Triple Penance Rule

July 30, 2013

Abstract

Drawdown based stopouts is a framework for informing the decision of stopping a portfolio manager or investment strategy once it has reached the drawdown or time under water limit associated with a certain confidence limit.

1 Maximum Drawdown

Maximum Drawdown tells us Up to how much could a particular strategy lose with a given confidence level?. This function calculated Maximum Drawdown for two underlying processes normal and autoregressive. For a normal process Maximum Drawdown is given by the formula

When the distibution is normal

$$MaxDD_{\alpha} = max \left\{ 0, \frac{(z_{\alpha}\sigma)^2}{4\mu} \right\}$$

The time at which the Maximum Drawdown occurs is given by

$$t^* = \left(\frac{Z_\alpha \sigma}{2\mu}\right)^2$$

Here Z_{α} is the critical value of the Standard Normal Distribution associated with a probability $\alpha.\sigma$ and μ are the Standard Distribution and the mean respectively.

When the distribution is non-normal and time dependent, Autoregressive process.

$$Q_{\alpha,t} = \frac{\phi^{(t+1)} - \phi}{\phi - 1} (\Delta \pi_0 - \mu) + \mu t + Z_\alpha \frac{\sigma}{|\phi - 1|} \left(\frac{\phi^{2(t+1)} - 1}{\phi^2 - 1} - 2 \frac{\phi^{(t+1)} - 1}{\phi - 1} + t + 1 \right)^{1/2}$$

 ϕ is estimated as

$$\hat{\phi} = Cov_0[\Delta \pi_{\tau}, \Delta \pi_{\tau-1}](Cov_0[\Delta \pi_{\tau-1}, \Delta \pi_{\tau-1}])^{-1}$$

and the Maximum Drawdown is given by.

$$MaxDD_{\alpha} = max\{0, -MinQ_{\alpha}\}\$$

Golden Section Algorithm is used to calculate the Minimum of the function Q.

1.1 Usage of the function

The Return Series ,confidence level and the type of distribution is taken as the input. The Return Series can be an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns.

```
> data(edhec)
> MaxDD(edhec,0.95,type="ar")
```

	Convertible Arbitrage C	CTA Global Distresse	d Securities
<pre>MaxDD(in %)</pre>	14.85445	7.177264	7.050179
t*	29.79704	11.319084	13.832336
	Emerging Markets Equity Market Neutral Event Driven		
<pre>MaxDD(in %)</pre>	23.40602	0.9875744	5.705754
t*	30.65993	3.2964944	10.552376
	Fixed Income Arbitrage	Global Macro Long/S	hort Equity
<pre>MaxDD(in %)</pre>	8.678753	2.740074	6.916315
t*	24.980931	3.890720	10.777582
	Merger Arbitrage Relati	ve Value Short Sell	ing Funds of Funds
<pre>MaxDD(in %)</pre>	1.537452	3.354683 66.33	794 6.935491
t*	4.273601	8.987624 160.24	707 14.086820

The t^* in the output is the time at which Maximum Drawdown occurs.

2 Maximum Time Under Water

For a particular sequence $\{\pi_t\}$, the time under water (TuW) is the minimum number of observations, t > 0, such that $\pi_{t-1} < 0$ and $\pi_t > 0$.

For a normal distribution Maximum Time Under Water is given by the following expression.

$$MaxTuW_{\alpha} = \left(\frac{Z_{\alpha}\sigma}{\mu}\right)^2$$

For a Autoregressive process the Time under water is found using the golden section algorithm.

2.1 Usage

```
> data(edhec)
```

> TuW(edhec,0.95,type="ar")

Convertible Arbitrage CTA Global Distressed Securities 103.2573 Max Time Under Water 44.65415 Emerging Markets Equity Market Neutral Event Driven Max Time Under Water 117.1875 9.279164 34.78838 Fixed Income Arbitrage Global Macro Long/Short Equity Max Time Under Water 89.18303 14.79475 Merger Arbitrage Relative Value Short Selling Max Time Under Water 12.27602 26.26871 639.0094 Funds of Funds Max Time Under Water 50.64823

The Return Series , confidence level and the type of distribution is taken as the input. The Return Series can be an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns.

The out is given in the same periodicity as the input series.

3 Golden Section Algorithm