Using BERT for Sentiment Analysis

Outline

- 1. Justification
- 2. Preprocessing
- 3. Pretraining
- 4. Feature selection
- 5. Fine tuning
- 6. Understanding/Architecture
- 7. Regularization
- 8. What did not work(NBSVM)
- 9. Accuracies

Input is several sentences	Split sentences	Split sentences to words/tokens	Represent each token (position) in its given context	Represent sentence by concatenating token-level representations	Use this representation to perform specific task
	Preprocessing	Preprocessing	The model represents words is trained by masking and next-sentence		Fine-tuning

Outline

- 1. Justification
- 2. Preprocessing
- 3. Pretraining
- 4. Feature selection
- 5. Fine tuning
- 6. Understanding/Architecture
- 7. Regularization
- 8. What did not work(NBSVM)
- 9. Accuracies

Data Preprocessing: Get data into format BERT understands

- Lowercase everything
- Tokenizes sentence to words, then words to WordPieces
 - ("calling" => ["call", "##ing"])
- WordPieces are within corpus of 30,000 tokens
 - Constrained vocabulary of units so it's easier to process on
 - Handles rare words more effectively
- Add "CLS" and "SEP" tokens

Pretraining

- Data: BooksCorpus and English Wikipedia (massive continuous text)
- Fine contextual understanding (word-level)
- Coarse contextual understanding (sentence-level)

Pretraining, Fine

- Consider "bank" in "river bank" and "bank account"
 - Word2Vec represents them the same way (context-free)
 - BERT uses contextual representations of words
- Train model to predict words based on entire general context (bidirectional, random masking) instead of the previous specific context (left-directional)
- 15% chance a word gets chosen

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

Pretraining, Coarse

 Train model to predict if some sentence is next sentence given current sentence

Transformers

- Recurrence allows system to encode what was read before to better understand what is being read now
 - However, has bad long-range dependency, is greatly biased towards remembering words it saw most recently
- Use attention to choose which of prior words are most important to understanding the context as we continue reading
 - Far less bias on words that were just read, better long-range dependency
- Key Idea: Multi-Headed Block
 - One attention block captures some global context via weighted sum of hidden states
 - Use multiple attention blocks to capture many diff. contexts

Transformers High Level

- Machine Translation uses basic-encoder decoder model:
 - Map sequences to sequences via intermediate representation. Maximize probability of correct prediction at each step
- Intuitively the attention mechanism allows the decoder to "look back" at entire sequence sentence
- Attention gives encoder access to all hidden states
- Encoder focuses and ignores hidden states by using weights
 - Decoder passed weighted sum to predict next word
 - Computed originally w/ feed forward neural network
- 3 types of dependencies
 - Input and output
 - Input
 - output

Transformers low level

- Novelty of transformer is to allow decoder to see entire input sequence instead of left to right
- Multi-Head
 - Encoder hidden states(valued)
 - Decoder hidden state(query)
 - Block computes multiple attention weighted sums over values
 - Uses different linear transformations.
- Scaled Dot Product Attention:
 - Attention(Q,K,V) = softmax(QK^T/sqrt(d_k))V
 - Transfomer rescales dot product to prevent from exploding to huge values

Training - Fine-Tuning

- Add a output layer to overall BERT architecture so that output is in correct format for task
- Train whole model for specific task on associated input/output using pre-trained BERT parameters as initial parameters
- Modify batch size, learning rate, # of training epochs for task
 - Hyperparameters found using a search method for specific task
- Our case we use:
 - Softmax to get probabilities of each outcome
 - Dropout with 90% keep rate to prevent overfitting

Results

- Project 1 training data accuracy
 - o Positive: 0.89 on 25,000 instances
 - Negative: 0.89 on 25,000 instances
 - o Total: 0.89 on 25,000 instances
- Project 1 testing accuracy: 86.08%
- Project 1 hidden accuracy: 86.67%
- Project 2 accuracy: 74.39%

Bidirectional Encoder Representations from Transformers

- Two main types of applying generic NLP models to specific tasks:
 - Feature based: Contextual representations of words as additional features (i.e. ELMo), task
 specific architectures
 - Fine-tuning based: Fine-tuning with few additional parameters, tuning of all parameters for task
- Both use unidirectional language models to learn representations
 - A word is represented by taking context of words that come before (but not after)

- BERT is a fine-tuning model
- Uses <u>bi-directional</u> representation of words
 - Word is represented by the context it appears in relative to words that come before **and** after
- This is in contrast to other models which generally only use information from right to left(instead of bidirectionally)

Preprocessing

- As input BERT takes token embeddings as well as additional meta-embeddings
- BERT addresses transformed positional lacking by using positional embeddings
- Takes segment embeddings as input(pairs of sentence to improve contextualization)

Masked Language Model

- Naively replace percentage with mask token and try to predict masked token
- BERT usually does this with 15%
- Additionally some random swapping of words done (~10%) of selected tokens to try to predict correctness regardless of what token is present

Next Sentence Prediction Training

- Done for sentence relation training. Sentences separated by [SEP] token.
 50% of time second sentence is correct successor
- BERT must predict whether second sentence random

Fine Tuning

- BERT encoder produces sequence of hidden states
 - Need to be reduced to single vector for classification
- BERT just takes hidden state corresponding to first token.
- Sentence representation can then be fed into any classifier, can be tuned w/ r on top of BERT

Hyperparameters

- Dropout: .1
- Batch: 32, 16
- Optimizer: Adam
- LR: 5e-5, 3e-5,2e-5
- Epochs: 3,4

Pretranining:

- Seq len: 256
- Batch: 512

Transformer Architecture

- RNNs used for a long time to do machine translation(mapping sentences to sentences). Problematic because they do not do well with large texts.
 Bottlenecked in intermediate representation
- Transformer composed of multiple attention blocks
- Stacks a layer that maps sequences to sequences
- Cannot take order of inputs into account(will treat the first and last toekns of inputs same if same word)
- BERT addressed by