

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

ICML 2022

Noam Razin Asaf Maman Nadav Cohen

Tel Aviv University

I) Implicit Regularization in Deep Learning

Neural networks (NNs) generalize well despite being overparameterized

Conventional Wisdom

Gradient descent (GD) induces an implicit regularization towards "simplicity"

Common testbeds for formalizing this intuition: matrix and tensor factorizations

II) Background: Matrix Factorization (MF)

Consider minimizing loss \mathcal{L} over matrices (e.g. matrix completion loss)

MF: parameterize solution as product of matrices and minimize loss with GD

$$\min_{\{W_l\}_l} \mathcal{L}(W_L \cdots W_1)$$

Past Work: Dynamical Characterization (Arora et al. 2019)

$$\sigma_{\mathsf{M}}^{(r)}$$
 — r'th singular value of $W_{L:1} := W_L \cdots W_1$

Theorem: GD (w/ small step size) over MF leads to $\frac{d}{dt}\sigma_M^{(r)}(t)\propto\sigma_M^{(r)}(t)^{2-2/L}$

Implications:

- Singular values move slower when small & faster when large!
- ► Small init ⇒ incremental learning of singular values

Experiment: completion of low rank matrix via MF

Incremental learning of singular values leads to low matrix rank

Limitation of MF as theoretical model for NNs: lacks non-linearity

III) Background: Tensor Factorization (TF)

Consider minimizing loss \mathcal{L} over tensors (e.g. tensor completion loss)

TF: parameterize solution as sum of outer products and minimize loss with GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \mathcal{L}(\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N)$$

Tensor rank: min # of components required to express a tensor

Past Work: Dynamical Characterization (Razin et al. 2021)

$$\sigma_{\mathsf{T}}^{(r)} := \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n} \|$$
 — norm of r 'th component

Theorem: GD (w/ small step size) over TF leads to $\frac{d}{dt}\sigma_T^{(r)}(t) \propto \sigma_T^{(r)}(t)^{2-2/N}$

- Dynamics structurally identical to that in MF
- Component norms move slower when small & faster when large!

Experiment: completion of low tensor rank tensor via TF

Incremental learning of components leads to low tensor rank

Limitation of TF as theoretical model for NNs: lacks depth

IV) Hierarchical Tensor Factorization (HTF)

Accounts for both non-linearity and depth

Equivalence studied extensively (e.g. Cohen et al. 2016, Levine et al. 2018)

Representation w/ few local components \implies low hierarchical tensor (HT) rank

V) Analysis: Implicit Regularization to Low HT Rank

Our Work: Dynamical Characterization

 $\sigma_{\rm H}^{(r)}$ — norm of r'th local component at a location, K — # axes of local component

Theorem: GD (w/ small step size) over HTF leads to $\frac{d}{dt}\sigma_H^{(r)}(t) \propto \sigma_H^{(r)}(t)^{2-2/K}$

- Dynamics structurally identical to those in MF & TF
- ► Local component norms move slower when small & faster when large!

Experiment: completion of low hierarchical tensor rank tensor via HTF

Incremental learning of local components leads to low hierarchical tensor rank!

VI) Application: Countering Locality of CNNs via Regularization

Fact (Cohen & Shashua 2017, Levine et al. 2018)

Hierarchical tensor rank measures long-range dependencies

Implicit lowering of hierarchical tensor rank in HTF

Implicit lowering of long-range dependencies in CNNs!

Can explicit regularization improve CNNs on long-range tasks?

Experiment: regularization promoting high hierarchical tensor rank

Locality of CNNs can be countered via explicit regularization!

VII) Takeaways

- ► Implicit reg in HTF lowers HT rank (just as in MF & TF it lowers notions of rank)
- ► This implies implicit reg towards locality in CNNs
- Specialized explicit reg improves performance of CNNs on long-range tasks!