ELECTRONICA APLICADA I

Profesor Titular Dr Ing. Guillermo Riva Profesor Adjunto Ing. Martin Guido

Amplificadores Multietapas

Amplificador de tres etapas emisor común.

Circuito electrónico y circuito equivalente para corriente alterna.

Ganancia de corriente en corriente alterna.

Impedancias de salida y entrada.

Amplificador colector común seguido de amplificador compuerta común.

Circuito equivalente reflejado a la base. Impedancia de entrada.

Circuito equivalente reflejado en el drenador. Impedancia de salida.

Ganancia de corriente, tensión y potencia.

Amplificador cascodo.

Diagrama en bloques.

Circuito y análisis en corriente continua.

Circuito equivalente y ganancia de corriente en alterna.

Amplificador Cascodo como desplazador de nivel de corriente continua.

Circuito y análisis en corriente continua.

Circuito equivalente y ganancia de tensión en corriente alterna.

Amplificadores Multietapas

Introducción

A veces con una sola etapa amplificadora no cubre las necesidades de diseño por lo que se recurre a configuraciones de mas de un transistor confiriendole alguna de las siguientes caracteristicas:

- •Mayor ganancia de tensión.
- •Mayor ganancia de corriente.
- •Mayor potencia de salida.
- Adaptación de impedancia ya sea de entrada o salida.
- •Mejor respuesta en frecuencia.

Amplificadores Multietapas

Introducción

A estos circuitos se los puede clasificar en dos categorias de acuerdo a como se acoplan las etapas entre si.

- Acoplamiento directo llamados amplificadores de corriente continua.

 Un inconveniente de este tipo de amplicador es que cualquier corrimiento en la polarización de la primer etapa nos puede llevar a la saturación o a el corte de la última etapa.
- Acoplamiento mediante capacitores llamados amplificadores de corriente alterna.

En este último el limite inferior de la gama de frecuencia util del amplificador es del orden de algunos herzios.

Amplificador de tres etapas emisor común con acoplamiento mediante capacitor.

Amplificador de tres etapas emisor común con acoplamiento mediante capacitor.

$$\begin{split} A_{i} &= \frac{i_{L}}{i_{i}} = \frac{i_{L}}{i_{b_{3}}} \times \frac{i_{b_{3}}}{i_{b_{2}}} \times \frac{i_{b_{1}}}{i_{i}} \\ i_{L} &= (-h_{fe_{3}}i_{b_{3}}) \times \frac{R_{C_{3}} \times R_{L}}{R_{C_{3}} + R_{L}} \times \frac{1}{R_{L}} \\ i_{b_{3}} &= (-h_{fe_{2}}i_{b_{2}}) \times \frac{R'_{b_{3}} \times h_{ie_{3}}}{R'_{b_{3}} + h_{ie_{3}}} \times \frac{1}{h_{ie_{3}}} \\ i_{b_{2}} &= (-h_{fe_{1}}i_{b_{1}}) \times \frac{R'_{b_{2}} \times h_{ie_{2}}}{R'_{b_{2}} + h_{ie_{2}}} \times \frac{1}{h_{ie_{2}}} \\ i_{b_{1}} &= i_{i} \times \frac{R_{b_{1}} \times h_{ie_{1}}}{R_{b_{1}} + h_{ie_{1}}} \times \frac{1}{h_{ie_{1}}} \\ &\Rightarrow \frac{i_{b_{1}}}{i_{b}} &= (-h_{fe_{1}}) \times \frac{R'_{b_{2}}}{R'_{b_{2}} + h_{ie_{2}}} \\ &\Rightarrow \frac{i_{b_{1}}}{i_{b}} &= (-h_{fe_{1}}) \times \frac{R'_{b_{2}}}{R'_{b_{2}} + h_{ie_{2}}} \\ &\Rightarrow \frac{i_{b_{1}}}{i_{b}} &= \frac{R_{b_{1}}}{R_{b_{1}} + h_{ie_{1}}} \end{split}$$

Amplificador de tres etapas emisor común con acoplamiento mediante capacitor.

$$A_{i} = (-h_{fe3}) \times \frac{R_{C_{3}}}{R_{C_{3}} + R_{L}} \times (-h_{fe2}) \times \frac{R'_{b3}}{R'_{b3} + h_{ie3}} \times (-h_{fe1}) \times \frac{R'_{b2}}{R'_{b2} + h_{ie2}} \times \frac{R_{b1}}{R_{b1} + h_{ie1}}$$

$$Si \implies R_{L} << R_{C_{3}} \qquad h_{ie3} << R'_{b3} \qquad h_{ie2} << R'_{b2} \qquad h_{ie1} << R_{b1}$$

$$A_{i} = (-h_{fe3}) \times \frac{R_{C_{3}}}{R_{C_{3}}} \times (-h_{fe2}) \times \frac{R'_{b3}}{R'_{b3}} \times (-h_{fe1}) \times \frac{R'_{b2}}{R'_{b2}} \times \frac{R_{b1}}{R_{b1}}$$

$$A_{i} = (-h_{fe3}) \times (-h_{fe2}) \times (-h_{fe1})$$

$$A_{i} = (-h_{fe})^{n} \begin{cases} si \ n \ es \ par \ A_{i} = h_{fe}^{n} \\ si \ n \ es \ impar \ A_{i} = -h_{fe}^{n} \end{cases}$$

n: Cantidad de etapas

Circuito equivalente reflejado a la base

Circuito equivalente reflejando a la base.

Determinación de la impedancia de entrada.

$$Z_{i} = R_{b} / \left\{ h_{ie} + \left[\left(R_{e} / / R_{S} \right) (h_{fe} + 1) / \left(\frac{r_{ds} + R_{d} / / R_{L}}{\mu + 1} \right) (h_{fe} + 1) \right] \right\}$$

Circuito eauivalente refleiando en el drenador.

Circuito equivalente reflejando en el drenador.

Determinacion de la impedancia de salida.

$$Z_O = R_d / \left[r_{ds} + \left(R_e / / R_S \right) (\mu + 1) / / h_{ib} (\mu + 1) \right]$$

Ganancia de corriente.

$$\begin{split} A_{i} &= \frac{l_{L}}{l_{i}} = \frac{l_{L}}{l_{d}} \frac{l_{d}}{l_{e}} \frac{l_{e}}{l_{i}} \\ i_{L} &= i_{d} \frac{R_{d} \cancel{K}_{L}}{R_{d} + R_{L}} \frac{1}{\cancel{K}_{L}} \implies \frac{i_{L}}{l_{d}} = \frac{R_{d}}{R_{d} + R_{L}} \\ i_{d} &= i_{e} \frac{\left[\left(R_{e} / / R_{S} \right) (\mu + 1) \right] / \left[r_{ds} + \left(R_{d} / / R_{L} \right) \right]}{r_{ds} + \left(R_{d} / / R_{L} \right)} \implies \frac{i_{d}}{i_{e}} = \frac{\left[\left(R_{e} / / R_{S} \right) (\mu + 1) \right] / \left[r_{ds} + \left(R_{d} / / R_{L} \right) \right]}{r_{ds} + \left(R_{d} / / R_{L} \right)} \\ i_{e} &= i_{i} (h_{fe} + 1) \frac{\frac{R_{b}}{h_{fe} + 1} (\mu + 1) / \left\{ h_{ib} (\mu + 1) + \left[\left(R_{e} / / R_{S} \right) (\mu + 1) / \left(r_{ds} + R_{d} / / R_{L} \right) \right] \right\}}{\left\{ h_{ib} (\mu + 1) + \left[\left(R_{e} / / R_{S} \right) (\mu + 1) / \left(r_{ds} + R_{d} / / R_{L} \right) \right] \right\}} \implies \frac{i_{e}}{i_{i}} = (h_{fe} + 1) \frac{\frac{R_{b}}{h_{fe} + 1} (\mu + 1) / \left\{ h_{ib} (\mu + 1) + \left[\left(R_{e} / / R_{S} \right) (\mu + 1) / \left(r_{ds} + R_{d} / / R_{L} \right) \right] \right\}}{\left\{ h_{ib} (\mu + 1) + \left[\left(R_{e} / / R_{S} \right) (\mu + 1) / \left(r_{ds} + R_{d} / / R_{L} \right) \right] \right\}} \end{aligned}$$

Ganancias de A_i , A_V y A_p .

$$A_{i} = \frac{R_{d}}{R_{d} + R_{L}} \times \frac{\left[\left(R_{e} / / R_{S}\right)(\mu + 1)\right] / \left[r_{ds} + \left(R_{d} / / R_{L}\right)\right]}{r_{ds} + \left(R_{d} / / R_{L}\right)} \times (h_{fe} + 1) \times \frac{R_{b}}{h_{fe} + 1} (\mu + 1) / \left\{h_{ib}(\mu + 1) + \left[\left(R_{e} / / R_{S}\right)(\mu + 1) / / \left(r_{ds} + R_{d} / / R_{L}\right)\right]\right\}}{\left\{h_{ib}(\mu + 1) + \left[\left(R_{e} / / R_{S}\right)(\mu + 1) / / \left(r_{ds} + R_{d} / / R_{L}\right)\right]\right\}}$$

$$A_{V} = \frac{v_{L}}{v_{i}} = \frac{i_{L} \times R_{L}}{i_{i} \times Z_{i}} = A_{i} \times \frac{R_{L}}{Z_{i}}$$

$$A_{P} = A_{V} \times A_{i}$$

•Cascodo como amplificador.

Incrementa el ancho de banda.

Disminuye la realimentacion

colector base del amplificador

emisor comun a una frecuencia

dada.

•Cascodo como desplazador de nivel de corriente continua. Elimina la componente de continua sin variacion de A_{V} .

Diagrama en bloques del circuito cascodo como amplificador.

EC: Emisor Común

BC: Base Común

Circuito.

Analisis en corriente continua.

Circuito equivalente

Ganancia de corriente.

Ganancia de corriente.

$$A_{i} = (-h_{fb}) \times (-h_{fe}) \times \frac{R_{b}}{R_{b} + h_{ie}} = (-h_{fb}) \times (-h_{fe}) \times \frac{R_{b}}{R_{b} + h_{ie}} = -h_{fe} \times \frac{R_{b}}{R_{b} + h_{ie}}$$

$$BW = f \binom{1}{C_M} \qquad \begin{cases} C_M : Capacidad \ de \ Miller \\ (de \ realimentacion). \end{cases}$$

BW: Ancho de banda del amplificador.

$$C_{M} = C_{bc}(1 + g_{m}R_{L}) \qquad (R_{L} equivale \ a \ h_{ib_{2}})$$

Cascodo como desplazador de nivel

Circuito.

 V_{CC} $-V_{EE}$ 2025

Analisis en corriente continua.

Suponiendo R'_C fija, determinamos R_B para $V_L = 0$

$$I_{B_3 \cong 0}$$

$$V_{B_3} = -\frac{V_{EE}}{R_1 + R_2} R_1$$

$$V_{E_3} = V_{B_3} - V_{BE}$$

$$I_{EQ_3} = \frac{V_{E_3} - (-V_{EE})}{R_e}$$

$$I_{EQ_3} = \frac{V_{E_3} + V_{EE}}{R_{e}}$$

$$V_{E_2} = I_{EQ_3} R_C^{'} + V_L$$

$$V_{B_2} = V_{E_2} + V_{BE}$$

$$I_{CQ_1} = \frac{V_{CC} - V_{B_2}}{R_C}$$

$$I_{BQ_1} = \frac{I_{CQ_1}}{\beta_1}$$

$$R_b = \frac{V_{CC} - V_{BE}}{I_{BQ_1}}$$

Cascodo como desplazador de nivel.

Circuito.

Analisis en corriente continua.

Suponiendo R_{B} fija, determinamos $R_{C}^{'}$ para $V_{L} = 0$

$$I_{BQ_1} = \frac{V_{CC} - V_{BE}}{R_b}$$

$$I_{CQ_1} = \beta_1 I_{BQ_1}$$

$$V_{B_2} = V_{CC} - I_{CQ_1} R_C$$

$$V_{E_2} = V_{B_2} - V_{BE}$$

$$I_{EQ_3} = \frac{V_{E_2} - V_L}{R_C}$$
 \Rightarrow $R_C = \frac{V_{E_2} - V_L}{I_{EQ_3}}$

$$V_{B_3} = \frac{-V_{EE}}{R_1 + R_2} R_1$$

$$V_{E_3} = V_{B_3} - V_{BE}$$

$$I_{EQ_3} = \frac{V_{E_3} - (-V_{EE})}{R_c} = \frac{V_{E_3} + V_{EE}}{R_c}$$

Cascodo como desplazador de nivel

Circuito equivalente visto desde la base de T_2 .

$$v_{L} = \frac{v_{c_{1}}}{\underbrace{h_{ie_{2}} + R_{C}^{'}h_{fe_{2}}}_{despreciando} + \underbrace{\frac{h_{fe_{2}} + 1}{h_{ob_{3}}}}_{} \times \frac{h_{fe_{2}} + 1}{h_{ob_{3}}} \cong \frac{v_{c_{1}}}{\underbrace{h_{fe_{2}} + 1}}_{h_{ob_{3}}} \times \frac{h_{fe_{2}} + 1}{h_{ob_{3}}} \simeq v_{c_{1}}$$

$$A_V = \frac{v_L}{v_{c_1}} \cong 1$$

Bibliografía

- Circuitos Electrónicos Discretos e Integrados,
- Donald L. Schilling-Charles Belove.
- Dispositivos Electrónicos,
- Thomas L. Floyd.
- Electrónica: Teoría de Circuitos y Dispositivos Electrónicos,
- Robert L. Boylestad-Louis Nashelsky.
- 1100 Problemas de Electrónica Resueltos.
- Ing Alberto Muhana