THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

EECE 373: Electromechanical Energy Conversion and Transmission

Final Exam April 21, 2004

Magnetic Circuits, Transformers, DC Machines, Induction Machines, Synchronous Machines, Stepper Motors

Surname: First Name:

Student ID:	 	_	_
Signature:_		1	(

- Close notes and books.
- You are allowed to have only a **calculator** and a **pen/pencil**.
- Show you work including derivations, comments, assumptions, and units wherever appropriate.
- Use back side of each page or ask for additional pages if you need extra space to write your answers.
- Exams suspected of cheating and/or turned in late will not be marked – failed exam.
- You have about 90 minutes to answer the following questions:

Problem	Points	Max.
	2 *	
1		16
		_
	•	
2		1 7
		-
3		17
3		1,
4		17
'		17
5		17
		17
6		16
0		10
Total		100
1 Otal		100
1		

Problem 1 (16pts)

Consider the magnetic system shown below. The length of the air-gap is such that the air-gap reluctance is $\Re_g = 8.75 \times 10^5 \, At \, / Wb$. The effective length and material of the core are such that the effective reluctance of the magnetic path inside the core is $\Re_c = 1.25 \times 10^5 \, At \, / Wb$. The cross-sectional area of the core and air-gap is $A_c = A_g = 10 \, cm^2$. The coil has 100 turns and dc resistance of 3Ω . Neglect flux leakage, fringing, and core losses. Assume that an external voltage source is connected to the coil.

- (a) (8pts) Draw an equivalent **magnetic** circuit, show the direction of mmf F and the flux Φ
- (b) (8pts) Calculate the rms value of ac voltage required to produce the flux density in the air-gap $B_g = 1$ T rms

$$F = N \cdot I = (R_g + R_c) \mathcal{Q}$$

$$\mathcal{Q} = B \cdot A$$

$$N \cdot T = (R_0 + R_c) \cdot B_0 \cdot A_c$$

$$T = \frac{(R_0 + R_c) \cdot B_0 \cdot A_c}{N} = 10A$$

$$L = \frac{N^2}{R_{popule}} \cdot X = \frac{\omega \cdot N^2}{(R_0 + R_c)} = 3.77 \Omega$$

$$Z = \sqrt{R^2 + X^2} = 4.818 \Omega$$

Problem 2 (17pts)

Consider a single-phase 60-Hz transformer with the following parameters: $R_1 = 1\Omega$, $X_1 = 3\Omega$, $X_m = 30\Omega$,

 $R_2 = 1.2 \,\Omega$, and $X_2 = 5 \,\Omega$, respectively. Assume that both windings have the same number of turns and that the primary side is connected to a 240-V ac source.

- (a) (8pts) Based on the given information, sketch the T-equivalent circuit and label all its elements
- (b) (9pts) Assume a resistor load $R_{load} = 40 \Omega$ is connected to the secondary side. Calculate the voltage regulation VR expressed in percent.

Recall: $VR = \frac{V_{no_load} - V_{load}}{V} \cdot 100\%$

$$\frac{V_{NR}}{V_{NR}} = \frac{V_{NR}}{V_{NR}} = 0.2202 - j.7.266$$

$$\frac{V_{NR}}{V_{NR}} = 0.2202 - j.7.266$$

$$I_1 = \frac{V_1}{Z_{in}} = 4.823 - 57.83$$

$$VR = \frac{218.08 - 704,126}{204,126} = 0.0689$$

$$= 6.84\%$$

Problem 3 (17pts)

Consider a **Permanent-Magnet DC Machine** with the armature resistance $R_a = 1\Omega$. When the machine is connected to a 12-V battery it draws the armature current $I_a = 0.2$ -A and the shaft speed is n = 1800 rpm CCW at no load. The battery voltage and friction torque can be assumed constant.

- (a) (8pts) Calculate the torque constant K_t and the friction torque T_{fric}
- (b) (9pts) Assume that you need to use this DC Machine as a generator to charge the battery. Calculate the external mechanical torque T_m required to produce the charging current of 1A. In what direction, CW or CCW, should this torque be applied? What is the resulting speed n?

Problem 4 (17pts)

Consider a 60Hz, 208V (line-to-line), Y-connected, NEMA Clsass B (Squirrel-Cage) Induction Motor with the following per-phase parameters: $R_1 = 1\Omega$, $R_2 = 1.5\Omega$, $X_1 = X_2 = 3\Omega$, and $X_m = 40\Omega$ (all referred to the stator). The motor is supplied with the nominal (rated) voltage and is driving a mechanical load. The speed of the motor shaft is n = 840 rpm. You can neglect core and friction losses and use an approximate equivalent circuit. Determine the following:

- (a) (4pts) Number of poles p
- (b) (4pts) Slip *s*
- (c) (5pts) Stator current I_1 and power factor PF
- (d) (4pts) Total (3-phase) input real power

P = 8

$$\frac{1}{3} \frac{k_2}{5}$$

$$I_1 = \frac{V_1}{2} = \frac{208}{\sqrt{3'}(14.09 + 312.4)} = 4.79 - 4.225$$

Problem 5 (17pts)

Consider a Salient-Pole Synchronous Generator with the following parameters: $X_q = 0.5 \, pu$, $X_d = 0.9 \, pu$ (the stator winding resistance is negligible). The excitation is adjusted so that the open-circuit voltage is $E_f = 1.2969 \, pu$. The generator is supplying a resistive load that draws rated (nominal) current $I_a = 1 \, pu$ and the terminal voltage is $V_t = 1 \, pu$.

- (a) (8pts) Sketch a phasor diagram and label all relevant axes, angles, and phasors
- (b) (9pts) Calculate the rotor angle δ in degrees

$$V_{t} \cdot Sin \delta = X_{q} \cdot I_{q} = X_{q} \cdot I_{a} \cdot cos \delta$$

$$tan \delta = \frac{X_{q} I_{a}}{V_{t}} = X_{q} = 0.5; \quad \delta = a + on(X_{q}) = 26.6 \text{ o}$$

$$E_{f} = V_{t} \cdot \cos \delta + X_{d} \cdot I_{a} \cdot \sin \delta$$

$$S_{in} \delta = \frac{X_{q} I_{a} \cdot \cos \delta}{V_{t}}$$

$$E_{f} = V_{t} \cdot \cos \delta + X_{d} I_{a} \cdot \frac{X_{q} I_{a} \cdot \cos \delta}{V_{t}} = \left[V_{t} + \frac{X_{d} X_{q} I_{a}^{2}}{V_{t}}\right]^{2} \cos \delta$$

$$\delta = a \cos \left[\frac{F_{f}}{V_{t} + \frac{X_{d} X_{q} I_{a}^{2}}{V_{t}}}\right] = 26.6^{\circ}$$

Problem 6 (16pts)Consider a single-stack stepper motor shown below. Complete the following table:

2pts	Stator tooth pitch (STP)	60 degrees
2pts	Rotor tooth pitch (RTP)	90 degrees
3pts	Step length $\Delta\Theta$	-30 degrees
3pts	Number of steps per revolution (Resolution)	12
3pts	Assume sequence of pulses as B – C – A, determine the direction of rotation (CW or CCW)	CCW
3pts	Assume you have a 3-phase pulse generator to supply this motor. The generator produces 6 pulses per second. What is the motor speed in rpm?	30 rpm