SIEMENS

5-V Low-Drop Fixed-Voltage Regulator

TLE 4264 G

Features

- Output voltage tolerance ≤ ± 2 %
- Low-drop voltage
- Very low current consumption
- Overtemperature protection
- Short-circuit proof
- Suitable for use in automotive electronics
- Reverse polarity

Туре	Ordering Code	Package		
TLE 4264 G	Q67006-A9139	P-SOT223-4-1 (SMD)		

Functional Description

TLE 4264 G is a 5-V low-drop fixed-voltage regulator in an SOT-223 package. The IC regulates an input voltage $V_{\rm l}$ in the range 5.5 V < $V_{\rm l}$ < 45 V to $V_{\rm Qrated}$ = 5.0 V. The maximum output current is more than 120 mA. This IC is shortcircuit-proof and features temperature protection that disables the circuit at overtemperature.

Dimensioning Information on External Components

The input capacitor C_i is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_i , the oscillating of input inductivity and input capacitance can be clamped. The output capacitor C_Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values $C_Q \ge 10~\mu\text{F}$ and an ESR $\le 10~\Omega$ within the operating temperature range.

Pin Configuration

(top view)

Pin Definitions and Functions

Pin	Symbol	Function
1	V_1	Input voltage; block to ground directly on IC with ceramic capacitor
2, 4	GND	Ground
3	V_{Q}	5-V output voltage; block to ground with \geq 10-μF capacitor, ESR < 10 Ω

Circuit Description

The control amplifier compares a reference voltage, which is kept highly precise by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control, working as a function of load current, prevents any over-saturation of the power element. The IC is additionally protected against overload, overtemperature and reverse polarity.

Block Diagram

Absolute Maximum Ratings $T_{\rm j}$ = -40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Input					
Input voltage	V_{I}	- 42	45	V	_
Input current	I_1	_	_	_	limited internally
Output					
Output voltage	V_{Q}	- 1	16	V	_
Output current	I_{Q}	_	_	_	limited internally
Ground					
Current	I_{GND}	50	-	mA	_
Temperatures		•	·	•	
Junction temperature	T_{j}	_	150	°C	_
Storage temperature	T_{stg}	- 50	150	°C	_
Operating Range					
Input voltage	V_{I}	5.5	45	V	_
Junction temperature	T_{j}	- 40	150	°C	_
Thermal Resistances					
System-air	$R_{th\;SA}$	_	100	K/W	soldered in
System-case	$R_{th\;SC}$	_	25	K/W	_

Characteristics

 $V_{\rm I}$ = 13.5 V; – 40 °C ≤ $T_{\rm j}$ ≤ 125 °C, unless specified otherwise

Parameter	Symbol	Limit Values			Unit	Test Conditions
		min.	typ.	max.		
Output voltage	V_{Q}	4.9	5.0	5.1	V	5 mA $\leq I_{Q} \leq$ 100 mA 6 V $\leq V_{I} \leq$ 28 V
Output-current limiting	I_{Q}	120	150	_	mA	_
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	_	400	μΑ	$I_{\rm Q}$ = 1 mA
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	10	15	mA	I _Q = 100 mA
Drop voltage	V_{dr}	_	0.25	0.5	V	$I_{\rm Q}$ = 100 mA ¹⁾
Load regulation	ΔV_{Q}	_	_	40	mV	$I_{\rm Q}$ = 5 to 100 mA $V_{\rm I}$ = 6 V
Supply-voltage regulation	$\Delta V_{ m Q}$	_	15	30	mV	$V_{\rm I}$ = 6 to 28 V $I_{\rm Q}$ = 5 mA
Supply voltage suppression	SVR	_	54	_	dB	$f_{\rm r}$ = 100 Hz $V_{\rm r}$ = 0.5 Vpp

¹⁾ Drop voltage = $V_{\rm I}-V_{\rm Q}$ (measured where $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 13.5 V)

Application Circuit

Drop Voltage V_{Dr} versus Output Current I_{Q}

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm i}$

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm j}$

Output Current I_{Q} versus Input Voltage V_{i}

Output Voltage V_{Q} versus Input Voltage V_{i}

1998-11-01

SIEMENS TLE 4264 G

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm