CH 2 — Logical Analysis

Luke Lu • 2025-09-13

Truth Tables and Negation

A is a statement with an assigned truth value and can be manipulated as a logical expression using the operators not, or, and, =>

Negation table

A	not A	not(not A)
T	F	Т
F	T	F

Compound Statements

A compound statement is built from simpler statements using or and and

- \lor is disjunction
- \wedge is conjunction

Tables for

A	В	A or B	A and B
T	Т	T	T
T	F	Т	F
F	Т	Т	F
F	F	F	F

Logical Laws

- 1. De Morgan's Laws for statements A and B
 - 1. $\neg (A \land B) \equiv \neg A \lor \neg B$
 - 2. $\neg (A \lor B) \equiv \neg A \land \neg B$
- 2. Commutative, Associative, and Distributive Laws
 - 1. Commutative
 - $A \lor B \equiv B \lor A$
 - $A \wedge B \equiv B \wedge A$
 - 2. Associative
 - $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
 - $A \lor (B \lor C) \equiv (A \lor B) \lor C$
 - 3. Distributive
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Truth-table proof of De Morgan Law

A	В	not A	not B	A and B	not(A and B)	not A or not B
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	T	F	F	Т	Т
F	F	T	T	F	Т	Т

Since the columns for $\neg(A \land B)$ and $\neg A \lor \neg B$ are identical in the table, they are logically equivalent.

Example:

Truth table proof of Distributive \land over \lor

Show $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$

A	В	С	B or C	A and (B or C)	A and B	A and C	(A and B) or (A and C)
T	T	T	Т	Т	Т	T	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	T	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	T	F	F	F	F
F	F	F	F	F	F	F	F

Implications

 \Rightarrow is implication

B if A

B when A

B whenever A

A is a sufficient condition for B

Key equivalence

$$(A \Rightarrow B) \equiv (\neg A \lor B)$$

A	В	A => B	not A	(not A) or B
T	Т	Т	F	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	T	Т	Т

So
$$\neg (A \Rightarrow B) \equiv \neg (\neg A \lor B) \equiv A \land \neg B$$

Practice

$$((A \vee B) \Rightarrow C) \equiv (A \Rightarrow C) \wedge (B \Rightarrow C)$$

A	В	С	A or B	(A or B) => C	A => C	B => C	(A => C) and (B => C)
T	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	Т	F
T	F	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т

Converse

 $B \Rightarrow A$ is the converse of $A \Rightarrow B$

Contrapositive

 $(\neg B) \Rightarrow (\neg A)$ is the contrapositive of $A \Rightarrow B$

A	В	A => B	B => A	not A	not B	(not B) => (not A)
T	Т	Т	Т	F	F	Т
Т	F	F	Т	F	T	F
F	Т	Т	F	T	F	Т
F	F	Т	Т	Т	Т	Т

Examples

- 1. If x > y then $x \ge y$
- 2. Converse If $x \ge y$ then x > y
- 3. Contrapositive If x < y then $x \le y$

If and Only If

 \Leftrightarrow means if and only if

A	В	A => B	B => A	A <=> B	(A => B) and (B => A)
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

What is $\neg (A \Leftrightarrow B)$?

Solution:

$$\equiv \neg((A\Rightarrow B) \land (B\Rightarrow A))$$

$$\equiv \neg(A \Rightarrow B) \lor \neg(B \Rightarrow A)$$

$$\equiv \neg(\neg A \lor B) \lor \neg(A \lor \neg B)$$
$$\equiv (A \land \neg B) \lor (\neg A \land B)$$