L'Analyse Factorielle Discriminante

Département de Mathématiques et informatique

Pr. Hasna CHAMLAL Master-BD2C-M1

Introduction

- Les méthodes de discrimination sont des méthodes qui visent à séparer au mieux les classes à priori définies par une variable qualitative notée Q, et ce à partir de p variables X1,X2,....,Xp dites variables explicatives.
- Ce sont des méthodes prévisionnelles faisant partie de l'apprentissage Statistique aussi appelées méthodes d'apprentissage supervisé (machine learning).
- Les méthodes d'apprentissage statistique passent par deux phases :
 - <u>Phase d'apprentissage</u>: Sur un échantillon d'apprentissage on observe X1,X2,....,Xp et aussi Q. Ce qui conduit à la construction d'une règle prévisionnelle (affectation).
 - <u>Phase prévisionnelle</u>: Des individus sur lesquels on observe les Xj mais pas Q ; il s'agit d'appliquer la règle d'affectation pour prédire leur classe (leur modalité relativement à Q)
- Le passage de la phase 1 à la phase 2 est garantie par une phase intermédiaire qui est la phase de Validation(LOOCV,kfolds,AUC,CV,....).
- Domaines d'application : Crédit scoring, Finance : risque, Assurance, reconnaissance de forme et de la parole,........
- Une variété de méthodes d'apprentissage supervisé : NB, KNN,Tree,SVM,RF, régression logistique,....
- L'AFD en fait partie c'est une méthode géométrique.

Pr. Hasna CHAMLAL-Master-BD2C-M1

Aspect géométrique de la séparation

Deux classes P1 et P2
 n=6, n1=3 et n2=3

	X1	X2	Q
1	4	1	P1
2 /	5	2	P1
3 /	6	3	P1
4/	1	10	P2
\$	2	11	P2
/ 6	3	12	P2

Caractéristiques des classes

Classe P1

Centre de gravité G1=(5,2) Classe P2

Centre de gravité : G2=(2,11)

- Chacune des modalités de Q induit une classe : classe P1 et classe P2 décrites par les variables X1 et X2, on peut en définir un centre de gravité (noyau) G1 et G2.
- Le pouvoir discriminant de X1 et X2 se mesure par :
 - Des centres de gravité éloignées (séparés) : variance interclasse maximale (Between)
 - Pour chaque classe : les individus sont peu dispersés autour du centre de gravité : variance intraclasse com

Pr. Hasna CHAMLAL-Master-BD2C-M1

Aspect géométrique de l'affectation

Un individu sup de profil X1=7 et X2= 2.5 sa modalité de Q étant inconnue?

La règle géométrique consiste à l'affecter à la classe dont le centre de gravité est le plus proche . Soit ici : ?

- Problème : quand p >>>2?
- La solution : méthode factorielle (de réduction)
- Critère de construction : des axes conservant au maximum la séparation des centres de gravité :
 - Il s'agit alors d'appliquer une ACP sur les centres de gravité des classes :

	Y1Y2	Yj	Yp	Q		X1	Xj	 Хр
1					1			
i		Yj(i)		Q(i)	i		Xj(i)	
n								

Tableau initial

X: Tableau des variables explicatives centrées

	X1	X2	Xj	Хр	
G1					
Gk					
G: Tab	leau de	s centre	s de gra	vité	

- k=nombre de modalités de Q
- nl=nombre d'u=individus de l'échantillon d'apprentissage ayant la lième modalité de Q (l=1,...;,k)
- Matrice de variance covariance totale : $V = \frac{1}{n} transposé(X) * X$
- Matrice diagonale des poids $\Delta = diag(\frac{n_1}{n}, \frac{n_2}{n}, \dots, \frac{n_k}{n})$
- Matrice de variance covariance interclasse : $B = transposé(G)\Delta G$

ACP sur G

Métrique : V^{-1}

Métrique de mahalanobis

Matrice à diagonaliser :

 $V^{-1}B$

Systèmes de valeurs propres non nulles : λ_l

Vecteurs propres normés vecteurs principaux : u_I

Composantes principales appelées composantes discriminantes:

$$C^l = G V^{-1} u_l$$

 λ_l mesure le pouvoir discriminant du lième axe

discriminant

Phase d'affectation:

Centrer

Un individu i de profil(Y1(i),....,Yp(i)) Q(i) étant inconnue

$$X(i) = (X1(i),....,Xp(i))$$

Projeter sur un plan principal(r,s)

$$C^{r}(i) = trans(u_r)V^{-1}X(i)$$

 $C^{s}(i) = trans(u_s)V^{-1}X(i)$

Affectation

Sur le plan principal (r,s)
Comparer la distance i et
les différents centre de gravité

Affecter à la classe dont le centre de gravité est le plus proche

