Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

1. Sia p un numero primo, sia \mathbf{F}_{p^n} un campo finito con p^n elementi, sia $f \in \mathbf{F}_p[x]$ e sia $\alpha \in \mathbf{F}_{p^n}$ una radice di f.

a. Dimostrare che anche α^p è una radice di f.

b. Dimostrare che per ogni intero positivo k, α^{p^k} è una radice di f.

c. Dimostrare che se f è irriducibile e $n = \deg f$, allora $\alpha, \alpha^p, \cdots, \alpha^{p^{n-1}}$ sono tutte distinte.

d. Dedurre che ogni campo finito con p^n elementi è un estensione normale di \mathbf{F}_p .

- 2. Dare la definizione di campo algebricamente chiuso e di chiusura algebrica di un campo.
- 3. Determinare il grado del campo di spezzamento di $(x^3-2)(x^3-5)(x^2+x+1)$ su **Q**.
- 4. Dimostrare che se $(x,y) \in \mathbf{C}$ è costruibile, allora $\mathbf{Q}(x,y)/\mathbf{Q}$ è finita e $[\mathbf{Q}(x,y):\mathbf{Q}]$ è una potenza di 2.

- 5. Sia $K = \mathbf{Q}(\sqrt{3}, \sqrt{5})$ a. Calcolare $[K:\mathbf{Q}]$ e dimostrare che $K = \mathbf{Q}(\sqrt{3} + \sqrt{5})$ a. Calcolare il polinomio minimo di $\sqrt{3} + \sqrt{5}$ su \mathbf{Q} e su $\mathbf{Q}(\sqrt{3})$ a. Dopo aver mostrato che $\mathbf{Q}(\sqrt{15}) \subseteq K$, descrivere i monomorfismi $K \to \mathbf{C}$ che fissano $\mathbf{Q}(\sqrt{15})$.
- 6. Si consideri il campo ciclotomico $\mathbf{Q}(\zeta_{15})$ $(\zeta_{15}=e^{2\pi/15})$. a. Determinare il polinomio minimo di ζ_{15} su \mathbf{Q} b. Determinare il polinomio minimo di ζ_{15} su $\mathbf{Q}(\zeta_3)$ e su $\mathbf{Q}(\zeta_5)$ c. Determinate gli automorfismi di $\mathbf{Q}(\zeta_{15})$ che fissano $\mathbf{Q}(\zeta_3)$

- 7. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di $\cos 2\pi/15$ su Q. (suggerimento, se $\theta = 2\pi/15$, considerare il $\cos(5\theta)$ e applicare le formule classiche della trigonometria)
- 8. Enunciare e dimostrare il teorema del grado (se $K \subseteq L \subseteq M$, allora [M:K] = [M:L][L:K]).