Amendments to the Specification:

Please amend the specification by replacing the paragraph sections under the heading "Related Applications" with the following new paragraph sections:

At page 1, lines 11-20:

This invention provides a compound of formula (I) or a pharmaceutically acceptable derivative salt and/or N-oxide thereof:

$$\begin{array}{c|c}
AB(CH2)n - N \\
\hline
 & Z^{1} \\
\hline
 & Z^{5} \\
\hline
 & Z^{3}
\end{array}$$

$$\begin{array}{c|c}
 & X \\
\hline
 & Z^{5} \\
\hline
 & Z^{4}
\end{array}$$

(I)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

At page 2, lines 2-37 to page 3, lines 1-4:

 R^3 is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl, aminocarbonyl; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl, or 5-oxo-1,2,4-oxadiazol-3-yl; or

 R^3 is in the 2- or 3-position and is (C_{1-4}) alkyl or ethenyl **optionally** substituted with any of the groups listed above for R^3 and/or 0 to 3 groups R^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋ 6)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆) 6) alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆) alkyl, (C₂₋₆) alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆) 6) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋₆ 6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁-6)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋ 6) alkenylcarbonyl, (C₁₋₆) alkyl, (C₂₋₆) alkenyl, (C₁₋₆) alkylsulphonyl, (C₂₋₆ 6) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆ 6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C_{2-6})alkenyl; oxo; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6}) 6) aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆) alkyl or (C₂₋₆)alkenyl; provided that when R³ is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively;

wherein R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl; aryl; a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₁₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; cyano; or tetrazolyl;

At page 3, lines 19-34:

AB is $NR^{11}CO$, $CO-CR^8R^9$ or $CR^6R^7-CR^8R^9$ or when n is 1 or 2, AB may instead be $O-CR^8R^9$ or $NR^{11}-CR^8R^9$, or when n is 2 AB may instead be $CR^6R^7-NR^{11}$ or CR^6R^7-O , provided that when n is 0, B is not CH(OH),

and wherein:

each of R⁶ and R⁷, R⁸ and R⁹ is independently selected from: H; thiol; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) 6) alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C_{1-6}) aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) 6)alkyl or (C₁₋₆)alkenyl; or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{12-6}) alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, $(C_{\underline{\textbf{12}}\textbf{-}6}) alkenyloxycarbonyl, (C_{2}\textbf{-}6) alkenylcarbonyl, (C_{\underline{\textbf{1-}6}}) alkyl \ or \ (C_{\underline{\textbf{12}}\textbf{-}6}) alkenyloxycarbonyl$ and optionally further substituted by (C_{1-6}) alkyl or (C_{12-6}) alkenyl; or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage

wherein:

'heterocyclic' is an aromatic and non-aromatic, single or fused, ring containing up to four hetero-atoms in each ring selected from oxygen, nitrogen and sulphur, and having from 4 to 7 ring atoms, which rings may be unsubstituted or substituted by up to three groups selected from amino, halogen, (C_{1-6}) alkyl, (C_{1-6}) alkoxy, halo (C_{1-6}) alkyl, hydroxy, carboxy, carboxy salts, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxycarbonyl (C_{1-6}) alkyl, aryl, and oxo groups, and wherein any amino group forming part of a single or fused non-aromatic heterocyclic ring as defined above is optionally substituted by (C_{1-6}) alkyl optionally substituted by hydroxy, (C_{1-6}) alkoxy, thiol, (C_{1-6}) alkylthio, halo or trifluoromethyl, acyl or (C_{1-6}) alkylsulphonyl groups;

'aryl' is phenyl or naphthyl, optionally substituted with up to five groups selected from halogen, mercapto, (C_{1-6}) alkyl, phenyl, (C_{1-6}) alkoxy, hydroxy (C_{1-6}) alkyl, mercapto (C_{1-6}) alkyl, halo (C_{1-6}) alkyl, hydroxy, amino, nitro, cyano, carboxy, (C_{1-6}) alkylcarbonyloxy, (C_{1-6}) alkoxycarbonyl, formyl and (C_{1-6}) alkylcarbonyl groups;

'acyl' is (C₁₋₆)alkoxycarbonyl, formyl or (C₁₋₆) alkylcarbonyl.

At page 4, lines 1-11:

The invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable **derivative** salt and/or N-oxide thereof in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.

The invention also provides a pharmaceutical composition for use in the treatment of bacterial infections in mammals comprising a compound of formula (I), or a pharmaceutically acceptable **derivative salt and/or N-oxide** thereof, and a pharmaceutically acceptable carrier.

The invention further provides a method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment of an effective amount of a a compound of formula (I), or a pharmaceutically acceptable derivative salt and/or N-oxide thereof.

At page 4, after line 14 and before lines 15-20:

Preferably one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N and one of Z^3 and Z^5 if not N is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH.

<u>More</u> preferably Z^5 is CH or N, Z^3 is CH or CF and Z^1 , Z^2 and Z^4 are each CH, or Z^1 is N, Z^3 is CH or CF and Z^2 , Z^4 and Z^5 are each CH. Most preferably Z^1 - Z^5 are each CH.

At page 4, lines 26-37:

In one aspect, R^3 is preferably hydrogen, (C_{1-4}) alkyl, ethenyl, or 1-hydroxy- (C_{1-4}) alkyl optionally substituted 1-hydroxy- (C_{1-4}) alkyl as defined in formula (I), more preferably hydroxymethyl, 1,2-dihydroxy(C_{2-4})alkyl wherein the 2-hydroxy group is optionally substituted as defined in formula (I). Preferred examples of R^3 include hydroxymethyl, 1-hydroxyethyl or 1,2-dihydroxyethyl wherein the 2-hydroxy group is optionally substituted with alkylcarbonyl or aminocarbonyl where the amino group is optionally substituted as defined in formula (I). Other suitable examples of R^3 include 2-hydroxyethyl, 2- or 3-hydroxypropyl, ethyl or ethenyl.

In another aspect R^3 preferably contains carboxy, <u>aminocarbonyl</u> optionally substituted <u>aminocarbonyl</u>, <u>as defined in formula (I)</u>, cyano or 2-oxo-oxazolidinyl optionally substituted by R^{10} . Where R^3 is substituted alkyl is it preferably substituted methyl. Preferred examples of R^3 include CO_2H , CH_2CO_2H ,

(CH₂)₂CO₂H, (CH₂)₂CN, CH(OH)CH₂CN, CH(OH)CH₂CO₂H, CH=CHCO₂H or 2-oxo-oxazolidinyl.

At page 6, lines 12-13:

The term 'acyl' includes (C_{2-6}) alkoxycarbonyl, formyl or (C_{2-6}) alkylcarbonyl group. Aryl are preferably substituted with up to three groups.

At page 7, lines 1-33 to page 8, lines 1-11:

In a further aspect of the invention there is provided a process for preparing compounds of formula (I), or a pharmaceutically acceptable **derivative salt and/or N-oxide** thereof, which process comprises:

(a) reacting a compound of formula (IV) with a compound of formula (V):

$$R^{1'} \xrightarrow{Z^{2'}} Z^{5'} \qquad \qquad Y(CH_2)_n N \xrightarrow{3 + 2} NR^{4'}$$

$$(IV) \qquad \qquad (V)$$

wherein Z^1 , Z^2 , Z^3 , Z^4 and Z^5 , m, n, R^1 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is CH₂CO₂R^x, CH₂CHO or CH₂COW
- (ii) X is CO_2R^y and Y is $CH_2CO_2R^x$
- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO_2R^X
- (vi) X is CH₂CO₂RY and Y is CO₂RX
- (vii) X is CH=PRZ₃ and Y is CHO
- (viii) X is CHO and Y is CH=PRZ₃
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR¹¹ or NCO
- (xi) one of X and Y is $(CH_2)_p$ -W and the other is $(CH_2)_qNHR^{11}$ or $(CH_2)_qOH$
- (xii) one of X and Y is CHO and the other is NHR¹¹,

or where n=0

- (xiii) $X \text{ isA-B-}(CH_2)_{n}\text{-W} \text{ or A-B-}(CH_2)_{n-1}\text{-CHO} \text{ and } Y \text{ is } H$
- (xiv) X is NCO and Y is H
- (xv) X is CH3 and Y is H
- (xvi) X is COCH₂W and Y is H
- (xvii) X is CH=CH2 and Y is H
- (xviii) X is oxirane and Y is H

in which W is a leaving group, R^X and R^Y are (C_{1-6}) alkyl and R^Z is aryl or (C_{1-6}) alkyl;

or

(b) reacting a compound of formula (IV) with a compound of formula (Vb):

wherein Z^1 , Z^2 , Z^3 , Z^4 and Z^5 , m, n, R^1 , R^3 and R^4 are as defined in formula (I), X is CH_2NHR^{11} and Y is CHO or COW;

in which $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, $R^{11'}$, $R^{1'}$, $R^{3'}$ and $R^{4'}$ are Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , R^{11} , R^1 , R^3 and R^4 or groups convertible thereto, and thereafter optionally or as necessary converting $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, $R^{11'}$, $R^{1'}$, $R^{3'}$ and $R^{4'}$ to Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , $R^{11'}$, R^1 , R^3 and R^4 , converting A-B to other A-B, interconverting Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , Z^{11} ,

At page 20, lines 31-33:

No toxicological effects are indicated when a compound of formula (I) or a pharmaceutically acceptable salt or *in vivo* hydrolysable and/or N-oxide thereof is administered in the above-mentioned dosage range.