§ 6. Almost complex manifolds

 \underline{Def} : Let X be a smooth manifold. An almost complex structure on X is a bundle map $J:TX \to TX$ s.t. $J^2 = -Id_{TX}$.

Rmk: If X carries an almost complex structure, then dim (X) is even.

Prop: Any complex manifold X induces an almost complex structure on the underlying smooth manifold.

Pf: Let Z; = X; + J-Ty; be complex coordinates. Define

$$\underline{1}\left(\frac{9^{x^i}}{9}\right) := \frac{9^{\lambda^i}}{9}$$

$$\underline{1}\left(\frac{9\lambda!}{9}\right) := -\frac{9\times!}{9}$$

We only need to check that I is well-defined.

Suppose $\widetilde{Z}_i = X_i + J - I y_i$ are another set of complex coordinates.

Then
$$\frac{\partial}{\partial \widetilde{x}_{j}} = \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial \widetilde{x}_{j}} \frac{\partial}{\partial x_{i}} + \sum_{i=1}^{n} \frac{\partial y_{i}}{\partial \widetilde{x}_{j}} \frac{\partial}{\partial y_{i}}$$

$$\frac{\partial}{\partial \widetilde{y}_{i}} = \sum_{i=1}^{n} \frac{\partial y_{i}}{\partial \widetilde{y}_{i}} \frac{\partial}{\partial y_{i}} + \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial \widetilde{y}_{i}} \frac{\partial}{\partial x_{i}}$$

and so
$$\underline{J\left(\frac{\partial \tilde{x}^{2}}{\partial y}\right)} = \sum_{i=1}^{n} \frac{\partial \tilde{x}^{2}}{\partial x^{2}} \frac{\partial \tilde{y}^{2}}{\partial y} - \sum_{i=1}^{n} \frac{\partial \tilde{x}^{2}}{\partial y^{2}} \frac{\partial \tilde{x}^{2}}{\partial x}$$

$$= \frac{9\tilde{\lambda}^{2}}{9}$$

$$= \sum_{\mu=1}^{2} \frac{9\tilde{\lambda}^{2}}{9\tilde{\lambda}^{2}} \frac{9\tilde{\lambda}^{2}}{9} + \sum_{\mu=1}^{2} \frac{9\tilde{\lambda}^{2}}{9\tilde{\lambda}^{2}} \frac{9\tilde{\lambda}^{2}}{9}$$

by the Cauchy-Riemann equations. Similarly, we have $\mathcal{I}\left(\frac{9\tilde{\lambda}}{9}\right) = -\frac{9\tilde{x}}{9}$

Hence J is well-defined and by construction, $J^2 = -Id$.

Given (X, J), we decompose TCX := TX OC $T_{c}X = T'' \times \oplus T'' \times$

as direct sum of ±J-I - eigenspaces of J.

As in the linear case, we define

$$\frac{\bigwedge_{\mathcal{C}}^{k} X := \bigwedge_{\mathcal{C}}^{k} (T_{\mathcal{C}} X)^{*}}{\bigwedge_{\mathcal{C}}^{p,q} X := \bigwedge_{\mathcal{C}}^{k} (T_{\mathcal{C}}^{r,q} X)^{*} \otimes \bigwedge_{\mathcal{C}}^{q} (T_{\mathcal{C}}^{r,q} X)^{*}}$$

which are complex vector bundles on X. Denote

$$A_{\mathcal{C}}^{k}(X) := \left\{ \alpha : X \xrightarrow{C_{\infty}} \Lambda_{\mathcal{C}}^{k} X : \pi \cdot \alpha = id_{X} \right\}$$

$$A_{\mathcal{C}}^{k}(X) := \left\{ \alpha : X \xrightarrow{C_{\infty}} \Lambda_{\mathcal{C}}^{k} X : \pi \cdot \alpha = id_{X} \right\}$$

the space of smooth complex k-forms and (p,q)-forms on X.

$$\frac{P_{rop}: \text{ We have}}{\bigwedge_{\mathcal{L}}^{k} \times = \bigoplus_{p+q=k}^{p+q=k} \bigwedge^{p,q} \times} \underbrace{A_{\mathcal{L}}^{k}(x) = \bigoplus_{p+q=k}^{p,q} \bigwedge^{p,q}(x)}_{A^{p,q}(x) = \bigwedge^{q,p}(x)} \underbrace{A_{\mathcal{L}}^{k}(x) = \bigoplus_{p+q=k}^{q,p} \bigwedge^{p,q}(x)}_{A^{p,q}(x) = A^{q,p}(x)}$$

Let
$$\Pi^{p,q}: A^{p+q}_{c}(X) \longrightarrow A^{p,q}(X)$$
 be the projection and define
$$\overline{\partial} := \Pi^{p,q+1} \cdot J: A^{p,q}(X) \longrightarrow A^{p,q+1}(X)$$

$$\overline{\partial} := \Pi^{p,q+1} \cdot J: A^{p,q}(X) \longrightarrow A^{p,q+1}(X)$$

We continue to have

$$\partial(\alpha \vee \beta) = \partial \alpha \vee \beta + (-i)^{|\alpha|} \alpha \vee \partial \beta \quad , \ \overline{\partial}(\alpha \vee \beta) = \overline{\partial} \alpha \vee \beta + (-i)^{|\alpha|} \alpha \vee \overline{\partial} \beta$$

Prop: Let (X, J) be a complex manifold. Then

Pf: As we have local complex coordinates, the proof follows from local theory.

However, for a general almost complex manifold (X,J), it's not necessarily that $d=\partial+\bar\partial$ on $A^k_{\alpha}(X)$ when $k\geqslant 1$

$$A^{2,0}(x) \xrightarrow{\overline{\partial}} A^{1,1}(x)$$

$$A^{0,2}(x)$$

Def: An almost complex structure J on X is said to be integrable if $[T^{\circ,i}, T^{\circ,i}] \subset T^{\circ,i}X$, where [-,-] denotes the Lie bracket on $T_{\mathbb{C}}X$.

Prop: The followings are equivalent:

O J is integrable.

② N = 0

 $\exists d = \partial + \overline{\partial} \quad \text{on} \quad A_{\mathcal{L}}^{k}(\chi)$

⊕ ∂²= 0

 $\bigcirc \Rightarrow \bigcirc : \forall u, v \in \mathcal{T}^{\circ,1} \times \text{ and } x \in \mathcal{A}^{1,\circ}(x)$

 $N(u,v)d = d\alpha(u,v) = u\alpha(v) - v\alpha(u) - \alpha([u,v]) = 0$ since, $u,v,[u,v] \in T^{\bullet,i}X$.

 $\mathfrak{D}\Rightarrow\mathfrak{J}:$ It is trivial for $d\in A'_{\mathfrak{C}}(X)$. For general $d\in A'_{\mathfrak{C}}(X)$

write d as

$$\alpha = \sum_{b+b=k}^{b+b=k} \alpha_{i,\dots i_{b}} j_{i,\dots j_{d}} w_{i,n} \dots w_{i_{b}} \otimes \overline{w}_{j,n} \dots w_{j_{d}}$$

Then

Moreover, di,...ipji...j2 is just a function, so we also have
$$ddi_1...ipj_1...j_2 = \partial di_1...ipj_1...j_2 + \overline{\partial} di_1...ipj_1...j_2$$

As a whole, we have da = da + da.

$$(4) \Rightarrow 0 : \text{ Given } x \in A^{0,1}(X) \text{ and } u,v \in T^{0,1}X, \text{ we have}$$

$$dx(u,v) = ux(v) - vx(u) - x([u,v]) = \overline{\partial}x(u,v)$$
Lets take $x = \overline{\partial}x$ for $x \in A^{\infty}(X)$:

$$o = \overline{\partial}^{2} f(u,v) = u \, \overline{\partial} f(v) - v \, \overline{\partial} f(u) - \overline{\partial} f([u,v])$$

$$= u(vf) - v(uf) - \overline{\partial} f([u,v])$$

$$= df([u,v]) - \overline{\partial} f([u,v]) = \partial f([u,v])$$

As ∂f generates $A',^{\circ}(X)$ locally, we must have $[u,v] \in T^{\circ,i}X$. \square

Thm: [Newlander - Nierenberg]

An almost complex structure is integrable if and only if it is induced by complex coordinates.

Since
$$\partial^{2} = \overline{\partial}^{2} = 0$$
, we can define the cohomology groups
$$H^{p,q}_{\partial}(X) := \frac{\ker(\partial : A^{p,q}(X) \longrightarrow A^{p+1,q}(X))}{\operatorname{Im}(\partial : A^{p-1,q}(X) \longrightarrow A^{p,q}(X))}$$

$$H^{p,q}_{\overline{\partial}}(X) := \frac{\ker(\overline{\partial}_{E} : A^{p,q}(X) \longrightarrow A^{p,q+1}(X))}{\operatorname{Im}(\partial : A^{p,q}(X) \longrightarrow A^{p,q+1}(X))}$$

called the Hodge cohomology groups.

A version of the Newlander-Nierenberg theorem holds for complex vector bundles. To state the theorem, for a complex vector bundle $E \to X$, we write $A^k(E)$ and $A^{P,q}(E)$ for the space of smooth sections of $\Lambda^k_{\mathfrak{C}}X\otimes E$ and $\Lambda^{P,q}X\otimes E$, respectively.

Thm: Let X be complex manifold. A complex vector bundle $E \to X$ carries a holomorphic structure if and only if there exists $\overline{\partial}_E: A^{P,2}(E) \longrightarrow A^{P,2+1}(E)$ s.t.

 $\overline{\partial}_{E}(d \otimes s) = \overline{\partial}_{d} \otimes s + (-1)^{P+g} d \wedge \overline{\partial}_{E} s$

 $\forall \alpha \in A^{p,q}(X), s \in A^{\circ}(E), \text{ and } \overline{\partial}_{E}^{2} = 0$

Pf: We only prove the existence of $\overline{\partial}_E$ for a holomorphic vector bundle $E \to X$. Let ψ_i be a local trivialization of E and (ψ_{ij}) be the corresponding cocycle. For a smooth section $s \in A^{\circ}(E)$, write

 $S|_{U_i} = \sum_{\alpha=1}^r S_i^{(\alpha)} \psi_i^{-1}(1_{\alpha})$

for some smooth $s_{i}^{(a)}: U_{i} \to \mathbb{C}$. Define $\overline{\partial}_{E} s |_{U_{i}} = \sum_{\alpha=1}^{r} \overline{\partial} s_{i}^{(a)} \otimes \psi_{i}^{-1}(1_{\alpha})$

We prove that $\overline{\partial}_{E}$ is well-defined. Recall that $s_{i}^{(a)} = \sum_{\beta=i}^{r} s_{j}^{(\beta)} \psi_{ij}^{(\beta a)}$

Then

$$\overline{\partial}_{E} s \Big|_{u_{i}} = \sum_{\alpha=1}^{r} \overline{\partial} s_{i}^{(\alpha)} \otimes \psi_{i}^{(1)}(1_{\alpha})$$

$$= \sum_{\alpha=1}^{r} \sum_{\beta=1}^{r} \overline{\partial} (s_{j}^{(\beta)} \psi_{ij}^{(\beta a)}) \otimes \psi_{i}^{(1)}(1_{\alpha})$$

$$= \sum_{\alpha=1}^{r} \frac{1}{\beta} \overline{S}_{j}^{(\beta)} \psi_{ij}^{(\beta\alpha)} \otimes \psi_{i}^{-1}(1_{\alpha}) \quad (: \psi_{ij}^{(\alpha\beta)} \text{ is holomorphic})$$

$$= \sum_{\beta=1}^{r} \overline{S}_{j}^{(\beta)} \otimes \psi_{i}^{-1}(1_{\beta})$$

$$= \overline{\partial}_{E} S|_{U_{i}}$$

The Leibniz's rule and $\overline{\partial}_{E}^{2} = 0$ follow from the one for $\overline{\partial}_{-}$

<u>Def</u>: We call $\overline{\partial}_E: A^{p,q}(E) \longrightarrow A^{p,q+1}(E)$ the <u>Dolbeault operator</u> of the holomorphic vector bundle $E \longrightarrow X$.

The Dolbeault operator induces a cohomology:

$$H_{b,\delta}(X'E) := \frac{\operatorname{Im}\left(\underline{g}^{E} : A_{b,\delta}(E) \longrightarrow A_{b,\delta+1}(E)\right)}{\operatorname{ker}\left(\underline{g}^{E} : A_{b,\delta}(E) \longrightarrow A_{b,\delta+1}(E)\right)}$$

called the Dolbeault cohomology groups.

 $\underline{R_{mk}}$: When p=q=0, we have $H^{\circ,\circ}(X,E)=\Gamma(X,E)$.

 \underline{R}_{mk} : When $E = \mathcal{O}_X$, we have $H^{P,q}(X,E) = H_{\overline{\partial}}^{P,q}(X)$.