Out[3]:

	Millage	Age(year)	sell price
0	69000	6	18000
1	35000	3	34000
2	57000	5	26100
3	22500	2	40000
4	46000	4	31500
5	59000	5	26750
6	52000	5	32000
7	72000	6	19300
8	91000	8	12000
9	67000	6	22000
10	83000	7	18700
11	79000	7	19500
12	59000	5	26000
13	58780	4	27500
14	82450	7	19400
15	25400	3	35000
16	28000	2	35500
17	69000	5	19700
18	87600	8	12800
19	52000	5	28200

In [4]: ► data.head()

Out[4]:

	Millage	Age(year)	sell price
0	69000	6	18000
1	35000	3	34000
2	57000	5	26100
3	22500	2	40000
4	46000	4	31500

In [5]: ▶ # Car milage vs sell price

In [6]: plt.scatter(data["Millage"],data["sell price"])

Out[6]: <matplotlib.collections.PathCollection at 0x2360bb28340>

In [7]: ▶ # car aAge vs sell price

Out[8]: <matplotlib.collections.PathCollection at 0x2360c3f9f60>

In [10]: ► X

Out[10]:

	Millage	Age(year)
0	69000	6
1	35000	3
2	57000	5
3	22500	2
4	46000	4
5	59000	5
6	52000	5
7	72000	6
8	91000	8
9	67000	6
10	83000	7
11	79000	7
12	59000	5
13	58780	4
14	82450	7
15	25400	3
16	28000	2
17	69000	5
18	87600	8
19	52000	5

```
In [11]:
           Ы∣у
   Out[11]: 0
                    18000
             1
                    34000
             2
                    26100
             3
                    40000
             4
                    31500
             5
                    26750
             6
                    32000
             7
                    19300
             8
                    12000
             9
                    22000
             10
                    18700
             11
                    19500
             12
                    26000
             13
                    27500
             14
                    19400
             15
                    35000
             16
                    35500
             17
                    19700
             18
                    12800
             19
                    28200
             Name: sell price, dtype: int64
In [12]:
          ▶ from sklearn.model selection import train test split
             x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,rand
In [13]:
In [14]:
          M
             len(x_train)
    Out[14]: 16
In [15]:
          ▶ len(x_test)
   Out[15]: 4
In [16]:
             from sklearn.linear_model import LinearRegression
             clf = LinearRegression()
In [17]:
          clf.fit(x_train, y_train)
   Out[17]:
              ▼ LinearRegression
              LinearRegression()
In [18]:

    clf.predict(x_test)

   Out[18]: array([20474.0745775 , 16352.07892168, 25174.14834912, 27197.42175439])
```