Instituto Tecnológico de Costa Rica Área Académica de Ingeniería Mecatrónica MT-5001 Modelos de Sistemas para Mecatrónica Profesor: Ing. Felipe Meza-Obando

Elaborado por: Ing. José Miguel Barboza Retana

Práctica #2. Funciones de Variable Compleja.

- Resuelva los siguientes problemas cortos relacionados con mapeos lineales:
 - 1) Encuentre las ecuaciones de las siguientes rectas en el plano z para la forma cartesiana y = mx + b:
 - a) |z-2+j| = |z-j+3|
 - b) $|z + z^* + 4j(z z^*)| = 6$
 - 2) Encuentre el punto de intersección y el ángulo de intersección de las rectas: |z-1-j|=|z-3+j| y |z-1+j|=|z-3-j|
 - 3) Dado w = jz + 4 j3, encuentre la imagen de la línea 6x + y = 22 bajo este mapeo.
 - 4) Demuestre que el mapeo w = (1 j)z mapea la región y > 1 del plano z en la región u + v > 2 del plano w.
 - 5) Bajo el mapeo w = jz + j demuestre que el semiplano x > 0 del plano z se transforma en el semiplano v > 1 del plano w.
 - 6) Encuentre la región imagen en el plano w correspondiente a la franja x > 0, 0 < y < 2 del plano z bajo el mapeo w = jz + 1.
 - 7) Encuentre la imagen de cada una de las siguientes curvas bajo el mapeo lineal $w = (j + \sqrt{3})z + j\sqrt{3} 1$:
 - a) y = 0
 - b) x = 0
 - c) $x^2 + y^2 = 1$
 - d) $x^2 + y^2 + 2y = 1$

- 8) El mapeo $w = \alpha z + \beta$, mapea el punto z = 1 + j en el punto w = j y el punto z = -1 en el punto w = 1 + j.
 - a) Encontrar α y β
 - b) Encontrar la región del plano w correspondiente al semiplano superior $Im\{z\}>0$
 - c) Encontrar la región del plano w correspondiente al disco |z| < 2
 - d) Encuentre los puntos fijos del mapeo
- 9) Determine a que se transforma la región sombreada de las siguientes figuras a partir de la evaluación de la función $f(z)=3e^{j\frac{3\pi}{2}}z+\sqrt{2}e^{j\frac{3\pi}{4}}$

- Resuelva los siguientes problemas cortos relacionados con mapeos de inversión:
 - 10) Obtenga a que se transforman las regiones sombreadas de las siguientes figuras al evaluar la función $f(z) = \frac{1}{z}$ en cada caso.

- Encuentre la imagen en el plano $w = \frac{1}{Z}$ de:
 - 11) El círculo $\left|z + \frac{3}{4} + j\right| = \frac{7}{4}$
 - 12) El disco $|z a| \le a$, con $a \in \mathbb{R}$, a > 0
- Resuelva los siguientes problemas utilizando mapeos bilineales:
 - 13) Encuentre un mapeo bilineal que mapee z = 0 en w = j, z = -j en w = 1 y z = -1 en w = 0 y encuentre las imágenes en el plano complejo w de las rectas $Re\{z\} = cte$ e $Im\{z\} = cte$. Además, determine los puntos fijos del mapeo.
 - 14) Dado el mapeo bilineal $w = \frac{1+j}{z}$:
 - a) Indique las operaciones involucradas
 - b) Encuentre las imágenes de z = 1, z = 1 j y z = 0
 - c) Encuentre la imagen del interior del círculo unitario |z| < 1
 - d) Encuentre las imágenes de las rectas x = y y x + y = 1
 - e) Encuentre los puntos fijos del mapeo
 - 15) Dado el mapeo bilineal $w = \frac{z+1}{z-1}$, encuentre la imagen del arco semicircular $x^2 + y^2 = 1$ para $x \le 0$, descrito del punto (0, -1) al punto (0, 1).
 - 16) Encuentre a que mapea $w = \frac{z+j}{z-3}$ la región del plano z entre las rectas x = y y y = 0 con x < 0. Encuentre también, qué construcción geométrica en el plano z corresponde al círculo unitario del plano w.
 - 17) Si $w = \frac{z-j}{z+j}$ encuentre y dibuje la imagen en el plano w correspondiente al interior del círculo |z| = 2 en el plano z.
 - 18) Demuestre que bajo el mapeo $w = \frac{2jz}{z+j}$ los arcos circulares o rectas que pasan por z = 0 y z = j en el plano z son mapeados en arcos circulares o rectas que pasan por w = 0 y w = j en el plano w. Encuentra la imagen de la región $\left|z \frac{1}{2}\right| < \frac{1}{2}$ y luego |z| < |z j| en el plano w.

19) Encuentre un mapeo bilineal w = f(z) que transforme la curva A mostrada a la izquierda de la figura, en la curva B del plano w mostrada a la derecha. Se sabe que la sección de la curva A ubicada sobre |z - 1 - j| = 1 es transformada en el segmento de recta que une -1 y 1 en el plano w.

- 20) Encuentre la imagen en el plano w de las siguientes regiones bajo el mapeo exponencial $w = e^z$:
 - a) x > 0
 - b) $0 \le x \le 1, 0 \le y \le 1$
 - c) $0 \le x \le \pi, 0 \le y \le \pi$
 - d) $\frac{1}{2}\pi \le y \le \pi$, $0 \le x < \infty$
- 21) Encuentre la imagen de siguiente figura al aplicar el mapeo cuadrático $w=z^2$

- 22) El mapeo $w = \frac{z-j}{z+j}$ se utiliza para transformar la región R1 del plano z especificada por $|Re\{z\}| \le 1$ y $|Im\{z\}| \le 1$:
 - a) Grafique la región R1
 - b) Determine el mapeo inverso de w = f(z)
 - c) Separe el mapeo en transformaciones elementales
 - d) Encuentra la imagen en el plano w de la región R1
 - e) Indique dónde el mapeo no es conforme
 - f) Determine los puntos fijos del mapeo
- 23) Dado el mapeo $w = \frac{z-j}{z-1}$ determine los siguiente:
 - a) El mapeo inverso
 - b) Los puntos donde el mapeo es conforme y donde no lo es
 - c) Las transformaciones elementales que realiza el mapeo
 - d) La región del plano w correspondiente a la región del plano z mostrada en la siguiente figura:

- 24) Dado el mapeo $w = \frac{2z+2j}{z-1}$ y las regiones $R1: x y \le 1$ y $R2: |z| \le 1$ en el plano complejo z, encuentre lo siguiente:
 - a) El mapeo inverso
 - b) Las transformaciones elementales que aplica el mapeo
 - c) La gráfica de las regiones R1, R2
 - d) La imagen en el plano w de cada región del punto anterior
 - e) Verifique que la imagen de $R1 \cap R2$ es igual a la intersección de las imágenes de R1 y R2

- 25) Dado el mapeo complejo $w = \frac{(1+j3)z-1-j}{\frac{1}{2}z+1+j\frac{1}{2}}$ y las regiones $R1: Im\{z\} \ge 1$ y $R2: |z-2-j| \le 2$ en el plano z, encuentre lo siguiente:
 - a) El mapeo inverso
 - b) Las transformaciones elementales que aplica el mapeo
 - c) La grafica de las regiones R1, R2
 - d) La imagen en el plano w de cada región del punto anterior
 - e) Verifique que la imagen de $R1 \cap R2$ es igual a la intersección de las imágenes de R1 y R2
- 26) La región sombreada en la siguiente figura se transforma utilizando la función de variable compleja $w = f(z) = \frac{1-jz}{z-j}$. Determine su correspondiente imagen en el plano w después de aplicar el mapeo.

27) La región sombreada en la siguiente figura se transforma utilizando la función de variable compleja $w = f(z) = -(1+j)\frac{z-1}{z+1}$. Determine su correspondiente imagen en el plano w después de aplicar el mapeo.

