DV Assignment 3

Team Axis Powers

Workflow 1 - Prateek Rath IMT2022017

EDA1 - GPLOM

- Uncorrelated features
- Skewed Normal Distributions

EDA1 - Proportion bar charts

Higher DTI => No chance of loan approval

Model1: Gaussian Naive Bayes; Diagnosis

Low Accuracy: 0.67

Data Transformations: Feature Engineering

- LoanAmountPerIncome
- LoanDurationToAge
- LoanAmountToCreditScore
- NetWorth: Assests Liabitilites
- CredRatio: NumberOfCreditInquiries / LengthOfCreditHistory
- Familia: NumberOfDependents + (Marital Status == 'Married')
- AnnualIncome_mul_PaymentHistory
- CreditScore_and_DTI

EDA2

- Similar, do proportion charts for new features

Model2: Xtreme Gradient Boost; Improvement

- Much better accuracy: 83 percent

Model2: Feature Importance

- Much better accuracy: 83 percent

Conclusion and further iterations

- Our model does pretty well but we don't have to stop here

- Engineer new features

- Use business rules

Post classification rules

Workflow 2 - Anurag Ramaswamy IMT2022103

Iteration 1 visualizations

Iteration 1 visualizations

Iteration 1 visualizations

Create new feature CreditUtilizationScore

This feature is a weighted sum of:

- Age
- NumberOfCreditInquiries
- DebtToIncomeRatio
- LoanApproved

Why this new feature? - mainly to improve accuracy in predicting credit score category.

Iteration 2 visualizations

Iteration 2 visualizations

Accuracy comparison

Conclusions

- There were trends in the data based on credit score and related factors
- These patterns were visualized but accuracy of prediction of credit score category was not high.
- New feature CreditUtilizationScore helped in improving accuracy
- Future steps to increase accuracy further may include introducing post-classification rules or by repeating the workflow for more iterations by using some other features

Workflow 3

Initial patterns observed

- Most borrowers are middle-aged and middle-class

A low savings-to-income ratio leads to loans not getting approved

- A decent number of people have high DTI ratio and high credit card utilization

Patterns after clustering

- Low assets increase risk of rejection, regardless of liabilities.

 Higher savings did not always indicate better financial health, especially without high annual income to support them.

Young borrowers seeking larger loans were often approved.

Create new column - BehaviouralRisk

Why?

- Bridging the gap between traditional and behavioural metrics

To help with simplifying a lot of complex interactions

Hope to explain anomalies/ambiguities

Visualize and Predict BehaviouralRisk

- Should be <0.7 for a good chance of loan approval

- Correlated with credit scores

Predicted BehaviouralRisk with over 80% accuracy

Final understandings

- There were patterns in the data based on loan approvals

 These patterns were visualized, but could not be fully explained using existing risk analysis methods

 Introducing behavioural risk allowed a more nuanced but still accurate risk assessment, while being able to explain the underlying patterns.