Основы функционирования свёрточной нейронной сети

Свёрточная нейронная сеть (англ. convolutional neural network, CNN) - специальная архитектура искусственных нейронных сетей, впервые предложенная Яном Лекуном в 1988 году для решения задачи распознавание образов.

Идея свёрточной нейронной сети базируется на некоторых особенностях зрительной коры головного мозга человека, в которой есть простые и сложные клетки. Простые клетки реагируют на прямые линии под разными углами (сигналы, идущие из глаза человека), а сложные клетки затем активируют определенные наборы простых клеток. Поэтому и структура свёрточной нейронной сети (рис. 1) представляет собой многослойный ориентированный граф, в котором между входным и выходным слоями нейронов чередуются свёрточные слои и слои выборки. Функционирование свёрточной нейронной сети интерпретируется как переход от конкретных особенностей изображения к более абстрактным деталям, и далее к еще более абстрактным деталям вплоть до выделения понятий высокого уровня. При этом сеть самонастраивается и вырабатывает необходимую иерархию абстрактных сама (последовательности карт признаков).

Рисунок 1 – Типовая архитектура CNN

Входной слой сети представляет собой матрицу признаков исходного изображения, в которой кодируются сигналы, приходящие из глаза человека. Они определяют входные и выходные сигналы нейронов во входном слое сети. В отличие от перцептрона, где у каждой дуги имеется свой вес, вычисление входного сигнала нейрона стока дуги определяется с помощью операции свёртки, для которой разработчик задает ядро свёртки (матрицу небольшой размерности, моделирующую некоторый вполне определенный признак

изображения). Как правило, разработчик задает несколько ядер свёртки Y^1, \dots, Y^k , где k – количество ядер свёртки. Отсюда и название таких нейронных сетей.

Построение карты признаков в свёрточном слое

Пусть имеется некоторая матрица M размерности n_1 х n_1 из предыдущего слоя и ядро свёртки — матрица Y размерности n_2 х n_2 .

Cвёртка — это операция над парой матриц M и Y, в результате которой мы получим новую матрицу M' для свёрточного слоя с размерностью:

$$n_1' = n_1 - n_2 + 1,$$
 (1)

в которой каждый элемент вычисляется по следующей формуле:

$$m'(i,j) = f\left(\sum_{t=1}^{n_2} \sum_{p=1}^{n_2} m(i+t-1)(j+p-1) \cdot y(t,p)\right),$$
(2)

где f — функция активации нейронов из таблицы 1 (здесь x — входной сигнал нейрона).

 №
 Функция активации
 Формула

 1
 Линейная
 f(x) = x

 2
 RELU (англ. Rectified Linear Unit) - линейный выпрямитель
 f(x) = x, $ecnu \ x > 0$

 линейный выпрямитель
 f(x) = 0, $ecnu \ x \le 0$

Таблица 1 – Используемые функции активации

На рисунке 2 приведен пример вычисления выходного сигнала нейрона с линейной функцией активации.

Рисунок 2 — Пример создания и заполнения матрицы M

Здесь для матрицы M с размерностью 5х5 и ядра свертки — матрицы Y размерности 3х3 создана матрица M' для свёрточного слоя с размерностью 3х3 согласно формуле (1), а элемент m'(1,1)= -1 рассчитан по формуле (2), т.е. равен значению линейной функции активации (табл. 1) от суммы произведений соответствующих элементов выделенной в M подматрицы размерности 3х3 и матрицы Y.

Построение карты признаков в слое выборки

В процессе распространения сигнала через слой подвыборки происходит уменьшение размерности матриц предыдущего слоя свёртки за счет применения функции подвыборки $\mu(x)$ (табл. 2) над подматрицами А размерности n_3 х n_3 . Значение n_3 задается разработчиком, как правило, n_3 =2, т.е. происходит уменьшение размерности матриц вдвое.

№	Функция подвыборки	Формула	
1	Максимальное значение в подматрице А	$\mu(x) = \max(A)$	
2	Среднее значение в подматрице А	$\mu(x) = \text{average } (A)$	

Таблица 2 – Используемые функции подвыборки

Пусть имеется некоторая матрица M' размерности n_1 'х n_1 ' из предыдущего свёрточного слоя. Тогда в следующем слое подвыборки для нее будет построена новая матрица M'' с размерностью:

$$n_1" = n_1'/n_3,$$
 (3)

в которой каждый элемент m''(i,j)вычисляется как значение функции подвыборки (табл. 2) в подматрице A, выделенной в матрице M', начиная с элемента:

$$m'(1+(i-1)\cdot n_3,1+(j-1)\cdot n_3)$$
 (4)

На рисунке 3 приведен пример построения матрицы M" для n_3 =2. Здесь подматрицы A и соответствующие им значения в матрице M" показаны для наглядности разными цветами. Как видно из рисунка здесь в очередном слое подвыборки матрица была уменьшена в размерности в два раза: матрица M° имела размерность 4x4, а построенная матрица M" – 2x2.

Рисунок 3 — Пример построения матрицы М" в слое подвыборки с функцией подвыборки по максимальному значению (слева) и по среднему значению (справа)

Построение выходного слоя сети и оценка полученного решения

Процесс построения чередующихся слоев свёртки и слоев выборки завершается тогда, когда параметр n_1 " примет значение 1, т.е. когда в последнем слое выборки будут получены матрицы размерностью 1х1. Каждая такая матрица определяет входной сигнал соответствующего нейрона в выходном слое сети. Для определения выходного сигнала таких нейронов следует использовать заданную функцию активации (табл. 1). Для оценивания полученного решения используется \mathbf{MSE} (mean squared error), которая рассчитывается аналогично тому, как и в перецептроне.

Пусть X_{OUT} - слой выходных нейронов, тогда:

$$MSE = \frac{1}{n} \sum_{\forall x_i \in X_{OUT}} (output(x_i) - output^*(x_i))^2,$$
 (5)

где n — количество нейронов в выходном слое сети,

output(x) — фактическое значение выходного сигнала в нейроне, output*(x) — ожидаемое значение выходного сигнала в нейроне, которое определяется по следующему правилу:

$$output*(x) = 1$$
, если $output(x) > 0.5$; $output*(x) = 0$, если $output(x) <= 0.5$

Алгоритм последовательного распространения сигнала в свёрточной нейронной сети

Пусть имеется матрица M размерности n_1 x n_1 с признаками исходного изображения и набор из k-ядер свёртки — матрицы $J_1,...J_k$, каждая с размерностью n_2 x n_2 . Определить выходные сигналы сети с использованием функций активации f(x) и выборки $\mu(x)$ для подматриц размерности n_3 x n_3 , а также оценить полученное решение с помощью MSE. Введем счетчик свёрточных слоев — s.

- 1. Положить: n_1 " = n_1 , s=1.
- 2. **ПОКА** n₁">1 **ВЫПО**Л**НЯТЬ:**
 - 2.1. Рассчитать размерность матриц n_1 по формуле (1) для s-го свёрточного слоя.
 - 2.2. Построить для каждой исходной матрицы M набор матриц M'_{s1} , M'_{s2} , ..., M'_{sk} по формуле (2).
 - 2.3. Рассчитать размерность матриц слоя повыборки n_1 " по формуле (3).
 - 2.4. Построить для каждой матрицы M' s—го слоя свёртки матрицу M' согласно заданной функции выборки $\mu(x)$ над подматрицей A, выделенной в M' по формуле (4).
 - 2.5. Определим: s = s+1, $n_1 = n_1$ ".
 - 2.6. Положить в качестве исходных матриц матрицы M''_{s1} , M''_{s2} , ..., M''_{sk} и пронумеровать их по порядку как M_1 , M_2 , ...
- 3. Определить количество нейронов и их выходные сигналы в s-м слое (выходной слой сети).
- 4. Оценить полученное решение по формуле (5).
- 5. Округлить полученную оценку.

Примечание:

1. Округление в п.5 следует проводить до второго знака после запятой по следующему правилу. Если значение после третьего знака после запятой больше, чем 0.005, то округлить значение второго знака после запятой в большую сторону, если меньше или равно 0.005, то оставить второй знак после запятой без изменения. Например: $0.475 \approx 0.47$, $0.4785 \approx 0.48$, $0.4705 \approx 0.47$.

ПРИМЕР

Дано: k=2, $n_1=7$, $n_2=2$, $n_3=2$.

Функция активации – линейная. Функция подвыборки – по максимальному значению в подматрице выборки.

Матрица признаков исходного изображения М:

0.15	0.36	0	0.28	0.57	0.62	0.87
0.49	0.84	0.51	0.48	0.64	0.2	0.43
0.74	0	0.75	0.46	0.23	0.52	0.64
0.37	0.67	0.62	0.35	0.92	0.68	0.34
0.13	0.98	0.26	0.94	0.08	0.42	0.34
0.38	0.73	0.17	0.56	0.64	0.89	0.06
0.95	0.28	0.39	0.66	0.51	0.4	0.01

Ядра свёртки Y₁ и Y₂:

Решение:

- 1. n_1 "= 7, s=1.
- 2. Определим размерность матриц в слое свёртки: $n_1' = n_1 n_2 + 1 = 7 2 + 1 = 6$.
- 3. Создадим для каждого ядра свёртки матрицы М' 1-го слоя свертки размерностью 6х6 и заполним их следующим образом:

Здесь слева — исходная матрица M, а справа — набор матриц M'₁₁, M'₁₂. Например, тут для расчета выделенного элемента матрицы m'₁₁(4,2) была использована выделенная в матрице M подматрица и 1-ое ядро свёртки: $m'_{11}(4,2) = f(0.67*1+0.62*0+0.98*0+0.26*1) = f(0.93)=0.93$.

- 4. Определим размерность матриц в слое подвыборки: n_1 " = n_1 '/2 = 6/2=3.
- 5. Создадим для каждой матрицы М' матрицу М" для 1-го слоя подвыборки размерностью 3х3 и заполним их следующим образом:

Здесь слева — матрицы M'_{11} , M'_{12} , а справа — соответствующие им матрицы M''_{11} , M''_{12} . Например, тут для расчета выделенного элемента матрицы $m''_{11}(3,1)$ была использована подматрица 2x2, выделенная в матрице M''_{11} , начиная с элемента $m'_{11}(5,1)$, а для расчета выделенного элемента матрицы $m''_{12}(1,3)$ была использована подматрица 2x2, выделенная в матрице M''_{12} , начиная с элемента $m'_{12}(1,5)$, см. формулу (4):

$$m''_{11}(3,1) = \max(0.86, 1.15, 0.66, 1.12) = 1.15$$

 $m''_{12}(1,5) = \max(-0.77, -1.05, -1.16, -0.84) = -0.77$

- 6. Определим s=2, $n_1=3$.
- 7. Будем считать в качестве исходных матриц для построения 2-го слоя свёртки набор матриц M''_{11} , M''_{12} . Обозначим их как M_1 и M_2 .
- 8. Так как n₁"=3, то перейдем к следующей итерации по построению 2-го слоя свёртки.
- 9. Определим размерность матриц в слое свёртки: n_1 ' = n_1 n_2 +1=3-2+1=2.
- 10. Создадим для каждого ядра свёртки матрицы размерностью 2x2: для исходной матрицы M_1 матрицы M'_{21} , M'_{22} , а для исходной матрицы M_2 матрицы M'_{23} , M'_{24} . Заполним их аналогичным образом, например: $m'_{21}(2,2) = f(1.56*1+1.34*0+1.58*0+1.04*1) = f(2.6)=2.6$ $m'_{22}(2,2) = f(1.56*(-1)+1.34*0+1.58*0+1.04*(-1)) = f(-2.6)=-2.6$ $m'_{23}(1,2) = f(-0.62*1+(-0.43)*0+(-0.66)*0+(-0.82)*1) = f(-1.44)=-1.44$ $m'_{24}(1,2) = f(-0.62*(-1)+(-0.43)*0+(-0.66)*0+(-0.82)*(-1)) = f(1.44)=1.44$

- 11. Определим размерность матриц в слое подвыборки: n_1 " = n_1 '/2 = 2/2=1.
- 12. Создадим для каждой матрицы М' матрицу М" для 2-го слоя подвыборки размерностью 1х1 и заполним их аналогичным образом с выбром максимального значения в каждой матрице:

- 13. Определим s=3, $n_1=1$.
- 14. Будем считать в качестве исходных матриц для построения 3-его слоя свёртки набор матриц M''_{21} , M''_{22} , M'_{23} , M'_{24} . Обозначим их как M_1 , M_2 , M_3 , M_4 .
- 15. Так как n₁"=3, то закончим цикл по построению чередующихся слоев свёртки и слоев подвыборки и перейдем к построению выходного слоя сети.
- 16. Количество нейронов в выходном слое n=4 (по количеству матриц). Их выходные сигналы: output(1)=f(3.15)=3.15, output(2)=f(-2.31)=-2.31, output(3)=f(-0.91)=-0.91, output(4)=f(1.44)=1.44.

17. Рассчитаем оценку полученнного решения по формуле (5) и округлим ее значение до второго знака после запятой:

MSE =
$$((3.15 - 1)^2 + (-2.31)^2 + (-0.91)^2 + (1.44 - 1)^2) / 4 = 2,745075 \sim 2.75$$