Лекция «Космическая наука: сегодня и завтра» Конспект

Автор конспекта: Феофанов Илья Сергеевич. Н07-3

Спикер: Александр Анатольевич Лутовинов - заместитель директора института космических исследований, член-корреспондент РАН, лауреат премии Правительства РФ в области науки и техники.

Космос — большой вызов! Многие сферы жизни человека связаны с космосом.

Развитие отечественной космической науки:

- Луноход
- Вега апогей программы СССР по исследованию планет и малых тел Солнечной системы (1986 г.) сичтемы (1986 г.)
- МИР-КВАНТ (1987-2001)
- Луна-24 (1976)
- Грант (1989-1999)

Венера российская планета.

Россия смогла посадить аппарат в очень сложных ситуациях.

Россия – продвинута в космическом аппаратостроении. В том числе иностранные исследования происходят с использованием российского оборудования.

Так мы узнали, что Венера не пригодна для переселения человечества, а Марс — пригоден.

На марсоходе «Кьюриосити» установлено российское оборудование, позволяющее найти воду на Марсе.

График концентрации воды

Марс

В 2016 был запущен эксперимент «Экзомарс 2016» и не завершился до сих пор. На этом приборе стоит несколько российских приборов. Европейская часть прибора дала сбой, что не позволило посадить аппарат на Марс. Но исследования продолжаются на орбите.

Луна

В 2009 году полетел американский спутник LRO, на котором также стоит российский нейтронный датчик воды. Под слоем логарита есть вода.

2023 год — неудача при орбитальном манёвре «Луна-25».

Наземные оптические инструменты

В 1976 году в СССР был построен самый большой телескоп (6 м, 400 т).

Спустя некоторое время был построен VLT (Very Large Telescope) (8 м), а сейчас строится ELT (39 м).

Наземные радиотелескопы

- Aresibo из-за землетрясения был разрушен
- Китайские учёные построили телескоп "FAST" 500 м.

"Атмосфера – примерно полметра свинца, которая позволяет нам жить"

И большинство информации, которая есть в космосе до нас не доходит именно из-за неё.

Исследования Вселенной: многоволновая астрономия

Для исследований используются «Спектр-Р», «Спектр-РГ». В дальнейшем планируется запустить ещё несколько аппаратов.

«Спектр-Р» (2011-2019) — самый крупный радиоинтерферометр. Максимальная база 350 000 км.

Телескоп им. Хаббла (2.4 м)

Военные разработки.

Поверхность отшлифована до 10 нм! (В 10000 раз тоньше человеческого волоса) С помощью него можно читать книги с расстояния 10 км

Рентгеновская Вселенная

Первая карта рентгеновских излучений. 1970-1973. 339 источников Звёзды практически не видно в рентгеновском излучении.

Что же тогда светит? – Аккрецирующие нейтронные звёзды и чёрные дыры, скопления галактик, остатки вспышек сверхновых

Эволюция звёзд: всё зависит от массы

Где можно ожидать и увидеть НЗ или ЧД

Именно во время вспышек сверхновых можно наблюдать синтез элементов. После одного из таких исследований был замечен синтез никеля, титана Это видно только из космоса

Нейтронные звёзды.

Такие объекты можно «пощупать»

• Радиус: 10-15 km Macca: 1.2-2.0 M

Магнитное поле 108 - 1015 G

• Плотность p ~ 1014 - 1015 г/с

Периоды вращения 1.4 ms - 1000 s

В небольшой радиус упаковано около 1.2 - 2 масс Солнца.

В 2015 году были впервые «пойманы» гравитационные волны.

Слияние H3 — «фабрики золота» во Вселенной

Обсерватория «Спектр-Рентген-Гамма» (Спектр-РГ, СРГ) — флагман российской космической науки

Задача: самая подробная карта Вселенной

Объяснение: «Блинчики на воде». Чтобы считать рентгеновские лучи, нужно отразить его два раза под очень небольшим углом от специально подготовленной с точностью нм поверхности.

Подобный телескоп был разработан М. Н. Павлинским в Сарове.

13 июля 2019 года с Байконура был запущен «Спектр-РГ»,, на котором расположен такой телескоп и ещё один германский. С помощью СРГ был создан первый обзор неба. Видно около миллиона рентгеновских источников. Открыты экстремально далёкие квазары. Обнаруженны крупномасштабные пузыри горячего газа и т.д.

Поиск "скрытых" объектов: жесткий рентген черезвычайно важен

Ищут объекты, скрытые за пылью и газом. Несколько таких объектов уже найдены.

Нейтронные звёзды — природный ГЛОНАСС.

Каждая из них излучает уникальный сигнал, с помощью таких сигналов, в теории, можно осуществлять навигацию

Что дальше?

Рентген — 2025+

«Спектр-РГ» (2019) \rightarrow «Спектр-РГН» (2025-2032) \rightarrow «Спектр-РГМ» (2031-2040)

Обсерватория «Миллиметрон» («Спектр-М»). План — 2025 г.

Венера-Д – разрабатывается проект для комплексного исследования планеты (в том числе – поиска жизни в облаках и на поверхности)

Лунная программа

- 1. Луна-26 2028
- 2. Луна27А и Б 2029-2030
- 3. Луна-28 2034
- 4. Луна 29 2032
- 5. Луна-30 2036