CS 3313 Foundations of Computing:

Review: Example of Nondeterministic algorithm
 Review: Diagonalization proof technique

http://gw-cs3313.github.io

[©] Hopcroft

Nondeterministic TM's - Review

- Allow the TM to have a choice of move at each step.
 - Each choice is a state-symbol-direction triple, as for the deterministic TM.
- The TM accepts its input if a sequence of choices leads to an accepting state.
- Transition function: $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L,R\}}$
- From a configuration, i.e., ID, $\alpha pa\beta$ after one move the TM goes to another ID $\alpha cq_i \beta$ if $\delta(p, a) = (q_i, c, R)$ is contained in $\delta(p, a)$
 - (q_i, c, R) is one of the choices of moves the machine can make from (p,a)
- Machine starts in ID $q_0 w$

Simulation of a NDTM on a TM

- Theorem: For any Non-deterministic Turing Machine, there is an equivalent deterministic Turing Machine.
 - If a language is accepted (or a function is computed) by a non-deterministic TM then there is a deterministic turing machine that accepts that language (or computes the function).
 - NDTM and TM are equally powerful and solve the same class of problems!
- Multi-tape Deterministic TM can simulate a non-deterministic TM
- Simulation time: If NDTM accepts in n moves, and it has at most k choices from each configuration, then Deterministic TM accepts in $O(k^n)$ moves
 - Polynomial time on NDTM but exponential time on DTM

The classes P and NP

- A problem is in class NP if there is a polynomial time nondeterministic algorithm to solve the problem
- A problem is in class P if there is a polynomial time deterministic algorithm to solve the problem
- P = NP? Open problem...(our simulation suggests not equal)
- NP-Complete: A problem is NPC if it can be reduced to the SAT problem....
 - If this problem can be solved then all problems in NPC can be solved in polynomial deterministic time

Solvable/Decidable vs Unsolvable/Undecidable problems

- Algorithm = Turing machine that halts on all inputs (always halts)
 - Decision problem: the answer is "Yes" or "No"
- A problem is undecidable if there is no algorithm (Turing machine that always halts) that solves the problem
 - Problem = language
 - How do we show a problem is undecidable/unsolvable need to prove the problem is undecidable
- A problem is decidable if there is an algorithm (Turing machine that always halt) to solve the problem
 - How do we show a problem is solvable provide an algorithm that solves the problem
 - Key observation: the algorithm can be deterministic or non-deterministic when we are trying to prove it is solvable/decidable

Graph Coloring is a solvable problem

- Graph Coloring: Given a graph G=(V,E), find the minimum number of colors k such that no two adjacent (connected) vertices have the same color
 - Recall: definition and properties from Discrete 2!!
 - Applications: include allocating registers to variables in the program (by the compiler)...the register allocation problem

Valid coloring with 3 colors

A Non-deterministic Algorithm for Graph Coloring

- Non-determinism is a powerful expressive tool to design solutions
 - Implementation on a computer requires deterministic algorithms
- Example: Graph Coloring Problem
 - Known to be NP-complete.
 - How can we solve it in polynomial time using a non-deterministic algorithm
- We outline a simple (there are better solutions) polynomial time non-deterministic algorithm

Non-deterministic Algorithm for Graph Coloring (1)

- First Step is design Function Check_Coloring(G,C): given a mapping of colors to vertices, check if it is a valid coloring of the graph.
 - Let $V = \{v_1, v_2, ..., v_n\}$
- A coloring C assigns one of k colors to each vertex,

$$C: \{1,..,k\} \rightarrow \{v_1,v_2,...,v_n\}$$

• Is C_1 a valid coloring of G_1 ? Is C_2 a valid coloring of G_2

Coloring C_1 : C(1)= green, C(2)- red, C(3)= blue C(4)=green

Coloring C_2 : C(1)= green, C(2)- red, C(3)= blue C(4)=green

Non-deterministic Algorithm for Graph Coloring (1)

A coloring C assigns one of k colors to each vertex,

$$C: \{1,..,k\} \rightarrow \{v_1,v_2...,v_n\}$$

- Function Check-Coloring(G,C)
 - Input is G=(V,E) and a coloring C
 - For each vertex v_i check if the coloring is valid
 - Check if $C(v_i) \iff C(v_j)$ for all v_j where (v_i, v_j) in E (edge between v_i and v_j)
 - If valid then return "Yes"
- This is a deterministic algo...takes $O(n^2)$ (examine all edges)
 - For each of the *n* vertices v_i , check all edges (max no. edges is $O(n^2)$)

Non-deterministic Algorithm for Graph Coloring (1)

A coloring C assigns one of k colors to each vertex,

$$C: \{1,..,k\} \to \{v_1,v_2,...,v_n\}$$

- Next: generate a coloring C using k colors, starting with k=1
- How to represent a coloring: a string of length n where each symbol is from the set $\{1,2,...k\}$! (yep enumeration once again!)
 - Ex: For n=7 and k=4 the string **2134142** is a coloring (may not be valid)
 - $C(v_1)=2$, $C(v_2)=1$, $C(v_3)=3$, $C(v_4)=4$, $C(v_5)=1$, $C(v_6)=4$, $C(v_7)=2$
- Example: In G_1 the coloring is the sequence 1231 where 1=Green, 2=Red, 3=Blue

Non-deterministic Algo for Coloring – (2)

- Next: generate a coloring C using k colors, starting with k=1
- Given n (number of vertices in graph) and k (number of colors), we can generate all strings of length n i.e., all n 'digit' base k numbers
- How ?....discussion of algorithm from lecture
 - Generate in lexicographic order (or smallest numeric value first)
- For each such coloring (base *k* number of length *n*) <u>branch non-deterministically</u> and call function Check_Coloring

Non-deterministic Algo for Coloring – (3)

- 1. done= False k=1
- 2. While (not done) {
 - 1. Generate all colorings C_j of length n using k colors(/symbols)
 - 2. For each coloring C_j simultaneously (non-deterministically) start function Check_Coloring(C_j ,G)
 - If any of these return "Yes" then done=True else k= k+1
- 3. Return k (minimum number of colors needed)
- Note that the algorithm will eventually halt since we know that k=n is a valid coloring (i.e., each vertex colored with its own color)
- Note: for n and k, there are k^n different colorings that we have to check
 - One concurrent branch in a NDTM...but no concurrent branches in DTM!!

Questions?

More Set theory review.....Today

- Quick recall from last week lab: Concept of Countable and Uncountable sets
- 2. Today: use diagonalization method to prove set of Real numbers is uncountable

Countable and Uncountable Sets

- Set cardinality: number of elements in the set (size of the set)
- Intuition: if we can arrange the elements of set in a manner where we can speak of "first element", "second element", etc.

- An infinite set A is countably infinite *if and only if* it has the same cardinality as the set of Natural numbers (positive integers)
 - There is a one to one correspondence (one to one and onto) from A to N.
- A set is countable *iff* it is finite or is countably infinite
- A set that is not countable is said to be uncountable
- Useful Theorems:
 - 1. If $A \subseteq B$ and B is countable then A is countable
 - 2. If $A \subseteq B$ and A is uncountable then B is uncountable

Countably Infinite Sets...Example

- Two sets have the same cardinality if there is a one to one correspondence between them
- An *enumeration* of a set is a 1-1 correspondence between the set and the positive integers
- Set of all integers Z is a countably infinite set: $f: Z \rightarrow N$
 - f(0) = 1 f(-i) = 2i f(+i) = 2i+1
 - 0 -> 1, -1 -> 2, 1 -> 3, -2 -> 4,...
 - "ordering" 0, -1, 1, -2, 2, -3, 3,
- Set of even integers Z_2 is countably infinite $f_2: N \rightarrow Z_2$
 - $f_2(n) = 2n$
- Set of primes P is countably infinite $-f_3$
 - f_3 : (p): p is the i-th prime.
 - Recall: we proved earlier that set of primes is infinite

Rational Numbers Q

• Rational number p/q p,q are integers

Last week lab we proved:

- **Theorem:** Set of positive rational numbers Q is countable
- Proof:
- Intuition: list the rational numbers "in order"
 - Find a way to "label" the rational numbers to get the first rational number, the second rational number, etc.
 - For simplicity, let's work with p,q positive
 - Observe: We can view the number p/q as a pair of integers [p,q] and then order them first by sum and then by first component
 - [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..[1,4],[5,1]...

Ordering of (positive) Rational Numbers Q

		>	> /	×			
1/1	1/2	1/3	1/4	1/5	• • •	• • •	••
2/1	2/2	2/3	2/4	2/5	• • •	• • •	• • •
3/1	3/2	3/3	3/4	3/5	• • •	• • •	•••
4/1	4/2	4/3	4/4	4/5	• • •	• • •	• • •
5/1	5/2	5/3	5/4	5/5	•••	• • •	•••
• • • •	• • •	• • •				• • •	• • •
• • •	• • •	• • •				• • •	• • •
• • •	• • •						

Key Idea today – Diagonalization

- Generate a table to describe property of collection (set) of objects
- Then manipulate the "diagonal" in the table to get a new object that you can prove is <u>not</u> in the table

Set of Real Numbers R: An uncountable set

- A real number has a decimal representation
 - $\pi = 3.1415926...$
 - $\sqrt{2} = 1.4142135...$
- A trick similar to rationals does not work here....but will use it to develop a proof by contradiction
- Theorem: Set of real number *R* is uncountable
- Proof by contradiction....
 - The technique, developed by Cantor, is known as diagonalization
- We will prove that the set of reals between 0 and 1 (0,1) is uncountable
 - This is a subset of R, therefore R is uncountable

Uncountable Set.....concept of Diagonalization

- Theorem: Set of real numbers is uncountable.
- Proof by contradiction: Assume the set (0,1) is countable.
- Any number in this set can be represented as $0.d_1d_2d_3...$
- Suppose the set is countable, then we can write a list of real numbers and count them from 1 to $n: x_1, x_2, ... x_n$.
 - $Each x_i = 0.d_1d_2....$ Where d_i is a digit

Uncountable Set.....concept of Diagonalization

- Any number in this set (0,1) can be represented as $0.d_1d_2d_3...$
- Suppose the set is countable, then we can write a list of real numbers and count them from 1 to $n: x_1, x_2, ...x_n$.
 - Each $x_i = 0.d_1d_2...$ Where d_i is a digit
- Notation: for each number x_i in the list (this appears in the *i-th* position) we can list the values of the digits a_{ij} in each position j after the decimal

$$x_1 = 0$$
. $a_{11} a_{12} a_{13} a_{14}$... Ex: $x_1 = 0.1342$.. then $a_{11} = 1$, $a_{12} = 3$, $a_{13} = 4$... $x_2 = 0$. $a_{21} a_{22} a_{23} a_{24}$...

$$x_i = 0.a_{i1} a_{i2} a_{i3} \dots a_{ii}$$

Uncountable set: (0,1) of reals

- Now view this concept as a matrix
 - Infinite number of columns and rows
 - *i-th* row is real number x_i
 - *j-th* column is value of a_{ij} the value in *j-th* decimal position of x_i

a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄	a ₁₄	•••	•••	••
a_{21}	<i>a</i> ₂₂	a ₂₃	a24	a ₂₅	•••	•••	•••
<i>a</i> 31	<i>a</i> ₃₂	<i>a</i> 33	<i>a</i> 34	<i>a</i> 35	•••	•••	•••
<i>a</i> 41	<i>a</i> ₄₂	<i>a</i> 43	<i>a</i> 44	a45	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••
a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
•••	•••	•••				•••	•••
•••	•••						

Example

• Illustrate construction (of matrix) with an example..

$$x_1 = 0.23117... x_2 = 0.11654... x_3 = 0.14142.. x_4 = 0.40375...$$

						\overline{j}	>		
	x_1	2	3	1	1	7	•••	•••	••
	x_2	1	1	6	5	4		•••	•••
i		1	4	1	4	2			•••
l		4	0	3	7	5			
•			•••	•••	•••	•••	•••	•••	•••
		a_{i1}	a_{i2}	a_{i3}				a_{ij}	•••
		•••	•••	•••				•••	•••
		•••	•••						

Example

Consider the entries on the diagonal a_{ii} and construct y such that y is not in this (infinite) matrix – **contradiction** since we said every real number in (0,1) can be listed in this manner.

						j	>		
		2	3	1	1	7			
		1	1	6	5	4			
i		1	4	Y	4	2			
		4	0	3		5			
1	•					1::/			
		a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
		•••	•••	•••);/	•••

 $x_1 = 0.23117...$ $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

Example- Contradiction

If y is listed in this matrix then $y = x_k$, for some k, and $x_k = 0.a_{k1} a_{k2} a_{k3}... a_{kj}...$

Pick y such that $a_{kj} \neq a_{jj}$ for all j

How? Ex: define $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$

ex: y=0.1221...

\wedge					>		
21	3	1	1	7	•••		••
1	72	6	5	4	•••		•••
1	4	2	4	2	•••		•••
4	0	3	7	5	•••		•••
•••	•••	•••	:	::	•••	•••	•••
a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
•••		•••				\	
•••	•••						

 $x_1 = 0.23117...$ $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

Example- Contradiction

If y is listed in this matrix then $y = x_k$, for some k, and $x_k = 0.a_{k1} a_{k2} a_{k3}... a_{kj}...$

Pick y such that $a_{kj} \neq a_{jj}$ for all j

How? Ex: define $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$

ex: y = 0.1221...

Ĵ	
	_

		X	7	1	1	,	•••	•••	••
		1	200	6	5	4	•••		•••
i		1	4	2/8	4	2	•••	•••	•••
		4	0	3		5	•••	•••	•••
•	ļ	•••	•••	•••	:	8	•••		•••
		a_{il}	a_{i2}	a_{i3}			×	a_{ij}	•••
		•••	•••	•••				8	•••

0.1221... cannot be in the matrix: cannot be in row 1 cannot be in row 2 cannot be in row 3 etc....

 $x_1 = 0.23117... x_2 = 0.11654... x_3 = 0.14142.. x_4 = 0.40375...$

Proof - contradiction

- Consider the number y, where $y = 0.a_{kl} a_{k2} a_{k3}... a_{kj}... where <math>a_{kj} \neq a_{jj}$ for all j
- As one instance: pick $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$
- Claim: this number y cannot appear in the matrix as any x_k
- Proof: if $y = x_k$ for some k, then we have at least one decimal position j where a_{kj} is not equal to value in row k, column j in the matrix. Contradiction
 - Example: y = 0.1221...
 - Cannot be in the matrix...cannot be in any row because at least one column j (the diagonal entry) the value is not the same as value in the complete matrix.

This type of proof construction – diagonalization is due to Cantor

Another example of an uncountable set: How Many Languages?

- Are the languages over $\{0,1\}$ countable?
 - Recall: A language over $\{0,1\}$ is a subset of $\{0,1\}$ *
 - Set of strings over $\{0,1\}$
- No here's a proof.
- Suppose we could enumerate all languages over $\{0,1\}$ and talk about "the *i-th* language."
- Consider the language $L = \{ w \mid w \text{ is the } i\text{-}th \text{ binary string and } w \text{ is not in the } i\text{-}th \text{ language} \}.$
 - We discussed (last week's lab) one way to enumerate binary strings
 - So we can talk about the *i-th* binary string

Proof – Continued

- Clearly, L is a language over $\{0,1\}$.
- Thus, it is the *j-th* language for some particular *j*.
- Let x be the *j-th* string.
- Is *x* in *L*?
 - If so, x is not in L by definition of L.
 - If not, then *x* is in *L* by definition of *L*.

Diagonalization Picture

Imagine an in finite matrix:

rows correspond to languages and columns to strings a l in the entry for row i, column j means j-th string is in the i-th language If we could enumerate languages, we could create such a table

		Strings						
		1	2	3		5	•	
	1	1	0	1	1	0	• • •	
	2		1					
Languages	3			0				
	4				0			
	5					1		
	• • •						•••	

Diagonalization Picture

 $L = \{ w \mid w \text{ is the } i-th \text{ binary string and } w \text{ is not in the } i-th \text{ language} \}.$

Can't be
a row —
it disagrees
in an entry
of each row.
Disagrees with
i-th row in
i-th position

Proof – Concluded

- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
- Comment: This is really bad; there are more languages than programs.
- E.g., there are languages with no membership algorithm.

Why is this proof important: this proof is used to provide a proof of a problem that cannot be solved by a turing machine!!