# Errata zu Grundlagen der Antriebstechnik

Fehler sind durchstrichen und durch wellenförmig unterstrichene Korrekturen ersetzt.

# 1 Grundlegendes Handwerkszeug

- Seite 29, zweite Zeile nach Gl. (1.91): ... durch diesen Widerstands ...
- Seite 40, Fußnote 7, zweite Zeile: ... von *u* unterstreichen möchte.

#### 2 Mechanik

- Seite 66, Gl. (2.29):  $\vec{a} = \begin{pmatrix} a \\ 0 \text{ m/s}^2 \\ 0 \text{ m/s}^2 \end{pmatrix} = a \cdot \vec{e}_{x} \vec{e}_{x}$
- Seite 71, Gliederungspunkt **Flansch**, dritter Aufzählungspunkt: Das Massenträgheitsmoment eines Bohrkörpers, . . .
- Seite 76, in der zweiten Zeile unter Gl. (2.62): ... wobei wegen wegen ...

#### 3 Betriebsumfeld

- Seite 62, Gliederungspunkt **Steigungswiderstand**, vorletzte bzw. letzte Zeile: . . . der horizontale<del>r</del>n Ebene . . .
- Seite 86, Tabelle 3.1, Zeile IM V2: Flanschlagerschild auf Nicht-Antriebsseite . . .
- Seite 90, vierte Zeile: In d<del>ie</del>er nächsten Ausgabe ...
- Seite 90, Einheit der spezifischen Wärmespeicherkapazität c:  $WJ/(kg \cdot K)$
- Seite 95, Gliederungspunkt **Dauerbetrieb S1**, zweite Zeile: Wenn wir das thermische<del>n</del> Ersatzschaltbild ...
- Seite 101, Abschnitt 3.4, vierte Zeile: ... einer Asynchronmaschine<del>n</del> sollen ...
- Seite 103, Gliederungspunkt 22-1: ... durch einen zusätzlichen Bindestrich ...
- Seite 110, Kasten mit Ausrufezeichen, erste Zeile: Beim **Ohmschen Gesetz** des Magnetfelds ist die magnetische Spannungen  $U_m \dots$
- Seite 115, erster Kasten mit Ausrufezeichen, zweite Zeile: ... den magnetische Fluss ...
- Seite 119, erste Zeile nach Gl. (4.25): ... und den magnetischen Widerstand bzw. ...

### 4 Magnetisches Feld

• Seite 118: Kasten ganz unten: Wenn wir in einer Konfiguration kein zeitlich veränderliches Magnetfeld <del>haben, oder das Magnetfeld sogar null ist und wir keine bewegten Leiter haben</del> bzw. keinen bewegten Leiter haben, oder das Magnetfeld sogar null ist, so folgt ...

### 5 Einphasen-Transformator

- Seite 137, vorletzte Zeile: Im Extremfall kann der Effektivwert der Spannung...
- Seite 140, letzte Zeile: ... Überprüfungen des Transformators im Kurzschluss und im Leerlauf.
- Seite 141, drei Zeilen über Bild 5.13: Falls möglich, messen wir <del>bei</del> beim Bemessungsstrom ...

Christian Kral, »Gundlagen der Antriebstechnik«, Carl Hanser Verlag 2023, ISBN 978-3-446-47375-1

- Seite 145: Gl. (5.40):  $P_L = \text{Re}(\underline{U}_2 \cdot \underline{Y}_{\underline{X}} \underline{I}_L^*) = -\text{Re}(\underline{U}_2 \cdot \underline{I}_2^*)$
- Seite 151: **Tiefspanner.** Beim Tiefspanner mit  $U_2 < U_{11} \dots$
- Seite 153, Gl. (5.52):  $\frac{I_{1A}}{I_{1 \nmid l_{1}}} = \frac{S_{NA}}{S_{NB}}$

#### 6 Drehstrom-Transformator

- Seite 157, Abschnitt 6.1, zweiter Aufzählungspunkt: aus einem gemeinsamen Eisenkern ...
- Seite 159, Bild 6.2a: Die Wicklungsbezeichnung W links unten muss durch W ersetzt werden



- Seite 160, Bildunterschrift zu Bild 6.3: ... Fünfschenkel-Transformators 300 MVA, 232/116/10 kV ...
- Seite 167, Gl. (6.4):  $|\underline{U}_{1U}| = |\underline{U}_{1V}| = |\underline{U}_{1|V|}|$
- Seite 168, Bild 6.9a: Änderung der Reihenfolge der Phasenbeschriftung auf Seite 2 von (2) (3) (1) auf (3) (1) (2)





(a)

- Seite 173, zweite Zeile oberhalb des Gliederungspunkts **IP-Schutzart**: Daser Quotient
- Seite 175, Abschnitt 6.5.2, erste Zeile: Bei der Analyse d $\stackrel{ae}{=}$ s Betriebsverhaltens . . .
- Seite 175, Bild 6.14a: Die beschrifte Kurzschlussreaktanz des Transformators ist  $X_{k \vee}$



- Seite 177, zweiter Absatz, erste Zeile: Eine ähnliche Überlegung...
- Seite 180: Bildunterschrift zu Bild 6.17: ... Dreiwicklungs-Drehstrom-Transformator 300 MVA, 232/116/10 kV ...

### 7 Gleichstrommaschine

- Seite 196, Bild 7.9, Bildunterschrift zu (b) in der zweiten Zeile: ... zu Maschinen der Bauweise ...
- Seite 209, fünf Zeilen unterhalb von Wechselwirkung zwischen elektrischen und mechanischen Größen: ... wir mit  $M_i = N_a \cdot \Phi_h \cdot \mathfrak{A} I_a$  folgende ...
- Seite 211, Gliederungspunkt **Bürstenübergangsverluste**, drittletzte Zeile: Dieer Spannungspfeil von . . .
- Seite 219, sechs Zeilen unterhalb von **Drehmoment-Drehzahl-Kennlinien**: ... sind in den Kapiteln 8 und<del>9</del> 9 behandelt.
- Seite 221, Gliederungspunkt **Fahrt vorwärts in der Ebene**, vorletzte Zeile: Dieer Gleichstrommaschinenantrieb befindet ...

### 8 Gleichstromsteller

- Seite 238, Bild 8.4: Die Spannung am Transistor  $T_{2n}$  sollte  $u_{T^2 \not \upharpoonright n}$  lauten:



### 9 Netzgeführte Gleichrichter

- Seite 246, Bild 9.6a: Strom durch  $D_{1n}$  sollte  $i_{2g1n}$  lauten:



• Seite 248, Bild 9.8a: Ströme durch  $T_{1n}$  und  $T_{2n}$  sollten  $i_{2n1p}$  und  $i_{2n2p}$  lauten:



- Seite 251, Bild 9.9: Strom durch  $D_{1n}$  sollte  $i_{2g1p}$  lauten:



- Seite 254, Bild 9.12: Strom durch  $T_{1n}$  sollte  $i_{2g1n}$  lauten:



# 10 Drehfeldmaschine

- Seite 258, Gliederungspunkt **Nuten**: Nuten. . . . in seiner einfachsten Form . . .
- Seite 260: Fehlendes Trennzeichen in Worttrennung:

| Zeichen | Einheit | Größe                    | Quantity                  |
|---------|---------|--------------------------|---------------------------|
| $U_s$   | V       | Effektivwert der Stator- | RMS value of stator phase |
|         |         | strangspannung           | voltage                   |

- Seite 265, Bild 10.6b, Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:



- Seite 275, erster Aufzählungspunkt: einen unterschiedlichen Wicklungsfaktor ...
- Seite 279, zwei Zeilen vor Gl. (10.29): ... dem inneremn ...

# 11 Asynchronmaschine

- Seite 292, **Statorleistung.** ... komplexen Zeigern  $\underline{U}_s$  und  $\underline{I}_{\cupledjlust \underline{J}_s}$  oder aus deren Effektivwerten  $|\underline{U}_s|$  und  $|\underline{I}_{\cupledjlust \underline{J}_s}|$  sowie ...
- Seite 292, Gl. (11.13), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $P_s = 3 \cdot \text{Re}(\underline{U}_s \cdot \underline{I}_{\underline{1}_s}^*) = 3 \cdot |\underline{U}_s| \cdot |\underline{I}_{\underline{1}_s}| \cdot \cos(\varphi_s)$
- Seite 294, Zeile vor Gl. (11.23): die innere Leistung durch die mechanischen Winkelgeschwindigkeit
- Seite 304, Gliederungspunkt Hochlauf, dritte Zeile nach Gl. (11.44): Dieas wirksame Beschleunigungsmoment
  ...
- Seite 309, Bildunterschrift zu Bild 11.20: (a) Verlauf ders Drehmoments ...
- Seite 320, Abschnitt 11.6, dritter Absatz: ... kann einer selbstgeführter ...
- Seite 330, Zeile nach Gl. (11.80): mit dem Quadrat des Übersetzungsverhältnisses aus ...

# 12 Synchronmaschine

• Seite 342, Bild 12.4a, Beschriftung 3 fehlt:



(a)

• Seite 343, Bild 12.5a: Hände oben und unten sollten jeweils eine rechte Hände repräsentieren



• Seite 351, Einheiten der Reaktanzen:

| Zeichen       | Einheit                            | Größe                   | Quantity                          |
|---------------|------------------------------------|-------------------------|-----------------------------------|
| $X_d$         | $\widetilde{\Omega}$ $\mathcal{H}$ | Synchrone Längsreaktanz | Direct axis synchronous reactance |
| $X_h$         | ЖΩ                                 | Hauptfeldreaktanz       | Main field reactance              |
| $X_{s\sigma}$ | $\widetilde{\mathcal{M}}$          | Statorstreureaktanz     | Stator leakage reactance          |

Christian Kral, »Gundlagen der Antriebstechnik«, Carl Hanser Verlag 2023, ISBN 978-3-446-47375-1

■ Seite 352, Bild 12.14a bis e, Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:



- Seite 353, Gl. (12.6), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $\underline{I}_h = \underline{I}_{\S_1} + \underline{I}'_e$
- Seite 353, Gl. (12.8), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $\underline{U}_s = R_s \cdot \underline{I}_{\begin{subarray}{c} \underline{1}\\ \underline{1} \end{subarray}} + \mathbf{j} \cdot X_d \cdot \underline{I}_{\begin{subarray}{c} \underline{1}\\ \underline{1} \end{subarray}} + \underline{U}_p$
- Seite 354, Gl. (12.11), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $P_{\text{Cu},s} = 3 \cdot R_s \cdot |\underline{I}_{\underbrace{\downarrow}_{\Sigma}}|^2 \approx 3 \cdot R_s \cdot |\underline{I}_{\underbrace{\downarrow}_{\Sigma}}|^2$
- $\bullet \ \ \text{Seite 354, Gl. (12.13), Str\"{o}me} \ \underline{I_1} \ \text{und} \ \underline{I_s} \ \text{geh\"{o}ren vertauscht:} \ P_s = 3 \cdot \text{Re}(\underline{U}_s \cdot \underline{I_{\downarrow s}^*}) = 3 \cdot |\underline{U}_s| \cdot |\underline{I_{\downarrow s}}| \cdot \cos(\varphi_s)$
- Seite 355, Tabelle 12.1: Vorzeichen der Leistungsterme einer SAsynchronmaschine
- Seite 369, Einheiten der Reaktanzen:

| Zeichen  | Einheit                                     | Größe                         | Quantity                             |
|----------|---------------------------------------------|-------------------------------|--------------------------------------|
| $X_{hd}$ | $\widetilde{\mathcal{M}}\widetilde{\Omega}$ | Hauptfeldreaktanz             | Main field reactance of the $d$ axis |
|          |                                             | $\operatorname{der} d$ -Achse |                                      |
| $X_q$    | $\widetilde{\Omega}$ $\mathcal{H}$          | Synchrone Querreaktanz        | Quadrature axis synchronous          |
| •        |                                             |                               | reactance                            |
| $X_{hq}$ | $\widetilde{\mathcal{M}}\widetilde{\mho}$   | Hauptfeldreaktanz             | Main field reactance of the $q$ axis |
|          |                                             | der <i>a</i> -Achse           |                                      |

• Seite 379, Bild 12.33, dritte Zeile der Bildunterschrift: ... (a) und (b) eine achsige ...

# 13 Selbstgeführter Stromrichter

- Seite 392, Abschnitt 13.2.1, dritte Zeile: . . . in der angegebenen Reihenfolge.
- Seite 392, Zeile oberhalb von Gl. (13.7): ... eines gleichwertigen Winkels: Vollblockbetrieb Vollblockbetrieb