ASUID:-1222858338

EEE 591

LAB #04

- 1. Full adder schematic and sizing
 - a. Explain the sizing criteria used

Length is chosen as 30nm.

Width of NMOS = 420nm. (Wn = 420nm).

Width of PMOS (wp) = 644nm.

Raising Time and Falling Time is equal. Chosen wp such as Tr = Tf.

L = 30nm;

For Unit Inverter: Wn = 420nm & Wp = 644nm.

ASUID:-1222858338

FULL BIT ADDER: TRANSISTOR SIZING

PDN

RPDN = Rninv

$$\frac{2}{\mu N}WN = \frac{1}{\mu N}Wninv$$
 $\frac{2}{WN} = \frac{1}{WN}w^{2}$
 $WN = 2WNinv$
 $= 2(420 \text{ nm})$
 $WN = 840 \text{ nm}$

$$\frac{PDN}{RPDN} = RNMV$$

$$3R_N = RNMV$$

$$\frac{3}{Wn} = \frac{1}{WnMV}$$

$$W_N = 3W_{MN}$$

$$= 3(420 \text{ nm})$$

$$W_N = 1.26 \mu \text{ m}$$

$$w_n = 3w_{nm}v$$

= 3(420 nm)
 $w_n = 1.26 \mu m$

RPUN = RPINV

$$2Rp = RpinV$$
 $2 = \frac{1}{\mu p \mu p inV}$
 $2 = \frac{1}{\mu p \mu p inV}$
 $2 = \frac{1}{\mu p \mu p inV}$
 $2 = 2 \mu p inV$
 $2 = 2 (644 nm)$
 $2 = 2 (644 nm)$

PUN = RpinV

Rpun = RpinV

$$\frac{3}{Wp} = \frac{1}{WpinV}$$
 $Wp = 3 WpinV$
 $= 3 (6.44 nm)$
 $Wp = 1.932 \mu m$

Name :- SHERIN SEBASTIAN ASUID:-1222858338

b. Provide the sizes (W/L) of all your transistors

1)INVERTER

2)ONE BIT ADDER

ASUID:-1222858338

c. Provide the schematic of your 4-bit design

MIRROR CIRCUIT ADDER

d. Provide any scaling you choose to do for the 4-bit design and justification for the choice

There is no scaling used. Every calculation of width and length depends on the one bit adder for 4 the bit adder.

2. Simulation results

ASUID:-1222858338

a. Include the worst case delay plots

50% transition time from simulation transient graph.

1. Sum(S3) with respect to A0	50ps
2. Carry Out (Co3) with respect to A0	106ps
3. Carry Out (Co3) with respect to Carry Out (Ci0)	106ps

b. Include the power consumption analysis results

Power = 67.718uW

- 3. Include confirmation of
 - a. Layout & DRC Pass

ASUID:-1222858338

LAYOUT OF 1-BIT ADDER

LAYOUT OF 4 BIT ADDER

DRC

b. Layout & LVS Pass LVS

ASUID:-1222858338

4. Report the total area of your layout

Width = 20.754um Height = 1.62um

Area = Width*Height = 20.754um * 1.62um = 33.6214 um²

Area = 33.6214 um^2

5. Report your overall score as outlined in the lab document

 $Score = (400 ps/delay) + (100 uW/power) + (150 um^2/area)$

Delay = 50ps

Power = 66.718uW

Area = 33.6214 um^2

Score = 8 + 1.49 + 4.4614

Score = 13.9514

ASUID:-1222858338