Un problème d'Hofstadter pour ses lecteurs curieux

Pierre Letouzey

9 novembre 2018

La loi d'Hofstadter : il faut toujours plus longtemps que prévu, même en tenant compte de la loi d'Hofstadter.

Code Coq + rapport technique + cet exposé

https://github.com/letouzey/hofstadter_g (branche avec les dernières nouveautés: generalized)

Douglas Hofstadter, "Gödel, Escher, Bach", p.135

Douglas Hofstadter, "Gödel, Escher, Bach", p.135

Combien de noeuds par niveau ?

Numérotons!

Parcours en largeur, de gauche à droite

Numérotons!

Parcours en largeur, de gauche à droite

Départ à 3 ? Pour expliciter les nombres de Fibonacci

Ajout d'une racine ad-hoc. . .

Et la fonction parent est ...

$$G(n) = n - G(G(n-1))$$
 (pour $n > 0$)
 $G(0) = 0$

Aparté : arbre de fonction, fonction d'arbre

Soit un arbre:

- ▶ infini
- dont les noeuds ont des arités finies non nulles
- numéroté via un parcours en largeur

Que peut-on dire de sa fonction parent ?

Aparté : arbre de fonction, fonction d'arbre

Soit un arbre:

- infini
- dont les noeuds ont des arités finies non nulles
- numéroté via un parcours en largeur

Que peut-on dire de sa fonction parent ?

Recip. que faut-il sur une fonction $\mathbb{N} \to \mathbb{N}$ pour qu'elle soit la fonction parent d'un et un seul tel arbre ?

Aparté : arbre de fonction, fonction d'arbre

- ▶ f croissante
- ► f(n)<n hormis à la racine
- ► f surjective
- f ne stationne pas (i.e. tend vers $+\infty$)

Etude de G

$$G(n) = n - G(G(n-1))$$

- ▶ Existence + encadrement $0 \le G(n) \le n$
- G(0) = 0, G(1) = 1 puis $1 \le G(n) < n$
- ▶ G "avance" par pas de 0 ou +1
- ▶ Après un pas à 0, forcément un +1
- ▶ Jamais trois +1 de suite

Etude de G

$$G(n) = n - G(G(n-1))$$

- ▶ Existence + encadrement $0 \le G(n) \le n$
- G(0) = 0, G(1) = 1 puis $1 \le G(n) < n$
- ightharpoonup G "avance" par pas de 0 ou +1
- ▶ Après un pas à 0, forcément un +1
- ▶ Jamais trois +1 de suite

On peut en fait montrer que $G(n) = \lfloor (n+1)/\phi \rfloor$

Etude de G

Deux équations cruciales

Surjectivité "explicite"

$$ightharpoonup G(n+G(n))=n$$

Deux équations cruciales

Surjectivité "explicite"

$$G(n+G(n))=n$$

Equation "renversée"

$$G(n) + G(G(n+1) - 1) = n$$

Fibonacci

$$F_0 = 1$$
 $F_1 = 2$
 $F_{n+2} = F_n + F_{n+1}$

Fibonacci

$$F_0 = 1$$
 $F_1 = 2$
 $F_{n+2} = F_n + F_{n+1}$

NB: indices décalés pour éviter 0 et un double 1

Théorème de Zeckendorf

Une décomposition $n = \sum F_i$ est canonique si elle est :

- 1. sans doublons
- 2. sans termes consécutifs

Décomposition relachée : (1) mais pas forcément (2)

Théorème de Zeckendorf

Une décomposition $n = \sum F_i$ est *canonique* si elle est :

- 1. sans doublons
- 2. sans termes consécutifs

Décomposition relachée : (1) mais pas forcément (2)

Thm: tout entier naturel a une unique décomposition canonique.

Zeckendorf, variante

Def: le rang d'une décomposition est l'indice du plus petit terme.

Algo: canonisation d'une décomposition faible de n

- le nombre de termes croît ou stagne
- ▶ le rang augmente (par pas de 2) ou stagne

G et Fibonacci

•
$$G(F_i) = F_{i-1}$$
 (avec la convention $F_{0-1} = F_0 = 1$)

G et Fibonacci

- ▶ $G(F_i) = F_{i-1}$ (avec la convention $F_{0-1} = F_0 = 1$)
- ▶ Plus généralement: $G(\Sigma F_i) = \Sigma F_{i-1}$

G et Fibonacci

- ▶ $G(F_i) = F_{i-1}$ (avec la convention $F_{0-1} = F_0 = 1$)
- ▶ Plus généralement: $G(\Sigma F_i) = \Sigma F_{i-1}$
- Cela marche même pour des décompositions relachées
- ▶ Preuve selon le rang de la décomposition (0, pair>0, impair).
- ▶ Nombreuses conséquences concernant G et le rang.

Et en Coq?

Jusqu'ici, rien que du connu (cf https://oeis.org/A005206). Attention à la littérature (en particulier un article buggé de 1986) ! Preuves Coq "maison", sans trop de soucis:

- ▶ DeltaList.v
- ▶ Fib.v
- ▶ FunG.v
- ▶ Phi.v

A problem for curious readers is:

Suppose you flip diagram G around as if in a mirror, and label the nodes of the new tree so that they increase from left to right. Can you find a recursive *algebraic* definition for this "flip-tree" ?

Arbre miroir \overline{G}

Solution?

- ▶ Il y avait une conjecture sur https://oeis.org/A123070
- Mais pas de preuve...
- Hofstadter devait probablement avoir au moins cette formule

$$\overline{G}(n) = n + 1 - \overline{G}(\overline{G}(n-1) + 1) \qquad (n > 3)$$

$$\overline{G}(n) = n \qquad (n = 0, 1)$$

$$\overline{G}(n) = n - 1 \qquad (n = 2, 3)$$

Preuve papier pénible, multiples cas (vive Coq!)

Grandes lignes

- ▶ Une fonction *depth* donnant l'étage de *n* dans l'arbre.
- En fait un inverse de Fibonacci.
- ▶ Aussi calculable en itérant *G* sur *n* jusqu'à atteindre 1.

Grandes lignes

- ▶ Une fonction *depth* donnant l'étage de *n* dans l'arbre.
- ▶ En fait un inverse de Fibonacci.
- ▶ Aussi calculable en itérant *G* sur *n* jusqu'à atteindre 1.
- ▶ Une fonction *flip* qui renverse un étage de l'arbre: $flip(1+F_k), ..., flip(F_{k+1}) = F_{k+1}, ..., 1+F_k$.
- ▶ Def: $flip(n) = if n \le 1$ then n else 1 + F(1 + depth(n)) n.

Grandes lignes

- ▶ Une fonction *depth* donnant l'étage de *n* dans l'arbre.
- ▶ En fait un inverse de Fibonacci.
- ▶ Aussi calculable en itérant *G* sur *n* jusqu'à atteindre 1.
- ▶ Une fonction *flip* qui renverse un étage de l'arbre: $flip(1+F_k), ..., flip(F_{k+1}) = F_{k+1}, ..., 1+F_k$.
- ▶ Def: $flip(n) = if \ n \le 1 \ then \ n \ else \ 1 + F(1 + depth(n)) n$.
- ▶ Def: $\overline{G}(n) = flip(G(flip(n)))$
- **Et** on montre que ce \overline{G} valide la formule
- En Coq: FlipG.v

Autre résultat principal

Def: n est de rang 1-impair si sa décomposition canonique commence par $F_1 + F_{2p+1} + ...$

Thm: $\overline{G}(n) = 1 + G(n)$ si n est de rang 1-impair, sinon $\overline{G}(n) = G(n)$.

Autre résultat principal

Def: n est de rang 1-impair si sa décomposition canonique commence par $F_1 + F_{2p+1} + ...$

Thm: $\overline{G}(n) = 1 + G(n)$ si n est de rang 1-impair, sinon $\overline{G}(n) = G(n)$.

Preuve: encore pire que la précédente, pléthore de cas.

Cor: \overline{G} et G diffèrent pour $7 = F_1 + F_3$, puis tous les 5 ou 8 entiers.

Dérivées

Def: $\Delta G(n) = G(n+1) - G(n)$.

Prop: $\Delta G(n+1) = 1 - \Delta G(n) \cdot \Delta G(G(n))$.

Def: $\Delta \overline{G}(n) = \overline{G}(n+1) - \overline{G}(n)$.

Prop: $\Delta \overline{G}(n+1) = 1 - \Delta \overline{G}(n) \cdot \Delta \overline{G}(\overline{G}(n+1))$ (pour n>2).

Equation alternative

Anciens essais: pour n>3, $\overline{G}(n-1) + \overline{G}(\overline{G}(n)) = n$

Mais ceci ne caractérise pas une unique fonction (sauf à exiger qu'elle soit monotone).

Généralisation

(k+1) appels récursifs imbriqués au lieu de 2 :

Généralisation

(k+1) appels récursifs imbriqués au lieu de 2 :

$$f_k(n) = n - f_k^{(k+1)}(n-1)$$
 (pour $n > 0$)
 $f_k(0) = 0$

Généralisation

(k+1) appels récursifs imbriqués au lieu de 2 :

$$f_k(n) = n - f_k^{(k+1)}(n-1)$$
 (pour $n > 0$)
 $f_k(0) = 0$

- $ightharpoonup f_1 = G$
- $f_2 = H$ (aussi mentionné par Hofstadter)
- $f_0(n) = n f_0(n-1)$: division par 2

Arbre généralisé

On allonge la branche de droite (k + 1 segments)

Arbre généralisé

On allonge la branche de droite (k + 1 segments)

Et toujours une racine ad-hoc (1 puis k + 1 segments)

Arbre pour f_2 (H de Hofstadter)

Arbre pour f_0

Fibonacci généralisé

Soit *k* fixé.

$$A_0^k = 1$$

$$A_1^k = 2$$
...
$$A_k^k = k + 1$$

$$A_{n+1}^k = A_n^k + A_{n-k}^k \qquad (pour n \ge k)$$

Fibonacci généralisé

- ► A⁰ : 1 2 4 8 16 32 64 128 256 512
- \triangleright A^1 : 1 2 3 5 8 13 21 34 55 89
- A^2 : 1 2 3 4 6 9 13 19 28 41
- ► A³ : 1 2 3 4 5 7 10 14 19 26

NB: A² est nommé Narayana's Cows, cf. OEIS A930

Zeckendorf généralisé

Soit *k* fixé.

k-décomposition $n = \sum A_i^k$ canonique : indices distants $\geq (k+1)$ k-décomposition relachée : indices distants d'au moins k

Zeckendorf généralisé

Soit k fixé.

k-décomposition $n = \sum A_i^k$ canonique : indices distants $\geq (k+1)$ k-décomposition relachée : indices distants d'au moins k

Thm: tout entier naturel a une unique k-décomposition canonique. Algo: on peut "renormaliser" une k-décomposition relachée.

Etude de f_k

Les propriétés de G se généralisent plutôt bien à f_k :

- $f_k(n+f_k^{(k)}(n))=n$ $f_k(n) + f_k^{(k)}(f_k(n+1) - 1) = n$ $f_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$

Etude de f_k

Les propriétés de G se généralisent plutôt bien à f_k :

- ► $f_k(n + f_k^{(k)}(n)) = n$ ► $f_k(n) + f_k^{(k)}(f_k(n+1) - 1) = n$ ► $f_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$ ► ...
- Preuves Coq toutes fraîches, un peu de sport avec $f_k^{(k)}$

Etude de f_k

Les propriétés de G se généralisent plutôt bien à f_k :

- $f_k(n + f_k^{(k)}(n)) = n$
- $f_k(n) + f_k^{(k)}(f_k(n+1) 1) = n$
- $f_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$
- **.** . . .

Preuves Coq toutes fraîches, un peu de sport avec $f_k^{(k)}$

Par contre:

▶ $f_k(n)$ n'est **pas** $\lfloor (n+1)/\alpha_k \rfloor$ avec α_k racine réelle positive de $X^{k+1} - X^k - 1$.

Etude de \overline{f}_k

Prouvé cette semaine, quasiment comme pour \overline{G} :

$$\overline{f}_{k}(n) = n + 1 - \overline{f}_{k}^{(k)}(\overline{f}_{k}(n-1) + 1) \qquad (n > k+2)$$

$$\overline{f}_{k}(n) = n \qquad (n = 0, 1)$$

$$\overline{k}_{k}(n) = n - 1 \qquad (2 \le n \le k+2)$$

Etude de \overline{f}_k

Prouvé cette semaine, quasiment comme pour \overline{G} :

$$\overline{f}_{k}(n) = n + 1 - \overline{f}_{k}^{(k)}(\overline{f}_{k}(n-1) + 1) \qquad (n > k+2)$$

$$\overline{f}_{k}(n) = n \qquad (n = 0, 1)$$

$$\overline{k}_{k}(n) = n - 1 \qquad (2 \le n \le k+2)$$

Différences entre \overline{f}_k et f_k : TODO

Comparaison des f_k quand k varie ?

- ▶ Conjecture: $f_k(n) \le f_{k+1}(n)$ pour tout n et k
- ► Preuve ???

Comparaison des f_k quand k varie?

- ▶ Conjecture: $f_k(n) \le f_{k+1}(n)$ pour tout n et k
- ► Preuve ???

Pour établir ces comparaisons au moins pour *n* assez grand:

- ▶ Conjecture: $f_k(n) n/\alpha_k$ borné quand n varie
- ▶ Ou au moins $f_k(n) \sim n/\alpha_k$ quand $n \to \infty$?
- ► Preuve ???

Entiers de rang 0

Une piste pour la comparaison des f_k : f_k est "plate" en n lorsque $\mathrm{rang}_k(n)=0$ Bref lorsque n a un 1 dans sa k-décomposition

Tableau de Wythoff / Zeckendorf (k=1)

Colonne c: les nombres de rang c par ordre croissant

1	2	3	5	8	13	21	
4	7	11	18	29	47	76	
6	10	16	26	42	68	110	
9	15	24	39	63	102		
12	20	32	52	84			
14	23	37	60	97			
17	28	45	73	118			

Surprise

Affichage des points $(\delta(i), \delta(f_2(i)))$ avec i=0..10000 et $\delta(n) = f_2(n) - n/\alpha_2$

Conclusions & Perspectives

- On trouve encore des conjectures "abordables" sur OEIS
- ▶ Et aussi parfois des petites choses fausses. . .

Conclusions & Perspectives

- On trouve encore des conjectures "abordables" sur OEIS
- Et aussi parfois des petites choses fausses. . .
- ▶ Des preuves étonnemment délicates pour de "simples" entiers.
- Merci Coq.
- Preuves papier plus directes ?
- Preuves Coq moins pédestres (quasi 7000 lignes en tout) ?

Conclusions & Perspectives

- On trouve encore des conjectures "abordables" sur OEIS
- Et aussi parfois des petites choses fausses. . .
- ▶ Des preuves étonnemment délicates pour de "simples" entiers.
- ► Merci Coq.
- Preuves papier plus directes ?
- Preuves Coq moins pédestres (quasi 7000 lignes en tout) ?
- Quid des conjectures ?
- Quid de cette fractale ?
- Longue réponse d'Hofstadter par mail à étudier