Filter Summary Report: TIA,simple,Z1,Z5

Generated by MacAnalog-Symbolix

December 11, 2024

Contents

1	Exam	ained $H(z)$ for TIA simple Z1 Z5: $rac{Z_1(Z_5g_m-1)}{2Z_1g_m+1}$	5
2	HP		5
3	BP 3.1 B 3.2 B	$ 3P-1 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ $	5 5
4	LP		5
5	BS 5.1 B	$3S-1 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right) $ $3S-2 \ Z(s) = \left(\frac{R_1 \left(C_1 L_1 s^2 + 1\right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right) $	5
	5.2 B	$3S-2 \ Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty\right) $	6
6	GE6.1 G6.2 G6.3 G6.4 G	GE-1 $Z(s) = \left(R_1, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty\right)$ GE-2 $Z(s) = \left(R_1, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right)$ GE-3 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right)$ GE-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right)$	6 6 7 7
	AP		7
7		ALID-NUMER NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$	8 8
7		ALID-NUMER NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$	8 8 8
7		ALID-NUMER NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$	8 8 8 8
7		NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$	7 8 8 8 8 8
7		NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ NVALID-NUMER-5 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$	7 8 8 8 8 8 9 9
7 8	INVA 8.1 II 8.2 II 8.3 II 8.4 II 8.5 II 8.6 II	NVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ NVALID-NUMER-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ NVALID-NUMER-5 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$ NVALID-NUMER-6 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$	7 8 8 8 8 8 9 9
7 8	INVA 8.1 II 8.2 II 8.3 II 8.4 II 8.5 II 8.6 II	LID-NUMER NVALID-NUMER-1 $Z(s) = \left(L_1s, \infty, \infty, \infty, \frac{R_5}{C_5R_6s+1}, \infty\right)$ NVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1s}, \infty, \infty, \infty, \frac{R_5}{C_5R_6s+1}, \infty\right)$ NVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_6s+1}, \infty\right)$ NVALID-NUMER-4 $Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, 1, \frac{R_5}{C_5s}, \infty\right)$ NVALID-NUMER-5 $Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5s}, \infty\right)$ NVALID-NUMER-6 $Z(s) = \left(\frac{L_1R_1s}{C_1L_1R_1s^2+L_1s+R_1}, \infty, \infty, \infty, \infty, \frac{1}{C_5s}, \infty\right)$ NVALID-NUMER-7 $Z(s) = \left(\frac{L_1R_1s}{C_1L_1R_1s^2+L_1s+R_1}, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5s}, \infty\right)$	7 8 8 8 8 8 9 9 9
7 8	INVA 8.1 II 8.2 II 8.3 II 8.4 II 8.5 II 8.6 II 8.7 II	NVALID-NUMER-7 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right)$	9
7 8	INVA 8.1 II 8.2 II 8.3 II 8.4 II 8.5 II 8.6 II 8.7 II	NVALID-NUMER-7 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right)$	9
9	INVA 8.1 IN 8.2 IN 8.3 IN 8.4 IN 8.5 IN 8.6 IN 8.7 IN INVA 9.1 IN 9.2 IN	NVALID-NUMER-7 $Z(s) = \left(\frac{L_1R_1s}{C_1L_1R_1s^2 + L_1s + R_1}, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5s}, \infty\right)$ ALID-WZ NVALID-WZ-1 $Z(s) = \left(R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_5s + 1}, \infty\right)$ NVALID-WZ-2 $Z(s) = \left(\frac{L_1s}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, L_5s + \frac{1}{C_5s}, \infty\right)$ NVALID-WZ-3 $Z(s) = \left(\frac{L_1s}{C_1L_1s^2 + 1}, \infty, \infty, \infty, \infty, L_5s + R_5 + \frac{1}{C_5s}, \infty\right)$	9 10 10 10
9	INVA 8.1 IN 8.2 IN 8.3 IN 8.4 IN 8.5 IN 8.6 IN 8.7 IN INVA 9.1 IN 9.2 IN 9.3 IN 9.4 IN	$\text{NVALID-NUMER-7 } Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right) \dots $	9 10 10 10

0 INVALID-ORDER
10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, R_5, \infty)$
10.3 INVALID-ORDER-3 $Z(s) = (R_1, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty)$
10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$
10.5 INVALID-ORDER-5 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$
10.6 INVALID-ORDER-6 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$
10.7 INVALID-ORDER-7 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$
10.8 INVALID-ORDER-8 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$
10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, \infty, \infty, R_5, \infty)$
10.11INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$
10.12INVALID-ORDER-12 $Z(s) = \begin{pmatrix} L_1 s, \infty, \infty, \infty, L_5 s + \frac{1}{C_s}, \infty \end{pmatrix}$
$10.13 \text{INVALID-ORDER-} 13 \ Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$10.14 \text{INVALID-ORDER-} 14 \ Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ L_5 s + R_5 + \frac{1}{C_{\bullet \bullet}}, \ \infty\right) \ \dots $
$10.15 \text{INVALID-ORDER-} 15 \ Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty\right) \dots $
$10.16 \text{INVALID-ORDER-} 16 \ Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{c_L L_5 s^2 + 1} + R_5, \ \infty\right) \dots \qquad 10.16 \text{INVALID-ORDER-} 16 \ Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{c_L L_5 s^2 + 1} + R_5, \ \infty\right)$
$10.17 \text{INVALID-ORDER-17 } Z(s) = \left(L_1 s, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right) \dots $
10.18INVALID-ORDER-18 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \infty\right)$
$10.19 \text{INVALID-ORDER-19 } Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_5 s}, \ \infty \right) \qquad . \qquad $
$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right) \qquad . \qquad $
$10.21 \text{INVALID-ORDER-} 21 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ L_5 s + \frac{1}{C_5 s}, \ \infty\right) \dots $
$10.22 \text{INVALID-ORDER-} 22 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right) \qquad . \qquad $
$10.23 \text{INVALID-ORDER-} 23 \ Z(s) = \left(\frac{1}{C_{1}s}, \ \infty, \ \infty, \ \infty, \ L_5 s + R_5 + \frac{1}{C_5 s}, \ \infty\right) $
$10.24 \text{INVALID-ORDER-} 24 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty\right) \dots $
$10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \ \infty\right) \dots $
$10.26 \text{INVALID-ORDER-} 26 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right) $
$10.27 \text{INVALID-ORDER-} 27 \ Z(s) = \left(\underbrace{\frac{R_1}{C_1 R_1 s + 1}}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty \right) \qquad $
$10.28 \text{INVALID-ORDER-} 28 \ Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_5 s}, \ \infty \right) \dots $
$10.29 \text{INVALID-ORDER-} 29 \ Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right) $
$10.30 \text{INVALID-ORDER-30 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \sum_{s=0}^{\infty} \frac{1}{C_5 s}, \ \infty \right) $
$10.31\text{INVALID-ORDER-31 }Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5s}{C_5L_5s^2+1}, \ \infty\right) $
$10.32 \text{INVALID-ORDER-32 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right) $
$10.33 \text{INVALID-ORDER-33 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right) $
$10.34 \text{INVALID-ORDER-34 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \ \infty \right) $
$10.35 \text{INVALID-ORDER-35 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right) \ \dots $
$10.36 \text{INVALID-ORDER-36 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_5, \infty\right) \dots$
10.37INVALID-ORDER-37 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$
$10.38 \text{INVALID-ORDER-38 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right) $
$10.39 \text{INVALID-ORDER-39 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $
$10.40 \text{INVALID-ORDER-40 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right)' $

$10.41 \text{INVALID-ORDER-41 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ K_5 + R_5 + \frac{1}{C_5 s}, \ \infty\right) $
10.42INVALID-ORDER-42 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$
10.43INVALID-ORDER-43 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$
$10.44 \text{INVALID-ORDER-} 44 \ Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right) $
$10.45 \text{INVALID-ORDER-} 45 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_5 s}, \ \infty\right) \dots $
$10.46 \text{INVALID-ORDER-46 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right) $
$10.47 \text{INVALID-ORDER-47 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right) \dots \dots$
$10.48 \text{INVALID-ORDER-} 48 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ $
$10.49 \text{INVALID-ORDER-49 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$
$10.50 \text{INVALID-ORDER-50 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right) $
10.51INVALID-ORDER-51 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$
$10.52 \text{INVALID-ORDER-52 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \ \infty\right) $
10.53INVALID-ORDER-53 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$
$10.54 \text{INVALID-ORDER-} 54 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5}{C_5 R_5 s + 1}, \ \infty\right) $
$10.55 \text{INVALID-ORDER-} 55 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right) $
$10.56 \text{INVALID-ORDER-} 56 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty\right) $
10.57INVALID-ORDER-57 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$ 17
10.58INVALID-ORDER-58 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$ 18
$10.59 \text{INVALID-ORDER-59 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right) $
$10.60 \text{INVALID-ORDER-} 60 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_5}{C_5 R_5 s + 1}, \ \infty\right) $
$10.61 \text{INVALID-ORDER-} 61 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right) $
$10.62 \text{INVALID-ORDER-} 62 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L_5 s + \frac{1}{C_5 s}, \ \infty\right) $
$10.63 \text{INVALID-ORDER-} 63 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right) $
10.64INVALID-ORDER-64 $Z(s) = (L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty)$
10.65INVALID-ORDER-65 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$
10.66INVALID-ORDER-66 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$ 18
10.67INVALID-ORDER-67 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$ 19
10.68INVALID-ORDER-68 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$
10.69INVALID-ORDER-69 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$
$10.70 \text{INVALID-ORDER-} 70 \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty \right) $
10.71INVALID-ORDER-71 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$
$10.72 \text{INVALID-ORDER-} 72 \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \infty\right) $
$10.73\text{INVALID-ORDER-73 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_5 s}, \ \infty\right) $
10.74INVALID-ORDER-74 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$ 10.74INVALID-ORDER-74 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$
10.75INVALID-ORDER-75 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ R_5 + \frac{1}{C_5 s}, \ \infty\right)$
10.76INVALID-ORDER-76 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ L_5 s + \frac{1}{C_5 s}, \ \infty\right)$
$10.77 \text{INVALID-ORDER-} 77 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1}, \ \infty\right)' $
10.79INVALID-ORDER-79 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \ \infty\right)$

10	.80INVALID-ORDER-80 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1,\ \infty,\ \infty,\ \infty,\ \frac{L_5s}{C_5L_5s^2+1}+R_5,\ \infty\right)$	20
		$\left(\frac{L_{1}s}{C_{1}L_{1}s^{2}+1}+R_{1},\ \infty,\ \infty,\ \infty,\ \frac{R_{5}\left(C_{5}L_{5}s^{2}+1\right)}{C_{5}L_{5}s^{2}+C_{5}R_{5}s+1},\ \infty\right)$	
10	.82INVALID-ORDER-82 $Z(s) =$	$\left\langle rac{R_1\left(C_1L_1s^2+1 ight)}{C_1L_1s^2+C_1R_1s+1}, \; \infty, \; \infty, \; \infty, \; rac{1}{C_5s}, \; \infty ight angle \qquad \qquad$	20
10	.83INVALID-ORDER-83 $Z(s) =$	$\left(rac{R_1\left(C_1L_1s^2+1 ight)}{C_1L_1s^2+C_1R_1s+1},\;\infty,\;\infty,\;\infty,\;\infty,\;rac{R_5}{C_5R_5s+1},\;\infty ight)$	20
10	.84INVALID-ORDER-84 $Z(s) =$	$\left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1},\;\infty,\;\infty,\;\infty,\;\infty,\;R_5+rac{1}{C_5s},\;\infty\right)$	20
10	.85INVALID-ORDER-85 $Z(s) =$	$\left(\frac{R_1\left(C_1L_1s^2+1 \right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ L_5s+\frac{1}{C_5s}, \ \infty \right)$	21
10	OCINIVALID ODDED OC 7()	$\int R_1(C_1L_1s^2+1)$ Les	01
10	.87INVALID-ORDER-87 $Z(s) =$	$ \left(\frac{C_1 L_1 s^2 + C_1 R_1 s^4 + 1}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \; \infty, \; \infty, \; \infty, \; \frac{C_5 L_5 s^2 + 1}{C_5 L_5 s^2 + 1}, \; \infty \right) \qquad \dots $ $ \left(\frac{R_1 \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \; \infty, \; \infty, \; \infty, \; \infty, \; L_5 s + R_5 + \frac{1}{C_5 s}, \; \infty \right) \qquad \dots $	21
10	.88INVALID-ORDER-88 $Z(s) =$	$\begin{pmatrix} C_{1}L_{1}s^{2} + C_{1}R_{1}s + 1, & \infty, & \infty, & \infty, & L_{5}s + R_{5} + C_{5}s, & \infty \end{pmatrix} \\ \begin{pmatrix} \frac{R_{1}(C_{1}L_{1}s^{2} + 1)}{C_{1}L_{1}s^{2} + C_{1}R_{1}s + 1}, & \infty, & \infty, & \infty, & \frac{L_{5}R_{5}s}{C_{5}L_{5}R_{5}s^{2} + L_{5}s + R_{5}}, & \infty \end{pmatrix} \\ \begin{pmatrix} \frac{R_{1}(C_{1}L_{1}s^{2} + 1)}{C_{1}L_{1}s^{2} + C_{1}R_{1}s + 1}, & \infty, & \infty, & \infty, & \frac{L_{5}s}{C_{5}L_{5}s^{2} + 1} + R_{5}, & \infty \end{pmatrix} \\ \end{pmatrix} \\ \vdots \\ \begin{pmatrix} \frac{R_{1}(C_{1}L_{1}s^{2} + 1)}{C_{1}L_{1}s^{2} + C_{1}R_{1}s + 1}, & \infty, & \infty, & \infty, & \frac{L_{5}s}{C_{5}L_{5}s^{2} + 1} + R_{5}, & \infty \end{pmatrix} \\ \vdots \\ \end{pmatrix} \\ \vdots \\$	21
10	.89INVALID-ORDER-89 $Z(s) =$	$\left\langle \frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5s}{C_5L_5s^2+1}+R_5, \ \infty \right)'$	21
10	.90INVALID-ORDER-90 $Z(s) =$	$\left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \ \infty\right) \qquad \dots $	21
	olynomialError		21

1 Examined H(z) for TIA simple Z1 Z5: $\frac{Z_1(Z_5g_m-1)}{2Z_1g_m+1}$

 $H(z) = \frac{Z_1 (Z_5 g_m - 1)}{2Z_1 g_m + 1}$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_5, \infty\right)$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{2g_m}{C_1}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_5g_m-1}{2g_m}$ Qz: 0 Wz: None

3.2 BP-2 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_5, \infty\right)$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{2R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{2R_1g_m+1}{C_1R_1}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1(R_5g_m-1)}{2R_1g_m+1}$
Qz: 0
Wz: None

- 4 LP
- 5 BS

$$H(s) = \frac{s(L_1 R_5 g_m - L_1)}{C_1 L_1 s^2 + 2L_1 g_m s + 1}$$

$$H(s) = \frac{s (L_1 R_1 R_5 g_m - L_1 R_1)}{C_1 L_1 R_1 s^2 + R_1 + s (2L_1 R_1 g_m + L_1)}$$

5.1 BS-1
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ R_5, \ \infty\right)$$

Parameters:

Q:
$$2L_1g_m\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{1}{2L_1g_m}$
K-LP: $\frac{R_5g_m-1}{2g_m}$
K-HP: $\frac{R_5g_m-1}{2g_m}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_1L_1}}$

5.2 BS-2
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_1\sqrt{\frac{1}{C_1L_1}}(2R_1g_m+1)}{R_1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1}{L_1(2R_1g_m+1)} \\ \text{K-LP:} \ \frac{R_1(R_5g_m-1)}{2R_1g_m+1} \\ \text{K-HP:} \ \frac{R_1(R_5g_m-1)}{2R_1g_m+1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

6 GE

6.1 GE-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

Parameters:

Q:
$$C_5R_5\sqrt{\frac{1}{C_5L_5}}$$

wo: $\sqrt{\frac{1}{C_5L_5}}$
bandwidth: $\frac{1}{C_5R_5}$
K-LP: $-\frac{R_1}{2R_1g_m+1}$
K-HP: $-\frac{R_1}{2R_1g_m+1}$
K-BP: $\frac{R_1(R_5g_m-1)}{2R_1g_m+1}$
Qz: $-\frac{C_5R_5\sqrt{\frac{1}{C_5L_5}}}{R_5g_m-1}$
Wz: $\sqrt{\frac{1}{C_5L_5}}$

$$H(s) = \frac{R_5 g_m + s^2 (C_1 L_1 R_5 g_m - C_1 L_1) - 1}{2C_1 L_1 g_m s^2 + C_1 s + 2g_m}$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^2 (C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1)}{C_1 R_1 s + 2R_1 g_m + s^2 (2C_1 L_1 R_1 g_m + C_1 L_1) + 1}$$

$$H(s) = \frac{-C_5L_5R_1R_5s^2 - R_1R_5 + s\left(L_5R_1R_5g_m - L_5R_1\right)}{2R_1R_5g_m + R_5 + s^2\left(2C_5L_5R_1R_5g_m + C_5L_5R_5\right) + s\left(2L_5R_1g_m + L_5\right)}$$

6.2 GE-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \infty\right)$$

Parameters:

$$Q: \frac{L_{5}\sqrt{\frac{1}{C_{5}L_{5}}}}{R_{5}}$$
wo: $\sqrt{\frac{1}{C_{5}L_{5}}}$
bandwidth: $\frac{R_{5}}{L_{5}}$
K-LP: $\frac{R_{1}(R_{5}g_{m}-1)}{2R_{1}g_{m}+1}$
K-HP: $\frac{R_{1}(R_{5}g_{m}-1)}{2R_{1}g_{m}+1}$
K-BP: $-\frac{R_{1}}{2R_{1}g_{m}+1}$
Qz: $\frac{L_{5}\sqrt{\frac{1}{C_{5}L_{5}}}(-R_{5}g_{m}+1)}{R_{5}}$
Wz: $\sqrt{\frac{1}{C_{5}L_{5}}}$

6.3 GE-3
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_5, \infty\right)$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{2L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{2R_{1}g_{m}+1} \\ & \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ & \text{bandwidth:} \ \frac{2R_{1}g_{m}+1}{2L_{1}g_{m}} \\ & \text{K-LP:} \ \frac{R_{5}g_{m}-1}{2g_{m}} \\ & \text{K-HP:} \ \frac{R_{5}g_{m}-1}{2g_{m}} \\ & \text{K-BP:} \ \frac{R_{1}(R_{5}g_{m}-1)}{2R_{1}g_{m}+1} \\ & \text{Qz:} \ \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

6.4 GE-4
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, R_5, \infty\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1\sqrt{\frac{1}{C_1L_1}}(2R_1g_m+1)}{2g_m} \\ &\text{wo: } \sqrt{\frac{1}{C_1L_1}} \\ &\text{bandwidth: } \frac{2g_m}{C_1(2R_1g_m+1)} \\ &\text{K-LP: } \frac{R_1(R_5g_m-1)}{2R_1g_m+1} \\ &\text{K-HP: } \frac{R_1(R_5g_m-1)}{2R_1g_m+1} \\ &\text{K-BP: } \frac{R_5g_m-1}{2g_m} \\ &\text{Qz: } C_1R_1\sqrt{\frac{1}{C_1L_1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_1L_1}} \end{aligned}$$

7 AP

$$H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1 + s^2 \left(C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{2 R_1 g_m + s^2 \left(2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + s \left(2 C_5 R_1 R_5 g_m + C_5 R_5 \right) + 1}$$

$$H(s) = \frac{R_5 g_m + s^2 \left(C_1 L_1 R_5 g_m - C_1 L_1\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1\right) - 1}{2C_1 L_1 g_m s^2 + 2g_m + s \left(2C_1 R_1 g_m + C_1\right)}$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^2 \left(C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 \right) + s \left(L_1 R_5 g_m - L_1 \right)}{2 L_1 g_m s + 2 R_1 g_m + s^2 \left(2 C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$

 $H(s) = \frac{-C_5 L_1 R_5 s^2 + s \left(L_1 R_5 g_m - L_1\right)}{2C_5 L_1 R_5 g_m s^2 + s \left(C_5 R_5 + 2L_1 g_m\right) + 1}$

Parameters:

 $\begin{aligned} & \text{Q:} \ \frac{\sqrt{2}C_5L_1R_5g_m\sqrt{\frac{1}{C_5L_1R_5g_m}}}{\frac{C_5R_5+2L_1g_m}{\sqrt{2}\sqrt{\frac{1}{C_5L_1R_5g_m}}}} \\ & \text{wo:} \ \frac{\sqrt{2}\sqrt{\frac{1}{C_5L_1R_5g_m}}}{2} \\ & \text{bandwidth:} \ \frac{C_5R_5+2L_1g_m}{2C_5L_1R_5g_m} \\ & \text{K-LP:} \ 0 \\ & \text{K-HP:} \ -\frac{1}{2g_m} \\ & \text{K-BP:} \ \frac{L_1(R_5g_m-1)}{C_5R_5+2L_1g_m} \\ & \text{Qz:} \ -\frac{\sqrt{2}C_5R_5\sqrt{\frac{1}{C_5L_1R_5g_m}}}{2R_5g_m-2} \\ & \text{Wz:} \ \text{None} \end{aligned}$

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$

 $H(s) = \frac{-C_5 R_5 s + R_5 g_m - 1}{C_1 C_5 R_5 s^2 + 2g_m + s \left(C_1 + 2C_5 R_5 g_m\right)}$

Parameters:

Q: $\frac{\sqrt{2}C_{1}C_{5}R_{5}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}}}}{C_{1}+2C_{5}R_{5}g_{m}}$ wo: $\sqrt{2}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}}}$ bandwidth: $\frac{C_{1}+2C_{5}R_{5}g_{m}}{C_{1}C_{5}R_{5}}$ K-LP: $\frac{R_{5}g_{m}-1}{2g_{m}}$ K-HP: 0 K-BP: $-\frac{C_{5}R_{5}}{C_{1}+2C_{5}R_{5}g_{m}}$ Qz: 0 Wz: None

8.3 INVALID-NUMER-3 $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_5s+1}, \infty\right)$

 $H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1}{C_1 C_5 R_1 R_5 s^2 + 2R_1 g_m + s \left(C_1 R_1 + 2C_5 R_1 R_5 g_m + C_5 R_5\right) + 1}$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{C_1C_5R_1R_5\sqrt{\frac{2R_1g_m+1}{C_1C_5R_1R_5}}}{C_1R_1+2C_5R_1R_5g_m+C_5R_5}\\ \text{wo:} \ \sqrt{\frac{2R_1g_m+1}{C_1C_5R_1R_5}}\\ \text{bandwidth:} \ \frac{C_1R_1+2C_5R_1R_5g_m+C_5R_5}{C_1C_5R_1R_5}\\ \text{K-LP:} \ \frac{R_1(R_5g_m-1)}{2R_1g_m+1}\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ -\frac{C_5R_1R_5}{C_1R_1+2C_5R_1R_5g_m+C_5R_5}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$

8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{-C_5 L_1 s + L_1 g_m}{C_1 C_5 L_1 s^2 + 2C_5 L_1 g_m s + C_5}$$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{2g_m}{C_1}$ K-LP: $\frac{L_1g_m}{C_5}$ K-HP: 0 K-BP: $-\frac{1}{2g_m}$ Qz: 0 Wz: None

8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{L_1 g_m + s \left(C_5 L_1 R_5 g_m - C_5 L_1 \right)}{C_1 C_5 L_1 s^2 + 2 C_5 L_1 g_m s + C_5}$$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{2g_m}{C_1}$ K-LP: $\frac{L_1g_m}{C_5}$ K-HP: 0 K-BP: $\frac{R_5g_m-1}{2g_m}$ Qz: 0 Wz: None

8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty\right)$

$$H(s) = \frac{-C_5 L_1 R_1 s + L_1 R_1 g_m}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2C_5 L_1 R_1 g_m + C_5 L_1\right)}$$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{2R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{2R_1g_m+1}{C_1R_1}$
K-LP: $\frac{L_1g_m}{C_5}$
K-HP: 0
K-BP: $-\frac{R_1}{2R_1g_m+1}$
Qz: 0
Wz: None

8.7 INVALID-NUMER-7 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{L_1 R_1 g_m + s \left(C_5 L_1 R_1 R_5 g_m - C_5 L_1 R_1 \right)}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2 C_5 L_1 R_1 g_m + C_5 L_1 \right)}$$

Parameters:

Q:
$$\frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{2R_1 g_m + 1}$$

wo:
$$\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{2R_1g_m+1}{C_1R_1}$ K-LP: $\frac{L_1g_m}{C_5}$ K-HP: 0 K-BP: $\frac{R_1(R_5g_m-1)}{2R_1g_m+1}$ Qz: 0

Wz: None

INVALID-WZ

9.1 INVALID-WZ-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$

$$H(s) = \frac{-C_1C_5R_1R_5s^2 + R_5g_m + s\left(C_1R_1R_5g_m - C_1R_1 - C_5R_5\right) - 1}{2g_m + s^2\left(2C_1C_5R_1R_5g_m + C_1C_5R_5\right) + s\left(2C_1R_1g_m + C_1 + 2C_5R_5g_m\right)}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{\sqrt{2}C_{1}C_{5}R_{5}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}(2R_{1}g_{m}+1)}}(2R_{1}g_{m}+1)}}{2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m}} \\ & \text{wo:} \ \sqrt{2}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}(2R_{1}g_{m}+1)}} \\ & \text{bandwidth:} \ \frac{2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m}}{C_{1}C_{5}R_{5}(2R_{1}g_{m}+1)} \\ & \text{K-LP:} \ \frac{R_{5}g_{m}-1}{2g_{m}} \\ & \text{K-HP:} \ -\frac{R_{1}}{2g_{m}} \\ & \text{K-BP:} \ \frac{C_{1}R_{1}R_{5}g_{m}-C_{1}R_{1}-C_{5}R_{5}}{2C_{1}R_{1}g_{m}+C_{1}+2C_{5}R_{5}g_{m}} \\ & \text{Qz:} \ \frac{\sqrt{2}C_{1}C_{5}R_{1}R_{5}\sqrt{\frac{g_{m}}{C_{1}C_{5}R_{5}(2R_{1}g_{m}+1)}}}{-C_{1}R_{1}R_{5}g_{m}+C_{1}R_{1}+C_{5}R_{5}} \\ & \text{Wz:} \ \sqrt{\frac{-R_{5}g_{m}+1}{C_{1}C_{5}R_{1}R_{5}}} \end{aligned}$$

9.2 INVALID-WZ-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 - C_5 L_1 s + L_1 g_m}{C_1 C_5 L_1 s^2 + 2 C_5 L_1 g_m s + C_5}$$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{2g_m}{C_1}$ K-LP: $\frac{L_1g_m}{C_5}$ K-HP: $\frac{L_5g_m}{C_1}$ K-BP: $-\frac{1}{2g_m}$ Qz: $-L_5g_m\sqrt{\frac{1}{C_1L_1}}$ Wz: $\sqrt{\frac{1}{C_5L_5}}$

9.3 INVALID-WZ-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{2g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$

 $H(s) = \frac{C_5 L_1 L_5 g_m s^2 + L_1 g_m + s \left(C_5 L_1 R_5 g_m - C_5 L_1\right)}{C_1 C_5 L_1 s^2 + 2C_5 L_1 g_m s + C_5}$

bandwidth:
$$\frac{2g_m}{C_1}$$

K-LP: $\frac{L_1g_m}{C_5}$
K-HP: $\frac{L_5g_m}{C_1}$
K-BP: $\frac{R_5g_m-1}{2g_m}$
Qz: $\frac{L_5g_m\sqrt{\frac{1}{C_1L_1}}}{R_5g_m-1}$
Wz: $\sqrt{\frac{1}{C_5L_5}}$

9.4 INVALID-WZ-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 R_1 g_m s^2 - C_5 L_1 R_1 s + L_1 R_1 g_m}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2 C_5 L_1 R_1 g_m + C_5 L_1\right)}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{2 R_1 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{2 R_1 g_m + 1}{C_1 R_1} \\ &\text{K-LP: } \frac{L_1 g_m}{C_5} \\ &\text{K-HP: } \frac{L_5 g_m}{C_1} \\ &\text{K-BP: } -\frac{R_1}{2 R_1 g_m + 1} \\ &\text{Qz: } -L_5 g_m \sqrt{\frac{1}{C_1 L_1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_5 L_5}} \end{aligned}$$

9.5 INVALID-WZ-5
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 R_1 g_m s^2 + L_1 R_1 g_m + s \left(C_5 L_1 R_1 R_5 g_m - C_5 L_1 R_1 \right)}{C_1 C_5 L_1 R_1 s^2 + C_5 R_1 + s \left(2 C_5 L_1 R_1 g_m + C_5 L_1 \right)}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{2 R_1 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{2 R_1 g_m + 1}{C_1 R_1} \\ &\text{K-LP: } \frac{L_1 g_m}{C_5} \\ &\text{K-HP: } \frac{L_5 g_m}{C_1} \\ &\text{K-BP: } \frac{R_1 (R_5 g_m - 1)}{2 R_1 g_m + 1} \\ &\text{Qz: } \frac{L_5 g_m \sqrt{\frac{1}{C_1 L_1}}}{R_5 g_m - 1} \\ &\text{Wz: } \sqrt{\frac{1}{C_5 L_5}} \end{aligned}$$

10 INVALID-ORDER

10.1 INVALID-ORDER-1
$$Z(s) = (R_1, \infty, \infty, \infty, \infty, R_5, \infty)$$

$$H(s) = \frac{R_1 R_5 g_m - R_1}{2R_1 g_m + 1}$$

10.2 INVALID-ORDER-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_5 R_1 s + R_1 g_m}{s (2C_5 R_1 g_m + C_5)}$$

10.3 INVALID-ORDER-3
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 R_1 R_5 s + R_1 R_5 g_m - R_1}{2R_1 g_m + s \left(2C_5 R_1 R_5 g_m + C_5 R_5\right) + 1}$$

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{R_1 g_m + s \left(C_5 R_1 R_5 g_m - C_5 R_1 \right)}{s \left(2C_5 R_1 g_m + C_5 \right)}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(R_1, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 - C_5 R_1 s + R_1 g_m}{s \left(2 C_5 R_1 q_m + C_5\right)}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1}, \infty\right)$$

$$H(s) = \frac{-C_5L_5R_1s^2 + L_5R_1g_ms - R_1}{2R_1g_m + s^2\left(2C_5L_5R_1g_m + C_5L_5\right) + 1}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(R_1, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 + R_1 g_m + s \left(C_5 R_1 R_5 g_m - C_5 R_1\right)}{s \left(2C_5 R_1 g_m + C_5\right)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(R_1, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1} + R_5, \infty\right)$$

$$H(s) = \frac{L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^2 \left(C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{2 R_1 g_m + s^2 \left(2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1}$$

10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, \infty, \infty, R_5, \infty)$

$$H(s) = \frac{s(L_1 R_5 g_m - L_1)}{2L_1 g_m s + 1}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 s + L_1 g_m}{2C_5 L_1 g_m s + C_5}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{L_1 g_m + s \left(C_5 L_1 R_5 g_m - C_5 L_1 \right)}{2 C_5 L_1 g_m s + C_5}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 - C_5 L_1 s + L_1 g_m}{2C_5 L_1 g_m s + C_5}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 s^3 + L_1 L_5 g_m s^2 - L_1 s}{2C_5 L_1 L_5 g_m s^3 + C_5 L_5 s^2 + 2L_1 g_m s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_1 L_5 g_m s^2 + L_1 g_m + s \left(C_5 L_1 R_5 g_m - C_5 L_1 \right)}{2C_5 L_1 g_m s + C_5}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 R_5 s^3 - L_1 R_5 s + s^2 \left(L_1 L_5 R_5 g_m - L_1 L_5\right)}{2C_5 L_1 L_5 R_5 g_m s^3 + R_5 + s^2 \left(C_5 L_5 R_5 + 2L_1 L_5 g_m\right) + s \left(2L_1 R_5 g_m + L_5\right)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{L_1 L_5 g_m s^2 + s^3 \left(C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5 \right) + s \left(L_1 R_5 g_m - L_1 \right)}{2 C_5 L_1 L_5 g_m s^3 + C_5 L_5 s^2 + 2 L_1 g_m s + 1}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \frac{R_5(C_5 L_5 s^2 + 1)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_5s^2 + s^3\left(C_5L_1L_5R_5g_m - C_5L_1L_5\right) + s\left(L_1R_5g_m - L_1\right)}{2C_5L_1L_5g_ms^3 + s^2\left(2C_5L_1R_5g_m + C_5L_5\right) + s\left(C_5R_5 + 2L_1g_m\right) + 1}$$

10.18 INVALID-ORDER-18 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_5 g_m - 1}{C_1 s + 2 q_m}$$

10.19 INVALID-ORDER-19 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{-C_5 s + g_m}{C_1 C_5 s^2 + 2C_5 q_m s}$$

10.20 INVALID-ORDER-20 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{g_m + s (C_5 R_5 g_m - C_5)}{C_1 C_5 s^2 + 2C_5 g_m s}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{C_5 L_5 g_m s^2 - C_5 s + g_m}{C_1 C_5 s^2 + 2C_5 g_m s}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_5 s^2 + L_5 g_m s - 1}{C_1 C_5 L_5 s^3 + C_1 s + 2C_5 L_5 g_m s^2 + 2g_m}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 g_m s^2 + g_m + s \left(C_5 R_5 g_m - C_5 \right)}{C_1 C_5 s^2 + 2 C_5 q_m s}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5 L_5 R_5 s^2 - R_5 + s \left(L_5 R_5 g_m - L_5\right)}{C_1 C_5 L_5 R_5 s^3 + 2R_5 g_m + s^2 \left(C_1 L_5 + 2C_5 L_5 R_5 g_m\right) + s \left(C_1 R_5 + 2L_5 g_m\right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{L_5 g_m s + R_5 g_m + s^2 (C_5 L_5 R_5 g_m - C_5 L_5) - 1}{C_1 C_5 L_5 s^3 + C_1 s + 2C_5 L_5 g_m s^2 + 2g_m}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5(C_5 L_5 s^2 + 1)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 R_5 s + R_5 g_m + s^2 (C_5 L_5 R_5 g_m - C_5 L_5) - 1}{C_1 C_5 L_5 s^3 + 2 g_m + s^2 (C_1 C_5 R_5 + 2 C_5 L_5 g_m) + s (C_1 + 2 C_5 R_5 g_m)}$$

10.27 INVALID-ORDER-27 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_1 R_5 g_m - R_1}{C_1 R_1 s + 2R_1 g_m + 1}$$

10.28 INVALID-ORDER-28 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{-C_5 R_1 s + R_1 g_m}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

10.29 INVALID-ORDER-29 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{R_1 g_m + s \left(C_5 R_1 R_5 g_m - C_5 R_1 \right)}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5 \right)}$$

10.30 INVALID-ORDER-30 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 - C_5 R_1 s + R_1 g_m}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

10.31 INVALID-ORDER-31 $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1}, \infty\right)$

$$H(s) = \frac{-C_5L_5R_1s^2 + L_5R_1g_ms - R_1}{C_1C_5L_5R_1s^3 + C_1R_1s + 2R_1g_m + s^2\left(2C_5L_5R_1g_m + C_5L_5\right) + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_5 L_5 R_1 g_m s^2 + R_1 g_m + s \left(C_5 R_1 R_5 g_m - C_5 R_1\right)}{C_1 C_5 R_1 s^2 + s \left(2 C_5 R_1 g_m + C_5\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_5R_1R_5s^2 - R_1R_5 + s\left(L_5R_1R_5g_m - L_5R_1\right)}{C_1C_5L_5R_1R_5s^3 + 2R_1R_5g_m + R_5 + s^2\left(C_1L_5R_1 + 2C_5L_5R_1R_5g_m + C_5L_5R_5\right) + s\left(C_1R_1R_5 + 2L_5R_1g_m + L_5\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^2 \left(C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right)}{C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^2 \left(2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5R_1R_5s + R_1R_5g_m - R_1 + s^2\left(C_5L_5R_1R_5g_m - C_5L_5R_1\right)}{C_1C_5L_5R_1s^3 + 2R_1g_m + s^2\left(C_1C_5R_1R_5 + 2C_5L_5R_1g_m + C_5L_5\right) + s\left(C_1R_1 + 2C_5R_1R_5g_m + C_5R_5\right) + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s \left(C_1 R_1 R_5 g_m - C_1 R_1 \right) - 1}{2g_m + s \left(2C_1 R_1 g_m + C_1 \right)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5R_1s^2 + g_m + s\left(C_1R_1g_m - C_5\right)}{2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{g_m + s^2 \left(C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 \right) + s \left(C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2C_5 g_m s + s^2 \left(2C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1 C_5 L_5 R_1 g_m s^3 + g_m + s^2 \left(-C_1 C_5 R_1 + C_5 L_5 g_m\right) + s \left(C_1 R_1 g_m - C_5\right)}{2 C_5 g_m s + s^2 \left(2 C_1 C_5 R_1 g_m + C_1 C_5\right)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_5R_1s^3 + s^2\left(C_1L_5R_1g_m - C_5L_5\right) + s\left(-C_1R_1 + L_5g_m\right) - 1}{2C_5L_5g_ms^2 + 2g_m + s^3\left(2C_1C_5L_5R_1g_m + C_1C_5L_5\right) + s\left(2C_1R_1g_m + C_1\right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1 C_5 L_5 R_1 g_m s^3 + g_m + s^2 \left(C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 + C_5 L_5 g_m \right) + s \left(C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2 C_5 g_m s + s^2 \left(2 C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_5R_1R_5s^3 - R_5 + s^2\left(C_1L_5R_1R_5g_m - C_1L_5R_1 - C_5L_5R_5\right) + s\left(-C_1R_1R_5 + L_5R_5g_m - L_5\right)}{2R_5g_m + s^3\left(2C_1C_5L_5R_1R_5g_m + C_1C_5L_5R_5\right) + s^2\left(2C_1L_5R_1g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(2C_1R_1R_5g_m + C_1R_5 + 2L_5g_m\right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(C_1 L_5 R_1 g_m + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 + L_5 g_m\right) - 1}{2 C_5 L_5 g_m s^2 + 2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s \left(2 C_1 R_1 g_m + C_1\right)}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(-C_1 C_5 R_1 R_5 + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 - C_5 R_5\right) - 1}{2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 C_5 R_1 R_5 g_m + C_1 C_5 R_5 + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1 + 2 C_5 R_5 g_m\right)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1s^3 + C_1L_1g_ms^2 - C_5s + g_m}{2C_1C_5L_1g_ms^3 + C_1C_5s^2 + 2C_5g_ms}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 - C_5R_5s + R_5g_m + s^2(C_1L_1R_5g_m - C_1L_1) - 1}{2C_1C_5L_1R_5g_ms^3 + 2g_m + s^2(C_1C_5R_5 + 2C_1L_1g_m) + s(C_1 + 2C_5R_5g_m)}$$

10.47 INVALID-ORDER-47 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{C_1 L_1 g_m s^2 + g_m + s^3 \left(C_1 C_5 L_1 R_5 g_m - C_1 C_5 L_1 \right) + s \left(C_5 R_5 g_m - C_5 \right)}{2 C_1 C_5 L_1 g_m s^3 + C_1 C_5 s^2 + 2 C_5 g_m s}$$

10.48 INVALID-ORDER-48 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$

$$H(s) = \frac{C_1 C_5 L_1 L_5 g_m s^4 - C_1 C_5 L_1 s^3 - C_5 s + g_m + s^2 (C_1 L_1 g_m + C_5 L_5 g_m)}{2C_1 C_5 L_1 g_m s^3 + C_1 C_5 s^2 + 2C_5 g_m s}$$

10.49 INVALID-ORDER-49 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$

$$H(s) = \frac{-C_1C_5L_1L_5s^4 + C_1L_1L_5g_ms^3 + L_5g_ms + s^2\left(-C_1L_1 - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + C_1C_5L_5s^3 + C_1s + 2g_m + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(C_1C_5L_1R_5g_m - C_1C_5L_1\right) + s^2\left(C_1L_1g_m + C_5L_5g_m\right) + s\left(C_5R_5g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + C_1C_5s^2 + 2C_5g_ms}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_5s^4 - R_5 + s^3\left(C_1L_1L_5R_5g_m - C_1L_1L_5\right) + s^2\left(-C_1L_1R_5 - C_5L_5R_5\right) + s\left(L_5R_5g_m - L_5\right)}{2C_1C_5L_1L_5R_5g_ms^4 + 2R_5g_m + s^3\left(C_1C_5L_5R_5 + 2C_1L_1L_5g_m\right) + s^2\left(2C_1L_1R_5g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(C_1R_5 + 2L_5g_m\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{C_1L_1L_5g_ms^3 + L_5g_ms + R_5g_m + s^4\left(C_1C_5L_1L_5R_5g_m - C_1C_5L_1L_5\right) + s^2\left(C_1L_1R_5g_m - C_1L_1 + C_5L_5R_5g_m - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + C_1C_5L_5s^3 + C_1s + 2g_m + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 - C_5R_5s + R_5g_m + s^4\left(C_1C_5L_1L_5R_5g_m - C_1C_5L_1L_5\right) + s^2\left(C_1L_1R_5g_m - C_1L_1 + C_5L_5R_5g_m - C_5L_5\right) - 1}{2C_1C_5L_1L_5g_ms^4 + 2g_m + s^3\left(2C_1C_5L_1R_5g_m + C_1C_5L_5\right) + s^2\left(C_1C_5R_5 + 2C_1L_1g_m + 2C_5L_5g_m\right) + s\left(C_1 + 2C_5R_5g_m\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 R_5 s^2 + s \left(L_1 R_5 g_m - L_1\right)}{C_1 C_5 L_1 R_5 s^3 + s^2 \left(C_1 L_1 + 2C_5 L_1 R_5 g_m\right) + s \left(C_5 R_5 + 2L_1 g_m\right) + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5 L_1 L_5 s^3 + L_1 L_5 g_m s^2 - L_1 s}{C_1 C_5 L_1 L_5 s^4 + 2C_5 L_1 L_5 g_m s^3 + 2L_1 g_m s + s^2 (C_1 L_1 + C_5 L_5) + 1}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_5s^3 - L_1R_5s + s^2\left(L_1L_5R_5g_m - L_1L_5\right)}{C_1C_5L_1L_5R_5s^4 + R_5 + s^3\left(C_1L_1L_5 + 2C_5L_1L_5R_5g_m\right) + s^2\left(C_1L_1R_5 + C_5L_5R_5 + 2L_1L_5g_m\right) + s\left(2L_1R_5g_m + L_5\right)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{L_1 L_5 g_m s^2 + s^3 \left(C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5 \right) + s \left(L_1 R_5 g_m - L_1 \right)}{C_1 C_5 L_1 L_5 s^4 + 2 C_5 L_1 L_5 g_m s^3 + 2 L_1 g_m s + s^2 \left(C_1 L_1 + C_5 L_5 \right) + 1}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_5s^2 + s^3\left(C_5L_1L_5R_5g_m - C_5L_1L_5\right) + s\left(L_1R_5g_m - L_1\right)}{C_1C_5L_1L_5s^4 + s^3\left(C_1C_5L_1R_5 + 2C_5L_1L_5g_m\right) + s^2\left(C_1L_1 + 2C_5L_1R_5g_m + C_5L_5\right) + s\left(C_5R_5 + 2L_1g_m\right) + 1}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1s^3 + g_m + s^2\left(-C_1C_5R_1 + C_1L_1g_m\right) + s\left(C_1R_1g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_5s^3 + R_5g_m + s^2\left(-C_1C_5R_1R_5 + C_1L_1R_5g_m - C_1L_1\right) + s\left(C_1R_1R_5g_m - C_1R_1 - C_5R_5\right) - 1}{2C_1C_5L_1R_5g_ms^3 + 2g_m + s^2\left(2C_1C_5R_1R_5g_m + C_1C_5R_5 + 2C_1L_1g_m\right) + s\left(2C_1R_1g_m + C_1 + 2C_5R_5g_m\right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{g_m + s^3 \left(C_1 C_5 L_1 R_5 g_m - C_1 C_5 L_1 \right) + s^2 \left(C_1 C_5 R_1 R_5 g_m - C_1 C_5 R_1 + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_5 R_5 g_m - C_5 \right)}{2 C_1 C_5 L_1 g_m s^3 + 2 C_5 g_m s + s^2 \left(2 C_1 C_5 R_1 g_m + C_1 C_5 \right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(-C_1C_5L_1 + C_1C_5L_5R_1g_m\right) + s^2\left(-C_1C_5R_1 + C_1L_1g_m + C_5L_5g_m\right) + s\left(C_1R_1g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5s^4 + s^3\left(-C_1C_5L_5R_1 + C_1L_1L_5g_m\right) + s^2\left(-C_1L_1 + C_1L_5R_1g_m - C_5L_5\right) + s\left(-C_1R_1 + L_5g_m\right) - 1}{2C_1C_5L_1L_5g_ms^4 + 2g_m + s^3\left(2C_1C_5L_5R_1g_m + C_1C_5L_5\right) + s^2\left(2C_1L_1g_m + 2C_5L_5g_m\right) + s\left(2C_1R_1g_m + C_1\right)}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5g_ms^4 + g_m + s^3\left(C_1C_5L_1R_5g_m - C_1C_5L_1 + C_1C_5L_5R_1g_m\right) + s^2\left(C_1C_5R_1R_5g_m - C_1C_5R_1 + C_1L_1g_m + C_5L_5g_m\right) + s\left(C_1R_1g_m + C_5R_5g_m - C_5\right)}{2C_1C_5L_1g_ms^3 + 2C_5g_ms + s^2\left(2C_1C_5R_1g_m + C_1C_5\right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_5s^4 - R_5 + s^3\left(-C_1C_5L_5R_1R_5 + C_1L_1L_5R_5g_m - C_1L_1L_5\right) + s^2\left(-C_1L_1R_5 + C_1L_5R_1R_5g_m - C_1L_5R_1 - C_5L_5R_5\right) + s\left(-C_1R_1R_5 + L_5R_5g_m - L_5\right)}{2C_1C_5L_1L_5R_5g_ms^4 + 2R_5g_m + s^3\left(2C_1C_5L_5R_1R_5g_m + C_1C_5L_5R_5 + 2C_1L_1L_5g_m\right) + s^2\left(2C_1L_1R_5g_m + 2C_1L_5R_1g_m + C_1L_5 + 2C_5L_5R_5g_m\right) + s\left(2C_1R_1R_5g_m + C_1R_5 + 2C_5L_5g_m\right)}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^4 \left(C_1 C_5 L_1 L_5 R_5 g_m - C_1 C_5 L_1 L_5\right) + s^3 \left(C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1 + C_1 L_1 L_5 g_m\right) + s^2 \left(C_1 L_1 R_5 g_m - C_1 L_1 + C_1 L_5 R_1 g_m + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 + L_5 g_m\right) - 1}{2 C_1 C_5 L_1 L_5 g_m s^4 + 2 g_m + s^3 \left(2 C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 L_1 g_m + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{R_5 g_m + s^4 \left(C_1 C_5 L_1 L_5 R_5 g_m - C_1 C_5 L_1 L_5\right) + s^3 \left(-C_1 C_5 L_1 R_5 + C_1 C_5 L_5 R_1 R_5 g_m - C_1 C_5 L_5 R_1\right) + s^2 \left(-C_1 C_5 R_1 R_5 + C_1 L_1 R_5 g_m - C_1 L_1 + C_5 L_5 R_5 g_m - C_5 L_5\right) + s \left(C_1 R_1 R_5 g_m - C_1 R_1 - C_5 R_5\right) - 1}{2 C_1 C_5 L_1 L_5 g_m s^4 + 2 g_m + s^3 \left(2 C_1 C_5 L_1 R_5 g_m + C_1 C_5 L_5 R_1 g_m + C_1 C_5 L_5\right) + s^2 \left(2 C_1 C_5 R_1 R_5 g_m + C_1 C_5 R_5 + 2 C_1 L_1 g_m + 2 C_5 L_5 g_m\right) + s \left(2 C_1 R_1 g_m + C_1 + 2 C_5 R_5 g_m\right)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_1R_5s^2 + s\left(L_1R_1R_5g_m - L_1R_1\right)}{C_1C_5L_1R_1R_5s^3 + R_1 + s^2\left(C_1L_1R_1 + 2C_5L_1R_1R_5g_m + C_5L_1R_5\right) + s\left(C_5R_1R_5 + 2L_1R_1g_m + L_1\right)}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_1s^3 + L_1L_5R_1g_ms^2 - L_1R_1s}{C_1C_5L_1L_5R_1s^4 + R_1 + s^3\left(2C_5L_1L_5R_1g_m + C_5L_1L_5\right) + s^2\left(C_1L_1R_1 + C_5L_5R_1\right) + s\left(2L_1R_1g_m + L_1\right)}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_5L_1L_5R_1R_5s^3 - L_1R_1R_5s + s^2\left(L_1L_5R_1R_5g_m - L_1L_5R_1\right)}{C_1C_5L_1L_5R_1R_5s^4 + R_1R_5 + s^3\left(C_1L_1L_5R_1 + 2C_5L_1L_5R_1R_5g_m + C_5L_1L_5R_5\right) + s^2\left(C_1L_1R_1R_5 + C_5L_5R_1R_5 + 2L_1L_5R_1g_m + L_1L_5\right) + s\left(2L_1R_1R_5g_m + L_1R_5 + L_5R_1\right)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$$

$$H(s) = \frac{L_1 L_5 R_1 g_m s^2 + s^3 \left(C_5 L_1 L_5 R_1 R_5 g_m - C_5 L_1 L_5 R_1 \right) + s \left(L_1 R_1 R_5 g_m - L_1 R_1 \right)}{C_1 C_5 L_1 L_5 R_1 s^4 + R_1 + s^3 \left(2 C_5 L_1 L_5 R_1 g_m + C_5 L_1 L_5 \right) + s^2 \left(C_1 L_1 R_1 + C_5 L_5 R_1 \right) + s \left(2 L_1 R_1 g_m + L_1 \right)}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_5L_1R_1R_5s^2 + s^3\left(C_5L_1L_5R_1R_5g_m - C_5L_1L_5R_1\right) + s\left(L_1R_1R_5g_m - L_1R_1\right)}{C_1C_5L_1L_5R_1s^4 + R_1 + s^3\left(C_1C_5L_1R_1R_5 + 2C_5L_1L_5R_1g_m + C_5L_1L_5\right) + s^2\left(C_1L_1R_1 + 2C_5L_1R_1R_5g_m + C_5L_1R_5 + C_5L_5R_1\right) + s\left(C_5R_1R_5 + 2L_1R_1g_m + L_1\right)}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_{1s}}{C_1 L_{1s}^2 + 1} + R_1, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1s^3 + R_1g_m + s^2\left(C_1L_1R_1g_m - C_5L_1\right) + s\left(-C_5R_1 + L_1g_m\right)}{2C_5L_1g_ms^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1R_5s^3 + R_1R_5g_m - R_1 + s^2\left(C_1L_1R_1R_5g_m - C_1L_1R_1 - C_5L_1R_5\right) + s\left(-C_5R_1R_5 + L_1R_5g_m - L_1\right)}{2R_1g_m + s^3\left(2C_1C_5L_1R_1R_5g_m + C_1C_5L_1R_5\right) + s^2\left(2C_1L_1R_1g_m + C_1L_1 + 2C_5L_1R_5g_m\right) + s\left(2C_5R_1R_5g_m + C_5R_5 + 2L_1g_m\right) + 1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_{1s}}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{R_1 g_m + s^3 \left(C_1 C_5 L_1 R_1 R_5 g_m - C_1 C_5 L_1 R_1 \right) + s^2 \left(C_1 L_1 R_1 g_m + C_5 L_1 R_5 g_m - C_5 L_1 \right) + s \left(C_5 R_1 R_5 g_m - C_5 R_1 + L_1 g_m \right)}{2 C_5 L_1 g_m s^2 + s^3 \left(2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 \right) + s \left(2 C_5 R_1 g_m + C_5 \right)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5R_1g_ms^4 + R_1g_m + s^3\left(-C_1C_5L_1R_1 + C_5L_1L_5g_m\right) + s^2\left(C_1L_1R_1g_m - C_5L_1 + C_5L_5R_1g_m\right) + s\left(-C_5R_1 + L_1g_m\right)}{2C_5L_1g_ms^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_1s^4 - R_1 + s^3\left(C_1L_1L_5R_1g_m - C_5L_1L_5\right) + s^2\left(-C_1L_1R_1 - C_5L_5R_1 + L_1L_5g_m\right) + s\left(-L_1 + L_5R_1g_m\right)}{2C_5L_1L_5g_ms^3 + 2L_1g_ms + 2R_1g_m + s^4\left(2C_1C_5L_1L_5R_1g_m + C_1C_5L_1L_5\right) + s^2\left(2C_1L_1R_1g_m + C_1L_1 + 2C_5L_5R_1g_m + C_5L_5\right) + 1}$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5R_1g_ms^4 + R_1g_m + s^3\left(C_1C_5L_1R_1R_5g_m - C_1C_5L_1R_1 + C_5L_1L_5g_m\right) + s^2\left(C_1L_1R_1g_m + C_5L_1R_5g_m - C_5L_1 + C_5L_5R_1g_m\right) + s\left(C_5R_1R_5g_m - C_5R_1 + L_1g_m\right)}{2C_5L_1g_ms^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1L_5R_1R_5s^4 - R_1R_5 + s^3\left(C_1L_1L_5R_1R_5g_m - C_1L_1L_5R_1 - C_5L_1L_5R_5\right) + s^2\left(-C_1L_1R_1R_5 - C_5L_5R_1R_5 + L_1L_5R_5g_m - L_1L_5\right) + s\left(-L_1R_5 + L_5R_1R_5g_m - L_5R_1R_$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1} + R_1, \infty, \infty, \infty, \frac{L_5s}{C_5L_5s^2+1} + R_5, \infty\right)$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^4 \left(C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1\right) + s^3 \left(C_1 L_1 L_5 R_1 g_m + C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5\right) + s^2 \left(C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 + L_1 L_5 g_m\right) + s \left(L_1 R_5 g_m - L_1 + L_5 R_1 g_m\right)}{2 C_5 L_1 L_5 g_m s^3 + 2 L_1 g_m s + 2 R_1 g_m + s^4 \left(2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5\right) + s^2 \left(2 C_1 L_1 R_1 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5\right) + 1$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \frac{R_5 \left(C_5 L_5 s^2 + 1\right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \infty\right)$$

$$H(s) = \frac{R_1 R_5 g_m - R_1 + s^4 \left(C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^3 \left(-C_1 C_5 L_1 R_1 R_5 + C_5 L_1 L_5 R_5 g_m - C_5 L_1 L_5\right) + s^2 \left(C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 - C_5 L_1 R_5 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1\right) + s \left(-C_5 R_1 R_5 + L_1 R_5 g_m - L_1\right)}{2 R_1 g_m + s^4 \left(2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5\right) + s^3 \left(2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 R_5 g_m + C_5 L_5 R_1 g_m + C_5 L_5\right) + s \left(2 C_5 R_1 R_5 g_m + C_5 R_5 + 2 L_1 g_m\right) + 1}$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_5s}, \ \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1s^3 + C_1L_1R_1g_ms^2 - C_5R_1s + R_1g_m}{C_1C_5R_1s^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_5}{C_5R_5s+1}, \infty\right)$$

$$H(s) = \frac{-C_1C_5L_1R_1R_5s^3 - C_5R_1R_5s + R_1R_5g_m - R_1 + s^2\left(C_1L_1R_1R_5g_m - C_1L_1R_1\right)}{2R_1g_m + s^3\left(2C_1C_5L_1R_1R_5g_m + C_1C_5L_1R_5\right) + s^2\left(C_1C_5R_1R_5 + 2C_1L_1R_1g_m + C_1L_1\right) + s\left(C_1R_1 + 2C_5R_1R_5g_m + C_5R_5\right) + 1}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5s}, \infty\right)$$

$$H(s) = \frac{C_1 L_1 R_1 g_m s^2 + R_1 g_m + s^3 \left(C_1 C_5 L_1 R_1 R_5 g_m - C_1 C_5 L_1 R_1 \right) + s \left(C_5 R_1 R_5 g_m - C_5 R_1 \right)}{C_1 C_5 R_1 s^2 + s^3 \left(2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 \right) + s \left(2 C_5 R_1 g_m + C_5 \right)}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, L_5s+\frac{1}{C_5s}, \infty\right)$$

$$H(s) = \frac{C_1C_5L_1L_5R_1g_ms^4 - C_1C_5L_1R_1s^3 - C_5R_1s + R_1g_m + s^2\left(C_1L_1R_1g_m + C_5L_5R_1g_m\right)}{C_1C_5R_1s^2 + s^3\left(2C_1C_5L_1R_1g_m + C_1C_5L_1\right) + s\left(2C_5R_1g_m + C_5\right)}$$

$$\begin{aligned} \textbf{10.86} \quad \textbf{INVALID-ORDER-86} \ \ Z(s) &= \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \ \infty, \ \ \infty, \ \ \infty, \ \ \frac{L_5s}{C_5L_5s^2+1}, \ \ \infty\right) \\ & H(s) &= \frac{-C_1C_5L_1L_5R_1s^4+C_1L_1L_5R_1g_ms^3+L_5R_1g_ms-R_1+s^2\left(-C_1L_1R_1-C_5L_5R_1\right)}{C_1C_5L_5R_1s^3+C_1R_1s+2R_1g_m+s^4\left(2C_1C_5L_1L_5R_1g_m+C_1C_5L_1L_5\right)+s^2\left(2C_1L_1R_1g_m+C_1L_1+2C_5L_5R_1g_m+C_5L_5\right)+1} \end{aligned}$$

$$\textbf{10.87} \quad \textbf{INVALID-ORDER-87} \ Z(s) = \left(\frac{R_1 \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \sum S_1 + S_2 + \frac{1}{C_5 s}, \ \infty \right)$$

$$H(s) = \frac{C_1 C_5 L_1 L_5 R_1 g_m s^4 + R_1 g_m + s^3 \left(C_1 C_5 L_1 R_1 R_5 g_m - C_1 C_5 L_1 R_1 \right) + s^2 \left(C_1 L_1 R_1 g_m + C_5 L_5 R_1 g_m \right) + s \left(C_5 R_1 R_5 g_m - C_5 R_1 \right)}{C_1 C_5 R_1 s^2 + s^3 \left(2 C_1 C_5 L_1 R_1 g_m + C_1 C_5 L_1 \right) + s \left(2 C_5 R_1 g_m + C_5 \right)}$$

$$\begin{aligned} \textbf{10.88} \quad \textbf{INVALID-ORDER-88} \ Z(s) &= \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5R_5s}{C_5L_5R_5s^2+L_5s+R_5}, \ \infty\right) \\ & \quad H(s) &= \frac{-C_1C_5L_1L_5R_1R_5s^4-R_1R_5+s^3\left(C_1L_1L_5R_1R_5g_m-C_1L_1L_5R_1\right)+s^2\left(-C_1L_1R_1R_5-C_5L_5R_1R_5\right)+s\left(L_5R_1R_5g_m-L_5R_1\right)}{2R_1R_5g_m+R_5+s^4\left(2C_1C_5L_1L_5R_1R_5g_m+C_1C_5L_1L_5R_1\right)+s^3\left(C_1C_5L_5R_1R_5+2C_1L_1L_5R_1g_m+C_1L_1L_5\right)+s^2\left(2C_1L_1R_1R_5g_m+C_1L_1R_5+C_1L_5R_1+2C_5L_5R_1R_5g_m+C_5L_5R_5\right)+s\left(C_1R_1R_5+2L_5R_1g_m+L_5\right)} \end{aligned}$$

$$\textbf{10.89} \quad \textbf{INVALID-ORDER-89} \ Z(s) = \left(\frac{R_1 \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \ \infty \right) \\ H(s) = \frac{C_1 L_1 L_5 R_1 g_m s^3 + L_5 R_1 g_m s + R_1 R_5 g_m - R_1 + s^4 \left(C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^2 \left(C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right) }{C_1 C_5 L_5 R_1 s^3 + C_1 R_1 s + 2 R_1 g_m + s^4 \left(2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^2 \left(2 C_1 L_1 R_1 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + 1 }$$

$$\textbf{10.90} \quad \textbf{INVALID-ORDER-90} \ \ Z(s) = \left(\frac{R_1 \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \ \infty, \ \ \frac{R_5 \left(C_5 L_5 s^2 + 1 \right)}{C_5 L_5 s^2 + C_5 R_5 s + 1}, \ \ \infty \right)$$

$$H(s) = \frac{-C_1 C_5 L_1 R_1 R_5 s^3 - C_5 R_1 R_5 s + R_1 R_5 g_m - R_1 + s^4 \left(C_1 C_5 L_1 L_5 R_1 R_5 g_m - C_1 C_5 L_1 L_5 R_1 \right) + s^2 \left(C_1 L_1 R_1 R_5 g_m - C_1 L_1 R_1 + C_5 L_5 R_1 R_5 g_m - C_5 L_5 R_1 \right) }{2 R_1 g_m + s^4 \left(2 C_1 C_5 L_1 L_5 R_1 g_m + C_1 C_5 L_1 L_5 \right) + s^3 \left(2 C_1 C_5 L_1 R_1 R_5 g_m + C_1 C_5 L_1 R_5 + C_1 C_5 L_5 R_1 \right) + s^2 \left(C_1 C_5 R_1 R_5 g_m + C_1 L_1 + 2 C_5 L_5 R_1 g_m + C_5 L_5 \right) + s \left(C_1 R_1 R_5 g_m + C_5 R_5 \right) + 1$$

11 PolynomialError