uc3m Universidad Carlos III de Madrid

Grado en Ingeniería Informática 2018-2019

Apuntes

Cálculo

Jorge Rodríguez Fraile¹

Esta obra se encuentra sujeta a la licencia Creative Commons Reconocimiento - No Comercial - Sin Obra Derivada

ÍNDICE GENERAL

I Tema 1. Números reales	3
II Tema 2. Sucesiones	9
III Tema 3. Series	17
IV Tema 4. Funciones de variable real y Continuidad	27
V Tema 5. Derivadas	35
VI Tema 6. Teoremas sobre funciones derivables	47
VII Tema 7. Polinomio de Taylor	57
VIII Tema 8. Comportamiento local	63
IX Tema 10. Teoremas fundamental del Calculo	69

Parte I

Tema 1. Números reales

FUNCIONES REALES DE VARIABLE REAL

$$f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \mapsto f(x)$

función real de variable real

D:= dominio de la función:= números reales "z" para las que tiene sentido el cálculo de f(z)

 $I_m(f) = \{y \in \mathbb{R} : y = f(z) \text{ para algrin} x \in D\}$ $= n \tilde{u} m \text{ pros realor "y" que son de la forma}$ y = f(z) para algrin "z".

Obs: Normalmente nos referiromos a una función a través de una expresión del tipo "f(2)". En estos casas asumiremos, implicitamente, que el dominio de f es el conjunto mois grande en el que la formula "f(x)" tenga sentido

Exemplo: El dominio de $f(z) = \sqrt{1-x^2}$ es el conjunto:

D= {xeR: 1x1 ≤ 1} = {xeR: x² ≤ 1}= = {xeR: 1x1 ≤ 1} = [-1,1]

La imagen de f(x) = 11-20 esta formada por los y EQ tales que:

$$|\Rightarrow y^2 = 1 - x^2 \Rightarrow x^2 = 1 - y^2$$

$$x = \pm \sqrt{1 - y^2}$$
Por tambo $y \ge 0$ & $y \in [-1, 1]$

$$\Rightarrow I_m(f) = [0, 1]$$

Exemplos:

- ① $f(x) = x^n$ (on n = 0, 1, 12, ...Dom(f) = R, $T_m(f) = \begin{cases} R & si \ n \ impor \\ To(ab) & si \ n \ par \end{cases}$
- 0 f(x) = sen x 6 cos x Dom(5) = R + In(5) = [-1,1]

 $0 f(x) = \tan(x) = \frac{\sin x}{\cos x}$

Dom(f) = R({士龙,士翌,七空,…}

Im (4) = R

- O arctan: $R \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Dom (arctom) = R $Im \left(arctom \right) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- Dom (arccos) = [-1,1]Im (arccos) = [0,1]
 - In (arcsen) = [-1,1]

 In (arcsen) = [-7/2,17/2]

$$exp: R \rightarrow (o_1 \infty)$$

Ejemplo:
$$f(x) = \frac{2x-3}{5x+7}$$
 d'Aom; Im?

$$Im(s): y \in Im(s) \Leftrightarrow y = \frac{2x-3}{5x+7}$$

$$(5y-2)x = -7y-3$$

$$= \frac{7y+3}{2-5y}$$

$$\Rightarrow 0 = -7.\frac{2}{5} - 3.11$$

Es facil vor ope
$$z \neq -\frac{3}{5}$$

$$\int Im(P) = R \setminus \{\frac{2}{5}\}$$

Parte II

Tema 2. Sucesiones

LIMITE DE UNA FUNCIÓN REAL DE VARIBLE REAL

Sea lER, diremos que l= lim f(2) si

48>0, 38>0 tal ge 15(x)-1/2 si 0<12-201<8E

Es decir:

L= $\lim_{x\to x_0} f(x)$ \iff Los valores de f(x) se preden L= $\lim_{x\to x_0} f(x)$ \iff accercar a $\lim_{x\to x_0} f(x)$ se preden sin meis que tomar la $\lim_{x\to x_0} f(x)$ suficiente mente cerca de $\lim_{x\to x_0} f(x)$ $\lim_{x\to x_0} f(x)$

Observaubres:

- (1) El valor de f en z=zo <u>no</u> prega ninguin papol a la hora de calcular el límite. En particular, zo <u>no</u> recesita perterecer al dominio de S.
- (2) Los valores de x alejados de xo tampoco juegan ningún papel a la hora de calcular un limite.
- (3) Es importante darse menta de que:

 0<12-201<8

 0 bien xo(x<xo+8)

 0 bien xo-8<x<xo

 xo-8<xxxo

Este hecho invita a definir los cimites LATERALES

LATTERAL $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l| / 2$ LATTERAL $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l| / 2$ DERECHA $l = \lim_{x \to x_0} f(x) \Leftrightarrow \forall E > 0 \exists \delta_E > 0 : |f(x) - l| / 2$ Si $x_0 < x < x_0 < x < x_0 < x_0$

Teorema
$$l = \lim_{x \to x_0} f(x) \iff \lim_{x \to x_0^+} f(x) = l = \lim_{x \to x_0^+} f(x)$$

Olos: En la práctica, casi núnca calcularemos los limites usando la definición

Obs: Propiedades de los limites:

Si
$$l_{\Lambda} = \lim_{x \to \infty} f_{\Lambda}(x)$$

 $l_{2} = \lim_{x \to \infty} f_{2}(x)$

.
$$\lim_{X\to X_0} \frac{f_1(x)}{f_2(x)} = \frac{l_1}{l_2}$$
 (si $l_2 \neq 0$)

O indetermination

$$\lim_{X\to\infty} \log \left(f(x) \right) = \log l_{\Lambda}$$

$$\left(S_1 R_{\Lambda} > 0 \right)$$

Obs: Si f: D -> R con D = (21/22) o [21/22] o (21/22) o [21/22] o

$$l_{\lambda} = \lim_{x \to x_{\Lambda}} f(x) \iff l_{\lambda} = \lim_{x \to x_{\Lambda}} f(x)$$

$$l_{2} = \lim_{x \to x_{2}} f(x) \iff l_{2} = \lim_{x \to x_{2}} f(x)$$

Es decir, si el dominio es un intervalo (cemado o no), el limite en los extremos del intervalo se defino a través de los limites laterales.

Si ∞ es un punto avalquiera del dominio de f podemos comporar el valor de $f(x_0)$ con el valor, si exuste, de $\lim_{x\to x_0} f(x)$.

Def: Función continua en 20 Sea 20 E Dominio (f). f es rontinua en 20 \Leftrightarrow him $f(z) = f(z_0)$ $x \to x_0$

Def: Función continua:

Diremes que f es continua \iff f es continua en 2

para todo x de su dornirio

Examples: f(x) = Lx)
es continua en $x_0 \Leftrightarrow x_0 \neq 0, \pm 1, \pm 2, ...$ • f(x) = x es una función continua

• $f(x) = \begin{cases} 1 & \text{si } x \text{ racional} \\ -1 & \text{si } x \text{ imacional} \end{cases}$ no es continua en ningún punto

TEOREMA: PUNCIONES CONTINUAS EN INTERVALOS

CERRADOS y ACOTADOS

Sea S: [xn, xz] -> R ma función continua

(es dear, S(z) es continua +x en el intervalo

comado y acotado [xn, zz])

Entonces Im(S) = [m, M] - intervalo

cerrado y acotado

Corolario: Si f: [x1,x2] $\rightarrow \mathbb{R}$ es continua, entonces $\exists x_M \in [x_1, x_2)$ tal qe $f(x_M) \ge f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tal qe $f(x_M) \le f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tal qe $f(x_M) \le f(x)$ $\forall x \in [x_1, x_2]$ $\exists x_M \in [x_1, x_2]$ tales qe $f(x_M) = M$ $\exists x_M \in [x_1, x_2]$ tales qe $f(x_M) = M$

 $\Rightarrow m = f(x_m) \leq f(x) \leq f(x_m) = M$ $\forall x \in [x_1, x_2].$

Dem: $Im(f) = [m_1M]$ $m \le f(x_A) < 0 < f(x_2) \le M$ $\Rightarrow m < 0 < M \Rightarrow 0 \in [m_1M] = Im(f)$ Por tanto, presto qe $0 \in Im(f)$: $\exists x_0 \in D$ tal qe $f(x_0) = 0$.

Parte III

Tema 3. Series

Sea f: D⊆R→R; 20∈D

Diremos ye fes DERIVABLE en 20 si $\exists \lim_{x\to\infty} \frac{f(x)-f(x_0)}{x-x_0}.$

A dicho limite se le denomina la DERIVADA de f en zo y la denotaromas mediante

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Det: Sea D'= {x \in D: fes derivable en z}

La finción f': D' \in R \rightarrow R

x \rightarrow 5'(z)

se denomina "finción derivada de f."

Exmplos:

$$4) \quad f(z) = x$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{f(z) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1$$

$$f'(z) = 1 \quad \forall x$$

2)
$$f(x) = x^{2}$$

$$\Rightarrow f'(x_{0}) = \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{2 - x_{0}} = \lim_{x \to x_{0}} \frac{x^{2} - x_{0}^{2}}{x - x_{0}} =$$

$$= \lim_{x \to x_{0}} \frac{(x + x_{0})(x - x_{0})}{x - x_{0}} =$$

$$= \lim_{x \to x_{0}} (x + x_{0}) = x_{0} + x_{0} = 2x_{0}$$

$$f'(x) = 2x \quad \forall x \qquad \text{function continuon}$$

El movimiento de una PARTIONLA PUNTUAL en R² estat descrito por una función vectorial:

Presto ye $\vec{F}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$, para describir la posición en el tiempo t necesitamos dar dos finciones reales de variable real: x(t) & y(t)

$$\vec{r}(t) = \left(\begin{array}{c} \text{sent} \\ \text{cos} t \end{array}\right) \vec{r} = \left(\begin{array}{c} \vec{r} \\ \vec{r} \end{array}\right) = \left(\begin{array}{c} \vec{r} \\ \vec{r} \end{array}\right)$$

$$\vec{F}(t) = \begin{pmatrix} t \\ zt \end{pmatrix}$$

Def: VELOCIDAD en d'iNSTANTE to:

$$\frac{3}{5}(b) = \lim_{t \to b} \frac{1}{t - b} \left(\frac{2}{5}(b) - \frac{1}{5}(b) \right) = \\
= \lim_{t \to b} \frac{1}{t - b} \left(\frac{2}{5}(b) - \frac{1}{5}(b) \right) = \left(\frac{2}{5}(b) \right) = \left(\frac{2}{5}(b) \right)$$

· Para fijar ideas, supongamos que la particula esta obligada a moverse signiendo ma CAKRETEKA RECTA: En ese caso, el movimiento viene dado por ma función: y=m·x+yo CARRETERA × $\vec{L}(f) = \begin{pmatrix} w \cdot x(f) + \lambda^{\circ} \\ x(f) \end{pmatrix}$ La relocidad en el instante t es, por tanto: 10(E) = (21(E) mx!(E) En principio, el movimiento anterior puede ser muy complicado, pero si imponemos que la velo_ cidad sea constante (independiente de t): $\chi(t) = \alpha t \Rightarrow \chi'(t) = \alpha$ $\Rightarrow \vec{\nabla}(t) = \begin{pmatrix} \alpha \\ m\alpha \end{pmatrix}$ En concreto, si d=1 => 2=t de manera que: $\vec{v}(t) = \begin{pmatrix} 1 \\ m \end{pmatrix} \forall t$ Topendiente de la reeta Topendiente de la reet

10(6) = (m) es un vector : - constante
-"tangente" a
- su segunda -"tangente" a la carretera - su segunda componente es la pendiante de la carretera (recta)

En este caso, el movimiento es de la forma:

$$\vec{L}(f) = \left(\begin{array}{c} f(x(f)) \\ \end{array} \right)$$

Si ademais suponemos que x(t) = E se tiere que:

$$\vec{F}(t) = \begin{pmatrix} f(t) \end{pmatrix}$$
 is been $\vec{F}(x) = \begin{pmatrix} f(x) \end{pmatrix}$

De esta manera, la relocidad en el "instante z" es:

$$\vec{n}(x) = \begin{pmatrix} 1 \\ f'(x) \end{pmatrix}$$

- f'(x) es la pendiente de la recta tangente a la gráfica (carretera) en el punto $\vec{f}(x) = \begin{pmatrix} x \\ f(x) \end{pmatrix}$
- El vector $\vec{v}(x) = (f'(x))$ es "tangente" a la gráfica en el punto $\vec{r}(x) = (f(x))$

PROPIEDADES DE LA DERIVADA

Aunque la derivada esta definia a travès de un limite, en nuchos casos (aunque <u>no</u> en todos) podremos calcular la derivada de una función usando los siguientes teoremas:

TEOREMA 1: Si $\exists f'(x_0) \Rightarrow f$ es continua en x_0 $\begin{bmatrix}
Si & f & no & es & continua \\
en & x_0
\end{bmatrix}$

TEOREMA 2: Supongamos qe 35'(xo) & g'(xo) enbonces:

- $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$
- $(f.g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ (Leibni7)
- $\frac{\left(\frac{1}{9}\right)'(x_0)}{g^2(x_0)} = \frac{5'(x_0)g(x_0) f(x_0)g'(x_0)}{g^2(x_0)} \\
 \frac{g^2(x_0)}{g(x_0)} \neq 0$

TEOREMA 3: REGLA DE LA CADENA

Si $\exists 5'(g(x_0))$ $\exists g'(x_0)$, se cumple 9e: $(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0)$

obs: (fog)(x) := f(g(x))"f compresta con 2" Aplicación: Derivada de la función inversa:

$$f^{-1}(f(x)) = x \quad \forall x \in D$$

Regla de la
$$(f^{-1})'(f(x)) \cdot f'(x) = 1$$

$$(f^{(x)} \neq 0) \Rightarrow (f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

Por tanto:
$$(5^{-1})'(y) = \frac{1}{5'(5^{-1}(y))}$$

Ejemplos:

•
$$f(x) = x \Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1 \quad \forall x_0 \in \mathbb{R}$$

•
$$f(x) = x^2 = x \cdot x \implies f'(x) = 1 \cdot x + x \cdot 1 = 2x \quad \forall x \in \mathbb{R}$$

•
$$f(x) = x^3 = x \cdot x^2 \implies f'(x) = 1 \cdot x^2 + x \cdot 2x = 3x^2$$
Leibnit $\forall x \in \mathbb{R}$

· Usando inducción:

$$f(x) = x^{n} = x \cdot x^{n-1} \implies f'(x) = n x^{n-1} \quad \forall x \in \mathbb{R}$$

• Asomiré que:
$$sen'(x) = cos(x)$$

 $cos'(x) = -sen(x)$ $\forall x \in \mathbb{R}$
 $exp'(x) = exp(x)$

Ejercicios:

1 Calarla arccos' (2) para los x's que tenga sentido:

Usardo:
$$arccos(cos(x)) = x$$

$$arccos'(cos(x)) \cdot cos'(x) = 1$$

$$-sen(x) arccos(cos(x)) = 1$$

$$arccos'(cos(x)) = -1$$

$$\operatorname{arccos}'(\cos(x)) = -\frac{1}{\operatorname{sen}(x)} = -\frac{1}{\sqrt{1-\cos^2(x)}}$$

$$arccos'(y) = -\frac{1}{\sqrt{1-y^2}}$$
 $y \in (-1,1)$

② Coloula arcsen'(x) para los x's que torga sentido: $arcsen(sen(x)) = x \Rightarrow arcsen'(sen x) \cdot sen' x = 1$ $\Rightarrow cos(x) \cdot arcsen'(x) = 1 \Rightarrow arcsen'(x) = \frac{1}{cos(x)}$

$$\Rightarrow \operatorname{arcsen}^{1}(x) = \frac{\Lambda}{\sqrt{1 - \operatorname{Sen}^{2}(x)}}$$

$$\cos(x) > 0$$

Por tanto:
$$\left(\frac{1}{y}\right) = \frac{1}{\sqrt{1-y^2}}$$

$$y \in (-1,1)$$

$$\Rightarrow$$
 arctan'(tanz) = $\frac{1}{1+\tan^2 z}$

$$\left(\operatorname{arctam}^{1}(y) = \frac{1}{1 + y^{2}} \quad \forall y \in \mathbb{R}\right)$$

$$\Rightarrow \log'(e^*) = \frac{\Delta}{e^*}$$

Parte IV

Tema 4. Funciones de variable real y Continuidad

FUNCTIONES DERIVABLES: TEOREMAS

Teorema: Sea (x_1, x_2) in intervals no necesariamente acotado (es decir, permitiremos que $x_1 = -\infty$ $\frac{\pi}{2}$) $x_2 = \infty$)

Si f'(x) = 0 $\forall x \in (x_1, x_2) \implies f(x) = C$ $\forall x \in (x_1, x_2)$ (función constante) $\exists mf = \{C\}$

Obs: Hay functiones no constantes are cumplen f'(x) = 0For eyemplo:

> $f: (-\infty,0) \cup (0,00) \longrightarrow \mathbb{R}$ $x \mapsto f(x) = \arctan(x) + \arctan(\frac{1}{x})$

$$f'(x) = \frac{1}{1+x^2} + \frac{1}{1+(1/x)^2} \left(-\frac{1}{x^2}\right) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

$$= \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

$$\forall x \in (-\infty, 0) \cup (0, \infty)$$

Sir embargo:

$$f(1) = 2 \arctan(1) = \frac{\pi}{2}$$

 $f(-1) = 2 \arctan(-1) = -\frac{\pi}{2}$

Teorema de Rolle:

$$f(z_1) = f(z_2)$$

Exemplo:
$$f: [0,1] \longrightarrow R$$

$$z \mapsto f(z) = z(1-z)$$
 continua

$$f(0) = f(1) = 0$$

Teorema del valor medio de Lagrange:

$$\exists x_0 \in (x_1, x_2) : f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$f(x_2) = f(x_1) + f'(x_0)(x_2 - x_1)$$

Epemplo:

$$f: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto f(x) = 2x^3 - 3x + 2$
continua en $[0,1]$ & derivable en $[0,1]$
 $\Rightarrow \exists x \in (0,1): f'(x_0) = \frac{f(1) - f(0)}{1-1}$

$$f(0) = 2$$

$$f(1) = 1$$

$$f'(x) = 6x^{2} - 3$$

$$f'(x) = \frac{f(1) - f(0)}{1 - 0} \iff 6x^{2} - 3 = -1$$

$$6x^{2} = 2$$

$$x^{2} = \frac{1}{3} \iff 2$$

$$2^{2} = \frac{1}{3} \iff x = \pm \frac{1}{3}$$
 $\frac{1}{3} \in (0,1)$

Teoroma del volor medio de Cauchy

fig: [21,22] -> R: continuas en [21,22]

derivables en (21,22)

 $\Rightarrow \exists x_0 \in (x_1, x_2) \quad \text{tal que}: \\ (g(x_2) - g(x_1)) \, f^1(x_0) = (f(x_1) - f(x_1)) \, g^1(x_0)$

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(x_1) - f(x_1)}{g(x_1) - g(x_1)}$$

Este hecho permite demostrar el TEOREMA DE L'HOPITAL

Teorema de L'Hopital:

Sea $x_0 \in I = (x_{11}x_2)$. Sean f y g dos funciones derivables en todos los puntos de $I \setminus \{x_0\}$.

Si.
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$$

$$\implies \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Obs: El teorema también es válido si lim f(x) = lim g(x) = ±00

Exemplos (L'Hopital)

$$\lim_{x\to 0} \frac{z}{\sin x} = \lim_{x\to 0} \frac{1}{\cos x} = 1$$

$$\lim_{x\to 0} \frac{e^{2} - e^{2}}{\sin x} = \lim_{x\to 0} \frac{1}{\cos x} = 1$$

$$\lim_{x\to 0} \frac{e^{2} - e^{2}}{\sin x} = \lim_{x\to 0} \frac{1}{\cos x} = 1$$

$$\lim_{x\to 0} \frac{x \log(x) - x + 1}{(x - 1) \log(x)} = \lim_{x\to 1} \frac{\log x}{\log x + 1 - 1/2} = 1$$

$$= \lim_{x\to 1} \frac{x \log x}{2 \log x + 2 - 1}$$

$$\lim_{x\to 1} \frac{x \log x}{2 \log x} = \frac{1}{2}$$

$$\lim_{x\to 1} \frac{1 + \log x}{2 + \log x} = \frac{1}{2}$$

Parte V

Tema 5. Derivadas

FuncionES f(x) = x ; n ∈ N = {1,2,3,...}

n=1: f(x) = x

n=2 : f(x) = x2 = 2.x

n=3: f(x)= x3 = x.x.x

etc.

- · Dom(f) = R
- · fes continua en R
- · f es derivable en R
- · f'(x) = nxn-1; x ER
- . f'es continua en R.

función par $f(-\infty) = f(\infty)$

FUNCIONES f(x) = x con n ∈ N = {1,213,--}

$$h=1: f(x) = x^{-1} = \frac{1}{x}; x \neq 0$$

$$n=2$$
; $f(x) = x^{-2} = \frac{1}{x^2} = \frac{1}{x} \cdot \frac{1}{x}$; $x \neq 0$

n=3:
$$f(x) = x^{-3} = \frac{1}{x^3} = \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}$$
; $x \neq 0$

etc.

$$f(\infty) = \infty^{-n} = \frac{\Lambda}{\infty^n}$$

. fles continua en RHO3

Funciones
$$f(x) = x^a$$
 con $a \in \mathbb{R} \setminus \{0, \pm 1, \pm 2, ...\}$

$$f(x) = x^{2}$$
; $f(x) = x^{\frac{1}{4}}$; $f(x) = x^{\frac{1}{6}}$; ...

· PRIMERA DEFINICION :

Esta definición nos obliga a tomar Dom (5) = (0,00)

93 (x) 5 wy EP

Puesto que lim
$$f(z) = \lim_{x\to 0+} z^a = \lim_{x\to 0+} e^{a\log(z)}$$

= $e^{a\cdot(-\infty)} = \begin{cases} 0 & \text{si } a > 0 \\ \infty & \text{si } a < 0 \end{cases}$

· SEGUNDA DEPINICIÓN:

Si a > 0:
$$f(x) = x^a = \begin{cases} e^{alogx} & si = 0 \end{cases}$$

Si $a > 0$: $f(x) = x^a = \begin{cases} e^{alogx} & si = 0 \end{cases}$

fes continua en [0,00)

Si a <0:
$$f(x) = x^a = e^{a \log x}$$
 si $x > 0$
Dom $f = (0, \infty)$
 f es continua en $(0, \infty)$

Supongamos a < 0:

$$f(x) = x^{\alpha} = e^{a\log x}$$
 con $x \in (0, \infty)$
 f es continua y derivable en $(0, \infty)$. En concreto:
 $f'(x) = e^{a\log x} \cdot \frac{\alpha}{x} = \alpha \frac{e^{a\log x}}{x} = \alpha \frac{e^{a\log x}}{e^{\log x}} =$
 $= \alpha e^{(\alpha-1)\log x} = \alpha e^{\alpha-1}$; $x > 0$
 $\Rightarrow f'(x) = \alpha e^{\alpha-1} \quad \forall x \in (0, \infty)$
 $f'(x) = \alpha e^{\alpha-1} \quad \forall x \in (0, \infty)$.

Supongamos a>0:

$$f(x) = x^{a} = \begin{cases} e^{a \log x} & x > 0 \\ 0 & x = 0 \end{cases}$$

Si x>0:
$$f(x) = x^{\alpha} = e^{\alpha \log x}$$

 f es derivable en $x > 0$
 $f'(x) = \alpha x^{\alpha-1}$
Tourmo calculo que pora aco

Si x=0:
$$f'(0) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} =$$

$$= \lim_{x \to 0+} \frac{e^{a \log x} - 0}{2} = \lim_{x \to 0+} \frac{e^{a \log x}}{e^{b \log x}}$$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

$$= \lim_{x \to 0+} \frac{(a-1) \log x}{x} = 0$$
Si x=0: $f'(0) = \lim_{x \to 0+} \frac{e^{a \log x}}{x} = 0$

En resumen:

$$f(x) = x^{\alpha}$$
 es continua en $[0,00)$
derivable en $(0,00)$
 $f'(x) = ax^{\alpha-1}$ si $x \in (0,00)$

· Si a>1:

$$S'(x) = ax^{a-1} \forall x \in [0,\infty)$$

Obs: Supongamos 2>0; aib arbitrarios:

En efecto:

$$(x^a)^b = (e^{alogx})^b = e^{blog}(e^{alogx}) =$$

$$= e^{b \cdot alogx} = x^{ab}$$

$$f(x) = x^{\alpha}$$
 con $\alpha = \frac{1}{2}; \frac{1}{4}; \frac{1}{6}; ...$

$$a = 1/2$$
: $(x^{1/2})^2 = x$ $\forall x \ge 0 \Rightarrow x^{1/2} = \sqrt{x}$

$$f(x) = x^{1/2} = \sqrt{x} \quad \text{continua en } [0, \infty)$$

$$\text{derivable en } (0, \infty)$$

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{\frac{1}2-1} = \frac{1}{2x^{1/2}} = \frac{1}{2x^$$

$$a = \frac{1}{4}$$
; $(x^{4})^{7} = x \quad \forall x \ge 0 \implies x^{4} = \frac{4}{2}$
 $f(x) = x^{4} = \frac{4}{2}$ antima en $\begin{bmatrix} 0 & 100 \\ 0 & 100 \end{bmatrix}$
 $derivable en (0 & 100)$
 $f'(x) = \frac{1}{4}x^{\frac{1}{4}-1} = \frac{1}{4}x^{\frac{3}{4}-1} = \frac{$

En general:
$$(2^{1/2}k)^{2k} = 2 \quad \forall x > 0$$

$$\Rightarrow 2^{2k} = 2\sqrt{x}$$

$$f(x) = x^{\frac{1}{2k}} = 2\sqrt{x}$$
 continua en $[0, \infty)$

$$f'(x) = \frac{1}{2k} x^{\frac{1}{2k-1}} = \frac{1}{2k x^{\frac{2k-1}{2k}}} = \frac{1}{2k^{\frac{2k-1}{2k-1}}}; x>0$$

En O la 2 grafica entra con pondiente infinita

$$f(x) = x^{\alpha}$$
 con $\alpha = \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$

En este caso conviere CAMBIAR la definición general para que 2ª tenga como dominio TODO R. En concrebo, si a=1/3 definimos:

$$f(x) = x^{1/3} = \begin{cases} e^{\frac{1}{3}\log(x)} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -e^{\frac{1}{3}\log(-x)} & \text{si } x < 0 \end{cases}$$

(La definición es bel qe f(-x)=-f(x): impar)

Esta mera definición hace que se cumpla que:

$$(x^{1/3})^3 = x \quad \forall x \in \mathbb{R}$$

$$(x^{1/3})^3 = \begin{cases} 2 & \text{si } 2 > 0 \\ 0 & \text{si } 2 = 0 \\ 2 & \text{si } 2 < 0 \end{cases}$$

Por tanto:
$$f(x) = x^{1/3} = \sqrt[3]{x}$$
 $\forall x \in \mathbb{R}$

f es continua en \mathbb{R}

derivable en $\mathbb{R} \setminus \{0\}$
 $f'(x) = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$ si $x \neq 0$

Af (0)

En general, si
$$\alpha = \frac{1}{2k+1}$$
 bog(x)

$$f(x) = x^{\frac{1}{2k+1}} = \begin{cases} \frac{1}{2k+1} \log(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

$$= \frac{1}{2k+1} \log(-x) & \text{si } x < 0 \end{cases}$$

$$\Rightarrow (x^{\frac{1}{2k+1}})^{2k+1} = x \quad \forall x \in \mathbb{R}$$

$$f(x) = x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

$$= x^{\frac{1}{2k+1}} = x \quad \forall x \in \mathbb{R}$$

Parte VI

Tema 6. Teoremas sobre funciones derivables

POLINOMIO DE TAYLOR

• Un polinomio de grado n es ma función de la Forma $P(x) = p_0 + p_1 x + p_2 x^2 + \cdots + p_n x^n$

an p, +0

Exemplo: P(x) = 3+5x+7x2
polinomio de grado 2.

P: constantes

· Dado 26 EB, analquier polinomis de grado n puede escribirse en la forma

 $P(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + ... + a_n(x-x_0)^n$ con an $\neq 0$ ai constantes

Ejemplo: $P(x) = 3+5x+7x^2 =$

 $= \frac{3+5(x-x_0+x_0)^2}{5+5x_0+x_0+x_0} + 7(x-x_0+x_0)^2$ $= \frac{3+5x_0+7x_0^2}{5+14x_0} + (5+14x_0)(x-x_0) + (5+14x_0)^2$ $+ 7(x-x_0)^2$

=> P(x) = a0 + a1(x-x0) + a2(x-x0)2

con; $a_0 = 3 + 5 z_0 + 7 z_0^2$ $a_1 = 5 + 14 z_0$ $a_2 = 7$

• Si $P(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + \cdots + a_n(x-x_0)^n$ es evidente qx: $p^{(k)}(x_0) = k! \ a_k$

 $a_0 = P(x_0)$ $a_1 = P^1(x_0)$ $2a_2 = P^1(x_0)$

 $\Rightarrow \left[a_{\kappa} = \frac{1}{\kappa!} P^{(\kappa)}(x_0) \right]$

derivada K-ēsima

· Si P(x) es un polinomio de grado n no es un número real arbitrario

$$\Rightarrow P(x) = P(x_0) + P'(x_0)(x-x_0) + \frac{P''(x_0)}{2}(x-x_0)^2 + \frac{P'''(x_0)}{3!}(x-x_0)^3 + \cdots + \frac{P'''(x_0)}{n!}(x-x_0)^n$$

· Sea f: (x11x2) -) R ma finción C'(x11x2)

(aunque no hace faltor torn to regularidad, todos los
ejomplos eje vamos a considerar serán de este tipo)

Sea xo E (X11X2)

El POUNOMIO de TAYLOR de ORDEN n de f en 20 es el polinomio

 $f_{n}(x|f(x_{0})) := f(x_{0}) + f'(x_{0})(x-x_{0}) + \frac{f''(x_{0})}{2}(x-x_{0})^{2} + \dots + \frac{f'''(x_{0})}{n!}(x-x_{0})^{2}$

EL RESTO n-Esimo de TAYLOR de f en 20 se denota mediante Ra(x15,20) y se define como:

 $R_{\eta}(x|f,x_0) := f(x) - P_{\eta}(x|f,x_0)$

Obs: f(x) y Pn(x)f,xo) satisfacen:

 $P(x_0|f_1x_0) = f(x_0); P'(x_0|f_1x_0) = f'(x_0),..., P^{(n)}(x_0|f_1x_0) = f^{(n)}(x_0)$

Example: $f(x) = \cos x$; $x_0 = 0$ $f_4(x|f_10) = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4$ $g_4(x|f_10) = \cos x - (1 - x^2/2 + x^4/4!)$

TEOREMA DE TAYLOR

Sea f: $(x_{11}x_{2}) \rightarrow \mathbb{R}$ ma función $C^{n+1}(x_{11}x_{2})$ Sea $x_{0} \in (x_{11}x_{2})$:

 $\Rightarrow Si \times \pm x_0 \Rightarrow C \in (x_0, x_0) \in C \in (x_1, x_0)$ $tol que: f^{(n+1)}(c) \in \mathbb{R}^{n+1}$

 $R_n(x|f_1x_0) = \frac{f^{(n+n)}(c)}{(n+n)!} (x-x_0)^{n+1}$

Obsi Para nº 20 de teorema se reduce al teorema del valor medio de Lagrange

Corolarios: En las hipótesis del teorema de Taylor:

.
$$\lim_{x \to \infty} R_n(x|f_1x_0) = \lim_{x \to \infty} \frac{R_n(x|f_1x_0)}{x-x_0} =$$

$$= \lim_{x \to \infty} \frac{R_n(x|f_1x_0)}{(x-x_0)^2} = -- = \lim_{x \to \infty} \frac{R_n(x|f_1x_0)}{(x-x_0)^n} = 0$$

•
$$\lim_{x\to\infty} \frac{f(x) - P_n(x|f_1x_0)}{(x-x_0)^n} = 0$$

•
$$\lim_{x \to \infty} \frac{f(x) - P_{n-1}(x)f(x_0)}{(x-x_0)^n} = \frac{n!}{f^{(n)}(x_0)}$$

NOTACIÓN de LANDAU

Sean f y g funciones définidas en un entorno de 20

Orgrande de Landau:

Diremos que f=0(g) avando x-xxx si 3M20 tal que If(x)1 ≤ M/g(x)1 Yx en un entorno de xo

o-pequeña de Landau:

Diremos que f = o(g) avando $z \rightarrow z_0$ si $\forall M > 0$ existe in enterno de xo tal que $|f(z)| \leq M|g(z)|$ para tado x en dicho enterno

Observación: Si g(x) = 0 Yx + xo

$$f = o(g) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

$$f = O(g) \Leftrightarrow \frac{f(x)}{g(x)}$$
 acotado para x cerco de xo

Exemplo: En las hipstess del teorema de Taylor, $R_n(x|f,x_0) = o\left((x-x_0)^n\right)$

Co-proprena

f(x) =
$$P_n(x|f_1x_0) + o((x-x_0)^n)$$

EJEMPLOS: Si 2-30 se tiere que:

•
$$\cos x = \Lambda - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

•
$$\operatorname{Sen} x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

•
$$(1+x)^{\alpha} = 1+a + \frac{a(a-1)}{2}z^{2} + \frac{a(a-1)(a-2)}{3!}z^{3} + \frac{a(a-1)(a-2)(a-3)}{4!}z^{4}$$

Binomio

Newton

+ + $\frac{a(a-1)\cdots(a-n+1)}{n!}x^{n} + o(z^{n})$

$$\binom{a}{n}:=\frac{a(a-1)\cdots(a-n+1)}{n!}$$
; $a\in B$ (no recejariamente entero)

$$\lim_{x\to 0} \frac{\sin x - x + x^{3}/6}{x^{5}} = \lim_{x\to 0} \frac{x - \frac{2^{3}}{6} + \frac{x^{5}}{5!} + o(x^{5}) - x + \frac{x^{3}}{6}}{x^{5}}$$

$$= \lim_{x\to 0} \frac{\frac{x^{5}}{5!} + o(x^{5})}{x^{5}} = \frac{1}{5!}$$

$$\frac{\sin \frac{\cos x - \sqrt{1-x}}{\sin x} = \lim_{x \to 0} \frac{\cos x - (1-x)^{\frac{1}{2}}}{\sin x} =$$

$$= \lim_{n \to 0} \frac{1 - \frac{n^2}{2} + o(z^2) - \left(1 - \frac{1}{2}x + o(x)\right)}{n + o(x)} = \frac{1}{2}$$

Ejemplo: Aproxima el valor de (1.1)^{1/3} mediante in polinomio de Taylor de grado 3 y estima el emor cometido en la aproximación.

Consideremos la función $f(x) = (1+x)^{1/3}$. Tambo el valor de f en $x_0=0$ como el de todas sus derivadas en $x_0=0$ son números racionales que se pueden calcular fácilmente:

$$f(x) = (1+x)^{1/3} \implies f(0) = 1$$

$$f'(x) = \frac{1}{3}(1+x)^{-2/3} \implies f'(0) = \frac{1}{3}$$

$$f''(x) = -\frac{2}{3^2}(1+x)^{-5/3} \implies f''(0) = -\frac{2}{9}$$

$$f'''(x) = \frac{2\cdot 5}{3^3}(1+x)^{-8/3} \implies f'''(0) = \frac{10}{27}$$

$$f'''(x) = -\frac{2^{4} \cdot 5}{3^{3}}(1+x)^{-1/3}$$

En este caso, presto que $f(z) = (1+z)^{1/3}$ podiamos haber calculado dichas derivadas usando el binomio de Neurton:

$$(1+x)^{1/3} = 1 + \frac{1}{3}x + \frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^2 + \frac{\frac{1}{3}(\frac{1}{3}-1)(\frac{1}{3}-2)}{3!}x^3 + o(x^3)$$

$$= 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + o(x^3)$$

En malquier caso:

$$f(x) = (1+x)^{1/3}$$

$$\Rightarrow P_3(x|f_0) = 1 + \frac{x}{3} - \frac{x^2}{9} + \frac{5}{81}x^3$$

$$x_0 = 0$$

$$(1+2)^{1/3} = 1 + \frac{x}{3} - \frac{x^2}{9} + \frac{5}{81}x^3 + R_3(2|5,0)$$

Usando el teorema de Taylor:

$$R_3(x|f_{10}) = -\frac{2^4.5}{3^44!} \frac{x^4}{(1+c)^{11/3}}$$
 con $c \in (0, x)$

Particularizando la ecuación

$$(1+x)^{\frac{1}{3}} = 1 + \frac{x}{3} - \frac{x^2}{9} + \frac{5}{81}x^3 + R_3(x|f,0)$$

en x=0.1 se tiene:

$$(4.1)^{1/3} = 1 + \frac{0.1}{3} - \frac{(0.1)^2}{9} + \frac{5 \cdot (0.1)^3}{81} - \frac{24.5}{34.4!} \cdot \frac{(0.1)^4}{(1+c)^{11/3}}$$

$$con ce(0,0.1)$$

Podemos aproximar (1.1)1/3 mediante:

$$(1.1)^{4/3} \sim 1 + \frac{0.1}{3} - \frac{(0.1)^2}{9} + \frac{5(0.1)^3}{81} = 1.03228395 \dots$$

El error cometido en la aproximación es:

Error =
$$\left| \frac{(1.1)^{1/3} - (1 + \frac{0.1}{3} - \frac{(0.1)^2}{9} + \frac{5 \cdot (0.1)^3}{81}) \right|$$

exacto aproximación

$$\Rightarrow \text{ Error} = \left| \frac{2^{4}.5 (0.1)^{4}}{3^{4}.4! (1.4)^{4}} \right| \leq \frac{2^{4}.5 \cdot (0.1)^{4}}{3^{4}.4!}$$

$$\Rightarrow \text{ is } C = \emptyset$$

La aproximación proporciona 5 cifras decimales exactos.

$$(1.1)^{1/3} = 1.03228...$$

Parte VII

Tema 7. Polinomio de Taylor

SERIES DE TAYLOR Y FUNCIONES ANAUTICAS!

• Supongamos que $f:(x_0-E,x_0+E) \longrightarrow \mathbb{R}$ es una función $C^{\infty}(x_0-E,x_0+E)$ (es decir, las funciones $f^{(k)}(x_0)$ son continuas en (x_0-E,x_0+E) $\forall k=0,11,2,...)$ La SERIE:

$$f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$$

se denomina SERIE de TAYLOR de f centrada en 20.

• Podemos pensar en $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ como una función cuyo dominio consiste en el conjunto de valores de x para los cuales la serie converge:

$$x \mapsto \sum_{\kappa=0}^{\infty} \frac{f^{(\kappa)}(x_0)}{\kappa!} (x-x_0)^n$$

En particular, xo pertenece al dominio y a gre: $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{K!} (x_0-x_0) = f(x_0)$

d'Oné ocurre si z + 20? Si x + 20, en principio puede pasar chalquiera de las signientes cosas:

- 4) $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ no sea convergente
- 2) $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ converja a m valor f(x)
- 3) $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x_0)^k \text{ converjor a } f(x)$

Dicha casuistica depende del comportamiento de la sucesión $(f^{(k)}(x_0))_{k \in N}$. Aunque no vamos a estudiar el problema con detalle, en algunos casos es fácil demostrar la convergencia de la serie de Taylor (ver siguiente sección). En concreto:

•
$$\cos x = \sum_{k \ge 0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} \quad \forall x \in \mathbb{R}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$$
 ; $|x| < 1$

•
$$\log(1-x) = -\sum_{k=1}^{\infty} \frac{z^k}{n}$$
; $|z| < 1$

•
$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\binom{\alpha}{k}} x^{k}$$
; $|x| < 1$
 ${\binom{\alpha}{0}} = 1$
 ${\binom{\alpha}{k}} = \frac{\alpha(\alpha-1)-1(\alpha-k+1)}{k!}$

FUNCIÓN ANAUTICA EN 26:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$

para todo x ∈ (x0- €, x0+ €) con €>0.

Usando gre f(1)(x) = ex Yk=0,1,2,... se there ge

$$e^{x} = e^{x_0} + e^{x_0}(x - x_0) + \dots + \frac{e^{x_0}}{n!}(x - x_0)^n + \frac{e^{c_n}}{(n+n)!}x^{n+1}$$

Pn (x (f, 20)

Rn(215,26)

con Cne (26,2)

Tomando lim se trene:

$$e^{2} = \sum_{k=0}^{\infty} \frac{e^{2k}}{k!} (x-x_0)^k + \lim_{n\to\infty} e^{c_n} \frac{z^{n+1}}{(n+1)!}$$

$$\Rightarrow \lim_{n\to\infty} \frac{2^n}{n!} = \lim_{x\to\infty} \frac{2^n}{(\frac{n}{2})^n \sqrt{2xn}} = 0$$

$$\Rightarrow \lim_{n\to\infty} e^{c_n} \frac{2^{n+1}}{(n+1)!} = 0$$

Por tanto: $e^{2} = \sum_{k=1}^{\infty} \frac{e^{2\omega}}{k!} (z-x_0)^k$ $\forall z \in \mathbb{R}$ para todo $z_0 \in \mathbb{R}$

Parte VIII

Tema 8. Comportamiento local

- · Para finciones suficientemente regulares, el comportamiento local de la fincion entorno a un cierto punto suo puede codificarse de una torma muy conveniente a través de los prineros términos no nulos del polinomio de Taylor en so.
- En lo gre signe, sólo nos interesará el compartor miento local de una función entorno a un cierto punto no por lo gre nos contraremos en funciones de forma $f \in C^n(x_0 \varepsilon, x_0 + \varepsilon)$, son $n = 1, 2, ..., \infty$. (en los ejemplos $f \in C^\infty(x_0 \varepsilon, x_0 + \varepsilon)$).
 - Recordemos que el teorema de Taylor nos dice que: $f(x) = P_n(x|f_1x_0) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}; CE(x_0|x)$ Para n=0 el teorema se reduce al teorema del valor medio de Lagrange:

 $f(x) = f(x_0) + f'(c) (x-x_0); c \in (x_0,x).$

TEOREMA: Sea $f \in C^{\Lambda}$ tal qe $f'(x_0) > 0$, entonces f es estrictamente creciente en un entorno de xo [es decir, existe un entorno $(x_0 - \varepsilon, x_0 + \varepsilon)$ en el cual : $x_{\Lambda} < x_{\Lambda} \Rightarrow f(x_{\Lambda}) < f(x_{\Lambda})$

Dem: Como f' es continua & $f'(x_0) > 0$ existe un entorno de x_0 : $(x_0 - \xi, x_0 + \xi)$ en el cual f'(x) > 0. Usando el teorema de Taylor para n = 0;

 $f(x) = f(x_0) + f'(c)(x-x_0) con ce(x_0,x)$

concluinos que x>20 => f(2)>f(20)

Un razonamiento similar permite demostrar el siguiente:

TEOREMA: Sea $f \in C^4$ tal $qe f'(x_0) < 0$. Entonces f es estrictamente decreviente en un entorno de x_0 Es decir, existe un intervalo $(x_0-\epsilon_1 x_0+\epsilon)$ en el cual dados dos puntos $x_1 < x_2 \implies f(x_1) > f(x_2)$.

Definición: PUNTOS CRITICOS

Sea $f \in C^1$. Diremos que no es un punto catrico de f si $f^1(n_0) = 0$

Por simplicidad, supongamos que xo es un punto crítico de una función C^{∞} (os decir $f^{1}(x_{0}) = 0$). Sea p>1 orden de la primera derivada no nula en xo. Entonæs:

$$f(x) = f(x_0) + \frac{f^{(p)}(x_0)}{p!} (x - x_0)^p + o((x - x_0)^p)$$

$$x \in (x_0 - \varepsilon, x_0 + \varepsilon)$$

• Si
$$p = PAR & f^{(p)}(x_0) > 0$$
:
 $f(x) \sim f(x_0) + \frac{f^{(p)}(x_0)}{p!} (x-x_0)^p$

=> f es (ONVEXA +) en un entorno de 200 y tiere un mínimo LOCAL en 200

Función estrictamente creciente en un entorno de xo.

 $f(x) \simeq f(n_0) + \frac{f^{(p)}(x_0)}{p_1}$

Fusción estrictamente decreciente en un entorno de xo

En ambos casos, no es un PUNTO de INFLEXIÓN, es decir, la función es convexa a un lado de no y cóncava al otro lado.

Observacion: Independientemente del valor de $f'(x_0)$, si f tiene un desarrollo de Taylor de la forma: $f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f^{(p)}(x_0)}{p!}(x-x_0)^p + O((x-x_0)^p)$ con $f^{(p)}(x_0) \neq 0$ (p>1)

podemos conduir que:

- Si P=PAR & f(P)(20)>0: → f es convexa H en un entorno de 200
- · Si P=PAR & f(P)(20) < 0 i ⇒ f es concava (-) en un entorno de 20
- » Si P=IMPAR; ⇒ f tiene m punto de INFLEXIOÑ en ∞

EJEMPLOS:

$$f(x) = x^{2} \left(x - \frac{x^{3}}{3!} + o(x^{3})\right)^{4} = x^{44} \left(1 - \frac{x^{2}}{2} + o(x^{3})\right)^{4}$$
$$= x^{44} + o(x^{42})$$

- \Rightarrow f es estrictamente creciente en un entorno de $x_0 = 0$
- => f there in punto de inflexión en xo=0
- Comportamiento le $f(x) = \cos^3 x \cdot \log^2 (1+x)$ cerca de $x_0 = 0$:

$$f(x) = \left(1 - \frac{x^2}{2} + o(x^2)\right)^3 \cdot \left(x + o(x)\right)^2 =$$

$$= x^2 + o(x^2)$$

$$\Rightarrow$$
 f there in minimo bocal en $26 = 0$
 $+ /2^2$

= f es converca en un entorno del o.

Parte IX

Tema 10. Teoremas fundamental del Calculo

INTEGRACIÓN en R

Ingredientes: • [21,22]: intervalo cerrado y acotado $0 \le x_2 - x_1 < \infty$

- $f: [x_{1}, x_{2}] \rightarrow \mathbb{R}$: function acotada $m \leq f(x) \leq M$, $\forall x$.
- . n∈{1,2,3,...}: dividines el intervalo

[x_1,x_2] on n intervalos de ignal longitud: $\Delta_n = \frac{x_2 - x_1}{n}$ (definición simplificada)

Definings:
$$m_k(n) = inf \{ f(x) : x_i + (k-1) \Delta_n \le x \le x_i + k \Delta_n \}$$

 $M_k(n) = \sup \{ f(x) : x_i + (k-1) \Delta_k \le x \le x_i + k \Delta_n \}$

Suma interior:

In (\$1 × 1×2) := \sum_{k=1} m_k(n) . Dn

Suma superior: n Sn(fixilx2) = \sum Mk(n). Dn

DEFINICIÓN: Diremos que des INTEGRABLE en [x1 122] si

Jim In (f121122) = lim Sn (f121122).

Si des integrable en [21122], el símbolo Jas f(t) de denotara l'usariable muda"

Jas f(t) dt: __ lim In (6121122) = lim Sn (f121122)

y se denominar INTEGRAL de den [21122].

· Si f ≥ 0 el significado geométrico de la f(t)dt es chro: J= f(t) dt: area de la región limitada por la grafica de f, el eje x y las rectas x= x1 y x=x2

· En general, $\int_{x_1}^{x_2} f(t) dt$ representa la <u>Diferencia</u> de las areas que greden por encima y las que greden por debajo del eje z

· El calculo de fix f(t)dt usando la definición es dificil: Por ejemplo, consideremos f(x) = x2; [x1x2] = [0,1]

En este caso:
$$m_{\kappa}(n) = \left(\frac{\kappa-1}{n}\right)^{2}; \quad M_{\kappa}(n) = \left(\frac{\kappa}{n}\right)^{2}$$
por tanto:

$$I^{\nu}(t^{i} \circ i) = \sum_{n=1}^{N-1} \left(\frac{\nu}{N-1}\right)_{5} \cdot \frac{\nu}{1} = \frac{\nu_{3}}{\sqrt{2}} \sum_{n=1}^{N-1} (N-1)_{5}$$

[Resultado conocido: $\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$]

$$\exists n = \frac{1}{n^3} \frac{(n-1) n(2n-1)}{6} \xrightarrow[n \to \infty]{\frac{1}{3}} \begin{cases} f(x) = x^2 \\ \text{integrable} \end{cases}$$

$$S_n = \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} \xrightarrow[n \to \infty]{\frac{1}{3}} \begin{cases} f(x) = x^2 \\ \text{integrable} \end{cases}$$

Usando la definición de integral es posible demostron las siguientes propiedades:

TEOREMA: Sean f(x), f1(x), f2(x) funciones integrables en [x1,x2]. Entonces:

- $C_{A} f_{A}(x) + (2 f_{2}(x)) es$ integrable en [x1,x2] y se cumple p: $\int_{a_{A}}^{a_{2}} (C_{A} f_{A}(t) + (2 f_{2}(t))) dt = C_{A} \int_{a_{A}}^{a_{2}} f_{A}(t) dt + C_{2} \int_{a_{A}}^{a_{2}} f_{2}(t) dt$
- Si $f_{\Lambda}(x) \in f_{2}(x)$ para bodo $x \in [x_{1}(x_{2}):$ $\int_{2u}^{x_{2}} f_{\Lambda}(t) dt \leq \int_{x_{\Lambda}}^{x_{2}} f_{2}(t) dt$
- Si $m \in f(x) \leq M$ pora bodo $x \in [x_1, x_2]$; $m(x_2-x_1) \leq \int_{x_1}^{x_2} f(t) dt \leq M \cdot (x_2-x_1)$
- |f(z)| es integrable en $[x_1,x_2]$ y se comple qe: $|\int_{x_1}^{x_2} f(t) dt| \leq \int_{x_1}^{x_2} |f(t)| dt$
- · Si f es IMPAR: \(\int_{\infty}^{\infty} f(t) dt = 0 \frac{-\infty}{21} \frac{\infty}{21}
- · Si fes PAR: $\int_{-\infty}^{\infty_1} f(t) dt = 2 \int_{0}^{\infty_1} f(t) dt$
- $\int_{\alpha_{A}}^{\alpha_{A}} f(t)dt = 0$

Exemplo:
$$\int_{-1}^{1} \operatorname{sent} dt = 0$$

 $\int_{-1}^{1} t^2 dt = 2 \int_{0}^{1} t^2 dt = \frac{2}{3}$

Los siguientes teoremas nos garantizan que, en la protetica, casi nunca nos encontraremos con finciones no integrables:

TEOREMA: Si f es continua en [x1,x2] enbonces: f es integrable en [x1,x2]

TEOREMA: Si f es acotada y continua atrotos en [x1x2]:

=> f es integrable en [x1,x2]

(PONTIONER SOURCE STATE OF THE PARTY OF THE

Ejemplo de función no integrable en [2112]: (21(2)

$$f(x) = \begin{cases} \Delta & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

$$\frac{1}{\sum_{n=0}^{\infty} \frac{1}{2n}} = 0 \quad \forall n$$

lim Sn(fixix2) = 1 = 0 = lim In(fixix2)

Usando la definición, también es posible demostrar el siguiente resultado que usaramos frecuentemente:

TEOREMA: Sea f integrable en [x1,2] y sea x [x1,2]

Entonces f es integrable en [x1,2] y en [x1,2] y

se cumple qe:

$$\int_{x_{\Lambda}}^{x_{2}} f(t) dt = \int_{x_{\Lambda}}^{x} f(t) dt + \int_{x}^{x_{2}} f(t) dt$$

Example:
$$f(x) = \begin{cases} \sin x, & -1 \le x \le 1 \\ 3, & 1 \le x \le 2 \end{cases}$$

continua a brotos => integrable

$$\int_{-1}^{2} f(t) dt = \int_{-1}^{1} f(t) dt + \int_{1}^{2} f(t) dt =$$

$$= \int_{-1}^{1} sent dt + \int_{1}^{2} 3 dt =$$

$$= 3 - (2 - 1) = 3$$

TEOREMAS FUNDAMENTALES DEL CALCULO (TEC)

Los siguientes teoremas nos permitiran adular integrales sin necesidad de recurrir a la definición:

Primer TFC: Sea & integrable on [x11x2]. Enbrus,

F(x) =
$$\int_{x_1}^{x} f(t) dt; x \in [x_1, x_2]$$

es una función continua en [21,2].

Si f es continua · Si f es continua en [21,22], entonces la función

DERIVABLE en (21,22)

Obs: La integral tiere m"EFECTO REGULARIZADOR": f(x) integrable => F(x) = \int f(t) dt continua f(x) continua $\Rightarrow F(x) = \int_{x_1}^{x} f(t)dt$ derivable F'(x) = f(x)

Segundo TFC: Si fes integrable en [x1, x2] y existe una función derivable g tal que f(x): g1(x) \x x \in [x1, x2]

Definición (PRIMITIVA) Diremos que ma función g es una presidir de ma función f en el intervalo ($x_{11}x_{2}$) Si $g^{1}(x) = f(x)$ $\forall x \in (x_{11}x_{2})$

Obs: El priner TFC nos garantita que si f es continua en [21,22] la funcion:

es ma primitiva de f en (x1122), es decir:

$$F'(x) = f(x) \quad \forall x \in (x_1, x_2)$$

Obs: El segundo TFC nos permitira calculeur un bren número de integrales. Por ejemplo, las funciones $f(x) = x^2$ y $g(x) = \frac{1}{3}x^3$ cumplen:

$$f(x) = g^{l}(x) \quad \forall x$$

Par tanko:

$$\int_{x_1}^{x_2} t^2 dt = \frac{1}{3} x_2^2 - \frac{1}{3} x_1^2$$

En particular:

 $\int_0^1 t^2 dt = \frac{1}{3}$ (como ya sabíamos pero con menos sufrimiento)

$$G(z) = \int_{\infty}^{z_2} \int (t) dt \qquad F(z) G(z)$$

cumple.

$$G^{l}(x) = -f(x)$$

La razion es evidente:

$$F(z) + G(z) = \int_{z_1}^{x_2} f(t) dt$$
independiente de ze

Notación: Para terer en menta dicho signo menos, si x1 < x2 definimos:

$$\int_{\alpha_2}^{\alpha_1} f(t) dt := - \int_{\alpha_1}^{\alpha_2} f(t) dt \qquad \frac{1}{\alpha_1 + \alpha_2}$$

De esta manera, independientemente de si a es mayor o menor ge 21, la función

$$F(x) = \int_{24}^{x} t^2 dt$$

comple F'(x) = x2 Yx & R.