1-TABLE OF CONTENTS 2-BLOCK DIAGRAM 3-ORIN-1A 4-ORIN-1A 5-ORIN-1A 6-SD&&UFS#1 7-ORIN CANX2&&FAN#1 8-NC 9-PPS&&NMEA#1AB 10-USB2.0 1&&2#1-HUB 11-NC 12-MIPI-CSI CON1 13-CODEC CON 14-EEPROM-1A 15-EEPROM-1B 16-RGMII TO 3V3 LEVEL-1A 17-NC 18-3.3V&&1.8V#1&&2 19-USB2.0 1&&2#1-DEBUG 20-24V IN

21-ORIN-1B 22-ORIN-1B 23-ORIN-1B 24-NC 25-SD&&UFS#2 **26-ORIN CANX2&&FAN#2** 27-NC 28-NC 29-USB2.0 1&&2#2 30-NC 31-MIPI-CSI CON2 32-NC 33-RGMII TO 3V3 LEVEL-B 34-EEPROM-2A 35-EEPROM-2B 36-PLL1A&&1B 37-PLL2A&&2B

38-ORIN-2A 39-ORIN-2A 40-ORIN-2A 41-SD&&UFS#3 42-ORIN CANX2&&FAN#3 43-RGMII TO 3V3 LEVEL-2A 44-PPS&&NMEA#2AB 45-USB2.0 1&&2#3 NULL 46-NC 47-FT2232X2 DEBUG 48-FT232RL-1A 49-FT232RL-1B 50-FT232RL-2A 51-FT232RL-2B *52-3.3V*&&*1.8V*#*3*&&*4* 53-NC

54-ORIN-2B 55-ORIN-2B 56-ORIN-2B 57-SD&&UFS#4 58-ORIN CANX2&&FAN#4 *59-RGMII TO3V3 LEVEL-2B* 60-NC 61-NC 62-NC 63-NC 64-XFI3 MUX-SYSTEM 65-XFI2 MUX-GATEWAY 66-NC 67-MCU-BAKA CON 68-IMU CON 69-CAN CONNECTOR

71-TJA1101B-1 72-88Q2112-100T1-1 73-MCU#1 CANX6 74-FT4232HL&&USB MUX-1 75-NC 76-MCU-2 77-TJA1101B-2 78-88Q2112-100T1-2 *79-MCU#2 CANX6* 80-FT4232HL&&USB MUX-2 81-88Q2112-100T1-1 82-88Q2112-100T1-2 83-DATA BOX CON 84-6113X2 CON-1 SYSTEM 85-DEBUG BOARD CON X2 86-PCIE SW CON 87-6113X2 CON-2-GATEWAY 88-88Q2112-P5-S1 89-88Q2112-P6-S2 90-88Q2112-P7-R1 *91-88Q2112-P8-R2 92-88Q2112-P5-S1-2 93-88Q2112-P6-S2-2* 94-88Q2112-P7-R1-2 95-88Q2112-P8-R2-2 96-FT4232 FOR 4ORIN DEBUG 97-HOLES OF BD 98-NC 99-NC

70-MCU-1

	VIN Imax (SYS_VIN_HV)	5.4	A	Software limited. IDDMAX (HV/MV current) reflects EDPp based on a 6 uS moving window.	
IDDMAX	VIN Imax (SYS_VIN_MV)	6.0	А	5.4A is for VIN (20V) on SYS_VIN_HV. 6.0A is for VIN (5V) on SYS_VIN_MV. Actual IDDMAX is dependent on VIN (VINMIN)	

Make sure the CVM connector symbol follow the mirrored pin orientation in design guide chapter 3.0.

9.2.55. RG_Config (RG App Configure Register, Page 0xa47, Reg 0x17)

Table 80 RG_Config (RG APP Configure Register, Page 0xa47, Reg 0x17)

Bit	Name	Type	Default	Description
15:4	RSVD	RO	000000000000	Reserved.
3:0	rg_application_cfg	RW	0000	0: xMII (MIJPMHPRGMII) ⇒ 100Base-TI. 1: SGMII (PHY side) ⇒ 100Base-TI. 2: RGMII ½ SGMII (PHY side@ 100Mbps) 3: RGMII ½ SGMII (PHY side@ 1000Mbps) 4: RGMII to SGMII (MAC side)

9.2.56. SGMIICRI (SGMII Control Register 1, Address 0xcc04)

Table 81 SGMIICR1 (SGMII Control Register 1, Address 0xcc04)

Bit	Name	Type	Default	Description
15:10	RSVD	RW	011100	Reserved. Used internally; WRITE is not allowed
9:8	SGMII_mode	RW	00	00: Enable SGMII Auto-Negotiation. 01: Enable SGMII Force mode
7:0	RSVD	RW	0x80	Reserved. Used internally; WRITE is not allowed

9.2.57. SGMIICR2 (SGMII Control Register 2, Address 0xce00)

Bit	Name	Type	Default	Description	
15:1	RSVD	SM,	000000000000000000000000000000000000000	Reserved. Used internally; WRITE is not allowed.	
0	SGMII_rst	RW		To reset the SGMII, please write this bit to 0 first then write back to 1.	

9.2.40. RGTR (RGMII Timing Control Register, Address 0xd082)

| TR. (RCMII Timing Control Register, Address Sud082) | Table 88. ROTR (R0M Timing Control Register, Address Bud082) | Roll Control Register, Address Bud082 | Roll Register, Roll Re

11.11.5.

10001 Reserved. Used internally; WRITE is not allowed.

0000 Add the delay for RXC latching RXD, can be set from 0.9; As per level.

The timing requirement please refers to section 11.11.5.

*Issue a Software Reset (Reg 0 bit[13]-1) after the any adjustment above

Crystal

9.2.55. RG_Config (RG App Configure Register, Page 0xa47, Reg 0x17)

Bit	Name	Type	Default	Description
15:4	RSVD	RO	000000000000	Reserved.
3:0	rg_application_cfg	RW	0000	0: xMII (MII/RMII/RGMIII) => 100Base-T1. 1: SGMII (PHY side) => 100Base-T1. 2: RGMII to SGMII (PHY side)(100Mbps) 3: RGMII to SGMII (PHY side)(100Mbps) 4: RGMII to SGMII (MAC side)

9.2.56. SGMIICR1 (SGMII Control Register 1, Address 0xcc04)

Bit	Name	(Type	Default	Description
15:10	RSVD	RW	011100	Reserved. Used internally; WRITE is not allowed.
9:8	SGMII_mode	RW	00	00: Enable SGMII Auto-Negotiation 01; Enable SGMII Force mode
7:0	RSVD	RW	0x80	Reserved. Used internally, WRITE is not allowed

9.2.57. SGMIICR2 (SGMII Control Register 2, Address 0xce00)

Bit	Name	Type	Default	Description	
15:1	RSVD	SIL	000000000000000000000000000000000000000	Reserved. Used internally; WRITE is not allowed.	
0	SGMII_ist	RW	1	To reset the SGMII, please write this bit to 0 first then write back to 1.	

9.2.40. RGTR (RGMII Timing Control Register, Address 0xd082)

Bit	Name -	Type	Default	Description
15	RSVD	RO	7.70	Reserved.
14	RGMIL Stoke	Est.	Depends	PHY is operating in RGMII mode Decided by hardware configuration, WRITE is not allowed.
13:11	RSVD	RW	000	Restryed, Used internally; WRITE is not allowed.
10	TXC_inv	RW		1: firtigise the TXC waveform Note that if this bit is set to 1, the big/P/IJ EGMII TXC timing should be set to 2 h 10
9.8	RGMII_TXC timing	806	00	Add the delay for TXC latching TXD; 4m per leve The timing requirement please refers to section 11,11.5.
7.4	RSVD	RW	1000	Reserved. Used internally; WRITE is not allowed.
3:0	RGMII_RXC_tening	RW.	0000	Add the delay for RXC lanching RXD, can be set from 0-9, 4m per level. The timing requirement please refers to section 11.11.5.

*Issue a Software Reset (Reg 0 his[15]=1) after the any adjustment above.

Figure 6-4. PCIe Jetson AGX Orin RP to Jetson AGX Orin EP connection Example

8.4 器件功能模式

表 8-1. 功能表

		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
控制输入 ⁽¹⁾	端口状	态	₩. <i>И:</i> -	
DIR	DIR A 端口		操作	
L	输出(启用)	输入(高阻态)	B 数据到 A 总线	
Н	输入(高阻态)	输出(启用)	A 数据到 B 总线	

(1) 数据 I/O 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

ORIN-1B TO 1A 1A:RC 1B:EP

ORIN-1B TO 1A 1A:RC 1B:EP

ORIN-1A TO 1B 1A:RC 1B:EP

1.8V-0.5A

Crystal

Figure 56 RGMII to SGMII Bridge Mode: PHY side, 1000Mbps.

9.2.55. RG_Config (RG App Configure Register, Page 0xa47, Reg 0x17) Table 80 RG_Config (RG APP Configure Register, Page 0xa47, Reg 0x17)

Bit	Name	Type	Default	Description
15:4	RSVD	RO	000000000000	Reserved.
3:0	rg_application_cfg	RW'	0000	0: xMII (MIJRMBI/RGMII) => 100Base-T1. 1: SGMII (PHY side) => 100Base-T1. 2: RGMII % SGMII (PHY side) 100Mbps) 3: RGMII % SGMII (PHY side) 1000Mbps) 4: RGMII to SGMII (MAC side)

9.2.56. SGMIICRI (SGMII Control Register 1, Address 0xcc04)

Bit	Name	Type	Default	Description
15:10	RSVD	RW	011100	Reserved. Used internally; WRITE is not allowed
9:8	SGMII_mode	RW		00: Enable SGMII Auto-Negotiation. 01: Enable SGMII Force mode
7:0	RSVD	RW	0x80	Reserved. Used internally; WRITE is not allowed

9.2.57. SGMIICR2 (SGMII Control Register 2, Address 0xce00)

9.2.40. RGTR (RGMII Timing Control Register, Address 0xd082)

Bit	Name -	Type	Default	Description
15	RSVD	RO(2.70	Reserved.
14	RGMIL Mode	San	Depends	PHY is operating in RGMII mode Decided by handware configuration, WRITE is not allowed.
13:11	RSVD	RW	000	Restryed, Used internally; WRITE is not allowed.
10	TXC_inv	RW		1: firtigise the TXC waveform Note that if this bit is set to 1, the big/P/IJ EGMII TXC timing should be set to 2 h 10
9.8	RGMII_TXC timing	RW	00	Add the delay for TXC latching TXD; 4ns per leve The timing requirement please refers to section 11.11.5.
7.4	RSVD	RW	0001	Reserved. Used internally; WRITE is not allowed.
3:0	RGMII_RXC_tening	Row.	0000	Add the delay for RXC lanching RXD, can be set from 0-9, 4m per level. The trining requirement please refers to section 11.11.5.

*Issue a Software Reset (Reg 0 bit[15]-1) after the any adjustment above.

| File | NC | Size | Document Number | Coc> | Rev | Coc> | Coc> | Size | Sheet | 33 | of 199 |

Crystal

9.2.55. RG_Config (RG App Configure Register, Page 0xa47, Reg 0x17)

Bit	Name	Type	Default	Description
15:4	RSVD	RO	0000000000000	Reserved.
3:0	rg_application_cfg	RW	0000	0: xMII (MILRMH/RGMII) → 100Base-T1. 1: SGMII (PHY side) → 100Base-T1. 2: RGMII to SGMII (PHY sides 1000Mbps) 3: RGMII to SGMII (PHY sides 1000Mbps) 4: RGMII to SGMII (MAC side)

9.2.56. SGMIICR1 (SGMII Control Register 1, Address 0xcc04)

Bit Name 15:10 RSVD		- 5		Name Tyj		me Type Default		Default	Description
				011100	Reserved. Used internally; WRITE is not allowed				
9:8	SGMII_mode	20	RW	00	00: Enable SGMII Auto-Negotiation. 01: Enable SGMII Force mode				
7:0	RSVD		RW	0x80	Reserved. Used internally; WRITE is not allowed				

9.2.57. SGMIICR2 (SGMII Control Register 2, Address 0xce00)

Bit	Name	Type	Default	Reserved Used internally; WRITE is not allowed.	
15:1	RSVD	.80,	000000000000000000000000000000000000000		
0	SGMII_nst	RW	1(To reset the SGMII, please write this bit to 0 first then write back to 1.	

9.2.40. RGTR (RGMII Timing Control Register, Address 0xd082)

Bit	Name	Type	Default	Description
15	RSVD	RO	7.70	Reserved.
14	RGMILStole	San.	Depends	PHY is operating in RGMII mode Decided by hardware configuration, WRITE is not allowed.
13:11	RSVD	RW	000	Restryed, Used internally; WRITE is not allowed.
10	TXC_inv*	RW		1: firtigise the TXC waveform Note that if this bit is set to 1, the big/P/IJ EGMII TXC timing should be set to 2 h 10
9.8	RGMII_TXC timing	806	00	Add the delay for TXC latching TXD; 4ns per leve The timing requirement please refers to section 11.11.5.
7.4	RSVD	RW	1000	Reserved. Used internally; WRITE is not allowed.
3:0	RGMII_RXC_tening	RW.	0000	Add the delay for RXC lanching RXD, can be set from 0-9, 4m per level. The timing requirement please refers to section 11.11.5.

^{*}Issue a Software Reset (Reg 0 hit[15]-1) after the any adjustment above.

Figure 6-4. PCIe Jetson AGX Orin RP to Jetson AGX Orin EP connection Example

8.4 器件功能模式

表 8-1. 功能表

控制输入(1)	端口状	态	+#. <i>U</i> -:	
DIR	A 端口	B 端口	- 操作	
L	输出(启用)	输入(高阻态)	B数据到A总线	
Н	输入(高阻态)	输出(启用)	A 数据到 B 总线	

(1) 数据 I/O 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

ORIN-2B TO 2A 2A:RC 2B:EP

ORIN-2B TO 2A 2A:RC 2B:EP

ORIN-2A TO 2B 2A:RC 2B:EP

33R-0402NC

1.018-597-0402 R 267 15-0402 N-027 3 R 263 F 742324-, 12MHz

2071-2071 10-7-397-040 1 12MHzNC

Title
USB2.0_18.8.2#2
Size Document Number
Cust ImreDocsDate:

3V3_ORIN_2AB

功放改为12V输入

MCU GPIO X0 JPS GPIO X0 MCU GPIO X1 THIS GPIO X0 MCU GPIO X1 THIS GPIO X0 MCU GPIO X2 JFG GPIO X1 MCU GPIO X2 JFG GPIO X2 JFG GPIO X3 MCU GPIO X5 HFI GPIO X4 MCU GPIO X5 HFI GPIO X6 MCU GPIO X5 HFI GPIO X7 MCU GPIO X6 HFI GPIO X7 MCU GPIO X6 HFI GPIO X7 MCU GPIO X6 MCU GPIO X7 MCU GPIO X6 MCU GPIO X6 MCU GPIO X6 MCU GPIO X6 MCU GPIO X10 HFI GPIO X8 MCU GPIO X10 HFI GPIO X9 MCU GPIO X10 HFI GPIO X10

Typical Current Consumption

.) prom content companipuon		
Operation	HL-T Current (mA)	HS-T Current (mA)
SDR Read 50 MHz	10	10
DDR Read (HyperBus)	75 (166 MHz)	156 (200 MHz)
Program	50	50
Erase	50	50
Standby (HS-T)	0.014	0.011
Deep Power Down (HS-T) 0.0022		0.0013

default is 1.8V

至少20mil线径 1.5A

8.4 器件功能模式

表 8-1. 功能表

控制输入(1)	端口状	态	₩. // 		
DIR	A 端口	B 端口	操作		
L	输出(启用)	输入(高阻态)	B 数据到 A 总线		
Н	输入(高阻态)	输出(启用)	A 数据到 B 总线		

(1) 数据 I/O 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

Deault:S76HS512TC0BHB010 1.8V

S76HS512TC0BHB010 1.8V S76HL512TC0BHB010 3.3V

MT35XU256ABA1G12-0AUT 1.8V

M-MCU ID:0X03

使用网口OTA的话,BOOTSTRAP pin只要不是USB MODE即可

8.4 器件功能模式

备份

表 8-1. 功能表

控制输入(1)	増口:	火 舂	操作	
DIR	A 増口	B 増口	The state	
L	输出(启用)	输入(高阻态)	B数据到A总线	
н	输入(高阻态)	输出(启用)	A 数据到 B 总线	

(1) 数据 VO 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

Title

<Title>
Size | Document Number | Rev |
C | Obcs | Short | St | of 100

8.4 器件功能模式

表 8-1. 功能表

控制输入(1)	端口北	犬态	操作
DIR	A 端口	B 端口	‡#TF
L	输出(启用)	输入(高阻态)	B数据到A总线
н	输入(高阻态)	输出(启用)	A 数据到 B 总线

(1) 数据 I/O 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

default is 3.3V

3.3V 1A

MCU_GPIO_LO_ENET2_MDIO ————————————————————————————————————	' ТС	S-MCU x2					
S2#_BAKA_MCU_RESET [78]		D FICO AZ					
MCU_GPIO_L2_ENET2_RMII_REF_CLK ADC_CTRL_F [99,112,181]							
MCU_GPIO_L3_ENET2_TXD0							
MCU_GPIO_L4_ENET2_TXD1		UART16:MCU TO	ORIN	1 B	DEBUG	HART	LOGGER
MCU_GPIO_L5_ENET2_TXEN R8165			_			011111	Досоди
MCI CRIO 17 ENET? BYDO D0444 OD 0402		RESET TO ORIN					
WOLLONG LA FRIETZ DYDI.		UART15:MCU TO	ORIN	2A	DEBUG	UART	LOGGER
MCU_GPIO_L9_ENET2_RXDV R8193		UART14:MCU TO	ORIN	2B	DEBUG	UART	LOGGER
2B_UART3_TX_DEBUG_3V3_MCU [36]							

UART4: DEBUG

UART5:NMEA/PPS OUT
UART7:NMEA/PPS IN

UART10:SAFETY TO ORIN 2A UART11:SAFETY TO ORIN 1A UART9:SAFETY TO ORIN 2B

UART2:AP TO ORIN 1B

UART3 :M-MCU TO S1-MCU UART10 UART6 :M-MCU TO S2-MCU UART10

UART8 :M-MCU TO ORIN-1A DEBUG LOGGER

UART16:MCU TO ORIN 1B DEBUG UART LOGGER UART15:MCU TO ORIN 2A DEBUG UART LOGGER

UART14:MCU TO ORIN 2B DEBUG UART LOGGER

CANFD X21

MCU_GPIO_D0	R1797	OR-0402	CANFD1_RX	≪CANFD1 RX	[64	,
				((CANDI_IX	[U4	1
MCU_GPIO_D1	R1798	0R-0402	CANFD1_TX	⟨CANFD1_TX	50.41	
				((CAMPDI_IX	[64]	
MCU_GPIO_D2	R1800	0R-0402	CANFD2 RX			
MICO_CI IO_DE	10000	010-0402	OTHER DZ_TOC	CANFD2_RX	[64]
MCU CDIO DO		op o 100	CANEDO TV			
MCU_GPIO_D3	R1804	0R-0402	CANFD2_TX	CANFD2_TX	[64]	
MCU_GPIO_D4	R1805	OR-0402	CANFD3_RX	CANFD3_RX	[64	1
MCU_GPIO_D5	R1806 -	0R-0402	CANFD3_TX	CANFD3_TX	[64]	
))CAN DO_IX	[04]	
MCU_GPIO_D6	R1811	0R-0402	CANFD4_RX			
mico_ci io_bo	KIOII	010-0402	O1111 D4_101	────────────────────────────────────	[64]
MOUL OBIO BY			OANEDA TV			
MCU_GPIO_D7	R1812	0R-0402	CANFD4_TX	>>CANFD4_TX	[64]	
				**		
MCU_GPIO_D8	R1813	OR-0402	CANFD5_RX	≪CANFD5 RX	[64	,
				((CAMPDS_KX	[04	ı
MCU GPIO D9	R1814	0R-0402	CANFD5 TX			
	1014	010-0402	Oriti DO_TX	CANFD5_TX	[64]	
MCU_GPIO_D10	R1817	0R-0402	CANFD6_RX	CANFD6_RX	[64]
MCU_GPIO_D11	R1820	0R-0402	CANFD6_TX	>>CANFD6_TX	[64]	
	_			//	1	
MCU GPIO D12	R1825 -	OR-0402	CANFD7 RX			
MCU_GPIO_D13	R1826	0R-0402	CANFD7_TX	CANFD7_RX CANFD7_TX	[64]	J
MCU GPIO D14	D.1007	- OD 0400	CANFD8 RX	//oran D1_1X	[04]	
MCU GPIO D15	R1827 R1828	0R-0402 0R-0402	CANFDS_RX	CANFD8_RX	[64	
	TUICEO	011 0 402		CANFD8_TX	[64]	
MOUL OBIO BAO			OANEDO DV			
MCU_GPIO_D16 MCU_GPIO_D17	R1831 R1832	0R-0402 0R-0402	CANFD9_RX CANFD9_TX	CANFD9_ CANFD9_	RX	[64]
	TUTOUL	011 0402		>>CANFD9_	,TX	[64]
MCU_GPIO_D18	R1833	OR-0402	CANFD10_RX) RX	[64]
MCU_GPIO_D19 MCU_GPIO_D20	R1834	0R-0402	CANFD10_TX CANFD11_RX	CANFD10	_TX	[64]
MCU GPIO D21	R1835	0R-0402 0R-0402	CANFD11_TX	CANFD11	1_RX	[64]
MCU_GPIO_D22	R1837	0R-0402	CANFD12_RX	CANFD11		[64]
MCU_GPIO_D23	R1838	0R-0402	CANFD12_TX	CANFD12		[64]
MCU_GPIO_D24	R1839 =	0R-0402	CANFD13_RX	CANFD12		[64] [65]
MCU_GPIO_D25	R1840	0R-0402	CANFD13_TX	CANFD13		[65]
MCU_GPIO_D26	R1841	0R-0402	CANFD14_RX	CANFD14	1 RY	[65]
MCU_GPIO_D27 MCU_GPIO_D28	R1842	0R-0402	CANFD14_TX CANFD15_RX	WCANED14	TX	[65]
MCU GPIO D29	R1843	0R-0402	CANFDIS_RX CANFDIS_TX	CANFD15	5 RX	[65]
MCU_GPIU_D29	R1844	0R-0402	CANFDIS_IX	CANFD15	_TX	[65]
MCU_GPIO_D30	R1845 -	OR-0402			- 00	[65]
MCU_GPIO_D31	R1846	0R-0402		CANFD16		[65]
MCU_GPIO_D32	R1849	0R-0402		CANFD17		[65]
MCU_GPIO_D33 MCU_GPIO_D34	R1850 R1851	0R-0402 0R-0402		>>CANFD17	_TX	[65]
MCU GPIO D35	R1851	0R-0402		CANFD18	B_RX	[65]
MCU GPIO D36	R1853	0R-0402		——— CANFD18	_TX	[65]
MCU GPIO D37	R1854	0R-0402		CANFD19	J_RX	[65]
MCU_GPIO_D38	R1855	0R-0402		CANFD19	LIX	[65] [65]
MCU_GPIO_D39	R1856	0R-0402		CANFD20	TY	[65]
MCU_GPIO_D40	R1857	0R-0402		CANFD21	RX.	
MCU_GPIO_D41	R1858	0R-0402		CANFD21	_tx	[65] [65]

至少20mil线径

Deault:S76HS512TC0BHB010 1.8V

S76HS512TC0BHB010 1.8V S76HL512TC0BHB010 3.3V

MT35XU256ABA1G12-0AUT 1.8V

8.4 器件功能模式

表 8-1. 功能表

	控制输入 ⁽¹⁾	増口	状态	AME AND	
	DIR	A 増口	B増口	操作	
	L	输出(启用)	输入(高阻态)	B数据到A总线	
L	Н	输入(高阻态)	输出(启用)	A 数据到 B 总线	

(1) 数据 NO 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

Cities
Cities
Size Document Number
D Cobec
Size Power 70 of 190

default mode is FLASH BOOT

MCU_GPIO_A15 R2238 PR-0402 D53 R2308 OFFE VOD3VA_SAI

MCU ID:0X02

Boot Mode	Description	Notes
1110 50	User JTAG Mode	In this mode Boot ROM lockout Semidrive confidential information then configure core into ARM mode disable MPU then enable JTAG. This mode available on Development mode only
0000	XSPI1 NORHyper Flash	
0001	XSPI3 NANO Flash	3/1
0010	eMMC1	G*
0011	501	
0100	502	
0101	XSPI Slave Port	Boot from XSPI slave interface
1000	USB Boot	

Title CTitle CTI

UART4:NMEA/PPS IN

UART7: DEBUG

UART10:TO M-MCU UART3

UART11:485 UART9:485

UART3 :485 UART6 :485

UART2: TO IO CON UART8: TO IO CON

MCU_GPIO_E16 R2342 OR-0402

MCU_GPIO_E18 R2344 ___0R-0402

MCU_GPIO_E19 R2345 _____0R-0402

MCU_GPIO_E20 R8952 GR-0402 MCU_GPIO_E21 R8953 GR-0402 MCU_GPIO_E22 R8954 GR-0402 | No. | No.

-05V ORIN 2ΔR

REGES 4.7K.0402 PHACE_ENT (177)
REGES 4.7K.0402 PHACE_ENT (178)

至少20mil线径

Deault:S76HS512TC0BHB010 1.8V S76HS512TC0BHB010 1.8V S76HL512TC0BHB010 3.3V MT35XU256ABA1G12-0AUT 1.8V

8.4 器件功能模式

表 8-1. 功能表

拉制输入 ⁽¹⁾	増口	状态	操作
DIR	A 増口	B増口	ZMTP.
L	输出(启用)	输入(高阻态)	B数据到A总线
н	输入(高阻态)	输出(启用)	A 数据到 B 总线

(1) 数据 VO 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

MOU GPO_A15 R2531 06,0462 R2601 R260

default mode is FLASH BOOT

Boot Mode	Description	Notes
1110 50	User JTAG Mode	In this mode, Boot ROM lockout Semidrive confidential information then configure core into ARM mode disable MPU then enable JTAG. This mode available on Development mode only
0000	XSPI1 NOR/Hyper Flash	
0001	XSPI3 NANO Flash	477
0010	eMMC1	G* -
0011	501	
0100	502	
0101	XSPI Slave Port	Boot from XSPI slave interface
1000	USB Boot	-

MCU ID:0X01

Title CTitle CTI

89586 IN

89586 OUT

UART4:NMEA/PPS IN

UART7:DEBUG

UART10:TO M-MCU UART3

UART11:485 UART9:485

UART3 :485 UART6 :485

UART2: TO IO CON UART8: TO IO CON

MUX-2

DEFAULT IS ORIN1A

门槛电压: 0.8V delay time is 10ms

File USE2.0_154.0H-CERUS File File Control Number Control Cont

M-MCU DEBUG UART

8.4 器件功能模式

表 8-1. 功能表

1V8_HUB - R0411 - 1K-040

控制输入 (1)	増口	表	AM 28+
DIR	A 増口	B 増口	操作
L	输出(启用)	输入(高阻态)	B数据到A总线
н	输入(高阻态)	输出(启用)	A 数据到 B 总线

(1) 数据 I/O 的输入电路始终处于激活状态,并应保持为有效逻辑电平。

Table 1. Function Table

RST_FT4232_3_1A_1V8 [4] RST_FT4232_3_2A_1V8 [27]

INPUTS		INPUT/OUTPUT	FUNCTION
ŌĒ	S	A	FUNCTION
L	L	B1	A port = B1 port
L	н	B2	A port = B2 port
н	X	Z	Disconnect

门槛电压: 0.8V delay time is 10ms

This part power is used to ORIN 1A/1B.

Power sequence: 12V>>12V_PG(VIN_PWR_BAD_N) 12V_PG(3V3/1V8_EN)->3V3_PG(MODULE_POWER_ON)

This part power is used to ORIN 2A/2B.

Mirror

12V 3合1

S0-MCU处理

S1-MCU处理

M-MCU不处理

.....

5V 2A

P8 ADRESS:0 1000BASE-T1 MASTER RGMII MODE PHY管理 MDCMDIO 原生

本页所有磁珠保证通流1A

RGMII 1.8V BANK MDCMDIO 3.3V BANK P8 13

2.6.1 MDIO and MDC Interfaces

The MIDO and MIDC Interfaces can support either 2.5V or 3.3V operation depending on the voltage on the CVPID. The MIDC color can operate at rates up to 25 MHz. By default, the RCM8988 support peramble suppression. This still requires preamble of 32 ones for the first MIDIO transaction. To disable preamble suppression set DEVAD = 0x1, Address = 0xADOL and 180] 0 = 0.00.

Figure 10: Power-Up and Power-Down Sequence

Table 2: MDI Hardware Configuration Settings

MDI Configuration	AN_EN	SPD	MS
Force 100BASE-T1 Secondary	0	0	0
Force 100BASE-T1 Master	0	0	1
Force 1000BASE-T1 Secondary	0	1	0
Force 1000BASE-T1 Master	0	1	1

本页所有磁珠保证通流1A

ADRESS:3

1000BASE-T1 MASTER

SGMII MODE

PHY管理 IO模拟

P4 3.3V IO

3.3V BANK

P5 6 9 4

ADRESS:0
1000BASE-T1 MASTER
SGMII MODE

P5 3.3V IO

3.3V BANK P5 6 9 4

PHY管理 MDC/MDIO原生

ADRESS:1
1000BASE-T1 MASTER
SGMII MODE

PHY管理 MDC/MDIO原生

P6 3.3V IO

3.3V BANK

P5 6 9 4

ADRESS:2

1000BASE-T1 MASTER

SGMII MODE

PHY管理 MDC/MDIO原生

P9 3.3V IO

3.3V BANK P5 6 9 4

P8 ADRESS:0 1000BASE-T1 MASTER RGMII MODE PHY管理 MDCMDIO 原生

本页所有磁珠保证通流1A

RGMII 1.8V BANK MDCMDIO 3.3V BANK P8 13

Con-

2.6.2 PHY Address

The BCM898M allows a unique PHY address for the Management Interface. The address is set through the logic value of PHYAD, latched during reset. PHYAD is shared with the RXD1. The BCM89864 checks each Mil management read or write command and performs the operation only if the address in the command matches the latched PHY address stored in the drivice.

Table 9: PHY Address Se	ttings	
PHYAD	PHY Address	×
0	0x0	
1	0x1	(c)

Figure 5 shows a typical layout for the Management interface. To set a PHY Address signal to 0, have the signal floating. No external pull-down resistor is required since the PHYAD address signal has internal pull-down resistors. To set the PHYAD address signal to 1, install a 1-7-80 pull-operations (Fig. 10 or OVIO.)

The MDIO signal typically require a 1.5-kD pull-up resistor ($R_{\rm BMO}$) near the MAC, a series termination resistor near the MAC ($R_{\rm BMI}$) and series semination resistor near the PMP ($R_{\rm BMI}$) to match the trace impedance of the line. (Cortact the MAC vector for requirements, Fer 500 lases, staff $R_{\rm BMI}$ in 330 ministor.

The MDC signal typically requires a 1.5-k Ω pull-up resistor (R_{MAC}) near the MAC, a series termination resistor near the MAC (R_{MAC}) to match the trace impedance of the line (contact the MAC vendor for requirements).

When a MAC is driving more than one PHY, a star topology, shown in Figure 6, can be used for clock distribution. In this approach, the stub lengths should be kept equal to obtain the best results.

P13 ADRESS:1 1000BASE-T1 MASTER RGMII MODE

PHY管理 MDC/MDIO原生

本页所有磁珠保证通流1A

RGMII 1.8V BANK MDCMDIO 3.3V BANK P8 13

2.6.1 MDIO and MDC Interfaces

The MDIO and MDIC interfaces can support either 2.5½ or 3.3½ operation depending on the voltage on the OVIDO. The MDIC clock can operate at rates up to 25 MHz. By default, the BCM80884 supports preamble suppression. This still requires a preamble of 32 cores for the first MDIO transaction. To disable preamble suppression set 0EVAD = 0x1, Address = 0x4,000, and bttl] = 0.00.

| V₁₀ + 2.9V | V₁₀

Table 2: MDI Hardware Configuration Settings

MDI Configuration	AN_EN	SPD	MS	
Force 100BASE-T1 Secondary	0	0	0	
Force 100BASE-T1 Master	0	0	1	
Force 1000BASE-T1 Secondary	0	1	0	
Force 10008ASE-T1 Master	0	1	1	

本页所有磁珠保证通流1A

ADRESS:3
1000BASE-T1 MASTER
SGMII MODE

PHY管理 IO模拟

P4 3.3V IO 3.3V BANK P5 6 9 4

ADRESS: 0

1000BASE-T1 MASTER P5 3V3 IO SGMII MODE

3.3V BANK P5 6 9 4

PHY管理 MDC/MDIO原生

ADRESS:1
1000BASE-T1 MASTER P6
SGMII MODE

P6 3V3 IO 3.3V BANK P5 6 9 4

PHY管理 MDC/MDIO原生

ADRESS: 2

1000BASE-T1 MASTER P9 3V3 IO

SGMII MODE

PHY管理 MDC/MDIO原生

3.3V BANK P5 6 9 4

外置IMU给到4个ORIN+S1/S2-MCU

IMU TO ORIN x4+S1/S2-MCU 接到IO CON

IMU TO ORIN 1A/B ORIN OUT

H: A TO B L: B TO A

United Andrews

CONTROL INPUTS		Port Status		OPERATION	
ŌĒ	DIRx	A PORT	B PORT	OPERATION	
L	L	Output (Enabled)	Input (Hi-Z)	B data to A bus	
L	H	Input (Hi-Z)	Output (Enabled)	A data to B bus	
H	×	Input (Hi-Z)	Input (Hi-Z)	Isolation	

Table 2. Function Table (Each Transceiver)(1)(2)

Input circuits of the data I/Os are always active.
 Pins configured as inputs should not be left floating.

IMU TO ORIN 2A/B

ORIN 1A/B UART4 TO IO CON

1 C3119 1 UF-507 6992 o1V8_ORIN_1AB 3V3_ORIN_1ABo 1 UF-507 6969 C5120

1 CS121 1 UF-507 0402 01V8_ORIN_1AB 3V3_ORIN_1AB0 1 UF-507 0402 CS122

CONTROL INPUTS		Port Status		OPERATION	
ŌĒ	DIRx	A PORT	B PORT	OPERATION	
L	L	Output (Enabled)	Input (Hi-Z)	B data to A bu	
L	H	Input (Hi-Z)	Output (Enabled)	A data to B but	
H	×	Input (Hi-Z)	Input (Hi-Z)	Isolation	

3V3_ORIN_2AB 1V8_ORIN_2AB

8.4 器件功能模式

DIR	■□	-	
	A.MID	8 100	365
L	報由(42円)	施入(成別お)	BRIDAGE
H .	第人《初期息》	901000	ABBRESS

File BALL CON
Size | Discussed Number
Confercition
Size | Discussed Number

本页芯片供电引脚应至少1A

Size 611332 CON+-5YSTEM
Size | Document Number | Rev.
Cost(minOb) | disc)

Time . Times

