A Study of T-Avoiding Elements in Coxeter Groups

Taryn Laird

Northern Arizona University
Department of Mathematics and Statistics

Colloquium May 3, 2016

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Comment

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten as

$$m(s,t) = 2 \implies st = ts$$
 commutations

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Comment

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten as

$$m(s,t) = 2 \implies st = ts$$
 } commutations $m(s,t) = 3 \implies sts = tst$ $m(s,t) = 4 \implies stst = tsts$ } braid relations

Coxeter Graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- vertex set *S*:
- edges $\{s, t\}$ labeled m(s, t) whenever $m(s, t) \ge 3$;

Coxeter Graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- vertex set *S*:
- edges $\{s,t\}$ labeled m(s,t) whenever $m(s,t) \ge 3$;

Comments

- If m(s, t) = 3, we omit label.
- If s and t are not connected in Γ, then s and t commute.
- Given Γ , we can uniquely reconstruct the corresponding (W, S).

Coxeter Groups of Type *A*

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Coxeter Groups of Type *A*

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Then $W(A_n)$ is generated by $\{s_1, s_2, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1.

Coxeter Groups of Type *A*

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Then $W(A_n)$ is generated by $\{s_1, s_2, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1.

 $W(A_n)$ is isomorphic to the symmetric group, Sym_{n+1} , under the correspondence

$$s_i \mapsto (i, i+1),$$

where (i, i+1) is the adjacent transposition exchanging i and i+1.

Coxeter Groups of Type *B*

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Coxeter Groups of Type *B*

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Then $W(B_n)$ is generated by $\{s_0, s_1, \dots, s_{n-1}\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_i = s_i s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and $1 < i, j \le n 1$,
- 4. $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

Coxeter Groups of Type *B*

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Then $W(B_n)$ is generated by $\{s_0, s_1, \dots, s_{n-1}\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and $1 < i, j \le n 1$,
- 4. $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

 $W(B_n) \cong \operatorname{Sym}_n^B$ is a finite group of order $n!2^n$.

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \ldots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and 1 < i, j < n,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \ldots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and 1 < i, j < n,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

 $W(\widetilde{C}_n)$ is an infinite group.

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \ldots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = e$ for all i,
- 2. $s_i s_i = s_i s_i$ if |i j| > 1,
- 3. $s_i s_j s_j = s_i s_i s_j$ if |i j| = 1 and 1 < i, j < n,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

 $W(\widetilde{C}_n)$ is an infinite group.

Comment

We can obtain $W(A_n)$ and $W(B_n)$ from $W(\widetilde{C}_n)$ by removing the appropriate generators and corresponding relations. In fact, we can obtain $W(B_n)$ in two ways.

Reduced Expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

Reduced Expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

We define the length of w, $\ell(w)$, to be the smallest m for which w is a product of m generators, such an expression is called reduced.

Reduced Expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

We define the length of w, $\ell(w)$, to be the smallest m for which w is a product of m generators, such an expression is called reduced.

Given $w \in W$, if we wish to emphasize a fixed, possibly reduced, expression for w, we represent it as

$$\overline{W} = s_{x_1} s_{x_2} \cdots s_{x_m}.$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Definition

We define the left (respectively, right) descent set w as follows:

$$\mathcal{L}(w) := \{ s \in S \mid I(sw) < I(w) \}$$
 $\mathcal{R}(W) := \{ s \in S \mid I(ws) < I(w) \}$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Definition

We define the left (respectively, right) descent set w as follows:

$$\mathcal{L}(w) := \{ s \in S \mid I(sw) < I(w) \}$$
 $\mathcal{R}(W) := \{ s \in S \mid I(ws) < I(w) \}$

Example

$$s_2 s_1 s_2 s_3 s_1$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Definition

We define the left (respectively, right) descent set w as follows:

$$\mathcal{L}(w) := \{ s \in S \mid I(sw) < I(w) \}$$
 $\mathcal{R}(W) := \{ s \in S \mid I(ws) < I(w) \}$

Example

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Definition

We define the left (respectively, right) descent set w as follows:

$$\mathcal{L}(w) := \{ s \in S \mid I(sw) < I(w) \} \qquad \mathcal{R}(W) := \{ s \in S \mid I(ws) < I(w) \}$$

Example

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1 = s_1s_2s_1s_1s_3$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well-defined by Matsumoto's Theorem.

Definition

We define the left (respectively, right) descent set w as follows:

$$\mathcal{L}(w) := \{ s \in S \mid I(sw) < I(w) \}$$
 $\mathcal{R}(W) := \{ s \in S \mid I(ws) < I(w) \}$

Example

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1 = s_1s_2s_1s_1s_3 = s_1s_2s_3$$

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Heaps

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Let $\overline{w} = s_3 s_2 s_1 s_0 s_2 s_1 s_3 s_0 s_2 s_4$ be a reduced expression for $w \in W(B_6)$.

Heaps

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Let $\overline{w} = s_3 s_2 s_1 s_0 s_2 s_1 s_3 s_0 s_2 s_4$ be a reduced expression for $w \in W(B_6)$.

Heaps

Every reduced expression \overline{w} can be represented by a labeled partially ordered set (poset) called a heap, denoted $H(\overline{w})$. Heaps provide a visual representation of a reduced expression while preserving the relations among the generators.

Example

Let $\overline{w} = s_3 s_2 s_1 s_0 s_2 s_1 s_3 s_0 s_2 s_4$ be a reduced expression for $w \in W(B_6)$.

Definition

Let (W, S) be a Coxeter system of type Γ . We say that $w \in W(\Gamma)$ is fully commutative (FC) if any two reduced expressions for w can be transformed into each other via iterated commutations. The set of FC elements is denoted FC(Γ).

Definition

Let (W, S) be a Coxeter system of type Γ . We say that $w \in W(\Gamma)$ is fully commutative (FC) if any two reduced expressions for w can be transformed into each other via iterated commutations. The set of FC elements is denoted FC(Γ).

Theorem (Stembridge)

 $w \in FC(\Gamma)$ if and only if no reduced expression for w contains a braid.

Definition

Let (W, S) be a Coxeter system of type Γ . We say that $w \in W(\Gamma)$ is fully commutative (FC) if any two reduced expressions for w can be transformed into each other via iterated commutations. The set of FC elements is denoted FC(Γ).

Theorem (Stembridge)

 $w \in FC(\Gamma)$ if and only if no reduced expression for w contains a braid.

Comment

It follows from Stembridge that $W(\widetilde{C}_n)$ contains an infinite number of FC elements, while $W(A_n)$ and $W(B_n)$ do not.

Comment

The elements of $FC(C_n)$ are precisely those whose reduced expressions avoid the consecutive subwords $s_i s_j s_i$ for $m(s_i, s_j) = 3$, $s_0 s_1 s_0 s_1$, and $s_{n-1} s_n s_{n-1} s_n$.

Comment

The elements of $FC(C_n)$ are precisely those whose reduced expressions avoid the consecutive subwords $s_i s_j s_i$ for $m(s_i, s_j) = 3$, $s_0 s_1 s_0 s_1$, and $s_{n-1} s_n s_{n-1} s_n$.

Lemma

Let $w \in FC(\widetilde{C}_n)$. Then H(w) can not contain any of the following convex subheaps

Fully Commutative

Theorem (Stembridge)

There is a unique heap for w if and only if w is FC.

Example

Let $\overline{w} = s_0 s_2 s_4 s_3 s_2 s_1$ be a reduced expression for $w \in W(\widetilde{C}_4)$. We see that

$$s_0 s_2 s_4 s_3 s_2 s_1 = s_0 s_4 s_2 s_3 s_2 s_1.$$

Since w has one of the forbidden consecutive subwords, w is not FC.

Definition

We define w to be left star reducible by s with respect to t if $m(s,t) \geq 3$, $s \in \mathcal{L}(w)$ and $t \in \mathcal{L}(sw)$. Analogous definition for right star reducible.

Definition

We define w to be left star reducible by s with respect to t if $m(s,t) \geq 3$, $s \in \mathcal{L}(w)$ and $t \in \mathcal{L}(sw)$. Analogous definition for right star reducible.

Definition

We define w to be left star reducible by s with respect to t if $m(s,t) \geq 3$, $s \in \mathcal{L}(w)$ and $t \in \mathcal{L}(sw)$. Analogous definition for right star reducible.

Definition

We define $W(\Gamma)$ to be star reducible if every element of $FC(\Gamma)$ can be reduced to a product of commuting generators via a sequence of star reductions.

Example

Let $\overline{w} = s_0 s_1 s_0 s_2$ be a reduced expression for $w \in W(B_4)$.

Example

Let $\overline{w} = s_0 s_1 s_0 s_2$ be a reduced expression for $w \in W(B_4)$.

Example

Let $\overline{w} = s_0 s_1 s_0 s_2$ be a reduced expression for $w \in W(B_4)$.

Theorem (Green)

There is a complete list of star reducible Coxeter systems. These include Coxeter systems of type A_n $(n \ge 1)$, type B_n $(n \ge 2)$, type D_n $(n \ge 4)$, type F_n $(n \ge 4)$, type $I_2(m)$ $(m \ge 3)$, type \widetilde{A}_n $(n \ge 3)$ and n even), and type \widetilde{C}_n $(n \ge 3)$ and n odd).

Definition

We define w to have Property T if and only if there exists a reduced product for w such that w = stu or w = uts where $m(s, t) \ge 3$.

Definition

We define w to have Property T if and only if there exists a reduced product for w such that w = stu or w = uts where $m(s, t) \ge 3$.

We say w is T-avoiding if w does not have Property T.

Definition

We define w to have Property T if and only if there exists a reduced product for w such that w = stu or w = uts where $m(s, t) \ge 3$.

We say w is T-avoiding if w does not have Property T.

Proposition

A product of commuting generators is T-avoiding.

Definition

We define w to have Property T if and only if there exists a reduced product for w such that w = stu or w = uts where $m(s, t) \ge 3$.

We say w is T-avoiding if w does not have Property T.

Proposition

A product of commuting generators is T-avoiding.

Definition

We define w to be a trivial T-avoiding element if w is a product of commuting generators. Otherwise, we say w is a non-trivial T-avoiding element.

Examples of Property T and T-avoiding

Example

Let $\overline{w} = s_5 s_3 s_2 s_4 s_1$ be a reduced expression for $w \in W(A_5)$.

Examples of Property T and T-avoiding

Example

Let $\overline{w} = s_5 s_3 s_2 s_4 s_1$ be a reduced expression for $w \in W(A_5)$.

Examples of Property T and T-avoiding

Example

Let $\overline{w} = s_5 s_3 s_2 s_4 s_1$ be a reduced expression for $w \in W(A_5)$.

Example

Let $\overline{w} = s_0 s_2 s_4 s_1 s_3 s_0 s_2 s_4$ be a reduced expression for $w \in W(\widetilde{C}_4)$.

Theorem (Fan, Green)

If n is odd and $n \geq 2$, then there are no non-trivial T-avoiding elements in $W(\widetilde{A}_n)$. If n is even and $n \geq 2$, then $W(\widetilde{A}_n)$ contains non-trivial T-avoiding elements.

Theorem (Fan, Green)

If n is odd and $n \geq 2$, then there are no non-trivial T-avoiding elements in $W(\widetilde{A}_n)$. If n is even and $n \geq 2$, then $W(\widetilde{A}_n)$ contains non-trivial T-avoiding elements.

Conjecture

The only non-trivial T-avoiding elements of $W(A_n)$ for n odd are of the form $w=(s_0s_2\cdots s_{n-2}s_ns_1s_3\cdots s_{n-3}s_{n-1})^k$ for $k\in\mathbb{Z}^+$.

Theorem (Fan, Green)

If n is odd and $n \geq 2$, then there are no non-trivial T-avoiding elements in $W(\widetilde{A}_n)$. If n is even and $n \geq 2$, then $W(\widetilde{A}_n)$ contains non-trivial T-avoiding elements.

Conjecture

The only non-trivial T-avoiding elements of $W(\widetilde{A}_n)$ for n odd are of the form $w = (s_0s_2 \cdots s_{n-2}s_ns_1s_3 \cdots s_{n-3}s_{n-1})^k$ for $k \in \mathbb{Z}^+$.

Corollary

There are no non-trivial T-avoiding elements in $W(A_n)$.

Theorem (Fan, Green)

If n is odd and $n \geq 2$, then there are no non-trivial T-avoiding elements in $W(\widetilde{A}_n)$. If n is even and $n \geq 2$, then $W(\widetilde{A}_n)$ contains non-trivial T-avoiding elements.

Conjecture

The only non-trivial T-avoiding elements of $W(\widetilde{A}_n)$ for n odd are of the form $w=(s_0s_2\cdots s_{n-2}s_ns_1s_3\cdots s_{n-3}s_{n-1})^k$ for $k\in\mathbb{Z}^+$.

Corollary

There are no non-trivial T-avoiding elements in $W(A_n)$.

Theorem (Laird?)

There are no non-trivial T-avoiding elements in $W(I_2(m))$.

Theorem (Gern)

The only non-trivial T-avoiding elements in $W(D_n)$ have this pattern:

Theorem (Cross, Ernst, Hills-Kimball, Quaranta)

The only non-trivial T-avoiding elements in F_5 are stacks of bowties:

Corollary (Cross, Ernst, Hills-Kimball, Quaranta)

There are no non-trivial T-avoiding elements in F_4 .

Corollary (Cross, Ernst, Hills-Kimball, Quaranta)

There are no non-trivial T-avoiding elements in F_4 .

Comment

Classifying non-trivial T-avoiding elements in F_n for $n \ge 6$ gets very difficult.

Since $W(B_n) \cong \operatorname{Sym}_n^B$, we can write $w \in W(B_n)$ as a signed permutation

$$[w(1), w(2), \ldots, w(n)]$$

where we write a bar underneath a number in place of a negative sign.

Since $W(B_n) \cong \operatorname{Sym}_n^B$, we can write $w \in W(B_n)$ as a signed permutation

$$[w(1), w(2), \ldots, w(n)]$$

where we write a bar underneath a number in place of a negative sign.

Definition

We say that w has the signed consecutive pattern abc if there is some $i \in \{1,2,\ldots,n-2\}$ such that (|w(i)|,|w(i+1)|,|w(i+2)|) is in the same relative order as (|a|,|b|,|c|) and such that $\operatorname{sgn}(w(i)) = \operatorname{sgn}(a)$, $\operatorname{sgn}(w(i+1)) = \operatorname{sgn}(b)$, and $\operatorname{sgn}(w(i+2)) = \operatorname{sgn}(c)$.

Since $W(B_n) \cong \operatorname{Sym}_n^B$, we can write $w \in W(B_n)$ as a signed permutation

$$[w(1), w(2), \ldots, w(n)]$$

where we write a bar underneath a number in place of a negative sign.

Definition

We say that w has the signed consecutive pattern abc if there is some $i \in \{1, 2, \ldots, n-2\}$ such that (|w(i)|, |w(i+1)|, |w(i+2)|) is in the same relative order as (|a|, |b|, |c|) and such that $\operatorname{sgn}(w(i)) = \operatorname{sgn}(a)$, $\operatorname{sgn}(w(i+1)) = \operatorname{sgn}(b)$, and $\operatorname{sgn}(w(i+2)) = \operatorname{sgn}(c)$.

We say that w avoids the signed consecutive pattern abc if there is no such i as above.

Example

Example

$$[1, 2, 3, 4, 5, 6] = [\underline{1}, 2, 3, 4, 5, 6]$$

Example

$$[1, 2, 3, 4, 5, 6] = [\underline{1}, 2, 3, 4, 5, 6]$$
$$= [2, \underline{1}, 3, 4, 5, 6]$$

Example

$$[1, 2, 3, 4, 5, 6] = [\underline{1}, 2, 3, 4, 5, 6]$$
$$= [2, \underline{1}, 3, 4, 5, 6]$$
$$= [2, \underline{1}, 4, 3, 5, 6]$$

Example

$$[1,2,3,4,5,6] = [\underline{1},2,3,4,5,6]$$
$$= [2,\underline{1},3,4,5,6]$$
$$= [2,\underline{1},4,3,5,6]$$
$$= [2,\underline{1},4,5,3,6]$$

Example

$$[1,2,3,4,5,6] = [\underline{1},2,3,4,5,6]$$

$$= [2,\underline{1},3,4,5,6]$$

$$= [2,\underline{1},4,3,5,6]$$

$$= [2,\underline{1},4,5,3,6]$$

$$= [2,\underline{1},4,5,6,3]$$

Example

$$[1,2,3,4,5,6] = [\underline{1},2,3,4,5,6]$$

$$= [2,\underline{1},3,4,5,6]$$

$$= [2,\underline{1},4,3,5,6]$$

$$= [2,\underline{1},4,5,3,6]$$

$$= [2,\underline{1},4,5,6,3]$$

$$= [2,4,\underline{1},5,6,3]$$

Classification of T-Avoiding Elements: B_n

Theorem (Laird)

There are no non-trivial T-avoiding elements in $W(B_n)$.

Classification of T-Avoiding Elements: B_n

Theorem (Laird)

There are no non-trivial T-avoiding elements in $W(B_n)$.

123	<u>1</u> 23	1 <u>2</u> 3	12 <u>3</u>	<u>12</u> 3	<u>1</u> 2 <u>3</u>	1 <u>23</u>	<u>123</u>
132	<u>1</u> 32	1 <u>3</u> 2	13 <u>2</u>	<u>13</u> 2	<u>1</u> 3 <u>2</u>	1 <u>32</u>	<u>132</u>
213	<u>2</u> 13	2 <u>1</u> 3	21 <u>3</u>	<u>21</u> 3	<u>2</u> 1 <u>3</u>	2 <u>13</u>	<u>213</u>
231	<u>2</u> 31	2 <u>3</u> 1	23 <u>1</u>	<u>23</u> 1	<u>2</u> 3 <u>1</u>	2 <u>31</u>	<u>231</u>
312	<u>3</u> 12	3 <u>1</u> 2	31 <u>2</u>	<u>31</u> 2	<u>3</u> 1 <u>2</u>	3 <u>12</u>	<u>312</u>
321	<u>3</u> 21	3 <u>2</u> 1	32 <u>1</u>	<u>32</u> 1	<u>3</u> 2 <u>1</u>	3 <u>21</u>	<u>321</u>

Through a series of lemmas we were able to determine if a reduced product ends or begins with *st* given that *w* contains a certain signed consecutive pattern.

Classification of T-Avoiding Elements: C_n

Theorem (Laird)

There are no non-trivial T-avoiding elements in $W(\widetilde{C}_n) \setminus FC(\widetilde{C}_n)$.

Classification of T-Avoiding Elements: C_n

Theorem (Laird)

There are no non-trivial T-avoiding elements in $W(\widetilde{C}_n) \setminus FC(\widetilde{C}_n)$.

Theorem (Laird)

If n is odd, then there are no non-trivial T-avoiding elements in Coxeter systems of type \widetilde{C}_n .

Classification of T-Avoiding Elements: C_n

Theorem (Laird)

There are no non-trivial T-avoiding elements in $W(\widetilde{C}_n) \setminus FC(\widetilde{C}_n)$.

Theorem (Laird)

If n is odd, then there are no non-trivial T-avoiding elements in Coxeter systems of type \widetilde{C}_n .

Theorem (Laird)

If n is even, then the only non-trivial T-avoiding elements in Coxeter systems of type \widetilde{C}_n are sandwich stacks.

Interesting Fact

Comment

Recall that Coxeter systems of Type D_n and F_n have non-trivial T-avoiding elements that are not FC. Also Coxeter systems of Type \widetilde{A}_n and \widetilde{C}_n for appropriate choice of n have non-trivial T-avoiding elements that are FC.

In all of the examples we have seen so far the non-trivial T-avoiding elements are either only FC or only not FC.