WHAT IS CLAIMED IS:

1	1. A method for depositing a film on a substrate disposed in a substrate
2	processing chamber, the substrate having a trench formed between adjacent raised surfaces,
3	the method comprising:
4	depositing a first portion of the film over the substrate from a first gaseous
5	mixture flowed into the processing chamber by chemical-vapor deposition;
6	thereafter, etching the first portion by flowing an etchant gas comprising a
7	halogen precursor, a hydrogen precursor, and an oxygen precursor into the process chamber;
8	and
9	thereafter, depositing a second portion of the film over the substrate from a
10	second gaseous mixture flowed into the processing chamber by chemical-vapor deposition.
1	2. The method recited in claim 1 wherein the hydrogen precursor
2	comprises H ₂ .
1	3. The method recited in claim 1 wherein the halogen precursor
2	comprises a fluorine precursor.
1	4. The method recited in claim 3 wherein the fluorine precursor
2	comprises NF ₃ .
1	5. The method recited in claim 4 wherein:
2	the substrate includes a silicon nitride layer; and
3	etching the first portion comprises adjusting a flow rate of the hydrogen
4	precursor and a flow rate of the NF3 to control a relative concentration of NO and F in the
5	processing chamber.
1	6. The method recited in claim 3 wherein the fluorine precursor
2	comprises F ₂ .
1	7. The method recited in claim 3 wherein the fluorine precursor
2	comprises SiF ₄ .
1	8. The method recited in claim 1 wherein the hydrogen precursor and the
2	oxygen precursor are comprised by a single compound.

1	10.	The method recited in claim 8 wherein the single compound is H_2O_2 .
1	11.	The method recited in claim 1 wherein etching the first portion
2	comprises maintain	ing a plasma formed from the etchant gas.
1	12.	The method recited in claim 11 wherein the plasma is a high-density
2	plasma.	
1	13.	The method recited in claim 11 wherein the etchant gas further
2	comprises an inert	sputtering agent.
1	14.	The method recited in claim 13 wherein the inert sputtering agent
2	comprises Ar.	
1	15.	The method recited in claim 13 wherein the inert sputtering agent
2	comprises He.	
1	16.	The method recited in claim 13 wherein etching the first portion is
2	performed with a s	putter/removal ratio between 0.0 and 0.8, the sputter/removal ratio
3	corresponding to a	ratio of a volume of material removed by sputtering to a total volume of
4		by a combination of sputtering and chemical etching.
1	17.	The method recited in claim 11 wherein:
2		ositing the first portion of the film comprises maintaining a plasma formed
3	from the first gased	
4	J	ositing the second portion of the film comprises maintaining a plasma
5	•	econd gaseous mixture.
J	formed from the se	socia gasocas imitare.
1	18.	The method recited in claim 11 further comprising biasing the plasma
2	towards the substra	ate.
1	19.	The method recited in claim 1 wherein etching the first portion
2	comprises flowing	the hydrogen precursor at different flow rates to different parts of the
3	processing chambe	er to effect a radially nonuniform etching distribution over the substrate.

9.

1

The method recited in claim 8 wherein the single compound is $\ensuremath{H_2O}$.

1	A method for depositing a silicate glass film on a substrate disposed in		
2	a substrate processing chamber, the substrate having a trench formed between adjacent raised		
3	surfaces, the method comprising:		
4	depositing a first portion of the silicate glass film over the substrate by		
5	forming a plasma from a first gaseous mixture flowed into the processing chamber, the first		
6	gaseous mixture comprising a silicon-containing gas and an oxygen-containing gas;		
7	thereafter, etching the first portion by forming a plasma from an etchant gas		
8	mixture flowed into the processing chamber, the etchant gas mixture comprising a fluorine-		
9	containing gas, H ₂ , and O ₂ ; and		
10	thereafter, depositing a second portion of the silicate glass film over the		
11	substrate by forming a plasma from a second gaseous mixture flowed into the processing		
12	chamber, the second gaseous mixture comprising the silicon-containing gas and the oxygen-		
13	containing gas.		
1	21. The method recited in claim 20 wherein the fluorine-containing gas		
2	comprises NF ₃ .		
-	•		
1	22. The method recited in claim 21 wherein:		
2	the substrate includes a silicon nitride layer; and		
3	etching the first portion comprises adjusting flow rates of the NF ₃ , H ₂ , and O ₂		
4	to control a relative concentration of NO and F in the processing chamber.		
1	23. The method recited in claim 20 wherein the etchant gas mixture further		
2	comprises an inert sputtering agent.		
_	comprises an invest of anothing agent.		
1	24. The method recited in claim 20 wherein etching the first portion		
2	further comprises biasing the plasma formed from the etchant gas towards the substrate.		
1	25. The method recited in claim 20 wherein etching the first portion		
2	comprises flowing the H ₂ at different flow rates to different parts of the processing chamber		
3	to effect a radially nonuniform etching distribution over the substrate.		
1	26. A method for depositing a film on a substrate disposed in a substrate		
2	processing chamber, the substrate having a trench formed between adjacent raised surfaces,		
3	the method comprising:		

4	depositing a first portion of the film over the substrate by forming a plasma
5	from a first gaseous mixture flowed into the processing chamber;
6	thereafter, etching the first portion by forming a plasma from an etchant gas
7	mixture flowed into the processing chamber, the etchant gas mixture comprising a first
8	precursor gas reactive with the film, a second precursor gas reactive with the first precursor
9	gas, and an inert sputtering agent flowed into the processing chamber at respective flow rates
10	to control relative isotropic and anisotropic contributions to the etching; and
11	thereafter, depositing a second portion of the film by forming a plasma from a
12	second gaseous mixture.
1	27. The method recited in claim 26 wherein etching the first portion
2	further comprises biasing the plasma formed from the etchant gas towards the substrate.
1	28. The method recited in claim 26 wherein etching the first portion
2	comprises flowing the second precursor gas to provide a different distribution within the
3	processing chamber than the first precursor gas, thereby effecting a nonuniform etching

distribution over the substrate.