DS4023 Machine Learning Lecture 4: Neural Networks – Activation & Loss Function

Mathematical Sciences
United International College

Reference: Stanford Course CS231n

Outline

- Activation Functions
- Softmax Classifier
- Cross-entropy Loss

Activation Functions

Why Activation Function?

- Activation function is one of the building blocks on neural network, which brings non-linearity.
- A neural network without an activation function is essentially just a linear model.

Without non-linear activation:

$$a^{(2)} = z^{(2)} = \Theta^{(1)}x$$

$$h_{\Theta}(x) = z^{(3)} = \Theta^{(2)}z^{(2)}$$

$$= \Theta^{(1)}\Theta^{(2)}x$$

Activation Functions

Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

ReLU:

$$ReLU(x) = \max(0, x)$$

Machine Learning

Sigmoid Function

Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as the "firing rate" of a neuron
 - Not firing at all (0)
 - Fully saturated firing at an assumed maximum frequency (1)

Drawback:

Saturated neurons kill gradients.

Sigmoid Function

Gradient of sigmoid function: $\frac{\partial \sigma}{\partial x} = \sigma(x)(1 - \sigma(x))$

What happens when x = -10?

What happens when x = 10?

What happens when x = 0?

Sigmoid Function

- The output of sigmoid saturates at either 1 or 0, for a large positive or large negative number.
 - Thus, the local gradient at these regions is almost zero.
- During backpropagation, this local gradient is multiplied with upstream gradient, which "kills" the gradient, almost no signal flow through the neuron to its weights.

Tanh Function

tanh:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Hyperbolic tangent function.
- Squashes numbers to range [-1,1].
- Tanh outputs are zero-centered.
- Note that the Tanh function is simply a scaled sigmoid function:

$$tanh(x) = 2\sigma(2x) - 1$$

• $\tanh'(x) = 1 - \tanh^2(x)$

Drawback:

Saturated neurons kill gradients.

ReLU Function

ReLU:

 $ReLU(x) = \max(0, x)$

- Rectified Linear Unit
- The activation is simply thresholded at zero.
- Does not saturate (in +region)
- Very computationally efficient (no exponentials)
- Converges much faster than sigmoid/tanh in practice

Drawback:

Killing the gradient in half of the regime.

ReLU Function

Gradient of RuLU function:
$$\frac{\partial R}{\partial x} = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x < 0 \end{cases}$$

What happens when x = -10?

What happens when x = 10?

What happens when x = 0?

Multiclass Classification

Car

Motorcycle

$$h_{\Theta}(x) \in \mathbb{R}^3$$

$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

when car

$$h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

when motorcycle

Multiclass Classification

- In previous loss function, treat multiclass classification as multiple binary classifiers.
- Each classifier generates a score.

Input		Outp	ut Score		Classes	
	Neural Network		0.8		Pedestrian	
			0.6		Car	
			0.2		Motorcycle	

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right]$$

Softmax Classifier

- Extension of binary classifiers that allows for more than two categories of outcome variable.
 - Get its name from the softmax function.
- Interpret raw classifier scores as probabilities.

Input		Output Score		Pr	Probability		Classes
	Neural Network	0	0.8		0.42		Pedestrian
		0	0.6		0.34		Car
		0).2		0.23		Motorcycle

- Softmax Function: $f(\vec{z})_i = \frac{e^{z_i}}{\sum_{i=1}^K e^{z_i}}$
 - \vec{z} is input vector with K entries.
 - Exponential (monotonic, output positive value) and normalization.

- Output probability close to true probability.
- The most common loss function in this case is the crossentropy loss.
- KL-divergence. Given two probability distributions p and q, the use of KL-divergence is to measure the difference between the two distributions.

$$KL(p||q) = \sum_{i=1}^{K} p_i \log \frac{p_i}{q_i}$$

- More similar, smaller KL-divergence
- Range [0,+∞]

• KL-Divergence:

$$KL(p||q) = \sum_{i=1}^{K} p_i \log \frac{p_i}{q_i} = \sum_{i=1}^{K} [p_i \log p_i - p_i \log q_i]$$

$$= \sum_{i=1}^{K} p_i \log p_i - \sum_{i=1}^{K} p_i \log q_i$$

$$= -Entroy(p) - \sum_{i=1}^{K} p_i \log q_i$$

- The cross-entropy between two probability distributions, such as q from p, can be stated formally as: H(p,q) =
 - $-\sum_{i=1}^K p_i \log q_i$
 - Given p, the distribution q with larger KL-divergence, also have larger cross-entropy.

- Let p be true class distribution, q be our prediction distribution, we use cross-entropy as our loss function.
- For true class distribution, only one entry is 1, other entries are 0.

Input Output Probability True Probability Classes 0.42 1 Pedestrian Neural Network 0.23 0 Motorcycle

 Given the data instance (x, y), let p be true class distribution, q be our prediction distribution, we use cross-entropy as our loss function.

$$L = -\sum_{i=1}^{K} p_i \log q_i$$

- For p, only one entry is 1, other entries are 0.
- Therefore, cross-entropy loss can be re-write as:

$$L = -\log q_t$$
, where $p_t = 1$

Output Probability True Probability

 0.42
 1

 0.34
 0

 0.23
 0

cross-entropy loss: $-\log 0.42 = 0.87$