Ароматические углеводороды. Арены.

План урока

- 1. Гомологический ряд.
- 2. Изомерия аренов.
- 3. Номенклатура аренов.
- 4. Строение аренов.
- 5. Физические свойства аренов.
- 6. Химические свойства аренов.
- 7. Получение аренов.
- 8. Применение аренов.

Арены

Ароматические углеводороды (арены) –

это углеводороды с общей формулой C_nH_{2n-6},

в молекулах которых имеется хотя бы одно бензольное кольцо

История открытия бензола

Впервые бензол описал немецкий химик Иоганн Глаубер, который получил это соединение в 1649 году в результате перегонки каменно-угольной смолы. Но ни названия вещество не получило, ни состав его не был известен.

Своё второе рождение бензол получил благодаря работам Фарадея. Бензол был открыт в 1825 году английским физиком Майклом Фарадеем, который выделил его из жидкого конденсата светильного газа.

В 1833 году немецкий физик и химик Эйльгард Мичерлих получил бензол при сухой перегонке кальциевой соли бензойной кислоты (именно от этого и произошло название бензол)

Сби © Гомологи бензола

Формула арена	Название		
C,H _s	Метилбензол или тол НС СН СН ИЛИ НС СН СН	CH ₃	
C ₈ H ₁₀	1,2-диметилбензол СН ₃ СН ₃	1,3-диметилбензол СН ₃ СН ₃ СН ₃	1,4-диметилбензол СН ₃ СН ₃ СН ₄
	орто-ксилол (о-ксилол)	мета-ксилол (м-ксилол)	пара-ксилол (п-ксилол)
C ₉ H ₁₂	СН ₃ —СН ₃ —СН ₃ —СН ₃ и-пропилбензол изопропилбензол (кумол)		

Изомерия аренов

1. Структурная углеродного скелета (может зависеть от строения УВ радикала).

 C_9 H_{12}

н-Пропилбензол

Изопропилбензол (кумол)

Изомерия аренов Структурная

(от положения заместителей в бензольном кольце).

1,3-Диметилбензол 1,2-Диметипбензоп 1,4-Диметипбензоп CH_3 CH_3 CH_3 $\mathtt{CH_3}$ CH_3 CH_3 орто-ксилол мета-ксилол пара-ксилол (и-ксилол) (о-ксилол) (м-ксилол)

Номенклатура аренов

Гомологи бензола — соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

$$C_6H_5$$
-R (алкилбензол), $R-C_6H_4$ -R (диалкилбензол) и т.д.

Номенклатура. Широко используются тривиальные названия (толуол, ксилол, кумол и т.п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова бензол

$$C_6H_5$$
— CH_3 C_6H_5 — C_2H_5 C_6H_5 — C_3H_7 метилбензол этилбензол пропилбензол

Номенклатура аренов

1- МЕТИЛ- 3- ЭТИЛБЕНЗОЛ

Структурная формула бензола

Была предложена немецким ученым А. Кекуле в 1865 году

НО

Бензол не взаимодействует с бромной водой и раствором перманганата калия!

А.Кекуле

Ф. Кекуле предположил, что в молекуле бензола существуют три двойных связи.

Электронное строение бензола

Современное представление об электронной природе связей в бензоле основывается на гипотезе американского физика и химика, дважды лауреата Нобелевской премии *Л. Полинга*.

Именно по его предложению молекулу бензола стали изображать в виде иестиугольника с вписанной окружностью, подчеркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

Современная структурная формула бензола

Сочетание шести сигма — связей с единой п — системой называется ароматической связью

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом или бензольным ядром.

Строение бензола

Схема образования сигма — связей в молекуле бензола.

- 1)Тип гибридизации **Sp2**
- 2) между атомами углерода и углерода и углерода и водорода образуются сигма связи, лежащие в одной плоскости.
- 3) валентный угол 120 градусов
- 4) длина связи С-С0,140нм

Физические свойства аренов

Бензол

- Бесцветная, летучая, огнеопасная жидкость
- > С неприятным запахом
- ▶ Легче воды (p=0,88 г/см3)
- > Не смешивается с водой
- Растворим в органических растворителях
- > Сам является растворителем.
- ➤ Бензол кипит при 80,1 С
- При охлаждении легко застывает в белую кристаллическую массу
- > Бензол и его пары ядовиты
- Систематическое вдыхание его паров вызывает анемию и лейкемию.

Химические свойства аренов

1) Реакции окисления 1. Горение

$$2 \bigcirc +15 \bigcirc_2 \xrightarrow{t} 12 \bigcirc \bigcirc_2 +6 \bigcirc_2 \bigcirc$$

2. НЕ обесцвечивает раствор перманганата калия и бровную воду.

3. Каталитическое окисление.

$$C_6H_5$$
— CH_3 + C_6H_5 — C O + C_6H_5 — C OH бензойная кислота

Химические свойства аренов

2. Реакции замещения

1) Галогенирование (в присутствии солей железа)

$$C_6H_6 + Cl_2 \xrightarrow{f^*C, FeCl_3} C_6H_5Cl + HCl$$
 хлорбензол $C_6H_5CH_3 + Cl_2 \xrightarrow{f^*C, FeCl_3} C_6H_4ClCH_3 + HCl$ толуол хлортолуол

Реакции замещения протекают <u>легче</u> чем у предельных углеводородов

Химические свойства аренов2) Нитрование (+ М NO 5)

$$O$$
 +HONO₂ O +H₂SO₄ O +H₂O

БЕН3ОЛ

НИТРОБЕНЗОЛ

Нитрующая смесь= конц. Серная кислота+ конц. Азотная кислота

Реакции замещения протекают <u>легче</u> чем у предельных углеводородов

Гомологи бензола, вследствие взаимного влияния атомов в бензольном кольце, реагируют с азотной кислотой иначе:

Замещение происходит в трех положениях бензольного кольца: 2, 4, 6 (орто-, пара-положениях):

2, 4, 6-тринитротолуол (тротил, тол)

Вследствие такой реакции образуется сильно взрывчатое вещество тротил, который применяют для взрывных работ (при прокладке туннелей, шахт, метро и т. д.).

Химические свойства аренов

2. Реакции присоединенияя 1) Хлорирование

2) Гидрирование

$$+3H_2$$
 $\xrightarrow{\text{кат}}$ ЦИКЛОГЕКСАН

Реакции присоединения протекают *труднее* чем у непредельных углеводородов

Рис 4. Бензойная кислота

Среди ароматических углеводородов есть разновидности таких веществ, в которых есть радикалы, содержащие кратные связи. Таким веществом является, например, винилбензол (полистирол) (рис. 5):

Этот углеводород обладает и свойствами гомологов бензола, но проявляет и свойства

непредельных углеводородов. Винилбензол обесцвечивает бромную воду, реагирует с галогеноводородами и т. д. Но самым важным свойством стирола является реакция полимеризации, в результате которой получается полимер-полистирол:

$$n$$
СН $_2$ =СН \longrightarrow $\begin{bmatrix} -$ СН $_2$ -СН $\end{bmatrix}_n$ стирол

Из полистирола изготавливают разнообразную продукцию.

Стирол – не является гомологом бензола!

Стирол (винилбензол) — производное бензола, у которого один атом H замещен на радикал $CH_2 = CH$ — винил. Его можно рассматиривать и как производное этилена, у которого один атом H замещен на ароматический радикал C_6H_5 — фенил.

Химические свойства:

1. С бромной водой (обесцвечивание) – по месту разрыва двойной связи:

$$CH=CH_2$$
 $CHBr_CH_2Br$ $+Br_2$ $+Br_2$ 1 -фенил-1,2-дибромэтан

2. Реакция Вагнера (обесцвечивание раствора КМпО4): [О] – условный окислитель

$$_{\text{C}_{6}\text{H}_{5}}$$
—CH=CH $_{2}$ + [O] + HOH — $_{+}$ С $_{6}\text{H}_{5}$ —CH —CH $_{2}$ стирол 1-фенилэтандиол-1,2

3. Гидрирование (по кольцу и по двойной связи):

этилциклогексан

Получение аренов

- Выделение из природных источников (нефти, каменного угля)
- О 2. Ароматизация нефти:

Л а) дегидрированиеV циклопарафинов

ф б) циклизация и дегидрирование влканов

3. Тримеризация алкинов

$$3C_2H_2 \xrightarrow{C_{ort}} C_6H_6$$

Алкилирование бензола

$$+C_3H_7CI$$
 $\xrightarrow{AICI_3}$ O $-C_3H_7+HCI$

Получение аренов

 Ароматизация алканов. Предельные углеводороды, входящие в состав нефти, при пропускании над нагретым катализатором отщепляют водород и замыкаются в цикл. Этот процесс называется ароматизацией.
 При ароматизации гексана образуется бензол

$$H_2C$$
 CH_3
 Cr_2O_3 , t^2 , p
 CH_2
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

 Дегидрирование циклогексана и его производных. Русский ученый Н. Д. Зелинский доказал, что бензол можно получить из циклогексана, выделяемого из некоторых сортов нефти:

$$H_{2}C$$
 CH_{2}
 $H_{2}C$
 CH_{2}
 CH_{2}

 Алкилирование бензола галогеналканами в присутствии катализатора AlCl₃ (Реакция Фриделя – Крафтса) получают производные бензола:

$$H$$
 + CH_3 Cl H + HCl H

Алкилирование бензола алкенами:

$$\bigcirc$$
 + CH₃— CH = CH₂ $\stackrel{\text{AlCl}_3}{\longrightarrow}$ \bigcirc СН₃ изопропилбензол

4. При дегидрировании этилбензола образуется производное бензола с непредельной боковой цепью — винилбензол (стирол) С_кH_к — CH = CH_о

Важнейшими источниками ароматических углеводородов являются каменноугольная смола и газы, образующиеся при коксовании углей и перегонке нефти.

Применение аренов

- ✓ *Бензол С₆Н₆* используется как исходный продукт для получения различных ароматических соединений нитробензола, хлорбензола, анилина, фенола, стирола и т.д., применяемых в производстве лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ.
- ✓ *Толуол* C_6H_5 - CH_3 применяется в производстве красителей, лекарственных и взрывчатых веществ (тротил, тол).
- ✓ *Ксилолы* $C_6H_4(CH_3)_2$ в виде смеси трех изомеров (орто-, мета- и пара-ксилолов) технический ксилол применяется как растворитель и исходный продукт для синтеза многих органических соединений.
- ✓ *Изопропилбензол (кумол)* C_6H_4 - $CH(CH_3)_2$ исходное вещество для получения фенола и ацетона.
- ✓ Винилбензол (стирол) C_6H_5 -CH= CH_2 используется для получения ценного полимерного материала полистирола.