Distributions

Jihang Li

October 23, 2019

Contents

Contents	1
1 Normal Distribution	1
1.1 Basic Form	1
1.2 Multivariate Form	1
2 Poisson Distribution	2
1 Normal Distribution	
1.1 Basic Form	
• X: random variable.	
• μ : mean or expectation.	
• σ : standard deviation.	
• σ^2 : variance.	
• $X \sim \mathcal{N}(\mu, \sigma^2)$: X is distributed normally with μ and σ^2 ,	
$f(x \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$	(1)
1.2 Multivariate Form	

- **X**: random vector, $\mathbf{X} = (X_1, \dots, X_k)$.
- $\bullet \ \mu \text{: mean or expectation vector, } \mu = \mathrm{E}[\mathbf{X}] = (\mathrm{E}[\mathbf{X_1}], \mathrm{E}[\mathbf{X_2}], \dots, \mathrm{E}[\mathbf{X_k}]).$
- Σ : $k \times k$ convariance matrix, $\Sigma_{i,j} = \mathbb{E}[(X_i \mu_i)(X_j \mu_j)] = \text{Cov}[X_i, X_j]$, where $1 \le i, j \le k$.

- Q: precision matric Σ^{-1}
- $X \sim \mathcal{N}_{\parallel}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$: X is distributed normally with $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ and k indicates k-dimension.

For non-degenerate case:

$$f_{\mathbf{X}}(x_1,\dots,x_k) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp(-\frac{(\mathbf{X}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{X}-\boldsymbol{\mu})}{2})$$
 (2)

The descriptive statistic $\sqrt{\left(\mathbf{X} - \boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})}$ is known as the Mahalanobis distance.

2 Poisson Distribution

$$f(k;\lambda) = P(X=k) = \frac{\lambda^k e^- - \lambda}{k!}$$
 (3)

where the positive real number $\lambda = \mathrm{E}(X) = \mathrm{Var}X$ is the average number of events per intervel, and $k = 0, 1, 2, \ldots$