

CSE 4205 Digital Logic Design

Analysis and Design Procedure of Sequential Circuits

Course Teacher: Md. Hamjajul Ashmafee

Lecturer, CSE, IUT

Email: ashmafee@iut-dhaka.edu

- For Design and Analysis Procedure
 - Review other books and internet resources
 - Give 2 hours to make it complete and beautiful
- For Pattern/Sequence detector:
 - Review other books and internet resources
 - Draw the figure with Wacom (slide 11)

Analysis Procedure

From book [Page 250]

- Starting with a sequential Circuit
- Deriving its state table
 - 2 variants to represent
- Deriving its state diagram from the state table
- Deriving its state equation from the state table
 - Final outcome
 - Also, need to describe the behavior of the circuit [Preferred]
- Summarize all generalized steps

Design Procedure

From book [Page 254]

- Mention all Generalized Steps
- **Example** following those steps

Example of Design Procedure

Sequence/Pattern Detector

Sequence/Pattern Detector

- A sequential circuit that takes the input of binary bit streams and generate an output true (e.g. logic 1) when the target sequence is detected
 - Bit stream (1s and 0s) will be fed/inserted as input to check for particular pattern or sequence
 - As soon as, the target pattern is detected, it will make the output high
- As the output depends on the current state as well as the external input (x), a Mealy FSM is considered

Sequence/Pattern Detector: Types

- Types:
 - Overlapping
 - The last bit of one sequence becomes the intermediate bit of the next sequence
 - Non-overlapping
 - The last bit of one sequence doesn't become the intermediate bit of the next sequence
- They will be clear from the examples

Design A Sequence Detector

• Steps:

- Step 1: Develop the state diagram
- Step 2: Perform the state assignment and state reduction
- Step 3: Select the number and type of the flip flop
- Step 4: Derive Circuit Excitation Table
- Step 5: Derive the expressions for input of the flip flops and output(s)
- Step 6: Develop the circuit

Non-overlapping '101' Mealy Sequence Detector

• Example:

Input:	0	1	1	0	1	0	1	0	1	1	0	0	1
Output:	0	0	0	0	1	0	0	0	1	0	0	0	0

State Diagram:

State Assignment:

а	00	Nothing detected
b	10	'1' detected
С	01	'10' detected

- Type and number of flip flops:
 - Two D flip flops
- Circuit Excitation Table:

Present States		i/p	Next	States	Flip Flop	O/P		
Qa	Qb	х	Qa+	Qb+	Da	Db	у	
0	0	0	0	0	0	0	0	
0	0	1	1	0	1	0	0	
0	1	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	
1	0	0	0	1	0	1	0	
1	0	1	1	0	1	0	0	
1	1	0	X	Х	Х	X	Х	
1	1	1	X	X	X	X	X	

Expression Derivation:

Circuit Implementation:

Overlapping 101 Mealy Sequence Detector

• Example:

Input:	0	1	1	0	1	0	1	0	1	1	0	0	1
Output:	0	0	0	0	1	0	1	0	1	0	0	0	0

State Diagram:

Overlapping 101 Mealy SD...

• Others steps would be same as before.

• abc

Motivation

• abc