Лабораторная работа № 3.1.3 Измерение магнитного поля земли.

Содержание

1	Подготовка к работе.					
	1.1	Цель работы и оборудование	2			
	1.2	Магнитный диполь				
	1.3	Неодиновые магнитные шары				
2	Ход работы.					
	2.1	Задание 1. Метод А	3			
	2.2	Задание 1. Метод Б	4			
	2.3	Задание 2. Определение горизонтальной составляющей магнит-				
		ного поля Земли	5			
	2.4	Задание 3. Определение вертикальной составляющей магнит-				
		ного поля Земли	6			
3	Результаты и обработка.					
	3.1	Задание 1	8			
	3.2	Задание 2	9			
	3.3	Задание 3	10			
1	Вът	рол	10			

1 Подготовка к работе.

1.1 Цель работы и оборудование.

Цель работы: определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используется: 12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0.5-0.6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25x30x60 \text{ мм}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики (20 шт.) и неодимовые магниты в форме параллелепипедов (2 шт.), набор гирь и разновесов.

1.2 Магнитный диполь.

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент $\vec{P_m}$ тонкого витка S с током I равен:

$$\vec{P_m} = (1/c)\vec{S} = (I/c)S\vec{n} \tag{1}$$

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарного электрического диполя:

$$\vec{B} = \frac{3(\vec{P_m}\vec{r})\vec{r}}{r^5} - \frac{\vec{P_m}}{r^3}$$
 (2)

Тогда механический момент сил, действующих в поле такого диполя:

$$\vec{M} = \vec{P_m} \times \vec{B} \tag{3}$$

Под действием вращающего момента \vec{M} так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это — положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия.

Энергия магнитного диполя в поле:

$$W = -(\vec{P_m}, \vec{B}) \tag{4}$$

В системе СИ размерность $[\vec{P_m}] = [W]/[B] = Дж/Тл$

В системе СГСЭ – $[\vec{P_m}] = [W]/[B] = \text{эрг/Гс}$

Зная магнитные моменты P_1 и P_2 двух небольших постоянных магнитов, можно рассчитать силу их взаимодействия. Если магнитные моменты $P_1 = P_2 = P_m$ двух одинаковых небольших магнитов направлены вдоль соединяющей их прямой, а расстояние между ними равно r, то магниты взаимодействуют c силой:

$$F = \frac{P_m \delta B}{\delta r} = \frac{P_m \delta(2P_m)}{r^3 \delta r} = \frac{-6P_m^2}{r^4} \tag{5}$$

1.3 Неодиновые магнитные шары.

В настоящей работе используются неодимовые магниты шарообразной формы. Для нас важно то, что:

- 1) шары намагничены однородно;
- 2) вещество, из которого изготовлены магниты, является магнитожёстким материалом.

2 Ход работы.

2.1 Задание 1. Метод A.

- 1) Взвесим шарики на весах. Важно знать, что весы могут давать некорректные показания, если магниты класть непосредственно на платформу весов. Определим диаметр шариков.
- 2) Проложим между двумя магнитными шариками брусок из немагнитного материала. Подкладывая между бруском и верхним магнитиком листы бумаги (Рисунок (1)), выяним, на каком максимальном расстоянии r_{max} шарики удерживают друг друга в поле тяжести Земли.

Рис. 1: Определение магнитного момента шариков по силе тяжести.

- 3) Расчитаем величину магнитного момента магнитика P m , прировняв силу притяжения двух магнитных диполей $F=6P_m^2/r_max^4$ к силе тяжести $F_{\scriptscriptstyle
 m T}=mg$. Оценим погрешность измерений.
 - 4) Рассчитайте величину намагниченности материала шариков $p_m = P_m/V$.
- 5) По величине магнитного момента (намагниченности) шарика, рассчитаем величину B_p магнитного поля на полюсах шарика. С помощью магнетометра ATE-8702 измерим индукцию поля на полюсах шарика. Сравним расчетное B_p значение с измеренным. При сильном расхождении результатов повторим измерения магнитного момента шарика.
- 6) Рассчитайте величину $B_r = 4\pi p_m$ остаточной магнитной индукции материала, из которого изготовлен магнитный шарик. Сравните ваш результат с табличными значениями B_r для соединения неодим-железо-бор.

2.2 Задание 1. Метод Б.

7) Используя дополнительные шарики, составим цепочку из 20-30 шариков и, с помощью неодимовых магнитов в форме параллелепипедов, подсоеденим цепочку к гире и разновесам, так, чтобы общая масса системы составила 500 г (Рис (2) (б)). Добавляя или удаляя шарики (шарики можно примагничивать непосредственно к гире), подберем минимальный вес F системы цепочки с гирей, при котором она отрывается от верхнего шарика.

Рис. 2: Определение магнитного момента шариков по силе сцепления.

- 8) С помощью весов определим вес F оторвавшейся цепочки с гирей.
- 9) По формуле $F_0 = F/1.08$ определим силу сцепления двух шаров.
- 10) Из формулы $F_0 = 6P_m^2/d^4$ определим магнитный момент шарика P_m . Оценим погрешность результата.

- 11) Рассчитаем величину поля на полюсах и сравним расчетное значение с измеренным магнетометром ATE-8702.
- 12) Сравним значения магнитных моментов, полученные методом А и методом В.
 - 13) Окончательный результат измерений P_m занесем в Таблицу (——).

2.3 Задание 2. Определение горизонтальной составляющей магнитного поля Земли.

Схема установки, предназначенной для измерения горизонтальной составляющей поля Земли, показана на Рисунке (3). Это крутильный маятник в виде магнитной «стрелки» закреплённой на тонкой нити. Магнитная «стрелка» собирается из n=3..12 магнитных шариков и подвешивается в горизонтальном положении с помощью Λ -образного подвеса. Маятник совершает крутильные колебания вокруг вертикальной оси, проходящей через центр масс «стрелки». Для крепления нити в работе используется штатив, изготовленный из немагнитного материала.

Рис. 3: Схема установки для определения горизонтальной составляющей магнитного поля Земли.

- 14) Соберем крутильный маятник и, используя ∧-образного подвес, установим «магнитную стрелку» из 12 магнитных шариков в горизонтальном положении (юстировка системы).
- 15) Возбудим крутильные колебания маятника вокруг вертикальной оси и определим их период. Оценим влияние упругости нити на период колебаний, возбудив крутильные колебания «стрелки», свёрнутой в кольцо (очевидно,

что магнитный момент такого кольцеобразного маятника равен нулю) (Рисунок (7)). Покажем, что упругость нити при расчете периода колебаний можно не учитывать.

Рис. 4: Магнитная «стрелка», свернутая в кольцо.

- 16) Исследуем зависимость периода Т крутильных колебаний «стрелки» от количества магнитных шариков n, составляющих «стрелку». Измерения проведем для значений n=3..12. (Не забудем для каждого значения n юстировать систему, выставляя перед каждым измерением «стрелк» горизонтально).
 - 17) Построим график экспериментальной зависимости T(n).
 - 18) Аппроксимируем экспериментальную мость T(n) прямой T = kn.
- 19) По значению углового коэффициента к рассчитаем величину горизонтальной составляющей магнитного поля Земли по формуле:

$$B_h = \pi^2 m d^2 / 3k^2 P_m \tag{6}$$

Оценим погрешность измерений.

2.4 Задание 3. Определение вертикальной составляющей магнитного поля Земли.

20) Изготовим магнитную «стрелку» из n=10 шариков и подвесим её за середину с помощью нити на штативе (Рисунок (5), а)

Рис. 5: Определение вертикальной составляющей магнитного поля.

- 21) Определим механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную «стрелку». Для этого, с помощью одного или нескольких кусочков проволоки, уравновесим «стрелку» в горизонтальном положении (Рисунок (5), б).
 - 22) С помощью весов определите массу уравновешивающего груза $m_{\rm rp}.$
- 23) Из условия равновесия рассчитаем механический момент сил M, действующих на горизонтальную «стрелку» со стороны поля Земли. Измерения момента сил M(n) проведем для чётных значений $n=4,\,6,\,8,\,10,\,12$ (у таких «стрелок» есть «хорошая серединка» для подвешивания на нити).
 - (24) Построим график экспериментальной зависимости M=M(n).
- 25) Аппроксимируем экспериментальную зависимость M(n) прямой линией M=An.
- 26) По значению углового коэффициента A зависимости M=An рассчитайте величину B_{ν} вертикальной составляющей магнитного поля Земли $B_{\nu}=A/P_m$. Оцените погрешность измерений B_{ν} .
- 27) Используя результаты измерений B_{ν} и B_h , определим магнитное наклонение β и полную величину индукции магнитного поля Земли на широте Долгопрудного. Сравним полученное значение наклонения с расчетным, полученным в предположении, что поле Земли соответствует полю однородного

намагниченного вдоль оси вращения шара. Широту Долгопрудного возьмем равной $\phi = 56\deg \mathrm{c.m.}$ (северной широты). Оценим также полный магнитный момент P_3 Земли.

28) Сравним полученные в работе результаты с современными справочными данными параметров магнитного поля Земли в Московском регионе.

3 Результаты и обработка.

3.1 Задание 1.

Способ А: $m_0 = 0.483 \pm 0.001 \text{г}, r_{\text{max}} = 16.00 \pm 0.05 \text{мм}.$ $F = \frac{6P_m^2}{r_{max}^4} = m_0 g$ $P_m = 7.190 \pm 0.047 \cdot 10^{-6}$ $\rho_m = \frac{P_m}{V} = 141.16 \pm 0.92 \text{ Th/m}^3$ $B_p = 1182.5 \pm 7.7, \quad B_r = 1773 \pm 11$

Способ В: $M = 258.36 \Gamma F_0 = 2.34 \text{ H}$ $P_m = 13.20 \pm 1.34 \cdot 10^{-6}$ $B_p = 16 \frac{P_m}{d_0^3} = (1.808 \pm 0.183) \times 10^3 \text{ Тл}$

Таблица 1: Итог

$P_m(A)$	$P_m(B)$
$7.19 \pm 0.47 \cdot 10^{-6}$	$13.20 \pm 1.34 \cdot 10^{-6}$

Далее будем считать $P_m = 9.52 * 10^{-6}$.

3.2 Задание 2.

Таблица 2: Зависимость периода колебаний от количества шариков.

n	n_0	t (cek)	Т (сек)
12	30	92.8	3.09
11	30	87.6	2.92
10	30	74.5	2.48
9	30	70.2	2.34
8	30	61.1	2.04
7	30	55.8	1.86
6	33	53.3	1.62
5	33	43.6	1.32
4	30	32.2	1.07
3	30	25.3	0.84

$$B_h = \frac{\pi^2 m d_0^2}{3k^2 P_m} = 56 \pm 7 \text{MKT}$$
 (7)

Рис. 6: Зависимость периода колебаний от количества шариков.

3.3 Задание 3.

Таблица 3: Зависимсоть момента от количества шариков.

n	$M \cdot 10^{-6} \; ({ m H/m})$
10	3.13
8	3.06
6	1.38
4	1.15

Рис. 7: Зависимость момента сил от количества шариков.

$$k = 3.18 \pm 0.70 \cdot 10^{-7}$$

$$B_v = rac{k}{P_m} = 0.033 \pm 0.011$$
 мкТл

4 Вывод

Магнитное поле Земли составило по оценкам этой работы $\beta = 56\pm 7$ мкТл.