Finding Data for Economics Research

UC Berkeley Library

February 2018

"An approximate answer to the right question is worth a great deal more than a precise answer to the wrong question."

-John Tukey

Before anything else...

Plan your Research with a Literature Review

http://www.lib.berkeley.edu/

http://scholar.google.com

http://guides.lib.berkeley.edu/all-guides

Plan your Research with a Literature Review

Plainly (as best you can) state your variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_p X_p + \epsilon$$

Plainly (as best you can) state your variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

$$Salary = \beta_0 + \beta_1 Gender + \beta_2 Race + ... \beta_p X_p + \epsilon$$

Structure and availability of data

Unit of Analysis	Geography	Time- Period	Frequency
Aggregated or Microdata? (counties/nations/households vs. individuals)	Is there a geographic component to your topic? (U.S., Sub-Saharan Africa, India)	Do you want a data for a specific time period? (1980-2000, 1930-1960)	How often do you want measures for your variables? (every year, every ten years, monthly, quarterly)

Providers

Researchers	Government Agencies	NGO/IGOs	Research Organizations
Are there people you know who are doing this kind of research?	Think about government agencies - is the request for some official statistics or data that they'd be likely to collect and publish? (Department of Energy, CDC, Census Bureau)	Are there councils or interest organizations devoted to the topic that might collect data independently? (World Bank, OECD)	Would any specific research organizations be interested in the topic? (Pew, Roper, Gallup, ACLU)

The 80/20 "Rule"

It is often said that 80% of data analysis is spent on the process of cleaning and preparing the data.

-Dasu and Johnson

Tidy Data

"Happy families are all alike; every unhappy family is unhappy in its own way."

Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way."

- Hadley Wickham

Tidy Data = Happy Data

Tidy Data has the following attributes:

Each variable forms a column and contains values

Each observation forms a row

Tidy Data = Happy Data

Variable Naming

Bad_Variable_Name	Good_Variable_Name	Description
gnp-2002; gnp#2002		
real interest rate		
1st_score; 2003gnp		
REG; glm; ttest		
xxx; yyy; zmdje;		
gender; race		
Whats_Your_Favorite_Color?		
INCOME; Int_us2003;		
April 20, 2017		

Variable Naming

Bad_Variable_Name	Good_Variable_Name	Description
gnp-2002; gnp#2002	gnp2010	avoid special characters
real interest rate	real_int	Use underscore
1st_score; 2003gnp	score1; gnp2003	Begin with a character
REG; glm; ttest	reg_out; glm1	Avoid reserved words
xxx; yyy; zmdje;	invest; interest	Use meaningful names
gender; race	male; asian	Use a value of dummy
Whats_Your_Favorite_Color?	fav_color	The shorter, the better
INCOME; Int_us2003;	income; intUS03	Use lower cases
April 20, 2017	2017-04-20	Use common ISO year format

Missing Data

Table 1. Commonly used null values, limitations, compatibility with common software and a recommendation regarding whether or not it is a good option. Null values are indicated as compatible with specific software if they work consistently and correctly with that software. For example, the null value "NULL" works correctly for certain applications in R, but does not work in others, so it is not presented in the table as R compatible.

Null values	Problems	Compatibility	Recommendation
0	Indistinguishable from a true zero		Never use
Blank	Hard to distinguish values that are missing from those overlooked on entry. Hard to distinguish blanks from spaces, which behave differently.		Best option
-999, 999	Not recognized as null by many programs without user input. Can be inadvertently entered into calculations.		Avoid
NA, na	Can also be an abbreviation (e.g., North America), can cause prob- lems with data type (turn a numerical column into a text column). NA is more commonly recognized than na.		Good option
N/A	An alternate form of NA, but often not compatible with software		Avoid
NULL	Can cause problems with data type	SQL	Good option
None	Uncommon. Can cause problems with data type	Python	Avoid
No data	Uncommon. Can cause problems with data type, contains a space		Avoid
Missing	Uncommon. Can cause problems with data type		Avoid
-,+,.	Uncommon. Can cause problems with data type		Avoid

Library Licensed Data Aggregators

Data Planet

Social Explorer

Data Repositories for Replication Data

Dataverse

ICPSR

Data.gov

American Economics Association

APIs

https://libraries.mit.edu/scholarly/publishing/apis-for-scholarly-resources/

Scraping

https://en.wikipedia.org/wiki/UFO_sightings_in_the_United_St

Scraping with Python

```
import pandas as pd
In [331:
         import requests
         url = "https://en.wikipedia.org/wiki/UFO sightings in the United States"
         response = requests.get(url)
         df = pd.read html(response.content)[1]
         print(df)
                               0
                                                  1
         0
                            Date
                                               City
                                                                State
         1
                                    Cape Girardeau
                      April 1941
                                                             Missouri
              February 24, 1942
                                       Los Angeles
                                                           California
                  June 21, 1947
                                      Maury Island
                                                           Washington
                  June 24, 1947
                                      Maury Island
                                                           Washington
                   July 7, 1947
                                             Helena
                                                              Montana
                                            Roswell
                       July 1947
                                                           New Mexico
         7
                January 7, 1948
                                         Maysville
                                                             Kentucky
                  July 24, 1948
                                                              Alabama
                                        Montgomery
                October 1, 1948
                                              Fargo
                                                         North Dakota
         10
                   May 11, 1950
                                       McMinnville
                                                               Oregon
         11
                August 15, 1950
                                       Great Falls
                                                              Montana
         12
                August 25, 1951
                                           Lubbock
                                                                Texas
                  July 24, 1952
         13
                                       Carson Sink
                                                               Nevada
         14
                   May 24, 1952
                                                           California
                                            Burbank
                  July 13, 1952
         15
                                                     Washington, D.C.
             September 12, 1952
         16
                                         Flatwoods
                                                        West Virginia
         17
                 August 5, 1953
                                                         North Dakota
                                          Bismarck
```

Scraping with R

```
library(rvest)
library(dplyr)
ufo <- read_html("https://en.wikipedia.org/wiki/UFO_sightings_in_the_Unit

ufo_date <- html_nodes(ufo,'td:nth-child(1)') %>% html_text()
ufo_date <- ufo_date[c(-1, -44)] #remove extra elements
ufo_state <- html_nodes(ufo,'td:nth-child(3)') %>% html_text()
ufo_name <- html_nodes(ufo,'td:nth-child(4)') %>% html_text()
ufo_df<-data.frame(date = ufo_date, name = ufo_name, state = ufo_state)
head(ufo_df, n =5)</pre>
```

```
##
                  date
                                                        state
                                              name
## 1
           April 1941
                          Cape Girardeau UFO crash Missouri
## 2 February 24, 1942
                             Battle of Los Angeles California
## 3
         June 21, 1947
                             Maury Island incident Washington
## 4
         June 24, 1947 Kenneth Arnold UFO sighting Washington
          July 7, 1947
                                                      Montana
```

Miscellaneous Collections

https://vincentarelbundock.github.io/Rdatasets/datasets.html

https://github.com/caesar0301/awesome-public-datasets

Text-mining

Text-mining

http://guides.lib.berkeley.edu/text-mining

D-Lab, Library Data Lab, Statistics Department, Student Learning Center

- http://dlab.berkeley.edu/
- http://www.lib.berkeley.edu/libraries/data-lab
- https://statistics.berkeley.edu/consulting
- http://slc.berkeley.edu/econ

Peer Advising at Moffitt

Titipo,//adia.betiketey.eda/edaeation/adia peero consuming

Reaching out

http://www.lib.berkeley.edu/libraries/data-lab

