# 常见数学公式

## Lindeci

# July 14, 2023

# Contents

| 1  | 高中                | 1数学                                                        |
|----|-------------------|------------------------------------------------------------|
|    | 1.1               | 三角函数 2                                                     |
|    | 1.2               | 向量                                                         |
|    | 1.3               |                                                            |
|    | 1.4               | 导数表                                                        |
|    | 1.5               | 不定积分                                                       |
|    | 1.6               | 简易积分表                                                      |
|    | 1.7               | 积分法则                                                       |
|    | 1.8               | 定积分                                                        |
|    | 1.9               | 定积分的计算公式                                                   |
|    |                   |                                                            |
| 2  |                   | i代数                                                        |
|    | 2.1               | 标量、向量、矩阵和张量 3                                              |
|    | 2.2               | 矩阵和向量相乘                                                    |
|    | 2.3               | 单位矩阵和逆矩阵 4                                                 |
|    | 2.4               | 线性相关和生成子空间                                                 |
|    | 2.5               | 范数                                                         |
|    | 2.6               | 特殊类型的矩阵和向量                                                 |
|    | 2.7               | 特征分解                                                       |
|    | 2.8               | 奇异值分解 6                                                    |
|    | 2.9               | Moore-Penrose 伪逆 6                                         |
|    |                   | ) <u>迹运算</u>                                               |
|    |                   |                                                            |
|    | 2.12              | ? 实例:主成分分析 $	hinspace$ $	hinspace$ $	hinspace$ $	hinspace$ |
| 3  | 概率                | 医与信息论                                                      |
|    | 3.1               | - 1<br>- 条件概率                                              |
|    | 3.2               | 条件概率的链式法则                                                  |
|    | 3.3               | 独立性和条件独立                                                   |
|    | 3.4               | 期望、方差和协方差                                                  |
|    |                   | 3.4.1 离散随机变量的期望                                            |
|    |                   | 3.4.2 连续随机变量的期望                                            |
|    |                   | 3.4.3 方差                                                   |
|    |                   | 3.4.4 协方差                                                  |
|    |                   | 3.4.5 向量的期望                                                |
|    |                   | 3.4.6 向量的协方差                                               |
|    | 3.5               | 常用概率分布                                                     |
|    |                   | 3.5.1 伯努利分布                                                |
|    |                   | 3.5.2 高斯分布                                                 |
|    |                   | 3.5.3 多维正态分布                                               |
|    |                   | 3.5.4 范畴分布                                                 |
|    |                   | 3.5.5 指数分布                                                 |
|    |                   | 3.5.6 中心极限定理                                               |
|    |                   | 3.5.7 贝叶斯规则                                                |
| 4  | 粉枯                | ith算                                                       |
| -1 | <b>数</b> 間<br>4.1 | 80 <del>算</del><br>- 上溢和下溢                                 |
|    | 4.1               | 病态条件                                                       |
|    | 4.3               | 基于梯度的优化方法                                                  |
|    | 1.0               | 五 1 MLXH1 M107 IQ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      |
| 5  | 机器                | 异学习基础 10                                                   |

| 5.1 | 古计量           | 1 |
|-----|---------------|---|
| 5.2 | <b>责大似然估计</b> | 1 |

### 高中数学

### 1.1 三角函数

sin(a + b) = sin a cos b + cos a sin bcos(a+b) = cos a cos b - sin a sin b

### 1.2 向量

向量 
$$A(x_1, y_1), B(x_2, y_2), \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$$
  
 $A \perp B \Leftrightarrow A \cdot B = x_1 x_2 + y_1 y_2 = 0$   
 $\cos \theta = \frac{A \cdot B}{|A||B|} = \frac{(x_1 x_2 + y_1 y_2)}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$   
 $A \times B = x_1 y_2 - x_2 y_1 = \mathbf{S}_{abcd} = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}$ 

### 1.3 求导法则

1、可加性: (u+v)' = u' + v'

2、常数因子: (cu)' = cu'

3、乘法法则: (uv)' = u'v + uv'4、商法法则:  $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$ 5、复合函数法则:  $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ 

### 1.4 导数表

| 函数            | 导数公式                  |
|---------------|-----------------------|
| c             | 0                     |
| x             | 1                     |
| $x^n$         | $nx^{n-1}$            |
| $\sqrt{x}$    | $\frac{1}{2\sqrt{x}}$ |
| $\frac{1}{x}$ | $-\frac{1}{x^2}$      |
| $\log_a x$    | $\frac{1}{x \ln a}$   |
| $\ln x$       | $\frac{1}{x}$         |

Table 1: 高中数学的导数表

### 1.5 不定积分

若连续函数 F(x) 在区间 [a,b] 内具有导数 f(x),则记

$$\int f(x)dx = F(x) + C$$

其中 C 为任意常数。

#### 1.6 简易积分表

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

```
\int \sin x \, dx = -\cos x + C
\int \cos x \, dx = \sin x + C
\int \tan x \, dx = \ln|\sec x| + C
\int \cot x \, dx = \ln|\sin x| + C
\int \sec x \, dx = \ln|\sec x + \tan x| + C
\int \csc x \, dx = \ln|\csc x - \cot x| + C
```

#### 1.7 积分法则

- 1. 常数法则  $\int kf(x)dx = k \int f(x)dx + C$
- 2. 换元法则  $\int f(g(x))g'(x)dx = \int f(u)du \quad (u = g(x))$
- 3. 分部积分法则  $\int uv'dx = uv \int u'vdx$ 4. 简单的不定积分  $\int x^n dx = \frac{x^{n+1}}{n+1} + C$   $(n \neq -1)$ 5. 指数函数  $\int e^x dx = e^x + C$
- 6. 正弦函数  $\int \sin x dx = -\cos x + C$ 7. 余弦函数  $\int \cos x dx = \sin x + C$
- 8. 倒数函数  $\int \frac{1}{x} dx = \ln|x| + C$

### 1.8 定积分

定积分是将一个区间上的函数在该区间上的取值乘以区间长度(也就是自变量的取值范围),然后将这些乘积全部加起来, 最后形成的一个数。数学符号表达式如下:

$$\int_{a}^{b} f(x)dx$$

其中, aa 和 bb 是定义定积分的区间, f(x)f(x) 是在该区间中的函数。

#### 1.9 定积分的计算公式

定积分的计算公式是牛顿-莱布尼茨公式,即:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

### 线性代数

#### 2.1 标量、向量、矩阵和张量

广播: $\mathbf{C} = \mathbf{A} + \mathbf{b}$ , 其中  $\mathbf{C}$  和  $\mathbf{A}$  是矩阵,  $\mathbf{b}$  是向量, 且  $\mathbf{C}_{i,j} = \mathbf{A}_{i,j} + \mathbf{b}_{j}$ 

例子

$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2+1 & 3+1 & 4+1 \\ 5+2 & 6+2 & 7+2 \\ 8+3 & 9+3 & 10+3 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 5 \\ 7 & 8 & 8 \\ 11 & 12 & 13 \end{bmatrix}$$

#### 矩阵和向量相乘

矩阵乘积

$$C = AB \tag{1}$$

具体地

$$\mathbf{C}_{i,j} = \sum_{k} \mathbf{A}_{i,k} \mathbf{B}_{k,j} \tag{2}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 1 \times 7 + 2 \times 9 & 1 \times 8 + 2 \times 10 \\ 3 \times 7 + 4 \times 9 & 3 \times 8 + 4 \times 10 \\ 5 \times 7 + 6 \times 9 & 5 \times 8 + 6 \times 10 \end{bmatrix} = \begin{bmatrix} 25 & 28 \\ 57 & 64 \\ 89 & 100 \end{bmatrix}$$

矩阵乘积满足分配律、结合律,不满足交换律

具体地

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \odot \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m,1} & b_{m,2} & \cdots & b_{m,n} \end{bmatrix} = \begin{bmatrix} a_{1,1}b_{1,1} & a_{1,2}b_{1,2} & \cdots & a_{1,n}b_{1,n} \\ a_{2,1}b_{2,1} & a_{2,2}b_{2,2} & \cdots & a_{2,n}b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1}b_{m,1} & a_{m,2}b_{m,2} & \cdots & a_{m,n}b_{m,n} \end{bmatrix}$$

### 2.3 单位矩阵和逆矩阵

$$oldsymbol{I}_noldsymbol{x}=oldsymbol{x}, \qquad oldsymbol{x}\in\mathbb{R}^n$$

### 2.4 线性相关和生成子空间

线性组合

$$\mathbf{A}\mathbf{x} = \sum_{i=1}^{m} x_i \mathbf{A}_{:,i}$$

具体地

$$\operatorname{span}(v_1, v_2, \dots, v_n) = \left\{ \sum_{i=1}^n \alpha_i v_i : \alpha_i \in \mathbb{R} \right\}$$

生成子空间

方阵:即 m = n。可以证明它的左逆跟右逆是想等的。

奇异的:一个列向量线性相关的方阵

#### 2.5 范数

衡量向量的大小。

$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

最大范数:它用来表示向量中具有最大幅度值的元素的绝对值。

$$\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_i|$$

衡量矩阵的大小

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i,j} A_{i,j}^{2}} \tag{3}$$

用范数表示向量的点积 (其中  $\theta$  表示两个向量的夹角)

$$||x||_2 \cdot ||y||_2 \cdot \cos \theta = x^T y$$

#### 2.6 特殊类型的矩阵和向量

对角矩阵: diag(v) 表示对角元素由向量 v 中元素给定的一个对角方阵

$$\operatorname{diag}(v)x = v \odot x$$

对称矩阵: 转置和自己相等的矩阵

$$\mathbf{A} = \mathbf{A}^T$$

单位向量

$$\|\mathbf{u}\|_2 = 1 \, \mathbf{\perp} \mathbf{u}^T \mathbf{u} = 1$$

正交、标准正交

正交矩阵: 行向量和列向量是分别标准正交的方阵

$$\boldsymbol{A}^T\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^T = \boldsymbol{I}$$

这意味着

$$\boldsymbol{A}^T = \boldsymbol{A}^{-1}$$

### 2.7 特征分解

方阵、特征向量、特征值、左特征向量、右特征向量、单位特征向量

$$A\mathbf{v} = \lambda \mathbf{v}$$

特征分解

$$A = V \operatorname{diag}(\lambda) V^{-1}$$

具体例子

设矩阵  $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ ,则其特征值和特征向量分别为:

$$\lambda_1 = 3, \quad v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\lambda_2 = 1, \quad v_2 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

将特征向量按列组成矩阵  $Q = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ ,则有:

$$Q^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\operatorname{diag}(\lambda_1, \lambda_2) = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

因此, A 可以进行特征分解:

$$A = Q\operatorname{diag}(\lambda_1, \lambda_2)Q^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

实对称矩阵:不是每个矩阵都可以分解成特征值和特征向量。但每个实对称矩阵可以分解成实特征向量和实特征值。实对称矩阵的特征向量是正交的。

$$A = Q\Lambda Q^T$$

其中 Q 是 A 的特征向量组成的正交矩阵。 $\Lambda$  是对角矩阵。

对称矩阵的特征向量互相正交的证明

$$q_i^T q_j = \frac{(Aq_i)^T (Aq_j)}{\lambda_i \lambda_j}$$

$$= \frac{(q_i^T A^T)(Aq_j)}{\lambda_i \lambda_j}$$

$$= \frac{(q_i^T A)(Aq_j)}{\lambda_i \lambda_j}$$

$$= \frac{(q_i^T \lambda_j q_j)}{\lambda_i}$$

$$= 0$$

正定、半正定、负定、半负定

### 2.8 奇异值分解

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$$

其中 **A** 是  $m \times n$  的矩阵;

U 是  $m \times m$  的正交矩阵, 称为矩阵 A 的左奇异向量;

**D** 是  $m \times n$  的对角矩阵, 称为矩阵 **A** 的奇异值;

 $V \ge n \times n$  的正交矩阵, 称为矩阵 A 的右奇异向量。

### 2.9 Moore-Penrose 伪逆

对于非方矩阵而言, 其逆矩阵没有定义。

$$A^+ = VD^+U^T$$

对角矩阵  $\mathbf{D}$  的伪逆  $\mathbf{D}^+$  是其非零元素取倒数之后再转置得到的。

### 2.10 迹运算

矩阵对角元素的和

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} A_{ii}$$

多个矩阵相乘得到的方阵的迹

$$\operatorname{Tr}\left(\prod_{i=1}^{n} \mathbf{F}^{(i)}\right) = \operatorname{Tr}\left(\mathbf{F}^{(n)} \prod_{i=1}^{n-1} \mathbf{F}^{(i)}\right)$$

### 2.11 行列式

行列式的数学符号:

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

矩阵特征值的乘积:

$$\det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$$

行列式的绝对值衡量矩阵参与矩阵乘法后空间的扩缩比例。如果行列式是 0,那么空间至少沿着某一维完全收缩了,使其失去了所有的体积;如果行列式是 1,那么这个转换保持空间不变。

#### 2.12 实例: 主成分分析

#### 3 概率与信息论

离散型变量和概率质量函数 连续型变量和概率密度函数 (函数的取值可能大于 1,表示的是密度,不是概率)

### 3.1 条件概率

$$P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$
(4)

### 3.2 条件概率的链式法则

$$P(X_1,...,X_n) = P(X_1) \prod_{i=2}^n P(X_i \mid X_{i-1},...,X_1)$$

$$P(a,b,c) = P(a|b,c)P(b,c)$$
  

$$P(b,c) = P(b)P(b|c)$$
  

$$P(a,b,c) = P(a|b,c)P(b)P(b|c)$$

### 3.3 独立性和条件独立

$$p(x,y) = p(x)p(y) \Leftrightarrow p(x|y) = p(x) \ \exists p(y|x) = p(y)$$

#### 3.4 期望、方差和协方差

### 3.4.1 离散随机变量的期望

对于离散随机变量 x, 期望的计算公式是:

$$E_x[f(x)] = \sum_{x} f(x)p(x)$$

#### 3.4.2 连续随机变量的期望

对于连续随机变量 x, 期望的计算公式是:

$$E_x[f(x)] = \int f(x)p(x)dx$$

#### 3.4.3 方差

方差表示的是随机变量取值和期望之间的差异程度。对于随机变量 x, 方差的计算公式是:

$$Var(f(x)) = E[(f(x) - E[f(x)])^{2}]$$

#### 3.4.4 协方差

协方差表示的是两个随机变量同时偏离各自期望的程度。对于随机变量 x 和 y, 协方差的计算公式是:

$$Cov(f(x), g(y)) = E[(f(x) - E[f(x)])(g(y) - E[g(y)])]$$

### 3.4.5 向量的期望

向量的期望:

如果有一个 n 维向量 V=(v1,v2,...,vn), 则其期望可以表示为 E(V)=(E(v1),E(v2),...,E(vn)), 其中 E(vi) 表示向量 V 的第 i 个分量的期望值。

#### 3.4.6 向量的协方差

两个向量的协方差:

向量的协方差表示了向量中各个分量之间的关系,它衡量了这些变量的共同变化程度。

假设有两个 n 维向量  $X = (X1, X2, ..., Xn)^T$  和  $Y = (Y1, Y2, ..., Yn)^T$ , 它们的协方差定义为: Cov(X, Y) = E[(X - E(X))(Y - E(Y))] 向量的协方差矩阵是一个 n×n 的矩阵,其中第 (i,j) 个元素表示 Xi 和 Yj 的协方差,即 Cov(Xi, Yj)

### 3.5 常用概率分布

#### 3.5.1 伯努利分布

伯努利分布是描述二元随机变量,即随机变量只有两种取值。伯努利分布的概率质量函数为:

$$Bern(\mathbf{x} = x) = \phi^{x} (1 - \phi)^{1 - x}$$

$$E_{x}[\mathbf{x}] = \phi$$

$$Var(\mathbf{x}) = \phi(1 - \phi)$$

#### 3.5.2 高斯分布

高斯分布也叫正态分布,是最常见的概率分布之一。高斯分布的概率密度函数为:

$$N(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

其中,  $\mu$  表示分布的均值,  $\sigma^2$  表示分布的方差。

#### 3.5.3 多维正态分布

$$f(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

其中, x 是 n 维列向量, 是 n 维列向量,  $\Sigma$  是  $n \times n$  的对称正定矩阵。

例如 3 维的状态分布的例子:均值向量为  $\mu = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ ,协方差矩阵为  $\Sigma = \begin{bmatrix} 1 & 0.5 & 0.2 \\ 0.5 & 2 & -0.3 \\ 0.2 & -0.3 & 1 \end{bmatrix}$ 。

多维正态分布中,因为协方差矩阵并不是一个很搞笑的参数化分布的方式,所以我们可以使用一个精度矩阵  $\beta$  进行替代:

$$f(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\beta^{-1}}) = \sqrt{\frac{\det(\boldsymbol{\beta})}{(2\pi)^n}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\beta}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

我们常常把协方差矩阵固定成一个对角阵。一个更简单的版本是各向同性高斯分布,它的协方差矩阵是一个标量乘以单位阵。

#### 3.5.4 范畴分布

 $[0,1]^k$  这个符号通常在概率论和统计学中用于表示 k 维随机变量的取值范围,其中每个维度都服从 [0,1] 的均匀分布。 具体来说,如果我们有一个 k 维随机向量  $\pmb{X}=(X1,X2,...,Xk)$ ,其中每个维度都是在 [0,1] 之间的实数,那么我们可以将它表示为  $\pmb{X}\in[0,1]^k$ 。

 $\mathbf{1}^T$  表示一个全 1 向量的转置,即 (1,1,1,.....,1)。

具体例子: 在投掷骰子时, 每个值的概率可以用一个 6 维的概率向量表示, 例如  $\left[\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right]$ .

#### 3.5.5 指数分布

 $\mathbf{1}_{x>0}$  表示一个指示函数,它是一个随机变量的函数,当满足条件 x>0 时,函数值为 1,否则为 0。

指数分布公式:

 $p(x;\lambda) = \lambda \mathbf{1}_{x \geqslant 0} \exp(-\lambda x)$ 



Figure 1: 三个不同参数的指数分布图表。

#### 3.5.6 中心极限定理

设  $X_1, X_2, \ldots, X_n$  是独立同分布的随机变量, $E(X_i) = \mu$ , $D(X_i) = \sigma^2 < \infty$ ,定义随机变量  $Z_n = \frac{\sum_{i=1}^n (X_i - \mu)}{\sigma \sqrt{n}}$ ,则有:

$$\lim_{n \to \infty} P(Z_n \le x) = \Phi(x),$$

其中  $\Phi(x)$  是标准正态分布的分布函数。

#### 举例:

中心极限定理是概率论的一个重要定理,它指出,对于任意分布的随机变量,其样本均值的分布会随着样本量的增大逐渐近似于正态分布。下面我用一个简单的例子来说明中心极限定理。

假设有一个硬币,正反面出现的概率分别为 0.5。现在我们抛掷这个硬币 200 次,每次记录正反面出现的情况,然后计算出 这 200 次抛掷中正面朝上的次数,再将这个次数除以 200 得到一个概率值,表示正面朝上的概率。我们假设这个概率为 p。

我们重复上述过程很多次,每次得到一个概率值 p,然后记录下来。这样我们就得到了一堆概率值,可以计算它们的平均值和标准差。根据中心极限定理,当样本量足够大时,这些概率值的平均值应该近似于 p,而且这个平均值的分布应该趋近于正态分布。同时,这个平均值的标准差可以用来估计样本均值的精度。

举个具体的例子,假设我们重复上述过程 10,000 次,每次抛掷硬币 200 次,得到了 10,000 个概率值。我们计算这些概率值 的平均值为 0.4999,标准差为 0.0356。这个平均值很接近于真实概率值 0.5,而且它的分布近似于正态分布。如果我们再增加样本量,比如抛掷硬币 1,000 次或者更多次,结果会更加接近正态分布。

#### 3.5.7 贝叶斯规则

 $p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$ 

### 4 数值计算

### 4.1 上溢和下溢

下溢:指数字的绝对值太小而无法用计算机中的浮点数表示。例如,当我们将一个非常接近于零的数乘以另一个非常接近于零的数时,结果可能会变得非常接近于零。在这种情况下,由于数字变得太小,计算机可能无法准确地表示它们,这导致结果存在误差。

上溢:指数字的绝对值太大而无法用计算机中的浮点数表示。例如,当我们将两个非常大的数相乘时,结果可能会变得非常大,超出了计算机可以表示的范围。这导致计算机无法将结果准确地存储,并返回一个特殊的错误代码或无穷大值。

#### 4.2 病态条件

 $\kappa(\mathbf{X}) = \frac{\sigma_{max}}{\sigma_{min}}$ 

其中, $\kappa(\mathbf{X})$  表示矩阵  $\mathbf{X}$  的病态条件, $\sigma_{max}$  和  $\sigma_{min}$  表示  $\mathbf{X}$  的最大和最小奇异值,分别对应矩阵的最大和最小特征值的平方根。

### 4.3 基于梯度的优化方法

偏导数:

 $\frac{\partial f}{\partial x_i}$ 

梯度:

$$\vec{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \dots \\ \frac{\partial f}{\partial x_r} \end{pmatrix}$$

二阶泰勒展开式

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \frac{f'''(x)}{3!}\Delta x^3 + \dots$$

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)(\Delta x)^2$$

牛顿法:

$$f(x) \approx f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

简单的最小二乘习题: 给定以下数据点 (1,1),(2,2),(3,3),(4,5),(5,5), 试求通过这些数据点的最小二乘线性回归直线的方程,并计算该直线在 x=6 处的预测值。这个问题可以帮助学生更好地理解最小二乘法在线性回归中的应用。

#### 解答:

我们可以通过下面的步骤来求解这个问题:

首先,我们要计算数据点的均值向量  $\bar{x}$  和  $\bar{y}$ ,它们分别表示 x 和 y 的平均值。在这个例子中,我们有:

$$\bar{y} = \frac{1+2+3+5+5}{5} = 3.2$$

2. 接下来, 我们可以计算 x 和 y 的样本协方差矩阵  $S_{xy}$  和 x 的样本方差  $S_x^2$ 。它们的计算公式分别为:

$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}),$$
  
$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2,$$

其中 n 表示样本的数量。在这个例子中,我们有:

$$S_{xy} = \frac{(1-3)(1-3.2) + (2-3)(2-3.2) + (3-3)(3-3.2) + (4-3)(5-3.2) + (5-3)(5-3.2)}{5-1} = 2.3,$$

$$S_x^2 = \frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5-1} = 2.$$

3. 然后,我们可以计算回归方程的斜率 b 和截距 a,它们分别为:

$$b = \frac{S_{xy}}{S_x^2} = 1.15,$$
$$a = \mathbf{y} - b\mathbf{x} = 0.55$$

因此,通过这些数据点的最小二乘线性回归直线的方程为 y = 1.15x + 0.55。

4. 最后,我们可以使用回归方程来预测 x = 6 时的 y 值,它可以通过将 x 的值代入回归方程中得到:

$$y = 1.15 \times 6 + 0.55 = 7.45.$$

因此, 在x=6

### 5 机器学习基础

Tom Mitchell 是一位著名的人工智能学家,他在他的一篇经典论文《机器学习》中给出了学习的定义:

"对于一类任务 T 和性能度量 P, 如果一个计算机程序在任务 T 上以性能度量 P 衡量的性能随着经验 E 的增加而自我完善,那么我们称这个计算机程序在从经验 E 中学习。"

任务 T: 包括一切机器可以执行的任务, 如分类、回归、聚类等;

性能度量 P: 指的是机器执行任务 T 的表现如何被衡量,例如在分类问题中正确率,回归问题中的均方误差;

经验 E: 表示所学习的信息,可以是从实际经验中获得的数据集,也可以是人工构造出的数据集或先验知识。机器通过不断地从经验 E 中学习,自我完善,从而具有了更好的性能。

这个定义概括了机器学习的基本概念和方法、是机器学习研究和应用的基础。

#### 5.1 估计量

估计量是指根据样本数据来计算总体参数的量。在统计学中,由于我们往往无法对总体参数进行准确测量,需要使用估计量来对总体参数进行估计。常见的估计量包括样本均值、样本方差、样本比率等等。通过这些估计量,我们可以推断总体参数的值,并进行统计推断。例子:假设我们想要估计某个城市的平均每天骑共享单车的人数。我们可以通过抽取一部分人群的每日骑行数据来进行估计。在这个例子中,我们可以计算出样本均值作为估计量,即每日骑行人数的平均值。

举个具体例子, 我们抽取了 50 个人群的每日骑行数据, 得到样本数据如下:

 $22,\ 32,\ 18,\ 25,\ 30,\ 28,\ 40,\ 20,\ 16,\ 24,\ 36,\ 33,\ 27,\ 29,\ 31,\ 19,\ 17,\ 21,\ 23,\ 26,\ 22,\ 16,\ 28,\ 24,\ 37,\ 30,\ 26,\ 19,\ 27,\ 35,\ 28,\ 18,\ 21,\ 23,\ 19,\ 25,\ 34,\ 27,\ 22,\ 18,\ 20,\ 29,\ 26,\ 23,\ 31,\ 20,\ 33,\ 25,\ 28,\ 19$ 

通过对这些数据求平均值,我们可以得到样本均值为 25.24。因此,我们可以使用 25.24 作为估计量来估计这个城市的平均每天骑共享单车的人数。另外,我们还可以计算出置信区间,比如 95

### 5.2 最大似然估计