Propiedad de conjuntos:

Sean A, B conjunos entonces A \subseteq B \Leftrightarrow B^c \subseteq A^c Dem.

 \Rightarrow

Sea $x \in B^c$ por definición de complemento $x \notin B$.

Por otra parte, si suponemos que $x \in A$ por hipótesis entonces $x \in B$, lo que nos lleva a un absurdo pues $x \notin B$, entonces debe ser que $x \notin A$ de tal manera;

$$si x \in B^c \Rightarrow x \in A^c
\therefore B^c \subseteq A^c$$

 \Leftarrow

Esta parte lo demostraremos por deduccción al absurdo, por lo que supondremos que $\mathbf{B}^c\subseteq\mathbf{A}^c$ & $\mathbf{A}\not\subseteq\mathbf{B}$ entonces

Sea x \in A \Rightarrow x \in B

Pero si x
 $\in \! \mathbb{B}$ entonces x
 $\in \! \mathbb{B}^c$ y por hipótesis x
 $\in \! \mathbb{A}^c$

∴ x

A & x
∈A^c !

Como suponer que A $\not\subseteq B$ nos llevó a un absurdo debe ser que

 $A \subset B$