Architecture des systèmes embarqués SI3

B. Miramond

Objectif du module

- Comprendre les mécanismes matériels essentiels de l'informatique.
- Comprendre l'organisation de l'ordinateur autour de l'élément central, le processeur.
- Pour cela, étudier les différentes couches qui structurent la machine et la philosophie de son utilisation.
- En bref, remonter du circuit numérique jusqu'à l'architecture processeur

En pratique

- Etudier le jeu d'instruction ARM v7
- Réaliser un simulateur de processeur ARM à travers le projet P-ARM : Polytech ARM-based embedded processor

Organisation du module

- 7 séances de cours de 1 heure
- 7 séances de TD/projet de 3h

- 1^{er} semaine de janvier : soutenance des projets par groupes
- 1ere semaine de janvier : contrôle

2 notes : Projet, Contrôle final

Séances de TD en distanciel

- 3 groupes de TD encadrées par
 - I. Litovski, PE. Novac, B. Miramond
- Les séances de TD se déroulent par Zoom et par Slack (liens sur https://lms.univ-cotedazur.fr)
- Pour la première séance :
 - Introduction à Logisim utilisé pendant le reste du module
 - Suiver le sujet, répondez aux questions et seulement après avoir essayer poser vos questions aux chargés de TD
- Pour les autres séances
 - Réalisation du projet étape par étape
 - Connecter vous en groupe
 - Suivez les consignes du chargé de TD et organisez vous en groupe (via slack)

L'historique du transistor

Principe de fonctionnement

- Si Ve < tension de seuil (0,6V)
 - Le transistor est bloquant
 - Interrupteur ouvert (Vs ≅Vcc)
- Si Ve > tension de seuil
 - Le transistor est passant
 - Interrupteur fermé

Comportement Inverseur:

Ve	Vs
haut (1)	bas (0)
bas (0)	haut (1)

Principe de fonctionnement

Transistor NMOS dit à canal N

Le transistor à canal P (PMOS) inverse les polarités

La technologie actuelle utilise des transistors CMOS qui met en jeu à la fois des transistors P et N.
Il sont plus rapides et consomment moins en électricité.

2. Portes logiques

Réalisation de portes en technologie **NMOS**

Réalisation de portes en technologie NMOS

Réalisation de portes en technologie CMOS

Portes de bases en technologie CMOS

Portes de bases en technologie CMOS

02/11/2020

Réalisation de fonctions logiques

Pour définir chacune des fonctions logiques, on utilise plusieurs **représentations** :

- une représentation électrique : schéma à contacts
- une représentation algébrique : équation
- une représentation arithmétique: table de vérité
- une représentation temporelle : chronogramme
- une représentation logique : symbole logique

Fonctions logiques

algèbrique

arithmétique

a	Ъ	 S
0	0	v0
0	1	v1
1	0	v2
•••		
1	1	vn

temporelle

Fonctions booléennes

 On peut décrire complètement une fonction booléenne de n variables avec un table de vérité de 2ⁿ lignes

n=2 variables

ඩ	Jb	S
0	0	v0
0	1	v1
1	0	v2
1	1	v3

- 2 valeurs pour v0
- 2 valeurs pour v1
- 2 valeurs pour v2
- 2 valeurs pour v3

2*2*2*2 = 16 fonctions booléennes de deux variables

Fonctions booléennes

n variables

	શ	رک,	•	S
2 ⁿ lignes	0	0		v0
	0	1		v1
	1	0		v2
	•••			
	1	1		vn

- 2 valeurs pour v0
- 2 valeurs pour v1
- 2 valeurs pour v2
- •...
- 2 valeurs pour v3

2^{2ⁿ} fonctions booléennes de n variables

Méthode de conception d'un circuit logique

- Etablir la table de vérité
- Simplifier les équations logiques de chaque sortie binaire
- Dessiner le circuit associé à chaque équation
- Connecter le circuit (ici décodeur) à des entrées de test
- Valider en simulation manuelle
- Valider avec des vecteurs de tests

Vecteurs de test

- Les vecteurs de test permettent d'injecter automatiquement des jeux de données et de spécifier la valeur des sorties attendues
- Ils permettent les tests unitaires de chaque composant
- Les vecteurs de test ne sont pas forcément exhaustifs
 - Le format est spécifié dans le TD1

Exemple de circuit – le décodeur 7 segments

- L'afficheur 7 segments permet d'afficher l'ensemble des chiffres hexadécimaux de 0 à F
- 7 segments de contrôle de A à F
- Nécessite un décodeur pour établir la conversion du code hexadécimal sur 4 bits au contrôle de l'afficheur sur 7 bits

Table de vérité du décodeur

- Elle dispose de 16 lignes
- Les entrées sont les
 4 bits codant le
 chiffre hexa
- Les sorties sont les 7 segments

02/11/2020

B. Miramor

Réalisation sous Logisim

Séances de TD en distanciel

- 3 groupes de TD encadrées par
 - I. Litovski, PE. Novac, B. Miramond
- Les séances de TD se déroulent par Zoom et par Slack (liens sur https://lms.univ-cotedazur.fr)
- Pour la première séance :
 - Introduction à Logisim utilisé pendant le reste du module
 - Suiver le sujet, répondez aux questions et seulement après avoir essayer poser vos questions aux chargés de TD
- Pour les autres séances
 - Réalisation du projet étape par étape
 - Connecter vous en groupe
 - Suivez les consignes du chargé de TD et organisez vous en groupe (via slack)

SIMPLIFICATION DE FONCTIONS LOGIQUES

Rappels –

Equivalence et simplifications de fonctions

- On démontre que toute fonction logique peut se décrire à l'aide des trois opérations de base grâce au théorème de De Morgan
- OU
- ET
- NOT

Théorème de **De Morgan**

•
$$a+b=a.b$$

 Dans les deux cas, l'expression ne sera VRAIE que si a et b sont fausses.

•
$$a.b = a + b$$

 Dans les deux cas, l'expression ne sera VRAIE que si a ou b sont fausses

Propriétés de la logique

Associativité

Certaines parenthèses sont inutiles:

$$(a+b)+c=a+(b+c)=a+b+c$$

 $(a.b).c=a.(b.c)=a.b.c$

Commutativité

• L'ordre est sans importance.

$$a + b = b + a$$

a. $b = b$. a

Distributivité

Comme avec les opérations habituelles, il est possible de distribuer:
 a . (b+c) = a . b + a . c

Idempotence

Propriétés

- Loi d'identité
- Loi de nullité
- Loi d'idempotence
- Loi d'inversion
- Loi d'absorption

Forme OU

•
$$a+0 = a$$

•
$$a+1=1$$

Forme ET

•
$$a.0 = 0$$

•
$$a.(a+b) = a$$

TABLES DE KARNAUGH

Réduction d'expression logique Table de Karnaugh

- La table de karnaugh est une représentation différente de la table de vérité utilisant un codage de Gray (changement d'un seul bit entre chaque configuration binaire).
- Une fois remplie, la réduction consiste à regrouper les cases dont la valeur est '1' par puissance de 2 : 1, 2, 4, 8, ou 16 cases.
- Pour obtenir la fonction la plus réduite, il faut minimiser le nombre de regroupement.

Structure et construction de la table (exemple d'une fonction à 3 variables)

A\BC	00	01	11	10
0				
1				
	vale ch	Dans la construction de la table, les valeurs des variables ne doivent changer qu'une par une entre colonnes et lignes (Gray code)!!		

Structure et construction de la table (exemple d'une fonction à 3 variables)

A\BC	00	01	11	10
0	1			1
1	1	1		1
	Le remplissage de la table suit celui de la table de vérité			

Structure et construction de la table (exemple d'une fonction à 3 variables)

Structure et construction de la table (exemple d'une fonction à 3 variables)

Réduction d'expression logique Table de Karnaugh

- Réduction de fonction à 2 variables
 - Les regroupements d'une seule case correspondent à un terme à 2 variables
 - Les regroupements de 2 cases correspondent à un terme à 1 variable
 - Les regroupements de 4 cases correspondent à un terme à 0 variable : f = 1

Réduction d'expression logique Table de Karnaugh

- Réduction de fonction à 3 variables
 - Les regroupements d'une seule case correspondent à un terme à 3 variables
 - Les regroupements de 2 cases correspondent à un terme à 2 variables
 - Les regroupements de 4 cases correspondent à un terme à 1 variable
 - Les regroupements de 8 cases correspondent à un terme à 0 variable : f = 1

Réduction d'expression logique Table de Karnaugh

- Réduction de fonction à 4 variables
 - Les regroupements d'une seule case correspondent à un terme à 4 variables
 - Les regroupements de 2 cases correspondent à un terme à 3 variables
 - Les regroupements de 4 cases correspondent à un terme à 2 variables
 - Les regroupements de 8 cases correspondent à un terme à 1 variable
 - Les regroupements de 16 cases correspondent à un terme
 à 0 variable : f = 1

Tables de Karnaugh

Two-Variable K-Maps

Adjacency wrap-aroui Manhattar topology

Three-Variable K-Maps

Four-Variable K-Maps

Exemple de K-Map Circuit de Majorité 4-bits

(plus de 1 que de 0)

```
c d
          a b
               00
               01
                                            b
               11
               10
                                  С
(a \& b \& d) | (b \& c \& d) | (a \& b \& c) | (a \& c \& d)
```

Fonction « plus grand ou égal » (GTE Greater Than or Equal)

```
abcdl
```


Exemple de circuit Majorité à 5 entrées

Simplification d'expressions logiques

- Il n'est pas toujours évident de savoir si on a atteint l'expression logique minimale
- La méthode de K-Maps le permet mais pour un nombre réduit de variables (4 ou 5)
- L'algorithme de Quine-Mac Cluskey est une méthode
 - systématique fonctionnant quelque soit le nombre de variables logiques
 - et pouvant être programmée

DIMENSIONNEMENT DE PORTES LOGIQUES

NAND à 4 entrées

NAND à 3 entrées

NAND à 8 entrées

NAND à 8 entrées

4 NAND_2 + 3 OR_2 34 transistors

NAND à 32 entrées

NAND_32

16 NAND_2 + 15 OR_2 154 transistors

Une porte NAND à n entrées demande (n/2) portes NAND et (n/2) - 1 portes OR à 2 entrées , et donc 5n-6 transistors