Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 26 du lundi 31 mai 2021

Exercice 1.

Soient $t_0,u_0\in\mathbb{R}$. Discuter l'existence et – le cas échéant – l'unicité d'une solution globale des problèmes de Cauchy suivants.

1)

$$\forall t \in \mathbb{R}, \quad u'(t) = \frac{t^2 u(t)^3}{1 + u(t)^2},$$
 (1a)

$$u(t_0) = u_0. (1b)$$

2)

$$\forall t \in \mathbb{R}, \quad u'(t) = \arctan(tu(t)),$$
 (2a)

$$u(t_0) = u_0. (2b)$$

Exercice 2.

Soit $b \in \mathbb{R}$; notons $I :=]b, +\infty[$. Soient $(t_0, u_0) \in I \times]0, +\infty[$ et $f \in \mathrm{C}^0(I \times \mathbb{R}, \mathbb{R})$ localement lipschitzienne par rapport à son deuxième argument. Supposons les existences de $a \in]0, +\infty[$ et $l \in \mathrm{C}^0(I, [a, +\infty[)$ tels que $\forall (t, x) \in I \times]0, +\infty[$, $xf(t, x) \geqslant l(t)(1+x^4)$. Considérons le problème à valeur initiale suivant.

$$\forall t \in]t_0, +\infty[, \quad u'(t) = f(t, u(t)), \tag{3a} \label{eq:3a}$$

$$u(t_0) = u_0. (3b)$$

- 1) Justifier l'existence d'une solution locale à (3).
- 2) Prouver qu'aucune solution globale n'existe.

Exercice 3.

Soit $(a,b) \in \mathbb{R}^2$ tel que a < b. Soient $u, \beta \in \mathrm{C}^0([a,b[)$. Supposons que u soit différentiable sur]a,b[et que

$$\forall t \in [a, b[, u'(t) \leqslant \beta(t)u(t). \tag{4}$$

Prouver que

$$\forall t \in [a, b[, \quad u(t) \leqslant u(a) \exp\biggl(\int_a^t \beta \biggr). \tag{5}$$

Indication. Considérer le facteur intégrant h défini pour tout $t \in [a,b[$ par $h(t) := \exp(-\int_a^t \beta)$. Étudier la dérivée de $h \times u$.

Remarque. Ce résultat est connu comme le « lemme de Grönwall ».

Exercice 4.

Soient $(t_0,u_0,u_0')\in\mathbb{R}^3$ et un intervalle ouvert $I\ni t_0$. Soit $f\in\mathrm{C}^0(I\times\mathbb{R}^2,\mathbb{R})$ une fonction globalement lipschitzienne par rapport à son deuxième argument. Définissons un premier problème de Cauchy comme suit.

$$\forall t \in I, \quad u''(t) = f\left(t, \begin{pmatrix} u(t) \\ u'(t) \end{pmatrix}\right); \tag{6a}$$

$$u(t_0) = u_0 \; ; \quad \text{et} \tag{6b}$$

$$u'(t_0) = u_0'. (6c)$$

Soient $a, b, c \in C^0(I)$. Définissons également le second problème de Cauchy suivant.

$$\forall t \in I, \quad u''(t) + a(t)u'(t) + b(t)u(t) = c(t);$$
 (7a)

$$u(t_0) = u_0 ; \quad \text{et} \tag{7b}$$

$$u'(t_0) = u_0'. \tag{7c}$$

- 1) Montrer que (6) admet une solution globale unique $u \in C^2(I)$.
- 2) En déduire l'existence et l'unicité de la solution globale du problème de Cauchy (7).