Sentiment Analysis Using BERT and Multi-Instance Learning

Iryna Burak
Pablo Restrepo

July 20, 2020

Presentation Overview:

- **1.** Project Overview
- 2. Monolingual Sentiment Analysis
- 3. Cross Lingual Sentiment Analysis
- 4. Two-class Sentiment Analysis
- 5. Conclusions
- **6.** References

1. Project Overview

Data, methods and experiments

1.1 Project Goal

Develop a domain specific sentiment analysis model to predict **sentence-level** sentiment on social media comments on organic food products.

1.1 Project Goal

Example:

I really love the product. It is really tasty and healthy. The only downside is that it is expensive. I would definitely buy it again.

- Overall sentiment of the comment: positive.
- But there are still some sentences with negative sentiment.

1.2 Data used

- Amazon EN, contains reviews in the categories:
 - Grocery and Gourmet Food
 - Health and Personal Care
 - Beauty

We filtered the reviews that contained the word "organic".

- Annotated Organic data:
 - Sentences about organic products annotated by domain experts.
- Amazon DE: contains reviews in the categories:
 - Beauty
 - Grocery

1.3 Tools and methods used

- Multi Instance Learning Networks:
 - Predict segment sentiments
 - Get a document sentiment via attention
 - Compute the loss with respect to document-level labels only

 Different embeddings as initial embeddings for our sentences and comments (BERT, RoBERTa, XLING).

1.4 Experiments

Train on	Fine-tune on	Test on
amazon EN	organic	organic
		amazon EN
organic	-	organic
amazon EN	-	amazon EN
		organic
		amazon DE

Metrics: F1 scores (micro and macro)

1.5 Baselines

Baseline	English data	German data
Sentiwordnet	test	-
VADER	test	-
Textblob DE	-	test
NLTK Sentiment Analyzer (Naive Bayes)	train and test	-
Scikit-learn SVM model	train and test	-

2. Monolingual

Plots and first results

2.1 Embeddings used

We used BERT base uncased (monolingual) to generate initial embeddings for our data.

Pooling layer: -2

Pooling strategy: reduce mean

2.2 To fine-tune, or not to fine-tune

trained on: amazon EN, embeddings: BERT base

comments and/or annotated in different

- Training on amazon EN only leads to poor results
 - for **organic**.
 - Fine-tuning on **organic** makes results for **amazon EN** significantly worse.
 - amazon EN and organic contain different types of ways.

2.3 MilNet vs baselines

3. Cross-lingual

New embeddings and new results

3.1 Embeddings used

We used different multilingual embeddings:

- BERT base multilingual cased.
- RoBERTa
- XLING

For BERT and RoBERTa:

Pooling layer: -2

Pooling strategy: reduce mean

3.2 MilNet vs baselines

3.3 Sentence-level context vs comment-level context embeddings

We generated embeddings for each token of the comment using the entire comment as context.

Example:

```
[[CLS],'I', 'really', 'love', 'the', 'product', '.', 'It', 'is', 'really', 'tas', '##ty',[SEP]]
```

Sentence 1 embeddings: mean of the tokens: 'I', 'really', 'love', 'the', 'product',

Sentence 2 embeddings: mean of the tokens: 'It', 'is', 'really', 'tas', '##ty'

3.3 Sentence-level context vs comment-level context embeddings

BERT can only handle sentences with a maximum of **510** tokens + [CLS] and [SEP].

- Percentage of comments with more than 510 tokens: **9.3%**
- Number of sentences lost after removing comments with more than 510 tokens: (34%)

3.4 Comment-level vs sentence-level

- To use comment-level context, we need to throw away large part of the data.
- But comment-level context helps a little bit with the classification.

trained on: amazon EN, embeddings: BERT multilingual

4. Two-class analysis

More plots and even better results

3.1 Motivation

Confusion matrix

True	-	0	+
-	154	67	12
0	70	174	44
+	46	55	141

experiment: amazon EN to organic, embeddings: BERT base

 Neutral sentiment confuses the model.

 If the model is unsure about the decision, it predicts neutral sentiment.

3.2 MilNet vs baselines

5. Conclusions

The end

5.1 Conclusions

- MilNet works!
- The results for German data are better (possibly, Germans are just more explicit in their writing).
- In our setting, using the entire comment as context did not help a lot, but that result is not necessarily generalizable.
- In our setting, XLING was the best best choice for embeddings, but that result is not necessarily generalizable as well.

5.2 Conclusions

- Neutral sentiment was difficult for our models, but also for baselines!
 - Models choose neutral when unsure, but people also do this.

- Amazon data doesn't use all the power of MilNet.
 - We don't have sentence-level labels, only comment-level labels.
 - That is probably why organic gave better results than amazon.

- Amazon and organic datasets are different.
 - Even though datasets come from the same domain, they don't help with analysis of each other.

6. References

[1] Angelidis S. & Lapata M, Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis, Institute for Language, Cognition and Computation School of Informatics, University of Edinburgh.

Thanks!