UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Gašper Domen Romih

DOMNEVA 1-2-3

Magistrsko delo

Mentor: doc. dr. Nino Bašić (Univerza na Primorskem)

Zahvala

Na tem mestu bi se rad zahvalil družini ter prijateljem, ki so me tekom študija vedno podpirali ter mi stali ob strani. Z njihovo pomočjo je bil študij zanimiv ter zabaven, tudi v težjih časih.

Zahvalil bi se mentorju doc. dr. Nino Bašiću za vse komentarje, popravke, razlage in nasvete ter potrpežljivost in voljo na koncu.

Dodatno bi se zahvalil Domnu Muhi sošolcu in prijatelju že od prvih gimnazijskih dni. V tem obdobju je bil vedno pripravljen pomagat, tako s študijskimi kot neštudijskimi zadevami.

Zahvalil bi se tudi Igorju Smirnovu, ki mi je omogočil delo ob študiju ter me pri tem vedno podpiral.

Kazalo

Pr	rogram dela	vii
1	$\mathbf{U}\mathbf{vod}$	1
2	Osnovne definicije in pojmi 2.1 Osnovne družine grafov	3 5 6
3	$\begin{array}{llllllllllllllllllllllllllllllllllll$	13
4	Izrek 1-2-3-4-5 4.1 Izrek 1-2-3-4 za d-regularne grafe	19 21
5	Verjetnostne metode 5.1 Naključni grafi	
6	Totalna verzija	32
7	Seznamska verzija7.1 Povezavna verzija	
8	Algoritem za računanje 3-utežitve grafa8.1Opis algoritma8.1.1Razveji glede na povezavo8.1.2Minimizacija konfliktov8.1.3Razveji z minimizacijo konfliktov8.2Rezultati izvajanja	57 58
9	Zaključek in nadaljno delo	65
Li	teratura	67

Program dela

Magisterij naj obravnava znane rezultate iz literature, ki se nanašajo na domnevo 1-2-3, ki je še vedno odprt problem v teoriji grafov. Domeneva pravi, da lahko povezave vsakega enostavnega grafa utežimo z elementi množice $\{1,2,3\}$, tako da ta utežitev inducira pravilno barvanje vozlišč. Kot izhodišče naj vam služijo spodaj navedeni članki.

Najprej predstavite osnovne pojme, ki jih bralec potrebuje za razumevanje same domneve. Nato izračunajte vrednost parametra $\chi^e_{\Sigma}(G)$ za preproste enoparametrične družine grafov (npr. polni grafi in cikli). Zatem naredite kolikor se da popoln pregled znanih rezultatov. Znani (delni) rezultati so dveh vrst: po eni strani je domneva 1-2-3 dokazana za nekatere posebne družine grafov, po drugi strani pa je v splošnem dokazana šibkejša verzija domneve. Predstavite tudi rezultate, ki se nanašajo na seznamsko in totalno verzijo domneve 1-2-3.

Magisterij naj vsebuje tudi praktični del. Zasnujte in implementirajte algoritem za iskanje utežitve povezav z vrednostmi $\{1, 2, 3\}$, ki porodi pravilno barvanje vozlišč. Algoritem tudi preizkusite, tako da ga poženete na vseh grafih do reda n, za smiselno izbrano vrednost n.

Osnovna literatura

- [11] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours. J. Combin. Theory Ser. B, 91(1):151–157, 2004. doi: 10.1016/j.jctb.2003.12. 001
- [15] J. Przybyło. The 1-2-3 conjecture almost holds for regular graphs. *J. Combin. Theory Ser. B*, 147:183–200, 2021. doi: 10.1016/j.jctb.2020.03.005
 - [9] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 100(3):347-349, 2010. doi: 10.1016/j.jctb.2009.06.002
 - [3] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. *J. Graph Theory*, 60(3):242–256, 2009. doi: 10.1002/jgt.20354
 - [1] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. *Discrete Appl. Math.*, 156(7):1168–1174, 2008. doi: 10.1016/j.dam.2007.05.059

Podpis mentoria:

Domneva 1-2-3

POVZETEK

Povezavna utežitev $\omega: E \to \{1, 2, \dots, k\}$ grafa G = (V, E) določa barvanje grafa, kjer barvo za vozlišče dobimo kot vsoto uteži na incidenčnih povezavah. Najmanjši tak k za katerega obstaja utežitev, ki porodi pravilno barvanje označimo z $\chi^e_{\Sigma}(G)$. To ni mogoče, če graf vsebuje izolirano povezavo. Zato obravnavamo samo grafe brez izoliranih povezav. V nalogi se osredotočimo na iskanje zgornje meje za parameter $\chi^e_{\Sigma}(G)$, ki je neodvisna od grafa G. Domneva 1-2-3 pravi, da velja $\chi^e_{\Sigma}(G) \leq 3$ za vsak graf G.

Domnevo potrdimo v primeru poti, ciklov, dvodelnih, 3-obarvljivih in polnih grafov. Poleg tega pokažemo t.i. izrek 1-2-3-4-5, ki pokaže $\chi^e_{\Sigma}(G) \leq 5$ za vsak graf G. To je tudi najboljši rezultat do sedaj. V primeru regularnih grafov rezultat malenkost izboljšamo in pokažemo $\chi^e_{\Sigma}(G) \leq 4$ za vsak regularen graf. Obravnavamo tudi asimptotsko obnašanje parametra na naključnih grafih. Poleg tega obravnavamo tudi totalno in seznamsko posplošitev problema.

Razvijemo in analiziramo tudi algoritem, ki proba domnevo potrditi za poljuben graf. To storimo z iskanjem ustrezne povezavne utežitve.

1-2-3 Conjecture

Abstract

An edge weighting $\omega: E \to \{1, 2, \dots, k\}$ induces a vertex coloring where vertex color is defined as a sum of weights on incident edges. Smallest k for which there exists edge weighting which induces a proper coloring is denoted as $\chi^e_{\Sigma}(G)$. If a graph contains an isolated edge such a weighting does not exist. Therefore we only consider graphs without isolated edges. We focus on providing upper bounds for parameter $\chi^e_{\Sigma}(G)$ which are independent of graph G. 1-2-3 conjecture states that $\chi^e_{\Sigma}(G) \leq 3$ for any graph.

Conjecture is confirmed in case of paths, cycles, bipartite graphs, 3-colorable graphs and complete graphs. We also prove the so called 1-2-3-4-5 theorem which states that $\chi_{\Sigma}^{e}(G) \leq 5$ for any graph. In the case of regular graphs we improve the result and show that $\chi_{\Sigma}^{e}(G) \leq 4$ for regular graphs. We also analyze asymptotic behaviour of parameter on random graphs. Results for the total and list version of a problem are also presented. We developed and analyzed an algorithm that tries to solve conjecture by constructing a proper edge weighting for arbitrary graphs.

Math. Subj. Class. (2020): 05C15, 05C31, 05C80, 05C78, 05C85

Ključne besede: teorija grafov, kombinatorika, grafovski polinomi, naključni grafi, permanenta, kombinatorični izrek o ničlah

Keywords: graph theory, combinatorics, graph polynomials, random graphs, permanent, combinatorial nullstellensatz

1 Uvod

Motivacija za domnevo 1-2-3 izhaja iz t.i. iregularnostne moči grafa, ki si jo intuitivno lahko predstavljamo kot neko mero, ki nam pove, koliko nekemu grafu manjka do tega, da postane regularen. Pri tem so regularni grafi taki grafi, kjer imajo vsa vozlišča enako število sosedov oz. imajo enako stopnjo. Na preprost način lahko ugotovimo, da obstajajo regularni grafi vseh redov. Zanima nas, če lahko karakteriziramo grafe, ki se od regularnih najbolj razlikujejo in sicer tako, da zahtevamo različne stopnje za vsa vozlišča v grafu. Vendar nam preprosto dejstvo o grafih pove, da imata vsaj dve vozlišči v grafu isto stopnjo. To seveda drži v primeru, ko je graf enostaven torej nima vzporednih povezav ter zank. Isto ne velja za multigrafe, kjer dovoljujemo več vzporednih povezav med vozlišči. Iregularnostna moč grafa je tako definirana kot najmanjše število vzporednih povezav med poljubnima dvema vozliščema, tako da so stopnje vseh vozlišč v grafu različne. Namesto dodajanja vzporednih povezav lahko problem formuliramo kot dodelitev celoštevilskih (pozitivnih) uteži na povezave, tako da je vsota uteži na incidenčnih povezavah različna za vsa vozlišča. Za mnoge znane družine grafov obstaja več spodnjih in zgornjih mej. Poleg tega je problem porodil ogromno podobnih in izpeljanih problemov ter domnev. V nalogi se bomo osredotočili na izpeljanko, kjer bomo zahtevali, da imajo različno stopnjo le sosednja vozlišča. Leta 2004 so Karoński et al. [11] formulirali domnevo 1-2-3, ki pravi, da zadoščajo le uteži iz množice {1,2,3}. V primerjavi z iregularnostno močjo grafa je zastavljena meja izredno močna, saj je iregularnostna moč grafa ponavadi odvisna od reda grafa oziroma od stopenj njegovih vozlišč. Kljub temu, da je bila zastavljena meja zelo nizka, v tistem času ni obstajala niti konstantna zgornja meja za zastavljen problem. Kmalu za tem je bila postavljena prva zgornja meja, kjer je bilo pokazano, da zadošča 30 uteži. To mejo so kmalu za tem izboljšali na 16 ter nato na 13 in na 6. Leta 2010 je bila postavljena do sedaj najnižja zgornja meja, kjer je bilo pokazano, da lahko s preprostim algoritmom utežimo graf z utežmi iz množice $\{1, 2, 3, 4, 5\}$. Poleg rezultatov, ki so se domnevi le približali obstaja ogromno rezultatov, ki domnevo potrdijo za posebne družine grafov oziroma za grafe z nekaj dodatnimi lastnostmi. V tem kratkem času je bilo razvitih veliko metod za reševanje zgornjega problema in njegovih izpeljank. Pri tem se uporablja kombinatorične in algoritemske pristope, verjetnostne metode predvsem pri analiziranju problema pri naključnih grafih ter algebraični pristopi. Med vsemi temi pristopi je morda najbolj razvita ravno algebraična metoda, ki temelji na kombinatoričnem izreku o ničlah ter permanentah posebnih matrik.

V nalogi bomo obravnavali zgornji problem, kjer se bomo najprej osredotočili na posebne družine grafov ter na grafe z nekaj dodatnimi lastnostmi. Med te sodijo poti, cikli, polni grafi, drevesa ter dvodelni grafi. Ogledali si bomo tudi povezo med barvanjem grafa in iskanjem primerne utežitve. Za naštete grafe bomo uporabili različne metode in pristope. Vrnimo se nazaj k originalni motivaciji za problem. Iregularni grafi so nekakšno nasprotje regularnih grafov. Zato so regularni grafi še posebaj zanimivi, saj je problem na njih nekako najtežji, ker moramo intuitivno popraviti stopnje vseh vozlišč v grafu. Regularnim grafom bomo v nalogi namenili celoten razdelek, saj za njih obstajajo močnejši rezultati kot za ostale splošne grafe. Poleg teoretičnih pristopov bomo razvili algoritem, ki bo poiskal primerno utežitev

za vsak graf. Pri tem si bomo izbrali neko družino grafov ter analizirali vse grafe do n vozlišč. Ker je znano, da število vseh grafov narašča zelo hitro, bomo generirali naključne grafe višjih redov in opazovali obnašanje algoritma.

2 Osnovne definicije in pojmi

V tem razdelku bomo spoznali nekaj osnovnih definicij in pojmov, ki jih bomo uporabljali tekom naloge. Dokazali bomo tudi kakšen izrek, če bomo rezultate uporabljali kasneje. Večina definicij in izrekov bo povzetih po [6].

Graf bomo označili kot urejen par G = (V, E). Pri tem množico V imenujemo množica vozlišč grafa in njene elemente ponavadi označimo z u, v, w. Množica $E\subseteq \binom{V}{2}$ je množica povezav grafa G. Njeni elementi so torej dvoelementne podmnožice vozlišč. Povezave ponavadi označujemo z e, f, g kadar nas ne zanima kateri dve vozlišči povezava vsebuje. V nasprotnem primeru povezavo označimo z $uv \in E$ in s tem eksplicitno povemo, da je to potem povezava med vozliščem v in u. Množico vozlišč in povezav grafa, lahko zaporedoma označimo tudi kot V(G) in E(G). V izogib težavam z notacijo bomo vedno predpostavili, da $V \cap E = \emptyset$. Za $v \in V(G)$ lahko definiramo t.i. odprto soseščino vozlišča N(v). To je množica vseh sosedov vozlišča u, torej $N(v) = \{u \in V(G) \mid uv \in E(G), u \neq v\}$. Zaprto soseščno definiramo kot $N[u] = N(v) \cup \{v\}$. Poleg množice sosedov je pomembna tudi njena moč, kar označimo z d(v) in imenujemo stopnja vozlišča v. Z $\delta(G)$ oziroma samo δ označimo najmanjšo stopnjo vozlišča v grafu. Največjo stopnjo vozlišča v grafu označimo z $\Delta(G)$ oziroma samo Δ . Podmnožici vozlišč $I \subseteq V$ rečemo **neodvisna množica**, če v grafu ne obstaja nobena povezava med vozlišči iz I. Največji k za katerega obstaja neodvisna množica velikosti k označimo z $\alpha(G)$.

Največja in najmanjša stopnja vozlišč sta dve izmed osnovnih lastnosti grafa. Grafi imajo ogromno različnih lastnosti. Različne veje teorije grafov se ukvarjajo z njihovim raziskovanjem. Ko opazujemo neko lastnost grafa si ponavadi želimo, da se ta lastnost ne spreminja, če vozlišča grafa preimenujemo. Taki lastnosti rečemo invarianta grafa. Invarianto grafa G = (V, E) definiramo formalno kot lastnost, ki se ohranja z **izomorfizmi grafov**. Izomorfizem grafa je bijektivna preslikava $f:V(G)\to V(H)$ za katero mora veljati, da sta vozlišči u in v v grafu G sosednji natanko tedaj, ko sta sosedni vozlišči f(u) in f(v) v grafu H. Ce med dvema grafoma obstaja izomorfizem rečemo, da sta izomorfna. Grafi, ki so izomorfni imajo tako enake lastnostni in jih obravnavamo kot enake. Definirajmo sedaj še pojem podgrafa. Graf G' = (V', E') je **podgraf** grafa G = (V, E), če velja $V' \subseteq V$ in $E' \subseteq E$. Pogosto obravnavamo dva posebna primera podgrafov. V prvem primeru izberemo neko podmnožico vozlišč $V' \subset V$ ter vse povezave med izbranimi vozlišči. Tak podgraf imenujemo **induciran** podgraf. Z G[S] označimo induciran podgraf kjer za množico vozlišč vzamemo S. Na podoben način definiramo G-U kot $G[V(G)\setminus U]$. V drugem primeru za podgraf izberemo vsa vozlišča originalnega grafa in ne izberemo nujno vseh povezav. Takemu podgrafu rečemo **vpet** podgraf. Velikokrat se izkaže, da nam posebni primeri induciranih oziroma vpetih podgrafov omogočajo izpeljavo nekaterih lastnostih za celoten graf. V nadaljevanju tega razdelka bomo spoznali nekaj različnih grafovskih invariant.

2.1 Osnovne družine grafov

Na podlagi določenih lastnosti ločimo različne družine grafov. S pomočjo takih lastnosti se ponavadi lažje lotimo računanja nekega problema na grafu. Glavni razlog leži v tem, da je vseh grafov zelo veliko in pri dokazovanju neke lastnosti ne vemo kakšno strukturo ima graf.

Pot je eden izmed najbolj preprostih grafov. Pot z $n \geq 2$ vozlišči označimo z P_n pri čemer vozlišča uredimo v vrsto v_1, v_2, \ldots, v_n ter medseboj povežemo zaporedna vozlišča. Vsa vozlišča razen v_1 in v_n so stopnje 2. Če dodamo še povezavo med v_1 in v_n dobimo **cikel** z $n \geq 3$ vozlišči in ga označimo kot C_n . Za cikle tako velja, da imajo vsa vozlišča stopnjo 2. To idejo lahko posplošimo in definiramo **regularni graf** kot graf, kjer imajo vsa vozlišča enako stopnjo. Z oznako d-regularni grafi mislimo grafe, kjer imajo vsa vozlišča stopnjo d. Parameter d imenujemo tudi stopnja regularnega grafa. S tem lahko cikle definiramo kot povezane 2-regularne grafe. Preprosto lahko ugotovimo, da regularni grafi poljubnih stopenj in redov ne obstajajo. Potreben in zadosten pogoj za obstoj d-regularnega grafa na n vozliščih je, da velja $n \geq d+1$ in da je nd sodo, kar sledi iz leme o rokovanju.

Trditev 2.1 (Lema o rokovanju). Za vsak graf G velja

$$\sum_{v \in V(G)} d(v) = 2|E(G)|.$$

Dokaz. Zgornjo trditev dokažemo s preprostim dvojnim štetjem. Na levi strani enačbe se sprehodimo čez vsa vozlišča in za vsako vozlišče preštejemo njegove incidenčne povezave. Ampak pri tem vsako povezavo štejemo ravno dvakrat, kar je točno desna stran enačbe. □

Navedimo še en poseben primer regularnega grafa. **Polni graf** z n vozlišči označimo z K_n , kar predstavlja (n-1)-regularni graf. To je graf, kjer je vsako vozlišče povezano z vsemi ostalimi vozlišči. Ime polni graf izhaja iz dejstva, da imajo polni grafi maksimalno število povezav in sicer $\binom{n}{2}$. Naslednja pomembna družina grafov so drevesa. **Drevo** T_n je povezan graf na n vozliščih z n-1 povezavami. Obstaja več ekvivalentnih definicij oziroma karakterizacij dreves. Velikokrat se drevesa definira kot povezane grafe brez ciklov. Če graf ni nujno povezan in nima ciklov ga imenujemo gozd.

2.2 Barvanje grafa

Barvanje grafa je zagotovo eden izmed najbolj popularnih grafovskih problemov. Poleg tega, da je bil ta problem eden izmed prvih grafovskih problemov za katerega so dokazali NP-polnost je povezan še z mnogo drugimi podobnimi problemi. Tako se je oblikovalo več različnih in izpeljanih načinov barvanja grafov. Vsem oblikam barvanja je skupno to, da je za splošne grafe to težak problem. **Vozliščno barvanje** grafa G = (V, E) je preslikava $c: V \to S$. Če za vsako povezavo $uv \in E$ velja $c(v) \neq c(u)$ rečemo, da je barvanje pravilno. Množica S je množica razpoložljivih barv, ki je ponavadi oblike $\{1, 2, \ldots, k\}$. Poleg vozliščnega barvanja poznamo tudi povezavno barvanje, vendar nas to tukaj ne bo zanimalo. Zato bomo od sedaj

dalje z barvanjem grafa vedno mislili vozliščno barvanje. Pri barvanju nas ponavadi zanima velikost množice S. Drugače povedano, zanima nas najmanjši $k \in \mathbb{N}$, tako da G premore k-barvanje $c: V \to \{1, 2, \dots, k\}$.

Tak najmanjši k označimo z $\chi(G)$ in ga imenujemo **kromatično število** grafa G. Z lahkoto preverimo, da je to invarianta grafa. Graf je k-obarvljiv, če je $\chi(G) \leq k$. Za podan graf G nas ponavadi zanima zgornja meja za $\chi(G)$. Konstantna zgornja meja za splošne grafe ne obstaja. Preprost primer, ki podpre to dejstvo so polni grafi K_n saj za njih potrebujemo n barv. Obstaja pa preprosta meja, ki vključuje maksimalno stopnjo Δ in sicer velja $\chi(G) \leq \Delta + 1$. To lahko preprosto vidimo, če analiziramo vozlišča grafa v poljubnem vrstnem redu, recimo v_1, v_2, \ldots, v_n ter jih požrešno barvamo. V najslabšem primeru, bodo vsi sosedi trenutnega vozlišča pobarvani z različnimi barvami, kar pomeni, da moramo trenutno vozlišče pobartvati z dodatno barvo. Na tak način nikoli ne porabimo več kot $\Delta+1$ barv. Izkaže se, da je ta zgornja meja v večini primerov slaba, ter se jo da izboljšati. Ideja leži v tem, da ko barvamo vozlišče v_i zadošča opazovati le število tistih sosedov v_i , kjer je j < i. S pomočjo te opazke lahko konstruiramo posebno razvrstitev vozlišč za katero bo veljalo, da ima v_i minimalno stopnjo v grafu induciranem z v_1, v_2, \ldots, v_i . Tako razvrstitev lahko dosežemo, tako da najprej vzamemo v_n za katerega velja $d(v_n) = \delta(G)$. Postopek nadaljujemo, tako da izberemo v_{n-1} kot vozlišče z najmanjšo stopnjo v $G - v_n$ ter tako naprej.

Najmanjši tak k za katerega ima graf G tako ureditev vozlišč za katerega velja, da ima vsako volišče manj kot k sosedov v množici prejšnjih vozlič imenujemo **barvno** število ter jo označimo kot $\operatorname{col}(G)$. Očitno velja $\chi(G) \leq \operatorname{col}(G)$. S pomočjo zgornje ureditve vozlišč lahko dodatno omejimo $\operatorname{col}(G) \leq \max_{H \subseteq G} \delta(H) + 1$. Ampak očitno velja tudi obratno ter velja $\operatorname{col}(G) \geq \operatorname{col}(H)$, kjer je H poljuben podgraf v G. Dokazali smo torej

$$\chi(G) \le \operatorname{col}(G) = \max\{\delta(H) \mid H \subseteq G\} + 1.$$

Zgornja meja lahko v veliko primerih močno izboljša naivno požrešno metodo vendar moramo za natančen izračun col(G) pregledati vse možne inducirane podgrafe kar ni preprosto.

Zgornjo mejo požrešne metode se lahko v večini primerov izboljša, kar pravi naslednji izrek:

Izrek 2.2 (Brooks (1941)). Naj bo G povezan graf. Če G ni poln graf ali lih cikel potem

$$\chi(G) \le \Delta(G)$$
.

Dokaz zgornjega izreka bralec lahko najde v [6]. Posledica zgornjega izreka je, da lahko d-regularne grafe pobarvamo z d barvami, če je d > 2 (ni cikel) in d < n-1 (ni poln graf).

Grafe G za katere velja $\chi(G)=2$ imenujemo dvodelni grafi, saj lahko množico vozlišč razdelimo na dve neodvisni množici. Te dve množici imenujemo tudi biparticija dvodelnega grafa. Dvodelni grafi so predvsem zanimivi saj se velikokrat pojavijo v praksi. Prav tako načeloma velja, da so algoritmi na dvodelnih grafih hitrejši.

Primer 2.3. Oglejmo si primer grafa ter opazujmo njegove osnovne lastnosti. Graf

Slika 1: Primer grafa G.

na sliki 1 ima 9 vozlišč in 10 povezav ter je povezan. Njegova najmanjša stopnja je $\delta(G)=1$ ter največja stopnja $\Delta(G)=5$. Graf ne pripada nobeni izmed zgoraj opisanih osnovnih družin. Zaradi tega zadošča predpostavkam Brooksovega izreka zaradi katerega velja $\chi(G) \leq 5$. Ali je to dobra ocena za podan graf? Hitro tudi opazimo, da graf ni dvodelen saj vsebuje lih cikel zaradi katerega velja $\chi(G) \geq 3$. Preprosto lahko preverimo, da graf lahko požrešno pobarvamo z tremi barvami torej velja $\chi(G)=3$.

2.3 Seznamsko barvanje grafa

Sedaj bomo definirali posplošitev barvanja grafa. Na zelo podoben način se posploši tudi druge grafovske probleme, kar bomo videli v naslednjih razdelkih. Naj bo G = (V, E) graf in naj bo $(S_v)_{v \in V}$ družina množic. Vozliščno barvanje c grafa G, kjer dodatno velja $c(v) \in S_v$ za vse v imenujemo **seznamsko barvanje** s seznami S_v . Graf G je k-seznamsko obarvljiv, če za vsako družino $(S_v)_{v \in V}$ za katero velja $|S_v| = k$ za vse v, obstaja pravilno vozliščno barvanje s seznami S_v . Najmanjši tak k imenujemo **seznamsko kromatično število** oziroma izbirno število (eng. choice number) in jo označimo kot ch(G). Definicija je bolj zapletena kot definicija navadnega barvanja zato si oglejmo kakšna je povezava med njima. Da je seznamsko barvanje res posplošitev preprosto ugotovimo, tako da za družino $(S_v)_{v \in V}$ vzamemo kar enake množice, naprimer $S_v = \{1, 2, \ldots, k\}$ za vsak $v \in V$. S tem ugotovimo, da če je graf k-seznamsko obarvljiv je tudi k-obarvljiv. Torej velja,

$$\operatorname{ch}(G) \ge \chi(G).$$

Dodatno se izkaže, da veliko zgornjih mej za kromatično število velja tudi za seznamsko verzijo. Konkretno reformulacija Brooksovega izreka velja tudi za seznamsko barvanje. To pomeni, da če G ni poln graf ali lih cikler velja $\operatorname{ch}(G) \leq \Delta(G)$. Prav tako velja ista zgornja meja s pomočjo barvnega števila in sicer $\operatorname{ch}(G) \leq \operatorname{col}(G)$. Vendar to še ne pomeni, da sta si $\chi(G)$ in $\operatorname{ch}(G)$ blizu. Obstajajo preprosti grafi, kjer je razlika med parametroma lahko poljubna. Klasični primeri tega so polni dvodelni grafi. Polni dvodelni graf označimo z $K_{m,n}$. To je graf, ki ima za biparticijo množici velikosti m in n ter vse možne povezave med njima. Oglejmo si bolj podrobno graf $K_{2,4}$.

Slika 2: Primer grafa $K_{2,4}$ s seznami velikosti 2.

Na sliki 2 vidimo primer takega grafa. Ker je graf dvodelen ga lahko pobarvamo z dvema barvama. Vendar grafa ne moremo seznamsko pobarvat s seznami velikosti 2. Protiprimer je prikazan na sliki 2. Ne glede na to, kakšne barve izberemo za vozlišči v levi množici, ne bomo mogli pravilno pobarvat vseh vozlišč v desni množici. Zato velja $ch(K_{2,4}) > 2$. Podobno lahko konstruiramo večje protiprimere. Velja namreč $ch(K_{n,n}) > n$, kar pokaže, da je lahko razlika med kromatičnim številom in njegovo seznamsko verzijo poljubno velika.

2.4 Barvanje grafa z utežmi

Povezavam grafa mnogokrat dodelimo uteži, ponavadi iz množice pozitivnih realnih števil. Povezavno utežitev grafa G=(V,E) definiramo kot preslikavo $\omega:E(G)\to S$. V našem primeru bo množica uteži S vedno končna množica prvih k naravnih števil, kar lahko označimo kot $S=\{1,2,\ldots,k\}=[k]$. Definiramo k-utežitev grafa G kot preslikavo $\omega:E(G)\to[k]$. Naj bo ω k-utežitev grafa G. Označimo barvo oziroma utež vozlišča, ki jo porodi ω kot

$$c_{\omega}(v) = \sum_{u \in N(v)} \omega(vu).$$

Na tak način utežitev grafa dodeli vrednosti oziroma barve na vsa vozlišča. Preslikava c_{ω} slika iz množice vozlišč v množico $\{\delta(G), \delta(G)+1, \ldots, k\Delta(G)\}$ in je torej barvanje grafa G. Različne utežitve povezav nam tako določajo različna barvanja grafa. Zanimive so predvsem take utežitve, ki določajo pravilno barvanje. Vprašamo se lahko, ali take utežitve sploh obstajajo za poljuben graf? Hitro ugotovimo, da to ni možno za graf K_2 , zato bomo v nadaljevanju predpostavljali, da je G povezan graf, ki ni K_2 . Prepričajmo se sedaj, da za vsak graf G obstaja tak $k \in \mathbb{N}$, tako da obstaja k-utežitev grafa G, ki porodi pravilno barvanje. Še več pokazali bomo, da je vsako vozlišče različne barve. S tem bo k tudi zgornja meja za iregularnostno moč grafa G, ki jo bomo definirali v naslednjem razdelku. V ta namen oštevilčimo povezave grafa G kot e_1, e_2, \ldots, e_m . Sedaj definiramo utežitev kot

$$\omega(e_i) = 2^i.$$

Očitno ta utežitev porodi pravilno barvanje grafa G, saj pravzaprav dodeli enolično število vsakemu vozlišču v grafu. Še več, incidenčne povezave vozlišču določajo enolično binarno število s številom bitov enako številu vseh povezav. Pri tem so v binarnem zapisu enice na mestih, ki ustrezajo incidenčnim povezavam. Vendar je zgornja ocena precej slaba ter eksponentno odvisna od števila povezav.

Definicija 2.4. Rečemo, da je k-utežitev ω grafa G pravilno barvanje z utežmi, če za vsako povezavo $uv \in E(G)$ velja

$$c_{\omega}(u) \neq c_{\omega}(v)$$
.

V nadaljevanju bomo takim utežitvam rekli tudi pravilne ali ustrezne. Označimo z $\chi^e_{\Sigma}(G)$ najmanjši tak k, da za graf G obstaja k-utežitev, ki je pravilno barvanje z utežmi. Literatura glede oznake ni enotna vendar nam ta oznaka omogoča konsistentnost pri raziskovanju podobnih problemov. Tako kot kromatično število je tudi $\chi_{\Sigma}^{e}(G)$ invarianta grafa G. V nalogi se bomo osredotočili na analiziranje te grafovske invariante ter nekaj izpeljank. Med izpeljanke sodi t.i. polna verzija, kjer uteži dodelimo tudi vozliščem ter opazujemo skupno oziroma polno barvanje. Druga vrsta izpeljank, ki si jo bomo ogledali se navezuje na seznamsko verzijo, kjer je posplošitev analogna kot pri seznamskem barvanju grafa. Po zgornjem primeru lahko grobo ocenimo $\chi^e_{\Sigma}(G) \leq 2^{|E(G)|}$. Kot bomo videli v nadaljevanju ja ta ocena zelo slaba. Ugotovili bomo, da obstaja celo konstantna zgornja meja za vse grafe. Malo lažje ocenimo spodnjo mejo. Na primeru cikla C_3 opazimo, da je $\chi^e_{\Sigma}(G) \geq 3$, saj potrebujemo vsaj 3 različne uteži na povezavah. Glede na to, da je cikel C_3 zelo preprost graf nam intuicija govori, da bo spodnja meja za bolj kompleksne grafe višja. Vendar to ne drži. V naslednjem razdelku bomo predstavili domnevo 1-2-3, kjer je domnevna zgornja meja za $\chi^e_{\Sigma}(G)$ kar enaka spodnji meji, ki smo jo ugotovili v primeru cikla C_3 .

Primer 2.5. Na primeru si sedaj oglejmo kako deluje barvanje grafa z utežmi. V prejšnjem primeru smo ugotovili, da velja $\chi(G) = 3$. Kot je razvidno iz slike

Slika 3: Primer grafa G z utežmi na povezavah ter induciranim barvanjem.

3 smo graf uspeli utežiti le z dvema utežema. Iz tega sledi, da je $\chi^e_{\Sigma}(G) \leq 2$. Vendar graf vsebuje sosednja vozlišča, ki imata isto stopnjo zato lahko sklepamo

 $\chi_{\Sigma}^{e}(G) = 2$. Pri konkretni utežitvi sicer vidimo, da inducirano barvanje porabi 6 različnih barv. Koliko različnih barv dobimo nas v okviru domneve 1-2-3 sicer ne zanima ampak, vseeno omenimo kot zanimivost. S primerno izbiro utežitve lahko induciramo barvanje, ki je optimalno torej zavzame le 3 različne vrednosti. Vendar v tem primeru ne zadostujeta le uteži $\{1,2\}$ vendar potrebujemo še tretjo utež.

2.5 Iregularnostna moč grafa oziroma multigrafa

V tem razdelku bomo predstavili glavno motivacijo za domnevo 1-2-3. Glavna ideja leži v tem, kako definirati t.i. **iregularni graf**. V nasprotju z regularnimi grafi bi naivno tak graf definirali kot graf, kjer imajo vsa vozlišča enako stopnjo. Vendar to seveda ni mogoče. Preprosto dejstvo je, da ima vsak graf z vsaj dvema vozliščema dva vozlišča z isto stopnjo. To lahko pokažemo s preprosto uporabo Dirichletovega principa. Možne stopnje vozlišč so $0, 1, 2, \dots n-1$, vendar v grafu ne more istočasno obstajati vozlišče s stopnjo 0 in s stopnjo n-1. Iz tega sledi, da imamo na razpolago n-1 različnih stopenj, ki jih moramo dodeliti n vozliščem. Iz tega sledi, da imata vsaj dva vozlišča enako stopnjo. Torej naivna definicija iregularnega grafa ne deluje. Seveda to ne velja za multigrafe. Zato se lahko vprašamo, kako daleč je nek enostaven graf do tega, da postane iregularen multigraf. Torej koliko vzporadnih povezav je potrebno dodati grafu, da bodo stopnje njegovih vozlišč različne. Namesto dodajanja vzporednih povezav lahko povezave utežimo s celoštevilskimi utežmi in opazujemo dobljene uteži vozlišč (v tem primeru želimo, da so vse uteži na vozliščih različne). Definirajmo sedaj zgornji razmislek bolj natančno. Naj bo $\omega: E(G) \to \{1, 2, \dots, k\}$ neka povezavna utežitev grafa G. Utežitvi ω rečemo iregularna, če so uteži na vozliščih $c_{\omega}(v) = \sum_{u \in N(v)} \omega(vu)$ vse različne. Najmanjši tak k za katerega obstaja iregularna utežitev grafa G imenujemo iregularnostna moč ter jo označimo kot s(G). Podobno kot za kromatično število tudi za iregularnostno moč grafa obstajajo različne zgornje in spodnje meje. Za razliko od barvanja grafa je to relativno nov problem in ne obstajajo zgornje meje, ki so preproste. Kljub temu navedimo enega izmed zadnjih rezlutatov, ki pravi

$$s(G) \le 6 \left\lceil \frac{n}{\delta(G)} \right\rceil.$$

Zgornje meje ne bomo dokazali. Bralec lahko dokaz najde v članku [10].

3 Domneva 1-2-3

Z definicijo parametra $\chi^e_{\Sigma}(G)$ lahko formuliramo domnevo 1-2-3 na naslednji način

Domneva 3.1. (1-2-3 Domneva; Karoński et al. [11]) Naj bo G povezan graf, ki ni K_2 . Tedaj je $\chi^e_{\Sigma}(G) \leq 3$.

Zastavljena zgornja meja je presenetljiva iz več razlogov. Za razliko od kromatičnega števila in iregularnostne moči je meja konstantna za vse grafe. Po drugi strani do sedaj še nismo predstavili nobene "dobre" zgornje meje za $\chi_{\Sigma}^{e}(G)$. V članku [11], kjer je bila zastavljena zgornja domneva so pokazali, da lahko graf utežimo z končno

množico realnih uteži in tako dobimo pravilno barvanje za vse grafe. Vendar je ta rezultat še vedno precej oddaljen od željene domneve. Poleg tega so v istem članku dokazali domnevo za grafe G, kjer $\chi(G) \leq 3$. Kasneje so v Kalkowski et al. [9] predstavili eleganten algoritem, ki doseže zahtevano utežitev z utežmi v množici $\{1,2,3,4,5\}$. To je do sedaj tudi najboljši razultat za splošne grafe. Tekom naloge bomo spoznali nekaj metod s katerimi se lahko lotimo zgornjega problema za neke specifične družine grafov ter se probamo čim bolj približati željenemu rezultatu. Za začetek si oglejmo nekaj preprostih družin, za katere se izkaže, da zgornja meja velja.

3.1 Izračun $\chi^e_{\Sigma}(G)$ za nekatere družine grafov

Za začetek si bomo ogledali nekaj osnovnih primerov grafov ter na njih izračunali parameter χ^e_{Σ} . Poleg tega bomo rezultate nahitro primerjali z iregularnostnjo močjo grafa. Ogledali so bomo predvsem tipe grafov, ki smo jih spoznali v uvodnem delu. Tekom magistrske naloge bomo za take grafe izračunali še parametre, ki izhajajo iz sorodnih verzij domneve 1-2-3. Začnimo z enim izmed bolj preprostih družin grafov.

Večina tega razdelka je povzeta po [5].

Trditev 3.2 (Domneva 1-2-3 za P_n). Naj bo P_n pot na vsaj treh vozliščih. Tedaj velja $\chi_{\Sigma}^e(P_n) = 2$.

Dokaz. Ker je graf $P_2 = K_2$ bomo obravnavali le primer, ko je $n \geq 3$. Najprej oštevilčimo povezave P_n na naraven način kot $e_i = v_i v_{i+1}$ za i = 1, 2, ..., n-1. Po kratkem premisleku ugotovimo, da je potreben pogoj za željeno utežitev

$$\omega(e_i) \neq \omega(e_j)$$
, če $|j-i| = 2$.

Torej povezavi, ki sta na razdalji 2 morata imeti različne uteži. To drži, saj imata v primeru ko je $\omega(e_i) = \omega(e_{i+2})$ vozlišči v_{i+1} in v_{i+2} enako barvo neglede na vrednost $\omega(e_{i+1})$. Polega tega, da je zgornji pogoj potreben, je tudi zadosten. To preprosto vidimo saj smo ugotovili, da povezava e_i ne vpliva na barvo vozlišč v_i in v_{i+1} saj obema "pripomore" enako vrednost. Na podlagi zgornjega razmisleka ugotovimo, da $\chi^e_{\Sigma}(P_3) = 1$, saj P_3 ne vsebuje povezav na razdalji 2. Po drugi strani za P_n definiramo utežitev ω kot

$$\omega(e_i) = \begin{cases} 1, & \text{\'e } i \equiv 1, 2 \pmod{4}; \\ 2, & \text{\'e } i \equiv 3, 4 \pmod{4}. \end{cases}$$

Slika 4: Primer utežitve grafa P_n .

Res, saj ta utežitev zadošča zgornjemu pogoju. Na sliki 4 vidimo primer take utežitvne na grafu P_n . Glede na to, da sta zadnji uteži na povezavah 1 in 2 lahko sklepamo, da gre na sliki za P_n z $n \equiv 3 \pmod{4}$. Prav tako opazimo, da je pravzaprav pomembno zaporednje uteži 11221...112. V tem zaporedju se torej nujno

razlikujeta elementa na razdalji 2. Tako lahko zaključimo, da je $\chi^e_{\Sigma}(P_n)=2$ za n>4.

Premislimo sedaj še to kako bi izračunali iregularnostno moč za P_n . Zgornja utežitev seveda ne deluje saj nam inducira le štiri različne barve kar pomeni, da ima veliko vozlišč enako barvo. Zato bomo tukaj postopali malenkost drugače. Utežitev bomo poizkušali konstruirati na tak način, da bodo barve vozlišč zavzele vse vrednosti od 1 do n. Recimo, da je n liho. Dodelimo vozlišču, ki se nahaja na sredini (torej z indeksom $\lfloor \frac{n}{2} \rfloor + 1$) barvo z vrednostjo n. Sedaj povezavama, ki sta incidenčni sredinskemu vozlišču dodelimo uteži $\lfloor \frac{n}{2} \rfloor$ in $\lceil \frac{n}{2} \rceil$. Nadaljujemo z dodeljevanjem novih uteži, tako da bodo imela vozlišča levo od sredinskega vozlišča sodo vrednost in desno od sredinskega vozlišča liho vrednost. Malo bolj pazljivi mormo sicer biti na posameznih koncih poti, da se naše uteževanje uspešno zaključi. Na podlagi tega torej sklepamo, s $(P_n) \geq \lceil \frac{n}{2} \rceil$ in je potem zgoraj zastavljena tudi precej stroga.

Naravno nadaljujemo z grafom, ki ga iz poti dobimo, tako da združimo krajšiča poti z novo povezavo. Tedaj seveda ustvarimo cikel C_n . Kljub temu, da grafu dodamo le eno novo povezavo, pri tem strogo povečamo parameter χ_{Σ}^e .

Trditev 3.3 (Domneva 1-2-3 za cikle C_n). Naj bo C_n cikel. Tedaj velja $\chi^e_{\Sigma}(C_n) \leq 3$.

Dokaz. V prejšnjem primeru smo izračunali število χ_{Σ}^{e} za P_{n} . Hitro opazimo, da med potjo in ciklom ni veliko razlike. Dodana je le ena povezava med prvim in zadnjim vozliščem. Enako kot v prejšnjem primeru bomo oštevilčili povezave cikla C_{n} kot $e_{1}, e_{2}, \ldots, e_{n}$, kjer vzamemo $e_{n} = v_{n}v_{1}$. Poizkusimo z enako utežitvijo kot smo jo imeli za poti, torej

$$\omega(e_i) = \begin{cases} 1, & \text{\'e } i \equiv 1, 2 \pmod{4}; \\ 2, & \text{\'e } i \equiv 3, 4 \pmod{4}. \end{cases}$$

Potreben in zadosten pogoj, ki smo ga uporabili že za primer poti velja tudi za cikle. Pri ciklu moramo opazovati dodatno povezavo med v_1 in v_n . Kot je razvidno iz slike 5 moramo ločit primere glede na vrednost $n \pmod{4}$. Ugotovimo, da za pravilno utežitev cikla C_n potrebujemo največ 3 uteži, torej $\chi^e_{\Sigma}(C_n) \leq 3$. Pokažimo sedaj, da je ta meja tudi natančna za $n \neq 4k$. Recimo torej nasprotno, da je $\chi^e_{\Sigma}(C_n) = 2$ in naj bo ω utežitev, ki zadošča temu pogoju. Potem iz $c_{\omega}(v_i) \neq c_{\omega}(v_{i+1})$ sledi $\omega(v_i v_{i+1}) \neq \omega(v_{i+2} v_{i+3})$. To je pogoj, da se uteži na razdalji 2 razlikujejo. Ampak to pomeni, ker imamo na voljo samo uteži 1 in 2, da mora veljati $\omega(v_i v_{i+1}) = \omega(v_{i+4} v_{i+5})$. To pa je protislovje v primeru ko $n \neq 4k$.

Nahitro ocenimo še parameter $s(C_n)$. V tem primeru prav tako vzamemo idejo, ki smo jo dobili pri uteževanju poti. Zopet začnemo nekje na sredini in v tem primeru poizkušamo dosečti, da se uteži na vozliščih nahajajo na intervalu [2, n+1]. Podobno kot pri poti je potrebno biti pazljiv pri robnih primerih vendar zagotovo velja enaka ocena in sicer $s(G) \geq \lceil \frac{n}{2} \rceil$.

Do sedaj smo obravnavali grafe s precej nizkimi stopnjami vozlišč. Na podlagi tega bi lahko sklepali, da je v tem primeru enostavno računati parameter χ_{Σ}^{e} , saj je malo možnih konflikov med vozlišči. Vendar poleg manjšega števila sosedov imajo

Slika 5: Primer utežitve cikla C_n glede na različne vrednosti n. Uteži, obarvano rdeče so potrebni popravki popravki utežitve ω , da dobimo pravilno barvanje cikla.

(a) Primer n=4k. Zadoščata 2 uteži

(b) Primer n = 4k + 1. Potrebno je dodati utež 3 na zadnjo povezavo.

(c) Primer n = 4k + 2.

(d) Primer n = 4k + 3. Poleg zadnje povezave moramo popraviti še predzadnjo.

vozlišča seveda tudi manjše število incidenčnih povezav in s tem manj svobode kakšne vrednosti lahko zasedejo. Sedaj si bomo ogledali iskanje primerne utežitve na polnih grafih K_n .

Trditev 3.4 (Domneva 1-2-3 za K_n ; Chang et al. [5]).

Naj bo K_n polni graf na vsaj treh vozliščih. Tedaj velja $\chi^e_{\Sigma}(K_n) = 3$.

Dokaz. Poglejmo najprej zakaj velja $\chi_{\Sigma}^{e}(K_n) \geq 3$. Recimo, da to ne drži. Torej imamo neko 2-utežitev ω za K_n iz česar sledi, da je $c_{\omega}(v_i) \neq c_{\omega}(v_j)$ za vsak $i \neq j$. To pomeni, da mora vsak $c_{\omega}(v_i)$ za $i = 1, 2, \ldots, n$ pripadati eni izmed n različnih vrednosti v množici $\{n - 1, n, \ldots, 2(n - 1)\}$. Tako lahko najdemo vozlišče v' za katerega $c_{\omega}(v') = n - 1$ in vozlišče u' za katerega $c_{\omega}(u') = 2(n - 1)$, to pa je protislovje saj $\omega(v'u') = 1$ zaradi vozlišča v' in $\omega(v'u') = 2$ zaradi u'.

Pozkusimo sedaj najti 3-utežitev ω , ki je pravilno barvanje z utežmi. Sedaj imamo za $c_{\omega}(v_i)$ na voljo eno izmed 3n vrednosti izmed $\{n-1,n,\ldots,3(n-1)\}$. Skonstruirali bomo utežitev ω na naslednji način. Najprej oštevilčimo vozlišča kot v_1,v_2,\ldots,v_n . V prvem koraku nastavimo vse uteži na 1. Uteži z vrednostjo 2 in 3 dodelimo povezavam, tako da dobimo strogo naraščajoče zaporedje $(c_{\omega}(v_i))_{i\in[n]}$. Označimo še $N_j=\{n,n-1,\ldots,n-j+1\}\setminus\{j\}$ in nastavimo

$$\omega(v_1v_i) = 2 \text{ za } i \in N_1$$

$$\omega(v_2v_i) = 2 \text{ za } i \in N_2$$

$$\vdots$$

$$\omega(v_nv_i) = 2 \text{ za } i \in N_n.$$

Sedaj velja

$$c_{\omega}(v_i) = \underbrace{n-1}_{\text{Ute\Breve{zi}\ z\ vr.}\ 1} + \underbrace{|N_i|}_{\text{Ute\Breve{zi}\ z\ vr.}\ 2} = n-1 + \begin{cases} i, & \text{\'ee}\ i \notin N_i \iff i < n-i+1; \\ i-1, & \text{\'ee}\ i \in N_i \iff i \geq n-i+1. \end{cases}$$

Iz zgornje enačbe vidimo, da zaporedje strogo narašča do največjega i, za katerega velja i < n - i + 1. To pa je natanko tedaj, ko $i = \lfloor \frac{n}{2} \rfloor$. Takrat velja

$$|N_i| = |N_{i+1}| \implies c_{\omega}(v_i) = c_{\omega}(v_{i+1}).$$

Te enakosti se znebimo, tako da dodamo uteži $\omega(v_i v_n) = 3$ za $\lfloor \frac{n}{2} \rfloor < i < n$ in dobimo

$$c_{\omega}(v_i) = \begin{cases} n+1+i, & \text{\'e } i < n; \\ \lfloor \frac{5n-5}{2} \rfloor, & \text{\'e } i = n. \end{cases}$$

To pa je pravilno barvanje K_n in zato $\chi_{\Sigma}^e(K_n) = 3$.

Ker je graf poln mora seveda vsako vozlišče imeti svojo barvo. To pomeni, da v primeru polnih grafov velja s $(K_n) = \chi^e_{\Sigma}(K_n) = 3$.

3.2 Dvodelni in 3-obarvljivi grafi

V prejšnjem razdelku smo obravnavali grafe, ki imajo podobno strukturo. Sedaj se bomo osredotočili na grafe, z nizkim kromatičnim številom. Najnižje možno kromatično število je 2 zato bomo najprej obravnavali dvodelne grafe. Medtem ko bomo domnevo dokazali za splošne dvodelne grafe bomo v nekaterih posebnih primerih to mejo še izboljšali.

Dvodelne grafe označimo kot G = (A, B, E), kjer sta A in B biparticija vozlišč. Obravnavajmo najprej polne dvodelne grafe $K_{m,n}$ z biparticijo (A, B).

Trditev 3.5. Za polni dvodelni graf $K_{m,n}$ velja

$$\chi_{\Sigma}^{e}(K_{m,n}) = \begin{cases} 1, & m \neq n; \\ 2, & sicer; \end{cases}$$

Dokaz. Enostavni primer je, ko velja $m \neq n$. V tem primeru lahko vse povezave utežimo z 1 in dobimo pravilno barvanje, kar pomeni $\chi^e_{\Sigma}(K_{m,n}) = 1$. Če je m = n oštevilčimo vozlišča v A kot v_1, v_2, \ldots, v_n in vozlišča v B kot u_1, u_2, \ldots, u_n . Sedaj definiramo utežitev kot

$$\omega(v_i u_j) = \begin{cases} 1, & \text{\'e } i \le n - 1; \\ 2, & \text{\'e } i = n. \end{cases}$$

Zgornja utežitev poskrbi, da imajo vozlišča u_i vrednost $c_{\omega}(u_i) = n+1$ vozlišča v_i pa $c_{\omega}(v_i) = n$ z izjemo $c_{\omega}(v_n) = 2n$. To je torej pravilno barvanje in $\chi_{\Sigma}^e(K_{n,n}) = 2$. \square

Sedaj bomo obravnavali še nekaj bolj splošnih dvodelnih grafov.

Trditev 3.6 (Chang et al. [5]). Naj bo G = (A, B, E) dvodelen graf. Če je |A| ali |B| sodo, potem $\chi_{\Sigma}^{e}(G) \leq 2$.

Dokaz. Brez škode za splošnost bomo predpostavili |A| sodo. Trditev bomo dokazali, tako da bomo skonstruirali 2-utežitev ω za katero bo veljalo, da je $c_{\omega}(u)$ sodo za $u \in A$ in liho za $u \in B$. S tem bo trditev dokazana. Označimo vozlišča v množici A kot a_1, a_2, \ldots, a_{2r} in naj bo P_i pot od a_i do a_{i+r} . Take poti obstajajo za vsak $i=1,2,\ldots,r$ saj je graf povezan. Utežitev ω konstruiramo, tako da začnemo z $\omega(e)=0$ za vsako povezavo e. Vsakič ko neka pot P_i vsebuje povezavo e utež na tej povezavi povečamo za 1. Barvanje c_{ω} , ki ga inducira utežitev ω ima naslednjo lastnost:

- $c_{\omega}(u) \equiv 1 \pmod{2}$ za $u \in A$,
- $c_{\omega}(u) \equiv 0 \pmod{2}$ za $u \in B$.

To izhaja iz dejstava, da se vsaka pot P_i začne in konča v množici A in s tem za vsako vozlišče $u \in B$, ki se nahaja na poti, poveča vrednost $c_{\omega}(u)$ za 2. Seveda enako velja za vmesna vozlišča $u \in A$ medtem ko začetnemu in končnemu vozlišču poveča vrednost barvanja le za 1. Ker smo poti P_i definirali na tak način, da je vsako vozlišče v A natanko enkrat začetek ali konec neke poti sledi zgornja lastnost. Sedaj uteži na povezavah zreduciramo (mod 2), kar še vedno ohranja zgornjo lastnost.

Tako dobljena utežitev še vedno inducira pravilno barvanje in uporablja uteži z vrednostmi v $\{0,1\}$. Preprosto spremenimo uteži z vrednostjo 0 v 2 in dobimo ustrezno 2-utežitev grafa G.

Posledica 3.7 (Chang et al. [5]). Za dvodelen graf G = (A, B, E) z $\delta(G) = 1$ velja $\chi_{\Sigma}^{e}(G) \leq 2$.

Dokaz. Po trditvi 3.6 lahko predpostavimo, da sta tako |A| in |B| lihi. Brez škode za splošnost predpostavimo, da d(x) = 1 za nek $x \in A$. Ker je graf povezan obstaja povezava $xy \in E$ do nekega vozlišča $y \in B$. Dodatno velja, da je d(y) > 1, saj je graf povezan. Potem za graf G - x velja, da je povezan dvodelen graf za katerega je $|A - \{x\}|$ sodo. Po prejšnji trditvi za ta graf obstaja 2-utežitev ω' , ki inducira pravilno barvanje. Sedaj utežimo povezavo xy z 2 in dobimo ustrezno utežitev ω , saj velja $c_{\omega}(x) = 2$ in $c_{\omega}(y) > 2$ ter še vedno sodo.

Kot smo že omenili so vsa drevesa dvodelni grafi, kjer imajo vsi listi stopnjo ena. Na podlagi tega dejstva sledi naslednja posledica.

Posledica 3.8. Za drevo T z vsaj tremi vozlišči velja $\chi_{\Sigma}^{e}(T) \leq 2$.

Zgornja posledica izhaja iz dejstva, da ima vsako drevo vsaj 1 list ter posledično vozlišče s stopnjo 1. Sedaj si bomo ogledali še eno trditev, ki nam bo omogočala izračuna $\chi_{\Sigma}^{e}(G)$ za dvodelne regularne grafe.

Izrek 3.9 (Chang et al. [5]). Naj bo G = (A, B, E) dvodelen graf. Če za vsako povezavo u $v \in E$ velja $\left| \frac{d(u)}{2} \right| + 1 \neq d(v)$ potem $\chi_{\Sigma}^{e}(G) \leq 2$.

Preden se lotimo dokaza zgornjega izreka bomo pokazali pomožno trditev, ki velja za splošne dvodelne povezane grafe.

Trditev 3.10 (Chang et al. [5]). V grafu G = (A, B, E) obstaja vozlišče x, tako da so vozlišča $A \setminus N[x]$ vsa v isti povezani komponenti grafa G - N[x].

Dokaz trditve 3.10. brez škode za splošnst predpostavimo $x \in B$. Izberimo vozlišče $x \in B$, tako da maksimalna komponenta v G - N[x] postane čim večja ter jo označimo kot $G_1 = (A_1, B_1, E_1)$. Sedaj za protislovje predpostavimo, da ima graf G - N[x] še eno povezano komponento $G_2 = (A_2, B_2, E_2)$, kjer je množica A_2 neprazna. Ker je začeten graf G povezan obstaja povezava med N(x) in B_1 . Izberimo si sedaj poljuben $x' \in A_2$ in opazujmo graf G - N[x']. Opazimo, da sta G_1 in N[x] v isti povezani komponenti katere velikost je strogo večja od velikosti G_1 , kar pa je v protislovju z izbiro vozlišča x.

Dokaz izreka 3.9. Po trditvi 3.6 predpostavimo, da sta tako |A| kot |B| lihi. Po trditvi 3.10 lahko sklepamo, da ima graf G - N[x] komponento $G_1 = (A_1, B_1, E_1)$, kjer je $A_1 = A \setminus N(x)$, vse ostale komponente pa so izolirana vozlišča v B. Sedaj obravnavajmo dva primera.

Če je d(x) liho je potem $|A_1|$ sodo. Po trditvi 3.6 ima graf G_1 2-utežitev ω' z lastnostjo $c_{\omega'}(u)$ je liho za $u \in A_1$ in $c_{\omega'}(u)$ je sodo za $v \in B_1$. Sedaj ω' razširimo do ω , tako da utežimo povezave incidenčne x z 1 ter z 2 vse ostale povezave. Za ω velja $c_{\omega}(u)$ je liho za $u \in A$ in $c_{\omega}(v)$ je sodo za $B \setminus \{x\}$. Prav tako velja $c_{\omega}(x) = d(x)$ in

 $c_{\omega}(u) = 2d(u) - 1$ za $u \in N(x)$. Po predpostavki izreka tako velja tudi $c_{\omega}(x) \neq c_{\omega}(u)$ za $u \in N(x)$. Tako je ω 2-utežitev, ki je pravilno barvanje z utežmi.

V koliko je d(x) sodo je $|A_1|$ liho. Ker je graf G povezan obstaja vozlišče $u^* \in N(x)$, ki je soseden $v^* \in B_1$. Označimo sedaj graf G', kot graf, ki ga dobimo iz G_1 , tako da dodamo povezavo u^*v^* . V tem primeru lahko za $G' = (A_1 \cup \{u^*\}, B_1, E_1 \cup \{u^*v^*\})$ uporabimo trditev 3.6, ter dobimo 2-utežitev ω' z že znano lastnostjo. Sedaj ω' razširimo v ω , tako da utežimo povezave incidenčne x, razen xu^* z 1, ter vse ostale povezave z 2. Sedaj velja $c_{\omega}(x) = d(x) + 1$ in $c_{\omega}(u) = 2d(u) - 1$ za vse $u \in N(x) \setminus \{u^*\}$. Po predpostavki izreka tako zopet velja $c_{\omega}(x) \neq c_{\omega}(u)$ ter je ω 2-utežitev, ki je pravilno barvanje z utežmi. S tem je izrek dokazan.

Posledica 3.11. Za vsak dvodelen d-regularen graf G z $d \geq 3$ velja $\chi_{\Sigma}^{e}(G) = 2$.

Za regularne grafe predpostavka izreka 3.9 avtomatsko velja, izjema so le 2-regularni grafi oziroma cikli. Preprost proti primer je C_6 , ki je dvodelen ter 2-regularen graf vendar velja $\chi^e_{\Sigma}(C_6) = 3$. Zato je pogoj $d \geq 3$ v posledici nujno potreben.

Kot smo ugotovili lahko nekatere dvodelne grafe utežimo le z utežema 1 in 2 vendar to ne velja za vse dvodelne grafe. Zato karakterizacija dvodelnih grafov G za katere velja $\chi_{\Sigma}^{e}(G) \leq 2$ ostaja odprt problem. Nadaljujemo z obravnavanjem 3-obarvljivih grafov. V članku Karoński et al. [11] sta avtorja zastavila vprašanje, ki je nato pripeljalo do domneve 1-2-3 in ga v njem tudi dokazala za primer 3-obarvljivih grafov. Glavna ideja, zakaj domneva velja za 3-obarvljive grafe je v tem, da v tem primeru uteži lahko gledamo po modulu 3. To je res, saj v primeru ko imamo neko utežitev s poljubnimi utežmi, ki inducira pravilno 3-barvanje, lahko vse uteži reduciramo po modulu 3 in še vedno ohranimo pravilno 3-barvanje. Izrek, ki ga bomo dokazali v tem delu bo malenkost močnejši. Pri tem bo ena izmed njegovih posledic dokaz domneve 1-2-3 v primeru 3-obarvljivih grafov. Za množico uteži bomo dovolili poljubno Abelovo grupo Γ. V ta namen bomo dokazali nekaj lastnosti Abelovih grup, ki jih bomo kasneje uporabili v dokazu glavnega izreka.

Trditev 3.12. Naj bo Γ Abelova grupa $z |\Gamma| = n$ in naj 0 označuje enoto. Tedaj za $vsak \ g \in \Gamma$ velja ng = 0.

Dokaz. Vzemimo poljuben $g \in \Gamma$ in definirajmo preslikavo $f_g : \Gamma \to \Gamma$ kot

$$f_a(h) = g + h.$$

Ta preslikava je bijekcija saj je f_{-g} njen inverz. Iz tega sklepamo, da je $g + \Gamma = \Gamma$ za vsak g. Sedaj vidimo, da $\sum_{h \in \Gamma} h = \sum_{h \in \Gamma} (g + h) = ng + \sum_{h \in \Gamma} h$. Iz tega sledi ng = 0.

Trditev 3.13. Naj bo sedaj Γ Abelova grupa lihega reda $|\Gamma| = n$. Tedaj za vsak element $g \in \Gamma$ obstaja $h \in \Gamma$, tako da g = 2h.

Dokaz. Ker je Γ Abelova grupa po prejšnji trditvi vemo, da 0=ng. Prištejemo g na obeh straneh in dobimo g=(n+1)g. Sedaj označimo $h=\frac{n+1}{2}g$ in očitno velja g=2h.

Podobno ne velja za Abelove grupe sodega reda. To preprosto vidimo na primeru ciklične grupe $\mathbb{Z}_4 = \{0, 1, 2, 3\}$, kjer elementa 3 ne moremo zapisat na tak način.

Izrek 3.14 (Karoński et al. [11]). Naj bo Γ Abelova grupa lihega reda in G netrivialen $|\Gamma|$ -obarvljiv graf. Potem obstaja utežitev ω z elementi iz Γ , tako da je inducirano barvanje c_{ω} pravilno.

Dokaz. Označimo $\Gamma = \{g_1, g_2, \dots, g_k\}$. Naj bo c neko barvanje grafa G z največ kbarvami in označimo z $n_i \geq 0$ število vozlišč
 barve i za $1 \leq i \leq k.$ Po zadnji trditvi vemo, da obstaja $h \in \Gamma$, tako da $n_1g_1 + n_2g_2 + \cdots + n_kg_k = 2h$. Sedaj na poljubno povezavo grafa dodamo utež h. Na vse preostale povezave damo utež 0. Tako je vsota vseh uteži na vozliščih enaka 2h. V nadaljevanju bomo spremenili utežitev, tako da ohranjamo skupno utežitev vozlišč konstantno (=2h), dokler vsa vozlišča barve i nimajo uteži q_i . Recimo torej, da obstaja vozlišče u barve i, ki ima napačno utež g in velja $g \neq g_i$. Ker je vsota uteži na vozliščih ves čas konstantna in $n_1g_1 + n_2g_2 + \cdots + n_kg_k = 2h$ obstaja vsaj še eno drugo vozlišče v z napačno utežitvijo. Sedaj najprej obravnavajmo primer, ko G ni dvodelen graf. V tem primeru lahko najdemo sprehod lihe dolžine med u in v. Potujemo po sprehodu od u do v in utežem na povezavah zaporedoma prištevamo $g_i - g, g - g_i, \ldots, g_i - g$, tako kot je prikazano na sliki 6. Tak popravek utežitve ohranja skupno utežitev vozlišč ter spremeni le uteži za u in v. Po končanem postopku ima vozlišče u sedaj utež q_i , kar je željen rezultat. Ta postopek ponavljamo, dokler nimajo vsa vozlišča pravilne utežitve. Sprehod lihe dolžine je nujno potreben, če želimo ohraniti skupno utežitev vozlišč.

Slika 6: Popravljanje utežitve z liho potjo.

Oglejmo si sedaj še primer, ko je grafG dvodelen. V primeru nedvodelnega grafa smo vsakemu vozlišču barve i dodelili utež g_i . Kljub temu, da je dvodelne grafe lahko

pobarvamo z dvema barvama le tega ne moremo vedno storiti z utežitvijo povezav z elementi Γ. To bi pomenilo $n_1g_1 = n_2g_2$, kjer n_1g_1 predstavlja skupno utež vozlišč ene barve in n_2g_2 skupno utež druge barve. Seveda mora enakost držati, saj vsaka povezava pripomore isti delež tako prvi kot drugi vsoti. Ta enačba pa ni vedno rešljiva za $g_1 \neq g_2$. Zato v tem primeru postopamo malo drugače. Ker je graf dvodelen, lahko zapišemo njegovo množico vozlišč kot $V(G) = A \cup B$, kjer sta A in B biparticija. Sedaj si izberemo vozlišče $x \in A$, ki ima stopnjo vsaj 2. Zaradi predpostavke lahko to vedno naredimo. Sedaj izberemo $g_1 = 2h$ in $g_1 \neq g_2 = 0$ ter na vse povezave damo utež 0 oziroma g_2 . Sedaj na enak način popravljamo utežitev, tako da ohranjamo skupno utež 0 (oz. g_2). V tem primeru smo že dosegli, da imajo vsa vozlišča iz B utež 0. Popraviti moramo torej le uteži za vozlišča v množici A. To storimo, tako da za vsako vozlišče $u \neq x \in A$, ki ima utež 0 najdemo pot sode dolžine od u do x. Na poti popravljamo povezave, tako da jim priševamo uteži $g_1 - g_2, g_2 - g_1, \dots, g_2 - g_1$. S tem poskrbimo, da je vozlišče u pravilno uteženo. Ko končamo postopek imajo vsa vozlišča v A utež g_1 razen vozlišče x, ki ima utež $g=-(n_1-1)g_1=(1-n_1)g_1$. Če velja $(1-n_1)g_1\neq 0$ smo končali, saj smo konstruirali pravilno barvanje. V nasprotnem primeru na dve poljubni povezavi incidenčni x dodamo utež h. S tem poskrbimo, da imajo vsa vozlišča v A utež q_1 , vozlišča v B pa uteži $g_2 = 0$ in h.

Iz zgornjega izreka torej sledi, da domneva velja za 3-obraljive grafe. Preprosto za take grafe uporabimo ciklično grupo $\mathbb{Z}_3 = \{0, 1, 2\}$. Nato vse uteži z vrednostjo 0 zamenjamo z utežjo 3. S tem še vedno ohranimo pravilno barvanje. Iz utežitve povezav smo na naraven način prišli do barvanja na grafu. Vprašanje je bilo potem ali je to barvanje pravilno. Zgornji izrek pove nekako obratno. Torej, če imamo neko k-barvanje in je k liho število potem lahko eksplicitno konstruiramo utežitev z k elementi, ki porodi tako barvanje. Velja torej

$$\chi_{\Sigma}^{e}(G) \leq \chi(G) + \begin{cases} 1, & \text{\'e } \chi(G) \text{ sodo;} \\ 0, & \text{\'e } \chi(G) \text{ liho.} \end{cases}$$

V tem razdelku smo izračunali parameter $\chi_{\Sigma}^{e}(G)$ za nekaj posebnih družin grafov ter za grafe z nekaj dodatnimi pogoji. V vseh primerih smo domnevo 1-2-3 potrdili v posebnih primerih smo lahko zgornjo mejo še celo malo izboljšali. Rezultate tega razdelka lahko predstavimo z tabelo 1.

3.3 Konstrukcija grafov G z nizkim parametrom $\chi^e_\Sigma(G)$

Spoznali smo že kar nekaj grafov z nizko vrednostjo parametra χ^e_{Σ} . Z nizko vrednostjo imamo v mislih seveda čim nižjo zgornjo mejo. Sedaj si bomo ogledali kako lahko neko "dobro" utežitev razširimo na večji graf. V ta namen najprej ponovimo definicijo kartezičnega produkta dveh grafov. Naj bosta G = (V, E) in G' = (V', E') grafa. **Kartezični produkt** grafov G in G' je graf, ki ga označimo z $G \square G'$. Množica vozlišč grafa $G \square G'$ je enaka kartezičnemu produktu $V(G) \times V(G')$ iz česar tudi sledi ime za ta produkt. Dve vozlišči (u, u') in (v, v') sta sosednji v $G \square G'$ natanko tedaj ko u = v in $u'v' \in E(G')$, ali u' = v' in $uv \in E(G)$. Vozlišče (u, u') v kartezičnem produktu ima po zgornji definiciji toliko incidenčnih povezav kot jih ima u

Tabela 1:	Izračun	$\chi^e_{\Sigma}(G)$	za znane družine g	grafov.
		/ / / / / /)

$\operatorname{Graf} G$	$\chi^e_\Sigma(G)$
P_n	2
C_n	$\begin{cases} 2, & \text{\'e } n \equiv 0 \pmod{4}; \\ 3, & \text{sicer}; \end{cases}$
K_n	3
$K_{m,n}$	$\begin{cases} 1, & \text{\'e } m \neq n; \\ 2, & \text{sicer}; \end{cases}$
3-obarvljivi	3
T_n	2
dvodelni d -regularni z $d \geq 3$	2

v grafu G plus toliko kot u' v grafu G'. Velja torej $d_{G \square G'}((u, u')) = d_G(u) + d_{G'}(u')$. Podobno se lahko pokaže za veliko različnih grafovskih invariant. Bralec lahko več rezultatov najde v [7].

Trditev 3.15. Za vsaka grafa G in H velja $\chi_{\Sigma}^{e}(G \square H) \leq \max\{\chi_{\Sigma}^{e}(g), \chi_{\Sigma}^{e}(H)\}.$

Dokaz. Trditev bomo dokazali, tako da bomo konstruirali utežitev kartezičnega produkta $G \square H$. Naj bo $k = \max\{\chi_{\Sigma}^e(g), \chi_{\Sigma}^e(H)\}$. Tedaj obstajata utežitvi $\omega_1 : E(G) \to \{1, \ldots, k\}$ in $\omega_2 : E(H) \to \{1, \ldots, k\}$, ki porodita pravilno barvanje za grafa G in H. Sedaj sestavimo utežitev $\omega : E(G \square H) \to \{1, \ldots, k\}$, tako da definiramo

$$\omega((u, u'), (v, v')) = \begin{cases} \omega_1(uv), & \text{\'e } u' = v'; \\ \omega_2(u'v'), & \text{\'e } u = v. \end{cases}$$

Poglejmo sedaj kakšno barvanje porodi zgornja utežitev. Podobno kot pri stopnjah vozlišč v kartezičnem produktu grafov velja $c_{\omega}((u,u')) = c_{\omega_1}(u) + c_{\omega_2}(u')$. Pokazati moramo, da imata vozlišči na vsaki povezavi kartezičnega produkta različne barve. Ampak povezava v kartezičnem produktu obstaja le ko se vozlišči ujemata vsaj na eni koordinati. Če se ujemata na prvi koordinati trditev sledi, ker ω_2 inducira pravilno barvanje. Če se ujemata na drugi koordinati trditev sledi, ker ω_1 inducira pravilno barvanje.

Na podlagi zgornje trditve lahko, iz grafov za katere smo domnevo 1-2-3 že dokazali, konstruiramo nove grafe za katere domneva tudi velja. Oglejmo si nekaj primerov.

Primer 3.16. Hiperkocka Q_n je graf z 2^n vozlišči dobljen kot kartezični produkt n kopij grafa K_2 . Na sliki 7 vidimo nekaj manjših hiperkock. Primer $Q_1 = K_2$ izpustimo saj v tem primeru rešitev ne obstaja. Za ostale primere iz slike 7 ročno preverimo $\chi_{\Sigma}^e(Q_2) = \chi_{\Sigma}^e(Q_3) \leq 2$. Nato za vsak n > 3 zapišemo hiperkocko kot

$$Q_n = Q_{\lfloor n/2 \rfloor} \, \Box \, Q_{\lceil n/2 \rceil}.$$

To lahko naredimo saj je operacija kartezičnega produkta asociativna. Ker n>3 je tako dimenzija obeh hiperkock na desni strani zgornje enakosti vsaj 2. Z uporabo indukcije nato dokažemo $\chi_{\Sigma}^{e}(Q_{n})=2$ za $n\geq 2$. Izračuna $\chi_{\Sigma}^{e}(Q_{n})$ bi se lahko

Slika 7: Hiperkocke Q_n za n = 1, 2, 3.

lotili tudi na drug način in sicer z orodjem, ki smo ga do sedaj že uporabili. Namreč za hiperkocko velja, da je dvodelen graf. To lahko pokažemo na več načinov. Eden izmed njih je indukcija na n, kjer zapišemo $Q_n = Q_{n-1} \square K_2$ ter induktivno uporabimo 2-barvanje Q_{n-1} . V kartezičnem produktu za posamezni kopiji Q_{n-1} uporabimo ravno obratno barvanje. Poleg tega je hiperkocka Q_n tudi n-regularen graf, kar zopet lahko preverimo z indukcijo. Sedaj lahko uporabimo posledico 3.11 in direktno dobimo $\chi_{\Sigma}^{e}(Q_n) = 2$.

Na podoben način lahko generiramo tudi t.i. torus mreže. **Torus mrežo** označimo z $T_{m,n} = C_m \square C_n$. Direktna posledica zgornje trditve je torej $\chi^e_{\Sigma}(T_{m,n}) \leq 3$, če $n,m \geq 3$. Torus mreža $T_{m,n}$ si lahko predstavljamo kot $m \times n$ mrežo kjer povežemo sosednje točke ter prav tako povežemo levi in desni rob ter zgornji in spodnji rob. Tako dobimo 4-regularen graf z mn vozlišči. Vendar so torus mreže le poseben primer 4-regularnih grafov. Vseh neizomorfnih 4-regularnih grafov na nm vozliščih je namreč ogromno.

4 Izrek 1-2-3-4-5

Do sedaj smo domnevo 1-2-3 potrdili za grafe s posebnimi lastnostmi. Pri iskanju oziroma konstrukciji ustrezne utežitve grafa so ključno vlogo igrale prav te posebne lastnostni. Kot smo že omenili je bilo od leta 2004 ko je bila zastavljena domneva veliko poizkusov iskanja zgornje meje za parameter $\chi^e_{\Sigma}(G)$. V tem kratkem času je bilo narejeno veliko napredka. Različni avtorji so predstavili različne metode in pristope k problemu. Do danes so najboljšo zgornjo mejo predstavili Kalkowski et al. [9]. Presenetljivo je dokaz sorazmerno preprost in algoritmične narave. V tem razdelku bomo to zgornjo mejo dokazali in analizirali časovno zahtevnost algoritma, ki najde ustrezno utežitev. Dobljen rezultat lahko formuliramo kot naslednji izrek.

Izrek 4.1 (Izrek 1-2-3-4-5; Kalkowski et al. [9]). Za vsak enostaven graf G, ki ni K_2 velja $\chi_{\Sigma}^{e}(G) \leq 5$.

Dokaz. Ker je graf povezan in ima vsaj 3 vozlišča vsebuje vsaj eno vozlišče s stopnjo ≥ 2 . Sedaj uredimo vozlišča kot $V(G) = \{v_1, v_2, \ldots, v_n\}$, tako da je $d(v_n) \geq 2$ in ima vozlišče v_i soseda v množici $\{v_{i+1}, v_{i+2}, \ldots, v_n\}$ za vsak $i \leq n-1$. Tako ureditev vozlišč lahko najdemo na preprost način. V vozlišču v_n začnemo BFS algoritem ter v seznam zaporedoma dodajamo obiskana vozlišča. Tako dobimo vozlišča urejena

kot $\{v_n, v_{n-1}, \dots, v_1\}$. Za vsak $i \leq n-1$ sedaj res velja, da ima soseda v množici $\{v_{i+1}, v_{i+2}, \dots, v_n\}$, saj se v tej množici nahaja njegov starš v BFS drevesu.

V nadaljevanju dokaza bomo konstruirali 5-utežitev ω , ki bo pravilno obarvala graf G. Začnemo z začetno utežitvijo $\omega(e)=3$ za vsako povezavo e. Vozlišča bomo procesirali v zgornjem vrstnem redu in pri tem vsako utež modificirali največ dvakrat. Za vsak i < n bomo vozlišču v_i dodeli množico dveh barv $C(v_i) = \{c(v_i), c(v_i) + 2\}$. Dodatno zahtevamo, da velja $c(v_i) \in \{0, 1\} \mod 4$. Ti dve barvi bosta dve izmed možnih končnih barv za vozlišče v_i . Ker želimo, da se končna barva razlikuje od končnih barv sosedov zahtevamo, da je presek množic sosednjih vozlišč prazen. To lahko zapišemo bolj natančno, tako da za vsako povezavo nazaj, to je $v_j v_i \in E(G)$ za katero je j < i, velja $C(v_j) \cap C(v_i) = \emptyset$. Poleg tega bomo utežitev ω konstruirali, tako da bo veljalo $c_\omega(v_i) \in C(v_i)$. Skupaj to torej pomeni, da med prvimi n-1 vozlišči ni nobenega konflikta. Z konfliktom mislimo povezavo $uv \in E$ pri kateri imata vozlišči u in v enako utež. V zadnjem koraku bomo popravili uteži na povezavah, ki so incidenčne v_n , tako da bo $c_\omega(v_n)$ različen od njegovih sosedov. S tem bo izrek dokazan.

Začnimo z dodeljevanjem množic barv za vozlišča $C(v_i)$. Začnemo z vozliščem v_1 , kjer trenutno velja $c_{\omega}(v_1)=3d(v_1)$ in izberemo $C(v_1)$, tako da $c_{\omega}(v_1)\in C(v_1)$. To lahko naredimo, ker trenutno še nimamo nobenih posebnih omejitev. Sedaj nadaljujemo induktivno. Naj bo $2\leq k\leq n-1$ in predpostavimo, da smo izbrali $C(v_i)$ za vse i< k ter velja:

- $c_{\omega}(v_i) \in C(v_i)$ za vse i < k,
- $\omega(v_k v_j) = 3$ za vse povezave z j > k,
- če $\omega(v_i v_k) \neq 3$ za neko povezavo z i < k potem $\omega(v_i v_k) = 2$ in $c_{\omega}(v_i) = c(v_i)$ ali $\omega(v_i v_k) = 4$ in $c_{\omega}(v_i) = c(v_i) + 2$.

Sedaj moramo določiti uteži, tako da bo enako veljalo tudi za volzišče v_k . Oglejmo si poljubno povezavo nazaj $v_iv_k \in E$ za nek i < k. Na podlagi zgornjih pogojev lahko uteži na tej povezavi bodisi prištejemo bodisi odštejemo 2, ter še vedno ohranjamo pogoj $c_{\omega}(v_i) \in C(v_i)$. Recimo, da ima v_k d takšnih sosedov. Potem imamo d+1 možnosti za $c_{\omega}(v_k)$, ki so vse iste parnosti (odvisno od parnosti d). Vse različne možnosti dobimo, tako da najprej na vseh povezavah nazaj nastavimo najnižjo možno utež. S tem dobimo najnižjo možno vrednost a za $c_{\omega}(v_k)$. Sedaj na vsaki povezavi nazaj postopoma povečamo utež za 2. Tako dobimo možnosti $a, a+2, \ldots, a+2d$. Dodatno bomo dovoljevali spremembo za 1 na prvi povezavi naprej. To je povezava $v_kv_j \in E$, kjer je j najmanjši tak indeks, da obstaja povezava v_kv_j . S tem lahko $c_{\omega}(v_k)$ zavzame vse vrednosti na intervalu [a-1, a+2d+1]. Različnih vrednosti je torej 2d+3. Uteži sedaj modificiramo, tako da bo veljalo

- 1. $c_{\omega}(v_i) \in C(v_i)$ za vse $i \leq k$,
- 2. $c(v_i) \neq c(v_k)$ za $v_i v_k \in E$, kjer i < k,
- 3. bodisi $c_{\omega}(v_k) = c(v_k)$ in $\omega(v_k v_j) \in \{2, 3\}$ ali $c_{\omega}(v_k) = c(v_k) + 2$ in $\omega(v_k v_j) \in \{3, 4\}$.

Pri tem je pogoj 1 vedno izpolnjen. V primeru, ko $c_{\omega}(v_i) = c(v_i)$ lahko uteži na povezavi $v_i v_k$ prištejemo 2. V nasprotnem primeru ko je $c_{\omega}(v_i) = c(v_i) + 2$ lahko uteži na zgornji povezavi odštejemo 2. Pogoj 2 nam lahko blokira največ 2d vrednosti in pogoj 3 kvačjemu blokira krajišči intervala. Skupno je torej blokiranih največ 2d+2 vrednosti izmed 2d+3. Tako ostane vsaj ena vrednost za $c_{\omega}(v_k)$. Na tak način lahko konstruiramo množice $W(v_k)$ z želenimi lastnostmi za vse k < n.

V zadnjem koraku moramo najti primerno vrednost za $c_{\omega}(v_n)$. V tem primeru nimamo na voljo povezave naprej, ki nam je v prejšnjem primeru pomagala pri določitvi uteži, vendar nam v tem primeru ni potrebno skrbeti za kasnejša vozlišča. Na povezavah v_iv_n za i < n lahko ponovno utež bodisi povečamo bodisi zmanjšamo za 2 in ohranimo $c_{\omega}(v_i) \in C(v_i)$. To nam ponovno da $d(v_n) + 1 \geq 3$ možnosti za $c_{\omega}(v_n)$. V kolikor za najmanjšo izmed teh možnosti a velja $a \in \{2,3\} \mod 4$ potem na vseh povezavah incidenčnih v_n izberemo najnižjo možno utež. S tem bomo poskrbeli, da $c_{\omega}(v_i) = c(v_i) \in \{0,1\} \mod 4$ za $v_i \in N(v_n)$ in tako različna od a. Če $a \in \{0,1\} \mod 4$ in obstaja $v_i \in N(v_n)$ z $c(v_i) \neq a$ potem izberemo višjo utež na povezavi v_iv_n in nižjo utež na vseh ostalih povezavah s čimer dobimo $c_{\omega}(v_n) = a + 2$ kar je tudi pravilno barvanje. Nazadnje, če $a \in \{0,1\} \mod 4$ in $c(v_i) = a$ za vse $v_i \in N(v_n)$ izberemo višjo utež na vsaj dveh povezavah (kar lahko sotrimo, saj je $d(v_n) \geq 2$) in dobimo pravilno barvanje.

Na podlagi zgornjega dokaza lahko napišemo algoritem za iskanje takih utežitev za poljuben graf. Poleg tega, da nam dokaz zagotavlja rešitev za vsak graf je algoritem, ki tako rešitev poišče polinomske časovne zahtevnosti. To res drži, saj moramo za vsako vozlišče pregledati le vse njegove sosede. Ker lahko število sosedov omejimo z n, celoten postopek deluje v časovni zahtevnosti $\mathcal{O}(n^2)$.

4.1 Izrek 1-2-3-4 za d-regularne grafe

V prejšnjem razdelku smo predstavili rezultat za splošne grafe. Kot smo že omenili je to tudi najboljši rezultat do danes, ki ga poznamo za splošne grafe. Prav tako smo opazili, da lahko za nekatere družine grafov rezultat izboljšamo. Ta razdelek bo namenjen d-regularnim grafom. Ugotovili smo že, da za regularne grafe G, ki so tudi dvodelni velja $\chi^e_{\Sigma}(G) \leq 2$. Na podlagi motivacije za domnevo 1-2-3 smo ugotovili, da so morda regularni grafi težki za ta problem saj so zelo "oddaljeni" od pojma iregularni graf. Kljub temu vseeno lahko izkoristimo nekatere lastnosti regularnih grafov in izboljšamo rezultat iz prejšnjega razdelka.

Izrek 4.2 (Izrek 1-2-3-4 za regularne grafe; Przybyło [15]). Za vsak d-regularen graf G velja $\chi_{\Sigma}^{e}(G) \leq 4$

Dokaz. V dokazu bomo uporabili podobno metodo kot pri dokazu izreka 4.1. Izberimo si sedaj neko poljubno maksimalno neodvisno množico $I \subseteq V(G)$. To je taka množica vozlišč kjer ne obstaja niti ena povezava med njenimi elementi ter je izmed vseh možnih takih množic največja po kardinalnosti. Na podlagi množice I definiramo še:

- \bullet $R = V \setminus I$,
- $R_1 \subseteq R$ množica izoliranih vozlišč v G[R],

- $\bullet \ R_2 = R \setminus R_1,$
- G_1, G_2, \ldots, G_p označujejo povezane komponente v $G[R_2]$.

Konstruirali bomo utežitev ω za katero bo na koncu veljalo:

- 1. $c_{\omega}(v) < 3d$ za vsak $v \in R_2$,
- 2. $c_{\omega}(v) \geq 3d$ za vsak $v \in I$,
- 3. $c_{\omega}(v) < 4d$ za vsak $v \in I$, ki ima soseda v R_1 ,
- 4. $c_{\omega}(v) \in \{3d-1, 4d\}$ za vsak $v \in R_1$.

Glede na to, da je I neodvisna množica, R_1 neodvisna množica v G[R] in ni povezav med R_1 in R_2 v G na podlagi zgornjih omejitev možni konflikti obstajajo med sosednjimi vozlišči v R_2 . Zato bomo na to posebno pazili pri konstrukciji utežitve. Za utežitev bomo dodatno zahtevali še:

- $\omega(e) \in \{1, 2, 3\} \text{ za } e \in E(R_2),$
- $\omega(e) \in \{3, 4\} \text{ za } e \in E(I, R_2),$
- $\omega(e) \in \{2, 3, 4\}$ za $e \in E(I, R_1)$.

Preden določimo začetne uteži si bolj podrobno oglejmo strukturo komponent v R_2 . V vsaki izmed komponent G_i bomo uredili vozlišča v_1, v_2, \ldots, v_n na enak način kot pri izreku 4.1. Torej veljati mora, da ima vsako vozlišče v_i za katerega velja i < n soseda naprej, kar pomeni, da ima soseda v_k z k > i. To lahko storimo na enak način s pomočjo BFS algoritma. Dodatno mora vsako vozlišče $v \in R_2$ imeti vsaj enega soseda v I. V nasprotnem primeru bi sicer v lahko premaknili v I in tako dobili večjo neodvisno množico, kar je v protislovju z našo predpostavko. To povezavo bomo imenovali oporna povezava. Začetno utežitev definiramo kot

$$\omega(e) = \begin{cases} 1, & \text{\'e je e prva povezava naprej za neko vozliš\'e v R_2;} \\ 2, & \text{\'e je e povezava v $G[R_2]$, ki ni prva povezava naprej;} \\ 3, & \text{\'e je e inciden\'ena povezava vozliš\'eu v I in ni oporna povezava;} \\ 4, & \text{\'e je e oporna povezava.} \end{cases}$$

S to utežitvijo zadoščamo zgornjim pogojem. Sedaj bomo modificirali uteži na povezavah, tako da bomo odstranili možne konflikte v R_2 . Podobno kot v izreku 4.1 predpostavimo, da trenutno analiziramo komponento G_i ter vozlišče v_j . Pri tem smo že analizirali vse prejšnje komponente in vozlišča. Sedaj želimo določiti uteži, tako da bo utež na v_j različna od uteži na vozliščih $v_1, v_2, \ldots v_{j-1}$. To želimo storiti na tak način, da ne spreminjamo uteži na že analiziranih vozliščih. To bomo izvedli, tako da bomo po potrebi za 1 spremenili utež na povezavi, ki povezuje v_j z njegovim sosedom nazaj v_k ter njunima opornima povezavama. Bolj natančno recimo, da je $e = v_k v_j$ povezava nazaj in pokažimo, da lahko utež na njej spremenimo za 1. Označimo še z e_{v_k} oporno povezavo vozlišča v_k . Oglejmo si najprej primer, ko e ni prva povezava naprej. Potem velja $\omega(e) = 2$ in $\omega(e_{v_k}) \in \{3,4\}$. V kolikor je $\omega(e_{v_k}) = 3$ utež

na povezavi e zmanjšamo za 1 na oporni povezavi pa povečamo za 1. V drugem primeru ko je $\omega(e_{v_k})=4$ storimo ravno obratno. Če je e prva povezava naprej za v_k potem uteži na e in e_{v_k} še nista bili spremenjeni in imata začetno vrednost 1 in 4. Zaporedoma jih lahko spremenimo v 2 in 3. Sedaj uporabimo enak razmislek kot pri prejšnjem izreku. Recimo, da ima vozlišče v_j d povezav nazaj in vsako izmed teh povezav lahko spremenimo za 1. To nam da d+1 možnih vrednosti za $c_{\omega}(v_j)$ in torej lahko izberemo še nezasedeno vrednost, glede na predhodnja vozlišča.

Z zgornjim postopkom smo zagotovili, da ni konfliktov med vozlišči znotraj R_2 . Sedaj moramo pokazati, da je postopek spreminjanja uteži v skladen z pogoji 1, 2 in 3. Opazujmo neko vozlišče $v \in I$. Povezave incidenčne vozlišču v imajo začetno utežitev v množici {3,4}. Po zgornjem postopku lahko utež na povezavi incidenčni v spremenimo samo v primeru, ko je oprona povezava. Ampak vse oporne povezave smo na začetku utežili z 4 in jih v postopku kvečjemu zmanjšamo za 1. To pomeni, da so uteži na povezavah incidenčnih v še vedno v množici $\{3,4\}$. Iz tega sledi pogoj 2. V kolikor ima v nekega soseda v R_1 , je bila začetna utežitev na tej povezavi enaka 3 in ni bila spremenjena v zgornjem postopku. Zato torej velja tudi pogoj 3. Pokažimo, da velja tudi pogoj 1. Opazimo najprej, da utež na vsaki povezavi e grafa $G[R_2]$ spremenimo največ enkrat in sicer takrat, ko analizirano vozlišče z enim izmed njegovih sosedov nazaj. Za vsako vozlišče $v \in R_2$, ki ni zadnje vozlišče neke komponente velja, da ima njegova prva povezava naprej utež 1. Dodatno imajo vse ostale povezave, ki so incidenčne v, utež največ 3. Edina izjema je oporna povezava e_v , ki ima utež 4. Iz tega sledi, da je $c_{\omega}(v) \leq 3d-1$ ter se ne spreminja ko analiziramo kasnejša vozlišča. Sedaj pokažimo, da enako velja tudi v primeru ko je v zadnje vozlišče neke komponente v $G[R_2]$. To preprosto sledi iz dejstva, da zadnja vozlišča nimajo opornih povezav, kar pomeni da imajo vse povezave incidenčne vutež manjšo ali enako 3. Poleg tega je povezava uv, kjer je u predzadnje vozlišče v zgornji ureditvi prva povezava naprej vozlišča u in je po že uporabljenem premisleku utežena z največ 2. Iz tega torej sledi pogoj 1. Sedaj smo odpravili konflikte v R_2 in poskrbeli, da so uteži še vedno konsistentne z začetnimi zahtevami. To nam zagotavlja, da je $c_{\omega}(v) \neq c_{\omega}(u)$ za vsako povezavo $uv \in E(I \cup R_2)$. Poskrbimo sedaj še za možne konflikte med I in R_1 , tako da bo veljal pogoj 4. Ker je vozlišče $v \in R_1$ incidenčno le z vozlišči v I so vse povezave incidenčne v utežene z 3. Sedaj za vsako vozlišče $v \in R_1$ postopamo na naslednji način. Ce je $c_{\omega}(u') \geq 3d+1$ za nekega soseda u' vozlišča v, spremenimo utež iz 3 na 2 na natanko eni izmed povezav. V nasprotnem primeru, ko je $c_{\omega}(u) = 3d$ za vsako vozlišče $u \in N(v)$ spremenimo utež iz 3 na 4 na vsaki povezavi uv. Na tak način ohranimo vse pogoje 1-3 ter, ko obdelamo vsa vozlišča v R_1 , velja tudi pogoj 4. S tem smo našli ustrezno 4-utežitev.

Za konec tega razdelka komentirajmo dobljene rezultate. Kot smo že omenili sta oba izreka algoritmične narave in tudi uporabljata podobne ideje. Glavna ideja v obeh primerih je neka začetna utežitev ter nato procesiranje vozlišč v primernem vrstnem redu. Pri tem smo morali biti pazljivi, da ohranjamo določene lastnosti pri že procesiranih vozliščih, kar nam omogoča dodatna povezava iz vozlišča, ki ga trenutno procesiramo. Zadnje vozlišče smo v obeh primerih morali obravnavati malo drugače. Oba izreka podajata zelo dobro mejo, ki se precej približa zastavljeni domnevi. Vendar nažalost s podobno idejo težko dosežemo še boljše rezultate. Pri izreku 4.1 tako nujno potrebujemo 5 različnih uteži. Podobno kot pri izreku 4.1

lahko tudi v tem primeru zapišemo algoritem, ki bi poiskal ustrezno 4-utežitev za regularni graf. Vendar v tem primeru ne moremo napisati polinomskega algoritma. Problem je v tem, da moramo poiskati največjo neodvisno množico, ki pa je NP poln problem. Na podlagi tega torej še ne vemo, ali za tak problem obstaja polinomski algoritem. Še več splošno prepričanje je, da tak algoritem ne obstaja. Že iz samega dokaza smo opazli, da je malenkost bolj zahteven kot dokaz izreka 4.1. Množico vozlišč grafa smo morali razdeliti v različne množice in obravnavati več primerov. To nam je sicer omogočilo, da smo lahko uporabili eno utež manj.

5 Verjetnostne metode

Rezultati, ki smo jih obravnavali do sedaj, so nam eksplicitno podali neko utežitev, ki je zadoščla zahtevanim pogojem. Najboljši rezultat za splošne grafe je izrek 4.1, ki konstruira 5-utežitev. Ugotovili smo tudi, da lahko v primeru regularnih grafov rezultat v splošnem še malo izboljšamo. V tem razdelku bomo problem obravnavali malenkost drugače. Prav tako bomo poizkusili konstruirati primerno utežitev vendar tokrat ta utežitev morda ne bo delovala za vse grafe. V tem primeru bo dovolj, da je rešitev "dobra" za večino grafov. Trenutno še ni jasno kaj pomeni izraz "dobra" rešitev za večino grafov. To zahtevo si lahko intuitivno predstavljamo na naslednji način. Izberimo si nek n in opazujmo grafe na množici vozliščV= $\{1, 2, \ldots, n\}$. Sedaj nas zanima, ali lahko za poljuben graf na n vozliščih najdemo "dobro" utežitev? Na to vprašanje v splošnem še ne znamo odgovoriti, saj se po tem sprašuje tudi domneva 1-2-3. Lahko pa se vprašamo kakšna je verjetnost, da za naključen graf na n vozliščih najdemo ustrezno utežitev. Tekom razdelka bomo definirali pojem "naključnega grafa", ter si ogledali nekaj preprostih trditev, ki veljajo za njih. Z uporabo preprostih trditev bomo formulirali in dokazali izrek, ki bo za veliko večino grafov podal ustrezno 1-2 utežitev. Pri tem bomo v veliki meri sledili knjigi Diestel [6].

5.1 Naključni grafi

Vzemimo ponovno fiksno število n in naj bo $V = \{1, 2, ..., n\}$ množica n vozlišč. Z oznako \mathcal{G} označimo množico vseh grafov na množici vozlišč V. Ideja je, da množico \mathcal{G} spremenimo v verjetnostni prostor. Nato se lahko vprašamo kakšna je verjetnost, da ima nek $G \in \mathcal{G}$ določeno lastnost. Oziroma kolikšna je pričakovana vrednost neke invariante, recimo kromatično število na grafu G.

Intiutivno bomo naključen graf G generirali na naslednji način. Izberemo si $p \in [0,1]$ in za vsako povezavo $e \in \binom{V}{2}$ izvedemo naključen poizkus, ali povezavo vključimo v graf G ali ne. Poizkuse izvajamo neodvisno ter verjetnost uspeha vsakega poizkusa je enaka p. Recimo sedaj, da imamo nek fiksen graf G_0 na n vozliščih z m povezavami. Kakšna je verjetnost, da naključno generiramo prav ta graf? To je seveda preprost izračun, saj mora poizkus uspeti za vsako izmed m povezav ter spodleteti za mankajoče povezave. Torej verjetnost, da je naključen graf $G \in \mathcal{G}$ enak grafu G_0 je enaka $p^m(1-p)^{\binom{n}{2}-m}$. To je torej verjetnost nekega elementarnega dogodka v verjetnostnem prostoru. Na enak način preprosto izračunamo verjetnosti za vse elementarne dogodke oziroma za vse grafe. Na tem koraku uporabimo nekaj

dejstev iz verjetnosti ter teorije mere. Znano je, da v kolikor poznamo verjetnosti za vse elementarne dogodke potem znamo izračunati verjetnost vsakega dogodka. To seveda drži, če je naš verjetnosti prostor končen. V našem primeru to seveda drži, ker je grafov na n vozlišč končno. Pokazati bi bilo še potrebno, da taka verjetnostna mera sploh obstaja, vendar dokaz za naše namene ni zanimiv, bralec ga lahko najde v poglavju 11 v [6]. Označimo še naš verjetnosti prostor kot $\mathcal{G} = \mathcal{G}(n, p)$. Sedaj si bomo ogledali nekaj preprostih izračunov povezanih z naključno generiranimi grafi.

Trditev 5.1. Za vsa naravna števila n, k z $n \ge k \ge 2$ je verjetnost, da ima $G \in \mathcal{G}(n,p)$ največjo neodvisno množico z največ k elementi, enaka

$$P[\alpha(G) \ge k] \le \binom{n}{k} q^{\binom{k}{2}}.$$

Dokaz. Verjetnost, da je neka množica $U \subseteq V$ velikost k neodvisna v G je $q^{\binom{k}{2}}$, saj mora poizkus spodleteti na vsaki možni povezavi med vozlišči iz U. Ampak vseh različnih množic U velikosti k je natanko $\binom{n}{k}$. Za vsako izmed k elementnih podmnožic U seštejemo verjetnosti, da je ta množica neodvisna. Ker so vse te verjetnosti enake dobimo željeno zgornjo mejo in trditev sledi.

Na podoben način lahko dokažemo ogromno zanimivih lastnosti grafov, vendar jih za naš primer ne bomo potrebovali. Kot zanimivost mogoče navedimo dejstvo, da so naključni grafi $G \in \mathcal{G}(n,p)$ močno povezani tudi za majhne vrednosti p. To pomeni, da so naključni grafi v splošnem povezani. Pri tem velja omenit še to, da je generacija naključnih grafov zelo preprosta medtem, ko je generiranje strogo povezanih grafov težek problem. Na podlagi zgornje ugotovitve lahko simuliramo generiranje povezanih grafov. Enostavno generiramo poljuben naključen graf in preverimo, če je povezan. V kolikor ni povezan postopek ponovimo. Ker je verjetnost, da je naključen graf na n vozliščih nepovezan zelo majhna nam za generiranje povezanih grafov ne bo potrebno velikokrat ponavljati postopka.

Sedaj lahko definiramo to, kar smo govorili na začetku razdelka. Naj \mathcal{P} označuje neko invariano oziroma lastnost grafa. Na podlagi tega se lahko vprašamo kako se obnaša verjetnost $P[G \text{ ima lastnost } \mathcal{P}]$ za $G \in \mathcal{G}(n,p)$ ko $n \to \infty$. Če gre ta verjetnost proti 1 rečemo, da ima graf G lastnost \mathcal{P} skoraj zagotovo. Oziroma skoraj vsi grafi imajo lastnost \mathcal{P} . Naslednja trditev nam bo podajala spodnjo (ter tudi zgornjo) mejo za kromatično število za skoraj vse grafe.

Trditev 5.2. Za vsako konstanto $p \in (0,1)$ in vsak $\epsilon > 0$ ima skoraj vsak graf $G \in \mathcal{G}(n,p)$ kromatično število enako

$$\chi(G) > \frac{\log(1/q)}{2+\epsilon} \cdot \frac{n}{\log n}.$$

Dokaz. Po trditvi 5.1 za vsak fiksen $n \ge k \ge 2$ sledi:

$$P[\alpha(G) \ge k] \le \binom{n}{k} q^{\binom{k}{2}}$$

$$\le n^k q^{\binom{k}{2}}$$

$$= q^{k \frac{\log n}{\log q} + \frac{1}{2}k(k-1)}$$

$$= q^{\frac{k}{2}\left(-\frac{2\log n}{\log(1/q)} + k - 1\right)}.$$
(5.1)

Kjer vzamemo $k=(2+\epsilon)\frac{\log n}{\log(1/q)}$. Za tako izbiro gre eksponent proti neskončnosti ko povečujemo n. Posledično gre celoten izraz proti 0 saj je q<1. Iz tega sklepamo, da je skoraj vsak $G\in\mathcal{G}(n,p)$ tak, da v kateremkoli barvanju grafa G nima nobenih k vozlišč iste barve. To bi namreč pomenilo, da ima graf neodvisno množico velikosti k, kar pa je malo verjetno. Iz tega sledi, da vsako barvanje vsebuje več kot

$$\frac{n}{k} = \frac{\log(1/q)}{2+\epsilon} \cdot \frac{n}{\log n}$$

bary. \Box

Zgornjo trditev bomo kasneje uporabili ko bomo analizirali utežitve na naključnih grafih. Potrebovali bomo zgornjo mejo za kromatično število. Dobimo jo lahko na podoben način. V zgornjem primeru v definiciji vrednosti k zamenjamo ϵ z $-\epsilon$. V tem primeru nam rezultat z največjo neodvisno množico pove, da v grafu z veliko verjetnostjo obstaja neodvisna množica I večja od k. Ideja je sedaj, da to množico odstranimo ter v preostanku grafa zopet poiščemo neodvisno množico večjo od k. To lahko storimo, saj preostanek grafa G-I lahko gledamo kot neodvisno kopijo v $\mathcal{G}(n-|I|,p)$. Izkaže se, da tak postopek lahko nadaljujemo dokler imamo več kot $\frac{n}{\log^2 n}$ vozlišč. Vsaki neodvisni množici dodelimo svojo barvo ter vsakemu izmed preostalih $\frac{n}{\log^2 n}$ vozlišč dodelimo svojo barvo. Na tak način dobimo zgornjo mejo za kromatično število. Bolj natančen postopek lahko bralec najde v [12]. Ta zgornja meja je torej $\chi(G) < \frac{\log(1/q)}{2-\epsilon} \cdot \frac{n}{\log n}$ in jo bomo uporabili pri dokazu glavnega izreka v tem razdelku. Poleg tega bomo potrebovali še eno asimptotsko oceno in sicer za minimalno stopnjo vozlišč. Naj bo $p \in (0,1)$ in vzemimo graf $G \in \mathcal{G}(n,p)$ ter opazujmo poljubno vozlišče $v \in V(G)$. Kaj lahko povemo o d(v)? Mislimo si lahko, da izvedemo eksperiment za vsakega izmed preostalih n-1 vozlišč ter povečamo stopnjo vozlišča v, če je bil eksperiment uspešen. Na podlagi tega lahko ocenimo pričakovano stopnjo vozlišča kot (n-1)p. Za nadaljno oceno potrebujemo posebno mejo iz verjetnosti.

Trditev 5.3 (Chernoffova meja). Naj bodo X_1, X_2, \ldots, X_n neodvisne in enako porazdeljene slučajne spremenljivke z vrednostmi v $\{0,1\}$. Naj za vsak $i=1,\ldots,n$ velja $E[X_i]=p$. Definirajmo slučajno spremenljivko $X=\sum_{i=1}^n X_i$. Označimo še $\mu=E[X]=np$. Tedaj velja za vsak $0<\delta<1$ velja

$$P[X \le (1 - \delta)\mu] \le e^{-\frac{\delta^2 \mu}{2}}.$$

Dokaz zgornje trditve bralec lahko najde v [14], kjer je formulirana kot izrek 4.5. Oglejmo si raje eno izmed možnih uporab Chernoffove meje.

Trditev 5.4. Za vsako konstanto $p \in (0,1)$ in $\epsilon > 0$ ima skoraj vsak graf $G \in \mathcal{G}(n,p)$ minimalno stopnjo enako

$$\delta(G) \ge (p - \epsilon)n$$

Dokaz. Naj bo $G \in \mathcal{G}(n,p)$ izbran naključno. Označimo množico vozlišč grafa G kot $V = \{v_1, v_2, \dots, v_n\}$ in definirajmo slučajne spremenljivke X_{ij} kot

$$X_{ij} = \begin{cases} 1, & \text{\'e } v_i v_j \in E(G); \\ 0, & sicer. \end{cases}$$

Dodatno definiramo še slučajno spremenljivko $X_i = \sum_{j=1; j \neq i}^n X_{ij}$, ki predstavlja stopnjo vozlišča v_i v grafu. Ker velja $E[X_{ij}] = p$ lahko pričakovano stopnjo vozlišča zapišemo kot $E[X_i] = (n-1)p \approx np$. Tukaj vzamemo približek zaradi enostavnejšega računanja, kar ne vpliva na končen rezultat. Na tem koraku lahko uporabimo Chernoffovo mejo za posamezno vozlišče v_i . Velja torej

$$P[X_i \le (p - \epsilon)n] \le e^{-\frac{n\epsilon^2}{2p}} \to 0$$
, če $n \to \infty$.

Pri tem smo uporabili $\delta = \frac{\epsilon}{p}$. To je sedaj ocena za posamezno vozlišče. Spodnjo mejo za minimalno stopnjo vozlišča lahko razumemo, tako da nobeno vozlišče v grafu nima nižje stopnje od željene meje. To pa je pravzaprav ravno unija dogodkov $X_i \geq (p-\epsilon)n$. Zapišemo lahko

$$P\left[\bigcup_{i=1}^{n} X_i \le (p-\epsilon)n\right] \le ne^{-\frac{n\epsilon^2}{2p}} \to 0, \text{ če } n \to \infty.$$

Za omejitev verjetnosti unije dogodkov smo uporabili oceno $P[A \cup B] \leq P[A] + P[B]$, ki velja tudi v primeru odvisnih dogodkov. V našem primeru so dogodki seveda odvisni, ampak to ni pomembno za sam izračun.

Glavni namen tega razdelka je podati neko asimptotsko oceno za parameter $\chi^e_{\Sigma}(G)$ oziroma bolj natančno podali bomo trditev, ki bo pokazala, da skoraj za vse grafe velja $\chi^e_{\Sigma}(G) = 2$, kar je zelo preseneltjiv rezultat saj, je še boljši kot zahteva domneva 1-2-3. Da nam bo uspelo pokazati zgornje si moramo ogledati še nek rezultat, ki nima nič opravit z verjetnostnimi metodami ampak z iskanjem posebnih faktorjev v grafu. Nato bomo uporabili vse rezultate iz tega razdelka in formulirali ter dokazali končno trditev.

5.2 Podgrafi z omejenimi stolpnjami

Za dokaz glavnega izreka v tem razdelku potrebujemo nek bolj tehničen izrek, ki nam podaja obstoj posebnih vpetih podgrafov. Glavna ideja je v tem, da si za vsako vozlišče izberemo s kakšno stopnjo želimo, da se nahaja v vpetem podgrafu. Ugotovili bomo, da za pravilno izbiro stopenj lahko vedno najdemo tak vpet podgraf.

Naj bo G=(V,E) graf in naj bo H njegov vpet podgraf. Ce je graf H k-regularen rečemo tudi, da je H k-faktor grafa G. Iskanje določenih faktorjev v grafu je ekvivalentno nekaterim drugim problemov na grafih. Naprimer 1-faktor v grafu predstavlja popolno ujemanje. Nas bo v tem razdelku zanimala bolj splošna definicja faktorja. Recimo, da sta f in g celoštevilski funkciji na množici vozlišč in velja $0 \le g(v) \le f(v) \le d(v)$ za vsako vozlišče $v \in V(G)$. Tako definiramo (g, f)-faktor grafa G kot vpet podgraf H z lastnostjo $g(v) \le d_H(v) \le f(v)$ za vsako vozlišče v. Želimo si torej, da ima naš vpet podgraf stopnje vozlišč med vnaprej podanima funkcijama. Poznamo posebne izreke, ki zagotavljajo obstoj takih grafov vendar v našem primeru potrebujemo močnejšo verzijo.

Izrek 5.5 (Addario-Berry et al. [1]). Naj bo G = (V, E) graf in za vsak $v \in V$ cela števila a_v^+ in a_v^+ , tako da $a_v^- \le \lfloor d(v)/2 \rfloor \le a_v^+ < d(v)$ in

$$a_v^+ \le min\left(\frac{d(v) + a_v^-}{2} + 1, 2a_v^- + 3\right).$$

Potem obstaja vpet podgraf H grafa G, tako da $d_H(v) \in \{a_v^-, a_v^- + 1, a_v^+, a_v^+ + 1\}$ za vse $v \in V$.

Dokaz. Dokaza se bomo lotili s protislovjem zato predpostavimo, da tak podgraf H ne obstaja. Naj bo dana množica celih števil $\{a_v \mid v \in V\}$ in nek podgraf H grafa G ter definiramo primankljaj glede na števila a_v kot vrednost

$$D(H) = \sum_{v} \max(0, a_v - d_H(v)).$$

Za vsako vozlišče izberemo $a_v \in \{a_v^-, a_v^+\}$ in $b_v = a_v + 1$, kjer sta a_v^- in a_v^+ kot v formulaciji izreka. Sedaj izberemo še vpet podgraf $H \subseteq G$, tako da za vsak $v \in V$ velja $d_H(v) \leq b_v$. Izmed vseh takih možnosti izberemo tisto, ki minimizira primankljaj D. Morda obstaja več različnih podgrafov, ki ustrezajo zgornjim omejitvam. Mi izberemo enega izmed njih. Sedaj trdimo, da obstaja vsaj eno vozlišče $v \in V$ za katerega $d_H(v) < a_v$ ter posledično D > 0. To je res, saj v nasprotnem primeru velja $d_H(v) = a_v$ ali $d_H(v) = b_v = a_v + 1$, kar pa pomeni, da je H iskan podgraf. To je namreč nemogoče saj smo predpostavili nasprotno.

Dokaz bomo sedaj nadaljevali, tako da bomo na podlagi podgrafa H definirali množici A in B, ki bosta v protislovju z prejšnjo trditvijo. Iz tega bomo lahko

Slika 8: Primer H-alternirajočega spredoda, ki se konča bodisi v A, bodisi v B.

sklepali, da je bila naša predpostvka napačna ter mora obstajati iskan podgraf H. Definirajmo množico $A_0 = \{v: d_H(v) < a_v\}$ in **H-alternirajoč sprehod** kot sprehod $P = v_0v_1 \dots v_k$, ki se začne v vozlišču $v_0 \in A_0$ in dodatno velja $v_iv_{i+1} \in G-H$ za sod i ter $v_iv_{i+1} \in H$ za lih i. Tak sprehod se torej začne v nekem vozlišču iz A_0 nato nadaljuje do nekega vozlišča preko povezave, ki je ni v H, nato po povezavi v H in tako dalje. Sedaj označimo množici

- $A = \{v : \text{obstaja } H\text{-alternirajoč sprehod sode dolžine, ki se konča z } v\}$ in
- $B = \{v : \text{obstaja } H\text{-alternirajoč sprehod lihe dolžine, ki se konča z } v\}.$

Ker število 0 štejemo kot sodo število velja $A_0 \subseteq A$. Poleg tega za vsak $v \in A$ velja tudi $d_H(v) \le a_v$. V nasprotnem primeru lahko obrnemo katere povezave so v H ter G - H tekom sodega alternirajočega sprehoda, ki se konča z v in s tem povečamo stopnjo $d_H(v_0)$ za ena ter zmanjšamo primanjkljaj. Vendar se zaradi minimalnosti grafa H to ne more zgoditi. Na podoben način ugotovimo, da za vsak $v \in B$

velja $d_H(v) = b_v$. V nasprotnem primeru zopet zamenjamo povezave tekom lihega alternirajočega sprehoda, ki se konča z v ter s tem zopet zmanjšamo primanjkljaj. Ker velja $a_v < b_v$ pomeni, da sta množici A in B disjunktni. Naj bo sedaj $v \in A$ in recimo, da obstaja neka povezava $vw \in E$. Če je $w \notin B$ potem mora veljati $vw \in H$ saj bi v nasprotnem primeru lahko sprehod, ki se konča z v podaljšali do w in tako dobili lih alternirajoč sprehod kar bi postavilo vozlišče w v množico B. Velja tudi obratno, torej če je $v \in B$ ter povezava $vw \in E$ ter $w \notin A$ potem $vw \notin H$. S pomočjo teh ugotovitev bomo vsoto $\sum_{v \in A} d_H(v)$ prešteli na drugačen način in sicer, tako da bomo posamezno stopnjo vozlišča $d_H(v)$ z $v \in A$ razdelili na 2 dela. Prvi del bo sestavljen iz sosedov od v, ki niso v B. Do vseh teh sosedov lahko po ugotovitvi pridemo le po povezavi, ki se nahaja v H. Zato velja $d_H(v) > d_{G-B}(v)$ za vsak $v \in A$. Mankajo torej še vsi sosedje v, ki se nahajajo v B. V ta namen si podrobno oglejmo neko vozlišče $u \in B$. Po ugotovitvi od prej vemo, da so vsi sosedje od u, do katerih pridemo po neki povezavi iz H v množici A in to so natanko tiste povezave, ki jih v prvem primeru nismo prešteli. Vse skupaj lahko torej zapišemo kot

$$\sum_{v \in A} d_H(v) = \sum_{v \in A} d_{G-B}(v) + \sum_{v \in B} d_H(v).$$

Levo in desno stran še malo dodelamo in dobimo

$$\sum_{v \in A} a_v > \sum_{v \in A} d_H(v) = \sum_{v \in A} d_{G-B}(v) + \sum_{v \in B} d_H(v) = \sum_{v \in A} d_{G-B}(v) + \sum_{v \in B} b_v.$$

Ko sedaj levo in desno stran spravimo skupaj dobimo

$$S_A = \sum_{v \in A} a_v - d_{G-B}(v) > \sum_{v \in B} b_v = S_B.$$

Dokaz s protislovjem bomo zaključili, tako da pokažemo še obratno in sicer $S_A \leq S_B$. V ta namen bomo uporabili še neuporabljene predpostavke izreka in pokazali serijo preprostih trditev:

- 1. $\sum_{v \in A} d_B(v) = \sum_{v \in B} d_A(v),$
- 2. $\forall v \in A, \ a_v d_{G-B}(v) \le d_B(v)/2,$
- 3. $\forall v \in B, b_v \ge d_A(v)/2$.

Zgornje trditve ne vključujejo direktno podgrafa H. Nanašajo se predvsem na množici A in B. Pri dokazovanju zgornjih trditev bomo večkrat za posamezno vozlišče spremenili graf H, če bo to potrebno. Vendar bomo te spremembe izvajali, tako da ne bomo spreminjali množic A in B. Trditev 1 enostavno dokažemo z dvojnim štetjem. Za vsako vozlišče $v \in A$ preštejemo njegove sosede, ki so v B. Pri tem lahko nekatera vozlišča sicer štejemo večkrat vendar to ni težava, saj v tem štetju vsako povezavo med A in B štejemo natanko enkrat. Prav tako vse povezave med A in B dobimo, če za vsako vozlišče $v \in B$ preštejemo vse njegove sosede v A. V nadaljevanju bomo večkrat uporabili že uporabljen argument glede minimalnosti grafa H. Za dokaz trditve 2 vzemimo poljuben $v \in A$ in predpostavimo $d_H(v) < a_v$. To

lahko storimo za vsako posamezno vozlišče v A, saj v nasprotnem primeru, ko velja $d_H(v)=a_v$ zamenjamo povezave, ki so v H tekom alternirajočega sprehoda in s tem ne spremenimo primankljaja H (povečamo za 1 v vozlišču v in zmanjšamo za 1 v začetnem vozlišču sprehoda) prav tako se ne spremenita množici A in B. To preprosto vidimo, ker za vozlišče v sedaj velja $v\in A_0$ in je začetno vozlišče sprehodov, tako lihih kot sodih. Sedaj moramo obravnavati dva primera in sicer prvič ko je $a_v=a_v^-$ in drugič ko je $a_v=a_v^+$. V prvem primeru je zadeva preprosta saj $a_v^- \leq d(v)/2$ po drugi strani pa velja $d_{G-B}(v)+d_B(v)/2\geq d(v)/2$ in trditev velja. Oglejmo si še primer ko $a_v=a_v^+>d(v)/2$. Predpostavljamo lahko dodatno še $d_{G-B}(v)>a_v^-+1$ saj v nasprotnem primeru ko nastavimo $a_v=a_v^-$ in odstranimo nekaj povezav med v in B, ki so v H, zmanjšamo primanjkljaj. S tem prav tako ne spremenimo množic A in B. Sedaj na podlagi predpostavke o a_v^+ velja

$$a_v \le \frac{d(v)}{2} + \frac{a_v^-}{2} + 1 < \frac{d(v)}{2} + \frac{d_{G-B}(v)}{2} + \frac{1}{2} = d_{G-B}(v) + \frac{d_B(v)}{2} + \frac{1}{2},$$

ter ker je a_v celo število in je bil $v \in A$ poljuben trditev 2 drži. Pokazati torej moramo še trditev 3. Vzemimo poljuben $v \in B$ in predpostavimo, da $a_v = a_v^- < \lfloor d(v)/2 \rfloor$ saj v drugem primeru avtomatsko velja $b_v \geq d(v)/2 \geq d_A(v)/2$. Predpostavimo sedaj, da trditev ne drži torej $2b_v < d_A(v)$ oziroma $d_A(v) \geq 2a_v + 2 + 1$ in s tem tudi $d_A(v) \geq a_v^+$ zaradi predpostavke izreka. Ker velja $b_v = d_H(v)$ in, ker smo ugotovili, če gre neka povezava, ki je v H iz vozlišča $v \in B$ potem mora drugo vozlišče nujno biti v množici A, je natanko $d_A(v) - b_v$ povezav med v in množico A, ki niso v H. Bolj natančno obstaja neko vozlišče $w \in N(v) \cap A$, tako da $uw \notin H$. Kot smo pokazali zgoraj, lahko zagotovimo, da $d_H(w) < a_w$ ter s tem ne spremenimo dejstva, da je $vw \in H$. Ko nastavimo $a_v = a_v^+$ in dodamo $a_v^+ - d_H(v)$ povezav od v do A v H ter s tem tudi povezavo vw znižamo primankljaj in s tem dokažemo trditev 3 ter izrek. To preprosto vidimo saj s pomočjo zgornjih trditev velja

$$S_A = \sum_{v \in A} a_v - d_{G-B}(v) \le \sum_{v \in A} d_B(v)/2 = \sum_{v \in B} d_A(v)/2 \le \sum_{v \in B} b_v = S_B,$$

kar je seveda protislovje saj smo malo prej pokazali $S_A > S_B$.

Zgornji izrek oziroma dokaz je bil kar težak ter ne ravno najbolj povezan z temo magistrske naloge ampak nam bo omogočal dokazati zanimivo asimptotsko lastnost domneve 1-2-3, ki smo jo omeneli že malo prej. Poleg tega so Addario-Berry et al. [1] uporabili zgornji izrek, da so dokzali $\chi^e_{\Sigma}(G) \leq 16$ za poljuben graf. Takrat je to bil tudi najboljši rezultat za splošne grafe. Poleg uporabe zgornjega izreka so konstruirali želeno utežitev na precej zahteven način, medtem ko opazimo, da je izrek 4.1 zares preprost v primerjavi z prejšnjimi poizkusu kljub temu, da podaja precej boljši rezultat.

Podajmo še hiter premislek zakaj nas bi zanimalo iskanje posebnih vpetih podgrafov oziroma kako nam lahko pomagajo pri reševanju 1-2-3 domneve. Predstavljajmo si, da lahko najdemo vpet podgraf $H \subseteq G$ za katerega velja $d_H(v) \neq d_H(w)$ za vsako povezavo $vw \in E(G)$. Potem lahko utežimo povezave v H z 1 vse ostale povezave z 0 in dobimo vozliščno barvanje z uteženimi povezavami z utežmi v $\{0,1\}$. Vendar tak podgraf H v splošnem ne obstaja in seveda smo tak primer že videli saj preprost graf $C_3 = K_3$ ne premore takega podgrafa. Vendar vseeno lahko s pomočjo te ideje dokažemo naslednji izrek.

Izrek 5.6 (Asimptotsko obnašanje $\chi_{\Sigma}^{e}(G)$; Addario-Berry et al. [1]). Naj bo G naključen graf izbran iz $\mathcal{G}(n,p)$ za konstanten $p \in (0,1)$. Potem asimptotično skoraj zagotovo velja $\chi_{\Sigma}^{e}(G) = 2$. Natančneje obstaja 2-povezavna utežitev, tako da so barve sosednjih vozlišč različne mod $2\chi(G)$.

Dokaz. Naj bo $G \in \mathcal{G}(n,p)$ in fiksirajmo $\epsilon > 0$. Tekom razdelka smo pokazali, da asimptotično skoraj zagotovo veljata naslednji dve dejstvi:

- $\delta(G) > (p \epsilon)n$,
- $\chi(G) < \frac{\log(1/(1-p))}{2-\epsilon} \cdot \frac{n}{\log n}$.

Ker sta števili p in ϵ fiksirani lahko preprosto izpeljemo, da asimptotično skoraj zagotovo velja $\chi(G) < \delta(G)/6$ za dovolj velik n. Predpostavili bomo, da ta neenakost velja in konstruirali 2-utežitev, ki bo tudi pravilno barvanje grafa G.

Naj bo $\{V_1, V_2, \dots, V_{\chi(G)}\}$ particija množice vozlišč v neodvisne množice. Sedaj za vsak $v \in V_i$ izberemo $a_v^- \in [\lfloor d(v)/3 \rfloor, \lfloor d(v)/2 \rfloor]$ in $a_v^+ \in [\lfloor d(v)/2 \rfloor, \lfloor 2d(v)/3 \rfloor]$, tako da $a_v^- + d(v) \equiv a_v^+ + d(v) \equiv 2i \pmod{2\chi(G)}$. Take izbire obstajajo saj intervala $[\lfloor d(v)/3 \rfloor, \lfloor d(v)/2 \rfloor]$ in $[\lfloor d(v)/2 \rfloor, \lfloor 2d(v)/3 \rfloor]$ vsebujeta vsaj $2\chi(G)$ zaporednih celih števil. Pri tem je seveda pomembno tudi, da $i \leq \chi(G)$. Poleg tega taka izbira za a_v^- in a_v^+ zadoščata predpostavkam izreka 5.5, tako da obstaja vpet podgraf $H \subseteq G$ kjer za vsak v velja $d_H(v) \in \{a_v^-, a_v^+, a_v^- + 1, a_v^+ + 1\}$. Sedaj konstruiramo utežitev ω kot

$$\omega(e) = \begin{cases} 1, & \text{\'e } e \notin H; \\ 2, & \text{\'e } e \in H. \end{cases}$$

Izračunajmo sedaj utež na nekek vozlišču $v \in V_i$ kot

$$\sum_{e\ni v} \omega(e) = 2d_H(v) + d_{G-H}(v) = d_G(v) + d_H(v) \in \{2i, 2i+1\} \pmod{2\chi(G)}.$$

S tem smo pokazali, da imajo sosednja vozlišča v različnih barvnih razredih V_i različne parnosti in tako konstruirana utežitev porodi pravilno barvanje.

Za konec tega razdelka bomo komentirali dobljene rezultate. Definirali smo verjetnostni prostor naključnih grafov, kjer smo naključne grafe generirali, tako da smo za vsako povezavo izvedli enak poizkus neodvisno od prejšnjih in z enako verjetnostjo uspeha. S pomočjo tega smo za nekaj grafovskih invariant ocenili, kako se obnašajo pri naključnih grafih ter si ogledali njihovo asimptotsko obnašanje. Poleg verjetnostnih metod smo dokazali izrek, ki nam pod določenimi pogoji garantira obstoj posebnega vpetega podgrafa, ki ima omejene stopnje vozlišč. Ta izrek sicer nima nič skupnega z verjetnostnimi metodami, ampak nam je omogočal določiti asimptotsko oceno za parameter $\chi^e_{\Sigma}(G)$. Presenetljivo smo pokazali, da velja $\chi^e_{\Sigma}(G) = 2$ za skoraj vse grafe, kar je še boljše kot pravi domneva 1-2-3. Presenetljivo je tudi zato, ker smo v začetnem delu dokazali, da za nekatere grafe velja $\chi^e_{\Sigma}(G) = 3$. Taki

so naprimer že nekateri cikli, polni grafi ter nekateri izmed dvodelnih grafov. Iz vidika našega zadnjega rezultata si to lahko predstavljamo tako, da so zgoraj našteti grafi za katere velja $\chi^e_{\Sigma}(G)=3$ redki v verjetnostnem prostoru naključnih grafov. To torej pomeni, da če naključno izberemo nek graf potem skoraj zagotovo to ne bo polni graf, cikel ali dvodelni graf z $\chi^e_{\Sigma}(G)=3$. Kljub temu, da je asimptotski rezultat pozitiven iz vidika domneve 1-2-3 nam pri dokazovanju domneve ne koristi prav preveč. Problem je v tem, da še vedno obstaja neskončno število grafov za katere lahko velja $\chi^e_{\Sigma}(G)>2$ in z naivnim pristopom ne moremo poiskati vseh takih grafov.

Zgornji rezultat ni edini rezultat v okviru domneve 1-2-3, ki uporablja verjetnostne metode. Vendar se ne bomo neposredno ukvarjali z takim pristopom, ampak bomo vseeno uporabili močno orodje, ki izhaja iz verjetnostnih metod.

6 Totalna verzija

V tem razdelku se bomo posvetili izpeljani verziji domneve 1-2-3. Do sedaj smo povezavam grafa dodelili uteži ter nato opazovali dobljene uteži na vozliščih kot vsoto uteži na incidenčnih povezavah. Na enak način bomo definirali **totalno utežitev** grafa, kjer bomo poleg povezavam uteži dodelili tudi vsakemu vozlišču. Dobljena totalna utež na vozlišč bo tako vsota uteži na incidenčnih povezavah ter uteži na samem vozlišču. V izogib nejasnostim bomo utežitev, ki smo jo obravnavali v prejšjih razdelkih rekli povezavna utežitev. Poleg tega bomo uporabljali izraz totalna utež vozlišča za vsoto uteži na povezavah in vozlišču. Z drugimi besedami gre za barvo vozlišča, ki jo porodi totalna utežtev. Tako lahko definiramo **totalno** k-utežitev grafa G = (V, E), kot preslikavo

$$\omega: E(G) \cup V(G) \rightarrow [k].$$

Na podlagi zgornje utežitve definiramo še **totalno utež** vozlišča $v \in V(G)$ kot

$$c_{\omega}^{t}(v) = \omega(v) + \sum_{u \in N(v)} \omega(vu).$$

Sedaj lohako obravnavamo enake probleme kot pri povezavni utežitvi grafa. Za nas najbolj zanimivo vprašanje je, ali obstaja kakšna zgornja meja za k, tako da je inducirano barvanje grafa tudi pravilno. Označimo z $\chi^t_{\Sigma}(G)$ najmanjši tak k za katerega obstaja totalna k-utežitev grafa, ki inducira pravilno barvanje. Hitro ugotovimo, da je ta problem malo lažji kot pri povezavni utežitvi, saj velja

$$\chi_{\Sigma}^t \le \chi_{\Sigma}^e.$$

To preprosto dejstvo opazimo, če imamo neko povezavno utežitev, ki je tudi pravilno barvanje potem vozlišča utežimo z konstantno utežjo 1 in dobimo totalno utežitev, ki je tudi pravilno barvanje. Zato nas zanima, ali lahko rezultate, ki smo jih dosegli za parameter χ^e_{Σ} izboljšamo in poiščemo nižjo mejo za parameter χ^t_{Σ} . Za začetek si bomo ogledali nekaj preprostih primerov na podoben način kot smo to storili pri parameteru χ^e_{Σ} . Pred tem pa formulirajmo še domnevo, ki se nanaša na parameter χ^t_{Σ} .

Domneva 6.1 (Domneva 1-2; Przybyło and Woźniak [16]). Naj bo G povezan graf, ki ni K_2 . Tedaj je $\chi_{\Sigma}^t(G) \leq 2$.

Domneva torej pove, da v kolikor dovoljujemo še uteži na vozliščih potem v glavnem potrebujemo eno utež manj, da dobimo pravilno barvanje. Hitro najdemo primer, zakaj v splošnem velja $\chi^t_{\Sigma}(G) > 1$. Tak primer je recimo C_3 oziroma K_3 .

Trditev 6.2 (Przybyło and Woźniak [16]). $\chi_{\Sigma}^t \leq 2$ za dvodelne grafe.

Dokaz. Dokaz trditve je precej preprost in lažji kot v primeru povezavne utežitvije. Naj bo G = (A, B, E) dvodelni graf. Povezavam poljubno dodelimo uteži 1 in 2 medtem ko vozliščem dodelimo uteži, tako da bodo totalne uteži vozlišč v množici A sode in lihe v množici B. Preprosto, če ima vozlišče $v \in A$ že sodo utež mu dodelimo 2 in se mu parnost ne spremeni. V nasprotnem primeru mu dodelimo utež 1 in mu s tem spremenimo parnost. Enako naredimo za vozlišča v množici B.

Zgornja trditev torej dokaže domnevo 1-2 za poti P_n ter drevesa T_n . Oglejmo si še naslednjo trditev.

Trditev 6.3. $\chi_{\Sigma}^t \leq 2 \ za \ cikle \ C_n$.

Dokaz. Postopamo zelo podobno kot smo na začetku dokazali $\chi_{\Sigma}^{e}(C_n) \leq 3$. Oštevilčimo vozlišča kot v_1, v_2, \ldots, v_n ter povezave kot $e_i = v_i v_{i+1}$. Sedaj utežitev ω definiramo na enak način kot v prvem primeru in sicer kot

$$\omega(e_i) = \begin{cases} 1, & \text{\'e } i \equiv 1, 2 \pmod{4} \\ 2, & \text{\'e } i \equiv 3, 4 \pmod{4} \end{cases}$$

V primeru parametra χ^e_{Σ} smo morali obravnavali 4 različne možnosti in sicer glede na $n\pmod 4$. Zelo podobno bomo naredili tudi sedaj, vendar potencialnih konfliktov ne bomo reševali, tako da neko povezavo utežimo z 3, ampak bomo z 2 utežili nekaj vozlišč. Ta postopek je bolj preprost zato ga bomo samo skicirali. Vsa vozlišča začetno utežimo z 1. Recimo, da pride do nekega konflikta med dvema vozliščema v ciklu. Izberemo si enega izmed teh vozlišč ter mu dodelimo utež 2 s čimer smo rešili originalen konflikt, vendar smo pri tem lahko ustvarili novega. Nadaljujemo z istim postopkom, kjer pazimo, da se ne zaciklamo, tako da vozliščem dodeluje utež 2 vedno v isti smeri. Naprimer izberemo si smer urinega kazalca. Na tak način, bomo morali utež vozlišču popraviti največ trikrat, saj bomo slej ko prej prišli do vozlišča, ki bo imel na obeh povezavah utež 2 prav tako pa bo tudi sam nosil utež 2 in bo s tem imel skupno utež 6. Vendar take uteži nima nobeno ostalo vozlišče zato se zgornji postopek konča po največ treh korakih.

Trditev 6.4 (Przybyło and Woźniak [16]). $\chi_{\Sigma}^{t}(K_{n}) = 2$.

Dokaz. Z indukcijo bomo pokazali, da obstaja totalna utežitev z utežmi 1 in 2, tako da bodo dobljene barve vozlišč zaporedna cela števila od n do 2n-1 ali od n+1 do 2n.

Za n=2 preprosto najdemo ustrezno utežitev. Predpostavimo, da je $n\geq 3$ in smo že našli ustrezno totalno utežitev za K_{n-1} . Sedaj dodamo novo vozlišče v

in ga povežemo z vsemi ostalimi vozlišči K_{n-1} . Za K_{n-1} velja, da so barve vozlišč zaporedna števila iz intervala [n-1,2n-2], seveda je pri tem ali levo ali desno krajišče intervala še nezasedeno. Če je barva 2n-2 nezasedena, na vse nove povezave in vozlišče v damo utež 2. V nasprotnem primeru, ko je nezasedeno levo krajišče zgornjega intervala damo na vse nove povezave in na vozlišče v utež 1.

Kot smo opazli se za osnovne družine grafov brez večjih težav pokaže veljavnost domneve 1-2. Na tem mestu bi se lahko vprašali, kako je s splošnimi grafi? Izkaže se, da tudi za splošne grafa obstaja precej dober rezultat, ki je v neki meri bližje domnevi kot v primeru domneve 1-2-3, ko smo dokazali tako imenovan izrek 1-2-3-4-5.

Izrek 6.5 (1-2-3 izrek za parameter χ_{Σ}^t ; Kalkowski [8]). Naj bo G povezan graf. Tedaj velja $\chi_{\Sigma}^t(G) \leq 3$.

Dokaz. Dokaz zgornjega izreka je zelo podoben dokazu izreka 4.1. Glavna ideja je bila v tem, da smo vozlišča procesirali v nekem vrstnem redu ter smo lahko zagotovili, da ima trenutno procesirano vozlišče drugačno skupno utež kot njegovi sosedje med že procesiranimi vozlišči. To smo lahko storili zato, ker smo lahko popravljali uteži na določenih povezavah in sicer, tako da pri tem nismo povzročali konfliktov.

Konstruirali bomo utežitev ω , ki uporablja uteži $\{1,2,3\}$ na povezavah ter uteži $\{1,2\}$ na vozliščih. S tem bomo dokazali malenkost močnejšo obliko izreka. V ta namen označimo z $c_{\omega}^t(v)$ končno barvo oziroma totalno utež vozlišča $v \in V(G)$, ki jo določimo ko procesiramo vozlišče v in jo kasneje ne spremenimo. Med samo konstrukcijo bomo to utež večkrat spremenili, zato označimo še c(v) kot začasno utež vozlišča v. Začnemo z poljubno ureditvijo vozlišč v_1, v_2, \ldots, v_n in nastavimo začetno utež 2 na vse povezave ter utež 1 na vsa vozlišča. Med procesiranjem vozlišč bomo vsako povezavo spremenili največ enkrat. Tako velja $c_{\omega}^t(v_1) = c(v_1) = 2d(v_1) + 1$. Za vsako trenutno procesirano vozlišče $v_i, 2 \le i \le n$ predpostavljamo,

1.
$$c(v_j) = c_\omega^t(v_j)$$
 ali $c(v_j) = c_\omega^t(v_j) - 1$, za $j < i$,

2.
$$c_{\omega}^t(v_j) \neq c_{\omega}^t(v_l)$$
, če $(v_j, v_l) \in E(G)$ in $l < i$,

3.
$$\omega(e) = 2$$
 za vsako povezavo $e = (v_i, v_l)$.

Predpostavimo še, da ima vozlišče v_i d sosedov v množici že procesiranih vozlišč $\{v_1, v_2, \ldots, v_{i-1}\}$. Na tem koraku moramo določiti končno barvo $c_{\omega}^t(v_i)$ vozlišča v_i , tako da bo razližna od njegovih sosedov v množici procesiranih vozlišč. To lahko storimo z modifikacijo uteži na povezavah do že procesiranih vozlišč. In sicer lahko za vsako povezavo $e = (v_j, v_i)$ z j < i,

- ohranimo trenutno utež,
- dodamo 1, če $c(v_i) = c_{\omega}^t(v_i) 1$ ali
- odštejemo 1, če $c(v_j) = c_{\omega}^t(v_j)$.

Podobno kot v dokazu izreka 4.1 lahko na tak način ustvarimo d+1 različnih zaporednih možnih vrednosti za $c(v_i)$. Res, ena možnost je, če nič ne spreminjamo. Nato dobimo po eno možnost za spremembo na vsaki povezavi nazaj. Lahko si predstavljamo tudi drugače. Na vseh povezavah nazaj zmanjšamo utež tam, kjer je to seveda mogoče. Na tak način dobimo minimalno potencialno utež za v_i , označimo jo z c_m . Na enak način povečamo vse uteži in dobimo maksimalno utež za v_i , ki jo označimo z c_M . Tako se vse potencialne vrednosti za $c(v_i)$ nahajajo v intervalu $[c_m, c_M]$, ki ima d+1 elementov. Ker ima vozlišče v_i d sosedov v procesiranih vozliščih lahko tako najdemo vsaj eno prosto utež za vozlišče v_i , ki jo nastavimo kot njegovo končno utež. Na tak način torej izberemo $c_{\omega}^t(v_i)$, popravimo uteži na ustreznih povezavah in nastavimo $c_{\omega}^t(v_i) = c(v)$. Postopek ponavljamo, dokler ne sprocesiramo vseh vozlišč. Na koncu procesiranja imamo naslednje lastnosti:

- vsako vozlišče $v \in V(G)$ ima začasno barvo $c(v) = c_{\omega}^t(v)$ ali $c(v) = c_{\omega}^t(v) 1$,
- $\bullet\,$ nobena sosednja vozlišča nimata dodeljene enake končne barve $c_\omega^t(v),$
- vsaka povezava ima utež iz množice {1, 2, 3},
- vsako vozlišče ima utež 1.

Za konec povečamo za 1 utež na vseh vozliščih za katere velja $c(v) = c_{\omega}^{t}(v) - 1$. To lahko storimo, saj imajo vsa vozlišče utež 1 in s tem zagotovimo, da imajo vsa vozlišča njihovo končno barvo.

Kot je razvidno iz zgornjega dokaza obstaja ogromno podobnosti med dokazom izreka 4.1. Pri totalni verziji smo sicer imeli več svobode, saj smo lahko vozlišča uredili in procesirali v poljubnem vrstnem redu. To izhaja iz tega, da v tem primeru ne potrebujemo povezave naprej, da dosežemo zahtevane pogoje. Pri tem so seveda zahtevani pogoji manj strogi, saj ne zahtevamo, da imajo vsa procesirana vozlišča že končno barvo, ker jih lahko popravimo na koncu z utežitvijo posameznih vozlišč. V samem dokazu izreka 6.5 smo dejansko dokazali močnejši izrek, saj uteži z vrednostjo 3 nismo uporabili na vozliščih. Poleg tega smo ugotovili še nekaj. Do zadnjega koraka v dokazu je bila utež na vseh vozliščih enaka 1. Kaj se zgodi, če to utež popolnoma odstranimo in opazujemo samo dobljeno povezavno utežitev? Dobljena povezavna utežitev sicer ne porodi nujno pravilnega barvanja, ampak od tega ni daleč oddaljena, saj se dobljeno barvanje razlikuje za največ 1 od pravilnega barvanja. Uporabili smo le uteži iz množice $\{1, 2, 3\}$, kar je skladno z domnevo 1-2-3. Vendar je ravno to težak del problema. Kako torej iz neke povezavne utežitve, ki skoraj porodi pravilno barvanje, dobiti ustrezno utežitev. Do tega trenutka je to mogoče samo z metodami, ki smo si jih ogledali. V povezavni verziji nujno potrebujemo še uteži 4 in 5 na povezavah medtem, ko moramo v totalni verziji dodati utež 2 na nekatera vozlišča.

Za zaključek tega razdelka dopolnimo tabelo, ki smo jo izpolnili že po koncu začetnega dela. V tabelo bomo dodali parameter χ^t_{Σ} ter ga direktno primerjali s parametrom χ^e_{Σ} . Kot je razvidno iz tabele 2 smo za velik del grafov v totalni verziji uspeli izboljšati rezultate. V nekaterih primerih smo že v povezavni verziji dosegli najnižjo možno mejo t.j. 2 in se je seveda neda izboljšati v totalni verziji.

Tabela 2:	Izračun	$\chi^e_{\Sigma}(G)$	in	$\chi^t_{\Sigma}(G)$	za	znane	$dru\check{z}ine$	grafov.
-----------	---------	----------------------	----	----------------------	----	-------	-------------------	---------

$\operatorname{Graf} G$	$\chi^e_{\Sigma}(G)$	$\chi^t_{\Sigma}(G)$
$\bigcap P_n$	2	2
C_n	$\begin{cases} 2, & n \equiv 0 \pmod{4}; \\ 3, & \text{sicer}; \end{cases}$	2
K_n	3	2
$K_{m,n}$	$\begin{cases} 1, & m \neq n; \\ 2, & \text{sicer}; \end{cases}$	$\begin{cases} 1, & m \neq n; \\ 2, & \text{sicer}; \end{cases}$
3-obarvljivi	3	≤ 3
T_n	2	2
dvodelni d -regularni z $d \geq 3$	2	2
dvodelni	≤ 3	2
splošni	≤ 5	≤ 3

7 Seznamska verzija

S seznamsko verzijo problema smo se že srečali v začetnem delu, kjer smo predstavili seznamsko verzijo barvanja grafa. Pri tem smo ugotovili, da je rešitev seznamske verzije problema tudi rešitev originalnega primera. Obratno seveda ne drži. tem razdelku si bomo ogledali seznamsko verzijo domneve 1-2-3, ter nekaj orodij s katerimi se lahko lotimo takega problema. Večinoma v tem razdelku sledimo člankom [17] in [3]. Naj bo G = (V, E) povezan graf in dodelimo vsakemu vozlišču $v \in V$ seznam L_v in vsaki povezavi $e \in E$ seznam L_e . Oba seznama naj bosta velikosti k. Označimo z L družino vseh takih seznamov za vsa vozlišča in povezave. Rečemo, da je graf G seznamsko utežljiv iz L, če obstaja utežitev $\omega: E \to \bigcup_{e \in E} L_e$, tako da $\omega(e) \in L_e$ za vsako povezavo e in je ta utežitev pravilno barvanje. Graf G je **k-seznamsko utežljiv**, če je seznamsko utežljiv iz vsake družine seznamov velikosti k. Na enak način definiramo tudi totalno seznamsko utežljivost grafa. Pri tem opazujemo utežitve $\omega: V \cup E \to \bigcup_{L_a} L_a$ za katere velja $\omega(e) \in L_e$ in $\omega(v) \in L_v$ za vsako povezavo e in vsako vozlišče v. Graf G je k-totalno seznamsko utežljiv, če je totalno seznamsko utežljiv iz vseh seznamov velikosti k. Najmanjši tak k za katerega je graf G k-seznamsko utežljiv označimo z ch $_{\Sigma}^{e}$. Podobno, najmanjši tak kza katerega je graf G k-totalno seznamsko utežjiv označimo z $\operatorname{ch}_{\Sigma}^{t}$.

Za analiziranje parametrov $\operatorname{ch}_{\Sigma}^e$ in $\operatorname{ch}_{\Sigma}^t$ bomo večinoma uporabljali algebraična orodja. Pri tem velja omenit, da je tako linearna kot abstraktna algebra močno povezana z teorijo grafov. Veliko različnih rezultatov in metod iz algebre je možno direktno uporabiti pri analiziranju grafov. Glavni razlog leži v tem, da lahko graf enostavno predstavimo z matriko. Ena izmed osnovnih predstavitev grafa je ravno t.i. **matrika sosednosti**, ki je kvadratna (0,1) matrika z vrednostjo 1 v (i,j)ti vrstici, če obstaja povezava med vozliščema v_i in v_j . Matriko sosednosti lahko uporabimo tudi v primeru uteženih ter usmerjenih grafov. Podobno bomo storili tudi v našem primeru. Na primeren način bomo definirali matriko, ki bo pripadala grafu. Nato bomo s pomočjo operacij na matrikah dobili rešitev, ki nam bo podajala ustrezno seznamsko utežljivost posameznih grafov.

Definicijo matrike, ki bo pripadala grafu začnemo, tako da grafu najprej priredimo polinom. Pri tem bomo polinom konstruirali, tako da nam bodo neničelne vrednosti polinoma predstavljale ustrezno utežitev za naš graf. Ugotoviti bomo morali, ali polinom sploh premore kakšno neničelno vrednost. V pomoč nam bo t.i. kombinatorični izrek o ničlah

Izrek 7.1 (Kombinatorični izrek o ničlah; Alon [2]). Naj bo \mathbb{F} poljubno polje in naj bo $P = P(x_1, x_2, \ldots, x_l)$ polinom $v \mathbb{F}[x_1, \ldots, x_l]$. Predpostavimo, da je stopnja deg(P) polinoma P enaka $\sum_{i=1}^{l} k_i$, kjer je vsak k_i nenegativno celo število in predpostavimo, da je koeficient pred $x_1^{k_1} \ldots x_l^{k_l}$ neničelen. Potem, če so $S_1, \ldots S_l$ podmnožice \mathbb{F} z $|S_i| > k_i$ obstajajo $s_1 \in S_1, \ldots s_l \in S_l$, tako da $P(s_1, \ldots, s_l) \neq 0$.

Dokaz. Dokaz izreka seveda spada bolj v področje algebre. Vendar sam dokaz ni težak zato ga bomo dokazali. Dokaz bo potekal z indukcijo glede na stopnjo polinoma P. V primeru, ko je $\deg(P) = 1$ je dokaz preprost, saj je polinom lahko ničelen le v eni sami točki. Če imamo na voljo dve točki bo vsaj ena porodila neničelno vrednost polinoma. Predpostavimo, da je $\deg(P) > 1$ in P zadošča predpostavkam izreka vendar ne obstajajo neničelne vrednosti polinoma. Torej P(x) = 0 za vsak $x \in S_1 \times \ldots \times S_l$. Indukcijski korak bomo dokazali s pomočjo protislovja. Brez škode za splošnost lahko predpostavimo, da je $k_1 > 0$. Fiksirajmo $s \in S_1$ in zapišemo polinom P kot

$$P = (x_1 - s)Q + R$$

z uporabo običajnega deljenja polinomov. Na zgornji polinom lahko tako gledamo kot polinom spremenljivke x_1 z koeficienti v $\mathbb{F}[x_2,\ldots,x_l]$. Pri tem velja, da se spremenljivka x_1 ne pojavlja v R. Ker P zadošča predpostavkam mora polinom Q vsebovati neničelen monom oblike $x_1^{k_1-1}x_2^{k_2}\cdots x_l^{k_l}$. Velja tudi $\deg(Q)=\deg(P)-1$.

Sedaj vzamemo poljuben $x \in \{s\} \times S_2 \times \ldots \times S_l$ in ga vstavimo v zgornji polinom P. Ker smo predpostavili, da je P(x) = 0 velja, da je tudi R(x) = 0. Ampak, ker je bil x poljuben in ker R ne vsebuje spremenljivke x_1 , je polinom R ničelen tudi na celotni množici $(S_1 - \{s\}) \times S_2 \times \cdots \times S_l$. Ponovno vzamemo poljuben $x \in (S_1 - \{s\}) \times S_2 \times \cdots \times S_l$ in ga vstavimo v polinom P. Ker je $x_1 - s$ v tem primeru neničelen in smo za polinom R pokazali, da je ničelen sledi, da je tudi Q(x) = 0. Ampak x je bil poljuben, kar pomeni da je polinom Q ničelen na celotni množici $(S_1 - \{s\}) \times S_2 \times \cdots \times S_l$. Ker je stopnja polinoma Q strogo manjša kot stopnja polinoma P je to v prostislovju z indukcijsko predpostavko in je izrek s tem dokazan.

Zgornji izrek ima veliko uporabnih posledic predvsem v kombinatoriki in teoriji grafov. Prav tako obstaja ogromno podobnih oblik izreka, ki so prilagojene za določene probleme.

Oglejmo si raje kako bi tak izrek uporabili v našem primeru. Kot smo že omenili moramo grafu dodeliti primeren polinom, da bomo lahko uporabili zgornji izrek. Naj bo G = (V, E) graf in oštevilčimo povezave kot $E = \{e_1, e_2, \ldots, e_m\}$ ter vozlišča kot $V = \{v_1, v_2, \ldots, v_n\}$. Sedaj vsaki povezavi e_i dodelimo spremenljivko x_i in vsakemu vozlišču v_j dodelimo spremenljivko x_{m+j} . Definirajmo izraz $X_{v_j} = \sum_{e_i \ni v_j} x_i$ in $Y_{v_j} = x_{m+j} + X_{v_j}$. Predstavljamo si, da vsaki spremenljivki x_i določimo neko celoštevilsko vrednost. Na podlagi zgornjih definicij ugotovimo, da izraz X_{v_j} tako

predstavlja barvo oziroma utež na vozlišču v_j , dobljeno kot vsoto uteži na incidenčnih povezavah. Po drugi strani izraz Y_{v_j} predstavlja totalno utež vozlišča v_j , saj pri tem prištejemo še utež posameznega vozlišča. S pomočjo zgornjih izrazov bomo definirali dva polinoma, enega za povezavno verzijo in drugega za totalno verzijo problema. Ker smo pametno izbrali spremenljivke in izraza X_{v_j} in Y_{v_j} pripadajoče polinome definiramo kot

$$P_G(x_1, ..., x_l) = \prod_{(u,v) \in E(G)} (X_v - X_u)$$
$$T_G(x_1, ..., x_l) = \prod_{(u,v) \in E(G)} (Y_v - Y_u).$$

Polinom P_G seveda pripada povezavni verziji medtem ko polinom T_G pripada totalni verziji problema. Kot smo že ugotovili nam posamezne vrednosti izrazov X_v in Y_v predstavljajo dobljene uteži na vozlišču v in zato za neko povezavo $(u,v) \in E(G)$ izraz $X_v - X_u$ predstavlja razliko med utežmi na sosednjih vozliščih. Ce imata tako sosednji vozlišči isto utež je vrednost zgoraj definiranih polinomov enaka 0. Na podlagi zgornjih defincij in ugotovitev se nam izrek 7.1 zdi uporaben, saj nam pod določenimi pogoji zagotavlja obstoj uteži, ki inducirajo pravilno barvanje. Res, če obstaja nek nabor spremenljivk za katere zgornja polinoma nista ničelna, lahko razberemo ustrezne uteži za posamezne povezave in vozlišča. Tako dobljena utežitev je tudi pravilna, saj je polinom neničelen. Seveda moramo pri tem upoštevati vse predpostavke izreka. Ce bomo želeli uporabiti zgornji izrek, da dobimo kakšen uporaben rezultat bomo morali v polinomih, ki pripadajo grafu poiskati stopnje posameznih spremenljivk v monomih. Pri tem si želimo, da so te stopnje čim manjše, saj potem potrebujemo manjše podmnožice iz izbranega obsega in s tem manj uteži. Te podmnožice nam morajo še vedno zagotaljati izbor vrednosti za katere je polinom neničelen.

Recimo sedaj, da imamo nek polinom $P \in [x_1, \ldots, x_l]$ in naj bo $M = cx_1^{k_1} \cdots x_l^{k_l}$ nek neničelen monom v tem polinomu. Z h(M) označimo največji eksponent spremenljivke v M. Torej bolj natančno $h(M) = \max_{i=1,\ldots,l} k_i$. Definirajmo še **monomični indeks** polinoma P kot najmanjši h(M) čez vse neničelne monome M v P in ga označimo z $\min(P)$. Različne orientacije grafa G porodijo do predznaka enake polinome P_G in T_G , kar ne vpliva na monomični indeks dobljenih polinomov. Označimo $\min(P_G) = \min(G)$ in $\min(T_G) = \min(G)$. Ker sta ta parametra neodvisna od orientacije jih lahko štejemo kot invarianti grafa G in jima bomo rekli monomični indeks grafa ter totalni monomični indeks grafa v tem vrstem redu.

Kot je že v navadi, grafov, ki imajo izolirano povezavo ne obravnavamo. V tem primeru nam izolirana povezava porodi ničelni polinom in iz tega vidika ni zanimivo. Predpostavimo torej, da graf G nima izolirane povezave. Kako izgledajo polinomi P_G in T_G , ko jih zapišemo z vsoto namesto z produktom? Tak polinom ima m = |E(G)| faktorjev kar pomeni, da je stopnja vseh monov enaka m, saj ko želimo polinom razširiti v vsoto moramo v vsakem faktorju izbrati natanko eno spremenljivko. To pomeni, da je stopnja obeh polinomov enaka m in oba polinoma sta homogena, saj so stopnje vseh monomov enake. Sedaj opazimo povezavo med monomičnem indeksom grafa G ter izrekom 7.1. Zapišimo to v obliki naslednje trditve.

Trditev 7.2. Če velja $mind(G) \leq k$ potem je G(k+1)-seznamsko utežljiv. Prav tako, če $tmind(G) \leq k$ potem je G(k+1)-totalno seznamsko utežljiv.

Dokaz. To je pravzaprav preprosta posledica izreka 7.1. Ker sta oba polinoma P_G in T_G homogena nam njuna monomična indeksa predstavljata najmanjši eksponent izmed največjih eksponentov v vseh monomih. Potem lahko za podmnožice S_i iz izreka vzamemo poljubne podmnožice, ki so večje od monomičnega indeksa. Zadošča že, da so podmnožice za 1 večje od monomičnega indeksa. In ker so izbire podmnožic popolnoma poljubne ter nam izrek zagotavlja da najdemo ustrezno utežitev je potem graf tudi seznamsko utežljiv ter totalno seznamsko utežljiv iz zgornjih množic oziroma seznamov.

Na podlagi zgornje trditve velja $\operatorname{ch}_{\Sigma}^{e}(G) \leq \operatorname{mind}(G) + 1$ in $\operatorname{ch}_{\Sigma}^{t}(G) \leq \operatorname{tmind}(G) + 1$. Tudi za seznamsko verzijo obstaja domneva in sicer v obliki povezavne in polne verzije.

Domneva 7.3 ([3]). Za vsak povezan graf G, ki ni K_2 velja $\operatorname{ch}_{\Sigma}^e(G) \leq 3$.

Domneva 7.4 ([17]). Za vsak graf G velja $\operatorname{ch}_{\Sigma}^t(G) \leq 2$.

Zgornji domnevi sta presenetljivi, če jih primerjamo s seznamsko verzijo kromatičnega števila. Tam smo ugotovili, da sicer veljajo podobne zgornje meje vendar se parametra lahko poljubno razlikujeta. V našem primeru je zastavljena zgornja meja enaka v seznamski in ne seznamski obliki. Pri tem velja izpostavit, da je seznamska verzija problema precej težja in že pri preprostih in majhnih grafih imamo lahko veliko težav pri računanju točnih vrednosti parametrov $\operatorname{ch}_{\Sigma}^e(G)$ in $\operatorname{ch}_{\Sigma}^t(G)$. Vendar s pomočjo orodja, ki smo ga razvili zgoraj to postane precej lažje. Iz vidika zgornjih domnev bi morali pokazati, da velja $\operatorname{mind}(G) \leq 2$ in $\operatorname{tmind}(G) \leq 1$ za vsak graf G. Vendar to je v splošnem zelo težko pokazati saj je zelo težko ugotoviti kateri monomi preostanejo v razširitvi polinoma. Preden si ogledamo nekaj primerov moramo razviti še orodje s katerim bomo lažje ocenili kateri monomi ostanejo v polinomih, ki pripadajo grafom. Najprej se bomo osredotočili na povezavno verzijo problema, kjer uteži dodeljujemo samo povezavam. Nato bomo zelo podobno naredili tudi za totalno verzijo pri čemer bodo vsi rezultati povezavne verziji bili veljavni tudi za totalno verzijo.

7.1 Povezavna verzija

Za računanje kateri monomi preživijo v razširitvi polinoma pripadajočega grafu G bomo razvili posebno metodo, ki originalen problem pretvori na problem linearne algebre. Pri tem bo problem navidezno postal bolj preprost saj si morda lažje predstavljamo matrike in računanje z njimi vendar se bo izkazalo, da je problem še vedno težak. V ta namen bomo vsakemu grafu priredili posebno matriko $A_G = (a_{ij})$. Fiksirajmo poljubno orientacijo grafa in definiramo elemente matrike kot

$$a_{ij} = \begin{cases} 1, & \text{\'e je } e_j \text{ inciden\'ena z koncem } e_i; \\ -1, & \text{\'e je } e_j \text{ inciden\'ena z za\'etkom } e_i; \\ 0, & \text{\'e } e_i \text{ in } e_j \text{ nista inciden\'eni}; \end{cases}$$

S pomočjo zgornje matrike lahko zapišemo polinom P_G kot

$$P_G = \prod_{i=1}^m (a_{i1}x_1 + \dots + a_{im}x_m).$$

Sedaj bomo nadaljevali, tako da bomo problem računanja mind(G) prevedli na problem iz linearne algebre povezan z matriko A_G .

Definicija 7.5. Naj bo A poljubna kvadratna matrika velikosti m in definirajmo permanento matrike A kot

$$\operatorname{per} A = \sum_{\sigma \in S_m} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{m\sigma(m)},$$

kjer je S_m simetrična grupa velikosti m.

Definicija močno spominja na definicijo determinante vendar tukaj za razliko od determinante člene vedno seštevamo, torej ne upoštevamo predznaka permutacij. Kljub temu, da definicija izgleda močno podobna deterninanti je računanje permanente precej težji problem, saj za računanje determinante poznamo polinomski algoritem (naprimer s pomočjo Gaussovih eliminacij) medtem ko za računanje permanente polinomski algoritem ne obstaja. Kljub temu bo za nas še vedno dovolj dobro orodje. Na podoben način definiramo **permanentni rank** ne nujno kvadratne matrike A, kot velikost največje kvadratne podmatrike z neničelno permanento. Označimo z $A^{(k)} = [A, A, ..., A]$ matriko dobljeno z k zaporednimi kopijami matrike A. Sedaj definiramo še **permanentni indeks** matrike A kot najmanjši k za katerega je permanentni rank matrike $A^{(k)}$ enak m, kjer je m velikost matrike A. Označimo ga z pind(A). Če tak k ne obstaja določimo pind $(A) = \infty$. Oglejmo si še ekvivalentno definicija permanentnega indeksa. Naj bo $K = (k_1, \ldots, k_m)$ poljubno zaporednje nenegativnih celih števil in označimo stolpce matrike A kot A_1, \ldots, A_m . Matriko A(K) dobimo, tako da vsak stolpec A_i ponovimo k_i krat. Permanentni indeks pind(A) je sedaj najmanjši k, za katerega velja $k_1+k_2+\cdots+k_m=m$ in $k_i \leq k$ za vsak $i=1,\ldots,m$ ter je per $A(K)\neq 0$. Definiciji sta res ekvivalentni saj lahko izbrano podmatriko $A^{(k)}$ dobimo z primerno izbranim zaporedjem K. Navidez komplicirane in neuporabne definicije iz linearne algebre imajo uporabno vrednost, ko si ogledamo naslednjo trditev.

Trditev 7.6. Naj bo $A = (a_{ij})$ kvadratna matrika velikosti m in končnim permanentnim indeksom. Naj bo $P(x_1, \ldots, x_m) = \prod_{i=1}^m (a_{i1}x_1 + \cdots + a_{im}x_m)$. Takrat velja mind(P) = pind(A).

Dokaz. Spomnimo se alternativne definicije permanentnega indeksa. Naj bo torej zaporedje $K=(k_1,\ldots,k_m)$, tako da je per $A(K)\neq 0$ in sicer za najmanjši možen k. Sedaj želimo pokazati, da je koeficient pri členu $x_1^{k_1}\cdots x_m^{k_m}$ neničelen, kar pomeni, da se v razširejenem polinomu taki členi ne seštejejo v 0. Da dobimo zgornji člen moramo torej spremenljivko x_i izbrati iz natanko k_i faktorjev. Vseh takih možnih izbir pa je natanko per A(K). Ker vrsti red izbiranja ni pomemben je končni koeficient pred členom $x_1^{k_1}\cdots x_m^{k_m}$ enak $\frac{\operatorname{per} A(K)}{k_1!\dots k_m!}$. Če bi matrika A bila matrika samih enic,

bi dobili ravno multinomski izrek. Sedaj smo pokazali $\min(p) \leq \operatorname{pind}(A)$. Da pokažemo obratno neenakost vzemimo nek člen v razširnejem polinomu in iz stopenj posameznih spremenljivk generirajmo zaporedje K. Ker smo začeli z neničelnim členom po podobnem premisleku velja $\operatorname{pind}(A) \leq \operatorname{mind}(P)$.

Na podlagi zgornje trditve smo problem iskanja ustrezne seznamske utežitve pretvorili na problem iz linearne algebre, ki je dobro poznan in sicer računanje permanent posebnih matrik. Oglejmo si sedaj primer uporabe zgornje trditve.

Primer 7.7. Oglejmo si graf na sliki 9. Za orientacijo kot je na sliki je polinom pripadajoč grafu oblike $P_G(x_1, x_2, x_3, x_4) = (x_2 + x_4)(x_3 - x_1 - x_4)(x_4 - x_2)(x_1 + x_2 - x_3)$. Zapišimo sedaj še matriko pripadajočo temu polinomu. Ko imamo enkrat zapisan

Slika 9: Primer orientacije grafa.

celoten polinom dobimo matriko na zelo preprost način. Za i-to vrstico pogledamo i-ti faktor v polinomu in v to vrstico zapišemo koeficiente pred spremenljivkami, ki se v njem pojavljajo. Tako dobimo naslednjo matriko

$$A_G = \begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ -1 & 1 & -1 & 0 \end{bmatrix}.$$

Najprej ugotovimo, da je per $(A_G) = 0$. Sedaj moramo izbrati zaporedje K, tako da bo imela matrika $A_G(K)$ neničeleno permanento. Vzemimo K = (2, 2, 0, 0). Sedaj računamo

$$\operatorname{per}(A_G(K)) = \operatorname{per} \begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{bmatrix}$$

$$= \operatorname{per} \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix} + \operatorname{per} \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$= 2 \operatorname{per} \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$= -2 \operatorname{per} \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

$$= -4 \neq 0$$

Pri tem smo permanento računali tako kot računamo determinanto in sicer z razvojem po vrstici ali stolpcu. Pri nam niti ni treba paziti na predznak, ker tukaj ni pomemben. Ugotovili smo torej, da pind $(A_G) = 2$ iz česar sledi mind $(G) \leq 3$ in graf G je utežljiv iz seznamov velikosti 3. Na enak način se lahko problema lotimo za poljuben podan graf.

V zgornjem primeru smo videli uporabo metode, ki smo jo razvili do sedaj. Direkten izračun, brez uporabne kombinatoričnega izreka o ničlah bi bil lahko že za zelo preproste grafe zahteven problem. Navidezno se nam sicer zdi, da smo problem že dobro rešili vendar izkaže se, da je računanje permanent in permanentnega indeksa poljubnih grafov lahko zahtevno. Prak tako ni enostavno računati permanentnih indeksov matrik za posebne družine grafov kot so naprimer cikli ali polni grafi. V ta namen si bomo ogledali preprosto trditev s pomočjo katere bomo malo lažje računali permanentne indekse nekaterih matrik.

Trditev 7.8 (Bartnicki et al. [3]). Naj bo A matrika velikost $m \times l$ in L kvadratna matrika velikosti m, tako da so stolpci matrike L linearna kombinacija stolpcev matrike A. Naj bo n_j število tistih stolpcev v L v katerih j-ti stolpce A_j nastopa z neničelnim koeficientom. Če je $n_j \leq r$ in per $L \neq 0$ potem pind $(A) \leq r$.

Dokaz. Naj bo L_k k-ti stolpec matrike L in ga zapišimo kot $L_k = \sum_{j=1}^l a_{kj} A_j$. Sedaj bomo uporabili dejstvo iz linearne algebre, ki ga ne bomo dokazovali. Tako kot determinanta je tudi permanenta multilinearna funkcija stolpcev. To pravzaprav ni težko preverit vendar dokaz tega ni zanimiv. Oglejmo si raje kaj to pomeni. Zapišimo matriko A kot $A = [A_1, \ldots, A_l]$. Multilinearnost permanenta pomeni naslednje

$$\operatorname{per}([a_1A_1 + a_2A_2, A_2]) = a_1a_2 \left(\operatorname{per}([A_1, A_2]) + \operatorname{per}([A_2, A_2])\right).$$

Seveda enak razvoj velja za vse stolpce. V zgornjem primeru smo zaradi lažje razumljivosti vzeli le 2 stolpca. Glavna ideja leži v tem, da lahko per L zapišemo kot vsoto členov oblike $c \cdot \text{per}([A_{j_1}, \ldots, A_{j_m}])$. Pri tem se seveda lahko zgodi, da sta

kakšna indeksa stolpcev enaka vendar zaradi predpostavke $n_j \leq r$ imamo lahko v vsakem členu največ r enakih stolpcev matrike A. Ker po predpostaki $perL \neq 0$ je vsaj eden izmed zgornjih členov neničelen. Ampak ker se v tem členu katerikoli stolpec matrike A ponovi največ r-krat trditev sledi na podlagi alternativne definicije permanentnega indeksa.

Kot smo že omenili je računanje permanent zahtevno predvsem zato, ker ne moremo uporabiti Gausovih eliminacij kot pri determinantah. Seveda je zaradi tega računaje permanentnega indeksa matrike še toliko težji problem, saj niti ne vemo, ali je permanentni indeks končen. S pomočjo zgornje trditve lahko permanentni indeks računamo na podoben način kot računamo determinante s pomočjo Gaussovih eliminacij. Oglejmo si uporabno zgornje trditve.

Trditev 7.9. Za vsak $n \geq 3$ velja $mind(C_n) \leq 2$. Torej vsak cikel je utežljiv iz seznamov velikosti 3.

Dokaz. Vzemimo cikel C_n in ga orientirajmo v smeri urinega kazalca ter prav tako oštevilčimo povezave. Ker ima v ciklu vsaka povezava dve incidenčni povezavi je polinom pripadajoč ciklu naslednje oblike

$$P_{C_n}(x_1,\ldots,x_n) = \prod_{i=1}^n (x_i - x_{i+2}),$$

kjer indekse spremenljivk gledamo modulo n. Na podlagi polinoma matrika, ki pripada ciklu C_n izgleda kot

$$A_{C_n} = \begin{bmatrix} 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & \dots & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ & \vdots & & \ddots & \vdots & \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & & -1 & 0 \end{bmatrix}.$$

Sedaj moramo pokazati, da velja pind $(A_{C_n}) \leq 2$. Tega problema bi se lahko lotili direktno po definiciji kot v prvem primeru vendar je sedaj problem precej težji. Ideja je, da uporabimo trditev 7.8. Označimo stolpce matrike A_{C_n} kot A_1, A_2, \ldots, A_n in definirajmo matriko L, tako da določimo njene stolpce. V prvem koraku stolpce matrike A_{C_n} le razvrstimo drugače in sicer, tako da jih prestavimo za eno mesto v levo. Na tak način dobimo matriko oblike

$$\begin{bmatrix} 1 & 0 & & -1 & 0 \\ 0 & 1 & \dots & 0 & -1 \\ -1 & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}.$$

Dokaz bomo nadaljevali, tako da bomo vrednosti -1, ki se nahajajo nad diagonalo potisniti čim bolj navzdol. Nakoncu bomo lahko izračunali permanento nastale

matrike in pokazali, da je različena od nič. Predpostavimo najprej, da je n=2k+1 lih. V tem primeru definiramo stolpce matrike L kot $L_i=A_{i+1}$ posebaj pa definiramo zadnja dva stolpca in sicer $L_{n-1}=A_n+A_2+A_4+\ldots A_{2k}$ ter $L_n=A_1+A_3+\ldots A_{2k-1}$. Na tak način vrednost -1 v predzadnjem stolpcu prestavimo pod diagonalo, v zadnjem stolpcu pa se nahaja ravno eno polje nad diagonalo. Tako je permanenta matrike L enaka produktu diagonalnih elementov, ki so vsi enaki 1 ter permanenti spodnjega 2×2 bloka

$$\operatorname{per} L = \operatorname{per} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = 2 \neq 0.$$

Oglejmo si še primer ko je n=2k sod. Ideja ostane enaka, vrednosti -1 nad diagonalo si želimo spravit čim bližje diagonali in zopet bomo v tam namen seštevali stolpce iste parnosti. V tem primeru moramo biti malo bolj pazljivi, saj lahko ustvarimo stolpec, ki vsebuje same ničle in bo s tem permanenta celotne matrike enak 0. Temu se bomo izognili, da bomo pri seštevanju stoplcev enega izpustili. Enako definiramo $L_i = A_{i+1}$ ter $L_{n-1} = A_n + A_2 + A_4 + \dots A_{2k-2}$ in $L_n = A_1 + A_3 + \dots A_{2k-3}$. Na enak način kot v prejšnjem primeru sedaj dobimo na diagonali enice in ničle nad diagonalo razen v spodnjem desnem 4×4 bloku. Tako je permanenta celotne matrike L enak permanenti spodnjega bloka oblike

$$\operatorname{per} L = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} = 2 \neq 0.$$

V obeh primerih smo torej dobili neničelen permanent matrike L. Prav tako v obeh primerih velja, da se posamezen stolpec matrike A_{C_n} pojavlja v največ dveh stolpcih matrike L. Res, stolpec A_i se pojavi v i-1 stolpcu L ter, ali v stolpcu n ali (n-1) vendar ne v obeh. S tem je trditev dokazana.

Zgornja trditev torej dokaže seznamsko verzijo domneve v primeru ciklov. Ali lahko na podoben način dokažemo domnevo še za kakšno drugo družino grafov? Morda je to možno na podoben način vendar bolj kot so zakomplicirani grafi, težje je določiti permanentni indeks pripadajoče matrike. V nadaljevanju si bomo ogledali glavni in najpomembnejši rezultat tega razdelka. Omogočal nam bo konstrukcijo grafov z nizkim monomičnim indeksom. Ideja se skriva v tem, da začnemo z nekim grafom, ki ima nizek monomičen indeks ter nato dodajamo vozlišča in povezave na poseben način, tako da pri tem ne zvišamo monomičnega indeksa. Na tak način bomo lahko seznamsko verzijo domneve dokazali še za nekaj družin grafov.

Izrek 7.10 (Bartnicki et al. [3]). Naj bo G = (V, E) graf $z \min(G) \le 2$ in naj bo U neprazna podmnožica vozliščV. Z F označimo graf dobljen, tako da grafu G dodamo nova vozlišča u in v ter ju povežemo z vsemi vozlišči iz U. Graf H naj označuje graf, kjer vozlišči u in v še povežemo. Tedaj velja $\min(F) \le 2$ in $\min(H) \le 2$.

Dokaz. Glavno orodje dokaza bo trditev 7.8. Najprej se bomo lotili dokazovanja $mind(F) \leq 2$ zato v ta namen označimo $U = \{u_1, \ldots, u_k\}$, množico povezav incidenčnih u kot $E_u = \{e_1, e_3, \ldots, e_{2k-1}\}$ ter množico povezav incidenčnih v kot

 $E_v = \{e_2, e_4, \dots, e_{2k}\}$. Skupno imamo torej 2k novih povezav v grafu F ter jih vse orientiramo proti množici U in opazujemo matriko A_F , ki pripada novemu grafu. Kot smo že omenili vrstni red stolpcev nima nobenega vpliva, zato naj A_1, A_2, \dots, A_{2k} označuje prvih 2k stolpcev matrike A_F , ki pripadajo novim povezavam in označimo matriko $A = [A_1, \dots, A_{2k}]$. Tako celotna matrika izgleda kot $A_F = [A, B]$, kjer je $B = \begin{bmatrix} X \\ A_G \end{bmatrix}$. Sedaj definirajmo novo matriko M na sledeč način

$$M = [M_1, M_1, M_2, M_2, \dots, M_k, M_k, B(K)],$$

kjer je $M_j=A_{2j-1}-A_{2j}$ za $j=1,\ldots,2k$. K je zaporedje števil, ki zadošča predpostavki $\min(G)\leq 2$ oziroma bolj natančno $\operatorname{pind}(AG)\leq 2$. Naslednji del dokaza bomo porabili za dokazovanje per $M \neq 0$, kar bo s pomočjo trditve 7.8 dokazalo izrek za graf F. V ta namen si bolj natančno oglejmo strukturo matrike A zato jo zapišimo v bločni obliki kot $A = \begin{bmatrix} Y \\ Z \end{bmatrix}$, kjer je Y kvadratna $2k \times 2k$ podmatrika. Sedaj se spomnimo definicije stolpca $M_j = A_{2j-1} - A_{2j}$. Pri tem velja, da se stolpca A_{2j-1} in A_{2j} ujemata na podmatriki Z, saj sta povezavi e_{2j-1} in e_{2j} incidenčni istemu vozlišču u_j njuna repa pa pripadata vozlišču u in v, ki se ne nahajata v V(G). Na podlagi tega sledi, da je stolpec M_i ničelen razen na prvih 2k vrsticah. Bolj natančno si sedaj oglejmo še matriko Y. Opazujmo neko novo povezavo e_i in najprej predpostavimo, da je i liho. V tem primeru se e_i začne v vozlišču u in je incidenčna samo z koncem ene povezave in sicer z e_{i+1} , ki se začne v vozlišču v. Zato je v i-ti vrstici matrike Y samo en elements pozitivnim predznakom in sicer v stolpcu i + 1. Vsi ostali stolpci z lihim indeksom pripadajo povezavam, ki izhajajo iz u in je njihov začetek incidenčen povezavi e_i in zato imajo te stolpci vrednost -1, razen seveda stolpca z indeksom i, ki ima ničelno vrednost. Vsi ostali sodi stolpci imajo prav tako vrednost 0. Zelo podobna situacija je v primeru ko je i sodo. V tem primeru se e_i začne v vozlišču v in je incidenčna samo z koncem ene povezave in sicer e_{i-1} . Vsi ostali lihi stolpci imajo ničelne vrednosti medtem ko imajo vsi sodi stolpci vrednost -1 razen seveda stolpca i. Na podlagi zgornjih ugotovitev ima matrika Y naslednjo obliko

$$Y = \begin{bmatrix} 0 & 1 & -1 & 0 & & -1 & 0 \\ 1 & 0 & 0 & -1 & \dots & 0 & -1 \\ -1 & 0 & 0 & 1 & & -1 & 0 \\ 0 & -1 & 1 & 0 & & 0 & -1 \\ \vdots & & & \ddots & & \\ -1 & 0 & -1 & 0 & & 0 & 1 \\ 0 & -1 & 0 & -1 & & 1 & 0 \end{bmatrix}.$$

S pomočjo te ugotovitve lahko zapišemo matriko M kot

$$M = \begin{bmatrix} R & X(K) \\ 0 & A_G(K) \end{bmatrix},$$

kjer so vse vrstice matrike R neničelne ter enakega predznaka

$$R = \begin{bmatrix} -1 & -1 & -1 & & -1 \\ 1 & 1 & 1 & \dots & 1 \\ -1 & -1 & -1 & & -1 \\ & \vdots & & \ddots & \\ 1 & 1 & 1 & & 1 \end{bmatrix}.$$

Na podlagi bločnega zapisa matrike M velja per $M = \operatorname{per} R \times \operatorname{per} A_G(K)$. V permanenti matrike R imajo vsi členi enak predznak prav tako pa noben člen ni ničelen zaradi česar sledi per $R \neq 0$. In tako na podlagi predpostavke per $A_G(K) \neq 0$ sledi per $M \neq 0$ in je s tem izrek dokazan v primeru grafa F.

V primeru grafa H imamo dodatno povezavo e_0 med u in v ter jo orientirajmo od v do u. Dobljena mtrika A_H izgleda enako kot prej razen nove prve vrstice in prvega stolpca. Zapišimo jo v bločni obliki kot

$$A_H = \begin{bmatrix} Y' & X' \\ Z' & A_G \end{bmatrix}.$$

Oglejmo si podrobneje matriko Y'. Vsaka povezava, ki se začne v u je incidenča z koncem povezave e_0 in te imajo v našem primeru lihe indekse. Medtem ko je vsaka povezava z začetkom iz v incidenčna z začetkom povezave e_0 in te imajo sode indekse. Tako ima matrika Y' v prvi vrstici na sodih indeksih vrednosti 1 in vrednost -1 na lihih indeksih. Po drugi strani je povezava e_0 incidenčna z začetkom vseh povezav med $\{u,v\}$ in U. Zato je prvi stolpec matrike Y' sestavljen iz vrednosti -1 razen na prvem mestu je seveda vrednost 0. Prvi stolpec matrike Z' je sestavljen iz samih ničel medtem ko so vsi preostali stolpci enaki kot v matriki Z. Ostale vrstice in stolpci niso spremenjeni. Tako celotna matrike Y' izgleda kot

$$Y = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 & -1 \\ -1 & & & & & \\ -1 & & & & & \\ \vdots & & & Y & & \\ -1 & & & & & \\ -1 & & & & & \end{bmatrix}.$$

Sedaj nadaljujemo podobno kot v prvem primeru in označimo prvih 2k + 1 stolpcev matike A_H kot A_0, A_1, \ldots, A_{2k} , ki pripadajo novim povezavam e_0, e_1, \ldots, e_{2k} . Definiramo novo matriko

$$M = [N_0, N_0, N_1, N_1, N_2, N_2, \dots, N_k, N_k, B(K)],$$

kjer je $N_0=A_0$ in $N_j=A_{2j-1}-A_{2j}$ za $j=1,2,\ldots,k$. Enako kot v prejšnjem primeru zapišemo matriko N v bločnem zapisu kot

$$N = \begin{bmatrix} R' & X'(K) \\ 0 & A_G(K) \end{bmatrix},$$

kjer je R' kvadratna $2k + 1 \times 2k + 1$ matrike naslednje oblike

Dokazati je potrebno še per $R' \neq 0$. Po istem premisleku bo nato veljalo per $N \neq 0$ in pind $(A_H) \leq 2$. Dokažimo torej per $R' \neq 0$. Kot smo že omenili je permanenta multilinearna funkcija stolpcev. Ker transponiranje ne vpliva na permanento je tudi multilinearna funkcija v vrsticah. Iz tega razloga bomo določene vrstice matrike R' pomnožili s primerno izbranimi konstantami ter tako dobili novo matriko, ki jo bomo označili S. Tako pomnožimo prvo vrstico matrike R' z 1/2 ter vsako liho vrstico z -1. Dobljena matrike S tako izgleda kot

$$S = \begin{bmatrix} 0 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 \\ -1 & -1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ -1 & -1 & 1 & 1 & \dots & 1 \end{bmatrix}.$$

Permanento matrike S bomo izračunali, tako da jo bomo razvlili glede na prvi stolpec. Označino s S_i podmatriko, ki jo dobimo, tako da matriki S odstranimo prvi stolpec in vrstico i. Tedaj velja

$$\operatorname{per} S = \sum_{i=1}^{2k+1} \operatorname{per} S_i = \sum_{i=1}^{k} (\operatorname{per} S_{2i} - \operatorname{per} S_{2i+1}) = k(\operatorname{per} A - \operatorname{per} B),$$

kjer je $A = S_{2i}$ in $B = S_{2i+1}$ za vsak i, saj je večina dobljenih podmatrik enakih. Matrika A ima povsod enice razen v prvem stolpcu, kjer ima eno ničlo ter k minus enic. Ko matriko A razvijemo po prvem stolpcu dobimo

$$per A = (n - 1 - n)(2n - 1)! = -(2n - 1)!.$$

Zelo podobno ima matrika B povsod enice razen v prvem stolpcu, kjer ima eno ničlo ter n-1 minus enic. Zopet jo razvijemo po prvem stolpcu in dobimo

per
$$B = (n+1-n)(2n-1)! = (2n-1)!$$
.

Sledi torej per $S = -2n(2n-1)! = -(2n)! \neq 0$. Torej potem velja tudi $per R' \neq 0$ in je izrek s tem dokazan.

V dokazovanju zgornjega izreka ter nasploh trditev v tem razdelku smo uporabili ogromno linearne algebre ter premetavanja in transformiranja matrik. S tem smo se malo oddaljili od same teorije grafov. Kljub temu je zgornji izrek močno orodje, ki nam omogoča generiranje grafov z nizkim monomičnim indeksom. Ideja je, da začnemo z nekim majhnim grafom G_0 za katerega velja mind $(G_0) \leq 2$ ter nato postopoma dodajamo pare novih vozlišč v skladu z zgornjim izrekom. Tako lahko ustvarimo ogromno grafov za katere velja, da je njihov monomični indeks manjši od 2. Oglejmo si direktno uporabo za nekatere že znane družine grafov.

Trditev 7.11 (Bartnicki et al. [3]). Če je $G \neq K_2$ polni graf ali polni dvodelni graf potem $mind(G) \leq 2$.

Dokaz. Dokaz je takojšnja posledica izreka 7.10 ko preverimo da imajo grafi K_3 , K_4 , $K_{1,2}$, $K_{1,3}$, $K_{2,2}$ monomične indekse manjše kot 2. Nato z indukcijo dokažemo trditev. Res, za vsak polni graf K_n začnemo z K_3 , če je n lih ter nato dodajamo po dva vozlišča in jih povežemo z vsemi obstoječimi vozliči ter tako nadaljujemo. Ko je n sod začnemo z K_4 ter nadaljujemo na enak način. V primeru polnih dvodelnih grafov $K_{n,m}$ postopamo enako. Glede na parnost n in m si izberemo začetni graf ter dodajamo nova vozlišča, ki jih sedaj povežemo le z eno biparticijo obstoječega polnega dvodelnega grafa.

Trditev 7.12 (Bartnicki et al. [3]). Naj bo T drevo na vsaj treh vozliščih. Potem velja $mind(T) \leq 2$.

Dokaz. Tudi v tem primeru bomo uporabili indukcijo glede na število povezav. Za bazo preprosto preverimo, da drevesa na 2 in 3 povezavah zadoščajo zgornjemu pogoju. Naj bo torej T drevo z $m \geq 4$ povezav in predpostavimo, da trditev velja za vsa drevesa z manj kot m povezavami. V tem primeru dokaz ne bo tako preprost kot v prejšnji trditvi, saj bomo en primer morali obravnavati posebaj. Začnimo najprej s preprostim primerom in sicer takrat, ko ima drevo T dva lista, ki imata istega starša. V tem primeru uporabimo zgornji izrek ter po indukciji trditev velja tudi za T. Oglejmo si še primer, ko ima drevo povezavo e = uv, kjer je u list, v je njegov starš za katerega velja, da je njegova stopnja enaka 2. Res, saj bi v nasprotnem primeru moral imeti še vsaj enega soseda, ki je tudi list. Označimo z f še drugo povezavo vozlišča v. Sedaj v bločni obliki zapišimo matriko drevesa T kot

$$A_T = \begin{bmatrix} A_{T-e-f} & X & 0 \\ Y & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

kjer zadnji dve vrstici pripadata povezavam f in e. Po indukcijski predpostavki velja $\min(T-e-f) \leq 2$, zato obstaja zaporedje K za katerega per $A_{T-e-f}(K) \neq 0$. Sedaj preprosto vzamemo K' = (K, 1, 1) in dobimo

$$A_T(K') = \begin{bmatrix} A_{T-e-f}(K) & X & 0 \\ Y(K) & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Razvijemo po zadnji vrstici in dobimo per $A_T(K') = \operatorname{per} A_{T-e-f}(K) \neq 0.$

Za zaključek tega razdelka povzemimo, da smo seznamsko verzijo domneve dokazali za kar nekaj družin grafov za katere smo v prejšnjih razdelkih dokazali originalno domnevo. Kljub dobro razvitemu orodju za obravnavanje seznamske verzije za splošne grafe, težko potegnemo kakšne uporabne zaključke za splošne grafe. To sledi iz dejstva, da smo v večini primerov uporabili posebno strukturo grafov, kar nam je porodilo matriko posebne oblike in smo z primernimi transformacijami lahko izračunali njen permanentni indeks. Prav tako si z izrekom 7.10 v primeru splošnih grafov ne moremo pomagati kaj dosti, saj z konstrukcijo kot je opisana v izreku seveda ne moremo generirati vseh grafov. Zato konstantna zgornja meja za seznamsko verzijo ostaja odprt problem.

7.2 Totalna verzija

Oglejmo si še kako postopamo v primeru totalne verzije. Vse ideje prejšnjega razdelka so seveda veljavne tudi tukaj zaradi enakega razloga kot v ne seznamski verziji. Tudi za totalno verzijo bomo grafu priredili matriko $A_G^t = (a_{ij})$ velikosti $m \times (m+n)$. Zopet fiksiramo poljubno orientacijo grafo in definiramo matriko A_G^t kot

 $a_{ij} = \begin{cases} 1, & \text{\'e je } e_j \text{ inciden\'ena z koncem } e_i, \text{ ali je } v_{j-m} \text{ na koncu povezave } e_i; \\ -1, & \text{\'e je } e_j \text{ inciden\'ena z za\'etkom } e_i, \text{ ali je } v_{j-m} \text{ na za\'etku povezave } e_i; \\ 0, & \text{\'e } e_i \text{ in } e_j \text{ nista inciden\'eni in } v_{j-m} \text{ ni niti na koncu niti za\'etku } e_i, \end{cases}$

kjer je $i=1,\ldots,m$ in $j=1,\ldots,n+m$. Označimo l=n+m in enako kot prej polinom T_G zapišemo kot

$$T_G = \prod_{i=1}^m (a_{i1}x_1 + \dots a_{il}x_l).$$

Spomnimo se, da definicija permanentnega indeksa velja tudi za ne kvadratne matrike.

Trditev 7.13. Naj bo $A = (a_{ij})$ matrika velikosti $m \times l$ in končnim permanentnim indeksom. Naj bo $P(x_1, \ldots, x_l) = \prod_{i=1}^m (a_{i1}x_1 + \ldots a_{il}x_l)$. Takrat velja $\min(P) = \min(A)$.

Dokaz. Dokaz je popolnoma enak kot dokaz trditve 7.6.

Matrika A_G^t seveda ni kvadratna in je večja kot matrika A_G , vendar se obe matriki ujemata na prvih m stolpcih. Torej matrika A_G je ravno prvih m stolpcev matrike A_G^t . Zadnjih n stolpcev matrike A_G^t pripada vozliščem grafa. Če si bolj podrobno ogledamo definicijo matrike ugotovimo, da vsaka vrstica v zadnjih n stolpcih vsebuje natanko eno vrednost 1 in eno vrednost -1. Res, saj ima vsaka povezava natanko eno vozlišče na koncu in eno vozlišče na začetku. Ravno zadnjih n stolpcev nam bo omogočalo izboljšati nekatere rezultate iz prejšnjega razdelka. Oglejmo si na primeru kako to deluje.

Primer 7.14. Oglejmo si enak primer grafa kot prej le, da sedaj oštevilčimo še vozlišča. Za orientacijo kot je na sliki 10 je polinom pripadajoč grafu oblike

$$T_G(x_1, \dots, x_8) = (x_2 + x_4 + x_6 - x_5)(x_3 + x_7 - x_1 - x_4 - x_6)$$

 $(x_4 + x_8 - x_2 - x_7)(x_1 + x_2 + x_6 - x_3 - x_8),$

ter matrika

$$A_G^t = \begin{bmatrix} 0 & 1 & 0 & 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & -1 & 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 & -1 \end{bmatrix}.$$

Sedaj moramo izračunami pind (A_G^t) . Označimo $A=A_G^t$ in izračunajmo:

Slika 10: Primer orientacije grafa z označenimi vozlišči.

$$per([A_1, A_3, A_5, A_7]) = per \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 1 \end{bmatrix}$$
$$= -per \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} = per \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= 2 \neq 0.$$

Iz tega torej sledi pind $(A_G^t) = 1 = \operatorname{tmind}(G)$, kar pomeni $\operatorname{ch}_{\Sigma}^t(G) = 2$ in smo s tem izboljšali rezultat iz prejšnjega razdelka.

Oglejmo si še kako lahko rezultat izboljšamo v primeru ciklov.

Trditev 7.15 (Przybyło and Woźniak [17]). Za vsak $n \geq 3$ velja tmind $(C_n) = 1$.

Dokaz. Za dokaz si moramo natančno ogledati matriko A_G^t . Kot smo že omenili je prvih m stolpcev enakih matriki A_G , ki smo jo že obravnavali v prejšnjem razdelku. Označimo $A = A_G^t$ in najprej predpostavimo, da je n sod. Za dokaz tmind $(C_n) = 1$ moramo pokazati pind(A) = 1. Zato potrebujemo kvadratno $n \times n$ podmatriko A' za katero velja per $A' \neq 0$. Vzemimo podmatriko, ki je sestavljena iz zadnjih n stolpcev matrike A.

$$A' = [A_{m+1}, \dots, A_{m+n}] = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & 0 & \dots & -1 & 1 \\ 1 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Sedaj izračunamo per A', tako da matriko razvijemo glede na prvi stolpec in dobimo

$$\operatorname{per} A' = -\operatorname{per} \begin{bmatrix} -1 & 1 & \dots & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} + \operatorname{per} \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & \dots & 0 & 0 \\ 0 & -1 & & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & -1 & 1 \end{bmatrix}$$
$$= -(-1)^{n-1} + 1^{n-1} = 1 + 1 = 2 \neq 0$$

Obravnavajmo sedaj še primer ko je n lih. V tem primeru za kvadratno podmatriko A' vzamemo n-ti stolpec matrike A ter zadnjih n-1 stolpecv. Za računanje per A' zopet razvijemo po prvem stolpcu in dobimo

$$\operatorname{per} A' = -\operatorname{per} \begin{bmatrix} -1 & 1 & \dots & 0 & 0 \\ 0 & -1 & & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & -1 & 1 \\ 0 & 0 & & 0 & -1 \end{bmatrix} + \operatorname{per} \begin{bmatrix} 1 & 0 & & 0 & 0 \\ -1 & 1 & \dots & 0 & 0 \\ 0 & -1 & & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & 0 & -1 \end{bmatrix}$$
$$= -(-1)^{n-1} - 1 = -1 - 1 = -2 \neq 0$$

V obeh primerih smo torej dobili, da je permanent največje kvadratne podmatrike neničelen s čimer je trditev dokazana. □

V primeru totalne verzije smo uspeli izboljšati rezultat za cikle in kot je razvidno iz dokaza je velik del tega pripadal dodatnim stolpcev v matriki, ki pripadajo utežem na vozliščih. Res, pri računanju permanente smo vse stolpce razen enega vzeli iz drugega dela matrike. Podobno smo naredili tudi v ne seznamski verziji problema. Uteži na vozliščih so zmanjšale potrebo po dodatnih utežeh na povezavah, kar je nekako splošna ideja pri totalni verziji domneve 1-2-3.

V ne seznamski verziji problema je očitno veljalo $\chi_{\Sigma}^t \leq \chi_{\Sigma}^e$, saj smo iz veljavne povezavne utežitve preprosto konstruirali totalno utežitev, tako da smo vozliščem dodelili poljubno konstantno utež. V seznamski verziji ne moremo uporabiti istega premisleka, saj ni nujno, da imajo vsa vozlišča isti seznam za izbiro uteži. Vendar kljub temu tudi v seznamski verziji velja enaka ocena.

Trditev 7.16 (Przybyło and Woźniak [17]). Za vsak graf $G \neq K_2$ velja tmind $(G) \leq \text{mind}(G)$.

Dokaz. Označimo z m število povezav v grafu G. Polinom T_G lahko zapišemo kot $T_G = P_G + R$, kjer je $P_G \in \mathbb{F}[x_1, \dots, x_m]$ in torej vsebuje le spremenljivke dodeljene povezavam. Po drugi strani ima vsak monom M v polinomu R spremenljivko x_i z i > m. Očitno sedaj velja $\min(T_G) = \min\{\min(P_G), \min(R)\} \le \min(P_G)$.

Na podlagi zgornje trditve in konstrukcijskega izreka 7.10 iz prejšnjega razdelka velja naslednja trditev.

Trditev 7.17. Če je G polni graf, polni dvodelni graf ali drevo velja $tmind(G) \leq 2$.

Dodatno nas zanima, ali lahko v polni verziji rezultate za zgornje grafe še izboljšamo. Kot bomo videli v nadaljevanju je to mogoče v primeru dreves in polnih grafov. V primeru dreves si bomo ogledali konstrukcijski izrek, kjer gradimo grafe z dodajanjem ene nove povezave med obstoječim in novim vozliščem. Za polne grafe si bomo ogledali postopek, ki ne uporablja kombinatoričnega izreka o ničlah temveč direktno konstruira ustrezne utežitve iz poljubnih seznamov. Seveda bi tudi za polne grafe lahko postopali s pomočjo polinomov in matrik vendar se izkaže, da je dokaz na tak način precej dolg in zahteven in predvsem zahteva veliko dela z matrikami.

Trditev 7.18 (Przybyło and Woźniak [17]). Naj bo G = (V, E) graf za katerega velja $\operatorname{tmind}(G) = 1$. Naj bo $v \notin V$ novo vozlišče ter $u \in V$. Definiramo graf G' = G + uv. Tedaj velja $\operatorname{tmind}(G') = 1$.

Dokaz. Naj bo G orientiran graf z m povezavami in n vozlišči ter naj bo $A = A_G$ matrika pripadajoča grafu. Po predpostavki trditve torej velja $per[A_{j_1}, \ldots, A_{j_m}] \neq 0$ za nekih m stolpcev. Orientiramo novo povezavo e = uv in označimo $A' = A_{G'}$ matriko pripadajočo novemu grafu, ki je naslednje oblike

$$A' = \begin{bmatrix} & & & & 0 \\ A & C_e & \vdots \\ & & 0 \\ R_e & 0 & 1 \end{bmatrix}.$$

Pri tem sta R_e in C_e stolpec in matrika pripadajoča novi povezavi medtem ko zadnji stolpec, ki ga označimo z $A'_{l'}$ pripada novemu vozlišču. Sedaj preprosto vzamemo vse stolpec $A'_{j_1}, \ldots, A'_{j_m}$ ter zadnji stolpec $A'_{l'}$ in izračunamo per $[A'_{j_1}, \ldots, A'_{j_m}, A'_{l'}] = \text{per}[A_{j_1}, \ldots, A_{j_m}] \neq 0$.

Posledica trditve je torej tmind $(T_n) = 1$ za vsa drevesa T_n , saj vsako drevo lahko zgradimo na zgoraj opisan način.

Oglejmo si sedaj še primer polnih grafov. Kot smo že omenili pri tem ne bomo uporabili algebraičnih orodij. Označimo $V = \{v_1, \ldots, v_n\}$ in $E = \{e_1, \ldots, e_m\}$ množico vozlišč in povezav grafa G = (V, E) in nabor seznamov

$$L = \{L_{v_1}, \dots, L_{v_n}, L_{e_1}, \dots, L_{e_m}\}$$

velikosti k dodeljenih vozliščem in povezavam. Za potrebe izreka moramo definirati še nekaj pojmov. Za vsak seznam $L_a \in L$ definirajmo $\mathbf{m}_L(a) = \min L_a$ in $\mathbf{M}_L(a) = \max L_a$. S pomočjo tega definiramo najmanjšo potencialno totalno utež in največjo potencialno totalno utež kot

$$\begin{split} \mathbf{m}(L) &= \min \Big\{ \sum_{e \ni v} \mathbf{m}_L(e) + \mathbf{m}_L(v) : v \in V \Big\}, \\ \mathbf{M}(L) &= \max \Big\{ \sum_{e \ni v} \mathbf{M}_L(e) + \mathbf{M}_L(v) : v \in V \Big\} \end{split}$$

Zgornja izraza predstavljata najmanjšo in največjo možno utež, ki jo lahko dobi vozlišče v grafu, če ga utežimo iz seznamov. V primeru polnih grafov bomo dokazali malenkost močnejši izrek, ki nam bo podal dve različni utežitvi polnega grafa.

Izrek 7.19 (Przybyło and Woźniak [17]). Naj bo $G = K_n$ polni graf in naj bo L nabor seznamov velikosti 2 dodeljen vozliščem in povezavam polnega grafa. Potem obstajata vsaj dve različni veljavni totalni utežitvi grafa G z utežmi iz seznamov v L. Pri tem je ena izmed totalnih utežitev brez m(L) in druga brez M(L) končne uteži na vozliščih.

Dokaz. Izrek bomo dokazali z indukcijo glede na število vozliščn. V primeru $n \leq 2$ je izrek trivialen. Za indukcijski korak bomo grafu odstranili primerno izbrano vozlišče ter nato uporabili indukcijsko predpostavko na dobljenem manjšem grafu. Nato bomo odstranjeno vozlišče dodali nazaj ter ga ustrezno utežili, da zopet dobimo veljavno utežitev. Naj bo torej $G = K_n = (V, E)$ z vsaj tremi vozlišči. Naj bo L nabor seznamov kot v formulaciji izreka. Sedaj si izberemo poljubno vozlišče $v \in V$, ki lahko zavzame minimalno potencialno totalno utež m(L). Tako vozlišče res obstaja saj imamo opravka z končnimi grafi. Sedaj označimo G' = G - v in definirajmo nov nabor seznamov L' velikosti 2 za graf G' = (V', E') na naslednji način. Ker smo z odstranitvijo vozlišča v odstranili tudi v0 povezav ima zato v1 toliko manj seznamov, ki pripadajo povezavam. Sezname pripadajoče preostalim povezavah pustimo take kot so. Po drugi strani za vsako vozlišče v2 definiramo

$$L'_{u} = \{ \mathbf{m}_{L}(u) + \mathbf{m}_{L}(uv), \mathbf{M}_{L}(U) + \mathbf{m}_{L}(uv) \}.$$

Opazimo, da velja m(L') > m(L) saj uteži iz odstranjenih povezav prištejemo seznamom, ki pripadajo vozliščem. Po indukcijski predpostavki lahko sedaj najdemo veljavno utežitev ω' grafa G' iz seznamov L', tako da je totalna utež $c_{\omega'}^t(u)$ strogo večja od m(L') za vsako vozlišče $u \in V'$. Konstruirajmo sedaj totalno utežitev ω grafa G na naslednji način. Ker seznamov na povezavah nismo spreminjali ohranimo tudi uteži na teh povezavah. Torej za vsako povezavo $e \in E'$ nastavimo $\omega(e) = \omega'(e)$. Za vozlišče $u \in V'$ nastavimo $\omega(u) = \omega'(u) - m_L(uv)$ s čimer dosežemo, da imajo obstoječa vozlišča bodisi utež $m_L(u)$ ali $M_L(u)$. S tem smo sicer morda pokvarili pravilno utežitev vozlišč v V' vendar to preprosto popravimo. Za vsako novo povezavo $uv \in E \setminus E'$ nastavimo $\omega(uv) = \mathrm{m}_L(uv)$ in $\omega(v) = \mathrm{m}_L(v)$. Zaradi pravilno določenih uteži na novih povezavah velja $c_{\omega}^t(u) = c_{\omega'}^t(u) > \mathrm{m}(L)$. Zaradi tega je torej nova utežitev ω pravilna gledano na vozliščih iz V', saj so njihove uteži ostale nespremenjene. Poleg tega je nova utežitev tudi veljavna, saj vrednosti za uteži vzema iz originalnega nabora seznamov L. Po drugi strani za novo vozlišče velja $c_{\omega}^{t}(v) = \mathrm{m}(L)$ saj smo na samem vozlišču ter na vseh njegovih incidenčnih povezavah izbrali najmanjšo možno utež. Ker imajo vsa preostala vozlišča višjo končno utež smo konstruirali ustrezn polno utežitev iz danih seznamov. Dodatno velja tudi, da v tej utežitvi nobeno vozlišče ne zasede vrednosti M(L), saj je vsako vozlišče incidenčno z vsaj eno povezavo kjer smo izbrali najmanjšo možno utež. Ce bi želeli konstruirati utežitev, ki ne zasede najmanjše potencialne totalne uteži m(L) bi postopali popolnoma enako le da bi zamenjali vloge najmanjših in največjih uteži iz posameznih seznamov.

Do sedaj smo se v seznamski verziji problema ukvarjali samo s posebnimi družinami grafov. Posebne strukture takih družin so nam omogočale računanje permanentnega indeksa matrik pripadajočim tem družinam. Ali lahko kaj povemu tudi o splošnih grafih? Kot smo že omenili je težko kar koli povedati direktno iz matrike

poljubnega grafa. Tako je v splošnem potrebno uporabiti kakšno posebno konstrukcijo in uporabiti indukcijo na število vozlišč v grafu. Pri postopku moramo biti pozorni, da ohranjamo zadano mejo, ko povečujemo graf. Z tako metodo je mogoče izpeljat zgornjo mejo za parameter $\operatorname{ch}_{\Sigma}^e$ in sicer velja $\operatorname{ch}_{\Sigma}^e(G) \leq 2\Delta(G) + 1$, kar je bilo dokazano v [19]. Dokaz je sorazmerno dolg vendar uporablja zelo podbne ideje, ki smo jih že spoznali in sicer je dokaz konstrukcijske narave. Precej bolj preprosta zgornja meja obstaja v primeru totalne verzije.

Trditev 7.20. Za vsak graf G velja $\operatorname{ch}_{\Sigma}^t(G) \leq \Delta(G) + 1$

Dokaz. Trditev bomo dokazali s pomočjo seznamskega barvanja grafa. Spomnimo se razdelka o barvanju ter seznamskem barvanju grafa. Predstavili smo požrešno metodo, ki za barvanje uporabi največ $\Delta(G)+1$ barv. Enako seveda velja tudi za seznamsko verzijo barvanja. Velja torej $\mathrm{ch}(G) \leq \Delta(G)+1$ za vsak graf G. Zgornjo trditev bomo tako dokazali, če pokažemo $\mathrm{ch}_{\Sigma}^t(G) \leq \mathrm{ch}(G)$. Naj bo $\{L_1, L_2, \ldots, L_n\}$ nabor seznamov uteži za vozlišča velikosti največ $\Delta(G)+1$. Na povezavah v tem primeru niti ne potrebujemo veliko izbire zato predpostavimo, da imamo na povezavah sezname velikosti ena oziroma imamo podano povezavno utežitev ω . Označimo z $\{\omega(e) \mid e \in E(G)\}$ množico uteži na povezavah. Sedaj definiramo nov nabor seznamov za vozlišča, tako da za vsako vozlišče $v \in V(G)$ definiramo

$$L_v^+ = \{ w + \sum_{e \ni v} \omega(e) \mid w \in L_v \}.$$

Zgornji nabor seznamov prevzaprav predstavlja vse možne barve za posamezno vozlišče. Ker so bili originalni seznami velikosti $\Delta(G)+1$ velja $|L_v^+|=\Delta(G)+1$. Ampak, ker velja $\mathrm{ch}(G) \leq \Delta(G)+1$ lahko iz tega nabora seznamov izberemo pravilno barvanje. Ker smo sezname definirali na pameten način smo s tem izbrali tudi ustrezno utežitev za originalen problem.

V zgornji trditvi smo uporabili enostavno mejo $\operatorname{ch}(G) \leq \Delta(G) + 1$. Pravzaprav se to mejo lahko še malenkost izboljša. Kot smo že omenili za seznamsko barvanje velja Brooksov izrek oziroma njegova modifikacija. Če G ni polni graf ali lih cikel velja $\operatorname{ch}(G) \leq \Delta(G)$. Ker smo v primeru ciklov in polnih grafov že pokazali $\operatorname{ch}_{\Sigma}^t \leq 2$ lahko zaključimo da velja $\operatorname{ch}_{\Sigma}^t(G) \leq \Delta(G)$ za poljubne grafe G. V tem razdelku smo spoznali močno orodje s pomočjo katerega se lahko lotimo seznamske verzije problema. Poleg tega je vsaka rešitev seznamske verzije tudi rešitev originalne verzije in celo zastavljena domneva za seznamsko verzijo je enaka kot domneva originalne verzije. Če torej uspešno rešimo seznamsko verzijo rešimo tudi originalno verzijo. Vendar v kolikor odkrijemo proti primer za seznamsko verzijo domneve s tem ne ovržemo tudi originalne domneve. Dopolnimo sedaj tabelo rezultatov.

Tabela 3: Vrednosti $\chi_{\Sigma}^{e}(G)$, $\chi_{\Sigma}^{t}(G)$, $\operatorname{ch}_{\Sigma}^{e}$, $\operatorname{ch}_{\Sigma}^{t}$ za znane družine grafov.

Graf G	$\chi^e_{\Sigma}(G)$	$\chi_{\Sigma}^{t}(G)$	ch^e_Σ	ch^t_Σ
P_n	2	2	≤ 3	2
Referenca	3.2		7.12	7.18
C_n	$\begin{cases} 2, & 4 \mid n; \\ 3, & \text{sicer}; \end{cases}$	2	3	2
Referenca	3.3	6.3	7.9	7.15
K_n	3	2	3	2
Referenca	3.1	6.4	7.11	7.19
$K_{m,n}$	$\begin{cases} 1, & m \neq n; \\ 2, & \text{sicer;} \end{cases}$	$\begin{cases} 1, & m \neq n; \\ 2, & \text{sicer;} \end{cases}$	3	≤ 3
Referenca	3.5	,	7.11	
3-obarvljivi	3	≤ 3	/	/
Referenca	3.14			
$\mid T_n$	2	2	3	2
Referenca	3.8	6.2	7.12	7.18
dvodelni d -regularni, $d \ge 3$	2	2	/	/
Referenca	3.11			
dvodelni	≤ 3	2		/
Referenca	3.14	6.2		
splošni	≤ 5	≤ 3	$2\Delta(G) + 1$	$\Delta(G)$
Referenca	4.1	6.5		7.20

Kot je razvidno iz tabele 3 smo se tudi s seznamsko verzijo problema zelo približali oziroma dobilo celo enake rezultate kot v originalni verziji. Največja razlika v primerjavi s seznamsko verzijo problema so seveda splošni grafi. V zadnjem času je bila dokazana konstantna zgornja meja za totalno seznamsko verzijo. V [4] so pokazali, da velja $\mathrm{ch}_{\Sigma}^t(G) \leq 17$. Vendar glede na to, da je podobno veljalo za originalno verzijo ob postavitvi domneve smo lahko optimistični, da se bo meja za seznamsko verzijo v prihodnosti še izboljšala.

8 Algoritem za računanje 3-utežitve grafa

Predstavili smo kar nekaj izrekov in dokazov, ki uporabljajo algoritmične pristope. V glavnem smo s tem uspeli pokazati najboljše zgornje meje za parametra χ^e_{Σ} in χ^t_{Σ} . V tem primeru je zadoščal polinomski algoritem, ki je poiskal ustrezno utežitev za poljuben graf. V tem razdelku bomo predstavili algoritem, ki bo probal najti pravilno 3-utežitev za poljuben graf. Bralec lahko izvorno kodo za algoritem najde na repozitoriju [18]. Pod predpostavko domneve 1-2-3 bi se moral tak algoritem vedno uspešno končati. Torej bi moral vedno najti ustrezno 3-utežitev. Ampak, ker domneva še ni dokazana, ne vemo, ali bomo res uspeli najti rešitev za vsak graf. Kaj to pomeni? V najslabšem primeru bomo morali poizkusiti vse možne utežitve

grafa G. Takih utežitev je seveda ogromno in sicer $3^{|E(G)|}$. Poleg tega vemo, da je število povezav kvadratno odvisno od števila vozlišč in s tem težavnost problema v odvisnosti od števila vozlišč zelo hitro raste. Na podlagi zgornjih premislekov se nam zdi, da bomo lahko tak problem rešili le za majhne grafe. Za hiter premislek si oglejmo graf z 15 vozlišči in 75 povezavami. Tak graf ima torej $3^{75} \approx 6 \times 10^{35}$ različnih utežitev, kar je ogromno število za relativno majhen graf. Poleg računanja 3-utežitve za poljuben graf je iz vidika domneve zanimivo tudi analiziranje vseh grafov do nekega reda. Tako morda odkrijemo kakšen graf, za katerega ne obstaja pravilna 3-utežitev. S tem bi našli protiprimer za domnevo 1-2-3. Vendar tukaj pridemo do naslednjega problema. Poleg tega, da za posamezen graf predvidevamo eksponentno časovno zahtevnost, število vseh grafov na n vozliščih tudi raste eksponentno v odvisnosti od n. Izberimo si fiksno število vozlišč n. Koliko povezanih grafov na n vozliščih obstaja? Pravzaprav je to precej težko vprašanje. Oglejmo si najprej koliko je vseh grafov na n vozliščih, tudi takih, ki niso nujno povezani. Vseh možnih povezav je $\binom{n}{2}$ in ker vsako povezavo lahko bodisi vključimo bodisi ne, lahko tako generiramo $2^{\binom{n}{2}}$ grafov. Vendar pri tem lahko dobimo grafe, ki niso povezani ter so med seboj lahko tudi izomorfni. V tabeli 4 vidimo, kako hitro raste število povezanih neizomorfnih grafov. Računanje 3-utežitve na nepovezanih grafih ni smiselno saj

Tabela 4: Število povezanih grafov na n vozliščih.

n	5	6	7	8	9	10	11
# grafov	21	112	853	11117	261080	11716571	1006700565

moramo rešiti problem na vsaki izmed povezanih komponent. Prav tako se nam seveda ne izplača računati 3-utežitve na grafih, ki so izomorfn. Premislili smo že, da je parameter χ^e_{Σ} invarianta grafa in se tako ne spreminja pod izomorfizmi. Vendar je odgovor na vprašanje, koliko ne izomorfnih povezanih grafov na n vozliščih obstaja precej zahtevno in je lahko tema za celotno magistersko nalogo. Kljub temu, je odgovor podoben. Število grafov raste izredno hitro. Zaradi zgornjih ugotovitev se bomo problema lotili, tako da bomo

- analizirali vse grafe do reda 10 in
- naključne grafe večjih redov.

Iz tabele 4 je razvidno, da je vseh grafov na 11 vozliščih ogromno in je praktično nemogoče analizirati vse take grafe v zglednem času. Analiziranje lahko poenostavimo do te mere, da vse grafe za določeno stopnjo razdelimo glede na število povezav in vsako skupino grafov analiziramo vzporedno. Točno to bomo naredili tudi v našem primeru za n=10. Poleg tega nas bo zanimalo obnašanje algoritma na grafih z večjim redom. V ta namen bomo generirali naključne grafe večjih stopenj in opazovali obnašanje algoritma. V vseh grafih, ki jih bomo analizirali bomo opazovali naslednje lastnosti.

- Ali je naključna utežitev ustrezna?
- Ali najdemo utežitev z lokalnim iskanjem v polinomskem času?

- Ali je problem na grafu rešljiv (rekurzivno)?
- Kakšna je rekurzivna globina, kjer je algoritem našel rešitev?

Na grafih, ki jih bomo generirali naključno, bomo algoritem izvedli večkrat. To bomo storili z namenom, da za rezultate dobimo boljše statistične ocene in predvsem izločimo kakšne ekstremne primere.

8.1 Opis algoritma

8.1.1 Razveji glede na povezavo

Kot smo omenili bo moral algoritem v najslabšem primeru predelati vse možne utežitve za dan graf. To najlažje dosežemo, tako da si izberemo neko povezavo in problem nato razdelimo na 3 različne podprobleme, ki jih nato rekurzivno rešujemo. V vsakem podproblemu nastavimo različno utež na izbrani povezavi in je tekom izvajanja več ne spremenimo. Shema take delitve oziroma razvejitve je prikazana

Slika 11: Primer razvejitve problema preko povezave e.

na sliki 11. Na tak način lahko torej preverimo vse možne utežitve za dan graf. Če nobena izmed njih ne inducira pravilnega barvanja smo odkrili protiprimer za domnevo 1-2-3. Za razvejitev problema si moramo torej izbrati neko povezavo. Katera izbira je najboljša? Odgovor na to vprašanje je preprost. Ne vemo. Zato na tej točki potrebujemo hevristiko, ki nam bo na podlagi trenutnega stanja podala povezavo na kateri izvedemo delitev. V našem primeru bomo uporabljali naslednje hevristike za izbiro povezave.

- 1. Izberemo naključno, še ne označeno povezavo.
- 2. Izberemo neoznačeno povezavo, ki ima najvišjo stopnjo.
- 3. Izberemo neoznačeno povezavo, ki ima najnižjo stopnjo.

Katera hevristika je boljša je težko ocenit. Eksperimentalno si bomo ogledali vpliv zgornjih hevristik. Algoritem, ki uporablja samo preprosto delitev glede na utež povezave bo vedno deloval v eksponentnem času. Ali lahko v kakšnih primerih to izboljšamo? Za začetek lahko rekurzivno iskanje "odrežemo" oziroma zaključimo takrat, ko v že nastavljenih utežeh obstaja konflikt. Bolj natančno naj bo $uv \in E$ povezava in recimo, da smo med delitvijo nastavili vse uteži na povezavah incidenčnih u in v. Če je to povzročilo, da imata vozliči u in v enako utež, lahko iskanje rešitve po tej veji zaključimo, saj nobena izmed dobljenih utežitev ne bo ustrezna. Poleg tega lahko izvajanje še izboljšamo. Ideja je, da pred delitvijo opravimo nek bolj preprost postopek, ki morda najde ustrezno utežitev. Pri tem je pomembno, da tak postopek deluje v polinomskem času. S tem želimo preprečiti algoritmu, da preišče celotno rekurzivno drevo, temveč rešitev najde že prej.

8.1.2 Minimizacija konfliktov

Recimo, da ima graf G=(V,E) neko utežitev ω , ki ne inducira pravilnega barvanja. V tem primeru definiramo konflikt kot povezavo $e=(u,v)\in E(G)$ za katero velja $c_{\omega}(u)=c_{\omega}(v)$. To torej pomeni, da imata sosedji vozlišči enako inducirano barvo. Seveda imamo lahko takih konfliktov več zato označimo sC seznam vseh takih konfliktov. V tem razdelku bomo opisali postopek, kako v polinomskem času v odvisnosti od števila vozlišč, minimizirati število konflikov za dan graf in utežitev. Če seznam konfliktov spravimo na velikost 0 smo našli ustrezno utežitev. Začnemo, tako da vse konflikte postavimo v vrsto in sicer v poljubnem vrstnem redu. Sedaj vzamemo nek konflikt $e=(u,v)\in E(G)$ iz vrste, ter ga probamo odpravit. To bomo storili, tako da bomo spremenili uteži na povezavah, ki so incidenčne u in v. To je tudi edini način, da odpravimo konflikt e, saj inducirano barvo posameznega vozlišča določajo natanko njegove incidenčne povezave. Na sliki 12 lahko vidimo

Slika 12: Primer odprave konflikta e z modifikacijo uteži na sosednji povezavi.

primer odprave takega konflikta. Vendar smo s spremembo uteži $\sigma \mapsto \sigma'$, lahko ustvarili kakšen nov konflikt in sicer v soseščini vozliščx,v ali u. V našem algoritmu zato probamo konflikt odpravit, tako da spremenimo uteži na vseh povezavah, ki so incidenčne u in v. Pri tem izpustimo povezavo e, saj na konflikt nima vpliva. Za vsako spremembo uteži zabeležimo skupno število konflikov. Na koncu se odločimo za tisto spremembo uteži, ki ustvari najmanjše skupno število konfliktov. Po odpravi konflikta postopek nadaljujemo in iz vrste vzamemo naslednji konflikt. Algoritem končamo, če odpravimo vse konflikte, ali pa nobena sprememba uteži ne zniža števila konfliktov. V tem primeru zaključimo, da je minimizacija konfliktov neuspešna ter nadaljujemo z rekurzivnim algoritmom. Zaradi tega, ker algoritem poizkuša

minimizirati število konfliktov in ker zato uporablja le sosednje povezave bomo ta postopek imenovali lokalno iskanje (rešitve) oziroma lokalna minimizacija konfliktov.

Na grobo ocenimo časovno zahtevnost takega algoritma. Za seznam konfliktov velja ocena $|C| \leq m$. Za vsak konflikt $e \in C$ moramo pregledati vse sosednje povezave ter na vsaki izmed teh povezav poizkušati utež spremeniti na dva različna načina. Tako vse skupaj opravimo manj kot 4(n-1) sprememb uteži. Pod predpostavko, da modifikacija uteži ter popravek seznama konfliktov deluje v konstantnem času tako celotna minimizacija konfliktov deluje v $\mathcal{O}(mn)$ časovni zahtevnosti.

Algoritem z minimizacijo konfliktov lahko najde rešitev vendar zato nimamo nobenega zagotovila. Pričakujemo, da bo algoritem bolje deloval na grafih, ki so bolj redki torej imajo manjše število povezav. To pričakujemo predvsem zaradi dejstva, da imajo redki grafi manj povezav in s tem tudi manjšo možnost ustvarjanja novih konfliktov. Vendar v tem primeru nimamo veliko različnih možnosti za odpravo konflikta, ker ima posamezna povezava malo sosednjih povezav. V praksi se bo izkazalo, da vseeno minimizacija konfliktov deluje boljše v grafih z manjšim številom povezav. Poleg tega se moramo zavedati, da je lokalno iskanje uspešno le v primeru, ko odstrani vse konflike. Nimamo zagotovila, da je utežitev z enim samim konfliktom boljša od utežitve z več konflikti. To drži, saj smo že ugotovili, da moramo za odpravo konflikta spremeniti vsaj eno utež na incidenčnih povezavah. Če s tem ne odpravimo konflikta smo ustvarili utežitev z več konflikti, vendar je to nujno potrebno za odpravo začetnega konflikta.

8.1.3 Razveji z minimizacijo konfliktov

Kot smo že opisali bo končen algoritem deloval kot kombinacija lokalnega iskanja rešitve z minimizacijo konfliktov ter razvejitve. Algoritem začne z naključno utežitvijo povezav. Če je seznam konfliktov C prazen smo zaključili in je naključna utežitev inducirala pravilno barvanje. V nasprotnem primeru izvedemo minimizacijo konfliktov in ponovno zaključimo, če je seznam konfliktov prazen. Drugače s pomočjo hevristike izberemo povezavo e, ki je še nismo uporabili. Problem nato razvejimo na 3 podprobleme, kjer ima v vsakem podproblemu povezava e različno utež ter nadaljujemo rekurzivno. Pri tem v vsaki veji beležimo zgodovino. To je seznam povezav z utežmi, ki smo jih izbrali pri delitvah v algoritmu. Dolžina tega seznama nam poda rekurzivno globino pri kateri je algoritem našel rešitev.

Algoritem 1: Algoritem za izračun 3-utežitve poljubnega grafa.

```
Vhod: Graf G
Izhod: Graf G z utežitvijo \omega
Function Solve123(G):

G.LocalSolve();

if G.Solved() then

| return G;

else

| e = GetSplitEdge(G);

for w = 1 to 3 do

| result = Solve123(G.Split(e));

if result then

| return False;

End Function
```

8.2 Rezultati izvajanja

Za namen testiranja izvajanja algoritma potrebujemo še nabor grafov na katerih bomo algoritem izvajali. Grafe bomo generirali s pomočjo knjižnjice nauty in ukazov geng in genrang. Več informacij o knjižnjici in predvsem o tem kako deluje lahko bralec najde v McKay and Piperno [13]. Zgornja ukaza generirata vse grafe z določenimi omejitvami kot so število vozlišč, povezav, regularnost ter podobno. Prav tako lahko generiramo naključne grafe poljubnih velikosti. Uporabljali bomo t.i. graph6 format za shranjevanje grafov, saj nauty grafe lahko generira v takšnem formatu. Prav tako veliko drugih knjižnjic podpira tak format. Ideja leži v tem, da posamezen graf predstavimo z neko unikatno besedo. Pri tem je pomembno, da lahko na podlagi besede vedno dobimo enoličen graf kot množico vozlišč in povezav. Začnemo z matriko sosednosti ter opazujemo zgornji desni trikotnik, saj je matrika simetrična. Sedaj vnose matrike beremo po vrsticah iz leve proti desni ter jih zapišemo v eno vrstico oziroma vektor. S pomočjo preprostega kodiranja zapišemo celoten vektor kot besedo. Pri tem je treba biti pazljiv, kako opravimo kodiranje, da bomo lahko prebrali nazaj matriko sosednosti. Ker je to del posameznih knjižnjic in se s samim kodiranjem grafov nismo ukvarjali si raje oglejmo kako izgledajo rezultati izvajanja algoritma. Algoritem torej zaženemo na neki množici grafov in pri tem opazujemo kako je algoritem rešil problem za posamezen graf. Zabeležimo informacijo o samem grafu in njegovih lastnostih ter podatke o izvajanju algoritma. V to sodi na kakšen način je algoritem našel rešitev (naključno, z lokalnim iskanjem ter rekurzivno globino) ter koliko časa je pri tem porabil. V primeru, da algoritem poganjamo na naključno generiranih grafih vse rezultate še povprečimo na posamezen graf ter hevristiko, tako da za vsak graf in vsako uporabljeno hevristiko na njem dobimo en rezultat.

Primer rezultatov izvajanja algoritma lahko vidimo v tabeli 5. V enakem formatu smo shranili tudi vse ostale rezultate. Algoritem ni imel večjih težav pri iskanju ustreznih rešitev za vse možne povezane grafe do stopnje 10. Zaradi velikega števila

Tabela 5: Primer rezultatov izvajanja algoritma. Stolpec H predstavlja uporabljeno hevristiko pri razvejitvi. Če algoritem najde rešitev že pred razvejitvijo zabeležimo uporabljeno hevristiko kot Null ter prav tako rekurzivno globino d_r .

G	\boldsymbol{n}	m	t[s]	Η	Naključno	Lokalno	Razveji	d_r
	:						:	
FTnvo	7	15	0.00026	0	0	1	0	Null
FTnvw	7	16	0.00024	0	0	1	0	Null
	:						:	
HCdebRX	9	16	0.00032	1	0	0	1	2
HCdebQk	9	15	0.0011	1	0	0	1	5
	:						:	

grafov velikosti 10 smo algoritem izvajali vzporedno in sicer smo grafe razdelili glede na število povezav.

Slika 13: Primerjava med različnimi rešitvami za grafe do stopnje 10 v odvisnosti od števila vozlišč.

Pri analiziranju rešitev se bomo osredotočili na to, kako je algoritem našel rešitev. Pričakujemo lahko, da bo naključna utežitev in lokalno iskanje boljše delovalo na grafih z manjšim številom povezav in vozlišč. To je razumljivo, saj je pri manjšem število povezav tudi manj vseh možnih utežitev. Zato naključna utežitev lahko prinese uspešne rezultate. Prav tako lokalno iskanje deluje dobro pri manjših grafih saj je manj možnosti za konflikte. Na sliki 13 vidimo rezultate izvajanja algoritma na vseh grafih do stopnje 10. Kot je razvidno se delež grafov, ki so bili rešeni naključno zamnjšuje, ko povečujemo stopnje vozlišč. Po drugi strani opazimo, da se delež lokalno rešljivih grafov povečuje. Vendar je to posledica tega, da se s številom vozlišč zelo hitro povečuje število grafov. Pri je še vedno velika večina grafov rešljivih z lokalnim iskanjem. Po drugi strani se s številom vozlišč povečuje

Slika 14: Primerjava med različnimi rešitvami za grafe do stopnje 10 v odvisnosti od števila povezav.

tudi možno število povezav. Na sliki 14 prikazujemo delež rešitev v odvisnosti od števila povezav. Opazimo, da se delež lokalno rešljivih grafov nekaj časa povečuje ter nato začne padati. Razlog za naraščanje leži v tem, da se število naključno rešljivih grafov zmanjšuje. Nato število povezav in število možnih utežitev postane veliko ter grafov skoraj ne moremo več rešiti naključno. Opazi se tudi, da lokalno iskanje ne najde vedno rešitve in je potrebna razvejitev problema.

Poleg analiziranja vseh možnih grafov do stopnje 10 smo algoritem pognali tudi na večjih grafih. Vendar smo v tem primeru izbrali naključne grafe različnih velikosti. Pri tem smo za vsak analiziran graf algoritem ponovili 10 krat, ter nato vse rezultate povprečili na posamezen graf. To smo storili, da dobimo boljšo oceno za

Slika 15: Primerjava med različnimi rešitvami za grafe višjih stopenj.

naključno generiran graf. Vsak graf smo na začetku utežili z naključnimi utežmi ter uporabili hevristiko, ki izbere naključno povezavo za razvejitev. Pričakovano je, da

bo algoritem za večje grafe potreboval več časa, da najde rešitev. Prav tako bomo opazovali na kakšen način algoritem najde rešitev.

Na sliki 15 lahko opazimo, da se število naključno rešljivih grafov zelo hitro zmanšuje in za grafe z več kot 20 vozlišči praktično nismo več našli naključne rešitve. Delež lokalno rešljivih grafov se prav tako zmanjšuje. Zaradi tega se seveda povečuje število grafov, ki so potrebovali razvejitev. Kot že omenjeno je to pričakovan rezultat. Ali lahko kaj več povemo o izvajanju razvejitve? Poleg tega, da smo spremljali kako je algoritem našel rešitev smo pri rekurzivnih rešitvah opazovali tudi rekurzivno globino oziroma število razvejitev, ki jih je algoritem opravil preden je našel rešitev. Na sliki 16 vidimo, kako se spreminja rekurzivna globina glede na

Slika 16: Skatlasti diagrami rekurzivne globine glede na število vozlišč.

število vozlišč. Rekurzivno globino smo ponazorili z t.i. škatlastim diagramom, ki prikazuje povprečje, mediano, prvi in tretji kvartil ter minimalne in maksimalne vrednosti. S pomočjo škatlastih diagramov lažje opazujemo porazdelitev neke slučajne spremenljivke. Opazimo, da rekurzivna globina narašča. Hitrost naraščanja težko ocenimo. Kot smo že omenili je razumljivo, da se rekurzivna globina povečuje saj se s številom vozlišč povečuje tudi število povezav. Ravno število povezav je tisto, kar najbolj vpliva na delovanje algoritma. Poleg tega, da rekurzivna globina narašča se povečuje tudi razpon rekurzivnih globin. To si morda lahko predstavljamo na naslednji način. Več kot ima graf vozlišč več različnih grafov obstaja in pri tem obstajajo grafi, ki so za algoritem težji ter tudi lažji. Ravno zaradi tega je razpon vrednosti večji pri grafih z večjim redom. V sosednjem diagramu smo poizkušali uravnotežit naraščanje števila povezav, tako da smo rekurzivno globino delili s številom povezav. To smo storili preden smo izrisali škatlaste diagrame, saj smo za vsak graf utežili njegovo rekurzivno globino. Rezultati so zelo zanimivi, saj med drugim opazimo, da utežena rekurzivna globina na začetku celo pada nato pa narašča zelo počasi. Poleg tega se stabilizirajo tudi razponi vrednosti pri večjih grafih. Zelo zanimivo je tudi dejstvo, da za grafe z več kot 30 vozlišči nikoli nismo razvejili algoritma na več kot 10% vseh povezav grafa. V povprečju smo razvejili celo na manj kot 5% vseh povezav. Ena izmed možnih razlag je v tem, da algoritem pravzaprav odreže velik del celotnega iskalnega drevesa. Algoritem konča z neko vejo, takoj ko ugotovi, da nekega konflikta ne more odpravit, saj bi nujno moral spremeniti utež na eni izmed povezav na kateri je že bila izvedena delitev. To seveda ni mogoče zato v tisti veji ne išče več rešitev. Ker smo grafe generirali naključno je seveda možno tudi to, da

smo imeli srečo in generirali grafe, ki so za algoritem "ugodni". Prav tako bi morali analizirati še grafe večjih redov, da bi lahko potrdili kako se spreminja število delitev oziroma delež povezav na katerih se opravi delitev.

Oglejmo si še kako se spreminja čas, ki ga algoritem porabi za analiziranje posameznega grafa. Seveda je razumljivo, da se bo čas izvajanja povečeval saj se hitro

Slika 17: Škatlasti diagrami časa izvajanja algoritma.

povečuje tudi število povezav v grafu. Ko smo analizirali lokalno iskanje rešitve smo ocenili tudi njegovo časovno zahtevnost, ki je bila polinomska v odvisnosti od števila vozlišč. To potrdimo tudi z diagramom na sliki 17. Na isti sliki imamo tudi diagram časa izvajanje rekurzivnega algoritma. Seveda bo za rekurzivno rešitev algoritem potreboval več časa kot za lokalno rešitev saj mora pred vsako delitvijo opravit lokalno iskanje. Iz vidika prejšnjih ugotovitev lahko sklepamo, da rekurzivni algoritem vseeno ne porabi toliko več časa kot lokalno iskanje. Če bi lahko omejili število delitev rekurzivnega algoritma z $\mathcal{O}(m)$ bi njegova celotna časovna zahtevnost postala polinomska. Vendar kaj takega ne moremo sklepati le na podlagi dobljenih rezultatov, saj ne vemo, kako bi se algoritem obnašal na večjih grafih.

Pri vseh grafih, ki smo ji analizirali smo uporabili naključno povezavo za razvejitev problema. To je tudi eden izmed razlogov, zakaj smo algoritem na posameznem grafu pognali večkrat saj izbira povezave vpliva na iskanje pravilne utežitve. Morda kakšna druga hevristika deluje bolje? Kot smo omenili smo implementirali še dve drugi hevristiki in sicer ena vzame povezavo z najnižjo stopnjo ter druga povezava z najvišjo stopnjo. V diagramu 18 so prikazani škatlasti diagrami rekurzivne globine glede na različne tipe hevristike. Pri tem smo generirali 10000 naključnih grafov na 60 vozliščih in algoritem pognali na vsakem grafu z uporabo vseh treh hevristik. Med hevristikami ni opaziti večjih razlik. Vendar vseeno se morda delovanje hevristik razlikuje, če rezultate pogledamo bolj natančno. V diagramu 19 vidimo, kako je rekurzivna globina odvisna od minimalne stopnje vozlišča v grafu. Pri tem opazimo, da max hevristika deluje malo boljše za grafe z večjo minimalno stopnjo medtem ko min hevristika deluje bolje za grafe z manjšo minimalno stopnjo. Naključna hevristika generalno deluje podobno kot ostali dve. Kljub temu, da je na diagramu videti male razlike med samimi hevristikami so te razlike majhne in verjetno nimajo velikega vpliva na izvajanje algoritma.

Z algoritmom smo uspeli analizirati vse grafe z vključno 10 vozlišči in pri vseh smo uspešno našli rešitev. Pri tem smo skupno analizirali kar 11989754 različnih

Slika 18: Škatlasti diagrami rekurzivne globine glede na hevristike.

Slika 19: Rekurzivna globina glede na hevristiko v osvisnosti od minimalne stopnje grafa.

neizomorfnih grafov. Algoritem je v tem primeru rešitve našel precej hitro. Kljub temu je bil skupni čas izvajanja dolg, saj je število grafov veliko. Poleg tega smo opazovali obnašanje tudi na večjih grafih, kjer smo naključno generirali nekaj grafov za posamezne stopnje vozlišč. Opazovali smo kako se z višanjem števila vozlišč povečuje rekurzivna globina in čas izvajanja algoritma. Ogledali smo si tudi vpliv različnih hevristik in ugotovili, da med njimi ni prav veliko razlik.

9 Zaključek in nadaljno delo

V začetnem delu magistrske naloge smo predstavili najboljše do sedaj zbrane rezultate za domnevo 1-2-3. Presenetljivo je, da so trenutno najboljši rezultati zelo blizu domneve ter so poleg tega še sorazmerno preprosti. Zdi se, da bi z uporabo obstoječih metod te rezultate zelo težko izboljšali. Za doseganje boljših rezultatov je potrebno razviti nove metode, ter odkriti morda še neznane lastnosti grafov. To morda celo ni mogoče v splošnem, saj še vedno ne vemo, ali obstaja kakšen protiprimer. Zagotovo lahko trdimo, da morebiten protiprimer vsebuje vsaj 11 vozlišč. S podobnimi metodami smo se lotili tudi najbolj osnovne variacije domneve 1-2-3, ki ji pravimo domneva 1-2. Tukaj smo uteži dodelili tako povezavam kot vozliščem ter opazovali skupno oziroma totalno utež. Prav tako smo na sorazmerno preprost

način prišli do zelo dobrega rezultata. Uspelo nam je tudi izboljšati vse rezultate iz povezavne verzije. To ni bila edina variacija domneve 1-2-3, ki smo jo obravnavali. Velik del smo posvetili t.i. seznamski verziji domneve 1-2-3 ter domneve 1-2. V tem primeru se je izkazalo, da lahko uporabimo elegantno, vendar vseeno sorazmerno preprosto in predstavljivo orodje iz abstraktne algebre. S pomočjo polinomov in matrik smo uspeli izračunati seznamsko obliko parametrov iz prvega dela magistrske naloge za posebne družine grafov. Prav tako smo si s pomočjo konstrukcije posebne matrike ogledali, kako lahko generiramo nove grafe, za katere se ohranja nizka vrednost iskanih parametrov. Za razliko od kromatičnega števila in njegove seznamske posplošitve je zastavljena domneva v tem primeru kar enaka neseznamski verziji. To je seveda presenetljivo, saj so seznamski problemi v glavnem precej težji. Ravno to je verjetno razlog, da do danes še nimamo konstantne zgornje meje za seznamsko verzijo domneve 1-2-3 in je s tem konstantna zgornja meja še vedno odprt problem. Po mojem mnenju je ravno na tem področju največ možnosti za napredek. Prav tako tukaj nimamo nobenih omejitev, da z obstoječimi metodami ne bi dosegli boljših rezultatov. Napredek v linearni algebri predvsem pri računaju permanent lahko močno pomaga pri analiziranju seznamske verzije domneve 1-2-3.

Poleg eksaktnih rezultatov smo si ogledali tudi kako poiskati ustrezno rešitev na velikih in naključnih grafih. Pri tem smo odkrili, da skoraj vedno zadoščata že uteži 1 in 2. S tem je mišljeno, da ima skoraj vsak naključno izbran graf pravilno 2-utežitev. To je posledica asimptotskih rezultatov za kromatično število ter minimalno stopnjo. Potrebujemo tudi poseben izrek o podgrafih z omejenimi stopnjami. Rezultat je presenetljiv in nam poenostavi računanje parametra za večje grafe, če zadoščajo določenim lastnostim. Pri tem smo pokazali, da skoraj vsak graf tem lastnostim res zadošča. Izrek, ki smo ga pokazali za take grafe, eksplicitno konstruira ustrezno utežitev.

Domneva 1-2-3 je bila zastavljena leta 2004. V tem času bil dosežen velik napredek. Pri tem so bile uporabljene različne metode iz različnih vej matematike. Kljub velikemu napredku je težko oceniti, kako hitro bo razrešena. Za primerjavo, kromatično število za ravninske grafe je bil dolgo časa odprt problem. Domneva je bila zastavljena že v 19. stoletju, vendar je dokaz prišel šele proti koncu 20. stoletja. Pri tem je bilo mnogo neuspelih poizkusov. Zanimivo je tudi to, da je bil izrek petih barv dokazan že v 19. stoletju in je minilo skoraj 100 let, preden je bil dokazan izrek štirih barv. Prav tako je moral računalnik opravit del dokaza, kar je bila tudi ena izmed prvih uporab računalnika pri dokazovanju. Trenutno uporabe domneve 1-2-3 oziroma njenih rezultatov v praksi nisem zasledil in je zato zanimiva zgolj teoretično, saj nam podaja neko lastnost grafov, ki je bila do sedaj še neraziskana. Kljub temu je domneva 1-2-3 močno povezana z barvanjem grafov, kar je verjetno ena izmed bolj raziskanih področij teorije grafov. Poleg tega ima ogromno uporabnih posledic na različnih področjih. Zato bo nekoč morda domneva 1-2-3 dobila uporabno vrednost tudi v praksi, ne glede na to, ali bo ovržena ali dokazana. Rezultati, odkriti do sedaj podajajo velik vpogled v to, kako lahko s pomočjo celoštevilskih uteži na povezavah konstruiramo pravilna barvanja grafov. To lahko storimo že sedaj z obstoječimi rezultati in pri tem potrebujemo le uteži $\{1, 2, 3, 4, 5\}$.

Literatura

- [1] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. *Discrete Appl. Math.*, 156(7):1168–1174, 2008. doi: 10.1016/j.dam.2007.05.059.
- [2] N. Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8(1-2):7-29, 1999. ISSN 0963-5483. doi: 10.1017/S0963548398003411.
- [3] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. *J. Graph Theory*, 60(3):242–256, 2009. doi: 10.1002/jgt.20354.
- [4] L. Cao. Total weight choosability of graphs: towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 149:109–146, 2021. doi: 10.1016/j.jctb.2021.01.008.
- [5] G. J. Chang, C. Lu, J. Wu, and Q. Yu. Vertex-coloring edge-weightings of graphs. *Taiwanese J. Math.*, 15(4):1807–1813, 2011. doi: 10.11650/twjm/ 1500406380.
- [6] R. Diestel. *Graph Theory*, volume 173 of *Graduate Texts in Mathematics*. Springer, Berlin, fifth edition, 2018.
- [7] R. Hammack, W. Imrich, and S. Klavžar. *Handbook of Product Graphs*. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2011.
- [8] M. Kalkowski. A note on the 1,2-conjecture. Zasebna komunikacija.
- [9] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3-conjecture. *J. Combin. Theory Ser. B*, 100(3):347–349, 2010. doi: 10.1016/j.jctb.2009.06.002.
- [10] M. Kalkowski, M. Karoński, and F. Pfender. A new upper bound for the irregularity strength of graphs. SIAM J. Discrete Math., 25(3):1319–1321, 2011. doi: 10.1137/090774112.
- [11] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours. *J. Combin. Theory Ser. B*, 91(1):151–157, 2004. doi: 10.1016/j.jctb.2003.12.001.
- [12] M. Krivelevich and B. Sudakov. Coloring random graphs. *Inform. Process. Lett.*, 67(2):71–74, 1998. doi: 10.1016/S0020-0190(98)00092-1.
- [13] B. D. McKay and A. Piperno. Practical graph isomorphism, II. *J. Symbolic Comput.*, 60:94–112, 2014. doi: 10.1016/j.jsc.2013.09.003.
- [14] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
- [15] J. Przybyło. The 1-2-3 conjecture almost holds for regular graphs. *J. Combin. Theory Ser. B*, 147:183–200, 2021. doi: 10.1016/j.jctb.2020.03.005.
- [16] J. Przybyło and M. Woźniak. On a 1, 2 conjecture. Discrete Math. Theor. Comput. Sci., 12(1):101–108, 2010.

- [17] J. Przybyło and M. Woźniak. Total weight choosability of graphs. *Electron. J. Combin.*, 18(1):Paper 112 (11 pages), 2011.
- [18] G. D. Romih. URL https://github.com/gasperxy/Domneva-123. Domneva-123(github repozitorij z izvorno kodo).
- [19] B. Seamone. Bounding the weight choosability number of a graph, 2014. arXiv:1210.6944 [math.CO].