## 排序

希尔排序: PS序列

They are like the leaves which a tempest whirls up and scatters in every direction and then allows to fall.



## d-Sorting an O(d)-Ordered Sequence in O(dn) Time

- **�** If  ${\bf g}$  and  ${\bf h}$  are relatively prime and are both in  ${\cal O}(d)$  we can d-sort the sequence in  ${\cal O}(dn)$  time ...
  - re-arrange the sequence as a 2D matrix with d columns
  - each element is swapped with  $\mathcal{O}((g-1)\cdot (h-1)/d) = \mathcal{O}(d)$  elements



 $\clubsuit$  Since this holds for all elements,  $\mathcal{O}(dn)$  steps are enough

## **PS Sequence**

❖ Papernov & Stasevic, 1965 //also called Hibbard's sequence

$$\mathcal{H}_{PS} = \mathcal{H}_{Shell} - 1 = \{ 2^k - 1 \mid k \in \mathcal{N} \} = \{ 1, 3, 7, 15, 31, 63, 127, 255, \dots \}$$

- $\clubsuit$  Different items MAY NOT be relatively prime, e.g.,  $h_{2k} = h_k \cdot (h_k + 2)$ 
  - But ADJACENT items MUST be, since  $h_{k+1}-2\cdot h_k\equiv 1$
- riangle Shellsort with  $\mathcal{H}_{PS}$  needs
  - $\mathcal{O}(\log n)$  outer iterations and
  - $\mathcal{O}(n^{3/2})$  time to sort a sequence of length n //Why ...

- � Let  $h_t$  be the h closest to  $\sqrt{n}$  and hence  $h_t pprox \sqrt{n} = \Theta(n^{1/2})$
- 1) Consider those iterations for  $\{\ h_k \mid t < k\ \} = \{\ \overleftarrow{h_{t+1},\ h_{t+2},\ \dots,\ h_m}\ \}$ 
  - $oldsymbol{arphi}$  there would be  $\mathcal{O}(n/h_k)$  elements in each of the  $h_k$  columns
  - $\therefore$  we can insertionsort each column in  $\mathcal{O}((n/h_k)^2)$  time
  - $\therefore$  each  $\mathsf{h_k} ext{-sorting costs}\; \mathcal{O}(n^2/h_k)$  time
  - $\mathcal{O}(2 \times n^2/h_t) = \mathcal{O}(n^{3/2})$

$$k = t$$
  
 $h_k = h_t$ 

- 2) Consider those iterations for  $\{\ h_k \mid k \leq t\ \} = \{\ \overleftarrow{h_1,\ h_2,\ \dots,\ h_t}\ \}$ 
  - $oldsymbol{arphi}$   $h_{k+1}$  and  $h_{k+2}$  are relatively prime and are both in  $\mathcal{O}(h_k)$
  - $\therefore$  each  $\mathbf{h_k}$ -sorting costs  $\mathcal{O}(n \times h_k)$  time
  - $\therefore$  all these iterations cost  $\mathcal{O}(n \times 2 \cdot h_t) = \mathcal{O}(n^{3/2})$  time
- This upper bound is TIGHT
- What about the average cases?
  - $\mathcal{O}(n^{5/4})$  based on simulations
  - but not proved yet

$$x = t$$
  
 $h_k = h_t$