FT742-SM - 数字型风传感器手册

表面安装式-数字式 RS422 和 RS485 通讯方式选择

FT TECHNOLOGIES LTD. 18 CHURCH ROAD TEDDINGTON MIDDLESEX TW11 8PD ENGLAND

电话: +44 (0)20 8943 0801 传真: +44 (0)20 8943 3283 网址: <u>www.fttechnologies.com</u> E-MAIL: <u>sales@fttech.co.uk</u>

A4281-1-CN

2017年1月.FT和 Acu-Res (声共振) 标识为 FT Technologies 公司注册商标。 The FT and Acu-Res logos are registered trademarks of FT Technologies Ltd. Copyright © 2017 FT Technologies Ltd. All rights reserved.

目 录

产	品标识	4
S	afety Ir	nstructions5
安	全须知	16
1	简介	·7
	1.1	产品概述7
	1.2	产品版本型号与标识7
	1.3	使用范围7
	1.4	声明8
2	功能	描述9
	2.1	技术性能9
	2.2	风速标定10
	2.3	风速风向过滤10
	2.4	电子旋转基准风向10
	2.5 2.5.1	罗盘和偏转角应用11 罗盘标定11
	2.6	选通滤波器功能11
	2.7	错误检测11
	2.8	过速报警功能11
	2.9	加热器设置12
	2.10	低能耗运行12
3	机械	和电气安装13
		FT742-SM 传感器13
	3.1.1 3.1.2	F-10-10 = 10-10-10
	3.1.3	= 2 1 1 . 1
4	服务	-、设置与测试17
	4.1	检测17
	4.2	故障查找与故障排除18
	4.3	退货条款
5	传感	·器通信19
	5.1	简介19
	5.2	RS422 & RS485 协议19
	5.3	传感器设置22

5.4	通讯	22
5.4.1	本手册中的规定	22
5.4.2	数据传输	23
5.4.3		
5.4.4	监听器和信息源的标识符	23
5.4.5		
5.4.6	禁用校验	24
参数	设置	25
6.1	指令类型	25
6.1.1	设置命令	25
6.1.2	Query (问询) 指令	26
6.2	用户校准表	27
63	出间即	28
	· · · · · · · ·	
	··· · · · · · · · · · · · · · · · · ·	
6.4.9		
6.4.1		
6.4.1	1 HT.1: 普通加热器设置	40
6.4.1	2 HT.2: 延迟加热器设置	41
6.4.1		
6.4.1		
6.4.1	5 OS: 过速警告系统	44
· · · · ·		
	,	
	5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 参数 6.1 6.1.1 6.1.2 6.2 6.3 6.4 6.4.3 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8 6.4.1 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2	5.4.1 本手册中的规定 5.4.2 数据传输 5.4.3 信息格式 5.4.4 监听器和信息源的标识符 5.4.5 计算信息校验 5.4.6 禁用校验 参数设置 6.1 指令类型 6.1.1 设置命令 6.1.2 Query (问询) 指令 6.2 用户校准表 6.3 时间限制 6.4 指令参数 6.4.1 BR: 设置或查询串口波特率 6.4.2 CF: 设置或查询风罗盘设置 6.4.3 CU: 设置或问询持续更新设置 6.4.4 DF: 设置或问询内速数据格式 6.4.5 DG: 问询运行时间统计器 6.4.6 DL: 设置或问询指令延迟间隔 6.4.7 ER: 问询或重置错误报告

产品标识

本使用手册及相关设备将使用以下标识。

Meaning / Description	Symbol	含义/描述
Warning/ Caution An appropriate safety instruction should be followed or caution to a potential hazard exists	\triangle	警告 这个警告标识意味着用户需要在阅读 使用手册,并参考其中重要的安全信 息和操作指南。
DC Current only Equipment operates under Direct Current (DC) supply only.		仅适用于直流电流 这个标识意味着设备仅可在直流(DC) 供电环境下运行
Product Disposal In accordance with European directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE), these product components must be recycled. This should be done by returning the product to FT Technologies or by using an appropriate waste disposal company. This product should not be disposed of in general waste of landfill. This product complies with the RoHS2 (2011/65/EU) directive.		产品处置 根据欧盟指令 2012/19/EU 对报废电子电器设备 (WEEE) 的规定,此类产品及其零部件必须进行回收处理。产品的回收可通过将产品返回至 FT 公司完成,或聘请相应的废品处理公司来进行。本产品不得被丢弃在普通垃圾填埋场内,本产品符合RoHS2 (2011/65/EU) 的规定。
CE Mark The EU Declaration of Conformity complies with the essential requirements of the following applicable EMC Directive 2014/30/EU, and carries the CE Marking accordingly.	CE	CE 标识 根据欧洲委员会法令 EC 2014/30/EU 规定,针对电磁兼容性 (EMC)的 标准所颁发的欧洲委员会 符合性声明

Safety Instructions

English

- To ensure the safe installation and operation of this product the equipment must be installed and integrated:
 - Using suitably qualified and trained personnel
 - In accordance with any regional electrical codes
 - In accordance with the instructions set out in this manual, observing all information, warnings and instructions
 - o In accordance with any other instructions or guidance FT Technologies provide
- To ensure that the product remains compliant with electrical safety requirements it must be:
 - Connected to an appropriately approved isolated power supply (for example UL/CSA IEC 60950-1:2005 + A1:2009 + A2:2013) rated 6-30VDC and be current limited (2.5A Maximum)
 - Protected by UL 1449 listed surge protection devices
 - Connected with an approved interface cable (for example UL/ CSA recognised AWM style 21198, rated 300V, 80°C)
- The equipment must only be operated within the range of the specified technical data and used for the purposes for which it was designed.
- The equipment should always be transported in packaging which is appropriate, that will prevent any accidental damage from occurring.
- Always ensure that any failures or errors from the product cannot cause any damage to any other equipment or property or cause any other consequential effects.

安全须知

中文

- 为确保产品的安全安装与正确操作,相关设备的安装集成需满足:
 - o 应由具有相应资质并接受过相关培训的技术人员进行
 - o 遵守当地对电子设备的相关规定
 - 。 遵循产品使用手册中的指导,阅读所有信息、警告和指示
 - o 遵循FT公司所提供的所有其他指导或指示
- 为确保产品满足电器安全标准,相应设备必须:
 - o 与获得相关认证(例如UL/CSA IEC 60950-1:2005 + A1:2009 + A2:2013)、电压在**6-30 VDC**的隔离电源相连,并限制电流(最大为2.5A)
 - o 必须配有符合UL1449标准的浪涌保护装置进行保护
 - 。 经由获得认证的接口电缆相连接(例如UL/CSA认证的AWM Style 21198, 300V、80℃)
- 设备的操作需在符合特定的技术参数的条件下进行,并仅用于设计目的,不得挪作他用
- 设备须在相应的包装内进行运输,从而防止任何意外损坏的发生。
- 须确保产品所发生的任何故障或失误都不会对其他设备或财产造成伤害,也不会产生任何连带后果。

1 简介

1.1 产品概述

FT742-SM 产品是固态超声波风传感器,采用声共振气流传感专利技术来准确地测量风速和风向。产品为在恶劣环境下运行而专门设计,如海上离岸环境、冰冻多发地区等。该系列风传感器不包含任何可降解或易老化的零部件,专为对稳定性要求极高的应用而设计。相关产品可有效减少成本极高的停机时间和突发性维护次数。

传感器安装与对准的操作简单易懂。传感器机身上的风数据特征标志,用来将传感器对准至固定参考点,并且传感器内置的罗盘允许指向磁极北。在冰冻多发地区内,FT742产品配有高效恒温控制整体加热系统。使用由二个元件组成的加热器来确保热量可均匀地分布至整个产品所有表面之上。

FT742-SM 有 RS422 (全双工) 或 RS485 (半双工) 通讯输出,该通讯设置必须在传感器 出厂前完成,用户无法修改。

1.2 产品版本型号与标识

图 1 显示了如何通过所附带的主标识来辨识传感器的版本号和独立序列号:

图 1: 主要传感器标识

1.3 使用范围

传感器的设计、生产和优化均以实现较高的可利用率为宗旨。

由于可能发生的特殊情况会造成传感器输出故障,公司对于传感器的连续运转不做部分或完全承诺。特殊情况包括:

- 安装不正确
- 检测不充分
- 供电故障
- 电气连接质量不达标
- 暴露在雷击范围之内
- 问题环境条件,或多种复杂环境条件
- 物理损坏

通常,通过额外加装一台 FT 传感器或其他类型传感器,可提高获得的风速和风向数据水平。针对每台 传感器数据临时中断所进行的部分或全部控制策略或控制器算法也应被考虑在内,对于此方式的选择和 应用,由买方承担全部责任。

1.4 声明

公司并不为本使用手册中在任何特定设计中的适用性提供任何保证、描述或条件、明示或暗示。买方须对所有设计进行独立测试以确保设备的有效性和适用性。买方承担与所给提供信息应用相关的所有风险与责任。

FT公司对产品设备所做出的任何承诺仅在传感器根据使用手册中所列出的指示得到了正确安装、集成和操作的前提下成立。

FT公司对所应用的任何传感器雷击防护设施的有效性不承担任何责任。风传感器产品通过了一系列的电磁兼容性(EMC)测试,但FT公司不对雷击事故下的传感器性能做出担保。

FT公司所提供的信息不可作为针对任何已批准或待批准的专利、专利设备或注册商标条件下的操作许可或侵权建议。

2 功能描述

2.1 技术性能

传感器性能 1&2

测量原理 使用超声波共振技术(可补偿温度、气压和湿度所带来的误差)

风速测量

范围 0-75m/s 分辨率 0.1m/s

精度 ±0.3m/s (0-16m/s)

±2% (16m/s-40m/s) ±4% (40m/s-75m/s)

风向测量

 范围
 0 to 360°

 传感器精度
 ±4° RMS

 罗盘精度
 ±5° RMS

 分辨率
 1°

运行环境

温度范围 -40 to +85°C (operating and storage)

湿度 0-100% 海拔 0-4000m

数据接口

RS485/RS422 接口 RS422 (全双工)或 RS485 (半双工),通讯接口必须在产品出

厂前配置完成

格式 ASCII 数据,轮询或连续更新模式(CU 仅应用在 RS422)

数据刷新频率 每秒高达 10 次 (10Hz)

供电要求 3,4 & 5

供电电压 24VDC 额定 (6-30VDC 范围),加热器开启的最小电压 9VDC

传感器电流 (加热器关闭) 25mA 额定(启用罗盘时 29mA)

加热器电流 (加热器开启) 近 2A + 额定值

物理参数

重量 252g

材质 硬阳极氧化铝合金 总线连接器 8 孔公制 S12 连接器

安装方式 表面安装,内置罗盘,O型环/螺丝固定

备注:

- 1. 所有规格若有变更, 恕不另行通知:
- 2. 规格参数是在默认设置条件并开启滤波器的情况下的计算数值;
- 3. 请阅读安全操作要求(第5、6页);
- 4. 用户可配置加热器温度的设置点,但不允许修改 FT742-SM 加热器的电流和欠压限制,详情咨询 FT 公司;
- 5. 加热器的电流消耗取决于环境温度与自身温度的设置点,传感器默认的额定电流限值 2A⁴,最大功率 60W (30V & 2A);
- 6. 推荐应用合适的 PSU, 能够提供的最大电流高达 2.5A。

2.2 风速标定

风传感器产品发货前均在 FT 的风洞中进行标定。因为传感器没有任何活动零部件,不会出现测量准确度退化问题,因此在其整个使用寿命期间无需进行重新标定。传感器高度紧凑的整体外形设计可防止转换器意外移位或损坏。FT 公司的标定工艺和风洞的设计可在产品技术特征所设定的精确度浮动范围内实现标定(参见第 2.1 章)。FT 公司的风洞会定期与第三方独立风洞进行精准度比较,以确保不会产生任何测量偏差。

但是,在特殊情况下,用户可能需要进行额外标定。传感器产品具有设置《用户校准表格》的选项,该选项可调整风传感器的风速输出(参见第6.4.20章)。

《用户校准表格》可对多达 64 个校正因子进行编程,这些因子均储存在非易失性存储器内。在处于激活状态时,错误的输出风速会根据所储存的《用户校准表格》记录,通过线性插值实现调整。所做调整无论风向如何,都将被应用至风速的读数之中。

2.3 风速风向过滤

对于系统来说,从不依赖某次单独的风数据而做出控制决定是极为重要的。由于测量错误、气流波动、腐蚀或阻碍物等原因,单独的读数有可能会不准确。推荐使用多次风数据的平均值。此外,如果要求数据可利用率达到 100%,则需要额外加装一台 FT 风传感器或其他类型的风传感器。

传感器产品配有可选内部滤波器。这是一款数字化有限脉冲响应(FIR)滤波器,可通过对一定数量的过往读数进行移动平均值的计算来实现。如果连接了外部滤波设备,传感器的输出滤波器功能可被关闭。如果使用传感器内部的滤波器,可分别对风速和风向读数的平均长度进行自定义。(参见第 6.4.8 和 6.4.9 章)

图 2: 滤波器示例

推荐使用多次读数的平均值,以降低空气湍流的影响

2.4 电子旋转基准风向

在罗盘禁用的情况下,风向基准可以应用 CF 指令实现"电子式"偏移。偏转角功能通常与罗盘功能共同使用,在 0-359.9°范围内重新校准风向的基准位置。

详情参考第 6.4.2 章。

2.5 罗盘和偏转角应用

FT742-SM 内置一固态的电子罗盘,所以测量的风向是相对于磁极北的,但风向测量可以相对于磁极北,也可对传感器进行编程应用真实北的地理位置偏转角。如需要,罗盘功能可被禁用,而风向测量则是相对于传感器机身的基准标志的。使用 CF 命令能够在任何时候读出罗盘航向,详情参考第 6.4.2 章的 CF 命令。Polar(P)和 NMEA 0183(N)输出的风向数据都是相对于"北"的(如果启用了罗盘功能)。NMEA 0138 输出信息中有一字段说明罗盘是否开启或禁用。

如果安装区域有固定磁场影响(比如那些磁化的铁材料靠近罗盘),则可以通过对罗盘进行本地的标定来进行补偿校正,特别重要的是,这类标定必须在FT742-SM安装的主系统的最终位置处完成,且该标定仅仅能够校正由主系统固定磁场产生的影响。由磁化物经过FT742-SM传感器附近(如汽车或者卡车),或者高电流电路产生的变化磁场,将不能够进行校正。如果主系统磁场信号剧烈变化(因为系统组件的添加或拆除),则需要重新标定传感器。

2.5.1 罗盘标定

罗盘应该在远离任何外部杂散磁场的地方进行标定,标定FT742-SM传感器罗盘的过程如下:

- 1) FT742-SM 传感器安装到主系统的最终位置上;
- 2) 确保罗盘处于启用状态(发送 CFE 命令"启用罗盘",参考 6.4.2 章节);
- 3) 发送 CFC 命令"启用标定"(参考 6.4.2 章节)。重要提示:在发送 CFC 命令后,无需发送其它的命令给 FT742-SM 传感器:
- 4) 缓慢旋转主系统 1, 完成在水平面的旋转, 该旋转应该持续 40 到 60 秒;
- 5) 为了完成标定,发送 CFE 命令"启用罗盘"(参考 6.4.2 章节);
- 6) 应用 CFMS 命令把新的标定参数存储在罗盘模块里。需要利用存储命令(如 \$01,CFMS*//<cr><lf>)把标定过程中计算出的新罗盘标定参数保存到接口板闪存中。

2.6 选通滤波器功能

除了第 2.3 章中介绍的均值滤波器之外,传感器产品还具有名为选通滤波的功能。该功能使用户能够设置"有效区间",在该区间内,传感器将会阻止无效读数输入至均值滤波器中。输出值将锁定在前一个"正确"读数上,并仅在不良读数的数量超过有效时间区间时才予以警告。该功能可在工厂预设置开启或使用软件命令 FL (参见 6.4.8 章节) 设置。为与传统模式相匹配,该功能默认为关闭状态。

2.7 错误检测

传感器产品具有自检机制,能够检测到无效读数。当极罕见的无效读数被检测到,这一情况将通过在输出风速信息中设置错误标志字符来实现,并被传送给电脑或数据记录仪(参见 6.4.26 和 6.4.27 章节)。

当检测到错误时,错误标志字符值会被设置为1。

备注:用户可选择开启过速警告系统(该功能在默认设置中处于关闭状态)。更多详细信息请参阅 2.8 章节。

不忽略错误标志是极为重要的原则,与错误标志相关的数据不应该作为有效的风数据进行处理。应用系统应有能力度过暂时无法获得数据的罕见状况。如果错误持续出现(超过若干秒),就应对传感器进行复位设置(发送 RSU 指令的具体操作请参见第 6.4.17 章节)。

建议对错误进行检测并记录。如果错误出现的频率在短期内增加,则需要对传感器进行检查,以确定是否出现物理阻碍状况(参见第 4.1 章节)。

2.8 过速报警功能

当传感器检测到风速超过了传感器检测范围时,传感器(在默认状况下)会显示一般错误标志状态。

用户可开启额外的过速警报系统:如果检测到过速状况(超出最高测量速度),错误标志字符值会被设置为 2 (参见 6.4.26 和 6.4.27 章节),除非同时检测到一般错误状况。并非所有高过速都能够被检测到,有些会以常规错误标志字符值 1 的形式报告。

为与传统模式相匹配, 该功能默认为关闭状态。

过速警报功能可以通过软件命令来启用 (参见 6.4.15 章节), 使用 Acu-Test PC 软件包或者在出厂发货前进行启用设置。

2.9 加热器设置

传感器产品配有由二个加热元件集成的分布式加热器,可在冰冻温度下防止传感器结冰。传感器通过用户编程"设置点"温度对加热器进行自动控制。传感器装载的控制程序可动态改变对每个加热器的电流供应,以维持所设置的温度恒定。

推荐设置适合于应用环境的传感器温度设置点,这些需考虑的因素包括环境温度、相对湿度、风速和冰/雪情况等。这个设置可以在传感器出厂前完成,也可以通过 Acu-Vis 测试软件或者加热器设置软件命令(参见 6.4.11 章节)进行设定。

由于加热器电流是恒温控制,因此加热时间从电源处所获得的能源取决于所设置的恒温点以及周围的环境状况(如大气温度、风速和降雨量等)。传感器所消耗的最大电流被默认限制在 2A (额定值),额定电源须能提供传感器所消耗的最大加热功率(60W @ 30V 和 2A)。传感器内置加热器工作电压至少需要 9VDC (有关最小的加热器电压限值的详情,请咨询 FT 公司)。

对于需要更高的额定功率/电流或更改加热器性能的应用(包括在极寒环境工作),详情请咨询 FT 技术支持团队。

注意:对 FT742-SM 传感器修改加热器的限电流是不允许的,线缆必须是符合应用项目的额定要求,详情请咨询 FT 公司。

如果传感器在供电后有可能被冰冻,推荐对传感器加热 30 分钟后,发送 User Reset 命令(参见 6.4.17 章节)允许传感器在无冰冻时正确初始化。

2.10 低能耗运行

传感器设计的额定电压是 **24VDC**,工作电压范围 **6-30VDC**,但是加热器在低于 **9VDC** 供电时关闭,较低的电压降低了传感器总的能耗和加热器性能。

有关电源和加热器管理策略的更多建议,请参考 6.4.11 和 6.4.12 章节。

3 机械和电气安装

FT742-SM 传感器表面安装设计用于安装在平坦的表面,这款产品进行了成本优化,包括使用标准的成品电缆。 传感器采用 8 孔标准的 M12 连接器,通过压接一个 O 型环密封,可达到 IP67 的等级。 确保进入传感器的空气流没有被阻挡,或者受到附近物体的影响。

• 参见安全须知要求第5、6页。

• 用户需对风传感器进行恰当安装,以确保传感器产品的正常运转。本章节仅提供指导意见。设计人员和安装人员有责任确保其安装工艺和设计符合产品使用目的。请仔细阅读第 1.4 章的免责声明。

3.1 FT742-SM 传感器

3.1.1 机械和电气集成

传感器测量气流穿过传感器腔对声共振信号的影响,可旋转传感器以确保对准一个标准的参照点,比如磁极北,或内置罗盘自动计算的参照点。

图 3: FT742-SM 传感器

安装表面应该是光滑和平坦的,粗糙的、不平的或受损的表面会降低防水的效果。

图 4: 外形尺寸、装配和风向参考(罗盘关闭)

图 5: 传感器底座尺寸

图 5 说明了 O 形环凹槽的位置(FT O 形环物料号 M036,供应商的物料号:2-127 O-Ring EPDM 70 Shore),一只新传感器配一个 O 形环,O 形环上所用的润滑剂取决于材料的选择。

O形环的压接用 5 只 M3 来固定,内丝扣深度是 4.5 毫米,安装表面的厚度应该将螺丝的长度考虑在内,建议对密封接触面进行定期的状态监测。

注意 - 超长的 M3 螺丝可能会破坏传感器丝扣并进入传感器内部。

3.1.2 连接器细节

所有与数字传感器进行的电气连接均通过一个位于风传感器底座内部的 8 孔连接器进行。图 6 显示了连接器引脚的设计编号,连接器符合 IEC 61076-2-101 标准。

引脚	RS422	RS485	FT009 线色*
1	0V	0V	棕 Brown
2	6-30V	6-30V	白 White
3	TX 数据 A	N/C	蓝 Blue
4	RX 数据 A	数据 A	黑 Black
5	TX 数据 B	N/C	灰 Grey
6	RX 数据 B	数据 B	粉 Pink
7	N/C	N/C	紫 Violet
8	N/C	N/C	橙 Orange

*注意: 该线色仅代表 FT 公司提供的 FT009 线缆, 其它品牌的线缆可能 应用不同的颜色方案, 详情请联系 FT 公司。

图 6: 传感器连接器引脚

FT742-SM 传感器使用标准的 8 孔 M12 的连接器公头(ERNI Production GmbH 公司生产,物料号: 464676),可提供线缆的成品现货,或者定制生产。FT742-SM 传感器在加热器开启时的最大工作电流为 2A,电缆的使用须确保电缆本身适用于所安装的环境。

请注意,电缆的使用须确保电缆本身适用于所安装的环境,并获得充分评估和批准,如 AWM Style 21198 等。在中度或严重雷击多发区域,电缆自身的屏蔽层不足以提供电缆足够的 EMI (电磁干扰) 防护。在这种情况下,需对电缆进行进一步的雷电屏蔽,如将其封闭在金属管道或导管中,或者对传感器加装更高级别的防护(如 FT742-PM 传感器一样)。

FT009 物料是一条长 1.5 米的线缆, 用于 FT742-SM 传感器。

3.1.3 雷击、浪涌与电磁干扰(EMI)防护

在安装传感器和线缆时,需要考虑有雷电和其它电磁干扰源时,能够有效保护传感器的方法,确保传感器暴露在这种环境中时能够最大限度地生存和继续工作。

FT742-DM 传感器专门为气象行业应用而设计,该应用中受到雷击(非直接)风险是较低的。

在风传感器、数据采集设备和供电箱之间的所有连接需加装浪涌保护装置 SPD,这将防止信号线路或供电线上出现任何不必要的过压瞬变情况。浪涌保护装置需通过 UL 1449 标准认证。

在有高雷击风险(非直击雷击)的应用中,我们推荐使用管状安装式(PM)传感器。这种应用,传感器机身需良好接地,且管状安装方式(PM)传感器非常适合这方面的应用,了解更多的详情,请联系 FT 公司。

4 服务、设置与测试

4.1 检测

为尽早发现可能影响传感器性能的腐蚀或损坏状况的早期迹象,需要对产品定期进行下列检查。这些检查建议每年进行一次。

不可将任何物体插入测量腔内, 会对检测腔内表面造成损伤

机械损坏: 检查传感器机身是否出现损坏,特别要注意密封区域。同时检查是否出现雷击损坏,这类损坏通常以烧伤或烧焦的痕迹出现(或烧焦的味道)。如果出现上述损坏,须立即更换传感器。检查疏水腔涂层是否出现老化、腐蚀或破损。

腐蚀: 检查传感器的安装平面或任何支撑部件表面是否出现腐蚀。如果任何表面出现腐蚀现象,应使用砂布将其去除。检查安装螺丝、螺母和垫圈是否完好,没有腐蚀的迹象,并且将其拧紧。如果出现腐蚀状况,须使用具有相匹配涂层的零部件进行更换(请参阅第3章)。

互联电缆; 检查电缆状况。如果电缆的任何部分出现了任何形式的磨损或损坏,均需立即更换电缆。间歇性电缆 故障可能并非直观所见,但以数据错误的形式显现。请确认相关网络零部件的数值(终端电阻等)。

连接器保护套:如果使用线缆保护套,检查是否有任何破损和老化的迹象。

清洁;测量腔表面具有特殊疏水涂层,可有效防止积水。当水进入测量腔时,这一特殊表面将有助于清洗灰尘和附着在表面的所有杂物。所残留的任何杂物可通过实验室清洗瓶或类似的设备,使用蒸馏水对测量腔表面进行清洗。多余的水滴可通过轻吹传感器或轻微甩动传感器来去除。

在清洗期间,不要刮伤或划坏表面。**在任何情况下,**都不可将任何物体插入测量腔内,这样做会造成不可弥补的 损伤。如果表面涂层破损,则需要重新加涂涂层。在需要的情况下,传感器机身也可通过上述方式进行清洗。在 清洗传感器时需格外注意,切勿让水流入通气孔或传感器底部的连接器内。

切勿使用化学制剂清洗传感器。如果需对周边设备进行清洗,应对传感器进行适当遮蔽。在重新开始风数据测量前,请确保已将遮蔽物移除。

4.2 故障查找与故障排除

为查明传感器是否存在故障,须进行如下步骤;

- 遵循上文所描述的检测流程判断是否存在任何物理损伤。
- 移除腔室内的异物,或阻挡气流的物体
- 重启传感器(通过 RSU 指令或断开电源再重新上电)

如果传感器存在物理损伤,或传感器无法正常进行数据通讯传输,则应更换传感器。在需要的情况下,传感器可退回至 FT 公司已进行进一步分析检测(详情参见第 4.3 章)。

警告-传感器不含任何用户维护零部件。不要试图拆卸产品,以防止造成产品损坏及产品保修期 无效。

在极端气候条件下,可能会暂时性地出现无法获得数据的状况。但是,这种影响是可以得到缓解的。应遵循下列步骤进行操作,以确保传感器的数据可利用率始终保持在一个较高的水平上:

- 检查风传感器的数据和错误状态标记是否均已根据第 6.4.26 和 6.4.27 章的指导要求进行处理。
- 确保防雷和 EMI 电磁干扰(参考第3章)防护设备完好,线缆屏蔽层在两端压接,所有安装结合面没有 涂漆或腐蚀。
- 检查测量腔的特殊涂层状态良好,且没有杂物阻挡。杂物可通过气流吹散,或使用蒸馏水冲掉。 请垂询 FT 公司以获取详情或咨询建议。

4.3 退货条款

如果传感器本身被认定为残次品,请列出每台传感器的详细质量问题,并联系 FT 公司,索要《退货授权表》 (RMA 表格)。请详细填写表格并按照要求回寄。公司只接受通过授权表授权的退货。

由于雷击或客户拆卸产品所造成的损坏通常无法修复,但仍可能被收取检测费用。

5 传感器通信

5.1 简介

传感器具有 RS422(全双工)和 RS485(半双工)串行连接传输 ASCII 码通信协议的易用功能,传感器可在产品出厂发货前配置为 RS422 或 RS485(但用户不能修改该设置)。通信协议可进行校验和验证,以确保所有数据传输的完整性。除了 FT 公司自有的通信协议之外,传感器还可输出通用 NMEA 0183 MWV (风速和角度) 句式。

由于 RS485 半双工的操作特性,不允许使用持续更新模式。

5.2 RS422 & RS485 协议

摆率限制驱动器用来降低电磁干扰,并将非正常终止的传输线和其残余(STUB)所造成的反射降至最小。串行接口数据线的信号状态定义如下:

- RS485-闲置状态,被标记成逻辑"1"、OFF或停止位状态,在A线上以负电压定义,以区别于B线。
- RS485-激活状态,空格,逻辑"0"、ON或开始位状态,在A线上以正电压定义,以区别于B线。
- RS422 闲置状态,被标记成逻辑"1"、OFF 或停止位状态,在 A 线上以负电压定义,以区别于 B 线
- RS422 激活状态,空格,逻辑"0"、ON或开始位状态,在 A线上以正电压定义,以区别于 B线

图7和图8显示的是布线图实例。

如果需要对两台或更多的传感器进行安装,可以使用同样的双绞线 RS485 数据线将所有的传感器单元与电脑相连。

在多设备系统内使用 RS485 配置的传感器前,必须为每台传感器设备的监听器标识符设置专门值。使用 ID 指令(参见第 6.4.13 章) 为每台传感器设备设置监听器标识符。如果在终端主机系统上对监听器标识符进行设置,则必须每次仅有一台传感器设备与 RS485 总线相连,直至所有的设备都分配到一个唯一的监听器 ID 为止。在寻址过程中须对'//'字符的使用格外谨慎。'//'寻址字符可被用来向所有传感器单元发送 SET(设置)指令(例如启用或禁用滤波器等)。在任何情况下都不得使用'//'寻址字符向所有传感器单元发送任何 QUERY(查询)指令,因为这将导致所有传感器单元开始传输数据并导致总线争用。

RS422 是多点通讯标准,仅允许一只 FT742-SM 传感器接入。

图 7: 两只风传感器的 RS-485 连接图

备注:

- 1. 数据线 A 和数据线 B 应做成双绞线类型(特性阻抗 120Ω),电缆应纳入整体屏蔽网络,并在每个电路节点上与机箱相连。
- 2. 浪涌保护装置未显示在图中。
- 3. 取决于测试类型,如果终端 RS485 转换器使用有限摆率的 RS485 收发器,则可省略偏压电阻。
- 4. 取决于测试类型,如果不需要偏压且收发器是限摆率的,则可以省略一只或两只终端电阻。
- 5. 所有电阻需使用抗浪涌型电阻,如功率为 1W 或更大的 Tyco CCR 系列,Rbias2 = 750Ω ,Rterm = 120Ω ,参考下表在不同电压下(E24 系列)Rbias1 的值。如果工作电压没有在下表中,则基于下面的公式选取 Rbias1。从 E24 系列选择时,需要选取偏高的阻值而不是偏低的。

Rbias1 (Vs) =
$$\frac{Vs \times 754}{3.125} - 754$$

供电电压 (V)	Rbias1 (Ω, E24 5%)
6	715
12	2200
24	5100
30	6800

图 8: RS-422 连接图

Notes:

- **1**. 数据线 A 和数据线 B 应做成双绞线类型(特性阻抗 120Ω),电缆应纳入整体屏蔽网络,并在每个电路节点上与机箱相连。
- 2. 浪涌保护装置未显示在图中。
- 3. 取决于测试类型,如果终端 RS422 转换器使用有限摆率的 RS422 收发器,则可省略偏压电阻。
- 4. 取决于测试类型,如果不需要偏压且收发器是限摆率的,则可以省略一只或两只终端电阻。
- 5. 所有电阻需使用抗浪涌型电阻,如功率为 1W 或更大的 Tyco CCR 系列,Rbias2 = 750Ω ,Rterm = 120Ω ,参考下表在不同电压下(E24 系列)Rbias1 的值。如果工作电压没有在下表中,则基于下面的公式选取 Rbias1。从 E24 系列选择时,需要选取偏高的阻值而不是偏低的。

Rbias1 (Vs) =
$$\frac{Vs \times 754}{3.125} - 754$$

Supply voltage	Rbias1
(V)	(Ω, E24 5%)
6	715
12	2200
24	5100
30	6800

5.3 传感器设置

在传感器关闭后,所有用户参数设置将会被储存在非易失性存储器中留存下来。在下次启动传感器(或用户重置指令被发送)时,传感器将会恢复这些设置。因此,如果需要,传感器可在进行最终安装前对参数进行设置。

传感器的设置可随时通过发送出厂设置重置 reset 指令恢复出厂值(出厂默认设置值参见图 13)。

5.4 通讯

5.4.1 本手册中的规定

所有传感器所传输、接获的信息示例均以斜体等宽字体印刷,如:

\$<listenerID>,DFP*<checksum><cr><lf>

尖括号用来作为数据 (如<wind speed>) 或无法印刷的 ASCII 字符 (如<cr>指代回车) 的占位符。

图 9 列出了本手册里所列举的示例中使用的各种特殊文字和符号。

符号	有效字符	十六进制值	定义
а	{A to Z} {0 to 9} {/}	41-5A, 30-39, 2F	信息源/监听器地址段字符
С	{A to Z} {0 to 9}	41-5A, 30-39	字母(仅限大写字母)和数字的固定长度字段
h	{A to F} {0 to 9} {/}	30-39, 41-46, 2F	检验字段的验证字符
S	{}	20	空格
х	0 to 9	30-39	数字的固定长度字段
x.x	{0 to 9} {.}	30-39, 2E	固定点的数值字段(如,总是显示前导零和尾随 零)
±	{+ -}	2B, 2D	极性指示器。当一个数值可以同时指代正值和负值时,总是要发送极性指示器作为字段的第一个字符。因此,整个字段长度将被固定成正值或负值。
	{\$}	24	信息分隔符的启动
	{*}	2A	校验字段分隔符
	{,}	2C	字段分隔符
-	{-}	2D	破折号
<cr></cr>		0D	回车 信息结束分隔符
<lf></lf>		0A	换行 信息结束分隔符
<name></name>			数据占位符

图 9: 本手册中所使用的符号

5.4.2 数据传输

数据通过使用 ASCII 字符的异步串行通信接口进行传输和接收。接口依照下列参数运行:

参数	设置
波特率	1200, 2400, 4800, 9600(出厂设置), 19200, 38400
数据位	8
启动位	1
停止位	1
极性	无

图 10: 数据传输参数

使用 BR 指令(参见第 6.4.1 章)设置传感器的波特率。

传感器不通过反馈检验(无论硬件或软件)来控制与主计算机之间的往来数据流。因此,禁用主计算机串行接口的反馈检验/流量控制设置是极为重要的。

5.4.3 信息格式

传感器与主计算机之间的数据通信通过 ASCII 字符的传输来完成。图 11 显示了一条信息的构成。所有接收及传输的信息都使用同样的格式。

图 11: 信息格式

所有的信息均以"\$"作为信息起始字符,随后跟着两个字符的信息源/监听器标识符字段(参见第5.4.4章)。

跟在第一个分隔符后的是信息的主体,由一系列数据字段组成(取决于所传输的信息),每个字段均由字段分隔符进行区分(',')。由字段的内容信息而定,数据字段可包含字母、数字或字母数字数据。

所有向传感器发送的信息均在 <data fields> (数据字段) 中包括一个指令,所有从传感器传输出的信息均在 <data fields> (数据字段)中包括输出数据。

信息的数据字段部分在结束时均以校验分隔符字符 '*'表示。跟在校验分隔符之后的是一个两个字符的校验字段。参见第 5.4.5 章查阅计算校验的方式,如果不对校验信息的有效性进行要求,请参见第 5.4.6 章。

所有的信息均以一个回车符号<cr>和换行符号<if>终止。

5.4.4 监听器和信息源的标识符

传感器为监听器和信息源均配有一个标识符地址,从而实现多设备系统中的每台传感器均具有唯一的标识。

当向传感器发送信息时,信息中的标识符字段(紧跟在信息起始字符'\$'后的两个字符)须与传感器的监听器标识符地址相吻合,否则该传感器将忽略此信息。当多台传感器连接到同一条 RS485 总线上时,必须为系统中的每个传感器配备独一无二的监听器标识符。这样,主电脑将可以与每一台传感器进行单独对话。如果用户不希望在主

电脑所发送的信息中使用监听器标识,可使用'//'来替代监听器标识。可使用'//'来替代监听器标识将运行系统中的所有传感器对此信息做出应对,而忽略其监听器标识设置。

当从传感器传输信息时,信息中的标识符字段(紧跟在信息起始字符'\$'后的两个字符)须包括传感器的信息源标识符。信息源标识作为一个信息标签,可用来确认是哪一台特定的传感器进行的信息传输。

监听器标识的出厂默认值为 01, 而信息源标识的出厂默认值为 WI(气象仪器)。使用 ID 指令(参见第 6.4.13 章)可 更改设备的监听器/信息源标识符。

5.4.5 计算信息校验

所有传感器发送或接收的信息均包括一个校验字段。所有传输自传感器的信息均在校验字段内包含有校验值。所有由主电脑向传感器发送的信息均在校验字段中包含有一个校验值或"忽略校验标识符"。

图 12: 校验字段示例

XOR 结果:

30

7C

校验值是通过对信息中所有 '\$'和 '*'(均不包含在内)之间的所有字节进行异或计算(逻辑计算)得出的。所得出的单字节值在信息串中由 2 个十六进制字符显示。最重要的字符最先传输。

注:由于信息中仅包含 ASCII 字符(字符值范围在 0-7F 之间),因此校验值将总是 0 和 7F 之间的数值。

5.4.6 禁用校验

所有发送至传感器的信息都必须在校验字段中含有一个有效的校验值,否则传感器将不会对所传入信息进行处理。尽管建议对所有发往传感器的信息均进行校验值计算,但在某些情况下,这种做法可能会引起不便(如与某个具有终端设备的传感器进行通信时)。使用'//'来替代校验值,可阻止传感器对传入信息进行校验有效性检查。

使用 DFP 指令向 Polar 发送信息来设置输出数据格式(此示例中传感器的监听器 ID 设置为 02)。

带有校验的示例 (传感器的校验有效性自动启用):

*\$02DFP*50<cr><1f>*

示例:

不带有校验的示例 (传感器的校验有效性自动禁用):

\$02DFP*//<cr><1f>

校验值总是通过传感器所发送的信息进行传输。但是,如果所接收信息不对校验有效性进行任何要求,则主电脑可忽略信息中的校验字段。

6 参数设置

6.1 指令类型

6.1.1 设置命令

图 13 列出了主电脑向传感器所发送的用来对风传感器配置选项进行设置(SET)的常用指令。

指令	简字符号	配置选项	出厂设置	章 节
串行接口波特率	BR	1200, 2400, 4800, 9600, 19200, 38400	9600	6.4.1
罗盘设置	CF	启用或禁用 000.0°至 359.9° 倾斜角	Disabled 0.000°	6.4.2
持续更新	CU	启用或禁用 更新间隔,0.1-6000秒	禁用	6.4.3
风速数据格式	DF	Polar or NMEA	Polar	6.4.4
指令延迟间隔	DL	00至20	01	6.4.6
清除错误报告	ER	重置	00000000000	6.4.7
风速滤波器	FL	启用或禁用 风速滤波器长度 风向滤波器长度	启用 0016 0016	6.4.8 6.4.9
选通滤波器	FL	启用或禁用, 选通滤波器长度	禁用 010	6.4.10
加热器设置	НТ	设定温度 加热器启动延迟时间	加热器禁用 4秒延迟	6.4.11 6.4.12
监听器和信息源的标识符	ID	Listener ID = xx Talker ID = xx	Listener ID = 01 Talker ID = WI	6.4.13
最小/最大风速	MM	重置	999.9,000.0	6.4.14
过速警报系统	os	启用或禁用	禁用	6.4.15
重置	RS	加载出厂设置, 加载电流设置, 加载保存的参数,	NA	6.4.17
用户校准表	UC	启用或禁用, 清除 风速记录表格 保存风速记录表 表格标签	禁用 NA NA NA	6.4.20 6.4.21 6.4.22 6.4.23 6.4.24
保存用户参数	US	复制电流参数	NA	6.4.25

图 13: 设置命令

当一条有效信息被传感器所识别后,传感器将执行信息中的指令。为验证指令是否被成功执行,可在大多数 SET 指令发送后,再发送相关的 QUERY 指令。(参见第 6.1.2 章中可能继续进行查询的参数列表)。

6.1.2 Query (问询) 指令

图 14 列出了主电脑在查询最新读数或设置时,可能向传感器发送的所有问询 QUERY 指令。

指令	简字符号	配置选项	章节
串行接口波特率	BR	1200, 2400, 4800, 9600, 19200, 38400	6.4.1
罗盘设置	CF	启用或禁用 罗盘状态 000.0°至 359.9°	6.4.2
持续更新(不可用于RS485)	CU	启用或禁用 更新间隔 (0.1 - 6000 秒)	6.4.3
风速数据格式	DF	Polar 或 NMEA	6.4.4
运行时间统计器	DG	运行时间小时数	6.4.5
指令延迟间隔	DL	00 至 20	6.4.6
错误报告	ER	出厂报告	6.4.7
风速滤波器	FL	启用或禁用 风速滤波器长度,1-64 风向滤波器长度,1-64	6.4.8 6.4.9
选通滤波器	FL	启用或禁用 有效期	6.4.10
加热器设置	нт	设定温度,0°C至55°C. 加热器电流百分比,0%至100% 传感器内部温度,00°C至±99°C, 加热器延迟时间,4s至999s	6.4.11 6.4.12
监听器和信息源的标识符	ID	Listener ID = xx Talker ID = xx	6.4.13
最小/最大风速	MM	最小&最大风速记录	6.4.14
过速警报状态	OS	启用或禁用	6.4.15
参数报告	PR	出厂报告	6.4.15
序列号	SN	序列号	6.4.18
软件版本	SV	软件版本	6.4.19
用户校准表	UC	启用或禁用 风速记录表格 表格标签	6.4.20 6.4.21 6.4.22 6.4.23 6.4.24
保存用户参数	US	现有用户参数与保存记录的匹配	6.4.25
风速读数	WV	风速、风向和传感器状态	6.4.26 6.4.27

图 14: Query (问询) 指令

6.2 用户校准表

《用户校准表》可包含多达 64 个用户编程记录。每份记录都由一对值组成,分别代表校正后的风速(风洞中风速)和相应的校正前的风传感器速度。除了校准表外,还有一组最长可达 32 个字符的用户自定义文本串与该表储存在一起。

《用户校准表格》的记录须按照风传感器速度进行升序排列。相邻两份记录间风速差异的最小值为 0.5m/s。

请遵照下列步骤装载《用户校准表》中的数据:

- 1. 首先需将该表清零(参见第 6.4.21 章)。
- 2. 每对表格行值都被输入至《用户校准表》的 RAM 备份中(参见第 6.4.22 章)。
- 3. 如果需要,可输入与表格相关的文本串。该文本串可在表格清零之后、RAM备份存入闪存中之前的任意时间内输入。请参阅第6.4.24章。
- 4. 将《用户校准表》的 RAM 备份存入闪存设备中(参见第 6.4.23 章)。

在上述过程中的任意时间内(或其他时间内),均可向风传感器发送下列指令:

- 验证表格已被清零;
- 验证最后一行数据被写入表格中;
- 读取表格内容和表格校验数据:
- 读取特定行的表格数据;
- 读取《用户校准表》标签;

参见第 6.4.20 - 6.4.24 章, 进一步了解详细信息。

6.3 时间限制

在传感器输入缓冲器接收到一条有效指令后,在该指令得到执行前会存在延时现象。实际指令等待时间取决于指令的最后一个字符被传感器内部处理循环所接收的确切时间。传感器每次只能处理一个 SET(设置)或 QUERY(问询)指令。

图 15: 指令处理

在传感器接收到 SET(设置)指令后,设备可能会花费长达 400ms 的时间对该指令进行处理并对设置进行更改。如果在此期间有其他指令被发送,这些指令可能会被风传感器所忽略。因此,所有的 SET(设置)指令之前须具有至少 500ms 的发送间隔。(Reset 重置指令所需时间更长,请参考第 6.4.17 章)。

在传感器接收到 QUERY(问询)指令后,设备可能会花费长达 50ms 的时间对该指令进行处理。传感器随后将等待提前设定好的延迟时间结束后在发送应答信息。这一延迟时间可以 50ms 的增量进行编程调节。

参见第 6.4.6 章了解调整传感器收到指令和传输应答之间延迟时间的具体方式。根据计算机在传输与接收模式之间的进行转换所需的具体时间,建议设置额外的延迟时间。

如果使用 DL 指令延长了延迟时间,那么下一个发送至风传感器的 QUERY 指令的间隔时间须至少为 QUERY 指令的处理时间(50ms),以及 DL 间隔的最小值(默认值为 50ms)。因此,建议任何 QUERY 指令的发送频率不应超过 10Hz,即每秒 10 个指令。

信息示例:

例如,为将输出风速设置成 Polar 格式,并验证相关指令已被接受,需要发送下列指令:

将风数据格式设置成 polar:

\$//DFP*//<cr><lf>

随后等待 500ms,以使传感器执行相关 SET(设置)指令。

可发送 QUERY(查询)指令已确认此前的指令已被执行:

\$//DF?*//<cr><lf>

随后等待 50-100ms, 以待传感器发送应答信息:

\$WI,DF=P*5D<cr><1f>

请注意,上述示例是在假设传感器的延迟时间仍为出厂默认的50-100ms(DL01)的情况下进行的。

6.4 指令参数

以下章节对每个指令及其使用方式进行了介绍。除非特殊指明,所有的示例均默认传感器的监听器标识为 01,而信息源标识为 WI(气象仪器)。

6.4.1 BR: 设置或查询串口波特率

指令参数	BR

指令句法	传感器设置:	<pre>\$<listenerid>,BR<baudrate>*<checksum><cr><lf> \$aa,BRx*hh<cr><lf></lf></cr></lf></cr></checksum></baudrate></listenerid></pre>
	传感器问询:	<pre>\$<listenerid>,BR?*<checksum><cr><lf> \$aa,BR?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,BR=<baudrate>*<checksum><cr><lf> \$aa,BR=x*hh<cr><lf></lf></cr></lf></cr></checksum></baudrate></talkerid></pre>

参数	<baudrate></baudrate>	
	0	将波特率设置成38400波特
	1	将波特率设置成19200波特
	2	将波特率设置成9600波特(出厂默认设置)
	3	将波特率设置成4800波特
	4	将波特率设置成2400波特
	5	将波特率设置成1200波特

示例	<u>示例 1</u> 将波特率设置为 19200 波特, 验证信设置, 并发送用户重置	置指令,以激活新波特率 。
	信息	<u>指令</u>
	\$01,BR1*// <cr><1f></cr>	将波特率设置成 19200
	\$01,BR?*// <cr><1f></cr>	对波特率设置进行查询
	\$WI,BR=1*2E <cr><1f></cr>	传感器输出
	\$01,RSU*// <cr><1f></cr>	发送用户重置信息

描述	使用 BR 指令更改传感器的串行接口波特率。只有在下次启动传感器,或重置指令 RSU 被发送后,新的波特率设置才会生效。
	波特率被更改后,只有当主电脑的波特率设置与传感器相同时,双方才能够交流。如果不清楚传感器现有波特率,则需轮流对波特率进行尝试,直至建立交流连接。

6.4.2 CF: 设置或查询风罗盘设置

^{指令参数} CF(heading)

指令句法		\$ <listenerid>,CF<mode>*<checksum><cr><1f></cr></checksum></mode></listenerid>
	传感器设置:	\$aa,CFc*hh <cr><lf></lf></cr>
		\$ <listenerid>,CF<heading>*<checksum><cr><lf></lf></cr></checksum></heading></listenerid>
		\$aa,CFxxx.x*hh <cr><lf></lf></cr>
	传感器问询:	\$ <listenerid>,CF?*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传感奋问问:	\$aa,CF?*hh <cr><lf></lf></cr>
		\$ <talkerid>,CF=<mode>,<status>,<heading>,<dec>*</dec></heading></status></mode></talkerid>
	FT742-SM 输出:	<checksum><cr><lf></lf></cr></checksum>
		\$aa,CF=c,c,xxx.x,xxx.x*hh <cr><lf></lf></cr>

参数	<pre><heading> 000.0 to 359.9</heading></pre>	罗盘的角度标头
		夕 鱼的用及你大
	<mode></mode>	
	C	启用标定模式
	D	禁用罗盘功能
	E	启用罗盘功能
	MS	保存罗盘标定
	<status></status>	
	D	罗盘模式禁用或者不提供
	V	有效罗盘读数
	<dec></dec>	
	000.0 to 359.9	倾斜角度。标准规范要求朝西的倾斜角减去磁极头,为了得到真的标头;
		相反地,朝东的倾斜角加上磁极头。但是,因为 FT742-SM 的倾斜角在 0
		到 359.9°之间,用户必须写成向西的倾斜方式(360 – 向西倾斜)。例
		如:向西倾斜是 10°,则向 FT742-SM 发送 350°。

<u>言息</u> 801,CF005.0*// <cr><lf> 801,CF?*//<cr><lf></lf></cr></lf></cr>	<u>指令</u> 设置倾斜角到 5° 查询罗盘参数 FT742-SM 输出
<u>示例 2</u> FT742-SM 的基准方向是指向 40° 东 – 设置倾斜角I	句东增加 5°,读罗盘头和倾斜参数:
\$01,CF005.0*// <cr><lf>\$01,CF?*//<cr><lf></lf></cr></lf></cr>	<u>指令</u> 设置倾斜角到 5° 查询参数 FT742-SM 输出
自用,查询和禁用罗盘: <u>言息</u> 501,CFE*// <cr><lf> 501,CF?*//<cr><lf> 5WI,CF=E,V,000.0,000.0*35<cr><lf></lf></cr></lf></cr></lf></cr>	启用罗盘 查询罗盘设置 FT742-SM 输出 (启用) 禁用罗盘
	<u>示例 1</u> 设置倾斜角度到 5°东,读罗盘头和倾斜参数: <u> </u>

<u>示例 4</u> 启用标定过程并保存结果 \$01,CFC*//<cr><1f> \$01,CFE*//<cr><1f> \$01,CFMS*//<cr><1f>

启用罗盘标定 禁用罗盘标定 保存罗盘标定

描述

应用 CF 指令存取 FT742-SM 罗盘的相关特性。 参考第 2.4 & 2.5 章关于罗盘、倾斜角和标定过程的详细内容。

6.4.3 CU: 设置或问询持续更新设置

指令参数 CU (不可用于 RS485, 因为半双工通讯的内在问题)

指令句法	传感器设置:	<pre>\$<listenerid>,CU<cont.update>,<interval>*<checksum> <cr> <1f> \$aa,CUcxxxxx*hh<cr><lf></lf></cr></cr></checksum></interval></cont.update></listenerid></pre>
	传感器问询:	\$ <listenerid>,CU?*<checksum><cr><1f></cr></checksum></listenerid>
	, (13 111) (14)	\$aa,CU?*hh <cr><lf></lf></cr>
		<pre>\$<talkerid>,CU=<cont.update>,<interval>*<checksum><</checksum></interval></cont.update></talkerid></pre>
	传感器输出:	cr> <lf></lf>
		\$aa,CU=c,xxxxx*hh <cr><lf></lf></cr>

参数	<continuous update=""></continuous>	
	E	启用
	D	禁用(出厂默认设置)
	<interval></interval>	
	1至59999	间隔,增量为 0.1s,在连续输出模式下使用

示例 示例 1

将传感器设置成每10秒钟自动输出读数。验证指令已被接受。

<u>信息</u> <u>指令</u>

\$01,CUE00100*//<cr><1f> 激活 CU 模式, 頻率为 0.1Hz

示例 2

禁用持续更新。验证指令已被接受。(注:该指令仅可以在设备启动后四秒种内发送——参见下文了解详细信息)。

信息 指令

 \$01,CUD*//<cr><lf>
 禁用 CU 模式

 \$01,CU?*//<cr><lf>
 问询 CU 模式设置

 \$WI,CU=D,00100*40<cr><lf>
 传感器响应信息

描述

使用 CU 指令来启用或禁用连续更新模式的应用。当连续更新功能处于激活状态时,传感器将以〈interval〉设置中所规定的频率输出风速读数。

每次启动连续更新模式时,均需发送所要求的〈interval〉设置(即使此前曾向传感器发送过相关设置指令)。

当连续更新模式处于激活状态时,如果关闭了传感器,当再次开启时,传感器将自动恢复输出读数。

一旦传感器被设置成持续更新模式,该设备将仅能作为信息源,而不会对任何进一步指令进行响应。若想再次对其发送指令,则需首先禁用持续更新模式。为达到这一目的,CUD (禁用持续更新模式)指令需在传感器开启后的前四秒内发送。

警告: 不要在有其他信息源与数据总线相连接的情况下使用持续更新模式。数据总线上仅可存在一个信息源,否则将发生总线争用状况。

32

6.4.4 DF: 设置或问询风速数据格式

指令参数 DF

指令句法	传感器设置:	<pre>\$<listenerid>,DF<format>*<checksum><cr><lf> \$aa,DFc*hh<cr><lf> or \$aa,DFcc*hh<cr><lf></lf></cr></lf></cr></lf></cr></checksum></format></listenerid></pre>	
传感器问询:		<pre>\$<listenerid>,DF?*<checksum><cr><lf> \$aa,DF?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>	
传感器输出:		<pre>\$<talkerid>,DF=<format>*<checksum><cr><lf> \$aa,DF=c*hh<cr><lf></lf></cr></lf></cr></checksum></format></talkerid></pre>	

参数	<format></format>	
	P	将数据格式设置成 Polar 格式(风速和风向)(出厂默认设置)
	N	将数据格式设置成 NMEA 0183 格式,风速单位为 m/s
	NN	将数据格式设置成 NMEA 0183 格式,风速单位为节
	NK	将数据格式设置成 NMEA 0183 格式,风速单位为 km/h

示例 示例 1

将风速输出数据格式设置成 NMEA 格式,风速单位为 m/s,并验证新设置。

信息 指令

\$01,DFN*//<cr><1f> 将格式设置成 NMEA 格式 (m/s)

 \$01,DF?*//<cr><lf> 问询格式设置

 \$WI,DF=N*43<cr><lf> 传感器响应信息

示例 2

将风速输出数据格式设置成 NMEA 格式,风速单位为节,并验证新设置。

言息 指令

\$01, DFNN*//<cr><1f> 将格式设置成 NMEA 格式(节)

 \$01,DF?*//<cr><lf> 向询格式设置

 \$WI,DF=NN*0D<cr><lf> 传感器响应信息

描述 使用 DF 指令将风速读数设置成所需格式。请参阅 WV 指令(第 6.4.26 和 6.4.27 章)以了解 每个传感器输出格式类型描述。

当向传感器发送了 DF 设置指令后,最大和最小读数将被自动重置为各自的默认值。

Polar 格式: 传感器返回风速的大小(仅限 m/s) 和气流的方向(0-359 度)。

NMEA 0183 格式: 传感器返回风的角度 (0-359 度的相对角度) 和风速 (m/s、节或 km/h)。 当选用 NMEA 格式时,传感器的信息源 ID 总是设为 WI,无论此前是否曾使用 ID 指令设置过任何值。

6.4.5 DG: 问询运行时间统计器

指令参数	DG		
指令句法	传感器设置:	N/A	
	传感器问询:	\$ <listenerid>,DG?T*<chec \$aa,DG?T*hh<cr><lf></lf></cr></chec </listenerid>	cksum> <cr><lf></lf></cr>
	传感器输出:	\$ <talkerid>,DG=<counter: \$aa,DG=xxxxxx*hh<cr><lf:< th=""><th></th></lf:<></cr></counter: </talkerid>	
参数	<counter></counter>		
少 奴	000000 至 999999	记录风速仪在其使用寿命期间内	的运转小时数。
示例	<u>示例 1</u> 问询运行时间统计器 <u>信息</u> \$01,DG?T*// <cr> \$WI,DG=012897*0</cr>	><1f>	指令 问询运行时间统计器 传感器响应信息 (12897 小时=1 年 5 个月 21 天 9 小时)
描述	使用 DG 指令问询风证 会增加。	速仪运行小时数。运行时间统计器 的	的值在风速仪每次使用满一个小时后都

6.4.6 DL: 设置或问询指令延迟间隔

指令参数	DL		
114 4 4 3 1			
指令句法	传感器设置:	<pre>\$<listenerid>,DL<delay>*<checksum><cr><1f> \$aa,DLxx*hh<cr><1f></cr></cr></checksum></delay></listenerid></pre>	
	//. → HII > → >	\$ <listenerid>,DL?*<checks< th=""><th>:um><cr><1f></cr></th></checks<></listenerid>	:um> <cr><1f></cr>
	传感器问询:	\$aa,DL?*hh <cr><1f></cr>	
	传感器输出:	<pre>\$<talkerid>,DL=<delay>*<c< pre=""></c<></delay></talkerid></pre>	checksum> <cr><1f></cr>
	17 7G, HH 1111 ELI	\$aa,DL=xx*hh <cr><1f></cr>	
参数	<delay></delay>		
<i>></i> ×	00至20	(延迟间隔,增量为50ms)(出厂默	认设置=01)
	11		y - 2
示例	<u>示例 1</u>		
	将指令延迟间隔设置	成 250ms,并验证新设置。	
	<u>信息</u>		<u>指令</u>
	\$01,DL05*// <cr></cr>		将延迟设置成 250ms
	\$01,DL?*// <cr><</cr>		问询延迟设置
	\$WI,DL=05*02 <c1< td=""><td>c><1f></td><td>传感器响应信息</td></c1<>	c><1f>	传感器响应信息
10.5			
描述		传感器接收到指令到该指令被执行之间	
	为 RS485 接口由传输	模式转成接收模式时所需要的时间延	达的设置上。
	柳 加 加里延迟间隔	6设置为 250ms,传感器将在接收到 W	7 问询指令 250-300mc 后开始输出図
	速数据。	以直/3 200回3,以沿船们任政权利。	
	如果在延迟间隔结束	之前向传感器发送任何其他指令的话	5,这些指令将被摒弃。

6.4.7 ER: 问询或重置错误报告

指令参数 ER

描述

指令句法	传感器设置:	\$ \$\$\$\$\$\$\$
	传感器查询:	<pre>\$<listenerid>,ER?*<checksum><cr><lf> \$aa,ER?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,ER=<error report="">*<checksum><cr><lf>\$aa,ER=xxxxxxxxxxxxxxx*hh<cr><lf></lf></cr></lf></cr></checksum></error></talkerid></pre>

	参数	<reset></reset>		
		R	将错误报告的历史日志部分重置为0	
		<error report=""></error>		
١		<error report=""></error>	传感器错误报告数据串	

示例	<u>示例 1</u>				
	查询错误报告				
	信息	<u>指令</u>			
	\$01,ER?*// <cr><1f></cr>	问询错误报告			
	\$WI,ER=000000000000000000*28 <cr><1f></cr>	传感器响应信息			

● 错误报告位置 最新位置 最旧位置 当前状况

符组成。(在上述示例中均以'0'ASCII 30(HEX)的格式显示)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

数据字段中的第一个字符代表了传感器的当前运行状况。'0'(ASCII 30(HEX)) 代表了传感器目前运转良好,任何其他字符均表明有错误状况出现。当 ER 指令被执行后,该 状态会被清零。

错误报告包含了传感器在运行过程当做所发生的错误信息。输出字符串总是由 15 个 ASCII 字

随后的 14 个字符位包含此前的 14 个历史日志,其中最左边的字符位代表了最近出现的错误。每个错误状况都配有相应的 ASCII 字符。历史日志存储在闪存记忆体中,并在设备电源关闭或传感器软件重置时仍旧存留下来。

如果传感器出现问题,该报告可被送回FT工厂以用来分析原因。

目前,历史错误报告仅作为 工厂诊断用途。

6.4.8 FL.1: 普通滤波器设置

指令参数	FL (启用或禁用)
------	------	--------

指令句法	传感器设置:	<pre>\$<listenerid>,FL<filter>*<checksum><cr><lf> \$aa,FLc*hh<cr><lf></lf></cr></lf></cr></checksum></filter></listenerid></pre>
	传感器查询:	<pre>\$<listenerid>,FL?*<checksum><cr><lf> \$aa,FL?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,FL=<filter>*<checksum><cr><lf> Saa.FL=c*hh<cr><lf></lf></cr></lf></cr></checksum></filter></talkerid></pre>

参数	<filter></filter>	
	E	启动滤波器(出厂默认设置)
	D	禁用滤波器

示例	<u>示例 1</u>	
	启用滤波器。验证指令已被接受。	
	信息	指令
	\$01,FLE*// <cr><lf></lf></cr>	启用滤波功能
	\$01,FL?*// <cr><lf></lf></cr>	问询滤波器设置
	\$WI,FL=E*40 <cr><1f></cr>	传感器响应信息
	<u>示例 2</u>	
	禁用滤波器验证指令已被接受。	
	信息	<u>指令</u>
	\$01,FLD*// <cr><lf></lf></cr>	禁用滤波功能
	\$01,FL?*// <cr><1f></cr>	问询滤波器设置
	\$WI,FL=D*41 <cr><1f></cr>	传感器响应信息

描述	使用 FL 指令来启用或禁用风速风向读数的移动平均滤波(参见第 2.3 章)。

6.4.9 FL.2: 设置或问询滤波器长度

指令参数 FL (长度)

指令句法	传感器设置:	<pre>\$<listenerid>,FLL<speedlen>,<dirlen>*<checksum><cr><1f> \$aa,FLLxxxx,xxxx*hh<cr><1f></cr></cr></checksum></dirlen></speedlen></listenerid></pre>
	传感器查询:	<pre>\$<listenerid>,FL?L*<checksum><cr><lf> \$aa,FL?L*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,FL=<speedlen>,<dirlen>*<checksum><cr><1 f> \$aa,FL=xxxx,xxxx*hh<cr><1f></cr></cr></checksum></dirlen></speedlen></talkerid></pre>

参数	<speedlen></speedlen>	
	0001 至 0064	风速滤波器样本大小。
		用于计算最新风速读数的已有读数数量*,0001 代表禁用滤波器
		(出厂默认设置=0016)
	<dirlen></dirlen>	
	0001 至 0064	风向滤波器样本大小。
		用于计算最新风向读数的已有读数数量*,0001代表禁用滤波器
		(出厂默认设置=0016)

3

修改滤波器范围。验证指令已被接受。

\$01,FLL0001,0032*//<cr><1f>

\$01,FL?L*//<cr><1f>

\$WI,FL=0001,0032*29<cr><1f>

指令

将风速滤波器长度设置为1,风

向滤波器长度设置为 32 问询滤波器长度设置 传感器响应信息

描述

使用本指令来修改风速风向滤波器长度。当滤波器被启用后,通过计算此前若干次(由滤波器长度〈speedLen〉和〈dirLen〉来决定〉读数的平均值^{**},分别算得风速和风向的平均读数。

#请注意,所定义的此前读数滤波器长度包含了位置1上的最新风项读数。因此,将滤波器长度设置为0001仅可获得现有读数(请参见第2.3章)。

传感器内部存储容量足够容纳64个已有风速风向读数,因此滤波器长度的最大值为6.4秒。

6.4.10 FL.3: 设置或问询选通滤波器

指令参数 FL(选通滤波器)

指令句法	传感器设置:	\$ \$tenerID>,FLS<filterstatus><period>*<checksum><cr ><lf>\$<aa,flscxxx*hh<cr><lf>\$</lf></aa,flscxxx*hh<cr></lf></cr </checksum></period></filterstatus>
	传感器问询:	\$ <listenerid>,FL?S*<checksum><cr><lf>\$aa,FL?S*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid>
	传感器输出:	\$ <talkerid>,FL=<filterstatus>,<period>*<checksum><cr><lf>\$aa,FL=c,xxx*hh<cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr><lf>\$cr\$cr><lf>\$cr</lf>\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$cr\$c</lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></cr></lf></cr></checksum></period></filterstatus></talkerid>

参数	<filterstatus></filterstatus>	
	E	启用
	D	禁用
	<period></period>	
	000 至 255	有效区间长度 (以 0.1 秒为增量):
		000 单独错误会触发错误警报
		001 2个连续错误会触发错误警报(0.2秒)

示例	<u>示例 1</u> 问询选通滤波器状态	
	信息	指令
	\$01,FL?S*// <cr><1f></cr>	问询选通滤波器状态
	\$WI,FL=E,005*hh <cr><1f></cr>	传感器返回报告,开启了 5 个读数(0.5 秒)的滤 波器
	<u>示例 2</u>	
	开启或禁用选通滤波器状态	
	\$01,FLSE010*// <cr><1f></cr>	开启选通滤波器,最多 10 个读数 (1 秒)。
	\$01,FLSD*// <cr><1f></cr>	禁用选通滤波器

描述 除了第 6.4.8 和 6.4.9 章中介绍的均值滤波器之外,传感器产品还具有名为选通滤波的功能。该系统使得用户能够设置"有效区间",在该范围内,传感器将会阻止无效读数输入至均值滤波器中。输出值将锁定在前一个"良好"读数上,并仅在不良读数的数量超过有效区间时才予以警告。该系统可在出厂设置中开启。为与传统模式相匹配,该功能默认为关闭状态。

取决于所使用的控制系统,这一功能可改善数据质量。

6.4.11 HT.1: 普通加热器设置

指令参数 HT (启用或禁用)

指令句法	<i>什</i> 咸鬼, 17 黑,	\$ <listenerid>,HT<tsp>*<checksum><cr><lf></lf></cr></checksum></tsp></listenerid>
	传感器设置:	\$aa,HTxx*hh <cr><lf></lf></cr>
	化 或照本冶:	\$ <listenerid>,HT?*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传感器查询:	\$aa,HT?*hh <cr><lf></lf></cr>
	传感器输出:	\$ <talkerid>,HT=<tsp>,<%>,<temp>*<checksum><cr><lf></lf></cr></checksum></temp></tsp></talkerid>
	传恩希制山.	\$aa,HT=xx,xx,±xx*hh <cr><lf></lf></cr>

参数	<tsp></tsp>	
	00-55	加热器控制回路温度设置点(摄氏度)
	99	禁用加热器(出厂默认设置)
	<%>	
	00-99	只读参数可返回加热器全额电流限制的百分比 0%(加热器关闭)至 99%(加热器完全启动)
	<temp></temp>	
	-99 至+99	只读参数可以摄氏度的形式返回传感器目前内部温度,范围在 00 至±99°C 之间

示例	<u>示例 1</u> 收休咸思洱度况罢去况在 500 、	
	│ 将传感器温度设置点设在 5°C,并验证新设置已被接受。 │ 信息	指令
	\$01,HT05*// <cr><lf></lf></cr>	设置加热器温度设置点
	\$01,HT?*// <cr><lf></lf></cr>	问询加热器设置
	\$WI,HT=05,00,+24*3B <cr><1f></cr>	传感器响应信息
	<u>示例 2</u> 关闭传感器加热器。验证指令已被接受。	
	信息	<u>指令</u>
	\$01,HT99*// <cr><lf></lf></cr>	禁用加热器
	\$01,HT?*// <cr><lf></lf></cr>	查询加热器设置
	\$WI,HT=99,00,+24*3E <cr><1f></cr>	传感器响应信息

描述

使用 HT 指令对传感器加热器参数进行设置,包括加热器开关之间的转换和加热器设置点的配置等。可以对传感器的内部温度进行查询。同时还可对加热器的占空比进行查询,明确加热器当前所占用的电流百分比。

注意:对 FT742-SM 传感器不允许修改加热器的最大电流限值,垂询 FT 公司技术支持获取详情。

加热器需要至少 9VDC 的供电才能激活,关于加热器功耗特性和管理的详情,请垂询 FT 公司

6.4.12 HT.2: 延迟加热器设置

指令参数	HT (延迟)		
------	--------	---	--	--

指令句法	传感器设置:	\$ <listenerid>,HTD<delay>*<checksum><cr><lf>\$aa,HTDxxx*hh<cr><lf></lf></cr></lf></cr></checksum></delay></listenerid>
	传感器查询:	\$ <listenerid>,HT?D*<checksum><cr><lf>\$aa,HT?D*hh<cr><lf>\$aa,HT?D*hh<cr><lf>\$abaa,HT?D*hh<cr><lf>\$abaa,HT?D*hh<cr><lf>\$abaa,HT?D*hh<cr><lf>\$abaa,HT?D*hh</lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></checksum></listenerid>
	传感器输出:	\$ <talkerid>,HT=<delay>*<checksum><cr><lf>\$aa,HT=xxx*hh<cr><lf></lf></cr></lf></cr></checksum></delay></talkerid>

参数	<delay></delay>	
	004 至 999	加热器延迟秒数。这指的是传感器启动后、加热器启动前的间隔时
		间。(出厂默认设置为 004=4 秒)

示例	<u>示例 3</u> 将传感器加热器延迟时间设置为 010。验证指令已被接受。	
	<u>信息</u> \$01,HTD010*// <cr><lf></lf></cr>	<u>指令</u> 将加热器延迟时间设置成 010
	\$01,HT?D*// <cr><1f> \$WI,HT=010*22<cr><1f></cr></cr>	问询加热器延迟设置 传感器响应信息

描述	使用 HT 指令对传感器加热器参数进行设置,包括规定了从传感器开启至指加热器启动之间等 待时间的延迟时间设置。	

6.4.13 ID: 设置或查询监听器和信息源的标识符

指令参数	П	D
		IJ

指令句法	传感器设置:	<pre>\$<listenerid>,ID<rxid><txid>*<checksum><cr><lf>\$aa,ID=cccc*hh<cr><lf></lf></cr></lf></cr></checksum></txid></rxid></listenerid></pre>
	传感器查询:	<pre>\$<listenerid>,ID?*<checksum><cr><lf> \$aa,ID?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,ID=<rxid><txid>*<checksum><cr><lf>\$aa,ID=cccc*hh<cr><lf></lf></cr></lf></cr></checksum></txid></rxid></talkerid></pre>

参数	<rxid></rxid>	
	00 至 ZZ	传感器的 2 个数字监听器地址段标识符
		(出厂默认设置 RxID=01)
	<txid></txid>	
	00 至 ZZ	传感器的 2 个数字信息源地址段标识符
		(出厂默认设置 TxID=WI)

示例 示例 1

将传感器的监听器地址标识符设为 A1,将信息源地址标识符设为 B1。验证指令已被接受。

 信息
 指令

 \$01,IDA1B1*//<cr>

 设置地址 ID

 \$A1,ID?*//<cr><lf>
 问询 ID 设置

 \$B1,ID=A1B1*6C<cr><lf>
 传感器响应信息

注: ID?指令须使用新的监听器 ID, 否则该指令将不会被识别。

描述	使用 ID 指令设置监听器和信息源地址标识符。参见第 5.4.4 章了解关于监听器和信息源地址标识符的详细信息。	

6.4.14 MM: 重置或问询最小/最大风速记录

指令参数	N	Λ	M	ı
· · · > >>		VΙ	IVI	ı

指令句法	传感器设置:	<pre>\$<listenerid>,MM<setting>*<checksum><cr><lf> \$aa,MMc*hh<cr><lf></lf></cr></lf></cr></checksum></setting></listenerid></pre>
	传感器问询:	<pre>\$<listenerid>,MM?*<checksum><cr><lf> \$aa,MM?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,MM=<minspeed>,<maxspeed>*<checksum><cr><1f> \$aa,MM=xxx.x,xxx.x*hh<cr><1f></cr></cr></checksum></maxspeed></minspeed></talkerid></pre>

参数	<setting></setting>	
	R 将最小/最大读数重置为默认设置(<minspeed>(最小风速)为999.9,</minspeed>	
	<maxspeed>(最大风速)为000.0),直至产生首个读数。</maxspeed>	
	<minspeed></minspeed>	
	000.0 至 999.9 在当前单位(m/s、节或 km/h)下可测得的最小风速	
	<maxspeed></maxspeed>	
	000.0 至 999.9 在当前单位(m/s、节或 km/h)下可测得的最大风速	

示例	示例 1	
	问询最小/最大风速读数	
	信息	指令
	\$01,MM?*// <cr><lf></lf></cr>	查询最小/最大读数
	\$WI,MM=005.1,034.2*22 <cr><1f></cr>	传感器响应信息

描述	使用 MM 指令对传感器自从上一次启动后所记录的最小和最大风速读数进行查询。当发送了 MMR、RS 或 DF 指令后,最小和最大读数将被重置为各自的默认设置值。

6.4.15 OS: 过速警告系统

指令参数	OS		

指令句法	传感器设置:	<pre>\$<listenderid>,OS<mode>*<checksum><cr><lf> \$aa,OSm*hh<cr><lf></lf></cr></lf></cr></checksum></mode></listenderid></pre>
	传感器问询:	<pre>\$<listenerid>,OS?*<checksum><cr><lf> \$aa,OS?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
		\$ <talkerid>,OS=<mode>*<checksum><cr><lf></lf></cr></checksum></mode></talkerid>
	传感器输出:	\$aa,OS=m*hh

参数	<mode></mode>	
	D	过速警告禁用
	E	过速警告启用

示例	<u>示例 1</u>		
	启用过速警告机制。验证该指令已被接受。		
	<u>信息</u>	<u>指令</u>	
	\$01,0SE*// <cr><1f></cr>	启用机制	
	\$01,0S?*// <cr><lf></lf></cr>	问询过速警告机制	
	\$WI,OS=E*56 <cr><1f></cr>	传感器响应信息	
	示例 2	示例 2	
	禁用过速警告机制。验证该指令已被接受。		
	<u>信息</u>	<u>指令</u>	
	\$01,0SD*// <cr><lf></lf></cr>	禁用机制	
	\$01,0S?*// <cr><lf></lf></cr>	问询过速警告机制	
	\$WI,OS=D*57 <cr><1f></cr>	传感器响应信息	

描述 使用本指令对过速警告机制进行问询、启用或禁用。(请参见第 2.8 章)

6.4.16 PR: 问询参数报告

指令参数	PR
------	----

指令句法	传感器设置:	NA
	传感器问询: \$<\listenerID>,PR?* <checksum><cr><lf></lf></cr></checksum>	
传感器输出: temperati		<pre>\$<talker id="">, PR=<rfu>, <diagnostic flags="">, <material temperature="">, <rfu>, <rfu>*<checksum><cr><lf> \$aa, PR=xxxxxx, xxxx, xx, xx, xx * hh<cr><lf> </lf></cr></lf></cr></checksum></rfu></rfu></material></diagnostic></rfu></talker></pre>

参数	<rfu></rfu>	
	NA	仅供工厂使用。
	<diagnostic flags=""></diagnostic>	
	NA	这些标识的值通常应该为 0000
	<material< th=""><th></th></material<>	
	temperature>	
	00 至 FF	材料温度以十六进制数值显示。建议使用 HT 问询指令获得材料温度读
		数。

示例	示例 1	
	问询参数报告	
	信息	<u>指令</u>
	\$01,PR?*// <cr><1f></cr>	获得参数报告
	\$WI,PR=076B63,0000,19,29,BF*7C <cr><1f></cr>	传感器响应信息

描述	使用 PR 指令来生成传感器报告。如果传感器出现问题,该报告可被发送回 FT 公司以用于问题的分析研究。

目前,参数报告仅作为工厂 诊断用途。

6.4.17 RS: 重置传感器

RS

\$aa,RSc*hh<cr><1f>

传感器查询: NA

传感器输出: 无

参数 <mode>

 F
 重置传感器,装载出厂默认设置

 S
 重置传感器,装载已存参数设置

U 重置传感器,重新装载用户参数设置

示例 示例 1

重置传感器,重新装载最近参数设置

信息

指令

描述 使用 RS 指令重置传感器软件。在任何重置信息发送后最多 2 秒钟之内,传感器就会做好接受新指令或读取读数的准备。

可使用 RSU 指令对软件进行重启但继续使用此前的用户参数设置。

可使用 RSS 指令对软件进行重启并加载已保存的参数设置。

可使用 RSF 指令对软件进行重启并加载出厂默认参数设置。

参见 US 指令(第 6.4.25 章)以了解关于已存参数的设置或问询的详细信息。

6.4.18 SN: 查询序列号和产品版本

指令参数	SN	ı
------	----	---

指令句法	传感器设置:	NA
	传感器查询:	<pre>\$<listenerid>,SN?*<checksum><cr><lf> \$aa,SN?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>, SN=<serialnumber>, <buildversion>*<check sum=""><cr><lf> \$aa, SN=xxxxx-xxx, xxsss*hh<cr><lf></lf></cr></lf></cr></check></buildversion></serialnumber></talkerid></pre>

参数	SerialNumber> 00000-000 至 99999-999	传感器独一无二的序列号
	<buildversion></buildversion>	
	00-99	传感器设计的版本号(批次)。2位数字后的3个空格预留给未来的产品版本。

示例	示例 1	
	读取传感器的序列号和产品版本	
	信息	指令
	\$01,SN?*// <cr><lf></lf></cr>	查询序列号
	\$WI,SN=09000-130,24 *3E <cr><1f></cr>	传感器响应信息

描述	SN 指令可返回传感器的序列号和版本号。	
	序列号的格式以 5 位批次代码开始,后面是 3 位数字,以区分同一批次中不同的传感器。整列数字组成了区分传感器的独一无二的序列号。	

6.4.19 SV: 查询软件版本

指令参数	SV
指令句法	传感器设置: NA
	传感器问询: \$ <listenerid>,SV?*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传感器输出: \$ <talkerid>,SV=<softwareversion>*<checksum><cr><lf> \$aa,SV=sssx.xss*hh<cr><lf> \$cr><lf> \$cr><l< th=""></l<></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></cr></lf></cr></checksum></softwareversion></talkerid>
	· ,
参数	<softwareversion></softwareversion>
	1.0 至 9.9 传感器软件版本。出现的空格是预留给未来版本使用。
示例	<u>示例 1</u> 读取传感器的软件版本
	<u>信息</u> <u>指令</u>
	\$01, SV?*// <cr><1f> 问询软件版本</cr>
	\$WI,SV= 7.3 *00 <cr><1f> 传感器响应信息</cr>
描述	SV 指令可返回传感器的软件版本。
1田人工	3/16学月及四传总备的扒什似本。

6.4.20 UC.1: 普通用户校准设置

指令参数 UC (启用或禁用)

指令句法	令句法	\$ <listenerid>,UC*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传感器设置:	\$aa,UCx*hh <cr><1f></cr>
	在	\$ <listenerid>,UC?*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传感器问询:	<pre>\$aa,UC?*hh<cr><lf></lf></cr></pre>
		<pre>\$<talkerid>,UC=<entries>,,<ucramchecksum< pre=""></ucramchecksum<></entries></talkerid></pre>
	传感器输出:	>, <ucflashchecksum>*<checksum><cr><lf></lf></cr></checksum></ucflashchecksum>
		\$aa,UC=nn,x,vvvv,zzzz*hh <cr><lf></lf></cr>

参数		
	E	启用用户校准表
	D	禁用用户校准表(出厂默认设置)
	<entries></entries>	
	nn	校准表格条目数量
	<ucramchecksum></ucramchecksum>	
	УУУУ	用户校准表 RAM 备份校验
	<ucflashchecksum></ucflashchecksum>	
	ZZZZ	已保存的用户校准表的闪存备份校验

示例 示例 1

启用用户校准表,并验证新设置。

 信息
 指令

 \$01,UCE*7E<<</td>
 启用用户校准表

 \$01,UC?*04<<</td>
 问询用户校准表状态

 \$WI,UC=55,E,5174,5174*70<<</td>
 传感器典型响应信息

描述 使用 UC 指令来启用或禁用用户校准表对风速读数校准设置的执行。

对表中每个条目所列出的行值进行汇总进而算得四位数的用户校准表校验值。算得结果的最后四位数作为表格的校验值进行存留。用户自定义字符串并未包含在校验中。通过忽略小数点,每个 xx. xx 的速度值均被作为整数来进行处理。例如,表格行值如下: 15.00, 14.97 将被汇总计算为 1500 + 1497 = 2997。表格的汇总值若为 55174,那么校验值则为 5174。

如果没有加载任何《用户校准表》,校准表的条目数(nn)将为00,并且所保存的用户校准表格闪存备份校验值(zzzz)将为5535。

当用户校验设备被启用后,传感器中被 标注为不正确的风速将根据所储存的校 正记录,通过线性插值实现校准。

6.4.21 UC.2: 清除用户校准表记录

UC (清除表格)

指令句法 \$<listenerID>,UC<erase>*<checksum><cr><lf> 传感器设置: \$aa,UCCLEAR*hh<cr><1f>

参数 <erase> CLEAR 清除用户校准表格的闪存和 RAM 备份

示例 1 示例 清除用户校准表,并验证新设置。 信息 指令 \$01,UCCLEAR*62<cr><1f> 清除校准表 \$01,UC?*04<cr><1f> 问询用户校准表状态 \$WI,UC=00,D,0000,0000*71<cr><1f>

传感器响应信息

描述 使用 UCCLEAR 指令清除用户校准表的 RAM 备份和已保存的闪存备份。UCCLEAR 指令应在加载新 用户校准表前执行(参见第6.4.22章)。

> 当发送了 UCCLEAR 指令后,用户校准表也同时清除出 32 位 ASCII 字符的位置 (参见第 6.4.24 章)。

6.4.22 UC.3: 设置用户校准表记录

指令参数 UC (设置&验证记录)

指令句法 传感器校准设置记录		<pre>\$<listenerid>,UCW<cspeed>,<uspeed>*<checksum><c r=""><1f> \$aa,UCWxx.xx,yy.yy*hh<cr><1f></cr></c></checksum></uspeed></cspeed></listenerid></pre>
	验证上一份记录:	<pre>\$<listenerid>,UC?W*<checksum><cr><lf> \$aa,UC?W*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	\$ <talkerid>,UC=<error code="">*<checksum><cr><lf></lf></cr></checksum></error></talkerid>
	下必 命 制山:	\$aa,UC=n*hh <cr><lf></lf></cr>

参数	<cspeed></cspeed>	
	XX.XX	调整后的风速
	<uspeed></uspeed>	
	<i>YY • YY</i>	未调整的风速
	<error code=""></error>	
	0	表格条目被接受
	1	错误: 传感器风速排列混乱(最新行值风速<上一行值风速)
		错误: 传感器风速增量相较于此前记录小于 0.5ms
	2	错误:无法输入条目数据(没有首先清除表格)
	3 4	错误:参数错误(数据格式无效)
	5	错误: 《用户校准表格》已满(所有64行已全部填满)

示例	<u>示例 1</u>	
	输入用户校准表记录并验证	
	信息	指令
	\$01,UCW00.90,01.11*48 <cr><1f></cr>	设置风速调整
	\$01,UC?W*53 <cr><1f></cr>	问询用户校准表条目是否被接受
	\$WI,UC=0*29 <cr><1f></cr>	传感器响应信息

描述	使用 UCW 指令设置并验证每个用户校准表格记录。仅当校准表格被清除后,才可输入新的记
	录(请参阅第 6.4.21 章)。最多可向传感器 RAM 连续输入 64 个记录并进行验证。一旦加载了足
	够的记录,这些数据就可通过使用用户校准保存指令存储在设备闪存之中(参见第6.4.23
	章)。

6.4.23 UC.4: 保存并读取用户校准表

指令参数 UC (保存并读取)

指令句法	保存传感器校准设置记	\$ <listenerid>,UCS*<checksum><cr><lf></lf></cr></checksum></listenerid>
	录:	\$aa,UCS*hh <cr><lf></lf></cr>
	问询保存的传感器设置	\$ <listenerid>,UC?R<row>*<checksum><cr><lf></lf></cr></checksum></row></listenerid>
	校准记录:	\$aa,UC?Rnn*hh <cr><lf></lf></cr>
		\$ <talkerid>,UC=<row>,<cspeed>,<uspeed>*<checksu< th=""></checksu<></uspeed></cspeed></row></talkerid>
	传感器输出:	m> <cr><1f></cr>
		<pre>\$aa,UC=nn,xx.xx,yy.yy*<cr><1f></cr></pre>

参数	<row></row>	
	01 - 64	校准表行标
	<cspeed></cspeed>	
	XX.XX	调整后的风速
	<uspeed></uspeed>	
	$yy \cdot yy$	未调整的风速

示例	<u>示例 1</u>	
	将 RAM 中保存的用户校准表保存在闪存内并验证	
	信息	<u>指令</u>
	\$01,UCS*68 <cr><1f></cr>	保存用户校准表
	\$01,UC?*04 <cr><1f></cr>	问询用户校准表状态
	\$WI,UC=55,E,5174,5174*70 <cr><1f></cr>	传感器典型响应信息
	<u> 示例 2</u>	
	读取存储在闪存校准表中第5行的校准数据。	
	信息	<u>指令</u>
	\$01,UC?R05*53 <cr><1f></cr>	问询闪存内的用户校准记录
	\$WI,UC=05,06.00,06.03*1F <cr><1f></cr>	传感器典型响应信息

描述	使用 UCS 指令在闪存中保存新的用户校准表。用户校准查询指令(参见第 6.4.20 章) 可用来验
	证 RAM 和闪存备份中的校验值是否相同。从而可以显示出该校准表在存储过程当中没有出现
	错误。
	使用 UC?R 指令来对闪存中的每个记录所存储的数据进行验证。

一旦校准表被保存至闪存中,须 首先将表格清零才可重新写入新 的数据和文字串。

52

6.4.24 UC.5: 设置并问询用户校准表标签

11/2 人 42 XL	l	
指令参数	UC (标图	行 、
711 () //		2> 1
		<u> </u>
	(/

指令句法	传感器标签设置:	<pre>\$<listenerid>,UCT<text string="">*<checksum><cr><lf> \$aa,UCTxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</lf></cr></checksum></text></listenerid></pre>
	传感器标签查询:	<pre>\$<listenerid>,UC?T*<checksum><cr><lf> \$aa,UC?T*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
		\$ <talkerid>,UC=<label32>*<checksum><cr><lf></lf></cr></checksum></label32></talkerid>
	传感器输出:	<pre>\$aa,UC=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx*hh<cr>< 1f></cr></pre>

参数	<text string=""> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</text>
	<1abe132> xxxxxxxxxxxxxxxxx 32 个 ASCII 字符, xxxxxxxxxxxxxx 注: 如果不足 32 个字符的话, ASCII 字符串将自动添加 ASCII 字符名以生成 32 个字符的字符串。

示例	<u>示例 1</u>	
	设置用户校准标签至"速度偏移 V03",并验证。	
	信息	指令
	\$01,UCTspeed offset V03*50 <cr><1f></cr>	设置校准表标签
	\$01,UC?T*0C <cr><1f></cr>	问询校准表标签
	\$WI,UC=speed offset V03	传感器响应信息
	*26 <cr><1f></cr>	

描述	使用 UCT 指令设置用户校准表标签。标签可长达 32 个 ASCII 字符,并可包括 ASCII 字符空格、下划线和中横线字符。
	使用 UCCLEAR 指令清除用户校准表标签。(请参阅第 6.4.21 章)这一指令可将标签重置为 32 位 ASCII 字符空格。
	只有在用户校准表初始化后,UC?T 查询指令才可获得回应。

6.4.25 US: 设置或查询已保存参数

指令参数 US

指令句法	传感器设置:	\$ <listenerid>,US<setting>*<checksum><cr><lf></lf></cr></checksum></setting></listenerid>
	快心的以且:	\$aa,USS*hh <cr><lf></lf></cr>
	传感器查询:	\$ <listenerid>,US?*<checksum><cr><lf></lf></cr></checksum></listenerid>
	传恩希里明:	\$aa,US?*hh <cr><lf></lf></cr>
	传感器输出:	<pre>\$<talkerid>,US=<match>*<checksum><cr><lf></lf></cr></checksum></match></talkerid></pre>
1专港	传恩希制山:	\$aa,US=c*hh <cr><lf></lf></cr>

参数	<setting></setting>	
	S	复制用户参数并将其保存成已保存参数。
	<match></match>	
	P	代表用户参数与已保存参数相同。
	F	代表用户参数与已保存参数不同。

示例	<u>示例 1</u>	
	保存并验证新的用户保存参数。	
	信息	指令
	\$01,USS*// <cr><1f></cr>	设置已保存参数
	\$01,US?*// <cr><1f></cr>	问询已保存参数
	\$WI,US=F*4F <cr><1f></cr>	传感器响应信息

描述 在闪存中存有三份参数备份,分别为用户参数、出厂参数、已保存参数。三份备份均在初始 状态下以同样的默认设置方式加载。

图 16: 3 份参数设置闪存备份之间的关系

用户参数总是传感器依照运行的参数备份。当向传感器发送指令后, 所更新的是用户参数备份。用户参数备份是非易失性的, 因此传感器在下次启动时将保留上一次所使用的设置。

出厂参数始终保持为默认设置,不可更改,但是可通过RSF指令得以被使用,并替代用户参数(请参阅第6.4.17章)。

未完, 转下页…

描述

(接上页)

已保存参数是通过USS指令创建的。该指令可复制用户参数并将其保存在闪存中专为已保存参数保留的独立区域内。US查询指令将已保存参数与用户参数进行逐项对比,并报告所找到的差别;该指令可在USS指令后使用,以确认所有用户参数均以被正确复制到已保存参数中。重置指令可用加载已保存参数已恢复用户参数。参见RSS(第6.4.17章)以了解关于RSS指令的详细信息。

在 RSF 和 RSS 指令被执行后,所恢复的参数将被加载在 RAM 中,因此,需要尽快执行第 6.1.1 章中所描述的任何一个设置指令。执行这些指令中的任意一个可指示传感器对新创建的用户参数进行非易失性复制。

USS 指令仅可在实验室或受控环境中使用。这样可保证已保存参数备份不会受损。从而,当在实际使用中进行用户参数变更时,如果恰好在试图变更用户参数时发生雷击事故,并导致用户版本受损,总是有一份已保存的"完整"参数备份可用来恢复传感器。

6.4.26 WV Polar: 查询风速读数

指令参数 WV (Polar)

指令句法	传感器设置:	N/A
	传感器查询:	<pre>\$<listenerid>,WV?*<checksum><cr><lf> \$aa,WV?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$<talkerid>,WVP=<speed>,<angle>,<status>*<checksum> <cr><lf> \$aa,WVP=xxx.x,xxx,x*hh<cr><lf> \$cr><lf> \$cr<lf> \$cr<</lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></lf></cr></lf></cr></checksum></status></angle></speed></talkerid></pre>

参数	<speed></speed>	NV 는 자기 꼭 Ch 'Fell E I I I I
	000.0至075.0	以米每秒为单位测量风速
	<angle></angle>	
	000.0 至 359.9	以与传感器的基准方向之间的夹角度数为单位测量风向
	< status >	
	0至2	代表了是否通过操作系统测得任何错误状况,如超出测量范围的风速,或不正确的度数水平等。所有不是'0'(ASCII 30(HEX))的字符均代表着错误。
		如果传感器检测到错误状态,状态特征将被设置成 1. 如果启用了过速警告机制(参见第 Error! Reference source not found.章),且传感器检测到风速超出最大范围,则状态标识会被设为 2。

示例	<u>示例 1</u>	
	下列示例描述了 polar 格式的风速数据格式。	示例显示的是传感器输出风速为 20m/s、风向
	45 度。	
	信息	<u>指令</u>
	\$01.WV?*// <cr><1f></cr>	杏询风读诗数

描述 WV 指令可根据当前格式返回风速值。可使用 Polar 或 NMEA 格式。使用 DF 指令(参见第 6.4.4 章)将选择所需输出格式。

Polar 格式: 传感器返回风速的大小(m/s)和气流的方向(0-359.9 度)。

NMEA 0183 格式: 传感器以 NMEA 0183 格式返回风速和角度 MWV 句子 (参见第 6.4.27 章中的 WV NMEA)。

建议对该状态进行持续监视与错误 相关的读数不应被视作有效读数。 当暂时无法获得有效读数时,主电 脑具有应对此阶段的能力是极为重 要的。

在执行了 WV 指令之后,如果错误状况没有持续,该状态会被清除。

6.4.27 WV NMEA: 问询风速读数

指令参数 WV (NMEA)

	传感器设置:	N/A
指令句法	传感器查询:	<pre>\$<listenerid>,WV?*<checksum><cr><lf> \$aa,WV?*hh<cr><lf></lf></cr></lf></cr></checksum></listenerid></pre>
	传感器输出:	<pre>\$WIMWV, <angle>,R, <speed>, <units>, <status>*<checksum><cr><lf> \$WIMWV,xxx,R,xxx.x,c,A*hh<cr><lf></lf></cr></lf></cr></checksum></status></units></speed></angle></pre>

	<angle></angle>	
	000 to 359	以与传感器的基准方向之间的夹角度数为单位测量风向
	<speed></speed>	
	000.0 to 075.0	测得风速(m/s)
	000.0 to 145.8	测得风速(节)
	000.0 to 270.0	测得风速(km/h)
全 粉	<units></units>	
参数	M	代表所显示的风速单位为 m/s
	N	代表所显示的风速单位为节
	K	代表所显示的风速单位为 km/h
	< status >	
	0 to Z	代表了是否通过操作系统测得任何错误状况,如超出测量范围的风
		速,或不正确的度数水平等。所有不是'A'(ASCII 41(HEX))的字符
		均代表着错误

	<u>示例 1</u>	
	下列示例描述了 NMEA 格式的风速数据格式。示例。	显示的是传感器输出风速为 20m/s、风
	向 45 度。	
	信息	<u>指令</u>
	\$01, WV?*// <cr><lf></lf></cr>	问询风速读数
示例	\$WIMWV,045,R,020.0,M,A*3D <cr><1f></cr>	传感器 NMEA 响应信息
71/10/1	<u>示例 2</u>	
	下列示例描述了 NMEA 格式的风速数据格式。示例显:	示的是传感器输出风速为30.6节、风
	向 9 度。	
	信息	<u>指令</u>
	\$01,WV?*// <cr><lf></lf></cr>	问询风速读数
	\$WIMWV,009,R,030.6,N,A*31 <cr><1f></cr>	传感器 NMEA 响应信息

	WV 指令可根据当前格式返回风速值。可使用 Polar 或 NMEA 格式。使用 DF 指令(参见第6.4.4)将选择所需输出格式。
描述	Polar 格式: 传感器返回风速的大小 (m/s) 和气流的方向 (0-359.9 度)。(请参阅第 6.4.26 章, WV Polar)
	NMEA 0183 格式: 传感器以 NMEA 0183 格式返回风速和角度 MWV 句子。传感器使用 MWV 风速与角度句子返回风向(0-359 度)和风速(m/s)。当选用 NMEA 格式时,传感器的信息源 ID 总是设为 WI,无论此前曾使用 ID 指令设置过任何值。

说明书结束 - 返回目录

End of Manual - Back to Contents

