Zusammenhänge von Zusammenhangsbegriffen

X homotop zu Y ($X \simeq Y$):

$$\exists f: X \to Y, g: Y \to X:$$
$$g \circ f \simeq \mathrm{id}_X, f \circ g \simeq \mathrm{id}_Y$$

X zusammenhängend:

 $\forall U, V \subseteq X$ offen, nicht-leer : $U \cup V = X \Rightarrow U \cap V \neq \emptyset$

X kann nicht in zwei diskunkte offene Mengen zerteilt werden

X wegzusammenhängend:

 $\forall x, y \in X : \exists \gamma : [0, 1] \to X :$ $\gamma(0) = x, \gamma(1) = y$

Je zwei Punkte können durch einen Weg verbunden werden

\boldsymbol{X} einfach zusammenhängend:

X wegzusammenhängend und $\pi_1(X) = 0$

wegzsh. und alle Schleifen zusammenziehbar

\boldsymbol{X} zusammenziehbar:

 $X\stackrel{\cdot}{\simeq} \{*\}$

homotop zum 1-Pkt.-Raum

\boldsymbol{X} lokal zusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x: \\ \exists V \subseteq U \text{ Umg. v. } x:V \text{ zsh.}$

Jede Umg. enthält zsh. Umg.

\boldsymbol{X} lokal wegzusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x: \\ \exists V \subseteq U \text{ Umg. v. } x:V \text{ wegzsh.}$

Jede Umg. enthält wegzsh. Umg.

X lokal einfach zusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x:$ $\exists V \subseteq U \text{ Umg. v. } x:V \text{ einf. zsh.}$

Jede Umg. enthält einf. zsh. Umg.

X schwach lokal wegzusammenhängend: X halb-lokal einfach zusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x: \exists V \subseteq X \text{ Umg. v. } x: \\ \forall y \in V: \exists x \leadsto y \text{ Weg in } U$

 $\forall x \in X : \exists U \subseteq X \text{ Umg. v. } x :$ $\pi_1(U, x) \hookrightarrow \pi_1(X, x) \text{ trivial}$

Jeder Pkt. besitzt in X zusammenziehbare Umg.