Prove that $TQBF \not\in \mathrm{SPACE}(n^{1/3})$.

Step-by-step solution

Step 1 of 1

The space hierarchy theorem says "if g is a space-constructible ($1^n \to 1^{g(n)}$ can be computed in space O(g(n)), f(n) = o(g(n)), then $\mathbf{SPACE}(f(n)) \subsetneq \mathbf{SPACE}(g(n))$ ". So, from the space hierarchy theorem it can be said that there exists a language L, which is **solvable in linear space but it cannot be solved by sub-linear space**.

- Since, \mathbf{TQBF}_{is} space complete then L can be reduced to \mathbf{TQBF} in log space. Therefore, if $L \in \mathbf{SPACE}\left(\mathbf{n}^{\frac{1}{3}}\right)$, then $L \in \mathbf{SPACE}\left(\mathbf{n}^{\mathbf{c}}\right)^{\frac{1}{3}} + \mathbf{log}(\mathbf{n})$
- \bullet Now suppose, if $0.33 < \frac{1}{C}$, there exists a contradiction.

Thus, from the above result it can be said that $TQBF \not\in SPACE\left(n^{\frac{1}{3}}\right).$

Comment