FUN WITH $\mathcal{E}(1)$ -MODULES: A COMPUTATION OF pin^c BORDISM

ARUN DEBRAY APRIL 20, 2020

Theorem 0.1 (Bahri-Gilkey [BG87a, BG87b]). The first several pin^c bordism groups are

$$\begin{split} &\Omega_0^{\mathrm{Pin}^c} \cong \mathbb{Z}/2 \\ &\Omega_1^{\mathrm{Pin}^c} \cong 0 \\ &\Omega_2^{\mathrm{Pin}^c} \cong \mathbb{Z}/4 \\ &\Omega_3^{\mathrm{Pin}^c} \cong 0 \\ &\Omega_4^{\mathrm{Pin}^c} \cong \mathbb{Z}/8 \oplus \mathbb{Z}/2 \\ &\Omega_5^{\mathrm{Pin}^c} \cong 0 \\ &\Omega_6^{\mathrm{Pin}^c} \cong \mathbb{Z}/16 \oplus \mathbb{Z}/4 \\ &\Omega_7^{\mathrm{Pin}^c} \cong 0. \end{split}$$

The goal of this document is to prove this in a slightly unconventional way: reduce to computing ku-homology of something, which we do using the Adams spectral sequence and a change-of-rings trick. This is reminiscent of a better-known approach to the computation of low-dimensional spin bordism groups by reducing to computing ko-homology and using a change-of-rings trick to simplify the Adams spectral sequence, but here we work over a different subalgebra of the Steenrod algebra, called $\mathcal{E}(1)$. The upshot is that the overall structure of the argument is similar, but the details are different, and simpler.

We will assume familiarity with the approach in the case of $ko.^1$ That is the more standard approach — and indeed, you can prove Theorem 0.1 this way, as Beaudry and Campbell do [BC18, §5.6]. So why work over $\mathcal{E}(1)$? The computation is simpler and easier over $\mathcal{E}(1)$, which is a major boon; there is a disadvantage, though, in that more has to be done from scratch. Anyways, I worked this out and wrote it up because it might be useful for computing other spin^c bordism groups of spaces or spectra.

1. Reduction to the Adams spectral sequence over $\mathcal{E}(1)$

The first thing we need is that a pin^c structure on a vector bundle $V \to M$ is equivalent to a spin^c structure on $V \oplus \text{Det}(V)$ that induces the canonical orientation. This is itself equivalent to a map $f: M \to BO_1$ and a spin^c structure on $V \oplus f^*\sigma$, where σ is the tautological bundle: the orientation (part of the data) and a Riemannian metric (a contractible choice) identify $f^*\sigma$ and Det(V). Therefore² there is an equivalence

$$MTPin^{c} \simeq MTSpin^{c} \wedge (BO_{1})^{\sigma-1}$$

The Thom spectrum $(BO_1)^{\sigma}$ is often denoted MO_1 , so we get $MTSpin^c \wedge \Sigma^{-1}MO_1$.

Seminal work of Anderson-Brown-Petersen [ABP67] determined the homotopy type of $MTSpin^c$ at the prime 2.³ In general it is complicated, but for us the upshot is that there is a map (additively but not multiplicatively!)

$$MTSpin^c \longrightarrow ku \vee \Sigma^4 ku$$

which is a 2-primary equivalence in degrees 7 and below. Since $\Sigma^{-1}MO_1$ is 2-primary,⁴ the same is true when we smash with $\Sigma^{-1}MO_1$.

Therefore to prove Theorem 0.1 it will suffice to establish

¹If this is an incorrect assumption, Beaudry and Campbell [BC18] have written a detailed introduction to this method of calculation.

²I'm skipping some steps here. Hopefully I can come back and fill them in later. In any case, this is proven in a few different places, including [FH16].

³Away from 2, it was already known that $MTSpin^c \simeq MTSO \wedge (BU_1)_+$.

⁴This follows because its mod p cohomology vanishes when p is an odd prime.

Proposition 1.3. For all $n \ge 0$,

(1.4)
$$\widetilde{ku}_n(\Sigma^{-1}MO_1) \cong \begin{cases} 0, & n \text{ odd} \\ \mathbb{Z}/2^{n/2+1}, & n \text{ even.} \end{cases}$$

If one uses the Adams spectral sequence to compute this, the E_2 -page is

(1.5)
$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}}^{s,t}(\widetilde{H}^*(ku; \mathbb{F}_2) \otimes_{\mathbb{F}_2} \widetilde{H}^*(\Sigma^{-1}MO_1; \mathbb{F}_2), \mathbb{F}_2).$$

This seems large. But just as the E_2 -page of the Adams spectral sequence for ko-theory simplifies to Ext over $\mathcal{A}(1)$, the E_2 -page of the Adams spectral sequence for kv-theory simplifies to Ext over $\mathcal{E}(1) := \langle Q_0, Q_1 \rangle$, where $Q_0 := \operatorname{Sq}^1$ and $Q_1 := \operatorname{Sq}^1\operatorname{Sq}^2 + \operatorname{Sq}^2\operatorname{Sq}^1$. This is because $\widetilde{H}^*(ku; \mathbb{F}_2) \cong \mathcal{A}/\!\!/\mathcal{E}(1)$, and we can apply a change-of-rings theorem

$$(1.6) \qquad \operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathcal{A}/\!\!/\mathcal{E}(1) \otimes_{\mathbb{F}_2} M, N) \cong \operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(M, N).$$

So (1.5) simplifies to

(1.7)
$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{E}(1)}^{s,t} (\widetilde{H}^*(\Sigma^{-1}MO_1; \mathbb{F}_2), \mathbb{F}_2),$$

which we spend the next few sections computing.

2. $\mathcal{E}(1)$ and some of its important modules

The module $\mathcal{E}(1)$ is four-dimensional over \mathbb{F}_2 . Here's what it looks like.

When we draw $\mathcal{E}(1)$ -modules, including the one above, the y-coordinate represents the degree. Straight solid lines indicate the action of $Q_0 = \operatorname{Sq}^1$ and curvy dashed lines indicate the action of $Q_1 = \operatorname{Sq}^1 \operatorname{Sq}^2 + \operatorname{Sq}^2 \operatorname{Sq}^1$. The following lemma is a consequence of Koszul duality.

Lemma 2.2 ([BC18, Remark 4.5.4]). Let R be a graded exterior algebra over \mathbb{F}_2 with generators x_1, \ldots, x_n . Then there is an isomorphism of bigraded algebras $\operatorname{Ext}_R^{*,*}(\mathbb{F}_2,\mathbb{F}_2) \cong \mathbb{F}_2[y_1,\ldots,y_n]$ with $|y_i|=(1,|x_i|)$.

 $\mathcal{E}(1)$ is an exterior algebra on Q_0 and Q_1 in degrees 1 and 3, respectively, so

(2.3)
$$\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2, \mathbb{F}_2) \cong \mathbb{F}_2[h_0, v_1],$$

where $h_0 \in \operatorname{Ext}_{\mathcal{E}(1)}^{1,1}(\mathbb{F}_2,\mathbb{F}_2)$ and $v_1 \in \operatorname{Ext}_{\mathcal{E}(1)}^{1,3}(\mathbb{F}_2,\mathbb{F}_2)$. Therefore the Adams diagram for \mathbb{F}_2 as an $\mathcal{E}(1)$ -module is

Here, a vertical black line segment indicates multiplication by h_0 , and a diagonal gray line segment indicates multiplication by v_1 .

In Figure 1, we display the generators h_0 and v_1 as extensions of $\mathcal{E}(1)$ -modules.

FIGURE 1. Left: h_0 is the class of the extension $0 \to \Sigma \mathbb{F}_2 \to \mathcal{E}(0) \to \mathbb{F}_2 \to 0$. Right: v_1 is the class of the extension $0 \to \Sigma^3 \mathbb{F}_2 \to \mathcal{E}(1) /\!\!/ \mathcal{E}(0) \to \mathbb{F}_2 \to 0$.

Remark 2.5. The Adams spectral sequence for ku is multiplicative: the algebra structure on $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$ (from the Yoneda product on extensions) tells you the ring structure on $(ku_*)_2^{\wedge}$. Likewise, the $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$ -module structure on $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(H^*(X;\mathbb{F}_2);\mathbb{F}_2)$ (again by composing extensions) is compatible with the $(ku_*)_2^{\wedge}$ -action on $ku_*(X)_2^{\wedge}$. All of this also applies to the Adams spectral sequence over $\mathcal{A}(1)$ and ko-theory.

In our case, $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2, \mathbb{F}_2)$ is generated by h_0 and v_1 . In ku_* , h_0 represents $2 \in (ku_2^{\wedge})_0 \cong \mathbb{Z}_2$, and therefore the h_0 -action on the E_{∞} -page of the Adams spectral sequence for X lifts to multiplication by 2 in $ku_*(X)_2^{\wedge}$. Similarly, v_1 represents the Bott element $\beta \in (ku_2^{\wedge})_2 \cong \mathbb{Z}_2$, so the v_1 -action on the E_{∞} -page lifts to action by β on $ku_*(X)_2^{\wedge}$. Everything in the Adams spectral sequence over $\mathcal{E}(1)$ is linear with respect to the actions of h_0 and v_1 , which is sometimes useful.

Let $\mathcal{E}(0) := \langle Q_0 \rangle \subset \mathcal{E}(1)$. Then $\mathcal{E}(0)$ is an exterior algebra on the single generator Q_0 in degree 1, so Lemma 2.2 calculates

(2.6)
$$\operatorname{Ext}_{\mathcal{E}(0)}^{*,*}(\mathbb{F}_2, \mathbb{F}_2) \cong \mathbb{F}_2[h_0],$$

with $|h_0| = (1, 1)$. By the change-of-rings theorem, this is also $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(\mathcal{E}(1)/\!\!/\mathcal{E}(0), \mathbb{F}_2)$. In Figure 2 we display $\mathcal{E}(1)/\!\!/\mathcal{E}(0)$ and its Adams diagram.

FIGURE 2. The $\mathcal{E}(1)$ -module $\mathcal{E}(1)/\!\!/\mathcal{E}(0)$ (left) and $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(\mathcal{E}(1)/\!\!/\mathcal{E}(0),\mathbb{F}_2)$ (right).

Alternatively, you can calculate this directly with a minimal resolution of $\mathcal{E}(1)/\!\!/\mathcal{E}(0)$, as in Figure 3, which shows that we have a single \mathbb{F}_2 summand in $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(\mathcal{E}(1)/\!\!/\mathcal{E}(0),\mathbb{F}_2)$ when s=t=k, for each $k\geq 0$, and no other summands. The h_0 -action is nontrivial because successive steps in the resolution are linked by Q_0 .

3. Computing the E_2 -page

In this section, we determine the $\mathcal{E}(1)$ -module structure on $H := \tilde{H}^*(\Sigma^{-1}MO_1; \mathbb{F}_2)$. Then we compute its Ext by repeatedly using the fact that a short exact sequence of $\mathcal{E}(1)$ -modules induces a long exact sequence of Ext groups. MO_1 is the Thom spectrum of the tautological bundle $\sigma \to BO_1$. Therefore the Thom isomorphism tells us its cohomology as a graded \mathbb{F}_2 -vector space, and the Stiefel-Whitney classes of σ determine the \mathcal{A} -module structure. Specifically, $H^*(BO_1; \mathbb{F}_2) \cong \mathbb{F}_2[x]$ with |x| = 1. When we apply the Thom isomorphism theorem, the Thom class U would have degree 1 for MO_1 ; for $\Sigma^{-1}MO_1$ it's downshifted to degree 0. Thus, as a graded vector space,

(3.1)
$$H = \widetilde{H}^*(\Sigma^{-1}MO_1; \mathbb{F}_2) \cong \mathbb{F}_2 \cdot \{U, Ux, Ux^2, \ldots\}.$$

FIGURE 3. The beginning of a minimal resolution for $\mathcal{E}(1)/\!\!/\mathcal{E}(0)$.

The A-action on $H^*(BO_1; \mathbb{F}_2)$ is determined by that of the generator x, and the axiomatic properties of the Steenrod squares imply $\operatorname{Sq}(x) = x + x^2$. For $\Sigma^{-1}MO_1$, one can calculate $\operatorname{Sq}^k(Ux^n)$ by the rule $\operatorname{Sq}^k(U) = Uw_k(\sigma)$, then applying the Cartan formula for the Steenrod squares of a product. When you do this, you'll find that

(3.2)
$$Q_0(Ux^k) = \begin{cases} Ux^{k+1}, & k \text{ even} \\ 0, & k \text{ odd;} \end{cases}$$

(3.2)
$$Q_0(Ux^k) = \begin{cases} Ux^{k+1}, & k \text{ even} \\ 0, & k \text{ odd}; \end{cases}$$

$$Q_1(Ux^k) = \begin{cases} Ux^{k+3}, & k \text{ even} \\ 0, & k \text{ odd}. \end{cases}$$

We draw H as an $\mathcal{E}(1)$ -module in Figure 4.

FIGURE 4. The $\mathcal{E}(1)$ -module structure on $\widetilde{H}^*(\Sigma^{-1}MO_1; \mathbb{F}_2)$.

This module is a little bit complicated, but we can determine the E_2 -page by repeatedly using the trick that a short exact sequence $0 \to L \to M \to N \to 0$ of $\mathcal{E}(1)$ -modules induces a long exact sequence in Ext. The way to visualize this is to graph $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(L,\mathbb{F}_2)$ and $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(N,\mathbb{F}_2)$ on the same Adams chart; then, the boundary map has bidegree t-s=-1, s=1. Boundary maps are linear with respect to the $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$ -action, which often simplifies computations.

As a first example, consider the $\mathcal{E}(1)$ -module M_2 which is the extension of $\Sigma^2 \mathcal{E}(1) /\!\!/ \mathcal{E}(0)$ by $\mathcal{E}(1) /\!\!/ \mathcal{E}(0)$ depicted on the left-hand side of Figure 5. The right-hand side displays $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(M_2,\mathbb{F}_2)$; the boundary maps all vanish for degree reasons. We will show the claimed v_1 -actions in Lemma 3.4.

Lemma 3.4. For all $s, v_1 \colon \operatorname{Ext}_{\mathcal{E}(1)}^{s,s}(M_2, \mathbb{F}_2) \to \operatorname{Ext}_{\mathcal{E}(1)}^{s+1,s+3}(M_2, \mathbb{F}_2)$ is an isomorphism.

Proof. h_0 -linearity means it suffices to show this for s=0. To do this, we'll check that the extension obtained by acting on the nontrivial element of $\operatorname{Ext}_{\mathcal{E}(1)}^{0,0}(M_2,\mathbb{F}_2)$ by v_1 is nonzero.

 $\operatorname{Ext}_{\mathcal{E}(1)}^{0,0}(M_2,\mathbb{F}_2)$ is the group of degree-0 $\mathcal{E}(1)$ -module homomorphisms $M_2 \to \mathbb{F}_2$. There is one nontrivial one, which maps the degree-0 summand onto \mathbb{F}_2 and kills everything else. Acting on this by an element of

FIGURE 5. An extension of $\mathcal{E}(1)$ -modules (left), which computes $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(M_2, \mathbb{F}_2)$ (right) in terms of the Exts of the sub and the quotient. However, the $\operatorname{Ext}_{\mathcal{E}(1)}^{*,*}(\mathbb{F}_2, \mathbb{F}_2)$ -action is not fully determined by this extension, and we show the claimed v_1 -actions in Lemma 3.4.

 $\operatorname{Ext}_{\mathcal{E}(1)}^{1,t}(\mathbb{F}_2,\mathbb{F}_2)$, represented by some explicit extension $0 \to \Sigma^t \mathbb{F}_2 \to M \to \mathbb{F}_2 \to 0$, produces the extension

$$(3.5) 0 \longrightarrow \Sigma^{t} \mathbb{F}_{2} \longrightarrow M \times_{\mathbb{F}_{2}} M_{2} \longrightarrow \mathbb{F}_{2} \longrightarrow 0$$

in $\operatorname{Ext}_{\mathcal{E}(1)}^{1,t}(M_2,\mathbb{F}_2)$ [BC18, §4.2]. We want to show that for v_1 , represented by the extension in Figure 1, this pullback N is nontrivial. Drawing N is a little unwieldy, but we can describe it algebraically: it is a five-dimensional \mathbb{F}_2 -vector space, generated by elements x_0, x_2, x_3, x_3' , and x_5 with degrees $|x_i| = i$ and $|x_3'| = 3$. The $\mathcal{E}(1)$ -action on N is: $Q_0x_2 = x_3, Q_1x_0 = x_3 + x_3', Q_1x_2 = x_5$. There is an extension $0 \to \Sigma^3\mathbb{F}_2 \to N \to M_2 \to 0$ where the first map sends the generator to x_3' and the second is the quotient by x_3' . This is a nontrivial extension, so the v_1 -action is nonzero.

We can iterate this, attaching on more copies of $\Sigma^{2k}\mathcal{E}(1)/\!\!/\mathcal{E}(0)$ by Q_0 s to obtain taller and taller $\mathcal{E}(1)$ -modules. Doing this infinitely many times yields a module called M_{∞} , and the arguments above tell us $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(M_{\infty},\mathbb{F}_2)$; both are displayed in Figure 6.

FIGURE 6. Left: the $\mathcal{E}(1)$ -module M_{∞} . Right: $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(M_{\infty}, \mathbb{F}_2)$.

As depicted in Figure 7, left, H is an extension of M_{∞} by $\Sigma \mathbb{F}_2$, so we can use the same method to calculate $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(H,\mathbb{F}_2)$, as depicted in Figure 7, right.

The boundary maps commute with action by h_0 and v_1 , so in Figure 7, the boundary map indicated by the black arrow determines all the other boundary maps (gray arrows): either all are nontrivial, or none are. We can quickly deduce the black arrow is nontrivial by noticing there are no nonzero $\mathcal{E}(1)$ -module maps $\varphi \colon H \to \Sigma \mathbb{F}_2$: if such a map existed, $Q_0(\varphi(U)) = \varphi(Q_0(U))$, which must be nonzero in order for φ to be nontrivial, but then $\varphi(U) \neq 0$ too, and there are no nonzero elements in that degree. Thus $\operatorname{Ext}_{\mathcal{E}(1)}^{0,1}(H,\mathbb{F}_2) \cong \operatorname{Hom}_{\mathcal{E}(1)}(H,\Sigma\mathbb{F}_2) = 0$, so the black arrow must be an isomorphism. Therefore $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(H,\mathbb{F}_2)$ is given in Figure 8.

FIGURE 7. Computing $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(H,\mathbb{F}_2)$ via the long exact sequence of Ext groups induced from the short exact sequence of $\mathcal{E}(1)$ -modules (pictured on the left).

FIGURE 8. $\operatorname{Ext}_{\mathcal{E}(1)}^{s,t}(H,\mathbb{F}_2)$.

4. The ku-homology of $\Sigma^{-1}MO_1$

The hard work is behind us. Looking at the E_2 -page in Figure 8, there can be no nonzero differentials for degree reasons. The h_0 -action gives you multiplication by 2, which means there can be no hidden extensions, and we've finished proving Proposition 1.3, hence also Theorem 0.1. Thanks for reading.

References

- [ABP67] D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson. The structure of the Spin cobordism ring. Ann. of Math. (2), 86:271–298, 1967. 1
- [BC18] Agnès Beaudry and Jonathan A. Campbell. A guide for computing stable homotopy groups. In Topology and quantum theory in interaction, volume 718 of Contemp. Math., pages 89–136. Amer. Math. Soc., Providence, RI, 2018. https://arxiv.org/abs/1801.07530. 1, 2, 5
- [BG87a] Anthony Bahri and Peter Gilkey. The eta invariant, Pin^c bordism, and equivariant Spin^c bordism for cyclic 2-groups. Pacific J. Math., 128(1):1–24, 1987. 1
- [BG87b] Anthony Bahri and Peter Gilkey. Pin^c cobordism and equivariant Spin^c cobordism of cyclic 2-groups. Proceedings of the American Mathematical Society, 99(2):380–382, 1987. 1
- [FH16] Daniel S. Freed and Michael J. Hopkins. Reflection positivity and invertible topological phases. 2016. https://arxiv.org/abs/1604.06527. 1