

DESIGN AND ANALYSIS OF ALGORITHMS

SESSION-21

KNAPSACK PROBLEM

You are given the following-

- A knapsack (kind of shoulder bag) with limited weight capacity.
- Few items each having some weight and value.

The problem states-

Which items should be placed into the knapsack such that-

- •The value or profit obtained by putting the items into the knapsack is maximum.
- •And the **weight limit** of the knapsack does **not exceed.**

KNAPSACK PROBLEM VARIANTS & ITS DIFFERENCES

Variants:

- 0/1 Knapsack.
 - not allowed to break items. We either take the whole item or don't take it.

- •Fractional Knapsack
 - can break items for maximizing the total value of knapsack

0/I KNAPSACK PROBLEM

In 0/1 Knapsack Problem,

- As the name suggests, items are indivisible here.
- We can not take the fraction of any item.
- We have to either take an item completely or leave it completely.

Example:

Consider the knapsack instance n = 3, $(w_1, w_2, w_3) = (2, 3, 4)$, $(p_1, p_2, p_3) = (1, 2, 5)$ and m = 6.

Probability of Chosen Items $(\mathbf{x_i}) = [\{0, 0, 0\}, \{0, 0, 1\}, \dots, \{1, 1, 1\}]$

No. of Possible Solutions $(2^n) = 2^3 = 8$.

The problem is to find the **Best Optimal Solution** among the 8 for the 0/1 Knapsack.

0/1 KNAPSACK PROBLEM

- 1. Let $f_i(y_j)$ be the values of optimal solution. Then S^i is a pair (p, w) where $p = f(y_i)$ and $w = y_i$
 - Initially $S^0 = \{ (0,0) \}$. We can compute S^{i+1} from S^i . The Computations of S^i are sequence of decisions made for obtaining optimal solution.
- 2. Let x_n be the optimal sequence. Then there are two instances $\{x_n\}$ and $\{x_{n-1},...,x_1\}$. So from $\{x_{n-1},...,x_1\}$ will choose optimal sequence with respect to x_n .

0/1 KNAPSACK PROBLEM

3. The formulas that are used while solving 0/1 knapsack problem.

Let $f_n(m)$ be the value of an optimal solution, then

$$f_n(m) = \max \{ f_{n-1}(m), f_{n-1}(m - w_n) + p_n \}$$

General formula

$$f_i(y) = \max \{ f_{i-1}(y), f_{i-1}(y - w_i) + p_i \}$$

Consider the knapsack instance n = 3, $(w_1, w_2, w_3) = (2, 3, 4)$, $(p_1, p_2, p_3) = (1, 2, 5)$ and m = 6.

$$f_n(m) = max \{f_{n-1}(m), f_{n-1}(m - w_n) + p_n\}$$

$$f_3(6) = max \{ f_2(6), f_2(6 - w_3) + p_3 \}$$

$$f_3(6) = max \{ f_2(6), f_2(6-4) + 5 \}$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ f_1(6), f_1(6-3) + 2 \}$$

 $f_2(6) = max \{ f_1(6), f_1(3) + 2 \}$

$$f_2(2) = max \{ f_1(2), f_1(2-3) + 2 \}$$

 $f_2(2) = max \{ f_1(2), f_1(-1) + 2 \}$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{f_1(6), f_1(3) + 2\}$$

$$f_2(2) = max \{ f_1(2), f_1(-1) + 2 \}$$

```
f_1(6) = max \{ f_0(6), f_0(6-2) + 1 \}

f_1(6) = max \{ f_0(6), f_0(4) + 1 \}

f_1(6) = max \{ 0, 0 + 1 \} = 1
```

$$f_1(3) = max \{ f_0(3), f_0(3-2) + 1 \}$$

 $f_1(3) = max \{ f_0(3), f_0(1) + 1 \}$
 $f_1(3) = max \{ 0, 0 + 1 \} = 1$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 1 + 2 \}$$

$$f_2(2) = max \{ f_1(2), f_1(-1) + 2 \}$$

```
f_1(6) = max \{ f_0(6), f_0(6-2) + 1 \}

f_1(6) = max \{ f_0(6), f_0(4) + 1 \}

f_1(6) = max \{ 0, 0 + 1 \} = 1
```

$$f_1(3) = max \{ f_0(3), f_0(3-2) + 1 \}$$

 $f_1(3) = max \{ f_0(3), f_0(1) + 1 \}$
 $f_1(3) = max \{ 0, 0 + 1 \} = 1$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 3 \} = 3$$

$$f_2(2) = max \{ f_1(2), f_1(-1) + 2 \}$$

Consider the knapsack instance n = 3, m=6

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 1 + 2 \}$$

$$f_2(2) = max \{ f_1(2), f_1(-1) + 2 \}$$

$$f_1(2) = max \{ f_0(2), f_0(2-2) + 1 \}$$

 $f_1(2) = max \{ 0, 0 + 1 \} = 1$

$$f_1(-1)$$

-INF

Consider the knapsack instance n = 3, m=6

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 1 + 2 \}$$

$$f_2(2) = max \{ 1, -INF + 2 \}$$

$$f_1(2) = max \{ f_0(2), f_0(2-2) + 1 \}$$

 $f_1(2) = max \{ 0, 0 + 1 \} = 1$

$$f_1(-1)$$

-INF

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 1 + 2 \}$$

$$f_2(2) = max \{ 1, -INF + 2 \}$$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ f_2(6), f_2(2) + 5 \}$$

$$f_2(6) = max \{ 1, 3 \} = 3$$

$$f_2(2) = max \{ 1, -INF \} = 1$$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ 3, 1 + 5 \}$$

$$f_2(6) = max \{ 1, 3 \} = 3$$

$$f_2(2) = max \{ 1, -INF \} = 1$$

$$(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = (2, 3, 4) \& (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (1, 2, 5).$$

$$f_3(6) = max \{ 3, 1 + 5 \} = 6$$


```
Initially S^0 = \{(0,0)\}
        S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}
         Si+1 can be computed by merging from Si and S1i
```

- \triangleright Purging or dominance rule: if S^{i+1} contains two pairs (p_i, w_i) and (p_k, w_k) with the property that $p_i \le p_k$ and $w_i \ge w_k$ then the pair (p_i, w_i) can be discarded.
- \triangleright When generating S^i , we can also purge all pairs (p, w) with w > m as these pairs determine the value of $f_n(x)$ only for x > m.
- \triangleright The optimal solution $f_n(m)$ is given by the *highest profit pair*.

Consider the knapsack instance n = 3, m = 6 $(w_1, w_2, w_3) = (2, 3, 4) & (p_1, p_2, p_3) = (1, 2, 5)$.

Initially
$$S^0 = \{(0,0)\}$$

$$S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}$$

Sⁱ⁺¹ can be computed by merging from Sⁱ and S₁ⁱ

Consider the knapsack instance n = 3, m = 6 $(w_1, w_2, w_3) = (2, 3, 4) & (p_1, p_2, p_3) = (1, 2, 5)$.

$$S^{0} = \{(0,0)\} \qquad S_{1}^{0} = \{(1,2)\}$$

$$S^{1} = \{(0,0), (1,2)\} \qquad S_{1}^{1} = \{(2,3), (3,5)\}$$

$$S^{2} = \{(0,0), (1,2), (2,3), (3,5)\} \qquad S_{1}^{2} = \{(5,4), (6,6), (7,7), (8,9)\}$$

$$S^{3} = \{(0,0), (1,2), (2,3), (3,5), (5,4), (6,6), (7,7), (8,9)\}$$

$$S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}$$

Consider the knapsack instance n = 3, m = 6 $(w_1, w_2, w_3) = (2, 3, 4) & (p_1, p_2, p_3) = (1, 2, 5)$.

$$S^{0} = \{(0,0)\} \qquad S_{1}^{0} = \{(1,2)\}$$

$$S^{1} = \{(0,0), (1,2)\} \qquad S_{1}^{1} = \{(2,3), (3,5)\}$$

$$S^{2} = \{(0,0), (1,2), (2,3), (3,5)\} \qquad S_{1}^{2} = \{(5,4), (6,6), (7,7), (8,9)\}$$

$$S^{3} = \{(0,0), (1,2), (2,3), (3,5), (5,4), (6,6)\}$$

$$S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}$$

Si+1 can be computed by merging from Si and Sii

Consider the knapsack instance n = 3, m = 6 $(w_1, w_2, w_3) = (2, 3, 4) & (p_1, p_2, p_3) = (1, 2, 5)$.

$$S^{0} = \{(0,0)\} \qquad S_{1}^{0} = \{(1,2)\}$$

$$S^{1} = \{(0,0), (1,2)\} \qquad S_{1}^{1} = \{(2,3), (3,5)\}$$

$$S^{2} = \{(0,0), (1,2), (2,3), (3,5)\} \qquad S_{1}^{2} = \{(5,4), (6,6), (7,7), (8,9)\}$$

$$S^{3} = \{(0,0), (1,2), (2,3), (5,4), (6,6)\}$$

$$S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}$$

Si+1 can be computed by merging from Si and Sii

Consider the knapsack instance n = 3, m = 6 $(w_1, w_2, w_3) = (2, 3, 4) & (p_1, p_2, p_3) = (1, 2, 5)$.

$$S^{0} = \{(0,0)\} \qquad S_{1}^{0} = \{(1,2)\}$$

$$S^{1} = \{(0,0), (1,2)\} \qquad S_{1}^{1} = \{(2,3), (3,5)\}$$

$$S^{2} = \{(0,0), (1,2), (2,3), (3,5)\} \qquad S_{1}^{2} = \{(5,4), (6,6), (7,7), (8,9)\}$$

$$S^{3} = \{(0,0), (1,2), (2,3), (5,4), (6,6)\}$$

$$S_1^i = \{ (P,W) / (P - p_{i+1}, W - w_{i+1}) \in S^i \}$$

Si+1 can be computed by merging from Si and Sii

Example 1: Consider the knapsack instance n = 3,

$$(w_1, w_2, w_3) = (2,3,4), (p_1, p_2, p_3) = (1,2,5), \text{ and } m = 6.$$

Initially

$$S^0 = \{(0,0)\}$$

Include 1st object

$$S_1^0 = \{ (0+1,0+2) \} = \{ (1,2) \}$$

Next Stage can be obtained S^{0+1} (S^1) can be computed by merging from S^0 and S_1^0

$$S^1 = \{(0,0)(1,2)\}$$

Include 2nd object

$$S_1^1 = \{ (0+2,0+3) (1+2, 2+3) \} = \{ (2,3) (3,5) \}$$

Next Stage can be obtained S^{1+1} (S^2) can be computed by merging from S^1 and S_1^{-1}

$$S^2 = \{(0,0)(1,2)(2,3)(3,5)\}$$

Include 3rd object

$$S_1^2 = \{ (0+5,0+4) (1+5, 2+4)(2+5,3+4) (3+5,5+4) \}$$

= $\{ (5,4)(6,6)(7,7)(8,9) \}$

Next Stage can be obtained S^{2+1} (S^3) can be computed by merging from S^2 and S_1^2

$$S^3 = \{(0,0)(1,2)(2,3)(3,5)(5,4)(6,6)(7,7)(8,9)\}$$

Apply Purging rule Pairs(3,5) (7,7)(8,9) will be discarded

Therefore, $S^3 = \{(0,0)(1,2)(2,3)(5,4)(6,6)\}$

$$X=(1,0,1)$$

0/1 KNAPSACK ALGORITHM

```
Algorithm DKP(p,w,n,m)
S^0 := \{(0,0)\};
for i := 1 to n-1 do
  S^{i-1} = \{(P,W) | (P-p_i, W-w_i) \in S^{i-1} \text{ and } W \le m\};
  S^{i} = MergePurge(S^{i-1}, S_{1}^{i-1});
```



```
(PX,WX) = last pair in S^{n-1};
(PY,WY)=(P^1+p_n,W^1+w_n) where W<sup>1</sup> is the largest W in any pair in S<sup>n-1</sup>
  such that W + w_n \le m;
// Trace back for x_n, x_{n-1}, \dots, x_1
if (PX > PY) then x_n = 0;
 else x_n=1;
 TraceBackFor(x_{n-1},...,x_1);
```


COMPLEXITY ANALYSIS

The complexity of the 0/1 knapsack algorithm

The complexity of the algorithm is $O(n^2)$.

below.

Example 4.3: Solve Knapsack instance M = 8, and n = 4. Let P_i and W_i are as shown below.

i	Pi	w,
1	1	2
2	2	3
3	5	4
4	6	5

Solution: Let us build the sequence of decision S⁰, S¹, S².

$$S^0 = \{(0, 0)\}$$
 initially $S^0_1 = \{(1, 2)\}$

That means while building S_1^0 we select the next ith pair. For S_1^0 we have selected first (P, W) pair which is (1, 2).

Now

$$S^1 = \{Merge S^0 \text{ and } S_0^1\}$$

= $\{(0,0), (1,2)\}$
 $S_1^1 = \{ Select next (P, W) pair and add it with $S^1 \}$
= $\{ (2,3), (2+0,3+0), (2+1,3+2) \}$$

...

 $S_1^1 = \{(2, 3), (3, 5)\}$: Repetition of (2, 3) is avoided.

 S^2 = {Merge candidates from S^1 and S_1^1 }

 $= \{(0, 0), (1, 2), (2, 3), (3, 5)\}$

 $S_1^2 = \{ \text{Select next (P, W) pair and add it with } S^2 \}$

 $= \{(5, 4), (6, 6), (7, 7), (8, 9)\}$

Now $S^3 = \{Merge candidates from S^2 \text{ and } S_1^2\}$

 $S^3 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9)\}$

Note that the pair (3, 5) is purged from S^3 . This is because, let us assume $(P_j, W_j) = (3, 5)$ and $(P_k, W_k) = (5, 4)$. Here $P_j \le P_k$ and $W_j > W_k$ is true hence we will eliminate pair (P_i, W_j) i.e. (3, 5) from S^3 .

$$S_1^3 = \{(6, 5), (7, 7), (8, 8), (11, 9), (12, 11), (13, 12), (14, 14)\}$$

 $S_1^4 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9), (6, 5), (8, 8), (11, 9), (12, 11), (13, 12), (14, 14)\}$

Now we are interested in M = 8. We get pair (8, 8) in S^4 . Hence we will set $x_4 = 1$. Now to select next object $(P - P_4)$ and $(W - W_4)$.

i.e (8-6) and (8-5).

i.e. (2, 3)

Pair $(2, 3) \in S^2$. Hence set $x_2 = 1$. So we get the final solution as (0, 1, 0, 1).

Consider the knapsack instance n = 3, m=50, $(w_1, w_2, w_3) = (10,20,30)$

&
$$(p_1, p_2, p_3) = (60, 100, 120)$$
.

SAMPLE QUESTIONS

- Differentiate between fractional knapsack and 0/1 knapsack
- State o/I knapsack problem
- Consider the knapsack instance n = 3, m=50, (w1, w2, w3) = (10,20,30) & (p1, p2, p3) = (60, 100, 120).
- Consider the knapsack instance n = 5, m=100, (w1, w2, w3, w4, w5) = (10,20,30,40,50) & <math>(p1, p2, p3, p4, p5) = (60, 100, 120, 140, 150).

