МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Программирование графических процессоров»

Обработка изображений на GPU. Фильтры.

Выполнил: Семин А. В.

Группа: 8О-406Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

1. **Цель работы.** Научиться использовать GPU для обработки изображений. Использование текстурной памяти и двухмерной сетки потоков.

2. Вариант 4. SSAA.

Необходимо реализовать избыточную выборку сглаживания. Исходное изображение представляет собой "экранный буфер", на выходе должно быть сглаженное изображение, полученное уменьшением исходного. Входные данные. На первой строке задается путь к исходному изображению, на второй, путь к конечному изображению. На следующей строке, два числа wn и hn - размеры нового изображения, гарантируется, что размеры исходного изображения соответственно кратны им. w*h ≤ 4 * 10⁸.

Программное и аппаратное обеспечение

Графический процессор (GeForce GTX 1650 Ti)

1. Количество потоковых процессоров: 1024

Частота ядра: 1350 МГц

3. Частота в режиме Boost: 1485 МГц

4. Количество транзисторов: 6,600 млн

5. Тип памяти: DDR6

6. Видеопамять: 4096 МБ

7. Частота памяти: 12000 МГц

Процессор AMD Ryzen 7 4800H

1. ядра: 8

2. потоки: 16

3. частота: 2.9 ГГц

4. максимальная частота: 4.2 ГГц

5. кэш 1 уровня: 64 КБ (на ядро)

6. кэш 2 уровня 512 КБ (на ядро)

7. кэш 3 уровня: 8 МБ (общий)

16 ГБ ОЗУ и 512 ГБ SSD.

OS – Windows 11Домашняя, WSL, IDE – VS Code, Compiler - nvcc, g++.

Метод решения

Считываем из стандартного потока ввода название входного и выходного файлов, результирующие размеры w и h изображения после преобразования. Считываем из файла его размеры и бинарные данные. Затем создаем текстурный объект. SSAA сглаживание выполняется следующим образом внутри ядра: у изображения для каждого блока пикселей размера (w/wn) х (h/hn) считаем среднее значение по каждой оси х, у, z. Результат записываем в выходной массив. После работы ядра копируем полученные данные с GPU на CPU и записываем в выходной файл.

Описание программы

Программа состоит из одного файла, в котором находятся функция ядра и main. В главной функции выполняются описанные выше действия считывания, копирования и записи данных, вызов выполнения функции ядра, а также создание текстурного объекта, выделение и очистка памяти.

Сигнатура функции ядра:

__global__ void ssaa_smoothing(cudaTextureObject_t tex, uchar4 *dev, const ImageSize out_img, int w_diff, int h_diff)

Результаты Время выведено в *миллисекундах*.

Конфигурация	Размер тестового файла				
	80 * 80	250 * 250	900 * 900	2200 * 2200	9000 * 9000
CPU	24	248	4518	27266	586179
<<<(16, 16), (16,16) >>>	0.084288	0.084064	0.136000	0.313920	3.573856
<<<(32, 32), (32,32) >>>	0.083968	0.103200	0.161120	0.271584	2.991040
<<<(64, 64), (32,32) >>>	0.144096	0.144544	0.175232	0.370176	2.949792
<<(256, 256), (32,32) >>>	1.025536	1.033984	1.082496	1.295008	4.343904
<<<(512, 512), (32,32) >>>	3.857312	3.740160	3.948448	4.056832	7.116896

Примеры работы

Исходная картинка (в приближении):

Как видно из результата, около прямой вместо обычной лесенки появилась

небольшая окантовка из пикселей серого оттенка, что и является

Размер обработанной картинки: 426 х 287 пикселей.

показателем совершенного сглаживания.

Выводы

Данный алгоритм широко применяется во многих областях, окружающих нас. Среди них такие, как видеоигры, компьютерная графика и визуализация, фото- и видеомонтаж.

В ходе выполнения лабораторной работы главной сложностью было разобраться в работе алгоритма и понять, как реализовать ядро на основе теоретических знаний о работе SSAA. Также, как видно из таблицы с результатами, этот алгоритм работает намного быстрее на GPU по сравнению с CPU.