Концептуальное моделирование

Лабораторная работа 1

Модель «сущность-связь» («Entity-Relationship»)

- Тип сущности. Группа объектов с одинаковыми свойствами, которая рассматривается в конкретной предметной области как имеющая независимое существование
- Экземпляр сущности. Однозначно идентифицируемый объект, который относится к сущности определенного типа.
- **Связь** описывает соединение между данными (типами сущностей)

Модель «сущность-связь» основные понятия

- Сущность описывается набором *атрибутов.* Каждый атрибут описывает отдельное свойство сущности.
- Сущности (и связи) обладают некоторыми **свойствами** (property). Все сущности или связи одного и того же типа обладают определенными общими свойствами.

Сущности подразделяются на

- Обычные (сильные) сущности
- Слабые сущности.
 Слабой называется такая сущность, существование которой зависит от другой сущности, т.е. она не может существовать, если этой другой сущности не существует.
- *Обычной* называется сущность, которая не является слабой.

Пример сильной и слабой сущности

- Студент (№ зачетки, ФИО, дата рождения) –сильная сущность
- Личный кабинет студента (ИД, логин, пароль, дата создания) –слабая сущность, не существует без студента

Характеристики свойств

Простое или **составное** свойство. Например, свойство "имя работника" может

быть составным, если его значение составляется из значений простых свойств

"имя", "отчество" и "фамилия".

- Ключевое свойство (т.е. свойство, которое может оказаться уникальным только в определенном контексте). Например, имя детей определенного сотрудника обычно бывает уникальным только в контексте данных об этом сотруднике.
- Однозначное или многозначное свойство (т.е. в этой модели допускаются повторяющиеся группы). Но если некоторый поставщик (SUPPLIER) будет иметь несколько разных офисов, то свойство CITY (Город) для него будет многозначным.
- Отсутствующее свойство (т.е. свойство *неизвестное* или *неприменимое*) и **обязательное**.
- Базовое или производное свойство. Например, общее количество деталей определенного вида может быть вычислено с помощью суммирования объема отдельных поставок данной детали (дата рождения –базовое, возраст производное).

Название связи представляется в глагольной форме и описывает отношение между 2 или более сущностями

Типы связей по **Мощности** (кардинальности)

- "один-ко-многим" (1:M) (1:*)
- "многие-ко-многим" (M:N) (*:*)
- "один-к-одному" (1:1).

Мощность

Мощность	Объяснение	Пример
"один-ко- многим" (1:M) (1:*)	Один экземпляр сущности 1 связан с множеством экземпляров сущности 2, но экземпляр сущности 2, связан только с одним экземпляром сущности 1	Человек - мобильный телефон. У человека может быть несколько номеров, но номер (сим-карта) зарегистрирован только на одного
"многие-ко- многим" (M:N) (*:*)	Один экземпляр сущности 1 связан с множеством экземпляров сущности 2, и экземпляр сущности 2 связан с многими экземплярами сущности 1	Студент- кружки по интересам. Студент может ходить в несколько кружков, и в один кружок ходит несколько студентов
"один-к- одному" (1:1)	Один экземпляр сущности 1 связан только с одним экземпляром сущности 2 и экземпляр сущности 2, связан только с одним экземпляром сущности 1	Студент- личный кабинет. У студента только один личный кабинет студента и личный кабинет строго привязан только к одному студенту

ER-диаграмма

- ER-модели обычно представляются в виде диаграмм "сущность-связь" (ER-диаграмма, ERD
- Нотации:
- Модель Чена
- Модель «птичья лапка»

Сущность на ERD (одинакова для нотаций)

Название сущности

обязательное свойство VARIABLE CHARACTER (20) необязатеньное свойство DATE

Модель «Птичья лапка»

Модель Чена

Модель Чена. особенности

а)односимвольное обозначение

б) диапазонное обозначение

online моделлеры

•

- diagram editor
- https://www.diagrameditor.com/
- Draw.io
- https://app.diagrams.net/
- Или любом другом удобном для вас.

•

•

Правила

- Названия сущностей уникальны в рамках диаграммы
- Названия атрибутов (свойств) уникальны в рамках диаграммы
- Каждая сущность должна иметь ключ (ключевые атрибуты)

Этапы моделирования

- Выделение основных понятий предметной области
- 2. Определение является ли понятие свойством или сущностью
- 3. Выделение непосредственных связей
- 4. Определение мощности связи

Задание (пример)

- Внеучебная активность студентов: студенты, кружки (авиамоделирования, КВН, Что? Где? Когда?), дни рождения, телефон, примечания к студенту или контакту
- а. КВНщики, у которых телефон начинается на 8-921,
- b. Студенты, которые ходят на Авиамоделирование и робототехнику одновременно
- с. Студенты, которые не ходят в кружки
- d. месяц, когда есть дни рождения в группе 4831, но нет в группе 4836
- е. Самые старшие студенты
- f. Студенты, которые ходят во все кружки
- g. Кружки, к которым относится максимальное количество студентов

Понятия

Внеучебная активность студентов:
студенты, кружки
(авиамоделирования , КВН, Что?
Где? Когда?), дни рождения,
телефон, примечания к студенту
или контакту

- а. КВНщики, у которых телефон начинается на 8-921,
- b. Студенты, которые ходят на Авиамоделирование и робототехнику одновременно
- с. Студенты, которые не ходят в кружки
- d. месяц, когда есть дни рождения в группе 4831, но нет в группе 4836
- е. Самые старшие студенты
- f. Студенты, которые ходят во все кружки
- g. Кружки, к которым относится максимальное количество студентов

Понятие	Сущность/ свойство
Студент	Сущность
Кружок	Сущность
телефон	Сущность
группа	Сущность
День рождения	Свойство студента
примечание	Свойство студента

сущность или свойство?

- Для определения сущность или свойство задается 3 вопроса.
- 1)Существует ли самостоятельно .
- Если да- сущность.
- Если нет не определено.
- 2)Есть ли собственные свойства? если да- сущность.
- Если нет не определено.
- Наименование чего-либо уже может быть свойством.
- 3) Участвует ли в связи один-ко-многим или многие-ко-многим?
- Если да- сущность.

- Связан ли студент- кружок?
- Связан ли студент- телефон?
- Связан ли студент- группа?
- Связан ли кружок и телефон?
- Связан ли кружок и группа?
- Связан ли телефон и группа?

Связан ли студент- кружок?	+
Связан ли студент телефон?	+
Связан ли студент- группа?	+
Связан ли кружок и телефон?	? -+
Связана ли кружок и группа?	-
Связан ли телефон и группа?	_

Связан ли студент- кружок?	+	M:M
Связан ли студент телефон?	+	1:M
Связан ли студент- группа?	+	1:M
Связана ли кружок и телефон?	-	
Связана ли кружок и группа?	_	
Связан ли телефон и группа?	-	

Результирующая концептуальная модель

Логическое проектирование и нормализация

Лабораторная работа 2

Преобразование в логическую реляционную модель

Сущность/связь	Способ преобразования
Сильная сущность	Создание отношений, которые включают все простые атрибуты
Слабая сущность	Создание отношений, которые включают все простые атрибуты (после преобразования связи с каждой сущностью-владельцем необходимо также определить первичный ключ)
Многозначный атрибут	Создание отношения, представляющего многозначный атрибут, и передача копии первичного ключа сущностивладельца в новое отношение для использования в качестве внешнего ключа

Преобразование в логическую реляционную модель

Сущность/связь	Способ преобразования
Двухсторонняя связь типа 1:*	Передача первичного ключа сущности на сторону "один" для использования в качестве первичного ключа в
	отношении, соответствующем сущности на стороне
	"многие". На сторону "многие" передаются также все
	атрибуты связи
Двухсторонняя связь типа 1:1:	
обязательное участие обеих	Объединение сущностей в одно отношение
сторон	
обязательное участие одной стороны	Передача первичного ключа сущности на "необязательную"
	сторону для использования в качестве внешнего ключа в
	отношении, представляющем сущность на "обязательной"
	стороне
необязательное участие	Если отсутствует дополнительная информация, то выбор
обеих сторон	становится
	произвольным
Двухсторонняя связь типа	Создание отношения, представляющего связь, и включение
:, сложная связь	всех атрибутов связи. Передача в новое отношение копии

Символьные типы данных

- Char(7)
- Лесоповал —— "Лесопов"
- Лес "Лес — "

- Varchar(7)
- Лесоповал ____ "Лесопов"
- Лес
 "Лес"

Character Large object

- •до 2 ГБ
- •Нет значения по умолчанию
- •Поиск по шаблону (like) не возможен
- •Ограниченная сортировка и индексы

Этапы логического проектирования

- 1. Перенести сущности.
- 2. Перенести связи один-к-одному, объединив сущности, где необходимо
- 3. Перенести связи один-ко-многим, добавив внешние ключи на строну много
- 4. Перенести связи многие-ко-многим , добавив новую сущность

Концептуальная модель

Студент	
PK	ид_студ_int
	ФИО varchar(60)
	день_рождения date
	примечание varchar(255)

Телефон	
PK	ид тел int
	Номер varchar(11)

Кружок	
PK	ид кр int
	Название varchar(20)

Обязательная одна сторона Обязательны обе стороны

Нормализация

- Нормализация данных это процесс приведения модели к виду, позволяющему получить в дальнейшем структуру базы данных, в которой устранена избыточность хранения и сведены к минимуму аномалии при добавлении, удалении, изменении данных.
- Процесс нормализации проводится поэтапно. На каждом из этапов на структуру базы накладывается некоторое ограничение и в структуре базы выправляется некоторый дефект. Про базу с соответствующими ограничениями говорят, что она находится в одной из нормальных форм.

Нормальные формы

- 1. Первая нормальная форма (1НФ)
- 2. Вторая нормальная форма (2НФ)
- 3. Третья нормальная форма (ЗНФ)
- 4. Нормальная форма Бойса-Кодда(НФБК)
- 5. Четвертая нормальная форма (4НФ)
- 6. Пятая нормальная форма (5НФ)

Ненормализованное отношение

• Ненормализованная форма (ННФ). Таблица, содержащая одну или несколько повторяющихся групп данных.

Первая нормальная форма

• Первая нормальная форма (1НФ). Отношение, в котором на пересечении каждой строки и каждого столбца содержится одно и только одно атомарное значение.

Возможные нарушения 1НФ:

- Значение может быть составным (ФИО)
- многозначным (список номеров телефона)

Как привести к 1 НФ?

- Составное поле разделяем на элементы
- Многозначный атрибут создание отношения (таблицы), представляющего многозначный атрибут, и передача копии первичного ключа сущности-владельца в новое отношение для использования в

лнего ключа

1 Нормальная форма

Ненормализованная база днных

База данных в 1НФ

Вторая нормальная форма (2НФ)

• Отношение находится во второй **нормальной форме** (**2НФ**) тогда и только тогда, когда отношение находится в 1НФ и нет неключевых атрибутов, зависящих от части сложного ключа. (Неключевой атрибут - это атрибут, не входящий в состав никакого потенциального ключа)

Вторая нормальная форма применяется к отношениям с составными ключами, т.е. к таким отношениям, первичный ключ которых состоит из двух или нескольких атрибутов.

Отношение в 1 НФ с первичным ключом на основе единственного атрибута всегда находится, по крайней мере, в форме 2НФ.

Приведение к 2НФ

БД в 1НФ

База данных без суррогатных ключей

База данных в 2НФ без суррогатных ключей

Функциональная зависимость

• Функциональная зависимость. Описывает связь между атрибутами отношения. Например если в отношении R, содержащем атрибуты A и B, атрибут B функционально зависит от атрибута A (что обозначается как A (B)), то каждое значение атрибута A связано только с одним значением атрибута B. (Причем атрибуты A и B могут состоять из одного или нескольких атрибутов.)

Третья нормальная форма (ЗНФ)

- Атрибуты называются *взаимно независимыми*, если ни один из них не является функционально зависимым от другого.
- Отношение находится в *третьей* нормальной форме (3НФ) тогда и только тогда, когда отношение находится в 2НФ и все неключевые атрибуты взаимно независимы.

База данных в 2НФ без суррогатных ключей

База данных в 3НФ без суррогатных ключей

БД в ЗНФ

словесное описание произведенных действий по нормализации

Нарушения первой нормальной формы:

- Составной столбец ФИО таблицы «Студент»
- Также нарушениями являются многозначные атрибуты.
- А может сразу после разработки находится в 1 нормальной форме в силу отсутствия многозначных и составных атрибутов.

Для приведения к первой нормальной форме были произведены следующие действия:

- Составной столбец ФИО таблицы «Студент» разделен на 3 различных столбца (Фамилия, имя, отчество).
- Если есть многозначный атрибут его значения выносят в отдельную таблицу с внешним ключом той таблицы, откуда он пришел.

словесное описание произведенных действий по нормализации

Нарушения второй нормальной формы:

- Не нарушена, так как в таблице кружок_студента, в которой присутствует составной первичный ключ нет неключевых полей.
- Может быть нарушена, если есть зависимость неключевого столбца от части составного ключа.

Для приведения ко второй нормальной форме были произведены следующие действия:

- Действий не требовалось, так как база уже находилась во второй нормальной форме (нарушений не было).
- По каждой зависимости ,нарушающей требования второй нормальной формы описать действия в следующем формате:
- Была вынесена зависимость (указать какая зависимость) из таблицы (указать таблицу) в новую таблицу (указать новую таблицу).

словесное описание произведенных действий по нормализации

Нарушения третьей нормальной формы:

- Более одного неключевого атрибута в таблицах «телефон» и «Студент».
- В таблице «телефон» столбцы «номер телефона» и «ид_студ» не зависят друг от друга.
- В таблице «Студент» фамилия имя и отчество не зависят друг от друга и даты рождения, примечание в свою очередь также не зависит от полного имени человека (фамилия, имя, отчество) и даты рождения.
- Таким образом можно сделать вывод об отсутствии нарушений третьей нормальной формы.
- Может быть нарушена, если есть зависимость между неключевыми атрибутами

Для приведения к третьей нормальной форме были произведены следующие действия:

- Действий не требовалось, так как база уже находилась в третьей нормальной форме (нарушений не было).
- По каждой зависимости ,нарушающей требования второй нормальной формы описать действия в следующем формате:
- Была вынесена зависимость (указать какая зависимость) из таблицы (указать таблицу) в новую таблицу (указать новую таблицу).

Схема базы

Ненормализованная

3НФ

