ระบบการเข้า-ออกอาคารด้วยการแสกนใบหน้า เพื่อเข้าปรึกษาอาจารย์ของนักศึกษาวิศวรรมคอมพิวเตอร์ ภายในห้องพักอาจารย์ โดยใช้ Raspberry pi

เนื่องจากการที่จะเข้าไปยังห้องพักอาจารย์จำเป็นจะต้องมีการนัดอาจารย์ล่วงหน้าก่อนเข้าปรึกษาปัญหา ทาง นักศึกษาจึงได้ทำการคิดระบบการเข้าออก อาคารด้วยการแสกนใบหน้า โดยจะมีการสร้างระบบการนัดอาจารย์ ขึ้นมาด้วยเว็บแอพลิเคชัน ซึ่งผู้ที่จะเข้าปรึกษาอาจารย์จำเป็นต้องทำการสมัคร และทำการแสกนใบเพื่อยืนยัน ตัวตนให้สามารถเข้า - ออกห้องพักครูในช่วงเวลาที่มีการนัดได้ ระบบนี้จะช่วยจัดสรรการปรึกษาระหว่างนักศึกษา และอาจารย์เป็นระบบมากยิ่งขึ้น พร้อมช่วยป้องกันทรัพย์สินภายในห้องพักสูญหายได้

ประโยชน์

- 1 .เพื่อให้การปรึกษาระหว่างนักศึกษา และอาจารย์เป็นระบบมากยิ่งขึ้น
- 2. เพิ่มความปลอดภัยในการชีวิต และทรัพย์สินภายในห้องพักอาจารย์ อาคาร 3

ขอบเขตระบบ

อาจารย์คณะวิศวกรรมคอมพิวเตอร์ นักศึกษา และบุคลากรของมหาวิทยาลัยเทคโนโลยีราชมงคล ขอนแก่น

รูปแบบการใช้งานของระบบ

- 1.ทำการสมัครเข้าไปยังเว็บแอพลิเคชัน กรอกชื่อ และใส่รูปภาพหน้าตามจำนวนที่กำหนดไว้
- 2.หากต้องการที่จะปรึกษาให้เข้าสู่ระบบ แล้วทำการเลือกอาจารย์ที่ต้องการจะปรึกษา
- 3.กรอกเรื่องที่ต้องการที่จะปรึกษา พร้อมเลือกเวลาที่ต้องการ
- 4.ระบบจะแสดงช่องทางการติดต่ออาจารย์ เพื่อที่จะให้อาจารย์พิจารณา ทำการยืนยันช่วงเวลาที่นักศึกษาต้องการ ปรึกษา
- 5.หากมาตามเวลา และอาจารย์อยู่ในห้องประตูจะเปิดออกทันที แต่ถ้าอาจารย์ไม่อยู่จะปรากฏช่องทางการติดต่อ อาจารย์ เพื่อพิจารณาการเข้าปรึกษาอีกครั้งหนึ่ง

การออกแบบ จะแบ่งออกเป็น 2 ส่วน คือ

- 1. ระบบแสกนใบหน้า เพื่อใช้ในการปลดล็อคห้องพักอาจารย์(hardware)
- 2. ระบบการเก็บข้อมูลของอาจารย์ นักศึกษา บุคลากร คำร้องนักศึกษา และจัดการการเข้าปรึกษาอาจารย์ ผ่านเว็บแอพลิเคชัน (software)

1) ระบบแสกนใบหน้า เพื่อใช้ในการปลดล็อคห้องพักอาจารย์(hardware)

ระบบจะจะทำการดึงข้อมูลการปรึกษาระหว่างอาจารย์ และนักศึกษาภายในวันนั้นมาเก็บไว้ เมื่อถึงเวลาจะทำให้ สามารถตรวจสอบได้ทันที สำหรับระบบการแสกนยืนยันด้วยตน จะใช้ภาษา Python ร่วมกับ OpenCV เพื่อใช้ใน การเรียนรู้และจดจำใบหน้า ซึ่ง OpenCV เป็นไลบรารี ที่ใช้ในการแสดงผลแบบเรียลไทม์ มักจะใช้ในการเรียนรู้เชิง ลึก (Deep Learning)

ลักษณะของการทำงาน

ทำการดึงข้อมูลจากส่วนเก็บข้อมูลได้แก่ ชื่ออาจารย์ นักศึกษา เวลาการนัด พร้อมชุดรูปภาพสำหรับการเทรนการ จดจำหน้าตา สำหรับวันนั้นมาเก็บไว้ เพื่อทำการตรวจสอบเงื่อนไขในการเข้าปรึกษาอาจารย์

เงื่อนไขสำหรับการเข้า – ออกห้องพักอาจารย์

นักศึกษานัดอาจารย์ ightarrow ทำการตรวจสอบใบหน้า ightarrow ตรวจสอบว่ามีการนัดหรือไม่ ightarrow อนุญาติ / ไม่อนุญาตเข้า ห้องพักครู ightarrow ส่งแจ้งเตือนไปยังอาจารย์ กรณีอนุญาติ

กรณีเป็นบุคลากรอื่น ที่ยังไม่เคยบันทึกข้อมูล จะต้องทำบันทึกใบหน้าเพื่อให้สามารถเข้าไปยังห้องพักอาจารย์ได้ จะเป็นระบบใช้ Rasberry pi ในการประมวลผล ซึ่งจะมีการเชื่อมต่อกันอยู่ทั้งหมด 4 ส่วนดังนี้

1.กล้องบันทึกวิดิโอ

จะเป็นการบันทึกวิดิโอในการรักษาความปลอดภัย เป็นการบันทึกตลอด 24 ชั่วโมง คล้ายกับกล้องวงจร ปิด โดยจะทำการบันทึกไว้ยังเว็บเบราว์เซอร์

2.กล้องสำหรับยืนยันตัวตน

จะเป็นกล้องสำหรับการใช้งาน จดจำใบหน้า (face recognition) ซึ่งข้อมูลหน้าตาจะถูกดึงมาจากส่วน การเก็บข้อมูลของอาจารย์ นักศึกษา บุคลากร คำร้องนักศึกษา และจัดการการเข้าปรึกษาอาจารย์ ผ่าน เว็บแอพลิเคชัน

3.จอภาพ

จะแสดงหน้าตาผู้ทำการแสกน หลังจากนั้นจะแสดงช่องทางการติดต่ออาจารย์ ที่ได้บันทึกไว้ในระบบ ให้แก่นักศึกษา เพื่อใช้กรณีที่อาจารย์ไม่อยู่

4.กลอนประตูไฟฟ้า

ทำการปลดล็อคเมื่อเข้าเงื่อนไขการเข้าปรึกษาอาจารย์

อ้างอิง

<u>ระบบจดจำใบหน้า และระบบยืนยันตัวตนด้วยกล้อง</u> เป็นโปรเจคที่ประสบปัญหาเกี่ยวกับแสงซึ่งอาจจะต้องมีการ จัดกล้องให้สามารถลดแสงรบกวนให้ดียิ่งขึ้น

ระบบบันทึกการปฏิบัติงานออนไลน์ ด้วยใบหน้า เป็นโปรเจคที่ใช้ทดลองโดยใช้ภาพทั้งหมด 5 ภาพ ต่อคนสำหรับ การเทรน โดยจะเป็นการทดสอบพนักงานจำนวน 10 คน ในระยะห่างระหว่าง 25 และ 45 ซึ่งมีความแม่นยำอยู่ที่ 84 % ใช้เว็บแคมในการตรวจสอบ

โปรเจคยังประสบปัญหาในเรื่องของความสว่าง ความรวดเร็วในการเชื่อมต่อเว็บไซต์ และมีขอเสนอแนะในเรื่องของ การเพิ่มความแม่นยำ โดยการแสกนหน้าในรูปแบบ 3 มิติ

<u>การพัฒนาระบบเปิดประตูด้วยระบบจดจำใบหน้า</u> เป็นโปรเจคที่ใช้ภาพของผู้ใช้งานทั้งหมด 30 ภาพต่อคน โดยใช้ กลุ่มตัวอย่างทั้งหมด 25 คน จากการประเมินพบกว่าความแม่นยำของการเทียบจากความคิดเห็นจะอยู่ที่ 4.30 จาก 5 ซึ่งโปรเจคนี้ใช้ camera module ในการตรวจสอบ

โปรเจคยังประสบปัญหาในเรื่อของสภาพแสง และปัญหาของการโฟกัสใบหน้าที่แม่นยำที่สุดจะต้องน้อยกว่า 50 เซน หากเยอะกว่านี้ ความแม่นยำจะลดลง

<u>เทคนิคการเลือกเลนส์</u> เลือกเลนส์อาจจะส่งผลต่อระยะการโฟกัสได้ การใช้วัด Camera Module ส่วนใหญ่วิดิโอ จะมีขนาดอยู่ที่ 1080p 30fps หรือ 720p 60fps และขนาดของเลนส์จะอยู่ที่ 9 mm เป็นลักษณ์ของเลนส์มุมแคบ fixed-focus ตัวอย่าง Camera Module

2) ระบบการเก็บข้อมูลของอาจารย์ นักศึกษา บุคลากร คำร้องนักศึกษา(hardware)

ระบบนี้จะเก็บข้อมูลของอาจารย์ นักศึกษา บุคลากร คำร้องนักศึกษา(hardware) ในรูปแบบของ ฐานข้อมูล ซึ่งจะ ใช้ Raspberry Pi หรืออาจใช้ VPS(Virtual Private Server) สำหรับการสร้างเว็บแอพลิเคชัน ด้วยภาษา Python

อ้างอิง

Build a Python Web Server with Flask จะเป็นวิธีในการสร้าง Python Webserver โดยใช้ Raspberry pi หรือ VPS(Virtual Private Server) เป็น server โดยข้อดีของการสร้างเป็นเว็บแอพลิเคชัน คือสามารถที่จะตอบ โต้กับผู้ใช้งานได้ เข้าถึงได้ทั้งคอมพิวเตอร์ สมาร์ทโฟน และอุปกรณ์อื่นๆโดยที่ ไม่คำเป็นต้องสร้างแอพลิเคชัน เพื่อให้ชัพพอร์ตการทำงานในหลายเพลตฟอร์ม

ระบบการเข้าปรึกษาอาจารย์ผ่าน เว็บแอพลิเคชัน (software)

1. ระบบของอาจารย์

- 1.1 สามารถดูคำรองในการเข้าปรึกษาอาจารย์ของนักศึกษา ภายในคำร้องจะประกอบด้วย ใบหน้า ชื่อนักศึกษา วัตถุประสงค์ในการเข้าปรึกษา ช่วงเวลาในการเข้าปรึกษา เพื่อใช้ในการอนุมัติการเข้าออกห้องในช่วงเวลานั้นๆได้
- 1.2 สามารถเพิ่ม ลบ แก้ไขข้อมูลการติดต่อของอาจารย์ได้

2. ระบบของนักศึกษา

- 2.1 สามารถตรวจสอบการเข้า-ออกของอาจารย์ที่จะเข้าปรึกษาได้
- 2.2 สามารถดูข้อมูลช่วงเวลาการนัดของนักศึกษาอื่นๆได้
- 2.3 สามารถ เพิ่มคำร้องในการเข้าปรึกษาอาจารย์ได้

3. ผู้ดูแลระบบ

- 3.1 สามารถเพิ่ม ลบ แก้ไขข้อมูล อาจารย์ นักศึกษาได้
- 3.2 สามารถเข้าดูข้อมูลใบหน้าบุคลากรที่ยังไม่เคยบันทึกได้
- 3.3 เข้าถึงวิดิโอที่บันทึกกรณีที่เกิดเหตุ ฉุกเฉิน เช่น ทรัพย์สินภายในห้องพักครูเสียหาย