November 16, 2016 IBIS2016

Partial Order Structure and Information Geometry

(順序構造と情報幾何)

Mahito Sugiyama (ISIR, Osaka University, PRESTO) (杉山 麿人; 大阪大学産業科学研究所, JST さきがけ)

Today's Model on Poset (S, ≤)

$$\log p(x) = \sum_{s \in S} \zeta(s, x)\theta(s)$$
$$p(x) = \sum_{s \in S} \mu(x, s)\eta(s)$$

Today's Model on Poset (S, ≤)

Outcome

- Given a poset (S, \leq) and consider distributions on S
 - The least element $\bot \in S$
- 1. KL divergence decomposition:

$$D_{\mathsf{KL}}[P,R] = D_{\mathsf{KL}}[P,Q] + D_{\mathsf{KL}}[Q,R]$$

with Q s.t. $\theta_Q(x) = \theta_R(x)$ or $\eta_Q(x) = \eta_P(x)$ for all $x \in S \setminus \{\bot\}$

- 2. The set of probability distributions on (S, \leq) is a dually flat manifold w.r.t. θ and η
 - -p, θ , and η are coordinate systems
 - θ and η are orthogonal
 - θ introduces the structure of exponential family
 - η introduces the structure of mixture family

Posets with Probability Distribution

Probability distribution on posets (partially ordered sets)

Posets with Probability Distribution

Posets with Probability Distribution

Probability distribution on posets (partially ordered sets)

Decomposition in

the log-linear model (

x y z (e.g. Neurons, SNPs, ...)

0 0 1 ...

1 0 0 ...

 $1 \quad 1 \quad 1 \quad \cdots$

0 0 0 ...

1 1 0 …

0 1 1 ...

1 0 1 ...

1 0 1 ...

1 0 1 ...

1 1 0 ...

Numerical score (KL divergence)

and the *p*-value for higher-order

intractions

 $\log p(x) = \sum \zeta(s, x)\theta(s)$

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

ID 1: ID 2: ID 3: ID 4: ID 5: ID 6: ID 7: 0 ID 8: ID 9: 0 ID10: 0

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Upward = Pattern mining

η: Frequency

p: Probability

$$\eta(\{\bullet,\bullet\}) = p(\{\bullet,\bullet\}) + p(\{\bullet,\bullet,\bullet\})$$

Exponential $p(x) = \exp(\sum \theta(s)F_s(x) - \psi(\theta))$ family:

Exponential p(x) = $\exp(\sum \theta(s)F_s(x) - \psi(\theta))$ family:

Möbius Inversion on Posets

• Zeta function $\zeta:S \times S \rightarrow \{0,1\}$:

$$\zeta(s,x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise} \end{cases}$$

• Möbius function $\mu: S \times S \to \mathbb{Z}$, defined as $\mu = \zeta^{-1}$:

$$\mu(x,y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum_{x \le s < y} \mu(x,s) & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

• The Möbius inversion formula [Rota (1964)]:

$$g(x) = \sum_{s \in S} \zeta(s, x) f(s) \iff f(x) = \sum_{s \in S} \mu(s, x) g(s)$$

Möbius Function Is Generalization of Inclusion-Exclusion Principle

- For sets A, B, C,
 |A∪B∪C| = |A| + |B| + |C| |A∩B| |B∩C| |A∩C|
 + |A∩B∩C|
- In general, for A_1, A_2, \ldots, A_n ,

$$\left|\bigcup_{i} A_{i}\right| = \sum_{J \subseteq \{1,...,n\}, J \neq \emptyset} (-1)^{|J|-1} \left|\bigcap_{j \in J} A_{j}\right|$$

• The Möbius function μ is the generalization of " $(-1)^{|J|-1}$ "

Mathematical Formulation

Log-linear model and its sufficient statistics:

$$\log p(x) = \sum_{s \in S} \zeta(s, x) \theta(s) = \sum_{s \le x} \theta(s),$$

$$\eta(x) = \sum_{s \in S} \zeta(x, s) p(s) = \sum_{s \ge x} p(s)$$

Generalization of the log-linear model on binary vectors:

$$\log p(\mathbf{x}) = \sum_{i} \theta^{i} x^{i} + \sum_{i < j} \theta^{ij} x^{i} x^{j} + \dots + \theta^{1 \dots n} x^{1} x^{2} \dots x^{n},$$

From the Möbius inversion formula,

$$\theta(x) = \sum_{s \in S} \mu(s, x) \log p(s), \quad p(x) = \sum_{s \in S} \mu(x, s) \eta(s)$$

Triple for each node

Triple for each node

16/39

17/39

Orthogonality of θ and η

From Möbius inversion,

$$\sum_{s \in S} \zeta(x, s) \mu(s, y) = \delta_{x, y}, \quad \delta_{x, y} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise} \end{cases}$$

• θ and η are dually orthogonal:

$$E\left[\frac{\partial}{\partial \theta(x)}\log p(s)\frac{\partial}{\partial \eta(y)}\log p(s)\right] = \sum_{s \in S} \zeta(x,s)\mu(s,y) = \delta_{x,y}$$

 Partial order structure leads to the same dually flat structure with the exponential family

Existing Approach Limited To Power Set

Our Approach Applies To Any Posets

Our Approach Applies To Any Posets

KL Divergence Decomposition

KL divergence decomposition:

$$D_{\mathsf{KL}}[P,R] = D_{\mathsf{KL}}[P,Q] + D_{\mathsf{KL}}[Q,R]$$

with Q s.t. $\theta_Q(x) = \theta_R(x)$ or $\eta_Q(x) = \eta_P(x)$ for all $x \in S \setminus \{\bot\}$

- Q is called the mixed distribution of (P, R)
- It is known as the (generalized) Pythagoras theorem in Information Geometry
- We can derive from Möbius inversion:

$$D_{\mathsf{KL}}[P,Q] + D_{\mathsf{KL}}[Q,R] - D_{\mathsf{KL}}[P,R]$$

$$= \sum_{s \in S} (\eta_Q(s) - \eta_P(s)) (\theta_Q(s) - \theta_R(s))$$

Poset of Subgraphs

Log-Linear Model on Subgraphs

Information of Each Subgraph

$$P: \text{Empirical distribution} \\ Freq. \begin{bmatrix} \eta_0 & \eta_1 & \eta_2 & \eta_3 & \eta_4 & \eta_5 \\ \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 \end{bmatrix} \\ \vdots \\ \text{Coef.} \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 \\ \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 \end{bmatrix}$$

Information of Each Subgraph

Information of Each Subgraph

Make a Poset from Data

Dataset

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Number of nodes = 2^{#features} ⇒combinatorial explosion!

Make a Poset from Data

Remove Nodes with Probability 0

Dataset

- ID 2: 1 1 1
- ID 3: 1 1 0
- ID 4: 1 1 1
- ID 5: 1 1 0
- ID 6: 1 0 1
- ID 7: 1 0 1
- ID 8: 1 1 1
- ID 9: 1 0 0
- ID10: 0 1 0

Example on Real Data (kosarak)

features: 41,270

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

Total runtime: 4.95 seconds

nodes: 3,253 (Threshold: 10⁻⁵)

significant interactions: 583

Single feature: 537

Pairwise interactions: 41

Triple interactions: 5

37/39

Example on Real Data (accidents)

Sample size:

340,183

features: 468

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

Total runtime: 4.95 seconds

nodes: 281 (Threshold: 5×10⁻⁶)

significant interactions: 280 # features in each interaction is between 26 to 41

Conclusion

- A close connection between the partial order structure and information geometry
 - Möbius inversion leads to the dually flat manifolds
 - M. Sugiyama, H. Nakahara, K. Tsuda, Information Decomposition on Structured Space, IEEE ISIT (2016)
 - S. Amari, Information geometry on hierarchy of probability distributions, IEEE Trans. Info. Theory (2001)
 - H. Nakahara, S. Amari, Information-geometric measure for neural spikes, Neural Computation (2002)
- We can decompose the KL divergence and asses the significance on any posets