

PREDICTIVE MODELING OF VIETNAMESE BANK STOCKS: ASSESSING STATISTICAL, MACHINE LEARNING, AND DEEP LEARNING TECHNIQUES

TRAN TRUC QUYNH1, LUONG THI THUY DIEM2, AND NGUYEN HUU THANH3

Faculty of Information Systems, University of Information Technology, (e-mail: 21522539@gm.uit.edu.vn)

ABSTRACT The volatility of stock prices presents challenges for investors navigating the Vietnamese market, which has witnessed increased participation in recent years. This paper seeks to empower investors by evaluating the effectiveness of different forecasting models—specifically Linear Regression, ARIMA, RNN, GRU, LSTM, FFT, XGBoost, and FCN — in predicting price trends for three prominent bank stocks (ACB, BIDV, VCB) traded on the Hochiminh Stock Exchange (HOSE) over a five-year period (2019-2024). Through rigorous analysis and comparison using metrics such as RMSE, MAPE, and MAE. This study identifies the most effective forecasting model for each bank stock. Additionally, it evaluates the impact of different training/test ratio configurations on model performance, providing insights into optimal data partitioning strategies. The main contribution of this study is to provide investors with a comparative analysis of forecasting models, thereby equipping them with insights for informed stock selection and enhancing decision-making accuracy.

INDEX TERMS Time Series Analysis, Machine Learning, Financial Forecasting, Vietnamese Stock Market, GRU, RNN, ARIMA, LSTM, FFT, XGBoost, FCN, Linear Regression.

I. INTRODUCTION

The Vietnamese stock market has witnessed a record-high level of participation in recent years, reflecting the growing attention and interest it has garnered. This trend is a positive indicator of the market's potential and the overall recovery of the economy in the post-2023 period. However, the stock market also inherently carries short-term risks that investors must navigate. Among the various sectors, the banking industry has traditionally occupied a high proportion and serves as a crucial pillar of the economy. The purpose of this paper is to support investors in making accurate decisions regarding three bank stocks (ACB, BID, VCB) listed on the Hochiminh Stock Exchange (HOSE).

To achieve this goal, the study will apply various models, including Linear Linear Regression (LR), Auto Regressive Integrated Moving Average (ARIMA), ecurrent neural network (RNN), Gated Recurrent Units (GRU),Long short term memory (LSTM), Fast Fourier Transform (FFT),XGBOOST, Fully Convolutional Networks (FCNs) to the stock price data from 2019 to 2024 to forecast the trends. Techniques such as RMSE, MAPE, and MSLE will be utilized to evaluate the effectiveness of these models.

II. RELATED WORKS

Over the past several years, a significant volume of research has concentrated on forecasting stock prices by leveraging various machine learning and statistical techniques. Maqsood et al. have used linear regression and 2 models for stock exchange forecasting [1]. Meanwhile, URAS combined linear regression and neural network models to forecast Bitcoin closing prices, showing that linear regression had faster execution speed and could accurately predict Bitcoin price fluctuations [2].

Manish Dadhich studied and applied the ARIMA model for short-term forecasting of BSE and NSE stock prices. After carrying out his research, Manish Dadhich demonstrated the strength of the ARIMA model in predicting daily closing prices of time series data [3]. In Anusha Garlapati's research, she also used ARIMA to forecast stock prices and concluded that ARIMA is a good model for predicting stock prices [4].

Yongqiong Zhu [5] applied an RNN model to predict the stock prices of Apple. The training dataset spanned 10 years with 65% allocated for training and the remaining 3% for testing. With 50 epochs, Adam optimization, and Mean Squared Error (MSE) as the loss function, the model achieved

²Faculty of Information Systems, University of Information Technology, (e-mail: 21521953@gm.uit.edu.vn)

Faculty of Information Systems, University of Information Technology, (e-mail: 21522599@gm.uit.edu.vn)

highly favorable outcomes. It attained a predictive accuracy exceeding 95%, with a reported loss value of 0.1%. In 2015, Xiao Ding [6] also proposed a deep learning method for event-driven stock market prediction.

Shejul et al. [7] compared the performance of the Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM) models in predicting stock prices. Experimental results indicate that both models accurately forecast future stock prices, with the BiLSTM model outperforming the GRU model. Despite this, the GRU model demonstrates nearly double the speed of the BiLSTM model due to its simpler architecture. Overall, both models offer precise predictions and can effectively anticipate future stock market trends.

C. Fjellström (2022) [8] explored an LSTM ensemble for stock price prediction in the paper "Long Short-Term Memory Neural Network for Financial Time Series." The work demonstrates superior performance over traditional portfolios, offering insights into LSTM's potential for financial forecasting and strategies for enhancing model accuracy and reducing market risk. S. Mehtab, J. Sen (2020) [9] proposed a deep learning approach for stock price prediction by employing Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. Their work contributes to the field by exploring the effectiveness of this combined deep learning architecture in forecasting the NIFTY 50 index prices. They further emphasize the importance of data preprocessing and model evaluation, providing a methodological blueprint for financial market analysis using deep learning techniques.

Chen et al. [10] used an Fast Fourier Transform algorithm to deal with historical training data for forecasting stock prices, achieving a more highly accurate. Experimental analysis is performed on datasets covering a seven-year period of both the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the Dow-Jones Industrial Average (DJIA).

A. Qingwen Jin et al. [11] established predictive models using the Best Track TC dataset and the XGBOOST algorithm to anticipate Tropical Cyclone (TC) intensity in the Western North Pacific (WNP). Across six scenarios, the model achieved high accuracy with MAE < 4.50 m/s, CC > 0.89, and NRMSE < 10.00%. The XGBOOST model exhibited superior performance compared to traditional Back-Propagation Neural Network (BPNN) models for the same predictors and independent prediction samples. A. O. A. A. A. Tianqi Chen and Carlos Guestrin (2016) [12] introduced XGBoost, a scalable tree boosting system. The paper describes the architecture of XGBoost and its core algorithms, presenting improvements to enhance performance and accuracy across a variety of machine learning tasks.

Fully Convolutional Networks (FCNs) have been studied and applied in various fields related to image data processing and semantic segmentation. According to Shima Nabiee's research on stock trend prediction, FCNs have also been proven to be a powerful and flexible tool, enabling the analysis and prediction of stock price trends based on raw data [13].

III. MATERIALS

A. DATASET

The analysis will focus on the historical stock prices of three banks in Vietnam: the Asia Commercial Joint Stock Bank (ACB), the Bank for Investment and Development of Vietnam (BIDV), and the Joint Stock Commercial Bank for Foreign Trade of Vietnam (VCB). The data spans from January 3, 2019, to January 3, 2024, and includes information such as date, price, opening price, highest and lowest prices, volume, and price change. However, the primary aim is to forecast closing prices, so only the "Price" column (VND) will be used for analysis.

B. DESCRIPTIVE STATISTICS

TABLE 1. ACB, BIDV, VCB's Descriptive Statistics

	ACB	BID	VCB
Count	1247	1252	1252
Mean	19.712	35.993	74.810
Standard Deviation	6.205	6.574	12.664
Min	8.763	23.420	43.925
25%	11.963	31.226	65.274
50%	22.000	34.823	75.871
75%	24.980	41.600	84.525
Max	30.360	53.900	106.500
Variance	49.100	28.667	106.500
Skewness	-0.345	0.299	-0.132
Kurtosis	-1.457	-0.821	-0.530

1) ACB stock price visualization

FIGURE 1. ACB stock price's boxplot

FIGURE 2. ACB stock price's time

FIGURE 3. ACB stock price's histogram

ACB's price distribution appears left-skewed, as evidenced by the pronounced peak in the histogram at the lower end of the price range. Interestingly, ACB's box plot appears relatively compact, with the median closer to the higher end of the price range

Sec.

2) BID stock price visualization

FIGURE 4. BID stock price's boxplot

FIGURE 5. BID stock price's time

FIGURE 6. BID stock price's histogram

The value of BID shares mainly fluctuates between 33,000 VND and 43,000 VND, and the highest current value that BID shares have reached is 54,000 VND. Additionally, the current trend regarding the value of BID shares is on the rise.

3) VCB stock price visualization

FIGURE 7. VCB stock price's boxplot

FIGURE 8. VCB stock price's time

FIGURE 9. VCB stock price's histogram

Based on VCB's Boxplot, it can be seen that most of the data is concentrated in Q2 to Q3 with length 8654 approximately 75871 to 84525. The highest concentration on the chart at the price of about 76,000 VND with a frequency of nearly 175 times may be a sign of investors' special interest in VCB stock price. Besides, the price also fluctuates frequently around 70,000 The data chart of price fluctuations over the years shows that stock prices tend to gradually increase, although prices also decrease to the lowest (43925) in early 2020 and the highest (106500) in mid-2023.

IV. METHODOLOGY

A. ARIMA

Auto Regressive Integrated Moving Average (ARIMA) is a model that describes time series based on observed values, which can be used to forecast future values. Applying ARIMA models to any time series showing patterns with no random white noise and non-seasonality. The model was introduced by Box and Jenkins in 1970. To generate short-term forecasts, ARIMA models have shown efficient capabilities, outperforming complex structural models. The future value of a variable in the ARIMA model is a combination of linearity to the past values and errors, expressed as follows [14]:

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \ldots - \theta_q \varepsilon_{t-q}$$

Where:

- Y_t is the actual value at time t.
- ε_t is the random error at time t.
- ϕ_i and θ_i are the coefficients.
- p and q are integers, often referred to as autoregressive and moving average parameters, respectively.

B. LINEAR REGRESSION

Linear regression is a statistical technique used to model the relationship between a dependent variable, *Y*, and one or more independent variables, *X*. The goal is to find the bestfitting straight line (or hyperplane in higher dimensions) that describes the relationship between the variables. When there are multiple independent variables, the linear regression is called multivariable linear regression, with equation has the form [17]:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

Where:

- Y is the dependent variable.
- X_1, X_2, \ldots, X_k are the independent variables.
- β_0 is the intercept term.
- $\beta_1, ..., \beta_k$ are the regression coefficients for the independent variables.
 - ε is the error term.

C. FAST FOURIER TRANSFORM

The Fast Fourier Transform (commonly abbreviated as FFT) is a fast algorithm for computing the discrete Fourier transform (DFT) of a sequence [14] by using the factor N/2 log N where N is the number of points, therefore, the FFT is a way to convert the time series from time domain to frequency domain [15] with equation [16]:

$$F[n] = \sum_{k=0}^{N-1} f[k] \cdot e^{-i\frac{2\pi}{N}kn}$$

where:

- F[n] is the Discrete Fourier Transform of the sequence.
- f[k] is the k-th element of the input sequence.

- N is the total number of elements in the input sequence.
- n is the index of the frequency component in the output sequence F[n].
- k is the index of the element in the input sequence f[k].

D. XGBOOST

XGBoost is a highly efficient and scalable implementation of gradient boosting, a powerful machine learning technique. XGBoost operates by constructing a series of decision trees in an additive manner. Each tree is built sequentially, with each one correcting the errors of the previous trees. Key advantages of XGBoost include its ability to handle large datasets through parallelized computing, effective handling of missing data values, and regularization techniques to prevent overfitting [18]. The model's objective is to minimize the loss function.

Explanation of the mathematics behind XGBoost:

Ensemble Model:XGBoost combines predictions from multiple decision trees (f_k) to create a final prediction (F(x)) [18]:

$$\hat{y}_i = \sum_{k=1}^n f_k(x_i), \quad f_k \in \mathcal{F},$$

where \mathcal{F} means the space of regression trees, f_k corresponds to a tree, so $f_k(x_i)$ is the result of tree k, and \hat{y}_i is the predicted value of the ith instance x_i .

FIGURE 10. A general architecture of XGBoost

Objective Function: It minimizes a loss function (L) that measures prediction error, with a regularization term (Ω) to prevent overfitting: [19]

$$obj(\theta) = L(\theta) + \Omega(\theta)$$

where $L(\theta) = \sum_{i=1}^n l(y_i, \hat{y}_i)$ is the loss function, \hat{y}_i is the prediction and y_i is the target, and $\Omega(\theta) = \sum_{k=1}^K \Omega(f_k)$ penalizes the complexity of the model. r

E. RECURRENT NEURAL NETWORK (RNN)

A recurrent neural network (RNN) is a type of artificial neural network which uses sequential data or time series data [22]. A recurrent neural network (RNN) is an extension of a conventional feedforward neural network, which is able to handle a variable-length sequence input. The RNN handles the variable-length sequence by having a recurrent hidden

state whose activation at each time is dependent on that of the previous time [23]. For each timestep t, the activation $a^{< t>}$ and the output $y^{< t>}$ are expressed as follows:

$$a^{< t>} = g_1 \left(W_{aa} a^{< t-1>} + W_{ax} x^{< t>} + b_a \right)$$

and

$$y^{} = g_2 (W_{ya}a^{} + b_y)$$

where W_{ax} , W_{aa} , W_{ya} , b_a , b_y are coefficients that are shared temporally and g_1 , g_2 are activation functions [24].

FIGURE 11. Architecture of a Traditional RNN

F. LONG SHORT TERM MEMORY (LSTM)

The Long Short-Term Memory (LSTM) model is a recurrent neural network designed to handle sequential data like time series. Unlike standard RNNs, LSTMs employ memory cells and gating mechanisms to selectively retain and discard information over long sequences. This allows LSTMs to effectively capture long-range dependencies within the sequential data.

At the core of an LSTM are the memory cells regulated by gates - input gate (controls inflow), forget gate (controls clearing), and output gate (controls outflow). This gating architecture enables LSTMs to learn and leverage longterm patterns and relationships present in sequences. By addressing long-range temporal dependencies, LSTMs excel at sequence prediction tasks, making them well-suited for applications such as time series forecasting.

Forget gate (f_t) :

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Output gate (o_t) :

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

Candidate Memory Cell (\tilde{C}_t) :

$$\tilde{C}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$$

Memory cell (C_t) :

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Hidden state (h_t) :

$$h_t = o_t * \tanh(C_t)$$

• i_t, f_t, o_t are the values of the gates at time t.

- W_i, W_f, W_o, W_C are weight matrices.
- b_i, b_f, b_o, b_c are bias vectors.
- h_{t-1} is the hidden state from the previous layer.
- x_t is the input at time t.
- C_t is the memory cell state at time t.
- h_t is the hidden state at time t.

FIGURE 12. Structure of the LSTM cell

G. GRU

The Gated Recurrent Unit, just like the LSTM, is a Recurrent Neural Network. It, however, has a less complicated structure compared to LSTM. It lacks an output gate but has an update z and a reset gate r. These gates are vectors which decide what information should be passed to the output. The Reset gate defines how to combine the new input with the previous memory. The definition of how much of the last memory to keep is done by the Update [12]. The GRU has the following equations: [20] Update gate:

$$z_t = \sigma(W_z h_{t-1} + U_z x_t) \tag{1}$$

Reset gate:

$$r_t = \sigma(W_r h_{t-1} + U_r x_t) \tag{2}$$

Cell state:

$$c_t = \tanh(W_c(h_{t-1} * r_t) + U_c x_t) \tag{3}$$

New state:

$$h_t = (z_t * c_t) + ((1 - z_t) * h_{t-1})$$
(4)

FIGURE 13. GRU architecture

H. FULLY CONVOLUTIONAL NETWORK (FCN)

Each layer output in a convnet is a three-dimensional array of size $h \times w \times d$, where h and w are spatial dimensions, and d is the feature or channel dimension. The first layer is the image, with pixel size $h \times w$, and d channels. Locations in higher layers correspond to the locations in the image they are path-connected to, which are called their receptive fields. Convnets are inherently translation invariant. Their basic components (convolution, pooling, and activation functions) operate on local input regions, and depend only on relative spatial coordinates. Writing x_{ij} for the data vector at location (i,j) in a particular layer, and y_{ij} for the following layer, these functions compute outputs y_{ij} by:

$$y_{ij} = f_{ks} \left(\{ x_{si+\delta_i, sj+\delta_j} \}_{0 \le \delta_i, \delta_j < k} \right)$$

where k is called the kernel size, s is the stride or subsampling factor, and f_{ks} determines the layer type: a matrix multiplication for convolution or average pooling, a spatial max for max pooling, or an elementwise nonlinearity for an activation function, and so on for other types of layers. This functional form is maintained under composition, with kernel size and stride obeying the transformation rule:

$$f_{ks} \circ g_{k's'} = (f \circ g)_{k'+(k-1)s',ss'}$$

While a general net computes a general nonlinear function, a net with only layers of this form computes a nonlinear filter, which we call a deep filter or fully convolutional network. An FCN naturally operates on an input of any size, and produces an output of corresponding (possibly resampled) spatial dimensions. [21]

FIGURE 14. Fully Convolutional Neural Network architecture

V. RESULT

A. EVALUATION METHODS

Mean Percentage Absolute Error (MAPE): is the average percentage error in a set of predicted values.

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| = 1$$

Root Mean Squared Error (RMSE): is the square root of

average value of squared error in a set of predicted values.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y_i} - y_i)^2}{n}}$$

Mean Absolute Error (MAE): is the average absolute differences between the expected and actual values.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{g}_i|$$

Where:

- \bullet n is the number of observations in the dataset.
- y_i is the true value.
- \hat{y}_i is the predicted value.

B. ACB DATASET

Dataset's Evaluation				
Model	Proportion	RMSE	MAPE (%)	MAE
	7:3	3932.5798	13.7514	3308.4751
ARIMA	8:2	1542.0814	4.8217	1224.8404
	9:1	1238.2448	3.8899	997.3804
	7:3	380.5252	1.0507	244.9516
GRU	8:2	412.8149	1.0227	252.8959
	9:1	545.3742	1.2304	332.2477
	7:3	737.0995	2.6172	598.4848
FCN	8:2	1111.2461	3.6139	911.2206
	9:1	827.6391	2.1990	588.7729
	7:3	515.8307	1.6065	372.2723
RNN	8:2	497.3003	1.3553	334.5276
	9:1	578.2733	1.4166	381.5157
	7:3	461.341	1.4958	341.2479
LSTM	8:2	495.0181	1.3254	331.5678
	9:1	580.2895	1.3335	359.7341
	7:3	12366.0056	50.3046	11610.1708
FFT	8:2	4629.2061	18.8982	4397.2235
	9:1	1909.2008	6.6089	1722.2856
XGBOOST	7:3	402.127	1.2662	294.9247
	8:2	448.5182	1.3043	322.6302
	9:1	545.6544	1.4358	390.9168
	7:3	7607.3350	25.1283	7493.9168
LR	8:2	3512.4495	11.5926	3100.1016
	9:1	1797.1567	5.5612	1449.3335

TABLE 2. ACB Dataset's Evaluation

For the ACB stock price prediction, GRU and XGBOOST model (both with a 7:3 proportion) appear to be the most accurate and reliable based on the the low values in RMSE, MAPE, MAE. These models can potentially offer better insights and forecasting accuracy for investors dealing with ACB stocks in the Vietnamese market.

FIGURE 15. ARIMA model's result with 9:1 splitting proportion

FIGURE 16. GRU model's result with 7:3 splitting proportion

FIGURE 17. FCN model's result with 7:3 splitting proportion

FIGURE 18. RNN model's result with 8:2 splitting proportion

FIGURE 19. LSTM model's result with 8:2 splitting proportion

FIGURE 20. FFT model's result with 9:1 splitting proportion

FIGURE 21. XGBoost model's result with 7:3 splitting proportion

FIGURE 22. Linear Regression model's result with 9:1 splitting proportion

C. BID DATASET

Dataset's Evaluation						
Model	Proportion	RMSE	MAPE (%)	MAE		
1	7:3	9563.7477	19.8847	8620.5906		
ARIMA	8:2	6464.7779	10.0109	4764.1887		
	9:1	6158.2991	10.6520	5292.1888		
	7:3	749.0815	1.2404	525.8805		
GRU	8:2	782.4308	1.2474	552.8802		
	9:1	964.3091	1.3533	677.6551		
	7:3	2259.3188	4.6895	1954.8440		
FCN	8:2	1192.5075	1.9916	895.5052		
	9:1	1356.9802	2.0289	1015.2221		
RNN	7:3	1001.5601	1.8226	771.9509		
	8:2	1103.2342	2.0474	891.3108		
	9:1	1074.0008	1.6376	805.7158		
	7:3	820.0516	1.3974	593.1434		
LSTM	8:2	847.0286	1.3657	606.8658		
	9:1	1024.1498	1.4659	733.4891		
FFT	7:3	5736.0835	11.4603	4838.2472		
	8:2	5971.8017	11.4028	5100.2349		
	9:1	7792.9476	11.9885	6037.3514		
XGBOOST	7:3	3225.2175	4.2320	2005.3957		
	8:2	4007.5167	5.4957	2702.9580		
	9:1	6153.4990	10.9518	5571.4794		
	7:3	5967.7684	11.6453	1845.6229		
LR	8:2	6678.0104	12.9205	5097.8035		
	9:1	8699.7701	19.1198	7686.7608		

TABLE 3. BID Dataset's Evaluation

Based on the evaluation table, the GRU model with an 7:3 training/testing ratio provides the best prediction results for BID stock prices, with the lowest RMSE (749.0815), MAPE (1.2404%), and MAE (525.8805). LSTM is also a strong choice with similar performance at the same ratio. Overall, GRU stands out as the top choice for predicting BID stock prices

FIGURE 23. ARIMA model's result with 8:2 splitting proportion

FIGURE 24. GRU model's result with 7:3 splitting proportion

FIGURE 25. FCN model's result with 8:3 splitting proportion

FIGURE 26. RNN model's result with 7:3 splitting proportion

FIGURE 27. LSTM model's result with 7:3 splitting proportion

FIGURE 28. FFT model's result with 7:3 splitting proportion

FIGURE 29. XGBoost model's result with 7:3 splitting proportion

FIGURE 30. Linear Regression model's result with 7:3 splitting proportion

D. VCB DATASET

Dataset's Evaluation						
Model	Proportion	RMSE	MAPE (%)	MAE		
	7:3	39861.8637	41.9820	36312.4125		
ARIMA	8:2	16889.0992	15.3808	13728.8500		
	9:1	1238.2448	3.8899	997.3810		
	7:3	1164.3590	1.0174	857.2915		
GRU	8:2	1138.5327	0.9145	815.9355		
	9:1	1398.7836	1.0759	984.8921		
	7:3	3824.7088	3.6075	3154.3828		
FCN	8:2	4811.8376	4.9807	4469.9363		
	9:1	2732.1560	2.3252	2142.9079		
	7:3	1619.5683	1.5273	1282.0946		
RNN	8:2	1743.8729	1.5051	1326.5244		
	9:1	1254.2616	0.9490	855.2889		
	7:3	1697.3167	1.5419	1320.1187		
LSTM	8:2	1151.5582	0.9525	847.6950		
	9:1	1405.7421	1.0667	977.9067		
	7:3	7654.6091	8.0921	6359.1013		
FFT	8:2	10661.2453	10.5581	9399.3536		
	9:1	9141.6520	8.1522	7465.4590		
XGBOOST	7:3	3716.7589	3.0326	2705.8227		
	8:2	4671.1649	4.0999	3751.2325		
	9:1	3350.2323	2.9121	2708.4345		
	7:3	6987.9849	7.1427	5818.5129		
LR	8:2	9168.4296	10.5427	8439.4780		
	9:1	6673.7497	6.9101	5853.9128		

TABLE 4. VCB Dataset's Evaluation

Based on the error metrics table for predicting VCB stock prices, GRU emerges as the most accurate model with an 8:2 data split. RNN and LSTM also achieve high accuracy, with RNN performing best in the 9:1 split and LSTM performing best in the 8:2 split. Although ARIMA shows the best performance in the 9:1 split, it still lags behind neural network models like GRU, RNN, and LSTM. FFT and LR, despite some improvement in certain cases, exhibit high and unstable errors, indicating they are less suitable for this dataset.

FIGURE 31. ARIMA model's result with 9:1 splitting proportion

FIGURE 32. GRU model's result with 9:1 splitting proportion

FIGURE 33. FCN model's result with 7:3 splitting proportion

FIGURE 34. RNN model's result with 9:1 splitting proportion

FIGURE 35. LSTM model's result with 8:2 splitting proportion

FIGURE 36. FFT model's result with 7:3 splitting proportion

FIGURE 37. XGBoost model's result with 9:1 splitting proportion

FIGURE 38. LR model's result with 9:1 splitting proportion

VI. CONCLUSION

Based on the summary table of the accuracy of 8 models (ARIMA, GRU, FCN, RNN, LSTM, FFT, XGBoost, and Linear Regression) for 3 datasets (ACB, BID, and VCB) with 3 train-test ratios (7:3, 8:2, and 9:1), we can draw some notable conclusions:

GRU and RNN demonstrate impressive performance across all three datasets and all train-test ratios. Their RMSE, MAPE, and MAE scores are significantly lower compared to the ARIMA, FFT, and Linear Regression models. GRU is also a strong choice with similar performance when the traintest ratio is 8:2. XGBoost also shows good performance, especially with train-test ratios of 7:3 and 8:2, outperforming traditional models.

LSTM, with a train-test ratio of 8:2, gives the best prediction results for BID stock prices, with the lowest RMSE, MAPE, and MAE, but it is not as stable as GRU and RNN. Its results are generally average compared to other models, but overall, LSTM stands out and is the top choice for predicting BID stock prices. FCN shows positive results with ACB and BID but is not stable with VCB.

VII. ORIENTATION

The report can be expanded and improved by enhancing evaluation methods such as perform sensitivity analysis to better understand the influence of each input factor on the forecasting results. Secondly, develop Real-Time Forecasting Systems like create a real-time forecasting system to continuously provide investment recommendations to investors. These development directions will help improve the accuracy and applicability of forecasting models, better supporting investors in making informed decisions.

VIII. ACKNOWLEDGMENT

First and foremost, we would like to express our heartfelt gratitude to Associate Professors. **Prof. Dr. Nguyen Dinh Thuan** have given profound knowledge, critical insights, and attention to detail throughout the research process. In addition, **Mr. Nguyen Minh Nhut** directly provided dedicated instruction, and offered many valuable suggestions that helped our team in shaping the direction and quality of this report.

This report would not have been possible without the support and contributions of our mentors. Thank you all for your invaluable assistance and encouragement. We hope to that we will continue to receive support and encouragement from Associate Professors in the future

REFERENCES

- Cakra, Y. E., & Trisedya, B. D. (2015, October). Stock price prediction using linear regression based on sentiment analysis. In 2015 international conference on advanced computer science and information systems (ICACSIS) (pp. 147-154). IEEE.
- [2] Uras, N., Marchesi, L., Marchesi, M., & Tonelli, R. (2020). Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ Computer Science, 6, e279.
- [3] Dadhich, M., Pahwa, M. S., Jain, V., & Doshi, R. (2021). Predictive models for stock market index using stochastic time series ARIMA modeling in emerging economy. In Advances in Mechanical Engineering: Select Proceedings of CAMSE 2020 (pp. 281-290). Springer Singapore.
- [4] Garlapati, A., Krishna, D. R., Garlapati, K., Rahul, U., & Narayanan, G. (2021, April). Stock price prediction using Facebook Prophet and Arima models. In 2021 6th International Conference for Convergence in Technology (I2CT) (pp. 1-7). IEEE.
- [5] Zhu, Y. (2020, October). Stock price prediction using the RNN model. In Journal of Physics: Conference Series (Vol. 1650, No. 3, p. 032103). IOP Publishing.
- [6] Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence.
- [7] Shejul, A. A., Chaudhari, A., Dixit, B. A., & Lavanya, B. M. (2023). Stock Price Prediction Using GRU, SimpleRNN and LSTM. In Intelligent Systems and Applications: Select Proceedings of ICISA 2022 (pp. 529-535). Singapore: Springer Nature Singapore.
- [8] Fjellström, C. (2022, December). Long short-term memory neural network for financial time series. In 2022 IEEE International Conference on Big Data (Big Data) (pp. 3496-3504). IEEE.

- [9] Mehtab, S., & Sen, J. (2020, November). Stock price prediction using CNN and LSTM-based deep learning models. In 2020 International Conference on Decision Aid Sciences and Application (DASA) (pp. 447-453). IEEE.
- [10] Chen, M. Y., & Chen, B. T. (2014). Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform. Applied Soft Computing, 14, 156-166.
- [11] Jin, Q., Fan, X., Liu, J., Xue, Z., & Jian, H. (2019). Using eXtreme Gradient BOOSTing to predict changes in tropical cyclone intensity over the Western North Pacific. Atmosphere, 10(6), 341.
- [12] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
- [13] Nabiee, S., & Bagherzadeh, N. (2023). Stock Trend Prediction: A Semantic Segmentation Approach. arXiv preprint arXiv:2303.09323.
- [14] Smith, G. (2019). The fast fourier transform and its applications. Edingburgh: University of Edingburg.
- [15] Musbah, H., El-Hawary, M., & Aly, H. (2019, October). Identifying seasonality in time series by applying fast fourier transform. In 2019 IEEE Electrical Power and Energy Conference (EPEC) (pp. 1-4). IEEE.
- [16] S.J. Roberts. "Lecture 7 The Discrete Fourier Transform".
- [17] Evans, J. R. (2017). Business analytics: Methods, models, and decisions. Pearson
- [18] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
- [19] P. Pawangfg, "XGBoost," GeeksforGeeks, Available: https://www.geeksforgeeks.org/xgboost/. [Accessed: 06-Feb-2023].
- [20] Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019, December). A comparison between arima, lstm, and gru for time series forecasting. In Proceedings of the 2019 2nd international conference on algorithms, computing and artificial intelligence (pp. 49-55).
- [21] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
- [22] IBM Technology company, "What are recurrent neural networks?", Available at: https://www.ibm.com/topics/recurrent-neural-networks
- [23] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
- [24] A. Amidi and S. Amidi, "Recurrent Neural Networks Cheatsheet," Stanford University, [Online].