NASA TECHNICAL NOTE

COMPILATION OF THEORETICAL ROCKET PERFORMANCE FOR THE CHEMICALLY FROZEN EXPANSION OF HYDROGEN

by Ernie W. Spisz

Lewis Research Center Cleveland, Ohio

TECHNICAL NOTE D-2080

COMPILATION OF THEORETICAL ROCKET PERFORMANCE FOR THE CHEMICALLY FROZEN EXPANSION OF HYDROGEN

By Ernie W. Spisz

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

COMPILATION OF THEORETICAL ROCKET PERFORMANCE FOR THE

CHEMICALLY FROZEN EXPANSION OF HYDROGEN

By Ernie W. Spisz

SUMMARY

Theoretical performance data are presented for the isentropic expansion of hydrogen through a converging-diverging nozzle with the composition chemically frozen at stagnation conditions. The performance data presented are weight fraction of molecular hydrogen dissociated, flow rate per unit throat area per unit stagnation pressure, specific impulse, power requirements, and efficiency. The ranges of stagnation temperature and pressure considered are 2000° to 5000° K and 0.1 to 500 pounds per square inch absolute, respectively, for nozzle area ratios from 5 to ∞ . The data are presented primarily in tabular form with a limited number of figures to illustrate graphical presentations that have been found to be useful.

INTRODUCTION

Hydrogen has been established as one of the most suitable propellants for nuclear and electrothermal space-propulsion devices. For these devices, the advantages of hydrogen are high heat capacity and the corresponding ability to store adequate thermal energy to achieve specific impulse levels of 1000 seconds at temperatures below the melting point of available refractory materials. This characteristic somewhat simplifies the design of the units by eliminating the need for separate cooling systems and makes possible operation at overall efficiencies that are compatible with certain space-mission applications.

Hydrogen, however, begins to dissociate at temperatures at which its application for space-propulsion purposes just begins to have merit. With respect to efficiency, dissociation is significant because of the energy required and the questionable conversion of this energy into directed kinetic energy for propulsion purposes. If the expansion of hydrogen through the exhaust nozzle proceeds with thermochemical equilibrium so that the dissociation energy is converted into directed kinetic energy, dissociation is desirable and should be promoted to obtain the maximum performance attainable at a given temperature level. If the expansion process proceeds in a chemically frozen manner, however, so that the dissociated energy is not converted into kinetic energy, dissociation represents an inefficiency mechanism in the thermodynamic cycle and should be suppressed.

At the present time, it has not been definitely established whether the expansion process for hydrogen for the conditions and nozzle geometries presently

being used proceeds in a frozen or an equilibrium manner. The calculated performance data of reference 1 and the experimental data of reference 2 indicate that the expansion process is probably more frozen than in equilibrium. Much more experimental data, however, are required to conclusively establish the degree to which the expansion process of hydrogen departs from chemically frozen conditions. At the present, it is generally accepted that equilibrium expansion represents the maximum performance level attainable, while frozen expansion represents the minimum level for uniform flows.

Some literature is available on the equilibrium performance characteristics of hydrogen (e.g., ref. 3). Very little data are available, however, on the frozen expansion of hydrogen that can be used conveniently for design, evaluation, or optimization purposes. The frozen performance of hydrogen over a wide range of conditions similar to those of reference 3 are therefore presented herein. These data are presented in both tabular and graphic forms for stagnation temperatures and pressures from 2000° to 5000° K and 0.1 to 500 pounds per square inch absolute, respectively, and nozzle area ratios from 5 to ∞ .

CALCULATION PROCEDURE

The calculation of the data for the isentropic frozen expansion of hydrogen is based upon the method and computer program of reference 4. The output data of this program are utilized as input data to an accessory computer program for calculating more specific performance parameters that have been found by experience to be useful for the design and evaluation of thrustor systems.

When the computer program of reference 4 is used, it must be recognized that the data are based on the assumption of an expanding gas that is chemically frozen at stagnation conditions. Reference 5 indicates that the composition of the hydrogen gas is probably frozen at, or slightly downstream of, the nozzle throat region rather than at stagnation conditions. These data, therefore, can be considered to be somewhat conservative in that any recombination that may occur downstream of the stagnation region will improve the performance as presented herein.

The performance parameters calculated by the accessory computer program are weight fraction of molecular hydrogen dissociated, flow rate per unit throat area per unit stagnation pressure, and various power requirements and efficiencies.

The weight fraction of molecular hydrogen dissociated α_H and the flow rate per unit throat area parameter \dot{w}/A^*p_O are calculated from equations (1) and (2), respectively:

$$\alpha_{\rm H} = \frac{x_{\rm H}}{z - x_{\rm H}} \tag{1}$$

$$\frac{\dot{\mathbf{w}}}{\mathbf{A}^*\mathbf{p}_{\mathbf{O}}} = \frac{\mathbf{g}_{\mathbf{C}}}{\mathbf{C}^*} \tag{2}$$

The mole fraction of atomic hydrogen $X_{\rm H}$, the characteristic velocity C^* , and all other parameters required in subsequent equations are obtained from the computer program of reference 4.

The power requirements are calculated in terms of kilowatts of gas power required per unit weight flow rate and in kilowatts of gas power required per pound of thrust (eqs. (3) and (4), respectively):

$$\frac{P_g}{\dot{w}} = 1.899 (H_O + H_{ref})$$
 (3)

$$\frac{P_g}{F} = \frac{1.899 \ (H_O + H_{ref})}{I_{vac}}$$
 (4)

As obtained from the computer program, $\rm H_{O}$ is based upon the reference temperature at 298° K. In order to incorporate 0° K as the reference temperature in the calculations for power requirements (and subsequent efficiencies), $\rm H_{ref}$ is introduced as the absolute enthalpy of hydrogen at 298° K. The parameter $\rm P_g/F$ is generally used as a mission parameter, and, therefore, it is based upon the vacuum specific impulse $\rm I_{vac}$, which corresponds to space environment operation for a finite area-ratio nozzle.

The calculated efficiencies are based upon the power-balance method presented in reference 6 with the following equation:

$$P_g = P_j + P_f + P_q + P_e$$
 (5)

The gas power P_g is the power required to achieve the desired nozzle stagnation conditions. The power terms P_j , P_f , and P_e represent the distribution of the power in the gas at the nozzle exit plane; P_q is the power exchanged between the gas and the nozzle walls while the gas is expanding through the nozzle. The jet power P_j is the thermal power converted to useful thrust power. The "frozen" power P_f represents the influence of dissociation caused by the chemically frozen assumption and this power is not available for conversion to thrust power. The term P_e is the thermal power other than P_f remaining in the gas at the nozzle exit plane that can be utilized for thrust if more complete expansion were provided.

The overall nozzle efficiency η is the ratio of jet power to gas power:

$$\eta = \frac{P_{j}}{P_{g}} = 1 - \frac{P_{f} + P_{q} + P_{e}}{P_{g}}$$
 (6)

In terms of power loss mechanisms, the overall efficiency can be represented by

$$\eta = \eta_{f} \eta_{q} \eta_{e} \tag{7}$$

where

$$\eta_{f} = \frac{P_{g} - P_{f}}{P_{g}} \tag{8}$$

$$\eta_{q} = \frac{P_{g} - P_{f} - P_{q}}{P_{g} - P_{f}} \tag{9}$$

$$\eta_{e} = \frac{P_{g} - P_{f} - P_{q} - P_{e}}{P_{g} - P_{f} - P_{q}}$$
 (10)

For the idealized isentropic frozen-expansion process considered here, heat-transfer effects are neglected, and, therefore, $P_{\rm q}$ = 0; thus $\eta_{\rm q}$ = 1.0. This assumption is significant especially for low-power systems and can impose a severe limitation on the data. This assumption, however, was justified on the basis of the generality of the results. The $P_{\rm q}$ term can be determined only after a specific configuration and an operating condition have been defined. With this assumption, the efficiency expressions reduce to

$$\eta_{e} = \frac{P_{g} - P_{f} - P_{e}}{P_{g} - P_{f}} \tag{11}$$

$$\eta = \eta_{f} \eta_{e} = \frac{P_{g} - P_{f} - P_{e}}{P_{g}}$$
 (12)

In evaluating the efficiency terms, only the overall nozzle efficiency η and the frozen-flow efficiency η_f are calculated. (The term η_e can be obtained from the ratio $\eta/\eta_f.)$ The computer calculations of these terms are based upon the following energy forms of equations (8) and (12) with the reference temperature taken as absolute zero:

$$\eta_{f} = \frac{H_{O} + H_{ref} - 11,440 E_{D} \alpha_{H}}{H_{O} + H_{ref}}$$
(13)

$$\eta = \frac{H_{O} - H_{E} - 11,440 E_{D} \alpha_{H}}{H_{O} + H_{ref}}$$
 (14)

Within the limitations of the two principal assumptions used ((1) constituents frozen at stagnation conditions, and (2) P_q = 0, therefore, η_q = 1.0), the calculation of the data in this manner has been found to predict nozzle performance to a reasonable degree of accuracy for gas temperatures up to 2800° K at stagnation pressures of 1 atmosphere (ref. 7).

PRESENTATION OF DATA

The data are presented in both tabular and graphic form. The tabulated data include all the necessary parameters for a preliminary evaluation of the overall performance of a given thermal propulsion device. These data are presented in table I for stagnation pressures from 0.1 to 500 pounds per square inch absolute. Each part of the table presents the data at a specific stagnation pressure for stagnation temperatures from 2000° to 5000° K and nozzle area ratios from 5 to ... Performance data are not presented for temperatures below 2000° K because negligible dissociation occurs, and, therefore, the performance for frozen expansion is identical to equilibrium expansion and can be obtained from reference 3. No data are presented for temperatures above 5000° K because ionization of hydrogen occurs, and the computer is not programmed to handle ionization. The ranges of stagnation pressure and area ratio chosen correspond to those anticipated for space-propulsion devices utilizing hydrogen as the propellant. The tabulated data include the following stagnation parameters: enthalpy, weight fraction of molecular hydrogen dissociated, flow rate per unit throat area per unit stagnation pressure, frozen-flow efficiency, and gas-power requirements per unit propellant weight flow. For each nozzle area ratio associated with a given stagnation temperature and pressure, the performance parameters presented are specific impulse I, vacuum specific impulse I_{vac} , overall nozzle efficiency η , and power requirements per pound of thrust P_g/F for an ambient pressure of zero.

A sufficient number of points are tabulated to provide accurate interpolation in the specific-impulse range of 900 to 1200 seconds. This range corresponds to the present area of interest for nuclear and electrothermal propulsion devices.

The graphic presentation of the data is limited to a number of typical curves that have been found useful for analyzing the performance of electrothermal-propulsion devices. These curves are presented in figures 1 and 2. No attempt has been made to present figures from which general conclusions could be drawn. It is recommended that, for a specific application, the appropriate curves be generated from the tabulated data.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, September 6, 1963

APPENDIX - SYMBOLS

- A* nozzle flow area at throat section, sq in.
- A_e nozzle exit area, sq in.
- C^* characteristic velocity, $g_c p_0/(\dot{w}/A^*)$, ft/sec
- ${\bf E}_{\rm D}$ dissociation potential, ev (taken as 4.476 ev for molecular hydrogen)
- F thrust, 1b
- g gravitational constant, (lb mass/lb force)(ft/sec2)
- He nozzle-exit enthalpy, cal/g
- H_{O} stagnation enthalpy (referenced to 298° K), cal/g
- H_{ref} reference enthalpy level taken as 1009 cal/g to provide power requirements and efficiencies with 0° K as reference level
- I specific impulse for $p_e = p_a$, sec
- Ivac vacuum specific impulse for zero ambient pressure, sec
- P_e thermal power remaining in gas at nozzle exit, kw
- P_{f} power frozen into gas, kw
- Pg gas power, kw
- P_j jet power, kw
- P_a power exchanged between gas and nozzle walls, kw
- p_a ambient pressure, lb/sq in. abs
- pe nozzle-exit pressure, lb/sq in. abs
- p_O stagnation pressure, lb/sq in. abs
- w propellant weight flow rate, lb/sec
- $\mathbf{X}_{\mathbf{H}}$ mole fraction of atomic hydrogen
- $\alpha_{\mbox{\scriptsize H}}$ weight fraction of molecular hydrogen dissociated
- η overall nozzle efficiency, $\eta_f \eta_e$
- η_{e} nozzle-expansion efficiency

 $\eta_{ extsf{f}}$ frozen-flow efficiency

 $\eta_{\mbox{\scriptsize q}}$ heat-transfer efficiency

REFERENCES

- 1. Hall, J. Gordon, Eschenroeder, A. Q., and Klein, J. J.: Chemical Nonequilibrium Effects on Hydrogen Rocket Impulse at Low Pressures. ARS Jour., vol. 30, no. 2, Feb. 1960, pp. 188-189.
- 2. Widawsky, Arthur, Oswalt, Lawrence R., and Harp, James L., Jr.: Experimental Determination of the Hydrogen Recombination Constant. ARS Jour., vol. 32, no. 12, Dec. 1962, pp. 1927-1929.
- 3. King, Charles R.: Compilation of Thermodynamic Properties, Transport Properties, and Theoretical Rocket Performance of Gaseous Hydrogen. NASA TN D-275, 1960.
- 4. Gordon, Sanford, Zeleznik, Frank J., and Huff, Vearl N.: A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants. NASA TN D-132, 1959.
- 5. Bray, K. N. C.: Atomic Recombination in a Hypersonic Wind Tunnel Nozzle. Rep. 20, 562, British ARC, Nov. 1958.
- 6. Jack, John R.: Feasibility of Optimizing Nozzle Performance for Orbital-Launch Nuclear Rockets. NASA TN D-1578, 1963.
- 7. Jack, John R., and Spisz, Ernie W.: NASA Research on Resistant-Heated Hydrogen Jets. Paper 63023, AIAA, 1963.

TABLE I. - ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (a) Stagnation pressure, p_0 , 0.1 pound per square inch absolute

Performance parameter	ļ				Stagnatio	n tempera	ture, OK				
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
				St	agnation	enthalpy,	H _O , cal/	/g			
	6808	16482	33708	48092	58412	63829	66619	68337	69635	72331	74840
		0.1500	Weight	1	t	o.9425	0.9755	0.9889	α _H 0.9946	0.9989	0.9997
	0.0098 			0.6896 unit th	0.8612 rost area			on pressu			0.5557
	0.002288	0.001932									0.001110
	1	ı	Gas po	wer per	unit prop	ellant we	eight flo	w rate, Pg	·/w	1	
	14,830	33,200	65,910	93,230	112,800	123,100	128,400	131,700	134,100	139,300	144,000
	ļ ,	1	-1	1	. –	ow effici			1		
	0.936	0.561	0.347	0.280	0.257 ratio, ∞	0.255	0.261	0.269	0.278	0.302	0.324
Specific impulse, I	798 798	924 924	1023 1023	1094 1094	1153	1199	1239 1239	1274 1274	1308 1308	1388 1388	1464 1464
Vacuum specific impulse, I _{vac} Nozzle efficiency, N	0.936	0.561	0.347	0.280	0.257	0.255	0.261	0.269	0.278	0.302	0.324
Power/lb thrust, Pg/F Stagnation press/nozzle	18.6 ∞	36.0	64.4 ∞	85.2 ∞	97.9 ∞	102.7 ∞	103.7 ∞	103.3 ∞	102.6	100.3	98. 4 ∞
exit press., p ₀ /p _e		1	į	Area	atio, 500)					
Specific impulse, I Vacuum specific	779 784	907 912	1014	1089	1150 1152	1197 1199	1236 1238	1272 1274	1306 1308	1386 1388	1459 1461
impulse, I _{vac} Nozzle efficiency, N	0.891	0.541	0.340	0.277	0.256	0.254	0.260	0.268	0.277	0.301	0.323
Power/lb thrust, Pg/F Stagnation press/nozzle exit press, pg/pe	18.9 40415	36.4 51618	64.8 92035	85.5 137975	98.0 175507	102.7 194842	103.7 203042	103.4 206438	102.6 207913	100.4 209021	98.6 204883
	1 1	1	i	Area 1	atio, 100)	<u>I</u>				
Specific impulse, I Vacuum specific	760 771	889 900	1000 1008	1077 1083	1139 1145	1186 1192	1225 1231	1261 1267	1295 1300	137 4 1380	1448 1455
impulse, I _{Vac} Nozzle efficiency, N Power/lb thrust, P _g /F	0.848 18.3	0.519	0.331 65.4	0.271 86.1	0.251 98.6	0.249 103.3	0.255 104.3	0.263 104.0	0.273 103.2	0.296	0.318 99.0
Stagnation press/nozzle exit press, po/pe		4583	7015	9699	11862	12968	13435	13630	13714	13778	13777
		1		Area	ratio, 50)		,			
Specific impulse, I Vacuum specific	746 762	875 891	988 1001	1067 1078	1130 1140	1178 1187	1217 1226	1252 1262	1286 1295	1364 1374	1438 1449
impulse, I _{Vac} Nozzle efficiency, N Power/lb thrust, P _g /F	0.818 19.5	0.503	0.323 65.9	0.267 86.5	0.247 99.0	0.246 103.8	0.252 104.8	0.260 104.4	0.269 103.6	0.292 101.3	0.313 99.4
Stagnation press/nozzle exit press, p ₀ /p _e		1629	2352	3127	3743	4058	4190	4245	4269	4287	4291
				Area	ratio, 25	5	,				
Specific impulse, I Vacuum specific	727 749	855 877	971 990	1052 1068	1116 1131	1164 1179	1203 1218	1238 1253	1272 1287	1349 1366	1422 1439
impulse, I _{vac} Nozzle efficiency, N Power/1b thrust, P _g /F	0.778	0.480 37.9	0.312	0.259 87.3	0.241 99.8	0.240 104.5	0.246 105.4	0.254	0.263	0.285 102.0	0.307 100.1
Stagnation press/nozzle exit press, p ₀ /p _e		577	788	1006	1177	1263	1299	1314	1321	1326	1327
	1	1	1	Area	ratio, l	<u> </u>	1		-	1	<u> </u>
Specific impulse, I Vacuum specific	691 724	815 851	9 34 967	1018 1048	1084 1112	1132 1160	1171 1199	1205 1234	1238 1267	1314 1345	1385 1418
impulse, I _{yac} Nozzle efficiency, N Power/lb thrust, P _g /F	0.701	0.4364 39.0	0.289	0.243 89.0	0.227 101.5	0.227 106.2	0.233	0.241	0.249	0.270 103.6	0.291 101.6
Stagnation press/nozzle exit press, po/pe		144	183	221	250	265		274	275	275	276
				Area	rat10, 5						
Specific impulse, I Vacuum specific impulse, I _{vac}	648 696	767 8 21	887 938	973 1021	1040 1087	1088 1135	1126 1174		1191 12 4 0	126 4 1316	1332 1388
Nozzle efficiency, T Power/lb thrust, Pg/F	0.617 21.3	0.387 40.5	0.261 70.3	0.222 91.3	0.209 103.8	0.210 108.5	0.215 109.4		0.231 108.2	0.250 105.8	0.269 103.8
Stagnation press/nozzle exit press, po/pe		48.5	58.7	68.3	75.4	78.9			81.2	81.4	81.4
1	1	, ,	1					•	•		

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (b) Stagnation pressure, 0.5 pound per square inch absolute

Performance parameter					Stagnatio	n tempera	ature, ^O K				
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
				St	agnation	enthalpy,	H _O , cal/		1	1	
	6516	12023	21364	31868	44372	55140	62103	66095	68501	72080	74767
			Weigh		1	1	irogen dis			1	
	0.0044	0.0677	0.2155	0.3918	0.6040	0.7836	0.8931	0.9481	0.9740	0.9943	0.9983
			-				stagnati			-	
	0.002293	0.001991	1		,		0.001332			0.001171	0.001111
							weight flo		g/W 132,000	130 900	143,900
	14,270	24,730	42,470	62,410	86,160	106,600 low effici	l I	127,400	132,000	130,000	140,000
	0.070	- 0 224	0.506	0.389	0.318	0.285	0.275	0.276	0.282	0.303	0.325
	0.970	0.734	0.300	j	ratio, ∞	0.200	0.2.0				
- 101 - 1	797	912	0.993	1055	1120	1180	1228	1269	1306	1388	1463
Specific impulse, I Vacuum specific	797	912	0.993	1055	1120	1180	1228	1269	1306	1388	1463
impulse, I _{vac} Nozzle efficiency, N	0.970	0.734	0.506 42.8	0.389 59.2	0.318 76.9	0.285 90.4	0.275 97.6	0.276 100.4	0.282 101.1	0.303	0.325 98.3
Power/lb thrust, Pg/F Stagnation press/nozzle	17.9 ∞	27.1 ∞	#2.0 ®	ω ω	w 	ε 20. ±	œ	ω	8	∞	60
exit press, p ₀ /p _e		_ !	1	Area	 atio, 500))	l		l I	ı	
Specific impulse, I	778	893	977	1044	1113	, 1175	1225	1266	1303	1385	1459
Vacuum specific	783	898	982	1048	1116	1177	1227	1268	1305	1387	1461
impulse, Ivac Nozzle efficiency, T	0.924 18.3	0.703 27.6	0.491 43.2	0.381 59.5	0.314 77.2	0.283 90.6	0.273 97.7	0.275	0.281	0.302	0.323 98.5
Power/lb thrust, Pg/F Stagnation press/nozzle	39910	42931	57413	80665	119307	156883	182335	195823	202467	207784	204505
exit press, p ₀ /p _e]	i	1	Area T	 atio, 100;)	l		i I	l	
Specific impulse, I	758	872	959	1028	1100	1163	1214	1255	1292	1373	1448
Vacuum specific impulse, I _{vac}	770	884	970	1038	1108	1170	1220	1261	1298	1379	1454
Nozzle efficiency, N	0.879 18.6	0.670 28.0	0.472 43.8	0.370	0.306 77.8	0.277 91.2	0.268 98.3	0.270 101.0	0.276 101.7	0.296	0.318 98.9
Power/lb thrust, Pg/F Stagnation press/nozzle	3782	4004	4967	6431	8609	10782	12245	13021	13400	13706	13755
exit press, p ₀ /p _e	Į I	ŀ	Í	Area	ratio, 50))	J			ı	
Specific impulse, I	745	857	944	1016	1089	1153	1205	1246	1283	1364	1438
Vacuum specific impulse, Ivac	761	874	960	1030	1101	1164	1214	1256	1392	1374	1449
Nozzle efficiency, N	0.847 18.8	0.647 28.3	0.458	0.360	0.300 78.3	0.272 91.6	0.264 98.7	0.266 101.5	0.272 102.1	0.292	0.314 99.3
Power/lb thrust, Pg/F Stagnation press/nozzle	1382	1451	1746	2182	2814	3436	3853	4073	4180	4267	4285
exit press, p ₀ /p _e	ı i	l	l	Area	ratio, 25	 	1		ı	l	
Specific impulse, I	726	836	924	997	1073	1138	1190	1232	1268	1349	1422
Vacuum specific impulse, Ivac	748	860	947	1018	1091	1155	1206	1247	1284	1365	1439
Nozzle efficiency, N Power/lb thrust, Pg/F	0.805 19.1	0.616 28.8	0.439 44.9	0.347 61.4	0.291 79.0	0.265 92.3	0.258 99.4	0.260 102.2	0.266 102.8	0.286	.0.307 100.0
Stagnation press/nozzle	503	523	612	739	919	1092	1207	1267	1297	1320	1327
exit press, p ₀ /p _e	i l	i	ι	. Area	ratio, 10)	i			'	
Specific impulse, I	689	794	882	957	1036	1104	1156	1198	1234	1313	1384
Vacuum specific impulse, Ivac	723	832	920	993	1068	1134	1186	1228	1264	1344	1417
Nozzle efficiency, To Power/lb thrust, Pg/F	0.726 19.8	0.556 29.8	0.400 46.2	0.320 62.9	0.272 80.7	0.249 99.0	0.244 101.1	0.246	0.252	0.271	0.291
Stagnation press/nozzle exit press, po/pe	130	133	150	174	206	236	255	266	271	274	275
	L l	!	1	Area	ratio, 5	. 1	ı	'		1	
Specific impulse, I	647	745	832	907	988	1007	1110	1152	1187	1263	1332
Vacuum specific impulse, I _{vac}	695	800	888	962	1040	1107	1159	1201	1237	1316 0.251	1388
Nozzle efficiency, N Power/1b thrust, Pg/F	0.638 20.6	0.490 30.9	0.355 47.8	0.288 64.9	0.247 82.9	0.229 963	0.224 1034	0.227 106.1	0.233	105.5	103.7
Stagnation press/nozzle exit press, po/pe	45.1	45.6	49.9	56.1	64.4	71.8	76.5	79.0	80.2	81.1	81.3
OVIO 510000 POL 56	i		ı l	ı	1				' '	ı	-1

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (c) Stagnation pressure, 1.0 pound per square inch absolute

1	ŀ				21		. 0				
Performance parameter	2000	2500	2800	3000	Stagnatio	on tempera	3600	3800	4000	4500	5000
	2000	1000	1000			1	H _O , cal/	i	1000	1000	
	6447	10952	18029	26230	37185	48689	57797	63649	67179	71772	74676
	,	'	Weigh	t fractio	n of mole	cular hyd	ا Irogen dis	sociated,	α _H		
	0.0031	0.0479	0.1542	0.2884	0.4723	0.6656	0.8144	0.9034	0.9499	0.9887	0.9967
		1	w rate pe							٠,	
	0.002295	0.002006	0.001819				,	'		0.001172	0.001110
	14,140	22,700	36,140	ower per 51,710	72,510		eight flo 111,700		g/W 129,500	178 200 l	147 700
	14,140	22,100	30,140	01,710	Frozen fl			122,000	123,000	130,200	143,700
	0.979	0.795	0.585	0.457	0.366	0.313	0.290	0.284	0.286	0.304	0.325
	1 1	1	ı	Area	ratio, ∞	i	1		!		
Specific impulse, I Vacuum specific impulse, I _{Vac}	797 797	910 910	984 984	1041 1041	1103 1103	1165 1165	1219 1219	1264 1264	1303 1303	1387 1387	1463 1463
Nozzle efficiency, N Power/lb thrust, Pg/F Stagnation press/nozzle	0.979 17.8 ∞	0.795 25.0 ∞	0.585 36.7 ∞	0.457 49.7 ∞	0.366 65.7 ∞	0.314 81.0 ∞	0.290 91.6 ∞	0.284 97.2 ∞	0.286 99.4 ∞	0.304 99.6 ∞	0.325 98.2 ∞
exit press, p ₀ /p _e	1 1	I	I	Area 1	atio, 500	 	i	I	I	ļ	
Specific impulse, I Vacuum specific impulse, I _{vac}	777 783	889 895	967 972	1027 1032	1093 1097	1158 1161	1214 1217	1260 1263	1300 1302	1384 1386	1459 1461
Nozzle efficiency, n Power/lb thrust, Pg/F Stagnation press/nozzle exit press, p ₀ /p _e	0.932 18.1 39790	0.759 25.4 41028	0.564 37.2 50228	0.445 50.1 6553	0.360 66.1 92487	0.310 81.3 130849	0.288 91.8 163397	0.282 97.2 184571	0.285 99.5 196174	0.303 99.7 206252	0.323 98.4 204036
1	l l	ı	ł	Area 1	atio, 100	 	ا	l	ı		
Specific impulse, I Vacuum specific impulse, I _{vac}	758 770	868 880	946 959	1009 1020	1078 1087	1145 1153	1202 1209	1249 1255	1288 1294	1372 1379	1448 1454
Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle exit press, po/pe	0.886 18.4 3774	0.723 25.8 3874	0.541 37.7 4499	0.430 50.7 5490	0.350 66.7 7156	0.303 81.9 9278	0.282 92.4 11152	0.277 97.8 12370	0.280 100.0 10037	0.297 100.3 13617	0.318 98.8 13728
		'	'	Area	ratio, 50	, '			'	,	
Specific impulse, I Vacuum specific impulse, I _{Vac}	745 760	852 870	931 949	995 1011	1066 1080	1134 1146	1192 1203	1240 1250	1279 1289	1363 1373	1438 1448
Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle exit press, p0/pe	0.854 18.6 1379	0.698 26.1 1410	0.524 38.1 1603	0.418 51.2 1903	0.342 67.2 2395	0.298 82.4 3007	0.278 92.8 3542	0.273 98.3 3888	0.276 100.5 4077	0.293 100.7 4242	0.314 99.2 4277
	1 1	j	I	Area	ratio, 25	 5	l		I	ļ	
Specific impulse, I Vacuum specific impulse, Ivac	726 747	831 855	910 934	975 998	1048 1068	1118 1136	1177 1194	1225 1241	1264 1280	1348 1364	1422 1439
Nozzle efficiency, N Fower/1b thrust, Pg/F Stagnation press/nozzle exit press, po/pe	0.812 18.9 503	0.663 26.6 511	0.500 38.7 568	0.401 51.8 658	0.330 67.9 800	0.289 83.1 973	0.271 93.5 1121	0.267 99.0 1216	0.269 101.1 1268	0.287 101.3 1313	0.307 99.9 1323
	1 1	1			ratio, 10					7	
Specific impulse, I Vacuum specific impulse, I _{Vac}	689 723	789 827	867 906	933 971	1008 1043	1081 1114	1142 1173	1190 1220	1230 1260	1312 1343	1384 1417
Nozzle efficiency, η Power/lb thrust, Pg/F Stagnation press/nozzle exit press, p ₀ /p _e	0.732 19.6 130	0.598 27.5 130	0.454 39.9 141	0.368 53.3 158	0.306 69.5 185	0.270 84.7 215	0,255 95.2 241	0.252 100.6 257	0.255 102.8 266	0.272 102.9 273	0.291 101.4 275
Ì		'		Area	ratio, 5		'	'	1		
Specific impulse, I Vacuum specific impulse, Ivac	646 695	740 795	815 873	882 939	958 1013	1032 1085	1095 1145	1143 1193	1182 1233	1262 1315	1332 1387
Nozzle efficiency, N Power/1b thrust, Pg/F Stagnation press/nozzle exit press, pg/pe	0.644 20.4 45.1	0.525 28.6 44.9	0.401 41.4 47.7	0.328 55.1 52.1	0.276 71.6 58.9	0.246 87.0 66.6	0.234 97.5 73.0	0.232 102.9 76.9	0.236 105.0 79.0	0.251 105.1 80.8	0.269 103.6 81.2

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (d) Stagnation pressure, 5 pounds per square inch absolute

 -	1						0.,				
Performance parameter	,			1		n tempera	1 1	7000	4000	4500	5000
	2000	2500	2800	3000	3200	3400	3600	3800 /~	4000	4500	3000
			17470	1		32554	, H _O , cal/	51718	59250	69477	73964
	6355	9519	13430	17791	24125		irogen dis			004//	, 5501
	0.0014	0.0214	0.0696	0.1335	0.2331	0.3705	0.5316	0.6858	o.8054	0.9470	0.9838
	0.0014			1			1		re, w/A*p	1	-
	0.002296	I		- 1		r			0.001283	· .	0.001113
	0.002230	0.002020				}	weight flo				
	13,790	19,990	27,420	35,700	47,730	63,740	82,270		114,400	133,900	142,400
			- ,			low effic:	ا Lency, ∏ہ			i	
	0.990	0.896	0.753	0.636	0.525	0.434	0.371	0.333	0.315	0.311	0.327
		1		Area	ratio, ∞	İ	l I		ı	ı	
Specific impulse, I	797	906	973	1020	1071	1126	1183	1237	1285	1382	1462
Vacuum specific impulse, I _{vac}	797	906	973	1020	1071	1126	1183	1237	1285	1382	1462 0.327
Nozzle efficiency, N Power/1b thrust, Pg/F	0.990	0.896 22.1	0.753 28.2	0.636 35.0	0.525 44.5	0.434 56.6	0.371 69.6	0.333 81.0	0.315 89.0	96.8	97.4
Stagnation press/nozzle exit press, po/pe	∞	∞	∞	∞	00	∞	·	00	∞		œ
	ı !	1	1	Area r	atio, 500				. 1	'	
Specific impulse, I Vacuum specific	777 78.3	884 890	951 958	1001 1007	1055 1060	1113 1118	1173 1177	1230 1232	1280 1283	1379 1381	1457 1459
impulse, I _{vac} Nozzle efficiency, n	0.943	0.853	0.720 28.6	0.612 35.5	0.509 45.0	0.425 57.0	0.365 69.9	0.330 81.3	0.313 89.2	0.310	0.325 97.6
Power/lb thrust, Pg/F Stagnation press/nozzle	17.9 39632	38540	41449	46788	37146	74802	100423	130025	160052	194998	200388
exit press, po/pe	. !	i	_]	1700 7	atio, 100		l l		i !	ł	
T	758	862	929	979	1035	1096	1158	1216	1267	1366	1446
Specific impulse, I Vacuum specific impulse, I _{vac}	769	875	942	992	1047	1106	1167	1224	1279	1373	1453 0.321
Nozzle efficiency, N Power/lb thrust, Pg/F	0.896 18.2	0.811	0.686 29.1	0.585 36.0	0.489 45.6	0.411 57.6	0.356 70.5	0.323 81.8	0.306 89.8	0.30 <u>4</u> 97.5	98.0
Stagnation press/nozzle exit press, po/pe	3763	3705	3910	4277	495.6	6074	7645	9405	10950	12963	13516
	1 1	1		Area	ratio, 50)		'			
Specific impulse, I Vacuum specific	744 760	846 864	912 931	963 981	1019 1037	1082 1097	1146 1159	1205 1217	1257 1268	1 3 57 1367	1436 1447
impulse, I _{vac} Nozzle efficiency, Ŋ	0.864	0.781	0.662	0.566	0.475	0.401 58.1	0.348 71.0	0.317 82.2	0.301 90.2	0.300	0.316 98.4
Power/1b thrust, Pg/F Stagnation press/nozzle	18.4 1376	23.1 1357	29.5 1420	36.4 1533	46.0 1741	2076	2537	3046	3485	4057	4217
exit press, p ₀ /p _e	L l	l	!	\	motte C	 :			l I	ļ	
] 70- [824	890	Area 940	ratio, 25 997	1061	1127	1188	1241	1341	1420
Specific impulse, I Vacuum specific impulse, I _{vac}	725 747	849	916	966	1022	1084	1148	1207	1258	1358	1437
Nozzle efficiency, n Power/lb thrust, Pg/F	0.821 18.7	0.742 23.5	0.630 30.0	0.540 37.0	0.455 46.7	0.386 58.8	0.337 71.7	0.308 83.0	90.9	0.293 98.6	0.309 99.1
Stagnation press/nozzle exit press, po/pe	502	494	512	546	609	708	840	983	1105	1263	1307
	ı i	I		Area	ratio, 10)	, ,	J	ı I	'	
Specific impulse, I	689	782	844	894	952	1017	1086	1149	1203	1304 1336	1382 1415
Vacuum specific impulse, Ivac	722	821	886	936	993	1056	1122	1183			
Nozzle efficiency, n Power/lb thrust, Pg/F	0.740 19.4	0.667 24.4	0.567 31.0	0.489 38.2	0.414 48.1	0.354 60.3	0.313 73.3	0.288 84.6	0.276 92.6	0.277	0.293
Stagnation press/nozzle exit press, po/pe	130	127	130	136	148	167	191	217	238	265	272
	ا ا	l	'	Area	ratio, 5		1.	. 1		ι	
Specific impulse, I Vacuum specific	646 694	732 788	791 851	839 900	897 958	963 1023	1032 1090	1097 1153	1153 1207	1254 1 3 07	1329 1385
impulse, I _{vac} Nozzle efficiency, Ŋ	0.651	0.585	0.498	0.431	0.368	0.317	0.283	0.262	0.253	0.256	0.271
Power/1b thrust, Pg/F Stagnation press/nozzle	20.1 45.0	25.4 44.0	32.2 44.7	39.7 46.3	49.8 49.4	62.3 54.2	75.5 60.5	86.8 66.9	94.8 72.2	102.4 78.7	102.8 80.6
exit press, p ₀ /p _e			_							ł	j

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (e) Stagnation pressure, 10 pounds per square inch absolute

	,	c) Stagna	010. p10.	, surc, 10	homing he	a bquare	2				
Performance parameter					Stagnatio	n tempera	ture, ^O K			_	
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
	·		·	St	tagnation	enthalpy,	H _O , cal/	g '			
	633.3	9178	12325	15684	20524	27140	35417	44519	53072	66980	73112
			Weigh	nt fraction	on of mole	cular hyd	lrogen dis	sociated,	чΉ		
	0.00098	0.0152	0.0493	0.0948	0.1671	0.2714	0.4057	0.5545	0.6929	0.9016	0.9683
				ı	nroat area	1		1			
	0.002297	0.002032		l	1	1	ı	,		0.001189	0.001115
	13,940	19,350	25,320	power per 31,700	r unit pro 40,890	pellant v 53,450	eignt fic 69,170	86,460	102,700	100 100	140,800
	13,540	19,550	23,320	31,700	Frozen fl			00,400	102,700	129,100	140,800
	0.993	0.924	0.810	0.709	0.602	0.506	0.429	0.376	0.343	0.320	0.330
	1				ratio, ∞				1		
Specific impulse, I	797	905	970	1015	1062	1113	1166	1220	1271	1377	1460
Vacuum specific impulse, Ivac	797	905	970	1015	1062	1113	1166	1220	1271	1377	1460
Nozzle efficiency, N Power/lb thrust, Pg/F	0.993 17.5	0.924 21.4	0.810 26.1	0.709 31.2	0.602 38.5	0.506 48.0	0.429 59.3	0.376 70.9	0.343 80.8	0.320 93.8	0.330 96.4
Stagnation press/nozzle exit press, po/pe	∞	œ	80	8		∞	∞	00	∞	∞	80
				Area	at10, 500	,				·	-
Specific impulse, I Vacuum specific	770 783	883 889	947 954	994 1000	1043	1097 1102	1154 1158	1211 1214	1264 1267	1373 1375	1455 1457
impulse, Iyac Nozzle efficiency, η	0.945	0.879	0.774	0.680	0.581	0.492	0.420	0.370	0.339	0.319	0.328
Power/lb thrust, Pg/F Stagnation press/nozzle	17.8 39595	21.8 38030	26.5 39555	31.7 42868	39.0 49342	48.5 60878	59.7 79034	71.2	81.1 130637	93.9 183008	96.6 196057
exit press., p ₀ /p _e		ļ					I				
0000164-10007	1 750	امدد	201		ratio, 100	1	22.50		2050		
Specific impulse, I Vacuum specific impulse, I _{Vac}	758 769	860 874	924 938	970 984	1021 1034	1077 1089	1136 1147	1195 1205	1250 1258	1360 1367	1444 1450
Nozzle efficiency, N Power/lb thrust, Pg/F	0.899 18.1	0.835 22.1	0.736 27.0	0.648 32.2	0.557 39.5	0.474 49.1	0.407 60.3	0.361 71.8	0.332 81.6	0.313 94.5	0.323 97.0
Stagnation press/nozzle exit press, po/pe	3761	3661	3778	4009	4450	5198	6338	7833	9440	12268	13265
, , , , , , , , , , , , , , , , , , ,		Į	ı	Area	ratio, 50	ı	1	I			
Specific impulse, I	744	845	907	954	1005	1062	1122	1183	1239	1350	1434
Vacuum specific impulse, Ivac	760	863	927	973	1024	1079	1138	1197	1251	1361	1445
Nozzle efficiency, n Power/lb thrust, Pg/F	0.867 18.4	0.805 22.4	0.710 27.3	0.626 32.6	0.539 40.0	0.460 49.5	0.397 60.8	0.353 72.3	0.326 82.07	0.308 94.9	0.319 97.4
Stagnation press/nozzle exit press, po/pe	1375	1345	1378	1450	1586	1814	2154	2592	3056	3860	4146
				Area	rat10, 25						
Specific impulse, I Vacuum specific	725 747	823 848	884 911	930 957	982 1008	1039 1065	1102	1164 1185	1221 1241	1334 1351	1418 1435
impulse, I _{vac} Nozzle efficiency, N	0.823	0.764	0.674	0.596	0.514	0.441	0.383	0.342	0.317	0.301	0.312
Power/lb thrust, Pg/F Stagnation press/nozzle	18.7 501	22.8 490	27.8 499	33.1 520	40.6 561	50.2 630	61.5 730	72.9 856	82.8 986	95.6 1209	98.1 1287
exit press, p ₀ /p _e				,			,,,,		333		
	ı ,	1	ı		ratio, 10	ı	Ī		ı	ı	
Specific impulse, I Vacuum specific	688 722	780 819	839 880	883 926	935 977	993 1035	1057 1097	1122 1159	1181 1216	1296 1329	1379 1412
impulse, I _{vac} Nozzle efficiency, η	0.742	0.686	0.606	0.537	0.466	0.403	0.352	0.318	0.296	0.284	0.295
Power/lb thrust, Pg/F Stagnation press/nozzle	19.3 130	23.6 126	28.8 127	34.2 131	41.8	51.7 152	63.1	74.6 194	84.4	97.1 256	99.7 269
exit press, p ₀ /p _e					ŀ			*	/		
	[_ 1				ratio, 5					г	
Specific impulse, I Vacuum specific	646 694	730 787	785 846	828 890	878 941	936 999	· 1001	1067 1126	1128 1185	1244 1299	1326 1382
impulse, I _{vac} Nozzle efficiency, N	0.652	0.602	0.531	0.472	0.411	0.358	0.316	0.287	0.270	0.262	0.273
Power/lb thrust, Pg/F Stagnation press/nozzle	20.1 45.0	24.6 43.8	30.0 43.9	35.6 44.9	43.5 46.9	53.5 50.3	65.1 55.2	76.8 61.1	86.7 66.9	99.4 76.5	101.8 79.7
exit press, p ₀ /p _e				,		1					

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (f) Stagnation pressure, 14.7 pounds per square inch absolute

	ŀ				a		ture, OK				
Performance parameter		0500	0800	3000	Stagnatic 3200	n tempera	3600 3	3800	4000	4500	5000
	2000	2500	2800				[]		4000	4300	3000
	6324	9034	11856	14786	18961	24688	H _O , cal/	40526	49136	64935	72347
	032*	1002	- 1				irogen dis		j l		.202.
	0.0008	0.0125	0.0407	0.0783	0.1384	0.2266	0.3438	0.4817	0.6212	0.8644	0.9544
	5.0001	_	Į.	- 1			1		 re, w/A*p	'n	
	0.002298	0.002035	0.001897	0.001804	0.001707	0.001606	0.001506	0.001424	0.001332	0.001197	0.001118
	l	1	Gas :	ا power per	unit pro	pellant v	ı veight flo	w rate, l	ı ı Pg/ŵ	•	
	13,290	19,070	24,430	29,990	37,920	48,800	62,740	78,880	95,230	125,200	139,300
				,	rozen fl	ow effici	ency, η _f			•	
	0.994	0.936	0.838	0.746	0.645	0.548	0.467	0.406	0.365	0.328	0.333
			,	Area	ratio, ∞				,		
Specific impulse, I Vacuum specific impulse, Ivac	797 797	905 905	969 969	1013 1013	1059 1059	1107 1107	1158 1158	1211 1211	1262 1262	1372 1372	1458 1458
Nozzle efficiency, T Power/lb thrust, Pg/F	0.994 17.5	0.936 21.1	0.838 25.2	0.746 29.6	0.645 35.8	0.548 44.1	0.467 54.2	0.406 65.1	0.365 75.4	0.328 91.3	0.333 95.5
Stagnation press/nozzle exit press, p ₀ /p _e	∞	∞	œ	80	80	æ		∞	∞	œ	ω
	l l	I	ı	Area ra	ا 10, 500ء	J	1	ı	I	1	
Specific impulse, I Vacuum specific	777 783	882 889	946 953	990 997	1038 1045	1090 1095	1144 1149	1200 1204	1254 1257	1367 1369	1453 1456
impulse, Ivac Nozzle efficiency, N	0.946	0.891	0.799	0.714	0.620	0.531	0.455	0.398	0.860	1320 91.5	0.331 95.7
Power/lb thrust, Pg/F Stagnation press/nozzle exit press, po/pe	17.8 39579	21.5 37795	25.6 38775	30.1 41282	36.3 46277	44.6 55127	54.6 69682	65.5 90458	115618	167517	192205
				Area ra	atio, 100						ļ
Specific impulse, I Vacuum specific impulse, I _{vac}	758 769	860 873	922 936	967 981	1015 1029	1068 1081	1125 1137	1183 1193	1239 1248	1355 1362	1442 1449
Nozzle efficiency, N Power/lb thrust, Pg/F	0.900 18.1	0.846 21.8	0.760 26.1	0.680	0.593 36.9	0.510 45.1	0.440 55.2	0.387 66.1	0.352 76.3	0.320	0.325 96.2
Stagnation press/nozzle exit press, p ₀ /p _e	3759	3650	3724	3899	4243	4834	5757	7038	8550	11701	13041
	i I	I	1	Area I	l atio, 50	l	I	1	1	I	
Specific impulse, I Vacuum specific impulse, I _{vac}	744 760	844 862	905 925	950 969	998 1018	1052 1070	1110 1127	1170 1185	1227 1240	1344 1356	1432 1443
Nozzle efficiency, η	0.868	0.815	0.732 26.4	0.656	0.574 37.3	0.495 45.6	0.429 55.7	0.379	0.345 76.8	0.315	0.321 96.6
Power/lb thrust, Pg/F Stagnation press/nozzle	1375	1340	1361	1415	1521	1703	1981	2360	2800	3702	4082
exit press., p ₀ /p _e	i	1	I	Area r	atio, 25	ļ		I	ı	J	
Specific impulse, I	725	822	882	926	975	1029	1088	1149	1208	1328	1415
Vacuum specific impulse, Ivac	747	847	909	953	1002	1055	1113	1172	1229	1346	1433
Nozzle efficiency, N Power/lb thrust, Pg/F	0.824 18.6	0.773 22.5	0.695 26.9	0.624 31.5	37.9	0.474 46.2	0.412 56.4	0.366 67.3	0.335 77.5	93.1	0.314 97.2
Stagnation press/nozzle exit press, po/pe	501	489	494	510	541	596	679	789	914	1165	1270
	ı	i	1	Area r	atio, 10	,	1	'	1	1	İ
Specific impulse, I	688	779	836 878	879	927	981	1042	1105	1166	1289	1377 1410
Vacuum specific impulse, Ivac	722	818		922	970	0.431	0.378	1144	0.312	0.290	0.297
Nozzle efficiency, n Power/lb thrust, Pg/F	0.743	0.695 23.3	0.625 27.8	0.502 32.5	0.494 39.1	47.6	57.9	0.338 68.9	79.1	94.7	98.8
Stagnation press, nozzle exit press., p ₀ /p _e	130	126	126	129	135	145	161	182	204	248	266
				Area r	atio, 5						
Specific impulse, I Vacuum specific impulse, I _{vac}	646 694	729 786	783 843	823 886	870 933	924 988	985 1048	1049 1110	1112 1171	1236 1292	1323 1380
Nozzle efficiency, N Power/lb thrust, Pg/F	0.653	0.609 24.3	0.547 29.0	0.493	0.435 40.6	0.381 49.4	0.337 59.9	0.305 71.0	0.283 81.3	0.266 96.9	0.274
Stagnation press, nozzle exit press, po/pe	0.45	43.7	43.6	44.3	45.9	48.6	52.7	57.9	63.7	74.6	79.0
		'	1	,		•			•		

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (g) Stagnation pressure, 30 pounds per square inch absolute

		(g) Stagn	ation pre	essure, 50	pounds p	er square	inch abs	olute			
Performance parameter	1				Stagnatio	n tempera	ture, ^O K				
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
				st	agnation	enthalpy	Ho, cal/	່ຮ	'	'	
	6310	8831	11193	13510	16719	21086	26796	33803	41669	59691	70066
	0 000505	0.00070			1		drogen dis				
	0.000565	0.00876	0.0285	0.0549	0.0974	0.1607	0.2482 stagnati	0.3590	0.4851	0.7691	0.913
	0.002294		1		0.001731		0.001548			· .	0.001125
	•				1		weight fl	I		0100221	
	13,900	18,690	23,170	27,570	33,670	41,960	52,800	66,110	81,050	115,300	135,000
		i			Frozen fl	ow effici	ency, $\eta_{\mathbf{f}}$,		,	
	0.996	0.954	0.880	0.806	0.718	0.627	0.542	0.471	0.417	0.351	0.342
Specific impulse, I	797	904	967	1009	ratio, ∞ 1053	1098	1146	1195	1245	1361	1454
Vacuum specific impulse, I _{vac}	797	904	967	1009	1053	1098	1146	1195	1245	1361	1454
Nozzle efficiency, N Power/lb thrust, Pg/F	0.996 17.4	0.954 20.7	0.880 24.0	0.806 27.3	0.718 32.0	0.627 38.2	0.542 46.1	0.471 55.3	0.417 65.1	0.351 84.7	0.342 92.9
Stagnation press/nozzle exit press., p ₀ /p _e	∞	∞	œ	∞ .	00	∞	∞	80	∞	∞	∞
	, ,		'	Area r	atio, 500	' .			'		
Specific impulse, I Vacuum specific	777 783	881 888	943 950	986 993	1031 1037	1078 1084	1128 1134	1181 1186	1234 1238	1354 1357	1448 1451
impulse, I _{vac} Nozzle efficiency, N	0.948	0.907	0.838	0.769	0.688	0.604	0.526	0.460	0.410	0.347	0.339
Power/lb thrust, Pg/F Stagnation press/nozzle	17.8 39556	21.0 37465	24.4 37693	27.8 39115	32.5 42156	38.7 47643	46.6 56711	55.8 70786	65.5 89948	85.0 145867	93.0 180916
exit press, p ₀ /p _e]]	ļ	ļ	Arear	atio, 100		ł	j		I	
Specific impulse, I	758	859	919	962	1006	1055	1107	1162	1217	1341	1436
Vacuum specific impulse, Ivac	769	873	934	976	1021	1069	1120	1173	1227	1349	1443
Nozzle efficiency, η Power/lb thrust, Pg/F Stagnation press/nozzle	0.901 18.1 3758	0.862 21.4	0.796 24.8	0.732 28.2	0.656	0.578	0.506 47.2	0.445 56.4	0.399 66.1	0.340 85.5	0.334 93.5
exit press, p ₀ /p _e	3/58	3627	3647	3748	3960	4336	4939	5828	7008	10337	12384
		ı	ı	1	ratio, 50	1					
Specific impulse, I Vacuum specific impulse, I _{vac}	744 760	843 862	922 902	944 964	989 1009	1037 1057	1090 1109	1146 1163	1203 1218	1329 1342	1426 1437
Nozzle efficiency, ¶ Power/lb thrust, Pg/F	0.869 18.3	0.830 21.7	0.767	0.705 28.6	0.634	0.560	0.491	0.434	0.389	0.335	0.329
Stagnation press/nozzle exit press, po/pe	1374	1332	1337	1367	33.4 1432	39.7 1548	1733	2002	66.5 2 3 51	85.9 3313	93.9 3896
p, p ₀ /p _e	l	ļ	ļ	Area	ratio, 25	J		ľ	1		
Specific impulse, I Vacuum specific	725	821	879	920	964	1013	1066	1121	1182	1312	1409
impulse, I _{vac} Nozzle efficiency, η	747 0.826	0.788	906	948	992	1041	1093	1149	1205	1331	1427
Fower/lb thrust, Pg/F Stagnation press/nozzle	18.6	22.1 486	0.728 25.6 486	0.670 29.1 494	0.603 33.9 514	0.534 40.3	0.470 48.3	0.417 57.6	0.376	0.326	0.321 94.6
exit press, p ₀ /p _e		100	-500	404	21#	549	604	684	786	1057	1219
Specific impulse, I	688	778	07-1	1	ratio, 10	1	احدد		1		
Vacuum specific impulse, I	722	818	833 875	872 916	915 960	963 1008	1017 1062	1076	1136	1271 1306	1369 1404
Nozzle efficiency, n Power/lb thrust, Pg/F	0.744	0.707	0.653 26.5	0.602	0.543 35.1	0.483 41.7	0.428 49.7	0.382	0.348 68.9	0.306	0.303 96.2
Stagnation press/nozzle exit press, po/pe	129	125	125	126	129	136	147	162	181	229	257
	ı	ı	1	Area	ratio, 5	I	1	!]	١	
Specific impulse, I Vacuum specific	646 694	728 785	779 8 4 0	816 879	857 921	904 970	958 1024	1017	1078	1216 1274	1314 1372
impulse, Ivac Nozzle efficiency, N	0.654	0.620	0.521	0.527	0.476	0.425	0.379	0.341	0.313	0.280	0.279
Power/1b thrust, Pg/F Stagnation press/nozzle	20.0 45.0	23.8 43.5	27.6 43.2	31.4 43.5	36.5 44.4	43.2 46.2	51.6 48.9	61.1	71.0	90.4	98.4 76.8
exit press, p ₀ /p _e]	ŀ	-					

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (h) Stagnation pressure, 50 pounds per square inch absolute

Stagnation temperature, OK 2000 2500 2800 3000 3200 3400 3600 3800 4000 Stagnation enthalpy, H ₀ , cal/g 6304 8724 10844 12837 15529 19141 23865 29775 36712 Weight fraction of molecular hydrogen dissociated, α _H 0.0004 0.0068 0.0221 0.0426 0.0756 0.1251 0.1947 0.2856 0.3948 Flow rate per unit throat area per unit stagnation pressure, w/A*p ₀ 0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, P _g /w 13,890 18,480 22,510 26,290 31,410 38,260 37,240 58,460 71,630	· .	
Stagnation enthalpy, H _O , cal/g 6304 8724 10844 12837 15529 19141 23865 29775 36712 Weight fraction of molecular hydrogen dissociated, α _H 0.0004 0.0068 0.0221 0.0426 0.0756 0.1251 0.1947 0.2856 0.3948 Flow rate per unit throat area per unit stagnation pressure, ŵ/A*P _O 0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, P _g /ŵ	54891 0.6818 0.001238 0.001	6748 0.866 0.00113
6304 8724 10844 12837 15529 19141 23865 29775 36712 Weight fraction of molecular hydrogen dissociated, α _H 0.0004 0.0068 0.0221 0.0426 0.0756 0.1251 0.1947 0.2856 0.3948 Flow rate per unit throat area per unit stagnation pressure, w/A*p ₀ 0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, P _g /w	0.6818	0.866 0.00113
Weight fraction of molecular hydrogen dissociated, $\alpha_{\rm H}$ 0.0004 0.0068 0.0221 0.0426 0.0756 0.1251 0.1947 0.2856 0.3948	0.6818	0.866 0.00113
0.0004 0.0068 0.0221 0.0426 0.0756 0.1251 0.1947 0.2856 0.3948 Flow rate per unit throat area per unit stagnation pressure, \(\psi/A^* p_0 \) 0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, Pg/\(\psi	106,200	0.00113
Flow rate per unit throat area per unit stagnation pressure, \(\psi/A^*p_0 \) 0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, Pg/\(\psi \)	106,200	0.00113
0.002257 0.002039 0.001910 0.001828 0.001745 0.001661 0.001575 0.001488 0.001406 0 Gas power per unit propellant weight flow rate, Pg/w	106,200	
Gas power per unit propellant weight flow rate, Pg/w	106,200	
	1	130,10
	1	
Frozen flow efficiency, η_f	0.375	
0.997 0.964 0.905 0.842 0.766 0.682 0.599 0.524 0.463		0.35
Area ratio, ∞		
Specific impulse, I 797 904 966 1008 1050 1093 1139 1186 1234 Vacuum specific 797 904 966 1008 1050 1093 1139 1186 1234 impulse, I _{vac}	1350 1350	144 144
Nozzle efficiency, η 0.997 0.964 0.905 0.842 0.766 0.682 0.599 0.524 0.463 0.905 0.842 0.766 0.682 0.599 0.524 0.463 0.905 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.463 0.906 0.842 0.766 0.682 0.599 0.524 0.766 0.682 0.766 0.76	0.375 78.6 ∞	0.35 89. ∞
exit press, p ₀ /p _e	ļ	
Area ratio, 500 Specific impulse. T 777 881 942 984 1026 1071 1119 1169 1220	1342	144
Specific impulse, I 777 881 942 984 1026 1071 1119 1169 1220 Vacuum specific impulse, Ivac 782 888 949 991 1034 1078 1125 1174 1225	1345	144
Nozzle efficiency, 7 0.949 0.917 0.861 0.803 0.732 0.655 0.578 0.510 0.453	0.370 78.9	0.34 90.
Stagnation press, nozzle 39545 37262 37135 38011 40096 43959 50402 60416 75098	126067	16854
exit press, p ₀ /p _e Area ratio, 100	j	
Specific impulse, I 758 859 918 959 1001 1047 1096 1147 1200	1328	143
Vacuum specific 769 872 932 974 1016 1062 1110 1160 1212 impulse, I _{vac} Nozzle efficiency, T 0.902 0.870 0.817 0.763 0.697 0.625 0.555 0.491 0.439	0.362	0.34
Fower/lb thrust, F _g /F 18.1 21.2 24.1 27.0 30.9 36.0 42.6 50.4 59.1 Stagnation press/nozzle 3757 3615 3608 3669 3816 4084 4521 5180 6097 exit press, P _Q /P _e	79.4 9170	90. 1166
Area ratio, 50		
Specific impulse, I 744 843 901 941 983 1029 1078 1131 1185 1202 1078 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1202 1149 1149 1202 1149	1315 1329	141 143
Nozzle efficiency, n 0.870 0.838 0.787 0.735 0.672 0.604 0.537 0.477 0.428 Power/lb thrust, Pg/F 18.3 21.5 24.5 27.4 31.3 36.5 43.0 50.9 59.6 Stagnation press/nozzle 1374 1328 1324 1342 1387 1469 1605 1806 2082	0.356 79.9 2978	0.33 90. 369
exit press, po/pe	1	
Area ratio, 25 Specific impulse, 1	1296	140
Vacuum specific 747 846 905 945 987 1033 1082 1134 1188 impulse, I _{Vac}	0.345	0.32
Power/1b thrust, Pg/F 18.6 21.9 24.9 27.8 31.8 37.1 43.7 51.6 60.3	80.6	91.
Stagnation press/nozzle 501 485 482 487 499 524 565 625 707 exit press, p ₀ /p _e	904	110
Area ratio, 10	,	
Specific impulse, I 688 778 831 868 909 953 1003 1057 1114 Vacuum specific 722 817 873 912 954 999 1048 1102 1157 impulse, I _{Vac}	1253 1291	136 139
Nozzle efficiency, n 0.745 0.714 0.669 0.626 0.574 0.518 0.465 0.417 0.378 Power/lb thrust, Pg/F 19.2 22.6 25.8 28.8 32.9 38.3 45.1 53.1 61.9	0.323 82.2	0.31 93.
Stagnation press/nozzle 129 125 124 124 127 131 139 150 166	213	24
exit press, p ₀ /p _e Area ratio, 5	1	
Specific impulse, I 646 728 777 812 850 893 942 996 1054	1195	130
Vacuum specific 694 784 838 875 916 960 1010 1064 1120 impulse, Ivac	0.294	0.28
Power/lb thrust, Pg/F 20.0 23.6 26.9 30.0 34.3 39.8 46.8 55.0 63.9 Stagnation press/nozzle 45.0 43.5 43.0 43.1 43.7 44.9 46.9 49.9 53.8	84.5 65.7	95. 74.
exit press, p _O /p _e		

TABLE I. - Continued. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ...
(1) Stagnation pressure, 100 pounds per square inch absolute

1	\. I	i) boagia	oron proo			er square					
Performance parameter		1	t I	1		n tempera			1 1		
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
	6297	8616	10493	12159	14325	enthalpy, 17156	20815	25423	31000	47656	62457
	0237					cular hyd	Į			*	02201
	0.0003	0.0048	0.0156	0.0301	0.0535	0.0888	0.1390	0.2062	0.2907	0.5503	0.7748
		! Flo	w rate pe	! r unit th	roat area	per unit	stagnati	on pressu	re, w/A*p	' 0	
	0.00230	0.00204	0.00191	0.00184	0.00176	0.00168	0.00160	0.00153	0.00145	0.00127	0.00115
	ĺ		Gas	power pe	unit pr	opellant v	weight fl	ow rate,	Pg/w		
	13,860	18,260	21,830	24,990	29,100	34,480	41,430	50,190	60,790	92,400	120,500
		ī	1	i ———	ı	ow effici			1		
	0.998	0.974	0.930	0.883	0.821	0.749	0.674	0.600	0.534	0.420	0.374
Speed #4 a Ampulso T	797	904	965	1006	ratio, ∞ 1047	1089	1131	1175	1220	1334	1438
Specific impulse, I Vacuum specific impulse, Ivac	797	904	965	1006	1047	1089	1131	1175	1550	1334	1438
Nozzle efficiency, n Power/lb thrust, Pg/F	0.998	0.974 20.2	0.930	0.883 24.8	0.821 27.8	0.749 31.7	0.674 36.6	0.600 42.7	0.534 49.8	0.420 69.2	0.374 83.8
Stagnation press/nozzle exit press, po/pe	∞	œ	∞	∞	60	80	œ	8	∞	80	&
1	1	1	ı	l Area r	 atio, 500	!	1	1	L		
Specific impulse, I Vacuum specific	777 782	881 887	941 948	981 988	1022	1064 1072	1109	1155 1162	1203 1209	1324 1328	1430 1423
impulse, Ivac	0.950	0.926	0.884	0.840	0.783	0.717	0.647	0.580	0.520	0.414	0.371
Power/1b thrust, Pg/F	17.7	20.6	23.0	25.3 36927	28.3	32.2 40452	37,2 44456	43.2 50756	50.3	69.6	84.1
Stagnation press/nozzle exit press, po/pe	39333	37090	36360	30321	30102	40432	44400	30730	00032	33230	145000
	ī	1	ſ	ı	atio, 100	ī	1	ī	r i	· · · · · ·	Г
Specific impulse, I Vacuum specific	758 769	858 872	916 931	956 971	996 1012	1039 1054	1084 1099	1131 1146	1181 1194	1306 1317	1416 1425
impulse, Ivac Nozzle efficiency, n	0.903	0.879	0.839	0.797	0.744	0.683	0.618	0.556	0.501	0.403	0.363
Power/lb thrust, Pg/F Stagnation press/nozzle	18.0 3756	21.0 3602	23.5 3568	25.8 3592	28.8 3674	32.7 3839	37.7 4116	43.8 4544	50.9 5159	70.2 7571	84.6 10320
exit press., p ₀ /p _e	1	ı]	Area	ratio, 50	1	1	I	1		
Specific impulse, I	744	842	899	938	978	1020	1065	1113	1164	1292	1404
Vacuum specific impulse, I _{Vac}	760	861	919	959	999	1042	1086	1134	1183	1308	1418
Nozzle efficiency, T Power/lb thrust, Pg/F	0.871	0.847	0.808	0.768 26.1	0.717 29.1	0.659 33.1	0.598 38.2	0.539 44.3	0.486 51.4	0.394 70.7	0.357 85.0
Stagnation press/nozzle exit press, p ₀ /p _e	1374	1325	1311	1317	1341	1392	1478	1610	1798	2515	3308
		•		Area	ratio, 25	5					
Specific impulse, I Vacuum specific	725 747	820 846	876 903	913 942	953 982	994 1024	1039	1087	1139 1167	1271 1294	1385 1406
impulse, I _{vac} Nozzle efficiency, η	0.827	0.803	0.766	0.728	0.680	0.625	0.569	0.514	0.466	0.381	0.348
Power/1b thrust, Pg/F Stagnation press/nozzle	18.6	21.6 484	24.2 478	26.6 479	29.7 485	33.7 500	38.8 326	44.9 566	52.1 622	71.4 832	85.7 1056
exit press, p ₀ /p _e					l						_
Charlet a Armini - T	688	777	829	Area 865	ratio, 10	1	987	1035	1087	1224	1342
Specific impulse, I Vacuum specific impulse, Ivac	722	817	872	909	948	990	1034	1035	1134	1265	1342
Nozzle efficiency, T Power/lb thrust, Pg/F	0.745	0.721	0.687 25.06	0.652	0.610	0.562	0.513	0.466 46.4	0.425 53.6	0.354 73.0	0.326 87.3
Stagnation press/nozzle exit press, po/pe	129	125	123	123	124	126	131	139	150	189	229
FU/Fe	1	I	ı	Area	ratio, 5	1	ı	J	1 _	l	L
Specific impulse, I Vacuum specific	645 694	727 78 4	775 836	808 872	843 910	882 950	925 994	972 1042	1024 1094	1163 1229	1284 1346
1mmulse, Trees	0.655	0.631	0.600	0.570	0.533	0.492	0.450	0.411	0.377	0.319	0.298
Nozzle efficiency, T Power/lb thrust, Pg/F Stagnation press/nozzle	20.0	23.3	26.1 42.8	28.7	32.0 42.9	36.3	41.7	48.2	55.6 49.6	75.2	89.5
exit press, p ₀ /p _e	45	45.4	42.8	*2./	42.9	43.6	**.9	40.8	1 *3.5	39.6	""
•	•	•							•		

TABLE I. - Concluded. ISENTROPIC FROZEN EXPANSION OF HYDROGEN FOR AREA RATIOS FROM 5 TO ∞ (J) Stagnation pressure, 500 pounds per square inch absolute

Performance parameter					Stagnati	on tempera	ature, OK				
	2000	2500	2800	3000	3200	3400	3600	3800	4000	4500	5000
			'	St	tagnation	enthalpy	H _O , cal/	g'g			
Į	6288	8473	10024	11252	12712	14478	16635	19262	22433	32936	4625
			Weigh	t fractio		ecular hyd				1	
<u> </u>	0.0001	0.0021	0.0070	0.0135	0.0240	1	0.0626	0.0938	0.135	0.283	0.48
	0.002298								ıre, w/A*p 0.001521		0.00122
-	0.002296					opellant				0.001000	0.00222
	13,860	18,010	20,950	23,280	26,060	29,410	33,490	38,500		64,470	89,75
		I	'	1	Frozen f	low effici	lency, η _f		, ,	I	
	0.999	0.988	0.968	0.944	0.910	0.868	0.818	0.763	0.706	0.573	0.47
	ı	1	i	1	ratio, ∞		1	1		1	
Specific impulse, I Vacuum specific impulse, Ivac	797 797 0.997	903 903 0.988	964 964 0.968	1004 1004 0.944	1043 1043 0.910	1082 1082 0.868	1121 1121 0.818	1160 1160 0.763	1200 1200 0.706	1301 1301 0.573	140 140 0.47
Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle exit press, po/pe	17.9 ∞	20.5	22.3	33.8	26.0	27.9	30.7	34.0	37.9 ∞	50.4	64.
	'	ı	ı	_ Area I	atio, 500)	ı	1	ı	ı	
Specific impulse, I Vacuum specific impulse, I _{Vac}	777 782	880 887	939 946	978 985	1016 1024	1055 1063	1094 1102	1134 1142	1175	1282 1288	139 139
Nozzle efficiency, N Power/lb thrust, Pg/F Stagnation press/nozzle exit press, p ₀ /p _e	0.951 17.7 39517	0.939 20.3 36861	0.919 22.1 35850	0.896 23.6 35520	0.865 25.4 35567	0.826 27.7 36105	0.780 30.4 37283	0.729 33.7 39292	0.677 37.6 92372	0.556 50.0 56797	0.47 64. 8391
	J	ı	I	Area r	etio, 100		1	i	J	1	
Specific impulse, I Vacuum specific impulse, I _{Vac}	758 769	857 871	914 929	952 967	989 1006	1027 1044	1066	1106 1123	1148 1164	1257 1272	136 138
Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle	0.904 18.0 3755	0.891 20.7 3586	0.871 22.5 3516	0.849 24.1 3490	0.820 25.9 3491	0.783 28.2 3526	0.740 30.9 3608	0.694 34.3 3748	0.646 38.2 3963	0.535 50.7 4940	0.45 65. 666
exit press., p ₀ /p _e	l	I	I	Area	ratio, 50			1	1	I	
Specific impulse, I Vacuum specific	744 760	841 860	897 9 1 7	934 955	971 992	1008 1030	1046 1069	1086 1109	1127 1151	1239 1260	135 137
impulse, I _{vac} Nozzle efficiency, N Power/lb thrust, P _g /F Stagnation press/nozzle	0.872 18.2 1373	0.858 20.9 1319	0.838 22.8 1295	0.817 24.4 1284	0.789 26.3 1282	0.754 28.5 1291	0.713 31.3 1315	0.669 34.7 1358	0.623 38.7 1425	0.519 51.2 1726	0.44 65. 224
exit press, p ₀ /p _e	ŀ	Į	I	Area	ratio, 25	,	I	l			
Specific impulse, I Vacuum specific	725 747	820 845	873 901	909 938	944 975	981 1012	1018 1050	1058 1090	1099 1132	1211 1242	132 135
impulse, I _{vac} Nozzle efficiency, N Power/lb thrust, Pg/F Stagnation press/nozzle	0.828 18.6 501	0.814 21.3 482	0.794 23.3 473	0.774 24.8 468	0.747 26.7 467	0.714 29.1 468	0.676 31.9 475	0.634 35.3 487	0.592 39.3 507	0.497 51.9 598	0.42 66. 75
exit press, p ₀ /p _e		J	l	Area	ratio. 10)	ı	I	1	i	
Specific impulse, I Vacuum specific	688 722	776 816	827 869	860 905	893 940	927 976	963 1013	1001 1053	1042 1094	1155 1206	127: 132:
impulse, I _{Vac} Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle exit press, p _O /p _e	0.746 19.2 129	0.731 22.1 124	0.712 24.1 122	0.693 25.7 127	0.668 27.7 120	0.638 30.1 120	0.604 33.1 121	0.568 36.6 123	0.532 40.7 127	0.451 53.5 144	0.39 67. 17
2110 P1 0000) PU/PE	į	I	ı	Area	ratio, 5	ļ	i	J	1	i	
Specific impulse, I Vacuum specific	645 694	726 783	772 834	803 867	834 901	866 936	900 972	936 1010	975 1050	1086 1162	120 128
impulse, Ivac Nozzle efficiency, ¶ Power/lb thrust, Pg/F Stagnation press/nozzle exit press, po/pa	0.656 20.0 45.0	0.640 23.0 43.3	0.621 25.1 42.5	0.604, 26.9 42.1	0.582 28.9 41.9	0.556 31.4 41.9	0.527 34.5 42.2	0.497 38.1 42.8	0.466 42.4 43.8	0.399 55.5 38.3	0.35 70. 55.

11 111 1

(a) Enthalpy. Reference temperature, 298° K. Figure 1. - Stagnation parameters of hydrogen.

(b) Weight fraction of molecular hydrogen dissociated.

Figure 1. - Continued. Stagnation parameters of hydrogen.

(c) Flow rate per unit throat area.

Figure 1. - Concluded. Stagnation parameters of hydrogen.

(a) Frozen flow efficiency; infinite area and pressure ratios.

Figure 2. - Performance characteristics of hydrogen for frozen expansion.

(b) Specific impulse; infinite area and pressure ratios.

Figure 2. - Continued. Performance characteristics of hydrogen for frozen expansion.

(c) Vacuum specific impulse; finite area ratio; ambient pressure, 0; stagnation pressure, 14.7 pounds per square inch absolute.

Figure 2. - Continued. Performance characteristics of hydrogen for frozen expansion.

(d) Nozzle efficiency; finite area ratio; stagnation pressure, 14.7 pounds per square inch absolute.

Figure 2. - Continued. Performance characteristics of hydrogen for frozen expansion.

(e) Gas power per pound of thrust; finite area ratio; ambient pressure, 0; stagnation pressure, 14.7 pounds per square inch absolute.

Figure 2. - Concluded. Performance characteristics of hydrogen for frozen expansion.

