log2 transformation

Mikhail Dozmorov Fall 2017

Expression Summaries: cDNA arrays

 For custom spotted arrays, the quantity used for analysis is most often the

$$log_2(\frac{SampleSignal}{ReferenceSignal})$$

· This ratio may or may not include background subtraction

$$log_{2}(\frac{SampleSignal-SampleBackground}{ReferenceSignal-ReferenceBackground})$$

Problems with fold change

- Fold changes, or ratios, can be larger than 1 (2-fold increase), or smaller than one (0.5).
- · Not symmetric around 1

3/7

Why log2

- · $log_2(\frac{x}{y}) = log_2(x) log_2(y)$ fold change converted to difference
- · log ratios are symmetric around 0
- $log_2(1) = 0$
- $log_2(2) = 1$
- · $log_2(0.5) = -1$

log2 transformation

Condition	Fold change	Difference
B vs. A	10	900
C vs. B	10	9000
C vs. A	100	9900

5/7

log2 transformation

A B C
$$\log_2(100) = 2 \log_2(1,000) = 3 \log_2(10,000) = 4$$
2 _____3 ___4

- · Note that on a log scale,
- The differences are 1.

log2-transformation of raw intensities

- · The fold change distribution has a fat right tail
- The log2-transformed fold changes are linear

7/7