

Hydraulics & Water Resources

HYDRAULICS AND WATER RESOURCES

National Conference on Hydraulics & Water Resources

HYDRO - 2007

December 21-22, 2007

Edited by

P. L. PATEL • B. K. SAMTANI A. D. GHARE • J. N. PATEL

Organised by

Sardar Vallabhbhai National Institute of Technology, Surat

&

Indian Society for Hydraulics

In association with

L. D. College of Engineering, Ahmedabad Maulana Azad National Institute of Technology, Bhopal Malviya National Institute of Technology, Jaipur Visvesvaraya National Institute of Technology, Nagpur Indian Institute of Technology Bombay, Mumbai

Elite Publishing House Pvt Ltd

\odot ELITE PUBLISHING HOUSE PVT. LTD., 2007

All rights reserved. No part of this publication may be reproduced without prior permission.

ISBN: 81-88901-32-6

Published by R. Gangadharan for Elite Publishing House Pvt. Ltd. 302, JMD House, 4-B, Ansari Road, Daryaganj, New Delhi-110002

Phone: 41004299, 26194323, 9810666503

E-mail: rg_elite@yahoo.com

Typesetting: Sai Graphic Design, 8694 D.B. Gupta Road, New Delhi-110055 Printed at Chaman Offset, New Delhi-110002

PRINTED IN INDIA

FOREWORD

The Indian Society for Hydraulics (ISH) has been set up in 1992 as a technical, education and non-profitary voluntary National Organization to encourage and foster understanding to concerned engineers and scientists engaged in various originations related to Hydraulics. One of the major objectives of the ISH is to organize National level Conference HYDRO every year for dissemination of recent contributions in the field of Hydraulics and Water Resources Engineering from scientists, academicians and Engineers. Last year HYDRO-2006 was held at Bharati Vidyapeeth College of Engineering Pune during Dec.08-09, 2006. Prior to last year conference, HYDRO conferences were held at IIT Kanpur, NIT Kurukshetra, CWPRS Pune, SIT, Tumkur, VNIT Nagpur and IIT Powai.

Sardar Vallabhbhai National Institute of Technology, SVNIT, Surat & Indian Society for Hydraulics (ISH) is organizing, National Conference on Hydraulics & Water Resources, HYDRO – 2007, during December 21-22, 2007 at SVNIT in association with L.D. College of Engineering, Ahmedabad, Maulana Azad National Institute of Technology, Bhopal, Malaviya National Institute of Technology, Jaipur, Visvesvaraya National Institute of Technology, Nagpur and Indian Institute of Technology Bombay, Mumbai.

The themes of the Conference are:

- 1. Water Resources & Hydrology
- 2. Environmental Hydraulics
- 3. Fluvial Hydraulics
- 4. Costal, Harbour and Ocean Engineering
- 5. Maritime Structures

- 6. Hydraulic Structures and Hydro Power Projects
- 7. Hydraulic Instrumentation
- 8. Soft Computing Techniques
- 9. Application of Geospatial Technologies
- 10. Fluid Mechanics

The proceedings of the Conference, HYDRO-2007, contain technical papers, presented under the above themes and cover wide spectrum of research studies, case studies, review papers and papers related to management of water resources. It is hoped that the wealth of information covered in these papers would be very useful to the professionals working in the field of Hydraulic Engineering.

We take this opportunity to express our sincere thanks and gratitude to all the members of the Technical Committee as well as the Organizing Committee along with their volunteers, sponsorers for providing financial support and the authors to make this conference a grand success.

Dr. M. C. Deo President-ISH Professor & Head, Civil Engg. Dept., IIT Bombay Chairman, HYDRO - 2007 **Dr. B. K. Samtani**Organising Secretary
HYDRO-2007
SVNIT, Surat

Dr. P. D. PoreyDirector
SVNIT, Surat

SPONSORERS

- Technical Education Quality Improvement Programme, New Delhi
- All India Council for Technical Education, New Delhi
- Department of Science and Technology, New Delhi
- Council for Scientific and Industrial Research, New Delhi
- · University Grants Commission, New Delhi
- National Institute of Technology, Agartala
- M N National Institute of Technology, Allahabad
- · National Institute of Technology, Calicut
- National Institute of Technology, Durgapur
- National Institute of Technology, Hamirpur
- National Institute of Technology, Jamshedpur
- · National Institute of Technology, Jallandar
- National Institute of Technology, Kurukshetra
- National Institute of Technology, Patna
- · National Institute of Technology, Raipur
- National Institute of Technology, Rourkela
- National Institute of Technology, Silchar
- National Institute of Technology, Srinagar
- National Institute of Technology, Surathkal
- · National Institute of Technology, Trichi
- National Institute of Technology, Warangal
- Indian Institute of Technology, Roorkee
- Indian Institute of Technology, Kanpur
- Indian Institute of Technology Madras, Chennai
- G H Raisoni College of Engineering, Nagpur
- National Thermal Power Coporation Ltd., New Delhi
- Reliance Energy Limited, Noida
- ESSAR Power Gujarat Ltd., Mumbai
- · Ambuja Cements Ltd., Ahmedabad
- DHI (I) Water and Environment (P) Ltd., New Delhi
- Water and Power Consultancy Services (I) Ltd., Gurgaon
- Rachna Pipes, Surat
- Environmental Measurements and Control, Kochi

ORGANISING COMMITTEE

Director & Patron : **Dr. P.D. Porey**, Director, SVNIT, Surat.

Chairman : Prof. M.C. Deo, President ISH, IIT, Bombay

Co-chairman : Shri P.B. Deolalikar, Vice President ISH

Dr. N.J. Mistry, Prof & Head, CED, SVNIT

Organising Secretaries : Prof. B.K. Samtani, SVNIT

Dr. S. Balakrishna, ISH, CWPRS, Pune

Joint Secretaries : Prof. J.N. Patel, SVNIT

Prof. M.B. Dholakia, LDCOE, Ahmedabad Prof. Sushil Kumar, MANIT, Bhopal Prof. Rohit Goyal, MNIT, Jaipur Shri A.D. Vasudeo, VNIT, Nagpur

Registrar : Shri H.A. Parmar, Registrar, SVNIT, Surat.

MEMBERS

Prof. K.C. Pandey MANIT, Bhopal	Prof. R.P. Dahiya MNIT, Jaipur	Prof. G.R.C. Reddy NIT, Calicut
Prof. Sunil Sarangi NIT, Rourkela	Prof. M.N. Bandopadhyay NIT, Kurukshetra	Prof. S.S. Gokhale VNIT, Nagpur
Prof. Y.V. Rao	Prof. Wanchoo	Prof. M. Chidambara

Prof. Y.V. Rao

NIT, Warangal

NIT, Srinagar

NIT, Trichi

NIT, Trichi

Prof. K.M. ShahProf. H.K. RavalProf. S. MohanLDCOE, AhmedabadSVNIT, SuratIIT, Madras

Prof. Baldev SethiaDr. C.T. MahajanProf. T.I. EldhoNIT, KurukshetraNPIU, New DelhiIIT, Bombay, Mumbai

Prof. G.L. AsawaMrs. V.M. BendreProf. H.K. MishraIIT, RoorkeeCWPRS, PuneCOE, Jabalpur

Prof. Rajneesh SrivastavaProf. Swadesh GuptaShri Milind KulkarniAICTE, New DelhiAICTE, New DelhiDST, New Delhi

Mrs. V.V. Bhosekar
CWPRS, ISH, Pune
Prof. N.C. Shah
Shri P.B. Mehendale
CWPRS, ISH, Pune
CWPRS, ISH, Pune
VNIT, Nagpur
Prof. P.L. Patel

Prof. N.C. ShahDr. Rajesh SrivastavaProf. P.L. PatelSVNIT, SuratIIT, KanpurSVNIT, Surat

Dr. A.D. Ghare SVNIT, Surat

SUB COMMITTEES

Reception Committee

Dr. N.C. Shah, Prof., CED (Convener)

Shri H.A. Parmar, Registrar

Dr. N.J. Mistry, HOD, CED

Dr. B.K. Samtani, Prof., CED

Dr. G.N. Mehta, Prof., ASHD

Dr. J.A. Desai, HOD, AMD

Dr. D.P. Vakharia, Dean (SC)

Dr. Smita Jauhari, Lecturer, ASHD

Registration Committee

Dr. J.N. Patel, Prof. CED (Convener)

Dr. S.A. Channiwala, Prof., MED

Dr. H.K. Raval, Prof., MED

Dr. D.R. Patel, Prof., COED

Dr. ZVP Murthy, Prof., CHED

Dr. M.A. Zaveri, AP, COED

Dr. P.R. Tailor, Prof., MED

Shri S.N. Desai, AP, AMD

Shri A.K. Desai, Lecturer, AMD

Shri P.G. Agnihotri, Lecturer, CED

Ms. Manisha Chauhan, Lecturer, EED

Ms. N.D. Jariwala, Lecturer, CED

Shri Y.D. Patil, Lecturer, AMD

Shri G. D. Kale, Lecturer, CED

Finance Committee

Shri H.A. Parmar, Registrar (Convener)

Dr. B.K. Samtani, Prof., CED

Dr. H.S. Patil, Prof., AMD

Dr. P.A. Parikh, Prof., CHED

Dr. Jigisha Parikh, AP, CHED

Shri S.C. Rathod, Dy. Registrar (A/c.)

Shri R.C. Mody, Sr. Clerk, CED

Press, Publicity & Invitation Committee

Dr. P.D. Porey, Director (Convener)

Dr. B.K. Samtani, Dean (Exam)

Dr. N.C. Shah, Dean (UG)

Shri H.A. Parmar, Registrar

Dr. R.V. Rao, HOD, MED

Dr. P.L. Patel, Dean (PG)

Prof. A.J. Shah, Lecturer, AMD

Shri Kunwar Yadav, Lecturer, CED

Shri K.P. Solanki, I/C. PA to Director

Editorial Committee

Dr. P.L. Patel, Dean (PG) (Convener)

Dr. B.K. Samtani, Dean (Exam)

Dr. J.N. Patel, Professor, CED

Dr. A.D. Ghare, AP, CED

Dr. Rohit Goyal, MNIT, Jaipur

Prof. M.B. Dholakia, LDCOE, A'bad

Shri G.D. Kale, Lecturer, CED

Shri G.R. Veshmawala, Lecturer, AMD

Shri T.B. Ghosh, Librarian

Accommodation Committee

Dr. D.P. Vakharia, Dean (SC) (Convener)

Dr. D.R. Patel, Prof., COED

Dr. N.K. Datta, AP, Phy. Edn.

Ms. M. Chakraborty, AP, CHED

Shri S.M. Yadav, Lecturer, CED

Dr. A.K. Rai, Lecturer, ASHD

Dr. Amit Solanki, Lecturer, AMD

Dr. L.K. Saini, Lecturer, ASHD

Shri A. Mandaloi, Lecturer, ECED

Shri K.S. Bhavsar, Jr. Clerk, A/Cs.

Shri P.G. Naidu, Jr. Clerk, B&C

Catering Committee

Prof. A.R. Jariwala, HOD, EED (Convener)

Prof. H.D. Desai, AP, MED

Prof. B.K. Samtani, Prof., CED

Shri H.A. Parmar, Registrar

Dr. H.J. Nagarsheth, AP, MED

Dr. S.G. Shah, Medical Officer

Dr. G.J. Joshi, Chief Hostel Warden

Shri U.P. Rao, Lecturer, COED

Technical Session Committee

Dr. B.K. Samtani, Dean (Exam) (Convener)

Dr. P.L. Patel, Prof., CED

Dr. J.A. Desai, HOD, AMD

Dr. H.K. Raval, Prof., MED

Prof. R.T. Patel, Lecturer, AMD

Dr. A.D. Ghare, AP, MED

Venue Committee

Dr. N.J. Mistry, HOD, CED (Convener)

Dr. D.R. Patel, Dean (A&RG) Dr. H.B. Naik, Prof., MED

Prof. D.B. Raijiwala, AP, AMD

Dr. D.V. Bhatt, AP, MED Shri J. Banerjee, AP, MED Shri M.N. Bhusavalwala, Mrs. A.K. Khambhete

Shri J.N. Desai, Sr. Clerk, A/Cs. Shri P.B. Patel, Hamal, Library

Transport Committee

Dr. C.D. Modhera, AP & Supdt. Engr. (Convener)

Shri S.N. Gaderia, AP, MED
Prof. V.M. Daiya, AP, MED
Shri S.M. Yadav, Lecturer, CED
Shri B.M. Sutaria, Lecturer, MED
Shri M.B. Maisuria, Lecturer, MED
Shri R.P. Gohil, Lecturer, COED
Shri S.R. Arya, Lecturer, EED
Shri A.P. Patil, Lecturer, MED
Shri Rakesh Maurya, Lecturer, EED
Shri Ranjit Roy, Lecturer, EED
Shri Piyush N. Patel, Lecturer, ECED

Shri S.R. Goyal, Lecturer, COED Shri Dinesh Singh, Lecturer, MED

Shri B.N. Tandel, Lecturer, CED Shri Ashish Dhamania, Lecturer, CED

Shri A.M. Pardhi, Lecturer, AMD Shri M.L. Patel, Jr. Clerk, E&S

Volunteer Committee

Dr. A.D. Ghare, AP, CED (Convener)

Dr. M.N. Mehta, HOD/ASHD
Dr. A.K. Mungrey, Lecturer, CHED
Shri D.B. Gohil, Lecturer, MED
Ms. K.C. Maheria, Lecturer, ASHD
Ms. Dimple Shah, Lecturer, ASHD
Shri S.R. Patel, Lecturer, CHED

Administrative Support Committee

Shri H.A. Parmar, Registrar (Convener) Shri M.N. Patel, Dy. Registrar (Acad)

Shri A. Mahto, Lecturer, MED Shri Achchhelal, Lecturer, MED Shri M.V. Tadvi, Lecturer, MED Shri G.A. Mistry, 'E' Section

Mrs. A.T. Elavia, Head Clerk, Hostel Shri P.P. Vankar, Draftsman, MED Shri R.D. Ruparel, Jr. Clerk, A/cs.

Infrastructure Committee

Dr. R.A. Christian, Dean (P&D) (Convener)

Prof. JEM Macwan, CED Shri N.N. Patel, CED

Prof. B.R. Taunk, HOD/ECED

Dr. K.P. Desai, AP, MED

Shri S.M. Yadav, Lecturer, CED Shri K.A. Chauhan, Lecturer, CED Shri Pranav Darji, Lecturer, EED

Shri D.A. Patel, CED

Shri S.C. Shoemaker, AAEE, E&S Shri J.N. Desai, Sr. Clerk, A/Cs.

Shri J.C. Shah, Sanitary Inspector, E&S

Shri B.C. Talavia, Workshop

Ladies Committee

Mrs. Prof. N.Y. Desai, AP, ECED (Convener)

Mrs. Prof. V.A. Shah, AP, EED Mrs. R. Chudamani, AP, EED

Dr. Mrs. M. Mukhopadhyay, AP, CHED Mrs. N.D. Jariwala, Lecturer, CED Mrs. J.V. Menghani, Lecturer, MED Ms. Chandani Gor, Lecturer, EED Ms. J. Solanki, Lecturer, CHED

Ms. Premalata Kumari, Lecturer, ASHD

CONTENTS

	Foreword	iii
	WATER RESOURCES AND HYDROLOGY	
1.	Classification of Rainy Days Using SVM Anirudh Vemula and Umesh C. Kothyari	1
2.	Statistical Downscaling with PGSL-SVM Coupled Approach for Prediction of Monsoon Rainfall Subimal Ghosh	8
3.	Statistical Analysis of Hydrologic Data: A Study of Meghal River Basin <i>Khadeeja Priyan and H. J. Dalwadi</i>	16
4.	Improvement in Irrigation Efficiency through On-Farm Reservoir S.K. Gupta, K.K. Singh and C.S.P. Ojha	24
5.	Tropical River Basin Development- A Case Study Rajeev V. Shetkar and A. Mahesha	32
6.	An Introduction to Climate Forcing on Hydrologic Variables Rajib Maity	40
7.	Reference Evapotranspiration of Nagpur Region Pankaj P. Bansod, A.D. Ghare and P. D. Porey	47
8.	Differential Evolution for Multi-objective Optimization in Water Resources <i>M. Janga Reddy</i>	55
9.	Effects of Dams on River Hydrology – An Overview K.U. Abdu Rahiman, Babita Kawal and G.S. Dwarakish	63
10.	Parameter Estimation for Muskingum Models Amlan Das	69
11.	Crop Water Requirement by Modified Penman Method Using HYMOS N. R. Dhamge, A. M. Badar and N. Z. Baiswarey	78
12.	Probability Distribution Analysis of Consecutive Days Rainfall Data for Sabarkantha District of North Gujarat Region, India N. R. Patel and D. T. Shete	86
13.	Frequency Analysis: Case Study of Devgadhbaria, Panchmahals District. T.M.V. Suryanarayana, A.V. Nadar and D.T. Shete	94
14.	Estimation of Kinetic Energy of Rain-storm for Chikhalthana by Using a Few Years' Data Set <i>G. D. Kale and A. D. Ghare</i>	101

X		Contents
15.	Prediction of Drainage Coefficient by Probability Analysis A.V. Nadar, T.M.V. Suryanarayana and D.T.Shete	107
16.	An Overview of Decadal Floods in Surat City Neeraj D. Sharma and J.N. Patel	114
17.	Root Zone Soil Moisture Profile Based Irrigation Scheduling Vijay Shankar, C.S.P. Ojha, K.S. Hari Prasad and G.L. Asawa	121
18.	Estimation of Aquifer Diffusivity from Single Recharge Test Observation Pradeep K. Majumdar and Govind C. Mishra	130
19.	River Interlinking Scenario for Gujarat State Pradeep Lodha, Amit J. Gadariya and Mitesh R. Patel	139
20.	Comparison of Distribution Uniformity of Micro and Mini Sprinkler Irrigation System V.D. Patel, H.T. Patel and V.P. Patel	146
21.	A Water Management Model for a Urban Watershed: Nagpur Perspective Divya P. Mohabe and Prof. A. D. Vasudeo	152
22.	Study on Assessment of Streamflow Drought in the Ken Basin Ranvir Singh, R.P. Pandey and S.K. Mishra	161
23.	Mathematical Modeling for Study of Effective Rainfall H.V. Hajare, N.S. Raman and Jayant Dharkar	172
24.	Critical Aspects of Water Harvesting S.R. Shah and Sahil Verma	177
25.	A Practical Method to Predict Flow for a Compound River Section Kishanjit Kumar Khatua and Kanhu Charan Patra	184
26.	Estimation of Floods for Some Important Sites of Jhelum River Basin, Using Statistical Approach <i>M.A. Lone and N.K. Goel</i>	200
27.	Optimal Cropping Pattern Planning Under Deficit Irrigation J.B. Gurav and D.G. Regulwar	209
28.	Critical Watershed Analysis for Soil Conservation Management Using SWAT Model Parul P. Chauhan and P.P. Lodha	220
29.	Verification And Sensitivity Analysis of Groundwater Flow Models <i>N.K. Sherasia</i>	229
	ENVIRONMENTAL HYDRAULICS	
30.	Quality of Roof-harvested Rainwater: Effect of Roofing Material V. Meera and M. Mansoor Ahammed	239
31.	Limnological Study of Pashan Lake, Pune (Maharashtra, India) <i>M.S. Jadhav and K.C. Khare</i>	247

Con	ntents	хi
32.	Ground Water Quality Assessment at Landfill Site Uralidevachi, Pune, Maharashtra Sandip T. Mali, K.C. Khare and A.H. Biradar	253
33.	Groundwater Pollution: Fluoride Concentration in Surat District Rujuta H. Chaudhari	262
34.	Seasonal Variation of Water Quality—A Case Study of Vrishabavathi Valley <i>M.A. Nagesh and K.R. Suresh</i>	269
35.	Estimation of Energy Loss in Jet Flocculators N. Suresh Kumar, B.S. Pani and S.G. Joshi	279
36.	Water Quality Modelling in Water Distribution Network Gargi Rajpara and M.B. Dholakia	287
	FLUVIAL HYDRAULICS	
37.	Probabilistic Model in Prediction of Nonuniform Sediment Bed Surface Under Equilibrium Condition Kanhaiya Goyal and P.L. Patel	297
38.	Estimation of Suspended Sediment Load: A Study Using Regression and ANN Models A.V. Nadar, T.M.V.Suryanarayana and D.T.Shete	306
39.	Resistance Relationship for Alluvial Channel Flow M. Bardhan and S. Chatterjee	312
40.	Radial Basis Function to Predict Bridge Pier Scour H.Md. Azamathulla, Aminuddin Ab. Ghani, Nor Azazi Zakaria, Chang Chun Kiat and Leow Cheng Siang	319
41.	Limitations of Lacey's Theory for Estimation of Bridge Scour S.K. Mazumder	328
42.	Laboratory Investigations on Scour Downstream of a Vertical Gate Arun Goel	337
43.	Combination of Scour Protection Devices Around Oblong Bridge Pier Vikas Garg, Baldev Setia and D.V. S. Verma	344
44.	Scour and Riprap at a Pipeline in Degrading Beds N.P. Singh and Subhasish Dey	352
45.	Velocity Distribution in the Vortex Chamber Type Sediment Extractor <i>M. Athar, U.C. Kothyari and R.J. Garde</i>	363
46.	Effect of Detached Breakwater on Sediment Movement in the Harbour S. Balakrishna, V.B. Sharma, A.K. Singh and C.N. Kanetkar	373
47.	Modifying E.Brown's Equation and Determining Ripple Factor for Monsoon Season, Savkheda Gauging Station of Tapi River S.M. Yadav and B.K. Samtani	382
48.	Hysteresis Effect on Sediment Rating Curves M.A. Ahanger, G.L.Asawa and M.A. Lone	388

!!	Camtanta
XII	Contents

49.	Assessment of Rock Erodibilty for Bridge Foundations – A Case Study of Proposed Railway Bridge on the River Yamuna in Delhi <i>U.C. Kothyari, M.K. Mittal and R.J. Garde</i>	393
50.	Flow Over a Dune Modeled by Large-eddy Simulation and Level-Set Methods <i>V.C. Patel</i>	404
51.	Particle-fluid Interactions at Near-bed Turbulence Using Digital Imaging B.S. Mazumder, Anindita Bhattacharyya and Satya P. Ojha	411
52.	Numerical Modeling of Aggradation and Degradation Rajesh Kumar Jain and Umesh C. Kothyari	417
53.	Study of Mobility Index for Sarangkheda Gauging Station of Tapi River Nitisha J. Anajwala, P.L. Patel and B.K. Samtani	428
54.	Study of Mobility Index for Savkheda Gauging Station of Tapi River Bhumika H. Shah, P.L. Patel and B.K. Samtani	435
	COASTAL, HARBOUR & OCEAN ENGINEERING	
55.	Identification of Dumping Grounds for Disposal of Dredged Material off Cochin – A Case Study A.A. Purohit, M.M. Vaidya, P.K. Khare and U.V. Purandare	443
56.	Performance of Continuous and Staggered Training Works in Tidal Regimes under Obliquely Incident Current A.A. Purohit, M.M. Vaidya, P.K. Khare and U.V. Purandare	450
57.	Effect of Impervious Barrier on Salt Water Intrusion B.J. Mahida and S.M. Yadav	457
58.	Effect of Multiple Well Recharging on Sea Water Intrusion Hetal S. Dadhania, S.M Yadav and B.K. Samtani	465
59.	Progressive Wave Energy Dissipation of Crater Type Barriers S. Neelamani and A. Al-Ragum	472
60.	Effects of Sea Water Intrusion and its Control by various Surface Spreading Method for a Coastal Area of Saurastra Region <i>Hitesh G. Bavishiya, S.M. Yadav and B.K. Samtani</i>	479
	HYDRAULIC STRUCTURES AND HYDRO POWER PROJECTS	
61.	Analysis of Critical Upsurge and Downsurge Levels of Surge Tank Kanhaiya Goyal, P.L. Patel and Vinod Kumar Chilkoti	487
62.	Effective And Economical Solution Through Model Study of Energy Dissipation Arrangement For Purna Medium Project, Dist. Amarawati, (M.S.) M.S. Mundhe, V.B. Pandhare, N.M. Methekar, A.K. Sangle and K.P. Bhavsar	495
63.	Hydraulic Design of Tail Race Tunnel – A Case Study P. B. Deolalikar, M.K. Pawar and V. V. Bhosekar	499

Cor	ntents	xiii
64.	Surge Analysis in Large Lift Irrigation Scheme Through Physical Modeling P.V. Chandramohan, T.I. Eldho and V. Jothiprakash	513
65.	Aerators for Deep Seated Orifice Spillways V. V. Bhosekar, P.B. Deolalikar and V. Jothiprakash	523
66.	Role of Peak Factor on the Hydraulic Performance of Water Distribution Network <i>N.S. Srinivasa Rao, S. Shrihari and M.K. Nagaraj</i>	531
67.	Physical Modelling of Submerged Plate Breakwater Subba Rao, Kiran G. Shirlal, Roobin V. Varghese and K.R. Govindaraja	538
68.	The Development of Labyrinth Weir Designs Bhalchandra V. Khode	544
69.	Hydraulic Behaviour of Stoplogs for Spillway—A Case Study R.G. Patil, V. V. Bhosekar, Raj Kumar and P.B. Deolalikar	552
70.	Hydraulic Model Studies of Salma Dam Spillway, Afghanistan—A Case Study Neeta Arora, Ushakar Jha, V.V. Bosekar, M.I. Sridevi and P. B. Deolalikar	560
71.	Quasi-3D Simulation for Study on Eefect of Solidity on Hydraulic Turbine Flow Parameters Vishnu Prasad	570
72.	Analysis of Flow in a Pump Sump Model V.K Gahlot and T.S. Desmukh	576
	SOFT COMPUTING TECHNIQUES	
73.	Numerical Simulation of Air-Water Intermittent Type Two-Phase Flow Mahesh J. Vaze and Jyotirmay Banerjee	585
74.	Soft Computing Techniques for Water Distribution Network Design S. Mohan and K.S. Jinesh Babu	592
75.	Spatial Mapping of Wave Heights K.S. Ustoorikar and M.C. Deo	601
76.	Monthly Reservoir Inflow Prediction with Time Lagged Recurrent Neural Network <i>Alka Kote and V. Jothiprakash</i>	608
77.	Water Distribution Network Optimization Using Cross Entropy Method <i>P.G. Jairaj and A.R. Remya</i>	615
78.	Optimal Design of Barrages Using Genetic Algorithm Raj Mohan Singh	623
79.	Cause-Effect ANN Model to Estimate Reservoir Sedimentation Vaibhav Garg and V. Jothiprakash	632
80.	Finite Element Steady State Seepage Analysis in Case of Pressure Well S.S. Valunjkar and P.K. Agale	640
81.	Lumped Data Rainfall Runoff Models Using ANFIS for an Intermittent River R. Magar and V. Jothiprakash	647

xiv	Contents
-----	----------

82.	Application of Mike 21 FM for Water Quality Assessment of an Industrial Estate <i>Ritu Paliwal and Rashmi Ranjan Patra</i>	655
83.	Numerical Model Application for Cooling Water Dispersion - A Paradigm Shift G.K. Jena, R.R. Patra and Ajay Pradhan	664
84.	Groundwater Modeling of Waterlogged Area of IGNP Rohit Goyal and A. N. Arora	670
85.	Urban Storm Drainage Management for Jaipur City D. Paul, N. Sharda, S. Jain, V. Dwivedi and R. Goyal	678
	APPLICATION OF GEOSPATIAL TECHNIQUES	
86.	GIS Integrated Solid Waste Management – A Case Study of Tumkur City <i>M.A. Nagesh and T.R. Jagadeesh</i>	686
87.	Applications of G.I.S. in Water Resources Engineering G.D. Kale and J.N. Patel	695
88.	Utility of Satellite Imageries for Deciding Location of Intake D.N. Deshmukh, U.C. Roman and S. Naveed Ali	703
89.	Role of Remote Sensing and GIS Technique in Water Resources Managment V.M. Patel, H.T. Patel and M.B. Dholakia	711
90.	Estimation of Runoff and Soil Loss in Futala Lake (Nagpur) using GIS Ketakee Sagdeo, A.D. Ghare, Aabha Sargaonkar, P.S. Kelkar and R.N. Ingle	717
91.	Assessment of Sedimentation in Jayakwadi Reservoir using Satellite Imageries – A Case Study D.N. Deshmukh, U.C. Roman and Suneeta Jatwa	725
92.	Applications of Remote Sensing for River Training and Bank Protection Measures <i>M. S. Shitole and S.D. Marulkar</i>	734
93.	Estimation and Characterisation of Ground Water Flow Regimes in Heterogenous Domian using GPR A.D. Vasudeo, Y.B. Katpatal and R.N. Ingle	741
94.	Geographical Information System Based Distributed Hydrological Modelling Unmesh C. Patel and P.P. Lodha	747
95.	Knowledge-Based Classification of Wetland Rafiq Shethwala, M.B. Dholakia, Reshu Agarwal and J.K. Garg	756
96.	Application of GIS and RS for the Agricultural Landuse Development of the Watershed <i>Bhargav D. Dani, M.B. Dholakia, N.K. Sherasia</i>	766
97.	Monitoring of Ukai Right Bank Canal Command Using Remote Sensing and Geographic Information System Mukesh Modi, N.K. Sherasia and M.B. Dholakia	774
98.	Preparation of DEM of Surat City in the Context of Flood Control <i>P.G. Agnihotri and J.N. Patel</i>	785

Con	itents	XV
99.	DEM Construction for Flood Management in Vadodara City, Gujarat Suvarna Shah and J. N. Patel	791
100.	Potential Zones for Artificial Recharge in Coastal Area of Bhavnagar District Using GIS V.M. Patel and M.B. Dholakia	801
	FLUID MECHANICS	
101.	Pressure Distribution Across the Orifice Plates M. Athar	811
102.	Development of Discharge Equations for Weirs with End Contractions <i>M. Jamil and M. Athar</i>	819
103.	Discharge Relationship for Simple Semi-Cylindrical Flume Under Free Flow Condition <i>Rajlaxmi S. Joshi, A.D. Ghare, P.D. Porey and R.N. Ingle</i>	826
104.	A New Technique for Measurement of Velocity in Open Channel Flow <i>G.A. Hinge</i>	834
105.	Measurement of Discharge by Ultrasonic Transit-Time Method <i>Riyaz Jiwani</i>	840
106.	Similarity Solutions of Three-dimensional Mhd Boundary Layer Flows of Non-newtonian Fluids Manisha Patel and M.G. Timol	858
107.	Approximate Analytical Expression for Phase Saturation of Injected Fluid during Fingero-Imbibiton Phenomenon <i>M.N. Mehta and S.R. Yadav</i>	868
Auth	or Index	876
Subj	ect Index	879

Classification of Rainy Days Using SVM

Anirudh Vemula* and Umesh C. Kothyari**

ABSTRACT

The process of occurrence of rainfall involves significant variations both temporally as well a spatially. In this study, an attempt is made to model occurrence of rainy days using support vector machines (SVM). The SVM is a novel learning machine that is based on statistical learning theory. The SVM involves determination of optimal separating hyper-plane in the input space. Kernel functions are employed to map the non-linear input space to a linear output space of higher dimension. Linear and Gaussian kernels were used for constructing the SVM. This study indicated that the classification accuracy of the SVM model is greatly influenced by model parameters namely cost parameter (C) and gamma parameter (C).

INTRODUCTION

Most of the hydrological applications use rainfall amount rather than the rainy days as the inputs. Some physical systems are however affected more by the occurrence of rainfall or rainy days rather than the rain amount. The occurrence of rainfall rather than its amount has been used as a significant input variable in water demand modeling and management (Jain *et al.*, 2001). Therefore the modeling of the rainfall occurrence is also important.

Considerable research has been conducted during the past in developing the mathematical models for simulation of the process of rainfall. However, the process of formation, mechanism, occurrence and its temporal as well as spatial distribution involve a rather complex Physics that is not completely understood as yet. The review of studies employing various techniques for rainfall modeling can be found in Belloc (1980), Georgakakos and Hudlow (1984). French *et al.* (1992) were amongst the first to employ the machine learning technique of artificial neural network *ANN* for rainfall forecasting. *ANN*s were developed for rainfall forecasting by transformation of a rainfall intensity field from the current state to a 1 h ahead state. The *ANN* was shown by French et al. to perform forecasting at a high level of accuracy.

Similar studies however, have not been conducted as yet by using the support vector machines *SVM* models. The *SVM* is one among the novel learning machine techniques that is based on

^{*} Undergraduate student, Department of Civil Engineering, Indian Institute of Technology, Roorkee Email: ani19uce@iitr.ernet.in

^{**} Professor Department of Civil Engineering, Indian Institute of Technology, Roorkee, E-mail: umeshfce@iitr.ernet.in

2 HYDRO 2007

statistical learning theory similarly as the ANN. Although SVM have been used in a range of problems in the other fields of studies, the present investigation study is perhaps the first attempt to apply them in hydrological investigation on the classification of the rainy days.

Despite of its very good success in other fields of study, there are only a few applications of *SVM* in the field of hydrology (Asefa et al., 2006). Dibike et al. (2001) applied *SVM* in remotely sensed image classification and regression for rainfall-runoff modeling investigations. Comparison between *SVM*, *ANN* and conceptual rainfall-runoff models at three catchments were made by them which showed the *SVM* to perform the best way amongst the methods used. Liong and Sivapragasam (2002) used flood stages at a number of locations in a river on its up stream to predict the river stage at the downstream location. Liong and Sivapragasam also reported a superior *SVM* performance compared to *ANN* performance in forecasting flood stage. Asefa and Kemblowski (2002) used *SVM* to simulate the groundwater flow and contaminant transport. Yu et al. (2005, 2006) have applied the *SVM* more recently in flood stage and discharge predictions. Asefa et al. (2006) have shown applications of *SVMs* in predicting both seasonal and hourly stream flows.

In the present study, the attempt is made to classify rainy days by using the *SVM*. The emphasis is given to the occurrence of rain, rather than the magnitude of rainfall itself. The occurrence of rainy day is assumed herein to be a function of the other climatic variables on that particular day. The proposed models were developed and evaluated using the meteorological data observed at National Institute of Hydrology, Roorkee, India. The performance of all the proposed models has been evaluated in terms of their classification accuracy.

PROPOSED METHODOLOGY

The SVM were first suggested by Vapnik (1995) and have recently been used in a range of problems such as pattern recognition, bioinformatics and text categorization. They are based on structural risk minimization (SRM) principle; theoretically minimizing the expected error of a learning machine and reducing the problem of overfitting. However the SVM is used herein by considering a binary classification problem:

Let (x_i, y_i) be a training set of instance-label pairs, i = 1, ..., m where $x_i \in R^n$ and $y_i \in \{-1, 1\}$. Here R represents the set of real numbers and n is the number of dimensions. Hence for a linearly separable case, the data will be classified by the following separating hyper-plane

$$y_i(\langle w.x_i \rangle + b) - 1 \ge 0 \ \forall \ i = 1,...,m$$

where w is the normal vector and b is the intercept on Y axis. To maximize the margin width of the separating hyper-plane, we need to solve the following optimization problem:

$$\underset{w,b}{Min} \frac{1}{2} w^{T} w \quad subject \ to: \ y_{i}(\langle w.x_{i} \rangle + b) - 1 \ge 0 \tag{2}$$

The solution of Eq. (2) is also called the maximum margin or hard margin classifier (see Fig. 1), which however, does not have a solution for non-separable data. Further, even for the separable case, we can increase the margin width. Thus, for better classification or for non-separable case, the above equation (Eq. 2) can be solved by introducing non negative slack variables $\xi_i \ge 0$, i = 1, ..., m such that $\langle w.x_i \rangle + b \ge 1 - \xi_i$ for $y_i = +1$ and $\langle w.x_i \rangle + b_i \ge 1 - \xi_i$ for $y_i = -1$.

All the computations are carried herein on via kernel function in input space. There are several possibilities for the choice of kernel function, including linear, polynomial, sigmoid, splines, Gaussian kernel and in fact *any* function that satisfies *Mercer's theorem* (Vapnik, 1998, p.136)

HYDRO 2007 3

Fig. 1: Hard margin classifier

Fig. 2: Soft margin classifier

can be used as a kernel. However, the Gaussian kernel has been widely used since it possesses many well-known good properties. Moreover, the linear kernel is a special case of Gaussian kernel (Keerthi and Lin, 2003). In this study Gaussian kernel is used to map the input data into higher dimensional feature space, which is given by:

$$K(x, y) = \exp(-||x-y||^2/(2\sigma^2))$$
 (10)

$$K(x, y) = \exp(-3||x-y||^2)$$
(11)

where, σ is the called the spread parameter of Gaussian kernel, which can be adjusted to control the expressivity. The Gaussian kernel has a localized and finite response across the entire range of predictors and it nonlinearly maps the training data into a possibly infinite dimensional space. Thus, it can effectively handle the situations when the relationship between predictors and the target and is non-linear. Moreover, it is computationally simple than polynomial kernel, which has more parameters.

Genetic Algorithms

Genetic Algorithms (GA) are search algorithms, based on the mechanics of natural selection and natural genetics (Goldberg, 1989). They are an adaptive optimization methodology, and are a promising alternative to conventional heuristic methods. Although stochastic in nature, they are directed and also exploit the prior information to guess new search points. GA generates successive populations of alternate solutions that are represented by a chromosome, *i.e.* a solution to the problem, until acceptable results are obtained. The search is guided by the objective or fitness function which determines the quality or fitness of a solution in the evaluation step. The three basic genetic operators are – reproduction or selection operator, cross over and mutation. The search concludes when the termination conditions are satisfied.

Two models have been proposed in this study: GA optimized linear SVM classifier and GA optimized Gaussian kernel classifier. For the linear classifier, the chromosome consists of the only the cost parameter C. For the Gaussian kernel classifier, the chromosome consists of two parts: C and γ . The fitness function of these models is defined such that higher accuracy implies higher fitness value; the accuracy of classification being defined as the ratio of number of correct classifications to the total classifications performed.

4 HYDRO 2007

DATA, RESULTS AND DISCUSSIONS

In the present study, the meteorological data of Roorkee observed at weather station of the National Institute of Hydrology, Roorkee, India were used to evaluate the classification accuracy of the proposed schemes. The data consisted of daily values of maximum and minimum temperature, pan evaporation, relative humidity, wind speed and corresponding daily rainfall for 2061 days spanning over the time period between January 1, 2000 and December 31, 2005. The range of pertinent climatic variables of the data is listed in Table 1.

Data set.	Daily	Relative	Wind	Maximum	Minimum	Pan
	Rainfall	humidity	speed	Temperature	Temperature	Evaporation
	(mm)	(per cent)	(Km/hr)	(°C)	(°C)	(mm)
Training Test set 1 Test set 2	0 to 162.2	29 to 100	0 to 8.3	9.0 to 44.2	2.3 to 31	0.0 to 11.3
	0 to 116.4	8 to 100	0 to 6.0	9.0 to 40.0	2.5 to 36.5	0.0 to 7.2
	0 to 119.2	35 to 100	0 to 6.0	10.5 to 43.7	1.6 to 28.8	0.0 to 10.8

Table 1 Range of data used

The data was scaled linearly as described by Hsu *et al.*, (2004) such that the minimum is represented by zero and maximum by unity. This prevents the attributes in greater numeric ranges to dominate those in smaller numeric ranges. Moreover, it also avoids numerical difficulties during the computations especially for the inner products (for the kernel values). The data set was then randomly split into 3 sets: a training set of 1000 data points and two test data sets of equal length to ensure the validity of the results and to check overfitting of the proposed models, the *ANN* based models in particular. Finally, a threshold limit of 1 mm of rainfall was used to define a rainy day and also to prevent noise in the input data. Daily values of; maximum and minimum temperature, pan evaporation, relative humidity and wind speed formed the model input data in present application. The corresponding days rainfall was used to decide the target variable *i.e.* rainy day. As mentioned already, the day for which rain occurred exceeded 1mm was termed as the 'rainy day'. The proposed models were constructed accordingly and their performance was studied in classifying the rainy days. The results are reported in terms of the classification accuracy that was defined as the ratio of number of days having correct classification of the rainy days to the total number of days in the particular data set, expressed in terms of percentage.

The proposed SVM models were implemented on MATLAB development environment 7.0 by applying the LIBSVM, originally developed by Chang and Lin (2001). The classification accuracy for the linear and Gaussian kernels was plotted against C and γ to study the variation. The optimization of the SVM parameters was performed using the MATLAB 'Genetic Algorithm and Direct Search Toolbox 1.0.2'. Finally, the values of the parameters were chosen such that the training accuracy was maximized and to overfitting is prevented as the results validated using the two test data sets.

It may be observed from the Fig. 3 (a) that the performance of the linear SVM classifier increases rapidly for the training data while C is small and subsequently it increases slowly with the increase in the cost parameter. However, the performance of the test data sets increases rapidly while C is small, until it reaches a maximum and then it falls. From the Fig. 3(b) it can be seen that the optimal value of C lies somewhere between 1 and 10. The value of optimum C as determined

HYDRO 2007 5

Fig. 3: Variation of classification accuracy of linear SVM classifier with cost parameter

С		Classification accuracy (%	6)
	Training	Test data set 1	Test data set 2
2.2383	82.2	88.8	85.8
2.4221	82.9	89.6	85.1
2.5145	83.2	89.3	85.5
3.3131	85.6	89.9	87.2
3.9269	86.8	89.2	89.2

Table 2: Results for GA optimized linear classifier

using GA on training data alone is 5.6127, and the corresponding classification accuracies being 87.1%, 88.15% and 89.5% for the training and test data sets respectively (Table -2).

88.2

89.5

87.1

5.6127

It was noticed in Fig. 4 that as the value of the penalty parameter C and γ increase, the performance of the Gaussian kernel SVM classifier for training data also increases. However, the performance for testing data sets decreases with the increase in the value of these parameters.

Fig. 4: Performance of GA based linear SVM classifier

6 HYDRO 2007

This may be attributed to the overfitting of the classifier to the training data. Moreover, it was also seen that there are 'valleys' where the performance of the Gaussian kernel SVM classifier fell drastically for the testing data sets. Thus, the choice of the parameters must be so fixed such that the performance of the classifier is maximized for any data set.

Cost parameter	Gamma parameter	Classification accuracy (%)		
		Training Data	Test data set 1	Test data set 2
0.5915	0.7621	85.6	89.6	85.5
0.9342	0.6154	86.2	91.0	86.8
0.8729	0.7382	86.4	90.3	87.5
0.9669	0.9355	86.8	90.6	87.8
2.2496	1.343	87.8	89.8	88.2
1.4831	2.2482	87.5	89.5	88.5

Table 3: Experimental results for GA optimized Gaussian kernel SVM classifier

Therefore, the optimum values of these parameters as found using GA are C = 3.2633 and $\gamma = 2.9208$ and the classification accuracies for the training and testing data sets are 88%, 89.3% and 88.85% respectively (Table 3). It can also be noted by comparison between Table 2 and Table 3 that the performance of the Gaussian kernel model exceeds the performance of the linear classifier, clearly showing its superior classification ability.

88.0

89.3

88.9

2.9208

CONCLUSIONS

3.2633

The occurrence of rainy day can be more important factor than the magnitude of rainfall itself for certain real life applications. Many investigators have developed models for predicting rainfall magnitude but there is also a need to develop models only for occurrence of rainy days. This paper presents the results of an investigation on development of model for predicting rainfall occurrence using *SVM*. To construct and evaluate the proposed schemes, the daily meteorological data of Roorkee, India were used, which consisted of daily values of maximum and minimum temperature, evaporation, humidity, wind speed and corresponding daily rainfall. The results produced by the SVM modelling have been considered as satisfactory due to the given complexities present in the process of occurrence of the rainy days.

REFERENCES

- 1. Asefa T. and Kemblowski M.W. (2002). Support vector machines approximation of flow and transport models in initial groundwater contamination network design, *Eos. Trans. AGU.*, vol. **83**.
- 2. Asefa, T., Kembloski, M., McKee, M. and Khalil, A. (2006). Muti-time scale stream flow predictions: The support vector machine approach. *Journal of Hydrology*, vol.318(1-4), 7-16.
- 3. Belloc, A. (1980). Operational methods of quantitative precipitation forecasts for hydrological purposes and possibilities of an inter-comparison, WMO, Geneva, pp6.
- 4. Chang, C.C., and Lin, C. (2001). LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

HYDRO 2007 7

5. Hsu, C., Chang, C. and Lin, C. (2004). A practical guide to support vector classification. Technical Report, National Taiwan University. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

- 6. Dibike, B.Y., Velickov, S., Solomatine, D. and Abbott, M.B.(2001). Model induction with support vector machines: introduction and applications, *J. Comput. Civil Eng.*, vol. **15**(3), 208–216
- 7. French, M.N., Krajewski, W.F. and Cuykendall, R.(1992). Rainfall forecasting in space and time using a neural network, *Journal of Hydrol*.,vol.137,1-31.
- Georgakakos, K.P. and Hudlow, M.D. (1984). Quantitative precipitation forecast techniques for use in hydrological forecasting, *Bull Amer. Meteor. Soc.*, vol.65(11), 1186-2000.
- 9. Goldberg, D.E.(1989). Genetic Algorithms in Search, Optimization, and Machine Learning. *Reading*, MA: Addison-Wesley.
- 10. Haykin, S., 2003. Neural Networks: A comprehensive foundation. *Fourth Indian Reprint, Pearson Education*, Singapore, pp. 842.
- 11. Hsu, C.W. and Lin, C.J. (2002). A simple decomposition method for support vector machine. *Machine Learning*, vol.46(1–3), 219–314.
- 12. Jain, A., Varshney, A.K., and Joshi, U.C. (2001). Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, *Water Resour. Mgmt.*, vol.15(5),299-321.
- 13. Keerthi, S.S., Lin, C.J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. *Neural Computation*, 15 (7), 1667–1689.
- 14. Liong, S.Y. and Sivapragasam, C. (2002). Flood stage forecasting with SVM, AWRA 38 (2002) (1), pp. 118–173.
- 15. LaValle, S.M. and Branicky, M.S. (2002). On the relationship between classical grid search and probabilistic roadmaps. *International Journal of Robotics Research*, vol. 23(7–8), 673–692.
- 16. Trevor, H., Saharon, T., Robert, T. and Ji, Z. (2004). The entire regularization path for the support vector machine, *Journal of Machine Learning Research*, 51391-1415.
- 17. Valdes, J.B. and Sastri, T. (1989). Rainfall intervention analysis for on-line applications, *Jour. Water Resour. Plng. & Mgmt.*, ASCE, vol.115(4), 397-415.
- 18. Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York.
- 19. McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in neurons activity, *Bull. Math. Biophys.*, vol. 5, pp. 115–133.
- 20. Yu, P.S., Chen, S.T. and Chang, I. F. (2005). Flood stage forecasting using support vector machines, *Geophysical Research*, vol. 7(04176).
- 21. Yu, P.S., Chen, S.T. and Chang, I.F. (2006). Support vector regression for real time flood forecasting. *Journal of Hydrology*, vol. 328(3-4), 704-716.