Laplace Transform $F(s)$	Time Function $f(t), \ t>0$
1	$\delta(t)$, unit impulse
1_	$u_s(t)$, unit step
<u>S</u>	
$\frac{\frac{1}{s}}{\frac{1}{s^2}}$	t
	$\frac{t^n}{}$
$\overline{S^{n+1}}$	$\overline{n!}$
$\frac{1}{s+a}$	e^{-at}
1	te^{-at}
$\frac{\overline{(s+a)^2}}{1}$	
_	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$ $\frac{1}{a}(1-e^{-at})$
$\frac{\overline{(s+a)^n}}{1}$	1at>
$\overline{s(s+a)}$	$\frac{-a}{a}(1-e^{-aa})$
$\frac{\omega}{s^2 + \omega^2}$	$\sin{(\omega t)}$
$\frac{s}{s^2 + \omega^2}$	$\cos{(\omega t)}$
$\frac{\omega}{(s+b)^2+\omega^2}$	$e^{-bt}\sin(\omega t)$
s+b	$e^{-\mathrm{b}t}\mathrm{cos}(\omega t)$
$\frac{\overline{(s+b)^2 + \omega^2}}{\frac{1}{s(s+a)^2}}$	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$
$\frac{s}{(s+a)(s+b)}$	$\frac{1}{b-a} \left(be^{-bt} - ae^{-at} \right) , a \neq b$
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right) , a \neq b$
$\frac{s+c}{(s+a)(s+b)}$	$\frac{1}{b-a} \left((b-c)e^{-bt} - (a-c)e^{-at} \right) , a \neq b$
$\frac{\omega}{s^2 - \omega^2}$	$\sinh{(\omega t)}$
$\frac{s}{s^2 - \omega^2}$	$\cosh{(\omega t)}$
$\frac{a^2}{s^2(s+a)}$ a^2	$at-1+e^{-at}$
$\overline{s(s+a)^2}$	$1 - (at + 1)e^{-at}$
$\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}\ t+\cos^{-1}(\zeta)\right)u_s(t) \ , \ \ 0<\zeta<1$
$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$	$\left(1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \cos^{-1}(\zeta)\right)\right) u_s(t) , 0 < \zeta < 1$

Property	f(t)	F(s)
Linearity	$k_1 f_1(t) \pm k_2 f_2(t)$	$k_1 F_1(s) \pm k_2 F_2(s) , k_1, k_2 \in \mathbb{C}$
Time-delay (Shift in Time)	$f(t-T), \ t>0$	$e^{-Ts}F(s)$
	$f'(t) = \frac{df(t)}{dt}$	sF(s)-f(0)
Differentiation	$f''(t) = \frac{d^2 f(t)}{dt^2}$	$s^2F(s) - sf(0) - f'(0)$
	$f^{(n)}(t) = \frac{d^{n}f(t)}{dt^{n}}$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
Integration	$\int_0^t f(t)dt$	$\frac{F(s)}{s}$
Convolution	$f_1(t) * f_2(t)$	$F_1(s) \cdot F_2(s)$
Time Scaling	f(at), $a > 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Initial-value Theorem	$f(0^+) = \lim_{t \to 0^+} f(t)$	$\lim_{s\to\infty} sF(s)$
Final-value Theorem	$f(\infty) = \lim_{t \to \infty} f(t)$	$\lim_{s\to 0} sF(s)$