

PVsyst - Simulation report

Grid-Connected System

Project: Sim00

Variant: BIFACIAL_Row4

Unlimited Trackers with backtracking

System power: 53.3 kWp

NREL BEST Field - United States

PVsyst research

PVsyst research

Author

National renewable energy laboratory (United states)

Variant: BIFACIAL_Row4

PVsyst V7.3.4

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

National renewable energy laboratory (United states)

Project summary

Geographical Site Situation Meteo data

NREL BEST FieldLatitude39.74 °NDENVER/CENTENNIAL [GOLDEN - NREL]United StatesLongitude-105.17 °WNREL BEST Field - TMY

Altitude 1765 m Time zone UTC-7

Monthly albedo values

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Albedo	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.20	0.20

System summary

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation Near Shadings

OrientationTracking algorithmNo ShadingsTracking horizontal axisAstronomic calculation

Backtracking activated

System information

PV Array Inverters

Nb. of modules144 unitsNb. of units3 unitsPnom total53.3 kWpPnom total72.0 kWac

Pnom ratio 0.740

User's needs
Unlimited load (grid)

Results summary

Produced Energy 108860 kWh/year Specific production 2043 kWh/kWp/year Perf. Ratio PR 86.48 %

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Main results	5
Loss diagram	6
Predef. graphs	7

Variant: BIFACIAL Row4

PVsyst V7.3.4

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

National renewable energy laboratory (United states)

General parameters

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation

Orientation Tracking algorithm **Backtracking array**

Tracking horizontal axis Astronomic calculation Nb. of trackers Unlimited trackers

Backtracking activated

Sizes

Tracker Spacing 5.70 m 2.00 m Collector width Ground Cov. Ratio (GCR) 35.1 % Left inactive band 0.02 m Right inactive band 0.02 m Phi min / max. -/+ 50.0 °

10 units

Backtracking strategy

Phi limits for BT -/+ 68.9 ° Backtracking pitch 5.70 m Backtracking width 2.00 m

Models used

Transposition Perez Diffuse Imported Circumsolar with diffuse

Near Shadings User's needs Horizon Free Horizon No Shadings Unlimited load (grid)

Bifacial system

2D Calculation Model unlimited trackers

Bifacial model definitions Bifacial model geometry

Tracker Spacing 5.70 m Ground albedo 0.20 Tracker width 2.04 m Bifaciality factor 75 % 35.8 % 5.0 % **GCR** Rear shading factor 10.0 % Axis height above ground 1.50 m Rear mismatch loss Shed transparent fraction 0.0 %

PV Array Characteristics

PV module Inverter Manufacturer Longi Solar Manufacturer Fronius USA Model LR6-72 BP 370 M Bifacial Model Symo Advanced 24.0-3 480 (Original PVsyst database) (Original PVsyst database) Unit Nom. Power 370 Wp Unit Nom. Power 24.0 kWac Number of PV modules 144 units Number of inverters 3 * MPPT 0.57 3 units Nominal (STC) 53.3 kWp Total power 72.0 kWac Modules 9 Strings x 16 In series Operating voltage 200-800 V At operating cond. (50°C) Pnom ratio (DC:AC) 0.74 **Pmpp** 48.4 kWp 568 V U mpp I mpp 85 A

Total PV power Total inverter power

Nominal (STC) 53 kWp Total power 72 kWac 3 units 144 modules Number of inverters Total Module area 284 m² Pnom ratio 0.74

254 m² Cell area

PVsyst V7.3.4

Uv (wind)

Project: Sim00

Variant: BIFACIAL_Row4

National renewable energy laboratory (United states)

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

Array losses

LID - Light Induced Degradation

1.5 %

Loss Fraction

Thermal Loss factor DC wiring losses

0.0 W/m2K/m/s

Module temperature according to irradiance Global array res.

Global array res. 112 mΩ

Uc (const) 20.0 W/m²K Loss Fraction 1.5 % at STC

Module Quality Loss Module mismatch losses Strings Mismatch loss

Loss Fraction -0.5 % Loss Fraction 2.0 % at MPP Loss Fraction 0.2 %

IAM loss factor

Incidence effect (IAM): User defined profile

0°	25°	45°	60°	65°	70°	75°	80°	90°
1.000	1.000	0.995	0.962	0.936	0.903	0.851	0.754	0.000

PVsyst research

PVsyst research

Variant: BIFACIAL_Row4

PVsyst V7.3.4

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

National renewable energy laboratory (United states)

Main results

System Production

Produced Energy

108860 kWh/year

Specific production Perf. Ratio PR

2043 kWh/kWp/year

86.48 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	81.2	28.03	1.69	113.6	108.5	5760	5589	0.923
February	108.6	32.46	-0.42	150.1	145.0	7620	7409	0.926
March	142.7	55.33	5.08	184.2	178.0	9104	8840	0.901
April	197.1	56.45	9.87	264.6	257.7	12659	12296	0.872
May	195.2	72.55	13.83	247.6	240.1	11614	11264	0.854
June	209.8	67.86	21.86	269.0	261.4	12263	11887	0.829
July	211.3	68.73	24.14	267.7	260.2	12127	11754	0.824
August	194.5	68.72	23.50	251.5	243.9	11516	11164	0.833
September	155.8	43.00	20.31	211.5	205.6	9759	9465	0.840
October	126.1	30.14	12.96	177.1	172.0	8531	8281	0.878
November	84.5	25.42	9.39	119.9	115.0	5919	5741	0.899
December	74.1	23.40	5.14	105.9	100.5	5331	5169	0.916
Year	1781.0	572.09	12.35	2362.6	2287.9	112205	108860	0.865

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation

T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** Effective energy at the output of the array

E Grid Energy injected into grid PR

Performance Ratio

PVsyst V7.3.4

Project: Sim00

Variant: BIFACIAL Row4

National renewable energy laboratory (United states)

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

Variant: BIFACIAL_Row4

National renewable energy laboratory (United states)

VC4, Simulation date: 06/16/23 09:17 with v7.3.4

