A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models

Beilun Wang, Ji Gao, Yanjun Qi

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTAT17), PMLR 54:1168-1177, 2017.

```
R package: fasjem

http://jointggm.org
install.packages("fasjem")
library(fasjem)
demo(fasjem)
```

Motivation: Entity Graph

Interaction among genes

Social Network

Motivation: Data to Graph

Many entities' data

Inference Important Few entities graph

Motivation: Data Heterogeneity across context

Samples of the same set of genes(human genes) Vary across Normal vs Leukemia vs Stem

Normal

Leukemia

Stem

Notation

- p represents the number of nodes or features
- K represents the number of tasks or contexts

Motivation: Entity Graphs vary across contexts

Different but related entity graphs

Difference among related graphs: Sparsity

Similarity among related graphs: Group Sparsity

Group Sparsity means e.g., (TF₁, TF₄) no edge pattern across three

Motivation: Data to Graphs across context

Motivation: Entity Graph — Conditional Independence Graph

Background: sparse Gaussian Graphical Model(sGGM) to derive Conditional Independence Graph from data

Step1:

Calculate the

 $X \rightarrow \Sigma$

Step2:

Estimate Sparse Inverse Transfer sparse matrix Covariance matrix of Covariance matrix

to Conditional Independence graph

Background Model: Multi-task sGGM

Motivation: More tasks(K) to be considered

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. *Nature*, 489(7414):57–74, 2012.

Motivation: More Num of features(p) to consider

e.g. Yeast gene: 6K

Human gene: 30K

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. *Nature*, 489(7414):57–74, 2012.

Limitation of Previous Methods: Storage

Limitation of Previous Methods: Storage

e.g., calculate the gradient

$$\mathbf{\Sigma} = \mathbf{Cov}(\mathbf{X}) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$\Sigma = \mathrm{Cov}(\mathbf{X}) = egin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$\Sigma = \text{Cov}(\mathbf{X}) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$K = 91, p = 30K$$

$$O(Kp^2)$$
 in memory

Double type: 65 TB

Limitation of Previous Methods: Speed

Limitation of Previous Methods: Speed

Suppose they have same iteration number T

Traditional Optimization Method

$$K = 91, p = 30K$$

---- Block Coordinate Descent:

$$O(K^3p^4)$$
/ Itera

more than 2 billion years

Improved Optimization:

---- Still needs SVD for each covariance matrix

SVD for the matrices needs

$$O(Kp^3)$$
 \longrightarrow 3.5 days / Itera

Roadmap

- 1. Goal & Background
- 2. Proposed
- 3. Evaluation
- 4. Conclusion

Goal

1. Design a fast and scalable joint estimator for multi-task sparse Gaussian Graphical Model

2. Prove the theoretical Bound for our estimator

Roadmap

- 1. Goal & Background
- 2. Proposed
- 3. Evaluation
- 4. Conclusion

Major Limitation of Previous: Optimization

Notation: Entry

Notation: Group Entries among all tasks

Our Model

✓ Traditional Models:

Penalized log-likelihood model ——— Better optimization method

Some expensive computation is because of model itself!

✓ Proposed Model:

New model

Entry-wise(group entry-wise) optimization method

Equivalent Forms of Constrained Optimization

Subject to: 1. sparse

2. group sparse

Traditional Models

Initial problem

Equivalent Forms of Constrained Optimization

 $\underset{\Omega^{(i)}>0}{\operatorname{argmin}} \sum_{i} (-L(\Omega^{(i)}) + \lambda_1 \sum_{i} ||\Omega^{(i)}||_1 + \lambda_2 P(\Omega^{(1)}, \Omega^{(2)}, \dots, \Omega^{(K)})$

Traditional Models

 $\underset{\Omega_{tot}}{\operatorname{argmin}} |\Omega_{tot}|_{1} + \epsilon R'(\Omega_{tot})$ $s.t. |\Omega_{tot} - inv(T_{v}(\Sigma_{tot}))|_{\infty} \leq \lambda_{n}$ $\mathcal{R}'^{*}(\Omega_{tot} - inv(T_{v}(\Sigma_{tot}))) \leq \epsilon \lambda_{n}$

Proposed Models

Our Model: FASJEM

Fast and Scalable Joint Estimator for Multiple related sparse Gaussian Graphical Model

$$\underset{\Omega_{tot}}{\operatorname{argmin}} |\Omega_{tot}|_{1} + \epsilon R'(\Omega_{tot})$$

$$s.t. |\Omega_{tot} - inv(T_{v}(\Sigma_{tot}))|_{\infty} \leq \lambda_{n}$$

$$\mathcal{R}'^{*}(\Omega_{tot} - inv(T_{v}(\Sigma_{tot}))) \leq \epsilon \lambda_{n}$$

Here R' is another penalty norm and R'* is the dual norm of R'

$$\Omega_{tot} = (\Omega^{(1)}, \Omega^{(2)}, \dots, \Omega^{(K)})$$
 $\Sigma_{tot} = (\Sigma^{(1)}, \Sigma^{(2)}, \dots, \Sigma^{(K)})$

Optimization: Structure

Optimization: Structure

• Step I: Pre-compute and pre-store(not in the memory) approximated backward mapping matrix $\mathcal{B}^*(\Sigma_{tot})$

$$\Sigma_{tot}$$
 $\mathcal{B}^*(\Sigma_{tot})$

• Step II: Use proximity algorithm(entry-wise and group entry-wise) to solve the optimization problem.

$$\mathcal{B}^*(\Sigma_{tot}) \longrightarrow \Omega_{tot}$$

Optimization: Structure

$$\Sigma = \text{Cov}(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$\mathcal{B}^{*(1)} := egin{pmatrix} b_{11}^{(1)} & b_{12}^{(1)} & \cdots & b_{1p}^{(1)} \ b_{21}^{(1)} & b_{22}^{(1)} & \cdots & b_{2p}^{(1)} \ dots & dots & \ddots & dots \ b_{p1}^{(1)} & b_{p2}^{(1)} & \cdots & b_{pp}^{(1)} \end{pmatrix}$$

$$\Sigma = \mathrm{Cov}(\mathrm{X}) = egin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \ \vdots & \vdots & \ddots & \vdots \ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$\mathcal{B}^{*(2)} := egin{pmatrix} b_{11}^{(2)} & b_{12}^{(2)} & \cdots & b_{1p}^{(2)} \ b_{21}^{(2)} & b_{22}^{(2)} & \cdots & b_{2p}^{(2)} \ dots & dots & \ddots & dots \ b_{p1}^{(2)} & b_{p2}^{(2)} & \cdots & b_{pp}^{(2)} \end{pmatrix}$$

Optimization: Step I

Precompute
$$\mathcal{B}^*(\Sigma_{tot}) = inv(T_v(\Sigma_{tot}))$$

A matrix inversion + A soft-thresholding operator

Note: this only compute and pre-store(no need to store them in the memory) once. No need to use the whole matrix Σ_{tot} repeatedly.

Here
$$inv(\Sigma_{tot}) := (\Sigma^{(1)^{-1}}, \Sigma^{(2)^{-1}}, \dots, \Sigma^{(K)^{-1}})$$

Optimization: Step2

Two Variations

Case I -- FASJEM-G:

$$\mathcal{R}'(\cdot) = |\cdot|_{\mathcal{G},2}$$

Case II – FASJEM-I:

$$R'(\cdot) = |\cdot|_{\mathcal{G},\infty}$$

Optimization: Step II for FASJEM-G

We only need to compute the following four soft-thresholding operators for each entry(element) or group entries(element)

We choose FASJEM-G as an example.

Other second norm is similar to this one.

Optimization Step2: Overall

Optimization: Step II(1) - Sparse

In each iteration,

Optimization: Step II(2) – Group sparse

Optimization: Step II (3) – Data

$$\operatorname{proj}_{||x-a||_{\infty} \leq \lambda} = \left\{egin{array}{l} x_i, |x_i-a_i| \leq \lambda \ a_i+\lambda, x_i > a_i+\lambda \ a_i-\lambda, x_i < a_i-\lambda \end{array}
ight.$$

$$\mathcal{B}^{*(1)} := egin{pmatrix} b_{11}^{(1)} & b_{12}^{(1)} & \cdots & b_{1p}^{(1)} \ b_{21}^{(1)} & b_{22}^{(1)} & \cdots & b_{2p}^{(1)} \ dots & dots & \ddots & dots \ b_{p1}^{(1)} & b_{p2}^{(1)} & \cdots & b_{pp}^{(1)} \end{pmatrix}$$

Optimization: Step II (4) – Group Data

 TF_{p}

Advantage of Optimization: Space

Suppose they have same iteration number T

$$K = 91, p = 30K$$

Double type: 65 TB

Double type: 728B < 1KB

Advantage of Optimization: Time

Suppose they have same iteration number T

$$K = 91, p = 30K$$

Previous Multi-sGGM
$$\longrightarrow$$
 (SVD) needs $O(Kp^3)$ / Itera

Totally entry-wise, $O(Kp^2)$ / Itera also can be paralled

300000 times faster

3.5 days

1 second

Roadmap

- 1. Goal & Background
- 2. Proposed
- 3. Evaluation
- 4. Conclusion

My Work: Evaluation

- 1. Simulation test
 - random graph models
- 2. Real world datasets
- 3. Theoretical Performance
 - e.g., Convergence rate

Generate edges randomly by Bernoulli distribution with probability q

Step1:

Step2:

$$\begin{bmatrix} 1 & 0.2 & 0 & 0 & 0 \\ 0.2 & 1 & 0.2 & 0 & 0.2 \\ 0 & 0.2 & 1 & 0.2 & 0 \\ 0 & 0 & 0.2 & 1 & 0.2 \\ 0 & 0.2 & 0 & 0.2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1.05 & -0.23 & 0.05 & -0.02 & 0.05 \\ -0.23 & 1.45 & -0.25 & 0.10 & -0.25 \\ 0.05 & -0.25 & 1.10 & -0.24 & 0.10 \\ -0.02 & 0.10 & -0.24 & 1.10 & -0.24 \\ 0.05 & -0.25 & 0.10 & -0.24 & 1.10 \end{bmatrix}$$
 Inverse

Step3:

Suppose $X \sim N(\mu, \Sigma)$ and X is a p-dimensional vector

Use MCMC to simulate data set based on Covariance matrix

Evaluation: metric

1. ROC curve varying different tuning parameter, compare AUC(area under curve)

- 2. computation time
 - fix K varying p
 - fix p varying K
- 3. memory
 - how large p and K will cause the programme to terminate

Evaluation: Experimental Setting

- simulation test datasets:
 - Model: random sparse graph model
 - Case I -- FASJEM-G:

$$\mathcal{R}'(\cdot) = |\cdot|_{\mathcal{G},2}$$

Case II – FASJEM-I:

$$R'(\cdot) = |\cdot|_{\mathcal{G},\infty}$$

Evaluation-Experiment Result I

Our models obtain the best accuracy result.

 Our models are faster than the baseline methods when p>6000&K=2 or p = 2000&K > 6

- Our models still work when p>8000&K=2 or p=4000&K>4
 - On 8GB memory desktop

Evaluation-Experiment Result II

Evaluation-Experiment Result II

Evaluation-Theoretical Analysis

Theoretical Analysis – Best convergence rate

General case > some experiments

The best convergence rate:

$$|\widehat{\mu} - \mu^*|_F \le 8 \max\{M_1 \sqrt{\frac{k_1 \log Kp}{n_{tot}}}, M_2 \sqrt{\frac{k_2 p \log Kp}{n_{tot}}}\}$$

Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified framework for high-dimensional analysis of m-estimators with decom- posable regularizers. In *Advances in Neural Information Processing Systems*, pages 1348–1356, 2009

Theoretical Analysis – Best convergence rate

General cases' conclusion

The best convergence rate:

$$|\widehat{\mu} - \mu^*|_F \le 8 \max\{M_1 \sqrt{\frac{k_1 \log Kp}{n_{tot}}}, M_2 \sqrt{\frac{k_2 p \log Kp}{n_{tot}}}\}$$

We prove it!

Theoretical Analysis – When compared to single task case

Single task:

$$|\widehat{\mu} - \mu^*|_F \le O(\sqrt{\frac{\log p}{n}})$$

Our case:

$$|\widehat{\mu} - \mu^*|_F \le 8 \max\{M_1 \sqrt{\frac{k_1 \log Kp}{n_{tot}}}, M_2 \sqrt{\frac{k_2 p \log Kp}{n_{tot}}}\}$$

Theoretical Analysis – Multi-task helps!

Suppose $n_i = n_1$

$$\frac{\log Kp}{Kn_1} \le \frac{\log p}{n_1}$$

$$K = 91, p = 30K, n_1 = 1K$$

Our case 0.0001 << 0.01 Single case

Multi-task —> n increase —> closer distance

Conclusion

- We design a novel algorithm to solve the Multi-task sGGM
- We have the best simulation test result in
 - Accuracy
 - Time
 - Memory
- Our method achieve the best convergence rate

Thank You!

http://jointggm.org

R package: fasjem

install.packages("fasjem")
library(fasjem)
demo(fasjem)

Background: Multi-task sGGM to derive Conditional Independence Graph from data

Step1:

Suppose $X \sim N(\mu, \Sigma)$ and X is a p-dimensional vector

$$\widehat{\Sigma} = (X - \bar{X})^T (X - \bar{X})$$

Background: Multi-task sGGM to derive Conditional Independence Graph from data

Step2: We solve the following optimization problem:

Background: Multi-task sGGM to derive Conditional Independence Graph from data

Step3:

Background: Dual Norm

$$\mathcal{R}^*(v) := \sup_{u \in \mathbb{R}^p \setminus \{0\}} \frac{\langle u, v \rangle}{\mathcal{R}(u)} = \sup_{\mathcal{R}(u) \le 1} \langle u, v \rangle$$

Experiment: Real world datasets

- (1) The breast/colon cancer data (with 2 cell type and 104 samples, each of which has 22283 features);
- (2) Chrohn's disease data (with 3 cell type and 127 samples, each of which has 22283 features)
- (3) The myeloma and bone lesions data set (with 2 cell type and 173 samples, each of which has 12625 features)
 - We select top 500 features based variable variance for all three datasets.

Experiment: Synthesizing Data With Random Graph Model

Correlation Heatmap:

Example:

If X is a random variable follows N(0,1), let $Y=X^2$.

Then Cor(X,Y) = 0, but X and Y have dependent relationship.

A1: Children try swim

A1

A2: Weather is hot A2

A3: High sale of ice cream A3

A4: Wear less amount of clothes

A5: High Electricity

Consumption

Correlation

0.7 0.6

0.5

0.0

-0.3

A5

 $Cor(A_1, A_3) \approx 1$

Motivation: Conditional independence is better

Motivation: Conditional independence is better

Conditional Independent

A1: Children are drown

A2: Weather is hot

A3: High sale of ice cream

A4: Wear less amount of clothes

A5: High Electricity Consumption

Conditional Dependent 76