Table 1. Ar/Ar Summary Table

Sai	nple:	MB06-5	556		Lab #:	57546	J : 7.92l	E-04 ±7.9	92E-04		IC: 1.00	00.00±	00					
	t erial :	: Ground ate	dmass		IGSN:													
_	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.05895	0.04930	9.23E-06	0.00013	0.03722	0.00019	0.00169	0.00006	0.19497	0.02342	195.56	12.0786	2.3	144.5243	0.4
	01B	625.0	0.0	0.00673	0.00366	0.00002	0.00010	0.00457	0.00009	0.00320	0.00006	0.02199	0.00589	15.36	1.1838	3.4	10.79391	0.5
	01C	700.0	0.0	0.00428	0.00683	0.00004	0.00011	0.00312	0.00006	0.00605	0.00007	0.01316	0.00590	13.50	0.6309	9.3	9.48066	0.6
	01D	750.0	0.0	0.00190	0.00124	0.00002	0.00008	0.00138	0.00006	0.00369	0.00006	0.00576	0.00359	13.15	0.7103	10.4	9.23458	0.5
	01E	800.0	0.0	0.00160	0.00102	0.00002	0.00007	0.00118	0.00005	0.00414	0.00006	0.00487	0.00370	11.97	0.8225	10.0	8.40331	0.4
	01F	875.0	0.0	0.00280	0.00515	0.00002	0.00009	0.00203	0.00007	0.00546	0.00007	0.00874	0.00636	12.58	1.1236	7.8	8.83308	0.4
	01G	975.0	0.0	0.00445	0.00596	0.00004	0.00011	0.00317	0.00006	0.00955	0.00008	0.01396	0.00612	11.68	0.6646	7.5	8.20089	0.3
P	01H	1075.0	0.0	0.00633	0.00370	0.00004	0.00013	0.00442	0.00006	0.01468	0.00010	0.02022	0.00704	12.13	0.7045	5.7	8.51789	0.2
P	011	1250.0	0.0	0.03694	0.02355	0.00020	0.00042	0.02486	0.00017	0.00025	0.00003	0.11844	0.01445	13.97	0.3515	5.2	9.81570	61.9
Р	01J	1300.0	0.0	0.00067	0.00095	5.56E-06	0.00006	0.00058	0.00005	0.01593	0.00015	0.00212	0.00291	12.45	2.2411	7.2	8.74226	2.75E
Р	01K	1700.0	0.0	0.00060	0.00071	5.88E-06	0.00005	0.00054	0.00004	0.03397	0.00017	0.00196	0.00273	10.18	2.0334	6.8	7.14497	1.35E
We	ghted	Mean A	ge											13.246	00 ±0.221	95		
Inte	grated	d												17.414	91 ±17.33	487		
Pla	eau											Steps	H-K	13.584	73 ±0.311	47		
Iso	chron													9.1074	7 ±9.0845	2		

Sa	mple:	: MB06-5	595		Lab #: 5	57549	J : 7.91	E-04 ±7.9)1E-04		IC : 1.00	00 ±0.000	00					
	aterial: ncentra	: Ground	dmass		IGSN:									<u>, </u>				
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				!
	01A	550.0	0.0	0.02122	0.00830	0.00002	0.00010	0.01359	0.00013	0.01611	0.00013	0.07006	0.01566	32.56	2.8679	2.5	23.02885	0.1
	01B	625.0	0.0	0.00163	0.00133	0.00008	0.00014	0.00169	0.00006	-0.00262	0.00007	0.00305	0.00316	12.55	0.1632	44.7	8.82928	-2.5
Р	01C	700.0	0.0	0.00175	0.00134	0.00016	0.00023	0.00240	0.00006	-0.00048	0.00009	0.00131	0.00225	11.93	0.0614	77.9	8.38893	-26.9
Р	01D	750.0	0.0	0.00155	0.00099	0.00017	0.00022	0.00234	0.00006	0.00437	0.00008	0.00056	0.00166	11.85	0.0454	89.5	8.33434	3.0
Р	01E	800.0	0.0	0.00180	0.00149	0.00020	0.00028	0.00263	0.00007	0.00528	0.00007	0.00054	0.00163	11.86	0.0401	91.3	8.34200	3.0
Р	01F	875.0	0.0	0.00189	0.00144	0.00021	0.00028	0.00273	0.00006	0.00629	0.00015	0.00057	0.00193	11.88	0.0435	91.2	8.35551	2.6
Р	01G	975.0	0.0	0.00183	0.00121	0.00018	0.00025	0.00245	0.00007	0.00925	0.00009	0.00100	0.00200	11.92	0.0496	84.1	8.38540	1.6
	01H	1075.0	0.0	0.00185	0.00139	0.00019	0.00022	0.00256	0.00006	0.00929	0.00008	0.00099	0.00194	11.60	0.0455	84.5	8.15647	1.6
	011	1250.0	0.0	0.00409	0.00586	0.00037	0.00064	0.00531	0.00007	0.06150	0.00024	0.00373	0.00333	11.61	0.0491	73.9	8.16699	0.5
	01J	1700.0	0.0	0.00132	0.00194	0.00010	0.00016	0.00159	0.00005	0.01634	0.00012	0.00189	0.00222	11.54	0.1041	58.4	8.11548	0.5

 Weighted Mean Age
 11.80765 ±0.01732

 Integrated
 12.09345 ±12.05311

 Plateau
 Steps
 C-G
 11.87446 ±0.02294

 Isochron
 11.72851 ±11.69047

	mple	: MB06-	763		Lab #:	57553	J : 7.94[E-04 ±7.9	4E-04		IC : 1.00	00.000	00					
	ateria ncent	l: Groun	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			K	
	01A	550.0	0.0	0.04252	0.02768	0.00002	0.00010	0.02712	0.00022	0.00118	0.00009	0.14107	0.02027	72.08	5.5983	2.0	51.35020	1.0
	01B	625.0	0.0	0.00216	0.00242	0.00008	0.00016	0.00205	0.00007	0.00335	0.00010	0.00507	0.00362	12.31	0.2040	30.8	8.62751	1.7
Р	01C	700.0	0.0	0.00217	0.00291	0.00018	0.00027	0.00277	0.00007	0.00615	0.00011	0.00243	0.00298	11.51	0.0753	67.0	8.06418	2.1
Р	01D	750.0	0.0	0.00175	0.00120	0.00019	0.00028	0.00265	0.00006	0.00621	0.00011	0.00092	0.00178	11.42	0.0450	84.7	8.00238	2.2
Р	01E	800.0	0.0	0.00115	0.00155	0.00013	0.00019	0.00175	0.00004	0.00495	0.00009	0.00051	0.00182	11.38	0.0654	87.2	7.97189	1.9
Р	01F	875.0	0.0	0.00162	0.00103	0.00018	0.00023	0.00231	0.00006	0.00823	0.00010	0.00057	0.00178	11.50	0.0447	89.9	8.05371	1.6
Р	01G	975.0	0.0	0.00134	0.00104	0.00015	0.00024	0.00193	0.00004	0.00913	0.00008	0.00058	0.00167	11.42	0.0526	87.6	8.00021	1.2
	01H	1075.0	0.0	0.00089	0.00099	0.00010	0.00015	0.00138	0.00005	0.01364	0.00011	0.00038	0.00153	11.09	0.0678	88.3	7.76608	0.5
	011	1250.0	0.0	0.00325	0.00598	0.00023	0.00050	0.00404	0.00007	0.07264	0.00027	0.00504	0.00355	11.11	0.0803	55.4	7.77995	0.2
	01J	1700.0	0.0	0.00095	0.00080	0.00004	0.00012	0.00098	0.00005	0.01034	0.00008	0.00209	0.00250	11.80	0.2593	35.8	8.26610	0.3
We	eighted	d Mean A	ge											11.399	924 ±0.02	143		
Int	egrate	d												12.203	306 ±12.1	6215		
												Steps	C-G	11.453	321 ±0.02	669		
Pla	ntegrated Plateau											-						
	ateau ochron													11.284	133 ±11.2	4911		
														11.284	133 ±11.2	4911		
Isc	ochron		762		l ah #: /	57552	I: 7 956	04 +7 Q	95F-04		IC: 1.00	00 +0 000	nO	11.284	133 ±11.2	4911		
Sa	mple	: MB06-			Lab #: !	57552	J : 7.958	E-04 ±7.9	95E-04		IC: 1.00	00 ±0.000	00	11.284	133 ±11.2	4911		
Sa	mple	: MB06-			Lab #: S	57552	J : 7.95E	Ξ-04 ±7.9	95E-04		IC: 1.00	00 ±0.000	00	11.284	133 ±11.2	4911		
Sa	emple ateria	: MB06-		⁴⁰ Ar		57552 ³⁹ Ar	J : 7.95Ε ± 1σ	E-04 ±7.9	± 1σ	³⁷ Ar	IC : 1.00 ± 1σ	00 ±0.000	±1σ	11.28 ²	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _v	K/Ca
Sa	ample ateria	: MB06-	dmass	⁴⁰ Ar (10 ³ fA)	IGSN:					³⁷ Ar							⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Sa	ample ateria	: MB06- I: Ground rate	dmass		IGSN:	³⁹ Ar				³⁷ Ar			± 1σ	Age			⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Sa	ample ateria ncent	: MB06- I: Ground rate	dmass 40Ar	(10 ³ fA)	IGSN: ± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ		± 1σ	³⁶ Ar	± 1σ (10 ⁻² fA)	Age (Ma)	± 1σ	% ⁴⁰ Ar*		
Sa	ample ateria ncent N	: MB06- I: Ground rate () 550.0	dmass 40Ar 0.0	(10 ³ fA)	IGSN: ± 1σ	³⁹ Ar (10 ³ fA) 0.00003	± 1σ	³⁸ Ar	± 1σ	0.00053	± 1σ 0.00005	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA) 0.02128	Age (Ma) 44.08	±1σ	% ⁴⁰ Ar*	31.09940	4.4

co	ncentr	ate			10011.													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.04622	0.03193	0.00003	0.00012	0.02911	0.00020	0.00053	0.00005	0.15332	0.02128	44.08	3.3677	2.0	31.09940	4.4
Р	01B	625.0	0.0	0.00245	0.00391	0.00019	0.00027	0.00303	0.00007	0.00169	0.00005	0.00321	0.00300	11.34	0.0750	61.2	7.92938	8.8
Р	01C	700.0	0.0	0.00316	0.00639	0.00036	0.00082	0.00462	0.00007	0.00266	0.00006	0.00108	0.00231	11.45	0.0458	90.0	8.00180	10.5
Р	01D	750.0	0.0	0.00201	0.00176	0.00024	0.00039	0.00317	0.00007	0.00190	0.00006	0.00037	0.00156	11.33	0.0346	94.6	7.92322	9.9
Р	01E	800.0	0.0	0.00207	0.00272	0.00025	0.00054	0.00342	0.00005	0.00213	0.00005	0.00037	0.00176	11.31	0.0416	94.7	7.91005	9.1
Р	01F	875.0	0.0	0.00269	0.00484	0.00032	0.00081	0.00419	0.00007	0.00319	0.00006	0.00043	0.00177	11.30	0.0421	95.4	7.90147	8.0
	01G	975.0	0.0	0.00281	0.00481	0.00034	0.00080	0.00450	0.00008	0.00406	0.00007	0.00056	0.00193	11.18	0.0410	94.2	7.81865	6.5
	01H	1075.0	0.0	0.00156	0.00117	0.00019	0.00024	0.00251	0.00006	0.00873	0.00008	0.00049	0.00165	10.90	0.0409	91.1	7.61720	1.7
	011	1250.0	0.0	0.00274	0.00526	0.00028	0.00066	0.00396	0.00006	0.03210	0.00018	0.00218	0.00230	10.96	0.0520	77.1	7.66110	0.7
	01J	1700.0	0.0	0.00185	0.00119	0.00017	0.00024	0.00263	0.00005	0.01321	0.00011	0.00167	0.00274	11.21	0.0691	73.7	7.83394	1.0

 Weighted Mean Age
 11.22334 ±0.01506

 Integrated
 11.64678 ±11.60937

 Plateau
 Steps
 B-F
 11.35472 ±0.02197

 Isochron
 11.18421 ±11.14961

Sa	mple:	MB07-0	007		Lab #:	58767	J : 9.781	E-04 ±9.7	8E-04		IC: 1.00	00.000	0					
Ma	terial	: Wr			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	-0.00003	0.00022	-1.80E-0	0.00004	-0.00003	0.00002	-0.00005	0.00002	-0.00011	0.00112	-35.09	33.8073	-12.3	-19.6959	0.2
	01B	625.0	0.0	0.01068	0.00620	0.00002	0.00009	0.00704	0.00009	0.00187	0.00005	0.03569	0.01132	12.53	3.0201	1.3	7.12509	0.6
	01C	700.0	0.0	0.01041	0.00601	0.00002	0.00011	0.00674	0.00007	0.00234	0.00005	0.03464	0.01366	13.21	3.0894	1.7	7.51311	0.6
	01D	750.0	0.0	0.00473	0.00352	0.00002	0.00010	0.00320	0.00005	0.00184	0.00004	0.01557	0.00737	12.90	2.2181	2.7	7.33783	0.6
	01E	800.0	0.0	0.00761	0.00500	0.00002	0.00010	0.00525	0.00006	0.00269	0.00006	0.02539	0.00861	10.38	2.3444	1.5	5.90014	0.4
	01F	875.0	0.0	0.01680	0.01199	0.00004	0.00013	0.01103	0.00012	0.00652	0.00007	0.05541	0.01904	16.99	2.2495	2.6	9.67645	0.4
Р	01G	975.0	0.0	0.03941	0.03080	0.00017	0.00032	0.02617	0.00012	-0.00053	0.00015	0.12902	0.04241	13.44	1.3424	3.3	7.64695	-19.
Р	01H	1075.0	0.0	0.01400	0.02706	0.00018	0.00045	0.01062	0.00010	0.01536	0.00012	0.04357	0.01533	10.90	0.5038	8.1	6.19623	0.7
Р	011	1250.0	0.0	0.04162	0.03058	0.00061	0.00067	0.03172	0.00015	0.00552	0.00040	0.12876	0.03776	10.34	0.3340	8.6	5.87487	6.8
	01J	1700.0	0.0	0.00431	0.00277	0.00005	0.00015	0.00338	0.00007	0.00605	0.00013	0.01395	0.00768	6.20	0.7426	4.4	3.51805	0.5
_	01J		0.0	0.00431	0.00277	0.00005	0.00015	0.00338	0.00007	0.00605	0.00013	0.01395	0.00768	6.20	_	0.7426	0.7426 4.4	0.7426 4.4 3.51805

Weighted Mean Age

10.26145 ±0.24945

Integrated

11.09651 ±11.06683

Plateau Isochron **Steps** G-I 11.21477 ±0.47171

9.29626 ±9.27235

Sa	mple:	MB06-7	765		Lab #:	57555	J : 8.211	E-04 ±8.2	21E-04		IC : 1.00	00.00±	00					
	terial ncentr	: Ground ate	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.02733	0.01514	8.81E-06	0.00009	0.01792	0.00013	0.00597	0.00008	0.09114	0.01426	66.73	7.3009	1.5	45.88050	0.1
P	01B	625.0	0.0	0.00428	0.00589	0.00003	0.00009	0.00309	0.00012	0.00400	0.00006	0.01381	0.00744	11.93	1.3157	4.8	8.08172	0.5
Р	01C	700.0	0.0	0.00326	0.00650	0.00004	0.00014	0.00242	0.00006	0.00675	0.00008	0.00994	0.00600	10.86	0.6293	10.0	7.35067	0.5
Р	01D	750.0	0.0	0.00189	0.00121	0.00004	0.00010	0.00163	0.00005	0.00642	0.00008	0.00543	0.00559	11.03	0.6340	15.2	7.46924	0.4
Р	01E	800.0	0.0	0.00106	0.00095	0.00003	0.00009	0.00087	0.00004	0.00455	0.00007	0.00294	0.00329	11.36	0.5716	18.3	7.68879	0.4
Р	01F	875.0	0.0	0.00204	0.00197	0.00005	0.00013	0.00177	0.00006	0.00985	0.00009	0.00565	0.00422	11.45	0.3844	18.4	7.75615	0.4
Р	01G	975.0	0.0	0.00277	0.00476	0.00006	0.00013	0.00224	0.00007	0.01212	0.00011	0.00779	0.00439	11.13	0.3217	17.2	7.53359	0.4
Р	01H	1075.0	0.0	0.00200	0.00186	0.00006	0.00014	0.00175	0.00006	0.01278	0.00011	0.00541	0.00415	10.10	0.3088	20.3	6.83725	0.3
Р	011	1250.0	0.0	0.01603	0.00760	0.00022	0.00044	0.01210	0.00012	0.00032	0.00003	0.04886	0.01149	10.49	0.2300	9.9	7.10270	51.3
	01J	1700.0	0.0	0.00166	0.00124	0.00003	0.00010	0.00144	0.00006	0.06605	0.00021	0.00485	0.00416	12.05	0.5626	16.3	8.15852	3.64E-02

Weighted Mean Age

10.84389 ±0.13171

Integrated

11.74203 ±11.70538

Plateau

Steps B-I 10.89418 ±0.16767

Isochron

9.83882 ±9.81204

	mple:	: MB07-1	139		Lab #: 5	58627	J : 2.21[E-03 ±2.2	1E-03		IC: 1.00	00.000 ±0.000	00					
	aterial ncentr	: Ground	assemb		IGSN:													
_	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			K	
_	01A	550.0	0.0	0.05063	0.04094	0.00004	0.00020	0.25900	0.00085	0.01062	0.00010	0.16763	0.03174	96.90	8.7142	2.2	24.92520	0.5
	01B	625.0	0.0	0.00681	0.00470	0.00015	0.00022	0.09047	0.00025	0.01849	0.00015	0.02146	0.01089	12.88	0.8827	7.0	3.23626	0.9
Р	01C	700.0	0.0	0.00467	0.00316	0.00026	0.00046	0.02420	0.00017	0.02427	0.00020	0.01328	0.00838	11.35	0.3761	16.1	2.84969	1.3
Р	01D	750.0	0.0	0.00250	0.00238	0.00032	0.00049	0.00783	0.00011	0.02723	0.00014	0.00559	0.00928	10.69	0.3426	34.2	2.68344	1.4
Р	01E	800.0	0.0	0.00315	0.00234	0.00042	0.00054	0.01191	0.00011	0.03984	0.00018	0.00686	0.00711	10.76	0.2007	36.0	2.70146	1.2
Р	01F	875.0	0.0	0.00293	0.00225	0.00046	0.00061	0.01046	0.00008	0.04515	0.00024	0.00580	0.00671	10.65	0.1738	41.9	2.67428	1.2
P	01G	975.0	0.0	0.00186	0.00137	0.00036	0.00050	0.00810	0.00009	0.03026	0.00021	0.00320	0.00629	10.23	0.2075	49.5	2.56787	1.4
P	01H	1075.0	0.0	0.00163	0.00124	0.00044	0.00060	0.00814	0.00009	0.04185	0.00013	0.00165	0.00553	10.37	0.1481	70.7	2.60456	1.3
	011	1250.0	0.0	0.00618	0.00394	0.00122	0.00112	0.02320	0.00014	0.00068	0.00004	0.01076	0.00673	9.72	0.0669	48.3	2.43934	211.4
	01J	1700.0	0.0	0.00482	0.00308	0.00026	0.00044	0.00748	0.00009	-0.00022	0.00005	0.01416	0.00865	9.72	0.3910	13.2	2.43949	-140.4
We	ighted	l Mean A	ge											10.046	660 ±0.05	175		
Inte	egrate	d												11.369	954 ±11.3	3450		
Pla	iteau											Steps	C-H	10.629	937 ±0.10	168		
Iso	chron													9.7368	31 ±9.710	58		
Sa	mple:	: MB06-8	334		Lab #: {	57557	J : 8.22E	E-04 ±8.2	'2E-04		IC: 1.00	00.000	00					
Ma	•	: Ground			Lab #: 5	57557	J : 8.22l	E-04 ±8.2	?2E-04		IC : 1.00	0.000 ±0.000	00					
Ma	terial	: Ground	dmass	⁴⁰ Ar			J : 8.22E ± 1σ		± 1σ	³⁷ Ar	IC : 1.00 ± 1σ	00 ±0.000	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _v	K/Ca
Ma	terial ncentr	: Ground		⁴⁰ Ar (10 ³ fA)	IGSN:	³⁹ Ar (10 ³ fA)		E-04 ±8.2		³⁷ Ar				Age (Ma)	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Ma	terial ncentr	: Ground rate	dmass		IGSN:	³⁹ Ar				³⁷ Ar			± 1σ	_			⁴⁰ Ar*/ ³⁹ Ar _K 86.78851	K/C:
Ma	nterial ncentr	: Ground rate	dmass 40Ar	(10 ³ fA)	IGSN : ± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ		± 1σ	³⁶ Ar	± 1σ (10 ⁻² fA)	(Ma)				
Ma	ncentr N	() 550.0	40Ar	(10 ³ fA)	IGSN: ± 1σ	³⁹ Ar (10 ³ fA) 9.56E-06	±1σ	³⁸ Ar	±1σ	0.00435	± 1σ	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA) 0.01974	(Ma)	9.4688	2.0	86.78851	0.2

013	1700.0	0.0	0.00245	0.00350	0.00002	0.00009	0.00181	0.00005	0.07413	0.00022	0.00788	0.00514	11.73	1.1221	6.8
Weighted	l Mean A	.ge											10.355	19 ±0.05	539
Integrate	d												12.341	21 ±12.30	0071
Plateau											Steps	B-G	10.487	20 ±0.06	618
Isochron													10.095	30 ±10.0	6711

01E

01F

01G

01H

011

800.0

875.0

975.0

1075.0

1250.0

0.0

0.0

0.0

0.0

0.0

0.00084

0.00110

0.00090

0.00057

0.00347

0.00090

0.00098

0.00084

0.00061

0.00596

0.00008

0.00010

0.00007

0.00005

0.00008

0.00014

0.00017

0.00015

0.00012

0.00017

0.00119

0.00146

0.00123

0.00074

0.00303

0.00004

0.00005

0.00004

0.00003

0.00007

0.00848

0.01205

0.01236

0.01133

6.11E-06

0.00010

0.00015

0.00012

0.00012

0.00004

0.00089

0.00140

0.00133

0.00088

0.01002

0.00166

0.00258

0.00231

0.00190

0.00477

10.57

10.41

10.37

10.01

8.78

0.0918

0.1163

0.1392

0.1795

0.2661

69.5

63.1

57.3

55.6

14.5

7.14884

7.03684

7.00839

6.76423

5.92947

7.93385

0.7

0.6

0.4

0.3

1.00E

2.03E

Sa	mple:	MB06-8	328		Lab #:	57540	J : 7.821	E-04 ±7.8	32E-04		IC : 1.00	00.00±	00					
Ma	terial	: Amphil	bole		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00183	0.00322	0.00005	0.00012	0.00163	0.00004	0.00600	0.00008	0.00487	0.00366	10.60	0.3061	21.4	7.53157	0.7
Р	01B	1140.0	0.0	0.00216	0.00295	0.00009	0.00016	0.00225	0.00005	0.05042	0.00018	0.00500	0.00398	10.67	0.1837	33.0	7.58443	0.2
Р	01C	1170.0	0.0	0.00091	0.00077	0.00006	0.00016	0.00118	0.00005	0.03929	0.00018	0.00162	0.00232	10.76	0.1697	49.7	7.64362	0.1
Р	01D	1200.0	0.0	0.00189	0.00134	0.00016	0.00021	0.00255	0.00007	0.11398	0.00034	0.00268	0.00271	10.37	0.0828	61.3	7.37040	0.1
Р	01E	1225.0	0.0	0.00087	0.00068	0.00007	0.00015	0.00120	0.00005	0.05830	0.00019	0.00134	0.00204	10.29	0.1330	58.1	7.31446	9.67E-02
	01F	1250.0	0.0	0.00043	0.00056	0.00003	0.00010	0.00061	0.00004	0.03772	0.00017	0.00081	0.00176	9.68	0.2467	49.2	6.87869	6.71E-0
	01G	1275.0	0.0	0.00013	0.00029	5.15E-06	0.00005	0.00012	0.00003	0.02181	0.00012	0.00035	0.00150	10.59	1.2569	29.5	7.52688	1.89E-0
	01H	1300.0	0.0	0.00010	0.00028	2.62E-06	0.00004	0.00010	0.00002	0.02350	0.00014	0.00031	0.00163	13.44	2.7396	23.2	9.56140	8.74E-0
	011	1400.0	0.0	0.00012	0.00024	2.05E-06	0.00004	0.00011	0.00003	0.02564	0.00015	0.00041	0.00149	5.51	3.2747	6.5	3.91145	6.16E-0
	01J	1700.0	0.0	0.00014	0.00036	1.77E-06	0.00004	0.00013	0.00003	0.03014	0.00017	0.00051	0.00165	0.24	4.3003	0.2	0.17089	4.45E-0

Weighted Mean Age

Integrated

Isochron

10.41187 ±10.38213 **Steps** A-E 10.48387 ±0.06727

Plateau Steps

9.74702 ±9.72074

10.40089 ±0.05824

_																		
Sa	ample	MB07-	163		Lab #:	58784	J : 1.011	E-03 ±1.0	1E-03		IC : 1.00	00 ±0.000	0					
М	aterial	: Wr			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	-0.00002	0.00017	-6.20E-0	0.00002	-0.00001	0.00001	-9.14E-0	0.00002	-0.00007	0.00095	16.90	82.0115	2.7	9.31761	0.4
P	01B	625.0	0.0	0.01120	0.00679	0.00011	0.00021	0.00867	0.00013	0.00074	0.00004	0.03556	0.01198	11.54	0.6022	6.2	6.35052	8.7
Р	01C	700.0	0.0	0.00553	0.00366	0.00026	0.00038	0.00644	0.00007	0.00151	0.00004	0.01357	0.00714	10.73	0.1516	27.5	5.90499	10.1
Р	01D	750.0	0.0	0.00489	0.00280	0.00033	0.00047	0.00641	0.00007	0.00211	0.00004	0.01011	0.00555	10.50	0.0926	39.0	5.77976	9.3
Р	01E	800.0	0.0	0.00521	0.00334	0.00037	0.00054	0.00685	0.00009	0.00291	0.00005	0.01041	0.00603	10.44	0.0898	41.0	5.74270	7.5
Р	01F	875.0	0.0	0.00788	0.00427	0.00055	0.00056	0.01006	0.00008	0.00496	0.00006	0.01595	0.00623	10.54	0.0635	40.3	5.79852	6.5
Р	01G	975.0	0.0	0.00798	0.00603	0.00060	0.00061	0.01094	0.00008	-0.00028	0.00011	0.01532	0.00650	10.47	0.0617	43.3	5.76265	-127.
Р	01H	1075.0	0.0	0.00549	0.00425	0.00052	0.00062	0.00828	0.00008	0.00969	0.00009	0.00865	0.00498	10.33	0.0551	53.5	5.68251	3.2
Р	011	1250.0	0.0	0.00852	0.00430	0.00060	0.00061	0.01064	0.00009	0.00168	0.00011	0.01719	0.00831	10.50	0.0766	40.4	5.77614	21.0
	01J	1700.0	0.0	0.00531	0.00311	0.00034	0.00054	0.00660	0.00007	0.02771	0.00017	0.01120	0.00622	10.74	0.1006	38.0	5.90946	0.7

Weighted Mean Age

Integrated

Plateau Isochron Steps

A-I

10.48236 ±0.02676

10.54031 ±10.50965

10.45742 ±0.02979 10.30440 ±10.27503

Sa	mple:	: MB06-8	333		Lab # : 5	57543	J : 7.84F	E-04 ±7.8	4E-04		IC: 1.00	00.00±	00					
Ма	terial	: Amphil			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
_		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00081	0.00113	0.00001	0.00008	0.00054	0.00005	0.00663	0.00007	0.00242	0.00294	11.45	1.0303	12.0	8.11753	0.1
Р	01B	1140.0	0.0	0.00186	0.00149	0.00012	0.00020	0.00223	0.00007	0.07626	0.00025	0.00354	0.00276	10.47	0.1087	45.9	7.41844	0.1
Р	01C	1170.0	0.0	0.00055	0.00072	0.00006	0.00013	0.00089	0.00005	0.04526	0.00020	0.00039	0.00166	10.32	0.1186	83.5	7.31466	0.1
Р	01D	1200.0	0.0	0.00032	0.00055	0.00004	0.00012	0.00056	0.00003	0.02968	0.00015	0.00019	0.00197	10.56	0.2264	87.0	7.48311	0.1
Р	01E	1225.0	0.0	0.00059	0.00070	0.00007	0.00014	0.00099	0.00004	0.05514	0.00018	0.00039	0.00154	10.46	0.1061	85.4	7.41692	0.1
Р	01F	1250.0	0.0	0.00026	0.00051	0.00003	0.00009	0.00048	0.00003	0.02736	0.00018	0.00021	0.00143	10.67	0.2219	81.7	7.56373	8.30E
Р	01G	1275.0	0.0	0.00002	0.00021	2.85E-07	0.00004	0.00003	0.00002	0.00219	0.00007	0.00005	0.00123	11.28	18.6743	14.6	7.99658	1.02E
Р	01H	1700.0	0.0	0.00013	0.00032	2.08E-06	0.00005	0.00014	0.00002	0.02553	0.00016	0.00041	0.00328	14.30	6.9361	15.7	10.15040	6.25E
We	3		-															
Inte	egrated	d													473 ±10.49			
Inte Pla	•											Steps	A-H	10.452	473 ±10.49 237 ±0.059 19 ±9.8014	921		
Inte Pla Iso	egrated ateau ochron		332		Lab #: 5	;7542	J : 7.83E	E-04 ±7.8	3E-04		IC: 1.00	Steps		10.452	237 ±0.059	921		
Inte Pla Iso	egrated ateau ochron ample:				Lab #: 5	57542	J : 7.83E	E-04 ±7.8	i3E-04		IC: 1.00	·		10.452	237 ±0.059	921		
Inte Pla Iso	egrated ateau ochron ample:	: MB06-8		⁴⁰ Ar		57542 ³⁹ Ar	J : 7.83E ± 1σ	E-04 ±7.8	33E-04 ± 1σ	³⁷ Ar	IC : 1.00 ± 1σ	·		10.452	237 ±0.059	921	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Inte Pla Iso	egrated ateau ochron ample:	: MB06-8	bole	⁴⁰ Ar (10 ³ fA)	IGSN:					³⁷ Ar		00 ±0.000	00	10.452 9.8281	237 ±0.059	921 47	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Inte Pla Iso	egrated ateau ochron ample:	: MB06-8 l: Amphil	bole		IGSN:	³⁹ Ar				³⁷ Ar		00 ±0.000	±1σ	10.452 9.8281 Age	237 ±0.059	921 47	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Inte Pla Iso	egrated ateau ochron ample: aterial:	: MB06-8 :: Amphili ()	bole ⁴⁰ Ar	(10 ³ fA)	IGSN : ± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ		± 1σ	00 ±0.000	$\pm 1\sigma$ (10 ⁻² fA)	10.452 9.8281 Age (Ma)	± 1σ	921 47 % ⁴⁰ Ar*		
Inter Pla Iso	egrated ateau ochron ample: aterial:	: MB06-8 :: Amphil () 950.0	40Ar	(10 ³ fA) 0.00158	IGSN: ± 1σ	³⁹ Ar (10 ³ fA) 8.29E-06	± 1σ	³⁸ Ar	± 1σ	0.00215	± 1σ 0.00005	36Ar 0.00507	$\pm 1\sigma$ (10 ⁻² fA) 0.00340	10.452 9.8281 Age (Ma)	± 1σ 1.7428	921 47 % ⁴⁰ Ar*	10.50234	0.3
Interplated Iso	egrated ateau ochron ample: aterial: N	() 950.0	40Ar 0.0 0.0	(10 ³ fA) 0.00158 0.00432	IGSN: ± 1σ 0.00213 0.00621	³⁹ Ar (10 ³ fA) 8.29E-06 0.00019	± 1σ 0.00006 0.00027	³⁸ Ar 0.00107 0.00433	± 1σ 0.00005 0.00007	0.00215 0.10660	± 1σ 0.00005 0.00028	36Ar 0.00507 0.01015	$\pm 1\sigma$ $(10^{-2} fA)$ 0.00340 0.00486	10.452 9.8281 Age (Ma) 14.78 10.38	± 1σ 1.7428 0.1224	921 47 % ⁴⁰ Ar* 5.5 31.8	10.50234 7.36705	0.3
Sai Ma	egrated ateau ochron ample: aterial: N 01A 01B	() 950.0 1140.0	0.0 0.0 0.0	(10 ³ fA) 0.00158 0.00432 0.00081	IGSN: ± 1σ 0.00213 0.00621 0.00074	³⁹ Ar (10 ³ fA) 8.29E-06 0.00019 0.00009	± 1σ 0.00006 0.00027 0.00021	³⁸ Ar 0.00107 0.00433 0.00137	± 1σ 0.00005 0.00007 0.00004	0.00215 0.10660 0.05988	± 1σ 0.00005 0.00028 0.00021	36Ar 0.00507 0.01015 0.00051	$\pm 1\sigma$ (10^{-2} fA) 0.00340 0.00486 0.00193	Age (Ma) 14.78 10.38 10.46	± 1σ 1.7428 0.1224 0.0964	% ⁴⁰ Ar* 5.5 31.8 85.1	10.50234 7.36705 7.41996	0.3 0.1 0.1
Sai Ma	egrated ateau ochron ample: aterial: N 01A 01B 01C 01D	() 950.0 1140.0 1170.0 1200.0	0.0 0.0 0.0 0.0	(10 ³ fA) 0.00158 0.00432 0.00081 0.00071	IGSN: ± 1σ 0.00213 0.00621 0.00074 0.00072	39Ar (10 ³ fA) 8.29E-06 0.00019 0.00009 0.00008	± 1σ 0.00006 0.00027 0.00021 0.00020	38Ar 0.00107 0.00433 0.00137 0.00111	± 1σ 0.00005 0.00007 0.00004 0.00003	0.00215 0.10660 0.05988 0.05576	± 1σ 0.00005 0.00028 0.00021 0.00023	36Ar 0.00507 0.01015 0.00051 0.00056	$ \begin{array}{c} $	Age (Ma) 14.78 10.46 10.43	± 1σ ± 1σ 1.7428 0.1224 0.0964 0.1049	921 47 % ⁴⁰ Ar* 5.5 31.8 85.1 80.8	10.50234 7.36705 7.41996 7.39932	0.3 0.1 0.1 0.1
Sai Ma	egrated ateau achron ample: aterial: N 01A 01B 01C 01D 01E	() 950.0 1140.0 1200.0 1225.0	0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00158 0.00432 0.00081 0.00071 0.00162	IGSN: ± 1σ 0.00213 0.00621 0.00074 0.00072	39Ar (10 ³ fA) 8.29E-06 0.00019 0.00009 0.00008	± 1σ 0.00006 0.00027 0.00021 0.00020 0.00026	38Ar 0.00107 0.00433 0.00137 0.00111 0.00257	± 1σ 0.00005 0.00007 0.00004 0.00003 0.00006	0.00215 0.10660 0.05988 0.05576 0.12740	± 1σ 0.00005 0.00028 0.00021 0.00023 0.00036	36Ar 0.00507 0.01015 0.00056 0.00131	$ \begin{array}{c} $	Age (Ma) 14.78 10.46 10.43 10.34	± 1σ ± 1σ 1.7428 0.1224 0.0964 0.1049 0.0599	% ⁴⁰ Ar* 5.5 31.8 85.1 80.8 80.2	10.50234 7.36705 7.41996 7.39932 7.33523	0.3 0.1 0.1 0.1 0.1

Sa	mple:	MB06-	582		Lab #:	56966	J : 7.63	E-04 ±7.6	3E-04		IC : 1.00	00.00±	00					
	iterial ncentr	: Groun ate	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.01356	0.00444	0.00001	0.00007	0.00871	0.00006	0.00176	0.00004	0.04547	0.00764	14.12	2.6092	0.9	10.29908	1.0
Р	01B	625.0	0.0	0.00129	0.00086	0.00007	0.00011	0.00140	0.00003	0.00473	0.00006	0.00247	0.00203	10.32	0.1128	43.3	7.51974	2.4
Р	01C	700.0	0.0	0.00245	0.00134	0.00028	0.00026	0.00369	0.00004	0.01671	0.00008	0.00122	0.00163	10.37	0.0266	85.4	7.55783	2.5
P	01D	750.0	0.0	0.00190	0.00093	0.00023	0.00029	0.00312	0.00003	0.01693	0.00007	0.00053	0.00169	10.32	0.0326	92.1	7.51705	2.1

Steps B-H

10.38135 ±0.04286

9.82244 ±9.79575

Plateau

Isochron

Sa	mple	: MB06-5	582		Lab #: 5	56966	J : 7.63	E-04 ±7.6	33E-04		IC: 1.00	00 ±0.000	0ر					
	aterial:	: Ground	assmt		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				1
Р	01E	800.0	0.0	0.00101	0.00076	0.00012	0.00011	0.00161	0.00003	0.00995	0.00006	0.00040	0.00170	10.32	0.0592	88.6	7.52258	1.8
Р	01F	875.0	0.0	0.00102	0.00076	0.00011	0.00014	0.00151	0.00002	0.01037	0.00007	0.00068	0.00171	10.33	0.0649	80.8	7.52800	1.6
P	01G	975.0	0.0	0.00140	0.00084	0.00015	0.00017	0.00212	0.00003	0.01817	0.00009	0.00085	0.00239	10.31	0.0643	82.4	7.51027	1.3
	01H	1075.0	0.0	0.00158	0.00094	0.00018	0.00015	0.00244	0.00003	0.02994	0.00008	0.00086	0.00183	10.18	0.0428	84.5	7.42051	0.9
	011	1250.0	0.0	0.00319	0.00159	0.00030	0.00032	0.00434	0.00003	0.00108	0.00003	0.00322	0.00235	10.08	0.0337	70.1	7.34428	42.9
	01J	1700.0	0.0	0.00039	0.00043	0.00003	0.00008	0.00050	0.00002	0.02725	0.00010	0.00063	0.00174	9.89	0.2379	54.9	7.20598	0.2
We	ighted	l Mean Ag	ge											10.27	188 ±0.01	1468		
Int	egrated	Ł												10.28	530 ±10.2	25609		
PΙε	ateau											Steps	A-G	10.34	487 ±0.01	1840		

10.24099 ±10.21198 Isochron

San	nple:	MB06	5-547		Lab #:	61610	J : 4.871	E-03 ±4.8	7E-03		IC: 1.00	00.00±	00					
Mat	erial:	Plagi	oclase		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	18.0	0.0	0.12666	0.12378	0.00012	0.02440	8.48643	0.04075	5.99208	0.07446	0.45550	0.31071	-545.36	198.3520	-4.1	-53.6016	1.6
	01B	18.5	0.0	0.47765	0.45148	-0.00030	0.03970	25.17774	0.04129	22.61508	0.06969	1.75353	0.68349	588.98	62.7087	-6.3	79.32490	-1.0
Р	01C	19.5	0.0	0.57323	0.12653	0.01847	0.02563	3.64267	0.03865	77.27457	0.08237	1.98143	0.58183	9.40	0.8276	3.4	1.07318	2.3
Р	01D	20.5	0.0	0.21287	0.09620	0.07075	0.02930	1.74979	0.03569	155.6366	0.08699	0.66281	0.32008	10.05	0.1185	37.9	1.14808	4.5
Р	01E	22.0	0.0	0.15918	0.09561	0.08465	0.03206	1.23723	0.04324	147.1000	0.08696	0.40825	0.25870	10.25	0.0802	61.9	1.17038	5.7
Р	01F	25.0	0.0	0.14689	0.09605	0.04592	0.02788	0.72621	0.03827	82.86807	0.08102	0.43280	0.27066	10.13	0.1544	36.0	1.15701	5.5
Р	01G	30.0	0.0	0.20664	0.09730	0.02448	0.02504	0.50956	0.03779	48.56070	0.10774	0.67463	0.31637	9.76	0.3381	13.1	1.11506	5.0
Р	01H	35.0	0.0	0.05453	0.08735	0.01580	0.02048	0.28739	0.02883	30.78663	0.06885	0.16720	0.14880	9.87	0.2503	32.5	1.12750	5.0
Р	011	40.0	0.0	0.04219	0.08893	0.01247	0.02250	0.24703	0.03401	23.44122	0.06465	0.12844	0.15325	9.77	0.3264	32.7	1.11517	5.2
Р	01J	45.0	0.0	0.01325	0.03945	0.00500	0.01915	0.11221	0.03773	9.54349	0.06543	0.04013	0.08702	9.32	0.4611	39.9	1.06438	5.1
Р	01K	50.0	0.0	0.01080	0.04248	0.00326	0.02311	0.07314	0.03708	6.37639	0.07527	0.03386	0.08651	9.21	0.7075	31.5	1.05168	5.0
	01L	60.0	0.0	0.01402	0.04392	0.00368	0.01942	0.11434	0.03709	7.30323	0.06734	0.04562	0.08098	8.45	0.5865	25.2	0.96461	4.9
	01M	75.0	0.0	0.03327	0.04344	0.01208	0.02149	0.28204	0.03532	21.85072	0.07349	0.09682	0.09793	9.91	0.2147	40.9	1.13213	5.4
	01N	80.0	0.0	0.01699	0.03765	0.00495	0.02064	0.13051	0.03590	9.12233	0.06399	0.05332	0.08715	8.83	0.4660	29.2	1.00825	5.3

Weighted Mean Age 10.07076 ±0.05424 Integrated 8.94529 ±8.92373 Plateau Steps C-K 10.12069 ±0.05691 Isochron 4.30337 ±4.29824

Sa	mple	: MB06-8	325		Lab #:	57538	J : 7.88	E-04 ±7.8	8E-04		IC : 1.00	00.000 ±0.000	0					
Ma	terial	: Amphi	bole		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			••	
Р	01A	950.0	0.0	0.00159	0.00241	0.00002	0.00008	0.00120	0.00004	0.00260	0.00005	0.00483	0.00325	10.60	0.6471	10.2	7.47311	0.7
P	01B	1140.0	0.0	0.00140	0.00101	0.00003	0.00011	0.00118	0.00005	0.01778	0.00012	0.00390	0.00314	10.47	0.3826	18.3	7.38647	0.2
P	01C	1170.0	0.0	0.00026	0.00045	0.00002	0.00010	0.00039	0.00004	0.01992	0.00012	0.00032	0.00164	10.39	0.2960	67.1	7.32756	9.80E
P	01E	1225.0	0.0	0.00045	0.00053	0.00004	0.00009	0.00060	0.00004	0.03952	0.00020	0.00065	0.00186	9.89	0.2041	61.8	6.97052	8.29E
P	01F	1275.0	0.0	0.00035	0.00056	0.00003	0.00009	0.00059	0.00004	0.05803	0.00020	0.00057	0.00357	10.11	0.5255	60.0	7.12896	4.11E
P	01G	1300.0	0.0	0.00014	0.00043	4.83E-06	0.00005	0.00021	0.00003	0.05837	0.00018	0.00048	0.00186	8.83	1.8302	20.2	6.22263	6.45E
P	01H	1400.0	0.0	0.00011	0.00026	2.24E-06	0.00004	0.00013	0.00003	0.08342	0.00032	0.00046	0.00164	12.75	4.3128	15.4	8.99864	1.86E
P	011	1700.0	0.0	-0.00002	0.00023	-9.01E-0	0.00002	3.44E-06	0.00003	-0.00070	0.00004	-0.00003	0.00206	12.43	9.5834	50.7	8.76642	0.1
	01J	1700.0	0.0	0.00025	0.00046	3.53E-06	0.00005	0.00140	0.00004	0.04432	0.00016	0.00079	0.00182	17.94	2.3834	16.7	12.67777	6.20E
We	ighted	l Mean A	ge											10.16	488 ±0.14	1317		
Int	egrate	d												10.390	063 ±10.3	86261		
Pla	iteau											Steps	A-H	10.136	620 ±0.14	1345		

9.22778 ±9.20422

Sa	mple:	MB06-5	524		Lab #:	57018	J : 7.271	E-04 ±5.1	9E-07		IC: 1.00	00.0± 00	00					
Ma	terial	Hornble	ende	·	IGSN:	·	·	·			·	·						
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00212	0.00149	2.96E-06	0.00002	0.00133	0.00002	0.00181	0.00002	0.00713	0.00323	6.89	4.2600	0.7	5.26206	0.4
Р	01B	1050.0	0.0	0.00011	0.00031	1.09E-06	0.00002	0.00009	0.00001	0.00085	0.00002	0.00036	0.00104	11.13	3.6988	8.1	8.50972	0.3
Р	01C	1120.0	0.0	0.00030	0.00044	0.00001	0.00004	0.00029	0.00001	0.03042	0.00012	0.00068	0.00139	10.16	0.4180	33.8	7.76206	0.1
Р	01D	1140.0	0.0	0.00037	0.00045	0.00004	0.00008	0.00057	0.00002	0.09716	0.00018	0.00022	0.00106	10.01	0.1058	87.4	7.64709	0.1
Р	01E	1160.0	0.0	0.00033	0.00040	0.00002	0.00006	0.00031	0.00002	0.04049	0.00013	0.00072	0.00135	9.97	0.3212	37.9	7.61918	9.69
Р	01F	1180.0	0.0	0.00009	0.00022	5.36E-06	0.00003	0.00011	0.00001	0.02564	0.00009	0.00018	0.00101	10.43	0.7404	46.2	7.97168	4.95
Р	01G	1220.0	0.0	0.00005	0.00018	1.63E-07	0.00002	0.00003	0.00001	0.04792	0.00014	0.00019	0.00105	52.03	45.0181	7.1	40.22890	4.61
	01H	1320.0	0.0	0.00012	0.00027	-3.57E-0	0.00002	0.00010	0.00001	0.04459	0.00012	0.00047	0.00113	32.54	10.4762	-8.8	25.02342	-2.25
	011	1700.0	0.0	0.00036	0.00062	-2.61E-0	0.00002	0.00022	0.00002	-0.00163	0.00003	0.00129	0.00179	119.76	26.7109	-6.8	94.35661	3.77
We	ighted	Mean A	qe											10.022	06 ±0.096	81		

 Weighted Mean Age
 10.02206 ±0.09681

 Integrated
 9.52096 ±0.23194

 Plateau
 Steps
 A-G
 10.01850 ±0.09681

 Isochron
 9.52934 ±0.00682

Isochron

Sa	mple:	MB07-	141		Lab #:	57725	J : 7.38	E-04 ±7.3	38E-04		IC: 1.00	00.00±	00					
	laterial: Groundmass oncentrate N 40Ar 40Ar				IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.01064	0.00450	8.88E-06	0.00006	0.00695	0.00006	0.00743	0.00010	0.03555	0.00996	20.30	4.4207	1.3	15.33237	0.3
Р	01B	625.0	0.0	0.00320	0.00201	0.00002	0.00008	0.00220	0.00006	0.01809	0.00011	0.01031	0.00543	9.12	0.9525	4.8	6.86993	0.3

Sa	mple:	MB07-	141		Lab #:	57725	J : 7.381	E-04 ±7.3	88E-04		IC: 1.00	00.00±	00					
	iterial ncentr	: Ground	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01C	700.0	0.0	0.00208	0.00119	0.00003	0.00008	0.00160	0.00004	0.02529	0.00014	0.00638	0.00389	10.44	0.6041	9.6	7.86325	0.2
Р	01D	750.0	0.0	0.00095	0.00090	0.00002	0.00008	0.00077	0.00003	0.01506	0.00013	0.00282	0.00305	9.80	0.7335	12.7	7.37856	0.2
P	01E	800.0	0.0	0.00126	0.00099	0.00002	0.00006	0.00099	0.00003	0.01311	0.00009	0.00383	0.00356	10.11	0.8025	10.5	7.61258	0.3
P	01F	875.0	0.0	0.00182	0.00113	0.00002	0.00007	0.00124	0.00002	0.01468	0.00012	0.00568	0.00484	10.57	1.0263	8.1	7.96660	0.3
P	01G	975.0	0.0	0.00168	0.00106	0.00002	0.00007	0.00124	0.00004	0.01584	0.00011	0.00528	0.00537	9.02	1.1915	7.2	6.79148	0.2
P	01H	1075.0	0.0	0.00058	0.00072	0.00001	0.00006	0.00050	0.00003	0.01786	0.00011	0.00165	0.00227	9.53	0.6384	17.3	7.17656	0.2
	011	1250.0	0.0	0.00664	0.00345	0.00007	0.00015	0.00497	0.00006	0.00171	0.00006	0.02100	0.00721	7.94	0.3959	6.5	5.98098	9.0
	01J	1700.0	0.0	0.00167	0.00110	2.69E-06	0.00004	0.00114	0.00003	0.03656	0.00016	0.00568	0.00335	0.78	5.0438	9.23E-02	0.58730	1.53E-02
We	ighted	l Mean A	ge											9.2018	39 ±0.236	81		
Int	egrate	d												9.5154	18 ±9.495	550		
Pla	Plateau											Steps	В-Н	9.9857	76 ±0.335	506		
Isc	chron													8.7918	31 ±8.770)42		

Saı	mple:	MB07-1	44		Lab #:	57736	J : 7.47l	E-04 ±7.4	17E-04		IC: 1.00	00.00±	00					
Ma	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	950.0	0.0	0.00056	0.00065	2.66E-06	0.00003	0.00040	0.00002	0.00447	0.00007	0.00168	0.00237	35.10	3.5267	12.4	26.28599	0.1
Р	01B	1050.0	0.0	0.00059	0.00060	0.00006	0.00011	0.00091	0.00003	0.00019	0.00002	0.00038	0.00155	10.01	0.0982	81.0	7.44373	65.7
Р	01C	1120.0	0.0	0.00134	0.00103	0.00016	0.00021	0.00215	0.00004	0.00068	0.00002	0.00059	0.00173	9.91	0.0461	87.1	7.36798	44.7
Р	01D	1130.0	0.0	0.00009	0.00030	0.00001	0.00006	0.00016	0.00002	0.01689	0.00013	0.00005	0.00153	10.10	0.5560	87.2	7.50998	0.1
	01E	1145.0	0.0	0.00008	0.00027	9.25E-06	0.00006	0.00009	0.00002	0.01468	0.00011	0.00003	0.00110	11.00	0.4814	93.4	8.18553	0.1
	01F	1150.0	0.0	0.00007	0.00027	8.09E-06	0.00005	0.00013	0.00002	0.01353	0.00013	0.00005	0.00099	9.75	0.4923	83.3	7.25188	0.1
	01G	1160.0	0.0	0.00029	0.00047	0.00003	0.00010	0.00045	0.00002	0.05256	0.00025	0.00013	0.00111	11.13	0.1455	91.3	8.27853	0.1
	01H	1200.0	0.0	0.00010	0.00030	4.44E-06	0.00005	0.00006	0.00002	0.00734	0.00010	0.00007	0.00112	24.19	1.0364	80.6	18.05964	0.1
	011	1700.0	0.0	0.00141	0.00087	2.27E-06	0.00004	0.00094	0.00003	0.00381	0.00009	0.00480	0.00477	-6.62	8.4224	-0.8	-4.89781	0.1

Weighted Mean Age 10.04644 ±0.03968 10.42189 ±10.39222 Integrated Plateau Steps B-D 9.92620 ±0.04170 9.93819 ±9.91087

Isochron

Sa	mple	MB07-	174		Lab #:	57738	J : 7.47l	E-04 ±7.4	17E-04		IC : 1.00	00 ±0.000	0					
Ma	aterial	: Kaer			IGSN:													
_	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00035	0.00049	6.62E-07	0.00002	0.00021	0.00002	0.00300	0.00012	0.00118	0.00216	6.40	13.0932	0.9	4.75258	4.19E
Р	01B	1050.0	0.0	0.00018	0.00042	0.00002	0.00007	0.00025	0.00002	0.01312	0.00016	0.00023	0.00140	10.55	0.3748	64.1	7.85085	0.2
Р	01C	1120.0	0.0	0.00119	0.00086	0.00014	0.00017	0.00191	0.00004	-0.00799	0.00009	0.00067	0.00226	9.84	0.0678	83.2	7.31935	-3.2

Sa	mple	MB07-	174		Lab #:	57738	J : 7.471	E-04 ±7.4	17E-04		IC: 1.00	00.000 ±0.000	0					
Ma	aterial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01D	1130.0	0.0	0.00018	0.00043	0.00002	0.00009	0.00031	0.00003	0.03746	0.00017	0.00002	0.00139	10.17	0.2354	100.6	7.56159	0.1
Р	01E	1145.0	0.0	0.00014	0.00028	0.00002	0.00007	0.00026	0.00002	0.03045	0.00018	6.46E-06	0.00123	10.31	0.2655	103.5	7.66520	0.1
Р	01F	1150.0	0.0	0.00022	0.00046	0.00003	0.00008	0.00038	0.00003	0.04714	0.00019	0.00005	0.00137	10.23	0.1973	97.9	7.60975	0.1
	01G	1160.0	0.0	0.00033	0.00055	0.00004	0.00009	0.00055	0.00003	-0.00124	0.00004	0.00013	0.00153	9.52	0.1523	88.0	7.08063	-6.2
	01H	1200.0	0.0	0.00006	0.00025	8.12E-06	0.00005	0.00009	0.00002	0.01355	0.00010	0.00004	0.00136	9.02	0.6681	88.1	6.71004	0.1
	011	1700.0	0.0	0.00146	0.00097	8.70E-07	0.00003	0.00092	0.00003	0.00164	0.00006	0.00490	0.00369	10.74	16.9328	0.5	7.98813	0.1
W	eighted	l Mean A	ge											9.8782	21 ±0.0552	21		
Int	egrate	d												9.9059	91 ±9.879	17		
Pla	ateau											Steps	A-F	9.9101	11 ±0.0623	38		
Iso	Plateau sochron													9.7958	33 ±9.7692	29		
Sa	ımple:	MB07-0	064		Lab #:	58630	J : 2.25l	E-03 ±2.2	25E-03		IC : 1.00	00.000 ±0.000	0					
M	•	: Groun			Lab #:	58630	J : 2.25l	E-03 ±2.2			IC: 1.00	00 ±0.000	0					
M	aterial	: Groun		⁴⁰ Ar		58630	J : 2.25l ± 1σ	E-03 ±2.2		³⁷ Ar	IC : 1.00 ± 1σ	³⁶ Ar	0 ±1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
Ma	aterial ncentr	: Groun	dmass	⁴⁰ Ar (10 ³ fA)	IGSN:					³⁷ Ar				Age (Ma)	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
M	aterial ncentr	: Ground	dmass		IGSN:	³⁹ Ar				³⁷ Ar			± 1σ	ŭ		% ⁴⁰ Ar* 7.4	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
M	ncentr	: Ground rate	dmass 40Ar	(10 ³ fA)	IGSN : ± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ		± 1σ	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA)	(Ma)	0.6078			

-	1001111	alo																
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.01083	0.00870	0.00022	0.00045	0.06165	0.00023	0.02251	0.00016	0.03397	0.01099	14.58	0.6078	7.4	3.59927	1.1
Р	01B	625.0	0.0	0.00156	0.00113	0.00039	0.00047	0.04417	0.00021	0.04171	0.00022	0.00210	0.00359	9.90	0.1121	61.0	2.44123	1.0
Р	01C	700.0	0.0	0.00120	0.00106	0.00030	0.00053	0.02998	0.00016	0.07075	0.00025	0.00177	0.00316	9.69	0.1326	58.6	2.38919	0.5
Р	01D	750.0	0.0	0.00075	0.00090	0.00013	0.00019	0.01347	0.00011	0.04158	0.00019	0.00152	0.00249	9.81	0.2299	42.5	2.41827	0.4
Р	01E	800.0	0.0	0.00075	0.00091	0.00010	0.00015	0.00922	0.00010	0.03672	0.00020	0.00177	0.00343	9.97	0.4305	31.8	2.45816	0.3
Р	01F	875.0	0.0	0.00088	0.00078	0.00008	0.00016	0.00813	0.00007	0.03578	0.00017	0.00232	0.00332	10.34	0.4867	23.8	2.55093	0.3
Р	01G	975.0	0.0	0.00062	0.00088	0.00006	0.00014	0.00506	0.00008	0.02339	0.00018	0.00170	0.00270	9.49	0.5908	20.7	2.33888	0.3
	01H	1075.0	0.0	0.00066	0.00080	0.00004	0.00011	0.00472	0.00006	0.03596	0.00015	0.00204	0.00343	6.49	0.9335	10.7	1.59749	0.1
	011	1250.0	0.0	0.00676	0.00433	0.00036	0.00050	0.04340	0.00022	0.00204	0.00004	0.02105	0.00714	6.14	0.2447	8.0	1.51188	19.5
	01J	1700.0	0.0	0.00379	0.00261	0.00002	0.00008	0.00349	0.00006	-0.00042	0.00004	0.01247	0.00728	23.08	4.8674	2.7	5.71211	-4.8
W	iabtod	Moon A	~~											0.540	70 +0 07	206		

 Weighted Mean Age
 9.54970 ±0.07286

 Integrated
 9.74477 ±9.71930

 Plateau
 Steps
 B-G
 9.83165 ±0.07787

 Isochron
 9.29882 ±9.27490

Sam	ple:	MB06-5	508		Lab #:	56968	J : 7.63l	E-04 ±7.6	3E-04		IC : 1.00	00.00±	00					
Mate	erial:	Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
C)1A	950.0	0.0	0.00098	0.00101	6.56E-06	0.00006	0.00065	0.00002	0.00296	0.00003	0.00313	0.00279	12.76	1.7405	6.2	9.29788	0.4
C	01B	1050.0	0.0	0.00036	0.00068	0.00002	0.00007	0.00037	0.00001	0.02032	0.00009	0.00088	0.00208	9.60	0.5541	29.7	6.99038	0.1
C	01C	1100.0	0.0	0.00068	0.00079	0.00006	0.00014	0.00100	0.00004	0.09175	0.00017	0.00083	0.00206	10.31	0.1429	67.8	7.50379	0.1
P 0)1D	1110.0	0.0	0.00451	0.00272	0.00053	0.00044	0.00744	0.00005	0.00667	0.00002	0.00239	0.00251	9.80	0.0219	84.3	7.13847	13.2

Sa	mple	: MB06-	508		Lab #:	56968	J : 7.63	E-04 ±7.6	63E-04		IC : 1.00	00.00±	00					
Ma	teria	l: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01E	1250.0	0.0	0.00016	0.00070	0.00001	0.00008	0.00021	0.00002	0.02210	0.00010	0.00031	0.00500	8.83	1.8176	45.2	6.42451	7.97E-0
P	01F	1700.0	0.0	0.00012	0.00050	3.32E-06	0.00007	0.00011	0.00001	0.01164	0.00007	0.00035	0.00504	5.77	6.2027	12.0	4.19320	4.47E-0
We	ighte	d Mean A	ge											9.816	34 ±0.02	163		
Int	egrate	d												9.841	30 ±9.81	168		
Pla	iteau											Steps	D-F	9.804	79 ±0.02′	190		
Iso	chron													9.782	35 ±9.75	587		

Sa	mple:	MB07-1	169		Lab #:	58785	J : 1.00l	E-03 ±1.0	0E-03		IC : 1.00	000.00±	0					
Ma	terial	: Wr			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	-0.00002	0.00025	-1.09E-0	0.00002	-0.00002	0.00001	-0.00003	0.00003	-0.00007	0.00121	25.67	58.7124	6.9	14.31669	0.2
P	01B	625.0	0.0	0.00413	0.00248	0.00020	0.00026	0.00444	0.00006	0.00102	0.00004	0.01043	0.00556	9.61	0.1519	25.4	5.33642	11.4
P	01C	700.0	0.0	0.00385	0.00327	0.00044	0.00048	0.00668	0.00008	0.00192	0.00004	0.00511	0.00338	9.67	0.0445	60.9	5.36811	13.4
P	01D	750.0	0.0	0.00323	0.00202	0.00042	0.00052	0.00629	0.00008	0.00176	0.00005	0.00328	0.00357	9.77	0.0477	70.1	5.42389	14.0
P	01E	800.0	0.0	0.00347	0.00292	0.00048	0.00066	0.00743	0.00007	0.00219	0.00005	0.00305	0.00316	9.64	0.0390	74.1	5.35307	12.9
P	01F	875.0	0.0	0.00372	0.00225	0.00056	0.00063	0.00835	0.00007	0.00002	0.00010	0.00241	0.00312	9.65	0.0323	80.9	5.36016	1.36
P	01G	975.0	0.0	0.00301	0.00264	0.00045	0.00050	0.00641	0.00007	0.00329	0.00005	0.00202	0.00265	9.68	0.0347	80.3	5.37499	8.1
P	01H	1075.0	0.0	0.00318	0.00289	0.00040	0.00058	0.00572	0.00008	0.00491	0.00007	0.00351	0.00336	9.62	0.0483	67.5	5.33974	4.8
Р	011	1250.0	0.0	0.00841	0.00578	0.00072	0.00068	0.01266	0.00009	0.02511	0.00017	0.01524	0.00725	9.76	0.0559	46.7	5.42165	1.7
	01J	1700.0	0.0	0.00404	0.00269	0.00042	0.00047	0.00667	0.00007	0.01189	0.00012	0.00587	0.00532	9.87	0.0689	57.3	5.48273	2.1

 Weighted Mean Age
 9.68466 ±0.01509

 Integrated
 9.70468 ±9.67865

 Plateau
 Steps
 A-I
 9.66772 ±0.01609

 Isochron
 9.65687 ±9.63107

Sa	mple	: MB06	5-539		Lab #: (61612	J : 4.88	E-03 ±4.8	38E-03		IC : 1.00	00.000 ±0.000)0					
Ma	aterial	l: Plag	ioclase		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	19.0	0.0	0.13105	0.05040	0.04671	0.02567	2.77348	0.03388	14.32559	0.06828	0.30539	0.21303	8.73	0.1187	35.4	0.99492	0.3
Р	01B	20.0	0.0	0.17611	0.04990	0.15349	0.03344	2.09604	0.03559	55.64731	0.07028	0.10343	0.10582	9.58	0.0183	95.0	1.09130	0.3
Р	01C	21.0	0.0	0.07282	0.04169	0.06435	0.02262	0.86115	0.03136	23.98973	0.06258	0.03878	0.09295	9.66	0.0382	97.2	1.10095	0.3
Р	01D	22.0	0.0	0.04323	0.04150	0.03839	0.02330	0.52782	0.03607	14.40587	0.07213	0.02428	0.08283	9.55	0.0574	96.5	1.08786	0.3
Р	01E	25.0	0.0	0.04345	0.04288	0.03792	0.02381	0.45728	0.03926	14.72980	0.06618	0.02661	0.08263	9.59	0.0580	95.3	1.09264	0.3
P	01F	30.0	0.0	0.03216	0.04022	0.02753	0.02075	0.36782	0.03519	11.00783	0.06989	0.02034	0.08324	9.73	0.0802	94.8	1.10863	0.2
Р	01G	35.0	0.0	0.01992	0.03836	0.01690	0.01943	0.20131	0.02962	7.12138	0.06035	0.01370	0.07337	9.72	0.1154	93.8	1.10710	0.2
Р	01H	40.0	0.0	0.01332	0.03941	0.01148	0.01699	0.14784	0.03369	5.12366	0.06788	0.00857	0.06493	9.81	0.1518	96.3	1.11770	0.2

Sa	mple:	: MB06-	-539		Lab # : 6	31612	J : 4.88E	-03 ±4.88	3E-03		IC : 1.00	0.000 0±0	0					
Ma	terial	: Plagio	clase		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	011	45.0	0.0	0.01240	0.03659	0.00896	0.01943	0.19960	0.03456	4.15104	0.07143	0.01361	0.06418	9.84	0.1923	80.9	1.12096	0.2
P	01J	50.0	0.0	0.00870	0.03747	0.00732	0.01800	0.12167	0.03585	3.40100	0.06917	0.00741	0.06289	9.44	0.2307	90.4	1.07585	0.2
Р	01K	75.0	0.0	0.04045	0.04018	0.03022	0.02193	0.44424	0.03796	14.04231	0.07102	0.04300	0.08698	9.69	0.0763	82.4	1.10410	0.2
We	ighted	Mean /	Age											9.5894	10 ±0.014	38		
Int	egrate	d												9.5300)1 ±9.504	92		
Pla	teau											Steps	В-К	9.5989	91 ±0.014	76		
Iso	chron													8.3260	04 ±8.306	85		
Sa	mple:	: MB07-	-015		Lab #	: 58616	J : 2.19	E-03 ±2.	19E-03		IC: 1.0	00 ±0.00	00					
	i terial ncentr		ndmass	i	IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			K	
Р	01A	550.0	0.0	0.01445	0.00659	0.00060	0.00064	0.07700	0.00023	0.01451	0.00011	0.04368	0.01615	10.21	0.3177	10.7	2.59118	5.1
Р	01B	625.0	0.0	0.00339	0.00218	0.00022	0.00036	0.01840	0.00013	0.01661	0.00017	0.00976	0.00548	9.28	0.2948	15.2	2.35579	1.6
P	01C	700.0	0.0	0.00197	0.00151	0.00012	0.00020	0.00988	0.00011	0.02084	0.00016	0.00579	0.00434	9.06	0.4349	13.6	2.29961	0.7
Р	01D	750.0	0.0	0.00144	0.00131	0.00009	0.00019	0.00926	0.00015	0.02808	0.00016	0.00414	0.00396	9.35	0.4944	15.5	2.37254	0.4
Р	01E	800.0	0.0	0.00218	0.00232	0.00009	0.00017	0.01439	0.00013	0.03775	0.00019	0.00656	0.00522	10.51	0.6581	11.4	2.66862	0.3
Р	01F	875.0	0.0	0.00275	0.00244	0.00014	0.00020	0.02117	0.00014	0.04701	0.00021	0.00822	0.00641	9.74	0.5456	12.4	2.47273	0.4
	01G	975.0	0.0	0.00432	0.00329	0.00016	0.00021	0.01219	0.00013	0.05745	0.00023	0.01310	0.00659	11.36	0.4755	10.9	2.88409	0.4
	01H	1075.0	0.0	0.00203	0.00167	0.00012	0.00018	0.00600	0.00008	0.04856	0.00020	0.00595	0.00488	9.39	0.4691	14.3	2.38229	0.3
	011	1250.0	0.0	0.00604	0.00309	0.00029	0.00047	0.01729	0.00015	0.00114	0.00003	0.01850	0.00816	7.59	0.3262	9.4	1.92489	32.3
	01J	1700.0	0.0	0.00637	0.00331	0.00012	0.00020	0.01044	0.00010	0.00161	0.00003	0.02127	0.00984	2.99	0.9946	1.4	0.75751	9.0
We	ighted	l Mean	Age											9.283	75 ±0.13	382		
Int	egrate	d												9.199	37 ±9.17	719		
Pla	teau											Steps	A-F	9.618	83 ±0.17	380		
Iso	chron													10.05	872 ±10.	03073		

Sa	mple:	MB07-	017		Lab #:	57729	J : 7.50	E-04 ±7.5	50E-04		IC: 1.00	00.00±	00					
Ma	aterial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00033	0.00047	2.14E-06	0.00003	0.00026	0.00002	0.00188	0.00004	0.00105	0.00172	9.98	3.2098	4.8	7.39539	0.2
P	01B	1050.0	0.0	0.00003	0.00015	6.43E-07	0.00002	0.00002	0.00001	0.00095	0.00003	0.00009	0.00093	10.07	5.7513	15.5	7.46327	0.1
P	01C	1120.0	0.0	0.00040	0.00044	0.00004	0.00010	0.00058	0.00003	0.00011	0.00002	0.00040	0.00142	9.71	0.1484	70.3	7.19794	71.6
P	01D	1130.0	0.0	0.00031	0.00046	0.00004	0.00010	0.00047	0.00002	-0.00017	0.00003	0.00019	0.00123	9.44	0.1383	82.0	6.99310	-41.3
Р	01E	1145.0	0.0	0.00055	0.00066	0.00007	0.00014	0.00089	0.00004	0.00003	0.00003	0.00030	0.00146	9.50	0.0917	83.8	7.03819	417.7
Р	01F	1150.0	0.0	0.00023	0.00038	0.00003	0.00008	0.00040	0.00002	-0.00025	0.00003	0.00007	0.00120	9.94	0.1685	90.9	7.36439	-22.7
Р	01G	1160.0	0.0	0.00024	0.00042	0.00003	0.00008	0.00041	0.00002	-0.00024	0.00003	0.00009	0.00118	9.82	0.1671	88.5	7.28099	-23.3
																		I.

Sa	mple	: MB07-0	017		Lab #:	57729	J : 7.50	E-04 ±7.5	50E-04		IC : 1.00	00.000 ±0.000	00					
Ma	iterial	l: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01H	1200.0	0.0	0.00039	0.00058	0.00004	0.00010	0.00063	0.00003	6.76E-07	0.00003	0.00027	0.00156	9.50	0.1408	80.1	7.03685	1.30E+
	011	1700.0	0.0	0.00132	0.00092	1.74E-06	0.00004	0.00091	0.00003	0.03229	0.00019	0.00438	0.00393	28.61	9.2657	2.7	21.31307	1.02E-0
We	ighted	d Mean A	ge											9.598	16 ±0.05	438		
Inte	egrate	d												9.747	66 ±9.72	180		
Pla	iteau											Steps	A-H	9.615	32 ±0.05	396		
Iso	chron													9.576	16 ±9.550	079		

Sa	mple:	MB06-5	524		Lab #:	57018	J : 7.271	E-04 ±5.1	19E-07		IC: 1.00	00.00±	00					
Ma	terial	: Hornbl	ende		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	02A	950.0	0.0	0.00400	0.00296	8.22E-06	0.00004	0.00263	0.00003	0.01872	0.00006	0.01336	0.00355	8.41	1.7390	1.3	6.42231	0.1
Р	02B	1050.0	0.0	0.00013	0.00032	1.82E-06	0.00002	0.00013	0.00001	0.01435	0.00008	0.00041	0.00111	9.66	2.3876	10.1	7.37727	2.98E-02
Р	02C	1120.0	0.0	0.00048	0.00071	0.00002	0.00005	0.00050	0.00002	0.05880	0.00013	0.00110	0.00127	9.76	0.2253	35.1	7.46025	9.17E-02
Р	02D	1130.0	0.0	0.00081	0.00085	0.00009	0.00010	0.00121	0.00002	0.00079	0.00002	0.00059	0.00109	9.48	0.0511	78.3	7.24271	26.3
Р	02E	1140.0	0.0	0.00153	0.00081	0.00018	0.00018	0.00244	0.00003	0.00181	0.00002	0.00075	0.00215	9.45	0.0470	85.5	7.21654	23.8
Р	02F	1150.0	0.0	0.00084	0.00066	0.00010	0.00011	0.00130	0.00002	0.00095	0.00002	0.00047	0.00092	9.48	0.0389	83.6	7.24647	24.4
Р	02G	1160.0	0.0	0.00029	0.00044	0.00003	0.00007	0.00041	0.00001	0.07809	0.00016	0.00033	0.00096	9.73	0.1410	71.8	7.43380	8.64E-02
	02H	1200.0	0.0	0.00050	0.00064	0.00004	0.00007	0.00065	0.00002	0.00057	0.00002	0.00090	0.00144	8.56	0.1550	47.4	6.53900	15.3
	021	1700.0	0.0	0.00030	0.00047	2.56E-06	0.00002	0.00025	0.00002	0.16666	0.00027	0.00109	0.00160	5.27	2.9305	3.1	4.02188	3.30E-03

 Weighted Mean Age
 9.45897 ±0.02491

 Integrated
 9.38521 ±0.04813

 Plateau
 Steps
 A-G
 9.47497 ±0.02565

 Isochron
 9.44816 ±0.00677

Sa	mple:	: MB06-6	334		Lab #: 5	56970	J : 7.61	E-04 ±7.6	1E-04		IC : 1.00	00 ±0.000	00					
Ma	aterial:	: Kaer		,	IGSN:											,		
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
_	01A	950.0	0.0	0.00176	0.00107	8.31E-06	0.00005	0.00120	0.00002	0.00273	0.00006	0.00568	0.00382	13.75	1.8588	4.7	10.05941	0.5
	01B	1050.0	0.0	0.00007	0.00020	3.21E-06	0.00003	0.00008	0.00001	0.00222	0.00004	0.00014	0.00129	14.01	1.6235	44.5	10.25026	0.2
Р	01C	1120.0	0.0	0.00082	0.00069	0.00008	0.00010	0.00116	0.00003	0.00085	0.00003	0.00094	0.00180	9.65	0.0959	66.3	7.05343	13.5
P	01D	1140.0	0.0	0.00086	0.00050	0.00009	0.00011	0.00130	0.00002	0.00063	0.00002	0.00084	0.00236	9.47	0.1083	71.2	6.92311	20.9
P	01E	1160.0	0.0	0.00070	0.00055	0.00009	0.00010	0.00116	0.00002	0.00061	0.00002	0.00027	0.00323	9.62	0.1489	88.4	7.03134	21.3
P	01F	1180.0	0.0	0.00220	0.00135	0.00027	0.00027	0.00353	0.00003	0.00290	0.00003	0.00118	0.00256	9.43	0.0403	84.2	6.89053	13.7
P	01G	1220.0	0.0	0.00028	0.00043	0.00003	0.00007	0.00045	0.00001	0.00011	0.00002	0.00026	0.00222	8.90	0.2884	72.3	6.50306	40.3
Р	01H	1320.0	0.0	5.76E-06	0.00025	6.16E-07	0.00002	-7.96E-0	9.47E-06	0.01595	0.00008	0.00002	0.00217	13.30	15.1106	97.8	9.72824	5.37E
Р	011	1700.0	0.0	0.00009	0.00028	4.45E-07	0.00002	0.00006	9.73E-06	0.01161	0.00006	0.00032	0.00223	4.74	21.6299	1.6	3.45617	5.33E

Sa	mple	MB06-	634		Lab #:	56970	J : 7.61	E-04 ±7.6	61E-04		IC : 1.0	000 ±0.00	000					
Ма	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			· ·	
We	ighted	l Mean A	.ge											9.46	790 ±0.03	3394		
Inte	egrate	d												9.55	773 ±9.53	3263		
Pla	teau											Steps	C-I	9.46	450 ±0.03	3395		
Iso	chron													9.41	984 ±9.39	9529		
Sa	mple	MB06-	507		Lab #:	56955	J : 7.68	E-04 ±7.6	88E-04		IC: 1.00	00 ±0.000	00					
	t eria l	: Groun ate	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			r.	
	01A	550.0	0.0	0.01001	0.00307	8.66E-06	0.00007	0.00645	0.00006	0.04091	0.00009	0.03395	0.00780	-1.60	3.7672	-9.91E-0	-1.15752	3.18E-0
	01B	625.0	0.0	0.00555	0.00239	0.00007	0.00012	0.00417	0.00003	0.00339	0.00004	0.01698	0.00504	10.06	0.2812	9.7	7.28107	3.3
	01C	700.0	0.0	0.00314	0.00139	0.00015	0.00015	0.00323	0.00005	0.01033	0.00006	0.00709	0.00375	9.63	0.1027	33.4	6.96831	2.2
	01D	750.0	0.0	0.00376	0.00188	0.00031	0.00029	0.00504	0.00004	0.01342	0.00007	0.00559	0.00308	9.56	0.0429	56.1	6.91274	3.5
Р	01E	800.0	0.0	0.00150	0.00097	0.00013	0.00014	0.00222	0.00003	0.00630	0.00006	0.00200	0.00206	9.44	0.0643	60.8	6.82950	3.2
Р	01F	875.0	0.0	0.00296	0.00175	0.00021	0.00019	0.00381	0.00004	0.01086	0.00007	0.00521	0.00298	9.52	0.0604	48.1	6.88628	2.9
Р	01G	975.0	0.0	0.00290	0.00194	0.00022	0.00023	0.00380	0.00004	0.01014	0.00007	0.00476	0.00255	9.36	0.0497	51.5	6.76899	3.3
P	01H	1075.0	0.0	0.00350	0.00155	0.00031	0.00036	0.00461	0.00005	0.02812	0.00011	0.00485	0.00301	9.40	0.0423	59.3	6.79809	1.6
P	011	1250.0	0.0	0.00537	0.00225	0.00041	0.00030	0.00664	0.00005	0.00052	0.00001	0.00861	0.00386	9.48	0.0395	52.6	6.85869	119.7
	01J	1700.0	0.0	0.00337									0.00380	9.62			6.95971	
14/-				0.00362	0.00193	0.00027	0.00024	0.00439	0.00003	0.03182	0.00012	0.00603	0.00293		0.0470	51.1	0.95971	1.3
	_	ا Mean A	.ge												56 ±0.017			
	egrate teau	u										Steps	E-I		52 ±9.446 85 ±0.029			
	chron											Oteps	E-1		82 ±9.458			
_	•	MB06-			Lab #:	57548	J : 7.91	E-04 ±7.9	91E-04		IC: 1.00	00.00±	00					
	ncenti	: Groun ate	amass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.01010	0.00360	0.00002	0.00010	0.00683	0.00012	0.00449	0.00008	0.03359	0.00848	12.50	1.8221	1.7	8.78809	0.3
	01B	625.0	0.0	0.00026	0.00056	0.00003	0.00010	0.00052	0.00004	0.00471	0.00007	0.00025	0.00170	7.79	0.2157	71.9	5.47053	0.6
Р	01C	700.0	0.0	0.00031	0.00054	0.00004	0.00011	0.00065	0.00004	0.00806	0.00007	0.00021	0.00166	9.53	0.1869	81.8	6.68955	0.4
Р	01D	750.0	0.0	0.00026	0.00039	0.00003	0.00011	0.00043	0.00003	0.00866	0.00007	0.00019	0.00139	9.09	0.1808	79.9	6.38470	0.3
Р	01E	800.0	0.0	0.00038	0.00051	0.00004	0.00013	0.00053	0.00004	0.01198	0.00009	0.00036	0.00149	9.44	0.1554	73.3	6.62761	0.3
Р	01F	875.0	0.0	0.00037	0.00052	0.00004	0.00012	0.00059	0.00003	0.01209	0.00009	0.00030	0.00151	9.45	0.1505	77.4	6.63931	0.3
P	01G	975.0	0.0	0.00043	0.00050	0.00005	0.00011	0.00068	0.00004	0.01427	0.00014	0.00046	0.00171	9.53	0.1608	70.5	6.69111	0.3
•	0.0	0.0.0	0.0	0.00040	0.00000	0.00000	0.00011	0.00000	0.00004	0.01721	0.00014	0.000+0	0.00171	0.00	0.1000	70.0	3.00111	0.0

01H 1075.0 0.0

1250.0 0.0

011

0.00024

0.00072

0.00047

0.00002

0.00077 0.00004

0.00008

0.00038

0.00004

 $0.00010 \quad 0.00111 \quad 0.00003 \quad 0.00052 \quad 0.00003 \quad 0.00237 \quad 0.00280$

8.44 0.3280 49.8

0.2999 3.2

0.84

5.92636

0.58795

0.2

6.0

Sample	: MB06-	565		Lab #:	57548	J : 7.911	E-04 ±7.9	1E-04		IC : 1.00	0 ±0.000	0					
Materia concent	l: Groun rate	dmass		IGSN:													
N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
01J	1700.0	0.0	0.00019	0.00044	3.63E-06	0.00004	0.00028	0.00003	0.03136	0.00015	0.00059	0.00165	13.78	2.0551	17.7	9.69233	8.83E-0
Weighte	d Mean A	ge											8.8086	3 ±0.0665	54		
Integrate	ed												8.3606	7 ±8.3424	1 1		
Plateau											Steps	C-G	9.3870	3 ±0.0831	11		
Isochron	1												8.6333	5 ±8.6127	73		
Sample	: MB07-	030		Lab #:	58769	J : 9.48l	E-04 ±9.4	8E-04		IC : 1.0	00 ±0.00	00					
Materia	I: Wr			IGSN:													
N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ A	r* ⁴⁰ Ar*/ ³⁹ Ar _K	K/0
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	550.0	0.0	-0.00003	0.00036	-2.84E-0	0.00004	-0.00006	0.00004	-0.00006	0.00002	-0.00014	0.00189	-63.3 ⁻	1 36.384	3 -34.0	-36.3853	0.3

Ma	terial	: Wr			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	-0.00003	0.00036	-2.84E-0	0.00004	-0.00006	0.00004	-0.00006	0.00002	-0.00014	0.00189	-63.31	36.3843	-34.0	-36.3853	0.3
Р	01B	625.0	0.0	0.01291	0.00862	0.00012	0.00019	0.00959	0.00007	0.00480	0.00008	0.04145	0.01789	9.65	0.7752	5.1	5.65616	1.5
Р	01C	700.0	0.0	0.00071	0.00105	0.00005	0.00012	0.00097	0.00004	0.00193	0.00005	0.00157	0.00316	9.14	0.3424	35.2	5.35607	1.5
Р	01D	750.0	0.0	0.00298	0.00208	0.00034	0.00051	0.00523	0.00006	0.02055	0.00016	0.00387	0.00403	9.29	0.0623	62.1	5.44957	1.0
Р	01E	800.0	0.0	0.00202	0.00202	0.00025	0.00038	0.00383	0.00008	0.00017	0.00034	0.00209	0.00328	9.40	0.0680	69.3	5.51304	92.5
Р	01F	875.0	0.0	0.00199	0.00157	0.00024	0.00038	0.00360	0.00008	0.00074	0.00033	0.00224	0.00329	9.30	0.0705	66.7	5.45517	20.0
Р	01G	975.0	0.0	0.00146	0.00132	0.00020	0.00025	0.00278	0.00007	0.01076	0.00008	0.00131	0.00261	9.39	0.0691	74.0	5.50871	1.1
Р	01H	1075.0	0.0	0.00091	0.00088	0.00013	0.00020	0.00190	0.00005	0.00053	0.00026	0.00063	0.00252	9.30	0.0975	79.5	5.45003	15.2
Р	011	1175.0	0.0	0.00152	0.00122	0.00018	0.00017	0.00269	0.00008	0.02406	0.00014	0.00198	0.00313	9.09	0.0904	62.5	5.32864	0.4
	01J	1250.0	0.0	0.00476	0.00312	0.00056	0.00064	0.00845	0.00007	0.00435	0.00029	0.00591	0.00456	9.11	0.0428	63.4	5.34081	7.9
	01K	1450.0	0.0	0.00145	0.00137	0.00014	0.00024	0.00259	0.00015	0.03785	0.00019	0.00242	0.00346	9.17	0.1271	52.5	5.37869	0.2
	01L	1700.0	0.0	0.00016	0.00059	0.00002	0.00010	0.00035	0.00003	0.01023	0.00011	0.00013	0.00202	9.18	0.4180	81.3	5.37953	0.1
_																		

 Weighted Mean Age
 9.24333 ±0.02401

 Integrated
 9.26863 ±9.24499

 Plateau
 Steps
 A-I
 9.33996 ±0.03163

 Isochron
 9.20454 ±9.18110

Sa	mple:	: MB07-	119		Lab #:	57723	J : 7.64F	E-04 ±7.6	64E-04		IC : 1.00	00.000	0					
	aterial ncentr	: Groun	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.01120	0.00576	9.53E-06	0.00006	0.00731	0.00009	0.00190	0.00004	0.03748	0.01082	17.30	4.6541	1.1	12.61250	1.1
P	01B	625.0	0.0	0.00426	0.00290	0.00004	0.00012	0.00315	0.00006	0.01185	0.00010	0.01346	0.00705	8.76	0.6463	6.7	6.36984	8.0
P	01C	700.0	0.0	0.00189	0.00100	0.00005	0.00010	0.00160	0.00004	0.01140	0.00011	0.00528	0.00361	9.35	0.3034	17.5	6.80273	0.9
P	01D	750.0	0.0	0.00073	0.00070	0.00002	0.00006	0.00067	0.00003	0.00634	0.00008	0.00199	0.00251	8.87	0.4746	19.2	6.45550	0.7
P	01E	800.0	0.0	0.00106	0.00102	0.00003	0.00008	0.00094	0.00003	0.01025	0.00009	0.00300	0.00292	9.44	0.4546	16.9	6.86513	0.5
Р	01F	875.0	0.0	0.00224	0.00176	0.00004	0.00010	0.00174	0.00005	0.01622	0.00013	0.00660	0.00515	9.83	0.5146	13.0	7.14870	0.5

_	ımple.	: MB07-	119		Lab #:	57723	J : 7.64	E-04 ±7.6	34E-04		IC : 1.00	00.00±	00					
	aterial encentr	l: Ground rate			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01G	975.0	0.0	0.00201	0.00135	0.00004	0.00011	0.00173	0.00004	0.02153	0.00014	0.00582	0.00458	9.31	0.4277	14.7	6.77460	0.4
Р	01H	1075.0	0.0	0.00253	0.00186	0.00005	0.00011	0.00204	0.00006	0.03666	0.00019	0.00759	0.00470	8.67	0.4166	11.5	6.30616	0.3
Р	011	1250.0	0.0	0.01619	0.00757	0.00019	0.00024	0.01194	0.00012	0.00217	0.00002	0.05037	0.01338	9.71	0.2980	8.1	7.06590	18.3
Р	01J	1700.0	0.0	0.00161	0.00121	2.90E-06	0.00005	0.00110	0.00005	0.01774	0.00011	0.00546	0.00445	1.01	6.3274	0.1	0.73634	3.46E-
We	eighted	d Mean A	ge											9.325	54 ±0.143	304		
Int	egrate	d												9.501	32 ±9.478	323		
Pla	ateau											Steps	A-J	9.329	79 ±0.143	308		
Isc	ochron													8.979	60 ±8.957	728		
_		MDaa	-07					- 04	\FF 6:		10 1 5	10. 6.55	10					
		: MB06-			Lab #:	56965	J : 7.65	E-04 ±7.6	5E-04		IC: 1.00	00 ±0.000	JU					
	aterial incentr	l: Groun rate	amass		IGSN:													
	N		⁴⁰ Ar	40.		20		20		0.7						40	10 00	
			Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()	Ar 	(10 ³ fA)	± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁶ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA)	Age (Ma)	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	01A	550.0	0.0		± 1σ 0.00281		± 1σ 0.00005	0.00592	± 1σ 0.00005	0.00447	± 1σ 0.00004	³⁶ Ar 0.03145		•	± 1σ 7.2210	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	0.1
				(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
P	01A	550.0	0.0	(10 ³ fA)	0.00281	(10 ³ fA)	0.00005	0.00592	0.00005	0.00447	0.00004	0.03145	(10 ⁻² fA)	(Ma)	7.2210	7.90E-02	2.01702	0.1
P P	01A 01B	550.0 625.0	0.0	(10 ³ fA) 0.00930 0.00322	0.00281 0.00140	(10 ³ fA) 3.65E-06 0.00007	0.00005 0.00009	0.00592 0.00272	0.00005 0.00004	0.00447 0.00824	0.00004 0.00005	0.03145 0.00971	(10 ⁻² fA) 0.00639 0.00396	(Ma) 2.78 7.34	7.2210 0.2451	7.90E-02 10.9	2.01702 5.32842	0.1
	01A 01B 01C	550.0 625.0 700.0	0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435	0.00281 0.00140 0.00207	(10 ³ fA) 3.65E-06 0.00007 0.00009	0.00005 0.00009 0.00010	0.00592 0.00272 0.00361	0.00005 0.00004 0.00006	0.00447 0.00824 0.02413	0.00004 0.00005 0.00012	0.03145 0.00971 0.01271	(10 ⁻² fA) 0.00639 0.00396 0.00454	(Ma) 2.78 7.34 9.07	7.2210 0.2451 0.2055	7.90E-02 10.9 13.8	2.01702 5.32842 6.59091	0.1 1.1 0.5
P P	01A 01B 01C 01D	550.0 625.0 700.0 750.0	0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144	0.00281 0.00140 0.00207 0.00076	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005	0.00005 0.00009 0.00010 0.00008	0.00592 0.00272 0.00361 0.00144	0.00005 0.00004 0.00006 0.00002	0.00447 0.00824 0.02413 0.01944	0.00004 0.00005 0.00012 0.00007	0.03145 0.00971 0.01271 0.00363	(10 ⁻² fA) 0.00639 0.00396 0.00454 0.00283	(Ma) 2.78 7.34 9.07 9.57	7.2210 0.2451 0.2055 0.2152	7.90E-02 10.9 13.8 26.0	2.01702 5.32842 6.59091 6.95003	0.1 1.1 0.5 0.4
Р	01A 01B 01C 01D	550.0 625.0 700.0 750.0 800.0	0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152	0.00281 0.00140 0.00207 0.00076 0.00090	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005	0.00005 0.00009 0.00010 0.00008 0.00007	0.00592 0.00272 0.00361 0.00144 0.00126	0.00005 0.00004 0.00006 0.00002	0.00447 0.00824 0.02413 0.01944 0.01433	0.00004 0.00005 0.00012 0.00007 0.00008	0.03145 0.00971 0.01271 0.00363 0.00407	(10 ⁻² fA) 0.00639 0.00396 0.00454 0.00283 0.00308	(Ma) 2.78 7.34 9.07 9.57 9.63	7.2210 0.2451 0.2055 0.2152 0.2728	7.90E-02 10.9 13.8 26.0 21.2	2.01702 5.32842 6.59091 6.95003 6.99274	0.1 1.1 0.5 0.4 0.5
P P P	01A 01B 01C 01D 01E	550.0 625.0 700.0 750.0 800.0 875.0	0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005	0.00005 0.00009 0.00010 0.00008 0.00007	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426	0.00005 0.00004 0.00006 0.00002 0.00002	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746	(10 ⁻² fA) 0.00639 0.00396 0.00454 0.00283 0.00308	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263	7.90E-02 10.9 13.8 26.0 21.2	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230	0.1 1.1 0.5 0.4 0.5
P P	01A 01B 01C 01D 01E 01F	550.0 625.0 700.0 750.0 800.0 875.0	0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563 0.00829	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195 0.00245	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005 0.00007	0.00005 0.00009 0.00010 0.00008 0.00007 0.00010	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426 0.00607	0.00005 0.00004 0.00006 0.00002 0.00002 0.00003	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010 0.00009	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746 0.02612	(10 ⁻² fA) 0.00639 0.00396 0.00454 0.00283 0.00308 0.00404 0.00595	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04 8.92	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263 0.2759	7.90E-02 10.9 13.8 26.0 21.2 8.6 6.9	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230 6.47610	0.1 1.1 0.5 0.4 0.5 0.5
P P	01A 01B 01C 01D 01E 01F 01G	550.0 625.0 700.0 750.0 800.0 875.0 975.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563 0.00829 0.01438	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195 0.00245 0.00435	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005 0.00007 0.00009	0.00005 0.00009 0.00010 0.00008 0.00007 0.00010 0.00015	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426 0.00607 0.01069	0.00005 0.00004 0.00006 0.00002 0.00002 0.00003 0.00004	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199 0.02544 0.00051	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010 0.00009	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746 0.02612 0.04499	(10 ⁻² fA) 0.00639 0.00396 0.00454 0.00283 0.00308 0.00404 0.00595 0.00696	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04 8.92 9.37	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263 0.2759 0.1816	7.90E-02 10.9 13.8 26.0 21.2 8.6 6.9	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230 6.47610 6.80585	0.1 1.1 0.5 0.4 0.5 0.5 0.5 43.9 7.6
P P P	01A 01B 01C 01D 01E 01F 01G 01H 01I	550.0 625.0 700.0 750.0 800.0 875.0 975.0 1075.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563 0.00829 0.01438 0.01168	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195 0.00245 0.00435	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005 0.00007 0.00009 0.00016	0.00005 0.00009 0.00010 0.00008 0.00007 0.00010 0.00015 0.00017	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426 0.00607 0.01069 0.00915	0.00005 0.00004 0.00006 0.00002 0.00002 0.00003 0.00004 0.00006	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199 0.02544 0.00051	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010 0.00009 0.00002	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746 0.02612 0.04499 0.03616	(10°2 fA) 0.00639 0.00396 0.00454 0.00283 0.00308 0.00404 0.00595 0.00696	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04 8.92 9.37 8.10 9.16	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263 0.2759 0.1816 0.1617	7.90E-02 10.9 13.8 26.0 21.2 8.6 6.9 7.5 8.6 6.6	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230 6.47610 6.80585 5.88423	0.1 1.1 0.5 0.4 0.5 0.5 0.5 43.9 7.6
P P P	01A 01B 01C 01D 01E 01F 01G 01H 01I	550.0 625.0 700.0 750.0 800.0 875.0 975.0 1075.0 1250.0 1700.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563 0.00829 0.01438 0.01168	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195 0.00245 0.00435	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005 0.00007 0.00009 0.00016	0.00005 0.00009 0.00010 0.00008 0.00007 0.00010 0.00015 0.00017	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426 0.00607 0.01069 0.00915	0.00005 0.00004 0.00006 0.00002 0.00002 0.00003 0.00004 0.00006	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199 0.02544 0.00051	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010 0.00009 0.00002	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746 0.02612 0.04499 0.03616	(10°2 fA) 0.00639 0.00396 0.00454 0.00283 0.00308 0.00404 0.00595 0.00696	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04 8.92 9.37 8.10 9.16 8.8373	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263 0.2759 0.1816 0.1617 1.9537	7.90E-02 10.9 13.8 26.0 21.2 8.6 6.9 7.5 8.6 6.6	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230 6.47610 6.80585 5.88423	0.1 1.1 0.5 0.4 0.5 0.5 0.5 43.9 7.6
P P P We	01A 01B 01C 01D 01E 01F 01G 01H 01I 01J	550.0 625.0 700.0 750.0 800.0 875.0 975.0 1075.0 1250.0 1700.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00930 0.00322 0.00435 0.00144 0.00152 0.00563 0.00829 0.01438 0.01168	0.00281 0.00140 0.00207 0.00076 0.00090 0.00195 0.00245 0.00435	(10 ³ fA) 3.65E-06 0.00007 0.00009 0.00005 0.00005 0.00007 0.00009 0.00016	0.00005 0.00009 0.00010 0.00008 0.00007 0.00010 0.00015 0.00017	0.00592 0.00272 0.00361 0.00144 0.00126 0.00426 0.00607 0.01069 0.00915	0.00005 0.00004 0.00006 0.00002 0.00002 0.00003 0.00004 0.00006	0.00447 0.00824 0.02413 0.01944 0.01433 0.02199 0.02544 0.00051	0.00004 0.00005 0.00012 0.00007 0.00008 0.00010 0.00009 0.00002	0.03145 0.00971 0.01271 0.00363 0.00407 0.01746 0.02612 0.04499 0.03616	(10°2 fA) 0.00639 0.00396 0.00454 0.00283 0.00308 0.00404 0.00595 0.00696	(Ma) 2.78 7.34 9.07 9.57 9.63 9.04 8.92 9.37 8.10 9.16 8.8373 8.7833	7.2210 0.2451 0.2055 0.2152 0.2728 0.2263 0.2759 0.1816 0.1617 1.9537	7.90E-02 10.9 13.8 26.0 21.2 8.6 6.9 7.5 8.6 6.6 518	2.01702 5.32842 6.59091 6.95003 6.99274 6.56230 6.47610 6.80585 5.88423	0.1 1.1 0.5 0.4 0.5 0.5 0.5 43.9

Sa	mple:	MB07-	800		Lab #: {	57719	J : 7.701	E-04 ±7.7	′0E-04		IC: 1.00	00.000 ±0)0					
	iterial ncentr	: Groun	dmass		IGSN:													·
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.00943	0.00432	4.27E-06	0.00006	0.00606	0.00009	0.00366	0.00006	0.03186	0.01134	6.01	10.9738	0.2	4.33189	0.3
P	01B	625.0	0.0	0.00265	0.00246	0.00001	0.00007	0.00185	0.00005	0.01267	0.00010	0.00868	0.00552	9.39	1.6777	3.5	6.77890	0.2
Р	01C	700.0	0.0	0.00104	0.00080	0.00001	0.00007	0.00074	0.00004	0.01280	0.00013	0.00319	0.00352	10.80	1.0807	10.0	7.80054	0.2
Р	01D	750.0	0.0	0.00054	0.00073	6.90E-06	0.00004	0.00044	0.00011	0.00643	0.00007	0.00167	0.00224	9.44	1.3393	8.7	6.81155	0.2

ple: MB)7-008		Lab #: 5	57719	J : 7.70F	E-04 ±7.7	70E-04		IC: 1.00	00.000	00					
erial: Gro entrate	undmass		IGSN:													
١	⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			••	
)1E 800.	0.0	0.00111	0.00088	8.06E-06	0.00005	0.00085	0.00011	0.00695	0.00007	0.00357	0.00382	9.99	1.9459	5.2	7.21158	0.3
)1F 875.	0.0	0.00316	0.00216	0.00002	0.00007	0.00226	0.00012	0.01215	0.00011	0.01022	0.00610	11.65	1.4852	4.5	8.41089	0.3
)1G 975.	0.0	0.00236	0.00218	0.00002	0.00007	0.00175	0.00012	0.01635	0.00010	0.00747	0.00532	10.80	1.0604	6.8	7.79535	0.3
01H 107	5.0 0.0	0.00105	0.00087	0.00002	0.00007	0.00093	0.00011	0.02679	0.00012	0.00321	0.00334	8.34	0.7460	10.5	6.01997	0.1
)11 1250	0.0 0.0	0.01402	0.00795	0.00014	0.00018	0.01029	0.00016	0.00225	0.00002	0.04451	0.01075	8.94	0.3352	6.2	6.45460	13.0
)1J 1700	0.0 0.0	0.00191	0.00120	1.06E-06	0.00004	0.00139	0.00011	0.00635	0.00006	0.00643	0.00463	13.65	18.0898	0.5	9.86569	3.57E-
hted Mea	n Age											9.234	10 ±0.2664	14		
rated												9.397	80 ±9.3799	90		
au										Steps	A-J	9.233	14 ±0.2664	47		
nron												8.903	46 ±8.8815	52		
ple: MB)6-612		Lab #: 5	56960	J : 7.68F	E-04 ±7.6	8E-04		IC: 1.00	00 ±0.000)0					
										JO <u> </u>						
rial: Gro	undmass		IGSN:						10. 1.00	20 20.000						
entrate		40	IGSN:			00								42	40 20	
entrate	oundmass 40Ar	⁴⁰ Ar	IGSN : ± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
entrate		⁴⁰ Ar (10 ³ fA)				³⁸ Ar		³⁷ Ar				Age (Ma)	± 1σ	% ⁴⁰ Ar*		
entrate N ()	⁴⁰ Ar	(10 ³ fA)	± 1σ	³⁹ Ar (10 ³ fA) 2.48E-06	± 1σ	0.00765	± 1σ	0.00401	± 1σ	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA) 0.00733	(Ma)	12.2445	0.2	11.33980	9.21E-
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252	± 1σ 0.00419 0.00139	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010	± 1σ 0.00003 0.00011	0.00765 0.00238	± 1σ 0.00004 0.00003	0.00401 0.00254	± 1σ 0.00005 0.00004	³⁶ Ar 0.04031 0.00640	± 1σ (10 ⁻² fA) 0.00733 0.00279	(Ma) 15.64 9.15	12.2445 0.1211	0.2 25.1	11.33980	9.21E- 5.6
entrate N ()	40Ar 0 0.0 0 0.0	(10 ³ fA)	± 1σ	³⁹ Ar (10 ³ fA) 2.48E-06	± 1σ	0.00765	± 1σ	0.00401	± 1σ	³⁶ Ar	$\pm 1\sigma$ (10 ⁻² fA) 0.00733	(Ma)	12.2445	0.2	11.33980	9.21E-
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252	± 1σ 0.00419 0.00139	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010	± 1σ 0.00003 0.00011	0.00765 0.00238	± 1σ 0.00004 0.00003	0.00401 0.00254	± 1σ 0.00005 0.00004	³⁶ Ar 0.04031 0.00640	± 1σ (10 ⁻² fA) 0.00733 0.00279	(Ma) 15.64 9.15	12.2445 0.1211	0.2 25.1	11.33980	9.21E- 5.6
() (1) (1) (1) (1) (1) (1) (1) (1) (1) (40Ar 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385	± 1σ 0.00419 0.00139 0.00166	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010 0.00038	± 1σ 0.00003 0.00011 0.00035	0.00765 0.00238 0.00548	± 1σ 0.00004 0.00003 0.00005	0.00401 0.00254 0.00904	± 1σ 0.00005 0.00004 0.00006	³⁶ Ar 0.04031 0.00640 0.00451	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272	(Ma) 15.64 9.15 9.21	12.2445 0.1211 0.0311	0.2 25.1 65.5	11.33980 6.62173 6.66701	9.21E- 5.6 6.2
() 01A 550. 01B 625. 01C 700. 01D 750.	40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266	± 1σ 0.00419 0.00139 0.00166 0.00154	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010 0.00038	± 1σ 0.00003 0.00011 0.00035 0.00034	0.00765 0.00238 0.00548 0.00411	±1σ 0.00004 0.00003 0.00005 0.00004	0.00401 0.00254 0.00904 0.00971	± 1σ 0.00005 0.00004 0.00006 0.00005	36Ar 0.04031 0.00640 0.00451 0.00222	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272	(Ma) 15.64 9.15 9.21 9.21	12.2445 0.1211 0.0311 0.0328	0.2 25.1 65.5 75.4	11.33980 6.62173 6.66701 6.66812	9.21E- 5.6 6.2 4.6
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019	0.00765 0.00238 0.00548 0.00411 0.00272	±1σ 0.00004 0.00003 0.00005 0.00004 0.00004	0.00401 0.00254 0.00904 0.00971 0.00767	± 1σ 0.00005 0.00004 0.00006 0.00005	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243	(Ma) 15.64 9.15 9.21 9.21 9.26	12.2445 0.1211 0.0311 0.0328 0.0511	0.2 25.1 65.5 75.4 77.5	11.33980 6.62173 6.66701 6.66812 6.70021	9.21E- 5.6 6.2 4.6 3.9
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172 0.00208	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085 0.00126	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030 0.00020 0.00024	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019 0.00026	0.00765 0.00238 0.00548 0.00411 0.00272 0.00317	±1σ 0.00004 0.00003 0.00005 0.00004 0.00003	0.00401 0.00254 0.00904 0.00971 0.00767 0.01196	± 1σ 0.00005 0.00004 0.00006 0.00005 0.00004	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132 0.00180	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243	(Ma) 15.64 9.15 9.21 9.21 9.26 9.11	12.2445 0.1211 0.0311 0.0328 0.0511 0.0395	0.2 25.1 65.5 75.4 77.5	11.33980 6.62173 6.66701 6.66812 6.70021 6.59662	9.21E 5.6 6.2 4.6 3.9 2.9
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 5.0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172 0.00208 0.00190	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085 0.00126 0.00097	³⁹ Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030 0.00020 0.00024	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019 0.00026 0.00024	0.00765 0.00238 0.00548 0.00411 0.00272 0.00317	±1σ 0.00004 0.00003 0.00004 0.00004 0.00004 0.00003	0.00401 0.00254 0.00904 0.00971 0.00767 0.01196 0.01732	± 1σ 0.00005 0.00004 0.00006 0.00005 0.00004 0.00005	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132 0.00180 0.00136	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243 0.00216	(Ma) 15.64 9.15 9.21 9.21 9.26 9.11 8.96	12.2445 0.1211 0.0311 0.0328 0.0511 0.0395 0.0385	0.2 25.1 65.5 75.4 77.5 74.6	11.33980 6.62173 6.66701 6.66812 6.70021 6.59662 6.48653	9.21E- 5.6 6.2 4.6 3.9 2.9 2.0
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172 0.00208 0.00190 0.00203	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085 0.00126 0.00097 0.00105	39Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030 0.00020 0.00024 0.00023	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019 0.00026 0.00024 0.00029	0.00765 0.00238 0.00548 0.00411 0.00272 0.00317 0.00330	±1σ 0.00004 0.00005 0.00004 0.00004 0.00003 0.00003	0.00401 0.00254 0.00904 0.00971 0.00767 0.01196 0.01732 0.03978	± 1σ 0.00005 0.00004 0.00006 0.00005 0.00004 0.00005 0.00008 0.00011	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132 0.00180 0.00136 0.00202	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243 0.00216 0.00210	(Ma) 15.64 9.15 9.21 9.21 9.26 9.11 8.96 8.72	12.2445 0.1211 0.0311 0.0328 0.0511 0.0395 0.0385 0.0409	0.2 25.1 65.5 75.4 77.5 74.6 79.1	11.33980 6.62173 6.66701 6.66812 6.70021 6.59662 6.48653 6.31243	9.21E 5.6 6.2 4.6 3.9 2.9 2.0 0.9
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172 0.00208 0.00190 0.00203 0.00542	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085 0.00126 0.00097 0.00105 0.00204	39Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030 0.00020 0.00024 0.00023 0.00023	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019 0.00026 0.00024 0.00029 0.00031	0.00765 0.00238 0.00548 0.00411 0.00272 0.00317 0.00330 0.00628	±10 0.00004 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00004	0.00401 0.00254 0.00904 0.00971 0.00767 0.01196 0.01732 0.03978 0.00068	± 1σ 0.00005 0.00004 0.00005 0.00004 0.00005 0.00008 0.00011 0.00007	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132 0.00180 0.00136 0.00202 0.01155	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243 0.00216 0.00210 0.00216	(Ma) 15.64 9.15 9.21 9.21 9.26 9.11 8.96 8.72 8.83 8.97	12.2445 0.1211 0.0311 0.0328 0.0511 0.0395 0.0385 0.0409 0.0540 0.0846	0.2 25.1 65.5 75.4 77.5 74.6 79.1 71.1 37.0 43.5	11.33980 6.62173 6.66701 6.66812 6.70021 6.59662 6.48653 6.31243 6.38793	9.21E 5.6 6.2 4.6 3.9 2.9 2.0 0.9 69.1
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	(10 ³ fA) 0.01194 0.00252 0.00385 0.00266 0.00172 0.00208 0.00190 0.00203 0.00542	± 1σ 0.00419 0.00139 0.00166 0.00154 0.00085 0.00126 0.00097 0.00105 0.00204	39Ar (10 ³ fA) 2.48E-06 0.00010 0.00038 0.00030 0.00020 0.00024 0.00023 0.00023	± 1σ 0.00003 0.00011 0.00035 0.00034 0.00019 0.00026 0.00024 0.00029 0.00031	0.00765 0.00238 0.00548 0.00411 0.00272 0.00317 0.00330 0.00628	±10 0.00004 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00004	0.00401 0.00254 0.00904 0.00971 0.00767 0.01196 0.01732 0.03978 0.00068	± 1σ 0.00005 0.00004 0.00005 0.00004 0.00005 0.00008 0.00011 0.00007	36Ar 0.04031 0.00640 0.00451 0.00222 0.00132 0.00180 0.00136 0.00202 0.01155	± 1σ (10 ⁻² fA) 0.00733 0.00279 0.00272 0.00223 0.00243 0.00216 0.00210 0.00216	(Ma) 15.64 9.15 9.21 9.21 9.26 9.11 8.96 8.72 8.83 8.97	12.2445 0.1211 0.0311 0.0328 0.0511 0.0395 0.0385 0.0409 0.0540 0.0846	0.2 25.1 65.5 75.4 77.5 74.6 79.1 71.1 37.0 43.5	11.33980 6.62173 6.66701 6.66812 6.70021 6.59662 6.48653 6.31243 6.38793	9.21E 5.6 6.2 4.6 3.9 2.9 2.0 0.9 69.1
() () () () () () () () () () () () () (40Ar 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0 ³ fA) 01194 00252 00385 00266 00172 00208 00190 00203	IGSN: 2 Ar ± 1σ 03 fA) 01194 0.00419 00252 0.00139 00385 0.00166 00266 0.00154 00172 0.00085 00208 0.00126 00190 0.00097 00203 0.00105 00542 0.00204	IGSN: PAr ± 1σ 39Ar 03 fA) (103 fA) 01194 0.00419 2.48E-06 00252 0.00139 0.00010 00385 0.00166 0.00038 00266 0.00154 0.00030 00172 0.00085 0.00020 00208 0.00126 0.00024 00190 0.00097 0.00023 00203 0.00105 0.00023	θAr ± 1σ 39 Ar ± 1σ 0³fA) (10³fA) 0.00003 001194 0.00419 2.48E-06 0.00003 00252 0.00139 0.00010 0.00011 00385 0.00166 0.00038 0.00035 00266 0.00154 0.00030 0.00034 00172 0.00085 0.00020 0.00019 00208 0.00126 0.00024 0.00026 00190 0.00097 0.00023 0.00029 00542 0.00204 0.00031 0.00031	IGSN: 10 Ar ± 1σ 39 Ar ± 1σ 38 Ar 10 (10 fA) 10 (1194 0.00419 2.48 E-06 0.00003 0.00765 10 (10 fA) 10 (10 fA	IGSN: PAr ± 1σ 39Ar ± 1σ 38Ar ± 1σ 0319Ar 0.000419 0.00011 0.00031 0.00003 0.00003 0.00003 0.00003 0.00033 0.00033 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00034 0.00014 0.000172 0.00085 0.00020 0.00019 0.00272 0.00004 0.00208 0.00126 0.00024 0.00026 0.00317 0.00003 0.00190 0.00097 0.00023 0.00024 0.00313 0.00003 0.00203 0.00105 0.00023 0.00029 0.00330 0.00004 0.00342 0.00204 0.00031 0.00003 0.00004 0.00342 0.00204 0.00031 0.00003	IGSN: OAr ± 1σ 39Ar ± 1σ 38Ar ± 1σ 37Ar O3 fA) (103 fA) 01194 0.00419 2.48Ε-06 0.00003 0.00765 0.00004 0.00401 00252 0.00139 0.00010 0.00011 0.00238 0.00003 0.00254 00385 0.00166 0.00038 0.00035 0.00548 0.00005 0.00904 00266 0.00154 0.00030 0.00034 0.00411 0.00004 0.00971 00172 0.00085 0.00020 0.00019 0.00272 0.00004 0.00767 00208 0.00126 0.00024 0.00026 0.00317 0.00003 0.01196 00190 0.00097 0.00023 0.00024 0.00313 0.00003 0.01732 00203 0.00105 0.00023 0.00029 0.00330 0.00004 0.03978 00542 0.00204 0.00031 0.00031 0.00628 0.00005 0.00068	IGSN: OAr ± 1σ 39Ar ± 1σ 38Ar ± 1σ 37Ar ± 1σ 0.003 1.00005 O1194 0.00419 2.48Ε-06 0.00003 0.00765 0.00004 0.00401 0.00005 O0252 0.00139 0.00010 0.00011 0.00238 0.00003 0.00254 0.00004 O0385 0.00166 0.00038 0.00035 0.00548 0.00005 0.00904 0.00006 O0266 0.00154 0.00030 0.00034 0.00411 0.00004 0.00971 0.00005 O0172 0.00085 0.00020 0.00019 0.00272 0.00004 0.00767 0.00004 O0208 0.00126 0.00024 0.00026 0.00317 0.00003 0.01196 0.00005 O0190 0.00097 0.00023 0.00024 0.00313 0.00003 0.01732 0.00008 O0203 0.00105 0.00023 0.00029 0.00330 0.00004 0.03978 0.00011 O0542 0.00204 0.00031 0.00031 0.00628 0.00005 0.00068 0.00007	IGSN: OAr ± 1σ 39Ar ± 1σ 38Ar ± 1σ 37Ar ± 1σ 36Ar O3 fA) (103 fA) O1194 0.00419 2.48Ε-06 0.00003 0.00765 0.00004 0.00401 0.00005 0.04031 O0252 0.00139 0.00010 0.00011 0.00238 0.00003 0.00254 0.00004 0.00640 O0385 0.00166 0.00038 0.00035 0.00548 0.00005 0.00904 0.00006 0.00451 O0266 0.00154 0.00030 0.00034 0.00411 0.00004 0.00971 0.00005 0.00222 O0172 0.00085 0.00020 0.00019 0.00272 0.00004 0.00767 0.00004 0.00132 O0208 0.00126 0.00024 0.00026 0.00317 0.00003 0.01196 0.00005 0.00180 O0190 0.00097 0.00023 0.00024 0.00313 0.00003 0.01732 0.00008 0.00136 O0203 0.00105 0.00023 0.00029 0.00330 0.00004 0.03978 0.00011 0.00202	IGSN: OAr ± 1σ 39Ar ± 1σ 38Ar ± 1σ 37Ar ± 1σ 36Ar ± 1σ (10 ⁻² fA) O1194 0.00419 2.48Ε-06 0.00003 0.00765 0.00004 0.00401 0.00005 0.04031 0.00733 O0252 0.00139 0.00010 0.00011 0.00238 0.00003 0.00254 0.00004 0.00640 0.00279 O0385 0.00166 0.00038 0.00035 0.00548 0.00005 0.00904 0.00066 0.00451 0.00272 O0266 0.00154 0.00030 0.00034 0.00411 0.00004 0.00971 0.00005 0.00222 0.00223 O0172 0.00085 0.00020 0.00019 0.00272 0.00004 0.00767 0.00004 0.00132 0.00243 O0208 0.00126 0.00024 0.00026 0.00317 0.00003 0.01196 0.00005 0.00180 0.00216 O0190 0.00097 0.00023 0.00024 0.00313 0.00003 0.01732 0.00008 0.00136 0.00210 O0203 0.00105 0.00023 0.00029 0.00330 0.00004 0.03978 0.00011 0.00202 0.00216 O0542 0.00204 0.00031 0.00031 0.00628 0.00005 0.00068 0.00007 0.01155 0.00405	10 Ar $\pm 1\sigma$ 39 Ar $\pm 1\sigma$ 38 Ar $\pm 1\sigma$ 38 Ar $\pm 1\sigma$ 37 Ar $\pm 1\sigma$ 36 Ar $\pm 1\sigma$ Age $^{10^{-2}}$ fA) $^{$	10 Ar $\pm 1\sigma$ 39 Ar $\pm 1\sigma$ 38 Ar $\pm 1\sigma$ 38 Ar $\pm 1\sigma$ 37 Ar $\pm 1\sigma$ 36 Ar $\pm 1\sigma$ Age $\pm 1\sigma$ 36 Ar 2	10 Ar $\pm 1\sigma$ 10 Ar	03 fA)

Sa	mple	: MB07-	022		Lab #:	57720	J : 7.671	E-04 ±7.6	7E-04		IC : 1.00	00.000 ±0.000	00					
		: Groun	idmass		IGSN:													
	N ⁴⁰ Ar ⁴⁰ Ar				± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.00130	0.00099	0.00004	0.00012	0.00130	0.00004	0.00505	0.00007	0.00342	0.00325	9.19	0.3077	22.3	6.66282	1.9
Р	01B	625.0	0.0	0.00103	0.00092	0.00014	0.00020	0.00184	0.00005	0.01637	0.00011	0.00042	0.00187	9.08	0.0571	88.4	6.58280	1.8

Sa	mple:	MB07-	022		Lab #: 5	57720	J : 7.67	E-04 ±7.6	7E-04		IC: 1.000	0.000 ±0.000	0					
	iterial ncentr	: Groun ate			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01C	700.0	0.0	0.00124	0.00090	0.00018	0.00024	0.00232	0.00004	0.02486	0.00016	0.00022	0.00184	9.16	0.0446	95.0	6.63662	1.5
Р	01D	750.0	0.0	0.00079	0.00074	0.00011	0.00016	0.00143	0.00003	0.01882	0.00010	0.00018	0.00143	9.19	0.0552	93.8	6.66193	1.3
Р	01E	800.0	0.0	0.00064	0.00075	0.00009	0.00014	0.00117	0.00004	0.01789	0.00011	0.00018	0.00135	9.20	0.0644	92.4	6.66517	1.1
Р	01F	875.0	0.0	0.00063	0.00079	0.00008	0.00015	0.00103	0.00003	0.02239	0.00017	0.00028	0.00152	9.21	0.0779	87.6	6.67709	0.8
Р	01G	975.0	0.0	0.00059	0.00073	0.00007	0.00012	0.00101	0.00003	0.02413	0.00011	0.00037	0.00153	9.02	0.0861	82.4	6.53751	0.7
	01H	1075.0	0.0	0.00047	0.00053	0.00005	0.00012	0.00075	0.00003	0.03507	0.00021	0.00049	0.00167	8.56	0.1296	70.9	6.20697	0.3
	011	1250.0	0.0	0.00083	0.00086	0.00006	0.00012	0.00112	0.00003	0.00099	0.00002	0.00185	0.00224	6.81	0.1618	33.9	4.93357	12.3
	01J	1700.0	0.0	0.00169	0.00116	3.15E-06	0.00003	0.00118	0.00005	0.01178	0.00010	0.00572	0.00475	-0.82	6.2115	-0.1	-0.59364	5.73E-0
We	ighted	l Mean A	ge											9.0798	4 ±0.023	66		
Inte	egrate	d												8.9109	0 ±8.889	02		
Pla	egrate teau chron	d										Steps	A-G	9.1607	0 ±8.889 4 ±0.025 3 ±9.062	37		
Pla	teau	d										Steps	A-G	9.1607	4 ±0.025	37		
Pla	teau chron	d : MB06-	525		Lab #: {	57017	J: 7.27F	E-04 ±5.5	2E-07		IC: 1.0	Steps 00 ±0.00		9.1607	4 ±0.025	37		
Pla Iso Sa	teau chron mple:				Lab #: {		J: 7.27	E-04 ±5.5	2E-07		IC : 1.0	·		9.1607	4 ±0.025	37		
Pla Iso Sa	teau chron mple:	MB06-		⁴⁰ Ar		57017 ³⁹ Ar	J : 7.27ξ ± 1σ	E-04 ±5.5 ³⁸ Ar	2E-07 ± 1σ	³⁷ Ar	IC : 1.0 ± 1σ	·		9.1607	4 ±0.025	37	r* ⁴⁰ Ar*/ ³⁹ Ar،	
Pla Iso Sa	chron mple:	MB06-	lende	⁴⁰ Ar (10 ³ fA)	IGSN:					³⁷ Ar		00 ±0.00	000	9.1607 9.0850	4 ±0.025 3 ±9.062 ± ± 1c	37	۱۲* ⁴⁰ Ar*/ ³⁹ Ar	, K/(
Pla Iso Sa	chron mple:	MB06-:	lende		IGSN:	³⁹ Ar				³⁷ Ar		00 ±0.00	±1σ	9.1607 9.0850	4 ±0.025 3 ±9.062 ± 1c	37 119 5 % ⁴⁰ A	\r* ⁴⁰ Ar*/ ³⁹ Ar ₁	(K/0
Pla Iso Ma	mple:	MB06: : Hornbl	lende ⁴⁰ Ar	(10 ³ fA)	IGSN : ± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ		± 1σ	00 ±0.00	± 1σ (10 ⁻² fA)	9.1607 9.0850 Age (Ma	4 ±0.025 3 ±9.062 ± ± 1c	37 119 5 % ⁴⁰ £ 54 1.5		`
Pla Iso Sa Ma	mple:	() 950.0	lende 40Ar 0.0	(10 ³ fA)	IGSN: ± 1σ	³⁹ Ar (10 ³ fA) 9.92E-07	± 1σ	³⁸ Ar	± 1σ	0.00202	± 1σ	00 ±0.00	± 1σ (10 ⁻² fA)	9.1607 9.0850 Age (Ma)	4 ±0.025 3 ±9.062 ± ± 1c	37 119 5 % ⁴⁰ A 54 1.5 04 -0.5	14.64895	7.5
Pla Iso Sa Ma	mple: nterial N 02A 02B	() 950.0	40Ar 0.0 0.0	(10 ³ fA) 0.00093 0.00003	IGSN: ± 1σ 0.00104 0.00021	³⁹ Ar (10 ³ fA) 9.92E-07 3.85E-07	± 1σ 0.00002 0.00002	³⁸ Ar 0.00060 0.00003	± 1σ 0.00002 0.00001	0.00202	± 1σ 0.00003 0.00002	00 ±0.00 36Ar 0.00311	± 1σ (10 ⁻² fA) 0.00706 0.00683	9.1607 9.0850 Age (Mai 19.12	4 ±0.025 3 ±9.062 5 ± 1c 2 27.46 68.99	37 119 5 % ⁴⁰ A 54 1.5 04 -0.5 8 23.1	14.64895 -0.41814	7.5 0.2 0.1
Sa	mple: aterial N 02A 02B 02C	() 950.0 1050.0 1120.0	0.0 0.0 0.0	(10 ³ fA) 0.00093 0.00003 0.00009	IGSN: ± 1σ 0.00104 0.00021 0.00031	³⁹ Ar (10 ³ fA) 9.92E-07 3.85E-07 3.63E-06	± 1σ 0.00002 0.00002 0.00003	³⁸ Ar 0.00060 0.00003 0.00010	± 1σ 0.00002 0.00001 0.00001	0.00202 0.00030 0.00460	± 1σ 0.00003 0.00002 0.00004	36Ar 0.00311 0.00011 0.00024	± 1σ (10 ⁻² fA) 0.00706 0.00683 0.00684	9.1607 9.0850 Age (Ma) 19.12 -0.55 7.65	4 ±0.025 3 ±9.062 5 ± 1c 2 27.46 68.99 7.290	37 119 54 1.5 04 -0.5 8 23.1 3 11.6	14.64895 -0.41814 5.84117	7.5
Sa	mple: tterial N 02A 02B 02C 02D	() 950.0 1050.0 1120.0 1130.0	0.0 0.0 0.0 0.0	0.00093 0.00003 0.00009 0.00009	IGSN: ± 1σ 0.00104 0.00021 0.00031 0.00024	³⁹ Ar (10 ³ fA) 9.92E-07 3.85E-07 3.63E-06 1.08E-06	± 1σ 0.00002 0.00002 0.00003 0.00002	38Ar 0.00060 0.00003 0.00010 0.00003	± 1σ 0.00002 0.00001 0.00001	0.00202 0.00030 0.00460 0.00245	± 1σ 0.00003 0.00002 0.00004 0.00003	36Ar 0.00311 0.00011 0.00024 0.00008	± 1σ (10 ⁻² fA) 0.00706 0.00683 0.00684 0.00147	9.1607 9.0850 Age (Mai 19.12 -0.55 7.65 3.55	4 ±0.025 3 ±9.062 5 ± 1c 2 27.46 68.99 7.290 5.327	37 119 5 % ⁴⁰ A 54 1.5 04 -0.5 8 23.1 3 11.6 1 82.4	14.64895 -0.41814 5.84117 2.70607	7.5 0.2 0.1 6.7
Sa	mple: tterial N 02A 02B 02C 02D 02E	() 950.0 1050.0 1120.0 1130.0 1145.0	0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00093 0.00003 0.00009 0.00003 0.00014	IGSN: ± 1σ 0.00104 0.00021 0.00031 0.00024 0.00038	³⁹ Ar (10 ³ fA) 9.92E-07 3.85E-07 3.63E-06 1.08E-06 0.00002	± 1σ 0.00002 0.00002 0.00003 0.00002 0.00005	38Ar 0.00060 0.00003 0.00010 0.00003 0.00022	± 1σ 0.00002 0.00001 0.00001 0.00001	0.00202 0.00030 0.00460 0.00245 0.02054	± 1σ 0.00003 0.00002 0.00004 0.00003 0.00007	36Ar 0.00311 0.00011 0.00024 0.00008	± 1σ (10 ⁻² fA) 0.00706 0.00683 0.00684 0.00147	9.1607 9.0850 Age (Ma) 19.12 -0.55 7.65 9.39	4 ±0.025 3 ±9.062 4 ± 1c 2 27.46 68.99 7.290 5.327 0.351	5 % ⁴⁰ £ 54 1.5 04 -0.5 8 23.1 3 11.6 1 82.4 2 90.3	14.64895 -0.41814 5.84117 2.70607 7.17608	7.5 0.2 0.1 6.7 0.1
Pla Iso Sa Ma	mple: tterial N 02A 02B 02C 02D 02E	() 950.0 1050.0 1120.0 1145.0 1150.0	0.0 0.0 0.0 0.0 0.0 0.0	(10 ³ fA) 0.00093 0.00003 0.00009 0.00003 0.00014 0.00051	IGSN: ± 1σ 0.00104 0.00021 0.00031 0.00024 0.00038 0.00078	39Ar (10 ³ fA) 9.92E-07 3.85E-07 3.63E-06 1.08E-06 0.00002	± 1σ 0.00002 0.00002 0.00003 0.00002 0.00005 0.00011	38Ar 0.00060 0.00003 0.00010 0.00003 0.00022 0.00085	± 1σ 0.00002 0.00001 0.00001 0.00001 0.00002	0.00202 0.00030 0.00460 0.00245 0.02054	± 1σ 0.00003 0.00002 0.00004 0.00003 0.00007 0.00001	00 ±0.00 36Ar 0.00311 0.00011 0.00024 0.00008 0.00010 0.00017	± 1σ (10 ⁻² fA) 0.00706 0.00683 0.00684 0.00147 0.00149 0.00141	9.1607 9.0850 Age (Ma) 19.12 -0.55 7.65 3.55 9.39 9.13	4 ±0.025 3 ±9.062 4 ± 1c 2 27.46 68.99 7.290 5.327 0.351	37 119 54 1.5 54 -0.5 8 23.1 3 11.6 1 82.4 2 90.3 4 75.7	14.64895 -0.41814 5.84117 2.70607 7.17608 6.97510	7.5 0.2 0.1 6.7

 Weighted Mean Age
 9.14944 ±0.08598

 Integrated
 9.08701 ±0.45916

 Plateau
 Steps
 A-J
 9.14545 ±0.08638

 Isochron
 9.09918 ±0.00701

0.00001

0.02433 0.00009

0.00024

0.00156

0.8922

9.57

43.1

7.31649

4.28

0.00025 6.84E-06 0.00004 0.00014

P 02J 1700.0 0.0

0.00012

Sa	mple	: MB06-	·611		Lab #: {	56961	J : 7.671	E-04 ±7.6	37E-04		IC : 1.00	00.00±)0					
	laterial: Groundmass oncentrate				IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.01052	0.00379	2.75E-06	0.00004	0.00681	0.00006	0.00036	0.00002	0.03570	0.00850	-15.64	12.9047	-0.3	-11.2522	1.1

Sa	mple	MB06-6	511		Lab #:	56961	J : 7.671	E-04 ±7.6	67E-04		IC: 1.00	00.00±	00					
	aterial ncentr	: Ground	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01B	625.0	0.0	0.00506	0.00226	0.00018	0.00017	0.00472	0.00005	0.00670	0.00004	0.01315	0.00404	9.11	0.0940	23.3	6.60197	4.0
Р	01C	700.0	0.0	0.00337	0.00162	0.00027	0.00030	0.00429	0.00004	0.00874	0.00006	0.00539	0.00325	9.03	0.0504	52.8	6.54503	4.6
Р	01D	750.0	0.0	0.00329	0.00184	0.00030	0.00028	0.00463	0.00004	0.01317	0.00006	0.00451	0.00252	9.07	0.0365	59.6	6.56927	3.4
Р	01E	800.0	0.0	0.00136	0.00078	0.00013	0.00012	0.00192	0.00003	0.00682	0.00005	0.00155	0.00208	9.24	0.0638	66.4	6.69574	2.9
Р	01F	875.0	0.0	0.00260	0.00131	0.00024	0.00025	0.00356	0.00004	0.01217	0.00008	0.00344	0.00270	9.21	0.0478	61.0	6.66932	2.9
Р	01G	975.0	0.0	0.00325	0.00163	0.00034	0.00030	0.00483	0.00003	0.02668	0.00008	0.00350	0.00260	9.08	0.0331	68.4	6.57905	1.9
	01H	1075.0	0.0	0.00193	0.00097	0.00020	0.00017	0.00301	0.00005	0.04766	0.00012	0.00232	0.00227	8.79	0.0481	65.2	6.36536	0.6
	011	1250.0	0.0	0.00147	0.00070	0.00009	0.00011	0.00166	0.00007	0.00050	0.00003	0.00300	0.00247	8.66	0.1088	39.8	6.27573	27.6
	01J	1700.0	0.0	0.00236	0.00118	0.00014	0.00014	0.00271	0.00003	0.00049	0.00002	0.00491	0.00303	8.91	0.0885	38.6	6.45371	43.0
We	eighted	l Mean A	ge											9.0485	52 ±0.0169	90		
Int	egrate	d												9.0029	90 ±8.9805	53		

Steps A-G

9.11693 ±0.02269 9.03958 ±9.01697

Sa	mple:	MB06-6	670		Lab #:	56967	J : 7.641	E-04 ±7.6	64E-04		IC : 1.00	00.00±	0					
Ma	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	02A	950.0	0.0	0.00054	0.00102	3.65E-07	0.00002	0.00035	0.00001	0.00248	0.00003	0.00181	0.00208	32.73	23.4572	1.6	23.96504	2.24
P	02B	1050.0	0.0	0.00002	0.00027	2.97E-07	0.00001	0.00004	9.39E-06	0.00105	0.00002	0.00005	0.00121	40.07	16.5652	35.9	29.40079	4.36
P	02C	1120.0	0.0	0.00048	0.00077	0.00005	0.00010	0.00073	0.00002	0.06512	0.00017	0.00066	0.00169	9.08	0.1589	62.6	6.60220	0.1
Р	02D	1130.0	0.0	0.00001	0.00032	1.70E-06	0.00003	0.00001	9.75E-06	0.00232	0.00005	5.14E-06	0.00153	9.57	3.6726	93.0	6.96542	0.1
Р	02E	1145.0	0.0	0.00104	0.00087	0.00016	0.00020	0.00199	0.00003	0.21926	0.00057	0.00027	0.00175	9.09	0.0611	98.0	6.61071	0.1
Р	02F	1150.0	0.0	0.00003	0.00026	5.30E-06	0.00005	0.00007	0.00001	0.00807	0.00007	-0.00003	0.00154	9.55	1.1876	137.7	6.94678	0.1
Р	02G	1155.0	0.0	0.00001	0.00028	2.96E-06	0.00004	0.00005	0.00001	0.00466	0.00004	-0.00003	0.00157	10.59	2.1544	175.7	7.70649	9.80
Р	02H	1160.0	0.0	6.51E-07	0.00025	1.32E-06	0.00003	0.00001	0.00001	0.00205	0.00005	-0.00003	0.00155	11.40	4.7858	1.68E+03	8.29660	9.93
Р	021	1200.0	0.0	0.00004	0.00025	6.31E-06	0.00004	0.00008	0.00001	0.01462	0.00010	-0.00001	0.00158	10.07	1.0253	120.5	7.32998	6.63
Р	02J	1700.0	0.0	0.00014	0.00041	3.11E-07	0.00003	0.00008	0.00001	0.01723	0.00008	0.00046	0.00172	58.28	25.6407	8.2	42.97951	2.44
We	ighted	Mean A	qe											9.092	94 ±0.056	84		

Troightou mount rigo			0.0020120.00001
Integrated			9.30660 ±9.28316
Plateau	Steps	A-J	9.09270 ±0.05685
Isochron			8.54443 ±8.52423

Plateau

Isochron

Sample	: MB06-	525		Lab #:	57017	J : 7.27	E-04 ±5.5	2E-07		IC: 1.00	00.00±	00					
Materia	I: Hornb	lende		IGSN:													
N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
01A	950.0	0.0	0.00545	0.00251	0.00001	0.00004	0.00349	0.00004	0.01112	0.00006	0.01815	0.00543	10.58	1.9440	1.6	8.08491	0.2

_	nple:	MB06-	525		Lab #:	57017	J : 7.27	E-04 ±5.5	52E-07		IC : 1.00	00.00±	00					
Mat	erial	: Hornbl	lende		IGSN:													
	N	()	⁴⁰ Ar	⁴⁰ Ar (10 ³ fA)	± 1σ	³⁹ Ar (10 ³ fA)	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ (10 ⁻² fA)	Age (Ma)	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	01B	1050.0	0.0	0.00081	0.00078	3.17E-06	0.00002	0.00053	0.00002	0.02982	0.00008	0.00269	0.00202	7.92	2.5205	2.3	6.04606	2.48E-
	01C	1120.0	0.0	0.00052	0.00076	0.00002	0.00005	0.00050	0.00002	0.04274	0.00011	0.00134	0.00148	9.92	0.3464	24.8	7.58248	9.38E-
	01D	1130.0	0.0	0.00072	0.00057	0.00007	0.00012	0.00110	0.00002	0.00060	0.00001	0.00074	0.00118	9.01	0.0645	69.8	6.88550	28.8
P	01E	1140.0	0.0	0.00102	0.00094	0.00012	0.00013	0.00170	0.00003	0.00115	0.00002	0.00055	0.00110	9.12	0.0373	84.0	6.96938	25.2
P	01F	1150.0	0.0	0.00203	0.00104	0.00025	0.00028	0.00329	0.00003	0.00241	0.00003	0.00089	0.00146	9.10	0.0249	87.0	6.95188	24.9
•	01G	1160.0	0.0	0.00091	0.00078	0.00012	0.00014	0.00160	0.00003	0.00105	0.00002	0.00035	0.00104	9.08	0.0370	88.7	6.93633	26.3
•	01H	1200.0	0.0	0.00059	0.00056	0.00006	0.00010	0.00097	0.00002	0.00064	0.00002	0.00051	0.00147	8.90	0.0897	74.5	6.79989	24.1
P	011	1700.0	0.0	0.00026	0.00039	4.19E-06	0.00002	0.00023	0.00001	0.08515	0.00018	0.00085	0.00143	9.08	1.4090	10.7	6.93487	1.13E-
Wei	ahted	l Mean A	ae											9.0878	87 ±0.017	07		
Integrated															93 ±0.043			
Plateau												Steps	D-I	9.0857	78 ±0.017	10		
Isoc	hron													9.0855	56 ±0.006	89		
San	nnle [.]	MB07-	121		Lab #:	57724	.l· 7 37l	E-04 ±7.3	37F-04		IC: 1.0	00 ±0.00	าก					
	_	: Groun				01121	U . 1.01.	2 0 1 27 10	7.20.		10. 1.0	20.00						
	centr		uaoo		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.00473	0.00257	0.00002	0.00008	0.00340	0.00007	0.00420	0.00006	0.01550	0.00580	9.20	1.0572	3.2	6.93857	1.1
	01B	625.0	0.0	0.00070	0.00078	0.00006	0.00014	0.00097	0.00004	0.02100	0.00011	0.00102	0.00217	8.36	0.1353	57.6	6.30088	0.6
Р	01C	700.0	0.0	0.00061	0.00068	0.00007	0.00014	0.00103	0.00004	0.03398	0.00017	0.00052	0.00175	9.01	0.1025	76.2	6.79605	0.4
Р	01D	750.0	0.0	0.00034	0.00055	0.00003	0.00010	0.00046	0.00002	0.02078	0.00011	0.00042	0.00162	9.02	0.2024	64.1	6.79946	0.3
Р	01E	800.0	0.0	0.00036	0.00053	0.00004	0.00008	0.00051	0.00003	-0.00005	0.00002	0.00036	0.00140	9.03	0.1499	70.2	6.80847	-152
	01F	875.0	0.0	0.00043	0.00050	0.00005	0.00012	0.00063	0.00003	0.02674	0.00010	0.00037	0.00147	9.23	0.1274	75.6	6.95775	0.4
Р		975.0	0.0	0.00034	0.00051	0.00004	0.00010	0.00046	0.00003	0.02001	0.00012	0.00034	0.00143	8.68	0.1562	71.0	6.54161	0.4
	01G		0.0	0.00053	0.00057	0.00004	0.00010	0.00076	0.00002	0.03036	0.00019	0.00097	0.00262	8.14	0.2559	46.9	6.13226	0.3
Р	01G 01H	1075.0	0.0						0.00004	0.00420	0.00000	0.00306	0.00309	4.72	0.2590	15.6	3.55639	7.2
P		1075.0 1250.0	0.0	0.00107	0.00084	0.00005	0.00011	0.00124	0.00004	0.00139	0.00002	0.00000						
Р	01H			0.00107 0.00153	0.00084 0.00088	0.00005 9.28E-07	0.00011 0.00004	0.00124	0.00004	0.00139	0.00002	0.00513	0.00412	17.50	17.6338	0.8	13.22841	1.93
Р	01H 01I 01J	1250.0	0.0										0.00412	17.50			13.22841	1.93
P Wei	01H 01I 01J	1250.0 1700.0	0.0										0.00412	17.50 8.693	17.6338	327	13.22841	1.93
P Wei Inte	01H 01I 01J ghted grated eau	1250.0 1700.0	0.0										0.00412 C-G	17.50 8.693 8.332 9.075	17.6338 56 ±0.053 88 ±8.314 65 ±0.066	327 119 556	13.22841	1.93
Weight Integral	01H 01I 01J ghted grated	1250.0 1700.0	0.0									0.00513		17.50 8.693 8.332 9.075	17.6338 56 ±0.053 88 ±8.314	327 119 556	13.22841	1.93
Wei Inte	01H 01J ghted grated eau chron	1250.0 1700.0 I Mean A	0.0 0.0 .ge		0.00088	9.28E-07	0.00004	0.00100	0.00004		0.00008	0.00513 Steps	C-G	17.50 8.693 8.332 9.075	17.6338 56 ±0.053 88 ±8.314 65 ±0.066	327 119 556	13.22841	1.93
Weight Interpretation	01H 01J ghted grated eau chron	1250.0 1700.0	0.0 0.0 .ge			9.28E-07	0.00004		0.00004		0.00008	0.00513	C-G	17.50 8.693 8.332 9.075	17.6338 56 ±0.053 88 ±8.314 65 ±0.066	327 119 556	13.22841	1.93

³⁸Ar

± 1σ

³⁹Ar

(10³ fA)

± 1σ

⁴⁰Ar

0.0

Ν

() P 01A 550.0 ⁴⁰Ar

(10³ fA)

0.00223

³⁷Ar

± 1σ

0.00126 5.02E-06 0.00003 0.00146 0.00002 0.00126 0.00003 0.00745

³⁶Ar

± 1σ

(10⁻² fA)

0.00349

Age

(Ma)

6.61

± 1σ

⁴⁰Ar*/³⁹Ar_K

4.77837

K/Ca

0.6

± 1σ %⁴⁰Ar*

2.8601 1.1

Sa	mple	MB06-6	674		Lab #:	56954	J : 7.68	E-04 ±7.6	8E-04		IC : 1.00	00.00±	00					
	iterial ncenti	: Ground	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01B	625.0	0.0	0.00048	0.00058	0.00002	0.00006	0.00046	0.00002	0.00616	0.00005	0.00122	0.00202	8.18	0.4007	25.5	5.91467	0.5
Р	01C	700.0	0.0	0.00051	0.00067	0.00005	0.00009	0.00080	0.00002	0.02054	0.00008	0.00063	0.00185	9.15	0.1540	64.5	6.61953	0.4
Р	01D	750.0	0.0	0.00035	0.00046	0.00004	0.00008	0.00054	0.00002	0.01377	0.00006	0.00031	0.00273	9.34	0.2898	75.1	6.75604	0.4
Р	01E	800.0	0.0	0.00014	0.00030	0.00002	0.00005	0.00024	0.00001	0.00586	0.00005	0.00016	0.00266	8.62	0.6861	68.0	6.23793	0.4
Р	01F	875.0	0.0	0.00022	0.00041	0.00002	0.00007	0.00030	0.00001	0.01114	0.00005	0.00033	0.00269	8.74	0.5369	58.2	6.32263	0.3
Р	01G	975.0	0.0	0.00015	0.00031	0.00001	0.00004	0.00019	0.00001	0.00840	0.00005	0.00031	0.00272	7.42	0.9993	40.2	5.36897	0.2
	01H	1075.0	0.0	0.00048	0.00052	0.00002	0.00006	0.00057	0.00002	0.02593	0.00015	0.00121	0.00288	7.68	0.5046	27.0	5.55435	0.1
	011	1250.0	0.0	0.00110	0.00081	0.00003	0.00006	0.00119	0.00002	0.00391	0.00002	0.00349	0.00334	2.94	0.3921	6.7	2.12269	1.4
	01J	1700.0	0.0	0.00010	0.00021	2.66E-06	0.00003	0.00010	0.00001	0.05135	0.00012	0.00034	0.00272	8.81	4.3958	15.7	6.37645	7.54E-03
We	ighted	l Mean A	ge											8.445	04 ±0.113	357		
Int	egrate	d												7.740	11 ±7.725	520		
Pla	iteau											Steps	A-G	9.048	12 ±0.123	305		

8.56809 ±8.54778

Sa	mple:	MB06-6	636		Lab #:	56956	J : 7.651	E-04 ±7.6	65E-04		IC : 1.00	00.00±	00					
	terial ncentr	: Ground ate	dmass		IGSN:													
_	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.02583	0.01530	6.07E-06	0.00005	0.01656	0.00008	0.00069	0.00002	0.08740	0.01576	1.88	11.1235	3.20E-02	1.36148	1.3
	01B	625.0	0.0	0.00331	0.00158	0.00006	0.00008	0.00266	0.00003	0.00727	0.00006	0.01001	0.00967	8.24	0.6723	10.6	5.98833	1.2
	01C	700.0	0.0	0.00309	0.00173	0.00011	0.00013	0.00288	0.00004	0.03022	0.00010	0.00785	0.00955	9.68	0.3497	25.3	7.03513	0.6
	01D	750.0	0.0	0.00192	0.00090	0.00007	0.00010	0.00182	0.00003	0.01762	0.00008	0.00488	0.00313	9.63	0.1866	25.1	6.99724	0.6
	01E	800.0	0.0	0.00158	0.00087	0.00004	0.00008	0.00130	0.00003	0.00960	0.00007	0.00441	0.00347	9.79	0.3621	17.6	7.11519	0.6
	01F	875.0	0.0	0.00295	0.00167	0.00007	0.00011	0.00241	0.00004	0.01676	0.00009	0.00831	0.00424	9.78	0.2489	16.8	7.10639	0.6
Р	01G	975.0	0.0	0.00390	0.00190	0.00009	0.00012	0.00326	0.00003	0.02340	0.00008	0.01129	0.00487	8.58	0.2170	14.7	6.22947	0.6
Р	01H	1075.0	0.0	0.00902	0.00294	0.00012	0.00014	0.00698	0.00011	0.06241	0.00016	0.02788	0.00627	8.95	0.2095	8.9	6.49974	0.3
Р	011	1250.0	0.0	0.01422	0.00442	0.00026	0.00030	0.01150	0.00007	0.00292	0.00004	0.04215	0.00978	9.23	0.1527	12.4	6.70616	13.6
Р	01J	1700.0	0.0	0.00021	0.00037	3.71E-06	0.00004	0.00017	0.00001	0.02518	0.00009	0.00065	0.00246	8.35	2.7468	10.7	6.06748	2.19E-0

 Weighted Mean Age
 9.26763 ±0.08167

 Integrated
 9.15530 ±9.13298

 Plateau
 Steps
 G-J
 8.99598 ±0.10727

 Isochron
 9.35692 ±9.33270

Isochron

Sa	mple:	MB07-0)25		Lab #:	57728	J : 7.66	E-04 ±7.6	66E-04		IC: 1.00	00.00±	00					
	terial ncentr	: Ground ate	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			••	
	01A	550.0	0.0	0.00323	0.00203	0.00001	0.00007	0.00221	0.00006	0.00265	0.00004	0.01075	0.00513	5.79	1.7131	1.6	4.19185	1.0
	01B	625.0	0.0	0.00037	0.00053	0.00003	0.00010	0.00061	0.00003	0.01222	0.00009	0.00057	0.00179	8.01	0.2150	54.2	5.80301	0.6
Р	01C	700.0	0.0	0.00051	0.00057	0.00007	0.00013	0.00093	0.00004	0.02606	0.00011	0.00030	0.00149	8.96	0.0948	83.8	6.49488	0.5
Р	01D	750.0	0.0	0.00035	0.00050	0.00005	0.00011	0.00059	0.00003	0.02138	0.00013	0.00021	0.00135	8.73	0.1201	83.8	6.32744	0.5
Р	01E	800.0	0.0	0.00040	0.00053	0.00005	0.00011	0.00067	0.00004	0.02397	0.00014	0.00024	0.00168	8.92	0.1354	83.5	6.46363	0.5
Р	01F	875.0	0.0	0.00043	0.00055	0.00006	0.00011	0.00069	0.00003	0.02677	0.00017	0.00024	0.00119	9.06	0.0901	84.6	6.57175	0.4
	01G	975.0	0.0	0.00032	0.00043	0.00004	0.00011	0.00053	0.00003	0.02369	0.00013	0.00025	0.00145	8.43	0.1459	78.7	6.10869	0.4
	01H	1075.0	0.0	0.00031	0.00044	0.00003	0.00008	0.00051	0.00003	0.02894	0.00013	0.00049	0.00156	7.18	0.1941	55.7	5.20421	0.2
	011	1250.0	0.0	0.00104	0.00084	0.00007	0.00011	0.00146	0.00004	0.00106	0.00002	0.00250	0.00269	6.06	0.1607	29.0	4.38875	13.6
	01J	1700.0	0.0	0.00131	0.00106	2.90E-06	0.00004	0.00094	0.00003	0.01431	0.00011	0.00435	0.00343	15.21	4.8567	2.4	11.04886	4.24E-02
We	ighted	Mean A	ge											8.5296	67 ±0.045	505		
Inte	grate	d												8.1324	42 ±8.114	151		
Pla	teau											Steps	C-F	8.8803	37 ±0.065	521		
Iso	chron													8.4843	39 ±8.464	147		
Sa	mple:	MB06-6	615		Lab #:	56958	J : 7.61	E-04 ±7.6	61E-04		IC: 1.00	00 ±0.000	00					
	terial ncentr	: Ground ate			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			**	
_	01A	550.0	0.0	0.02321	0.01340	2.89E-06	0.00004	0.01476	0.00007	0.01303	0.00006	0.07793	0.01155	88.15	16.8234	0.8	65.82083	3.30E-
	01B	625.0	0.0	0.00518	0.00197	0.00005	0.00008	0.00374	0.00003	0.01034	0.00006	0.01603	0.00504	11.35	0.3799	8.6	8.29606	0.8
	01C	700.0	0.0	0.00114	0.00079	0.00005	0.00008	0.00116	0.00002	0.00759	0.00004	0.00256	0.00280	10.14	0.2171	34.0	7.40654	1.0

	Ν		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	550.0	0.0	0.02321	0.01340	2.89E-06	0.00004	0.01476	0.00007	0.01303	0.00006	0.07793	0.01155	88.15	16.8234	0.8	65.82083	3.30E-0
	01B	625.0	0.0	0.00518	0.00197	0.00005	0.00008	0.00374	0.00003	0.01034	0.00006	0.01603	0.00504	11.35	0.3799	8.6	8.29606	0.8
	01C	700.0	0.0	0.00114	0.00079	0.00005	0.00008	0.00116	0.00002	0.00759	0.00004	0.00256	0.00280	10.14	0.2171	34.0	7.40654	1.0
	01D	750.0	0.0	0.00062	0.00071	0.00003	0.00007	0.00070	0.00002	0.00644	0.00007	0.00130	0.00261	9.65	0.3146	38.3	7.04696	0.8
	01E	800.0	0.0	0.00023	0.00042	0.00001	0.00005	0.00025	0.00001	0.00299	0.00003	0.00053	0.00250	8.76	0.8483	32.9	6.39767	0.6
	01F	875.0	0.0	0.00172	0.00082	0.00005	0.00007	0.00142	0.00003	0.01210	0.00006	0.00469	0.00356	10.09	0.3195	19.4	7.36940	0.6
P	01G	975.0	0.0	0.00140	0.00095	0.00004	0.00007	0.00117	0.00003	0.01267	0.00007	0.00392	0.00340	8.97	0.3694	17.5	6.55198	0.4
Р	01H	1075.0	0.0	0.00226	0.00144	0.00004	0.00008	0.00187	0.00003	0.02586	0.00010	0.00675	0.00362	8.69	0.3476	12.0	6.34561	0.2
P	011	1250.0	0.0	0.01875	0.00747	0.00020	0.00021	0.01373	0.00006	0.00530	0.00004	0.05899	0.00911	8.90	0.1887	7.0	6.50235	5.7
Р	01J	1700.0	0.0	0.00052	0.00049	5.25E-06	0.00003	0.00035	0.00004	0.04103	0.00012	0.00172	0.00286	7.61	2.2539	5.5	5.55616	1.89E-0

 Weighted Mean Age
 9.55399 ±0.10352

 Integrated
 9.91114 ±9.88515

 Plateau
 Steps
 G-J
 8.87304 ±0.15132

 Isochron
 9.24145 ±9.21782

Saı	mple:	MB06-6	310		Lab #:	56962	J : 7.641	E-04 ±7.6	64E-04		IC : 1.00	00.00±	00					
	terial centr	: Ground ate	lmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			••	
	011	1075.0	0.0	0.00058	0.00047	0.00005	0.00008	0.00092	0.00002	0.02678	0.00007	0.00096	0.00165	7.89	0.1293	52.2	5.73943	0.3
	01A	800.0	0.0	0.00001	0.00030	1.24E-07	0.00006	0.00001	0.00001	0.00026	0.00002	0.00002	0.00225	60.64	78.2325	44.2	44.74431	6.75E-
	01B	550.0	0.0	0.01402	0.00547	0.00003	0.00010	0.00914	0.00005	0.00514	0.00005	0.04634	0.00748	13.04	0.9078	2.3	9.49349	0.9
Р	01C	625.0	0.0	0.00075	0.00067	0.00003	0.00009	0.00076	0.00002	0.00815	0.00006	0.00186	0.00261	8.90	0.3337	27.4	6.47714	0.6
Р	01D	700.0	0.0	0.00067	0.00059	0.00006	0.00010	0.00097	0.00002	0.01859	0.00010	0.00094	0.00240	8.84	0.1590	59.4	6.43202	0.5
Р	01E	750.0	0.0	0.00044	0.00042	0.00005	0.00008	0.00075	0.00002	0.01545	0.00006	0.00035	0.00148	8.81	0.1143	77.6	6.40648	0.5
Р	01F	800.0	0.0	0.00051	0.00057	0.00006	0.00008	0.00090	0.00002	0.01424	0.00006	0.00039	0.00157	8.62	0.1026	77.9	6.27146	0.6
Р	01G	875.0	0.0	0.00067	0.00059	0.00008	0.00012	0.00113	0.00003	0.01940	0.00011	0.00056	0.00155	8.93	0.0812	76.4	6.49299	0.6
	01H	975.0	0.0	0.00050	0.00052	0.00005	0.00009	0.00077	0.00003	0.01344	0.00008	0.00049	0.00157	9.08	0.1187	71.9	6.60598	0.6
	01J	1250.0	0.0	0.00226	0.00128	0.00012	0.00015	0.00260	0.00003	0.00267	0.00002	0.00538	0.00265	7.49	0.0888	29.7	5.44623	6.5
	01K	1700.0	0.0	0.00031	0.00039	9.36E-06	0.00004	0.00029	0.00002	0.02992	0.00009	0.00091	0.00164	8.15	0.7257	17.5	5.92566	4.39E-
Wei	ighted	Mean A	ge											8.498	36 ±0.039	77		

Integrated			8.72477 ±8.70402
Plateau	Steps	D-H	8.73825 ±0.06741
Isochron			8.37323 ±8.35382

Sa	mple:	MB07-1	136		Lab #:	57735	J : 7.50	E-04 ±7.5	0E-04		IC : 1.00	00.00±	00					
Ma	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	950.0	0.0	0.00050	0.00063	2.63E-06	0.00003	0.00038	0.00002	0.00146	0.00004	0.00168	0.00230	4.37	3.5090	1.7	3.23190	0.3
	01B	1050.0	0.0	0.00001	0.00017	1.23E-06	0.00002	5.32E-06	0.00002	0.00048	0.00003	0.00004	0.00200	1.84	6.5326	12.7	1.35923	0.5
	01C	1120.0	0.0	0.00027	0.00053	0.00003	0.00009	0.00044	0.00002	0.04454	0.00017	0.00030	0.00160	9.44	0.2406	70.4	6.98988	0.1
P	01D	1130.0	0.0	0.00030	0.00053	0.00004	0.00011	0.00053	0.00003	-0.00025	0.00002	0.00019	0.00149	8.63	0.1602	80.8	6.39246	-28.5
P	01E	1145.0	0.0	0.00062	0.00057	0.00008	0.00015	0.00107	0.00003	0.00005	0.00002	0.00034	0.00184	8.77	0.0941	83.7	6.49487	310.1
P	01F	1150.0	0.0	0.00026	0.00050	0.00004	0.00011	0.00052	0.00003	-0.00023	0.00002	0.00011	0.00134	8.65	0.1503	88.1	6.40623	-30.8
	01G	1160.0	0.0	0.00028	0.00051	0.00004	0.00009	0.00053	0.00003	0.06350	0.00025	0.00010	0.00146	9.39	0.1568	94.5	6.95668	0.1
	01H	1200.0	0.0	0.00055	0.00053	0.00007	0.00015	0.00100	0.00003	-0.00012	0.00006	0.00035	0.00145	8.69	0.0845	81.5	6.43575	-114.3
	011	1700.0	0.0	0.00139	0.00116	2.45E-06	0.00003	0.00099	0.00003	0.00576	0.00007	0.00469	0.00433	3.02	7.1208	0.4	2.23030	8.13E-

 Weighted Mean Age
 8.80712 ±0.05038

 Integrated
 8.74685 ±8.72614

 Plateau
 Steps
 D-F
 8.73523 ±0.08117

 Isochron
 8.75796 ±8.73673

Sa	mple:	MB07-1	33		Lab #:	57734	J : 7.54	E-04 ±7.5	54E-04		IC : 1.00	00.00±	00					
Ma	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01H	950.0	0.0	0.00101	0.00076	6.57E-06	0.00005	0.00072	0.00003	0.00338	0.00005	0.00327	0.00321	9.00	1.9614	4.3	6.63634	0.4
Р	011	1050.0	0.0	0.00011	0.00023	2.07E-06	0.00003	0.00010	0.00002	0.00193	0.00004	0.00031	0.00133	12.81	2.5835	17.5	9.45386	0.2
P	01J	1120.0	0.0	0.00042	0.00053	0.00004	0.00010	0.00062	0.00003	0.06210	0.00020	0.00068	0.00171	8.93	0.1985	55.4	6.58376	0.1
P	01K	1130.0	0.0	0.00032	0.00051	0.00004	0.00009	0.00061	0.00002	0.00005	0.00004	0.00021	0.00129	8.68	0.1291	81.0	6.39755	161.6
Р	01L	1145.0	0.0	0.00049	0.00057	0.00006	0.00011	0.00089	0.00003	0.00005	0.00009	0.00030	0.00128	8.73	0.0838	82.2	6.43459	244.3
P	01M	1150.0	0.0	0.00020	0.00041	0.00003	0.00007	0.00037	0.00002	0.04537	0.00022	0.00012	0.00129	8.91	0.2054	86.6	6.56987	0.1
P	01N	1160.0	0.0	0.00025	0.00045	0.00003	0.00009	0.00049	0.00002	0.00001	0.00002	0.00014	0.00136	8.49	0.1634	83.5	6.26325	557.2
P	010	1200.0	0.0	0.00061	0.00059	0.00008	0.00015	0.00111	0.00003	0.00047	0.00002	0.00045	0.00153	8.40	0.0807	78.5	6.19172	32.1
	01P	1700.0	0.0	0.00140	0.00106	1.26E-06	0.00003	0.00090	0.00003	0.00010	0.00002	0.00482	0.00403	-22.42	13.0263	-1.5	-16.3905	2.5
We	ighted	Mean A	ge											8.6085	60 ±0.0475	62		

Integrated

Plateau

Isochron

8.54355 ±8.52383 8.72092 ±0.05878 Steps A-H

8.57465 ±8.55431

Sai	mple:	MB07-1	45		Lab #:	57737	J : 7.46l	E-04 ±7.4	16E-04		IC : 1.00	00 ±0.000	0					
Ма	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	950.0	0.0	0.00082	0.00070	0.00001	0.00006	0.00067	0.00004	0.00548	0.00006	0.00248	0.00261	11.06	0.9968	10.5	8.23772	0.4
	01B	1050.0	0.0	0.00013	0.00028	5.11E-06	0.00004	0.00012	0.00002	0.00512	0.00007	0.00027	0.00155	12.55	1.2026	38.0	9.35407	0.2
Р	01C	1120.0	0.0	0.00063	0.00063	0.00004	0.00009	0.00079	0.00003	0.00008	0.00003	0.00127	0.00209	8.42	0.2032	40.7	6.27249	101.
Р	01D	1130.0	0.0	0.00027	0.00045	0.00004	0.00009	0.00050	0.00003	-0.00016	0.00003	0.00007	0.00128	8.76	0.1349	92.0	6.51955	-45.0
P	01E	1145.0	0.0	0.00040	0.00049	0.00006	0.00011	0.00074	0.00002	-0.00004	0.00002	0.00011	0.00146	8.88	0.1052	92.1	6.61351	-240
	01F	1150.0	0.0	0.00016	0.00034	0.00002	0.00007	0.00034	0.00002	0.04451	0.00021	8.47E-06	0.00131	9.42	0.2188	104.5	7.01734	0.1
	01G	1160.0	0.0	0.00012	0.00026	0.00002	0.00007	0.00027	0.00003	0.03409	0.00015	-3.28E-0	0.00133	9.70	0.3049	107.1	7.22555	9.91
	01H	1200.0	0.0	0.00044	0.00057	0.00006	0.00014	0.00082	0.00003	0.00026	0.00003	0.00030	0.00156	8.37	0.1128	79.5	6.22999	41.6
	011	1700.0	0.0	0.00143	0.00100	1.43E-06	0.00003	0.00097	0.00003	0.00018	0.00002	0.00496	0.00376	-36.97	10.7338	-2.7	-27.1820	1.5
We	ighted	Mean A	ge											8.7612	22 ±0.0596	61		

Integrated

Plateau

Isochron

8.68954 ±8.66921

C-E 8.65458 ±0.11241

Steps

8.73238 ±8.71128

Sa	ample:	MB07-	114		Lab #:	57732	J : 7.57	E-04 ±7.5	57E-04		IC : 1.00	00.00±	00					
M	aterial	: Kaer			IGSN:					-								
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	950.0	0.0	0.00012	0.00025	8.50E-07	0.00003	0.00005	0.00002	0.00123	0.00017	0.00033	0.00155	40.04	7.3098	20.3	29.63891	0.1
Р	01B	1050.0	0.0	0.00007	0.00025	9.52E-06	0.00006	0.00011	0.00002	-0.00274	0.00018	0.00002	0.00141	9.77	0.6000	91.6	7.16911	-0.7

Sa	mple:	MB07-1	14		Lab #:	57732	J : 7.571	E-04 ±7.5	57E-04		IC : 1.00	00.00±	00					
Ma	aterial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01C	1120.0	0.0	0.00092	0.00086	0.00012	0.00019	0.00168	0.00004	-0.01857	0.00012	0.00044	0.00188	8.76	0.0636	85.5	6.42457	-1.3
Р	01D	1130.0	0.0	0.00023	0.00040	0.00003	0.00010	0.00041	0.00002	-0.00065	0.00004	0.00014	0.00111	8.34	0.1500	81.9	6.11934	-9.1
P	01E	1145.0	0.0	0.00029	0.00045	0.00004	0.00010	0.00053	0.00003	-0.00058	0.00004	0.00015	0.00122	8.56	0.1281	85.1	6.28354	-13.1
P	01F	1150.0	0.0	0.00012	0.00027	0.00002	0.00007	0.00021	0.00003	0.03030	0.00019	0.00006	0.00108	8.97	0.2636	90.4	6.57915	0.1
P	01G	1160.0	0.0	0.00028	0.00045	0.00004	0.00010	0.00049	0.00003	-0.00059	0.00004	0.00011	0.00112	8.59	0.1168	88.3	6.30048	-12.9
Р	01H	1200.0	0.0	0.00039	0.00052	0.00005	0.00010	0.00072	0.00003	-0.00046	0.00004	0.00020	0.00119	8.54	0.0937	84.6	6.26451	-22.0
P	011	1700.0	0.0	0.00143	0.00082	1.05E-06	0.00003	0.00098	0.00003	0.00971	0.00010	0.00490	0.00390	-20.75	15.3895	-1.1	-15.1010	2.08E
W	iahted	ed Mean Age												8 6463	1 +0 0423	18		

 Weighted Mean Age
 8.64631 ±0.04238

 Integrated
 8.66420 ±8.64373

 Plateau
 Steps
 B-I
 8.64548 ±0.04238

 Isochron
 8.66849 ±8.64770

Sa	mple:	MB06-6	670		Lab #:	56967	J : 7.641	E-04 ±7.6	4E-04		IC : 1.00	00.000 ±0.000	0					
Ма	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01A	950.0	0.0	0.00050	0.00046	6.79E-07	0.00002	0.00030	0.00002	0.00053	0.00002	0.00162	0.00196	38.21	11.5911	3.8	28.02090	0.2
Р	01B	1050.0	0.0	0.00001	0.00017	3.86E-07	0.00001	4.18E-06	0.00002	0.00043	0.00002	0.00006	0.00374	-15.84	39.8822	-33.5	-11.4423	0.2
Р	01C	1120.0	0.0	0.00208	0.00111	0.00012	0.00012	0.00238	0.00004	0.00130	0.00001	0.00453	0.00299	8.63	0.1041	35.6	6.27648	15.
Р	01D	1130.0	0.0	0.00003	0.00022	4.96E-06	0.00004	0.00007	0.00001	0.00764	0.00005	4.51E-07	0.00121	9.96	0.9983	105.1	7.24909	0.1
Р	01E	1140.0	0.0	0.00051	0.00047	0.00008	0.00009	0.00100	0.00003	-0.00052	0.00003	0.00013	0.00127	8.58	0.0690	92.5	6.24074	-25
Р	01F	1150.0	0.0	0.00191	0.00093	0.00028	0.00028	0.00361	0.00004	0.00198	0.00003	0.00053	0.00145	8.47	0.0227	91.8	6.16149	24.
	01G	1160.0	0.0	0.00004	0.00021	6.67E-06	0.00004	0.00010	0.00001	0.00992	0.00007	-8.81E-0	0.00122	10.13	0.7466	111.4	7.37093	0.1
	01H	1200.0	0.0	0.00031	0.00044	0.00005	0.00008	0.00058	0.00002	-0.00093	0.00003	0.00012	0.00250	8.37	0.2239	88.9	6.08630	-8.5
	011	1700.0	0.0	0.00018	0.00033	0.00002	0.00006	0.00027	0.00001	0.03100	0.00010	0.00026	0.00132	9.52	0.3335	62.0	6.92287	9.1
															0 0010			

 Weighted Mean Age
 8.49378 ±0.02100

 Integrated
 8.59626 ±8.57596

 Plateau
 Steps
 B-F
 8.60015 ±0.05743

 Isochron
 8.46687 ±8.44703

Sam	ple: N	/IB06-7	47		Lab #: 5	56971	J : 7.611	E-04 ±7.6	31E-04		IC: 1.00	00.00±	00					
Mate	rial: l	Kaer			IGSN:													
N	1		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
	(()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
0	1A 9	950.0	0.0	0.00497	0.00242	0.00004	0.00007	0.00344	0.00003	0.00473	0.00004	0.01593	0.00490	10.06	0.5700	5.2	7.35058	1.2
0	1B -	1050.0	0.0	0.00075	0.00123	0.00004	0.00009	0.00083	0.00002	0.04030	0.00011	0.00169	0.00165	9.47	0.1841	35.0	6.91493	0.1
P 0	1C -	1100.0	0.0	0.00235	0.00163	0.00029	0.00038	0.00412	0.00004	0.00302	0.00005	0.00174	0.00182	8.55	0.0284	78.1	6.24325	15.2
P 0	1D ′	1110.0	0.0	0.00045	0.00102	0.00006	0.00012	0.00082	0.00002	-0.00150	0.00004	0.00032	0.00172	8.41	0.1249	79.0	6.14123	-6.0

Sa	mple:	MB06-7	47		Lab #:	56971	J : 7.61	E-04 ±7.6	S1E-04		IC: 1.00	00.00±	00					
Ma	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01E	1120.0	0.0	0.00006	0.00036	7.73E-06	0.00006	0.00013	0.00001	0.01062	0.00009	0.00005	0.00162	8.97	0.8537	80.7	6.54752	0.1
Р	01F	1130.0	0.0	0.00004	0.00032	4.85E-06	0.00005	0.00008	0.00001	0.00641	0.00007	0.00006	0.00257	6.48	2.1502	60.9	4.73045	0.1
Р	01G	1140.0	0.0	0.00037	0.00083	0.00005	0.00013	0.00069	0.00002	-0.00161	0.00004	0.00018	0.00171	8.55	0.1400	85.3	6.24280	-4.9
Р	01H	1150.0	0.0	0.00055	0.00099	0.00007	0.00015	0.00106	0.00002	-0.00133	0.00004	0.00031	0.00189	8.45	0.1049	83.5	6.16701	-8.8
Р	011	1200.0	0.0	0.00070	0.00096	0.00009	0.00018	0.00131	0.00003	-0.00103	0.00004	0.00046	0.00182	8.38	0.0819	80.8	6.11617	-14.1
Р	01J	1700.0	0.0	0.00011	0.00049	-4.35E-0	0.00004	0.00008	9.99E-06	0.00798	0.00008	0.00036	0.00184	-10.54	16.6841	3.2	-7.65091	-8.85
We	ighted	Mean A	ge											8.5441	0 ±0.0247	' 5		

Integrated

Plateau

Isochron

8.64038 ±8.61987

8.52415 ±0.02501 Steps C-J

8.50536 ±8.48535

e rial : N	Amphil			IGSN:													
N		40															
		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
01A	950.0	0.0	0.00125	0.00123	0.00006	0.00015	0.00149	0.00004	0.00611	0.00008	0.00295	0.00263	8.80	0.1816	30.6	6.22177	0.8
01B	1050.0	0.0	0.00035	0.00055	0.00002	0.00008	0.00043	0.00004	0.00477	0.00008	0.00067	0.00165	8.89	0.2955	43.0	6.28432	0.4
01C	1100.0	0.0	0.00083	0.00082	0.00004	0.00012	0.00099	0.00004	0.02265	0.00017	0.00200	0.00224	8.56	0.2306	30.1	6.04885	0.2
01D	1110.0	0.0	0.00030	0.00039	0.00003	0.00010	0.00050	0.00004	0.02421	0.00011	0.00037	0.00159	8.30	0.1976	67.4	5.86649	0.1
01E	1120.0	0.0	0.00027	0.00043	0.00003	0.00011	0.00046	0.00003	0.02474	0.00017	0.00028	0.00153	8.55	0.2001	73.7	6.04217	0.1
01F	1130.0	0.0	0.00041	0.00053	0.00004	0.00011	0.00055	0.00004	0.02898	0.00019	0.00065	0.00178	8.59	0.2014	56.8	6.07388	0.1
01G	1140.0	0.0	0.00025	0.00040	0.00003	0.00009	0.00043	0.00003	0.02462	0.00016	0.00026	0.00150	8.34	0.2048	74.3	5.89571	0.1
01H	1150.0	0.0	0.00018	0.00039	0.00002	0.00009	0.00032	0.00003	0.01895	0.00015	0.00015	0.00114	8.23	0.2061	79.7	5.81447	0.1
D1I	1200.0	0.0	0.00058	0.00064	0.00008	0.00014	0.00110	0.00004	0.06161	0.00022	0.00049	0.00171	8.57	0.1028	80.6	6.05528	0.1
01J	1700.0	0.0	0.00200	0.00208	0.00025	0.00045	0.00356	0.00006	-0.00005	0.00004	0.00217	0.00248	7.77	0.0458	67.8	5.49187	-449.4
	11B 11C 11D 11E 11F 11G 11H	11B 1050.0 11C 1100.0 11D 1110.0 11E 1120.0 11F 1130.0 11G 1140.0 11H 1150.0	() 11A 950.0 0.0 11B 1050.0 0.0 11C 1100.0 0.0 11D 1110.0 0.0 11E 1120.0 0.0 11F 1130.0 0.0 11G 1140.0 0.0 11H 1150.0 0.0 11H 1150.0 0.0	() (10 ³ fA) 11A 950.0 0.0 0.00125 11B 1050.0 0.0 0.00035 11C 1100.0 0.0 0.00083 11D 1110.0 0.0 0.00030 11E 1120.0 0.0 0.00027 11F 1130.0 0.0 0.00025 11H 1150.0 0.0 0.00018 11I 1200.0 0.0 0.00058	() (10 ³ fA) 11A 950.0 0.0 0.00125 0.00123 11B 1050.0 0.0 0.00035 0.00055 11C 1100.0 0.0 0.00083 0.00082 11D 1110.0 0.0 0.00030 0.00039 11E 1120.0 0.0 0.00027 0.00043 11F 1130.0 0.0 0.00025 0.00040 11H 1150.0 0.0 0.00018 0.00039 11H 1200.0 0.0 0.00058 0.00064	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (11A 950.0 0.0 0.00125 0.00123 0.00006 (1B 1050.0 0.0 0.00035 0.00055 0.00002 (1C 1100.0 0.0 0.00083 0.00082 0.00004 (1D 1110.0 0.0 0.00030 0.00039 0.00003 (1E 1120.0 0.0 0.00027 0.00043 0.00003 (1F 1130.0 0.0 0.00041 0.00053 0.00004 (1G 1140.0 0.0 0.00025 0.00040 0.00003 (1H 1150.0 0.0 0.00018 0.00039 0.00002	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (1A 950.0 0.0 0.00125 0.00123 0.00006 0.00015 (1B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 (1C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 (1D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 (1E 1120.0 0.0 0.00027 0.00043 0.0003 0.00011 (1F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 (1G 1140.0 0.0 0.00025 0.00040 0.0003 0.00009 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (1A 950.0 0.0 0.00125 0.00123 0.00006 0.00015 0.00149 (1B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 0.00043 (1C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 0.00099 (1D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 0.00050 (1E 1120.0 0.0 0.00027 0.00043 0.0003 0.00011 0.00046 (1F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 0.00055 (1G 1140.0 0.0 0.00025 0.00040 0.00003 0.00009 0.00043 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 0.00032 (1H 1150.0 0.0 0.00058 0.00064 0.00008 0.00014 0.00110	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (1A 950.0 0.0 0.00125 0.00123 0.0006 0.00015 0.00149 0.00004 (1B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 0.00043 0.00004 (1C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 (1D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 0.00050 0.00004 (1E 1120.0 0.0 0.00027 0.00043 0.0003 0.00011 0.00046 0.00003 (1F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 0.00055 0.00004 (1G 1140.0 0.0 0.00025 0.00040 0.00003 0.00009 0.00043 0.00003 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 0.00032 0.00003 (1H 1150.0 0.0 0.00058 0.00064 0.00008 0.00014 0.00110 0.00004	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (11A 950.0 0.0 0.00125 0.00123 0.00006 0.00015 0.00149 0.00004 0.00611 (1B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 0.00043 0.00004 0.00477 (1C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 0.02265 (1D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 0.00050 0.00004 0.02421 (1E 1120.0 0.0 0.00027 0.00043 0.00003 0.00011 0.00046 0.00003 0.02474 (1F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 0.00055 0.00004 0.02898 (1G 1140.0 0.0 0.00025 0.00040 0.00003 0.00009 0.00043 0.00003 0.02462 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 0.00043 0.00003 0.01895 (1I 1200.0 0.0 0.00058 0.00064 0.00008 0.00014 0.00110 0.00004 0.06161	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (11A 950.0 0.0 0.00125 0.00123 0.00006 0.00015 0.00149 0.00004 0.00611 0.00008 (1B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 0.00043 0.00004 0.00477 0.00008 (1C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 0.02265 0.00017 (1D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 0.00050 0.00004 0.02421 0.00011 (1E 1120.0 0.0 0.00027 0.00043 0.00003 0.00011 0.00046 0.00003 0.02474 0.00017 (1F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 0.00055 0.00004 0.02898 0.00019 (1G 1140.0 0.0 0.00025 0.00040 0.00003 0.00009 0.00043 0.00003 0.02462 0.00016 (1H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 0.00032 0.00003 0.01895 0.00015 (1H 1150.0 0.0 0.00058 0.00064 0.00008 0.00014 0.00110 0.00004 0.06161 0.00022	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (11A 950.0 0.0 0.00125 0.00123 0.00006 0.00015 0.00149 0.00004 0.00611 0.00008 0.00295 (11B 1050.0 0.0 0.00035 0.00055 0.00002 0.00008 0.00043 0.00004 0.00477 0.00008 0.00067 (11C 1100.0 0.0 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 0.02265 0.00017 0.00200 (11D 1110.0 0.0 0.00030 0.00039 0.00003 0.00010 0.00050 0.00004 0.02421 0.00011 0.00037 (11E 1120.0 0.0 0.00027 0.00043 0.00003 0.00011 0.00046 0.00003 0.02474 0.00017 0.00228 (11F 1130.0 0.0 0.00041 0.00053 0.00004 0.00011 0.00055 0.00004 0.02898 0.00019 0.00065 (11G 1140.0 0.0 0.00025 0.00040 0.00003 0.00009 0.00043 0.00003 0.02462 0.00016 0.00026 (11H 1150.0 0.0 0.00018 0.00039 0.00002 0.00009 0.00043 0.00003 0.01895 0.00015 0.00015 (11I 1200.0 0.0 0.00058 0.00064 0.00008 0.00014 0.00110 0.00004 0.06161 0.00022 0.00049	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (10 ² f	(10 ² fA) (10 ³ fA) (10 ³ fA) (10 ³ fA) (10 ³ fA) (10 ² fA) (10 ² fA) (Ma) (10 ² fA) (Ma) (10 ² fA) (Ma) (10 ² fA) (10 ² fA) (Ma) (10 ² fA) (Ma) (10 ² fA) (Ma) (10 ² fA) (10 ² fA) (10 ² fA) (Ma) (10 ² fA) (10 ² fA) (10 ² fA) (Ma) (10 ² fA) (10 ² fA) (10 ² fA) (Ma) (Ma) (10 ² fA) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma	() (10 ³ fA) (10 ³ fA) (10 ³ fA) (10 ³ fA) (10 ² fA) (Ma) (10 0.00125 0.00123 0.0006 0.00015 0.00149 0.0004 0.00611 0.00008 0.00295 0.00263 8.80 0.1816 (11 0.0008 0.00035 0.0025 0.0002 0.00008 0.00043 0.0004 0.00477 0.00008 0.00067 0.00165 8.89 0.2955 (11 0.0008 0.00035 0.00055 0.0002 0.00008 0.00043 0.00044 0.00477 0.00008 0.00067 0.00165 8.89 0.2955 (11 0.0008 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 0.02265 0.00017 0.00200 0.00224 8.56 0.2306 (12 0.0008 0.00083 0.00082 0.00004 0.00012 0.00099 0.00004 0.02265 0.00017 0.00200 0.00224 8.56 0.2306 (13 0.0008 0.00083 0.00083 0.00083 0.00014 0.00050 0.00004 0.02421 0.00011 0.00037 0.00159 8.30 0.1976 (14 0.0008 0.00087 0.00043 0.00003 0.00011 0.00046 0.00003 0.02474 0.00017 0.00028 0.00153 8.55 0.2001 (15 0.0008 0.00085 0.00044 0.00003 0.00004 0.00034 0.00003 0.02462 0.00016 0.00026 0.00150 8.34 0.2048 (16 0.0008 0.00088 0.00064 0.00003 0.00009 0.00032 0.00003 0.01895 0.00016 0.00026 0.00151 8.57 0.1028	() (10 ³ fA) (10 ³ f	() (10 ³ fA) (10 ³ f

Weighted Mean Age

Integrated

Plateau

Isochron

8.05090 ±0.03642

8.24124 ±8.22257

8.51442 ±0.07388

Steps A-I

7.66073 ±7.64449

Samp	le: MB06-6	670		Lab #: {	56967	J : 7.64	E-04 ±7.6	34E-04		IC: 1.00	00 ±0.000)0					
Mater	i al : Kaer			IGSN:								,				,	
N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				ļ
03/	A 950.0	0.0	0.00023	0.00050	1.55E-06	0.00005	0.00022	0.00001	0.00101	0.00002	0.00083	0.00157	-14.44	4.2151	-7.1	-10.4335	0.2
03E	3 1050.0	0.0	0.00002	0.00017	7.32E-07	0.00005	0.00002	7.75E-06	0.00110	0.00002	0.00005	0.00145	11.69	8.1010	29.4	8.50700	0.1
030	1120.0	0.0	0.00029	0.00063	0.00002	0.00007	0.00042	0.00001	0.02656	0.00010	0.00064	0.00155	7.57	0.3187	37.7	5.50373	0.1
P 03E) 1130.0	0.0	0.00007	0.00030	9.43E-06	0.00005	0.00020	0.00001	0.01296	0.00006	0.00012	0.00698	5.87	3.0138	54.6	4.26854	0.1

Sa	mple	MB06-6	670		Lab #:	56967	J : 7.641	E-04 ±7.6	64E-04		IC: 1.00	00.00 00.00	00					
Ma	aterial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	03E	1145.0	0.0	0.00054	0.00090	0.00005	0.00010	0.00078	0.00002	0.00024	0.00002	0.00073	0.00704	8.30	0.5273	60.1	6.03699	34.6
P	03F	1150.0	0.0	0.00263	0.00174	0.00039	0.00029	0.00496	0.00005	0.00420	0.00002	0.00082	0.00705	8.43	0.0739	90.8	6.12870	14.3
P	03G	1155.0	0.0	0.00020	0.00037	0.00003	0.00006	0.00046	0.00001	0.04090	0.00011	0.00015	0.00703	7.77	0.9541	83.5	5.64735	0.1
P	03H	1160.0	0.0	0.00003	0.00025	4.91E-06	0.00003	0.00007	9.48E-06	0.00700	0.00006	0.00002	0.00699	8.66	5.7905	90.7	6.29536	0.1
Р	031	1200.0	0.0	0.00021	0.00056	0.00003	0.00009	0.00051	0.00002	0.04284	0.00014	0.00016	0.00699	7.87	0.9361	82.5	5.71914	0.1
P	03J	1700.0	0.0	0.00015	0.00033	0.00001	0.00004	0.00027	0.00001	0.03206	0.00009	0.00039	0.00700	6.08	2.6411	31.0	4.41714	5.17E-
We	eighted	l Mean A	ge											8.366	12 ±0.070)90		
Int	egrate	d												8.169	60 ±8.152	231		
Pla	ateau											Steps	D-J	8.415	92 ±0.072	277		
Isc	chron													8.503	96 ±8.483	395		
Sa	mple	MB06-8	340		Lab #:	57544	J : 7.89l	E-04 ±7.8	39E-04		IC: 1.00	0.000 ±0	00					
Ma	aterial	: Amphil	oole		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00095	0.00112	0.00002	0.00006	0.00081	0.00005	0.01377	0.00009	0.00291	0.00295	8.97	0.7974	10.4	6.31813	9.18E-0
P	01B	1140.0	0.0	0.00110	0.00086	0.00006	0.00014	0.00129	0.00004	0.03922	0.00022	0.00265	0.00315	8.22 0.2283 30.9 5.78768				0.1
Р	01C	1170.0	0.0	0.00057	0.00059	0.00006	0.00015	0.00089	0.00004	0.04550	0.00019	0.00076	0.00175	8.37	0.1254	65.0	5.89796	0.1
_																		

Ma	terial:	: Amphib	oole		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	950.0	0.0	0.00095	0.00112	0.00002	0.00006	0.00081	0.00005	0.01377	0.00009	0.00291	0.00295	8.97	0.7974	10.4	6.31813	9.18E-02
Р	01B	1140.0	0.0	0.00110	0.00086	0.00006	0.00014	0.00129	0.00004	0.03922	0.00022	0.00265	0.00315	8.22	0.2283	30.9	5.78768	0.1
Р	01C	1170.0	0.0	0.00057	0.00059	0.00006	0.00015	0.00089	0.00004	0.04550	0.00019	0.00076	0.00175	8.37	0.1254	65.0	5.89796	0.1
Р	01D	1200.0	0.0	0.00090	0.00077	0.00013	0.00018	0.00177	0.00005	0.09197	0.00033	0.00073	0.00194	8.22	0.0766	81.2	5.78576	0.1
Р	01E	1225.0	0.0	0.00096	0.00092	0.00014	0.00018	0.00195	0.00005	0.10213	0.00023	0.00070	0.00201	8.21	0.0735	84.1	5.78200	0.1
Р	01F	1250.0	0.0	0.00090	0.00065	0.00013	0.00019	0.00170	0.00005	0.09598	0.00031	0.00068	0.00178	8.21	0.0716	83.1	5.78474	0.1
Р	01G	1275.0	0.0	0.00015	0.00041	0.00002	0.00006	0.00025	0.00003	0.01428	0.00013	0.00016	0.00150	8.56	0.3548	72.7	6.02961	0.1
Р	01H	1700.0	0.0	0.00019	0.00040	0.00001	0.00007	0.00023	0.00003	0.02277	0.00013	0.00046	0.00175	9.37	0.7447	34.8	6.60372	3.54E-02

8.23863 ±0.03939 Weighted Mean Age Integrated 8.28501 ±8.26616

Plateau 8.23545 ±0.03944 Steps A-H Isochron 7.65914 ±7.64290

P 01F 1130.0 0.0

0.00064

0.00085 0.00007

_																		
Sa	mple:	: MB06-6	673a		Lab #:	56972	J : 7.541	E-04 ±7.5	54E-04		IC : 1.00	00 ±0.000	00					
Ma	iterial	I: Hornbl	lende		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _κ	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			18	
	01A	950.0	0.0	0.00178	0.00131	0.00007	0.00009	0.00216	0.00003	0.00948	0.00005	0.00449	0.00403	9.02	0.2343	25.8	6.64600	1.1
	01B	1050.0	0.0	0.00064	0.00111	0.00002	0.00006	0.00066	0.00002	0.01870	0.00008	0.00162	0.00342	10.00	0.6028	26.2	7.36964	0.2
	01C	1100.0	0.0	0.00128	0.00136	0.00010	0.00014	0.00168	0.00002	0.00102	0.00002	0.00228	0.00348	8.27	0.1423	47.2	6.09173	15.2
Р	01D	1110.0	0.0	0.00007	0.00039	7.52E-06	0.00006	0.00019	0.00005	0.01035	0.00007	0.00011	0.00149	8.17	0.8017	61.0	6.02083	0.1
Р	01E	1120.0	0.0	0.00059	0.00082	0.00008	0.00013	0.00106	0.00005	-0.00209	0.00005	0.00039	0.00157	8.05	0.0818	80.3	5.93205	-5.9

0.00011 0.00112 0.00005 -0.00212 0.00005 0.00068 0.00186

8.00 0.1012 68.5

5.89235

-5.5

Sam	ple:	MB06-6	73a		Lab #:	56972	J : 7.541	E-04 ±7.5	54E-04		IC: 1.00	00 ±0.000	00					
Mate	rial:	: Hornble			IGSN:													
1	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/C
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
P 0)1G	1140.0	0.0	0.00001	0.00019	1.04E-06	0.00005	0.00005	0.00004	0.00210	0.00007	8.49E-06	0.00154	12.12	5.9693	82.7	8.93832	7.64
P 0)1H	1150.0	0.0	0.00004	0.00026	4.58E-06	0.00005	0.00013	0.00004	0.00809	0.00009	0.00003	0.00151	8.92	1.3342	82.0	6.57334	8.74
P 0)1I	1200.0	0.0	0.00038	0.00063	0.00004	0.00009	0.00058	0.00005	-0.00230	0.00005	0.00060	0.00172	7.60	0.1899	53.5	5.59899	-2.5
P 0)1J	1700.0	0.0	0.00009	0.00031	3.54E-07	0.00004	0.00010	0.00004	0.04297	0.00013	0.00032	0.00158	25.98	25.0954	5.7	19.24207	9.32
Weig	hted	Mean A	је											8.098	379 ±0.053	366		
Integ	tegrated													8.369	986 ±8.350)85		
Plate	au											Steps	D-J	7.989	947 ±0.060)09		
Isoch	ıron													7.901	139 ±7.884	111		
Sample: MB07-001 La						57718	J : 7.69	E-04 ±7.6	39E-04		IC: 1.00	00 ±0.000	0					
Material: Groundmass concentrate					IGSN:													
<u>_</u> ,	V		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)			K	
,	11 Δ	550.0	0.0	0.00753	0.00365	0.00001	0.00008	0.00508	0.00008	0.00387	0.00006	0.02516	0.00866	8 76	2.4643	1 2	6 33206	0.8

	terial: ncentr	: Ground ate	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.00753	0.00365	0.00001	0.00008	0.00508	0.00008	0.00387	0.00006	0.02516	0.00866	8.76	2.4643	1.2	6.33206	0.8
Р	01B	625.0	0.0	0.00114	0.00092	0.00004	0.00009	0.00103	0.00003	0.00772	0.00008	0.00305	0.00394	8.26	0.3991	21.2	5.96487	1.1
P	01C	700.0	0.0	0.00072	0.00066	0.00007	0.00012	0.00108	0.00005	0.01035	0.00008	0.00112	0.00225	8.20	0.1387	54.7	5.92444	1.4
P	01D	750.0	0.0	0.00042	0.00054	0.00004	0.00011	0.00068	0.00003	0.00748	0.00007	0.00058	0.00154	7.69	0.1428	59.2	5.55524	1.3
Р	01E	800.0	0.0	0.00052	0.00059	0.00005	0.00010	0.00074	0.00004	0.01117	0.00009	0.00093	0.00172	7.70	0.1564	48.3	5.56486	0.9
P	01F	875.0	0.0	0.00067	0.00072	0.00006	0.00013	0.00093	0.00004	0.01549	0.00012	0.00110	0.00211	8.12	0.1486	51.7	5.86955	0.8
P	01G	975.0	0.0	0.00122	0.00079	0.00009	0.00016	0.00161	0.00003	0.02390	0.00012	0.00231	0.00272	8.14	0.1221	44.4	5.88140	0.8
	01H	1075.0	0.0	0.00103	0.00087	0.00010	0.00016	0.00156	0.00005	0.03397	0.00020	0.00168	0.00246	7.59	0.1047	52.1	5.48181	0.6
	011	1250.0	0.0	0.00353	0.00210	0.00021	0.00021	0.00426	0.00006	0.00106	0.00007	0.00822	0.00428	7.24	0.0847	31.1	5.23137	42.8
	01J	1700.0	0.0	0.00213	0.00191	6.41E-06	0.00005	0.00143	0.00004	0.01816	0.00012	0.00715	0.00510	5.08	3.2942	1.1	3.66962	7.62E-0
_																		

 Weighted Mean Age
 7.70743 ±0.04511

 Integrated
 7.71881 ±7.70273

 Plateau
 Steps
 A-G
 7.95011 ±0.07186

 Isochron
 7.68818 ±7.67182

Sample:	: MB06-7	750a	·	Lab #:	56969	J : 7.621	E-04 ±7.6	2E-04		IC : 1.00	00.00±	00		·			
Material	I: Kaer			IGSN:													
N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
	()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
01A	950.0	0.0	0.00101	0.00124	0.00002	0.00006	0.00076	0.00006	0.00334	0.00004	0.00291	0.00217	9.51	0.4176	14.7	6.94045	1.0
01B	1050.0	0.0	0.00016	0.00051	8.27E-06	0.00004	0.00018	0.00001	0.01006	0.00006	0.00040	0.00644	7.37	3.1607	28.0	5.37712	0.1
01C	1100.0	0.0	0.00069	0.00105	0.00007	0.00013	0.00108	0.00003	0.00077	0.00002	0.00093	0.00649	8.04	0.3695	60.2	5.86330	14.5
01D	1110.0	0.0	0.00003	0.00032	2.46E-06	0.00004	1.84E-06	0.00001	0.00358	0.00005	0.00006	0.00164	7.84	2.7174	46.1	5.71879	0.1
01E	1120.0	0.0	0.00016	0.00063	0.00002	0.00008	0.00026	0.00002	0.03094	0.00010	0.00013	0.00170	8.48	0.3355	80.4	6.18629	0.1
01F	1130.0	0.0	0.00028	0.00080	0.00004	0.00011	0.00045	0.00001	0.05734	0.00017	0.00020	0.00172	8.59	0.1890	84.7	6.26656	0.1

Sa	mple:	MB06-7	750a		Lab #:	56969	J : 7.62l	E-04 ±7.6	2E-04		IC : 1.00	00.00±	00					
Ма	terial	: Kaer			IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
	01G	1140.0	0.0	0.00020	0.00062	0.00003	0.00008	0.00034	0.00002	0.03986	0.00013	0.00014	0.00169	8.71	0.2638	84.0	6.35607	0.1
Р	01H	1150.0	0.0	0.00039	0.00080	0.00005	0.00014	0.00067	0.00002	-0.00059	0.00003	0.00023	0.00175	8.12	0.1347	82.2	5.92467	-14.2
Р	011	1200.0	0.0	0.00215	0.00135	0.00029	0.00037	0.00389	0.00004	0.00291	0.00003	0.00162	0.00234	7.93	0.0348	77.8	5.78358	15.6
Р	01J	1700.0	0.0	0.00013	0.00040	1.47E-06	0.00003	0.00008	0.00001	0.04958	0.00011	0.00047	0.00186	5.34	5.6606	4.1	3.89306	4.28E-
We	Veighted Mean Age													7.987	56 ±0.03	256		
Inte	grate	d												8.119	09 ±8.10	126		
Pla	teau											Steps	H-J	7.941	37 ±0.03	373		
Iso	chron													7.892	53 ±7.87	529		

Sa	mple:	MB07-0	027		Lab #:	57721	J : 7.62l	E-04 ±7.6	62E-04		IC ¹ : 1.0	00.00 ±0.00	00					
	aterial ncentr	: Ground	dmass		IGSN:													
	N		⁴⁰ Ar	⁴⁰ Ar	± 1σ	³⁹ Ar	± 1σ	³⁸ Ar	± 1σ	³⁷ Ar	± 1σ	³⁶ Ar	± 1σ	Age	± 1σ	% ⁴⁰ Ar*	⁴⁰ Ar*/ ³⁹ Ar _K	K/Ca
		()		(10 ³ fA)		(10 ³ fA)							(10 ⁻² fA)	(Ma)				
Р	01A	550.0	0.0	0.00457	0.00249	0.00003	0.00010	0.00331	0.00007	0.00040	0.00003	0.01492	0.00741	6.90	0.9427	3.5	5.03429	17.2
Р	01B	625.0	0.0	0.00170	0.00114	0.00021	0.00030	0.00288	0.00005	0.00195	0.00005	0.00171	0.00237	7.95	0.0485	70.3	5.79822	22.8
Р	01C	700.0	0.0	0.00226	0.00184	0.00034	0.00038	0.00430	0.00005	0.00307	0.00005	0.00092	0.00202	8.06	0.0269	88.0	5.87977	23.7
Р	01D	750.0	0.0	0.00125	0.00093	0.00019	0.00020	0.00246	0.00004	0.00186	0.00005	0.00052	0.00173	8.05	0.0390	87.8	5.87049	21.6
Р	01E	800.0	0.0	0.00151	0.00107	0.00022	0.00029	0.00310	0.00005	0.00220	0.00004	0.00069	0.00197	8.07	0.0381	86.5	5.88831	21.7
Р	01F	875.0	0.0	0.00204	0.00134	0.00029	0.00046	0.00390	0.00006	0.00324	0.00005	0.00111	0.00215	7.96	0.0325	84.0	5.80403	19.6
Р	01G	975.0	0.0	0.00230	0.00183	0.00032	0.00038	0.00430	0.00007	0.00601	0.00007	0.00137	0.00241	8.03	0.0325	82.5	5.85614	11.6
Р	01H	1075.0	0.0	0.00203	0.00123	0.00027	0.00047	0.00370	0.00006	0.04492	0.00019	0.00154	0.00227	8.06	0.0376	77.9	5.88123	1.3
Р	011	1250.0	0.0	0.00201	0.00118	0.00025	0.00036	0.00350	0.00005	0.05548	0.00018	0.00197	0.00203	8.02	0.0363	71.6	5.85278	1.0
Р	01J	1700.0	0.0	0.00234	0.00180	0.00009	0.00015	0.00236	0.00004	0.00567	0.00008	0.00630	0.00484	7.64	0.2314	20.4	5.57239	3.2

 Weighted Mean Age
 8.02886 ±0.01237

 Integrated
 7.99535 ±7.97770

 Plateau
 Steps
 A-J
 8.02997 ±0.01239

Isochron 8.03406 ±8.01620

IC Factor¹: H1/CDD intercalibration, P: plateau step

Constants used

Atmospheric argon ratios

 $\binom{^{40}\text{Ar}/^{36}\text{Ar}}{_{\text{A}}}$ 295.5 ±0.5 Nier (1950) $\binom{^{40}\text{Ar}/^{38}\text{Ar}}{_{\text{A}}}$ 1.58E+03 ±2.0 Nier (1950)

Interferring isotope production ratios

Decay constants

 40 Κ $\lambda\epsilon$ 4.96E-10 ±9.30E-13 a⁻¹ 40 Κ $\lambda\beta$ 5.81E-11 ±1.60E-13 a⁻¹

³⁹Ar 7.07E-06 ±0.0 a⁻¹ ³⁷Ar 0.0198 ±0.0 a⁻¹