## Determination of Coefficient of Viscosity of a Liquid using Falling Ball Viscometer

Rumi De

Department of Physical Sciences
IISER Kolkata

#### Viscosity

#### > What is Viscosity

Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid. The internal frictional force opposes the relative motion between the adjacent layers of fluid.

#### > Coefficient of Viscosity

Steady flow of liquid



$$f \propto \frac{av}{dy}$$

$$f = \eta \, \frac{dv}{dy}$$

 $\eta$  is the coefficient of viscosity

**Boundary** (Stationary)

#### Viscosity

#### **Solid Deformation:**



$$\frac{F}{A} \propto \frac{\Delta x}{h}$$

#### **Shear modulus**

= Shear stress/Shear strain

$$= \frac{F/A}{\Delta x/h}$$

#### Fluid Deformation:



**Shear stress ≪ Shear strain rate** 

$$\frac{F}{A} \propto \frac{\Delta v}{h}$$

Coefficient of viscosity  $(\eta)$ 

= Shear stress/Shear strain rate

$$\eta = \frac{F/A}{\Delta v/h}$$

#### **Dimension**

▶ Dimension of coefficient of viscosity (η):  $M L^{-1} T^{-1}$ 

$$\eta = \frac{F/A}{\Delta v/h} = \frac{\text{MLT}^{-2}}{\text{L}^2} \cdot \frac{\text{L}}{\text{LT}^{-1}}$$

- ➤SI unit Pa.S (Newton-second per square meter: N·s/m²)
- ➤ CGS: Poise (Dyne-second per square centimetre)
- > Dynamic viscosity: η
- ➤ Kinematic viscosity: dynamic viscosity divided by the density

## Determination of coefficient of Viscosity: Falling Ball Viscometer

**Liquid: Castor Oil** 







#### **Determination of coefficient of Viscosity**

Gravitational force:

$$F_g = mg = \frac{4}{3}\pi r^3 \rho g$$

• Buoyant force:  $F_b = \frac{4}{3}\pi r^3 \sigma g$ 

• Viscous force:  $F_V = 6\pi \eta r v$ 

( $\rho$ : density of the ball;  $\sigma$ : density of the liquid)

Falling Ball Viscometer



#### **Determination of coefficient of Viscosity**

#### > Force Balance:

$$F_g = F_b + F_v$$

$$\frac{4}{3}\pi r^3 \rho g = \frac{4}{3}\pi r^3 \sigma g + 6\pi \eta r V_t$$

#### **Coefficient of Viscosity:**

$$\eta = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{V_t}$$

 $V_t$ : terminal velocity

Falling Ball Viscometer



### Equation of motion of a sphere falling through a viscous liquid

$$m\frac{dv}{dt} = F_g - F_b - F_v$$

$$= mg - \frac{4}{3}\pi r^3 \sigma g - 6\pi \eta r v$$

$$= Vpg - V\sigma g - 6\pi \eta r v$$

$$= m_0 g - \gamma v \quad ; m_0 = V(p - \sigma); \gamma = 6\pi \eta r$$

$$dv$$

$$F_v F_b$$

$$\uparrow \uparrow$$

$$F_g$$

$$v(t) = \frac{c}{b} \left( 1 - e^{-bt} \right) = \frac{m_0 g}{\gamma} \left( 1 - e^{-\frac{\gamma}{m}t} \right)$$

#### **Terminal Velocity**

> Velocity of a spherical ball falling thorugh a liquid:

$$v(t) = \frac{c}{b} \left( 1 - e^{-bt} \right) = \frac{m_0 g}{\gamma} \left( 1 - e^{-\frac{\gamma}{m}t} \right)$$



#### **Terminal velocity:**

$$V_t = \frac{n t_0 g}{\gamma}$$

$$V_t = \frac{2}{9} \frac{r^2 (\rho - \sigma) g}{\eta}$$

$$V_t \propto r^2$$

#### **Viscous Force: Correction**

Finite radius (R) and length (h) of the liquid cylinder

$$F_V = 6\pi\eta rv\left(1 + 2.4\frac{r}{R}\right)\left(1 + 3.3\frac{r}{h}\right)$$

>In our experimental set up:  $\frac{r}{R} \sim 0.1$ ;  $\frac{r}{R} \sim 0.002$ 

> Coefficient of Viscosity: 
$$\eta = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{V_t \left(1 + 2.4 \frac{r}{R}\right)}$$

# Experimental demonstration to determine Coefficient of Viscosity of a Liquid (Castor Oil)

#### **Result & Analysis of Experimental Data**

➤ Determination of radius and mass of the spherical balls (for three different radii)

| S. No. | Linear<br>Scale<br>reading (in<br>cm) | Circular<br>Scale<br>Reading | Diameter ( in cm) | Mean<br>Diameter (in<br>cm) | Mean<br>radius<br>(in cm) | Mass of<br>10 balls<br>(in gm) | Mass<br>per ball<br>(in gm) | Volume<br>per ball in<br>cm <sup>3</sup> | Density<br>per ball<br>(gm/cc) |
|--------|---------------------------------------|------------------------------|-------------------|-----------------------------|---------------------------|--------------------------------|-----------------------------|------------------------------------------|--------------------------------|
|        |                                       |                              |                   |                             |                           |                                |                             |                                          |                                |
|        |                                       |                              |                   |                             |                           |                                |                             |                                          |                                |
|        |                                       |                              |                   |                             |                           |                                |                             |                                          |                                |
|        |                                       |                              |                   |                             |                           |                                |                             |                                          |                                |

> Coefficient of Viscosity: 
$$\eta = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{V_t \left(1 + 2.4 \frac{r}{R}\right)}$$

#### **Result & Analysis of Experimental Data**

#### > Measurement of terminal velocity

| Sl. No. | Time for ball 1, small (in s) | Mean<br>time (in<br>s) | Time for<br>ball 2,<br>medium<br>(in s) | Mean<br>Time (in<br>s) | Time<br>for ball<br>3, large<br>(in s) | Mean<br>Time (in<br>s) | Velocity<br>for ball 1<br>(cm/s) | Velocity<br>for ball 2<br>(cm/s) | Velocity<br>for ball 3<br>(cm/s) |
|---------|-------------------------------|------------------------|-----------------------------------------|------------------------|----------------------------------------|------------------------|----------------------------------|----------------------------------|----------------------------------|
|         |                               |                        |                                         |                        |                                        |                        |                                  |                                  |                                  |

- > Determination of inner diameter of the glass cylinder
- **▶Plot of terminal velocity Vs (radius)² of the spherical ball**
- **➤** Calculate coefficient of viscosity

#### Writing a Report on Experiment

- ·A brief write up on Aim, Theory, Working formula, Diagram
- Tabulate data on lab notebook /Soft copies (from given data)
- Results: analysis of data, plot (graph paper/plotting software)
- •Estimation of error: Error analysis (viscosity of Castor oil is 0.650 Pascal.S at 25°C)
- Discussions and probable sources of error
- Submit a PDF copy of the report on "Welearn"

