Docket No.: 1248-0526P

Reply to Office Action of August 26, 2003

AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

(currently amended): An optical space transmission device for one to plural bi-directional optical communications, including comprising:

transmission result detection means for determining, subsequent to a polling sequence, if a communication transmission to an associated office is performed successfully by detecting if a command of a predetermined content is returned from the associated office in response to data transmitted thereto at a predetermined luminous intensity; and

luminous intensity adjusting means for adjusting a subsequent luminous intensity based on a result of detection by said transmission result detection means.

2. (original): The optical space transmission device as set forth in claim 1, wherein:

said transmission result detection means determines if the command is returned based on a ratio of receiving error of the command.

3. (original): The optical space transmission device as set forth in claim 1, wherein:

said luminous intensity adjusting means is dapable of adjusting the luminous intensity at multiple levels in such a manner that a luminous intensity is maximized at a time of starting

Docket No.: 1248-0526P

Reply to Office Action of August 26, 2003

transmission, and as long as the transmission result detection means detects that a transmission is performed successfully, the luminous intensity is reduced by one level, while if the transmission result detection means detects that a transmission is not performed successfully, the luminous intensity is increased by one level, thereby determining a minimum required luminous intensity.

4. (original): The optical space transmission device as set forth in claim 1, wherein:

the luminous intensity adjusting means adjusts the luminous intensity by increasing or decreasing the drive current of a light emitting element.

5. (currently amended): The optical space transmission device as set forth in claim 1, wherein:

said optical space transmission device dan be <u>used realized</u> both as a host device and a peripheral device.

6. (original): The optical space transmission device as set forth in claim 1, wherein:

only in its application to a peripheral device with respect to a host device for said optical transmission, said transmission result detection means and said luminous intensity adjusting means are provided.

7. (new): The optical space transmission device as set forth in claim 1, wherein:

said transmission result detection means determines if the

Pop

Of the

Docket No.: 1248-0526P

Reply to Office Action of August 26, 2003

detected command is returned based on a wait time for the return command.

8. (new) The optical space transmission device as set forth in claim 1, wherein:

said luminous intensity adjusting means adjusts a luminous intensity downward if the detected command is a predetermined content and adjusts the luminous intensity upward if the detected command is not of a predetermined content.

9. (new) The optical space transmission device as set forth in claim 8, wherein:

said luminous intensity adjusting means adjusts a luminous intensity subsequent to the polling sequence.

10. (new): A method for providing bi-directional optical communications in an optical space transmission device, comprising:

determining, subsequent to a polling sequence, if a communication transmission to an associated office is performed successfully by detecting if a command of a predetermined content is returned from the associated office in response to data transmitted thereto at a predetermined luminous intensity; and

adjusting a subsequent luminous intensity based on a result of detecting.

11. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

Docket No.: 1248-0526P

Reply to Office Action of August 26, 2003

said detecting of said command of a predetermined content is based on a ratio of receiving error of the command.

12. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

said adjusting of the subsequent luminous intensity is done at multiple levels in such a manner that the luminous intensity is maximized at a time of starting transmission, and as long as detecting detects that a transmission is performed successfully, the luminous intensity is reduced by one level, while if detecting detects that a transmission is not performed successfully, the luminous intensity is increased by one level, thereby determining a minimum required luminous intensity.

13. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

said adjusting adjusts the luminous intensity by increasing or decreasing a drive current of a light emitting element.

14. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

both in a host device and a peripheral device.

5

Don't Chris

Docket No.: 1248-0526P

Reply to Office Action of August 26, 2003

15. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

in its application to a peripheral device with respect to a host device for said optical transmission, said detecting and said luminous intensity adjusting are only provided in the peripheral device.

16. (new): The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

said detecting determines if the detected command is returned based on a wait time for the return command.

17. (new) The method for providing bi-directional optical communications in an optical space transmission device as set forth in claim 10, wherein:

said adjusting adjusts a luminous intensity downward if the detected command is a predetermined content and adjusts the luminous intensity upward if the detected command is not of a predetermined content.

18. (new) The method for providing bidirectional optical communications in an optical space transmission device as set forth in claim 10, wherein:

said adjusting adjusts a luminous intensity subsequent to the polling sequence.

Appl. No.: 09/742,088
Docket No.: 1248-0526P
Reply to Office Action of August 26, 2003

19. (new): An optical space transmission device for one to plural bi-directional optical communications, comprising:

a receiving error detecting circuit, the receiving error detecting circuit determines, subsequent to a polling sequence, if a transmission to an associated office is performed successfully by detecting if a command of a predetermined content is returned from the associated office in response to data transmitted thereto at a predetermined luminous intensity; and

a control section, the control section adjusts a subsequent luminous intensity based on a result of detection by said receiving error detecting circuit.