АиСД | SET-1 | A2

TODO:

- 1. Какое точное количество операций умножения требуется выполнить, чтобы вычислить x^n с помощью алгоритма FAST EXPONENT? Всегда ли данный алгоритм лучше наивного способа вычисления?
- 2. Сформулируйте условие P, которое подходит в качестве инварианта цикла while. Представьте достаточное обоснование выбора инварианта. Выполните проверку выполнения найденного инварианта до входа в цикл (INIT), в каждой итерации цикла (MNT), а также при выходе из цикла (TRM).

```
FAST_EXPONENT.cpp
    int fastExponent(int x, int n) {
         int r = 1;
         int p = x;
 3
         int e = n;
 6
        while (e > 0) {
             if (e % 2 != 0) r = r *
             p = p * p;
             e = e / 2;
10
11
12
         return r;
13
    }
```

Task 1: (Количество операций)

Умножение р на р выполняется $\lfloor \log_2 n \rfloor + 1$ раз, а умножение г на р происходит всякий раз, когда е нечетно. Количество таких умножений равно числу единичных битов в двоичной записи n, то есть весу Хэмминга. Таким образом, потребуется $\lfloor \log_2 n \rfloor + 1$ + hammingWeight(n) операций

Алгоритм быстрой экспоненты работает за $T_{fast}(n) \approx 2\log_2 n$, а наивный способ за $T_{naive}(n) = n-1$. Найдем такое n, что $2\log_2 n < n-1 \Longrightarrow 2\log_2 n < n$ (для больших n) $\Longrightarrow \log_2 n < \frac{n}{2}$. Из этого можно сделать вывод, что алгоритм быстрой сортировки более эффективен при $n \geq 5$

Task 2.1: (Инвариант и обоснование)

Предположим, что $x^n=r\cdot p^e$, тогда инвариантом цикла while можно представить $r\cdot p^e$: r - результат накопленных умножений, p - текущая степень основания, e - оставшаяся экспонента.

Обоснование: На каждой итерации цикла алгоритм уменьшает значение е, но сохраняет промежуточные результаты. \forall итерации справедливо, что текущее значение $r \cdot p^e$ равно исходному x^n , где e уменьшается с каждым шагом вдвое.

Task 2.2: (Проверка)

INIT: До входа в цикл справедливо, что $e=n, p=x, r=1 \Longrightarrow r\cdot p^e=1\cdot x^n=x^n$

MNT: На каждой итерации справедливо, что: если е нечетное, то $r = r \cdot p$, $p = p \cdot p$, $e = \frac{e}{2}$, при этом инвариант сохраняется, т.к. p^e обновляется согласно новому e; r корректно обновляется умножением на p, которое учло нечетность экспоненты. $\Longrightarrow r \cdot p^e = x^n$

TRM: После завершения цикла e = 0. Проверим инвариант. $r \cdot p^0 = r = x^n \Longrightarrow r = x^n$, что и являлось целью алгоритма.

⇒ инвариант выполняется