impl TopKMeasure for ZeroConcentratedDivergence

Michael Shoemate

September 20, 2025

1 Hoare Triple

Precondition

Compiler-verified

- Method noisy_top_k Types consistent with pseudocode.
- Method privacy_map Types consistent with pseudocode.

Caller-verified

- Method noisy_top_k
 - x elements are non-null.
 - scale is finite and non-negative.
- Method privacy_map
 - d_in is non-null and positive.
 - scale is non-null and positive.

Pseudocode

```
# ZeroConcentratedDivergence
def noisy_top_k(x: list[TIA], scale: f64, k: usize, negate: bool) -> list[usize]:
    return gumbel_top_k(x, scale, k, negate)

def privacy_map(d_in: f64, scale: f64) -> f64:
    return d_in.inf_div(scale).inf_powi(ibig(2)).inf_div(8.0)
```

Postcondition

Theorem 1.1. The implementation is consistent with all associated items in the TopKMeasure trait.

- 1. Method noisy_top_k:
 - Returns the index of the top element z_i , where each $z_i \sim \text{DISTRIBUTION}(\text{shift} = y_i, \text{scale} = \text{scale})$, and each $y_i = -x_i$ if negate, else $y_i = x_i$, k times with removal.
 - Errors are data-independent, except for exhaustion of entropy.
- 2. Method privacy_map: For any x, x' where $d_{\text{in}} \geq d_{\text{Range}}(x, x')$, return $d_{\text{out}} \geq D_{\text{self}}(f(x), f(x'))$, where $f(x) = \text{noisy_top_k}(x = x, k = 1, \text{scale} = \text{scale})$.

Definition 1.2. A random variable follows the Gumbel distribution if it has density

$$f(x) = \frac{1}{\beta} e^{-e^{-z} - z} \tag{1}$$

where $z = \frac{x-\mu}{\beta}$, μ is the shift (location) parameter and β is the scale parameter.

Proof of postcondition: noisy_top_k. The preconditions of gumbel_noisy_max are met, therefore by the postcondition of gumbel_top_k, the postcondition of noisy_top_k is satisfied.

Proof of postcondition: privacy_map. By Lemma 4.2 of [2], $\mathcal{M}_{Gumbel}^k(x)$ is equal in distribution to the peeling exponential mechanism, which is the k-fold composition of the exponential mechanism. Proposition 2 of [1] shows that the exponential mechanism satisfies the zCDP privacy guarantee.

References

- [1] Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal differential privacy composition for exponential mechanisms and the cost of adaptivity. *CoRR*, abs/1909.13830, 2019.
- [2] David Durfee and Ryan Rogers. Practical differentially private top-k selection with pay-what-you-get composition. CoRR, abs/1905.04273, 2019.