

THE ACM-ICPC 2017

VIETNAM SOUTHERN PROGRAMMING CONTEST Host: University of Science, VNU-HCM

TP HO CHI MINH

October 29, 2017

Problem A Cable Car Time Limit: 1 second

In the Marvelous Mountain, there are *N* attractions. Each attraction is labeled from 1 to *N*. There are *M* **one-way** cable car lines to connect pairs of attractions. The length of a cable car line is a positive integer.

As we want most visitors to travel from the attraction S to the attraction T, we should consider possible plans to reduce the length of the shortest path to travel from S to T. We have a list of proposals with K new **two-way** cable car lines that can be built.

Your task is to select one of the *K* proposed cable car lines to build so that, upon finishing this new cable car line, the length of the shortest path from *S* to *T* is minimized.

Input

The first line contains five integer numbers: N, M, K, S, and T ($N \le 10^5$, $M \le 2 \times 10^5$, $K < 10^5$, $1 \le S$, $T \le N$, and $S \ne T$).

The i^{th} line of the following M lines contains 3 positive integer numbers: a_i , b_i , and l_i , denoting that the i^{th} cable car line is from the attraction a_i to the attraction b_i , and has the length of l_i ($l_i \le 10^9$).

The j^{th} line of the following K lines contains 3 positive integer numbers: u_j , v_j , q_j , denoting that the new possible two-way cable car line can be built from u_j to v_j (and vice versa), with the length for each way of q_i ($q_i \le 10^9$).

Output

Display an integer number that is the minimum length of the shortest path to go from S to T, after building a new two-way cable car line. Print -1 if there is no way to go from S to T, even with any new cable car line in the proposal list.

THE ACM-ICPC 2017 **VIETNAM SOUTHERN PROGRAMMING CONTEST**

Host: University of Science, VNU-HCM

October 29, 2017

Sample Input

Sample Output

4 5 3 1 4	35
1 2 13	
2 3 19	
3 1 25	
3 4 17	
4 1 18	
1 3 23	
2 3 5	
2 4 25	