EEG Classification via CNNs

Andrey Kiselev

NeuroHack at Yandex

- 1. 24 hours
- 2. Three tasks
- 3. Weird ruleset

Tasks

- 1. Realtime prediction of EEG signal
- 2. EEG classification
- 3. EMG to pen coordinates (seq2seq)

Task 2: testing

Classify each timestep into one of 3 classes

Input: 1125 timesteps, 24 channels, 250Hz

Output: class probabilities for each timestep

Task 2: metric

Averaged ROC-AUC for each class (one-vs-all)

Tuning probability scores is useful!

Task 2: training set

- 1. Four patients
- 2. ~10 minutes of data (over 100k timesteps)

X set: batches of 1125 subsequent ticks of uniform class

Y set: class value for each batch

Solution Idea: use 1D Convnets

Because xgboost is so 2016...

1D Convnets have been successfully applied to various time-series related tasks

WaveNet is a notable example

1D Convolution

Multiscale 1D Convnet

Input resampling will allow to extract features at different time scales

All convnets are learned jointly

Implemented in Keras+TF

Postprocessing: autoblending

Blending usually works well as an additional regularization

Training NNs takes a lot of time

Let's blend a single NN with itself on different stages of training!

Autoblending Experiments

IMDB Movie Reviews

1D CNN, Accuracy

MNIST

MLP, AUC

Final Results

#	Участник О	La NeuroHack 2016		
		1	2 ^	(3
1	dmitry.f.kozlov	191770	9228	5475
2	polina.polunina	0	9168	5463
3	have-you-ever-retired-a-human	1 <u>0.00</u>	9005	5 <u></u> -5

Pros:

- No filtering
- Patient labels are not used at all

Cons:

Unable to handle chunks with varying states

Future Work

Try this approach in real-time.

Test if the classifier works on previously unseen people.

Write a paper?

Links

github.com/kiselev1189/EEGClassificationMCNN - Source, refactoring is coming

<u>arxiv.org/abs/1603.06995</u> Multi-Scale Convolutional Neural Networks for Time Series Classification