

日期 2022年5月13日 成绩 指导教师 王洪峰

《模拟退火算法实验》

一、实验目的

通过改变降温过程和 Metropolis 采样过程来探究内外循环次数对模拟退火算法性能的影响程度。

二、实验内容

1.实验内容

针对 100 个工件的单机极小化总流水时间的排序问题,每个工件的加工时间在 [20,100]随机产生。探究内外循环次数对算法的影响程度。

2.算法设计思路

先编写内循环部分,先 OPT-2 随机领域移动一次,判断值是否更优。若更优则接受,否则就行条件转移判断。

```
# 内循环一次
def search_once(self):
   old_result = self.data.calculate(self.data.now)
    # 随机领域移动一次 opt-2
   self.data.random_change()
   new_result = self.data.calculate(self.data.temp)
    # 计算差值
    delta_result = new_result - old_result
    if delta_result<0:</pre>
       # 如果收敛则移动
       self.data.now = self.data.temp
       if new_result<self.data.best_result:</pre>
           # 如果最优则更新最优值
           self.data.update_best()
    else:
       # 不收敛则判断是否条件转移
       if self.cal_and_decide(delta_result):
           self.data.now = self.data.temp
```

图 1 内循环 Python 代码

条件转移判断需要计算玻尔兹曼方程的值并与随机生成的ξ进行对比。

```
# 有条件转移,返回是否转移

def cal_and_decide(self,delta):
    exponent = -1.0 * (delta/self.temp)
    # 计算Bolzman方程
    bolzman = np.exp(exponent)
    # 随机生成ksai
    ksai = np.random.uniform(low=0.0, high=1.0)
    # 判断bolzman和ksai的大小
    if bolzman>ksai:
        return True
    else:
        return False
```

图 2 条件转移判断 Python 代码

外循环需要每次结束内循环后进行降温,然后判断是否达到阈值温度。

```
# 判断是否到达最低温
while not self.isTempDone():
    for i in range(self.inner_count):
        self.search_once()
    # 降温
    self.decrease_temp()

You, 1秒钟前。 Uncommitted changes
return self.data.best_result
```

图 3 外循环 Python 代码

3. 实验设计思路

本实验设置两组实验,第一组固定内循环次数和阈值温度,分别设置 4 组初始温度对同一起始位置进行计算,探究外循环次数对算法的影响。

第二组实验固定温度变化,设置 4 组不同的内循环次数,判断内循环次数对算法的 影响。

4. 实验结果

两组实验分别产生了500条实验数据,每条数据使用同一个初始加工顺序。

验编号	温度阈值	内循环次数	Δ温度	初始温度	最佳值	初始温度	最佳值	初始温度	最佳值	初始温度	最佳值
1型編写	温度剛诅	3	10	初始温度 400	取注追 297129	初知温度 600	取1 王1旦 272493	800	272036	1000	263113
	300	3	10	400	294762	600	292246	800	280694	1000	280864
2	300	3	10	400	281989	600	292246	800	254199	1000	253028
3	300	3	10	400	290784	600	267728	800	264334	1000	270035
4	300	3	10	400	296339	600	274612	800	271570	1000	270478
5	300	3	10	400	273547	600	252354	800	245743	1000	246673
6	300	3	10	400	276651	600	257036	800	252822	1000	249717
7	300	3	10	400	286598	600	276027	800	263484	1000	260086
8	300	3	10	400	294299	600	282860	800	269295	1000	278248
9	300	3	10	400	286619	600	277322	800	253638	1000	257145
10	300	3	10	400	303740	600	277138	800	260700	1000	260839
11	300	3	10	400	297800	600	294045	800	271651	1000	272539
12	300	3	10	400	293427	600	273040	800	266697	1000	266320
13	300	3	10	400	275060	600	254111	800	260894	1000	256610
14	300	3	10	400	280865	600	265237	800	265251	1000	249204
15	300	3	10	400	287417	600	271384	800	275086	1000	261949
16	300	3	10	400	261645	600	242301	800	242165	1000	237318
17	300	3	10	400	289617	600	281064	800	265286	1000	276120
18	300	3	10	400	279779	600	263943	800	261611	1000	254227
19	300	3	10	400	293967	600	275572	800	274722	1000	265246
20	300	3	10	400	290918	600	273684	800	269146	1000	267080
21	300	3	10	400	289424	600	263385	800	261943	1000	264916
22	300	3	10	400	270656	600	258815	800	230695	1000	246130
23	300	3	10	400	287053	600	265361	800	268226	1000	263332
24	300	3	10	400	295963	600	281625	800	271403	1000	273720
25	300	3	10	400	283044	600	269033	800	279301	1000	260079
26	300	3	10	400	305068	600	284610	800	278607	1000	273516
27	300	3	10	400	287068	600	275133	800	267589	1000	266675
28	300	3	10	400	293191	600	281554	800	269126	1000	268907
29	300	3	10	400	317078	600	298603	800	285461	1000	284354
30	300	3	10	400	290957	600	277070	800	266520	1000	261089
31	300	3	10	400	275567	600	256357	800	266563	1000	256467
32	300	3	10	400	288888	600	271705	800	274117	1000	265117
33	300	3	10	400	308114	600	296320	800	286609	1000	287302
34	300	3	10	400	293050	600	272848	800	261311	1000	262480
35	300	3	10	400	287023	600	272906	800	260584	1000	264620
36	300	3	10	400	287079	600	271275	800	267205	1000	263481
37	300	3	10	400	306352	600	285504	800	271421	1000	276600
38	300	3	10	400	300581	600	290345	800	277787	1000	268109
39	300	3	10	400	304197	600	294777	800	282462	1000	284793
40	300	3	10	400	300575	600	277959	800	261793	1000	265759
41	300	3	10	400	286833	600	270330	800	251480	1000	255173

图 4 实验一获得的数据

A	В	С	D	E	F	G	Н	1	J	K	L
		梼	拟退	火实验二	: 固定初	始温度和	阈值温度	,更改内	循环次数		
验编号	温度阈值	初始温度	Δ温度	内循环次数	最佳值	内循环次数	最佳值	内循环次数	最佳值	内循环次数	最佳值
0	300	800	10	5	275811	20	261865	80	261119	200	261009
1	300	800	10	5	256848	20	244140	80	244147	200	244664
2	300	800	10	5	270291	20	255867	80	254102	200	253600
3	300	800	10	5	253774	20	243403	80	236412	200	236571
4	300	800	10	5	265392	20	249948	80	248693	200	248739
5	300	800	10	5	287789	20	281091	80	277088	200	277636
6	300	800	10	5	273297	20	265640	80	262162	200	260448
7	300	800	10	5	287877	20	271683	80	264882	200	265213
8	300	800	10	5	274377	20	265134	80	263048	200	262645
9	300	800	10	5	239223	20	223223	80	220692	200	218403
10	300	800	10	5	241918	20	231922	80	228765	200	226908
11	300	800	10	5	257341	20	244123	80	240480	200	241658
12	300	800	10	5	243800	20	231265	80	232653	200	231728
13	300	800	10	5	259390	20	251077	80	249075	200	247537
14	300	800	10	5	263905	20	252107	80	248318	200	249445
15	300	800	10	5	283216	20	268352	80	264468	200	264894
16	300	800	10	5	255008	20	250316	80	245464	200	243578
17	300	800	10	5	255627	20	253564	80	248798	200	244630
18	300	800	10	5	250336	20	236398	80	230291	200	231679
19	300	800	10	5	274421	20	254598	80	250224	200	250370
20	300	800	10	5	262630	20	252694	80	248314	200	250496
21	300	800	10	5	259497	20	244622	80	244886	200	242089
22	300	800	10	5	272653	20	265267	80	256375	200	253814
23	300	800	10	5	246715	20	235922	80	230977	200	226483
24	300	800	10	5	278701	20	274709	80	268821	200	266101
25	300	800	10	5	263996	20	259208	80	252096	200	249866
26	300	800	10	5	280730	20	260873	80	260126	200	257541
27	300	800	10	5	254674	20	241542	80	238802	200	237182
28	300	800	10	5	246886	20	239289	80	236927	200	233789
29	300	800	10	5	234332	20	222955	80	215551	200	215534
30	300	800	10	5	260053	20	249362	80	250342	200	245039
31	300	800	10	5	269780	20	256785	80	251444	200	251997
32	300	800	10	5	241037	20	227950	80	224933	200	224681
33	300	800	10	5	227350	20	219076	80	216602	200	213391
34	300	800	10	5	253133	20	248437	80	243864	200	242524
35	300	800	10	5	264065	20	248833	80	246673	200	245459
36	300	800	10	5	261239	20	246633	80	243094	200	245459
37			10	5	242931	20					
38	300	800	10	5		20	237382	80 80	234657	200	232882 262524
	300	800			279183				261219	200	
39	300	800	10	5	251938	20	239227	80	238672	200	237426
40	300	800	10	5	249511	20	233311	80	232812	200	231751
41	300	800	10	5	270771	20	256119	80	249623	200	249791

图 5 实验二获得的数据

5.实验结果分析

分别计算两组实验数据中最优值的平均值,结果发现:外循环次数的提高会明显提升算法搜索的性能,内循环次数的提高也会提升算法搜索的性能。内循环次数的提高能够提升算法搜索的广度。

图 6 外循环次数对算法性能的影响

图 7 内循环次数对算法性能的影响

三、实验体会(遇到问题及解决办法,编程后的心得体会)

模拟退火算法与之前所学禁忌搜索同属于贪心算法,但他们处理局部极小值的方法不同。禁忌搜索通过创建禁忌表来防止自己陷入局部最小,而模拟退火则是引入随机概率让自己以某种不确定的概率不时跳出当前搜索的方向,从而提高搜索的广度。从

东北大学 信息学院 实验中心 实验报告

算法的性能来分析,越高的初温能够提高模拟退火的搜索广度,但所花费的时间也将增加。