

Relational Schema

Minimal FDs & proof that relations are in BCNF

IEEE Database

Database Management Systems Project Assigned by: Prof. P M Jat

12th October, 2019

IEEE Member:

Attributes: IEEENumber, name, DOB, email

Minimal FD set: IEEENumber \rightarrow (name, DOB, email)

```
{IEEENumber}<sup>+</sup>= {IEEENumber, name, DOB, email}
```

The closure of IEEENumber includes all attributes so **IEEENumber** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Student Member:

Attributes: IEEENumber, CPI, field, degree, SB_ID, cpi_rank
Minimal FD set: IEEENumber

(CPI, field, degree, SB_ID, cpi_rank)

```
{IEEENumber}<sup>+</sup>= {IEEENumber, CPI, field, degree, SB_ID, cpi_rank}
```

The closure of IEEENumber includes all attributes so **IEEENumber** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Professional Member:

Attributes: IEEENumber, education, profession

Minimal FD set: IEEENumber \rightarrow (education, profession)

```
{IEEENumber}<sup>+</sup>= {IEEENumber, education, profession}
```

The closure of IEEE Number includes all attributes so **IEEE** Number is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Section:

Attributes: sec_ID, sec_name, country

Minimal FD set: $sec_ID \rightarrow (sec_name, country)$

```
\{\sec ID\}^+ = \{\sec ID, \sec_name, country\}
```

The closure of sec_ID includes all attributes so **sec_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Section Designation:

Attributes; sec_ID, sec_position, sec_year IEEENumber **Minimal FD set:** {sec_ID, sec_position, sec_year} → (IEEENumber)

 $\{sec_ID, sec_position, sec_year\}^+= \{sec_ID, sec_position, sec_year IEEENumber\}$

The closure of {sec_ID, sec_position, sec_year} includes all attributes so {sec_ID, sec_position, sec_year} is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Student Branch:

Attributes: SB_ID, SB_name, SB_DOE, inst_ID, sec_ID, IEEENumber Minimal FD set: SB_ID \rightarrow (SB_name, SB_DOE, inst_ID, sec_ID, IEEENumber)

```
{SB_ID}<sup>+</sup>= { SB_ID, SB_name, SB_DOE, inst_ID, sec_ID, IEEENumber}
```

The closure of SB_ID includes all attributes so **SB_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Institute:

Attributes: inst_ID, inst_name, inst_addr, inst_type Minimal FD set: inst_ID \rightarrow (inst_name, inst_addr, inst_type)

```
{inst_ID}<sup>+</sup>= { inst_ID, inst_name, inst_addr, inst_type}
```

The closure of inst_ID includes all attributes so **inst_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Paper:

Attributes: pap_ID, pap_topic, accepted, pub_date

 $\mathbf{Minimal\ FD\ set:\ pap_ID} \to (pap_topic,\,accepted,\,pub_date)$

```
{sec_ID}<sup>+</sup>= { pap_ID, pap_topic, accepted, pub_date}
```

The closure of pap_ID includes all attributes so **pap_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Conference:

Attributes: con_ID, con_loc, con_sdate, con_edate

Minimal FD set: $con_ID \rightarrow (con_loc, con_sdate, con_edate)$

```
\{\text{con\_ID}\}^+=\{\text{con\_ID}, \text{con\_loc}, \text{con\_sdate}, \text{con\_edate}\}
```

The closure of con_ID includes all attributes so **con_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Project:

Attributes: proj_ID, proj_name, proj_field, proj_funding
Minimal FD set: proj_ID → (proj_name, proj_field, proj_funding)

```
{proj_ID}<sup>+</sup>= { proj_ID, proj_name, proj_field, proj_funding}
```

The closure of proj_ID includes all attributes so **proj_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Student Interest Group:

Attributes: SIG_ID, SIG_name, SIG_DOE, SIG_field

Minimal FD set: $SIG_ID \rightarrow (SIG_name, SIG_DOE, SIG_field)$

```
{SIG_ID}<sup>+</sup>= { SIG_ID, SIG_name, SIG_DOE, SIG_field}
```

The closure of SIG_ID includes all attributes so **SIG_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Session:

Attributes: ses_ID, ses_topic, ses_etime, ses_stime, ses_desc, SIG_ID Minimal FD set: ses_ID \rightarrow (ses_topic, ses_etime, ses_stime, ses_desc, SIG_ID)

```
{ses_ID}<sup>+</sup>= { ses_ID, ses_topic, ses_etime, ses_stime, ses_desc, SIG_ID}
```

The closure of ses_ID includes all attributes so **ses_ID** is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Conference Participation:

Attributes: IEEENumber, con_ID, travel_grant

Minimal FD set: IEEENumber, con_ID \rightarrow (travel_grant)

{IEEENumber, con_ID}⁺= { IEEENumber, con_ID, travel_grant}

The closure of {IEEENumber, con_ID} includes all attributes so {IEEENumber, con_ID} is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Student Branch Designation:

Attributes:SB_ID, SB_position, SB_year, IEEENumber Minimal FD set: SB_ID, SB_position, SB_year \rightarrow (IEEENumber)

 $\{SB_ID,\,SB_position,\,SB_year\}^+=\{\,SB_ID,\,SB_position,\,SB_year,\,IEEENumber\}$

The closure of {SB_ID, SB_position, SB_year} includes all attributes so {SB_ID, SB_position, SB_year} is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

PaperPresentation:

Attributes: pap_ID, con_ID, IEEENumber

Minimal FD set: pap_ID, con_ID \rightarrow (IEEENumber)

 $\{pap_ID, con_ID\}^+= \{pap_ID, con_ID, IEEENumber\}$

The closure of {pap_ID, con_ID} includes all attributes so {pap_ID, con_ID} is key. The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

PaperWritten:

Attributes: IEEENumber, pap_ID

Minimal FD set: No functional dependencies.

So this relation is in BCNF.

ProjectWork:

Attributes: IEEENumber, proj_ID

Minimal FD set: No functional dependencies.

So this relation is in BCNF.

SIG Member:

Attributes: IEEENumber, SIG_ID

Minimal FD set: No functional dependencies.

So this relation is in BCNF.

Jury:

Attributes: IEEENumber, con_ID

Minimal FD set: No functional dependencies.

So this relation is in BCNF.