Teoria de Estabilidade de Lyapunov

Leonardo A. B. Tôrres

Março de 2019

1 Teoria de Estabilidade de Lyapunov

2 Princípio de Invariância de LaSalle

3 Lema de Barbalat

Pontos de Equilíbrio

Um ponto de equilíbrio $x^{\rm eq}$ é um estado no qual o campo vetorial é nulo, isto é, não há tendência de mudança do estado, ou seja,

$$\dot{x} = 0 \Rightarrow f(x^{\text{eq}},t) = 0.$$

Portanto, se em

$$t = t_0, \quad x(t_0) = x^{eq},$$

então o estado do sistema permanece o mesmo, isto é:

$$x(t) = x^{eq}, \quad \forall t \ge t_0.$$

Pontos de Equilíbrio

Sem perda de generalidade, nos desenvolvimentos a seguir podemos considerar $x^{\rm eq}=0$.

Para ver isso, suponha que $x^{\,\mathrm{eq}} \neq 0$. Neste caso podemos usar uma translação de coordenadas $z=x-x^{\,\mathrm{eq}}$ e escrever:

$$\dot{x} = f(x,t),$$

$$\dot{z} = \dot{x} = f(z + x^{eq}, t) \equiv \hat{f}(z, t);$$

tal que $z^{\,\mathrm{eq}}=0$ é um ponto de equilíbrio do novo sistema

$$\dot{z} = \hat{f}(z,t).$$

Análise de Estabilidade de Pontos de Equilíbrio – Importância em Problemas de Controle I

Considere o seguinte sistema dinâmico em Malha Fechada ($u \equiv u(x,t)$) em que se deseja a obtenção de um **novo Ponto de Equilíbrio estável**:

$$\dot{x} = \hat{f}(x,u,t),$$

$$\dot{x} = \hat{f}(x,u(x,t),t) = f(x,t).$$

O novo P.E., sem perda de generalidade, pode ser considerado como sendo $x^{\rm eq}=0$, isto é, f(0,t)=0.

Note que, neste contexto:

Observação Importante

Estudar a estabilidade de Pontos de Equilíbrio de sistemas dinâmicos quaisquer é equivalente a se estudar a *Estabilidade do Sistema Controlado em Malha Fechada*!

Análise de Estabilidade de Pontos de Equilíbrio – Importância em Problemas de Controle II

Em muitos trabalhos o vetor x é de fato o vetor erro ou diferença e(t) entre o comportamento do sistema e o comportamento desejado, tal que

$$\dot{e} = f(e,t),$$

e se busca provar que o Ponto de Equilíbrio $e^{\,\mathrm{eq}}=0$ é pelo menos:

- Estável, no sentido de Lyapunov;
- ou, preferencialmente, Globalmente Assintoticamente Estável GAS (Globally Asymptotically Stable), no sentido de Lyapunov.

Estes conceitos serão melhor explorados nos próximos slides.

Estabilidade segundo Lyapunov

Em Teoria de Controle Não Linear é comum investigar-se inicialmente a estabilidade do sistema em torno de seus pontos de equilíbrio.

Há muitas diferentes definições de estabilidade, mas no presente caso estamos interessados nas definições **segundo Lyapunov**.

Alexander Mikhailovich Lyapunov (1857–1917).

Matemático Russo que publicou, em 1892, a principal Teoria de Estabilidade usada em Controle de Sistemas Dinâmicos Não Lineares.

Estabilidade

■ P.E. Estável: dado $\epsilon > 0$ qualquer, $\exists \, \delta(\epsilon, t_0) > 0$, tal que $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| < \overline{\epsilon}, \, \forall t \geq t_0$.

Note que necessariamente $\delta \leq \epsilon.$

Estabilidade

■ P.E. Estável: dado $\epsilon > 0$ qualquer, $\exists \delta(\epsilon, t_0) > 0$, tal que $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| < \overline{\epsilon}, \ \forall t \geq t_0.$

Note que necessariamente $\delta \leq \epsilon$.

Em resumo: começando perto o suficiente de um ponto de equilíbrio estável, os estados do sistema permanecem, para sempre, tão próximos ao ponto de equilíbrio quanto quisermos.

Estabilidade Assintótica

- P.E. Assintoticamente Estável:
 - É um P.E. estável;

Note que não basta que o estado convirja para o P.E. A condição 1 impõe que a trajetória se mantenha no interior de uma bola de raio limitado ϵ escolhido arbitrariamente, e portanto tão pequeno quanto se queira.

Estabilidade Assintótica

- P.E. Assintoticamente Estável:
 - É um P.E. estável;
 - $\exists r(t_0) > 0$, tal que $||x(t_0)|| < r \Rightarrow ||x(t)|| \to 0$, $t \to \infty$.

Note que não basta que o estado convirja para o P.E. A condição 1 impõe que a trajetória se mantenha no interior de uma bola de raio limitado ϵ escolhido arbitrariamente, e portanto tão pequeno quanto se queira.

Em resumo: começando perto o suficiente de um ponto de equilíbrio assintoticamente estável, os estados do sistema ficarão próximos a ele, e convergirão para ele à medida que o tempo passa.

Instabilidade

■ P.E. Instável: é o ponto de equilíbrio que **não** é estável.

Instabilidade: segundo Lyapunov

Por exemplo, suponha o caso de um sistema cujo estado sempre visita uma região de raio R antes de convergir para o P.E. Neste caso o P.E. não será estável no sentido de Lyapunov, contrariando nossas expectativas.

Isso mostra que a definição de estabilidade segundo Lyapunov não cobre todos os casos de interesse.

Estabilidade Exponencial

- Estabilidade Exponencial: estabilidade assintótica em que se pode garantir uma taxa exponencial λ de aproximação do ponto de equilíbrio.
 - Existe $\delta(t_0)$, e constantes $\alpha > 0$ e $\lambda > 0$, tais que

$$||x(t_0)|| < \delta(t_0) \Rightarrow ||x(t)|| \le \alpha ||x(t_0)|| e^{-\lambda(t-t_0)}$$

Estabilidade Uniforme

- **E**stabilidade uniforme: caracteriza-se pela independência em relação ao instante inicial t_0 considerado. Exemplos:
 - II P.E. Uniformemente Estável: é o P.E. estável em que o raio $\delta \equiv \delta(\epsilon)$ não depende do instante inicial t_0 considerado.
 - 2 P.E. Uniformemente Assintoticamente Estável: é o P.E. assintoticamente estável em que o raio $\delta \equiv \delta(\epsilon)$ não depende do instante inicial t_0 considerado.
 - III P.E. Uniformemente Exponencialmente Estável: é o P.E. exponencialmente estável em que o raio δ não depende do instante inicial t_0 considerado.

A noção de Estabilidade *Uniforme* é particularmente importante na análise de estabilidade de sistemas não autônomos. Para os sistemas autônomos, em que não há dependência explícita com o tempo, as propriedades de Estabilidade são automaticamente uniformes em relação ao instante inicial t_0 .

Estabilidade Assintótica Global – GAS

- Estabilidade Assintótica Global: válida não apenas para condições iniciais próximas ao equilíbrio, mas para todo $x \in \mathbb{R}^n$. Isto é:
 - Sistema Estável, e
 - Verifica-se que

$$||x(t)|| \to 0, \quad t \to \infty, \quad \forall x(t_0) \in \mathbb{R}^n.$$

GAS – Global Asymptotic Stability

Método Direto de Lyapunov I

Seja V(x) uma função continuamente diferenciável e definida positiva, chamada de **Função de Lyapunov Candidata**.

Ser uma função definida positiva significa que:

$$V(0)=0; \ \mathbf{e} \ V(x)>0, \forall x\neq 0.$$

E ser continuamente diferenciável significa que V(x) é contínua, e que suas derivadas parciais $\partial V/\partial x_1, \partial V/\partial x_2, \cdots, \partial V/\partial x_n$ existem e são contínuas.

Método Direto de Lyapunov II

Theorem (Método Direto de Lyapunov para Sistemas Autônomos)

Seja x=0 um ponto de equilíbrio – P.E. de $\dot{x}=f(x)$, em que $f:D\to\mathbb{R}^n$, e $D\subseteq\mathbb{R}^n$ um domínio contendo x=0. Seja $V:D\to\mathbb{R}$ uma função continuamente diferenciável tal que

$$V(0) = 0; V(x) > 0, \forall x \in D - \{0\};$$

 $\dot{V} \le 0, \forall x \in D.$

Então o P.E. é estável. Além disso, se

$$\dot{V} < 0, \quad \forall x \in D - \{0\},$$

então o P.E. é assintoticamente estável.

Método Direto de Lyapunov III

O seguinte quadro apresenta de forma simplificada o método direto de Lyapunov, notando que $\dot{V} \equiv \dot{V}(x) = \frac{\partial V}{\partial x} \frac{dx}{dt} = \frac{\partial V}{\partial x} f(x)$:

Se
$$\frac{dV}{dt} \le 0, \forall x \ne 0$$
, \Rightarrow o P.E. é *Estável*

Se
$$\frac{dV}{dt} \leq 0, \forall x \neq 0, \Rightarrow$$
 o P.E. é *Estável*; Se $\frac{dV}{dt} < 0, \forall x \neq 0, \Rightarrow$ o P.E. é *Assintoticamente Estável*.

Se uma das condições acima se verificar, diz-se que V(x) é uma Função de Lyapunov.

Método Direto de Lyapunov IV

Se uma das condições anteriores for verificada apenas em um conjunto aberto Ω do Espaço de Estados X, tal que Ω contém o P.E., isto é,

$$\begin{split} V(0) &= 0, V(x) > 0, & \forall x \in \Omega \subset X, x^{\text{eq}} = 0 \in \Omega, \\ \dot{V}(x) &\leq 0, \text{ ou } \dot{V}(x) < 0, & \forall x \in \Omega, \end{split}$$

então o resultado é *Local*.

■ Se, além disso, $\Omega \equiv \mathbb{R}^n$ e a Função de Lyapunov é <u>radialmente ilimitada</u>, isto é,

$$||x|| \to \infty \Rightarrow V(x) = +\infty,$$

então o resultado é Global.

Interpretação Física:

- I Se considerarmos V(x(t)) uma função usada para se medir a *Energia* do sistema, no sentido de que ela é sempre positiva, e apresenta seu mínimo apenas quando o sistema está em equilíbrio $(x=x^{\rm eq})$,
- 2 e se essa *Energia* sempre decresce ao longo do tempo, isto é, $\frac{dV}{dt} < 0$,
- 3 então podemos concluir que o sistema irá entrar em equilíbrio:

$$x(t) \to x^{\rm eq},$$

que corresponde à condição de mínima energia.

Interpretação Física:

A energia decai ao longo do tempo, levando o sistema para o ponto de equilíbrio.

Interpretação Geométrica:

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}\frac{dx}{dt} = \frac{\partial V}{\partial x}f(x) = \langle \nabla V(x), f(x) \rangle;$$

sendo $\nabla V = \partial V/\partial x$ o gradiente da Função de Lyapunov, e $\langle \cdot, \cdot \rangle$ o operador produto escalar de dois vetores. Ou seja, para $x = [x_1 \ x_2 \ \dots \ x_n]^{\top}$ e $f(x) = [f_1(x) \ f_2(x) \ \dots \ f_n(x)]^{\top}$ vetores coluna, tem-se:

$$\langle \nabla V(x), f(x) \rangle = \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \dots \frac{\partial V}{\partial x_n} \right] \cdot \begin{bmatrix} f_1(x); \\ f_2(x); \\ \vdots \\ f_n(x) \end{bmatrix}.$$

Interpretação Geométrica:

Neste caso, supondo superfícies de nível definidas por V(x)=c, sendo c>0 uma constante real positiva, e lembrando que o gradiente $\nabla V(x)$ é perpendicular à superfície de nível em questão no ponto x, vê-se que os vetores "velocidade" f(x) correspondentes devem apontar para dentro da superfície, uma vez que:

$$\frac{dV}{dt} = \langle \nabla V(x), f(x) \rangle = \|\nabla V(x)\| \|f(x)\| \cos(\theta);$$
$$\langle \nabla V(x), f(x) \rangle \le 0 \Rightarrow \frac{\pi}{2} \le \theta \le \frac{3\pi}{2};$$

Interpretação Geométrica:

Em preto os vetores gradiente $\nabla V(x)$ perpendiculares às superfícies de nível, e em vermelho os vetores "velocidade" f(x).

Vide animação: animated-Lyapunov.gif

Método Direto – Observações

Importantes observações sobre o Método Direto de Lyapunov:

Se a Função de Lyapunov Candidata mostra-se não ser uma Função de Lyapunov, isto é,

$$\frac{dV}{dt} = \langle \nabla V(x), f(x) \rangle > 0$$

para algum $x \in \Omega \subseteq \mathbb{R}^n$, <u>nada</u> podemos concluir sobre a estabilidade do Ponto de Equilíbrio.

- Não há um procedimento formal geral por meio do qual se possa obter sempre uma Função de Lyapunov para o problema.
- 3 As Funções de Lyapunov não são únicas. Por exemplo, se V(x) é uma Função de Lyapunov, então $W(x)=\rho[V(x)]^{\alpha}$, com $\rho>0$ e $\alpha>0$, também é uma F. de Lyapunov para o sistema.

Exemplos de Aplicação

■ Mostre que o sistema massa-mola não linear é estável no sentido de Lyapunov:

$$m\ddot{x} = -b\dot{x} - k_0x - k_1x^3,$$

usando m = 1; b = 1; $k_0 = 1$ e $k_1 = 1$.

1 Tentativa 1:
$$V(x,\dot{x}) = \frac{1}{2}x^2 + \frac{1}{2}(\dot{x})^2$$
;

$$\begin{array}{l} \textbf{1} \ \ \text{Tentativa 1:} \ V(x,\!\dot{x}) = \frac{1}{2}x^2 + \frac{1}{2}\left(\dot{x}\right)^2; \\ \textbf{2} \ \ \text{Tentativa 2:} \ V(x,\!\dot{x}) = \underbrace{\frac{1}{2}m(\dot{x})^2}_{E_{\text{cinética}}} + \underbrace{\int_0^x (k_0x + k_1x^3)dx}_{E_{\text{potencial elástica}}}; \\ \end{array}$$

Exemplos de Aplicação

• Projete uma lei de controle para estabilizar o P.E. $x = \dot{x} = 0$, quando u=0, do sistema:

$$\ddot{x} + (\dot{x})^3 - x^2 = u.$$

- **1** Tentativa 1: $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$; **2** Tentativa 2: $V(x) = \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 + x_1x_2$, isto é,

$$V(x_1,x_2) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\top} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x^{\top} P x,$$

em que $P=P^{\top}=\left[\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right]$ é uma matriz simétrica <u>definida</u> positiva, ou seja.

$$x^{\top} P x > 0, \forall x \neq 0.$$

Exemplos de Aplicação

• Projete uma lei de controle para estabilizar o P.E. $x = \dot{x} = 0$, quando u=0, do sistema:

$$\ddot{x} + (\dot{x})^3 - x^2 = u.$$

- **1** Tentativa 1: $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$; **2** Tentativa 2: $V(x) = \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 + x_1x_2$, isto é,

$$V(x_1,x_2) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\top} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x^{\top} P x,$$

em que $P=P^{\top}=\left[\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right]$ é uma matriz simétrica <u>definida</u> positiva, ou seja,

$$x^{\top} P x > 0, \forall x \neq 0.$$

Resp.: $u = -x^2 + (\dot{x})^3 - x - 2\dot{x}$.

Método Direto de Lyapunov – Sistemas Lineares Invariantes no Tempo (SLIT)

Para sistemas dinâmicos que são Lineares e Invariantes no Tempo, é possível obter resultados mais fortes:

Teorema de Lyapunov para SLITs

Um SLIT autônomo

$$\dot{x} = Ax,$$

é assintoticamente/exponencialmente estável se, e somente se, dada uma matriz $Q=Q^{\top}$ definida positiva, a seguinte equação de Lyapunov

$$A^{\top}P + PA = -Q,\tag{1}$$

tem como solução uma matriz $P=P^{\top}$ também definida positiva.

Atenção: a matriz simétrica definida positiva Q é dada, e a matriz P é calculada para satisfazer (1).

Aplicação do Método Direto para SLITs I

Utilização do Teorema de Lyapunov para SLITs: Para um sistema

$$\dot{x} = Ax,$$

tomando como função de Lyapunov candidata $V(x) = x^{\top} P x$, com uma matriz P definida positiva que satisfaz a equação (1), temos que

$$\frac{dV}{dt} = \dot{x}^{\top} P x + x^{\top} P \dot{x},$$

$$= x^{\top} A^{\top} P x + x^{\top} P A x,$$

$$= x^{\top} \left[A^{\top} P + P A \right] x,$$

$$= -x^{\top} Q x < 0, \quad \forall x \neq 0.$$

Aplicação do Método Direto para SLITs II

Como $V(x)=x^{\top}Px$ é radialmente ilimitada, o sistema é Globalmente Assintoticamente Estável – GAS. Além disso, uma vez que

$$\left. \begin{array}{lcl} \boldsymbol{x}^{\top} P \boldsymbol{x} & \leq & \lambda_{\max}\left(P\right) \boldsymbol{x}^{\top} \boldsymbol{x}, \\ \boldsymbol{x}^{\top} Q \boldsymbol{x} & \geq & \lambda_{\min}\left(Q\right) \boldsymbol{x}^{\top} \boldsymbol{x}, \end{array} \right\} \Rightarrow \boldsymbol{x}^{\top} Q \boldsymbol{x} \geq \frac{\lambda_{\min}\left(Q\right)}{\lambda_{\max}\left(P\right)} \left[\boldsymbol{x}^{\top} P \boldsymbol{x}\right],$$

podemos escrever, para $V(x) = x^{\top} P x$, que

$$\frac{dV}{dt} = -x^{\top}Qx,$$

$$\dot{V} \leq -\beta V,$$

$$\Rightarrow V(t) \leq e^{-\beta(t-t_0)}V(t_0),$$

com $\beta = \frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)}$. E fica clara a estabilidade exponencial global do P.E.

Aplicação para SLITs: Máxima Taxa de Convergência I

A melhor estimativa da taxa de convergência exponencial β pode ser obtida escolhendo-se:

$$Q = I$$
.

Para ver isso [2], considere os casos em que

$$A^{\top} P_0 + P_0 A = -I,$$

$$A^{\top} P_1 + P_1 A = -Q_1,$$
(2)

com Q_1 definida positiva e tal que $\lambda_{\min}(Q_1)=1$, o que é sempre possível fazer escolhendo-se $Q_1=\frac{1}{\lambda_{\min}(Q)}Q$, para Q>0. Além disso, neste caso $P_1=\frac{1}{\lambda_{\min}(Q)}P$, com P a solução única de $A^\top P+PA=-Q$.

Aplicação para SLITs: Máxima Taxa de Convergência II

A partir das equações (2), subtraindo a primeira da segunda vemos que

$$A^{\top}(P_1 - P_0) + (P_1 - P_0)A = -(Q_1 - I),$$

e, neste caso, como $-(Q_1-I)=(I-Q_1)\leq 0$, pois

$$x^{\top} I x - x^{\top} Q_1 x \le x^{\top} x - \lambda_{\min}(Q_1) x^{\top} x = 0,$$

então a solução da equação de Lyapunov acima, $(P_1-P_0)\geq 0$, e $\lambda_{\max}(P_1)\geq \lambda_{\max}(P_0)$, e portanto,

$$\beta_0 = \frac{\lambda_{\min}(I)}{\lambda_{\max}(P_0)} = \frac{1}{\lambda_{\max}(P_0)} \ge \beta_1 = \frac{\lambda_{\min}(Q_1)}{\lambda_{\max}(P_1)} = \frac{1}{\lambda_{\max}(P_1)}.$$

Método Indireto de Lyapunov: Linearização Jacobiana I

Em torno do P.E., isto é, para $\|x-x^{\mathrm{eq}}\|\approx 0$, e considerando que $f(\cdot):\mathbb{R}^n\mapsto\mathbb{R}^n$ é uma função analítica, as equações diferenciais podem ser aproximadas localmente pelo truncamento da Série de Taylor, tal que:

$$\begin{split} \dot{x} &= f(x), \\ &= \underbrace{f(x^{\,\mathrm{eq}})}_{\text{Por definição igual a zero}} + \left. \frac{\partial f}{\partial x} \right|_{x=x^{\,\mathrm{eq}}} (x-x^{\,\mathrm{eq}}) + \underbrace{\mathcal{O}(\|x-x^{\,\mathrm{eq}}\|^2)}_{\text{Termos de ordem superior}}, \\ &\approx \left. \frac{\partial f}{\partial x} \right|_{x=0} x, \\ &\approx Ax, \end{split}$$

uma vez que $f(x^{\rm eq})=f(0)=0$, sendo $A=\frac{\partial f}{\partial x}(0)$ a matriz Jacobiana do sistema avaliada em $x=x^{\rm eq}=0$.

Método Indireto de Lyapunov: Linearização Jacobiana II **Exemplo**.

Pendulo simples: $\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -q/l\sin(x_1) - bx_2. \end{cases}$

Um possível ponto de equilíbrio é $x^{\rm eq} = [0\ 0]^{\rm T}$. Em torno desse ponto de equilíbrio, i.e. para $x_1 \approx 0$ e $x_2 \approx 0$, definindo $\delta x_1 = x_1 - x_1^{\rm eq}$ e $\delta x_2 = x_2 - x_2^{\rm eq}$, temos que

$$\left\{ \begin{array}{lclcr} \dot{x}_1 & \approx & x_2^{\mathrm{eq}} & + & [0]\delta x_1 & + & [1]\delta x_2, \\ \\ \dot{x}_2 & \approx & \left[-g/l\sin\left(x_1^{\mathrm{eq}}\right) - bx_2^{\mathrm{eq}} \right] & + & \left[-g/l\cos\left(x_1^{\mathrm{eq}}\right) \right]\delta x_1 & + & [-b]\delta x_2. \end{array} \right.$$

E a matriz Jacobiana correspondente será:

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{x=x^{\text{eq}}} = \begin{bmatrix} 0 & 1 \\ -g/l\cos(x_1^{\text{eq}}) & -b \end{bmatrix},$$

$$A = \begin{bmatrix} 0 & 1 \\ -g/l & -b \end{bmatrix}.$$

Método Indireto de Lyapunov: Linearização Jacobiana III

A partir do conhecimento de A tem-se que:

- Se algum autovalor de A tiver parte real positiva \Rightarrow P.E. instável.
- Se todos os autovalores de A tiverem parte real negativa \Rightarrow P.E. localmente assintoticamente estável.

Obs.:

- 1 Note que o resultado de estabilidade é apenas <u>local</u>.
- 2 Se houver algum autovalor com parte real nula, e mesmo que todos os outros tenham parte real negativa, <u>nada</u> podemos afirmar.

Conjuntos Positivamente Invariantes

Um conjunto de pontos Ω no Espaço de Estados é dito ser positivamente invariante sse

$$\forall x(t_0) \in \Omega \Rightarrow x(t) \in \Omega, \forall t \ge t_0.$$

Ou seja, se começar em Ω , lá permanecerá indefinidamente a medida que o tempo cresce.

Alguns exemplos: um conjunto formado por um único Ponto de Equilíbrio; a bacia de atração de um Ponto de Equilíbrio assintoticamente estável; um ciclo limite; uma trajetória do sistema; o Espaço de Estados.

A partir desse conceito, podemos desenvolver uma "relaxação" interessante para o Teorema de Estabilidade Lyapunov para sistemas autônomos, no caso em que $\frac{dV}{dt} \leq 0$ (ao invés de $\frac{dV}{dt} < 0$), conhecido como Teorema de LaSalle.

Teorema de Krasovskii-LaSalle

Seja $V:\mathbb{R}^n\to\mathbb{R}$ uma função continuamente diferenciável, tal que $\dot{V}\leq 0$ em torno do ponto $x=x^{\rm eq}=0$.

Seja Ω um conjunto compacto (fechado e limitado) positivamente invariante que contém o P.E. $x^{\rm eq}=0$.

Seja $\Omega_Z\subseteq\Omega$ formado pelo conjunto de pontos em que $\dot{V}(x)$ se anula, isto é, $\Omega_Z=\{x\in\Omega;\dot{V}(x)=0\}.$

Seja $\Omega_I \subseteq \Omega_Z$ o maior conjunto positivamente invariante contido em Ω_Z , isto é, Ω_I é a união de todos os conjuntos invariantes contidos em Ω_Z .

Então, para todas as condições iniciais em Ω , a trajetória do sistema se aproximará assintoticamente de Ω_I à medida que $t \to \infty$.

Seja Ω um conjunto compacto (fechado e limitado) positivamente invariante que contém o P.E. $x^{\rm eq}=0$.

Seja $\Omega_Z\subseteq\Omega$ formado pelo conjunto de pontos em que $\dot{V}(x)$ se anula.

Seja $\Omega_I \subseteq \Omega_Z$ o maior conjunto positivamente invariante contido em Ω_Z .

Para todas as condições iniciais em Ω , a trajetória do sistema se aproximará assintoticamente de Ω_I .

O Teorema de Krasovskii-LaSalle – Observações

Observações:

- $\mathbf{x}^{\mathsf{eq}} \in \Omega_Z$, e $x^{\mathsf{eq}} \in \Omega_I$.
- lacktriangle Não se exige que V(x) seja definida positiva!
- Se V(x) é definida positiva; isto é, $V(x)>0, \forall x\neq 0$; e usando a hipótese $\dot{V}\leq 0$, então pode-se usar o conjunto $\Omega=\{x\in\mathbb{R}^n; V(x)\leq c\}$, para alguma constante real positiva c, como conjunto compacto positivamente invariante.

Corolário do Teorema de Krasovskii-LaSalle

Para V(x) definida positiva, tal que $\dot{V} \leq 0$, se o maior conjunto invariante contido em Ω_Z for $\Omega_I = \{x^{\,\mathrm{eq}}\}$, isto é, um singleton (um único elemento), então o P.E. é assintoticamente estável.

Exemplo: Massa-mola não linear I

No slide 26 vimos que para o sistema

$$\begin{array}{rcl} \dot{x}_1 & = & x_2, \\ \dot{x}_2 & = & -\frac{b}{m}x_2 - \frac{k_0}{m}x_1 - \frac{k_1}{m}x_1^3, \end{array}$$

usando a Função de Lyapunov Candidata

$$V(x_1, x_2) = \underbrace{\frac{1}{2} m x_2^2}_{E_{\text{cinética}}} + \underbrace{\int_0^{x_1} (k_0 x + k_1 x^3) dx}_{E_{\text{potencial elástica}}}$$

obtivemos

$$\dot{V}(x_1, x_2) = -bx_2^2 \quad \Rightarrow \quad \dot{V} \le 0.$$

Exemplo: Massa-mola não linear II

I Como $V(x)=\frac{1}{2}mx_2^2+\frac{k_0}{2}x_1^2+\frac{k_1}{4}x_1^4$ é definida positiva, podemos definir um conjunto positivamente invariante

$$\Omega = \{ x \in \mathbb{R}^2; V(x) < c \},\$$

para alguma constante arbitrária c>0, pois $\dot{V}\leq 0 \Rightarrow V(t)\leq V(t_0), \forall t\geq t_0.$

Exemplo: Massa-mola não linear III

2 Contido em Ω temos

$$\Omega_Z = \{ x \in \Omega; \dot{V}(x) = 0 \} \equiv \{ x \in \Omega; x_2 = 0 \}.$$

f 3 Por outro lado, contido em Ω_Z , o maior conjunto invariante é

$$\Omega_I = \{x \in \Omega_Z; x_2(t) = 0, \forall t \ge t_0\} \equiv \{x \in \Omega_Z; x_1 = 0, x_2 = 0\}.$$

Para ver isso, considere um ponto em Ω_Z tal que $(x_1(t_0);x_2(t_0))=(\alpha;0)$, com $\alpha \neq 0$. De acordo com a dinâmica do sistema, isso conduziria a $\dot{x}_1(t_0)=0$, e $\dot{x}_2(t_0)\neq 0$ – o que levaria o estado $x_2(t)$ a abandonar o conjunto Ω_Z para $t>t_0$.

Exemplo: Massa-mola não linear IV

4 Aplicando o Teorema de Krasovskii-Lasalle, concluímos, portanto, que o sistema irá para o conjunto Ω_I formado pelo único ponto $(x_1; x_2) = (0; 0)$ que é o P.E.

Com isso, ao invés de provarmos que o P.E. é globalmente estável, provamos algo mais forte: que ele é globalmente assintoticamente estável – GAS.

Exemplo em Robótica

Cancelamento dinâmico ou Torque Computado:

Considere a dinâmica de um robô descrita por:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + \underbrace{g(q) + b(q,\dot{q})}_{N(q,\dot{q})} = u,$$

e o problema de rastreamento de uma trajetória desejada $q_{\mathrm{d}}(t)$, tal que

$$e(t) = q(t) - q_{\mathsf{d}},$$

sendo que a lei de controle utilizada é dada por

$$\begin{array}{rcl} u & = & M(q)\vec{a} + C(q,\!\dot{q})\dot{q} + N(q,\!\dot{q}), \\ \vec{a} & = & \ddot{q}_{\rm d} - K_{\rm D}(\dot{q} - \dot{q}_{\rm d}) - K_{\rm P}(q - q_{\rm d}). \end{array}$$

Seja

$$V(e, \dot{e}) = \frac{1}{2}e^{\top}K_{\mathrm{P}}e + \frac{1}{2}\dot{e}^{\top}\dot{e}.$$

Continuidade Uniforme e o Lema de Barbalat I

- É possível desenvolver ainda outras extensões para o Método Direto de Lyapunov.
- A partir do conceito de Continuidade Uniforme de funções candidatas de Lyapunov, podemos obter uma "alternativa" para o Teorema de Estabilidade de Lyapunov para sistemas não-autônomos, conhecida como Lema de Barbalat. Para essa classe de sistemas não é possível usar diretamente o Princípio de Invariância de LaSalle.

Continuidade Uniforme e o Lema de Barbalat II

Para uma função continuamente diferenciável V(t):

$$\lim_{t \to \infty} V(t) = L \quad \Rightarrow \quad \lim_{t \to \infty} \dot{V}(t) = 0,$$

em que $|L| < \infty$. Por exemplo, $V(t) = e^{-t}\sin(e^{2t})$, que tem derivada ilimitada $\dot{V}(t) = -e^{-t}\sin(e^{2t}) + 2e^t\cos(e^{2t})$.

$$\lim_{t \to \infty} \dot{V}(t) = 0 \quad \Longrightarrow \quad \lim_{t \to \infty} V(t) = L,$$

em que $|L| < \infty$ é uma constante. Por exemplo, $V(t) = \sin(\log(t))$, que não converge apesar de sua derivada tender a zero quando $t \to \infty$: $\dot{V}(t) = \cos(\log(t)) \frac{1}{4}$.

Continuidade Uniforme e o Lema de Barbalat III

Por outro lado, para funções diferenciáveis V(t) que apresentem a propriedade especial de terem suas derivadas **uniformemente contínuas**, a primeira implicação no slide anterior é verdadeira, isto é:

$$\lim_{t \to \infty} V(t) = L \quad \Rightarrow \quad \lim_{t \to \infty} \dot{V}(t) = 0,$$

se $\dot{V}(t)$ é uniformemente contínua.

Continuidade Uniforme e o Lema de Barbalat IV

Nos desenvolvimentos a seguir é importante notar que, para funções continuamente diferenciáveis V(t) que tenham um limite inferior, que:

$$(V(t) \geq V_{\min} > -\infty) \ \mathrm{e} \ (\dot{V}(t) \leq 0, \forall t \geq 0) \quad \Rightarrow \quad \lim_{t \to \infty} V(t) = L,$$

em que $|L| < \infty$ é uma constante.

Isto é, o fato de ter um limite inferior e de sua derivada ser semi-definida (ou definida) negativa implica que a função converge para um valor constante, quando $t \to \infty$. Mas é perfeitamente possível que $L \neq V_{\min}$.

Funções Contínuas

Definition (Funções Contínuas)

Uma função f(t), $f:\mathbb{R}\to\mathbb{R}$ é contínua se, dado $t_0\in\mathbb{R}$ qualquer, e $\varepsilon>0$ qualquer (tão pequeno quanto se queira), podemos sempre encontrar um $\delta(t_0,\varepsilon)>0$ (pequeno o suficiente), tal que

$$|t - t_0| < \delta(t_0, \varepsilon) \Rightarrow |f(t) - f(t_0)| < \varepsilon.$$

Compare esta definição com a seguinte.

Funções Uniformemente Contínuas I

Definition (Funções Uniformemente Contínuas)

Uma função $f(t), f: \mathbb{R} \to \mathbb{R}$ é uniformemente contínua se, dado $t_0 \in \mathbb{R}$ qualquer, e $\varepsilon > 0$ qualquer (tão pequeno quanto se queira), podemos sempre encontrar um $\delta(\varepsilon) > 0$ que não depende de t_0 (mas que pode depender de ε), tal que

$$|t-t_0|<\delta \Rightarrow |f(t)-f(t_0)|<\varepsilon.$$

Ou seja,

Continuidade uniforme ⇒ Continuidade. Continuidade uniforme ∉ Continuidade.

Funções Uniformemente Contínuas

Vide animação: Continuity-and-uniform-continuity-2.gif

Clique aqui para ver no site da Wikipedia.org o verbete *Uniform Continuity*.

Funções Uniformemente Contínuas: cond. suficientes I

Há uma maneira mais fácil de se verificar se uma dada função diferenciável f(t) é uniformemente contínua, usando a seguinte condição suficiente:

$$\left| rac{df}{dt}
ight| < m < \infty \Rightarrow$$
 Continuidade Uniforme.

Isto é, se a derivada da função é limitada, então a função é uniformemente contínua.

Funções Uniformemente Contínuas: cond. suficientes II

Definition (Função Lipschitz Contínua)

Uma função $f(t):X\to\mathbb{R}$, com $X\subseteq\mathbb{R}$, é *Lipschitz Contínua* em X, se existe uma constante $0\le K<\infty$ (constante de Lipschitz), tal que

$$|f(t_1) - f(t_2)| \le K|t_1 - t_2|, \quad \forall t_1, t_2 \in X.$$

Ex.: a função saturação, que é contínua, linear por partes, e limitada, mas não diferenciável.

Para o caso de funções *não diferenciáveis* podemos usar a seguinte condição <u>suficiente</u> muito similar à condição mostrada no slide anterior:

Continuidade Lipschitz \Rightarrow Continuidade Uniforme.

Lema de Barbalat

Lema de Barbalat – Versão (1)

Seja uma função V(t),

$$V: \mathbb{R}^+ \to \mathbb{R},$$

tal que o limite

$$\lim_{t\to\infty}V(t)=L,$$

existe e é finito ($|L| < \infty$).

Se a derivada temporal $\dot{V}(t)$ é uniformemente contínua, então:

$$\lim_{t \to \infty} \dot{V}(t) = 0.$$

Note que não se exige que a função V(t) seja definida positiva.

Lema de Barbalat

Lema de Barbalat – Versão (2)

Seja uma função $\phi(t)$,

$$\phi: \mathbb{R}^+ \to \mathbb{R},$$

uniformemente contínua em $[0,\infty)$, e tal que o limite abaixo existe e é finito:

$$\lim_{t \to \infty} \int_0^t \phi(\tau) d\tau = L, \quad |L| < \infty.$$

Neste caso:

$$\lim_{t \to \infty} \phi(t) = 0.$$

 $\underline{\text{Obs.:}}$ Nessa versão, $\phi(t)$ faz o papel de $\dot{V}(t)$ na versão anterior.

Lema de Barbalat

Lema de Barbalat – Versão (3)

Seja uma função V(t),

$$V: \mathbb{R}^+ \to \mathbb{R},$$

tal que as seguintes propriedades são verificadas:

$$-\infty < m \le V(t), \ \dot{V} \le 0; \ \forall t \ge 0, \tag{3}$$

isto é, V(t) é limitada inferiormente, e sua derivada $\dot{V}(t)$ é semi-definida negativa. Se além disso $\dot{V}(t)$ é uniformemente contínua, então:

$$\lim_{t \to \infty} \dot{V}(t) = 0.$$

<u>Obs.:</u> Nessa versão, as condições (3) garantem a existência do limite: $\lim_{t\to\infty}V(t)=L,\quad |L|<\infty.$

Um Corolário do Lema de Barbalat

Corolário

Seja uma função diferenciável $\Psi(s)$,

$$\Psi: \mathbb{R} \to \mathbb{R},$$

tal que $\left|\frac{d\Psi}{ds}\right| < m_1 < \infty$, $\forall s$, e $\Psi(s) = 0 \Leftrightarrow s = 0$; sendo que $s \equiv s(t)$, isto é, $s: \mathbb{R}^+ \to \mathbb{R}$, e s(t) é também uma função diferenciável tal que $\left|\frac{ds}{dt}\right| < m_2 < \infty$, $\forall t \geq 0$. Se

$$\lim_{t \to \infty} \int_0^t \Psi(s(\tau)) d\tau = L, \quad |L| < \infty,$$

então:

$$\lim_{t \to \infty} s(t) = 0.$$

Exemplo de Aplicação I

Suponha um sistema estável de $1^{\underline{a}}$ ordem:

$$\dot{x} = -a_{\rm p}x + u,\tag{4}$$

para o qual se deseja projetar um sistema de controle que conduza a um comportamento dinâmico desejado, dado pelo seguinte modelo:

$$\dot{x}_{\rm m} = -a_{\rm m}x_{\rm m} + r(t), \quad a_{\rm m} > 0,$$
 (5)

em que r(t) é um sinal de referência limitado. Uma maneira de se conseguir isso é usando a lei de controle:

$$u = r(t) + (a_{\mathrm{p}} - a_{\mathrm{m}}) x.$$

Exemplo de Aplicação II

Mas suponha que não se conhece a priori o valor do parâmetro $a_{\rm p}$. Neste caso, uma possível lei de controle seria uma aproximação da lei ideal:

$$u = r(t) + (\hat{a}_{p} - a_{m}) x,$$
 (6)

em que $\hat{a}_{\rm p}$ é uma aproximação para $a_{\rm p}.$ O erro na estimação deste parâmetro pode ser escrito como

$$\tilde{a}_{\mathbf{p}} = \hat{a}_{\mathbf{p}} - a_{\mathbf{p}}.\tag{7}$$

Usando (6) em (4), considerando (5), e definindo $e=x-x_{\rm m}$, podemos escrever que:

$$\dot{e} = -a_{p}x + r(t) + (\hat{a}_{p} - a_{m}) x - \{-a_{m}x_{m} + r(t)\},
\dot{e} = -a_{m}e + \tilde{a}_{p}x.$$
(8)

Para garantir que o erro convirja para zero, podemos projetar uma lei de adaptação adequada para o parâmetro \hat{a}_{p} .

Lema de Barbalat

Exemplo de Aplicação III

Uma forma de se fazer isso é considerar a seguinte função definida positiva, e inferiormente limitada:

$$V(e,\tilde{a}_{\rm p}) = \frac{1}{2}e^2 + \frac{1}{2}\tilde{a}_{\rm p}^2, \quad V(e,\tilde{a}_{\rm p}) \ge 0.$$
 (9)

De (8), a derivada temporal dessa função é dada por:

$$\dot{V} = e\frac{de}{dt} + \tilde{a}_{p}\frac{d\tilde{a}_{p}}{dt},$$

$$= e\left[-a_{m}e + \tilde{a}_{p}x\right] + \tilde{a}_{p}\frac{d\hat{a}_{p}}{dt},$$

$$= -a_{m}e^{2} + \tilde{a}_{p}ex + \tilde{a}_{p}\frac{d\hat{a}_{p}}{dt},$$
(10)

Na equação acima usou-se o fato de $\frac{d\tilde{a}_{\rm p}}{dt}=\frac{d}{dt}\left[\hat{a}_{\rm p}-a_{\rm p}\right]$, com $a_{\rm p}$ uma constante desconhecida.

Exemplo de Aplicação IV

A partir de (10), vê-se que se escolhermos

$$\frac{d\hat{a}_{\mathbf{p}}}{dt} = -ex,\tag{11}$$

então

$$\dot{V} = -a_{\rm m}e^2$$

será uma função semi-definida negativa. Isso garante que $V(e,\tilde{a}_{\rm p})$ é uma função não-crescente, que por ser inferiormente limitada tem um limite quando $t\to\infty$.

Exemplo de Aplicação V

Além disso, \dot{V} é uniformemente contínua pois

$$\ddot{V} = -2a_{\mathrm{m}}e\dot{e},
= -2a_{\mathrm{m}}e\left[-a_{\mathrm{m}}e + \tilde{a}_{\mathrm{p}}x\right],
= 2a_{\mathrm{m}}^{2}e^{2} - 2a_{\mathrm{m}}e\tilde{a}_{\mathrm{p}}\underbrace{\left(e + x_{\mathrm{m}}\right)}_{x}$$

é uma função limitada, uma vez que:

- II $V(e, \tilde{a}_{\rm p}) = \frac{1}{2}e^2 + \frac{1}{2}\tilde{a}_{\rm p}^2$ é sempre menor ou igual ao seu valor inicial, e isso necessariamente implica em e e $\tilde{a}_{\rm p}$ serem variáveis limitadas;
- $oldsymbol{2}$ $a_{
 m m}$ é por hipótese uma constante positiva;
- \mathbf{x}_{m} é uma variável limitada, pois por hipótese assumiu-se que r(t) é uma função limitada, e a partir de (5) vê-se que $x_{\mathrm{m}}(t)$ é a saída de um sistema BIBO (Bounded-Input Bounded-Output) estável.

Exemplo de Aplicação VI

Pelo Lema de Barbalat, conclui-se que

$$\lim_{t \to \infty} \dot{V} = 0 \quad \Rightarrow \quad \lim_{t \to \infty} e(t) = 0.$$

Note que o sistema original é não-autônomo, por isso não é possível usar o Teorema de LaSalle, pois o conjunto Ω_I não pode ser definido.

Exemplo de Aplicação em Robótica I

Pode-se mostrar que as equações dinâmicas de um robô podem ser representadas como

$$\begin{array}{ccc} M(q)\ddot{q} + C(q,\dot{q})\dot{q} + \underbrace{g(q) + b(q,\dot{q})}_{N(q,\dot{q})} & = & u, \\ & & & \\ Y(q,\dot{q},\ddot{q})\theta & = & u, \end{array}$$

em que $Y(q,\dot{q},\ddot{q})\in\mathbb{R}^{l\times l}$ é a matriz de regressores associada à equação canônica do Robô, e $\theta\in\mathbb{R}^l$. No caso em que os parâmetros são incertos, podemos escrever que

$$Y(q, \dot{q}, \ddot{q})\theta' \approx u,$$

em que $\theta' \in \mathbb{R}^l$ é uma estimativa dos parâmetros de massa do robô.

Exemplo de Aplicação em Robótica II

Nos slides seguintes usaremos a propriedade de linearidade nos parâmetros θ das equações dinâmicas de um robô para a seguinte expressão correlata [2]:

$$M(q)\ddot{q}_{r} + C(q,\dot{q})\dot{q}_{r} + \underbrace{g(q) + b(q,\dot{q})}_{N(q,\dot{q})} = Y(q,\dot{q},\dot{q}_{r},\ddot{q}_{r})\theta,$$
 (12)

em que $Y(q,\dot{q},\dot{q}_{\mathrm{r}},\ddot{q}_{\mathrm{r}})\in\mathbb{R}^{l\times l}$ é a mesma matriz de regressores anterior, mas na qual algumas variáveis foram substituídas pelos vetores \dot{q}_{r} e \ddot{q}_{r} .

Exemplo de Aplicação em Robótica III

Definindo o erro de estimação como:

$$\tilde{\theta} = \theta' - \theta \quad \Rightarrow \quad \dot{\tilde{\theta}} = \dot{\theta}',$$

onde a última expressão decorre da hipótese de que θ seja constante, considere a seguinte Função de Lyapunov candidata:

$$V(s, q, \tilde{\theta}) = \frac{1}{2} s^{\mathsf{T}} M(q) s + \frac{1}{2} \tilde{\theta}^{\mathsf{T}} \Gamma^{-1} \tilde{\theta},$$

em que $\Gamma = \Gamma^{\top} > 0$, e

$$s = \dot{e} - \Lambda e,\tag{13}$$

com $e=q-q_{\rm d}$, e Λ uma matriz Hurwitz. Note que

$$s = \dot{q} - \dot{q}_{\rm r}$$
, para $\dot{q}_{\rm r} = \dot{q}_{\rm d} + \Lambda e$.

Exemplo de Aplicação em Robótica IV

Neste caso, a derivada da Função de Lyapunov candidata será

$$\begin{split} \dot{V} &= s^{\top} M \dot{s} + \frac{1}{2} s^{\top} \dot{M} s + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\tilde{\theta}}, \\ &= s^{\top} M \left(\ddot{q} - \ddot{q}_{\rm r} \right) + \frac{1}{2} s^{\top} \dot{M} s + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\tilde{\theta}}, \\ &= s^{\top} \left(u - N(q, \dot{q}) - C(q, \dot{q}) \dot{q} - M \ddot{q}_{\rm r} \right) + \frac{1}{2} s^{\top} \dot{M} s + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\theta}', \\ &= s^{\top} \left(u - N(q, \dot{q}) - C(q, \dot{q}) \left[s + \dot{q}_{\rm r} \right] - M \ddot{q}_{\rm r} \right) + \frac{1}{2} s^{\top} \dot{M} s + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\theta}', \end{split}$$

Lembrando que $\dot{M}-2C$ é uma matriz anti-simétrica, tem-se que $s^{\top}\left(\frac{1}{2}\dot{M}-C\right)s=0$, e portanto:

$$\dot{V} = s^{\top} \left(u - N(q, \dot{q}) - C(q, \dot{q}) \dot{q}_{r} - M(q) \ddot{q}_{r} \right) + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\theta}'.$$

Exemplo de Aplicação em Robótica V

Usando a propriedade de linearidade (12), podemos escrever que:

$$\dot{V} = s^{\top} (u - Y(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r})\theta) + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\theta}'.$$

Fazendo

$$u = Y(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r})\theta' - K_{D}s,$$

tem-se que

$$\dot{V} = s^{\top} Y (\theta' - \theta) + \tilde{\theta}^{\top} \Gamma^{-1} \dot{\theta}' - s^{\top} K_{D} s.$$

Escolhendo a lei de adaptação dos parâmetros estimados como

$$\dot{\theta}' = -\Gamma Y^{\top} s,$$

Exemplo de Aplicação em Robótica VI

obtém-se, subtituindo-se na expressão para a derivada da Função de Lyapunov candidata (lembrando que $\Gamma = \Gamma^{\top}$):

$$\dot{V} = -s^{\top} K_{\mathrm{D}} s \qquad \Rightarrow \qquad \dot{V} \le 0.$$

A partir desse resultado, considerando que a Função de Lyapunov proposta é inferiormente limitada, podemos concluir que:

- **11** As variáveis s, q e $\tilde{\theta}$ são limitadas.
- 2 Como $\tilde{\theta}=\theta'-\theta$ é limitada e os parâmetros desconhecidos θ são constantes, os parâmetros estimados via adaptação θ' são também limitados.
- Note também que, a partir de (13), se s é limitada, a variável e pode ser vista como a "saída" de um SLIT que é exponencialmente estável (Λ é Hurwitz), e consequentemente é também um sistema BIBO estável. Portanto, e é limitada, bem como \dot{e} .

Exemplo de Aplicação em Robótica VII

- 4 A partir desse resultado, e supondo que $q_{\rm d}(t)$ é limitada, com derivadas limitadas $\dot{q}_{\rm d}(t)$ e $\ddot{q}_{\rm d}(t)$, conclui-se que q e \dot{q} são limitados, além de $\dot{q}_{\rm r}(t)$ e $\ddot{q}_{\rm r}(t)$ serem também limitadas.
- 5 Consequentemente, a partir da expressão para u, conclui-se que este também é um vetor de sinais limitados.
- 6 Finalmente, com u, q e \dot{q} limitados, a partir da Equação Canônica do Robô concluímos que \ddot{q} é limitada.

Exemplo de Aplicação em Robótica VIII

Da análise anterior, e usando a expressão para \dot{s} , vê-se que a derivada segunda da Função de Lyapunov

$$\ddot{V} = -2s^{\top} K_{\rm D} \dot{s}$$

é limitada. Portanto, $\dot{V}(t)$ é uniformemente contínua e, aplicando o lema de Barbalat:

$$\lim_{t \to \infty} \dot{V}(t) = 0 \qquad \Rightarrow \qquad s \to 0.$$

Consequentemente,

$$\lim_{t \to \infty} e(t) = 0,$$

pois, como dito anteriormente, a variável e pode ser vista como a "saída" de um SLIT estável definido por (13).

Apêndice

Matrizes Definidas e Semi-definidas I

I Matriz Definida Positiva: Uma matriz $P \in \mathbb{R}^{n \times n}$ é definida positiva se, e somente se, a função escalar $V(x) = x^\top P x$ é definida positiva, isto é

$$x^{\top} P x > 0, \forall x \neq 0.$$

2 Matriz Semidefinida Positiva: Uma matriz $P \in \mathbb{R}^{n \times n}$ é semidefinida positiva se, e somente se, a função escalar

$$x^{\top} P x \ge 0, \forall x \ne 0.$$

Matrizes Definidas e Semi-definidas II

3 Matriz Definida Negativa: Uma matriz $Q \in \mathbb{R}^{n \times n}$ é definida negativa se, e somente se, a função escalar

$$x^{\top}Qx < 0, \forall x \neq 0.$$

4 Matriz Semidefinida Negativa: Uma matriz $Q \in \mathbb{R}^{n \times n}$ é semidefinida negativa se, e somente se, a função escalar

$$x^{\top}Qx \le 0, \forall x \ne 0.$$

Matrizes Definidas e Semi-definidas III

Observações importantes sobre funções quadráticas do tipo

$$\phi(x) = x^{\top} P x.$$

1 Não há perda de generalidade ao se considerar apenas matrizes simétricas $P=P^{\top}$ na expressão de $\phi(x)$. Para ver isso, note que qualquer matriz P pode ser decomposta como

$$P = \underbrace{\frac{1}{2} \left(P + P^{\top} \right)}_{S: \text{ Parte Simétrica}} + \underbrace{\frac{1}{2} \left(P - P^{\top} \right)}_{A: \text{ Parte Anti-simétrica}},$$

$$= S + A. \qquad S = S^{\top}, \quad A = -A^{\top}.$$

Matrizes Definidas e Semi-definidas IV

Mas a parte anti-simétrica não contribui para $\phi(x)$, pois, lembrando que $x^{\top}Ax$ é uma função escalar, temos que

$$x^{\top}Ax = \begin{bmatrix} x^{\top}Ax \end{bmatrix}^{\top} = x^{\top}A^{\top}x,$$

= $-x^{\top}Ax \Rightarrow x^{\top}Ax = 0, \forall x \in \mathbb{R}^n.$

Consequentemente,

$$\phi(x) = x^{\top} P x,$$

$$= x^{\top} (S + A) x = x^{\top} S x + x^{\top} A x^{0},$$

$$= x^{\top} S x,$$

e somente a componente simétrica $S = \frac{1}{2} \left(P + P^{\top} \right)$ contribui para se determinar o valor de $\phi(x) = x^{\top} P x$.

Matrizes Definidas e Semi-definidas V

 $\mathbf{P} = \mathbf{P}^{\top}$ simétrica definida positiva pode ser escrita como o produto (Teorema da Decomposição Espectral):

$$P = U^{\top} \Lambda U,$$

em que $\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\ldots,\lambda_n\}$, sendo $\lambda_i\in\mathbb{R}^+$, para $i=1,2,\ldots,n$, autovalores de P, que são números reais positivos; e $U\in\mathbb{R}^{n\times n}$ uma matriz real ortogonal, isto é,

$$U^{\top}U = I_n, \quad UU^{\top} = I_n,$$

sendo $I_n \in \mathbb{R}^{n \times n}$ a matriz identidade. Isto significa que as colunas de U podem ser vistas como vetores de norma unitária que são ortogonais entre si, isto é, $U = [u_1 \ u_2 \ \cdots \ u_n]$, com $u_i^\top u_j = 0$, se $i \neq j$, e $u_i^\top u_i = 1$.

Matrizes Definidas e Semi-definidas VI

 ${\bf 3}$ A partir do item anterior, e sem perda de generalidade considerando $P=P^\top$, podemos escrever que

$$\phi(x) = x^{\top} P x = x^{\top} (U^{\top} \Lambda U) x = (x^{\top} U^{\top}) \Lambda (U x),$$

$$= z \Lambda z,$$

$$= \lambda_1 z_1^2 + \lambda_2 z_2^2 + \ldots + \lambda_n z_n^2,$$

em que z = Ux é uma transformação de coordenadas que preserva a norma dos vetores: $\|x\|^2 = \|z\|^2 = x^\top U^\top Ux$. Considerando $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$, temos que

$$\phi(x) = x^{\top} P x,$$

$$= \lambda_1 z_1^2 + \lambda_2 z_2^2 + \ldots + \lambda_n z_n^2 \le \lambda_n z_1^2 + \lambda_n z_2^2 + \ldots + \lambda_n z_n^2,$$

$$\le \lambda_n z^{\top} z,$$

$$< \lambda_n x^{\top} x. \Rightarrow x^{\top} P x < \lambda_n x^{\top} x.$$

Matrizes Definidas e Semi-definidas VII

De forma semelhante, também se consegue mostrar que $x^{\top}Px \geq \lambda_1 x^{\top}x$, e portanto,

$$\lambda_1 x^\top x \le x^\top P x \le \lambda_n x^\top x,$$

em que $\lambda_1=\lambda_{\min}\left(P\right)$ é o menor autovalor de P, e $\lambda_n=\lambda_{\max}\left(P\right)$ é o maior autovalor de P:

$$\lambda_{\min}(P) \|x\|^2 \le x^{\top} P x \le \lambda_{\max}(P) \|x\|^2.$$

Teorema de Lyapunov para Sistemas Autônomos I

Theorem (Método Direto de Lyapunov para Sistemas Autônomos)

Seja x=0 um ponto de equilíbrio – P.E. de $\dot{x}=f(x)$, em que $f:D\to\mathbb{R}^n$, e $D\subseteq\mathbb{R}^n$ um domínio contendo x=0. Seja $V:D\to\mathbb{R}$ uma função continuamente diferenciável tal que

$$V(0) = 0; V(x) > 0, \forall x \in D - \{0\};$$

 $\dot{V} \le 0, \forall x \in D.$

Então o P.E. é estável. Além disso, se

$$\dot{V} < 0, \quad \forall x \in D - \{0\},\$$

então o P.E. é assintoticamente estável.

Teorema de Lyapunov para Sistemas Autônomos II

Prova da Parte sobre Estabilidade:

Dado $\epsilon > 0$, escolha $0 < r \le \epsilon$ tal que a bola fechada

$$\bar{\mathcal{B}}_r = \{ x \in \mathbb{R}^n; \ \|x\| \le r \}$$

esteja contida em D, onde as hipóteses do teorema são verdadeiras. Seja $\alpha = \min_{\|x\|=r} V(x)$. Então existe α , e $\alpha > 0$, pois trata-se do mínimo de uma função contínua em um domínio compacto (Teo. dos Extremos ou Teo. de Weierstrass). Escolha $0 < \beta < \alpha$, e defina o conjunto

$$\Omega_{\beta} = \left\{ x \in \bar{\mathcal{B}}_r; \ V(x) \le \beta \right\}.$$

Note que Ω_{β} está no interior de \mathcal{B}_r , isto é, nenhum ponto $x \in \Omega_{\beta}$ pode ser um ponto na fronteira de $\bar{\mathcal{B}}_r$. Se isso ocorresse, então $\|x\| = r$ e simultaneamente $V(x) \leq \beta < \alpha$, violando o fato de $\alpha = \min_{\|x\| = r} V(x)$.

Teorema de Lyapunov para Sistemas Autônomos III

Além disso, Ω_{β} é um conjunto *positivamente invariante*; i.e. se $x(t_0) \in \Omega_{\beta}$, então $x(t) \in \Omega_{\beta}$, $\forall t \geq t_0$; pois

$$\dot{V} \le 0 \quad \Rightarrow \quad V(t) \le V(t_0) \le \beta, \ \forall t \ge t_0.$$

Teorema de Lyapunov para Sistemas Autônomos IV

Agora só é preciso encontrar uma bola de raio δ , contida na bola de raio $r<\epsilon$, de possíveis condições iniciais a partir das quais as trajetórias não podem abandonar a bola de raio ϵ . Para tanto, podemos usar a continuidade de V(x) em torno de x=0, e o fato de a mesma ser definida positiva, para afirmar que existe $\delta>0$ tal que

$$\begin{split} \|x-0\| < \delta \Rightarrow |V(x)-0| < \beta \\ \updownarrow \\ \|x\| < \delta \Rightarrow V(x) < \beta, \end{split}$$

e, neste caso,

$$\mathcal{B}_{\delta} \subset \Omega_{\beta} \subset \bar{\mathcal{B}}_r \subset \mathcal{B}_{\epsilon}.$$

Teorema de Lyapunov para Sistemas Autônomos V

Além disso, considerando o fato de Ω_{β} ser positivamente invariante, tem-se que

$$x(t_0) \in \mathcal{B}_{\delta} \Rightarrow x(t_0) \in \Omega_{\beta};$$

$$x(t_0) \in \Omega_{\beta} \Rightarrow x(t) \in \Omega_{\beta}, \forall t \ge t_0;$$

$$x(t) \in \Omega_{\beta}, \forall t \ge t_0 \Rightarrow x(t) \in \mathcal{B}_{\epsilon}, \forall t \ge t_0.$$

Portanto, prova-se a estabilidade do P.E.:

$$||x(t_0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < \epsilon, \quad \forall t \ge t_0.$$

Teorema de Lyapunov para Sistemas Autônomos VI

■ Prova da Parte sobre Estabilidade Assintótica:

Neste caso, é preciso mostrar que

$$\lim_{t \to \infty} ||x(t)|| = 0,$$

quando $\dot{V} < 0$, $\forall x \in D - \{0\}$.

Isso é equivalente a dizer que, dado a>0 tão pequeno quanto se queira, pode-se encontrar um intervalo de tempo finito $T_a\geq 0$, tal que

$$||x(t)|| < a, \quad \forall t \ge t_0 + T_a. \tag{14}$$

Teorema de Lyapunov para Sistemas Autônomos VII

Entretanto, usando os mesmos argumentos anteriores, sabe-se que sempre haverá um $\beta_a>0$, para 0< b< a, com

$$\beta_a < \min_{\|x\|=b} V(x),$$

tal que $\Omega_{\beta_a} \subset \bar{\mathcal{B}}_b \subset \mathcal{B}_a$, sendo que

$$\Omega_{\beta_a} = \{ x \in \bar{\mathcal{B}}_b; V(x) \le \beta_a \}$$

é um conjunto positivamente invariante. Deste modo, pode-se concluir (14), se for possível mostrar que, dado a>0 tão pequeno quanto se queira, obtém-se um $\beta_a>0$ como mostrado acima, e um intervalo de tempo finito $T_a\geq 0$, tal que

$$V(x(t)) \le \beta_a \Rightarrow ||x(t)|| < a, \quad \forall t \ge t_0 + T_a. \tag{15}$$

Teorema de Lyapunov para Sistemas Autônomos VIII

O Tempo T_a que satisfaz (15) pode ser computado considerando os seguintes casos

- $\mathbf{x}(t_0) \in \Omega_{\beta_a} \Rightarrow T_a = 0.$
- $x(t_0) \notin \Omega_{\beta_a} \Rightarrow V(x(t_0)) = V_0 > \beta_a$. Neste caso, considere o conjunto fechado e limitado (portanto, compacto)

$$R_0 = \{ x \in \bar{\mathcal{B}}_r; \beta_a \le V(x) \le V_0 \},$$

e considere que, usando novamente o Teorema dos Extremos, existe

$$\gamma = \max_{x \in R_0} \dot{V}(x),$$

que é um valor negativo por hipótese, i.e. $\gamma<0$, pois $\dot{V}(x)<0$, $\forall x\in D-\{0\}.$

Teorema de Lyapunov para Sistemas Autônomos IX

Mas com isso conclui-se que, para $x(t_0) \in R_0$,

$$V(x(t)) = V(x(t_0)) + \int_{t_0}^{t} \dot{V}(x(\tau)) d\tau,$$

$$V(x(t)) \le V_0 + \int_{t_0}^{t} \gamma d\tau,$$

$$V(x(t)) \le V_0 + \gamma(t - t_0)$$

e, portanto, lembrando que $\gamma < 0$ e $V_0 > \beta_a$, tem-se que

$$t \ge t_0 + \frac{V_0 - \beta_a}{-\gamma} \quad \Rightarrow \quad V(x(t)) \le \beta_a.$$

Isto significa que se pode escolher $T_a = \frac{V_0 - \beta_a}{-\gamma} < \infty$ para se satisfazer (15).

GAS: Necessidade de V(x) ser Radialmente Ilimitada I

■ Como visto anteriormente, a Estabilidade Assintótica *Global* depende de se ter uma Função de Lyapunov **radialmente ilimitada**, isto é, $V(x) \to \infty$, quando $\|x\| \to \infty$ segundo *qualquer caminho*, isto é, dado c>0 qualquer, tão grande quanto se queira, sempre existe r>0 tal que $V(x)>c, \forall \|x\| \ge r$.

GAS: Necessidade de V(x) ser Radialmente Ilimitada II

Note que isto pode ser expresso logicamente de duas maneiras equivalentes:

$$\forall c > 0, \exists r, 0 < r < \infty : \quad ||x|| > r \Rightarrow V(x) > c,$$

$$\forall c > 0, \exists r, 0 < r < \infty : \quad V(x) \le c \Rightarrow ||x|| \le r,$$

sendo que a última expressão é equivalente a dizer que o conjunto

$$\Omega_c = \{ x \in \mathbb{R}^n; V(x) \le c \},\,$$

para qualquer c>0, é limitado, pois está contido em uma bola de raio finito. Como pontos x da fronteira; i.e. tais que $\{V(x)=c\}$; pertencem a Ω_c , esse conjunto é fechado. Portanto, Ω_c é compacto (fechado e limitado).

GAS: Necessidade de V(x) ser Radialmente Ilimitada III

A partir da constatação de que os conjuntos Ω_c são compactos, pode-se mostrar que as trajetórias irão atravessar a fronteira de qualquer conjunto deste tipo, enquanto caminham em direção ao ponto de equilíbrio, uma vez que V(t) é estritamente decrescente $(\dot{V}(t) < 0)$. Isto é, a trajetória do sistema irá atravessar $\Omega_{c_1} \supset \Omega_{c_2} \supset \Omega_{c_3} \supset \cdots$, em que $c_1 > c_2 > c_3 > \cdots$.

GAS: Necessidade de V(x) ser Radialmente Ilimitada IV

■ O exemplo a seguir mostra que, se essa condição for eliminada, há casos em que V(x) é definida positiva, continuamente diferenciável, com $\dot{V}(x) < 0, \forall x \neq 0$, e ainda assim GAS não se verifica.

GAS: Necessidade de V(x) ser Radialmente Ilimitada V

Considere o sistema [1, Exercício 4.8, pág. 182]:

$$\begin{cases} \dot{x}_1 = \frac{-6x_1}{\phi^2} + 2x_2, \\ \dot{x}_2 = \frac{-2(x_1 + x_2)}{\phi^2}, \end{cases}$$

em que $\phi \equiv \phi(x_1) = 1 + x_1^2$. Note que $\phi > 0, \forall (x_1, x_2) \in \mathbb{R}^2$. Seja a Função Candidata de Lyapunov, definida positiva e continuamente diferenciável, dada por

$$V(x) = \frac{x_1^2}{\phi} + x_2^2 = \frac{x_1^2}{1 + x_1^2} + x_2^2.$$

Veja que V(x) não é radialmente ilimitada, pois para $x_2=c$, em que c é um valor constante arbitrário, $\lim_{x_1\to\infty}V(x)=1+c^2<\infty$.

GAS: Necessidade de V(x) ser Radialmente Ilimitada VI

I Fato 1: $\dot{V}(x) < 0, \forall x \neq 0$; e $\dot{V}(x)$ é contínua.

$$\begin{split} \frac{dV}{dt} &= \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2, \\ \dot{V} &= \left[\frac{2x_1}{\phi} + \frac{-2x_1^3}{\phi^2} \right] \left[\frac{-6x_1}{\phi^2} + 2x_2 \right] + x_2 \left[\frac{-4(x_1 + x_2)}{\phi^2} \right], \\ \phi^4 \dot{V} &= -12x_1^2 \phi + 4x_1 x_2 \phi^3 + 12x_1^4 - 4x_1^3 x_2 \phi^2 - 4(x_1 + x_2) \phi^2, \\ \phi^4 \dot{V} &= -12x_1^2 (1 + x_1^2) + 12x_1^4 + 4x_1 x_2 \phi^2 \left(\phi - x_1^2 \right) - 4x_1 x_2 \phi^2 - 4x_2^2 \phi^2, \\ \phi^4 \dot{V} &= -12x_1^2 + 4x_1 x_2 \phi^2 \left(\phi - x_1^2 - 1 \right)^{-1} - 4x_2^2 \phi^2, \\ \dot{V} &= -12\frac{x_1^2}{\phi^4} - 4\frac{x_2^2}{\phi^2} < 0, \quad \forall x \neq 0. \end{split}$$

GAS: Necessidade de V(x) ser Radialmente Ilimitada VII

Fato 2: o sistema não é GAS, pois existe pelo menos uma fonteira que não pode ser atravessada pelas trajetórias do sistema. Considere condições iniciais que satisfazem

$$x_1(0) > \sqrt{2}, \quad x_2(0) > \frac{2}{x_1(0) - \sqrt{2}}.$$

GAS: Necessidade de V(x) ser Radialmente Ilimitada VIII

Vetores tangentes à fronteira $x_2=\frac{2}{x_1-\sqrt{2}}$, com $x_1>\sqrt{2}$, são dados por

$$\vec{v}_{\mathrm{t}} = \begin{bmatrix} 1\\ \frac{dx_2}{dx_1} \end{bmatrix} = \begin{bmatrix} 1\\ \frac{-2}{(x_1 - \sqrt{2})^2} \end{bmatrix},$$

de modo que vetores ortogonais à fronteira, e que apontam para o primeiro quadrante do plano, podem ser obtidos como

$$\vec{v}_{\mathbf{p}} = \begin{bmatrix} \frac{2}{(x_1 - \sqrt{2})^2} \\ 1 \end{bmatrix},$$

pois $\vec{v}_{\mathrm{t}}^{\top} \vec{v}_{\mathrm{p}} = 0.$

GAS: Necessidade de V(x) ser Radialmente Ilimitada IX

O produto escalar destes vetores ortogonais à fronteira, definidos sobre ela, com o campo vetorial do sistema dinâmico sobre a fronteira é dado por:

$$\vec{v}_{\mathbf{p}}^{\top} \dot{x} = \left[\frac{2}{(x_1 - \sqrt{2})^2} \left(\frac{-6x_1}{\phi^2} + 2x_2 \right) + \frac{-2(x_1 + x_2)}{\phi^2} \right]_{x_2 = \frac{2}{x_1 - \sqrt{2}}},$$

$$= \frac{-12x_1}{(x_1 - \sqrt{2})^2 \phi^2} + \frac{8}{(x_1 - \sqrt{2})^3} + \frac{-2x_1}{\phi^2} + \frac{-4}{(x_1 - \sqrt{2})\phi^2},$$

de modo que, para $E_0 = \alpha(x_1) \left(\vec{v}_{\mathrm{p}}^{\mathsf{T}} \dot{x} \right)$, com

$$\alpha(x_1) = \left[(x_1 - \sqrt{2})^3 \phi^2 \right] > 0, \quad \forall x_1 > \sqrt{2},$$

tem-se que:

$$E_0 = 8\phi^2 - 12x_1(x_1 - \sqrt{2}) - 2x_1(x_1 - \sqrt{2})^3 - 4(x_1 - \sqrt{2})^2.$$

GAS: Necessidade de V(x) ser Radialmente Ilimitada X

Observando que se está considerando $x_1>\sqrt{2}$, ao substituirmos $(x_1-\sqrt{2})$ po x_1 na expressão E_0 acima pode-se concluir que

$$E_0 > E_1 = 8\phi^2 - 12x_1^2 - 2x_1^4 - 4x_1^2,$$

$$E_1 = 8(1 + 2x_1^2 + x_1^4) - 16x_1^2 - 2x_1^4,$$

$$E_1 = 8 + 12x_1^2 + 6x_1^4 > 0, \quad \forall x_1 \in \mathbb{R}.$$

Portanto, para todo ponto sobre a fronteira $x_2=\frac{2}{x_1-\sqrt{2}}$, com $x_1>\sqrt{2}$,

$$\vec{v}_{\mathbf{p}}^{\top} \dot{x} = \frac{1}{\alpha(x_1)} E_0 > \frac{1}{\alpha(x_1)} E_1 > 0,$$

e isto significa que o campo vetorial do sistema tem sempre uma componente na direção que aponta para fora da fronteira, pois o produto escalar é positivo.

GAS: Necessidade de V(x) ser Radialmente Ilimitada XI

Desta maneira, a fronteira $x_2 = \frac{2}{x_1 - \sqrt{2}}$ é de fato uma *barreira* para as trajetórias do sistema, conforme ilustrado abaixo:

Condições iniciais à direita da barreira conduzem a trajetórias com $x_1 \to \infty \ e \ x_2 \to c$. de modo que V(x)sempre descresce, mas não vai para zero, enquanto que, ao mesmo tempo, $V(x) \to 0$. Não se tem, portanto, um sistema GAS.

T. de Lyapunov para SLITs: Prova da Necessidade I

Vamos provar que, dado um SLIT autônomo assintoticamente estável

$$\dot{x} = Ax,\tag{16}$$

com $x \in \mathbb{R}^n$, associada a uma matriz simétrica definida positiva arbitrária $Q = Q^\top > 0$, existe uma matriz simétrica definida positiva $P = P^\top > 0$ que satisfaz a equação de Lyapunov:

$$A^{\top}P + PA = -Q. \tag{17}$$

T. de Lyapunov para SLITs: Prova da Necessidade II

Considere a seguinte possível solução para a matriz P:

$$P = \lim_{T \to \infty} \int_0^T e^{tA^{\top}} Q e^{At} dt.$$
 (18)

Como o sistema (16) é estável, o limite acima existe, pois $e^{At} \to 0$. Além disso, a matrix P assim definida é simétrica, pois é obtida integrando-se elementos de uma matriz simétrica dada por

$$\left(e^{tA^{\top}}Qe^{At}\right)^{\top} = e^{tA^{\top}}Q^{\top}e^{At} = e^{tA^{\top}}Qe^{At}.$$

T. de Lyapunov para SLITs: Prova da Necessidade III

A matriz P é também definida positiva, pois

$$x_0^{\top} P x_0 = x_0^{\top} \left(\int_0^{\infty} e^{tA^{\top}} Q e^{At} dt \right) x_0,$$

$$= \int_0^{\infty} \left(x_0^{\top} e^{tA^{\top}} \right) Q \left(e^{At} x_0 \right) dt,$$

$$= \int_0^{\infty} x^{\top}(t) Q x(t) dt,$$

$$\geq \lambda_{\min}(Q) \int_0^{\infty} \|x(t)\|^2 dt > 0, \quad \forall x_0 \neq 0,$$

$$\therefore x_0^{\top} P x_0 > 0, \quad \forall x_0 \neq 0,$$

em que $x(t) = e^{At}x_0$ é a trajetória do sistema partindo de $x(0) = x_0$.

T. de Lyapunov para SLITs: Prova da Necessidade IV

Vamos mostrar que a matriz P em (18) é uma solução para a equação (17):

$$\begin{split} A^\top P + PA &= A^\top \left(\int_0^\infty e^{tA^\top} Q e^{At} dt \right) + \left(\int_0^\infty e^{tA^\top} Q e^{At} dt \right) A, \\ &= \int_0^\infty \left(A^\top e^{tA^\top} \right) Q e^{At} + e^{tA^\top} Q \left(e^{At} A \right) dt, \\ &= \int_0^\infty \left(\frac{d}{dt} \left(e^{tA^\top} \right) Q e^{At} + e^{tA^\top} Q \frac{d}{dt} \left(e^{At} \right) \right) dt, \\ &= \int_0^\infty \frac{d}{dt} \left(e^{tA^\top} Q e^{At} \right) dt, \\ &= \left[e^{tA^\top} Q e^{At} \right]_0^\infty = 0 - Q = -Q. \end{split}$$

T. de Lyapunov para SLITs: Prova da Necessidade V

Finalmente, vamos mostrar que a matriz P em (18) é, de fato, a *única* solução. Para isso, considere a existência de duas soluções P_1 e P_2 para a equação (17), para uma matriz dada $Q = Q^{\top} > 0$:

$$A^{\top} P_1 + P_1 A = -Q,$$

 $A^{\top} P_2 + P_2 A = -Q,$
 $\Rightarrow A^{\top} (P_1 - P_2) + (P_1 - P_2) A = 0.$

Logo, a função quadrática $W(x) = x^{\top}(t)(P_1 - P_2)x(t)$ é tal que:

$$\frac{dW}{dt} = x^{\top}(t) \left[A^{\top}(P_1 - P_2) + (P_1 - P_2)A \right] x(t) = 0$$

$$\Leftrightarrow W(x(t)) = \text{constante}, \forall t \ge 0.$$

Como $x(t) \neq \text{constante}$, isso só é possível sse $W(x) \equiv 0 \Leftrightarrow P_1 = P_2$.

Definições Equivalentes para Estabilidade Uniforme I

Lemma

Para um sistema dinâmico $\dot{x}=f(t,x)$, com $x(t_0)=x_0$, em que x=0 é um ponto de equilíbrio – P.E. uniformemente estável, são equivalentes as afirmações:

■ (A) Dado $\epsilon > 0$, existe $\delta \equiv \delta(\epsilon)$, independente do instante inicial t_0 , tal que

$$||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge t_0.$$

■ **(B)** Existe c > 0 e uma função $\alpha(\cdot) \in \mathcal{K}$, tal que

$$||x(t_0)|| < c \Rightarrow ||x(t)|| < \alpha(||x(t_0)||), \quad \forall t \ge t_0.$$

Definições Equivalentes para Estabilidade Uniforme II

- Prova: $A \Rightarrow B$
- Prova: $\mathbf{B}\Rightarrow\mathbf{A}$ Uma vez que $\|x(t)\|\leq \alpha(\|x(t_0))\|$, $\forall \|x(t_0)\|< c$, e $\forall t\geq t_0$, então, dado $\epsilon>0$ qualquer, escolha

$$\delta = \min\{c, \alpha^{-1}(\epsilon)\},\$$

de modo que

$$||x(t_0)|| \le \delta \Rightarrow \alpha(||x(t_0)||) \le \alpha(\delta) \le \epsilon.$$

E, assim, $\forall t \geq t_0$,

$$||x(t)|| \le \alpha(||x(t_0)||) \Rightarrow ||x(t)|| \le \epsilon.$$

Referências Bibliográficas I

Hassan K. Khalil.

Nonlinear Systems.

Prentice Hall, third edition, 2002.

Jean-Jacques Slotine and Weiping Li.

Applied Nonlinear Control.

Prentice Hall. 1990.

M. Vidyasagar.

Nonlinear Systems Analysis.

Prentice-Hall International, Inc., second edition, 1993.