987,"Buckingham",58,"female",61,256,"large",190,92,185,92,49,57,180
"4",1003,78,93,12,6.5,4.63000011,"Buckingham",67,"male",67,119,"large",110,50,NA,NA,33,38,480
"5",1005,249,90,28,8.89999962,7.71999979,"Buckingham",64,"male",68,183,"medium",138,80,NA,NA,44,41,300
"6",1008,248,94,69,3.5999999,4.80999994,"Buckingham",34,"male",71,190,"large",132,86,NA,NA,36,42,195
"7",1011,195,92,41,4.80000019,4.84000015,"Buckingham",30,"male",69,191,"medium",161,112,161,112,46,49,720
"8",1015,227,75,44,5.19999981,3.94000006,"Buckingham",37,"male",59,170,"medium",NA,NA,NA,NA,NA,34,39,1020
"9",1016,177,87,49,3.5999999,4.84000015,"Buckingham",45,"male",69,166,"large",160,80,128,86,34,40,300
"10",1022,263,89,40,6.5999999,5.78000021,"Buckingham",55,"female",63,202,"small",108,72,NA,NA,45,50,240
```

Let us fit a multiple linear regression model including a two way interaction between **age and frame**

Frame is a categorical variable with three levels (small, medium and large)

Age and Frame Only - No Interaction

```
Dep. Variable:
                            chol
                                  R-squared:
                                                               0.067
Model:
                             OLS
                                  Adj. R-squared:
                                                               0.059
                    Least Squares F-statistic:
Method:
                                                               9.175
                 Wed, 11 Apr 2018 Prob (F-statistic):
Date:
                                                           7.07e-06
                                  Log-Likelihood:
Time:
                         07:22:30
                                                             -2013.8
No. Observations:
                             390
                                  ATC:
                                                               4036.
Df Residuals:
                             386
                                  BIC:
                                                               4051.
Df Model:
Covariance Type:
                        nonrobust
                         std err
                                               P>|t|
                                                        [0.025
                                                                   0.975]
                   coef
Intercept
               176.7377 8.455 20.903
                                              0.000
                                                    160.114
                                                                  193,362
frame[T.medium] 9.7609 5.324 1.833
                                              0.068 -0.708 20.229
frame[T.small] -4.1812 6.107 -0.685
                                              0.494 -16.188 7.826
                 0.5916
                           0.139
                                  4.256
                                              0.000
                                                         0.318
                                                                   0.865
age
```

Age and Frame with Interaction

Dep. Variable: R-squared: 0.079 chol Model: OLS Adj. R-squared: 0.067 F-statistic: Method: Least Squares 6 580 6.85e-06 Wed, 11 Apr 2018 Prob (F-statistic): Date: Log-Likelihood: Time: 07:22:30 -2011.2 No. Observations: 390 ATC: 4034. Df Residuals: 384 BIC: 4058.

Df Model: 5

Covariance Type: nonrobust

=======================================	========			=======	=========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	200.9110	14.653	13.711	0.000	172.100	229.722
<pre>frame[T.medium]</pre>	-16.3423	17.631	-0.927	0.355	-51.008	18.323
frame[T.small]	-44.9474	18.984	-2.368	0.018	-82.273	-7.621
age	0.1341	0.266	0.505	0.614	-0.388	0.657
age:frame[T.medium]	0.4997	0.335	1.493	0.136	-0.158	1.158
age:frame[T.small]	0.8511	0.378	2.252	0.025	0.108	1.594

Large frame: $chol = 200.9 + 0.1341 \times age$

Medium Frame: $chol = 200.9 - 16.3423 + (0.1341 + 0.4997) \times age$ Small Frame: $chol = 200.9 - 44.9474 + (0.1341 + 0.8511) \times age$

In addition to main coefficients for age and frame, we see additional terms for interaction of age with two non-reference levels of frame.

If at least one level is significant, we should treat the categorical variable as significant.

So there is statistically significant interaction between age and frame.

Plot them

```
Large frame: chol = 200.9 + 0.1341 \times age

Medium Frame: chol = 200.9 - 16.3423 + (0.1341 + 0.4997) \times age

Small Frame: chol = 200.9 - 44.9474 + (0.1341 + 0.8511) \times age
```


The non-parallel nature of the three lines reflects the effect of interaction.

Code (Lab later)

```
main = sm.ols(formula="chol ~ age+frame",data=d).fit()
print(main.summary())

inter = sm.ols(formula="chol ~ age*frame",data=d).fit()
print(inter.summary())
```

Two Categorical Variables

nonrobust

Gender and Frame: "chol ~ gender*frame"

Covariance Type:

Dep. Variable: chol R-squared: 0.025 Model: OLS Adj. R-squared: 0.012 Method: Least Squares F-statistic: 1.947 Thu, 12 Apr 2018 Prob (F-statistic): 0.0858 Date: 17:18:42 Log-Likelihood: Time: -2022.3 No. Observations: 390 AIC: 4057. Df Residuals: 384 BIC: 4080. Df Model:

	========		========	========		
	coef	std err	t	P> t	[0.025	0.975]
Intercept	209.8810	6.722	31.222	0.000	196.664	223.098
<pre>gender[T.male]</pre>	-3.1760	8.735	-0.364	0.716	-20.351	13.998
<pre>frame[T.medium]</pre>	4.5759	7.845	0.583	0.560	-10.849	20.001
<pre>frame[T.small]</pre>	-10.2433	8.526	-1.201	0.230	-27.007	6.520
<pre>gender[T.male]:frame[T.medium]</pre>	0.6897	10.981	0.063	0.950	-20.900	22.279
<pre>gender[T.male]:frame[T.small]</pre>	-3.3146	12.634	-0.262	0.793	-28.156	21.527

Two Continuous Variables

chol ~ height*weight

Dep. Variable: chol R-squared: 0.010 Model: OLS Adj. R-squared: 0.003 Method: Least Squares F-statistic: 1.369 Thu, 12 Apr 2018 Prob (F-statistic): Date: 0.252 17:20:39 Log-Likelihood: Time: -2059.2 No. Observations: 396 AIC: 4126. Df Residuals: 392 BIC: 4142. Df Model: Covariance Type: nonrobust coef std err P>|t| [0.025 0.975] Intercept 360.5061 176.110 2.047 0.041 14.269 706.744 height -2.5536 2.675 -0.955 0.340 -7.813 2.705 weight -0.5511 0.987 -0.559 0.577 -2.491 1.389 height:weight 0.0097 0.015 0.651 0.516 -0.020 0.039

Higher Order Interactions

chol ~ height*waist*hip

===========	========	========	========	========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	2121.8158	1762.750	1.204	0.229	-1343.950	5587.581
height	-33.7402	27.064	-1.247	0.213	-86.951	19.470
waist	-43.6014	47.000	-0.928	0.354	-136.008	48.806
height:waist	0.7946	0.718	1.107	0.269	-0.617	2.206
hip	-46.1213	42.251	-1.092	0.276	-129.192	36.949
height:hip	0.7876	0.650	1.211	0.227	-0.491	2.066
waist:hip	1.0799	1.036	1.042	0.298	-0.958	3.118
height:waist:hip	-0.0189	0.016	-1.187	0.236	-0.050	0.012

Combine Main & Interactive Terms

chol ~ age+weight+age*weight

=========									
	coef	std err	t	P> t	[0.025	0.975]			
Intercept	125.9460	28.568	4.409	0.000	69.782	182.110			
age	1.4679	0.607	2.420	0.016	0.275	2.661			
weight	0.2959	0.161	1.843	0.066	-0.020	0.612			
age:weight	-0.0047	0.003	-1.369	0.172	-0.012	0.002			

Interactive Terms

Lab Review

Code for Slide Exercises

```
import numpy as np
import pandas as pd
import statsmodels.formula.api as sm
# # Multiple Logistic Regression
d=pd.read csv("diabetes.csv")
main = sm.ols(formula="chol ~ age+frame",data=d).fit()
print(main.summary())
inter = sm.ols(formula="chol ~ age*frame",data=d).fit()
print(inter.summary())
inter = sm.ols(formula="chol ~ gender*frame",data=d).fit()
print(inter.summary())
inter = sm.ols(formula="chol ~ height*weight",data=d).fit()
print(inter.summary())
inter = sm.ols(formula="chol ~ age+weight+age*weight",data=d).fit()
print(inter.summary())
```

Section 2

Linear Model Selection

Linear Model Selection

Statisticians refer to the balancing act between **goodness-of-fit** and **complexity** as the principle of parsimony, where the goal of the associated model selection is to find a model that's as simple as possible (in other words, with relatively low complexity), without sacrificing too much goodness-of-fit.

General Guidelines

- For categorical variables, you cannot just remove some levels (You can remove the entire predictor)
- If an interaction is present in the fitted model, all lower-order interactions and main effects of the relevant predictors must remain in the model.
- In models where you've used a polynomial transformation of a certain explanatory variable, keep all lower-order polynomial terms in the model if the highest is deemed significant.

Celebrated statistician George Box (1919–2013): "All models are wrong, but some are useful."

Linear Model Selection

Analysis of Variance

Nested Comparisons

In nested models, the smaller model is a reduced version of the bigger, more complex model.

Height~Wr.Hnd+Sex Height~Wr.Hnd+Sex+Smoke

Test with Anova

Analysis of Variance is useful for comparing means from different models for statistical significance.

```
Height~Wr.Hnd+Sex

Height~Wr.Hnd+Sex+Smoke

df_resid ssr df_diff ss_diff F Pr(>F)

0 204.0 9959.181574 0.0 NaN NaN NaN

1 201.0 9914.305976 3.0 44.875598 0.303265 0.823015
```

The result of this particular test, is a high p-value of 0.823, suggesting no evidence against H_o.

This means that adding Smoke to the reduced model, which includes only the explanatory variables Wr.Hnd and Sex, offers no tangible improvement in fit when it comes to modeling student height.

Diabetes Data Set

cholesterol based on age and frame.

(Identify and delete any individuals with a missing value for age or for frame.)

- chol~1
- chol~age
- chol~age+frame
- chol~age*frame

```
        df_resid
        ssr
        df_diff
        ss_diff
        F
        Pr(>F)

        0
        389.0
        747264.823077
        0.0
        NaN
        NaN
        NaN

        1
        388.0
        712078.244044
        1.0
        35186.579033
        19.630610
        0.000012

        2
        386.0
        697527.450662
        2.0
        14550.793383
        4.058947
        0.018010

        3
        384.0
        688294.773581
        2.0
        9232.677081
        2.575458
        0.077433
```

Notes

(If you hadn't deleted the records containing missing values in those predictors, you would've received an error telling you that the data sets for the four models were not equal sizes.)

- including age provides a significant improvement to modeling chol;
- including a main effect for frame provides a further mild improvement;
- there's very weak evidence, if any, that including an interactive effect is beneficial to goodness-of-fit.

From this, you might prefer to use the main-effects-only model.

Quick Lab

```
d=pd.read_csv("diabetes.csv")
chol1 = sm.ols(formula="chol ~ 1",data=d).fit()
chol2 = sm.ols(formula="chol ~ age",data=d).fit()
chol3 = sm.ols(formula="chol ~ age+frame",data=d).fit()
chol4 = sm.ols(formula="chol ~ age*frame",data=d).fit()
print(sma.stats.anova_lm(chol1,chol2,chol3,chol4))
```

Linear Model Selection

Forward Selection

Model Selection: Forward Selection

Start with an intercept-only model

Perform a series of independent tests to determine which of your predictor variables significantly improves the goodness-of-fit.

Update your model object by adding that term

Execute the series of tests again for all remaining terms to determine which of those would further improve the fit.

Repeat the process until there aren't any more terms that improve the fit in a statistically significant way.

Nuclear Dataset

cost

The capital cost of construction in millions of dollars adjusted to 1976 base.

date

The date on which the construction permit was issued. The data are measured in years since January 1 1990 to the nearest month.

t1

The time between application for and issue of the construction permit.

t2

The time between issue of operating license and construction permit.

сар

The net capacity of the power plant (MWe).

pr

A binary variable where 1 indicates the prior existence of a LWR plant at the same site.

ne

A binary variable where 1 indicates that the plant was constructed in the north-east region of the U.S.A.

ct

A binary variable where 1 indicates the use of a cooling tower in the plant.

bw

A binary variable where 1 indicates that the nuclear steam supply system was manufactured by Babcock-Wilcox.

cum.n

The cumulative number of power plants constructed by each architect-engineer.

pt

A binary variable where 1 indicates those plants with partial turnkey guarantees.

Base Model with no predictors

```
cost ~ 1
                         OLS Regression Results
Dep. Variable:
                              chol R-squared:
                                                                   0.000
                                   Adj. R-squared:
Model:
                               OLS
                                                                   0.000
Method:
                     Least Squares
                                   F-statistic:
                                                                     inf
Date:
                   Wed, 11 Apr 2018
                                   Prob (F-statistic):
                                                                     nan
Time:
                                   Log-Likelihood:
                          12:48:59
                                                                 -2027.2
No. Observations:
                               390
                                    AIC:
                                                                   4056.
Df Residuals:
                               389
                                    BTC:
                                                                   4060.
Df Model:
Covariance Type:
                         nonrobust
               coef std err
                                             P>|t|
                                      t
                                                      [0.025
                                                                  0.975]
Intercept
           207.8385 2.219 93.647 0.000 203.475
                                                                 212,202
```

Compare against a model with each predictor

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	562837.107402	1.0	334335.201295	17.820531	<u>0.000207</u>	date	
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697 710188.747817	0.0	NaN	NaN	NaN		
1	30.0	710188.747817	1.0	186983.56088	7.898614	0.00863	t1	
	df_resid	ssr 897172.308697	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	897144.924936	1.0	27.383761	0.000916	0.97606	t2	
	df_resid	897144.924936 ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	697499.098161	1.0	199673.210536	8.588106	0.006414	сар	
	df_resid	ssr 897172.308697	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	888135.636650	1.0	9036.6/204/	0.305246	0.584/05	pr	
	df_resid	ssr 897172.308697	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	768531.357071 ssr	1.0	128640.951626	5.021563	0.032589	ne	
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	854130.070411	1.0	43042.238286	1.511792	0.228422	ct	
	df_resid	ssr 897172.308697	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	880966.893535	1.0	6205.415162	0.551851	0.46334	bw	
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	829234.216944	1.0	67938.091753	2.457861	0.127427	cumn	
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)		
0	31.0	897172.308697	0.0	NaN	NaN	NaN		
1	30.0	591838.528850	1.0	305333.779847	15.477217	0.000458	pt	

New Base Model with date

cost ~ date

```
Dep. Variable:
                              cost
                                    R-squared:
                                                                  0.373
Model:
                              OLS
                                    Adj. R-squared:
                                                                  0.352
Method:
                     Least Squares
                                    F-statistic:
                                                                  17.82
                Wed, 11 Apr 2018
                                    Prob (F-statistic):
Date:
                                                               0.000207
Time:
                         15:03:36
                                    Log-Likelihood:
                                                              -201.81
No. Observations:
                                    AIC:
                                                                  407.6
Df Residuals:
                               30
                                    BIC:
                                                                  410.5
Df Model:
Covariance Type:
                         nonrobust
               coef
                      std err
                                            P>|t|
                                                      Γ0.025
                                                                 0.9751
                                                             -3159.386
Intercept -6553.5666 1661.963
                              -3.943
                                            0.000
                                                  -9947,748
           102,2893
                              4.221
date
                    24.231
                                            0.000
                                                  52.803
                                                             151.775
```

Compare with remaining predictors

	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	
1	29.0	547515.249347	1.0	15321.858055 0.811546 0.375084	t1
	df resid	ssr	df diff	ss diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	
1	29.0	494675.912803	1.0	68161.194599 3.995898 0.055061	t2
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	
1	29.0	373105.360239	1.0	189731.747163 14.747096 <mark>0.000616</mark>	cap <
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	
1	29.0	558809.947565	1.0	4027.159837 0.208993 0.650964	pr
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	
				92256.402704 5.685392 0.023867	
				ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	ct
1	29.0	508043.436220	1.0	54793.671182 3.127718 0.087491	
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	bw
1	29.0	561597.054694	1.0	1240.052708 0.064034 0.802015	
				ss_diff F Pr(>F)	
0	30.0	562837.107402	0.0	NaN NaN NaN	cumn
				4658.211856 0.242016 0.626457	
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
				NaN NaN NaN	pt
1	29.0	472250.424653	1.0	90586.682749 5.562756 0.0253	

New Base Model with date & cap

cost ~ date+cap

OLS Regression Results

=======									
Dep. Varia	ble:	(cost R-s	quared:		0.584			
Model:			OLS Adj	. R-squared:		0.555			
Method:		Least Squa	ares F-s	tatistic:		20.37			
Date:	V	Wed, 11 Apr 2	2018 Pro	b (F-statist	ic):	2.98e-06			
Time:		15:08	3:59 Log	-Likelihood:		-195.23			
No. Observ	ations:		32 AIC	•		396.5			
Df Residua	ls:		29 BIC	•		400.9			
Df Model:			2						
Covariance	Type:	nonrol	oust						
=======						========			
	coef	std err	t	P> t	[0.025	0.975]			
Intercept	-6790.8792	1377.668	-4.929	0.000	-9608.527	-3973.231			
date	100.7764	20.070	5.021	0.000	59.729	141.823			
сар	0.4132	0.108	3.840	0.001	0.193	0.633			
========						========			

Compare with remaining predictors

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0		373105.360239					
1	28.0	372148.158204	1.0	957.202034	0.072019 (0.790387	t1
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0		373105.360239					
	28.0						
	df_resid	ssr					
0		373105.360239					
		354651.969151					pr
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0		373105.360239					
1	28.0	278568.803905	1.0	94536.556334	9.502225	0.004575	ne
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	29.0	373105.360239	0.0	NaN	NaN	NaN	
1		324148.494509					
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	29.0	373105.360239	0.0	NaN	NaN	NaN	
1	28.0	365600.547942	1.0	7504.812297	0.574766	0.454705	bw
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	29.0	373105.360239	0.0	NaN	NaN	NaN	
1	28.0						
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	A
0	29.0	373105.360239	0.0	NaN	NaN	NaN	
1	28.0	277188.678320	1.0	95916.681918	9.688949	0.004243	pt <

New Base Model with date, cap & pt

cost ~ date+cap+pt

=======================================		======	========		
Dep. Variable:	cost	R-squa	red:		0.691
Model:	OLS	Adj. R	-squared:		0.658
Method:	Least Squares	F-stat	istic:		20.88
Date: We	ed, 11 Apr 2018	Prob (F-statisti	ic):	2.64e-07
Time:	16:14:29	Log-Li	kelihood:		-190.47
No. Observations:	32	AIC:			388.9
Df Residuals:	28	BIC:			394.8
Df Model:	3				
Covariance Type:	nonrobust				
=======================================		======	=======		
coef	std err	t	P> t	[0.025	0.975]
Intercept -4553.3078	1406.112 -	3.238	0.003	-7433.598	-1673.018
date 68.5245	20.428	3.355	0.002	26.680	110.369
cap 0.4191	0.094	4.439	0.000	0.226	0.612
pt -162.7636	52.290 -	3.113	0.004	-269.875	-55.652
		=======	========	=========	========

Compare with remaining predictors

	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	28.0	277188.678320	0.0	NaN NaN NaN
1	27.0	277177.159655	1.0	11.518666 0.001122 0.973525 t1
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	28.0	277188.678320	0.0	NaN NaN NaN
1	27.0	266759.995586	1.0	10428.682734 1.055535 0.313353 t2
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	28.0	277188.678320	0.0	NaN NaN NaN
1	27.0	271171.408835	1.0	6017.269485 0.599128 0.445636 <i>pr</i>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	28.0	277188.678320	0.0	NaN NaN NaN
1	27.0	222616.935606	1.0	54571.742714 6.618711 0.015908 ne
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
				NaN NaN NaN
1	27.0	259069.239609	1.0	18119.438711 1.888394 0.180684 <i>ct</i>
				ss_diff F Pr(>F)
				NaN NaN NaN
1				654.08369 0.063863 0.802406 bw
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	28.0	277188.678320	0.0	NaN NaN NaN
1	27.0	276726.014154	1.0	462.664166 0.045142 0.833339 cumn

New Base Model with date, cap, pt & ne

cost ~ date+cap+pt+ne

OLS Regression Results

Dep. Variable:	cost	R-squared:		0.752
Model:	OLS	Adj. R-squared:		0.715
Method:	Least Squares	F-statistic:		20.45
Date:	Wed, 11 Apr 2018	Prob (F-statisti	c):	7.51e-08
Time:	16:16:38	Log-Likelihood:		-186.97
No. Observations:	32	AIC:		383.9
Df Residuals:	27	BIC:		391.3
Df Model:	4			
Covariance Type:	nonrobust			
				======
coe	f std err	t P> t	[0.025	0.975]
Intercept -4756.214	5 1285.663	-3.699 0.001	-7394.177 -	2118.252
date 71.019	3 18.668	3.804 0.001	32.716	109.322
cap 0.419	8 0.086	4.873 0.000	0.243	0.597
pt -128.943	8 49.498	-2.605 0.015	-230.506	-27.382
ne 99.398	8 38.636	2.573 0.016	20.124	178.674
				=======

Compare with remaining predictors

				ss_diff F Pr(>F)	
0	27.0	222616.935606	0.0	NaN NaN NaN	
1	26.0	222509.890380	1.0	107.045226 0.012508 0.91181	t1
				ss_diff F Pr(>F)	
0	27.0	222616.935606	0.0	NaN NaN NaN	
1	26.0	203387.016602	1.0	19229.919004 2.458259 0.129	t2
	df_resid	ssr	df_diff	ss_diff F Pr(>F)	
0	27.0	222616.935606	0.0	NaN NaN NaN	
1	26.0	217386.123321	1.0	5230.812285 0.62562 0.436123	pr
				ss_diff F Pr(>F)	
				NaN NaN NaN	
1				15764.656584 1.981516 0.171075	ct
				ss_diff F Pr(>F)	
0	27.0	222616.935606	0.0	NaN NaN NaN	
1					bw
				ss_diff F Pr(>F)	
				NaN NaN NaN	
1	26.0	208796.998874	1.0	13819.936732 1.720898 0.201043	cumn

It appears that none of the remaining predictors would yield a statistically significant improvement in goodness-of-fit.

Final Model with date, cap, pt & ne

cost ~ date+cap+pt+ne

Don Vanishla.

OLS Regression Results

Dep. Variable:			cost		R-squared:			0.752	
	Model:		OLS		Adj. R-squared:			0.715	
	Method:		Least Squares		F-statistic:			20.45	
	Date:		Wed, 11 Apr 2018		<pre>Prob (F-statistic):</pre>		.c):	7.51e-08	
	Time:		16:3	16:38	Log-L	ikelihood:		-186.97	
	No. Observations:			32	AIC:			383.9	
	Df Residuals:			27	BIC:			391.3	
	Df Model:			4					
	Covariance Type:		nonro	bust					
								========	
		coef	f std err		t	P> t	[0.025	0.975]	
	Intercept	-4756.2145	1285.663	- 3	3.699	0.001	-7394.177	-2118.252	
	date	71.0193	18.668		3.804	0.001	32.716	109.322	
	сар	0.4198	0.086	4	4.873	0.000	0.243	0.597	
	pt	-128.9438	49.498	- 2	2.605	0.015	-230.506	-27.382	
	ne	99.3988	38.636		2.573	0.016	20.124	178.674	
								========	

Summary

In forward selection, you start with an Intercept-only model and add each predictor by doing an Analysis of Variance on the model with and without the predictor.

You stop when there are no more significant predictors to add

Let's Try a Lab

```
d=pd.read_csv("nuclear.csv")
d=d.rename(index=str,columns={"cum.n":"cumn"})
dia = []
dia.append(sm.ols("cost~date+cap+pt+ne", data=d).fit())
print(dia[0].summary())
dia.append(sm.ols("cost~date+cap+pt+ne+t1", data=d).fit())
dia.append(sm.ols("cost~date+cap+pt+ne+t2", data=d).fit())
dia.append(sm.ols("cost~date+cap+pt+ne+pr", data=d).fit())
dia.append(sm.ols("cost~date+cap+pt+ne+ct", data=d).fit())
dia.append(sm.ols("cost~date+cap+pt+ne+bw", data=d).fit())
dia.append(sm.ols("cost~date+cap+pt+ne+bw", data=d).fit())
for i in np.arange(1,7):
    print(sma.stats.anova_lm(dia[0],dia[i]))
```

Linear Model Selection

Backward Selection

Backward Selection

backward selection starts with your fullest model and systematically drops terms.

Define the fullest model as that which predicts cost by main effects of all available covariates

Base Model with all predictors

Dep. Variable: cost R-squared: 0.839 OLS Adj. R-squared: Model: 0.763 Least Squares F-statistic: Method: 10.98 Wed, 11 Apr 2018 Prob (F-statistic): 2.84e-06 Date: Time: Log-Likelihood: 16:30:41 -180.00 No. Observations: AIC: 382.0 Df Residuals: BIC: 398.1

Df Model: 10

Covariance Type: nonrobust

========		========	========			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-8134.8823	2787.794	-2.918	0.008	-1.39e+04	-2337.347
date	115.4832	42.260	2.733	0.012	27.599	203.367
t1	5.9284	10.887	0.545	0.592	-16.712	28.569
t2	4.5709	2.243	2.038	0.054	-0.094	9.236
сар	0.4216	0.088	4.768	0.000	0.238	0.606
pr	-81.1211	40.769	-1.990	0.060	-165.905	3.662
ne	137.4502	38.690	3.553	0.002	56.989	217.911
ct	43.2733	34.307	1.261	0.221	-28.071	114.618
bw	-8.2384	51.884	-0.159	0.875	-116.136	99.659
cumn	-6.9886	3.822	-1.829	0.082	-14.936	0.959
pt	-19.2476	63.672	-0.302	0.765	-151.660	113.165

	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	22.0	195294.933636	0.0	NaN NaN NaN
	21.0	144064.892149	1.0	51230.041487 7.467682 <mark>0.01247</mark> date
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	22.0	146099.150012	0.0	NaN NaN NaN
1	21.0	144064.892149	1.0	2034.257864 0.296529 <mark>0.591803</mark> t1
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	22.0	172546.250258	0.0	NaN NaN NaN
1	21.0	144064.892149	1.0	28481.35811 4.15166 <mark>0.05439 </mark>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
	22.0	300007.623455	0.0	NaN NaN NaN
1	21.0	144064.892149	1.0	155942.731307 22.731405 <mark>0.000104 <i>cap</i></mark>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
				NaN NaN NaN
1				27161.260816 3.959233 <mark>0.059794 <i>pr</i></mark>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
				NaN NaN NaN
1	21.0	144064.892149	1.0	86580.978739 12.620705 <mark>0.001883</mark> <i>ne</i>
				ss_diff F Pr(>F)
				NaN NaN NaN
1				10915.03064 1.591058 <mark>0.221008</mark> <i>ct</i>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
				NaN NaN NaN
1				172.969261 0.025213 <mark>0.875354 bw <</mark>
	df_resid	ssr	df_diff	ss_diff F Pr(>F)
0	22.0	167004.306468	0.0	NaN NaN NaN
1				22939.41432 3.343824 <mark>0.081698 cumn</mark>
				ss_diff F Pr(>F)
0	22.0	144691.792614	0.0	NaN NaN NaN
1	21.0	144064.892149	1.0	626.900465 0.091382 <mark>0.765401</mark> pt

it seems the predictor bw has the single least significant effect on reducing the goodness-of-fit,

New Base Model without bw

Dep. Variable: cost R-squared: 0.839 OLS Adj. R-squared: 0.773 Model: Least Squares F-statistic: Method: 12.76 Wed, 11 Apr 2018 Prob (F-statistic): 7.66e-07 Date: Time: 16:34:46 Log-Likelihood: -180.02 No. Observations: AIC: 380.0 Df Residuals: BIC: 394.7

Df Model: 9

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-7979.5131	2551.950	-3.127	0.005	-1.33e+04	-2687.093
date	113.1505	38.736	2.921	0.008	32.817	193.484
t1	6.6587	9.647	0.690	0.497	-13.347	26.665
t2	4.4461	2.054	2.165	0.042	0.186	8.706
сар	0.4235	0.086	4.940	0.000	0.246	0.601
pr	-80.1272	39.383	-2.035	0.054	-161.802	1.548
ne	137.1744	37.785	3.630	0.001	58.812	215.537
ct	44.2666	32.976	1.342	0.193	-24.120	112.654
cumn	-7.0778	3.696	-1.915	0.069	-14.742	0.586
pt	-22.3293	59.283	-0.377	0.710	-145.275	100.617

						_ , _ ,	
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
		200179.576049					
1	22.0	144237.861410	1.0	55941.714639	8.532557	0.007913	date
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	23.0	147361.703135	0.0	NaN	NaN	NaN	
		144237.861410					
		ssr					
0	23.0	174955.359915	0.0	_ NaN	NaN	NaN	
		144237.861410					
		ssr					
0	23.0	304214.01552	0.0	– NaN	NaN	NaŃ	
		144237.86141					
		ssr					
0	23.0	171377.366628	0.0	NaN	NaN	NaN	
1	22.0	144237.861410	1.0	27139.505219	4.139476	0.054122	pr
	df resid	ssr	df diff	ss diff	F	Pr(>F)	r
0	23.0	230645.874117	0.0	NaN	NaN	NaN	
		144237.861410					
_	df resid	ssr	df diff	ss diff	F	Pr(>F)	
		156052.654523					
		144237.861410					
		ssr					
		168286.15768					
		144237.86141					cumn
		ssr					Cumii
a	23 0	145167.987705	0 0	NaN	NeN	NaN	4
		144237.861410					pt /
Т	22.0	144237.001410	1.0	JJ0.120290	0.141000 (7.710033	Pt (

pt is the next most sensible main effect to drop.

	df_resid	ssr	df_diff	ss_diff	F Pr(>	F)
0	24.0	238844.665951	0.0	NaN	NaN N	aN
1	23.0	145167.987705	1.0	93676.678245 14.8	41864 0.0008	11 date
	df_resid	ssr	df_diff	ss_diff	F Pr(>F)	
0				NaN		
1				2853.441144 0.452		
	df_resid	ssr	df_diff	ss_diff	F Pr(>F	
0	24.0	176480.064481	0.0	NaN	NaN Na	V
1	23.0	145167.987705	1.0	31312.076776 4.96	0996 0.03599	6 t2
	df_resid	ssr	df_diff	ss_diff	F Pr(>F)
0	24.0	310762.174057	0.0	NaN	NaN	NaN
1	23.0	145167.987705	1.0	165594.186351 26.	236268 0.000	034 cap
	df_resid	ssr	df_diff	ss_diff	F Pr(>F)
0	24.0	175152.045770	0.0	NaN	NaN Na	V
1	23.0	145167.987705	1.0	29984.058065 4.75	0588 0.03978	2 <i>pr</i>
				ss_diff		
0	24.0	258826.519005	0.0	NaN	NaN Na	V
1				113658.5313 18.00		
	df_resid	ssr	df_diff	ss_diff	F Pr(>F)
0				NaN		
				15601.653656 2.47		
				ss_diff		
				NaN		
1	23.0	145167.987705	1.0	48482.396626 7.68	1412 0.01085	6 cumn

t1 is the next most sensible main effect to drop.

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
				NaN			
				369018.550083			date
				ss_diff			
0	25.0	176560.224962	0.0	NaN	NaN	NaN	
1	24.0	148021.428849	1.0	28538.796113	4.627243	0.041748	t2
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	25.0	310867.017049	0.0	NaN	NaN	NaN	
				162845.5882 2			сар
	df resid	ssr	df diff	ss_diff	F	Pr(>F)	
				NaN			
1	24.0	148021.428849	1.0	27208.624677	4.411571	0.046386	pr
				ss_diff			•
				_ NaN			
				114114.031789			ne
				ss_diff			
				NaN			1
				15200.16944 2			ct /
				ss_diff			
				NaN			1
				53288.092248			cumn
_	27.0	1-3021.720047	1.0	JJ200.0J22 4 0	0.040001	0.007107	Commi

ct is the next most sensible main effect to drop.

		ssr					
		537798.670515	0.0	NaN	NaN	NaN	
1	25.0	163221.598289	1.0	374577.072226	57.372473	6.271558e-08	date
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	26.0	210296.772856	0.0	NaN	NaN	NaN	
1	25.0	163221.598289	1.0	47075.174567	7.210316 0	.012685	t2
		ssr					
		320671.742805					
1	25.0	163221.598289	1.0	157450.144516	24.116009	0.000047	сар
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
		205491.553637					
1		163221.598289					pr
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
0	26.0	290709.372718	0.0	NaN	NaN	NaN	
1	25.0	163221.598289	1.0	127487.774429	19.526793	0.000168	ne
	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)	
		212897.740727				NaN	
1	25.0	163221.598289	1.0	49676.142438	7.608696	.010703	cumn

All remaining predictors seem significant

Final Model

Dep. Varia	Variable: cost			R-squared:			0.818	
Model:	Model: OLS			Adj. R-squared: 0.			0.774	
Method:		Least Squa	ires	F-sta	tistic:		18.74	
Date:		Wed, 11 Apr 2	2018	Prob	(F-statisti	c):	3.80e-08	
Time:		16:42	2:17	Log-L	ikelihood:		-182.00	
No. Observ	ations:			AIC:			378.0	
Df Residua	ls:		25	BIC:			388.3	
Df Model:			6					
Covariance	Type:	nonrob	ust					
=======	========			=====	========		=======	
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	-9701.5221	1294.355	-7.	495	0.000	-1.24e+04	-7035.749	
date	139.5909	18.429	7.	574	0.000	101.635	177.546	
t2	4.9051	1.827	2.	685	0.013	1.143	8.667	
сар	0.4137	0.084	4.	911	0.000	0.240	0.587	
pr	-88.5147	34.787	-2.	544	0.017	-160.160	-16.869	
ne	150.2262	33.996	4.	419	0.000	80.210	220.243	
cumn	-7.9194	2.871	-2.	758	0.011	-13.832	-2.006	

Forward vs Backward Selection

Do they yield same models?

Forward: **cost~date+cap+pt+ne**

Backward: cost~date+t2+cap+pr+ne+cumn

What might cause these two to give different models?

Linear Model Selection

Lab Exercises

Use Diabetes Dataset

There are some missing values in diabetes that might interfere with model selection algorithms. Define a new version of the diabetes data frame that deletes all rows with a missing value in any of the following variables: chol, age, gender, height, weight, frame, waist, hip, location.

Use forward selection with a significance level of $\alpha = 0.05$ to choose a model, starting from intercept only model. Use the above variables.

Use backward selection with a conventional significance level of α = 0.05 to choose a model, starting from the full model with above variables.

Section 3

Resampling Methods

Resampling Methods

Resampling involves repeatedly drawing samples from a training set and refitting a model of interest on each sample.

They are computationally expensive because they involve fitting the same method multiple times.

Training Error vs Test Error

Given a data set, the use of a particular statistical learning method is warranted if it results in a low test error. The **test error** can be easily calculated if a designated test set is available.

The **training error** can be easily calculated by applying the statistical learning method to the observations used in its training. The training error rate often is quite different from the test error rate.

When we do not have a designated test set that can be used to directly estimate the test error rate, some techniques can be used to estimate this quantity using the available training data.

Cross Validation

We instead consider a class of methods that estimate the test error rate by holding out a subset of the training observations from the fitting process, and then applying the statistical learning method to those held out observations.

Cross-validation can be used to estimate the test error associated with a given statistical learning method in order to evaluate its performance. The process of evaluating a model's performance is known as **model assessment**, whereas the process of selecting the proper level of flexibility for a model is known as **model selection**.

Cross Validation

Validation Sets

Validation Set Approach

Validation set approach involves **randomly dividing** the available set of observations into a training set and a validation set.

We fit the model on an a training set and the fitted model is used to predict the responses for observations in the validation set.

The resulting **validation set error rate** is typically assessed using MSE and provides an estimate of the test error rate.

Validation Set Approach

Validation test error rate is highly variable, depending on which observations are included in the validation set.

Since a subset of observations are used to fit the model, and statistical methods tend perform worse when trained on fewer observations, the validation error rate may tend to overestimate the test error rate for the model fit on the entire data set.

Cross Validation

Leave-One-Out Cross-Validation (LOOCV)

Leave-One-Out Cross-Validation (LOOCV)

This approach involves splitting the set of observations into two parts. However, a single observation is used for validation, and the remaining observations are used for training.

We fit a model for n-1 observations, and prediction is made for the excluded observation.

The MSE on the test observation provides the estimate for test error.

We can repeat this procedure n times for n observations and compute n MSEs.

LOOCV estimate for the test MSE is the average of these n test errors.

LOOCV Logic

```
import statsmodels.sandbox.tools.cross val as cross val
d=pd.read csv("auto.csv")
loo = cross val.LeaveOneOut(len(d.index))
error sum = 0
for train_index, test_index in loo:
        # print ("TRAIN:", train index, "TEST:", test index)
        a train, a test = cross val.split(train index,test index,d)
        d train = pd.DataFrame(a train,columns=d.columns)
        d test = pd.DataFrame(a test,columns=d.columns)
        for x in d.columns:
            d train[x] = d train[x].astype(d[x].dtypes.name)
            d \text{ test}[x] = d \text{ test}[x].astype(d[x].dtypes.name)
        nuc = sm.ols("mpg~horsepower", data=d train).fit()
        y = nuc.predict(d test)
        error sum+= (v[0] - d test["mpg"][0])**2
print( "MSE= ", (error sum/len(d.index)))
```

LOOCV

```
TRAIN:
True True True True True True Falsel
```

TEST:

[False False Truel

Compare with Validation Set

In LOOCV, we repeatedly fit the method with n-1 data sets (or almost the same)

In contrast with Validation Set, which can yield different results owing to randomness in the test/training set selection, repeating LOOCV any number of times will yield same results.

Cross Validation

k-Fold Cross-Validation

k-Fold Cross-Validation

k-fold CV is an alternative to LOOCV. We randomly divide the set of observations into k groups or folds of approximately equal size

- 1. The first fold is treated as a validation set
- 2. The method is then fit on the remaining k-1 folds.
- 3. The MSE is computed on observations in the held-out fold
- 4. This process is repeated k times, each time picking a different group of observations as the validation set
- 5. This method gives k estimates of the test error, which are then averaged to calculate the k-fold CV estimate.

Note that LOOCV is a special case of k-fold CV when k equals n

K-fold Logic

```
d=pd.read csv("auto.csv")
loo = cross val.KFold(len(d.index),20)
error sum = 0
for train index, test index in loo:
       # print ("TRAIN:", train index, "TEST:", test index)
        a train, a test = cross val.split(train index,test index,d)
        d train = pd.DataFrame(a train,columns=d.columns)
        d test = pd.DataFrame(a test,columns=d.columns)
       for x in d.columns:
            d train[x] = d train[x].astype(d[x].dtypes.name)
            d test[x] = d test[x].astype(d[x].dtypes.name)
        nuc = sm.ols("mpg~horsepower", data=d_train).fit()
       y = nuc.predict(d test)
        error sum+= ((y - d test["mpg"])**2).sum()/len(d test.index)
print( "MSE= ", (error sum/20))
```

LOOCV

True False False False False False False False False False False]

TEST: [False False True True]

Cross Validation

Cross Validation for Classification Problems

Cross Validation for Classification Problems

Cross-validation can also be a very useful approach in the classification setting when Y is qualitative.

Rather than using MSE to quantify test error, we instead use the number of misclassified observations.