07 - Consistencia y replicación

Cristian Ruz - cruz@ing.puc.cl

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile

Semestre 2-2020

C.Ruz (PUC) IIC2523 2/2020 1/17

Contenidos

- Modelos de consistencia data-centric
- Modelos de consistencia client-centric

C.Ruz (PUC) IIC2523 2/2020 2/17

Rendimiento y escalabilidad

- Réplicas aumentan la disponibilidad (y la escalabilidad)
- Réplicas traen el problema de la consistencia

Operaciones conflictivas

Para mantener consistencia, se debe asegurar que todas las **operaciones conflictivas** se ejecuten en el mismo orden en cada réplica.

Operaciones conflictivas

- Conflicto read-write: operaciones de lectura y escritura concurrentes
- Conflicto write-write: dos operaciones de escritura concurrentes
- Ausencia de un coordinador global

¿Soluciones?

Garantizar orden global de operaciones conflictivas puede ser costoso, y afecta la escalabilidad.

Solución propuesta: relajar requisitos de consistencia

Modelos de consistencia data-centric

Modelo de consistencia

Modelo de consistencia

Contrato entre base de datos (distribuida) y procesos.

La base de datos determina de manera precisa como se comportan los resultados de operaciones conflictivas.

La base de datos es una colección distribuida de almacenamiento:

Consistencia contínua

Hay grados de consistencia entre réplicas

- Diferencias en valores numéricos
- Diferencias en periodos de actualización (staleness)
- Diferencias en el orden de ejecución de operaciones

Conit: unidad de consistencia (*consistency unit*). Unidad de datos sobre los cuales analizaremos consistencia.

C.Ruz (PUC) IIC2523 2/2020 5/17

Consistency unit

Vector clock A = (11, 5)= 3 Order deviation Numerical deviation = (2, 482)

Replica B

Vector clock B = (0, 8)= 1 Order deviation Numerical deviation = (3, 686)

Las variables g, p, d forman un **conit**.

- Cada réplica tiene su vector clock
- B envía a A la operación $[\langle 5, B \rangle : g \leftarrow g + 45]$
- Operaciones en gris están commited
- A tiene tres operaciones pendientes de commit
- A no ha visto dos operaciones de B

Consistencia Secuencial

Consistencia Secuencial

El resultado de cualquier ejecución debe ser el mismo que si las operaciones de todos los procesos se ejecutasen en algún orden secuencial, y las operaciones de cada proceso individual deben ocurrir en el mismo orden que están especificadas en el programa

Consistencia Secuencial

Cualquier interleaving es válido, pero todos deben ver el mismo orden.

P1: W(x)a			P1: W(x)a			
P2:	W(x)b			P2:	W(x)b			
P3:		R(x)b	R(x)a	P3:		R(x)b	R(x)	a
P4:		R(x)b	R(x)a	P4:		R(x)a R(x)	b

El primero cumple consistencia secuencial
El segundo NO cumple consistencia secuencial

- SSQUITUS 113 - SSQUITUS 4日ト 4 恵 4 ـ 上 4 ـ 上

Consistencia Secuencial

Process P ₁	Process P ₂	Process P ₃
x ← 1;	y ← 1;	z ← 1;
<pre>print(y,z);</pre>	<pre>print(x,z);</pre>	<pre>print(x,y);</pre>

3 procesos, 2 operaciones cada uno. 90 ejecuciones mezcladas posibles.

Execution 1	Execution 2	Execution 3	Execution 4	
P ₁ : x ← 1;	$\begin{array}{lll} P_1; & x \leftarrow 1; \\ P_2; & y \leftarrow 1; \\ P_2: & print(x,z); \\ P_1; & print(y,z); \\ P_3; & z \leftarrow 1; \\ P_3; & print(x,y); \end{array}$	P ₂ : y ← 1;	P ₂ : y ← 1;	
P ₁ : print(y,z);		P ₃ : z ← 1;	P ₁ : x ← 1;	
P ₂ : y ← 1;		P ₃ : print(x,y);	P ₃ : z ← 1;	
P ₂ : print(x,z);		P ₂ : print(x,z);	P ₂ : print(x,z);	
P ₃ : z ← 1;		P ₁ : x ← 1;	P ₁ : print(y,z);	
P ₃ : print(x,y);		P ₁ : print(y,z);	P ₃ : print(x,y);	
Prints: 001011	Prints: 101011	Prints: 010111	Prints: 111111	
Signature: 0 0 1 0 1 1	Signature: 10 10 11	Signature: 11 01 01	Signature: 11 11 11	
(a)	(b)	(c)	(d)	

Aquí se muestran cuatro de las 90 posibles. Menos de 64 resultados distintos.

C.Ruz (PUC) IIC2523 2/2020 8/17

Consistencia Causal

Consistencia Causal

Los *writes* que están **potencialmente causalmente relacionados** debe ser vistos en el mismo orden por todos los proceos. Los *writes* **concurrentes** puede ser visto en orden distinto por procesos diferentes.

P1: W(x)	а		W(x)c			
P2:	R(x)a	W(x)b				
P3:	R(x)a			R(x)c	R(x)b	
P4:	R(x)a			R(x)b	R(x)c	

Causal, pero no secuencial

C.Ruz (PUC) IIC2523 2/2020 9/17

Consistencia Causal

Consistencia Causal

Los *writes* que están **potencialmente causalmente relacionados** debe ser vistos en el mismo orden por todos los proceos. Los *writes* **concurrentes** puede ser visto en orden distinto por procesos diferentes.

P1: W(x)a					P1: W(x)a			
P2:	R(x)a	W(x)b			P2:	W(x)b		
P3:			R(x)b	R(x)a	P3:		R(x)b	R(x)a
P4:			R(x)a	R(x)b	P4:		R(x)a	R(x)b

El primero **NO cumple consistencia causal** El segundo **cumple consistencia causal**

C.Ruz (PUC) IIC2523 2/2020 10 / 17

Consistencia Causal

Consistencia Causal

Los *writes* que están **potencialmente causalmente relacionados** debe ser vistos en el mismo orden por todos los proceos. Los *writes* **concurrentes** puede ser visto en orden distinto por procesos diferentes.

P1: W(x)a				
P2:	R(x)a	W(y)b		
P3:			R(y)b	R(x)?
P4:			R(x)a	R(y)?

¿Qué deberían indicar $R_3(x)$ ó $R_4(x)$?

C.Ruz (PUC) IIC2523 2/2020 11/17

Agrupamiento de operaciones

Podemos agrupar operaciones usando locks

- Acceso a locks usa consistencia secuencial
- No se puede acceder al lock hasta que todos los write se hayan completado
- No se puede acceder a los datos hasta que todos los acceso a locks han sido realizados.

Entry Consistency

P1: L(x) W(x)a L(y) W(y)b U(x) U(y)

P2: L(x) R(x)a R(y) NIL

P3: L(y) R(y)b

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q (*)

12 / 17

Consistencia en usuarios móviles

Ejemplo: base de datos distribuida

- Se ejecutan lectura y escrituras desde la ubicación A
- Al llegar a la ubicación B puede pasar varias cosas:
 - Actualizaciones de A pueden no haber sido propagadas aún
 - Pueden haber entradas más recientes que las de A
 - Las actualizaciones en B pueden causar conflicto con las de A

Lecturas monotónicas

Lecturas monotónicas

Si un proceso lee la variable x, cualquier operación sucesiva de lectura de x debe entregar el mismo valor o uno más reciente.

- Lectura en dos ubicaciones: L1 y L2
- Izq: con lecturas monotónicas
- Der: sin lecturas monotónicas

Notación

- $W_1(x_2)$: escritura de P_1 que lleva a versión x_2 de x
- $W_1(x_i; x_i)$: P_1 produce versión x_i basada en versión previa de x_i .
- $W_1(x_i|x_j)$: P_1 produce versión x_j de manera concurrente a x_i .

Ej: lectura de correo, lectura de agenda, desde distintos servidores

C.Ruz (PUC) IIC2523 2/2020 14 / 17

Escrituras monotónicas

Escrituras monotónicas

Una escritura de x por un proceso es completa antes de cualquier escritura posterior de x por el mismo proceso.

- (a) Consistente con escritura monotónica
- (b) No escritura monotónica
- (c) No escritura monotónica, pues $W_s(x_1|x_2)$ y $W_s(x_1|x_3)$
- (d) Consistente. $W_s(x_1; x_3)$ aunque x_1 ha sobreescrito aparentemente x_2

Ejemplos: mantener archivos replicados en el orden correcto en todos los repositorios, aunque implique enviar versiones antiguas

C.Ruz (PUC) IIC2523 2/2020 15 / 17

Read your writes

Read your writes

El efecto de un write de un proceso en x, siempre será visto por un read posterior de x en el mismo proceso.

- (a) Consistencia read-your-writes
- (b) No consistente bajo read-your-writes

(a)
$$\frac{L1: W_1(x_1)}{L2: W_2(x_1;x_2)} = R_1(x_2)$$
 (b) $\frac{L^2}{L^2}$

(b)
$$\frac{L1: W_1(x_1)}{L2: W_2(x_1|x_2)} R_1(x_2)$$

Ejemplo: actualizar una página web, y asegurarse que el navegador muestre la última versión en lugar de una copia en caché

4□ > 4□ > 4 = > 4 = > = 90

Writes follow reads

Writes follow readas

Una operación de escritura de un proceso en x que sigue a un read de x en el mismo procso, debe ocurrir garantizadamente sobre un valor de x igual o más reciente al que acaba de ser leido.

- (a) Consistencia writes-follow-reads
- (b) No consistente bajo read your writes

Ejemplo: ver reacciones a artículos solamente si se está viendo la publicación original

4□ > 4□ > 4 = > 4 = > = 90

17 / 17

C.Ruz (PUC) IIC2523 2/2020