Esercitazioni su rappresentazione dei numeri e aritmetica

Salvatore Orlando & Marta Simeoni

Interi unsigned in base 2

• Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al *numero zero*, e 1 corrisponde al *numero uno*

$$d_{n\text{--}1}...d_1d_0 \quad con \ di \ d_i \in \{0,1\}$$

- Qual è il numero rappresentato ? $N = d_{n-1} \cdot 2^{n-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$
- Quanti numeri sono rappresentabili su n bit?

$$\begin{array}{rcl}
00....00 & = & 0 \\
00....01 & = & 1 \\
00....10 & = & 2
\\
...
\\
01....11 & = & 2^{n} - & 3 \\
10....00 & = & 2^{n} - & 2
\\
...
\\
11....11 & = & 2^{n} - & 1 \\
100....00 & = & 2^{n}
\end{array}$$

Con sequenze di *n* bit sono rappresentabili 2ⁿ numeri naturali (da 0 a 2ⁿ⁻¹)

Interi unsigned in base 2

 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?

• 20₁₀ su 5 bit ?

64₁₀ su 6 bit ?

• 500₁₀ su 9 bit ? SI

1025₁₀ su 10 bit ? NO

Ricorda che:

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^5 = 32$$

$$2^6 = 64$$

$$2^7 = 128$$

$$2^8 = 256$$

$$2^9 = 512$$

$$2^{10} = 1024$$

...

Conversione binario-decimale

Esercizio: 1110101₂ = ???₁₀

$$1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} =$$

$$64 + 32 + 16 + 0 + 4 + 0 + 1$$

Soluzione: 1110101₂ = 117₁₀

Conversione decimale-binario

• Esercizio: 100₁₀ = ???₂

Soluzione: $100_{10} = 1100100_2$

Conversione dec-bin: metodo più pratico

- Scriviamo direttamente il numero decimale come somma di potenze di 2
- Per far questo, sottraiamo via via le potenze di 2, a partire dalle più significative
- Esercizio: 103₁₀ = ???₂

$$103 - 64 = 39 ==> 2^{6}$$
 $39 - 32 = 7 ==> 2^{5}$
 $7 - 4 = 3 ==> 2^{2}$
 $3 - 2 = 1 ==> 2^{1}$
 $1 - 1 = 0 ==> 2^{0}$

Allora
$$103_{10} = 2^6 + 2^5 + 2^2 + 2^1 + 2^0$$

Soluzione: 103₁₀ = 1100111₂

Ricorda che:

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$

Conversione binario-ottale e viceversa

Esercizio: 10101111₂ = ???₈

$$\underline{10} \quad \underline{101} \quad \underline{111}$$

2 5 7

Soluzione: 101011112 = 2578

• Esercizio: 635₈ = ???₂

6 3 5

<u>110</u> <u>011</u> <u>101</u>

Soluzione: 635₈ = 110011101₈

Base 16

Quali dei seguenti numeri esadecimali sono numeri sono corretti?

BED

CAR

938

DEAD

BEBE

A129

ACI

DECADE

BAG

DAD

4H3

Conversione binario-esadecimale e viceversa

Esercizio: 1011111101101₂ = ???₁₆

E R

Soluzione: 1011111101101₂ = BED₁₆ = 3053₁₀

Esercizio: A3C9₁₆ = ???₂

3 C Α 9

1010 0011 1100 1001

Ricorda che:

$$1_{10} = 1_{16} = 0001_{2}$$

 $2_{10} = 2_{16} = 0010_{2}$

$$9_{10} = 9_{16} = 1001_2$$
 $10_{10} = A_{16} = 1010_2$
 $11_{10} = B_{16} = 1011_2$
 $12_{10} = C_{16} = 1100_2$
 $13_{10} = D_{16} = 1101_2$
 $14_{10} = E_{16} = 1110_2$
 $15_{10} = F_{16} = 1111_2$

Soluzione: $A3C9_{16} = 1010001111001001_2 = 41929_{10}$

Interi signed in complemento a 2

- Come si riconosce un numero positivo da uno negativo?
 - Positivo ⇒ bit più significativo 0
 - Negativo ⇒ bit più significativo 1
- Su n bit sono rappresentabili 2ⁿ interi unsigned (da 0 a 2ⁿ-1)
- Sempre su n bit, quanti interi signed in complemento a 2 ?

$$0.....00 = 0$$

 $0......01 = 1$
...
 $01......11 = 2^{n-1}-1$ (massimo)
 $10......00 = 2^{n-1}$ (minimo) $-2^{n-1} = 2^{n-1}-2^n$
...
 $11......11 = 2^n - 1$ $-1 = 2^n - 1 - 2^n$

Dato N>0, il numero -N si rappresenta su n bit con il numero $2^n - N$

-1
$$\Rightarrow$$
 2ⁿ - 1 (1......1)
- 2ⁿ⁻¹ \Rightarrow 2ⁿ - 2ⁿ⁻¹ = 2ⁿ⁻¹ (10.....0)

Complemento a 2

Esercizio: Rappresentare -35₁₀ in complemento a 2

Soluzione: -35₁₀ = 11011101₂

Complemento a 2

• Esercizio: Rappresentare -35 in complemento a 2

Complemento a 2

 Esercizio: Quale numero decimale rappresenta il seguente numero binario in complemento a due?

1111 1111 1111 1111 1111 1110 0000 1100₂

 $0000\ 0000\ 0000\ 0000\ 0001\ 1111\ 0100_{2} =$

$$2^2 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 = 500_{10}$$

Soluzione: il numero è -500₁₀

Complemento a 2: somma e sottrazione

Esercizio: eseguire 53₁₀ - 35₁₀ in complemento a due su 8 bit

$$35_{10} = 00100011_2$$
 complementando: $-35_{10} = 11011101_2$

$$00010010_2 = 18_{10}$$

Complemento a 2: somma e sottrazione

Esercizio: eseguire 15₁₀ - 38₁₀ in complemento a due su 8 bit

Overflow

- In quali dei seguenti casi si può ottenere overflow?
 - somma di due numeri con segno concorde?
 - somma di due numeri con segno discorde? NO
 - sottrazione di due numeri con segno concorde? NO
 - sottrazione di due numeri con segno discorde? SI

Esercizio

- Considerate i numeri esadecimali $x_1 = 7A$ $x_2 = 13$ $x_3 = FF$ $x_4 = C1$ $x_5 = 84$
- Scrivere i quattro numeri in codice binario a 8 bit

$$x_1 = \underline{0111} \ \underline{1010} \ x_2 = \underline{0001} \ \underline{0011} \ x_3 = \underline{1111} \ \underline{1111}$$

$$x_4 = \underline{1100} \ \underline{0001} \ x_5 = \underline{1000} \ \underline{0100}$$

• Interpretare il codice binario in complemento a due ed eseguire le operazioni

$$X_1 - X_2;$$
 $X_3 + X_4;$ $X_4 + X_5;$ $X_4 - X_1$

```
11111000

x<sub>1</sub> 01111010 +

-x<sub>2</sub> 11101101 =

(101100111) mod 2<sup>8</sup> = 01100111 overflow?
```

Esercizio (continua)

```
\begin{array}{c} 10000000\\ x_4 & 11000001 +\\ -x_1 & 10000110 =\\ \hline \hline (101000111) \bmod 2^8 = 01000111 \quad \text{overflow?} \end{array}
```

Esercizio - caso particolare

- Si ricorda che l'opposto del <u>numero negativo più piccolo</u> su *n bit* non può essere rappresentato in complemento a due
 - codifica non simmetrica
- Supponiamo quindi
 - di lavorare con rappresentazioni in complemento a due su 3 bit
 - di dover effettuare la sottrazione X-y

dove $y=100_2$ è il minimo numero rappresentabile ($y=-4_{10}$)

Esercizio: calcolare x-y usando il solito algoritmo, dove x=001₂

```
X 001 +
-Y 100 ← Il complemento a due non ha effetto

(0101) mod 2³ = 101 OVERFLOW, anche se riporti concordi !!

Abbiamo infatti sottratto un numero negativo da un numero >= 0 ⇒ il segno atteso è positivo
```

Esercizio - caso particolare (continua)

- Esercizio: calcolare x-y, dove x=111₂
 - poiché $x=111_2$ allora $x=-1_{10}$
 - non dovremmo avere overflow, poiché vogliamo effettuare la somma algebrica di due numeri con segno discorde
 - il risultato da ottenere è $x-y=-1_{10}$ $(-4_{10})=3_{10}$

```
100
X 111 + non ha effetto

-Y 100

(0011) mod 2³ = 011 = 3₁0

NO OVERFLOW, anche se riporti discordi !!

Abbiamo infatti sottratto un numero negativo da un numero negativo => in questo caso non si può verificare overflow
```

Procedura generale per determinare l'OVERFLOW

Alla luce dell'esempio precedente, guardare solo ai due ultimi riporti per controllare l'OVERFLOW potrebbe quindi portare a risultati erronei

Operazione	Segno 1º operando	Segno 2º operando	Segno atteso		Solo in questi
Somma	+	+	+		casi si può verificare un OVERFLOW.
Somma	+	-	qualsiasi		
Somma	-	+	qualsiasi		Possiamo controllarlo confrontando il bit di segno del risultato con il
Somma	-	-	-		
Sottrazione	+	+	qualsiasi	il ris	
Sottrazione	+	-	+		
Sottrazione	-	+	-	/	segno atteso.
Sottrazione	_	_	ดมอไรเอรเ		

Numeri con la virgola (virgola fissa)

Data una base B, si assegnano:

n cifre per rappresentare la parte intera

m cifre per rappresentare la parte frazionaria

In base B=2, abbiamo quindi m+n bit per parte intera e frazionazia

Esempio:

$$d_{n-1}...d_1d_0 \cdot d_{-1}...d_{-m}$$

Qual è il numero rappresentato in base B?

$$N = d_{n-1} \cdot B^{n-1} + \dots + d_1 \cdot B^1 + d_0 \cdot B^0 + d_{-1} \cdot B^{-1} + \dots + d_{-m} \cdot B^{-m}$$

Virgola fissa

Esercizio: 23.625₁₀ = ???₂

(usare la rappresentazione in virgola fissa con n=8, m=8)

Conversione parte intera:

Conversione parte frazionaria:

Soluzione: 23.625₁₀ = 00010111.10100000₂

Numeri con virgola mobile

Un numero reale R può essere scritto in base B come R = ± m • Be

m = mantissa

e = esponente

B = base

Esempi con B = 10

 $- R1 = 3.1569 \times 10^3$

- R2 = 2054.00035 x 10⁻⁶

 $- R3 = 0.1635 \times 10^{2}$

 $- R4 = 0.0091 \times 10^{-12}$

Notazione scientifica:

 $m = 0 . d_{-1}...d_{-k}$

• Notazione scientifica normalizzata: $m = d_0 \cdot d_{-1} \cdot ... d_{-k}$ con $d_0 \neq 0$

Numeri binari in virgola mobile

Rappresentando mantissa ed esponente in binario in notazione scientifica normalizzata si ottengono numeri del tipo:

Si osservi che:

Spostare la virgola (punto) a destra di *n* bit significa decrementare di *n* l'esponente

es:
$$0.01 \cdot 2^3 = 1.0 \cdot 2^1$$

Infatti $1 \cdot 2^{-2} \cdot 2^3 = 1 \cdot 2^1$

Spostare la virgola (punto) a sinistra di *n* bit significa incrementare di *n* l'esponente

es:
$$100.011 \cdot 2^3 = 1.00011 \cdot 2^5$$

Infatti $(1 \cdot 2^2 + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}) \cdot 2^3 = (1 \cdot 2^0 + 1 \cdot 2^{-4} + 1 \cdot 2^{-5}) \cdot 2^5$
 $2^5 + 2^1 + 2^0 = 2^5 + 2^1 + 2^0$

Numeri FP

• Esercizio: 10₁₀ = ???₂ FP

$$10_{10} = 1010_2 = 1010.0_2 \cdot 2^0 = 1.01 \cdot 2^3$$

Esercizio: 151.25₁₀ = ???₂ FP

$$151_{10} = 128 + 16 + 4 + 2 + 1 = 10010111_{2}$$

$$0.25_{10} \times 2 = 0.50_{10} \text{ parte intera 0}$$

$$0.50_{10} \times 2 = 1_{10} \text{ parte intera 1}$$

$$0.25_{10} = 0.01_{2}$$
Quindi = $151.25_{10} = 10010111.01_{2} = 1.001011101_{2} \cdot 2^{7}$

Numeri FP

Una volta fissato il numero di bit totali per la rappresentazione dei numeri razionali rimane da decidere

Quanti bit assegnare per la mantissa?

(maggiore è il numero di bit e maggiore è l'accuratezza con cui si riescono a rappresentare i numeri)

Quanti bit assegnare per l'esponente?

(aumentando i bit si aumenta l'intervallo dei numeri rappresentabili)

OVERFLOW: si ha quando l'esponente positivo è troppo grande per poter essere rappresentato con il numero di bit assegnato all'esponente

UNDERFLOW: si ha quando l'esponente negativo è troppo grande (in valore assoluto) per poter essere rappresentato con il numero di bit assegnato all'esponente

Numeri FP in standard IEEE 724

Standard IEEE754: Singola precisione (32 bit)

si riescono a rappresentare numeri $2.0_{10} \cdot 2^{-38} \div 2.0_{10} \cdot 2^{38}$

Standard IEEE754: Doppia precisione (64 bit)

32bit