UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE INFORMÁTICA Introdução à Computação

Prof^o Carlos Antônio Campos Jorge

Exercícios de para (for), enquanto (while)e repita (do-while)

Para cada questão a seguir, construa um programa em Linguagem C que faça o que foi solicitado.

- 1. Exiba mil vezes o seu nome.
- 2. Exiba os números de 1 a 500, um ao lado do outro com um espaço em branco de separação.
- 3. Exiba todos os números pares de 10 a 200, um em cada linha.
- 4. Exiba 10 número sorteados de 0 a 32767. Dicas:
 - a função rand() retorna um número sorteado de 0 e 32767 (valor definido pela constante MAX_RAND dentro do arquivo stdlib.h)
 - use a chamada da função srand (time (NULL)) no início do programa para obter um ponto de partida aleatório (dependente da hora atual) nos sorteios.

 Inclua o arquivo header: #include <time.h>
- 5. Exiba 50 números sorteados de 0 a 99.
- 6. Exiba uma quantidade de números sorteados determinada pelo usuário. Peça também que o usuário determine a faixa do sorteio.
- 7. Peça para o usuário tentar adivinhar um número de 1 a 10 que o computador sorteou. Exiba o termo "que sorte!" 100 vezes na console.caso tenha acertado, ou "errado, o número sorteado foi ..." caso tenha errado.
- 8. Exiba todos os números ímpares existentes entre dois números informados pelo usuário.
- 9. Calcule o fatorial de um número. Desenvolva três soluções: com while, do-while e for.
- 10. Escreva um algoritmo que lê um valor n inteiro e positivo, e calcula e escreve o valor de S para a equação abaixo:

$$S = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}.$$

- 11. Verifique se um número é primo ou não.
- 12. Verifique se um número é perfeito, ou seja, se a soma dos seus divisores (exceto o próprio número) é igual a ele mesmo.
- 13. Calcule a média aritmética de vários valores inteiros positivos, inseridos pelo usuário. O final da leitura acontecerá quando for lido um valor negativo.
- 14. Solicite ao usuário a idade de cada um componente de um grupo de pessoas. A quantidade de pessoas também será determinada por ele antes da entrada das idades.

Após o término da entrada, apresente:

- a) a média das idades,
- b) a maior idade,
- c) a menor idade,
- d) a quantidade de pessoas maior de idade.
- 15. Crie um jogo para o usuário descobrir um número sorteado de 1 a 100. A cada tentativa dele, forneça uma dica falando se o número é maior ou menor. Quando ele descobrir exiba uma mensagem de parabéns e

mostre a quantidade de tentativas que ele conseguiu.

- 16. Exiba uma lista de 40 grupos de números sorteados de 0 a 59. Cada grupo possui 3 números que devem ser exibidos em ordem crescente.
- 17. Calcule a média aritmética de 500 valores fornecidos pelo usuário.
- 18. Modifique o problema anterior para que a quantidade de valores também seja fornecida pelo usuário.
- 19. Determine o maior valor de uma lista de 100 números fornecidos pelo usuário.
- 20. Determine a quantidade de homens e mulheres (separadamente) que são maiores de idade, baseado numa lista de 200 pessoas. Considere apenas como entrada a informação se é homem ou mulher ('m' ou 'f') e a idade.
- 21. Leia um número n que indica a quantidade de valores a ser lida em seguida. A cada número lido, classifique- o como positivo ou negativo.
- 22. Exiba os 50 primeiros números da seqüência de Fibonacci (1,1,2,3,5,8,13,21,34,55,89,144,233,377,...).
- 23. Imprima exatamente o n-ezimo termo da seqüência de Fibonacci.
- 24. Exiba os n primeiros termos da seqüência de Tribonacci (soma dos três anteriores). Esta sequência inicia com 1,1 e 2.
- 25. Era uma vez um rei muito rico que se tornou pobre após perder uma aposta com um súdito. O combinado foi que se o rei perdesse ele teria que pagar uma quantidade de grãos de arroz: um grão de arroz colocado na primeira casa de um tabuleiro de xadrez, mais dois grãos de arroz colocados na segunda casa do tabuleiro, mais 4 grãos na quarta casa, 8 grãos na quinta casa, e assim sucessivamente, sempre dobrando o número de grãos na próxima casa, até a última casa, a de número 64, do tabuleiro. Qual a quantidade de grãos de arroz que o súdito ganhou. Quantos sacos de arroz de 5 kilos? (faça uma estimativa aproximada da quantidade de grãos que cabem num saco de arroz).
- 26. Exiba a tabuada de um número fornecido pelo usuário. Por exemplo, se ele digitar o número 5, então será mostrado:

```
5 \times 1 = 5
```

 $5 \times 2 = 10$

 $5 \times 3 = 15$

 $5 \times 4 = 20$

 $5 \times 5 = 25$

 $5 \times 6 = 30$

 $5 \times 7 = 35$

 $5 \times 8 = 40$ $5 \times 9 = 45$

 $5 \times 10 = 50$

27. Apresente uma tabela de conversão de reais em dólares. Ela deve ser totalmente configurável, ou seja o usuário deve informar o valor inicial e final da tabela em reais, o valor de incremento e o valor de 1 dólar. Apresente os números no formato monetário com duas casas decimais.

Dica: use o descritor "%n.mf" na printf, onde 'n' é o tamanho que o número irá ocupar, e 'm' é a quantidade de casas decimais.

- 28. Leia uma quantidade não determinada de números positivos. Calcule a quantidade de números pares e ímpares, a média de valores pares e a média geral dos números lidos. O número que encerrará a leitura será o número zero.
- 29. A operadora de celular Vai-Vai possui um plano com o valor mensal de 80,00 que permite 100 minutos por mês para qualquer número. Além disso, ela oferece 50 minutos a mais para ligações destinadas a um número da própria Vai-Vai. As ligações para telefone fixo são sempre cobradas e possuem o valor de 0,50. O valor do minuto excedente para outras operadoras é de 1,34, e para a própria Vai-Vai é 0,45. Faca um programa que permita ao usuário entrar com o tipo de ligação ('o' = outras operadoras, 'v' = a própria

Vai-Vai, ou 'f' = telefone fixo) e a quantidade de minutos. A cada entrada, deve-se informar o quanto que ele tem de saldo e o valor a pagar. Repita até que ele informe 's' (sair) como tipo da ligação.

- 30. Crie um programa para simular urna de votação para exatamente 3 candidatos. Logo no início deve-se perguntar ao usuário os nomes dos candidatos (suponha apenas uma letra para indicar o nome). Permita votos em branco.
 - Ao término de toda a entrada, apresente o nome, a quantidade de votos e o percentual de cada candidato. Apresente também a quantidade e o percentual dos votos em branco e quem foi o ganhador da eleição.
- 31. Exiba todas as datas de um calendário que estão entre duas datas informadas pelo usuário (dia, mês e ano). Suponha que as duas datas informadas sejam válidas.
- 32. Leia uma data e uma quantidade de dias, em seguida exiba esta data somada pela quantidade de dias fornecida. Exemplo: 29/04/2007 + 3 = 02/05/2007.
- 33. Através da série de Taylor, calcule o valor das funções abaixo. Para determinar a precisão do cálculo, solicite ao usuário a qtde de termos desejada.

Como desafio:

- não use o operador de pontenciação
- use apenas uma estrutura de repetição na solução

Informações sobre série de Taylor: http://pt.wikipedia.org/wiki/S%C3%A9rie_de_Taylor

i) Cosseno de x

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

- ii) Função exponencial: ex
- iii) Seno de x
- 34. Exiba as 10 tabuadas (de 1 a 10).
- 35. Exiba todos os números primos contidos numa faixa determinada pelo usuário.
- 36. Apresente uma tabela contendo a evolução do valor de uma dívida ao longo dos meses e anos a partir de janeiro de 2011. Solicite o valor da dívida, a taxa de correção e a quantidade de anos.

Por exemplo, para uma dívida de R\$ 100,00 ao longo de 2 anos e com uma taxa de correção de 1.8 % ao mês:

Anos/ meses	01	02	03	04	05	06	07	08	09	10	11	12
2011	100,	101,	103,	105,	107,	109,	111,	113,	115,	117,	119,	121,
	00	80	63	50	40	33	30	30	34	42	53	68
2012	123,	126,	128,	130,	133,	135,	137,	140,	142,	145,	148,	150,
	87	10	37	68	03	43	87	35	87	45	06	73

37. Desenhe a seguinte pirâmide de asteriscos. O usuário deve determinar a quantidade de linhas.

38. Desenhe a seguinte pirâmide de números. O usuário determina a quantidade de linhas.

```
01
02 02
03 03 03
04 04 04 04
05 05 05 05 05
06 06 06 06 06 06
07 07 07 07 07 07 07
08 08 08 08 08 08 08 08
09 09 09 09 09 09 09 09 09
10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11
...
```

39. Desenhe a seguinte pirâmide de números. O usuário determina a quantidade de linhas.

```
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 11 ...
```

40. Desenhe a seguinte sequência de triângulos. O usuário determina a quantidade de triângulos.

41. Desenhe a seguinte pirâmide de asteriscos onde cada linha acrescenta mais dois asteriscos. O usuário determina a quantidade de linhas.

- 42. Leia dois valores a e b ($a \le b$) e mostre os seguintes resultados:
 - a. Todos os números em [a, b].
 - b. Todos os números ímpares em [a, b].
 - c. Todos os números ímpares em [a, b] múltiplos de 3.]
- 43. Leia um número de entrada (n) que indicará a quantidade de números a serem lidos. Em seguida, leia n números (conforme o valor informado anteriormente) e imprima o triplo de cada um.
- 44. Leia *n* valores, um de cada vez, e conte quantos destes valores são negativos, escrevendo esta informação na tela.
- 45. Calcule a média dos números pares digitados pelo usuário. Termine a leitura se o usuário digitar zero.
- 46. Leia 50 valores e encontre o maior e o menor deles. Mostre o resultado.
- 47. Leia n números, calcule e exiba a média excluindo o menor e o maior. Não permita n < 3.
- 48. Leia um valor x e logo após um número n que indicará a quantidade de números a serem lidos após a leitura de n. Em seguida, leia n números (conforme o valor informado anteriormente) e, ao final imprima se o elemento x aparece, a posição de sua primeira ocorrência e a quantidade de vezes em que aparece.
- 49. Solicite um número (n) de 1 a 100 e uma quantidade de vezes (qtde). Realize (qtde) sorteios de um número de 1 a 100 e informe quantas vezes que o número (n) apareceu nos sorteios.
- 50. Faca um algoritmo que apresente na tela a tabela de conversão de graus Celsius para Fahrenheit no intervalo de -100 °C a 100 °C com valores igualmente espaçados (5°C em 5°C).

 Obs.: Farenheit = (9/5)*(Celsius) + 32.
- 51. Declare uma constante contendo o valor de π (com 10 casas decimais) e uma variável r, cujo valor deve ser fornecido pelo usuário. Calcule a área do círculo de raio r e o mostre ao usuário. Isso deve ser repetido varias vezes até que o usuário responda 'N' (não) para a pergunta: "Deseja calcular mais áreas? Sim (S) ou não (N)?".
- 52. Calcule e escreva o valor de S para as equações abaixo:

a.
$$S = \frac{1}{1} + \frac{3}{2} + \frac{5}{3} + \frac{7}{4} + \dots + \frac{99}{50}$$

b. $S = \frac{2^1}{50} + \frac{2^2}{49} + \frac{2^3}{48} + \dots + \frac{2^{50}}{48}$

- 53. Leia um número e imprima todos os números de 1 até o número lido, e também o seu produto. Ex.: Número: 3 Saída: 1 2 3 Produto: 6
- 54. Leia dois números (BASE e EXPOENTE) e retorne como resultado a POTENCIA do cálculo da BASE elevado ao EXPOENTE. ATENÇÃO: NÃO USAR A FUNÇÃO pow() DA BIBLIOTECA <math.h>.

 Ex: para a BASE = 2 e EXPOENTE = 4, POTENCIA = 24 = 16.
- 55. Leia um valor n inteiro e ímpar, em seguida gere e escreva uma tabela com os valores do seno de um ângulo θ (em radianos) utilizando a série de Mac-Laurin truncada apresentada a seguir:

$$sen(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \frac{\theta^9}{9!} + \dots + \frac{\theta^n}{n!}$$

56. Calcule o valor de ex através da série truncada em n termos:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

57. Calcule o valor do cosseno de a (em radianos) através de 40 termos da série abaixo:

$$\cos(\alpha) = 1 - \frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} - \frac{\alpha^6}{6!} + \frac{\alpha^8}{8!} - \cdots$$

58. Imprima uma tabela com os valores de (x, y) e f(x, y), para x = 1, 4, 9, 16, ..., 100 e y = 1, 2, 3, 4, 5.

$$f(x,y) = \frac{x^2 + 3x + y^2}{xy - 5y - 3x + 15}$$

- 59. A prefeitura de uma cidade fez uma pesquisa entre seus habitantes, coletando dados sobre o salário e número de filhos. A prefeitura deseja saber:
 - a. Média do salário da população.
 - b. Média do número de filhos.
 - c. Maior salário.
 - d. Percentual de pessoas com salário até R\$100,00.

O final da leitura de dados se dará com a entrada de um salário negativo.

- 60. Chico tem 1,50 metros e cresce 2 centímetros por ano, enquanto Zé tem 1,10 metro e cresce 3 centímetros por ano. Calcule e imprima quantos anos serão necessários para que Zé seja maior que Chico.
- 61. Em uma eleição presidencial existem quatro candidatos. Os votos são informados através de códigos. Os dados utilizados para a contagem dos votos obedecem à seguinte codificação:

Código	Voto
1, 2, 3 e	Voto para os respectivos
5	candidatos Voto nulo
6	Voto em branco

Elabore um algoritmo que leia diversos códigos (até que o código 0 seja digitado) e mostre a seguinte estatística:

- a. Total de votos para cada candidato.
- b. Total de votos nulos.
- c. Total de votos em branco.
- 62. Escreva um programa correspondente ao seguinte algoritmo simplificado:
 - a. Leia o código de um aluno e suas três notas.
 - b. Calcule a média ponderada do aluno com peso 4 para a maior nota, e peso 3 para as demais.
 - c. Informe o código do aluno, suas três notas, a média calculada e a mensagem "APROVADO", se a média for maior ou igual a 5, ou "REPROVADO", caso contrário.
 - d. Repita a operação até que o código lido seja negativo.
- 63. Leia o número *n*, o primeiro termo **a**₁ e a razão *r* de uma Progressão Aritmética (PA). Seu programa deve calcular e imprimir o n-ésimo termo desta PA através da fórmula:

$$a_n = a_1 q^{n-1}$$

64. Leia vários números inteiros e positivos e calcule o produto dos números pares. O fim da leitura será indicado pelo número 0.

- 65. Leia um número não determinado de valores e calcule a média aritmética dos valores lidos, a quantidade de valores positivos, a quantidade de valores negativos e o percentual de valores negativos e positivos. Mostre os resultados.
- 66. Leia um conjunto não determinado de valores, um de cada vez, e escreva uma tabela com cabeçalho que deve ser repetido a cada 20 linhas. A tabela conterá o valor lido, seu quadrado, seu cubo e sua raiz quadrada.
- 67. Leia uma quantidade desconhecida de números e conte quantos deles estão nos seguintes intervalos: [0,25], [26,50], [51,75] e [76,100]. A entrada de dados deve terminar quando for lido um número negativo ou maior que 100.
- 68. Leia um número n que indica quantos valores devem ser lidos a seguir. Para cada número lido, mostre uma tabela contendo o valor lido e o fatorial deste valor.
- 69. Leia um número não determinado de valores (*m*), todos inteiros e positivos, um de cada vez. Se *m* for par, verificar quantos divisores possui e escrever esta informação. Se *m* for ímpar e menor do que 10, calcule e escrever o *m*!. Se *m* for ímpar e maior ou igual a 10 calcule e escreva a soma dos inteiros de 1 até *m*.
- 70. Uma empresa deseja aumentar seus preços em 20%. Faça um programa que leia o código e o preço de custo de n produtos. Ao final da leitura, o programa deve exibir uma lista relacionando o código do produto ao seu novo preço, e finalmente o programa deve informar a média dos preços com e sem aumento. A entrada de dados deve terminar quando for lido um código de produto negativo (flag).

 Obs.: Use o comando while.
- 71. Escreva um algoritmo que leia 500 valores inteiros e positivos e:
 - a. Encontre o maior valor;
 - b. Encontre o menor valor;
 - c. Calcule a média dos números lidos.
- 72. Leia 5 pares de valores, o primeiro representando o número de um aluno, e o segundo representando a sua altura em centímetros. Seu programa deve encontrar o aluno mais alto e o mais baixo, mostrando o número do aluno mais alto e do mais baixo, juntamente com suas alturas.
- 73. Leia um conjunto de 50 informações contendo, cada uma delas, a altura e o sexo de uma pessoa ('M' masculino ou 'F' feminino), calcule e mostre o seguinte:
 - a. A maior e a menor altura da turma;
 - b. A média da altura das mulheres.
 - c. A média da altura da turma.
- 74. Foi feita uma pesquisa entre os habitantes de uma região. Foram coletados os dados de idade, sexo ('M' ou 'F') e salário. Faça um algoritmo que informe:
 - a. A média de salário do grupo;
 - b. Maior e menor idade do grupo;
 - c. Quantidade de mulheres com salário até R\$100,00.
- 75. Foi realizada uma pesquisa de algumas características físicas da população de certa região, a qual coletou os seguintes dados referentes a cada habitante para serem analisados:
 - Sexo (masculino ou feminino)
 - Cor dos olhos (azul, verde ou castanho)
 - Cor dos cabelos (louro, castanho ou preto)
 - Idade.

Faça um programa que determine e informe:

- a. A maior idade dos habitantes;
- b. A quantidade de indivíduos do sexo feminino cuja idade está entre 18 e 35 anos inclusive e que tenham olhos verdes e cabelos louros.
 - O final do conjunto de habitantes é reconhecido pelo valor -1 entrada como idade.
- 76. Leia um valor e informe seus divisores caso não ele seja primo, ou mostre na tela "É PRIMO" caso contrário.

- 77. Calcule e escreva o produto dos números primos entre 92 e 1478.
- 78. Escreva os cinco primeiros números perfeitos. Um número perfeito é aquele que é igual à soma dos seus divisores (e.g., 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14).
- 79. O comprimento de um polígono regular inscrito numa circunferência de raio R e comprimento $L_c = 2\pi R$ pode ser calculado por:

$$L_p = 2Rn \cdot sen\left(\frac{\pi}{n}\right)$$

À medida que se aumenta o número de lados do polígono, seu comprimento se aproxima do comprimento da circunferência circunscrita. Faça um programa que leia R, e mostre uma tabela relacionando n com o resíduo $L_c - L_p$ para $n = 1, 2, 3, \dots, N_{max}$, sendo N_{max} valor lido. Seu programa também deve informar para qual valor de n o resíduo se torna inferior a 2%.

- 80. Faça um programa que leia dois valores inteiros valor inteiro x e n, calcule e mostre:
 - a. $\sum_{i=1}^n x_i$.
 - b. $\sum_{i=1}^{n} x_i y_i$
 - c. $\sum_{i=1}^{n} x_i^2$
- 81. Regressão linear é uma técnica estatística que ajusta uma equação linear (da forma y = ax + b) a um conjunto de pontos dados. O problema consiste em achar uma equação linear que melhor se ajuste aos pontos dados. Um dos métodos empregados é o dos mínimos quadrados, que consiste em minimizar a soma dos quadrados dos desvios verticais dos pontos para a linha reta.

As fórmulas para os coeficientes $a \in b$, dado um conjunto de pontos de n pares de pontos (x, y), são:

$$a = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

$$b = \frac{\sum y\sum x^2 - \sum x\sum xy}{n\sum x^2 - (\sum x)^2}$$

sendo
$$\sum x=\sum_{i=1}^n x_i$$
, $\sum y=\sum_{i=1}^n y_i$, $\sum xy=\sum_{i=1}^n x_i y_i$ e $\sum x^2=\sum_{i=1}^n x_i^2$.

Uma vez achada a equação da reta, é importante determinar a precisão de ajustamento dessa reta aos dados reais. Uma medida disso é o coeficiente de correlação **R**, dado pela fórmula:

$$R = \frac{n\sum xy - \sum x\sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}}$$

Figura 1: Exemplo de pontos e a reta ajustada a estes pontos.

O intervalo de variação de R é de $-1 \le R \le 1$. Quanto mais próximo de -1 ou 1 ficar o valor de R, melhor terá sido o ajustamento da reta.

Faça um programa que leia n pontos (x,y) (<valor> <espaço> <valor>) no espaço \mathbb{R}^2 , obtendo a equação da reta e o coeficiente de correlação exibindo-os ao final.