R-code for 'Little evidence for inbreeding depression for birth mass, survival and growth in Antarctic fur seal pups'

Compiled by A.J. Paijmans and A.L. Berthelsen

04 December, 2023

Contents

Packages and libraries	2
Microsatellite dataset	3
SNP dataset	5
Variance in inbreeding	5
Statistical models - microsatellite heterozygosity	7
Microsatellite dataset: pup birth mass	7
Model 1: including maternal effects	8
Residual check of model	8
Model 2: excluding maternal effects	10
Residual check of model	10
Parameter estimates pup birth mass models	12
Microsatellite dataset: survival	13
Model 1: including maternal effects	13
Residual check of model	14
Model 2: excluding maternal effects	15
Residual check of model	16
Parameter estimates pup survival models	17
Microsatellite dataset: pup growth	18
Model 1: including maternal effects	18
Residual check of model	19
Model 2: excluding maternal effects	20
Residual check of model	21
Parameter estimates pup growth models	22
Statistical models - SNP inbreeding	24
Birth weight analysis	24
Filtered data for birth weight analysis	24
Data visualization	24
Model	25
Residual check of model	26
Paramter estimates pup birth weight model	27
Survival analysis	28
Binomial data for survival analysis	28
Model	28
Residual check of model	29

Paramter estimates pup survival model	30
Growth curves with repeated measures	31
Data visualization	31
Repeated measures growth curve models	33
Exploration of growth curve fit	35
Model: repeated measures	37
Model: weight gain	38
Residual check of model	39
Parameter estimates pup growth model	40
Individual growth curves	41
Anuscript figures	43
Figure 1: map and seasonal data	43
Figure 2: forest plots microsatellite models	46
Figure 3: forest plots SNP models	49

This document contains all the R code used in the workflow for the manuscript Little evidence for inbreeding depression for birth mass, survival and growth in Antarctic fur seal pups by Anneke J. Paijmans, Ane Liv Berthelsen, Rebecca Nagel, Felicitas Cristaller, Nicole Kröcker, Jaume Forcada, and Joseph I. Hoffman. The R Markdown file and the raw data can all be downloaded via Zenodo, LINK. Additional scrips are available on Github, LINK. Please, don't hesitate to contact me if you have any questions: a.paijmans [@]uni-bielefeld.de.

Packages and libraries

```
packages <- c("here",</pre>
               "readxl",
               "tidyverse",
               "inbreedR",
               "lme4",
               "lmerTest",
               "DHARMa",
               "sjPlot",
               "cowplot",
               "ggtext",
               #"scales",
               "nlme",
               "car",
               "AICcmodavg",
               "data.table",
               "rcartocolor",
               "dotwhisker",
               "merDeriv",
               "sf",
               "chron",
               "ggspatial",
               "ggsn")
# # Install packages needed not yet installed
# installed_packages <- packages %in% rownames(installed.packages())</pre>
   if (any(installed_packages == FALSE)) {
```

```
# install.packages(packages[!installed_packages])
# }
# Load packages
invisible(lapply(packages, library, character.only = TRUE))
```

Microsatellite dataset

Before starting the analysis, mother-pup pairs were checked for genetic matching using the excel NEWPAT macro. The genotypes of pairs with a maximum of 3 mismatching loci were visually inspected. If a scoring mistake was identified, the genotype was corrected. The maternity analysis was then rerun on the updated microsatellite data. Mother-pup pairs with fewer than 2 mismatching loci were considered a genetic match.

Preparing the files for the maternity analysis and postprocessing of the results were done in separate R scripts. These scripts and the NEWPAT excel macro files can be found on github **LINK**.

First, we load the fitness data including the results of the maternity analysis, and the microsatellite data for all our individuals in two separate dataframes.

Genotypes with more than 4 missing loci out of 39 were removed.

```
#~~ Keep only individuals genotyped for all 39 loci, with a maximum of 4 missing loci
msats_all <- msats_all %>%
  filter(Gaps < 5)</pre>
```

We then calculated sMLH for all remaining individuals and added this to the fitness data.

```
#~~ Convert msat data to inbreedR input
msat_genotypes39 <- msats_all %>% select(Pv9.a:Mang36.b)
msat_ids <- msats_all %>% select(uniqueID)

msat_genotypes39_raw <- convert_raw(msat_genotypes39)

#~~ Check if data is in right format for InbreedR
check_data(msat_genotypes39_raw, num_ind = nrow(msat_ids), num_loci =
    length(msat_genotypes39_raw))</pre>
```

```
## [1] TRUE

#~~ Calculate sMLH (incl FWB)
het39 <- sMLH(msat_genotypes39_raw)

sMLH_msat39 <- cbind(msat_ids, het39)</pre>
```

```
colnames(sMLH_msat39) <- c("uniqueID", "sMLH_msat39")

#~~ Add sMLH to pup data
pup_data <- left_join(pup_data, sMLH_msat39, by = c("uniqueID_pup" = "uniqueID")) %>%
    rename(sMLH_msat39_pup=sMLH_msat39)

pup_data <- left_join(pup_data, sMLH_msat39, by = c("uniqueID_mum" = "uniqueID"))%>%
    rename(sMLH_msat39_mum=sMLH_msat39)
```

We then removed all mothers and maternal information for the mothers that were not a genetic match (ie more than 1 mismatching locus).

And finally added a column with survival information (1 = survived until tagging, 0 = died).

```
pup_data <- pup_data %>%
  mutate(Survival = ifelse(!is.na(Cat_Death) | !is.na(Pup_Death), "0",
                           ifelse(!is.na(Pup_TagWeight) & !is.na(Pup_Death), "0",
                                  ifelse(!is.na(Pup TagWeight) & is.na(Pup Death), "1",
                                   → NA)))) %>%
  mutate(Survival = as.factor(Survival))
# All pups that do not have a tagging weight AND also no death date will now have an NA
→ in the Survival column.
# These will be removed: we wont be able to use them in the growth model nor the survival
→ model (as we do not know whether they were dead or alive).
# So for consistency, we will also not use them in the birth mass model (n=231)
# nrow(pup_data %>% filter(is.na(Survival)))
# All pups with a 2nd weight and no death date are assumed to have survived at least
⇔ until the end of the season
pup_data <- pup_data %>%
  filter(!is.na(Survival))
```

Making sure all variables have the right categories

```
#~~ Fix column categories
pup_data <- pup_data %>%
  mutate(Pup_Sex = as.factor(Pup_Sex)) %>%
  mutate(Year = as.factor(Year)) %>%
  mutate(Survival = as.factor(Survival))
```

SNP dataset

Datasets for birth weight, survival and repeated measures growth analysis. Scripts for SNP data filtering, calculating sMLH and F_{ROH} are available on github **LINK**.

```
DataRM_Day60 <- read.csv(here("Data", "Raw", "GrowthRM_BI1820_Day60.new.csv"))
Unique_Day60 <- subset(DataRM_Day60, DataRM_Day60$Age_Days < 62 &</pre>
                          !DataRM_Day60$ID == 'H2' &
                          !DataRM_Day60$ID == 'H5') %>%
  mutate(Sex = as.factor(Sex)) %>%
  mutate(Season = as.factor(Season)) %>%
 mutate(Beach = as.factor(Beach)) %>%
 distinct(ID, .keep_all = TRUE)
#98 pups
UniqueSurvivors_Day60 <- subset(Unique_Day60, Unique_Day60$Death == 'N')</pre>
#76 pups
SurvivorsRM_Day60 <- subset(DataRM_Day60, DataRM_Day60$Death == 'N' &
                               DataRM_Day60$Age_Days < 62 &</pre>
                               !DataRM_Day60$ID == 'H2' &
                               !DataRM_Day60$ID == 'H5') %>%
  mutate(Sex = as.factor(Sex)) %>%
  mutate(Season = as.factor(Season)) %>%
  mutate(Beach = as.factor(Beach)) %>%
  mutate(Age_Days = as.numeric(Age_Days))
```

Variance in inbreeding

-0.0001036011 0.0012367364

##

To explore the variance in inbreeding, we also calculated g_2 (n permunations = 1000, n bootstraps = 1000). Since the g_2 calculations can take some time, we calculated it once, stored it as a Gdata object and load the data from the saved object. The code to calculate the g_2 can be found on Github **LINK**, as well as the resulting Rdata objects.

```
load(here("Data", "Processed", "g2_39loci_after_checks.RData"))
# summary
g2_39loci
##
## Calculation of identity disequilibrium with g2 for microsatellite data
##
## Data: 1491 observations at 39 markers
## Function call = g2_microsats(genotypes = msat_genotypes39_raw, nperm = 1000,
                                                                                     nboot = 1000, CI =
##
## g2 = 0.0005367851, se = 0.0003419581
##
## confidence interval
##
            2.5%
                         97.5%
```

```
## p (g2 > 0) = 0.04 (based on 1000 permutations)
load(here("Data", "Processed", "g2_snps.RData"))
# summary SNPs
g2_snp_geno
##
##
## Calculation of identity disequilibrium with g2 for SNP data
##
## Data: 196 observations at 77417 markers
## Function call = g2_snps(genotypes = snp_genotypes, nperm = 1000, nboot = 1000,
                                                                                        CI = 0.95, parall
## g2 = 0.000163467, se = 2.081776e-05
## confidence interval
           2.5%
## 0.0001242281 0.0002068790
## p (g2 > 0) = 0.001 (based on 999 permutations)
# Make df for plotting
g2_plot <- rbind(data.frame(g2_boot = g2_snp_geno$g2_boot, gen_data = "snps"),</pre>
                 data.frame(g2_boot = g2_39loci$g2_boot, gen_data = "msats"))
lcl_snps <- g2_snp_geno$CI_boot[1]</pre>
ucl_snps <- g2_snp_geno$CI_boot[2]
g2_boot_summary_snps <- data.frame(lcl_snps, ucl_snps)</pre>
lcl_msat <- g2_39loci$CI_boot[1]</pre>
ucl_msat <- g2_39loci$CI_boot[2]</pre>
g2_boot_summary_msat <- data.frame(lcl_msat, ucl_msat)</pre>
# Colors
col1 <- "#872ca2"
col2 <- "#f6a97a"
# Use Martin Stoffel's GGplot theme as a base
source(here("Rcode", "anneke_theme.R"))
ggplot(g2_plot, aes(x = g2_boot, fill = gen_data)) +
  geom_histogram(alpha = 0.7, position = "identity", binwidth = 0.00001) + # 0.00001 or
  scale_fill_manual(values = c(col1, col2), labels = c("msats\n(n = 1491)", "SNPs\n(n = 1491)")
  → 196)")) +
  # Add CI bars and q2 line for msats
  geom_errorbarh(aes(xmin = g2_boot_summary_msat$lcl_msat , xmax =

    g2_boot_summary_msat$ucl_msat , y = 200),
                 linewidth = 0.8, color = col1, linetype = "solid", height = 0) +
  geom_vline(xintercept = g2_39loci$g2, linewidth = 0.6, color = col1, linetype =

→ "dashed") +

  # Add CI bars and g2 line for SNPs
  geom_errorbarh(aes(xmin = g2_boot_summary_snps$1cl_snps , xmax =
  \Rightarrow g2_boot_summary_snps$ucl_snps , y = 205),
```

```
linewidth = 0.8, color = col2, linetype = "solid", height = 0) +
geom_vline(xintercept = g2_snp_geno$g2, linewidth = 0.6, color = col2, linetype =
    "dashed") +
# Add zero line
geom_vline(xintercept = 0, linewidth = 0.6, linetype = "solid") +
# Add other labs and theme
labs(y = "Counts", x = expression(italic(g[2]))) +
theme_anneke() +
theme(legend.title=element_blank())
```


We then plotted the bootstrapped g_2 values for both the microsatellite data as well as the SNP array data. For both datasets, the g_2 was significantly different from zero (microsatellite data: p = 0.04, SNP array data: p = 0.001).

Statistical models - microsatellite heterozygosity

Microsatellite dataset: pup birth mass

We tested for an effect of individual or maternal heterozygosity (sMLH) on pup birth mass with a linear model. Pup and maternal sMLH were included as continuous variables. Covariates were pup sex and year (as factors) and mother age (as continuous variable) (see Model 1). To make use of a bigger sample size (including pups with known and unknown mothers) we ran the same model while excluding maternal effects (see Model 2). The results were not significantly different (see parameter estimates)).

Model 1: including maternal effects

```
#~~ Birth mass model incl maternal effects
m1birthmass <- lm(Pup_BirthWeight ~ sMLH_msat39_pup
                 + Pup Sex
                 + Year
                 + sMLH msat39 mum
                 + Mum_Age,
                 # + (1 | uniqueID_mum), # including mother ID as a random effect did
                  → not change the results significantly and the model was a poorer fit
                 # In addition, adding mother ID as random effect may make it
                  → problematic as sMLH mum would be a comfounding factor.
                 data = pup_data)
summary(m1birthmass)
##
## Call:
## lm(formula = Pup_BirthWeight ~ sMLH_msat39_pup + Pup_Sex + Year +
      sMLH_msat39_mum + Mum_Age, data = pup_data)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -2.40510 -0.35600 0.00611 0.28943 1.78262
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                   4.27721 0.40642 10.524 < 2e-16 ***
## (Intercept)
## sMLH msat39 pup -0.03999
                              0.31888 -0.125 0.900272
## Pup_SexM
                  0.64099
                              0.05660 11.324 < 2e-16 ***
## Year2018
                  -0.22695
                              0.08521 -2.663 0.008108 **
## Year2019
                   0.09053
                              0.07463
                                      1.213 0.225924
## Year2020
                  -0.13158
                              0.07470 -1.761 0.079073
                                      0.126 0.899539
## sMLH_msat39_mum 0.04050
                              0.32059
                                      3.541 0.000455 ***
## Mum Age
                   0.03751
                              0.01059
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5193 on 334 degrees of freedom
    (742 observations deleted due to missingness)
## Multiple R-squared: 0.3291, Adjusted R-squared:
## F-statistic: 23.4 on 7 and 334 DF, p-value: < 2.2e-16
```

Residual check of model

We used the DHARMa package to check three model assumptions: the first figure shows a test for under/overdispersion, the second figure, a QQplot, checks for normality, and the third figure, residuals versus the predictions, allows to check for issues with linearity and equality of error variances.

```
#~~ Model assumptions
testDispersion(m1birthmass) # tests for over/underdispersion
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
```

```
##
## data: simulationOutput
## dispersion = 0.97627, p-value = 0.712
## alternative hypothesis: two.sided
plotQQunif(m1birthmass) # detect overall deviations from the expected distribution. Is
→ data normally distributed?
plotResiduals(m1birthmass) # plot residuals against the predicted value
# Outlier test is significant, although the QQplot looks good
#~~ Further investigation of the outliers
simulationOutput <- simulateResiduals(fittedModel = m1birthmass)</pre>
testOutliers(simulationOutput)
##
##
   DHARMa outlier test based on exact binomial test with approximate
   expectations
##
## data: simulationOutput
## outliers at both margin(s) = 7, observations = 342, p-value = 0.021
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.008267784 0.041715094
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
# There are 7 outliers out of 342 obs. The frequency of outliers is significantly higher

→ than expected (2.04% against 0.79% expected)

# According to the vignette, a certain number of outliers are expected 'at random'. It
a could also hint at overdispersion, but the test for dispersion
# showed no indication for that. The DHARMa vignette also mentions that the visual
→ indicators of the residuals are a lot more informative than the p-values.
# Taken together with the fact that all plots look good, it is not likely to be a

→ problem.
```


Model 2: excluding maternal effects

```
#~~ Birth mass model excl maternal effects
m2birthmass <- lm(Pup_BirthWeight ~ sMLH_msat39_pup</pre>
                  + Pup Sex
                  + Year,
                  data = pup_data)
summary(m2birthmass)
##
## Call:
  lm(formula = Pup_BirthWeight ~ sMLH_msat39_pup + Pup_Sex + Year,
##
##
       data = pup_data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -2.5190 -0.3705 -0.0043 0.3824 2.3107
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    4.53703
                               0.23306 19.467
                                               < 2e-16 ***
                                         0.539 0.59016
## sMLH_msat39_pup 0.12353
                               0.22927
## Pup_SexM
                    0.55663
                               0.04228 13.164
                                               < 2e-16 ***
## Year2018
                   -0.19440
                               0.06122
                                        -3.175
                                                0.00155 **
## Year2019
                    0.15770
                               0.05729
                                         2.753 0.00603 **
## Year2020
                   -0.25740
                               0.05724
                                       -4.497 7.83e-06 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6274 on 878 degrees of freedom
     (200 observations deleted due to missingness)
## Multiple R-squared: 0.2106, Adjusted R-squared: 0.2061
## F-statistic: 46.85 on 5 and 878 DF, p-value: < 2.2e-16
```

Residual check of model

```
#~~ Model assumptions
testDispersion(m2birthmass)
```

```
##
   DHARMa nonparametric dispersion test via sd of residuals fitted vs.
   simulated
##
##
## data: simulationOutput
## dispersion = 0.99112, p-value = 0.888
## alternative hypothesis: two.sided
plotQQunif(m2birthmass)
plotResiduals(m2birthmass)
# Outlier test is significant, although the QQplot looks good
#~~ Further investigation of the outliers
simulationOutput <- simulateResiduals(fittedModel = m2birthmass)</pre>
testOutliers(simulationOutput)
##
##
   DHARMa outlier test based on exact binomial test with approximate
##
   expectations
##
## data: simulationOutput
## outliers at both margin(s) = 14, observations = 884, p-value = 0.01997
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.008684635 0.026429330
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
                                                 0.0158371
# There are 14 outliers out of 884 obs.
# Also here, the test for dispersion shows no indication for overdispersion, and the
→ QQplot looks good.
# Therefore, the model fit is likely to be OK.
```


Parameter estimates pup birth mass models

Parameter estimates from: (a) the linear model including maternal genetic diversity (mother sMLH) and mother age, and (b) the linear model excluding maternal effects. Estimates are shown together with confidence intervals (CI), significant p-values are in bold. For both models, total number of observations, as well as the variance explained by the predictors (\mathbb{R}^2) and variance adjusted for the number of predictors (\mathbb{R}^2 adjusted) are reported. The results of the model including maternal effect (a) compared to the results of the model excluding maternal effects (b) are very similar, even though the sample size is more than double (342 vs. 884, respectively).

```
# Statistical table showing parameter estimates for both models
# Labels
tab label <- c(
  `(Intercept)` = "Intercept",
  sMLH_msat39_pup = "pup sMLH",
  Pup_SexM = "pup sex [M]",
  sMLH_msat39_mum = "mother sMLH",
  Mum_Age = "mother age",
  Year2018 = "season [2019]",
  Year2019 = "season [2020]",
  Year2020 = "season [2021]")
# Table
# print so it saves but doesn't show the html table,
# which doesn't display nicely in the pdf generated by Rmarkdown
print(tab_model(m1birthmass, m2birthmass,
                pred.labels = tab_label,
                title = "Pup birth mass",
                dv.labels = c("(a) model incl. maternal effect",
                               "(b) model excl. maternal effect"),
                show.stat=T,
                string.stat = "t value",
                file = here("Tables", "Table_BW_full_model_vs_no_mat_NEW.html")))
# Make a screenshot of saved htlm table and save as a png
# so that it can be shown in Rmarkdown pdf
webshot::webshot(here("Tables", "Table_BW_full_model_vs_no_mat_NEW.html"),
                 file=here("Tables", "Table_BW_full_model_vs_no_mat_NEW.png"), delay=2,
                  \leftrightarrow vheight = 450, vwidth = 700)
```

Pup birth mass

	(a) model incl. maternal effect			(b) model excl. maternal effect				
Predictors	Estimates	CI	t value	p	Estimates	CI	t value	p
Intercept	4.28	3.48 - 5.08	10.52	< 0.001	4.54	4.08 - 4.99	19.47	< 0.001
pup sMLH	-0.04	-0.67 - 0.59	-0.13	0.900	0.12	-0.33 - 0.57	0.54	0.590
pup sex [M]	0.64	0.53 - 0.75	11.32	< 0.001	0.56	0.47 - 0.64	13.16	<0.001
season [2019]	-0.23	-0.390.06	-2.66	0.008	-0.19	-0.310.07	-3.18	0.002
season [2020]	0.09	-0.06 - 0.24	1.21	0.226	0.16	0.05 - 0.27	2.75	0.006
season [2021]	-0.13	-0.28 - 0.02	-1.76	0.079	-0.26	-0.370.15	-4.50	<0.001
mother sMLH	0.04	-0.59 - 0.67	0.13	0.900				
mother age	0.04	0.02 - 0.06	3.54	<0.001				
Observations	342				884			
$R^2 / R^2 \text{adjusted}$	0.329 / 0.	315			0.211 / 0.	206		

Microsatellite dataset: survival

Here, we tested for an effect of individual or maternal heterozygosity on pup survival with a generalized linear model (GLM) with a binomial error structure. Survival (1 = survived and 0 = dead) was included as a factor, pup and maternal sMLH were included as continuous variables. Also in this model the addition covariates were pup sex, year (as factors) and mother age (as continuous variable) (see Model 1). Again, we compared the results with the results generated by running the same model on the bigger dataset (including pups with known and unknown mothers) while excluding maternal effects (see Model 2). The results were not significantly different (see parameter estimates)), although in the model without maternal effects there seemed to be a year effect that was not present in the model including maternal effects. Pups were more likely to survive in 2019 compared to 2018 but less likely to survive in 2021 compared to 2018.

Model 1: including maternal effects

```
# ss <- getME(m1survival, c("theta", "fixef"))
# m1survival.m2 <- update(m1survival, start = ss, control = glmerControl(optimizer =
⇒ "bobyqa", optCtrl = list(maxfun = 2e+05)))
summary(m1survival) # conclusions are the same as for the model excl mum ID as a random
→ factor
##
## Call:
## glm(formula = Survival ~ sMLH_msat39_pup + Pup_Sex + Pup_BirthWeight +
      Year + sMLH_msat39_mum + Mum_Age, family = binomial, data = pup_data)
##
## Deviance Residuals:
##
      Min
                    Median
                                3Q
               1Q
                                       Max
                    0.4559
## -2.4790
           0.3314
                            0.5976
                                     1.1730
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 0.88722
                            2.72121
                                    0.326 0.74439
## Pup_SexM
                2.930 0.00339 **
## Pup BirthWeight 0.90808
                            0.30995
## Year2018
                  0.94972
                            0.54154 1.754 0.07947 .
## Year2019
                  0.77948 0.46104
                                    1.691 0.09090 .
## Year2020
                  0.06544
                            0.38034
                                    0.172 0.86339
## sMLH_msat39_mum -0.81441
                            1.81066 -0.450 0.65287
## Mum_Age
                  0.06996
                            0.06123
                                    1.143 0.25323
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 288.09 on 341 degrees of freedom
##
## Residual deviance: 264.90 on 333 degrees of freedom
    (742 observations deleted due to missingness)
## AIC: 282.9
## Number of Fisher Scoring iterations: 5
Residual check of model
#~~ Model assumptions
testDispersion(m1survival)
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
##
   simulated
##
## data: simulationOutput
## dispersion = 1.0157, p-value = 0.824
## alternative hypothesis: two.sided
```

plotQQunif(m1survival) plotResiduals(m1survival)

Model 2: excluding maternal effects

```
## glm(formula = Survival ~ sMLH_msat39_pup + Pup_Sex + Pup_BirthWeight +
##
       Year, family = binomial, data = pup_data)
## Deviance Residuals:
                      Median
##
       Min
                 10
                                    3Q
                                            Max
                      0.4941
                                0.6493
## -2.6930
             0.2944
                                         1.4802
##
## Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                    -4.9198
                                1.2444
                                       -3.954 7.69e-05 ***
                                0.9857
## sMLH msat39 pup
                     0.9654
                                         0.979 0.327359
## Pup_SexM
                    -0.5317
                                0.2017
                                        -2.636 0.008380 **
## Pup_BirthWeight
                     1.2004
                                0.1640
                                         7.319 2.49e-13 ***
## Year2018
                     1.0788
                                0.3212
                                         3.358 0.000785 ***
## Year2019
                     0.0915
                                0.2624
                                         0.349 0.727332
                                0.2294
## Year2020
                                        -2.297 0.021634 *
                    -0.5269
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 845.08 on 883 degrees of freedom
## Residual deviance: 745.04 on 877 degrees of freedom
     (200 observations deleted due to missingness)
## AIC: 759.04
##
## Number of Fisher Scoring iterations: 5
```

Residual check of model

```
#~~ Model assumptions
testDispersion(m2survival)
```

```
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.9758, p-value = 0.632
## alternative hypothesis: two.sided
```

plotQQunif(m2survival)
plotResiduals(m2survival)

Parameter estimates pup survival models

Parameter estimates from: (a) the GLM with a binomial error distribution including maternal genetic diversity, and (b) excluding maternal effects. Log-Odd ratios are shown together with confidence intervals (CI), significant *p*-values are in bold. Total number of observations, as well as the variance explained (R2 Tjur) are reported for both models. The results of the model including maternal effect (a) compared to the results of the model excluding maternal effects (b) are very similar, even though the sample size is more than double (342 vs. 884, respectively).

```
#~~ Labels
tab_labSurvival <- c(</pre>
  `(Intercept)` = "Intercept",
  sMLH_msat39_pup = "pup sMLH",
  Pup_BirthWeight = "pup birth mass",
  Pup_SexM = "pup sex [M]",
  sMLH_msat39_mum = "mother sMLH",
  Mum_Age = "mother age",
  Year2018 = "season [2019]",
  Year2019 = "season [2020]",
  Year2020 = "season [2021]")
#~~ Table
print(tab model(m1survival, m2survival,
                pred.labels = tab labSurvival,
                title = "Pup survival",
                dv.labels = c("(a) model incl. maternal effect",
                              "(b) model excl. maternal effect"),
                \#order.terms = c(1, 2, 4, 3, 7, 5, 6),
                transform = NULL,
                show.stat=T,
                string.stat = "t value",
                file = here("Tables", "Table_survival_full_model_vs_no_mat.html")))
#~~ Makes a screenshot of saved htlm table and saves as a png
webshot::webshot(here("Tables", "Table_survival_full_model_vs_no_mat.html"),
                 file=here("Tables", "Table_survival_full_model_vs_no_mat.png"), delay=2,
                     vheight = 400, vwidth = 700)
```

Pup survival

	(a) model incl. maternal effect			(b) model excl. maternal effect				
Predictors	Log-Odds	CI	t value	p	Log-Odds	CI	t value	p
Intercept	0.89	-4.45 – 6.25	0.33	0.744	-4.92	-7.392.50	-3.95	<0.001
pup sMLH	-3.05	-6.69 - 0.48	-1.67	0.094	0.97	-0.97 - 2.90	0.98	0.327
pup sex [M]	-0.92	-1.660.20	-2.48	0.013	-0.53	-0.930.14	-2.64	0.008
pup birth mass	0.91	0.31 - 1.53	2.93	0.003	1.20	0.89 - 1.53	7.32	<0.001
season [2019]	0.95	-0.05 - 2.12	1.75	0.079	1.08	0.47 - 1.73	3.36	0.001
season [2020]	0.78	-0.09 - 1.74	1.69	0.091	0.09	-0.42 - 0.61	0.35	0.727
season [2021]	0.07	-0.68 - 0.82	0.17	0.863	-0.53	-0.980.08	-2.30	0.022
mother sMLH	-0.81	-4.41 – 2.71	-0.45	0.653				
mother age	0.07	-0.05 - 0.19	1.14	0.253				
Observations	342				884			
R ² Tjur	0.069				0.132			

Microsatellite dataset: pup growth

In order to test for weight gain, the data needs to be filtered to include only surviving pups (for most pups that did not survive, a second weight was not taken, and therefore weight gain could not be calculated).

We then tested for an effect of individual or maternal heterozygosity on pup survival with a linear model. Growth (difference in weight between birth and recapture) was included as a continuous variable. Addition covariates were pup age (number of days between birth and recapture), pup sex, year and mother age (see Model 1).

Again, here we compared the results with the results generated by running the same model on the bigger dataset (including pups with known and unknown mothers) while excluding maternal effects (see Model 2). The results were comparable between the two models (see parameter estimates)), although in the model without maternal effects there seemed to be an effect of both pup sex and birth mass, where males gained more weight than females and pups that were born heavier also gained more weight. In the model with maternal effect, these effects were not present, however, we find here a small significant effect of pup sMLH, which is not present in the model without maternal effects.

```
# Keep only pups that survived
pup_alife <- pup_data %>%
  filter(Survival == "1") %>%
  select(-c(Pup_Death, Survival))
```

Model 1: including maternal effects

```
+ Pup_BirthWeight
               + Age_Tag
               + Year
               + sMLH_msat39_mum
               + Mum_Age,
               #+ (1 | uniqueID_mum), # including mother ID as a random effect did not
               - change the results significantly, and might be comfounded with mum

→ SMLH

               data = pup_alife)
summary(m1growth)
##
## Call:
## lm(formula = WeightGain ~ sMLH_msat39_pup + Pup_Sex + Pup_BirthWeight +
       Age_Tag + Year + sMLH_msat39_mum + Mum_Age, data = pup_alife)
##
## Residuals:
      Min
                               3Q
##
               1Q Median
                                      Max
## -4.6704 -0.7894 0.0427 0.8033 3.7300
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  -1.509259 1.291837 -1.168 0.2437
## sMLH_msat39_pup 1.966734 0.847586 2.320
                                                 0.0210 *
## Pup_SexM
                   0.423281
                              0.184809
                                        2.290
                                                 0.0227 *
## Pup_BirthWeight -0.007078
                             0.152805 -0.046
                                                 0.9631
## Age_Tag
                                         5.714 2.81e-08 ***
                   0.054574
                              0.009551
## Year2018
                   1.666965
                             0.230027
                                         7.247 4.13e-12 ***
## Year2019
                   2.022889
                             0.206037
                                         9.818 < 2e-16 ***
## Year2020
                   1.511597
                              0.211733
                                        7.139 8.04e-12 ***
## sMLH_msat39_mum -0.662822
                              0.841433 -0.788
                                                 0.4315
                                                 0.4008
## Mum_Age
                   0.027679
                              0.032891
                                         0.842
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.277 on 281 degrees of freedom
     (567 observations deleted due to missingness)
## Multiple R-squared: 0.4504, Adjusted R-squared: 0.4327
## F-statistic: 25.58 on 9 and 281 DF, p-value: < 2.2e-16
Residual check of model
#~~ Model assumptions
testDispersion(m1growth)
##
##
   DHARMa nonparametric dispersion test via sd of residuals fitted vs.
   simulated
##
##
## data: simulationOutput
## dispersion = 0.96696, p-value = 0.712
```

alternative hypothesis: two.sided

plotQQunif(m1growth) plotResiduals(m1growth)

Model 2: excluding maternal effects

```
##
## Call:
## lm(formula = WeightGain ~ sMLH_msat39_pup + Pup_Sex + Pup_BirthWeight +
##
       Age_Tag + Year, data = pup_alife)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -4.8136 -0.8687
                   0.0616 0.8039 4.6392
##
##
## Coefficients:
```

```
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -1.476920
                               0.732784
                                         -2.015 0.04423 *
## sMLH msat39 pup
                    0.176693
                               0.569200
                                           0.310 0.75633
## Pup_SexM
                               0.117134
                                           3.964 8.11e-05 ***
                    0.464347
## Pup_BirthWeight
                    0.274592
                               0.090304
                                           3.041
                                                 0.00245 **
                    0.055456
                               0.005252
                                         10.559
## Age Tag
                                                  < 2e-16 ***
## Year2018
                    1.753265
                               0.147036
                                         11.924
                                                  < 2e-16 ***
## Year2019
                    1.617863
                               0.147068
                                         11.001
                                                  < 2e-16 ***
## Year2020
                    1.390791
                               0.151884
                                          9.157
                                                  < 2e-16 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.392 on 713 degrees of freedom
     (137 observations deleted due to missingness)
##
## Multiple R-squared: 0.3884, Adjusted R-squared: 0.3823
## F-statistic: 64.67 on 7 and 713 DF, p-value: < 2.2e-16
```

Residual check of model

```
#~~ Model assumptions
testDispersion(m2growth)
```

```
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.98774, p-value = 0.856
## alternative hypothesis: two.sided

plotQQunif(m2growth)
plotResiduals(m2growth)
# The residuals vs. predicted quantile plot shows a small deviation for the 0.75

- quantile. However, the combined
# adjusted quantile test is not significant and also the Kolmogorov-Smirnov(KS)-test is
- non significant (see QQplot).
# So I conclude that the deviation is not very big, and no reason to reject the model.
```


Parameter estimates pup growth models

Parameter estimates from: (a) linear model including maternal genetic diversity, and (b) excluding maternal effects. Estimates are shown together with confidence intervals (CI), significant p-values are in bold. For both models, total number of observations, as well as the variance explained by the predictors (\mathbb{R}^2) and variance adjusted for the number of predictors (\mathbb{R}^2 adjusted) are reported.

```
#~~ Labels
tab labGrowth <- c(
  `(Intercept)` = "Intercept",
  sMLH msat39 pup = "pup sMLH",
  Pup_BirthWeight = "pup birth mass",
  Pup_SexM = "pup sex [M]",
  sMLH_msat39_mum = "mother sMLH",
  Mum_Age = "mother age",
  Age_Tag = "pup age",
  Year2018 = "season [2019]",
  Year2019 = "season [2020]",
  Year2020 = "season [2021]")
#~~ Table
print(tab_model(m1growth, m2growth,
                pred.labels = tab_labGrowth,
                title = "Pup growth",
                dv.labels = c("(a) model incl. maternal effect",
                               "(b) model excl. maternal effect"),
                \#order.terms = c(1, 2, 3, 9, 4, 5, 6, 7, 8),
                show.stat=T,
                string.stat = "t value",
                file = here("Tables", "Table_growth_full_model_vs_no_mat_NEW.html")))
# Makes a screenshot of saved htlm table and saves as a png
webshot::webshot(here("Tables", "Table_growth_full_model_vs_no_mat_NEW.html"),
                 file=here("Tables", "Table_growth_full_model_vs_no_mat_NEW.png"),
                  \rightarrow delay=2, vheight = 450, vwidth = 700)
```

Pup growth

	(a) model incl. maternal effect			(b) model excl. maternal effect				
Predictors	Estimates	CI	t value	p	Estimates	CI	t value	p
Intercept	-1.51	-4.05 - 1.03	-1.17	0.244	-1.48	-2.920.04	-2.02	0.044
pup sMLH	1.97	0.30 - 3.64	2.32	0.021	0.18	-0.94 - 1.29	0.31	0.756
pup sex [M]	0.42	0.06 - 0.79	2.29	0.023	0.46	0.23 - 0.69	3.96	<0.001
pup birth mass	-0.01	-0.31 - 0.29	-0.05	0.963	0.27	0.10 - 0.45	3.04	0.002
pup age	0.05	0.04 - 0.07	5.71	<0.001	0.06	0.05 - 0.07	10.56	<0.001
season [2019]	1.67	1.21 - 2.12	7.25	<0.001	1.75	1.46 - 2.04	11.92	<0.001
season [2020]	2.02	1.62 - 2.43	9.82	<0.001	1.62	1.33 – 1.91	11.00	<0.001
season [2021]	1.51	1.09 - 1.93	7.14	<0.001	1.39	1.09 - 1.69	9.16	<0.001
mother sMLH	-0.66	-2.32 - 0.99	-0.79	0.432				
mother age	0.03	-0.04 - 0.09	0.84	0.401				
Observations	291				721			
R2 / R2 adjusted	0.450 / 0.	433			0.388 / 0.	382		

Statistical models - SNP inbreeding

Birth weight analysis

In this section of the script factors affecting birth weight are investigated.

Filtered data for birth weight analysis

Mums that were no genetic match with their pups were removed (concerns pup H2 and H5, they were switched and suckled by the others mum).

Data visualization

Before fitting the models, the raw data is visualized to explore distribution.

```
#min/mean/max of birth weight
mean_birth_weight <- mean(Unique_Day60$Birth_weight, na.rm = T)</pre>
#5.61
#min_birth_weight <- min(Unique_Day60$Birth_weight, na.rm = T)</pre>
#3.2
#max_birth_weight <- max(Unique_Day60$Birth_weight, na.rm = T)</pre>
#7.8
birth_weight_raw <- ggplot(Unique_Day60, aes(x = Birth_weight)) +</pre>
  geom_histogram(binwidth = 0.2, fill = "orange", color = "black") +
  geom_vline(aes(xintercept = mean_birth_weight), color = "purple", linetype = "dashed",
  \rightarrow linewidth = 0.8) +
  labs(title = "Birth weight distribution",
       x = "Weight (kg)",
       y = "Frequency") +
  theme_minimal()
#Based on visual inspection, the birth weight looks fairly normally distributed
shapiro.test(Unique_Day60$Birth_weight) #the shapiro-wilk test tests for normality. The
ull-hypothesis is that the population is normally distributed. P value > 0.05
   implying that the distribution of the data are not significantly different from
    normal distribution. Therefore, we can assume normality.
##
##
   Shapiro-Wilk normality test
## data: Unique_Day60$Birth_weight
## W = 0.99537, p-value = 0.9855
#plots
plot_grid(birth_weight_raw, label_size = 12)
```

Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

Model

The birth weight data is normally distributed, so the model is built with a Gaussian distribution.

```
##
## Call:
## lm(formula = Birth_weight ~ froh + froh_mum + Sex + Season +
##
       Beach, data = Unique_Day60)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                     3Q
                                              Max
   -2.70382 -0.51808 -0.02644 0.46211
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  4.6903
                             0.8462
                                      5.543 3.28e-07 ***
                  3.3658
                                      0.411
## froh
                             8.1860
                                               0.6820
## froh_mum
                 3.7677
                             7.7100
                                      0.489
                                               0.6263
                                      2.350
## SexM
                  0.4369
                             0.1859
                                               0.0211 *
## Season1920
                  0.2804
                                      1.588
                             0.1766
                                               0.1161
## BeachSSB
                  0.1172
                             0.1772
                                      0.661
                                               0.5103
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.836 on 85 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.09185, Adjusted R-squared: 0.03843
## F-statistic: 1.719 on 5 and 85 DF, p-value: 0.1389
```

Residual check of model

```
#Test model
testDispersion(BW.model.froh) #good fit
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.94117, p-value = 0.656
## alternative hypothesis: two.sided
plotQQunif(BW.model.froh) #deviation not significant
plotResiduals(BW.model.froh)
#Test model fit
#Predict values for your existing data
predicted_values <- predict(BW.model.froh, type = "response")</pre>
na_values <- rep(NA, 7) #to make the predicted no. of values equal to the observed data
predicted_values <- c(predicted_values, na_values)</pre>
#plot the densities of the predicted and observed data
BW_model <- ggplot(Unique_Day60, aes(x = Birth_weight)) +</pre>
 geom_density(fill = "orange", alpha = 0.5) +
 geom_density(aes(x = predicted_values), fill = "purple", alpha = 0.5) +
 labs(x = "Birth weight)", y = "Density") +
  ggtitle("Observed vs. Predicted birth weight")
BW_model #Note: densities does not match greatly
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
## Warning: Removed 7 rows containing non-finite values (`stat_density()`).
```


Paramter estimates pup birth weight model

```
# Table
lab_BW.model.froh <- c(</pre>
  `(Intercept)` = "Intercept",
  froh = "pup  <i>F</i><sub>ROH</sub>", # for some reason, if I do not add the htlm
  space (Embsp;), it puts Froh on the line below "pup". This fixes that
  froh_mum = "mother  <i>F</i><sub>ROH</sub>",
  SexM = "pup sex [M]",
  BeachSSB = "colony [SSB]",
  Season1920 = "season [2020]")
print(sjPlot::tab_model(BW.model.froh,
                        title = "Pup birth mass",
                        dv.labels = "model incl. maternal effect",
                        pred.labels = lab_BW.model.froh,
                        show.stat=T,
                        string.stat = "t value",
                        file = here("Tables", "Table_BW_SNPs_Froh.html")))
webshot::webshot(here("Tables", "Table_BW_SNPs_Froh.html"),
                 file=here("Tables", "Table_BW_SNPs_Froh.png"), delay=2, vheight = 350,
                  \leftrightarrow vwidth = 450)
```

Pup birth mass

	model incl. maternal effect					
Predictors	Estimates	CI	t value	p		
Intercept	4.69	3.01 - 6.37	5.54	< 0.001		
$\operatorname{pup} F_{\mathrm{ROH}}$	3.37	-12.91 – 19.64	0.41	0.682		
${\rm mother} F_{\rm ROH}$	3.77	-11.56 – 19.10	0.49	0.626		
pup sex [M]	0.44	0.07 - 0.81	2.35	0.021		
season [2020]	0.28	-0.07 - 0.63	1.59	0.116		
colony [SSB]	0.12	-0.24 - 0.47	0.66	0.510		
Observations	91					
R2 / R2 adjusted	0.092 / 0.	038				

Survival analysis

First step for the survival analysis is to transform the 'Death' variable into a binary (0,1) variable and remove the two pups that were not cared for by their biological mum.

Note: for the pups C20 and N1 their mums, F20 and FWB1, respectively, died during the sampling season as well.

Binomial data for survival analysis

```
Unique_Day60$Survived <- ifelse(Unique_Day60$Death == 'N',1,0)</pre>
```

Model

The model is built with a binary response variable. The model includes includes F_{ROH} values calculated from SNP data.

```
##
## Call:
## glm(formula = Survived ~ froh + froh_mum + Sex + Season + Beach +
```

```
##
      Birth_weight, family = "binomial", data = Unique_Day60)
##
## Deviance Residuals:
##
      Min
             1Q Median
                                 3Q
                                         Max
## -2.2299
          0.2761
                   0.4397
                             0.6643
                                      1.3074
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
               -4.2193
                          3.4102 -1.237
                                           0.2160
## froh
               28.9553
                          26.6320 1.087
                                            0.2769
## froh_mum
               -19.3476
                        26.6919 -0.725 0.4685
                           0.6558 0.167
## SexM
                0.1097
                                           0.8671
                           0.5818 -0.227
## Season1920
               -0.1318
                                           0.8208
## BeachSSB
                           0.6211
                                  2.193
                1.3624
                                            0.0283 *
## Birth_weight 0.7982
                           0.3916 2.038
                                           0.0415 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 93.248 on 90 degrees of freedom
## Residual deviance: 79.310 on 84 degrees of freedom
    (7 observations deleted due to missingness)
## AIC: 93.31
##
## Number of Fisher Scoring iterations: 5
#Binary variable codes so 0 means the pup died that season and 1 means the pup survived.
#Birth weight and beach is significant
```

Residual check of model

Paramter estimates pup survival model

```
lab_Survival.model.froh <- c(</pre>
  `(Intercept)` = "Intercept",
  froh = "pup <i>F</i><sub>ROH</sub>",
  froh_mum = "mother <i>F</i><sub>ROH</sub>",
  SexM = "pup sex [M]",
  Season1920 = "season [2020]",
  BeachSSB = "colony [SSB]",
  Birth_weight = "pup birth mass")
print(sjPlot::tab model(Survival.model.froh,
                        title = "Pup survival",
                        dv.labels = "model incl. maternal effect",
                        pred.labels = lab_Survival.model.froh,
                        transform = NULL,
                        show.stat=T,
                        string.stat = "t value",
                        file = here("Tables", "Table_survival_SNPs_Froh.html")))
webshot::webshot(here("Tables", "Table_survival_SNPs_Froh.html"),
                 file=here("Tables", "Table_survival_SNPs_Froh.png"), delay=2, vheight =
                  \leftrightarrow 400, vwidth = 400)
```

Pup survival

	model incl. maternal effect						
Predictors	Log-Odds	CI	t value	p			
Intercept	-4.22	-11.31 – 2.24	-1.24	0.216			
$\operatorname{pup} F_{\mathrm{ROH}}$	28.96	-21.78 - 83.83	1.09	0.277			
mother $F_{\rm ROH}$	-19.35	-73.54 – 32.49	-0.72	0.469			
pup sex [M]	0.11	-1.21 - 1.40	0.17	0.867			
season [2020]	-0.13	-1.30 - 1.01	-0.23	0.821			
colony [SSB]	1.36	0.20 - 2.68	2.19	0.028			
pup birth mass	0.80	0.09 - 1.65	2.04	0.042			
Observations	91						
R ² Tjur	0.153						

Growth curves with repeated measures

The dataset from FWB and SSB in season 1819/1920 contains repeated measures of growth at 6 different time points until tagging. This section contains the analysis of growth based on growth curves utilizing the repeated measures. $RM = repeated \ measures$

Data visualization

Before fitting the models, the raw data is visualized to explore distribution. Weight data is visually expected on its own and fitted against age in days to understand general distribution and pattern over time. The raw data is visually expected using ggplot2 and further explored using the Shapiro-Wilk test.

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).

shapiro.test(SurvivorsRM_Day60\$Weight_kg) #the shapiro-wilk test tests for normality. The
 null-hypothesis is that the population is normally distributed. The test is
 significant, so we reject the null-hypothesis. The weight_kg data is not normally
 distributed. By scaling the outcome variable, we can make it more suitable to built
 models with, even though it does not necessarily normalize the distribution.

```
##
## Shapiro-Wilk normality test
##
## data: SurvivorsRM_Day60$Weight_kg
## W = 0.96611, p-value = 8.89e-09

#shapiro.test(scale(SurvivorsRM_Day60$Weight_kg)) still not normally distributed, however
    if it allows for normally distributed residuals down stream, it is valid.

#SurvivorsRM_Day60$Weight_kg_scale <- scale(SurvivorsRM_Day60$Weight_kg)
SurvivorsRM_Day60$Age_Days_scale <- scale(SurvivorsRM_Day60$Age_Days)

#shapiro.test(log(SurvivorsRM_Day60$Weight_kg)) #a log transformation could handle this,
    if needed
#however, GLM with appropriate data distribution or nonlinear models like logistic and
    gompertz are also a good way to solve this.
SurvivorsRM_Day60$Weight_kg_log <- log(SurvivorsRM_Day60$Weight_kg)</pre>
```


log(Weight (kg))

1.5

2.5

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
Warning: Removed 2 rows containing missing values (`geom_point()`).

Based on both visual inspection and the Shapiro-Wilk test, the weight data does not follow a normal distribution but is slightly right-skewed. The weight data follows a Gamma distribution and will be modeled as such.

Repeated measures growth curve models

For the models with repeated measures, a random effects term 'ID' is added to inform the model that some observations are clustered within the same individual. The base is built around a generalized linear mixed-effects model (GLMM) to account for the repeated measures and the right-skewed data. The Gamma(link = "log") data distribution ensures that the predicted values are positive.

```
REML = F)
#summary(RMO)
#growth varying per day, each individual has different intercepts, but the same slope
RM <- lmer(Weight_kg_log ~ Age_Days_scale + (1 | ID),</pre>
            data = SurvivorsRM_Day60,
            REML = F)
#summary (RM)
#growth varying per day, each individual has different slopes ((Age_Days | ID))
RM1 <- lmer(Weight_kg_log ~ Age_Days_scale + (Age_Days_scale - 1 | ID),</pre>
             data = SurvivorsRM_Day60,
             REML = F)
## boundary (singular) fit: see ?isSingular
#summary(RM1)
#qrowth varying per day, both intercept and slope vary per individual
RM2 <- lmer(Weight_kg_log ~ Age_Days_scale + (1 + Age_Days_scale | ID),
             data = SurvivorsRM_Day60,
             REML = F)
#summary(RM2)
#explanation: Fixed effects estimate: Intercept is average birth weight
                                     # Age Days is one day change in weight
            # Random effects: associated variance
            # Intercept: how much variance in birth weight between pups
            # Age_Days: difference in slope. 0.00060 might not sound as much
            # Corr: the correlation between the slope and intercept: 0.36
            # it's positive, which indicates that pups with higher intercept
            # on average has a steeper slope as well.
            # Residual: 0.5593029. Refers to the variance not explained by the variables
            → in the model
            \# additionally, looking at confint(RM2), the confidence interval
            # for the intercept and for the Age_Days does not cross 0.
#ICC = repeatability of weight across individuals
models <- list(RMO, RM, RM1, RM2)</pre>
mod.names <- c('null-model', 'intercept', 'slope', 'i+s')</pre>
AIC_model_structure <- aictab(cand.set = models, modnames = mod.names)
AIC_model_structure
##
## Model selection based on AICc:
##
                   AICc Delta_AICc AICcWt Cum.Wt
##
              6 -561.00
                              0.00
                                       1 1 286.59
## i+s
## intercept 4 -542.06
                             18.93
                                        0
                                               1 275.08
              4 -259.78
## slope
                            301.22
                                        0
                                               1 133.94
## null-model 3
                                               1 - 13.45
                 32.95
                            593.94
                                        0
#the RM2 model, which allows both intercept and slope to vary per individual performs
→ best.
```

```
#testDispersion(RM2)
#plotQQunif(RM2)

#clean up
rm(RM0, RM1, RM, models, mod.names)
```

Exploration of growth curve fit

We can explore other growth curves. In the larger dataset birth weight ranges from 2.45 to 7.7 kg and weight at day 60 from 6.5 to 14.6 kg. In this dataset with repeated measures, lowest birth weight is 4.2 and highest last weight is 16.3.

```
#For the logistic and gompertz models, the parameters K, r and t are used to fit the

    model:

#K is the max weight the pups can reach, set to 20kg, as heaviest pup was 16.3
#r is the growth rate, the average growth rate is used: 0.080821
#t is the inflection point; the time at which the pups growth most rapidly.
#set at 30days, as this is the mid-point
#logistic growth model
logistic.model <- nls(Weight_kg ~ K / (1 + exp(-r * (Age_Days - t))),</pre>
                      data = SurvivorsRM_Day60,
                      start = list(K = 20, r = 0.080821, t = 30))
#gompertz growth model
gompertz.model <- nls(Weight_kg ~ K * exp(-exp(-r * (Age_Days - t))),</pre>
                      data = SurvivorsRM_Day60,
                      start = list(K = 20, r = 0.080821, t = 30))
#For the linear model, a and b are parameters used to fit the model:
#a is the linear growth rate; the average growth rate is used: 0.080821
#b is the birth weight, here set at 2.45kg, as lightest measured pup was 2.45kg.
#Linear
linear.model <- nls(Weight_kg ~ a * Age_Days +b,</pre>
                    data = SurvivorsRM_Day60,
                    start = list(a = 0.080821, b = 2.45))
# Compare the models using AIC
models.1 <- list(linear.model, logistic.model, gompertz.model)</pre>
mod.names.1 <- c('linear.model', 'logistic.model', 'gompertz.model')</pre>
AIC_growth_curves <- aictab(cand.set = models.1, modnames = mod.names.1)
AIC_growth_curves
##
## Model selection based on AICc:
##
##
                       AICc Delta_AICc AICcWt Cum.Wt
                                                           LL
                  K
## linear.model
                  3 1623.24
                                  0.00
                                        0.52
                                                 0.52 -808.59
## logistic.model 4 1624.81
                                  1.57
                                         0.24
                                                 0.76 -808.36
## gompertz.model 4 1624.82
                                  1.58
                                        0.24 1.00 -808.36
```

```
#in this basic model format, the linear model is the best fit
# Visualize the fits
ggplot(SurvivorsRM_Day60, aes(x = Age_Days, y = Weight_kg)) +
  geom_point() +
  geom_smooth(method = "nls", formula = y ~ a * x + b, se = FALSE, color = "orange",
              method.args = list(start = coef(linear.model))) +
  geom\_smooth(method = "nls", formula = y \sim K / (1 + exp(-r * (x - t))), se = FALSE,

    color = "red",

              method.args = list(start = coef(logistic.model))) +
  geom_smooth(method = "nls", formula = y ~ K * exp(-exp(-r * (x - t))), se = FALSE,
  ⇔ color = "purple",
              method.args = list(start = coef(gompertz.model))) +
 labs(title = "Growth Curve Models Comparison",
       x = "Days",
       y = "Weight") +
  theme_minimal()
```

```
## Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).
## Removed 2 rows containing non-finite values (`stat_smooth()`).
## Removed 2 rows containing non-finite values (`stat_smooth()`).
```

Warning: Removed 2 rows containing missing values (`geom_point()`).

Growth Curve Models Comparison


```
#clean up
rm(linear.model, logistic.model, gompertz.model, models.1, mod.names.1)
```

The different growth curves all lie within a delta AIC of 2, which means the general difference between the fit of the different growth curves to the data is not strong. Therefore, we proceed with the linear model structure.

Model: repeated measures

Now that we have determined the base structure of the repeated measures model, we can add more explanatory variables.

```
#without scaled continuous variables, this will not work
SurvivorsRM Day60$sMLH SNP.new scale <- scale(SurvivorsRM Day60$sMLH SNP.new)
SurvivorsRM Day60$sMLH SNP.new mum scale <- scale(SurvivorsRM Day60$sMLH SNP.new mum)
SurvivorsRM_Day60$froh_scale <- scale(SurvivorsRM_Day60$froh)</pre>
SurvivorsRM_Day60\$froh_mum_scale <- scale(SurvivorsRM_Day60\$froh_mum)
# Calculate the correlation matrix for numeric variables
cor_matrix <- cor(SurvivorsRM_Day60[, c("Age_Days_scale", "sMLH_SNP.new_scale",</pre>
"sMLH_SNP.new_mum_scale")], use = "pairwise.complete.obs")
eigenvalues <- eigen(cor_matrix)$values</pre>
#the eigenvalues are close to 1, which indicate some level of collinearity, but not
⇔ enough to create a considerable effect
#Rule of thump: random factors should have >= 5 levels.
#Random vs fixed effects:
#Random effects should be categorical. Interested in controlling for/estimate the
⇔ variance.
#Fixed effects are the effects we known from linear models
#growth varying per day, both intercept and slope vary per individual including
→ explanatory variables
#model fitted with log transformed weight_kg
# Growth model with Froh
RM2_EV_froh <- lmer(Weight_kg_log ~ froh_scale +</pre>
               froh mum scale +
               Sex +
               Season +
               Beach +
               Age_Days_scale +
               (1 + scale(Age_Days) | ID),
               data = SurvivorsRM_Day60)
#summary(RM2_EV_froh)
testDispersion(RM2_EV_froh) #good fit
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
##
   simulated
##
## data: simulationOutput
## dispersion = 0.9491, p-value = 0.664
## alternative hypothesis: two.sided
plotQQunif(RM2_EV_froh) #qood fit
plotResiduals(RM2_EV_froh)
```

```
# Predict values for your existing data
predicted_values <- predict(RM2_EV_froh, type = "response")</pre>
na_values <- rep(NA, 20) #to make the predicted no. of values equal to the observed data
predicted_values <- c(predicted_values, na_values)</pre>
#plot the densities of the predicted and observed data
log_model <- ggplot(SurvivorsRM_Day60, aes(x = Weight_kg_log)) +</pre>
  geom_density(fill = "orange", alpha = 0.5) +
  geom_density(aes(x = predicted_values), fill = "purple", alpha = 0.5) +
  labs(x = "log(Weight)", y = "Density") +
  ggtitle("Observed vs. Predicted Weight")
plot_grid(log_model, label_size = 10)
## Warning: Removed 2 rows containing non-finite values (`stat_density()`).
## Warning: Removed 20 rows containing non-finite values (`stat_density()`).
#clean up
rm(cor_matrix, eigenvalues, na_values)
                DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated
                                                                                      QQ plot residuals
                                                                 0.
                                                                       KS test: p= 0.45076
    15
                                                                       Deviation n.s.
                                                                 0.8
    10
                                                                9.0
Frequency
                                                             Observed
                                                                                               t: p= 0.664
                                                                                     Dispersi
                                                                0.4
                                                                 0.2
                                                                                                        Outlier test: p= 1
                                                                                                         Deviation n.s.
                                                     П
           0.0
         0.30
                0.35
                               0.45
                                             0.55
                                                     0.60
                                                                     0.0
                                                                              0.2
                                                                                       0.4
                                                                                                0.6
        Simulated values, red line = fitted model. p-value (two.sided) = 0.664
                                                                                         Expected
                                                                 Observed vs. Predicted Weight
                     Residual vs. predicted 
No significant problems detected
                                                               1.5 -
    9.
Standardized residual
                                                               1.0 -
                                                             Density
    0.50
    0.25
                               00 8
                                              80
                              ®o 0o
                                                 00
    0.00
        0.0
                 0.2
                          0.4
                                   0.6
                                            0.8
                                                     1.0
```

Model: weight gain

Model predictions (rank transformed)

As the growth curves turn out to be linear, we made a model of weight gain based on last weight - first weight.

2.0 log(Weight) 2.4

```
##
## Shapiro-Wilk normality test
##
## data: UniqueSurvivors_Day60$Total_weight_gain
## W = 0.9756, p-value = 0.1561
##
## Call:
## lm(formula = Total_weight_gain ~ froh + froh_mum + Sex + Season +
      Beach + Birth_weight + Last_day, data = UniqueSurvivors_Day60)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                  3Q
## -3.00439 -0.79453 -0.02775 0.89505 2.98155
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
              -2.12427 2.84783 -0.746 0.45844
## froh
               -23.94247 17.24380 -1.388 0.16981
               46.61559 14.49353
                                    3.216 0.00204 **
## froh mum
                         0.37199
## SexM
                 2.05529
                                    5.525 6.45e-07 ***
## Season1920
               -0.59785 0.34349 -1.741 0.08657 .
## BeachSSB
                ## Birth weight 0.05517
                           0.22675
                                     0.243 0.80854
## Last_day
                 0.06352
                         0.03559
                                    1.784 0.07910 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.375 on 64 degrees of freedom
     (4 observations deleted due to missingness)
## Multiple R-squared: 0.4371, Adjusted R-squared: 0.3755
## F-statistic: 7.098 on 7 and 64 DF, p-value: 2.87e-06
Residual check of model
#Test model
testDispersion(Growth_model) #good fit
##
##
  DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.89925, p-value = 0.568
## alternative hypothesis: two.sided
plotQQunif(Growth model) #deviation not significant
plotResiduals(Growth_model)
#test model fit
# Predict values for your existing data
predicted values <- predict(Growth model, type = "response")</pre>
na_values <- rep(NA, 4) #to make the predicted no. of values equal to the observed data
```

predicted_values <- c(predicted_values, na_values)</pre>

```
#plot the densities of the predicted and observed data
growth_model <- ggplot(UniqueSurvivors_Day60, aes(x = Total_weight_gain)) +</pre>
  geom_density(fill = "orange", alpha = 0.5) +
  geom_density(aes(x = predicted_values), fill = "purple", alpha = 0.5) +
  labs(x = "Weight gain", y = "Density") +
  ggtitle("Observed vs. Predicted Weight gain")
plot_grid(growth_model, label_size = 12)
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
## Warning: Removed 4 rows containing non-finite values (`stat_density()`).
                 DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated
                                                                                            QQ plot residuals
                                                                     1.0
    20
                                                                            KS test: p= 0.99997
                                                                            Deviation n.s.
                                                                     0.8
    15
                                                                     9.0
Frequency
                                                                 Observed
                                                                                           Dispersion test: p= 0.568
    10
                                                                                           Deviation h.s.
                                                                    0.4
                                                                     0.2
                                                                                                                Outlier test: p= 1
                                                                                                                Deviation n.s.
         dlh
                                                    0.0
            0.4
                                                                        0.0
                                                                                  0.2
                                                                                                                8.0
         Simulated values, red line = fitted model. p-value (two.sided) = 0.568
                                                                                               Expected
                                                                     Observed vs. Predicted Weight gain
                       Residual vs. predicted 
No significant problems detected
                                                                   0.3
    1.00
Standardized residual
                                                                   0.2
                                                                 Density
    0.50
    0.25
    0.00
        0.0
                 0.2
                           0.4
                                     0.6
                                               0.8
                                                         1.0
```

Parameter estimates pup growth model

Model predictions (rank transformed)

```
lab_weight_gain_froh <- c(
   `(Intercept)` = "Intercept",
   froh = "pup&nbsp; <i>F</i><sub>ROH</sub>",
   froh_mum = "mother&nbsp; <i>F</i><sub>ROH</sub>",
   SexM = "pup sex [M]",
   Season1920 = "season [2020]",
   BeachSSB = "colony [SSB]",
   Birth_weight = "pup birth mass",
   Last_day = "pup age")

print(sjPlot::tab_model(Growth_model,
```

5.0 Weight gain

Pup growth

	model incl. maternal effect			
Predictors	Estimates	CI	t value	p
Intercept	-2.12	-7.81 – 3.56	-0.75	0.458
$\operatorname{pup} F_{\mathrm{ROH}}$	-23.94	-58.39 – 10.51	-1.39	0.170
${\rm mother} F_{\rm ROH}$	46.62	17.66 – 75.57	3.22	0.002
pup sex [M]	2.06	1.31 - 2.80	5.53	<0.001
season [2020]	-0.60	-1.28 - 0.09	-1.74	0.087
colony [SSB]	0.13	-0.54 - 0.80	0.40	0.694
pup birth mass	0.06	-0.40 - 0.51	0.24	0.809
pup age	0.06	-0.01 - 0.13	1.78	0.079
Observations	72			

R2 / R2 adjusted 0.437 / 0.375

Individual growth curves

We can use the repeated measures dataset to built a weight model and extract individual growth curves, that we can further explore. The growth curves estimate trajectories that are unique to each individual.

```
#Get individual growth curves (utilizes the growth model from the previous section)

Coefficients.froh <- coef(RM2_EV_froh)[[1]][c("scale(Age_Days)", "(Intercept)")]

setnames(Coefficients.froh, c("Slope.froh", "Intercept.froh"))

Coefficients.froh <- data.table(ID = rownames(Coefficients.froh), Coefficients.froh)

#The model was built on log transformed weight data, so the coefficients have been back

transformed.

Coefficients.froh$Slope.froh <- exp(Coefficients.froh$Slope.froh)

Coefficients.froh$Intercept.froh <- exp(Coefficients.froh$Intercept.froh)

UniqueSurvivors_Day60 <- left_join(UniqueSurvivors_Day60, Coefficients.froh, by = 'ID')
```

```
\#shapiro.test(UniqueSurvivors\_Day60\$Slope) \#normally distributed
\#shapiro.test(UniqueSurvivors\_Day60\$Intercept) \#normally\ distributed
I.model.froh <- lm(Intercept.froh ~ Sex +</pre>
                   Season +
                   Beach +
                   froh +
                   froh_mum,
                   data = UniqueSurvivors_Day60)
#plot(I.model.froh)
#summary(I.model.froh) #intercept is essentially birth weight, and is not explained
⇒ strongly by any of the other parameters
\#testDispersion(I.model.froh)\ \#good\ fit
\#plotQQunif(I.model.froh) \#deviation not significant
S.model.froh <- lm(Slope.froh ~ Sex +
                   Season +
                    Beach +
                   froh +
                   froh_mum,
                   data = UniqueSurvivors_Day60)
#plot(S.model.froh)
#summary(S.model.froh) #slope is explained by sex with males growing faster
#testDispersion(S.model.froh) #good fit
\#plotQQunif(S.model.froh)\ \#deviation\ not\ significant
```

Manuscript figures

Figure 1: map and seasonal data

```
#~~~~#
# Load data ####
#~~~~#
seasonal_data <- read.table(here("Data", "Raw", "seasonal_data.txt"), sep = "\t",</pre>

    stringsAsFactors = F, header = T)

#~~~~~#
# Seasonal data ####
#~~~~~~
source(here("Rcode", "anneke theme.R"))
#~~ Make a list for the theme so it is the same for all figures
gglayer_theme <- list(</pre>
 scale x discrete(labels = c(2017-2018) = 2018, 2018-2019 = 2019, 2019-2020 = 2019
  \rightarrow "2020", `2020-2021` = "2021")),
 theme anneke(),
 theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
       axis.line.y = element_line(colour = 'black', linetype='solid'),
       plot.title = element_text(size = rel(1)))
)
#~~ Make sub plots
# Plot a is blank canvas + title where later the map gets added
p_a <- ggplot(seasonal_data %>% filter(variable=="SSB ESTIMATED NUMBER OF FEMALE
⇒ BREEDERS"),
             aes(x = season, y = mean)) +
 \#qeom pointrange(aes(ymin = CI95 low, ymax = CI95 high)) +
 #geom_point(shape = 22, size = 4, fill = "#eb7f86") +
 labs(title="(a) Map of Bird Island", x= "", y="") +
 gglayer_theme +
 theme(axis.line.x = element_blank(),
       axis.line.y = element_line(colour = 'white', linetype='solid'),
       axis.text = element_text(colour = "white"),
       panel.grid=element_blank(),
       panel.grid.major=element_blank(),
       panel.grid.minor=element_blank())
# Breeding females
p_breeders <- ggplot(seasonal_data%>% filter(variable=="SSB ESTIMATED NUMBER OF FEMALE
→ BREEDERS"),
                     aes(x = season, y = mean)) +
 geom_pointrange(aes(ymin = CI95_low, ymax = CI95_high)) +
 geom_point(shape = 22, size = 4, fill = "#ea4f88") +
 labs(title="(b) Female breeders", x= "Year", y="No. of breeders") +
 gglayer_theme
```

```
# Female pup birth mass
p_bm <- ggplot(seasonal_data%>% filter(variable=="SSB FEMALE PUP BIRTH MASS (kg)"),
                aes(x = season, y = mean)) +
  geom_pointrange(aes(ymin = CI95_low, ymax = CI95_high)) +
  geom_point(shape = 22, size = 4, fill = "#4b2991") +
  labs(title="(c) Female pup birth mass", x= "Year", y="Birth mass (kg)") +
  gglayer theme
# Female foraging trip duration
p_foraging <- ggplot(seasonal_data %>% filter(variable=="FWB FEMALE FORAGING TRIP
→ DURATION (days)"),
                      aes(x = season, y = mean)) +
  geom_pointrange(aes(ymin = CI95_low, ymax = CI95_high)) +
  geom_point(shape = 22, size = 4, fill = "#f6a97a") +
 labs(title="(d) Female foraging trip duration", x="Year", y="Time at sea (days)") +
  gglayer_theme
#~~~~~#
# Bird Island map ####
#~~~~~#
#~~ Bird island maps
bi_coast <- st_read(here("Rcode", "Bird Island Map", "Map_Old",</pre>
"BI_Coast_Projected_new.shp"), quiet = TRUE)
# bi_r <- st_read(here("Rcode", "Bird Island Map", "rivers_lines", "sq_bird_rivers.shp"),

    quiet = TRUE) #rivers

# bi c <- st read(here("Rcode", "Bird Island Map", "contours", "sq bird contours.shp"),
→ quiet = TRUE) # contours
# bi <- st_read(here("Rcode", "Bird Island Map", "coastline", "sq_bird_coast.shp"), quiet
⇔ = TRUE) #surface
#~~ Outline of SSB and FWB, made in Google Earth
ssb <- st_read(here("Rcode", "Bird Island Map", "beachs", "SSB.kml", "doc.kml"), quiet =</pre>
→ TRUE)
fwb <- st_read(here("Rcode", "Bird Island Map", "beachs", "FWB.kml", "doc.kml"), quiet =</pre>
→ TRUE)
#### mapping bird island ----
plot.bi.color <- ggplot() +</pre>
  geom_sf(data = bi_coast, fill = "#ADADAD") +
  #geom_sf(data = bi_r, color = "blue") +
  \#geom\_sf(data = bi\_c) +
  geom_sf(data=ssb, fill = "#872ca2") + #ssb
  geom_sf(data=fwb, fill = "#fa7876") + #fwb
  theme(legend.position="none") +
 theme_void()
#### mapping study colonies ----
# Adds box around study colonies on bird island map
plot.bi.color. <- plot.bi.color +</pre>
```

```
annotate(geom = "rect",
           xmin = -38.060,
           xmax = -38.045,
           ymin = -54.014,
           ymax = -54.0065,
           fill = NA, # transparent bg
           color = "black" )
# Adds beach location in color
plot.bi.beaches.color <- ggplot() +</pre>
  geom_sf(data = bi_coast, fill = "NA") +
  geom sf(data = bi coast, fill = "#D4CEC2") + # "#eaeaea"
 geom_sf(data = fwb, fill = "#fa7876") +
  geom_sf(data = ssb, fill = "#872ca2") +
 theme(legend.position = "none") +
 theme_void()
# Add text
plot.bi.beaches.color <- plot.bi.beaches.color +</pre>
  coord_sf(xlim = c(-38.060, -38.045),
           ylim = c(-54.014, -54.0065),
           expand = FALSE) +
  annotation_scale(aes(location="br", style = "ticks")) +
  theme(panel.border = element_rect(colour = "black", fill=NA, linewidth=1)) +
  annotate(geom = "text",
           x = -38.05,
           y = -54.0092
           label = "FWB",
           color = "#fa7876",
          fontface = "bold") +
  annotate(geom = "text",
           x = -38.05,
           y = -54.011,
           label = "SSB",
           color = "#872ca2",
           fontface = "bold") #+
# Combine
map <- ggdraw(p_a) + # empty canvas with title to match other plots
 draw_plot(plot.bi.beaches.color, x= 0.07, scale = .8) + # study colonies
 draw_plot(plot.bi.color., 0.07, .48, .5, .5, scale = 1.3) # Bird Iland
#map
# Final plot ####
#~~~~~#
P_seasonal <- plot_grid(map, p_breeders, p_bm, p_foraging)
P_seasonal
```


Figure 2: forest plots microsatellite models

```
# Make general theme ####
#~~ Use Martin Stoffel's GGplot theme as a base
source(here("Rcode", "anneke_theme.R"))
#~~ Make a list for the theme so it is the same for all figures
gglayer_theme <- list(</pre>
  geom_point(shape = 22, size = 3, fill = "black"),
  theme_anneke(),
  theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
        axis.line.y = element_line(colour = 'black', linetype='solid'),
        axis.text.y = element_text(colour = 'black'),
        plot.title = element text(size = rel(1)))
)
plot_label <- c(</pre>
  `(Intercept)` = "Intercept",
  sMLH_msat39_pup = "pup sMLH",
  Pup_SexM = "pup sex [M]",
  Pup_BirthWeight = "pup birth mass",
  sMLH_msat39_mum = "mother sMLH",
```

```
Mum_Age = "mother age",
  Age_Tag = "pup age",
  Year2018 = "season [2019]",
  Year2019 = "season [2020]",
  Year2020 = "season [2021]")
#~~~~~~~~~~~~~~
# Apply custom plot function to 3 models ####
source(here("Rcode", "custom_forest_plot.R"))
#~~ Create labels
lab1 <- paste0("(a) Pup birth mass\nIncl. maternal effects\n n = ", nobs(m1birthmass))
lab2 <- paste0("(b) Pup survival\nIncl. maternal effects\n n = ", nobs(m1survival))
lab3 <- paste0("(c) Pup growth\nIncl. maternal effects\n n = ", nobs(m1growth))
lab4 <- paste0("(d) Pup birth mass\nExcl. maternal effects\n n = ", nobs(m2birthmass))
lab5 <- paste0("(e) Pup survival\nExcl. maternal effects\n n = ", nobs(m2survival))
lab6 <- paste0("(f) Pup growth\nExcl. maternal effects\n n = ", nobs(m2growth))
#~~ Make plots
p.bw <- plot_data_models(m1birthmass, lab1, gglayer_theme)</pre>
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 7 rows containing missing values (`geom_point()`).
p.surv <- plot_data_models(m1survival, lab2, gglayer_theme)</pre>
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Waiting for profiling to be done...
##
## Waiting for profiling to be done...
## Warning: Removed 8 rows containing missing values (`geom_point()`).
p.wg <- plot_data_models(m1growth, lab3, gglayer_theme)</pre>
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 9 rows containing missing values (`geom_point()`).
p2.bw <- plot_data_models(m2birthmass, lab4, gglayer_theme)</pre>
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 5 rows containing missing values (`geom_point()`).
p2.surv <- plot_data_models(m2survival, lab5, gglayer_theme)</pre>
```

```
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Waiting for profiling to be done...
##
## Waiting for profiling to be done...
## Warning: Removed 6 rows containing missing values (`geom point()`).
p2.wg <- plot data models(m2growth, lab6, gglayer theme)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 7 rows containing missing values (`geom_point()`).
# nb warnings are because I am removing dots and adding squares in the function!
#plot(p.bw)
#~~ Save plots
all_plots <- cowplot::plot_grid(p.bw, p.surv, p.wg,</pre>
                                   p2.bw, p2.surv, p2.wg,
                                   nrow = 2)
all_plots
                (a) Pup birth mass
                                                  (b) Pup survival
                                                                                   (c) Pup growth
                Incl. maternal effects
                                                  Incl. maternal effects
                                                                                   Incl. maternal
                n = 342
                                                  n = 342
                                                                                   n = 291
                                                                   pup sMLH
pup sex [M]
pup birth mass
                                      pup sMLH
    pup sMLH
                                     pup sex [M]
                            ╼
   pup sex [M]
                                  pup birth mass
 season [2019]
                                                                    pup
season 120
                                  season [2019]
season [2020]
 season [2020]
                                                                    season 2020
season 2021
 season [2021]
                                  season 2021
 mother sMLH
                                   mother sMLH
                                                                    mother sMLH
mother age
   mother age
                                     mother age
                                                10^{-3}10^{-2}10^{-1}10^{0}10^{1}
                 -0.4 0.0 0.4 0.8
                                                                                   -2
                                                                                        0
                                                                                            2
                                                  Odds Ratios
                                                                                     Estimates
                  Estimates
                (d) Pup birth mass
                                                  (e) Pup survival
                                                                                   (f) Pup growth
                Excl. maternal effects
                                                  Excl. maternal effects
                                                                                   Excl. maternal
                 n = 884
                                                  n = 884
                                                                                   n = 721
                                      pup sMLH
                                                                       pup sMLH
    pup sMLH
                                                                      pup sex [M]
                                                                                         -
                                     pup sex [M]
                                                   ━
   pup sex [M]
                                                                                        pup birth mass
                                  pup birth mass
 season [2019]
                                                                         pup age
                                                                                       season [2019]
                                                                    season [2019]
 season [2020]
                      --
                                  season [2020]
                                                                    season [2020]
                                  season [2021]
 season [2021]
                                                                    season [2021]
                                                    10^{9}0^{0.477}10^{1}
                -0.26.000.250.50
                                                                                  -1
                                                                                       0
                                                                                                2
                                                  Odds Ratios
                  Estimates
                                                                                     Estimates
```

Figure 3: forest plots SNP models

```
# Color non sig effects
col1 = "dimgrey"
# Color sig effects
col2 = "#fa7876"
\# Use Martin Stoffel's GGplot theme as a base
source("anneke_theme.R")
# Make a list for the theme so it is the same for all figures
gglayer_theme <- list(</pre>
  geom_point(shape = 22, size = 3, fill = "black"),
  theme_anneke(),
 theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
        axis.line.y = element_line(colour = 'black', linetype='solid'),
        axis.text.y = element_text(colour = 'black'),
       plot.title = element text(size = rel(1)))
)
gglayer_theme_alt <- list(</pre>
  geom_point(shape = 15, size = 2),
 theme_anneke(),
  theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
        axis.line.y = element_line(colour = 'black', linetype='solid'),
        axis.text.y = element_text(colour = 'black'),
        plot.title = element_text(size = rel(1)))
)
gglayer_theme_alt2 <- list(</pre>
  theme_anneke(),
  theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
        axis.line.y = element_line(colour = 'black', linetype='solid'),
        axis.text.y = element_text(colour = 'black'),
        plot.title = element text(size = rel(1)))
)
plot_label <- c(</pre>
  `(Intercept)` = "intercept",
  Last_day = "pup age",
  Age_Days_scale = "age days (scaled)",
  sMLH_SNP.new_scale = "pup sMLH SNP",
  sMLH_SNP.new = "pup sMLH SNP",
  SexM = "pup sex [M]",
  sMLH_SNP.new_mum_scale = "mother sMLH SNP",
  sMLH_SNP.new_mum = "mother sMLH SNP",
  Season1920 = "season [2020]",
  BeachSSB = "colony [SSB]",
  Birth_weight = "pup birth mass",
  froh_mum_scale = expression("mother " ~ italic("F")[ROH] ~ "(scaled)"),
  froh_scale = expression("pup " ~ italic("F")[ROH] ~ "(scaled)"),
 froh = expression("pup " ~ italic("F")[ROH]),
 froh_mum = expression("mother " ~ italic("F")[ROH])) # expression("mother " ~
  → italic("F")[ROH])) #"mother Froh")
```

```
# Function for custom forest plots
source(here("Rcode", "custom_forest_plot.R"))
#birth weight
p.BW.froh <- plot_data_models(BW.model.froh, "(a) Pup birth mass", gglayer_theme)
## Warning in sjmisc::word_wrap(axis.labels, wrap = wrap.labels): Word wrap is not
## available for expressions.
## Warning in is.na(x): is.na() applied to non-(list or vector) of type
## 'expression'
## Warning: Removed 5 rows containing missing values (`geom_point()`).
p.survival.froh <- plot_data_models(Survival.model.froh, "(b) Pup survival",</pre>

    gglayer_theme)

## Warning in sjmisc::word_wrap(axis.labels, wrap = wrap.labels): Word wrap is not
## available for expressions.
## Warning in is.na(x): is.na() applied to non-(list or vector) of type
## 'expression'
## Warning: Removed 6 rows containing missing values (`geom_point()`).
p.growth.froh <- plot_data_models(Growth_model, "(c) Pup growth", gglayer_theme)</pre>
## Warning in sjmisc::word_wrap(axis.labels, wrap = wrap.labels): Word wrap is not
## available for expressions.
## Warning in is.na(x): is.na() applied to non-(list or vector) of type
## 'expression'
## Warning: Removed 7 rows containing missing values (`geom_point()`).
Plots for figure
AllCurves <- ggplot(data = SurvivorsRM_Day60, aes(x = Age_Days, y = Weight_kg, group =
     geom_smooth(method = "lm", se = F, colour = "grey", linewidth = 0.8, alpha = 0.5) +
     geom_point(shape = 15, fill = "black", size = 1.5) +
     geom_abline(slope = 0.081732, intercept = 5.597941, colour = "black", linewidth = 1.1)
      → + #average
     \#geom\_abline(slope = 0.080226, intercept = 5.502678, colour = "orange", size = 2) +
     \#annotate(geom="text", y = 15.5, x = 15, size = 5, label = "FWB: y = 0.080226*age + 15.5, x = 15, size = 15,
      → 5.502678", color = "orange") +
     \#geom\_abline(slope = 0.080821, intercept = 5.511745, colour = "purple", size = 2) +
     \#annotate(geom="text", y = 16, x = 15, size = 5, label = "SSB: y = 0.080821*age + 15, label = 15
       → 5.511745", color = "purple") +
     theme_bw(base_size = 18) + #removes background color
     theme(panel.border = element_blank()) + #removes border lines
     theme(axis.line = element_line(colour = "black")) + #adds in axis lines
     xlab("Age (days)") + #name of x lab
     ylab("Weight (kg)") + #name of y lab
     ggtitle("(e) Growth curves of all pups") #title of plot
```

```
#https://quantdev.ssri.psu.edu/tutorials/qrowth-modeling-basics
p.allcurves <- AllCurves +
  gglayer_theme_alt2 #+
  #theme(axis.title.y=element_text(angle=0, vjust = 0.5))
#Plot for poster with illustrative examples
PlotIllu <- subset(SurvivorsRM_Day60, ID %in% c('H14', 'H1', 'C12', 'T4', 'H7'))
SubIllu <- ggplot(data = PlotIllu, aes(x = Age Days, y = Weight kg, colour = ID)) +
  geom_line(linetype = "dashed", linewidth = 1, alpha = 0.8) +
  geom_smooth(method = "lm", se = F, linewidth = 1.2, alpha = 1) +
  #scale_color_brewer(palette="PuOr") +
  scale_color_carto_d(palette = "ag_Sunset") + #colorblind friendly palette
  theme_bw(base_size = 18) + #removes background color
  theme(panel.border = element_blank()) + #removes border lines
  theme(axis.line = element_line(colour = "black")) + #adds in axis lines
  \#theme(legend.position = c(0.15, 0.92)) +
  theme(legend.background = element_rect(fill="NA")) +
  xlab("Age (days)") + #name of x lab
  xlim(0,60) + #x axis limits
  ylab("Weight (kg)") + #name of y lab
  ylim(3.5,16.4) +
  #guides(fill=guide_legend(title="ID")) + #name of legend
  ggtitle("(d) Representative growth curves of 5 pups") #title of plot
p.IDGrowth <- SubIllu + gglayer theme alt + theme(legend.position = c(0.12, 0.73)) +
  #theme(legend.background = element_rect(fill="NA")) +
  guides(fill=guide_legend(title="ID")) #+
  #theme(axis.title.y=element_text(angle=0, vjust = 0.5))
#png(file = here("Growthplot.png"), # The directory you want to save the file in
   # width = 100, # The width of the plot in inches
   # height = 50)
#plot_grid(SubIllu, AllCurves, labels = "AUTO", label_size = 20)
library(ggsignif)
## Warning: package 'ggsignif' was built under R version 4.0.5
I.sex.froh <- ggplot(data = UniqueSurvivors_Day60, aes (x=Sex, y=Slope.froh, fill = Sex))</pre>
  geom_boxplot(fill = c("#872ca2", "#ea4f88"), alpha = 0.9) +
  geom_signif(comparisons = list(c("M", "F")), map_signif_level=TRUE, textsize = 7) +
 ylim(0.91, 1.1) +
 ylab("Slope") + #name of y lab
  theme_anneke() +
  #theme(axis.title.y=element_text(angle=0, vjust = 0.5)) +
  ggtitle("(f) Sex driven difference in slope") +
  \#theme(axis.title = element\_text(vjust = 1, hjust = 0.5)) + \#angle of axis title
  theme(axis.line.x = element_line(colour = 'black', linetype='solid'),
```

```
axis.line.y = element_line(colour = 'black', linetype='solid'),
axis.text.y = element_text(colour = 'black'),
plot.title = element_text(size = rel(1)))
#dev.off()
```


$ggsave(here("Figs", "F3_figure_froh_h.jpg"), Final_figure_froh_h, width = 7, height = 3)$

```
## - Session info -----
   setting value
   version R version 4.0.2 (2020-06-22)
##
             Windows 10 x64
##
   system
             x86 64, mingw32
##
             RTerm
   ui
##
   language (EN)
##
   collate English_World.1252
##
   ctype
             English_World.1252
##
   tz
             Europe/Berlin
##
   date
             2023-12-04
##
## - Packages -----
   ! package
##
                   * version
                                date
                                           lib source
##
   P abind
                                2016-07-21 [?] CRAN (R 4.0.0)
                     1.4 - 5
##
   P AICcmodavg
                   * 2.3-2
                                2023-03-20 [?] CRAN (R 4.0.2)
##
   P assertthat
                     0.2.1
                                2019-03-21 [?] CRAN (R 4.0.2)
##
   P backports
                     1.2.1
                                2020-12-09 [?] CRAN (R 4.0.3)
                     0.13.1
                                2023-04-07 [?] CRAN (R 4.0.2)
##
   P bayestestR
##
   P bitops
                     1.0 - 7
                                2021-04-24 [?] CRAN (R 4.0.5)
##
  P boot
                     1.3-25
                                2020-04-26 [?] CRAN (R 4.0.2)
##
  P broom
                     0.7.6
                                2021-04-05 [?] CRAN (R 4.0.5)
##
  P callr
                                2021-04-20 [?] CRAN (R 4.0.5)
                     3.7.0
   P car
                                2020-09-29 [?] CRAN (R 4.0.5)
##
                   * 3.0-10
##
   P carData
                   * 3.0-4
                                2020-05-22 [?] CRAN (R 4.0.3)
   P cellranger
                     1.1.0
                                2016-07-27 [?] CRAN (R 4.0.2)
##
                   * 2.3-61
                                2023-05-02 [?] CRAN (R 4.0.2)
  P chron
                     7.3-17
                                2020-04-26 [?] CRAN (R 4.0.2)
##
   P class
## P classInt
                     0.4 - 3
                                2020-04-07 [?] CRAN (R 4.0.2)
##
  P cli
                     3.6.1
                                2023-03-23 [?] CRAN (R 4.0.2)
##
   P codetools
                     0.2 - 16
                                2018-12-24 [?] CRAN (R 4.0.2)
##
   P colorspace
                     2.0 - 1
                                2021-05-04 [?] CRAN (R 4.0.5)
##
   P CompQuadForm
                   1.4.3
                                2017-04-12 [?] CRAN (R 4.0.3)
                                2020-12-30 [?] CRAN (R 4.0.5)
##
  P cowplot
                   * 1.1.1
##
   P crayon
                     1.4.1
                                2021-02-08 [?] CRAN (R 4.0.5)
  P curl
##
                     4.3.1
                                2021-04-30 [?] CRAN (R 4.0.5)
##
  P data.table
                   * 1.14.0
                                2021-02-21 [?] CRAN (R 4.0.5)
##
  P datawizard
                     0.8.0
                                2023-06-16 [?] CRAN (R 4.0.2)
## P DBI
                     1.1.1
                                2021-01-15 [?] CRAN (R 4.0.5)
## P dbplyr
                                2021-04-06 [?] CRAN (R 4.0.5)
                     2.1.1
## P DHARMa
                   * 0.4.3
                                2021-07-07 [?] CRAN (R 4.0.5)
## P digest
                     0.6.27
                                2020-10-24 [?] CRAN (R 4.0.3)
                                2020-10-16 [?] CRAN (R 4.0.3)
## P doParallel
                     1.0.16
##
  P dotwhisker
                   * 0.7.4
                                2021-09-02 [?] CRAN (R 4.0.5)
  P dplyr
                   * 1.0.6
                                2021-05-05 [?] CRAN (R 4.0.2)
## P e1071
                     1.7 - 6
                                2021-03-18 [?] CRAN (R 4.0.5)
##
   P effectsize
                     0.8.5
                                2023-08-09 [?] CRAN (R 4.0.2)
##
   P ellipsis
                     0.3.2
                                2021-04-29 [?] CRAN (R 4.0.5)
  P emmeans
                     1.6.3
                                2021-08-20 [?] CRAN (R 4.0.5)
                                2018-02-11 [?] CRAN (R 4.0.3)
## P estimability
                     1.3
## P evaluate
                     0.22
                                2023-09-29 [?] CRAN (R 4.0.2)
## P fansi
                     0.4.2
                                2021-01-15 [?] CRAN (R 4.0.5)
## P farver
                     2.1.0
                                2021-02-28 [?] CRAN (R 4.0.5)
## P fastmap
                     1.1.0
                                2021-01-25 [?] CRAN (R 4.0.5)
```

```
2021-01-27 [?] CRAN (R 4.0.5)
    P forcats
                    * 0.5.1
    P foreach
                      1.5.1
                                 2020-10-15 [?] CRAN (R 4.0.3)
##
    P foreign
                      0.8-80
                                 2020-05-24 [?] CRAN (R 4.0.2)
                                 2020-07-31 [?] CRAN (R 4.0.2)
##
    P fs
                      1.5.0
##
    P gap
                      1.2.3-1
                                 2021-04-21 [?] CRAN (R 4.0.5)
##
                      0.1.0
                                 2020-10-31 [?] CRAN (R 4.0.3)
    P generics
                                 2021-07-29 [?] CRAN (R 4.0.5)
    P ggeffects
                      1.1.1
                                 2023-03-14 [?] CRAN (R 4.0.2)
##
    P ggmap
                      3.0.2
##
    P ggplot2
                    * 3.4.3
                                 2023-08-14 [?] CRAN (R 4.0.2)
##
   P ggsignif
                    * 0.6.3
                                 2021-09-09 [?] CRAN (R 4.0.5)
    P ggsn
                    * 0.5.0
                                 2019-02-18 [?] CRAN (R 4.0.5)
                                 2023-08-17 [?] CRAN (R 4.0.2)
##
    P ggspatial
                    * 1.1.9
   P ggstance
##
                      0.3.6
                                 2022-11-16 [?] CRAN (R 4.0.2)
##
                                 2022-09-16 [?] CRAN (R 4.0.2)
    P ggtext
                    * 0.1.2
##
                      1.4.2
                                 2020-08-27 [?] CRAN (R 4.0.2)
    P glue
##
      gridtext
                      0.1.5
                                 2022-09-16 [?] CRAN (R 4.0.2)
    Ρ
##
                      0.3.0
                                 2019-03-25 [?] CRAN (R 4.0.2)
    P gtable
##
    P haven
                      2.4.1
                                 2021-04-23 [?] CRAN (R 4.0.5)
##
                    * 1.0.1
                                 2020-12-13 [?] CRAN (R 4.0.5)
    P here
##
    P hms
                      1.0.0
                                 2021-01-13 [?] CRAN (R 4.0.5)
##
    P htmltools
                      0.5.2
                                 2021-08-25 [?] CRAN (R 4.0.5)
   P httpuv
                      1.6.1
                                 2021-05-07 [?] CRAN (R 4.0.5)
##
    P httr
                      1.4.2
                                 2020-07-20 [?] CRAN (R 4.0.2)
    P inbreedR
                                 2016-09-09 [?] CRAN (R 4.0.2)
##
                    * 0.3.2
##
    P insight
                      0.19.3
                                 2023-06-29 [?] CRAN (R 4.0.2)
    P iterators
                      1.0.13
                                 2020-10-15 [?] CRAN (R 4.0.3)
##
                      0.1-10
                                 2022-11-29 [?] CRAN (R 4.0.2)
    P jpeg
                                 2020-12-09 [?] CRAN (R 4.0.5)
##
    P jsonlite
                      1.7.2
##
    P KernSmooth
                      2.23-17
                                 2020-04-26 [?] CRAN (R 4.0.2)
    P knitr
                      1.44
                                 2023-09-11 [?] CRAN (R 4.0.2)
##
    P labeling
                      0.4.2
                                 2020-10-20 [?] CRAN (R 4.0.3)
##
   P later
                      1.2.0
                                 2021-04-23 [?] CRAN (R 4.0.5)
##
    P lattice
                      0.20 - 41
                                 2020-04-02 [?] CRAN (R 4.0.2)
##
                                 2023-07-19 [?] CRAN (R 4.0.2)
    P lavaan
                    * 0.6-16
                                 2022-10-07 [?] CRAN (R 4.0.2)
##
    P lifecycle
                      1.0.3
##
   P lme4
                    * 1.1-26
                                 2020-12-01 [?] CRAN (R 4.0.5)
##
    P lmerTest
                    * 3.1-3
                                 2020-10-23 [?] CRAN (R 4.0.5)
##
    P lubridate
                      1.7.10
                                 2021-02-26 [?] CRAN (R 4.0.5)
##
    P magrittr
                      2.0.1
                                 2020-11-17 [?] CRAN (R 4.0.5)
##
                                 2021-03-15 [?] CRAN (R 4.0.5)
    P maptools
                      1.1-1
##
   P MASS
                                 2020-04-26 [?] CRAN (R 4.0.2)
                      7.3-51.6
##
    P Matrix
                    * 1.2-18
                                 2019-11-27 [?] CRAN (R 4.0.2)
                                 2022-03-11 [?] CRAN (R 4.0.5)
    P merDeriv
                    * 0.2-4
##
    P mgcv
                      1.8-31
                                 2019-11-09 [?] CRAN (R 4.0.2)
                                 2021-02-13 [?] CRAN (R 4.0.4)
    P mime
                      0.10
##
                      1.2.4
                                 2014-10-09 [?] CRAN (R 4.0.5)
    P minqa
##
    P mnormt
                      2.1.1
                                 2022-09-26 [?] CRAN (R 4.0.2)
##
    P modelr
                      0.1.8
                                 2020-05-19 [?] CRAN (R 4.0.2)
##
    P munsell
                      0.5.0
                                 2018-06-12 [?] CRAN (R 4.0.2)
                                 2020-06-09 [?] CRAN (R 4.0.0)
##
    P mvtnorm
                      1.1-1
##
                                 2020-05-24 [?] CRAN (R 4.0.2)
    P nlme
                    * 3.1-148
##
    P nloptr
                      1.2.2.2
                                 2020-07-02 [?] CRAN (R 4.0.5)
##
    P nonnest2
                    * 0.5-6
                                 2023-08-13 [?] CRAN (R 4.0.2)
## P numDeriv
                      2016.8-1.1 2019-06-06 [?] CRAN (R 4.0.0)
```

```
2020-10-27 [?] CRAN (R 4.0.3)
    P openxlsx
                      4.2.3
##
##
                                 2023-05-26 [?] CRAN (R 4.0.2)
    P parameters
                      0.21.1
    P pbapply
                      1.7 - 2
                                 2023-06-27 [?] CRAN (R 4.0.2)
##
                      0.6.0
                                 2015-01-23 [?] CRAN (R 4.0.3)
    P pbivnorm
##
    P performance
                      0.10.4
                                 2023-06-02 [?] CRAN (R 4.0.2)
##
                      1.6.0
                                 2021-04-13 [?] CRAN (R 4.0.5)
    P pillar
                                 2019-09-22 [?] CRAN (R 4.0.2)
##
    P pkgconfig
                      2.0.3
                                 2020-03-03 [?] CRAN (R 4.0.2)
##
    P plyr
                      1.8.6
##
   P png
                      0.1 - 8
                                 2022-11-29 [?] CRAN (R 4.0.2)
##
    P processx
                      3.5.2
                                 2021-04-30 [?] CRAN (R 4.0.5)
    P promises
                      1.2.0.1
                                 2021-02-11 [?] CRAN (R 4.0.5)
##
                                 2021-03-05 [?] CRAN (R 4.0.5)
    P proxy
                      0.4 - 25
   P ps
##
                      1.6.0
                                 2021-02-28 [?] CRAN (R 4.0.5)
##
    P purrr
                    * 0.3.4
                                 2020-04-17 [?] CRAN (R 4.0.2)
##
                                 2021-04-27 [?] CRAN (R 4.0.5)
    P qgam
                      1.3.3
##
    P quadprog
                      1.5-8
                                 2019-11-20 [?] CRAN (R 4.0.0)
##
                      2.5.0
    P R6
                                 2020-10-28 [?] CRAN (R 4.0.3)
##
    P rcartocolor
                   * 2.1.1
                                 2023-05-13 [?] CRAN (R 4.0.2)
   P Rcpp
                                 2023-07-06 [?] CRAN (R 4.0.2)
##
                      1.0.11
##
    P readr
                    * 1.4.0
                                 2020-10-05 [?] CRAN (R 4.0.3)
##
    P readxl
                    * 1.3.1
                                 2019-03-13 [?] CRAN (R 4.0.2)
                      2.0.0
                                 2021-04-02 [?] CRAN (R 4.0.5)
    P reprex
                                 2020-02-12 [?] CRAN (R 4.0.5)
##
    P RgoogleMaps
                      1.4.5.3
                                 2021-03-01 [?] CRAN (R 4.0.5)
##
    P rio
                      0.5.26
##
    P rlang
                      1.1.1
                                 2023-04-28 [?] CRAN (R 4.0.2)
    P rmarkdown
                      2.25
                                 2023-09-18 [?] CRAN (R 4.0.2)
##
                                 2020-11-15 [?] CRAN (R 4.0.2)
    P rprojroot
                      2.0.2
##
    P rstudioapi
                      0.13
                                 2020-11-12 [?] CRAN (R 4.0.3)
##
                                 2021-03-09 [?] CRAN (R 4.0.5)
    P rvest
                      1.0.0
    P sandwich
##
                    * 3.0-2
                                 2022-06-15 [?] CRAN (R 4.0.2)
##
    P scales
                      1.2.1
                                 2022-08-20 [?] CRAN (R 4.0.2)
##
    P sessioninfo
                      1.1.1
                                 2018-11-05 [?] CRAN (R 4.0.2)
##
    P sf
                    * 1.0-14
                                 2023-07-11 [?] CRAN (R 4.0.2)
                                 2021-01-25 [?] CRAN (R 4.0.5)
##
   P shiny
                      1.6.0
##
    P silabelled
                      1.1.8
                                 2021-05-11 [?] CRAN (R 4.0.5)
                      2.8.7
                                 2021-05-12 [?] CRAN (R 4.0.5)
##
    P sjmisc
##
    P sjPlot
                    * 2.8.15
                                 2023-08-17 [?] CRAN (R 4.0.2)
##
    P sjstats
                      0.18.2
                                 2022-11-19 [?] CRAN (R 4.0.2)
##
    P sp
                      1.4-5
                                 2021-01-10 [?] CRAN (R 4.0.5)
##
                                 2021-05-10 [?] CRAN (R 4.0.2)
   P statmod
                      1.4.36
                                 2021-05-10 [?] CRAN (R 4.0.2)
    P stringi
                      1.6.1
##
                    * 1.4.0
                                 2019-02-10 [?] CRAN (R 4.0.2)
    P stringr
                                 2020-04-10 [?] CRAN (R 4.0.2)
##
    P survival
                      3.1 - 12
##
    P tibble
                    * 3.1.1
                                 2021-04-18 [?] CRAN (R 4.0.5)
    P tidyr
                    * 1.1.3
                                 2021-03-03 [?] CRAN (R 4.0.5)
##
                                 2021-04-30 [?] CRAN (R 4.0.5)
    P tidyselect
                      1.1.1
##
    P tidyverse
                    * 1.3.1
                                 2021-04-15 [?] CRAN (R 4.0.5)
##
    P units
                      0.7 - 1
                                 2021-03-16 [?] CRAN (R 4.0.5)
##
    P unmarked
                      1.3.2
                                 2023-07-08 [?] CRAN (R 4.0.2)
##
    P utf8
                      1.2.1
                                 2021-03-12 [?] CRAN (R 4.0.5)
##
                      0.6.3
                                 2023-06-14 [?] CRAN (R 4.0.2)
    P vctrs
##
    P VGAM
                      1.1 - 9
                                 2023-09-19 [?] CRAN (R 4.0.2)
##
    P webshot
                      0.5.5
                                 2023-06-26 [?] CRAN (R 4.0.2)
## P withr
                      2.5.0
                                 2022-03-03 [?] CRAN (R 4.0.5)
```

```
2023-08-09 [?] CRAN (R 4.0.2)
## P xfun
                    0.40
## P xml2
                    1.3.2
                               2020-04-23 [?] CRAN (R 4.0.2)
                               2019-04-21 [?] CRAN (R 4.0.2)
                   1.8-4
## P xtable
## P yaml
                    2.2.1
                               2020-02-01 [?] CRAN (R 4.0.2)
                               2020-08-27 [?] CRAN (R 4.0.2)
                    2.1.1
## P zip
                               2021-03-09 [?] CRAN (R 4.0.5)
## P zoo
                    1.8-9
## [1] C:/Uni/10_Growth_msats-2017-2020/renv/library/R-4.0/x86_64-w64-mingw32
## [2] C:/Users/localadmin/AppData/Local/Temp/RtmpGmSeJR/renv-system-library
## [3] C:/Program Files/R/R-4.0.2/library
##
## P -- Loaded and on-disk path mismatch.
```