Regularization

7.1> Problem of Over fitting

Oo+ Oix

⇒"under fit"

=> 9t has high bice"

00 + 0, × + 0, ×2+0, ×3+0, ×7

> "overfit"

=> at high varian(1

Overfilling

If we have too many feature, the learned hypothesis may fit the training Set very well, but fails to generalize to example.

⇒ Overfitting can also be found in Classification.

* Addonassing Overfitting
1 Reduce number of features
1. Reduce number of features Manually saled which features to keep. Model Salelation algorithm 2. Regularization
Model Saletation algorithm
9
of Pencinatans O;
7.2) Cost function
I Small values food parameters Oo O, Oz On
-> "Simpler hypothesis.
-> Less prone to overfitting.
=> As we don't know which peranetu is loss:
$J(0) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_0(x_i^{(i)}) - y_i^{(i)})^2 + \sum_{i=1}^{n} O_i^2 \right]$
negulconization
Panameter
bjactive: fit me } (Objective: Keips
training data well? In a parada Small
(It Controls no trade off }
Obetween the Euro Objective
1

$$7.3) \frac{\text{Regularized - Numd. argustion}}{X = \begin{bmatrix} (\chi^{(1)})^T \\ \vdots \\ (\chi^{(m)})^T \end{bmatrix}} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$M = \begin{bmatrix} \chi^{T} \times + \chi & \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \\ \chi^{T} \times \chi \\$$