Esercizio 1. Prove that the equivalence relation $a \stackrel{\mathbb{L}}{=}_A b$ is the transitive closure of the relation: there is a sequence $\langle c_i : i < \omega \rangle$ indiscernible over A such that $c_0 = a$ and $c_1 = b$.

Si ragioni come nella proposizione 16.19 e nel teorema 16.8.

Esercizio 2. (*T* stable) Prove that the following are equivalent for every $p(x) \in S(\mathcal{U})$

- 1. p(x) is finitely satisfiable in M;
- 2. p(x) is invariant over M.

Esercizio 3. (*T* stable) Prove that $a \downarrow_M b$ if and only if $b \downarrow_M a$.

Esercizio 4. Let $\varphi(x,y) \in L$, where |x| = |y| = 1. Suppose there is an infinite set $A \subseteq \mathcal{U}$ such that $\varphi(a,b) \leftrightarrow \varphi(b,a)$ for every two distinct $a,b \in A$. Prove that $\varphi(x;y)$ is unstable.

Esercizio 5. Prove that the following are equivalent

- 1. *T* is stable;
- 2. for every $\varphi(x;z) \in L$, every model M and every $a \in \mathcal{U}^{|x|}$ there is a formula $\psi(z) \in L(M)$ such that $\varphi(a;\mathcal{U}) =_M \psi(\mathcal{U})$.

Esercizio 6. Prove that if every formula $\varphi(x;z) \in L$ with |x| = 1 is stable then T is stable.

Si dimostri che tutte le formule con parametri sono stabili, poi si usino gli indiscernibili (ma altre vie sono possibili).