

CS3451, Graphics

- Course objectives
- Instructor
- Rules & expectations
- Resources
- Processing
- Projects

Jarek Rossignac

http://www.gvu.gatech.edu/~jarek

MAGIC lab

Georgia Tech. IIC

Course objectives and philosophy

- The course is **NOT** teaching
 - The skill or processes of artistic content creation
 - The use of commercial CAD or animation packages
- It teaches the **mathematical** and **algorithmic** foundations of
 - Geometric modeling in 2D and in 3D, Graphics, and Animation so that you can invent, design, implement, and test new techniques that help artists, players, engineers, scientists.
- Side benefits
 - Practice your math and programming skills
 - Understand why things are done this way
 - Learn critical thinking and mathematical rigor
 - Develop intuition and algorithmic problem solving abilities
 - Practice communication and teamwork skills

rek Rossignac http://www.gvu.gatech.edu/~jarek

MAGIC lab

Georgia Tech, IIC

2

Jarek Rossignac 2

Expectations

- Prerequisites
 - Solid **math** skills in linear algebra and calculus
 - Comfortable **programming** expertise (Processing, Java...)
- Expectations -- Students should
 - Attend every class
 - Active participation: exercises, answers, teamwork
 - Take lots of notes: Board, discussions...
 - Study a lot for before and after lecture: slides, your notes, readings
 - Implement projects early and alocate time for the write-up
 - Plan to spend 12 hrs / week on this class

Jarek Rossignac http://www.gvu.gatech.edu/~jarek

MAGIC Lal

Georgia Tech, IIC

Test 01

On separate sheet write the following (8 mns):

- "CS3451 Fall 2011 Test 01"
- First and LAST name
- Program (CS, CM...):
- Year (3rd, 4th...):
- Your favorite programming **language** (Java, Processing...):
- Most complex **pgm** that you have written by yourself: # loc, what it did
- Dot product $(1,2) \cdot (5,3) =$
- Write (in seudo-code) a simple program to do the following:
 Array int[] A = {32, 4, 6...}; // Input: contains n integers.
 int S; // Output: the sum of the largest two.

Jarek Rossignac

http://www.gvu.gatech.edu/~jarek

MAGIC lab

Georgia Tech, IIC

- 5

Grading Policy

- 40% : 4 Individual Projects (programming and write up)
- 20% : 1 team project
- 40%: 3 Midterms (10/10/20) (closed books, cheat-sheet)
- bonus : Pop Quizzes (on past, current, and next class)
- No Final

Jarek Rossignac

http://www.gvu.gatech.edu/~jarek

MAGIC lal

Georgia Tech, IIC

Syllabus (may evolve)

Lecture Content	Project	Date	Textbook se
 Course outline, Processing, Neville, Project 1A 	P1	Aug 23, Tu	
Curves, animation, surfaces: parabola, Bezier, b-spline.	P1	Aug 25, Th	2.5, 15
 Polyline sampling smoothing, subdivision. Project 1B 	P1	Aug 30, Tu	
 Points, vectors, frame changes, motions, matrices 	P1	Sep 01, Th	2.4,2.7,5,6,17
5. Primitives (edge, triangle, circle), represent, intersect. Project	et 2 P2	Sep 06, Tu	
Polygon: definition, inclusion, intersection, area, moment	P2	Sep 08, Th	
Curvature and Minkowski morphs	P2	Sep 13, Tu	
8. Physics, free fall, collision detection, elastic shock	P2	Sep 15, Th	
9. Review		Sep 20, Tu	
10. MIDTERM 1 (10)	P3	Sep 22, Th	
11. 3D geometry: cross, mixed, frames, matrices, motions	P3	Sep 27, Tu	
12. 3D graphics in Processing: shapes, camera, lighting, transfor	rms P3	Sep 29, Th	
13. Pipeline: perspective, rasterization, z-buffer, textures	P3	Oct 03, Tu	3,7,8,11
14. GPU: architecture, shaders, capabilities and applications	P4	Oct 06, Th	18
15. Triangle meshes, Corner Table, topology, Euler equation	P4	Oct 11, Tu	12
16. Normals, components, holes, silhouettes	P4	Oct 13, Th	
17. Smoothing, subdivision, geodesic walk, isolation, skeletons	P4	Oct 18, Tu	
18. Review		Oct 20, Th	
19. MIDTERM 2 (10)	P5	Oct 25, Tu	
20. Guest lecture	P5	Oct 27, Th	
21. Arrangements, Delaunay, Voronoi	P5	Nov 01, Tu	
22. BSP, CSG	P5	Nov 03, Th	12.4
23. Morphology, distances, MAT, rounding	P5	Nov 08, Tu	
24. Motion, warping, bending, skinning, IO	P5	Nov 10, Th	16
25. Light, reflection, ray tracing, photorealism	P5	Nov 15, Tu	4,10,13,20,24
26. Shadows, Visibility	P5	Nov 17, Th	
27. Perception, color, optical illusions		Nov 22, Tu	21,22
28. Review		Nov 29, Tu	
29. MIDTERM 3 (20)		Dec 01, Th	
30. Project presentations		Dec 06, Tu	
31. Project presentations		Dec 08, Th	
http://www.gvu.gatech.edu/~jarek	MAGIC lab		G

Jarek Rossignac

Reference books

- Fundamentals of Computer Graphics. Shirley (required)
 - Great (detailed) introduction to geometry and rendering
- Processing: A Programming Handbook for Visual Designers and Artists,
 Reas, Fry
 - Detailed overview of programming and graphics in Processing
- Computational Geometry: Algorithms and Applications. de Berg, van Kerveld, Overmars, Schwartzkopf.
 - Efficient algorithms for convex hulls, Delaunay, Booleans, medial axis...
- Processing for Visual Artists: How to Create Expressive Images and Interactive Art. Glassner.
 - Project-based intro to programming in Processing (more for artist)

Jarek Rossignac http://www.gvu.gatech.edu/~jarek

MAGIC lat

Georgia Tech, IIC

Q

Projects guidelines and deliverables

Ethics

- Not OK to copy code or answers from other students or teams
- It is OK to look at material posted, published, or provided for class

 - Cite clearly all sources of inspiration for your code and your write-up
 Strive to improve them: produce an original, compact and elegant solution
- Demonstrate ability to <u>finish</u> a small project
 No extension, no excuse (start early and plan for possible problems)

Deliverable code

- Working sketch (submit through T-square)
 Short and simple source code (points for elegance and conciseness)
 Comments where needed (brief, clear, useful)
- Deliverable report
 - Header: CS3451 Fall 2011 Project X, First Last name, your picture
- Typed write-up (11 pts font): Short, concise, formal
- State assignment and your answers

 - Demonstrate in-depth <u>understanding</u> of a topic
 Explain what you have implemented, how, and why
 Explain what does not work and why (suggest possible fixes)
 Reference sources
- BRING PRINTED COPY TO CLASS ON DUE DATE

Jarek Rossignac http://www.gvu.gatech.edu/~jarek

Georgia Tech, IIC

Web site for the course

Most material will be distributed through T-square: https://t-square.gatech.edu/portal

Additional material is available at:

http://www.gvu.gatech.edu/~jarek/graphics

- Slides, Reading, Links, Code examples, Resources

Jarek Rossignad

http://www.gvu.gatech.edu/~jarek

MAGIC lab

Georgia Tech, IIC

10

TAs

- Kristin Siu (kasiu@gatech.edu), Head TA
- Hernan Liatis (hliatis3@mail.gatech.edu)
- Jacob Pike (jpike3@gatech.edu)

Jarek Rossignac

http://www.gvu.gatech.edu/~jarek

MAGIC la

Georgia Tech, IIC
