print('\033[1m' + 'Continuous Features'):

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import statistics
from sklearn.impute import KNNImputer
import seaborn as sns
adf = pd.read_csv('auto-mpg.csv')
numerical =['mpg','displacement','horsepower','acceleration','weight']
categorical =['cylinders','year','origin','carname']
print("Data Quality Report".center(100));
print("-----".center(100));
print('\033[1m' + 'ABT for Auto-mpg dataset');
#display(adf)
print('\033[1m' + 'Numerical Features');
display(adf[numerical].describe())
fig, ax=plt.subplots(1,5,figsize=(18,6))
adf_for_hist=adf[numerical]
adf_for_hist.hist(bins=15, alpha=0.5, ax=ax)
plt.show();
print('\033[1m' + 'Categorical Features');
display(adf[categorical].describe())
sns.countplot(adf['cylinders']);
plt.title('No of Cylinders');
plt.show();
sns.countplot(adf['year']);
plt.title('Year')
plt.show();
plt.title('Origin');
sns.countplot(adf['origin']);
plt.show();
#For handling outliers and missing values
#Finding the outlier
Q1 = adf.quantile(0.25)
Q3 = adf.quantile(0.75)
IQR = Q3 - Q1
#Identifying lower and upper bound outliers for attributes
Lower_Fence = Q1 - (1.5 * IQR)
Upper_Fence = Q3 + (1.5 * IQR)
#Removing the outlier
adf_{out} = adf[\sim((adf < (Q1 - 1.5 * IQR)) | (adf > (Q3 + 1.5 * IQR))).any(axis=1)]
#impute missing values
knn_imputer = KNNImputer(n_neighbors=3)
impute_copy = adf[['mpg', 'cylinders', 'displacement', 'horsepower', 'weight','acceleration','year','origin']].co
py()
df_filled = knn_imputer.fit_transform(impute_copy)
#Converting to Dataframe
new_df=pd.DataFrame(df_filled)
new_df.columns=['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin']
print('\033[1m' + 'Data Quality table after removing outliers and imputing missing values');
```

fig = go.Figure(data=[go.Table(header=dict(values=['Feature', 'Count', 'Missing Value', 'Cardinality', 'Min', '1st Qrt.','Median','3rd Qrt.','Max','Std.dev']), cells=dict(values=[['mpg','displacement','horsepower','weight','acceleration'], [new_df['mpg'].c ount(), new_df['displacement'].count(), new_df['horsepower'].count(), new_df['acceleration'].count(),new_df['weig ht'].count()],[new_df['mpg'].isnull().sum(),new_df['displacement'].isnull().sum(),new_df['horsepower'].isnull().s um(),new_df['weight'].isnull().sum(),new_df['acceleration'].isnull().sum()],[new_df['mpg'].unique().size,new_df[' $\label{linear_displacement'} \verb| .unique().size, new_df['horsepower'].unique().size, new_df['weight'].unique().size, new_df['acceleration of the context of$ on'].unique().size],[new_df['mpg'].min(),new_df['displacement'].min(),new_df['horsepower'].min(),new_df['weight'] .min(),new_df['acceleration'].min()],[new_df['mpg'].quantile(0.25),new_df['displacement'].quantile(0.25),new_df[' horsepower'].quantile(0.25),new_df['weight'].quantile(0.25),new_df['acceleration'].quantile(0.25)],[new_df['mpg'] .median(),new_df['displacement'].median(),new_df['horsepower'].median(),new_df['weight'].median(),new_df['acceler ation'].median()],[new_df['mpg'].quantile(0.75),new_df['displacement'].quantile(0.75),new_df['horsepower'].quanti le(0.75),new_df['weight'].quantile(0.75),new_df['acceleration'].quantile(0.75)],[new_df['mpg'].max(),new_df['disp lacement'].max(),new_df['horsepower'].max(),new_df['weight'].max(),new_df['acceleration'].max()],[new_df['mpg'].s td(),new_df['displacement'].std(),new_df['horsepower'].std(),new_df['weight'].std(),new_df['acceleration'].std()] 1) fig.update_layout(width=1500, height=400) fig.show() print('\033[1m' + 'Categorical Features'); fig1 = go.Figure(data=[go.Table(header=dict(values=['Feature', 'Count', 'Missing Value', 'Cardinality', 'Mode']), cells=dict(values=[['Cylinders','Origin','Year'], [new_df['cylinders'].count(), new_df['origin'] .count(), new_df['year'].count()],[new_df['cylinders'].isnull().sum(),new_df['origin'].isnull().sum(),new_df['yea r'].isnull().sum()],[new_df['cylinders'].unique().size,new_df['origin'].unique().size,new_df['year'].unique().siz e],[statistics.mode(adf['cylinders']),statistics.mode(adf['origin']),statistics.mode(adf['year'])]])) 1)

Data Quality Report

ABT for Auto-mpg dataset Numerical Features

fig1.show()

	mpg	displacement	horsepower	acceleration	weight
count	398.000000	406.000000	400.000000	406.000000	406.000000
mean	23.514573	194.779557	105.082500	15.519704	2952.305419
std	7.815984	104.922458	38.768779	2.803359	891.587329
min	9.000000	68.000000	46.000000	8.000000	19.000000
25%	17.500000	105.000000	75.750000	13.700000	2220.000000
50%	23.000000	151.000000	95.000000	15.500000	2811.000000
75%	29.000000	302.000000	130.000000	17.175000	3612.000000
max	46.600000	455.000000	230.000000	24.800000	5140.000000

Categorical Features

	cylinders	year	origin
count	406.000000	406.000000	406.000000
mean	5.500000	75.921182	1.568966
std	1.789889	3.748737	0.797479
min	3.000000	70.000000	1.000000
25%	4.000000	73.000000	1.000000
50%	4.000000	76.000000	1.000000
75%	8.000000	79.000000	2.000000
max	16.000000	82.000000	3.000000

Data Quality table after removing outliers and imputing missing values Continuous Features

Feature	Count	%Missing Value	Cardinality	Min	1st Qrt.
mpg	406	0	134	9	17
displacement	406	0	83	68	105
horsepower	406	0	98	46	75
weight	406	0	357	19	2220
acceleration	406	0	96	8	13.7

4

Categorical Features

Feature	Count	%Missing Value	Cardinality	Mode
Cylinders	406	0	6	4
Origin	406	0	3	1
Year	406	0	13	73

In [10]:

In []: