Lecture 2: Neural Networks for Sentiment Analysis.

1. Neural Networks for Sentiment Analysis

1.	What is the main goal of using neural networks in sentiment analysis?	
	0	A) To count the number of words in a sentence
	0	B) To classify text as positive or negative
	0	C) To extract keywords from text
	0	D) To remove stop words from a document
	0	Answer: B
2.	In a ne	eural network for sentiment analysis, what is the input to the model?
	0	A) Raw text
	0	B) Tokenized words
	0	C) Word embeddings
	0	D) Sentiment scores
	0	Answer: C
3.	Why is	s padding applied to text input in sentiment analysis models?
	0	A) To remove unnecessary words
	0	B) To ensure all input sequences have the same length
	0	C) To add extra meaning to sentences
	0	D) To replace missing values in the dataset
	0	Answer: B
4. What is the final layer in a neural network for binary sentiment classification		is the final layer in a neural network for binary sentiment classification?
	0	A) Softmax
	0	B) Sigmoid
	0	C) ReLU
	0	D) Tanh
	0	Answer: B

5.	In sen	timent analysis, what type of labels are used for binary classification?
	0	A) Continuous values between 0 and 1
	0	B) Categories such as "Positive" and "Negative"
	0	C) Multiple sentiment scores
	0	D) A mix of numerical and categorical labels
	0	Answer: B
6.	Which	of the following is NOT a challenge in sentiment analysis?
	0	A) Understanding sarcasm
	0	B) Handling negations
	0	C) Counting the number of words in a sentence
	0	D) Differentiating between similar words in different contexts
	0	Answer: C
7.	What	is the first step in preprocessing text for neural network-based sentiment analysis?
	0	A) Tokenization
	0	B) Applying activation functions
	0	C) Generating sentiment scores
	0	D) Normalizing sentence length
	0	Answer: A
2. Der	ise and	ReLU Layers
8.	What	is the purpose of a Dense layer in a neural network?
	0	A) To convert categorical variables into numerical values
	0	B) To connect all neurons from one layer to the next
	0	C) To perform convolution operations on images

 $\circ\quad$ D) To remove redundant features from input data

o **Answer:** B

- 9. A Dense layer contains:
 - o A) Only input neurons
 - o B) Trainable parameters such as weights and biases
 - o C) A predefined set of output values
 - D) Only activation functions
 - Answer: B
- 10. What is the role of the **ReLU activation function** in a Dense layer?
- A) It ensures all values remain within a fixed range
- B) It introduces non-linearity by zeroing out negative values
- C) It normalizes the input data
- D) It calculates the probability of each class
- Answer: B
- 11. Which of the following best describes the **ReLU function**?
- A) $ReLU(x)=max[0,x)ReLU(x) = \max(0,x)ReLU(x)=max(0,x)$
- B) $ReLU(x)=ex/(1+ex)ReLU(x) = e^x/(1+e^x)ReLU(x)=ex/(1+ex)$
- C) $ReLU(x)=1/(1+e-x)ReLU(x)=1/(1+e^{-x})ReLU(x)=1/(1+e-x)$
- D) $ReLU(x)=x2ReLU(x)=x^2ReLU(x)=x2$
- Answer: A
- 12. What is the main advantage of using ReLU over Sigmoid?
- A) It prevents vanishing gradients
- B) It always outputs values between 0 and 1
- C) It can process text inputs directly
- D) It normalizes data before training
- Answer: A
- 13. What problem does ReLU help mitigate in deep neural networks?
- A) Vanishing gradient problem

- B) Exploding gradient problem
- C) Underfitting
- D) Overfitting
- Answer: A
- 14. What is a common issue with **ReLU**, leading to neurons being inactive?
- A) Dying ReLU problem
- B) Exploding gradient problem
- C) Overfitting
- D) Vanishing gradient problem
- Answer: A
- 15. What happens when the **Dying ReLU** problem occurs?
- A) Some neurons always output zero, making them inactive
- B) The neural network stops training
- C) The network's accuracy increases
- D) The learning rate becomes unstable
- Answer: A

3. Other Layers

- 16. What is the purpose of an **Embedding layer** in NLP models?
- A) To convert words into dense vector representations
- B) To remove unnecessary words from text
- C) To increase the number of neurons in a model
- D) To predict the next word in a sentence
- Answer: A
- 17. How is an **Embedding layer** different from one-hot encoding?
- A) It captures word meanings and relationships

- B) It uses binary vectors
- C) It assigns a unique index to each word
- D) It requires more storage than one-hot encoding
- Answer: A
- 18. Which of the following **best describes** the Embedding layer?
- A) It learns vector representations of words
- B) It converts words into one-hot encoded vectors
- C) It removes punctuation from text
- D) It applies dropout to input data
- Answer: A
- 19. What is the purpose of the **Mean layer** in text processing?
- A) It computes the average word embedding for a sentence
- B) It normalizes text before tokenization
- C) It selects the most important words in a sentence
- D) It predicts the next word in a sequence
- Answer: A
- 20. The **Mean layer** has how many trainable parameters?
- A) None
- B) The same as the embedding layer
- C) One per word in the vocabulary
- D) It depends on the dataset size
- Answer: A
- 21. What is a key advantage of using an Embedding layer instead of one-hot vectors?
- A) It reduces dimensionality and captures word meaning
- B) It increases model complexity
- C) It ensures words are represented by integers

- D) It does not require labeled data
- Answer: A
- 22. How does the Mean layer **improve text representation**?
- A) It averages the embeddings of all words in a sentence
- B) It assigns a unique vector to each word
- C) It ensures all sentences have the same length
- D) It removes stop words
- Answer: A
- 23. What is an **important property** of the vectors produced by the Embedding layer?
- A) Similar words have similar vectors
- B) Every word has a unique integer index
- C) They are always 100-dimensional
- D) They do not change during training
- Answer: A