Functional Analysis - Homework 4

Problem 1.

Proof. Let $X = [1, 2] \subset \mathbb{R}$, a complete metric space.

Let $\epsilon > 0$, $m \in \mathbb{N}$, and

$$A_m = \{ x \in X : \forall n \ge m, |f(nx)| \le \epsilon \}$$

Since f is continuous, A is closed.

 $\forall x \in X$, since $\lim_{n \to \infty} (nx) = 0$

$$\exists n > N, |f(nx)| \le \epsilon$$

, meaning x should be contained in one of A_m s.

Thus,

$$X = \bigcup_m A_m$$

With Baire's category Theorem, at least one A_m s contains an open ball $B(b_0, r)$, where $b_0 \in X, r > 0$. Therefore,

$$\forall n > m, b < r, |f(n(b_0 + b))| \le \epsilon \tag{1}$$

$$\therefore n \frac{b_0 + r}{b_0 + b} > m \therefore |f(n(b_0 + r))| \le \epsilon \tag{2}$$

For $x \in (0, \infty)$, with $n > \frac{m}{x}(b_0 + r)$, we have

$$|f(nx)| = \left| f(\frac{m}{x}(b_0 + r)x) \right| = \left| f(\frac{m}{x}(b_0 + r)x) \right| \le \epsilon.$$

, which means $\lim_{t\to\infty} f(t) = 0$.

For x = 0, from $\lim_{n \to \infty} f(n0) = 0$, we know f(0) = 0.

In a whole, For $x \in [0, \infty)$, $\lim_{t \to \infty} f(t) = 0$.

Problem 2.

Proof. 1. Linearity of $c_0(X)$: Let $x = (x_n), y = (y_n) \in c_0(X)$ and $\lambda \in \mathbb{K}$.

• Addition: $x + y = (x_n + y_n)$. By the triangle inequality on X:

$$0 \le \lim_{n \to \infty} ||x_n + y_n|| \le \lim_{n \to \infty} (||x_n|| + ||y_n||) = \lim_{n \to \infty} ||x_n|| + \lim_{n \to \infty} ||y_n|| = 0$$
 (3)

$$\therefore \lim_{n \to \infty} ||x_n + y_n|| = 0 \tag{4}$$

Thus, $x + y \in c_0(X)$.

• Scalar Multiplication: $\lambda x = (\lambda x_n)$. By the properties of a norm:

$$\lim_{n \to \infty} \|\lambda x_n\| = \lim_{n \to \infty} |\lambda| \|x_n\| = |\lambda| \lim_{n \to \infty} \|x_n\| = |\lambda| \cdot 0 = 0$$

Thus $\lambda x \in c_0(X)$.

Hence, $c_0(X)$ is a linear space.

2. X is Banach \Longrightarrow completeness of $c_0(X)$:

Assume X is a Banach space. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a Cauchy sequence converging to x in $c_0(X)$ with respect to the sup-norm, where $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \ldots)$.

$$\forall \epsilon > 0, \exists k > N \text{ s.t. } \left\| x^{(k)} - x \right\| < \epsilon,$$

$$\therefore \epsilon > \left\| x^{(k)} - x \right\| = \sup_{n \in \mathbb{N}} \left\| x_n^{(k)} - x_n \right\| \tag{5}$$

$$\therefore \left\| x_n^{(k)} - x_n \right\| < \epsilon \tag{6}$$

Since $x^{(K)} \in c_0(X)$, $\lim_{n \to \infty} \left\| x_n^{(K)} \right\|_X = 0$. Therefore, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $\left\|x_n^{(K)}\right\|_{Y} < \epsilon$. Hence, for $n \geq N$:

$$||x_n||_X \le \epsilon + \epsilon = 2\epsilon$$

Since $\epsilon > 0$ was arbitrary, this proves $\lim_{n \to \infty} \|x_n\|_X = 0$, so $x \in c_0(X)$. Since every Cauchy sequence in $c_0(X)$ converges to an element in $c_0(X)$, the space $c_0(X)$ is Banach.

Problem 3.

Proof. (a) \Longrightarrow (b)

We define a new space

$$Z = \{(x_n)_{n \in \mathbb{N}} : ||x_n|| \to 0\}$$

and norm $||(x_n)_{n\in\mathbb{N}}|| = \sup_n ||x_n||$.

According to the proof of Problem 2, Z is Banach.

We define an operator $S_k: Z \to Y$

$$S_k(z) = T_k(x_k - x_{k+1}).$$

Therefore,

$$||S_k(z)|| = ||T_k(x_k - x_{k+1})|| \tag{8}$$

$$\leq ||T_k|| \, ||x_k - x_{k+1}|| \tag{9}$$

$$\leq ||T_k|| (||x_k|| + ||x_{k+1}||) \tag{10}$$

$$\leq \|T_k\| \cdot 2 \sup_{n \in \mathbb{N}} \|x_n\| \tag{11}$$

Therefore,

$$||S_k|| \le 2 ||T_k|| < \infty$$

as T_k is continuous.

Since $T_k(x_k) \to 0$ in norm, S_k should be the same.

$$\lim_{k \to \infty} ||S_k(z)|| = 0 \tag{12}$$

$$\lim_{k \to \infty} ||S_k(z)|| = 0$$

$$\therefore \sup_{k \in \mathbb{N}} ||S_k(z)|| < \infty$$
(13)

With the Uniform Boundedness Principle, we have

$$\sup_{k \in \mathbb{N}} \|S_k\| < \infty \tag{14}$$

For any $t \in X$ with $||t|| \le 1$, define the sequence $z' = (x_n)_{n \in \mathbb{N}}$, where $x_n = t$ if n = k, and $x_n = 0$ else. Then, $\sup_n x_n = ||t|| \le 1$. Applying the operator S_k ,

$$||S_k(z')|| = ||T_k(x_k - x_{k+1})|| = ||T_k(x_k)||$$
(15)

$$\therefore \|S_k\| \ge \sup_{\|t\| \le 1} \|T_k(t)\| = \|T_k\| \tag{16}$$

Since $\sup_{k\in\mathbb{N}} ||S_k|| < \infty$,

$$||T_k|| < \infty$$

Proof: (b) \implies (a) Assume (b) holds, i.e., $M = \sup_{n \in \mathbb{N}} ||T_n|| < \infty$. Assume $\sum_{n=1}^{\infty} x_n$ is a norm convergent series. Let s be the sum. The sequence of partial sums $s_N = \sum_{n=1}^N x_n$ converges to s. This implies that the terms of the series implies that the terms of the series must converge to zero: $\lim_{n\to\infty} x_n = 0$ in the norm of X.

$$||T_n(x_n)||_Y \le ||T_n|| \cdot ||x_n||_X$$

Since $\sup_{n\in\mathbb{N}} ||T_n|| = M < \infty$, we have:

$$0 \le ||T_n(x_n)||_Y \le M \cdot ||x_n||_X$$

Since $\lim_{n\to\infty} \|x_n\|_X = 0$ and M is a finite constant, we have $\lim_{n\to\infty} M \cdot \|x_n\|_X = 0$. By the Squeeze Theorem, $\lim_{n\to\infty} ||T_n(x_n)||_Y = 0$. Thus, $T_n(x_n) \to 0$ in norm.

Problem 4.

Proof. (a) \implies (b): The set of p-absolutely norm convergent sequences $E = \ell_p(X)$ is a Banach space with the norm $||(x_n)||_p = (\sum_{n=1}^{\infty} ||x_n||^p)^{1/p}$.

(a) states that for every sequence $(x_n) \in E$, the sum $\sum_{n=1}^{\infty} x_n^*(x_n)$ converges. This allows us to define a linear functional $T: E \to \mathbb{K}$ by:

$$T((x_n)) = \sum_{n=1}^{\infty} x_n^*(x_n)$$

Since T is a well-defined linear map on the entire Banach space E, the Uniform Boundedness Principle implies that T is bounded and in turn continuous. We have $T \in E^*$.

With Dual Space Isomorphism, the dual space of $\ell_p(X)$ is isometrically isomorphic to $\ell_q(X^*)$:

$$\ell_p(X)^* \cong \ell_q(X^*)$$

 (x_n^*) corresponds to the functional T, and the norm of T in the dual space is precisely the ℓ_q norm of the sequence (x_n^*) in the dual sequence space:

$$||T||_{E^*} = \left(\sum_{n=1}^{\infty} ||x_n^*||^q\right)^{1/q}$$

Since T is continuous, $||T||_{E^*} < \infty$, which means $\sum_{n=1}^{\infty} ||x_n^*||^q < \infty$. Thus, (b) holds. (b) \Longrightarrow (a): Assume (b) holds: $(x_n^*) \in \ell_q(X^*)$, so $A = (\sum_{n=1}^{\infty} ||x_n^*||^q)^{1/q} < \infty$. Assume the series $\sum_{n=1}^{\infty} x_n$ is p-absolutely norm convergent: $(x_n) \in \ell_p(X)$, so

$$B = \left(\sum_{n=1}^{\infty} \|x_n\|^p\right)^{1/p} < \infty$$

With the Holder's Inequality, we have:

$$\sum_{n=1}^{\infty} |x_n^*(x_n)| \le \sum_{n=1}^{\infty} ||x_n^*|| \cdot ||x_n||$$
(17)

$$\leq \left(\sum_{n=1}^{\infty} \|x_n^*\|^q\right)^{1/q} \left(\sum_{n=1}^{\infty} \|x_n\|^p\right)^{1/p} = A \cdot B < \infty \tag{18}$$

 $(c) \iff (d)$

Let $X = \mathbb{K}$. Then the dual space X^* is also \mathbb{K} .

A continuous linear functional $x_n^*: \mathbb{K} \to \mathbb{K}$ is simply multiplication by a scalar $x_n \in \mathbb{K}$. The norm of

this functional is $||x_n^*|| = |x_n|$. The input vector x_n from statement (a) is now a scalar y_n .

Thus, statement (a) becomes: Given a series $\sum_{n=1}^{\infty} y_n$ such that $\sum_{n=1}^{\infty} |y_n|^p < \infty$ (i.e., $(y_n) \in \ell_p$) one has that the series $\sum_{n=1}^{\infty} x_n y_n$ converges. This is precisely statement (d). So we have (d) \Longrightarrow (a).

And statement (b) becomes: The series $\sum_{n=1}^{\infty} x_n^*$ is q-absolutely norm convergent i.e., $\sum_{n=1}^{\infty} |x_n^*|^q < \infty$. Since $||x_n^*|| = |x_n|$, this simplifies to $\sum_{n=1}^{\infty} |x_n|^q < \infty$, which means $(x_n) \in \ell_q$. This is precisely statement (c). So we have (d) \Longrightarrow (2) statement (c). So we have (d) \implies (a).

Since (a) is equivalent to (b), (d) is equivalent to (c).