达林顿晶体管阵列

ULN2003是一个单片高电压、高电流的达林顿晶体管阵列集成电路。它是由7对NPN达林顿管组成的,它的高电压输出特性和阴极箝位二极管可以转换感应负载。单个达林顿对的集电极电流是500mA。达林顿管并联可以承受更大的电流。此电路主要应用于继电器驱动器,字锤驱动器,灯驱动器,显示驱动器(LED气体放电),线路驱动器和逻辑缓冲器。

ULN2003的每对达林顿管都有一个2.7k Ω 串联电阻,可以直接和TTL或5V CMOS装置。

主要特点

- * 500mA 额定集电极电流(单个输出)
- * 高电压输出: 50V
- *输入和各种逻辑类型兼容
- *继电器驱动器

逻辑框图

示意图(每对达林顿管)

极限参数(Tamb=25°C)

参数	符 号	参数范围	单 位	
集电极和发射极之间的电压	VCE	50	V	
输入电压	VI	30	А	
集电极电流峰值	lo	500	mA	
总的发射端电流	IOK	500	mA	
功率消耗	Pd	950 Tamb=25°C 495 Tamb<85°C	mW mW	
工作温度	Topr	-20~ +85	°C	
贮存温度	T _{stg}	-65 ~ +150	°C	

注:除非特别指定,所有的电压都相对于发射极/基极端E。

电气特性参数 (除非特别指定, Tamb=25°C)

参数	测试图	符号	测 试 条 件	最小值	典型值	最大值	单位
输入电压	6	VI(ON)	VCE=2V, Ic=200mA			2.4	V
			VCE=2V, Ic=250mA			2.7	
			VCE=2V, Ic=300mA			3	
集电极-发射极饱和电压	5	VCE(SAT)	II=250μA, Ic=100mA		0.9	1.1	V
			I _I =350μA, I _C =200mA		1	1.3	
			II=500μA, Ic=350mA		1.2	1.6	
集电极切断电流	1	ICEX	VCE=50V, II=0			50	μА
	2		VCE=50V, II=0, Tamb=70°C			100	
前进箝位电压	8	VF	IF=350mA		1.7	2	V
关闭状态输入电流	3	II(OFF)	VCE=50V, IC=500mA, Tamb=70°C	50	65		μΑ
输入电流	4	II	VI=3.85V		0.95	1.35	mA
反向箝位电流	7	IR	VR=50V			50	μА
			VR=50V, Tamb=70°C			100	
输入电容		CI	VI=0,f=1MHz		15	25	pF
传播迟延时间,低电平到高							
电平输出	9	tPLH			0.25	1	μs
传播迟延时间,高电平到低						_	μs
电平输出	9	tPHL			0.25	1	
转换后高电平输出电压	10	Voн	Vs=50V, Io=300mA	Vs-20			mV

测试电路图

图 1 ICEX 测试电路图

图3 II(off) 测试电路图

注: II 是固定的测量VCE(sat), 也可测量HFE.

图 5 HFE,VCE(sat) 测试电路图

图 7 IR 测试电路图

图 2 ICEX 测试电路图

图 4 II(on) 测试电路图

图 6 VI(on) 测试电路图

图8 VF 测试电路图

图 9. 传播延迟时间波形

注: A. 脉冲发生器有以下特性: PRR=12.5kHz, Zo=50Ω

B. CL 包括探针和模具电容

图 10. 锁存测试电路图和电压波形

典型特性曲线图

0

集电极电流, lc(mA)

200

典型应用电路图

TTL to Load

通过上拉电阻增加驱动电流