# Lab1: Report

21302010062 宋文彦

## 代码部分

#### 1. 数据集分割:

对cast中的数据,根据其属于测试/训练集进行划分,将正样本赋值为1,负样本为0,存放入 target\_list 中。同时将对应的diagrams中的特征数据添加到 data\_list 中。

#### 2. 模型:

调用 sklearn 的包完成了 LR 和 LinearSVM 的训练、测试和评估部分。

由于使用 linear kernel 时,SVM 收敛速度太慢,对 SVM 部分的代码进行了修改,增加了最大迭代次数 max\_iter 和 patience 的参数:

- max\_iter:可以通过参数 \_\_\_max\_iter 设置模型的最大迭代次数,防止因为收敛过慢而一直不停的迭代,程序无法停止。默认值为1000。
- patience:如果模型超过一定次数的迭代后准确率没有提高,就停止迭代。默认值为20。

(但最后发现py好像会自动提前停止, 就没有用这部分代码)

### 结果

#### 1. 数据处理

由于实验时使用 nohup 重定向输出(便于记录),编写了脚本进行处理,使用 pandas 进行绘图。脚本见:pj1/result\_evaluate.py,实验图片见:pj1/\*.png。

#### 2. 结果分析

1. 就运行时间而言,使用 Linear kernel 的 SVM 模型的所需时间最长(而且是在未完全收敛的情况下),LR 模型次之,Linear SVM 第三,使用其他核函数的 SVM 模型时间最短。



- 2. 就55个分类任务的训练和测试准确率而言,Linear SVM 的准确率波动最大,使用 Linear 核函数的 SVM 模型 次之。剩余模型(LR、使用剩余三个核函数的 SVM 模型)波动率较小,55个分类任务的训练训练准确率均高于75%,测试准确率均高于80%;在第25-30,第37-45组分类任务重训练准确率较低。
  - o Linear SVM 的准确率波动最大:本次任务的数据集在空间中不是很线性可分,模型在不同训练集子集上学到的决策边界可能有较大波动。
  - o 对 Linear SVM 的进行了使用不同正则化系数的实验(结果见: pj1/lsvm\_c\_test\_accuracy\_plot.png 和 pj1/lsvm\_c\_train\_accuracy\_plot.png)



- 3. 对 SVM 模型来说,正则化系数相同(皆为1.0),线性(Linear)核函数的训练和测试正确率最差,其余效果 类似。
  - 可能是线性核函数未能完全起到分离数据集的作用,



- 4. 对 SVM 核函数和正则化系数相关的讨论:
  - 1. 使用相同的核函数,正则化系数取值在[0,100) 内波动时:
    - 使用 sigmoid 核函数时,其训练和测试的准确率呈对数型下降,下降速度最快的区间为 [1,10)。
    - 使用其余类型的核函数时,准确率均呈线性且几乎不变。
    - 使用线性 (Linear) 核函数的 SVM 模型准确率最低。



### 2. 将正则化系数缩减到 [0,10) 后:



#### 3. 去除了 svm\_linear, 便于查看其他三个核函数的效果(如上所述)





## 特征工程

#### 1. 降维:

考虑到本次数据集的特征维数较多(300维),优先考虑降维的方法。一开始使用划定的训练集和测试集,感觉结果区分度不强;



改用交叉验证法,实验中选择了5折(tsne由于交叉验证时间过长,仍使用默认划定的测试和训练集),发现 tsne和 pca 的效果更好。

