A Tutorial on Time-Dependent Cohort State-Transition Models in R

Fernando Alarid-Escudero, PhD* Eline Krijkamp, MSc[†] Eva A. Enns, PhD[‡] Alan Yang, MSc[§] Myriam G.M. Hunink, PhD[†]¶ Petros Pechlivanoglou, PhD[∥] Hawre Jalal, MD, PhD**

2021-08-05

Abstract

This tutorial shows how to implement time-dependent cohort state-transition models (cSTMs) to conduct cost-effectiveness analyses (CEA) in R, where transition probabilities and rewards vary by time. We account for two types of time dependency: time since the start of the simulation (simulation-time dependency) and time spent in a health state (state residence dependency). This tutorial is based on an accompanying tutorial that introduces how to implement time-independent cSTMs. We illustrate how to conduct a CEA of multiple strategies based on a time-dependent cSTM using a previously published cSTM, including probabilistic sensitivity analyses. We also demonstrate how to compute various epidemiological outcomes of interest, such as survival probability and prevalence. To illustrate the concepts, we provide both the mathematical notation and the R code to execute the calculations. Finally, similar to the introductory tutorial, we provide a public repository with the R code for broader implementation.

1	Introduction	2
2	Simulation-time dependency	3
3	Time dependency on state residence	4
4	Case study: Time-dependent Sick-Sicker model	5
	4.1 Simulation-time dependency	Ć
	4.2 Time dependency on state residence \dots	13
5	Epidemiological and economic measures	19
	5.1 Epidemiological measures	19
	5.2 Economic measures	22

^{*}Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes, AGS, Mexico †Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands

[‡]Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis, MN, USA

[§]The Hospital for Sick Children, Toronto

[¶]Center for Health Decision Sciences, Harvard T.H. Chan School of Public Health, Boston, USA

The Hospital for Sick Children, Toronto and University of Toronto, Toronto, Ontario, Canada

^{**}University of Pittsburgh, Pittsburgh, PA, USA

6	Incremental cost-effectiveness ratios (ICERs)	2 9
7	Probabilistic sensitivity analysis	30
8	Discussion	33
9	Acknowledgements	35
$\mathbf{R}_{\mathbf{c}}$	eferences	35

1 Introduction

Cohort state-transition models (cSTMs) are a type of decision model that simulate disease dynamics over time. cSTMs have been used to evaluate different health policy and clinical strategies, such as screening and surveillance programs, ^{1,2} diagnostic procedures, ³ disease management programs, ⁴ and interventions. ^{5,6}. The simplest cSTMs are time-independent (also called "time-homogeneous"), meaning that the transition probabilities and other model parameters remain fixed over the simulated time horizon. In a previous tutorial, we describe the implementation of time-independent cSTMs. ⁷ However, for many applications, a time-independent cSTM is not sufficient to capture disease dynamics because key parameters do, in reality, vary over time. For example, background mortality changes as a cohort ages, the risk of cancer recurrence might change as a function of time since diagnosis, or the incidence of vector-borne diseases may have temporal or seasonal trends. The costs and utility of residing in a particular health state might also vary over time. For example, cancer-related health care costs might depend on whether a patient is in their first year of remission or their fifth. Similarly, a person's last year of life is often their most expensive in health care spending.

The implementation of more realistic (and thus complex) time-dependent cSTMs is the topic of this tutorial. This tutorial expands the cSTM framework described in the previous tutorial by allowing transition probabilities, costs, and utilities to vary over time and accounting for one-time costs or utilities when the cohort experiences events when transitioning between states. We also demonstrate how to compute various epidemiological measures from cSTMs that may be needed for model calibration or validation.

In this tutorial, we make a conceptual distinction between time-dependency related to the time since the start of the simulation (simulation time-dependency) and the time spent in a health state (state residence time-dependency), as this translates in different implementation approaches. Simulation time-dependency reflects parameters that vary with time and affects the entire cohort in the same way. The most common example of simulation time-dependency is, for a single-age cohort, how age-specific background mortality changes over time as the cohort ages. Since all members of the cohort age at the same rate, this dependency can be implemented by changing the mortality model parameters as the simulation progresses.⁸ For the same reason, in a model simulating a cohort starting from disease diagnosis, any dependence on time since diagnosis can be implemented as a dependence on the time since simulation start. Seasonal or temporal variation in disease incidence can also be reflected through simulation-time dependency, where the risk of developing a disease can be allowed to vary based on the current season or year in the simulation.

State-residence time-dependency captures time-dependence on events that members of the cohort could experience at different times. That is, in a model simulating a healthy cohort as they develop a disease over

time, cohort individuals experience disease onset at different times. Thus, parameters that depend on the time since disease onset cannot be implemented based on simulation time; instead, we need to track members of the cohort from their disease onset time. This type of time-dependency is implemented by expanding the model state space to include disease states that encode the time since an event. For example, instead of a single "Sick" state, individuals would transition first to the "Sick - cycle 1" state at disease onset, then "Sick - cycle 2" at the next cycle, and so on. In this way, each replicate of the "Sick" state can have different transition probabilities (e.g., mortality, risk of complications, etc.), costs, or utilities. We should note that the state-space expansion approach to time-dependency is the most generalizable implementation approach because one could always expand the entire model state-space for each cycle in the simulated time horizon to capture simulation-time dependence. In this sense, changing parameters with each simulation cycle can be seen as a shortcut. However, in practice, substantial state-space expansion is cumbersome and potentially computationally burdensome. Thus, when time-dependence can be implemented as depending on simulation time, it should be.

This tutorial also expands our example to illustrate the concept and implementation of transition rewards, where one-time costs or utility impacts are applied when individuals transition between certain states. These transition rewards reflect event-driven outcome impacts, such as a higher cost for the first cycle of disease onset due to increased diagnostic and management costs or the increased cost of transition to the dead state incurred from end-of-life interventions or management. While these event-driven impacts could be captured by expanding the model state-space to include an initial disease state or a pre-death, end-of-life state, state-space expansion can be avoided by calculating incurred rewards based on the number of individuals of the cohort making the relevant transition. For implementation, this requires storing not just the cohort trace, which reflects how many individuals are in each state at a given cycle, but also a cohort state-transition array, which records how many individuals are making each possible transition at a given cycle.

Finally, this tutorial also illustrates the calculation of more advanced epidemiological outputs beyond the simple cohort trace. These measures include, survival life expectancy, prevalence, and incidence. Some of these calculations leverage the state-transition array implementation that we will introduce, while others are manipulations of the cohort trace. Such epidemiological measures may be of interest for specific analyses but are also important for calibrating and validating the model against real-world data.

In summary, we describe how to implement simulation-time dependent cSTMs and then add state residence dependency to account for both time dependencies, illustrate the implementation of these cSTMs and conduct a cost-effectiveness analysis (CEA) in R, a statistical software with increasing use in health decision sciences. ¹⁰ Readers can find the most up-to-date model code and code to create the tutorial graphs in the accompanying GitHub repository (https://github.com/DARTH-git/cohort-modeling-tutorial-timedep). We assume that the reader is familiar with the basics of decision modeling and the basics of developing time-independent cSTMs in R, as described in the accompanying tutorial.

2 Simulation-time dependency

Simulation-time dependency can be accounted for by defining the transition probability matrix as a function of time, P_t . The elements of P_t are the transition probabilities of moving from state i to state j as a function of time t, $p_{[i,j,t]}$, where $\{i,j\} = 1, \ldots, n_S$ and $t = 0, \ldots, n_T$, with n_S being the number of health states of the

model and n_T the number of cycles that represent total simulation time.

$$P_{t} = \begin{bmatrix} p_{[1,1,t]} & p_{[1,2,t]} & \cdots & p_{[1,n_{S},t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & \cdots & p_{[2,n_{S},t]} \\ \vdots & \vdots & \ddots & \vdots \\ p_{[n_{S},1,t]} & p_{[n_{S},2,t]} & \cdots & p_{[n_{S},n_{S},t]} \end{bmatrix}.$$

Note that all rows of the transition probability matrix in each cycle t must sum to one, $\sum_{j=1}^{n_S} p_{[i,j,t]} = 1$ for all $i = 1, \ldots, n_S$ and $t = 0, \ldots, n_T$.

After defining the transition probability matrix, we need to specify the initial distribution of the cohort at t = 0. These two components will allow us to simulate the transitions of the cohort across health states over time. Therefore, we define \mathbf{m}_0 as the vector that captures the distribution of the cohort among the states at t = 0 (i.e., the initial state vector). The state vector at cycle t + 1 (\mathbf{m}_{t+1}) is then calculated as the matrix product of the state vector at cycle t, \mathbf{m}_t , and the transition probability matrix that the cohort faces in cycle t, P_t ,

$$\mathbf{m}_{t+1} = \mathbf{m}_t P_t \qquad \text{for} \qquad t = 0, \dots, (n_T - 1). \tag{1}$$

Equation (1) is iteratively evaluated until $t = n_T$.

The cohort trace matrix, M, is a matrix of dimensions $(n_T + 1) \times n_S$ where each row is a state vector $(-\mathbf{m}_t -)$, such that

$$M = \begin{bmatrix} -\mathbf{m}_0 - \\ -\mathbf{m}_1 - \\ \vdots \\ -\mathbf{m}_{n\pi} - \end{bmatrix}.$$

M stores the output of the cSTM, which we can use to compute various epidemiological outcomes, such as prevalence and survival probability over time, and economic outcomes, such as cumulative resource use and costs.

3 Time dependency on state residence

The implementation of state residence dependency is slightly more involved than simulation-time dependency. As described above, dependence on state residence time occurs when transition probabilities or rewards depend on the time spent in a given state. To account for state residence dependency, we expand the number of states with as many transient states as the number of cycles for which state residency is required. These transient states are often referred to as *tunnel* states where the cohort stays for only one cycle and either transition to the next tunnel state or completely exit the tunnel.

In a scenario where state-residence in one state lasts n_{tunnels} cycles, this state needs to be expanded into n_{tunnels} states, and the transition probability matrix also needs to be expanded to incorporate these additional transient states. This will result in a transition probability matrix of dimensions $n_{S_{\text{tunnels}}} \times n_{S_{\text{tunnels}}}$, where

 $n_{S_{\text{tunnels}}}$ is the total number of health states ($n_{S_{\text{tunnels}}} = n_S + n_{\text{tunnels}} - 1$). If the transition probabilities are also dependent on simulation time, we add a third dimension such that the dimensions will become $n_{S_{\text{tunnels}}} \times n_{S_{\text{tunnels}}} \times n_T$. As state residence dependency extends in more health states, the total number of health states will increase, causing what has been referred to as "state explosion". Table 1 describes the core components of time-dependent cSTMs and their suggested R code names.

Table 1: Core components of time-dependent cSTMs with their R name.

Element	Description	R name
$\overline{n_S}$	Number of states	n_states
\mathbf{m}_0	Initial state vector	v_s_init
\mathbf{m}_t	State vector in cycle t	$v_{\mathtt{mt}}$
M	Cohort trace matrix	m_M
P	Time-dependent transition probability array	a_P
\mathbf{A}	Transition-dynamics array	a_A
$n_{\rm tunnels}$	Number of tunnel states	n_tunnel size
$n_{S_{ m tunnels}}$	Number of states including tunnel states	n_states_tunnels
$\mathbf{m}_{\mathrm{tunnels}_0}$	Initial state vector for the model with tunnel states	v_s_init_tunnels

For a more detailed description of these components with their variable types, data structure, and R name, please see the Supplementary Material.

4 Case study: Time-dependent Sick-Sicker model

Similar to the introductory tutorial, we will demonstrate how to implement time-dependent cSTMs in R using the 4-state "Sick-Sicker" model⁷ to account for time dependency. We will use this cSTM to conduct a CEA of different treatment strategies accounting for transition rewards. The state-transition diagram of the Sick-Sicker model is presented in Figure 1. We first adapt the cSTM to account for simulation-time dependency by allowing age-dependent background mortality and then expand it to account for state-residence dependency.

Figure 1: State-transition diagram of the Sick-Sicker cohort state-transition model with the name of the health states and possible transitions with their corresponding transition probability names.

The model simulates the health care costs and quality-adjusted life-years (QALYs) of a cohort of 25-year-old individuals at risk of developing a hypothetical disease that has two stages: "Sick" and "Sicker". 11 We simulate the cohort of individuals who all start in the "Healthy" state (denoted by "H") over their lifetime, which means that we will simulate the cohort for 75 cycles. The total number of cycles is denoted as n_T and defined in R as n_cycles. Healthy individuals face age-specific background mortality and those who become ill over time transition to the "Sick" state (denoted by "S1"). Once healthy individuals get sick, they incur a one-time utility decrement of 0.01 (du_HS1, a disutility of transitioning from H to S1) and a transition cost of \$1,000 (ic HS1) that reflects the acute impacts of developing the illness. The S1 state is associated with higher mortality, higher health care costs, and lower quality of life than the H state. Once in the S1 state, individuals may recover (returning to the H state), die (move to the D state), or progress further to the "Sicker" state (denoted by "S2"), with further increases in mortality risk and health care costs and reduced quality of life. We assume that it is not possible to distinguish between individuals in S1 and S2. In the state-residence time-dependent model, the risk of progressing from S1 to S2 is a function of the duration of time spent in S1. Individuals in S1 and S2 face an increased hazard of death, compared to healthy individuals, in the form of a hazard ratio (HR) of 3 and 10, respectively, relative to the background age-specific mortality hazard rate. Once simulated individuals die, they transition to the absorbing D state, where they remain, and incur a one-time cost of \$2,000 (ic_D) that reflects the expected acute care preceding death. All transitions between non-death states are assumed to be conditional on surviving each cycle. We simulated the evolution of the cohort in one-year discrete-time cycles.

We use this cSTM to evaluate the cost-effectiveness of four strategies: Strategy A, strategy B, a combination of A and B (strategy AB), and the standard of care (strategy SoC). Strategy A involves administering treatment A to individuals in S1 and S2 but only increases the QoL of individuals in S1 from 0.75 (utility

without treatment, u_S1) to 0.95 (utility with treatment A, u_trtA) and costs \$12,000 per year (c_trtA). This strategy does not impact the QoL of individuals in S2, nor does it change the risk of becoming sick or progressing through the sick states. Strategy B uses treatment B to reduce only the rate of Sick individuals progressing to the S2 state with a hazard ratio (HR) of 0.6 (hr_S1S2_trtB) and costs \$13,000 per year (c_trtB) and does not affect QoL. Strategy AB involves administering both treatments A and B. We discount both costs and QALYs at an annual rate of 3%. Model parameters and the corresponding R variable names are presented in Table 2 and follow the notation described in the DARTH coding framework. 13

Note that for strategy A, the model has the same structure and identical transition probabilities to SoC. The only difference is the added cost of the treatment for S1 or S2, and QoL increases for S1. After comparing the four strategies in terms of expected QALYs and costs, we calculate the incremental cost per QALY gained between non-dominated strategies.

Table 2: Description of parameters, their R variable name, base-case values and distribution.

Parameter	R name	Base-case	Distribution
Number of cycles (n_T)	n_cycles	75 years	constant
Names of health states	v_names_states	H,S1,S2,D	constant
Annual discount rate for costs	d_c	3%	constant
Annual discount rate for QALYs	d_e	3%	constant
Number of PSA samples (K)	n_sim	1,000	constant
Annual transition probabilities conditional			
on surviving			
- Disease onset (H to S1)	p_HS1	0.15	beta(30, 170)
- Recovery (S1 to H)	p_S1H	0.5	beta(60, 60)
- Time-independent disease progression (S1	p_S1S2	0.105	beta(84, 716)
to S2)			
- Time-dependent disease progression (S1 to	v_p_S1S2_tunnels		
S2)			
Weibull parameters			
Scale (λ)	p_S1S2_scale	0.08	lognormal(log(0.08), 0.02)
Shape (γ)	p_S1S2_shape	1.10	lognormal(log(1.10), 0.05)
Annual mortality			,
- Age-dependent background mortality rate (H to D)	v_r_HDage	age-specific	constant
- Hazard ratio of death in S1 vs ${\cal H}$	hr_S1	3.0	$ lognormal(log(3.0), \\ 0.01) $
- Hazard ratio of death in S2 vs H $$	hr_S2	10.0	$\begin{array}{c} lognormal(log(10.0), \\ 0.02) \end{array}$
Annual costs			
- Healthy individuals	c_H	\$2,000	gamma(100.0, 20.0)

Parameter	R name	Base-case	Distribution
- Sick individuals in S1	c_S1	\$4,000	gamma(177.8, 22.5)
- Sick individuals in S2	c_S2	\$15,000	gamma(225.0, 66.7)
- Dead individuals	c_D	\$0	-
- Cost of treatment A as an additional costs	c_trtA	\$12,000	gamma(576.0, 20.8)
on individuals treated in S1 or S2 $$			
- Cost of treatment B as an additional costs	c_trtB	\$13,000	gamma(676.0, 19.2)
on individuals treated in S1 or S2 $$			
Utility weights			
- Healthy individuals	u_H	1.00	beta(200, 3)
- Sick individuals in S1	u_S1	0.75	beta(130, 45)
- Sick individuals in S2	u_S2	0.50	beta(230, 230)
- Dead individuals	$\mathtt{u}_{\mathtt{D}}$	0.00	constant
Treatment A effectiveness			
- Utility for treated individuals in S1	u_trtA	0.95	beta(300, 15)
Treatment B effectiveness			
- Reduction in rate of disease progression (S1 $$	hr_S1S2_trtB	$\log(0.6)$	lognormal(log(0.6),
to S2) as hazard ratio (HR)			0.1)
Transition rewards			
- Utility decrement of healthy individuals	du_HS1	0.01	beta(11,1088)
when transitioning to S1			
- Cost of healthy individuals	ic_HS1	\$1,000	$\operatorname{gamma}(25, 40)$
when transitioning to S1			
- Cost of dying when transitioning to D	ic_D	\$2,000	$\operatorname{gamma}(100,20)$

The R code below describes the initialization of the input parameters.

```
## General setup
cycle_length <- 1 # cycle length equal one year</pre>
n_age_init <- 25 # age at baseline</pre>
n_age_max <- 100 # maximum age of follow up</pre>
n_cycles <- n_age_max - n_age_init # number of cycles</pre>
# The 4 health states of the model:
v_names_states <- c("H", # Healthy (H)</pre>
                     "S1", # Sick (S1)
                     "S2", # Sicker (S2)
                     "D") # Dead (D)
n_states <- length(v_names_states) # number of health states</pre>
d_e <- 0.03 # discount rate for QALYs of 3% per cycle</pre>
d_c <- 0.03 # discount rate for costs of 3% per cycle</pre>
v_names_str <- c("Standard of care", # store the strategy names</pre>
                  "Strategy A",
                  "Strategy B",
```

```
"Strategy AB")
## Transition probabilities (per cycle), hazard ratios and odds ratio (OR)
        <- 0.15 # probability of becoming Sick when Healthy
p_HS1
p_S1H
        <- 0.5
                 # probability of becoming Healthy when Sick
p_S1S2 <- 0.105 # probability of becoming Sicker when Sick
hr_S1
                 # hazard ratio of death in Sick vs Healthy
        <- 3
hr_S2
        <- 10
                 # hazard ratio of death in Sicker vs Healthy
# Effectiveness of treatment B
hr S1S2 trtB <- 0.6 # hazard ratio of becoming Sicker when Sick under treatment B
## State rewards
## Costs
c_H
       <- 2000 # cost of being Healthy for one cycle
c_S1
       <- 4000 # cost of being Sick for one cycle
c S2
       <- 15000 # cost of being Sicker for one cycle
c D
                # cost of being dead for one cycle
c_trtA <- 12000 # cost of receiving treatment A for one cycle</pre>
c_trtB <- 13000 # cost of receiving treatment B for one cycle</pre>
# Utilities
       <- 1
                # utility of being Healthy for one cycle
u_H
       <- 0.75 # utility of being Sick for one cycle
u_S1
u S2
       <- 0.5
               # utility of being Sicker for one cycle
                # utility of being dead for one cycle
u_D
       <- 0
u_trtA <- 0.95 # utility when receiving treatment A for one cycle
## Transition rewards
du_HS1 <- 0.01 # one-time utility decrement when transitioning from Healthy to Sick
ic_HS1 <- 1000 # one-time cost when transitioning from Healthy to Sick
ic D
     <- 2000 # one-time cost when dying
```

4.1 Simulation-time dependency

To illustrate the implementation of simulation-time dependency in the Sick-Sicker cSTM, we model all-cause mortality as a function of age. We obtain all-cause mortality from life tables in the form of age-specific mortality hazard rates, $\mu(a)$, where a refers to age. For this example, we create a vector $v_r_mort_by_age$ with age-specific background mortality hazard rates for 0 to 100 year-olds obtained from the 2015 US life-tables. To compute the transition probability from state H to state D, corresponding to cohort's age at each cycle, we transform the rate $\mu(a)$ to a transition probability assuming a constant exponential hazard rate within each year of age

$$p_{[H,D,t]} = 1 - \exp\{-\mu(a_0 + t)\},\,$$

where $a_0 = 25$ is the starting age of the cohort. Instead of iterating through the mortality hazard rates, we obtain a vector of background mortality hazard rates for the ages of interest between 25 through 100 by subsetting $\mu(a)$ (R variable name v_r_mort_by_age) for these ages. We transform the resulting R variable, v r HDage, to a probability.

```
# Age-specific mortality rate in the Healthy state (background mortality)
v_r_HDage <- v_r_mort_by_age[(n_age_init + 1) + 0:(n_cycles - 1)]
# Transform to age-specific background mortality risk
v_p_HDage <- 1 - exp(-v_r_HDage)</pre>
```

Because mortality in S1 and S2 are relative to background mortality, adding age dependency to background mortality results in age-dependent mortality in S1 and S2 as well as in H. To generate the age-specific mortality in S1 and S2, we multiply the age-specific background mortality rate, v_r_HDage, by the constant hazard ratios hr_S1 and hr_S2, respectively. We then convert the resulting age-specific mortality rates to probabilities.

```
## Age-specific mortality rates in the Sick and Sicker states
v_r_S1Dage <- v_r_HDage * hr_S1 # when Sick
v_r_S2Dage <- v_r_HDage * hr_S2 # when Sicker
## Age-specific probabilities of dying in the Sick and Sicker states
v_p_S1Dage <- 1 - exp(-v_r_S1Dage) # when Sick
v_p_S2Dage <- 1 - exp(-v_r_S2Dage) # when Sicker</pre>
```

To incorporate simulation-time dependency into the transition probability matrix, we expand the dimensions of the matrix and create a 3-dimensional transition probability array, \mathbf{P} and $\mathbf{a}_{-}\mathbf{P}$ in R, of dimensions $n_S \times n_S \times n_T$. The first two dimensions of this array correspond to transitions between states and the third dimension to time. The t-th element in the third dimension corresponds to the transition probability matrix at cycle t. A visual representation of $\mathbf{a}_{-}\mathbf{P}$ is shown in Figure 2.

Figure 2: A 3-dimensional representation of the transition probability array of the Sick-Sicker model with simulation-time dependency.

First, we initialize a_P with a default value of zero for all transition probabilities.

Filling a_P with the corresponding transition probabilities of the cohort under the SoC strategy is comparable with filling m_P for a time-independent cSTM, accounting for the time dimension, which is represented by the third dimension of the array. However, this requires a slight modification of the code from the time-independent cSTM. The code below illustrates how to assign age-dependent transition probabilities in the third dimension of the array. For constant transitions over time, we only need to provide one value for the transition probability. R replicates the value of such transitions as many times as the number of cycles $(n_T + 1 \text{ times in our example})$.

```
### Fill in array
## From H
a_P["H", "H",] <- (1 - v_p_HDage) * (1 - p_HS1)
a_P["H", "S1",] <- (1 - v_p_HDage) * p_HS1
a_P["H", "D",] <- v_p_HDage
## From S1
a_P["S1", "H",] <- (1 - v_p_S1Dage) * p_S1H
a_P["S1", "S1",] <- (1 - v_p_S1Dage) * (1 - (p_S1H + p_S1S2))
a_P["S1", "S2",] <- (1 - v_p_S1Dage) * p_S1S2
a_P["S1", "D",] <- v_p_S1Dage
## From S2
a_P["S2", "S2",] <- 1 - v_p_S2Dage
a_P["S2", "D",] <- v_p_S2Dage
## From D
a_P["D", "D",] <- 1</pre>
```

As mentioned above, each slice along the third dimension of a_P corresponds to a transition probability matrix. For example, the transition matrix for 25-year-olds in the Sick-Sicker model under the SoC strategy can be retrieved using:

Similar to the time-independent cSTM, treatment A does not change the transition probabilities. For treatment B, we first initialize the three-dimensional array of transition probabilities, a_P_trtB as a copy of a_P and update only the probability of remaining in S1 and the transition probability from S1 to S2 (i.e., p_S1S2 is replaced with p_S1S2_trtB).

```
## Initialize transition probability array for treatment B
a_P_trtB <- a_P
## Update only transition probabilities from S1 involving p_S1S2
a_P_trtB["S1", "S1", ] <- (1 - v_p_S1Dage) * (1 - (p_S1H + p_S1S2_trtB))
a_P_trtB["S1", "S2", ] <- (1 - v_p_S1Dage) * p_S1S2_trtB</pre>
```

Once we create the transition probability arrays, we check they are valid (i.e., ensuring transition probabilities are between 0 and 1, and transition probabilities from each state sum to 1) using the functions check_sum_of_transition_array and check_transition_probability, provided in the darthtools package (https://github.com/DARTH-git/darthtools).

In the Sick-Sicker model, the entire cohort starts in the Healthy state. Therefore, we create the $1 \times n_S$ initial state vector $\mathbf{v}_{\mathbf{s}}$ _init with all of the cohort assigned to the H state:

```
v_s_init <- c(H = 1, S1 = 0, S2 = 0, D = 0) # initial state vector
v_s_init
# H S1 S2 D
# 1 0 0 0</pre>
```

We use the variable v_s_{init} to initialize M represented by m_M for the cohorts under SoC strategy and strategy A because the transition probabilities are the same under both strategies, and by m_M_{trtB} for the cohorts under strategies B and AB because both transition probabilities under both strategies are affected by treatment B. Note that the initial state vector, v_s_{init} , can be modified to account for the distribution of the cohort across the states at the start of the simulation and might vary by strategy. To simulate the cohort over the n_T cycles for the simulation-time-dependent cSTM, we initialize two new cohort trace matrices m_M_{ad} and $m_M_{ad_{trtB}}$.

We then use the matrix product to get the state vector at cycle t. This equation is similar to the one described for the time-independent model. The only modification required is to index the transition probability arrays

 a_P and a_P_{trtB} by t to obtain the cycle-specific transition probability matrices.

```
# Iterative solution of age-dependent cSTM
for(t in 1:n_cycles){
    # For SoC
    m_M_ad[t + 1, ] <- m_M_ad[t, ] %*% a_P[, , t]
    # For treatment B
    m_M_ad_trtB[t + 1, ] <- m_M_ad_trtB[t, ] %*% a_P_trtB[, , t]
}</pre>
```

A graphical representation of the cohort trace for all cycles of the age-dependent cSTM under strategies SoC and A is shown in Figure 3.

Figure 3: Cohort trace of the age-dependent cSTM under strategies SoC and A.

4.2 Time dependency on state residence

To add a state-residence dependency to the simulation-time-dependent Sick-Sicker model defined above, we assume the risk of progression from S1 to S2 increases as a function of the time $\tau = 1, \ldots, n_{\text{tunnels}}$ the cohort remains in the S1 state. This increase follows a Weibull hazard function, $h(\tau)$, defined as

$$h(\tau) = \gamma \lambda (\lambda \tau)^{\gamma - 1},$$

with a corresponding cumulative hazard, $H(\tau)$,

$$H(\tau) = (\lambda \tau)^{\gamma},$$

where λ and γ are the scale and shape parameters of the Weibull function, respectively.

To derive a transition probability from S1 to S2 as a function as a function of the time the cohort spends in S1, $p_{[S1_{\tau},S2,\tau]}$, from $H(\tau)$, we use the following equation¹⁵

$$p_{[S1_{\tau}, S2, \tau]} = 1 - \exp(H(\tau - 1) - H(\tau))$$
(2)

Substituting the Weibull cumulative hazard in Equation (2), the transition probability is $p_{[S1_{\tau},S2,\tau]}$, is

$$p_{[S1_{\tau},S2,\tau]} = 1 - \exp((\lambda(\tau - 1))^{\gamma} - (\lambda\tau)^{\gamma}).$$

We assume that state-residence dependency affects the cohort in the S1 state throughout the whole simulation (i.e., $n_{\text{tunnels}} = n_T$) and create a new variable called n_tunnel_size with the length of the tunnel equal to n_cycles. Thus, there will be 75 S1 tunnel states plus 3 more states (H, S2, D) resulting in a total of $n_{S_{\text{tunnels}}} = 78$.

Figure 4 shows the Sick-Sicker model's state-transition diagram with state-residence dependency with n_{tunnels} tunnel states for S1.

Figure 4: State-transition diagram of the Sick-Sicker model with tunnel states expanding the Sick state $(S1_1, S1_2, ..., S1_{n_{exttunnels}})$.

To implement state-residence dependency in the Sick-Sicker, we create the vector variables v_Sick_tunnel and v_names_states_tunnels with the names of the Sick tunnel states' and all the states of the cSTM, including tunnels, respectively, and use the parameters listed in Table 1.

```
## Number of tunnels
n_tunnel_size <- n_cycles
## Vector with cycles for tunnels
v_cycles_tunnel <- 1:n_tunnel_size
## Vector with names for tunnel states of Sick state
v_Sick_tunnel <- paste("S1_", seq(1, n_tunnel_size), "Yr", sep = "")
## Create variables for model with tunnels
v_names_states_tunnels <- c("H", v_Sick_tunnel, "S2", "D") # state names
n_states_tunnels <- length(v_names_states_tunnels) # number of states
## Initialize first cycle of Markov trace accounting for the tunnels
v_s_init_tunnels <- c(1, rep(0, n_tunnel_size), 0, 0)</pre>
```

Based on the updated parameters, the state-residence-dependent transition probability from Sick to Sicker based on a Weibull function, v_p_S1S2_tunnels, is:

To adapt the 3-dimensional transition probability array to incorporate both age and state-residence dependence in the Sick-Sicker model under SoC, we first create an expanded 3-dimensional array accounting for tunnels, a_P_tunnels. The dimensions of this array are $n_{S_{\text{tunnels}}} \times n_{S_{\text{tunnels}}} \times n_{T}$. A visual representation of a_P_tunnels of the Sick-Sicker model with tunnel states expanding the Sick state is shown in Figure 5.

Figure 5: The 3-dimensional transition probability array of the Sick-Sicker model expanded to account for age-dependence and S1 state-residence using tunnel states.

Filling a_P_tunnels with the corresponding transition probabilities is similar to how it's done with a_P above, with the difference being that we now fill the transition probabilities from all the tunnel states by iterating through all the tunnel states and assigning the corresponding disease progression transition probabilities.

```
### Fill in array
## From H
a_P_tunnels["H", "H", ]
                                    <- (1 - v_p_HDage) * (1 - p_HS1)
a P tunnels["H", v Sick tunnel[1], ] <- (1 - v p HDage) * p HS1
a_P_tunnels["H", "D", ]
                                    <- v_p_HDage
## From S1
for(i in 1:(n_tunnel_size - 1)){
  a_P_tunnels[v_Sick_tunnel[i], "H", ] <- (1 - v_p_S1Dage) * p_S1H
  a_P_tunnels[v_Sick_tunnel[i],
              v_Sick_tunnel[i + 1], ] <- (1 - v_p_S1Dage) *</pre>
                                           (1 - (p_S1H + v_p_S1S2_tunnels[i]))
  a_P_tunnels[v_Sick_tunnel[i], "S2", ] <- (1 - v_p_S1Dage) * v_p_S1S2_tunnels[i]
  a_P_tunnels[v_Sick_tunnel[i], "D", ] <- v_p_S1Dage
}
# Repeat code for the last cycle to force the cohort stay in the last tunnel state of Sick
a_P_tunnels[v_Sick_tunnel[n_tunnel_size], "H", ] <- (1 - v_p_S1Dage) * p_S1H
a_P_tunnels[v_Sick_tunnel[n_tunnel_size],
            v_Sick_tunnel[n_tunnel_size], ] <- (1 - v_p_S1Dage) *</pre>
                                               (1 - (p_S1H + v_p_S1S2_tunnels[n_tunnel_size]))
a_P_tunnels[v_Sick_tunnel[n_tunnel_size], "S2", ] <- (1 - v_p_S1Dage) *
                                                     v_p_S1S2_tunnels[n_tunnel_size]
a_P_tunnels[v_Sick_tunnel[n_tunnel_size], "D", ] <- v_p_S1Dage
### From S2
a_P_tunnels["S2", "S2", ] <- 1 - v_p_S2Dage
a_P_tunnels["S2", "D", ] <- v_p_S2Dage
# From D
a_P_tunnels["D", "D", ] <- 1
```

Accounting for the effectiveness of treatment B is done similarly to the simulation-time-dependent approach above. We first transform v_p_S1S2_tunnels to a vector of rates, v_r_S1S2_tunnels, assuming exponentially distributed transitions across the tunnel states, and multiply it by the hazard ratio of treatment B. Then, we transform back to probabilities to produce v_p_S1S2_tunnels_trtB, a vector of transition probabilities that account for the duration of S1 state-residence under treatment B.

```
## Transform risk of progression from Sick to Sicker to a rate
# vector of rates of becoming Sicker when Sick
v_r_S1S2_tunnels <- -log(1-v_p_S1S2_tunnels)/cycle_length
# apply hazard ratio to rate to obtain transition rate of becoming Sicker when
# Sick for treatment B
r_S1S2_tunnels_trtB <- v_r_S1S2_tunnels * hr_S1S2_trtB
# transform rate to probability to become Sicker when Sick under treatment B</pre>
```

```
# conditional on surviving
v_p_S1S2_tunnels_trtB <- 1-exp(-r_S1S2_tunnels_trtB*cycle_length)</pre>
```

Then, we initialize the three-dimensional transition probability array for treatment B, a_P_tunnels_trtB, based on a_P_tunnels. The only difference is that we update the transition probabilities from S1 involving v_p_S1S2_tunnels to using v_p_S1S2_tunnels_trtB instead.

```
## Initialize transition probability array for treatment B
a_P_tunnels_trtB <- a_P_tunnels</pre>
## Update only transition probabilities from S1 involving v_p_S1S2_tunnels
for(i in 1:(n_tunnel_size - 1)){
  a_P_tunnels_trtB[v_Sick_tunnel[i], "H", ] <- (1 - v_p_S1Dage) * p_S1H
  a_P_tunnels_trtB[v_Sick_tunnel[i],
              v_Sick_tunnel[i + 1], ] <- (1 - v_p_S1Dage) *</pre>
                                         (1 - (p_S1H + v_p_S1S2_tunnels_trtB[i]))
  a_P_tunnels_trtB[v_Sick_tunnel[i], "S2", ] <- (1 - v_p_S1Dage) * v_p_S1S2_tunnels_trtB[i]
  a_P_tunnels_trtB[v_Sick_tunnel[i], "D", ] <- v_p_S1Dage
}
# repeat code for the last cycle to force the cohort stay in the last tunnel state of Sick
a_P_tunnels_trtB[v_Sick_tunnel[n_tunnel_size], "H", ] <- (1 - v_p_S1Dage) * p_S1H
a_P_tunnels_trtB[v_Sick_tunnel[n_tunnel_size],
            v_Sick_tunnel[n_tunnel_size], ] <- (1 - v_p_S1Dage) *</pre>
                                                (1 - (p_S1H +v_p_S1S2_tunnels_trtB[n_tunnel_size]))
a_P_tunnels_trtB[v_Sick_tunnel[n_tunnel_size], "S2", ] <- (1 - v_p_S1Dage) *
                                                            v_p_S1S2_tunnels_trtB[n_tunnel_size]
a_P_tunnels_trtB[v_Sick_tunnel[n_tunnel_size], "D", ] <- v_p_S1Dage
```

Once we have created both three-dimensional transition probability arrays with tunnels, we check they are valid (i.e., between 0 and 1 and transition probabilities from each state sum to 1).

To simulate the cohort over the n_T cycles for the cSTM accounting for state-residence dependency, we initialize two new cohort trace matrices for the SoC and treatment B, m_M_tunnels and m_M_tunnels_trtB, respectively. The dimensions of both matrices are $(n_T + 1) \times n_{S_{\text{tunnels}}}$.

```
# Initialize cohort for state-residence cSTM under SoC
m_M_tunnels <- matrix(0,</pre>
```

We then use the matrix product, similar to the simulation-time-dependent cSTM, to generate the full cohort trace.

```
# Iterative solution of state-residence-dependent cSTM
for(t in 1:n_cycles){
    # For SoC
    m_M_tunnels[t + 1, ] <- m_M_tunnels[t, ] %*% a_P_tunnels[, , t]
    # Under treatment B
    m_M_tunnels_trtB[t + 1,] <- m_M_tunnels_trtB[t, ] %*% a_P_tunnels_trtB[, , t]
}</pre>
```

To compute a summarized cohort trace to capture occupancy in the H, S1, S2, D states under SoC, we aggregate over the tunnel states in each cycle(Figure 6).

Figure 6: Cohort trace of the age-dependent cSTM accounting for state-residence dependency under strategies SoC and A.

5 Epidemiological and economic measures

cSTMs can be used to generate different epidemiological and economic outputs. In a CEA, the main outcomes are typically the total discounted expected QALYs and total costs accrued by the cohort over the predefined time horizon. However, epidemiological outcomes can be helpful for complementary analyses, such as calibration and validation. Some common epidemiological outcomes include survival, prevalence, incidence, the average number of events, and lifetime risk of events. We show how to obtain some of these outcomes from the trace and transition probability objects.

5.1 Epidemiological measures

Here we provide the epidemiological definition of some of these outcomes and how they can be generated from a cSTM using the simulation-time-dependent Sick-Sicker cSTM under SoC. In the GitHub repository, we provide the code to generate these outcomes from the state-residence-dependent cSTM.

5.1.1 Survival probability

The survival probability, S(t), captures the proportion of the cohort remaining alive by cycle t. To estimate S(t) from the simulated cohort of the simulation-time-dependent Sick-Sicker model, shown in Figure 7, we sum the proportions of the non-death states for all n_T cycles in m_M ad.

v_S_ad <- rowSums(m_M_ad[, -which(v_names_states == "D")]) # vector with survival curve

Figure 7: Survival curve of the age-dependent cSTM

5.1.2 Life expectancy

Life expectancy (LE) refers to the expected number of time units remaining to be alive. 17 In continuous-time, LE is the area under the entire survival curve. 18

$$LE = \int_{t=0}^{\infty} S(t)dt.$$

In discrete-time using cSTMs, we often calculate restricted LE over a fixed time horizon (e.g., n_T) at which most of the cohort has transitioned to the Dead state and is defined as

$$LE = \sum_{t=0}^{n_T} S(t).$$

In the simulation-time-dependent Sick-Sicker model, where we simulated a cohort over n_T = 75 cycles, life expectancy le_ad is 41.2 cycles, which is calculated as

```
le_ad <- sum(v_S_ad) # life expectancy</pre>
```

Note that this equation expresses LE in the units of t. We use an annual cycle length; thus, the resulting LE will be in years. Analysts can also use other cycle lengths (e.g., monthly or daily), but the LE must be correctly converted to the desired unit if different than the cycle length units.

5.1.3 Prevalence

Prevalence is defined as the proportion of the population or cohort with a specific condition (or being in a particular health state) among those alive.¹⁹ To calculate the prevalence of S1 at cycle t, prev $(t)_i$, we compute the ratio between the proportion of the cohort in S1 and the proportion alive at that cycle.²⁰ The proportion of the cohort alive is given by the survival probability S(t) defined above. The individual prevalence of the S1 and S2 health states and the overall prevalence of sick individuals (i.e., S1 + S2) of the age-dependent Sick-Sicker cSTM at each cycle t is computed as follows and are shown in Figure 8.

```
v_prev_S1 <- m_M_ad[, "S1"] / v_S_ad  # vector with prevalence of Sick
v_prev_S2 <- m_M_ad[, "S2"] / v_S_ad  # vector with prevalence of Sicker
v_prev_S1S2 <- rowSums(m_M_ad[, c("S1", "S2")])/v_S_ad # prevalence of Sick and Sicker</pre>
```


Figure 8: Prevalence of sick states in simulation-time-dependent cSTM

5.2 Economic measures

In CEA, we can calculate economic outcomes by using either state or transition rewards. A "state reward" refers to a value (e.g., cost, utility) assigned to individuals for remaining in a given health state for one cycle. A "transition reward" refers to the increase or decrease in either costs or utilities of transitioning from one health state to another, which may be associated with a one-time cost or utility impact. In the accompanying introductory tutorial, we describe how to incorporate state rewards in CEA.⁷

5.2.1 State rewards

As shown in the introductory tutorial, to add state rewards to the Sick-Sicker model, we first create a vector of utilities and costs for each of the four strategies considered. The vectors of utilities and costs, v_u_SoC and v_c_SoC, respectively, contain the utilities and costs corresponding to being in each of the four health states under SoC, shown in Table 2.

```
# Vector of state utilities under SoC
v_u_SoC <- c(H = u_H, S1 = u_S1, S2 = u_S2, D = u_D)
# Vector of state costs under SoC
v_c_SoC <- c(H = c_H, S1 = c_S1, S2 = c_S2, D = c_D)</pre>
```

We account for the benefits and costs of both treatments individually and their combination to create the state-reward vectors under treatments A and B (strategies A and B, respectively) and when applied jointly (strategy AB). Only treatment A affects QoL, so we create a vector of utilities for strategy A, v_u_strA, where we substitute the utility of being in S1 under SoC, u_S1, with the utility associated with the benefit of treatment A in being in that state, u_trtA. Treatment B does not affect QoL, so the vector of utilities for strategy B, v_u_strB, is the same as SoC's vector. However, when both treatments A and B are applied jointly (strategy AB), the resulting vector of utilities v_u_strAB equals that of strategy A.

```
# Vector of state utilities for strategy A
v_u_strA <- c(H = u_H, S1 = u_trtA, S2 = u_S2, D = u_D)
# Vector of state utilities for strategy B
v_u_strB <- v_u_soC
# Vector of state utilities for strategy AB
v_u_strAB <- v_u_strA</pre>
```

Both treatments A and B incur a cost. To create the vector of state costs for strategy A, v_c_strA, we add the cost of treatment A, c_trtA, to S1 and S2 state costs. Similarly, when constructing the vector of state costs for strategy B, v_c_strB, we add the cost of treatment B, c_trtB, to S1 and S2 state costs. Finally, for the vector of state costs for strategy AB, v_c_strAB, we add both treatment costs to the state costs of S1 and S2.

5.2.2 Transition rewards

In the Sick-Sicker model, we previously mentioned that dying (i.e., transitioning to the Dead state) incurs a one-time cost of \$2,000 that reflects the acute care that might be received immediately preceding death. This one-time cost could include emergency services, hospitalization, other healthcare utilization to address the ultimately fatal health complication, or funeral costs. We also have a utility decrement and a cost increment on the transition from H to S1. These changes in utility and costs represent the short-term impact of the acute events of becoming sick, such as hospitalization, stabilization, and so on, whereas the state rewards of

S1 described in the previous section reflect the cost and utility of being chronically sick.

Incorporating transition rewards requires keeping track of the proportion of the cohort that transitions between health states in each cycle while capturing what the states of origin and destination are. The cohort trace, M, does not capture this information. However, obtaining this information is relatively straightforward in a cSTM and described in detail by Krijkamp et al. (2020). Briefly, this approach involves changing the core computation in a traditional cSTM, from $m_t P_t$ to $\text{diag}(m_t) P_t$. This simple change allows us to compute the proportion of the cohort that transitions between the states of origin and destination in cycle t. The result is no longer a cohort trace matrix, but rather a three-dimensional array that we refer to as a transition-dynamics array (\mathbf{A}) with dimensions $n_S \times n_S \times [n_T + 1]$. The t-th slice of \mathbf{A} , A_t , is a matrix that stores the proportion of the population that transition between states of origin and destination between cycles t-1 and t. Similarly, we define the transition rewards by the states of origin and destination.

To account for both state and transition rewards, we create a matrix of rewards R_t of dimensions $n_S \times n_S$. The off-diagonal entries of R_t store the transition rewards, and the diagonal of R_t stores the state rewards for cycle t and assumes that rewards occur at the beginning of the cycle. Finally, we multiply this matrix by A_t , the t-th slice of A, apply discounting, within-cycle correction, and compute the overall reward for each strategy outcome. Below, we illustrate these concepts in R.

To compute **A** for the simulation-time-dependent Sick-Sicker model under SoC, we initialize a three-dimensional array a_A of dimensions $n_S \times n_S \times [n_T + 1]$ and set the diagonal of the first slice to the initial state vector v_s_{init} . Next, we create a three-dimensional array for the cohort under treatment B, a_A_{trtB} , as a copy of the array under SoC.

We then compute a matrix multiplication between a diagonal matrix of each of the t-th rows of the cohort trace matrix under SoC and treatment B, denoted as $diag(m_M_ad[t,])$ and $diag(m_M_ad_trtB[t,])$, by the t-th matrix of the array of transition matrices, $a_P[,,t]$ and $a_P_trtB[,,t]$, respectively, over all n_T cycles.

```
# Iterative solution to produce the transition-dynamics array
for (t in 1:n_cycles){
    # For SoC
    a_A[, , t + 1] <- diag(m_M_ad[t, ]) %*% a_P[, , t]
    # For treatment B
    a_A_trtB[, , t + 1] <- m_M_ad_trtB[t, ] * a_P_trtB[, , t]
}</pre>
```

To create the arrays of rewards for costs and utilities for the simulation-time-dependent Sick-Sicker cSTM,

we create strategy-specific three-dimensional arrays of rewards and fill each of their rows across the third dimension with the vector of state rewards.

```
# Arrays of state and transition rewards
# Utilities under SoC
a_R_u_SoC <- array(matrix(v_u_SoC, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v names states, v names states, 0:n cycles))
# Costs under SoC
a_R_c_SoC <- array(matrix(v_c_SoC, nrow = n_states, ncol = n_states, byrow = T),</pre>
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
# Utilities under Strategy A
a_R_u_strA <- array(matrix(v_u_strA, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
# Costs under Strategy A
a_R_c_strA <- array(matrix(v_c_strA, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
# Utilities under Strategy B
a R u strB <- array(matrix(v u strB, nrow = n states, ncol = n states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
# Costs under Strategy B
a_R_c_strB <- array(matrix(v_c_strB, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
# Utilities under Strategy AB
a_R_u_strAB <- array(matrix(v_u_strAB, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n_states, n_states, n_cycles + 1),
                  dimnames = list(v names states, v names states, 0:n cycles))
# Costs under Strategy AB
a_R_c_strAB <- array(matrix(v_c_strAB, nrow = n_states, ncol = n_states, byrow = T),
                  dim = c(n \text{ states}, n \text{ states}, n \text{ cycles} + 1),
                  dimnames = list(v_names_states, v_names_states, 0:n_cycles))
```

To account for the transition rewards, we either add or subtract them in the corresponding location of the reward matrix representing the transitions of interest. Thus, for example, to account for the disutility of transitioning from H to S1 under strategy A, we subtract the disutility to the entry of the array of rewards corresponding to the transition from H to S1 across all cycles.

```
# Add disutility due to transition from Healthy to Sick
a_R_u_strA["H", "S1", ] <- a_R_u_strA["H", "S1", ] - du_HS1
```

In a similar approach, we add the costs of transitioning from H to S1 and the cost of dying under strategy A.

```
# Add transition cost due to transition from Healthy to Sick
a_R_c_strA["H", "S1", ] <- a_R_c_strA["H", "S1", ] + ic_HS1
# Add transition cost of dying from all non-dead states
a_R_c_strA[-n_states, "D", ] <- a_R_c_strA[-n_states, "D", ] + ic_D
a_R_c_strA[, , 1]</pre>
```

```
## H S1 S2 D
## S1 2000 17000 27000 2000
## S1 2000 16000 27000 2000
## S2 2000 16000 27000 2000
## D 2000 16000 27000 0
```

Below, we show how to add the transition rewards to the reward matrices under SoC and strategies B and AB.

```
## SoC
# Add disutility due to transition from H to S1
a_R_u_SoC["H", "S1", ] \leftarrow a_R_u_SoC["H", "S1", ] - du_HS1
# Add transition cost due to transition from H to S1
a_R_cSoC["H", "S1", ] \leftarrow a_R_cSoC["H", "S1", ] + ic_HS1
# Add transition cost of dying from all non-dead states
a_R_c_SoC[-n_states, "D", ] <- a_R_c_SoC[-n_states, "D", ] + ic_D
## Strategy B
# Add disutility due to transition from Healthy to Sick
a_R_u_strB["H", "S1", ] <- a_R_u_strB["H", "S1", ] - du_HS1
# Add transition cost due to transition from Healthy to Sick
a_R_c_strB["H", "S1", ] <- a_R_c_strB["H", "S1", ] + ic_HS1
# Add transition cost of dying from all non-dead states
a_R_c_strB[-n_states, "D", ] <- a_R_c_strB[-n_states, "D", ] + ic_D
## Strategy AB
# Add disutility due to transition from Healthy to Sick
a_R_u_strAB["H", "S1", ] <- a_R_u_strAB["H", "S1", ] - du_HS1
# Add transition cost due to transition from Healthy to Sick
a_R_c_{strAB}["H", "S1", ] \leftarrow a_R_c_{strAB}["H", "S1", ] + ic_{HS1}
# Add transition cost of dying from all non-dead states
a_R_c_strAB[-n_states, "D", ] <- a_R_c_strAB[-n_states, "D", ] + ic_D
```

The state and transition rewards are applied to the model dynamics by element-wise multiplication between **A** and **R**, indicated by the \odot sign, which produces the array of outputs for all n_T cycles, **Y**. Formally,

$$\mathbf{Y} = \mathbf{A} \odot \mathbf{R} \tag{3}$$

To obtain **Y** for QALYs and costs for all four strategies, we apply Equation (3) by the element-wise multiplication of the transition array **a_A** by the corresponding array of rewards.

```
# For SoC
a_Y_c_SoC <- a_A * a_R_c_SoC
a_Y_u_SoC <- a_A * a_R_u_SoC
# For Strategy A
a_Y_c_strA <- a_A * a_R_c_strA
a_Y_u_strA <- a_A * a_R_u_strA
# For Strategy B
a_Y_c_strB <- a_A_trtB * a_R_c_strB
a_Y_u_strB <- a_A_trtB * a_R_u_strB
# For Strategy AB
a_Y_c_strAB <- a_A_trtB * a_R_c_strAB
a_Y_u_strAB <- a_A_trtB * a_R_u_strAB</pre>
```

The total rewards for each health state at cycle t, \mathbf{y}_t , is obtained by summing the rewards across all $j = 1, ..., n_S$ health states for all n_T cycles.

$$\mathbf{y}_t = \mathbf{1}^T Y_t = \left[\sum_{i=1}^{n_S} Y_{[i,1,t]}, \sum_{i=1}^{n_S} Y_{[i,2,t]}, \dots, \sum_{i=1}^{n_S} Y_{[i,n_S,t]} \right]. \tag{4}$$

To obtain the expected costs and QALYs per cycle for each strategy, \mathbf{y} , we apply Equation (4) again across all the matrices of the third dimension of \mathbf{Y} for all the outcomes.

```
# Vectors of rewards
# QALYs under SoC
v_qaly_SoC <- rowSums(t(colSums(a_Y_u_SoC)))</pre>
# Costs under SoC
v_cost_SoC <- rowSums(t(colSums(a_Y_c_SoC)))</pre>
# QALYs under Strategy A
v_qaly_strA <- rowSums(t(colSums(a_Y_u_strA)))</pre>
# Costs under Strategy A
v_cost_strA <- rowSums(t(colSums(a_Y_c_strA)))</pre>
# QALYs under Strategy B
v_qaly_strB <- rowSums(t(colSums(a_Y_u_strB)))</pre>
# Costs under Strategy B
v_cost_strB <- rowSums(t(colSums(a_Y_c_strB)))</pre>
# QALYs under Strategy AB
v_qaly_strAB <- rowSums(t(colSums(a_Y_u_strAB)))</pre>
# Costs under Strategy AB
v_cost_strAB <- rowSums(t(colSums(a_Y_c_strAB)))</pre>
```

5.2.3 Within-cycle correction and discounting future rewards

Following the accompanying introductory cSTM tutorial,⁷ here we use Simpson's 1/3rd rule for within-cycle correction (WCC),²² and use exponential discounting for costs and QALYs. In our example, the WCC vector, wcc, is the same for both costs and QALYs; thus, only one vector, v_wcc, is required.

```
## Vector with cycles
v_cycles <- seq(1, n_cycles+1)
## Generate 2/3 and 4/3 multipliers for even and odd entries, respectively
v_wcc <- ((v_cycles %% 2)==0)*(2/3) + ((v_cycles %% 2)!=0)*(4/3)
## Substitute 1/3 in first and last entries
v_wcc[1] <- v_wcc[n_cycles + 1] <- 1/3</pre>
```

The discount vectors, d, for costs and QALYs for the Sick-Sicker model, v_dwc and v_dwe, respectively, are

```
# Discount weight for effects
v_dwe <- 1 / ((1 + d_e) ^ (0:(n_cycles)))
# Discount weight for costs
v_dwc <- 1 / ((1 + d_c) ^ (0:(n_cycles)))</pre>
```

To account for both discounting and WCC, we incorporate **wcc** in equation (5) using an element-wise multiplication with \mathbf{d} , indicated by the \odot symbol, such that

$$y = \mathbf{y}' \left(\mathbf{d} \odot \mathbf{wcc} \right). \tag{5}$$

The total expected discounted costs and QALYs under all four strategies accounting for WCC, y, is obtained by applying Equation (5) to the expected outcomes accounting for transition rewards.

```
### For SoC
## QALYs
n_tot_qaly_SoC <- t(v_qaly_SoC) %*% (v_dwe * v_wcc)</pre>
## Costs
n_tot_cost_SoC <- t(v_cost_SoC) %*% (v_dwc * v_wcc)</pre>
### For Strategy A
## QALYs
n tot galy strA <- t(v galy strA) %*% (v dwe * v wcc)
## Costs
n_tot_cost_strA <- t(v_cost_strA) %*% (v_dwc * v_wcc)</pre>
### For Strategy B
## QALYs
n_tot_qaly_strB <- t(v_qaly_strB) %*% (v_dwe * v_wcc)</pre>
## Costs
n_tot_cost_strB <- t(v_cost_strB) %*% (v_dwc * v_wcc)</pre>
### For Strategy AB
## QALYs
n_tot_qaly_strAB <- t(v_qaly_strAB) %*% (v_dwe * v_wcc)</pre>
```

```
## Costs
n_tot_cost_strAB <- t(v_cost_strAB) %*% (v_dwc * v_wcc)</pre>
```

The total expected discounted QALYs and costs for the simulation-time-dependent Sick-Sicker model under the four strategies accounting for WCC are shown in Table 3.

Table 3: Total expected discounted QALYs and costs per average individual in the cohort of the simulation-time-dependent Sick-Sicker model by strategy accounting for within-cycle correction.

	Costs	QALYs
Standard of care	\$114,560	19.142
Strategy A	\$211,911	19.840
Strategy B	\$194,481	20.480
Strategy AB	\$282,370	21.302

6 Incremental cost-effectiveness ratios (ICERs)

To conduct the cost-effectiveness analysis, we follow the coding approach described in the accompanying introductory cSTM tutorial. We combine the total expected discounted costs and QALYs for all four strategies into outcome-specific vectors, v_cost_str for costs and v_qaly_str for QALYs. We use the R package dampack (https://cran.r-project.org/web/packages/dampack/)²³ to calculate the incremental costs and effectiveness and the incremental cost-effectiveness ratio (ICER) between non-dominated strategies. The results are returned as the R the data frame df_cea.

In terms of their costs and effectiveness, SoC is the least costly and effective strategy, followed by Strategy B producing an expected benefit of 1.338 QALYs per individual for an additional expected cost of \$79,920 with an ICER of \$59,726/QALY followed by Strategy AB with an ICER \$106,927/QALY. Strategy A is a dominated strategy. The results of the CEA of the simulation-time-dependent Sick-Sicker model are presented in Table 4. The non-dominated strategies, SoC, B, and AB, form the cost-effectiveness efficient frontier of the CEA based on the simulation-time-dependent Sick-Sicker model (Figure 9).

Table 4: Cost-effectiveness analysis results for the simulation-time-dependent Sick-Sicker model. ND: Non-dominated strategy; D: Dominated strategy.

Strategy	Costs (\$)	QALYs	Incremental Costs (\$)	Incremental QALYs	ICER (\$/QALY)	Status
Standard of care	114,560	19.142	NA	NA	NA	ND
Strategy B	194,481	20.480	79,920	1.338	59,726	ND
Strategy AB	$282,\!370$	21.302	87,890	0.822	106,927	ND
Strategy A	211,911	19.840	NA	NA	NA	D

Figure 9: Cost-effectiveness efficient frontier of all four strategies for the simulation-time-dependent Sick-Sicker model.

7 Probabilistic sensitivity analysis

We conducted a probabilistic sensitivity analysis (PSA) to quantify the effect of model parameter uncertainty on cost-effectiveness outcomes.²⁴ In a PSA, we randomly draw parameter sets from distributions that reflect the current uncertainty in model parameter estimates. The parameters' distributions and their values are described in Table 2 and more detail in the Supplementary Material. We compute model outcomes for each

sampled set of parameter values (e.g., total discounted cost and QALYs) for each strategy. In a previously published manuscript, we describe the implementation of these steps in R.¹³

To conduct the PSA of the CEA using the simulation-time-dependent Sick-Sicker cSTM, we sampled 1,000 parameter sets. For each set, we computed the total discounted costs and QALYs of each simulated strategy. Results from a PSA can be represented in various ways. For example, the joint distribution, 95% confidence ellipse, and the expected values of the total discounted costs and QALYs for each strategy can be plotted in a cost-effectiveness (CE) scatter plot (Figure 10), 25 where each of the 4,000 simulations (i.e., 1,000 combinations of total discounted expected costs and QALYs for each of the four strategies) are plotted as a point in the graph. The CE scatter plot for the CEA using the simulation-time-dependent model shows that strategy AB has the highest expected costs and QALYs. Standard of care has the lowest expected cost and QALYs. Strategy B is more effective and least costly than strategy A. And therefore, strategy A is strongly dominated by strategy B.

Figure 10: Cost-effectiveness scatter plot.

In Figure 11, we present the cost-effectiveness acceptability curves (CEACs) showing the probability that each strategy is cost-effective, and the cost-effectiveness frontier (CEAF), which shows the strategy with the highest expected net monetary benefit (NMB), over a range of willingness-to-pay (WTP) thresholds. The NMB for each strategy is defined as the product of total discounted QALYs and the WTP threshold minus

the total discounted costs,²⁶ calculated for each PSA parameter set sample. At WTP thresholds less than \$65,000 per QALY, SoC is the strategy with the highest probability of being cost-effective and the highest expected NMB. Strategy B has the highest probability of being cost-effective and the highest expected NMB for WTP thresholds greater than \$65,000 and smaller than \$105,000 per QALY. Strategy AB, has the highest expected NMB for WTP thresholds greater than or equal to \$105,000 and is the strategy with the highest probability of being cost-effective.

Figure 11: Cost-effectiveness acceptability curves (CEACs) and frontier (CEAF).

We quantify expected loss from each strategy over a range of WTP thresholds with the expected loss curves (ELCs). (Figure 12). The expected loss considers both the probability of making the wrong decision and the magnitude of the loss due to this decision, representing the foregone benefits of choosing a suboptimal strategy. The expected loss of the optimal strategy represents the lowest envelope of the ELCs because, given current information, the loss cannot be minimized further. The lower envelope also represents the expected value of perfect information (EVPI), which quantifies the value of eliminating parameter uncertainty. The strategy SoC has the lowest expected loss for WTP thresholds less than \$60,000 per QALY, strategy B has the lowest expected loss for WTP threshold greater than or equal to \$65,000 and less than \$105,000. Strategy AB has the lowest expected loss for WTP threshold greater than or equal to \$105,000 per QALY. At a WTP threshold of \$65,000 per QALY, the EVPI is highest at \$6,953. For a more detailed description of these

outputs and the R code to generate them, we refer the reader to a previous publication by our group. ²⁷

Figure 12: Expected loss curves (ELCs) and expected value of perfect information (EVPI).

8 Discussion

In this tutorial, we provided a conceptualization of time-dependent cSTMs with their mathematical description and a walk-through of their implementation for CEA in R using the Sick-Sicker example. We described two types of time-dependency: dependence on the time since the start of the simulation (simulation-time dependency) or dependence on the time spent in a health state (state-residence dependency). In addition, we illustrated how to generate various epidemiological measures from the model and how to incorporate transition rewards in CEAs.

In our example model, we implement simulation-time dependence by expanding the transition probability matrix into a transition probability array, where the third dimension captures time. However, there are alternative implementations of simulation-time dependence in cSTMs. For example, another approach would be to update the time-varying elements of the transition probability matrix P_t at each time point t. That would alleviate the need for the construction of the array a_P. Updating the transition matrix at each cycle can reduce computer memory requirements but at the expense of increasing the number of operations in the update of P_t at every cycle. Another approach to account for history dependence is to use a 3-dimensional

transition probability matrix with dimensions for the current state, future state, and time in the current state. However, this multidimensional matrix will have to be expanded by another dimension to incorporate age dependence by replicating the states for as many age groups considered in the model. In this tutorial, we used the third dimension as the cohort's age. We incorporated state-residence time dependency by expanding the corresponding health states on the second dimension of the 3-dimensional array to account for time spent in the current state. This approach's benefit is that we can still use the transition dynamics array to capture all states' transitions for all cycles.

The parameterization of our example model assumes all parameters are known, or at least, the characterization of their uncertainty is known (i.e., we know their distributions). However, to construct a real-world cSTM, modelers must conduct a thorough synthesis of current evidence to determine the appropriate model structure and parameter values. For example, the transition probabilities between non-death health states may be estimated in the literature as conditional on being alive or as competing risks with dying; the estimation assumptions behind parameter values should be compatible with how those parameters are used to implement model dynamics. Similarly, our PSA analysis simplifies reality by assuming that all model parameters are independent of each other. More realistically, parameters are often correlated with each other or have a rank order that should be preserved. In such cases, more complex statistical methods that simulate these correlations or rank orderings are needed. Modelers should also take care to correctly specify all model parameters for the cycle length of the model. For example, adjusting an annual mortality rate to a weekly probability requires some probability conversion.

As described in the accompanying tutorial, cSTMs are recommended when the number of states is considered "not too large". This recommendation arises because as the number of states increases, it becomes more challenging to keep track of their construction. It is possible to build reasonably complex cSTMs in R as long as the size of the transition probability matrix and outputs of interest can be stored in the computer's RAM running the analysis. For example, a typical PC with 8GB of RAM can handle a transition probability array of about 1000 states and 600 time-cycle slices. However, these matrices can grow quickly, and if the required number of states gets too large and difficult to manage its coding, it becomes preferable to use a stochastic (Monte Carlo) version of the state-transition model – often called individual-based state-transition models (iSTM) or microsimulation models – rather than a cohort simulation model. ¹⁶ In an iSTM, the risks and rewards of simulated individuals need not depend only on a current health state; it may also depend on their characteristics and attributes. In addition, modelers can store health state history and other events over time for each individual to determine the risk of new events and corresponding costs and effects. Thus, we recommend thinking about the required model structure before implementing it some model structures might remain the same. An iSTM will also require additional functions to describe the dependency of transition probabilities and rewards on individuals' history. In a previous tutorial, we showed how to construct these functions for an iSTM using the Sick-Sicker example. 12

In summary, this tutorial extends our conceptualization of time-independent cSTMs to allow for time dependency. It provides a step-by-step guide to implement them in R. We hope that health decision scientists and health economists find this tutorial useful for developing their cSTMs in a more flexible, efficient, and open-source manner. Ultimately, our goal is to increase model transparency and reproducibility.

9 Acknowledgements

Dr Alarid-Escudero was supported by grants U01-CA199335 and U01-CA253913 from the National Cancer Institute (NCI) as part of the Cancer Intervention and Surveillance Modeling Network (CISNET), and a grant by the Gordon and Betty Moore Foundation. Miss Krijkamp was supported by the Society for Medical Decision Making (SMDM) fellowship through a grant by the Gordon and Betty Moore Foundation (GBMF7853). Dr Enns was supported by a grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award no. K25AI118476. Dr Hunink receives Royalties from Cambridge University Press for a textbook on Medical Decision Making, reimbursement of expenses from the European Society of Radiology (ESR) for work on the ESR guidelines for imaging referrals, reimbursement of expenses from the European Institute for Biomedical Imaging Research (EIBIR) for membership of the Scientific Advisory Board, and research funding from the American Diabetes Association, the Netherlands Organization for Health Research and Development, the German Innovation Fund, Netherlands Educational Grant ("Studie Voorschot Middelen"), and the Gordon and Betty Moore Foundation. Dr Jalal was supported by a grant from the National Institute on Drug Abuse of the National Institute of Health under award no. K01DA048985. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies had no role in the design of the study, interpretation of results, or writing of the manuscript. The funding agreement ensured the authors' independence in designing the study, interpreting the data, writing, and publishing the report. We also want to thank the anonymous reviewers of Medical Decision Making for their valuable suggestions and the students who took our classes where we refined these materials.

References

- 1. Suijkerbuijk AWM, Van Hoek AJ, Koopsen J, et al. Cost-effectiveness of screening for chronic hepatitis B and C among migrant populations in a low endemic country. *PLoS ONE* 2018; 13: 1–16.
- 2. Sathianathen NJ, Konety BR, Alarid-Escudero F, et al. Cost-effectiveness Analysis of Active Surveillance Strategies for Men with Low-risk Prostate Cancer. *European Urology*; 75: 910–917, https://linkinghub.elsevier.com/retrieve/pii/S0302283818308534 (2019).
- 3. Lu S, Yu Y, Fu S, et al. Cost-effectiveness of ALK testing and first-line crizotinib therapy for non-small-cell lung cancer in China. *PLoS ONE* 2018; 13: 1–12.
- 4. Djatche LM, Varga S, Lieberthal RD. Cost-Effectiveness of Aspirin Adherence for Secondary Prevention of Cardiovascular Events. *PharmacoEconomics Open*; 2: 371–380, https://doi.org/10.1007/s41669-018-0075-2 (2018).
- 5. Pershing S, Enns EA, Matesic B, et al. Cost-Effectiveness of Treatment of Diabetic Macular Edema.

 Annals of Internal Medicine 2014; 160: 18–29.
- 6. Smith-Spangler CM, Juusola JL, Enns EA, et al. Population Strategies to Decrease Sodium Intake and the Burden of Cardiovascular Disease: A Cost-Effectiveness Analysis. *Annals of Internal Medicine*; 152: 481–487, http://annals.org/article.aspx?articleid=745729 (2010).

- 7. Alarid-Escudero F, Krijkamp E, Enns EA, et al. An Introductory Tutorial to Cohort State-Transition Models in R. 2021.
- 8. Snowsill T. A New Method for Model-Based Health Economic Evaluation Utilizing and Extending Moment-Generating Functions. *Medical Decision Making*; 39: 523–539, http://journals.sagepub.com/doi/10.1177/0272989X19860119 (2019).
- 9. Krijkamp EM, Alarid-Escudero F, Enns E, et al. A Multidimensional Array Representation of State-Transition Model Dynamics. *Medical Decision Making* 2019; In Press.
- Jalal H, Pechlivanoglou P, Krijkamp E, et al. An Overview of R in Health Decision Sciences. Medical Decision Making; 37: 735–746, http://journals.sagepub.com/doi/10.1177/0272989X16686559 (2017).
- 11. Enns EA, Cipriano LE, Simons CT, et al. Identifying Best-Fitting Inputs in Health-Economic Model Calibration: A Pareto Frontier Approach. *Medical Decision Making*; 35: 170–182, http://www.ncbi.nlm.nih.gov/pubmed/24799456 (2015).
- 12. Krijkamp EM, Alarid-Escudero F, Enns EA, et al. Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial. *Medical Decision Making*; 38: 400–422, http://journals.sagepub.com/doi/10.1177/0272989X18754513 (2018).
- 13. Alarid-Escudero F, Krijkamp E, Pechlivanoglou P, et al. A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling. *PharmacoEconomics*; 37: 1329–1339, https://doi.org/10.1007/s40273-019-00837-x (2019).
- 14. Arias E, Heron M, Xu J. United States Life Tables, 2014. *National Vital Statistics Reports*; 66: 63, https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66%7B/_%7D04.pdf (2017).
- 15. Diaby V, Adunlin G, Montero AJ. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: A tutorial. *Pharma-coEconomics* 2014; 32: 101–108.
- Siebert U, Alagoz O, Bayoumi AM, et al. State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3. *Medical Decision Making*; 32: 690–700, http://mdm.sagepub.com/cgi/doi/10.1177/0272989X12455463 (2012).
- 17. Lee ET, Wang JW. Statistical methods for Survival Data Analysis. 3rd ed. Hoboken, NJ: Wiley, 2003.
- 18. Klein JP, Moeschberger ML. Survival Analysis: Techniques for Censored and Truncated Data. 2nd ed. Springer-Verlag, http://www.springer.com/statistics/life+sciences,+medicine+%7B/&%7D+health/book/978-0-387-95399-1 (2003).
- 19. Rothman KJ, Greenland S, Lash TL. *Modern Epidemiology*. 3rd ed. Lippincott Williams & Wilkins, 2008.
- 20. Keiding N. Age-Specific Incidence and Prevalence: A Statistical Perspective. *Journal of the Royal Statistical Society Series A (Statistics in Society)* 1991; 154: 371–412.

- 21. Elbasha EH, Chhatwal J. Theoretical foundations and practical applications of within-cycle correction methods. *Medical Decision Making* 2016; 36: 115–131.
- 22. Elbasha EH, Chhatwal J. Myths and misconceptions of within-cycle correction: a guide for modelers and decision makers. *PharmacoEconomics* 2016; 34: 13–22.
- 23. Alarid-Escudero F, Knowlton G, Easterly CA, et al. Decision analytic modeling package (dampack), https://cran.r-project.org/web/packages/dampack/%20https://github.com/DARTH-git/dampack (2021).
- 24. Briggs AH, Weinstein MC, Fenwick EAL, et al. Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6. Medical Decision Making 2012; 32: 722–732.
- 25. Briggs AH, Goeree R, Blackhouse G, et al. Probabilistic Analysis of Cost-Effectiveness Models: Choosing between Treatment Strategies for Gastroesophageal Reflux Disease. *Medical Decision Making*; 22: 290–308, http://mdm.sagepub.com/cgi/doi/10.1177/027298902400448867 (2002).
- 26. Stinnett AA, Mullahy J. Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis. *Medical Decision Making*; 18: S68–S80, http://mdm.sagepub.com/cgi/doi/10.1177/0272989X9801800209 (1998).
- 27. Alarid-Escudero F, Enns EA, Kuntz KM, et al. "Time Traveling Is Just Too Dangerous" But Some Methods Are Worth Revisiting: The Advantages of Expected Loss Curves Over Cost-Effectiveness Acceptability Curves and Frontier. *Value in Health* 2019; 22: 611–618.
- 28. Hawkins N, Sculpher M, Epstein D. Cost-effectiveness analysis of treatments for chronic disease: Using R to incorporate time dependency of treatment response. *Medical Decision Making*; 25: 511–9, http://www.ncbi.nlm.nih.gov/pubmed/16160207 (2005).
- 29. Goldhaber-Fiebert JD, Jalal HJ. Some Health States Are Better Than Others: Using Health State Rank Order to Improve Probabilistic Analyses. *Medical Decision Making*; 36: 927–940, http://mdm. sagepub.com/cgi/doi/10.1177/0272989X15605091 (2015).
- Hunink MGGM, Weinstein MC, Wittenberg E, et al. Decision Making in Health and Medicine. 2nd ed. Cambridge: Cambridge University Press, http://ebooks.cambridge.org/ref/id/CBO9781139506779 (2014).