#### Adaline

#### COMP4211



# Adaline (Adaptive Linear Element)

 a feed-forward network with one layer of adjustable weights connected to one or more linear units (as output units)



- target output for training pattern d: t<sub>d</sub>
- output (of the linear unit) for training pattern d:  $o_d(\vec{w}) = o_d$ squared training error:  $E(\vec{w}) = \sum_{d \in D} E_d = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$

how to find  $\vec{w}$  that minimizes  $E(\vec{w})$ ?

COMP4211

Adaline

### Adaline and Linear Regression

- in statistics, adaline is called linear regression
- $\vec{w}$  can be obtained in closed-form
- here we present another approach, just to warm up for MLP learning
- MLP is regarded as a tool of nonlinear regression

# How to go to Tai Mo Shan?



• start at any point and keep going uphill

# Finding the Weight

- use gradient descent to search the space of possible weight vectors to find the weights that minimizes *E*
- start at any point and keep going downhill



# Error Surface $E(\vec{w})$

- in general, the error surface can be very complicated
- useful to consider this as a landscape



can get stuck in locally optimal solutions



# Error Surface $E(\vec{w})$ ...

• but here,  $E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$  with  $o = \sum_{i=0}^n w_i x_i$  is of the form



• a global minimum!



#### **Gradient Descent**

gradient 
$$\nabla E[\vec{w}]$$
 at  $\vec{w}$ :  $\left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$ 





#### move $\vec{w}$ :

- direction: opposite to  $\nabla E[\vec{w}]$
- magnitude: a small fraction of  $\nabla E[\vec{w}]$

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

### Math

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) 
= \sum_{d} (t_d - o_d) (-x_{i,d}) 
\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{d} (t_d - o_d) x_{i,d}$$

# Delta Rule (LMS rule, Adaline rule, Widrow-Hoff rule)

```
begin
    initialize each w_i to some small random value;
    repeat
        initialize each \Delta w_i to zero;
        for each \langle \vec{x}, t \rangle in the training set D do
             input instance \vec{x} to the unit and compute output o;
             for each linear unit weight w; do
                 \Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i:
             end
        end
        for each linear unit weight w; do
             w_i \leftarrow w_i + \Delta w_i:
        end
    until termination condition is met:
end
```

#### **Termination Conditions**

- when  $\|\Delta \vec{w}\|$  is smaller than a threshold value
- when the number of iterations has reached a preset maximum

### Batch Learning

$$\Delta w_i = \eta \sum_d (t_d - o_d) x_{i,d}$$

sum the gradient over the whole data set

on big data sets, this can be very expensive

- you cannot store the whole data set in memory ⇒ need to read into memory from disk
- after reading all the records, you can move one step (iteration)
- then repeat for every step
- take a long time to converge especially because disk I/O is typically a system bottleneck

what can you do?

#### Stochastic Gradient

- update the weights after each individual example
  - requires fewer computation per weight update step

```
begin
    Initialize each w_i to some small random value;
    repeat
        for each \langle \vec{x}, t \rangle in the training set D do
             input instance \vec{x} to the unit and compute output o;
             for each linear unit weight w<sub>i</sub> do
                 w_i \leftarrow w_i + \Delta w_i = w_i + \eta(t - o)x_i
            end
        end
    until termination condition is met:
end
```

# Example



- stochastic gradient descent every iteration is much faster
- you "generally" move in the right direction, but not always
- a smaller step size has to be used

if you have a truly massive dataset

- it is possible that a single pass over the data can produce a perfectly good network
- in contrast, for batch gradient descent, one always has to make multiple passes over the data

COMP4211

#### Mini-Batch

- batch gradient descent: use all examples in each iteration
- stochastic gradient descent: use 1 example in each iteration
- mini-batch gradient descent: use b examples in each iteration
  - b: mini-batch size (e.g., b = 128)
  - just like batch, except we use tiny batches
  - do not have to update parameters after every example, and do not have to wait until you cycled through all the data
  - often work faster than stochastic gradient descent

### Convergence

Because the error surface contains only a single global minimum, the delta rule will converge to a weight vector with minimum error if an appropriate learning rate is chosen

ullet even when training data contains noise / not separable by H



### Overshooting

Condition: sufficiently small learning rate  $\eta$ 



 $\eta$  is too large  $\rightarrow$  may over-step the minimum in the error surface



### Overshooting...



Solution: gradually reduce  $\boldsymbol{\eta}$  as the number of gradient descent steps grows



COMP4211

Adaline

#### Some Practical Tricks

#### Setting $\eta$ using the training set

- perform experiments using a small subset of the training set
- when the algorithm performs well on this small subset, keep the same  $\eta$ , and let it run on the full training set

#### Some Practical Tricks...

#### Check the gradients using finite difference

- pick an example  $(x_d, t_d)$
- compute the objective  $E(\vec{w}; (x_d, t_d))$  for the current w
- ullet compute the gradient  $g=rac{\partial E(ec{w};(x_d,t_d))}{\partial w_i}$
- apply a slight perturbation to  $w_i$ :  $\vec{w}' = \vec{w} + [0, \dots, 0, \delta, 0, \dots, 0]$
- compute the new objective  $E(\vec{w}'; (x_d, t_d))$  and verify that  $E(\vec{w}'; (x_d, t_d)) \simeq E(\vec{w}; (x_d, t_d)) + \delta g$
- repeat the procedure for many examples  $(x_d, t_d)$ , many perturbations  $\delta$  and many initial weights  $\vec{w}$

