

Signup and get free access to 100+ Tutorials and Practice Problems

Start Now

All Tracks > Algorithms > Graphs > Topological Sort

Algorithms

Solve any problem to achieve a rank

View Leaderboard

Topics:

Topological Sort

Topological Sort

TUTORIAL

PROBLEMS

Topological sorting of vertices of a **Directed Acyclic Graph** is an ordering of the vertices $v_1, v_2, \dots v_n$ in such a way, that if there is an edge directed towards vertex v_i from vertex v_i , then v_i comes before v_i . For example consider the graph given below:

A topological sorting of this graph is: 1 2 3 4 5

There are multiple topological sorting possible for a graph. For the graph given above one another topological sorting is: 12354

In order to have a topological sorting the graph must not contain any cycles. In order to prove it, let's assume there is a cycle made of the vertices $v_1, v_2, v_3 \dots v_n$. That means there is a directed edge between v_i and v_{i+1} ($1 \leq i < n$) and between v_n and v_1 . So now, if we do topological sorting then v_n must come before v_1 because of the directed edge from v_n to v_1 . Clearly, v_{i+1} will come after v_i , because of the directed from v_i to v_{i+1} , that means v_1 must come before v_n . Well, clearly we've reached a contradiction, here. So topological sorting can be achieved for only directed and acyclic graphs.

Le'ts see how we can find a topological sorting in a graph. So basically we want to find a permutation of the vertices in which for every vertex v_i , all the vertices v_j having edges coming out and directed towards v_i comes before v_i . We'll maintain an array T that will denote our topological sorting. So, let's say for a graph having N vertices, we have an array $in_degree[]$ of size N whose i^{th} element tells the number of vertices which are not already inserted in T and there is an edge from them incident on vertex numbered i. We'll append vertices v_i to the array T, and when we do that we'll decrease the value of $in_degree[v_j]$ by 1 for every edge from v_i to v_j . Doing this will mean that we have inserted one vertex having edge directed towards v_j . So at any point we can insert only those vertices for which the value of $in_degree[]$ is 0.

The algorithm using a BFS traversal is given below:

```
topological_sort(N, adj[N][N])
        T = []
        visited = []
         in degree = []
         for i = 0 to N
                  in degree[i] = visited[i] = 0
         for i = 0 to N
                  for j = 0 to N
                           if adj[i][j] is TRUE
                                    in_degree[j] = in_degree[j] + 1
         for i = 0 to N
                 if in degree[i] is 0
                           enqueue(Queue, i)
                           visited[i] = TRUE
        while Queue is not Empty
                 vertex = get front(Queue)
                 dequeue (Queue)
                 T.append(vertex)
                  for j = 0 to N
                           if adj[vertex][j] is TRUE and visited[j] is FALSE
                                    in_degree[j] = in_degree[j] - 1
                                                                               ?
                                    if in_degree[j] is 0
```

enqueue(Queue, j)
visited[j] = TRUE

return T

Let's take a graph and see the algorithm in action. Consider the graph given below:

Initially $in_degree[0] = 0$ and T is empty

QUEUE: 0

in_degree	0	1	2	2	2	3
	0	1	2	2	1	5

T: --

So, we delete 0 from Queue and append it to T. The vertices directly connected to 0 are 1 and 2 so we decrease their $in_degree[]$ by 1. So, now $in_degree[1] = 0$ and so 1 is pushed in Queue.

QUEUE: 1

in_degree	0	0	1	1	2	3	
	0	1	2	3	4	5	

T: 0

Next we delete 1 from Queue and append it to T. Doing this we decrease $in_degree[2]$ by 1, and now it becomes 0 and 2 is pushed into Queue.

QUEUE: 2

in_degree	0	0	0	1	1	3
	0	1	2	3	4	5

T: 0 1

So, we continue doing like this, and further iterations looks like as follows:

QUEUE: 3

QUEUE: 4

T: 0 1 2 3

?

T: 0 1 2 3 4 5

So at last we get our Topological sorting in T i.e. : 0, 1, 2, 3, 4, 5

Solution using a DFS traversal, unlike the one using BFS, does not need any special $in_degree[]$ array. Following is the pseudo code of the DFS solution:

```
T = []
visited = []

topological_sort( cur_vert, N, adj[][] ){
    visited[cur_vert] = true
    for i = 0 to N
        if adj[cur_vert][i] is true and visited[i] is false
        topological_sort(i)
    T.insert_in_beginning(cur_vert)
}
```

The following image of shows the state of stack and of array T in the above code for the same graph shown above.

	Stack	Т
0		
0	1	?

0	1	2								
0	1	2	4							
0	1	2	4	5						
0	1	2	4		5					
0	1	2			4	5				
0	1	2	3		4	5				
0	1	2			3	4	5			
0	1				2	3	4	5		
0					1	2	3	4	5	
					0	1	2	3	4	5

Contributed by: Vaibhav Jaimini

About Us	Innovation Management	Technical Recruitment
University Program	Developers Wiki	Blog
Press	Careers	Reach Us
179		

