

▽ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

Semantic Segmentation For Self-Driving Cars

Calificación de la entrega más reciente: 100 %

1.	Achieving smooth category boundaries is a major difficulty to take into account while designing semantic segmentation models. Which of the following statements describe the origins of this problem? (Check all that apply.)	1 / 1 punto
	Objects within the same category having variable appearances. An example being multiple color and models for cars on the road.	
	The similarity in appearance between some categories such as road, curb, and sidewalk.	
	Thin objects such as poles, tree trunks, and lane separators.	
2.	When comparing the results of a semantic segmentation model to the ground truth, you found out that for the car category, its class IOU is 0.75 . Knowing that the number of false positives (FP) is 17 , and the number of false negatives (FN) is 3 , what is the number of true positives achieved by this model?	2/2 puntos
	60	
•	To measure the performance of a compute competation model over all places a good idea would be to average the place IOU	
3.	To measure the performance of a semantic segmentation model over all classes, a good idea would be to average the class IOU.	1/1 punto
	() True	
	False	
4.	Which of the following do you typically see in a Semantic Segmentation Model? (Check all that apply.)	1/1 punto
	Up-sampling layers in the decoder stage of the architecture.	
	✓ Multiple Convolutional layers followed by a Pool layer.	
	Up-sampling layers in the encoder stage of the architecture.	
	✓ Multiple Convolutional layers followed by an up-sampling layer.	

5. Anchor boxes are an essential component of any semantic segmentation neural network architecture.

1/1 punto

	False	
	In your compute components on model on input feature man is present through a property pointh borry a complication. The output feature man's death is equal to that of	
	In your semantic segmentation model an input feature map is passed through a nearest neighbor up-sampling layer. The output feature map's depth is equal to that of the input feature map.	1/1 punto
	True	
	O False	
7.	A standard semantic segmentation architecture that uses a softmax output layer is allowed to associate multiple categories to a single pixel in the input image.	1/1 punto
	○ True	
	False	
8.	Which of the bellow loss functions is usually used to train semantic segmentation models?	1/1 punto
	Mean Square Error (L2-Loss)	
	Cross-Entropy Loss	
	O-1Loss	
	Mean Absolute Error (L1-Loss)	
9.	A semantic segmentation model uses the following decoder architecture. The convolutions are all 3x3, have a padding size of 1, and have a number of filters shown in	2/2 puntos
•	the figure. The up-sampling multiplier S is 2 for all upsampling layers.	2 / 2 puntos
	Conv3-64 Jpsample 3 Conv3-64 Conv3-64 Conv3-64 Dysample 1	
	128 128 128	
	1	
	If you pass an input of dimensions MxNxD through this decoder, what are the expected output dimensions?	
	Note: M is the width, N is the height, and D is the depth of the input.	
	8*M, 8*N, 64*D	
	O 8*M, 8*N, 128*D	
	○ 6*M, 6*N, 64*D	

10. In context of self-driving cars, semantic segmentation can be used to perform: (Check all that apply.)	1/1 punto
Constrain the image space used to perform 2D object detection.	
☐ Localization in a predefined 3D map.	
☐ Velocity estimation of dynamic obstacles in the scene.	
✓ Lane boundary estimation.	
✓ Drivable space estimation.	
 11. Which of the following categories in a semantic segmentation output map would be useful to determine lane boundaries? Road Lane Separator 	1/1 punto
⊘ Correcto Correct!	
☐ Pedestrian ✔ Curb	
✓ Sidewalk	
12. To estimate a plane model, an algorithm would require a minimum of:	1 / 1 punto
O Five points, chosen at random.	
Three points, chosen to be non-collinear.	
O Three points, chosen to be collinear.	
O Five points, chosen to be non-collinear.	
13. To estimate lines that could belong to lanes in a post-processed output image from semantic segmentation, containing only relevant categories, one would:	1 / 1 punto
First apply Canny edge detection followed by a Kalman Filter to estimate lines.	
Use RANSAC to estimate the road plane, then fit lines to its boundary.	
O First apply Hough transform line estimation followed by Canny edge detection.	
First apply Canny edge detection followed by Hough transform line estimation.	