Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 9 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i)

```
\begin{split} \varphi_1 &:= \neg (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \rightarrow \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z \neg (\neg E(x,z) \lor f(x,y) = z))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z (E(x,z) \land \neg (f(x,y) = z)))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x_1 \exists y_2 E(x_1,y_2) \land \forall x_2 \exists y_2 \forall z_1 (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor \exists x_3 E(x_3,f(y,x_3)) \\ &\equiv \exists x_1 \exists y_2 \forall x_2 \exists y_2 \forall z_1 \exists x_3 ((E(x_1,y_2) \land (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor E(x_3,f(y,x_3))) \end{split}
```

(ii)

$$\varphi_{2} := \exists y \forall z (E(x,z) \land (E(y,z) \rightarrow \forall x (E(f(x,y),z) \land \neg \forall y R(x,y))))
\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \neg \forall y R(x,y))))
\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \exists y \neg R(x,y))))
\equiv \exists y_{1} \forall z_{1} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor \forall x_{2} (E(f(x_{2},y_{1}),z_{1}) \land \exists y_{1} \neg R(x_{2},y_{1})))
\equiv \exists y_{1} \forall z_{1} \forall x_{2} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor (E(f(x_{2},y_{1}),z_{1}) \land \neg R(x_{2},y_{1}))))$$

Aufgabe 2

$$\phi_{1}(\mathcal{N}) := \exists x (y = x + x)$$

$$\phi_{1}(x) := \forall y (y \cdot x = y)$$

$$\phi_{2}(x) := \exists y (x = y + y \land \phi_{1}(y))$$

$$\phi_{2}(\mathcal{N}) := \forall b \forall c \exists d (b \cdot c = a \rightarrow (c = d \land \phi_{2}(d) \lor b = d \land \phi_{2}(d)))$$

$$\phi_{3}(\mathcal{R}) := x = y \cdot y$$

$$\phi_{4}(\mathcal{R}) := \exists m \forall n (m \cdot n = m \land m = x + y)$$

$$\phi_{5}(\mathcal{R}) := \exists m \exists n (n \cdot n = m \land y = x + m)$$

$$\phi_{6}(\mathcal{R}) := (u'' = u \cdot u' - v \cdot v') \land (v'' = u' \cdot v + u \cdot v')$$

Aufgabe 3

(i)
$$\overline{x} := (x_1, x_2, ..., x_k)$$

 $\varphi(\mathcal{B}) = \pi(\varphi(\mathcal{A})) \Leftrightarrow \forall \overline{x} \ (\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \overline{x} \in \pi(\varphi(\mathcal{A}))$

Da π ein Isomorphismus von A nach B ist, gilt für alle Relationen R aus σ:

$$(*) \overline{a} \in R^{\mathcal{A}} \Leftrightarrow \pi(\overline{a}) \in R^{\mathcal{B}}$$

$$\begin{split} \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \varphi(\overline{x}) = 1 \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \stackrel{(*)}{\Leftrightarrow} \varphi(\pi^{-1}(x_1), ..., \pi^{-1}(x_k)) = 1 \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow (\pi^{-1}(x_1), ..., \pi^{-1}(x_k)) \in \varphi(\mathcal{A}) \right) \right) \\ & \Leftrightarrow \left(\forall \overline{x} \; \left(\overline{x} \in \varphi(\mathcal{B}) \Leftrightarrow \overline{x} \in \pi(\varphi(\mathcal{A})) \right) \right) \\ & \Leftrightarrow \varphi(\mathcal{B}) = \pi(\varphi(\mathcal{A})) \end{split}$$

(ii) Die gegebene Struktur enthält nur die Relation < aber keine Funktionssymbole. < ist über $\mathbb Z$ eine Relation ohne Maximum oder Minimum.

Damit es ein φ gibt sodass $\varphi(\mathcal{Z}) = \{0\}$, muss es möglich sein, die 0 von allen anderen Zahlen zu unterscheiden. Durch die Unendlichkeit von \mathbb{Z} ist es nicht möglich durch Quantifikation bestimmte Zahlen zu erkennen:

- $\exists x \exists y (x < y)$
- $\exists y (x < y)$
- $\exists x (x < y)$
- $\forall x \forall y (x < y)$
- $\forall y (x < y)$
- $\forall x (x < y)$
- x < y
- $\exists x \forall y (x < y)$
- $\forall x \exists y (x < y)$

In jedem der Fälle gibt es unendlich viele Variablen, die die Gleichung erfüllen. Die mehrfache Verwendung von < hilft nicht weiter, da die Menge an erfüllenden Werten immer unendlich groß bleibt. Durch die Abwesenheit von Funktionssymbolen ist es somit nicht möglich, eine Formel φ aufzustellen, die die gegebenen Vorraussetzungen erfüllt.

Aufgabe 4

Es gibt folgende Fälle:

1. q = 0

Dann gilt die Aussage schon nach dem Hinweis des Aufgabenblattes.

2. $q \le 1$

Sei φ die Formel ohne freie Variablen mit maximal q Quantoren. Dann gibt es eine zu φ nach Theorem 4.34 der Folien eine äquivalente Formel φ' in Pränexnormalform. Also gilt $\varphi \equiv \varphi'$. Es reicht also zu zeigen, dass es nur endlich viele Formeln in Pränexnormalform gibt.

Diese Formel φ' hat dann die Form $Q_1x_1...Q_px_p$ ψ , mit $1 \le p \le q$ wobei ψ eine Formel der Aussagenlogik ist, in der keine freien Variablen vorhanden sind.

Somit kann nach der Annahme des Aufgabenblattes ψ nur eine von endlich vielen Formeln sein. Die Reihenfolge der Quantoren $Q_1x_1...Q_px_p$ ψ spielt für den Wahrheitswert von φ keine Rolle.

Somit gibt es bis auf logische Äquivalenz nur endlich viele Formeln mit weniger als q Quantoren.