

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

Lezione 11: Identificazione – concetti fondamentali

SPEAKER

Prof. Mirko Mazzoleni

PLACE

Università degli Studi di Bergamo

Syllabus

Parte II: sistemi dinamici

8. Processi stocastici

- 8.1 Processi stocastici stazionari (pss)
- 8.3 Rappresentazione spettrale di un pss
- 8.4 Stimatori campionari media\covarianza
- 8.5 Densità spettrale campionaria

9. Famiglie di modelli a spettro razionale

- 9.1 Modelli per serie temporali (MA, AR, ARMA)
- 9.2 Modelli per sistemi input/output (ARX, ARMAX)

10. Predizione

10.1 Filtro passa-tutto

- 10.2 Forma canonica
- 10.3 Teorema della fattorizzazione spettrale
- 10.4 Soluzione al problema della predizione

11. Identificazione

- 11.3 Identificazione di modelli ARX
- 11.4 Identificazione di modelli ARMAX
- 11.5 Metodo di Newton

12. Identificazione: analisi e complementi

- 12.1 Analisi asintotica metodi PEM
- 12.2 Identificabilità dei modelli
- 12.3 Valutazione dell'incertezza di stima

13. Identificazione: valutazione

Parte I: sistemi statici

Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
 - NO assunzioni su ddp dei dati
 - ✓ Stima parametri popolazione
 - ✓ Stima modello lineare: minimi quadrati
 - SI assunzioni su ddp dei dati
 - ✓ Stima massima verosimiglianza parametri popolazione
 - ✓ Stima modello lineare: massima verosimiglianza
 - ✓ Regressione logistica
- <u>θ variabile casuale</u>
 - SI assunzioni su ddp dei dati
 - ✓ Stima Bayesiana

Machine learning

Parte II: sistemi dinamici

Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
 - NO assunzioni su ddp dei dati
 - ✓ Modelli lineari di pss
 - ✓ Predizione
 - ✓ Identificazione
 - ✓ Persistente eccitazione
 - ✓ Analisi asintotica metodi PEM
 - ✓ Analisi incertezza stima (numero dati finito)
 - ✓ Valutazione del modello

Outline

1. Introduzione all'identificazione dei modelli dinamici

2. Metodi a minimizzazione dell'errore di predizione (PEM)

3. Identificazione PEM di modelli ARX

4. Identificazione PEM di modelli ARMAX

Outline

1. Introduzione all'identificazione dei modelli dinamici

2. Metodi a minimizzazione dell'errore di predizione (PEM)

3. Identificazione PEM di modelli ARX

4. Identificazione PEM di modelli ARMAX

Gli step per la risoluzione del problema

Seguiremo tre fasi per risolvere il problema della modellazione di sistemi dinamici:

Ci concentreremo su modelli di **sistemi dinamici lineari**, Definizione delle classi di espressi da funzioni di trasferimento razionali fratte. I modelli Mdi sistemi parametri ignoti sono i coefficienti dei polinomi al numeratore dinamici e denominatore Data una particolare classe di modello, supponendo di conoscerne il valore dei parametri, qual è il predittore Predizione ottimo? Quanto vale la predizione ottima? Come stimo il valore dei parametri del modello scelto per Identificazione la modellazione dei dati?

I passi della procedura Conoscenza a priori Scopo e ambito di utilizzo del modello Design dell'esperimento Criterio di Famiglia di Dati identificazione modelli Stima del modello **NON OK** Nuovo dataset Valutazione Scopo e ambito di utilizzo

OK

del modello

I passi della procedura di identificazione

Dati: i dati possono essere raccolti o dal funzionamento nominale del sistema, oppure tramite **esperimenti progettati ad-hoc**, in modo da ottenere **specifiche informazioni** (guadagno, risposte a scalino, risposta in frequenza,...)

Famiglia di modelli: è necessario scegliere quale tipo di modello usare per spiegare il fenomeno. Possibili scelte sono:

- <u>Lineare</u> \ non lineare
- <u>Tempo invariante</u>\ tempo variante
- <u>Discreto</u> \ continuo
- Altre proprietà (e.g. complessità del modello, struttura,...)

I passi della procedura di identificazione

Criterio di identificazione: avendo a disposizione le misure e la famiglia di modelli scelta, è necessario decidere come confrontare il modello con i dati. Ciò si traduce spesso nella definizione di una funzione di costo da minimizzare

In tutti questi tre aspetti, una conoscenza a priori riguardo il sistema da identificare può essere di aiuto (es. la fisica mi dice che il modello deve avere un certo numero di poli\zeri)

Validazione del modello: in aggiunta a criteri di bontà «oggettivi», un modello potrebbe essere buono o meno a seconda dell'applicazione per il quale verrà usato. Per esempio, modelli «per il controllo» possono essere meno accurati di un «modello per la simulazione»

Ipotesi di lavoro 1: i dati sono generati da un sistema LTI SISO con uscita rumorosa

- I parametri da stimare sono i coefficienti del numeratore e del denominatore di $G_0(z)$
- Il **disturbo** v(t) modella rumore di misura, ingressi non misurabili. Nel caso in cui il sistema vero non sia LTI, v(t) modella anche gli scostamenti da questa assunzione

Ipotesi di lavoro 2: il disturbo v(t) è modellizzabile come un processo stocastico stazionario a spettro razionale, indipendente da u(t)

• In questo caso, vogliamo sia stimare i coefficienti del numeratore e denominatore di $G_0(z)$ sia quelli di $H_0(z)$ (e anche stimare λ^2)

Caso particolare: non c'è l'ingresso u(t), ovvero sto trattando una serie temporale. In pratica, misuro solo l'uscita alimentata alimentata dal rumore bianco

$$e(t) \sim WN(0, \lambda^2)$$

$$e(t) \leftarrow H_0(z)$$

$$fot razionale fratta$$

Vogliamo sia stimare i coefficienti del numeratore e denominatore di $H_0(z)$ e λ^2 . Posso poi

calcolare
$$\Gamma_{yy}(\omega) = \left| H_0(e^{j\omega}) \right|^2 \cdot \lambda^2$$

Questo approccio alla stima di $\Gamma_{yy}(\omega)$ prende il nome di **stima spettrale parametrica** (la **stima «nonparametrica»** è quella basata sul periodogramma)

Il modello più generale che usiamo per stimare un sistema dinamico è dato da

$$y(t) = G(z, \boldsymbol{\theta})u(t) + H(z, \boldsymbol{\theta})e(t), \qquad e(t) \sim WN(0, \lambda^2)$$

- $H(z, \theta)$: fattore spettrale canonico, ovvero numeratore e denominatore monici, coprimi, di uguale grado, poli e zeri nel cerchio unitario
- $G(z, \theta)$: funzione di trasferimento che descrive l'effetto dell'ingresso u(t), misurabile o noto, sull'uscita y(t)

Proprietà di $G(z, \theta)$

- Spesso si ipotizza che $G(z, \theta)$ sia **strettamente propria**, ovvero che il grado del numeratore è minore del grado del denominatore
 - ✓ Questo fa si che vi sia un **ritardo puro** $k \neq 0$ tra ingresso e uscita

• $G(z, \theta)$ può avere zeri fuori dal cerchio o numeratore e denominatore non monici

• $G(z, \theta)$ rappresenta un **sistema fisico**, mentre $H(z, \theta)$ ed e(t) non esistono nella realtà (sono solo costrutti matematici)

Outline

1. Introduzione all'identificazione dei modelli dinamici

2. Metodi a minimizzazione dell'errore di predizione (PEM)

3. Identificazione PEM di modelli ARX

4. Identificazione PEM di modelli ARMAX

Una volta definita la classe di modelli (per esempio ARMAX), potrei stimare i coefficienti θ usando la stima a massima verosimiglianza o la stima Bayesiana

In questi casi, dovrei però fare ipotesi sulla distribuzione dei dati (per esempio assumendo che e(t) sia un **processo gaussiano**)

In alternativa, una via più semplice ed intuitiva, e che non necessita di ipotesi ulteriori, è quella di trovare un approccio basato sulla minimizzazione di una somma di residui al quadrato (come per il minimi quadrati)

L'approccio che seguiremo si basa su questa strada

Caso «semplice»: non mi interessa stimare un modello per v(t)

Dati a disposizione

- $\{u(1), ..., u(N)\}$
- $\{y(1), ..., y(N)\}$

Il valore $y_{\theta}(t)$ è la **simulazione** del modello $G(z, \theta)$ a fronte dell'ingresso u(t). La stima a minimi quadrati si trova minimizzando l'**errore di simulazione** $\epsilon_{\theta}(t)$

$$\widehat{\boldsymbol{\theta}}_{\mathrm{LS}} = \arg\min_{\boldsymbol{\theta}} \sum_{t=1}^{N} \epsilon_{\boldsymbol{\theta}}(t)^2$$

La soluzione è in forma chiusa solo se $y_{\theta}(t)$ è lineare dei parametri

Caso «più difficile»: oltre a stimare $G_0(z)$, voglio stimare anche un modello per v(t)

Anche se v(t,s) è un processo stocastico, nella pratica una volta che i dati sono stati collezionati, «è già avvenuta» una «scelta» dell'esito $s=\bar{s}$ che ha generato quei dati osservati $y(t,s=\bar{s})$. Quindi, la quantità $y(t,s=\bar{s})$ è un vettore di numeri perché frutto di una particolare realizzazione $v(t,s=\bar{s})$

Il mio modello, invece, ha come uscita $y_{\theta}(t,s)$ che, se non fisso un esito, è un **processo stocastico**. Abbiamo quindi il dilemma che **non possiamo confrontare** un vettore di numeri con un processo stocastico

Se conoscessi il valore dell'esito $s = \bar{s}$, allora **potrei simulare** l'uscita del mio modello con quell'esito, e far si che $y_{\theta}(t, s = \bar{s})$ sia un vettore di numeri. Tuttavia, **non conosco l'esito** \bar{s}

Idea: considero come residuo $\epsilon_{\theta}(t)$ da minimizzare l'errore di predizione a un passo $\epsilon_1(t; \theta)$

 $\widehat{\mathcal{M}}(\theta)$: predittore ottimo ad un passo associato al modello $\mathcal{M}(\theta)$

Definiamo quindi la stima ottenuta, considerando gli errori di predizione, come:

$$\widehat{\boldsymbol{\theta}}_N = \arg\min_{\boldsymbol{\theta} \in \Theta} J_N(\boldsymbol{\theta})$$

$$J_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta})^2$$

 Θ è l'insieme dei valori ammissibili di θ

È possibile stimare la varianza λ^2 di e(t) come:

$$\hat{\lambda}^2 = J_N(\widehat{\boldsymbol{\theta}}_N) = \frac{1}{N} \sum_{t=1}^N \varepsilon_1(t; \widehat{\boldsymbol{\theta}}_N)^2$$

Uno stimatore corretto richiederebbe di dividere per N-d, dove d è il numero di parametri

Osservazioni

• Θ : insieme dei **valori ammissibili** per θ . Per esempio, se $\mathcal{M}(\theta) = \text{ARMAX}$, voglio solo i θ tali per cui C(z)/A(z) è canonico

Per valori iniziali t = 1,2, ... il predittore potrebbe non avere dati disponibili. Si usa quindi un' inizializzazione «convenzionale» (ipotizzo che i valori passati di y() siano nulli).
 L'inizializzazione non è un problema in quanto il predittore è stabile

✓ In alternativa, scarto quei dati iniziali che non hanno una predizione associata

- Abbiamo già in parte visto che l'errore di predizione a un passo $\varepsilon_1(t; \theta)$ gode di interessanti proprietà, che ci permettono di **distinguere** θ^0 da un θ qualsiasi
 - 1. Dato θ e i dati $\{u(1), ..., u(N)\}, \{y(1), ..., y(N)\},$ è sempre possibile calcolare $\varepsilon_1(t; \theta)$
 - 2. Se $\exists \theta = \theta^0$ t.c. $G_0(z) = G(z, \theta^0)$ e $H_0(z) = H(z, \theta^0)$, abbiamo che $\varepsilon_1(t; \theta^0) = e(t)$, ovvero ci permette di capire se il modello è buono
 - 3. $\varepsilon_1(t; \boldsymbol{\theta}) \neq e(t)$ per qualsiasi $\boldsymbol{\theta} \neq \boldsymbol{\theta}^0$ (supponendo di avere un *ingresso adeguato*)
 - 4. θ^0 minimizza la varianza dell'errore di predizione a un passo

I metodi di stima basati sulla minimizzazione dell'errore di predizione prendono il nome di Prediction Error Methods (PEM)

<u>Nota</u>

Se ipotizzo che $S = \mathcal{M}(\theta^0)$ e $e(t) \sim WN$ Gaussiano, lo stimatore PEM è circa uguale allo stimatore a massima verosimiglianza

La differenza sta in come i due approcci trattano l'inizializzazione del predittore: la funzione di verosimiglianza «propriamente detta» sarebbe più difficile da trattare rispetto a quella «condizionata» ai valori iniziali, per la quale c'è l'equivalenza coi metodi PEM

Se i dati sono molti, non c'è differenza

Outline

1. Introduzione all'identificazione dei modelli dinamici

2. Metodi a minimizzazione dell'errore di predizione (PEM)

3. Identificazione PEM di modelli ARX

4. Identificazione PEM di modelli ARMAX

Consideriamo un **modello** $ARX(n_a,n_b,1)$, e di avere a disposizione N dati $\{u(1),...,u(N)\},\{y(1),...,y(N)\}$

$$\mathcal{M}(\boldsymbol{\theta}): y(t) = \frac{B(z, \boldsymbol{\theta})}{A(z, \boldsymbol{\theta})} u(t - 1) + \frac{1}{A(z, \boldsymbol{\theta})} e(t), \qquad e(t) \sim WN(0, \lambda^2)$$

•
$$B(z) = b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}$$
 • $A(z) = 1 - a_1 z^{-1} - a_2 z^{-2} - \dots - a_{n_a} z^{-n_a}$

Osservazioni

- C(z) = 1 poiché non c'è la parte MA
- Abbiamo supposto che k=1. Fissando un ritardo unitario **non lediamo di generalità**. Per esempio, se il ritardo vero fosse k=2, stimeremmo $b_0=0$

Il modello in forma di predittore è dato da

$$\begin{split} \widehat{\mathcal{M}}(\pmb{\theta}) \colon \widehat{y}(t|t-1;\pmb{\theta}) &= H^{-1}(z,\pmb{\theta})G(z,\pmb{\theta})u(t) + [1-H^{-1}(z,\pmb{\theta})]y(t) \\ &= B(z,\pmb{\theta})u(t-1) + [1-A(z,\pmb{\theta})]y(t) \\ &= \Big(b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}\Big)u(t-1) + \Big(a_1 z^{-1} + \dots + a_{n_a} z^{-n_a}\Big)y(t) \\ & \qquad \qquad \bigcirc \\ & \qquad \qquad \bigcirc \end{split}$$

$$\hat{y}(t|t-1;\boldsymbol{\theta}) = b_o u(t-1) + b_1 u(t-2) + \dots + b_{n_b} u(t-n_b-1) + a_1 y(t-1) + \dots + a_{n_a} y(t-n_a)$$

Definendo i vettori

$$\boldsymbol{\theta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_a} \\ b_0 \\ b_1 \\ \vdots \\ b_{n_b} \end{bmatrix} \qquad \boldsymbol{\varphi}(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ \vdots \\ y(t-n_a) \\ u(t-1) \\ u(t-2) \\ \vdots \\ u(t-n_b-1) \end{bmatrix}$$

$$\boldsymbol{\varphi}(t) = \begin{bmatrix} y(t-1) \\ y(t-2) \\ \vdots \\ y(t-n_a) \\ u(t-1) \\ u(t-2) \\ \vdots \\ u(t-n_b-1) \end{bmatrix}$$

Possiamo scrivere

$$\mathcal{M}(\boldsymbol{\theta}): y(t) = \boldsymbol{\varphi}^{\mathsf{T}}(t)\boldsymbol{\theta} + e(t)$$

$$\widehat{\mathcal{M}}(\boldsymbol{\theta}): \widehat{y}(t|t-1;\boldsymbol{\theta}) = \boldsymbol{\varphi}^{\mathsf{T}}(t)\boldsymbol{\theta} \quad \Longrightarrow \quad \mathsf{II} \text{ predittore è lineare nei parametri } \boldsymbol{\theta}!$$

Per trovare la stima PEM minimizziamo la funzione di costo

$$J_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta})^2 \qquad = \frac{1}{N} \sum_{t=1}^N (y(t) - \hat{y}(t|t-1; \boldsymbol{\theta}))^2 \qquad = \frac{1}{N} \sum_{t=1}^N (y(t) - \boldsymbol{\varphi}^{\mathsf{T}}(t) \boldsymbol{\theta})^2$$

La soluzione è analoga alla stima a minimi quadrati di un modello lineare statico!

$$\widehat{\boldsymbol{\theta}}_{N} = \left[\sum_{t=1}^{N} \boldsymbol{\varphi}(t) \boldsymbol{\varphi}^{\mathsf{T}}(t)\right]^{-1} \cdot \left[\sum_{t=1}^{N} \boldsymbol{\varphi}(t) y(t)\right]$$
invertibile, allora la soluzione $\widehat{\boldsymbol{\theta}}_{N}$
è unica in quanto la funzione di

Se $S(N) = \sum_{t=1}^{N} \boldsymbol{\varphi}(t) \boldsymbol{\varphi}^{\mathsf{T}}(t)$ è costo è convessa

Come per la regressione lineare, posso esprimere il modello ARX in forma matriciale

$$\boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\varphi}^{\mathsf{T}}(1) \\ \boldsymbol{\varphi}^{\mathsf{T}}(2) \\ \vdots \\ \boldsymbol{\varphi}^{\mathsf{T}}(N) \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_a} \\ b_0 \\ b_1 \\ \vdots \\ b_{n_b} \end{bmatrix} \qquad \boldsymbol{Y} = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} \qquad \boldsymbol{E} = \begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(N) \end{bmatrix}$$

$$Y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} \qquad E = \begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(N) \end{bmatrix}$$

Da cui segue che

$$Y = \Phi \theta + E$$

$$N \times 1 \quad N \times d \quad d \times 1 \quad N \times 1$$

$$\widehat{\boldsymbol{\theta}}_{N} = (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} Y$$

$$d \times 1 \qquad d \times d \qquad d \times N \quad N \times 1$$

Si supponga di avere 5 dati da una serie temporale y(t), stazionaria e ergodica, a media nulla

$$y(1) = \frac{1}{2}$$
 $y(2) = 0$ $y(3) = -1$ $y(4) = -\frac{1}{2}$ $y(5) = \frac{1}{4}$

Identificare un modello AR(1) del tipo y(t) = ay(t-1) + e(t), $e(t) \sim WN(0, \lambda^2)$

Usando il modello identificato, si calcoli la **predizione** $\hat{y}(6|5)$ e la **varianza** del rumore $\hat{\lambda}^2$

Nota

La media campionaria $\widehat{m} = \frac{1}{5} \sum_{t=1}^{5} y(t) = -0.15$ non è nulla. Il problema però ci dice di considerare una media nulla. In caso contrario, avremmo dovuto depolarizzare il processo al fine di avere un predittore corretto, tale che $\mathbb{E}[\varepsilon_1(t)] = 0$

Calcoliamo il predittore ad un passo

Supponiamo che il modello sia in forma canonica (ovvero che |a| < 1)

$$y(t) = \frac{1}{1 - az^{-1}}e(t) \qquad \Longrightarrow \quad \hat{y}(t|t - 1; a) = \frac{C(z) - A(z)}{C(z)}y(t) = \frac{1 - 1 + az^{-1}}{1}y(t) = ay(t - 1)$$

Calcoliamo la funzione di costo

Abbiamo due alternative: o inizializzo i valori mancanti del predittore (per esempio $\hat{y}(1|0)$) a zero, oppure parto da t=2 fino a t=5. Scegliamo questa seconda strada (per tanti dati il risultato non cambia)

$$J_5(\boldsymbol{\theta}) = \frac{1}{5-1} \sum_{t=2}^{5} (y(t) - ay(t-1))^2$$

$$y(1) = \frac{1}{2}$$
 $y(2) = 0$ $y(5) = \frac{1}{4}$
 $y(3) = -1$ $y(4) = -\frac{1}{2}$

$$= \frac{1}{4} \left[\left(y(2) - ay(1) \right)^2 + \left(y(3) - ay(2) \right)^2 + \left(y(4) - ay(3) \right)^2 + \left(y(5) - ay(4) \right)^2 \right]$$

$$= \frac{1}{4} \left[\left(0 - a \frac{1}{2} \right)^2 + (-1 - a \cdot 0)^2 + \left(-\frac{1}{2} + a \cdot 1 \right)^2 + \left(\frac{1}{4} + a \frac{1}{2} \right)^2 \right]$$

$$= \frac{1}{4} \left[\frac{1}{4} a^2 + 1 + \frac{1}{4} + a^2 - a + \frac{1}{16} + \frac{1}{4} a^2 + \frac{1}{4} a \right]$$

$$= \frac{1}{4} \left[\frac{16+4+1}{16} + \frac{-4a+a}{4} + \frac{a^2+a^2+4a^2}{4} \right] = \frac{1}{4} \left[\frac{21}{16} - \frac{3}{4}a + \frac{3}{2}a^2 \right]$$

Minimizziamo la funzione di costo

$$\frac{dJ_5(a)}{da} = 0 \quad \Longrightarrow \quad 3a - \frac{3}{4} = 0 \quad \Longrightarrow \quad \hat{a}_5 = \frac{1}{4}$$

Se avessimo ottenuto $|\hat{a}_5| > 1$, avremmo potuto usare un filtro passa-tutto per rendere il modello stabile

Stimiamo la varianza del rumore

$$\hat{\lambda}^2 = J_5(\hat{a}_5) = \frac{1}{4} \left[\frac{21}{16} - \frac{3}{4} \cdot \frac{1}{4} + \frac{3}{2} \cdot \left(\frac{1}{4}\right)^2 \right] \approx 0.3$$

Predizione a un passo $\hat{y}(6|5)$

Notiamo che λ^2 non è molto importante: infatti non mi serve per calcolare la predizione

$$\hat{y}(t|t-1;\hat{a}_5) = \hat{a}_5 y(t-1)$$
 \Rightarrow $\hat{y}(6|5) = \frac{1}{4}y(5) = \frac{1}{16}$

Modello identificato

$$y(t) = \frac{1}{1 - \frac{1}{4}z^{-1}}e(t), \qquad e(t) \sim WN(0, 0.3)$$

Outline

1. Introduzione all'identificazione dei modelli dinamici

2. Metodi a minimizzazione dell'errore di predizione (PEM)

3. Identificazione PEM di modelli ARX

4. Identificazione PEM di modelli ARMAX

Consideriamo un **modello** ARMAX $(n_a, n_c, n_b, 1)$, e di avere a disposizione N dati $\{u(1), \dots, u(N)\}, \{y(1), \dots, y(N)\}$

$$\mathcal{M}(\boldsymbol{\theta}): y(t) = \frac{B(z, \boldsymbol{\theta})}{A(z, \boldsymbol{\theta})} u(t - 1) + \frac{C(z, \boldsymbol{\theta})}{A(z, \boldsymbol{\theta})} e(t), \qquad e(t) \sim WN(0, \lambda^2)$$

•
$$B(z) = b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}$$

•
$$A(z) = 1 - a_1 z^{-1} - a_2 z^{-2} - \dots - a_{n_a} z^{-n_a}$$

•
$$C(z) = 1 + c_1 z^{-1} + c_2 z^{-2} + \dots + c_{n_c} z^{-n_c}$$

Il vettore dei parametri, in questo caso, è:

$$\boldsymbol{\theta} = \begin{bmatrix} a_1 \cdots a_{n_a} & b_0 & b_1 \cdots b_{n_b} & c_1 \cdots c_{n_c} \end{bmatrix}^\mathsf{T}$$

$$(n_a + n_b + 1 + n_c) \times 1$$

$$d \times 1$$

Calcoliamo l'espressione dell'errore di predizione ad un passo. In questo caso, si ha che E(z) = 1, e quindi $\varepsilon_1(t) = e(t)$. Di conseguenza, esprimendo e(t) in funzione di u(t) e y(t),

$$\varepsilon_1(t; \boldsymbol{\theta}) = e(t) = \frac{A(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} y(t) - \frac{B(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} u(t - 1)$$

Potevamo ottenere la stessa cosa anche con l'espressione generica di $\varepsilon_1(t)$:

$$\varepsilon_1(t; \boldsymbol{\theta}) = H^{-1}(z, \boldsymbol{\theta})[y(t) - G(z, \boldsymbol{\theta})u(t)]$$

$$= \frac{A(z)}{C(z)} \left[y(t) - \frac{B(z)}{A(z)} u(t-1) \right] = \frac{A(z)}{C(z)} y(t) - \frac{B(z)}{C(z)} u(t-1)$$

Utilizziamo l'approccio predittivo

$$J_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta})^2 = \frac{1}{N} \sum_{t=1}^N \left[\frac{A(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} y(t) - \frac{B(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} u(t-1) \right]^2$$

Osservazioni

- Dato che ho $C(z, \theta)$ al denominatore, questa funzione di costo non è più convessa! In generale, avrò dei minimi locali
- Per la risoluzione del problema di minimizzazione, devo utilizzare dei metodi iterativi (per esempio il metodo del gradiente)

Come gestire i minimi locali

Una strategia semplice è la seguente. Data una inizializzazione $\widehat{\boldsymbol{\theta}}^{(0)}$ all'iterazione 0:

- Scegliamo $N_{\rm init}$ inizializzazioni $\widehat{\boldsymbol{\theta}}^{(0)}$ diverse, ottenendo $N_{\rm init}$ soluzioni
- Se le $N_{\rm init}$ soluzioni sono **uguali**, posso pensare (non sono certo) di aver raggiunto il minimo globale di $J_N({m heta})$
- Se le N_{init} soluzioni sono **diverse**, considero quella che mi ha dato $J_N(\theta)$ minore

Come alternativa (più efficiente) al metodo del gradiente, vedremo il metodo di **ottimizzazione iterativo** noto come **Metodo di Newton**. Questo metodo, oltre al gradiente, sfrutta anche l'informazione data dalla **matrice Hessiana**

METODO DI NEWTON

Idea: sviluppo in serie di Taylor troncata al 2° ordine di $J_N(\theta)$, nell'intorno della stima all'iterazione i-esima $\widehat{\theta}^{(i)}$

$$J_N(\theta) \approx V(\theta)$$
 La funzione $V(\theta)$ è un paraboloide (è facile calcolarne il minimo)

$$V^{(i)}(\boldsymbol{\theta}) = J_{N}(\widehat{\boldsymbol{\theta}}^{(i)}) + (\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}^{(i)})^{\mathsf{T}} \cdot \frac{dJ_{N}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} + \frac{1}{2} (\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}^{(i)})^{\mathsf{T}} \cdot \frac{d^{2}J_{N}(\boldsymbol{\theta})}{d\boldsymbol{\theta}^{2}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \cdot (\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}^{(i)})$$

$$\underbrace{ \text{Gradiente} }$$

$$\mathbf{Matrice Hessiana}$$

Una volta ottenuta l'approssimazione $V^{(i)}(\theta)$, si calcola $\widehat{\theta}^{(i+1)}$ come il **minimo** di $V^{(i)}(\theta)$.

Consideriamo un caso scalare per semplicità

Troviamo un'espressione esplicita per $\widehat{\boldsymbol{\theta}}^{(i+1)}$ imponendo $\frac{dV^{(i)}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \mathbf{0}$

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}}A\mathbf{x}) = (A + A^{\mathsf{T}})\mathbf{x}$$

$$\frac{dV^{(i)}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \mathbf{0}$$

$$\frac{dV^{(i)}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}}\Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} + \frac{1}{2} \cdot 2 \frac{d^2J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2}\Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \cdot (\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}^{(i)}) = \mathbf{0} \quad \Longrightarrow \quad \text{Ricavo il minimo e lo}$$

$$d \times 1 \qquad d \times 1 \qquad d \times 1 \qquad \text{chiamo } \widehat{\boldsymbol{\theta}}^{(i+1)}$$

Regola di update per il metodo di Newton

$$\widehat{\boldsymbol{\theta}}^{(i+1)} = \widehat{\boldsymbol{\theta}}^{(i)} - \left[\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]^{-1} \cdot \frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}}$$

$$d \times d \qquad d \times d$$

E simile al gradient descent se al posto del'Hessiana metto la learning rate α

Dobbiamo quindi calcolare queste due quantità:

$$\frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}}\Big|_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}^{(i)}}$$
 Gradiente di $J_N(\boldsymbol{\theta})$

$$\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2}\Big|_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}^{(i)}}$$
 Hessiano di $J_N(\boldsymbol{\theta})$

Calcolo di $\frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}}$

$$\frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \frac{d}{d\boldsymbol{\theta}} \left[\frac{1}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta})^2 \right] = \frac{1}{N} \sum_{t=1}^N \frac{d}{d\boldsymbol{\theta}} \varepsilon_1(t; \boldsymbol{\theta})^2 = \frac{2}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta}) \cdot \frac{d\varepsilon_1(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}}$$

Calcolo di
$$\frac{d^2J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2}$$

$$\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2} = \frac{d}{d\boldsymbol{\theta}} \frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \frac{d}{d\boldsymbol{\theta}} \left[\frac{2}{N} \sum_{t=1}^N \varepsilon_1(t; \boldsymbol{\theta}) \cdot \frac{d\varepsilon_1(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}} \right]$$
Derivata del prodotto

$$\frac{d(v\mathbf{u})}{d\mathbf{x}} = v \cdot \frac{d\mathbf{u}}{d\mathbf{x}} + \frac{dv}{d\mathbf{x}} \mathbf{u}^{\mathsf{T}}$$

Nel nostro caso:

$$v = \varepsilon_1(t; \boldsymbol{\theta})$$

$$\mathbf{u} = \frac{d\varepsilon_1(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}}$$

$$\mathbf{x} = \boldsymbol{\theta}$$

$$= \frac{2}{N} \sum_{t=1}^{N} \frac{d\varepsilon_{1}(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}} \cdot \frac{d\varepsilon_{1}(t; \boldsymbol{\theta})^{\mathsf{T}}}{d\boldsymbol{\theta}} + \frac{2}{N} \sum_{t=1}^{N} \varepsilon_{1}(t; \boldsymbol{\theta}) \cdot \frac{d^{2}\varepsilon_{1}(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}^{2}}$$

$$\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2} = \frac{2}{N} \sum_{t=1}^N \frac{d\varepsilon_1(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \cdot \frac{d\varepsilon_1(t;\boldsymbol{\theta})^{\mathsf{T}}}{d\boldsymbol{\theta}} + \frac{2}{N} \sum_{t=1}^N \varepsilon_1(t;\boldsymbol{\theta}) \cdot \frac{d^2 \varepsilon_1(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}^2}$$

Ignoriamo il secondo termine, approssimando l'Hessiana, dato che:

- Se siamo vicini all'ottimo, $\varepsilon_1(t; \theta)$ è «piccolo» e il termine «conta poco»
- Possiamo evitare di calcolare $\frac{d^2 \varepsilon_1(t; \boldsymbol{\theta})}{d \boldsymbol{\theta}^2}$
- Ci assicuriamo una Hessiana semi-definita positiva. In questo modo, la direzione dell'algoritmo è sicuramente discendente (concetto simile ad avere learning rate ≥ 0)

Hessiana > 0

Osservazione

L'aggiornamento da $\hat{\theta}^{(i)}$ a $\hat{\theta}^{(i+1)}$, in generale, può essere fatto con tre categorie di metodi:

- 1. Metodo del gradiente
- Metodo di Newton
- 3. Metodi di «quasi-Newton»

Metodo del gradiente

$$\widehat{\boldsymbol{\theta}}^{(i+1)} = \widehat{\boldsymbol{\theta}}^{(i)} - \alpha \cdot \left[\frac{dJ_N(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]$$

- Semplice e robusto (va sempre nella direzione di discesa)
- Può essere molto lento quando ci avviciniamo al minimo (poiché il gradiente tende a 0)

Metodo di Newton

L'Hessiana «modula» il passo del gradiente

$$\widehat{\boldsymbol{\theta}}^{(i+1)} = \widehat{\boldsymbol{\theta}}^{(i)} - \left[\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2}\Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}}\right]^{-1} \cdot \frac{dJ_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}}\Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}}$$
• Computazionalmente più **complesso**

$$\underset{d \times d}{\text{doministrate de la finite ne metions}}$$
• Rischio di **instabilità** se l'Hessiana è

- Converge velocemente
- definita negativa

<u>Metodi «quasi Newtoniani»</u>

 O^{-1} è un'approssimazione dell'Hessiana semidefinita positiva o definita positiva

$$\widehat{\boldsymbol{\theta}}_{d \times 1}^{(i+1)} = \widehat{\boldsymbol{\theta}}^{(i)} - O^{-1}_{1 \times 1} \cdot \left[\frac{dJ_N(t; \boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]$$

- Più semplice del metodo di Newton
- Più veloce del metodo del gradiente
- Non c'è rischio di allontanarsi dal minimo
- Non è veloce come il metodo di Newton

I metodi «quasi Newtoniani» sono molto usati e differiscono fra loro nel modo in cui viene fatta l'approssimazione definita positiva dell'Hessiana

Per garantire l'invertibilità di $O^{-1} \ge 0$, si aggiunge un termine positivo, molto piccolo, di «regolarizzazione»

$$\frac{d^2 J_N(\boldsymbol{\theta})}{d\boldsymbol{\theta}^2} \approx \frac{2}{N} \sum_{t=1}^N \frac{d\varepsilon_1(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \cdot \frac{d\varepsilon_1(t;\boldsymbol{\theta})^\top}{d\boldsymbol{\theta}} + \left(\delta I_d\right)$$

Dopo aver introdotto l'approssimazione dell'Hessiana, la regola di update diventa:

$$\widehat{\boldsymbol{\theta}}_{d \times 1}^{(i+1)} = \widehat{\boldsymbol{\theta}}_{d \times 1}^{(i)} - \left[\frac{2}{N} \sum_{t=1}^{N} \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \cdot \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})^{\mathsf{T}}}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]^{-1} \cdot \left[\frac{2}{N} \sum_{t=1}^{N} \varepsilon_{1}(t;\widehat{\boldsymbol{\theta}}^{(i)}) \cdot \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]$$

Notiamo che i termini 2/N si possono semplificare

Calcoliamo $\frac{d\varepsilon_1(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}}$

Ricordiamo che $\varepsilon_1(t; \boldsymbol{\theta}) = e(t) = \frac{A(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} y(t) - \frac{B(z, \boldsymbol{\theta})}{C(z, \boldsymbol{\theta})} u(t-1)$

$$\varepsilon_1(t;\boldsymbol{\theta}) = \frac{1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}}{1 + c_1 z^{-1} + \dots + c_{n_c} z^{-n_c}} y(t) - \frac{b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}}{1 + c_1 z^{-1} + \dots + c_{n_c} z^{-n_c}} u(t-1)$$

$$\boldsymbol{\theta} = \begin{bmatrix} a_1 \cdots a_{n_a} & b_0 & b_1 \cdots b_{n_b} & c_1 \cdots c_{n_c} \end{bmatrix}^\mathsf{T}$$

$$d \times 1$$

Derivate di $\varepsilon_1(t; \boldsymbol{\theta})$ rispetto a a_1, a_2, \dots, a_{n_n}

$$\frac{d\varepsilon_1(t)}{da_1} = -\frac{z^{-1}}{C(z)}y(t) = \alpha(t-1)$$

$$\frac{d\varepsilon_1(t)}{da_2} = -\frac{z^{-2}}{C(z)}y(t) = \alpha(t-2)$$

:

$$\frac{d\varepsilon_1(t)}{da_{n_a}} = -\frac{z^{-n_a}}{C(z)}y(t) = \alpha(t - n_a)$$

$$\alpha(t) \equiv -\frac{1}{C(z)}y(t)$$

Derivate di $\varepsilon_1(t; \boldsymbol{\theta})$ rispetto a b_0, b_1, \dots, b_{n_h}

$$\frac{d\varepsilon_1(t)}{db_0} = -\frac{1}{C(z)}u(t-1) = \beta(t-1)$$

$$\frac{d\varepsilon_1(t)}{db_1} = -\frac{z^{-1}}{C(z)}u(t-1) = \beta(t-2)$$

:

$$\frac{d\varepsilon_1(t)}{db_{n_b}} = -\frac{z^{-n_b}}{C(z)}u(t-1) = \beta(t-n_b-1)$$

$$\beta(t) \equiv -\frac{1}{C(z)}u(t)$$

Derivate di $\varepsilon_1(t; \boldsymbol{\theta})$ rispetto a $c_1, c_2, ..., c_{n_c}$

$$\varepsilon_1(t) = \frac{A(z)}{C(z)}y(t) - \frac{B(z)}{C(z)}u(t-1)$$

$$(1 + c_1 z^{-1} + c_2 z^{-2} + \dots + c_{n_c} z^{-n_c}) \varepsilon_1(t) = A(z) y(t) - B(z) u(t-1)$$

$$\frac{d[(1+c_1z^{-1}+c_2z^{-2}+\cdots+c_{n_c}z^{-n_c})\cdot\varepsilon_1(t)]}{dc_1} = \frac{d[A(z)y(t)-B(z)u(t-1)]}{dc_1}$$

Non dipende da c_1

$$\frac{d[(1+c_1z^{-1}+c_2z^{-2}+\cdots+c_{n_c}z^{-n_c})\cdot\varepsilon_1(t)]}{dc_1}=0$$

Devo fare la derivata del prodotto

Derivate di $\varepsilon_1(t; \boldsymbol{\theta})$ rispetto a c_1, c_2, \dots, c_{n_c}

$$\frac{d[(1+c_1z^{-1}+c_2z^{-2}+\cdots+c_{n_c}z^{-n_c})\cdot\varepsilon_1(t)]}{dc_1}=0$$

$$\gamma(t) \equiv -\frac{1}{C(z)} \cdot \varepsilon_1(t)$$

$$z^{-1} \cdot \varepsilon_1(t) + C(z) \frac{d\varepsilon_1(t)}{dc_1} = 0$$

$$z^{-1} \cdot \varepsilon_1(t) + C(z) \frac{d\varepsilon_1(t)}{dc_1} = 0 \qquad \qquad \qquad \qquad \qquad \qquad \frac{d\varepsilon_1(t)}{dc_1} = -\frac{1}{C(z)} \cdot \varepsilon_1(t-1) = \gamma(t-1)$$

$$\frac{d\varepsilon_1(t)}{dc_{n_c}} = -\frac{1}{C(z)} \cdot \varepsilon_1 (t - n_c) = \gamma (t - n_c)$$

Riassumendo, il vettore gradiente è:

$$\frac{d\varepsilon_{1}(t)}{d\boldsymbol{\theta}} = \begin{bmatrix} \alpha(t-1) \\ \vdots \\ \alpha(t-n_{a}) \\ \beta(t-1) \\ \vdots \\ \beta(t-n_{b}-1) \\ \gamma(t-1) \end{bmatrix} \quad t = 1, \dots, N$$

$$t=1,\ldots,N$$

È possibile definire in modo elegante il calcolo del gradiente tramite una serie di filtraggi dei segnali di ingresso e uscita

Abbiamo il seguente schema di filtraggio dei segnali per trovare il gradiente

Riassunto dell'implementazione dell'algoritmo di Newton per modelli ARMAX

- 1. Calcolare i polinomi $A(z, \widehat{\boldsymbol{\theta}}^{(i)}), B(z, \widehat{\boldsymbol{\theta}}^{(i)}), C(z, \widehat{\boldsymbol{\theta}}^{(i)})$ all'iterazione *i*-esima
- 2. Calcolare i segnali $\varepsilon_1(t; \widehat{\boldsymbol{\theta}}^{(i)}), \alpha(t; \widehat{\boldsymbol{\theta}}^{(i)}), \beta(t; \widehat{\boldsymbol{\theta}}^{(i)}), \gamma(t; \widehat{\boldsymbol{\theta}}^{(i)})$ filtrando i dati u, y disponibili
- 3. Costruire il vettore gradiente $\frac{d\varepsilon_1(t;\theta)}{d\theta}|_{\theta=\widehat{\theta}^{(i)}}$ coi segnali filtrati ricavati al passo 2.
- 4. Aggiornare la stima dei parametri tramite la regola di update

$$\widehat{\boldsymbol{\theta}}^{(i+1)} = \widehat{\boldsymbol{\theta}}^{(i)} - \left[\sum_{t=1}^{N} \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \cdot \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})^{\mathsf{T}}}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]^{-1} \cdot \left[\sum_{t=1}^{N} \varepsilon_{1}(t;\widehat{\boldsymbol{\theta}}^{(i)}) \cdot \frac{d\varepsilon_{1}(t;\boldsymbol{\theta})}{d\boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(i)}} \right]$$

Osservazione

• Prima di filtrare tramite $1/C(z, \widehat{\boldsymbol{\theta}}^{(i)})$, dobbiamo controllare che $C(z, \widehat{\boldsymbol{\theta}}^{(i)})$ abbia radici interne al cerchio unitario. Se non è il caso, possiamo utilizzare un filtro passa-tutto per rendere $1/C(z, \widehat{\boldsymbol{\theta}}^{(i)})$ asintoticamente stabile

Per le famiglie di modelli viste, vale che

- ARX, FIR: funzione di costo convessa (minimo globale)
- ARMAX, BJ, OE: funzione di costo non convessa (minimi locali)

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione