In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as py
import seaborn as sns
from sklearn.linear_model import LogisticRegression

Out[2]:		date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY
	0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN
	1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04
	2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN
	3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN
	4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN
	230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN
	230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61
	230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN
	230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN
	230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01

230568 rows × 17 columns

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 230568 entries, 0 to 230567
Data columns (total 17 columns):
     Column
             Non-Null Count
                              Dtype
     -----
             -----
 0
     date
             230568 non-null object
 1
     BEN
             73979 non-null
                              float64
 2
     C0
             211665 non-null float64
 3
             73948 non-null
                              float64
     EBE
 4
    MXY
             33422 non-null
                              float64
 5
    NMHC
             90829 non-null
                              float64
 6
    NO 2
             228855 non-null float64
 7
    N0x
             228855 non-null float64
 8
     0XY
             33472 non-null
                              float64
 9
     0 3
             216511 non-null float64
 10
    PM10
             227469 non-null float64
                              float64
 11
    PM25
             61758 non-null
 12 PXY
             33447 non-null
                              float64
 13 S0 2
             229125 non-null float64
 14
    TCH
             90887 non-null
                              float64
 15
    T0L
             73840 non-null
                              float64
 16 station 230568 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 29.9+ MB
```

In [4]: df1 =df.fillna(value=0)
 df1

Out[4]:		date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ
	0	2006- 02-01 01:00:00	0.00	1.84	0.00	0.00	0.00	155.100006	490.100006	0.00
	1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04
	2	2006- 02-01 01:00:00	0.00	1.25	0.00	0.00	0.00	66.800003	192.000000	0.00
	3	2006- 02-01 01:00:00	0.00	1.68	0.00	0.00	0.00	103.000000	407.799988	0.00
	4	2006- 02-01 01:00:00	0.00	1.31	0.00	0.00	0.00	105.400002	269.200012	0.00
	230563	2006- 05-01 00:00:00	5.88	0.83	6.23	0.00	0.20	112.500000	218.000000	0.00
	230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61
	230565	2006- 05-01 00:00:00	0.96	0.00	0.69	0.00	0.19	135.100006	179.199997	0.00
	230566	2006- 05-01 00:00:00	0.50	0.00	0.67	0.00	0.10	82.599998	105.599998	0.00
	230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01

230568 rows \times 17 columns

In [5]: df1.info()

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 230568 entries, 0 to 230567
      Data columns (total 17 columns):
           Column
                    Non-Null Count
                                    Dtype
           -----
                    -----
       0
                    230568 non-null object
           date
           BEN
                    230568 non-null float64
       1
       2
           C0
                    230568 non-null float64
       3
                    230568 non-null float64
           EBE
       4
           MXY
                    230568 non-null float64
       5
                    230568 non-null float64
           NMHC
       6
           NO 2
                    230568 non-null float64
       7
                    230568 non-null float64
           N0x
       8
           0XY
                    230568 non-null float64
       9
           0 3
                    230568 non-null float64
       10 PM10
                    230568 non-null float64
                    230568 non-null float64
       11 PM25
                    230568 non-null float64
       12 PXY
       13 S0 2
                    230568 non-null float64
       14 TCH
                    230568 non-null float64
       15 T0L
                    230568 non-null float64
       16 station 230568 non-null int64
       dtypes: float64(15), int64(1), object(1)
      memory usage: 29.9+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O
        3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [7]: df2=df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station']]
        df2
```

Out[7]:		BEN	CO	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
	0	0.00	1.84	0.00	0.00	0.00	155.100006	490.100006	0.00	4.880000
	1	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000
	2	0.00	1.25	0.00	0.00	0.00	66.800003	192.000000	0.00	4.430000
	3	0.00	1.68	0.00	0.00	0.00	103.000000	407.799988	0.00	4.830000
	4	0.00	1.31	0.00	0.00	0.00	105.400002	269.200012	0.00	6.990000
	230563	5.88	0.83	6.23	0.00	0.20	112.500000	218.000000	0.00	24.389999
	230564	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000
	230565	0.96	0.00	0.69	0.00	0.19	135.100006	179.199997	0.00	11.460000
	230566	0.50	0.00	0.67	0.00	0.10	82.599998	105.599998	0.00	0.000000
	230567	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000

230568 rows \times 16 columns

In [8]: sns.pairplot(df2)

C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\seabor
n\axisgrid.py:118: UserWarning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)

Out[8]: <seaborn.axisgrid.PairGrid at 0x29dc50d35d0>

In [9]: sns.distplot(df2['station'])

C:\Users\HP\AppData\Local\Temp\ipykernel_17572\1070072814.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df2['station'])

Out[9]: <Axes: xlabel='station', ylabel='Density'>

linear

Out[14]:		Co-efficient
	BEN	-4.997351
	СО	1.253111
	EBE	-1.356873
	MXY	0.669524
	NMHC	-22.946795
	NO_2	-0.036151
	NOx	-0.018197
	OXY	5.290444
	0_3	-0.012774
	PM10	0.041814
	PM25	0.155528
	PXY	1.097395
	SO_2	-0.112969
	тсн	5.255443
	TOL	0.454390

```
In [15]: print(lr.intercept_)
```

28079022.85623591

```
In [16]: prediction =lr.predict(x_test)
    py.scatter(y_test,prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x29d931f8310>

In [17]: print(lr.score(x_test,y_test))

0.1252452709108267

In [18]: print(lr.score(x_train,y_train))

0.12736871834403318

Ridge

Out[21]: 0.12525382469213653

Lasso

```
In [22]: la=Lasso(alpha=10)
         la.fit(x train,y train)
Out[22]: ▼
               Lasso
         Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.038482712151716725
         elasticnet
In [24]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[24]: ▼ ElasticNet
         ElasticNet()
In [25]: print(en.coef_)
        [-0.20447227 -0.
                                -0.09253026 1.48205817 -0.
                                                                    -0.02747718
                                             0.03811669 0.19700218 0.49465604
         -0.02742433  0.78734004  -0.01183667
         -0.07639807 0.1498616
In [26]: print(en.intercept_)
        28079024.489736784
In [27]: print(en.predict(x test))
        [28079025.27457917 28079015.95792437 28079020.63722851 ...
         28079029.18656831 28079023.20719109 28079008.76715033]
In [28]: print(en.score(x_test,y_test))
        0.0943705170682394
         logistic
In [29]: feature matrix =df2.iloc[:,0:15]
         target vector=df2.iloc[:,-1]
```

```
In [30]: feature matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY'
                'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL']]
         y=df2['station']
In [31]: feature matrix.shape
Out[31]: (230568, 15)
In [32]: target vector.shape
Out[32]: (230568,)
In [33]: from sklearn.preprocessing import StandardScaler
In [34]: fs=StandardScaler().fit transform(feature matrix)
In [35]: logr = LogisticRegression()
         logr.fit(fs,target vector)
        C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklear
        n\linear model\ logistic.py:460: ConvergenceWarning: lbfgs failed to converg
        e (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear model.html#logistic-regre
        ssion
          n iter i = check optimize result(
Out[35]: ▼ LogisticRegression
         LogisticRegression()
In [36]: observation=[[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16]]
In [37]: prediction =logr.predict(observation)
         print(prediction)
        [28079099]
In [38]: logr.classes
Out[38]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079026, 28079027, 28079035, 28079036, 28079038,
                28079039, 28079040, 28079099], dtype=int64)
In [39]: logr.score(fs,target vector)
Out[39]: 0.5840489573574824
```

Loading [MathJax]/extensions/Safe.js

```
In [40]: logr.predict proba(observation)[0][0]
  Out[40]: 3.250139032944616e-119
  In [41]: logr.predict proba(observation)[0][1]
  Out[41]: 6.615527487769511e-173
           Random forest
  In [42]: from sklearn.ensemble import RandomForestClassifier
           from sklearn.tree import plot tree
  In [43]: x=df2.drop('station',axis=1)
           y=df2['station']
  In [44]: x train,x test,y train,y test=train test split(x,y,test size=0.70)
  In [45]: rfc=RandomForestClassifier()
            rfc.fit(x train,y train)
  Out[45]: ▼ RandomForestClassifier
           RandomForestClassifier()
  In [46]: parameters={'max depth':[1,2,3,4,5],
                        'min_samples_leaf' :[6,7,8,9,10],
                        'n estimators':[11,12,13,14,15]}
  In [47]: from sklearn.model_selection import GridSearchCV
  In [48]: grid search =GridSearchCV(estimator =rfc,param grid=parameters,cv=2,scoring=
           grid_search.fit(x_train,y_train)
  Out[48]:
                         GridSearchCV
            ▶ estimator: RandomForestClassifier
                  ▶ RandomForestClassifier
  In [49]: grid search.best score
  Out[49]: 0.5189243891860633
  In [50]: rfc best=grid search.best estimator
  In [51]: py.figure(figsize=(80,50))
           plot tree(rfc_best.estimators_[5],filled=True)
Loading [MathJax]/extensions/Safe.js
```

```
Out[51]: [Text(0.46120689655172414, 0.916666666666666, 'x[10] <= 0.595\ngini = 0.96
          3\nsamples = 43864\nvalue = [2386, 2496, 2589, 2509, 2633, 2615, 2647, 269
          0, 2578\n2557, 2733, 2690, 2563, 2628, 2555, 2676, 2664, 2638\n1584, 2562,
          2692, 2479, 2672, 2642, 2288, 2796, 2608]'),
          Text(0.19827586206896552, 0.75, 'x[13] \le 0.22 \text{ ngini} = 0.95 \text{ nsamples} = 322
          27\nvalue = [60, 2496, 2589, 34, 2633, 2615, 2647, 2690, 2578\n2557, 14, 26
          90, 2563, 2628, 2555, 62, 2664, 60, 1584\n38, 2692, 2479, 2672, 2083, 2288,
          2796, 11]'),
          Text(0.08620689655172414, 0.5833333333333334, 'x[0] <= 0.205 \ngini = 0.932
          \n in samples = 22965\nvalue = [60, 2496, 2589, 14, 43, 44, 2647, 31, 2578, 255
          7\n10, 2690, 2563, 2628, 2555, 62, 36, 42, 1584, 12\n10, 1041, 2672, 2083,
          2288, 2796, 0]'),
          \nsamples = 22330\nvalue = [60, 2496, 2589, 11, 43, 42, 2647, 31, 2578, 255
          7\n10, 2690, 2563, 2628, 2555, 62, 34, 42, 1584, 12\n10, 47, 2672, 2083, 22
          88, 2796, 0]'),
          Text(0.034482758620689655, 0.25, 'x[5] \le 78.695 \cdot ngini = 0.914 \cdot nsamples =
          9604\nvalue = [23, 1223, 1316, 11, 32, 32, 415, 15, 776, 1255, 10\n1396, 64
          1, 1408, 529, 35, 29, 42, 1381, 12, 10, 34\n1717, 505, 162, 2061, 0]'),
          Text(0.017241379310344827, 0.08333333333333333, 'gini = 0.912\nsamples = 9
          032\nvalue = [23, 1194, 1284, 11, 32, 28, 247, 14, 766, 1227, 10\n1360, 62]
          7, 1317, 500, 35, 29, 42, 1021, 12, 10, 33\n1676, 469, 161, 2060, 0]'),
          Text(0.05172413793103448, 0.08333333333333333, 'qini = 0.776\nsamples = 57
          2\nvalue = [0, 29, 32, 0, 0, 4, 168, 1, 10, 28, 0, 36, 14\n91, 29, 0, 0, 0,
          360, 0, 0, 1, 41, 36, 1, 1\n0]'),
          Text(0.06896551724137931, 0.25, 'gini = 0.919 \setminus samples = 12726 \setminus nvalue = [3]
          7, 1273, 1273, 0, 11, 10, 2232, 16, 1802, 1302, 0\n1294, 1922, 1220, 2026,
          27, 5, 0, 203, 0, 0, 13\n955, 1578, 2126, 735, 0]'),
          Text(0.1206896551724138, 0.4166666666666667, 'x[12] <= 7.17 \ngini = 0.014
          \nsamples = 635\nvalue = [0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0\n0, 0,
          2, 0, 0, 0, 0, 994, 0, 0, 0, 0, 0]'),
          Text(0.10344827586206896, 0.25, 'qini = 0.484 \setminus samples = 10 \setminus value = [0, 10.484]
          0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0\n0, 0, 1, 0, 0, 0, 0, 11, 0, 0, 0,
          0]'),
          Text(0.13793103448275862, 0.25, 'x[11] \le 0.405 \cdot ngini = 0.004 \cdot nsamples = 6
          25\nvalue = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0\n0, 0, 1, 0, 0, 0, 0,
          983, 0, 0, 0, 0, 0]'),
          Text(0.1206896551724138, 0.08333333333333333, 'gini = 0.272\nsamples = 10

    \text{Invalue} = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]

          1, 0, 0, 0, 0, 0]'),
          Text(0.15517241379310345, 0.08333333333333333, 'gini = 0.0 \nsamples = 615
          \nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 9
          72, 0, 0, 0, 0, 0]'),
          Text(0.3103448275862069, 0.5833333333333334, 'x[2] \le 0.05 \cdot ngini = 0.83 \cdot ns
          amples = 9262\nvalue = [0, 0, 0, 20, 2590, 2571, 0, 2659, 0, 0, 4, 0\n0, 0,
          0, 0, 2628, 18, 0, 26, 2682, 1438, 0, 0\n0, 0, 11]'),
          Text(0.2413793103448276, 0.4166666666666667, 'x[5] <= 132.9 \ngini = 0.509
          \n amples = 3311\n = [0, 0, 0, 2, 2590, 25, 0, 2659, 0, 0, 1, 0, 0\n
          0, 0, 16, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0]'),
          Text(0.20689655172413793, 0.25, 'x[4] \le 0.185 \cdot gini = 0.509 \cdot gini = 32
          78\nvalue = [0, 0, 0, 2, 2586, 25, 0, 2616, 0, 0, 1, 0, 0\n0, 0, 0, 16, 0,
          0, 1, 1, 4, 0, 0, 0, 0, 0]'),
          Text(0.1896551724137931, 0.08333333333333333, 'gini = 0.422\nsamples = 843
          \nvalue = [0, 0, 0, 0, 369, 6, 0, 970, 0, 0, 1, 0, 0, 0\n0, 0, 15, 0, 0, 1,
          1, 2, 0, 0, 0, 0, 0]'),
```

```
35\nvalue = [0, 0, 0, 2, 2217, 19, 0, 1646, 0, 0, 0, 0, 0\n0, 0, 0, 1, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0]'),
Text(0.27586206896551724, 0.25, 'x[8] \le 8.105 \text{ ngini} = 0.156 \text{ nsamples} = 33
0, 0, 0, 0, 0, 0]'),
Text(0.25862068965517243, 0.08333333333333333, 'qini = 0.408\nsamples = 10
0, 0, 0, 0, 0, 0]'),
Text(0.29310344827586204, 0.08333333333333333, 'gini = 0.0 \nsamples = 23 \n
value = [0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]'),
Text(0.3793103448275862, 0.4166666666666666, 'x[1] <= 0.065 \ngini = 0.742
\nsamples = 5951\nvalue = [0, 0, 0, 18, 0, 2546, 0, 0, 0, 0, 3, 0, 0\n0,
0, 2612, 18, 0, 25, 2681, 1434, 0, 0, 0, 0\n11]'),
Text(0.3448275862068966, 0.25, 'x[8] \le 3.56 \cdot gini = 0.018 \cdot samples = 1702
1, 0, 0, 0, 0, 0, 0]'),
Text(0.3275862068965517, 0.08333333333333333, 'gini = 0.0 \nsamples = 1689
1, 0, 0, 0, 0, 0, 0]'),
Text(0.3620689655172414, 0.08333333333333333, 'gini = 0.0 \nsamples = 13 \nv
0, 0, 0, 0, 0]'),
Text(0.41379310344827586, 0.25, 'x[7] \le 0.21 \text{ ngini} = 0.652 \text{ nsamples} = 424
9\nvalue = [0, 0, 0, 18, 0, 2546, 0, 0, 0, 0, 3, 0, 0\n0, 0, 2612, 18,
0, 0, 0, 1434, 0, 0, 0, 0, 11]'),
Text(0.39655172413793105, 0.08333333333333333, 'gini = 0.5 \nsamples = 3284
\nvalue = [0, 0, 0, 0, 0, 2546, 0, 0, 0, 0, 3, 0, 0, 0 \n0, 0, 2612, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.43103448275862066, 0.08333333333333333, 'qini = 0.062\nsamples = 96
5\nvalue = [0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 18, 0, 0,
0, 1434, 0, 0, 0, 0, 11]'),
Text(0.7241379310344828, 0.75, 'x[11] \le 0.09 \text{ ngini} = 0.864 \text{ nsamples} = 116
37\nvalue = [2326, 0, 0, 2475, 0, 0, 0, 0, 0, 2719, 0, 0\n0, 0, 2614, 0,
2578, 0, 2524, 0, 0, 0, 559, 0\n0, 2597]'),
Text(0.5862068965517241, 0.5833333333333334, 'x[9] \le 29.235 \cdot qini = 0.779
\nsamples = 6898\nvalue = [2326, 0, 0, 122, 0, 0, 0, 0, 0, 2719, 0, 0\n
0, 0, 2614, 0, 53, 0, 2524, 0, 0, 0, 559, 0, 0 n8]'),
Text(0.5172413793103449, 0.4166666666666667, 'x[1] <= 0.005 \ngini = 0.772
\n samples = 3058\nvalue = [925, 0, 0, 45, 0, 0, 0, 0, 0, 962, 0, 0\n0,
0, 996, 0, 26, 0, 1562, 0, 0, 0, 305, 0, 0 \cdot n5'
Text(0.4827586206896552, 0.25, 'x[6] \le 16.64 \cdot gini = 0.009 \cdot nsamples = 100
8\nvalue = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 6, 0, 0, 1562,
0, 0, 0, 0, 0, 0, 0]'),
Text(0.46551724137931033, 0.0833333333333333, 'gini = 0.355\nsamples = 17
0, 0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 1544, 0, 0, 0, 0, 0, 0
0, 0]'),
Text(0.5517241379310345, 0.25, 'x[0] \le 0.1 \cdot gini = 0.731 \cdot gini = 2050
\nvalue = [924, 0, 0, 45, 0, 0, 0, 0, 0, 962, 0, 0\n0, 0, 990, 0, 26, 0,
0, 0, 0, 0, 305, 0, 0 n5]'),
Text(0.5344827586206896, 0.08333333333333333, 'qini = 0.686 \nsamples = 158
2\ value = [924, 0, 0, 42, 0, 0, 0, 0, 0, 0, 222, 0, 0\ 0, 0, 990, 0, 26,
```

```
Text(0.5689655172413793, 0.08333333333333333, 'gini = 0.021 \ nsamples = 468
\nvalue = [0, 0, 0, 3, 0, 0, 0, 0, 0, 740, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 5]'),
 Text(0.6551724137931034, 0.4166666666666667, 'x[2] \le 0.055 
\n samples = 3840\n value = [1401, 0, 0, 77, 0, 0, 0, 0, 0, 1757, 0, 0\n0,
0, 1618, 0, 27, 0, 962, 0, 0, 0, 254, 0, 0\n3]'),
 Text(0.6206896551724138, 0.25, 'x[9] \le 91.515 \cdot ngini = 0.68 \cdot nsamples = 249
0\nvalue = [1401, 0, 0, 76, 0, 0, 0, 0, 0, 544, 0, 0\n0, 0, 1618, 0, 27,
0, 11, 0, 0, 0, 254, 0, 0\n1]'),
 Text(0.603448275862069, 0.08333333333333333, 'qini = 0.678\nsamples = 2141
\nvalue = [1243, 0, 0, 56, 0, 0, 0, 0, 0, 474, 0, 0\n0, 0, 1359, 0, 27,
0, 11, 0, 0, 0, 199, 0, 0\n0]'),
 Text(0.6379310344827587, 0.08333333333333333, 'gini = 0.683\nsamples = 349
\nvalue = [158, 0, 0, 20, 0, 0, 0, 0, 0, 70, 0, 0, 0\n0, 259, 0, 0, 0,
0, 0, 0, 0, 55, 0, 0, 1]'),
 Text(0.6896551724137931, 0.25, 'x[2] \le 0.555 \setminus gini = 0.494 \setminus gini = 135
0\nvalue = [0, 0, 0, 1, 0, 0, 0, 0, 0, 1213, 0, 0, 0\n0, 0, 0, 0, 0, 95
1, 0, 0, 0, 0, 0, 0, 2]'),
 Text(0.6724137931034483, 0.08333333333333333, 'qini = 0.311\nsamples = 522
\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 158, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 661,
0, 0, 0, 0, 0, 0, 0]'),
Text(0.7068965517241379, 0.08333333333333333, 'qini = 0.341 \nsamples = 828
\nvalue = [0, 0, 0, 1, 0, 0, 0, 0, 0, 1055, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 290,
0, 0, 0, 0, 0, 0, 2]'),
Text(0.8620689655172413, 0.5833333333333334, 'x[7] <= 1.005 \ngini = 0.666
nsamples = 4739 nvalue = [0, 0, 0, 2353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 2525, 0, 0, 0, 0, 0, 0, 0, 0, 2589]'),
 Text(0.7931034482758621, 0.41666666666666667, 'x[3] <= 1.005 \ngini = 0.473
nsamples = 1993 \cap e = [0, 0, 0, 393, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 2167, 0, 0, 0, 0, 0, 0, 0, 574]'),
 Text(0.7586206896551724, 0.25, 'x[5] \le 34.54 \cdot ngini = 0.251 \cdot nsamples = 120
0\nvalue = [0, 0, 0, 94, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 1607, 0, 0,
0, 0, 0, 0, 0, 0, 169]'),
 Text(0.7413793103448276, 0.08333333333333333, 'gini = 0.136\nsamples = 989
\nvalue = [0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 89]'),
 Text(0.7758620689655172, 0.08333333333333333, 'gini = 0.613\nsamples = 211
\nvalue = [0, 0, 0, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 80]'),
Text(0.8275862068965517, 0.25, 'x[0] \le 0.435 \cdot gini = 0.645 \cdot gini = 793
0, 0, 0, 0, 0, 0, 405]'),
 Text(0.8103448275862069, 0.08333333333333333, 'gini = 0.482\nsamples = 226
\nvalue = [0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 9, 0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 233]'),
 Text(0.8448275862068966, 0.08333333333333333, 'gini = 0.612\nsamples = 567
0, 0, 0, 0, 0, 0, 172]'),
Text(0.9310344827586207, 0.4166666666666667, 'x[3] \le 6.92 \cdot ngini = 0.572 \cdot 
samples = 2746 \cdot \text{nvalue} = [0, 0, 0, 1960, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \cdot 0, 0]
0, 358, 0, 0, 0, 0, 0, 0, 0, 0, 2015]'),
 Text(0.896551724137931, 0.25, 'x[4] \le 0.095 \cdot gini = 0.572 \cdot samples = 1999
0, 0, 0, 0, 0, 0, 1698]'),
 Text(0.8793103448275862, 0.08333333333333333, 'gini = 0.338\nsamples = 298
```

0, 0, 0, 0, 0, 0, 69]'),

concusion

The bestfit model is logistic Regression with score of 0.5840489573574824

In []: