Business Intelligence and Data Warehousing (ANL408)

- By Sabarish Nair

Recap from last week....

- Traditional Data Warehouse
- Modern Data Warehouse
- Operational Data Store (ODS)
- In-Memory Databases
- Metadata
- Types of Metadata
- Benefits of Metadata
- Best Practices: Metadata
- Data Warehousing Approaches
- Inmon's Data warehousing Approach
- Kimball's Data warehousing Approach
- Kimball's front and back room analogy

Relational Database

Tables with Rows and Columns

Primary Key – Foreign Key Relationship

Primary Key

Product_ID	Product_Name	Date	Customer_Id
1	Bat	23/02/2024	1
2	Ball	22/02/2024	2
3	Computer	21/02/2024	4

Foreign Key

Customer_id	Name	City
1	John	Cork
2	Jill	Dublin
4	Bill	Gallway

What is dimensional modeling?

Method of organizing data

A design technique used in data warehousing to structure and organize data for easy and efficient querying and analysis.

Fact Tables (Quantitative Data)

Primary
Components of
Dimensional
Modeling

Dimension Tables (Descriptive Attribute)

Star Schema (Fact at center, dimensions around, Star shaped)

Snowflake Schema (Dimension Tables normalized)

Benefits of Dimensional Modeling

SIMPLIFIED QUERYING PERFORMANCE OPTIMIZATION

INTUITIVE DESIGN

SCALABILITY

Dimensional Modeling (Basic Example)

Facts

Measurement by profit

Dimensions

Context like period or category

Profit By Department

Profit By Month

Dimensional Modeling (Star Schema)

Fact Table

Measurable, numeric data that businesses want to analyze.

Quantitative measures or metrics that can be aggregated, summed, or averaged.

Example: Sales Revenue, Quantity Sold, Profit Margin, Customer Count, Website Visits

Characteristics of Fact Tables

Numeric Values

Granularity

Additivity (Additive, Semi-additive, Non-additive)

Foreign Key Relationships

Surrogate Keys

Time Stamps

Facts

Dim_Customer Foundation of DWH Customer_id Aggregated and Analyzed Full_name Measurements City Sales Sales_id Product_id Dim_Product Dim_Date Customer_id Product_id Date_id units Year Name price Month Description week category 12

Descriptive attributes or context by which facts (numeric, measurable data) are analyzed.

"Who, what, where, when, why, and how" aspects of the data.

Characteristics of Dimensions

Descriptive attributes

- Time Dimension
- Product Dimension
- Customer Dimension
- Location Dimension

Hierarchical structure

• Year > Quarter > Month > Day

Dimensions

Categorize Facts

- Supportive & Descriptive
- Filtering & Grouping
- Non-Aggregatable
- Static

Dim_Customer

Customer_id

Star Schema

- A central fact table surrounded by multiple dimension tables.
- Denormalized
 - Data Redundancy
 - Query Performance (Read)
 - Optimized to get data out
 - User Experience
- Relationship Type (1:n)

Star Schema

USED COMMONLY IN DATA MART

SIMPLEST FORM (VS. SNOWFLAKE SCHEMA)

TUNED FOR SPECIFIC NEEDS

SPECIFIC USE CASE (READ) [USABILITY AND PERFORMANCE]

Snowflake Schema

MORE Normalized!!

Fact Table

Product_id	Customer_id	Price	date
1	1	20	24/02/2024
2	2	222	25/02/2024

Product_id	Name	Category_id	date
1	Bat	1	Sports
2	Ball	1	Sports

Dimension Table (Level 1)

Category_id	Name
1	Sports
2	Toys

Dimension Table (Level 2)

Characteristics of Snowflake Schema

- Normalized Structure
- Multiple levels if normalization
- Increased Joins
- Data Integrity
- Storage Efficiency
- Complexity

Parameter	Snowflake Schema	Star Schema
Structure	Normalized	Denormalized
Complexity	Complex	Simpler and Easier
Query Performance	Reduced	Better
Storage Efficiency	Optimized	Higher storage requirements
JOINS	More Joins	Fewer Joins
Use Cases	OLAP	Simpler analytical and reporting needs

Star Schema vs Snowflake Schema

You are tasked with designing a data warehouse schema for a retail company that wants to analyze its sales data. The company sells various products through multiple stores across different locations. They want to analyze sales performance based on different dimensions such as time, product, and store.

Solution to Question 1

Fact Table: Sales

Dimension Table: Date, Product, and Store

Install PostgreSQL

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Download PostgreSQL

Open source PostgreSQL packages and installers from EDB

PostgreSQL Version	Linux x86-64	Linux x86-32	Mac OS X	Windows x86-64	Windows x86-32
16.2	postgresql.org ☐	postgresql.org ☐	Ċ	Ü	Not supported
15.6	postgresql.org ♂	postgresql.org ♂	Ů	ŭ	Not supported
14.11	postgresql.org ♂	postgresql.org ♂	<u>ů</u>	Ů	Not supported
	14	140		1130	

