PREDICTING GLIOBLASTOMA BEHAVIOUR

RNA Velocoraptors

Alice Eddershaw, Ester Paolocci, Ashwin Jainarayanan, Jakke Neiro, Szymon Stodolak

SUMMARY

- Glioblastoma biology
- ▼ Intro to RNA Velocity
- Methodology
- Results
- Discussion
- Future Applicaions

GLIOBLASTOMA

WHO classification "central nervous system tumour of grade IV histological malignancy"

- Primary gliomas, arise from normal glial cells
- Secondary gliomas originate from tumours of lower grade
- Deregulation of checkpoint G1/S of a cell cycle and occurrence of multiple genetic abnormalities
- Infiltration is common in the brain
- Incidence of extracranial metastasis of GBM is as low as 0.5%

GLIOBLASTOMA

"Intricate ecosystems composed of diverse cells, including malignant, immune, and stromal subsets"

Cell types available for analysis:

- Neoplastic
- OPC (Oligodendrocyte precursor cells)
- Immune cells
- Oligodendrocytes
- Astocytes
- Vascular
- Neuron

Origin likely from OPC

RNA VELOCITY

- Package for analysis of expression dynamics in single cell RNA seq data
- Enables estimations of RNA velocities of single cells by distinguishing unspliced and spliced mRNAs

AIM OF OUR HACKATHON

? Could we use RNA velocity to understand differences between Glioblastoma tumour layers?

Would RNA Velocity help identify origin of Glioblastoma?

How could we use RNA Velocity to predict/detect tumour migration?

Could RNA Velocity help identify new markers of glioblastoma progression?

METHODS OVERIEW

- 1. Single-cell RNA data from glioblastomaassociated cells
- 2. Alignment to human genome
- 3. Counting spliced/unspliced RNA
- 4. RNA velocity estimation and PCA

METHODS 1: RAW DATA

PRELIMINARY SET: 4 cells

- Neoplastic tumour
- Neoplastic periphery
- Immune tumour
- Immune periphery

FINAL SET: 100 cells

- Neoplastic tumour (41)
- Neoplastic periphery (29)
- Immune tumour (15)
- Immune periphery (15)

- Data dimensions 600 Mb/cell (FASTQ)
- Darmanis et al. 2018. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma
- Paired-end reads Smart-seq2 protocol
- Two analysis runs: preliminary set and final set
- Sequences retrieved with SRA toolkit and the paired reads were split into two files

TAITO-SHELL.CSC.FI

METHODS 2: STAR INDEX AND ALIGNMENT

- The RNA-seq readas were aligned to the human genome (hg19) using STAR
- The STAR genome index was generated with SLURM Workload Manager (1 Node, 32 cores, 300GB RAM)
- STAR alignmet was performed as a long-running screen process (~3h)
- Measurement of RNA splicing dynamics was performed with velocyto (run-smartseq2) as a long running screen process (~7h)

FIND THE HUMOUR IN THE TUMOUR...

46414235	saikon csc	imap1-c2ureaPh	None 2019-12-19T1 2019-12-20T1	17:18:31	1 24	681
46357312	yuzitong csc	python	None 2019-12-17T0 2019-12-20T0	17:03:40	1 2	792
46356308	yuzitong csc	python	None 2019-12-17T0 2019-12-20T0	17:01:24	1 2	796
46356304	yuzitong csc	python	None 2019-12-17T0 2019-12-20T0	17:01:18	1 2	796
46243168	toropai3 csc	SYS_10Na_10Cl_	None 2019-12-13T1 2019-12-20T0	17:00:13	1 8	1168
46418184	keshavar csc	TSBN11b	None 2019-12-19T1 2019-12-20T0	16:56:21	1 4	668
46418185	keshavar csc	TSBN11	None 2019-12-19T1 2019-12-20T0	16:56:21	1 4	668
46418186	keshavar csc	TSBN13	None 2019-12-19T1 2019-12-20T0	16:56:21	1 4	668
46326913	asalmiva csc	bash	None 2019-12-13T0 2019-12-20T0	16:55:57	1 1	743
46418181	keshavar csc	PC-TSBN12-cntd	None 2019-12-19T1 2019-12-20T0	16:55:30	1 4	668
46418182	keshavar csc	RC-TSBN12-cntd	None 2019-12-19T1 2019-12-20T0	16:55:30	1 4	668
46400848	hagolani csc	analbomb701	None 2019-12-18T0 2019-12-20T0	16:46:29	1 1	667
46400675	hagolani csc	analbomb540	None 2019-12-18T0 2019-12-20T0	16:45:32	1 1	667
46400597	hagolani csc	analbomb469	None 2019-12-18T0 2019-12-20T0	16:45:14	1 1	667
46400494	hagolani csc	analbomb376	None 2019-12-18T0 2019-12-20T0	16:44:53	1 1	667
46417179	keshavar csc	TSPAH1a	None 2019-12-19T1 2019-12-20T0	16:39:30	1 4	668
46417180	keshavar csc	TSPAH1	None 2019-12-19T1 2019-12-20T0	16:39:30	1 4	668
46417181	keshavar csc	TSPAH2a	None 2019-12-19T1 2019-12-20T0	16:39:30	1 4	668

METHODS 3: RNA VELOCITY ANALYSIS

- Velocity estimates calculated with velocyto.R
- PCA: Clustering and visualizing the transcriptomic profile and RNA velocity of all the cells
- PCA: Clustering and visualizing the transcriptomic dynamics of individual genes

RESULTS

Primilinary Analysis

RNA velocity dynamics to predict the future expression state of cell

- Single gene
- Ratio of unspliced and spliced mRNAs

Intra-tumor heterogeneity

Primilinary validation

AIF1 – Gene marker for immune cells

GFAP – Gene marker for astrocytes

DISCUSSION

- LIMITED WITH THE DATA: I.E. USING SINGLE PATIENT DATA, mainly looked at neoplastic and immune cells
- Could compare tumour cells to OPC to discover info about the origin or state of the tumour cells
- Could apply our expression profiles to everything in a cancer gene database (not just specific hand-picked genes)
- LIMITED BY THE FACT WE DIDN'T DO THE PRIMARY RESEARCH AND SO DON'T KNOW THE EXACT CONDITIONS
 (I.e. didn't know the layer from the cell...what does periphery mean (I.e. problem with annotations)

FUTURE APPLICAITONS

- To validate the origin of gliobalstoma
- Use as a tool for predicting prognosis for a patient (predict whether a tumour has potential/has metastasised)
- Used to look at how a tumour is reacting drug treatment
- Can be applied to other cancers

THANKS FOR LISTENING – ANY QUESTIONS?

Sorry!

REFERENCES

https://www.nature.com/articles/s41586-018-0414-6/figures/2

https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0819-y

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180049/

https://iopscience.iop.org/article/10.1088/2057-1739/aa9e6e

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466750/#d35e296

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810554/

https://www.nature.com/articles/s41598-019-45934-1

https://www.cell.com/molecular-cell/pdf/S1097-2765(19)30356-9.pdf