$\iff \exists b(b \in H \land \varphi(a) = \varphi(b))$ $(\varphi(H)$ 定义) $\iff \exists b (b \in H \land a \ker \varphi = b \ker \varphi)$ (教材定理 17.36(2)) $\iff \exists b(b \in H \land a \in b \ker \varphi)$ (教材定理 17.22) $\Longrightarrow \exists b(b \in H \land a \in bH)$ $(\ker \varphi \subseteq H)$ $\iff \exists b(b \in H \land a \in H)$ $(b \in H)$ $\implies a \in H$ (3消去、命题逻辑化简律) 综合得, $a \in H \Leftrightarrow \varphi(a) \in \varphi(H)$ 。

再证原题。

证明: 教材例 17.45 保证了 $G_2/\varphi(N)$ 的合法性。作 G_2 上的自然映射 $f:G_2\to G_2/\varphi(N)$, $\forall a \in G_2, \ f(a) = \varphi(N)a.$

令 $g = f \circ \varphi : G_1 \to G_2/\varphi(N)$ 。则 g 是同态,且为满射(因为 φ 和 f 都是满射)。

考虑 $\ker q$, $\forall a \in G_1$,

 $a \in \ker g$

$$\iff g(a) = \varphi(N) \tag{ker } g \ \Xi \ X)$$

$$\iff f(\varphi(a)) = \varphi(N) \tag{g = f \circ \varphi}$$

$$\iff \varphi(a) \in \varphi(N)$$
 (f 定义)

$$\iff$$
 a ∈ N (引理 17.5)

从而证明了 $\ker g = N$ 。由群同态基本定理知, $G_1/N \cong G_2/\varphi(N)$ 。

17.56

证明: 首先, 证明 $HK \triangleleft G$ 。对任意 $x \in HK, g \in G$, 由定义知, 存在 $h \in H, k \in K$, 使得 x = hk。从而 $gxg^{-1} = ghkg^{-1} = gh(g^{-1}g)kg^{-1} = (ghg^{-1})(gkg^{-1})$,由于 $H, K \triangleleft G$,所以 $ghg^{-1} \in H, gkg^{-1} \in K$,从而 $gxg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$ 。这就证明了 $HK \triangleleft G$,由教材例 17.46(1) 知, $H ext{ ≤ } HK$ 。再由教材例 17.47 结论即证原题。

17.57 先证明如下引理。

引理 17.6 设 G 为群, C 是 G 的中心。若存在 $H \leq C$, 则:

- (1) $H \leq G$;
- (2) 若 G/H 为循环群,则 G 是 Abel 群。

证明: (1) 对任意 $g \in G, h \in H$,由于 $h \in H \subseteq C$,所以有 $ghg^{-1} = hgg^{-1} = h \in H$,由教材定 理 17.32 知, $H \triangleleft G$ 。

(2) 由于 G/H 是循环群, 所以存在 $a \in G$, 使得 $G/H = \langle Ha \rangle$ 。对任意 $x, y \in G$, 必有 $m, n \in \mathbb{Z}$, 使 $x \in Ha^m, y \in Ha^n$ 。即,存在 $h_1, h_2 \in H$,使 $x = h_1a^m, y = h_2a^n$ 。从而有:

$$xy = h_1 a^m h_2 a^n$$
 $\qquad \qquad (x = h_1 a^m, y = h_2 a^n)$ $\qquad = h_2 h_1 a^m a^n$ $\qquad \qquad (h_2 \in C)$ $\qquad = h_2 h_1 a^n a^m$ $\qquad \qquad (a^m a^n = a^{m+n} = a^n a^m)$ $\qquad = h_2 a^n h_1 a^m$ $\qquad \qquad (h_1 \in C)$ $\qquad = yx$ 这就证明了 G 是 Abel 群。

这就证明了 G 是 Abel 群。

再证原题。