## FOSA CFD - Leo Rauschenberger

- 1:30h; 3 Exercises -> 30min per Exercise!
- No calculator!

#### **Basics:**

$$\begin{aligned}
\mathbf{v} &= \frac{\eta}{\rho} \\
\nabla &= \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} \to \nabla^2 = \nabla \cdot \nabla = \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} \\
\vec{v} &= \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix}
\end{aligned}$$

Substantial derivative (non-conservative):

$$\begin{split} & \frac{\overrightarrow{D\phi}}{Dt} = \frac{\partial \overrightarrow{\phi}}{\partial t} + (\overrightarrow{v} \cdot \nabla) \overrightarrow{\phi} \\ & \text{for } \phi = v \colon = \begin{bmatrix} u_t + uu_x + vu_y \\ u_t + uv_x + vv_y \end{bmatrix} \end{split}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$2\cos\theta = e^{I\theta} + e^{-I\theta}$$

$$2\sin\theta = e^{I\theta} - e^{-I\theta}$$

$$e^{I\theta_x} = \cos\theta_x + I\sin\theta_y$$

$$e^{-I\theta_x} = \cos\theta_x - I\sin\theta_y$$

$$\cos^2\theta_x + \sin^2\theta_y = 1$$

Scalar product:

$$\nabla \vec{v} = \begin{cases} u_x \\ v_y \end{cases} \text{ VS. } \vec{v} \cdot \nabla = \begin{pmatrix} u \\ v \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}$$

Foudre: 
$$Fr = \frac{\sqrt{u^2 + v^2}}{\sqrt{gh}}$$

$$\rho = \frac{p}{RT}$$

$$\bar{\bar{\sigma}} = pI + \sigma$$

$$\vec{q} = \begin{pmatrix} q_x \\ q_y \end{pmatrix} = -\lambda \begin{pmatrix} T_x \\ T_y \end{pmatrix}$$

## **General conservation equations:**

Integral form:

$$\int_{\tau} \frac{\partial \vec{U}}{\partial t} d\tau + \oint_{A} \vec{H} \cdot \vec{n} dA = \int_{\tau} \vec{F} d\tau$$

Temporal change of the **conservation quantities**  $\overrightarrow{U}$  in the **volume** au

+ generalized flux  $\overrightarrow{H}$  normal to the surface A

= Effect of the volume forces  $\vec{F}$ 

Divergence form:

$$\frac{\partial \overrightarrow{U}}{\partial t} + \nabla \cdot \overrightarrow{H} = \overrightarrow{F}$$

|          | integral                                                                                                                                                                          | differential conservative                                                                                                           | diff. non-conservative                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Mass     | $\int_{\tau} \frac{\partial \rho}{\partial t} d\tau + \oint_{A} \rho \vec{v} \cdot \vec{n} dA = 0$                                                                                | $\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$                                                                  | $\frac{D\rho}{Dt} + \rho \nabla \cdot \vec{v} = 0$                                                                                          |
| Momentum |                                                                                                                                                                                   | $\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v} + \bar{\sigma}) = \vec{f}_{vol}$                     | $\frac{D\vec{v}}{Dt} + \frac{1}{\rho}\nabla \cdot \bar{\bar{\sigma}} = \frac{1}{\rho}\vec{f}_{vol}$                                         |
| Energy   | $\int_{\tau} \frac{\partial \rho E}{\partial t} d\tau + \oint_{A} (\rho E \vec{v} + \bar{\sigma} \vec{v} + \vec{q}) \cdot \vec{n} dA =$ $\int_{\tau} \vec{f}_{vol} \vec{v} d\tau$ | $\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E \vec{v} + \bar{\sigma} \vec{v} + \vec{q}) = \vec{f}_{vol} \cdot \vec{v}$ | $\frac{DE}{Dt} + \frac{1}{\rho} \nabla \cdot (\overline{\overline{\sigma}} \vec{v} + \vec{q}) = \frac{1}{\rho} \vec{f}_{vol} \cdot \vec{v}$ |

- The non-conservative form is basically the form that is already broken up into its components
- Oftentimes, several different forms of the non-conservative form are possible!

Flow field of gas:



# **Equations:**

## Nav.-Stokes

- heat conduction
- continuum flow
- unsteady
- viscous!

### Incompressible

The incompressible forms are always non-conservative

|                   | pressible forms are always non conservative                                                                                                                                                         |                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\vec{v}$ , $(p)$ | $u_x + v_y = 0$                                                                                                                                                                                     | $\nabla \cdot \vec{v} = 0$                                                            |
|                   | $\begin{array}{c} u_t+uu_x+vu_y+\frac{1}{\rho}p_x=\nu\big(u_{xx}+u_{yy}\big) & \text{(x-momentum)} \\ v_t+uv_x+vv_y+\frac{1}{\rho}p_y=\nu\big(v_{xx}+v_{yy}\big) & \text{(x-momentum)} \end{array}$ | $\frac{\mathbf{D}\vec{v}}{Dt} + \frac{1}{\rho}\nabla \mathbf{p} = \nu\nabla^2\vec{v}$ |
|                   | $v_t + uv_x + vv_y + \frac{1}{\rho}p_y = v(v_{xx} + v_{yy})$ (x-momentum)                                                                                                                           |                                                                                       |
| $\psi, \omega$    | $\psi_{xx} + \psi_{yy} = -\omega$ poisson eq. of streamline ft.                                                                                                                                     | $\nabla^2 \psi = -\omega$                                                             |
|                   | $\omega_t + u\omega_x + v\omega_y = v(\omega_{xx} + \omega_{yy})$ vorticity transport equation                                                                                                      | $\frac{\partial \omega}{\partial t} = \nu \nabla^2 \omega$                            |
|                   | Vorticity transp. Eq. from curl of momentum equations $\nabla \times \binom{x \ momentum \ eq.}{y \ momentum \ eq.}$                                                                                |                                                                                       |
|                   | Subtract and use: $\omega = v_x - u_y \& u_x + v_y = 0$                                                                                                                                             |                                                                                       |
|                   | Introduction of stream function $\psi$ eliminates conti., because stream-                                                                                                                           |                                                                                       |
|                   | function satisfies contieq.                                                                                                                                                                         |                                                                                       |
| $p,(\vec{v})$     | $ abla^2 p = - ho[u_x^2 + v_y^2 + 2v_x u_y]$ poisson eq. for pressure                                                                                                                               |                                                                                       |
|                   | Divergence of momentum eq. with $u_x + v_y = 0$                                                                                                                                                     |                                                                                       |
|                   | $\nabla \cdot \begin{pmatrix} x & momentum & eq. \\ y & momentum & eq. \end{pmatrix}$                                                                                                               |                                                                                       |

Compressible

| Compressible |                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| int.         | $\int_{\tau} \frac{\partial \vec{v}}{\partial t} d\tau + \oint_{A} (E_{inv} + E_{vis}) dy = \oint_{A} (F_{inv} + F_{vis}) dx$                                                        |
| diff cons.   | $\rho_t + (\rho u)_x + (\rho v)_y = 0$                                                                                                                                               |
|              | $(\rho u)_t + (\rho u^2 + p + \sigma_{xx})_x + (\rho uv + \sigma_{xy})_v = 0  \text{(x-momentum)}$                                                                                   |
|              | $(\rho u)_t + (\rho uv + \sigma_{yx})_x + (\rho v^2 + p + \sigma_{yy})_y = 0$ (y-momentum)                                                                                           |
|              | $(\rho E)_t + (\rho u E - u p + u \sigma_{xx} + v \sigma_{xy} + q_x)_x + (\rho v E + v p + v \sigma_{yy} + u \sigma_{xy} + q_y)_y = 0$                                               |
|              | Or deduced from the incompressible form:                                                                                                                                             |
|              | $\rho_t + (\rho u)_x + (\rho v)_y = 0$                                                                                                                                               |
|              | $(\rho u)_t + (\rho u^2)_x + (\rho uv)_y + p_x = (vu_{xx} + vu_{yy})$                                                                                                                |
| non-cons.    | $\frac{D\rho}{Dt} + \rho u_x + \rho v_x = 0$                                                                                                                                         |
|              | $\frac{\partial u}{\partial t} + \frac{1}{\rho} (p + \sigma_{xx})_x + \frac{1}{\rho} \sigma_{xyy} = 0$                                                                               |
|              | $\frac{\partial v}{\partial t} + \frac{1}{\rho}\sigma_{xxy} + \frac{1}{\rho}(p + \sigma_{yy}) = 0$                                                                                   |
|              | $\left  \frac{DE}{Dt} + \frac{1}{\rho} \left( up + u\sigma_{xx} + v\sigma_{xy} + q_x \right)_x + \frac{1}{\rho} \left( vp + v\sigma_{yy} + u\sigma_{xy} + q_y \right)_y = 0 \right $ |

Deduce type:
Steadv:

| Steady:                                                                                                                 | Unsteady:                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| from $\psi$ , $\omega$ formulation:                                                                                     | Assumption! Uncoupled $\psi$ , $\omega$ formulation:                                            |
| $ \Omega_x^2 + \Omega_y^2  = 0$                                                                                         | $\psi_{xx} + \psi_{yy} = -\omega \rightarrow \text{elliptic}$                                   |
| $\begin{vmatrix} \Omega_x^2 + \Omega_y^2 & 0\\ 0 & -\nu(\Omega_x^2 + \Omega_y^2) \end{vmatrix} = 0 \to \text{elliptic}$ | $\omega_t + u\omega_x + v\omega_y = v(\omega_{xx} + \omega_{yy}) \rightarrow \text{parabolic!}$ |
| Solve with                                                                                                              | → Solve with combination of iteration scheme for the                                            |
|                                                                                                                         | elliptic part and marching scheme for parabolic                                                 |
|                                                                                                                         | part.                                                                                           |

## <u>Euler</u>

- inviscid  $\nu = 0$ 

- unsteady

Incompressible

| $\vec{v}$ , $p$ | $u_x + v_y = 0$                                 | $\nabla \cdot \vec{v} = 0$                                           |
|-----------------|-------------------------------------------------|----------------------------------------------------------------------|
|                 | $u_t + uu_x + vu_y + \frac{1}{\rho}p_x = 0$     | $\frac{\mathbf{D}\vec{v}}{Dt} + \frac{1}{\rho}\nabla \mathbf{p} = 0$ |
|                 | $v_t + uv_x + vv_y + \frac{1}{\rho}p_y = 0$     |                                                                      |
| $\psi, \omega$  | $\psi_{xx} + \psi_{yy} = -\omega$               | $\nabla^2 \psi = -\omega$                                            |
|                 | $\omega_t + u\omega_x + v\omega_y = 0$          | $\frac{D\omega}{Dt} = 0$                                             |
| р               | $\nabla^2 p = -\rho [u_x^2 + v_y^2 + 2v_x u_y]$ |                                                                      |

Compressible

| Integral   | $\int_{\tau} \frac{\partial \vec{v}}{\partial t} d\tau + \oint_{A} E_{inv} dy = \oint_{A} F_{inv} dx$ |
|------------|-------------------------------------------------------------------------------------------------------|
| diff cons. | $\rho_t + (\rho u)_x + (\rho v)_y = 0$                                                                |
|            | $(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0  \text{(x-momentum)}$                               |
|            | $(\rho u)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$ (y-momentum)                                       |
|            | $(\rho E)_t + (\rho u E + u p)_x + (\rho v E + v p)_y = 0$                                            |
| non-cons.  | $\frac{D\rho}{Dt} + \rho u_x + \rho v_y = 0$                                                          |
|            | $\frac{\partial u}{\partial t} + \frac{1}{\rho} p_x = 0$                                              |
|            |                                                                                                       |
|            | $\left  \frac{\partial v}{\partial t} + \frac{1}{\rho} p_{\mathcal{Y}} \right  = 0$                   |
|            | $\frac{\partial E}{\partial t} + \frac{1}{a} (up)_x + \frac{1}{a} (vp)_y = 0$                         |
|            | $ Dt ' \rho^{(\alpha P)\chi}' \rho^{(\beta P)\gamma}$                                                 |

### Deduce type:

## Steady & Unsteady:

from  $\dot{m{\psi}}, m{\omega}$  formulation:

$$\begin{vmatrix} \Omega_x^2 + \Omega_y^2 & 0 \\ 0 & (\Omega_t) + u\Omega_x + v\Omega_y \end{vmatrix} = 0 \rightarrow \text{elliptic \& hyperbolic mixed}$$

# **Boundary Layer**

- attached flows
- heat conduction
- high Reynolds numbers  $Re\gg 1$
- steady
- → parabolic

## Incompressible

| $\vec{v}$ , $p$ | $u_x + v_y = 0$                              | (conti)                               | $\nabla \cdot \vec{v} = 0$                                  |
|-----------------|----------------------------------------------|---------------------------------------|-------------------------------------------------------------|
|                 | $uu_x + vu_y + \frac{1}{\rho}p_x = (vu_y)_y$ | (x-momentum)                          | $(\vec{v} \cdot \nabla)u + \frac{1}{\rho}p_x = (\nu u_y)_y$ |
|                 | $p_y = 0$                                    | (y-momentum – all derivatives of v=0) | $p_{y}=0$                                                   |

### Compressible

| int.       | -                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------------|
| diff cons. | $(\rho u)_x + (\rho v)_y = 0$                                                                                   |
|            | $ \begin{aligned} (\rho u)_x + (\rho v)_y &= 0 \\ \rho u u_x + \rho v u_y + p_x &= (\eta u_y)_y \end{aligned} $ |
|            | $p_y = 0$                                                                                                       |
|            | $\rho u h_x + \rho v h_y - u p_x = \left(\lambda T_y\right)_v + \eta u_y^2 \qquad h = c_p T$                    |
|            | Or                                                                                                              |
|            | $\rho c_p (uT_x + vT_y) - up_x = (\lambda T_y)_y + \eta u_y^2$                                                  |
| non-cons.  | -                                                                                                               |

## <u>Potential</u>

- Can be obtained from the Euler equations!
- irrotational flow
- steady
- isoenergetic
- isentropic
- inviscid
- → elliptic!

#### Incompressible

| $ec{v}$            | $u_x + v_y = 0$ (conti)                                                  | $\nabla \cdot \vec{v} = 0$ |
|--------------------|--------------------------------------------------------------------------|----------------------------|
|                    | $v_x - u_y = 0$ (condition vorticity $\omega = 0$ because irrotational!) | $\nabla 	imes \vec{v} = 0$ |
| ψ, ω               | Conti satisfied                                                          | $\nabla^2 \psi = 0$        |
| 1,                 | $\psi_{xx} + \psi_{yy} = 0$                                              | T T                        |
| $\phi$ (potential) | $\phi_{xx} + \phi_{yy} = 0$                                              | $\nabla^2 \phi = 0$        |
|                    | (condition for irrotational satisfied!)                                  |                            |
| р                  | Bernoulli:                                                               |                            |
|                    | $p_0 = p + \frac{\rho}{2}(u^2 + v^2)$                                    |                            |

### Compressible

- supersonic flow

| int.       | -                                                                       |
|------------|-------------------------------------------------------------------------|
| diff cons. | Continuity & $\phi_x = u$ ; $\phi_y = v$                                |
|            | $\left(\rho\phi_{x}\right)_{x}+\left(\rho\phi_{y}\right)_{y}=0$         |
| non-cons.  | From steady, isoenergetic 2D Euler equations with $dp=a^2d ho$          |
|            | $(\rho u)_x + (\rho v)_y = 0$ (conti)                                   |
|            | $(\rho u^2)_x + (\rho u v)_y + p_x = 0$ (x-momentum)                    |
|            | $(\rho u v)_x + (\rho v^2)_y + p_y = 0$ (y-momentum)                    |
|            | Split momentum eq. into parts and:                                      |
|            | x-momentum * u                                                          |
|            | y-momentum * v                                                          |
|            | With: $\phi_x = u$ ; $\phi_y = v$                                       |
|            | $(u^2 - a^2)\phi_{xx} + 2uv\phi_{xy} + (v^2 - a^2)\phi_{yy} = 0$        |
|            | Divide by $a^2$ :                                                       |
|            | $(1 - M_x^2)\phi_{xx} - 2M_x M_y \phi_{xy} + (1 - M_y^2)\phi_{yy} = 0$  |
|            | With: $M_x = \frac{u}{a}$ , $M_y = \frac{v}{a}$ , $M^2 = M_x^2 + M_y^2$ |
|            | Supersonic -> hyperbolic M>1                                            |
|            | Sonic -> parabolic M=1                                                  |
|            | Subsonic -> elliptic M<1                                                |
|            | N.B.: This scalar equation is easily solvable.                          |

**Further equations:** 

| vorticity $\omega$ (or $\zeta$ ) | $\omega = v_x - u_y$                                                                            | $\omega = \nabla \times \vec{v}$                           |
|----------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Potential $\phi$                 | $\phi_x = u$                                                                                    | $\nabla \phi = \vec{v}$                                    |
|                                  | $\phi_y = v$                                                                                    |                                                            |
| streamline function $\psi$       | $\psi_x = -v$                                                                                   |                                                            |
|                                  | $\psi_y = u$                                                                                    |                                                            |
| Cauchy-Riemann diff. eq.         | $u_x + v_y = 0$                                                                                 |                                                            |
|                                  | $v_x - u_y = 0$                                                                                 |                                                            |
| Poisson eq. of the streamline    | $\psi_{xx} + \psi_{yy} = -\omega$                                                               |                                                            |
| function.                        | 1.5                                                                                             |                                                            |
| Vorticity transport eq. /        | $\omega_t + u\omega_x + v\omega_y = v\nabla^2\omega$                                            |                                                            |
| Eddy transport eq.               | -                                                                                               |                                                            |
| Convection-diffusion eq. /       | $u_t + a u_x = v(u_{xx} + u_{yy})$                                                              | $a u_x$ convection (called <u>advection</u> for molecules) |
| Heat conduction eq.              |                                                                                                 | $v(u_{xx} + u_{yy})$ diffusion                             |
| Heat equation                    | $T_t - \lambda T_{xx} = cT$                                                                     | c > 0 heat source                                          |
|                                  |                                                                                                 | c < 0 heat sink                                            |
|                                  |                                                                                                 | $-\lambda T_{xx}$ thermal diffusion = Wärmeleitung         |
|                                  |                                                                                                 | $T_t$ rate of change                                       |
| wave eq.                         | $\begin{aligned} u_{tt} - c^2 u_{xx} &= 0\\ (Ma^2 - 1)\phi_{xx} - \phi_{yy} &= 0 \end{aligned}$ |                                                            |
| perturbation potential eq.       | $Ma^2 - 1)\phi_{xx} - \phi_{yy} = 0$                                                            |                                                            |
| Burger's eq.                     | $u_t + uu_x = 0$                                                                                | nonlinear                                                  |

**Characterize equation systems:** 

| Characterize equation syst |                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 2D                         | x, y                                                                                                                          |
| steady                     | $\frac{\partial}{\partial t} = 0$                                                                                             |
| incompressible             | $ ho=\mathbb{C}$ note: if contains e.g. $rac{\partial}{\partial y}\Big(\etarac{\partial u}{\partial y}\Big)	o$ compressible |
| Viscous/viscid             | $v = \frac{\eta}{\rho} \neq 0$                                                                                                |
| low Reynolds number        | nonlinear convective terms can be neglected                                                                                   |
|                            | e.g. Nav-S.: $v_t + \frac{1}{\rho}p_{\mathcal{Y}} = 0$                                                                        |
| linear / nonlinear         | nonlinear if $uv$ , $u^2$ , $v^2$                                                                                             |
| isoenergetic               | h = 0                                                                                                                         |
| irrotational               | $\nabla \times \vec{v} = 0 \qquad \text{2D: } v_x - u_y = 0$                                                                  |
| isotropic                  |                                                                                                                               |
| conservative               | Dependant variables (=variables in derivatives) are cons. quantities $\vec{U} = \vec{U}(\rho, \vec{v}, E)$                    |
|                            | in practice: $\frac{Dx}{Dt} + \nabla x$                                                                                       |
| non-conservative           | Dependent variables are for example $ ho, \vec{v}, E$                                                                         |
|                            | In practice: $\frac{Dx}{Dt} + \nabla y$                                                                                       |
| Boundary layer             | Re » 1                                                                                                                        |
| Irrotational               | $\omega = 0$                                                                                                                  |

# **Boundary conditions in fluid dynamics**



| No-slip on wall | $u = u_{wing} \text{ or } 0$                                                                            |  |
|-----------------|---------------------------------------------------------------------------------------------------------|--|
|                 | $ \begin{aligned} u &= u_{wing} \text{ or } 0 \\ v &= v_{wing} \text{ or } 0 \end{aligned} $            |  |
| Isothermal wall | $T = T_w$                                                                                               |  |
| adiabatic       | $\frac{\partial T}{\partial n} = \frac{\partial T}{\partial x} n_x + \frac{\partial T}{\partial y} n_y$ |  |
| pressure        | $\frac{\partial p}{\partial n} = \frac{\partial p}{\partial x} n_x + \frac{\partial p}{\partial y} n_y$ |  |

## Types of boundary conditions:

- 1) Dirichlet
- 2) Von Neuman
- 3) Mixed
- 4) Periodic

# Classification

### **Determine the Type of equation:**

| Determine the Type of       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> order PDE ① | $e.g. au_x + bu_y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Slope of char. line:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $\left  \left  -\frac{\Omega_x}{\Omega_y} = \frac{dy}{dx} \right _{CO} \right  = \frac{b}{a}  \text{or} \left  -\frac{\Omega_t}{\Omega_x} = \frac{dx}{dt} \right _{CO} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | $\Omega_y = \frac{\Omega_y}{dx} \frac{dx}{ c_0 } = \frac{\Omega_x}{dt} \frac{dt}{ c_0 }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | integrate $dy = \frac{b}{a}dx$ to obtain eq. of the <b>char. base / line</b> curve:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | $\int_{\mathcal{Y}}^{\mathcal{Y}_0} dy = \frac{b}{a} \int_{\mathcal{X}}^{\mathcal{X}_0} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | y u ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | $\rightarrow y - y_0 = \frac{b}{a}(x - x_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mixed                       | Only the highest order terms are relevant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | e.g. $au_x + bu_{yy} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | $\Omega_r^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | $\mathcal{U}_{\overline{\chi}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 <sup>nd</sup> order PDE ① | The equations can be written as e.g. Euler eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 Order I DE (1)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | $\int \frac{\partial}{\partial x} \frac{\partial}{\partial y} $ |
|                             | $\begin{pmatrix} \frac{\partial}{\partial_x} & \frac{\partial}{\partial_y} & 0\\ u\frac{\partial}{\partial_x} + v\frac{\partial}{\partial_y} & 0 & \frac{1}{\rho}\frac{\partial}{\partial_x}\\ 0 & u\frac{\partial}{\partial_x} + v\frac{\partial}{\partial_y} & \frac{1}{\rho}\frac{\partial}{\partial_y} \end{pmatrix} \begin{pmatrix} u\\v\\p \end{pmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | $\left(\begin{array}{ccc} u \frac{\partial}{\partial x} + v \frac{\partial}{\partial x} & \frac{1}{\alpha} \frac{\partial}{\partial x} \end{array}\right)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | With: $\frac{\partial}{\partial_x} = \Omega_x$ or $\partial_x \to \Omega_x$ , $\partial_{xy} \to \Omega_x \Omega_y$ , $\partial_{xx} \to \Omega_x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | $\Omega_{x}$ $\Omega_{y}$ $\Omega_{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | $\begin{vmatrix} \Omega_x & \Omega_y & 0 \\ u\Omega_x + v\Omega_y & 0 & \frac{1}{\rho}\Omega \\ 0 & u\Omega_x + v\Omega_y & \frac{1}{\rho}\Omega \end{vmatrix} = \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | $0 = aet \mid \frac{1}{2} \mid \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | $0 \qquad u\Omega_x + v\Omega_y = \frac{1}{\rho}\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | With: $\left  -\frac{\Omega_x}{\Omega_y} = \frac{dy}{dx} \right $ e.g.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | $\left[\begin{array}{c c} \Omega_y & dx \end{array}\right]^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | $\left  -\frac{\Omega_x}{\Omega_x} = \frac{\frac{dy}{dx}}{\frac{dy}{dx}} \right _{1,2} = \pm \sqrt{-1} = \pm I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | $\Omega_x = \frac{\partial x}{\partial y} = u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | $\left  -\frac{\Omega_x}{\Omega_x} = \frac{dy}{dx} \right _3 = \frac{u}{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$ with the discriminant $\Delta = b^2 - 4ac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

- If the region of influence is constrained by boundaries, initial value problems need BCs as well (= initial-boundary value problem)
- Hyperbolic: Specify ICs, BCs on all inflow boundaries! (Determined by sign of u,v)

|                                        | 1 <sup>st</sup> order                                                                                      | 2 <sup>nd</sup> order                                                                                                   | Sketch IC & BC , Solution scheme                                                                                                                                                        | 2 <sup>nd</sup> order normal                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| I book and the P                       | real share                                                                                                 | 4 > 0                                                                                                                   | There we details and Court D.C. at the artists of                                                                                                                                       | form                                                 |
| Hyperbolic<br>Initial value<br>problem | real char.  1st order PDE always hyperbolic!                                                               | $\begin{vmatrix} \Delta > 0 \\ \text{real char.} \\ \frac{dy}{dx} \Big _{1} \neq \frac{dy}{dx} \Big _{2} \end{vmatrix}$ | There needs to be an I.C. or B.C. at the origin of the slopes (characteristics). That means that each slope has 2 conditions which may or may not coincide with those for other slopes. | $u_{\xi\xi} - u_{\eta\eta} = 0$ or $u_{\xi\eta} = 0$ |
|                                        | $\begin{array}{c} \mathbf{BC} \\ \mathbf{BC} \\ \mathbf{BC} \\ \mathbf{e.g.} \ u_t + au_x = 0 \end{array}$ |                                                                                                                         | e.g. $u_{tt} - c^2 u_{xx} = 0$                                                                                                                                                          |                                                      |
| Parabolic                              |                                                                                                            | $\Delta = 0$                                                                                                            | 3 conditions & a marching direction!                                                                                                                                                    |                                                      |
| Initial-value<br>problem               |                                                                                                            | real double char. $\frac{dy}{dx}\Big _1 = \frac{dy}{dx}\Big _2$                                                         | Parabolic problems are initial value problems -> IC required!                                                                                                                           |                                                      |
|                                        |                                                                                                            |                                                                                                                         | If $\frac{dy}{dx}\Big _{1,2}=0$ the characteristcs are paralell to the x-axis: $BC = \frac{1}{2} - \frac{1}{2}$ E.g. $u_t - \lambda u_{xx} = 0$                                         |                                                      |
| Elliptic  Boundary value problem       |                                                                                                            | $\Delta < 0$ complex char. $\frac{dy}{dx}\Big _1 \neq \frac{dy}{dx}\Big _2$                                             | No real characteristics to be drawn!  BC  BC                                                                                                                                            | $u_{\xi\xi} + u_{\eta\eta} = 0$                      |
|                                        |                                                                                                            |                                                                                                                         | Solution scheme must provide coupling in all 4 directions -> sweeps along all 4 edges! e.g. $u_{xx} + u_{yy} = 0$ $\phi_{xx} + \phi_{yy} = 0$                                           |                                                      |
| ODE                                    |                                                                                                            | $\frac{dy}{dx} \to \infty$                                                                                              | -                                                                                                                                                                                       |                                                      |
| Mixed                                  |                                                                                                            | dx                                                                                                                      | Create 2 graphs!                                                                                                                                                                        |                                                      |
|                                        | r normal form:                                                                                             | l                                                                                                                       | 1 2. 22.0 - Diabile.                                                                                                                                                                    | <u>l</u>                                             |

**Canonical or normal form:** 

$$d\xi_1 = \alpha dx - dy$$
$$d\eta_1 = \beta dx$$

## **Characteristic solution:**

= solution along characteristic base curve

#### Task: Find the char. sol. of a given PDE:

$$u_t = \xi_t u_{\xi} + \tau_t u_{\tau}$$

$$u_x = \xi_x u_{\xi} + \tau_x u_{\tau}$$

$$u_y = \xi_y u_{\xi} + \tau_y u_{\tau}$$

$$\begin{pmatrix} d\xi \\ d\tau \end{pmatrix} = \begin{pmatrix} \xi_x & \xi_y \\ \tau_x & \tau_y \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \cdots \text{ or } = \begin{pmatrix} \xi_x & \xi_t \\ \tau_x & \tau_t \end{pmatrix} \begin{pmatrix} dx \\ dt \end{pmatrix} = \cdots$$

$$\left. d\xi = \frac{dy}{dx} \right|_{C_0} dx - dy$$

PDE:  $au_x + bu_y = c$ 

1. 
$$(x, y) \rightarrow (\tau, \xi)$$
  
 $a(\xi_x u_\xi + \tau_x u_\tau) + b(\xi_y u_\xi + \tau_y u_\tau) = c$ 

2. Find  $\xi_x$  etc by comparison:

$$\begin{cases} d\xi = \frac{b}{a}dx - dy \\ d\tau = dx \end{cases} \rightarrow \begin{cases} d\xi = \xi_x dx + \xi_y dy \\ d\tau = \tau_x dx + \tau_y dy \end{cases} \quad \text{OR} \quad \begin{cases} d\xi = \xi_x dx + \xi_t dt \\ d\tau = \tau_x dx + \tau_t dt \end{cases}$$

| General form                                                         | if c=0:                                                                  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| normal form (characteristic form)                                    | $u_{\tau} = \frac{\partial u}{\partial \tau}\Big _{\xi = \emptyset} = 0$ |
| $a\left(\frac{b}{a}u_{\xi}+u_{\tau}\right)-b\left(-u_{\xi}\right)=c$ | $ u_{\tau} - \partial \tau _{\xi=0} = 0$                                 |
|                                                                      |                                                                          |
| characteristic solution                                              | $u(\tau,\xi) = k(\xi)$                                                   |
| $\partial u = \frac{c}{a} \partial \tau$                             |                                                                          |
| $ \frac{a}{-} u(\tau, \xi) = \frac{c}{a} \tau + k(\xi) $             |                                                                          |
| introduce I.C. & $(\tau, \xi) \rightarrow (x, y)$                    | $u(x,y) = u_0(x_0, y_0)$                                                 |
| $u(x,y) = \frac{c}{a}(x - x_0) + u_0(x_0, y_0)$                      | on $\xi = \frac{b}{a}x - y = \frac{b}{a}x_0 - y_0 = const.$ (1)          |
| $u(\tau,\xi) = \frac{c}{a}\tau + k(\xi)$                             |                                                                          |
| With:                                                                | With:                                                                    |
| $\xi = \frac{b}{a}x - y \to y = -\xi$ $x = \tau$                     | Provided solution e.g.: $u(x = 0, y) = y$                                |
| $u(\tau=0,\xi)=\boldsymbol{k}(\boldsymbol{\xi})=-\xi$                |                                                                          |

General solution:

$$u(\tau,\xi) = \frac{c}{a}\tau - \xi$$

With:

$$\xi = \frac{b}{a}x - y$$
$$\tau = x$$

$$u(x,y) = \frac{c}{a}x - \left(\frac{b}{a}x - y\right)$$

Particular solution for u(2,1):

$$u(2,1) = \frac{c}{a}2 - \left(\frac{b}{a}2 - 1\right) = \cdots$$

#### Task: Find the PDE of a given char. sol.:

 $u_{\xi} = x_{\xi} u_{x} + \cdots$ 

Char sol.:

$$\begin{split} u_{\xi\eta} &= \left(u_{\xi}\right)_{\eta} \\ &= \left(x_{\xi}u_{x} + t_{\xi}u_{t}\right)_{\eta} \\ &= x_{\xi\eta}u_{x} + x_{\xi}\left(x_{\eta}u_{xx} + t_{\eta}u_{xt}\right) + \cdots \end{split}$$

$$x_{\xi} = \cdots$$
 etc

### Task: Sketch

- 1. Sketch characteristic lines in (x,t)-Diagram using provided sample solution
- 2. Plot horizontal line at desired time t in (x,t)-Diagram
- 3. Plot to (u, t) diagram

## **Discretization**

### 1. Discretization on cartesian grids

- Establish the Taylor series for the discretization points you need.
- For consistency, you must discretize <u>around the same discretization point</u> in a given PDE! Meaning: Discretizations around  $u_i$  and  $u_{i+1/2}$  cannot be mixed!
- The discretization point should always be in the middle to reduce the error!

### **Taylor series expansions**

#### Around $u_i$ in 1D & 2D:

$$\begin{aligned} u_{i\pm 1} &= u_i \pm \Delta x \ u_x|_i + \frac{\Delta x^2}{2} u_{xx}|_i \pm \frac{\Delta x^3}{6} u_{xxx}|_i + \frac{\Delta x^4}{24} u_{xxxx}|_i \pm \frac{\Delta x^5}{120} u_{(5x)}|_i + \frac{\Delta x^6}{720} u_{(6x)}|_i + \cdots \\ u_{i\pm 2} &= u_i \pm 2\Delta x \ u_x|_i + \frac{4\Delta x^2}{2} u_{xx}|_i \pm \frac{8\Delta x^3}{6} u_{xxx}|_i + \frac{16\Delta x^4}{24} u_{xxxx}|_i \pm \frac{32\Delta x^5}{120} u_{(5x)}|_i + \frac{64\Delta x^6}{720} u_{(6x)}|_i + \cdots \\ u_{i\pm \frac{1}{2}} &= u_i \pm \frac{\Delta x}{2} \ u_x|_i + \frac{\Delta x^2}{8} u_{xx}|_i \pm \frac{\Delta x^3}{48} u_{xxx}|_i + \frac{\Delta x^4}{384} u_{xxxx}|_i + \cdots \\ u_{i+1,j+1} &= u_{i,j} + \Delta x u_x + \Delta y u_y + \frac{\Delta x^2}{2} u_{xx} + \Delta x \Delta y u_{xy} + \frac{\Delta y^2}{2} u_{yy} + \cdots \\ &\qquad \dots + \frac{\Delta x^3}{6} u_{xxx} + \frac{\Delta x^2 \Delta y}{2} u_{xxy} + \frac{\Delta x \Delta y^2}{2} u_{xyy} + \frac{\Delta y^3}{6} u_{yyy} + O(\Delta x^4, \Delta y^4) \end{aligned}$$

# Around $u_{i+\frac{1}{2}}$ in 1D & 2D:

$$u^{n+1} = u^{n+1/2} \pm \frac{\Delta t}{2} u_t \Big|^{n+1/2} + \frac{\Delta t^2}{8} u_{tt} \Big|^{n+1/2} \pm \frac{\Delta t^3}{48} u_{ttt} \Big|^{n+1/2} + \frac{\Delta t^4}{384} u_{tttt} \Big|^{n+1/2} + \cdots$$

$$c \coloneqq i + \frac{1}{2}, j + \frac{1}{2}$$

$$u_{i+1,j+1} = u_c + \frac{\Delta x}{2} u_x + \frac{\Delta y}{2} u_y + \frac{\Delta x^2}{8} u_{xx} + \frac{\Delta x \Delta y}{4} u_{xy} + \frac{\Delta y^2}{8} u_{yy} + \cdots$$

$$\dots + \frac{\Delta x^3}{48} u_{xxx} + \frac{\Delta x^2 \Delta y}{16} u_{xxy} + \frac{\Delta x \Delta y^2}{16} u_{xyy} + \frac{\Delta y^3}{48} u_{yyy} + O(\Delta x^4, \Delta y^4)$$

#### Discretize u, x, y, ...:

$$u \to u_{i,j}$$

$$x \to i\Delta x$$

$$y \to j\Delta y$$

$$t^n \to n\Delta t$$

#### Discretize u:

| Nbr points | Schematic | Result (truncated)      | $= u_i + ERROR$     | Order           |
|------------|-----------|-------------------------|---------------------|-----------------|
| center     | 0 0       | $u_{i+1/2} + u_{i-1/2}$ | $\Delta x^2$        | $O(\Delta x^2)$ |
|            |           | 2                       | $\frac{1}{8}u_{xx}$ |                 |
| center     | 0 00      | $u_{i+1} + u_{i-1}$     | $\Delta x^2$        | $O(\Delta x^2)$ |
|            |           | 2                       | ${2}u_{xx}$         |                 |

## Discretize $u_x$ :

| Nbr points | Schematic | Result (truncated)                            | $= u_x + ERROR$                | Order           |
|------------|-----------|-----------------------------------------------|--------------------------------|-----------------|
| forward    | •—•       | $u_{i+1}-u_i$                                 | $\Delta x$                     | $O(\Delta x)$   |
|            |           | $\Delta x$                                    | $\frac{1}{2}u_{xx}$            |                 |
| backward   | 0         | $u_i - u_{i-1}$                               | $\Delta x$                     | $O(\Delta x)$   |
|            |           | $\Delta x$                                    | $-{2}u_{xx}$                   |                 |
| central    | 0 0       | $u_{i+1} - u_{i-1}$                           | $\Delta x^2$                   | $O(\Delta x^2)$ |
|            |           | $2\Delta x$                                   | ${6}u_{xxx}$                   |                 |
| one-sided  | • • •     | $-3u_i + 4u_{i+1} - u_{i+2}$                  | $\Delta x^2$                   | $O(\Delta x^2)$ |
|            |           | ${2\Delta x}$                                 | $-\frac{\Delta x^2}{3}u_{xxx}$ |                 |
|            |           |                                               |                                |                 |
|            |           | $3u_i - 4u_{i-1} + u_{i-2}$                   | $\Delta x^2$                   |                 |
|            |           | $\frac{3u_i - 4u_{i-1} + u_{i-2}}{2\Delta x}$ | $-\frac{1}{3}u_{xxx}$          |                 |
| Central,   |           | $8(u_{i+1} - u_{i-1}) - (u_{i-2} - u_{i+2})$  | $\Delta x^4$                   | $O(\Delta x^4)$ |
| 4 points   |           | $\overline{12\Delta x}$                       | $-\frac{\Delta x^4}{30}u_{5x}$ | , ,             |

Discretize  $u_{rr}$ :

| Discretize $u_{\chi}$          | л              |                                                                                 |                                                   |                                                           |
|--------------------------------|----------------|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|
|                                | Schematic      | Result (truncated)                                                              | $= u_{xx} + ERROR$                                | Order                                                     |
| one sided                      | • • •          | $\frac{u_{i+2} - 2u_{i+1} + u_i}{\Delta x^2}$                                   | $\Delta x \ u_{xxx}$                              | $O(\Delta x)$                                             |
| one sided                      | 0-0-           | $\frac{u_{i-2} - 2u_{i-1} - u_i}{\Lambda x^2}$                                  | $-\Delta x u_{xxx}$                               | $O(\Delta x)$                                             |
| central                        | 0 0            | $\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}$                                   | $\frac{\Delta x^2}{12}u_{xxxx}$                   | $O(\Delta x^2)$                                           |
| central                        | 0              | $\frac{u_{i+2} - 2u_i + u_{i-2}}{4\Delta x^2}$                                  | $\frac{\Delta x^2}{3}u_{xxxx}$                    | $O(\Delta x^2)$                                           |
| Central, 5<br>points           |                | $\frac{16(u_{i+1} + u_{i-1}) - 30u_i - (u_{i+2} + u_{i-2})}{12\Delta x^2}$      | $-\frac{\Delta x^4}{90}u_{6\cdot x}$              | $O(\Delta x^4)$                                           |
| Central, with<br>3-time levels | Dufort Frankel | $\frac{u_{i+1}^n - (u_i^{n-1} + u_i^{n+1}) + u_{i-1}^n}{\Delta x^2}$            |                                                   | $O\left(\Delta x^2, \frac{\Delta x^2}{\Delta t^2}\right)$ |
|                                | i-1 i i+1      | Procedure: Use $\frac{u_{i+1}-2u_i^n+u_{i-1}}{\Delta x^2}$ and replace $u_i^n!$ | Conditionally consistent! $\Delta x \ll \Delta t$ |                                                           |

#### Discretize $u_{\chi\chi\chi}$ :

|          | nnn |                                            |                 |
|----------|-----|--------------------------------------------|-----------------|
| Central, |     | $u_{i+2} - 2(u_{i+1} - u_{i-1}) - u_{i-2}$ | $O(\Delta x^2)$ |
| 4 point  |     | $\frac{1}{2\Delta x^3}$                    |                 |

### Discretize $u_{xxx}$ :

| Central, | $(u_{i+2} + u_{i-2}) - 4(u_{i+1} + u_{i-1})$ | $u_{i+2} - 4u_{i+1} + 6u_i - 4u_{i-1} + u_{i+2}$ | $\Delta x^2$             | $O(\Delta x^2)$ |
|----------|----------------------------------------------|--------------------------------------------------|--------------------------|-----------------|
| 5 point  |                                              | $\Delta x^4$                                     | $\frac{}{6}u_{6\cdot x}$ |                 |

#### Discretize $u_{xy}$ :

| j+1<br>j-1<br>i-1 i+1                     | $\frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j-1} + u_{i-1,j-1}}{4\Delta x \Delta y}$ |                                                                     |                             |
|-------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| j+1<br>j-1<br>i-1 i+1                     | $\frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j-1} + u_{i-1,j-1}}{4\Delta x \Delta y}$ | $+\frac{\Delta x^2}{6}u_{xxxy} + \frac{\Delta y^2}{6}u_{xyyy}$      | $O(\Delta x^2, \Delta y^2)$ |
| j+1 • • • • • • • • • • • • • • • • • • • | $\frac{u_{i,j}-u_{i+1,j}-u_{i,j+1}+u_{i+1,j+1}}{\Delta x \Delta y}$                | $+ \frac{\Delta x^2}{24} u_{xxxy} + \frac{\Delta y^2}{24} u_{xyyy}$ | $O(\Delta x^2, \Delta y^2)$ |

#### Discretize on non-equidistant grid

Establish equations e.g.

$$\begin{array}{l} u_{i-1}=u_i-u_xh_1+\cdots\\ u_{i+1}=u_i+u_xh_2+\cdots \end{array}$$

#### Discretize on provided stencil

#### 2 procedures:

- 1) use the discretization along lines as above and then add additional discretizations as needed.
- 2) Write down all points in stencil in table with Taylor expansions and guesstimate suitable solution

|               | $u_{i,j}$ | $\Delta x u_x$ | $\Delta y u_y$ | $\frac{\Delta x^2}{2}u_{xx}$ | $\Delta x \Delta y u_{xy}$ | $\frac{\Delta y^2}{2}u_{yy}$ | $\frac{\Delta x^3}{6}u_{xxx}$ | $\frac{\Delta x^2 \Delta y}{2} u_{xxy}$ | $\frac{\Delta x \Delta y^2}{2} u_{xyy}$ | $\frac{\Delta y^3}{6}u_{yyy}$ |
|---------------|-----------|----------------|----------------|------------------------------|----------------------------|------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|
| $u_{i+1,j}$   |           |                |                |                              |                            |                              |                               |                                         |                                         |                               |
| $u_{i,j+1}$   |           |                |                |                              |                            |                              |                               |                                         |                                         |                               |
| $u_{i+1,j+1}$ |           |                |                |                              |                            |                              |                               |                                         |                                         |                               |
| SUM           |           |                |                |                              |                            |                              |                               |                                         |                                         |                               |

$$\text{Additional terms (if needed): } \frac{\Delta x^4}{24} u_{xxxx} + \frac{\Delta x^3 \Delta y}{6} u_{xxxy} + \frac{\Delta x^2 \Delta y^2}{4} u_{xxyy} + \frac{\Delta x \Delta y^3}{6} u_{xyyy} + \frac{\Delta y^4}{24} u_{yyyy} + \cdots$$

|                                 | $u_i^n$ | $\Delta x u_x$ | $\Delta t u_t$ | $\frac{\Delta x^2}{2}u_{xx}$ | $\Delta x \Delta t u_{xt}$ | $\frac{\Delta t^2}{2}u_{tt}$ | $\frac{\Delta x^3}{6}u_{xxx}$ | $\frac{\Delta x^2 \Delta t}{2} u_{xxt}$ | $\frac{\Delta x \Delta t^2}{2} u_{xtt}$ | $\frac{\Delta t^3}{6}u_{ttt}$ |
|---------------------------------|---------|----------------|----------------|------------------------------|----------------------------|------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|
| $u_i^{n+1}$                     |         | +              | +              | +                            | +                          | +                            | +                             | +                                       | +                                       | +                             |
| $u_{i+1}^{n+1}$ $u_{i-1}^{n+1}$ |         |                |                |                              |                            |                              |                               |                                         |                                         |                               |
| $u_{i-1}^{n+1}$                 |         |                |                |                              |                            |                              |                               |                                         |                                         |                               |
|                                 |         |                |                |                              |                            |                              |                               |                                         |                                         |                               |
| SUM                             |         |                |                |                              |                            |                              |                               |                                         |                                         |                               |

## 2. Discretization on curved grids

## 2.1 Using the Finite Difference Method

#### Transform equation to general curvilinear coordinates

Jacobi:  $\bar{\bar{J}} = \begin{bmatrix} x_{\xi} & y_{\xi} \\ x_{\eta} & y_{\eta} \end{bmatrix}$ 

Comparison of coefficients with those found by chain rule:

$$\begin{pmatrix} u_{\xi} \\ u_{\eta} \end{pmatrix} = \begin{bmatrix} x_{\xi} & y_{\xi} \\ x_{\eta} & y_{\eta} \end{bmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \rightarrow \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} = \frac{1}{J} \begin{bmatrix} y_{\eta} & -y_{\xi} \\ -x_{\eta} & x_{\xi} \end{bmatrix} \begin{pmatrix} u_{\xi} \\ u_{\eta} \end{pmatrix} = \begin{cases} u_{x} = \frac{1}{J} (y_{\eta}u_{\xi} - y_{\xi}u_{\eta}) \\ u_{y} = \frac{1}{J} (-x_{\eta}u_{\xi} + x_{\xi}u_{\eta}) \end{cases}$$

Example:  $u_t + au_x + bu_y = 0$ 

#### 1. Find coefficients:

Chain rule:

$$u_x = \xi_x u_{\xi} + \eta_x u_{\eta}$$

$$u_y = \xi_y u_{\xi} + \eta_y u_{\eta}$$

$$u_t \text{ unchanged}$$

$$u_{xx} = (u_x)_x = g_x = \xi_x g_{\xi} + \eta_x g_{\eta}$$
  
$$u_{yy} = (u_y)_y = h_y = \xi_y h_{\xi} + \eta_y h_{\eta}$$

$$\to u_t + \cdots u_{\xi} + \cdots u_{\eta} = 0$$

#### 2. Discretize using metric terms:

Multiply with J

$$\begin{cases} \xi_{\chi} = \frac{y_{\eta}}{J} \\ \xi_{y} = -\frac{x_{\eta}}{J} \end{cases} \qquad \qquad \begin{aligned} \eta_{\chi} = -\frac{y_{\xi}}{J} \\ \eta_{y} = \frac{x_{\xi}}{J} \end{aligned}$$

- 3. Discretize
- 4. Simplify!

#### Transform equation to polar coordinates

$$x = r \cos \Phi$$

$$y = r \sin \Phi$$

$$r = \sqrt{x^2 + y^2}$$

$$\Phi = \arctan \frac{y}{x}$$

$$\Phi = \arctan \frac{y}{x}$$

$$\nabla^2 =$$

## 2.2 Using the Finite Volume Method







$$\nabla^2 = 0$$

#### Divergence/Gauss theorem:

$$\boxed{\int_{\tau} \nabla \cdot \vec{f} d\tau = \oint \vec{f} \, \vec{n} dA} = \sum_{k=1}^{4} (\vec{f} \cdot \vec{n} \Delta A)_{k} = 0$$

$$\vec{f} = \nabla u = \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} g \\ h \end{pmatrix}$$
 for Laplace eq.

$$\sum_{k=1}^{4} \left( \vec{f} \cdot \vec{n} \Delta A \right)_{k} = \sum_{k=1}^{4} \left( \binom{g}{h} \binom{\Delta y}{-\Delta x} \right)_{k} = \sum_{k=1}^{4} (g \Delta y - h \Delta x)_{k}$$

- Variables are stored at the cell centers
- Values on the surface can be reconstructed with a Linear function:  $u(x,y)=a_0+a_1x+a_2y$

$$\mathsf{Also} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

- Constants with least squares method:

$$\begin{pmatrix} n & \sum x_i & \sum y_i \\ \sum x_i & \sum x_i^2 & \sum x_i y_i \\ \sum y_i & \sum x_i y_i & \sum y_i^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \sum u_i \\ \sum u_i x_i \\ \sum u_i y_i \end{pmatrix}$$

n is the number of points.



# **Formulate solution scheme**

| implicit                                                                                                                                               | explicit                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Sequence                                                                                                                                               | parallel                                                                                    |  |
| Solve with Thomas algorithm or iteration scheme (see next                                                                                              | Can all be solved in parallel                                                               |  |
| page). Unconditionally stable!                                                                                                                         | Don't forget to check stability!!                                                           |  |
| $u_t = cu_{xx}$                                                                                                                                        | $u_t = c u_{xx}$                                                                            |  |
| $\frac{u_i^{n+1} - u_i^n}{2\Delta t} = c \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{\Delta x^2}$ With: $\sigma = \frac{2\Delta tc}{\Delta x^2}$ | $\frac{u_i^{n+1} - u_i^n}{2\Delta t} = c \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$ |  |
| $ \Rightarrow -\sigma u_{i-1}^{n+1} - (1+2\sigma)u_i^{n+1} - \sigma u_{i-1}^{n+1} = u_i^n $                                                            | $ \Rightarrow u_i^{n+1} = \sigma(u_{i+1}^n - 2u_i^n + u_{i-1}^n) $                          |  |

## **Iteration schemes:**

- For **elliptic** equations! N.B.: For hyperbolic and parabolic equations, <u>marching schemes</u> are employed!
- **Point Iterative Methods:** At each step the approximate solution is modified at a single point of the domain. Each  $u_{i,j}^{n+1}$  is determined <u>explicitly</u> i.e. simultaneous solution of equations not required.
- **Block Iterative Methods**: Generally, some level of implicitness leads to increased convergence rates. Here, only simple rows/columns are investigated (=line iterative methods).
- Line iterative methods can be solved using the Thomas algorithm (see 3-5 script)

| Туре:                                                                          | Point-wise form:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Visual:                     |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Poisson eq.                                                                    | $u_{xx} + u_{yy} = -f(x, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|                                                                                | ↓ discretize using central differences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|                                                                                | $u_{i,j} = \theta_x (u_{i-1,j} + u_{i+1,j}) + \theta_y (u_{i,j-1} + u_{i,j+1}) + \delta^2 f_{i,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                | With: $\theta_x = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} \& \theta_x = \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)} \& \delta^2 = \frac{\Delta x^2 \Delta y^2}{2(\Delta x^2 + \Delta y^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|                                                                                | $ 2(\Delta x^2 + \Delta y^2) \qquad \qquad 2(\Delta x^2 + \Delta y^2) \qquad \qquad 2(\Delta x^2 + \Delta y^2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| Jacobi                                                                         | Does not use updated values from previous!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| (-Point)                                                                       | - most simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| ( ,                                                                            | - bad rate of convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|                                                                                | - straight forward parallel execution (no coupling across domain boundaries) - doesn't require structural mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|                                                                                | $u_{i,i}^{\nu+1} = \theta_x (u_{i-1,i}^{\nu} + u_{i+1,i}^{\nu}) + \theta_v (u_{i,i-1}^{\nu} + u_{i,i+1}^{\nu}) + \delta^2 f_{i,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P 1144                      |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-610                       |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \frac{\partial}{\partial} |
| Gauss                                                                          | Unlike Jacobi, it uses the updated values from previous lines!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Seidel:                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| G-S Point                                                                      | $u_{i,i}^{\nu+1} = \theta_x \left( u_{i-1,i}^{\nu+1} + u_{i+1,i}^{\nu} \right) + \theta_v \left( u_{i,i-1}^{\nu+1} + u_{i,i+1}^{\nu} \right) + \delta^2 f_{i,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPPP                        |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                | - convergence rate 2x better than Jacobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                                                                | - uses updated values from neighboring points as soon as available -> direction dependent!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| C C Doint                                                                      | - NO parallel exec. EXCEPT by dropping coupling across boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                           |
| G-S Point $u_{i,j}^{\nu+1} = u_{i,j}^{\nu}(1-\omega) + \omega \tilde{u}_{i,j}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| /over-relaxed)                                                                 | ~ ( \( \frac{1}{2} \) \( \frac{1} \) \( \frac{1} \) \( \frac{1}{2} \) \( \frac{1}{2} | 1314                        |
|                                                                                | $\tilde{u}_{i,j} = \theta_x (u_{i-1,j}^{\nu+1} + u_{i+1,j}^{\nu}) + \theta_y (u_{i,j-1}^{\nu+1} + u_{i,j+1}^{\nu}) + \delta^2 f_{i,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | any any                     |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                | combined:<br>$u_{i,i}^{\nu+1} = u_{i,i}^{\nu}(1-\omega) + \omega \left[\theta_x(u_{i-1,i}^{\nu+1} + u_{i+1,i}^{\nu}) + \theta_v(u_{i,i-1}^{\nu+1} + u_{i,i+1}^{\nu}) + \delta^2 f_{i,i}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                | Stability: $0 < \omega \le 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| G-S Point                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| (with red/black                                                                | necessary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| ordering)                                                                      | - usually improvement of performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| G-S Line                                                                       | In x-direction: $0  v^{\nu+1}  v^{\nu+1}  0  v^{\nu+1}  = 0  (v^{\nu+1}  v^{\nu}  )     S^2 f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|                                                                                | $-\theta_x u_{i-1,j}^{\nu+1} + u_{i,j}^{\nu+1} - \theta_x u_{i+1,j}^{\nu+1} = \theta_y \left( u_{i,j-1}^{\nu+1} + u_{i,j+1}^{\nu} \right) + \delta^2 f_{i,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                | In y-direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                | $-\theta_{y}u_{i,j+1}^{\nu+1} + u_{i,j}^{\nu+1} - \theta_{y}u_{i,j+1}^{\nu+1} = \theta_{x}(u_{i-1,j}^{\nu+1} + u_{i+1,j}^{\nu}) + \delta^{2}f_{i,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                | - NO parallel exec. (requires inversion of tridiagonal matrix in each substep)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| G-S Line                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                           |
| (accelerated                                                                   | $ u_{i,j} - u_{i,j}(1 \cup \omega)   \omega u_{i,j} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| /over-relaxed)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X-                          |
|                                                                                | $-\theta_x \tilde{u}_{i-1,j} + \tilde{u}_{i,j} - \theta_x \tilde{u}_{i+1,j} = \theta_y \left( u_{i,j-1}^{\nu+1} + u_{i,j+1}^{\nu} \right) + \delta^2 f_{i,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D+1                         |

|             | for stability check; apply to both equations: $ \tilde{u}_{i,j}^{\nu} = \tilde{V}^{\nu} e^{I(i\theta_x + j\theta_y)} \\ - \text{convergence rate } 2\text{x better than G-S Point} \\ - \textbf{NOT} \text{ applicable to unstructured meshes (no i,j-ordering)}  $ Stability: $0 < \omega \leq 2$ |                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Alternating | (1) x-Line                                                                                                                                                                                                                                                                                         | ♥ j+1                                           |
| line        | $u_{i,j}^{\nu+1/2} = u_{i,j}^{\nu}(1-\omega) + \omega \tilde{u}_{i,j}^{\nu+1/2}$                                                                                                                                                                                                                   | 1-1 11 it 1                                     |
|             | $-\theta_x \tilde{u}_{i-1,j}^{\nu+1/2} + \tilde{u}_{i,j}^{\nu+1/2} - \theta_x \tilde{u}_{i+1,j}^{\nu+1/2} = \theta_y (u_{i,j-1}^{\nu} + u_{i,j+1}^{\nu}) + \delta^2 f_{i,j}$                                                                                                                       | ij-1<br>•ν <sub>ι</sub> ũ                       |
|             | (2) y-line $u_{i,j}^{\nu+1} = u_{i,j}^{\nu+1/2} (1 - \omega) + \omega \tilde{u}_{i,j}^{\nu+1}$                                                                                                                                                                                                     | D+1/2 D+1/2                                     |
|             | $u_{i,j} = u_{i,j} + (1 - \omega) + \omega u_{i,j}$                                                                                                                                                                                                                                                | $\bullet_{\mathcal{D},\widetilde{\mathcal{U}}}$ |
|             | $-\theta_{y}\tilde{u}_{i-1,j}^{\nu+1} + \tilde{u}_{i,j}^{\nu+1} - \theta_{y}\tilde{u}_{i+1,j}^{\nu+1} = \theta_{x}\left(u_{i,j-1}^{\nu+1/2} + u_{i,j+1}^{\nu+1/2}\right) + \delta^{2}f_{i,j}$                                                                                                      |                                                 |
|             | -avoids performing line iterations only in one direction, which slows the convergence down                                                                                                                                                                                                         |                                                 |
|             | - stable for all relaxation parameters $\omega$ - use optimized parameter for each iteration                                                                                                                                                                                                       |                                                 |
|             | - comparison with over-relaxed schemes difficult                                                                                                                                                                                                                                                   |                                                 |

#### **Red Black ordering:**

- The mesh-points are split up into red and black points like a checkerboard
- 1) The values on all red points are computed with Gauss-Seidel method, taking into account the surrounding black points (NO other red points)
- 2) The values on all black points are computed using the red points from (1)

Advantage: *Vectorization* of the solution procedure as the solution at different points can be computed SIMULTANEOUSLY (NOT recursively)

More complex stencils might need more than 2 stages in each iteration e.g. 4



Red depends only on black, and vice-versa. Generalization: multi-color orderings

## **Truncation error**

PDE: L(u)**FDE**:  $L_{\Delta}(u)$ 

$$\tau(u) = L(u) - L_{\Delta}(u)$$

#### **Example:**

$$L(u) = u_{\chi\chi}$$

$$L(u) = \frac{u_{i+1} - 2u_i + 1}{2u_i + 1}$$

$$L(u) = \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} = u_{xx} + \frac{\Delta x^2}{12} u_{xxxx} + \cdots$$

$$L(u) = \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} = u_{xx} + \frac{\Delta x^2}{12} u_{xxxx} + \cdots$$
$$\tau(u) = L(u) - L_{\Delta}(u) = -\frac{\Delta x^2}{12} u_{xxxx} + \cdots = O(\Delta x^2)$$

To reduce the truncation error: Introduce an additional point in the FDE.

### Convergence

$$Convergence = Wellposedness + Consistency + Stability$$

The convergence of a finite difference equation requires consistency and stability.

### **Consistency**

$$\lim_{\Delta x, \Delta y \to 0} \tau\left(u\right) = 0$$

For 
$$\tau = \frac{\Delta x^2}{\Delta t} \rightarrow \underline{\text{conditionally consistent}}$$
 if  $\Delta x^2 \ll \Delta t$ 

## **Stability**

## Implicit FDEs are unconditionally stable!

#### **CFL-** condition

- Only a necessary condition for stability
- Results from von Neumann stability analysis and CFL might differ!
- Only applicable to **hyperbolic** PDEs

$$\left| \frac{\Delta x}{\Delta t} \ge \frac{dx}{dt} \right|_C = \lambda$$

$$\frac{\Delta x}{\Delta t} \ge \max \left| \frac{dx}{dt} \right|_{1,2,\dots}$$



#### Courant-number:

$$C = \frac{\max \left| \frac{dx}{dt} \right|_{C}}{\frac{\Delta x}{\Delta t}} = \frac{exact\ info\ rate}{computer\ info\ rate} \le 1$$

## Discrete error perturbation theory (3-8)

Empirical method for investigation of stability. A disturbance  $\epsilon$  overlays the exact solution U.

$$W = U + \epsilon$$
$$u_i^n = u_{exact}|_i^n + \varepsilon_i^n$$

The modulus of the perturbation must decrease for stability!!

Example:

| n = | i =                                    | $oldsymbol{arepsilon}_i$                                                                                                                                                | Scheme | The value $\max \left  \frac{\varepsilon_i}{\varepsilon} \right $ should decrease with every iteration, otherwise perturbations are amplified. |
|-----|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | is<br>else                             | $\boxed{\varepsilon_{is}^0 = \varepsilon}$                                                                                                                              | E3     |                                                                                                                                                |
| 1   | is<br>is + 1<br>is - 1                 | $ \begin{aligned} \varepsilon_{is}^1 &= \cdots \\ \varepsilon_{is+1}^1 &= \cdots \\ \varepsilon_{is-1}^1 &= \cdots \end{aligned} $                                      | 1      | $\max \left  \frac{\varepsilon_i^1}{\varepsilon} \right  \le 1$                                                                                |
| 2   | is $is + 1$ $is - 1$ $is + 2$ $is - 2$ | $\varepsilon_{is}^{2} = \cdots$ $\varepsilon_{is+1}^{2} = \cdots$ $\varepsilon_{is-1}^{2} = \cdots$ $\varepsilon_{is+2}^{2} = \cdots$ $\varepsilon_{is-2}^{2} = \cdots$ | 1 2    | $\max \left  \frac{\varepsilon_i^2}{\varepsilon} \right  \le 1$                                                                                |
| n   |                                        |                                                                                                                                                                         |        | $\max \left  \frac{\varepsilon_i^n}{\varepsilon} \right  \leq 1$ Must asymptotically approach a stability limit.                               |

Procedure: Always introduce the previous  $arepsilon_i$  into the next equation.

$$\max \left| \frac{\varepsilon_i}{\varepsilon} \right| \le 1$$

# Neumann Stability analysis:

$$u_i^n = u_{exact}|_i^n + V^n e^{I(i\alpha + j\beta)}$$

| 1 | Substitute periodic perturbation for $u_{i,j}$ in FDE            | $u_{i,j}^{\nu} = V^{\nu} e^{I(i\theta_x + j\theta_y)}$ (Fourier)                                                                                                                                                                                                                             | $I = \sqrt{-1}$                                                                          |
|---|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|   |                                                                  | $u_i^{\nu} = V^{\nu} e^{I\theta i}$                                                                                                                                                                                                                                                          |                                                                                          |
| 2 | Therme zusammenfassen; durch $e^{I(i\theta_x+j\theta_y)}$ teilen | $()V^{\nu+1} = ()V^{\nu}$                                                                                                                                                                                                                                                                    |                                                                                          |
| 3 |                                                                  | $G = \frac{v^{\nu+1}}{v^{\nu}} = \frac{v^{\nu}}{v^{\nu-1}}$ or if both $V^{\nu+1}$ and $V^{\nu-1}$ are present: $G^2 = \frac{v^{\nu+1}}{v^{\nu-1}} = \frac{v^{\nu+1}}{v^{\nu}} \frac{v^{\nu}}{v^{\nu-1}}$ Or $G = \frac{v^{\nu+1}}{v^{\nu+\frac{1}{2}}} \frac{v^{\nu+\frac{1}{2}}}{v^{\nu}}$ |                                                                                          |
|   |                                                                  | $2\cos\theta = e^{I\theta} + e^{-I\theta}$ $2I\sin\theta = e^{I\theta} - e^{-I\theta}$                                                                                                                                                                                                       | $e^{I\theta} = \cos \theta + I \sin \theta$ $e^{-I\theta} = \cos \theta - I \sin \theta$ |
| 4 | Show that the absolute error amplification factor <1             | $\begin{aligned}  G ^2 &\leq 1 \\  G  &\leq 1 \\ \text{If complex:} \\  z  &= \sqrt{a^2 + b^2} \\ \left  \frac{a \pm bI}{c \pm dI} \right  &= \sqrt{\frac{a^2 + b^2}{c^2 + d^2}} \end{aligned}$                                                                                              |                                                                                          |

### Hirt analysis

Idea: return to known form such as:

$$u_{tt} = a^2 u_{xx}$$

#### Scenario 1

Given a hyperbolic equation, the goal is to make the equation parabolic, because that allows comparison to the parabolic equation  $u_t = v_{num}(u_{xx} + u_{yy})$ 

| Hyperbolic PDE   | $u_t + au_x = 0$                                                                                           |
|------------------|------------------------------------------------------------------------------------------------------------|
| Discretize terms | $u_t^n + u_{tt}^n \frac{\Delta t}{2} + a \left( u_x^n - u_{xx}^n \frac{\Delta x^2}{6} \right) + \dots = 0$ |
| Replace $u_{tt}$ | $u_{tt} = -au_{xt} = a^2 u_{xx}$                                                                           |
| Find $v_{num}$   | $v_{num} > 0!!!$                                                                                           |
|                  | unstable if negative numerical viscosity                                                                   |

#### Scenario 2

Given a parabolic equation, the goal is to make the equation hyperbolic, because that allows application of the CFL-condition.

| Parabolic PDE    | $u_t - v u_{xx} = 0$                                        |
|------------------|-------------------------------------------------------------|
| Discretize terms | $u_t^n + u_{tt}^n \frac{\Delta t}{2}\nu u_{xx} + \dots = 0$ |
| Apply CFL        | $\frac{\Delta x}{\Delta t} \ge \frac{dx}{dt}\Big _C$        |

Warning: Sometimes, Hirt is not applicable e.g. when no physical meaning can be found.

# The mesh

- Unstructured if no global i,j ordering can be introduced!
- Structured meshes have regular connectivity.
- Hybrid grids are also possible.

| Structured                                                      | Unstructured                                                            |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                 |                                                                         |
| + computational efficiency                                      | + suitable for complex geometries                                       |
| + memory efficiency (neighbor relationship in data arrangement) | + solution-based adaptation possible                                    |
| + higher-order schemes feasible                                 | + automatic grid generation                                             |
| - tedious to construct                                          | - complex algorithms                                                    |
| <ul> <li>not suited for complex geometries</li> </ul>           | - slower memory access                                                  |
| - no automatic grid generation                                  | - increased memory consumption (neighbor relationship has to be stored) |
| suitable for FV or FD formulation                               | suitable for FV formulation                                             |

Aspects of the mesh that have influence on the truncation error:

| <u></u> |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

### Task: Change order of equation

$$u_{tt} - au_{xx} = 0$$

Set:

$$q = u_t$$

$$p = u_x$$

$$\begin{cases} q_t - ap_x = 0 \\ q_x - p_t = 0 \end{cases}$$