المملكة المغربية ROYAUME DU MAROC

معهد الحسن الثاني للزراعة والبيطرة

Année universitaire 2021-2022 DEUXIEME ANNEE CYCLE D'INGENIEUR EN SCIENCES GEOMATIQUES ET INGENIERIE TOPOGRAPHIQIQUE

DU 23/05/2022 au 29/05/2022

Stage de professionnalisme PROJET DE LA TOPOGRAPHIE

Présenté et soutenu publiquement par

BOUJDI SOUKAINA BOUNOUA ISMAIL BOUFERDOUSS NADA BOURRIZ MOHAMED MOUSSAOUI ASMAA

JURY

M. MOURAD BOUZIANI MME.RAFIKA HAJJI

(Encadrant) IAV HASSAN II (Encadrante) IAV HASSAN II

Fax : (00 212) 0537 77 58 45 Site web : http://www.iav.ac.ma

Remerciement:

Nous tenons tout d'abord à remercier tout le corps pédagogique de l'école des sciences géomatiques et ingénieries topographiques pour leurs encadrements dans le développement et l'acquisition efficiente des notions théoriques enseignées durant notre cursus jusqu'à l'effectuation du stage du professionnalisme.

À ce titre, nous tenons à remercier particulièrement Mr. MOURAD BOUZIANI et Mme.Rafika Hajji pour l'attention qu'elles nous ont apporté pendant la semaine de la topographie. Grâce à leur expertise partagé au quotidien, on a pu s'accomplir totalement dans nos missions.

Nous n'oublions pas non plus les chauffeurs des véhicules pour leurs gentillesses, leurs serviabilités et leurs engagements avec les étudiants.

Merci également à tous les membres de notre groupe pour leur persévérance et leur sens de responsabilité.

Merci à nos camarades de la classe pour l'effort fourni et la coordination éternelle qui ont permis d'atteindre les objectifs de ce chantier mémorable.

Toutes ces personnes ont contribué, par leur disponibilité et leur bonne humeur, à rendre cette période enrichissante et motivante.

Table des matières

I. Avant-projet	5
A. Introduction	5
B. Présentation du lieu de levé	5
C. Problématique	6
D. Solution	6
II. Densification	6
A. La zone à lever	6
1.Planification et répartition des zones	6
2.Propositions de densification	7
3.Sortie de validation et matérialisation	8
B. Densification du réseau géodésique et de la zone de levé par GNSS	9
1. Mission GNSS	9
2. Post-traitement	12
C. Densification de la zone de levé par cheminement	13
1.Cheminement planimétrique	13
2. Cheminement altimétrique	28
III. le levé topographique	33
A. Partie terrain	33
1. Matériel utilisé	33
2. Méthodologie	33
3. L'enregistrement des observations	34
4. Procédés topographiques utilisés	34
B. Partie bureau	34
1. Transfert des données	34
2. Traitement des observations	35
3. Edition de la Géobase	35
4. Calcul des points rayonnés	36
5. Génération du dessin	36
6. Dessin Final	38
7. Complètement du dessin et Habillage	38
Conclusion	30

Liste des figures

Figure 1: Zone du levé prise par Google Earth	5
Figure 2: Zone affectée au groupe 12	7
Figure 3: Programme d'observation de la mission GNSS	7
Figure 4: Réseau géodésique globale	8
Figure 5: Matérialisation du Point 4	9
Figure 6: Disposition des Points créés	10
Figure 7: Planification de la 1er Mission	10
Figure 8: Planification de la 2ème mission	11
Figure 9: Liste des points obtenue après traitement	13
Figure 10: Canevas du 1er cheminement	14
Figure 11: Canevas du 2ème cheminement	14
Figure 12: Lecture du Carnet	35
Figure 13: Calcul des points rayonnés	36
Figure 14: Génération du MNT	37
Figure 15: Génération des courbes de niveaux	37
Figure 16: Dessin final sans habillage	38
Figure 17: Plan final du groupe 12	39

Liste des Tableaux

Tableau 1: Tableau des coordonnées des points d'appui	14
Tableau 2: Tableau des angles adoptés	15
Tableau 3: Calcul de la constante d'orientation	16
Tableau 4: Tableau des précision	16
Tableau 5: Calcul des gisements intermédiaires	18
Tableau 6: Les gisements compensés	19
Tableau 7: Tableau des distances réduites	20
Tableau 8: Tableau des coordonnées approchées	21
Tableau 9: Tableau des coordonnées compensées	23
Tableau 10: Tableau des coordonnées compensées	23
Tableau 11: Tableau des angles adoptés	24
Tableau 12: Tableau des gisements intermédiaires	24
Tableau 13: Tableau des gisements compensés	25
Tableau 14: Tableau des distances réduites	26
Tableau 15: Tableau des coordonnées approchées	26
Tableau 16: Tableau des coordonnées compensées	28
Tableau 17: Tableau des dénivelés	29
Tableau 18: Tableau des dénivelés du 2ème cheminement	29
Tableau 19: Tableau des dénivelés compensés du 1er cheminement	31
Tableau 20: Tableau des dénivelés compensés du 2ème cheminement	32
Tableau 21: Les altitudes des points du 1er cheminement	32
Tableau 22:Les altitudes des points du 2ème cheminement	33

I. Avant-projet

A. Introduction

Un des trois volets sur lequel nous devons s'exercer dans ce stage professionnel est les travaux topographiques. C'était une occasion pour mettre en œuvres les acquis, les procédés et des techniques topographiques, que nous avons reçus durant notre parcours académique à l'ESGIT. Aussi, nous sommes appelés à démontrer une réflexion d'ingénieur durant l'effectuation de ce stage. La zone du levé était différente de celle densifiée lors de la semaine de la géodésie, ce qui vaut une zone sans aucun point connu, d'où une densification a été nécessaire.

B. Présentation du lieu de levé

La zone d'intérêt est le lotissement Jardin d'YKEM

Figure 1: Zone du levé prise par Google Earth

C. Problématique

La zone de levé est hors la zone de densification lors de la semaine de la géodésie comme cité auparavant. Ainsi, nous n'avons pas de points connus au sein du lotissement qu'on peut considérer comme éléments de bases pour commencer notre levé.

Pour régler ce problème, Une pratique courante est d'effectuer une densification de point. Les points de rattachement dans les périmètres du lotissement sont inexistants hormis la borne B34, donc la faisabilité de procéder par un cheminement à partir de ce point pour différents groupes est difficile voire impossible vu le très grand nombre de stations et les erreurs que cela peut induire.

D. Solution

La solution qui se présente fiable dans notre cas est l'effectuation des nouvelles sessions de densifications de GNSS et puis procéder par des cheminements qui traversent les zones à lever pour créer des nouveaux points pour qu'ils soient exploités dans le levé.

La section suivante en detaillera plus.

II. Densification

A. La zone à lever

1.Planification et répartition des zones

La zone du levé est divisée en 12 parties d'une façon équitable puis un tirage au sort a été réalisé pour affecter les parties à chaque groupe.

Le tirage au sort nous a confié la zone N°4.

Figure 2: Zone affectée au groupe 12

2. Propositions de densification

On n'a pas réalisé la sortie de reconnaissance vu le manque du temps alloué, mais grâce au logiciel des systèmes d'information géographique, on a pu choisir l'emplacement des points d'appuis qui servira comme références pour tous les groupes travaillant sur la zone d'intérêt.

On a tous mis d'accord sur le procédé de détermination des coordonnées de ces points d'appui, il s'agit d'une densification par GNSS dont le programme d'observation est le suivant :

Figure 3: Programme d'observation de la mission GNSS

La densification a été réalisé en 2 étapes vu le manque du temps et de récepteurs GNSS.

3. Sortie de validation et matérialisation

Les missions de densification et de matérialisation ont été effectuées dans la même journée, un ensemble de 9 points ont été créés comme la montre la figure suivante pour pouvoir densifier la zone et réaliser le levé.

Figure 4: Réseau géodésique globale

Notre groupe a pu réaliser la matérialisation du point 4 comme indique la figure suivante :

Figure 5: Matérialisation du Point 4

B. Densification du réseau géodésique et de la zone de levé par GNSS

1. Mission GNSS

Comme le lotissement est pourvu de points géodésiques, la mission du levé topographique consiste à densifier le réseau géodésique du terrain. La mission GNSS adoptée a prévu une densification a deux étapes pour assurer l'existence de l'ossature entourant la zone à lever et en même temps la création des points d'appui servant de base pour le levé.

a. Planification des missions de densification

La planification de process de densification consiste à délimiter la zone du levé et déterminer de l'emplacement des nouveaux points qui seront créé par GNSS.

• Délimitation de la zone du levé :

La zone d'intérêt est le lotissement Jardin d'YKEM. Le levé s'est réparti entre 12 groupes après avoir bien délimiter la zone de travail sur un fond satellitaire en utilisant le logiciel QGIS 3.16.0. La répartition des zones s'est basée prenant en considération l'étendue et la densité des détails à lever.

• Détermination des points à créer :

Cette étape consiste à créer des points d'appui dans la zone d'étude, soit pour effectuer le levé directement utilisant ces points soit pour lancer des procédés topographiques. La matérialisation de ces nouveaux points s'effectue tout en respectant la satisfaction de l'inter visibilité entre ces points malgré que le terrain soit accidenté.

Figure 6: Disposition des Points créés

• Mission 1 :

Point $_{\varphi}$	Récepteur ↓	Occupation $_{arphi}$
GAB14 _√	TOPCON↓	4
B34 _√	SP60 _√	
B30 _√	TOPCON↓	FixeŲ
BORNE 8	TOPCON↓	
Pt2 _~ /	SP60√	
Pt5 _√	TOPCON↓	

Figure 7: Planification de la 1er Mission

• Mission 2 :

Point 🗸	Récepteur 🗸	پ Occupation
Pt1 _√	TOPCON	4
Pt5 _√	TOPCON	Fixe $_{ u}$
Pt9 _√	TOPCON↓	Ų
B34 _√	SP60 _√	SESSION 1
Pt6 _√	TOPCON	
BORNE 8	SP60 _√	
Pt9 _~	TOPCON	Ų
Pt4 _√	TOPCON	
Pt7 _√	SP60 _√	SESSION 2
BORNE 8	SP60↓	
Pt2 _√	TOPCON	Ų
Pt7 _√	SP60↓	ų.
Pt4 _√	TOPCON	SESSION 3 ₄
Pt3 _{\varphi}	SP60 _√	

Figure 8: Planification de la 2ème mission

b. Mission de densification

• Mode d'observation :

Afin d'établir un réseau géodésique avec une meilleure précision à savoir une précision millimétrique, nous optons pour le mode de positionnement relatif statique. L'avantage de ce mode réside dans l'exactitude augmentée des résultats obtenus. L'observation s'est effectuée en 2 séries dont chaque série possède des sessions. La triangulation de Delaunay est bien respectée pour éviter l'impact de l'extrapolation.

Les données acquises lors de l'exécution de la mission, seront exploité par un logiciel de traitement pour aboutir aux données résultantes voulues.

2. Post-traitement

Dans ce point, le traitement s'effectuera en deux séries indépendantes. Cette étape consiste à transférer les observations vers l'interface du logiciel TBC. Chaque fichier est enregistré dans un dossier portant le nom, le numéro de série du récepteur et de la hauteur. Le process du traitement se fait comme suit :

- 1. **Configuration de l'étude** : Configurer un nouveau projet, sélectionner divers paramètres de projet (En renseignant les paramètres de projection et les unités surtout le temps GPS).
- 2. **Traitement des lignes de base**: Afin de garder une configuration correcte des triangles, nous procédons à la désactivation de quelques lignes de base. Les lignes de base utilisées, ont été choisies de telle sorte qu'il n'y ait pas de dépendance linéaire au sein du réseau.
- 3. **Fermeture des boucles**: Elle consiste en l'analyse de la fermeture des boucles joignant l'ensemble des points du réseau. Cette fermeture témoigne de la qualité géométrique de la figure que nous avons formée. Ainsi cette étape qui n'est réalisable que si les lignes de base retenues par le calcul forment des triangles permettent de juger la cohérence des coordonnées calculées. Les résultats de fermeture de boucles sont consultables dans un rapport fourni par le logiciel TBC accessible.

4. Ajustement:

- → Ajustement libre: consiste à fixer les lignes de base afin de vérifier la cohérence interne du réseau et détecter les observations erronées. C'est une compensation libre, aucune coordonnée n'est donc fixée, afin de répartir, de manière homogène sur l'intégralité du réseau formé, les erreurs sur chacun des coordonnées obtenues. Ces erreurs sont matérialisées par les ellipses d'erreurs sur chaque point.
- ♣ Ajustement avec contraintes: pour pouvoir rattacher l'ensemble des nouveaux points au réseau existant. Ceci nous permet finalement d'obtenir les coordonnées finales de l'ensemble des points. Les résultats sont repris en détails dans le rapport d'ajustement contraint fourni par le logiciel TBC annexé à ce rapport

Résultat obtenu :

ID	Abscisse (Mètre)	Ordonnée (Mètre)	Altitude (Mètre)
B30	458346,990	1405468,170	225,920
B34	459775,810	1408601,350	190,030
BORNE 8	460503,984	1410717,721	196,563
GAB 14	465510,520	1412273,940	223,045
PNT2	460382,654	1409374,154	170,938
PNT5	460305,690	1408621,197	211,518
ID	Abscisse (Mètre)	Ordonnée (Mètre)	Altitude (Mètre)
B34	459775,810	1408601,350	192,099
PNT1	460149,348	1409152,479	175,617
PNT2	460382,654	1409374,154	172,795
PNT3	460550,497	1409038,007	188,123
PNT4	460356,082	1408793,285	204,138
PNT5	460305,690	1408621,197	213,595
PNT6	460042,122	1408591,286	211,200
PNT7	460250,369	1409019,905	186,384
PNT8	460193,442	1408454,033	218,872

Figure 9: Liste des points obtenue après traitement

Les coordonnées obtenues de cet ajustement vont servir de base à obtenir d'autre points d'appui déterminés par des procédés topographiques.

C. Densification de la zone de levé par cheminement

Le cheminement est l'un des procédés les plus utilisées dans les travaux topographiques afin de densifier la zone d'étude par des points connus en planimétrie et en altimétrie. Dans notre cas, on a pu densifier la zone affectée par 2 cheminements vu la nature du terrain et pour pouvoir lever le maximum du détail.

1.Cheminement planimétrique

Les figures suivantes présentent les canevas des deux cheminements :

Cheminement 1:

Figure 10: Canevas du 1er cheminement

Cheminement 2:

Figure 11: Canevas du 2ème cheminement

Les coordonnées des points d'appui et de références pour les 2 cheminements sont les suivants :

PT	X (m)	Y (m)	Précision	Précision
			en X (m)	en Y (m)
B34	459775.81	1408601.35		_
PNT9	460123.108	1408838.107	0.001	0.001
PNT6	460042.122	1408591.286	0.001	0.001
PNT4	460356.082	1408793.285	0.001	0.001
PNT7	460250.369	1409019.905	0.001	0.002
PNT8	460193.442	1408454.033	0.001	0.001

Tableau 1: Tableau des coordonnées des points d'appui

a. Observation et calcul angulaire

Cheminement 1:

Les observations ont été faites sur deux séries autrement dit 4 tours d'horizon (CG, CD), les lectures vont subir une réduction sur la référence pour chaque série et cercle et puis on prend la moyenne des valeurs obtenues.

✓ La formule de la réduction :

$$L_{r ext{eduite}} = L - \frac{L_r + L_r}{2}$$

✓ L'angle adopté :

$$lpha_{_i} = rac{\sum_{_i} L_{_{réduite_{_i}}}}{4}$$

Les observations brutes se trouvent dans un fichier Excel au niveau du dossier des livrables.

Après la réduction des observations et le control des fermetures, les observations angulaires du cheminement sont les suivantes :

Les angles adoptés (gr)		Précision
		(gr)
Alpha1	199.1825	0.0031
Alpha2	187.1232	0.0031
Alpha3	220.5454	0.0031
Alpha4	284.2847	0.0031
Alpha5	90.0014	0.0031
Alpha6	109.3747	0.0031
Alpha7	289.6349	0.0031
Alpha8	127.7538	0.0031
Alpha9	200.1262	0.0031

Tableau 2: Tableau des angles adoptés

La précision des angles est calculée par :

$$\sigma_{\alpha}^{2} = \frac{3}{8} * \sigma_{\scriptscriptstyle D}^{2}$$

Avec:

$$\sigma_{\scriptscriptstyle D}=50^{\scriptscriptstyle cc}$$

✓ Contrôle de stabilité :

Le Point de départ PT9 est entouré par 2 références ce qui permet d'effectuer un contrôle de stabilité de la station, la formule est donnée par :

$$V_{0i} = Gt_{G1-i} - L_i$$

Et par suite on obtient :

Départ	Calcul des gisements	Lecture (gr)	V0 (gr)
	(gr)		
PT9/PT7	38.8806	0	38.8806
PT9/PT4	112.1001	73.2216	38.8785

Tableau 3: Calcul de la constante d'orientation

En calculant les précisions :

Précisons sur les	Précision sur V0	Ecart V0	Précision sur l'écart
gisements (gr			
0.00049	0.0050	0.0020	0.0087
0.00038	0.0071		

Tableau 4: Tableau des précisions

Tel que:

$$\sigma_{GT_{AB}}^{2} = \frac{(\sigma_{X_{A}}^{2} + \sigma_{X_{B}}^{2} + (\frac{X_{B} - X_{A}}{Y_{B} - Y_{A}})^{2} * (\sigma_{Y_{A}}^{2} + \sigma_{Y_{B}}^{2})}{(Y_{B} - Y_{A})^{2} * (1 + (\frac{X_{B} - X_{A}}{Y_{B} - Y_{A}})^{2})^{2}}$$

Et

$$\sigma_{\scriptscriptstyle V0}{}^{\scriptscriptstyle 2}=\sigma_{\scriptscriptstyle GT_{\scriptscriptstyle AB}}{}^{\scriptscriptstyle 2}+\sigma_{\scriptscriptstyle L}{}^{\scriptscriptstyle 2}$$

Et

$$\sigma_{E}^{2} = \sigma_{V0_{1}}^{2} + \sigma_{V0_{2}}^{2}$$

Et par suite:

$$T=2.7*\sigma_{\scriptscriptstyle E}=0.023^{\scriptscriptstyle gr}$$

On trouve

E < T

Et par suite:

$$VZM = \frac{V_{01} + V_{02}}{2} = 38.8796 \ gr$$

Avec une précision de :

$$\sigma_{_{VZM}}{^{2}} = (\frac{1}{2})^{2} * (\sigma_{_{V01}}{^{2}} + \sigma_{_{V02}}{^{2}}) = 0.004 \ gr$$

On conclut donc ce le point est stable, et on peut travailler avec les deux références.

✓ Calcul des gisements :

Les gisements de départ et d'arrivé se calculent par :

$$Gt = ArcTan\left(\frac{\Delta X}{\Delta Y}\right) + n * 200$$

Dans notre cas on a:

$$Gt_{dép} = 38.8796 \ gr$$

Et

$$Gt_{arr/fixe} = 146.8991 \, gr$$

Et pour les gisements intermédiaires on a :

$$Gt_{M_{i}M_{i+1}=Gt_{depost}} + \sum_{i=1}^{n} \alpha_{i} + (n-1) * 200$$

Avec n est le nombre des stations

On obtient:

Les gisements (gr)	Précision (gr)
VZM (départ)	
38.8796	0.004
Gisement PT9/A	
238.0621	0.005
Gisement A/B	
225.1853	0.006
Gisement B/C	
245.7307	0.007
Gisement C/D	·

330.0154	0.008
Gisement D/E	
220.0168	0.008
Gisement E/F	
129.3915	0.009
Gisement F/Z	
219.0264	0.009
Gisement Z/PT6	
146.7802	0.009
Gisement d'arrivé PT6/PT8 calc	
146.9064	0.010
Gisement d'arrivé PT6/PT8 fixe	•
146.8991	0.00044

Tableau 5: Calcul des gisements intermédiaires

La précision est calculée par :

$$\sigma_{GT_{AB}}^{2} = \frac{(\sigma_{X_{A}}^{2} + \sigma_{X_{B}}^{2} + (\frac{X_{B} - X_{A}}{Y_{B} - Y_{A}})^{2} * (\sigma_{Y_{A}}^{2} + \sigma_{Y_{B}}^{2})}{(Y_{B} - Y_{A})^{2} * (1 + (\frac{X_{B} - X_{A}}{Y_{B} - Y_{A}})^{2})^{2}}$$

✓ Calcul de la fermeture angulaire :

On a:

$$f_{\alpha} = Gt_{arriv_{\rho_{a}}} - Gt_{arriv_{calcul}} = -0.0073 \ gr$$

Calculant la tolérance, on trouve :

$$T_{\alpha} = 2.7 * \sigma_{f\alpha}$$

 Et

$$\sigma_{f_a}^2 = \sigma_{Gt^{arrive}/f_{ixe} + \sigma_{Gt}/f_{arrive}}^2$$

On a:

$$\sigma_{\rm \tiny Glarmef, \tiny observed} = \sqrt{2*9}*\sigma_{\rm \tiny D} = 0.021 gr~Pr\'{e}cision~pratique$$

Donc on obtient:

$$T_{\alpha}=2.7*\sigma_{f\alpha}=0.057gr$$

On a $T_{\alpha} > f_{\alpha}$ et par suite on passe à la compensation des gisements.

✓ Compensation des gisements :

On compense les gisements en se basent sur la formule suivante :

$$Gt_{\scriptscriptstyle{M,M_{\scriptscriptstyle{i+1/comp}}}} = Gt_{\scriptscriptstyle{M,M_{\scriptscriptstyle{i+1/chn}}}} + i * rac{f_{\scriptscriptstyle{lpha}}}{n}$$

Avec:

n: Le nombre des stations.

i : le nombre de point intermédiaire.

On obtient le tableau suivant :

Les gisements compensés (gr)	Précision (gr)
Gisement PT9/A	
238.0613	0.006
Gisement A/B	
225.1837	0.008
Gisement B/C	
245.7282	0.010
Gisement C/D	
330.0121	0.012
Gisement D/E	
220.0127	0.014
Gisement E/F	
129.3866	0.017
Gisement F/Z	
219.0207	0.019
Gisement Z/PT6	
146.7737	0.021
Gisement d'arrivé PT6/PT8	
146.8991	0.023

Tableau 6: Les gisements compensés

Avec:

Avant de passer au calcul des coordonnées approchées, on doit réduire les distances horizontales à l'ellipsoïde puis au plan de projection, à noter que la distance mesurée par la station totale s'agit de la distance horizontale.

✓ Réduction des distances :

A l'ellipsoïde:

$$D_0 = D_h * (1 - \frac{h_m}{R})$$

Au plan de projection :

$$D_r = D_0 * (1 - K)$$

Avec:

 D_h : La distance horizontale.

 h_m : La hauteur moyenne du terrain, $h_m = 200$ m

R: Le rayon de la terre, $R = 6400 \ Km$

K: Le facteur d'altération linéaire, K = -38.7mm/km

On obtient donc:

ST	PT	Distance Réduite	Précision (m)
PT9	A	39.73	0.0052
A	В	39.17	0.0052
В	С	62.61	0.0053
С	D	83.43	0.0054
D	Е	54.05	0.0053
Е	F	69.85	0.0053
F	Z	51.33	0.0053
Z	PT6	55.42	0.0053

Tableau 7: Tableau des distances réduites

Avec:

$$\sigma_D = a + b * ppm * D$$

Dans notre cas:

a=b=5.

Ppm=1mm/Km.

D: distance réduite en Km.

✓ Calcul des coordonnées approchées :

Les coordonnées approchées sont calculées en utilisant la relation suivante :

$$x_{_{M,/app}} = x_{_{M_{-1}}} + M_{_{i}}M_{_{i-1}} * sinGt_{_{M,M_{-1}/comp}}$$

 $y_{_{M,/app}} = y_{_{M_{-1}}} + M_{_{i}}M_{_{i-1}} * cosGt_{_{M,M_{-1}/comp}}$

On obtient les résultats suivants :

Les	X (m)	Y (m)	Précision	Précision en Y
coordonnées	, ,	` '	en X (m)	(m)
approchées			` '	、 /
A	460100.74	1408805.2	0.0043	0.0049
		7		
В	460085.65	1408769.1	0.0065	0.0071
		2		
С	460044.44	1408721.9	0.0104	0.0103
		7		
D	459970.12	1408759.8	0.0135	0.0176
		6		
Е	459953.40	1408708.4	0.0178	0.0187
		6		
F	460015.94	1408677.3	0.0202	0.0249
	4	5		
Z	460000.84	1408628.3	0.0248	0.0258
		0		
PT6 calc	460041.96	1408591.1	0.0279	0.0294
		5		
PT6 Fixe	460042.12	1408591.2	0.001	0.0010
		9		

Tableau 8: Tableau des coordonnées approchées

Avec:

$$\sigma x^{2}_{Mi/app} = \sigma x^{2}_{Mi-1} + \sigma D^{2} * sin(Gt_{M_{i}M_{i-1}/comp})^{2} + M_{i}M_{i-1}^{2} * cos(Gt_{M_{i}M_{i-1}/comp})^{2} * \sigma Gt_{M_{i}M_{i-1}/comp}^{2}$$

$$\sigma y^{2}_{Mi/app} = \sigma y^{2}_{Mi-1} + \sigma D^{2} * cos(Gt_{M,M_{i-1}/comp})^{2} + M_{i}M_{i-1}^{2} * sin(Gt_{M,M_{i-1}/comp})^{2} * \sigma Gt_{M,M_{i-1}/comp}^{2}$$

✓ Calcul de la fermeture linéaire

On a:

$$f_{l} = \sqrt{f_{x}^{2} + f_{y}^{2}}$$

Avec:

$$f_x = X_{_{PT6_{_{fix}}}} - X_{_{PT6_{_{opp}}}}$$

 $f_y = Y_{_{PT6_{_{fix}}}} - Y_{_{PT6_{_{opp}}}}$

On trouve:

 $f_{x} = 0.166m$

Et

 $f_{y} = 0.14m$

Et par suite:

 $f_1 = 0.22m$

Et on a la tolérance linéaire :

 $T_{l} = \sqrt{T_{x}^2 + T_{y}^2}$

Avec:

 $T_x = 2.7 * \sigma_f$

Et

$$T_{y} = 2.7 * \sigma_{f}$$

Et on a:

$$\sigma_{f_z} = \sqrt{\sigma_{x_{prs/pus}}^2 + \sigma_{x_{prs/sup}}^2} = 0.03m$$

Et

$$\sigma_{\!\scriptscriptstyle f_{\scriptscriptstyle y}} = \sqrt{\sigma_{\!\scriptscriptstyle y_{\scriptscriptstyle p_{\scriptscriptstyle f_{\scriptscriptstyle f/isc}}}}^2 + \sigma_{\!\scriptscriptstyle y_{\scriptscriptstyle p_{\scriptscriptstyle f_{\scriptscriptstyle f/isc}}}}^2} = 0.029 m$$

Et par suite
$$T_L = 2.7 * \sigma_{f_L} = 2.7 * \left(0.5 + \frac{455.59}{2000}\right) = 0.28m$$

On remarque que $T_{\iota} > f_{\iota}$ et donc on peut passer à la correction des coordonnées.

✓ Compensation des coordonnées :

Les coordonnées corrigées sont obtenues par la méthode des parallèles proportionnelles :

$$\begin{cases} x_{\text{\tiny{M,/comp}}} = x_{\text{\tiny{M,/app}}} + \frac{\sum_{k=1}^{i} d_{k}}{\sum d_{i}} * f_{x} \\ y_{\text{\tiny{M,/comp}}} = y_{\text{\tiny{M,/app}}} + \frac{\sum_{k=1}^{i} d_{k}}{\sum d_{i}} * f_{y} \end{cases}$$

On obtient alors les coordonnées suivantes :

Les coordonnées compensées	X(m)	Y(m)
A	460100.76	1408805.28
В	460085.68	1408769.14
С	460044.49	1408722.02
D	459970.20	1408759.93
Е	459953.51	1408708.55
F	460016.07	1408677.46
Z	460000.98	1408628.42
PT6	460042.12	1408591.29

Tableau 9: Tableau des coordonnées compensées

La précision sur les coordonnées est calculée par la propagation des erreurs donc :

$$\sigma_{x_{i\,com}}^{2} = \sigma_{x_{i\,calcul\acute{e}}}^{2} + \sigma_{fx}^{2} * \left(\frac{\sum di}{D}\right)^{2} + \left(\frac{f_{x}}{D}\right)^{2} \\ * \sum \sigma_{di}^{2}$$

$$\sigma_{\gamma_{i\,com}}^{2} = \sigma_{\gamma_{i\,calcul\acute{e}}}^{2} + \sigma_{fy}^{2} * (\frac{\sum di}{D})^{2} + (\frac{f_{\gamma}}{D})^{2} * \sum \sigma_{di}^{2}$$

Et par suite on trouve:

Les coordonnées compensées	X(m)	Y(m)	Précision en X	Précision en Y (m)
A	460100.7574	1408805.278	0.004948	0.005385
В	460085.6762	1408769.141	0.00723	0.006
С	460044.4927	1408722.017	0.012	0.01
D	459970.198	1408759.93	0.014	0.018
Е	459953.5058	1408708.548	0.018	0.02
F	460016.0714	1408677.459	0.021	0.025
Z	460000.9815	1408628.42	0.026	0.03

Tableau 10: Tableau des coordonnées compensées

Cheminement 2:

Le principe et les formules restent les mêmes et par suite on obtient les résultats suivants :

✓ L'angle adopté

Les angles adoptés (gr)		Précision (gr)
Alpha1	44.5712625	0.0031
Alpha2	280.305725	0.0031
Alpha3	307.93365	0.0031
Alpha4	211.963625	0.0031
Alpha5	91.68	0.0031

Tableau 11: Tableau des angles adoptés

✓ Calcul des gisements

Les gisements (gr)	Précision (gr)
Gisement de départ PNT6/B34 (gr)	
302.4047	0.0002
Gisement PNT6/G	
346.9759	0.0031
Gisement G/H	
27.2816	0.0043
Gisement H/K	
135.2153	0.0053
Gisement K/PNT9	
147.1789	0.0061
Gisement PNT9/PNT7	
38.8576 Gisement d'arrivé fixe	0.01
38.8806	0.00049

Tableau 12: Tableau des gisements intermédiaires

✓ Fermeture angulaire

On a:

$$f_{\alpha} = Gt_{arriv_{\rho_{lx}}} - Gt_{arriv_{calcul}} = -0.0073 \ gr$$

Calculant la tolérance, on trouve :

$$T_{\alpha} = 2.7 * \sigma_{f\alpha}$$

Et

$$\sigma_{f_a}^2 = \sigma_{g_{tarrivé/fixe} + \sigma_{g_{t_{max}}/f_{max}}}^2$$

On a:

$$\sigma_{\scriptscriptstyle Glummef_{observet}} = \sqrt{2*5}*\sigma_{\scriptscriptstyle D} = 0.021 gr~Pr\'{e}cision~pratique$$

Donc on obtient:

$$T_{\alpha} = 2.7 * \sigma_{f\alpha} = 0.04 gr$$

On a $T_{\alpha} > f_{\alpha}$ et par suite on passe à la compensation des gisements.

✓ Compensation des gisements :

On compense les gisements en se basent sur la formule suivante :

$$Gt_{_{M_{i}M_{i+1/comp}}} = Gt_{_{M_{i}M_{i+1/obs}}} + i * rac{f_{lpha}}{n}$$

Les précision (gr)
0.003
0.005
0.0067
0.0082
0.0097

Tableau 13: Tableau des gisements compensés

✓ Réduction des distances

Les Distances		Précision (m)
adoptées		
D1	204.35	0.2044
D2	238.71	0.2387
D3	55.92	0.0559
D4	116.04	0.1160
Somme	615.02	0.6150

Tableau 14: Tableau des distances réduites

Les coordonnées approchées sont calculées en utilisant la relation suivante :

$$x_{_{M,/app}} = x_{_{M_{i-1}}} + M_{i}M_{_{i-1}} * sinGt_{_{M_{i-1}/comp}}$$
 $y_{_{M,/app}} = y_{_{M_{i-1}}} + M_{i}M_{_{i-1}} * cosGt_{_{M,M_{i-1}/comp}}$

On obtient les résultats suivants :

Les coordonnées			Précision en X	
approchées	X(m)	Y (m)	(m)	Précision en Y (m)
		1 408		
G	459 890.93	728.77	0.0104	0.0103
Н				
11	459 990.16	1408 945.88	0.0261	0.016
K		1 408		
K	460 037.73	916.50	0.0269	0.018
		1 408		
PT9(calcul)	460 123.32	838.13	0.0319	0.026
PT9 (fixe)	460123.11	1408838.11	0.001	0.001

Tableau 15: Tableau des coordonnées approchées

✓ Fermeture linéaire

On a:

$$f_{l} = \sqrt{f_{x}^{2} + f_{y}^{2}}$$

Avec:

[✓] Calcul des coordonnées approchées :

$$f_x = X_{PT9_{fix}} - X_{PT9_{app}}$$

 $f_y = Y_{PT9_{fix}} - Y_{PT9_{app}}$

On trouve:

$$f_x = -0.21 \ m$$

Et

$$f_{y} = -0.02 \ m$$

Et par suite:

$$f_{l} = 0.21m$$

Et on a la tolérance linéaire :

$$T_{l} = \sqrt{T_{x}^2 + T_{y}^2}$$

Avec:

$$T_x = 2.7 * \sigma_{f_x}$$

Et

$$T_{y} = 2.7 * \sigma_{f_{y}}$$

Et on a:

$$\sigma_{f_{x}} = \sqrt{\sigma_{x_{pry/pix}}^{2} + \sigma_{x_{pry/qip}}^{2}} = 0.032m$$

Et

$$\sigma_{f_{y}} = \sqrt{\sigma_{y_{pry/plac}}^2 + \sigma_{y_{pry/qap}}^2} = 0.026m$$

Et par suite
$$T_L = 2.7 * \sigma_{f_L} = 2.7 * \left(0.5 + \frac{615.02}{2000}\right) = 0.36m$$

On remarque que $T_{\iota} > f_{\iota}$ et donc on peut passer à la correction des coordonnées.

✓ Compensation des coordonnées

Les coordonnées corrigées sont obtenues par la méthode des parallèles proportionnelles :

$$\begin{cases} x_{M_{i}/comp} = x_{M_{i}/app} + \frac{\sum_{k=1}^{i} d_{k}}{\sum d_{i}} * f_{x} \\ y_{M_{i}/comp} = y_{M_{i}/app} + \frac{\sum_{k=1}^{i} d_{k}}{\sum d_{i}} * f_{y} \end{cases}$$

On obtient donc:

Les coordonnées				Précision en
compensées	X (m)	Y(m)	Précision en X(m)	Y(m)
G	459 890.87	1 408 728.76	0.014	0.013
Н	459 990.01	1 408 945.87	0.03	0.02
K	460 037.56	1 408 916.48	0.031	0.022

Tableau 16: Tableau des coordonnées compensées

2. Cheminement altimétrique

Afin d'avoir les différentes altitudes des points d'appui qu'on a créé, on a procédé par un cheminement altimétrique allant de PNT6 jusqu'à PNT9 pour le premier cheminement, et de point PNT9 et en fermant sur le PNT6 pour le deuxième. En utilisant les mesures des distances et des angles verticales on a effectué un nivèlement trigonométrique entre les points pour qu'on puiss calculer les dénivelées.

a. Calcul des dénivelés approchés

Pour chaque station on a observé 2 séries en double position du cercle vertical (double retournement). On a calculé les fermetures des tours d'horizon pour confirmer que l'instrument et en particulier son limbe n'a pas bougé au cours des observations (voir les annexes).

Avant de passer au calcul des dénivelés, l'erreur de collimation verticale (défaut de non coïncidence du zéro du cercle vertical avec le zénith)

Z0 = (LCG + LCD - 400) / 2 doit être éliminer pour les angles verticaux et les longueurs observés doivent subir à une triple correction : réduction à l'horizontale, réduction à l'ellipsoïde et une réduction au plan de projection.

Apres avoir corrigé les observations brutes qu'on a, on commence le calcul des dénivelées par la relation $\Delta H = DH * \tan(\alpha) + Hi - Hv$

Avec $\alpha = 100 - V$

V : l'angle verticale corrigé

Hi: La hauteur de l'instrument

Hv: La hauteur de visé.

Cheminement 1:

Points	Dénivelé ΔH(m)
PNT9-A	0.634
A-B	0.780
B-C	1.218
C-D	7.901
D-E	3.050
E-F	7.315
F-Z	4.535
Z-PNT6	6.355

Tableau 17: Tableau des dénivelés

On a
$$\Delta \boldsymbol{H}_{\scriptscriptstyle PNT9-PNT6(obs)} = \sum \Delta \boldsymbol{H}_i = 15.986$$

Et
$$\Delta H_{PNT9-PNT6(fixe)} = 162.077 - 146.097 = 15.980$$

Cheminement 2:

Points	Dénivelé ΔH(m)
PNT6-G	22.840
G-H	-5.731
H-K	2.005
K-PNT9	10.576

Tableau 18: Tableau des dénivelés du 2ème cheminement

On a
$$\Delta H_{PNT6-PNT9(obs)} = \sum \Delta H_i = -15.986$$

Et $\Delta H_{PNT6-PNT9(fixe)} = 146.097 - 162.077 = -15.980$

b. Calcul des fermetures et tolérances angulaires

On calcul la fermeture angulaire pour savoir si les dénivelés sont tolérables ou pas.

Avec
$$f_a = \Delta H_{fixe} - \Delta H_{obs}$$

Et
$$T_a = 2.7 \sigma f_a$$

Nous avons utilisé dans le levé la station totale (GTS235) donc

$$\sigma^2 \text{Li} = \pm 0.005 \text{ gr et } \sigma^2 \text{DHi} = \pm 0.01$$

Cheminement 1:

On a:

$$f_a = 15.980 - 15.986 = -0.006$$

$$\sigma f_a = \sqrt{\sigma^2 \Delta H_{fixe} + \sigma^2 \Delta H_{obs}}$$

$$\sigma \Delta H_{fixe} = \sqrt{\sigma^2 H_{PNT6} + \sigma^2 H_{PNT9}} = 0.009 \text{m}$$

Avec
$$\sigma H_{PNT6} = 0.005$$
 et $\sigma H_{PNT9} = 0.007$

$$\boldsymbol{\sigma}^{2} \Delta \boldsymbol{H}_{obs} = \sum \boldsymbol{\sigma}^{2} \Delta \boldsymbol{H}_{i} = 8 * \boldsymbol{\sigma}^{2} \Delta \boldsymbol{H}_{i}$$
$$\boldsymbol{\sigma}^{2} \Delta \boldsymbol{H}_{i} = (\tan^{2}(\boldsymbol{\alpha}i) * \boldsymbol{\sigma}^{2} D H i + D H i^{2} * (1 + \tan^{2}(\boldsymbol{\alpha}i))^{2}$$
$$* \boldsymbol{\sigma}^{2} \boldsymbol{\alpha}i) / \rho^{cc}$$

On multiplie par 1/ p pour garder l'homogénéité des unités, avec :

$$ho^{cc} = rac{200*10^4}{\pi}$$

On a $\boldsymbol{\alpha}$ i = $\boldsymbol{L}_{p1} - \boldsymbol{L}_{p2}$

$$L_{_{
m pi}} = rac{L_{_{G{
m s}1}} + L_{_{
m D{
m s}1}} + L_{_{G{
m s}2}} + L_{_{
m D{
m s}2}}}{4}$$

Donc
$$\sigma^2 \alpha i = \frac{1}{16} * 4 * \sigma^2 Li = 12.5cc$$

On fait le calcul sur Excel, on trouve $\sigma \Delta H_{\scriptscriptstyle \mathrm{obs}} = 0.01$

Donc
$$\sigma f_a = 0.09$$

Et
$$T_a = 2.7 * \sigma f_a = 0.243m$$

On a $f_a < T_a$ donc les résultats sont tolérables.

Cheminement 2:

On procède de manière pour le calcule des fermetures et de tolérance et on aura :

$$f_a = -15.980 - (-15.986) = 0.006$$

$$\sigma f_a = \sqrt{\sigma^2 \Delta H_{fixe} + \sigma^2 \Delta H_{obs}}$$

$$\sigma \Delta H_{fixe} = \sqrt{\sigma^2 H_{PNT9} + \sigma^2 H_{PNT6}} = 0.009 \text{m}$$

$$\sigma \Delta H_{obs} = \sum \sigma^2 \Delta H_i = 4 * \sigma^2 \Delta H_i = 0.008$$

$$\sigma f_a = 0.012 \text{m}$$

$$T_a = 2.7 \sigma f_a = 0.032$$

c. Calcul des dénivelés compensés

En utilisant la formule : $\Delta Hcomp = \Delta Happ + \frac{f_a*DHi}{\sum DHi}$

Cheminement 1:

Points	Dénivelé ΔHc(m)
PNT9-A	0.634
A-B	0.780
B-C	1.218
C-D	7.901
D-E	3.049
E-F	7.314
F-Z	4.529
Z-PNT6	6.354

Tableau 19: Tableau des dénivelés compensés du 1er cheminement

Cheminement 2:

Points	Dénivelé ΔH(m)
PNT6-G	22.835
G-H	-5.728
H-K	2.006
K-PNT9	10.578

Tableau 20: Tableau des dénivelés compensés du 2ème cheminement

d. Calcul des hauteurs compensés et leurs précisions

On calcule les hauteurs des points d'appui avec $H_k = H_{PNT9} + \sum_{i}^{k} \Delta H_i$

$$\sigma^2 H_{\scriptscriptstyle k} = \sigma^2 H_{\scriptscriptstyle dep} + \sum_{\scriptscriptstyle i}^{\scriptscriptstyle k} \sigma^2 \Delta H_{\scriptscriptstyle i}$$

Avec H_{dep} est la hauteur de point de départ (PNT9 pour le cheminement1 et PNT6 pour le cheminement2) et $\sigma^2 \Delta H_i$ la précision du dénivelé observé

$$\boldsymbol{\sigma}^{2} \Delta \boldsymbol{H}_{i} = (\tan^{2}(\boldsymbol{\alpha}i) * \boldsymbol{\sigma}^{2} DHi + DHi^{2} * (1 + \tan^{2}(\boldsymbol{\alpha}i))^{2} * \boldsymbol{\sigma}^{2} \boldsymbol{\alpha}i)/\rho^{cc}$$

Cheminement 1:

Points	$H_c(\mathbf{m})$	$\sigma^2 H_c(\text{mm})$
A	146.73	0.03
В	147.51	0.12
С	148.73	0.22
D	140.83	0.97
Е	143.88	0.03
F	151.19	0.03
Z	155.72	0.03
PNT6	162.07	0.03

Tableau 21: Les altitudes des points du 1er cheminement

Cheminement 2:

Points	$H_c(\mathbf{m})$	$\sigma^2 H_c(\text{mm})$
G	168.932	0.05
Н	174.661	0.05
K	172.655	0.06
PNT9	162.077	0.05

Tableau 22:Les altitudes des points du 2ème cheminement

III. le levé topographique

A. Partie terrain

1. Matériel utilisé

Pour l'exécution du levé nous avons utilisé le matériel suivant :

- Station Total GTS750
- Prisme
- Chaine

2. Méthodologie

Notons que le levé se fait en cercle gauche seulement, à chaque tour d'horizon effectué pour une station de levé on contrôle la lecture sur une référence choisie préablement.

La codification est faite comme été acquise au cours pour alléger l'édition manuelle, la lettre définie dans le code est significative suivant le détail.

Le levé nous a pris deux jours, durant la journée on se sépare de tel facon que chaque station est levée par un opérateur différent, le reste du groupe se décompose en un secrétaire qui dessine le croquis de station et coordine avec l'opérateur pour veiller sur la codification et la numérotation des points levés, ainsi que deux portes prismes pour lever rapidement. La 5e

personne essaie de faire le croquis de la station suivante et penser comment y procéder dans le cas de confrontation des obstacles.

3. L'enregistrement des observations

En premier lieu, on commence par la création de l'étude sur « SURVEY PRO ». Ensuite nous ajoutons toutes les coordonnées (X, Y, Z) des points connus et qui vont être utilisées soit comme station de levé soit comme références de la station.

Pour chaque station on introduit la hauteur de la station et du prisme (base de calcul des dénivelées) pour pouvoir réaliser le plan côté de la zone. On introduit pour chaque point le numéro et le code. Après chaque enregistrement de point l'incrémentation se fait de façon automatique.

Pour la codification, les détails étaient levés comme ils le sont comme on a déjà cité.

4. Procédés topographiques utilisés

Les points intermédiaires que nous avons choisi lors des cheminements ont été optimisé de facon à traverser la zone et pouvoir observer tous les détails. Donc le levé a été fait par stationnement sur chaque point.

B. Partie bureau

1. Transfert des données

Après avoir terminé la partie terrain, on commence la partie bureau qui consiste premièrement à transférer les données acquises durant la mission terrain pour pouvoir les exploiter sur les différents logiciel DAO.

Pour ce faire, et puisqu'on a travaillé avec la station Topcon GTS750, on accède sur la station totale au logiciel « Survey Pro », puis on exporte de l'étude le fichier brut des observations.

2. Traitement des observations

Premièrement, on prépare notre table de codification en introduisant tous les codes utilisés lors de la mission terrain, en suivant les étapes ci-dessous :

- On ouvre le logiciel Covadis Calcul.
- Sur le menu en haut, on choisit « Codification »
- Dans le menu qui s'ouvre, on choisit « Table de codification »
- On commence à introduire, un par un, les codes qu'on va utiliser ainsi que leurs propriétés pour faciliter le dessin après.

3. Edition de la Géobase

Pour ouvrir la géobase sur Covadis, on ouvre le menu « Lecture » puis on choisit « Carnet Topcon GT7 » et on importe notre fichier.

Figure 12: Lecture du Carnet

Avant de lancer le traitement de la géobase avec Covadis, on doit d'abord rectifier l'ensemble des erreurs qui peuvent être suscitées durant la mission de levé dont on peut citer :

- Ajouter / modifier les coordonnées d'une référence/station.
- Utiliser les croquis réalisés sur le terrain pour vérifier les codes insérés.
- Pour les détails zonaux et linéaires, il faut s'assurer de l'ordre d'insertion des points en utilisant les croquis.
- Créer une nouvelle ligne.
- Supprimer une nouvelle ligne.
- Modifier la hauteur du prisme.

4. Calcul des points rayonnés

Pour ceci, sur le menu ''Calculs'' on choisit ''Points rayonnés'', puis on choisit les stations qu'on veut rayonner leurs points levés.

Figure 13: Calcul des points rayonnés

Avant de lancer le calcul on introduit les paramètres de corrections :

-Altération linéaire : 387 mm/Km

-Correction de niveau zéro : 31.25 mm/km

5. Génération du dessin

La génération du dessin en utilisant Covadis (Sous AutoCAD) se fait d'une manière automatique en utilisant les tables de codification.

Ce dessin sera modifié après sur AutoCAD pour compléter le dessin et corriger les erreurs qui apparaissent surtout au niveau des codes zonaux. Pour ce faire, on choisit du menu « Codification » l'option « Génération du dessin ». Par la suite, on a procédé aux corrections tout en se référant aux croquis des stations.

Pour l'élaboration des courbes de niveaux, on a utilisé points levés étant des points cotés. Pour ceci, on génère premièrement le MNT. Dans le menu COVADIS 3D ②GENERATION DU MNT, on choisit les calques associés à ces détails dans (1), le périmètre les points contenant les points concernés dans (2) et puis on clique sur (3) pour modifier les autres paramètres si on veut.

Figure 14: Génération du MNT

Après, on génère les courbes de niveaux en suivant le chemin : Covadis 3D> courbe de niveau> génération CN/MNT en choisissant le pas à adopter suivant l'échelle demandé.

Figure 15: Génération des courbes de niveaux

Et finalement, on ajoute les cotations pour pouvoir avoir l'information sur l'altitude de caque courbe en choisissant le bon pas. Ceci est fait en suivant le chemin Covadis 3D> courbe de niveau> cotation des CN.

6. Dessin Final

Figure 16: Dessin final sans habillage

7. Complètement du dessin et Habillage

Le complètement est une étape importante dans laquelle on remarque les détails qui n'était pas bien générés ou les détails manquants et on les détermine par chainage si possible.

Pour l'habillage, les éléments à indiquer sur le plan d'un levé.

- Titre
- Le cartouche sur format A4
- Extrait de la mappe cadastrale (non disponible dans notre cas), pour ceci on peut se référer à un extrait d'une image satellitaire.
- Echelle
- Le carroyage
- La légende

Figure 17: Plan final du groupe 12

Conclusion

Durant cette mission, nous étions capables de mener une réflexion profonde pour atteindre notre but, réalisation du plan de levé du lotissement.

En manipulant tous les acquis reçus dans le cadre de notre formation.

En passant par les différentes instances de notre stage, nous avons pu consolider nos connaissances et les projeter sur terrain. On a effectué des tâches plus longues et compliquées par rapport à celles effectuées durant nos travaux pratiques. Nous étions face à des situations nous n'aurions jamais rencontrées au sein de l'institut, où nous étions obligés de gérer les stress, éradiquer les obstacles, communiquer avec les gens et surtout coordonner entre équipe pour réaliser le fruit de ce travail.