

SOLAR THERMAL COLLECTORS

Wikipedia.org

Dr. Herena Torio

Learning outcomes on solar collectors

- Understand the physical principles governing solar thermal collectors
- Understand the main heat transfer mechanisms for solar thermal collectors
- Understand the relationship between the collector efficiency and main variables influencing it
- Get a critical understanding on equations describing collectors' performance
- Get familiar with parameters depicting collectors' performance

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

Solar thermal systems First system overview

Solar thermal systems First system overview

Main solar thermal collector types:

- flat plate
- vacuum tube
- concentrating collectors:
 concentrating parabolic
 compound (CPC)

Main collector types Flat plate collectors

Source: wikimedia.org

Main collector types Vacuum tube collectors

Source: wikimedia.org

Main collector types Concentrating collectors

Non imaging: CPC

- lower concentration rates
- lower temperatures
- better use of diffuse radiation

Imaging:

- parabolic through
- solar tower
- parabolic dish
- Fresnel collectors

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

Reflection / Absorption ta

Reflection / Absorption to Conduction

Capacitance (heat storage) effects

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

Main heat processes involved Cross section flat plate collector: performance assessment

First simplifications:

- → Steady state operation
- → No absorption from covers affecting thermal losses
- → Sheet (absorber) and parallel tubes

Flat plate collectors: performance Main heat transfer processes involved Collectors' performance

$$\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A_{coll} \int G_T dt}$$

 \dot{Q}_u : useful energy output

 $G_{\scriptscriptstyle T}$: total incident solar

radiation

 A_{coll} : total collector area

[W]

 $[W/m^2]$

 $[m^2]$

Flat plate collectors **Collectors' performance**

 $\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A + \int G_- dt}$

Defining the useful energy output: \dot{Q}_u

$$\dot{Q}_u = A_{coll} F_R \left[S - U_L \left(T_i - T_a \right) \right]$$
 [W]

absorbed radiation $[W/m^2]$

 F_R : collector heat removal factor [-]

: heat loss coefficient $[W/m^2K]$ T_i : inlet fluid temperature [°C]

[°C] T_a : ambient temperature

Absorbed solar radiation:

$$\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A_{coll} \int G_T dt}$$

$$S = G_b R_b \left(\tau\alpha\right)_b + G_d \left(\tau\alpha\right)_d \frac{\left(1 + \cos\beta\right)}{2} + \rho_g \left(G_b + G_d\right) \left(\tau\alpha\right)_g \frac{\left(1 - \cos\beta\right)}{2} \text{[W/m²]}$$
 view factor sky

G: radiation

 $[W/m^2]$

 β : collector tilt angle

[°]

 ρ_g : ground reflectivity

[-]

(aulpha): transmittance-absorptance product [-]

Subscripts:

b = beam; d = diffuse; g = ground

Absorbed solar radiation:

$$\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A_{coll} \int G_T dt}$$

$$S = G_b R_b \left(\tau\alpha\right)_b + G_d \left(\tau\alpha\right)_d \frac{\left(1 + \cos\beta\right)}{2} + \rho_g \left(G_b + G_d\right) \left(\tau\alpha\right)_g \frac{\left(1 - \cos\beta\right)}{2} \text{[W/m²]}$$
 view factor sky

G: radiation

 $[W/m^2]$

: collector tilt angle [°]

- I radiation

 ρ_g : ground reflectivity [-]

(aulpha): transmittance-absorptance product [-]

Subscripts:

b = beam; d = diffuse; g = ground

Absorbed solar radiation:

$$R_b = \frac{\cos(\theta)}{\cos(\theta)_z}$$

$$\gamma = 0 \longrightarrow R_b = \frac{\cos(\Phi - \beta)\cos\delta\cos\omega + \sin(\Phi - beta)\sin\delta}{\cos\Phi\cos\delta\cos\omega + \sin\Phi\sin\delta}$$

- θ : incidence angle (incident [°] beam to collector normal)
- θ_z : incidence angle at zenith [°]
- Φ : latitude $[^\circ]$
- ω : Hour angle, sun [°] displacement

- δ : declination (angular $[^\circ]$ sun position at noon)
- ? : azimuth angle (from south, [°] south= 0°)

Absorbed solar radiation:

Example:

$$\beta$$
=50°

Absorbed solar radiation:

Seasonal contribution of beam and diffuse components

Example: G= 500W/m²;
$$\beta$$
 =60°; α_n =0.93 (single cover collector); ρ_n =0.6 Φ =40°

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

$$\eta_{Coll} = \frac{\int \dot{Q}_u \, dt}{A_{coll} \int G_T \, dt}$$

Defining the useful energy output: \dot{Q}_{μ}

$$\dot{Q}_u = A_{coll} F_R \left[S - U_L \left(T_i - T_a \right) \right]$$
 [W]

: absorbed radiation [W/m²]

 T_i : inlet fluid temperature [°C]

 F_R : collector heat removal factor [-]

 T_a : ambient temperature [°C]

 U_L : heat loss coefficient [W/m²K]

Flat plate collectors: performance Heat removal factor: F_R

 \approx effectiveness of a heat exchanger: ratio of actual heat exchange to maximum one (with minimum losses, i.e. $T_{fluid} = T_{in}$

$$F_{R} = \frac{\dot{m}C_{p}}{A_{coll}U_{L}} \left[1 - \exp\left(\frac{-A_{coll}U_{L}F'}{\dot{m}C_{p}}\right) \right]$$

 \dot{m} : collector mass flow rate [kg/s]

C_D: specific heat capacity fluid [kJ/KgK]

A_{coll}: collector area [m²]

U₁: overall loss coefficient [W/Km²]

F': collector efficiency factor [-] Function of geometry (tube spacing, tube diameter, absorber thickness) and materials (loss coefficient, U₁)

Behavior of collector efficiency factor, F'

Source: Duffie and Beckman. 2013

Heat removal factor: F_R

 \approx effectiveness of a heat exchanger: ratio of actual heat exchange to maximum one (with minimum losses, i.e. $T_{fluid} = T_{i}$

$$F_{R} = \frac{\dot{m}C_{p}}{A_{coll}U_{L}} \left[1 - \exp\left(\frac{-A_{coll}U_{L}F'}{\dot{m}C_{p}}\right) \right]$$

Collector flow factor [-]: effect of mass flow rate on collectors' performance

$$F'' = \frac{F_R}{F'}$$

Source: Duffie and Beckman. 2013 \bar{A}

$$\eta_{Coll} = \frac{\int \dot{Q}_u \, dt}{A_{coll} \int G_T \, dt}$$

Defining the useful energy output: \dot{Q}_{μ}

$$\dot{Q}_u = A_{coll} F_R \left[S - U_L \left(T_i - T_a \right) \right]$$
 [W]

S: absorbed radiation [W/m²]

 F_R : collector heat removal factor [-]

 U_L : heat loss coefficient [W/m²K]

 T_i : inlet fluid temperature [°C]

[°C] T_a : ambient temperature

Overall heat loss coefficient: U

Overall heat loss coefficient: U

Often determined experimentally

Conduction:

$$q_{cond} = \frac{\lambda}{d} (T_1 - T_2)$$

λ: thermal conductivity [W/mK]

d: thickness [m]

Convection:

$$q_{conv} = h_i (T_1 - T_2)$$

h_i: convective heat transfer [W/K] coefficient

Overall heat loss coefficient: U

Often determined experimentally

Radiation:

$$q_{rad} = \sigma \varepsilon \left(T_1^4 - T_2^4\right)$$

σ: Stephan-Boltzmann constant [W/m²K⁴]

<u>ε: emissivity [-]</u> Selective surface!

T: absolute temperature [K]

Overall heat loss coefficient: U

Often determined experimentally

		-			
Ra	\sim	-	\mathbf{a}	-	
\mathbf{R}		_			_

$$q_{rad} = \sigma \varepsilon \left(T_1^4 - T_2^4\right)$$

ε: emissivity [-]

	<u>ε</u>	α
"TINOX" ¹	0.04	0.95
Copper polished ²	0.23-0.52	0.18
Aluminum polished ²	0.09	0.30

¹ http://www.almecogroup.com/uploads/1074-ALMECO_TinoxEnergy_ENG_S402_05_2013_mail.pdf

² www.engineeringtoolbox.com

$\eta_{Coll} = \frac{\int \dot{Q}_u \, dt}{A_{coll} \int G_T \, dt}$

Defining the useful energy output:

$$\dot{Q}_{u} = A_{coll} F_{R} \left[S + U_{L} \left(T_{i} + T_{a} \right) \right]$$
 [W]

S: absorbed radiation [W/m²] T_i : inlet fluid temperature [°C]

 F_R : collector heat removal factor [-] T_a : ambient temperature [°C]

 U_L : heat loss coefficient [W/m²K]

- Determining S is not an easy task (requires detailed hourly data of radiation and angles variations)
- Standard (european) collector test procedures often refer to the mean fluid temperature, not the inlet one!

$\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A_{coll} \int G_T dt}$

Defining the useful energy output:

$$\dot{Q}_{u} = A_{coll} F_{R} \left[S - U_{L} \left(T_{i} - T_{a} \right) \right] \quad \text{[W]}$$

S: absorbed radiation [W/m²]

 F_R : collector heat removal factor [-]

 \boldsymbol{U}_L : heat loss coefficient [W/m²K]

 T_i : inlet fluid temperature [°C]

 T_a : ambient temperature [°C]

$$\dot{Q}_u = A_{coll} F_{av} [S - U_L (T_m - T_a)]$$
 [W]

$$T_m = \frac{T_i + T_{out}}{2}$$

 T_i : average fluid temperature [°C]

 T_a : ambient temperature [°C]

$$\eta_{Coll} = \frac{\int \dot{Q}_u dt}{A_{coll} \int G_T dt}$$

Defining the useful energy output: \dot{Q}_{μ}

$$\dot{Q}_u = A_{coll} F_R \left[S - U_L (T_i - T_a) \right]$$
 [W]

S: absorbed radiation [W/m²]

 T_i : inlet fluid temperature

[°C]

 F_R : collector heat removal factor [-]

 T_a : ambient temperature

[°C]

 U_L : heat loss coefficient [W/m²K]

$$\dot{Q}_{u} = A_{coll} F_{av} \left[G_{T} (\tau \alpha)_{n} K_{\tau \alpha} - U_{L} (T_{m} - T_{a}) \right] [W]$$

 G_{τ} : global incident radiation on coll. plane

 $[W/m^2]$

 $(\tau \alpha)_n$: average transmittance-absorptance product for beam (normal) radiation

 K_{Ta} : incident angle modifier – function of θ (effective incident angle!)

$$\eta_{Coll} = \frac{\int \dot{Q}_u \, dt}{A_{coll} \int G_T \, dt}$$

$$\dot{Q}_{u} = A_{coll} F_{av} \left[G_{T} (\tau \alpha)_{n} K_{\tau \alpha} - U_{L} (T_{m} - T_{a}) \right]$$

$$\eta_{coll} = F_{av} (\tau \alpha)_n - \frac{F_{av} U_L (T_m - T_a)}{G_T}$$

Data scatters from linear dependency:

- $\mathbf{U}_{\scriptscriptstyle L}$ is a function of temperature
- F_{av} is also weak function of temperature

Source: Duffie and Beckman, 2013

$$\begin{aligned} & F_{av}U_{L} = c_{1} + c_{2} \left(T_{m} - T_{a}\right) \\ & \eta_{coll} = & F_{av} (\tau \alpha)_{n} - c_{1} \frac{\left(T_{m} - T_{a}\right)}{G_{T}} - c_{2} \frac{\left(T_{m} - T_{a}\right)^{2}}{G_{T}} \end{aligned}$$

Data scatters from linear dependency:

- U₁ is a function of temperature

- F_{av} is also weak function of temperature

Source: Duffie and Beckman, 2013

$$\begin{split} & F_{av}U_{L} = & c_{1} + c_{2} \left(T_{m} - T_{a}\right) \\ & \eta_{coll} = & F_{av}(\tau\alpha)_{n} - c_{1} \frac{\left(T_{m} - T_{a}\right)}{G_{T}} - c_{2} \frac{\left(T_{m} - T_{a}\right)^{2}}{G_{T}} \\ & \eta_{coll} = & \eta_{0} - c_{1} \frac{\left(T_{m} - T_{a}\right)}{G_{T}} - c_{2} \frac{\left(T_{m} - T_{a}\right)^{2}}{G_{T}} & \eta \end{split}$$

0.8

Hocheffizienter Flachkollektor (HFK) mit Low-e Doppelverglasung

0.4

η₀ a₁ a₂ a₆₀
 ω_{m²K¹} w_{m²K²} w_{m²K¹}

1.2

HFK 120 mm 0.780 1.98 0.0089 2.51

HFK 80 mm 0.779 2.08 0.0090 2.62

HFK 50 mm 0.777 2.24 0.0098 2.83 E_g = 950 W/m²

HFK 30 mm 0.771 2.58 0.0104 3.20 φ = 45°

0.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

 $\Delta T_{c}/E_{c}$ in Km²/W

Source: Föste et al., 2013

η₀: zero loss efficiency [-] **Not optical efficiency!!!!**

Outline

- Collector types and system outline
- Main heat processes involved
- Collectors' performance: flat plate collectors
 - Radiation
 - Mass flow
 - Geometry
 - Materials
 - Capacity effects (thermal inertia)

Collectors' DYNAMIC performance

European Standard EN 12975-2

Thermal Solar Systems and Components – Solar Collectors CEN2001

$$\eta_{coll} = \eta_0 - c_1 \frac{(T_m - T_a)}{G_T} - c_2 \frac{(T_m - T_a)^2}{G_T}$$

Source: Corradini et al., 2014

$$\eta_{coll} = \eta_0 - c_1 \frac{\left(T_m - T_a\right)}{G_T} - c_2 \frac{\left(T_m - T_a\right)^2}{G_T}$$

Collector database: http://www.solarkeymark.dk/CollectorCertificates

Collector Type	η _ο [-]	c ₁ [W/m²K]	c ₂ [W/m ² K]	c _{eff} [J/m²K]
Vacuum tube	0.789	1.370	0.005	10.80
Vacuum tube + reflector	0.614	0.285	0.011	17.50
High tech flat plate	0.797	2.833	0.013	4.85
-Low tech flat plate	0.711	4.878	0.044	33.51

References

- Föste et al., 2013. Abschlussbericht zum Vorhaben Hocheffiziente Flachkollektoren mit selektiv beschichteten Zweischeibenverglasungen. Institut für Solarenergieforschung GmbH, Hameln. 2013.
- Kovacs, 2012. QAiST Quality Assurance in solar thermal heating and cooling technology keeping track with recent and upcoming developments: A guide to the standard EN 12975. SP – Technical Research Institute of Sweden. 2012.
- Duffie and Beckmann, 2013 Solar Engineering of Thermal Processes. John Wiley and Sons. 2012.
- Corradini et al. 2014. Solarthermie: Technik, Potenziale, Wirtschaftlichkeit und Ökobilanz für solarthermische Systeme in Einfamilienhäusern. Wüstenroth Stiftung (Ed.). 2014.
- Fischer, Müller-Steinhagen, 2001. Collector test method under quasi-dynamic conditions according to the European Standard EN 12975-2. ISES 2001 Solar World Congress. http://www.estif.org/solarkeymark/Links/Internal_links/wp1a/m3wp1ad3.pdf
- Holtorf. 2014. Lecture Notes Solar Energy. Winter Term 2014/2015. University of Oldenburg.