

Offensive Machine Learning

Aprés Workshop - 24

Our Team

Will Pearce
Co-Founder
@moo_hax

Nick Landers
Co-Founder
@monoxgas

Brad Palm
Operations
@BruteForceLLC

Brian Greunke
Engineering
@briangreunke

Rob Mulla
Data Scientist
@Rob_Mulla

Intro - Dreadnode

- Offensive Machine Learning
- Help to grow the AI security community
- Engineering is our core focus

```
Capture the Flag -> Crucible
Cyber Workflows -> Mainsail
Red Team Tooling -> Jötunn
```

@dreadnode | dreadnode.io

The Fundamental Truth

"Functions Describe Everything" - T. Garrity https://www.youtube.com/watch?v=zHU1xH60gs4

optimization, fuzzing, compression, path finding, regex, hashing, graph theory, compilers, protocols, signatures, transformations, cryptography, data structures, sorting, recursion, game theory, gradients, constraint solving, symbolic execution, program analysis ...

Language Models are Classifiers

Change my mind

Classification Basics

Models produce "logits" at their final layer

We typically softmax -> argmax for label assignment

Model Sampling

LLMs that deterministically classify the next token aren't very interesting (temp=0)

We use sampling strategies on the probabilities to produce more natural (stochastic) outputs

```
temp     -> rescale the logits to balance distribution
do_sample -> multinomial sample on the distribution
top_k     -> clip distribution to only those top tokens
beam     -> step beyond 1 token to find high prob seq
top_p     -> clip distribution based on cumulative probs
```

https://huggingface.co/blog/how-to-generate

MinGPT Sampling

```
1 def generate(self, idx, max new tokens, temperature=1.0, do sample=False, top k=None):
      for in range(max new tokens):
          idx cond = idx if idx.size(1) <= self.block size else idx[:, -self.block size:]</pre>
          logits, = self(idx cond)
          logits = logits[:, -1, :] / temperature
          if top k is not None:
              v, _ = torch.topk(logits, top_k)
              logits[logits < v[:, [-1]]] = -float('Inf')</pre>
         probs = F.softmax(logits, dim=-1)
         if do sample:
              idx next = torch.multinomial(probs, num samples=1)
              _, idx_next = torch.topk(probs, k=1, dim=-1)
          idx = torch.cat((idx, idx next), dim=1)
```


Generation Notes

Models are more commonly autoregressive these days. Taking the argmax at every step without sampling is referred to as "Greedy" sampling.

Stochasticity in the sampling process can compound.

Tuning Notes

Models complete text by default. We tune them for structure/function.

- Supervised Fine Tuning (SFT)
- Reinforcement Learning (RLHF)
- Direct Preference Optimization (DPO)

"Instruct/Chat" models refer to tuned variants that require particular text structures for function (jinja). Instruction dataset is QA, Chat dataset uses masking techniques to make the outputs more natural

```
(.venv) nick@DESKTOP-2DMGUAQ:/code/vllm$ ls -lah examples/template*
-rw-rw-r-- 1 nick nick 629 Mar 16 12:35 examples/template_chatglm.jinja
-rw-rw-r-- 1 nick nick 637 Mar 16 12:35 examples/template_chatglm2.jinja
-rw-rw-r-- 1 nick nick 316 Mar 16 12:35 examples/template_chatml.jinja
-rw-rw-r-- 1 nick nick 471 Mar 16 12:35 examples/template_falcon.jinja
-rw-rw-r-- 1 nick nick 558 Mar 16 12:35 examples/template_falcon_180b.jinja
-rw-rw-r-- 1 nick nick 1.1K Mar 16 12:35 examples/template_inkbot.jinja
```


Tokenizer Notes

Every model uses a different tokenization strategy to convert text into numerical values. The vocabulary size usually dictates the model dim.

- Subword Tokenization
- WordPiece/SentencePiece
- Byte Pair Encoding (BPE)

"Special" tokens are used to control text structure

- Beginning of Sequence (BOS) Typically encoder/decoder
- End of Sequence / Stop (EOS) <eos>
- Masking tokens for masked generation
- Separator, Class, Padding, etc.

Pop Quiz

- How does a model know when stop generating tokens?

Answer

When the sampled token is the special End of Sequence token. (or if we run out of tokens)

llm.ipynb

Exercises 1 - 2

Inversion

The outputs of every model are a function of the inputs f(x)

We can use this information to invert models if we have knowledge of input/output pairs (everything is a function remember?)

<u>Text Embeddings Reveal (Almost) As Much As Text</u> <u>Language Model Inversion</u>

API Constraints

Every model provider will give us different levels of control over the outputs with varying levels of output fidelity

Many limit the logprobs we can return from a particular generation - but the vocab is much larger

How would we recover full logits from a model with the control that we do have?

Suppose for every call to the API we add a bias term $b\in\mathbb{R}$ to a token $i\in\mathbb{N}$. This means that the model's logits $\boldsymbol{\ell}$ are modified to

$$\boldsymbol{\ell}' = (\ell_1, \ell_2, \ldots, \ell_i + b, \ldots, \ell_v).$$

If we collect the biased output $\log p'_i = \log \operatorname{softmax}(\ell')_i$ for each token i,

$$\begin{split} \log p_i' &= \log \frac{\exp(\ell_i + b)}{\exp(\ell_i + b) + \sum_{j \neq i} \exp \ell_j} \\ &= \log \frac{\exp \ell_i}{\exp \ell_i + \exp(-b) \sum_{i \neq i} \exp \ell_j}, \end{split}$$

which we can exponentiate and rearrange to get

$$\frac{\exp(-b)p_i'}{1-p_i'} = \frac{\exp \ell_i}{\sum_{j \neq i} \exp \ell_j}.$$

Note that the righthand side is the odds of the token, therefore we can solve for the unbiased probability p_i of the token

$$\begin{split} \frac{p_i}{1 - p_i} &= \frac{\exp(-b)p_i'}{1 - p_i'} \\ p_i &= \frac{\exp(-b)p_i'}{1 - p_i' + \exp(-b)p_i'} \\ \log p_i &= \log p_i' + \log \frac{\exp(-b)}{1 - p_i' + \exp(-b)p_i'} \\ \log p_i &= \log p_i' - \log \left(\exp b - \exp(b + \log p_i') + p_i'\right) \end{split}$$

Thus, it is possible to obtain unbiased logprobs for any token with exactly 1 API call.

https://mattf1n.github.io/openlogprobs.html

llm.ipynb

Exercises 3 - 4

Ground Truth: Models can be described as a parameter space where boundaries between points represent classes.

Attacker View: Adversarial attacks aim to identify the most "useful" positions inside that space.

Attackers want to "Explore the parameter space" while:

- 1. Minimizing the number of queries
- Optimizing for their constraints (distance, label, confidence)

"Soft" labels allow us to navigate towards the boundary from a single anchor

"Soft" labels allow us to navigate towards the boundary from a single anchor


```
basic attack.pv
def attack(original, n_masks = 1_000):
  score = predict(original)
  # Generate random perturbations to use
  mask shape = [n masks] + list(original.shape)
  masks = np.random.randn(*mask_shape)
  best score = 1
  current_mask = np.zeros_like(original)
  while score > 0.5:
    new_mask = masks[np.random.randint(masks)]
    candidate = original + current_mask + new_mask
    score = predict(candidate)
    # Soft label communicates "progress"
    if score < best score
      best score = score
      current_mask += new_mask
  return original + current_mask
```

- 1. Perturb the input.
- 2. Is it closer to being misclassified?

Yes? Apply it and start from that new point.

No? Try again.

Note: our perturbations might not necessarily minimize our distance to the boundary (why is this important?)

What about "hard" labels?

-> Blackbox attack (HopSkipJump)

Step 1 (init): Locate a target anchor of a different class than the original - traditionally random spray

Step 2 (search): Use binary search to locate the boundary edge within a threshold

Step 3 (estimation): Gather inputs around the gradient to determine its direction

Step 4 (step): Move adjacent to the boundary to line up for the next search step

Repeat until we satisfy our distance requirement

Label: "0" [80%] w/ 1,227 queries

L2 distance: 4.3811 Absolute distance: 1.8717

Our execution of this attack is focused on:

- 1. How many queries we use to minimize distance
- 2. How we decided what inputs to query and when
- 3. How "efficiently" our anchors guide queries

As attackers we can break this attack down into component parts, re-order or alter them, and optimize for different goals - requires re architecting current tools.

NLP Adversarial Attacks

1. Early NLP uses - Classification & Entailment

SEARs, TextFooler, HotFlip

2. LLM Emergence - Summarization & Q/A

UAT, RLHF Dataset, TextAttack

3. Broad Adoption - Causal Generation & Multi-modal

(Auto)-DAN, GCG, PAIR, BEAST, TAP, ASCII Smuggle

Greedy Coordinate Gradients

GCG

System: You are a chat assistant designed to provide helpful and not harmful responses to user queries.

Beam Search Attack

Rank every K1/K2 pair and keep the top N results for the next beam expansion step

PAIR/TAP

Workflows

- Structured models
- XML underneath
- Tool calling
- Retry mechanisms
- LiteLLM
- Helpers, etc.

```
1 import rigging as rg
  generator = rg.get generator("gpt-4")
  chat = generator.chat(
           {"role": "system", "content": "You are a wizard harry."},
           {"role": "user", "content": "Say hello!"},
9 ).run()
11 print(chat.last)
  print(chat.prev)
```


Lightweight LLM Interaction Framework

Structured models

- XML underneath
- Tool calling
- Retry mechanisms
- LiteLLM
- Helpers, etc.

```
1 import rigging as rg
  class Answer(rg.Model):
       content: str
       rg.get generator("claude-2.1")
       .chat([{
          "role": "user",
          "content": f"Say your name between {Answer.xml tags()}."
       }1)
       .run()
13 )
  answer = chat.last.parse(Answer)
  print(answer.content)
```


- Structured models
- XML-underneath
- Tool calling
- Retry mechanisms
- LiteLLM
- Helpers, etc.

```
1 import rigging as rg
  class Answer(rg.Model):
       content: str
       rg.get generator("claude-2.1")
       .chat([{
          "role": "user",
          "content": f"Say your name between {Answer.xml tags()}."
       }])
       .run()
13 )
  print(f"{chat.last!r}")
```


- Structured models
- XML underneath
- Tool calling
- Retry mechanisms
- LiteLLM
- Helpers, etc.

```
1 from typing import Annotated
2 import rigging as rg
 class WeatherTool(rg.Tool):
     def get for city(self, city: Annotated[str, "The city name"]) -> str:
         print(f"[=] get_for_city('{city}')")
         return f"The weather in {city} is nice today"
     rg.get generator("mistral/mistral-tiny")
     .chat([
          {"role": "user", "content": "What is the weather in London?"},
     .using(WeatherTool())
     .run()
```


- Structured models
- XML underneath
- Tool calling
- Retry mechanisms
- LiteLLM
- Helpers, etc.

```
1 import rigging as rg
 2 from rigging.model import DelimitedAnswer
  delim tags = DelimitedAnswer.xml tags()
       rg.get generator("mistral/mistral-tiny")
       .chat([{
          "role": "user".
          "content": f"Provide 5 linux tools between {delim tags} tags."
       .until_parsed_as(DelimitedAnswer) # Retry until our model is ready
       .run()
14 )
16 tools = chat.last.parse(DelimitedAnswer)
  print(tools.items)
```


Marque

Lightweight Task Orchestration Framework

- Push tasks (steps)
- Keep/Recall for data
- Tag tasks
- Retry strategies
- Runtime task inspection
- Persistent Storage

```
def add(flow: Flow):
       a, b = flow.get(int, ["a", "b"])
       flow.tag(f"\{a\} + \{b\}")
       flow.keep("data", {"answer": a + b})
 6 def select_math(flow: Flow):
       random = flow.get(Random)
       a = random.randint(10, 100)
       b = random.randint(10, 100)
       flow.push(add, a=a, b=b)
12 flow = (
       Flow("test", PolarsStorage("test.parquet"))
       .fail fast()
       .put(random=Random(1337))
       .push(repeat(simple math, 5))
17 )
19 flow()
```


ctf.ipynb

Exercises 1 - 2

Setup the interactive environment.

- 1 pass connection information
- 2 Create a Generator
- 3 instantiate the tool
- 4 connect to the challenge

```
1 def solve(flow: Flow) -> None:
2    level = flow.get(int, 'level')
3    next_level = level + 1
4    password = flow.get(str, "password")
5    username = f'bandit{level}'
6
7    generator = flow.get(Generator)
8
9    tool = ChallengeTool(SSH_HOST, SSH_PORT, username, password)
10
11    flow.log('Authenticating ...')
12    tool._connect()
```


Setup the prompt in rigging

5 - **SYSTEM** prompts are like personas 6 - run the **chat** until we get a **flag** that is parsed

Run the loop until the the flag is parsed

- 7 Parse the the flag 8 - push the next solve task into
- 8 **push** the next **solve** task into the flow state with the (hopefully correct) solution

```
1 next_password = answer.content.strip().strip('.-|,')
2 flow.success(f'Level {next_level} password: {next_password}')
3
4 flow.success('Pushing next solve step')
5 flow.push(solve, level=next_level, password=next_password)
```


Kick off the flow

9 - **put** the connection information into the flow 10 - run it!

```
1 flow = Flow("ctf", MemoryStorage()).fail_fast()
2
3 flow.put(
4    level=0,
5    password="bandit0",
6    generator=rg.get_generator("mistral/mistral-medium-latest),
7 ).push(solve)()
```


ctf.ipynb Exercise - "Please draw the rest of this owl"

```
17:37:09 - LiteLLM:INFO: Wrapper: Completed Call, calling success handler
                  No tool calls or types, returning message
17:37:09.497
17:37:09.498
               [=]
                     |+ New 'solve' step added
17:37:09.499
               [=]
                     |: Authenticating ...
                     i: Asking the model ...
17:37:09.500
                     |: Executing cat readme
17:37:09.502
                     |: Output:
NH2SX0wcBdpmTEzi3bvBHMM9H66vVXiL
                     |: Level 1 password: NH2SXQwcBdpmTEzi3bvBHMM9H66vVXjL
                     : Pushing next solve step
                     |- in 1m 42s 472ms
               [=]
17:37:09.505
17:37:09.506
              [=] > Step 'solve' (0:1)
```


Offense at scale - queries are cheap(er)

Difficulty

- Easy Putting text into a model and getting useful output
- + Medium Managing LLM interactions for multi-turn conversations
- + Hard Managing logic between disparate tasks
- + Harder Having a model manage the interior logic of a task

We solve both to great effect with rigging and marque

Al Red Teaming.

Research. Tooling. Evals. Cyber range.

@dreadnode | dreadnode.io