

全球之外上, 2016 对, 重新定义运维

会议时间: 9月23日-9月24日

会议地点: 上海·雅悦新天地大酒店

主办单位:

开放运维联盟 OOPSA Open OPS Alliance 高效运维社区 GreatOPS Community

指导单位:

数据中心联盟 Data Center Alliance

分布式共识系统

在高可用架构中的应用 孙宇聪

无人值守的一致的高可用系统是不存在的

CA 系统的实际问题

- 分区问题是一定会发生的
- 分区就会发生脑裂
 - 简单超时心跳
 - 主从灾备切换
 - 小组领头人选举
- 脑裂是无法自动化解决的,人工解决则繁重而困难

CP 系统 + A 是另外一种选项

• 理论上来说,有限时间内解决分布式共识问题是不可能的

- 优势环境
 - 必要时增加副本
 - 良好的网络链接
 - 避免决斗问题
- 人工干预要求低,风险小

分布式共识系统

- Paxos, Zab, Raft...
 - Google Chubby, ZooKeeper, etcd, Consul ...
- 拜占庭将军问题
 - 不稳定的通信环境下一组进程之间对某项事务 (执行/不执行) 达成一致的问题
- 稳定状态需要 3N + 1 (拜占庭式失败) 或 2N + 1 (非拜占庭式失败) 个实例
 - Quorum Voting
 - Round 1: Prepare / Promised
 - Round 2: Accept / Accepted

为什么要使用?

- 可用性传递定律
 - 欲使系统可用度达到 X, 其所依赖的系统必须先达到 10 X
 - 链条中最弱的环节决定了系统可用性
- Availability = f (MTBF, MTTR)
 - 分布式共识系统的 MTBF 高, MTTR 低
 - 可以自动处理节点物理故障,容忍一定程度的节点间网络故障
- 微服务架构
 - 无状态的微服务(高可用的)需要存储状态(也需要高可用)
 - 分布式共识系统是实现高可用的共享状态最佳方法

复制状态机 (RSM)

• 任何一个具有确定性的程序都可以采用RSM模式成为高可用系统

自动处理集群内节点故障

异地共识

应用场景

- Consistent View of system state
 - Config / Data Store
 - Queue
 - Lock Service
 - Leader Election

应用:一致性读写数据存储

应用: L/F Election

- 简单单机程序 + 复制
- 共识算法不在关键路径中

应用:锁/屏障

应用: 分布式队列

应用:分布式 Cron 系统

回顾

- 关键状态的维护
 - 分布式共识系统是唯一的选择

- 无状态微服务架构
 - 需要分布式共识系统作为支撑

