Упуство и спецификација

- Да би се открило присуство COVID-19 вируса као и за потребе проналажења лека за исти, потребно је урадити секвенцирање његовог дезоксирибонуклеинске киселине тј. ДНК. Секвенцу ДНК чине 4 азотне базе:
 - Аденин
 - Цитозин
 - Гуанин
 - Тимин

Означавају се скраћено са првим словом из назива: А, С, G, Т. Слика 1а приказује хемијски изглед ДНК ланца са 4 базе.

Слика 1: Изглед ДНК

На Слици 16 је пример једне ДНК секвенце. Ако пратимо ланац са плавкастом траком који почиње из горњег десног ћошка слике секвенца је GCCACATG. У овој секвенци се даље могу тражити подсеквенце. Тако на пример, ако се траже подсеквенце СС и СА, биће пронађена једна СС и две СА. Проналажење ове две подсеквенце се може извести путем аутомата. На улазе і_base се доводи секвенца GCCACATG, по једна база у сваком такту, а стања прате подсеквенце.

Слика 2: Аутомат претраге ДНК секвенце

Слика 2 приказује аутомат за горепоменуте подсеквенце СС и СА. На почетку се креће из IDLE стања. Обе подсеквенце почињу истим стањем COSO1. Овде С означава базу, 0 иза њега означава редни број у подсеквенци, S12 означава да се исто стање користи у претраги 0. и 1. подсеквенце, односно СС и СА. После се врши грањање у два стања: C1SO за 0. подсеквенцу СС и A1S1 за 1. подсеквенцу СА. У излазној функцији, два горепоменута стања ће биће постављени одговарајући сигнали дозволе бројања, тако да ће бројачи подсеквенци моћи избројати појаве одговарајуће секвенце. У случају новог С одмах се покреће нова претрага, док у случају појаве неке базе ван тражених подсеквенци, претрага почиње из почетка из IDLE стања.

• Спецификација је следећа:

- 1. Направити аутомат са коначним бројем стања за проналажење подсеквенци:
 - Аутомат треба да детектује следеће подсеквенце:
 - (a) GGT
 - (б) GGC
 - (B) GAG
 - Сигнал стања аутомата назвати s_state, а следећег стања s_next_state.
 - Kao улаз у аутомат користити s_base.
 - Имена стања дефинисати по узору на пример дат горе.
 - Користити заједничка стања за заједничке делове подсеквенци.
 - У излазној функцији, крајњим стањима подсеквенце активирати један од сигнала дозволе бројања (s_en_subseq0, s_en_subseq1 или s_en_subseq2), како би одговарајући бројач избројао подсеквенцу.
 - Излазна и прелазна функција треба бити комбинациона. Никако не реализовати прелазну функцију у секвенцијалном процесу.
 - Користити синхрони ресет.
- 2. Направити бројач 0. подсеквенце:
 - Сигнал бројача назвати s_cnt_subseq0.
 - Користити s_en_subseq0 као сигнал дозволе бројања.
 - Бројати по модулу 5.
 - Број бита је 4.
 - Користити синхрони ресет.
- 3. Направити бројач 1. подсеквенце:
 - Сигнал бројача назвати s_cnt_subseq1.
 - Користити s_en_subseq1 као сигнал дозволе бројања.
 - Бројати по модулу 8.
 - Број бита је 4.
 - Користити асинхрони ресет.
- 4. Направити бројач 2. подсеквенце:
 - Сигнал бројача назвати s_cnt_subseq2.
 - Користити s_en_subseq2 као сигнал дозволе бројања.
 - Бројати по модулу 10.
 - Број бита је 4.
 - Користити асинхрони ресет.
- 5. Направити излазни мултиплексер за селекцију излаза са бројача:
 - Реализовати мултиплексер преко process-case.
 - Kopuctutu i_cnt_subseq_sel сигнал као селекциони.
 - Kopистити o_cnt_subseq као излаз из мултиплексера.
 - Улази ће наравно бити s_cnt_subseq0...
- 6. Направити улазни мултиплексер за селекцију базе која ће ући у аутомат:
 - Реализовати мултиплексер преко process-case.
 - Kopuctutu i_base_src_sel сигнал као селекциони.
 - * Ако је селекциони улаз '0' селектовати i_base.
 - * Ако је селекциони улаз '1' селектовати s_sh_base.
 - Користити s_base као излаз из мултиплексера.
- 7. Направити померачки регистар који ће једну по једну базу из секвенце послати на аутомат:
 - Реализовати комбинациону мрежу померачког регистара преко when-else.
 - Користити s_sh_reg као сигнал регистара.

- * Када је i_load_sequence на 1 уписати i_sequence у регистар.
- * У противном померати регистар улево.
- За излаз s_sh_base узимати из s_sh_reg 2 бита највеће вредности.
- Користити синхрони ресет.
- На основу спецификације нацртати дијаграм стања аутомата. Дијаграм назвати FSM.png или FSM.jpg, који је већ формат слике у питању, и ставити га у LPRS1_Homework3_PR_083_2020_Solution фолдер.
- Реализовати систем у VHDL-у по горепоменутој спецификацији и дијаграму стања аутомата. Реализацију урадити у

 ${\tt LPRS1_Homework3_PR_083_2020_Solution/lprs1_homework3.vhd}~\varphi aj\pi y.$

- Кодовање база у VHDL-у је дефинисано константама.
- Изнад кода сваке компоненте у коментару написати име описане компоненте.
- У тестбенч фајлу

LPRS1_Homework3_PR_083_2020_Solution/lprs1_homework3.vhd верификовати систем по следећим тачкама:

- 1. На улаз і_base довести следеће секвенце:
 - (a) CCGA TCAG TCTG TCAT AAGC AAAC CCGC GGCG
 - (б) TTGC CAGT AACA GCTA CAGC CGAA AACT TCAG
- 2. Мењати све улазне сигнале (укључујући и i_rst) на опадајућу ивицу такта.
- 3. 0. секвенцу слати базу по базу на i_base улаз.
 - (а) За сваку базу држати на улазу і_base у дужини једне периоде такта.
 - (б) Не заборавити селектовати одговарајућу извор базе са i_base_src_sel.
- 4. 1. секвенцу слати базу по базу на i_base улаз.
 - (а) Поставити секвенцу на i_sequence и учитати је активацијом i_load_sequence.
 - (б) Гледајући у интерне сигнале одредити колико је периода такта неопходно потребно да би се свака база секвенце послала на аутомат.
 - (в) Не заборавити селектовати одговарајућу извор базе са i_base_src_sel.
- 5. Пре сваке секвенце у коментару написати секвенцу.
- 6. Пре сваке секвенце држати ресет активан 14 тактова.
- 7. Након краја секвенце оставити сачекати 1 такт, како би се бројач инкрементирао.
- 8. Ишчитати вредности бројача излазног мултиплексерана на o_cnt_subseq излазу, по једна вредност i_cnt_subseq_sel по периоди такта.
- 9. На крају оставити систем у ресету.
- На крају, зиповати фолдер LPRS1_Homework3_PR_083_2020_Solution у зип фајл LPRS1_Homework3_PR_083_2020_Solution.zip. Не треба зиповати фајлове из LPRS1_Homework3_PR_083_2020_Solution, већ баш фолдер са фајловима. Не треба зиповати фолдер целог пројеката, него само LPRS1_Homework3_PR_083_2020_Solution фолдер. Ако се пошаље нешто друго, рецимо цео пројекат, рад неће бити гледан и резултоваће са оценом **D** односно 0 бодова.
- У договору са својим асистентном преко чета у MS Театму или мејлом, послати као решење горепоменути зип фајл.