

LOW-POWER FPGA-SOC-BASED SECURE MOBILE ROBOT ARCHITECTURE

SERGIO PERTUZ, CORNELIA WULF (TUD)

PROTECTION OF HARDWARE ACCELERATORS

PROTECTION OF HARDWARE ACCELERATORS

FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

AXI4-Stream (DMA):

- virtual memory
- DMA space

AXI4-Lite / Full (MMIO):

- direct access only with fixed assignment
- flexibility via hypervisor

MOTIVATION

FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

1. Fixed assignment:

Disadvantage:

- No flexibility
- No scalability

2. Access via software scheduler:

Disadvantage:

Latency

FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

Custom MMU

Scheduler

- Vitis HLS
- Input: accelerator type, priority
- Chooses accelerator and updates the translation table

Priority queue for each accelerator

FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

14rec.io

```
Io.hw.add devices(function()
       hw scheduler = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(0xA0000000, 0xFFFFFFFF)
              Resource.irq1 = Io.Res.irq(IRQ NUMBER);
       end);
       task1 = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(BASE SCHEDULER, BASE SCHEDULER + OFFSET)
              Resource.regs = Io.Res.mmio(BASE VIRTI, HIGH VIRTI)
       end);
       task2 = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(BASE SCHEDULER + OFFSET,
                                           BASE SCHEDULER + 2 * OFFSET
              Resource.regs = Io.Res.mmio(BASE VIRT2, HIGH VIRT2
       end);
End)
```


FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

Advantages

- Prevention of unauthorized access
- Shared usage of hardware accelerators
- Preservation of priorities
- Latency reduction compared to a software approach

Disadvantage

▶ Overhead → to be evaluated, still work in progress

Future work

Virtualization of interrupts

STUDENT PARTICIPATION

FOR FPGA-SOC-BASED MOBILE ROBOT ARCHITECTURE

Student work (NES project work):

- Isaac Sanchez: Hardware Task Scheduler with Access Control
- Xinyu Liu: Exploration of Security Threats Mitigation using Micro ROS and L4Re

LOW-POWER FPGA-SOC-BASED SECURE MOBILE ROBOT ARCHITECTURE

QUESTIONS

REMARKS

DISCUSSION

