Homework 7

Xuyuan Zhang, Uniqname: zxuyuan

March 25, 2024

Problem 1. (15 points) Give an example of a doubly indexed collection $\{x_{m,n}: m,n \in \mathbb{Z}\}$ of real numbers such that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{m,n} = 0 \quad \text{and} \quad \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{m,n} = \infty.$$

Solutions. We consider the following example:

$$x_{m,n} = \begin{cases} m & \text{if } n = m \\ -m & \text{if } n = m+1 \\ 0 & \text{otherwise.} \end{cases}$$

In this case
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{m,n} = (1-1+0+\dots) + (0+2-2+\dots) + \dots = 0$$
 and $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{m,n} = (1+0+\dots) + (-1+2+0+\dots) + (0-2+3+\dots) = 1+1+1+\dots = \infty$

Problem 2. (*15 points*) Let λ be the Lebesgue measure on [0,1]. Compute

$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) d\lambda(y)$$

and

$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(y) d\lambda(x)$$

Explain this violates neither Tonelli's Theorem nor Fubini's Theorem.

Solutions.

We can think about the function $f(y) = [E]_a = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ with fixed x and this function is bounded when fixed x and the function is continuous except for x = y = 0 but this point has measure 0, so we have this function is Riemann integrable. Therefore, we can directly evaluate the Riemann integral.

$$F(y) = \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) = \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = \frac{-x}{x^2 + y^2} \Big|_0^1 = -\frac{1}{1 + y^2}$$

since this function F(y) is also integrable over [0,1] then we have:

$$\int_{[0,1]} F(y)dy = \int_0^1 -\frac{1}{1+y^2}dy = -\arctan(1) + \arctan(0) = -\frac{\pi}{4}$$

For the second one, we similarly have:

$$F(x) = \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = \frac{y}{y^2 + x^2} \Big|_0^1 = \frac{1}{1 + x^2}$$

and therefore, $\int_{[0,1]} F(x) dx = \arctan(x) \Big|_0^1 = \frac{\pi}{4}$

The interval [0,1] is definitely σ -finite measure spaces. The Tonelli's Theorem assumes that the function is non-negative, but this function is definitely not positive in some intervals, so we can not directly use Tonelli's Theorem. Besides, we do not have this function integrable on $[0,1] \times [0,1]$ so doesn't satisfy the assumption of Fubini's theorem (for $x \to 0$, $y \to 0$ this function is definitely infinite, violating the absolutely integrability condition). \square

Problem 3. (40 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function such that $f^2 \in L^1(\mathbb{R})$. Prove that

a) For almost every $b \in \mathbb{R}$, we have

$$\lim_{t \to 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)| = 0.$$

b) For almost every $b \in \mathbb{R}$, we have

$$\lim_{t \to 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = 0.$$

(Note that in part a), Lebesgue Differentiation Theorem cannot be applied directly since f is not known to be in $L^1(\mathbb{R})$, which is one of the requirements for LDT.)

Solutions.

We start by considering the sequence of functions $f_n = f\chi_{[-n,n]}$ where $\chi_{[-n,n]}$ is the characteristic function defined on the interval [-n,n] The sequence f_n converges pointwise to f as $n \to \infty$ because for any $x \in \mathbb{R}$, x will belong to [-n,n] and thus $\lim_{n\to\infty} f_n = f$.

Given that $f^2 \in \mathcal{L}^1(\mathbb{R})$ we know that $\int_{\mathbb{R}} |f^2| < \infty$ and therefore, $f \in \mathcal{L}^2(\mathbb{R})$, which implies that f is also in $\mathcal{L}^1_{loc}(\mathbb{R})$ (square integrability ensures local integrability). To show that $f \in \mathcal{L}^2(\mathbb{R})$ implies $\mathcal{L}^1_{loc}(\mathbb{R})$. We can consider a compact set $K \subseteq \mathbb{R}$ and from Cauchy-Schwarz inequality we have:

$$(\int_K f)^2 \le \mu(K) \int_K |f|^2$$

Therefore, since $\int_K |f|^2$ is finite and the length of the K is also finite, we have f in $\mathcal{L}^1_{loc}(\mathbb{R})$. Then we can apply Lebesgue Differentiation Theorem for f_n .

Since f^2 is integrable we have f^2 can serve as a dominating function for f_n and by the dominated convergence theorem, we can conclude that $\lim_{n\to\infty}\int_{\mathbb{R}}f_n=\int_{\mathbb{R}}f$.

Combining together we conclude that f also satisfies the Lebesgue Differentiation Theorem and we conclude the proof.

(b)

Since $f^2 \in \mathcal{L}(\mathbb{R})$ we can directly use Lebesgue Differentiation Theorem and for almost every $b \in \mathbb{R}$ we have:

$$\lim_{t \to 0} \frac{1}{2t} \int_{b-t}^{b+t} |f^2(x) - f^2(b)| dx = 0$$

we can write

$$\frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = \frac{1}{2t} \int_{b-t}^{b+t} f^2 - 2f(b) \frac{1}{2t} \int_{b-t}^{b+t} f + f^2(b)$$

then from part (a) we have $\lim_{t\to\infty} \frac{1}{2t} \int_{b-t}^{b+t} f = f(b)$ and from $f \in \mathcal{L}^2(\mathbb{R})$ we have: $\lim_{t\to 0} \frac{1}{2t} \int_{b-t}^{b+t} f^2(x) = f^2(b)$ then we conclude that $\lim_{t\to\infty} \frac{1}{2t} \int_{b-t}^{b+t} |f-f(b)|^2 = 2f^2(b) - 2f(b)f(b) = 0$.