Introduction to Deep Q-Learning

Alexander Van de Kleut¹

 $^{11}{\rm NeuroCog~Lab~Cheriton~School~of~Computer~Science~University~of~Waterloo}$

IEEE Control Systems Magazine, 2002

Outline

Markov Decision Process

2 Q-Learning

3 Deep Q-Learning

The Reward Hypothesis

All of reinforcement learning is based on the idea that:

Reward Hypothesis

Every action of a rational agent can be thought of as seeking to maximize some cumulative scalar reward signal

We formalize this idea using a Markov Decision Process.

Van de Kleut (UW)

Markov Process

- A Markov process is formally a tuple $\langle S, P \rangle$
- \bullet \mathcal{S} is a set of states
- $\mathcal{P}: \mathcal{S}^2 \to [0,1]$ is a transition probability distribution

$$\mathcal{P}(s,s') = \mathbb{P}\left[s'|s\right]$$

the probability of transitioning to state s' given the current state s

• Markov processes are used model stochastic sequences of states s_1, s_2, \ldots, s_T satisfying the **Markov property**:

$$\mathbb{P}\left[s_{t+1}|s_1, s_2, \dots, s_t\right] = \mathbb{P}\left[s_{t+1}|s_t\right]$$

the probability of transitioning from state s_t to state s_{t+1} is independent of previous transitions.

• We can generate **trajectories** of states using \mathcal{P} of the form $\langle s_1, s_2, \dots, s_T \rangle$

◆□ > ◆□ > ◆重 > ◆重 > ■ り < ○</p>

Markov Reward Process

• A Markov reward process is formally a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R} \rangle$ that allows us to associate with each state transition $\langle s_t, s_{t+1} \rangle$ some reward.

$$\mathcal{R}(s_t, s_{t+1}) = \mathbb{E}\left[r_t | s_t, s_{t+1}\right]$$

where r_t is the "instantaneous reward"

- We often simplify this to $\mathcal{R}(s_t)$ the reward of being in a particular state s_t
- Given a trajectory beginning at time step $t \langle s_t, s_{t+1}, \dots, s_T \rangle$ there is an associated sequence of rewards $\langle r_t, r_{t+1}, \dots, r_T \rangle$
- According to the reward hypothesis, we are interested in trajectories of states that maximize the **return** R_t

4 D > 4 D > 4 E > 4 E > E = 900

Return and Discounted Return

• The **return** R_t is just the cumulative rewards along a trajectory beginning at time stept t

$$R_t = \sum_{k=t}^{T} r_k$$

- For finite T, we say the trajectory has a **finite time horizon** and is **episodic**
- ullet For infinite T (trajectories are never-ending) we say the trajectory has an **infinite time horizon**
- In this case, R_t might not converge
- Instead we use the **discounted return** G_t

$$G_t = \sum_{k=t}^{T} \gamma^{k-t} r_k$$

• where γ is a discount factor between 0 and 1.

6/21

Markov Decision Process

- A Markov decision process (MDP) extends Markov reward processes to make state transitions conditional on some action a_t
- Formally a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \mathcal{A} \rangle$
- \bullet \mathcal{A} is a set of actions available to the agent
- State transitions are now

$$\mathcal{P}(s_t, a_t, s_{t+1}) = \mathbb{P}\left[s_{t+1} | s_t, a_t\right]$$

- The probability of transitioning from state s_t to state s_{t+1} after choosing action a_t
- Rewards are now

$$\mathcal{R}(s_t, a_t) = \mathbb{E}\left[r_t | s_t, a_t\right]$$

• The reward depends on the state you're in **and** the action you choose

Value Function

• We can use the expected value of G_t to determine the value of being in a state s_t

$$V(s_t) = \mathbb{E}\left[G_t|s_t\right]$$

• We can decompose $V(s_t)$ into two parts: the immediate reward r_t and the discounted value of being in the next state s_{t+1}

$$V(s_t) = \mathbb{E} [G_t | s_t]$$

$$= \mathbb{E} [r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t]$$

$$= \mathbb{E} [r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \dots) | s_t]$$

$$= \mathbb{E} [r_t + \gamma G_{t+1} | s_t]$$

$$V(s_t) = \mathbb{E} [r_t + \gamma V(s_{t+1}) | s_t]$$

Action-Value Function

•

• We can also use the expected value of G_t to determine the **quality** of taking a certain action a_t in a state s_t

$$Q(s_t, a_t) = \mathbb{E}\left[G_t | s_t, a_t\right]$$

• We can decompose $Q(s_t, a_t)$ the same way as $V(s_t)$ using the Bellman equation:

$$Q(s_t, a_t) = \mathbb{E}\left[r_t + \gamma Q(s_{t+1}, a_{t+1}) | s_t, a_t\right]$$

• Then we can see that

$$V(s_t) = \mathbb{E}_{a_t} \left[Q(s_t, a_t) \right]$$

the value of being in state s_t is just the expected quality of being in state s_t over all actions a_t

Policies

- We want to design an agent capable of maximizing the return in a Markov decision process
- We therefore need a method of selecting actions a_t at each timestep t
- We call this the **policy** of the agent
- Policies can be **deterministic**, so that the action taken is a function of the current state:

$$\mu: \mathcal{S} \to \mathcal{A}$$

with
$$a_t = \mu(s_t)$$

• or can be **stochastic**, where the action is samples from a probability distriution:

$$\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$$

with
$$a_t \sim \pi(\cdot|s_t)$$

• In general we can refer to policies as π since μ is a special case of a stochastic policy

Policies

• Given a policy π we define

$$V^{\pi}(s_t) = \mathbb{E}_{\pi} \left[G_t | s_t \right]$$

•

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi} \left[G_t | s_t, a_t \right]$$

• Where the superscript π in $V^{\pi}(s_t)$ and $Q^{\pi}(s_t, a_t)$ as well as the subscript π in the expectations simply means "assuming subsequent actions are chosen according to a policy π "

Optimal Policy

- What does it mean for an agent to have an **optimal policy** π^* ?
- If Q^* is the best possible Q-value achievable by a policy π then:

$$Q^*(s_t, a_t) = \max_{\pi} \mathbb{E}_{\pi} \left[G_t | s_t, a_t \right]$$

• Then the optimal policy is just

$$\pi^*(a_t|s_t) = \begin{cases} 1 & a_t = \arg\max_{a_t} Q^*(a_t, s_t) \\ 0 & \text{otherwise} \end{cases}$$

i.e., choose the action which maximizes the optimal Q-value

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣り○

Learning Optimal Policies

- In order to learn the optimal policy π^* we need to learn Q^{π} , so we can choose the actions that maximize it
- However, determining Q^{π} exactly is often impossible in practice
- How would you compute the expected value of being in a certain state at a certain time?
- Reinforcement learning does not assume that you have access to the underlying MDP transition dynamics \mathcal{P}
- Different approaches have been used to learn Q^{π}

Q-Learning

- One approach is to try to use **dynamic programming** to learn Q^{π}
- Assumes that \mathcal{A} and \mathcal{S} are finite
- Begin with an approximation \hat{Q}^{π} which is successively improved to approach Q^{π} in the limit
- Assume that S and A are finite
- Then we can use dynamic programming to approximate Q^{π}
- Create a table of size $|S| \times |A|$
- Store estimates $\widehat{Q}^{\pi}(s_t, a_t)$ for each pair (s_t, a_t) in the table

Q-Learning

- Consider the following agent following a greedy policy π
 - You are in a state s_t
 - 2 You choose an action a_t which maximizes $\widehat{Q}^{\pi}(s_t, a_t)$ (greedy policy)
 - 3 You get a reward r_t
 - **4** You transition to the next state s_{t+1}
- At this point, you have a slightly better estimate for $Q^{\pi}(s_t, a_t)$ according to the Bellman equation, namely

$$r_t + \gamma \max_{a_{t+1}} \widehat{Q}^{\pi}(s_{t+1}, a_{t+1})$$

(since we are following a greedy policy)

• Update the table to be closer to the better estimate with some learning rate α

$$\widehat{Q}^{\pi}(s_t, a_t) \leftarrow (1 - \alpha)\widehat{Q}^{\pi}(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a_{t+1}} \widehat{Q}^{\pi}(s_{t+1}, a_{t+1})\right)$$

Van de Kleut (UW) DQN $\stackrel{\triangleleft}{}$ $\stackrel{\triangleright}{}$ $\stackrel{}{}$ $\stackrel{\triangleright}{}$ $\stackrel{\triangleright}{}$

Deep Q-Learning

- The issue with Q-learning is that it assumes that both S and A are finite
- We can apply the methods of Q-learning to MDPs with infinite S by using function approximation
- Instead of a table, \hat{Q}^{π}_{θ} is a function approximator (such as a neural network) with parameters θ
- Given a state-action pair (s_t, a_t) our function approximator makes a prediction $\widehat{Q}_{\theta}^{\pi}(s_t, a_t)$
- We have a target

$$y = r_t + \gamma \max_{a_{t+1}} \widehat{Q}_{\theta}^{\pi}(s_{t+1}, a_{t+1})$$

• We want minimize the loss (e.g. via SGD)

$$L(\theta) = \left(\widehat{Q}_{\theta}^{\pi}(s_t, a_t) - y\right)^2$$

Target Networks

- Generally in an MDP, two consecutive states s_t and s_{t+1} are similar
- If our function approximator is differentiable (like a neural network), then:
 - ▶ If for a state s_t we update $\widehat{Q}_{\theta}^{\pi}(s_t, a_t)$ to be slightly higher, this will **also** make it so that $\widehat{Q}_{\theta}^{\pi}(s_{t+1}, a_{t+1})$ is higher, since s_{t+1} tends to be "nearby" to s_t
- This leads to instability in the training with runaway Q-values
- To solve this, we use **two** function approximators with parameters θ and θ^-
- θ^- is a copy of θ that we only use to generate the target value y, and it only gets synchronized every n_{θ} updates.

Replay Buffer

- If we update the parameters θ at each timestep, then we are only training on the most recent state-action pairs (s_t, a_t)
- This can result in **catastrophic forgetting**, where we perform worse on state-action pairs that we saw a long time ago
- To alleviate this, we can instead train each timestep on a **batch** of data stored in a **replay buffer** \mathcal{D}
- Assuming a greedy policy, we need to store transitions $\langle s_t, a_t, r_t, s_{t+1} \rangle$
- We can sample batches of transitions randomly from the replay buffer and train the function approximator on them

Terminal States

- Some states are **terminal states**, meaning that once you reach state s_t , every following state is equal to S_t and the reward is 0
- In these cases, we can reset the agent to a new starting state and treat this as s_{t+1}
- We can augment each transition with a **done** flag d_t indicating whether or not we entered a terminal state
- We can provide the agent with information about "doneness" when calculating the target:

$$y = r_t + (1 - d_t)\gamma \max_{a_{t+1}} \widehat{Q}_{\theta}^{\pi}(s_{t+1}, a_{t+1})$$

where multiplying by $(1 - d_t)$ helps the agent learn that $G_t = r_t$ (there are no more rewards after this transition)

→□▶→□▶→□▶→□ → ○○○

ϵ -Greedy Policies

- When we first start out, our estimate for Q^{π} is probably very wrong
- It does not make sense to follow a greedy policy that chooses the maximal \widehat{Q}^π_θ
- Instead we can start by selecting actions randomly to get an idea of how good they are
- Over time we can rely more and more on our greedy policy
- We can use an ϵ -greedy policy: Take a random action with some probability ϵ , otherwise follow the policy π
- One strategy is to linearly anneal ϵ from some value ϵ_i to ϵ_f over a number of iterations n_{ϵ}

Deep Q-learning algorithm

16:

```
1: \theta \leftarrow \theta_0
 2: s_t \leftarrow s_0
 3: \epsilon \leftarrow \epsilon_i
 4: for t \leftarrow 0 \dots T do:
            if t \mod n_{\theta} \equiv 0 then:
 5:
                   \theta^- \leftarrow \theta
 6:
      a_t \sim \pi(\cdot|s_t) with \epsilon-greedy policy
 7:
           r_t \sim \mathcal{R}(s_t, a_t)
 8:
            s_{t+1} \sim \mathcal{P}(s_t, a_t, \cdot)
 9:
            d_t \leftarrow \text{terminal state flag}
10:
            \mathcal{D}.\mathrm{push}(\langle s_t, a_t, r_t, s_{t+1}, d_t \rangle)
11:
            B \leftarrow \text{batch of data from } \mathcal{D}
12:
             for s_k, a_k, r_k, s_{k+1}, d_k in B do:
13:
                   y \leftarrow r_k + \gamma \max_{a_{k+1}} \hat{Q}_{a_{-}}^{\pi}(s_{k+1}, a_{k+1})
14:
                   minimize L(\theta) = \left(\widehat{Q}_{\theta}^{\pi}(s_k, a_k) - y\right)^2 with respect to \theta
15:
```

Anneal ϵ towards ϵ_f DQN W20 21/21