Theory of Computation Homework 2

350510 Kim Yujun

March 2022

Problem 1

$$L_1 = \{ \langle D, D' \rangle : D \text{ and } D' \text{are DFA's and } L(D) \subseteq L(D') \}$$

 $L_2 = \{ \langle M \rangle : M \text{ is a TM such that } L(M) \text{ is infinite} \}$

(b) I claim that L_2 is not recognizable. To prove this we find reduction from non-recognizable language $\overline{A_{TM}} = \{ \langle T, w \rangle : T \text{ is TM that does not accept } w \}$ to L_2 . Note that $\overline{A_{TM}}$ is not recognizable as A_{TM} is recognizable but not decidable.

Given $\langle T, w \rangle$, define TM M as following:

If input x is given to M,

- 1. Run T with w as input for |x| steps.
- 2. If T accepts w within |x| steps, loop the machine infinitely.
- 3. Otherwise, if T has not accept w within |x| steps, accept x. This mapping $\langle T, w \rangle \mapsto \langle M \rangle$ is a reduction from $\overline{A_{TM}}$ to L_2 :
- i) Suppose $\langle T, w \rangle \in \overline{A_{TM}}$. As T never accepts w, T does not accept w within |x| steps for every input x. Thus, M accepts every input x by above construction. Hence, $L(M) = \Sigma^*$ is infinite and $\langle M \rangle \in L_2$.
- ii) On the other hand, suppose $< T, w > \notin \overline{A_{TM}}$. Let's say T accepts w in $k \in \mathbb{Z}_+$ number of steps. If $|x| \ge k$, then T accepts w within |x| steps. Hence, M loops infinitely by the construction of M. This means M accepts no string of length greater or equal to k. Therefore, $L(M) \subseteq \bigcup_{i=0}^{k-1} \Sigma^i$. i.e. L(M) is finite and so $< M > \notin L_2$.

Overall, we construct reduction from $\overline{A_{TM}}$ to L_2 , showing that L_2 is not recognizable.

Problem 2

(2a) Let Turing machine P, Q recognize $\overline{A}, \overline{B}$ respectively. Then, for $w \in \Sigma^*$, (1) P accepts w if $w \notin A$ and (2) rejects or loops if $w \in A$. Similarly, (1) Q accepts w if $w \notin B$ and (2) rejects or loops if $w \in B$.

Now construct Turing machine as following. Given $w \in \Sigma^*$, run w on both P,Q. As $\bar{A} \cup \bar{B} = \overline{A \cap B} = \Sigma^*$, either P accepts or Q accepts on each string $\cdots(*)$. If P accepts before Q accepts the input, let the new Turing machine reject the input. Otherwise, if Q accepts before P accepts the input (or even accepts simultaneously), let the new Turing machine accept the input.

By (*), the new Turing machine T halts on every input. (1) If $w \in A$, then P will never accept it. Thus, Q accept the input before P. Hence, T accepts w. (2) If $w \in B$, then Q never accepts it. Thus, P accepts the input before Q. Hence, T rejects w.

Let C be the language decided by T. Then, $A \subseteq C \subseteq \overline{B}$. i.e. C is a decidable language that separates A, B.

(2b) Suppose M is a TM that decides language C which separates A, B. Define TM T(recursively) as following:

Let an input w be given. If M accepts < T, w > (i.e. $< T, w > \in C$), then let T reject w. Otherwise if M rejects < T, w > (i.e. $< T, w > \notin C$, then let T accept w. Whether $< T, w > \in C$ or $< T, w > \notin C$, we conclude $< T, w > \notin C$ or $< T, w > \in C$ respectively having a contradiction. Thus, there is no such decidable language C.