MMF1928 PRICING THEORY LECTURE NOTES

Xinyi (Cynthia) Shen

Master of Mathematical Finance (MMF)

University of Toronto

December 1, 2024

Table of Contents

1	Lecture 1		1
	.1 Setup		1
	.2 Financial Assets		1
	.3 Single Period Model		1
	.4 Binomial Model		2
	.5 Risk-Neutral Pricing		2
			3
	.7 Fundamental Theorem of Asset Pricing II (FTAP II)		3
2	Lecture 2		4
	2.1 Review of FTAP I and FTAP II		4
	2.2 Martingale		5
	2.3 Multi-period Binomial Model		5
3	Lecture 3		9
	3.1 Brownian Motion		9
	3.2 Itô's Formula for Brownian Motion		
	3.3 Stochastic Differential Equations (SDEs)		
	3.4 Itô's Formula for SDE		
	3.5 Martingale in Continuous Time		
	7.5 Martingate in Continuous Time	1	J
4	Lecture 4	1	5
	Review of Brownian Motion	1	5
	Risk-Neutral Asset Pricing - Probability Approach	1	5
	4.2.1 Black-Scholes Equation for European Call Option	1	6
	4.2.2 Put-Call Parity	1	7
	4.2.3 The Greeks	1	8
	8.3 Self-Financing and Arbitrage	1	8
	1.4 Risk-Neutral Asset Pricing - PDE Approach	1	9
_		2	1
5	Lecture 5		
	Review of Black-Scholes Equation for European Call Option		
	5.2 Dupire's Formula		
	5.3 Different Volatility Models		
	Review of Risk-Neutral Asset Pricing Approaches		
	5.5 Numerical Methods	2	6
6	Lecture 6	2	7
	6.1 Connections between SDE and PDE	2	7
	5.2 Feynman-Kac Theorem		
	5.3 Radon-Nikodym Derivative		
	5.4 Girsanov's Theorem for a Single Brownian Motion		
	Chamber a Theorem for a single Brownian Production	3	J
7	Lecture 7	3	2
	7.1 Self-Financing and Arbitrage	3	_

	7.2	Girsanov's Change of Measure (1-dim)	32
	7.3	Girsanov's Change of Measure (d-dim)	34
	7.4	Review of FTAP I and FTAP II	35
8	Lect	ure 8	38
	8.1	Zero-Coupon Bond	38
	8.2	Forward Contract	39
	8.3	Futures Contract	40
	8.4	Forward-Futures Spread	40
	8.5	Dynamics of Futures Price	41
9	Lect	ure 9	43
	9.1	Interest Rate Model	43
	9.2	PDE Approach	43
	9.3	Mean-Reverting Processes	44
		9.3.1 Ornstein-Uhlenbeck (OU) Process	44
		9.3.2 Cox-Ingersoll-Ross (CIR) Process	45
	9.4	Diffusion Process	45
	9.5	Famous Interest Rate Models	45
	9.6	Derivatives on Interest Rate	47
		9.6.1 Forward Interest Rate	47
		9.6.2 Forward Interest Rate	47
10	Lect	ure 10	49
	10.1	Girsanov's Change of Measure (1-dim)	49
	10.2	Black-Scholes Equation for European Call Option by Change of Measure	50
	10.3	Girsanov's Change of Measure (d-dim) in Currencies	52
	10.4	Foreign Exchange Rate	53
11	Fina	ll Review	56

1.1 Setup

Financial Market ⇒ Time Series ⇒ Information Technology

Space: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in \mathcal{T}}, \mathbb{P})$

- 1. Probability Triple:
 - (1) Ω : Sample space, all possible outcomes
 - (2) \mathcal{F} : σ -algebra, all information, collection of event sets
 - (3) \mathbb{P} : Probability measure
- 2. $\{\mathcal{F}_t\}$: A collection of event sets, indexed by t.
 - (1) \mathcal{F}_t : σ -algebra, information being available at time $t, \forall s < t, s, t, \in \mathcal{T}, \mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$.
 - (2) \mathcal{T} = Time Set
 - $\mathcal{T} = \{0, T\}$: Single-period model
 - $\mathcal{T} = \{0, 1, 2, \dots, T\}$: Multi-period model
 - $\mathcal{T} = \{0, 1, 2, \dots\}$: Discrete-time model
 - $\mathcal{T} = [0, T]$: Continuous-time model
- 3. $\{\mathcal{F}\}_{t\in\mathcal{T}}$: filtration, i.e., increasing collection of σ -algebra

1.2 Financial Assets

- 1. Cash: Corporate/Government bonds, interest rates (r). Usually no risk, deterministic, money market (numéraire).
- 2. Stock: Usually very risky, stochastic, S_t , adaptive to \mathcal{F}_t .
- 3. Option: Maturity T, strike price K. European call at $T:(S_T-K)^+$. American call before $T:(S_t-K)^+$
 - (1) X_t : Wealth of portfolio (to replicate the payoff of option).
 - (2) Δ_t : Number of shares in risky assets. $\Delta_t > 0$: Long position. $\Delta_t < 0$: Short position (Assumption in this course: continuous, short selling allowed.)

1.3 Single Period Model

Question: $X_0 = V_0 \Longrightarrow \forall \omega \in \Omega, X_T(\omega) = V_T(\omega)$

Key feature: no extra input/output, self-financing strategy (Δ_t)

Definition 1.3.1. A self-financing strategy $\{\Delta_t\}_{t\in\{0,T\}}$ is an adaptive stochastic process such that

- i. $\{\Delta_t\}_{t\in\{0,T\}}$ is adaptive, Δ_t is \mathcal{F}_t -measurable
- ii. $X_0 = \Delta_0 S_0 + (X_0 \Delta_0 S_0)$

Note: As time goes on, it becomes $X_1(\omega) = \Delta_0 S_1(\omega) + (1+r)(X_0 - \Delta_0 S_0) = \Delta_1(\omega) S_1(\omega) + X_1(\omega) - \Delta_1(\omega) S_1(\omega)$

Example 1.3.2. Assume r = 0.

At time t = 0, $\Delta_0 = 10$ and $S_0 = \$100$, we have $X_0 = 10 \times \$100 + \$1000 - 10 \times \$100 = \1000 . At this time point, money in stock is $10 \times \$100 = \1000 and money in cash is $\$1000 - 10 \times \$100 = \$0$.

1

As time goes to t=1, $\Delta_1=9$ and $S_1=\$105$, we have $X_1=10\times\$105+\$1000-10\times\$100=\1050 and $X_1=9\times\$105+\$1050-9\times\$105=\1050 . At this time point, money in stock is $9\times\$105=\945 and money in cash is $\$1050-9\times\$105=\$105$.

Definition 1.3.3. An arbitrage strategy $\{\Delta_t\}_{t\in\{0,T\}}$ is a self-financing strategy such that

- i. $X_0 = 0$ portfolio at time 0
- ii. $\mathbb{P}[(X_T \ge 0] = 1 \text{ and } \mathbb{P}[(X_T > 0] > 0, X_T \text{ portfolio at } T$

1.4 Binomial Model

Space: $(u, d, r, p = \mathbb{P}[\text{outcome} = H])$

- 1. Stock: The initial stock price is S_0 . If the stock price goes up, then $S_1(H) = uS_0 \Rightarrow u = \frac{S_1(H)}{S_0}$; if the stock price goes down, then $S_2(H) = dS_0 \Rightarrow d = \frac{S_2(T)}{S_0}$, where $u \neq d$.
- 2. Cash: Compounding at the interest rate of r.
- 3. Arbitrage: Suppose $d < u \le 1 + r$, then we have

$$X_0 = 0 = -\Delta_0 S_0 + \Delta_0 S_0$$

$$X_1(H) = -\Delta_0 S(H) + (1+r)\Delta_0 S_0 = (1+r-u)\Delta_0 S_0$$
, where $1+r-u \ge 0$

$$X_1(T) = -\Delta_0 S(T) + (1+r)\Delta_0 S_0 = (1+r-d)\Delta_0 S_0$$
, where $1+r-d>0$

$$\mathbb{P}(X_1 \ge 0) = 1, \mathbb{P}(X_1 > 0) = \mathbb{P}(\text{outcome} = T) > 0$$

To prevent arbitrage, we need p > 0, u > 1 + r > d.

For example, $S_0=4,\,u=2,\,d=\frac{1}{2},\,r=\frac{1}{4},\,\mathbb{P}(\text{outcome}=H)=\frac{1}{2}.$

1.5 Risk-Neutral Pricing

Under what measure is the discount stock price being a martingale?

Idea: every option is compounding with respect to the interest rate r.

Consider the conditional expectation, we have

$$\tilde{\mathbb{E}}[S_1 \mid S_0] = (1+r)S_0$$

$$\Rightarrow \quad \tilde{\mathbb{E}}[S_1 \mid S_0] = \tilde{p}uS_0 + \tilde{q}dS_0$$

$$\Rightarrow \quad \begin{cases} \tilde{p} + \tilde{q} = 1 \\ u\tilde{p} + d\tilde{q} = 1 + r \end{cases} \Rightarrow \begin{cases} \tilde{p} = \frac{1+r-d}{u-d} \\ \tilde{q} = \frac{u-(1+r)}{u-d} \end{cases}$$

Since d < 1 + r < u, then we know $\tilde{p}, \tilde{q} \in (0, 1)$.

Recall a self-financing strategy $\{\Delta_t\}_{t\in\{0,1\}}$, we know

$$X_0 = x = \Delta_0 S_0 + x - \Delta_0 S_0 \Rightarrow X_1 = \Delta_0 S_1 + (1+r)(x - \Delta_0 S_0)$$

then we can derive that, in Q-world,

$$\tilde{\mathbb{E}}[X_1 \mid S_0, X_0 = x] = \Delta_0 \tilde{\mathbb{E}}[S_1 \mid S_0] + (1+r)(x - \Delta_0 S_0) = \Delta_0 S_0 + (1+r)(x - \Delta_0 S_0) = (1+r)x$$

Example 1.5.1. Assume $S_0 = 4$, u = 2, $d = \frac{1}{2}$, $r = \frac{1}{4}$, $V_1 = (S_1 - K)^+$, K = 4.

We calculate
$$\tilde{p} = \frac{1+r-d}{u-d} = \frac{1+\frac{1}{4}-\frac{1}{2}}{2-\frac{1}{2}} = \frac{1}{2}$$
 and $\tilde{q} = 1 - \tilde{p} = \frac{1}{2}$.

To replicate the portfolio, for some unknown Δ_0, X_0 , we have

$$\begin{cases} X_1(H) = V_1(H) = \Delta_0 S_1(H) + (1+r)(X_0 - \Delta_0 S_0) = 4 \\ X_1(T) = V_1 T H) = \Delta_0 S_1(T) + (1+r)(X_0 - \Delta_0 S_0) = 0 \end{cases} \Rightarrow \Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)} = \frac{4}{8-2} = \frac{2}{3}$$

Therefore, the delta-hedging formula is $\Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)}$

1.6 Fundamental Theorem of Asset Pricing I (FTAP I)

Theorem 1.6.1. (Fundamental Theorem of Asset Pricing I (FTAP I)). No arbitrage in a financial market \Leftrightarrow There exists a risk-neutral measure $\mathbb{Q} \sim \mathbb{P}$ such that the discounted stock price is a martingale.

Remark 1.6.2. $\mathbb{Q} \sim \mathbb{P}$ means that $\forall A \in \mathcal{F}, \mathbb{Q}[A] = 0 \Leftrightarrow \mathbb{P}[A] = 0$

Theorem 1.6.3. (First fundamental theorem of asset pricing from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.4.7). If a market model has a risk-neutral probability measure, then it does not admit arbitrage.

Example 1.6.4. Assume u=2, $d=\frac{1}{2}$, r=0, $S_0=\$4$. If the stock price goes up, $S_u=\$8$. If the stock price remains the same, $S_n=\$4$. If the stock price goes down, $S_d=\$2$. Let p denote the probability of stock price going up and q denote the probability of stock pricing going down. Assume the probability of going up and going down are $\tilde{p}=\frac{1}{4}$ and $\tilde{q}=\frac{1}{4}$. Then we have $\Pr[S_1=\$4]=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}$.

For $A=\varnothing$, we have $\mathbb{P}[A]=\mathbb{Q}[A]=0$. For $A=\{\varnothing,\{S_1=\$4\}\},\,\hat{p}=\hat{q}=\frac{1}{2}$, however, we know that $\tilde{p}=\frac{1}{4}$ and $\tilde{q}=\frac{1}{4}$, which is not equivalent. We also calculate

$$\widetilde{\mathbb{E}}[S_1 \mid S_0] = \frac{1}{4} \times \$8 + \frac{1}{4} \times \$2 + \frac{1}{2} \times \$4 = \$4.5 \neq \$4$$

Therefore, it is not a risk-neutral measure.

If
$$\tilde{p}^{\mathbb{Q}} = \frac{1}{6}$$
, $\tilde{q}^{\mathbb{Q}} = \frac{1}{3}$, $\Pr^{\mathbb{Q}}[S_1 = \$4] = \frac{1}{2}$, then

$$\tilde{\mathbb{E}}^{\mathbb{Q}}[S_1 \mid S_0] = \frac{1}{6} \times \$8 + \frac{1}{3} \times \$2 + \frac{1}{2} \times \$4 = \$4 = \$4$$

Therefore, it is a risk-neutral measure.

If
$$\tilde{p}^{\mathbb{Q}} = \frac{1}{5}$$
, $\tilde{q}^{\mathbb{Q}} = \frac{2}{5}$, $\Pr^{\mathbb{Q}}[S_1 = \$4] = \frac{2}{5}$, then

$$\tilde{\mathbb{E}}^{\mathbb{Q}}[S_1 \mid S_0] = \frac{1}{5} \times \$8 + \frac{2}{5} \times \$2 + \frac{2}{5} \times \$4 = \$4 = \$4$$

Therefore, it is a risk-neutral measure.

1.7 Fundamental Theorem of Asset Pricing II (FTAP II)

Theorem 1.7.1. (Fundamental Theorem of Asset Pricing II (FTAP II)). There exists a unique risk-neutral measure \Leftrightarrow The financial market is complete, i.e., for every option there exists a replicating portfolio.

Theorem 1.7.2. (Second fundamental theorem of asset pricing from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.4.9). Consider a market model that has a risk-neutral probability measure. The model is complete if and only if the risk-neutral probability measure is unique.

2.1 Review of FTAP I and FTAP II

Theorem 2.1.1. (FTAP I). There is no arbitrage in the financial market if and only if there exists a probability measure $\mathbb{Q} \sim \mathbb{P}$ such that under \mathbb{Q} , the discount asset prices are martingales, i.e., $\mathbb{Q} \sim \mathbb{P}$ is a risk-neutral measure.

Theorem 2.1.2. (FTAP II). There exists a unique risk-neutral measure $\mathbb{Q} \sim \mathbb{P}$ if and only if the market is complete, i.e., all options have a replicating portfolio.

Remark 2.1.3. "~" denotes the equivalence of probability measures.

Remark 2.1.4. The time of a martingale is "today".

Example 2.1.3. (Application of FTAP I and FTAP II). On a probability space of $(\Omega, \mathcal{F}, \mathbb{P})$, we have $\mathcal{F}_0 = \{\varnothing, \Omega\}$ and $\mathcal{F}_1 = \mathcal{F}$. For $\Omega = \{H, N, T\}$, $\omega \in \Omega$, and $S_1(\omega)$, we have $N_{\Omega} = 3$, $\mathcal{F} = \{\varnothing, \Omega, \{H\}, \{N\}, \{T\}, \{H, N\}, \{H, T\}, \{N, T\}\}$, and $N_{\mathcal{F}} = 2^{N_{\Omega}} = 2^3 = 8$.

For a physical measure \mathbb{P} , $\mathbb{P}[\Omega] = 1$, $\mathbb{P}[H] = \mathbb{P}[N] = \mathbb{P}[T] = \frac{1}{3}$, $\mathbb{P}[\{H, N\}] = \mathbb{P}[S_1 \neq 2] = \frac{2}{3} = \mathbb{P}[\{H, T\}] = \mathbb{P}[\{N, T\}]$, and $\mathbb{P}[\varnothing] = 0$. Are the following portfolios risk-neutral? Assume that r = 0.

(1) For a new probability measure $\tilde{\mathbb{P}}$, $\tilde{\mathbb{P}}[H] = \tilde{\mathbb{P}}[T] = \frac{1}{4}$ and $\tilde{\mathbb{P}}[N] = \frac{1}{2}$:

For any $A\in\mathcal{F}$, we can easily get $\tilde{\mathbb{P}}[A]=0\Leftrightarrow A=\varnothing$, so $\tilde{\mathbb{P}}\sim\mathbb{P}$.

Then we calculate the discounted asset price as $\tilde{\mathbb{E}}[S_1\mid S_0]=\frac{1}{4}\cdot 8+\frac{1}{4}\cdot 2+\frac{1}{2}\cdot 4=4.5\neq S_0.$

Therefore, $\tilde{\mathbb{P}}$ is not a risk-neutral measure.

(2) For a new probability measure $\hat{\mathbb{P}}$, $\hat{\mathbb{P}}[H] = \hat{\mathbb{P}}[T] = \frac{1}{2}$ and $\hat{\mathbb{P}}[N] = 0$:

For $\{N\}=\{S_1=4\}\in\mathcal{F}$, we have $\hat{\mathbb{P}}[N]=0$, however, $\mathbb{P}=\frac{1}{3}$, so $\hat{\mathbb{P}}$ is not equivalent to \mathbb{P} .

(3) For a new probability measure \mathbb{Q} , $\mathbb{Q}[H] = \frac{1}{6}$, $\mathbb{Q}[T] = \frac{1}{3}$, and $\mathbb{Q}[N] = \frac{1}{2}$:

For any $A \in \mathcal{F}$, we can easily get $\mathbb{Q}[A] = 0 \Leftrightarrow A = \emptyset$, so $\mathbb{Q} \sim \mathbb{P}$.

Then we calculate the discounted asset price as $\tilde{\mathbb{E}}[S_1 \mid S_0] = \frac{1}{6} \cdot 8 + \frac{1}{3} \cdot 2 + \frac{1}{2} \cdot 4 = 4 = S_0$.

Therefore, \mathbb{Q} is a risk-neutral measure.

Note: The standard mechanism is

- (1) Check $\mathbb{O} \sim \mathbb{P}$
- (2) Check if discounted asset prices are martingale

 \mathbb{Q} is not unique since $\hat{\mathbb{Q}}[H] = \frac{2}{5}$, $\hat{\mathbb{Q}}[T] = \frac{1}{5}$, and $\hat{\mathbb{Q}}[N] = \frac{2}{5}$ is also a risk-neutral measure. Then by FTAP II, there exists unhedgable options in the market.

To find an unhedgable option in the market, consider the following option

$$V_1(H) = (S_1(H) - 3)^+ = 5 = X_0 - \Delta_0 S_0 + S_1(H) \Delta_0 = X_0 + 4\Delta_0$$

$$V_1(N) = (S_1(N) - 3)^+ = 1 = X_0 - \Delta_0 S_0 + S_1(N) \Delta_0 = X_0$$

$$V_1(T) = (S_1(T) - 3)^+ = 0 = X_0 - \Delta_0 S_0 + S_1(T) \Delta_0 = X_0 - 2\Delta_0$$

There is no solution to these equations, therefore, $V_1 = (S_1 - 3)^+$ is unhedgable.

2.2 Martingale

Definition 2.2.1. On space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in \mathcal{T}}, \mathbb{P})$, a stochastic process $\{X_t\}_{t \in \mathcal{T}}$ is a *martingale* provided

- i. $\{X_t\}_{t\in\mathcal{T}}$ is adaptive to $\{\mathcal{F}_t\}_{t\in\mathcal{T}}$
- ii. $\mathbb{E}[|X_t|] < \infty$
- iii. $\forall s < t, t, s \in \mathcal{T}, \mathbb{E}[X_t \mid \mathcal{F}_s] = X_s$ almost surely

Example 2.2.2. Let $X \sim N(\mu, \sigma^2)$ and we only know X at time 1.

Define $\{\mathcal{F}_t\}_{t \in [0,1]}$ and $X_t = \tilde{\mathbb{E}}[X \mid \mathcal{F}_t]$. Then, $\forall 0 \leq s < t \leq 1$, we have

$$\mathbb{E}[X_t \mid \mathcal{F}_s] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{F}_t] \mid \mathcal{F}_s]$$

$$= \mathbb{E}[X \mid \mathcal{F}_s] \quad \text{by tower property}$$

$$= X_s \quad \text{almost surely}$$

Therefore, $\{X_t = \mathbb{E}[X \mid \mathcal{F}_t]\}_{t \in [0,1]}$ is a martingale with respect to $\{\mathcal{F}_t\}_{t \in \mathcal{T}}$ by definition of martingale.

Definition 2.2.3. On space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in \mathcal{F}}, \mathbb{P})$, a stochastic process $\{X_t\}_{t \in \mathcal{T}}$ is a *sub-martingale* provided

- i. $\{X_t\}_{t\in\mathcal{T}}$ is adaptive to $\{\mathcal{F}_t\}_{t\in\mathcal{T}}$
- ii. $\mathbb{E}[|X_t|] < \infty$
- iii. $\forall s < t, t, s \in \mathcal{T}, \mathbb{E}[X_t \mid \mathcal{F}_s] \geq X_s$ almost surely

2.3 Multi-period Binomial Model

A multi-period binomial model is

$$S_t(\omega_1\omega_2\dots\omega_t) = uS_t(\omega_1\omega_2\dots\omega_t)$$
$$S_t(\omega_1\omega_2\dots\omega_t) = dS_t(\omega_1\omega_2\dots\omega_t)$$

where u, d, r does not depend on $t, \omega_i \in \{H, T\}, i = 1, 2, \dots, t$. For an N-period binomial model, $\omega = \omega_1 \omega_2 \cdots \omega_N \in \Omega$.

Example 2.3.1. (2-Period). Consider a 2-period binomial model. Assume $r = \frac{1}{4}$ and $u = \frac{1}{2} = \frac{1}{d}$.

$$S_{1}(H) = 8$$

$$S_{2}(HH) = 16$$

$$S_{2}(HT) = S_{2}(TH) = 4$$

$$S_{1}(T) = 2$$

$$S_{2}(TT) = 1$$

Under the physical measure, the branching probabilities are $p = \frac{1}{2} = q$.

Under the risk-neutral measure, the discounted stock price is a martingale.

The probability sets are $\Omega = \{HH, HT, TH, TT\}, N_{\Omega} = 4, \mathcal{F} = \{\emptyset, \Omega, \{HH\}, \{HT\}, \{TH\}, \{TT\}, \{HH, HT\}, \{HH, HT\}$ $\{HH, TH\}, \{HH, TT\}, \{HT, TH\}, \{HT, TT\}, \{TH, TT\}, \{HH, HT, TH\}, \{HH, TH, TT\}, \{HT, TH, TT\}\},$ and $N_{\mathbb{F}} = 2^4 = 16.$

Then we know $\mathcal{F}_0 = \{\varnothing, \Omega\}, \mathcal{F}_1 = \{\varnothing, \Omega, \{HH, HT\}, \{TH, TT\}\}, \mathcal{F}_2 = \mathcal{F}$. Therefore, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2$.

From t = 0 to t = 1, we have

$$\begin{cases} \tilde{p}_1 + \tilde{q}_1 = 1 \\ \tilde{\mathbb{E}} \left[\frac{S_1}{1+r} \mid S_0 \right] = \frac{1}{1+r} \left[\tilde{p}_1 S_1(H) + \tilde{q}_1 S_1(T) \right] \end{cases}$$

$$\Rightarrow \begin{cases} \tilde{p}_1 + \tilde{q}_1 = 1 \\ \frac{S_0}{1+r} (u \tilde{p}_1 + d \tilde{q}_1) = S_0 \end{cases}$$

$$\Rightarrow \begin{cases} \tilde{p}_1 = \frac{1+r-d}{u-d} > 0 \\ \tilde{q}_1 = \frac{u-(1+r)}{u-d} > 0 \end{cases} \text{ with } d < 1 + r < u \end{cases}$$

From t = 1 to t = 2, we have

$$\begin{cases} \tilde{p}_{2H} + \tilde{q}_{2H} = 1 \\ \tilde{\mathbb{E}} \left[\frac{S_2}{(1+r)^2} \mid S_1(H) \right] = \frac{S_1(H)}{(1+r)^2} (u \tilde{p}_{2H} + d \tilde{q}_{2H}) \end{cases} \Rightarrow \begin{cases} \tilde{p}_{2H} = \frac{1+r-d}{u-d} \\ \tilde{q}_{2H} = \frac{u-(1+r)}{u-d} \end{cases}$$

and

$$\begin{cases} \tilde{p}_{2T} + \tilde{q}_{2T} = 1 \\ \tilde{\mathbb{E}} \left[\frac{S_2}{(1+r)^2} \mid S_1(T) \right] = \frac{S_1(T)}{(1+r)^2} (u\tilde{p}_{2T} + d\tilde{q}_{2T}) \end{cases} \Rightarrow \begin{cases} \tilde{p}_{2T} = \frac{1+r-d}{u-d} \\ \tilde{q}_{2T} = \frac{u-(1+r)}{u-d} \end{cases}$$

Theorem 2.3.2. (Risk-Neutral Probabilities). For each of the branch, d < 1 + r < u, the risk-neutral probabilities for the next period are $\tilde{p} = \frac{1+r-d}{u-d}$ and $\tilde{q} = \frac{u-(1+r)}{u-d}$.

Remark 2.3.3. *u*, *d*, *r* remain unchanged with respect to *t*. This risk-neutral measure is unique.

Example 2.3.4. (3-Period European Put Option). Consider an European put option whose option payoff is calculated as $V_t = (K - S_t)^+$ with $u = 2 = \frac{1}{2}$, $r = \frac{1}{4}$, and K = 6.

$$V_t=(K-S_t)^+ \text{ with } u=2=\frac{1}{2}, r=\frac{1}{4}, \text{ and } K=6.$$

$$S_3(HHH)=32$$

$$S_2(HH)=16$$

$$S_3(HHT)=S_3(HTH)=S_3(THH)=8$$

$$S_1(T)=2$$

$$S_2(TT)=1$$

$$S_3(TTT)=\frac{1}{2}$$
 Then we know $\tilde{p}=\frac{1}{2}=\tilde{q}$. The option payoffs at $t=3$ are

Then we know $\tilde{p} = \frac{1}{2} = \tilde{q}$. The option payoffs at t = 3 are

$$V_3(HHH) = (6-32)^+ = 0$$

$$V_3(HHT) = V_3(HTH) = V_3(THH) = (6-8)^+ = 0$$

$$V_3(HTT) = V_3(THT) = V_3(TTH) = (6-2)^+ = 4$$

$$V_3(TTT) = (6-\frac{1}{2})^+ = 5.5$$

We discount the option value back to t=2: $\tilde{\mathbb{E}}\left[\frac{V_3}{1+r}\mid \mathcal{F}_2\right]$

$$V_{2}(HH) = \frac{1}{1+r} \left(\tilde{p}V_{3}(HHH) + \tilde{q}V_{3}(HHT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 \right) = 0$$

$$V_{2}(HT) = \frac{1}{1+r} \left(\tilde{p}V_{3}(HTH) + \tilde{q}V_{3}(HTT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 4 \right) = 1.6$$

$$V_{2}(TH) = \frac{1}{1+r} \left(\tilde{p}V_{3}(THH) + \tilde{q}V_{3}(THT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 4 \right) = 1.6$$

$$V_{2}(TT) = \frac{1}{1+r} \left(\tilde{p}V_{3}(TTH) + \tilde{q}V_{3}(TTT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 5.5 \right) = 3.8$$

We discount the option value back to t=1: $\tilde{\mathbb{E}}\left[\frac{V_2}{1+r}\mid \mathcal{F}_1\right]$

$$V_1(H) = \frac{1}{1+r} \left(\tilde{p}V_2(HH) + \tilde{q}V_2(HT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1.6 \right) = 0.64$$

$$V_1(T) = \frac{1}{1+r} \left(\tilde{p}V_2(TH) + \tilde{q}V_2(TT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 1.6 + \frac{1}{2} \cdot 3.8 \right) = 2.16$$

We discount the option value back to t=0: $\tilde{\mathbb{E}}\left[\frac{V_1}{1+r}\mid \mathcal{F}_0\right]$

$$V_0 = \frac{1}{1+r} \left(\tilde{p}V_1(H) + \tilde{q}V_1(T) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0.64 + \frac{1}{2} \cdot 2.16 \right) = 1.12$$

Example 2.3.5. (3-Period Lookback Option). Consider a lookback option whose option payoff is calculated as $V_t = \max_{0 < t \le T} S_t - S_T$ with $u = 2 = \frac{1}{2}$ and $r = \frac{1}{4}$.

$$S_{3}(HHH) = 32$$

$$S_{3}(HHH) = 32$$

$$S_{3}(HHH) = S_{3}(HHH) = S_{3}($$

Then we know $\tilde{p} = \frac{1}{2} = \tilde{q}$. The option payoffs at t = 3 are

$$V_3(HHH) = 32 - 32 = 0$$

$$V_3(HHT) = 16 - 8 = 8$$

$$V_3(HTH) = 8 - 8 = 0$$

$$V_3(HTT) = 8 - 2 = 6$$

$$V_3(THH) = 8 - 8 = 0$$

$$V_3(THT) = 4 - 2 = 2$$

$$V_3(TTH) = 4 - 2 = 2$$

$$V_3(TTT) = 4 - 0.5 = 3.5$$

We discount the option value back to t=2: $\tilde{\mathbb{E}}\left[\frac{V_3}{1+r}\mid \mathcal{F}_2\right]$

$$V_{2}(HH) = \frac{1}{1+r} \left(\tilde{p}V_{3}(HHH) + \tilde{q}V_{3}(HHT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 8 \right) = 3.2$$

$$V_{2}(HT) = \frac{1}{1+r} \left(\tilde{p}V_{3}(HTH) + \tilde{q}V_{3}(HTT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 6 \right) = 2.4$$

$$V_{2}(TH) = \frac{1}{1+r} \left(\tilde{p}V_{3}(THH) + \tilde{q}V_{3}(THT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 2 \right) = 0.8$$

$$V_{2}(TT) = \frac{1}{1+r} \left(\tilde{p}V_{3}(TTH) + \tilde{q}V_{3}(TTT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 3.5 \right) = 2.2$$

We discount the option value back to t=1: $\tilde{\mathbb{E}}\left[\frac{V_2}{1+r}\mid \mathcal{F}_1\right]$

$$V_1(H) = \frac{1}{1+r} \left(\tilde{p}V_2(HH) + \tilde{q}V_2(HT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 3.2 + \frac{1}{2} \cdot 2.4 \right) = 2.24$$

$$V_1(T) = \frac{1}{1+r} \left(\tilde{p}V_2(TH) + \tilde{q}V_2(TT) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 0.8 + \frac{1}{2} \cdot 2.2 \right) = 1.2$$

We discount the option value back to t=0: $\tilde{\mathbb{E}}\left[\frac{V_1}{1+r}\mid \mathcal{F}_0\right]$

$$V_0 = \frac{1}{1+r} \left(\tilde{p}V_1(H) + \tilde{q}V_1(T) \right) = \frac{1}{1+\frac{1}{4}} \left(\frac{1}{2} \cdot 2.24 + \frac{1}{2} \cdot 1.2 \right) = 1.376$$

Then we replicate the portfolio.

From t = 0 to t = 1, we compute

$$\begin{cases} V_1(H) = (1+r)(X_0 - \Delta_0 S_0) + \Delta_0 S_1(H) \\ V_1(T) = (1+r)(X_0 - \Delta_0 S_0) + \Delta_0 S_1(T) \end{cases} \Rightarrow \Delta_0 = \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)}$$

To check $V_0 = X_0$, we calculate

$$\begin{split} V_0 &= \frac{1}{1+r} \left[\tilde{p} V_1(H) + \tilde{q} V_1(T) \right] \\ &= \frac{1}{1+r} \left[\tilde{p} \left((1+r) (X_0 - \Delta_0 S_0) + \Delta_0 S_1(H) \right) + \tilde{q} \left((1+r) (X_0 - \Delta_0 S_0) + \Delta_0 S_1(T) \right) \right] \\ &= \frac{1}{1+r} \left[(1+r) (X_0 - \Delta_0 S_0) + \Delta_0 (\tilde{p} S_1(H) + \tilde{q} S_1(T)) \right] \\ &= \frac{1}{1+r} \left[(1+r) (X_0 - \Delta_0 S_0) + \Delta_0 (1+r) S_0 \right] \\ &= X_0 - \Delta_0 S_0 + \Delta_0 S_0 \\ &= X_0 \end{split}$$

From t = 1 to t = 2, we compute

$$\begin{cases} V_2(HH) = (1+r)(X_1(H) - \Delta_1(H)S_1(H)) + \Delta_1(H)S_2(HH) \\ V_2(HT) = (1+r)(X_1(H) - \Delta_1(H)S_1(H)) + \Delta_1(H)S_2(HT) \end{cases} \Rightarrow \Delta_0 = \frac{V_2(HH) - V_2(HT)}{S_2(HH) - S_2(HT)}$$

$$\begin{cases} V_2(TH) = (1+r)(X_1(T) - \Delta_1(T)S_1(T)) + \Delta_1(T)S_2(TH) \\ V_2(TT) = (1+r)(X_1(T) - \Delta_1(T)S_1(T)) + \Delta_1(T)S_2(TT) \end{cases} \Rightarrow \Delta_0 = \frac{V_2(TH) - V_2(TT)}{S_2(TH) - S_2(TT)}$$

3.1 Brownian Motion

Definition 3.1.1. On space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, we say $\{B_t\}_{t\geq 0}$ is a *Brownian Motion (B.M.)* provided

- i. $B_0 = 0$
- ii. $B_t(\omega)$ has continuous path, $\forall \omega \in \Omega$
- iii. $B_t B_s \sim N(0, t s), \forall t \geq s \geq 0$
- iv. $B_t B_s$ is independent of $B_u B_v$, $\forall 0 \le s \le t \le v \le u$

Remark 3.1.2. For simulation, we have $dB_t = \Delta B_t \stackrel{\text{i.i.d.}}{\sim} N(0, \Delta t)$, where Δt is the length of time discretization.

Remark 3.1.3. In *Steve Shreve, Stochastic Calculus for Finance Volume II*, the notation is the Wiener process $\{W_t\}_{t\geq 0}$. In this course, Brownian Motion is the same as Wiener process.

Remark 3.1.4. The mean of a B.M. process is $\mathbb{E}[B_t] = 0$. The variance of a B.M. process is $\text{Var}[B_t] = \mathbb{E}[B_t^2] = t$, i.e., growing linearly with respect to time.

Remark 3.1.5. B_t has continuous sample path with $+\infty$ variation.

Claim:
$$\sum_{t=0}^{N-1} \left| B_{t_{i+1}}(\omega) - B_{t_i}(\omega) \right| \xrightarrow{\max|t_{i+1} - t_i| \to 0} + \infty$$

Aside: For $Z \sim N(0,1)$, the moments are $\mathbb{E}[Z] = 0$, $\mathbb{E}[Z^2] = 1$, $\mathbb{E}[Z^3] = 0$, $\mathbb{E}[Z^4] = 3$. The moment generating function for a standard normal variable is $\mathbb{E}[e^{xZ}] = e^{\frac{1}{2}x^2}$.

Proof. For discretization $(t_0 = 0 < t_1 < \dots < t_N = T)$, $(B_{t_0} = B_0 = 0, B_{t_1}, B_{t_2}, \dots, B_{t_\omega} = B_T)$ follows a joint normal distribution. Then the moments are

$$\mathbb{E}\left[B_{t_{i+1}} - B_{t_i}\right] = 0, \quad \mathbb{E}\left[\left(B_{t_{i+1}} - B_{t_i}\right)^2\right] = t_{i+1} - t_i,$$

$$\mathbb{E}\left[\left(B_{t_{i+1}} - B_{t_i}\right)^3\right] = 0, \quad \mathbb{E}\left[\left(B_{t_{i+1}} - B_{t_i}\right)^4\right] = 3\left(t_{i+1} - t_i\right)^2$$

Let $QV(t_0,\ldots,t_N):=\sum_{i=0}^{N-1}\left(B_{t_{i+1}}-B_{t_i}\right)^2$ be a random variable and its variance is

$$\begin{split} \mathbb{E}\left[\left(\mathbf{QV}(t_0,\ldots,t_N)-T\right)^2\right] &= \mathbb{E}\left[\sum_{i=0}^{N-1}\left((B_{t_{i+1}}-B_{t_i})^2-(t_{i+1}-t_i)\right)^2\right] \quad \text{since } T = \sum_{i=0}^{N-1}\left(t_{i+1}-t_i\right) \\ &= \sum_{i=0}^{N-1}\mathbb{E}\left[\left(B_{t_{i+1}}-B_{t_i}\right)^4-2(t_{i+1}-t_i)(B_{t_{i+1}}-B_{t_i})^2+(t_{i+1}-t_i)^2\right] \\ &= \sum_{i=0}^{N-1}\left[3(t_{i+1}-t_i)^2-2(t_{i+1}-t_i)^2+(t_{i+1}-t_i)^2\right] \\ &= 2\sum_{i=0}^{N-1}\left(t_{i+1}-t_i\right)^2 \\ &\leq 2\cdot\max|t_{i+1}-t_i|\cdot\sum_{i=0}^{N-1}(t_{i+1}-t_i) \\ &= 2T\max|t_{i+1}-t_i| \end{split}$$

Therefore, as $\max |t_{i+1} - t_i| \to 0$, $QV(t_0, \dots, t_N) \to T$.

We can easily get
$$0 < \text{QV}(t_0, \dots, t_N) = \sum_{i=0}^{N-1} (B_{t_{i+1}} - B_{t_i})^2 \le \max |B_{t_{i+1}} - B_{t_i}| \sum_{i=0}^{N-1} |B_{t_{i+1}} - B_{t_i}|$$
.

We also know that, as $\max |t_{i+1} - t_i| \to 0$, $\mathrm{QV}(t_0, \dots, t_N) \to T$ but $\max |B_{t_{i+1}} - B_{t_i}| \to 0$ due to continuity of B.M., then $\sum_{i=0}^{N-1} |B_{t_{i+1}} - B_{t_i}|$ must goes to $+\infty$.

Remark 3.1.6. B_t has a continuous path that is no where differentiable.

Remark 3.1.7. $(dB_t)^2 = dt$ due to the Quadrative Variation (QV) that $\langle B, B \rangle_t = [B, B]_t = \int_0^t (dB_u)^2 = t$.

Note that QV for B.M. is deterministic.

Remark 3.1.8. $dB_t \sim O(\sqrt{dt})$

3.2 Itô's Formula for Brownian Motion

Theorem 3.2.1. (*Itô's Formula for Brownian Motion*). For a function $f : \to \mathbb{R}$, f is twice differentiable, then we have

$$df(B_t) = f'(B_t)dB_t + \frac{1}{2}f''(B_t)dt$$

Proof. Using Taylor's expansion of $f(B_t + dB_t)$, we have

$$df(B_t) = f(B_t + dB_t) - f(B_t)$$

$$= f(B_t) + dB_t f'(B_t) + \frac{1}{2} (dB_t)^2 f''(B_t) + O((dB_t)^2) - f(B_t)$$

$$= f(B_t) + dB_t f'(B_t) + \frac{1}{2} dt f''(B_t) + O((dB_t)^2) - f(B_t)$$

$$= f'(B_t) dB_t + \frac{1}{2} f''(B_t) dt$$

3.3 Stochastic Differential Equations (SDEs)

1. The stochastic differential equation (SDE) for a diffusion process X_t is $dX_t = \mu_t dt + \sigma_t dB_t$.

The solution is $X_t = X_0 + \int_0^t \mu_t du + \int_0^t \sigma_u dB_u$

2. The SDE for a Bachelier process S_t is $dS_t = \mu_t dt + \sigma_t dB_t$.

The solution is $S_t = S_0 + \mu t + \sigma dB_t$.

3. The SDE for a Geometric Brownian Motion (GBM) process S_t is $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, where \tilde{B}_t represents a B.M. process under risk-neutral measure.

The solution is $S_t = S_0 \exp\left\{\left(r - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right\}$

3.4 Itô's Formula for SDE

Theorem 3.4.1. (Itô's Formula for SDE). Suppose X_t is a stochastic process defined by the SDE:

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

Let $f(t, X_t)$ be a function that is twice differentiable. The differential $df(t, X_t)$ is given by

$$df(t, X_t) = f_t(t, X_t)dt + f_x(t, X_t)dX_t + \frac{1}{2}f_{xx}(t, X_t)(dX_t)^2$$

$$= \left[f_t(t, X_t) + f_x(t, X_t)\mu(t, X_t) + \frac{1}{2}f_{xx}(t, X_t)\sigma^2(t, X_t) \right] dt + f_x(t, X_t)\sigma(t, X_t)dB_t$$
(2)

Proof. Note that since $(dt)^2 = 0$, $(dt)(dB_t) = 0$, and $(dB_t)^2 = dt$, then we have

$$\begin{split} df(t,X_{t}) &= f_{t}(t,X_{t})dt + f_{x}(t,X_{t})dX_{t} + \frac{1}{2}f_{xx}(t,X_{t})(dX_{t})^{2} \\ &= f_{t}(t,X_{t})dt + f_{x}(t,X_{t})\left[\mu(t,X_{t})dt + \sigma(t,X_{t})dB_{t}\right] + \frac{1}{2}f_{xx}(t,X_{t})\left[\mu(t,X_{t})dt + \sigma(t,X_{t})dB_{t}\right]^{2} \\ &= f_{t}(t,X_{t})dt + f_{x}(t,X_{t})\mu(t,X_{t})dt + f_{x}(t,X_{t})\sigma(t,X_{t})dB_{t} + \\ &\frac{1}{2}f_{xx}(t,X_{t})\left[(\mu(t,X_{t})dt)^{2} + (\mu(t,X_{t})dt\sigma(t,X_{t})dB_{t}) + (\sigma(t,X_{t})dB_{t})^{2}\right] \\ &= f_{t}(t,X_{t})dt + f_{x}(t,X_{t})\mu(t,X_{t})dt + f_{x}(t,X_{t})\sigma(t,X_{t})dB_{t} + \frac{1}{2}f_{xx}(t,X_{t})(\sigma^{2}(t,X_{t})dt + f_{x}(t,X_{t})\mu(t,X_{t})dt + f_{x}(t,X_{t})\sigma^{2}(t,X_{t})\right]dt + f_{x}(t,X_{t})\sigma(t,X_{t})dB_{t} \end{split}$$

Example 3.4.2. Consider the SDE for a GBM process, $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, $\mu(t, S_t) = rS_t$, $\sigma(t, S_t) = \sigma S_t$, $f(x) = \log x$.

We calculate the first and second derivatives for f(x): $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$.

By Itô's Formula for SDE (1), we have

$$df(t, S_t) = f_t(t, S_t)dt + f_s(t, S_t)dS_t + \frac{1}{2}f_{ss}(t, dS_t)(dS_t)^2$$

$$\Rightarrow d\log S_t = 0 + \frac{1}{S_t} \left(rS_t dt + \sigma S_t d\tilde{B}_t \right) + \frac{1}{2} \left(-\frac{1}{S_t^2} \right) \left(r^2 S_t^2 (dt)^2 + 2 \cdot rS_t dt \cdot \sigma S_t d\tilde{B}_t + \sigma^2 S_t^2 \left(d\tilde{B}_t \right)^2 \right)$$

$$d\log S_t = r dt + \sigma d\tilde{B}_t - \frac{1}{2}\sigma^2 S_t dt$$

$$d\log S_t = \left(r - \frac{1}{2}\sigma^2 \right) dt + \sigma d\tilde{B}_t$$

$$\Rightarrow \log S_t = \log S_0 + \left(r - \frac{1}{2}\sigma^2 \right) t + \sigma \tilde{B}_t$$

$$\Rightarrow S_t = S_0 \exp \left\{ \left(r - \frac{1}{2}\sigma^2 \right) t + \sigma \tilde{B}_t \right\}$$

By Itô's Formula for SDE (2), we have

$$df(t, S_t) = \left[f_t(t, S_t) + f_s(t, S_t) \mu(t, S_t) + \frac{1}{2} f_{ss}(t, S_t) \sigma^2(t, S_t) \right] dt + f_s(t, S_t) \sigma(t, S_t) dB_t$$

$$\Rightarrow d \log S_t = \left[\frac{1}{S_t} r S_t + \frac{1}{2} \left(-\frac{1}{S_t} \right) \sigma^2 S_t^2 \right] dt + \frac{1}{S_t^2} \sigma S_t d\tilde{B}_t$$

$$d \log S_t = \left(r - \frac{1}{2} \sigma^2 \right) dt + \sigma d\tilde{B}_t$$

$$\Rightarrow \log S_t = \log S_0 + \left(r - \frac{1}{2} \sigma^2 \right) t + \sigma \tilde{B}_t$$

$$\Rightarrow S_t = S_0 \exp \left\{ \left(r - \frac{1}{2} \sigma^2 \right) t + \sigma \tilde{B}_t \right\}$$

Example 3.4.3. Derive the differential for $e^{-qt}S_t$ under physical measure, where $dS_t = \mu S_t dt + \sigma S_t dB_t$.

First, we know that $\mu(t, S_t) = \mu S_t$ and $\sigma(t, S_t) = \sigma S_t$.

We calculate the derivatives for $f(t, S_t) = e^{-qt}S_t$:

$$f_t(t, S_t) = -qe^{-qt}S_t$$

$$f_s(t, S_t) = e^{-qt}$$

$$f_{ss}(t, S_t) = 0$$

Substituting into Itô's Formula (2), we have

$$df(t, S_t) = \left[f_t(t, S_t) + f_s(t, S_t) \mu(t, S_t) + \frac{1}{2} f_{ss}(t, S_t) \sigma^2(t, S_t) \right] dt + f_s(t, S_t) \sigma(t, S_t) dB_t$$

$$= \left(-qe^{-qt} S_t + e^{-qt} \mu S_t + 0 \cdot \sigma^2 S_t^2 \right) dt + e^{-qt} \sigma S_t dB_t$$

$$= e^{-qt} S_t \left[(\mu - q) dt + \sigma \right] dB_t$$

Example 3.4.4. Derive the differential for $S_t = S_0 \exp \left\{ \left(\mu - \frac{1}{2} \sigma^2 \right) t + \sigma B_t \right\}$.

First we calculate the derivatives for $S_t = f(t, B_t) = S_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right\}$:

$$f_t(t, B_t) = \left(\mu - \frac{1}{2}\sigma^2\right) S_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right\} = \left(\mu - \frac{1}{2}\sigma^2\right) f(t, B_t)$$

$$f_b(t, B_t) = \sigma S_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right\} = \sigma f(t, B_t)$$

$$f_{bb}(t, B_t) = \sigma^2 S_0 \exp\left\{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right\} = \sigma^2 f(t, B_t)$$

Substituting into Itô's Formula (1), we have

$$dS_t = df(t, B_t) = f_t(t, B_t)dt + f_b(t, B_t)dB_t + \frac{1}{2}f_{bb}(t, dB_t)(dB_t)^2$$

$$= \left(\mu - \frac{1}{2}\sigma^2\right)f(t, B_t)dt + \sigma f(t, B_t)dB_t + \frac{1}{2}\sigma^2 f(t, B_t)(dB_t)^2$$

$$= \left(\mu - \frac{1}{2}\sigma^2\right)S_t dt + \sigma S_t dB_t + \frac{1}{2}\sigma^2 S_t dt$$

$$= \mu S_t dt + \sigma S_t dB_t$$

3.5 Martingale in Continuous Time

Definition 3.5.1. An adaptive stochastic process $\{X_t\}_{t\geq 0}$ on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, is a martingale provided

i.
$$\mathbb{E}[|X_t|] < +\infty$$

ii.
$$\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s$$
 a.s. $\forall 0 \leq s \leq t$

 \Leftrightarrow A diffusion process $dX_t = \mu_t dt + \sigma_t dB_t$ is a martingale provided

i.
$$\mu_t = 0$$
 a.s. $\forall t \ge 0$

ii.
$$\mathbb{E}\left[\int_0^T \sigma_t^2 dt\right] < +\infty$$

Remark 3.5.2. The moment generating function (MGF) for $X \sim N(\mu, \sigma^2)$ is $\mathbb{E}\left[e^{\lambda x}\right] = e^{\lambda \mu + \frac{1}{2}\lambda^2 \sigma^2}$

Exercise 3.5.3. Show that the discounted stock price, $e^{-rt}S_t$, where $S_t = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)t + \sigma B_t}$, is a martingale. For an interest rate r, $dS_t = rS_t dt + \sigma S_t dB_t$, where \tilde{B}_t is a B.M. under risk-neutral measure.

Proof. Method 1: First we need to show that $\mathbb{E}\left[\left|e^{-rt}S_t\right|\right]<+\infty$:

$$\begin{split} \mathbb{E}\left[\left|e^{-rt}S_{t}\right|\right] &= \mathbb{E}\left[e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t+\sigma B_{t}}\right] \\ &= \mathbb{E}\left[S_{0}e^{-\frac{1}{2}\sigma^{2}t+\sigma B_{t}}\right] \\ &= S_{0}e^{-\frac{1}{2}\sigma^{2}t}\mathbb{E}\left[e^{\sigma B_{t}}\right] \\ &= S_{0}e^{-\frac{1}{2}\sigma^{2}t}e^{\frac{1}{2}\sigma^{2}t} \quad \text{by MGF and since } B_{t} \sim N(0,t) \\ &= S_{0} < +\infty \end{split}$$

Then for all $t \ge s \ge 0$, we have

$$\mathbb{E}\left[e^{-rt}S_{t} \mid \mathcal{F}_{s}\right] = \mathbb{E}\left[e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t+\sigma B_{t}} \middle| \mathcal{F}_{s}\right]$$

$$= e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t}\mathbb{E}\left[e^{\sigma B_{t}+\sigma B_{s}-\sigma B_{s}} \middle| \mathcal{F}_{s}\right]$$

$$= e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t+\sigma B_{s}}\mathbb{E}\left[e^{\sigma(B_{t}-B_{s})} \middle| \mathcal{F}_{s}\right]$$

$$= e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t+\sigma B_{s}}\mathbb{E}\left[e^{\sigma(B_{t}-B_{s})}\right] \quad \text{since } B_{t}-B_{s} \perp \mathcal{F}_{s}$$

$$= e^{-rt}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)t+\sigma B_{s}}e^{\frac{1}{2}\sigma^{2}(t-s)} \quad \text{by MGF and since } B_{t}-B_{s} \sim N(0,t-s)$$

$$= S_{0}e^{-\frac{1}{2}\sigma^{2}s+\sigma B_{s}}$$

$$= e^{-rs}S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)s+\sigma B_{s}}$$

$$= e^{-rs}S_{s}$$

Therefore, $e^{-rt}S_t$ is a martingalge by definition. \square

Method 2: By Itô's Formula, we calculate the differential for $f(t, S_t) = e^{-rt}S_t$:

$$df(t, S_t) = f_t(t, S_t)dt + f_s(t, S_t)dS_t + \frac{1}{2}f_{ss}(t, dS_t)(dS_t)^2$$
$$= -re^{-rt}S_tdt + e^{-rt}(rS_tdt + \sigma S_tdB_t) + \frac{1}{2} \cdot 0dt$$
$$= \sigma e^{-rt}S_tdB_t$$

Thus, $\mu_t = 0$ for all $t \geq 0$.

Then we need to show that
$$\mathbb{E}\left[\int_0^T \sigma_t^2 \, dt\right] = \mathbb{E}\left[\int_0^T \sigma^2 e^{-2rt} S_t^2 \, dt\right] < +\infty:$$

$$\mathbb{E}[S_t^2] = \mathbb{E}\left[S_0^2 e^{2rt - \sigma^2 t + 2\sigma B_t}\right]$$

$$= S_0^2 e^{2rt - \sigma^2 t} \mathbb{E}\left[e^{2\sigma B_t}\right]$$

$$= S_0^2 e^{2rt - \sigma^2 t + \frac{1}{2} \cdot 4\sigma^2 t} \quad \text{by MGF and since } B_t \sim N(0,t)$$

$$= S_0^2 e^{2rt + \sigma^2 t}$$

$$\mathbb{E}\left[\int_0^T \sigma^2 e^{-2rt} S_t^2 \, dt\right] = \int_0^T \sigma^2 e^{-2rt} \mathbb{E}[S_t^2] \, dt$$

$$= \int_0^T \sigma^2 e^{-2rt} S_0 e^{2rt + \sigma^2 t} \, dt$$

$$= \int_0^T \sigma^2 S_0 e^{\sigma^2 t} \, dt$$

$$= \sigma^2 S_0 \int_0^T e^{\sigma^2 t} \, dt$$

$$= \sigma^2 S_0 \left[\frac{e^{\sigma^2 t}}{\sigma^2}\right]_0^T$$

$$= S_0 e^{\sigma^2 T} < +\infty$$

Therefore, $e^{-rt}S_t$ is a martingale by definition. \square

4.1 Review of Brownian Motion

Definition 4.1.1. On space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$, we say $\{B_t\}_{t\geq 0}$ is a *Brownian Motion (B.M.)* provided

- i. $B_0 = 0$
- ii. $B_t(\omega)$ is continuous, $\forall \omega \in \Omega$
- iii. $B_t B_s \sim N(0, t s), \forall 0 \le s \le t$
- iv. $B_t B_s$ is independent of \mathcal{F}_s . In particular, $B_t B_s$ is independent of $B_u B_v$, $\forall 0 \le s \le t \le v \le u$

Remark 3.1.2. $\{B_t\}_{t\geq 0}$ is a Gaussian process with $\mathbb{E}[B_t]=0$ and $\text{Var}[B_t]=t$.

Remark 3.1.3. $B_t(\omega)$ is continuous but nowhere differentiable for all $\omega \in \Omega$.

Remark 3.1.4. $\{B_t\}_{t\geq 0}$ is a martingale on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0})$.

Proof. To prove that the B.M. process $\{B_t\}_{t\geq 0}$ is a martingale, we need to show the two conditions by the definition of martingale.

First, by Cauchy-Schwarz Inequality, we have $\mathbb{E}[|B_t|] \leq \sqrt{\mathbb{E}[B_t^2]} = \sqrt{\mathrm{Var}(B_t)} = \sqrt{t} < +\infty$

Then we evaluate

$$\mathbb{E}[B_t \mid \mathcal{F}_s] = \mathbb{E}[B_t - B_s + B_s \mid \mathcal{F}_s]$$

$$= \mathbb{E}[B_t - B_s] + B_s \quad \text{since } B_t - B_s \perp \mathcal{F}_s$$

$$= B_s \quad \text{since } B_t - B_s \sim N(0, 1)$$

Therefore, a Brownian Motion $\{B_t\}_{t>0}$ is a martingale on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t>0}, \mathbb{P})$. \square

Example 3.1.5. Prove that $\{B_t^2 - t\}_{t \geq 0}$ is a martingale on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0})$.

Proof. To prove $\{B_t^2 - t\}_{t \ge 0}$ is a martingale, we need to show the two conditions in definition of martingale.

First, we can show that $\mathbb{E}[|B_t^2 - t|] \leq \mathbb{E}[|B_t^2|] + |t| = 2t < +\infty$. Then we calculate

$$\mathbb{E}[B_t^2 \mid \mathcal{F}_s] = \mathbb{E}[(B_t - B_s + B_s)^2 \mid \mathcal{F}_s]$$

$$= \mathbb{E}[(B_t - B_s)^2 + 2B_s(B_t - B_s) + B_s^2 \mid \mathcal{F}_s]$$

$$= \mathbb{E}[(B_t - B_s)^2] + 2B_s\mathbb{E}[B_t - B_s] + B_s^2$$

$$= t - s + B_s^2 \quad \text{since } B_t - B_s \sim N(0, t - s)$$

$$\Rightarrow \mathbb{E}[B_t^2 - t \mid \mathcal{F}_s] = B_s^2 - s$$

Therefore, $\{B_t^2 - t\}$ is a martingale. \square

Remark 3.1.6. Quadratic Variation: $\langle B \rangle_t = [B]_t = t = \int_0^t (dB_s)^2, (dB_s)^2 \sim dt.$

4.2 Risk-Neutral Asset Pricing - Probability Approach

- Pros: Closed-form
- Cons: Restricted (GBM-based)

4.2.1 Black-Scholes Equation for European Call Option

Define call option as $C(T, S_T) = (S_T - K)^+$.

Suppose $\{\tilde{B}_t\}_{t\geq 0}$ is the Brownian Motion under risk-neutral measure \mathbb{Q} .

Suppose $dS_t = S_t(rdt + \sigma d\tilde{B}_t)$, where r is the interest rate.

We have proved in the last lecture that the discounted stock price, $\{e^{-rt}S_t\}_{t\geq 0}$, is a martingale under \mathbb{Q} . Specially with GBM, we have $S_t = S_0 e^{\left(r-\frac{1}{2}\sigma^2\right)t+\sigma \tilde{B}_t}$.

To realize risk-neutral pricing, we need to prove $\{e^{-rt}C(t,S_t)\}_{t\in[0,T]}$ is a martingale, i.e., to calculate $C(t,S_t)=e^{-r(T-t)}\mathbb{E}\left[(S_T-K)^+\mid \mathcal{F}_t\right]$.

Recall that for $Z \sim N(0,1)$, the probability density function (pdf) is $\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$, and the cumulative distribution function (CDF) is $N(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{1}{2}y^2} dy$.

Let Y = Z + c. Then we have $\mathbb{P}[Y \ge y] = \mathbb{P}[Z \ge y - c] = N(c - y)$, and we calculate

$$\mathbb{E}\left[Z\mathbb{1}_{[Z\geq c]}\right] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \cdot y \mathbb{1}_{[y\geq c]} \, dy$$

$$= \int_{c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \cdot y \, dy$$

$$= \frac{1}{\sqrt{2\pi}} \left[e^{-\frac{1}{2}y^2} \cdot \right]_{+\infty}^{c} \quad \text{since } \frac{\partial}{\partial y} e^{-\frac{1}{2}y^2} = -y e^{-\frac{1}{2}y^2}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}c^2} \quad \text{for any } c \geq 0$$

$$\mathbb{E}\left[e^Z \mathbb{1}_{[Z\geq c]} \right] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \cdot e^y \mathbb{1}_{[y\geq c]} \, dy$$

$$= \int_{c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y^2 - 2y)} \, dy$$

$$= \int_{c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y^2 - 2y + 1) + \frac{1}{2}} \, dy$$

$$= e^{\frac{1}{2}} \int_{c}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y - 1)^2} \, dy$$

$$= \sqrt{e} \int_{c-1}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \, dx \quad \text{by changing variable of } x = y - 1$$

$$= \sqrt{e} N(-(c-1))$$

$$= \sqrt{e} N(-c+1)$$

Then we calculate the call option price:

$$\begin{split} C(t,S_t) &= e^{-r(T-t)} \mathbb{E}[(S_T - K)^+ \mid \mathcal{F}_t] \\ &= e^{-r(T-t)} \mathbb{E}[(S_t e^{\left(r - \frac{1}{2}\sigma^2\right)(T-t) + \sigma(B_T - B_t)} - K)^+ \mid \mathcal{F}_t] \quad \text{by substituting } S_T = S_t e^{\left(r - \frac{1}{2}\sigma^2\right)(T-t) + \sigma(B_T - B_t)} \\ &= e^{-r(T-t)} \mathbb{E}[(S_t e^{\left(r - \frac{1}{2}\sigma^2\right)(T-t) + \sigma\sqrt{T-t}z} - K)^+ \mid \mathcal{F}_t] \end{split}$$

since $B_T - B_t \sim N(0, T - t)$, then $B_T - B_t = \sqrt{T - t}z$, where $Z \sim N(0, 1)$. Also, since $B_T - B_t \perp \mathcal{F}_t$, then $z \perp \mathcal{F}_t$.

Then we calculate the stock price part and strike price part inside the expectation:

$$\left(S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}-K\right)^{+} = \left(S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}-K\right)\mathbb{1}_{\left[S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}\geq K\right]} \\
= \left(S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}-K\right)\mathbb{1}_{\left[\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z\geq \log\left(\frac{K}{S_{t}}\right)\right]} \\
= \left(S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}-K\right)\mathbb{1}_{\left[z\geq \frac{\log\frac{K}{S_{t}}-\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right]}$$

$$\mathbb{E}\left[K\mathbb{1}_{\left[z \ge \frac{\log \frac{K}{S_t} - \left(r - \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}}\right]}\right| \mathcal{F}_t\right] = KN\left(-\frac{\log \frac{K}{S_t} - \left(r - \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}}\right)$$

$$= KN\left(\frac{\log \frac{S_t}{K} + \left(r - \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}}\right)$$

$$= KN(d_-(T - t, S_t))$$

where $d_{-}(z,x) = \frac{\log \frac{x}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)z}{\sigma\sqrt{z}}$.

Then we calculate the other part:

$$\begin{split} &\mathbb{E}\left[S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)+\sigma\sqrt{T-t}z}\mathbb{1}_{[z\geq -d_{-}(T-t,S_{t})]}\Big|\mathcal{F}_{t}\right] \\ &=S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)}\int_{-d_{-}(T-t,S_{t})}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^{2}}e^{\sigma\sqrt{T-t}y}\,dy \\ &=S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)}\int_{-d_{-}(T-t,S_{t})}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(y^{2}-2\sigma\sqrt{T-t}y+\sigma^{2}(T-t)\right)+\frac{1}{2}\sigma^{2}(T-t)}\,dy \\ &=S_{t}e^{\left(r-\frac{1}{2}\sigma^{2}\right)(T-t)}e^{\frac{1}{2}\sigma^{2}(T-t)}\int_{-d_{-}(T-t,S_{t})}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(y^{2}-2\sigma\sqrt{T-t}y+\sigma^{2}(T-t)\right)}\,dy \\ &=S_{t}e^{r(T-t)}N(d_{+}(T-t,S_{t})) \end{split}$$

where $d_+(z,x) = d_-(z,x) + \sigma\sqrt{z} = \frac{\log\frac{x}{K} + \left(r + \frac{1}{2}\sigma^2\right)z}{\sigma\sqrt{z}}$

Substiting to the original call option price formula, we get the Black-Scholes-Merton formula for European call option price as $C(t,S_t)=S_tN(d_+(T-t,S_t))-Ke^{-r(T-t)}N(d_-(T-t,S_t))$. Aside, the Black-Scholes-Merton formula for European put option price is $P(t,S_t)=Ke^{-r(T-t)}N(-d_-(T-t,S_t))-S_tN(-d_+(T-t,S_t))$.

4.2.2 Put-Call Parity

We use the put-call parity to derive put option price:

$$(S_T - K)^+ - (K - S_T)^+ = S_T - K$$

$$e^{-rt} (C(t, S_t) - P(t, S_t)) = \tilde{\mathbb{E}} \left[e^{-rT} \left((S_T - K)^+ - (K - S_T)^+ \right) \middle| \mathcal{F}_t \right]$$

$$e^{-rt} (C(t, S_t) - P(t, S_t)) = e^{-rt} S_t - e^{-rT} K$$

Therefore, the put option price is $P(t, S_t) = C(t, S_t) - S_t + e^{-r(T-t)}K$

4.2.3 The Greeks

For the call option formula $C(t,x) = xN(d_+(T-t,x)) - Ke^{-r(T-t)}N(d_-(T-t,x))$, the Greeks are

- 1. Delta (Δ): $C_x(t,x) = N(d_+(T-t,x)) \ge 0$
- 2. Theta (Θ): $C_t(t,x) = -\frac{\sigma x}{2\sqrt{T-t}}N'(d_+(T-t,x)) rKe^{-r(T-t)}N(d_-(T-t,x))$
- 3. Gamma (Γ): $C_{xx}(t,x) = \frac{1}{\sigma\sqrt{T-t}x}N'(d_+(T-t,x)) \geq 0$

4.3 Self-Financing and Arbitrage

Definitions:

- 1. Self-Financing Strategy: $V_t^{\varphi} = \varphi_t S_t + V_t^{\varphi} \varphi_t S_t$
 - (1) Continuous: $dV_t^{\varphi} = \varphi_t dS_t + r(V_t^{\varphi} \varphi_t S_t) dt$
 - (2) Discrete: $\Delta V_t \varphi = \varphi(S_{t+1} S_t) + r(V_t^{\varphi} \varphi_t S_t)$
- 2. Arbitrage Strategy:
 - (1) $\{\varphi_t\}_{t\geq 0}$ is self-financing and $V_0^{\varphi}=0$
 - (2) $\exists t \in [0, +\infty)$ s.t. $\mathbb{P}[V_t^{\varphi} \ge 0] = 1$ and $\mathbb{P}[V_t^{\varphi} > 0] > 0$

Example 4.3.1. Suppose a risk-neutral measure $\mathbb{Q} \sim \mathbb{P}$, $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$.

Show that a discounted self-financing process is a martingale.

Let $\{\varphi_t\}_{t>0}$ be a self-financing process such that

$$\begin{split} dV_t^\varphi &= \varphi_t dS_t + r(V_t^\varphi - \varphi_t S_t) dt \quad \text{from the continuous model of self-financing strategy} \\ &= \varphi_t (rS_t dt + \sigma S_t d\tilde{B}_t) + (rV_t^\varphi - r\varphi_t S_t) dt \quad \text{by substituting } dS_t \\ &= rV_t^\varphi dt + \sigma S_t \varphi_t d\tilde{B}_t \\ \Rightarrow de^{-rt}V_t^\varphi &= -re^{-rt}V_t^\varphi dt + e^{-rt}dV_t^\varphi + \frac{1}{2} \cdot 0 \cdot dt \\ &= -re^{-rt}V_t^\varphi dt + e^{-rt}(rV_t^\varphi dt + \sigma S_t \varphi_t d\tilde{B}_t) \quad \text{by substituting } dV_t^\varphi \\ &= e^{-rt}\sigma S_t \varphi_t d\tilde{B}_t \end{split}$$

Therefore, the discounted wealth $\{e^{-rt}V_t^{\varphi}\}_{t\geq 0}$ is a martingale under the risk-neutral measure \mathbb{Q} .

Example 4.3.2. Replicate the portfolio for an European call, where $C(t, S_t) = V_t^{\varphi}$, in particular, $V_T \varphi = (S_T - K)^+$.

Recall the Black-Scholes equation for an European call is

$$C(t, S_t) = S_t N(d_+(T - t, S_t)) - Ke^{-r(T - t)} N(d_-(T - t, S_t))$$

Then we calculate the differentials for the call option price and the discounted call option price

$$\begin{split} dC(t,S_t) &= C_t(t,S_t)dt + C_s(t,S_t)dS_t + \frac{1}{2}C_{ss}(t,S_t)(dS_t)^2 \\ de^{-rt}C(t,S_t) &= (-re^{-rt}C(t,S_t) + e^{-rt}C_t(t,S_t))dt + e^{-rt}C_s(t,S_t)(rS_tdt + \sigma S_td\tilde{B}_t) + \frac{1}{2}e^{-rt}C_{ss}(t,S_t)(\sigma^2S_t^2dt) \\ &= e^{-rt}\left(-rC(t,S_t) + C_t(t,S_t) + rS_tC_s(t,S_t) + \frac{1}{2}\sigma^2S_t^2C_{ss}(t,S_t)\right)dt + e^{-rt}\sigma S_tC_s(t,S_t)d\tilde{B}_t \\ &= e^{-rt}\sigma S_tC_s(t,S_t)d\tilde{B}_t \quad \text{according to formula of Greeks} \end{split}$$

Therefore, from Example 4.3.1, we know $\varphi_t = C_s(t, S_t)$, replicating the portfolio and also indicating the delta hedging.

4.4 Risk-Neutral Asset Pricing - PDE Approach

PDE Approach:

• $\{e^{-rt}C(t,S_t)\}_{t\geq 0}$ is a martingale under risk-measure \mathbb{Q} .

• PDE Approach: Using Black-Scholes PDE

Pros and Cons:

• Pros: General

• Cons: Limited closed-form solution

Theorem 4.4.1. (4-Step Procedure to Find a Maringale (General)). Suppose we have the SDE

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)d\tilde{B}_t$$

and $Y_T = h(X_T)$. We want to find $Y_t := \mathbb{E}[h(X_T) \mid \mathcal{F}_t]$. Then we follow the following steps:

- (1) Assume that there exists $g \in C^2$, g(t, x) such that $g(t, X_t) = Y_t = \mathbb{E}[h(X_T) \mid \mathcal{F}_t]$. Then $\{g(t, X_t)\}_{t>0}$ is a martingale.
- (2) To find $g(t, X_t)$, compute its differential via Itô's Formula:

$$dg(t, X_t) = g_t(t, X_t)dt + g_x(t, X_t)dX_t + \frac{1}{2}g_{xx}(t, X_t)(dX_t)^2$$

$$= (g_t(t, X_t) + g_x(t, X_t)\mu(t, X_t) + \frac{1}{2}g_{xx}(t, X_t)\sigma^2(t, X_t))dt + g_x(t, X_t)\sigma(t, X_t)d\tilde{B}_t$$

(3) Set dt term equal to 0:

$$g_t(t, X_t) + g_x(t, X_t)\mu(t, X_t) + \frac{1}{2}g_{xx}(t, X_t)\sigma^2(t, X_t) = 0$$

(4) Replace (t, X_t) to (t, x) and write down the terminal formula

$$\begin{cases} g_t(t,x) + g_x(t,x)\mu(t,x) + \frac{1}{2}g_{xx}\sigma^2(t,x) = 0\\ g(T,x) = h(x) \end{cases}$$

Example 4.4.2. Apply the 4-step procedure to find a martingale to the discounted call option price.

Suppose we have the SDE

$$dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$$

and
$$e^{-rT}C(T, S_T) = e^{-rT}(S_T - K)^+$$
.

We want to find $e^{-rt}C(t, S_t) = \mathbb{E}[e^{-rT}(S_T - K)^+ \mid \mathcal{F}_t]$. Then we follow the following steps.

Step 1: Assume that there exists $e^{-rt}C(t,s)$ such that $e^{-rt}C(t,S_t)=\mathbb{E}[e^{-rT}(S_T-K)^+\mid \mathcal{F}_t]$.

Then $\{e^{-rt}C(t,S_t)\}_{t\geq 0}$ is a martingale.

Step 2: To find $e^{-rt}C(t,S_t)$, we compute its differential via Itô's Formula:

$$de^{-rt}C(t, S_t) = (-re^{-rt}C(t, S_t) + e^{-rt}C_t(t, S_t))dt + e^{-rt}C_s(t, S_t)dS_t + \frac{1}{2}e^{-rt}C_{ss}(t, S_t)(dS_t)^2$$

$$= e^{-rt}\left(-rC(t, S_t) + C_t(t, S_t) + rS_tC_s(t, S_t) + \frac{1}{2}\sigma^2S_t^2C_{ss}(t, S_t)\right)dt + e^{-rt}\sigma S_tC_s(t, S_t)d\tilde{B}_t$$

Step 3: Setting dt term equal to 0, we have

$$e^{-rt} \left(-rC(t, S_t) + C_t(t, S_t) + rS_tC_s(t, S_t) + \frac{1}{2}\sigma^2 S_t^2 C_{ss}(t, S_t) \right) = 0$$
$$-rC(t, S_t) + C_t(t, S_t) + rS_tC_s(t, S_t) + \frac{1}{2}\sigma^2 S_t^2 C_{ss}(t, S_t) = 0$$

Step 4: Replacing (t, S_t) to (t, x), the terminal value is

$$\begin{cases} -rC(t,x) + C_t(t,x) + rxC_x(t,x) + \frac{1}{2}\sigma^2 x^2 C_{xx}(t,x) = 0\\ C(T,x) = (x-K)^+ \end{cases}$$

by using Black-Scholes PDE.

5.1 Review of Black-Scholes Equation for European Call Option

- 1. Expression: $C(t, S_t) = S_t N(d_+(T t, S_t)) Ke^{-r(T-t)} N(d_-(T t, S_t))$, where
 - (1) $N(\cdot)$ is the CDF of a standard normal distribution.

(2)
$$d_+(z,x) = \frac{\log \frac{x}{K} + \left(r + \frac{1}{2}\sigma^2\right)z}{\sigma\sqrt{z}}$$

(3)
$$d_{-}(z,x) = \frac{\log \frac{x}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)z}{\sigma\sqrt{z}}$$

- 2. Assumptions:
 - (1) No arbitrage \Leftrightarrow There exists risk-neutral measure (FTAP I), and the B.M. process $\{\tilde{B}_t\}_{t\geq 0}$ is under risk-neutral measure
 - (2) Under risk-neutral measure, stock price dynamic follows a GBM, i.e., $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$.
 - (3) The interest r is constant.
- 3. Properties:
 - (1) Discounted option price is a martingale under the risk-neutral measure.

That is,
$$\tilde{\mathbb{E}}[e^{-rt}C(t,S_t) \mid \mathcal{F}_u] = e^{-ru}C(u,S_u)$$
, for all $-\leq u \leq t \leq T$ (or $de^{-rt}C(t,S_t) = e^{-rt}\sigma S_tC_s(t,S_t)d\tilde{B}_t$). In particular, $\tilde{\mathbb{E}}[e^{-rT}(S_T-K)^+ \mid \mathcal{F}_t] = e^{-rt}C(t,S_t)$.

(2) If no trading costs, no liquidity impact, market is frictionless.

The replicating portfolio is $X_t = \Delta_t S_t + (X_t - \Delta_t S_t) = C(t, S_t)$.

Delta-hedging for continuous model is

$$de^{-rt}X_t = de^{-rt}C(t,S_t)$$

$$e^{-rt}\sigma S_t\Delta_t d\tilde{B}_t = e^{-rt}\sigma S_tC_s(t,S_t)d\tilde{B}_t \quad \text{from Example 4.3.1 and 4.3.2}$$

$$\Delta_t = C_s(t,S_t) = N(d_+(T-t,S_t)) \geq 0 \quad \text{for European call, by option Greeks}$$

Recall that delta-hedging for discrete model is

$$\Delta_t = \frac{C(t+1,H) - C(t+1,T)}{S(t+1,H) - S(t+1,T)} \quad \text{and}$$

$$C_s(t,S_t) \approx \frac{C(t+\Delta t, S_{t+\Delta t}(H)) - C(t+\Delta t, S_{t+\Delta t}(T))}{S_{t+\Delta t}(H) - S_{t+\Delta t}(T)}$$

- (3) Put-call parity: $P(t, S_t) = C(t, S_t) + e^{-r(T-t)}K S_t$ At time t = T, it becomes $P(T, S_T) - C(T, S_T) = K - S_T$
- 4. Parameters: T, K, r, σ, t , stock price S_t treated as a random variable.

In Reality: $T, K, r, t, C(0, S_0), \sigma$ unobservable in the market. The Black-Scholes equation in reality is

$$C(0, S_0; T, K) = S_0 N(d_+(T, S_0; K)) - Ke^{-rT} N(d_-(T, S_0; K))$$

5.2 Dupire's Formula

To arrive at the Dupire's formula, we need the first and second order partial derivatives of Black-Scholes equation for European call option with respect to K and the first-order derivative with respect to T.

1. The first-order derivative with respect to K is

$$\frac{\partial C(0, S_0; T, K)}{\partial K} = S_0 N'(d_+(T, S_0; K)) \frac{\partial d_+(T, S_0; K)}{\partial K} - e^{-rT} N(d_-(T, S_0; K)) - Ke^{-rT} N'(d_-(T, S_0; K)) \frac{\partial d_-(T, S_0; K)}{\partial K}$$

First, we calculate the $\frac{\partial d_+(T,S_0;K)}{\partial K}$ and $\frac{\partial d_-(T,S_0;K)}{\partial K}$ parts:

$$\frac{\partial d_{+}(T, S_{0}; K)}{\partial K} = \frac{\partial d_{-}(T, S_{0}; K)}{\partial K} = \frac{\partial}{\partial K} \left(\frac{\log \frac{S_{0}}{K} + \left(r \pm \frac{1}{2}\sigma^{2}\right)T}{\sigma\sqrt{T}} \right) = -\frac{1}{\sigma\sqrt{T}K}$$
(1)

Secondly, we verify that $Ke^{-rT}N'(d_{-}(T, S_0; K)) = S_0N'(d_{+}(T, S_0; K))$:

$$Ke^{-rT}N'(d_{-}(T, S_{0}; K)) = e^{-rT}K\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}d_{-}^{2}(T, S_{0}; K)}$$

$$= e^{-rT}K\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\frac{\left(\log\frac{S_{0}}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T\right)^{2}}{\sigma^{2}T}}$$

$$= e^{-rT}K\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\frac{\left(\log\frac{S_{0}}{K} + \left(r - \frac{1}{2}\sigma^{2}\right)T\right)^{2} - \left(\log\frac{S_{0}}{K} + \left(r + \frac{1}{2}\sigma^{2}\right)T\right)^{2} + \left(\log\frac{S_{0}}{K} + \left(r + \frac{1}{2}\sigma^{2}\right)T\right)^{2}}\right]$$

Using the identity $A^2 - B^2 = (A - B)(A + B)$, we get

$$\begin{split} \left(\log\frac{S_0}{K} + \left(r - \frac{1}{2}\sigma^2\right)T\right) - \left(\log\frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T\right) &= -\sigma^2T \\ \left(\log\frac{S_0}{K} + \left(r - \frac{1}{2}\sigma^2\right)T\right) + \left(\log\frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T\right) &= 2\left(\log\frac{S_0}{K} + rT\right) \\ \Rightarrow \left(\log\frac{S_0}{K} + \left(r - \frac{1}{2}\sigma^2\right)T\right)^2 - \left(\log\frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T\right)^2 &= -2\sigma^2T\left(\log\frac{S_0}{K} + rT\right) \end{split}$$

Thus, we continue to calculate that

$$Ke^{-rT}N'(d_{-}(T, S_{0}; K)) = e^{-rT}K \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\sigma^{2}T} \left[-2\sigma^{2}T\left(\log\frac{S_{0}}{K} + rT\right) + \left(\log\frac{S_{0}}{K} + \left(r + \frac{1}{2}\sigma^{2}\right)T\right)^{2}\right]}$$

$$= K \frac{1}{\sqrt{2\pi}} e^{\log\frac{S_{0}}{K}} e^{-\frac{1}{2}d_{+}^{2}(T, S_{0}; K)}$$

$$= K \frac{S_{0}}{K}N'(d_{+}(T, S_{0}; K))$$

$$= S_{0}N'(d_{+}(T, S_{0}; K)) \qquad (2)$$

Hence, together by equation (1) and (2), the equation is only left with

$$\frac{\partial C(0, S_0; T, K)}{\partial K} = -e^{-rT} N(d_{-}(T, S_0; K)) \tag{*}$$

2. The second-order derivative with respect to K is

$$\frac{\partial^2}{\partial K^2}C(0, S_0; T, K) = -e^{-rT}N'(d_-(T, S_0; K))\frac{\partial}{\partial K}d_-(T, S_0; K) = \frac{e^{-rT}}{\sigma\sqrt{T}K}N'(d_-(T, S_0; K)) \tag{**}$$

3. The first-order derivative with respect to T is

$$\frac{\partial C(0, S_0; T, K)}{\partial T} = S_0 N'(d_+(T, S_0; K)) \frac{\partial d_+(T, S_0; K)}{\partial T} + rKe^{-rT} N(d_-(T, S_0; K)) - Ke^{-rT} N'(d_-(T, S_0; K)) \frac{\partial d_-(T, S_0; K)}{\partial T}$$

From equation (2), we only needs to calculate the $\frac{\partial d_+(T,S_0;K)}{\partial T} - \frac{\partial d_-(T,S_0;K)}{\partial T}$ parts:

$$\begin{split} \frac{\partial d_{+}(T,S_{0};K)}{\partial T} - \frac{\partial d_{-}(T,S_{0};K)}{\partial T} &= \frac{\partial}{\partial T} \left(\frac{1}{\sigma\sqrt{T}} \log \frac{S_{0}}{K} + \left(r + \frac{1}{2}\sigma \right) \sqrt{T} - \left(\frac{1}{\sigma\sqrt{T}} \log \frac{S_{0}}{K} + \left(r - \frac{1}{2}\sigma \right) \sqrt{T} \right) \right) \\ &= \frac{\partial}{\partial T} \sigma \sqrt{T} \\ &= \frac{\sigma}{2\sqrt{T}} \end{split}$$

Then we continue to calculate that

$$\frac{\partial C(0, S_0; T, K)}{\partial T} = Ke^{-rT}N'(d_{-}(T, S_0; K))\frac{\sigma}{2\sqrt{T}} + rKe^{-rT}N(d_{-}(T, S_0; K)) \qquad (***)$$

Combining steps 1, 2, and 3, we can observe that

$$\frac{\partial C(0,S_0;T,K)}{\partial T} = Ke^{-rT}N'(d_-(T,S_0;K))\frac{\sigma}{2\sqrt{T}} + rKe^{-rT}N(d_-(T,S_0;K))$$

$$\frac{\partial}{\partial T}C(0,S_0;T,K) = \frac{1}{2}K^2\sigma^2\frac{\partial^2}{\partial K^2}C(0,S_0;T,K) - rK\frac{\partial}{\partial K}C(0,S_0;T,K)$$

$$\sigma_{\rm BS}^2 = \frac{\frac{\partial}{\partial T}C(0,S_0;T,K) + rK\frac{\partial}{\partial K}C(0,S_0;T,K)}{\frac{1}{2}K^2\frac{\partial^2}{\partial K^2}C(0,S_0;T,K)} \quad \text{by substituting equations (*) and (**)}$$

$$= \frac{Ke^{-rT}N'(d_-(T,S_0;K))\frac{\sigma}{2\sqrt{T}}}{\frac{1}{2}K^2\frac{e^{-rT}}{\sigma\sqrt{T}K}N'(d_-(T,S_0;K))} \quad \text{verifying}$$

$$= \sigma^2$$

Thus, the implied volatility σ_{imp}^2 is to find the solution of σ such that $C(0, S_0; T, K) = \text{observation}$.

Note that the assumptions for Dupire's formula are: 1) under Black-Scholes, 2) r constant, and 3) GBM for S.

5.3 Different Volatility Models

- 1. Physical Measure: $dS_t = \mu_t dt + \sigma_t dB_t$, where S_t is the observed stock price at time t.
- 2. Market Volatility: $\hat{\sigma}_t = \frac{\text{std}(S_t)}{S_t}$ within a short time horizon, usually around 20%. $(dt \sim (dB_t)^2 \Rightarrow dB_t = \sqrt{dt} >> dt)$ Note that in $\mu_t = \frac{S_{t+\Delta t} - S_t}{\Delta t}$, where Δt is relatively large.
- 3. Implied Volatility (1 data): $C(0, S_0; T, K) = S_0 N(d_+(T, S_0; K)) Ke^{-rT} N(d_-(T, S_0; K))$, which is obtained from reverse calculation from Black-Scholes pricing formula in reality:
- 4. Black-Scholes Volatility (> 1 data): $\sigma_{BS}^2 = \frac{\frac{\partial}{\partial T}C(0,S_0;T,K) + rK\frac{\partial}{\partial K}C(0,S_0;T,K)}{\frac{1}{2}K^2\frac{\partial^2}{\partial K^2}C(0,S_0;T,K)}$, which is obtained from Dupire's formula.
- 5. Local Volatility: $dS_t = rS_t dt + \sigma(t, S_t) S_t d\tilde{B}_t$
- 6. Stochastic Volatility:
 - (1) Cox-Ingersoll-Ross (CIR) Model: $dS_t = rS_t dt + \sqrt{v_t} S_t d\tilde{B}_t$
 - (2) Heston Model: $dV_t = b(t, v_t)dt + \alpha(t, v_t)d\tilde{B}_t + \beta(t, v_t)(d\tilde{B}_t)^2$

5.4 Review of Risk-Neutral Asset Pricing Approaches

- 1. Probability Approach:
 - (1) Find the distribution of S_T under the risk-neutral measure.
 - (2) Calculate $\tilde{\mathbb{E}}[e^{-r(T-t)}f(S_T) \mid \mathcal{F}_t]$.
- 2. PDE Approach:
 - (1) Assume that there exists $g \in C^2$, g(t, x) such that $g(t, X_t) = Y_t = \mathbb{E}[h(X_T) \mid \mathcal{F}_t]$. Then $\{g(t, X_t)\}_{t>0}$ is a martingale.
 - (2) To find $g(t, X_t)$, compute its differential via Itô's Formula:

$$dg(t, X_t) = g_t(t, X_t)dt + g_x(t, X_t)dX_t + \frac{1}{2}g_{xx}(t, X_t)(dX_t)^2$$

= $(g_t(t, X_t) + g_x(t, X_t)\mu(t, X_t) + \frac{1}{2}g_{xx}(t, X_t)\sigma^2(t, X_t))dt + g_x(t, X_t)\sigma(t, X_t)d\tilde{B}_t$

(3) Set dt term equal to 0:

$$g_t(t, X_t) + g_x(t, X_t)\mu(t, X_t) + \frac{1}{2}g_{xx}(t, X_t)\sigma^2(t, X_t) = 0$$

(4) Replace (t, X_t) to (t, x) and write down the terminal formula

$$\begin{cases} g_t(t,x) + g_x(t,x)\mu(t,x) + \frac{1}{2}g_{xx}\sigma^2(t,x) = 0\\ g(T,x) = h(x) \end{cases}$$

Exercise 5.4.1. Consider the Asian option of the stock S_t with maturity T, and the terminal payoff is given by $\left(\frac{1}{T}\int_0^T S_t \, dt - K\right)^+$. Using the 4-step procedure to establish the PDF for the price of the option.

Let $Y_t = \int_0^t S_u du \Rightarrow dY_t = S_t dt$, where $Y_0 = 0$.

The stock price S_t follows $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$ under risk-neutral measure.

Step 1: Assume there exists a martingale:

$$g(t, S_t, Y_t) = \tilde{\mathbb{E}} \left[e^{-r(\mathbf{T} - t)} \left(\frac{1}{T} \int_0^T S_t dt - K \right)^+ \middle| \mathcal{F}_t \right] = \tilde{\mathbb{E}} \left[e^{-r(\mathbf{T} - t)} \left(\frac{1}{T} Y_{\mathbf{T}} - K \right)^+ \middle| \mathcal{F}_t \right]$$

Step 2: Apply Itô's formula for discounted option price:

$$\begin{split} dg(t,S_t,Y_t) &= g_t(t,S_t,Y_t)dt + g_s(t,S_t,Y_t)dS_t + \frac{1}{2}g_{ss}(t,S_t,Y_t)(dS_t)^2 + g_y(t,S_t,Y_t)dY_t + \frac{1}{2}g_{yy}(t,S_t,Y_t)(dY_t)^2 \\ &+ g_{sy}(t,S_t,Y_t)(dS_tdY_t) \quad \text{by Itô's formula for } C^2 \text{ function} \\ &= g_t(t,S_t,Y_t)dt + g_s(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t) + \frac{1}{2}g_{ss}(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t)^2 \\ &+ g_y(t,S_t,Y_t)(S_tdt) + \frac{1}{2}g_{yy}(t,S_t,Y_t)(S_tdt)^2 + g_{sy}(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t)(S_tdt) \\ &= \left(g_t(t,S_t,Y_t) + rS_tg_s(t,S_t,Y_t) + \frac{1}{2}\sigma^2S_t^2g_{ss}(t,S_t,Y_t) + S_tg_y(t,S_t,Y_t)\right)dt + \sigma S_tg_s(t,S_t,Y_t)d\tilde{B}_t \\ de^{-rt}g(t,S_t,Y_t) &= e^{-rt}(-rg(t,S_t,Y_t)dt + dg(t,S_t,Y_t)) \quad \text{by product rule} \\ &= e^{-rt}\left(-rg(t,S_t,Y_t) + g_t(t,S_t,Y_t) + rS_tg_s(t,S_t,Y_t) + \frac{1}{2}\sigma^2S_t^2g_{ss}(t,S_t,Y_t) + S_tg_y(t,S_t,Y_t)\right)dt \\ &+ e^{-rt}\sigma S_tg_s(t,S_t,Y_t)d\tilde{B}_t \end{split}$$

Step 3: Set dt term equal to 0:

$$-rg(t, S_t, Y_t) + g_t(t, S_t, Y_t) + rS_t g_s(t, S_t, Y_t) + \frac{1}{2}\sigma^2 S_t^2 g_{ss}(t, S_t, Y_t) + S_t g_y(t, S_t, Y_t) = 0$$

Step 4: Replace (t, S_t, Y_t) to (t, x, y):

$$\begin{cases} -rg(t,x,y) + g_t(t,x,y) + rxg_x(t,x,y) + \frac{1}{2}\sigma^2 x^2 g_{xx}(t,x,y) + xg_y(t,x,y) = 0\\ g(T,x,y) = (\frac{1}{T}y - K)^+ \end{cases}$$

Exercise 5.4.2. Suppose there is an option of the stock S_t with maturity T, and the terminal payoff is given by $\left(S_T + \int_0^T S_u \, du - K\right)^+$. Using the 4-step procedure to establish the PDE for the price of the option. Can we still have a delta-hedging formula similar to the discrete-time binomial model?

Let
$$Y_t = \int_0^t s_u du \Rightarrow dY_t = S_t dt$$
.

The stock price follows $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$.

Step 1: Assume there exists a martingale:

$$g(t, S_t, Y_t) = \tilde{\mathbb{E}} \left[e^{-r(T-t)} \left(S_T + \int_0^T S_u \, du - K \right)^+ \middle| \mathcal{F}_t \right] = \tilde{\mathbb{E}} [e^{-r(T-t)} (S_T + Y_T - K)^+ \mid \mathcal{F}_t]$$

Step 2: Apply Itô's formula for discounted option price:

$$\begin{split} dg(t,S_t,Y_t) &= g_t(t,S_t,Y_t)dt + g_s(t,S_t,Y_t)dS_t + \frac{1}{2}g_{ss}(t,S_t,Y_t)(dS_t)^2 + g_y(t,S_t,Y_t)dY_t + \frac{1}{2}g_{yy}(t,S_t,Y_t)(dY_t)^2 \\ &+ g_{sy}(t,S_t,Y_t)(dS_tdY_t) \quad \text{by Itô's formula for } C^2 \text{ function} \\ &= g_t(t,S_t,Y_t)dt + g_s(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t) + \frac{1}{2}g_{ss}(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t)^2 \\ &+ g_y(t,S_t,Y_t)(S_tdt) + \frac{1}{2}g_{yy}(t,S_t,Y_t)(S_tdt)^2 + g_{sy}(t,S_t,Y_t)(rS_tdt + \sigma S_td\tilde{B}_t)(S_tdt) \\ &= \left(g_t(t,S_t,Y_t) + rS_tg_s(t,S_t,Y_t) + \frac{1}{2}\sigma^2S_t^2g_{ss}(t,S_t,Y_t) + S_tg_y(t,S_t,Y_t)\right)dt + \sigma S_tg_s(t,S_t,Y_t)d\tilde{B}_t \\ de^{-rt}g(t,S_t,Y_t) &= e^{-rt}(-rg(t,S_t,Y_t)dt + dg(t,S_t,Y_t)) \quad \text{by product rule} \\ &= e^{-rt}\left(-rg(t,S_t,Y_t) + g_t(t,S_t,Y_t) + rS_tg_s(t,S_t,Y_t) + \frac{1}{2}\sigma^2S_t^2g_{ss}(t,S_t,Y_t) + S_tg_y(t,S_t,Y_t)\right)dt \\ &+ e^{-rt}\sigma S_tg_s(t,S_t,Y_t)d\tilde{B}_t \end{split}$$

Step 3: Set dt term equal to 0:

$$-rg(t, S_t, Y_t) + g_t(t, S_t, Y_t) + rS_tg_s(t, S_t, Y_t) + \frac{1}{2}\sigma^2 S_t^2 g_{ss}(t, S_t, Y_t) + S_tg_y(t, S_t, Y_t) = 0$$

Step 4: Replace (t, S_t, Y_t) to (t, x, y):

$$\begin{cases} -rg(t,x,y) + g_t(t,x,y) + rxg_x(t,x,y) + \frac{1}{2}\sigma^2 x^2 g_{xx}(t,x,y) + xg_y(t,x,y) = 0\\ g(T,x,y) = (x+y-K)^+ \end{cases}$$

Yes, we have delta-hedging $\Delta_t = g_x$.

5.5 Numerical Methods

Finite Difference Methods (Pricing/PDE in Deep Learning):

1. For the time derivative:

$$\begin{split} g_t(t,x,y) &\approx \frac{g(t+\Delta t,x,y) - g(t,x,y)}{\Delta t} \quad \text{(forward difference)} \\ &\approx \frac{g(t,x,y) - g(t-\Delta t,x,y)}{\Delta t} \quad \text{(backward difference)} \\ &\approx \frac{g(t+\Delta t,x,y) - g(t-\Delta t,x,y)}{2\Delta t} \quad \text{(central difference)} \end{split}$$

2. For the spatial derivatives:

$$g_x(t, x, y) \approx \frac{g(t, x + \Delta x, y) - g(t, x - \Delta x, y)}{2\Delta x}$$

$$g_y(t, x, y) \approx \frac{g(t, x, y + \Delta y) - g(t, x, y - \Delta y)}{2\Delta y}$$

$$g_{xx}(t, x, y) \approx \frac{g(t, x + \Delta x, y) + g(t, x - \Delta x, y) - 2g(t, x, y)}{(\Delta x)^2}$$

- 3. Start at *T*:
 - (1) Set g(T, x, y) for all x, y.
 - (2) Calculate $g_x(T, x, y)$, $g_{xx}(T, x, y)$, $g_y(T, x, y)$, and use the PDE to obtain $g_t(T, x, y)$.
 - (3) Step backward in time to find $g(T \Delta t, x, y)$.

6.1 Connections between SDE and PDE

The stock price dynamic under risk-neutral measure is $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, which is the Black-Scholes Model.

The generalized Black-Scholes Model is $dS_t = rS_t dt + S_t \sigma(t, S_t) d\tilde{B}_t$, where $\sigma(t, S_t)$ is a local volatility.

An European-type option, i.e., can only exercise at time T of the underlying asset has terminal payoff G(T). For example, European call payoff is $G(S_T) = (S_T - K)^+$.

Let $g(t, S_t)$ denote the time t price of an option, then by 4-step procedure, we have

- (1) $g(t, S_t) = \tilde{\mathbb{E}}\left[e^{-r(T-t)}G(S_T) \mid \mathcal{F}_t\right]$, where $\{e^{-rt}g(t, S_t)\}_{0 \le t \le T}$ is a martingale.
- (2) $de^{-rt}g(t, S_t)$ via Itô's formula is

$$de^{-rt}g(t,S_t) = e^{-rt}\left(-rg(t,S_t) + g_t(t,S_t) + rS_tg_t(t,S_t) + \frac{1}{2}\sigma^2 S_t^2 g_{ss}(t,S_t)\right)dt + e^{-rt}\sigma S_tg_s(t,S_t)d\tilde{B}_t$$

- (3) Set dt term to 0.
- (4) Replace (t, S_t) to (t, x) and write down PDE system together with the terminal condition

$$\begin{cases} -rg(t,x) + g_t(t,x) + rxg_x(t,x) + \frac{1}{2}x^2\sigma^2(t,x)g_{xx}(t,x) = 0\\ g(T,x) = G(x) \end{cases}$$

which is a generalized Black-Scholes PDE.

Therefore, from a stochastic process martingale, we can have the PDE system, and from the PDE system, we can derive SDE, which returns back to a stochastic process.

6.2 Feynman-Kac Theorem

Theorem 6.2.1. (Feynman-Kac Theorem). Let g(t,x) be a C^2 function satisfying the following PDE:

$$\begin{cases} g_t(t,x) + a(t,x)g_x(t,x) + \frac{1}{2}b^2(t,x)g_{xx}(t,x) = c(t,x)g(t,x) \\ g(T,x) = G(x) \end{cases}$$

where a(t, x), b(t, x), and c(t, x) are known functions.

The solution g(t, x) of the PDE can be represented as

$$g(t,x) = \mathbb{E}\left[e^{-\int_t^T c(u,X_u) du} G(X_T) \middle| \mathcal{F}_t, X_t = x\right]$$

Then a stochastic process $\{X_t\}_{t\geq 0}$ on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$ satisfies the SDE

$$dX_t = a(t, X_t)dt + b(t, X_t)dB_t, X_0 = x$$

where $\{B_t\}_{t\geq 0}$ is a B.M. process on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$.

Example 6.2.2. The SDE $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, $S_0 = s$ has the solution $S_t = se^{\left(r - \frac{1}{2}\sigma^2\right)t + \sigma \tilde{B}_t}$.

Corollary 6.2.3. 4-step approach (PDE)
Feynman-Kac Formula calculating conditional expectation (SDE)

6.3 Radon-Nikodym Derivative

For discrete-time model: $\mathbb{Q} \sim \mathbb{P}$, \tilde{p} , \tilde{q} s.t. $\tilde{p} + \tilde{q} = 1$.

For continuous-time model: $\mathbb{Q} \sim \mathbb{P}$, $\{\tilde{B}_t\}_{t>0}$ under \mathbb{Q} .

For every continuous adaptive process $\{X_t\}_{t\geq 0}$ on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ with the SDE $dX_t = \mu_t dt + \sigma_t dB_t$, where $\{B_t\}_{t\geq 0}$ is a B.M. on \mathbb{P} , then we can apply the martingale representation theorem.

Under physical measure \mathbb{P} , we have the SDE

$$dS_t = S_t \mu(t, S_t) dt + S_t \sigma(t, S_t) dB_t$$

and the bank account

$$dX_t = rX_tdt$$

By subtracting two equations, we get the Sharpe ratio, $\frac{\mu(t,S_t)-r}{\sigma(t,S_t)}$. Aggregating into \mathbb{Q} , we have

$$dS_t = rS_t dt + S_t \sigma(t, S_t) \left(dB_t - \frac{\mu(t, S_t) - r}{\sigma(t, S_t)} dt \right)$$

Note that $dB_t - \frac{\mu(t,S_t) - r}{\sigma(t,S_t)} dt = d\tilde{B}_t$, where $\{\tilde{B}_t\}$ is a B.M. under \mathbb{Q} , and the Sharpe ratio is an adjusted drift term w.r.t. dt.

Example 6.3.1. Let $X \sim N(0,1)$ on $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{P}[X \leq x] = N(x)$.

Let
$$Y = X + \theta \sim N(0, 1), \theta \in \mathbb{R}, \mathbb{P}[Y \le y] = \mathbb{P}[X \le y - \theta] = N(y - \theta).$$

Try to find $\mathbb{Q}(\tilde{\mathbb{P}})$ s.t.

- $(1) \ \tilde{\mathbb{P}}[Y \le y] = N(y)$
- (2) $\tilde{\mathbb{P}} \sim \mathbb{P}$

Solution. First, we let $Z=e^{-\theta X-\frac{1}{2}\theta^2}>0$, $\mathbb{P}[Z=0]=0$. $\forall A\in\mathcal{F}$, we define $\tilde{\mathbb{P}}[A]=\tilde{\mathbb{E}}[\mathbb{1}_A]=\mathbb{E}[Z\mathbb{1}_A]=\int_A Zd\mathbb{P}$.

Then we calculate (1):

$$\begin{split} \tilde{\mathbb{P}}\left[Y \leq y\right] &= \tilde{\mathbb{P}}\left[X \leq y - \theta\right] \\ &= \mathbb{E}\left[Z\mathbbm{1}_{\left[X \leq y - \theta\right]}\right] \\ &= \mathbb{E}\left[e^{-\theta X - \frac{1}{2}\theta^2}\mathbbm{1}_{\left[X \leq y - \theta\right]}\right] \\ &= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y - \theta}e^{-\theta x - \frac{1}{2}\theta^2 - \frac{1}{2}x^2}\,dx \\ &= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y - \theta}e^{-\frac{1}{2}(x + \theta)^2}\,dx \\ &= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y}e^{-\frac{1}{2}z^2}dz \\ &= N(y) \end{split}$$

which shows that Y is a standard normal random variable under the probability measure \mathbb{P} . And Z is the *Radon-Nikodym derivative* of $\tilde{\mathbb{P}}$ with respect to \mathbb{P} , and we write $Z = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$.

Secondly, we evaluate the equivalence. On one hand, $\forall A \in \mathcal{F}, \mathbb{P}[A] = 0 \Rightarrow \tilde{\mathbb{P}}[A] = \mathbb{E}\left[Z\mathbb{1}_A\right] = 0.$

On the other hand, $\tilde{\mathbb{P}}[A] = 0 = \mathbb{E}[Z\mathbb{1}_A]$. Since $Z(\omega) > 0, \forall \omega \in \Omega$, suppose $\mathbb{P}[A] > \epsilon \Rightarrow \tilde{\mathbb{P}}[A] = \mathbb{Z}\mathbb{1}_A > \tilde{\epsilon}$, then $Z\mathbb{1}_A > \tilde{\epsilon}$, which is a contradiction against $\tilde{\mathbb{P}} = 0$, so $\mathbb{P}[A] = 0$ proved by contradiction. Therefore, $\tilde{\mathbb{P}} \sim \mathbb{P}$.

When $Z>0\Rightarrow \frac{1}{Z}>0$, we have $\hat{\mathbb{P}}[A]=\hat{\mathbb{E}}[\mathbb{1}_A]=\tilde{\mathbb{E}}[\frac{1}{Z}\mathbb{1}_A]=\mathbb{E}[\frac{1}{Z}\mathbb{1}_AZ]=\mathbb{P}[A], \forall A\in\mathcal{F}\Rightarrow \frac{1}{Z}=\frac{d\mathbb{P}}{d\hat{\mathbb{P}}}$.

Note that for random variable ξ , $\mathbb{E}[\xi] = \tilde{\mathbb{E}}[\frac{\xi}{Z}] \Rightarrow \tilde{\mathbb{E}}[\xi] = \mathbb{E}[Z\xi]$.

For continuous-time model, $Z = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$, we need to find that for all $t \geq 0$ on space $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t \geq 0}, \mathbb{P})$ such that $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t]$. Note that \mathbb{E} is with respect to \mathbb{P} .

Definition 6.3.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Let $\tilde{\mathbb{P}}$ be another probability measure on (Ω, \mathcal{F}) that is equivalent to \mathbb{P} , i.e., $\tilde{\mathbb{P}} \sim \mathbb{P}$.

Let Z be an almost surely positive random variable that relates $\mathbb P$ and $\tilde{\mathbb P}$ via $\tilde{\mathbb P}(A)=\int_A Z(\omega)d\mathbb P(\omega).$

Then Z is called the *Radon-Nikodym derivative* of $\tilde{\mathbb{P}}$ with respect to \mathbb{P} , and we write

$$Z = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$$

Definition 6.3.3. On probability space space $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$, for $\mathcal{F}_s \subset \mathcal{F}$, we say that $\mathbb{E}[X \mid \mathcal{F}_s]$ is the *conditional expectation* of X on \mathcal{F}_s provided $\forall A \in \mathcal{F}_s$,

$$\int_{A} X \, d\mathbb{P} = \int_{A} \mathbb{E}[X \mid \mathcal{F}_{s}] \, d\mathbb{P}$$

Lemma 6.3.3. Let Z be a Radon-Nikodym derivative of $\tilde{\mathbb{P}}$ and \mathbb{P} on space $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t>0}, \mathbb{P})$, then

- (1) $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t], \{Z_t\}_{t \geq 0}$ is a \mathbb{P} -martingale.
- (2) For an adaptive process $\{Y_t\}_{t\geq 0}$ on space $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$, for $0\leq s\leq t$,

$$\widetilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s] = \frac{1}{Z_s} \mathbb{E}[Y_t Z_t \mid \mathcal{F}_s]$$

In particular, when s = 0, $\tilde{\mathbb{E}}[Y_t] = \mathbb{E}[Y_t Z_t]$.

(3) Let $\{Y_t\}_{t\geq 0}$ be a $\tilde{\mathbb{P}}$ -martingale. Then $\{Y_tZ_t\}$ is a \mathbb{P} -martingale.

Proof.

(1) Since $\mathbb{E}[Z] = \mathbb{E}[Z\mathbbm{1}_{\Omega}] = \tilde{\mathbb{P}}[\Omega] = 1$ and $Z \geq 0$ by definition of the Radon-Nikodym derivative, we have

$$0 \leq \mathbb{E}[|Z|] = \mathbb{E}[Z] = 1 < +\infty$$

For $0 \le s \le t \le T$, we calculate

$$\mathbb{E}[Z_t \mid \mathcal{F}_s] = \mathbb{E}[\mathbb{E}[Z \mid \mathcal{F}_t] \mid \mathcal{F}_s] = \mathbb{E}[Z \mid \mathcal{F}_s] = Z_s$$

Therefore, $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t]$, $\{Z_t\}_{t \geq 0}$ is a \mathbb{P} -martingale.

(2) Consider when s = 0, $\tilde{\mathbb{E}}[Y_t] = \mathbb{E}[Y_t Z_t]$ and $\mathbb{E}[Y_t Z \mid \mathcal{F}_t] = Y_t \mathbb{E}[Z \mid \mathcal{F}_t] = Y_t Z_t$ by taking out what is known. Then we have $\tilde{\mathbb{E}}[Y_t] = \mathbb{E}[\mathbb{E}[Y_t Z \mid \mathcal{F}_t]] = \mathbb{E}[Y_t Z_t]$ by tower property of conditional expectation.

For \mathcal{F}_t -measurable random variable, we only need to know Z_t to change measure.

For $0 \le s \le t$, consider $\forall A \in \mathcal{F}_s, Y_t \mathbb{1}_A$. By definition of conditional expectation, we have

$$\tilde{\mathbb{E}}[Y_t \mathbb{1}_A] = \int_A Y_t d\tilde{\mathbb{P}} = \int_A \tilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s] d\tilde{\mathbb{P}} \quad (1)$$

$$\mathbb{E}[Y_t Z_t \mathbb{1}_A] = \int_A Y_t Z_t d\mathbb{P} = \int_A \mathbb{E}[Y_t Z_t \mid \mathcal{F}_s] d\mathbb{P} \quad (2)$$

When s = 0, above two equations are equivalent.

Let $\eta_s := \tilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s]$. Using similar idea as the unconditional expectation result, we obtain that

$$\begin{split} \tilde{\mathbb{E}}[Y_t \mathbb{1}_A] &= \int_A \eta_s \, d\tilde{\mathbb{P}} \quad \text{from equation (1)} \\ &= \tilde{\mathbb{E}}[\eta_s \mathbb{1}_A] \\ &= \mathbb{E}[Z_s \mathbb{1}_A \eta_s] \quad \text{by change of measure} \\ &= \int_A Z_s \eta_s \, d\mathbb{P} \end{split}$$

By definition of conditional expectation and definition of η_s , we have

$$\mathbb{E}[Y_t Z_t \mid \mathcal{F}_s] = Z_s \eta_s = Z_s \tilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s] \Rightarrow \tilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s] = \frac{1}{Z_s} \mathbb{E}[Y_t Z_t \mid \mathcal{F}_s] \quad (3)$$

(3) Let $\{Y_t\}_{t\geq 0}$ be a $\tilde{\mathbb{P}}$ -martingale and $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t]$. Then we have

$$Y_s = \tilde{\mathbb{E}}[Y_t \mid \mathcal{F}_s] = \frac{1}{Z_s} \mathbb{E}[Y_t Z_t \mid \mathcal{F}_s] \quad \text{from equation (3)}$$

$$\Rightarrow Y_s Z_s = \mathbb{E}[Y_t Z_t \mid \mathcal{F}_s]$$

Since $\mathbb{E}[Y_t Z_t \mid \mathcal{F}_s]$ is well-defined, then $\mathbb{E}[|Y_t Z_t|] < +\infty$.

Therefore, $\{Y_t Z_t\}_{t \geq 0}$ is a \mathbb{P} -martingale.

6.4 Girsanov's Theorem for a Single Brownian Motion

Fact 6.4.1. For an adaptive process $\{X_t\}_{t\geq 0}$ with

$$\mathbb{E}\left[e^{\frac{1}{2}\int_0^t X_u^2 \, du}\right] < +\infty,$$

then we have

$$Y_t := e^{\int_0^t X_u \, dB_u - \frac{1}{2} \int_0^t X_u^2 \, du}$$

is a martingale.

Fact 6.4.2. For adaptive processes $\{X_t^{(1)}\}_{t\geq 0}$, $\{X_t^{(2)}\}_{t\geq 0}$ with

$$\mathbb{E}\left[e^{\frac{1}{2}\int_0^t \left(X_u^{(1)}\right)^2 + \left(X_u^{(2)}\right)^2 du}\right] < +\infty,$$

then we have

$$Y_t := e^{\int_0^t X_u^{(1)} dB_u + \mathbf{i} \int_0^t X_u^{(2)} dB_u - \frac{1}{2} \int_0^t \left(\left(X_u^{(1)} \right)^2 + \mathbf{i} \left(X_u^{(2)} \right)^2 \right) du}$$

is a martingale.

Theorem 6.4.3. (Girsanov's Change of Measure (1-dim)). Let $\{B_t\}_{t\geq 0}$ be a Brownian Motion on the probability space $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$ and $\{\Theta_t\}_{t\geq 0}$ be an adaptive process on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$.

Focus on [0,T] and assume $\mathbb{E}[e^{\frac{1}{2}\int_0^T\Theta_u^2\,du}]<+\infty$. Define

$$\tilde{B}_t = B_t + \int_0^t \Theta_u \, du$$

$$Z_t = e^{-\int_0^t \Theta_u \, dB_u - \frac{1}{2} \int_0^t \Theta_u^2 \, du}$$

Then for $\tilde{\mathbb{P}}$ defined by $\tilde{\mathbb{E}}[X] := \mathbb{E}[Z_T X]$, for all X being \mathcal{F}_T -measurable, we have that $\{\tilde{B}_t\}_{t\geq 0}$ is a Brownian Motion under $\tilde{\mathbb{P}}$ -measure.

Proof. Since $\tilde{B}_t = B_t + \int_0^t \Theta_u du$, then we have

$$\tilde{B}_0 = B_0 + 0 = 0$$

$$\tilde{B}_t(\omega) = B_t(\omega) + \int_0^t \Theta_u(\omega) du$$

where $\int_0^t \Theta_u(\omega) du$ is continuous, thus satisfying the first two conditions in definition of Brownian Motion.

To arrive at the third and fourth condition in the Brownian Motion definition, we consider $\tilde{B}_t - \tilde{B}_s = B_t - B_s + \int_s^t \Theta_u \, du \, (*)$ and use the characteristic function to capture the probability distribution of $\tilde{B}_t - \tilde{B}_s$:

$$\widetilde{\mathbb{E}}[e^{ik(\tilde{B}_t - \tilde{B}_s)} \mid \mathcal{F}_s] = \frac{1}{Z_s} \mathbb{E}[Z_t e^{ik(\tilde{B}_t - \tilde{B}_s)} \mid \mathcal{F}_s] \quad \text{by Lemma 6.3.3 (2)}$$

Taking out Z_t , we have

$$\begin{split} \frac{Z_t}{Z_s} e^{ik(\tilde{B}_t - \tilde{B}_s)} &= e^{ik(B_t - B_s) + ik \int_s^t \Theta_u \, du - \int_s^t \Theta_u \, dB_u - \frac{1}{2} \int_s^t \Theta_u^2 \, du} \quad \text{from equation } (*) \text{ and definition of } Z_t \\ &= e^{\int_s^t (ik - \Theta_u) \, dB_u - \frac{1}{2} \int_s^t (\Theta_u^2 - ik\Theta_u) \, du} \quad \text{by taking } B_t - B_s \text{ into integral} \\ &= e^{\int_s^t (ik - \Theta_u) \, dB_u - \frac{1}{2} \int_s^t (\Theta_u^2 - ik\Theta_u + (ik\Theta_u)^2 - (ik\Theta_u)^2) \, du} \quad \text{to create a square term of } \Theta_u - ik \\ &= e^{\int_s^t (ik - \Theta_u) \, dB_u - \frac{1}{2} \int_s^t (\Theta_u - ik)^2 \, du - \frac{1}{2} k^2 (t - s)} \end{split}$$

Factor 6.4.1 yields that $Y_t := e^{\int_0^t (ik - \Theta_u) dB_u - \frac{1}{2} \int_0^t (\Theta_u - ik)^2 du}$ is a martingale. Then we can calculate

$$\mathbb{E}[Y_t \mid \mathcal{F}_s] = Y_s$$

$$\Rightarrow \frac{1}{Y_s} \mathbb{E}[Y_t \mid \mathcal{F}_s] = 1$$

$$\Rightarrow \mathbb{E}[\frac{Y_t}{Y_s} \mid \mathcal{F}_s] = 1$$

$$\Rightarrow \mathbb{E}\left[e^{\int_s^t (ik - \Theta_u) dB_u - \frac{1}{2} \int_s^t (\Theta_u - ik)^2 du}\right] = 1 \quad (**)$$

Therefore, we have

$$\begin{split} \tilde{\mathbb{E}}[e^{ik(\tilde{B}_t - \tilde{B}_s)} \mid \mathcal{F}_s] &= \frac{1}{Z_s} \mathbb{E}[Z_t e^{ik(\tilde{B}_t - \tilde{B}_s)} \mid \mathcal{F}_s] \\ &= \mathbb{E}\left[\frac{Z_t}{Z_s} e^{ik(\tilde{B}_t - \tilde{B}_s)} \mid \mathcal{F}_s\right] \\ &= e^{-\frac{1}{2}k^2(t-s)} \mathbb{E}\left[e^{\int_s^t (ik - \Theta_u)dB_u - \frac{1}{2}\int_s^t (\Theta_u - ik)^2 du}\right] \\ &= e^{-\frac{1}{2}k^2(t-s)} \quad \text{from equation (**)} \\ \Rightarrow \tilde{B}_t - \tilde{B}_s \mid \mathcal{F}_s \sim N(0, t-s) \end{split}$$

 $\Rightarrow \tilde{B}_t - \tilde{B}_s \sim N(0, t - s), \tilde{B}_t - \tilde{B}_s \perp \mathcal{F}_s$ satisfying third and fourth conditions in Brownian Motion definition

7.1 Self-Financing and Arbitrage

Recall:

- 1 risky asset, $dS_t = \alpha_t S_t dt + \sigma_t S_t dB_t$
- 1 safe asset, interest rate r
- 1. Self-Financing Strategy:
 - (1) $\{\varphi_t\}_{t>0}, V_0=0$
 - (2) $V_t^{\varphi} = V_t^{\varphi} \varphi_t S_t + \varphi_t S_t$
 - (3) $dV_t^{\varphi} = r(V_t^{\varphi} \varphi_t S_t)dt + \varphi_t dS_t$: instantaneous change in stock
- 2. Arbitrage Strategy:
 - (1) $\{\varphi_t\}_{t\geq 0}$ self-financing, $V_0=0$
 - (2) $\exists t \in [0, +\infty), \mathbb{P}[V_t^{\varphi} \ge 0] = 1, \mathbb{P}[V_t^{\varphi}] > 0$
 - (3) $dV_t^{\varphi} = r(V_t^{\varphi} \varphi_t S_t) dt + \varphi_t dS_t$

Example 7.1.1. r interest rate, $dS_t = \alpha S_t dt + 0 \cdot S_t dB_t$, $\alpha > r$.

 $V_0=0,\,V_t^{arphi}=V_t^{arphi}-arphi_tS_t+arphi_tS_t.$ Calculate differential for discounted self-financing strategy.

Solution.

$$\begin{split} dV_t^\varphi &= r(V_t^\varphi - \varphi_t S_t) dt + \varphi_t dS_t \quad \text{from instantaneous change in stock} \\ &= r(V_t^\varphi - \varphi_t S_t) dt + \varphi_t (\alpha S_t dt) \\ &= (rV_t^\varphi + (\alpha - r)\varphi_t S_t) dt \\ de^{-rt}V_t^\varphi &= -re^{-rt}V_t^\varphi dt + e^{-rt}dV_t^\varphi \quad \text{by Chain Rule} \\ &= -re^{-rt}V_t^\varphi dt + e^{-rt}(rV_t^\varphi + (\alpha - r)\varphi_t S_t) dt \quad \text{by substituting } dV_t^\varphi \\ &= e^{-rt}(\alpha - r)\varphi_t S_t dt \end{split}$$

Since $\alpha > r$ and $\varphi_t S_t > 0$, then the discounted self-financing strategy is positive, thus having arbitrage if we

- borrow $\varphi_t S_t$ from bank
- invest all $\varphi_t S_t$ into stock

7.2 Girsanov's Change of Measure (1-dim)

Example 7.2.1. Suppose 2 risky assets:

$$\begin{split} dS_t^{(1)} &= \alpha^{(1)} S_t^{(1)} dt + \sigma^{(1)} S_t^{(1)} dB_t, & \text{number of stock } 1: \varphi_t^{(1)} \\ dS_t^{(2)} &= \alpha^{(2)} S_t^{(2)} dt + \sigma^{(2)} S_t^{(2)} dB_t, & \text{number of stock } 2: \varphi_t^{(2)} \end{split}$$

and 1 safe asset with interest rate r.

Suppose
$$\alpha^{(1)}>r,$$
 $\alpha^{(2)}>r,$ $\frac{\alpha^{(1)-r}}{\sigma^{(1)}}>\frac{\alpha^{(2)}-r}{\sigma^{(2)}}.$

Solution.

$$\begin{split} V_0 &= 0 \\ V_t^\varphi &= V_t^\varphi - \varphi_t^{(1)} S_t^{(1)} - \varphi_t^{(2)} S_t^{(2)} + \varphi_t^{(1)} S_t^{(1)} + \varphi_t^{(2)} S_t^{(2)} \\ dV_t^\varphi &= r (V_t^\varphi - \varphi_t^{(1)} S_t^{(1)} - \varphi_t^{(2)} S_t^{(2)}) dt + \varphi_t^{(1)} dS_t^{(1)} + \varphi_t^{(2)} dS_t^{(2)} \quad \text{from instantaneous change in stocks} \\ &= r (V_t^\varphi - \varphi_t^{(1)} S_t^{(1)} - \varphi_t^{(2)} S_t^{(2)}) dt + \varphi_t^{(1)} (\alpha^{(1)} S_t^{(1)} dt + \sigma^{(1)} S_t^{(1)} dB_t) + \varphi_t^{(2)} (\alpha^{(2)} S_t^{(2)} dt + \sigma^{(2)} S_t^{(2)} dB_t) \\ &= (r V_t^\varphi + (\alpha^{(1)} - r) \varphi_t^{(1)} S_t^{(1)} + (\alpha^{(2)} - r) \varphi_t^{(2)} S_t^{(2)}) dt + (\sigma^{(1)} \varphi_t^{(1)} S_t^{(1)} + \sigma^{(2)} \varphi_t^{(2)} S_t^{(2)}) dB_t \end{split}$$

For arbitrage, setting dB_t term = 0 and dt term > 0:

$$\begin{split} &\sigma^{(1)}\varphi_t^{(1)}S_t^{(1)} + \sigma^{(2)}\varphi_t^{(2)}S_t^{(2)} = 0 \Rightarrow \varphi_t^{(2)}S_t^{(2)} = -\frac{\sigma^{(1)}}{\sigma^{(2)}}\varphi_t^{(1)}S_t^{(1)} \quad (*) \\ &rV_t^{\varphi} + (\alpha^{(1)} - r)\varphi_t^{(1)}S_t^{(1)} + (\alpha^{(2)} - r)\varphi_t^{(2)}S_t^{(2)} > 0 \\ &rV_t^{\varphi} + \left[(\alpha^{(1)} - r) - \frac{\sigma^{(1)}}{\sigma^{(2)}}(\alpha^{(2)} - r) \right] \varphi_t^{(1)}S_t^{(1)} > 0 \quad \text{by substituting } (*) \\ &rV_t^{\varphi} + \sigma^{(1)} \left[\frac{\alpha^{(1)} - r}{\sigma^{(2)}} - \frac{\alpha^{(2)} - r}{\sigma^{(2)}} \right] \varphi_t^{(1)}S_t^{(1)} > 0 \\ &\Rightarrow \frac{\alpha^{(1)} - r}{\sigma^{(2)}} - \frac{\alpha^{(2)} - r}{\sigma^{(2)}} > 0 \\ &V_0 = 0 = \left(-\varphi_t^{(1)}S_0^{(1)} + \frac{\sigma^{(1)}}{\sigma^{(2)}}\varphi_0^{(1)}S_0^{(1)} \right) + \varphi_t^{(1)}S_0^{(1)} - \frac{\sigma^{(1)}}{\sigma^{(2)}}\varphi_0^{(1)}S_0^{(1)} \end{split}$$

Theorem 7.2.2. (Girsanov's Change of Measure (1-dim)).

$$\mathbb{P} \to \mathbb{O}, \mathbb{O} \sim \mathbb{P}.$$

Let $\{B_t\}_{t\geq 0}$ be a B.M. on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$

Focusing on [0,T] and assuming for adaptive $\{\Theta_t\}_{0 \leq t \leq T}$ with $\mathbb{E}[e^{\frac{1}{2}\int_0^T \Theta_u^2 \ du}] < +\infty$, define

$$\tilde{B}_t = B_t + \int_0^t \Theta_u \, du$$

$$Z_t = e^{-\int_0^t \Theta_u \, dB_u - \frac{1}{2} \int_0^t \Theta_u^2 \, du}$$

Then for $\tilde{\mathbb{P}}(\mathbb{Q})$ defined by $\mathbb{P}[A] := \mathbb{E}[Z_T \mathbb{1}_A], \forall A \in \mathcal{F}$,

we have $\{\tilde{B}_t\}_{t\geq 0}$ is a B.M. under $\tilde{\mathbb{P}}$.

Exercise 7.2.3. How are the Brownian Motions related between risky asset and risk-free asset. *Solution.*

$$dS_{t} = \alpha_{t} S_{t} dt + \sigma_{t} S_{t} dB_{t} = r S_{t} dt + \sigma_{t} S_{t} d\tilde{B}_{t}$$

$$\Rightarrow d\tilde{B}_{t} - dB_{t} = \frac{\alpha_{t} - r}{\sigma_{t}} dt$$

$$\Rightarrow d\tilde{B}_{t} = dB_{t} + \frac{\alpha_{t} - r}{\sigma_{t}} dt$$

$$\Rightarrow \tilde{B}_{t} = B_{t} + \int_{0}^{t} \frac{\alpha_{u} - r}{\sigma_{u}} du$$

7.3 Girsanov's Change of Measure (d-dim)

Example 7.3.1. m different risky assets, interest rate r.

Under \mathbb{P} ,

$$\begin{split} dS_t^{(i)} &= \alpha_t^{(i)} S_t^{(i)} dt + \sigma_t^{(i)} S_t^{(i)} dB_t^{(i)} \quad i = 1, \dots, m \\ \Theta_t^{(i)} &= \frac{\alpha_t^{(i)} - r}{\sigma_t^{(i)}} \\ dB_t^{(i)} \cdot dB_t^{(j)} &= \rho_{ij} dt \quad i \neq j, 0 \leq |\rho_{ij}| \leq 1 \\ &\Rightarrow dS_t^{(i)} = a_t^{(i)} S_t^{(i)} dt + S_t^{(i)} \sum_{j=1}^d \sigma_t^{ij} dB_t^j, \quad \{B_t^j\}_{t \geq 0} \text{ are independent B.M.} \\ \left(\sigma_t^{(i)}\right)^2 &= \sum_{j=1}^d \left(\sigma_t^{(ij)}\right)^2 \\ V_t^{\varphi} &= \left(V_t^{\varphi} - \varphi_t^{(1)} S_t^{(1)} - \varphi_t^{(2)} S_t^{(2)} - \varphi_t^{(m)} S_t^{(m)}\right) + \varphi_t^{(1)} S_t^{(1)} + \varphi_t^{(2)} S_t^{(2)} + \dots + \varphi_t^{(m)} S_t^{(m)} \\ \varphi_t &= \begin{pmatrix} \varphi_t^{(1)} \\ \vdots \\ \varphi_t^{(m)} \end{pmatrix}, \quad S_t &= \begin{pmatrix} S_t^{(1)} \\ \vdots \\ S_t^{(m)} \end{pmatrix}, \quad \sum_{k=1}^m \varphi_t^{(k)} S_t^{(k)} = \varphi_t^\top S_t, \quad dB_t &= \begin{pmatrix} dB_t^1 \\ \vdots \\ dB_t^d \end{pmatrix} \\ dV_t^{\varphi} &= r(V_t^{\varphi} - \varphi_t^\top S_t) dt + \varphi_t^\top dS_t \\ dS_t &= \begin{pmatrix} \alpha_t^{(1)} S_t^{(1)} \\ \vdots \\ \alpha_t^{(m)} S_t^{(m)} \end{pmatrix} dt + \begin{pmatrix} S_t^{(1)} \sigma_t^{11} & S_t^{(1)} \sigma_t^{12} & \dots & S_t^{(1)} \sigma_t^{1d} \\ \vdots & \vdots & \vdots \\ S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m2} & \dots & S_t^{(m)} \sigma_t^{md} \end{pmatrix} dB_t \\ dV_t^{\varphi} &= r(V_t^{\varphi} - \varphi_t^\top S_t) dt + \varphi_t^\top \begin{pmatrix} dS_t^{(1)} \\ \vdots \\ dS_t^{(m)} \end{pmatrix} dt + \varphi_t^\top \begin{pmatrix} S_t^{(1)} \sigma_t^{11} & S_t^{(1)} \sigma_t^{12} & \dots & S_t^{(1)} \sigma_t^{1d} \\ \vdots & \vdots & \vdots & \vdots \\ S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m2} & \dots & S_t^{(m)} \sigma_t^{md} \end{pmatrix} dB_t \\ dV_t^{\varphi} &= r(V_t^{\varphi} - \varphi_t^\top S_t) dt + \varphi_t^\top \begin{pmatrix} dS_t^{(1)} \\ \vdots \\ dS_t^{(m)} \end{pmatrix} dt + \varphi_t^\top \begin{pmatrix} S_t^{(1)} \sigma_t^{11} & S_t^{(1)} \sigma_t^{12} & \dots & S_t^{(1)} \sigma_t^{1d} \\ \vdots & \vdots & \vdots & \vdots \\ S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m1} & S_t^{(m)} \sigma_t^{m1} \end{pmatrix} dB_t \\ \end{pmatrix}$$

Theorem 7.3.2. (Girsanov's Change of Measure (d-dim)).

 $\mathbb{P} \to \mathbb{Q}, \mathbb{Q} \sim \mathbb{P}.$

Let $\{B_t\}_{t\geq 0}$ be a d-dim independent B.M. on $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$

Focusing on [0,T] and assuming for adaptive d-dim process $\{\Theta_t\}_{t\geq 0}$ with $\|\Theta_t\|^2 = \sum_{j=1}^d \left(\Theta_t^j\right)^2$ and $\mathbb{E}[e^{\frac{1}{2}\int_0^T \|\Theta_u\|^2 \, du}] < +\infty$, define

$$\tilde{B}_t = B_t + \int_0^t \Theta_u \, du$$

$$Z_t = e^{-\int_0^t \Theta_u^T \, dB_u - \frac{1}{2} \int_0^t \|\Theta_u\|^2 \, du}$$

Then for $\widetilde{\mathbb{P}}(\mathbb{Q})$ defined by $\mathbb{P}[A]:=\mathbb{E}[Z_T\mathbb{1}_A], \forall A\in\mathcal{F},$

we have $\{\tilde{B}_t\}_{0 \le t \le T}$ is a B.M. under $\tilde{\mathbb{P}}$.

Example 7.3.3. How to find risk-neutral measure?

Since Under
$$\mathbb{P}: B_t = \begin{pmatrix} B_t^1 \\ \vdots \\ B_t^d \end{pmatrix}$$
, Under $\tilde{\mathbb{P}}: \tilde{B}_t = \begin{pmatrix} \tilde{B}_t^1 \\ \vdots \\ \tilde{B}_t^d \end{pmatrix}$, then we have
$$dS_t = \begin{pmatrix} \alpha_t^{(1)} S_t^{(1)} \\ \vdots \\ \alpha_t^{(m)} S_t^{(m)} \end{pmatrix} dt + \begin{pmatrix} S_t^{(1)} \sigma_t^{11} & \cdots & S_t^{(1)} \sigma_t^{1d} \\ \vdots & \ddots & \vdots \\ S_t^{(m)} \sigma_t^{m1} & \cdots & S_t^{(m)} \sigma_t^{md} \end{pmatrix} dB_t$$

$$\Rightarrow \frac{dS_t}{S_t} = \begin{pmatrix} \frac{dS_t^{(1)}}{S_t^{(1)}} \\ \vdots \\ \frac{dS_t^{(m)}}{S_t^{(m)}} \end{pmatrix} = \begin{pmatrix} \alpha_t^{(1)} \\ \vdots \\ \alpha_t^{(m)} \end{pmatrix} dt + \begin{pmatrix} \sigma_t^{11} & \cdots & \sigma_t^{1d} \\ \vdots & \ddots & \vdots \\ \sigma_t^{m1} & \cdots & \sigma_t^{md} \end{pmatrix} dB_t$$

$$\Rightarrow \mathbb{P}: \frac{dS_t}{S_t} = \alpha_t dt + \sigma_t dB_t \quad (1) \quad \text{where } \alpha_t = \begin{pmatrix} \alpha_t^{(1)} \\ \vdots \\ \alpha_t^{(m)} \end{pmatrix}, \sigma_t = (\sigma_t^{ij}), i = 1, \dots, m, j = 1, \dots, d$$

$$\Rightarrow \mathbb{P}: dS_t^{(i)} = rS_t^{(i)} dt + S_t^{(i)} \sum_{j=1}^d \sigma_t^{ij} d\tilde{B}_t^j$$

$$\frac{dS_t}{S_t} = r\mathbb{1}_m dt + \sigma_t dB_t \quad (2)$$

From equation (1) and (2), we get

$$\alpha_t dt + \sigma_t dB_t = \frac{dS_t}{S_t} = r \mathbb{1}_m dt + \sigma_t d\tilde{B}_t$$

Assume $\tilde{B}_t = B_t + \int_0^t \Theta_u du \Rightarrow d\tilde{B}_t = dB_t + \Theta_t dt$, then we have

$$\sigma_t d\tilde{B}_t = \sigma_t (dB_t + \Theta_t dt)$$

$$\Rightarrow \sigma_t dB_t + (\alpha_t - r \mathbb{1}_m) dt = \sigma_t d\tilde{B}_t + \sigma_t \Theta_t dt$$

$$(\alpha_t - r \mathbb{1}_m) dt = \sigma_t \Theta_t dt$$

$$\Rightarrow \alpha_t^{(i)} - r = \sum_{j=1}^d \sigma_t^{ij} \Theta_t^j$$

There are d unknowns Θ_u^j and m equations $\alpha_t^{(i)} - r = \sum_{j=1}^d \sigma_t^{ij} \Theta_t^j$.

Linear equations:

- 0 solutions for Θ_t
- Exist 1 solution for Θ_t
- Exist ∞ solutions for Θ_t

7.4 Review of FTAP I and FTAP II

Theorem 7.4.1. (First fundamental theorem of asset pricing from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.4.7). If a market model has a risk-neutral probability measure, then it does not admit arbitrage.

Theorem 7.4.2. (Second fundamental theorem of asset pricing from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.4.9). Consider a market model that has a risk-neutral probability measure. The model is complete if and only if the risk-neutral probability measure is unique.

Definition 7.4.3. (Uniqueness of risk-neutral measure from Steve Shreve, Stochastic Calculus for Finance Volume II Definition 5.4.4). A market model is complete if every derivative security can be hedged.

Example 7.4.3. Solve the equation for 2-dim and 3-dim.

$$\begin{split} dS_t^{(1)} &= \alpha^{(1)} S_t^{(1)} dt + \sigma^{(1)} S_t^{(1)} dB_t^1 \\ dS_t^{(2)} &= \alpha^{(2)} S_t^{(2)} dt + \sigma^{(2)} S_t^{(2)} \rho dB_t^1 + \sigma^{(2)} S_t^{(2)} c dB_t^2 \quad \text{where } B_t^1 \perp B_t^2 \end{split}$$

The Black-Scholes volatility of $S_t^{(2)}$ is $\sigma^{(2)}$, thus

$$\begin{split} \left(\sigma^{(2)}\right)^2 \rho^2 + \left(\sigma_t^{(2)}\right)^2 c^2 &= \left(\sigma^{(2)}\right)^2 \Rightarrow c = \sqrt{1 - \rho^2} \\ \frac{d\langle S_t^{(1)}, S_t^{(2)} \rangle}{S_t^{(1)}, S_t^{(2)}} &= \frac{dS_t^{(1)}, S_t^{(2)}}{S_t^{(1)}, S_t^{(2)}} = \frac{\rho \sigma^{(1)} \sigma^{(2)} S_t^{(1)} S_t^{(2)}}{S_t^{(1)} S_t^{(2)}} (dB_t^1)^2 = \rho \sigma^{(1)} \sigma^{(2)} dt \end{split}$$

Assume $\frac{\alpha^{(1)}-r}{\sigma^{(1)}}>\frac{\alpha^{(2)}-r}{\sigma^{(2)}},$ then from Example 7.3.3 we have

$$\begin{cases} \alpha^{(1)} - r = \sigma^{(1)}\Theta_1 \\ \alpha^{(2)} - r = \sigma^{(2)}\Theta_2 = \sigma^{(2)}\rho\Theta_1 + \sigma^{(2)}\sqrt{1 - \rho^2}\Theta_2 \end{cases}$$

$$\Rightarrow \begin{cases} \Theta_1 = \frac{\alpha^{(1)} - r}{\sigma^{(1)}} \\ \Theta_2 = \frac{\alpha^{(2)} - r - \sigma^{(2)}\rho\Theta_t^1}{\sigma^{(2)}\sqrt{1 - \rho^2}} = \frac{1}{\sqrt{1 - \rho^2}} \left(\frac{\alpha^{(2)} - r}{\sigma^{(2)}} - \rho\frac{\alpha^{(1)} - r}{\sigma^{(1)}}\right) \end{cases}$$

For a 3-dim case, we have

$$dS_t^{(1)} = \alpha^{(1)} S_t^{(1)} dt + \sigma^{(1)} S_t^{(1)} dB_t^1$$

$$dS_t^{(2)} = \alpha^{(2)} S_t^{(2)} dt + \sigma^{(2)} S_t^{(2)} \left(\rho dB_t^1 + \tilde{\rho} dB_t^2 + \sqrt{1 - \rho - \tilde{\rho}} dB_t^3 \right)$$

The unknowns are $\Theta_1, \Theta_2, \Theta_3$.

The equations are

$$\begin{cases} \alpha^{(1)} - r = \sigma^{(1)}\Theta_1 \\ \alpha^{(2)} - r = \sigma^{(2)}\rho\Theta_1 + \sigma^{(2)}\tilde{\rho}^2\Theta_2 + \sigma^{(2)}\sqrt{1 - \rho^2 - \tilde{\rho}^2}\Theta_3 \end{cases}$$

Thus, we have infinite solutions of (Θ^2, Θ^3) , given by $\Theta_1 = \frac{\alpha^{(1)} - r}{\sigma^{(1)}}$.

Therefore, not all risk/derivatives are hedgable by FTAP II/Definition 7.4.3.

Example 7.4.4. Assume that the interest rate is not constant, and for the adaptive process $\{R_t\}_{t\geq 0}, R_t\geq 0$.

The discount factor is $D(t,T) := e^{-\int_t^T R_u du}$, or $D_t = e^{-\int_0^t R_u du}$.

Let
$$X_t = \int_0^t R_u du \Rightarrow dX_t = R_t dt$$
. Let $f(x) = e^{-x}$. Then $dD_t = f'(X_t) dX_t = -e^{-X_t} dX_t = -D_t dX_t = -D_t R_t dt$.

The discounted stock price is $D_t S_t$.

In the 1-dim case, $dS_t = R_t S_t dt + \sigma_t S_t d\tilde{B}_t$, where \tilde{B} is risk-neutral. Then we have

$$dD_t S_t = S_t dD_t + D_t dS_t + dD_t dS_t$$

= $-S_t D_t R_t dt + D_t (R_t S_t dt + \sigma_t S_t d\tilde{B}_t)$
= $D_t \sigma_t S_t d\tilde{B}_t$

In the d-dim case, $\{B_t\}_{t\geq 0}$ is independent for $B_t^j, j=1,\ldots,d$. For m risky assets, $\frac{dS_t}{S_t}=\alpha_t dt+\sigma_t dB_t, \alpha_t\in\mathbb{R}^{m\times 1}, \sigma_t\in\mathbb{R}^{m\times d}$.

$$d$$
 unknowns are $\begin{pmatrix} \Theta_t^{(1)} \\ \vdots \\ \Theta_t^d \end{pmatrix}$.

m equations are $\alpha_t - R_t \mathbb{1}_m = \sigma_t \Theta_t$ for each $t \in [0, T]$.

8 Lecture 8

 R_t is the interest rate, which can be constant, deterministic, or stochastic.

In the market where

- 1 stock S_t with interest rate R_t , there exists a risk-neutral $\tilde{\mathbb{P}} \sim \mathbb{P}$
- Zero-coupon bond with all maturities can be traded.

then by FTAP I, there is no arbitrage.

Discount factor : $D_t = e^{-\int_0^t R_u du}$

- is known at time t
- $D_t X_t$ is the discounted value of X_t

To prove D_t is a martingale, for $0 \le s \le t$, we compute

$$\tilde{\mathbb{E}}[D_t \mid \mathcal{F}_s] = \tilde{\mathbb{E}}\left[e^{-\int_0^t R_u du} \middle| \mathcal{F}_s\right] \\
= \tilde{\mathbb{E}}\left[e^{-\int_0^s R_u du} \cdot e^{-\int_s^t R_u du} \middle| \mathcal{F}_s\right] \\
= D_s \tilde{\mathbb{E}}\left[e^{-\int_s^t R_u du} \middle| \mathcal{F}_s\right] \\
= D_s$$

since expectation of discounted value equal to current value under risk-neutral measure, i.e., $\tilde{\mathbb{E}}\left[e^{-\int_s^t R_u du}\Big|\mathcal{F}_s\right]=1$. By definition of a risk-neutral measure, D_tS_t is a martingale since dD_tS_t has no drift term from Example 7.4.4.

8.1 Zero-Coupon Bond

Definition 8.2.1. Zero-coupon bond is represented as

$$B(t,T) = \tilde{\mathbb{E}}\left[e^{-\int_t^T R_u du}\middle|\mathcal{F}_t\right] = \tilde{\mathbb{E}}\left[\frac{D_T}{D_t}\middle|\mathcal{F}_t\right] = \frac{1}{D_t}\tilde{\mathbb{E}}\left[D_T \mid \mathcal{F}_t\right]$$

Exercise 8.1.2 Prove that $D_tB(t,T)$ is also a martingale.

By definition of zero-coupon bond, we have

$$B(t,T) = \frac{1}{D_t} \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t] \Rightarrow D_t B(t,T) = \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t] \quad (*)$$

Since $D_T \leq 1$, then we have

$$\tilde{\mathbb{E}}[|D_t B(t,T)|] = \tilde{\mathbb{E}}[|\tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t]|] \le 1 < +\infty$$

For $0 \le s \le t \le T$, we compute

$$\widetilde{\mathbb{E}}\left[D_t B(t,T) \mid \mathcal{F}_s\right] = \widetilde{\mathbb{E}}\left[\widetilde{\mathbb{E}}\left[D_T \mid \mathcal{F}_t\right] \middle| \mathcal{F}_s\right] \quad \text{by tower property}$$

$$= \widetilde{\mathbb{E}}\left[D_T \mid \mathcal{F}_s\right] \quad \text{since } D_t \text{ is a martingale}$$

$$= D_s B(s,T) \quad \text{from equation (*)}$$

8.2 Forward Contract

Definition 8.2.1. (Forward contract from Steve Shreve, Stochastic Calculus for Finance Volume II Definition 5.6.1). A forward contract is an agreement to pay a specified price K at a delivery date T, where $0 \le T \le \overline{T}$, for the asset whose price at time t is S_t .

- have to pay K at time T
- · over-the-counter

Definition 8.2.2. (Forward contract from Steve Shreve, Stochastic Calculus for Finance Volume II Definition 5.6.1). The T-forward price $\operatorname{For}_S(t,S)$ of this asset at time t, where $0 \le t \le T \le \overline{T}$, is the value of K that makes the forward contract have no-arbitrage price zero at time t.

Theorem 8.2.3. (Forward contract price formula from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.6.2). Assume the zero-coupon bonds of all maturities can be traded. Then

$$\operatorname{For}_{S}(t,T) = \frac{S_{t}}{B(t,T)}, \quad 0 \le t \le \bar{T}$$

Remark 8.2.4. Only need risk-neutral measure $\tilde{\mathbb{P}}$

Remark 8.2.5. No assumptions on dS_t

Remark 8.2.6. No assumptions on R_t

Example 8.2.7. Let $X_T = S_T - K$ and $X_t = 0$.

Since the discounted portfolio is a martingale, i.e., $D_t X_t = \tilde{\mathbb{E}}[D_T X_T \mid \mathcal{F}_t]$, then we have

$$0 = X_t = \frac{1}{D_t} \tilde{\mathbb{E}} \left[D_T(S_T - K) \mid \mathcal{F}_t \right] \quad \text{by multiplying the discounted factor to the portfolio}$$

$$= \frac{1}{D_t} \left(D_t S_t - K \tilde{\mathbb{E}} \left[D_T \mid \mathcal{F}_t \right] \right) \quad \text{taking out known}$$

$$= S_t - K \tilde{\mathbb{E}} \left[\frac{D_T}{D_t} \middle| \mathcal{F}_t \right]$$

$$\Rightarrow K = \frac{S_t}{B(t,T)} \quad \text{by definition of zero-coupon bond}$$

Example 8.2.8. At time u > t, $\operatorname{For}_S(u,T) = \frac{S_u}{B(t,T)}$ is the time u value of constant $\operatorname{For}_S(t,T)$ to delivery at time T. Long forward position pays $S_T - \operatorname{For}_S(t,T)$ at time T. To check if a long forward position is a martingale, we compute

$$\tilde{\mathbb{E}}\left[S_{T} - \operatorname{For}_{S}(t,T)|\mathcal{F}_{u}\right] = \tilde{\mathbb{E}}\left[\frac{D_{T}}{D_{u}}S_{T} - \frac{D_{T}}{D_{u}}\operatorname{For}_{S}(t,T)\Big|\mathcal{F}_{u}\right] \\
= S_{u} - \tilde{\mathbb{E}}\left[\frac{D_{T}}{D_{u}}\frac{S_{t}}{B(t,T)}\Big|\mathcal{F}_{u}\right] \\
= S_{u} - S_{t}\tilde{\mathbb{E}}\left[\frac{D_{T}}{D_{u}}\frac{D_{t}}{D_{T}}\Big|\mathcal{F}_{u}\right] \\
= S_{u} - \frac{D_{t}}{D_{u}}S_{t} \quad \Rightarrow \tilde{\mathbb{E}}\left[D_{u}S_{u}|\mathcal{F}_{t}\right] = D_{t}S_{t} \\
\neq S_{u} - \frac{S_{u}}{B(u,T)}$$

Forward price $For_S(t, T)$ is not the price of a forward contract.

8.3 Futures Contract

Futures prices: $\operatorname{Fut}_S(t,T)$, $\{\operatorname{Fut}_S(u,T)\}_{t\leq u\leq T}$, $\operatorname{Fut}_{S_u}(t_{k-1},t_k)=\tilde{\mathbb{E}}[S_T\mid \mathcal{F}_{k-1}]$, $\operatorname{Fut}_S(T,T)=S_T$.

Long position in futures (t_k, t_{k+1}) : receive $\operatorname{Fut}_S(t_{k+1}, T) - \operatorname{Fut}_S(t_k, T)$.

From
$$(0,T)$$
: $\sum_{k=0}^{K} \text{Fut}_{S}(t_{k+1},T) - \text{Fut}_{S}(t_{k},T) = S_{T} - \text{Fut}_{S}(0,T)$

Definition 8.3.1. (Futures contract from Steve Shreve, Stochastic Calculus for Finance Volume II Definition 5.6.4). The futures price of an asset whose value at time T is S_T is given by the formula

$$\operatorname{Fut}_{S}(t,T) = \tilde{\mathbb{E}}[S_{T} \mid \mathcal{F}_{t}], \quad 0 \le t \le T$$

A *long position in the futures contract* is an agreement to receive as a cash flow the changes in the futures price (which may be negative as well as positive) during the time the position is held. A *short position in the futures contract* received the opposite cash flow.

Theorem 8.3.2. (Futures price is a martingale from Steve Shreve, Stochastic Calculus for Finance Volume II Theorem 5.6.5). The futures price is a martingale under the risk-neutral measure $\tilde{\mathbb{P}}$, it satisfies $\operatorname{Fut}_S(T,T)=S_T$, and the value of a long (or a short) futures position to be held over an interval of time is always zero.

Proof. For $0 \le t \le u \le T$, assume $\tilde{\mathbb{E}}[|S_T|] < +\infty$, and we evaluate

$$\begin{split} \tilde{\mathbb{E}}\left[|\operatorname{Fut}_S(t,T)|\right] &= \tilde{\mathbb{E}}\left[\left|\tilde{\mathbb{E}}[S_T \mid \mathcal{F}_t]\right|\right] \\ &\leq \tilde{\mathbb{E}}\left[\tilde{\mathbb{E}}[|S_T| \mid \mathcal{F}_t]\right] \quad \text{by Jensen's Inequality of Expectation} \\ &= \tilde{E}\left[|S_T|\right] \quad \text{by tower property} \\ &< +\infty \\ \tilde{\mathbb{E}}\left[\operatorname{Fut}_S(u,T) \mid \mathcal{F}_t\right] &= \tilde{\mathbb{E}}\left[\tilde{\mathbb{E}}[S_T \mid \mathcal{F}_u]\middle|\mathcal{F}_t\right] \quad \text{by definition of futures price} \\ &= \tilde{\mathbb{E}}\left[S_T \mid \mathcal{F}_t\right] \quad \text{by tower property} \\ &= \operatorname{Fut}_S(t,T) \end{split}$$

Therefore, futures price is a martingale under risk-neutral measure.

8.4 Forward-Futures Spread

$$\operatorname{For}_{S}(t,T) = \frac{S_{t}}{B(t,T)}, \operatorname{Fut}_{S}(t,T) = \tilde{\mathbb{E}}[S_{T} \mid \mathcal{F}_{t}]$$

1. Interest rate is constant r:

$$B(t,T) = e^{-r(T-t)} \Rightarrow \operatorname{For}_{S}(t,T) = e^{r(T-t)} S_{t}$$

$$\tilde{\mathbb{E}}[e^{-rT} S_{T} \mid \mathcal{F}_{t}] = e^{-rt} S_{t} \Rightarrow \tilde{\mathbb{E}}[S_{T} \mid \mathcal{F}_{t}] = e^{r(T-t)} S_{t}$$

$$\Rightarrow \operatorname{Fut}_{S}(t,T) = e^{r(T-t)} S_{t}$$

2. Interest rate R_t is deterministic, R(t):

Then $D_T = D(T) = e^{-\int_0^T R(u)du}$ is deterministic, thus

$$\tilde{\mathbb{E}}[D(T)S_T \mid \mathcal{F}_t] = D(T)\tilde{\mathbb{E}}[S_T \mid \mathcal{F}_t]
For_S(t,T) = Fut_S(t,T)
40$$

3. Interest rate R_t is stochastic: Note that the following does not hold in general

$$\tilde{\mathbb{E}}[D_T S_T \mid \mathcal{F}_t] \neq D_T \tilde{\mathbb{E}}[S_T \mid \mathcal{F}_t]
\tilde{\mathbb{E}}[D_T S_T \mid \mathcal{F}_t] \neq \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t] \tilde{\mathbb{E}}[S_T \mid \mathcal{F}_t]$$

Considering [0, T], we have

$$\begin{aligned} \operatorname{For}_S(0,T) &= \frac{S_0}{B(0,T)} = \frac{S_0}{\tilde{\mathbb{E}}[D_T]}, B[0,T] = \tilde{\mathbb{E}}[D_T], S_0 = \tilde{\mathbb{E}}[D_TS_T] \\ \operatorname{Fut}_S(0,T) &= \tilde{\mathbb{E}}[S_T] \\ \Rightarrow \operatorname{For}_S(0,T) - \operatorname{Fut}_S(0,T) &= \frac{\tilde{\mathbb{E}}[D_TS_T]}{\tilde{\mathbb{E}}[D_T]} - \tilde{\mathbb{E}}[S_T] \\ &= \frac{\tilde{\mathbb{E}}[D_TS_T] - \tilde{\mathbb{E}}[D_T]\tilde{\mathbb{E}}[S_T]}{\tilde{\mathbb{E}}[D_T]} \\ &= \frac{Cov(D_T,S_T)}{\tilde{\mathbb{E}}[D_T]} \end{aligned}$$

Conclusion:

- (1) If $Cov(D_T, S_T) \neq 0$, then $For_S(0, T) = Fut_S(0, T)$.
- (2) $\tilde{\text{Cov}}(D_T, S_T) < 0$
- (3) $\tilde{\text{Cov}}(D_T, S_T) > 0$

8.5 Dynamics of Futures Price

1. Suppose $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$ under risk-neutral measure.

$$\begin{split} \operatorname{Fut}_S(t,T) &= e^{r(T-t)} S_t = g(t,S_t) \\ g(t,x) &= e^{r(T-t)} x, \, g_t(t,x) = -rg(t,x), \, g_x(t,x) = e^{r(T-t)}, \, g_{xx} = 0 \\ d\operatorname{Fut}_S(t,T) &= dg(t,S_t) \\ &= g_t dt + g_x dS_t + \frac{1}{2} g_{xx} (dS_t)^2 \\ &= -rg(t,S_t) dt + e^{r(T-t)} dS_t \\ &= -re^{r(T-t)} S_t dt + e^{r(T-t)} (rS_t dt + \sigma S_t d\tilde{B}_t) \\ &= \sigma e^{r(T-t)} S_t d\tilde{B}_t \end{split}$$

$$\mathbb{E}[\int_0^t \sigma^2 e^{r(T-t)} S_t^2 dt] < +\infty$$

2. Replicating portfolio:

Suppose $dS_t = rS_t dt + \sigma S_t d\tilde{B}_T$ under risk-neutral measure

$$\begin{split} X_t &= X_t - \Delta S_t + \Delta_t S_t \\ dX_t &= r(X_t - \Delta_t S_t) dt + \Delta_t dS_t \\ &= r(X_t - \Delta_t S_t) dt + \Delta_t (rS_t dt + \sigma S_t d\tilde{B}_t) \\ &= rX_t dt + \Delta_t \sigma S_t d\tilde{B}_t \\ \Leftrightarrow d\text{Fut}_S(t,T) &= \sigma e^{r(T-t)} S_t d\tilde{B}_t \end{split}$$

$$\Rightarrow \begin{cases} \Delta_t = e^{r(T-t)}, & X_0 = 0\\ X_0 = 0 = -\Delta_0 S_0 + \Delta_0 S_0, & \Delta_0 = e^{rT} \end{cases}$$

$$\begin{split} \Delta_0 &= e^{rT} \to \Delta_t = e^{r(T-t)}, \quad \text{selling stock at rate} \ -r\Delta_t \\ &d\Delta_t = -r\Delta_t dt \\ &de^{-rt}X_t = e^{-rt}\Delta_t \sigma_t S_t d\tilde{B}_t \quad (\tilde{\mathbb{E}}[e^{-rt}X_t] = 0 \text{ since } X_0 = 0) \end{split}$$

3. Selling 1 futures contract at time 0, Δ_t shares of stock, constant interest r, $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$ under risk-neutral measure, we have

$$\begin{split} X_t &= X_t - \Delta_t S_t + \Delta_t S_t - \operatorname{Fut}_S(t,T) \\ dX_t &= r(X_t - \Delta_t S_t) dt + \Delta_t dS_t - d\operatorname{Fut}_S(t,T) \\ &= r(X_t - \Delta_t S_t) dt + \Delta_t (rS_t dt + \sigma S_t d\tilde{B}_t) - \sigma e^{r(T-t)} S_t d\tilde{B}_t \\ &= rX_t dt + (\Delta \sigma S_t - \sigma e^{r(T-t)} S_t) d\tilde{B}_t \end{split}$$

9 Lecture 9

9.1 Interest Rate Model

- 1. Interest rate is R_t , and discount factor is $D_t = e^{-\int_0^t R_u du}$. Under risk-neutral measure, $B(t,T) = \frac{1}{D_t} \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t]$.
- 2. Bond Price = Face Value $\times e^{-\text{Yield} \times \text{Time to Maturity}}$
- 3. Modeling of R_t short rate

$$dR_t = \beta(t, R_t)dt + \gamma(t, R_t)d\tilde{B}_t, \quad (*)$$

which is the dynamic of R_t under risk-neutral measure.

- 4. 1-factor model ⇔ 1-dim Brownian Motion.
- 5. We are interested in the risk-neutral measure that

$$B(t,T) = \frac{1}{D_t} \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t]$$
$$= e^{\int_0^t R_u du} \tilde{\mathbb{E}}[e^{-\int_0^T R_u du} \mid \mathcal{F}_t],$$

which can use 2 methods to solve:

- (1) Risk-neural pricing method: $\tilde{\mathbb{E}}[e^{-\int_0^T R_u du} \mid \mathcal{F}_t]$
 - (a) Need $\int_0^T R_t dt$ distributional information
 - (b) Very hard for general dynamic
- (2) PDE method: 4-step approach

9.2 PDE Approach

Step 1: Assume there exists a martingale:

$$g(t, R_t) = B(t, T) = \frac{1}{D_t} \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t], \text{ where } g(T, R_T) = 1.$$

Since $D_t B(t,T) = \tilde{\mathbb{E}}[D_T \mid \mathcal{F}_t]$, then $\{D_t B(t,T)\}_{0 \le t \le T}$ is a martingale under risk-neutral measure

Step 2: Apply Itô's formula for discounted option price:

$$dg(t, R_{t}) = g_{t}(t, R_{t})dt + g_{r}(t, R_{t})dR_{t} + \frac{1}{2}g_{rr}(t, R_{t})(dR_{t})^{2}$$

$$= \left(g_{t}(t, R_{t}) + g_{r}(t, R_{t})\beta(t, R_{t}) + \frac{1}{2}\gamma^{2}(t, R_{t})g_{rr}(t, R_{t})\right)dt + g_{r}(t, R_{t})\gamma(t, R_{t})d\tilde{B}_{t} \quad \text{from equation (*)}$$

$$dD_{t}g(t, R_{t}) = D_{t}dg(t, R_{t}) + g(t, R_{t})dD_{t} + dg(t, R_{t})dD_{t}$$

$$= D_{t}\left[\left(g_{t}(t, R_{t}) + g_{r}(t, R_{t})\beta(t, R_{t}) + \frac{1}{2}\gamma^{2}(t, R_{t})g_{rr}(t, R_{t})\right)dt + g_{r}(t, R_{t})\gamma(t, R_{t})d\tilde{B}_{t}\right] + g(t, R_{t})(-R_{t}D_{t}dt)$$

$$= D_{t}\left[\left(-R_{t}g(t, R_{t}) + g_{t}(t, R_{t}) + g_{r}(t, R_{t})\beta(t, R_{t}) + \frac{1}{2}\gamma^{2}(t, R_{t})g_{rr}(t, R_{t})\right)dt + D_{t}g_{r}(t, R_{t})\gamma(t, R_{t})d\tilde{B}_{t}\right]$$

Step 3: Set dt term equal to 0:

$$-R_t g(t, R_t) + g_t(t, R_t) + g_r(t, R_t) \beta(t, R_t) + \frac{1}{2} \gamma^2(t, R_t) g_{rr}(t, R_t) = 0$$

Step 4: Replace (t, R_t) to (t, r):

$$\begin{cases} -rg(t,r) + g_t(t,r) + g_r(t,r)\beta(t,r) + \frac{1}{2}\gamma^2(t,r)g_{rr}(t,r) = 0\\ g(T,r) = 1 \end{cases}$$

for all $0 \le t \le T$, for all possible values of r.

9.3 Mean-Reverting Processes

9.3.1 Ornstein-Uhlenbeck (OU) Process

$$dR_t = \kappa(\theta - R_t)dt + \sigma d\tilde{B}_t$$

where

- $\beta(t,r) = \kappa(\theta r)$
- $\gamma(t,r) = \sigma$
- $\kappa > 0$: mean-reverting speed
- θ : mean-reverting level

Let
$$g(t, R_t) = e^{\kappa t} R_t$$
, then

$$g_t(t, R_t) = \kappa e^{\kappa t} R_t = \kappa g(t, R_t)$$

$$q_r(t, R_t) = e^{\kappa t}$$

$$g_{rr}(t,R_t)=0$$

We calculate the dynamic of $e^{\kappa t}R_t$:

$$de^{\kappa t}R_t = dg(t, R_t) = g_t(t, R_t)dt + g_r(t, R_t)dR_t + \frac{1}{2}g_{rr}(t, R_t)(dR_t)^2$$

$$= \kappa e^{\kappa t}R_t dt + e^{\kappa t}(\kappa(\theta - R_t)dt + \sigma d\tilde{B}_t)$$

$$= \kappa \theta e^{\kappa t} dt + \sigma e^{\kappa t} d\tilde{B}_t$$

$$\Rightarrow e^{\kappa t}R_t - R_0 = \int_0^t \kappa \theta e^{\kappa u} du + \sigma \int_0^t e^{\kappa u} d\tilde{B}_u$$

The expectation R_t is:

$$\begin{split} &\tilde{\mathbb{E}}[e^{\kappa t}R_t] = R_0 + \int_0^t \kappa \theta e^{\kappa u} du \quad \text{since } \sigma^2 \int_0^t e^{2\kappa u} du < +\infty \\ &\Rightarrow e^{\kappa t} \tilde{\mathbb{E}}[R_t] = R_0 + \theta(e^{\kappa t} - 1) \\ &\Rightarrow \tilde{\mathbb{E}}[R_t] = e^{-\kappa t} R_0 + \theta(1 - e^{-\kappa t}) \stackrel{t \to +\infty}{\longrightarrow} \theta \quad \text{which is the long-term mean} \end{split}$$

The variance of R_t is

$$\begin{split} \widetilde{\mathrm{Var}}(e^{\kappa t}R_t) &= \tilde{\mathbb{E}}\left[\left(\sigma\int_0^t e^{\kappa u}d\tilde{B}_t\right)^2\right] \\ &= \sigma^2\tilde{\mathbb{E}}\left[\int_0^t e^{2\kappa u}du\right] \quad \text{since } \widetilde{\mathrm{Var}}(\tilde{B}_t) = t \\ &= \frac{\sigma^2}{2\kappa}(e^{2\kappa t}-1) \\ \Rightarrow \widetilde{\mathrm{Var}}(R_t) &= e^{-2\kappa t}\frac{\sigma^2}{2\kappa}(e^{2\kappa t}-1) \\ &= \frac{\sigma^2}{2\kappa}(1-e^{-2\kappa t}) \end{split}$$

Therefore,
$$R_t \sim \left(e^{-\kappa t}R_0 + \theta(1 - e^{-\kappa t}), \frac{\sigma^2}{2\kappa}(1 - e^{-2\kappa t})\right)$$
.

9.3.2 Cox-Ingersoll-Ross (CIR) Process

$$dR_t = \kappa(\theta - R_t)dt + \sigma\sqrt{R_t}d\tilde{B}_t$$

- $\kappa > 0, \theta > 0, R_t \ge 0$
- Continuous process, $R_t = 0 \Rightarrow$ volatility = 0, hit 0 but never goes down below 0
- Not Gaussian
- $R_t \ge 0$
- Still mean reverting

9.4 Diffusion Process

$$dX_t = \mu_t dt + \sigma_t dB_t$$
, $X_0 = X$, B_t is \mathbb{P} -martingale

- 1. Martingale for Diffusion Process: $\{X_t\}_{0 \le t \le T}$ is a \mathbb{P} -martingale \iff
 - (1) $\mu_t = 0$ for all $t \ge 0$
 - $(2) \ \mathbb{E}\left[\int_0^T \sigma_u^2 du\right] < +\infty$
- 2. Remark: Suppose $\mathbb{E}\left[\int_0^T \sigma_u^2 du\right] < +\infty$

Then
$$Y_t = \int_0^t \sigma_u dB_u, Y_0 = 0 \iff dY_t = \sigma_t dB_t, Y_0 = 0.$$

By definition of martingale for diffusion process, $\{Y_t\}_{0 \le t \le T}$ is a \mathbb{P} -martingale.

Therefore, $\mathbb{E}[Y_t \mid \mathcal{F}_s] = Y_s, \forall 0 \le t \le T.$

In particular, $Y_0 = 0 = \mathbb{E}[Y_t \mid \mathcal{F}_0] = \mathbb{E}[Y_t].$

$$\begin{split} dX_t &= \mu_t dt + \sigma_t dB_t = \mu_t dt + dY_t \\ \Rightarrow X_t &= X_0 + \int_0^t \mu_u du + Y_t \\ \Rightarrow \mathbb{E}[X_t] &= X_0 + \mathbb{E}\left[\int_0^t \mu_u du\right] \quad \text{since } \mathbb{E}[Y_t] = 0 \end{split}$$

9.5 Famous Interest Rate Models

- 1. Ho-Lee Model: $dR_t = \mu dt + \sigma d\tilde{B}_t$
- 2. Vasicek Model: $dR_t = \kappa(\theta R_t)dt + \sigma d\tilde{B}_t$
- 3. Hull-White Model: $dR_t = \kappa(\theta(t) R_t)dt + \sigma d\tilde{B}_t$
- 4. Cox-Ingersoll-Ross (CIR) Model: $dR_t = \kappa(\theta-R_t)dt + \sigma\sqrt{R_t}d\tilde{B}_t$

All leads to affine (linear) yield curve: $B(t,T)=e^{-\mathrm{yield}\cdot T}\Rightarrow \mathrm{yield}=-\frac{\partial}{\partial T}\log B(t,T)$

Example 9.5.1 Hull-White Model

Recall

$$\begin{cases} -rg(t,r) + g_t(t,r) + \beta(t,r)g_r(t,r) + \frac{1}{2}\gamma^2(t,r)g_{rr}(t,r) = 0\\ g(T,r) = 1, \forall r \end{cases}$$

For a Hull-White model, $\beta(t,r) = \kappa(\theta(t) - r)$, $\gamma(t,r) = \sigma$. Therefore the equations for the Hull-White model are

$$\begin{cases} -rg(t,r) + g_t(t,r) + \kappa(\theta(t) - r)g_r(t,r) + \frac{1}{2}\sigma^2 g_{rr}(t,r) = 0\\ g(T,r) = 1, \forall r \end{cases}$$

Guess $g(t,r) = e^{-C(t;T)r - A(t;T)}$ since the yield curve is affine. Then we have

$$g_t(t,r) = \left(-\frac{\partial C(t;T)}{\partial t}r - \frac{\partial A(t;T)}{\partial t}\right)e^{-C(t;T)r - A(t;T)} = -\left(\frac{\partial C(t;T)}{\partial t}r + \frac{\partial A(t;T)}{\partial t}\right)g(t,r)$$

$$g_r(t,r) = -C(t;T)e^{-C(t;T)r - A(t;T)} = -C(t;T)g(t,r)$$

$$g_{rr}(t,r) = C^2(t;T)g(t,r)$$

To solve the PDE equations, we first calculate

$$-rg(t,r)+g_t(t,r)+\kappa(\theta(t)-r)g_r(t,r)+\frac{1}{2}\sigma^2g_{rr}(t,r)=0$$

$$-rg(t,r)-\left(\frac{\partial C(t;T)}{\partial t}r+\frac{\partial A(t;T)}{\partial t}\right)g(t,r)-\kappa(\theta(t)-r)C(t;T)g(t,r)+\frac{1}{2}\sigma^2C^2(t;T)g(t,r)=0$$

$$-r-\frac{\partial C(t;T)}{\partial t}r-\frac{\partial A(t;T)}{\partial t}-\kappa(\theta(t)-r)C(t;T)+\frac{1}{2}\sigma^2C^2(t;T)=0 \quad \text{since } g(t,r)>0$$

$$-r\left(1+\frac{\partial C(t;T)}{\partial t}-\kappa C(t;T)\right)-\frac{\partial A(t;T)}{\partial t}-\kappa\theta(t)C(t;T)+\frac{1}{2}\sigma^2C^2(t;T)=0$$

$$\Rightarrow\begin{cases} 1+\frac{\partial C(t;T)}{\partial t}-\kappa C(t;T)=0\\ -\frac{\partial A(t;T)}{\partial t}-\kappa\theta(t)C(t;T)+\frac{1}{2}\sigma^2C^2(t;T)=0 \end{cases}$$
 since PDE holds for all r

From $g(T,r)=1, \forall r$, we know C(T;T)=0 and A(T;T)=0. Then we can transfer PDE to ODE:

$$\begin{cases} 1 + \frac{\partial C(T;T)}{\partial t} - \kappa C(t;T) = 0 \\ C(T;T) = 0 \end{cases} \begin{cases} -\frac{\partial A(t;T)}{\partial t} - \kappa \theta(t)C(t;T) + \frac{1}{2}\sigma^2 C^2(t;T) = 0 \\ A(T;T) = 0 \end{cases}$$

For C(t;T), we have

$$\begin{split} \frac{\partial}{\partial t}C(t;T) &= \kappa C(t;T) - 1 \\ \Rightarrow \frac{\partial}{\partial t}e^{-\kappa t}C(t;T) &= e^{-\kappa t}\frac{\partial}{\partial t}C(t;T) - \kappa e^{-\kappa t}C(t;T) \\ &= e^{-\kappa t}\kappa C(t;T) - e^{-\kappa t} - \kappa e^{-\kappa t}C(t;T) \\ &= e^{-\kappa t} \end{split}$$

$$\Rightarrow \int_t^T \frac{\partial}{\partial t}e^{-\kappa t}C(t;T) &= \int_t^T e^{-\kappa t} \\ e^{-\kappa T}C(T;T) - e^{-\kappa t}C(t;T) &= -\int_t^T e^{-\kappa u}du \\ -e^{-\kappa t}C(t;T) &= \frac{1}{\kappa}(e^{-\kappa T} - e^{-\kappa t}) \\ \Rightarrow C(t;T) &= \frac{1}{\kappa}(1 - e^{-\kappa(T-t)}), \quad \frac{\partial}{\partial T}C(t;T) = e^{-\kappa(T-t)} \end{split}$$

For A(t;T), we have

$$\begin{split} -\frac{\partial}{\partial t}A(t;T) &= \kappa\theta(t)C(t;T) - \frac{1}{2}\sigma^2C^2(t;T) \\ A(t;T) - A(T;T) &= \int_t^T \kappa\theta(u)C(t;T)du - \frac{1}{2}\sigma^2\int_t^T C^2(u;T)du \quad \text{by taking integrals on both sides} \\ A(t;T) &= \int_t^T \kappa\theta(u)C(t;T)du - \frac{1}{2}\sigma^2\int_t^T C^2(u;T)du \quad \text{since } A(T;T) = 0 \\ \frac{\partial}{\partial T}A(t;T) &= \kappa\theta(u)C(T;T) - \int_t^T \kappa\theta(u)\frac{\partial}{\partial T}C(u;T)du - \frac{1}{2}\sigma^2C(T;T) + \frac{1}{2}\sigma^2\int_t^T \frac{\partial}{\partial T}C^2(u;T)du \\ &= -\int_t^T \kappa\theta(u)\frac{\partial}{\partial T}C(u;T)du + \frac{1}{2}\sigma^2\int_t^T 2C(u;T)\frac{\partial}{\partial T}C(u;T)du \\ &= -\int_t^T \kappa\theta(u)e^{-\kappa(T-u)}du + \sigma^2\int_t^T C(u;T)e^{-\kappa(T-u)}du \\ &= -\int_t^T \kappa\theta(u)e^{-\kappa(T-u)}du \\ &= -\int_t^T \kappa\theta(u)e^{-\kappa(T-u)}du + \sigma^2\int_t^T C(u;T)e^{-\kappa(T-u)}du \\ &= -\int_t^T \kappa\theta(u)e^{-\kappa(T-u)}du \\ &= -\int_t^T \kappa\theta(u$$

With both C(t;T) and A(t;T), we are able to give the bond price as

$$B(t,T) = g(t,R_t) = e^{-C(t;T)R_t - A(t;T)}$$

$$B(0,T) = e^{-C(0;T)R_0 - A(0;T)}$$

$$yield = -\frac{\partial}{\partial T} \log B(0,T)$$

$$= \frac{\partial}{\partial T} (C(0;T)R_0 + A(0;T))$$

$$= \underbrace{e^{-\kappa T}}_{\text{slope}} R_0 + \underbrace{\frac{\partial}{\partial T} A(0;T)}_{\text{intercent}}$$

9.6 Derivatives on Interest Rate

9.6.1 Forward Interest Rate

Consider a contract that pays R_T at time T, P_t for price of the contract at time t, $0 \le t \le T$.

$$\begin{split} D_t P_t &= \tilde{\mathbb{E}}[D_T P_T \mid \mathcal{F}_t] \\ &= \tilde{\mathbb{E}}[D_T R_T \mid \mathcal{F}_t] \quad \text{since } P_T = R_T \text{ at maturity} \\ P_t &= \tilde{\mathbb{E}}\left[R_T e^{-\int_t^T R_u du} \middle| \mathcal{F}_t\right] \quad \text{by dividing } D_t \text{ on both sides and by definition of } B(t,T) \\ &= -\frac{\partial}{\partial T} \tilde{\mathbb{E}}\left[e^{-\int_t^T R_u du} \middle| \mathcal{F}_t\right] \quad \text{since } \frac{\partial}{\partial T} e^{-\int_t^T R_u du} = -R_T e^{-\int_t^T R_u du} \\ &= -\frac{\partial}{\partial T} B(t,T) \quad \text{by definition of } B(t,T) \end{split}$$

9.6.2 Forward Interest Rate

$$\operatorname{Fut}_R(t,T) = \tilde{\mathbb{E}}[R_T \mid \mathcal{F}_t]$$

Under Hull-White model, we have

$$dR_{t} = \kappa(\theta(t) - R_{t})dt + \sigma d\tilde{B}_{t}$$

$$\Rightarrow R_{T} = R_{0} + \int_{0}^{T} \kappa(\theta(u) - R_{u})du + \sigma \tilde{B}_{T}$$

$$de^{\kappa t}R_{t} = e^{\kappa t}dR_{t} + \kappa e^{\kappa t}R_{t}dt$$

$$= e^{\kappa t} \left[\kappa(\theta(t) - R_{t})dt + \sigma d\tilde{B}_{t}\right] + \kappa e^{\kappa t}R_{t}dt$$

$$= e^{\kappa t}\kappa\theta(t)dt + e^{\kappa t}\sigma d\tilde{B}_{t}$$

$$\Rightarrow e^{\kappa T}R_{T} = R_{0} + \int_{0}^{T} e^{\kappa t}\kappa\theta(t)dt + \sigma \int_{0}^{T} e^{\kappa t}d\tilde{B}_{t}$$

Since $\mathbb{E}[\int_0^T \sigma^2 e^{2\kappa t} dt] \leq \frac{\sigma^2}{2\kappa} e^{2\kappa T} < +\infty$, we have

$$\tilde{\mathbb{E}}[e^{\kappa T}R_T \mid \mathcal{F}_t] = R_t + \int_t^T e^{\kappa t} \kappa \theta(t) dt$$

$$\operatorname{Fut}_R(t, T) = \tilde{\mathbb{E}}[R_T \mid \mathcal{F}_t] = e^{-\kappa T} R_t + \kappa \int_t^T e^{-\kappa (T - t)} \theta(t) dt$$

10 Lecture 10

10.1 Girsanov's Change of Measure (1-dim)

Theorem 10.1.1. (Girsanov's Change of Measure (1-dim)).

On $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \mathbb{P})$, let $\{B_t\}_{t\geq 0}$ be a Brownian Motion and $\{\Theta_t\}_{t\geq 0}$ be an adaptive process.

Focusing [0,T] and assuming $\mathbb{E}[e^{\frac{1}{2}\int_0^T \Theta_t^2 dt}] < +\infty$, define

$$\begin{split} \tilde{B}_t &= B_t + \int_0^t \Theta_u \, du \Longleftrightarrow d\tilde{B}_t = dB_t + \Theta_t dt \\ Z_t &= e^{-\int_0^t \Theta_u \, dB_u - \frac{1}{2} \int_0^t \Theta_u^2 \, du} \Longleftrightarrow dZ_t = -Z_t \Theta_t dB_t \end{split}$$

Then for $\tilde{\mathbb{P}}$ defined by $\tilde{\mathbb{E}}[X] = \mathbb{E}[XZ_T]$, for all random variables X,

we have that $\{\tilde{B}_t\}_{t\geq 0}$ is a Brownian Motion under $\tilde{\mathbb{P}}$ on On $(\Omega, \mathcal{F}, \{\mathcal{F}\}_{t\geq 0}, \tilde{\mathbb{P}})$.

Example 10.1.2. Show that $dZ_t = -Z_t\Theta_t dB_t$.

Let $g(t) = -\int_0^t \Theta_u dB_u - \frac{1}{2} \int_0^t \Theta_u^2$. Then we have $dg(t) = -\frac{1}{2} \Theta_t^2 dt - \Theta_t dB_t$.

Let $f(t,g(t)) = e^{g(t)} = Z_t$. Then we have $f_g(t,g(t)) = e^{g(t)} = Z_t$ and $f_{gg}(t,g(t)) = e^{g(t)} = Z_t$.

Applying Itô's formula, we have

$$dZ_t = df(t, g(t)) = \left[f_g(t, g(t))\mu_t + \frac{1}{2} f_{gg}(t, g(t))\sigma_t^2 \right] dt + f_g(t, g(t))\sigma_t dB_t$$
$$= \left(-Z_t \frac{1}{2} \Theta_t^2 + \frac{1}{2} Z_t (-\Theta_t)^2 \right) dt - Z_t \Theta_t dB_t$$
$$= -Z_t \Theta_t dB_t$$

Exercise 10.1.3 In a Black-Scholes market model, let $S = \{S_t\}_{t\geq 0}$ denote the price process satisfying

$$dS_t = S_t(\mu + \sigma dW_t),$$

under the physical measure \mathbb{P} with interest rate r=0. Using the FTAP and Girsanov's Theorem, determine the Radon-Nikodym derivative from \mathbb{P} to a risk-neutral measure $\tilde{\mathbb{P}}$. Further, write down the stock dynamics under the risk-neutral measure $\tilde{\mathbb{P}}$ and determine the relationship between the Brownian motions under measure \mathbb{P} and $\tilde{\mathbb{P}}$.

Solution.

Under physical measure \mathbb{P} , $dS_t = \mu S_t dt + \sigma S_t dB_t$, where $\{B_t\}_{t\geq 0}$ is a Brownian Motion under \mathbb{P} (usually $\mu > r$).

Under risk-neutral measure $\tilde{\mathbb{P}}$, $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, where $\{\tilde{B}_t\}_{t>}$ is a Brownian Motion under $\tilde{\mathbb{P}}$.

Equating $dS_t = \mu S_t dt + \sigma S_t dB_t$ and $dS_t = rS_t dt + \sigma S_t d\tilde{B}_t$, we have

$$\mu S_t dt + \sigma S_t dB_t = r S_t dt + \sigma S_t d\tilde{B}_t$$
$$d\tilde{B}_t - dB_t = \frac{\mu - r}{\sigma} dt$$
$$\Rightarrow d\tilde{B}_t = dB_t + \frac{\mu - r}{\sigma} dt$$

where $\frac{\mu-r}{\sigma} > 0$ and $\sigma > 0$.

By Girsanov's Change of Measure, define $\Theta_t = \frac{\mu - r}{\sigma}$, then the Radon-Nikodym derivative from physical measure \mathbb{P} to risk-neutral measure \mathbb{P} is

$$\begin{split} Z_t &= \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}} = e^{-\int_0^t \frac{\mu - r}{\sigma} dB_u - \frac{1}{2} \int_0^t \left(\frac{\mu - r}{\sigma}\right)^2 du} \\ &= e^{-\frac{\mu - r}{\sigma} B_t - \frac{1}{2} \left(\frac{\mu - r}{\sigma}\right)^2 t} \quad \text{since } \frac{\mu - r}{\sigma} \text{ is constant} \end{split}$$

Note that when $r=0, Z_t=\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}=e^{-\frac{\mu}{\sigma}B_t-\frac{1}{2}\left(\frac{\mu}{\sigma}\right)^2t}.$

Aside:

Note that MGF is $\mathbb{E}[e^{\lambda Z}] = e^{\lambda \mu + \frac{1}{2}\lambda^2 \sigma^2}$, where $Z \sim N(\mu, \sigma^2)$.

The expectations of strike price and final stock price by change of measure (from physical measure \mathbb{P} to risk-neutral measure $\tilde{\mathbb{P}}$) are

$$\begin{split} \tilde{\mathbb{E}}[K] &= \mathbb{E}[KZ_T] = \mathbb{E}\left[Ke^{-\frac{\mu-r}{\sigma}B_T - \frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^2T}\right] = K \quad \text{since } K \text{ is constant and } \mathbb{E}[Z_T] = 1 \\ \tilde{\mathbb{E}}[S_T] &= \mathbb{E}[S_TZ_T] = \mathbb{E}\left[S_0e^{\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma B_T}e^{-\frac{\mu-r}{\sigma}B_T - \frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^2T}\right] \quad \text{where } \mathbb{E}[S_T] = \mathbb{E}\left[S_0e^{\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma B_T}\right] = e^{\mu T} \text{ by MGF} \\ &= S_0\mathbb{E}\left[e^{\left(\sigma - \frac{\mu-r}{\sigma}\right)B_T - \frac{1}{2}\left(\sigma^2 + \left(\frac{\mu-r}{\sigma}\right)^2 - 2(\mu-r)\right)T - (\mu-r)T + \mu T}\right] \\ &= S_0\mathbb{E}\left[e^{\left(\sigma - \frac{\mu-r}{\sigma}\right)B_T - \frac{1}{2}\left(\sigma^2 + \left(\frac{\mu-r}{\sigma}\right)^2 - 2(\mu-r)\right)T + rT}\right] \\ &= S_0e^{rT}\mathbb{E}\left[e^{\left(\sigma - \frac{\mu-r}{\sigma}\right)B_T - \frac{1}{2}\left(\sigma^2 + \left(\frac{\mu-r}{\sigma}\right)^2 - 2(\mu-r)\right)T + rT}\right] \\ &= S_0e^{rT}\mathbb{E}\left[e^{\left(\sigma - \frac{\mu-r}{\sigma}\right)B_T - \frac{1}{2}\left(\sigma^2 - \frac{\mu-r}{\sigma}\right)^2T}\right] \\ &= S_0e^{rT}\mathbb{E}\left[e^{\left(\sigma - \frac{\mu-r}{\sigma}\right)B_T}\right]e^{-\frac{1}{2}\left(\sigma - \frac{\mu-r}{\sigma}\right)^2T} \\ &= S_0e^{rT}e^{\frac{1}{2}\left(\sigma - \frac{\mu-r}{\sigma}\right)^2T}e^{-\frac{1}{2}\left(\sigma - \frac{\mu-r}{\sigma}\right)^2T} \\ &= S_0e^{rT} \quad \text{which aligns with the definition of risk-neutral measure} \end{split}$$

10.2 Black-Scholes Equation for European Call Option by Change of Measure

$$\operatorname{Recall} \tilde{\mathbb{E}} \left[e^{-rT} (S_T - K)^+ \right] = \tilde{\mathbb{E}} \left[e^{-rT} S_T \mathbb{1}_{[S_T \geq K]} \right] - e^{-rT} K \tilde{\mathbb{E}} \left[\mathbb{1}_{[S_T \geq K]} \right]$$

(1) For
$$\tilde{\mathbb{E}}\left[\mathbb{1}_{[S_T\geq K]}\right]=\tilde{\mathbb{P}}[S_T\geq K]$$
, since $S_T=S_0e^{\left(r-\frac{1}{2}\sigma^2\right)T+\sigma \tilde{B}_T}$, we calculate

$$S_{T} \ge K$$

$$S_{0}e^{\left(r-\frac{1}{2}\sigma^{2}\right)T+\sigma\tilde{B}_{T}} \ge K$$

$$\left(r-\frac{1}{2}\sigma^{2}\right)T+\sigma\tilde{B}_{T} \ge -\ln\frac{S_{0}}{K}$$

$$\sigma\tilde{B}_{T} \ge -\left(\ln\frac{S_{0}}{K}+\left(r-\frac{1}{2}\sigma^{2}\right)T\right)$$

$$-\frac{\tilde{B}_{T}}{\sqrt{T}} \le \frac{1}{\sigma\sqrt{T}}\left(\ln\frac{S_{0}}{K}+\left(r-\frac{1}{2}\sigma^{2}\right)T\right)$$

where $-\frac{\tilde{B}_T}{\sqrt{T}}$ is a standard normal variable. Therefore, $\tilde{\mathbb{P}}[S_T \geq K] = N(d_-(T, S_0))$.

(2) For $\tilde{\mathbb{E}}\left[e^{-rT}S_T\mathbbm{1}_{[S_T\geq K]}\right]=\tilde{\mathbb{E}}\left[e^{-rT}S_0e^{\left(r-\frac{1}{2}\sigma^2\right)T+\sigma\tilde{B}_T}\mathbbm{1}_{[S_T\geq K]}\right]=\tilde{\mathbb{E}}\left[S_0e^{\sigma\tilde{B}_T-\frac{1}{2}\sigma T}\mathbbm{1}_{[S_T\geq K]}\right]$, we define $\Theta_t=-\sigma$ since $e^{\sigma\tilde{B}_T-\frac{1}{2}\sigma T}$ looks like a Radon-Nikodym derivative.

By Girsanov's Change of Measure, the Radon-Nikodym derivative from risk-neutral measure $\tilde{\mathbb{P}}$ to the measure \mathbb{S} and the Brownian Motion under \mathbb{S} -measure are

$$\begin{split} Z_t &= \frac{d\mathbb{S}}{d\tilde{\mathbb{P}}} = e^{-\int_0^t \Theta_u \, d\tilde{B}_u - \frac{1}{2} \int_0^t \Theta_u^2 \, du} = e^{\sigma \tilde{B}_t - \frac{1}{2} \sigma^2 t} \\ B_t^{\mathbb{S}} &= \tilde{B}_t + \int_0^t \Theta_u du = \tilde{B}_t - \sigma t \end{split}$$

since σ is constant. Then we can write

$$\begin{split} &\tilde{\mathbb{E}}\left[e^{-rT}S_{T}\mathbb{1}_{[S_{T}\geq K]}\right] = \tilde{\mathbb{E}}\left[S_{0}e^{\sigma\tilde{B}_{T} - \frac{1}{2}\sigma T}\mathbb{1}_{[S_{T}\geq K]}\right] = \mathbb{E}^{\mathbb{S}}\left[S_{0}\mathbb{1}_{[S_{T}\geq K]}\right] = S_{0}\mathbb{P}^{\mathbb{S}}[S_{T}\geq K] \quad \text{and} \quad S_{T} = S_{0}e^{\left(r - \frac{1}{2}\sigma^{2}\right)T + \sigma\tilde{B}_{T}} = S_{0}e^{\left(r - \frac{1}{2}\sigma^{2}\right)T + \sigma(B_{T}^{\mathbb{S}} + \sigma T)} = S_{0}e^{\left(r + \frac{1}{2}\sigma^{2}\right)T + \sigma B_{T}^{\mathbb{S}}} \end{split}$$

by change of measure. Then we have

$$S_T \ge K$$

$$S_0 e^{\left(r + \frac{1}{2}\sigma^2\right)T + \sigma B_T^{\mathbb{S}}} \ge K$$

$$\sigma B_T^{\mathbb{S}} \ge -\left(\ln\frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T\right)$$

$$-\frac{B_T^{\mathbb{S}}}{\sqrt{T}} \le \frac{1}{\sigma\sqrt{T}}\left(\ln\frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T\right)$$

Therefore, $\mathbb{P}^{\mathbb{S}}[S_T \geq K] = N(d_+(T, S_0)).$

Therefore, we have arrived at $\tilde{\mathbb{E}}\left[e^{-rT}\left(S_T-K\right)^+\right]=S_0N(d_+(T,S_0))-e^{-rT}KN(d_-(T,S_0))$, which is the Black-Scholes equation for European call.

Example 10.2.1 Use the change of measure $\Theta_t = -\sigma$ to solve $\mathbb{E}\left[e^{\sigma B_T - \frac{1}{2}\sigma^2 T}B_T^4\right]$.

Solution. Since $\Theta_t = -\sigma$, we have $Z_t = e^{\sigma B_T - \frac{1}{2}\sigma^T}$ and $\hat{B}_t = B_t - \sigma t \Rightarrow B_t = \hat{B}_t + \sigma t$. Then we can calculate

$$B_T^4 = (\hat{B}_t + \sigma t)^4$$

$$= {4 \choose 0} (\hat{B}_T)^4 (\sigma T)^0 + {4 \choose 1} (\hat{B}_T)^3 (\sigma T)^1 + {4 \choose 2} (\hat{B}_T)^2 (\sigma T)^2 + {4 \choose 3} (\hat{B}_T)^1 (\sigma T)^3 + {4 \choose 4} (\hat{B}_T)^0 (\sigma T)^4$$

$$= \hat{B}_T^4 + 4\sigma T \hat{B}_T^3 + 6\sigma^2 T^2 \hat{B}_T^2 + 4\sigma^3 T^3 \hat{B}_T + \sigma^4 T^4$$

$$\begin{split} \mathbb{E}\left[e^{\sigma B_T - \frac{1}{2}\sigma^2 T}B_T^4\right] &= \hat{\mathbb{E}}\left[B_T^4\right] \quad \text{by change of measure} \\ &= \hat{\mathbb{E}}\left[\hat{B}_T^4 + 4\sigma T\hat{B}_T^3 + 6\sigma^2 T^2\hat{B}_T^2 + 4\sigma^3 T^3\hat{B}_T + \sigma^4 T^4\right] \\ &= \hat{\mathbb{E}}\left[\hat{B}_T^4\right] + 6\sigma^2 T^2\hat{\mathbb{E}}\left[\hat{B}_T^2\right] + \sigma^4 T^4 \quad \text{since } \hat{\mathbb{E}}\left[\hat{B}_T\right] = 0 \text{ and } \hat{\mathbb{E}}\left[\hat{B}_T^3\right] = 0 \\ &= 3T^2 + 6\sigma^2 T^3 + \sigma^4 T^4 \quad \text{since } \hat{\mathbb{E}}\left[\hat{B}_T^2\right] = T \text{ and } \hat{\mathbb{E}}\left[\hat{B}_T^4\right] = 3T^2 \end{split}$$

Remark 10.2.2 Moments of Brownian Motion B_t :

- (1) Mean: $\mathbb{E}[B_t] = 0$.
- (2) Second Moment: $\mathbb{E}[B_t^2] = t$.
- (3) Third Moment: $\mathbb{E}[B_t^3] = 0$.
- (4) Fourth Moment: $\mathbb{E}[B_t^4] = 3t^2$

10.3 Girsanov's Change of Measure (d-dim) in Currencies

CAD\$/USD\$

EUR€/USD\$

Consider the Brownian Motions

- $(\tilde{B}_t^{(1)}, \tilde{B}_t^{(2)}, \dots, \tilde{B}_t^{(d)})$ under risk-neutral measure $\tilde{\mathbb{P}}$ in the American market (\$), and
- $(\hat{B}_t^{(1)}, \hat{B}_t^{(2)}, \dots, \hat{B}_t^{(d)})$ under risk-neutral measure $\tilde{\mathbb{P}}$ in the European market (\mathfrak{C}) .

Changing from \$ to €, we have

$$d\hat{B}_{t} = \begin{pmatrix} d\hat{B}_{t}^{(1)} \\ \vdots \\ d\hat{B}_{t}^{(d)} \end{pmatrix}, \quad d\hat{B}_{t} = \begin{pmatrix} \hat{B}_{t}^{(1)} \\ \vdots \\ \hat{B}_{t}^{(d)} \end{pmatrix}, \quad \Theta_{t} = \begin{pmatrix} \Theta_{t}^{(1)} \\ \vdots \\ \Theta_{t}^{(d)} \end{pmatrix}$$
$$d\hat{B}_{t} = d\tilde{B}_{t} + \Theta_{t}dt$$
$$Z_{t} = e^{-\int_{0}^{t} \Theta_{u}^{T} dB_{u} - \frac{1}{2} \int_{0}^{t} \|\Theta_{u}\|^{2} du}$$

Let $\{S_t\}_{t\geq 0}$ and $\{N_t\}_{t\geq 0}$ be the prices of two assets determined in the same currency,

$$dS_t = R_t S_t dt + \sigma_t^{(1)} S_t d\tilde{B}_t^{(1)} + \sigma_t^{(2)} S_t d\tilde{B}_t^{(2)} + \dots + \sigma_t^{(d)} S_t d\tilde{B}_t^{(d)} , \text{ and } dN_t = R_t N_t dt + \nu_t^{(1)} N_t d\tilde{B}_t^{(1)} + \nu_t^{(2)} N_t d\tilde{B}_t^{(2)} + \dots + \nu_t^{(d)} N_t d\tilde{B}_t^{(d)} ,$$

where the discount factor is $D_t = e^{-\int_0^t R_u du}$. For $\sigma_t = (\sigma_t^{(1)}, \dots, \sigma_t^{(d)})$ and $\nu_t = (\nu_t^{(1)}, \dots, \nu_t^{(d)})$, we define

$$\sigma_t d\tilde{B}_t = \sum_{i=1}^d \sigma_t^{(i)} d\tilde{B}_t \quad \text{and} \quad \nu_t d\tilde{B}_t = \sum_{i=1}^d \nu_t^{(i)} d\tilde{B}_t$$
$$dD_t S_t = D_t S_t \sigma_t d\tilde{B}_t \quad \text{and} \quad dD_t N_t = D_t N_t \nu_t d\tilde{B}_t$$

Here, we take N_t as the numéraire.

To verify, we write $D_t S_t = D_0 S_0 e^{\int_0^t \sigma_u d\tilde{B}_u - \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)})^2 du} = D_0 S_0 e^{\sum_{i=1}^d \int_0^t \sigma_u^{(i)} d\tilde{B}_u^{(i)} - \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)})^2 du}$.

By letting $f(t) = \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)})^2 du$ and $M_t = \sum_{i=1}^d \int_0^t \sigma_u^{(i)} d\tilde{B}_u^{(i)} - f(t)$, we calculate

$$df(t) = \frac{1}{2} \sum_{i=1}^{d} (\sigma_t^{(i)})^2 dt$$

$$dM_t = \sum_{i=1}^{d} \sigma_t^{(i)} d\tilde{B}_t^{(i)} - \frac{1}{2} \sum_{i=1}^{d} (\sigma_t^{(i)})^2 dt$$

$$dD_t S_t = D_t S_t \left(dM_t + \frac{1}{2} d[M]_t \right)$$

$$= D_t S_t \left(\sum_{i=1}^{d} \sigma_t^{(i)} d\tilde{B}_t^{(i)} - \frac{1}{2} \sum_{i=1}^{d} (\sigma_t^{(i)})^2 dt + \frac{1}{2} \sum_{i=1}^{d} (\sigma_t^{(i)})^2 dt \right)$$

$$= D_t S_t \sum_{i=1}^{d} \sigma_t^{(i)} d\tilde{B}_t^{(i)}$$

To continue the previous steps, we have

$$\begin{cases} D_t S_t = D_0 S_0 e^{\sum_{i=1}^d \int_0^t \sigma_u^{(i)} d\tilde{B}_u^{(i)} - \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)})^2 du} \\ D_t S_t = D_0 S_0 e^{\sum_{i=1}^d \int_0^t \nu_u^{(i)} d\tilde{B}_u^{(i)} - \frac{1}{2} \int_0^t \sum_{i=1}^d (\nu_u^{(i)})^2 du} \end{cases}$$

$$\begin{split} \frac{D_t S_t}{D_t N_t} &= \frac{S_t}{N_t} = \frac{S_0}{N_0} e^{\sum_{i=1}^d \int_0^t (\sigma_u^{(i)} - \nu_u^{(i)}) d\tilde{B}_u^{(i)} - \frac{1}{2} \int_0^t \sum_{i=1}^d ((\sigma_u^{(i)})^2 du - (\nu_u^{(i)})^2) du} \\ &= \frac{S_0}{N_0} e^{\sum_{i=1}^d \int_0^t (\sigma_u^{(i)} - \nu_u^{(i)}) d\tilde{B}_u^{(i)} - \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)} - \nu_u^{(i)})^2 du - \int_0^t \sum_{i=1}^d (\sigma_u^{(i)} - \nu_u^{(i)}) \nu_u^{(i)} du} \\ &= \frac{S_0}{N_0} e^{\sum_{i=1}^d \int_0^t (\sigma_u^{(i)} - \nu_u^{(i)}) (d\tilde{B}_u^{(i)} - \nu_u^{(i)} du) - \frac{1}{2} \int_0^t \sum_{i=1}^d (\sigma_u^{(i)} - \nu_u^{(i)})^2 du} \end{split}$$

since
$$(\sigma_u^{(i)} - \nu_u^{(i)})(\sigma_u^{(i)} + \nu_u^{(i)}) - (\sigma_u^{(i)} - \nu_u^{(i)})^2 = 2\nu_u^{(i)}(\sigma_u^{(i)} - \nu_u^{(i)}).$$

By d-dim Girsanov's Theorem, the change of measure from \$ to €is

$$\begin{split} d\hat{B}_{t}^{(i)} &= d\tilde{B}_{t}^{(i)} - \nu_{t}^{(i)} dt \\ \frac{S_{t}}{N_{t}} &= \frac{S_{0}}{N_{0}} e^{\sum_{i=1}^{d} \int_{0}^{t} (\sigma_{u}^{(i)} - \nu_{u}^{(i)}) d\hat{B}_{u}^{(i)} - \frac{1}{2} \int_{0}^{t} \sum_{i=1}^{d} (\sigma_{u}^{(i)} - \nu_{u}^{(i)})^{2} du} \\ d\frac{S_{t}}{N_{t}} &= \frac{S_{t}}{N_{t}} \sum_{i=1}^{d} (\sigma_{t}^{(i)} - \nu_{t}^{(i)}) d\hat{B}_{t}^{(i)} \end{split}$$

Example 10.3.1 Suppose

- $N_0 = 1$ in the bank account at time 0, and
- N_t in the bank account at time t.

Then we have $N_t = e^{\int_0^t R_u du} = \frac{1}{D_t} \Rightarrow D_t N_t = 1$.

Using bank account as numéraire, we have that $\frac{S_t}{N_t} = D_t S_t$ is a martingale under risk-neutral measure.

Remark 10.3.2 Quotient of martingale is a martingale with respect to the measure you change to using the denominator and is normalized to start at 1 as the Radon-Nikodym derivative.

In our case, $\{D_tS_t\}_{t\geq 0}$ and $\{D_tN_t\}_{t\geq 0}$ are martingales under risk-neutral measure.

Remark 10.3.3 Volatility subtracts component-by-component for each $\tilde{B}_t^{(i)}$.

In our case, rrom $\tilde{\mathbb{P}}$ to $\hat{\mathbb{P}}$, we have

$$\begin{split} d\hat{B}_t^{(i)} &= d\tilde{B}_t^{(i)} - \nu_t^{(i)} dt \\ \hat{\mathbb{E}}[X] &= \tilde{\mathbb{E}}\left[\frac{D_T N_T}{N_0} X\right] \quad \text{focusing on } [0, T] \\ d\frac{S_t}{N_t} &= \frac{S_t}{N_t} \sum_{i=1}^d (\sigma_t^{(i)} - \nu_t^{(i)}) d\hat{B}_t^{(i)} \end{split}$$

10.4 Foreign Exchange Rate

Define variables:

- S_t : Stock Price in USD\$.
- X_t : Price of $\mathfrak{C}1$ in USD\$.
- R_t : Interest rate of the US market.
- $R_t^{\mathfrak{C}}$: Interest rate of the Euro market.

€1 in Euro bank $\longrightarrow \$ \frac{X_t}{D_t^{\mathfrak{C}}}$ asset in US market, where $\mathfrak{C} \frac{1}{D_t^{\mathfrak{C}}} = \mathfrak{C} e^{\int_0^t R_u^{\mathfrak{C}}} du$.

By definition of risk-neutral measure, in the US market, the discounted asset price process (using $D_t = e^{-\int_0^t R_u du}$) is a martingale, that is, $\{\frac{D_t}{D_s^c}X_t\}_{0 \le t \le T}$ is a martingale.

Suppose we have

$$\begin{cases} dX_t = \gamma_t X_t dt + X_t \sigma_t^X \left(\rho_t d\tilde{B}_t^{(1)} + \sqrt{1 - \rho_t^2} d\tilde{B}_t^{(2)} \right) \\ dS_t = R_t S_t dt + S_t \sigma_t^S d\tilde{B}_t^{(1)} \end{cases}$$
(*)

1. Focusing on X_t , what is γ_t ?

Since $\{\frac{D_t}{D_t^c}X_t\}_{0 \le t \le T}$ is a martingale, $d\frac{D_t}{D_t^c}X_t$ will only contain $d\tilde{B}_t^{(1)}$ and $d\tilde{B}_t^{(2)}$. We have

$$\frac{D_t}{D_t^{\mathfrak{C}}} X_t = X_t e^{\int_0^t (R_u^{\mathfrak{C}} - R_u) du}
d \frac{D_t}{D_t^{\mathfrak{C}}} X_t = e^{\int_0^t (R_u^{\mathfrak{C}} - R_u) du} dX_t + X_t e^{\int_0^t (R_u^{\mathfrak{C}} - R_u) du} (R_t^{\mathfrak{C}} - R_t) dt + 0
= X_t e^{\int_0^t (R_u^{\mathfrak{C}} - R_u) du} \left[\left(\gamma_t + R_t^{\mathfrak{C}} - R_t \right) dt + \sigma_t^X \left(\rho_t d\tilde{B}_t^{(1)} + \sqrt{1 - \rho_t^2} d\tilde{B}_t^{(2)} \right) \right]$$

Setting the drift term to zero, we get $\gamma_t = R_t - R_t^{\mathfrak{C}}$.

2. Change to \mathfrak{C} risk-neutral measure, that is, $\frac{S_t}{X_t}$.

Consider martingales $D_t S_t$ and $\frac{D_t}{D_t^C} X_t$ under \$ risk-neutral measure, taking quotient, we have that $\frac{D_t S_t}{D_t^C} X_t = \frac{D_t^C S_t}{X_t}$ is a martingale under $\mathbb C$ risk-neutral measure. Then we define

$$\begin{split} d\hat{B}_{t}^{(1)} &= d\tilde{B}_{t}^{(1)} - \rho_{t}\sigma_{t}^{X}dt, \quad d\hat{B}_{t}^{(2)} = d\tilde{B}_{t}^{(2)} - \sqrt{1 - \rho_{t}^{2}}\sigma_{t}^{X}dt \\ d\left(\frac{S_{t}}{X_{t}}\right) &= \frac{S_{t}}{X_{t}}\left(\frac{dS_{t}}{S_{t}} - \frac{dX_{t}}{X_{t}} + \frac{d[X,X]_{t}}{X_{t}^{2}} - \frac{d[S,X]_{t}}{S_{t}X_{t}}\right) \quad \text{by Itô's Quotient Rule} \\ &= \frac{S_{t}}{X_{t}}\left[R_{t}dt + \sigma_{t}^{S}d\tilde{B}_{t}^{(1)} - \gamma_{t}dt - \sigma_{t}^{X}\left(\rho_{t}d\tilde{B}_{t}^{(1)} + \sqrt{1 - \rho_{t}^{2}}d\tilde{B}_{t}^{(2)}\right) + \frac{X_{t}^{2}(\sigma_{t}^{X})^{2}dt}{X_{t}^{2}} - \frac{S_{t}X_{t}\sigma_{t}^{S}\sigma_{t}^{X}\rho_{t}dt}{S_{t}X_{t}}\right] \\ &= \frac{S_{t}}{X_{t}}\left[R_{t}^{C}dt + \left(\sigma_{t}^{S} - \sigma_{t}^{X}\rho_{t}\right)d\tilde{B}_{t}^{(1)} - \sigma_{t}^{X}\sqrt{1 - \rho_{t}^{2}}d\tilde{B}_{t}^{(2)} + \left(\sigma_{t}^{X}\right)^{2}dt - \sigma_{t}^{S}\sigma_{t}^{X}\rho_{t}dt\right] \\ &= \frac{S_{t}}{X_{t}}\left[R_{t}^{C}dt + \left(\sigma_{t}^{S} - \sigma_{t}^{X}\rho_{t}\right)\left(d\hat{B}_{t}^{(1)} + \rho_{t}\sigma_{t}^{X}dt\right) - \sigma_{t}^{X}\sqrt{1 - \rho_{t}^{2}}\left(d\hat{B}_{t}^{(2)} + \sqrt{1 - \rho_{t}^{2}}\sigma_{t}^{X}dt\right) + \left(\sigma_{t}^{X}\right)^{2}dt - \sigma_{t}^{S}\sigma_{t}^{X}\rho_{t}dt\right] \\ &= \frac{S_{t}}{X_{t}}\left[R_{t}^{C} + \sigma_{t}^{S}\sigma_{t}^{X}\rho_{t} - \left(\sigma_{t}^{X}\right)^{2}\rho_{t}^{2} - \left(\sigma_{t}^{X}\right)^{2}\left(1 - \rho_{t}^{2}\right) + \left(\sigma_{t}^{X}\right)^{2} - \sigma_{t}^{S}\sigma_{t}^{X}\rho_{t}\right]dt \\ &+ \frac{S_{t}}{X_{t}}\left[\left(\sigma_{t}^{S} - \sigma_{t}^{X}\rho_{t}\right)d\hat{B}_{t}^{(1)} - \sigma_{t}^{X}\sqrt{1 - \rho_{t}^{2}}d\hat{B}_{t}^{(2)}\right] \\ &= R_{t}^{C}\frac{S_{t}}{X_{t}}dt + \frac{S_{t}}{X_{t}}\left[\left(\sigma_{t}^{S} - \sigma_{t}^{X}\rho_{t}\right)d\hat{B}_{t}^{(1)} - \sigma_{t}^{X}\sqrt{1 - \rho_{t}^{2}}d\hat{B}_{t}^{(2)}\right]. \end{split}$$

3. $f(x) = \frac{1}{x}, f'(x) = -\frac{1}{x^2}, f''(x) = \frac{2}{x^3}$. Under $\hat{\mathbb{P}}^{\mathbb{C}}$ -measure, we have

$$\begin{split} d\left(\frac{1}{X_{t}}\right) &= -\frac{1}{X_{t}^{2}}dX_{t} + \frac{1}{2}\frac{2}{X_{t}^{3}}\left(dX_{t}\right)^{2} \\ &= -\frac{1}{X_{t}^{2}}\left(\gamma_{t}X_{t}dt + X_{t}\sigma_{t}^{X}\left(\rho_{t}d\tilde{B}_{t}^{(1)} + \sqrt{1 - \rho_{t}^{2}}d\tilde{B}_{t}^{(2)}\right)\right) + \frac{1}{X_{t}^{3}}X_{t}^{2}\left(\sigma_{t}^{X}\right)^{2}dt \\ &= \frac{1}{X_{t}}\left(R_{t}^{\mathfrak{C}} - R_{t}\right)dt + \frac{\sigma_{t}^{X}}{X_{t}}\left(\rho_{t}\left(d\hat{B}_{t}^{(1)} + \rho_{t}\sigma_{t}^{X}dt\right) + \sqrt{1 - \rho_{t}^{2}}\left(d\hat{B}_{t}^{(2)} + \sqrt{1 - \rho_{t}^{2}}\sigma_{t}^{X}dt\right) + \left(\sigma_{t}^{X}\right)^{2}dt\right) \\ &= \frac{1}{X_{t}}\left(R_{t}^{\mathfrak{C}} - R_{t}\right)dt + \frac{\sigma_{t}^{X}}{X_{t}}\left(\rho_{t}d\hat{B}_{t}^{(1)} + \sqrt{1 - \rho_{t}^{2}}d\hat{B}_{t}^{(2)}\right) \end{split}$$

Note that under $\tilde{\mathbb{P}}^{\$}$ -measure, we have $dX_t = X_t(R_t - R_t^{\mathbf{C}})dt + X_t\sigma_t^X\left(\rho_t d\tilde{B}_t^{(1)} + \sqrt{1 - \rho_t^2}d\tilde{B}_t^{(2)}\right)$ from (*).

4. Useful table:

Currency	US Bank	Stock	Euro Bank
$\$$ risk-neutral measure, \tilde{B}_t	Time 0: \$1	Time 0: S_0	Time 0: X_0
	Time t : $\frac{1}{D_t}$	Time t : S_t	Time $t: \frac{X_t}{D_t^{\mathbf{C}}}$
Martingale, D_t	$\{\$1\}_{0 \le t \le T}$ is a martingale	$\{D_tS_t\}_{0\leq t\leq T}$ is a martingale	$\{\frac{D_t}{D_t^{\mathfrak{C}}}X_t\}_{0\leq t\leq T}$ is a martingale
$lacktriangleright$ risk-neutral measure, \hat{B}_t	Time 0: $\frac{1}{X_0}$	Time 0: $\frac{S_0}{X_0}$	Time 0: €1
	Time t : $\frac{1}{X_t D_t}$	Time t : $\frac{S_t^{\circ}}{X_t}$	Time $t: \frac{\mathfrak{C}_1}{D_t^{\mathfrak{C}}}$
Martingale, $D_t^{\mathfrak{C}}$	$\left\{\frac{D_t^{\mathfrak{C}}}{D_t}\frac{1}{X_t}\right\}_{0\leq t\leq T}$ is a martingale	$\{\frac{D_t^{\epsilon}S_t}{X_t}\}_{0 \le t \le T}$ is a martingale	$\{\mathfrak{C}1\}_{0\leq t\leq T}$ is a martingale

11 Final Review