PULSACIONES, BATIDOS (O LATIDOS, beats)

Los ejercicios con (*) son opcionales.

1. Considere el sistema de dos péndulos de igual longitud l pero de masas diferentes m_a y m_b , acoplados mediante un resorte de constante k.

- a) Escriba las ecuaciones de movimiento de cada masa. considerando pequeñas oscilaciones, ¿es relevante considerar $l_0 \neq 0$? ¿Qué cambia si el resorte es slinky?
- b) Obtenga las frecuencias naturales del sistema y sus modos normales de oscilación. Interprete el significado físico de estos modos normales.
- c) Suponga que el acoplamiento es débil $(k \ll \frac{g}{l} \frac{m_a m_b}{m_a + m_b})$ y que las condiciones iniciales son: $\dot{\Psi}_a(0) = 0, \dot{\Psi}_b(0) = 0, \Psi_a(0) = 0, \Psi_b(0) = 1$. Obtenga el movimiento de cada masa y grafíquelo en función del tiempo.
- d) Calcule los valores medios, en un ciclo rápido, de T_a y T_b , donde T indica energía cinética. Grafique $\langle T_a \rangle$ y $\langle T_b \rangle$, y analice las diferencias en el gráfico como función de las diferencias entre las masas $(m_a = m_b \text{ y } m_a \text{ muy diferente de } m_b)$. Calcule el valor medio de la energía de interacción entre las dos partículas.
- 2. Considere el sistema de la figura. Las masas están apoyadas en una mesa sin rozamiento, sujetas a las paredes por resortes de constante k y unidas por otro resorte de constante k'.

- a) Obtenga las frecuencias y los modos transversales del sistema.
- b) ¿Bajo qué condiciones espera observar batidos? ¿Qué son los batidos?