75.03 / 95.57 Organización del Computador (Cátedra Benítez)

Clase I : Sistemas de numeración

Tabla comparativa de sistemas de numeración

Decimal	Binario	Octal	Hexa
00	0000	00	00
01	0001	01	01
02	0010	02	02
03	0011	03	03
04	0100	04	04
05	0101	05	05
06	0110	06	06
07	0111	07	07
08	1000	10	08
09	1001	11	09
10	1010	12	0A
11	1011	13	0B
12	1100	14	0C
13	1101	15	0D
14	1110	16	0E
15	1111	17	0F
16	10000	20	10

Operaciones aritméticas en otras bases

Teorema fundamental de la numeración

```
43210-1-2 i

12456,21 [10] = 1 x 10^-2 + 2 x 10^-1 + 6 x 10^0 + 5 x 10^1 + 4 x 10^2 + 2 x 10^3 + 1 x 10^4 [10] =

11 10 1 0 -1 -10 i

1101,01 [2] = 1 x 10^-10 + 0 x 10^-1 + 1 x 10^0 + 0 x 10^1 + 1 x 10^10 + 1 x 10^11 [2] =
```

Mecanismos de pasajes de base

- 1) Pasaje de base [x] a base 10
 - a) Enteros de base [x] a base 10 b) Con coma de base [x] a base 10

2210 - i

4-4-4 - i

- 2) Pasaje de base 10 a base [x]
 - a) Enteros de base 10 a base [x]

0,1232 [4]

b) Con coma de base 10 a base [x]

Multiplicaciones sucesivas del número en base 10 por la base de destino.

Detala lores de la 10 por la base de destino.

Detala lores de la 10 por la destino de la 100 por la delegada alpeda del la 10 por la delegada del la 10 por la la 10 por la 10 porta 10 por

miro

3) Potencia o raíz exacta

- a) Raíz exacta
- b) Potencia exacta

a) a =
$$\sqrt[x]{b}$$
 La base a es raíz exacta (x) de b

Agrupo de a X dígitos de la base origen y genero un dígito de la base destino

$$2 = \sqrt[4]{16}$$
 $x = 4$

Expando un dígito de la base origen y genero X dígitos de la base destino

$$8 = 2^{x}$$
 $x = 3$

4) Números periódicos

$$0,456 [10] = 456 - 4 \\ 990 [10]$$

Expresión periódica:
- Numerador: número detrás de la coma menos digitos no periódicos
- Denominador: Un digito mayor de la base por cada digito periódico y un cero por cada digito no

$$0,3642[8] = \frac{3642 - 36}{7700}[8]$$

Luego pasar a base de destino numerador y denominador

Formatos de representación en una computadora

Formato Binario de Punto Fijo sin signo

Tipo de dato: Números enteros, sin signo

Capacidad: n bits (ej. 8 bits, 16 bits, 32 bits, etc.)

Rango de valores: 0 ... 2ⁿ-1 [10]

13 [10] Almacenar en formato BPF s/signo de 16 bits

a) Pasar de base origen a base 2

1101 [2]

 b) Insertar los dígitos binarios (bits) obtenidos en el espacio de almacenamiento y completar con ceros de ser necesario

00000000000001101

[2] BPF s/signo de 16 bits

