

概述

MP3401A是一款专为移动电源设计的单芯片解决方案IC,高度集成了充电管理模块、LED电量显示模块、同步升压放电管理模块的移动电源管理芯片,极大的简化了外围电路与元器件数量。针对大容量单芯或多芯并联锂电池(锂离子或锂聚合物)的移动电源应用,提供最简单易用的低成本解决方案。

MP3401A采用的封装形式为SOP8。

应用

手机、平板电脑、GPS、电动工具等移动设备 备用电源

特点

- ◆ 线性充电,同步升压放电,内置充电、放电功率MOS
- ◆ 芯片内部设定0.7A充电电流
- ◆ 同步升压最大输出电流1A
- ◆ 独创升压输出热调节技术
- ◆ 涓流/恒流/恒压充电,并具有在无过热危险 的情况下实现充电速率最大化的热调节功能
- ◆ C/10 充电终止,自动再充电
- ◆ 预设4.2V充电电压,精度达±1%
- ◆ 放电输出过流、短路、过压、过温保护
- ◆ 2颗LED电量显示、充放电指示及异常指示

典型应用电路(5V/1A)

PCB LAYOUT注意事项(重点):

- 1. R1和C1必须尽量靠近LX引脚,LX引脚必须先经过R1和C1后再到电感。
- 2. Cbat尽量靠近BAT脚, Cin尽量靠近VCC 脚,并且走线时都经过电容再到IC 管脚。
- 3. 电感L与LX脚之间存在高频振荡,必须相互靠近并且尽量减小布线面积;其它敏感的器件必须远离电感以减小耦合效应。
- 4. 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 5. 芯片AGND和PGND需要在芯片下面先汇合,再直接连到系统地,连接的铜箔需要短、粗且 尽量保持完整,不被其他走线所截断。AGND不需要单独走线到系统地。

管脚功能

端	<u></u> Д	T /O	44.44.45.4r
名称	管脚	I/0	功能描述
LX	1	0	BOOST 开关输出
PGND	2	-	功率地
BAT	3	-	电池正极
VCC	4	Ι	适配器正电压输入端
LED1	5	0	放电输出指示灯
LED2	6	0	充电指示灯
GND	7	_	模拟地
OUT	8	0	升压输出

功能框图

电性参数

极限参数(注1)

参数	最小值	最大值	单位
引脚电压	-0.3	+6	V
储存环境温度	-65	150	$^{\circ}\!\mathbb{C}$
工作环境温度	-40	85	$^{\circ}$
工作结温范围	-40	150	$^{\circ}$
HBM (人体放电模型)	2K	_	V
MM (机器放电模型)	200	_	V

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

推荐工作条件

移动电源单芯片解决方案 MP3401A

符号	参数	测试条件	最小值	典型值	最大值	单位
充电部分(ラ	无特殊说明, VCC=5V,Ta=25℃)	•			I.
VCC	充电输入电压		4. 4	5	5. 5	V
$I_{ m vcc}$	输入电源电流	待机模式 (充电终止)	_	600	_	μА
V_{FLOAT}	稳定输出(浮充)电压	0°C≤TA≤85°C	4. 158	4. 2	4. 242	V
$\mathrm{I}_{\mathtt{BAT}}$	恒流充电电流	V _{BAT} =3.7V	600	700	800	mA
ITRIKL	涓流充电电流	V _{BAT} <v<sub>TRIKL,</v<sub>	60	70	80	mA
V_{TRIKL}	涓流充电阈值电压	VBAT上升	2.8	2.9	3. 0	V
V_{TRHYS}	涓流充电迟滞电压		-	100	-	mV
V_{UV}	VCC欠压闭锁阈值电压	VCC从低至高	2. 9	3. 0	3. 1	V
V _{UVHYS}	VCC欠压闭锁迟滞		0.15	0.2	0. 25	V
V		VCC从低到高	60	100	140	mV
V_{ASD}	VCC-VBAT闭锁阈值电压	VCC从高到低	5	30	50	
$I_{ ext{TERM}}$	终止电流门限		-	70	-	mA
ΔV_{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}	100	150	200	mV
T_{LIM}	限定温度模式中的结温		-	100	-	$^{\circ}$
Ron	功率FET导通电阻		-	670	-	mΩ
放电部分(ラ	无特殊说明, VBAT=3.7V,Ta=2	25℃)				
V_{BAT}	电池工作电压		2.9		4. 35	V
V_{out}	额定输出电压	V _{BAT} =3. 7V	4.8	5	5. 2	V
$I_{ ext{STDB}}$	待机电流		_	110	-	μА
$V_{\text{UV_BAT}}$	电池欠压闭锁阈值电压	VBAT下降	2.85	2.9	2. 95	V
V _{HYS_BAT}	电池欠压闭锁迟滞	VBAT上升	0. 25	0.3	0.35	V
F_{sw}	工作频率	Ta=60°C	_	1	-	MHz
${ m I}_{ m OUT}$	输出电流	$V_{BAT}=2.9^{4}.2V$	_	1	-	A
${ m I}_{ t LIM}$	周期电流限制	VOUT=5V	_	2	_	A
η	转换效率	V _{BAT} =4. 2V VOUT=5. OV&IOUT=1A	91	_	_	%
D_{MAX}	最大占空比		_	85	-	%
${ m I}_{ m END}$	放电结束电流		_	20	-	mA
Tov	过温保护		_	150	-	$^{\circ}$
T _{HYS}	过温保护滞回		_	20	_	$^{\circ}$
V _{RIPPLE}	输出纹波电压	VOUT=5. OV&IOUT=1A	_	100	_	mV
Тѕнит	输出无负载关闭检测时间		_	16	-	S
V _{SHORT}	短路保护电压		_	4.3	_	V

功能说明:

充电模式

MP3401A内部集成了完整的充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流由芯片内部设定,持续充电电流为0.7A,不需要另加阻流二极管和电流检测电阻。芯片内部的功率管理电路在芯片的结温超过100℃时自动降低充电电流,直到150℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当VCC的输入电压超过3.0V并且大于电池电压时,充电模块开始对电池充电。如果电池电压低于2.9V,充电模块用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电。当电池电压接近4.2V时,充电电流逐渐减小,系统进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,完整的充电过程为涓流-恒流-恒压。

充电结束阈值是恒流充电电流的10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。

升压输出模式

MP3401A提供一路同步升压输出,集成功率MOS,可提供5V/1A输出,效率高达91%以上。MP3401A采用1MHz的开关频率,可有效减小外部元件尺寸。在充电适配器未接入的状态下,系统一直工作在升压输出状态,空载电流为110uA。

在芯片处于非充电状态时,升压输出为芯片内部设定的5V,在重载的状况下,MP3401A工作在固定频率1MHz,并且逐周期限流,当负载的电流逐渐减小时,MP3401A会进入间歇式输出模式,以保证输出电压调整能力。当负载电流低于20mA(典型值)超过16S后,输出电压仍然保持5V,LED1灯灭,提醒用户外接设备充电已结束。

MP3401A提供输出过流、过压、短路、过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在发生输出过流、短路及过温情况时,芯片关闭升压输出200mS后重新启动,若异常未解除则芯片不断关闭重启(称之为打嗝模式)。MP3401A通过控制续流PMOS可以有效阻止输出电流的倒灌。

移动电源单芯片解决方案 MP3401A

在放电过程中,如果电池电压下降到2.9V后,芯片自动关闭,并锁定在UVLO状态,boost不工作。只有插入VCC或者电池电压大于3.6V才可以解锁UVL0,UVL0解锁后,如果电池电压大于3.2V,在VCC没有插入的情况下,boost才能再启动。

放电效率曲线

输出1A效率曲线

系统管理

MP3401A充电优先,如果负载与充电电源都有接入的情况,系统将单纯工作在充电模式, 无升压输出。只有将充电电源移除,系统才进入升压输出模式。

工作状态与电量指示

LED1、LED2为PMOS漏极输出,分别外接LED灯来指示充放电状态与电量:

- 1) 充电时LED2以1Hz闪烁, LED1灭;
- 2) 电池充满后LED2亮, LED1灭;
- 3) 拔掉充电电源后LED2灭, LED1灭;
- 4) 正常放电时,LED1亮,LED2灭;
- 5) 放电时, 若电池电压低于3.1V, LED1以1Hz闪烁, LED2灭;
- 6) 放电结束,即放电电流小于20mA(典型值)16秒后,LED1灯灭,LED2灭;
- 7) 在充电过程中,如果发生异常,无法充电时,LED1、LED2灭。在放电过程中,如果发生 短路保护、过流保护、过温保护,LED1、LED2灯灭,芯片进入打嗝模式。

电池电压(V)	充电		放	放电
电他电压(1)	LED1	LED2	LED1	LED2
VBAT≥4. 2	灭	亮	亮	灭
3. 1≤VBAT<4. 2	灭	1Hz 闪烁	亮	灭
2. 9≤VBAT<3. 1	灭	1Hz 闪烁	1Hz 闪烁	灭
VBAT<2. 9	灭	1Hz 闪烁	灭	灭

IC封装示意图

SOP8 封装外型尺寸图:

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1. 750	0. 053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.350	1. 550	0.053	0.061	
b	0. 330	0. 510	0.013	0.020	
С	0.170	0. 250	0.006	0.010	
D	4. 700	5. 100	0.185	0.200	
E	3.800	4. 000	0.150	0.157	
E1	5. 800	6. 200	0. 228	0.244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0.400	1. 270	0.016	0.050	
0	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)