Jan 2017 4PMO Further Pure Mathematics Paper 1 Mark Scheme

Quartier	Schame	Morles
Question number	Scheme	Marks
1	Mark both parts of this question together	
•	$18\pi = \theta r$	B1
		B1
	$126\pi = \frac{1}{2}\theta r^2 (\Rightarrow 252\pi = \theta r^2)$	
	$\frac{252\pi}{18\pi} = \frac{\theta r^2}{\theta r} \Longrightarrow 14 = r$	M1A1
	$18\pi = \theta \times 14 \Rightarrow \theta = \frac{9\pi}{7}$ oe	A1 (5)
	ALT	
	$A = \frac{1}{2}rl \Rightarrow 126\pi = \frac{1}{2} \times r \times 18\pi \Rightarrow r = 14$	M1A1A1
	$18\pi = 14\theta \Rightarrow \theta = \frac{9}{7}\pi$	B1B1
		(5)
	Notes	1
B1	For the equation (or any equivalent) $18\pi = \theta r$	
B1	For the equation (or any equivalent) $126\pi = \frac{1}{2}\theta r^2$	
M1	For dividing their two equations, eliminating θ and finding a value for r	
A1	For $r = 14$ (cm)	
A1	For $\theta = \frac{9\pi}{7}$ oe	
ALT	·	
M1	Attempts to use the (correct) $A = \frac{1}{2}rl$ formula to give $126\pi = \frac{1}{2} \times r \times 18\pi$	
A1	Substitution of correct values of $A = 126\pi$ and $l = 18\pi$	
A1	For $r = 14$ (cm)	
B1	For the equation (or any equivalent) $18\pi = \theta \times \text{their } r$	
B1	For $\theta = \frac{9\pi}{7}$ oe	
ALT usin	g degrees	
B1	For the equation $\frac{\theta}{360} \times 2\pi r = 18\pi \Rightarrow \frac{\theta}{360} r = 9$	
B1	For the equation $\frac{\theta}{360} \times \pi r^2 = 126\pi \Rightarrow \frac{\theta}{360} r^2 = 126$	
M1	Divides their equations to eliminate θ to give $9r = 126$	
A1	For $r=14$	
A1	For $\theta = \frac{9\pi}{7}$ oe	