II.7 - SPAZI L^P

Sia $A \subseteq \mathbb{R}^N$ un aperto misurabile e si consideri lo spazio vettoriale V delle funzioni $f: A \to \mathbb{R}$ misurabili ed integrabili. Si prenda ora la seguente definizione:

$$||f|| \coloneqq \int_{A} |f|$$

Essa non è ancora una norma su V, poiché non rispetta la prima proprietà della norma:

 $\int_A |f| = 0 \implies |f| = 0$ q.o. su A, e non $|f| = 0 \ \forall x \in A$, come richiesto dalla definizione.

È quindi necessario modificare lo spazio V in modo che tale definizione porti effettivamente ad una norma. Si introduce quindi il concetto di equivalenza tra due funzioni: si dice che due funzioni di V sono **equivalenti** se sono uguali q.o. su A:

$$f \sim g \iff f(x) = g(x) \ q.o. \ x \in A$$

Si introduce quindi $L^1(A)$ come lo spazio delle classi di equivalenza delle funzioni $f: A \to \mathbb{R}$ integrabili secondo Lebesgue e si può dimostrare che tale spazio è completo con la norma (adesso ben definita) considerata precedentemente.

Si noti che in questo nuovo spazio non è più rigorosamente definito il valore di una funzione in un punto, essendo questo un insieme di misura nulla.

Data una funzione $f \in L^1(A)$, si dice che essa è **continua** su A se nella classe di equivalenza di f esiste una funzione continua (nell'accezione usuale del termine):

$$f \in L^1(A)$$
 continua $\Leftrightarrow \exists g \in C^0(A) \colon f \sim g$

e tale funzione viene chiamata <u>rappresentante continuo</u> di f, che, se esiste, è unico.

Dimostrazione:

 g_1, g_2 rappresentanti continui, $g_1(x_0) > g_2(x_0)$. Per il teorema di permanenza del segno:

 $(g_1 - g_2)(x) > 0 \quad \forall x \in \mathcal{U}(x_0)$ e quindi g_1 e g_2 non sono nella stessa classe di equivalenza.

Esempi:

- La funzione di Dirichlet $f(x) = \chi_{\mathbb{Q}} = \begin{cases} 1 & se \ x \in \mathbb{Q} \\ 0 & se \ x \notin \mathbb{Q} \end{cases}$, con $A = \mathbb{R}$, ha come rappresentante continuo la funzione identicamente nulla $g(x) \equiv 0$.
- La funzione $f(x) = \frac{\sin x}{x}$, con A = (-1,1), ha come rappresentante continuo la funzione definita nel modo seguente: $g(x) = \begin{cases} f(x) & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$

In generale si definisce lo spazio $L^p(A)$ come lo spazio delle classi di equivalenza delle funzioni $f: A \to \mathbb{R}$ tali che $|f|^p$ è integrabile secondo Lebesgue, con la norma:

$$||f||_p \coloneqq \left\{ \int_A |f|^p \right\}^{\frac{1}{p}}$$

che è ben definita per ogni $p \ge 1$.

Teorema: gli spazi $L^p(A)$ sono di Banach per ogni $p \ge 1$ con le norme integrali p.

Sia ora $f: A \to \mathbb{R}$ misurabile, con $f \in L^p(A)$ definitivamente. Allora si definiscono:

$$\|f\|_{\infty} \coloneqq \lim_{p \to +\infty} \|f\|_{p}, \quad L^{\infty} \coloneqq \{f : A \to \mathbb{R} : \|f\|_{\infty} < +\infty\}$$

e si può dimostrare che $L^{\infty}(A)$ è lo spazio delle funzioni **essenzialmente limitate** in A, ovvero che sono limitate a meno di un insieme di misura nulla, e la norma $||f||_{\infty}$ coincide con l'estremo superiore essenziale della funzione:

$$||f||_{\infty} = \operatorname{ess\,sup} |f(x)| = \inf \{M : |f(x)| \le M \ q.o. \ x \in A\}$$

 $\underbrace{Fsempio:}_{f(x) = \begin{cases} n & se \ x = n \in \mathbb{N} \\ 0 & x \notin \mathbb{N} \end{cases}}_{\text{è essenzialmente limitata e } \|f\|_{\infty} = 0$

II.8 - RISULTATI DI CONFRONTO

Si considerino gli spazi $L^p(A)$ al variare di p. Senza alcuna ipotesi sull'insieme A non ci sono in generale relazioni di inclusione per tali spazi.

Esempio:

Le seguenti funzioni appartengono rispettivamente agli spazi $L^1(A)$, $L^2(A)$ e $L^{\infty}(A)$, ma non agli altri due, con $A = (0, +\infty)$:

$$f(x) = \begin{cases} x^{-1/2} & \text{se } x < 1 \\ 0 & \text{se } x \ge 1 \end{cases} \in L^{1}(A) \qquad g(x) = \begin{cases} x^{-1/4} & \text{se } x < 1 \\ x^{-1} & \text{se } x \ge 1 \end{cases} \in L^{2}(A) \qquad h(x) = 1 \in L^{\infty}(A)$$

Disuguaglianza di Hölder: sia A un insieme misurabile di \mathbb{R}^N . Date due funzioni $f \in L^p(A)$ e $g \in L^{p'}(A)$, allora il prodotto $f \cdot g \in L^1(A)$ e vale la seguente disuguaglianza:

$$||f \cdot g||_1 \le ||f||_p ||g||_{p}$$

dove p' è l'<u>esponente coniugato</u> di p (con $p \ge 1$), definito come $p' := \frac{p}{p-1}$ oppure $\frac{1}{p} + \frac{1}{p'} = 1$. In particolare: (2)' = 2, $p \ge 2 \Leftrightarrow p' \le 2$, $(1)' = +\infty$, $(+\infty)' = 1$.

Proprietà di immersione: sia A un insieme di misura finita. Se $q \ge s$, allora $L^q(A) \subseteq L^s(A)$.

Dimostrazione:

Sia u una funzione in $L^q(A)$. Se si considerano ora:

- $f = |u|^s$: essa appartiene a $L^{q/s}(A)$, infatti $\int |f|^{\frac{q}{s}} = \int (|u|^s)^{\frac{q}{s}} = \int |u|^q$
- $g = \chi_A$: essa appartiene a $L^{(q/s)'}(A)$ poiché A ha misura finita

per la disuguaglianza di Hölder si ha: $\int_{A} |u|^{s} = \int_{A} \chi_{A} |u|^{s} \leq \left(\int_{A} |u|^{s\frac{q}{s}} \right)^{\frac{s}{q}} \left(\int_{A} \chi_{A} \right)^{\frac{1}{(q/s)'}} = \left(\|u\|_{q} \right)^{s} |A|^{\frac{q-s}{s}}$

Elevando tutto alla (1/s) si ha infine che $||u||_s \le |A|^{\frac{q-s}{sq}} ||u||_q$, e quindi che $u \in L^s(A)$.

In particolare si può vedere che $L^q(A)$ si immerge in $L^s(A)$ con "immersione continua", ovvero si può dimostrare che l'operatore identità $i:L^q(A)\to L^s(A)$, $i:f\mapsto f$ è lineare e quindi continuo.

Un caso particolare della precedente proprietà è quando $q = +\infty$. Se A è misurabile con misura finita, allora $L^{\infty}(A) \subseteq L^{p}(A)$, per ogni $p \ge 1$. Si dimostra infatti che:

$$\left\| f \right\|_{p} \le \left| A \right|^{\frac{1}{p}} \left\| f \right\|_{\infty}$$

Proprietà di interpolazione: sia $f \in L^q(A) \cap L^p(A)$, allora $f \in L^r(A)$ per ogni $r \in [p,q]$, ed in particolare si dimostra con la disuguaglianza di Hölder che:

$$||f||_r \le ||f||_p^\alpha ||f||_q^{1-\alpha}, \quad \alpha \in (0,1): \frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$$

II.9 - RISULTATI DI CONVERGENZA

Si dice che una successione di funzioni $\{f_n\}$, definite su un dominio comune A, tende ad una funzione limite f in $L^p(A)$ se:

$$f_n \xrightarrow{L^p(A)} f \Leftrightarrow \lim_{n \to +\infty} \left\| f_n - f \right\|_p = 0 \Leftrightarrow \lim_{n \to +\infty} \left(\int_A \left| f_n - f \right|^p \right) = 0$$

Si consideri prima di tutto il caso $p \in [1, +\infty)$. Senza ipotesi aggiuntive, in generale non ci sono relazioni tra convergenza q.o. su A e convergenza in $L^p(A)$.

Esempi:

•
$$A = \mathbb{R}$$
, $f_n = \chi_{(n,n+1)} : \begin{cases} f_n \to 0 & \forall x \in \mathbb{R} \\ f_n \not \to 0 & \text{in } L^p(\mathbb{R}) : \int_{\mathbb{R}} |f_n|^p = \int_n^{n+1} 1^p = 1 \not \to 0 \end{cases}$

• Si consideri la successione delle funzioni caratteristiche degli intervalli rispettivamente:

$$\left[0,\frac{1}{2}\right], \left[\frac{1}{2},1\right], \left[0,\frac{1}{4}\right], \left[\frac{1}{4},\frac{1}{2}\right], \left[\frac{1}{2},\frac{3}{4}\right], \left[\frac{3}{4},1\right], \left[0,\frac{1}{8}\right]...$$
 e così via.

SI ha che:

$$- \int_0^1 |f_n| \to 0 \quad per \quad n \to +\infty$$

- $f_n \not\to 0$ q.o. in [0,1]: si possono trovare infatti sottosuccessioni che in ogni punto convergono ad 1.

Valgono invece i seguenti risultati:

- La convergenza q.o. in A implica la convergenza in $L^p(A)$ se esiste una funzione $\varphi \in L^p(A)$ tale che $|f_n| \le \varphi$ q.o. in A.
- Se una successione $\{f_n\}$ tende ad una funzione f in $L^p(A)$, allora esiste una sua sottosuccessione che tende ad f q.o. in A.

Conseguenze:

- Se $f_n \to f$ in $L^p(A)$ e $f_n \to g$ q.o. in A, allora f = g q.o. in A.
- Se $f_n \to f$ in $L^p(A)$ e $f_n \to g$ in $L^q(A)$, allora f = g q.o. in A.

Il caso $p=+\infty$ è invece strettamente legato con la convergenza uniforme. Infatti, se una successione di funzioni $\{f_n\}$ tende ad una funzione f in $L^\infty(A)$, allora esiste un insieme $E\subseteq A$ di misura nulla tale per cui $f_n\to f$ uniformemente in $A\setminus E$. Infatti:

$$\lim_{n \to +\infty} \|f_n - f\|_{\infty} \iff \lim_{n \to +\infty} \operatorname{ess\,sup} |f_n(x) - f(x)| \iff \lim_{n \to +\infty} \sup_{x \in A \setminus E} |f_n(x) - f(x)|, \ con \ |E| = 0$$

II.9 - APPROSSIMAZIONE CON FUNZIONI REGOLARI

Teorema: per ogni $p \in [1, +\infty)$, $C_0^{\infty}(A)$ è denso in $L^p(A)$, ovvero:

$$\forall f \in L^p(A) \ \forall \varepsilon > 0 \ \exists \varphi \in C_0^\infty(A) : \ \|f - \varphi\|_p < \varepsilon$$

$$\forall f \in L^p(A) \ \exists \{f_n\} \subseteq C_0^{\infty} : \ f_n \xrightarrow{L^p(A)} f$$

dove $C_0^{\infty}(A)$ è lo spazio delle funzioni di classe $C^{\infty}(A)$ a supporto compatto, cioè:

$$C_0^{\infty}(A) := \{ f \in C^{\infty}(A) : f = 0 \text{ su } A \setminus K, \text{ con } K \text{ compatto} \subseteq A \}$$

Osservazioni:

- Il teorema precedente afferma in pratica che è possibile approssimare le funzioni $L^p(A)$ con successioni di funzioni regolari.
- In realtà sono dense in $L^p(A)$ anche classi di funzioni "più semplici" (come polinomi, funzioni a scalino, ...).
- Tale teorema risulta invece falso nel caso $p = +\infty$.