Homework 3

Lydia Strebe

March 13, 2019

Problem 2

The following code builds a logistic regression model using LASSO to predict whether or not certain individuals have chronic heart disease.

```
set.seed(1)
library(glmnet)
## Warning: package 'glmnet' was built under R version 3.5.2
## Loading required package: Matrix
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.5.2
## Loaded glmnet 2.0-16
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.2
#Download the framingham.csv file from canvas.
og_framingham = read.csv("C:/Users/lydia/Documents/Framingham.csv", header =
TRUE)
#Delete missing entries.
framingham=na.omit(og_framingham)
#Split it into a training set and a test set.
test rows=sample(1:nrow(framingham),size=(nrow(framingham)/4),replace=FALSE)
framingham train=framingham[-test rows,]
framingham_test=framingham[test_rows,]
#Create Lambdas
grid=10^seq(-7,-1,length=100)
#Build logistic regression with LASSO
x=model.matrix(TenYearCHD~.,framingham_train)[,-1]
y=framingham train$TenYearCHD
lasso.mod=glmnet(x,y,alpha=1,lambda=grid,family="binomial")
plot(lasso.mod,xvar='lambda')
```


#Perform cross-validation on the training data to find the best value of Lambda

cv.out=cv.glmnet(x,y,alpha=1)
plot(cv.out)


```
bestlam=cv.out$lambda.min
bestlam
## [1] 0.005601457
#Fit a logistic LASSO on the entire training set using the best value of
Lambda.
train_log_lasso = glmnet(x,y,alpha=1,lambda=bestlam,family = "binomial")
coef(train_log_lasso)
## 16 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                   -8.021002404
## male
                    0.526628183
## age
                    0.060884798
## education
                   -0.008792854
## currentSmoker
                    0.011352682
## cigsPerDay
                    0.014450852
## BPMeds
## prevalentStroke
                    0.334861147
## prevalentHyp
                    0.073002862
## diabetes
                    0.014158948
## totChol
                    0.001719403
                    0.013224158
## sysBP
## diaBP
## BMI
```

```
## heartRate . ## glucose 0.006498471
```

The regressors that seem the most important to me are age, cigarettes per day, total cholesteral, and the prevelence of hypertension and stroke.

Predictions

The following code uses our model to predict whether or not an individual in our test set has chronic heart disease, and tries to find a probability threshold that yields a false negative rate of 5% or lower.

```
CHD_prob=predict(train_log_lasso,x,type = "response")
#False negative and positive rates with various thresholds
CHD pred 50=ifelse(CHD prob>0.5, "Yes", "No")
table_50=table(CHD_pred_50,framingham train$TenYearCHD)
CHD_fn_50=table_50[1,2]/(table_50[2,2]+table_50[1,2])
CHD fp 50=table 50[2,1]/(table 50[2,1]+table 50[1,1])
CHD pred 35=ifelse(CHD prob>0.35, "Yes", "No")
table 35=table(CHD pred 35, framingham train $TenYearCHD)
CHD_fn_35=table_35[1,2]/(table_35[2,2]+table_35[1,2])
CHD fp 35=table 35[2,1]/(table 35[2,1]+table 35[1,1])
CHD pred 25=ifelse(CHD prob>0.25, "Yes", "No")
table 25=table(CHD pred 25, framingham train$TenYearCHD)
CHD fn 25=table 25[1,2]/(table 25[2,2]+table 25[1,2])
CHD_fp_25=table_25[2,1]/(table_25[2,1]+table_25[1,1])
CHD pred 15=ifelse(CHD prob>0.15, "Yes", "No")
table 15=table(CHD pred 15, framingham train$TenYearCHD)
CHD_fn_15=table_15[1,2]/(table_15[2,2]+table_15[1,2])
CHD_fp_15=table_15[2,1]/(table_15[2,1]+table_15[1,1])
CHD_pred_10=ifelse(CHD_prob>0.1, "Yes", "No")
table 10=table(CHD pred 10, framingham train$TenYearCHD)
CHD fn 10=table 10[1,2]/(table 10[2,2]+table 10[1,2])
CHD_fp_10=table_10[2,1]/(table_10[2,1]+table_10[1,1])
CHD pred 06=ifelse(CHD prob>0.06, "Yes", "No")
table_06=table(CHD_pred_06,framingham_train$TenYearCHD)
CHD_fn_06=table_06[1,2]/(table_06[2,2]+table_06[1,2])
CHD_fp_06=table_06[2,1]/(table_06[2,1]+table_06[1,1])
CHD pred 07=ifelse(CHD prob>0.07, "Yes", "No")
table_07=table(CHD_pred_07,framingham_train$TenYearCHD)
CHD fn 07=table 07[1,2]/(table 07[2,2]+table 07[1,2])
CHD_fp_07=table_07[2,1]/(table_07[2,1]+table_07[1,1])
```

```
CHD pred 065=ifelse(CHD prob>0.065, "Yes", "No")
table 065=table(CHD pred 065, framingham train$TenYearCHD)
CHD_fn_065=table_065[1,2]/(table_065[2,2]+table_065[1,2])
CHD_fp_065=table_065[2,1]/(table_065[2,1]+table_065[1,1])
CHD pred 061=ifelse(CHD prob>0.061, "Yes", "No")
table 061=table(CHD pred 061, framingham train$TenYearCHD)
CHD_fn_061=table_061[1,2]/(table_061[2,2]+table_061[1,2])
CHD fp 061=table 061[2,1]/(table 061[2,1]+table 061[1,1])
CHD pred 062=ifelse(CHD prob>0.062, "Yes", "No")
table 062=table(CHD pred 062, framingham train$TenYearCHD)
CHD_fn_062=table_062[1,2]/(table_062[2,2]+table_062[1,2])
CHD_fp_062=table_062[2,1]/(table_062[2,1]+table_062[1,1])
#Create data frams for plots
threshold=c(50,35,25,15,10,7,6.5,6.2,6.1,6)
fn_rates=c(CHD_fn_50,CHD_fn_35,CHD_fn_25,CHD_fn_15,CHD_fn_10,CHD_fn_07,CHD_fn
065,CHD fn 062,CHD fn 061,CHD fn 06)
fp_rates=c(CHD_fp_50,CHD_fp_35,CHD_fp_25,CHD_fp_15,CHD_fp_10,CHD_fp_07,CHD_fp
065,CHD fp 062,CHD fp 061,CHD fp 06)
fp data=data.frame(threshold,fp rates)
fn data1=data.frame(threshold,fn rates)
fn data2=data.frame(
  "Threshold"=c(7,6.5,6.2,6.1,6),
  "FN Rate"=c(CHD fn 07,CHD fn 065,CHD fn 062,CHD fn 061,CHD fn 06))
#Plot false negative and false positive rates
ggplot()+geom_point(data=fp_data,aes(y=fp_rates,x=threshold),size=2,colour="d
arkred")->p1
p1+geom_point(data=fn_data1,aes(y=fn_rates,x=threshold),size=2,colour="purple
")->p2
p2+labs(title="False Positive and False Negative Rates")->p3
p3+labs(x="Threshold",y='False Positive/Negative Rate')->p4
p4+theme(panel.background=element rect(fill="lightpink"))->p5
p5+theme(plot.title=element text(hjust=0.5, face="bold", colour="darkred"))
```



```
#Plot false negative rates around 5%
ggplot(data=fn_data2,aes(y=FN.Rate,x=Threshold))+geom_point(size=2,colour="da
rkblue")->g1
g1+labs(title="A Closer Look at False Negative Rates")->g2
g2+labs(x="Threshold",y='False Negative Rate')->g3
g3+theme(panel.background=element_rect(fill="lightblue"))->g4
g4+theme(plot.title=element_text(hjust=0.5,face="bold",colour="darkblue"))->g5
g5+geom_hline(yintercept=0.05,color="red",size=1.5)
```

A Closer Look at False Negative Rates


```
CHD_fn_061
## [1] 0.04830918
CHD_fp_061
## [1] 0.7961373
```

The threshold that yields a false negative rate closest to (but not exceeding) 5% is 6.1%. We will use this on the test data.

```
#False negative and false positive rate on the test data using the threshold
chosen above
xtest=model.matrix(TenYearCHD~.,framingham_test)[,-1]
CHD_prob_test=predict(train_log_lasso,xtest,type = "response")
CHD pred test=ifelse(CHD prob test>0.061, "Yes", "No")
table test=table(CHD pred test,framingham test$TenYearCHD)
table_test
##
## CHD_pred_test
                   0
                       1
            No 157
##
            Yes 614 137
CHD_fn_test=table_test[1,2]/(table_test[2,2]+table_test[1,2])
CHD_fn_test
## [1] 0.04195804
```

```
CHD fp test=table test[2,1]/(table test[2,1]+table test[1,1])
CHD fp test
## [1] 0.7963684
The following code repeats the steps above using the 1se value of lambda.
#Select Lambda
lam 1se=cv.out$lambda.1se #Lambda one standard deviation out
train lasso 1se = glmnet(x,y,alpha=1,lambda=lam 1se,family = "binomial")
coef(train_lasso_1se)
## 16 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                  -4.5722950630
## male
                    0.0437117553
                    0.0355934242
## age
## education
## currentSmoker
## cigsPerDay
## BPMeds
## prevalentStroke
## prevalentHyp
## diabetes
## totChol
## sysBP
                    0.0072695018
## diaBP
## BMI
## heartRate
## glucose
                    0.0006180554
CHD_prob_1se=predict(train_lasso_1se,x,type = "response")
#False negative and positive rates with various thresholds
CHD_pred_07_1se=ifelse(CHD_prob_1se>0.07, "Yes", "No")
table 07_1se=table(CHD_pred_07_1se,framingham_train$TenYearCHD)
CHD fn 07 1se=table 07 1se[1,2]/(table 07 1se[2,2]+table 07 1se[1,2])
CHD fp 07 1se=table 07 1se[2,1]/(table 07 1se[2,1]+table 07 1se[1,1])
CHD_pred_08_1se=ifelse(CHD_prob_1se>0.08, "Yes", "No")
table 08 1se=table(CHD pred 08 1se, framingham train$TenYearCHD)
CHD_fn_08_1se=table_08_1se[1,2]/(table_08_1se[2,2]+table_08_1se[1,2])
CHD_fp_08_1se=table_08_1se[2,1]/(table_08_1se[2,1]+table_08_1se[1,1])
CHD_pred_10_1se=ifelse(CHD_prob_1se>0.1, "Yes", "No")
table 10 1se=table(CHD pred 10 1se,framingham train$TenYearCHD)
CHD fn 10 1se=table 10 1se[1,2]/(table 10 1se[2,2]+table 10 1se[1,2])
CHD_fp_10_1se=table_10_1se[2,1]/(table_10_1se[2,1]+table_10_1se[1,1])
CHD_pred_11_1se=ifelse(CHD_prob_1se>0.11, "Yes", "No")
table 11 1se=table(CHD pred 11 1se,framingham train$TenYearCHD)
```

```
CHD fn 11 1se=table 11 1se[1,2]/(table 11 1se[2,2]+table 11 1se[1,2])
CHD fp 11 1se=table 11 1se[2,1]/(table 11 1se[2,1]+table 11 1se[1,1])
CHD pred 105 1se=ifelse(CHD prob 1se>0.105, "Yes", "No")
table 105 1se=table(CHD pred 105 1se, framingham train $TenYearCHD)
CHD fn 105 1se=table 105 1se[1,2]/(table 105 1se[2,2]+table 105 1se[1,2])
CHD fp 105 1se=table 105 1se[2,1]/(table 105 1se[2,1]+table 105 1se[1,1])
CHD pred 103 1se=ifelse(CHD prob 1se>0.103, "Yes", "No")
table 103_1se=table(CHD_pred 103_1se,framingham_train$TenYearCHD)
CHD fn 103 1se=table 103 1se[1,2]/(table 103 1se[2,2]+table 103 1se[1,2])
CHD fp 103 1se=table 103 1se[2,1]/(table 103 1se[2,1]+table 103 1se[1,1])
CHD pred 101 1se=ifelse(CHD prob 1se>0.101, "Yes", "No")
table 101 1se=table(CHD pred 101 1se, framingham train$TenYearCHD)
CHD_fn_101_1se=table_101_1se[1,2]/(table_101_1se[2,2]+table_101_1se[1,2])
CHD fp 101 1se=table 101 1se[2,1]/(table 101 1se[2,1]+table 101 1se[1,1])
CHD pred 102 1se=ifelse(CHD prob 1se>0.102, "Yes", "No")
table 102 1se=table(CHD pred 102 1se, framingham train$TenYearCHD)
CHD fn 102 1se=table 102 1se[1,2]/(table 102 1se[2,2]+table 102 1se[1,2])
CHD fp 102 1se=table 102 1se[2,1]/(table 102 1se[2,1]+table 102 1se[1,1])
CHD pred 35 1se=ifelse(CHD prob 1se>0.35, "Yes", "No")
table 35 1se=table(CHD pred 35 1se,framingham train$TenYearCHD)
CHD_fn_35_1se=table_35_1se[1,2]/(table_35_1se[2,2]+table_35_1se[1,2])
CHD fp 35 1se=table 35 1se[2,1]/(table 35 1se[2,1]+table 35 1se[1,1])
CHD pred 25 1se=ifelse(CHD prob 1se>0.25, "Yes", "No")
table 25 1se=table(CHD pred 25 1se, framingham train$TenYearCHD)
CHD fn 25 1se=table 25 1se[1,2]/(table 25 1se[2,2]+table 25 1se[1,2])
CHD fp 25 1se=table 25 1se[2,1]/(table 25 1se[2,1]+table 25 1se[1,1])
CHD_pred_15_1se=ifelse(CHD_prob_1se>0.15, "Yes", "No")
table 15 1se=table(CHD pred 15 1se,framingham train$TenYearCHD)
CHD fn 15 1se=table 15 1se[1,2]/(table 15 1se[2,2]+table 15 1se[1,2])
CHD fp 15 1se=table 15 1se[2,1]/(table 15 1se[2,1]+table 15 1se[1,1])
#Create data frams for plots
threshold 1se=c(35,25,15,11,10,8,7)
fn_rates_1se=c(CHD_fn_35_1se,CHD_fn_25_1se,CHD_fn_15_1se,CHD_fn_11_1se,CHD_fn
_10_1se,CHD_fn_08_1se,CHD_fn_07_1se)
fp rates 1se=c(CHD fp 35 1se,CHD fp 25 1se,CHD fp 15 1se,CHD fp 11 1se,CHD fp
_10_1se,CHD_fp_08_1se,CHD_fp_07_1se)
fp data 1se=data.frame(threshold 1se,fp rates 1se)
fn data1 1se=data.frame(threshold 1se,fn rates 1se)
```

```
fn_data2_1se=data.frame(
    "Threshold"=c(10.5,10.3,10.2,10.1,10,8,7),
    "FN
Rate"=c(CHD_fn_105_1se,CHD_fn_103_1se,CHD_fn_102_1se,CHD_fn_101_1se,CHD_fn_10
    _1se,CHD_fn_08_1se,CHD_fn_07_1se))

#Plot false negative and false positive rates
ggplot()+geom_point(data=fp_data_1se,aes(y=fp_rates_1se,x=threshold_1se),size
=2,colour="darkred")->n1
n1+geom_point(data=fn_data1_1se,aes(y=fn_rates_1se,x=threshold_1se),size=2,colour="purple")->n2
n2+labs(title="False Positive and False Negative Rates 1SE")->n3
n3+labs(x="Threshold",y='False Positive/Negative Rate')->n4
n4+theme(panel.background=element_rect(fill="lightpink"))->n5
n5+theme(plot.title=element text(hjust=0.5,face="bold",colour="darkred"))
```

False Positive and False Negative Rates 1SE


```
#Plot false negative rates around 5%
ggplot(data=fn_data2_1se,aes(y=FN.Rate,x=Threshold))+geom_point(size=2,colour
="darkblue")->m1
m1+labs(title="A Closer Look at False Negative Rates 1SE")->m2
m2+labs(x="Threshold",y='False Negative Rate')->m3
m3+theme(panel.background=element_rect(fill="lightblue"))->m4
m4+theme(plot.title=element_text(hjust=0.5,face="bold",colour="darkblue"))->m5
m5+geom_hline(yintercept=0.05,color="red",size=1.5)
```

A Closer Look at False Negative Rates 1SE


```
CHD_fn_101_1se

## [1] 0.04830918

CHD_fp_101_1se

## [1] 0.8025751
```

The threshold that yields a false negative rate closest to (but not exceeding) 5% is 10.1%. We will use this on the test data.

```
#False negative and false positive rate on the test data using the threshold
chosen above
prob_test_1se=predict(train_lasso_1se,xtest,type = "response")
pred_test_1se=ifelse(prob_test_1se>0.101,"Yes","No")
table_test_1se=table(pred_test_1se,framingham_test$TenYearCHD)
table_test_1se

##
## pred_test_1se 0 1
## No 144 5
## Yes 627 138

fn_test_1se=table_test_1se[1,2]/(table_test_1se[2,2]+table_test_1se[1,2])
fn_test_1se
## [1] 0.03496503
```

```
fp_test_1se=table_test_1se[2,1]/(table_test_1se[2,1]+table_test_1se[1,1])
fp_test_1se
## [1] 0.8132296
```

Although we are not using the "best" lambda, and we are using a higher threshold, the false negative rate is surprisingly lower on our test data.