Московский государственный технический университет имени Н. Э. Баумана

Специализированный учебно-научный центр Лицей №1580 при МГТУ им. Н. Э. Баумана

Кафедра «Основы физики»

Лабораторный практикум по физике Электронное издание 10 класс

МЕХАНИКА

Лабораторная работа <u>М–8</u> Определение коэффициента трения качения Лабораторный практикум по физике. Механика. — Московский государственный технический университет имени Н. Э. Баумана

Лабораторный практикум по физике для 10 класса состоит из лабораторных работ для занятий учащихся 10 классов в Специализированном учебно-научном центре МГТУ имени Н. Э. Баумана.

Лабораторные работы, приведенные в сборнике, позволят учащимся глубже изучить законы физики и получить навыки проведения экспериментальных физических исследований.

> Составители лабораторных работ: И. Н. Грачева, В. И. Гребенкин, А. Е. Иванов, И. А. Коротова, Е. И. Красавина, А. В. Кравцов, Н. С. Кулеба, Б. В. Падалкин, Г. Ю. Шевцова, Т. С. Цвецинская.

Под редакцией И. Н. Грачевой, А. Е. Иванова, А. В. Кравцова.

Об ошибках и неточностях просьба сообщать на электронную почту metod1580@gmail.com

- © Московский государственный технический университет имени Н. Э. Баумана, 2014
- © Лицей №1580 при МГТУ им. Н. Э. Баумана, 2014

8.1 Цель работы

Целью работы является экспериментальное определение коэффициента трения качения шара по плоской пластине при различных углах наклона пластины.

8.2 Основные теоретические сведения

При качении по плоской поверхности тел, имеющих форму круговых цилиндров или шаров, возникают не только упругие, но и пластические деформации. Из-за этого линия действия реакции опорной поверхности не совпадает с линией действия нормального давления. Направление линии действия реакции опорной поверхности качественно может быть определено из следующих соображений.

Рис. 8.1: Силы, действующие при качении

Рис. 8.2: Силы, действующие при равномерном качении

Сила трения является диссипативной силой, следовательно, центр масс тела движется замедленно, а угловое ускорение направлено противоположно угловой скорости. Для соблюдения этих условий точка приложения реакции опорной поверхности должна находиться впереди (относительно перемещения) центра масс, а сама сила реакции опоры должна быть направлена вверх-назад, причем линия действия этой силы должна проходить впереди центра масс (рис. 8.1). В случае равномерного качения под действием силы \mathbf{F} (рис. 8.2) нормальная к плоскости составляющая $\mathbf{R}_{\rm n}$ реакции опорной поверхности \mathbf{R} численно равна mg, где m—масса тела, а горизонтальная составляющая $\mathbf{F}_{\rm тр}$ является силой трения качения, равной (по \mathbf{K} улону)

$$F_{\rm Tp} = f_{\kappa} \frac{R_n}{r},\tag{8.1}$$

где f_{κ} — коэффициент трения качения, имеющий размерность длины и зависящий при качении от материалов тел, состояния их поверхностей и ряда других факторов; r - радиус катящегося тела.

Пара сил \mathbf{R}_{n} и $\mathbf{F}_{\mathrm{тp}}$, приложенных к катящемуся телу, создает момент трения

$$M_{\rm TP} = F_{\rm TP} r = f_{\rm K} R_n, \tag{8.2}$$

Из выражения (8.2) видно, что f_{κ} численно равен плечу силы \mathbf{R}_{n} , т. е. расстоянию от линии действия \mathbf{R}_{n} до оси вращения.

В данной работе экспериментально определяется коэффициент трения качения пары «шар — плоская пластина». Если после N полных колебаний измерить угол полного отклонения α_n , то, в соответствии с законом изменения механической энергии, можно записать

$$mgh_0^* - mgh_n^* = A_{\text{Tp}}, \tag{8.3}$$

Рис. 8.3: Схема опыта

где

$$h_0^* = 2l\sin^2\frac{\alpha_0}{2}\cos\beta,\tag{8.4}$$

$$h_n^* = 2l\sin^2\frac{\alpha_n}{2}\cos\beta. \tag{8.5}$$

При малых углах (не превышающих 5°) $\sin x \approx x$ и

$$h_0^* = \frac{\alpha_0^2}{2} l \cos \beta, \tag{8.6}$$

$$h_n^* = \frac{\alpha_n^2}{2} l \cos \beta. \tag{8.7}$$

Работа сил трения рассчитывается как

$$A_{\rm TP} = M_{\rm TP}\varphi,\tag{8.8}$$

где $M_{\rm TP}$ вычисляется в соответствии с выражением (8.2), а

$$\varphi = 2\pi l \frac{\alpha_0 + \alpha_n}{2} \cdot 4N \frac{1}{2\pi r},\tag{8.9}$$

где r — радиус шара; l — длина нити подвеса; α_0 — начальное отклонение шара от положения равновесия; α_n — максимальное отклонение шара от положения равновесия после N колебаний.

Решая совместно уравнения (8.2)–(8.9) относительно f_{κ} , получим расчетное соотношение

$$f_{\kappa} = \frac{r}{\operatorname{tg}\beta} \cdot \frac{\alpha_0 + \alpha_n}{4N}.$$
 (8.10)

8.3 Описание экспериментальной установки

Общий вид экспериментальной установки приведен на рис. 8.4. К основанию 10 прикреплена труба 9, на которой смонтирован корпус 8 с червячной передачей, с помощью которой вращается кронштейн 2. К кронштейну прикреплены шкалы 11 и 7 и штатив 1, на который подвешен на нити шар 4. На кронштейне же закреплена опорная пластина 3 и фотоэлектрический датчик 5, управляющий миллисекундомером 12. Червячная передача вращается с помощью ручки 6.

Рис. 8.4: Схема экспериментальной установки

8.4 Порядок выполнения работы

1. Подготовьте таблицу 8.1 в четырех экземплярах.

Таблица 8.1

$\beta =$									
$\alpha_0, ^{\circ}$									
α_n, \circ									
t, c									
Число периодов N									

- 2. Запишите в протокол измерений погрешности приборов.
- 3. Включите установку в сеть 220 В.
- 4. Вращением ручки 10 отклоните штатив 7 на угол $\beta = 5^{\circ}$ от вертикали.
- 5. Измерьте длину нити подвеса.
- 6. Нажмите кнопку «Сброс» секундомера.
- 7. Отклоните шар от положения равновесия на $\alpha_0 = 4^{\circ}$ и отпустите его.
- 8. После совершения 10 полных колебаний измерьте визуально угол наибольшего отклонения по шкале и время по секундомеру, нажав после совершения нужного числа колебаний кнопку «Стоп» секундомера.
- 9. Измерения по пп. 6-8 повторите 3 раза.
- 10. Измерения по пп. 6–9 повторите для значений α_0 , равных 6° и 12°.
- 11. Измерения по пп. 6–10 произведите для углов β , равных 10° , 15° , 20° .
- 12. Результаты всех измерений запишите в таблицы.

- 13. С помощью выражения (8.10) вычислите значения коэффициентов трения качения.
- 14. В соответствии с методикой, изложенной в разделе «Введение», рассчитайте погрешности измерений коэффициента трения качения.
- 15. Постройте на одном графике зависимости $f_{\kappa}(\alpha)$ при различных β .
- 16. Сформулируйте выводы.

8.5 Контрольные вопросы

- 1. Что такое коэффициент трения качения? В чем его физический смысл?
- 2. Сформулируйте закон сохранения энергии.
- 3. Чем обусловлено возникновение трения качения?
- 4. Что такое систематическая и случайная погрешности измерения?