

ISD1100 Series

Single-Chip Voice Record/Playback Device 10- and 12-Second Durations

GENERAL DESCRIPTION

Information Storage Devices' ISD1100 Chip-Corder® Series provides high-quality, single-chip record/playback solutions to 10- and 12-second messaging applications. The CMOS devices include an on-chip oscillator, microphone preamplifier, automatic gain control, antialiasing filter, smoothing filter, and speaker amplifier. A minimum record/playback subsystem can be configured with a microphone, a speaker, several passives, two push-buttons, and a power source.

Recordings are stored in on-chip nonvolatile memory cells, providing zero-power message storage. This unique, single-chip solution is made possible through ISD's patented multilevel storage technology. Voice and audio signals are stored directly into memory in their natural form, providing high-quality, solid-state voice reproduction.

Figure: ISD1100 Series Block Diagram

ISD

FEATURES

- Easy-to-use single-chip voice record/playback solution
- High-quality, natural voice/audio reproduction
- Push-button interface
 - Playback can be edge- or levelactivated
- Single-chip durations of 10 and 12 seconds
- Automatic power-down mode
 - Enters standby mode immediately following a record or playback cycle
 - $0.5 \mu A$ standby current (typical)

- Zero-power message storage
 - Eliminates battery backup circuits
- Fully addressable to handle multiple message
- 100,000 record cycles (typical)
- On-chip clock source
- No programmer or development system needed
- Single +5 volt power supply
- Available in die form, DIP and SOIC
- 100-year message retention (typical)

Table: ISD1100 Series Summary

Part Number	Minimum Duration (Seconds)	Input Sample Rate (KHz)	Typical Filter Pass Band (KHz)
ISD1110	10	6.4	2.6
ISD1112	12	5,3	2.2

ii Voice Solutions in Silicon[™]

Table of Contents

ISD1100 Series

Single-Chip Voice Record/Playback Device 10- and 12-Second Durations

DETAILED DESCRIPTION	1
Speech/Sound Quality	1
Duration	
EEPROM Storage	
Basic Operation	
Automatic Power-Down Mode	
Looping Capability	
Addressing (Optional)	1
PIN DESCRIPTIONS	2
Voltage Inputs (V $_{CCA}$, V $_{CCD}$)	
Ground Inputs (V _{SSA} , V _{SSD})	
Record (REC)	
Playback, Edge-Activated (<u>PLAYE</u>)	2
Playback, Level-Activated (<u>PLAYL</u>)	
Record LED Output (RECLED)	
Microphone Input (MIC)	
Microphone Reference (MIC REF)	
Automatic Gain Control (AGC)	
Analog Output (ANA OUT)	
Analog Input (ANA IN)	
Optional External Clock (XCLK)	
Speaker Outputs (SP+, SP-)	
Address Inputs (A0–A7)	
TIMING DIAGRAMS	5
TYPICAL PARAMETER VARIATION WITH VOLTAGE AND TEMPERATURE (PACKAGED PARTS)	9
TYPICAL PARAMETER VARIATION WITH VOLTAGE AND TEMPERATURE (DIE)	13
FUNCTIONAL DESCRIPTION EXAMPLE	. 14
APPLICATIONS NOTE	. 15
ISD1100 SERIES PHYSICAL DIMENSIONS	. 16
ORDERING INFORMATION	20

FIGURES, CHARTS, AND TABLES IN THE ISD1100 SERIES DATASHEET Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Chart 1: Record Mode Operating Current (I_{CC}) 9 Chart 2: Chart 3: Standby Current (I_{SR}) 9 Chart 4: Chart 5: Chart 6: Chart 7: Chart 8: Table 1: Table 2: Table 3: Table 4: Table 5: DC Parameters (Packaged Parts) 6 Table 6: AC Parameters (Packaged Parts) 7 Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: ISD1100 Series PIN/PAD Designations, with Respect to Die Center (µm) 19