Problem 1

 $d = \frac{m \lambda L}{a}$. We know that $\lambda_0 = 380$ nm, so $d = \frac{\lambda_0 L}{a} = \frac{2 \lambda L}{a}$. Therefore, $2=21 \rightarrow 780=21 \rightarrow 1=390 \text{ nm}$

Problem 2

We are told that 20=468 nm, and there's 12 frings/cm. Our equation for destructive interference is: $nd cos\theta_{+} = 2m \frac{\lambda_{+}}{2}$ Since d= 0.01·sin0, we have:

1.34.0.01. sind = 6. [488.107) → 0= 0.0175° or 2.18.154 rad

Problem 3

the are told n = 1.48 at 20° C, and varies by $2.5 \cdot 10^{-5}$ per degree C. We also know the weff of the linear expansion off the glass. .. n is given by 12.5.105) dT+1.48.

Now, L=0.03 m. With time, $L=L_0+(5\cdot 10^{-6})L_0$ dT, wheredT=T-20, in Celsas. Also, the rate of change in T is $\frac{dT}{dt} = \frac{5^{\circ}C}{4min}$, and $\lambda_0 = 589$ nm.

To find how many trings cross per minute:

Δ(= m2T = Δ2T n(T).2L(T), so m. Δ2 n(T) L(T). Now, we phy in: $m_2 \frac{2}{\lambda} (n(25) L(25) - n(20) L(20))$. Using the values above,

me find m = 16.5 fringes

Problem 4

 $T = I_1 + I_2 + 2\sqrt{\Sigma_1 I_2} \cos \delta \cdot \text{Since } I_1 = 2I_2, T = 3I_2 + 2\sqrt{2I_1^2} \cos \delta,$ So I = 3 Iz + 2 12 Iz Cos 8

Problems

we have $\theta_i = \frac{\pi}{4}$ tad, $n_{glass} = 1.52$, $n_{coating} = 1.57$, $n_i = 1$, and $b_0 = 550$ nm

n; sind; = ncsinds → sinds = ni sind;

We know that $D\phi = \frac{4\pi n_c}{\lambda_0} l \cos \theta_c$. Since we want $\Delta\phi = 2\pi$, we have the eq. for l: $l = \frac{2\pi \lambda_0}{4\pi n_c} \frac{1}{\cos \theta_c} \rightarrow l = \frac{\lambda_0}{n_c} \frac{1}{\sqrt{1-\sin^2 \theta_c}}$

$$\ell = \frac{2\pi\lambda_0}{4\pi n_c} \frac{1}{\cos\theta_c} \rightarrow \ell = \frac{\lambda_0}{n_c} \cdot \frac{1}{\sqrt{1-\sin^2\theta_c}}$$

By plugging in ne and n:, and ho, we find l= 117.2 mm

To find l, the width of the clit, ne have:

$$B = \frac{\text{Kesin}\theta}{2} = m\pi \cdot \text{Since } k = \frac{2\pi}{\lambda}, \quad m = \frac{\text{Lsin}\theta}{\lambda}$$

Now, we find in:
$$l = \frac{m\lambda}{\sin\theta} = \frac{10 \cdot (1152 \cdot 10^{-9})}{\sin(6 \cdot 2^{\circ})} = \frac{1.07 \cdot 10^{-4}}{\sin\theta}$$

If we let no 1.53, the only thing that changes ic h:

$$\lambda' = \frac{\lambda}{4} = 866.3 \, \text{nm}$$
, so $\sin \theta' = \frac{\lambda m}{\ell} \rightarrow \theta' = \frac{4M^{-1}}{2} \left(\frac{866.3 \cdot 10^{-9} \cdot 10}{1.03 \cdot 10^{-9}} \right) = \frac{4.66^{\circ}}{1.03 \cdot 10^{-9}} = \frac{4.66^{\circ}}{1.03 \cdot 10^{-9}} = \frac{10.66^{\circ}}{1.03 \cdot 10^{-9}} = \frac{1$