

Search Tree

Jin Hyun Kim Fall, 2019

이진탐색트리 (Binary Search Tree)

탐색트리

- 저장된 데이터에 대해 탐색, 삽입, 삭제, 갱신 등의 연산을 수행할 수 있는 자료구조
- 1차원 리스트나 연결리스트는 각 연산을 수행하는데 O(N) 시간이 소 요
- 스택이나 큐는 특정 작업에 적합한 자료구조.
- 리스트 자료구조의 수행시간을 향상시키기 위한 트리 형태의 다양한 사전 자료구조들을 소개
 - 이진탐색트리, AVL트리, 2-3트리, 레드블랙트리, B-트리

이진탐색

정렬된 데이터의 중간에 위치한 항목을 기준으로 데이터를 두 부분으로 나누어 가며 특정 항목을 찾는 탐색방법

```
binary_search(left, right, t):
[1] if left > right: return None # 탐색 실패 (즉, t가 리스트에 없음)
[2] mid = (left + right) // 2 # 중간 항목의 인덱스 계산
[3] if a[mid] == t: return mid # 탐색 성공
[4] if a[mid] > t: binary_search(left, mid-1, t) # 앞부분 탐색
[5] else: binary_search(mid+1, right, t) # 뒷부분 탐색
```

이진탐색의예

• 66을 찾아 가는 과정

수행시간

- T(N) = 입력 크기 N인 정렬된 리스트에서 이진탐색을 하는데 수행 되는 키 비교 횟수
- T(N)은 1번의 비교 후에 리스트의 1/2, 즉, 앞부분이나 뒷부분을 재 귀호출하므로

$$T(N) = T(N/2) + 1$$

$$T(1) = 1$$

$$= [T((N/2)/2) + 1] + 1 = T(N/2^2) + 2$$

$$= [T((N/2)/2^2) + 1] + 2 = T(N/2^3) + 3$$

$$= L = T(N/2^k) + k$$

$$= T(1) + k, \text{ if } N = 2^k, k = log_2 N$$

$$= 1 + log_2 N = O(log N)$$

이진탐색트리 Binary Search Tree

• 이진탐색(Binary Search)의 개념을 트리 형태의 구조에 접목한 자료구조

이진탐색과 이진트리

이진탐색트리 Binary Search Tree

- 이진탐색(Binary Search)의 개념을 트리 형태의 구조에 접목한 자료구조
- 이진탐색트리는 이진트리로서 각 노드가 다음과 같은 조건을 만족 한다.
 - 각 노드 n의 키가 n의 왼쪽 서브트리에 있는 키들보다 (같거나) 크고, n의 오른쪽 서브트리에 있는 키들보다 작다. [이진탐색트 리 조건]

이진탐색트리

• 다음 중 이진탐색트리는?

이진탐색 클래스

```
01 class Node:
      def __init__(self, key, value, left=None, right=None):
02
          self.key = key
03
          self.value = value
94
                                노드 생성자
          self.left = left
05
                                키, 항목과 왼쪽, 오른쪽자식 레퍼런스
          self.right = right
96
97
08 class BST:
      def init (self): # 트리 생성자
                                             트리 루트
09
          self.root = None
10
11
      def get(self, key): # 탐색 연산
12
13
      def put(self, key, value): # 삽입 연산
14
                                              탐색, 삽입, 삭제 연산
15
      def min(self): # 최솟값 가진 노드 찾기
                                              min()과 delete_min()은
16
17
                                              삭제 연산에서 사용됨
      def deletemin(self): # 최솟값 삭제
18
19
      def delete(self, key): # 삭제 연산
20
```

탐색연산: get(key)

- 탐색하고자 하는 키가 k라면, 루트의 키와 k를 비교하는 것으로 탐 색을 시작
- k가 루트의 키가 k 보다 작으면, 루트의 왼쪽 서브트리에서 k를 찾고, 크면 루트의 오른쪽 서브트리에서 k를 찾으며, 같으면 탐색 성공
- 왼쪽이나 오른쪽 서브트리에서 k를 탐색은 루트에서의 탐색과 동일

탐색연산: get(key)

탐색연산: get(key)

```
def get(self, k): # 탐색 연산
    return self.get_item(self.root, k)
                            탐색 실패
def get_item(self, n, k):
    if n == None:
                                    k가 노드의 key보다 작으면
        return None
                                    왼쪽 서브트리 탐색
    if n.key > k: 
        return self.get_item(n.left, k)
                                          k가 노드의 key보다 크면
    elif n.key < k: (</pre>
                                          오른쪽 서브트리 탐색
        return self.get_item(n.right, k)
    else:
        return n.value
                        ---- 탐색 성공
```

- 삽입은 탐색 연산과 거의 동일
- 탐색 중 None을 만나면 새 노드를 생성하여 부모노드와 연결
- 단, 이미 트리에 존재하는 키를 삽입한 경우, value만 갱신

새 노드 삽입 후 루트 로 거슬러 올라가며 재 연결하는 과정

```
def put(self, key, value): # 삽입 연산
       self.root = self.put_item(self.root, key, value)
02
03
                                             루트와 put_item()이
   def put_item(self, n, key, value):
                                             리턴하는 노드를 재 연결
94
05
       if n == None:
                                       새 노드 생성
           return Node(key, value)
06
                                                  n의 왼쪽자식과 put_item()이
                                                  리턴하는 노드를 재 연결
07
       if n.key > key:
           n.left = self.put_item(n.left, key, value)
98
09
       elif n.key < key:</pre>
10
           n.right = self.put_item(n.right, key, value)
       else:
11
                                                  n의 오른쪽자식과 put_item()이
           n.vlaue = value
                                                  리턴하는 노드를 재 연결
12
                                key가 이미 있으므로
       return n 🌑
13
                                value만 갱신
                       부모노드와 연결하기 위해
                       노드 n을 리턴
```

최소값 찾기

• 최솟값은 루트노드로부터 왼쪽 자식을 따라 내려가며, None을 만 났을 때 None의 부모가 가진 value

최소값 찾기

 최솟값은 루트노드로부터 왼쪽 자식을 따라 내려가며, None을 만 났을 때 None의 부모가 가진 value

```
01
    def min(self): # 최솟값 가진 노드 찾기
        if self.root == None:
02
03
            return None
04
        return self.minimum(self.root)
                                         왼쪽자식이 None인
05
                                         노드(최솟값을 가진)
                                         를 리턴
06
    def minimum(self, n):
        if n.left == None:
07
                                         왼쪽자식으로 재귀호출
80
            return n
                                         하며 최솟값 가진 노드
        return self.minimum(n.left) 
09
                                         를 리턴
```

최소값 삭제

- 최솟값을 가진 노드를 삭제하는 것은 최솟값을 가진 노드 n을 찾아 낸 뒤, n의 부모 p와 n의 오른쪽 자식 c를 연결
- 이 때 c 가 None이더라도 자식으로 연결

최소값 삭제

- 최솟값을 가진 노드를 삭제하는 것은 최솟값을 가진 노드 n을 찾아 낸 뒤, n의 부모 p와 n의 오른쪽 자식 c를 연결
- 이 때 c 가 None이더라도 자식으로 연결

```
01 def delete_min(self): # 최솟값 삭제
       if self.root == None:
02
           print('트리가 비어 있음')
03
       self.root = self.del_min(self.root)
04
05
                                            루트와 del_min()이 리턴
   def del_min(self, n):
                                            하는 노드를 재 연결
96
07
       if n.left == None:
                                      최솟값 가진 노드의 오른쪽
98
           return n.right (
                                      자식을 리턴
       n.left = self.del_min(n.left)
09
10
       return n
                                 n의 왼쪽자식과 del min()이
                                 리턴하는 노드를 재 연결
```

최소값 삭제

삭제연산: delete(key)

- 우선 삭제하고자 하는 노드를 찾은 후 이진탐색트리 조건을 만족하 도록 삭제된 노드의 부모와 자식(들)을 연결해 주어야 함
- 삭제되는 노드가 자식이 없는 경우(case 0), 자식이 하나인 경우 (case 1), 자식이 둘인 경우(case 2)로 나누어 delete 연산을 수행

삭제연산: delete(key)

- Case 0: 삭제해야 할 노드 n의 부모가 n을 가리키던 레퍼런스를 None으로 만든다.
- Case 1: n가 한쪽 자식인 c만 가지고 있다면, n의 부모와 n의 자식 c를 직접 연결
- Case 2: n의 부모는 하나인데 n의 자식이 둘이므로 n의 자리에 중위순회하면서 n을 방문하기 직전 노드(Inorder Predecessor, 중위 선행자) 또는 직후에 방문되는 노드(Inorder Successor, 중위 후속자)로 대체

행되는 과정

(case 0)

delete(10)이 수행되는 과정 (case 0)

임

```
01 def delete(self, k): # 삭제 연산
02
       self.root = self.del_node(self.root, k)
03
                                        루트와 del_node()가 리턴
   def del_node(self, n, k):
                                        하는 노드를 재 연결
       if n == None:
05
           return None
06
07
       if n.key > k:
           n.left = self.del node(n.left, k)
98
                                                 n의 왼쪽자식과 del_node()가
       elif n.kev < k:
09
                                                 리턴하는 노드를 재 연결
10
           n.right = self.del node(n.right, k)
11
       else:
12
           if n.right == None:
                                           n의 오른쪽자식과 del node()가
                                                                   target 오른쪽자식 트리중 가
13
               return n.left
                                           리턴하는 노드를 재 연결
                                                                   장 작은 키를 가진 n을 찾아서
14
           if n.left == None:
                                                                   target을 대체하게 함
15
               return n.right
16
           target = n (
                                  target은 삭제될 노드
                                                     target의 중위 후속자 찾아
           n = self.minimum(target.right) =
17
                                                     n이 참조하게 함
18
           n.right = self.del_min(target.right)
19
           n.left = target.left
                                                                      target 오른쪽자식 트리중 가
                                                 n의 오른쪽자식과 target의
                                                 오른쪽자식 연결
                                                                      장 작은 키를 가진 n을 찾아
20
       return n
                          n의 왼쪽자식과 target의
                                                                      서 삭제 후, 삭제된 노드의 오
                          왼쪽자식 연결
                                                                      른쪽 노드를 n의 오른쪽에 붙
```


delete(45)가 수행되는 과정 (case 1)


```
delete(10)이 수행되는 과정 (case 0)
01 def delete(self, k): # 삭제 연산
02
       self.root = self.del node(self.root, k)
03
                                       루트와 del_node()가 리턴
   def del node(self, n, k):
04
                                       하는 노드를 재 연결
05
       if n == None:
           return None
96
07
       if n.key > k:
           n.left = self.del_node(n.left, k)
80
                                                n의 왼쪽자식과 del_node()가
       elif n.key < k:
09
                                                리턴하는 노드를 재 연결
10
           n.right = self.del node(n.right, k)
11
       else:
12
           if n.right == None:
                                                                  target 오른쪽자식 트리중 가
                                          n의 오른쪽자식과 del node()가
13
               return n.left
                                          리턴하는 노드를 재 연결
                                                                  장 작은 키를 가진 n을 찾아서
14
           if n.left == None:
                                                                  target을 대체하게 함
15
               return n.right
16
           target = n (
                                 target은 삭제될 노드
                                                    target의 중위 후속자 찾아
           n = self.minimum(target.right) 
17
                                                    n이 참조하게 함
18
           n.right = self.del_min(target.right)
19
                                                                     target 오른쪽자식 트리중 가
           n.left = target.left
                                                n의 오른쪽자식과 target의
                                                                     장 작은 키를 가진 n을 찾아
                                                오른쪽자식 연결
20
       return n
                                                                     서 삭제 후, 삭제된 노드의 오
                         n의 왼쪽자식과 target의
                         왼쪽자식 연결
                                                                     른쪽 노드를 n의 오른쪽에 붙
```

임

delete(10)이 수행되는 과정 (case 0)

```
01 def delete(self, k): # 삭제 연산
02
       self.root = self.del node(self.root, k)
03
                                        루트와 del_node()가 리턴
   def del node(self, n, k):
                                        하는 노드를 재 연결
05
       if n == None:
06
           return None
       if n.key > k:
07
           n.left = self.del_node(n.left, k)
80
                                                 n의 왼쪽자식과 del_node()가
       elif n.key < k:
09
                                                 리턴하는 노드를 재 연결
10
           n.right = self.del node(n.right, k)
       else:
11
12
           if n.right == None:
                                          n의 오른쪽자식과 del node()가
                                                                  target 오른쪽자식 트리중 가
13
               return n.left
                                          리턴하는 노드를 재 연결
                                                                  장 작은 키를 가진 n을 찾아서
14
           if n.left == None:
                                                                  target을 대체하게 함
15
               return n.right
16
           target = n (
                                  target은 삭제될 노드
                                                     target의 중위 후속자 찾아
           n = self.minimum(target.right) 
17
                                                     n이 참조하게 함
18
           n.right = self.del_min(target.right)
19
           n.left = target.left
                                                 n의 오른쪽자식과 target의
                                                                     target 오른쪽자식 트리중 가
                                                 오른쪽자식 연결
                                                                     장 작은 키를 가진 n을 찾아
20
       return n
                          n의 왼쪽자식과 target의
                                                                     서 삭제 후, 삭제된 노드의 오
                          왼쪽자식 연결
                                                                     른쪽 노드를 n의 오른쪽에 붙
                                                                     임
```

수행시간

- 이진탐색트리에서 탐색, 삽입, 삭제 연산은 공통적으로 루트에서 탐색을 시작하여 최악의 경우에 이파리까지 내려가고, 삽입과 삭제 연산은 다시 루트까지 거슬러 올라가야 함
- 트리를 한 층 내려갈 때는 재귀호출이 발생하고, 한 층을 올라갈 때는 재 연결이 수행되는데, 이들 각각은 O(1) 시간 소요
- 연산들의 수행시간은 각각 트리의 높이(h)에 비례, O(h)

수행시간

 N개의 노드가 있는 이진탐색트리의 높이가 가장 낮은 경우는 완전 이진트리 형태일 때이고, 가장 높은 경우는 편향이진트리

• 따라서 이진트리의 높이 h는 아래와 같다

 $\lceil \log (N+1) \rceil \approx \log N \le h \le N$

• Empty 이진탐색트리에 랜덤하게 선택된 N개의 키를 삽입한다고 가정했을 때, 트리의 높이는 약 1.39 log N

AVL Tree

AVL트리

- AVL 트리는 트리가 한쪽으로 치우쳐 자라나는 현상을 방지하여 트리 높이의 균형(Balance)을 유지하는 이진탐색트리
- 균형(Balanced) 이진트리를 만들면 N개의 노드를 가진 트리의 높이가 O(logN)이 되어 탐색, 삽입, 삭제 연산의 수행시간이 O(logN)으로 보장
- [핵심 아이디어] AVL트리는 삽입이나 삭제로 인해 균형이 깨지면 회전 연산을 통해 트리의 균형을 유지한다

AVL트리

• AVL트리는 임의의 노드 x에 대해 x의 왼쪽 서브트리의 높이와 오른쪽 서브트리의 높이 차이가 1을 넘지 않는 이진탐색트리이다.

AVL트리

- [정리] N개의 노드를 가진 AVL 트리의 높이는 O(logN)이다.
- [증명] A(h) = 높이가 h인 AVL 트리를 구성하는 최소의 노드 수 A(1) = 1, A(2) = 2, A(3) = 4이다.

AVL 트리

• A(3)을 재귀적으로 표현해보면

- A(3)이 위와 같이 구성되는 이유:
 - 높이가 3인 AVL 트리에는 루트와 루트의 왼쪽 서브트리와 오른쪽 서브트리가 존재하야 하고,
 - 각 서브트리 역시 최소 노드 수를 가진 AVL 트리여야 하므로
 - 또한 이 두 개의 서브트리의 높이 차이가 1일 때 전체 트리의 노드 수가 최소가 되 기 때문

AVL 트리

• 이를 A(h)에 대한 식으로 표현하면

h	0	1	2	3	4	5	6	7	
A(h)	0 🖊	1.	2	4	7.	12	20-	33	
F(h)	0	1	1	2	3	5	8	13	* ::

A(h)와 피보나치 수 F(h)와의 관계

$$A(h) = F(h+2) - 1$$

AVL 트리

• 피보나치 수
$$F(h) pprox \frac{\varphi^h}{\sqrt{5}}$$
 이므로, $\varphi = (1+\sqrt{5})/2$ 이므로

$$A(h) \approx \frac{\varphi^{h+2}}{\sqrt{5} - 1}$$

 A(h) = 높이가 h인 AVL트리에 있는 최소 노드 수이므로, 노드 수가 N인 임의의 AVL트리의 최대 높이를 A(h) ≤ N의 관계에서 다음과 같이 계산할 수 있다.

A(h)
$$\approx \phi^{h+2}/\sqrt{5} - 1 \le N$$

 $\phi^{h+2} \le \sqrt{5} (N + 1)$
h $\le \log_{\phi}(\sqrt{5}(N+1)) - 2 \approx 1.44 \log N = O(\log N)$.

AVL 트리의 회전 연산

- AVL 트리에서 삽입 또는 삭제 연산을 수행할 때 트리의 균형을 유지하기 위해 LL-회전, RR-회전, LR-회전, RL-회전 연산 사용
- 회전 연산은 2 개의 기본적인 연산으로 구현

AVL 트리의 회전 연산: rotate_right(n)

- rotate_right(): 왼쪽 방향의 서브트리가 높아서 불균형이 발생할 때 서브트리를 오른쪽 방향으로 회전
 - 노드 n의 왼쪽 자식 x를 노드 n의 자리로 옮기고, 노드 n을 노드 x의 오른쪽 자식으로 만들며, 이 과정에서 서브트리 T2가 노드 n의 왼쪽 서브트리로 이동

AVL 트리의 회전 연산: rotate_right(n)

AVL 트리의 회전 연산: rotate_left(n)

LL-회전

- (a) 노드 10의 왼쪽 서브트리(T1) 또는 오른쪽 서브트리(T2)에 새로 운 노드 삽입
 - T1 또는T2의 높이 = h-1
 - 노드 30의 왼쪽과 오른쪽 서 브트리의 높이 차이 = 2
 - 노드 30의 왼쪽(L) 서브트리의 왼쪽(L) 서브트리에 새로운 노드가 삽입되었기 때문
- (b)
 - 20이 30의 자리로 이동
 - 30을 20의 오른쪽 자식으로
 - T3은 30의 왼쪽 자식으로
 - T3에 있는 키들은 20과 30 사이 값을 가지므로 T3의 이 동 전후 모두 이진탐색트리 조건이 만족

(a) T₁ 또는T₂에 새 노드 삽입

(b) LL-회전 후

LL-회전

RR-회전

- (a) 30의 왼쪽 서브트리(T3) 또는 오 른쪽 서브트리(T4)에 새로운 노드 삽입
 - T3 또는T4의 높이 = h-1
 - 노드 10의 왼쪽과 오른쪽 서브트리의 높이 차이 = 2
 - 노드 10의 오른쪽(R) 서브트리의 오른쪽(R) 서브트리에 새로운 노 드가 삽입되었기 때문
- (b)
 - 20이 10의 자리로 이동
 - 10을 20의 왼쪽 자식으로
 - T2는 10의 오른쪽 자식으로
 - T2에 있는 키들은 10과 20 사이 값을 가지므로 T2의 이동 전후 모두 이진탐색트리 조건이 만족
- RR-회전은 rotate_left() 사용

RR-회전

LR-회전

- (a) 20의 왼쪽 서브트리(T2) 또는 오른쪽 서브트리(T3)에 새로운 노드가 삽입 되어 T2 또는T3의 높이가 h-1이 됨 에 따라 30의 왼쪽과 오른쪽 서브트리의 높이 차이가 2가 된 상태
- 30의 왼쪽(L) 서브트리의 오 른쪽(R) 서브트리에서 새로 운 노드가 삽입되었기 때문
- LR-회전은 rotate-left(10)
 수행 후 rotate_right(30) 수 행

LR-회전

RL-회전

- (a) 20의 왼쪽 서브트리 (T2) 또는 오른쪽 서브트리 (T3)에 새로운 노드가 삽입되어 T2 또는T3의 높이가 h-1이 되고 10의 왼쪽과 오른쪽 서브트리의 높이하이가 2가 된 상태
- 10의 오른쪽(R) 서브트리의 왼쪽(L) 서브트리에서 새로운 노드가 삽입되었기 때문
- RL-회전은
 rotate_right(30) 수행한
 후 rotate_left(10) 수행

RL-회전

4가지 회전의 공통정

- 회전 후의 트리들이 모두 동일
 - 각 그림(a)의 트리에서 10, 20, 30이 어디에 위치하든지, 3개의 노드들 중에서 중간값을 가진 노드, 즉, 20이 위로 이동하면서 10 과 30이 각각 20의 좌우 자식이 되기 때문
- 각 회전 연산의 수행시간이 O(1)
 - 각 그림(b)에서 변경된 노드 레퍼 런스 수가 O(1) 개이기 때문

- AVL트리에서의 삽입은 두 단계로 수행
- [1 단계] 이진탐색트리의 삽입과 동일하게 새로운 노드 삽입
- [2 단계] 새로 삽입한 노드로부터 루트로 거슬러 올라가며 각 노드의 서브트리 높이 차이를 갱신
 - 이 때 가장 먼저 불균형이 발생한 노드를 발견하면, 이 노드를 기준으로 새 노드가 어디에 삽입되었는지에 따라 적절한 회전연산을 수행

```
01 class Node:
      def __init__(self, key, value, height, left=None, right=None):
02
          self.key = key
03
          self.value = value
04
                                  노드 생성자
          self.height = height
                                  key, value, 노드의 높이,
          self.left = left
06
                                  왼쪽, 오른쪽 자식노드 레퍼런스
97
          self.right = right
98
09 class AVL:
      def init (self):
10
          self.root = None ___
11
                                 트리 루트
12
      def height(self, n):
13
          if n == None:
14
15
              return 0
                                 노드 n의 높이 리턴
16
          return n.height
17
      def put(self, key, value): # 삽입 연산
18
19
      def balance(self, n): # 불균형 처리
20
      def bf(self, n): # bf 계산
      def rotate_right(self, n): # 우로 회전
21
22
      def rotate left(self, n): # 좌로 회전
23
      def delete(self, key): # 삭제 연산 
      def delete_min(self): # 최솟값 삭제
24
                                           삭제 및 삭제 관련 연산
25
      def min(self): # 최솟값 찾기
```

```
bf(n): (노드 n의 왼쪽 서브트리 높이) - (오른쪽 서브트리 높이) 리턴

01 def bf(self, n): # bf 계산
02 return self.height(n._left) - self.height(n._right)
```

```
노드 n에서 불균형 발생
01 def balance(self, n): # 불균형 처리
                                           노드 n의 왼쪽자식의 오른쪽 서브트리가
       if self.bf(n) > 1: •
02
                                           높은 경우
           if self.bf(n._left) < 0:</pre>
03
               n._left = self.rotate_left(n._left)
04
                                                      LR 회전
           n = self.rotate_right(n) [[호전
05
96
                                            노드 n의 오른쪽자식의 왼쪽 서브트리가
       elif self.bf(n) < -1:</pre>
07
                                            높은 경우
           if self.bf(n._right) > 0:
80
               n._right = self.rotate_right(n._right)
09
           n = self.rotate left(n)
10
                                     RR 회전
11
       return n
```

```
노드 n에서 불균형 발생
   def balance(self, n): # 불균형 처리
                                           노드 n의 왼쪽자식의 오른쪽 서브트리가
       if self.bf(n) > 1: 
                                           높은 경우
           if self.bf(n._left) < 0:</pre>
03
               n. left = self.rotate left(n. left)
04
                                                      LR 회전
           n = self.rotate right(n) 미호전
05
96
                                            노드 n의 오른쪽자식의 왼쪽 서브트리가
       elif self.bf(n) < -1:
97
                                            높은 경우
           if self.bf(n. right) > 0:
80
               n._right = self.rotate_right(n._right)
09
                                                         RL 회전
           n = self.rotate left(n)
10
11
       return n
```

- balance()에서 line 02의 bf(n) > 1인 경우는 노드 n의 왼쪽 서브트리가 오른쪽 서브트리보다 높고, 그 차이가 1보다 큰 것으로 불균형 발생
- 이 때 bf(n.left)가 음수이면, n.left의 오른쪽 서브트리가 왼쪽 서브트리보다 높음
 - Line 04에서 rotate_left(n.left)를 수행하고 line 06에서 rotate_right(n)을 수행. 즉, LR-회전 수행
- bf(n.left)가 음수가 아니라면, line 06에서 LL-회전 만을 수행
- RR-회전과 RL-회전도 line 08~10에 따라 각각 수행되어 트리의 균형을 유지
- 참고로 현재 노드 n의 균형이 유지되어 있으면, 바로 line 11에서 노드 n의 레퍼런스를 리턴

```
01
    def put(self, key, value): # 삽입 연산
02
        self.root = self.put_item(self.root, key, value)
03
04
    def put_item(self, n, key, value):
                                             새 노드 생성,
05
        if n == None:
                                             높이=1
            return Node(key, value, 1)
96
07
        if n.key > key:
80
            n.left = self.put_item(n.left, key, value)
09
        elif n.key < key:</pre>
10
            n.right = self.put_item(n.right, key, value)
11
        else:
                                  key가 이미 있으면
12
            n.value = value
                                  value만 갱신
13
            return n
14
       n.height = max(self.height(n.left), self.height(n.right)) + 1
15
        return self.balance(n) 
                                           노드 n의 균형 유지
         노드 n의 높이 갱신
```

• [예제] 30, 40, 100, 20, 10, 60, 70, 120, 110을 순차적으로 삽입

[10]

(30)

(60)

(10)

(30)

(60)

- AVL트리에서의 삭제는 두 단계로 진행
- [1단계] 이진탐색트리에서와 동일한 삭제 연산 수행
- [2단계] 삭제된 노드로부터 루트노드 방향으로 거슬러 올라가며 불 균형이 발생한 경우 적절한 회전 연산 수행
 - 회전 연산 수행 후에 부모에서 불균형이 발생할 수 있고, 이러한 일이 반복되어 루트에서 회전 연산을 수행해야 하는 경우도 발생

(a) 삭제 전

(b) 삭제 후 노드 40에서 불균형 발생

(a) 삭제 전

(b) 삭제 후 노드 40에서 불균형 발생

- [핵심 아이디어] 삭제 후 불균형이 발생하면 반대쪽에 삽입이 이루 어져 불균형이 발생한 것으로 취급하자
 - 삭제된 노드의 부모= p, p의 부모 = gp, p의 형제 = s
 - s의 왼쪽과 오른쪽 서브트리 중에서 높은 서브트리에 마치 새 노 드가 삽입된 것으로 간주

• 예제: 40을 삭제

• 예제: 40을 삭제

LR-회전 후

RL-회전 후

AVL Tree 테스팅

```
01 from avl import AVL
                                 AVL 트리 객체 생성
02 if __name__ == '__main__':
      t = AVL()
03
                                         print('전위순회:\t', end='')
      t.put(75, 'apple')
04
                                                                      리
    t.put(80, 'grape')
                                     15 t.preorder(t.root)
05
                                                                      순
                                     16 print('\n중위순회:\t', end='')
   t.put(85, 'lime')
06
                               0
                                                                      호
  t.put(20, 'mango')
                                     17 t.inorder(t.root)
                               개
07
    t.put(10, 'strawberry')
                                                                      및
                                     18 print('\n75와 85 삭제 후:')
98
    t.put(50, 'banana')
                                     19 t.delete(75)
09
                               항
                                                                      삭
10 t.put(30, 'cherry')
                                     20 t.delete(85)
                                                                      제
                                     21 print('전위순회:\t', end='')
11 t.put(40, 'watermelon')
                               산
                                                                      연
                                     22 t.preorder(t.root)
                                                                      산
   t.put(70, 'melon')
                               입
12
13
     t.put(90, 'plum')
                                     23 print('\n중위순회:\t', end='')
                                                                      수
                                     24 t.inorder(t.root)
                                                                      행
```

```
■ Console 🖾 🎦 PyUnit
<terminated > main.py [C:\Users\sbyang\AppData\Local\Programs\Python\Python36-32
           40
               20
                   10
                      30
                          50
                             70
                                  85
                                     80
                                         90
전위순회: 75
              30 40
                                  80 85 90
중위순회: 10 20
                     50
                          70
                             75
75와 85 삭제 후:
전위순회: 40 20
               10 30 80
                          50 70
                                  90
중위순회: 10 20 30 40 50 70 80
                                  90
```

수행시간

- AVL 트리에서의 탐색, 삽입, 삭제 연산은 공통적으로 루트부터 탐 색을 시작하여 최악의 경우에 이파리까지 내려가고, 삽입이나 삭제 연산은 다시 루트까지 거슬러 올라가야
- 트리를 한 층 내려갈 때는 재귀호출하며, 한 층을 올라갈 때 불균형이 발생하면 적절한 회전 연산을 수행하는데, 이들 각각은 O(1) 시간 밖에 걸리지 않음
- 탐색, 삽입, 삭제 연산의 수행시간은 각각 AVL의 높이에 비례하므로 각 연산의 수행시간은 O(logN)

수행시간

- 다양한 실험결과에 따르면, AVL 트리는 거의 정렬된 데이터를 삽입 한 후에 랜덤 순서로 데이터를 탐색하는 경우 가장 좋은 성능을 보 임
- 이진탐색트리는 랜덤 순서의 데이터를 삽입한 후에 랜덤 순서로 데 이터를 탐색하는 경우 가장 좋은 성능을 보임a

- 2-3 트리는 내부 노드의 차수가 2 또는 3인 균형 탐색트리
- 차수가 2인 노드 = 2-노드, 차수가 3인 노드 = 3-노드
- 2-노드: 한 개의 키를 가지며, 3-노드는 두 개의 키를 가짐
- 2-3 트리는 루트로부터 각 이파리까지 경로의 길이가 같고, 모든 이 파리들이 동일한 층에 있는 완전한 균형트리
- 2-3 트리가 2-노드들만으로 구성되면 포화이진트리와 동일한 형태를 가짐

• [핵심 아이디어] 2-3트리는 이파리노드들이 동일한 층에 있어야 하므로 트리가 위로 자라나거나 낮아진다

- 2-3 트리에서도 이진탐색트리에서의 중위순회와 유사한 방법으로 중위순 회 수행
- 2-노드는 이진트리의 중위순회 방문과 동일
- k1과 k2를 가진 3-노드에서는 먼저 노드의 왼쪽 서브트리에 있는 모든 노 드들을 방문한 후에 k1을 방문하고, 이후에 중간 서브트리에 있는 모든 노 드들을 방문
- 다음으로 k2를 방문하고 마지막으로 오른쪽 서브트리에 있는 모든 노드들을 방문한다.
- 따라서 2-3트리에서 중위순회를 수행하면 키들이 정렬된 결과를 얻음

2-3 트리 탐색

루트에서 시작하여 방문한 노드의 키들과 탐색하고자 하는 키를 비교하며 다음 레벨의 노드를 탐색

• [예제] 80 탐색

B-Tree

- [핵심아이디어] 노드에 수백에서 수천 개의 키를 저장하여 트리의 높이를 낮추자.
- 다수의 키를 가진 노드로 구성되어 다방향 탐색(Multiway Search)이 가능한 균형 트리
- 2-3 트리는 B-트리의 일종으로 노드에 키가 2 개까지 있을 수 있는 트리
- B-트리는 대용량의 데이터를 위해 고안되어 주로 데이터베이스에 사용

B-Tree

차수가 M인 B-트리는

- 모든 이파리들은 동일한 깊이를 갖는다.
- 각 내부 노드의 자식 수는 [M/2] 이상 M 이하이다.
- 루트의 자식 수는 2 이상이다.

2-3 트리는 차수가 3인 B-트리이고, 2-3-4 트리는 차수가 4인 B-트리이다.

B-Tree 탐색연산

- B-트리에서의 탐색은 루트로부터 시작
- ・방문한 각 노드에서는 탐색하고자 하는 키와 노드의 키들을 비교하여, 적절한 서브트리를 탐색
- 단, B-트리의 노드는 일반적으로 수백 개가 넘는 키를 가지므로 각 노드에서는 이진탐색을 수행

삽입연산

• 차수가 5인 B-Tree에 45 삽입

