PREGLED FORMULA IZ FINANSIJSKE MATEMATIKE

S A D R Ž A J:

1	Dekurzivna i anticipativna kamatna stopa	1
	DEKURZIVNO RAČUNANJE KAMATE	1
2.	Elementi računa vezanog za jednu glavnicu	1
3.	Račun uloga	2
4.	Periodične isplate (Račun rente)	5
5.	Amortizacija zajma	9
6.	Zajmovi podijeljeni na obveznice	16
7.	Lutrijski zajam	19
8.	Konverzija zajma	20
9.	Zaključivanje zajmova	21
١٥.	Šira primjena ekvivalentne kamatne stope	24
	ANTICIPATIVNO RAČUNANJE KAMATE	26
ll.	Elementi računa vezanog za jedan ulog	26
12.	Račun uloga	27
L 3.	Periodične isplate (Račun rente)	28
L4.	Amortizacija zajma	29
	Literatura	31

1. DEKURZIVNA I ANTICIPATIVNA KAMATNA STOPA

a) Na bazi poznate anticipativne kamatne stope, ekvivalentna dekurzivna kamatna stopa je:

$$p = \frac{100 \ \widetilde{u}}{100 - \widetilde{u}}$$

b) Na bazi poznate dekurzivne kamatne stope, ekvivalentna anticipativna kamatna stopa je:

$$\widetilde{\mathbf{u}} = \frac{100 \text{ p}}{100 + \text{p}}$$

DEKURZIVNO RAČUNANJE KAMATE

- 2. ELEMENTI RAČUNA VEZANOG ZA JEDNU GLAVNICU
- 2.1. Konačna vrijednost: a) $K_n = K \cdot r^n = K \cdot I_p^n$

b)
$$K_{nm} = K \cdot I_{p/m}^{nm}$$

2.2. Početna vrijednost: a) $K=K_n \cdot v^n = K_n \cdot II_p^n$

b)
$$K=K_{nm} \cdot II_{p/m}^{nm}$$

- 2.3. Kamata: $I_n = K_n K = K(I_p^n 1) = K_n (1 II_p^n)$
- 2.4. Kamatna stopa:
 - a) relativna: $p' = \frac{p}{m}$
 - b) konformna (ekvivalentna):

$$c = loo (\frac{m}{\sqrt{r-1}})$$

c) interkalarna:
$$p_i = \frac{p}{m} (1 + III_{p/m}^{m-1} - m)$$

d) redovna + interkalarna:
$$p_s = \frac{p}{m} (1 + IIII_{P/m}^{m-1})$$

2.5. Srednji rok:
$$n_1$$
 n_2 n_3 n_4 n_5 n_5

2.6. Srednja kamatna stopa:

- 2.7. Primjena dekurzivnog i diskontnog faktora u procentnom i prostom kamatnom računu
 - a) $G+P=G \cdot I_p^1$
 - b) $G+K=G \cdot I_p^1$,
 - c) $G-P=G\cdot II_{\widetilde{i}}^{1}$
 - d) $G-K=G \cdot II_{\widetilde{u}}^1$

3. RAČUN ULOGA

3.1. KONAČNA VRIJEDNOST ULOGA

3.1.1. Jednaki ulozi - period ulaganja i obračuna kamate isti

$$K_n = u \cdot \frac{r(r^n-1)}{r-1} = u \cdot III_p^n$$

$$K_n' = u \cdot \frac{r^{n-1}}{r-1} = u \cdot (1 + III_p^{n-1})$$

c)
$$K_n = K_n' \cdot r = K_n' \cdot I_p^1$$

3.1.1.1. Ulozi odložene realizacije

$$K_{n/m} = u \cdot III_p^n \cdot I_p^{m-1} = u \cdot (1+III_p^{n-1}) \cdot I_p^m$$

3.1.1.2. Period ukamaćenja veći od posljednjeg u tablicama složenih kamata

$$III_{p}^{n} = III_{p}^{k} + III_{p}^{n-k} \cdot I_{p}^{k} = III_{p}^{k} \cdot I_{p}^{n-k} + III_{p}^{n-k}$$

$$III_{p}^{n} = \frac{100+p}{p} (I_{p}^{k} \cdot I_{p}^{n-k} - 1)$$

- 3.1.2. Jednaki ulozi ulaganja češće od obračunavanja kamate
 - a) anticipativni ulozi

$$a_1) K_{mn} = u \cdot III_c^{mn} = u \cdot \frac{r_1(r_1^{mn}-1)}{r_1 - 1}$$

$$a_2$$
) $K_{mn} = u \left[m + \frac{p(m+1)}{200} \right] \cdot (1 + III_p^{n-1})$

b) dekurzivni ulozi

$$b_1$$
) $K'_{mn} = u \frac{r_1^{mn} - 1}{r_1 - 1} = u (1 + III_c^{mn-1})$

$$b_2$$
) $K_{mn}^{,} = u \left[m + \frac{p(m-1)}{200} \right] (1 + III_p^{n-1})$

- 3.1.3. Jednaki ulozi ulaganje rjeđe od obračunavanja kamate
 - a) anticipativni ulozi

$$K_{mn} = u \cdot \frac{r^{m}(r^{mn}-1)}{r^{m}-1} = u \cdot (\frac{III_{D}^{mn+m}}{III_{D}^{m}} - 1)$$

b) dekurzivní ulozi

$$K_{mn} = u \frac{r^{mn}-1}{r^m-1} = u \frac{III_{p}^{mn}}{III_{p}^{m}}$$

- 3.1.4. Iznosi uloga predstavljaju aritimetičku progresiju
 - a) anticipativni ulozi

$$K_n = u_1 III_p^n \pm \frac{100 \text{ d}}{p} (III_p^n - n \cdot I_p^1)$$

b) dekurzivni ulozi

$$K'_n = u_1 (1+III_p^{n-1}) + \frac{100 \text{ d}}{p} (1+III_p^{n-1} -n)$$

3.1.5. Iznosi uloga predstavljaju geometrijsku progresiju

- 3151 Stops 1000 rlogs - Breaton Com constate

a) anticipativni ulozi

$$K_n = u_1 \frac{r(r^n - q^n)}{r - q}$$
 ili $K_n = u_1 \frac{r(q^n - r^n)}{q - r}$

b) dekurzivni ulozi

$$K'_n = u_1 \frac{r^n - q^n}{r - q}$$
 ili $K'_n = u_1 \frac{q^n - r^n}{q - r}$

- 3.1.5.1. Stopa rasta uloga i kamatna stopa jednake
 - a) anticipativni ulozi

$$K_n = u_1 \cdot n \cdot r^n = u_1 \cdot n \cdot I_p^n$$

b) dekurzivni ulozi

$$K_n' = u_1 \cdot n \cdot r^{n-1} = u_1 \cdot n \cdot I_p^{n-1}$$

3.2. IZNOS KAMATA

$$I_{n} = K_{n} - \sum_{i=1}^{n} u_{i}$$

4. PERIODIČNE ISPLATE (Račun rente)

- 4.1. IZNOS UPLATE ZA PERIODIČNE ISPLATE (RENTE)
- 4.1.1. Jednake isplate (rente) period isplata i obračuna kamata isti
 - a) dekurzivne isplate (rente)

$$K = R \frac{r^{n}-1}{r^{n}(r-1)} = R \cdot IV_{p}^{n}$$

b) anticipativne isplate (rente)

$$K' = R \frac{r(r^{n}-1)}{r^{n}(r-1)} = R (1+IV_{p}^{n-1})$$

c)
$$K' = K \cdot r = K \cdot I_p^1$$

4.1.1.1. Odgođene isplate (rente)

$$K = R \cdot IV_p^n \cdot II_p^{m-1} = R (1+IV_p^{m-1}) \cdot II_p^m$$

4.1.1.2. Broj isplata (renti) veći od posljednjeg perioda u tablicama složenih kamata

$$IV_p^n = IV_p^k + IV_p^{n-k} \cdot II_p^k$$

$$IV_p^n = \frac{100}{p} (1-II_p^k \cdot II_p^{n-k})$$

- 4.1.2. Jednake isplate primanje češće od obračunavanja kamate
 - a) dekurzivna renta

$$K=R \left[m+\frac{p(m-1)}{200}\right] \cdot IV_p^n$$
 i

$$K = R \cdot IV_c^{mn}$$

b) anticipativna renta

K'= R
$$\left[m + \frac{p(m+1)}{200}\right] \cdot IV_p^n$$

K'= R $\left(1 + IV_c^{mn-1}\right)$

- 4.1.3. Jednake isplate primanja rjeđa od obračuna kamate
 - a) dekurzivna renta

$$K = R \frac{r^{mn}-1}{r^{mn}(r^m-1)} = R \cdot \frac{IV_{p/m}^{mn}}{1+III_{p/m}^{m-1}}$$

b) anticipativna renta

$$K' = R \frac{\mathbf{r}^{m}(\mathbf{r}^{mn}-1)}{\mathbf{r}^{mn}(\mathbf{r}^{m}-1)} = R \frac{IV_{p/m}^{mn}}{IV_{p/m}^{m}}$$

- 4.1.4. Isplate predstavljaju aritimetičku progresiju
 - a) dekurzivna renta

$$K=R_1 \cdot IV_p^n + \frac{loo d}{p} (IV_p^n - n \cdot II_p^n)$$

b) anticipativna renta

$$K' = R_1 (1 + IV_p^{n-1}) + \frac{d(100 + p)}{p} \cdot (IV_p^n - n \cdot II_p^n) \text{ ili}$$

$$K' = R_1 (1 + IV_p^{n-1}) + \frac{100 d}{p} (1 + IV_p^{n-1} - n \cdot II_p^{n-1})$$

4.1.5. Isplate predstavljaju geometrijsku progresiju

a) dekurzivna renta

$$K = R_1 \frac{r^n - q^n}{r^n(r - q)} \qquad ili \qquad K = R_1 \frac{q^n - r^n}{r^n(q - r)}$$

b) anticipativna renta

$$K' = R_1 \cdot \frac{r(r^n - q^n)}{r^n(r - q)}$$
 ili $K' = R_1 \frac{r(q^n - r^n)}{r^n(q - r)}$

4.1.5.1. Stopa rasta isplata i kamatna stopa jednake

a) dekurzivna renta

b) anticipativna renta

$$K' = n.R_1$$

4.2. IZNOS PERIODIČNE ISPLATE (RENTE)

a) dekurzivna renta

$$R = K \frac{r^{n}(r-1)}{r^{n}-1} = K \cdot V_{p}^{n}$$

b) anticipativna renta

$$R = K', \frac{r^n(r-1)}{r(r^n-1)} = \frac{K'}{1+1V_p^{n-1}}$$

4.3. IZNOS KAMATA

$$I = \sum_{i=1}^{n} R_i - K$$

4.4. VJEČITA RENTA

a) Jednake dekurzivne rente

$$K = \frac{100 R}{p}$$

b) Jednake anticipativne rente

$$K' = R \frac{100+p}{p}$$

5. AMORTIZACIJA ZAJMA

$$K = b_1 + b_2 + b_3 + \dots + b_{n-2} + b_{n-1} + b_n$$

$$K = a_1 \cdot v + a_2 \cdot v^2 - a_3 \cdot v^3 + \dots + a_{n-2} \cdot v^{n-2} + a_{n-1} \cdot v^{n-1} + a_n \cdot v^n$$

5.1. AMORTIZACIJA ZAJMA PRIMARNO DATIM OTPLATAMA

5.1.1. Konstantno jednake otplate, anuitetski i obračunski periodi jednaki

$$K = nb$$

$$R_{m} = R_{m-1} - b = b \quad (n-m) = K \cdot \frac{n-m}{n}$$

$$I_{m} = \frac{Rm-1 \cdot p}{100}$$

$$a_{m} = b + I_{m}$$

$$O_{m} = mb$$

5.1.2. Otplate rastu (opadaju) po aritmetičkoj progresiji

$$K = \frac{n}{2} \begin{bmatrix} 2 & b_{1} + (n-1) & d \end{bmatrix}$$

$$b_{1} = \frac{K}{n} + \frac{(n-1) \cdot d}{2}$$

- 5.1.3. Otplate rastu (opadaju) po geometrijskoj progresiji
 - a) algebarski (opšti) obrazac:

$$K = b_1 \cdot \frac{q^n - 1}{q - 1}$$
 ili $K = b_1 \cdot \frac{1 - q^n}{11 - q}$

- b) Obrasci zasnovani na tablicama složenih kamata:
- b₁) Kada je rast otplata izražen stopom koja se nalazi u tablicama složenih kamata, tada se iznos zajma, prva otplata i ostatak duga mogu računati pomoću obrazaca:

$$K = b_{1}(1+III_{s}^{n-1})$$

$$b_{1} = \frac{K}{1+III_{s}^{n-1}} = K (V_{s}^{n} - i)$$

$$R_{m} = b_{1}(III_{s}^{n-1} - III_{s}^{m-1})$$

b₂) Kada otplate opadaju po stopi koja se nalazi u tablicama složenih kamata, tada se iznos zajma, prva otplata i ostatak duga mogu računati pomoću obrasca:

$$K = b_1 (1 + IV_{s(a)}^{n-1})$$

$$b_1 = \frac{K}{1 + IV_{s(a)}^{n-1}}$$

$$R_{m} = b_1 (IV_{s(a)}^{n-1} - IV_{s(a)}^{m-1})$$

5.2. AMORTIZACIJA ZAJMA PRIMARNO DATIM ANUITETIMA

Napomena: Obrasci (formule) za modele amortizacije zajma s primarno datim anuitetima istovjetni
su s odgovarajućim formulama za račun renti, s tim
što se samo u tim formulama umjesto oznake za periodičnu isplatu (rentu) - R, stavi oznaka za anuitet - a.
Sve ostalo ostaje isto!

5.2.1.Konstantno jednaki anuiteti, anuiteti se plaćaju dekurzivno

$$K = a \cdot \frac{r^n - 1}{r^n (r - 1)} = a \cdot IV_p^n$$

$$a = K \frac{r^n (r-1)}{r^n - 1} = K \cdot V_p^n$$

5.2.1.1. Kvantitativni odnosi elemenata amortizacionog plana

$$R_m = a \cdot IV_p^{n-m}$$

$$O_{m} = a (IV_{p}^{n} - IV_{p}^{n-m})$$

5.2.1.2. Izražavo je anuiteta procentom

$$p' = \frac{p \cdot r^n}{r^n - 1} = \frac{p}{1 - \prod_{p}^n}$$

$$p' = 100 \cdot V_p^n$$

5.2.2. Konstantno jednaki anuiteti, anuiteti se plaćaju anticipativno

$$K = a \frac{r(r^{n}-1)}{r^{n}(r-1)} = a (1+IV_{p}^{n-1})$$

$$a = K \frac{r^{n}(r-1)}{r(r^{n}-1)} = \frac{K}{1+IV_{p}^{n-1}}$$

5.2.3. Zaokrugljeni anuiteti

$$K = a. IV_{p}^{n-1} + a_{1}.II_{p}^{n}$$

$$a_{1} = (K-a.IV_{p}^{n-1}) . I_{p}^{n} = K.I_{p}^{n} - a.III_{p}^{n-1}$$

$$K = b_{1}(1+III_{p}^{n-2}) + b_{n}$$

$$a_{1} = \left[K-b_{1}(1+III_{p}^{n-2})\right] . I_{p}^{1}$$

$$R_{m} = a.IV_{p}^{n-m-1} + a_{1}.II_{p}^{n-m}$$

5.2.4. Anuiteti konstantno rastu (opadaju) po aritmetičkoj progresiji

$$K = a_{1} \cdot IV_{p}^{n} \stackrel{+}{-} \frac{100 \text{ d}}{p} (IV_{p}^{n} - n \cdot II_{p}^{n})$$

$$a_{1} = K \cdot V_{p}^{n} \stackrel{+}{+} \frac{100 \text{ d}}{p} \left[1 - n \left(V_{p}^{n} - \frac{p}{100}\right)\right]$$

$$R_{m} = (a_{1} \stackrel{+}{-} md) \cdot IV_{p}^{n-m} \stackrel{+}{-} \frac{100d}{p} \left[IV_{p}^{n-m} - (n-m) \cdot II_{p}^{n-m}\right]$$

- 5.2.5. Anuiteti konstantno rastu (opadaju) po geometrijskoj progresiji
- 5.2.5.1. Dekurzivni kamatni faktor i količnik nisu jednaki

$$K = a_1 \cdot \frac{\mathbf{r}^{n} - \mathbf{q}^{n}}{\mathbf{r}^{n}(\mathbf{r} - \mathbf{q})} = a_1 \cdot \frac{\mathbf{q}^{n} - \mathbf{r}^{n}}{\mathbf{r}^{n}(\mathbf{q} - \mathbf{r})}$$

$$R_{m} = a_1 \cdot \mathbf{q}^{m} \cdot \frac{\mathbf{r}^{n-m} - \mathbf{q}^{n-m}}{\mathbf{r}^{n-m} \cdot (\mathbf{r} - \mathbf{q})} = a_1 \cdot \mathbf{q}^{m} \cdot \frac{\mathbf{q}^{n-m} - \mathbf{r}^{n-m}}{\mathbf{r}^{n-m}(\mathbf{q} - \mathbf{r})}$$

5.2.5.2. Dekurzivni kamatni faktor i količnik su jednaki

$$K = na_1 \cdot II_p^1$$
 $R_m = (n-m) a_1 q^m \cdot II_p^1$

- 5.2.6. Polugodišnji naizmjenično jednaki anuiteti s polugodišnjim obračunavanjem kamate
- 5.2.6.1. Zajam se amortizuje sa 2 n polugodišnjih naizmjenično jednakih anuiteta

K= a
$$\frac{r^{2n}-1}{r^{2n}(r^2-1)}$$
 (r+q)
K= a. IV_{p/2} (V_{p/2} -i) (r+q)

$$a = K \cdot V_{p/2}^{2n} \cdot \frac{r+1}{r+q}$$

5.2.6.2. Zajam se amortizuje sa 2n + 1 polugodišnjih naizmjenično jednakih anuiteta

$$K = a \left[\frac{r (r^{2n+2}-1)}{r^{2n+2}(r^2-1)} + q \frac{r^{2n}-1}{r^{2n}(r^2-1)} \right]$$

$$K = a (V_{p/2}^2 - i) (r.IV_{p/2}^{2n+2} + q.IV_{p/2}^{2n})$$

$$a = K (1+r) (r.IV_{p/2}^{2n+2} + q.IV_{p/2}^{2n})^{-1}$$

5.2.7. Anuiteti konstantno jednaki; anuitetski period kraći od perioda efektivnog plaćanja kamate

$$K=a\left[m+\frac{p(m-1)}{200}\right]IV_{p}^{n}$$

$$a=K.V_{p}^{n}:\left[m+\frac{p(m-1)}{200}\right]$$

$$R_{m}=a\left[m+\frac{p(m-1)}{200}\right].IV_{p}^{n-n},$$

$$R_{m}=a\left[m+\frac{p(m-1)}{200}\right]IV_{p}^{n-n},$$

$$ka$$

5.2.8. Anuiteti konstantno jednaki; obračunski period kraći od otplatnog, kamata se efektivno plaća s otplatom

$$K = a \frac{r^{mn} - 1}{r^{mn}(r^{m} - 1)}$$

$$K = a IV_{p/m}^{mn} \cdot (V_{p/m}^{m} - \frac{i}{m})$$

$$a = K \cdot V_{p/m}^{mn} (1 + III_{p/m}^{m-1})$$

$$R_k = a.IV_{p/m}^{mn-km} (V_{p/m}^m - \frac{i}{m})$$

6. ZAJMOVI PODIJELJENI NA OBVEZNICE

- 6.1. OBVEZNICE ISTE NOMINALNE VRIJEDNOSTI, KAMATA SE ISPLAĆUJE POMOĆU KAMATNIH KUPONA
 - 6.1.1. Obveznice se isplaćuju po nominali
 - 6.1.1.1. Zajam se amortizuje konstantno jednakim otplatama

$$K = m.N$$

$$b = \frac{K}{n}$$

$$x = \frac{m}{n}$$

$$I_0 = \frac{N \cdot p}{100}$$

$$I_{k} = M_{k-1} \cdot I_{o}$$

$$a_k = b + I_k$$

$$m_{k} = m_{k-1} - x$$

$$m_k = x (n-k)$$

6.1.1.2. Zajam se amortizuje konstantno jednakim anuitetima

$$m = x_1(1+III_p^{n-1})$$

$$x_1 = m (V_p^n - i)$$
 $m_k = \frac{a}{N} \cdot IV_p^{n-k},$
 $m_k = x_1 (III_p^{n-1} - III_p^{k-1})$

6.1.1.3. Zajam se amortizuje zaokrugljenim anuitetima

6.1.1.4. Zajam se amortizuje anuitetima koji konstantno rastu (opadaju) po aritmetičkoj progresiji

$$x_{1} = m (V_{p}^{n} - i) + \frac{loo d}{Np} \left[l-n (V_{p}^{n} - i) \right]$$

$$x_{k} = x_{k-1} r^{+} d'; d' = \frac{d}{N}$$

$$x_{k} = \left(\frac{a_{1} + kd}{N} \right) \cdot IV_{p}^{n-k} + \frac{loo d}{Np} \left[IV_{p}^{n-k} - (n-k) \cdot II_{p}^{n-k} \right]$$

6.1.1.5. Zajam se amortizuje anuitetima koji konstantno rastu (opadaju) po geometrijskoj progresiji

$$x_{1} = m \left[\frac{r^{n}(r-q) - p}{r^{n}-q^{n}} \right] \qquad \text{Ili}$$

$$x_{1} = m \left[\frac{r^{n}(q-r)}{q^{n}-r^{n}} - \frac{p}{100} \right]$$

6.1.2. Obveznice se isplaćuju s ažijom

$$a_{k} = b_{k} + I_{k} + A_{k}$$

$$p' = \frac{K \cdot p}{k},$$

$$p' = \frac{N \cdot p}{N'},$$

$$a = K' \cdot V_{p}^{n},$$

6.1.3. Obveznice se isplaćuju s disažijom K' = K-D $a = K' \cdot V_p^n, = (K-D) \cdot V_p^n,$ $x_1 = \frac{a \cdot I_1}{N'}$

$$x_1 = m (V_p^n, -\frac{p}{100})$$
 $D = m (N-N')$

7. LUTRIJSKI ZAJAM

7.1. BESKAMATNI LUTRIJSKI ZAJAM

7.1.1. Beskamatni lutrijski zajam se amortizuje konstantno jednakim otplatama

$$Z = \frac{m \cdot Io}{2} (n+1)$$

$$p = \frac{2oo Z}{mN(n+1)} = \frac{2oo Z}{K (n+1)}$$

7.1.2. Beskamatni lutrijski zajam se amortizuje konstantno jednakim anuitetima

$$Z = K \cdot V_{p}^{n} - a_{z}$$

$$a_{z} = m' \left(\frac{1}{z_{1}} + \frac{1}{z_{2}} + \frac{1}{z_{3}} + \dots + \frac{1}{Z_{n-1}} + \frac{1}{Z_{n}}\right)^{-1}$$

$$m' = x_{1} + x_{2} + x_{3} + \dots + x_{n-1} + x_{n}$$

$$x_{1} = \frac{a_{z}}{Z_{1}}; \qquad x_{2} = \frac{a_{z}}{Z_{2}}; \dots; \qquad x_{n} = \frac{a_{z}}{Z_{n}}$$

7.2. LUTRIJSKI ZAJAM S KAMATOM

7.2.1. Lutrijski zajam s kamatom amortizuje se konstantno jednakim otplatama

$$m = K:N$$

$$Io = \frac{Np}{Ioo}$$

$$x = m:n$$

$$p = \frac{2oo Z}{mN (n+1)}$$

7.2.2. Lutrijski zajam s kamatom amortizuje se konstantno jednakim anuitetima

Z= K
$$(V_p^n - V_{p_1}^n)$$

 $x_1 = m (V_p^n - i)$
 $b_m = (x_m - m) N$

7.2.3. Lutrijski zajam s kamatom amortizuje se s dvije serije jednakih anuiteta

$$K = a.IV_{p}^{k} + aqIV_{p}^{t} . II_{p}^{k}$$

$$x_{1} = \frac{a-Ki}{N}$$

$$x_{k+1} = x_{1} . r^{k} + \frac{as}{100} N$$

8. KONVERZIJA ZAJMA

a) Kamatna se stopa umanjuje

$$a_1 = K \cdot V_p^n \cdot IV_p^{n-m} \cdot V_{p_1}^{n-m}$$

b) Kamatna se stopa umanjuje, anuitet ostaje isti

$$IV_{p_1}^{n_1} = IV_{p}^{n-m}$$

c) Vrijeme amortizacije produženo

$$a_1 = KV_p^n \cdot IV_p^{n-m} \cdot V_p^{n-1}$$

d) Kamatna stopa umanjena, vrijeme amortizacije produženo

$$a_1 = K \cdot V_p^n \cdot IV_p^{n-m} \cdot V_{p_1}^{n_1}$$

e) Kamatna stopa umanjena, dug umanjen vanrednom uplatom na dan konverzije

$$a_1=R_m, V_{p_1}^{n-m}$$

9. ZAKLJUČIVANJE ZAJMOVA

9.1. Efektivni iznos i kurs zajma

9.1.1. Zajam se prima u jednom iznosu i isplaćuje odjednom

$$K_e = K (II_e^n + \frac{p}{100} \cdot IV_e^n)$$

$$C = loo \cdot II_e^n + p \cdot IV_e^n$$

9.1.2. Zajam se otplaćuje u toku perioda

$$C = \frac{100 \cdot v_1^{m-1} (a_1 \cdot v_1 + a_2 \cdot v_1^2 + a_3 \cdot v_1^3 + \ldots + a_{n-1} \cdot v_1^{n-1} + a_n \cdot v_1^n)}{T_1 + T_2 \cdot v_1 + T_3 \cdot v_1^2 + \ldots + T_{k-1} \cdot v_1^{k-2} + T_k \cdot v_1^{k-1}}$$

9.1.2.1. Zajam se prima u jednom iznosu i otplaćuje sa n jednakih otplata

$$C = loo \left[IV_e^n + \frac{p}{e} (n-IV_e^n) \right] : n$$

$$K_e = b \left[IV_e^n + \frac{p}{e} (n-IV_e^n) \right]$$

$$C = loo \cdot II_e^{m-1} \cdot I_p^{m-1} \left[(IV_e^n + \frac{p}{e} (n-IV_e^n)) \right] : n$$

$$K_e = b \cdot I_p^{m-1} \cdot II_e^{m-1} \left[IV_e^n + \frac{p}{e} (n-IV_e^n) \right]$$

- 9.1.2.2. Zajam se prima u k jednakih tranša i amortizuje sa n jednakih otplata
 - a) amortizacija bez respektnog perioda

$$C = loo.III_p^k \left[IV_e^n + \frac{p}{e} (n-IV_e^n)\right] : n.III_e^k$$

b) amortizacija sa respektnim periodom

$$C = loo IIIPI_p^{k-m-k-1} II_e^{m-l} \left[IV_e^n + \frac{p}{e}(n-IV_e^n)\right]:n(1+IV_e^{k-l})$$

9.1.2.3. Zajam se prima u jednom iznosu i amortizuje sa n jednakih anuiteta

a) ako se amortizacija vrši bez respektivnog perioda

C=loo
$$IV_e^n \cdot V_p^n$$

$$K_e = K \cdot V_p^n \cdot IV_e^n$$

b) ako se amortizacija vršisa respektivnim periodom

C= loo.II_e^{m-1}.
$$IV_e^n \cdot V_p^n$$
 . I_p^{m-1}

$$K_e = K \cdot V_p^n \cdot I_p^{m-1} \cdot IV_e^n \cdot II_e^{m-1}$$

- 9.1.2.4. Zajam se prima u k jednakih tranša i otplaćuje sa n jednakih anuiteta
 - a) ako se amortizacija vrši bez respektivnog perioda

$$C = loo III_p^k \cdot v_p^n \cdot Iv_e^n : III_e^k$$

b) ako se amortizacija vrši sa respektivnim periodom

$$C = loo.II_e^{m-1} . III_p^k . I_p^{m-k-1} . V_p^n.IV_e^n : (1+IV_e^{k-1})$$

9.1.2.5. Zajam se prima u jednom iznosu i amortizuje zaokrugljenim anuitetima

$$C = s.IV_e^{n-1} + s_1.II_e^n$$

- 9.1.3. Uticaj provizije i troškova na efektivni iznos i kurs zajma
- 9.1.3.1. Zajam se prima u jednom iznosu i isplaćuje odjednom

$$D = \frac{K \cdot p'}{100} \cdot IV_e^n$$

a ako se, provizija, plaća anticipativno, tada je

$$D = \frac{K \cdot p}{100} (1 + IV_e^{n-1})$$

9.1.3.2. Zajam se prima u jednom iznosu i amortizuje sa n jednakih otplata

$$D = \frac{b \mathbf{p}}{e} (n - IV_e^n)$$

9.1.3.3. Zajam se prima u jednom iznosu i amortizuje sa n jednakih anuiteta

$$P=D.V_e^n$$

9.2. PARITET KURSOVA

$$C_1: C_2 = V_{p_1}^n: V_{p_2}^n$$

10. ŠIRA PRIMJENA EKVIVALENTNE KAMATNE STOPE

$$\left(1 + \frac{c}{100}\right)^{m} = 1 + \frac{p}{100}$$

$$\mathbf{r}_{1}^{m} = \mathbf{r}$$

$$\mathbf{r}_{1} = \sqrt[m]{\mathbf{r}}$$

$$\mathbf{r}_{1}^{mn} = \mathbf{r}^{n}$$

lo.1. Elementi računa vezanog za jednu glavnicu

$$K_{mn} = K \cdot r_1^{mn} = K \cdot r^n$$

- lo.2. Račun uloga
 - a) anticipativni ulozi

$$K_{mn} = u \frac{\sqrt[m]{r} (r^{n}-1)}{\sqrt[m]{r-1}} = u \cdot \frac{r_1(r_1^{mn}-1)}{r_1-1}$$

b) dekurzivni ulozi

$$K_{mn} = u \frac{r^{n}-1}{\sqrt{r}-1} = u \frac{r_{1}^{mn}-1}{r_{1}-1}$$

- 10.3. Periodične isplate (Račun rente)
 - a) dekurzivne isplate

$$K = R \frac{r^{n}-1}{r^{n}(\sqrt[m]{r}-1)} = R \cdot \frac{r_{1}^{mn}-1}{r_{1}^{mn}(r_{1}-1)}$$

b) anticipativne isplate

K'= R
$$\frac{\sqrt[m]{r}(r^{n}-1)}{r^{n}(\sqrt[m]{r}-1)} = R \cdot \frac{r_{1}(r_{1}^{mn}-1)}{r_{1}^{mn}(r_{1}-1)}$$

10.4. Amortizacija zajma

a) amortizacija jednakim ispodgodišnjim anuitetima:

$$K = a \frac{r^{n}-1}{r^{n} (\sqrt[m]{r}-1)} = a \cdot \frac{r_{1}^{mn}-1}{r_{1}^{mn} (r_{1}-1)}$$

b) ekvivalentni ispodgodišnji anuiteti

a'= a
$$\frac{m\sqrt{r-1}}{r-1}$$

ANTICIPATIVNO RAČUNANJE KAMATE

- anticipativni kamatni faktor: $g = \frac{100}{100 \tilde{u}}$
- ekvivalentna (konformna) anticipativna stopa:

$$c = loo \left(1 - \sqrt{\frac{100 - \widetilde{u}}{loo}}\right)$$

11. ELEMENTI RAČUNA VEZANOG ZA JEDAN ULOG

ll.1. Konačna vrijednost: a)
$$K_n = K \cdot \int_{\mathbf{T}}^n K_n = K \cdot \mathbf{I}_{\mathbf{T}}^n$$

$$K_{mn} = K \cdot I_{\widetilde{\mathbf{u}}/m}^{mn}$$

b)
$$K_n = \frac{1200 \text{ K}}{1200 - \text{m.V}} \cdot I_{\text{V}}^{\text{n}}$$
, $K_n = \frac{36000 \text{ K}}{36000 - \text{d.V}} \cdot I_{\text{V}}^{\text{n}}$

11.2. Početna vrijednost:

a) anticipativni diskontni faktor:
$$\frac{1}{5}$$
= W=II $\frac{1}{3}$

b)
$$K = \frac{K_n}{\mathbf{q}^n} = K_n \cdot W^n = K_n \cdot \Pi_{\widehat{\mathbf{u}}}^n$$

c)
$$K = \frac{K_n(1200 - m.\tilde{u})}{1200} . II_{\tilde{u}}^n$$

$$K = \frac{K_n(36000-d \cdot \widetilde{u})}{36000}$$
. IT \widetilde{u} ,

12. <u>RAČUN ULOGA</u>

a) Konačna vrijednost uloga jedan period nakon posljednje uplate

$$K_{n} = u_{1} \cdot g^{n} + u_{2} \cdot g^{n-1} + u_{3} \cdot g^{n-2} + \dots + u_{n-2} \cdot g^{3} + u_{n-1} \cdot g^{2} + u_{n} \cdot g$$

a ako su ulozi međusobno jednaki, kondenzovani obrazac je:

$$K_n = u.III_{\mathfrak{A}}^n$$

b) Konačna vrijednost uloga na dan posljednje uplate

$$K_n' = u_1 \int_{0}^{n-1} + u_2 \cdot \int_{0}^{n-2} + u_3 \cdot \int_{0}^{n-3} + \dots + u_{n-2} \int_{0}^{n-2} + u_n \cdot \int_{0}^{n-1} + u_n \cdot \int_{0}^{$$

a ako su ulozí međusobno jednaki, kondenzovani obrazac je:

$$K_n = u \left(1 + III_{\widetilde{u}}^{n-1}\right)$$

13. PERIODIČNE ISPLATE (Račun rente)

a) Opšta jednačina za neposrednu dekurzivnu rentu je:

$$K = \frac{R_1}{9} + \frac{R_2}{9^2} + \frac{R_3}{9^3} + \cdots + \frac{R_{n-2}}{9^{n-2}} + \frac{R_{n-1}}{9^{n-1}} + \frac{R_n}{9^n}$$

a ako su rente međusobno jednake, kondenzovani obrazac je:

$$K = R.IV_{\mathfrak{A}}^n$$

odnosno

b) Opšta jednačina za neposrednu anticipativnu rentu je:

$$K' = R_1 + \frac{R_2}{5} + \frac{R_3}{5^2} + \dots + \frac{R_{n-2}}{5^{n-3}} + \frac{R_{n-1}}{5^{n-2}} + \frac{R_n}{5^{n-1}}$$

a ako su rente međusobno jednake, kondenzovani obrazac je:

$$K' = R (1+IV_{\mathfrak{A}}^{n-1})$$

odnosno

$$R = K^{\bullet} : (1+IV_{\mathfrak{U}}^{n-1}) = K'VI_{\mathfrak{U}}^{n}$$

14. AMORTIZACIJA ZAJMA

14.1. KONSTANTNO JEDNAKI ANUITETI

14.1.1. Anuiteti se plaćaju na kraju perioda

$$K = \frac{K \cdot \tilde{u}}{100} + \frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3} + \dots + \frac{a_{n-2}}{s^{n-2}} + \frac{a_{n-1}}{s^{n-1}} + \frac{a_n}{s^n}$$

a ako su anuiteti međusobno jednaki, kondenzovani obrazac je:

$$K = \frac{a \, \mathbf{f}(\mathbf{f}^{n-1})}{\mathbf{f}^{n} \, (\mathbf{f}^{-1})} = a \, (1 + IV_{\widetilde{\mathbf{u}}}^{n-1})$$

odnosno

$$a = K: (1+IV_{\widetilde{u}}^{n-1}) = K.VI_{\widetilde{u}}^n$$

$$R_{m} = (R_{m-1}-a) \cdot g = \frac{100 \cdot (R_{m-1}-a)}{100-3}$$

14.1.1.1. Kvantitativni odnosi elemenata amortizacionog plana

$$b_{m} = b_{m-1} \quad S = b_{m-1} \quad I_{\widetilde{u}}^{1}$$

$$b_{m} = b_{1} \cdot S^{m-1} = b_{1} \cdot I_{\widetilde{u}}^{m-1}$$

$$b_{1} = (a - K \cdot \widetilde{u}) \cdot S$$

$$b_{1} = a \cdot II_{\widetilde{u}}^{n-1}$$

$$K = b_{1}(1 + III_{\widetilde{u}}^{n-1})$$

$$O_{m} = b_{1}(1 + III_{\widetilde{u}}^{m-1})$$

$$R = a (1 + IV_{\widetilde{u}}^{n-m-1}) \quad i \quad R_{m} = b_{1}(III_{\widetilde{u}}^{m-1} - III_{\widetilde{u}}^{m-1})$$

$$R_{m} = a (1+IV_{\widetilde{u}}^{n-m-1}) \quad i \quad R_{m} = b_{1}(III_{\widetilde{u}}^{n-1} - III_{\widetilde{u}}^{m-1})$$

14.1.2. Anuiteti se plaćaju na početku perioda

$$K = a_1 + \frac{a_2}{s} + \frac{a_3}{s^2} + \dots + \frac{a_{n-2}}{s^{n-3}} + \frac{a_{n-1}}{s^{n-2}} + \frac{a_n}{s^{n-1}}$$

a ako su anuiteti međusobno jednaki, kondenzovani obrazac je:

$$K=a (1+IV_{\widetilde{u}}^{n-1})$$

odnosno

$$a = K.VI_{\widetilde{u}}^n$$

14.2. ZAOKRUGLJENI ANUITETI

$$K = a (1+IV_{\widetilde{\mathbf{u}}}^{n-2}) + a_1 II_{\widetilde{\mathbf{u}}}^{n-1}$$

$$a = (K-a_1 II_{\widetilde{\mathbf{u}}}^{n-1}) VI_{\widetilde{\mathbf{u}}}^{n-1}$$

$$a_1 = [K-a (1+IV_{\widetilde{\mathbf{u}}}^{n-2})] \cdot I_{\widetilde{\mathbf{u}}}^{n-1} = K \cdot I_{\widetilde{\mathbf{u}}}^{n-1} - a \cdot III_{\widetilde{\mathbf{u}}}^{n-1}$$

$$K = b_1(1+III_{\widetilde{\mathbf{u}}}^{n-2}) + a_1$$

$$R_m = a (1+IV_{\widetilde{\mathbf{u}}}^{n-m-2}) + a_1 \cdot II_{\widetilde{\mathbf{u}}}^{n-m-1}$$

 $\mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$

LITERATURA:

1. Dr Branko Trklja: Finansijska matematika, "Savremena administracija", Beograd, 1980. i 1985. g.