北京理工大学 2009-20120 学年第二学期高等数学期中试题解答及评分标准(A 卷)

一、填空题(每小题 4 分,共 28 分)

	解得驻点: $(\pi,-2)$, $(2\pi,0)$				
$\frac{\partial^2 f}{\partial x^2}$	$\frac{\partial^2 f}{\partial x \partial y} = -e^y \sin x, \frac{\partial^2 f}{\partial y^2} = (\cos x - 2 - y)e^y65$	分			
	在点(π,-2)				
	$A = 1 + e^{-2}$, $B = 0$, $C = -e^{-2}$, $\Delta = B^2 - AC = e^{-2}(1 + e^{-2}) > 0$,				
	所以点 (π,-2) 不是极值点; 8 分				
	在点(2π,0)				
	$A = -2 < 0$, $B = 0$, $C = -1$, $\Delta = B^2 - AC = -2 < 0$,				
	所以点 $(2\pi,0)$ 是极大值点,且极大值为 $f(2\pi,0)=3$ 10分				
五、	$I = \iiint\limits_V (x+y+z) dx dy dz$				
	$= \iiint\limits_{V} x dx dy dz + \iiint\limits_{V} y dx dy dz + \iiint\limits_{V} z dx dy dz \qquad 2 37$				
	= $0 + 0 + \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \rho d\rho \int_{\frac{\rho^2}{2}}^1 z dz$,			
	$=\frac{2\pi}{3}.$ 10 分				
六、	设直线 L 的方向向量为 $\vec{s} = \{m, n, p\}$,				
	平面 π 的法向量为: $\vec{n} = \{2,-3,1\}$				
	由题意, $L//\pi$,所以有 $2m-3n+p=0$ 4分				
	又已知直线的方向向量为 $\vec{s}_1 = \{2,-1,-1\}$, $M(1,-1,2),N(1,0,2)$				
	$\overrightarrow{MN} = \{0,1,0\}$,由题意有: \vec{s} , \overrightarrow{MN} , \vec{s}_1 共 $\overline{\mathbb{m}}$,有				
	$\begin{vmatrix} m & n & p \\ 2 & -1 & -1 \\ 0 & 1 & 0 \end{vmatrix} = m + 2p = 0$				

	有 $m=-2p, n=-p$	10 分
	所以 $L: \frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z-2}{1}$	12 分
七、	$Ω$ 在 xoy 面上的投影区域为 $D: x^2 + y^2$	² ≤1, 1分
	$I = \iiint_{\Omega} (x^2 + y^2) dv = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} d\phi \int_{0}^{2c} d\theta$	$r^4 \sin^3 \varphi dr$ 5 分
	$=\frac{64\pi}{5}\int_0^{\frac{\pi}{4}}\sin^3\varphi\cos^5\varphi d\varphi$	8 分
	$=\frac{11}{30}\pi.$	10 分
八、	目标函数为: $V = x_0 y_0 z_0$	2 分
	约束条件为: $\frac{x_0}{2} + \frac{y_0}{3} + \frac{z_0}{4} = 1$	4 分
	构造拉氏函数: $F(x_0, y_0, z_0) = x_0 y_0 z_0$ +	$-\lambda(\frac{x_0}{2} + \frac{y_0}{3} + \frac{z_0}{4} - 1)$
	$\begin{cases} F'_{x_0} = y_0 z_0 + \frac{\lambda}{2} = 0 \\ F'_{y_0} = x_0 z_0 + \frac{\lambda}{3} = 0 \\ F'_{z_0} = x_0 y_0 + \frac{\lambda}{4} = 0 \\ \frac{x_0}{2} + \frac{y_0}{2} + \frac{z_0}{2} - 1 \end{cases}$ 解得唯一驻点为	$ \mathbf{S} : \begin{cases} x_0 = \frac{2}{3} \\ y_0 = 1 \\ z_0 = \frac{4}{3} \end{cases} \dots 8 3 $

自问题的实际意义知,当
$$\begin{cases} x_0 + \frac{y_0}{3} + \frac{z_0}{4} = 1 \\ x_0 = \frac{2}{3} \\ y_0 = 1 \text{ 时,此长方体的体积最大,} \\ z_0 = \frac{4}{3} \end{cases}$$

$$V_{\mathrm{最大}}=rac{8}{9}.$$
 10 分