Advanced Computer Graphics Practical Session

1. Extend code to include objects represented by triangle meshes (reuse prior development)

- Struct hierarchy
 - Primitive
 - Triangle (substruct)
 - Reused triangle intersection routine from previous assignment
 - Sphere (substruct)

1. Extend code to include objects represented by triangle meshes (reuse prior development)

- Included TinyObjLoader for triangle mesh loading
- Included Cornell box mesh (and 2nd light source) for box-in-box theme

tinyobjloader/ tinyobjloader

Tiny but powerful single file wavefront obj loader

1. Extend code to include objects represented by triangle meshes (reuse prior development)

Implementation

- Sampling strategy: 2D disk
- Points uniformly distributed across the lense/disk

Glossy material (specular)

Ray bounce implementation:

Reflected ray:
Random vector in a cone around perfect reflection.

Define by (φ, α) Or fraction Hemisphere

Translucent material

Ray bounce implementation:

Option 2: use a random normal vector in a cone around real normal

Uniformly sample $\varphi \in [0,2\pi]$ and $\alpha \in [0, \alpha_{\max}]$

• Sampling strategy: Angular limited, cosine weighted hemisphere

Results

• Given Code

Results

- Our final code with:
 - 12,800 spp
 - ~ 3 days of rendering
- Visible **artifacts** of unknown origin

