Programme de colle : semaine 13

Ι	Limites et continuité		1
	I.1	Questions de cours	1
		Enoncer et démontrer le théorème de caractérisation séquentielle de la limite d'une fonction	1
		Enoncer et démontrer le théorème de Heine	2
		Démontrer que l'image continue d'un compact est compact. Démontrer qu'une fonction	
		continue sur un intervalle est injective si et seulement si elle est strictement	
		monotone	2
	I.2	Exercices types	3
Η	Arithmétique des polynômes		4
	II.1	Questions de cours	4
		Enoncer et démontrer le théorème de la division euclidienne sur $\mathbb{K}[X]$	4
		Enoncer et démontrer le théorème de principalité dans $\mathbb{K}[X]$	4
		Enoncer et démontrer la caractérisation des PGCD par les idéaux de $\mathbb{K}[X]$	5
	11.2	Exercices types	6

Ι Limites et continuité

Questions de cours

Enoncer et démontrer le théorème de caractérisation séquentielle de la limite d'une fonction

Soit $f:X\to\mathbb{R}$ une fonction et $a\in\overline{X}$ et $\ell\in\overline{\mathbb{R}}.$ Sont équivalentes :

- 1. $\lim_{a} f = \ell \Leftrightarrow \forall u_n \to a, \lim f(u_n) = \ell \ (= f(\lim u_n))$
- 2. Pour toute suite (u_n) de limite a à valeurs dans X, la suite $(f(u_n))$ a pour limite ℓ .

$$1 \Rightarrow 2$$

On suppose que
$$\lim_{a} f = \ell$$
.
Soit $(u_n) \in X^{\mathbb{N}}$ avec $u_n \underset{n \to +\infty}{\longrightarrow} a$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U\cap X)\subset V\ (\lim_a f=\ell)$$

Comme $u_n \xrightarrow[n \to +\infty]{} a$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in U \cap X$$

Donc:

$$\forall n \ge N, f(u_n) \in V$$

Donc:

$$f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$$

$$1 \Leftarrow 2$$

Par contraposée. On suppose que f n'admet pas ℓ comme limite en a. Pour tout $n \in \mathbb{N}$, on note :

$$V_n = \begin{cases} \left[a - \frac{1}{n+1}, a + \frac{1}{n+1}\right] & \text{si } a \in \mathbb{R} \\ \left[n, +\infty\right] & \text{si } a = +\infty \\ \left[-\infty, -n\right] & \text{si } a = -\infty \end{cases}$$

Par définition, il existe $W \in \mathcal{V}(\ell)$ tel que pour tout $V \in \mathcal{V}(a)$, il existe $x \in V \cap X$ et $f(x) \neq W$. Pour tout $n \in \mathbb{N}$, on choisit $x_n \in V_n \cap X$ tel que $f(x_n) \neq W$.

Par construction:

$$(x_n) \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \text{ et } f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

Enoncer et démontrer le théorème de Heine

Théorème 15.65

Une fonction continue sur un segment est uniformément continue sur ce segment.

Rappel:

$$C^{0}(I): \forall x \in I, \forall \epsilon > 0, \exists \eta > 0, \forall y \in I, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$
$$Cu(I): \forall \epsilon > 0, \exists \eta > 0, \forall (x, y) \in I^{2}, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

On raisonne par l'absurde. Soit f continue sur [a,b] mais non uniformément continue sur [a,b]. On choisit ϵ tel que :

$$\forall \eta > 0, \exists (x, y) \in [a, b]^2, |x - y| < \eta \text{ et } |f(x) - f(y)| \ge \epsilon$$

Ainsi, pour tout $b \in \mathbb{N}^*$, on choisit un couple $(x_n, y_n) \in [a, b]^2$ tel que :

$$|x_n - y_n| < \frac{1}{n} \text{ et } \underbrace{|f(x_n) - f(y_n)|}_{(*)} \ge \epsilon$$

En particulier (x_n) est bornée donc d'après le théorème de Bolzano-Weierstrass, on en extrait $(x_{\varphi(n)})$ suite convergente vers ℓ .

D'après le TCILPPL, $\ell \in [a, b]$.

Comme:

$$\forall n \in \mathbb{N}, |x_{\varphi(n)} - y_{\varphi(n)}| < \frac{1}{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} 0$$

Alors:

$$y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell$$

Par continuité:

$$f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell) \text{ et } f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell)$$

Donc par opération:

$$|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \underset{n \to +\infty}{\longrightarrow} 0$$

Absurde d'après (*).

Démontrer que l'image continue d'un compact est compact. Démontrer qu'une fonction continue sur un intervalle est injective si et seulement si elle est strictement monotone

Lemme 15.68

L'image continue d'un compact est compact.

Soit I un segment, donc un intervalle.

Comme f est continue sur I, f(I) est un intervalle (TVI v3).

Montrons que f(I) est compact.

Soit $(y_n) \in f(I)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, soit $x_n \in I$ tel que :

$$y_n = f(x_n)$$

Or I est compact (15.67), on choisit :

$$x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell \in I$$

 $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} f(\ell)$ car f est continue sur I.

Théorème 15.72

Soit I un intervalle et f une fonction continue sur I. Alors f est injective si et seulement si f est strictement monotone.

 \Rightarrow

Supposons f non strictement monotone.

On peut supposer qu'il existe alors :

tels que f(x) < f(y) et f(z) < f(y).

Soit:

$$\lambda = \frac{f(y) + \max(f(y), f(z))}{2} \in]f(x), f(y)[$$
$$\in]f(z), f(y)[$$

Par continuité de f sur les intervalles]x,y[et]y,z[, il existe $\alpha\in]x,y[$ et $\beta\in]y,z[$ tels que :

$$f(\alpha) = \lambda = f(\beta)$$

Donc f n'est pas injective.

I.2 Exercices types

Exercice 1

Soit f et g dans $\mathcal{C}(\mathbb{R}, \mathbb{R})$ telles que $f|_{\mathbb{Q}} = g|_{\mathbb{Q}}$. Montrer alors que f et g sont égales sur \mathbb{R} tout entier.

Exercice 2

Soit $f \in \mathcal{C}([a,b],\mathbb{R})$. On suppose que

$$f([a,b]) \subset [a,b]$$
 ou $[a,b] \subset f([a,b])$

Montrer qu'alors f possède un point fixe.

Exercice 3

Soit $(f,g) \in \mathcal{C}([a,b],\mathbb{R})$. On suppose que

$$f([a,b]) \subset [a,b]$$
 et $g([a,b]) \subset [a,b]$ et $f \circ g = g \circ f$

- 1. Montrer que si f > g sur l'intervalle [a,b], il existe K > 0 tel que pour tout $n \in \mathbb{N}, f^n \ge g^n + nK$ sur [a,b], où f^n désigne la composée.
- 2. En déduire que les graphes de f et g possèdent un point d'intersection.

TT Arithmétique des polynômes

II.1 Questions de cours

Enoncer et démontrer le théorème de la division euclidienne sur $\mathbb{K}[X]$

Théorème 16.1

Soit $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]$ non nul, il existe un unique couple de polynômes (Q, R) tel que A = BQ + Ravec $\deg R < \deg B$. Le polynôme Q est appelé **quotient** et R le **reste**.

Existence:

On raisonne par récurrence sur le degré de A.

- Pour $n = \deg A = 0$. Soit $A \in \mathbb{K}[X]$.
 - Si $\deg B > 0$, alors (0, A) convient.
 - Si deg B=0, le couple $(B^{-1}\times A,0)$ convient (comme B est constant et non nul), alors $B\in\mathbb{K}^*$ donc inversible).
- On suppose le résultat vrai pour tout $A \in \mathbb{K}_n[X]$.

Soit
$$A \in \mathbb{K}_{n+1}[X]$$
 avec $\deg A = n+1$.
On écrit $A = \underbrace{a}_{A_1} X^{n+1} + A_1$ avec $A_1 \in \mathbb{K}_n[X]$.

- Si $\deg A < \deg B$, le couple (0, A) convient.
- Si $\deg A \ge \deg B$ et on note b le coefficient dominant de B :

$$A - ab^{-1}B \times X^{n+1-\deg B} \in \mathbb{K}_n[X]$$

D'après l'hypothèse de récurrence, on choisit $(Q,R) \in \mathbb{K}[X]^2$ tel que deg $R < \deg B$ et $A - ab^{-1}B \times$ $X^{n+1-\deg B} = QB + R.$

Donc:

$$A = \left[Q + ab^{-1}X^{n+1-\deg A}\right] \times B + R$$

Unicité:

On suppose que $A = BQ + R = BQ_1 + R_1$.

Donc:

$$B(Q-Q_1) = R_1 - R$$

$$\operatorname{donc} \underbrace{\deg \left(B(Q-Q_1)\right)}_{\operatorname{deg} B + \operatorname{deg} Q - Q_1} = \operatorname{deg} \left(R_1 - R\right)$$

$$\leq \max(\operatorname{deg} R_1, \operatorname{deg} R)$$

$$< \operatorname{deg} B$$

$$\operatorname{donc} \operatorname{deg} \left(Q - Q_1\right) < 0$$

$$\operatorname{donc} Q - Q_1 = 0$$

$$\operatorname{puis} R_1 - R = 0$$

Enoncer et démontrer le théorème de principalité dans $\mathbb{K}[X]$

Théorème 16.15

Soit I un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$. Il existe un unique polynôme unitaire D tel que

$$I = D\mathbb{K}[X]$$

Existence:

Soit $I \neq \{0\}$ un idéal.

On note $A = \{ \deg P, P \in I \setminus \{0\} \} \subset \mathbb{N}$.

 $A \neq \emptyset$ $(I \neq \{0\})$, d'après la propriété fondamentale de N, A possède un plus petit élément noté $n \geq 0$.

Comme $n \in A$, on choisit $D \in I$ tel que deg D = n.

Comme I est un idéal de $\mathbb{K}[X]$ et que $\mathbb{K} = \mathbb{K}_0[X] \subset \mathbb{K}[X]$, on a :

$$\forall \alpha \in \mathbb{K}, \alpha D \in I$$

On peut donc supposer D unitaire. Comme I est un idéal de $\mathbb{K}[X]$, on a :

$$D \times \mathbb{K}[X] \subset I$$

Soit $P \in I$. On effectue la division euclidienne de P par $D \neq 0$:

$$P = BD + R$$

avec $\deg R \subset \deg D$.

Or:

$$R = \underbrace{P}_{\in I} - \underbrace{BD}_{\in I}$$

Par définition de deg D = n, R = 0.

<u>Unicité</u>:

$$I = D\mathbb{K}[X] = J\mathbb{K}[X]$$

avec D et J unitaires.

Or ils sont associés, donc égaux.

Enoncer et démontrer la caractérisation des PGCD par les idéaux de $\mathbb{K}[X]$

Propostion 16.18

Soit A et B deux polynômes non tous deux nuls. Soit $D \in \mathbb{K}[X]$. Alors D est un PGCD de A et B si et seulement si

$$A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D'après (16.15), on choisit $F \in \mathbb{K}[X]$ tel que :

$$A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Soit $D \in \mathbb{K}[X]$.

 \Rightarrow

On suppose que D est un PGCD.

Donc D|A et D|B.

Donc D|F (combinaison $F \in A\mathbb{K}[X] + B\mathbb{K}[X]$).

Or F|A et F|B $(A \in F\mathbb{K}[X], B \in F\mathbb{K}[X])$.

Par maximalité de $\deg D$, on a F et D associés.

 \leftarrow

$$D\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Donc D|A et D|B.

Pour tout diviseur commun P de A et B, P|A et P|B.

Donc $P|D\ (D \in A\mathbb{K}[X] + B\mathbb{K}[X])$.

Donc $\deg D$ est maximal pour la divisibilité.

II.2 Exercices types

Exercice 1

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par les relations

$$P_0 = 0, P(1) = 1 \text{ et } \forall n \in \mathbb{N}, P_{n+2} = XP_{n+1} - P_n$$

- 1. Déterminer P_2 et P_3 .
- 2. Pour tout $n \in \mathbb{N}^*$, déterminer le degré et le coefficient dominant de P_n .
- 3. Montrer que pour tout $n \in \mathbb{N}, P_{n+1}^2 = 1 + P_n P_{n+2}$.
- 4. En déduire que pour tout $n \in \mathbb{N}, P_n$ et P_{n+1} sont premiers entre eux.
- 5. Montrer que pour tout $m \in \mathbb{N}$ et pour tout $n \in \mathbb{N}^*$, on a

$$P_{m+n} = P_n P_{m+1} - P_{n-1} P_m$$

6. Montrer que pour tout $m \in \mathbb{N}$ et tout $n \in \mathbb{N}^*$, on a

$$P_{m+n} \wedge P_n = P_n \wedge P_m$$

En déduire que

$$P_m \wedge P_n = P_n \wedge P_r$$

où r est le reste de la division euclidienne de m par n.

7. Conclure que pour tout $m \in \mathbb{N}$ et tout $n \in \mathbb{N}^*$, on a

$$P_n \wedge P_m = P_{n \wedge m}$$
.

Exercice 2

Calculer le reste de la division euclidienne de X^n par $(X-1)^4$ pour tout $n \ge 4$.

Exemple 3

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On note P le polynôme $(X+1)^n - e^{2inn}$.

- 1. Déterminer les racines de P dans \mathbb{C} .
- 2. En déduire que P est scindé à racines simples sur \mathbb{C} .
- 3. Simplifier le produit $\prod_{k=0}^{n-1} \sin \left(\theta + \frac{k\pi}{n}\right)$.

Exercice 4

Soit $P \in \mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}, P(x) \ge 0$.

- 1. Montrer que si $P \neq 0$, alors toute racine réelle de P est de multiplicité paire.
- 2. En déduire que $P = A^2 + B^2$, avec $(A, B) \in (\mathbb{R}[X])^2$.