

Inteligência Artificial

Redes Neurais

(Computação Natural - Soft Computing)

Contexto de RNA

Redes Neurais Artificiais

Redes Neurais (RN): Inspiradas no Funcionamento do Cérebro Humano

Uma coleção massivamente paralela de unidades de processamento pequenas e simples, onde as interligações formam a maior parte da "inteligência" da rede

Myriam Regattieri Degado

Livro RN em Aplicações de Eng:

Lazaros Iliadis, Harris Papadopoulos, Chrisina Jayne. *Engineering Applications of Neural Networks*. Springer 2013

Myriam Regattieri Degado

Livro RN em Aplicações Diversas:

Chi Leung Patrick Hui.

Artificial Neural Networks - Application.

InTech 2011

Myriam Regattieri Degado

Livro RN + Computação Evolucionária:

Juan R. Rabuñal; Julian Dorado. Artificial Neural Networks in Real-Life Applications. IGI Global 2006.

Myriam Regattieri Degado

Software Prisma:

Edita fotos com o auxílio de Redes Neurais Artificiais transformando-as em arte

Myriam Regattieri Degado

Processamento de Imagens:

Reconhecimento de Objetos em Imagens

Myriam Regattieri Degado

Interface Humano-computador:

Detecção de face Reconhecimento de expressões faciais Rastreamento do corpo humano

Myriam Delgado Dainf/CPGEI/UTFPR A Literature Survon Applications of Neural Networks
Human-Compute
Interaction

Myriam Regattieri Degado

Cuidados com a saúde:

Processamento de sinais biomédicos:

Cardiologia

Ginecologia

Controle Neuro-muscular

Myriam Delgado
Dainf/CPGEI/UTFPR

A Survey on Various Applications of Artificial Neural Networks in Selected Fields of Healthcare

Myriam Regattieri Degado

Realidade virtual:

Geração de Face

Myriam Regattieri Degado

Robótica:

Aprendizado profundo (deep learning)

A Robot Learns To Do Things Using A Deep Neural Network

> Written by Mike James Wednesday, 27 May 2015

Myriam Delgado Dainf/CPGEI/UTFPF

http://www.iprogrammer.info/news/105-artificialintelligence/8619-a-robot-learns-todo-things-using-a-deep-neuralnetwork.html

Myriam Regattieri Degado

Google search e imagens:

Redes Convolucionais: entradas são frames de imagens

Large-scale Video Classification with Convolutional Neural Networks

Andrej Karpathy^{1,2} George Toderici¹ Sanketh Shetty¹

karpathy@cs.stanford.edu gtoderici@google.com sanketh@google.com

Thomas Leung¹ Rahul Sukthankar¹ Li Fei-Fei²

leungt@google.com sukthankar@google.com feifeili@cs.stanford.edu

¹Google Research ²Computer Science Department, Stanford University

http://cs.stanford.edu/people/karpathy/deepvideo

Myriam Regattieri Degado

https://www.youtube.com/watch?v=2Syw5l553GY

Myriam Delgado Dainf/CPGEI/UTFPR

Software ETM:

Para pessoas com necessidades especiais. Controla o teclado com o olho. RN MLP detecta o momento da piscada e aciona o teclado.

Redes Neurais são populares

Myriam Regattieri Degado

https://www.journals.elsevier.com/ neural-networks/most-downloadedarticles

Deep learning in neural networks: An overview January 2015

Jürgen Schmidhube

Trends in extreme learning machines: A review

January 2015

Gao Huang | Guang-Bin Huang | Shiji Song | Keyou You

RNAs: Linha do Tempo

RNAs: Linha do Tempo

Minsky e Papert

Backpropagation

1943

Entrada

 $\triangle W_{ij}(t) = \eta a_i(t)a_j(t)$

1958 (1957)

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

1949

1960

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Prof. Myriam Delgado Redes Neurais - UTFPR

RN associativas

RNAs: Linha do Tempo

Rosenblatt

(error term of the output layer) output $\widehat{\mathbf{y}}$ \blacktriangleleft target \mathbf{y} $\delta^{(2)} = (W^{(2)})^T \delta^{(3)} * \frac{\partial g(z^{(2)})}{\partial z^{(2)}}$

Minsky e Papert

Backpropagation

1943

1958 (1957)

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

RN associativas

1949

1960

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Prof. Myriam Delgado Redes Neurais - UTFPR

Neurônio MCP: Inspiração Biológica

Neurônio Biológico

Neurônio e o Impulso Nervoso

Redes Neurais: Inspiração Biológica

o Neurônio, Impulso Nervoso e Sinapses

Redes Neurais: Inspiração Biológica

Neurônio Biológico x Neurônio Artificial

Neurônio Artificial

Os primeiros trabalhos na área datam de 1943: McCulloch e Pitts desenvolveram o primeiro modelo matemático do neurônio

y = limiar(Soma(Ij * Wj)), j = 1,..., N

Neurônios MCP independentes com diferentes pesos: diferentes partições do espaço de entradas

Rede Neural (1 camada): partições <u>independentes</u> no espaço l1 x l2

Rede Neural (2 camadas): combina as diferentes partições

Há muitas formas de se entender o funcionamento do neurônio MCP

- Mapeamento produzido por diferentes entradas
- Equação de Reta: Projeção da interseção de planos
- Projeção da função de ativação multidimensional no espaço de entada
- Produto interno do vetor de pesos pelo vetor de entradas

Há muitas formas de se entender o funcionamento do neurônio MCP

- Mapeamento produzido por diferentes entradas
- Equação de Reta: Projeção da interseção de planos
- Projeção da função de ativação multidimensional no espaço de entada
- Produto interno do vetor de pesos pelo vetor de entradas

Considerando o caso particular de 1 neurônio com 2 entradas

$$x1$$
 $w1$ $x2$ $w2$ y

$$y = \begin{cases} 1 \text{ se } \left(\sum_{i=1}^{n} w_{i} x_{i}\right) \\ 0 \text{ caso contrário} \end{cases} \ge \theta \qquad y = \begin{cases} 1 \text{ se } w_{1} x_{1} + w_{2} x_{2} \ge \theta \\ 0 \text{ caso contrário} \end{cases}$$

Neurônio MCP: entendendo melhor a partição do espaço 2D

x1	x2	У	Projeção em x1 x x2
0	0	0	↑ x2
0	0,5	0	1,5
0,5	0	0	
0,5	0,5	0	1,0
1	1	1	
1	1,5	1	0,5
1,5	1	1	
1,5	1,5	1	0,0 0,5 1,0 1,5

Neurônio MCP: Abstração Como fica a tabela ?

Aumentando-se o número de padrões de entrada (x1,x2)

x1	x2	у		Pr	oiecã	o em :	x1 x x	2	
0,5	1,5		1	x2				· -	
1,0	1,0		1,5)	7	7	7	2	
			ĺ						
2,0	1,5		1,0	•	?	?	7	7	
0	0		0.5		7	7	7	7	
			0,5			•			
1,0	0				?	7	?	?	
1,5	0		0,0		0,5	1,0	1,5	2,0 x1	L

Neurônio MCP: entendendo melhor a partição do espaço 2D

Para infinitos padrões de entrada (x1,x2)

$\int 1$	se $1 * x_1 + 1 * x_2 \ge 2$
$y = \begin{cases} 0 \end{cases}$	caso contrário

x1	x2	y
0,99	0,80	0
1,99	0	0
0,5	1,52	1
1,2	1,0	1
1,57	0,58	1
2,01	1,5	1

Neurônio MCP: Abstração potencial de ativação x partição do espaço 3D

Neurônio MCP: Abstração potencial de ativação x partição do espaço 3D

Há muitas formas de se entender o funcionamento do neurônio MCP

- Mapeamento produzido por diferentes entradas
- Eq da Reta(hiper-plano): Projeção da interseção de hiper-planos
- $\mathbf{u} = \sum_{i=1}^{n} w_i x_i$ com $\mathbf{u} = \theta$
- Projeção da função de ativação multidimensional no espaço de entada
- Produto interno do vetor de pesos pelo vetor de entradas

Saída (y) é uma função da combinação linear das entradas (x)

$$y = \begin{cases} 1 & \text{se} & w_1 x_1 + w_2 x_2 \ge \theta \\ 0 & \text{se} & w_1 x_1 + w_2 x_2 < \theta \end{cases}$$

Na condição limite (mudança do grau de ativação) temos:

$$w_1 x_1 + w_2 x_2 = \theta$$
 $\sum_{\Sigma < \Theta \ (y=0)}^{\Sigma > \Theta \ (y=1)} x_1$

0

RNAs: Pesos do Neurônio MCP (treinamento)

$$w_1 x_1 + w_2 x_2 = \theta$$
ou
$$x_2 = -\left(\frac{w_1}{w_2}\right) x_1 + \left(\frac{\theta}{w_2}\right)$$
A alteração dos parâmetros w1 w2 o θ

A alteração dos parâmetros w1, w2 e Θ (treinamento) modifica a posição da reta e portanto da partição no espaço

Problema de Classificação

Supondo que os pontos em vermelho indiquem maus pagadores e os pontos em azul indiquem bons pagadores.

Este problema poderia ser resolvido por um único neurônio MCP?

Sim pois é linearmente separável e a alteração dos parâmetros \mathbf{w} e Θ (treinamento) modifica a posição da reta e portanto da partição linear no espaço de entrada.

RNAs: Neurônio MCP para Classificação

A alteração dos parâmetros \mathbf{w} e Θ (treinamento) modifica a posição da reta e portanto da partição linear no espaço de entrada.

RNAs: Linha do Tempo

Minsky e Papert

Backpropagation

1943

1958 (1957)

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

1949

1960

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Prof. Myriam Delgado Redes Neurais - UTFPR

RN associativas

RNAs: Regra de Hebb

A regra de aprendizado de Hebb propõe que o peso de uma conexão sináptica deve ser

reforçada se houver sincronismo entre os níveis de atividade dos neurônios pré e pós-sinápticos

e inibida caso contrário (assíncronos)

correlação + ⇒ o valor do peso aumenta correlação - ⇒ o valor do peso diminui

$$\triangle W_{ij}(t) = \eta \ a_i(t)a_j(t)$$

a _i (t)	a _j (t)	△W _{ij} (t)
+	+	+
-	-	+
+	-	-
-	+	-

RNAs: Linha do Tempo

Minsky e Papert

Backpropagation

1943

1958 (1957)

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

1949

1960

1982

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Prof. Myriam Delgado Redes Neurais - UTFPR

RN associativas

Entrada i a_i w_{ij} $\Delta W_{ij}(t) = \eta \ a_i(t)a_i(t)$ Redes Neurals Artificials: Regrae de Aprendizado

Perceptron e Adaline

Perceptron e Adaline (aplicação)

Aproximação de Portas lógicas AND OR

Combinação Linear de funções

$$F(x)=a+bf_1(x)+cf_2(x)+df_3(x)$$

RNAs: Treinamento do Perceptron (2 entradas)

Treinamento: ajuste dos pesos a cada iteração muda a partição.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t) = \mathbf{w}(t) + \eta \text{ erro } \mathbf{x}$$

AND Lógico (Linearmente separável)

x1	x2	У
1	1	1
0	1	0
1	0	0
0	0	0

RNAs: Treinamento do Perceptron (2 entradas)

Treinamento: ajuste dos pesos a cada iteração muda a partição.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t) = \mathbf{w}(t) + \eta \text{ erro } \mathbf{x}$$

AND Lógico (Linearmente separável)

x1	x2	У
1	1	1
0	1	0
1	0	0
0	0	0

RNAs: Treinamento do Perceptron (2 entradas)

Treinamento: ajuste dos pesos a cada iteração muda a partição.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t) = \mathbf{w}(t) + \eta \text{ erro } \mathbf{x}$$

OR Lógico (Linearmente separável)

x1	x2	У
0	0	0
0	1	1
1	0	1
1	1	1

RNAs: Perceptron (resolução de problemas)

XOR lógico: ??? Qual linha separa???

XOR	Lógico
, 	_09.00

0	0	0
0	1	1
1	0	1
1	1	0

RNAs: Linha do Tempo

Backpropagation

 $\delta^{(2)} = (W^{(2)})^T \delta^{(3)} * \frac{\partial g(z^{(2)})}{\partial z^{(2)}}$

(error term of the output layer)

output $\widehat{\mathbf{y}}$ \blacktriangleleft target \mathbf{y}

1958 (1957) 1943

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

1949

1960

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Prof. Myriam Delgado Redes Neurais - UTFPR

RN associativas

RNAs: Neurônio MCP (resolução de problemas)

XOR lógico: não linearmente separável

XOR	Lógico
\mathcal{M}	Logico

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

RNAs: Neurônio MCP (resolução de problemas)

XOR lógico: Mais neurônios ???

RNAs: Resolução de problemas

A descoberta da **limitação** dos neurônios (ou redes de uma única camada) na resolução de **problemas não-linearmente separáveis** trouxe um desânimo à comunidade.

Este período de descrença (conhecido como **idade das trevas**) teve início em 1969 e durou até o princípio dos anos 80.

RNAs: Linha do Tempo

Redes Neurais - UTFPR

 $\triangle W_{ij}(t) = \eta a_i(t)a_j(t)$

RNAs: Resolução de problemas

A descoberta da **limitação** dos neurônios (ou redes de uma única camada) na resolução de **problemas não-linearmente separáveis** trouxe um desânimo à comunidade.

Este período de descrença (conhecido como **idade das trevas**) teve início em 1969 e durou até o princípio dos anos 80.

O fim da idade das trevas foi marcado por fatos importantes como a descoberta de algoritmos de treinamento para redes multicamadas – backpropagation.

RNAs: Linha do Tempo

(compute gradient) $\delta^{(3)} = a^{(3)} - y$ 1 1 $output \ \widehat{y} - target \ y$ $\delta^{(2)} = (w^{(2)})^T \delta^{(3)} * \frac{\partial g(z^{(2)})}{\partial z^{(2)}}$ (error term of the hidden layer)

Minsky e Papert

Backpropagation

(error term of the output layer)

1943

1958 (1957)

1969

1986 Renascimento

RN associativas

1949

1960

Idade das Trevas

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_j$$

Rosenblatt

Prof. Myriam Delgado Redes Neurais - UTFPR

RNAs: MCP para AND e OR lógicos

RNAs: Perceptron (resolução de problemas)

AND lógico: MCP1 Z1=(x1 AND x2)

OR lógico: MCP2 Z2=(x1 OR x2)

Perceptron

x1	x2	Z1 AND	Z2 OR
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

RNAs: MLP (resolução de problemas)

XOR lógico: PerceptronA + Mais uma camada

 $x1 XOR x2 \leftrightarrow (NOT x1 AND x2) OR (x1 AND NOT x2)$

RNAs: MLP (resolução de problemas)

XOR lógico: PerceptronB + Mais uma camada

x1 XOR x2 \leftrightarrow (x1 AND NOT x2) OR (x2 AND NOT x1)

RNAs: Neurônio MCP (resolução de problemas)

XOR lógico: não linearmente separável

Por que as redes multicamadas são capazes de resolver XOR ?

Aproximação de Funções

Redes Recorrentes

Redes Neurais Artificiais

- Modelo do neurônio
- Topologia da rede
- Treinamento

Neurônios: Funções de Ativação

A partir do Modelo MCP original, foram derivados vários outros modelos de neurônios que permitem uma saída qualquer através de diferentes funções de ativação

Neurônios: Funções de Ativação

$$y \in [-\infty, +\infty]$$

Rampa

$$y \in [-1, +1]$$

Degrau

Sigmoide

$$y \in [0, +1]$$

Tg Hiperbólica

$$y \in [-1, +1]$$

Base Radial

$$y \in [0, +1]$$
 p N

$$y = \frac{1}{1 + e^{(-u)}} \quad \text{onde} \quad u = \left(\sum_{i=0}^{n} w_i x_i\right)$$

f = função tangente hiperbólica

Neurônio: Função de Ativação

f = Função de Base Radial (FBR)

Funções de Ativação: mapeamento x1 x x2

Funções de Ativação: treinamento

O ajuste dos parâmetros **w** e **O** (treinamento) altera a posição da reta (**hiperplano** para mais de duas entradas) e portanto da partição no espaço de entrada (**N-dimensional**)

Funções de Ativação: mapeamento x1 x x2

Funções de Ativação: mapeamento x1 x x2

Funções de Ativação: Abstração

O que acontece se alterarmos os pesos w1, w2?

Funções de Ativação: Abstração

O que acontece se alterarmos o limiar Θ , e os Pesos w1, w2?

Funções de Ativação: treinamento->map

sigmoidal

$$y = \frac{1}{1 + e^{(-\gamma \sum_{i=0}^{n} w_i x_i)}}$$

O ajuste dos parâmetros \boldsymbol{w} e $\boldsymbol{\mathcal{O}}$ (treinamento) altera o mapeamento entrada saída

Funções de Ativação: mapeamento x1 x x2

Funções de Ativação: mapeamento x1 x x2

$$c_1 = 0.7$$

 $c_2 = -0.4$

Funções de Ativação: Abstração

O que acontece se alterarmos os parâmetros σ_1 e σ_2 ?

Funções de Ativação: treinamento->map

O ajuste dos parâmetros c e σ (treinamento fase 1– e.g. clustering) altera a posição e cobertura da elipse (**hiperelipsóide**) e portanto o agrupamento no espaço de entrada (**N-dimensional**)

Funções de Ativação: treinamento->map

$$v_{EDD} = e^{\left(-\frac{(x_1-c_1)^2}{\sigma_1} - \frac{(x_2-c_2)^2}{\sigma_2}\right)}$$

O ajuste dos parâmetros **w** (treinamento fase 2-e.g regra delta) altera a combinação das informações de agrupamento resultante do treinamento da fase 1

Redes Neurais Artificiais

- Modelo do neurônio: função de ativação
- Topologia da rede
- Treinamento

Redes Neurais Artificiais

- Modelo do neurônio
- Topologia da rede
- Diferentes modelos:

função de ativação estrutura

Treinamento

- Parâmetros que definem a arquitetura:
 - Número de camadas
 Número de neurônios em cada camada
 - Tipo de conexão entre os neurônios
 - Conectividade da rede

 Número de camadas: Rede de Camada Única (Perceptron)

Unidades de entrada

Unidades de saída

 Número de camadas: Rede de Múltiplas Camadas (Multilayer Perceptron – MLP)

Tipos de Conexões:

- Redes do tipo feedforward (acíclicas): A saída de um neurônio na k-ésima camada não pode ser usada como entrada de neurônios em camadas de índices menores ou iguais a k (não há recorrência).
- Redes do tipo feedback (cíclicas ou recorrentes): A saída de algum neurônio na k-ésima camada é usada como como entrada de neurônios em camadas de índices menores ou iguais a k
- autômatos: saída final única com recorrência
- auto-associativas: todas as ligações são cíclicas

Conectividade:

- Parcialmente conectada
- Completamente conectada

Rede de Camada Única

Recorrente

Parcialmente Conectada

Rede de Hopfield (com 4 neurônios)

Outra forma de visualizar a

Rede de Hopfield

Mostrada anteriormente

RNAs: Linha do Tempo

Minsky e Papert

Backpropagation

1943

1958 (1957)

1969

1986

Idade da Ilusão

Idade das Trevas

Renascimento

1949

1960

1982

Regra de Hebb

Regra Delta (Widrow-Hoff)

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_i - y_in_i)x_i$$

Prof. Myriam Delgado Redes Neurais - UTFPR

RN associativas

Redes Neurais Artificiais (Modelos)

Redes Feedforward:

Perceptron

Multilayer Perceptron (MLP)

Redes de Funções de Base Radial (RBF)

Redes Associativas e Recorrentes

Hopfield

Redes Auto-organizáveis

Mapas de Kohonen