A Note on Development

이준범*

1 Payoff Decomposition

ELS Payoff, denoted by *X* is like:

$$X = \sum_{i=1}^{N} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{T_{i}} \ge \mathcal{R}_{i}} C_{i} + \sum_{i=1}^{L} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{(T_{i-1}, T_{i})}^{*} \ge \mathcal{L}_{i}} C_{i}^{L}$$

$$+ \left(\prod_{j < N} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \left(\mathbb{1}_{S_{T}^{*} < \mathcal{B}} \phi(S_{T}) + \mathbb{1}_{S_{T}^{*} \ge \mathcal{B}} C^{B} \right)$$

$$= \sum_{i=1}^{N} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{T_{i}} \ge \mathcal{R}_{i}} C_{i} + \sum_{i=1}^{L} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{(T_{i-1}, T_{i})}^{*} \ge \mathcal{L}_{i}} C_{i}^{L}$$

$$+ \left(\prod_{j < N} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \left(\phi(S_{T}) + \mathbb{1}_{S_{T}^{*} \ge \mathcal{B}} (C^{B} - \phi(S_{T})) \right)$$

$$= \sum_{i=1}^{N-1} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{T_{i}} \ge \mathcal{R}_{i}} C_{i} + \left(\prod_{j < N-1} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \left(\mathbb{1}_{S_{T_{N}} \ge \mathcal{R}_{N}} C_{N} + \mathbb{1}_{S_{T_{N}} < \mathcal{R}_{N}} \phi(S_{T}) \right)$$

$$+ \sum_{i=1}^{L} \left(\prod_{j < i} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{T_{i}}^{*} \ge \mathcal{B}} (C^{B} - \phi(S_{T}))$$

$$+ \left(\prod_{i < N} \mathbb{1}_{S_{T_{j}} < \mathcal{R}_{j}} \right) \mathbb{1}_{S_{T_{i}}^{*} \ge \mathcal{B}} (C^{B} - \phi(S_{T}))$$

$$(1.1)$$

Hence there should be L + 2 grids: one for ranges, L for the lizard barriers, one for the maturity barrier.

2 OIS schedule

Let us denote the calculation period pair of fixing, value start, value end, payment dates by:

$$I_i = \{\phi_i, \sigma_i, \epsilon_i\}. \tag{2.1}$$

To explain the notation, we usually have $\epsilon_i - \sigma_i = \text{Day}(1)$ in OIS cases. These periods comprise the swap intervals $\{(S_i, E_i)\}_i$ such that:

$$(S_N, E_N] := (\sigma_{M_i}, \epsilon_{N_i}] = \cup (\sigma_i, \epsilon_i] \tag{2.2}$$

Tel: +82-2-3770-5993. Email: junbeom.lee@yuantakorea.com.

^{*}OTC Trading, Yuanta Securities Korea, 04538 Seoul, Korea.

Then, we have the latest past fixing data δ_t at $t \ge 0$ and the regarding value end date ϵ_d

$$t \mapsto \delta_t \mapsto \epsilon_d$$
 (2.3)

Let I = [a, b] be a calculation interval, ϕ be the fixing interval, and μ be the respective payment date. Note that ϕ may or may not be in the calculation interval, i.e., either $\phi \in [a, b]$ or $\phi \notin [a, b]$, but the payment date cannot be earlier than the end date b. Moreover, let $t \ge 0$ denote the evaluation date and C(t, ...) denote the (zero) curve given at $t \ge 0$.

Consider that there are a set of past data $d(\phi_i)$ such that $\phi_i \leq t$:

$$\{\phi_1, \phi_2, \dots, \phi_N\}. \tag{2.4}$$

Let us denote by ε_N the calculation end date regarding the last fixing date.