PART-I

Problems on Fourier Series

- 1. Expand the function $f(x)=x(2\pi-x)$ in Fourier series over the interval $(0\,,2\pi)$, hence deduce that $\sum_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}$
- 2. Expand the function $f(x)=x2\pi-x^2$ in Fourier series over the interval $(0,2\pi)$, hence deduce that $\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}=\frac{\pi^2}{8}$. Sketch the graph of f(x)
- 3. Find the Fourier series for the function $f(x) = \frac{\pi x}{2}$ in $0 < x < 2\pi$ Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots \dots$
- 4. Expand $f(x) = 2x x^2$ as a Fourier series in $0 \le x \le 2$.
- 5. Expand $f(x) = e^{-x}$ as a Fourier series in the interval (-l, l)
- 6. Find a Fourier series to represent $f(x) = x x^2$ from $-\pi$ to π and deduce that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots \dots \dots \dots$$

- 7. Find the Fourier series for the function $f(x) = x + x^2$ from $x = -\pi$ to $x = \pi$ and deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
- 8. Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$.
- 9. Express $f(x)=x+x^2$ as a Fourier series in the interval $(-\pi,\pi)$. and deduce that, $\frac{\pi^2}{12}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots \dots \infty$
- 11.If $f(x) = |\cos x|$, expand f(x) as a fourier series in the interval $(-\pi, \pi)$

PART II

3. Obtain the Fourier series for the function
$$f(x) = \begin{cases} -\pi & for & -\pi < x < 0 \\ x & for & 0 < x < \pi \end{cases}$$
 ar
$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

4. If
$$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$$

Show that i) $f(x) = \frac{4}{\pi} \left[sinx - \frac{1}{3^2} sin3x + \frac{1}{5^2} sin5x - \cdots \right]$

ii)
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x - \dots \right]$$

5. Obtain the Fourier series for the function

$$f(x) = \begin{cases} \pi x & \text{for } 0 \le x \le 1\\ \pi (2 - x) & \text{for } 1 \le x \le 2 \end{cases} \text{ and hence deduce that }$$

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

- 6. Find a Fourier series to represent $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ x^2, & 0 < x < \pi \end{cases}$
- 7. Obtain the Fourier series for the function f(x) given by

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$$

and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \dots \dots \dots$

8. Find the Fourier series of the function $f(x) = \begin{cases} -\cos x & (-\pi, 0) \\ \cos x & (0, \pi) \end{cases}$

- 3. An alternating current after passing through a half wave rectifier has the form $i = \left\{ \begin{array}{ll} I_0 \sin\theta & for \ 0 \leq x \leq \pi \\ 0 & for \ \pi \leq x \leq 2\pi \end{array} \right.$ (where I_0 in the maximum current). Express i in a Fourier series.
 - 9. Obtain the half-range sine series for the function

$$f(x) = \begin{cases} \frac{1}{4} - x, & 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \frac{1}{2} < x < 1 \end{cases}$$

- 10. Find the Fourier cosine series of $f(x) = sin\left[\frac{m\pi}{l}\right]x$, where m is positive integer.
- 11.Expand $f(x)=\sqrt{1-\cos x}$, $0< x< 2\pi$ in a Fourier series. Hence evaluate $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots$.