Mock Test > utkarshmishra.jyp@gmail.com

Full Name: Utkarsh Mishra Email: utkarshmishra.jyp@gmail.com Test Name: **Mock Test** Taken On: 20 Aug 2025 20:13:54 IST Time Taken: 24 min 53 sec/ 90 min Invited by: Ankush 19 Aug 2025 22:30:45 IST Invited on: Skills Score: Tags Score: Algorithms 290/290 Arrays 95/95 Core CS 290/290 Data Structures 215/215 Easy 95/95 Medium 75/75 Queues 120/120 Search 75/75 Sorting 95/95 Strings 95/95

scored in **Mock Test** in 24 min 53 sec on 20 Aug 2025 20:13:54 IST

Recruiter/Team Comments:

No Comments.

Plagiarism flagged

We have marked questions with suspected plagiarism below. Please review it in detail here -

problem-solving 170/170

	Question Description	Time Taken	Score	Status
Q1	Truck Tour > Coding	8 min 17 sec	120/ 120	(!)
Q2	Pairs > Coding	7 min 24 sec	75/ 75	(1)
Q3	Big Sorting > Coding	9 min	95/ 95	(1)

QUESTION 1 Truck Tour > Coding Algorithms Data Structures Queues Core CS

Score 120

QUESTION DESCRIPTION

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump.

Initially, you have a tank of infinite capacity carrying no petrol. You can start the tour at any of the petrol pumps. Calculate the first point from where the truck will be able to complete the circle. Consider that the truck will stop at each of the petrol pumps. The truck will move one kilometer for each litre of the petrol.

Input Format

The first line will contain the value of N.

The next N lines will contain a pair of integers each, i.e. the amount of petrol that petrol pump will give and the distance between that petrol pump and the next petrol pump.

Constraints:

```
1 \le N \le 10^5
```

 $1 \le \text{amount of petrol, distance} \le 10^9$

Output Format

An integer which will be the smallest index of the petrol pump from which we can start the tour.

Sample Input

```
3
1 5
10 3
3 4
```

Sample Output

1

Explanation

We can start the tour from the second petrol pump.

CANDIDATE ANSWER

Language used: Python 3

```
18 # def truckTour(petrolpumps):
       # Write your code here
   # if __name__ == '__main__':
       # fptr = open(os.environ['OUTPUT PATH'], 'w')
        # n = int(input().strip())
       # petrolpumps = []
        # for _ in range(n):
             petrolpumps.append(list(map(int, input().rstrip().split())))
        # result = truckTour(petrolpumps)
        # fptr.write(str(result) + '\n')
        # fptr.close()
36 n=int(input())
37 pet, dis=[],[]
38 for i in range(n):
        p,d=[int(x) for x in input().split()]
        pet.append(p),dis.append(d)
41 start, xsum=0,0
42 for i in range(n):
       xsum+=pet[i]-dis[i]
        if xsum<0:
            start=i+1
            xsum=0
47 print(start)
  TESTCASE
                                           STATUS
                                                      SCORE
               DIFFICULTY
                               TYPE
                                                               TIME TAKEN
                                                                            MEMORY USED
                                                                                10.3 KB
  Testcase 1
                  Easy
                            Sample case
                                         Success
                                                        0
                                                               0.0368 sec
  Testcase 2
                            Hidden case
                                         Success
                                                               0.0293 sec
                                                                                10.1 KB
                  Easy
  Testcase 3
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                                0.031 sec
                                                                                9.75 KB
  Testcase 4
                  Easy
                            Hidden case

    ✓ Success

                                                        10
                                                               0.0284 sec
                                                                                10.1 KB
                                                                                17.7 KB
  Testcase 5
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                               0.2359 sec
  Testcase 6
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                               0.2294 sec
                                                                                17.9 KB
                                                                0.222 sec
                                                                                17.8 KB
  Testcase 7
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                                                17.8 KB
  Testcase 8
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                               0.2395 sec
  Testcase 9
                            Hidden case
                                         Success
                                                        10
                                                               0.2336 sec
                                                                                17.8 KB
                  Easy
                                         Success
                                                               0.2215 sec
                                                                                17.8 KB
  Testcase 10
                            Hidden case
                                                        10
                  Easv
                                                               0.3474 sec
                                                                                17.9 KB
  Testcase 11
                  Easy
                            Hidden case

    ✓ Success

                                                        10
  Testcase 12
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                               0.2645 sec
                                                                                17.9 KB
  Testcase 13
                  Easy
                            Hidden case
                                         Success
                                                        10
                                                               0.2194 sec
                                                                                17.6 KB
No Comments
```

QUESTION 2
Pairs > Coding Search Algorithms Medium problem-solving Core CS

QUESTION DESCRIPTION

Given an array of integers and a target value, determine the number of pairs of array elements that have a difference equal to the target value.

Example

$$k = 1$$

$$arr = [1, 2, 3, 4]$$

There are three values that differ by k=1: 2-1=1, 3-2=1, and 4-3=1. Return 3.

Function Description

Complete the pairs function below.

pairs has the following parameter(s):

- *int k:* an integer, the target difference
- *int arr[n]:* an array of integers

Returns

• int: the number of pairs that satisfy the criterion

Input Format

The first line contains two space-separated integers n and k, the size of arr and the target value. The second line contains n space-separated integers of the array arr.

Constraints

- $2 \le n \le 10^5$
- $0 < k < 10^9$
- $0 < arr[i] < 2^{31} 1$
- ullet each integer arr[i] will be unique

Sample Input

```
STDIN Function
-----
5 2 arr[] size n = 5, k =2
1 5 3 4 2 arr = [1, 5, 3, 4, 2]
```

Sample Output

3

Explanation

There are 3 pairs of integers in the set with a difference of 2: [5,3], [4,2] and [3,1]. .

CANDIDATE ANSWER

Language used: C++14

```
1 /*
2 * Complete the 'pairs' function below.
3 *
4 * The function is expected to return an INTEGER.
5 * The function accepts following parameters:
6 * 1. INTEGER k
7 * 2. INTEGER_ARRAY arr
8 */
9
10 int pairs(int k, vector<int> arr) {
11     sort(arr.begin(), arr.end());
12     int count=0;
```

```
int i=0, j=1;
14
      while(j<arr.size()){</pre>
          int diff=arr[j]-arr[i];
           if(diff == k) {
               count++;
               j++;
           else if(diff<k){
               j++;
           }
           else{
               i++;
               if(i==j)j++;
           }
       }
       return count;
29 }
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 1	Easy	Hidden case	Success	5	0.008 sec	8.88 KB
Testcase 2	Easy	Hidden case	Success	5	0.0098 sec	8.38 KB
Testcase 3	Easy	Hidden case	Success	5	0.01 sec	8.63 KB
Testcase 4	Easy	Hidden case	Success	5	0.0111 sec	8.63 KB
Testcase 5	Easy	Hidden case	Success	5	0.0092 sec	8.75 KB
Testcase 6	Easy	Hidden case	Success	5	0.0151 sec	8.84 KB
Testcase 7	Easy	Hidden case	Success	5	0.015 sec	8.96 KB
Testcase 8	Easy	Hidden case	Success	5	0.01 sec	8.75 KB
Testcase 9	Easy	Hidden case	Success	5	0.0119 sec	9.2 KB
Testcase 10	Easy	Hidden case	Success	5	0.012 sec	9.02 KB
Testcase 11	Easy	Hidden case	Success	5	0.057 sec	14.2 KB
Testcase 12	Easy	Hidden case	Success	5	0.0618 sec	14.2 KB
Testcase 13	Easy	Hidden case	Success	5	0.0478 sec	14.4 KB
Testcase 14	Easy	Hidden case	Success	5	0.0598 sec	14.4 KB
Testcase 15	Easy	Hidden case	Success	5	0.0719 sec	14.2 KB
Testcase 16	Easy	Sample case	Success	0	0.0081 sec	8.75 KB
Testcase 17	Easy	Sample case	Success	0	0.0117 sec	8.75 KB
Testcase 18	Easy	Sample case	Success	0	0.0118 sec	8.5 KB
o Comments						

No Comments

sorted array.

Example

```
unsorted = ['1', '200', '150', '3']
```

Return the array ['1', '3', '150', '200'].

Function Description

Complete the bigSorting function in the editor below.

bigSorting has the following parameter(s):

• string unsorted[n]: an unsorted array of integers as strings

Returns

• string[n]: the array sorted in numerical order

Input Format

The first line contains an integer, n, the number of strings in unsorted. Each of the n subsequent lines contains an integer string, unsorted[i].

Constraints

- $1 \le n \le 2 \times 10^5$
- Each string is guaranteed to represent a positive integer.
- There will be no leading zeros.
- The total number of digits across all strings in unsorted is between f 1 and $f 10^6$ (inclusive).

Sample Input 0

```
6
31415926535897932384626433832795
1
3
10
3
5
```

Sample Output 0

```
1
3
3
5
10
31415926535897932384626433832795
```

Explanation 0

The initial array of strings is

unsorted = [31415926535897932384626433832795, 1, 3, 10, 3, 5]. When we order each string by the real-world integer value it represents, we get:

$$1 \leq 3 \leq 3 \leq 5 \leq 10 \leq 31415926535897932384626433832795$$

We then print each value on a new line, from smallest to largest.

Sample Input 1

```
8
1
2
100
12303479849857341718340192371
3084193741082937
3084193741082938
111
200
```

Sample Output 1

```
1
2
100
111
200
3084193741082937
3084193741082938
12303479849857341718340192371
```

CANDIDATE ANSWER

Language used: C++14

```
1 #include <bits/stdc++.h>
 2 #include <string>
4 using namespace std;
6 string ltrim(const string &);
7 string rtrim(const string &);
8
11 /*
12 * Complete the 'bigSorting' function below.
* The function is expected to return a STRING ARRAY.
* The function accepts STRING ARRAY unsorted as parameter.
16 */
17 bool compBig(const string &a, const string &b) {
return a.size() < b.size();
      return a<b;
22 }
23 vector<string> bigSorting(vector<string> unsorted) {
      sort(unsorted.begin(),unsorted.end(),compBig);
      return unsorted;
26 }
28 int main()
29 {
      ofstream fout(getenv("OUTPUT PATH"));
      string n temp;
      getline(cin, n_temp);
      int n = stoi(ltrim(rtrim(n temp)));
      vector<string> unsorted(n);
      for (int i = 0; i < n; i++) {
          string unsorted_item;
41
          getline(cin, unsorted item);
          unsorted[i] = unsorted item;
      }
45
46
       vector<string> result = bigSorting(unsorted);
```

```
47
       for (size_t i = 0; i < result.size(); i++) {</pre>
48
          fout << result[i];</pre>
          if (i != result.size() - 1) {
              fout << "\n";
           }
      }
      fout << "\n";
      fout.close();
      return 0;
60 }
62 string ltrim(const string &str) {
      string s(str);
      s.erase(
         s.begin(),
67
          find_if(s.begin(), s.end(), not1(ptr_fun<int, int>(isspace)))
      return s;
71 }
73 string rtrim(const string &str) {
     string s(str);
      s.erase(
          find if(s.rbegin(), s.rend(), not1(ptr fun<int, int>
78 (isspace))).base(),
          s.end()
      );
      return s;
83 }
84
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 1	Easy	Sample case	Success	0	0.0092 sec	8.38 KB
Testcase 2	Medium	Hidden case	Success	10	0.0082 sec	8.75 KB
Testcase 3	Medium	Hidden case	Success	10	0.0226 sec	9.5 KB
Testcase 4	Hard	Hidden case	Success	15	0.0339 sec	10.4 KB
Testcase 5	Hard	Hidden case	Success	15	0.028 sec	9.92 KB
Testcase 6	Hard	Hidden case	Success	15	0.0336 sec	10.1 KB
Testcase 7	Hard	Hidden case	Success	15	0.046 sec	12.1 KB
Testcase 8	Hard	Hidden case	Success	15	0.1083 sec	20.4 KB
Testcase 9	Easy	Sample case	Success	0	0.0105 sec	8.75 KB

PDF generated at: 20 Aug 2025 15:40:54 UTC

No Comments