Homework 4

1. **p77 F.1.** Let G be the group of symmetries of the regular hexagon. List the elements of G (there are 12 of them).

(No need to write the group table of G.)

Solution.

$$R_{0} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} R_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} R_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

$$R_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix} R_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix} R_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$R_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} R_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} R_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 1 & 6 & 5 \end{pmatrix}$$

$$R_{9} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix} R_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} R_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 4 & 3 & 2 \end{pmatrix}$$

2. **p78 H.1.** Let A be a set of $a \in A$. Let G be the subset of S_A consisting of all the permutation F of A such that F(a) = a. Prove that G is a subgroup of S_A .

Solution.

Proof. To prove G is a subgroup of S_A , we must show:

- if $f \in S$ then $f^{-1} \in S$ Because F(a) is the identity permutation, it follows that $F^{-1}F(a) = F(a) = a$. Thus, it is closed under inverses.
- if $f, g \in S$ then $fg \in S$ Because $F(a) = a \forall a \in S_A$, then $\forall f, g \in G \rightarrow fg(a) = f(g(a)) = f(a) = a$. Thus, it is closed under multiplication.

Thus, G is a subgroup of S_A .

3. **p86 A.1 (a,b,c).** Compute each of the following products in S_9 . (Write your answer as a singular permutation.)

Solution.

(a)
$$(145)(37)(682) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 7 & 5 & 1 & 8 & 3 & 2 & 9 \end{pmatrix}$$

(b)
$$(17)(628)(9354) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 5 & 9 & 4 & 2 & 1 & 6 & 3 \end{pmatrix}$$

(c)
$$(71825)(36)(49) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 6 & 9 & 7 & 3 & 1 & 2 & 4 \end{pmatrix}$$

4. **p86 A.2 (b,c,d).** Write each of the following permutations in S_9 as a product of disjoint cycles:

Solution.

(a) Not Assigned

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix} = (17)(24)(395)(68)$$

(c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix} = (17435)(296)$$

(d)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix} = (1928)(375)$$

5. **p86 A.4 (d).** If $\alpha = (3714), \beta = (123), and \gamma = (24135)$ in S_7 , express each of the following as a product of disjoint cycles:

(d)
$$\beta^2 \alpha \gamma$$

Solution.

$$\beta^2 \alpha \gamma = (123)(123)(3714)(24135)$$

$$= (132)(3714)(24135)$$

$$= (17)(243)(24135)$$

$$= (173452)$$