Lecture 2: Graph width notions, dynamical programming

An Introduction to Parameterized Complexity

Clemens Grabmayer

Ph.D. Program, Advanced Period Gran Sasso Science Institute L'Aquila, Italy

Tuesday, July 15, 2025

Course overview

Monday, July 14 10.30 – 12.30	Tuesday, July 15 10.30 – 12.30	Wednesday, July 16 10.30 – 12.30	Thursday, July 17 10.30 – 12.30	Friday, July 18
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
Introduction & basic FPT results	Notions of bounded graph width	Algorithmic Meta-Theorems	FPT-Intractability Classes & Hierarchies	
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. width	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	
				14.30 – 16.30
				examples, question hour

comparing parameterizations

- comparing parameterizations
- dynamical programming on trees, example:
 - WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)
- path-width
 - example: fpt-algorithm for bounded path-width
- tree-width
 - example: fpt-algorithm for bounded path-width

- comparing parameterizations
- dynamical programming on trees, example:
 - Weighted-Independent-Set (and Vertex-Cover)
- path-width
 - example: fpt-algorithm for bounded path-width
- tree-width
 - example: fpt-algorithm for bounded path-width
- fpt-results for other problems, obtained similarly

- comparing parameterizations
- dynamical programming on trees, example:
 - WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)
- path-width
 - example: fpt-algorithm for bounded path-width
- tree-width
 - example: fpt-algorithm for bounded path-width
- fpt-results for other problems, obtained similarly
- other notions of width
 - clique-width
 - using f-width to define:
 - carving-width (and cut-width)
 - branch-width
 - rank-width

- comparing parameterizations
- dynamical programming on trees, example:
 - Weighted-Independent-Set (and Vertex-Cover)
- path-width
 - example: fpt-algorithm for bounded path-width
- tree-width
 - example: fpt-algorithm for bounded path-width
- fpt-results for other problems, obtained similarly
- other notions of width
 - clique-width
 - using f-width to define:
 - carving-width (and cut-width)
 - branch-width
 - rank-width
- comparing width-notions

A *parameterized problem* is a triple (Q, Σ, κ) (short: (Q, κ)) where:

- $\triangleright \ Q \subseteq \Sigma^*$ is the set of *(classical) problem instances*,
- $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ is a (general) function, *the parameterization*.

A *parameterized problem* is a triple (Q, Σ, κ) (short: (Q, κ)) where:

- $\triangleright \ Q \subseteq \Sigma^*$ is the set of *(classical) problem instances*,
- $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ is a (general) function, *the parameterization*.

Parameterized problem $\langle Q, \Sigma, \kappa \rangle$

Instance: $x \in \Sigma^*$. Parameter: $\kappa(x)$. Problem: Is $x \in Q$?

A *parameterized problem* is a triple $\langle Q, \Sigma, \kappa \rangle$ (short: $\langle Q, \kappa \rangle$) where:

- $\triangleright \ Q \subseteq \Sigma^*$ is the set of *(classical) problem instances*,
- $\triangleright \ \kappa : \Sigma^* \to \mathbb{N}$ is a (general) function, *the parameterization*.

Definition

A parameterized problem (Q, Σ, κ) is *fixed-parameter tractable* (is in FPT) if:

```
\exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \forall x \in \Sigma^* \big[ \mathbb{A} \text{ decides whether } x \in Q \text{ holds} in time \leq f(\kappa(x)) \cdot p(|x|) \big]
```

A *parameterized problem* is a triple (Q, Σ, κ) (short: (Q, κ)) where:

- $ightharpoonup Q \subseteq \Sigma^*$ is the set of *(classical) problem instances*,
- $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ is a (general) function, *the parameterization*.

Definition

A parameterized problem (Q, Σ, κ) is *fixed-parameter tractable* (is in FPT) if:

 $\exists f: \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \mathbb{A}$ algorithm, takes inputs in Σ^* $\forall x \in \Sigma^* \big[\mathbb{A} \text{ decides whether } x \in Q \text{ holds in time } \leq f(\kappa(x)) \cdot p(|x|) \big]$

†) Assumptions for a robust fpt-theory

 $\kappa(x)$ is polynomially computable, or itself fpt-computable: for all $x \in \Sigma^*$ in time $\leq g(\kappa(x)) \cdot q(|x|)$ for g computable, $q \in \mathbb{N}[X]$.

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ▶ $\kappa_1 \ge \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N} \text{ computable } \forall x \in \Sigma^* [g(\kappa_1(x)) \ge \kappa_2(x)].$

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \succeq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N} \text{ computable } \forall x \in \Sigma^* \Big[g(\kappa_1(x)) \ge \kappa_2(x) \Big].$

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \succeq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT}$$

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \succeq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N} \text{ computable } \forall x \in \Sigma^* [g(\kappa_1(x)) \geq \kappa_2(x)].$

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \succeq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT}$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}$

Computably boundedness between notions of width

(from Sasák, [5])

 $wd_1 \succeq wd_2 : \Leftrightarrow wd_1 \xrightarrow{g} wd_2$

Computably boundedness between notions of width

(from Sasák, [5])

$$wd_1 \succeq wd_2 : \Leftrightarrow wd_1 \xrightarrow{g} wd_2$$

► FPT-results

transfer upwards

(and conversely to →)

Computably boundedness between notions of width

(from Sasák, [5])

$$wd_1 \succeq wd_2 : \Leftrightarrow wd_1 \xrightarrow{g} wd_2$$

- ► FPT-results

 transfer upwards

 (and conversely to →)
- (∉ FPT)-results transfer downwards (and along ^g→)

Attività motoria con i figli:

'la possibilità di uscire con i figli minori è consentita a un solo genitore per camminare purché questo avvenga in prossimità della propria abitazione'

(Ministero dell'Interno)

Attività motoria con i figli:

'la possibilità di uscire con i figli minori è consentita a un solo genitore per camminare purché questo avvenga in prossimità della propria abitazione'

(Ministero dell'Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph $\mathcal{G} = \langle V, E \rangle$ with V people who want to go for a walk in the next hour in a radius of 200m of their home, and edges in E between them if they live closer than 400m of each other. A number $\ell \in \mathbb{N}$

Problem:

Attività motoria con i figli:

'la possibilità di uscire con i figli minori è consentita a un solo genitore per camminare purché questo avvenga in prossimità della propria abitazione'

(Ministero dell'Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph $\mathcal{G} = \langle V, E \rangle$ with V people who want to go for a walk in the next hour in a radius of 200m of their home, and edges in E between them if they live closer than 400m of each other. A number $\ell \in \mathbb{N}$.

Problem: Is it possible that ℓ or more people can go out in the next hour so that everybody walks alone (with their children)?

Attività motoria con i figli:

'la possibilità di uscire con i figli minori è consentita a un solo genitore per camminare purché questo avvenga in prossimità della propria abitazione'

(Ministero dell'Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph $\mathcal{G} = \langle V, E \rangle$ with V people who want to go for a walk in the next hour in a radius of 200m of their home, and edges in E between them if they live closer than 400m of each other. A number $\ell \in \mathbb{N}$.

Problem: Is it possible that ℓ or more people can go out in the next hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:

S is independent set in \mathcal{G} :\iff \forall e = \{u, v\} \in E \ ( \neg (u \in S \land v \in S) \ ) \iff \forall e = \{u, v\} \in E \ (u \notin S \lor v \notin S) \ )
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$.

Problem: What is the max. weight of an independent set of \mathcal{G} ?

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:

S is independent set in \mathcal{G} :\iff \forall e = \{u, v\} \in E \ ( \neg (u \in S \land v \in S) \ )

\iff \forall e = \{u, v\} \in E \ (u \notin S \lor v \notin S) \ )
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{G} ?

```
S is a vertex cover of \mathcal{G}:\iff \forall e=\{u,v\}\in E\ (u\in S\lor v\in S))
```

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:

S is independent set in \mathcal{G} :\iff \forall e = \{u, v\} \in E \ (\neg (u \in S \land v \in S)) 

\iff \forall e = \{u, v\} \in E \ (u \notin S \lor v \notin S))
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{G} ?

S is a vertex cover of $\mathcal{G}:\iff \forall e=\{u,v\}\in E\ (u\in S\lor v\in S))$

VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:

S is independent set in \mathcal{G} :\iff \forall e = \{u, v\} \in E \ (\neg (u \in S \land v \in S)) 

\iff \forall e = \{u, v\} \in E \ (u \notin S \lor v \notin S))
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{G} ?

$$S \text{ is a vertex cover of } \mathcal{G} :\iff \forall e = \{u,v\} \in E \ (u \in S \lor v \in S)) \\ \iff \forall e = \{u,v\} \in E \ (u \notin V \setminus S \lor v \notin V \setminus S)) \\ \iff V \setminus S \text{ is an independent set of } \mathcal{G}$$

VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

```
Let \mathcal{G} = \langle V, E \rangle a graph. For all S \subseteq V:

S is independent set in \mathcal{G} : \iff \forall e = \{u, v\} \in E \ ( \neg (u \in S \land v \in S) \ ) 
\iff \forall e = \{u, v\} \in E \ (u \notin S \lor v \notin S) \ )
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{G} ?

$$S$$
 is a vertex cover of $\mathcal{G}:\iff \forall e=\{u,v\}\in E\ (u\in S\lor v\in S))$ $\iff \forall e=\{u,v\}\in E\ (u\notin V\smallsetminus S\lor v\notin V\smallsetminus S)\)$ $\iff V\smallsetminus S$ is an independent set of \mathcal{G}

VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

 $S \subseteq V$ is *minimal* vertex cover $\iff V \setminus S$ is *maximal* independent set Hence: solution of WEIGHTED-INDEPENDENT-SET \implies solution of VERTEX-COVER.

Weighted Ind. Set / Vertex Cover, width-parameterized

p*-Weighted-Independent-Set

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$.

Parameter: path-width / tree-width k.

Problem: What is the max. weight of an independent set of \mathcal{G} ?

p*-VERTEX-COVER

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$. **Parameter:** path-width / tree-width k.

Problem: Does \mathcal{G} have a vertex cover of size at most ℓ ?

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$.

Problem: What is the max. weight of an independent set of T?

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

▶ $A[v] := \max$ weight of an independent set in subtree \mathcal{T}_v at v,

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ A[v] := max. weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ $B[v] := \max$. weight of an ind. set in \mathcal{T}_v that does not contain v.

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ A[v] := max. weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ B[v] := max. weight of an ind. set in \mathcal{T}_v that does not contain v.

Computation of A[v] and B[v]:

• in leafs: B[v] = 0,

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ A[v] := max. weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ $B[v] := \max$. weight of an ind. set in \mathcal{T}_v that does not contain v.

Computation of A[v] and B[v]:

• in leafs: B[v] = 0, A[v] = w(v).

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ A[v] := max. weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ $B[v] := \max$. weight of an ind. set in \mathcal{T}_v that does not contain v.

Computation of A[v] and B[v]:

- ▶ in leafs: B[v] = 0, A[v] = w(v).
- for inner vertices v with children v_1, \ldots, v_q :

$$B[v] = \sum_{i=1}^{q} A[v_i],$$

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ $A[v] := \max$, weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ $B[v] := \max$. weight of an ind. set in \mathcal{T}_v that does not contain v.

Computation of A[v] and B[v]:

- in leafs: B[v] = 0, A[v] = w(v).
- for inner vertices v with children v_1, \ldots, v_q :

$$B[v] = \sum_{i=1}^{q} A[v_i], \qquad A[v] = \max\{B[v], \boldsymbol{w}(v) + \sum_{i=1}^{q} B[v_i]\}.$$

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Obtain a directed tree $\mathcal{T} = \langle T, F, r \rangle$ (pick a root r, orient edges away).

- ▶ $A[v] := \max$, weight of an independent set in subtree \mathcal{T}_v at v,
- ▶ B[v] := max. weight of an ind. set in \mathcal{T}_v that does not contain v.

Computation of A[v] and B[v]:

- ▶ in leafs: B[v] = 0, A[v] = w(v).
- for inner vertices v with children v_1, \ldots, v_q :

$$B[v] = \sum_{i=1}^{q} A[v_i], \qquad A[v] = \max\{B[v], \boldsymbol{w}(v) + \sum_{i=1}^{q} B[v_i]\}.$$

Solution: value of A[r], can be computed bottom-up in linear time.

WEIGHTED-INDEPENDENT-SET

Instance: A tree $T = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$.

Problem: What is the max. weight of an independent set of \mathcal{T} ?

Theorem

On trees with n nodes,

WEIGHTED-INDEPENDENT-SET \in DTIME(O(n)).

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and a weight function $w : T \to \mathbb{R}_0^+$. **Problem:** What is the max. weight of an independent set of \mathcal{T} ?

Theorem

On trees with n nodes,

WEIGHTED-INDEPENDENT-SET \in DTIME(O(n)).

VERTEX-COVER

Instance: A tree $\mathcal{T} = \langle T, F \rangle$, and $\ell \in \mathbb{N}$.

Problem: Does \mathcal{T} have a vertex cover of size at most ℓ ?

Corollary

On trees with n nodes.

VERTEX-COVER \in DTIME(O(n)).

Path-decomposition (example)

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$ is a sequence $\langle B_1, B_2, \dots, B_r \rangle$ of bags $B_i \subseteq V$ such that:

(P1) $V = \bigcup_{i=1}^r B_i$ (every vertex of \mathcal{G} is in some bag).

Definition (Robertson-Seymour, 1983)

A *path decomposition* of a graph $G = \langle V, E \rangle$ is a sequence $\langle B_1, B_2, \dots, B_r \rangle$ of bags $B_i \subseteq V$ such that:

(P1) $V = \bigcup_{i=1}^r B_i$ (every vertex of \mathcal{G} is in some bag).

(P2) $(\forall \{u, v\} \in E) (\exists i \in \{1, 2, ..., r\}) [\{u, v\} \subseteq B_i]$ (every edge of \mathcal{G} is realized in some bag).

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$ is a sequence $\langle B_1, B_2, \dots, B_r \rangle$ of bags $B_i \subseteq V$ such that:

- (P1) $V = \bigcup_{i=1}^{r} B_i$ (every vertex of \mathcal{G} is in some bag).
- (P2) $(\forall \{u,v\} \in E) (\exists i \in \{1,2,\ldots,r\}) [\{u,v\} \subseteq B_i]$ (every edge of \mathcal{G} is realized in some bag).
- (P3) $(\forall v \in V) (\exists i, k \in \{1, ..., r\}, i \le k) [\{j \mid v \in B_j\} = [i, k]]$ (the list of bags that contains a vertex of \mathcal{G} is $\langle B_i, ..., B_k \rangle$ for some interval [i, k])

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$ is a sequence $\langle B_1, B_2, \dots, B_r \rangle$ of bags $B_i \subseteq V$ such that:

- (P1) $V = \bigcup_{i=1}^{r} B_i$ (every vertex of \mathcal{G} is in some bag).
- (P2) $(\forall \{u,v\} \in E) (\exists i \in \{1,2,\ldots,r\}) [\{u,v\} \subseteq B_i]$ (every edge of \mathcal{G} is realized in some bag).
- (P3) $(\forall v \in V) (\exists i, k \in \{1, ..., r\}, i \le k) [\{j \mid v \in B_j\} = [i, k]]$ (the list of bags that contains a vertex of \mathcal{G} is $\langle B_i, ..., B_k \rangle$ for some interval [i, k])

The *width* of path decomp. $\langle B_1, B_2, \dots, B_r \rangle$ is $\max \{|B_t| - 1 \mid 1 \le t \le r\}$.

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$ is a sequence $\langle B_1, B_2, \dots, B_r \rangle$ of bags $B_i \subseteq V$ such that:

- (P1) $V = \bigcup_{i=1}^r B_i$ (every vertex of \mathcal{G} is in some bag).
- (P2) $(\forall \{u,v\} \in E) (\exists i \in \{1,2,\ldots,r\}) [\{u,v\} \subseteq B_i]$ (every edge of $\mathcal G$ is realized in some bag).
- (P3) $(\forall v \in V) (\exists i, k \in \{1, ..., r\}, i \le k) [\{j \mid v \in B_j\} = [i, k]]$ (the list of bags that contains a vertex of \mathcal{G} is $\langle B_i, ..., B_k \rangle$ for some interval [i, k])

The *width* of path decomp. $\langle B_1, B_2, \dots, B_r \rangle$ is $\max \{|B_t| - 1 \mid 1 \le t \le r\}$.

The path-width $pw(\mathcal{G})$ of a graph $\mathcal{G} = \langle V, E \rangle$ is defined by: $pw(\mathcal{G}) := \text{minimal width of a path decomposition of } \mathcal{G}.$

Path-decomposition (example)

Lemma

Let $\langle B_1, B_2, \dots, B_r \rangle$ be a path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Then for all $\mathbf{i} \in \{1, \dots, r-1\}$ it holds:

 $lack \langle \bigcup_{j=1}^i B_j, \bigcup_{j=i+1}^r B_j \rangle$ is a separation of $\mathcal G$ with separator $B_i \cap B_{i+1}$.

Lemma

Let $\langle B_1, B_2, \dots, B_r \rangle$ be a path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Then for all $\mathbf{i} \in \{1, \dots, r-1\}$ it holds:

- ▶ $(\bigcup_{j=1}^{i} B_j, \bigcup_{j=i+1}^{r} B_j)$ is a separation of \mathcal{G} with separator $B_i \cap B_{i+1}$.
- ▶ A pair (A, B) of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

Lemma

Let $\langle B_1, B_2, \dots, B_r \rangle$ be a path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Then for all $\mathbf{i} \in \{1, \dots, r-1\}$ it holds:

- $lack \langle \bigcup_{j=1}^i B_j, \bigcup_{j=i+1}^r B_j \rangle$ is a separation of $\mathcal G$ with separator $B_i \cap B_{i+1}$.
- ▶ A pair (A, B) of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

Lemma

Let $\langle B_1, B_2, \dots, B_r \rangle$ be a path decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Then for all $\mathbf{i} \in \{1, \dots, r-1\}$ it holds:

- $lack \langle \bigcup_{j=1}^i B_j, \bigcup_{j=i+1}^r B_j \rangle$ is a separation of $\mathcal G$ with separator $B_i \cap B_{i+1}$.
- ▶ A pair (A, B) of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

- The border (set of border vertices) ∂(A) of a set A ⊆ V of vertices consists of all vertices that have a neighbor in V \ A. Note that:
 - $\rightarrow \partial(A) = \partial(V \setminus A).$
 - ▶ $\langle A, (V \setminus A) \cup \partial(A) \rangle$ is a separation of \mathcal{G} , for all $A \subseteq V$.

Path-decomposition (example)

Caterpillar

Path-width?

Definition

A path decomposition (B_1, B_2, \dots, B_r) of a graph $\mathcal{G} = (V, E)$ is nice if:

- \triangleright $B_1 = B_r = \emptyset$
- ▶ Every index *i* > 1 is either of:
 - ▶ introduce index: there is $v \in V$ such that $B_{i+1} = B_i \cup \{v\}$ and $v \notin B_i$,
 - ▶ forget index: there is $v \in V$ such that $B_{i+1} = B_i \setminus \{v\}$ and $v \in B_i$.

Definition

A path decomposition $\langle B_1, B_2, \dots, B_r \rangle$ of a graph $\mathcal{G} = \langle V, E \rangle$ is nice if:

- \triangleright $B_1 = B_r = \emptyset$
- ▶ Every index *i* > 1 is either of:
 - ▶ introduce index: there is $v \in V$ such that $B_{i+1} = B_i \cup \{v\}$ and $v \notin B_i$,
 - ▶ forget index: there is $v \in V$ such that $B_{i+1} = B_i \setminus \{v\}$ and $v \in B_i$.

Definition

A path decomposition $\langle B_1, B_2, \dots, B_r \rangle$ of a graph $\mathcal{G} = \langle V, E \rangle$ is nice if:

- \triangleright $B_1 = B_r = \emptyset$
- Every index i > 1 is either of:
 - ▶ introduce index: there is $v \in V$ such that $B_{i+1} = B_i \cup \{v\}$ and $v \notin B_i$,
 - ▶ forget index: there is $v \in V$ such that $B_{i+1} = B_i \setminus \{v\}$ and $v \in B_i$.

Nice path decomposition:

Ø → A → A,B → A,B,C → B,C → C,D → C,D,E → D,E → D,E,F → D,F → D,F → D,F,G → D,F → D,F,H → F,H → H → H,I → I → I,J,K → J,K → K → Ø

Definition

A path decomposition (B_1, B_2, \dots, B_r) of a graph $\mathcal{G} = (V, E)$ is nice if:

- \triangleright $B_1 = B_r = \emptyset$
- ▶ Every index *i* > 1 is either of:
 - ▶ introduce index: there is $v \in V$ such that $B_{i+1} = B_i \cup \{v\}$ and $v \notin B_i$,
 - ▶ forget index: there is $v \in V$ such that $B_{i+1} = B_i \setminus \{v\}$ and $v \in B_i$.

Lemma

From every path decomposition $\langle B_1, B_2, \dots, B_r \rangle$ of a graph $\mathcal{G} = \langle V, E \rangle$ of width k a nice path decomposition $\langle B_1', B_2', \dots, B_{r'}' \rangle$ of width k can be constructed in time $O(k^2 \cdot \max\{r, n\})$ where n := |V|.

Weighted Independent Set

Let
$$\mathcal{G} = \langle V, E \rangle$$
 a graph. $S \subseteq V$ is independent set in $\mathcal{G} : \iff \forall e = \{u, v\} (\neg (u \in S \land v \in S))$.

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$.

Parameter: path-width k.

Problem: What is the max. weight of an independent set of \mathcal{G} ?

Path-decomposition (example)

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path decomposition of $\mathcal{G} = \langle V, E \rangle$. Then for every $i \in \{1, \ldots, r\}$, and every $S \subseteq B_i$, we define:

$$c[i,S]\coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path decomposition of $\mathcal{G} = \langle V, E \rangle$. Then for every $i \in \{1, \ldots, r\}$, and every $S \subseteq B_i$, we define:

$$c[i,S]\coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[i,S] for independent S:

▶ Case i = 1: $c[1, \emptyset] = 0$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path decomposition of $\mathcal{G} = \langle V, E \rangle$. Then for every $i \in \{1, \ldots, r\}$, and every $S \subseteq B_i$, we define:

$$c[i,S]\coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent} \\ \max \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent} \ \land \ S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \land \ \hat{S} \cap B_i = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[i,S] for independent S:

- ▶ Case i = 1: $c[1, \emptyset] = 0$
- ▶ Case i + 1:
 - i+1 introduces v: $B_{i+1} = B_i \cup \{v\}$ and $v \notin B_i$, $c[i+1,S] = \begin{cases} c[i,S] & \text{if } v \notin S, \end{cases}$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path decomposition of $\mathcal{G} = \langle V, E \rangle$. Then for every $i \in \{1, \ldots, r\}$, and every $S \subseteq B_i$, we define:

$$c[i,S]\coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent} \\ \max \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent} \ \land \ S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \land \ \hat{S} \cap B_i = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[i,S] for independent S:

- ▶ Case i = 1: $c[1, \emptyset] = 0$
- ▶ Case i + 1:
 - $\begin{array}{c} \bullet \quad i+1 \text{ introduces } v \colon \quad B_{i+1} = B_i \cup \{v\} \text{ and } v \notin B_i, \\ \\ c[i+1,S] = \begin{cases} c[i,S] & \text{if } v \notin S, \\ c[i,S \smallsetminus \{v\}] + \boldsymbol{w}(v) & \text{if } v \in S; \end{cases}$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path decomposition of $\mathcal{G} = \langle V, E \rangle$. Then for every $i \in \{1, \ldots, r\}$, and every $S \subseteq B_i$, we define:

$$c[i,S]\coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent} \\ \max \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent} \ \land \ S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \land \ \hat{S} \cap B_i = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[i,S] for independent S:

- ▶ Case i = 1: $c[1, \emptyset] = 0$
- ▶ Case i + 1:
 - $\begin{array}{c} \bullet \quad i+1 \text{ introduces } v\colon \quad B_{i+1}=B_i\cup\{v\} \text{ and } v\notin B_i,\\ \\ c[i+1,S]=\begin{cases} c[i,S] & \text{if } v\notin S,\\ c[i,S\smallsetminus\{v\}]+\boldsymbol{w}(v) & \text{if } v\in S; \end{cases}$
 - ▶ i + 1 forgets v: $B_{i+1} = B_i \setminus \{v\}$ and $v \in B_i$, $c[i + 1, S] = \max\{c[i, S], c[i, S \cup \{v\}]\}$.

Let $\langle B_1,\ldots,B_r\rangle$ be a nice path dec. of $\mathcal{G}=\langle V,E\rangle$ of width k. For every $i\in\{1,\ldots,r\}$, and every independent $S\subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Let $\langle B_1,\ldots,B_r\rangle$ be a nice path dec. of $\mathcal{G}=\langle V,E\rangle$ of width \pmb{k} . For every $i\in\{1,\ldots,r\}$, and every independent $S\subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

Let $\langle B_1,\ldots,B_r\rangle$ be a nice path dec. of $\mathcal{G}=\langle V,E\rangle$ of width k. For every $i\in\{1,\ldots,r\}$, and every independent $S\subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_n} c[r, S] = c[r, \varnothing]$$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \ldots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

Then for all $i \in \{1, \dots, n\}$:

▶ $|B_i| \le k + 1$,

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \ldots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \emptyset]$$

- ▶ $|B_i| \le k + 1$,
- ightharpoonup number of values c[i,S] at index $i: 2^{|B_i|} = 2^{k+1}$,

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \ldots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \emptyset]$$

- $|B_i| \leq k + 1$
- ightharpoonup ightharpoonup number of values c[i,S] at index $i: 2^{|B_i|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,

Let $\langle B_1, \dots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \dots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \emptyset]$$

- ▶ $|B_i| \le k + 1$,
- ightharpoonup ightharpoonup number of values c[i,S] at index $i: 2^{|B_i|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at i, using map of values at i-1: ~ O(k)

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \ldots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \emptyset]$$

- ▶ $|B_i| \le k + 1$,
- ▶ ⇒ number of values c[i, S] at index $i: 2^{|B_i|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at i, using map of values at i-1: ~ O(k)
- ▶ time for comp. all values at i, using values at i-1: $2^{k+1} \cdot O(k^2)$

Let $\langle B_1, \ldots, B_r \rangle$ be a nice path dec. of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $i \in \{1, \ldots, r\}$, and every independent $S \subseteq B_i$, we define:

$$c[i,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_i = \bigcup_{j=1}^i B_j \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[i, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \emptyset]$$

- ▶ $|B_i| \le k + 1$,
- ▶ ⇒ number of values c[i, S] at index $i: 2^{|B_i|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at i, using map of values at i-1: $\sim O(k)$
- ▶ time for comp. all values at i, using values at i-1: $2^{k+1} \cdot O(k^2)$
- \Rightarrow the time for computing all values at r:

$$(2^{k+1} \cdot O(k^2)) \cdot r + O(k^{O(1)} \cdot n) \in O(2^k \cdot k^{O(1)} \cdot n)$$
, since $r = 2n$.

Dynamical programming with path width (example)

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and path-width pw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

Dynamical programming with path width (example)

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and path-width pw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

S is a *minimal* vertex cover

 \iff $V \setminus S$ is a *maximal* independent set.

Dynamical programming with path width (example)

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and path-width pw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

S is a *minimal* vertex cover

 \iff $V \setminus S$ is a *maximal* independent set.

Corollary

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and path-width pw(\mathcal{G}) = k, p^*-VERTEX-COVER \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

Tree decomposition (example)

A tree-decomposition of width 2

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ such that: (T1) $V = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).

Definition (Bertelé-Brioschi, 1972, Halin, 1976, Robertson-Seymour, 1984)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ such that:

- (T1) $V = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).
- (T2) $(\forall \{u, v\} \in E) (\exists t \in T) [\{u, v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).

Definition (Bertelé-Brioschi, 1972, Halin, 1976, Robertson-Seymour, 1984)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ such that:

- (T1) $V = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).
- (T2) $(\forall \{u, v\} \in E) (\exists t \in T) [\{u, v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).
- (T3) $(\forall v \in V)$ [subgraph of \mathcal{T} defd. by $\{t \in T \mid v \in B_t\}$ is connected] (the tree vertices (in \mathcal{T}) whose bags contain some vertex of \mathcal{G} induce a subgraph of \mathcal{T} that is connected).

Definition (Bertelé-Brioschi, 1972, Halin, 1976, Robertson-Seymour, 1984)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ such that:

- (T1) $V = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).
- (T2) $(\forall \{u,v\} \in E) (\exists t \in T) [\{u,v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).
- (T3) $(\forall v \in V)$ [subgraph of \mathcal{T} defd. by $\{t \in T \mid v \in B_t\}$ is connected] (the tree vertices (in \mathcal{T}) whose bags contain some vertex of \mathcal{G} induce a subgraph of \mathcal{T} that is connected).

The *width* of a tree decomposition $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max \{|B_t| - 1 \mid t \in T\}$.

Definition (Bertelé-Brioschi, 1972, Halin, 1976, Robertson-Seymour, 1984)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ such that:

- (T1) $V = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).
- (T2) $(\forall \{u,v\} \in E) (\exists t \in T) [\{u,v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).
- (T3) $(\forall v \in V)$ [subgraph of \mathcal{T} defd. by $\{t \in T \mid v \in B_t\}$ is connected] (the tree vertices (in \mathcal{T}) whose bags contain some vertex of \mathcal{G} induce a subgraph of \mathcal{T} that is connected).

The *width* of a tree decomposition $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max \left\{ |B_t| - 1 \mid t \in T \right\}.$

The *tree-width* $tw(\mathcal{G})$ of a graph $\mathcal{G} = \langle V, E \rangle$ is defined by: $tw(\mathcal{G}) := \text{minimal width of a tree decomposition of } \mathcal{G}.$

Tree decomposition (example)

A tree-decomposition of width 2

Lemma

Let $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ be a tree decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Let $e = \langle a, b \rangle$ be an edge of \mathcal{T} . The $\mathcal{T} \setminus e$ is the union of a tree \mathcal{T}_a containing a, and a tree \mathcal{T}_b containing b.

Then for $A := \bigcup_{t \in V(\mathcal{T}_a)} B_t$ and $B := \bigcup_{t \in V(\mathcal{T}_b)} B_t$ it holds:

▶ $\langle A, B \rangle$ is a separation of \mathcal{G} with separator $B_a \cap B_b$.

Recall, for a graph $\mathcal{G} = \langle V, E \rangle$:

Lemma

Let $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ be a tree decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Let $e = \langle a, b \rangle$ be an edge of \mathcal{T} . The $\mathcal{T} \setminus e$ is the union of a tree \mathcal{T}_a containing a, and a tree \mathcal{T}_b containing b.

Then for $A := \bigcup_{t \in V(\mathcal{T}_a)} B_t$ and $B := \bigcup_{t \in V(\mathcal{T}_b)} B_t$ it holds:

▶ $\langle A, B \rangle$ is a separation of \mathcal{G} with separator $B_a \cap B_b$.

Recall, for a graph $\mathcal{G} = \langle V, E \rangle$:

- ▶ A pair $\langle A, B \rangle$ of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

Lemma

Let $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ be a tree decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Let $e = \langle a, b \rangle$ be an edge of \mathcal{T} . The $\mathcal{T} \setminus e$ is the union of a tree \mathcal{T}_a containing a, and a tree \mathcal{T}_b containing b.

Then for $A := \bigcup_{t \in V(\mathcal{T}_a)} B_t$ and $B := \bigcup_{t \in V(\mathcal{T}_b)} B_t$ it holds:

- ▶ $\langle A, B \rangle$ is a separation of \mathcal{G} with separator $B_a \cap B_b$.
- $ightharpoonup \partial(A), \partial(B) \subseteq B_a \cap B_b.$

Recall, for a graph $\mathcal{G} = \langle V, E \rangle$:

- ▶ A pair (A, B) of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

Lemma

Let $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ be a tree decomposition of a graph $\mathcal{G} = \langle V, E \rangle$. Let $e = \langle a, b \rangle$ be an edge of \mathcal{T} . The $\mathcal{T} \setminus e$ is the union of a tree \mathcal{T}_a containing a, and a tree \mathcal{T}_b containing b.

Then for $A := \bigcup_{t \in V(\mathcal{T}_a)} B_t$ and $B := \bigcup_{t \in V(\mathcal{T}_b)} B_t$ it holds:

- ▶ $\langle A, B \rangle$ is a separation of \mathcal{G} with separator $B_a \cap B_b$.
- $ightharpoonup \partial(A), \partial(B) \subseteq B_a \cap B_b.$

Recall, for a graph $\mathcal{G} = \langle V, E \rangle$:

- ▶ A pair $\langle A, B \rangle$ of subsets $A, B \subseteq V$ is a *separation* of \mathcal{G} if:
 - $V = A \cup B$
 - there is no edge between $A \setminus B$ and $B \setminus A$.

 $A \cap B$ is called the *separator* of a separation $\langle A, B \rangle$, and $|A \cap B|$ is called its *order*.

▶ The *border* (*vertices*) $\partial(A)$ of a set $A \subseteq V$ of vertices consists of all vertices that have a neighbor in $V \setminus A$.

TREE-WIDTH

Instance: A graph \mathcal{G} and $k \in \mathbb{N}$.

Problem: Decide whether $tw(\mathcal{G}) = k$.

TREE-WIDTH

Instance: A graph \mathcal{G} and $k \in \mathbb{N}$.

Problem: Decide whether tw(G) = k.

Theorem

TREE-WIDTH is NP-complete.

TREE-WIDTH

Instance: A graph \mathcal{G} and $k \in \mathbb{N}$.

Problem: Decide whether tw(G) = k.

Theorem

TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph $\mathcal{G} = \langle V, E \rangle$ and $k \in \mathbb{N}$.

Parameter: k.

Problem: Decide whether $tw(\mathcal{G}) = k$.

TREE-WIDTH

Instance: A graph \mathcal{G} and $k \in \mathbb{N}$.

Problem: Decide whether $tw(\mathcal{G}) = k$.

Theorem

TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph $\mathcal{G} = \langle V, E \rangle$ and $k \in \mathbb{N}$.

Parameter: k.

Problem: Decide whether $tw(\mathcal{G}) = k$.

Theorem

p-Tree-Width is fixed-parameter tractable, in time $2^{p(k)} \cdot n$ where n := |V|.

Nice tree decomposition

Definition

A *tree decomposition* $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ of graph $\mathcal{G} = \langle V, E \rangle$ is *nice* if it is based on the choice of a leaf as *root r* and the parent–children relation away from r such that:

- ▶ $B_r = \emptyset$, and $B_\ell = \emptyset$ for every leaf $\ell \in T$.
- ▶ Every non-leaf node $t \in T$ is of one of three types:
 - ▶ introduce node: t has exactly one child t' such that $B_t = B_{t'} \cup \{v\}$; we say v is introduced at t.
 - ▶ forget node: t has exactly one child t' such that $B_t = B_{t'} \setminus \{w\}$ for some $w \in B_{t'}$; we say w is forgotten at t.
 - ▶ join node: a node t with two children t_1, t_2 such that $B_t = B_{t_1} = B_{t_2}$.

Nice tree decomposition

Definition

A *tree decomposition* $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ of graph $\mathcal{G} = \langle V, E \rangle$ is *nice* if it is based on the choice of a leaf as *root r* and the parent–children relation away from r such that:

- ▶ $B_r = \emptyset$, and $B_\ell = \emptyset$ for every leaf $\ell \in T$.
- ▶ Every non-leaf node $t \in T$ is of one of three types:
 - ▶ introduce node: t has exactly one child t' such that $B_t = B_{t'} \cup \{v\}$; we say v is introduced at t.
 - forget node: t has exactly one child t' such that B_t = B_{t'} \ {w} for some w ∈ B_{t'}; we say w is forgotten at t.
 - ▶ join node: a node t with two children t_1, t_2 such that $B_t = B_{t_1} = B_{t_2}$.

Lemma

From every tree decomposition $\langle \mathcal{T}, \{B_t\}_{t\in T} \rangle$ of a graph $\mathcal{G} = \langle V, E \rangle$ of width k a nice tree decomposition $\langle \mathcal{T}', \{B_t'\}_{t\in T'} \rangle$ of width k and with $r := |V(\mathcal{T})| \in O(kn)$ vertices can be constructed in time $O(k^2 \cdot \max\{r, n\})$ where n := |V|.

Tree decomposition (example)

A tree-decomposition of width 2

Weighted Independent Set

```
Let \mathcal{G} = \langle V, E \rangle a graph. S \subseteq V is independent set in \mathcal{G} : \iff \forall e = \{u, v\} (\neg (u \in S \land v \in S)).
```

WEIGHTED-INDEPENDENT-SET

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, and a weight function $\boldsymbol{w} : V \to \mathbb{R}_0^+$.

Parameter: tree-width k.

Problem: What is the max. weight of an independent set of \mathcal{G} ?

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ \text{if } S \text{ is independent.} \end{cases}$$

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[t, S] for independent S:

▶ leaf node t: $c[t, \emptyset] = 0$

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[t, S] for independent S:

- ▶ leaf node t: $c[t,\varnothing] = 0$
- introduction node t of vertex v with child t':

$$c[t,S] = \begin{cases} c[t',S] & \text{if } v \notin S \end{cases}$$

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[t, S] for independent S:

- ▶ leaf node t: $c[t,\varnothing] = 0$
- introduction node t of vertex v with child t':

$$c[t,S] = \begin{cases} c[t',S] & \text{if } v \notin S \\ c[t',S \setminus \{v\}] + \boldsymbol{w}(v) & \text{otherwise} \end{cases}$$

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[t, S] for independent S:

- ▶ leaf node t: $c[t,\varnothing] = 0$
- introduction node t of vertex v with child t':

$$c[t,S] = \begin{cases} c[t',S] & \text{if } v \notin S \\ c[t',S \setminus \{v\}] + \boldsymbol{w}(v) & \text{otherwise} \end{cases}$$

• forget node t of vertex v with child t':

$$c[t, S] = \max\{c[t', S], c[t', S \cup \{v\}]\}$$

For every node t of a nice tree decomposition, and every $S \subseteq B_t$, we define:

e:
$$c[t,S] \coloneqq \begin{cases} -\infty & \text{if } S \text{ is not independent,} \\ \max \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t \wedge \hat{S} \cap B_t = S \\ & \text{if } S \text{ is independent.} \end{cases}$$

Recursive equations for computing c[t, S] for independent S:

- ▶ leaf node t: $c[t, \emptyset] = 0$
- introduction node t of vertex v with child t':

$$c[t,S] = \begin{cases} c[t',S] & \text{if } v \notin S \\ c[t',S \setminus \{v\}] + \boldsymbol{w}(v) & \text{otherwise} \end{cases}$$

forget node t of vertex v with child t':

$$c[t, S] = \max\{c[t', S], c[t', S \cup \{v\}]\}$$

ightharpoonup join node t with children t_1 and t_2 :

$$c[t, S] = c[t_1, S] + c[t_2, S] - w(S)$$

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \wedge \hat{S} \cap B_i = S \end{cases}$$

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \wedge \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

▶
$$|B_t| \le k + 1$$
,

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

- ▶ $|B_t| \le k + 1$,
- ▶ ⇒ number of values c[t, S] at index $t: 2^{|B_t|} = 2^{k+1}$,

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

- ▶ $|B_t| \le k + 1$,
- ightharpoonup ightharpoonup number of values c[t, S] at index $t: 2^{|B_t|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

- ▶ $|B_t| \le k + 1$,
- ▶ ⇒ number of values c[t, S] at index $t: 2^{|B_t|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at t, using map of values at t-1: O(k)

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} c[r, S] = c[r, \varnothing]$$

- ▶ $|B_t| \le k + 1$,
- ▶ ⇒ number of values c[t, S] at index $t: 2^{|B_t|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at t, using map of values at t-1: O(k)
- ▶ time for comp. all values at t, using values at t-1: $2^{k+1} \cdot O(k^2)$

Let $\langle \mathcal{T} = \langle T, F, r \rangle, \{B_t\}_{t \in T} \rangle$ be a nice tree decomposition of $\mathcal{G} = \langle V, E \rangle$ of width k. For every $t \in T$, and every independent $S \subseteq B_t$:

$$c[t,S] \coloneqq \begin{cases} \text{maximum possible weight of a set } \hat{S} \text{ such that} \\ \hat{S} \text{ is independent } \wedge S \subseteq \hat{S} \subseteq V_t = \bigcup_{s \in T_t} B_s \ \wedge \ \hat{S} \cap B_i = S \end{cases}$$

Time Complexity: Based on the values of c[t, S], the maximum possible weight of an independent set $S \subseteq V$ can be computed as:

$$= \max_{S \subseteq B_r} \ c[r, S] \ = c[r, \emptyset]$$

- ▶ $|B_t| \le k + 1$,
- ▶ ⇒ number of values c[t, S] at index $t: 2^{|B_t|} = 2^{k+1}$,
- ▶ ⇒ adjacency/independence check for $S \subseteq B_t$ possible in: $O(k^2)$ using a datastructure computable in time $O(k^{O(1)} \cdot n)$,
- ▶ time for comp. a value at t, using map of values at t-1: O(k)
- ▶ time for comp. all values at t, using values at t-1: $2^{k+1} \cdot O(k^2)$
- ⇒ the time for computing all values at the root r: $(2^{k+1} \cdot O(k^2)) \cdot |T| + O(k^{O(1)} \cdot n) \in O(2^k \cdot k^{O(1)} \cdot n)$, since $|T| \in O(k \cdot n)$.

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and tree-width tw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

Dynamical programming with tree width (example)

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and tree-width tw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

S is a *minimal* vertex cover

 \iff $V \setminus S$ is a *maximal* independent set.

Dynamical programming with tree width (example)

Theorem

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and tree-width tw(\mathcal{G}) = k, p^*-WEIGHTED-INDEPENDENT-SET \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

S is a *minimal* vertex cover

 \iff $V \setminus S$ is a *maximal* independent set.

Corollary

```
For every graph \mathcal{G} = \langle V, E \rangle with |V| = n and tree-width tw(\mathcal{G}) = k, p^*-VERTEX-COVER \in DTIME(2^k \cdot k^{O(1)} \cdot n).
```

- Formulate a family of properties that can be restricted to subtrees of T such that
 - a solution of P can be obtained from the properties at the root of T.
- ▶ Find recursion equations for bottom-up evaluation on T.

- Formulate a family of properties that can be restricted to subtrees of T such that
 - a solution of P can be obtained from the properties at the root of T.
- Find recursion equations for bottom-up evaluation on T.
- Prove correctness of these recursion equations by showing two inequalities for each type of node:
 - one relating an optimum solution for the node to some solutions for its children.
 - one relating optimum solutions for a node's children to a solution for the node.

- Formulate a family of properties that can be restricted to subtrees of T such that
 - a solution of P can be obtained from the properties at the root of T.
- **Find** recursion equations for bottom-up evaluation on \mathcal{T} .
- Prove correctness of these recursion equations by showing two inequalities for each type of node:
 - one relating an optimum solution for the node to some solutions for its children.
 - one relating optimum solutions for a node's children to a solution for the node.
- ▶ Obtain an estimate of the time needed to compute the properties in a node t depending on n and k.

- Formulate a family of properties that can be restricted to subtrees of T such that
 - a solution of P can be obtained from the properties at the root of T.
- **Find** recursion equations for bottom-up evaluation on \mathcal{T} .
- Prove correctness of these recursion equations by showing two inequalities for each type of node:
 - one relating an optimum solution for the node to some solutions for its children.
 - one relating optimum solutions for a node's children to a solution for the node.
- ▶ Obtain an estimate of the time needed to compute the properties in a node t depending on n and k.
- ▶ Sum up the time needed to compute the solution(s) at root r of \mathcal{T} .
- ▶ Add time needed to obtain the solution of *P* from properties at *r*.

Dynamical programming: similar results (I)

Theorem

For every graph $G = \langle V, E \rangle$ with |V| = n and tw(G) = k,

- ▶ p^* -Vertex-Cover, Independent-Set \in DTIME $(2^k \cdot k^{O(1)} \cdot n)$,
- ▶ p^* -DOMINATING-SET \in DTIME $(4^k \cdot k^{O(1)} \cdot n)$,
- ▶ p^* -ODD CYCLE TRAVERSAL \in DTIME $(3^k \cdot k^{O(1)} \cdot n)$,
- ▶ p^* -MAXCUT \in DTIME $(2^k \cdot k^{O(1)} \cdot n)$,
- ▶ p^* -q-Colorability \in DTIME $(q^k \cdot k^{O(1)} \cdot n)$.

Dynamical programming: similar results (II)

Theorem

For every graph $\mathcal{G} = \langle V, E \rangle$ with |V| = n and $\mathsf{tw}(\mathcal{G}) = k$, the following problems are in $\mathsf{DTIME}(k^{O(k)} \cdot n)$:

- ▶ p*-STEINER-TREE,
- ▶ p*-FEEDBACK-VERTEX-SET,
- p^* -Hamiltonian-Path and p^* -Longest-Path,
- $\triangleright p^*$ -Hamiltonian-Cycle and p^* -Longest-Cycle,
- ▶ p*-CHROMATIC-NUMBER,
- ▶ p*-CYCLE-PACKING,
- ▶ p*-Connected-Vertex-Cover,
- ▶ p*-Connected-Feedback-Vertex-Set.

ov fpt comp param's (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique width (example)

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 \coloneqq i \mid \mathsf{edge}_{i-j}(\varphi) \mid \mathsf{recolor}_{i \to j}(\varphi) \mid (\varphi_1 \oplus \varphi_2)$$

for $i, j \in [k]$ with $i \neq j$.

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i \mid \mathsf{edge}_{i-j}(\varphi) \mid \mathsf{recolor}_{i \to j}(\varphi) \mid (\varphi_1 \oplus \varphi_2)$$

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i$$

for $i, j \in [k]$ with $i \neq j$. k-expressions φ *generate* graphs $\mathcal{G}(\varphi)$:

 $\triangleright \mathcal{G}(i)$ is the graph with a single vertex of color i.

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i \mid \mathsf{edge}_{i-j}(\varphi)$$

- $\triangleright \mathcal{G}(i)$ is the graph with a single vertex of color i.
- $\triangleright \mathcal{G}(\mathsf{edge}_{i-j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by adding edges between every vertex of color i and every vertex of color j.

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i \mid \mathsf{edge}_{i-j}(\varphi) \mid \mathsf{recolor}_{i \to j}(\varphi)$$

- $\triangleright \mathcal{G}(i)$ is the graph with a single vertex of color i.
- $\triangleright \mathcal{G}(\mathsf{edge}_{i-j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by adding edges between every vertex of color i and every vertex of color j.
- $\triangleright \mathcal{G}(\mathsf{recolor}_{i \to j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by recoloring every vertex of color i by color j.

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i \mid \mathsf{edge}_{i-j}(\varphi) \mid \mathsf{recolor}_{i o j}(\varphi) \mid (\varphi_1 \oplus \varphi_2)$$

- $\triangleright \mathcal{G}(i)$ is the graph with a single vertex of color i.
- $\triangleright \mathcal{G}(\mathsf{edge}_{i-j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by adding edges between every vertex of color i and every vertex of color j.
- $\triangleright \mathcal{G}(\mathsf{recolor}_{i \to j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by recoloring every vertex of color i by color j.
- $\triangleright \mathcal{G}(\varphi_1 \oplus \varphi_2)$ is the disjoint union of $\mathcal{G}(\varphi_1)$ and $\mathcal{G}(\varphi_2)$.

For $k \in \mathbb{N}$, the *k*-expressions are defined by:

$$\varphi, \varphi_1, \varphi_2 := i \mid \mathsf{edge}_{i-j}(\varphi) \mid \mathsf{recolor}_{i \to j}(\varphi) \mid (\varphi_1 \oplus \varphi_2)$$

for $i, j \in [k]$ with $i \neq j$. k-expressions φ *generate* graphs $\mathcal{G}(\varphi)$:

- $\triangleright \mathcal{G}(i)$ is the graph with a single vertex of color *i*.
- $\triangleright \mathcal{G}(\mathsf{edge}_{i-j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by adding edges between every vertex of color i and every vertex of color j.
- $\triangleright \mathcal{G}(\mathsf{recolor}_{i \to j}(\varphi))$ results from $\mathcal{G}(\varphi)$ by recoloring every vertex of color i by color j.
- $\triangleright \mathcal{G}(\varphi_1 \oplus \varphi_2)$ is the disjoint union of $\mathcal{G}(\varphi_1)$ and $\mathcal{G}(\varphi_2)$.

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The *clique-width clw*(\mathcal{G}) of $\mathcal{G} = \langle V, E \rangle$ is defined by:

 $\mathit{clw}(\mathcal{G}) \coloneqq \mathsf{the} \; \mathsf{least} \; k \in \mathbb{N} \; \mathsf{such} \; \mathsf{that}, \; \mathsf{for} \; \mathsf{some} \; k \mathsf{-expression} \; \varphi,$ $\mathcal{G} = \mathcal{G}(\varphi) \; \mathsf{(when removing colors)}$

Clique width (example)

Building a graph G of clique-width clw(G) = 3:

ov fpt comp param's (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique-Width (examples, properties, computability)

Example

▶ The class of cliques has clique-width 2.

ov fpt comp param's (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique-Width (examples, properties, computability)

- The class of cliques has clique-width 2.
- The class of stars has clique-width 2.

- The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.

- The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.
- ▶ The class of $n \times n$ grids has clique-width $\Theta(n)$.

- ▶ The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.
- ▶ The class of $n \times n$ grids has clique-width $\Theta(n)$.
- subgraphs/induced subgraphs:
 - clique-width is preserved under taking induced subgraphs,
 - clique-width is not preserved under taking subgraphs (e.g. minors).

- ▶ The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.
- ▶ The class of $n \times n$ grids has clique-width $\Theta(n)$.
- subgraphs/induced subgraphs:
 - clique-width is preserved under taking induced subgraphs,
 - clique-width is not preserved under taking subgraphs (e.g. minors).
- Clw < tw:</p>
 - $clw \leq tw$: $clw(\mathcal{G}) \leq 3 \cdot 2^{tw(\mathcal{G})-1}$
 - ▶ \neg ($tw \le c/w$): for example, $c/w(K_n) = 2$, and $tw(K_n) = n 1$.

- The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.
- ▶ The class of $n \times n$ grids has clique-width $\Theta(n)$.
- subgraphs/induced subgraphs:
 - clique-width is preserved under taking induced subgraphs,
 - clique-width is not preserved under taking subgraphs (e.g. minors).
- ► c/w < tw:</p>
 - ► $clw \le tw$: $clw(\mathcal{G}) \le 3 \cdot 2^{tw(\mathcal{G})-1}$
 - ▶ \neg ($tw \le clw$): for example, $clw(K_n) = 2$, and $tw(K_n) = n 1$.
- ▶ Deciding whether $clw(\mathcal{G}) \le k$ is NP-hard. With parameter k it is in XP (slice-wise polynomial), but unknown to be in FPT.

- ▶ The class of cliques has clique-width 2.
- The class of stars has clique-width 2.
- The class of trees has clique-width 3.
- ▶ The class of $n \times n$ grids has clique-width $\Theta(n)$.
- subgraphs/induced subgraphs:
 - clique-width is preserved under taking induced subgraphs,
 - clique-width is not preserved under taking subgraphs (e.g. minors).
- ► c/w < tw:</p>
 - $clw \leq tw$: $clw(\mathcal{G}) \leq 3 \cdot 2^{tw(\mathcal{G})-1}$
 - ▶ \neg ($tw \le c/w$): for example, $c/w(K_n) = 2$, and $tw(K_n) = n 1$.
- ▶ Deciding whether $clw(\mathcal{G}) \le k$ is NP-hard. With parameter k it is in XP (slice-wise polynomial), but unknown to be in FPT.
- Every graph property expressible in MSO (monadic second-order logic) can be decided in linear time w.r.t. the graph's clique-width.

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is $symmetric : \iff \forall X \subseteq U \left[f(X) = f(U \setminus X) \right];$

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}^+_0$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

Definition

Let U be a set, $f: 2^U \to \mathbb{R}_0^+$ a cut function.

A *branch decomposition* of U is a pair $\langle \mathcal{T}, \eta \rangle$ where:

- $\triangleright \mathcal{T} = \langle T, F \rangle$ a tree.
- $\triangleright \eta: U \rightarrow \textit{Leafs}(\mathcal{T})$ a bijective function.

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

Definition

Let U be a set, $f: 2^U \to \mathbb{R}_0^+$ a cut function.

A *branch decomposition* of U is a pair $\langle \mathcal{T}, \eta \rangle$ where:

- $\triangleright \mathcal{T} = \langle T, F \rangle$ a tree.
- $\triangleright \eta: U \rightarrow Leafs(\mathcal{T})$ a bijective function.

Every edge $e \in T$ splits the tree into two connected parts, and, via η , splits U into a partition $\langle X_e, Y_e \rangle$.

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

Definition

Let U be a set, $f: 2^U \to \mathbb{R}_0^+$ a cut function.

A *branch decomposition* of U is a pair $\langle \mathcal{T}, \eta \rangle$ where:

- $\triangleright \mathcal{T} = \langle T, F \rangle$ a tree.
- $\triangleright \eta: U \rightarrow Leafs(\mathcal{T})$ a bijective function.

Every edge $e \in T$ splits the tree into two connected parts, and, via η , splits U into a partition $\langle X_e, Y_e \rangle$.

The *width* of an edge $e \in T$ (with respect to f) is $f(X_e) = f(Y_e)$. The *width* of $\langle \mathcal{T}, \eta \rangle$ *w.r.t.* f is the maximum width over the edges of \mathcal{T} .

By a *cut function* or a *connectivity function* we mean a function $f: 2^U \to \mathbb{R}_0^+$ such that:

$$f$$
 is symmetric: $\iff \forall X \subseteq U [f(X) = f(U \setminus X)];$
 f is fair: $\iff f(\emptyset) = f(U) = 0.$

Definition

Let U be a set, $f: 2^U \to \mathbb{R}_0^+$ a cut function.

A *branch decomposition* of U is a pair $\langle \mathcal{T}, \eta \rangle$ where:

- $\triangleright \mathcal{T} = \langle T, F \rangle$ a tree.
- $\triangleright \eta: U \rightarrow Leafs(\mathcal{T})$ a bijective function.

Every edge $e \in T$ splits the tree into two connected parts, and, via η , splits U into a partition $\langle X_e, Y_e \rangle$.

The *width* of an edge $e \in T$ (with respect to f) is $f(X_e) = f(Y_e)$. The *width* of $\langle \mathcal{T}, \eta \rangle$ *w.r.t.* f is the maximum width over the edges of \mathcal{T} .

The f-width $w_f(U)$ of U is defined as:

 $w_f(U) := \underline{\text{minimum}}$ width of branch decomp's of U w.r.t. f.

Branch-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph. The *border (vertices)* of a set $X \subseteq E$ of edges is defined by:

$$\partial(X) \coloneqq \big\{ v \in V \mid \exists e_1 \in X \ \exists e_2 \in E \setminus X \\ \big[v \text{ is incident to } e_1 \text{ and } e_2 \big] \big\}$$

Branch-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph. The *border (vertices)* of a set $X \subseteq E$ of edges is defined by:

$$\partial(X) \coloneqq \left\{ v \in V \mid \exists e_1 \in X \ \exists e_2 \in E \setminus X \\ \left[v \text{ is incident to } e_1 \text{ and } e_2 \right] \right\}$$

The *branch-width* $bw(\mathcal{G})$ of a graph $\mathcal{G} = \langle G, E \rangle$ is defined as

$$bw(\mathcal{G}) := w_f(E) \text{ for } f: 2^E \to \mathbb{R}_0^+, X \mapsto |\partial(X)|$$

Branch-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph. The *border (vertices)* of a set $X \subseteq E$ of edges is defined by:

$$\partial(X) \coloneqq \left\{ v \in V \mid \exists e_1 \in X \ \exists e_2 \in E \setminus X \\ \left[v \text{ is incident to } e_1 \text{ and } e_2 \right] \right\}$$

The *branch-width* $bw(\mathcal{G})$ of a graph $\mathcal{G} = \langle G, E \rangle$ is defined as

$$bw(\mathcal{G}) := w_f(E)$$
 for $f: 2^E \to \mathbb{R}_0^+, X \mapsto |\partial(X)|$

Branch-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph. The *border (vertices)* of a set $X \subseteq E$ of edges is defined by:

$$\partial(X) \coloneqq \left\{ v \in V \mid \exists e_1 \in X \ \exists e_2 \in E \setminus X \\ \left[v \text{ is incident to } e_1 \text{ and } e_2 \right] \right\}$$

The *branch-width* $bw(\mathcal{G})$ of a graph $\mathcal{G} = \langle G, E \rangle$ is defined as

$$bw(\mathcal{G}) := w_f(E) \text{ for } f: 2^E \to \mathbb{R}_0^+, \ X \mapsto |\partial(X)|$$

Proposition

 $bw(\mathcal{G}) \approx tw(\mathcal{G})$, for every graph; more precisely:

$$bw(\mathcal{G}) \leq tw(\mathcal{G}) + 1 \leq \frac{3}{2} \cdot bw(\mathcal{G})$$
.

Rank-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph.

For $X \subseteq V$ we define the GF(2)-matrix:

$$B_{\mathcal{G}}(X) \coloneqq (b_{x,y})_{x \in X, y \in V \setminus X}$$
, where, for all $x \in X, y \in V \setminus X$:
$$b_{x,y} = 1 \iff \{x,y\} \in E.$$

 $(B_{\mathcal{G}}(X))$ is the adjacency matrix of the bipartite graph induced by \mathcal{G} between X and $V \setminus X$.)

Rank-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph.

For $X \subseteq V$ we define the GF(2)-matrix:

$$B_{\mathcal{G}}(X) \coloneqq (b_{x,y})_{x \in X, y \in V \setminus X}$$
, where, for all $x \in X, y \in V \setminus X$:
$$b_{x,y} = 1 \Longleftrightarrow \{x,y\} \in E.$$

 $(B_{\mathcal{G}}(X))$ is the adjacency matrix of the bipartite graph induced by \mathcal{G} between X and $V \setminus X$.)

The *rank-width rw*(\mathcal{G}) of a graph $\mathcal{G} = \langle G, E \rangle$ is:

$$rw(\mathcal{G}) := w_{\rho_{\mathcal{G}}}(E)$$
 for $\rho_{\mathcal{G}}: 2^V \to \mathbb{N}_0, X \mapsto \text{rank of } B_{\mathcal{G}}(X)$

Rank-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph.

For $X \subseteq V$ we define the GF(2)-matrix:

$$B_{\mathcal{G}}(X)\coloneqq (b_{x,y})_{x\in X,y\in V\smallsetminus X}\,, \text{ where, for all }x\in X,y\in V\smallsetminus X$$
:
$$b_{x,y}=1\Longleftrightarrow \{x,y\}\in E\,.$$

 $(B_{\mathcal{G}}(X))$ is the adjacency matrix of the bipartite graph induced by \mathcal{G} between X and $V \setminus X$.)

The *rank-width rw*(\mathcal{G}) of a graph $\mathcal{G} = \langle G, E \rangle$ is:

$$rw(\mathcal{G}) := w_{\rho_{\mathcal{G}}}(E)$$
 for $\rho_{\mathcal{G}}: 2^V \to \mathbb{N}_0, X \mapsto \text{rank of } B_{\mathcal{G}}(X)$

Properties

- $ightharpoonup rw(\mathcal{G}) \leq tw(\mathcal{G}).$
- tree-width cannot be bounded functionally by rank-width: $rw(K_n) = 1$, but $tw(K_n) = n 1$.

Carving-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph.

For $X \subseteq V$ the *edge-cut* of X is:

$$\textit{cut}_{\mathcal{G}}(X) := \{e = \{u, v\} \in E \mid u \in X, v \in V \setminus X\}$$
.

The *carving-width carw*(\mathcal{G}) of a graph $\mathcal{G} = \langle G, E \rangle$ is:

$$\operatorname{carw}(\mathcal{G}) := w_{\operatorname{cut}}(E) \text{ for } \operatorname{cut}: 2^V \to \mathbb{N}_0, \ X \mapsto |\operatorname{cut}_{\mathcal{G}}(X)|.$$

Carving-Width and Cut-Width

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph.

For $X \subseteq V$ the *edge-cut* of X is:

$$cut_G(X) := \{e = \{u, v\} \in E \mid u \in X, v \in V \setminus X\}$$
.

The *carving-width carw*(\mathcal{G}) of a graph $\mathcal{G} = \langle G, E \rangle$ is:

$$\operatorname{carw}(\mathcal{G}) := w_{\operatorname{cut}}(E) \text{ for } \operatorname{cut}: 2^V \to \mathbb{N}_0, \ X \mapsto |\operatorname{cut}_{\mathcal{G}}(X)|.$$

Definition

Let $\mathcal{G} = \langle V, E \rangle$ be a graph with n = |V|.

For a permutation $\pi: \{1, \dots, n\} \to V$ on V we define:

$$\textit{width}(\pi) \coloneqq \max_{1 \le i \le n} \textit{cut}_{\mathcal{G}}(\{\pi(j) \mid 1 \le j \le i\}).$$

The *cut-width cutw*(\mathcal{G}) of \mathcal{G} is:

$$\operatorname{cutw}(\mathcal{G}) := \min_{\pi \text{ perm. of } V} \operatorname{width}(\pi)$$
.

ov fpt comp param's (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Coverage in Multi-Interface Networks

Coverage in Multi-Interface Networks

CMI(p) (for $p \in \mathbb{N}$)

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1, \dots, a\}}$ available-interface allocation, $c: \{1, \dots, a\} \to \mathbb{R}^+$ interface cost function.

Coverage in Multi-Interface Networks

CMI(p) (for $p \in \mathbb{N}$)

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1,\dots,a\}}$ available-interface allocation, $c: \{1,\dots,a\} \to \mathbb{R}^+$ interface cost function.

Solution: An allocation $W_A: V \to 2^{\{1,\dots,a\}}$ of active interfaces

covering $\mathcal G$ such that $W_A(v)\subseteq W(v)$, and $|W_A(v)|\le p$ for

all $v \in V$, if possible; otherwise, a negative answer.

Coverage in Multi-Interface Networks

CMI(p) (for $p \in \mathbb{N}$)

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1,\dots,a\}}$ available-interface allocation, $c: \{1,\dots,a\} \to \mathbb{R}^+$ interface cost function.

Solution: An allocation $W_A: V \to 2^{\{1,\dots,a\}}$ of active interfaces covering $\mathcal G$ such that $W_A(v) \subseteq W(v)$, and $|W_A(v)| \le p$ for all $v \in V$, if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to the total cost of the interfaces that are activated, that is, $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i)$.

ov fpt comp param's (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Coverage in Multi-Interface Networks

Theorem

 $CMI(2) \in NP$ -complete, also for graphs with max. node degree ≥ 4 .

Theorem

 $CMI(2) \in NP$ -complete, also for graphs with max. node degree ≥ 4 .

```
p^*-CMI(p) (for p \in \mathbb{N})
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1,\dots,a\}}$ available-interface allocation, $c: \{1,\dots,a\} \to \mathbb{R}^+$ interface cost function.

Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to

the total cost of the interfaces that are activated, that is,

 $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i).$

Theorem

 $CMI(2) \in NP$ -complete, also for graphs with max. node degree ≥ 4 .

```
p^*-CMI(p) (for p \in \mathbb{N})
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1,\dots,a\}}$ available-interface allocation, $c: \{1,\dots,a\} \to \mathbb{R}^+$ interface cost function.

Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to the total cost of the interfaces that are activated, that is,

 $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i)$.

Theorem (Aloisio, Navarra, 2020, [1])

► For path-width $pw(\mathcal{G}) = k$, p^* -CMI(2) \in DTIME $(n \cdot (a + \binom{a}{2})^{k+1})$.

Theorem

 $CMI(2) \in NP$ -complete, also for graphs with max. node degree ≥ 4 .

```
p^*-CMI(p) (for p \in \mathbb{N})
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1,\dots,a\}}$ available-interface allocation, $c: \{1,\dots,a\} \to \mathbb{R}^+$ interface cost function.

Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to the total cost of the interfaces that are activated, that is.

 $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i).$

Theorem (Aloisio, Navarra, 2020, [1])

- ► For path-width $pw(\mathcal{G}) = k$, p^* -CMI(2) \in DTIME $(n \cdot (a + \binom{a}{2})^{k+1})$.
- ► For carving-width carw(\mathcal{G}) = k, p^* -CMI(2) \in DTIME($n \cdot a^{4k}$).

Theorem (Aloisio, Navarra, 2020, [1])

- For path-width $pw(\mathcal{G}) = k$, p^* -CMI(2) \in DTIME $(n \cdot (a + {a \choose 2})^{k+1})$.
- ► For carving-width carw(\mathcal{G}) = k, p^* -CMI(2) \in DTIME($n \cdot a^{4k}$).

```
(p^*)'-CMI(p) (for p \in \mathbb{N})
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1, \dots, a\}}$ available-interface allocation, $c: \{1, \dots, a\} \to \mathbb{R}^+$ interface cost function.

Parameter: *a* + (path-width / carving-width *k*)

Problem: Obtain, if possible, a minimal solution with respect to the total cost of the interfaces that are activated, that is, $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i)$.

Theorem (Aloisio, Navarra, 2020, [1])

- For path-width $pw(\mathcal{G}) = k$, p^* - $CMI(2) \in DTIME(n \cdot (a + {a \choose 2})^{k+1})$.
- ► For carving-width carw(\mathcal{G}) = k, p^* -CMI(2) \in DTIME($n \cdot a^{4k}$).

```
(p^*)'-CMI(p) (for p \in \mathbb{N})
```

Instance: A graph $\mathcal{G} = \langle V, E \rangle$, $W: V \to 2^{\{1, \dots, a\}}$ available-interface allocation, $c: \{1, \dots, a\} \to \mathbb{R}^+$ interface cost function.

Parameter: *a* + (path-width / carving-width *k*)

Problem: Obtain, if possible, a minimal solution with respect to the total cost of the interfaces that are activated, that is, $c(W_A) = \sum_{v \in V} \sum_{i \in W_A(v)} c(i)$.

Corollary

 $(p^*)'$ - $CMI(p) \in FPT$.

Comparing parameterizations

Definition (computably bounded)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ▶ $\kappa_1 \ge \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N} \text{ computable } \forall x \in \Sigma^* \Big[g(\kappa_1(x)) \ge \kappa_2(x) \Big].$

Comparing parameterizations

Definition (computably bounded)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ▶ $\kappa_1 \succeq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* [g(\kappa_1(x)) \succeq \kappa_2(x)]$.

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \succeq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT}$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}$

Computably boundedness between notions of width

(from Sasák, [5])

 $wd_1 \succeq wd_2 : \Leftarrow wd_1 \xrightarrow{g(k)} wd_2$

Computably boundedness between notions of width

(from Sasák, [5])

$$wd_1 \succeq wd_2 : \Leftarrow wd_1 \xrightarrow{g(k)} wd_2$$

► FPT-results

transfer upwards

(and conversely to →)

Computably boundedness between notions of width

(from Sasák, [5])

$$wd_1 \succeq wd_2 : \Leftarrow wd_1 \xrightarrow{g(k)} wd_2$$

- ► FPT-results

 transfer upwards

 (and conversely to →)
- (∉ FPT)-results
 transfer downwards
 (and along ^g/_→)

Summary

- comparing parameterizations
- dynamical programming on trees, example:
 - Weighted-Independent-Set (and Vertex-Cover)
- path-width
 - example: fpt-algorithm for bounded path-width
- tree-width
 - example: fpt-algorithm for bounded path-width
- fpt-results for other problems, obtained similarly
- other notions of width
 - clique-width
 - using f-width to define:
 - carving-width (and cut-width)
 - branch-width
 - rank-width
- example problem: coverage in multi-interface networks
- comparing width-notions

Wednesday

Monday, July 14 10.30 – 12.30 Algorithmic	Tuesday, July 15 10.30 – 12.30	Wednesday, July 16 10.30 – 12.30	Thursday, July 17 10.30 – 12.30 Igorithmic Techniques	Friday, July 18
Introduction & basic FPT results	Notions of bounded graph width	Algorithmic Meta-Theorems	FPT-Intractability Classes & Hierarchies	
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. width	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	
				14.30 – 16.30
				examples, question hour

Thursday

- recalling notions from logic:
 - propositional, and first-order logic
 - monadic second-order logic (MSO)
- ► Courcelle's Theorem: obtaining FPT-results by
 - model-checking of MSO-properties on graphs and structures of bounded tree-/clique-width

References I

Alessandro Aloisio and Alfredo Navarra.

Constrained connectivity in bounded x-width multi-interface networks.

Algorithms, 13(2), 2020.

Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars.

Journal of Computer and System Sciences, 46(2):218 – 270, 1993

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.

Parameterized Algorithms.

Springer, 1st edition, 2015.

References II

Jörg Flum and Martin Grohe.

Parameterized Complexity Theory.

Springer, 2006.

Comparing 17 graph parameters.

Master's thesis, University of Bergen, Norway, 2010.