

수학〈하〉

빠른정답

▮. 집합과 명제

1	집합	6 ~ 22

001 〇	002 ×
003 🔾	004 ×
005 ∉	006 ∈

009
$$A = \{1, 2, 3, 4, 6, 12\}$$

010 $B = \{5, 10, 15, 20, 25, 30\}$

011
$$C = \{-3, 3\}$$

012
$$D = \{2, 3, 5, 7, 11, 13\}$$

013
$$A = \{x | x 는 30 이하의 자연수\}$$

016
$$D = \{x \mid x 는 20 이하의 소수\}$$

$$\begin{array}{ccc}
 & A & \\
 & a & b \\
 & c & d
\end{array}$$

- 021 유 022 무 023 무 024 유 025 유 026 무
- $\begin{array}{lll} \textbf{027} \; n(A) \! = \! 50 & \textbf{028} \; n(B) \! = \! 6 \\ \textbf{029} \; n(C) \! = \! 0 & \textbf{030} \; n(D) \! = \! 1 \end{array}$
- $\begin{array}{ccc} 031\ 2 & & & 032\ 3 \\ 033\ \subset & & & 034\ \subset \\ 035\ \not\subset & & & 036\ \subset \end{array}$
- 037 $A \subset B$ 038 $B \subset A$

 039 $B \subset A$ 040 $A \subset B$
- **041** *B*⊂*A*
- **042** Ø, {1}, {7}, {1, 7}
- **043** Ø, {1}, {3}, {9}, {1, 3}, {1, 9}, {3, 9}, {1, 3, 9}
- **044** Ø, {2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}
- $045 \bigcirc$ $046 \bigcirc$
 $047 \times$ $048 \times$
 $049 \bigcirc$ $050 \bigcirc$

 051 A=B 052 A=B
- 051 A = B 052 A = B 054 a = 3, b = 2
- **055** a=6, b=5 **056** a=5, b=-3
- **057** Ø, {1}, {3}
- **058** \emptyset , $\{-1\}$, $\{0\}$, $\{1\}$, $\{-1, 0\}$, $\{-1, 1\}$, $\{0, 1\}$

- **060** 8 061 32 062 16 **063** 128 064 64 **065** 256 066 7 **067** 127 069 16 068 255 **070** 8 **071** 3 072 64 **073** 32 **074** 16 **075** 4 **076** 8 **077** 32
- **080** $A \cup B = \{2, 4, 6, 8\}, A \cap B = \{2, 6\}$
- **081** $A \cup B = \{a, b, c, d\}, A \cap B = \emptyset$

078 8

082 $A \cup B = \{1, 3, 5, 7, 9, 15\}, A \cap B = \{1, 3, 5\}$

079 16

- **083** $A \cup B = \{2, 3, 4, 5, 7\}, A \cap B = \{2, 5, 7\}$
- **084** $A \cup B = \{2, 4, 6, 8, 9, 10, 12\}, A \cap B = \{4, 8\}$
- **085** $A \cup B = \{1, 3, 4, 5, 9\}, A \cap B = \{3\}$
- 086 087 × 088 × 089 ○
- 090 0
- **090 091** {2, 4, 6, 8, 9} **092** {1, 5, 7, 9} **093** {4, 5, 7, 8, 9}
- **094** {1, 3, 15, 17, 19} **095** {9, 11, 17, 19}
- **096** {7, 9, 11, 13, 17, 19}
- **097** $A B = \{5\}, B A = \emptyset$
- **098** $A B = \{3, 8, 9\}, B A = \{1, 7, 10\}$
- **099** $A-B=\{c, f, g\}, B-A=\{a\}$
- **100** $A B = \emptyset$, $B A = \{16\}$
- **101** $A-B=\{2\}, B-A=\{1, 9\}$
- **102** $A-B=\{3, 12, 15, 18\}, B-A=\{4, 5, 7, 8, 10\}$
- 103 {4, 8, 12, 24}
 104 {8, 24}

 105 {4, 12}
 106 {1, 2, 3, 6}

 107 {1, 2, 3, 6, 8, 24}
 108 {8, 24}
- 109 8
 110 9

 111 6
 112 1

 113 4
 114 6
- 115 $A \cap A^c \equiv \emptyset$

빠른 정답 3

	▮。 집합과 명제
2 명제	23 ~ 34쪽
189 ×	190 🔾
191 ×	192 ×
193 🔾	194 ×
195 참	196 거짓
197 참	198 거짓
177 년 199 거짓	200 참
	200 (4, 5, 6, 7, 8)
201 {1, 3, 5, 7}	
203 {1, 4, 6, 8}	204 {1, 3}
205 {3, 5, 6, 7, 8}	206 {1, 2, 6, 7, 8}
207 {3, 4, 5}	208 {5}
209 {2, 3, 5}	210 {1, 2, 8, 9, 10}
211 {1, 3, 4}	212 {2, 3, 4, 5, 6, 8, 10}
213 3은 <u>홍수</u> 가 아니다.	214 <i>x</i> ≠2 그리고 <i>x</i> ≠4
215 $1 \in \{1, 3, 5\}$	216 5는 소수가 아니다. (거짓)
217 Ø⊂{1, 2, 3} (참)	218 2+7≤9 (참)
219 <i>x</i> ≥2	220 <i>x</i> <2 또는 <i>x</i> ≥6
221 x<2	222 {4, 5, 6, 7}
223 {4, 5}	224 {1, 4, 5, 6, 7, 8}
225 가정: <i>a</i> , <i>b</i> 가 모두 홀수이다.	
226 가정: <i>x</i> =2이다., 결론: 3 <i>x</i> +	
227 가정: <i>x</i> >3이다., 결론: <i>x</i> >	
228 가정: n이 4의 배수이다., 결	
229 참	230 거짓
231 거짓	232 참
233 참	234 거짓
235 참	236 거짓
237 ×	238 🔾
239 🔾	240 ×
241 🔾	242 🔾
243 거짓	244 참
245 참	246 거짓
247 참	
248 어떤 자연수 <i>x</i> 에 대하여 3 <i>x</i> -	-2≤0이다. (거짓)
249 모든 마름모는 정사각형이 이	니다. (거짓)
250 어떤 소수는 홀수가 아니다.	(참)
251 모든 실수 x 에 대하여 $x^2 \ge 0$	이다. (참)
252 모든 유리수 x , y 에 대하여 x	
253 역: p → q, 대우: ~p —	-
254 역: ~q → p, 대우: q →	-
255 역: p → ~q, 대우: ~p -	-
256 역: ~q → ~p, 대우: q -	$\longrightarrow p$

- **257** 역: x=3이면 $x^2=9$ 이다., 대우: *x* ≠ 3이면 x^2 ≠ 9이다.
- **258** 역: 4의 양의 약수이면 8의 양의 약수이다., 대우: 4의 양의 약수가 아니면 8의 양의 약수가 아니다.

259 역: 참, 대우: 거짓	260 역: 참, 대우: 거짓
261 역: 거짓, 대우: 참	262 역: 거짓, 대우: 참
263 역: 참, 대우: 참	264 역: 거짓, 대우: 참

265 ×	266 ○
267 ×	268 🔾
269 ×	270 🔾

271 충분조건	272 필요조건
273 필요조건	274 충분조건
275 필요조건	276 필요충분조건

277 필요조건	278 필요충분조건
279 충분조건	280 필요조건
281 필요충분조건	282 충분조건
283 -2 또는 2	284 6
20E a>2	204 962

285 <i>a</i> ≥2	286 <i>a</i> ≤3
287 1	288 <i>a</i> ≤6
289 홀수, 홀수, 1, 홀수	290 풀이 참조
291 유리수, 2, 2, 2, 2	292 풀이 참조

293	×			294 🔾
295	×			296 🔾
297	×			298 🔾
		_	_	

299	$\frac{3}{4}b^2$,	$\frac{3}{4}b^2$,	\geq ,	$\frac{3}{4}b^2$,	0
-----	--------------------	--------------------	----------	--------------------	---

300 풀이 참조		
301 $\frac{1}{2}(\sqrt{a}-\sqrt{b})^2$, $a=b$		

301 2 (va vo), a o	
302 풀이 참조	303 2
304 8	305 2
306 6	307 9
308 최댓값: 2√2, 최솟값: -	$-2\sqrt{2}$

	17(10)	-,-,	17 44	-,-		
309	최댓값:	$2\sqrt{5}$,	최솟값:	$-2\sqrt{5}$		
310	최댓값:	$2\sqrt{13}$,	최솟값:	$-2\sqrt{2}$	13	
311	18				312	20
313	4				314	-

311 10	312 20
313 ④	314 ¬, ⊏
315 9	316 ②
317 ㄱ, ㄹ	318 8
319 ㄴ, ㄹ	320 15

0.0	1	ᇹ	
u	۰	-	

3	함수	36 ~ 49 2
- /	– 1	

001 🔾	002 ×
003 ×	004 🔾
005 정의역: {1,	2, 3}, 공역: {a, b, c}, 치역: {a, b, c}

007 정의역:
$$\{1, 2, 3, 4\}$$
, 공역: $\{a, b, c\}$, 치역: $\{b, c\}$

008 정의역:
$$\{1,\,2,\,3,\,4\}$$
, 공역: $\{a,\,b,\,c,\,d\}$, 치역: $\{a,\,b,\,c\}$

025 서로 같은 함수가 아니다. 026 서로 같은 함수이다. 027
$$a=1, b=0$$
 028 $a=-1, b=0$

029
$$a = -\frac{3}{2}$$
, $b = \frac{5}{2}$ **030** $a = 1$, $b = -6$

031
$$a = -11$$
, $b = -8$
 032 \bigcirc

 033 \times
 034 \bigcirc

 035 \times
 036 \neg , \vdash

049
$$a=1, b=3$$
050 $a=1, b=3$ 051 $a=2, b=-4$ 052 $a=-3, b=14$

053
$$a=-2$$
, $b=8$ 054 $a=-2$, $b=-3$ 055 2 056 3 058 c

059 a
$$060 \frac{3}{2}$$
 061 7 $062 - 26$

069 5 070 2 071 2 072
$$(g \circ f)(x) = 4x^2 - 3$$

073
$$(f \circ g)(x) = -2x^2 + 6$$
 074 $(f \circ g)(x) = -\frac{1}{2}x + 5$

075
$$(g \circ f)(x) = -\frac{1}{2}x - 1$$
 076 $(f \circ (g \circ h))(x) = 2x + 4$

077
$$((f \circ g) \circ h)(x) = 2x + 4$$
 078 -2

079
$$-3$$
 080 $\frac{2}{3}$

081
$$\frac{4}{3}$$
 082 $\frac{5}{9}$

083
$$h(x) = 3x + 8$$
 084 $h(x) = \frac{1}{2}x + \frac{1}{2}$

085
$$h(x) = -x^2 + 3$$
 086 $h(x) = -2x + 7$

087
$$h(x) = \frac{1}{4}x + 1$$
 088 $h(x) = x^2 + 2x - 2$

089
$$f^{n}(x) = x - 2n$$
 090 $f^{n}(x) = x + 3n$ 091 $f^{n}(x) = 2^{n}x$ 092 -1

103
$$\frac{1}{2}$$
 104 2 105 4 106 2

111
$$a = -1, b = 5$$
 112 $a = -\frac{5}{2}, b = -\frac{1}{2}$

113
$$a=2, b=-6$$
 114 $y=\frac{1}{2}x-\frac{1}{2}$

115
$$y = \frac{1}{4}x + 2$$
 116 $y = -\frac{1}{3}x + \frac{2}{3}$

117
$$y=3x-9$$

118 $y=-\frac{5}{2}x+10$
119 1
120 -4

117 1 120
$$-4$$
121 2 122 19
123 $-\frac{7}{3}$ 124 9

127
$$-17$$
 128 $\frac{7}{4}$

129
$$\frac{1}{4}$$
 130 a 131 b 132 b

빠른 정답 5

베르정담

▮. 함수

유리함수

50 ~ 58쪽

- 146 $\frac{2x+3}{x+1}$
- 147 $\frac{x+1}{x+4}$
- 148 $\frac{2x-1}{x(x-1)}$
- **149** $\frac{x+7}{(x-2)(x+1)}$
- 151 $\frac{2x-7}{(x-1)(x-2)}$

152 $\frac{2}{x}$

- 153 $\frac{1}{x(x-3)}$
- 154 $\frac{x+4}{x(x-4)}$
- 155 $\frac{x}{(x-1)(x+5)}$
- 156 $\frac{x-3}{(x+1)(x+5)}$
- 157 $\frac{x+1}{(x-2)(x-4)}$
- 158 $\frac{2}{(x+1)(x-1)}$
- **159** $\frac{18}{(x-4)(x+5)}$
- 160 $\frac{7}{(x-3)(x+4)}$
- **161** $\frac{x+5}{(x+2)(x+3)}$
- 162 $\frac{6}{(x-4)(x+2)}$
- 163 $\frac{1}{x-1} \frac{1}{x}$
- 164 $\frac{1}{x+1} \frac{1}{x+2}$
- 165 $\frac{1}{x-1} \frac{1}{x+1}$
- 166 $\frac{1}{2} \left(\frac{1}{x} \frac{1}{x+2} \right)$ 167 $\frac{1}{3} \left(\frac{1}{x+1} \frac{1}{x+4} \right)$
- 168 🔾

169 ×

170 ×

171 ×

172 (

- 173 🔾
- **174** {*x*|*x*≠0인 실수}
- **175** $\left\{ x \middle| x \neq \frac{1}{2}$ 인 실수 $\right\}$
- **176** {*x*|*x*는 모든 실수}
- **177** {*x*|*x*≠−2인 실수}
- **178** $\{x | x \neq -1, x \neq 1$ 인 실수 **179** $\{x | x \in \mathbb{Z} \in \mathbb{Z} \}$
- 180

182

- **185** $y = \frac{1}{x-2} + 1$
- **186** $y = -\frac{1}{x-1} 3$
- 187 $y = \frac{4}{x+2} + 4$
- **188** $y = -\frac{5}{x-6} 1$
- **189** $y = \frac{1}{3(x+4)} + 3$ **190** $y = -\frac{3}{2(x+5)} 2$

- 점근선의 방정식: x=0, y=-1
- 정의역: $\{x | x \neq 0$ 인 실수 $\}$
- 치역: $\{y | y \neq -1$ 인 실수 $\}$

- 점근선의 방정식: x=-3, y=0
- 정의역: $\{x | x \neq -3$ 인 실수 $\}$
- 치역: $\{y|y\neq 0$ 인 실수 $\}$

193

- 점근선의 방정식: x=-1, y=2
- 정의역: $\{x | x \neq -1$ 인 실수 $\}$
- 치역: { $y|y \neq 2$ 인 실수}

- 점근선의 방정식:
- \hat{x} x=-2, y=-5
 - 정의역: $\{x | x \neq -2$ 인 실수 $\}$
- 치역: $\{y | y \neq -5$ 인 실수 $\}$

195

- 점근선의 방정식: x=2, y=-4
- 정의역: $\{x | x \neq 2$ 인 실수 $\}$
- 치역: $\{y | y \neq -4$ 인 실수 $\}$

196

- 점근선의 방정식: x=1, y=2
- 정의역: $\{x | x \neq 1$ 인 실수 $\}$
- 치역: $\{y|y \neq 2$ 인 실수 $\}$

197

- 점근선의 방정식: x=2, y=-1
- 정의역: $\{x | x \neq 2$ 인 실수 $\}$
- 치역: $\{y | y \neq -1$ 인 실수 $\}$

점근선의 방정식: x = -1, y = 4정의역: $\{x | x \neq -1$ 인 실수 $\}$ 치역: {y|y = 4인 실수}

점근선의 방정식: x=3, y=-2정의역: {x|x≠3인 실수} 치역: $\{y | y \neq -2$ 인 실수 $\}$

점근선의 방정식: $x = -\frac{1}{2}$, y = 3

정의역: $\left\{x \middle| x \neq -\frac{1}{2}$ 인 실수 $\right\}$

치역: { $y|y \neq 3$ 인 실수}

202 ×

204 🔾

$$205\,\times$$

206 🔾

208 1

210 $-\frac{5}{2}$

211
$$-\frac{8}{3}$$

212 a=2, b=-4, c=-1

213
$$a=-1$$
, $b=0$, $c=2$

214 a = -4, b = 8, c = -3

215
$$a=3$$
, $b=9$, $c=1$

216 최댓값: 0, 최솟값: -2

217 최댓값: 2, 최솟값:
$$\frac{4}{3}$$

217 최댓값: 2, 최솟값: $\frac{4}{3}$ **218** 최댓값: $\frac{14}{5}$, 최솟값: 2

219 최댓값:
$$-\frac{4}{3}$$
, 최솟값: $-\frac{5}{3}$ **220** 최댓값: $\frac{7}{4}$, 최솟값: $-\frac{9}{8}$

221
$$y = \frac{x}{1-x}$$

222 $y = \frac{3x-1}{x+2}$

223
$$y = \frac{2x+5}{x+3}$$

224 $y = \frac{5x+1}{2-2x}$

225
$$y = \frac{4x+7}{3x-1}$$

226 -1

228 - 3

$$229 - 4$$

230 4

231 ⑤

$$\mathbf{232} \; \textcircled{1}$$

233 ①

235 6

237 ⑤

▮. 함수

무리함수

59 ~ 66쪽

238
$$x \ge -1$$

239
$$x \ge \frac{5}{2}$$

240
$$x>2$$

244
$$\sqrt{x}$$
 -2

245
$$\sqrt{x} + 3$$

246
$$\sqrt{x+1}+1$$

247 $\sqrt{x+3} + \sqrt{x+1}$

248
$$\frac{\sqrt{1+x}+\sqrt{1-x}}{2}$$

249
$$2\sqrt{x}$$

250
$$-\frac{4}{x}$$

252
$$-\sqrt{2}$$

254
$$6+4\sqrt{2}$$

255 \bigcirc

257 ×

258
$$\bigcirc$$

259 ×

260
$$\bigcirc$$
262 $\left\{ x \middle| x \ge -\frac{3}{2} \right\}$

261 $\{x \mid x \ge 2\}$

263 $\{x | x \le 2\}$

264
$$\{x \mid x \le 5\}$$

265 $\{x \mid -2 \le x \le 2\}$

정의역: $\{x | x \ge 0\}$ 치역: {y|y≥0}

267

정의역: $\{x | x \le 0\}$ 치역: {y|y≥0}

정의역: $\{x | x \ge 0\}$ 치역: $\{y|y\leq 0\}$

정의역: $\{x | x \le 0\}$

치역: {y|y≤0}

빠른 정답 7

빠른정답

 $y = -\sqrt{x}$

$$y = -\sqrt{-x}$$

$$y = -\sqrt{-x}$$

$$y = -\sqrt{-x}$$

$$\begin{array}{c|c}
y & y = -\sqrt{-2x} \\
\hline
 & y = -\sqrt{-2x}
\end{array}$$

276
$$y = \sqrt{3x-3}+2$$
 277 $y = -\sqrt{5x-10}-4$ 278 $y = -\sqrt{-2x-6}+5$ 279 $y = \sqrt{-x-3}+2$

283
$$y$$
 정의역: $\{x|x\geq 0\}$ 치역: $\{y|y\leq 3\}$

292 *a*=2, *b*=4, *c*=1 **293** *a*=-1, *b*=1, *c*=-1 **294** *a*=3, *b*=9, *c*=4 **295** *a*=-4, *b*=16, *c*=2

296 최댓값: 2, 최솟값: -2 298 최댓값: 3, 최솟값: 2	297 최댓값: 7, 최솟값: 5 299 최댓값: -2, 최솟값: -5		
300 최댓값: 4, 최솟값: 2	301 $1 \le k < \frac{5}{4}$		
302 k<2 또는 k=94	303 $k < -\frac{13}{4}$		
304 $k \ge -\frac{5}{2}$	305 $y=x^2+3 (x \ge 0)$		
306 $y = -\frac{1}{4}(x-1)^2 + \frac{3}{4}(x \ge x)$	1)		
307 $y = \frac{1}{2}(x-2)^2 - 3(x \le 2)$			
308 $y = -\frac{1}{3}(x+5)^2 - \frac{2}{3}(x \le -5)$			
309 $y = -\frac{1}{3}(x+4)^2 + 2(x \ge -4)$			
310 ②	311 ②		
312 -21	313 ③		
314 11	315 ③		
316 ④	317 $2\sqrt{2}$		

▮▮。 경우의 수

		01-11
6 경우의수		68 ~ 80쪽
001 11	002 12	
003 23	004 7	
005 5	006 12	
007 12	008 2	
009 9	010 6	
011 7	012 7	
013 10	014 12	
015 8	016 32	
017 210	018 24	
019 12	020 6	
021 6	022 8	
023 10	024 31	
025 6	026 9	
027 12	028 15	
029 12	030 16	
031 24	032 108	
033 48	034 48	
035 72	036 24	
037 360	038 120	
039 1	040 1	
041 720	042 144	

043 840	044	336
045 14400	046	7
047 5	048	6
049 4	050	0
051 2	052	56
053 24	054	72
055 60	056	120
057 12	058	4
059 20	060	120
061 60	062	48
063 96	064	36
065 30	066	10번째
067 <i>cdba</i>	068	30
069 35412	070	240
071 48	072	144
073 72	074	96
075 72	076	1440
077 480	078	72
079 1152	080	72
081 24	082	108
083 432	084	576
085 6	086	1
087 1	088	7
089 56	090	n=6
091 <i>n</i> =12	092	r=6
093 <i>n</i> =8	094	n = 72
095 21	096	84
097 120	098	15
099 10	100	18
101 40	102	150
103 525	104	1960
105 15	106	5
107 20	108	56
109 210	110	52
111 456	112	310
113 1440	114	64800
115 240	116	15
117 20	118	14
119 18	120	31
121 72	122	30
123 60		
124 ②	125	15
126 ④	127	1728
128 ②	129	60
130 ⑤	131	54

빠른 정답 9

베른정답

9종 교과서 필수문제

1	집합		82 ~ 83쪽
1 ③	2 ②	3 5	4 ④

4	유리함수		88 ~ 89쪽
1 -8	2 ③	$3\frac{1}{3}$	4 ⑤
5 3	6 15	7 4	8 ②
9 ④	10 4	11 ③	12 ②

5 무	리함수		90 ~ 91쪽
1 4	2 ①	3 5	4 4
5 -1	6 제2사분면	7 ⑤	8 $\left(-\frac{8}{3}, 0\right)$
9 ⑤	10 ③	11 (3, 3)	12 ④

6	경우의 수		92 ~ 93쪽
1 6	2 4	3 4	4 ③
5 ①	6 dbaec	7 ③	8 120
9 ④	10 ②	11 7	12 45

▮ 집합과 명제

집합

6 ~ 22쪽

- 001 🔁 🔾
- 002 🔁 ×
- 003 🖹 🔾
- 004 🖨 ×
- 005 🛢 ∉

- 008 🛢 ∉
- 010 $\blacksquare B = \{5, 10, 15, 20, 25, 30\}$
- 011 \bigcirc $C = \{-3, 3\}$
- 012 \bigcirc $D = \{2, 3, 5, 7, 11, 13\}$
- 013 **🔒** $A = \{x \mid x = 30 \text{ 이하의 자연수}\}$

- 016 **(B)** $D = \{x \mid x \vdash 20 \text{ 이하의 소수}\}$

019

020

- 021 🗐 유
- 022 🔁 무

{3, 6, 9, 12, …}이므로 무한집합이다.

- 023 🔁 무
- 024 📵 유

{10, 12, 14, …, 98}이므로 유한집합이다.

025 🕒 유

공집합(∅)이므로 유한집합이다.

026 🔁 무

{11, 13, 15, 17, …}이므로 무한집합이다.

 $B = \{1, 2, 4, 5, 10, 20\}$ 이므로 n(B) = 6

공집합(\emptyset)이므로 n(C)=0

 $D = \{3\}$ 이므로 n(D) = 1

031 🔁 2

 $A = \{2, 4, 6, 8, 10\}$ 에서 n(A) = 5 $B=\{2, 3, 5\}$ 에서 n(B)=3n(A) - n(B) = 5 - 3 = 2

032 🗐 3

 $A=\{1, 3, 5, 7, 9, 11, 13\}$ 에서 n(A)=7 $B=\{1, 2, 3, 4\}$ 에서 n(B)=4n(A) - n(B) = 7 - 4 = 3

I. 집합과 명제 **11**

1, 집합

033 🖨 ⊂

034 🖹 ⊂

035 🖹 ⊄

036 🖹 ⊂

037 **②** *A*⊂*B*

038 **⑤** *B*⊂*A*

 $A = \{2, 4, 6\}, B = \{2, 4\}$ 이므로 $B \subset A$

 $039 \oplus B \subset A$

 $A = \{1, 2, 3, \dots, 9\}, B = \{2, 3, 5, 7\}$ 이므로 $B \subset A$

040 **②** *A*⊂*B*

 $A = \{1, 4\}, B = \{1, 2, 4\}$ 이므로 $A \subset B$

 $041 \oplus B \subset A$

 $A = \{1, 2, 3\}, B = \{1, 2\}$ 이므로 $B \subset A$

042 **(a)** Ø, {1}, {7}, {1, 7}

043 (a) Ø, {1}, {3}, {9}, {1, 3}, {1, 9}, {3, 9}, {1, 3, 9}

 $044 \oplus \emptyset$, $\{2\}$, $\{3\}$, $\{5\}$, $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2,3,5\}$

045 🔁 🔾

046

047 🔁 ×

048 🖹 ×

049

050 🖹 🔾

 $051 \ lacktriangledown A = B$

 $B = \{e, i, k, 1\}$ 이므로 A = B

 $B = \{3, 4\}$ 이므로 A = B

053 **ⓐ** *A*≠*B*

 $B = \{2, 3, 5, 7\}$ 이므로 $A \neq B$

 $054 \oplus a=3, b=2$

A=B이므로 $a\neq b$

이때 $a \in B$, $b \in A$ 이므로 a=3, b=2

A=B이므로 $a-2\neq b+1$

이때 $a-2 \in B$, $b+1 \in A$ 이므로

a-2=4, b+1=6 $\therefore a=6, b=5$

056 **a**=5, b=-3

A = B이므로 $2a - 1 \neq 3b + 4$

이때 $2a-1 \in B$, $3b+4 \in A$ 이므로

2a-1=9, 3b+4=-5 : a=5, b=-3

057 **②** Ø, {1}, {3}

 $\{-1, 0, 1\}$ 이므로 진부분집합을 구하면

 \emptyset , $\{-1\}$, $\{0\}$, $\{1\}$, $\{-1, 0\}$, $\{-1, 1\}$, $\{0, 1\}$

{1, 5, 25}이므로 진부분집합을 구하면

 \emptyset , {1}, {5}, {25}, {1, 5}, {1, 25}, {5, 25}

060 🗐 8

집합 A의 원소의 개수가 3이므로 부분집합의 개수는 $2^3 = 8$

061 🔁 32

집합 B의 원소의 개수가 5이므로 부분집합의 개수는 2^5 =32

062 🗐 16

집합 C의 원소의 개수가 4이므로 부분집합의 개수는 $2^4=16$

063 🗐 128

집합 $D=\{3, 4, 5, 6, 7, 8, 9\}$ 의 원소의 개수가 7이므로 부분집합의 개수는 $2^7=128$

064 🗐 64

집합 $E = \{1, 2, 3, 6, 9, 18\}$ 의 원소의 개수가 6이므로 부분집합의 개수는 $2^6 = 64$

065 🔁 256

집합 $F = \{8, 16, 24, 32, 40, 48, 56, 64\}$ 의 원소의 개수가 8이므로 부분집합의 개수는 $2^8 = 256$

066 🗐 7

집합 A의 원소의 개수가 3이므로 진부분집합의 개수는 $2^3-1=7$

067 🗐 127

집합 $B=\{-3, -2, -1, 0, 1, 2, 3\}$ 의 원소의 개수가 7이므로 전부분집합의 개수는 $2^7-1=127$

068 🗐 255

집합 $C = \{2, 3, 5, 7, 11, 13, 17, 19\}$ 의 원소의 개수가 8이므로 진부분집합의 개수는 $2^8 - 1 = 255$

069 🔁 16

2를 포함하는 부분집합의 개수는 $2^{5-1}=2^4=16$

070 🗐 8

2, 8을 포함하는 부분집합의 개수는 $2^{5-2}=2^3=8$

071 🗐 3

1.4.16을 포함하는 진부분집합의 개수는 $2^{5-3}-1=3$

072 🗐 64

2, 3을 포함하지 않는 부분집합의 개수는 $2^{8-2}=2^6=64$

073 🗐 32

4, 5, 7을 포함하지 않는 부분집합의 개수는 $2^{8-3}=2^5=32$

074 🗐 16

1, 3, 5, 7을 포함하지 않는 부분집합의 개수는 2^{8-4} = 2^4 =16

075 🔁 4

집합 X는 집합 B= $\{1,3,5,7\}$ 의 부분집합 중에서 집합 A= $\{3,5\}$ 의 원소 3,5를 포함하는 부분집합이므로 집합 X의 개수는 2^{4-2} = 2^2 =4

076 🔒 8

집합 X는 집합 $B=\{a,\,b,\,c,\,d,\,e,\,f\}$ 의 부분집합 중에서 집합 $A=\{b,\,c,\,d\}$ 의 원소 $b,\,c,\,d$ 를 포함하는 부분집합이므로 집합 X의 개수는 $2^{6-3}=2^3=8$

077 🔁 32

집합 X는 집합 B= $\{2, 4, 6, 8, 10, 12, 14\}$ 의 부분집합 중에서 집합 A= $\{2, 8\}$ 의 원소 2, 8을 포함하는 부분집합이므로 집합 X의 개수는 2^{7-2} = 2^5 =32

078 🗐 8

집합 X는 집합 B= $\{1, 2, 4, 8\}$ 의 부분집합 중에서 집합 A= $\{2\}$ 의 원소 2를 포함하는 부분집합이므로 집합 X의 개수는 2^{4-1} = 2^3 =8

079 🗐 16

집합 X는 집합 B={2, 3, 4, 5, 6, 7, 8, 9}의 부분집합 중에서 집합 A={2, 3, 5, 7}의 원소 2, 3, 5, 7을 포함하는 부분집합이 므로 집합 X의 개수는 2^{8-4} = 2^4 =16

082 $\bigoplus A \cup B = \{1, 3, 5, 7, 9, 15\}, A \cap B = \{1, 3, 5\}$

 $A=\{2, 4, 5, 7\}, B=\{2, 3, 5, 7\}$ 이므로 $A \cup B=\{2, 3, 4, 5, 7\}, A \cap B=\{2, 5, 7\}$

 $A = \{4, 8, 9, 12\}, B = \{2, 4, 6, 8, 10\}$ 이므로 $A \cup B = \{2, 4, 6, 8, 9, 10, 12\}, A \cap B = \{4, 8\}$

 $A=\{1, 3, 9\}, B=\{3, 4, 5\}$ 이므로 $A \cup B=\{1, 3, 4, 5, 9\}, A \cap B=\{3\}$

086 🖹 🔾

087 🖹 ×

 $A \cap B = \{7\}$ 이므로 A, B는 서로소가 아니다.

088 🖹 ×

 $A \cap B = \{2\}$ 이므로 A, B는 서로소가 아니다.

089

 $A = \{x \mid -2 < x < 2\}, B = \{-2, 2\}$ 에서 $A \cap B = \emptyset$ 이므로 A, B는 서로소이다.

090

A= $\{4, 8, 12, 16, 20\}, B$ = $\{1, 2, 7, 14\}$ 에서 $A \cap B$ = \emptyset 이므로 A, B는 서로소이다.

091 **(2)** {2, 4, 6, 8, 9}

 $U=\{1, 2, 3, \dots, 9\}$ 이므로 $A^{C}=\{2, 4, 6, 8, 9\}$

I. 집합과 명제 **13**

092 📵 {1, 5, 7, 9}

 $U=\{1, 2, 3, \dots, 9\}$ 이므로 $B^C=\{1, 5, 7, 9\}$

093 📵 {4, 5, 7, 8, 9}

 $U = \{1, 2, 3, \dots, 9\}, C = \{1, 2, 3, 6\}$ 이므로 $C^{C} = \{4, 5, 7, 8, 9\}$

094 📵 {1, 3, 15, 17, 19}

 $U = \{1, 3, 5, \dots, 19\}, A = \{5, 7, 9, 11, 13\}$ 이므로 $A^{C} = \{1, 3, 15, 17, 19\}$

095 📵 {9, 11, 17, 19}

 $U = \{1, 3, 5, \cdots, 19\}$, $B = \{1, 3, 5, 7, 13, 15\}$ 이므로 $B^{C} = \{9, 11, 17, 19\}$

096 **(3)** {7, 9, 11, 13, 17, 19}

 $U=\{1, 3, 5, \dots, 19\}, C=\{1, 3, 5, 15\}$ 이므로 $C^{C}=\{7, 9, 11, 13, 17, 19\}$

100 \bigcirc $A-B=\emptyset$, $B-A=\{16\}$

A={1, 2, 4, 8}, B={1, 2, 4, 8, 16}이므로 A-B=Ø, B-A={16}

 $A=\{2, 3, 5, 7, 11\}, B=\{1, 3, 5, 7, 9, 11\}$ 이므로 $A-B=\{2\}, B-A=\{1, 9\}$

A={3, 6, 9, 12, 15, 18}, B={4, 5, 6, 7, 8, 9, 10}이므로 A-B={3, 12, 15, 18}, B-A={4, 5, 7, 8, 10}

103 🔁 {4, 8, 12, 24}

 $U=\{1, 2, 3, 4, 6, 8, 12, 24\}, A=\{1, 2, 3, 6\}$ 이므로 $A^{C}=\{4, 8, 12, 24\}$

104 📵 {8, 24}

 $U = \{1, 2, 3, 4, 6, 8, 12, 24\}$, $B = \{1, 2, 3, 4, 6, 12\}$ 이므로 $B^{c} = \{8, 24\}$

105 📵 {4, 12}

 $A = \{1, 2, 3, 6\}, B = \{1, 2, 3, 4, 6, 12\}$ 이므로 $B - A = \{4, 12\}$

106 📵 {1, 2, 3, 6}

 A^{C} ={4, 8, 12, 24}, B={1, 2, 3, 4, 6, 12}이므로 B- A^{C} ={1, 2, 3, 6}

107 **(4)** {1, 2, 3, 6, 8, 24}

 $A = \{1, 2, 3, 6\}, B^{C} = \{8, 24\}$ 이므로 $A \cup B^{C} = \{1, 2, 3, 6, 8, 24\}$

108 🗐 {8, 24}

 A^{c} ={4, 8, 12, 24}, B^{c} ={8, 24}이므로 $A^{c}\cap B^{c}$ ={8, 24}

109 🗐 8

110 🗐 9

111 🔁 6

112 🔁 1

2a-1=1이므로 a=1

113 🗐 4

114 🔁 6

2*a*−7=5이므로 *a*=6

115 \bigcirc $A \cap A^{c}$

Ø

117 (a) $A \cap B^{C}$

118

B-A

 $B \cap A^c$

119 🔁 A

120 🔁 A

121 🗐 A

122 🛢 Ø

123 📵 B

124 🔁 *U*

125 🔁 *U*

126 🛢 Ø

127 📵 B

128 📵 *U*

129 🖨 A

 $B-A^{c}=B\cap (A^{c})^{c}=B\cap A$

130 🖨 A^{c}

131 **⊕** ×

132 🔁 🔾

133 **⊕** ×

 $A \cup B = B$ 이므로

 $(A \cup B) - A = B - A \neq \emptyset$

134 **⊕** ×

135 😫 ○

136 **⊕** ×

 $A \cap B = B$ 이므로 $A - (A \cap B) = A - B \neq \emptyset$

137 📵

 $A \cap B$

 $B \cap A$

139 ($A \cup B$ $) \cup C$

 $A \cup (B \cup C)$

141 🔁 ∪

142 🖨 B

143 🔁 C

144 📵 ∩, ∩

145 🔁 A, C

 $A^{c} \cup B^{c}$

147 $(A^{\mathcal{C}} \cup B)^{\mathcal{C}}$

 $A\cap B^{\scriptscriptstyle{C}}$

I. 집합과 명제 **15**

148 ($A^{c} \cap B^{c})^{c}$

 $A \cup B$

149 ($A^{c} \cap B)^{c}$ =

$$A \cup B^{C}$$

- 150 📵 ∩
- 151 🔁 ∪
- 152 🔁 *B*
- 153 **(a)** B^{c}
- 154 🖨 A^c
- 155 🔁 ∩
- 156 📵 ⊏
- 157 📵 ¬, ∟
- 158 🔁 ≥, ¬, ∟
- **159 ♠** *B. U.* ∪
- 160 **(a)** A^{c} , A^{c} , \emptyset , A^{c} , A
- 161 **(a)** *B*, *B*, Ø, Ø
- **162 (a)** B^{c} , B, B, \cap , \emptyset , B

163 🗐 18

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 10+12-4=18

164 📵 8

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
이므로
$$n(A \cap B) = n(A) + n(B) - n(A \cup B)$$
$$= 11 + 19 - 22 = 8$$

16 정답과 풀이

165 🗐 15

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
이므로
$$n(A) = n(A \cup B) + n(A \cap B) - n(B)$$
$$= 20 + 4 - 9 = 15$$

166 🔁 20

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
이므로
$$n(B) = n(A \cup B) + n(A \cap B) - n(A)$$
$$= 27 + 6 - 13 = 20$$

167 🗐 14

$$A\cap B=$$
 열 때, $n(A\cup B)=n(A)+n(B)$ 이므로 $n(A\cup B)=6+8=14$

168 📵 15

$$A\cap B=$$
 %일 때, $n(A\cup B)=n(A)+n(B)$ 이므로 $n(B)=n(A\cup B)-n(A)=28-13=15$

169 🗐 15

$$n(A^{C}) = n(U) - n(A) = 40 - 25 = 15$$

170 🔁 25

$$n(B^{C}) = n(U) - n(B) = 40 - 15 = 25$$

171 🔁 21

$$n(A-B)=n(A)-n(A\cap B)=25-4=21$$

172 📵 36

$$n(A^{c} \cup B^{c}) = n((A \cap B)^{c})$$

= $n(U) - n(A \cap B) = 40 - 4 = 36$

173 🔁 4

$$n((A \cup B)^{c}) = n(U) - n(A \cup B)$$

$$= n(U) - \{n(A) + n(B) - n(A \cap B)\}$$

$$= 40 - (25 + 15 - 4) = 4$$

174 📵 11

$$n(A^{c}-B^{c})=n(A^{c}\cap B)$$

$$=n(B-A)=n(B)-n(A\cap B)$$

$$=15-4=11$$

175 🔁 31

$$n(A^{C})=n(U)-n(A)=50-19=31$$

176 🔁 20

$$n(B^{C}) = n(U) - n(B) = 50 - 30 = 20$$

177 🗐 13

$$n(A^{c} \cap B^{c}) = n((A \cup B)^{c})$$

= $n(U) - n(A \cup B) = 50 - 37 = 13$

178 🗐 38

$$n((A \cap B)^{c}) = n(U) - n(A \cap B)$$

$$= n(U) - \{n(A) + n(B) - n(A \cup B)\}$$

$$= 50 - (19 + 30 - 37) = 38$$

179 🗐 18

$$n(B-A) = n(B) - n(A \cap B)$$

= $n(B) - \{n(A) + n(B) - n(A \cup B)\}$
= $n(A \cup B) - n(A)$
= $37 - 19 = 18$

180 🗐 7

$$n(B^{c}-A^{c}) = n(B^{c} \cap A)$$

$$= n(A-B)$$

$$= n(A) - n(A \cap B)$$

$$= n(A) - \{n(A) + n(B) - n(A \cup B)\}$$

$$= n(A \cup B) - n(B)$$

$$= 37 - 30 = 7$$

중단원 #기출#교과서 >

181 7 182 4 **183** ② **184** 16 185 ⑤ 186 ③ **187** 36 **188** 35

181

 $B = \{1, 2, 4, 8\}$ 이므로 $A \subset B$ 이려면 $2a \in B$ 이어야 한다. a=1일 때 $A=\{1, 2\}, a=2$ 일 때 $A=\{1, 4\},$ a=4일 때 $A=\{1,8\}$ 이므로 모든 자연수 a의 값의 합은 7이다.

182

A=B이므로 $a+2\neq b-1$ 이때 $a+2\in B$, $b-1\in A$ 이므로 a+2=3에서 a=1b-1=6에서 b=7 $\therefore a+b=8$

 $\{3, 4, 5\} \cap A = \emptyset$ 이므로 집합 A는 집합 $\{1, 2\}$ 의 부분집합이다. 따라서 모든 집합 A의 개수는 $2^2=4$

 $A \cap X = A$ 에서 $A \subset X$ 이고 $B \cup X = B$ 에서 $X \subset B$ 이므로 $A\subset X\subset B$ 이다

이때 $A = \{1, 2, 3, 6\}, B = \{1, 2, 3, 4, 6, 8, 12, 24\}$ 이므로 집 합 X 는 B의 부분집합 중에서 원소 1, 2, 3, 6을 포함하는 부분집 합이다.

따라서 집합 X의 개수는 $2^{8-4}=2^4=16$

185

 $A = \{1, 2, 3, 5, 9\}, B = \{1, 2, 5, 10\}$ 이므로 $\bigcirc A \cup B^{\mathcal{C}} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

186

각 집합을 벤다이어그램으로 나타내면 다음과 같다.

187

22쪽

 $(A^C \cup B)^C = A \cap B^C = A - B$ $A = \{4, 8, 12, 16, 20\}, B = \{1, 2, 4, 5, 10, 20\}$ 에서 $A-B=\{8, 12, 16\}$ 이므로 집합 A-B의 모든 원소의 합은 8+12+16=36

188

 $(A-B)\cup (B-A)$ $=(A\cap B^{\mathcal{C}})\cup (B\cap A^{\mathcal{C}})$ $= \{A \cup (B \cap A^{\mathcal{C}})\} \cap \{B^{\mathcal{C}} \cup (B \cap A^{\mathcal{C}})\}\$ $= \{ (A \cup B) \cap (A \cup A^{c}) \} \cap \{ (B^{c} \cup B) \cap (B^{c} \cup A^{c}) \}$ $= \{(A \cup B) \cap U\} \cap \{U \cap (B^C \cup A^C)\}\$ $=(A \cup B) \cap (A^C \cup B^C)$ $=(A \cup B) \cap (A \cap B)^{c} = (A \cup B) - (A \cap B)$ 이때 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 에서 $n(A \cap B) = n(A) + n(B) - n(A \cup B)$ =31+24-45=10 $\therefore n((A-B)\cup(B-A))=n((A\cup B)-(A\cap B))$ $= n(A \cup B) - n(A \cap B)$ =45-10=35

I. 집합과 명제 **17**

▮. 집합과 명제

2 명제

23 ~ 34쪽

- 189 **⊕** ×
- 190 🖹 🔾
- 191 **⊕** ×
- 192 **⊕** ×
- 193 🖹 🔾
- 194 🔁 ×
- 195 🔁 참
- 196 📵 거짓
- 197 🔁 참
- 198 🔁 거짓
- 199 🔁 거짓
- 200 🔁 참
- 201 **(1)** {1, 3, 5, 7}

202 📵 {4, 5, 6, 7, 8}

2x-5>1에서 2x>6 $\therefore x>3$ 따라서 주어진 조건의 진리집합은 $\{4, 5, 6, 7, 8\}$

203 **(1)** {1, 4, 6, 8}

소수는 2, 3, 5, 7이므로 주어진 조건의 진리집합은 {1, 4, 6, 8}

204 🔁 {1, 3}

 $x^2-4x+3=0$ 에서 (x-1)(x-3)=0 $\therefore x=1$ 또는 x=3따라서 주어진 조건의 진리집합은 $\{1,3\}$

205 📵 {3, 5, 6, 7, 8}

4의 약수는 1, 2, 4이므로 주어진 조건의 진리집합은 {3, 5, 6, 7, 8}

18 정답과 풀이

206 **(1)** {1, 2, 6, 7, 8}

|x-4|>1에서 x-4<-1 또는 x-4>1 $\therefore x<3$ 또는 x>5따라서 주어진 조건의 진리집합은 $\{1,\,2,\,6,\,7,\,8\}$

207 📵 {3, 4, 5}

 $\{1, 2, 3, 4, 5\} \cap \{3, 4, 5, 6, 7, 8, 9\} = \{3, 4, 5\}$

208 🔁 {5}

 $x^2-6x+5=0$ 에서 (x-1)(x-5)=0 $\therefore x=1$ 또는 x=5따라서 조건 'p 그리고 q'의 진리집합은 $\{1,5\}\cap\{2,5\}=\{5\}$

209 📵 {2, 3, 5}

소수는 2, 3, 5, 7이고 $2x-3 \le 7$ 에서 $2x \le 10$ $\therefore x \le 5$ 따라서 조건 'p 그리고 q'의 진리집합은 $\{2, 3, 5, 7\} \cap \{1, 2, 3, 4, 5\} = \{2, 3, 5\}$

210 **(4)** {1, 2, 8, 9, 10}

 $\{1, 2\} \cup \{8, 9, 10\} = \{1, 2, 8, 9, 10\}$

211 📵 {1, 3, 4}

 $x^2 - 5x + 4 = 0$ 에서 (x-1)(x-4) = 0 $\therefore x = 1$ 또는 x = 4 $x^2 - 7x + 12 = 0$ 에서 (x-3)(x-4) = 0 $\therefore x = 3$ 또는 x = 4따라서 조건 'p 또는 q'의 진리집합은 $\{1, 4\} \cup \{3, 4\} = \{1, 3, 4\}$

212 **(1)** {2, 3, 4, 5, 6, 8, 10}

 $\{2, 4, 6, 8, 10\} \cup \{3, 4, 5\} = \{2, 3, 4, 5, 6, 8, 10\}$

- 213 📳 3은 홀수가 아니다.
- 214 📵 $x \neq 2$ 그리고 $x \neq 4$
- **215 (a) 1 (∈** {1, 3, 5}
- 216 📵 5는 소수가 아니다. (거짓)
- 217 **③** Ø⊂{1, 2, 3} (참)
- 218 📵 2+7≤9 (참)

219 ⓐ *x*≥2

~*p*의 부정은 *p*이다.

220 📵 x<2 또는 x≥6

'p 그리고 q'의 부정은 $'\sim p$ 또는 $\sim q$ '이다.

'p 또는 $\sim q$ '의 부정은 $'\sim p$ 그리고 q'이다.

222 **(4)** {4, 5, 6, 7}

 $\sim q$ 의 부정은 q이므로 구하는 진리집합은 $\{4, 5, 6, 7\}$

223 🔁 {4, 5}

`~p 또는 ~q'의 부정은 `p 그리고 q'이므로 구하는 진리집합은 $\{4,5\}$

224 📵 {1, 4, 5, 6, 7, 8}

'p 그리고 $\sim q$ '의 부정은 ' $\sim p$ 또는 q'이므로 $\sim p$: $x \le 1$ 또는 $x \ge 6$, q: $4 \le x \le 7$ 에서 구하는 진리집합은 $\{1, 4, 5, 6, 7, 8\}$

- 225 **(3)** 가정: a, b가 모두 홀수이다., 결론: a+b는 짝수이다.
- **226 을** 가정: x=20다., 결론: 3x+2=10이다.
- 227 **(2)** 가정: x>3이다., 결론: x>2이다.
- **228 (3)** 가정: n이 4의 배수이다., 결론: 2n은 8의 배수이다.

229 🔁 참

230 🕒 거짓

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{1, 4\}, Q = \{1\}$ 따라서 $P \not\subset Q$ 이므로 명제 $p \longrightarrow q$ 는 거짓이다.

231 📵 거짓

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{1, 2, 3, 6, 9, 18\}, Q = \{1, 3, 9\}$ 따라서 $P \not\subset Q$ 이므로 명제 $p \longrightarrow q$ 는 거짓이다.

232 🔁 참

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{x | 1 < x < 3\}$, $Q = \{x | 1 \le x \le 3\}$ 따라서 $P \subset Q$ 이므로 명제 $p \longrightarrow q$ 는 참이다.

233 🕒 참

234 📵 거짓

[반례] x=2이면 소수이지만 짝수이다.

235 🔁 참

236 📵 거짓

[반례] x=0, y=1이면 xy=0이지만 $y\neq 0$ 이다.

237 🖹 ×

명제 $p \longrightarrow q$ 가 참이므로 $P \subset Q$ $\therefore P \cup Q = Q$

238

 $P \subset Q$ 이므로 $P \cap Q^{\mathcal{C}} = P - Q = \emptyset$

239

 $P \subset Q$ 이므로 $Q^{C} \subset P^{C}$ $\therefore P^{C} \cup Q^{C} = P^{C}$

240 **⊕** ×

명제 $p \longrightarrow \sim q$ 가 참이므로 $P \subset Q^{\mathcal{C}}$ $\therefore P \cap Q = \emptyset$

241

 $P \subset Q^C$ 이므로 $P \cap Q^C = P$

242

오른쪽 벤다이어그램에서 $P^{C} \cup Q^{C} = U$

243 📵 거짓

[반례] *x*=5이면 *x*+2=7이다.

244 📵 참

245 📵 참

246 📵 거짓

[반례] x=3이면 |x-3|=0이다.

247 🔁 참

- 248 📵 어떤 자연수 x에 대하여 $3x-2 \le 0$ 이다. (거짓)
- 249 🔁 모든 마름모는 정사각형이 아니다. (거짓)

I. 집합과 명제 **19**

250 📵 어떤 소수는 홀수가 아니다. (참)

251 **(**클 모든 실수 x에 대하여 $x^2 \ge 0$ 이다. (참)

252 **(**3 모든 유리수 x, y에 대하여 $xy \neq 2$ 이다. (거짓)

253 📵 역:
$$p \longrightarrow q$$
, 대우: $\sim p \longrightarrow \sim q$

254 **自** 역: $\sim q \longrightarrow p$, 대우: $q \longrightarrow \sim p$

255 📵 역:
$$p \longrightarrow \sim q$$
, 대우: $\sim p \longrightarrow q$

256 **(音)** 역:
$$\sim q \longrightarrow \sim p$$
, 대우: $q \longrightarrow p$

257 **(3** 역: x=3이면 x^2 =9이다., 대우: x≠3이면 x^2 ≠9이다.

258 **(音)** 역: 4의 양의 약수이면 8의 양의 약수이다., 대우: 4의 양의 약수가 아니면 8의 양의 약수가 아니다.

259 📵 역: 참, 대우: 거짓

역: 10의 배수이면 5의 배수이다. (참) 대우: 10의 배수가 아니면 5의 배수가 아니다. (거짓)

260 📵 역: 참. 대우: 거짓

역: 정사각형이면 직사각형이다. (참) 대우: 정사각형이 아니면 직사각형이 아니다. (거짓)

261 📵 역: 거짓, 대우: 참

역: $-2 \le x \le 2$ 이면 $x^2 < 4$ 이다. (거짓) 대우: x < -2 또는 x > 2이면 $x^2 \ge 4$ 이다. (참)

262 📵 역: 거짓, 대우: 참

역: $x \neq 0$ 또는 $y \neq 0$ 이면 $xy \neq 0$ 이다. (거짓) 대우: x = 0이고 y = 0이면 xy = 0이다. (참)

263 📵 역: 참, 대우: 참

역: x=0이고 y=0이면 $x^2+y^2=0$ 이다. (참) 대우: $x\neq 0$ 또는 $y\neq 0$ 이면 $x^2+y^2\neq 0$ 이다. (참)

264 📵 역: 거짓, 대우: 참

역: x>0 또는 y>0이면 x+y>0이다. (거짓) 대우: $x\le 0$ 이고 $y\le 0$ 이면 $x+y\le 0$ 이다. (참)

265 🖹 ×

266

명제 $q \longrightarrow \sim r$ 가 참이므로 그 대우인 $r \longrightarrow \sim q$ 도 참이다.

267 😩 ×

268

명제 $p \longrightarrow q, q \longrightarrow \sim r$ 가 참이므로 명제 $p \longrightarrow \sim r$ 도 참이다.

269 🖹 ×

270 🖹 🔾

명제 $p \longrightarrow \sim r$ 가 참이므로 그 대우인 $r \longrightarrow \sim p$ 도 참이다.

271 🕒 충분조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P=\{3\}, Q=\{-3, 3\}$ 따라서 $P\subset Q$ 이므로 p는 q이기 위한 충분조건이다.

272 🕒 필요조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{-4, 4\}, Q = \{4\}$ 따라서 $Q \subset P$ 이므로 $p \leftarrow q$ 이기 위한 필요조건이다.

273 🕒 필요조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{1, 2, 3, 4, 6, 12\}$, $Q = \{1, 2, 3, 6\}$ 따라서 $Q \subset P$ 이므로 $p \leftarrow q$ 이기 위한 필요조건이다.

274 🕑 충분조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{x | x < 5\}, \ Q = \{x | x < 6\}$ 따라서 $P \subset Q$ 이므로 $p \leftarrow q$ 이기 위한 충분조건이다.

275 🔁 필요조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{x | 1 < x < 4\}, \ Q = \{x | 2 < x < 3\}$ 따라서 $Q \subset P$ 이므로 p는 q이기 위한 필요조건이다.

276 **립** 필요충분조건

두 조건 p, q의 진리집합을 각각 P, Q라 하면 $P = \{x | x < -5 \text{ 또는 } x > 5\}, \ Q = \{x | x < -5 \text{ 또는 } x > 5\}$ 따라서 $P \subset Q$, $Q \subset P$ 이므로 $p \leftarrow q$ 이기 위한 필요충분조건이다.

277 🔁 필요조건

 $p \longrightarrow q$: x+y=0이면 x=0, y=0이다. (거짓) $q \longrightarrow p$: x=0, y=0이면 x+y=0이다. (참) 따라서 $q \Longrightarrow p$ 이므로 $p \in q$ 이기 위한 필요조건이다.

278 🗗 필요충분조건

 $p \longrightarrow q$: $x^2 + y^2 = 0$ 이면 x = 0, y = 0이다. (참) $q \longrightarrow p$: x = 0, y = 0이면 $x^2 + y^2 = 0$ 이다. (참) 따라서 $p \Longleftrightarrow q$ 이므로 $p \leftarrow q$ 이기 위한 필요충분조건이다.

279 🔁 충분조건

 $p \longrightarrow q$: x=y이면 $x^2=y^2$ 이다. (참) $q \longrightarrow p$: $x^2=y^2$ 이면 x=y이다. (거짓) 따라서 $p \Longrightarrow q$ 이므로 $p \leftarrow q$ 이기 위한 충분조건이다.

280 🗗 필요조건

 $p \longrightarrow q$: xy < 0이면 x < 0, y > 0이다. (거짓) $q \longrightarrow p$: x < 0, y > 0이면 xy < 0이다. (참) 따라서 $q \Longrightarrow p$ 이므로 $p \leftarrow q$ 이기 위한 필요조건이다.

281 🕒 필요충분조건

 $p \longrightarrow q$: x+y>0, xy>0이면 x>0, y>0이다. (참) $q \longrightarrow p$: x>0, y>0이면 x+y>0, xy>0이다. (참) 따라서 $p \Longleftrightarrow q$ 이므로 $p \leftarrow q$ 이기 위한 필요충분조건이다.

282 📵 충분조건

 $p \longrightarrow q$: x>0, y>0이면 xy=|xy|이다. (참) $q \longrightarrow p$: xy=|xy|이면 x>0, y>0이다. (거짓) 따라서 $p \Longrightarrow q$ 이므로 p는 q이기 위한 충분조건이다.

283 🗐 -2 또는 2

명제 $p \longrightarrow q$ 가 참이어야 하므로 x=a일 때 $x^2-4=0$ 따라서 $a^2-4=0$ 이므로 a=-2 또는 a=2

284 🔁 6

명제 $p \longrightarrow q$ 가 참이어야 하므로 x=1일 때 $x^2-ax+5=0$ 따라서 1-a+5=0이므로 a=6

285 ⓐ *a*≥2

두 조건 p, q의 진리집합을 각각 P, Q라 하면 명제 $p \longrightarrow q$ 가 참이어야 하므로 $P \subset Q$ 이어야 한다. 즉, 오른쪽 그림에서 $a \ge 2$

286 ⓐ *a*≤3

287 🗐 1

명제 $q \longrightarrow p$ 가 참이어야 하므로 x = -1일 때 $x^2 = a$ $\therefore a = 1$

288 **②** *a* ≤ 6

두 조건 p, q의 진리집합을 각각 P, Q라 하면 명제 $q \longrightarrow p$ 가 참이어야 하므로 $Q \subset P$ 이어야 한다. 즉, 오른쪽 그림에서 $-a+2 \ge -4$ 이므로 $a \le 6$

289 🔁 홀수, 홀수, 1, 홀수

290 📵 풀이 참조

주어진 명제의 대우 '두 자연수 m, n에 대하여 m, n이 모두 짝수 이면 m, n은 서로소가 아니다.'가 참임을 보이면 된다.

m, n이 모두 짝수이면 m=2k, n=2l (k, l은 자연수)로 나타낼 수 있다.

이때 2는 m과 n의 공약수이므로 m과 n이 모두 짝수이면 m, n은 서로소가 아니다.

따라서 주어진 명제의 대우가 참이므로 주어진 명제도 참이다.

291 📵 유리수, 2, 2, 2, 2

292 📵 풀이 참조

주어진 명제의 결론을 부정하여 $2+\sqrt{2}$ 를 무리수가 아니라 가정하면 $2+\sqrt{2}$ 는 유리수이므로 $2+\sqrt{2}=a$ (a는 유리수)로 나타낼 수있다.

즉, $\sqrt{2}$ = a -2이고 유리수끼리의 뺄셈은 유리수이므로 a -2는 유리수이다.

그런데 $\sqrt{2}$ 는 유리수가 아니므로 모순이다. 따라서 $2+\sqrt{2}$ 는 무리수이다.

293 🖹 ×

294

I. 집합과 명제 **21**

295 🔁 ×

296 🗐 🔾

297 📵 ×

298

300 📳 풀이 참조

 $|a| + |b| \ge 0$, $|a+b| \ge 0$ 이므로

 $(|a|+|b|)^2 \ge |a+b|^2$ 임을 보이면 된다.

$$(|a|+|b|)^{2}-|a+b|^{2}=(|a|^{2}+2|a||b|+|b|^{2})-(a+b)^{2}$$

$$=a^{2}+2|ab|+b^{2}-a^{2}-2ab-b^{2}$$

$$=2(|ab|-ab)$$

이때 $|ab| \ge ab$ 이므로 $2(|ab|-ab) \ge 0$

따라서 $(|a|+|b|)^2 \ge |a+b|^2$ 이므로 $|a|+|b| \ge |a+b|$ 이다. (단, 등호는 |ab|=ab, 즉 $ab \ge 0$ 일 때 성립한다.)

301
$$\bigcirc \frac{1}{2}(\sqrt{a}-\sqrt{b})^2, a=b$$

302 📳 풀이 참조

 $(a^2+b^2)(x^2+y^2)-(ax+by)^2$

$$=a^2x^2+a^2y^2+b^2x^2+b^2y^2-(a^2x^2+2abxy+b^2y^2)$$

 $=b^2x^2-2abxy+a^2y^2$

 $=(bx-ay)^2 \ge 0$

$$(a^2+b^2)(x^2+y^2) \ge (ax+by)^2$$

(단, 등호는 bx-ay=0, 즉 ay=bx일 때 성립한다.)

303 🔁 2

$$a+\frac{1}{a}{\ge}2\sqrt{a imes\frac{1}{a}}{=}2$$
 (단, 등호는 $a{=}1$ 일 때 성립)

따라서 $a + \frac{1}{a}$ 의 최솟값은 2이다.

304 🗐 8

$$8a + \frac{2}{a} \ge 2\sqrt{8a \times \frac{2}{a}} = 8$$
 (단, 등호는 $a = \frac{1}{2}$ 일 때 성립)

따라서 $8a + \frac{2}{a}$ 의 최솟값은 8이다.

305 🔁 2

$$\frac{b}{a} + \frac{a}{b} \ge 2\sqrt{\frac{b}{a} \times \frac{a}{b}} = 2$$
 (단, 등호는 $a = b$ 일 때 성립)

따라서 $\frac{b}{a} + \frac{a}{b}$ 의 최솟값은 2이다.

306 🗐 6

$$\frac{3b}{a} + \frac{3a}{b} \ge 2\sqrt{\frac{3b}{a} \times \frac{3a}{b}} = 6$$
 (단, 등호는 $a = b$ 일 때 성립)

따라서 $\frac{3b}{a} + \frac{3a}{b}$ 의 최솟값은 6이다.

307 🗐 9

$$\begin{split} \Big(\frac{2}{a} + \frac{1}{b}\Big)(2a+b) &= 4 + \frac{2b}{a} + \frac{2a}{b} + 1\\ &\geq 2\sqrt{\frac{2b}{a} \times \frac{2a}{b}} + 5\\ &= 9 \ (\text{단. 등호는 } a = b \text{일 때 성립}) \end{split}$$

따라서 $\left(\frac{2}{a} + \frac{1}{b}\right)(2a+b)$ 의 최솟값은 9이다.

308 **(3)** 최댓값: $2\sqrt{2}$, 최솟값: $-2\sqrt{2}$

코시-슈바르츠의 부등식을 적용하면

 $(1^2+1^2)(x^2+y^2) \ge (x+y)^2$ (단, 등호는 x=y일 때 성립)

이때 $x^2+y^2=4$ 이므로 $(x+y)^2 \le 8$

 $\therefore -2\sqrt{2} \le x+y \le 2\sqrt{2}$

따라서 x+y의 최댓값은 $2\sqrt{2}$, 최솟값은 $-2\sqrt{2}$ 이다.

309 **(3)** 최댓값: $2\sqrt{5}$, 최솟값: $-2\sqrt{5}$

코시-슈바르츠의 부등식을 적용하면

 $(2^2+1^2)(x^2+y^2) \ge (2x+y)^2$ (단, 등호는 $\frac{x}{2} = y$ 일 때 성립)

이때 $x^2+y^2=4$ 이므로 $(2x+y)^2 \le 20$

 $\therefore -2\sqrt{5} \leq 2x + y \leq 2\sqrt{5}$

따라서 2x+y의 최댓값은 $2\sqrt{5}$, 최솟값은 $-2\sqrt{5}$ 이다.

310 **(3)** 최댓값: $2\sqrt{13}$, 최솟값: $-2\sqrt{13}$

코시-슈바르츠의 부등식을 적용하면

$$(3^2+2^2)(x^2+y^2) \ge (3x+2y)^2$$
 (단, 등호는 $\frac{x}{3} = \frac{y}{2}$ 일 때 성립)

이때 $x^2+y^2=4$ 이므로 $(3x+2y)^2 \le 52$

 $\therefore -2\sqrt{13} \le 3x + 2y \le 2\sqrt{13}$

따라서 3x+2y의 최댓값은 $2\sqrt{13}$, 최솟값은 $-2\sqrt{13}$ 이다.

311 🔁 18

코시 – 슈바르츠의 부등식을 적용하면

 $(1^2+1^2)(x^2+y^2) \ge (x+y)^2$ (단, 등호는 x=y일 때 성립)

이때 x+y=6이므로 $x^2+y^2 \ge 18$

따라서 x^2+y^2 의 최솟값은 18이다.

312 🔁 20

코시-슈바르츠의 부등식을 적용하면

 $(1^2+2^2)(x^2+y^2) \ge (x+2y)^2$ (단, 등호는 $x=\frac{y}{2}$ 일 때 성립)

이때 x+2y=10이므로 $x^2+y^2 \ge 20$

따라서 $x^2 + y^2$ 의 최솟값은 20이다.

중단원 #기출#교과서 >

34쪽

313 4

314 ¬. □ 315 9

316 2

317 ¬. = 318 8

319 ∟. = 320 15

313

두 조건 p, q의 진리집합을 각각 P. Q라 하면

$$P = \{a\}, Q = \{x \mid x^2 - 3x - 4 \le 0\}$$

명제 $p \longrightarrow q$ 가 참이 되려면 $P \subset Q$ 이어야 하므로

 $a \in Q$ 에서 $a^2 - 3a - 4 \le 0$

 $(a+1)(a-4) \le 0$: $-1 \le a \le 4$

따라서 구하는 실수 a의 최댓값은 4이다.

314

명제 $p \longrightarrow \sim q$ 가 참이므로 $P \subset Q^{C}$

이를 벤다이어그램으로 나타내면 오른쪽 그림과 같으므로

315

주어진 명제의 부정은 '모든 실수 x에 대하여 $x^2+6x+k \ge 0$ 이다.' 모든 실수 x에 대하여 부등식 $x^2+6x+k \ge 0$ 이 성립하려면 이차 방정식 $x^2+6x+k=0$ 의 판별식을 D라 할 때, $D \le 0$ 이어야 한다.

$$\frac{D}{4} = 3^2 - k \le 0$$
에서 $k \ge 9$

따라서 실수 *k*의 최솟값은 9이다.

316

주어진 명제가 참이므로 그 대우 'x=3이면 $x^2-ax+9=0$ 이다.' 도 참이다.

따라서 9-3a+9=0이므로 a=6

317

두 명제 $p \longrightarrow \sim q$ 와 $r \longrightarrow q$ 가 모두 참이므로 각각의 대우 $q \longrightarrow \sim p$ 와 $\sim q \longrightarrow \sim r$ 도 모두 참이다.

또한 두 명제 $p \longrightarrow \sim q$ 와 $\sim q \longrightarrow \sim r$ 가 모두 참이므로

 $p \longrightarrow \sim r$ 도 참이고 그 대우인 $r \longrightarrow \sim p$ 도 참이다.

따라서 반드시 참인 명제는 ㄱ, ㄹ이다.

318

세 조건 p, q, r의 진리집합을 각각 P, Q, R라 하면 $P = \{x \mid 0 < x \le 7\}, Q = \{x \mid -1 \le x \le a\}, R = \{x \mid x \ge b\}$ p는 q이기 위한 충분조건이므로 $P \subset Q$ r는 q이기 위한 필요조건이므로 $Q \subset R$

즉, $P \subset Q \subset R$ 이므로 오른쪽 그림 에서

 $a \ge 7, b \le -1$

 $\therefore a-b \ge 8$

따라서 a-b의 최솟값은 8이다.

319

 $\neg . x-y=0 \Longleftrightarrow x=y$

ㄴ. $xy=0 \Longleftrightarrow x=0$ 또는 y=0

 $= x^2 + y^2 = 0 \iff x = 0, y = 0$

|x+y|=|x-y|의 양변을 제곱하여 정리하면 xy=0

 $\therefore |x+y| = |x-y| \iff x=0 \ \text{ } \exists \exists y=0$

따라서 x=0 또는 y=0이기 위한 필요충분조건은 L. =이다.

320

$$9a + \frac{1}{a-1} = 9(a-1) + \frac{1}{a-1} + 9$$

$$\geq 2\sqrt{9(a-1) \times \frac{1}{a-1}} + 9$$

$$= 2 \times 3 + 9 = 15$$
(단, 등호는 $9(a-1) = \frac{1}{a-1}$, 즉 $a = \frac{4}{3}$ 일 때 성립)

따라서 $9a + \frac{1}{a-1}$ 의 최솟값은 15이다.

I. 집합과 명제 **23**

▮, 함수

3 함수

36 ~ 49쪽

001 🖹 🔾

002 🔁 ×

집합 X의 원소 2에 대응하는 집합 Y의 원소가 2개이므로 함수가 아니다.

003 **₽**×

집합 X의 원소 3에 대응하는 집합 Y의 원소가 없으므로 함수가 아니다.

004

005 📵 정의역: $\{1, 2, 3\}$, 공역: $\{a, b, c\}$, 치역: $\{a, b, c\}$

006 **(**3 정의역: $\{1, 2, 3\}$, 공역: $\{a, b, c, d\}$, 치역: $\{a, c\}$

007 📵 정의역: {1, 2, 3, 4}, 공역: {a, b, c}, 치역: {b, c}

008 **(3)** 정의역: $\{1, 2, 3, 4\}$, 공역: $\{a, b, c, d\}$, 치역: $\{a, b, c\}$

009 📵 {-1}

f(-1) = -1, f(0) = -1, f(1) = -1이므로 치역은 $\{-1\}$ 이다.

010 📵 {-1, 1, 3}

f(-1)=-1, f(0)=1, f(1)=3이므로 치역은 $\{-1, 1, 3\}$ 이다.

f(-1) = -1, f(0) = 0, f(1) = -1이므로 치역은 $\{-1, 0\}$ 이다.

012 🔁 {-1, 2, 3}

f(-1)=-1, f(0)=2, f(1)=3이므로 치역은 $\{-1, 2, 3\}$ 이다.

013 🗐 {2, 3, 6}

f(-1)=6, f(0)=3, f(1)=2이므로 치역은 $\{2, 3, 6\}$ 이다.

014 📵 {1, 2, 3}

f(-1)=1, f(0)=2, f(1)=3이므로 치역은 $\{1, 2, 3\}$ 이다.

015 🗐 -1

f(2) = -2 + 1 = -1

016 🗐 1

 $f(\sqrt{3}) = (\sqrt{3})^2 - 2 = 1$

017 🖨 0

f(4) = -4 + 1 = -3, $f(\sqrt{5}) = (\sqrt{5})^2 - 2 = 3$ 이므로

 $f(4)+f(\sqrt{5})=-3+3=0$

018 🗐 -5

 $f(-1)=2\times(-1)-3=-5$

019 🗐 -11

 $f(4) = -4^2 + 5 = -11$

020 🗐 -11

 $f(5) = -5^2 + 5 = -20$

 $f(-3)=2\times(-3)-3=-9$

이므로f(5)-f(-3)=-20-(-9)=-11

021 🔁 서로 같은 함수이다.

f(-1)=-1, g(-1)=-1이므로f(-1)=g(-1)

f(0)=0, g(0)=0이므로f(0)=g(0)

f(1)=1, g(1)=1이므로f(1)=g(1)

따라서 두 함수 f, g는 서로 같은 함수이다.

022 📵 서로 같은 함수가 아니다.

f(-1)=0, g(-1)=2이므로 $f(-1)\neq g(-1)$

따라서 두 함수 f, g는 서로 같은 함수가 아니다.

023 📵 서로 같은 함수가 아니다.

 $f(0) = -1, g(0) = \frac{1}{2}$ 이므로 $f(0) \neq g(0)$

따라서 두 함수 f, g는 서로 같은 함수가 아니다.

024 📵 서로 같은 함수가 아니다.

 $g(x) = \frac{x^2-9}{x+3}$ 는 x = -3에서 정의되지 않<u>으므로</u> $f \neq g$

025 📵 서로 같은 함수가 아니다.

 $f(x)=x, g(x)=\sqrt{x^2}=|x|$ 에서 f(-1)=-1, g(-1)=1이므로 로 $f\neq g$

026 📳 서로 같은 함수이다.

 $f(x) = |x| = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$ 이므로 f = g

f(0) = g(0)이므로 b = 0

f(1) = g(1)이므로 1 = a + b $\therefore a = 1$

028 $\bigcirc a = -1, b = 0$

f(-1)=g(-1)이므로 1-a=-b+2. a-b=-1 ······ \bigcirc f(1)=g(1)이므로 1-a=b+2, a+b=-1.... (L)

 \bigcirc , \bigcirc 을 연립하여 풀면 a=-1, b=0

029 $a = -\frac{3}{2}$, $b = \frac{5}{2}$

f(1) = g(1)이므로 a+b=1 \bigcirc

f(2) = g(2)이므로 $2a + b = -\frac{1}{2}$ ①

 \bigcirc , \bigcirc 을 연립하여 풀면 $a=-\frac{3}{2}, b=\frac{5}{2}$

030 $\bigcirc a=1, b=-6$

f(-2) = g(-2)이므로 -2a + b = -8 \ominus f(3) = g(3)이므로 3a + b = -3.....(L) \bigcirc , \bigcirc 을 연립하여 풀면 a=1, b=-6

f(1)=g(1)이므로 2+a=-1+b, a-b=-3..... f(4)=g(4)이므로 32+4a=-4+b, 4a-b=-36 \bigcirc , \bigcirc 을 연립하여 풀면 a = -11, b = -8

032

033 🖹 ×

034

035 😩 ×

036 🗐 ¬, ∟

037 🗐 ¬, ∟, ⊏

038 🔁 ≥

039 📵 ¬

040 📵 ㄱ, ㄴ, ㅂ

041 🗐 ㄱ, ㄴ, ㅂ

042 📵 ¬

043 🗐 ⊏

044 🗐 ¬. ∟. ⊏

045 🗐 ¬. ∟

046 📵 ≥

047 📵 ¬, ∟

048 🗐 ¬. ∟

$049 \ \, \bigcirc a=1, b=3$

a>0이므로 y=f(x)의 그래프가 두 점 (-1, 2), (2, 5)를 지나 야 한다.

즉, f(-1)=2, f(2)=5이므로 -a+b=2, 2a+b=5두 식을 연립하여 풀면 a=1, b=3

050 $\bigcirc a=1, b=3$

a>0이므로 y=f(x)의 그래프가 두 점 (-2, 1), (3, 6)을 지나 야 한다.

즉, f(-2)=1, f(3)=6이므로 -2a+b=1, 3a+b=6두 식을 연립하여 풀면 a=1, b=3

a>0이므로 y=f(x)의 그래프가 두 점 (1, -2), (4, 4)를 지나 야 한다.

즉, f(1) = -2, f(4) = 4이므로 a+b=-2, 4a+b=4두 식을 연립하여 풀면 a=2. b=-4

052 $\bigcirc a = -3, b = 14$

a < 0이므로 y = f(x)의 그래프가 두 점 (2, 8), (5, -1)을 지나 야 한다.

즉, f(2)=8, f(5)=-1이므로 2a+b=8, 5a+b=-1두 식을 연립하여 풀면 a=-3, b=14

a < 0이므로 y = f(x)의 그래프가 두 점 (1, 6), (3, 2)를 지나야 하다

즉, f(1)=6, f(3)=2이므로 a+b=6, 3a+b=2두 식을 연립하여 풀면 a=-2, b=8

a < 0이므로 y = f(x)의 그래프가 두 점 (-3, 3), (1, -5)를 지

즉, f(-3)=3, f(1)=-5이므로 -3a+b=3, a+b=-5두 식을 연립하여 풀면 a=-2, b=-3

Ⅱ. 함수 25

055 🔁 2

$$(g \circ f)(1) = g(f(1)) = g(b) = 2$$

056 🔁 3

$$(g \circ f)(2) = g(f(2)) = g(d) = 3$$

057 🔁 1

$$(g \circ f)(4) = g(f(4)) = g(c) = 1$$

058 🖹 c

$$(f \circ g)(a) = f(g(a)) = f(4) = c$$

059 🗐 a

$$(f \circ g)(d) = f(g(d)) = f(3) = a$$

$060 = \frac{3}{2}$

$$(g \circ f)(1) = g(f(1)) = g(1) = \frac{3}{2}$$

061 🗐 7

$$(f \circ g)(4) = f(g(4)) = f(3) = 7$$

062 - 26

$$(f \circ f)(-2) = f(f(-2)) = f(-8) = -26$$

063 🖨 6

$$(g \circ f)(-1) = g(f(-1)) = g(3) = 6$$

064 🗐 -1

$$(f \circ g)(2) = f(g(2)) = f(1) = -1$$

065 🗐 33

$$(g \circ g)(3) = g(g(3)) = g(6) = 33$$

066 🔁 2

$$(f \circ f)(2) = f(f(2)) = f(1) = 2$$

067 🗐 13

$$(f \circ f)(5) = f(f(5)) = f(26) = 13$$

068 🔁 26

$$(f \circ f \circ f)(3) = f(f(f(3))) = f(f(10)) = f(5) = 26$$

069 🔁 5

$$(f \circ f)(-1) = f(f(-1)) = f(2) = 5$$

070 🔁 2

$$(f \circ f)(\sqrt{2}) = f(f(\sqrt{2})) = f(-1) = 2$$

071 🔁 2

$$(f \circ f \circ f)(-\sqrt{5}) = f(f(f(-\sqrt{5})))$$

= $f(f(-4)) = f(-1) = 2$

072 **(a)** $(g \circ f)(x) = 4x^2 - 3$

$$(g \circ f)(x) = g(f(x)) = \{f(x)\}^2 - 3 = (-2x)^2 - 3 = 4x^2 - 3$$

$$(f \circ g)(x) = f(g(x)) = -2g(x) = -2(x^2-3) = -2x^2+6$$

074 **(a)**
$$(f \circ g)(x) = -\frac{1}{2}x + 5$$

$$\begin{array}{l} (f\circ g)(x)\!=\!\!f(g(x))\!=\!g(x)\!+\!4\\ =\!\!\left(-\frac{1}{2}x\!+\!1\right)\!+\!4\!=\!-\frac{1}{2}x\!+\!5 \end{array}$$

075
$$\bigcirc (g \circ f)(x) = -\frac{1}{2}x - 1$$

$$(g \circ f)(x) = g(f(x)) = -\frac{1}{2}f(x) + 1$$

= $-\frac{1}{2}(x+4) + 1 = -\frac{1}{2}x - 1$

$$(g \circ h)(x) = g(h(x)) = -\frac{1}{2}h(x) + 1$$

= $-\frac{1}{2}(-4x+2) + 1 = 2x$

이므로

$$(f \circ (g \circ h))(x) = f((g \circ h)(x)) = (g \circ h)(x) + 4 = 2x + 4$$

$$(f \circ g)(x) = -\frac{1}{2}x + 5$$
이므로

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = -\frac{1}{2}h(x) + 5$$
$$= -\frac{1}{2}(-4x+2) + 5 = 2x+4$$

078 🔁 -2

2a=-4 $\therefore a=-2$

$$(f \circ g)(x) = f(g(x)) = 2g(x) + a$$

= $2(-x+4) + a = -2x + a + 8$
 $(g \circ f)(x) = g(f(x)) = -f(x) + 4$
= $-(2x+a) + 4 = -2x - a + 4$
이므로 $f \circ g = g \circ f$ 에서 $a + 8 = -a + 4$

● −3

$$(f \circ g)(x) = f(g(x)) = -g(x) + 2$$

= $-(4x+a) + 2 = -4x - a + 2$
 $(g \circ f)(x) = g(f(x)) = 4f(x) + a$
= $4(-x+2) + a = -4x + a + 8$
이므로 $f \circ g = g \circ f$ 에서 $-a + 2 = a + 8$
 $2a = -6$ $\therefore a = -3$

$\oplus \frac{2}{3}$

$$(f \circ g)(x) = f(g(x)) = ag(x) + 1$$

= $a(2x-3) + 1 = 2ax - 3a + 1$
 $(g \circ f)(x) = g(f(x)) = 2f(x) - 3$
= $2(ax+1) - 3 = 2ax - 1$
이므로 $f \circ g = g \circ f$ 에서 $-3a+1 = -1$
 $3a = 2$ $\therefore a = \frac{2}{3}$

$$\begin{split} (f \circ g)(x) = & f(g(x)) = \frac{1}{2}g(x) - 3 \\ &= \frac{1}{2}(ax + 2) - 3 = \frac{1}{2}ax - 2 \\ (g \circ f)(x) = & g(f(x)) = af(x) + 2 \\ &= a\left(\frac{1}{2}x - 3\right) + 2 = \frac{1}{2}ax - 3a + 2 \\ \circ | 므로 f \circ g = g \circ f \circ | & -2 = -3a + 2 \\ 3a = 4 \qquad \therefore a = \frac{4}{3} \end{split}$$

$\oplus \frac{5}{9}$

$$(f \circ g)(x) = f(g(x)) = ag(x) - 4$$

= $a(2ax+1) - 4 = 2a^2x + a - 4$
 $(g \circ f)(x) = g(f(x)) = 2af(x) + 1$
= $2a(ax-4) + 1 = 2a^2x - 8a + 1$
이므로 $f \circ g = g \circ f$ 에서 $a - 4 = -8a + 1$
 $9a = 5$ $\therefore a = \frac{5}{9}$

$$g(h(x)) = f(x)$$
에서 $h(x) - 3 = 3x + 5$
 $h(x) = 3x + 8$

084 **(a)**
$$h(x) = \frac{1}{2}x + \frac{1}{2}$$

$$g(h(x)) = f(x)$$
에서 $2h(x) + 1 = x + 2$
 $2h(x) = x + 1$ $\therefore h(x) = \frac{1}{2}x + \frac{1}{2}$

(a) $h(x) = -x^2 + 3$

$$g(h(x))=f(x)$$
에서 $-h(x)+1=x^2-2$
 $-h(x)=x^2-3$ $\therefore h(x)=-x^2+3$

(a) h(x) = -2x + 7

$$h(g(x))=f(x)$$
에서 $h(-x+2)=2x+3$ 이때 $-x+2=t$ 로 치환하면 $x=-t+2$ 이므로 $h(t)=2(-t+2)+3=-2t+7$ 따라서 t 를 x 로 바꾸어 나타내면 $h(x)=-2x+7$

(a) $h(x) = \frac{1}{4}x + 1$

$$h(g(x)) = f(x) 에서 h(4x+1) = x + \frac{5}{4}$$
 이때 $4x+1=t$ 로 치환하면 $x=\frac{1}{4}t-\frac{1}{4}$ 이므로
$$h(t) = \left(\frac{1}{4}t-\frac{1}{4}\right) + \frac{5}{4} = \frac{1}{4}t + 1$$
 따라서 t 를 x 로 바꾸어 나타내면 $h(x) = \frac{1}{4}x + 1$

(a) $h(x) = x^2 + 2x - 2$

$$h(g(x)) = f(x) 에서 \ h(-2x-1) = 4x^2 - 3$$
 이때 $-2x-1 = t$ 로 치환하면 $x = -\frac{1}{2}t - \frac{1}{2}$ 이므로
$$h(t) = 4\left(-\frac{1}{2}t - \frac{1}{2}\right)^2 - 3 = t^2 + 2t - 2$$
 따라서 t 를 x 로 바꾸어 나타내면 $h(x) = x^2 + 2x - 2$

\bigcirc $f^{n}(x) = x - 2n$

$$f^{1}(x) = f(x) = x - 2$$

$$f^{2}(x) = f(f(x)) = f(x) - 2 = (x - 2) - 2 = x - 4$$

$$f^{3}(x) = f(f^{2}(x)) = f^{2}(x) - 2 = (x - 4) - 2 = x - 6$$

$$\vdots$$

$$\therefore f^{n}(x) = x - 2n$$

$$f^{1}(x) = f(x) = x+3$$

$$f^{2}(x) = f(f(x)) = f(x)+3 = (x+3)+3 = x+6$$

$$f^{3}(x) = f(f^{2}(x)) = f^{2}(x)+3 = (x+6)+3 = x+9$$

$$\vdots$$

$$f^{n}(x) = x+3n$$

$$f^{1}(x) = f(x) = 2x$$

$$f^{2}(x) = f(f(x)) = 2f(x) = 2 \times 2x = 4x$$

$$f^{3}(x) = f(f^{2}(x)) = 2f^{2}(x) = 2 \times 4x = 8x$$

$$\vdots$$

$$\therefore f^{n}(x) = 2^{n}x$$

Ⅱ. 함수 27

092 - 1

$$f^{1}(x) = f(x) = -x+1$$

$$f^{2}(x)=f(f(x))=-f(x)+1=-(-x+1)+1=x$$

$$f^3(x)\!=\!\!f(f^2(x))\!=\!-f^2(x)\!+\!1\!=\!-x\!+\!1$$

$$\therefore f^{n}(x) = \begin{cases} -x+1 \ (n \stackrel{\circ}{\sim} \stackrel{S}{\longrightarrow} \uparrow) \\ x \ (n \stackrel{\circ}{\sim} \stackrel{\Lambda}{\rightarrow} \uparrow) \end{cases}$$

따라서
$$f^{13}(x) = -x + 1$$
이므로 $f^{13}(2) = -1$

093 🗐 1

$$f^n(x) = \begin{cases} -x+1 \ (n$$
은 홀수) 이므로 $x \ (n$ 은 찍수)

$$f^{24}(x) = x$$
 $\therefore f^{24}(1) = 1$

094 🔁 2

$$f^n(x) = \begin{cases} -x+1 & (n \stackrel{\circ}{\leftarrow} \stackrel{\circ}{\simeq} \stackrel{\circ}{\leftarrow}) \\ x & (n \stackrel{\circ}{\leftarrow} \stackrel{\circ}{\sim} \stackrel{\circ}{\leftarrow}) \end{cases}$$

$$f^{125}(x) = -x+1$$
 $\therefore f^{125}(-1) = 2$

095

098

099 🗐 2

$$f(2) = a$$
이므로 $f^{-1}(a) = 2$

100 🔁 4

$$f(4) = b$$
이므로 $f^{-1}(b) = 4$

101 🔒 3

$$f(3) = d$$
이므로 $f^{-1}(d) = 3$

102 🗐 3

 $f^{-1}(2) = k (k$ 는 상수)라 하면 f(k) = 2이므로

$$-k+5=2, k=3$$
 $\therefore f^{-1}(2)=3$

$103 ext{ } extbf{1} extbf{2}$

 $f^{-1}(2)$ =k(k는 상수)라 하면 f(k)=2이므로

$$2k+1=2, k=\frac{1}{2}$$
 $\therefore f^{-1}(2)=\frac{1}{2}$

104 🗐 2

 $f^{-1}(2) = k (k$ 는 상수)라 하면 f(k) = 2이므로

$$4k-6=2, k=2$$
 $\therefore f^{-1}(2)=2$

105 🗐 4

$$f^{-1}(a) = -1$$
에서 $f(-1) = a$ 이므로 $a = -(-1) + 3 = 4$

106 🗐 2

$$f^{-1}(a) = 1$$
에서 $f(1) = a$ 이므로 $a = -1 + 3 = 2$

107 🗐 5

$$f^{-1}(a) = -2$$
에서 $f(-2) = a$ 이므로 $a = -(-2) + 3 = 5$

108 🗐 8

$$f^{-1}(2)=3$$
에서 $f(3)=2$ 이므로 $-6+a=2$ $\therefore a=8$

109 🗐 5

$$f^{-1}(-3) = 4$$
에서 $f(4) = -3$ 이므로

$$-8+a=-3$$
 : $a=5$

110 🗐 6

$$f^{-1}(5) = \frac{1}{2}$$
에서 $f(\frac{1}{2}) = 5$ 이므로

$$-1+a=5$$
 $\therefore a=6$

$$f^{-1}(1)=4, f^{-1}(3)=2$$
에서 $f(4)=1, f(2)=3$ 이므로

4a+b=1, 2a+b=3

두 식을 연립하여 풀면 a=-1. b=5

112 **(a)** $a = -\frac{5}{2}$, $b = -\frac{1}{2}$

$$f^{-1}(2) = -1, f^{-1}(-3) = 1$$
에서 $f(-1) = 2, f(1) = -3$ 이므로

-a+b=2, a+b=-3

두 식을 연립하여 풀면
$$a=-\frac{5}{2}$$
, $b=-\frac{1}{2}$

$$f^{-1}(-2)=2$$
, $f^{-1}(4)=5$ 에서 $f(2)=-2$, $f(5)=4$ 이므로

2a+b=-2, 5a+b=4

두 식을 연립하여 풀면 a=2, b=-6

114 **(a)** $y = \frac{1}{2}x - \frac{1}{2}$

y=2x+1을 x에 대하여 풀면 $x=\frac{1}{2}y-\frac{1}{2}$

x와 y를 서로 바꾸면 구하는 역함수는 $y=\frac{1}{2}x-\frac{1}{2}$

115 **(a)** $y = \frac{1}{4}x + 2$

y=4x-8을 x에 대하여 풀면 $x=\frac{1}{4}y+2$

x와 y를 서로 바꾸면 구하는 역함수는 $y = \frac{1}{4}x + 2$

116 **(a)**
$$y = -\frac{1}{3}x + \frac{2}{3}$$

y = -3x + 2를 x에 대하여 풀면 $x = -\frac{1}{3}y + \frac{2}{3}$

x와 y를 서로 바꾸면 구하는 역함수는 $y=-\frac{1}{3}x+\frac{2}{3}$

117 **(a)** y = 3x - 9

 $y = \frac{1}{3}x + 3$ 을 x에 대하여 풀면 x = 3y - 9

x와 y를 서로 바꾸면 구하는 역함수는 y=3x-9

118 **a**
$$y = -\frac{5}{2}x + 10$$

 $y = -\frac{2}{5}x + 4$ 를 x에 대하여 풀면 $x = -\frac{5}{2}y + 10$

x와 y를 서로 바꾸면 구하는 역함수는 $y=-\frac{5}{2}x+10$

119 🔁 1

120 🗐 -4

$$(f^{-1})^{-1}(-2)=f(-2)=-4$$

121 🔁 2

 $g^{-1}(4) = k (k 는 상수)$ 라 하면 g(k) = 4이므로

3k+4=4, k=0 $\therefore g^{-1}(4)=0$

또한 $f^{-1}(0) = t$ (t는 상수)라 하면 f(t) = 0이므로

t-2=0, t=2 $\therefore f^{-1}(0)=2$

$$\therefore (g \circ f)^{-1}(4) = (f^{-1} \circ g^{-1})(4) = f^{-1}(g^{-1}(4)) = f^{-1}(0) = 2$$

122 🗐 19

 $f^{-1}(3) = k (k$ 는 상수)라 하면 f(k) = 3이므로

k-2=3, k=5 $\therefore f^{-1}(3)=5$

$$\therefore (f \circ g^{-1})^{-1}(3) = (g \circ f^{-1})(3) = g(f^{-1}(3)) = g(5) = 19$$

123 $-\frac{7}{3}$

 $g^{-1}(-3) = k (k$ 는 상수)라 하면 g(k) = -3이므로

$$3k+4=-3, k=-\frac{7}{3}$$
 $\therefore g^{-1}(-3)=-\frac{7}{3}$

$$\therefore (f \circ (g \circ f)^{-1} \circ f)(-1) = (f \circ f^{-1} \circ g^{-1} \circ f)(-1)$$

$$= (g^{-1} \circ f)(-1) = g^{-1}(f(-1))$$

$$= g^{-1}(-3) = -\frac{7}{3}$$

124 🗐 9

$$(g \circ f^{-1} \circ f)(-5) = g(-5) = 9$$

 $g^{-1}(3)$ =k(k는 상수)라 하면 g(k)=3이므로

$$-k+4=3, k=1$$
 $\therefore g^{-1}(3)=1$

$$\therefore (f^{-1} \circ g)^{-1}(-1) = (g^{-1} \circ f)(-1)$$

$$=g^{-1}(f(-1))$$

= $g^{-1}(3)=1$

126 🗐 -5

$$(g \circ (g \circ f^{-1})^{-1} \circ g)(2) = (g \circ f \circ g^{-1} \circ g)(2)$$
$$= (g \circ f)(2) = g(f(2))$$
$$= g(9) = -5$$

127 🖨 -17

$$(f \circ g)(x) = x$$
에서 $g^{-1} = f$ 이므로

$$(f \circ g^{-1} \circ f^{-1})(-3) = (f \circ f \circ f^{-1})(-3)$$

= $f(-3) = -17$

128 $\bigcirc \frac{7}{4}$

$$(f \circ g)(x)$$
= x 에서 g^{-1} = f 이므로

$$(g \circ f^{-1} \circ g^{-1})(2) = (g \circ f^{-1} \circ f)(2) = g(2) = f^{-1}(2)$$

이때 $f^{-1}(2) = k (k$ 는 상수)라 하면 f(k) = 2이므로

$$4k-5=2, k=\frac{7}{4}$$
 :: $f^{-1}(2)=\frac{7}{4}$

$$\therefore (g \circ f^{-1} \circ g^{-1})(2) = f^{-1}(2) = \frac{7}{4}$$

129 $\oplus \frac{1}{4}$

$$(f \circ g)(x) = x$$
에서 $g^{-1} = f$ 이므로

$$(g^{-1}\circ f^{-1}\circ g)(-4)\!=\!(f\circ f^{-1}\circ g)(-4)$$

$$=g(-4)=f^{-1}(-4)$$

이때 $f^{-1}(-4) = k (k$ 는 상수)라 하면 f(k) = -4이므로

$$4k-5=-4, k=\frac{1}{4}$$
 : $f^{-1}(-4)=\frac{1}{4}$

$$\therefore (g^{-1} \circ f^{-1} \circ g)(-4) = f^{-1}(-4) = \frac{1}{4}$$

130 🖨 a

131 📵 b

$$(f \circ f)(d) = f(f(d)) = f(c) = b$$

132 🕒 *b*

$$f(b)=a$$
이므로 $f^{-1}(a)=b$

133 📵 e

$$f(d)=c$$
이므로 $f^{-1}(c)=d$
 $f(e)=d$ 이므로 $f^{-1}(d)=e$
 $\therefore (f\circ f)^{-1}(c)=(f^{-1}\circ f^{-1})(c)=f^{-1}(f^{-1}(c))$
 $=f^{-1}(d)=e$

134 📵 *c*

135 🖹 c

$$(f \circ f)(a) = f(f(a)) = f(b) = c$$

136 🔁 b

$$f(b)=c$$
이므로 $f^{-1}(c)=b$

137 📵 a

$$f(c) = d$$
이므로 $f^{-1}(d) = c$
 $f(b) = c$ 이므로 $f^{-1}(c) = b$
 $f(a) = b$ 이므로 $f^{-1}(b) = a$
 $\therefore (f \circ f \circ f)^{-1}(d) = (f^{-1} \circ f^{-1} \circ f^{-1})(d)$
 $= f^{-1}(f^{-1}(f))$
 $= f^{-1}(b) = a$

중단원 #기출#교과서

138 10 139 5 140 ② 141 ① 142 1 143 23 144 ④ 145 ③

138

함수 f의 치역은 $\{4, 6\}$ 이므로 치역의 모든 원소의 합은 4+6=10

139

a<0이므로 y=f(x)의 그래프는 감소하는 일대일함수이다. f가 일대일대응이 되려면 치역과 공역이 일치해야 하므로 함수 y=f(x)의 그래프가 두 점 (-3,5), (5,-3)을 지나야 한다. 즉, f(-3)=5, f(5)=-3이므로 -3a+b=5, 5a+b=-3 두 식을 연립하여 풀면 a=-1, b=2 \therefore $a^2+b^2=(-1)^2+2^2=5$

140

$$(g \circ f)(1) = g(f(1)) = g(2) = 9$$

1/,1

$$f(h(x)) = g(x)$$
에서 $\frac{1}{2}h(x) + 1 = -x^2 + 5$
 $\frac{1}{2}h(x) = -x^2 + 4$ $\therefore h(x) = -2x^2 + 8$
 $\therefore h(3) = -10$

다른 풀이

h(3)=k (k는 상수)라 하자. f(h(x))=g(x)의 양변에 x=3을 대입하면 f(h(3))=g(3), f(k)=-4 $\frac{1}{2}k+1=-4, k=-10 \qquad \therefore h(3)=-10$

142

$$f^{1}(2) = f(2) = 3$$

$$f^{2}(2) = f(f(2)) = f(3) = 4$$

$$f^{3}(2) = f(f^{2}(2)) = f(4) = 1$$

$$f^{4}(2) = f(f^{3}(2)) = f(1) = 2$$

$$f^{5}(2) = f(f^{4}(2)) = f(2) = 3$$

$$\vdots$$

즉, 자연수 n에 대하여 $f^n(2)$ 의 값은 3, 4, 1, 2가 이 순서대로 반복된다.

따라서 $111=4\times27+3$ 이므로 $f^{111}(2)=f^{3}(2)=1$

143

49쪽

g(x)는 일차함수이므로 g(x)=ax+b (a,b는 상수, $a \ne 0)$ 라 하자. $g(x)=f^{-1}(x)$ 이므로 f(14)=3에서 $f^{-1}(3)=14$ $\therefore g(3)=14$ 즉, g(2)=11, g(3)=14이므로 2a+b=11, 3a+b=14 두 식을 연립하여 풀면 a=3,b=5 따라서 g(x)=3x+5이므로 g(6)=23

144

 $g^{-1}(-1)=k$ (k는 상수)라 하면 g(k)=-1이므로 $5k-6=-1,\ k=1$ $\therefore g^{-1}(-1)=1$ $\therefore (f\circ (f\circ g)^{-1}\circ f)(-1)=(f\circ g^{-1}\circ f^{-1}\circ f)(-1)$ $=(f\circ g^{-1})(-1)$ $=f(g^{-1}(-1))$ =f(1)=2

145

$$f(d) = e$$
이므로 $f^{-1}(e) = d$
 $f(c) = d$ 이므로 $f^{-1}(d) = c$
 $\therefore (f \circ f)^{-1}(e) = (f^{-1} \circ f^{-1})(e)$
 $= f^{-1}(f^{-1}(e))$
 $= f^{-1}(d)$
 $= c$

▮. 함수

4 유리함수

50 ~ 58쪽

146 **(a)** $\frac{2x+3}{x+1}$

$$\frac{1}{x+1} + 2 = \frac{1}{x+1} + \frac{2(x+1)}{x+1} = \frac{2x+3}{x+1}$$

147 $\bigcirc \frac{x+1}{x+4}$

$$1 - \frac{3}{x+4} = \frac{x+4}{x+4} - \frac{3}{x+4} = \frac{x+1}{x+4}$$

$$\frac{1}{x} + \frac{1}{x-1} = \frac{x-1}{x(x-1)} + \frac{x}{x(x-1)} = \frac{2x-1}{x(x-1)}$$

$$\begin{split} \frac{3}{x-2} - \frac{2}{x+1} &= \frac{3(x+1)}{(x-2)(x+1)} - \frac{2(x-2)}{(x-2)(x+1)} \\ &= \frac{x+7}{(x-2)(x+1)} \end{split}$$

$$\frac{1}{x-3} + \frac{5}{x^2 - 9} = \frac{x+3}{(x+3)(x-3)} + \frac{5}{(x+3)(x-3)}$$
$$= \frac{x+8}{(x+3)(x-3)}$$

151 $\bigcirc \frac{2x-7}{(x-1)(x-2)}$

$$\frac{3}{x-1} - \frac{x+1}{x^2 - 3x + 2} = \frac{3(x-2)}{(x-1)(x-2)} - \frac{x+1}{(x-1)(x-2)}$$
$$= \frac{2x-7}{(x-1)(x-2)}$$

152 $\oplus \frac{2}{x}$

$$\frac{2x+4}{x^2+x} \times \frac{x+1}{x+2} = \frac{2(x+2)}{x(x+1)} \times \frac{x+1}{x+2} = \frac{2}{x}$$

153 🖨 $\frac{1}{x(x-3)}$

$$\frac{x+3}{x^2-2x} \div \frac{x^2-9}{x-2} = \frac{x+3}{x^2-2x} \times \frac{x-2}{x^2-9}$$

$$= \frac{x+3}{x(x-2)} \times \frac{x-2}{(x+3)(x-3)}$$

$$= \frac{1}{x(x-3)}$$

$$\frac{x+5}{x^2-2x-8} \times \frac{x^2+6x+8}{x^2+5x}$$

$$= \frac{x+5}{(x+2)(x-4)} \times \frac{(x+2)(x+4)}{x(x+5)}$$

$$= \frac{x+4}{x(x-4)}$$

$$\begin{aligned} &\frac{x+1}{x^2-5x+4} \div \frac{x^2+6x+5}{x^2-4x} \\ &= &\frac{x+1}{x^2-5x+4} \times \frac{x^2-4x}{x^2+6x+5} \\ &= &\frac{x+1}{(x-1)(x-4)} \times \frac{x(x-4)}{(x+1)(x+5)} \\ &= &\frac{x}{(x-1)(x+5)} \end{aligned}$$

156 **1** $\frac{x-3}{(x+1)(x+5)}$

$$\frac{x^2 - 9}{x^2 + 7x + 10} \times \frac{x + 2}{x^2 + 4x + 3}$$

$$= \frac{(x+3)(x-3)}{(x+2)(x+5)} \times \frac{x+2}{(x+1)(x+3)}$$

$$= \frac{x-3}{(x+1)(x+5)}$$

$$\frac{x^2 - 2x - 3}{x^2 + 4x - 12} \div \frac{x^2 - 7x + 12}{x + 6}$$

$$= \frac{x^2 - 2x - 3}{x^2 + 4x - 12} \times \frac{x + 6}{x^2 - 7x + 12}$$

$$= \frac{(x + 1)(x - 3)}{(x - 2)(x + 6)} \times \frac{x + 6}{(x - 3)(x - 4)}$$

$$= \frac{x + 1}{(x - 2)(x - 4)}$$

$$\begin{split} &\frac{x}{x-1} - \frac{x+2}{x+1} \\ &= \frac{(x-1)+1}{x-1} - \frac{(x+1)+1}{x+1} \\ &= 1 + \frac{1}{x-1} - \left(1 + \frac{1}{x+1}\right) \\ &= \frac{1}{x-1} - \frac{1}{x+1} \\ &= \frac{x+1}{(x+1)(x-1)} - \frac{x-1}{(x+1)(x-1)} \\ &= \frac{2}{(x+1)(x-1)} \end{split}$$

Ⅱ. 함수 31

- 168 🗐 🔾
- 169 🖶 ×
- 170 🖨 ×
- 171 **⊕** ×
- 172
- 173 😫 ○
- **174 目** {x|x≠0인 실수}
- 175 **③** $\left\{x \middle| x \neq \frac{1}{2}$ 인 실수 $\right\}$

176 📵 {x | x는 모든 실수}

177 **(급)** $\{x \mid x \neq -2$ 인 실수\

178 **(2)** $\{x | x \neq -1, x \neq 1$ 인 실수}

179 📵 {*x* | *x*는 모든 실수}

185 **(a)**
$$y = \frac{1}{x-2} + 1$$

함수 $y=\frac{1}{x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 1 만큼 평행이동하면

$$y-1 = \frac{1}{x-2}$$
 $\therefore y = \frac{1}{x-2} + 1$

186 **1**
$$y = -\frac{1}{x-1} - 3$$

함수 $y=-\frac{1}{x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -3만큼 평행이동하면

$$y+3 = -\frac{1}{x-1}$$
 $\therefore y = -\frac{1}{x-1} - 3$

187 **(a)**
$$y = \frac{4}{x+2} + 4$$

함수 $y=\frac{4}{x}$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 4만큼 평행이동하면

$$y-4 = \frac{4}{x+2}$$
 : $y = \frac{4}{x+2} + 4$

188 **(a)**
$$y = -\frac{5}{x-6} - 1$$

함수 $y=-\frac{5}{x}$ 의 그래프를 x축의 방향으로 6만큼, y축의 방향으로 -1만큼 평행이동하면

$$y+1 = -\frac{5}{x-6}$$
 : $y = -\frac{5}{x-6} - 1$

189 **(a)**
$$y = \frac{1}{3(x+4)} + 3$$

함수 $y=\frac{1}{3x}$ 의 그래프를 x축의 방향으로 -4만큼, y축의 방향으로 3만큼 평행이동하면

$$y-3=\frac{1}{3(x+4)}$$
 $\therefore y=\frac{1}{3(x+4)}+3$

190 **(a)**
$$y = -\frac{3}{2(x+5)} - 2$$

함수 $y=-\frac{3}{2x}$ 의 그래프를 x축의 방향으로 -5만큼, y축의 방향으로 -2만큼 평행이동하면

$$y+2=-\frac{3}{2(x+5)}$$
 : $y=-\frac{3}{2(x+5)}-2$

Ⅱ. 함수 33

점근선의 방정식: x = -3, y = 0 $\{x | x \neq -3$ 인 실수}

치역: $\{y | y \neq 0$ 인 실수 $\}$

193

점근선의 방정식: $\{x | x \neq -1$ 인 실수 $\}$

194

점근선의 방정식: x=2, y=-4정의역: $\{x | x \neq 2$ 인 실수 $\}$

196

점근선의 방정식: x = 1, y = 2정의역: $\{x | x \neq 1$ 인 실수 $\}$ 치역: $\{y | y \neq 2$ 인 실수 $\}$

점근선의 방정식: x=2, y=-1정의역: {x | x≠2인 실수} 치역: $\{y | y \neq -1$ 인 실수 $\}$

x = -1, y = 4 $\{x | x \neq -1$ 인 실수\ 치역: $\{y | y \neq 4$ 인 실수 $\}$

점근선의 방정식:

점근선의 방정식: x=3, y=-2정의역: {*x* | *x*≠3인 실수} 치역: $\{y | y \neq -2$ 인 실수 $\}$

201 🗐 🔾 유리함수 $y=\frac{1}{r-2}$ 의 그래프는 $y=\frac{1}{r}$ 의 그래프를 x축의 방향으 로 2만큼 평행이동한 것이므로 평행이동하여 $y=\frac{1}{x}$ 의 그래프와 일치한다

202 😩 × $y=\frac{2x-3}{x-1}=-\frac{1}{x-1}+2$ 이므로 유리함수 $y=\frac{2x-3}{x-1}$ 의 그래프 는 $y = -\frac{1}{x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 2만큼 평행이동한 것이다.

따라서 평행이동하여 $y=\frac{1}{x}$ 의 그래프와 일치하지 않는다.

203 $y = \frac{3x+10}{x+3} = \frac{1}{x+3} + 3$ 이므로 유리함수 $y = \frac{3x+10}{x+3}$ 의 그래프 는 $y=\frac{1}{x}$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 3 만큼 평행이동한 것이다.

따라서 평행이동하여 $y=\frac{1}{x}$ 의 그래프와 일치한다.

 $y = \frac{-3x+8}{x-2} = \frac{2}{x-2} - 3$ 이므로 유리함수 $y = \frac{-3x+8}{x-2}$ 의 그래 프는 $y=\frac{2}{x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -3만큼 평행이동한 것이다.

따라서 유리함수 $y=\frac{2}{x+4}$ 의 그래프는 $y=\frac{2}{x}$ 의 그래프를 x축의 방향으로 -4만큼 평행이동한 것이므로 평행이동하여 $y=\frac{-3x+8}{x-2}$ 의 그래프와 일치한다.

34 정답과 풀이

人丁 ラト コ 2- ス 十 0 に ト は .indb 34

205 😩 ×

 $y = \frac{5x}{x-1} = \frac{5}{x-1} + 5$ 이므로 유리함수 $y = \frac{5x}{x-1}$ 의 그래프는 $y = \frac{5}{x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 5만큼 평행이동한 것이다.

따라서 유리함수 $y=\frac{5x}{x-1}$ 의 그래프는 평행이동하여 $y=\frac{-3x+8}{x-2}$ 의 그래프와 일치하지 않는다.

206

$$y=rac{-4x-6}{x+2}=rac{2}{x+2}-4$$
이므로 유리함수 $y=rac{-4x-6}{x+2}$ 의 그래 프는 $y=rac{2}{x}$ 의 그래프를 x 축의 방향으로 -2 만큼, y 축의 방향으로 -4 만큼 평행이동한 것이다.

따라서 유리함수 $y=\frac{-4x-6}{x+2}$ 의 그래프는 평행이동하여 $y=\frac{-3x+8}{x-2}$ 의 그래프와 일치한다.

207 🗐 5

$$y=\frac{3x}{x+2}=-\frac{6}{x+2}+3$$
이므로 유리함수 $y=\frac{3x}{x+2}$ 의 그래프의 점근선의 방정식은 $x=-2, y=3$

따라서 유리함수 $y=\frac{3x}{x+2}$ 의 그래프가 직선 y=x+k에 대하여 대칭이려면 직선 y=x+k는 두 점근선의 교점 (-2,3)을 지나야 하므로

3 = -2 + k : k = 5

208

$$y=rac{2x-5}{x-1}=-rac{3}{x-1}+2$$
이므로 유리함수 $y=rac{2x-5}{x-1}$ 의 그래프의 점근선의 방정식은 $x=1,\ y=2$

따라서 유리함수 $y=\frac{2x-5}{x-1}$ 의 그래프가 직선 y=x+k에 대하여 대칭이려면 직선 y=x+k는 두 점근선의 교점 $(1,\ 2)$ 를 지나야 하므로

2=1+k $\therefore k=1$

209 🗐 -2

$$y=\frac{-4x+3}{x-2}=-\frac{5}{x-2}$$
 - 4이므로 유리함수 $y=\frac{-4x+3}{x-2}$ 의 그 래프의 점근선의 방정식은 $x=2,\ y=-4$

대프의 접근신의 항상적는 x-2, y=-4 따라서 유리함수 $y=\frac{-4x+3}{x-2}$ 의 그래프가 직선 y=-x+k에 대하여 대칭이려면 직선 y=-x+k는 두 점근선의 교점 (2,-4)를 지나야 하므로

-4 = -2 + k : k = -2

210 **a** $-\frac{5}{2}$

 $y=\frac{x+1}{2x+6}=-\frac{1}{x+3}+\frac{1}{2}$ 이므로 유리함수 $y=\frac{x+1}{2x+6}$ 의 그래프 의 점근선의 방정식은 $x=-3,\ y=\frac{1}{2}$

따라서 유리함수 $y=\frac{x+1}{2x+6}$ 의 그래프가 직선 y=-x+k에 대하여 대칭이려면 직선 y=-x+k는 두 점근선의 교점 $\left(-3,\,\frac{1}{2}\right)$ 을 지나야 하므로

 $\frac{1}{2} = 3 + k \qquad \therefore k = -\frac{5}{2}$

211 $\bigcirc -\frac{8}{3}$

$$y=\frac{-2x-7}{3x+6}=-\frac{1}{x+2}-\frac{2}{3}$$
이므로 유리함수 $y=\frac{-2x-7}{3x+6}$ 의
그래프의 점근선의 방정식은 $x=-2,\ y=-\frac{2}{3}$

따라서 유리함수 $y=\frac{-2x-7}{3x+6}$ 의 그래프가 직선 y=-x+k에 대하여 대칭이려면 직선 y=-x+k는 두 점근선의 교점 $\left(-2,\,-\frac{2}{3}\right)$ 를 지나야 하므로

$$-\frac{2}{3} = 2 + k \qquad \therefore k = -\frac{8}{3}$$

주어진 그래프에서 점근선의 방정식이 x=1, y=2이므로 유리함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x-1} + 2(k < 0) \qquad \dots \quad \bigcirc$$

⊙의 그래프가 점 (2, 0)을 지나므로

$$0 = \frac{k}{2-1} + 2 \qquad \therefore k = -2$$

k = -2를 ①에 대입하면 $y = \frac{-2}{x-1} + 2 = \frac{2x-4}{x-1}$

a=2, b=-4, c=-1

주어진 그래프에서 점근선의 방정식이 x=-2, y=-1이므로 유리함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x+2} - 1 (k>0)$$

⑤의 그래프가 점 (0, 0)을 지나므로

$$0 = \frac{k}{0+2} - 1 \qquad \therefore k = 2$$

k=2를 ①에 대입하면 $y=\frac{2}{x+2}-1=\frac{-x}{x+2}$

∴ a = -1, b = 0, c = 2

Ⅱ. 함수 35

20. 5. 27. 오후 4:4

주어진 그래프에서 점근선의 방정식이 x=3, y=-4이므로 유리 함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x-3} - 4(k < 0)$$

⇒의 그래프가 점 (2, 0)을 지나므로

$$0 = \frac{k}{2-3} - 4 \qquad \therefore k = -4$$

k=-4를 \bigcirc 에 대입하면

$$y = \frac{-4}{x-3} - 4 = \frac{-4x+8}{x-3}$$

215 $\bigcirc a=3, b=9, c=1$

주어진 그래프에서 점근선의 방정식이 x=-1, y=3이므로 유리 함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x+1} + 3(k>0)$$

 \bigcirc 의 그래프가 점 (-3,0)을 지나므로

$$0 = \frac{k}{-3+1} + 3$$
 : $k = 6$

k=6을 ⊙에 대입하면

$$y = \frac{6}{x+1} + 3 = \frac{3x+9}{x+1}$$

216 🗐 최댓값: 0. 최솟값: -2

216 **③** 죄넛띠· v, -... $y = \frac{x}{x-3} = \frac{3}{x-3} + 1$ 이므로 주어진 함 수의 그래프는 $y=\frac{3}{x}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 1만큼 평행이동한 것이다.

따라서 정의역 $\{x | 0 \le x \le 2\}$ 에서 주어

진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x=0일 때 0. 최솟값은 x=2일 때 -2이다.

217 📵 최댓값: 2, 최솟값: $\frac{4}{3}$

 $y = \frac{x-1}{x-2} = \frac{1}{x-2} + 1$ 이므로 주어진

함수의 그래프는 $y=\frac{1}{x}$ 의 그래프를 $\frac{4}{3}$ $\frac{2}{x}$ $\frac{x}{3}$ 의 방향으로 2만큼, $\frac{4}{3}$ 의 상하는 2

따라서 정의역 $\{x|3\leq x\leq 5\}$ 에서 주

어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x=3일 때 2, 최솟값은 x=5일 때 $\frac{4}{3}$ 이다.

218 🗐 최댓값: $\frac{14}{5}$, 최솟값: 2

 $y = \frac{3x+2}{x+1} = -\frac{1}{x+1} + 3$ 이므로 $y = \frac{3x+2}{x+1}$

큼, y축의 방향으로 3만큼 평행이동 한 것이다.

따라서 정의역 $\{x|0\leq x\leq 4\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 $x{=}4$ 일 때 $\frac{14}{5}$, 최솟값은 $x{=}0$ 일 때 2이다

219 **3** 최댓값: $-\frac{4}{3}$, 최솟값: $-\frac{5}{3}$

 $y = \frac{-2x+6}{x-4} = -\frac{2}{x-4} - 2$ 이므로

그래프를 x축의 방향으로 4만큼. y축 의 방향으로 -2만큼 평행이동한 것 이다.

따라서 정의역 $\{x \mid -2 \le x \le 1\}$ 에서 주어진 함수의 그래프는 위 의 그림과 같으므로 최댓값은 x=1일 때 $-\frac{4}{3}$, 최솟값은 x=-2일 때 $-\frac{5}{3}$ 이다.

220 📵 최댓값: $\frac{7}{4}$, 최솟값: $-\frac{9}{8}$

 $y = \frac{-4x+3}{x+5} = \frac{23}{x+5} - 4$ 이므로 주

어진 함수의 그래프는 $y=\frac{23}{x}$ 의 그 래프를 x축의 방향으로 -5만큼, y축의 방향으로 -4만큼 평행이동한 것이다.

따라서 정의역 $\{x | -1 \le x \le 3\}$ 에서 주어진 함수의 그래프는 위 의 그림과 같으므로 최댓값은 x=-1일 때 $\frac{7}{4}$, 최솟값은 x=3일 때 $-\frac{9}{8}$ 이다.

221 **(a)** $y = \frac{x}{1-x}$

 $y = \frac{x}{x+1}$ 에서 x = y에 대한 식으로 나타내면

y(x+1)=x, xy+y=x

$$(y-1)x = -y$$
 $\therefore x = \frac{y}{1-y}$

x와 y를 서로 바꾸어 역함수를 구하면 $y = \frac{x}{1-x}$

222 **3** $y = \frac{3x-1}{x+2}$

 $y=\frac{2x+1}{-x+3}$ 에서 x를 y에 대한 식으로 나타내면

$$y(-x+3)=2x+1, -xy+3y=2x+1$$

$$(y+2)x=3y-1$$
 $\therefore x=\frac{3y-1}{y+2}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = \frac{3x - 1}{x + 2}$$

223 **4** $y = \frac{2x+5}{x+3}$

 $y=\frac{-3x+5}{x-2}$ 에서 x를 y에 대한 식으로 나타내면

$$y(x-2) = -3x+5, xy-2y = -3x+5$$

$$(y+3)x=2y+5$$
 $\therefore x=\frac{2y+5}{y+3}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = \frac{2x+5}{x+3}$$

224 **a** $y = \frac{5x+1}{2-2x}$

 $y=\frac{2x-1}{2x+5}$ 에서 x를 y에 대한 식으로 나타내면

$$y(2x+5)=2x-1, 2xy+5y=2x-1$$

$$(2y-2)x = -5y-1$$
 $\therefore x = \frac{5y+1}{2-2y}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = \frac{5x+1}{2-2x}$$

225 **3** $y = \frac{4x+7}{3x-1}$

 $y=\frac{x+7}{3x-4}$ 에서 x를 y에 대한 식으로 나타내면

$$y(3x-4)=x+7, 3xy-4y=x+7$$

$$(3y-1)x=4y+7$$
 $\therefore x=\frac{4y+7}{3y-1}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = \frac{4x+7}{3x-1}$$

226 🗐 -1

 $y=\frac{x+1}{3x+a}$ 로 놓고, x를 y에 대한 식으로 나타내면

y(3x+a)=x+1, 3xy+ay=x+1

$$(3y-1)x = -ay+1$$
 $\therefore x = \frac{-ay+1}{3y-1}$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-ax+1}{3x-1}$$

따라서 $f=f^{-1}$ 이어야 하므로

$$\frac{x+1}{3x+a} = \frac{-ax+1}{3x-1} \qquad \therefore a = -1$$

 $y=\frac{ax+1}{x+2}$ 로 놓고, x를 y에 대한 식으로 나타내면

$$y(x+2)=ax+1, xy+2y=ax+1$$

$$(y-a)x = -2y+1$$
 $\therefore x = \frac{-2y+1}{y-a}$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-2x+1}{x-a}$$

따라서 $f=f^{-1}$ 이어야 하므로

$$\frac{ax+1}{x+2} = \frac{-2x+1}{x-a} \qquad \therefore a = -2$$

 $y=rac{3x-2}{4x+a}$ 로 놓고, x를 y에 대한 식으로 나타내면

$$y(4x+a)=3x-2, 4xy+ay=3x-2$$

$$(4y-3)x = -ay-2$$
 $\therefore x = \frac{-ay-2}{4y-3}$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-ax-2}{4x-3}$$

따라서 $f=f^{-1}$ 이어야 하므로

$$\frac{3x-2}{4x+a} = \frac{-ax-2}{4x-3} \qquad \therefore a = -3$$

229 🗐 -4

 $y=\frac{ax+5}{-x+4}$ 로 놓고, x를 y에 대한 식으로 나타내면

$$y(-x+4)=ax+5, -xy+4y=ax+5$$

$$(y+a)x=4y-5$$
 $\therefore x=\frac{4y-5}{y+a}$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{4x-5}{x+a} = \frac{-4x+5}{-x-a}$$

따라서 $f=f^{-1}$ 이어야 하므로

$$\frac{ax+5}{-x+4} = \frac{-4x+5}{-x-a} \qquad \therefore a = -4$$

중단원 #기출#교과서)-

58쪽

233 ①

237 ⑤

230 4 231 ⑤ 232 ①

234 ④ **235** 6 **236** 1

Ⅱ. 함수 37

20. 5. 27. 오후 4:44

주어진 식의 좌변을 간단히 하면

231

유리함수 $y=\frac{3}{x}$ 의 그래프를 x축의 방향으로 4만큼, y축의 방향으 로 5만큼 평행이동한 그래프의 식은

$$y = \frac{3}{x-4} + 5$$

이 함수의 그래프가 점 (5, a)를 지나므로

$$a = \frac{3}{5-4} + 5 = 8$$

$$y=rac{2x-3}{x-4}=rac{5}{x-4}+2$$
이므로 유리함수 $y=rac{2x-3}{x-4}$ 의 그래프의 점근선의 방정식은 $x=4,\,y=2$

따라서
$$p=4$$
, $q=2$ 이므로 $p+q=6$

233

유리함수 $y=\frac{1}{x+1}$ - 3의 그래프를 y축의 방향으로 a만큼 평행이 동한 그래프의 식은

$$y = \frac{1}{x+1} - 3 + a$$

이 그래프가 원점을 지나므로

$$0 = \frac{1}{0+1} - 3 + a$$
 : $a = 2$

$$f(x) = \frac{x+1}{2x-1} = \frac{\frac{3}{2}}{2\left(x-\frac{1}{2}\right)} + \frac{1}{2}$$
이므로 유리함수 $y = f(x)$ 의 그

래프의 점근선의 방정식은

$$x = \frac{1}{2}, y = \frac{1}{2}$$

따라서 유리함수 y=f(x)의 그래프는 두 점근선의 교점 $\left(\frac{1}{2}, \frac{1}{2}\right)$ 에 대하여 대칭이므로

$$p = \frac{1}{2}, q = \frac{1}{2}$$
 : $p+q=1$

주어진 그래프에서 점근선의 방정식이 x=3, y=-3이므로 유리 함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x-3} - 3(k < 0)$$

⊙의 그래프가 점 (2, 0)을 지나므로

$$0 = \frac{k}{2-3} - 3$$
 : $k = -3$

k=-3을 \bigcirc 에 대입하면

$$y = \frac{-3}{x-3} - 3 = \frac{-3x+6}{x-3}$$

따라서 a=-3, b=6, c=-3이므로

$$a+b-c=-3+6-(-3)=6$$

$$y=\frac{-4x+5}{2x-4}=\frac{-3}{2(x-2)}-2$$
이므로 $-\frac{1}{2}$ 정의역 $\{x|-1\leq x\leq 1\}$ 에서 유리함 -1 이 1 수 $y=\frac{-4x+5}{2x-4}$ 의 그래프는 오른쪽 그림과 같다.

따라서 x=1일 때 최댓값 $M=-\frac{1}{2}$,

$$x=-1$$
일 때 최솟값 $m=-\frac{3}{2}$ 이므로

$$M-m=-\frac{1}{2}-\left(-\frac{3}{2}\right)=1$$

$$y=\frac{2x+5}{x+3}$$
로 놓고, x 를 y 에 대한 식으로 나타내면

$$y(x+3) = 2x+5, xy+3y=2x+5$$

$$(y-2)x = -3y+5$$

$$\therefore x = \frac{-3y+5}{y-2}$$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-3x+5}{x-2}$$

이때
$$f^{-1}(x) = \frac{-3x+5}{x-2} = -\frac{1}{x-2} - 3$$
이므로 함수

 $y=f^{-1}(x)$ 의 그래프의 점근선의 방정식은 x=2, y=-3따라서 함수 $y=f^{-1}(x)$ 의 그래프는 두 점근선의 교점 (2, -3)에 대하여 대칭이므로

$$p=2, q=-3$$
 $\therefore p-q=5$

▮. 함수

5 무리함수

59 ~ 66쪽

238 **(a)** $x \ge -1$

 $\sqrt{x+1}$ 에서 $x+1 \ge 0$ 이어야 하므로 $x \ge -1$

239 **(a)** $x \ge \frac{5}{2}$

 $\sqrt{2x-5}$ 에서 $2x-5\geq 0$ 이어야 하므로 $x\geq \frac{5}{2}$

240 **(a)** x > 2

 $\frac{1}{\sqrt{x-2}}$ 에서 x-2>0이어야 하므로 x>2

241 **(a)** x < 4

 $\frac{1}{\sqrt{4-x}}$ 에서 4-x>0이어야 하므로 x<4

242 \bigcirc -2 \le x \le 3

 $\sqrt{x+2}+\sqrt{3-x}$ 에서 $x+2\ge0$, $3-x\ge0$ 이어야 하므로 $x\ge-2$, $x\le3$ $\therefore -2\le x\le3$

243 **(a)** $3 \le x < 5$

 $\frac{\sqrt{x-3}}{\sqrt{5-x}}$ 에서 $x-3\geq 0$, 5-x>0이어야 하므로 $x\geq 3$, x<5 $\therefore 3\leq x<5$

 $\frac{x-4}{\sqrt{x}+2} = \frac{(x-4)(\sqrt{x}-2)}{(\sqrt{x}+2)(\sqrt{x}-2)} = \frac{(x-4)(\sqrt{x}-2)}{x-4} = \sqrt{x}-2$

245 $\bigcirc \sqrt{x} + 3$

 $\frac{x-9}{\sqrt{x}-3} = \frac{(x-9)(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)} = \frac{(x-9)(\sqrt{x}+3)}{x-9} = \sqrt{x}+3$

246 $\bigcirc \sqrt{x+1} + 1$

 $\frac{x}{\sqrt{x+1}-1} = \frac{x(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}$ $= \frac{x(\sqrt{x+1}+1)}{x+1-1}$ $= \sqrt{x+1}+1$

247 **2** $\sqrt{x+3} + \sqrt{x+1}$

$$\frac{2}{\sqrt{x+3} - \sqrt{x+1}} = \frac{2(\sqrt{x+3} + \sqrt{x+1})}{(\sqrt{x+3} - \sqrt{x+1})(\sqrt{x+3} + \sqrt{x+1})}$$

$$= \frac{2(\sqrt{x+3} + \sqrt{x+1})}{(x+3) - (x+1)}$$

$$= \sqrt{x+3} + \sqrt{x+1}$$

$$\begin{split} \frac{x}{\sqrt{1+x}-\sqrt{1-x}} &= \frac{x(\sqrt{1+x}+\sqrt{1-x})}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})} \\ &= \frac{x(\sqrt{1+x}+\sqrt{1-x})}{(1+x)-(1-x)} \\ &= \frac{\sqrt{1+x}+\sqrt{1-x}}{2} \end{split}$$

$$\begin{split} &\frac{1}{\sqrt{x+1}-\sqrt{x}}-\sqrt{x+1}+\sqrt{x}\\ &=\frac{\sqrt{x+1}+\sqrt{x}}{(\sqrt{x+1}-\sqrt{x})(\sqrt{x+1}+\sqrt{x})}-\sqrt{x+1}+\sqrt{x}\\ &=\frac{\sqrt{x+1}+\sqrt{x}}{x+1-x}-\sqrt{x+1}+\sqrt{x}\\ &=\sqrt{x+1}+\sqrt{x}-\sqrt{x+1}+\sqrt{x}=2\sqrt{x} \end{split}$$

250 $\bigcirc -\frac{4}{x}$

$$\begin{split} &\frac{1}{2+\sqrt{4+x}} + \frac{1}{2-\sqrt{4+x}} \\ &= \frac{2-\sqrt{4+x}}{(2+\sqrt{4+x})(2-\sqrt{4+x})} + \frac{2+\sqrt{4+x}}{(2-\sqrt{4+x})(2+\sqrt{4+x})} \\ &= \frac{2-\sqrt{4+x}}{4-(4+x)} + \frac{2+\sqrt{4+x}}{4-(4+x)} \\ &= \frac{2-\sqrt{4+x}}{4-(4+x)} + \frac{2+\sqrt{4+x}}{4-(4+x)} \\ &= \frac{2-\sqrt{4+x}}{-x} + \frac{2+\sqrt{4+x}}{-x} \\ &= \frac{-(2-\sqrt{4+x})-(2+\sqrt{4+x})}{x} = -\frac{4}{x} \end{split}$$

251 🔁 2x

$$\begin{split} &\frac{\sqrt{x}}{\sqrt{x+1}-\sqrt{x}} - \frac{\sqrt{x}}{\sqrt{x+1}+\sqrt{x}} \\ &= \frac{\sqrt{x}(\sqrt{x+1}+\sqrt{x})}{(\sqrt{x+1}-\sqrt{x})(\sqrt{x+1}+\sqrt{x})} - \frac{\sqrt{x}(\sqrt{x+1}-\sqrt{x})}{(\sqrt{x+1}+\sqrt{x})(\sqrt{x+1}-\sqrt{x})} \\ &= \frac{\sqrt{x}(\sqrt{x+1}+\sqrt{x})}{x+1-x} - \frac{\sqrt{x}(\sqrt{x+1}-\sqrt{x})}{x+1-x} \\ &= \sqrt{x}(\sqrt{x+1}+\sqrt{x}) - \sqrt{x}(\sqrt{x+1}-\sqrt{x}) \\ &= \sqrt{x}\sqrt{x+1}+x - \sqrt{x}\sqrt{x+1}+x = 2x \end{split}$$

252 **(a)** $-\sqrt{2}$

$$\begin{split} &\frac{1}{1+\sqrt{x}} + \frac{1}{1-\sqrt{x}} \\ &= \frac{1-\sqrt{x}}{(1+\sqrt{x})(1-\sqrt{x})} + \frac{1+\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})} \\ &= \frac{1-\sqrt{x}}{1-x} + \frac{1+\sqrt{x}}{1-x} = \frac{2}{1-x} \\ &x = \sqrt{2} + 1 \stackrel{\triangle}{=} \text{ 대입하면} \\ &\frac{2}{1-(\sqrt{2}+1)} = \frac{2}{\sqrt{2}} = -\sqrt{2} \end{split}$$

Ⅱ. 함수 39

$$\begin{split} & \textbf{254} \ \textcircled{3} \ \textbf{6+4\sqrt{2}} \\ & \frac{\sqrt{x}-1}{\sqrt{x}+1} + \frac{\sqrt{x}+1}{\sqrt{x}-1} \\ & = \frac{(\sqrt{x}-1)^2}{(\sqrt{x}+1)(\sqrt{x}-1)} + \frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)} \\ & = \frac{x-2\sqrt{x}+1}{x-1} + \frac{x+2\sqrt{x}+1}{x-1} = \frac{2(x+1)}{x-1} \\ & x = \sqrt{2}$$
를 대입하면

$$\frac{2(\sqrt{2}+1)}{\sqrt{2}-1} = \frac{2(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}$$
$$= \frac{2(2+2\sqrt{2}+1)}{2-1} = 6+4\sqrt{2}$$

261 **(a)**
$$\{x \mid x \ge 2\}$$

262 **(a)**
$$\left\{ x \mid x \ge -\frac{3}{2} \right\}$$

263 (a)
$$\{x \mid x \leq 2\}$$

264 (a)
$$\{x \mid x \leq 5\}$$

265 (a)
$$\{x \mid -2 \le x \le 2\}$$

40 정답과 풀이

 $y=\sqrt{x}$ 의 그래프는 오른쪽 그림과 같으 므로 x축에 대하여 대칭이동한 그래프의 식은

273

 $y = \sqrt{-2x}$ 의 그래프는 오른쪽 그림과 같으므로 x축에 대하여 대칭이동한 그래 프의 식은

274

000

276 **(a)** $y = \sqrt{3x-3} + 2$

 $y=\sqrt{3x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 2만큼 평행이동한 그래프의 식은

$$y-2=\sqrt{3(x-1)}$$
 : $y=\sqrt{3x-3}+2$

277 **a** $y = -\sqrt{5x-10}-4$

 $y=-\sqrt{5x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -4만큼 평행이동한 그래프의 식은

$$y+4 = -\sqrt{5(x-2)}$$
 $\therefore y = -\sqrt{5x-10}-4$

278 **a** $y = -\sqrt{-2x-6} + 5$

 $y=-\sqrt{-2x}$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 5만큼 평행이동한 그래프의 식은

$$y-5 = -\sqrt{-2(x+3)}$$
 : $y = -\sqrt{-2x-6}+5$

 $y=\sqrt{-(x+1)}+3$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 -1만큼 평행이동한 그래프의 식은

$$y+1=\sqrt{-\{(x+2)+1\}}+3$$
 $\therefore y=\sqrt{-x-3}+2$

280 **2** $y = -\sqrt{2x} + 7$

 $y=-\sqrt{2(x-1)}+4$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 3만큼 평행이동한 그래프의 식은

$$y-3=-\sqrt{2\{(x+1)-1\}}+4$$
 : $y=-\sqrt{2x}+7$

281 **(a)** $y = -\sqrt{-3x+9} - 1$

 $y = -\sqrt{-3x - 6} - 2$ 의 그래프를 x축의 방향으로 5만큼, y축의 방향으로 1만큼 평행이동한 그래프의 식은

$$y-1 = -\sqrt{-3(x-5)-6}-2$$
 $\therefore y = -\sqrt{-3x+9}-1$

282

정의역: {x|x≥-2}

치역: {y|y≥0}

 $y=\sqrt{x+2}$ 의 그래프는 $y=\sqrt{x}$ 의 그래프를 x축의 방향으로 -2만 큼 평행이동한 것이다.

283 🖹 y

정의역: $\{x | x \ge 0\}$ 치역: $\{y | y \le 3\}$

ol 그레ㅠ르 "츠이 바챠O크

 $y=-\sqrt{x}+3$ 의 그래프는 $y=-\sqrt{x}$ 의 그래프를 y축의 방향으로 3 만큼 평행이동한 것이다.

284 (a) $y = \sqrt{-3(x-2)} - 1$

정의역: $\{x \mid x \le 2\}$

치역: $\{y | y \ge -1\}$

 $y=\sqrt{-3(x-2)}-1$ 의 그래프는 $y=\sqrt{-3x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -1만큼 평행이동한 것이다.

285

정의역: $\{x \mid x \ge -1\}$

치역: $\{y | y \le 3\}$

 $y=-\sqrt{2(x+1)}+3$ 의 그래프는 $y=-\sqrt{2x}$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 3만큼 평행이동한 것이다.

I. 함수 **41**

20. 5. 27. 오후 4:44

 $y=-\sqrt{-(x-3)}-2$ 의 그래프는 $y=-\sqrt{-x}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 -2만큼 평행이동한 것이다.

 $y=\sqrt{2x-6}+1=\sqrt{2(x-3)}+1$ 이므로 $y=\sqrt{2x-6}+1$ 의 그래프 는 $y=\sqrt{2x}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 1만큼 평행이동한 것이다.

 $y = \sqrt{-2x+5} - 2 = \sqrt{-2\left(x-\frac{5}{2}\right)} - 2$ 이므로 $y = \sqrt{-2x+5} - 2$

의 그래프는 $y=\sqrt{-2x}$ 의 그래프를 x축의 방향으로 $\frac{5}{2}$ 만큼, y축의 방향으로 -2만큼 평행이동한 것이다.

 $y=-\sqrt{3x-3}-1=-\sqrt{3(x-1)}-1$ 이므로 $y=-\sqrt{3x-3}-1$ 의 그래프는 $y=-\sqrt{3x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -1만큼 평행이동한 것이다.

 $y=\sqrt{6-3x}+4=\sqrt{-3(x-2)}+4$ 이므로 $y=\sqrt{6-3x}+4$ 의 그래

프는 $y=\sqrt{-3x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 4만큼 평행이동한 것이다.

$$y=5-\sqrt{3-4x}=-2\sqrt{-\left(x-\frac{3}{4}\right)}+5$$
이므로 $y=5-\sqrt{3-4x}$ 의

그래프는 $y=-2\sqrt{-x}$ 의 그래프를 x축의 방향으로 $\frac{3}{4}$ 만큼, y축의 방향으로 5만큼 평행이동한 것이다.

주어진 그래프는 $y=\sqrt{ax}\;(a>0)$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 1만큼 평행이동한 것이므로 무리함수의 식을 다음과 같이 놓자.

$$y = \sqrt{a(x+2)} + 1$$

○의 그래프가 점 (0, 3)을 지나므로

$$3 = \sqrt{a(0+2)} + 1, \sqrt{2a} = 2$$

양변을 제곱하면 2a=4 $\therefore a=2$

a=2를 ①에 대입하면 $y=\sqrt{2(x+2)}+1=\sqrt{2x+4}+1$

$$a = 2, b = 4, c = 1$$

293 $\bigcirc a = -1, b = 1, c = -1$

주어진 그래프는 $y=\sqrt{ax}\;(a<0)$ 의 그래프를 x축의 방향으로 1 만큼, y축의 방향으로 -1만큼 평행이동한 것이므로 무리함수의 식을 다음과 같이 놓자.

$$y = \sqrt{a(x-1)} - 1$$

⊙의 그래프가 점 (0, 0)을 지나므로

$$0 = \sqrt{a(0-1)} - 1, \sqrt{-a} = 1$$

양변을 제곱하면 -a=1 $\therefore a=-1$

a=-1을 \bigcirc 에 대입하면 $y=\sqrt{-(x-1)}-1=\sqrt{-x+1}-1$

$$a = -1, b = 1, c = -1$$

294 (a) a=3, b=9, c=4

주어진 그래프는 $y=-\sqrt{ax}\,(a>0)$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 4만큼 평행이동한 것이므로 무리함수의 식을 다음과 같이 놓자.

$$y = -\sqrt{a(x+3)} + 4$$

 \bigcirc 의 그래프가 점 (0,1)을 지나므로

 $1 = -\sqrt{a(0+3)} + 4, \sqrt{3a} = 3$

양변을 제곱하면 3*a*=9 ∴ *a*=3

a=3을 ①에 대입하면 $y=-\sqrt{3(x+3)}+4=-\sqrt{3x+9}+4$

a = 3, b = 9, c = 4

42 정답과 풀이

人丁 ラト コ 2- ス イ O に ト は .indb 42

295 $\bigcirc a = -4, b = 16, c = 2$

주어진 그래프는 $y=-\sqrt{ax}~(a<0)$ 의 그래프를 x축의 방향으로 4만큼, y축의 방향으로 2만큼 평행이동한 것이므로 무리함수의 식을 다음과 같이 놓자.

$$y = -\sqrt{a(x-4)} + 2$$

 \bigcirc 의 그래프가 점 (0, -2)를 지나므로

$$-2 = -\sqrt{a(0-4)} + 2$$
, $\sqrt{-4a} = 4$

양변을 제곱하면

$$-4a=16$$
 $\therefore a=-4$

a=-4를 \bigcirc 에 대입하면

$$y = -\sqrt{-4(x-4)} + 2 = -\sqrt{-4x+16} + 2$$

a = -4, b = 16, c = 2

296 📵 최댓값: 2, 최솟값: -2

 $y = \sqrt{4x - 4} - 2$

$$=2\sqrt{x-1}-2$$

이므로 주어진 함수의 그래프는

 $y=2\sqrt{x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -2만큼 평행이동한 것이다.

따라서 정의역 $\{x|1\leq x\leq 5\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x=5일 때 2, 최솟값은 x=1일 때 -2이다.

297 📵 최댓값: 7, 최솟값: 5

 $y = \sqrt{-2x+2} + 3$

 $=\sqrt{-2(x-1)}+3$

이므로 주어진 함수의 그래프는 $y=\sqrt{-2x}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 3만큼 평행이동한 것이다.

따라서 정의역 $\{x \mid -7 \le x \le -1\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x = -7일 때 7, 최솟값은 x = -1일 때 5이다.

298 📵 최댓값: 3, 최솟값: 2

 $y = -\sqrt{-x-2} + 4$

 $=-\sqrt{-(x+2)}+4$

이므로 주어진 함수의 그래프는

 $y = -\sqrt{-x}$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 4

만큼 평행이동한 것이다.

따라서 정의역 $\{x | -6 \le x \le -3\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x = -3일 때 3, 최솟값은 x = -6일 때 2이다.

299 🔁 최댓값: -2, 최솟값: -5

 $y = -\sqrt{3x+6}-2$

$$=-\sqrt{3(x+2)}-2$$

이므로 주어진 함수의 그래프는 $y=-\sqrt{3x}$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 -2만큼 평행이동한 것이다.

따라서 정의역 $\{x \mid -2 \le x \le 1\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x=-2일 때 -2, 최솟값은 x=1일 때 -5이다

300 🔁 최댓값: 4, 최솟값: 2

 $y=5-\sqrt{3-x}$ $=-\sqrt{-(x-3)}+5$

이므로 주어진 함수의 그래프는 $y=-\sqrt{-x}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 5만큼 평행이동한 것이다.

따라서 정의역 $\{x \mid -6 \le x \le 2\}$ 에서 주어진 함수의 그래프는 위의 그림과 같으므로 최댓값은 x=2일 때 4, 최솟값은 x=-6일 때 2이다.

301 **(a)** $1 \le k < \frac{5}{4}$

무리함수 $y=\sqrt{x+1}$ 의 그래프는 오른쪽 그림과 같다.

(i) 직선 y=x+k가 점 (-1, 0)을 지날 때

0=-1+k $\therefore k=1$

(ii) 무리함수 $y=\sqrt{x+1}$ 의 그래프와 직선 y=x+k가 접할 때 $\sqrt{x+1}=x+k$ 의 양변을 제곱하여 정리하면 $x^2+(2k-1)x+k^2-1=0$

이 이차방정식의 판별식을 D라 하면

 $D = (2k-1)^2 - 4(k^2-1) = 0$

$$-4k+5=0$$
 : $k=\frac{5}{4}$

(i), (ii)에서 함수의 그래프와 직선이 서로 다른 두 점에서 만나도 록 하는 실수 k의 값의 범위는 $1 \le k < \frac{5}{4}$

302 **(a)** k < 2 또는 $k = \frac{9}{4}$

무리함수 $y=\sqrt{2-x}$ 의 그래프는 오른 쪽 그림과 같다.

(i) 직선 y=-x+k가 점 (2, 0)을지날 때

0 = -2 + k : k = 2

Ⅱ. 함수 43

(ii) 무리함수 $y=\sqrt{2-x}$ 의 그래프와 직선 y=-x+k가 접할 때 $\sqrt{2-x} = -x + k$ 의 양변을 제곱하여 정리하면

$$x^2 - (2k-1)x + k^2 - 2 = 0$$

이 이차방정식의 판별식을 D라 하면

$$D = (2k-1)^2 - 4(k^2-2) = 0$$

$$-4k+9=0$$
 : $k=\frac{9}{4}$

(i), (ii)에서 함수의 그래프와 직선이 한 점에서 만나도록 하는 실 수 k의 값의 범위는 k < 2 또는 $k = \frac{9}{4}$

무리함수 $y = -\sqrt{x+3}$ 의 그래프 는 오른쪽 그림과 같다.

무리함수 $y = -\sqrt{x+3}$ 의 그래프

와 직선 y = -x + k가 접할 때

 $-\sqrt{x+3} = -x + k$ 의 양변을 제

곱하여 정리하면

$$x^2 - (2k+1)x + k^2 - 3 = 0$$

이 이차방정식의 판별식을 D라 하면

$$D=(2k+1)^2-4(k^2-3)=0$$

$$4k+13=0$$
 $\therefore k=-\frac{13}{4}$

따라서 함수의 그래프와 직선이 만나지 않도록 하는 실수 k의 값 의 범위는 $k < -\frac{13}{4}$

무리함수 $y = -\sqrt{4-2x}$ 의 그래프는 오른쪽 그림과 같다.

무리함수 $y = -\sqrt{4-2x}$ 의 그래프와 직선 y=x+k가 접할 때

 $-\sqrt{4-2x}=x+k$ 의 양변을 제곱하

여 정리하면

 $x^2+2(k+1)x+k^2-4=0$

이 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = (k+1)^2 - (k^2-4) = 0$$

$$2k+5=0$$
 : $k=-\frac{5}{2}$

따라서 함수의 그래프와 직선이 만나도록 하는 실수 k의 값의 범 위는 $k \ge -\frac{5}{2}$

무리함수 $y=\sqrt{x-3}$ 의 치역이 $\{y|y\geq 0\}$ 이므로 역함수의 정의역 은 $\{x \mid x \ge 0\}$ 이다.

306 **(a)**
$$y = -\frac{1}{4}(x-1)^2 + \frac{3}{4}(x \ge 1)$$

무리함수 $y=\sqrt{-4x+3}+1$ 의 치역이 $\{y|y\geq 1\}$ 이므로 역함수의 정의역은 $\{x | x \ge 1\}$ 이다.

$$y = \sqrt{-4x+3} + 1$$
에서 $y - 1 = \sqrt{-4x+3}$

양변을 제곱하여 x = y에 대한 식으로 나타내면

$$(y-1)^2 = -4x+3$$
 $\therefore x = -\frac{1}{4}(y-1)^2 + \frac{3}{4}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = -\frac{1}{4}(x-1)^2 + \frac{3}{4}(x \ge 1)$$

307 **a** $y = \frac{1}{2}(x-2)^2 - 3(x \le 2)$

무리함수 $y = -\sqrt{2x+6} + 2$ 의 치역이 $\{y | y \le 2\}$ 이므로 역함수의 정의역은 $\{x \mid x \leq 2\}$ 이다.

$$y = -\sqrt{2x+6} + 2$$
에서 $y-2 = -\sqrt{2x+6}$

양변을 제곱하여 x를 y에 대한 식으로 나타내면

$$(y-2)^2 = 2x+6$$
 $\therefore x = \frac{1}{2}(y-2)^2 - 3$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = \frac{1}{2}(x-2)^2 - 3(x \le 2)$$

308 **a** $y = -\frac{1}{3}(x+5)^2 - \frac{2}{3}(x \le -5)$

무리함수 $y = -\sqrt{-3x-2} - 5$ 의 치역이 $\{y | y \le -5\}$ 이므로 역함 수의 정의역은 $\{x | x \le -5\}$ 이다.

$$y = -\sqrt{-3x-2} - 5$$
에서 $y + 5 = -\sqrt{-3x-2}$

양변을 제곱하여 x = y에 대한 식으로 나타내면

$$(y+5)^2 = -3x-2$$
 $\therefore x = -\frac{1}{3}(y+5)^2 - \frac{2}{3}$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = -\frac{1}{3}(x+5)^2 - \frac{2}{3}(x \le -5)$$

309 **a** $y = -\frac{1}{3}(x+4)^2 + 2(x \ge -4)$

무리함수 $y=\sqrt{6-3x}-4$ 의 치역이 $\{y|y\geq -4\}$ 이므로 역함수의 정의역은 $\{x \mid x \ge -4\}$ 이다.

$$y = \sqrt{6-3x} - 4$$
에서 $y + 4 = \sqrt{6-3x}$

양변을 제곱하여 x = y에 대한 식으로 나타내면

$$(y+4)^2 = 6-3x$$
 $\therefore x = -\frac{1}{3}(y+4)^2 + 2$

x와 y를 서로 바꾸어 역함수를 구하면

$$y = -\frac{1}{3}(x+4)^2 + 2(x \ge -4)$$

44 정답과 풀이

人丁ラトコ2-スイのロト b.indb 44

중단원 #기출#교과서)-

66쪽

314 11

310 ②

311 ②

312 -21 **313** ③

315 ③ 316 ④

317 $2\sqrt{2}$

310

$$\begin{split} &\frac{1}{\sqrt{x+1}+\sqrt{x}} + \frac{1}{\sqrt{x+1}-\sqrt{x}} \\ &= \frac{\sqrt{x+1}-\sqrt{x}}{(\sqrt{x+1}+\sqrt{x})(\sqrt{x+1}-\sqrt{x})} + \frac{\sqrt{x+1}+\sqrt{x}}{(\sqrt{x+1}-\sqrt{x})(\sqrt{x+1}+\sqrt{x})} \\ &= \frac{\sqrt{x+1}-\sqrt{x}}{x+1-x} + \frac{\sqrt{x+1}+\sqrt{x}}{x+1-x} \\ &= \sqrt{x+1}-\sqrt{x}+\sqrt{x+1}+\sqrt{x} \\ &= \sqrt{x+1}-\sqrt{x}+\sqrt{x+1}+\sqrt{x} \\ &= 2\sqrt{x+1} \\ &x=8 \frac{c}{2} \text{ 대입하면} \end{split}$$

311

 $2\sqrt{8+1}=6$

무리함수 $y = \sqrt{ax}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -2만큼 평행이동한 그래프의 식은

$$y+2=\sqrt{a(x-1)}$$

$$\therefore y = \sqrt{a(x-1)} - 2$$

이 그래프가 원점을 지나므로

$$0 = \sqrt{a(0-1)} - 2$$

$$\sqrt{-a}=2$$

양변을 제곱하면

-a=4

 $\therefore a = -4$

312

무리함수 $y=\sqrt{3x-2}$ 의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 1만큼 평행이동한 그래프의 식은

$$y-1=\sqrt{3(x+3)-2}$$

$$\therefore y = \sqrt{3x+7}+1$$

이 함수의 그래프를 y축에 대하여 대칭이동하면

$$y = \sqrt{-3x+7} + 1$$

따라서 a=-3, b=7, c=1이므로

abc = -21

313

주어진 그래프는 $y=\sqrt{-x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 1만큼 평행이동한 것이므로 구하는 무리함수의 식은

$$y-1=\sqrt{-(x-2)}$$

$$\therefore y = \sqrt{-x+2} + 1$$

따라서 a=2, b=1이므로

a+b=3

31

$$f(x) = \sqrt{2x+a} + 7 = \sqrt{2(x+\frac{a}{2})} + 7$$

이므로 함수 y=f(x)의 그래프는 오른쪽 그림과 같다.

즉, 함수f(x)는 $x=-\frac{a}{2}$ 에서 최솟값 7을

가지므로

$$-\frac{a}{2} = -2$$
, $m = 7$: $a = 4$, $m = 7$

 $\therefore a+m=11$

315

무리함수 $y=5-2\sqrt{1-x}$ 의 그래프는 오른쪽 그림과 같다.

(i) 직선 y = -x + k가 점

(0, 3)을 지날 때

3=0+k $\therefore k=3$

(ii) 직선 y=-x+k가 점

(1, 5)를 지날 때

5=-1+k $\therefore k=6$

(i), (ii)에서 함수의 그래프와 직선이 제1사분면에서 만나도록 하는 k의 값의 범위는 $3 < k \le 6$

따라서 구하는 정수 k는 4, 5, 6이므로 그 합은 4+5+6=15

316

무리함수 $y=-\sqrt{x-4}+1$ 의 치역이 $\{y|y\leq 1\}$ 이므로 역함수의 정의역은 $\{x|x\leq 1\}$ 이다.

 $y = -\sqrt{x-4} + 1$ 에서 $y-1 = -\sqrt{x-4}$

양변을 제곱하여 x를 y에 대한 식으로 나타내면

$$(y-1)^2 = x-4$$
 : $x = (y-1)^2 + 4$

x와 y를 서로 바꾸어 역함수를 구하면

$$y=(x-1)^2+4=x^2-2x+5 (x \le 1)$$

따라서 a=-2, b=5이므로 a+b=3

317

두 함수 y=f(x), y=g(x)는 서로 역함수이므로 두 함수의 그래 프는 직선 y=x에 대하여 대칭이다.

즉, 두 함수의 그래프의 교점은 함수 y=f(x)의 그래프와 직선 y=x의 교점과 같다.

 $\sqrt{4x-7}+1=x$ 에서 $\sqrt{4x-7}=x-1$

양변을 제곱하면 $4x-7=(x-1)^2$

 $x^{2}-6x+8=0, (x-2)(x-4)=0$

 $\therefore x=2 \stackrel{\leftarrow}{} = 1$

따라서 두 함수의 그래프의 두 교점의 좌표는 (2, 2), (4, 4)이므로 두 점 사이의 거리는

 $\sqrt{(4-2)^2+(4-2)^2}=2\sqrt{2}$

Ⅱ. 함수 45

▓ 경우의 수

6 경우의수

68 ~ 80쪽

001 🔁 11

합의 법칙에 의하여 구하는 경우의 수는 6+5=11

002 🗐 12

합의 법칙에 의하여 구하는 경우의 수는 4+3+5=12

003 🔁 23

합의 법칙에 의하여 구하는 경우의 수는 9+8+6=23

004 🗐 7

- (i) 4의 배수는 4, 8, 12, 16, 20의 5개
- (ii) 7의 배수는 7, 14의 2개
- (i), (ii)에서 합의 법칙에 의하여 구하는 경우의 수는 5+2=7

005 🔁 5

- (i) 눈의 수의 합이 3인 경우는 (1, 2), (2, 1)의 2가지
- (ii) 눈의 수의 합이 4인 경우는 (1, 3), (2, 2), (3, 1)의 3가지
- (i), (ii)에서 합의 법칙에 의하여 구하는 경우의 수는 2+3=5

006 🗐 12

따라서 구하는 경우의 수는 12이다.

007 🗐 12

$$A < \begin{matrix} B-C \\ C \\ \begin{matrix} C \end{matrix} \\ \begin{matrix} B \end{matrix} \\ B \end{matrix} \\ B < \begin{matrix} A-C \\ C \\ \begin{matrix} A \end{matrix} \\ C \end{matrix} \\ C < \begin{matrix} A \\ C \end{matrix} \\ C \end{vmatrix}$$

따라서 구하는 경우의 수는 12이다.

008 🔁 2

A, B, C 세 학생의 시험지를 각각 a, b, c라 A B C 하고, 자신의 것을 채점하지 않는 경우를 수형 b-c-a도를 이용하여 나타내면 오른쪽과 같으므로 구하는 경우의 수는 2이다.

009 🗐 9

A, B, C, D 네 학생의 장갑을 각각 a, b, c, d라 하고, 자신의 것을 착용하지 않는 경우를 수형도를 이용하여 나타내면 다음과 같으므로 구하는 경우의 수는 9이다.

010 🗐 6

- (i) *x*=1일 때, *y*≤3이므로 순서쌍 (*x*, *y*)는 (1, 1), (1, 2), (1, 3)의 3개
- (ii) x=2일 때, y≤2이므로 순서쌍 (x, y)는 (2, 1), (2, 2)의 2개
- (iii) x=3일 때, $y \le 1$ 이므로 순서쌍 (x, y)는 (3, 1)의 1개
- (i), (ii), (iii)에서 구하는 순서쌍 (x,y)의 개수는 3+2+1=6

011 🗐 7

- (i) *x*=1일 때, *y*≤5이므로 순서쌍 (*x*, *y*)는 (1, 1), (1, 2), (1, 3), (1, 4), (1, 5)의 5개
- (ii) x=2일 때, y≤2이므로 순서쌍 (x, y)는 (2, 1), (2, 2)의 2개
- (i), (ii)에서 구하는 순서쌍 (x, y)의 개수는 5+2=7

012 🗐 7

- (i) *y*=1일 때, *x*≤4이므로 순서쌍 (*x*, *y*)는 (1, 1), (2, 1), (3, 1), (4, 1)의 4개
- (ii) y=2일 때, $x \le \frac{5}{2}$ 이므로 순서쌍 (x, y)는 (1, 2), (2, 2)의 2개
- (iii) y=3일 때, $x \le 1$ 이므로 순서쌍 (x, y)는 (1, 3)의 1개
- (i), (ii), (iii)에서 구하는 순서쌍 (x, y)의 개수는 4+2+1=7

013 🗐 10

- (i) x=0일 때, y+z=3이므로 순서쌍 (x, y, z)는 (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0)의 4개
- (ii) x=1일 때, y+z=2이므로 순서쌍 (x, y, z)는 (1, 0, 2), (1, 1, 1), (1, 2, 0)의 3개
- (iii) x=2일 때, y+z=1이므로 순서쌍 (x, y, z)는 (2, 0, 1), (2, 1, 0)의 2개
- (iv) x=3일 때, y+z=0이므로 순서쌍 (x, y, z)는 (3, 0, 0)의 1개
- (i)~(iv)에서 구하는 순서쌍 (x, y, z)의 개수는 4+3+2+1=10

014 🔁 12

- (i) y=0일 때, x+z=5이므로 순서쌍 (x, y, z)는 (0, 0, 5), (1, 0, 4), (2, 0, 3), (3, 0, 2), (4, 0, 1), (5, 0, 0)의 6개
- (ii) y=1일 때, x+z=3이므로 순서쌍 (x, y, z)는 (0, 1, 3), (1, 1, 2), (2, 1, 1), (3, 1, 0)의 4개
- (iii) y=2일 때, x+z=1이므로 순서쌍 (x, y, z)는 (0, 2, 1), (1, 2, 0)의 2개
- (i), (ii), (iii)에서 구하는 순서쌍 (x,y,z)의 개수는 6+4+2=12

015 🗐 8

- (i) x=0일 때, y+3z=10이므로 순서쌍 (x, y, z)는 (0, 10, 0), (0, 7, 1), (0, 4, 2), (0, 1, 3)의 4개
- (ii) x=1일 때, y+3z=6이므로 순서쌍 (x, y, z)는 (1, 6, 0), (1, 3, 1), (1, 0, 2)의 3개
- (iii) x=2일 때, y+3z=2이므로 순서쌍 (x, y, z)는 (2, 2, 0)의 1개
- (i), (ii), (iii)에서 구하는 순서쌍 (x,y,z)의 개수는 4+3+1=8

016 🗐 32

곱의 법칙에 의하여 구하는 경우의 수는 $4 \times 8 = 32$

017 🔁 210

곱의 법칙에 의하여 구하는 경우의 수는 $5 \times 6 \times 7 = 210$

018 🔁 24

- (i) 주사위 한 개를 던질 때 일어나는 경우는 1, 2, 3, 4, 5, 6의 눈이 나오는 6가지
- (ii) 동전 한 개를 던질 때 일어나는 경우는 앞면, 뒷면이 나오는 2가지
- (i), (ii)에서 곱의 법칙에 의하여 구하는 경우의 수는 $6 \times 2 \times 2 = 24$

019 🗐 12

- (i) 십의 자리의 숫자가 짝수인 경우는 2, 4, 6, 8의 4가지
- (ii) 일의 자리의 숫자가 3의 배수인 경우는 3, 6, 9의 3가지
- (i), (ii)에서 곱의 법칙에 의하여 구하는 경우의 수는 $4 \times 3 = 12$

020 🔁 6

두 주머니 A, B에서 각각 꺼낸 두 공에 적힌 수의 곱이 홀수인 경우는 각 주머니에서 홀수가 적힌 공을 꺼내는 경우와 같다.

(i) 주머니 A에서 홀수가 적힌 공을 꺼내는 경우는 1, 3의 2가지

- (ii) 주머니 B에서 홀수가 적힌 공을 꺼내는 경우는 1, 3, 5의 3가지
- (i), (ii)에서 곱의 법칙에 의하여 구하는 경우의 수는 $2 \times 3 = 6$

021 🔁 6

 $A \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $2 \times 3 = 6$

022 🔁 8

- (i) A → B → D의 경로로 가는 경우의 수는 3×2=6
- (ii) $A \rightarrow D$ 의 경로로 가는 경우의 수는 2
- (i). (ii)에서 구하는 경우의 수는 6+2=8

023 🗐 10

- (i) $A \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $2 \times 2 = 4$
- (ii) $A \rightarrow C \rightarrow D$ 의 경로로 가는 경우의 수는 $3 \times 2 = 6$
- (i). (ii)에서 구하는 경우의 수는 4+6=10

024 🗐 31

- (i) $A \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $3 \times 1 = 3$
- (ii) A → C → D의 경로로 가는 경우의 수는 2×3=6
- (ii) A → B → C → D의 경로로 가는 경우의 수는3×2×3=18
- (iv) $A \rightarrow C \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $2 \times 2 \times 1 = 4$
- (i)~(iv)에서 구하는 경우의 수는 3+6+18+4=31

025 🖨 6

 $a,\,b$ 각각에 대하여 $x,\,y,\,z$ 중 하나가 곱해지므로 구하는 항의 개수는 $2\times 3=6$

026 🗐 9

x, y, z 각각에 대하여 p, q, r 중 하나가 곱해지므로 구하는 항의 개수는 $3 \times 3 = 9$

027 🔁 12

a, b 각각에 대하여 x, y 중 하나, p, q, r 중 하나가 곱해지므로 구하는 항의 개수는 $2 \times 2 \times 3 = 12$

028 🔁 15

 $144=2^4\times 3^2$ 이므로 144의 양의 약수의 개수는 (4+1)(2+1)=15

029 🗐 12

 $200=2^3 \times 5^2$ 이므로 200의 양의 약수의 개수는 (3+1)(2+1)=12

Ⅲ. 경우의 수 47

030 🗐 16

 $216=2^3 \times 3^3$ 이므로 216의 양의 약수의 개수는 (3+1)(3+1)=16

031 🔁 24

540=2²×3³×5이므로 540의 양의 약수의 개수는 (2+1)(3+1)(1+1)=24

032 🗐 108

- (i) B에 칠할 수 있는 색은 4가지
- (ii) A에 칠할 수 있는 색은 B에 칠한 색을 제외한 3가지
- (iii) C에 칠할 수 있는 색은 B에 칠한 색을 제외한 3가지
- (iv) D에 칠할 수 있는 색은 C에 칠한 색을 제외한 3가지
- (i)~(iv)에서 구하는 경우의 수는
- $4 \times 3 \times 3 \times 3 = 108$

033 🔁 48

- (i) D에 칠할 수 있는 색은 4가지
- (ii) A에 칠할 수 있는 색은 D에 칠한 색을 제외한 3가지
- (iii) B에 칠할 수 있는 색은 A와 D에 칠한 색을 제외한 2가지
- (iv) C에 칠할 수 있는 색은 B와 D에 칠한 색을 제외한 2가지
- (i)~(iv)에서 구하는 경우의 수는
- $4 \times 3 \times 2 \times 2 = 48$

034 🔁 48

- (i) A에 칠할 수 있는 색은 4가지
- (ii) B에 칠할 수 있는 색은 A에 칠한 색을 제외한 3가지
- (iii) C에 칠할 수 있는 색은 A와 B에 칠한 색을 제외한 2가지
- (iv) D에 칠할 수 있는 색은 A와 C에 칠한 색을 제외한 2가지
- (i)~(iv)에서 구하는 경우의 수는
- $4 \times 3 \times 2 \times 2 = 48$

035 🔁 72

- (i) B에 칠할 수 있는 색은 4가지
- (ii) C에 칠할 수 있는 색은 B에 칠한 색을 제외한 3가지
- (iii) D에 칠할 수 있는 색은 B와 C에 칠한 색을 제외한 2가지
- (iv) A에 칠할 수 있는 색은 B에 칠한 색을 제외한 3가지
- (i)~(iv)에서 구하는 경우의 수는
- $4 \times 3 \times 2 \times 3 = 72$

036 🔁 24

 $_{4}P_{3}=4\times3\times2=24$

037 🗐 360

 $_6P_4\!\!=\!6\!\times\!5\!\times\!4\!\times\!3\!\!=\!360$

038 🗐 120

 $_{5}P_{5} = 5 \times 4 \times 3 \times 2 \times 1 = 120$

039 🗐 1

040 🗐 1

041 🗐 720

 $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

042 🗐 144

 $4! \times 3! = (4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1) = 144$

043 🗐 840

$$\frac{7!}{3!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = 840$$

044 🗐 336

 $3! \times_{8} P_{2} = (3 \times 2 \times 1) \times (8 \times 7) = 336$

045 🔁 14400

 $_{6}P_{3} \times 5! = (6 \times 5 \times 4) \times (5 \times 4 \times 3 \times 2 \times 1) = 14400$

046 🔁 7

 $_{n}$ P₃=210 <math> <math>

047 🖨 5

 $_{n}$ P $_{n}$ =120에서 n!=5! $\therefore n$ =5

048 🖨 6

049 🔁 4

 $_{6}P_{r}=360=6\times5\times4\times3$ 이므로 r=4

050 🖨 0

051 🔁 2

 $_{5}P_{r} \times 3! = 5! \text{ MM } _{5}P_{r} = \frac{5!}{3!} = 5 \times 4$

 $\therefore r=2$

052 🖹 56

 $_{8}P_{2}=8\times7=56$

053 🗐 24

 $4! = 4 \times 3 \times 2 \times 1 = 24$

054 🔁 72

 $_{9}P_{2}=9\times 8=72$

055 🗐 60

 $_{5}P_{3}=5\times4\times3=60$

056 🗐 120

 $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

057 🗐 12

A를 회장으로 두고 나머지 4명 중에서 부회장 1명, 총무 1명을 뽑으면 되므로 구하는 경우의 수는

 $_{4}P_{2}=4\times3=12$

058 🔁 4

B를 의장, E를 서기로 두고 나머지 4명 중에서 부의장 1명을 뽑으면 되므로 구하는 경우의 수는

 $_{4}P_{1}=4$

059 🔁 20

c를 맨 앞에 두고 나머지 5개 중에서 2개를 택하여 일렬로 나열하면 되므로 구하는 경우의 수는

 $_{5}P_{2}=5\times4=20$

060 🔁 120

선생님을 맨 뒤에 두고 학생 6명 중에서 3명을 택하여 일렬로 나열하면 되므로 구하는 경우의 수는

 $_{6}P_{3}=6\times5\times4=120$

061 🗐 60

e를 양 끝에 두고 나머지 5개 중에서 3개를 택하여 일렬로 나열하면 되므로 구하는 경우의 수는

 $_{5}P_{3}=5\times4\times3=60$

062 🔁 48

(i) 백의 자리에는 0이 올 수 없으므로 백의 자리에 올 수 있는 숫자는 1, 2, 3, 4의 4개

- (ii) 십의 자리와 일의 자리에는 백의 자리에 온 숫자를 제외한 나 머지 4개 중에서 2개를 택하여 일렬로 나열하면 되므로 경우의 수는 $_4P_2$ = 4×3 =12
- (i), (ii)에서 구하는 자연수의 개수는
- $4 \times 12 = 48$

063 🔁 96

- (i) 천의 자리에는 0이 올 수 없으므로 천의 자리에 올 수 있는 숫자는 1, 2, 3, 4의 4개
- (ii) 백의 자리, 십의 자리, 일의 자리에는 천의 자리에 온 숫자를 제외한 나머지 4개 중에서 3개를 택하여 일렬로 나열하면 되므로 경우의 수는 $_4P_2=4\times3\times2=24$
- (i). (ii)에서 구하는 자연수의 개수는
- $4 \times 24 = 96$

064 🔁 36

- (i) 일의 자리에는 홀수가 와야 하므로 일의 자리에 올 수 있는 숫자는 1, 3의 2개
- (ii) 천의 자리에 올 수 있는 숫자는 0과 일의 자리에 온 숫자를 제 외한 나머지 3개 중에서 하나이므로 경우의 수는 3
- (iii) 백의 자리와 십의 자리에는 천의 자리와 일의 자리에 온 숫자를 제외한 나머지 3개 중에서 2개를 택하여 일렬로 나열하면 되므로 경우의 수는 $_{2}P_{9}=3\times2=6$
- (i), (ii), (iii)에서 구하는 홀수의 개수는
- $2 \times 3 \times 6 = 36$

065 🔁 30

(i) 일의 자리의 숫자가 0인 경우

백의 자리와 십의 자리에는 0을 제외한 나머지 4개 중에서 2개 를 택하여 일렬로 나열하면 되므로 경우의 수는

 $_{4}P_{2}=4\times3=12$

(ii) 일의 자리의 숫자가 2 또는 4인 경우

백의 자리에 올 수 있는 숫자는 0과 일의 자리에 온 숫자를 제외한 나머지 3개 중에서 하나이므로 경우의 수는 3

십의 자리에 올 수 있는 숫자는 백의 자리와 일의 자리에 온 숫자를 제외한 나머지 3개 중에서 하나이므로 경우의 수는 3 따라서 경우의 수는 $2 \times 3 \times 3 = 18$

(i), (ii)에서 구하는 짝수의 개수는

12+18=30

066 📵 10번째

- (i) a \square 꼴인 문자열의 개수는 $3! = 3 \times 2 \times 1 = 6$
- (ii) ba \square 꼴인 문자열의 개수는 $2! = 2 \times 1 = 2$
- (iii) bc 필인 문자열은 bcad, bcda이므로 bcda의 순서는 2번째
- (i), (ii), (iii)에서 bcda는 6+2+2=10(번째)에 나타난다.

Ⅲ. 경우의 수 49

067 **(a)** cdba

- (i) a \square 꼴인 문자열의 개수는 $3! = 3 \times 2 \times 1 = 6$
- (ii) b 필인 문자열의 개수는 $3! = 3 \times 2 \times 1 = 6$
- (iii) c 필인 문자열의 개수는 $3!=3\times2\times1=6$
- (i), (ii), (iii)에서 18번째에 오는 문자열은 c 필의 마지막 문자열이므로 cdba이다.

068 🗐 30

- (i) 1 \square 꼴인 자연수의 개수는 $4! = 4 \times 3 \times 2 \times 1 = 24$
- (ii) 21 □□□□ 꼴인 자연수의 개수는 3!=3×2×1=6
- (i), (ii)에서 23000보다 작은 자연수의 개수는 24+6=30

069 🔁 35412

- (i) 5 기계 꼴인 자연수의 개수는 $4!=4\times3\times2\times1=24$
- (ii) 4 필인 자연수의 개수는 $4! = 4 \times 3 \times 2 \times 1 = 24$
- (i), (ii)에서 40000보다 큰 자연수의 개수는 24+24=48이므로 50번째로 큰 수는 3□□□□ 꼴의 자연수 중에서 2번째로 큰 수 인 35412이다.

070 🔁 240

- (i) 부모님을 한 묶음으로 생각하여 5명을 일렬로 세우는 경우의 수는 5!=5×4×3×2×1=120
- (ii) 부모님끼리 자리를 바꾸는 경우의 수는 2!=2×1=2
- (i), (ii)에서 구하는 경우의 수는 120×2=240

071 🔁 48

- (i) 모음인 A, E를 한 묶음으로 생각하여 4개를 일렬로 나열하는 경우의 수는 $4!=4\times3\times2\times1=24$
- (ii) 모음끼리 자리를 바꾸는 경우의 수는 $2! = 2 \times 1 = 2$
- (i), (ii)에서 구하는 경우의 수는 24×2=48

072 🔁 144

- (i) 남학생을 한 묶음으로 생각하여 4명을 일렬로 세우는 경우의 수는 $4!=4\times3\times2\times1=24$
- (ii) 남학생끼리 자리를 바꾸는 경우의 수는 $3! = 3 \times 2 \times 1 = 6$
- (i), (ii)에서 구하는 경우의 수는 24×6=144

073 🗐 72

- (i) 어른 3명을 한 묶음, 아이 3명을 한 묶음으로 생각하여 두 묶음 이 일렬로 앉는 경우의 수는 2!=2×1=2
- (ii) 어른끼리 자리를 바꾸는 경우의 수는 $3! = 3 \times 2 \times 1 = 6$
- (iii) 아이끼리 자리를 바꾸는 경우의 수는 $3! = 3 \times 2 \times 1 = 6$
- (i), (ii), (iii)에서 구하는 경우의 수는 $2 \times 6 \times 6 = 72$

074 🗐 96

(i) 자음인 f, r, n, d를 한 묶음, 모음인 i, e를 한 묶음으로 생각하여 두 묶음을 일렬로 나열하는 경우의 수는 $2! = 2 \times 1 = 2$

- (ii) 자음끼리 자리를 바꾸는 경우의 수는 4!=4×3×2×1=24
- (iii) 모음끼리 자리를 바꾸는 경우의 수는 2!=2×1=2
- (i), (ii), (iii)에서 구하는 경우의 수는 2×24×2=96

075 🗐 72

- (i) 소설책과 만화책을 제외한 나머지 3종류의 책을 일렬로 꽂는 경우의 수는 $3!=3\times2\times1=6$
- (ii) ✓ 웹 ✓ 웹 ✓ 웹 ✓ 3종류의 책의 양 끝과 사이사이의 4개의 자리에 소설책과 만화 책을 꽂는 경우의 수는 ₄P₂=4×3=12
- (i), (ii)에서 구하는 경우의 수는 6×12=72

076 🔁 1440

- (i) 여학생 4명을 일렬로 세우는 경우의 수는 4!=4×3×2×1=24
- (i), (ii)에서 구하는 경우의 수는 24×60=1440

077 🔁 480

- (i) 자음인 b, c, d, f의 4개를 일렬로 나열하는 경우의 수는 $4! = 4 \times 3 \times 2 \times 1 = 24$
- $(ii) \qquad \qquad \lor \underbrace{b} \lor \underbrace{c} \lor \underbrace{d} \lor \underbrace{f} \lor$

 $b,\,c,\,d,\,f$ 의 양 끝과 사이사이의 5개의 자리에 모음인 $a,\,e$ 를 나열하는 경우의 수는 $_5\mathrm{P}_2=5\times4=20$

(i), (ii)에서 구하는 경우의 수는 24×20=480

078 🔁 72

- (i) 남예남예당예로 서는 경우 남학생의 자리에 3명을 일렬로 세우는 경우의 수는 3!=3×2×1=6 여학생의 자리에 3명을 일렬로 세우는 경우의 수는 3!=3×2×1=6 따라서 구하는 경우의 수는 6×6=36
- (ii) 예납예납예납으로 서는 경우 (i)과 같은 방법으로 하면 구하는 경우의 수는 36
- (i), (ii)에서 구하는 경우의 수는 36+36=72

079 🗐 1152

(i) 교환교환교환교환으로 꽂는 경우 교과서의 자리에 4권을 일렬로 꽂는 경우의 수는 4!=4×3×2×1=24 참고서의 자리에 4권을 일렬로 꽂는 경우의 수는 4!=4×3×2×1=24 따라서 구하는 경우의 수는 24×24=576

- (ii) 참교참교참교로 꽂는 경우 (i)과 같은 방법으로 하면 구하는 경우의 수는 576
- (i), (ii)에서 구하는 경우의 수는 576+576=1152

080 🗐 72

(i) 자 모 자 모 자 모로 나열하는 경우

자윾의 자리에 자음인 R, N, G의 3개를 일렬로 나열하는 경 우의 수는 $3! = 3 \times 2 \times 1 = 6$

모음의 자리에 모음인 O, A, E의 3개를 일렬로 나열하는 경우 의 수는 $3!=3\times2\times1=6$

따라서 구하는 경우의 수는 6×6=36

- (ii) 모자 모자 모자로 나열하는 경우 (i)과 같은 방법으로 하면 구하는 경우의 수는 36
- (i), (ii)에서 구하는 경우의 수는 36+36=72

081 🔁 24

- (i) 전체 6명의 학생 중에서 조장 1명, 부조장 1명을 뽑는 경우의 수는 $_{6}P_{2}=6\times5=30$
- (ii) 조장과 부조장을 모두 남학생으로만 뽑는 경우의 수는 $_{3}P_{2}=3\times2=6$
- (i), (ii)에서 구하는 경우의 수는 30-6=24

082 🔁 108

- (i) 5개의 문자를 일렬로 나열하는 경우의 수는 $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- (ii) 양 끝에 모음이 오도록 나열하는 경우의 수를 구해 보자. 양 끝에 모음인 a, e의 2개를 놓는 경우의 수는 $2! = 2 \times 1 = 2$

나머지 b, c, d의 3개를 두 모음 사이에 일렬로 나열하는 경우 의 수는 $3!=3\times2\times1=6$

따라서 양 끝에 모음이 오도록 나열하는 경우의 수는 $2 \times 6 = 12$

(i), (ii)에서 구하는 경우의 수는 120-12=108

083 🗐 432

- (i) 6개의 문자를 일렬로 나열하는 경우의 수는
- $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ (ii) 양 끝에 자음이 오도록 나열하는 경우의 수를 구해 보자.

양 끝에 자음인 s, r, c, h의 4개 중에서 2개를 뽑아 놓는 경우 의 수는 $_4P_2=4\times 3=12$

양 끝에 나열한 두 문자를 제외한 나머지 4개를 두 문자 사이 에 일렬로 나열하는 경우의 수는

 $4! = 4 \times 3 \times 2 \times 1 = 24$

따라서 양 끝에 자음이 오도록 나열하는 경우의 수는 $12 \times 24 = 288$

(i), (ii)에서 구하는 경우의 수는 720-288=432

084 🗐 576

- (i) 6개의 문자를 일렬로 나열하는 경우의 수는 $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$
- (ii) 자음이 이웃하지 않도록 나열하는 경우의 수를 구해 보자. 모음인 1. ㅜ. ㅡ의 3개를 일렬로 나열하는 경우의 수는 $3! = 3 \times 2 \times 1 = 6$

모음의 양 끝과 사이사이의 4개의 자리에 자음인 ㅇ, ㅌ, ㅅ을 일렬로 나열하는 경우의 수는 $_4P_3=4\times3\times2=24$ 따라서 자음이 이웃하지 않도록 나열하는 경우의 수는 $6 \times 24 = 144$

(i), (ii)에서 구하는 경우의 수는 720-144=576

085 🗐 6

$$_{4}C_{2} = \frac{_{4}P_{2}}{2!} = \frac{4 \times 3}{2 \times 1} = 6$$

086 🗐 1

087 🔁 1

088 🗐 7

$$_{7}C_{6} = _{7}C_{1} = 7$$

089 🗐 56

$$_{8}C_{5} = _{8}C_{3} = \frac{_{8}P_{3}}{3!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

090 $\bigcirc n = 6$

$$_{n}$$
C₃=20에서 $\frac{n(n-1)(n-2)}{3\times2\times1}$ =20이므로 $n(n-1)(n-2)=6\times5\times4$ $\therefore n=6$

091 $\bigcirc n=12$

$$_{n}C_{4} = _{n}C_{8}$$
에서 $n-4=8$ 이므로 $n=12$

$$_{11}C_r = _{11}C_{r-1}$$
에서 $11-r = r-1$ 이므로 $2r = 12$ $\therefore r = 6$

$$\begin{array}{l} {}_{7}\mathrm{C}_{4} + {}_{7}\mathrm{C}_{3} = {}_{n}\mathrm{C}_{4} \\ \mathrm{d} | \lambda | {}_{7}\mathrm{C}_{3} + {}_{7}\mathrm{C}_{3} = {}_{n}\mathrm{C}_{4} \\ 2 \times \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = \frac{n(n-1)(n-2)(n-3)}{4 \times 3 \times 2 \times 1} \\ n(n-1)(n-2)(n-3) = 8 \times 7 \times 6 \times 5 \\ \therefore n = 8 \end{array}$$

Ⅲ. 경우의 수 51

094 n=724

 $_{n}C_{5}=3!\times _{n}P_{4}$ 에서

$$\frac{n(n-1)(n-2)(n-3)(n-4)}{5 \times 4 \times 3 \times 2 \times 1}$$

 $=3\times2\times1\times n(n-1)(n-2)(n-3)$

$$n-4=720$$
 : $n=724$

095 🖨 21

$$_{7}C_{5} = _{7}C_{2} = \frac{7 \times 6}{2 \times 1} = 21$$

096 🔁 84

$$_{9}C_{3} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84$$

097 🗐 120

$$_{10}C_7 = _{10}C_3 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120$$

098 🗐 15

구하는 경우의 수는 6개의 문자 a, b, c, d, e, f 중에서 2개를 택하는 조합의 수와 같으므로

$$_{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

099 🗐 10

구하는 경우의 수는 5명의 남학생 중에서 3명을 뽑는 조합의 수와 가이므로

$$_{5}C_{3} = _{5}C_{2} = \frac{5 \times 4}{2 \times 1} = 10$$

100 🔁 18

- (i) 3가지 피자 중에서 2가지를 고르는 경우의 수는 ${}_{3}C_{2} = {}_{3}C_{1} = 3$
- (ii) 4가지 파스타 중에서 2가지를 고르는 경우의 수는

$$_{4}C_{2} = \frac{4 \times 3}{2 \times 1} = 6$$

(i), (ii)에서 구하는 경우의 수는

 $3 \times 6 = 18$

101 🔁 40

- (i) 배중이네 반 학생 4명 중에서 청소 봉사를 할 3명을 뽑는 경우 의 수는 $_4\mathrm{C}_3 = _4\mathrm{C}_1 = 4$
- (ii) 선희네 반 학생 5명 중에서 빨래 봉사를 할 2명을 뽑는 경우의

(i), (ii)에서 구하는 경우의 수는

$$4 \times 10 = 40$$

52 정답과 풀이

102 🗐 150

(i) 빵 5개 중에서 3개를 택하는 경우의 수는

$$_{5}C_{3} = _{5}C_{2} = \frac{5 \times 4}{2 \times 1} = 10$$

(ii) 음료 6잔 중에서 4잔을 택하는 경우의 수는

$$_{6}C_{4} = _{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

(i), (ii)에서 구하는 경우의 수는 10×15=150

103 🗐 525

(i) 중학생 6명 중에서 2명을 뽑는 경우의 수는

$$_{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

(ii) 고등학생 7명 중에서 3명을 뽑는 경우의 수는

$$_{7}C_{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

(i). (ii)에서 구하는 경우의 수는 15×35=525

104 🗐 1960

(i) 15개의 공 중에서 홀수가 적힌 공은 8개이므로 8개의 공 중에 서 3개를 택하는 경우의 수는

$$_{8}C_{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

(ii) 15개의 공 중에서 짝수가 적힌 공은 7개이므로 7개의 공 중에서 4개를 택하는 경우의 수는

$$_{7}C_{4} = _{7}C_{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

(i), (ii)에서 구하는 경우의 수는 56×35=1960

105 🗐 15

구하는 경우의 수는 특정한 남학생 1명을 이미 뽑았다고 생각하여 나머지 6명의 학생 중에서 4명을 뽑는 조합의 수와 같으므로

$$_{6}C_{4} = _{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

106 🗐 5

구하는 경우의 수는 A를 제외한 5개의 문자 중에서 4개를 뽑는 조합의 수와 같으므로 ${}_5C_4 = {}_5C_1 = 5$

107 😩 20

구하는 경우의 수는 흰 공 2개를 이미 꺼냈다고 생각하고 나머지 6 개의 공 중에서 3개를 꺼내는 조합의 수와 같으므로

$$_{6}C_{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$$

108 🗐 56

구하는 경우의 수는 장미 1송이와 백합 1송이를 이미 뽑았다고 생각하여 나머지 8송이 중에서 3송이를 뽑는 조합의 수와 같으므로

$$_{8}C_{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

109 🔁 210

구하는 경우의 수는 빨간 색 공 2개를 이미 꺼냈다고 생각하고, 보 라색 공 2개를 제외하여 나머지 10개의 공 중에서 4개의 공을 꺼 내는 조합의 수와 같으므로

$$_{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210$$

110 🔁 52

(i) 전체 8명의 학생 중에서 3명을 뽑는 경우의 수는

$$_{8}C_{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

(ii) 3명의 대표를 모두 2학년 학생으로만 뽑는 경우의 수는

$$_{4}C_{3}=_{4}C_{1}=4$$

(i), (ii)에서 구하는 경우의 수는 56-4=52

111 🔁 456

(i) 전체 11개의 자연수 중에서 5개를 택하는 경우의 수는

$$_{11}C_{5} = \frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} = 462$$

(ii) 5개의 자연수를 모두 홀수로만 뽑는 경우의 수는

$$_{6}C_{5}=_{6}C_{1}=6$$

(i), (ii)에서 구하는 경우의 수는 462-6=456

112 🗐 310

(i) 전체 11곳 중에서 4곳을 택하는 경우의 수는

$$_{^{11}}C_{_{4}} = \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1} = 330$$

(ii) 4곳을 모두 미술관으로만 택하는 경우의 수는

$$_{6}C_{4} = _{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

(iii) 4곳을 모두 박물관으로만 택하는 경우의 수는

$$_{5}C_{4}=_{5}C_{1}=5$$

(i), (ii), (iii)에서 구하는 경우의 수는 330-(15+5)=310

113 🗐 1440

(i) 검은 펜 4자루 중에서 2자루, 빨간 펜 5자루 중에서 2자루를 뽑는 경우의 수는

$$_{4}C_{2} \times _{5}C_{2} = \frac{4 \times 3}{2 \times 1} \times \frac{5 \times 4}{2 \times 1} = 60$$

(ii) 뽑은 4자루를 일렬로 나열하는 경우의 수는

 $4! = 4 \times 3 \times 2 \times 1 = 24$

(i), (ii)에서 구하는 경우의 수는 60×24=1440

114 🔁 64800

(i) 축구 선수 6명 중에서 4명, 농구 선수 4명 중에서 2명을 뽑는 경우의 수는

$$_{6}C_{4} \times _{4}C_{2} = _{6}C_{2} \times _{4}C_{2} = \frac{6 \times 5}{2 \times 1} \times \frac{4 \times 3}{2 \times 1} = 90$$

(ii) 뽑은 6명을 일렬로 세우는 경우의 수는

 $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

(i), (ii)에서 구하는 경우의 수는 90×720=64800

115 🔁 240

(i) 7개의 문자 중에서 a, c를 포함하여 4개를 뽑는 경우의 수는 a, c를 이미 뽑았다고 생각하여 나머지 5개의 문자 중에서 2개를 뽑는 조합의 수와 같으므로

$$_{5}C_{2} = \frac{5 \times 4}{2 \times 1} = 10$$

(ii) 뽑은 4개를 일렬로 나열하는 경우의 수는

 $4! = 4 \times 3 \times 2 \times 1 = 24$

(i), (ii)에서 구하는 경우의 수는 $10 \times 24 = 240$

116 🖨 15

구하는 직선의 개수는 6개의 점 중에서 2개를 택하는 조합의 수와 같으므로

$$_{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

117 🔁 20

구하는 삼각형의 개수는 6개의 점 중에서 3개를 택하는 조합의 수 와 같으므로

$$_{6}C_{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$$

118 📵 14

직선 l 위의 점 1개와 직선 m 위의 점 1개를 택하면 직선을 만들수 있으므로 그 경우의 수는

$$_{3}C_{1}\times_{4}C_{1}=3\times4=12$$

따라서 주어진 두 직선 l, m을 포함하면 구하는 직선의 개수는 12+2=14

119 🗐 18

직선 l 위의 점 2개와 직선 m 위의 점 2개를 택하면 사각형을 만 들 수 있으므로 구하는 사각형의 개수는

$$_{3}C_{2} \times _{4}C_{2} = _{3}C_{1} \times _{4}C_{2} = 3 \times \frac{4 \times 3}{2 \times 1} = 18$$

120 🗐 31

7개의 점 중에서 3개를 택하는 경우의 수는

$$_{7}C_{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

한 직선 위에 있는 4개의 점 중에서 3개를 택하는 경우의 수는 ${}_4\mathrm{C}_3 {=} {}_4\mathrm{C}_1 {=} 4$

따라서 한 직선 위에 있는 3개의 점으로는 삼각형을 만들 수 없으므로 구하는 삼각형의 개수는

$$35 - 4 = 31$$

Ⅲ. 경우의 수 53

121 🔁 72

9개의 점 중에서 3개를 택하는 경우의 수는

$$_{9}C_{3} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84$$

한 직선 위에 있는 4개의 점 중에서 3개를 택하는 경우의 수는 ${}_4\mathbf{C}_3 = {}_4\mathbf{C}_1 = 4$

따라서 한 직선 위에 있는 3개의 점으로는 삼각형을 만들 수 없으므로 구하는 삼각형의 개수는

 $84 - 4 \times 3 = 72$

122 🔁 30

3개의 평행선 중에서 2개를 택하고, 5개의 평행선 중에서 2개를 택하면 평행사변형을 만들 수 있으므로 구하는 사각형의 개수는

$$_{3}C_{2} \times _{5}C_{2} = _{3}C_{1} \times _{5}C_{2} = 3 \times \frac{5 \times 4}{2 \times 1} = 30$$

123 🗐 60

5개의 평행선 중에서 2개를 택하고, 4개의 평행선 중에서 2개를 택하면 평행사변형을 만들 수 있으므로 구하는 사각형의 개수는

$$_{5}C_{2}\times_{4}C_{2}=\frac{5\times4}{2\times1}\times\frac{4\times3}{2\times1}=60$$

중단원 #기출#교과서

80쪽

124 ② 125 15 126 ④ 127 1728 128 ② 129 60 130 ⑤ 131 54

124

- (i) x=1일 때, $2 \le y \le 4$ 이므로 순서쌍 (x, y)는 (1, 2), (1, 3), (1, 4)의 3개
- (ii) x=2일 때, 1≤y≤3이므로 순서쌍 (x, y)는 (2, 1), (2, 2), (2, 3)의 3개
- (iii) x=3일 때, $0 \le y \le 2$ 이므로 순서쌍 (x, y)는 (3, 1), (3, 2)의 2개
- (iv) x=4일 때, $-1 \le y \le 1$ 이므로 순서쌍 (x, y)는 (4, 1)의 1개
- $(i)\sim(iv)$ 에서 구하는 순서쌍 (x, y)의 개수는

3+3+2+1=9

125

- (i) $A \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $2 \times 2 = 4$
- (ii) $A \rightarrow C \rightarrow D$ 의 경로로 가는 경우의 수는 $1 \times 3 = 3$
- (ii) $A \to B \to C \to D$ 의 경로로 가는 경우의 수는 $2 \times 1 \times 3 = 6$
- (iv) $A \rightarrow C \rightarrow B \rightarrow D$ 의 경로로 가는 경우의 수는 $1 \times 1 \times 2 = 2$
- (i)~(iv)에서 구하는 경우의 수는 4+3+6+2=15

126

- (i) 남자 3명 중에서 2명을 뽑아 양 끝에 세우는 경우의 수는 $_{3}\mathrm{P}_{2}{=}3{\times}2{=}6$
- (ii) 나머지 5명을 (i)에서 세운 2명 사이에 한 줄로 세우는 경우의 수는 5!=5×4×3×2×1=120
- (i), (ii)에서 구하는 경우의 수는 6×120=720

127

- (i) 1반 학생 4명, 2반 학생 3명, 3반 학생 2명을 각각 한 묶음으로 생각하여 세 묶음이 일렬로 서는 경우의 수는 $3!=3\times2\times1=6$
- (ii) 1반 학생끼리 자리를 바꾸는 경우의 수는 $4!=4\times3\times2\times1=24$
- (iii) 2반 학생끼리 자리를 바꾸는 경우의 수는 $3!=3\times2\times1=6$
- (iv) 3반 학생끼리 자리를 바꾸는 경우의 수는 $2!=2\times 1=2$
- $(i)\sim(iv)$ 에서 구하는 경우의 수는 $6\times24\times6\times2=1728$

128

$$_{n}$$
P₂ $-_{7}$ C₂=21 에서 $n(n-1) - \frac{7 \times 6}{2 \times 1}$ =21
 $n(n-1) = 7 \times 6$ ∴ $n=7$

129

(i) 1학년 6명 중에서 4명을 뽑는 경우의 수는

$$_{6}C_{4} = _{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

(ii) 2학년 4명 중에서 3명을 뽑는 경우의 수는

$$_{4}C_{3}=_{4}C_{1}=4$$

(i), (ii)에서 구하는 경우의 수는 15×4=60

130

아홉 자리의 자연수이므로 맨 앞 자리의 숫자는 0이 될 수 없다.

$$1 \vee 1 \vee$$

따라서 위와 같이 6개의 1의 오른쪽 끝과 사이사이의 6개의 자리 중에서 3개의 자리를 택하여 0을 각각 넣으면 주어진 조건을 만족 시키는 아홉 자리의 자연수를 만들 수 있으므로 구하는 자연수의 개수는

$$_{6}C_{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$$

13

십이각형의 대각선의 개수는 12개의 꼭짓점에서 2개를 택하는 경 우의 수에서 변의 개수인 12를 뺀 것과 같으므로

$$_{12}C_2-12=\frac{12\times11}{2\times1}-12=54$$

人丁ラトコ2-スイのロト b.indb 54

9종 교교서 필수문제

1 집합			82 ~ 83쪽
1 3	2 ②	3 5	4 4
5 63	6 24	7 5	8 5
9 ②	10 ③	11 ①	12 8
(

1

 $\{3\}$ 은 집합 A의 원소가 아니므로 $\{3\} \not\in A$

2

 $A=\{0,\,1,\,2\},\,B=\{0,\,1,\,2,\,3,\,4\},\,C=\{0,\,1,\,2,\,4\}$ 이므로 $A\subset C\subset B$

3

A=B에서 $5\in B$ 이므로

 $a^2-4a=5$, $a^2-4a-5=0$

(a+1)(a-5)=0 ∴ a=-1 또는 a=5

(i) a = -1일 때

 $A = \{-4, -2, 5\}, B = \{2, 4, 5\}$ 이므로 $A \neq B$

(ii) a=5일 때

 $A = \{2, 4, 5\}, B = \{2, 4, 5\}$ 이므로 A = B

(i), (ii)에서 a=5

4

A= $\{1, 2, 3, \cdots, 8\}$ 이므로 2, 4는 반드시 원소로 갖고 7은 원소로 갖지 않는 집합 A의 부분집합 X의 개수는 2^{8-2-1} = 2^5 =32

5

 $A=\{1,\,2,\,3,\,\cdots,\,12\},\,B=\{2,\,4,\,6,\,8,\,10,\,12\}$ 이므로 집합 X는 집합 A의 부분집합 중 2, 4, 6, 8, 10, 12를 반드시 원 소로 갖는 집합에서 집합 B를 제외한 것과 같다. 따라서 집합 X의 개수는

10.6

 $2^{12-6}-1=64-1=63$

6

조건을 만족시키는 두 집합 A, B를 벤다이어 그램으로 나타내면 오른쪽 그림과 같으므로 B= $\{2, 4, 5, 6, 7\}$

따라서 집합 B의 모든 원소의 합은

2+4+5+6+7=24

7

 $x^2 - 4x - 12 \le 0$ 에서 $(x+2)(x-6) \le 0, -2 \le x \le 6$ $3x^2+x-24<0$ 에서

$$(x+3)(3x-8)<0, -3< x<\frac{8}{3}$$

$$\therefore A = \{x \mid -2 \le x \le 6\}, B = \{x \mid -3 < x < \frac{8}{3}\}$$

따라서 $A \cap B = \left\{ x \middle| -2 \le x < \frac{8}{3} \right\}$ 이므로 원소 중 정수인 것은 -2, -1, 0, 1, 2의 5개이다.

8

- ④ {x|x는 9의 양의 약수}={1, 3, 9}이므로 {2, 5}∩{1, 3, 9}=Ø
- ⑤ {x|x²-4x-5=0}={-1,5}이므로 {2,5}∩{-1,5}={5} 따라서 집합 {2,5}와 서로소가 아니다.

9

 $A=\{1,\,2,\,3,\,4\},\,B=\{1,\,3,\,5,\,7,\,9\}$ 이므로 $A-B=\{2,\,4\},\,B-A=\{5,\,7,\,9\}$ $\therefore (A-B)\cup (B-A)=\{2,\,4,\,5,\,7,\,9\}$ 따라서 구하는 모든 원소의 합은 2+4+5+7+9=27

10

 $A^{\mathcal{C}} - B^{\mathcal{C}} = \emptyset$ 이면 $A^{\mathcal{C}} \subset B^{\mathcal{C}}$ 이므로 $B \subset A$

- ③ $A \neq B$ 이므로 $A B \neq \emptyset$
- ④ $A \cup B = A$ 이므로 $(A \cup B) \subset A$

11

$$(B-A)^{c} \cap A = (B \cap A^{c})^{c} \cap A = (B^{c} \cup A) \cap A$$
$$= (B^{c} \cap A) \cup (A \cap A)$$
$$= (A-B) \cup A = A$$

12

우리 반 학생 전체의 집합을 U, 미술을 좋아하는 학생의 집합을 A, 음악을 좋아하는 학생의 집합을 B라 하면 $n(U)=30,\ n(A)=13,\ n(B)=17,\ n(A\cap B)=8$ $\therefore n(A\cup B)=n(A)+n(B)-n(A\cap B)$ =13+17-8=22

따라서 두 과목 중 어느 것도 좋아하지 않는 학생 수는 $n(A^{c} \cap B^{c}) = n((A \cup B)^{c}) = n(U) - n(A \cup B)$ = 30 - 22 = 8

9종 교과서 필수 문제 **55**

2 명제			84 ~ 85쪽
1 2	2 ③	3 ③	4 4
5 ⑤	6 <i>a</i> >1	7 5	8 ⑤
9 4	10 -10	11 ③	12 ②
1			

 $x^2 - 9x + 14 < 0$ 에서

(x-2)(x-7) < 0 : 2 < x < 7

따라서 조건 p의 진리집합은 {3, 4, 5, 6}이므로 원소의 개수는 4 이다.

- ㄱ. [반례] x=1. y=-2이면 x>y이지만 $x^2=1$. $y^2=4$ 이므로 $x^2 < y^2$
- ㄴ. [반례] x=-2, y=1이면 |x|>|y|이지만 x-y=-3<0이다.
- $= x^2 + y^2 \neq 0$ 이면 $x^2 \neq 0$ 또는 $y^2 \neq 0$ 이므로 $x \neq 0$ 또는 $y \neq 0$ 이다.

따라서 참인 명제는 ㄷ이다.

3

|x-3| < k에서 -k < x-3 < k

 $\therefore 3-k < x < 3+k$

두 조건 p, q의 진리집합을 각각 P, Q라 하면

 $P = \{x \mid 3 - k < x < 3 + k\}$

 $Q = \{x \mid -6 \le x \le 6\}$

명제 $p \longrightarrow q$ 가 참이 되려면

 $P \subset Q$ 이어야 하므로 오른쪽 그림

 $3-k \ge -6$, $3+k \le 6$

∴ *k*≤3

따라서 자연수 k는 1, 2, 3의 3개이다.

 $P \cap Q^{c} = P - Q = P$ 이므로 두 집합 P. Q를 벤다이어그램으로 나타내면 오른쪽 그림과 같다.

④ $Q \subset P^C$ 이므로 명제 $q \longrightarrow \sim p$ 는 항 상 참이다.

ㄱ. [반례] x=1이면 $x^2+2x=1^2+2\times 1=3$ 이다.

L. x = 0이면 $x^2 = 0$ 이므로 참이다.

x = -1이면 1 > -1이므로 참이다.

따라서 참인 명제는 ㄴ, ㄷ이다.

주어진 명제의 역은 ' $x \le 3$ 이면 x - a < 2이다.'

이때 x-a < 2에서 x < a+2

따라서 주어진 명제의 역이 참이려면

오른쪽 그림에서

a+2>3 $\therefore a>1$

주어진 명제가 참이므로 그 대우

x < 3이고 y < a이면 x + y < 8이다. '도 참이다.

x < 3, y < a에서 x + y < 3 + a이므로

 $3+a \le 8$ $\therefore a \le 5$

따라서 실수 a의 최댓값은 5이다.

8

- ㄱ. 명제 $\sim r \longrightarrow \sim p$ 가 참이므로 그 대우인 $p \longrightarrow r$ 도 참이다.
 - ∴ *P*⊂*R* (참)
- L. 두 명제 $q \longrightarrow p$ 와 $p \longrightarrow r$ 가 모두 참이므로 명제 $q \longrightarrow r$ 도 참이다.
 - ∴ Q⊂R (참)
- ㄷ. ㄱ, ㄴ에서 $R^{C} \subset P^{C}$, $R^{C} \subset Q^{C}$ 이고, $P^{C} \cap R^{C} = R^{C}$ 이므로 $(P^{\mathcal{C}} \cap R^{\mathcal{C}}) \subset Q^{\mathcal{C}}$ (참)

따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

 $q \Longrightarrow p$ 이므로 $\sim p \Longrightarrow \sim q$ 이다.

따라서 $\sim p$ 는 $\sim q$ 이기 위한 충분조건이다.

10

 $|x+3| \ge 7$ 에서 $x+3 \le -7$ 또는 $x+3 \ge 7$

∴ $x \le -10$ 또는 $x \ge 4$

두 조건 p, q의 진리집합을 각각 P, Q라 하면

 $P^{C} = \{x \mid -10 < x < 4\}, Q = \{x \mid x \ge a\}$

q가 $\sim p$ 이기 위한 필요조건이 되려

면 $P^{\mathcal{C}} \subset Q$ 이어야 하므로 오른쪽 그 림에서 $a \le -10$

따라서 실수 a의 최댓값은 -10이다.

11

- \neg . $|b| \ge -|b|$ 이므로 $|a| + |b| \ge |a| |b|$ (참)
- ㄴ. [반례] a=2, b=-1이면 |a+b|=1, |a-b|=3이므로 |a+b| < |a-b| (거짓)
- ㄷ. $(|a|+|b|)^2=a^2+2|a||b|+b^2\geq a^2+b^2$ 이므로 $|a| + |b| \ge \sqrt{a^2 + b^2}$ (참)

따라서 옳은 것은 ㄱ, ㄷ이다.

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} = \frac{10}{ab}$$

한편, a>0, b>0이므로 $a+b\geq 2\sqrt{ab}$

그런데 a+b=10이므로 $10 \ge 2\sqrt{ab}$

 $5 \ge \sqrt{ab}$, $25 \ge ab$ (단, 등호는 a = b일 때 성립)

$$\therefore \frac{10}{ab} \ge \frac{2}{5}$$

따라서 $\frac{1}{a} + \frac{1}{h}$ 의 최솟값은 $\frac{2}{5}$ 이다.

3 替令 86~87쪽 1 ① 2 12 3 ③ 4 2 5 ② 6 ① 7 ④ 8 4 9 501 10 ② 11 6 12 ⑤

1

 $f(1) = (1^2 = 5$ 로 나눈 나머지)=1

 $f(2) = (2^2 = 5$ 로 나눈 나머지)=4

 $f(3)=(3^2 = 5$ 로 나눈 나머지)=4

 $f(4) = (4^2$ 을 5로 나눈 나머지)=1

따라서 함수 f의 치역은 $\{1, 4\}$ 이므로 치역의 모든 원소의 합은 1+4=5

2

$$f(3) = 2 \times 3 + 5 = 11, f(\sqrt{5}) = (\sqrt{5})^2 - 4 = 1$$

 $\therefore f(3) + f(\sqrt{5}) = 11 + 1 = 12$

3

$$f(2)=g(2)$$
이므로 $12+b=0$ $\therefore b=-12$ $f(a)=g(a)$ 이므로 $6a-12=a^2-4$ $a^2-6a+8=0, (a-2)(a-4)=0$ $\therefore a=4(\because a>2)$ $\therefore a-b=4-(-12)=16$

4

함수 g는 항등함수이므로 g(1)=1, g(2)=2, g(3)=3

(카에서
$$f(1)=g(3)=3$$
 ····· \cap

h(2)=g(3)=3이고 함수 h는 상수함수이므로

$$h(1)=h(2)=h(3)=3$$

(내)에서 h(1)-g(1)=f(3)이므로

$$f(3)=3-1=2$$

 \bigcirc , \bigcirc 에서 f(1)=3, f(3)=2이고 함수 f는 일대일대응이므로

f(2) = 1

$$f(2)-g(2)+h(3)=1-2+3=2$$

5

a>0이므로 f가 일대일대응이 되려면 y=f(x)의 그래프가 두 점 (3,7), (6,13)을 지나야 한다.

즉,
$$f(3)=7$$
, $f(6)=13$ 이므로

$$3a+b=7$$
, $6a+b=13$

두 식을 연립하여 풀면 a=2, b=1

따라서
$$f(x)=2x+1$$
이므로 $f(4)=2\times 4+1=9$

6

$$((f \circ g) \circ h)(x) = (f \circ (g \circ h))(x)$$

= $f((g \circ h)(x))$
= $(g \circ h)(x) + 2$
= $-2x + a + 2$

따라서
$$-2x+a+2=bx+5$$
이므로

$$-2=b, a+2=5$$
 : $a=3, b=-2$

$$\therefore ab=3\times(-2)=-6$$

7

$$\begin{split} (f \circ g)(x) = & f(g(x)) = ag(x) + 2 \\ = & a(3ax - 4) + 2 = 3a^2x - 4a + 2 \\ (g \circ f)(x) = & g(f(x)) = 3af(x) - 4 \\ = & 3a(ax + 2) - 4 = 3a^2x + 6a - 4 \\ \text{이므로} f \circ g = & g \circ f 에서 - 4a + 2 = 6a - 4 \end{split}$$

$$10a=6$$
 $\therefore a=\frac{3}{5}$

따라서
$$f(x) = \frac{3}{5}x + 2$$
, $g(x) = \frac{9}{5}x - 4$ 이므로
$$(g \circ f)(5) = g(f(5)) = g(5) = 5$$

0

$$h(f(x))=g(x)$$
에서 $h(3x-1)=4-6x$ $3x-1=t$ 로 치환하면 $x=\frac{t+1}{3}$ 이므로

$$h(t)\!=\!4\!-\!6\!\times\!\frac{t\!+\!1}{3}\!=\!4\!-\!2(t\!+\!1)\!=\!-2t\!+\!2$$

$$t$$
를 x 로 바꾸어 나타내면 $h(x) = -2x + 2$

따라서
$$a=-2$$
, $b=2$ 이므로 $b-a=2-(-2)=4$

9

$$f^{1}(x) = f(x) = 3x$$

$$f^{2}(x) = f(f(x)) = 3f(x) = 3 \times 3x = 3^{2}x$$

$$f^{3}(x) = f(f^{2}(x)) = 3f^{2}(x) = 3 \times 3^{2}x = 3^{3}x$$

$$\vdots$$

$$f^{n}(x) = 3^{n}x$$

따라서
$$f^{500}(x) = 3^{500}x$$
이므로

$$f^{500}(3) = 3^{500} \times 3 = 3^{501}$$
 : $a = 501$

9종 교과서 필수 문제 57

$$f^{-1}(a)$$
 = $k(k$ 는 상수)라 하면 $g(f^{-1}(a))$ = 1에서 $g(k)$ = 1 $-k+5$ = 1 $\therefore k$ = 4 즉, $f^{-1}(a)$ = 4 이므로 $f(4)$ = a

즉,
$$f^{-1}(a) = 4$$
이므로 $f(4) = a$

$$\therefore a=2\times 4-7=1$$

$$g=f^{-1}$$
이므로

$$(g\circ f\circ g)(4)\!=\!(f^{-1}\circ f\circ f^{-1})(4)\!=\!f^{-1}(4)$$

$$f^{-1}(4) = k(k$$
는 상수)라 하면 $f(k) = 4$

$$\frac{1}{3}k+2=4, \frac{1}{3}k=2$$
 : $k=6$

$$\therefore (g \circ f \circ g)(4) = f^{-1}(4) = 6$$

12

함수 y=f(x)의 그래프와 그 역함수 $y=f^{-1}(x)$ 의 그래프는 직선 y=x에 대하여 대칭이므로 두 그래프의 교점의 좌표는 y=f(x)의 그래프와 직선 y=x의 교점의 좌표와 같다.

$$4x-9=x에서$$

$$3x=9$$
 $\therefore x=3$

따라서 두 그래프의 교점의 좌표는 (3, 3)이므로

$$a = 3, b = 3$$

$$\therefore ab=3\times3=9$$

4 유리함수

1 -8	2 ③	$3\frac{1}{3}$	4 ⑤
5 3	6 15	7 4	8 2
0 (1)	10 4	11 💿	12 🚳

주어진 식의 좌변을 간단히 하면

$$\begin{split} &\frac{1}{x(x-2)} + \frac{1}{(x-2)(x-4)} \\ &= \frac{1}{2} \left(\frac{1}{x-2} - \frac{1}{x} \right) + \frac{1}{2} \left(\frac{1}{x-4} - \frac{1}{x-2} \right) \\ &= \frac{1}{2} \left(\frac{1}{x-4} - \frac{1}{x} \right) \\ &= \frac{1}{2} \times \frac{x - (x-4)}{x(x-4)} \\ &= \frac{2}{x(x-4)} \\ & \text{따라서 } \frac{2}{x(x-4)} = \frac{b}{x(x+a)} \text{이므로 } a = -4, b = 2 \\ &\therefore ab = -4 \times 2 = -8 \end{split}$$

 $y=\frac{8}{3r-2}$ 에서 y의 값이 정수이려면

 $3x-2=\pm 1$, $3x-2=\pm 2$, $3x-2=\pm 4$, $3x-2=\pm 8$

이때 x의 값이 정수이려면

(i) 3x-2=1에서 x=1, 이때 y=8

(ii) 3x-2=-2에서 x=0, 이때 y=-4

(iii) 3x-2=4에서 x=2. 이때 y=2

(iv) 3x-2=-8에서 x=-2, 이때 y=-1

 $(i)\sim(iv)$ 에서 x좌표, y좌표가 모두 정수인 점은 (-2, -1),

(0, -4), (1, 8), (2, 2)의 4개이다.

 $y=\frac{1}{r}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 a만큼

$$y-a=\frac{1}{x-3} \qquad \therefore y=\frac{1}{x-3}+a$$

유리함수 $y = \frac{1}{x-3} + a$ 의 그래프가 제3사분면을 지나지 않으려면 오른쪽 그림과 같이 x=0에서의 함숫값이 0=보다 크거나 같아야 한다.

즉,
$$\frac{1}{-3} + a \ge 0$$
이어야 하므로

$$a \ge \frac{1}{3}$$

따라서 실수 a의 최솟값은 $\frac{1}{3}$ 이다.

$$y = \frac{2x+5}{2x+3} = \frac{(2x+3)+2}{2x+3} = \frac{2}{2(x+\frac{3}{2})} + 1 = \frac{1}{x+\frac{3}{2}} + 1$$

이므로 유리함수 $y=\frac{2x+5}{2x+3}$ 의 그래프는 $y=\frac{1}{x}$ 의 그래프를 x축의 방향으로 $-\frac{3}{2}$

만큼, y축의 방향으로 1만큼 평행이동한

④
$$x=-1$$
을 대입하면 $y=\frac{-2+5}{-2+3}=3$

이므로 그래프는 점 (-1, 3)을 지난다. 따라서 옳지 않은 것은 ⑤이다.

$$f(x) = \frac{4x-3}{x+a} = \frac{4(x+a)-4a-3}{x+a} = \frac{-4a-3}{x+a} + 4$$

이므로 유리함수 y=f(x)의 그래프의 점근선의 방정식은

$$x=-a, y=4 \qquad \cdots$$

$$g(x)\!=\!\!\frac{bx\!+\!2}{x\!-\!1}\!=\!\frac{b(x\!-\!1)\!+\!b\!+\!2}{x\!-\!1}\!=\!\frac{b\!+\!2}{x\!-\!1}\!+\!b$$

이므로 유리함수 y=g(x)의 그래프의 점근선의 방정식은

$$x=1, y=b$$

 \bigcirc , ©이 서로 같으므로 a=-1, b=4

$$a+b=-1+4=3$$

6

$$y = \frac{-3x+5}{x-1} = \frac{-3(x-1)+2}{x-1} = \frac{2}{x-1} - 3$$

이므로 유리함수 $y=\frac{-3x+5}{x-1}$ 의 그래프의 점근선의 방정식은

$$x=1, y=-3 \cdots \bigcirc$$

$$y = \frac{4x+1}{2x+4} = \frac{2(2x+4)-7}{2x+4} = -\frac{7}{2(x+2)} + 2$$

이므로 유리함수 $y=\frac{4x+1}{2x+4}$ 의 그래프의 점근선의 방정식은

$$x=-2, y=2 \cdots \bigcirc$$

따라서 ①, ⓒ으로 둘러싸인 도형은 오른쪽

그림과 같으므로 구하는 넓이는

$$\{1\!-\!(-2)\}\!\times\!\{2\!-\!(-3)\}$$

$$=3 \times 5 = 15$$

7

$$y = \frac{4x+a}{x+2} = \frac{4(x+2)+a-8}{x+2} = \frac{a-8}{x+2} + 4$$

이므로 유리함수 $y=\frac{a-8}{x+2}+4$ 의 그래프를 x축의 방향으로 b만

큼, y축의 방향으로 c만큼 평행이동한 그래프의 식은

$$y-c = \frac{a-8}{(x-b)+2} + 4$$
 $\therefore y = \frac{a-8}{x-b+2} + c + 4$

이 함수의 그래프가 유리함수 $y=\frac{2}{r}$ 의 그래프와 일치하므로

$$a-8=2, -b+2=0, c+4=0$$

$$a=10, b=2, c=-4$$

a-b+c=10-2-4=4

c

$$y \! = \! \frac{bx \! + \! 3}{x \! - \! a} \! = \! \frac{b(x \! - \! a) \! + \! ab \! + \! 3}{x \! - \! a} \! = \! \frac{ab \! + \! 3}{x \! - \! a} \! + \! b$$

이므로 유리함수 $y = \frac{bx+3}{x-a}$ 의 그래프의 점근선의 방정식은

 $r=a \ u=b$

따라서 두 점근선의 교점 (a, b)가 두 직선 y=x-6, y=-x+2의 교점이다.

즉, b=a-6, b=-a+2이므로 두 식을 연립하여 풀면

a=4, b=-2

b-a=-2-4=-6

9

주어진 유리함수의 그래프의 점근선의 방정식이 x=1, y=5이므로 함수의 식을 다음과 같이 놓자.

$$y = \frac{k}{x-1} + 5 (k \neq 0)$$

 \bigcirc 의 그래프가 점 (0,1)을 지나므로

$$1 = \frac{k}{-1} + 5$$
 $\therefore k = 4$

k=4를 \bigcirc 에 대입하면

$$y = \frac{4}{x-1} + 5 = \frac{5x-1}{x-1}$$

따라서 a=5, b=-1, c=-1이므로

$$a+b+c=5-1-1=3$$

10

$$y = \frac{-2x+a}{x+1} = \frac{-2(x+1)+a+2}{x+1} = \frac{a+2}{x+1} - 2$$

이고, a는 양수이므로 a+2>0

즉, 정의역 $\{x | 0 \le x \le 3\}$ 에서 함수

$$y = \frac{-2x + a}{x + 1}$$
의 그래프는 오른쪽 그림

과 같다

x=3일 때 최솟값은 -1이므로

$$-1 = \frac{-6+a}{3+1}$$
, $-4 = -6+a$

 $\therefore a = 2$

따라서 주어진 함수는 $y=\frac{-2x+2}{x+1}$ 이고, x=0일 때 최댓값은 b

이므:

$$b = \frac{0+2}{0+1} = 2$$

$$\therefore ab = 2 \times 2 = 2$$

1

 $f(x) = \frac{ax-2}{2x+1}$, $g(x) = \frac{x+b}{3-2x}$ 라 하면 두 함수의 그래프가 직선

y=x에 대하여 대칭이므로 두 함수는 서로 역함수이다.

$$y = \frac{ax-2}{2x+1}$$
에서 x 를 y 에 대한 식으로 나타내면

$$y(2x+1)=ax-2, 2xy+y=ax-2$$

$$(2y-a)x = -y-2$$

$$\therefore x = \frac{-y-2}{2y-a}$$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-x-2}{2x-a} = \frac{x+2}{a-2x}$$

 $f^{-1}=g$ 이어야 하므로

$$\frac{x+2}{a-2x} = \frac{x+b}{3-2x}$$
 : $a=3, b=2$

$$a+b=3+2=5$$

9종 교과서 필수 문제 **59**

20. 5. 27. 오후 4:44

함수 f(x)가 정의역의 모든 원소 x에 대하여 $(f \circ f)(x) = x$ 를 만족시키므로 $f = f^{-1}$ 이어야 한다.

 $y=\frac{ax}{x+2}$ 로 놓고 x를 y에 대한 식으로 나타내면

y(x+2) = ax, xy + 2y = ax

$$(y-a)x = -2y$$
 $\therefore x = \frac{-2y}{y-a}$

x와 y를 서로 바꾸어 역함수를 구하면

$$f^{-1}(x) = \frac{-2x}{x-a}$$

 $f=f^{-1}$ 이어야 하므로

$$\frac{ax}{x+2} = \frac{-2x}{x-a} \qquad \therefore a = -2$$

5 무리함수

90 ~ 91쪽

1 4

11 (3, 3)

5 −1

6 제2사분면 **7** ⑤

8
$$\left(-\frac{8}{3}, 0\right)$$

9 ⑤

10 ③

12 ④

1

$$\frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} = \frac{(\sqrt{x+1} + \sqrt{x-1})^2}{(\sqrt{x+1} - \sqrt{x-1})(\sqrt{x+1} + \sqrt{x-1})}$$

$$= \frac{x+1+2\sqrt{(x+1)(x-1)} + x-1}{x+1-(x-1)}$$

$$= \frac{2x+2\sqrt{x^2-1}}{2} = x+\sqrt{x^2-1}$$

 $x=\sqrt{2}$ 를 대입하면

$$\frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} = x + \sqrt{x^2 - 1}$$

$$= \sqrt{2} + \sqrt{2-1} = \sqrt{2} + 1$$

2

$$(g \circ (f \circ g)^{-1} \circ g)(6) = (g \circ g^{-1} \circ f^{-1} \circ g)(6)$$

= $(f^{-1} \circ g)(6) = f^{-1}(g(6))$
= $f^{-1}(6)$

 $f^{-1}(6) = k(k$ 는 상수)라 하면 f(k) = 6이므로

$$\frac{k+3}{k-2}$$
=6, $k+3$ =6(k -2)

5k=15 $\therefore k=3$

$$\therefore (g \circ (f \circ g)^{-1} \circ g)(6) = f^{-1}(6) = 3$$

3

 $y=\sqrt{ax}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -1만큼 평행이동하면

$$y-(-1) = \sqrt{a(x-2)}$$
 : $y = \sqrt{a(x-2)} - 1$

이 함수의 그래프를 x축에 대하여 대칭이동하면

$$-y = \sqrt{a(x-2)} - 1$$
 : $y = -\sqrt{a(x-2)} + 1$

이 함수의 그래프가 점 (7, -4)를 지나므로

$$-4 = -\sqrt{a(7-2)} + 1, \sqrt{5a} = 5$$

양변을 제곱하면

$$5a=25$$
 $\therefore a=5$

4

ㄱ. $y=2-\sqrt{5-x}=-\sqrt{-(x-5)}+2$ 이므로 무리함수 $y=-\sqrt{-x}$ 의 그래프를 x축의 방향으로 5만큼, y축의 방향으로 2만큼 평행이동한 것이다. (거짓)

 $y=2-\sqrt{5-x}$ 에 y=0을 대입하면

$$0=2-\sqrt{5-x}, \sqrt{5-x}=2$$

양변을 제곱하면

$$5-x=4$$
 $\therefore x=1$

따라서 그래프가 x축과 만나는 점은 (1, 0)이다. (참)

 $\mathbf{r}. y = 2 - \sqrt{5 - x}$ 의 그래프는 오른쪽

그림과 같으므로 제2사분면을 지나

지 않는다. (참)

따라서 옳은 것은 ㄴ, ㄷ이다.

_

 $f(x) = \sqrt{-2x+a} + b$ 의 그래프는 $y = \sqrt{-2x}$ 의 그래프를 평행이동한 것이고, 정의역이 $\{x | x \le 4\}$, 치역이 $\{y | y \ge -3\}$ 이므로 오른쪽 그림과 같아야 한다

$$f(x) = \sqrt{-2(x-4)} - 3 = \sqrt{-2x+8} - 3$$

$$f(2) = \sqrt{-4+8} - 3 = 2 - 3 = -1$$

6

$$y = \frac{ax+b}{x+c} = \frac{a(x+c)+b-ac}{x+c} = \frac{b-ac}{x+c} + a$$

이므로 유리함수 $y = \frac{ax+b}{x+c}$ 의 그래프의 점근선의 방정식은

x=-c, y=a

주어진 그래프에서 -c < 0. a < 0이므로

a < 0, c > 0

또한 주어진 그래프에서 b-ac<0, 즉 b<ac이고 \bigcirc 에서 ac<0이므로 b<0 ····· \bigcirc

한편, $y = \sqrt{ax+b} + c = \sqrt{a(x+\frac{b}{a})} + c$

이고 ①, ⓒ에서 a<0, $-\frac{b}{a}$ <0, c>0

이므로 무리함수 $y=\sqrt{ax+b}+c$ 의 그래 프는 오른쪽 그림과 같다.

따라서 그래프가 지나는 사분면은 제2사분면이다.

20. 5. 27. 오후 4:44

두 무리함수 $y=\sqrt{x+3}-2$, $y=\sqrt{x+3}+1$ 의 그래프와 두 직선 x=-2, x=2는 다음 그림과 같다.

이때 색칠한 두 부분의 넓이는 서로 같으므로 구하는 도형의 넓이는 직사각형 ABCD의 넓이와 같다.

8

주어진 그래프는 $y=a\sqrt{x}$ (a>0)의 그래프를 x축의 방향으로 -3만큼, y축의 방향으로 -1만큼 평행이동한 것이므로 무리함수 의 식을 다음과 같이 놓자.

$$y-(-1)=a\sqrt{x-(-3)}$$

$$\therefore y = a\sqrt{x+3} - 1$$

□의 그래프가 점 (0, 2)를 지나므로

$$2 = a\sqrt{0+3} - 1, \sqrt{3}a = 3$$

양변을 제곱하면

$$3a^2 = 9$$
, $a^2 = 3$

$$\therefore a = \sqrt{3} (:: a > 0)$$

 $a=\sqrt{3}$ 을 \bigcirc 에 대입하면

$$y = \sqrt{3(x+3)} - 1$$

이때 y=0을 대입하면

$$0 = \sqrt{3(x+3)} - 1, \sqrt{3(x+3)} = 1$$

양변을 제곱하면

$$3(x+3)=1, x+3=\frac{1}{3}$$
 $\therefore x=-\frac{8}{3}$

따라서 구하는 점의 좌표는 $\left(-\frac{8}{3}, 0\right)$ 이다.

Q

 $y = k - \sqrt{4 - x} = -\sqrt{-(x - 4)} + k$

이고, $-5 \le x \le 3$ 에서

 $y=k-\sqrt{4-x}$ 의 최댓값이 1이므

로 주어진 함수의 그래프는 오른

쪽 그림과 같다.

즉, 점 (3, 1)을 지나야 하므로

 $1=k-\sqrt{4-3}$ $\therefore k=2$

즉, 주어진 함수의 그래프의 식은 $y=2-\sqrt{4-x}$ 이고, x=-5일 때 최소이므로

$$y=2-\sqrt{4-(-5)}=-1$$

따라서 구하는 최솟값은 -1이다.

10

두 집합 A, B에 대하여 $n(A\cap B)=2$ 를 만족시키려면 함수 $y=\sqrt{3x+6}=\sqrt{3(x+2)}$ 의 그래프와 직선 y=x+k가 서로 다른 두 점에서 만나야 한다.

(i) 직선
$$y=x+k$$
가 점 (-2, 0)을 지날 때

$$0=-2+k$$
 $\therefore k=2$

$$x^2 + (2k-3)x + k^2 - 6 = 0$$

이 이차방정식의 판별식을 D라 하면

$$D=(2k-3)^2-4(k^2-6)=0$$

$$-12k+33=0$$
 $\therefore k=\frac{11}{4}$

(i), (ii)에서 함수의 그래프와 직선이 서로 다른 두 점에서 만나도록 하는 실수 k의 값의 범위는

$$2 \le k < \frac{11}{4}$$

11

두 함수 f(x), g(x)에 대하여 $(f \circ g)(x) = x$ 가 성립하므로 두 함수는 서로 역함수이다.

즉, 두 함수 y=f(x), y=g(x)의 그래프는 직선 y=x에 대하여 대칭이므로 두 함수의 그래프의 교점 P는 직선 y=x 위에 있다.

$$\sqrt{2x-5}+2=x$$
에서 $\sqrt{2x-5}=x-2$

양변을 제곱하면

$$2x-5=(x-2)^2$$
, $x^2-6x+9=0$

$$(x-3)^2 = 0$$
 : $x=3$

점 P는 직선 y=x 위의 점이므로 y=3

따라서 점 P의 좌표는 (3, 3)이다.

12

함수 y=f(x)의 그래프가 점 (2,3)을 지나므로 f(2)=3에서 $\sqrt{2a+b}=3$

양변을 제곱하면 2*a*+*b*=9 ····· □

함수 $y=f^{-1}(x)$ 의 그래프가 점 (2,3)을 지나므로 $f^{-1}(2)=3$

즉, f(3) = 2이므로 $\sqrt{3a+b} = 2$

양변을 제곱하면 3a+b=4 ····· ①

①, ⓒ을 연립하여 풀면

a = -5, b = 19

따라서 $f(x) = \sqrt{-5x + 19}$ 이므로 $f^{-1}(4) = k(k$ 는 상수)라 하면

f(k) = 4에서 $\sqrt{-5k+19} = 4$

양변을 제곱하면 -5k+19=16

 $5k=3, k=\frac{3}{5}$ $\therefore f^{-1}(4)=\frac{3}{5}$

9종 교과서 필수 문제 61

6 3우의수 92~93쪽 16 24 3 ④ 4 ③ 5 ① 6 dbaec 7 ③ 8 120 9 ④ 10 ② 11 7 12 45

1

꼭짓점 A에서 출발하여 모서리를 따라 꼭 짓점 G까지 최단 거리로 가는 경로를 수 형도로 나타내면 오른쪽과 같으므로 구하 는 경우의 수는 6이다.

$$A \left\langle \begin{array}{c} C - G \\ F - G \\ C - G \\ H - G \\ E \left\langle \begin{array}{c} F - G \\ H - G \\ \end{array} \right. \right.$$

2

이차방정식 $x^2-ax+4b=0$ 이 실근을 가지므로 판별식을 D라 하면 $D=(-a)^2-4\times 1\times 4b\geq 0$ $\therefore a^2\geq 16b$

- (i) b=1이면 $a^2 \ge 16$ 이므로 a의 값이 될 수 있는 수는 4, 5, 6의 3개
- (ii) b=2이면 $a^2 \ge 32$ 이므로 a의 값이 될 수 있는 수는 6의 1개
- (i), (ii)에서 구하는 경우의 수는 3+1=4

3

- (i) 나오는 두 눈의 수가 모두 홀수인 경우 3×3=9
- (ii) 나오는 두 눈의 수가 모두 짝수인 경우 $3 \times 3 = 9$
- (i), (ii)에서 구하는 경우의 수는 9+9=18

4

 $360=2^3\times3^2\times5$ 이므로 360의 양의 약수 중에서 3의 배수는 $2^3\times3\times5$ 의 양의 약수에 각각 3을 곱한 것이다.

따라서 구하는 경우의 수는 $2^3 \times 3 \times 5$ 의 양의 약수의 개수와 같으 $^{\Box 2}$

 $(3+1)(1+1)(1+1)=4\times2\times2=16$

(ii) 일의 자리의 숫자가 5인 경우

따라서 경우의 수는 $4 \times 4 = 16$

5

- (i) 일의 자리의 숫자가 0인 경우 백의 자리와 십의 자리에는 0을 제외한 나머지 5개 중에서 2개 를 택하여 일렬로 나열하면 되므로 구하는 경우의 수는 ${}_5P_2{=}5{ imes}4{=}20$
- 백의 자리에 올 수 있는 숫자는 0, 5를 제외한 나머지 4개 중에서 하나이므로 경우의 수는 4 십의 자리에 올 수 있는 숫자는 백의 자리에 온 숫자와 5를 제외한 나머지 4개 중에서 하나이므로 경우의 수는 4

(i), (ii)에서 구하는 5의 배수의 개수는 20+16=36

6

- (i) a 필인 문자열의 개수는 $4!=4\times3\times2\times1=24$
- (ii) b 필인 문자열의 개수는 $4! = 4 \times 3 \times 2 \times 1 = 24$
- (iii) c 꼴인 문자열의 개수는 $4!=4\times3\times2\times1=24$
- (iv) da \square 필인 문자열의 개수는 $3! = 3 \times 2 \times 1 = 6$
- $(i)\sim(iv)$ 에서 24+24+24+6=78이므로 79번째에 오는 문자열은 dbace, 80번째에 오는 문자열은 dbaec이다.

7

- (i) l, a, n, d의 4개의 문자 중에서 2개를 택하여 i와 s 사이에 놓 는 경우의 수는 $_{_4P_2=4\times 3=12}$
- (ii) i와 s의 자리를 바꾸는 경우의 수는 2!=2×1=2
- (iii) i□□s를 한 묶음으로 생각하여 나머지 2개의 문자와 일렬로 나열하는 경우의 수는 3!=3×2×1=6
- (i), (ii), (iii)에서 구하는 경우의 수는 $12 \times 2 \times 6 = 144$

8

구하는 경우의 수는 먼저 빈 의자 5개를 놓고, 다음 그림과 같이 5개의 의자 양 끝과 사이사이의 6개의 자리에 3명이 앉는 경우의수와 같다.

따라서 구하는 경우의 수는 $_6\mathrm{P}_3{=}6{\times}5{\times}4{=}120$

9

$${}_{n}C_{n-r} = {}_{n}C_{r}$$
이고 ${}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!}$ 이므로 (개), (나)에서

 $35 = \frac{210}{r!}, r! = 6 = 3 \times 2 \times 1$

 $\therefore r=3$

(카에서 $_{n}P_{3}$ =210이므로

 $n(n-1)(n-2) = 7 \times 6 \times 5$ $\therefore n = 1$

n+r=7+3=10

구하는 경우의 수는 원소 a를 이미 뽑았다고 생각하여 나머지 7개의 원소 중에서 4개를 뽑는 조합의 수와 같으므로

$$_{7}C_{4} = _{7}C_{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

11

(i) 전체 10명의 학생 중에서 3명을 뽑는 경우의 수는

$$_{_{10}}C_{_{3}} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120$$

- (ii) 2학년 학생을 n명이라 하면 3명의 대표를 모두 2학년 학생으로만 뽑는 경우의 수는 ${}_n\mathbf{C}_3$
- (i), (ii)에서 3명의 대표를 1학년 학생이 적어도 1명 포함되도록 뽑는 경우의 수는

$$120 - {}_{n}C_{3}$$

즉, 120-, C3=85이므로

$$_{n}C_{3}=35, \frac{n(n-1)(n-2)}{3\times2\times1}=35$$

 $n(n-1)(n-2)=7\times 6\times 5$ $\therefore n=7$

따라서 이 동아리의 2학년 학생은 7명이다.

12

오른쪽 그림과 같이 주어진 평행선들을 이 용하여 평행사변형을 만들 수 있는 부분은 색칠한(i), (ii), (iii)의 세 부분이다.

(i) 4개의 평행선 중에서 2개를 택하고 3개의 평행선 중에서 2개를 택하면 평행사 변형을 만들 수 있으므로 그 개수는

$$_4C_2\!\times_3\!C_2\!\!=_4\!C_2\!\times_3\!C_1\!\!=\!\!\frac{4\!\times\!3}{2\!\times\!1}\!\times\!3\!=\!18$$

(ii) 4개의 평행선 중에서 2개를 택하고 3개의 평행선 중에서 2개를 택하면 평행사변형을 만들 수 있으므로 그 개수는

$$_{4}C_{2}\!\times_{3}\!C_{2}\!\!=_{4}\!C_{2}\!\times_{3}\!C_{1}\!\!=\!\!\frac{4\!\times\!3}{2\!\times\!1}\!\times\!3\!=\!18$$

(iii) 3개의 평행선 중에서 2개를 택하고 다른 3개의 평행선 중에서 2개를 택하면 평행사변형을 만들 수 있으므로 그 개수는

$$_{3}C_{2} \times _{3}C_{2} = _{3}C_{1} \times _{3}C_{1} = 3 \times 3 = 9$$

(i), (ii), (iii)에서 구하는 평행사변형의 개수는

18+18+9=45

20. 5. 27. 오후 4:

MEMO MEMO

A T 市 ト つ 2 - 本 1 o c ト 出 indb 64 20. 5. 27. 오후 4:44