Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Week 6 Q&A

Week 6 – Lecture 14

Digital Electronics

Basic gates and function implementation

???

Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

$$X = (\overline{A \cdot B}) \cdot (A + B)$$

Method part 1: Draw circuit diagram

Method part 2: Construct a combined truth table

A NAND B

В

0

 X_1

A OR B

Α	В	X_2
0	0	0
0	1	1
1	\cap	4

(Combined)

A	В	X_1	X_2	X
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

(A NAND B) AND (A OR B)

Answer: $X = A \oplus B$ (XOR)

Make the equivalent of a XOR gate using four NAND gates

Proof

Α	В	X_1	X_2	X_3	
0	0	1	1	1	0
0	1	1	•	•	
1	0	1	0	1	1
1	1	0	1	1	0

$$\therefore X = A \oplus B \text{ (XOR)}$$

• Substitute in the minterms to give the following 'canonical sum of products' as a sum of product terms, and simplify (if possible).

$$f(C,B,A) = \sum m(0,3,6)$$

$$f(C,B,A) = \sum m(0,3,6)$$

 $f(C,B,A) = m_0 + m_3 + m_6$

Answer: f(C,B,A) = C'B'A' + C'BA + CBA'

Note that it can't be simplified:

f	<u>C'B'</u>	C'B	CB	CB
A'	1		1	
Α		1		

• By substituting in the minterms and simplifying, rewrite the following 'canonical sum of products' expression as a minimum sum of products (minimum SOP).

$$f(D, C, B, A) = \sum m(1,4,8,9,14)$$

$$f(D, C, B, A) = \sum m(1,4,8,9,14)$$

$$f(D, C, B, A) = m_1 + m_4 + m_8 + m_9 + m_{14}$$

$$= D'C'B'A + D'CB'A' + DC'B'A' + DC'B'A + DCBA'$$

Answer: f = C'B'A + D'CB'A' + DC'B' + DCBA'

Answer – alternative method

A solution using only Boolean algebra.

Note: In this case the Boolean simplification is fairly straightforward. In general, for similar (and more complicated) examples, K-maps may be simpler, and allow confidence that you have fully rather than partially minimised an expression.

$$f = D'C'B'A + D'CB'A' + DC'B'A' + DC'B'A + DCBA'$$

Using the **idempotent law**: X = X + X

So that: DC'B'A = DC'B'A + DC'B'A

We duplicated *DC'B'A* so that it could then be used twice for variable elimination

$$f = D'C'B'A + \underline{DC'B'A} + D'CB'A' + \underline{DC'B'A'} + \underline{DC'B$$

$$f = (D' + D)C'B'A + D'CB'A' + DC'B'(A' + A) + DCBA'$$

Answer: f = C'B'A + D'CB'A' + DC'B' + DCBA'

Week 6 – Lecture 15 Digital Electronics

Multiplexers, decoders and encoders

 What function does this 4 to 1 MUX circuit implement?

С	В	f
0	0	1
0	1	A'
1	0	0
1	1	Α

	С	В	A	f
	0	0	0	1
C'.B'.1	0	0	1	1
	0	1	0	1
C'.B.A'	0	1	1	0
	1	0	0	0
C.B'.0	1	0	1	0
	1	1	0	0
C.B. A	1	1	1	1

$$f = C'B' + C'BA' + CBA$$

 Design a circuit for the following expression using a 4 to 1 mux with B and C connected to the select inputs.

$$f = B'A' + BA + CB'$$

Method

C	В	\boldsymbol{A}	f	
0	0	0	1)
0	0	1	0	A'
0	1	0	0	1
0	1	1	1	A
1	0	0	1	1
1	0	1	1	} 1
1	1	0	0	1
1	1	1	1	A

Answer

??? Question

??

• What functions f_1 and f_2 does this circuit implement? Find a sum of products expression for each one.

??? Question

 Design a circuit for the following expression using a BCD to decimal decoder and two OR gates.

$$f_1 = a'b'c' + a'c'd$$

$$f_2 = a'bd + ab'c'd'$$

Method

$$f_{1} = a'b'c' + a'c'd$$

$$= a'b'c'd' + a'b'c'd + a'b'c'd + a'bc'd$$

$$f_{2} = a'bd + ab'c'd'$$

$$= a'bc'd + a'bcd + ab'c'd'$$

$$f_1 = m_0 + m_1 + m_5$$

$$f_2 = m_5 + m_7 + m_8$$

a	b	С	d	f_1	f_2	_
0	0	0	0	m_0 1	0	
0	0	0	1	m_1 1	0	
0	0	1	0	0	0	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	m_5 1	1 1	m_5
0	1	1	0	0	0	
0	1	1	1	0	1	m_7
1	0	0	0	0	1	m_8
1	0	0	1	0	0	
1	0	1	0	0	0	
1	0	1	1	0	0	
1	1	0	0	0	0	
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	0	0	

Week 6 – Lecture 16

Digital Electronics

Tristate gates, ROM, PLA and PAL

• Find the 'sum of products' expressions for outputs F_2 and F_3 and simplify if possible.

Answer (F_2)

Karnaugh map

F_2	A'B'	A'B	AB	AB'
<i>C'</i>	1	1	1	0
С	1	0	0	0

$$F_{2} = \Sigma m(0,1,2,6)$$

$$= A'B'C' + A'B'C + A'BC' + ABC'$$

$$= A'B'(C + C') + (A + A')BC'$$

$$= A'B' + BC'$$

Answer (F_3)

$$F_{3} = \Sigma m(2,3,5,6,7)$$

$$= A'BC' + A'BC + AB'C + ABC' + ABC'$$

$$= A(B' + B)C + B(A'C' + A'C + AC' + AC)$$

$$= AC + B$$

Find the 'sum of products' expressions for the outputs

$$F_1$$
, F_2 , F_3 .

Hint:
$$F_0 = \overline{A}\overline{B} + A\overline{C}$$

Answers:

$$F_{1} = B + A.C$$

$$F_{2} = \overline{A}.\overline{B} + B.\overline{C}$$

$$F_{3} = B + A.C$$

???

Question

• Design a circuit with outputs $F_{\it 1}$, $F_{\it 2}$ and $F_{\it 3}$ using a PLA

$$F_1 = BC' + A'D + B'D$$

$$F_2 = A'C' + B'D + CD$$

$$F_3 = BC' + AC'D$$

Method: PLA table

INPUTS			OL	JTPU	TS	
A	В	C	D	F_1	F_2	F_3
-	1	0	1	1	0	1
0	-	•	1	1	0	0
0	-	0	-	0	1	0
-	0	-	1	1	1	0
1	-	0	1	0	0	1
-	-	1	1	0	1	0

Answer:

? Question

 Design a circuit with outputs B, C and D using a PAL14H4.

$$B = U \cdot V' + V \cdot W' + U' \cdot W \cdot X + X' \cdot Y \cdot Z$$

$$C = S' \cdot Y' + T \cdot W' + S \cdot V \cdot W$$

$$C = S' \cdot Y' + T \cdot W' + S \cdot V \cdot W$$
$$D = P \cdot Z + R' \cdot S \cdot W + P' \cdot R \cdot V + W \cdot X$$

