GRU LSTM point $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$ $\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$ $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$ $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$ $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + (1 - \Gamma_u) * c^{<t-1>}$

 $a^{< t>} = \Gamma_o * c^{< t>}$ From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks? Γ_u and $1-\Gamma_u$ Correct Yes, correct! Γ_u and Γ_r $1-\Gamma_u$ and Γ_u Γ_r and Γ_u

 $a^{< t>} = c^{< t>}$

Correct

Yes!

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$

as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}.$ You'd like to build a model to map from x o ypoint . Should you use a Unidirectional RNN or Bidirectional RNN for this problem? Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information. Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

10. You have a pet dog whose mood is heavily dependent on the current and past few days'

weather. You've collected data for the past 365 days on the weather, which you represent

- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>},\ldots,x^{< t>}$, but not on $x^{< t+1>},\ldots,x^{<365>}$
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.