Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement en utilisant les méthodes énergétiques.

Chapitre 1 - Approche énergétique

Sciences
Industrielles de

l'Ingénieur

TD 1 - Corrigé

Système de dépose de poudre

Concours Centrale Supelec – TSI 2016 Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Objectif L'objectif est de valider le choix du moteur effectué par le concepteur du système.

Le cahier des charges impose que la vitesse maximale du chariot sur l'axe \overrightarrow{x} soit de $V_{\rm max} = 0.45\,{\rm m\,s^{-1}}$ et que l'accélération maximale du chariot soit de $\gamma_{\rm max} = 10\,{\rm m\,s^{-2}}$.

Travail demandé

Question 1 Déterminer la vitesse maximale de rotation du moteur Ω_{max} . Faire l'application numérique.

Correction

On a
$$V_{\rm max}=\Omega_{\rm max}\cdot r\cdot \frac{\phi}{2}$$
. En conséquence $\Omega_{\rm max}=V_{\rm max}\frac{2}{r\,\phi}$.

Application numérique : $\Omega_{\rm max}=\frac{2\cdot 0,45\cdot 10}{28,65\times 10^{-3}}\simeq 314\,{\rm rad\,s^{-1}}\simeq 3000\,{\rm tr\,min^{-1}}.$

Question 2 Déterminer l'accélération maximale du moteur $\dot{\Omega}_{max}$. Faire l'application numérique.

Correction

En suivant un raisonnement similaire : $\dot{\Omega}_{\rm max} = \gamma_{\rm max} \frac{2}{r\phi}$. $Application\ numérique$: $\dot{\Omega}_{\rm max} = \frac{10\cdot 2\cdot 10}{28,65\times 10^{-3}} \simeq 6981\,{\rm rad\,s^{-2}}$.

Question 3 Donner l'expression de l'énergie cinétique de l'ensemble mobile dans son mouvement le long de l'axe \overrightarrow{x} par rapport au bâti notée \mathcal{E}_c (ensemble/0). En déduire l'inertie équivalente J de l'ensemble mobile rapportée à l'arbre du moteur. Faire l'application numérique.

Correction

Le système peut être modélisé ainsi :

 \mathcal{E}_c (ensemble/0) = \mathcal{E}_c (1/0) + \mathcal{E}_c (2/0). Le solide 1 et l'arbre moteur sont en rotation par rapport au bâti et le solide 2 est en translation par rapport au bâti, on a donc :

•
$$\mathscr{E}_c(1/0) = \frac{1}{2} (J_m \Omega^2 + J_1 (r\Omega)^2) = \frac{1}{2} (J_m + J_1 r^2) \Omega^2$$

•
$$\mathscr{E}_c(2/0) = \frac{1}{2}MV^2 = \frac{1}{2}M\Omega^2 \left(\frac{r\phi}{2}\right)^2$$
.

$$\mathcal{E}_{c} \text{ (ensemble/0)} = \frac{1}{2} \left(\left(J_{m} + J_{1} r^{2} \right) + M \left(\frac{r \phi}{2} \right)^{2} \right) \Omega^{2}.$$
Application numérique : $J_{eq} = \left(J_{m} + J_{1} r^{2} \right) + \left(r \phi \right)^{2}$

Application numérique : $J_{eq} = (J_m + J_1 r^2) + M \left(\frac{r\phi}{2}\right)^2 = 5,9 \times 10^{-5} \text{ kg m}^2$.

Question 4 Établir l'expression du couple moteur maximal exercé par le moteur sur l'arbre moteur noté C_{max} . Faire l'application numérique.

Correction

Question 5 Donner l'expression de la puissance mécanique maximale que devra fournir le moteur électrique. Faire l'application numérique.

Correction

1

Le concepteur du système a choisi un moteur synchrone de vitesse nominale de $3000\,\mathrm{tr}\,\mathrm{min}^{-1}$ et de puissance utile $0,47\,\mathrm{kW}$.

Question 6 Valider le choix du moteur en le justifiant. Argumenter la présence éventuelle d'écart entre la puis-

sance mécanique maximale calculée et la puissance nominale du moteur choisi.

Correction