5.

证明:由于 G 中没有长为 3 的圈,所以 G 中面的次数至少为 4 (若 G 中无圈,则 G 中只有一个外部面,由 G 是连通图和 $n \geq 3$ 知,外部面的次数为 $2m \geq 2(n-1) \geq 2(4-1) = 6$),由教材定理 11.8 有

$$m \le \frac{l}{l-2}(n-2) \le 2(n-2) = 2n-4,$$

若 $\delta(G) > 4$,则有 m > 2n > 2n - 4,矛盾。

四、

1.

(1) 由于整数集对加、减、乘法封闭,所以对 * 运算也封闭。从而 $\langle A, * \rangle$ 是代数系统。对任意 $x,y,z \in A$:

由于 x * y = x + y - xy = y + x - yx = y * x, 所以运算满足交换律。

由于 (x*y)*z = x + y + z - xy - xz - yz + xyz = x*(y*z), 所以运算满足结合律。

由于 $x * x = x + x - x^2$, 当 $x \neq 0, 1$ 时, $x * x \neq x$, 所以运算不满足幂等律。

由于 x * 0 = 0 * x = x, 因此有运算有单位元 $0 \in \mathbb{Z}$ 。

由 x*y=x+y-xy=0 解得: 当 x=1 时,等式无解。当 $x\neq 1$ 时, $y=\frac{x}{x-1}$ 。因此,仅 当 x=0,2 时,有 $y=x^{-1}\in\mathbb{Z}$ 。此时 y 分别为 0 和 2。因此,仅 0,2 为可逆元,它们的逆元即是它们自身。

(2) 由对称差的性质可知, A 对 * 运算封闭。从而 $\langle A.* \rangle$ 是代数系统。

由对称差的性质知,运算满足交换律、结合律。

对任意 $x \in A$,有 $x * x = x \oplus x = \varnothing$,当 $x \neq \varnothing$ 时, $x * x \neq x$,所以运算不满足幂等律。

显然 Ø 是单位元, 且所有元素都是自身的逆元。

- (3) 当 $|B| \ge 2$ 时,*运算对 A 不封闭。因为当 $|B| \ge 2$ 时,任取 $a,b \in B, a \ne b$ 。则 $\{a\}, \{b\} \in A$,但 $\{a\} \cap \{b\} = \emptyset \notin A$ 。从而当 $|B| \ge 2$ 时, $\langle A, * \rangle$ 不是代数系统。
- 2. |x| = 3.

证明: 首先, 由于 y 是二阶元, 所以有 $y^{-1} = y$ 。同时:

$$yxy^{-1} = x^2$$

$$\iff yx = x^2y$$
 (右乘 y)

$$\iff x = y^{-1}x^2y \tag{E.*}$$

$$\Longrightarrow x^2 = (y^{-1}x^2y)(y^{-1}x^2y) \tag{两边取平方}$$

$$\iff x^2 = y^{-1}x^4y \tag{yy^{-1} = e}$$

$$\iff x^2 = yx^4y^{-1} \tag{y = y^{-1}}$$

从而有 $yx^4y^{-1}=x^2=yxy^{-1}$ 。由消去律知 $x^3=e$ 。从而 $|x|\mid 3$ 。因为 x 不是单位元,所以 $|x|\neq 1$,因此只能有 |x|=3。