Acceptance Sampling by Attributes

Task: create a sampling plan for the shipment of 10000 items

Stat -> Quality Tools -> Acceptance Sampling by Attributes

Create Sampling Plan

Measurement type: Go/Mo Go (defective)

Percent defective

Acceptable Quality Level (AQL) = 2 - Max percent of nonconforming units that can be considered satisfactory as the process average

Rejectable Quantity Level (RQL or RTPD) = 10 - The level of quality that is unsatisfactory and should be rejected by the sampling plan

Producer's risk, alpha = 0.05 - Probability that a good lot will be rejected by the sampling plan Consumer's risk, beta = 0.10 - Probability that a bad lot will be accepted by the sampling plan Lot size = 10000

RESULT:

Sample 65 units. If 3 or more will be defective, reject the entire lot.

Method

Acceptable Quality Level (AQL) 2 Producer's Risk (α) 0.05 Rejectable Quality Level (RQL or LTPD) 10 Consumer's Risk (β) 0.1

Generated Plan(s)

Sample Size 65 Acceptance Number 3

Accept lot if defective items in 65 sampled ≤ 3; Otherwise reject.

	Probability Accepting		AOQ	ATI
2	0.959	0.041	1.905	476.1
10	0.100	0.900	0.989	9010.9

Average Outgoing Quality Limit(s) (AOQL)

	At Percent
AOQL	Defective
2.971	4.484

Acceptance Sampling by Variables

Task: create a sampling plan for the shipment of 10000 items

Stat -> Quality Tools -> Acceptance Sampling by Variables -> Create/Compare

Measurement type: Go/Mo Go (defective)

Percent defective

Acceptable Quality Level (AQL) =2 - Max percent of nonconforming units that can be considered satisfactory as the process average

Rejectable Quantity Level (RQL or RTPD) = 10 - The level of quality that is unsatisfactory and should be rejected by the sampling plan

Producer's risk, alpha = 0.05 - Probability that a good lot will be rejected by the sampling plan Consumer's risk, beta = 0.10 - Probability that a bad lot will be accepted by the sampling plan

Lower Spec =1

Upper Spec = 5

Lot size = 10000

RESULTS:

Accept is Z.USL and Z.LSL >= k, otherwise reject

Upper Specification Limit (USL)	5
Lot Size	10000
Acceptable Quality Level (AQL)	2
Producer's Risk (α)	0.05
Rejectable Quality Level (RQL or LTPD)	10
Consumer's Risk (β)	0.1

Generated Plan(s)

Sample Size 34
Critical Distance (k Value) 1.61972
Maximum Standard Deviation (MSD) 1.04485

Z.LSL = (mean - lower spec)/standard deviation
Z.USL = (upper spec - mean)/standard deviation
Accept lot if standard deviation \leq MSD, Z.LSL \geq k and Z.USL \geq k; otherwise reject.

Percent	Probability	Probability		
Defective	Accepting	Rejecting	AOQ	ATI
2	0.954	0.046	1.901	493.3
10	0.106	0.894	1.058	8941.7

Average Outgoing Quality Limit(s) (AOQL)

	At Percent
AOQL	Defective
2 847	4 353

Analysis

Stat -> Quality Tools -> Acceptance Sampling by Variables->Accept/Reject lot

Measurement Data: Length k-value : 1.61972 (see the plan)

Lower Spec = 1 Upper Spec = 5 Lot size = 10000

RESULT: Sample 34

Reject the entire lot

Make Accept or Reject Decision Using Length

Sample Size 34

Mean 1.50810

Standard Deviation 1.55984

Lower Specification Limit (LSL) 1

Upper Specification Limit (USL) 5

Z.LSL
 Z.USL
 Critical Distance (k Value)
 Maximum Standard Deviation (MSD)
 1.04485

Decision: Reject lot.