2023 秋季学期高等实分析期中试卷

授课老师: 李俊钢

整理人: 黄天一

更新: 2023年11月7日

注:本份试卷是根据考后回忆整理而成,可能有部分叙述有出入.

1. 叙述 \mathbb{R}^n 上 d 维 Hausdorff 测度的构造过程, 并求出 [0,1] 区间上 Cantor 三分集的 Hausdorff 维数及 对应的 Hausdorff 测度.

- **2**. 设 (X, \mathcal{M}, μ) 为有限测度空间, $(X, \overline{\mathcal{M}}, \overline{\mu})$ 为其完备化, $f: X \to \mathbb{R}$ 为有界函数. 证明:
- (1) $f \in \overline{\mathcal{M}}$ -可测函数.
- (2) $f \in L^1(\bar{\mu})$ 当且仅当存在 \mathcal{M} -可测的简单函数列 $\{\phi_n\}$ 和 $\{\psi_n\}$, 使得 $\phi_n \leqslant f \leqslant \psi_n$ 且 $\int (\psi_n \phi_n) d\mu < n^{-1}$.
- **3**. 设 (X, \mathcal{M}) , (Y, \mathcal{N}) 是两个可测空间, μ 是 (X, \mathcal{M}) 上的有限符号测度, $F:(X, \mathcal{M}) \to (Y, \mathcal{N})$ 是可测映射, 定义:

$$(F_*\mu)(B) := \mu(F^{-1}(B)), \ \forall B \in \mathcal{N}.$$

- (1) 证明: $F_*\mu$ 是 (Y, \mathcal{N}) 上的有限符号测度.
- (2) 设 $f: Y \to \mathbb{R}$ 为可测函数, 且 $f \circ F$ 可积. 证明:

$$\int f \, \mathrm{d}F_* \mu = \int f \circ F \, \mathrm{d}\mu.$$

- **4**. 设 (X, \mathcal{M}, μ) 和 (Y, \mathcal{N}, ν) 为任意两个测度空间 (不一定 σ 有限). 证明:
- (1) 如果 $f:X\to\mathbb{C}$ 是 \mathcal{M} -可测的, $g:Y\to\mathbb{C}$ 是 \mathcal{N} -可测的, 那么 h(x,y)=f(x)g(y) 是 $\mathcal{M}\otimes\mathcal{N}$ -可测的.
 - (2) 如果 $f \in L^1(\mu)$ 且 $g \in L^1(\nu)$, 那么 (1) 中的 h 满足 $h \in L^1(\mu \times \nu)$ 且 $\int h d(\mu \times \nu) = \int f d\mu \int g d\nu$.
 - **5**. 设 $\mu_j, \nu_j (j = 1, 2)$ 为 (X_j, \mathcal{M}_j) 上的 σ 有限测度, 满足 $\nu_j \ll \mu_j$. 证明: $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ 且

$$\frac{\mathrm{d}(\nu_1 \times \nu_2)}{\mathrm{d}(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}(x_1) \frac{\mathrm{d}\nu_2}{\mathrm{d}\mu_2}(x_2).$$

6. 设 $B_1(0) \subset \mathbb{R}^n$ 为单位开球, 考虑边值问题

$$\begin{cases} \Delta u = 0, & x \in B_1(0), \\ u = f, & x \in \partial B_1(0). \end{cases}$$

(1) 证明: 存在 $\partial B_1(0)$ 上的正测度 ν^* , 使得

$$u(x) = \int_{\partial B_1(0)} f(y) \,\mathrm{d}\nu^*(y).$$

(2) 设 \mathcal{H}^{n-1} 为 n-1 维 Hausdorff 测度, 讨论在 $\partial B_1(0)$ 上是否成立 $\nu^* \ll \mathcal{H}^{n-1}$.