Text Processing Using Machine Learning

Neural Nets for Text Processing

Dr Wang Aobo aobo.wang@nus.edu.sg

PLP Cert

Job&Roles

Chatbot developer

NLP specialist /scientist/Engineer

Al solution engineer

Machine learning engineer

Data scientist

Learning Outcomes

- **Recent** techniques for NLP
 - Deep learning
- Getting a basic grasp of deeplearning library for NLP
 - Knowledge can be applied to any tensor libraries
- Understanding the **underlying** techniques and knowing how to implement them.

Page 3

Agenda

- Overview of NLP
 - Applications
 - Statistical Modelling vs. Deep Neural Nets
- Deep Learning Basics for NLP
 - MLP
 - Deep Learning Training Routine (quiz)
 - Workshop: Basic NN on Colab
- Word2Vec & DL Specific
 - CBOW and SkipGram
 - ActivationFunction/LossFunction
 - Optimiser/Learning Rate
 - Workshop: Word2Vec from Scratch

What can NLP do?

2 basic Use Cases:

- 1. Automatically put text into categories- Classification
 - Sentiment detection
 - Spam email detection
 - Emotion detection
- 2. Extract specific information from the text- Extraction
 - Named Entity extraction from sentence

Page 5

What can NLP do?

Other Fancier Use Cases:

- 1. Object Classification/Clustering & Recommendation
- 2. Search Engine
- 3. Question Answering System
- 4. Voice Assistant
- 5. Machine Translation
- 6. Grammar Error Correction & Language Learning
- 7. Chatting Robots
- 8. "Fake Articles" Generation & Detection
- 9.

© 2020 NUS. All rights reserved.

How does NLP Work

The whole task here is...

smart

Doc/Feature Matrix

Documents

Classic NLP vs. Deep learning

Frequency TF-IDF and PPMI vectors are

- long (|V| > 100,000)
- sparse (lots of zero)
- efficient for simple tasks with reasonably large of dataset
- interpretable as designed by human intelligence
- difficult to capture contextual dependency

	he	drink	hold	 <i>tfidf</i> drink apple	tfidf hold apple	tfidf apple juice		PPMI drink apple	PPMI hold apple	PPMI apple juice
sent0	0.01	0.38	0.00	 0.87	0.00	0.92	•••	4.23	0.00	8.90
sent1	0.01	0.00	0.28	 0.00	0.87	0.00		0.00	2.45	0.00

Statistical modelling

- All models are wrong, but some are useful
 - for Document/Sentence Classification
 - SVM/KNN/Decision Tree/RandomForest/Naïve Bayes/MaxEnt
 - for Sequence Labeling
 - HMM/CRF
 - for Language modeling
 - N-gram/RandomForest/MaxEnt
 - for Machine Translation
 - Phrase/Tree-based Model + beam search

Page 9

How does NLP Work

The whole task here is...

Doc/Feature Matrix

Documents

_					
	amazing	service	lost	glamour	
Doc1	1.5	2.1	0	0	
Doc2	0	0	3.1	1.5	
Doc3	0	0	0	1.9	
Doc4	0	0	0	0	
•••					

- Able to generate this Matrix automatically?
- Able to generate this Matrix taskindependently?
- Yes! Learn to generate from data

How does NLP Work

The whole task here is...

Doc/Feature Matrix

Documents

	amazing	service	lost	glamour	
Doc1	1.5	2.1	0	0	
Doc2	0	0	3.1	1.5	
Doc3	0	0	0	1.9	
Doc4	0	0	0	0	

Word Indexing Matrix

	1				
	amazing	service	lost	glamour	
	0			0	
amazing	1	0	0	0	
service	0	1	0	0	
lost	0	0	1	0	
glamour	0	0	0	1	
•••					

DNN + GPUs Supervised

	?	?	?	?	?
Doc1	11.5	2.1	5.70	-30.2	
Doc2	-3.40	0.34	3.1	1.5	
Doc3	5.8	0.560	5.9	1.9	
•••					

Classic NLP vs. Deep learning

Deep learning can create feature vectors that are

- short (often fixed-sized <2000, decided empirically)
- dense (most are non-zeros)
- non-Interpretable as decided empirically without human intelligence
- able to capture contextual dependency
- beneficial to all tasks (classification/sequence labeling/Translation/QA)

Page 12

Agenda

- Overview of NLP
- Deep Learning Basics for NLP
 - MLP
 - Deep Learning Training Routine (quiz)
- Workshop: Deep Learning from Scratch
- Word2Vec & DL Specific
 - CBOW and SkipGram
 - ActivationFunction/LossFunction
 - Optimiser/Learning Rate
 - Workshop: Word2Vec from Scratch

Deep Learning Basics

Perceptron

- "system that depends on probabilistic rather than deterministic principles for its operation, gains its reliability from the properties of statistical measurements obtain from a large population of elements"
 - Frank Rosenblatt (1957)
- 100 billion perceptron in our brain
- BERT ~ 110 million to 17 billion **para**
- GPT ~ 1.5 billion to 175 billion para

(*Image from Akshay Chandra Lagandula's blog)

Recap Perceptron

- Given a **set of inputs x**, perceptron
 - learns *w vector* to map the inputs to a real-value output between [0,1]
 - through the summation of the dot product of the **w**•**x**
 - with a transformation function (aka. activation function)

Summation

$$s = \sum w \cdot x$$

Transformation

$$f(s) = \frac{1}{1 + e^{-s}}$$

- Word level classification
 - Positive=1;Negative=0
 - let *n=5*

	Like x1	Hate x2	Good x3	Enjoy x4	Bad x5
Like	1	0	0	0	0
Hate	0	1	0	0	0
Good	0	0	1	0	0
Enjoy	0	0	0	1	0
Bad	0	0	0	0	1

Summation $S = \sum w \cdot x$

Transformation $f(s) = \frac{1}{1 + e^{-s}}$

- Word level classification
 - Positive=1;Negative=0
 - let n=5 = vocabulary_size

	Like x1	Hate x2	Good x3	Enjoy x4	Bad x5
Like	1	0	0	0	0
Hate	0	1	0	0	0
Good	0	0	1	0	0
Enjoy	0	0	0	1	0
Bad	0	0	0	0	1
					(1,5

- Word level classification
 - Positive=1;Negative=0
 - let n=5 = vocabulary_size
 - Batch_size = 1

	Like x1	Hate x2	Good x3	Enjoy x4	Bad x5
Like	1	0	0	0	0
Hate	0	1	0	0	0
Good	0	0	1	0	0
Enjoy	0	0	0	1	0
Bad	0	0	0	0	1
					(*

weight

6

-6

6 (1,1)

(5,1)

f(w1)

How about unknown words?

- Word level classification
 - Positive=1;Negative=0
 - let n=26 << vocabulary_size</pre>

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	1	1	0	 0

 $x_{l} \xrightarrow{w_{l}} x_{l}$ $x_{n} \xrightarrow{w_{l}} s \qquad f(s)$ $x_{n} \downarrow 0$ $x_{$

Summation $S = \sum w \cdot x$

Transformation $f(s) = \frac{1}{1 + e^{-s}}$

weight

w1 w2 w3 ... w26

(1,26)

(26,1)

- Word level classification
 - let n=26 << vocabulary_size</pre>
 - More parameters
 - More layers

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	0	1	0	 0

- Word level classification
 - let n=26 << vocabulary_size</pre>
 - More parameters
 - More layers

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	0	1	0	 0

- Word level classification
 - let n=26 << vocabulary_size</pre>
 - More layers
 - More parameters

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	0	1	0	 0

weight	weight
wb1	wp1
wb2	wp2
wb3	wp3
wb26	wp26

(26,2)

weight	
wg1	1 0
wg2	(1,1)
(2,1)	

(1,26)

- Word level classification
 - let n=26 << vocabulary_size</pre>
 - More parameters
 - Even More Layers

(2,3)

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	0	1	0	 0

weight	weight
wb1	wp1
wb2	wp2
wb3	wp3
wb26	wp26

weight	weight	weight
W	W	W
W	W	W

wg1
wg2
Y_pred
(1,1)
wg3

weight

(1,26)

(26,2)

Repeat the following until desired

- Initialize weights vector
 - Random
 - One-hot encoding
- Forward Propagation
- Compute and log the loss
- Back Propagation
- Optimizer

ISS

Optimizer (searching action with a Strategy)

Guess the same number that the computer has guessed.

The number will range from 1 to 100.

Optimizer ("brute force" searching action)

Repeat the following until desired

- ...
- **Optimizer** ("brute force" **searching** action + **Strategy**)
 - Gradient Descent and Delta rule

*New weight = Old weight - Derivative Rate * Learning rate*

- learning rate a constant (usually very small)
- to avoid big steps

Guess the same number that the computer has guessed.

"brute force" **searching** action with **strategy until desired**

- Compute and keep the Cost/Loss
 - Define and compute the $loss(Y_{pred}, Y_{correct})$
- Back Propagation
 - Compute the **partial derivatives rate** of *Loss function wrt W for all layers*
 - Chain rule applies

Optimizer

Business Performance Improvement

BIZ-PI.com

New weight = Old weight - Derivative Rate * Learning rate

Optimization

1st iter

Example

- y = wx with n=5 training examples (forward)

- Loss function:
$$L = \frac{\sum (y_p - y_t)}{n} = \frac{\sum (wx - y_t)}{n}$$

- when w randomly initialized as 3 (guessing)

X	y_pred (w=3) y=3x	y_true	$y_{pred} - y_{true}$
0	0	0	0
1	3	2	1
2	6	4	2
3	9	6	3
4	12	8	4
Loss	-	-	2

$$\frac{dL}{dw} = \sum_{i=0}^{n} x/n = 2$$

$$w^{new} = w^{old} - \eta \frac{dL}{dw}$$

$$\eta = 0.5$$
 $w_{init} = 3$

$$w^{new} = 3 - 0.5 * 2 = 2$$

$$y = 2x$$
 Loss function=0

Chain Rule

$$loss(Y_{pred}, Y_{correct}) = Y_{pred} - Y_{correct} = x * w_{bp} * w * w_{g} - 1$$

$$f_{1}(x, Wbp) = y_{1}$$

$$\frac{\partial Loss}{\partial w_{bp}} = \frac{\partial (y_{3})}{\partial y_{2}} \frac{\partial (y_{2})}{\partial y_{1}} \frac{\partial (y_{1})}{\partial w_{bp}}$$

$$f_{2}(y_{1}, W) = y_{2}$$

$$f_{3}(y_{2}, w_{g}) = y_{3}$$

	a x1	b x2	c x3	 z x26
like	0	0	0	 0
hate	1	0	0	 0
good	0	0	0	 0
enjoy	0	0	0	 0
bad	0	1	0	 0

weight	weight		
wb1	wp1		
wb2	wp2		
wb3	wp3		
wb26	wp26		

weight	weight	weight
W	W	W
W	W	W

(1,26) (26,2)

$$Wbp^{new} = Wbp^{old} - \eta \frac{\partial Lo}{\partial W}$$

Repeat the following until desired

- Initialize weights vector W for all layers
- Forward Propagation
 - reaching the final layer to get Y_{pred}
- Compute and keep the cost/loss
 - Define and compute the $loss(Y_{pred}, Y_{correct})$
- Back Propagation
 - partial derivatives rate of Loss function wrt W for all layers
- Optimizer
 - New weight = Old weight Derivative Rate * Learning rate

Agenda

- Overview of NLP
- Deep Learning Basics for NLP
- Workshop: NN Basics on Colab
- Word2Vec & DL Specifics
 - CBOW and SkipGram
 - ActivationFunction/LossFunction
 - Optimiser/Learning Rate
- Workshop: Word2Vec from Scratch

Text Processing using Machine Learning

Word2Vec &DL Specifics

Dr Wang Aobo aobo.wang@nus.edu.sg

Features from Word Vectors

TPML

Day 1

- Word Co-occurrence + SVD
- Count-based model

Learn from Data

- CBOW and SKIPGRAM
- NN Methods
- Predictive Model

Count and Learn from Data

- GLOVE: Global Vectors for Word Representation
- Count + SGD

One-Hot Encoding (Sparse Representation)

Vocabulary of the corpus (big enough)

	give	she	at	talk	have	ramen	a	drink
give	1	0	0	0	0	0	0	0
talk	0	0	0	1	0	0	0	0
have	0	0	0	0	1	0	0	0
drink	0	0	0	0	0	0	0	1
а	0	0	0	0	0	0	1	0
at	0	0	1	0	0	0	0	0

v('talk')

Lookup Function

One-Hot Encoding

1 x |V|

Word Embeddings

 $|V| \times d$

v(*'talk'*) Embedded

Input

1 x d

Learn the Matrix through Making Prediction

38

Learn the Matrix through "classification" task

Sentence: the bulk of linguistic questions concern the distinction between a and m. a linguistic account of phenomenon ...

```
the bulk _____ linguistic questions
of
               bulk of _____ questions concern
linguistic
questions
               of linguistic concern the
               linguistic questions _____ the dis-
concern
               questions concern dis-tinction
the
               concern the ____ tinction between
dis-
               the dis- between a
tinction
               dis- tinction ____ a and
between
               tinction between ____ and m.
               between a ____ m. a
and
               a and ___ a linguistic
m.
               and m. linguistic account
linguistic
               m. a account of
               a linguistic _____ of a
account
               linguistic account a phenomenon
of
               account of _____ phenomenon gen-
phenomenon
               of a _____ gen- erally
```

window_size = 2

Task: Iterate through every word with a given window; learn W such the models can predict what's the word given only the context words as inputs.

give a _____ at the N talk give 0.1 · 0.4 · · 0.7 · 0.9 0.3 · 0.1 · · 0.5 · 0.8 а W_1 hint talk at rush 0.4 · 0.6 · · 0.9 · 0.2 the 0.4 · 0.6 · · 0.9 · 0.2 (V,N)(4,V) (4,N)(1, V)X train Y train

Naïve Sentence Embedding

v('give')	0.5	-1.3	0.6	1.1
v('a')	0.3	-0.2	0.7	0.5
v('at')	0.3	2.3	-0.8	1.0
v('the')	1.7	-0.2	-0.1	1.0
	AVG()/MAX()/MIN()/Concat()			
Sent0 ("give a at the")	0.7	0.2	0.1	0.9

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

42

National University of Singapore

Activation Function

Activation Function

- Smoother decision function is expected
- Activations bound in (0,1)
- Support backpropagation
- Need to be non-linear

Activation Function

- **Sigmoid** function
 - smooth output between 0 and 1
 - interpreted as a probability of "Yes"

$$S(x)=rac{1}{1+e^{-x}}$$

Activation Function

- Tanh Function
 - smooth output between -1 and 1
 - 0 centroid

 $tanh(x) = 2 \ sigmoid(2x) - 1$

Activation Function (Sigmoid)


```
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
    return 1/(1+np.exp(-x))
x = np.arange(-10, 10, 0.1)
y = sigmoid(x)
plt.plot(x, y)
plt.show()
```


vanishing gradient

Activation Function (ReLU)

Intuitions can be useless for NN

- Smoother decision function is expected
- Activations bound in a range
- "0" centroid

All you need is just

- Simple
- Fast

$$A(x) = \max(0,x)$$

Activation Function (ReLU)

• ReLU's Family

Last Layer Activation Function

SoftMax

Last Layer Activation Function

NegLogSoftMax

Max $\{p(x_i)\}$ as input Never be a vector of $p(x_i)$

Last Layer Activation Function

• **Sigmoid** function

- smooth output between 0 and 1
- interpreted as a probability of "Yes"

A single x as input Never be a vector of x_i

$$S(x)=rac{1}{1+e^{-x}}$$

Loss Function

Loss Function

(Categorical) Cross Entropy Loss Function

- M number of classes (dog, cat, fish)
- log the natural log
- ullet y binary indicator (0 or 1) if class label c is the correct classification for observation o
- ullet p predicted probability observation o is of class c

Loss Function

(Categorical) Cross Entropy Loss Function

Loss Function

(Categorical) Negative Log Loss Function

Not For CBOW

Binary Cross Entropy Loss Function

$$\mathbf{B}CE = -\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(1-s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

$$-\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1-t_1) log(s_1)$$

Backpropagation SGD

$$W_1(new) = W_1(old) - \frac{\partial lost}{\partial w_1} *Ir$$

$$W_2(new) = W_2(old) - \frac{\partial lost}{\partial w_2} *Ir$$

SGD vs Adam

Faster but sometimes not converging

```
# Vanilla SGD
x += - learning_rate * dx
```

x is a vector of parameters anddx is the gradient

Well generalised but slower Used together with momentum

- x is a vector of parameters and
- dx is the gradient
- m is the smoothen gradient
- v is the 'cache' used to normalize x
- eps is smoothing term (1e-4 to 1e-8) beta1,beta2 are hypers (0.9, 0.999)

Learning Rate

- Fixed Learning Rate based on Experience
 - Vanilla model: MLP/RNN/CNN 10-2 ~10-3
 - Typical Models: LSTM/CNN 10-3
 - Complex Models: BERT 10⁻⁵

Fixed Learning Rate

Estimate Fixed Learning Rate

Increase Ir as iterations going up

save and plot the *loss* as per *lr*

get the *Ir* fastest decrease in the loss

Dynamic Learning Rate

- Estimate Initial Learning Rate
- Program Dynamic Learning Rate

Function: $\left| \frac{iterations}{step \ size} - 2(cycle) + 1 \right|$

$$\eta_t = \eta_{\min}^i + \frac{1}{2} \left(\eta_{\max}^i - \eta_{\min}^i \right) \left(1 + \cos \left(\frac{T_{current}}{T_i} \pi \right) \right)$$

Annealing, i.e. taking a partial step

CBOW Model Summary

Layer (type)	Output Shape	Param #	
embedding_1 (Embedding)	(None, 4, 100)	1242500	
lambda_1 (Lambda)	(None, 100)	0	
dense_1 (Dense)	(None, 12425)	1254925	

Total params: 2,497,425 Trainable params: 2,497,425 Non-trainable params: 0

Task: Iterate through each word with a given window; for each word predict the context words within the window

(E.g. from Manning (2018) Stanford cs224n course)

Sentence: language users never choose words randomly , and language is essentially non-random .

In-/Outputs:

```
('never', ['language', 'users', 'choose', 'words']),
  ('choose', ['users', 'never', 'words', 'randomly']),
  ('words', ['choose', 'words', ',', 'and']),
  ('randomly', ['words', 'randomly', 'and', 'language'])
]
```


Sentence: language users never choose words randomly , and language is essentially non-random .

Windows:

('never', 'language',


```
Sentence: language (1) users (2) never (3) choose (4) words
            (5) randomly (6), (7) and (8) language (1) is (10)
            essentially (11) non-random (12) . (13)
   ['language', 'users', 'never', 'choose', 'words']
                                            Relu ()
 never 3
                                              0.4 · 0.6 · · 0.9 · 0.2
                                   W_1
    (1,1)
                                                     (1,N)
                         (1,V)
                                     (V,N)
                                                           Dot
                                                                                    0.6
                                                                      (1,1) (1,1)
                                                                                    (1,1)
                                        Relu ()
language 1
                                             0.2 · 0 · · 1.9 · 5.2
                  0.1 · 0.1 · · 7 · 0.4
     (1,1)
                                                    (1,N)
                        (1,V)
                                                                                2221 bss
                                     (V,N)
```


+1)

Skipgram Model

Layer (type)	Output	Shape	Param #
merge_2 (Merge)	(None,	1)	0
dense_3 (Dense)	(None,	1)	2

Total params: 2,485,002 Trainable params: 2,485,002 Non-trainable params: 0

Non-trainable params: 0

How to Choose Context?

- Different contexts lead to different embeddings
- Small context window: more syntax related
 - I like...
 - She likes ...
- Large context window: more semantics related
 - stackoverflow great website for programmers

Properties of Word Embeddings

Male-Female Spain Italy Madrid Germany Rome Berlin Turkey Ankara Russia Canada Ottawa Japan Tokyo Vietnam Hanoi China Beijing

Country-Capital

Ingredients

Corpus of text	As large as possible
Annotations	0
Initialize weights (aka Embeddings)	1x per word
Deep Learning Model	1x
Cost Function	Appropriately
GPU	Lotsa of it

When to use pre-trained embeddings?

- Generally, when you don't have much training/annotated data
- Useful: Use as inputs to model for classification task, e.g. tagging, parsing, ranking (based on similarity)
- Less Useful: Machine Translation / Sequence generating tasks
- **Not Useful:** Generic Language Modeling, for those, we have sentence embedings...

Limitations

- Sensitive to "tokens" (cat vs cats)
- Inconsistent across space, embeddings for the same words trained with different data are different
- Can encode bias (stereotypical gender roles, racial bias)
- Not interpretable

Embedding Bias

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$
.

	"He" Occupations	"She" Occupations
Cosine Similarity	["retired", "doctor",	["doctor", "teacher",
	"teacher", "student",	"nurse", "actress",
	"miller", "assistant",	"student", "miller",
	"lawyer", "baker",	"reporter", "retired",
	"judge", "governor",	"lawyer", "actor",
	"butler"]	"artist"]
Inner Product Similarity	["cleric", "photographer",	["librarian",
	" skipper ", "chaplain",	"housekeeper", "nanny",
	"accountant", "inspector",	"accountant", "sheriff",
	"rector", "investigator",	"envoy", "tutor",
	"psychologist",	"salesman", "butler",
	"treasurer", "supervisor"]	"footballer", "solicitor"]

Summary Word2Vec

Steps

- 1. Define task that we want to predict
- 2. Go through each sentence and create the task's in-/outputs
- Iterate through task's I/O, put the inputs through the embeddings and models to create predictions
- 4. Measure cost of the predicted and expected output
- 5. Update embedding weights accordingly (*backprop)
- Repeat Step 3-5 until desired.

Neither **GloVe** or **Word2Vec** has been shown to provide definitively better results rather they should both be evaluated for a given dataset.

Train Word2Vec from "scratch"

CBOW AND SKIPGRAM

References

- 1. Role, Franois, and Mohamed Nadif. "Handling the impact of low frequency events on cooccurrence based measures of word similarity." Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2011). Scitepress. 2011.
- 2. Yogan, Jaya Kumar, et al. "A review on automatic text summarization approaches." Journal of Computer Science12.4 (2016): 178-190
- 3. Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018)
- 4. Radford, Alec, et al. "Improving language understanding by generative pre-training." URL https://s3-us-west-2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf (2018).
- 5. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- 6. Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." arXiv preprint arXiv:1801.06146 (2018).
- 7. Pennington, Jeffrey, Richard Socher, and Christopher Manning. "Glove: Global vectors for word representation." Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014.

Page 78