世界知的所有権機関

PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

A01K 67/027

(11) 国際公開番号

WO96/28967

A1

(43) 国際公開日

1996年9月26日(26.09.96)

(21) 国際出願番号

PCT/JP96/00703

(22) 国際出頭日

1996年3月18日(18.03.96)

- 国際調査報告書

(30) 優先権データ

PCT/JP95/00488

1995年3月17日(17.03.95)

(34)先の出顔たる広域出顔または国際出顔がその国についてされた国の 国名

(71) 出願人;および

(72) 尧明者

小池千裕(KOIKE, Chihiro)[JP/JP]

〒462 愛知県名古屋市北区八龍町1丁目30番地

カルチャー八竜701 Aichi, (JP)

AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP, KR, KZ, LK, LU, LV, MG, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, UZ, VN, 欧州特許(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

新付公開書類 請求の範囲の補正の期限前であり、補正書受領の原には再公開される。

(54) Tide: TRANSGENIC NON-PRIMATAL MAMMALS WHEREIN SEROTYPES OF HIGHER PRIMATES HAVE BEEN EXPRESSED BY FOREIGN GENE TRANSFER AND METHOD OF CREATING THE SAME

(54) 発明の名称 外来遺伝子の導入により高等霊長類の抗原型を発現した非霊長哺乳類の形質転換動物及びその作出方法

(57) Abstract

The hyperacute rejection occurring in the transplantation of tissues of a non-primatal mammal into a higher primate can be mitigated by transferring foreign genes of a higher primate, which express a sugar transferase, into a non-primatal mammal so as to express sugar-chain antigens of the higher primate.

Owneration of ABH antigen

(57) 要約

非霊長哺乳類の動物に、高等霊長類の糖転移酵素を発現させる外来遺伝子を導入し、高等霊長類の糖鎖抗原を発現するようする。これにより、非霊長類哺乳動物の組織を、高等霊長類へ移植する際の超急性拒絶反応を緩和することができる。

神解としての母性のユ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

クア ン タ主 タ クア ン タ主 タ クア ン タ ナーニンラス スア マリラエラア インスペイラボギルニリンイスイクラ ボデエスフフガイグギギハアイアイ 日ケキ朝 大 カ ア アナーディンス ア アリジへ ア アリジへ ア アリジへ ア アリジンル ア アリジンル ア アリジンル ア アリジンル ア アリジンル ア アカー エニハー・ア カ ガ ゴ コートトバイ・ス ア アオナスルニパギギガンジルダアゴストル エ エートアオオアボベルがドララシル	トーラー・アングラー・エー・アンシンカー・アングラー・アングラー・アングラー・アングラー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシンカー・アンシン・アンシン・アンシン・アンシン・アンシー・アンシー・アンシー・アンシ
---	--

明細書

外来遺伝子の導入により高等監長類の抗原型を発現した非霊長哺乳類の形質転換 動物及びその作出方法

〔技術分野〕

この発明は、外来遺伝子導入により、高等霊長類への移植に適した細胞、 組織あるいは臓器等を有する非霊長哺乳類の形質転換動物及びその動物の作出方 法に関し、特に、非霊長哺乳類の糖鎖抗原を高等霊長類に特有な形に転換し、そ の状態を遺伝的に安定化させた形質転換動物及びその作出方法に関するものであ る。

[背景技術]

今日、ヒトの欠損あるいは不完全な組織を、代替物を移植することにより 補充する治療法が一般的な治療法の一つとなりつつある。ここで、例えば組織と は、腎臓や肝臓等の臓器から、皮膚、血管、細胞までも含まれ、かかる組織の代 替物としては、人工臓器や人工血管に代表される人工材料、自己の組織、さらに は同種あるいは異種の動物の組織や細胞までが含まれるものである。

しかし、人工臓器の多くは、いまのところ人工弁の他は移植された動物体内で 臓器として充分に機能できるまでには至っておらず、また、人工血管においては、 その内部に血栓が生じやすいという欠点があり、とりわけ、人工血管の直径が小 さいほど、その傾向が大きいという問題がある。

また、自己の組織を代替物として用いるにあたっては、補充用として利用可能な器官や量に極めて限りがあるし、かかる組織を摘出し、さらに補充するための身体への負担を考慮すれば、実際には不可能なことも多い。

さらに、ヒトに近い高等霊長類から摘出した組織により補充するには、その飼育上の問題から需要に応じ切れないとともに、倫理的観点等からの問題があるため、困難なことが多い。

一方、家畜は、非霊長哺乳類であって、その飼育方法が確立しており、容易に入手でき、倫理的問題も少ないため、代替物の提供体、いわゆるドナーとして有望である。

しかしながら、その反面、かかる哺乳動物から摘出した組織は、ヒトにおいては激しい拒絶反応を引き起こすことが知られ、特に24時間以内に発生する激しい拒絶反応(以下、超急性拒絶反応ともいう。)が問題となっている。

かかる超急性拒絶反応は、補充したドナー組織の血管をレシピエントの血管と を吻合して血液を灌流する際に、ドナーの組織内の血管内皮細胞で生じる。

この超急性拒絶反応は、ヒトが自然抗体を持つところの種との組み合わせにおいては、2種類あるヒトの補体系の活性化経路のうち、抗原抗体反応によって引き起こされる古典経路が主要な反応であると考えられている。この抗原抗体反応は、以下の原因によるものと考えられている。

まず、第1に、ブタなどの非霊長類哺乳動物の血管内皮細胞膜を含む脈管 系細胞及び血球系細胞(以下、単に脈管・血球系細胞ともいう。)上の抗原性が ヒト等の高等霊長類のそれと異なるからである。

すなわち、ブタなど非霊長哺乳類は、高等霊長類の持っていない彼ら特有の糖鎖抗原(以下、この抗原をG型抗原あるいはG型物質という。)をその脈管・血球系細胞膜表面に持っているからである。

第2に、ヒトはブタなどのG型抗原に対する自然抗体を生まれながらに持っているからである。

したかって、例えばプタをドナーとする場合に、ブタの血管の中にヒトの血液が流された際、ヒトの血液中の抗G自然抗体とブタの血管内皮細胞膜上のG型抗原との抗原抗体反応が引き起こされ、その結果形成された抗原抗体複合体が補体系を活性化し、ブタの血管内皮細胞が破壊され、補充したドナー組織の破壊につながり、超急性拒絶反応が生ずるのである。

かかる超急性拒絶反応を回避するために、非霊長哺乳類の組織を摘出して ヒトに補充する際に、同時にヒト等のレシピエントにおける補体の活性を制限す る物質を供給する技術も開示されているが(特表平5-503074号公報/W 091/05855)、そこに示されている補体制限因子を持ったブタの細胞と ヒトの血流との関係は、基本的にはいわゆる異型輸血と同じ構造を持った関係と なるため、超急性拒絶反応の発生を必ずしも防止できるものではなく、又、ヒト が動物の抗原に感作されるため、いわゆる血清病を誘発する可能性を併せもつと いう不都合がある。

また、ドナーにおいてG型抗原の発現に係わる遺伝子に対するアンチセンスDNAを導入したり、この遺伝子の発現を完全に抑制したりしてドナー組織におけるG型抗原の発現を抑制しようとする考えもある(WO94/21799)。しかし、この方法だけでは、ドナー組織に、G型抗原の前駆物質が蓄積されることになる。この前駆物質は、また、いわゆるボンベイ型抗原であるため、依然としてヒトに存する自然抗体による超急性拒絶反応を生じる場合がある。

さらに、同種移植の場合は免疫抑制剤の利用は有効な場合が多いが、異種移植 の場合は多剤併用してもなお、今日、超急性拒絶反応を免れていない。

ここで、脈管・血球系細胞におけるABH型物質の異種間分布をみると、ABH型物質が発現されるのは、本発明にいう、高等霊長類、すなわち、真遠亜目のうち、ヒトやチンパンジー、オランウータン、ヒヒ、日本環などが属する狭 鼻猿類だけであって、他の霊長類や非霊長類哺乳動物では消化管粘膜や嗅覚受容体細胞などでは発現されていることがあるが、脈管・血球系細胞には発現されていない。

一方、非霊長哺乳類が脈管・血球系細胞に有するG型物質は、ABH型物質の前駆物質(N-アセチルラクトサミン)に対し、ガラクトースが α 1-3 構造で結合した物質である。

ABH型物質とG型物質の合成経路について図1に示す。

図1から明らかなように、本発明にいう日型物質(日型抗原ともいう。)は前駆物質(N-rセチルラクトサミン)に対して、GDP-L-フコース: $\beta-D-$ ガラクトシド $2-\alpha-L-$ フコシルトランスフェラーゼ(以下、単にFTあるいは α (1, 2)フコシルトランスフェラーゼという。)が作用して生成され、G型物質は、前述の日型物質と同じ前駆物質であるN-rセチル-D- グルコサミンにリロアガラクトース: $\beta-D-$ ガラクトシル-1. 4- N- rセチル-D- グルコサミニド $\alpha-1$. 3- ガラクトシルトランスフェラーゼ(以下、単にG T あるいは α (1, 3)ガラクトシルトランスフェラーゼという。)が作用して生成されるのである。このように、ヒト等とブタ等における脈管・血球系細胞における抗原型の差異は、前堅物質に作用する酵素の差異、換售すれば、ブタ等に酵素G T T

在し、反対にヒト等に酵素GTが存在せず酵素FTが存在するという差異に基づくものである。このような各種組織におけるABH型物質の存否、酵素の存否は、 進化に基づくものであると考えられている。

しかしながら、かかる高等霊長類と非霊長類哺乳動物におけるそれぞれ特有の糖鎖抗原の分布と、超急性拒絶反応の主たる場である血管内皮細胞等におけるこれら糖鎖抗原の差異を積極的に利用して、超急性拒絶反応を緩和することについては、従来全く着目されていなかった。

[発明の開示]

そこで、本発明は、従来の異種間移植における問題を解決するべく、家畜 として広く飼育され入手の容易なブタ等の非霊長類哺乳動物において、従来にな い新しい手法により、移植時の超急性拒絶反応を緩和して、非霊長類哺乳動物の 組織を高等霊長類への移植に適用することを目的とするものである。

上記目的を達成するため、本発明者は、ブタ等の非霊長類哺乳動物において、遺伝子工学的・発生工学的に、例えばFT等の高等霊長類の糖転移酵素を発現させて、高等霊長類の抗原物質を積極的に生成せしめ、あるいは同時に、例えばGT等の非霊長類哺乳動物の糖転移酵素の発現を抑制して、脈管・血球系細胞を抗原的に高等霊長類型に転換することにより、高等霊長類に非霊長類哺乳動物の組織を移植した際の超急性拒絶反応を緩和できることを見い出し、以下の発明を完成したのである。

なお、異種間移植の超急性拒絶反応を緩和させるために、ドナーにおいて ヒト等の高等霊長類とおなじH型物質を発現させることは従来考えられていない。 すなわち、従来は、自然抗体と抗原との結合後における補体活性化経路の抑制等 に着目されていた。また、本発明は、ヒト等の高等霊長類における抗G自然抗体 とG型抗原との結合自体を抑制する点で、従来の手法に対し、より本質的な解決 手段といえる。

第1の発明は、高等監長類のFTをコードするDNA配列を含むDNA構築物が導入され、H型抗原を発現するように形質転換されていることを特徴とする非監長哺乳類の形質転換動物である。このDNA構築物が導入された動物では、FTが発現され、このFTがN-アセチルラクトサミンに作用して、H型抗原を

発現する。このため、非霊長哺乳類にGT遺伝子があっても、FTがGTの基質であるN-アセチルラクトサミンを消費すると、内在される非霊長哺乳類のGTとN-アセチルラクトサミンとの結合が抑制され、G型抗原の発現が抑制される。これらの外来DNAは、ヘテロの状態で保持されていても、ホモの状態で保持されていてもかまわないが、ホモの状態で保持されることが好ましい態様である。

なお、本発明において、高等霊長類とは、霊長類の真猿亜目のうち、ヒトやチンパンジー、オランウータン、ヒヒ、日本猿などが属する狭鼻猿類をいう。また、非高等霊長類とは、霊長類の真猿亜目のうちの広鼻猿類及び原猿亜目をいう。また、非霊長哺乳類あるいは非霊長類哺乳動物とは、霊長類でない哺乳類をいう。

また、第2の発明は、高等霊長類のFTをコードするDNA配列を含む第1のDNA構築物と、非霊長哺乳類のGT遺伝子に対してアンチセンスであるDNA配列を含む第2のDNA構築物とが導入され、高等霊長類のH型抗原を発現する一方、非霊長哺乳類のG型抗原の発現を低減するように形質転換されていることを特徴とする非霊長哺乳類の形質転換動物である。

第1のDNA構築物が導入されて形質転換されると、FTが発現され、H型抗原が発現される。同時にG型抗原が低減される。また、第2のDNA構築物が導入されると、GTの発現が抑制されて、G型抗原が低減される。

これらの外来DNAは、ヘテロの状態で保持されていても、ホモの状態で保持されていてもかまわないが、ホモの状態で保持されることが好ましい態様である。

また、第3の発明は、非霊長哺乳類のGT遺伝子の一部に、FTをコードするDNA配列を含むDNA構築物が相同組換えにより挿入され、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換されていることを特徴とする非霊長哺乳類の形質転換動物である。

この発明によると、このDNA構築物により非霊長哺乳類のGT遺伝子に変異が導入されることになるため、GTは発現されず、G型抗原は発現されない。一方、同時に、FTが発現され、このFTにより、H型抗原が発現される。また、この発明によれば、非相同組換えにより生ずるとされる形質転換動物への悪影響もない。なお、GT遺伝子の一部において相同組換えを起こすDNA構築物は、

GT遺伝子をコードするDNA配列と相同的な部分を有している。

これらの外来DNAは、ペテロの状態で保持されていても、ホモの状態で保持されていてもよいが、ホモの状態で保持されていることが好ましい態様である。

また、第4の発明は、非霊長哺乳類のGT遺伝子の一部に、FTをコードするDNA配列を含むDNA構築物が相同組換えにより挿入され、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換された非霊長哺乳類の形質転換動物から得られた移植用材料である。この形質転換動物から得られた細胞自体、この細胞を構成要素とする組織、臓器、あるいはこれら以外のその他の材料は、幅広く高等霊長類への移植用材料に適用することができる。

なお、これらの発明における形質転換動物の好ましい態様は、前記非霊長 類哺乳動物が、ブタであることである。形質転換された動物がブタであると、こ のブタによって高等霊長哺乳類への移植に適した材料を提供することができる。

さらに、第5の発明は、非霊長哺乳類のGT遺伝子の一部に、FTをコードするDNA配列を含むDNA構築物を相同組換えにより挿入し、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換した非霊長哺乳類の形質転換動物の作出方法である。

この方法によると、このDNA構築物が導入されて形質転換されると、GT遺伝子に変異が導入されて、GTは発現されず、代わりにFTが発現され、H型抗原が発現される。

また、第6の発明は、非霊長哺乳類の組織を高等霊長類に移植する際の、 高等霊長類の自然抗体と非霊長哺乳類の抗原とによる拒絶反応を回避する方法で あって、

非霊長哺乳類のGT選伝子の一部に、FTをコードするDNA配列を含むDNA構築物を相同組換えにより挿入して、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換した非霊長哺乳類を作出する工程と、

この工程により得られた前記非霊長哺乳類の組織を高等霊長類に移植する工程 を含んだ方法である。

この発明によると、非霊長哺乳類の組織においては、G型抗原でなくH型抗原が発現されている。このため、この組織を高等霊長類に移植した際に、高等霊長類の有する抗G自然抗体により拒絶されない。

(図面の簡単な説明)

図1は、前駆物質(N-アセチルラクトサミン)からのABH型物質とG型物質の合成経路を示す図である。

図2は、実施例IのFT遺伝子を有するプラスミドpMAM/FTを構築操作する過程図である。

図3は、実施例1のFT遺伝子導入用断片の模式図である。

図4は、実施例2のpREP8/AS/GTを構築操作する過程図である。 る。

図5は、実施例2のAS/GT遺伝子導入用断片の模式図である。

図6は、実施例3のpREP9/GT3-4を構築操作する過程図である。

図7は、実施例3のPREP9/GT3-4/FT/ASspI/ADral IIを構築操作する過程及び遺伝子断片GT3-4/FT/PolyAの調製過程を図示したものである。

図8は、実施例3のpGT/FTを構築操作する過程図である。

図9は、「Crリリースアッセイの結果を示すグラフ図である。

図10は、GT遺伝子のエクソン2から3の部分からフラグメントAを得る方法を示した図である。

図 I 1 はG T 遺伝子のエクソン 4 から 6 の部分からフラグメント B を得る方法を示した図である。

図12は、FT遺伝子のエクソン1から2から得られたcDNAを含んだブラスミドDを得る方法を示した図である。

図13は、フラグメントBとプラスミドDからプラスミドEを得る方法を示した図である。

図14は、フラグメントAとプラスミドEからコンストラクトを得る方法を示

した図である。

図15は、GT遺伝子とコンストラクトが同所性組換えを起こした場合の変異遺伝子を示した図である。

図16において、16AはFTをサザーンブロッテイング法によりFT内配列を検出した図であり、16BはFT遺伝子の上流側の相同部分をPCRにより検出した図であり、16Cは、16CはコンストラクトのFTの下流部分が相同組換えを起こしていることPCRで確認したことを示す図であり、16DはノザンブロッティングによりFT遺伝子のmRNAを検出したことを示す図であり、16EはL929細胞がH抗原を発現していないことをレクチンUEA1を用いたフローサイトメトリーを示した図であり、16Fは、FT違伝子が導入されたL929細胞のH抗原をレクチンUEA1で検出したことをフローサイトメトリーで検出した図である。

図17において、17Aは、FT遺伝子をPCRで検出した図であり、17Bは、コンスラクトのFTの上流側の相同部分において相同的組換えが行われたことを示すPCRの図であり、17DはFTのにおいて相同的組換えが行われたことを示すPCRの図であり、17DはFT遺伝子のmRNAを検出したRT-PCRの図であり、17EはL929細胞がH抗原を発現していないことをレクチンUEA1を用いて示したフローサイトメトリーの図であり、17Fは、FT遺伝子が導入されたL929細胞のH抗原をレクチンUEA1で検出したことをフローサイトメトリーで示した図である。

〔発明を実施するための最良の形態〕

FTを発現する形質転換動物

ブタ等の非霊長類哺乳動物の脈管・血球系細胞において、ヒトなど高等霊 長類だけが持ち、ブタなどの非霊長類哺乳動物が持たない遺伝子あるいはその発 現物質であるタンパク質を発現させるには、形質転換動物を作成することが必要 になる。

ヒトとヒトとの移植における基本原則の一つとして血液型を合わせることが広く認められているが、いわゆる血液型すなわちABO式の分類の基本物質はH型物質であって、それは脈管・血球系細胞においては、前述のように前駆物質(N

-アセチルラクトサミン)に糖転移酵素FTが作用して形成される。しかし、ブタなど非霊長類哺乳動物は、FTでなくGTを持ち、それによりヒトとは異なった物質(G型物質)を形成している。

したがって、例えば、H型物質をその前駆物質から生成する糖転移酵素FTをコードするFT遺伝子を含む外来遺伝子断片をブタ等の受精卵に導入し、この遺伝子断片が染色体上に組み込まれた場合、各細胞でこのFT遺伝子が転写翻訳され、酵素FTが産生されてH型物質を発現させることが期待できる。

H型物質を発現した非霊長哺乳類動物は、組織・血液の抗原型が高等霊長類に近似され、これらの動物の組織等を高等霊長類に移植した際の超急性拒絶反応を緩和することができ、これらの動物の組織等は、高等霊長類への移植に適したものとなる。

さらに、H型物質の場合には、酵素FTが前駆物質を消費すれば、それだけ、 内在する酵素GTと前駆物質との結合が阻害され、G型物質の生成が抑制される ことも期待できる。なお、FT遺伝子はプタ染色体にくみこまれた後、安定して 子孫に伝達されることが可能である。

さらに、本発明では、ブタ等の非霊長類哺乳動物に内在する糖転移酵素、例えば、G型物質をその前駆物質から生成する糖転移酵素GTの遺伝子の発現を不活性化する目的で、GT遺伝子のアンチセンスDNAを含む外来遺伝子断片をブタ受精卵に導入する。この遺伝子断片が、個体の染色体上に組み込まれた場合、各細胞でこのアンチセンスDNAが転写されれば、その転写物は内在性のGT転写産物と対合して、GT遺伝子の翻訳が抑制されることが期待される。

この結果、個体レベルでは、酵素FTが積極的に発現されるとともに、酵素 G T の発現が抑制されて、H型物質が生成される一方、一層 G 型物質の生成が低減されたブタ等を得ることができる。なお、アンチセンス D N A 等の外来遺伝子断片は、染色体に組み込まれた後、安定して子孫に伝達されることが可能である。

なお、一旦、染色体に外来遺伝子が組みこまれた後、交配により外来遺伝子に関してホモの状態にすることが可能であり、高等霊長類の糖転移酵素を発現させる外来遺伝子に関してホモの状態の系と、非霊長哺乳類の糖転移酵素に関してホモの状態の系とを交配させることにより、非霊長哺乳類の酵素を発現するかわりに、高等霊長類の糖転移酵素を発現して、高等霊長類の抗原型を呈した非霊長類哺乳動物の系を得ることができる。

高等霊長類の糖転移酵素

本発明では、高等霊長類として、特にヒトを対象することができる。

高等霊長類の糖転移酵素とは、高等霊長類において見いだされ、非霊長哺乳類の脈管・血球系細胞において見いだされない抗原の生成に関与する糖転移酵素をいう。具体例としては、FTを挙げることができる。特に、ヒトFTは(EC2)

4.1.69) で特定される。

高等窓長類の糖転移酵素をコードするDNA配列を含むDNA構築物

高等置長類の糖転移酵素をコードするDNA配列を含むDNA構築物は、該糖転移酵素の遺伝子のDNA配列の他、プロモータ、ターミネーター等を有することができる。SV40の初期遺伝子のポリA付加シグナルに続くターミネーターは付加に適した配列の一つである。一般的にどの遺伝子からとったポリAシグナルかによって遺伝子の発現のレベルはかなり左右されるが、SV40初期遺伝子から取ったポリA付加遺伝子が優れている。このシグナルはターミネーターの前に置かれる。FTを発現させることのできる外来遺伝子を形成するには、少なくともFTのDNA配列を知る必要がある。ヒトのFTについては、既に報告されている(Proc.Nat1.Acad.Sci.USA.87(1990).pp6674-6678)。

非霊長哺乳類の糖転移酵素

非霊長哺乳類として、特に、前記高等霊長類に対して異種間移植の対象となる動物を対象とすることができる。さらに、家畜として飼育されるブタ、ウシ、ヒツジ、ヤギ等が好適である。これらの家畜は、飼育が容易で、安定した供給が可能なため、移植用組織の補充に適する。さらに、フタが、臓器の大きさや、生理学的・生化学的な観点、発育が早く多産である点から好適である。

非盃長哺乳類の糖転移酵素とは、非盃長哺乳類の脈管・血球系細胞において見いだされ高等霊長類において見いだされない抗原の生成に関与する糖転移酵素をいう。具体例としては、ブタヤマウスのGTを挙げることができる。特に、マウスGTは、[EC 2.4.1.151]で特定される。

非霊長哺乳類の糖転移酵素を発現を抑制するDNA構築物

非霊長哺乳類の糖転移酵素の発現を抑制するDNA構築物には、該糖転移酵素をコードするDNA配列に対してアンチセンスであるDNA配列を含むDNA構築物、あるいは、該糖転移酵素の遺伝子において相同組換えされて、該遺伝子を他の遺伝子で置換したり、該遺伝子に他の遺伝子を挿入したり、変異を導入することにより、該遺伝子を破壊するDNA配列を含むDNA構築物を用いることができる。

このDNA構築物を形成するには、少なくとも非霊長哺乳類の縮転移酵素の遺伝子配列を知る必要がある。マウスGT遺伝子は、既に報告されている(Proc. Natl. Acad. Sci. USA. <u>86</u>(1989).pp.8227-8231)。また、ブタGT遺伝子も既に報告されている(Xenotransplantation 1994; 1:pp.81-88)。

例えば、GTのアンチセンスDNAを外来遺伝子とする場合には、GT遺伝子のcDNAの一部又は全部をアンチセンス方向に組み込んだDNA断片をDNA構築物として形成する。

また、相同組み換えによる場合には、例えばGT遺伝子との相同領域を可及的 多く有するように形成するのが好ましい。

なお、非霊長哺乳類の糖転移酵素の発現を抑制するには、外来遺伝子の導入以 外に従来公知の方法によることもできる。

相同組換え用DNA構築物

また、DNA構築物は、染色体における非相同組換えのみならず、相同組換えを目的として構築することもできる。この場合、例えば、ブタのGT遺伝子をターゲットに、ヒトのFT遺伝子を組み換えるようにすれば、GTの発現の抑制と、FTの発現が同時に可能である。

なお、以上説明したようなDNA構築物については、遺伝子断片が染色体に組み換えられた際に、高率に前記糖転移酵素が発現される手段を用いることができる。例えばpMAMをベクタープラスミドとして外来遺伝子断片を調製した場合には、ステロイドの投与により高発現が誘導されるる。

DNA構築物の導入

非霊長類哺乳動物への外来遠伝子の導入は、レトロウイルスを用いる方法やマイクロインジェクションによる方法等多数あるが、どの方法も採用することができる。子孫を得るという点からは、生殖細胞を形質転換することが望ましい。この場合の形質転換は、非霊長類哺乳動物の胚細胞やES細胞あるいは、受精卵に対して行うのが望ましい。

形質転換動物

このように、外来遺伝子が導入された非監長類哺乳動物は、種々の細胞に

おける高等霊長類の糖転移酵素の発現により、あるいは同時に非霊長哺乳類の糖転移酵素の発現の抑制により、組織・血液の抗原型が高等霊長類に近似された動物となる。したがって、これらの動物の組織等を高等霊長類へ移植した際の超急性拒絶反応を緩和することができるようになり、これらの動物の組織等は、高等霊長類への移植に適したものとなる。また、特に、血管内皮細胞で発現された場合には、超急性拒絶反応が大きく緩和される。さらに、赤血球細胞における高等霊長類の糖転移酵素の発現により、血液の抗原型が高等霊長類に近似された動物となり、これらの動物の血液は高等霊長類の代替血液に適したものとなる。

また、高等盃長類の糖転移酵素FTが導入された場合には、非霊長哺乳類の脈管・血球系細胞では、H型物質が発現されると同時にG型物質が低減されることになり、組織・血液の抗原型が高等霊長類に近似された動物となる。加えて、同時にGTの発現を抑制する外来遺伝子も導入された場合には、より一層G型物質が低減され、組織・血液の抗原型が極めて高等霊長類に近似された動物となり、これらの組織・血液は、高等盆長類への移植・代替物により適したものとなる。特に、FTが血管内皮細胞表面に発現されれば、異種間臓器あるいは組織移植における超急性拒絶反応が大きく緩和される。また、赤血球において発現されれば、代替血液により適したものとなる。

また、相同組換えにより、GTのかわりにFTが発現するように形質転換された形質転換動物においては、染色体上の1本以上のGT遺伝子座のうち、一本が存在せず、同時にFTが少なくとも1本存在するようになるため、交配により染色体上にGTが1本も存在せず、その代わりにFTが2本存在する個体を得ることができる。こうした個体はドナーとして、レンピエントのABO式の血液型のいかんをとわずに、ヒト等の移植に適した移植材料を提供する。

産業上の利用可能性

このように、かかる形質転換された非霊長類哺乳動物は、ヒト等の高等霊長類に移植の可能な組織・血液を有するため、ヒト等の組織等の代替物の提供源となる。また、これらの動物が安定して飼育されることにより、必要時に、必要な組織等を提供可能となり、移植組織等の貯蔵体となる。

また、非霊長類哺乳動物における高等霊長類特有のFT遺伝子の発現により、異種間移植の場合に超急性拒絶反応を緩和できる動物や材料を提供する方法は、従来にない新規なものであるとともに、異種間移植における超急性拒絶反応の緩和のために、より本質的な解決をもたらすものである。

本発明の非霊長哺乳類の形質転換動物によれば、その組織・血液において、高等霊長類の糖鎖抗原が生成されるため、あるいは同時に非霊長哺乳類の糖鎖抗原の生成が抑制されるため、非霊長類哺乳動物の組織を異種間移植となる高等霊長類に移植した場合に超急性拒絶反応を緩和することができ、従来の人工血管や人工機器、あるいは同種間で補充される臓器、組織等に代わり得る材料を提供することができる。

なお、本発明により非監長類哺乳動物を形質転換することは、これらの動物にいかなる被害あるいは虐待を与えることがなく、また、本発明は、形質転換された非霊長類哺乳動物の生存、生殖等に悪影響を及ぼすものではない。さらに、本発明は、ヒトをはじめ他のいかなる動物に対しても悪影響を及ぼすものではない。

以下に本発明の実施例を示す。本発明に於ける外来遺伝子に関して、既に述べた2種類の糖転移酵素、即ちGT遺伝子とFT遺伝子のcDNAを例示できる。ただし、以下の実施例は、請求の範囲を制限するものではない。

(実施例1)

導入用遺伝子を含むプラスミド(pMAM/FT)の構築及びその遺伝子導入 用断片の調製

(1) PCR法によるFT遺伝子断片の調製

Proc. Natl. Acad. Sci. USA. <u>87</u>(1890). pp6674-6678に報告されたヒトのFT [EC2. 4. 1. 9 6] のDNA配列に基づいて、そのスタートコドンとストップコドンを含むような形でPCR用の2種類のプライマーを合成した。なお、その5、側のプライマーには、制限酵素Nhelのサイトを付けた、また3、側のプライマーには、制限酵素Xholのサイトを付けた。

一方、健康な成人の血液より白血球を採取し全RNAを抽出し、逆転写酵素を用いて、全RNAに対応するcDNAを合成した。このcDNAを鋳型にして、前記のプライマーを用いてPCRを施行した。

本PCR施行により得られたcDNA断片を1%アガロースゲル電気泳動にかけたところ、約1100bpの長さのバンドを得た。このPCR産物をpGEM-T (Promega 社製)に挿入した上で自動塩基配列読み取り機で塩基配列を読み取ったところ、前記既報の通りのFT遺伝子の塩基配列を有していた。そこでこのcDNAを0.8%Low Melting Point (以下、LMPという。)ゲルで電気泳動して精製した後、制限酵素NhelとXholで処理し、レジンを用いたPromega 社のWizardDNA精製システム(以下、Wizardシステムという。)により精製・分離した。なお、以下各種DNA断片の精製分離は、LMPゲル電気泳動とWizardシステムとを用いることにより行った。

(2) pMAM/FTの構築

哺乳類発現ベクターの一種であるpMAM (CLONETECH 社製、Lee, F. (1981) Nature 294:228)のマルチクローニング部位 (MCS)を制限酵素NheiとXhoiで処理し、この断片をLMPゲル電気泳動及びWizardシステムで精製・分離した。このベクターに精製・分離したFT遺伝子のcDNAを、T4DNAリガーゼにより挿入させた。このプラスミドDNAによって、コンピテント状態のJM109 細菌細胞を形質転換させて、得られた形質転換体をアンピシリンプレートで選択した。個々のコロニー毎にLB培地(組成:Bacto-tryprone 10g(DIFCO社製)、Bacto-yeast extract 5g(DIFCO社製)、NaCl 10gを水にて1Lとする、以下同じ。)で増殖させ、ミニプラスミド調製を行った。抽出したプラスミドDNAを極々の制限酵素を使って消化した後に電気泳動して、挿入断片のサイズ及び位置方向を調べた。その結果、正しい方向に組み込まれているプラスミドを、pMAM/FTと称した(図2参照)。

(3)遺伝子導入用断片の調製

さらに、遺伝子導入のための直鎖状断片とするために、大腸菌JM109/p

MAM/FT株をLB培地で大量培養した後に、プラスミド調製を行った。さらに、得られたプラスミドをCsCI密度勾配遠心法により精製した。精製したプラスミド $10\mu g$ を、制限酵素PvuIとBamHIで消化後、この断片を精製・分離し、FT遺伝子導入用断片とした。この断片の構築模式図を図3に示す。

(実施例2)

導入用遺伝子を含むプラスミド(pREP8/AS/GT)の構築及びその導入用遺伝子断片の調製

(1) アンチセンスGTの調製

既報(Xenotransplantation 1994:1:pp81-88)に報告されたブタG T遺伝子のD NA配列に基づいて、そのスタートコドンとストップコドンを含むような形で2種類のP CR 用のプライマーを合成した。なお、その5 例のプライマーには、制限酵素Xholのサイトを付けた、また3 例のプライマーには制限酵素Nhelのサイトを付けた。

一方、健康なプタの血液より白血球を採取し、その全RNAを抽出し、逆転写 酵素を用いて全RNAに対応するcDNAを合成した。このcDNAを鋳型にし て、前記のプライマーを用いてPCRを施行した。

本PCR施行により得られたcDNA断片を1%アガロースゲル電気泳動にかけたところ、約1100bpの長さのバンドを得た。このPCR産物をpGEM-T (Promega 社契)に挿入した上で、自動塩基配列読み取り機で塩基配列を読み取ったところ、前記既報の通りのGT遺伝子の塩基配列を有していた。そこでこのcDNAをLMPゲルで電気泳動して精製した後、制限酵素NhelとXholで処理し、Wizardシステムを用いて精製・分離した。

(2) pREP8/AS/GTの構築

哺乳類発現ベクターの一種であるpREP8 (Invitorogen 社製、George, R... et al. Gene, 81, 285(1989))のMCSを制限酵素XholとNheiで処理し、精製・分離した。このベクターに、T4DNAリガーゼにより、精製・分離したGT遺伝

子のcDNAを、挿入した。このプラスミドDNAによって、コンピテント状態のJM109細菌細胞を形質転換させて、得られた形質転換体をアンピシリンプレートで選択した。個々のコロニー毎にLB培地で増殖させ、ミニプラスミド調製を行った。抽出したプラスミドDNAを種々の制限酵素を使って消化した後に電気泳動して、挿入断片のサイズ及び位置方向を調べた。その結果、正しくアンチセンス方向に組み込まれているプラスミドを、pREP8/AS/GTと称した(図4参照)。

(3) 導入用遺伝子断片の調製

さらに、遺伝子導入のための直鎖状断片とするために、大腸菌 JM 108/p REP 8/AS/G T株をLB 培地で大量培養した後に、プラスミド調製を行った。さらに、得られたプラスミドをCsC1 密度勾配遠心法により精製した。特製したプラスミド $10\mu g$ を、制限酵素 X ba I と Pst I で消化後、この断片をLMP ゲル電気泳動及びWizard システムで精製・分離し、AS/GT 遺伝子導入用断片とした。この断片の構築模式図を図 5 に示す。

(実施例3)

相同組換え用遺伝子を含むプラスミド (pREP9/GT/FT) の構築及び 導入用遺伝子断片 (pGT/FT) の調製

以下、マウスの例を示すがブタにおいても基本的な考え方は同じである。

(1) pREP9/GT3-4の構築

以下、pREP9/GT3-4の構築を図6に基づいて説明する。

既報(Proc. Natl. Acad. Sci. USA. <u>86</u>(1989), pp. 8227-8 231)のマウスのGT (EC2. 4. 1. 151) の配列に基づいてエキソン3から4までの部分をPCR法にて抽出するために、エキソン3内のセンスプライマーとして制限酵素 Kpnlの切断部位をつけたプライマー(p/Aとする)、又アンチセンスプライマーとしてエキソン4内のスタートコドンの部位に制限酵素 Ssplの切断部位を含み、その下流に制限酵素 Hindl []の切断部位をつけたプライマー(p/B)を合成した。

これらのプライマーp/A及びp/Bを用いてPCR法を施行し、得られた断片を、制限酵素KpnI及びHindIIIで切断した後、精製・分離し、これをGT3-4と称した。

一方、発現ベクターであるpREP9 (Invitrogen社)を制限酵素BamHIで切断し、T4DNAポリメラーゼによりその断端を平滑にし、T4DNAリガーゼによりself-ligationし、制限酵素BamHIの切断部位が欠失した発現ベクターを、pREP9/△BamHIと称した。

これを更に制限酵素DraIIIで切断し、T4DNAポリメラーゼによりその断端を平滑にし、T4DNAリガーゼによりself-ligationし、制限酵素DraIIIの切断部位が欠失した発現ベクターを、pREP9/△BamHI/△DraIIIと称した。このベクターを制限酵素KpnI及びHindIIIで切断し、上記GT3-4を挿入したプラスミドをpREP9/GT3-4と称した。

(2) pREP9/GT3-4/FT/△SspI/△DralIIの構築 以下、pREP9/GT3-4/FT/△SspI/△DralIIの構築 を図7に基づいて説明する。

ヒトFT (Proc. Natl. Acad. Sci. USA, 87(1890), pp667 4-6678) の配列に基づき、そのスタートコドンとストップコドンを含む発現部位をPCR法にて抽出するために、スタートコドンを含む5 側のセンスプライマー(p/C)には制限酵素NhelとDralll切断部位を、この順で付けた。一方、FTのストップコドンを含むアンチセンスプライマー(p/D)にはその3 側に制限酵素Xhol切断部位を付けた。これらのプライマーを用いてPCR法を施行し、得られた断片を制限酵素Nhel及びXholで切断し、pREP9/GT3-4を制限酵素Nhel及びXholで切断したプラスミドに挿入する。これをpREP9/GT3-4/FTと称した。

このプラスミドpREP/GT3-4/FTを制限酵素Sspl及びDrallで切断すると平滑末端が生成された。

ここでT4DNAリガーゼにて処理するとself-ligationにより両者末端が連結し、GTの発現開始部位にFTcDNAの発現開始部位が位置された。

このプラスミドをPREP9/GT3-4/FT/△SspI/△DraIIIと称した。以上に於いてこれら制限酵素KpnI、HindIII、SspI、NheI、DraIII、及びXhoIがいずれもエキソン3からエキソン4までの断片及びFTcDNAの発現部位の断片を切断しないことが既に確かめられている。

(3) 導入用遺伝子断片pGT/FTの調製

以下、pGT/FTの調製について図7及び図8に基づいて説明する。

PREP9のpolyAの3 例を含みかつ制限酵素BamHl切断部位を含む形でアンチセンスプライマー(p/E)を合成し、これとセンスプライマー(p/A)とを用いて、PREP9/GT3-4/FT/△SspI/△DralIに対し、PCR法を施行し、得られた断片を制限酵素KpnI及びBamHlで切断して精製・分離し、得られた断片をGT3-4/FT/polyAと称した(図7参照)。

一方、発現ベクターpREP9を制限酵素KpnIとBamHIで切断し、上記の断片GT3-4/FT/polyAを挿入した。これをpREP9/GT3-4/FT/polyAと称した。

GTのエキソン4からエキソン6までの部分を、センスプライマー(p/F)、アンチセンスプライマー(p/G)とも制限酵素BamHIの切断部位を付け、PCR法にて抽出し、この断片を制限酵素BamHIで切断し、得られた断片を、制限酵素BamHIで開列したプラスミドpREP9/GT3-4/FT/polyACFAした(BamHIが、GT3-4、FT、polyACFT4-7を切断しないことは既に確かめられている)。

得られたプラスミドをpREP9/GT3-4/FT/polyA/GT4-6、或いは簡単に、pREP9/GT/FTと称した。

このプラスミドに対し、プライマーp/A及びp/Gを用いてPCR法を施行した。精製後得られた断片を受精卵への導入用断片とし、GT3-4/FT/polyA/GT4-6、或いは簡単にpGT/FTと称した。

このようにして作成した導入用遺伝子断片は、GTの染色体の遺伝子と相同性が高く、相同組み換えを起こすことが期待される。相同組み換えを起こした場合は、GTの代わりにFTが発現するのでその個体(Fo)はGTもFTも発現する。しかし交配を1、2世代行うと、メンデルの法則により、FTのみを持った個体を得ることが出来る。この個体こそが、非霊長類哺乳動物に特有な抗原を持たずに高等霊長類特有の抗原を持つに至った、形質転換動物である。マウスのGTとブタのGTとではホモロジーが高いのでマウスのGTに基づいた相同組み換え遺伝子をブタに適用することができる。

(実施例4)

導入用遺伝子断片(pMAM/FT及びpREP8/AS/GT)のブタ受精 卵への注入及びその受精卵の移植

(1) 導入用遺伝子断片(pMAM/FT及びpREP8/GT) のブタ受精卵への注入

実験動物として家畜豚を用いた。受精卵提供用のブタとしてLandraceとWhite Yorkshire の交配豚で、生後約6ヶ月の、まだ自然発情を来す前の雌ブタを用いた。この雌ブタに排卵誘発剤pMS(妊馬血清、シグマ社製、C4877)及びhCG(ヒト絨毛ゴナドトロピン、シグマ社製、CC5)を注射し、Duroc 系の成熟雄プタから採取した精液により人工受精を行い、卵管をM2 培地で灌流することにより受精卵を採取した。これらの受精卵の前核は脂肪滴に覆われているために直視出来ないため、受精卵を10000gで10分間遠心することにより、脂肪液と前核を分離し、微分干渉顕微鏡で直視下においた。

受情卵への遺伝子の注入に於いては、マウス受精卵に於ける遺伝子導入の既報(Hogan, et al., In manipulating the Mouse Embryo., Cold Spring Harbor

Laboratory Press. 1986、Pinkert. et al.. Transgenic animal, technology., Ac ademic press. Inc. 1994)に記載されているマイクロインジェクション法を、ブタ受精卵に適用した。即ち、培養液中で受精卵を保持用ガラスピペットで固定後、微小ガラスピペットを用いて導入用遺伝子断片の溶液 2 p l を雄性前核に注入した。

2種類の遺伝子導入用断片を含む溶液は、これらの導入用断片をTE経衝液(0.25 mM EDTA 、5 mM Tris(p H7.4))に懸濁して、それぞれ $1.0~\mu$ g / m 1 になるように調製したものを用いた。

(2) 遺伝子注入をした受精卵の移植

注入操作後、CO, インキュベーター内にて、M 2 培地で 2 ~ 3 時間培養後、受精卵を発情している雌成熟豚の卵管へ移植した。移植は、全身麻酔下にて開腹後、卵管内移植により行った。卵管移植後分娩満期まで飼育し、産仔を得た。

なお、遺伝子注入した受精卵は、速やかに移植されるのが好ましい。

(実施例5)

遺伝子導入プタに於ける導入遺伝子の同定

分娩後約1週目に、得られた仔ブタの尾部の先端部分約1cmを切断採取した。 尾部の細胞より高分子DNAを抽出・精製した後、サザンブロッテイング法及びフィルターハイブリダイゼイション法によって、導入した遺伝子断片がプタの染色体に組み込まれているかを調べた。即ち、制限酵素BcoRIとBamHIで完全に消化させた10μgの高分子DNAを1%アガロースゲル電気泳動した後、ナイロンフイルター(HybondN、Amersham)にDNAを転写した。フイルターは風乾後、UV照射を行いDNAを固定させて、フイルターハイブリダイゼーションに供した。なお、プロープとして、pMAM/FTを制限酵素Cla IとNhe Iで完全に消化させた断片をFT用に用いた。

これらの結果を下記表1に示した。計19回の実験で550個の受情卵に遺伝子注入を行い、同数を19頭のレシピエントに移植した。この結果7頭が妊娠し、

27頭の仔ブタを分娩した。これらのうち、サザンブロッテイング法及びフィルターハイブリダイゼイション法によって、FTに関して1頭が陽性であった。なお、遺伝子導入していないコントロールブタ15頭に対しても同様の検索を行ったが、いずれも陰性であった。

【表1】

導入 造 伝子	移植胚数	生存胎仔数	遺伝子導入ブタ
PT	550	27	1

(実施例6)

導入遺伝子の発現の確認

遺伝子導入が確認されている仔ブタの尾部の先端を約1cm切断し、また血液を採取し、導入遺伝子発現の検出の試料とした。採取した尾部よりAGPC法(Acid Guanidinium Thiocyanate-Phenol-Chloroform Method) を用いて、全RNAを分離した。次にこの全RNAを使ったRT-PCR法によって、FT遺伝子の発現の解析を行った。

即ち、全RNAから逆転写酵素によってcDNAを合成し、前述のFT遺伝子抽出のために用いたプライマーを用いてPCR法を施行した。その結果、27頭中1頭が陽性と判定された。すなわち、導入したFT遺伝子がmRNAに翻訳され、FTの酵素タンパク質を産生していることを確認した。なお、遺伝子導入していないコントロールブタ15頭に対しても同様の検索を行ったが、いずれも陰性であった。

(実施例7)

実施例 6 で陽性と判定された、即ちFTの蛋白質を産生していると考えられる

仔ブタから血液を採取し、遠心後、血球を分離し、蛍光抗体を使ったFITC法でブタ血球を染色した。一方、コントロールブタ(遺伝子導入していないブタ)からも血液を採取し、同様に染色した。

即ち、一次抗体として抗日型抗体を、2次抗体として蛍光色素がラベルしてあるマウス γ グロブリン($F(ab)_2$)を用いた。この結果、実施例6の陽性の仔ブタは陽性と判定された。一方、コントロールブタのそれは全て陰性だった。即ち、導入されたF Tがブタ細胞の中で正しく機能していることが確かめられた。

(実施例8)

ブタの腎由来の細胞系PK15にpMAM/FTを感染させたコロニーを選択し、「Crを加えた培養液中にて、一定時間培養し、その後健康な成人ヒト血液(A, B, O、ABの4つの血液型を含む)から採取した血漿を加えることにより、「Crリリースアッセイを行った。

この結果、図9に示すように、24時間経過の後、放出された「Crを測定した。その結果、コントロールブタの血液はほぼ100%細胞が破壊されたのが観察されたが、FTを導入したブタの細胞は24時間経っても細胞破壊は10%以下しか観測されなかった。

このように、プタ細胞にFTを導入することによりいわゆる血液型が転換され、その結果ヒトのO型と同じH型物質が生成されることになり、ヒトが持つプタに対する自然抗体と抗原抗体反応を形成しないか、あるいは抗原抗体反応を形成しても低頻度であることが示された。

(実施例9)

相同組換え用遺伝子を含むブラスミド(pGT/FT-2)の機築及び基入用遺伝子断片(L-GT/FT)の調製

以下、マウスの例を示すがブタにおいても基本的な考え型は同じである。

(1) フラグメントA(fragment A)の構築

以下、フラグメントA(fragment A)の構築を図10に基づいて説明する。

既報(Proc.Natl.Acad.Sci.USA.86(1989), pp.8227-8231)のマウスのGT[EC2.4.1.151]の配列に基づいてエキソン2からエキソン3までの部分をPCR法にて抽出するために、エキソン2の核酸配列に基づいてブライマーA(primer A)[配列番号3]を、又エキソン3の核酸配列に基づいてブライマーB(primer B)[配列番号4]を合成した。これらのブライマーとTaKaRaLAPCR Kit Ver.2 (宝酒造;以下、単にLAPCRと略す)とを用いて、エキソン2からエキソン3までの部分のおよそ10kbpを増幅した。得られた断片を精製分離した後これを鋳型にしてブライマーA (primer A)とブライマー(primer B')[配列番号5]を用いて同社指定のマニュアルに従ってLAPCRを施行した(以下ブラスミドへの組み込みに際しては各製造社指定の方法により行うものとする)。ブライマーB'(primer B')には制限酵素Sal Iの切断部位を含む。得られた断片を精製分離した後、これをブラスミド(pGEM-T; Promega社)に組み込み、これをブラスミドA(plasmid A)と称した。これを制限酵素Sph Iを含む種々の制限酵素で切断して、エキソン3の上流約4.8kbpの部位に制限酵素Sph Iの切断部位が1箇所存在することが判明した。そこでブラスミドAを制限酵素Sph Iと制限酵素Sal Iとで切断し、約4.8kbpの断片を得た。これを精製分離した後、T4DNA polymerase (宝酒造)を用いて上記断片を平滑末端にした。これを断片A(fragment A)と称した。

(2) フラグメントB(fragment B)の構築

以下、フラグメントB(fragment B)の構築を図11に基づいて説明する。

既報(Proc. Natl. Acad. Sci. USA. 86(1989). pp. 8227-8231)のマウスのGT[EC2.4.1.151]の配列に基づいてエキソン4からエキソン6までの部分をPCR法にて抽出するために、エキソン4の核酸配列に基づいてブライマーC(primer C)[配列番号6]を、又エキソン6の核酸配列に基づいてブライマーD(primer D)[配列番号7]を合成した、これらのブライマーとLA-PCR

とを用いて、エキソン4からエキソン6までの部分のおよそ7kbpを増幅した。得られた 断片を精製分離した後、

これをプラスミドpGEM-T (Promega社)に組み込み、これをプラスミドB(plasmid B)と称した。これを制限酵素Nco Iを含む種々の制限酵素で切断して、上記断片に制限酵素Nco Iの切断部位が一箇所存在することが判明した。又制限酵素Sac IIを含む種々の制限酵素で切断して、も上記断片に制限酵素Sac IIの切断部位が一箇所も存在せず、プラスミドB (plasmid B)に存在する制限酵素Sac IIの切断部位はプラスミドpGEM-T(Promega社)の5 側のクローニング部位のみであることが判明した。そこでプラスミドBを制限酵素Sac II とNco Iとで切断し、約3.9kbpの断片を得た。これを積製分離した後、T4 DNA polymerase (宝酒造)を用いて上記断片を平滑末端にした。この断片に対し、ヌクレオチドのTで始まるSac II リンカー(New Enland Biolabs, Inc.) 付加した。これを断片B (fragment B) と称した。

(2) ブラスミドC(plasmid C)の構築

以下、ブラスミドC(plasmid C)の構築を図12に基づいて説明する。

既報(Proc. Natl. Acad. Sci. USA, 87(1990), pp. 6674-6678) のヒトのFT[EC2.4.1.96]のDNA配列に基づいてエキソン1からエキソン2までの部分のcDNAをRT-PCR法にて抽出するために、ブライマーE(primer E)[配列番号8]とブライマーF(primer F)[配列番号9]を合成した。このcDNAの合成の方法については上記実施例1に記載した通りである。これらブライマーを用いて施行されたRT-PCR法により得られた断片(これを断片Cと称する)にはFTの発現のためのスタートコドンとストップコドンが含まれている。又スタートコドンの上流には制限酵業Sal Iの切断部位が存在している。

次に、この断片(fragment C)を、発現ベクターpCR3(Invitrogen 社)に組み込み、これをブラスミドC(plasmid C)と称した。

(3)ブラスミドD(plasmid D)の構築・

以下、ブラスミドD(plasmid D)の構築を図12に基づいて説明する。

上記発現へクターpCR3の1113番のヌクレオチドの部位に、即ちpCR3のpoly Aの部位のすぐ下流に制限酵素Afl IIIが唯一存在し、又この制限酵素はFTを含む断片C(fragment C)を切断しないことが確かめられている。そこでブラスミドC(plasmid C)を制限酵素Afl III で

切断した。これを前記T4 DNA polymerase (宝酒造)を用いて上記断片を平滑末端にした。 次にこの断片に前記Sac IIリンカー(New Enland Biolabs, Inc.)を付加した。これを制限酵素 Sac IIで切断した後、これを前記T4 DNA ligase (宝酒造)を用いてself-ligation 処理した。 この結果制限酵素Sac II のすぐ下流に新たに制限酵素Afl IIIの切断部位が出現する。この 断片をブラスミドD(plasmid D)と称した。

(4) プラスミドE(plasmid E)の構築

以下、プラスミトE(plasmid E)の構築を図13に基づいて説明する。

上記プラスミドD(plasmid D)を制限酵素Sac II で処理し、これを脱リン化酵素(CIAP: 宝酒造)で脱リン化処理した後、これに、制限酵素Sac II で処理した断片B(fragment B)を前記T4 DNA ligase (宝酒造)を用いてligation 処理した。これをプラスミドE(plasmid E)と称する。

(5) ブラスミドF(plasmid F)の構築

以下、ブラスミドF(plasmid F)の構築を図14に基づいて説明する。

前記プラスミドE(plasmid E)を制限酵素Sal Iで切断し平滑化処理した後、前記T4 DNA ligase (宝酒造)を用いて断片A(fragment A)とligation 処理した。これをプラスミドF(plasmid F)と称した。

(6) コンストラクトの構築

以下、コンストラクトの構築を図14に基づいて説明する。

上記プラスミドF(plasmid F)を制限酵素Sal I 及Afl IIIで切断した。これにより約10 kbpの長さの断片を得た。これを前記のように分離精製し、温度を5.0 μg/μlに調整し、遺伝子導入用の遺伝子断片として、L-GT/FTと称した。

(7) コンストラクトの特徴

以下、このコンストラクトの特徴を述べる。

それはまず第一に、このコンストラクトは、GTの遺伝子の翻訳開始コードを含む配列部分を欠失する形で変異配列が挿入されていることである。第2に、この挿入された配列が、FTの遺伝子をコードする翻訳部分(翻訳開始コードおよび翻訳停止コードを含む)をすべて含んでいることである。第3に、前配挿入された配列が、FTの翻訳部分の3、側にターミネーターを含む点である。第4に、前記挿入された配列が、GTの遺伝子の翻訳開

始コードの5¹側の非翻訳部分と結合していることである。第5 に、前記挿入された配列の部分の長さが、内在するGTの遺伝子の欠失する部分の長さとほぼ同じであること。言い替えればコンストラクトの配列の長さが、内在するGTの遺伝子の中の相同組み換えを起こす部分の長さとほぼ同じであることである。

これら特徴の結果、比較的、相同組み換えが起こりやすく、かつ相同組み換えが起きた場合、GTの遺伝子は翻訳開始コードを欠くためにGTが発現せず、かつFTの遺伝子が翻訳され発現することになる。

(実施例10)

连入用遺伝子断片 (L-GT/FT) のマウス細胞への違入

マウスの培養細胞L-929を直径3cmの培養皿内でおよそ2mlの血清培地(FCS加RPMI)の中でおよそ1.0x10⁵個の細胞が認められるようになるまで培養し、この日を第1日目とすると、第2日目には無血清培地に替え、約3時間の後に次に述べる溶液を上記培養皿に添加した。即ち、A液として、7μlのDMEM溶液に前記遺伝子断片L-GT/FTを2μ、及び前記pMAMneo(1.0µg/μl)を1μl 加えた混合液を用意した。B液として、5μlのDMEM溶液に、遺伝子導入用合成脂質であるリポフェクチン(Gibco社)5μlを加えた混合溶液を用意した。この混合溶液Aを混合溶液Bに加えた。室温にて約15分培養し、DMEM溶液を30μ加え、静かに混合した上で、上記マウスの培養細胞L-929が培養されている培養皿へ添加した。第3日目の朝には10% FBS加PRMI溶液を1.5ml加え、次の朝まで培養した。第4日目の朝には培養液をすべて2mlの10% FBS加PRMI溶液に置き換え、その後更に2日培養した。第6日目にはバサージュして直径10cmの培養皿にすべての細胞を移し、皿に1日培養した。第7日目には、G418を最終膿度300μg/mlになるように調整した10% FBS加PRMI溶液 10mlで培養液を置き換えた加えた。この後さらに7日培養し、前記G418加10% FBS加PRMI溶液 10mlで培養液を置き換えた加えた。この後さらに7日培養し、前記G418加10% FBS加PRMI溶液 10mlで培溶液を置き換えた。

(実施例 1 1)

遺伝子基入マウス細胞に於ける基入遺伝子の同定

こうした結果、培養皿の中に187個のコロニーを得た。

得られたコロニーをパサージュして更に増殖させてから細胞を抽出した。前記方法にてDNAを抽出できた細胞群が152個だった。これらのDNAを制限酵素Sph Iと Bgl II で切断した。前記方法によりSouthern blotting を行った。probeとしてFTのcDNAを用いたSouthern blotting 結果。142個の細胞群が陽性だった(図16A)。これらのうち、図15に示す様に本来存在しない外来遺伝子FTの配列の中から選んだブライマーG[配列番号10]及H[配列番号11]を用い前記の様にLA-PCRを施行した。即ち、同所性組み換え(homologous recombination)が起こっているときにだけブライマーAとブライマーGによるPCRにおいて約10kpの長さのバンド、及ブライマーDとブライマーHによるPCRにおいて約7kbpの長さのバンドを得る。実際上記142個の細胞群のうち3個の細胞群において約7kbpの長さのバンドを得る。実際上記142個の細胞群のうち3個の細胞群においてこれらのLA-PCRにおいて陽性だった(図16Bおよび16C)。同所性組み換えが起こっている時以外ではこれらのバンドが検出されないことは明らかである(図16Bおよび16C(実施例12)

導入遺伝子の発現の確認

前記の遺伝子導入細胞を更に培養し、全RNAを抽出した。これを基に前記プライマーE及Fを用いてRT-PCRを施行した。この結果、前記3細胞群の内3細胞群に於いてRT-PCR上陽性であった(図16D)。また、蛍光標識がラベルされているレクチン(UEA-I; EY labolatories)を用いて、上記外来遺伝子細胞群および非導入細胞群を染色し、フローサイトメトリーにて前記H抗原の発現を確認した(図16E およびF)。なお、図16E・のL929/Neo/UEA-Iとは、ネオマイシン耐性遺伝子を導入したマウスL929細胞群を前記レクチンUEA-Iを用いてH抗原の発現の程度を測定したことを示す。同様に図16FのL929/FT; UEA-Iとは、前記外来遺伝子L-GT/FTを導入したマウスL929細胞群を前記レクチンUEA-I を用いてH抗原の発現の程度を測定したことを示す。

これらの結果は明らかに外来導入遺伝子L-GT/FTがマウスの体細胞の中に同所性に組み換えられていること、かつ導入されたFTが発現していることを意味している。このことは、もしこの導入外来用遺伝子L-GT/FTが生殖細胞系列に導入されていれば、しかるべき継代を経て、外来遺伝子L-GT/FTに関してホモの状態になりうること、すなわちG抗原の代わりにH抗原を発現している個体の出現が期待できることを示している。

(実施例 13)

選入用遺伝子断片 (pGT/FT) のマウス細胞への選入 その同定およびその発現の確認 導入用遺伝子断片 (pGT/FT) のマウス細胞への導入については上記実施例10に準じ て行った。その同定についても上記実施例11に準じて行った。 こうした結果、培養皿の中に361個のコロニーを得た

得られたコロニーをパサージュして更に増殖させてから細胞を抽出した。前記方法にて DNAを抽出できた細胞群が 2.8.5 個だった。これらのDNAを鋳型にしてプライマー (P/C) および (p/D) を用いてPCRを施行した。その結果、1.3.7 個の細胞群が陽性だった (2017A)。これらのうち、本来存在しない外来遺伝子FTの配列の中から選んだプライマーおよび内在するGTにかかわる部分から選んだプライマーを用いてPCRを施行した。

上記137個の細胞群のうち1個の細胞群において陽性のバンドを検出した(図17Bおよび17C)。

次にこの細胞群から全RNAを抽出し、RT-PCRを施行した。その結果、陽性のバンドを得た(図17D)。次に前記のレクチンを用いて前記の細胞のH抗原の発現についてフローサイトメトリーを用いて検定し、陽性の結果を得た(図17Eおよび図17F)。

なお、この発明は、その本質的特性から逸脱することなく数多くの形式のものとして具体化することができるから、これらの実施態様はもっぱら説明上のもので制約的なものではない。また、この発明の範囲は、請求の範囲以外の記載によるものでなく、請求の範囲によって限定するものであるから、請求の範囲の要件内のあらゆる変更、またはその要件に対する均等物は請求の範囲に包含されるものである。

配列表

- (1)一般情報
- (i)出願人:小池 千裕
- (ii) 発明の名称: 外来遺伝子の導入により高等霊長類の抗原型を発現した非及

選長哺乳類の形質転換動物及びその作出方法

- (道)配列の数:11
- (iv) 連絡先住所:
 - (A) 宛て名:小池 千裕
 - (B) 通り:八竜町1-30
 - (C)市:名古屋市
 - (D)州:愛知県
 - (E)国:日本
 - (F) 郵便番号: 4 6 2
- (v) コンピュータ読み取り可能形式
 - (A)媒体方式:
 - (B) コンピュータ:
 - (C) 動作システム
 - (D) ソフトウェア:
- (vi)現行適用データ
 - (A) 適用番号:.
 - (B) ファイル日:
 - (C)分類:
- (vii) 事前適用データ
 - (A) 適用番号:
 - (B) ファイル日:
 - (C)分類:
- (幅) アトニー/エージェント情報
 - (A) 氏名:

- (B) 登録番号:
- (C) 参照/事件番号:
- (这)通信手段情報:
 - (A) 電話: 052/912-7062
 - (B) ファクシミリ: 052/912-7062
 - (C) テレックス:

- (2) 配列番号1 (SEQ ID NO:1)に関する情報
 - (i)配列の特徴:
 - (A) 長さ: 1174
 - (B)型:核酸
 - (C)鎖の数:二本鎖
 - (D)トポロジー:直鎖状
 - (ii)配列の種類:cDNA to mRNA
 - (A) 特徴:α(1, 2) フコシルトランスフェラーゼ
 - (iii) ハイポセティカル: No
 - (iv) アンチセンス: No
 - (x).刊行物情報:
 - (A) 奢者: Larsen. R. D.

Ernest, L. k.

Nair. R. P.

Lowe. J. B.

- (B) 題名: Molecular cloning. sequence, and expression of a Human GDP-L-fucose:-D-galactoside 2-alfa-L-fucosyltransferase cDNA that can form the H blood group antigen.
- (C) 雑誌名:Proceedings of the National Academy of Science, USA
- (D) 巻数:87
- (F) 頁数:6674-6678
- (G) 日付: SEP-1990
- (xi)配列の記載: SEQ ID NO:1:

CAAGCAGCTC GGCC

.4

ATG TGG CTC CGG AGC CAT CGT CAG CTC TGC CTG GCC TTC CTG Mat Trp Leu Arg Ser His Arg Gln Leu Cys Leu Ala Phe Leu

56

CTA GTC TGT GTC CTC TCT GTA ATC TTC TTC CTC CAT ATC CAT Leu Val Cys Val Leu Ser Val Ile Phe Phe Leu His Ile His 15 20 25	98
CAA GAC AGC TIT CCA CAT GGC CTA GGC CTG TCG ATC CTG TGT Gln Asp Ser Phe Pro His Gly Leu Gly Leu Ser Ile Leu Cys 30 40	140
CCA GAC CGC CGC CTG GTG ACA CCC CCA GTG GCC ATC TTC TGC Pro Asp Arg Arg Leu Val Thr Pro Pro Val Ala Ile Phe Cys 45 50 55	182
CTG CCG GGT ACT GCG ATG GGC CCC AAC GCC TCC TCT TCC TGT Leu Pro Gly Thr Ala Met Gly Pro Asn Ala Ser Ser Ser Cys 60 65 70	224
CCC CAG CAC CCT GCT TCC CTC TCC GGC ACC TGG ACT GTC TAC Pro Gln His Pro Ala Ser Leu Ser Gly Thr Trp Thr Val Tyr 75 80	266
CCC AAT GGC CGG TTT GGT AAT CAG ATG GGA CAG TAT GCC ACG Pro Asn Gly Arg Phe Gly Asn Gln Met Gly Gln Tyr Ala Thr 85 90 95	308
CTG CTG GCT CTG GCC CAG CTC AAC GGC CGC CGG GCC TTT ATC Leu Leu Ala Leu Ala Gln Leu Asn Gly Arg Arg Ala Phe Ile 100 105 110	350
CTG CCT GCC ATG CAT GCC GCC CTG GCC CCG GTA TTC CGC ATC Leu Pro Ala Met His Ala Ala Leu Ala Pro Val Phe Arg Ile 115 120 125	392
ACC CTG CCC GTG CTG GCC CCA GAA GTG GAC AGC CGC ACG CCG Thr Leu Pro Val Leu Ala Pro Glu Val Asp Ser Arg Thr Pro 130 135	434
TGG CGG GAG CTG CAG CTT CAC GAC TGG ATG TCG GAG GAG TAC Trp Arg Glu Leu Gln Leu His Asp Trp Met Ser Glu Glu Tyr 145	476
GCG GAC TTG AGA GAT CCT TTC CTG AAG CTC TCT GGC TTC CCC Ala Asp Leu Arg Asp Pro Phe Leu Lys Leu Ser Gly Phe Pro 160 165 -	518
TGC TCT TGG ACT TTC TTC CAC CAT CTC CGG GAA CAG ATC CGC Cys Ser Trp Thr Phe Phe His His Leu Arg Glu Gln Ile Arg 170 175 180	560
AGA GAG TTC ACC CTG CAC GAC CAC CTT CGG GAA GAG GCG CAG Arg Glu Phe Thr Leu His Asp His Leu Arg Glu Glu Ala Gln 185 190	602
AGT GTG CTG GGT CAG CTC CGC CTG GGC CGC ACA GGG GAC CGC Ser Val Leu Gly Gln Leu Arg Lau Gly Arg Thr Gly Asp Arg 200 205 210	644

CCC	Arg	Thr	TTI Phe	GTC Val 215	. Gly	GTC Val	CAC His	GTG Val	CGC Arg 220	Arg	Gly	GAC Asp	TAT Tyr		686
CTO Let 225	ı Glm	GTT Val	Met	CCI Pro	CAG Gln 230	Arg	TGG	AAG Lys	GGT	GTG Val 235	Val	GGC	GAC Asp		728
AGC Ser	GCC Ala 240	TAC Tyr	CTC	CGG Arg	CAG Gln	GCC Ala 245	ATG Met	GAC Asp	TGG	TTC	CGG Arg 250	GCA Ala	CGG		770
CAC	GAA Glu	GCC Ala 255	CCC	GTT Val	TTC Phe	GTG Val	GTC Val 260	Thr	AGC Ser	AAC	GGC Gly	ATG Met 265	GAG Glu		812
TGG	TGT Cys	AAA Lys	GAA Glu 270	AAC Asn	ATC Ile	GAC Asp	ACC	TCC Ser 275	CAG Gln	GGC Gly	GAT Asp	GTG Val	ACG Thr 280	. ~	854
TTT	GCT Ala	GGC Gly	GAT Asp	GGA Gly 285	CAG Gln	GAG Glu	GCT Ala	ACA Thr	CCG Pro 290	TGG Trp	AAA Lys	GAC Asp	TIT Phe		896
GCC Ala 295	CTG Leu	CTC Leu	ACA Thr	CAG Gln	TGC Cys 300	AAC Asn	CAC His	ACC Thr	ATT	ATG Met 305	ACC	ATT Ile	GGC Gly	~	938
ACC Thr	TTC Phe 310	GGC Gly	TTC Phe	TGG Trp	GCT Ala	GCC Ala 315	TAC Tyr	CTG Leu	GCT Ala	GGC	GGA Gly 320	GAC Asp	ACT Thr	-	980
GTC Val	TAC Tyr	CTG Leu 325	GCC Ala	AAC Asn	TTC Phe	ACC Thr	CTG Leu 330	CCA Pro	GAC Asp	TCT Ser	GAG Glu	TTC Phe 335	Leu		1022
AAG Lys	ATC Ile	TTT Phe	AAG Lys 340	CCG Pro	GAG Glu	GCG Ala	GCC Ala	TTC Phe 345	Lou	CCC Pro	GAG Glu	TGG Trp	GTG Val 350		1064
GGC Gly	ATT Ile	AAT ABII	Ala	GAC Asp 355	TTG Leu	TCT Ser	CCA Pro	Leu	TGG . Trp 360	ACA-	TTG (Leu	GCT : Ala	AAG Lys		1106
CCT Pro 365	TGAG	AGCC	ag g	gaga	CTTT	C TG	AAGT	AGCC	TGA	TCTT	TCT				1149
AGAG	CCAG	CA G	TACG	TGGC	T TC	AGA	•								1174

(3)配列番号2 (SEQ ID NO:2)に関する情報

(i)配列の特徴:

(A) 長さ: 1423

(B)型:核酸

(C)鎖の数: 二本鎖

(D) トポロジー: 直鎖状

(ii)配列の種類: CDNA to mRNA

(A) 特徴: α (1, 3) ガラクトシルトランスフェラーゼ

(道) ハイポセティカル: No

(iv) アンチセンス: No

(x)刊行物情報:

(A) 著者: Mauro S. Sandrin

Paul L. Dabkowski

Margaret M. Henning

Effie Mouhtouris

lan F. C. Mckenzie

(B) 題名: Characterization of cDNA clones for porcine

alfa(1.3)galactosyl transferase : The enzyme

generating the Gal alfa(1.3)Gal epitope

(C) 雜誌名:XENOTRANSPLANTATION

(D) 巻数:1994:1

(F) 頁数:81-88

(xi)配列の記載:SEQ ID NO:2:

CGGGGGCCAT CCCCGAGCGC ACCCAGCTTC TGCCGATCAG GAGAAAATA	49
ATG AAT GTC AAA GGA AGA GTG GTT CTG TCA ATG CTG CTT GTC Met Asn Val Lys Gly Arg Val Val Leu Ser Met Leu Leu Val 5 10	91
TCA ACT GTA ATG GTT GTG TIT TGG GAA TAC ATC AAC AGA AAC Ser Thr Val Met Val Val Phe Trp Glu Tyr Ile Asn Arg Asn 15 20 25	133
CCA GAA GTT GGC AGC AGT GCT CAG AGG GGC TGG TTT CCG Pro Glu Val Gly Ser Ser Ala Gln Arg Gly Trp Trp Phe Pro 30 35 40	175
AGC TGG TTT AAC AAT GGG ACT CAC AGT TAC CAC GAA GAA SET TTP Phe Asn Asn Gly Thr His Ser Tyr His Glu Glu 45 50 55	217
GAC GCT ATA GGC AAC GAA AAG GAA CAA AGA AAA GAA GA	259
AGA GGA GAG CTT CCG CTA GTG GAC TGG TTT AAT CCT GAG AAA Arg Gly Glu Leu Pro Leu Val Asp Trp Phe Asn Pro Glu Lys 75 80	301
CGC CCA GAG GTC GTG ACC ATA ACC AGA TGG AAG GCT CCA GTG Arg Pro Glu Val Val Thr lle Thr Arg Trp Lys Ala Pro Val 85 90 95	343
GTA TGG GAA GGC ACT TAC AAC AGA GCC GTC TTA GAT AAT TAT Val Trp Glu Gly Thr Tyr Asn Arg Ala Val Leu Asp Asn Tyr 100	385
TAT GCC AAA CAG AAA ATT ACC GTG GGC TTG ACG GTT TTT GCT Tyr Ala Lys Gln Lys Ile Thr Val Gly Leu Thr Val Phe Ala 115 120 125	427
GTC GGA AGA TAC ATT GAG CAT TAC TTG GAG GAG TTC TTA ATA Val Gly Arg Tyr Ile Glu His Tyr Leu Glu Glu Phe Leu Ile 130 140	469
TCT GCA AAT ACA TAC TTC ATG GTT GGC CAC AAA GTC ATC TTT Ser Ala Asn Thr Tyr Phe Met Val Gly His Lys Val Ile Phe 145	511
TAC ATC ATG GTG GAT GAT ATC TCC AGG ATG CCT TTG ATA GAG Tyr Ile Met Val Asp Asp Ile Ser Arg Met Pro Leu Ile Glu 165	553
CTG GGT CCT CTG CGT TCC TTT AAA GTG TTT GAG ATC AAG TCC Leu Gly Pro Leu Arg Ser Phe Lys Val Phe Glu Ile Lys Ser 170 175	595

	AAG Lys												ACC Thr	637
	Gly													679
TTC	CTC	TTC Phe	TGC Cys	ATT Ile 215	GAC Asp	GTG Val	GAT Asp	CAG Gln	GTC Val 220	TTC Phe	CAA Gln	AAC	AAC Asn	721
	GGG													763
GCC Ala	TGG Trp 240	TGG Trp	TAC Tyr	AAG Lys	GCA Ala	CAT His 245	CCT Pro	gac Asp	GAG GLU	TTC Phe	ACC Thr 250	TAC	GAG Glu	805
	CGG Arg													847
														:
GAT Asp	TTT	TAT Tyr	TAC Tyr 270	CAC	GCA Ala	GCC Ala	ATT	TTT Phe 275	GJ Y GGG	GGA Gly	ACA Thr	CCC Pro	ACT Thr 280	889
	GTT Val												CTC Leu	931
CAG Gln 295	Asp.	AAG Lys	GAA Glu	AAT Asn	GAC Asp 300	ATA Ile	GAA Glu	GCC Ala	GAG Glu	TGG Trp 305	CAT Ris	GAT Asp	GAA Glu	973
ACC											_:			
Ser	CAT His 310	CTA Leu	AAC Asn	AAG Lys	TAT Tyr	TTC Phe 315	CTT	Leu	AAC Asn	Lys	Pro 320	Thr	Lys	1015

TCT GTG GAT ATT AGG ATT GTC AAG ATA (Ser Val Asp Ile Arg Ile Val Lys Ile I 340	GCT TGG CAG AAA AAA 109 Ala Trp Gln Lys Lys 350
GAG TAT AAT TTG GTT AGA AAT AAC ATC TGLU Tyr Asn Leu Val Arg Asn Asn Ile 355	TGACTTTAAA 113
TIGTGCCAGC AGTTTTCTGA ATTTGAAAGA GTAT	TACTOT GGCTACTTCC 118
TCAGAGAAGT AGCACTTAAT TTTAACTTTT AAAA	AAATAC TAACAAAATA 1236
CCAACACAGT AAGTACATAT TATTCTTCCT TGCA	ACTITG AGCCTTGTCA 1286
aatgggagaa tgactctgta gtaatcagat gtaa	ATTCCC AATGATTTCT 1336
TATCTGCGGA ATTCCAGCTG AGCGCCGGTC GCTA	CCATTA CCAGTTGGTC 1386
IGGTGTCGAC GACTCCTGGA GCCCGTCAGT ATCG	GCG 1423

- (4)配列番号3 (SEQ ID NO:3)に関する情報
 - (i)配列の特徴:
 - ·(A) 長さ: 98
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D) トポロジー: 直鎖状
 - (ii)配列の種類:その他の核酸
 - (道) ハイポセティカル: No
 - (iv) アンチセンス: No
 - (vi)配列の記載:SEQ ID NO:3:

GTACCTTCCT TTCCTCTGCT GAGCCCTGCC TCCTTAGG

38

- (5)配列番号4 (SEQ ID NO:4)に関する情報
 - (i)配列の特徴:
 - (A)長さ:33
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D)トポロジー:直鎖状
 - (ii) 配列の種類:その他の核酸
 - (iii) ハイポセティカル: No
 - (iv) アンチセンス: No
 - (vi)配列の記載:SEQ ID NO:4?

GGGGTAAGCA GATCTCTTGA GTTCAAAGTC AGC

33

- (6)配列番号 5 (SEQ ID NO:5)に関する情報
 - (i)配列の特徴:

(A) 長さ:27

(B)型:核酸

·(C)鎖の数:1本鎖

(D)トポロジー:直鎖状

(ii)配列の種類:その他の核酸

(ii) ハイポセティカル: No

(iv) アンチセンス: No

(vi) 配列の記載: SEQ ID NO:5:

CTTTAATTCC AGTCGACTGG GGTAAGC

27

(7)配列番号6 (SBQ ID NO:6)に関する情報

(i)配列の特徴:

(A)長さ:30

(B)型:核酸

(C)鎖の数:1本鎖

(D)トポロジー:直鎖状

(ii)配列の種類:その他の核酸

(**道**) ハイポセティカル: No

(iv) アンチセンス: No

(vi)配列の記載:SEQ ID NO:6:

GTCAAGGGAA AAGTAATCCT GTTGATGCTG

30

(8) 配列番号7 (SEQ ID NO:7)に関する情報

(i)配列の特徴:

(A) 長さ:34

(B)型:核酸

(C)鎖の数:1本鎖

- (D) トポロジー: 直鎖状
- (ii)配列の種類:その他の核酸
- (道) ハイポセティカル: No
- (iv) アンチセンス: No
- (vi)配列の記載:SEQ ID NO:7:

CCAGCTTGGG AACCACCAGT CCTTCTGCCA TCTG

34 .

- (9)配列番号 8 (SEQ ID NO:8)に関する情報
 - (i)配列の特徴:
 - (A) 長さ:26
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D)トポロジー:直鎖状
 - (ii)配列の種類:その他の核酸
 - (道) ハイポセティカル: No
 - (iv) アンチセンス: No
 - (vi)配列の記載:SEQ ID NO:8:

ACGAAAAGCG GACTGTCGAC CTGCCA

26

- (10)配列番号 9 (SEQ ID NO:9)に関する情報
 - (i)配列の特徴:
 - (A) 長さ:33
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D)トポロジー: 直鎖状
 - (ii)配列の種類:その他の核酸
 - (ii) ハイポセティカル: No
 - (iv) アンチセンス: No
 - (vi) 配列の記載:SEQ ID NO:9:

CCCTGGCTCT CAAGGCTTAG CCAATGTCCA GAG

33

- (11) 配列番号10 (SEQ ID NO:10) に関する情報
 - (i)配列の特徴:
 - (A)長さ:29
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D)トポロジー: 直鎖状
 - (ii)配列の種類:その他の核酸
 - (三) ハイポセティカル: No
 - (iv)アンチセンス:No
 - (vi)配列の記載:SEQ ID NO:io:

AGAGETGACG ATGGETCCGG AGCCACATG

- (12)配列番号11 (SEQ ID NO:11) に関する情報
 - (i)配列の特徴:
 - (A) 長さ:32
 - (B)型:核酸
 - (C)鎖の数:1本鎖
 - (D) トポロジー: 直鎖状
 - (ii)配列の種類:その他の核酸
 - ·(茁)ハイポセティカル:No
 - (iv) アンチセンス: No
 - (vi) 配列の記載: SEQ ID NO: Il:

CCACTCTGGA CATTGGCTAA GCCTTGAGAG CC

32

請求の範囲

- 1. 高等霊長類の α (1, 2) フコシルトランスフェラーゼをコードするDNA配列を含むDNA構築物が導入され、H型抗原を発現するように形質転換されていることを特徴とする非霊長哺乳類の形質転換動物。
- 2. 高等霊長類の α (1. 2) フコシルトランスフェラーゼをコードするDNA配列を含む第1のDNA構築物と、非霊長哺乳類の α (1. 3) ガラクトシルトランスフェラーゼの遺伝子に対してアンチセンスであるDNA配列を含む第2のDNA構築物とが導入され、高等霊長類のH型抗原を発現する一方、非霊長哺乳類のG型抗原を低減するように形質転換されていることを特徴とする非霊長哺乳類の形質転換動物。
- 3. 非霊長哺乳類の α (1,3)ガラクトシルトランスフェラーゼ遺伝子の一部に、 α (1,2)フコシルトランスフェラーゼをコードするDNA配列を含むDNA構築物が相同組換えにより挿入され、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換されていることを特徴とする非霊長哺乳類の形質転換動物。
- 4. 前記非霊長哺乳類の形質転換動物がブタであることを特徴とする請求項1から3のいずれかに記載の形質転換動物。
- 5. 非霊長哺乳類の α (1, 3)ガラクトシルトランスフェラーゼ遺伝子の一部に、 α (1, 2)フコシルトランスフェラーゼをコードするDNA配列を含むDNA構築物が相同組換えにより挿入され、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換された非霊長哺乳類の形質転換動物から得られた移植用材料。
- 6. 非霊長哺乳類の α (1, 3)ガラクトシルトランスフェラーゼ遺伝子の一部に、 α (1, 2)フコシルトランスフェラーゼをコードするDNA配列を含むDNA構築物を相同組換えにより挿入し、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換した非霊長哺乳類の形質転換動物の作出方法。
- 7 非霊長哺乳類の組織を高等霊長類に移植する際の、高等霊長類の自然抗体と

非霊長哺乳類の抗原とによる拒絶反応を回避する方法であって、

非霊長哺乳類の α (1, 3) ガラクトシルトランスフェラーゼ遺伝子の一部に、 α (1, 2) フコシルトランスフェラーゼをコードするDNA配列を含むDNA構築物を相同組換えにより挿入して、非霊長哺乳類のG型抗原を発現することなく高等霊長類のH型抗原を発現するように形質転換した非霊長哺乳類を作出する工程と、

この工程により得られた前記非霊長哺乳類の組織を高等霊長類に移植する工程を含んだ方法。

FIG

FIG. 2

FIG.3

FIG.5

FIG.6

FIG.7

FIG.8

FIG. 9

.

Fig. 1

差 替 え 用 紙 (規則26)

差替え用紙(規則26)

INTERNATIONAL SEARCH REPORT

International application No.

A. CI	ACCUTOLITICAL	PCI/	JP36/00/03
7	ASSIFICATION OF SUBJECT MATTER		
	t. C16 A01K67/027		
Accordin	g to International Patent Classification (IPC) or to both national class	ification and IPC	
B. FI	ELDS SEARCHED	THE TOTAL PROPERTY OF THE PROP	
Minimum	documentation searched (classification system followed by classification		
Int	C16 A01K67/027	symbols)	
	A01K0//02/	,	
Document	trian combadasta at		
	ation searched other than minimum documentation to the extent that such	documents are included in t	he fields searched
l			
Electronic	data have conveniend during the		*
BIO	data base consulted during the international search (name of data base and	, where practicable, search	(crms used)
1 510	212	•	
1		. *	•
C DOC	DATATE COVERNMENT		
	JMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of th		
A	Prog. Nat. 1	e relevant passages	Relevant to claim No.
	Proc. Natl. Acad. Sci. USA. Vol. 91	(1994),	1 - 7
	p. 11153-11157, William L. Fodor et	al.	- '
	Expression of a functional human conhibitor in a transcript	omplement	
	inhibitor in a transgenic pig as a particular the prevention of xenogeneic hyperaction.		
	rejection"	cute organ	
		}	
· A	Proc. Natl. Acad. Sci. USA, Vol. 87	(1990)	· _ `
			1 - 7
.]	cloning, sequence, and expression of GDP-L-fucose: R-D-galacteries	f a human	* •
- 1	fucosyltransferase cDNA that can for blood group antigen	m the H	
ľ	-room dromb guerdeu.		•
A	Proc. Natl. Acad. Sci. USA, Vol. 86		
			1 - 7
	of a cDNA encoding a murine UDPgalac	toso: 8-D	•
.	galactosyl-1,4-N-acetyl-D-glucosamin galactosyltransferase	ide (-1 3-	**
		oning by	
۶	gene transfer"		
	· ·		,
Further	documents are listed in the continuation of Box C. See na		
	regories of cited documents:	tent family annex.	
qocnment		cat published after the interna	tional filing date or priority
	rticular relevance	t in conflict with the applicati e or theory underlying the in-	
	which may throw doubte as a first the international filling date "X" document o	f particular relevance: the ele-	
cited to es		novel or cannot be considere be document is taken alone	d to involve an inventive
	"Y" document o	Derticular relevance: the cla	imed invention cannot be
	or white day	ith one or more otherwish doe	When the document is
ipe buouth	date claimed	en en a heuson antition in the Fi	π
	"&" document m	ember of the same patent fac	ail y
- or me acti	pal completion of the international search Date of mailing o	f the international search	tenort
July 1			
	, , , , , , , , , , , , , , , , , , ,	0, 1996 (30.	U/. 96) ·
ne and maili	ing address of the ISA/ Authorized office	<u> </u>	
Japane	ese Patent Office	•	
simile No.			
	Telephone No.	•	
· - 1/10.4/2	IU (Second sheet) / luly 1902)		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00703

A Genes and development, Vol. 4 (1990), p. 1288- 1303, Jolanta F. Kurowska et al. "A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4) fucosyltransferase" A Transplantation Proceedings, Vol. 24, No. 2 (1992), p. 574-575, R. J. Fischel et al. 'Plasma Exchange, Organ Perfusion, and Immunosuppression Reduce "Natural" Antibody Level as Measured by Binding to Xenogenic Endothelial Cells and Prolong Discordant Xenograft Survival'	7
1303, Jolanta F. Kurowska et al. "A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4) fucosyltransferase" A Transplantation Proceedings, Vol. 24, No. 2 1 - 7 (1992), p. 574-575, R. J. Fischel et al. 'Plasma Exchange, Organ Perfusion, and Immunosuppression Reduce "Natural" Antibody Level as Measured by Binding to Xenogenic Endothelial Cells and Prolong Discordant	· .
(1992), p. 574-575, R. J. Fischel et al. 'Plasma Exchange, Organ Perfusion, and Immunosuppression Reduce "Natural" Antibody Level as Measured by Binding to Xenogenic Endothelial Cells and Prolong Discordant	7
The second of th	
	•

	四 家附工報合	国際出頌番号 РС	T/JP96/00703
A. 発明	の瓜する分野の分類(国際特許分類(IPC)))	-> 31.30>00703
1	. Cl. 4 A01K 67/027		
		·	
B. 趴蚕	を行った分野		
関査を行った	た及小限資料(国際特許分類(IPC))		
Int	. Cl. 4 A01K 67/027		
最小限资料 以	以外の資料で調査を行った分野に含まれるもの)	
<u> </u>	·	•	
国際調査で使	用した電子データベース(データベースの名	旅 調査に使用した用数)	
BIO	SIS	八 時里に使用した用格)	1
	•		·
C. 関連す	ると認められる文献		
引用文献の			
カテゴリー*	引用文献名 及び一部の箇所が関連する	5ときは、その関連する箇所の表	関連する 示
Α	Proc. Natl. Acad. Sci. USA, vol. 91 (1994), Expression of a functional human compl	p. 11153-11157, William I. Fode	
	Expression of a functional human compl as a model for the prevention of xenoge	ement inhibitor in a transgeni neic hyperacute organ rejection	or et al 1 - 7
A	Proc. Natl. Acad. Sci. 18A val. 97 (1999)		
	Molecular cloning, sequence, and expressed alactoside 2-a-L-fucosyltransferage of	ssion of a human GDP-L-fucose:	et al 1-7
	galactoside 2-c-L-fucosyltransferase cl antigen	NA that can form the H blood	group
A	Proc. Natl. Acad Sci. USA . vol. 86 (1989). Isolation of a cDNA encoding a muripo li	n 9227-0021 n	·
-3	Isolation of a cDNA encoding a murine U acetyl-D-glucosaminide g-1.3-galactosyl	DPgalactose:β-D-galactosyl-1	et ai 1 – 7
V 047 - 47 1	-10 80.00103/1	transferase:Expression cloning	z by
X. C桁の続き	にも文献が列挙されている。	□ パテントファミリーに	JJする別紙を参照
* 引用文献の	カテゴリー		
「A」符に関連 もの	のある文献ではなく、一般的技術水準を示す	の日の後に公表された文 「T」国際出願日又は優先日後 て出願と子居するもので	献に グラスカカヤヤマ マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「E」先行文献	ではあるが、国際出願日以後に公表されたも		はなく、参明の旧報サル番:
		為の理解のために引用す「X」特に関連のある文献であ	るもの :
~ ~ ~ ()	限に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する	の初ぬ性人は進歩性がなり	ハと安テらわますの
		「「」何に関連のある文献であ	って、当該文献と他の1以 とって自明である組合せに
P」国際出願	5開示、使用、展示等に言及する文献 目前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと考え	さられみもの ニー
際調査を完了し			<u> </u>
1	6.07.96	国際調査報告の発送日 3	0.07.96
原調査機関の名 日本原体	称及びあて先	特許庁審査官(権限のある職員)	
□ 本国符 郵便	許庁 (ISA/JP) 番号100	1/11/11 伊文 B (板版のある職員) 長井 啓子	EN: 2B 9123
東京都千	作用でおおねコーロ・カック	電話番号 03-3581-11	a a -
FPCT (. c			01 内線 32.76

国際調査報告

国際出願番号 PCT/JP96/00703

用文献の テゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	gene transfer'	
A	Genes and Deveropment, vol.4 (1990), p. 1288-1303, Jolanta F. Kukowska et al 'A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α (1, 3/1, 4) fucosyltransferase'	1 – 7
A	Transplantation Proceedings, vol. 24, No. 2(1992), p. 574-575, R. J. Fischel et al 'Plasma Exchange, Organ Perfusion, and Immunosuppression Reduce "Natural" Antibody Levels as Measured by Binding to Xenogenic Endothelial Cells and Prolong Discprdant Xenograft Survival'	1 – 7
		,
	- · ·	•
		,
		÷ ,
		,
••		·
		-
,		
		. *
	and the second	
!		
		-
. :		
. 1		,