Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 9

Throughout this sheet let $T \in (0, +\infty)$, $d, N, K \in \mathbb{N}$, let $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t \in [0,T]})$ be a stochastic basis, and let $W \colon [0,T] \times \Omega \to \mathbb{R}$ be a one-dimensional standard $(\Omega, \mathcal{F}, P, (\mathbb{F}_t)_{t \in [0,T]})$ -Brownian motion.

1. Let $\xi \in \mathbb{R}$, $\mu \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d))$, $\sigma \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d))$, let $X : [0, T] \times \Omega \to \mathbb{R}^d$ be a solution process of the SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T], \qquad X_0 = \xi,$$

and let $f \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}))$ satisfy $\mathbb{E}_P[|f(X_T)|] < +\infty$. Write a MATLAB function MultiLevelMonteCarlo($T, \xi, \mu, \sigma, \varepsilon, \alpha, \beta, \gamma, f$) with inputs T, ξ, μ, σ, f as above, and simulation input parameters $\varepsilon, \alpha, \beta, \gamma > 0$, that outputs a realization of a multilevel Monte Carlo- Euler approximation of $\mathbb{E}_P[f(X_T)]$ with tolerance ε .

Recall that the MLMC-Euler estimator is given by

$$E^{\mathrm{ML}}(f(Y_{N_L}^{N_L})) = \sum_{\ell=1}^{L} \frac{1}{K_{\ell}} \sum_{k=1}^{K_{\ell}} (f(Y_{N_{\ell}}^{N_{\ell},k}) - f(Y_{N_{\ell-1},k}^{N_{\ell-1},k})),$$

where $Y_N^{N,k}$ denotes the k-th sample of the Euler-Maruyama approximation of X_T with stepsize $\Delta t = T/N$, $L = \lceil -\log_2(\varepsilon) \rceil$, $N_\ell = N_0 2^\ell$, $\ell = 1, \ldots, L$, with $N_0 = 2T$, and

$$K_{\ell} = \left[2^{2\alpha L} \left(\sum_{k=1}^{L} 2^{(\gamma-\beta)k/2} \right) 2^{-(\beta+\gamma)\ell/2} \right].$$

Hint: You may use the template MultiLevelMonteCarloEuler.m.

2. Consider the Black-Scholes model, where the price process of an underlying S is modeled by the SDE

$$dS_t = rS_t dt + \sigma S_t dW_t, \quad t \in [0, T], \quad S_0 = s_0,$$

for a fixed interest rate $r \in \mathbb{R}$, a volatility parameter $\sigma > 0$ and an initial price $s_0 > 0$.

(i) Test your MATLAB function MultiLevelMonteCarlo() from Exercise 1 to evaluate a European call option with strike price $K_{\text{strike}} > 0$ and payoff at T given by $f(S_T) = \max(S_T - K_{\text{strike}}, 0)$. To this end, run the multilevel Monte Carlo scheme with tolerance $\varepsilon \in \{0.05, 0.02, 0.01, 0.005, 0.002\}$ to estimate the root mean squared error (RMSE)

$$\left\| e^{-rT} \mathbb{E}_{P} [f(S_{T})] - e^{-rT} \sum_{\ell=1}^{L} \frac{1}{K_{\ell}} \sum_{k=1}^{K_{\ell}} (f(Y_{N_{\ell}}^{N_{\ell},k}) - f(Y_{N_{\ell-1}}^{N_{\ell-1},k})) \right\|_{L^{2}(P;|\cdot|_{\mathbb{P}})}. \tag{1}$$

In equation (1), $Y_N^{N,k}$ denotes the k-th sample of the Euler-Maruyama approximation of S_T with stepsize $\Delta t = T/N$. Use the Black-Scholes parameters $T = 1, S_0 = 100, r = 0.05, \sigma = 0.1$ and $K_{\text{strike}} = 100$. Estimate the RMSE in equation (1) by generating 10 realizations of the weak error

$$e^{-rT} \mathbb{E}_{P}[f(S_{T})] - e^{-rT} \sum_{\ell=1}^{L} \frac{1}{K_{\ell}} \sum_{k=1}^{K_{\ell}} (f(Y_{N_{\ell}}^{N_{\ell},k}) - f(Y_{N_{\ell-1},k}^{N_{\ell-1},k}))$$

for each ε and averaging the squared realizations. Estimate the convergence rates of the weak error and of the overall complexity with respect to ε . **Report** on the results.

Hints: You may use template MultiLevelMonteCarloBSCall.m. The exact value of the call price $e^{-rT}\mathbb{E}_P[f(S_T)]$ is given by the Black Scholes formula in Series 4. You may also use the MATLAB function blsprice(). Set the parameter M_RMSE in the template to M_RMSE = 1 first to make sure everything works, and then rerun the experiment with M_RMSE = 10.

(ii) Compare your Matlab function MultiLevelMonteCarlo() from Exercise 1 with your Matlab function MonteCarloEuler() from Sheet 8 to evaluate a European call option with strike price $K_{\text{strike}} > 0$ and payoff at T given by $f(S_T) = \max(S_T - K_{\text{strike}}, 0)$. To this end, run the Monte Carlo-Euler scheme to compute an approximation of $\mathbb{E}_P[f(S_T)]$ with tolerance $\varepsilon \in \{0.05, 0.02, 0.01, 0.005, 0.002\}$. Adjust the number of samples K for each step size $\Delta t = \varepsilon$ so that the statistical error and the discretization bias in the root mean squared error (RMSE)

$$\left\| e^{-rT} \mathbb{E}_{P}[f(S_{T})] - e^{-rT} \frac{1}{K} \sum_{k=1}^{K} f(Y_{N}^{N,k}) \right\|_{L^{2}(P;|\cdot|_{\mathbb{R}})}$$
 (2)

are balanced. In Equation (2), $Y_N^{N,k}$ denotes the k-th sample of the Euler-Maruyama approximation of S_T with stepsize $\Delta t = T/N$. Use the Black-Scholes parameters $T=1, S_0=100, r=0.05, \sigma=0.1$ and $K_{\rm strike}=100$. Estimate the RMSE in equation (2) by generating 10 realizations of the weak error

$$e^{-rT}\mathbb{E}_{P}[f(S_{T})] - e^{-rT}\frac{1}{K}\sum_{k=1}^{K}f(Y_{N}^{N,k})$$

for each ε and averaging the squared realizations. Estimate the convergence rates of the weak error and of the overall complexity with respect to ε , and plot the

estimated computational times against ε in a logarithmic diagram. **Report** on the results.

Hints: You may use template MLMCvsMCEBSCall.m. Set the parameter $\texttt{M_RMSE}$ in the template to $\texttt{M_RMSE} = 1$ first to make sure everything works, and then rerun the experiment with $\texttt{M_RMSE} = 10$.

- (iii) Repeat item (ii) with $\varepsilon \in \{0.02, 0.01, 0.005, 0.002, 0.001\}$. Report on the results. Hint: Depending on your workstation, this simulation might take up to half an hour!
- **3.** Let $C: [0,T] \times \Omega \to \mathbb{R}^m$ be a compound Poisson process with rate $\lambda > 0$ and jump measure μ on $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$. Recall that C is given by

$$C_t := \sum_{k=1}^{N(t)} X_k, \quad t \in [0, T], \tag{3}$$

where $N: [0,T] \times \Omega \to \mathbb{N}_0$ is a Poisson process with rate λ , and $(X_k, k \in \mathbb{N})$ is a sequence of i.i.d. \mathbb{R}^m -valued random variables with distribution μ , such that $(X_k, k \in \mathbb{N})$ and N are independent.

(i) Show that the characteristic function of C is given by

$$\mathbb{E}_{P}[e^{\mathbf{i}x^{\top}C_{t}}] = \exp\left(\lambda t \int_{\mathbb{R}^{m}} (e^{\mathbf{i}x^{\top}z} - 1)\mu(dz)\right), \quad x \in \mathbb{R}^{m}.$$
 (4)

(ii) Now assume m=1 and that $(X_k, k \in \mathbb{N})$ is such that $\mathbb{E}_P[|X_1|^2] < \infty$. Use item (i) to show that

$$\mathbb{E}_P[C_t] = t\lambda \mathbb{E}_P[X_1], \text{ and } \operatorname{Var}_P(C_t) = \lambda t(\mathbb{E}_P[X_1]^2 + \operatorname{Var}_P(X_1)).$$
 (5)

Due: 16:00 o'clock, Monday, 28th November 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2