# OUTLOOK KOMODITAS PETERNAKAN

DACING SAPI



# **OUTLOOK DAGING SAPI**

Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal - Kementerian Pertanian 2022

# **OUTLOOK DAGING SAPI**

ISSN: 1907-1507

**Ukuran Buku**: 10,12 inci x 7,17 inci (B5)

Jumlah Halaman: 101 halaman

#### Penasehat:

Roby Darmawan, M Eng.

#### Penyunting:

Dr. Anna A. Susanti, MSi Rendy Kencana Putra, SSi, M. Stat. App

## Naskah:

Ir. Mohammad Chafid, MSi

# Desain Sampul:

Suyati, S.Kom

Diterbitkan oleh:
Pusat Data dan Sistem Informasi Pertanian
Sekretariat Jenderal - Kementerian Pertanian
2022



# KATA PENGANTAR

Guna mengemban visi dan misinya, Pusat Data dan Sistem Informasi Pertanian mempublikasikan data sektor pertanian serta hasil análisis datanya. Salah satu hasil análisis yang telah dipublikasikan secara reguler adalah Outlook Komoditi Peternakan.

Publikasi Outlook Daging Sapi Tahun 2022 sebagai bagian dari Outlook Komoditi Peternakan menyajikan keragaan data series daging sapi secara nasional dan internasional selama lima sampai sepuluh tahun terakhir serta dilengkapi dengan hasil analisis proyeksi produksi dan konsumsi dari tahun 2023 sampai dengan tahun 2026.

Publikasi ini disajikan dalam bentuk buku dan dapat dengan mudah diperoleh atau diakses melalui portal e-Publikasi Kementerian Pertanian yaitu http://satudata.pertanian.go.id/datasets/publikasi.

Dengan diterbitkannya publikasi ini diharapkan para pembaca dapat memperoleh gambaran tentang keragaan dan proyeksi daging sapi secara lebih lengkap dan menyeluruh.

Kepada semua pihak yang telah terlibat dalam penyusunan publikasi ini, kami ucapkan terima kasih dan penghargaan yang setinggi-tingginya. Kritik dan saran dari segenap pembaca sangat diharapkan guna dijadikan dasar penyempurnaan dan perbaikan untuk penerbitan publikasi berikutnya.

Jakarta, Desember 2022 Kepala Pusat Data dan Sistem Informasi Pertanian,

Roby Darmawan, M Eng. NIP. 196912151991011001

# **DAFTAR ISI**

|                          | Halaman                                     |
|--------------------------|---------------------------------------------|
| KATA PENGANTAR           | v                                           |
| DAFTAR ISI               | vii                                         |
| DAFTAR TABEL             | ix                                          |
| DAFTAR GAMBAR            | xiii                                        |
| DAFTAR LAMPIRAN          | xv                                          |
| RINGKASAN EKSEKUTIF .    | xvii                                        |
| BAB I. PENDAHULUAN       | 1                                           |
| 1.1. Latar Belak         | ang1                                        |
| 1.2. Tujuan Dan          | Sasaran4                                    |
| 1.3. Ruang Lingl         | kup4                                        |
| BAB II. METODOLOGI       | 7                                           |
| 2.1. Sumber Dat          | a Dan Informasi7                            |
| 2.2. Metode Ana          | llisis                                      |
| BAB III. ANALISIS DESKRI | PTIF DAGING SAPI NASIONAL                   |
| 3.1. Perkemban           | gan Populasi dan Produksi17                 |
| 3.2. Sentra Popu         | ulasi Sapi Potong di Indonesia21            |
| 3.3 Sentra Prod          | luksi Daging Sapi di Indonesia22            |
| 3.4. Konsumsi D          | aging Sapi di Indonesia23                   |
| 3.5. Perkemban           | gan Harga Daging Sapi25                     |
| 3.6. Perkemban           | gan Ekspor Dan Impor Daging Sapi28          |
| 3.7. Negara Asal         | Impor Daging dan Jeroan Sapi di Indonesia30 |
|                          |                                             |
|                          | PTIF DAGING SAPI DUNIA                      |
|                          | gan Populasi dan Produksi33                 |
|                          | gan Konsumsi Daging Sapi Dunia38            |
| 4.3. Perkemban           | gan Harga Daging Sapi Dunia40               |

|        | 4.4.  | Perkembangan Ekspor Dan Impor Daging Sapi Dunia             | . 42 |
|--------|-------|-------------------------------------------------------------|------|
| BAB V. | ANA   | LISIS PEMODELAN PRODUKSI DAN KONSUMSI DAGING SAPI DAN       |      |
|        | KERI  | BAU                                                         | 47   |
|        | 5.1.  | Proyeksi Populasi Sapi Potong Tahun 2023-2026               | 47   |
|        | 5.2.  | Proyeksi Populasi Sapi Perah Tahun 2023-2026                | .63  |
|        | 5.3.  | Proyeksi Populasi Kerbau Tahun 2023-2026                    | .67  |
|        | 5.4.  | Proyeksi Produksi Daging Sapi Dan Kerbau Tahun 2022-2026    | .72  |
|        | 5.5.  | Proyeksi Konsumsi Daging Sapi Dan Kerbau 2022 - 2026        | 74   |
|        | 5.6.  | Proyeksi Surplus/Defisit Daging Sapi Dan Kerbau 2022 - 2026 | 78   |
| BAB VI | . KES | IMPULAN DAN REKOMENDASI                                     | 81   |
| DAFTA  | R PU  | STAKA                                                       | 85   |
| LAMPII | RAN   |                                                             | 89   |

# **DAFTAR TABEL**

|             | Halaman                                                        |
|-------------|----------------------------------------------------------------|
| Tabel 2.1.  | Jenis Variabel, Periode dan Sumber Data7                       |
| Tabel 4.1.  | Populasi Sapi Dunia di Sepuluh Negara Sentra Populasi, Tahun   |
|             | 2016 - 202035                                                  |
| Tabel 4.2.  | Produksi Sapi Dunia di Sepuluh Negara Sentra Produksi, Tahun   |
|             | 2016 - 202036                                                  |
| Tabel 5.1.  | Output uji Dickey Fuller untuk Harga Daging Sapi Dunia Tanpa   |
|             | Differencing49                                                 |
| Tabel 5.2.  | Output uji Dickey Fuller untuk Harga Daging Sapi Dunia         |
|             | Differencing 1                                                 |
| Tabel 5.3.  | Output uji Dickey Fuller untuk Harga Daging Sapi Dunia         |
|             | Differencing 250                                               |
| Tabel 5.4.  | Output model auto Arima untuk Harga Daging Sapi Nasional.      |
|             | 50                                                             |
| Tabel 5.5.  | Output model Arima Selection untuk Harga Daging Sapi           |
|             | Nasional51                                                     |
| Tabel 5.6.  | Pengujian Model ARIMA (0,2,1) untuk Harga Daging Sapi          |
|             | Nasional52                                                     |
| Tabel 5.7.  | Output model ARIMA (0,2,5) untuk Harga Daging Sapi Nasional53  |
| Tabel 5.8.  | Perbandingan MAPE ARIMA (0,2,5) untuk Harga Daging Sapi        |
|             | Nasional53                                                     |
| Tabel 5.9.  | Output model order b=0, s=0, r=0 Arima (0,0,0) untuk Untuk     |
|             | Fungsi Transfer Populasi Sapi Nasional55                       |
| Tabel 5.10. | Output Fungsi Transfer dengan model noise Arima (1,0,0)55      |
| Tabel 5.11. | Output Fungsi Transfer tentatif model noise Arima56            |
| Tabel 5.12. | Output Fungsi Transfer tentatif model noise Arima (1,0,0)56    |
| Tabel 5.13. | Uji coba Peramalan berbasis Fungsi Transfer dengan nilai input |
|             | data Aktual harga daging sapi nasional                         |

| Tabel 5.14. | Uji coba Peramalan berbasis Fungsi Transfer dengan nilai input   |
|-------------|------------------------------------------------------------------|
|             | data Ramalan harga daging sapi nasional58                        |
| Tabel 5.15. | Hasil Uji coba Peramalan berbasis Fungsi Transfer Untuk          |
|             | populasi sapi Potong tahun 2017- 202259                          |
| Tabel 5.16. | Perbandingan MAPE Model Arima dan Fungsi Transfer60              |
| Tabel 5.17. | Model Fungsi Transfer Arima (1,0,0) untuk seluruh data60         |
| Tabel 5.18. | Hasil Estimasi Populasi Sapi Potong Nasional Tahun 2022 - 2026   |
|             | Menggunakan Fungsi Transfer ARIMA (1,0,0)61                      |
| Tabel 5.19. | Hasil Estimasi Populasi Sapi Potong Tahun 2022-202661            |
| Tabel 5.20  | . Hasil Uji Augmunted Dickey-Fuller Populasi Sapi Perah          |
|             | Differencing                                                     |
| Tabel 5.21. | Model Arima Tentatif Berdasarkan Automodel64                     |
| Tabel 5.22. | Uji Koefisien Model ARIMA (2,1,2)65                              |
| Tabel 5.23. | Perbandingan MAPE Untuk Model ARIMA (2,1,2)65                    |
| Tabel 5.24. | Model Arima (2,1,2) untuk Seluruh Data Populasi Sapi Perah66     |
| Tabel 5.25. | Output Peramalan Model ARIMA (2,1,2) Untuk Populasi Sapi Perah   |
|             | 66                                                               |
| Tabel 5.26. | Hasil Estimasi Populasi Sapi Perah Model ARIMA (2,1,2) 66        |
| Tabel 5.27. | Hasil Uji Augmunted Dickey-Fuller Populasi Kerbau Differencing 1 |
|             | 69                                                               |
| Tabel 5.28. | Model Arima Tentatif Berdasarkan Automodel69                     |
| Tabel 5.29. | Uji Koefisien Model ARIMA (0,2,1)70                              |
| Tabel 5.30. | Perbandingan MAPE Untuk Model ARIMA (0,2,1)70                    |
| Tabel 5.31. | Model Arima (0,2,1) untuk Seluruh Data Populasi Kerbau71         |
| Tabel 5.32. | Output Peramalan Model ARIMA (0,2,1) Untuk Populasi Kerbau       |
|             | 71                                                               |
| Tabel 5.33. | Hasil Estimasi Populasi Kerbau Model ARIMA (0,2,1)71             |
| Tabel 5.34. | Hasil Proyeksi Produksi Daging Sapi Potong Tahun 2022-202673     |
| Tabel 5.35. | Proyeksi Produksi Daging Sapi Perah dan Kerbau 2022 - 202674     |
| Tabel 5.36. | Pemilihan Model Tentatif untuk Proyeksi Konsumsi Daging75        |
| Tabel 5.37. | Hasil Analisis Fungsi Respon Konsumsi Daging Sapi dan Kerbau76   |

| Tabel 5.38. | Hasil Proyeksi I | Konsumsi Dagir | ng Sapi dan K | erbau In | dones | ia  | 78     |
|-------------|------------------|----------------|---------------|----------|-------|-----|--------|
| Tabel 5.39. | Hasil Proyeksi   | Produksi dan   | Konsumsi      | Daging   | Sapi  | dan | Kerbau |
|             | Tahun 2022 - 202 | 26             |               |          |       |     | 80     |

# **DAFTAR GAMBAR**

|             | Halaman                                                       |
|-------------|---------------------------------------------------------------|
| Gambar 2.1. | UJi Hetereskedastisitas Residual Minitab12                    |
| Gambar 2.1. | Tahapan Penyusunan Model Fungsi Transfer16                    |
| Gambar 3.1. | Perkembangan Populasi Sapi Potong di Indonesia, 2013-202219   |
| Gambar 3.2. | Perkembangan Produksi Daging Sapi di Indonesia, 2013 -202221  |
| Gambar 3.3. | Sentra Populasi Sapi Potong di Indonesia,                     |
|             | Tahun 2018 - 202222                                           |
| Gambar 3.4. | Sentra Produksi Daging Sapi di Indonesia, Tahun 2018 - 202223 |
| Gambar 3.5. | Perkembangan Konsumsi Daging Sapi di Indonesia,               |
|             | Tahun 2013-202224                                             |
| Gambar 3.6. | Perbandingan volume impor daging dan harga Daging Sapi di     |
|             | Indonesia, Tahun 2013-202227                                  |
| Gambar 3.7. | Perkembangan Produksi dan Volume Impor Daging Sapi di         |
|             | Indonesia, Tahun 2013 - 202229                                |
| Gambar 3.8. | Perkembangan Nilai Impor Daging Sapi di Indonesia, Tahun      |
|             | 2013 - 202230                                                 |
| Gambar 3.9. | Kontribusi Impor Daging Lembu dan Jeroan Lembu Tahun          |
|             | 202131                                                        |
| Gambar 4.1. | Perkembangan Populasi dan Produksi Sapi Potong Dunia,         |
|             | Tahun 2012 - 202033                                           |
| Gambar 4.2. | Kontribusi Negara Sentra Populasi Sapi Potong Dunia, Tahun    |
|             | 2016 - 2020                                                   |
| Gambar 4.3. | Kontribusi Negara Sentra Daging Sapi Dunia, 2016 - 202038     |
| Gambar 4.4. | Perkembangan Konsumsi Daging Sapi Dunia 2011- 202039          |
| Gambar 4.5. | Sepuluh Negara Konsumen Terbesar Daging Sapi Dunia 2016-      |
|             | 202040                                                        |
| Gambar 4.6. | Perkembangan Harga Daging Sapi Dunia Bulanan 2018 - 202242    |

| Gambar 4.7.  | Perkembangan Volume Ekspor dan Impor Daging Sapi Dunia,     |    |
|--------------|-------------------------------------------------------------|----|
|              | Tahun 2011 - 2020                                           | 43 |
| Gambar 4.8.  | Kontribusi Negara Eksportir Daging Sapi Dunia, Tahun 2016 - |    |
|              | 2020                                                        | 44 |
| Gambar 4.9.  | Kontribusi Negara Importir Daging Sapi Dunia, Tahun 2016 -  |    |
|              | 2020                                                        | 45 |
| Gambar 5.1.  | Plot Data Populasi Sapi Potong, 1984-2021                   | 44 |
| Gambar 5.2.  | Plot Data Harga Daging Sapi Nasional, 1984 - 2021           | 48 |
| Gambar 5.3.  | Plot korelasi silang Populasi Sapi Potong dengan Harga      |    |
|              | Daging Sapi Nasional                                        | 55 |
| Gambar 5.4.  | Perbandingan Hasil Ramalan Populasi Sapi Potong Tahun       |    |
|              | 2017 - 2021                                                 | 60 |
| Gambar 5.5.  | Populasi Sapi Potong Tahun 2000 - 2022 dan Estimasi Tahun   |    |
|              | 2023 - 2026                                                 | 62 |
| Gambar 5.6.  | Perkembangan Populasi Sapi Perah 1974 - 2021                | 63 |
| Gambar 5.7.  | Hasil Estimasi Populasi Sapi Perah Tahun 2022 - 2026 Model  |    |
|              | ARIMA (2,1,2)                                               | 67 |
| Gambar 5.8.  | Perkembangan Populasi Kerbau 1970 - 2021                    | 68 |
| Gambar 5.9.  | Hasil Estimasi Populasi Kerbau Tahun 2022 - 2026 Model      |    |
|              | ARIMA (0,2,1)                                               | 72 |
| Gambar 5.10. | Plot Nilai Sisaan terhadap Nilai Dugaan Model Konsumsi      |    |
|              | Daging Sapi dan Kerbau                                      | 76 |

# **DAFTAR LAMPIRAN**

|              | Halaman                                                      |
|--------------|--------------------------------------------------------------|
| Lampiran 1.  | Perkembangan Populasi Sapi Potong di Indonesia, Tahun        |
|              | 1984 - 202290                                                |
| Lampiran 2.  | Perkembangan Produksi Daging Sapi di Indonesia, Tahun        |
|              | 1984 - 202291                                                |
| Lampiran 3.  | Sentra Populasi Sapi Potong di Indonesia, Tahun 2018 -       |
|              | 202292                                                       |
| Lampiran 4.  | Sentra Produksi Daging Sapi di Indonesia, Tahun 2018 -       |
|              | 202292                                                       |
| Lampiran 5.  | Perkembangan Konsumsi Daging Sapi di Indonesia, Tahun        |
|              | 2002-202293                                                  |
| Lampiran 6.  | Perkembangan Harga Konsumen Daging Sapi di Indonesia,        |
|              | Tahun 1983 - 202294                                          |
| Lampiran 7.  | Neraca Ekspor Impor Daging Sapi di Indonesia, Tahun 1996-    |
|              | 202295                                                       |
| Lampiran 8.  | Perkembangan Produksi dan Konsumsi Daging Sapi Dunia,        |
|              | 1980 - 202096                                                |
| Lampiran 9.  | Negara Sentra Populasi Sapi Potong Dunia, 2016 - 202097      |
| Lampiran 10. | Negara Sentra Produksi Sapi Potong Dunia, 2016 - 202097      |
| Lampiran 11. | Negara Konsumen Daging Sapi Terbesar Dunia, 2016 - 202098    |
| Lampiran 12. | Negara Perdagangan Daging Sapi Dunia, 1980 - 202099          |
| Lampiran 13. | Negara Eksportir Daging Sapi Terbesar Dunia, 2016 - 2020 101 |
| Lampiran 14  | Negara Importir Daging Sani Terhesar Dunia 2016 - 2020 101   |

# RINGKASAN EKSEKUTIF

Salah satu sumber protein hewani yang banyak dikonsumsi masyarakat Indonesia adalah daging sapi dan kerbau. Untuk mencermati perkembangan populasi, produksi, konsumsi, harga, dan ekspor impor daging sapi dibahas perkembangannya selama lima tahun terakhir. Disamping itu untuk melihat ke depan perlu dilakukan pemodelan untuk populasi, produksi, konsumsi, dan neraca daging sapi dan kerbau selama tahun 2023 - 2026.

Pemodelan fungsi untuk meramalkan populasi lima tahun ke depan dengan peubah input harga daging sapi nasional, telah menghasilkan model Fungsi Transfer terbaik adalah ARIMA (1,0,0). Untuk menguji kelayakan Model fungsi transfer data telah dibagi menjadi 2, yaitu data training yaitu populasi sapi potong dan harga daging sapi nasional tahun 1984 - 2016, dan data testing untuk peubah yang sama tahun 2017 - 2022. Hasil uji fungsi transfer dengan meramalkan data testing dengan peubah input merupakan data aktual menghasilkan MAPE 3,94%, sedangkan jika peubah input menggunakan nilai ramalan harga daging sapi nasional menghasilkan MAPE 4,80%. Dengan nilai MAPE dibawah 5%, maka model ini cukup akurat dalam melakukan peramalan. Untuk estimasi populasi sapi perah menggunakan model ARIMA(2,1,2) dengan MAPE training 7,99% dan testing 16,47%. Untuk estimasi populasi kerbau menggunakan model ARIMA(0,2,1) dengan MAPE training 6,92% dan testing 10,35%. Untuk model estimasi konsumsi menggunakan model regresi berganda. Model konsumsi menghasilkan model yang layak dengan nilai  $R^2$  sebesar 71,7% dan  $R^2$  adjusted 67,0%.

Hasil estimasi populasi sapi potong dengan model terbaik yang dibangun, menunjukkan bahwa populasi sapi potong tahun 2022 - 2026 diestimasi mengalami pertumbuhan 1,02%/tahun. Tahun 2022 angka sementara populasi sapi potong mencapai 18,61 juta ekor, maka pada tahun 2023 dan 2024 diestimasi masing-masing mencapai 18,48 juta ekor dan 18,82 juta ekor. Dari populasi tersebut pada tahun 2023 produksi

daging sapi (meat yield) diperkirakan mencapai 437,67 ribu ton, dan tahun 2024 mencapai 445,73 ribu ton.

Hasil estimasi populasi sapi perah menggunakan model ARIMA (2,1,2) tahun 2023 sebanyak 587 ribu ekor dan tahun 2024 sebanyak 577 ribu ekor. Rata-rata pertumbuhan populasi sapi perah tahun 2022 -2026 diestimasi rata-rata naik 0,23%/tahun. Populasi kerbau diestimasi dengan model ARIMA (0,2,1) menghasilkan angka estimasi populasi tahun 2023 sebanyak 1.137 ribu ekor dan tahun 2024 sebanyak 1.104 ribu ekor. Rata-rata pertumbuhan populasi kerbau tahun 2022 -2026 diestimasi rata-rata turun 1,88%/tahun

Berdasarkan hasil proyeksi produksi dan konsumsi daging sapi di Indonesia tahun 2022 - 2026 terjadi defisit. Pada tahun 2022 produksi daging sapi dan kerbau diperkirakan defisit sebesar 248,65 ribu ton. Pada tahun 2023 dengan produksi daging sapi potong mencapai 437,67 ribu ton ditambah daging sapi perah 5,82 ribu ton dan kerbau sekitar 26,53 ribu ton sehingga total penyediaan 470,02 ribu ton, sementara konsumsi nasional diestimasi mencapai 745,96 ribu ton, maka masih terjadi defisit daging sebesar 275,95 ribu ton. Tahun 2024, 2025, dan 2026 diestimasi masih terjadi deficit masing-masing 286 ribu ton, 291 ribu ton, dan 307 ribu ton. Defisit daging ini dapat diantisipasi dengan impor sapi potong bakalan dan impor daging dan jeroan beku, serta program peningkatan populasi sapi potong dan kerbau.

# **BAB I. PENDAHULUAN**

## 1.1. Latar Belakang

Sapi potong merupakan komoditas peternakan utama yang sebagai penyedia daging serta sumber utama protein hewani, disamping unggas. Setelah berhasil meluncurkan program Upaya Khusus Percepatan Peningkatan Populasi Sapi dan Kerbau Bunting (Upsus Siwab), Kementerian Pertanian melalui Ditjen Peternakan dan Kesehatan Hewan mengakselerasi pemenuhan kebutuhan masyarakat akan protein hewani, yaitu daging dan susu dengan program Sapi dan Kerbau Komoditas Andalan Negeri (Sikomandan). Untuk meningkatkan populasi melalui sapi, program Sikomandan diharapkan populasi sapi potong berkembang biak dengan lebih cepat dan pada akhirnya bisa mengurangi ketergantungan dari sapi bakalan dan daging sapi impor. Sapi potong merupakan komoditas kedua setelah ayam broiler dalam menyediakan daging untuk konsumsi. Tahun 2021 produksi daging sapi sebesar 487,80 ribu ton, dari total produksi daging 4.546,96 ribu ton atau memberikan kontribusi hingga 10,73% terhadap produksi daging nasional (Direktorat Jenderal Peternakan dan Kesehatan Hewan, 2022). Secara umum untuk memenuhi kebutuhan daging sapi, sekitar 30% - 40% masih disuplai oleh daging impor sapi bakalan.

Pada hakekatnya kegiatan SIKOMANDAN merupakan kesinambungan kegiatan Upsus Siwab dengan cakupan output kegiatan yang diperluas, bukan hanya sekedar pada penambahan populasi akan tetapi juga sampai dengan penyediaan produksi dalam negeri. Untuk itu proses bisnis kegiatan SIKOMANDAN yang meliputi 4 (empat) proses kegiatan yang terintegrasi dan saling menunjang menjadi satu kesatuan kegiatan yang berkelanjutan. Keempat proses kegiatan meliputi: (1) Proses Bisnis Peningkatan Kelahiran, (2) Proses Bisnis Peningkatan Produktivitas, (3) Proses Bisnis Keamanan dan Mutu Pangan, (4) Proses Bisnis Distibusi dan Pemasaran.

Peningkatan kelahiran merupakan kegiatan strategis dan kunci keberhasiian pelaksanaan kegiatan SIKOMANDAN, yang dimulai dengan identifikasi akseptor, pelayanan IB-PKb sampai dengan kelahiran. Untuk menunjang pelaksanaan peningkatan kelahiran ini diperlukan serangkaian aktivitas dari penyiapan akseptor, penyiapan alat dan bahan IB, pengadaan dan distribusi semen beku dan  $N_2$  Cair, pelayanan perkawinan IB, pemeriksaan kebuntingan sampai pelaporan kelahiran.

Untuk mendorong optimalisasi produksi sapi salah satu upaya yang akan ditempuh pemerintah melalui Ditjen Peternakan dan Kesehatan Hewan adalah meningkatkan pembiayaan di subsektor peternakan khususnya sapi. Alokasi anggaran untuk peternakan sapi akan diperbesar dan difokuskan kepada program Sikomandan. Dengan program yang dijalankan pemerintah, produktivitas sapi lokal diharapkan bisa meningkat. Selain itu, untuk strategi pengembangan sapi potong akan lebih diarahkan pada struktur hulu yaitu ke arah pembibitan dan pengembangbiakan. Pasalnya, industri sapi dan daging sapi saat ini cenderung berkembang ke arah hilir, terutama untuk bisnis penggemukan dan impor daging. Karenanya, swasambeda akan mengubah pola pikir peternak, dari yang semula memiliki cara beternak sambilan, menuju perilaku usaha serius dan menguntungkan.

Tingginya harga daging sapi saat ini sebagai dampak dari ketidakseimbangan antara produksi dan tingginya permintaan masyarakat terhadap daging sapi. Selain produksi daging sapi yang belum mencukupi kebutuhan dalam negeri, sapi dari sentra produksi belum terdistribusi dengan baik ke daerah konsumen. Meskipun tersedia kapal yang mengangkut sapi antar pulau tetapi distribusi belum juga lancar, karena biaya operasional / transportasi yang mahal. Akibatnya Indonesia masih melakukan impor sapi maupun daging sapi yang cukup besar. Impor daging sapi awalnya hanya untuk memenuhi segmen pasar tertentu, namun kini telah memasuki segmen supermarket dan pasar tradisional.

Menurut data Organization for Economic Co-operation Development (OECD) yang dirilis pada 2018, konsumsi daging pada masyarakat Indonesia pada 2017 baru mencapai rata-rata 1,8 kg untuk daging sapi, 7 kg daging ayam, 2,3 kg daging babi, dan 0,4 kg daging kambing (Detik, 11 Juni 2019). Sedangkan berdasarkan data Ditjen. Peternakan dan Kesehatan Hewan, konsumsi daging sapi pada tahun 2018 sebesar 2,50 kg/kapita/tahun, tahun 2019 naik menjadi 2,56 kg/kapita/tahun, Sementara tahun 2020, konsumsi daging kembali turun dampak dari pandemic Covid-19 menjadi 2,36 kg/kapita/tahun. Pada tahun 2021 konsumsi daging sapi naik menjadi sebesar 2,44 kg/kapita/tahun akibat pandemi yang belum berakhir. Tahun 2022 menurut angka prognosa konsumsi daging sapi akan kembali naik menjadi 2,62 kg/kap/tahun. Kebutuhan daging sapi dan kerbau nasional jika tingkat konsumsi sebesar 2,62 kg/kap/tahun adalah sebesar 720,13 ribu ton. Tingkat kebutuhan nasional sebesar 720,13 ribu ton, lebih tinggi dibandingkan tahun-tahun sebelumnya karena wabah Covid-19 yang kasusnya mulai melandai, berdampak pada peningkatan pertumbuhan ekonomi dan membaiknya pendapatan masyarakat.

Rata-rata tingkat konsumsi daging di Indonesia juga masih jauh di bawah rata-rata tingkat konsumsi dunia yang mencapai 6,4 kg daging sapi, 14 kg daging ayam, 12,2 daging babi, dan 1,7 kg daging kambing. Tentu saja dengan rendahnya tingkat konsumsi daging ini juga berpengaruh pada rendahnya tingkat asupan protein hewani pada masyarakat Indonesia, terutama untuk golongan ekonomi menengah ke bawah.

Data Food and Agriculture Organization (FAO) menyebutkan bahwa tingkat konsumsi protein hewani masyarakat Indonesia pada 2017 masih tertinggal dari negara-negara maju bahkan dengan beberapa negara ASEAN. Dari total konsumsi protein, konsumsi protein hewani Indonesia baru mencapai 8 persen, sementara Malaysia mencapai 30 persen, Thailand 24 persen, dan Filipina mencapai 21 persen. Protein hewani merupakan sumber

pangan yang sangat baik untuk masa pertumbuhan dan perkembangan anakanak karena kandungan asam aminonya yang lengkap.

Populasi sapi Indonesia banyak tetapi tetap impor daging, alasannya pada saat ini umumnya jenis peternakan di Indonesia bersifat *social security*, artinya, sapi baru akan dijual atau dipotong saat-saat tertentu seperti untuk kebutuhan finansial, kurban, hingga hajatan (Kompas 22 Maret 2021)

Tujuan dari tulisan ini adalah menganalisis perkembangan dan proyeksi populasi, produksi dan konsumsi komoditas daging sapi, baik di tingkat nasional maupun global. Selain digunakan sebagai bahan rujukan bagi para pimpinan Kementerian Pertanian dalam mengambil kebijakan, analisis ini juga penting dalam menyediakan informasi bagi para *stakeholder* yang terkait dengan kegiatan agribisnis subsektor peternakan.

# 1.2. Tujuan dan Sasaran

Tujuan:

Melakukan analisis peramalan produksi daging sapi, neraca produksi dan konsumsi daging sapi dengan menggunakan model-model statistik.

Sasaran:

Tersedianya informasi peramalan indikator produksi dan konsumsi daging sapi tahun 2022 sampai dengan 2026.

# 1.3. Ruang Lingkup

Ruang lingkup Outlook Daging Sapi meliputi:

 Analisis dekriptif nasional meliputi perkembangan populasi sapi potong, produksi daging, provinsi sentra populasi dan produksi daging, harga daging sapi, dan konsumsi nasional daging sapi, serta volume ekspor dan impor daging selama sepuluh tahun terakhir (2013 - 2022)

- Analisis deskriptif dunia meliputi perkembangan populasi sapi potong dunia, produksi daging sapi dunia, negara sentra populasi dan produksi daging, harga daging sapi dunia, konsumsi daging sapi dunia, dan volume ekspor dan impor daging sapi dunia selama sepuluh tahun terakhir(2011 - 2020)
- Analisis model populasi sapi, estimasi produksi daging (tahun 2022 - 2026), analisis model konsumsi daging, estimasi kosumsi daging (tahun 2022 - 2026), dan estimasi neraca daging sapi (tahun 2022 - 2026).

## **BAB II. METODOLOGI**

#### 2.1. Sumber Data dan Informasi

Outlook Komoditas Daging Sapi tahun 2022 disusun berdasarkan data sekunder dari instansi terkait lingkup Kementerian Pertanian dan instansi di luar Kementerian Pertanian seperti Badan Pusat Statistik (BPS), FAO (Food Agricultural Organization) dan United States Departement of Agriculture (USDA). Jenis variabel, periode dan sumber data disajikan pada Tabel 2.1.

Tabel 2.1. Jenis Variabel, Periode dan Sumber Data

| No. | Variabel                       | Periode   | Sumber Data                              | Keterangan   |
|-----|--------------------------------|-----------|------------------------------------------|--------------|
| 1   | Populasi Sapi Potong           | 1984-2022 | Ditjen Peternakan dan<br>Kesehatan Hewan |              |
| 2   | Produksi Daging Sapi           | 1984-2022 | Ditjen Peternakan dan<br>Kesehatan Hewan |              |
| 3   | Konsumsi Daging Sapi           | 1981-2022 | Badan Pusat Statistik                    | Data Susenas |
| 4   | Harga Eceran Daging Sapi       | 1983-2022 | Kemendag                                 |              |
| 5   | Ekspor-impor daging sapi       | 2003-2022 | BPS                                      |              |
| 6   | Jumlah Penduduk                | 1980-2025 | BPS                                      |              |
| 7   | Produksi daging sapi dunia     | 1980-2020 | FAO                                      |              |
| 8   | Konsumsi daging sapi dunia     | 2016-2020 | USDA                                     |              |
| 9   | Ekspor-impor daging sapi dunia | 2015-2020 | FAO                                      |              |
| 10  | Populasi sapi dunia            | 1980-2020 | FAO                                      |              |

#### 2.2. Metode Analisis

Metode yang digunakan dalam penyusunan Outlook Daging Sapi adalah sebagai berikut:

#### 2.2.1. Analisis Deskriptif

Analisis deskriptif atau perkembangan komoditi daging sapi dilakukan berdasarkan ketersediaan data series yang mencakup indikator populasi, produksi, sentra produksi, ketersediaan, ekspor-impor serta harga dengan analisis deskriptif sederhana. Analisis keragaan dilakukan baik untuk data series nasional maupun internasional.

#### 2.2.2. Potensial Produksi

Potensial Produksi dapat dirumuskan sebagai berikut:

Potensi Produksi = (Jantan Dewasa - Pemacek) + (50% x Jantan Muda) + Betina Afkir

#### 2.2.3. Produksi

Produksi diestimasi berdasarkan cara pembudidayaan dan jenis kelamin anak ternak :

PRODUKSI TAHUN  $t = Potensi Produksi Tahun t x {(%Ruta Penggemukan)} + [(%Ruta Pengembangbiakan x (%Kelahiran Anak Jantan thd Betina Dewasa / %Kelahiran Anak thd Betina Dewasa)]}$ 

## 2.2.4. Produksi Daging

Produksi daging dapat dirumuskan sebagai berikut:

```
DAGING = MY x \{(Pt \times BA) + (0,5 \times Pt \times JM) + [(Pt \times JD) - (PJ \times Pt \times BD)]\}
x (F + BMJ)
```

MY = Rata-rata daging per ekor

Pt = Perkiraan populasi sapi potong

BA = Betina Afkir

JM = Jantan Muda

JD = Jantan Dewasa

PJ = Pejantan

BD = Betina Dewasa

F = Persentase Rumah Tangga usaha Penggemukan

BMJ = Persentase usaha Pengembangbiakan yang menghasilkan pejantan

#### 2.2.5. Analisis Konsumsi

Karena terbatasnya ketersediaan data, analisis permintaan daging ayam ras didekati dari ketersediaan permintaan dalam negeri yang diperoleh dari perhitungan:

Konsumsi Nasional = (Konsumsi R.Tangga + Konsumsi Non R.Tangga) x Jumlah Penduduk

Sama seperti pada proyeksi produksi, proyeksi konsumsi rumah tangga menggunakan model regresi berganda. Untuk konsumsi luar non rumah tangga menggunakan asumsi angka pertumbuhan konsumsi.

## 2.2.6. Kelayakan Model

#### a) MAPE

Model time series masih tetap digunakan untk melakukan peramalan terhadap variabel-variabel bebas yang terdapat dalam model rgresi berganda. Untuk model time series baik analisis trend maupun pemulusan eksponensial berganda (double exponential smoothing), ukuran kelayakan model berdasarkan nilai kesalahan dengan menggunakan statistik MAPE (mean absolute percentage error) atau kesalahan persentase absolut ratarata yang diformulasikan sebagai berikut:

MAPE = 
$$\frac{1}{n} \sum_{t=1}^{n} \left| \frac{X_t - F_t}{X_t} \right|$$
, 100

Dimana: Xt adalah data aktual

Ft adalah nilai ramalan.

Semakin kecil nilai MAPE maka model *time series* yang diperoleh semakin baik. Untuk model regresi berganda kelayakan model diuji dari nilai F hitung (pada Tabel Anova), nilai koefisien regresi menggunakan Uji - t, uji kenormalan sisaan, dan plot nilai sisaan terhadap dugaan.

b) R<sup>2</sup>

R squared merupakan angka yang berkisar antara 0 sampai 1 yang mengindikasikan besarnya kombinasi variabel independen secara bersama sama mempengaruhi nilai variabel dependen. Semakin mendekati angka satu, model yang dikeluarkan oleh regresi tersebut akan semakin baik. Secara manual,  $R^2$  merupakan rumus pembagian antara Sum Squared Regression dengan Sum Squared Total.

$$R^2 = \frac{\text{SSR}}{\text{SST}},$$

SSR: Kuadrat dari selisih nilai Y prediksi dengan nilai rata-rata:

$$Y = \sum (Y_{pred} - Y_{rata-rata})^2$$

SST: Kuadrat dari selisih nilai Y aktual dengan nilai rata-rata:

$$Y = \sum (Y_{aktual} - Y_{rata-rata})^2$$

# C). R<sup>2</sup> Adjusted

Guna melengkapi kelemahan  $R^2$  tersebut, kita bisa menggunakan  $R^2$  adjusted. Pada  $R^2$  adjusted ini sudah mempertimbangkan jumlah sampel data dan jumlah variabel yang digunakan.

$$R_{adj}^2 = 1 - \left[ \frac{(1-R^2)(n-1)}{n-k-1} \right]$$

Keterangan:

n: jumlah observasi

k : jumlah variabel

 $R^2$  adjusted akan menghitung setiap penambahan variabel dan mengestimasi nilai  $R^2$  dari penambahan variabel tersebut. Apabila penambahan pola baru tersebut ternyata memperbaiki model hasil regresi lebih baik dari pada estimasi, maka penambahan variabel tersebut akan meningkatkan nilai  $R^2$  adjusted. Namun, jika pola baru dari penambahan

varaibel tersebut menunjukkan hasil yang kurang dari estimasinya, maka  $R^2$  adjusted akan berkurang nilainya.

Sehingga nilai  $R^2$  adjusted tidak selalu bertambah apabila dilakukan penambahan variabel. Jika melihat dari rumus diatas, nilai  $R^2$  adjusted memungkinkan untuk bernilai negatif, jika MSE-nya lebih besar dibandingkan (SST/p-1). Jika melihat rumus diatas, nilai  $R^2$  adjusted pasti lebih kecil dibandingkan nilai R squared.

## d). R<sup>2</sup> Predicted

Salah satu tujuan untuk meregresikan variabel independen dengan variabel dependen adalah membuat rumus dan menggunakannya untuk melakukan prediksi dengan nilai nilai tertentu dari variabel independennya. Jika anda ingin melakukan prediksi nilai Y, maka anda juga seharusnya melihat nilai dari  $R^2$  predicted.

 $R^2$  predicted mengindikasikan seberapa baik model tersebut untuk melakukan prediksi dari observasi yang baru.

Rumus Predicted R Squared

Predicted R<sup>2</sup>= 
$$\left[1 - \left(\frac{PRESS}{SST}\right)\right]x$$
 100

Dengan nilai PRESS adalah:

$$\mathsf{PRESS} = \sum_{i=1}^n e_{(i)}^2.$$

Nilai e adalah selisih dari Y prediksi dengan Y aktual.

Berdasarkan rumusnya, nilai  $R^2$  predicted bisa bernilai negatif dan nilainya bisa dipastikan lebih rendah dibandingkan  $R^2$ . Nilai predicted  $R^2$  perlu diperhatikan meskipun nantinya tidak menggunakan model hasil dari regresi tersebut. Karena nilai  $R^2$  predicted ini untuk mengidentikasi apakah model atau rumus yang anda hasilkan overfit atau tidak. Pengertian overfit adalah bahwa model terlalu bagus jika dilihat dari  $R^2$  dan  $R^2$  adjusted, namun kebaikan model ini terlalu berlebihan. Hal ini disebabkan karena

banyaknya observasi atau jumlah data yang ada dalam model tersebut sehingga kemungkinan adanya gangguan atau "noise".

Meskipun secara  $R^2$  dan  $R^2$  adjusted, model tersebut dikatakan baik, namun jika  $R^2$  predicted tidak mencerminkan hal tersebut artinya model anda mengalami overfit tersebut.

Secara singkat dapat disimpulkan bahwa R² menunjukkan hubungan secara bersama sama variabel independen terhadap pola variabel dependen. Sedangkan R² adjusted membantu kita untuk melihat pengaruh jumlah variabel terhadap nilai Y. Dan terakhir, R² predicted memberi kita informasi tentang kebaikan model tersebut jika akan menggunakan untuk prediksi observasi baru dan atau memberi informasi tentang overfit pada model.

## e). Uji Heteroskedastisitas

Gejala heteroskedastisitas dapat ditentukan dengan diagram scatter antara variabel Y prediksi (Fits) dengan variabel residual.



Gambar 2.1. Uji Heteroskedastisitas Residual Minitab

Berdasarkan plot scatter diatas, dapat disimpulkan tidak ada gejala heteroskedastisitas apabila plot menyebar merata di atas dan di bawah sumbu 0 tanpa membentuk sebuah pola tertentu. Diagram di atas dapat menyimpulkan bahwa tidak terdapat gejala heteroskedastisitas.

## f). Multikolinearitas Pada Interprestasi Regresi Linear

VIF (*variance inflation factor*) merupakan salah satu statistik yang dapat digunakan untuk mendeteksi gejala multikolinear (*multicollinearity*, *collinearity*) pada analisis regresi yang sedang kita susun. VIF tidak lain adalah mengukur keeratan hubungan antar variabel bebas, atau X. Cara menghitung VIF ini tidak lain adalah fungsi dari R<sup>2</sup> model antar X.

Andaikan kita memiliki tiga buah variabel bebas:  $X_1$ ,  $X_2$ , dan  $X_3$  dan ketiganya mau diregresikan dengan sebuah variabel tak bebas Y. Nilai VIF kita hitung untuk masing-masing X.

Untuk X1, prosedurnya adalah

- Regresikan  $X_1$  terhadap  $X_2$  dan  $X_3$ , atau modelnya  $X_1=b_0+b_1X_2+b_2X_3+e$
- Hitung R<sup>2</sup> dari model tersebut.
- VIF untuk  $X_1$  adalah VIF<sub>1</sub> = 1 / (1  $\mathbb{R}^2$ )

Untuk X<sup>2</sup>, senada saja dengan prosedur di atas

- Regresikan  $X_2$  terhadap  $X_1$  dan  $X_3$ , atau modelnya  $X_2 = b_0 + b_1X_1 + b_2X_3 + e$
- Hitung R<sup>2</sup> dari model tersebut
- VIF untuk  $X^2$  adalah VIF<sub>2</sub> = 1 / (1  $R^2$ )

Perhatikan bahwa R2 dalam hitungan di atas adalah ukuran keeratan antar X. Jika  $R^2 = 0$ , maka VIF = 1. Kondisi ini adalah kondisi ideal. Jadi idealnya, nilai VIF = 1. Semakin besar  $R^2$ , maka VIF semakin tinggi (semakin kuat adanya collinearity). Misal  $R^2 = 0.8$  akan menghasilkan VIF = 5. Tidak ada batasan baku berapa nilai VIF dikatakan tinggi, nilai VIF di atas 5 sudah membuat kita harus hati-hati.

#### g). Uji Autokorelasi

Uji autokorelasi digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik autokorelasi yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi.

Prasyarat yang harus terpenuhi adalah tidak adanya autokorelasi dalam model regresi. Metode pengujian yang sering digunakan adalah dengan uji Durbin-Watson (uji DW) dengan ketentuan sebagai berikut:

- 1) Jika d lebih kecil dari dL atau lebih besar dari (4-dL) maka hopotesis nol ditolak, yang berarti terdapat autokorelasi.
- 2) Jika d terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.
- 3) Jika d terletak antara dL dan dU atau diantara (4-dU) dan (4-dL), maka tidak menghasilkan kesimpulan yang pasti.

Nilai du dan dl dapat diperoleh dari tabel statistik Durbin Watson yang bergantung banyaknya observasi dan banyaknya variabel yang menjelaskan.

# h). Model Fungsi Transfer

Model fungsi transfer adalah suatu model yang menggambarkan nilai dari prediksi masa depan dari

suatu deret berkala (disebut deret output atau Yt) didasarkan pada nilainilai masa lalu dari deret itu sendiri (Yt) dan didasarkan pula pada satu atau lebih deret berkala yang berhubungan (disebut deret input atau Xt) dengan deret output tersebut. Model fungsi transfer merupakan fungsi dinamis yang pengaruhnya tidak hanya pada hubungan linier antara deret input dengan deret output pada waktu ke-t, tetapi juga pada waktu t+1, t+2, ..., t+k. Hubungan seperti ini pada fungsi transfer dapat menimbulkan delai (waktu senjang) antara peubah input dan peubah output.

Tujuan pemodelan fungsi transfer adalah untuk menetapkan model yang sederhana, yang menghubungkan deret output (Yi) dengan deret input (Xi) dan gangguan/noise (ni). Wei (1994) juga menjelaskan bahwa di dalam fungsi transfer terdapat rangkaian output yang mungkin dipengaruhi oleh rangkaian multiple input. Pada kasus single input peubah, dapat menggunakan metode korelasi silang yangdianjurkan oleh Box and Jenkins (1976). Teknik ini juga dapat digunakan ketika terdapat single input peubah yang lebih dari satu selama antar

variable input tidak berkorelasi silang. Jika beberapa atau semua peubah input berkorelasi silang maka teknik prewhitening atau metode korelasi silang tidak dapat digunakan secara langsung. Alasan utama bagi perlunya suatu perencanaan atau peramalan adalah adanya tenggang waktu pengambilan keputusan yang dapat berkisar dari beberapa hari atausampai beberapa tahun. Pada analisis fungsi transfer untuk peramalan deret berkala univariate, terdapat deret berkala output yang diperkirakan dipengaruhi oleh deret berkala input dan input-input lain yang digabungkan dalam satu kelompok yang disebut gangguan (noise). Deret input mempengaruhi deret output melalui sebuah fungsi transfer yang mendistribusikan dinamis melalui pengaruhnya secara beberapa periode waktu yang akan datang dengan persentase tertentu yang disebut sebagai bobot r espons impuls atau bobot fungsi transfer.



Model umum Fungsi Transfer:

$$y_{t} = \upsilon(B)x_{t} + N_{t}$$

$$y_{t} = \frac{\omega_{s}(B)}{\delta_{r}(B)}x_{t-b} + \frac{\theta_{q}(B)}{\varphi_{p}(B)}\varepsilon_{t}$$

Dimana:

- b → panjang jeda pengaruh X<sub>t</sub> terhadap Y<sub>t</sub>
- r → panjang lag Y periode sebelumnya yang masih mempengaruhi Y<sub>t</sub>
- s →panjang jeda X periode sebelumnya yang masih mempengaruhi Y<sub>t</sub>
- p → ordo AR bagi noise Nt
- q → ordo MA bagi noise N<sub>t</sub>



Gambar 2.2. Tahapan Penyusunan Model Fungsi Transfer

# BAB III. ANALISIS DESKRIPTIF DAGING SAPI NASIONAL

#### 3.1. Perkembangan Populasi dan Produksi

Perkembangan populasi sapi potong dan produksi daging sapi untuk jangka sepuluh tahun terakhir akan dijelaskan pada bagian ini. Pada bagian ini dijelaksn secara deskriptif provinsi yang menjadi sentra populasi maupun sentra produksi daging sapi. Pada bagian lain juga dibuat analisis perkembangan harga daging sapi di tingkat konsumen, perkembangan volume dan nilai impor dan eskpor daging sapi, serta perkembangan konsumsi daging baik konsumsi rumah tangga maupun konsumsi total.

#### 3.1.1. Populasi Sapi Potong

Populasi sapi potong dalam kurun waktu beberapa tahun belakangan ini meningkat dengan pesat. Menurut data Statistik Peternakan dan Kesehatan Hewan Tahun 2021 (angka tetap), populasi sapi potong di Indonesia saat ini mencapai 17,97 juta ekor, meningkat sekitar 2,79% dari populasi tahun 2020 sebanyak 17,48 juta ekor. Pada tahun 2022 berdasarkan angka sementara diperkirakan populasi sapi potong akan mencapai 18,61 juta ekor atau meningkat 3,52%.

Peningkatan ini seiring dengan perkembangan teknologi terutama di sektor budidaya (on farm) yang semakin modern, sehingga proses produksi menjadi lebih cepat dan efisien. Pemerintah mengeluarkan rencana terbaru yakni program Sikomandan (Sapi Kerbau Andalan Negeri) yaitu upaya meningkatkan populasi sapi dan kerbau (Kementerian Pertanian 2020). Program ini merupakan program andalan bagi Dirjen PKH yang bertujuan untuk meningkatkan populasi dan produksi sapi dan kerbau di Indonesia. Pilihan program terhadap sapi dan kerbau, disebabkan karena daging sapi dan kerbau sebagai salah satu sumber protein hewani yang sangat disukai masyarakat.

Mencermati hal tersebut dalam upaya percepatan peningkatan populasi sapi dan kerbau, pemerintah menjalankan Program Sikomandan melaui kegiatan Optimalisasi Reproduksi. Melalui Optimalisasi Reproduksi diharapkan dapat memperbaiki system pelayanan peternakan kepada masyarakat, perbaikan manajemen reproduksi dan produksi ternak serta perbaikan sistem pelaporan dan pendataan reproduksi ternak melalui sistem aplikasi iSIKHNAS. Untuk mengoptimalkan pelaksanaan Optimalisasi Reproduksi, maka pelaksanaannya dilakukan secara teritegrasi dengan kegiatan pendukung lainnya yaitu pendistribusian semen beku dan N<sub>2</sub> cair, penanggulangan gangguan reproduksi, penyelamatan pemotongan betina produktif dan penguatan pakan serta peningkatan SDM melalui pelatihan Inseminasi Buatan (IB), Pemeriksa Kebuntingan (PKb) dan ATR.

Populasi sapi potong di Indonesia untuk sepuluh tahun terakhir periode 2013-2022 menunjukkan pertumbuhan positif, rata-rata meningkat sebesar 4,43% per tahun, meskipun terjadi fluktuasi populasi sapi potong ini. Populasi sapi potong selama periode lima tahun terakhir (2018 -2022) tumbuh lebih lambat dengan rata-rata pertumbuhan 3,16% per tahun. Meskipun pada tahun 2013 terjadi penurunan sangat signifikan yaitu sebesar 20,62% karena data yang dihasilkan berdasarkan hasil Sensus Pertanian 2013, tetapi di tahun-tahun selanjutnya terus terjadi peningkatan. Penurunan populasi tahun 2013, karena pada tahun itu ada Sensus Pertanian, sehingga jumlah populasi sapi merupakan hasil Sensus, bukan berdasarkan perkirakan populasi menggunakan parameter.

Selama periode 5 tahun terakhir, pertumbuhan tertinggi diperkirakan terjadi di tahun 2022 yaitu sebesar 3,52% (Angka Sementara), pertumbuhan ini sangat signifikan terjadi di luar Pulau Jawa sebesar 4,48%, sedangkan di Pulau Jawa hanya 2,20%. Di tahun-tahun berikutnya nampak pertumbuhan populasi sapi potong di Indonesia terus mengalami peningkatan, selama periode lima tahun terakhir pertumbuhan populasi sapi di Indonesia sebesar 3,16% per tahun, pertumbuhan yang terjadi di luar Pulau Jawa lebih tinggi

yaitu sebesar 4,02% per tahun dibanding Pulau Jawa yang hanya mencapai 2,01% per tahun (Gambar 3.1 dan Lampiran 1).

Upaya meningkatkan populasi sapi potong dapat dilakukan dengan sapi betina produktif dengan menerapkan perbaikan cara bibit, perkawinan Inseminasi Buatan (IB) atau alam, pakan, manajemen pemeliharaan yang baik. Faktor yang mempengaruhi tingkat keberhasilan IB seleksi pada sapi pejantan yang tepat, kualitas dan jenis sapi betina yang akan di IB, penampungan semen, penilaian kualitas semen, proses pengenceran, proses penyimpanan semen, pengangkutan semen, proses inseminasi, pencatatan sapi induk yang sudah di IB, serta bimbingan penyuluhan pada peternak sapi potong. Jika salah satu langkah atau proses di atas ada yang tidak sesuai atau tidak prosedural maka program inseminasi buatan bisa terancam gagal. Program IB merupakan salah satu pilihan yang tepat yang dapat diandalkan dalam memperbanyak populasi ternak (Soeharsono, 2017).



Gambar 3.1. Perkembangan Populasi Sapi Potong di Indonesia, 2013-2022

## 3.1.2. Produksi Daging Sapi

Yang dimaksud dengan produksi daging sapi adalah produksi karkas ditambah dengan *edible oval* (bagian yang dapat dimakan, termasuk jeroan). Keragaan produksi daging sapi di Indonesia selama sepuluh tahun terakhir, tahun 1913-2022 secara umum menunjukkan penurunan, rata-rata turun 0,08% per tahun. Pertumbuhan produksi di Jawa masih positif, di Jawa rata-rata mengalami peningkatan produksi sebesar 0,13% per tahun, sebaliknya di Luar Jawa terjadi penurunan sebesar -0,28% per tahun.

Perkembangan produksi daging sapi nasional lima tahun terakhir (2018 - 2022) cenderung masih terjadi peningkatan, yaitu rata-rata naik sebesar 0,69% per tahun. Rendahnya pertumbuhan produksi daging karena penurunan produksi daging terjadi pada tahun 2020. Pada tahun 2020 sekitar Bulan Maret pandemi Covid-19 melanda Indonesia, berakibat produksi daging turun sebesar -10,18% dari 505 ribu ton menjadi 453 ribu ton. Pada tahun 2021 pandemi Covid-19 masih berlangsung, berdasarkan angka sementara produksi daging sapi Kembali meningkat menjadi 487 ribu ton atau naik sebesar 7,58%.

Selama periode 2018 - 2028 tersebut masih terdapat peningkatan produksi daging di Jawa sebesar 1,56%, sebaliknya di Luar Jawa turun sebesar -0,37% per tahun.

Melihat perbandingan angka populasi sapi potong dan produksi daging sapi di Jawa dan Luar Jawa, populasi di luar Jawa lebih banyak dibandingkan dengan di Jawa namun produksi daging sapi di Jawa lebih tinggi dibandingkan di luar Jawa, hal ini karena penduduk di Jawa lebih banyak. Selama ini populasi sapi di Luar Jawa selain untuk memenuhi kebutuhan di wilayah sendiri juga menopang kebutuhan sapi bakalan potong di Jawa dan Sulawesi, terutama dari Provinsi Nusa Tenggara Timur dan Nusa Tengara

Barat. Disamping itu angka produksi sangat dipengaruhi oleh konsumsi per kapita daging sapi, oleh karena jumlah penduduk di Jawa lebih tinggi dari Luar Jawa, maka produksi daging di Jawa juga lebih tinggi (Gambar 3.2 dan Lampiran 2).



Gambar 3.2. Perkembangan Produksi Daging Sapi di Indonesia, 2013 - 2022

# 3.2. Sentra Populasi Sapi Potong di Indonesia

Sentra populasi sapi potong di Indonesia tahun 2018-2022 terdapat di 10 provinsi, memberikan kontribusi hingga 78,40% dari total populasi sapi potong di Indonesia. Empat provinsi diantaranya secara kumulatif berkontribusi lebih dari 50%, yaitu Provinsi Jawa Timur, Jawa Tengah, Sulawesi Selatan dan Nusa Tenggara Barat. Provinsi Jawa Timur merupakan kontributor terbesar yakni sebesar 27,6% atau rata-rata produksi selama lima tahun terakhir sebanyak 4,83 juta ekor, selanjutnya diikuti oleh Jawa

Tengah dengan kontribusi 10,5% atau populasi rata-rata lima tahun terakhir 1,83 juta ekor per tahun, diikuti Sulawesi Selatan dengan kontribusi 8,0% atau rata-rata sekitar 1,40 juta ekor, dan Nusa Tenggara Barat dengan kontribusi 7,4% atau rata-rata populasinya sekitar 1,29 juta ekor. Sentra populasi lainnya adalah Provinsi Nusa Tenggara Timur, Sumatera Utara, Lampung, Aceh, Bali, dan Sumatera Barat, dengan kisaran kontribusi 2,4% sampai dengan 6,5% (Gambar 3.3 dan Lampiran 3.).



Gambar 3.3. Sentra Populasi Sapi Potong di Indonesia, Tahun 2018-2022

# 3.3. Sentra Produksi Daging Sapi di Indonesia

Pada periode 2018-2022 sentra produksi daging sapi Indonesia terdapat di 10 (sepuluh) provinsi dengan total kontribusi mencapai 75,71%. Sentra produksi daging sapi terkonsentrasi di 3 (tiga) provinsi di Pulau Jawa, tertinggi adalah Jawa Timur dengan kontribusi sebesar 20,9% atau rata-rata produksi daging selama lima tahun terakhir sebesar 102,06 ribu ton, berikutnya Jawa Barat berkontribusi 16,6% atau rata-rata 81,04 ribu ton per tahun, dan Jawa Tengah berkontribusi 13,0% atau rata-rata 63,58 ribu ton

per tahun. Tingginya produksi daging di ketiga provinsi tersebut karena jumlah penduduk yang besar, sedangkan rata-rata konsumsi daging per kapita relatif sama yaitu sekitar 2,6 kg/kapita/tahun.

Tujuh provinsi sentra produksi daging lainnya adalah Banten, Sumatera Barat, Lampung, Sulawesi Selatan, DKI Jakarta, Sumatera Utara, dan Sumatera Selatan, dengan kontribusi berkisar antara 2,7% (Sumatera Selatan) sampai 5,2% (Banten) (Gambar 3.4 dan Lampiran 4). Untuk 24 (dua puluh empat) provinsi non sentra kontribusi produksi daging sebesar 24,3% terhadap produksi daging nasional.



Gambar 3.4. Sentra Produksi Daging Sapi di Indonesia, 2018 - 2022

# 3.4. Konsumsi Daging Sapi di Indonesia

Angka konsumsi daging sapi segar hasil SUSENAS kami bedakan menjadi konsumsi daging sapi rumah tangga dan konsumsi daging sapi total (setara daging sapi). Konsumsi setara daging sapi adalah penjumlahan dari konsumsi daging sapi segar dan konsumsi daging olahan, yang telah

dikonversi ke daging sapi segar. Daging sapi olahan antara lain meliputi abon, daging sapi awetan, tetelan, soto/gule/rawon, sate/tongseng, bakso, daging goreng/bakar. Mulai tahun 2017 konsumsi daging total bersumber dari BAPOK (Survei Bahan Pokok). Komponen konsumsi daging total adalah yang bersumber dari konsumsi rumah tangga, industri besar sedang, industri mikro kecil, hotel, restoran, rumah makan dan jasa kesehatan. Untuk selanjutnya dalam menghitung konsumsi daging sapi nasional dipergunakan konsumsi setara daging sapi yang bersumber dari BAPOK dikalikan dengan jumlah penduduk.

Masyarakat Indonesia khususnya di wilayah pedesaan biasanya makan daging sapi pada saat ada perayaan/hajatan atau hari-hari besar keagamaan. Namun demikian masyarakat perkotaan sehari-hari makan daging sapi, baik yang dimasak di rumah, rumah makan, hotel maupun restaurant. Indonesia masih kekurangan pasokan daging sapi, dan untuk mencukupi permintaan daging sapi terutama di kota-kota besar seperti Jakarta, Jawa Barat, Lampung dan sekitarnya, sebagian diperoleh dari impor, baik berupa sapi bakalan maupun daging dan jeroan sapi.



Gambar 3.5. Perkembangan Konsumsi Daging Sapi di Indonesia, Tahun 2013-2022

Perkembangan konsumsi setara daging sapi per kapita masyarakat Indonesia dari tahun 2018 hingga tahun 2022 berfluktuasi dan tetapi cenderung naik rata-rata sebesar 1,64% per tahun. Pada periode ini puncak konsumsi tertinggi di tahun 2022 naik sebesar 6,50% yaitu dari 2,46 kg/kap/tahun di tahun 2021 menjadi 2,62 kg/kap/tahun di tahun 2022. Namun juga mengalami penurunan konsumsi cukup signifikan di tahun 2020 sebesar 7,81% yaitu dari 2,56 kg/kap/tahun tahun 2019 menjadi 2,36 kg/kap/tahun di tahun 2020. Hal ini merupakan dampak dari terjadinya wabah penyakit Covid-19 yang terjadi sejak Bulan Maret 2020 sampai akhir tahun 2020. Pada tahun 2021 konsumsi daging kembali meningkat sebesar 4,24% menjadi 2,46 kg/kap/tahun, hal karena pada tahun 2021 mulai Bulan September jumlah kasus Covid-19 makin melandai dan kebijakan PPKM levelnya diturunkan menjadi level 1 atau level 2.

Selama lima tahun terakhir (2018-2022) konsumsi daging sapi rumah tangga meningkat 0,45% per tahun, atau lebih rendah dari kenaikan konsumsi daging sapi total. Konsumsi rumah tangga daging sapi segar tahun 2020 sebesar 0,43 kg/kap/tahun, turun 11,32% dari tahun 2019 sebesar 0,485 kg/kapita/tahun (Gambar 3.5 dan Lampiran 5). Perbandingan konsumsi rumah tangga daging sapi dibandingkan dengan konsumsi total setara daging adalah 19%, hal ini berarti daging yang dimasak di rumah hanya sekitar 19%, sisanya 81% daging banyak dikonsumsi sebagai daging olahan atau daging siap saji. Konsumsi daging sapi tahun 2020 dan tahun 2021, cenderung cenderung stabil, tetapi konsumsinya menurun akibat menurunnya pendapatan masyarakat dampak wabah Covid-19.

#### 3.5. Perkembangan Harga Daging Sapi di Indonesia

Harga daging sapi di pasaran sangat beragam bergantung pada jenis dan kualitas daging, meskipun di tingkat pasar tradisional konsumen belum memperhatikan jenis daging yang akan dibeli. Namun demikian secara umum terdapat sedikit perbedaan harga diantara jenis atau kualitas daging yang dipasarkan.

Perkembangan harga daging sapi di tingkat konsumen sejak tahun 2018 hingga tahun 2022 cenderung terus meningkat, rata-rata sebesar 3,12% per tahun. Peningkatan tertinggi tahun 2022 sebesar 6,61% menjadi Rp. 134.960/kg dari tahun 2021 sebesar Rp.126.596,-/kg. Harga daging sapi pada 5 tahun terakhir (2018 - 2022) cenderung naik, dari harga Rp 121.850,-/kg hingga menjadi Rp 134.960,-/kg dengan peningkatan sebesar 3,12% per tahun (Gambar 3.6 dan Lampiran 6). Penurunan harga daging kualitas I di tahun 2020, dipengaruhi oleh permintaan yang menurun akibat wabah Covid-19. Peningkatan harga daging di tahun 2021 dan 2022 karena meningkatnya harga sapi bakalan impor dari Australia. Pelaku penggemukan sapi bakalan menyatakan bahwa harga sapi bakalan dari Australia meningkat dari US\$ 3,2 per kilogram berat hidup pada Juli 2020, menjadi US\$ 3,95 per kilogram berat hidup pada Januari 2021 (Kontan, 21 Januari 2021). Kemudian pada Bulan Mei 2021 naik kembali menjadi US\$ 4,52/kg, atau naik 19,9% dibandingkan periode yang sama tahun sebelumnya.

Sebelum tahun 2018, data bersumber dari Kementerian Perdagangan, sedangkan tahun 2018 sampai sekarang menggunakan data yang bersumber dari Bank Indonesia. Harga daging belum juga turun meskipun sudah masuknya daging impor beku yang harganya relatif lebih murah. Hal ini karena sebagian besar konsumen lebih menyukai daging sapi segar yang masih hangat, dibandingkan daging impor beku.

Fenomena terjadinya lonjakan harga biasanya dikarenakan konsumsi daging yang tinggi di hari-hari besar keagamaan dan hari raya nasional, khususnya setiap menjelang puasa sampai lebaran. Realita di lapangan setelah lebaran harga tidak pernah kembali ke posisi awal dan menetap diharga barunya, dan hal ini berulang dari tahun ke tahun. Sebenarnya pemerintah telah berusaha keras mengendalikan kenaikan harga daging sapi di pasaran dengan melakukan impor daging beku dari negara produsen

seperti India, Australia, Selandia Baru, dan Spanyol namun tetap saja harga masih bertengger tinggi karena pangsa pasar antara daging sapi beku hasil impor dan daging segar berbeda. Jadi meskipun harga tinggi tetap diminati oleh kalangan khusus ini, terutama industry daging olahan seperti baso dan sosis.



Gambar 3.6. Perbandingan Volume Impor daging dan Harga Daging Sapi di Indonesia, Tahun 2013 - 2022

Berdasarkan Gambar 3.6, menunjukkan ada pengaruh antara volume impor daging dengan harga daging dalam negeri. Jika volume impor daging meningkat maka ada kecenderungan harga daging sapi domestik menurun, kondisi ini terutama terjadi pada dua tahun terakhir. Hal ini karena harga daging impor beku, cenderung lebih murah dibandingkan dengan harga daging sapi segar (fresh meat). Harga daging sapi segar lebih disukai industri kuliner (seperi bakso), dibandingkan daging sapi impor beku, karena kualitas bakso yang dihasilkan lebih baik dan lebih disukai konsumen jika menggunakan daging sapi segar sebagai bahan bakunya.

## 3.6. Perkembangan Ekspor dan Impor Daging Sapi di Indonesia

Walaupun sedikit Indonesia telah mengekspor daging lembu, negara tujuan ekspor kita adalah Jepang, Hongkong, Korea Selatan, Arab Saudi dan Timor Timur. Perkembangan volume ekspor daging sapi di Indonesia periode 2018 sampai dengan 2022 berfluktuasi dan cenderung stagnan dalam jumlah relatif sangat kecil dibandingkan dengan volume impornya. Jumlah volume impor pada periode tersebut berkisar antara 164 ribu ton sampai 276 ribu ton, sebaliknya volume ekspornya hanya berkisar antara 14 sampai 70 ton. Berbanding terbalik dengan volume impor yang cenderung terus menanjak, dan selama periode tersebut gap antara volume ekspor dan impor semakin lebar, puncaknya terjadi tahun 2019 dan 2021 dengan defisit mencapai 266,43 ribu ton dan 276,69 ribu ton. Tahun 2019 terjadi volume impor daging sapi tertinggi mencapai 266,43 ribu ton atau setara US\$ 851,09 juta, situasi ini berdampak pada terjadinya defisit neraca perdagangan daging sapi cukup tinggi pula, mencapai 851,04 juta US\$ (Gambar 3.7, Gambar 3.8, dan Lampiran 7). Pada tahun 2022 dengan kondisi sampai dengan Bulan September impor daging telah mencapai 227,26 ribu ton dengan nilai sebesar 829,61 Juta US\$. Volume impor daging dan jeroan tahun 2022 diperkirakan akan meningkat dan melampaui tahun 2021 karena masih tersisa 3 bulan, seiring meningkatnya permintaan daging akibat wabah Covid-19 mulai turun dampaknya.



Gambar 3.7. Perkembangan Produksi dan Impor Daging Sapi di Indonesia, Tahun 2013 - 2022

Perbandingan produksi daging yang berasal dari pemotongan sapi hidup, jika dibandingkan dengan volume impor daging, maka volume impor daging rata-rata sepuluh tahun terakhir sebesar 34%. Impor daging yang cukup besar akan banyak menyedot devisa negara. Selama tahun 2021 - 2022 devisa yang dibutuhkan untuk impor daging sekitar 800 - 900 juta US\$. Untuk menghemat devisa negara, pemenuhi daging yang berasal dari sapi lokal menjadi salah satu solusi yang terbaik, untuk itu populasi sapi potong lokal perlu terus ditingkatkan. Selama 3 (tiga) tahun terakhir upaya peningkatan populasi dilakukan melalui program UPSUS SIWAB (Upaya Khusus Sapi Indukan Wajib Bunting) dan saat ini dilanjutkan dengan program Sikomandan (Sapi Kerbau Komoditas Andalan Negeri).



Gambar 3.8. Perkembangan Nilai Impor Daging Sapi di Indonesia, Tahun 2013 - 2022

#### 3.7. Negara Asal Impor Daging dan Jeroan Sapi di Indonesia

Impor daging Indonesia secara umum dibagi menjadi 2 bentuk yaitu daging lembu dan jeroan lembu. Komposisinya untu daging lembu sebesar 78%, sementara jeroan lembu hanya 22%. Di negara-negara maju pada umumnya jeroan lembu tidak dikonsumsi, jadi yang dikonsumsi hanya daging saja.

Pada tahun 2021 ada sebanyak 15 (lima belas) negara asal impor daging dan jeroan lembu Indonesia, namun hanya ada 5 (lima) negara terbesar sebagai negara asal impor karet Indonesia dengan total kontribusi sebesar 98% dari total impor daging Indonesia. Total impor daging lembu tahun 2021 sebesar 214,65 ribu ton, sementara jeroan lembu sebesar 62,10 ribu ton, sehingga total impor daging dan jeroan lembu sebesar 276,76 ribu ton.

Negara - negara asal impor daging dan jeroan lembu tersebut adalah adalah Australia pada tahun 2021 volume impor daging dan jeroan lembu mencapai 126,07 ribu ton atau berkontribusi 45,6%, diikuti India sebesar 84,95 ribu ton (30,7%), USA sebesar 25,96 ribu ton (9,4%), New Zealand

18,00 ribu ton (6,5%) dan Brazil sebesar 15,91 ribu ton (5,7%). Sementara sebesar 2,1% berasal dari negara lainnya (Gambar 3.9 dan Lampiran 8).



Gambar 3.9. Kontribusi Impor Daging Lembu dan Jeroan Lembu Tahun 2021

## BAB IV. ANALISIS DESKRIPTIF DAGING SAPI DUNIA

#### 4.1. Perkembangan Populasi Sapi dan Produksi Daging Dunia

Perkembangan populasi sapi potong dunia secara global tahun 2012-2020 berfluktuasi dan cenderung sedikit meningkat rata-rata 1,00% per tahun. Selama periode 2012 - 2020 populasi sapi potong dunia tidak pernah mengalami penurunan, jadi selalu tumbuh positif. Selama hampir satu dekade besaran populasi sapi potong dunia mengalami pertumbuhan pada kisaran 1.420 juta sampai 1.530 juta ekor. Kondisi ini populasi sapi potong dunia terus meningkat seiring dengan pertumbuhan konsumsi yang semakin meningkat karena terus bertambahnya jumlah penduduk dunia. Populasi sapi potong dunia tahun 2012 diperkirakan sebesar 1.427 juta ekor, setelah mengalami peningkatan populasi sapi selama tahun 2012 - 2020, maka populasi sapi tahun 2020 mencapai 1.526 juta ekor (Sumber: FAO). (Gambar 4.1 dan Lampiran 8).



Gambar 4.1. Perkembangan Populasi dan Produksi Sapi Potong Dunia, Tahun 2012 - 2020

Perkembangan produksi daging sapi potong dunia secara global tahun 2012-2020 berfluktuasi dan tetapi cenderung meningkat rata-rata pertumbuhan 1,00% per tahun, atau lebih tinggi dibandingkan pertumbuhan populasi. Hal ini menunjukkan permintaan daging dunia, pertumbuhan lebih cepat dibandingkan pertumbuhan populasi sapi, hal ini diduga karena adanya pertumbuhan ekonomi dunia, sehingga di beberapa negeri pendapatan per kapitanya meningkat. Selama periode 2012 - 2020 produksi daging dunia hanya pernah mengalami penurunan dua kali yaitu tahun 2015 produksi daging sapi dunia turun 0,81%, dan tahun 2020 juga turun 0,05%, selain itu pertumbuhan produksi daging selalu tumbuh positif. Penurunan produksi daging tahun 2020, dipicu adanya wabah Covid-19.

Selama hampir satu dekade besaran produksi daging sapi potong dunia pada kisaran 62 juta ton sampai 68 juta ton. Kondisi ini mengakibatkan produksi daging sapi potong dunia terus meningkat seiring dengan bertambahnya kebutuhan untuk konsumsi daging sapi penduduk dunia. Produksi daging sapi potong dunia tahun 2012 diperkirakan sebesar 62,50 juta ton, pada tahun 2015 ada penurunan sehingga produksi sebesar 63,43 juta ton, akhirnya produksi daging sapi tahun 2020 mencapai 67,88 juta ton (Sumber: FAO). (Gambar 4.1 dan Lampiran 8).

Berdasarkan Gambar 4.1. perkembangan produksi daging sapi dunia selama sepuluh tahun terakhir cenderung fluktuatif, tetapi trend produksi daging sapi dunia menunjukkan peningkatan rata-rata sebesar 1,00% per tahun. Jika dilihat lebih dalam ada korelasi antara populasi sapi dunia dan produksi daging sapi. Pada tahun 2015 pada saat populasi sapi dunia naik sebesar 0,87%, maka produksi daging dunia juga turun sebesar 0,78%. Pada tahun 2016 sampai tahun 2020 populasi sapi dunia terus menunjukkan peningkatan, seiring dengan itu produksi daging sapi dunia juga menunjukkan peningkatan. Pada tahun 2020 populasi sapi dunia diperkirakan tetap naik sebesar 0,98% menjadi sebesar 1.526 juta ekor, sementara

produksi daging sapi diperkirakan turun sebesar 0,05% menjadi 67,88 juta ton.

Populasi sapi potong dunia tahun 2016-2020 terkonsentrasi di 10 negara, dengan total kontribusi mencapai 54,23% terhadap populasi dunia, dengan rata-rata populasi sebesar 1.495 juta ekor. Populasi sapi potong tertinggi adalah Brazil dengan rata-rata populasi selama 5 tahun terakhir 216,03 juta ekor dan berkontribusi 14,44% terhadap populasi sapi dunia, diikuti India berkontribusi 12,85% dengan rata-rata populasi 192,2 juta ekor, peringkat ketiga USA dengan kontribusi 6,26% atau rata-rata populasi sebesar 93,7 juta ekor. Ethiopia menempati urutan keempat, berkontribusi 4,24% dengan rata-rata populasi 63,4 juta ekor. Urutan ke-lima China berkontribusi 4,20% dengan rata-rata populasi 62,8 juta ekor per tahun. Negara sentra populasi lainnya (4 negara) berkontribusi di bawah 5%, yaitu Argentina, Pakistan, Mexico, dan Sudan. Indonesia peringkat ke-21 dunia dengan kontribusi sebesar 1,11% terhadap populasi sapi dunia dengan jumlah rata-rata populasi sebesar 16,65 juta ekor per tahun (Sumber : FAO) (Gambar 4.2 dan Lampiran 9).

Tabel 4.1. Populasi Sapi Dunia di Sepuluh Negara Sentra Populasi, Tahun 2016 - 2020

| Peringkat | Negara    |           |           | Kontribusi | Kumulatif |           |           |       |                   |
|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-------|-------------------|
|           |           | 2016      | 2017      | 2018       | 2019      | 2020      | Rata-rata | (%)   | Kontribusi<br>(%) |
| 1         | Brazil    | 218.191   | 215.004   | 213.809    | 215.009   | 218.150   | 216.033   | 14,44 | 14,44             |
| 2         | India     | 189.678   | 191.055   | 192.265    | 193.463   | 194.482   | 192.189   | 12,85 | 27,29             |
| 3         | USA       | 91.888    | 93.625    | 94.298     | 94.805    | 93.793    | 93.682    | 6,26  | 33,56             |
| 4         | Ethiopia  | 59.487    | 60.392    | 61.510     | 65.354    | 70.292    | 63.407    | 4,24  | 37,80             |
| 5         | China     | 63.539    | 61.987    | 63.418     | 63.823    | 61.129    | 62.779    | 4,20  | 41,99             |
| 6         | Argentina | 52.637    | 54.793    | 54.793     | 55.008    | 54.461    | 54.338    | 3,63  | 45,63             |
| 7         | Pakistan  | 42.800    | 44.400    | 46.084     | 47.821    | 49.624    | 46.146    | 3,09  | 48,71             |
| 8         | Mexico    | 33.779    | 34.278    | 34.820     | 35.225    | 35.639    | 34.748    | 2,32  | 51,03             |
| 9         | Sudan     | 30.632    | 30.926    | 31.223     | 31.489    | 31.757    | 31.205    | 2,09  | 53,12             |
| 21        | Indonesia | 16.004    | 16.429    | 16.433     | 16.930    | 17.467    | 16.653    | 1,11  | 54,23             |
| 11        | Lainnya   | 671.751   | 674.170   | 685.277    | 692.181   | 699.145   | 684.505   | 45,77 | 100               |
|           | Dunia     | 1.470.386 | 1.477.058 | 1.493.932  | 1.511.107 | 1.525.939 | 1.495.684 | 100   |                   |

<sup>\*)</sup> Sumber: FAO didownload 4 Oktober 2022



Gambar 4.2. Kontribusi Negara Sentra Populasi Sapi Potong Dunia, Tahun 2016- 2020

Beberapa negara produsen terbesar daging sapi dunia seperti Amerika Serikat (USA), China, Brazil, Argentina dan Russia memproduksi daging sapi cukup besar karena seiring dengan besarnya jumlah penduduk di masing-masing negara tersebut, seperti kita ketahui negara-negara tersebut masuk kategori sepuluh negara dengan jumlah penduduk terbesar di dunia. Sebagai besar impor daging Indonesia berasal dari Australia dan India, sementara untuk impor sapi hidup berasal dari Australia.

Tabel 4.2. Produksi Sapi Dunia di Sepuluh Negara Sentra Produksi, Tahun 2016 - 2020

| Peringkat | Negara    | Produksi (Ribu ton) |        |        |        |        | _         | Kontribusi | Kumulatif         |
|-----------|-----------|---------------------|--------|--------|--------|--------|-----------|------------|-------------------|
|           |           | 2016                | 2017   | 2018   | 2019   | 2020   | Rata-rata | (%)        | Kontribusi<br>(%) |
| 1         | USA       | 11.471              | 11.907 | 12.219 | 12.349 | 12.357 | 12.061    | 18,18      | 18,18             |
| 2         | Brazil    | 9.284               | 9.550  | 9.900  | 10.200 | 10.100 | 9.807     | 14,78      | 32,96             |
| 3         | China     | 5.566               | 5.726  | 5.810  | 6.002  | 6.049  | 5.831     | 8,79       | 41,75             |
| 4         | Argentina | 2.316               | 2.069  | 2.238  | 2.352  | 2.372  | 2.269     | 3,42       | 45,17             |
| 5         | Australia | 1.879               | 1.927  | 1.981  | 2.028  | 2.081  | 1.979     | 2,98       | 48,15             |
| 6         | Mexico    | 1.589               | 1.569  | 1.608  | 1.625  | 1.634  | 1.605     | 2,42       | 50,57             |
| 7         | Russia    | 1.466               | 1.433  | 1.460  | 1.428  | 1.435  | 1.444     | 2,18       | 52,75             |
| 8         | Perancis  | 1.112               | 1.168  | 1.321  | 1.394  | 1.382  | 1.275     | 1,92       | 54,67             |
| 9         | Canada    | 1.155               | 1.137  | 1.109  | 1.107  | 1.091  | 1.120     | 1,69       | 56,36             |
| 24        | Indonesia | 518                 | 486    | 498    | 505    | 516    | 505       | 0,76       | 57,12             |
| 11        | Lainnya   | 27.619              | 28.222 | 28.596 | 28.926 | 28.867 | 28.446    | 42,88      | 100,00            |
|           | Dunia     | 63.976              | 65.194 | 66.740 | 67.916 | 67.883 | 66.342    | 100        |                   |

Keterangan: Sumber FAO, didownload 5 Oktober 2022

Produksi daging sapi dunia tahun 2016-2020 disuplai oleh sembilan negara sentra yang memberikan kontribusi kumulatif mencapai 56,36%. Produksi daging sapi tertinggi adalah USA rata-rata selama periode tersebut sebesar 12,06 juta ton atau berkontribusi 18,18% terhadap produksi daging sapi dunia, berikutnya Brazil sebesar 9,80 juta ton dan berkontribusi 14,78%, China sebesar 5,83 juta ton dan berkontribusi 8,79%, Argentina sebesar 2,27 juta ton dengan kontribusi 3,42%. Empat negara tersebut telah berkontribusi 45,17% terhadap produksi daging sapi dunia. Negara sentra lainnya berkontribusi di bawah 4%, yaitu Australia berkontribusi 2,98%, Mexico (2,42%), Russia (2,18%), Perancis (1,92%), dan Canada (1,69%). Sementara Indonesia berada di urutan ke-24 dengan kontribusi terhadap produksi daging dunia sebesar 0,76%. Indonesia meskipun dari jumlah penduduk peringkat ke-4 dunia, namun konsumsi daging peringkat ke-24, menunjukkan bahwa tingkat konsumsi daging sapi/kerbau di Indonesia tergolong rendah, yaitu hanya sekitar 2,62 kg/kap/tahun dibandingkan sepuluh negara sentra produksi daging. Rincian negara sentra produksi daging sapi disajikan di Gambar 4.1, Gambar 4.3 dan Lampiran 9.

Australia produksi daging rata-rata 1,97 juta ton, tetapi memiliki populasi yang cukup tinggi yaitu sekitar 25 juta ekor lebih. Sebagian besar populasi sapi Australia diekspor ke Indonesia. Penduduk Australia lebih sedikit dibandingkan dengan jumlah populasi sapi, yaitu pada tahun 2019 sebesar 25 juta orang (Wikipedia, 2019). Sebagai perbandingan penduduk Indonesia mencapai 268 juta jiwa, sedangkan populasi sapi hanya sekitar 18 juta ekor saja.



Gambar 4.3. Kontribusi Negara Sentra Daging Sapi Dunia, 2016 - 2020

# 4.2. Perkembangan Konsumsi Daging Sapi Dunia

Seiring bertambah pesatnya jumlah penduduk dunia, maka konsumsi daging sapi dunia dari tahun 2011 - 2020 juga meningkat, rata-rata sebesar 0,91% per tahun. Total konsumsi daging sapi dunia tahun 2020 diperkirakan mencapai 59,10 juta ton, lebih tinggi dari tahun 2016 sebesar 56,18 juta ton. Pertumbuhan konsumsi daging sapi dunia lima tahun terakhir (2016-2020)

lebih tinggi, yaitu sebesar 1,30% per tahun, karena pertumbuhan produksinya juga meningkat 1,37% per tahun. Semakin tingginya konsumsi domestik daging sapi dunia, menunjukkan bahwa secara ekonomi banyak negara berkembang menuju negara maju sehingga pendapatan per kapita meningkat, dan berakibat makin tingginya konsumsi daging sapi (Gambar 4.4 dan Lampiran 10).



Gambar 4.4. Perkembangan Konsumsi Daging Sapi Dunia, Tahun 2011 - 2020



Gambar 4.5. Sepuluh Negara Konsumen Terbesar Daging Sapi Dunia, Tahun 2016 - 2020

Negara yang mengonsumsi daging sapi terbesar adalah China dengan rata-rata konsumsi per tahun sebesar 8,05 juta ton dan berkontribusi sebesar 13,8% terhadap total konsumsi daging sapi dunia. Selanjutnya Brazil dengan konsumsi sebesar 7,79 juta ton per tahun atau berkontribusi 13,40%, Uni Eropa dengan konsumsi sebesar 6,63 juta ton atau berkontribusi 11,41%, dan India sebesar 2,58 juta ton dengan kontribusi 4,43%. Sementara negara lainnya kontribusinya terhadap konsumsi dunia adalah Argentina (4,24%), Mexico (3,23%), Pakistan (2,45%), Jepang (2,19%) dan Russia berkontribusi 1,94%. (Gambar 4.5)

#### 4.2. Perkembangan Harga Daging Sapi Dunia

Tren harga daging sapi pada lima tahun terakhir tahun 2018 - 2022 ada fluktuatif, tetapi pada 2 tahun terakhir cenderung meningkat. Pada Januari 2018 sampai Desember 2020 harga daging stabil dan sedikit mengalami peningkatan, pada tahun 2018 dengan titik tertinggi terjadi pada

Bulan Maret sebesar 4,44 USD/kg, pada tahun 2019 dimana harga daging sapi mencapai titik tertinggi pada Bulan Nopember sebesar 5,94 USD/kg. Pada tahun 2020 harga tertinggi dicapai pada Bulan Juni sebesar 5,10 USD/kg. Pada tahun 2021 harga daging sapi tertinggi dicapai pada Bulan Desember yatitu sebesar 5,95 USD/kg. Harga daging sapi tertinggi dicapai pada Bulan Maret tahun 2022 sebesar 6,25 USD/kg.

Jika dilihat dari harga rata-rata bulanan, maka tahun 2018 harga rata-rata daging sapi sebesar 4,20 USD/kg. Tahun 2019 harga rata-rata bulanan daging sapi naik menjadi 4,76 USD/kg atau naik 13,6%. Tahun 2020 pada saat mulai terjadi wabah Covid-19 harga rata-rata bulanan turun menjadi 4,67 USD/kg atau turun 2%. Tahun 2021 wabah Covid-19 masih melanda beberapa negara dunia, tetapi harga daging sapi rata-rata bulanan naik menjadi 5,39 USD/kg atau naik cukup signifikan 15,4%. Tahun 2022 pada saat dunia dibayangi oleh krisis pangan dan energi, harga daging sapi kembali naik menjadi 5,98 USD/kg atau naik 11%.

Harga daging sapi dunia dipengaruhi oleh beberapa faktor antara lain suplai daging dari negara-negara penghasil sapi seperti India, Australia, USA, Brazil, Uni Eropa. Jika dibandingkan dengan harga daging sapi dalam negeri, maka harga sapi dunia lebih rendah dari harga daging sapi domestik. Harga daging sapi dunia tahun 2022 rata-rata sebesar 5,98 USD/kg, jika 1 USD setara dengan Rp.14.500,- maka harga daging sapi dunia sekitar Rp 87.000,- per kilogram. Pada saat yang sama harga daging sapi domestik berkisar antara Rp 90.000,- sampai Rp 135.000,- per kilogram. Harga daging sapi impor beku relatif lebih murah yaitu berkisar Rp 80.000,- sampai Rp. 100.000,- per kilogram.

Pertumbuhan harga sapi dunia relative cepat, karena selama lima tahun terakhir pertumbuhan harga daging sapi dunia hanya 0,60% per bulan atau sekitar 7,2%/tahun. Harga daging sapi di Indonesia pun masih tergolong tinggi. Ada beberapa jenis daging sapi yang dijual di pasaran, yakni secondary cut, oval meat, dan primary cut. Harga ketiga jenis daging

ini normal, daging *secondary cut* antara Rp 90 ribu sampai Rp 100 ribu, sementara *primary cut* di atas Rp 120 ribu per kilogram.



Gambar 4.6. Perkembangan Harga Daging Sapi Dunia Bulanan 2018 -2022

## 4.4. Perkembangan Ekspor dan Impor Daging Sapi Dunia

#### 4.4.1. Perkembangan Ekspor Daging Sapi Dunia

Volume ekspor daging sapi dunia tahun 1980-2020 mengalami fluktuasi, namun ada kecenderungan sedikit mengalami peningkatan. Periode lima tahun terakhir (2016-2020) pertumbuhan ekspor daging dunia sebesar 4,30% per tahun atau lebih rendah dari pertumbuhan impor yang mencapai 4,99% per tahun. Rata-rata volume ekspor daging dunia selama 5 tahun terakhir sebesar 6,65 juta ton per tahun, sementara volume impor rata-rata sebesar 6,86 juta ton (FAO, 2022). (Gambar 4.6. dan Lampiran 11).



Gambar 4.7. Perkembangan Volume Ekspor dan Impor Daging Sapi Dunia, Tahun 2011-2020

Empat negara eksportir daging sapi/lembu terbesar dunia dalam kurun waktu 2016 - 2020 menguasai pangsa pasar internasional dengan kontribusi 54,00%. Kontributor eksportir terbesar adalah Brazil sebesar 20,66% dengan rata-rata ekspor daging sapi per tahun sekitar 1,37 juta ton, kedua Australia berkontribusi sebesar 15,55% dengan volume ekspor rata-rata 1,03 juta ton per tahun, ketiga USA berkontribusi 12,08% (rata-rata volume ekspor sekitar 804 ribu ton), keempat New Zealand berkontribusi sebesar 5,71% (volume ekspor sekitar 380 ribu ton).

Enam negara lainnya yang menyumbang ekspor daging sapi/lembu cukup besar kontribusinya adalah Argentina (5,45%), Irlandia (4,76%), Canada (4,73%), Belanda (4,61%), Uruguay (4,00%), dan Paraguay (3,98%). Negara dunia lainnya berkontribusi sebesar 18,48% untuk ekspor daging sapi/lembu dunia. Perkembangan volume ekspor dapat dilihat pada Lampiran 12, Gambar 4.8.



Gambar 4.8. Kontribusi Negara Eksportir Daging Sapi Dunia, Tahun 2016 - 2020

# 4.4.2. Perkembangan Impor Daging Sapi Dunia

Pertumbuhan volume impor daging sapi dunia tahun 2011-2020 mempunyai pola yang sama dengan volume ekspor, juga tumbuh positif ratarata per tahun 5,18% atau volume impor rata-rata sebesar 6,31 juta ton setara karkas. Periode lima tahun terakhir volume impor daging sapi meningkat rata-rata 4,99% per tahun dengan volume impor rata-rata 6,87 juta ton setara karkas.

Importir daging sapi terbesar dunia terkonsentrasi di 10 (sepuluh) negara dengan kontribusi agregat sebesar 68,03%. China menempati urutan pertama dengan volume impor selama lima tahun terakhir rata-rata sebesar 1,52 juta ton per tahun daging setara karkas yang berkontribusi sebesar 22,15% terhadap total impor dunia. Berikutnya USA yang setiap tahun

memerlukan rata-rata daging impor sebesar 880 ribu ton sehingga berkontribusi 12,82%, Jepang dengan volume impor rata-rata sebesar 578 ribu ton dan berkontribusi 8,42%, Korea Selatan per tahun melakukan impor sekitar 266 ribu ton daging sapi dan berkontribusi 3,88%. Russia rata-rata impor daging sapi 256 ribu ton dan berkontribusi 3,72%, Chile per tahun impor 228 ribu ton dengan kontribusi 3,33%. Empat negara lain yakni Jerman, Mesir, Inggris Raya, dan Perancis berkontribusi di bawah 3,5%. Menurut data FAO, Indonesia rata-rata setiap tahun mengimpor 134 ribu ton daging sapi, atau berkontribusi 1,95% terhadap impor dunia. Rincian perkembangan volume impor dunia disajikan pada Gambar 4.9., dan Lampiran 13.



Gambar 4.9. Kontribusi Negara Importir Daging Sapi Dunia, Tahun 2016 - 2020

# BAB V. ANALISIS PEMODELAN PRODUKSI DAN KONSUMSI DAGING SAPI DAN KERBAU

#### 5.1. Proyeksi Populasi Sapi Potong Tahun 2023-2026

Untuk melakukan proyeksi produksi daging sapi, maka harus melakukan proyeksi populasi terlebih dahulu. Setelah diperoleh proyeksi populasi, maka diperkiran jumlah *potensial stok daging*, *ready stok* dan konversi ke daging. Model populasi sapi potong yang digunakan adalah model Fungsi Transfer dengan peubah output popuasi sapi potong, dan peubah input harga daging sapi dunia. Data populasi sapi bersumber dari Ditjen. Peternakan dan Kesehatan Hewan, sementara data harga daging sapi dunia bersumber dari World Bank.

Pada tahap pertama model fungsi transfer adalah eksplorasi variabel ouput (populasi) dan variabel input (data harga daging sapi nasional). Eksplorasi data dilakukan dengan menampilkan plot data populasi maupun harga daging sapi lokal. Berdasarkan plot data dapat diketahui pola data series 38 tahun yang akan digunakan untuk pemodelan. Berdasarkan Gambar 5.1 dan Gambar 5.2, terlihat bahwa terdapat data populasi sapi potong nasional nasional memiliki tren meningkat dari tahun ke tahun meskipun ada beberapa tahun mengalami penurunan, sedangkan harga daging sapi dunia meskipun berfluktuasi tetapi cenderung terus meningkat terutama setelah tahun 2000. Harga daging sapi nasional cenderung turun pada sekitar 5 tahun terakhir, akibat kondisi ekonomi dunia yang mengalami kontraksi beberapa tahun terakhir. Populasi sapi potong nasional nasional maupun harga daging sapi dunia terindikasi tidak stasioner berdasarkan plotnya.



Gambar 5.1. Plot Data Populasi Sapi Potong, 1984-2021



Gambar 5.2. Plot Data Harga Daging Sapi Nasional, 1984-2021

Tahapan penyusunan model Fungsi Transfer Populasi Sapi Potong dengan variable input harga daging sapi nasional adalah sebagai berikut:

- a. Pembagian series data awal menjadi series data training dan testing
- b. Pemeriksaan kestasioneran
- c. Pencarian model tentatif untuk variabel input
- d. Prewhitening dan korelasi silang
- e. Pengepasan model
- f. Identifikasi model noise
- g. Pengepasan model
- h. Peramalan berbasis fungsi transfer

Data populasi sapi potong dan harga daging sapi nasional tahun 1984 - 2022 sebanyak 39 series akan dibagi menjadi series data training untuk periode 1984-2017 dan series data testing untuk periode 2018-2022.

Selanjutnya dilakukan uji kestationeran data untuk data input Xt yaitu harga daging sapi nasional menggunakan uji Augmented Dickey-Fuller (ADF).

Hipotesis pada uji ADF ini adalah:

H<sub>0</sub>: data tidak stasioner

H<sub>1</sub>: data stasioner

Tabel 5.1. Output uji Dickey Fuller untuk Harga Daging Sapi Nasional Tanpa Differencing

Nilai test-statistic= 0,626 yang lebih besar dari critical values (nilai tau3), baik untuk taraf 1%, 5% maupun 10% menunjukan bahwa H₀ gagal ditolak, atau series data harga daging sapi nasional belum stasioner. Oleh karena itu akan dilakukan pembedaan/differencing satu kali dan kemudian dilakukan uji ADF.

Tabel 5.2. Output uji Dickey Fuller untuk Harga Daging Sapi Nasional Differencing 1

Uji ADF pada data yang telah dilakukan differencing satu kali menunjukkan bahwa nilai test-statistic yaitu -0,858 lebih besar dari critical values (tau1) menunjukkan bahwa H<sub>0</sub> diterima yang berarti data harga daging sapi nasional belum stasioner setelah diffrencing 1 kali.

Setelah dilakukan *differencing* dua kali menunjukkan bahwa nilai *test-statistic* yaitu -8,795 lebih kecil dari *critical values* (*tau1*) menunjukkan bahwa H<sub>0</sub> ditolak yang berarti data harga daging sapi nasional sudah stasioner setelah differencing 2 kali.

Tabel 5.3. Output uji Dickey Fuller untuk Harga Daging Sapi Nasional Differencing 2

Pencarian model tentatif variabel input harga karet dunia dilakukan melalui penelusuran menggunakan model ARIMA. Model terbaik dapat dipilih menggunakan script *auto.arima* yang tersedia pada RStudio. Data yang digunakan untuk memilih model terbaik adalah series data training. Hasil output *automodel* ARIMA untuk harga karet dunia adalah sebagai berikut:

Tabel 5.4. Output model auto Arima untuk Harga Daging Sapi Nasional

```
Series: train.h[, "Hrg_daging"]
ARIMA(0,2,1)
Coefficients:
          ma1
      -0.6466
     0.1237
sigma^2 estimated as 7257582: log likelihood=-288.61
AIC=581.22
            AICc=581.65 BIC=584.09
Training set error measures:
                   ME
                          RMSE
                                    MAE
                                             MPE
                                                     MAPE
                                                               MASE
Training set 666.9202 2568.619 1862.079 2.027635 8.056711 0.5153162
```

Berdasarkan pimilihan orde ARIMA menggunakan automodel menyarankan bahwa model terbaik untuk harga daging sapi dunia adalah ARIMA (0,2,1) dengan MAPE 8,06%. Model ARIMA (0,2,1) hanya menunjukkan bahwa tidak ada pengaruh AR dan hanya dipengaruhi MA, model hanya ditentukan oleh faktor Differencing 2. Pada umumnya model ARIMA (0,2,1) akan menghasikan data estimasi yang hampir sama untuk beberapa tahun ke depan. Disamping itu model ARIMA (0,2,1) memiliki MAPE yang masih cukup besar (di atas 5%), sehingga perlu dicoba untuk mencari model tentatif lain.

Selain menggunakan script auto.arima model tentatif dapat juga dipilih dengan arima selection. Berikut adalah output yang dihasilkan untuk memilih model ARIMA tentative terbaik untuk factor input Xt yaitu harga daging sapi nasional.

Tabel 5.5. Output model Arima Selection untuk Harga Daging Sapi Nasional Differencing 2

```
p q sbc
[1,] 5 5 397.2773
[2,] 5 4 459.7122
[3,] 1 5 462.4180
[4,] 2 5 467.3063
[5,] 0 5 467.3345
[6,] 3 5 473.0866
[7,] 4 5 478.1055
[8,] 4 4 486.8533
[9,] 2 0 487.5940
[10,] 2 1 488.0656
```

Hasil output R-Studio akan menunjukkan sepuluh model tentatif dimana idealnya model terbaik adalah model yang memiliki nilai SBC terkecil dan hasil uji MAPE Training maupun Testing yang paling kecil. Model ARIMA yang direkomendasikan ditunjukkan dari nilai p,d,q. Sebagai contoh model pertama dengan nilai p=5 dan q=5. Karena data harga daging sapi nasional telah dilakukan differencing dua kali berarti d=2, artinya model yang direkomendasikan adalah ARIMA (5,2,5). Dilakukan uji coba model tentative yang yang tediri sepuluh kombinasi orde ARIMA seperti pada Tabel 5.4. Setelah dilakukan pengujian model, maka model terbaik hasil penelusuran berdasarkan perbandingan MAPE data training dan dat testing, maka model tentative terbaik adalah ARIMA (0,2,5). Untuk mengetahui apakah model ARIMA (0,2,5) lebih baik dari hasil auto arima yaitu ARIMA (0,2,1) maka dapat dibandingkan dari nilai MAPE.

# Tabel 5.6. Pengujian Model ARIMA (0,2,1)

Model ARIMA (0,2,1) menghasilkan koefsien ma1 yang signifikan pada tingkat kepercayaan 99%. Selanjutnya dilakukan pengujian kemampuan dalam meramalkan yaitu dengan melihat MAPE data Training dan Testing. Hasil pengujian menunjukkan bahwa MAPE data training sebesar 7,90 dan MAPE data testing sebesar 6,82. MAPE sudah cukup baik untuk data training, tetapi perlu dicari MAPE yang lebih kecil baik untuk data training maupun testing. Selanjutnya dipilih model tentative lain yaitu ARIMA (0,2,5), dilakukan pengujian untuk nilai aic dan koefisien ar dan ma, hasilnya seperti pada Tabel 5.7.

Tabel 5.7. Output model ARIMA (0,2,5) untuk Harga Daging Sapi Nasional

```
Call:
arima(x = train.h[, "Hrg_daging"], order = c(0, 2, 5))
Coefficients:
          ma1
                   ma2
                           ma3
                                    ma4
                                              ma5
      -0.5383
               -0.0345
                        0.4649
                                 -0.0807
                                          -0.5626
                0.2309 0.2011
                                           0.2264
       0.1949
                                 0.2550
5.6.
sigma^2 estimated as 5296431: log likelihood = -295.65, aic = 603.31
z test of coefficients:
     ma1 -0.538314
                0.230949 -0.1492 0.881386
0.201114 2.3115 0.020806
0.255012 -0.3164 0.751733
ma2 -0.034460
ma3 0.464874
ma4 -0.080674
ma5 -0.562580
                0.226367 -2.4853 0.012946 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Hasil output untuk ARIMA (0,2,5) menunjukkan nilai aic yang paling kecil yaitu aic = 603,31. Disamping itu hasil pengujian untuk koefisien ma1, ma3, dan ma5 menunjukkan bahwa semua signifikan dengan tingkat kepercayaan 95%. MAPE untuk model ARIMA (0,2,5) data training sebesar 7,31 dan data Testing = 3,69. Berdasarkan perbandingan MAPE ini maka model ARIMA (0,2,5) menghasilkan MAPE Testing yang lebih kecil, sehingga ARIMA (0,2,5) lebih akurat dalam meramalkan dibandingkan ARIMA (0,2,1)

Tabel 5.8. Perbandingan MAPE ARIMA (0,2,5) untuk Harga Daging Sapi Nasional

Tahap selanjutnya untuk penyusunan model fungsi transfer ini adalah prewhitening dan korelasi silang. Korelasi silang menggambarkan struktur hubungan antara Xt dengan Yt. Untuk mengidentifikasi pengaruh Xt terhadap Yt maka deret Xt harus stasioner atau sudah distasionerkan. Dalam konteks pemodelan Xt terhadap Yt, untuk membuat Xt stasioner tidak dengan pembedaan (differencing) namun dengan mengambil komponen white noise dari Xt (prewhitening). Prewhitening dilakukan terhadap deret input Xt yang didefinisikan sebagai alfa serta deret input Yt yang didefinisikan sebagai

beta. Hasil ouput untuk prewhitening dan korelasi silang berupa grafik ACF untuk beta dan alfa.



Gambar 5.3. Plot korelasi silang Populasi Sapi Potong dengan Harga Daging Sapi Nasional

Hasil plot korelasi silang digunakan untuk mengidentifikasi ordo r, s, dan b. Ordo r adalah panjang lag Y periode sebelumnya yang masih mempengaruhi Yt, , ordo s adalah panjang lag X periode sebelumnya yang masih mempengaruhi Yt, dan ordo b adalah panjang jeda pengaruh Xt terhadap Yt. Indentifikasi ordo r,s dan b hanya dilihat pada lag yang positif.

Plot korelasi silang diatas menunjukkan bahwa hanya lag 0 yang signifikansi, maka nilai b=0 atau nilai lag pertama yang signifikan. Kemudian, tidak ada tambahan lagi nilai lag yang signifikan maka nilai s=0. Mengingat data populasi sapi potong dan harga daging dunia merupakan data tahunan yang tidak mengandung musiman maka diasumsikan nilai r=0. Nilai b=0 menunjukkan tidak ada jeda pengaruh antara harga daging sapi nasional pada waktu t terhadap populasi sapi potong pada waktu t. Nilai s=0 berarti ada korelasi antara populasi dan harga daging sapi nasional pada tahun yang sama. Dengan kata lain, dampak dari harga daging nasional terhadap produksi dirasakan pada waktu yang sama (t).

Tahap selanjutnya dilakukan pengepasan model, untuk nilai r,s dan b. Hasil pengujian fungsi transfer dengan nilai r=0, s=0, dan b=0 menghasilkan nilai MAPE yang cukup baik yaitu sebesar 6,77%.

Tabel 5.9. Output model order b=0, s=0, r=0 Arima (0,0,0) untuk Untuk Fungsi Transfer Populasi Sapi Potong Nasional

Untuk menghasilkan order yang paling tepat untuk menetukan orde Arima fungsi transfer dengan melakukan identifikasi model noise. Untuk menghasilkan model terbaik dengan menggunakan auto-arima pada R Studio, model maka noise yang disarankan adalah Arima (1,0,0). Model ini ternyata masih kurang tepat, karena menghasilkan MAPE yang cukup besar yaitu 83,09%.

Tabel 5.10. Output Fungsi Transfer dengan model noise auto Arima (1,0,0)

Oleh karena model autoarima disarankan differencing tingkat 1, maka solusinya akan dicari model alternative. Model alternative yang diberikan untuk model noise adalah seperti pada Tabel 5.11.

Tabel 5.11. Output Fungsi Transfer tentatif model *noise* Arima (Tanpa Diiferencing)

```
\vec{0}
[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
          904.2746
        0
           905.8789
           909.3546
     2 0
      4
        5
           912.7992
     3
           913.0447
        0 913.9253
        5
          915.5073
      3 4 917.3115
        4
           918.2271
      4 0 918.4752
```

Setelah dilakukan uji coba untuk seluruh model tentatif, model terbaik yang terpilih untuk model noise adalah ARIMA (1,0,0) seperti yang disarankan dengan model auto arima, karena menghasilkan nilai sbc= 444,3 dan aic=541,7. Nilai sbc ini terkecil diantara model tentative yang lain. Selanjutnya model tersebut didefinisikan sebagai modelres dan dilihat signifikansi MA. Model noise untuk residual dengan Arima (1,0,0) menghasilkan komponen ar1, intercep dan komponen fungsi transfer (xreg) yang signifikan dengan tingkat kepercayaan 99%. Salah satu syarat kebaikan model Fungsi Transfer adalah koefsien Xreg yang signifikan, karena akan menunjukkan bahwa ada pengaruh deret input (xreg). Model Arrima Fungsi transfer dengan order r=0, s=0 ,b=0 dengan model noise ARIMA (1,0,0) menghasilkan MAPE training yang cukup signifikan yaitu sebesar 4,56%.

Tabel 5.12. Output Fungsi Transfer tentatif model noise Arima (1,0,0)

# Peramalan berbasis fungsi transfer

Berdasarkan model fungsi transfer dengan noise ARIMA (1, 0, 0), dilakukan peramalan berbasis nilai aktual dimana populasi sapi potong diestimasi menggunakan data aktual harga daging nasional periode 2017 - 2021. Meskipun data aktual populasi sapi potong periode 2017 - 2021 telah ada, dilakukan peramalan populasi untuk mengecek performance model fungsi transfer. Hasil output untuk mengestimasi populasi sapi potong tahun 2017-2021.

Tabel 5.13. Uji coba Peramalan berbasis Fungsi Transfer dengan nilai input data aktual harga daging sapi nasional.

Uji coba peramalan populasi sapi potong periode 2018-2022 menggunakan fungsi transfer ARIMA (1,0,0) dengan input harga daging sapi nasional nilai aktual menghasilkan MAPE 3,94%. Nilai MAPE ini sudah cukup baik karena relatif kecil di bawah 5%, sehingga tingkat kesalahan nilai peramalan tidak lebih dari 5%.

Tujuan melakukan pemodelan fungsi transfer adalah untuk mendapatkan nilai ramalan periode ke depan, yakni populasi sapi potong tahun 2022-2025. Karena data series input harga daging nasional tersedia hingga tahun 2021, maka perlu dilakukan peramalan harga daging nasional terlebih dahulu atau dengan kata lain peramalan populasi dilakukan berbasis nilai ramalan harga daging sapi sapi nasional.

Oleh karenanya, terlebih dahulu dilakukan estimasi harga daging sapi nasional periode 2022-2025 menggunakan model ARIMA (0,2,5) sebagaimana yang telah diperoleh dari tahap pencarian model tentatif untuk variabel input, sebagai variabel input harga daging sapi nasional. Pemilihan variabel input harga daging sapi nasional diduga sangat berpengaruh pada populasi sapi potong nasional. Selanjutnya dilakukan peramalan populasi sapi potong dengan fungsi transfer ARIMA (1, 0, 0) sebagai model terbaik berdasarkan

tahapan pengepasan model dengan noise. Peramalan populasi dengan fungsi transfer ARIMA (1,0,0) menggunakan nilai ramalan harga daging sapi dunia yang telah diestimasi dengan ARIMA (0,2,5). Output hasil ramalannya seperti pada Tabel 5.15.

Tabel 5.14. Uji coba Peramalan berbasis Fungsi Transfer dengan nilai input data Ramalan Harga Daging Sapi Nasional.

```
Series: test.h[, "Populasi"]
Regression with ARIMA(1,0,0) errors
Coefficients:
          ar1 intercept
                 ntercept xreg
9900580 51.1681
      0.5625
s.e. 0.0000
                             0.0000
sigma^2 estimated as 6.579e+11: log likelihood=-75.85
             AICc=155.02 BIC=153.3
AIC=153.69
Training set error measures:
                             RMSE
                                        MAE
                                                  MPE
                                                            MAPE
                                                                      MASE
                                                                                 ACF1
                     MF
Training set 850719.1 901823.2 850719.1 4.799442 4.799442 1.562958 0.4142548
```

Estimasi populasi sapi potong berbasis fungsi transfer dengan model noise ARIMA (1,0,0) selama 5 tahun terakhir (2017-2021) menggunakan input harga daging sapi nasional hasil angka ramalan ARIMA (0,2,5) menghasilkan MAPE untuk data testing ini sebesar 4,80%. Hal ini menunjukkan bahwa meskipun menggunakan data ramalan hasil peramlan dengan fungsi transfer ini masih sangat akurat dengan kesalahan sekitar 5%.

Setelah dilakukan peramalan populasi sapi potong baik menggunakan input (harga daging sapi nasional) baik dengan data aktual maupun ramalan, tahapan berikutnya adalah pengepasan model arima output. Pengepasan model ARIMA output dimaksudkan untuk membandingkan hasil ramalan populasi baik berdasarkan data training (1984-2016) maupun data testing (2017-2021).

Untuk membandingkan ketepatan model estimasi, dilakukan pembandingan hasil estimasi terhadap data aktual populasi sapi potong pada tahun 2017 - 2021 (data testing). Hasil ramalan yang dibandingkan yaitu ramalan dengan fungsi transfer ARIMA (1,0,0) dimana input harga daging sapi nasional yang digunakan adalah data aktual maupun ramalan. Berikut output yang ditampilkan (Tabel 5.15) dan grafik yang ditampilkan (Gambar 5.4).

Tabel 5.15. Hasil Uji coba Peramalan berbasis Fungsi Transfer Untuk populasi sapi Potong tahun 2017 - 2021



Gambar 5.4. Perbandingan Hasil Ramalan Populasi Sapi Potong Tahun 2017-2021

Dari grafik di atas terlihat jika dibandingkan dengan data aktual populasi sapi potong 2017-2021 (warna hitam). Warna merah adalah hasil permalan langsung untuk populasi sapi potong dengan arima biasa tanpa fungsi transfer. Model ARIMA biasa yang terbaik adalah ARIMA (0,1,1). Model arima biasa menghasilkan hasil peramalan yang agak jauh dengan data aktualnya. Jika menggunakan ARIMA (0,1,1) tanpa fungsi transfer menghasilkan nilai MAPE data training= 4,90 dan MAPE testing= 6,54. Sementara peramalan dengan fungsi transfer khususnya jika input harga daging nasional yang digunakan adalah data aktual maka hasil ramalan populasinya (garis warna biru) sangat menyerupai pola data populasi actual. Fungsi Transfer Arima (1,0,0) menghasilkan MAPE data training sebesar =4,56 dan MAPE testing= 3,98. Jika input harga daging nasional yang digunakan adalah hasil ramalan, maka estimasi populasinya (garis warna hijau) hampir menyerupai pola data asli, hasil estimasinya sangat mendekati nilai aktualnya, ditunjukkan dengan MAPE testing terkecil yaitu sebesar = 4,80. Hasil peramalan menunjukkan data yang hampir berimpit dengan data actual, sehingga MAPE yang dihasilkan kecil, dan akurasi peramalan cukup tinggi.

Dari uraian ini dapat disimpulkan bahwa penggunaan model Fungsi transfer dapat meningkat akurasi hasil peramalan, jika menggunakan ARIMA (0,1,1) tanpa fungsi transfer menghasilkan MAPE Testing sebesar 6,54, sementara jika menggunakan model Fungsi Trasnfer ARIMA (1,0,0) dengan faktor input harga daging sapi nasional menghasilkan MAPE testing = 4,79, seperti terlihat pada Tabel 5.16.

Tabel 5.16. Perbandingan MAPE Model Arima dan Fungsi Transfer

| Model                                           | MAPE Training | MAPE Testing<br>Aktual | MAPE Testing<br>Ramalan |
|-------------------------------------------------|---------------|------------------------|-------------------------|
| ARIMA (0,1,1)                                   | 4,902         |                        | 6,543                   |
| Fungsi Transfer ARIMA (1,0,0) Xreg=harga daging | 4,563         | 3,938                  | 4,799                   |

Selain mencari model terbaik untuk meramalkan populasi sapi potong, akan diestimasi juga populasi sapi potong lima tahun ke depan (2022-2025) menggunakan fungsi transfer ARIMA (1,0,0) dengan menggunakan seluruh data (data tahun 1984 - 2021). Berikut adalah output hasil ramalan lima tahun ke depan (Tabel 5.18).

Tabel 5.17. Model Fungsi Transfer Arima (1,0,0) untuk seluruh data.

Tabel 5.18. Hasil Estimasi Populasi Sapi Potong Nasional Tahun 2022 - 2026 Menggunakan Fungsi Transfer ARIMA (1,0,0)

```
Time Series:
Start = 40
End = 44
Frequency = 1
[1] 18399885 18484245 18818598 19130655 19375448
```

Setelah dilakukan run ulang dengan menggunakan model terbaik yaitu model Fungsi Transfer ARIMA (1,0,0) model yang dihasilkan memiliki MAPE 4,12%. Hasil peramalan untuk populasi sapi 5 tahun ke depan seperti terlihat pada Tabel 5.19.

Tabel 5.19. Hasil Estimasi Populasi Sapi Potong Tahun 2022-2026

| Tahun *)    | Populasi Sapi Potong<br>(Ekor) **) | Pertumbuhan (%) |  |  |  |
|-------------|------------------------------------|-----------------|--|--|--|
| 2021        | 17.977.214                         |                 |  |  |  |
| 2022        | 18.610.148                         | 3,52            |  |  |  |
| 2023        | 18.484.245                         | (0,68)          |  |  |  |
| 2024        | 18.818.595                         | 1,81            |  |  |  |
| 2025        | 19.130.655                         | 1,66            |  |  |  |
| 2026        | 19.375.448                         | 1,28            |  |  |  |
| Rata-rata p | Rata-rata pertumbuhan (%/th)       |                 |  |  |  |

<sup>\*)</sup> Keterangan: Tahun 2021 Angka Tetap Ditjen PKH, Tahun 2022 Angka Sementa

Angka populasi sapi potong tahun 2021 dan 2022 tersebut di atas, diperoleh dari hasil verifikasi dan validasi Setditjen PKH, BPS dan seluruh petugas pengelola data di provinsi. Tahun 2023 - 2026 adalah angka estimasi populasi sapi potong berdasarkan model Pusdatin. Angka Sementara tahun 2022 diperkirakan populasi sapi potong masih meningkat sebesar 3,52% menjadi sebesar 18,61 juta ekor, pada tahun 2023 populasi sapi potong diperkirakan mengalami penurunan 0,68% atau populasi menjadi sebanyak 18,48 juta ekor. Penurunan populasi diduga diakibatkan karena adanya wabah PMK (Penyakit Mulut Kuku) dan pada tahun 2023 ada Sensus Pertanian, bisanya data populasi

<sup>\*\*)</sup> Tahun 2023 - 2026 Angka Proyeksi Pusdatin berdasarkan Model Fungsi Transfer Arima(1,0,0) Xreg=harga daging sapi

akan terkoreksi. Pada tahun 2024 populasi sapi diperkirakan mencapai 18,82 juta ekor atau naik 1,81%, sementara pada tahun 2025 populasi sapi potong diperkirakan mencapai 19,13 juta ekor atau mengalami peningkatan sebesar 1,66%. Rata-rata pertumbuhan populasi sapi tahun 2022 - 2026 diperkirakan mencapai 1,02% per tahun. Rendahnya pertumbuhan populasi ini diduga sebagai dampak adanya wabah PMK dan pemotongan sapi lokal yang meningkat karena mahalnya harga sapi bakalan impor.

Estimasi populasi tersebut tentu saja dengan kondisi *cateris paribus*, jika ada upaya berupa program untuk meningkatkan populasi sapi potong seperti suksesnya program Sikomandan (Sapi Kerbau Andalan Komoditas Negeri) atau program Pengembangan Desa Korporasi Sapi, serta peningkatan perusahaan peternakan, maka diestimasi populasi sapi potong bisa mengalami pertumbuhan populasi yang lebih tinggi dibandingkan estimasi Pusdatin yang hanya didasarkan pada historis data selama 35 tahun terakhir.



Gambar 5.5. Populasi Sapi Potong Tahun 2000 - 2022 dan Estimasi Tahun 2023 - 2026

### 5.2. Proyeksi Populasi Sapi Perah Tahun 2023-2026

Eksplorasi data populasi sapi perah nasional berupa data tahunan dari tahun 1974 sampai 2021, seperti yang terlihat pada Gambar 5.6. Beradasarkan grafik itu populasi sapi perah terus meningkat secara perlahan. Populasi turun cukup signifikan pada tahun 2013, karena pada tahun itu populasi dihitung dari hasil Sensus Pertanian 2013, sementara data yang lain populasi dihitung menggunakan parameter kelahiran, kematian, pemotongan, penjualan, pembelian, penambahan lain dan pengurangan lain.



Gambar 5.6. Perkembangan Populasi Sapi Perah 1974 - 2021

Dalam melakukan pemodelan populasi sapi perah menggunakan model Autoregessive Integrated Averange (ARIMA), data yang digunakan adalah periode tahun 1974 sampai 2021. Periode data tersebut kemudian dipisahkan menjadi data set training dan testing. Perlunya pemisahan data training dan testing adalah untuk menguji tingkat akurasi dalam melakukan peramalan. Panjang series data pada data set training adalah tahun 1974 sampai 2016, sementara dataset testing adalah periode 2017 sampai 2021 (6 titik). Dataset training digunakan untuk melakukan penyusunan model, sementara dataset testing digunakan untuk validasi model.

Hasil pengujian menunjukkan bahwa populasi sapi perah stationer pada Differencing 1. Uji kestasioneran data seperti yang disyaratkan apabila melakukan pemodelan ARIMA dilakukan secara visual menggunakan hasil plot data maupun uji formal statistik.

Tabel 5.20. Hasil Uji Augmunted Dickey-Fuller Populasi Sapi Perah Differencing 1

Hal ini juga didukung dengan uji uji Augmented Dickey-Fuller yang mengindikasikan bahwa data luas populasi sapi perah setelah differencing 1 sudah stasioner, terlihat dari hasil uji tes statistik sebesar = -5,674 sementara nilai kritis pada tingkat kepercayaan 95% = -1,95 (tau1) dan tingkat kepercayaan 99% = -2,62 (tau1) atau lebih besar dari nilai uji statistik sehingga sehingga Ho ditolak, atau data populasi sapi perah setelah diferencing 1 sudah stationer.

Tabel 5.21. Model Arima Tentatif Berdasarkan Automodel

```
Series: train.p[, "Populasi_Saper"]
ARIMA(2,1,2) with drift
Coefficients:
                         ar2
                                                          drift
            ar1
                                   ma1
                                              ma2
        -1.0061 -0.9216 1.1590 0.6823 10476.454 0.1271 0.0804 0.2238 0.1909 4876.044
sigma^2 estimated as 1.169e+09: log likelihood=-484.75
AIC=981.51 AICc=983.98 BIC=991.79
Training set error measures:
                         ME
                                  RMSE
                                              MAE
                                                           MPE
                                                                      MAPE
                                                                                   MASE
Training set -102.307 31657.12 20528.1 -2.138946 10.23726 0.8595471
```

Berdasarkan auto model model Arima tentative yang terbaik adalah ARIMA(2,1,2). Berdasarkan model ARIMA(2,1,2) menghasilkan MAPE data training sebesar 10,23%, sudah cukup baik karena masih sekitar 10%.

Selanjutnya dilakukan pengujian model ARIMA (2,1,2) apakah koefisien sudah signifikan dan bagaimana perbandingan data training dan data testing.

Untuk model ARIMA (2,1,2) koefisien ar1, ar2, ma1 dan ma2 signifikan pada taraf alpha 0,01%. Sehingga model ARIMA (2,1,2) layak digunakan (Tabel 5.22).

Tabel 5.22. Uji Koefisien Model Arima (2,1,2)

```
arima(x = train.p[, "Populasi_Saper"], order = c(2, 1, 2))
Coefficients:
               ar2
-0.9084
      ar1
-1.0175
                        ma1
1.2402
                                0.7290
                -0.9084 1.2402 0.7290
0.0907 0.2342 0.1542
       0.1374
sigma^2 estimated as 1.135e+09: log likelihood = -486.84, aic = 983.69
z test of coefficients:
     Estimate Std. Error z value Pr(>|z|)
ar1 -1.017487
                  0.137351
                              -7.4079 1.283e-13 ***
ar2 -0.908418
                  0.090656 -10.0205 < 2.2e-16 ***
                  0.234235
                               5.2946 1.193e-07 ***
4.7276 2.272e-06 ***
ma1
     1.240176
     0.728969
                  0.154194
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Tabel 5.23. Perbandingan MAPE untuk ARIMA (2,1,2)

```
Time Series:
Start = 43
End = 48
Frequency = 1
[1] 425572.7 473759.7 509282.2 429364.5 478410.4 501105.5

ME RMSE MAE MPE MAPE MASE
Training set 9846.429 33281.43 20921.94 3.841175 7.99885 0.8760376
Test set 92311.842 95258.62 92311.84 16.467397 16.46740 3.8652563
```

Setelah dilakukan pengujian koefisien model untuk ARIMA (2,1,2) ternyata semua komponen signifikan, maka dilakukan pengujian MAPE untuk data training dan data testing. Hasil menunjukkan jika menggunakan model ARIMA (2,1,2) akan menghasilkan data training sebesar 7,99%. Setelah dilakukan pengujian dengan cara meramal 6 tahun kedepan yaitu tahun 2015 - 2021, maka hasil ramalan atau data testing menghasilkan MAPE 16,46%.

Selanjutnya dilakukan pengepasan model untuk seluruh data. Untuk Model ARIMA (2,1,2) koefisien ar1 sebesar -1,14, ar2=-0,93, ma1=1,31 dan koefisien ma2= 1,00. Jika melakukan run model ARIMA (2,1,2) untuk seluruh data yaitu dari tahun 1970 - 2021 maka akan dihasilkan MAPE sebesar 7,44%. Hal ini menunjukkan bahwa antara data estimasi dengan data actual akan berbeda ratarata berkisar antara -7,44% sampai +7,44%. Untuk metode estimasi dengan bias masih dibawah 8% dianggap masih cukup baik dan akurat.

Tabel 5.24. Model Arima (2,1,2) untuk Seluruh Data Populasi Sapi Perah

```
Series: saper[, "Populasi_Saper"]
ARIMA(2,1,2)
Coefficients:
                      ar2
           ar1
                               ma1
                                         ma2
                 -0.9330
                            1.3134
       -1.1438
                                     1.0000
                  0.0605 0.1181
        0.0612
                                     0.1539
sigma^2 estimated as 1.275e+09: log likelihood=-559.17
AIC=1128.34 AICc=1129.8 BIC=1137.59
Training set error measures:
                              RMSE
                                                              MΔPF
                                          MAE
                                                     MPF
                                                                         MASE
                                                                                      ACF1
Training set 10172.16 33794.44 21009.87 3.488086 7.441508 0.917425 -0.1608971
```

Dengan menggunakan model ARIMA (2,1,2) menghasilkan angka populasi sapi perah untuk 4 tahun ke depan. Hasil Estimasi dengan model ARIMA ini pada tahun 2022 populasi sapi perah nasional sebesar 565 ribu ekor atau turun 2,28% dibandingkan tahun 2021. Pada tahun 2023 populasi sapi perah diestimasi akan naik sebesar 3,41% menjadi 584 ribu ekor. Pada tahun 2024 sampai 2025 juga menunjukkan populasi sapi perah nasional mengalami penurunan secara perlahan. Estimasi rata-rata pertumbuhan populasi sapi perah tahun 2021 - 2025 rata-rata turun sebesar 0,41% per tahun.

Tabel 5.25. Ouput Peramalan Model Arima (2,1,2) untuk Populasi Sapi Perah

| Ī   |       |          |          |          |          |          |
|-----|-------|----------|----------|----------|----------|----------|
| ١   | Point | Forecast | Lo 80    | ні 80    | Lo 95    | ні 95    |
| ľ   | 2022  | 564627.8 | 518056.2 | 611199.3 | 493402.7 | 635852.8 |
| ľ   | 2023  | 587475.5 | 516620.7 | 658330.3 | 479112.5 | 695838.5 |
| - 1 | 2024  | 577707.2 | 492640.9 | 662773.5 | 447609.5 | 707804.9 |
| ľ   | 2025  | 567564.2 | 469920.5 | 665207.9 | 418231.0 | 716897.3 |
| į   | 2026  | 588279.5 | 477250.6 | 699308.4 | 418475.4 | 758083.6 |

Tabel 5.26. Hasil Estimasi Populasi Sapi Perah Model ARIMA (2,1,2)

| Tahun *)  | Populasi Sapi Perah<br>(Ekor) | Pertumbuhan (%) |
|-----------|-------------------------------|-----------------|
| 2021      | 582.169                       |                 |
| 2022      | 592.897                       | 1,84            |
| 2023      | 587.475                       | (0,91)          |
| 2024      | 577.707                       | (1,66)          |
| 2025      | 567.564                       | (1,76)          |
| 2026      | 588.279                       | 3,65            |
| Rata-rata | pertumbuhan (%/th)            | 0,23            |

<sup>\*)</sup> Keterangan : Tahun 2021 Angka Tetap Ditjen PKH, Tahun 2022 Angka Sementara

Tahun 2022 - 2025 Angka Proyeksi Pusdatin Model ARIMA(2,1,2)

Pada Gambar 5.8, menunjukkan plot populasi sapi perah dan hasil estimasinya tahun 2021 - 2025. Hasil estimasi populasi sapi perah terjadi fluktuasi seperti pada data historisnya, jadai ada peningkatan populasi tahun 2023, sebaliknya pada tahun 2022, 2024 dan 2025 diperkirakan akan terjadi penurunan populasi sapi perah nasional.



Gambar 5.7. Hasil Estimasi Populasi Sapi Perah Tahun 2022 - 2026 Model ARIMA(2,1,2)

#### 5.3. Proyeksi Populasi Kerbau Tahun 2023-2026

Eksplorasi data populasi kerbau nasional berupa data tahunan dari tahun 1970 sampai 2021, seperti yang terlihat pada Gambar 5.8. Berdasarkan grafik itu populasi kerbau terus mengalami penurunan terutama sejak tahun 1990 secara perlahan. Populasi turun cukup signifikan pada tahun 2013, karena pada tahun itu populasi dihitung dari hasil Sensus Pertanian 2013, sementara data yang lain populasi dihitung menggunakan parameter kelahiran, kematian, pemotongan, penjualan, pembelian, penambahan lain dan pengurangan lain.



Gambar 5.8. Perkembangan Populasi Kerbau 1970 - 2021

Dalam melakukan pemodelan populasi kerbau menggunakan model Autoregessive Integrated Averange (ARIMA), data yang digunakan adalah periode tahun 1970 sampai 2021. Periode data tersebut kemudian dipisahkan menjadi data set training dan testing. Perlunya pemisahan data training dan testing adalah untuk menguji tingkat akurasi dalam melakukan peramalan. Panjang series data pada data set training adalah tahun 1970 sampai 2016, sementara dataset testing adalah periode 2016 sampai 2021 (6 titik). Dataset training digunakan untuk melakukan penyusunan model, sementara dataset testing digunakan untuk validasi model.

Hasil pengujian menunjukkan bahwa populasi kerbau stationer pada Differencing 1. Uji kestasioneran data seperti yang disyaratkan apabila melakukan pemodelan ARIMA dilakukan secara visual menggunakan hasil plot data maupun uji formal statistik.

Tabel 5.27. Hasil Uji Augmunted Dickey-Fuller Populasi Kerbau Differencing 1

Hal ini juga didukung dengan uji uji Augmented Dickey-Fuller (Tabel 5.27) yang mengindikasikan bahwa data populasi kerbau setelah differencing 1 sudah stasioner, terlihat dari hasil uji tes statistik sebesar = -4,53 sementara nilai kritis pada tingkat kepercayaan 95% = -1,95 (tau1) dan tingkat kepercayaan 99% = -2,6 (tau1) atau lebih besar dari nilai uji statistik sehingga sehingga Ho ditolak, atau data populasi kerbau setelah diferencing 1 sudah stationer.

Tabel 5.28. Model Arima Tentatif Berdasarkan Automodel

Berdasarkan auto model Arima (Tabel 5.28) tentative yang terbaik adalah ARIMA(0,1,0). Berdasarkan model ARIMA(0,1,0) menghasilkan MAPE data training sebesar 6,35%, sudah cukup baik karena tidak lebih dari 10%. Namun jika menggunakan model ARIMA(0,1,0) menunjukkan tidak ada yang berpengaruh baik AR maupaun MA. Disamping itu jika menggunakan ARIMA (0,1,0) maka hasil estimasi kedepan hasilkanya akan konstan.

Selanjutnya dilakukan pemilihan model tentatif ARIMA baik pada differencing 1 maupun differencing 2, dengan berbagai tingkat oder ARIMA. Setelah dilakukan pemilihan model maka model ARIMA terbaik untuk estimasi populasi kerbau adalah ARIMA (0,2,1). Selanjutnya dilakukan pengujian model ARIMA (0,2,1) apakah koefisien sudah signifikan dan bagaimana perbandingan

MAPE data training dan data testing. Untuk model ARIMA (0,2,1) koefisien ma1 signifikan, sebaliknya koefisien ma1 signifikan pada taraf alpha 0,1%. Sehingga model ARIMA (0,2,1) layak digunakan (Tabel 5.29).

Tabel 5.29. Uji Koefisien Model Arima (0,2,1)

```
Call:
    arima(x = train[, "Kerbau"], order = c(0, 2, 1))

Coefficients:
    ma1
    -0.9460
    s.e. 0.1015

sigma^2 estimated as 43205: log likelihood = -305.13, aic = 614.27
    z test of coefficients:

    Estimate Std. Error z value Pr(>|z|)
    ma1 -0.94605     0.10147 -9.3238 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Tabel 5.30. Perbandingan MAPE untuk ARIMA (0,2,1)

```
Time Series:
Start = 48
End = 53
Frequency = 1
[1] 1303.760 1252.495 1201.230 1149.965 1098.700 1047.435

ME RMSE MAE MPE MAPE MASE
Training set -5.592757 203.3891 146.3836 -0.637026 6.91726 1.0630614
Test set -39.327253 158.2531 102.5500 -4.979559 10.35458 0.7447351
```

Setelah dilakukan pengujian koefisien model untuk ARIMA (0,2,1) ternyata komponen ma1 signifikan, maka dilakukan pengujian MAPE untuk data training dan data testing. Hasil menunjukkan jika menggunakan model ARIMA (0,2,1) akan menghasilkan data training sebesar 6,91%. Setelah dilakukan pengujian dengan cara meramal 6 tahun kedepan yaitu tahun 2015 - 2021, maka hasil ramalan atau data testing menghasilkan MAPE 10,35%.

Selanjutnya dilakukan pengepasan model untuk seluruh data. Untuk Model ARIMA (0,2,1) koefisien ma1=-0,946. Jika melakukan run model ARIMA (0,2,1) untuk seluruh data yaitu dari tahun 1970 - 2021 maka akan dihasilkan MAPE sebesar 7,40%. Hal ini menunjukkan bahwa antara data estimasi dengan data actual akan berbeda rata-rata berkisar antara -7,40% sampai +7,40%. Untuk metode estimasi dengan bias masih dibawah 8% dianggap masih cukup baik dan akurat.

Tabel 5.31. Model Arima (0,2,1) untuk Seluruh Data Populasi Kerbau

Dengan menggunakan model ARIMA (0,2,1) menghasilkan angka populasi kerbau untuk 4 tahun ke depan. Hasil Estimasi dengan model ARIMA ini pada tahun 2023 populasi kerbau nasional sebesar 1.137 ribu ekor atau turun 2,82% dibandingkan tahun 2022. Pada tahun 2024 populasi kerbau diestimasi akan turun kembali sebesar 2,90% menjadi 1.104 ribu ekor. Pada tahun 2025 sampai 2026 juga menunjukkan populasi kerbau nasional mengalami penurunan secara perlahan. Estimasi rata-rata pertumbuhan populasi kerbau tahun 2022 - 2026 rata-rata turun sebesar 1,88% per tahun (Tabel 5.33)

Tabel 5.32. Ouput Peramalan Model Arima (0,2,1) untuk Populasi Kerbau

|      | Point | Forecast | Lo 80    | ні 80    | Lo 95     | ні 95    |
|------|-------|----------|----------|----------|-----------|----------|
| 2023 |       | 1137.228 | 870.8559 | 1403.600 | 729.84697 | 1544.609 |
| 2024 |       | 1104.247 | 724.0012 | 1484.494 | 522.71101 | 1685.784 |
| 2025 |       | 1071.267 | 601.2676 | 1541.265 | 352.46518 | 1790.068 |
| 2026 |       | 1038.286 | 490.6638 | 1585.908 | 200.77021 | 1875.801 |

Tabel 5.33. Hasil Estimasi Populasi Kerbau Model ARIMA (0,2,1)

| Tahun *)  | Populasi Kerbau (Ekor) | Pertumbuhan (%) |
|-----------|------------------------|-----------------|
| 2021      | 1.143.189              |                 |
| 2022      | 1.170.209              | 2,36            |
| 2023      | 1.137.228              | (2,82)          |
| 2024      | 1.104.247              | (2,90)          |
| 2025      | 1.071.267              | (2,99)          |
| 2026      | 1.038.286              | (3,08)          |
| Rata-rata | pertumbuhan (%/th)     | -1,88           |

<sup>\*)</sup> Keterangan : Tahun 2021 AngkaTetap Ditjen PKH, Tahun 2022 Angka Sementara Tahun 2022 - 2025 Angka Proyeksi Pusdatin Model ARIMA(0,2,1)

Pada Gambar 5.10, menunjukkan plot populasi kerbau dan hasil estimasinya tahun 2021 - 2025. Hasil estimasi populasi kerbau cenderung terus menurun seperti pada data historisnya. Untuk menjaga populasi kerbau agar tidak terus mengalami penurunan maka disarankan mengefektifkan kembali program peningkatan populasi seperti SIKOMANDAN bukan hanya fokus untuk sapi perah atau sapi potong, tetapi juga untuk kerbau. Disamping itu perlu ada program lain, sehingga laju pemotongan kerbau lebih kecil dibandingkan dengan laju kelahiran kerbau atau pemasukan kerbau hidup dari negara lain.



Gambar 5.9. Hasil Estimasi Populasi Kerbau Tahun 2022 - 2026 Model ARIMA(0,2,1)

#### 5.4. Proyeksi Produksi Daging Sapi dan Kerbau 2022 - 2026

Proyeksi produksi daging sapi dan kerbau tidak menggunakan model stokastis, tetapi menggunakan model deterministik. Hal ini dilakukan karena jika populasi sapi dan kerbau sudah diperoleh, maka dapat dilakukan estimasi produksi daging, melalui perhitungan potensi produksi, ready produksi, dan konversi setiap ekor sapi ke daging.

Selanjutnya untuk menghitung angka potensi produksi, adalah merupakan penjumlahan antara selisih jantan dewasa dikurangi pemacek, ditambah 50% jantan muda, ditambah betina afkir. Sedangkan untuk mendapatkan produksi : PRODUKSI TAHUN  $t = Potensi Produksi Tahun t x {(%Ruta Penggemukan) + [(%Ruta Pengembangbiakan x (%Kelahiran Anak Jantan thd Betina Dewasa / %Kelahiran Anak thd Betina Dewasa)]}.$ 

Untuk melakukan estimasi daging jumlah potensi produksi dikalikan dengan meat yield. *Meat yield* adalah daging murni tanpa tulang, ditambah jeroan, ditambah dengan daging variasi. Untuk perhitungan produksi daging ini meat yield yang digunakan untuk sapi potong adalah sebesar 177,24 kg/ekor.

Berdasarkan perhitungan di atas pada tahun 2022 produksi daging sapi potong diperkirakan sebesar 440,70 ribu ton dalam bentuk Meat Yield. Pada tahun 2023 diperkirakan produksi daging sapi potong turun menjadi 437,67 ribu ton atau turun 0,69%. Tetapi tahun 2024- 2026, produksi kembali meningkat sehingga tahun 2024 produksi diperkirakan mencapai 455,73 ribu ton, tahun 2025 kembali naik mencapai 453,27 ribu ton, dan tahun 2026 diperkirakan naik kembali menjadi 459,17 ribu ton. Rata-rata pertumbuhan produksi daging sapi potong selama tahun 2022 - 2026 sebesar 1,04% per tahun.

Tabel 5.34. Proyeksi Produksi Daging Sapi Potong Tahun 2022 - 2026

| Tahun | Populasi<br>Sapi Potong<br>(Ekor) | Potensi<br>Produksi<br>(Ekor) | Ready<br>Produksi (Ekor) | Produksi<br>Daging Meat<br>Yield *) (Ton) | Pertumbuhan<br>(%) |
|-------|-----------------------------------|-------------------------------|--------------------------|-------------------------------------------|--------------------|
| 2022  | 18.610.148                        | 3.736.561                     | 2.486.495                | 440.706                                   |                    |
| 2023  | 18.484.245                        | 3.710.798                     | 2.469.350                | 437.668                                   | (0,69)             |
| 2024  | 18.818.595                        | 3.779.215                     | 2.514.879                | 445.737                                   | 1,84               |
| 2025  | 19.130.655                        | 3.843.072                     | 2.557.372                | 453.269                                   | 1,69               |
| 2026  | 19.375.448                        | 3.893.164                     | 2.590.706                | 459.177                                   | 1,30               |
|       | Rata-ra                           | ata pertumbuh                 | nan (%/tahun)            |                                           | 1,04               |

<sup>\*)</sup> Meat Yield sapi lokal = 177,24 kg/ekor (BPS, 2021)

Potensi produksi dan Ready produksi setelah dikurangi estimasi populasi sapi eks impor

Berdasarkan estimasi populasi maka pada tahun 2022 produksi daging sapi perah diperkirakan sebesar 5,87 ribu ton dan daging kerbau 27,30 ribu ton dalam bentuk Meat Yield. Pada tahun 2023 diperkirakan produksi daging sapi perah turun menjadi 5,82 ribu ton dan produksi kerbau juga turun menjadi 26,53 ribu ton. Kondisi menurunnya produksi berlangsung terus sehingga tahun 2024 produksi daging sapi perah dan kerbau diperkirakan mencapai 31,42 ribu ton, tahun 2025 mencapai 30,61 ribu ton, dan tahun 2026 diperkirakan turun kembali menjadi 30,05 ribu ton. Rata-rata pertumbuhan produksi daging sapi perah dan kerbau selama tahun 2022 - 2026 rata-rata turun sebesar 2,44% per tahun.

Tabel 5.35. Proyeksi Produksi Daging Sapi Perah dan Kerbau Tahun 2022 - 2026

|       | Estimasi             | Populasi         | pulasi Estimasi Produksi          |                               |                              |                    |  |  |
|-------|----------------------|------------------|-----------------------------------|-------------------------------|------------------------------|--------------------|--|--|
| Tahun | Sapi Perah<br>(Ekor) | Kerbau<br>(Ekor) | Meat Yield Sapi<br>Perah<br>(Ton) | Meat Yield<br>Kerbau<br>(Ton) | Total Meat<br>Yield<br>(Ton) | Pertumbuhan<br>(%) |  |  |
| 2022  | 592.897              | 1.170.209        | 5.872                             | 27.300                        | 33.172                       |                    |  |  |
| 2023  | 587.475              | 1.137.228        | 5.818                             | 26.531                        | 32.349                       | (2,48)             |  |  |
| 2024  | 577.707              | 1.104.247        | 5.721                             | 25.761                        | 31.482                       | (2,68)             |  |  |
| 2025  | 567.564              | 1.071.267        | 5.621                             | 24.992                        | 30.613                       | (2,76)             |  |  |
| 2026  | 588.279              | 1.038.286        | 5.826                             | 24.222                        | 30.048                       | (1,84)             |  |  |
|       | Rata-ra              |                  | (2,44)                            |                               |                              |                    |  |  |

<sup>\*)</sup> Meat Yield sapi perah = 216,08 kg/ekor (BPS, 2021) Meat Yield Kerbau = 166,49 kg/ekor (BPS, 2021)

### 5.5. Proyeksi Konsumsi Daging Sapi dan Kerbau 2022-2026

Penyusunan model konsumsi daging sapi juga dilakukan validasi model untuk menghasilkan model tentatif terbaik. Ada 4 model tentatif yang hendak dipilih, dengan mempertimbangkan besaran R² dan R² Adjusted, nilai PRESS, nilai VIF untuk melihat gejala multikolonieritas, keheteroskedastisitas, gejala autokorelasi, dan kewajaran tanda koefisien regresi. Model kedua, ketiga dan keempat dengan variabel bebas seperti pada Tabel 5.33. menunjukkan model yang kurang baik, dengan berbagai indikator kelayakan model seperti besaran R² Adjusted relative rendah berkisar antara 59% - 65%, dan model ke-2 memiliki nilai PRESS yang lebih besar dari model pertama. Untuk model ke-3 dan ke-4 ada gejala multikolonieritas, sehingga kurang layak jika tetap digunakan model ini.

Model pertama nilai R<sup>2</sup> Adjusted yang paling tinggi sehingga pemilihan variabel penjelas sudah cukup tepat untuk menduga konsumsi. Untuk semua variabel pada model pertama Nilai VIF < 10 menunjukkan tidak ada gejala multikolinieritas, pola sisaan dan dugaan baik yaitu bersifat acak di sekitar nilai 0, dan tidak ada gejela autokorelasi, nilai R Square Adjusted 67,0%, nilai nilai PRESS relatif kecil, sehingga model pertama layak dipilih.

Tabel 5.36. Pemilihan Model Tentatif untuk Proyeksi Konsumsi Daging

| No | Model                                                                                                                            | R-Sq   | R-Sq<br>(Adj) | PRESS        | Multikolineraitas | Heteroskedastisita<br>s : Plot Dugaan Vs<br>Residual | Autokorel<br>asi                | Kesimpulan                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--------------|-------------------|------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|
| 1  | <pre>Ln_Consum = - 0,1104 + 0,373Ln- Consum(t-1) + 1,143 Ln_HR_Dgsapi - 0,844 Ln_HR_DgRas - 0,562 Ln_trend</pre>                 | 71,70% | 67,00%        | 0,8500       |                   | Pola Acak di sekitar<br>Nilai Nol                    | Watson<br>statistic<br>= 1.3410 | Baik, semua koefisien<br>regresi signifikan dan<br>tidak ada yang sama<br>dengan nol (uji t<br>nyata) |
| 2  | Ln_consum =0,984 + 0,361<br>Ln_consum(t-1) + 1,28<br>Ln_HR_Dgsapi - 0,977 Ln_HR_DgRas - 0,894Ln_Trend                            | 69,80% | 64,30%        | 1,30% 1,1290 |                   | Pola Acak di sekitar<br>Nilai Nol                    |                                 | Kurang Baik, nilai<br>PRESS lebih besar dari<br>model pertama                                         |
| 3  | Ln_Consum = 1,31 + 0,435 Ln-<br>Consum(t-1) + 0,893 Ln_HR_Dgsapi<br>- 0,584 Ln_HR_DgRas + 0,432 Ln-<br>Hbeef - 1,06 Ln_trend     |        | 65,20%        |              |                   | Pola Acak di sekitar<br>Nilai Nol                    |                                 | Kurang Baik,ada gejela<br>multikolinieritas                                                           |
| 4  | Ln_Consum = 1,36 + 0,498 Ln-<br>Consum(t-1) + 0,254 Ln_HRdgsapi<br>(t-1) + 0,072 Ln_HR_DgRas +<br>0,906 Ln-Hbeef - 1,08 Ln_trend | 66,90% | 59,00%        |              |                   | Pola Acak di sekitar<br>Nilai Nol                    |                                 | Kurang Baik,ada gejela<br>multikolinieritas                                                           |

Analisis proyeksi konsumsi daging sapi dan kerbau dilakukan berdasarkan data konsumsi Susenas dan Bapok (Bahan Pangan Pokok) dari BPS. Konsumsi dari Susenas adalah konsumsi rumah tangga, tidak termasuk konsumsi non rumah tangga. Untuk keperluan analisis ini konsumsi yang digunakan adalah konsumsi daging yang bersumber dari Survei Bapok (Bahan Pangan Pokok - BPS). Proyeksi konsumsi daging sapi dan kerbau merupakan fungsi dari respon konsumsi daging sapi tahun sebelumnya, harga riil daging sapi, harga riil daging ayam ras sebagai bahan substitusi daging sapi dan trend perubahan konsumsi. Hasil model konsumsi daging sapi menggunakan Regresi Linier Berganda yang diperoleh dengan persamaan sebagai berikut:

```
Ln_Consum = -0,110 + 0,373 Ln_Consum<sub>t-1</sub> + 1,14 Ln_HR_Dgsapi - 0,844
Ln_HR_DRas - 0,562 Ln_Trend
dimana: Ln_Consum = Konsumsi daging sapi tahun (t)
Ln_Consum<sub>t-1</sub> = Konsumsi daging sapi tahun sebelumnya (t-1)
Ln_HR_Dgsapi = Harga Riiil Daging sapi
Ln_HR_DRas = Harga riil daging ayam ras
Ln_Trend = Faktor trend
```

Tabel 5.37. Hasil Analisis Fungsi Respon Konsumsi Daging Sapi / Kerbau Indonesia

```
The regression equation is
Ln_{consum} = -0,110 + 0,373 Ln_{consum}(t-1) + 1,14 Ln HR Dgsapi
           - 0,844 Ln HR DgRas - 0,562 Ln trend
Predictor
                  Coef SE Coef
Constant -0,1104 0,8372
Ln-Consum(t-1) 0,37267 0,09706
                                 -0,13 0,896
                                 3,84 0,001
                                               1,464
-0,56166 0,09685 -5,80 0,000 4,421
Ln trend
S = 0,130486  R-Sq = 71,7%  R-Sq(adj) = 67,0%
PRESS = 0.850078 R-Sq(pred) = 41.07%
Analysis of Variance
Source
                                MS
Regression 4 1,03397 0,25849 15,18 0,000 Residual Error 24 0,40864 0,01703
Total
               28 1,44261
               DF
                    Seq SS
Source
                   0,36341
Ln-Consum(t-1)
               1
Ln_HR_Dgsapi
                   0,02221
                   0,07566
Ln HR DgRas
in trend
```



Gambar 5.10. Plot nilai sisaan terhadap nilai dugaan model konsumsi daging sapi dan kerbau.

Koefisien variabel bebas konsumsi tahun sebelumnya (Consum<sub>t-1</sub>) bertanda positif artinya jika konsumsi sapi potong tahun sebelumnya meningkat, maka pada tahun berikutnya juga meningkat, atau ada kecenderungan terjadi peningkatan konsumsi daging sapi dari tahun ke tahun. Hasil uji t untuk koefisien konsumsi daging sapi potong tahun sebelumnya, memiliki p < 0,05 artinya cukup signifikan dan dengan tingkat keyakinan 95% koefisien tersebut tidak sama dengan nol. Koefisien variabel berikutnya adalah harga riil daging sapi bertanda positif artinya jika harga riil daging sapi meningkat maka konsumsi daging tetap meningkat, karena umumnya daging dikonsumsi oleh masyarakat menengah ke atas, meskipun harga naik konsumsi tetap meningkat. Disamping itu tingkat preferensi daging sapi tetap tinggi daripada daging ayam, jadi meskipun harga naik, tetapi konsumsi tidak berkurang. Koefisien variabel bebas berikutnya adalah harga riil daging ayam ras tahun ke-t bertanda negatif artinya jika harga riil daging ayam ras meningkat maka konsumsi daging sapi akan menurun. Hasil Uji t, koefisien harga riil daging sapi dan daging ayam ras signifikan pada taraf nyata 5%. Koefisien trend konsumsi ayam ras bertanda negatif artinya ada kecenderungan konsumsi daging sapi cenderung turun dari tahun ke tahun, artinya ada kesadaran masyarakat bahwa mengkomsi daging putih (ayam) lebih menyehatkan dari pada daging merah (sapi). Hasil Uji t, koefisien trend signifikan pada taraf nyata 5%. Hasil uji Anova dan uji t terlihat pada Tabel 5.37.

Hasil estimasi model, menunjukkan konsumsi daging sapi diperkirakan cenderung akan meningkat secara perlahan pada tahun 2022-2026. Pada tahun 2023 konsumsi daging sapi dan kerbau diestimasi sebesar 2,68 kg/kapita/tahun, konsumsi ini meningkat dibandingkan dengan tahun 2022 yang mencapai 2,62 kg/kapita/tahun atau naik 2,11% dampak wabah Covid-19 yang sudah mulai mereda. Pada tahun 2024 konsumsi juga akan naik sebesar 1,03% menjadi 2,70 kg/kapita/tahun, pada tahun 2025 dan tahun 2026 juga masih menunjukkan peningkatan tetapi dengan persentase peningkatan yang sangat kecil, masingmasing sebesar 0,69% dan 1,87%.

Pertumbuhan konsumsi daging sapi dan kerbau meningkat karena pada saat ini ada trend perubahan peningkatan konsumsi karena pertumbuhan ekonomi yang positif, sehingga meningkatkan pendapatan dan konsumsi. Pertumbuhan konsumsi daging sapi dan kerbau, diproyeksikan sebesar 1,42% per tahun. Meningkatnya konsumsi total diduga karena kebutuhan daging sapi dan kerbau untuk hotel dan industri kuliner semakin tinggi, juga pertumbuhan pemesanan makanan lewat aplikasi online (Tabel 5.38).

Tabel 5.38. Hasil Proyeksi Konsumsi Daging Sapi dan Kerbau Indonesia, 2022-2026

| Tahun *)    | Konsumsi Daging Sapi<br>(Kg/kapita/tahun) | Pertumbuhan (%) |  |  |  |
|-------------|-------------------------------------------|-----------------|--|--|--|
| 2022        | 2,62                                      |                 |  |  |  |
| 2023        | 2,68                                      | 2,11            |  |  |  |
| 2024        | 2,70                                      | 1,03            |  |  |  |
| 2025        | 2,72                                      | 0,69            |  |  |  |
| 2026        | 2,77                                      | 1,87            |  |  |  |
| Rata-rata p | Rata-rata pertumbuhan (%/th)              |                 |  |  |  |

Keterangan: Tahun 2023 - 2026 Angka Proyeksi Pusdatin berdasarkan Model

Tahun 2022 Angka BPS

# 5.6. Proyeksi Surplus/Defisit Daging Sapi dan Kerbau Tahun 2022 -2026

Neraca daging sapi di Indonesia dihitung dengan pendekatan antara proyeksi konsumsi dan proyeksi produksi nasional. Konsumsi per kapita total terdiri dari 2 komponen yaitu konsumsi rumah tangga dan konsumsi non rumah tangga. Konsumsi nasional daging sapi potong adalah konsumsi total dikalikan jumlah penduduk. Angka proyeksi produksi tahun 2023 - 2026 diperoleh pemodelan fungsi transfer dan ARIMA. Daging sapi dikonsumsi sebagai bahan makanan oleh rumah tangga dan konsumsi non rumah tangga. Konsumsi non rumah tangga meliputi konsumsi di warung makan, restoran, hotel, makanan jadi yang berbahan baku daging sapi seperti baso, sosis, dan lain-lain. Konsumsi non rumah tangga ini jauh lebih besar dibandingkan konsumsi rumah tangga.

Pada Tabel 5.36, disajikan neraca proyeksi produksi dan konsumsi nasional. Pada tahun 2023, konsumsi per kapita daging sapi dan kerbau total diestimasi sebesar 2,68 kg/kapita/tahun, dikalikan jumlah penduduk 278,83 juta orang, maka kebutuhan nasional sekitar 745,96 ribu ton. Hasil perhitungan estimasi produksi daging sapi dan kerbau lokal tahun 2023 sebesar 470,01 ribu ton, terdiri dari yang berasal dari sapi potong sebesar 437,67 ribu ton dan yang berasal dari sapi perah 5,82 ribu ton dan kerbau 26,53 ribu ton. Selisih antara produksi daging dikurangi kebutuhan nasional maka tahun 2023 masih ada defisit daging sapi sebesar 275,95 ribu ton.

Pada tahun 2024 sampai 2026, dilakukan analisis berdasarkan data historis dan penyusunan model statistik. Pada tahun 2024 diperkirakan proyeksi kebutuhan daging nasional sebesar 762,89 ribu ton, produksi nasional daging sapi dan kerbau sebesar 477,22 ribu ton ton, maka masih terjadi defisit sebesar 285,67 ribu ton. Kondisi defisit ini diperkirakan akan terus meningkat, sehingga pada tahun 2025 defisit daging sapi dan kerbau naik menjadi sebesar 291,28 ribu ton, dan tahun 2026 defisit 307,32 ribu ton. (Tabel 5.39).

Masih terjadinya defisit daging karena masih terbatasnya populasi sapi dalam negeri. Dari sisi teknologi produksi daging sapi, Indonesia juga masih dihadapkan produksi ternak, penggunaan teknologi yang kurang memadai dan merata. Masalah lain adalah dari sisi kelembagaan produksi maupun distribusinya. Kelembagaan produksi selama ini misalnya kurang membuat peternak mandiri, terutama dalam penyediaan bibit, sarana dan prasarana, maupun input produksi lainnya. Sementara kelembagaan distribusi, terutama tata niaga yang menghubungkan produsen dan konsumen belum efisien. Struktur pasar pun ditengarai hanya dikuasai segelintir orang atau kelompok (oligopoli) (Junaedi, 2019).

# Outlook Daging Sapi dan Kerbau 2022

Tabel 5.39. Hasil Proyeksi Produksi dan Konsumsi Daging Sapi dan Kerbau Tahun 2022 - 2026

| Urajan                                                 | Tahun    |          |          |          |          |  |
|--------------------------------------------------------|----------|----------|----------|----------|----------|--|
| Oldidii                                                | 2022     | 2023     | 2024     | 2025     | 2026     |  |
| Jumlah Penduduk (Ribu Jiwa)                            | 275.774  | 278.836  | 282.247  | 284.829  | 287.325  |  |
| Konsumsi Perkapita Daging (Kg/kapita/tahun)            | 2,62     | 2,68     | 2,70     | 2,72     | 2,77     |  |
| Kebutuhan Nasional ( Ton)                              | 722.527  | 745.963  | 762.892  | 775.159  | 796.546  |  |
| Estimasi Penyediaan Produksi Daging / Meat Yield (Ton) | 473.878  | 470.016  | 477.220  | 483.881  | 489.225  |  |
| Sapi Potong                                            | 440.706  | 437.668  | 445.737  | 453.269  | 459.177  |  |
| Sapi Perah                                             | 5.872    | 5.818    | 5.721    | 5.621    | 5.826    |  |
| Kerbau                                                 | 27.300   | 26.531   | 25.761   | 24.992   | 24.222   |  |
| Neraca Surplus Defisit (Ton)                           | -248.649 | -275.947 | -285.672 | -291.277 | -307.321 |  |

Sumber: Tahun 2023 - 2026 Pusdatin berdasarkan model statistik

# BAB VI. KESIMPULAN DAN REKOMENDASI

# Kesimpulan

Populasi sapi potong dalam kurun waktu lima tahun terakhir ini cenderung meningkat dengan pertumbuhan 3,16% per tahun. Menurut hasil verifikasi dan validasi Ditjen PKH dan BPS, populasi sapi potong di Indonesia tahun 2022 (Angka Sementara) mencapai 18,61 juta ekor, meningkat sekitar 3,52% dari populasi tahun 2021 sebanyak 17,97 juta ekor. Peningkatan ini seiring dengan perkembangan teknologi terutama di sektor budidaya (*on farm*) yang semakin modern, seperti program Sikomandan (Sapi Kerbau Komoditas Andalan Negeri), cara perkembangbiakan sapi yang lebih cepat melalui inseminasi buatan dan Pengembangan Desa Korporasi Sapi.

Berdasarkan pomodelan populasi sapi potong, pada tahun 2023 populasi sapi potong diestimasi turun sebesar 0,68% menjadi sebesar 18,48 juta ekor, dan tahun 2024 meningkat kembali sebesar 1,81% menjadi sebesar 18,82 juta ekor. Pertumbuhan populasi sapi tahun 2022 sampai 2026 rata-rata akan meningkat 1,02% per tahun.

Berdasarkan angka proyeksi populasi itu, tahun 2023 diperkirakan produksi daging sapi potong 437,67 ribu ton. Pada tahun 2024 produksi daging masih tetap meningkat menjadi sebesar 445,74 ribu ton, dan tahun 2025 kembali naik menjadi sebesar 453,27 ribu ton. Sementara pada tahun 2026 diperkirakan akan sedikit meningkat menjadi 459,17 ribu ton. Pertumbuhan produksi daging sapi tahun 2022 - 2026 rata-rata sebesar 1,04% per tahun.

Konsumsi per kapita daging sapi dan kerbau tahun 2022-2026 diestimasi berkisar antara 2,62 kg/kapita/tahun sampai 2,77 kg/kapita/tahun. Konsumsi daging sapi dan kerbau total tahun 2022 ditetapkan sebesar 2,62 kg/kapita turun akibat Covid-19, tahun 2022 berdasarkan angka estimasi BPS, konsumsi per kapita daging tahun 2023 naik 2,11% menjadi sebesar 2,68 kg/kapita dan tahun 2024 naik kembali mencapai 2,70 kg/kapita. Konsumsi tersebut hanya merupakan konsumsi total daging sapi dan kerbau, yaitu konsumsi rumah tangga ditambah konsumsi luar rumah tangga seperti konsumsi untuk hotel, restoran, warung makan, dan produk-produk olahan daging.

Keseimbangan produksi dan konsumsi daging sapi di Indonesia mengalami peningkatan defisit pada tahun 2022 hingga tahun 2026. Berdasarkan hasil analisis pemodelan angka konsumsi dan produksi, diperkirakan pertumbuhan angka konsumsi lebih tinggi dari pertumbuhan populasi dan produksi daging sapi. Pada tahun 2022 berdasarkan angka sementara diperkirakan akan defisit daging sapi dan kerbau sebesar 248 ribu ton, tahun 2023 defisit cenderung meningkat karena konsumsi per kapita kembali meningkat, pada saat yang sama wabah Covid-19 telah terlewati, sehingga defisit menjadi 276 ribu ton, dan tahun 2024 defisit diperkirakan meningkat mencapai 285 ribu ton. Pada tahun 2025 dan 2026 diperkirakan defisit daging masih terus meningkat masing-masing menjadi 291 ribu ton dan 307 ribu ton.

# Rekomendasi

- Hasil estimasi populasi sapi tahun 2022 -2026 menunjukkan peningkatan rata-rata 1,02% per tahun, namun perlu peningkatan pertumbuhan yang lebih tinggi, karena kebutuhan nasional akan daging semakin meningkat. Upaya peningkatan melalui program Sikomandan dan Program Desa Korporasi Sapi perlu terus ditingkatkan secara lebih intensif dan menyeluruh.
- Hasil estimasi berdasarkan data historis diperkiran populasi sapi perah dan kerbau cenderung menurun. Untuk mengurangi penurunan perlu disusun program untuk meningkatkan populasi sapi yang lebih intensif, serta perlu upaya yang terus menerus untuk mencegah pemotongan sapi betina atau kerbau betina produktif. Peningkatan produktivitas susu untuk sapi perah perah juga dapat mendorong peningkatan populasi sapi perah.
- Oleh karena hasil estimasi menunjukkan neraca defisit yang semakin meningkat pada tahun 2023 - 2026, maka perlu diantisipasi dengan importasi baik untuk sapi bakalan impor maupun impor daging sapi dan jeroan beku.

Harga sapi bakalan impor cenderung meningkat karena suplai dunia sapi hidup untuk impor yang cenderung turun. Untuk mengurangi ketergantungan pada sapi bakalan impor, maka perlu dioptimalkan sapi lokal. Sebagian besar usaha sapi lokal hanya dilakukan oleh rumah tangga atau skala kecil. Untuk meningkatkan populasi dan produksi daging perlu terus dikembangkan dan mendorong pertumbuhan perusahaan/koperasi yang bergerak di usaha budi daya sapi potong/sapi perah/kerbau. Investasi yang bergerak di budidaya sapi / kerbau perlu dukungan dari semua pihak.

### **DAFTAR PUSTAKA**

- Antara, News. Edisi 11 April 2022. Sapi impor dari Australia tiba di Pelabuhan Tanjung Priok Indonesia Diprediksi Masih Kurang Pasokan Daging Sapi. Di dalam : <a href="https://www.antaranews.com/berita/2815189/sapi-impordari-australia-tiba-di-pelabuhan-tanjung-priok">https://www.antaranews.com/berita/2815189/sapi-impordari-australia-tiba-di-pelabuhan-tanjung-priok</a>.
- Anonim. Februari 2022. Budidaya Sapi Potong Usaha yang Menjanjikan. Di dalam : <a href="http://ditjenpkh.pertanian.go.id/beternak-pembibitan-sapi-potong-usaha-yang-sangat-menjanjikan">http://ditjenpkh.pertanian.go.id/beternak-pembibitan-sapi-potong-usaha-yang-sangat-menjanjikan</a>.
- Bisnis, Com. Harga Sapi Bakalan Impor Australia Melonjak. Di dalam <a href="https://ekonomi.bisnis.com/read/20220302/12/1506148/harga-sapi-bakalan-australia-melonjak-importir-megap-megap">https://ekonomi.bisnis.com/read/20220302/12/1506148/harga-sapi-bakalan-australia-melonjak-importir-megap-megap</a>. Edisi 2 Maret 2022.
- BKP Kementerian Pertanian. 2018. *Neraca Bahan Makanan Indonesia 2008-2018*. Jakarta.
- BPS. 2017. Survei Sosial Ekonomi Nasional, Pengeluaran untuk Konsumsi Penduduk Indonesia 2017. Jakarta.
- Daniel, Wahyu. 2015. Diam-diam India Jadi Raja Eksportir Daging Dunia. Di dalam Detik Finance: <a href="https://finance.detik.com/berita-ekonomi-bisnis/d-2985661/diam-diam-india-jadi-raja-eksportir-daging-dunia">https://finance.detik.com/berita-ekonomi-bisnis/d-2985661/diam-diam-india-jadi-raja-eksportir-daging-dunia</a>, tanggal 7 Agustus 2015. Jakarta.
- Enders, W. 2010. Applied Econometric Time Series. USA: University of Alabama. Wiley, Third Edition.
- EWS, Kemendag. 2010. Profil Komoditas Dgiang Sapi. EWS Kementerian Perdagangan.

- Fitriani, D.R, Darsyah, M.Y., & Wasono, R. 2013. Peramalan Fungsi Transfer pada Harga Emas Pasar Komoditi. Seminar Nasinal Pendidikan Sains dan Teknologi, Fakutas MIPA, Universitas Muhammadiyah Semarang.
- Guha, B and Bandyopadhyay, G. 2016. Gold Price Forecasting Using ARIMA Model. Journal of Advanced Management Science Vol. 4, No. 2, March 2016
- Gujarati, D.N. and D.C. Porter, 2010. Dasar-dasar Ekonometrika. Jakarta: Penerbit Salemba Empat, Buku 2, Edisi 5.
- Hapsari, Priyono. 2019.\_Dinamika Produksi Daging Sapi di Pulau Jawa Melalui Pendekatan Ekonometrik. Pusat Penelitian dn Pengembangan Peternakan.
- Ilham, Nyak. 2009. *Kelangkaan Produksi Daging*, *Indikasi dan Implikasi Kebijakannya*. Analisis Kebijakan Pertanian, Volume 7 No. 1, Maret 2009 : 43-63. Pusat Analisis Sosial Ekonomi dan Kebijakan Pertanian, Badan Litbang Pertanian Departemen Pertanian, Bogor.
- Ilham, Nyak. 2009. *Kebijakan Pengendalian Harga Daging Sapi Nasional*. Analisis Kebijakan Pertanian, Volume 7 No. 3, September 2009: 211-211. Pusat Analisis Sosial Ekonomi dan Kebijakan Pertanian, Badan Litbang Pertanian, Departemen Pertanian, Bogor.
- Junaedi. 2019. Mencukupkan Konsumsi Daging. Didalam Detik News 11 Juli 2019 : <a href="https://news.detik.com/kolom/d-4620012/mencukupkan-konsumsi-daging">https://news.detik.com/kolom/d-4620012/mencukupkan-konsumsi-daging</a>.
- Montgomery DC, Johnson LA & Gardiner JS. 1990. Forecasting and Time Series Analysis. Singapore:Mc-Graw Hill.
- Myers R. 1994. *Classical And Modern Regression with Applications*. Boston: PWS KENT Publishing Company.

- Myers RH, Milton JS. 1991. *A First Course in The Theory of Linier Statistical Models*. Boston: PWS KENT Publishing Company.
- Netter J, Wasserman W, Kutner M. 1990. *Applied Linier Statistical Models*. Illinois: Richard D Irwin, Inc.
- Ryan TP. 1997. Modern Regression Methods. New York, USA: John Wiley & Sons, INC.
- Subagyo, Imam. 2009. Potret Komoditas Daging Sapi. Economic Review No. 217. September 2009.
- Reily, Michael. Indonesia Diprediksi Masih Kurang Pasokan Daging Sapi Tahun Ini.

  Di dalam <a href="https://katadata.co.id/berita/2018/02/19/indonesia-diprediksi-masih-kekurangan-pasokan-daging-sapi-di-2018">https://katadata.co.id/berita/2018/02/19/indonesia-diprediksi-masih-kekurangan-pasokan-daging-sapi-di-2018</a>.
- Soeharsono, Rusdiana. 2018. Program Siwab Untuk Meningkatkan Populasi Sapi Potong dan Nilai Ekonomi Usaha Ternak. Balai Penelitian Ternak Ciawi. Bogor. Di dalam Forum Penelitian Agro Ekonomi Volume 35 No.2. Desember 2017. Halaman 125 -137.

## **LAMPIRAN**

Lampiran 1. Perkembangan Populasi Sapi Potong di Indonesia, 1984 - 2022

|            | Indonesia  | Pertumb. | Jawa          | Pertumb. | Luar Jawa                             | Pertumb.    |
|------------|------------|----------|---------------|----------|---------------------------------------|-------------|
| Tahun      | ( Ekor)    | (%)      | ( Ekor)       | (%)      | ( Ekor)                               | (%)         |
| 1984       | 9.236.000  |          | 3.896.621     |          | 5.339.379                             |             |
| 1985       | 9.110.983  | -1,35    | 4.206.885     | 7,96     | 4.904.098                             | -8,15       |
| 1986       | 9.432.653  | 3,53     | 4.273.242     | 1,58     | 5.159.411                             | 5,21        |
| 1987       | 9.509.127  | 0,81     | 4.323.179     | 1,17     | 5.185.948                             | 0,51        |
| 1988       | 9.775.585  | 2,80     | 4.365.459     | 0,98     | 5.410.126                             | 4,32        |
| 1989       | 10.094.866 | 3,27     | 4.418.109     | 1,21     | 5.676.757                             | 4,93        |
| 1990       | 10.410.207 | 3,12     | 4.514.418     | 2,18     | 5.895.789                             | 3,86        |
| 1991       | 10.749.604 | 3,26     | 4.601.053     | 1,92     | 6.148.551                             | 4,29        |
| 1992       | 11.210.989 | 4,29     | 4.714.098     | 2,46     | 6.496.891                             | 5,67        |
| 1993       | 10.829.215 | -3,41    | 4.731.330     | 0,37     | 6.097.885                             | -6,14       |
| 1994       | 11.367.709 | 4,97     | 4.957.376     | 4,78     | 6.410.333                             | 5,12        |
| 1995       | 11.534.066 | 1,46     | 4.946.834     | -0,21    | 6.587.232                             | 2,76        |
| 1996       | 11.815.606 | 2,44     | 5.010.667     | 1,29     | 6.804.939                             | 3,30        |
| 1997       | 11.938.856 | 1,04     | 5.023.662     | 0,26     | 6.915.194                             | 1,62        |
| 1998       | 11.633.876 | -2,55    | 4.823.735     | -3,98    | 6.810.141                             | -1,52       |
| 1999       | 11.275.703 | -3,08    | 4.976.990     | 3,18     | 6.298.713                             | -7,51       |
| 2000       | 11.008.017 | -2,37    | 5.010.767     | 0,68     | 5.997.250                             | -4,79       |
| 2001       | 10.215.193 | -7,20    | 4.256.087     | -15,06   | 5.959.106                             | -0,64       |
| 2002       | 11.297.625 | 10,60    | 5.065.944     | 19,03    | 6.231.681                             | 4,57        |
| 2003       | 10.504.128 | -7,02    | 4.319.931     | -14,73   | 6.184.197                             | -0,76       |
| 2004       | 10.532.889 | 0,27     | 4.368.702     | 1,13     | 6.164.187                             | -0,32       |
| 2005       | 10.569.312 | 0,35     | 4.415.572     | 1,07     | 6.153.740                             | -0,17       |
| 2006       | 10.875.125 | 2,89     | 4.503.118     | 1,98     | 6.372.007                             | 3,55        |
| 2007       | 11.514.871 | 5,88     | 4.707.056     | 4,53     | 6.807.815                             | 6,84        |
| 2008       | 12.256.604 | 6,44     | 5.453.096     | 15,85    | 6.803.508                             | -0,06       |
| 2009       | 12.759.838 | 4,11     | 5.650.365     | 3,62     | 7.109.473                             | 4,50        |
| 2010       | 13.581.570 | 6,44     | 5.988.337     | 5,98     | 7.593.234                             | 6,80        |
| 2011       | 14.824.373 | 9,15     | 7.512.273     | 25,45    | 7.312.100                             | -3,70       |
| 2012       | 15.980.697 | 7,80     | 7.853.547     | 4,54     | 8.127.149                             | 11,15       |
| 2013       | 12.686.239 | -20,62   | 5.790.708     | -26,27   | 6.895.531                             | -15,15      |
| 2014       | 14.726.875 | 16,09    | 6.495.122     | 12,16    | 8.231.753                             | 19,38       |
| 2015       | 15.419.718 | 4,70     | 6.699.073     | 3,14     | 8.720.645                             | 5,94        |
| 2016       | 15.997.029 | 3,74     | 6.861.507     | 2,42     | 9.135.522                             | 4,76        |
| 2017       | 16.429.102 | 2,70     | 6.996.064     | 1,96     | 9.433.038                             | 3,26        |
| 2018       | 16.432.945 | 0,02     | 7.156.129     | 2,29     | 9.276.816                             | -1,66       |
| 2019       | 16.930.025 | 3,02     | 7.254.429     | 1,37     | 9.675.596                             | 4,30        |
| 2020       | 17.489.333 | 3,30     | 7.405.156     | 2,08     | 10.084.177                            | 4,22        |
| 2021       | 17.977.214 | 2,79     | 7.581.094     | 2,38     | 10.396.120                            | 3,09        |
| 2022*)     | 18.610.148 | 3,52     | 7.748.118     | 2,20     | 10.862.030                            | 4,48        |
|            |            | Rata     | -Rata Pertumb | uhan     | · · · · · · · · · · · · · · · · · · · | · · · · · · |
| 2013 - 202 | 2          | 4,43     |               | 3,33     |                                       | 5,31        |
| 2013 - 201 | 7          | 1,32     |               | -1,32    |                                       | 3,64        |
| 2018 - 202 | 2          | 3,16     |               | 2,01     |                                       | 4,02        |

Sumber: Data Tahun 2018 - 2022 dari Ditjen PKH dan Badan Pusat Statistik (BPS) Keterangan: \*) Angka Sementara

Lampiran 2. Perkembangan Produksi Daging Sapi di Indonesia, 1984 - 2022

|              | Indonesia | Pertumb. | Jawa    | Pertumb. | Luar Jawa | Pertumb. |
|--------------|-----------|----------|---------|----------|-----------|----------|
| Tahun        | (Ton)     | (%)      | (Ton)   | (%)      | (Ton)     | (%)      |
| 1984         | 248.480   |          | 151.580 |          | 96.900    |          |
| 1985         | 227.400   | -8,48    | 160.130 | 5,64     | 67.270    | -30,58   |
| 1986         | 227.800   | 0,18     | 155.020 | -3,19    | 72.780    | 8,19     |
| 1987         | 248.030   | 8,88     | 153.470 | -1,00    | 94.560    | 29,93    |
| 1988         | 238.060   | -4,02    | 160.970 | 4,89     | 77.090    | -18,48   |
| 1989         | 245.880   | 3,28     | 170.040 | 5,63     | 75.840    | -1,62    |
| 1990         | 259.220   | 5,43     | 174.500 | 2,62     | 84.720    | 11,71    |
| 1991         | 262.190   | 1,15     | 182.160 | 4,39     | 80.030    | -5,54    |
| 1992         | 297.010   | 13,28    | 206.680 | 13,46    | 90.330    | 12,87    |
| 1993         | 346.280   | 16,59    | 246.830 | 19,43    | 99.450    | 10,10    |
| 1994         | 336.460   | -2,84    | 238.340 | -3,44    | 98.120    | -1,34    |
| 1995         | 311.970   | -7,28    | 213.140 | -10,57   | 98.830    | 0,72     |
| 1996         | 347.200   | 11,29    | 238.280 | 11,80    | 108.920   | 10,21    |
| 1997         | 353.650   | 1,86     | 246.690 | 3,53     | 106.960   | -1,80    |
| 1998         | 342.600   | -3,12    | 232.060 | -5,93    | 110.540   | 3,35     |
| 1999         | 308.770   | -9,87    | 197.420 | -14,93   | 111.350   | 0,73     |
| 2000         | 339.940   | 10,09    | 232.430 | 17,73    | 107.510   | -3,45    |
| 2001         | 338.690   | -0,37    | 233.310 | 0,38     | 105.380   | -1,98    |
| 2002         | 330.290   | -2,48    | 221.910 | -4,89    | 108.380   | 2,85     |
| 2003         | 369.710   | 11,93    | 236.420 | 6,54     | 133.290   | 22,98    |
| 2004         | 447.580   | 21,06    | 242.100 | 2,40     | 205.480   | 54,16    |
| 2005         | 358.700   | -19,86   | 220.970 | -8,73    | 137.730   | -32,97   |
| 2006         | 395.843   | 10,35    | 238.318 | 7,85     | 157.525   | 14,37    |
| 2007         | 339.479   | -14,24   | 205.889 | -13,61   | 133.590   | -15,19   |
| 2008         | 392.511   | 15,62    | 239.991 | 16,56    | 152.520   | 14,17    |
| 2009         | 409.310   | 4,28     | 256.539 | 6,90     | 152.771   | 0,16     |
| 2010         | 436.452   | 6,63     | 268.158 | 4,53     | 168.294   | 10,16    |
| 2011         | 485.333   | 11,20    | 294.121 | 9,68     | 191.213   | 13,62    |
| 2012         | 508.906   | 4,86     | 303.189 | 3,08     | 205.717   | 7,59     |
| 2013         | 504.818   | -0,80    | 297.063 | -2,02    | 207.754   | 0,99     |
| 2014         | 497.670   | -1,42    | 286.513 | -3,55    | 211.157   | 1,64     |
| 2015         | 506.661   | 1,81     | 291.155 | 1,62     | 215.506   | 2,06     |
| 2016         | 518.484   | 2,33     | 297.598 | 2,21     | 220.886   | 2,50     |
| 2017         | 486.320   | -6,20    | 283.255 | -4,82    | 203.065   | -8,07    |
| 2018         | 497.972   | 2,40     | 303.196 | 7,04     | 194.776   | -4,08    |
| 2019         | 504.802   | 1,37     | 313.812 | 3,50     | 190.990   | -1,94    |
| 2020         | 453.418   | -10,18   | 266.934 | -14,94   | 186.484   | -2,36    |
| 2021         | 487.802   | 7,58     | 293.715 | 10,03    | 194.087   | 4,08     |
| 2022*)       | 498.923   | 2,28     | 300.107 | 2,18     | 198.816   | 2,44     |
| Rata-Rata Pe | rtumbuhan |          |         |          |           |          |
| 2013 - 2022  |           | -0,08    |         | 0,13     |           | -0,28    |
| 2013 - 2017  |           | -0,86    |         | (1,31)   |           | -0,18    |
| 2018 - 2022  |           | 0,69     |         | 1,56     |           | -0,37    |

Sumber : Ditjen Peternakan dan Kesehatan Hewan, diolah Pusdatin

Keterangan: \*) Angka Sementara

Lampiran 3. Sentra Populasi Sapi Potong di Indonesia, 2018 - 2022

| No | Provinsi            |            |            | Populasi (ekor | )          |            | Rata-rata  | Share (%) | Kumulatif |
|----|---------------------|------------|------------|----------------|------------|------------|------------|-----------|-----------|
| NO | Provinsi            | 2018       | 2019       | 2020           | 2021       | 2022*)     | Kata-rata  | Snare (%) | Share (%) |
| 1  | Jawa Timur          | 4.637.970  | 4.705.067  | 4.823.970      | 4.928.987  | 5.070.240  | 4.833.247  | 27,64     | 27,64     |
| 2  | Jawa Tengah         | 1.751.799  | 1.786.932  | 1.835.717      | 1.874.051  | 1.910.864  | 1.831.873  | 10,48     | 38,11     |
| 3  | Sulawesi Selatan    | 1.310.194  | 1.369.890  | 1.405.246      | 1.443.297  | 1.483.709  | 1.402.467  | 8,02      | 46,13     |
| 4  | Nusa Tenggara Barat | 1.183.570  | 1.234.640  | 1.285.746      | 1.320.551  | 1.474.516  | 1.299.805  | 7,43      | 53,56     |
| 5  | Nusa Tenggara Timur | 1.027.286  | 1.087.761  | 1.176.317      | 1.173.473  | 1.243.884  | 1.141.744  | 6,53      | 60,09     |
| 6  | Sumatera Utara      | 982.963    | 872.411    | 899.571        | 935.888    | 967.611    | 931.689    | 5,33      | 65,42     |
| 7  | Lampung             | 827.217    | 850.555    | 857.364        | 904.076    | 906.568    | 869.156    | 4,97      | 70,39     |
| 8  | Bali                | 560.546    | 544.955    | 550.350        | 558.463    | 575.218    | 557.906    | 3,19      | 73,58     |
| 9  | Aceh                | 354.741    | 403.031    | 435.376        | 455.177    | 481.605    | 425.986    | 2,44      | 76,02     |
| 10 | Sumatera Barat      | 401.094    | 408.851    | 415.454        | 424.631    | 432.347    | 416.475    | 2,38      | 78,40     |
|    | Lainnya             | 3.395.565  | 3.665.932  | 3.804.222      | 3.958.620  | 4.063.586  | 3.777.585  | 21,60     | 100,00    |
|    | Indonesia           | 16.432.945 | 16.930.025 | 17.489.333     | 17.977.214 | 18.610.148 | 17.487.933 | 100       |           |

umber : Ditjen Peternakan dan Kesehatan Hewan, diolah Pusdatin

Keterangan: \*) Angka Sementara

Lampiran 4. Sentra Produksi Daging Sapi di Indonesia, 2018 - 2022

| No | Provinsi         |         | Р       | roduksi (Tor | 1)      |         | Data vata | Share (%) | Kumulatif |
|----|------------------|---------|---------|--------------|---------|---------|-----------|-----------|-----------|
| NO | Provinsi         | 2018    | 2019    | 2020         | 2021    | 2022*)  | Rata-rata | Snare (%) | Share (%) |
| 1  | Jawa Timur       | 96.728  | 103.292 | 91.028       | 108.284 | 110.991 | 102.065   | 20,89     | 20,89     |
| 2  | Jawa Barat       | 81.626  | 79.481  | 80.996       | 78.135  | 84.961  | 81.040    | 16,59     | 37,48     |
| 3  | Jawa Tengah      | 64.756  | 66.681  | 59.952       | 65.151  | 61.394  | 63.587    | 13,01     | 50,49     |
| 4  | Banten           | 34.946  | 37.329  | 20.363       | 17.933  | 17.243  | 25.563    | 5,23      | 55,72     |
| 5  | Sumatera Barat   | 20.299  | 21.590  | 20.981       | 21.375  | 21.515  | 21.152    | 4,33      | 60,05     |
| 6  | Lampung          | 13.332  | 14.326  | 14.930       | 21.130  | 21.176  | 16.979    | 3,48      | 63,53     |
| 7  | Sulawesi Selatan | 19.696  | 17.926  | 15.597       | 15.366  | 16.278  | 16.973    | 3,47      | 67,00     |
| 8  | DKI Jakarta      | 15.867  | 19.195  | 7.241        | 16.382  | 17.618  | 15.260    | 3,12      | 70,12     |
| 9  | Sumatera Utara   | 15.240  | 14.153  | 12.986       | 13.745  | 13.859  | 13.997    | 2,86      | 72,99     |
| 10 | Sumatera Selatan | 11.261  | 11.455  | 14.358       | 13.833  | 15.459  | 13.273    | 2,72      | 75,71     |
|    | Lainnya          | 124.220 | 119.375 | 114.987      | 116.469 | 118.431 | 118.696   | 24,29     | 100,00    |
|    | Indonesia        | 497.972 | 504.802 | 453.418      | 487.802 | 498.923 | 488.584   | 100       |           |

Sumber : Ditjen Peternakan dan Kesehatan Hewan, diolah Pusdatin

Keterangan : \*) Angka Sementara

Lampiran 5. Perkembangan Konsumsi Daging Sapi di Indonesia, 2002 - 2022

| Tahun     | Konsumsi Rumah<br>Tangga daging sapi<br>(kg/kapita/tahun) | Pertumb. (%) | Konsumsi Total daging<br>sapi dan kerbau<br>(kg/kapita/tahun) | Pertumb. (%) |
|-----------|-----------------------------------------------------------|--------------|---------------------------------------------------------------|--------------|
| 2002      | 0,521                                                     |              | 1,696                                                         |              |
| 2003      | 0,574                                                     | 10,17        | 1,667                                                         | -1,68        |
| 2004      | 0,626                                                     | 9,06         | 1,863                                                         | 11,75        |
| 2005      | 0,417                                                     | -33,39       | 1,707                                                         | -8,37        |
| 2006      | 0,313                                                     | -24,94       | 1,671                                                         | -2,14        |
| 2007      | 0,417                                                     | 33,23        | 2,069                                                         | 23,85        |
| 2008      | 0,365                                                     | -12,47       | 2,088                                                         | 0,92         |
| 2009      | 0,313                                                     | -14,25       | 2,154                                                         | 3,16         |
| 2010      | 0,365                                                     | 16,61        | 2,296                                                         | 6,58         |
| 2011      | 0,417                                                     | 14,25        | 2,428                                                         | 5,75         |
| 2012      | 0,365                                                     | -12,47       | 2,630                                                         | 8,32         |
| 2013      | 0,261                                                     | -28,49       | 2,143                                                         | -18,51       |
| 2014      | 0,261                                                     | 0,00         | 2,310                                                         | 7,78         |
| 2015      | 0,417                                                     | 59,77        | 2,100                                                         | -9,09        |
| 2016      | 0,417                                                     | 0,00         | 2,350                                                         | 11,90        |
| 2017      | 0,469                                                     | 12,54        | 2,430                                                         | 3,40         |
| 2018      | 0,464                                                     | -1,11        | 2,500                                                         | 2,88         |
| 2019      | 0,485                                                     | 4,48         | 2,560                                                         | 2,40         |
| 2020      | 0,430                                                     | -11,32       | 2,360                                                         | -7,81        |
| 2021      | 0,430                                                     | 0,00         | 2,460                                                         | 4,24         |
| 2022      | 0,430                                                     | 0,00         | 2,620                                                         | 6,50         |
| Rata-rata |                                                           |              |                                                               |              |
| 2013-2017 | 0,37                                                      | 8,76         | 2,27                                                          | -0,90        |
| 2018-2022 | 0,45                                                      | -1,59        | 2,50                                                          | 1,64         |

Sumber: Susenas dan Bapok, BPS diolah Pusdatin

Lampiran 6. Perkembangan Harga Konsumen Daging Sapi di Indonesia, 1983 <u>- 2022</u>

| Tahun     | Harga Daging Sapi<br>Kualitas I (Rp/kg) | Pertumbuhan<br>(%) |
|-----------|-----------------------------------------|--------------------|
| 1983      | 2.536                                   |                    |
| 1984      | 2.844                                   | 12,15              |
| 1985      | 3.027                                   | 6,43               |
| 1986      | 3.492                                   | 15,36              |
| 1987      | 3.937                                   | 12,74              |
| 1988      | 4.297                                   | 9,14               |
| 1989      | 4.547                                   | 5,82               |
| 1990      | 4.949                                   | 8,84               |
| 1991      | 5.650                                   | 14,16              |
| 1992      | 9.100                                   | 61,06              |
| 1993      | 6.640                                   | -27,03             |
| 1994      | 7.628                                   | 14,88              |
| 1995      | 9.047                                   | 18,60              |
| 1996      | 10.137                                  | 12,05              |
| 1997      | 10.697                                  | 5,52               |
| 1998      | 15.609                                  | 45,92              |
| 1999      | 22.448                                  | 43,81              |
| 2000      | 24.989                                  | 11,32              |
| 2001      | 29.003                                  | 16,06              |
| 2002      | 33.331                                  | 14,92              |
| 2003      | 34.330                                  | 3,00               |
| 2004      | 34.484                                  | 0,45               |
| 2005      | 39.916                                  | 15,75              |
| 2006      | 43.866                                  | 9,90               |
| 2007      | 45.599                                  | 3,95               |
| 2008      | 50.871                                  | 11,56              |
| 2009      | 58.178                                  | 14,36              |
| 2010      | 66.329                                  | 14,01              |
| 2011      | 69.461                                  | 4,72               |
| 2012      | 76.925                                  | 10,75              |
| 2013      | 90.401                                  | 17,52              |
| 2014      | 99.332                                  | 9,88               |
| 2015      | 104.328                                 | 5,03               |
| 2016      | 113.555                                 | 8,84               |
| 2017      | 115.932                                 | 2,09               |
| 2018      | 121.850                                 | 5,10               |
| 2019      | 123.250                                 | 1,15               |
| 2020      | 122.025                                 | -0,99              |
| 2021      | 126.596                                 | 3,75               |
| 2022 *)   | 134.960                                 | 6,61               |
| Rata-Rata |                                         |                    |
| 2013-2017 | 104.710                                 | 8,67               |
| 2018-2022 | 125.736                                 | 3,12               |

Sumber : Kemendag (1983 - 2018), dan BI (2019 - 202 Keterangan : \*) Data sampai bulan Oktober 2022

Lampiran 7. Neraca Ekspor Impor Daging Sapi di Indonesia, 1996 - 2022.

|             | Volun  | ne Daging Sapi | (Ton)    | Pertumb. | Nilai D | aging Sapi (U | \$\$ 000) | Pertumb. |
|-------------|--------|----------------|----------|----------|---------|---------------|-----------|----------|
| Tahun       | Ekspor | Impor          | Neraca   | (%)      | Ekspor  | Impor         | Neraca    | (%)      |
| 1996        | 4      | 15.773         | -15.769  |          | 6       | 32.435        | -32.429   |          |
| 1997        | 25     | 23.316         | -23.291  | 47,70    | 69      | 36.523        | -36.454   | 12,41    |
| 1998        | 0      | 8.526          | -8.526   | -63,39   | 0       | 9.820         | -9.820    | -73,06   |
| 1999        | 111    | 10.400         | -10.289  | 20,68    | 152     | 15.234        | -15.082   | 53,58    |
| 2000        | 26     | 26.962         | -26.936  | 161,79   | 55      | 41.047        | -40.992   | 171,79   |
| 2001        | 175    | 16.517         | -16.342  | -39,33   | 172     | 23.792        | -23.620   | -42,38   |
| 2002        | 78     | 11.474         | -11.396  | -30,26   | 135     | 18.586        | -18.452   | -21,88   |
| 2003        | 130    | 24.564         | -24.434  | 114,41   | 517     | 28.091        | -27.575   | 49,44    |
| 2004        | 20     | 24.325         | -24.305  | -0,53    | 128     | 35.461        | -35.333   | 28,13    |
| 2005        | 98     | 32.230         | -32.132  | 32,20    | 113     | 51.666        | -51.553   | 45,91    |
| 2006        | 20     | 31.673         | -31.653  | -1,49    | 42      | 54.370        | -54.329   | 5,38     |
| 2007        | 43     | 44.205         | -44.161  | 39,52    | 20      | 97.559        | -97.539   | 79,54    |
| 2008        | 62     | 45.708         | -45.647  | 3,36     | 11      | 134.922       | -134.910  | 38,31    |
| 2009        | 6      | 71.031         | -71.025  | 55,60    | 21      | 188.187       | -188.167  | 39,48    |
| 2010        | 0      | 95.311         | -95.311  | 34,19    | 0       | 289.506       | -289.506  | 53,86    |
| 2011        | 0      | 65.022         | -65.022  | -31,78   | 3       | 234.266       | -234.263  | -19,08   |
| 2012        | 2      | 43.540         | -43.538  | -33,04   | 12      | 167.051       | -167.039  | -28,70   |
| 2013        | 3      | 57.050         | -57.047  | 31,03    | 7       | 249.610       | -249.602  | 49,43    |
| 2014        | 3      | 107.172        | -107.169 | 87,86    | 4       | 443.837       | -443.833  | 77,82    |
| 2015        | 7      | 52.782         | -52.775  | -50,75   | 13      | 251.239       | -251.227  | -43,40   |
| 2016        | 15     | 148.964        | -148.949 | 182,23   | 23      | 569.187       | -569.164  | 126,55   |
| 2017        | 29     | 163.068        | -163.040 | 9,46     | 82      | 585.731       | -585.649  | 2,90     |
| 2018        | 14     | 164.260        | -164.246 | 0,74     | 36      | 618.470       | -618.434  | 5,60     |
| 2019        | 24     | 266.459        | -266.435 | 62,22    | 54      | 851.095       | -851.041  | 37,61    |
| 2020        | 28     | 208.001        | -207.973 | -21,94   | 54      | 718.062       | -718.008  | -15,63   |
| 2021        | 70     | 276.761        | -276.691 | 33,04    | 260     | 970.006       | -969.746  | 35,06    |
| 2022 *)     | 50     | 227.266        | -227.216 | -17,88   | 177     | 829.616       | -829.439  | -14,47   |
|             |        |                | Ra       | ta-Rata  |         |               |           |          |
| 2013 - 2017 | 11     | 105.807        | -105.796 | 51,97    | 26      | 419.921       | -419.895  | 42,66    |
| 2018 -2022  | 37     | 228.549        | -228.512 | 11,24    | 116     | 797.450       | -797.334  | 9,63     |

Sumber : BPS

Keterangan:\*) Data Januari - September 2022

Lampiran 8. Perkembangan Populasi dan Produksi Daging Sapi Dunia, 1980 - 2020

| Tahun       | Populasi*)<br>(Ribu Ekor) | Pertumb.<br>(%) | Produksi*)<br>(Ribu Ton) | Pertumb.<br>(%) |
|-------------|---------------------------|-----------------|--------------------------|-----------------|
| 1980        | 1.216.999                 |                 | 45.566                   |                 |
| 1981        | 1.228.568                 | 0,95            | 45.953                   | 0,85            |
| 1982        | 1.242.262                 | 1,11            | 45.914                   | -0,09           |
| 1983        | 1.249.397                 | 0,57            | 47.160                   | 2,71            |
| 1984        | 1.255.267                 | 0,47            | 48.484                   | 2,81            |
| 1985        | 1.259.990                 | 0,38            | 49.307                   | 1,70            |
| 1986        | 1.266.626                 | 0,53            | 50.984                   | 3,40            |
| 1987        | 1.266.557                 | -0,01           | 50.940                   | -0,08           |
| 1988        | 1.272.117                 | 0,44            | 51.340                   | 0,78            |
| 1989        | 1.289.161                 | 1,34            | 51.558                   | 0,42            |
| 1990        | 1.296.613                 | 0,58            | 53.028                   | 2,85            |
| 1991        | 1.301.599                 | 0,38            | 53.428                   | 0,75            |
| 1992        | 1.309.789                 | 0,63            | 52.586                   | -1,57           |
| 1993        | 1.310.408                 | 0,05            | 51.992                   | -1,13           |
| 1994        | 1.321.016                 | 0,81            | 51.850                   | -0,27           |
| 1995        | 1.330.174                 | 0,69            | 52.566                   | 1,38            |
| 1996        | 1.332.831                 | 0,20            | 53.604                   | 1,98            |
| 1997        | 1.312.472                 | -1,53           | 54.632                   | 1,92            |
| 1998        | 1.313.224                 | 0,06            | 54.149                   | -0,88           |
| 1999        | 1.316.501                 | 0,25            | 55.350                   | 2,22            |
| 2000        | 1.319.963                 | 0,26            | 55.722                   | 0,67            |
| 2001        | 1.320.858                 | 0,07            | 55.182                   | -0,97           |
| 2002        | 1.332.941                 | 0,91            | 56.219                   | 1,88            |
| 2003        | 1.346.093                 | 0,99            | 57.003                   | 1,39            |
| 2004        | 1.360.241                 | 1,05            | 58.625                   | 2,85            |
| 2005        | 1.375.231                 | 1,10            | 58.920                   | 0,50            |
| 2006        | 1.391.751                 | 1,20            | 60.167                   | 2,12            |
| 2007        | 1.402.736                 | 0,79            | 61.968                   | 2,99            |
| 2008        | 1.415.368                 | 0,90            | 62.006                   | 0,06            |
| 2009        | 1.410.030                 | -0,38           | 62.300                   | 0,47            |
| 2010        | 1.411.583                 | 0,11            | 62.372                   | 0,12            |
| 2011        | 1.415.821                 | 0,30            | 62.074                   | -0,48           |
| 2012        | 1.427.257                 | 0,81            | 62.499                   | 0,68            |
| 2013        | 1.431.887                 | 0,32            | 63.522                   | 1,64            |
| 2014        | 1.439.387                 | 0,52            | 63.935                   | 0,65            |
| 2015        | 1.451.964                 | 0,87            | 63.434                   | -0,78           |
| 2016        | 1.470.386                 | 1,27            | 63.976                   | 0,85            |
| 2017        | 1.477.058                 | 0,45            | 65.194                   | 1,90            |
| 2018        | 1.493.932                 | 1,14            | 66.740                   | 2,37            |
| 2019        | 1.511.107                 | 1,15            | 67.916                   | 1,76            |
| 2020        | 1.525.939                 | 0,98            | 67.883                   | -0,05           |
|             |                           | Rata - Rata     |                          |                 |
| 1980 - 2020 |                           | 0,57            |                          | 1,01            |
| 2011 - 2020 |                           | 0,84            |                          | 1,00            |
| 2016 - 2020 |                           | 1,00            |                          | 1,37            |

<sup>\*)</sup> Sumber: FAO didownload 4 Oktober 2022

Lampiran 9. Negara Sentra Populasi Sapi Potong Dunia, 2016 - 2020

|           |           |           | Pop       | ulasi (Ribu ek | or)       |           |           | Kontribusi | Kumulatif         |
|-----------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|------------|-------------------|
| Peringkat | Negara    | 2016      | 2017      | 2018           | 2019      | 2020      | Rata-rata | (%)        | Kontribusi<br>(%) |
| 1         | Brazil    | 218.191   | 215.004   | 213.809        | 215.009   | 218.150   | 216.033   | 14,44      | 14,44             |
| 2         | India     | 189.678   | 191.055   | 192.265        | 193.463   | 194.482   | 192.189   | 12,85      | 27,29             |
| 3         | USA       | 91.888    | 93.625    | 94.298         | 94.805    | 93.793    | 93.682    | 6,26       | 33,56             |
| 4         | Ethiopia  | 59.487    | 60.392    | 61.510         | 65.354    | 70.292    | 63.407    | 4,24       | 37,80             |
| 5         | China     | 63.539    | 61.987    | 63.418         | 63.823    | 61.129    | 62.779    | 4,20       | 41,99             |
| 6         | Argentina | 52.637    | 54.793    | 54.793         | 55.008    | 54.461    | 54.338    | 3,63       | 45,63             |
| 7         | Pakistan  | 42.800    | 44.400    | 46.084         | 47.821    | 49.624    | 46.146    | 3,09       | 48,71             |
| 8         | Mexico    | 33.779    | 34.278    | 34.820         | 35.225    | 35.639    | 34.748    | 2,32       | 51,03             |
| 9         | Sudan     | 30.632    | 30.926    | 31.223         | 31.489    | 31.757    | 31.205    | 2,09       | 53,12             |
| 21        | Indonesia | 16.004    | 16.429    | 16.433         | 16.930    | 17.467    | 16.653    | 1,11       | 54,23             |
| 11        | Lainnya   | 671.751   | 674.170   | 685.277        | 692.181   | 699.145   | 684.505   | 45,77      | 100               |
|           | Dunia     | 1.470.386 | 1.477.058 | 1.493.932      | 1.511.107 | 1.525.939 | 1.495.684 | 100        |                   |

<sup>\*)</sup> Sumber: FAO didownload 4 Oktober 2022

Lampiran 10. Negara Sentra Produksi Sapi Potong Dunia, 2016 - 2020

|           |           |        | Pro    | duksi (Ribu | ton)   |        |           | Kontribusi | Kumulatif         |
|-----------|-----------|--------|--------|-------------|--------|--------|-----------|------------|-------------------|
| Peringkat | Negara    | 2016   | 2017   | 2018        | 2019   | 2020   | Rata-rata | (%)        | Kontribusi<br>(%) |
| 1         | USA       | 11.471 | 11.907 | 12.219      | 12.349 | 12.357 | 12.061    | 18,18      | 18,18             |
| 2         | Brazil    | 9.284  | 9.550  | 9.900       | 10.200 | 10.100 | 9.807     | 14,78      | 32,96             |
| 3         | China     | 5.566  | 5.726  | 5.810       | 6.002  | 6.049  | 5.831     | 8,79       | 41,75             |
| 4         | Argentina | 2.316  | 2.069  | 2.238       | 2.352  | 2.372  | 2.269     | 3,42       | 45,17             |
| 5         | Australia | 1.879  | 1.927  | 1.981       | 2.028  | 2.081  | 1.979     | 2,98       | 48,15             |
| 6         | Mexico    | 1.589  | 1.569  | 1.608       | 1.625  | 1.634  | 1.605     | 2,42       | 50,57             |
| 7         | Russia    | 1.466  | 1.433  | 1.460       | 1.428  | 1.435  | 1.444     | 2,18       | 52,75             |
| 8         | Perancis  | 1.112  | 1.168  | 1.321       | 1.394  | 1.382  | 1.275     | 1,92       | 54,67             |
| 9         | Canada    | 1.155  | 1.137  | 1.109       | 1.107  | 1.091  | 1.120     | 1,69       | 56,36             |
| 24        | Indonesia | 518    | 486    | 498         | 505    | 516    | 505       | 0,76       | 57,12             |
| 11        | Lainnya   | 27.619 | 28.222 | 28.596      | 28.926 | 28.867 | 28.446    | 42,88      | 100,00            |
|           | Dunia     | 63.976 | 65.194 | 66.740      | 67.916 | 67.883 | 66.342    | 100        |                   |

Keterangan : Sumber FAO, didownload 5 Oktober 2022

Lampiran 11. Negara Konsumen Daging Sapi Terbesar Dunia, 2016 - 2020

|    |           |        | Kons   | sumsi (Ribu | ton)   |        |           | Kontribusi | Kumulatif         |
|----|-----------|--------|--------|-------------|--------|--------|-----------|------------|-------------------|
| No | Negara    | 2016   | 2017   | 2018        | 2019   | 2020   | Rata-rata | (%)        | Kontribusi<br>(%) |
| 1  | China     | 6.873  | 7.237  | 7.808       | 8.826  | 9.486  | 8.046     | 13,84      | 13,84             |
| 2  | Brazil    | 7.695  | 7.801  | 7.925       | 7.929  | 7.609  | 7.792     | 13,40      | 27,24             |
| 3  | Uni Eropa | 6.613  | 6.582  | 6.753       | 6.698  | 6.521  | 6.633     | 11,41      | 38,65             |
| 4  | India     | 2.461  | 2.444  | 2.729       | 2.776  | 2.476  | 2.577     | 4,43       | 43,09             |
| 5  | Argentina | 2.441  | 2.557  | 2.568       | 2.379  | 2.365  | 2.462     | 4,24       | 47,32             |
| 6  | Mexico    | 1.833  | 1.868  | 1.902       | 1.901  | 1.898  | 1.880     | 3,23       | 50,56             |
| 7  | Pakistan  | 1.702  | 1.736  | 1.753       | 1.756  | 175    | 1.424     | 2,45       | 53,01             |
| 8  | Russia    | 1.797  | 178    | 179         | 1.758  | 1.708  | 1.124     | 1,93       | 54,94             |
| 9  | Japan     | 1.193  | 1.254  | 1.298       | 1.319  | 1.295  | 1.272     | 2,19       | 57,13             |
| 10 | Canada    | 963    | 988    | 1.014       | 1.029  | 1.047  | 1.008     | 1,73       | 58,86             |
| 11 | Lainnya   | 22.616 | 24.492 | 24.728      | 23.215 | 24.525 | 23.915    | 41,14      | 100,00            |
|    | Dunia     | 56.187 | 57.137 | 58.657      | 59.586 | 59.105 | 58.134    | 100        |                   |

Sumber: USDA

Lampiran 12. Neraca Perdagangan Daging Sapi Dunia, 1980 - 2020

| Tahun       | Ekspor     | Pertumb. | Impor      | Pertumb. | Neraca     |
|-------------|------------|----------|------------|----------|------------|
|             | (Ribu Ton) | (%)      | (Ribu Ton) | (%)      | (Ribu Ton) |
| 1980        | 1.331      |          | 1.140      |          | 191        |
| 1981        | 1.391      | 4,52     | 1.046      | -8,22    | 344        |
| 1982        | 1.471      | 5,74     | 1.165      | 11,28    | 306        |
| 1983        | 1.601      | 8,89     | 1.188      | 2,01     | 413        |
| 1984        | 1.561      | -2,49    | 1.113      | -6,34    | 449        |
| 1985        | 1.649      | 5,60     | 1.244      | 11,84    | 404        |
| 1986        | 1.801      | 9,26     | 1.437      | 15,47    | 365        |
| 1987        | 2.004      | 11,21    | 1.491      | 3,79     | 512        |
| 1988        | 2.206      | 10,12    | 1.656      | 11,03    | 550        |
| 1989        | 2.236      | 1,33     | 1.745      | 5,40     | 490        |
| 1990        | 2.235      | -0,03    | 1.895      | 8,56     | 340        |
| 1991        | 2.598      | 16,23    | 2.051      | 8,24     | 547        |
| 1992        | 2.685      | 3,36     | 2.558      | 24,69    | 127        |
| 1993        | 2.807      | 4,53     | 2.667      | 4,27     | 140        |
| 1994        | 3.069      | 9,33     | 2.821      | 5,78     | 247        |
| 1995        | 3.081      | 0,41     | 2.787      | -1,20    | 294        |
| 1996        | 2.965      | -3,77    | 2.769      | -0,67    | 196        |
| 1997        | 3.346      | 12,84    | 3.247      | 17,27    | 99         |
| 1998        | 3.289      | -1,70    | 3.247      | -0,01    | 42         |
| 1999        | 3.854      | 17,18    | 3.650      | 12,44    | 203        |
| 2000        | 3.889      | 0,91     | 3.833      | 5,01     | 55         |
| 2001        | 3.784      | -2,69    | 3.762      | -1,85    | 21         |
| 2002        | 4.164      | 10,06    | 4.217      | 12,08    | -53        |
| 2003        | 4.409      | 5,87     | 4.386      | 4,00     | 23         |
| 2004        | 4.568      | 3,62     | 4.432      | 1,06     | 136        |
| 2005        | 4.915      | 7,58     | 4.718      | 6,44     | 197        |
| 2006        | 5.055      | 2,85     | 4.732      | 0,31     | 323        |
| 2007        | 5.175      | 2,38     | 5.089      | 7,55     | 86         |
| 2008        | 5.026      | -2,88    | 4.895      | -3,82    | 132        |
| 2009        | 5.158      | 2,63     | 4.977      | 1,69     | 181        |
| 2010        | 5.286      | 2,48     | 5.066      | 1,77     | 221        |
| 2011        | 5.028      | -4,89    | 4.876      | -3,74    | 152        |
| 2012        | 5.064      | 0,72     | 4.997      | 2,48     | 67         |
| 2013        | 5.410      | 6,83     | 5.481      | 9,67     | -71        |
| 2014        | 5.901      | 9,08     | 5.981      | 9,13     | -80        |
| 2015        | 5.862      | -0,67    | 6.002      | 0,34     | -140       |
| 2016        | 5.805      | -0,96    | 5.991      | -0,18    | -186       |
| 2017        | 6.126      | 5,52     | 6.269      | 4,65     | -143       |
| 2018        | 6.749      | 10,18    | 6.867      | 9,54     | -118       |
| 2019        | 7.394      | 9,56     | 7.582      | 10,41    | -188       |
| 2020        | 7.189      | -2,78    | 7.623      | 0,53     | -434       |
| Rata - Rata |            |          |            |          |            |
| 1980 - 2015 | 3.496      | 4,47     | 3.288      | 5,08     | 208,62     |
| 2011 - 2020 | 6.167      | 4,16     | 6.310      | 5,18     | (143,65)   |
|             | 6.653      | 4,30     | 6.866      | 4,99     | (213,69)   |

Lampiran 13. Negara Eksportir Daging Sapi Terbesar Dunia, 2016-2020

|    | Negara      | Ekspor (Ribu ton) |       |       |       |       |           | Kontribusi | Kumula         |
|----|-------------|-------------------|-------|-------|-------|-------|-----------|------------|----------------|
| No |             | 2016              | 2017  | 2018  | 2019  | 2020  | Rata-rata | (%)        | Kontrik<br>(%) |
| 1  | Brazil      | 1.069             | 1.194 | 1.334 | 1.560 | 1.716 | 1.374     | 20,66      | 20,6           |
| 2  | Australia   | 995               | 965   | 1.073 | 1.162 | 977   | 1.034     | 15,55      | 36,2           |
| 3  | USA         | 696               | 790   | 877   | 836   | 822   | 804       | 12,08      | 48,29          |
| 4  | New Zealand | 373               | 359   | 379   | 388   | 398   | 380       | 5,71       | 54,00          |
| 5  | Argentina   | 150               | 204   | 364   | 543   | 554   | 363       | 5,45       | 59,4!          |
| 6  | Irlandia    | 310               | 311   | 314   | 322   | 326   | 316       | 4,76       | 64,2           |
| 7  | Canada      | 276               | 293   | 315   | 351   | 338   | 314       | 4,73       | 68,9           |
| 8  | Belanda     | 274               | 321   | 327   | 326   | 285   | 307       | 4,61       | 73,5           |
| 9  | Uruguay     | 258               | 264   | 275   | 278   | 256   | 266       | 4,00       | 77,5           |
| 10 | Paraguay    | 276               | 268   | 260   | 248   | 271   | 265       | 3,98       | 81,5           |
| 11 | Lainnya     | 1.130             | 1.158 | 1.233 | 1.380 | 1.247 | 1.230     | 18,48      | 100,0          |
|    | Dunia       | 5.805             | 6.126 | 6.749 | 7.394 | 7.189 | 6.653     | 100        |                |

Sumber: FAO, didownload 5 Oktober 2022

Lampiran 14. Negara Importir Daging Sapi Terbesar Dunia, 2016-2020

| Peringkat | Negara        | Impor (Ribu ton) |       |       |       |       |           | Kontribusi | Kumulatif         |
|-----------|---------------|------------------|-------|-------|-------|-------|-----------|------------|-------------------|
|           |               | 2016             | 2017  | 2018  | 2019  | 2020  | Rata-rata | (%)        | Kontribusi<br>(%) |
| 1         | China         | 942              | 1.067 | 1.428 | 1.884 | 2.284 | 1.521     | 22,15      | 22,15             |
| 2         | USA           | 864              | 872   | 855   | 863   | 947   | 880       | 12,82      | 34,97             |
| 3         | Jepang        | 501              | 571   | 605   | 614   | 599   | 578       | 8,42       | 43,39             |
| 4         | Korea Selatan | 232              | 245   | 275   | 292   | 288   | 266       | 3,88       | 47,27             |
| 5         | Russia        | 254              | 265   | 249   | 263   | 247   | 256       | 3,72       | 50,99             |
| 6         | Chile         | 210              | 202   | 222   | 256   | 252   | 228       | 3,33       | 54,31             |
| 7         | Jerman        | 202              | 225   | 225   | 228   | 219   | 220       | 3,20       | 57,51             |
| 8         | Mesir         | 220              | 216   | 235   | 224   | 181   | 215       | 3,13       | 60,64             |
| 9         | Inggris Raya  | 193              | 198   | 224   | 202   | 211   | 206       | 2,99       | 63,64             |
| 10        | Perancis      | 168              | 172   | 177   | 178   | 145   | 168       | 2,44       | 66,08             |
| 13        | Indonesia     | 104              | 126   | 140   | 161   | 139   | 134       | 1,95       | 68,03             |
| 11        | Lainnya       | 2.100            | 2.112 | 2.233 | 2.419 | 2.111 | 2.195     | 31,97      | 100               |
|           | Dunia         | 5.991            | 6.269 | 6.867 | 7.582 | 7.623 | 6.866     | 100        |                   |

Sumber: FAO, didownload 5 Oktober 2022

## OUTLOOK KOMODITAS PETERNAKAN DAGING SAPI



Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal - Kementerian Pertanian Tahun 2022

Jalan Harsono RM No. 3, Ragunan - Jakarta Selatan ISSN 1907-1507