Rapine e Disoccupazione: un approccio statistico

Mattia Gallucci

Contenuti

01.

Raccolta dati

Frequenze '

02.

Indici di posizione

Media, mediana, moda

03.

Indici di variabilità

Varianza, Deviazione Standard, SMA, Ampiezza e Coefficiente di Variazione.

04.

Indici di forma

Indice di Asimmetria e di Curtosi.

05.

Percentili

Percentili campionari, Box Plot e dati bivariati.

01. Raccolta dati

Frequenze

Dati

Regione	# Rapine	Disoccupati (migliaia)	
Piemonte	2 060	124	
Valle D'Aosta	12	3	
Liguria	842	46	
Lombardia	6205	225	
Trentino Alto Adige	367	16	
Veneto	1570	94	
Friuli	231	29	
Emilia Romagna	2067	105	
Toscana	1767	104	
Umbria	168	168 27	

Regione	# Rapine	Disoccupati (migliaia)	
Marche	267	42	
Lazio	2640	194	
Abruzzo	242	50	
Molise	30	12	
Campania	4137	339	
Puglia	1081	174	
Basilicata	54	14	
Calabria	211	80	
Sicilia	1439	265	
Sardegna	252	74	
Totale	25642	2027	

Fonte: ISTAT 2022

Percentuale Rapine per Aree Geografiche

Frequenza Assoluta

fi : frequenza assoluta della modalità vi , ossia il numero di dati del campione (x_1, \ldots, x_n) che hanno valore vi , per i = 1, 2, ..., k

Frequenza Cumulativa Assoluta

Fi : frequenza cumulativa assoluta delle modalità v_1, \ldots, v_i , ossia numero di dati del campione (x_1, \ldots, x_n) che hanno valore minore o uquale a v_i , per $i = 1, 2, \ldots, k$

DISOCCUPAT

$$F_i = \sum_{j=1}^{\iota} f_j$$

0-59 60-119 120-179 180-239 240-299 300-359

Frequenza Relativa

pi : frequenza relativa della modalità vi , ossia rapporto tra la frequenza assoluta fi e l'ampiezza n del campione, per i = 1, 2, ..., k

$$p_i = rac{J_i}{n}$$

Frequenza Cumulativa Relativa

Pi : frequenza cumulativa relativa delle modalità v1, . . . , vi , ossia somma delle frequenze relative delle modalità v1, . . . , vi , per i = 1, 2, . . . , k

Frequenza Cumulativa Relativa 1,00 0,75 0,50 0,25

0.00

DISOCCUPAT

0-999

1000-1999

$$P_i = \sum_{j=1}^i p_j = rac{F_i}{n}$$

0,00 0-59 60-119 120-179 180-239 240-299 300-359

02.
Indici di
posizione

Media, mediana, moda

Indici di Posizione

Media

Casi di rapine in media in una regione: 1282.1, quindi circa 1282 rapine. Molto maggiore rispetto alla media di 100.85 disoccupati, quindi circa 101

Mediana

Valore centrale del campione dei dati:
604.5 per le rapine e
77 per la
disoccupazione

Moda

La classe con frequenza massima è: o-999 per le classi riguardanti le rapine, o-99 per le classi di disoccupazione 03.

Indici di Variabilità

Varianza, Deviazione Standard, SMA, Ampiezza e Coefficiente di Variazione.

Indici di Variabilità

	VARIANZA	DEVIAZIONE STANDARD	SCARTO MEDIO ASSOLUTO	AMPIEZZA DEL CAMPIONE	COEFFICIENTE DI VARIAZIONE
Rapine Disoccupazione	2411021.09 8337.6275	1552.7 91.3	1140.8 72.32	6193 336	1.2 0,9
	$s^2 = rac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x} ight)^2$	$s=\sqrt{s^2}$	$s_a = rac{1}{n} \sum_{i=1}^n x_i - \overline{x} $	$w=x_{(n)}-x_{(1)}$	$cv=rac{s}{\overline{x}}$

04. Indici di forma

Indice di Asimmetria e di Curtosi.

Indici di Forma

Gli indici di forma misurano caratteristiche relative alla forma della distribuzione dei dati

Indice di Asimmetria

$$\gamma_R = rac{1}{s^3} rac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x}
ight)^3 = 1,76865$$
 $\gamma_D = 1,08256$

Siccome γ è positivo, le distribuzione di dati presentano una coda più lunga a destra

Indice di Curtosi

$$k_R = \left(rac{1}{s^4}rac{1}{n}\sum_{i=1}^n\left(x_i-\overline{x}
ight)^4
ight) - 3 = 2,79356$$
 $k_D = 0,352347$

Essendo *k* positivo, è presente un eccesso di dati nelle classi centrali. I dati hanno distribuzione leptocurtica

05. Percentili

Percentili campionari, Box Plot e dati bivariati.

Percentili

Un percentile k-esimo di un campione di dati è un valore che è maggiore di una percentuale k dei dati e minore della restante percentuale

25% - 1° Quartile

Rapine: 216

Disoccupati: 27,5

50% - 2° Quartile

Rapine: 604,5

Disoccupati: 77

75% - 3° Quartile

Rapine: 1986,75

Disoccupati: 161,5

Box Plot

Per visualizzare i quartili e la loro differenza, è utile impiegare un Box Plot. Questo grafico mette in risalto le distanze tra i quartili in modo chiaro ed efficace.

Disuguaglianza di Chebyshev

Fornisce un utile limite inferiore per il numero di dati vicini alla media campionaria

$$rac{|S_k|}{n} > egin{cases} 0,55 & k=1,5 \ 0,75 & k=2 \ 0,88 & k=3 \end{cases}$$

- All'intervallo (\overline{x} 1,5s , \overline{x} + 1,5s) è almeno pari al 55,56%;
 - Nel campione delle rapine, tra (-1047, 3611), è 90%
- All'intervallo (\overline{x} 2s , \overline{x} + 2s) è almeno pari al 75%;
 - Nel campione delle rapine, tra (-1823, 4388), è 95%
- All'intervallo (\overline{x} 3s , \overline{x} + 3s) è almeno pari all'88,89%;
 - Nel campione delle rapine, tra (-3376, 5940), è 95%

Dati Bivariati

Per esplorare questo aspetto più approfonditamente, se esiste una possibile relazione tra il numero di rapine e il tasso di disoccupazione, potremmo utilizzare i dati di disoccupazione delle regioni e visualizzarli tramite un diagramma a dispersione

Diagramma a Dispersione

Guardando al diagramma, è evidente come l'aumento della disoccupazione sia accompagnato da un aumento nel numero di rapine. Questo non solo suggerisce una correlazione logica ovvia, ma anche un coefficiente di correlazione che tende verso l'unità.

Equazione retta di regressione: y = 42 + 0.05x

Coefficiente di Correlazione

Infine, per concludere la nostra indagine statistica, procederemo al calcolo del coefficiente di correlazione. Questo ci permetterà di valutare la relazione tra due set di dati, nel nostro caso, il numero di rapine e il numero di disoccupati.

$$r=rac{1}{(n-1)s_xs_y}\sum_{i=1}^n\left(x_i-\overline{x}
ight)\left(y_i-\overline{y}
ight)=0,78$$

In conclusione, si può osservare (come già evidenziato dal grafico) che il numero di rapine e il numero di disoccupati mostrano una correlazione diretta e proporzionale, come indicato da un coefficiente di correlazione vicino all'unità.

Questo studio ha evidenziato una forte correlazione tra il numero di rapine e il tasso di disoccupazione, sottolineando l'influenza dei fattori socio-economici sulla criminalità locale. L'aumento della disoccupazione è associato a un incremento delle rapine, indicando un legame diretto tra difficoltà economiche e livelli di criminalità. Questi risultati suggeriscono che interventi mirati per migliorare l'occupazione e sostenere l'economia potrebbero ridurre efficacemente la criminalità urbana, fornendo un approccio strategico per affrontare le sfide di sicurezza e sviluppo nelle comunità.

