

TD 2 : Différences Finies

UF « Modélisation et calcul scientifique » Formation ModIA « Modélisation et Intelligence Artificielle »

Nicolas Bertier (nicolas.bertier@onera.fr)

INSA, 4A

Schéma Second Order Centered Implicit Euler (SOC-IE)

Schéma implicite SOC-IE au point courant :

$$\frac{du_i}{dt} = -\frac{a}{2\Delta x} \left(u_{i+1} - u_{i-1} \right) \quad \forall a > 0$$

- Matrice jacobienne J du système
- Valeurs propres du système semi-discret en espace (valeurs propres de J)
- Expression de la vitesse complexe puis l'équation de dispersion
- Donner l'ordre de la méthode et la valeur du premier terme d'erreur non nul. De quel type d'erreur s'agit-il?
- Ce schéma sera-il stable avec une intégration temporelle d'Euler explicite? Et avec une intégration temporelle d'Euler implicite?
- Ecrire le système à résoudre si l'on souhaite intégrer ce système avec une méthode d'Euler implicite.

Etude du schéma centré d'ordre 2 SOC

Rappel du schéma semi-discret SOC

$$\frac{du_i}{dt} = -\frac{a}{2\Delta x} \left(u_{i+1} - u_{i-1} \right) \quad \forall a > 0$$

Matrice jacobienne J

$$J = -\frac{a}{2\Lambda x} \left(P_m - P_m^{-1} \right)$$

Valeurs propres

$$\overline{\lambda_{\alpha}} = -\frac{a}{2\Lambda x} \left[e^{\left(j\frac{2\pi}{m}\right)^{\alpha}} - e^{-\left(j\frac{2\pi}{m}\right)^{\alpha}} \right]$$

Soit, en séparant les parties réelle et imaginaire :

$$\overline{\lambda_{\alpha}} = -\frac{a}{\Lambda_{X}} j \sin \varphi_{\alpha}$$

Expression de la vitesse complexe $\overline{v_{\alpha}}$:

On rappelle que :

$$\overline{v_{\alpha}} = \mathrm{j} \frac{\overline{\lambda_{\alpha}}}{k_{\alpha}} = -\frac{\Im(\overline{\lambda_{\alpha}})}{k_{\alpha}} + \mathrm{j} \frac{\Re(\overline{\lambda_{\alpha}})}{k_{\alpha}}$$

Soit:

$$\overline{v_{\alpha}} = -\frac{\Im(\overline{\lambda_{\alpha}})}{k_{\alpha}} = \frac{a}{k_{\alpha}\Delta x}\sin\varphi_{\alpha} = \frac{a}{\varphi_{\alpha}}\sin\varphi_{\alpha}$$

Equation de dispersion

L'équation de dispersion et son lien avec la dissipation $\overline{\nu_{\alpha}}$ et la dispersion $\overline{\xi_{\alpha}}$ s'écrivent :

$$\frac{\overline{v_{\alpha}}}{a} = -\frac{\Im(\overline{\lambda_{\alpha}})}{k} + j\frac{\Re(\overline{\lambda_{\alpha}})}{k} = \overline{\xi_{\alpha}} - j\overline{\nu_{\alpha}}$$

On remarque que la dissipation de ce schéma est identiquement nulle quelle que soit la longueur d'onde considérée.

D.L. de l'équation de dispersion pour $k \to 0$

On rappelle que le développement limité de l'équation de dispersion autour des grandes longueurs d'onde (i.e $k \to 0$) s'écrit :

$$\frac{\overline{v_{\alpha}}}{a} = 1 + \overline{E_0} - j\overline{E_1}\varphi_{\alpha} + \overline{E_2}\varphi_{\alpha}^2 + j\overline{E_3}\varphi_{\alpha}^3 + \dots$$

Equation équivalente

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = a \Delta x \overline{E_1} \frac{\partial^2 u}{\partial x^2} + a \Delta x^2 \overline{E_2} \frac{\partial^3 u}{\partial x^3} + a \Delta x^3 \overline{E_3} \frac{\partial^4 u}{\partial x^4} + \mathcal{O}\left(\Delta x^4\right)$$

Equation de dispersion :

$$\frac{\overline{v_{\alpha}}}{a} = \frac{1}{\varphi_{\alpha}} \left[\sin(\varphi_{\alpha}) \right]$$

Identification des coefficients d'erreur

Développement de l'équation de dispersion (cf. TD) :

$$\frac{\overline{v_{\alpha}}}{\textit{a}} = \frac{1}{\varphi_{\alpha}} \left[\varphi_{\alpha} - \frac{1}{3!} \varphi_{\alpha}^{3} + \frac{1}{5!} \varphi_{\alpha}^{5} + \mathcal{O} \left(\varphi_{\alpha}^{7} \right) \right]$$

$$\frac{\overline{v_{\alpha}}}{a} = 1 - \frac{1}{3!}\varphi_{\alpha}^{2} + \frac{1}{5!}\varphi_{\alpha}^{4} + \mathcal{O}\left(\varphi_{\alpha}^{6}\right)$$

Coefficients d'erreur :

$$\overline{E_1}=0;\overline{E_2}=-\frac{1}{3!};\overline{E_3}=0;\overline{E_4}=\frac{1}{5!}$$

Le schéma obtenu est bien consistant et d'ordre deux.

Stabilité du schéma

Les valeurs propres du schéma semi-discret en espace sont toutes situées sur l'axe des imaginaires.

- Le domaine de stabilité du schéma d'Euler explicite étant un disque dans le demi-plan gauche du plan complexe tangeant à l'axe des imaginaires, il ne pourra jamais contenir le lieu des valeurs propres du schéma semi-discret : l'intégration du schéma SOC par la méthode d'Euler explicite conduira à un schéma discret inconditionellement instable.
- Le domaine de stabilité du schéma d'Euler implicite étant l'ensemble du plan complexe privé d'un disque dans le demi-plan droit du plan complexe tangeant à l'axe des imaginaires, il contiendra toujours le lieu des valeurs propres du schéma semi-discret : l'intégration su schéma SOC par la méthode d'Euler implicite conduira à un schéma discret inconditionellement stable.

Etude de la précision du schéma FOU

Equation de dispersion :

$$rac{\overline{v_{lpha}}}{a} = -rac{1}{arphi_{lpha}} \left[-\sin(arphi_{lpha}) + \mathrm{j} \left(1 - \cos(arphi_{lpha})
ight)
ight]$$

Identification des coefficients d'erreur

Développement de l'équation de dispersion (cf. TD) :

$$\frac{\overline{\nu_{\alpha}}}{\textit{a}} = 1 - j\frac{1}{2}\varphi_{\alpha} - \frac{1}{6}\varphi_{\alpha}^{2} + j\frac{1}{24}\varphi_{\alpha}^{3} + \mathcal{O}\left(\varphi_{\alpha}^{4}\right)$$

Coefficients d'erreur :

$$\overline{E_1} = +\frac{1}{2}$$
; $\overline{E_2} = -\frac{1}{6}$; $\overline{E_3} = -\frac{1}{24}$

Le schéma obtenu est bien consistant et d'ordre un $(\overline{E_1}$ non nul).

Etude de la précision du schéma décentré d'ordre deux

Equation de dispersion :

$$\frac{\overline{v_{\alpha}}}{\textit{a}} = -\frac{1}{2\varphi_{\alpha}} \left[-\sin(\varphi_{\alpha}) \left(3 - \cos(\varphi_{\alpha}) \right) + \mathrm{j} \left(1 - \cos(\varphi_{\alpha}) \right)^2 \right]$$

Identification des coefficients d'erreur

Développement de l'équation de dispersion :

$$\frac{\overline{v_{\alpha}}}{\textit{a}} = 1 + \frac{1}{12} \varphi_{\alpha}^{2} - \mathrm{j} \frac{1}{8} \varphi_{\alpha}^{3} + \mathcal{O}\left(\varphi_{\alpha}^{4}\right)$$

Coefficients d'erreur :

$$\overline{E_1} = 0; \overline{E_2} = \frac{1}{12}; \overline{E_3} = -\frac{1}{8}$$

Le schéma obtenu est bien consistant et d'ordre deux ($\overline{E_1}$ nul, $\overline{E_2}$ non nul).

Lieux de $\overline{\lambda_{\alpha}}\Delta x/a$ pour les schémas FOU et UPO2VF

Dispersion des schémas décentrés d'ordre un et deux en fonction du nombre d'ondes

Dissipation des schémas décentrés d'ordre un et deux en fonction du nombre d'ondes

Confrontation des valeurs propres du schéma d'Euler explicite avec celles de la discrétisation spatiale (UPO2VF)

Confrontation des valeurs propres du schéma RK2 avec celles de la discrétisation spatiale (UP O2)

Confrontation des valeurs propres du schéma d'Euler implicite avec celles de la discrétisation spatiale (UPO2VF)

Schéma Second Order Centered Implicit Euler (SOC-IE)

Schéma implicite SOC-IE au point courant :

$$u_i^{n+1} = u_i^n - \frac{\mathcal{C}}{2} \left(u_{i+1}^{n+1} - u_{i-1}^{n+1} \right)$$

Ce qui peut se réécrire :

$$u_i^{n+1} + \frac{e}{2}u_{i+1}^{n+1} - \frac{e}{2}u_{i-1}^{n+1} = u_i^n$$

Soit, sous forme d'un système pour l'ensemble des points du maillage :

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix}^{n+1} \begin{pmatrix} 1 & C/2 & \cdots & 0 & -C/2 \\ -C/2 & 1 & C/2 & \cdots & 0 \\ 0 & -C/2 & 1 & C/2 & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ C/2 & \cdots & 0 & -C/2 & 1 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{pmatrix}^n$$