prep1

Bahi Academy

Online Learning

Choose the correct answer from the given ones:

If the mode of the values: 3,7,4,a+3 is 7, then $a = \dots$

(a) 7 (b) 4

(c) 3 ·

(d)2

The rational number half way between $\frac{1}{4}$ and $\frac{3}{4}$ is

(a) $\frac{3}{8}$

(b) $\frac{5}{8}$

(c) $\frac{5}{12}$

(d) $\frac{1}{2}$

3 The median of the values: 9, 8, 7, 12, 5 is

(a)7

(b) 8

(c)9

(d) 12

4 If the mode of the values 4, 11, 8, 2 x is 4, then $x = \dots$

(a) 2

(b) 4

(c)6

(d) 8

5 If the rational number $\frac{x-3}{x-5} = 0$, then $x = \dots$

(a) 3

(b) 5

(c) - 3

(d) - 5

The remainder of subtracting χ from -2χ is

(a) X

(b) - x

(c) 3 x

(d) - 3 X

The expression $3 x^2 y - 6 x$ its degree is

(a) 1

(b) 2

(c) 3

(d) 4

8 If the order of the median of some values is the fourth, then the number of these values is

(b)3

(c)5

(d) 7

 $(x^2 + x) \div x = \cdots$ (where $x \neq 0$)

(a)0

(b) X

(c) 2 X + 1

(d) X + 1

prepi

10 If $\frac{3}{x+5} \in \mathbb{Q}$, then $x \neq \dots$

- (a) zero
- (b) 3
- (c) 5
- (d) 5

11 If $\frac{x}{y} = 1$, then $3x - 3y = \dots$

- (a) zero
- (b) 1

(c) 3

(d) 6

12 If $(X-3)(X+3) = X^2 + k$, then $k = \dots$

- (a) 6
- (b) 6
- (c) 9
- (d) 9

13

14 The arithmetic mean of the numbers: 3, 4, 6, 7 is

(a) 3

(b) 4

(c) 5

(d) 8

15 If $\frac{a}{b} = \frac{1}{2}$, then $2a - b = \dots$

(a) 1

(b) 0

- (c) 3

16 The algebraic term: $-4 \times y^2$ is of degree.

- (a) second (b) third
- (c) fourth
- (d) fifth

17 The mean of the values 2, 8, 6, 4 is

- (a) 3
- (b) 4
- (c) 5
- (d) 6

18 If the order of the median of a set of values is the fifth, then the number of these values

- (a) 6
- (b) 10
- (c) 11
- (d) 9

19 The necessary condition to make $\frac{5}{x-3}$ a rational number is

- (a) $X \neq 3$
- (b) x = 4
- (c) X = 5
- (d) X = 3

prepi

Bahi Academy

Online Learning

20 The mode for the values 3, 5, 3, 4, 3 is

(a) 3

(b) 4

(c) 5

(d) 12

- (a) 3
- (b) 4
- (c) 5
- (d)7

22 The decreases of 3 \times than 4 \times is

- (a) 1
- (b) X
- (c) 1
- (d) X

23 If $(x-5)(x+5) = x^2 - m$, then $m = \dots$

- (a) 25
- (b) zero
- (c) 10
- (d) 25

24 $2 a^3 b \times 5 a^2 b^2 = \dots$

- (a) $10 a^5 b^3$ (b) $10 a^6 b^3$
- (c) $10 a^5 b^2$
- (d) $7 a^5 b^3$

25 The order of the median of 5, 2, 3, 9, 7, 1, 6 is

(a) 9

(b) 5

(c)4

(d)2

26 The algebraic term $2 x^3 y^2$ its degree is

- (a) the second.
- (b) the third.
- (c) the fourth.
- (d) the fifth.

(a) 0.42

- (b) 0.416
- (c) 0.416
- (d) 0.45

The coefficient of the algebraic term $3 \times y^2 z^4$ is 28

(a) 2

(c) 6

(d) 7

29 If the degree of the algebraic term 2 a³ bⁿ is ninth, then n =

(a) 8

(b) 6

(c) 2

(d) 9

30 1-2 X exceeds X by

- (a) 3 X
- (b) 3 X
- (c) $3 x^2$
- (d) 2 X

prepi

31 The increase of 7 a than 3 $a = \dots$

(a) - 4a

- (b) 4 a
- (c) 10 a
- (d) 10 a

32 The additive inverse of the number $|-\frac{2}{5}|$ is

(a) $\frac{5}{2}$

- (b) $\frac{2}{5}$
- $(c) \frac{2}{5}$

 $(d) - \frac{5}{2}$

33 $-6 x^3 y^2 \div 3 x^2 y = \dots$, where $x y \neq zero$

- (a) $-2x^2y$
- (b) 2 X y
- $(c) 2 \times y$
- (d) $-2 x^2 y^2$

34 $\div 6 a^2 = -4 a^4$, where $a \neq 0$

- (a) $24 a^6$
- (b) $24 a^2$
- (c) $4 a^2$
- $(d) 24a^6$

35 $2 \times \times 3 \times = \cdots$

- (a) 6 X
- (b) 5 X
- (c) $6x^2$
- (d) $5x^2$

36 $(4 \times -3) (x - 4) = \cdots$

- (a) $4x^2 19x 12$ (b) $4x^2 7$
- (d) $4x^2 19x + 12$

The middle term in the expansion of $(2 \times -5 \text{ y})^2$ is

- (a) $-10 x^2 y^2$ (b) $10 x^2 y^2$ (c) 20 x y
- (d) $-20 \times y$

38 The multiplicative inverse of the number 0.5 is

- (a) 1
- (b) 5
- (c) 2
- $(d)^2$

39 The middle term in the expression $(x-5)^2 = \cdots$

- (a) $5 \times$ (b) $10 \times$ (c) $-5 \times$
- (d) 10 X

prep1

40

41

If $(x+1)^2 = x^2 + k x + 1$, then $k = \dots$

(a) 1

(b) 2

- (c) 3
- (d) 4

Bahi Academy Online Learning

The additive inverse of the number $\frac{3}{7}$ is

(a) $\frac{7}{3}$

- (b) $-\frac{7}{3}$
- $(c) \frac{3}{7}$
- (d) 7

42

The degree of the algebraic term $3 \times^2 y^2 z$ is

- (a) first.
- (b) third.
- (c) fourth.
- (d) fifth.

36806

43

If the arithmetic mean of marks of five students is 30, then the sum of their marks is

(a) 6

- (b) 30
- (c) 35

(d) 150

44

The order of the median of the values: 6,2,5,4,1 is

(a) 1

(b) 2

(c) 3

(d) 4

45

If the term $3 \times 2^{2} y^{m+1}$ from the 6th degree, then $m = \dots$

46

$$(x-4)(x+4) = x^2 - \dots$$

47

$$(3 X-3) (2 X+4) = 6 X^2 + \dots - 12$$

48

The multiplicative inverse of $3\frac{1}{2}$ is

49

$$(x-5)(x+5) = \cdots$$

50

$$x^2 + 3yx - x^2 + 2xy = \dots$$

prepi

51	Find three rational numbers included between :	$\frac{1}{3}$	and $\frac{1}{2}$

- 52 Simplify: (2a-3)(2a+3)+7
 - , then find the numerical value of the result when a = -1

Use the property of distribution to find the result of :
$$\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7}$$

Subtract:
$$-a^2 - 5ab + 4b^2$$
 from $3a^2 - 2ab - 2b^2$

Find the quotient of:
$$20 a^3 b^2 + 15 a^2 b^3 + 10 ab$$
 by $5 ab$ where $ab \ne 0$

Divide:
$$(X^2 + 5X + 6)$$
 by $(X + 2)$ (where: $X \neq -2$)

| Simplify:
$$(x+2)^2 + (x-2)(x+2)$$

58

Add the two expressions:
$$2x-7y+2z$$
 and $5z+6y-2x$

Divide:
$$6x^2 + 13xy + 6y^2$$
 by $2x + 3y$ (where $2x + 3y \neq 0$)

Factorize by taking the H.C.F:
$$15 \times y^3 + 20 \times y^2 - 25 \times y$$

Subtract:
$$7x^2 + 5x - 6$$
 from $2x^2 - 3x + 5$

prep1

62

Simplify: $(x + 3)^2 - 9$, then find the numerical value when x = 3

Bahi Academy Online Learning

Use the property of distribution to find the result of: $\frac{3}{7} \times 2 + \frac{3}{7} \times 9 - \frac{3}{7} \times 4$ 63

64

Simplify:

(3 b - 4) (3 b + 4) + 5, then find the numerical value of the result when b = -2

65

What is the increase of: $4x^2-6x+5$ than $7x^2-x-9$

66

Write four rational numbers between $\frac{5}{4}$ and $\frac{2}{3}$

67

If $x = -\frac{1}{3}$, $y = \frac{3}{4}$ and z = -3, find the numerical value of each of the following:

1 X y z

2 Xy+yz

68

Divide: $10 x^5 - 6 x^3 + 4 x^2$ by $2 x^2$ (where $x \neq zero$)

69

Simplify to the simplest form: $(x-5)^2 + 10 x$

70

Factorize by identifying the H.C.F.: $12 x^3 + 8 x^2 - 4 x$

71

Find the sum of: 2 X + 7 y - 5 and 2 X - 7 y - 3

72

If $X = \frac{1}{2}$, $y = \frac{-2}{3}$, z = 2, find the value of: $\frac{y-z}{x}$

prepi

73

The table shows the distribution of marks of 30 students in an exam:

Marks	-6.	9	.12	15	18	Total
No. of students	4	7	8	5	6	30

Find the mode mark.

74

Sameh recorded the number of minutes that the bus took for going to the school for 10 days as the following: 15, 18, 22, 15, 25, 20, 16, 20, 14, 15 Find each of the following: ***

- 1 The mode number of minutes.
- 2 The arithmetic mean of the number of minutes.
- 3 The median number of minutes.

75

If $x = \frac{2}{3}$, $y = -\frac{1}{6}$ and z = -3, then find the value of each of the following: ***

$$1 (X \div y) - (z \div y)$$

$$\frac{x+y}{xz}$$

76

Find the rational number that lies one third of the way between $\frac{1}{7}$ and $\frac{1}{4}$ from the smaller number.

77

Factorize the following by identifying the H.C.F.: $15 x^2 y - 25 x y^2 + 10 x y$

78

Find the quotient of dividing: $12 \times 3 + 18 \times 2 - 6 \times 6 \times (\text{where } X \neq 0)$

(1) Complete each of the following.

1) The number that hasn't a multiplicative inverse is

2)
$$\frac{3}{4} = \dots \%$$

3)
$$(2x-3)(3x+5) = 6x^2 + \dots -15$$

4)
$$3x^2 + 15xy = 3x$$

- 5) If the order of the median of a set of values is the fifth, then the number of these values is
- 6) The algebraic term $-3 xy^3$ whose degree is
- 7) The arithmetic mean of the value: 3, 5, 4, 9, 4 is ______

8) If:
$$\frac{x}{24} = \frac{5}{12}$$
, then $x = \frac{5}{12}$

9)
$$3x^2y \times = 12x^3y$$

- 10) If the order of the median of a set of values is the Fourteenth, then the number of these values is
- The algebraic term : $-4 xy^2$ of ______degree 11)

13)
$$6x^3 = 2x \times \dots$$

16)
$$3\frac{1}{4} \times \dots = 1$$

- $6x^3 = 2x \times \dots$
- If: $(x y)(3x + 2y) = 3x^2 + kxy 2y^2$, then x = ...
- The rational number that lies half way between $\frac{1}{2}$ to $\frac{1}{4}$ in the direction of 20) the first number is
- The rational number which hasn't a multiplicative inverse is 21)
- $\left(\frac{-5}{7}\right) \times \left(\frac{-7}{5}\right)$, =
- The number that lies half the way between $\frac{1}{2}$ to $\frac{5}{8}$ is ... 23)
- $24x^4y^6 = 3x^2y^3 \times$ 24)
- If the mood of the values 5, 7, a + 1, 6, 4 is 4, then a =
- If the ratio X: 25 equals 2: 5, then X=.....
- $100\% \frac{1}{4} = \dots$ 27)
- The greatest negative integer is 28)
- **29)** $\frac{-4}{11}$ x=...
- 30) If the sum of 5 numbers is 30, then the arithmetic mean for these number is......
- The number $\frac{4}{x}$ is a rational number if $x \neq \dots$
- The order of the median for the values: 4, 12, 9, 8, 2 is...... 32)
- 33) If the number is Y + 5 hasn't a multiplicative inverse, then $Y \dots \dots$
- The remainder of subtraction 2x 1 fromequals 2x34)

Choose the correct answer:

- 1) $\left| \frac{-2}{3} \right|$ zero
 - a) >
- b) <
- c) =

- $d) \leq$
- 2) The algebraic term: $2x^3y^2$ whose degree is
 - a) the second
- b) the third
- c) the fourth
- d) the fifth
- 3) The arithmetic mean of the values: 2, 2, 3, 6, 7 is
 - a) 2
- b) 3

- 4) $(-3x^2y)^2 \times 2xy = \dots$
 - a) $-18 x^5 y^3$ b) $18 x^5 y^3$ c) $6 x^3 y^2$
- d) 5
- 5) The median of the value: a + 3, a + 2, a + 4 (where a is a positive integer) is 8 then a equals:
 - a) 2

b) 3

d) 5

- 6) $\frac{-3}{5} + \frac{2}{3} = \dots$
 - a) $\frac{6}{5}$
- $b) \frac{1}{15}$

c) 5

d) 3

- 7) $\frac{1}{r-3}$ is a rational number when
 - a) x = -3 b) x = 3 c) $x \neq 3$
- d) x = 5
- 8) The mode of the values: 5, 5, 4, 7, 5, 4 is
 - a) 2

b) 3

- d) 5
- 9) The highest common factor of the expression $3x^2y 6x$ is
 - a) 3x
- b) 6x
- c) 3xy
- d) xy-2

- **10)** |-13| |13| =
 - a) -26
- b) -13
- c) 0

d) 26

- 11) If: $\frac{x}{y} = 1$, then $3x 3y = \dots$
 - a) 0

b) 1

c) 3

d) 6

,	House	of	Math	with	Mr.	Morad	Ashra
	TICHEC	VL	TATESTT	AATPTY	WATER .	TATOT SOOT	LIGHT

12)	The remai	inder of subtractin	$\log(-5x)$ from	3x equals:	
	a) $-2x$	b) 2 <i>x</i>	c) 8	x^2	d) 8 <i>x</i>
13)	The mode of	of the values: 1, 3	3,7,3,6,7,	3 is	
	a) 1	b) 3	c) 6	d)	e) 7
14)	The arithr	metic mean of the	numbers: 3, 6	, 1 , 6 is	The same of the sa
	a) 3	b) 4	c) 6		d) 16
15)	If $x + \frac{3}{x} =$	$=4+\frac{3}{4}$, then $x=$			
	a) $\frac{1}{4}$	b) $\frac{1}{2}$	c) 3		d) 4
16)	The prope	erty used in the op	eration: $\frac{6}{7} \times 1$	$=\frac{6}{7}$ is	
	a) associa	tive	b) comn	nutative	
	c) multiple	icative identity	d) multi	plicative in	verse
17)	The mode	of the values: 7,	5, y+3, 5, 7	is 7, then	y =
	a) 3	b) 4	c) 5		d) 7
18)	The media	an of the values: 4	8, 3, 5, 7 is		
	a) 3	b)	c) 4	d) 5	e) 7
19)	If $(x-3)$	$(x+3) = x^2 + \dots$	K , then $K = \dots$		
	a) -9	b) 3		c) 6	d) 9
20)	The remai	nder of subtractin	$\frac{1}{3}$ from $\frac{4}{3}$ is		
	$a) = \frac{5}{2}$	b) 1	c) $\frac{2}{3}$		d) $\frac{5}{3}$
	7 .		3		
21)	1s a ra	ational number wl	hen $x \neq \dots$		

a) -5

b) 5

c) $\frac{7}{5}$

d) 7

- 22) If the arithmetic mean of marks of five students is 30, then the sum of their marks is
 - a) 6

b) 30

c) 35

- d) 150
- 23) The order of the median of the values: 6, 2, 5, 4, 1 is
 - a) 1

b) 2

c) 3

- d) 4
- **24)** If $(x-3)(x+3) = x^2 + K$, then K =
 - a)-9

b) 3

3) 6

4) 9

- 25) The smallest prime number is.....
 - a) 0

b) 1

c) 2

d) 3

If
$$(x + y)^2 =$$

15, $x^2 + y^2 = 7$, then xy = ...

1)8

2) 22

3)6

4) 4

- 27) If 2x = 10, then $\frac{3}{5}x = \dots$
 - 1) 25

2) 15

3) 5

- 4) 3
- 28) If the order of the median for a set of ordered values is the fifth, then the number of these values is......
 - 1) 3

2) 5

3) 7

- **4)** 9
- - 1) 48

2) 42

- 3) 40
- 4) 45

[a] Find in the simplest form the value of each of the following. **(2)**

1)
$$-27\frac{1}{4} + 13\frac{1}{2}$$

2)
$$0.\dot{1}\dot{8} - 30\%$$

[b] Using the properties of the rational numbers, find the value of:

$$\frac{23}{45} \times \frac{23}{45} - 2 \times \frac{23}{45} + \frac{17}{12} \times \frac{7}{12}$$

(3) [a] Subtract: $5x^2 + y^2 - 3xy$ from $x^2 - 2xy + 3y^2$

- 2) Divide: $6x^2 + 13xy + 6y^2$ by 2x + 3y, $2x + 3y \neq 0$

[b] Simplify: (2a - 3)(2a + 3) + 7, then find the numerical value of the

result	when	a	=	-1
				-

[b] Find three rational numbers between: $\frac{1}{2}$, $\frac{1}{3}$

(5) [a] Add: 2x - 7y + z To 5z + 6y - 2x

[c] If:
$$x = \frac{1}{2}$$
, $y = \frac{-2}{3}$, $z = 2$, then find the value of $\frac{y-z}{x}$

2) Divide:
$$6x^3 - 2x^2$$
 by $x, x \neq 0$

[b] Use the property of distribution to find the result of
$$\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7}$$

[b] Subtract: $-a^2 - 5ab + 4b^2$ **From** $3a^2 - 2ab - 2b^2$

(8) [a] Factorize by identifying the H.C.F: 3a(a-2b)-6b(a-2b).

[b] If the arithmetic mean of the values 8, 7, 9, 4, 3, K+4 is 6, then find the value of K.

(9) [a] Find the value of : $(x + 2)^2 - (x + 2)(x - 2)$

• • • • • • • • • • • • • • • • • • • •	 	 	

[b] Use the distribution property to find the value of:

$$\frac{5}{17} \times 10 + \frac{5}{17} \times 23 + \frac{5}{17}$$

	The same of the sa		

[c] The length of a rectangle is (2x + 5) cm. and its width is (3x + 2) cm. Calculate its area

••••••	 	 	
*** ***	 ***********	 *******************	

***************************************	 	 ******	

(11) [a] Find the quotient of:

 $20 a^3b^2 + 15a^2b^3 + 10ab$ by 5ab where 5ab $\neq 0$

[b] The following table shows distribution of marks of 30 students:

Mark	6	9	12	15	17	Total
No. of stud.	4	7	8	5	6	30

Find the mode	e mark.		

(12) [a] Find the result of the following using the highest common factor:

$$(17)^2 - 8 \times 17 + 17$$

[b] Find the quotient of:

$$x^3y^6 - 4x^2y^2 + 6xy^2 \mathbf{by} xy, xy \neq 0$$

(13) [a] If:
$$x = \frac{3}{4}$$
, $y = \frac{-5}{2}$,

Find in simplest form the value of the expression: $\frac{x-y}{x+y}$

[b] Use the properties of addition of rational number to find the value of:

$$\frac{5}{4} + \frac{-13}{5} + \frac{-25}{4} + \frac{25}{5}$$

(1) Complete each of the following.

a) The number that hasn't a multiplicative inverse is Zero

b)
$$\frac{3}{4} = \frac{75}{}$$

c)
$$(2x-3)(3x+5) = 6x^2 + \dots -15$$

d)
$$3x^2 + 15 xy = 3x ... (X) + ... (5Y))$$

- e) If the order of the median of a set of values is the fifth, then the number of these values is ______9
- f) The algebraic term $-3 xy^3$ whose degree is Fourth
- g) The arithmetic mean of the value: 3, 5, 4, 9, 4 is

h) If:
$$\frac{x}{24} = \frac{5}{12}$$
, then $x = \frac{10}{10}$

i)
$$3x^2y \times (4X) = 12x^3y$$

- j) If the order of the median of a set of values is the Fourteenth, then the number of these values is _____(27)
- k) The algebraic term : $-4 xy^2$ of _____ degree

m)
$$6x^3 = 2x \times(3x^2)$$

n)
$$(2x-3)(x+4) = 2x^2 + \cdots - 12$$

p)
$$3\frac{1}{4} \times \left(\frac{4}{13} \right) = 1$$

q) If:
$$\frac{a}{b} = \frac{1}{2}$$
, then $\frac{2a}{b}$

r) If: $(x - y)(3x + 2y) = 3x^2 + kxy - 2y^2$, then x = 1

s) The rational number that lies in the half way between $\frac{1}{2}$ and $\frac{1}{4}$ is ...

t)
$$\left(\frac{-5}{7}\right) \times \left(\frac{-7}{5}\right)$$
 , =

u)
$$24x^4y^6 = 3x^2y^3 \times 8x^2y^3$$

- v) If the mood of the values 5, 7, a + 1, 6, 4 is 4, then a =
- w) The rational number that lies in the one third way between $\frac{3}{5}$ and $\frac{4}{7}$ from the side of smaller number is 105

(1) Choose the correct answer:

a)
$$\left|\frac{-2}{3}\right|$$
zero

a) >

b) <

c) =

- $d) \leq$
- **b)** The algebraic term: $2x^3y^2$ whose degree is ______(The fifth

- a) the second
- b) the third
- c) the fourth
- d) the fifth
- c) The arithmetic mean of the values: 2, 2, 3, 6, 7 is
 - a) 2

b) 3

d) 5

d)
$$(-3x^2y)^2 \times 2xy = (-3x^5y^3)^2$$

- a) $-18 x^5 y^3$ b) $18 x^5 y^3$ c) $6 x^3 y^2$
- d) 5
- e) The median of the value: a + 3, a + 2, a + 4 (where a is a positive integer) is 8 then a equals:
 - a) 2

b) 3

d) 5

- f) $\frac{-3}{5} + \frac{2}{3} = \dots$
 - a) $\frac{6}{5}$

b) $\frac{1}{15}$

c) 5

d) 3

- g) $\frac{1}{x-3}$ is a rational number when $(x \neq 3)$
 - a) x = -3 b) x = 3
- c) $x \neq 3$
- d) x = 5
- h) The mode of the values: 5, 5, 4, 7, 5, 4 is (5

- d) 5
- i) The highest common factor of the expression $3x^2y 6x$ is $(3x^2y 6x)$
 - a) 3x
- b) 6x
- c) 3xy
- d) xy-2

- j) |-13| |13| = 0
- a) -26
- b) -13
- c) 0

d) 26

- **k**) If: $\frac{x}{y} = 1$, then 3x 3y = 0
 - a) 0

b) 1

c) 3

d) 6

(2) Find in the simplest form the value of each of the following.

1)
$$-27\frac{1}{4} + 13\frac{1}{2}$$

2)
$$0.\dot{1}\dot{8} - 30\%$$

$$\frac{-13}{110}$$

(3) [a] Subtract: $5x^2 + y^2 - 3xy$ from $x^2 - 2xy + 3y^2$

$$-4X^2 + XY + 2Y^2$$

2) Divide: $6x^2 + 13xy + 6y^2$ by 2x + 3y, $2x + 3y \neq 0$

$$3X + 2Y$$

[b] Simplify: (2a-3)(2a+3)+7, then find the numerical value of the result when a = -1

$$4a^2-2$$

(4) [a] Simplify to the simplest form: $\frac{3}{7} \times \frac{5}{6} + \frac{3}{7} \times \frac{7}{6} - \frac{3}{7}$

[b] Find three rational numbers between: $\frac{1}{2}$, $\frac{1}{3}$

(5) [a] Add: 2x - 7y + z To 5z + 6y - 2x

[b] Divide: $6x^2y + 9xy^2 - 12x^2y^3$ by 3xy, $3xy \neq 0$

[c] If: $x = \frac{1}{2}$, $y = \frac{-2}{3}$, z = 2, then find the value of $\frac{y-z}{x}$

(6) [a] Find in the simplest form: (x-2)(x+2)

2) Divide: $6x^3 - 2x^2$ by $x, x \neq 0$

$$6X^2 - 2X$$

[b] Use the property of distribution to find the result of $\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7}$

(7) [a] Add: 5x + 2y - 1 and 2x + 5y + 3

$$7X + 7Y + 2$$

[b] Subtract: $-a^2 - 5ab + 4b^2$ **From** $3a^2 - 2ab - 2b^2$

$$4a^2 + 3ab - 6b^2$$

(8) [a] Factorize by identifying the H.C.F: 3a(a-2b)-6b(a-2b).

$$3(a-2b)(a-2b)$$

Or
$$3(a-2b)^2$$

[b] If the arithmetic mean of the values 8, 7, 9, 4, 3, K+4 is 6, then find the

value of K.

(9) [a] Find the value of : $(x + 2)^2 - (x + 2)(x - 2)$

2) Add: 3x - 2y + 5 and y - 3, $x \ne 0$

$$3X - Y + 2$$

(10) [a] Find the value: $-13\frac{7}{8} - (-6\frac{7}{8})$

[b] Use the distribution property to find the value of:

$$\frac{5}{17} \times 10 + \frac{5}{17} \times 23 + \frac{5}{17}$$

(11) [a] Find the quotient of:

$$20 a^3 b^2 + 15a^2 b^3 + 10ab by 5ab where 5ab \neq 0$$

 $4a^2b + 3ab^2 + 2$

[b] The following table shows distribution of marks of 30 students:

Mark	6	9	12	15	17	Total
No. of stud.	4	7	8	5	6	30

Find the mode mark.

(12) [a] Find the result of the following using the highest common factor:

$$(17)^2 - 8 \times 17 + 17$$

[b] Find the quotient of:

$$x^3y^6 - 4x^2y^2 + 6xy^2$$
 by xy

$$xy \neq 0$$

 $X^2Y^5 - 4XY + 6Y$

(13) [a] If:
$$x = \frac{3}{4}$$

$$y = \frac{-5}{2}$$

Find in simplest form the value of the expression: $\frac{x-y}{x+y}$

 $\frac{-13}{7}$

[b] Use the properties of addition of rational number to find the value of:

$$\frac{5}{4} + \frac{-13}{5} + \frac{-25}{4} + \frac{28}{5}$$

-2

1st prep

Final revision

AL GEBRA

(1)Complete each of the following:

(1)
$$(2 \times x - 3) (3 \times x + 5) = 6 \times^2 + \dots - 15$$

(2) If
$$\frac{x}{24} = \frac{5}{12}$$
, then $x = \dots$

- (3) The arithmetic mean of the values: 3, 5, 4, 9, 4 is
- (4) If the order of the median of a set of values is the fourteenth, then the number of these values equals

$$(5)\frac{3}{4}=\dots$$
%

(6)
$$3x^2 + 15 x y = 3x (.....+....)$$

(7) If
$$\frac{a}{b} = \frac{1}{2}$$
, then $\frac{2a}{b} = \dots$

$$(9)\left(\frac{-5}{7}\right)\times\left(\frac{-7}{5}\right)=\dots$$

(11)
$$24x^4y^6 = 6x^2y^3 \times \dots$$

$$(14) |-5| - |2| = \dots$$

(15) 6
$$x^3 = 2 x \times \dots$$

(16) 1, 1, 2, 3, 5, 8, (in the same pattern)

(17)
$$3\frac{1}{4} \times \dots = 1$$

- (18) If $\frac{a}{b+5}$ is a rational number, then b \neq
- (19) The multiplicative inverse of $-\frac{1}{5}$ is

(20)
$$3x^2 - 6xy = 3x (.....)$$

(21) The additive inverse of $\left(-\frac{1}{7}\right)$ is

(22)
$$(2x^2y) \times \dots = 6x^2y^4$$

- (23) The coefficient of the algebraic term $-x^2y$ is
- (24) The additive identity element in Q is
- (25) The highest common factor of the expression: $5x^2 5x$ is

(26) If
$$\frac{x-1}{x-5} \in Q$$
, then $x \neq \dots$

(28)
$$24 x^4 v^6 = -6x^2 v^3 \times \dots$$

(31)
$$-2a^2b \div 4ab = \dots (a \neq b \neq 0)$$

(33)
$$2x^2 y \times \dots = 12 x^2 y$$

(36)
$$(x - 5)$$
 $(\dots) = x^2 - 25$

$$(39) |-13| + |13| = \dots$$

(40) 0.3 in the form $\frac{a}{b} = \dots$

(2) Choose the correct answer:

(1) $\left| \frac{-2}{3} \right|$ Zero

- (c) <(a)
- The necessary condition to make $\frac{3}{x^2-3}$ a ration number is (2)

(a)
$$x = -3$$
 (b) $x = 3$ (c) $x \neq 3$ (d) $x = 5$

(7) The median	of (4, 7, 8, 6, 5) i	s of order	******
(a) 3	(b) 4	(c) 5	(d) 6
(8) The degree	of the algebraic	expression: χ^3	$+3 x^2 y^2 - x^2 y$ is
(a) first	(b) second		(d) fourth
(9) $(x^2 + x) \div x$	= (whe	ere ≠ 0)	
(a) 0	(b) x	(c) $2x + 1$	(d) $x + 1$
(10) If $\frac{x}{y} = 1$, th	nen 3 $x - 3y =$		
(a) zero	(b) -3	(c) -5	(d) 5
(11) The quotie	nt of dividing 2.2	25 ÷ 1.5 =	
(a) 1.5	(b) 15	(c) 0.15	(d) 500
(12) The smalle	st fraction of the	following is	
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	$(c)^{\frac{5}{8}}$	(d) $\frac{7}{10}$
(13) Half of 2 ¹⁰	⁰ equals		
(a) 2 ⁹⁸	(b) 2 ⁹⁹	(c) 4 ¹⁰⁰	(d) 2 ⁵⁰
(14) If $\frac{a}{1} = \frac{1}{1}$, then 2 a – b = .		
0/10			(al)
(a) 1	(b) 0	(c) 3	(d) -1
(15) If $(x - 5)$	$x + 5) = x^2 -$	m, then m =	****
(a) -25	(b) zero	(c) 10	(d) 25
(3)Simplify in	the simplest for	orm:	
(1) $(2a - 3)$	(2a+3)+7, t	hen	

(1)
$$(2a - 3)(2a + 3) + 7$$
, then

(2)
$$(x+2)^2 - (x+2)(x-2)$$

- Find the numerical value of the result when a = -1(2) $(x + 2)^2 (x + 2)(x 2)$ (3) $(x + 3)^2 9$, then find the numerical value when x = 3(4) 2 a(a 4 b) + 4 b (2 a 3 b), then find the value of result at: a = 2, b = -1(5) 0.18 30%(4) Subtract:
 (1) $y^3 + 5 y^2 5 y$ from $2 y < y^3 + 5 y^2$ (2) $-2 x^2 5 x y + 4 y^2$ from $3 x^2 + 2 x y + 4 y^2$ (5) Divide:
 (1) $6 x^2 + 13 x y + 6 y^2$ by 2 x + 3 y, Where $2 x + 3 y \ne 0$ (2) $x^2 + 5 x + 6$ by x + 3 (where $x \ne -3$)
 (6) Answer the questions:
 (1) Factorize by using (H.C.F): 3a (a 2 b) + 7 b (a 2 b)

(1)
$$y^3 + 5y^2 - 5y$$
 from $2y - y^3 + 5y^2$

(2)
$$-2x^2 - 5xy + 4y^2$$
 from $3x^2 + 2xy + 4y^2$

(1)
$$6x^2 + 13xy + 6y^2$$
 by $2x + 3y$, Where $2x + 3y \neq 0$

(2)
$$x^2 + 5x + 6$$
 by $x + 3$ (where $x \ne -3$)

(3) If
$$a = \frac{7}{4}$$
, $b = \frac{-1}{2}$, find the value of : $(a - b) \div (a + b)$

(4)By using the highest common factor, find the result of:

$$(17)^2 - 8 \times 17 + 17$$

- Find the quotient: $6x^2 xy 15y^2$ by 2x + 3y(5)(where $+3y \neq 0$)
- The following table shows the distribution of marks for 30 (6)students in a test:

Marks	6	9	12	15	18	Total
No. of students	4	7	8	5	6	30

- No. of students 4 7 8 5 6 30

 (1) Find the mean of these marks

 (2) Find the mode of these marks

 (7) Find the sum of: 5x + 2y 1, 2x 5y + 3, then subtract the result from: 6x + 7y 6(8) If $a = \frac{1}{2}$, $b = -\frac{2}{3}$ and c = 3, Find the value of: $a^2 2bc$

- (9) Factorize by taking the H.C.F: $15 \times y^3 + 20 \times y^2 25 \times y$ (10) If $x = \frac{3}{4}$, $y = \frac{-5}{2}$, then find in the simplest form the value of the expression: $\frac{x-y}{x+y}$ (11) Find the number lies one fifth of the way between $\frac{1}{4}$ and $\frac{7}{8}$ from the side of the smaller one.

 (12) Factorize the expression by identifying the H.C.F: $12 \times y^3 + 18 \times y^2$ (13) Find three rational numbers that lie between: $\frac{3}{4}$ and $\frac{4}{3}$ (14) If $a = \frac{7}{4}$, $b = \frac{-1}{2}$, Find the value of: $(a b) \div (a + b)$

[1] Complete each of the following:

1)
$$(2x-3)(x-5)=2x^2+....-15$$

2)
$$3\frac{1}{5} \times \dots = 1$$

3)
$$18 x^5 y^6 = 6 x^2 y^3 \times \dots$$

- 4) If the order of the median of a set of values is fourteenth, then the number of these values equals
- 5) 1, 1, 2, 3, 5, 8, (in the same pattern)
- 6) $5x^2 + 15xy = 5x(\dots + \dots)$
- 7) 0.26 30 % =
- 8) The remainder of subtracting 7x from 3x is
- 9) $7 x^3 y^2 x \dots = 49 x^3 y^7$
- 10) The multiplicative inverse of the number $(\frac{-11}{7})^{zero}$ is
- 11) If the mode of the values 7, 1, a + 2, 1, 7 is 7 then $a = \dots$
- 12) If $\triangle + \square = 20$, $\triangle + \triangle + \square = 35$, then $\square = \dots$
- 13) The number that lies at half way between $\frac{1}{2}$ and $\frac{5}{8}$ is

14)
$$\frac{3}{4}$$
 + 50 % = $\frac{......}{....}$

- 15) The degree of the algebraic term : 9 $x y^2$ is
- 16) The median of the values: 4, 8, 3, 5, 7 is
- 17) 15 % Of 600 kg =kg
- 18) The arithmetic mean of the values: 2, 3, 2, 6, 7 is
- 19) The rational number that lies one third of the way between 8 and 12 from the smaller number is
- 20) The rational number which hasn't a multiplicative inverse is
- 21) $8 b^3 = 2b \times \dots$
- 22) $(2x 3)(3x + 5) = 6x^2 + \dots \dots$

- 23) The arithmetic mean of the numbers 10, 4, 7, 3, 1 is
- 24) The most repeated value of a set of values is called

- 26) If $\frac{5}{a+2}$ is a rational number then $a \neq \dots$
- 28) The smallest natural number is
- 29) If the arithmetic mean of the values : 8 , X , 7 , 5 is 6 , then $X = \dots$
- 31) If $(X y)(3X + 2y) = 3X^2 + kXy02y^2$, then $k = \dots$
- 32) If $\frac{4}{6} = \frac{12}{x}$, then $x + 2 = \dots$
- 34) If three times a number is 15, then fifth this number is
- 35) If a + 3b = 7, and c = 3, then the numerical value of: a + 3(b + c) is

[2] Choose the correct answer:

36)
$$0.7 + 0.3 = \dots$$
 (1, 3.7, 0.37, $1\frac{1}{3}$)

37) The multiplicative inverse of the number $(\frac{1}{3})^0$ is

$$(3, -3, 1, -1)$$

38) The algebraic term $5 A^3 B^2$ is of the degree . (third , fourth , fifth , sixth)

39) If the arithmetic mean of the values 3 , 5 , and x + 2 is 4 then the arithmetic mean of the two values 5 - x , 5 + 2 x is

(6, 4, 3, 2)

- 40) If $\frac{2}{5}x = 10$, then $\frac{3}{5}x = \dots$ (25, 15, 5, 20)
- 41) If the mode of the values 7, 5, X + 4, 5, 7 is 5, then $X = \dots$ (1, 4, 5, 7)
- 42) The median of the values 5, 4, 7 is (4, 5, 16, 7)
- 43) The rational number of that lies one third of the way between 8 and 12 from the smaller is (8 $\frac{1}{3}$, 10 $\frac{2}{3}$, 10, 9 $\frac{1}{3}$)
- 44) If $\frac{7}{x+3}$ is a rational number, then $x \neq \dots$

(-3,0,3,7)

- 45) If $\triangle + \Box = 15$, $\triangle + \triangle + \Box = 20$, then $\triangle = ...$ (15, 5, 20, 10)
- 46) The rational number that lies in half way between $\frac{1}{3}$ and $\frac{5}{9}$ is..

 $(\frac{4}{9}, \frac{2}{3}, \frac{5}{27}, \frac{3}{4})$

47) The arithmetic mean of the values 1 , 6 , 4 , 8 , 6 is

(6,5,8,25)

- 48)(-3x)x(-5y)=...(-8xy,-15xy,15xy,8xy)
- 49) The number $\frac{2}{9a}$ is a rational number if $a \neq \dots$

(2,0,-9,9)

50) | - 5 | - | 2 | = (-3 , 10 , -7 , 3)

```
51) The number \frac{5}{3} > ..... (\frac{25}{9}, \frac{10}{3}, \frac{3}{5}, \frac{10}{6})
```

- 53) The remainder of subtracting 9x from 7x equals (2x, -2x, 16x, -2)

54) If
$$\frac{x}{y} = 1$$
 then $3x - 3y = (0, 1, 6, 3)$

55) If 6 , 5 , 12 and x are proportional numbers then $x = \dots$

56) The H.C.F of:
$$10 x^2 + 5 x = (5x, 2x, 5, x)$$

57) If
$$\frac{5}{x+2}$$
 is a rational number, then $x \neq \dots$

58) If 3 a = 27 and a b = 1 then b = (9,
$$\frac{1}{5}$$
, $\frac{1}{9}$)

59) The coefficient of the algebraic term - 5
$$x^2$$
 y is

$$(-5,5,3,-3)$$

60) If the mode of the values
$$7, 5, x + 4, 5, 7$$
 is 5 then $x = ...$

$$(1, 4, 5, 7)$$

61) If the rational number
$$\frac{2-x}{x-3}=0$$
, then $x=....$

$$(2, -2, 3, -3)$$

63)
$$(15 x^4 + 5 x^3) \div 5 x^3 = \dots$$

 $(3 x^2 + x , 5 x^2 + 1 , 3 x + 1 , 4 x^4)$

64)
$$\left| \frac{-5}{3} \right|$$
 zero (< , > , = , \leq)

- 65) $2 a b^2 \div zero = \dots$ (zero, ab, undefined, $2 a b^2$)
- 66) $(x + y)(x y) = \dots (2x, (x y)^2, x^2, x^2 y^2)$
- 67) The quotient of dividing $2.25 \div 1.5 =$ (1.5 , 15 , 0.15 , 500)
- 68) The additive inverse of the number $(\frac{1}{2})^{zero}$ is

69)
$$(x^2 + x) \div x = \dots$$
 (zero, x, 2x+1, x+1)

70) If
$$a \times \frac{b}{3} = \frac{a}{3}$$
, then $b = (\frac{a}{3}, 0, a, 1)$

[3] Answer the following:

- 71) Simplify to the simplest form : (x-3)(x+3)+9, then Calculate the numerical value of the result when x=5
- 72) Using the distribution property, find the value of:

$$\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7}$$

- 73) Find three rational numbers that lie between : $\frac{1}{2}$ and $\frac{1}{3}$
- 74) Subtract: $5x^2 + y^2 3xy + 1$ from $6x^2 2xy + 3y^2$
- 75) What is the increase of: 7x + 5y + z than 2x + 6y + z?
- 76) Divide: $14 x^2 y 35 x y^2 + 7 x y$ by 7 x y where $x \ne 0$ and $y \ne 0$
- 77) If the arithmetic mean of the numbers : 8 , 7 , 5 , 9 , 4 , 3 , k + 4 is 6 , then find the value of : k
- 78) If $x = \frac{1}{2}$, $y = \frac{-2}{3}$, z = 2 find the value of $\frac{y z}{x}$

- 79) Factorize by identifying the H.C.F: 3 a (a 2 b) 6 b (a 2 b) then find the value of the result when (a 2 b) = $\left|-\frac{1}{3}\right|$
- 80) The following table shows Omar's marks in 6 mathematics examinations:

Find each of the median mark and the mean mark.

Month	Oct.	Nov.	Dec.	Feb.	Mar.	Apr.
Mark	41	35	47	37	44	48

- 81) Divide: $2x^3 + 3x^2 4x 6$ by 2x + 3 (where $x \neq \frac{3}{2}$)
- 82) Add: 5x + 2y 1 and 2x 5y + 3
- 83) Use the distribution property to find the value of:

$$\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$$

- 84) (a) find the mode of: 2, 4, 7, 4, 5
 - (b) find the median of : 4, 8, 3, 5, 7
- 85) If $x = \frac{5}{9}$, $y = \frac{4}{3}$, $z = \frac{1}{9}$, find in the simplest form the value of $(x + z) \div y$ (show the steps)
- 86) Factorize by taking out the H.C.F : $3 x^2 y 6 x y^2 + 9 x y$
- 87) Find three rational numbers between: $\frac{4}{5}$ and $\frac{2}{3}$
- 88) Subtract: $-a^2 5ab + 4b^2$ from $3a^2 2ab + 5b^2$
- 89) Simplify: $(x + 2)^2 4x$, then find the numerical value of the result when x = 1
- 90) Use the property of distribution to find the value of :

$$\frac{6}{37} \times 7 + \frac{6}{37} \times 5 + \frac{6}{37} \times (-11)$$

91) The following table shows Gehad's marks in mathematics exam in 6 months:

Month	Oct.	Nov.	Dec.	Feb.	Mar.	Apr.
Mark	30	35	42	37	44	40

Find the arithmetic mean of the marks.

- 92) Simplify to the simplest form (y-3)(y+3)+9
- 93) What is the increase of : 7x + 5y + 2 than 2x + 6y + 7?
- 94) Find k if the arithmetic mean of the values :

- 95) Find the quotient: $2 x^2 + 13 x + 15 by x + 5$
- 96) Factorize by taking out the H.C.F: 3 m⁴ n² 6 m³ n³ + 9 m² n⁴
- 97) Simplify: $(2x+3)^2 12x$, then find the numerical value of the result at x = -2
- 98) Add: 3x-2y+5 and x+2y-2
- 99) Find four rational numbers between : zero and $\frac{1}{2}$
- 100) The following table shows a student's marks of science in 6 months :

Month	Oct.	Nov.	Dec.	Feb.	Mar.	Apr.
Mark	41	35	47	37	44	48

Find: (1) The median for the previous marks.

(2) The mean for the previous marks.

Answers

1	(-13X)	2	<u>5</u> 16
	(16
3	3 X ³ y ³	4	27
5	13	6	(X+3y)
7	-0.04	8	3x+7x=10x
9	7 y ⁵	10	1
11	A=5	12	6
13	<u>9</u> 16	14	5 4
15	third	16	5
17	90kg	18	4
19	9 1 3	20	0
21	4 b ²	22	6X ² + X -15
23	5	24	Mode
25	40	26	-2
27	<u>-2</u> 3	28	0

29	4	30	5
31	-1	32	20
33	35 = 7 50 = 10	34	$3X=15$ $X=5$ $\frac{1}{5}$ $x5=1$
35	7+9=16	36	1
37	1	38	fifth
39	$X=2$, so $\frac{12}{2}=6$	40	15
41	X=1	42	5
43	9 1 3	44	-3
45	5	46	<u>4</u> 9
47	<u>25</u> = 5	48	15xy
49	0	50	3
51	<u>3</u> 5	52	third
53	-2×	54	0
55	10	56	5x

57	-2	58	<u>1</u> 9
59	-5	60	X=1
61	X=2	62	4
63	3x+1	64	>
65	undefined	66	$X^2 - y^2$
67	1.5	68	-1
69	X+1	70	1
71	$X^2-9+9=x^2$ Numerical value= 25	72	3 7 (2+6-1)=3
73	<u>21 22 23</u> 60 60 60	74	$X^2+xy+2y^2-1$
75	5x-y	76	2x - 5y +1
77	$6 = \frac{k+40}{7} \qquad k=2$	78	$(\frac{-2}{3}-2) \div \frac{1}{2} = \frac{-16}{3}$
79	$\frac{1}{3}$ (3a-6b)=a-2b	80	$\frac{41+44}{2} = \frac{85}{2} = 42.5$
81	X ² -2		
82 7	7x-3y+2		

83	$\frac{23}{45} \left(\frac{7}{12} + \frac{17}{12} - 2 \right) = \frac{23}{45} \times 0 = 0$
84	45 12 12 7 45
04	4
85	$(\frac{5}{9} + \frac{4}{9}) \div \frac{4}{3} = 1 \div \frac{4}{3} = \frac{3}{4}$
86	3xy(x-2y+3)
87	101 102 103 150 150 150
88	4 a ² +3ab + b ²
89	$x^2 + 4x + 4 - 4x = x^2 + 4$
90	$\frac{6}{37}(7+5-11) = \frac{6}{37} \times 1 = \frac{6}{37}$
91	228 ÷ 6 = 38
92	$y^2 - 9 + 9 = y^2$
93	5x-y-5
94	K= 84-81=3
95	2x+3
96	4m ² n ² (m ² -2mn + 3n ²)
97	$4x^2 + 12x + 9 - 12x = 16 + 9 = 25$

98	4x + 3
99	$\frac{1}{20}$, $\frac{2}{20}$, $\frac{3}{20}$, $\frac{4}{20}$
100	Median = (41+45) ÷ 2 = 42.5 The mean = 252 ÷ 6 = 42

With my best wishes

Mr. Tamer Shaban

FIRST: ALGEBRA

Choose the correct answer:

(1)	If the mode of	the values 7	' 5 V±4 5 7 ic 5	than v -
(1)	TI THE MODE OF	THE VALUES /	.U.XTT.U./ 15 U.	INCN X

- **a** 1
- **6** 4
- **6** 5
- **d** 7

- **a** 25
- **(b)** 5
- **G** 6
- **d** 8

(3) The algebraic term
$$6x^3y^2$$
 is of degree

- a third
- (b) fourth
- **G** fifth
- **1** sixth

(4) The rational number that lies between
$$\frac{1}{3}$$
 and $\frac{5}{9}$ is

- $\frac{2}{3}$
- $\frac{3}{4}$
- $\bigcirc \frac{4}{9}$
- $\frac{5}{27}$

(5) The multiplicative inverse of the number
$$\left(\frac{1}{2}\right)^2$$
 is

- a 4
- **b** -4
- **G** 2
- **d** -2

(6) If
$$\frac{5}{x+2}$$
 is a rational number, then $x \neq \dots$

- **a** -2
- **(b)** 0
- **G** 2
- **d** 5

- **a** 4
- **6** 5
- **G** 7
- **d** 16

(8) If
$$\frac{4}{7}x = \frac{4}{7}$$
, then $x =$

- **a** 1
- **(b)** (c)
- **G** 4
- **d** 7

(9) The arithmetic mean of the values 2,3,8,2,5 is

- **a** 3
- **(b)** 2
- **G** 4
- 8

(10) The additive inverse of -3 is

- **a** -3
- **b** 3
- $\mathbf{G} \quad \frac{1}{3}$
- $\frac{-1}{3}$

(11) The reminder of subtracting 7x from 9x is

- 2x
- **b** 16x
- G -2x
- 0

(12) The mode of the values 3,3,4,4,5,3 is

- **a** 4
- **(**) 22
- **G** 5
- **d** 3

(13) If $\frac{3}{x-7}$ is not a rational number, then $x = \dots$

- **a** 0
- **6** 7
- **G** -7
- **()** -3

(14) 7x exceeds -5x by

- (a) 12x
- **b** 2x
- G -2x
- $\mathbf{0}$ $-2x^2$

(15) The additive inverse of the number $\frac{3}{7}$ is

- $\frac{-7}{3}$
- $\frac{-3}{7}$
- **d** 7

(16) $\frac{-2}{5} \times 1 = \frac{-2}{5}$ (..... property)

a commutative

- associative
- **6** multiplicative identity
- d additive identity

(17) The additive inverse of the number $\left(\frac{-1}{5}\right)^0$ is

- **a** 1
- **6** -1
- **G** 5
- **d** -5

(18)a + a =

- a $2a^2$
- (b) 2a
- C a²
- **d** 1

The degree of the algebraic expression $5x^3 + 7x + 4$ is (19)

- a first

- **(b)** second **(c)** third **(d)** fourth

(20) The number $\frac{5}{12}$ =

- **a** 0.42 **b** 0.416 **c** 0.416 **d** 0.45

(21) If $\left(\frac{-4}{3}\right)$ + a = 0, then a =

- $\frac{3}{4}$
- $\frac{4}{3}$
- **G** 1
- 0

(22) The H.C.F. of 12 $x^3 + 6 x^2$ is

- **a** 6
- \bigcirc 6 x^2
- $\mathbf{G} \times^2$

Complete:

(1)	$2\frac{1}{5} \times = 1$	" 5 " 11
(2)	0.18 - 30% =	"-0.12"
(3)	$7 x^3 y^2 \times \dots = 21 x^3 y^5$	"3 y³"
(4)	$(2x-3)(x+5) = 2x^2 + \dots - 15$	"7×"
(5)	24 x^4 y^6 = 6 x^2 y^3 ×	"4 x² y³"
(6)	The reminder of subtracting -3x from 2x is	"5x"
(7)	1, 1, 2, 3, 5, 8, (in the same pattern)	"13"
(8)	If the mode of the values 7, 5, a+3, 5, 7 is 7, then a =	"4"

(9)	$5x^2 + 15 \times y = 5 \times (+)$	"x + 3y"
(10)	The algebraic term 5 x y is of the degree.	"second"
(11)	$(x-3)$ (+) = $x^2 - 9$	"x + 3"
(12)	The rational number which hasn't a multiplicative inverse is	"0"
(13)	The median of the values 3, 5, 4 is	"4"
(14)	If $\frac{x-7}{5} = 0$, then $x =$	"7"
(15)	$3 x^2 + 15 y = \dots (x^2 + 5 y)$	"3"
(16)	$(3x+5) + (4x-5) = \dots$	"7×"
(17)	1 = %	"50"
(18)	If $\frac{a}{b} = \frac{1}{2}$, then $\frac{2a}{b} =$	"1"
(19)	The rational number $\frac{x-4}{x+5} = 0$, then $x =$	"4"
(20)	The multiplicative inverse of the number $3\frac{1}{3}$ is	" 3 " 10
(21)	If $a \times \frac{b}{5} = \frac{a}{5}$, then b =	"1"
(22)	$\frac{3x}{5} - \frac{x}{5} = \dots$	" <u>2x</u> " 5
(23)	The remainder of subtracting -3x from 5x is	"8ד
(24)	$1\frac{1}{3} + \frac{3}{5} = \dots$	29 <i>,,</i> 15
(25)	$7a^3 - \dots = 3a^3$	"4a³"
(26)	The coefficient of the algebraic term $\frac{1}{3}x^4yz$ is	" <mark>1</mark> "

(27)	The multiplicative inverse of $\left -\frac{1}{9}\right $ is	"9"
(28)	$x^2 + 3yx - x^2 + 2xy = \dots$	"5ху"
(29)	The H.C.F. of: $15 \times^3 + 5 \times^5$ is	"5x ³ "

Essay problems:

(1) Subtract
$$5x^2 + y^2 - 3xy + 1$$
 from $6x^2 - 2xy + 3y^2$

(2) Use the distribution property:
$$\frac{27}{16} \times \frac{11}{7} + \frac{27}{16} \times \frac{11}{7} - \frac{27}{16} \times \frac{6}{7}$$

(3) Simplify: (2x-3)(2x+3)+7, then calculate the numerical value of the result when x = -1

(4) Divide:
$$(2x^3 + 3x^2 - 4x - 6)$$
 by $(2x + 3)$ where $\left(x \neq \frac{-3}{2}\right)$

(5) What is the increase of:
$$7x + 5y + z$$
 than $2x + 6y + z$?

(6) Divide:
$$(14x^2y - 35xy^2 + 7xy)$$
 by $(7xy)$ where $x \neq 0$ and $y \neq 0$

(7) If
$$a = 3$$
, $b = \frac{2}{3}$ and $c = \left| -\frac{4}{3} \right|$, find: $c^2 - a b$

(8) Write four rational numbers between:
$$\frac{3}{2}$$
 and $\frac{3}{4}$.

(10) Use the distribution property:
$$6 \times \frac{5}{7} + 2 \times \frac{5}{7} - \frac{5}{7}$$
.

- (11) Find the rational number which lies at the fourth way between $\frac{1}{7}$ and $\frac{3}{7}$ from the side of the smaller number.
- (12) Subtract: (x 5xy + y) from (2x xy + 4y)

- (13) Simplify: (x-3)(x+3) + 9, then find the numerical value of the result when x = 5
- (14) Factorize by identifying H.C.F.: $4x^2y^3 2xy^2 + 6x^3y$
- (15) If the arithmetic mean of the numbers: 8, 7, 5, 9, 4, 3, k+4 is 6, then find the value of k.
- (16) The following table shows Ahmed's marks in Mathematics exam in 6 months:

Month	Oct. Nov.		Dec.	Jan.	Feb.	Mar.
Mark	30	35	42	37	44	50

Find the arithmetic mean of the marks.

(17) The following frequency distribution shows the marks of 40 pupils in an exam:

Mark	15	16	17	18	19	20
Freq.	4	5	8	12	7	4

Find the mode mark.

Part (1)

Exercise (1)

(1) Complete each of the following:

1)	The multiplicative	inverse	of the	number	$\frac{-9}{8}$ is	
----	--------------------	---------	--------	--------	-------------------	--

2) If
$$\frac{a}{b} = \frac{2}{3}$$
, then $\frac{3a}{2b} = \dots$

3) The remainder of subtracting
$$\left(\frac{1}{5}\right)$$
 from $\left(-\frac{2}{5}\right)$ equals

4) The simplest form of the expression:
$$\frac{3}{4} \times \left(\frac{1}{2} - \frac{1}{3}\right)$$
 is

5) The rational number half way between
$$-\frac{5}{2}$$
 and $-\frac{3}{2}$ is

(2) Choose the correct answer from those given:

1) If
$$\frac{15}{x} = \frac{-3}{4}$$
, then $x = \dots$
a) -20 b) -5 c) 5 d) 20

2) The number = $\frac{-9}{-7}$ is the additive inverse of the number:

a)
$$\frac{-9}{7}$$
 b) $\frac{-7}{9}$ c) $\frac{7}{9}$

3) If 5x - 3y = 0, then $x : y = \dots$

a)
$$5:3$$
 b) $3:5$ c) $-5:3$ d) $-3:5$

a) – a b) 1 c)
$$\frac{a}{3}$$
 d) a

5) The number $\frac{5}{3} > \dots$

a)
$$\frac{10}{3}$$
 b) $\frac{25}{9}$ c) $\frac{10}{6}$ d) $\frac{3}{5}$

(3) Answer the following:

1) Complete in the same pattern:

2) Use the property of distribution to calculate the value of:

$$\frac{6}{37} \times 7 + \frac{6}{37} \times 5 + \frac{6}{37} \times (-11)$$

- 3) If $-3\frac{4}{7} \times x = -3\frac{4}{7}$, then find the value of x.
- 4) If $x = \frac{3}{2}$, $y = -\frac{1}{4}$ and z = -2, then find the numerical value of: $x (z \div y)$
- 5) The ratio between exports and imports in one year is 3:4, if exports increased by 20% and imports decreased by 10% in the next year. Find the ratio between exports and imports in the last year.

Exercise (2)

(1) Complete the following:

- 1) The additive inverse of the number $\frac{7}{25} \times (-5)^2$ is
- 2) 3 × = 1
- 3) If $\frac{x-5}{x-7} = 0$, then $x = \dots$
- 4) The rational number which hasn't a multiplicative inverse is
- 5) If $\frac{x}{2} + \frac{5}{7} = \frac{10}{35}$, then 2x equals

(2) Choose the correct answer from those given:

1)
$$\frac{5}{8} - \frac{1}{8} > \dots$$

- a) 1
- b) $\frac{3}{4}$
- c) $\frac{1}{2}$
- d) $\frac{1}{4}$
- 2) The number of integers lying between $\frac{7}{4}$, $\frac{11}{8}$ is
 - a) zero
- b) 1
- c) 2
- d) infinite number
- 3) The rational number $\frac{x}{-5}$ is negative if $x = \dots$
 - a) > zero
- b) < zero
- c) ≤ zero
- d) = zero
- 4) The remainders of dividing four consecutive integers by the number 3 respectively may be:
 - a) 1, 2, 3, 1 b) 1, 2, 3, 4 c) 0, 1, 2, 3 d) 0, 1, 2, 0

(3) Answer the following questions:

1) Complete in the same pattern:

$$\dots, \frac{2}{2}, \frac{3}{4}, \frac{4}{8}, \frac{5}{16}, \dots, \frac{8}{128}$$

2) If $x = -\frac{1}{3}$, $y = \frac{3}{4}$ and z = -3 then find the value of:

First: $(x + y) \div z$ second: xy + yz

- 3) If the two rational numbers $\frac{3x}{4}$ and $\frac{2}{3}$ are equal then find the value of x.
- 4) Find the value of the expression: $\frac{1}{3} \times \left(-\frac{1}{3}\right) \div \left(-\frac{1}{3}\right) \times \frac{1}{5}$
- 5) Find the rational number that lies two third of the way from $\frac{4}{7}$ to $1\frac{3}{4}$ from the smallest.

Exercise (3)

(1) Complete the following:

1)
$$\frac{3}{5} + \frac{7}{10} + \left(-\frac{1}{2}\right) = \dots$$

2)
$$\frac{4}{25} = \frac{2}{5} \times \frac{35}{35}$$

- 3) $\left(\frac{2}{7} + \frac{3}{5}\right)$ is the multiplicative inverse of the rational number
- 4) The rational number that lies half way between $\frac{3}{7}$ and $\frac{6}{7}$ is

5)
$$\frac{2}{3}$$
 $\left(2 + \frac{1}{2}\right) = \frac{2}{3} \times 2 + \frac{2}{3} \times \dots$

(2) Choose the correct answer from those given:

1) If $\frac{7}{x+5}$ is a rational number, then $x \neq \dots$

$$a) - 5$$

2) If x = 3, y = 4 and z = 6, then $\frac{x}{y} - \frac{z}{x}$ equals:

a)
$$-1\frac{1}{4}$$

b)
$$\frac{1}{4}$$

c)
$$\frac{5}{4}$$

d)
$$1\frac{3}{4}$$

3) The remainder of subtracting $\frac{3}{7}$ from $\frac{9}{21}$ equals:

b)
$$\frac{6}{21}$$

b)
$$\frac{6}{21}$$
 c) $\frac{6}{14}$

d)
$$\frac{12}{28}$$

4) If 3 = 27 and ab = 1, then b =

a)
$$\frac{1}{9}$$

b)
$$\frac{1}{5}$$

5) Which of the following relations is true, where x=3, y=5, z=15

a)
$$y = xz$$

b)
$$x = yz$$

c)
$$y = \frac{z}{x}$$

d)
$$z = \frac{y}{x}$$

(3) Answer the following questions:

1) Arrange the following rational numbers in a descending order:

$$\frac{3}{10}$$
 , $\frac{7}{30}$, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{4}{15}$

- 2) If $x = -\frac{7}{4} \times -\frac{4}{7}$, then find the value of x
- 3) Find the result of: $\frac{7}{12} \times \frac{23}{45} + \frac{7}{12} \times \frac{23}{45} 2 \times \frac{23}{45}$
- 4) If $x = \frac{2}{3}$, $y = -\frac{1}{6}$, z = -3, then find: $(x \div y) (z \div y)$
- 5) Find the number one fourth of the way from $-\frac{1}{9}$ to $-\frac{7}{8}$

Exercise (4)

(1) Complete each of the following:

- 1) The degree of the term 3a²b is and its coefficient is
- 2) The increase of 7x than 10 x is
- 3) The perimeter of the rectangle whose dimensions are (2x + 1) and (2 x) equals unit length.

4)
$$\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \dots \times \frac{49}{50} = \dots$$

(2) Choose the correct answer from those given:

- 1) The algebraic expression $x^3 3x^2 + 4$ is of the degree.
 - a) first
- b) second
- c) third
- d) fourth
- 2) 2x + 3y is greater than 3y 2x by
 - a) 6y
- b) 4x
- c) 4x
- d) 6y

- 3) $\frac{3x}{5} \frac{x}{5}$ equals:
 - a) $\frac{2}{5}$
- b) $\frac{x}{5}$
- c) $\frac{2x}{5}$
- d) 2x
- (3) Simplify to simplest form: 5x + 10y + 6x 3y + 7y 4x
- (4) Find four rational numbers between $\frac{1}{3}$ and $\frac{7}{9}$
- (5) A rational number, if it is subtracted from its additive inverse, the result will be $\frac{3}{2}$ what is the number?

Exercise (5)

(1) Choose the correct answer from those given:

- 1) The rational number $\frac{x}{-5}$ is negative if x:
 - a) > zero
- b) < zero
- c) < zero
- d) zero
- 2) If a = 0, b = 5 and c = 2, then the numerical value of $a^2b + ac$ equals:
 - a) 0
- b) 2
- c) 7
- d) 10

- 3) If $\frac{a}{b} = 60$, $\frac{a}{3b}$ then equals:
 - a) 17
- b) 20
- c) 23
- d) 180
- (2) 1) Find the result of: $19 \times 17 + 19 \times 8 19 \times 15$ by identifying the common factor.
 - 2) If $x = -\frac{1}{3}$, $y = \frac{3}{4}$ and z = -3, find the value of:
 - a) x^2yz
- b) xy + yz
- c) x + y z
- (3) 1) Divide: $x^3y 4xy^2 + 6xy$ by xy
 - 2) What is the increase of $3x^2 5x + 2$ than the sum of:

$$x + 5x^{2} + 1$$
 and $2x^{2} - 4 - 2x$

- 3) Simplify to the simplest form: $\left(\frac{1}{3}\right)^2 \times \left(\frac{-1}{3}\right)^3 \div \left(\frac{-1}{3}\right)^4 \times \left(\frac{1}{5}\right)^0$
- **(4)** 1) Find the product: (2x 3y)(3x + 7y)
 - 2) Simplify to simplest form: $\frac{(17)^2-2\times17+17}{17}$
 - 3) If a = 3x, b = x + 2 and c = 2x 3

Calculate the numerical value of the expression: $ab - c^2$ when

$$x = 0$$

Exercise (6)

(1) Complete each of the following:

- 1) The degree of the algebraic term 2x2y is and its coefficient is
- 2) $(4x^2 + 2x) \div 2x = \dots$
- 3) If a + 3b = 7 and c = 3, then the value of the expression $a + 3 (b + c) = \dots$
- 4) The seventh tern in the pattern $\frac{1}{10000}$, $\frac{1}{1000}$, $\frac{1}{100}$, is
- 5) If x + y = 5, then the numerical value of $x^2 + 2xy + y^2$ is

(2) Choose the correct answer from those given:

- 1) If $(x + 4) (x 3) = x^2 + m 12$, then m equals:
 - a) -7x b) -x
- c) x
- d) 7x
- 2) If $(x + y)^2 = 15$ and $x^2 + y^2 = 9$, then $xy = \dots$
 - a) 1
- b) 2
- d) 4
- 3) A rectangle whose length is 6ℓ and its width is 3 m, then its perimeter is
 - a) 9ℓm
- b) 18ℓm
- c) 3 $(2\ell + m)$ d) 6 $(2\ell + m)$
- - a) $-\frac{5}{4}$
- b) $\frac{1}{4}$ c) $\frac{5}{4}$
- 5) The relation which represents the uniform velocity of a car covered a distance (s) in a time (t) is:
 - a) $\frac{t}{a}$
- b) $\frac{1}{s}$
- c) ts
- d) t + s

<u>(3)</u>

- 1) Simplify to simplest form: 3 a (2a + 3b) 2b (2a + 3b)
- 2) Simplify the expression $\frac{6x^3y+9y^3x}{3xy}$ to the simplest form.
- 3) Find the product: $(x + 1) (x^2 x + 1)$

<u>(4)</u>

- 1) What is the decrease of 2a 8b c than the sum of 3a 3b + c and 2a 4b 8c
- 2) Factorize by identifying the highest common factor: $5 (48)^2 + 7 \times 48 + 53 \times 48$
- 3) Find the result 201 × 199 as ad: difference of two squares.

Part (2)

Exercise (1)

(1) Complete each of the following:

- 1) If $3a \times k = 12a^3$, then $k = \dots$

- 4) $(4a^2 + 2a) \div 2a = (....)$
- 5) $(50 + 1)(50 1) = 2500 \dots$
- 6) $a(a + b) b(a + b) = (a + b) \times \dots$

(2) Choose the correct answer:

- 1) $-3x \times -5y$ equals
 - a) –15xv
- b) 8xy c) 8xy
- d) 15xy
- 2) If $a^2 = 25$, $b^2 = 9$ and ab = 15 then $(a b)^2 = \dots$
 - a) 4
- c) 8
- d) 12

- 3) $(x + y)^2 (x y)^2$
 - a) 0
- b) -2xy c) xy
- d) 4xy

4) In the opposite figure:

Volume of the cuboid equals:

- a) 6x
- b) 6x²
- c) 5x³
- d) 6x³

- (3) Find the product: (2x 3y)(2x + 3y)
- (4) Factorizing by identifying the H.C.F: $27 x^4 18 x^3$
- (5) Use the distribution property to find the value of

$$\frac{6}{37} \times 7 + \frac{6}{37} \times 5 + \frac{6}{37} \times (-11)$$

Exercise (2)

(1) Complete the following:

1) The degree of the algebraic term –	2x²y is	 and its	3
coefficient is			

- 2) The seventh term in the pattern $\frac{1}{10000}$, $\frac{1}{1000}$, $\frac{1}{1000}$, is
- 3) If a + 3b = 7 and c = 3, then the value of the expression $a + 3 (b + c) = \dots$
- 4) $(4x^2 + 2x) \div 2x = \dots$
- 5) If x + y = 5, then the numerical value of $x^2 + 2xy + y^2$ is

(2) Choose the correct answer:

1)	If (X +	4)	(x-3)	$)=x^2$	+ m -	12,	then	m ec	uals:
----	------	-----	----	-------	---------	-------	-----	------	------	-------

- a) -7x
- b) x
- c) x
- d) 7x

2) If
$$(x + y)^2 = 15$$
 and $x^2 + y^2 = 9$, then $xy = ...$

3) A rectangle whose length is 6
$$\ell$$
 and its width is 3m , then its perimeter is

- a) 9 *ℓm*
- b) 18 *ℓm*
- c) 3 $(2\ell + m)$ d) 6 $(2\ell + m)$

4) If
$$x = 3$$
, $y = 4$ and $z = 6$, then $\frac{x}{y} - \frac{z}{x}$ equals =

- a) $-\frac{5}{4}$

- b) $\frac{1}{4}$ c) $\frac{5}{4}$
- 5) The relation which represents the uniform velocity of a car covered a distance (s) in a tine (t) is:
 - a) $\frac{t}{a}$
- b) $\frac{1}{s}$
- c) ts
- d) t + s
- (3) Simplify to simplest form: 4n(n + 5) + n(6 n) then find the numerical value of the expression when n = -1
- (4) Simplify to simplest form: $\frac{(17)^2-2\times17+17}{17}$

Exercise (3)

(1) Choose the	correct answer	r from those giv	<u>/en:</u>
1)	The arithmeti	ic mean of the se	et of values 19,	32 , 27, 6, 6 is
	a) 90	b) 32	c) 18	d) 6
2)	The median of	of the set of valu	es 15, 22 , 9, 11	, 33 is
	a) 9	b) 15	c) 18	d) 90
3)	The median of	of the set of value	es 34, 23, 25, 40), 22, 4 is
	a) 22	b) 23	c) 24	d) 25
4)	If the arithme	tic mean of six v	alues 12, then th	ne sum of these
	values equals	S:		
	a) 2	b) 6	c) 18	d) 72
5)	If the arithme	tic mean of the v	alues 27 , 8 , 16	6 , 24 , 6 , k is 14
	then k equals	:		
	a) 3	b) 6	c) 27	d) 84
6)	If the order of	f the median of a	set of values is	the fourth, then
	number of the	ese values equal	s:	
	a) 3	b) 5	c) 7	d) 9
7)	If the order of	f the median of a	set of values is	the fifth, then
	number of the	ese values equal	s:	
	a) 5	b) 6	c) 9	d) 10
8)	If the median	of the values 27	', 45 , 19 , 24 , 2	28 is x, then x
	equals:			
	a) 24	b) 27	c) 28	d) 45

(2) Complete:

- 1) The mode of the values 14, 11, 12, 11, 14, 15, 11 is
- 2) If the mode of the values 15, 9, x + 1, 9, 15 is 9, then x = ...
- 3) The arithmetic mean of the values 18, 35, 24, 6 equals
- 4) If arithmetic mean of the numbers 3, 3, x equals 4, then $x = \dots$
- 5) If arithmetic mean of the values 9, 6, 5, 14, k is 7, then $k = \dots$
- 6) If the sum of live numbers is 30, then the arithmetic mean of these numbers is

(3) Answer the following questions:

1) The following table shows the number of hours that two athletes trained in a month.

Kamal												
Amer	68	56	65	70	50	49	57	62	64	54	52	63

Write the median hours of training for each athlete.

2) The following table shows the marks of a student in mathematics during a school year.

Month	October	November	December	March	April	May
Marks	30	34	42	36	38	50

First: Find the arithmetic mean for the marks of this student.

Second: Find the difference between the greatest and the smallest mark.

- 3) The students recorded the time of their bus journeys to school for 3 weeks, they wrote times as follows: 16, 18, 14, 17, 18, 15, 19, 13, 15, 22, 16, 21, 20, 13, 18

 Calculate each of the meantime, the median and the mode time.
- 4) If the arithmetic mean of a student's marks in five exams is 36 marks, what is the mark that he must get in the 6th exam to get his mean in the six exams 38 marks?
- 5) If the arithmetic mean of a student's marks in three exams (mathematics, science and social studies) is 40 marks, and his arithmetic mean in another two exams (Arabic and English) is 42 marks.

Find the arithmetic mean of his marks in the five exams.

Model Answers

Part (1)

Exercise (1)

(1) Complete:

1) $\frac{-8}{9}$

2) 1

3) $\frac{-3}{5}$

4) $\frac{1}{8}$

5) $\frac{-1}{2}$

(2) Choose:

1) - 20

2) $\frac{-9}{7}$

3) 3:5

4) b = 1

- 5) $\frac{3}{5}$
- (3) 1) $3\frac{2}{3}$, 3, $2\frac{1}{3}$
- 2) $\frac{6}{37}$
- 3) x = 1

4) $\frac{13}{2}$

5) $\frac{18}{5}$ X

Exercise (2)

(1) Complete:

- 1) 7

- 2) $\frac{1}{3}$ 3) x = 5 4) 0 5) $\frac{-12}{7}$

(2) Choose:

- 1) > $\frac{1}{4}$

- 2) 1 3) x > zero 4) 0, 1, 2, 0

(3) Answer the following questions:

- 1) $\frac{6}{32}$, $\frac{7}{64}$ 2) First: $\frac{-5}{36}$ Second: $\frac{-5}{2}$
- 3) $X = \frac{8}{9}$ 4) $\frac{5}{3}$
- 5) $\frac{27}{29}$

Exercise (3)

(1) Complete:

1)
$$\frac{8}{10} = \frac{4}{5}$$

3)
$$\frac{35}{31}$$

4)
$$\frac{9}{14}$$

5)
$$\frac{1}{2}$$

(2) Choose:

1)
$$x \neq -5$$
 2) $\frac{3}{4} - \frac{6}{3} = -1\frac{1}{4}$

4)
$$\frac{1}{9}$$

4)
$$\frac{1}{9}$$
 5) $y = \frac{z}{x}$

(3) Answer the following questions:

1)
$$\frac{1}{3}$$
, $\frac{3}{10}$, $\frac{4}{15}$, $\frac{7}{30}$, $\frac{1}{5}$

5)
$$\frac{-29}{96}$$

Exercise (4)

(1) Complete:

- 1) Third degree, -3
- 2) -3 x

3) 2x + 6

4) $\frac{1}{50}$

(2) Choose:

- 1) Third 2) 4x
- 3) $\frac{2x}{5}$

(4)
$$\frac{10}{27}$$
, $\frac{11}{27}$, $\frac{12}{27}$, $\frac{13}{27}$

$$-5x + 3x^{2} + 2$$

 $-x + 7x^{2} - 3$

$$-4x - 4x^2 + 5$$

$$x + 5x^{2} + 1$$

$$-2x + 2x^{2} - 4$$

$$-x + 7x^{2} - 3$$

(5)
$$\frac{\left(\frac{1}{3}\right)^2 \times \left(\frac{-1}{3}\right)^3}{\left(\frac{-1}{3}\right)^4 \times \left(\frac{1}{5}\right)^0} = \frac{\frac{1}{9}}{\frac{-1}{3}} = \frac{1}{9} \times -3 = \frac{-1}{3}$$

Exercise (5)

(1) Choose:

- 1) > zero 2) 0
- 3) 20
- (2) a) $\frac{-1}{4}$ b) $\frac{-5}{2}$
- c) $\frac{-31}{12}$

(3) $1) - 4x^2 - 4x + 5$ 2) $\frac{-1}{2}$

Exercise (6)

(1) Complete:

- 1) Third degree, -2
- 2) 100

<u>(2)</u>

- 1) 6 $(2 \ell + m)$
- 2) $\frac{-5}{4}$
- 3) ts

(3) 3a + b - 6c

Part (2)

Exercise (1)

(1) Complete each of the following:

- 1) $k = 4a^2$
- 2) 3x, 5y
- 3) a, 2b

- 4) 2a + 1
- 5) 1

6) (a - b)

(2) Choose the correct answer:

- 1) d) 15xy 2) b) 4 3) d) 4xy 4) d) $6x^3$

(3)
$$4x^2 - 9y^2$$

(4)
$$9x^3 (3x - 2)$$

(5)
$$\frac{6}{37}$$
 × (7 + 5 + (-11)) = $\frac{6}{37}$ "distribution property"

Exercise (2)

(1) Complete the following:

1)
$$3^{rd}$$
, -2 2) 100 3) 16 4) $2x + 1$ 5) 25

(2) Choose the correct answer:

1) c) x

2) c) 3

3) d) 6 (2 ℓ + m)

4) a) $-\frac{5}{4}$

5) b) $\frac{s}{t}$

(3)
$$4n^2 + 20 n + 6n - n^2$$

$$3n^2 + 26n$$

at
$$n = 1$$
,

at
$$n = 1$$
, $3x (1)^2 + 26 \times 1$

$$= 3 + 26 = 29$$

$$(4) 17 - 2 + 1 = 16$$

Exercise (3)

(1) Choose the correct answer from those given:

- 1) c) 18 2) b) 15 3) c) 24 4) d) 72

- 5) a) 3 6) c) 7 7) c) 9 8) b) 27

(2) Complete:

1) 11

2) 8

3) 20.75

4) 6

5) 1

6) 6

(3) Answer the following questions:

- 1) Kama: 60.5 Amer: 59.5
- 2) First: $\frac{30+34+42+36+38+50}{6} = 38\frac{1}{3}$
 - Second: 50 30 = 20
- 3) mean = $\frac{255}{15}$ = 17
- median = 17 mode = 18

4) $\frac{1^{st} + 2^{nd} + 3^{rd} + 4^{th} + 5^{th}}{5} = 36$

$$sum = 5 \times 36 = 180$$

$$\frac{180+6^{th}}{6} = 38$$

$$180 + 6^{th} = 228$$

$$6^{th} = 228 - 180 = 48$$

- 5) $\frac{sum}{3} = 40$, sum = $40 \times 3 = 120$

 - $\frac{sum}{2} = 42$, sum = 42 × 2 = 84

The mean of the five exams = $\frac{120+84}{5} = \frac{204}{5} = 40.8$

Exercises

[B] Choose the correct : -

1	The number $\frac{X-2}{X-9} = 0$, then $X = \dots$				
	A) 1	B) 2	C) 3	D) 4	3
2	$0.57 = \dots$ A) $\frac{17}{33}$	B) <u>19</u>	C) <u>23</u>	D) <u>87</u>	В
3	The necessary co	ondition to make	5 X-1 a rational numbe C) 3	r is X ≠ (D) 4	Α
4	The rational num A) > zero	ber X/-4 is positive B) < zero	e if X is C) ≥ zero	D) zero	В
5	If: $X + \frac{1}{X} = 2 + \frac{1}{2}$ A) 2	, then X = B) 3	C) 4	D) 5	Α
6	If $\frac{X-2}{X-3}$ is a ration A) 1	al number , then	X ≠ C) 3	D) 4	С
7	1.6 =	B) 1 2/3	C) 1 2/9	D) 1 5/9	В
8	The necessary co	ondition to make	5 X+3 a rational number C) – 3	er is X ≠ D) – 4	С
9	If $\frac{X}{Y} = 1$, then X. A) 1	- Y = B) 0	C) 3	D) 4	В
10	Which of the follows: $A) - \frac{2}{5}$	wing is least ration $\frac{7}{5}$	onal number C) <u>24</u> 23	D) <u>200</u> 201	A
11	The rational num $A) \frac{6}{5}$	ber which lies before B) $\frac{2}{3}$	tween 1 and 2 is C) 5/7	D) 3/4	A

	Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 0111088271	7
12	$-\frac{4}{7}$	В
13	3/72/5	A
14	A) > B) < C) = -7 < A) -4 B) -7 C) -8 D) -9	A
15	The rational number half way between : $\frac{1}{6}$, $\frac{3}{6}$ is	В
16	$\frac{3}{7}$	В
17	-7 <b)-7 c)-8="" d)-9<="" td=""><td>Α</td></b)-7>	Α
18	The rational number half way between: $\frac{1}{8}$, $\frac{3}{8}$ is	С
19	$\frac{3}{7}$	В
20	-7 <b)-7 c)-8="" d)-9<="" td=""><td>Α</td></b)-7>	Α
21	The rational number half way between : $\frac{1}{10}$, $\frac{3}{10}$ is	D
22	The value of -2 + -3 =	A
23	$\frac{1}{2} + \frac{3}{4} = $ A) $\frac{5}{6}$ B) $\frac{1}{15}$ C) $\frac{5}{4}$ D) $\frac{-2}{21}$	С

	Page [4] -	Math - Mr. Mahmoud E	smaiel - Mobile : 010	06487539 - 0111088271	7
24	The multiplica	tive identity element	t in $\mathbb Q$ is C) – 1	D) 2	В
25	The additive in	nverse of : $(\frac{-4}{5})$ is	*************		O
	A) 3/4	B) $\frac{-3}{4}$	C) $\frac{4}{5}$	D) -4/5	2
26	The additive in A) 0	nverse of: $(\frac{-4}{5})^{zero}$ is	s C) – 1	D) 2	С
		nverse of : $\frac{-1}{ -5 }$ is		0 5	
27	A) -1/5	B) -1/2	C) 1/5	D) 1/2	С
20	The remainde	r of $\frac{7}{3}$ from $\frac{5}{3}$ is		0	В
28	A) $\frac{2}{3}$	B) $\frac{-2}{3}$	C) 1	D) – 1	В
29		en 2 a – b =			С
	A) 2	B) 1	C) 0	D) – 1	
30	The multiplica A) 0	tive identity element B) 1	t in ℚ is C) – 1	D) 2	В
31	The multiplica	itive inverse of −1 is	C) – 1	D) 2	С
	The multiplicative inverse of $\frac{-7}{2}$ is				
32	A) $\frac{-7}{2}$	B) = 2 7	C) $\frac{-3}{5}$	D) $\frac{-5}{3}$	В
33	The multiplica	tive inverse of 1 - 9	is		D
	A) 2	B) 3	C) 5	D) 9	
34	If: $\frac{X}{y} = \frac{1}{2}$, th	en = 2X y B) 1		D) – 2	В
			C) – 1	U) – 2	
35	If: $\frac{4}{5}X = \frac{4}{5}$ to A) 0	hen X = B) – 1	 C) 1	D) - 2	С

	Page [5] - N	Nath - Mr. Mahmoud Es	maiel - Mobile : 0	1006487539 - 0111088271	7
	If: $\frac{7}{2} \times n = 1$,	then n =			
36	A) $\frac{4}{3}$	B) $\frac{5}{3}$	C) $\frac{2}{7}$	D) $\frac{7}{2}$	C
37	$-\frac{a}{b} \times -\frac{b}{a} =$				В
	A) – 2	B) – 3	C) -5	D) - 7	>
	4 ×	. = 1		0 1	
38	A) $\frac{1}{2}$	B) $\frac{1}{3}$	C) $\frac{1}{4}$	D) 1/5	С
39	3 <u>1</u> ×	= 1		Se Ch	0
9	$3\frac{1}{4} \times \dots$ A) $\frac{2}{3}$	B) $\frac{2}{7}$	C) 4/13	D) <u>5</u> 21	C
	If: -4 × n =	1 , then n =			
10	5	1 , then n = B) 4/3			C
	A) $\frac{3}{2}$	B) $\frac{4}{3}$	C) <u>5</u>	D) <u>5</u>	
	The rational nu	umber lying at half wa	y between $\frac{1}{2}$ an	nd 4	
11					C
	A) 11/16	B) 9/16	C) 5/6	D) $\frac{13}{30}$	
	The rational number that lies one fifth of the way from $\frac{1}{2}$ to $\frac{1}{4}$				
12	A) $\frac{1}{2}$	B) 3/8		_	C
	A) 2	8	C) 9/20	D) <u>19</u>	
	The rational number that lies one fourth of the way from $\frac{1}{2}$ to $\frac{1}{4}$				
43	A) 5	B) <u>13</u>	C) $\frac{7}{16}$	D) 15/32	C
	7) 8	32	16	32	
	The rational number that lies one third of the way from $\frac{1}{2}$ to $\frac{1}{4}$				_
14	A) 2	B) <u>7</u>	C) $\frac{5}{12}$	D) 11/24	C
			12		
45	A Committee of the Comm	t of algebraic term 7			C
	A) 5	B) 6	C) 7	D) 8	
6		the algebraic term : 3			C
	A) first	B) second	C) third	D) fourth	

	Page [6] - Math - Mr. Mahmoud Es	maiel - Mobile : 01006	487539 - 0111088271	7
47	The algebraic term 6 a ² b ³ is of A) 5 th B) 6 th	degree	D) 8 th	A
48	The square of the sum of X and y = . A) $(a+b)^2$ B) $(a+c)^2$	•	D) (X+Z) ²	0
49	The algebraic expression : X ² + 3 is (A) first B) second	of the de C) third	gree D) fourth	В
50	X + 4 X = A) 2 X B) 3 X	C) 4 X	D) 5 X	D
51	6 X + 5 X - 7 X = A) X B) 2 X	C) 3 X	D) 4 X	D
52	The increase of (4 X^2) then (-2 X^2 A) $5X^2$ B) $6 X^2$) = C) 3 X ²	D) 4 X ²	В
53	2 X + 3 y is greater then 3 y – X by A) 4 X B) 5 X	C) 3 X	D) 6 X	С
54	The remainder of subtracting (– 4 X A) X B) 7 X) from 3 X equals C) 3 X	D) 4 X	В
55	(2X-7)(2X+7) =4 A) X^2 B) $4X^2$	9 C) 9 X ²	D) 16 X ²	В
56	$(X-5)(X+5) = X^2 - \dots$ A) 25 B) 36	C) 49	D) 64	Α
57	(20-3)(20+3)=400 A)1 B)4	C) 9	D) 16	С
58	$(X-3)() = X^2 - 9$ A) X + 1 B) X + 2	C) X + 3	D) X + 4	С
59	$(X-3)(X+) = X^2$ A) 1, 1 B) 2, 4	C) 3, 9	D) 4 , 16	С
60	$(2X - 1)^2 = \dots - 4X + 1$ A) X^2 B) $4X^2$	C) 9 X ²	D) 16 X ²	В
61	$(X - 2)^2 = X^2 - 4X + \dots$			В

	Page [7] - Ma	th - Mr. Mahmoud Esr	naiel - Mobile : 010064	87539 - 0111088271	7
	A) 1	B) 4	C) 9	D) 16	
62	The middle term A) 4 X y	of (X - 3y) ² = B) 6 X y	C) 12 X y	D) 20 X y	В
63	If: $(X + y)^2 = 13$ A) 1	, X ² + y ² = 9 , then > B) 2	K y = C) 3	D) 4	В
64	A rectangle who A) 12 m ³ L ³	se length is 3 L m ar B) 12 m ² L ²	nd its width is 4 m L , f	then its area is D) 56 m ² L ²	В
65	(2X+4)(X+1 A)6 X ²) =+ 6 X B) 2 X ²	+ 4 C) 12 X ²	D) 15 X ²	В
66	(X+5)(2X-7 A)X) = 2 X ² + B) 2 X	– 35 C) 3 X	D) 5 X	С
67	(2X ²)X(3X ²)= A)6 X ²	B) 6 X ³	C) 6 X ⁴	D) 6 X ⁵	С
68	(3 a ² b ²) X (4 a ²	² b ³) = B) 12 a ⁴ b ⁵	C) 12 a ⁶ b ⁵	D) 10 a ⁷ b ⁶	В
69	3 X ×	. = 15 X ⁶ B) 3 X ³	C) 4 X ⁴	D) 5 X ⁵	D
70	$24 X^5 \div - 4 X^2 =$ $A) - 8 X^2$	B) – 6 X ³	C) - 4 X ⁴	D) -8X	В
71	$(X^{2} + X) \div X =$ A) X + 1	B) X + 2	C) X + 3	D) X + 4	A
72	(X ² + 3 X y) ÷ X A) X + y	= B) X + 2 y	C) X + 3 y	D) X + 4 y	С
73	$(25 \times 10^{6} + 5 \times 10^{2}) \div$ A) 5 X + 1	5 X ² = B) 5 X ² + 1	C) 5 X ³ + 1	D) 5 X ⁴ + 1	D
74	The highest com	mon factor of the ex B) 3 X	pression : 8 X ² – 4 X C) 4 X	is D) 5 X	С

	Page [8] - Math - Mr. Mahm	oud Esmaiel - Mobile : 0100648	87539 - 01110882717	7
75	The highest common factor of A) 2 X y B) 3 X		(y is D) 5 X y	С
76	The H.C.F. of the expression: A) 2 X ² y ² B) 3 X ²	$3 X^4 y^2 - 6 X^2 y^2$ is	D) 5 X ² y ²	В
77	The expression: $a^4 + a^3 b = ($ A) a B) a^2	a + b)	D) a ⁴	C
78	If: a + b = 5, then 4 a + 4 b = . A) 10 B) 15	 C) 20	D) 25	С
79	12 $X^3 + 3 X^2 = 3 X^2$ (D) 5 X ⁴	Α
80	9 a ² + 6 a b =(3 A) 4 a B) 2 a	3 a + 2 b) C) 3 a	D) 5 a	С
81	The range of the values 2, 1, A) 10 B) 11	8 , 13 , 13 and 5 is	D) 13	С
82	The mode of the numbers : 3, A) 3 B) 4		 D) 6	С
83	The mode of the numbers : 3 , A) 7 B) 8	12,6,3+X is 12, then X = C) 9	D) 11	С
84	The order of the median of the A) Second B) this		1 is D) fifth	C
85	Order of median of set of value A) 3 B) 4	es is fourth then number of v C) 7	/alues = D) 6	С
86	The median of the numbers : 8 A) 7 B) 4	5 , 11 , 19 , 2 , 4 is C) 5	D) 6	С
87	The median of the values : a + A) 2 B) 3	4, a + 2, a + 3 is 7, then a = C) 4	D) 5	С
88	The mean of the numbers : 4, A) 4 B) 5	2,12 is C) 6	D) 7	С

The professionals in Maths Final Revision. in Algebra Prep(1) = 3 x 1000/0=60% $\frac{x}{x-3}$ eqif x = 3-0.4 = 40 0/o X+2 is not rational 2) =0-666666.... 3-27-9 (12) 0.45 E 5 6) 4+X = 0 5252525 = 124 - 01141060113 : 🗀 🛇 🛇 🛇 🛇 Mr:hassan salama

The profession	als in Maths
(3) (F X+ = = 0	(ES) 1'F X x 5 = 5
tren x = -3	
21) tarremainder of	
Subtracting -2x from.	tuen X = y
5x = 6x - (-2x) = 7x	(-C.)I.MERIUM PAG. WINICH
22) Subtracting of Fram =	has not amultiplicative
= \frac{1}{3} = \frac{5}{12}	128 using distribution
identity element in	Property to Rind.
Q 15	$=\frac{3}{4}\times(6+4-3)$
[24] tremultiplicative.	= \(\frac{2}{3} \)
inverse of	2 6 x = +13 x = = =
$\begin{array}{c} 3 \\ 5 \\ \hline 5 \\ \hline \end{array} \rightarrow \begin{array}{c} 5 \\ \hline 3 \\ \hline \end{array}$	$= \frac{5}{3} \times (6 + 13 - 1)$
0.7 = 7 - N - 10	= = x 18
$\begin{vmatrix} \frac{3}{4} \\ \frac{3}{4} \end{vmatrix} = -\frac{6}{4} \longrightarrow -\frac{1}{6}$	= [10]
01141060113 · · · 20000	Service and a se

Mr:hassan salam

Mr:hassan salama

ooooo The profession	als in Maths 00000000
more than) = secont	-2 at 3 a2 -7
subtract & second decrease () less than First	om d 5 a2 - 7 a + 2 server sult = 3 a2 - 2 a - 7
(42) 3 a2 bx 5 ab3	50 ² -70+2
(43) -12 x y y + 3 x y 2	(47) Find the sum of
3 x3y2 -4X2	5a-2b+4c6 2b-3a-3c6
(44) 182 b3 = 602 b2 303 b (43) A33 3x-4y-62 and	50 result=50-26+40
3x+2y-2Z sol result=5x-4y-6Z	20 1C 20 +3C
3x +2y -2Z 8x - 2y - 8Z	
د - 01141060113 : ت	Mr:hassan salama

The professionals in Maths 20000000 48/ Subtract To get 5x2+x-3 3 x-44-5: From regult 5 8 X+34 -7. 5x2+x-3 3 7 A X A result -3x+5x+2 8 X+34-(51) what is the increase of 49-76+5C tran 5x+74-2 49) what is two decrease -29-302 +S tesult = 49-76+95 than a2-49+3 O O O P3 C result -39-96+80 a2-40+3 #3 02 TO #5 (52) what is the moreoge 5x2-4x+6 trian $4a^2 - 2a - 2$ 4x2-3x+2 and 50 | what is the expression x2+6X-1 Should be added to 01141060113 : ت 2000000 Mr:hassan salama

The professionals in Maths 10000000 2a(3a+5)-3a(a+2) wesum = 4x2-3x+2 X2+6X-1 = 602+10a-302+6a 5x2+3X+1 = (602-32) + (109-6a) increase --5x3-4x+6 = 3 a2 + 4 a 05 X 2 + 3X + 1 at a=2 Yesult=3x(2)+4x2 Fin. J. Fue value ... o. F. = 3x4+8=12+8 twetesult when X = 2 S=x to (56) (X+5) (X+4) -7 X+S=-7x2+S $= x^{2} + 9x + 20$ (53) put in tresimplest (57) (3a-2) (2a+5) 30 (20-40+5) = 603 - 1202 + 150 = 6 Q2 + 119-10 (54) -3 x y (5x-24-4) (3x+24) (2x-54) = -15 x3y +6 x2y2+12x3y = 6x - 11xy-1042 (55) 24 (30+5) = 34(a+3). and find the value of resultation a = .2 Mr:hassan salama 01141060113 : ن 01141060113

Mr:hassan salama

poologo The professio	nals in Maths 1000000000
Ø	71
2) The mean up	6+5+K+4+8 = 8
9,7,5,11,3	x + 23 _ 8
is 9+5+7+11+3	9
39 - 7	K+23=32 $K=32-23=9$
5	
3 Tromeanut	(71) the median of
2-9,5,7+9,10	1.5
2-9+5+7+9+10	7,8,13,19,22
mean-	- Aget of Wegian
= = = 6	i's tuird
4) if The mean of	(73) the median of
FIVE values = 9	15
tuen thosunce	3/5/2/8/8/12/18/22
the values = Sx9=45	orderat median
(5) 1 F two mean of	5 the fourth
6,5+K,4,8158	
Than k =	
ے : 01141060113 - ت	Mr:hassan salama

6	The profession	onals in Maths
Ć		(3) Maths MONOCONO
S	12) the median af	()
	Tere Values	(70)
S	LEGG ASTONES	(75) themodeut
O	7911991319915	. The values is
8	حدودارجا ود والمعا	The values 15 th
Š	1 S	· Valu
0	Sel 7/9/11/18/18/19/	
8	- 19/10/10/10/10/10/10/10/10/10/10/10/10/10/	(76) tuemodere
Ö	The state of the s	
0	median = 11+13	4,709,4,8,78
8	- 17	
Ö	orderofmedian	Andrews Landson Landso
Ø		
8	15 twitdowd fourth	(77):0-
Ø.	MINIMAL DELIVERATION OF THE PARTY OF THE PAR	
0	7.3/ 3.4	7 X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
8	13) 16 two order of	5 Trank
8	median accom	******************
8	Vollues 15 The sevents.	X+2=5
8	· · · · · · · · · · · · · · · · · · ·	X=5-2=3
Ŏ.	tuen number of	if The mode of
8	values 13	
8-	(a)	
Ô	10	Then X====
\otimes	if the median of	X-2=4 X=4+2=6
ò	Tuevalues	
0	01+4,9+2,9+3	from the table
Ŏ		mark 6 1 8 9 10
	President Committee Commit	
X	sel a+2,0+3,044	1 5 7 11 6 3
0	C112	
S	a=8-3=5	Eind The mode mark
Ö	a = 0 3 - 2	8
O.C	- 01141060113 : ت	Mr:hassan salama

(1)

* Rational numbers

in the form = such that a=0

if & is rational number [EQ]
then b = 0

ويم if $\frac{5}{x-1}$ E Q then $x \neq .1$.

يبقى كما يقولى ال ويقولى ال ويقولى ال ويقولى الله كت rational

2) if $\frac{a}{b} = 0$ then a = 0

(a) if $\frac{x-3}{x-5} = 0$ then x = 3.

Let $\frac{3}{x-5} = 0$ then x = 3.

We winted the electric state of the section $\frac{3}{x-5} = 0$.

We winted the electric state of the section $\frac{3}{x-5} = 0$.

3 Each integer is rational number with denominator=1

 $\mathfrak{S} = \frac{5}{1}, \quad 0 = \frac{9}{1}$

مستر/ اعربهه

للتفوم عنوات ... بروف حلوار

- 4) The Additive identity (Additive neutral) in Q is Zero
- 5) The Additive inverse to 5 is -5
- 6 Any rational number + Add. inv. = 0 $-\frac{5}{7} + \frac{5}{7} = 0$
- The Multiplicative identity (Multineutral)
 in Q is 1
 - (8) Any rational number X Mult. inv. = 1 $\frac{5}{7} \times \frac{7}{5} = 1$
 - 1 Add. inv. of Zero is itself Zero
 - Dero has no multi. inv.
 - Multiplicative inverse of 1 is itself 1
 - Multiplicative inverse of -1 is itself-1

Number = The Smaller + 1 | 1st = 2nd |

The number lies at one third of the way between two numbers:

Number = The Smaller + 1 1st _ 2nd |

of the way between 3 and -5

Number = $-\frac{5}{6} + \frac{1}{3} \left| \frac{3}{8} - \frac{-5}{6} \right| = -\frac{31}{72}$

find the number that lies at the middle of the way between 3 and 1

من عارف الصعنير مسم الحابا ؟!

ابت و تأكد مسر حلك الصع د اخل الصعنة مكوب الحلا

* Algebraic term

5X

19/2/33842

numerical Factor Coefficient algebraic factor Symbolic

Degree of algebraic term

Sum of indices (powers) of Symbolic Factors

(2) $3x^2 \rightarrow 2^{nd}$ degree $2x^2y^3 \rightarrow 5^{th}$ degree $8 \rightarrow Zero$ degree

Degree of algebraic expression is the highest degree of its terms

 $5x^2 + 3x - 1 \rightarrow 2^{hd}$ degree $4xy - 3x + y \rightarrow 2^{hd}$ degree

Like algebraic terms

Symbols
Indices (powers)

 $3x^2$, $-5x^2$

7 x2y, 9 yx2

x2+ x3 + x5 1) 2x + 3y + 5xy 3x + 2x = 5x cm $2x^2 + 5x^2 = 7x^2$ نعكى الترتيب ونعير اشارات اللى محت (ex) Subtract 3x2 +5x-2 from 8x2-3x+5 8x2-3x+5 للتفوص عنوان 93 x2 = 5x = 2 بروو حلوات 01127733842 $5x^{2} - 8x + 7$ what is The decrease طب ولما يقولي of Athan B برجه نعكس الترتيب ونغيرا شارات اللي محت ا قلب الصفحة علمام أوريد

-7x + 10y - 12

What is the increase of (وطيع لما يقول كالم الله كالم الم الله كالم الم الله كالم الله كالم الله كالم الله كالله كالله

ex) what is the increase of $3x^2 - 5xy + 7$ than $2x^2 + 10$

 $3x^{2} - 5xy + 7$ $92x^{2}$

 $x^2 - 5xy - 3$

Profhelwan 01127733842

* Multiplying algebraic Terms

①
$$5x \times (-3y) = -15xy$$

$$2 -3x^2x 2x^3 = -6x^5$$

$$(+)(+) = +$$
 $(-)(-) = +$
 $(+)(-) = -$

* Multiplying monomial by expression

②
$$5a^2(3a-5b-8)=15a^3-25a^2b-40a^2$$

* Multiplying two binomials

$$(x+3)(x+5) = x^2 + 5x + 3x + 15$$

$$= x^2 + 8x + 15$$

(2)
$$(x+2)(x-2) = x^2 - 4$$

[3]
$$(x+5)^2 = (x+5)(x+5) = x^2 + 5x + 5x + 25$$

= $x^2 + 10x + 25$

by inspection will you do is so

* Dividing a monomial by monomial

(8)

EP © 15
$$x^3 \div 5x = 3x^2$$

Powers — $y = 0$

expression

(2) $(28 y^3 - 14y^2 + 7y) \div 7y$
 $= 4y^2 - 2y + 1$

Toividing algebraic expression by another one

(2) Find the quotient of dividing

 $x^2 - 9x + 20$ by $x - 4$ (where $x \neq 4$)

 $y = 0$
 $y =$

* Factorization by IT.C.F

- (Factorize by identify H.C.F:
- $0 4x^{3} 6x^{2} 8x = 2x(2x^{2} 3x 4)$ 0 18 de 6 12 10
- 4,6,8 as table is
- ع نکت 2 نکت ک
- ى نختار الحرف اللي بيتكرر بأصغر با
 - ع نفتح () ونعل ب
 - 3 12 xy2 + 18 x2y -6x2y2
 - $= 3 \times y (4y + 6x 2xy)$
 - 3 12 x²y + 18 x³y² =

- $3x^2y 6xy^2 + 9xy =$
- 5 5x2 + 15 xy =

لوني مننكلة ابعتلى واتى 42 1733842 110

* Statistics

Ex find the arithmetic mean of values

2,5,7,5,4,9 and 3

Solution

$$Mean = \frac{2+5+7+5+4+9+3}{7} = 5$$

شرتبيم ونختار لأوسط Median [2] لو المهام

(e) Find Me : 42, 23, 17, 30, 20

Solution

order: 17, 26, 23, 30, 42

The median is 23

ولا <u>even</u> و (ex) Find Median: 8,4,5,6 <u>order</u> 4,5,6,8 (الأكثر تكرار) <u>Hedian = 5+6 = 5-5</u> (3) Mode of: 2,3,4,3,2,3 is 3