DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

ELECTRICAL POWER SYSTEMS FOR CUBESATS

GUIDED BY
Ms. DARSANA BABU
ASSISTANT PROFESSOR
DEPT. OF EEE

PRESENTED BY,
HARIKRISHNA PRAKASH
LKGR22EE019

Date: 22-08-2025

Table of contents

•Introduction	3
•Satellite Classification	4
•CubeSat Basics & Applications	6
•Launch History	9
•EPS Overview & Architecture	11
•Power Generation (PV Cells)	14
•MPPT & Power Control	18
•PV Modeling & Panels	19
•Battery Technologies & Behavior.	23
•Thermal Management.	27
•Protection Systems (LCL, UVP)	30
•Sizing: Battery & Solar Array	133
•Challenges & Future Trends	35
•Conclusion & References	36

INTRODUCTION

- EPS (Electric Power Systems) manage power generation, storage, and distribution in satellites.
- EPS failure = mission failure.
- CubeSats are small, low-cost satellites with strict constraints (size, weight, environment).
- EPS must be efficient, compact, and fault-tolerant.
- •Focus areas:
- ✓ Solar power (Triple-junction cells)
- ✓ Li-ion batteries
- ✓ Protection systems (Latch-up Current Limiter, Under Voltage Protection)
- ✓ Sizing & efficiency optimization

CLASSIFICATION OF SATELLITES

Type	Mass (kg)	Manufacturing time
Large Satellite	>1000	>5 years
Medium	500-1000	4 years
Mini	100–500	3 years
Micro	-100	1 year
Nano	1–10	<1 year
Pico	0.1–1	<1 year
Femto	< 0.1	<1 year

Table 1:classification of different types of satellite

DEPT. OF E.E.E.

5

CUBESAT OVERVIEW

01

Modular 10 cm × 10 cm × 10 cm × 133 kg each

02

Common builds: 1 U, 3 U, 6 U, 12 U configurations 03

Advantages vs large sats: lower cost, faster, simpler launch 04

Classified as nanosatellites (1–10 kg, < 1 year build

CUBESAT APPLICATIONS

- Space science & remote sensing
- High-speed Internet and communications
- Ship and aircraft tracking
- Planetary missions (e.g., Mars orbiters)

CUBESAT LAUNCH HISTORY

- First launch: 2000 (two 1 U CubeSats tied together)
- - Slow growth until ~2013, then exponential rise
- Forecast: > 500 nanosats/year by 2022
- Drivers: miniaturization, lower launch costs

CUBESAT LAUNCH

EPS ROLE IN CUBESATS

- Constraints: Mass, volume, radiation exposure, no on-orbit repair

- Must deliver high efficiency and fault tolerance

- Requires robust control methods for reliability

EPS FUNCTIONAL BLOCKS

12

EPS ARCHITECTURE IN CUBESATS

Generation: PV solar arrays, MPPT, boost converters

Storage: Battery strings, charge/discharge converters, thermal control

Distribution: Main bus, load switches, regulators

Conditioning & Protection: Latch-up limiters, UVP, kill switch

ENERGY GENERATION – PV CELLS

PV PERFORMANCE COMPARISON

Silicon (Si) Solar Cells

- Older, widely used in early space missions
- Lower efficiency
- Lower operating voltage

Triple-Junction (TJ) GaInP/GaAs/Ge Solar Cells

- Advanced multi junction technology
- Higher energy conversion efficiency
- Operates at higher voltage suitable for space power systems

PERFORMANCE PARAMETERS COMPARED

PARAMETER	Si Cell	GaInP/GaAs/Ge Cell
OPEN CIRCUIT VOLTAGE	Lower	Higher
SHORT CIRCUIT CURRENT DENSITY	Moderate	High
EFFICIENCY (%)	~15–18%	~28–30%

Table 2:Comparison of si cell and GaInP/GaAs/Ge Cell

MPPT AND POWER CONTROL

- MPPT is essential for efficient power extraction in space
- Combined with a boost converter, it maximizes power flow to batteries and loads
- CubeSat power systems depend on MPPT to ensure mission reliability

MPPT AND POWER CONTROL

GOMspace NanoPower P31u EPS:

8 solar input channels, each with built-in MPPT

Real-time adjustment for highest energy harvesting

Integrated into many commercial CubeSats

PV MODELING, PANELS & POWER PROFILE IN CUBESATS

1. PV Power Modelling

Output power of a PV cell:

$$PV = P_S \times \frac{\eta_{SU}}{PV \cdot KG \cdot KT \cdot KR}$$

- Where:
- Ps= Solar power incident on panel
- $\eta sun/PV$ = Cell efficiency
- *KG*= Irradiance factor
- KT= Temperature factor \rightarrow

$$KT=1+\alpha(Ti-TAM0)$$

• KR= Reflection loss

PV MODELING, PANELS & POWER PROFILE IN CUBESATS

2. CubeSat PV Panels

- Example: GOM space P110 Panel
 - ✓ Up to 30% efficiency
 - ✓ Operates from −40°C to +80°C
 - ✓ Compact, rugged for LEO missions

Fig 10:Image of GOM space P110 Panel

ENERGY STORAGE – BATTERY TECHNOLOGIES

3. PV Power Profile Over Orbit

Sunlight: PV powers loads + charges battery

Eclipse: PV = 0; battery powers all systems

Temperature near Sun ↑ Efficiency ↓

Fig 12:Image of PV power profile during one orbit.

BATTERY CAPACITY, DOD & CHARGE/DISCHARGE BEHAVIOR IN CUBESATS

1. Battery Capacity & Energy

- Capacity (C) = total charge battery can deliver
 Unit: Ah (ampere-hour)
- Energy (Wh) = Capacity × Nominal Voltage

 $E=C \times Vnom$

CubeSats typically use Li-ion batteries for high energy density

BATTERY CAPACITY, DOD & CHARGE/DISCHARGE BEHAVIOR IN CUBESATS

2. Depth of Discharge (DoD)

• DoD = % of battery's capacity used per cycle

$$DoD = \frac{C \text{ used}}{C \text{ total}}$$

- Lower DoD → Longer battery life
- Typical DoD range: 30–50%
- High DoD or full discharges reduce lifespan quickly

BATTERY CHARGE/DISCHARGE PROFILE

Charging phase

Random positive current (depends on surplus PV power)

- Once EOCV (end-of-charge voltage) is reached → switch to voltage mode
- Battery still draws small current to compensate internal losses

Discharging phase

Supplies current during eclipse or peak loads

- Discharges until end-of-discharge voltage
- Controlled to avoid deep discharge

BATTERY THERMAL MANAGEMENT IN CUBESATS

- Li-ion batteries are highly sensitive to temperature.
- Space environment = extreme cold and hot conditions.
- Performance degrades in both cases:
 - ✓ Cold = ↑ Internal resistance ↓ Output power
 - ✓ Hot = \uparrow Chemical degradation \downarrow Battery life

BATTERY THERMAL MANAGEMENT IN CUBESATS

BATTERY THERMAL MANAGEMENT IN CUBESATS

- Uses resistor-based electric heaters
- Powered by the battery itself
- Activates only when needed, saving energy
- Temperature sensors monitor battery heat
- Microcontroller Unit (MCU) controls the heater switch
- Powered via 3.3 V LDO regulator
- Includes overcurrent protection to avoid fault

EPS PROTECTION SCHEMES

Latch-Up Current Limiter (LCL)

Under voltage Protection (UVP)

Prevents damage from faults/overloads

LATCH-UP CURRENT LIMITER (LCL) & UNDERVOLTAGE PROTECTION (UVP)

1. Latch-Up Current Limiter (LCL)

- Protects EPS from overcurrent conditions
- Triggered when load current exceeds safe limit
- Responds by:
 - ✓ Entering current-limiting mode
 - ✓ Starting a trip-off timer
 - ✓ If fault continues → load disconnected

LATCH-UP CURRENT LIMITER (LCL) & UNDERVOLTAGE PROTECTION (UVP)

2. Undervoltage Protection (UVP)

- Ensures system shuts down safely during voltage drops
- Triggered when bus voltage < defined threshold
- Uses hysteresis to avoid repeated ON/OFF from noise
- Distributed: Each LCL has its own UVP
- Centralized: One UVP controls all loads
- Needs single-point failure protection

SIZING OF BATTERY AND SOLAR ARRAY IN CUBESAT EPS

1. Battery Sizing

Voltage Selection:
V Bus= NS×V cell

• Capacity (Ah): $C = \frac{E \ Battery}{V bus}$

• Depth of Discharge (DoD): $DoD = \frac{E \ eclipse}{E \ battery}$

■ (Limit DoD to ~30–50% for long life)

SIZING OF BATTERY AND SOLAR ARRAY IN CUBESAT EPS

Total Energy Required:

EPV ≥ Eload+Ebattery+Elosses

CHALLENGES & FUTURE DIRECTIONS

- Miniaturization vs. radiation hardness
- Advanced converters: soft-switching, GaN/SiC
- Novel storage: solid-state, supercap hybrids
- AI-driven health monitoring & adaptive control

CONCLUSIONS

- This presentation explores modern EPS concepts specifically for CubeSats, including:
- ✓ Power generation using high-efficiency triple-junction solar cells
- ✓ Energy storage through compact and reliable lithium-ion batteries
- ✓ Power management and protection, such as MPPT, LCL, and UVP
- ✓ Thermal control strategies for battery reliability
- ✓ Sizing methods for solar arrays and batteries to match mission demands

REFERENCES

- [1] A. Lashab, D. Sera, and J. M. Guerrero, "Dual-input quasi-Z-source PV inverter: Dynamic modeling, design, and control," IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6483–6493, Aug. 2020.
- [2] M. E. Robles, J. A. Martinez, and P. D. Cortez, "Design and optimization of a modular electrical power system architecture for CubeSats," in Proc. 2021 IEEE Aerospace Conf., Big Sky, MT, USA, Mar. 2021, pp. 1–8.
- [3] S. Bajaj and A. Rao, "High-efficiency MPPT converter for CubeSat solar arrays," in Proc. 2021 IEEE Int. Conf. Power Electron., Drives Energy Syst. (PEDES), Chennai, India, Dec. 2021, pp. 1–6.
- [4] R. W. Healy, S. McClean, and M. Sakr, "Reliability analysis of lithium-ion battery systems for CubeSat EPS," IEEE Trans. Reliab., vol. 71, no. 2, pp. 342–351, Jun. 2022.

THANK YOU