ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ

$4\eta~\Sigma EIPA~A\Sigma KH\Sigma E\Omega N$

Μιχάλης Παπαδόπουλλος 03114702

Όνομα: Α.Μ: Ημερ/νια παράδοσης: 12/02/2017

$[MEPO\Sigma A]$

• sizeof (double) = 8 bytes = 2 words

L1 Cache:

- Direct mapped (1-way associative)
- Write allocate (update on write miss)
- Write back
- 128 blocks
- block size: 32 bytes = 8 words

Each address in MIPS is 32 bits long.

- 128 blocks = 2^7 => Tag: 7 bits
- Block size = 8 words = 32 bytes = 2^5 => Offset: 5 bits
- Tag = size of (ADDRESS) size of (index) size of (offset) = 32 7 5 = 20 bits

31	12 11	5 4 0
Tag	Inde	x Offset

Δηλαδή:

- Offset = 5 bits
- Index = 7 bits
- Tag = 20 bits

$[MEPO\Sigma B]$

#define N 16

int i,j;

double a[N*N], b[N][N], c[N][N];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
$$a[i * N + j] = b[j][i] + c[i][j];$$

Σε κάθε block της cache αποθηκεύονται 4 συνεχόμενα στοιχεία του κάθε πίνακα

- Ο πίνακας **a** γίνεται map στα block 0..63
- Ο πίνακας **b** γίνεται map στα block 64..127
- Ο πίνακας **c** γίνεται map στα block 0..63

Ο πίνακας b προσπελαύνεται κατα στήλες.

Όταν i % 4 = 0 (4 φορές: i = 0, i = 4, i = 8, i = 12), δηλαδή στην αρχή μιας διεύθυνσης, προκύπτει compulsory miss, και φορτώνονται στη cache τα στοιχεία b[j][i], b[j][i + 1], b[j][i + 2], b[j][i + 3], δηλαδή

compulsory misses =
$$4 * N * 1 = 64$$

• Όταν $\mathbf{i} \% \mathbf{4} \neq \mathbf{0}$ (12 φορές: $\mathbf{i} = \{1, 2, 3\}, \{5, 6, 7\}, \{9, 10, 11\}, \{13, 14, 15\}$), τότε το στοιχείο υπάρχει ήδη από προηγούμενη αναφορά, οπότε προκύπτει

hits =
$$(4 * 3) * N * 1 = 192$$

Για τους πίνακες **a, c** επειδή γίνονται map στα ίδια block της cache:

• conflict miss σε κάθε επανάληψη όπου j % 4 ≠ 0, δηλαδή

conflict misses = 2 * N * 12 = 384

ενώ έχουμε compulsory miss σε κάθε επαναληψη όπου j % 4 = 0, δηλαδή compulsory misses = 2 * N * 4 = 128

Σύνολικά: 192 (compulsory misses) + 384 (conflict misses) + 192 (hits) = 576 (misses) + 192 (hits) = 768 (accesses)

$$Hit_{ratio} = \frac{192_{(hits)}}{768_{(mem.acceses)}} = 25\%$$

[MEPO Σ Γ]

- 4-way set-associative
- 128 blocks
- Block size = 32 bytes = 8 words
- Write back
- Write allocate

Με τα νέα δεδομένα προκύπτουν:

- index = $\log_2 (128 / 4) = 5$ bits
- offset = 5 bits
- tag = 32 10 = 22 bits

Οι πίνακες **a, b, c** γίνονται map στα set 0..3 της αντίστοιχης γραμμής που ορίζει το index. Ακολουθόντας την ίδια συλλογιστική:

Όταν i % 4 = 0 (4 φορές: i = 0, i = 4, i = 8, i = 12), δηλαδή στην αρχή μιας διεύθυνσης, προκύπτει compulsory miss. Δηλαδή

compulsory misses = 3 * 4 * 16 = 192

- Όταν \mathbf{j} % $\mathbf{4} \neq \mathbf{0}$ έχουμε για τους πίνακες \mathbf{a} , \mathbf{c} hits = 2 * N * 12 = 384
- Για τον πίνακα b όταν i % 4 ≠ 0 έχουμε

hits =
$$12 * N * 1 = 192$$

Συνολικά: 576 **hits** + 192 **misses** = 768 (accesses)

$$Hit_{ratio} = \frac{576_{(hits)}}{768_{(mem.acceses)}} = 75\%$$

Παρατηρούμε ότι με την αλλαγή στο associativity της cache απο 1 σε 4, πετυγχαίνουμε **τριπλάσιο** hit rate.

[MEPO $\Sigma \Delta$]

Γενικά:
$$(t_{total}) = (acceses) \times [(t_{hit}) + (miss_{rate}) \times (t_{miss})]$$

Στην περίπτωση της **Direct Mapped**:
$$(t_{total})_{DM}=768\times(2+0.75\times10)ns=768\times9.5ns$$

ενώ στην περίπτωση όπου έχουμε **4-way set-associative**:
$$(t_{total})_{4-way}=768\times(k+0.25\times10)ns=768\times(k+2.5)ns$$

<u>Θέλουμε</u>: $(t_{total})_{4-way} \leq (t_{total})_{DM}$ οπότε προκύπτει $k \leq 7ns$