Волынцев Дмитрий 676 гр.

20 февраля 2017

Задача 1

1) A и B перечислимы, значит можно построить алгоритмы, которые выводили бы все слова из этих множеств. Если $A \cup B$, то построим алгоритм, объединяющий в себе действия первого и второго Таким образом будут выведены все слова обоих множеств, а значит $A \cup B$ перечислимо.

В случае разрешимости существуют алгоритмы, определяющие по входному слову его принадлежность или непринадлежность данным множествам. Для множества $A \cup B$ построим алгоритм, проверяющий принадлежность элемента множествам A и B, и если в каком то из этих случаев получается 1, то это элемент множества $A \cup B$, которое является разрешимым.

2) В случае $A \cap B$ построим алгоритм, сравнивающий каждый из элементов A с каждым из элементов множества B, и если они оказываются равны, то печатаем его. Таким образом этот алгоритм печатает все слова множества $A \cap B$, которое является перечислимым.

Для множества $A \cap B$ построим алгоритм, проверяющий принадлежность элемента множествам A и B, и если в обоих из этих случаев получается 1 (в каком-то из случаев 0), то это элемент (не элемент) множества $A \cap B$, которое является разрешимым.

3) В случае $A \setminus B$ построим алгоритм, печатающий каждый элемент множества A и сравнивающий его с каждым из элементов множества B. Если они оказываются равны, то стираем элемент. Таким образом этот алгоритм печатает все слова множества $A \setminus B$, которое является перечислимым.

Для множества $A \setminus B$ построим алгоритм, проверяющий принадлежность элемента множествам A и B. Если в случае A получается 1, то проверяем его на принадлежность B. Если получается 0, то он принадлежит (во всех остальных случаях нет) множеству $A \setminus B$, которое является разрешимым.

Задача 2

Так как X и Y пересекаются, то существует множество $X \cap Y$, принадлежащее (включающееся) как X, так и Y. Примем за X' само множество X, а за Y' множество $Y \setminus (X \cap Y)$, то есть Y без своего пересечения с X. Тогда X' и Y' не пересекаются и перечислимы (по первой задаче), а их объединение

совпадает с объединением множеств X и Y.

Задача 3

Выпишем один из элементов исходного множества, причем элементов, меньших выбранного, будет конечное число. Теперь будем выписывать все последующие элементы, большие выбранного, причем каждый раз при нахождении большего делаем его элементом, с которым надо сравнивать последующие элементы. Таким образом получим строго возрастающее бесконечное множество натуральных чисел. Оно будет разрешимым, так как точно известно, что все выписанные элементы принадлежат множеству, а невыписанные нет.

Задача 5

1) Язык L_1 перечислимый. Если МТ останавливаются на каком-то входе, тогда выпишем ее описание. Если же ни одна МТ на данном входе не останавливается, то пропусакем. С другой стороны язык L_1 не разрешимый, так как МТ должны останавливаться на каждом входе и выдавать Accept, если слово принадлежит языку, и Reject, если не принадлежит, но этого не может быть.