VeGANs project presentation

Mathilde Kretz, Amélie Leroy, Marius Roger

veer are project prese

Problem statement

Goal: represent a latent (learning) space as a manner to implement image generation.

$$\min_{G} \max_{D} \mathbb{E}_{X_r \sim P}[\log D(x)] + \mathbb{E}_{X_g \sim \hat{P}_G}[\log(1 - D(x))]$$

Gaussian Mixture Model

K: number of gaussians inside the latent space

 $\widetilde{z} = \mu(y) + \sigma(y)z$ follows $\mathcal{N}(\mu_k, \sigma_k)$, the k^{th} Gaussian distribution of the latent space.

Allows backpropagation through the GM module \longrightarrow dynamic implementation

First implementation : Supervised GM-GAN

Supervised objective: separate real / fake samples and find class of real samples

Discriminator returns:

$$\begin{cases} (0,..,1^{ith},..,0) & \text{if the input is of class } i \\ (0,...,0,1) & \text{if the input is a fake sample} \end{cases}$$

Generator should map each Gaussian to a unique class.

CrossEntropy Loss:

- ▶ **G** training: between $D(G(\tilde{z}))$ and label y used to sample \tilde{z}
- ▶ **D** training: between $D(sample_{real})$ and label y_{real} + between $D(G(\tilde{z}))$ and "label" $y_{fake} = 10$

Second implementation: alternative objective

Change: We separate class prediction and reality prediction objectives.

Cross-Entropy between first 10 dims of output and the label y

Binary CE between last dim and fake/real

Training D, CE loss is used only on real samples G(GM(y,z)) and y are not correlated enough

Approaches we tested

- Mean μ and variance σ are the representative parameters of our problem, we initialized them with different values : μ is uniformly sampled in [-c,c] and σ is set to a constant σ
- ► Hyperparameter tuning : learning rate and batch size
- Data augmentation (future)
- Dropout
- ► Weighting the losses (approach 2)

Results for initial approach

Figure: Numbers generated with approach 1 (per-category mode collapse)

Figure: D loss

Figure: G loss

Figure: FID over epochs

Alternative results

σ	С	learning rate	FID
1.7	3	8e-5	100
0.7	3	2e-4	150
1	3	2e-4	134
1	1	2e-4	210

Table: Results for approach 1 @ 150 epochs

Figure: FID for approach 2

References

Matan Ben-Yosef and Daphna Weinshall : Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised Clustering of Images, 2018

Teodora Pandeva and Matthias Schubert: MMGAN: Generative Adversarial Networks for Multi-Modal Distributions, 2019