Redes de Computadores

Aspectos de segurança em TCP/IP Secure Socket Layer (SSL)

Aula 28

Introdução

"Na Internet, ninguém sabe que você é um cachorro."

Peter Steiner, *The New Yorker*, julho 1993

Redes de Computadores

2

Introdução

- Em segurança da informação é importante garantir três aspectos:
 - Confidencialidade
 - Integridade
 - Disponibilidade
- Porém há outras duas correlacionadas: autenticidade e não repúdio
- Uso de criptografia auxilia na obtenção dessas propriedades
 - Criptografia simétrica
 - Criptografia assimétrica

Criptografia

 Arte de codificar e decodificar mensagens de forma que a decriptação seja impossível

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

3

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Redes de Computadores

Redes de Computadores

- Determinar uma função f que a partir de um texto puro (P) se obtém um texto cifrado (C) com ajuda de uma chave K_c

 $f(K_c, P): P \mapsto C$

- Decodificação (decifrar):
 - Permitir a operação inversa a partir de uma chave K_d

$$f'(K_d,C) = P \quad \text{ou} \quad f'(K_d,f(K_c,P)) = P$$

$$K_c = K_d \ \to \text{sim\'etrica}$$

$$K_c \neq K_d \ \to \text{assim\'etrica}$$

Redes de Computadores

Chaves Simétricas

- Uma única chave empregada pelo remetente e pelo destinatário
 - Utilizada para codificar e decodificar os dados
- Caracaterísticas
 - Cifragem e decifração são computacionalmente rápidas
 - Usuários são responsáveis pela "proteção" da chave
 - Problema de gerenciamento e distribuição das chaves
- Algoritmo popular:

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

- AES (Advanced Encryption Standard)
- Empregado desde 2001
- Chaves de 128, 192 e 256 bits

Redes de Computadores

Chaves Assimétricas

- Duas chaves distintas:
 - Pública e Privada
 - O que é cifrado com a chave pública só pode ser decifrado com a chave privativa (e vice-versa)
- Características
 - Cifragem e decifração exigem poder computacional maior que com chaves simétricas
 - Facilita gerenciamento e distribuição das chaves, já que a chave pública é conhecida de todos e a privada é mantida secreta por seu proprietário
- Algoritmo popular:
 - RSA (Rivest-Shamir-Adleman)
 - Chaves de no mínimo 2048 bits

5

Gerenciamento de Chaves

- Chaves simétricas
 - O segredo é compartilhado entre duas pessoas
 - Número de chaves necessárias é dado por n*(n-1)/2
 - Armazenamento local (arquivos, pendrive, post-it, agenda,...)
 - Problema é vulnerabilidade
- Chaves assimétricas
 - O segredo (chave privativa) é pessoal, não é compartilhado
 - Armazenamento disco local (arquivos) ou dispositivo (smartcard, ...)
 - A chave pública é... pública ②: armazenada em qualquer lugar público!
 - O número de chaves necessárias é 2*n (por usuário, 1 pública e 1 privada)

Questão adicional: Como distribuir ou divulgar as chaves?

nstituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Redes de Computadores 7 Redes de Computadores

de Informática - UFRGS imi-25-nov.-13

Chave simétrica

- Com servidor: centro distribuição de chaves (Key Distribution Center-KDC)
 - Uma chave entre usuário e o KDC
 - KDC gera uma chave temporária (chave de sessão) para usuários
- Sem servidor: acordo de chave simétrica (protocolo *Diffie-Hellman*)
 - Geração de uma chave de sessão diretamente entre os usuários
- Chave pública (chaves assimétrica)
 - Anúncio público (página web)
 - Problema: sujeito a falsificação (quem garante que é a chave pública é de fato de quem diz ser?)
 - Via certificados digitais emitidos por autoridade certificadora

Redes de Computadores

Autoridade de Registro (AR)

- É a interface entre o usuário e a autoridade certificadora
 - Responsável pelo processo final na cadeia de certificação digital, realizando a identificação presencial dos interessados em adquirir certificados
 - recebimento, validação, encaminhamento de solicitações de emissão ou revogação de certificados digitais
- Vinculada a uma autoridade certificadora

Autoridade Certificadora (AC)

- Entidade pública ou privada responsável por emitir, distribuir, renovar, revogar e gerenciar certificados digitais
 - Cria e assina digitalmente os certificados que emite
 - Emite lista de certificados revogados (LCR)
 - Garante que o titular do certificado possui a chave privada que corresponde a chave pública fornecida
 - Mantém o registro de suas operações
- AC Raiz

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

- Primeira autoridade da cadeia de certificação
- emite, expede, distribui, revoga e gerencia os certificados das autoridades certificadoras de nível imediatamente subsequente ao seu
 - Cadeia de autoridades certificadoras

10 Redes de Computadores

Public Key Infraestructure (PKI)

- Infraestrutura para a criação, armazenamento e distribuição de certificados digitais
- Composta por:
 - Autoridade certificadora (AC)
 - Autoridade de registro (AR)
 - Repositório seguro onde são armazenadas as chaves
 - Um sistema de gerenciamento de certificados
 - Uma política de certificação (Declaração de Praticas de Certificação)
- Infraestrutura de chave públicas do Brasil (IC-Brasil)
 - http://www.iti.gov.br/icp-brasil
 - AC-Raiz vínculada a Casa Civil da Presidência da Républica

Instituto de Informática - UFRGS A. Carissimi-25-nov.-13

Redes de Computadores

11

Redes de Computadores

- Identidade virtual que permite a identificação segura e inequívoca de autores de mensagens ou transações na Internet
- Documento eletrônico contendo:
 - Chave pública do proprietário
 - Nome, endereco de e-mail
 - Validade e número de série
 - Nome da autoridade certificadora emissora
 - Assinatura digital da autoridade certificadora
- Formato segue X.509 (ITU-T)
- Certificados digitais autoassinados
 - Aqueles assinados por uma autoridade certificadora não reconhecida podendo ser o próprio "gerador" do certificado

Redes de Computadores

13

PKI: Algumas Empresas

Empresa	Site
Baltimore	www.baltimore.com
CertCo	www.certco.com
Certisign	www.certisign.com.br
CyberSafe Corp.	www.cybersafe.com
Digital Signature Trust Co.	www.didsigtrust.com
Entrust Technologies Inc.	www.entrust.com
GTE CyberTrust	www.cybertrust.com
IBM Corp.	www.ibm.com
Microsoft Corp.	www.microsoft.com
Network Associates Inc.	www.nai.com
Rainbow Technologies Inc.	www.rainbow.com
Security Dynamics Technologies Inc.	www.securitydynamics.com
VeriSign Inc.	www.verisign.com
Xcert Int'l. Inc.	www.xcert.com

14 Redes de Computadores

Segurança e Protocolos TCP/IP

- Constatação: os protocolos Internet (TCP/IP) não seguros!
 - Necessidade de inserir garantias para segurança da informação
 - Duas "correntes" ideológicas: fim a fim versus infraestrutura de rede
- Corrente "fim a fim":
 - Camada de aplicação: processo origem cifra e/ou protege integridade dos dados e os envia para o destino que executa a decifração e/ou verificação
 - Desvantagem: aplicação necessita "estar ciente"
 - Camada de transporte (ou imediatamente acima nova, sessão e/ou apresentação): tornar a segurança transparente para a aplicação (ex. SSL)
- Corrente "infra-estrutura de rede":
 - Camada de rede: autentica e/ou cifra os datagramas sem envolver as aplicações (ex. IPsec)

Protocolos Orientados a Segurança

Instituto de Informática - UFRGS A. Carissimi-25-nov.-13

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Redes de Computadores 15 Redes de Computadores 16

Secure Socket Layer (SSL)

- Desenvolvido originalmente pela Netscape.
- Versão 3.0 foi publicada como draft da Internet
 - Base para a definição do Transport Layer Security (TLS)
 - TLS é compatível com SSL versão 3.0
- Projetado para fornecer cifragem de dados entre um cliente e um servidor web

Não é limitado a web

HTTPS (443) SSMTP(465) POP (995) IMAP (993)

Aplicação
Socket SSL
SSL/TLS
Socket TCP
TCP

Redes de Computadores

17

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Arquitetura do SSL

Organizado em duas camadas de protocolos:

- Protocolos específicos empregado no gerenciamento do SSL
 - Usado no estabelecimento
- SSL Record Protocol
 - Empregado na utilização de uma conexão segura

Redes de Computadores 18

Protocolo de Apresentação (handshake)

- Empregado antes de qualquer dado ser transmitido
 - Objetivo: negociar os algoritmos criptográficos e de compactação a serem usados, autenticar o servidor e o cliente
- Composto de quatro fases
 - Fase I: estabelecimento das capacidades de segurança
 - Versão SSL, algoritmos de criptografia e compreensão, números aleatórios para geração de uma chave mestre (simétrica)
 - Fase II: autenticação do servidor e troca de chaves
 - Cliente recebe certificado digital do servidor (chave pública)
 - Fase III (opcional): autenticação do cliente e troca de chaves
 - Servidor recebe certificado digital do cliente (chave pública)
 - Fase IV: Finalização e encerramento

Protocolo de Derivação de Chaves (change cipher)

- Objetivo:
 - Gerar chaves para serem usadas na cifragem de dados e verificação de integridade durante a troca de dados
- Existem quatro chaves de sessão geradas por uma combinação de uma chave pré-mestre e os números aleatórios
 - Cifragem de dados enviados do cliente ao servidor
 - Cifragem de dados enviados do servidor ao cliente
 - Verificação de integridade de dados do cliente ao servidor
 - Verificação de integridade de dados do servidor ao cliente
- Cada lado avisa o outro que passará a usar as chaves de sessão
 - Mensagens "finished"

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

stituto de Informática - U

Instituto de Informática - UFRGS A. Carissimi -25-nov.-13

Redes de Computadores 19 Redes de Computadores 20

Funcionamento do SSL (handshake e cipher change)

Funcionamento SSL (handshake e change cipher)

Protocolo de Alerta

- Objetivo:
 - Relatar erros e condições consideradas anormais durante uma sessão SSL
- Mensagem que descreve:
 - O problema
 - Grau de gravidade (warning ou fatal)

Protocolo de Registro SSL

- Recebe dados da camada superior e os prepara para transmissão
 - O resultado é a geração da área de dados (payload) para o TCP

21

Leituras complementares

- Tanenbaum, A. *Redes de Computadores* (4ª edição), Campus 2003.
 - Capítulo 8
- Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>.
 Série Livros Didáticos. Bookman 2009.
 - Capítulo 8, seções 8.1 (8.1.1 a 8.1.3), 8.3

Redes de Computadores

25

