L6. Bayesian Decision Analysis

Bayesian Regression

Linear regression:

$$y_i = \alpha + \beta x_i + \epsilon$$

Probabilistic reformulation:

$$y_i \sim N(\alpha + \beta x_i, \sigma^2)$$

 $\epsilon \sim N(0, \sigma^2)$

$$\begin{array}{ll} \text{Group 1} & (x_{1,1},y_{1,1}), (x_{2,1},y_{2,1}), ..., (x_{i,1},y_{i,1}), ..., (x_{n_1,1},y_{n_1,1}) \\ \text{Group 2} & (x_{1,2},y_{1,2}), (x_{2,1},y_{2,2}), ..., (x_{i,2},y_{i,2}), ..., (x_{n_2,2},y_{n_2,2}) \\ & \vdots \\ \text{Group } j & (x_{1,j},y_{1,j}), (x_{2,j},y_{2,j}), ..., (x_{i,j},y_{i,j}), ..., (x_{n_j,j},y_{n_j,j}) \\ & \vdots \\ \text{Group } J & (x_{1,J},y_{1,J}), (x_{2,J},y_{2,J}), ..., (x_{i,J},y_{i,J}), ..., (x_{n_J,J},y_{n_J,J}) \end{array}$$

Linear regression:

$$y_{i,j} = \alpha_j + \beta_j x_{i,j} + \epsilon$$

Probabilistic reformulation:

Fixed hyper parameters

 x_I

$$y_{i,j} \sim N(\alpha_j + \beta_j x_{i,j}, \sigma_j^2)$$

$$\epsilon \sim N(0, \sigma_j^2)$$

 θ_1

 y_1

 χ_1

$\theta_{j} \qquad \theta_{j} \qquad \theta_{j} = (\alpha_{j}, \beta_{j}, \sigma_{j})$ $\alpha_{j} \sim N(\mu_{\alpha} = 0, \sigma_{\alpha} = 20^{2})$ $\beta_{j} \sim N(\mu_{\beta} = 0, \sigma_{\beta} = 20^{2})$

 $\sigma_i \sim U(0,20)$

$$y_j = (y_{1,j}, y_{2,j}, ..., y_{nj,j})$$

 $x_j = (x_{1,j}, x_{2,j}, ..., x_{nj,j})$

 x_i

Linear regression:

$$y_{i,j} = \alpha + \beta x_{i,j} + \epsilon$$

Probabilistic reformulation:

$$y_{i,j} \sim N(\alpha + \beta x_{i,j}, \sigma^2)$$

 $\epsilon \sim N(0, \sigma^2)$

$$y_j = (y_{1,j}, y_{2,j}, ..., y_{nj,j})$$

 $x_j = (x_{1,j}, x_{2,j}, ..., x_{nj,j})$

Linear regression:

$$y_{i,j} = \alpha_j + \beta_j x_{i,j} + \epsilon$$

Probabilistic reformulation:

$$y_{i,j} \sim N(\alpha_j + \beta_j x_{i,j}, \sigma_j^2)$$

$$\epsilon \sim N(0, \sigma_i^2)$$

 θ_1

 y_1

 x_1

 $\sigma_i \sim U(0,20)$

$$y_j = (y_{1,j}, y_{2,j}, \dots, y_{nj,j})$$

 $x_j = (x_{1,j}, x_{2,j}, \dots, x_{nj,j})$

 x_j

 x_I

Linear regression:

$$y_{i,j} = \alpha_j + \beta_j x_{i,j} + \epsilon$$

Probabilistic reformulation:

$$y_{i,j} \sim N(\alpha_j + \beta_j x_{i,j}, \sigma_j^2)$$

$$\epsilon \sim N(0, \sigma_j^2)$$

Fixed hyper parameters

$$y_j = (y_{1,j}, y_{2,j}, ..., y_{nj,j})$$

 $x_j = (x_{1,j}, x_{2,j}, ..., x_{nj,j})$

Fixed hyper parameters

$$\theta_{1}$$

$$\theta_{j}$$

$$\theta_{j}$$

$$\theta_{j} = (\alpha_{j}, \beta_{j}, \sigma_{j})$$

$$\alpha_{j} \sim N(\mu_{\alpha}, \sigma_{\alpha})$$

$$\beta_{j} \sim N(\mu_{\beta}, \sigma_{\beta})$$

 $\sigma_i \sim U(0,20)$

$$y_j = (y_{1,j}, y_{2,j}, \dots, y_{nj,j})$$

$$x_j = (x_{1,j}, x_{2,j}, ..., x_{nj,j})$$

Bayesian Regression

$$y_{i,j} = \alpha + \beta x_{i,j} + \epsilon$$
$$y_{i,j} \sim N(\alpha + \beta x_{i,j}, \sigma^2)$$
$$\epsilon \sim N(0, \sigma^2)$$

Fixed hyper parameters

Hierarchical Bayesian Regression

$$y_{i,j} = \alpha_j + \beta_j x_{i,j} + \epsilon$$

$$y_{i,j} \sim N(\alpha_j + \beta_j x_{i,j}, \sigma_j^2)$$

$$\epsilon \sim N(0, \sigma_j^2)$$

Fixed hyper parameters

Per group parameter

Bayesian decision theory

- ✓ Model has been built.
- ✓ The inferences are conducted.
- ✓ Model has been checked.

- What else?
- Two ways of using Bayesian inference in decision making
 - (1) Measure uncertainties regarding predictive quantiles

Bayesian inference

(2) Within decision analysis (Multi-stages decision problems)

Elements of Bayesian decision analysis

Decision analysis is inherently more complicated than statistical inference because it involves optimization over decision as well averaging over uncertainties

Elements of Bayesian decision analysis

- 1. Enumerate the space of all possible decisions (actions) a and outcome o
 - -The vector of outcomes o can include observables (predicted values \tilde{y}) and parameters θ
- 2. Determine p(o|a), a conditional posterior probability distribution of outcomes o for each decision option a
 - -Outcome o is random variable, while decision a is deterministic (set by user)
- 3. Define a utility function U(o) mapping outcomes o onto the real numbers
 - If multiple attributes (vector) o is considered, the utility function must trade off different goods
- 4. Compute the E = expected utility E(U(o)|a) as a function of the decision a, and choose the decision with highest expected utility

Examples that will discussed in the lecture

- 1. Survey incentives
 - ✓ Conduct only step 1 and 2 to estimate the expected effect depending on the option that can be taken
- 2. Medical test decision
 - ✓ Conduct only step 1 and 2 in a sequential decision making and computed value of information
- 3. Risk analysis of Radon exposure and making prevention strategies
 - ✓ Conduct the full Bayesian analysis

- Do the benefits of incentives outweigh the cost?
- If an incentive is given,
 - ✓ how and when should it be offered
 - ✓ whom should it be offered to
 - ✓ what form should it take
 - ✓ how large should its value be?

Data descriptions:

The New York City Social Indicators Survey, a telephone study conduced every two years that has had a response rate below 50%

- In total 39 surveys including 101 experiment conditions are conducted:
- y_i is the observed response rate for observation i = 1, ..., 101
- All experiments has different conditions x_i on:
 - -The value of the incentive (in tens of 1999dollars)
 - -The timing of the incentive payment (given before the survey or after)
 - -The form of the incentive (cash or gift)
 - -The mode of the survey (face-to-face or telephone)
 - -The burden or effort, required to survey respondents (high burden or low burden)
- Use the differences, $z_i = y_i y_i^0$, where y_i^0 corresponds to the lowest valued incentive condition

A simple linear regression approach

Response rate :
$$y_i = X_i \beta + \beta_0$$
 $y_i = \frac{n_i}{N_i} = \frac{repondents}{Trial}$

Predictor variables : $X_i = (X_{1,i}, X_{2,i}, X_{3,i}, X_{4,i}, X_{5,i})$

 $X_{1,i}$: The value of the incentive (in tens of 1999dollars)

 $X_{2,i}$: The timing of the incentive payment (given before the survey or after)

 $X_{3,i}$: The form of the incentive (cash or gift)

 $X_{4,i}$: The mode of the survey (face-to-face or telephone)

 $X_{5,i}$: The burden or effort, required to survey respondents (high burden or low burden)

Limitations in employing a classical regression model relating y_i to the predictor variables:

- Unable to model interactions
- Unable to reflect the hierarchical structure of the data
- Difficulty in dealing with unequal sample size

 Step1: perform a meta-analysis to estimate the effects of incentives on response rate, as a function of the amount of the incentive and the way it is implemented

 $\alpha_{j(i)}$: random effect for the survey $j=1,\ldots,39$ (address the hierarchical structure)

 $X_i eta$: linear predictor for conditioned on data point i

 π_i : population response probability i=1,... , 101

 N_i : number of persons contacted

 n_i : number of respondents $(y_i = n_i/N_i)$

 Step1: perform a meta-analysis to estimate the effects of incentives on response rate, as a function of the amount of the incentive and the way it is implemented

$$y_{1,1} = \frac{n_{1,1}}{N_{i,i}}$$
 Response rate

• Step2 : use the inference to estimate the costs and benefits of incentives

Some of the findings are:

- an extra \$10 in incentive is expected to increase the response rate by 3–4 percentage points
- cash incentives increase the response rate by about 1 percentage point relative to noncash
- prepaid incentives increase the response rate by 1–2 percentage points relative to postpaid
- incentives have a bigger impact (by about 5 percentage points) on high-burden surveys compared to low-burden surveys.

These inferences can be used to design a new survey (cost vs. response rate)

95-year-old man with an apparently malignant tumor in the lung

Bayesian inference is particularly useful in updating the state of knowledge with the information gained at each step.

Single decision point (without test)

Cost of Radiotherapy and Surgery = 1

Quality-adjusted life expectancy under each treatment:

- With no treatment : $0.1 \times 34.8 + 0.9 \times 5.6 = 8.5 \, m$
- With radiotherapy: $0.1 \times 34.8 + 0.9 \times 16.7 1 = 17.5 m$ \longleftarrow Best option
- With surgery $0.35 \times 0 + 0.65 \times (0.1 \times 34.8 + 0.9 \times 20.3 1) = 13.5 m$

Based on the test result, the probability of cancer can be updated using Bayes rule:

$$Pr(C|T) = \frac{Pr(C) p(T|C)}{Pr(C) p(T|C) + Pr(NC) p(T|NC)}$$

• Updated information can be used for sequential decision making

Update information based on the test results

$$Pr(T = +) = Pr(NC) p(T = +|NC) + Pr(C) p(T = +|C)$$

$$= 0.1 \cdot 0.02 + 0.9 \cdot 0.7 = 0.632$$

$$Pr(T = -) = Pr(NC) p(T = -|NC) + Pr(C) p(T = -|C)$$

$$= 0.1 \cdot 0.98 + 0.9 \cdot 0.3 = 0.368$$

$$Pr(C|T) = \frac{\Pr(C) p(T|C)}{\Pr(T)}$$

$$Pr(C|T = +) = \frac{0.9 \cdot 0.7}{0.1 \cdot 0.02 + 0.9 \cdot 0.7} = 0.997$$

$$Pr(C|T = -) = \frac{0.9 \cdot 0.3}{0.1 \cdot 0.98 + 0.9 \cdot 0.3} = 0.734$$

$$Pr(NC|T) = \frac{\Pr(NC) p(T|NC)}{\Pr(T)}$$

$$Pr(NC|T = +) = \frac{0.1 \cdot 0.02}{0.1 \cdot 0.02 + 0.9 \cdot 0.7} = 0.003$$

$$Pr(NC|T = -) = \frac{0.1 \cdot 0.98}{0.1 \cdot 0.98 + 0.9 \cdot 0.3} = 0.266$$

Choose the best action at the second stage using the updated information

$$Pr(cancer|T=+) = \frac{0.9 \cdot 0.7}{0.9 \cdot 0.7 + 0.1 \cdot 0.02} = 0.997$$

Quality-adjusted life expectancy under each treatment:

- With no treatment : $0.997 \cdot 5.6 + 0.003 \cdot 34.8 = 5.7$ months
- With radiotherapy : $0.997 \cdot 16.7 + 0.003 \cdot 34.8 1 = 15.8$ months Best action
- With surgery $: 0.35 \cdot 0.65(0.997 \cdot 20.3 + 0.003 \cdot 34.8 1) = 12.6 \text{ months}$

$$Pr(cancer|T = -) = \frac{0.9 \cdot 0.3}{0.9 \cdot 0.3 + 0.1 \cdot 0.98} = 0.734$$

Quality-adjusted life expectancy under each treatment:

- With no treatment : $0.734 \cdot 5.6 + 0.266 \cdot 34.8 = 13.4$ months
- With radiotherapy : $0.734 \cdot 16.7 + 0.266 \cdot 34.8 1 = 20.5 \text{ months}$
- With surgery $: 0.35 \cdot 0.65(0.734 \cdot 20.3 + 0.266 \cdot 34.8 1) = 15.1 \text{ months}$

It is clear conducting a test is not a good idea since no change in the selected option!

Sequential decision making

When selecting a decision at the first state, we should assume that all the decisions at the subsequent stages will be made optimum!! (key idea of sequential decision making: Control, MDP)

Decision analysis for performing test

(0.95) is accounting for the 5% chance that the test can be fatal)

- No test: 17.5 months is the best.
- Test: $0.368 \cdot 19.5 + 0.632 \cdot 15.0 = 16.6 \ months$

No change in the selected option and no improvement in the expected cost

→ Not conducting the test is the best option

Two tasks:

- Given prior information about Radon concentration, decide whether to conduct a measurement test (first decision)
- Given the measurement of Radon concertation (we have a posterior of Radon con.), decide whether to remediate (second decision)

Performing the decision analysis requires estimating for the risks, which is done by using hierarchical Bayesian model

Define utility: trades off dollars and lives

- D_d , the dollar value associated with a reduction of 10^{-6} in probability of death for lung cancer (the money that you are willing to pay to reduce 10^{-6} in probability of death for lung cancer)
- D_r , the dollar value associated with a reduction of 1 pCi/L in home radon level for 30-year period
 - depends on the number of lives saved by a drop in the Radon level
 - affected by variety of factors including gender, smoking status...
 - $D_r = 4800D_d$ (typical U.S. household)
- R_{action} , the home radon level above which you should remediate if your radon level is known
 - depends on the dollar value of radon reduction and the benefits of remediation

Action level R_{action} is determined as the value at which the benefit of remediation

$$$D_r(R_{action} - R_{remed}) = \text{remediation cost of } $2,000$$

$$R_{action} = \frac{$2,000}{D_r} + R_{remedy}$$

where
$$R_{remed} = \begin{cases} 2 & \text{if home radon level} > 2 \\ \text{home radon level} & \text{otherwise} \end{cases}$$

 $R_{action} = 4$ pCi/L is used as exemplary value, which can vary depending on financial resources, general risk tolerance, attitude toward risk, smoking status, etc.

Bayesian inference for country radon level

Two data sets:

- Long-term measurements from approximately 5,000 houses, selected as a cluster sample from 125 randomly selected counties
- Short-term measurements from about 80,000 houses, sampled at random from all the counties in the U.S.

a relatively small amount of accurate data VS. a large amount of biased and imprecise data

Challenges:

Use the good data to calibrate the bad data, so that inference can be made about the entire counties, not merely the 125 counties in the sample of long-term measurements

Hierarchical modeling for individual house radon level

Hierarchical modeling for individual house radon level

 W_j : county-level predictors including climate data and a measure of the uranium level in the soil X_i : household-level predictors including indicators for whether the house has a basement and measurement type (σ_i^2 varies depending on measurement type (long-term or short term)

Bayesian inference for individual home level

$$R_i$$
 = radon concutration in house i
 $\theta_i = \log(R_i) \sim N(M_i, S_i^2)$

- The mean $M_i = X_i \hat{B} + \hat{\alpha}_i$ is computed from the posterior simulations of the model estimation.
 - \widehat{B} and $\widehat{\alpha}$ are the posterior means from the analysis in the appropriate region of the country. (computed from county level measurement data)
- The variance S_i^2 is computed from the posterior simulations of the model estimation taking into account the posterior uncertainty in the coefficients α , β and also hierarchical variance components η^2 and τ^2
- Serves as a **prior distribution** for the homeowner in that the distribution is constructed solely based on the basement information X_i and the county level parameter $\hat{\alpha}_j$

$$\theta_i \sim N(X_i \hat{B} + \hat{\alpha}_j, S_i^2)$$

• Using $p(\theta_i)$, decision whether to perform measurement test or not can be made

Bayesian inference for individual home level

Likelihood:

$$Y_i \sim N(\theta, \sigma_Y^2) \rightarrow p(y_i \mid \theta, \sigma_Y^2) = \frac{1}{\sqrt{2\pi\sigma_Y^2}} \exp\left(-\frac{(y_i - \theta)^2}{2\sigma_Y^2}\right) \qquad \theta \sim N(\mu_0, \tau_0^2) \rightarrow p(\theta) = \frac{1}{\sqrt{2\pi\tau_0^2}} \exp\left(-\frac{(\theta - \mu_0)^2}{2\tau_0^2}\right)$$

Prior:

$$\theta \sim N(\mu_0, \tau_0^2) \rightarrow p(\theta) = \frac{1}{\sqrt{2\pi\tau_0^2}} \exp\left(-\frac{(\theta - \mu_0)^2}{2\tau_o^2}\right)$$

Posterior on $\theta = \mu_V$

$$P(\theta|y) = N\left(\theta \left| \frac{\frac{\mu_0}{\tau_0^2} + \frac{n\overline{y}}{\sigma_Y^2}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma_Y^2}}, \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma_Y^2}\right)^{-1}\right)\right)$$

 R_i = radon concutration in house i

$$\theta_i = \log(R_i)$$

Assume we measure Radon concentration $y_i \sim N(\theta_i, \sigma_i^2)$

Likelihood

$$y_i \sim N(\theta_i, \sigma_i^2)$$

Prior (from previous slide):

$$p(\theta_i) = N(M_i, S_i^2)$$

The posterior distribution:

$$\theta_i | M_i, y_i \sim N(\Lambda_i, V_i)$$

$$\Lambda_i = \frac{\frac{M_i}{S_i^2} + \frac{y_i}{\sigma_i^2}}{\frac{1}{S_i^2} + \frac{1}{\sigma_i^2}} \quad V_i = \frac{1}{\frac{1}{S_i^2} + \frac{1}{\sigma_i^2}}$$

$$V_i = \frac{1}{\frac{1}{S_i^2} + \frac{1}{\sigma_i^2}}$$

Decision analysis for individual homeowners

$$R_i$$
 = radon concutration in house i
 $\theta_i = \log(R_i)$

Prior : $\theta_i = N(M_i, S_i^2)$ Predictive distribution based on hierarchical model

Decision whether to perform measurement test or not

Posterior : $\theta_i | M_i, y_i \sim N(\Lambda_i, V_i)$

Decision whether to remediate or not

Expected loss = cost + $D_r E(R)$

Decision analysis for individual homeowners

$$R_i$$
 = radon concutration in house i
 $\theta_i = \log(R_i)$

$$R = e^{\theta}, \theta \sim N(M, S^{2})$$

$$E[R] = E[e^{\theta}] = e^{M + \frac{1}{2}S^{2}}$$

$$E[R|\theta > a] = E[e^{\theta}|\theta > a] = e^{M + \frac{1}{2}S^{2}} \left(1 - \Phi\left(\frac{M + S^{2} - a}{S}\right)\right)$$

Do nothing

$$L_1 = D_r E(R) = D_r e^{M + \frac{1}{2}S^2}$$

Remediate without test

$$\begin{split} L_2 &= \$2000 + D_r \mathrm{E}(\min(R, R_{remed})) \\ &= \$2000 + D_r [R_{remed} \Pr(R \geq R_{remed}) + E(R|R < R_{remed}) \Pr(R < R_{remed})] \\ &= \$2000 + D_r \left[R_{remed} \Phi \left(\frac{M - \log(R_{remed})}{S} \right) + e^{M + \frac{1}{2}S^2} \left(1 - \Phi \left(\frac{M + S^2 - \log(R_{remed})}{S} \right) \right) \right] \end{split}$$

Decision analysis for individual homeowners

Remediate without test

Posterior

Perform measurement test ------

Do nothing

$$L_{3a} = \$50 + D_r \frac{1}{30} e^{M + \frac{1}{2}S^2} + D_r e^{\Lambda + \frac{1}{2}V}$$

Exposure of 1 year 29 years of exposure after test is done

Remediate

$$\begin{split} L_{3b} &= \$50 + D_r \frac{1}{30} e^{\mathsf{M} + \frac{1}{2}S^2} + \$2000 \\ &+ D_r \left[R_{remed} \Phi \left(\frac{\Lambda - \log(R_{remed})}{\sqrt{V}} \right) + e^{\Lambda + \frac{1}{2}V} \left(1 - \Phi \left(\frac{\Lambda + V - \log(R_{remed})}{\sqrt{V}} \right) \right) \right] \end{split}$$

Decision analysis for individual homeowners

Expected loss for performing test : $L^3 = E(\min(L_{3a}, L_{3b}))$: (optimum decision in the second state is imbedded)

1. Simulate 5000 draws of $y \sim N(M, S^2 + \sigma^2)$

(Considering uncertainty of *y*)

- 2. For each draw of y, compute $\min(L_{3a}, L_{3b})$
- 3. Estimate L_3 as the average of these 5000 values

Decision analysis for individual homeowners

