IME/USP

MAC 0460 / 5832 Introduction to Machine Learning

supervised learning • regression • classification •
 Statistics × Machine Learning •

Last class: From a purely computational point of view, ML is a meta-programming approach

Our assumptions

Availability of input-output examples: $(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}), n = 1, \dots, N$

Existence of a plausible relationship between x and y

input output (tanget)

Problems we would like to solve:

Find a mapping (computer program) that takes $\underline{\mathbf{x}}$ to \underline{y}

We will discuss regression and classification

ML techniques used to solve typical regression and classification problems are often called **supervised**

Supervision refers to the fact that the expected output y is known for each observation x in the input sample set

The expected output y is used in ML algorithms to guide their learning process

(later we will see that there is also the so called *unsupervised learning techniques*)

Let us use the data collected two days ago (N = 130) to formulate regression and classification problems!

- Sex (Female / Male) *
- Age
- Height
- Weight
- Shoe number
- Trouser number *

Count by Sex

 $\mathsf{Sex} \in \{Female, Male\} \text{ is a categorical variable}$

Height histogram

Height histogram, by Sex

Weight histogram

Weight histogram, by Sex

Height × Weight scatterplot

Problem 1

Suppose I need to record the height and weight of a person.

However, my

is broken!

13

Is it possible to estimate/predict the weight of the person from his/her height only?

Problem 1

```
x: height (input)
y: weight ?
```

We would like to find f such that y = f(x)

Relation between x and y:

15

(we have N = 130 examples)

y is a continuous variable \Longrightarrow Problem 1 is a **regression** problem

Generic input-output 'mapping' model

We would like to find f such that y = f(x)

f = ?? How do we choose f?

For our Problem 1, let us choose f(x; w, b) = wx + bw, b are the parameters of the model

Problem 1: Stating it again

Given the **training set** $\{(\mathbf{x}^{(n)}, y^{(n)}): n = 1, ..., N\}$ and

the family $\mathcal{F} = \{f(x) = (w)x + (b): w, x, b \in \mathbb{R}\}$

choose

$$f^* \in \mathcal{F}$$
 (or w and b) such that $f^*(x^{(n)}) = y^{(n)}$, $n = 1, \ldots, N$.

Is it possible?

Do we always have $f^* \in \mathcal{F}$ such that $f^*(x^{(n)}) = y^{(n)}$, n = 1, ..., N?

We will be happy with

$$f^* \in \mathcal{F}$$
 such that $\underbrace{f^*(x^{(n)}) \approx y^{(n)}}_{}, n = 1, \dots, N$

That means we need some way to

measure how close $f^*(x^{(n)})$ is to $y^{(n)}$

Given the training set
$$\{(\mathbf{x}^{(n)}, y^{(n)}) : n = 1, \dots, N\}$$
 and the family $\mathcal{F} = \{f(x) = w \times + b : w, x, b \in \mathbb{R}\}$, determine w and b such that $J(w, b) = \sum_{n=1}^{N} I((w \times^{(n)} + b), y^{(n)})$ is minimum.

We could consider
$$I(a, b) = (a - b)^2$$
 and then

$$J(w,b) \neq \sum_{n=1}^{N} ((w x^{(n)} + b) - y^{(n)})^{2}$$

Once you have an optimal function f^* , you can use it to predict weight y from height x

Problem 2

Suppose we know the <u>height</u> of a person. Can we guess correctly if this person is Female or not ?

Problem 2

 $x : \text{height} \leftarrow \text{corpsical variable}$ $y \in \{\text{Female}, \text{Male}\} \leftarrow \text{corpsical variable}$

We would like to find \underline{f} such that $\underline{y} = \underline{f}(\underline{x})$

Output is categorical \Longrightarrow a classification problem

Relation between x and y:

Given x and you have been asked to guess if the person is Female or Male, which would be your answer?

Is there a simple rule that will lead you to guess correctly most of the times ?

Probability distribution

$$\frac{p(x|y = '\text{Female}')}{p(x|y = '\text{Male}')}, \checkmark$$

Statistical approach

P(y = Male) = 10,7P(y = Fonde) = 0.3

27

Bayes' Theorem

If you know the distributions, you have the winning rule:

$$y^* = \underset{y}{\operatorname{arg max}} \{ p(y|x) \}$$

$$p(y=\operatorname{Fencel}/x) > p(y=\operatorname{Hob}/x) \Rightarrow y^*= H$$

In general:

$$p(y = '$$
Female' $) = p(y = '$ Male' $)$

In QT1 dataset:

$$\hat{p}(y = '\text{Female'}) = 0.3$$
 $\not= p(y = '\text{Male'}) = 0.7$

$$p(x|y = '\text{Female}') \approx N(161, \sigma_F)$$

$$p(x|y = '\text{Male}') \approx N(172, \sigma_M)$$

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

What if you do not have the distributions?

You only have the observations.

29

If you have only observations $(x^{(n)}, y^{(n)})$, what can you do to guess the correct y for any given x?

Now, consider a two dimensional input $\mathbf{x} = (x_1, x_2)$ x_1 : height x_2 : width

I could use a straight line $w_1x_1 + w_2x_2 + b = 0$ to divide the space \mathbb{R}^2 (height \times weight) in two regions and declare:

For a given
$$\mathbf{x} = (x_1, x_2)$$
,

$$w_1x_1 + w_2x_2 + b > 0 \Longrightarrow y = Female$$
 $w_1x_1 + w_2x_2 + b < 0 \Longrightarrow y = Male$

Decision frontiers: Polinomials instead linear functions ?

Again, which <u>family of mappings</u> should we choose? How to determine the optimal values of the parameters ?

Back to Bayes' Theorem
$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

Approaches:

- 1) Focus on the distribution of x
 - \Longrightarrow Generative approaches
- 2) Focus on the expected output $p(y|\mathbf{x})$:
 - ⇒ discriminative approaches
 - ⇒ distribution-free learning

Today's Summary

- Supervised learning /
- Regression problems /
- Classification problems
- Probability distribution + Bayes' theorem ⇒ optimal classification
- No distribution

 decision frontiers in the input space
- Learning: choose a family of mappings + solve an optimization problem

Next classes

We will learn some basic algorithms

- Perceptron for binary and linearly separable classification problems
- How to solve the MSE regression problem
 - → Analytical solution
 - Iterative algorithm (employing gradient descent technique)

Tasks

Lecture 1: intro + perceptron (slides 10 to 13 of Lecture 1; Section "1.1.2 A simple learning model" of the textbook);

Lecture 3: analytical solution of the linear regression problem (slides 10 to 17 of Lecture 3; Section 3.2.1 of the textbook)