SOLID STATE PHYSICS

Crystal structure, direct lattice & (un) holy grail

(i) Auwophous solid: no order in arrangement of unit of matter (atoms, molecules etc). XRD shows Liquid like property.

what's "solid"? -> elasticity stress $\sigma = K \frac{\chi}{L}$

but
$$\frac{1}{2}kx^2 = \frac{1}{2}keT$$

Cequipartition)

 $f = -kx$
 $f = -kx$

$$F = -k R \frac{\pi}{L}$$

$$= -k R \alpha = -k \alpha$$

$$\therefore \vec{\alpha}^2 = \frac{k_B T}{R} = \frac{k_B T}{K \ell}$$

amorphous solids \rightarrow highly viscous, supercooled liquids.

Example pitch, plastie, (
silicate glass.

(i) molecular motion is irregular but distance is more or less same with dastie solid.

SALIENT FEATURES

- (ii) no regular stope > conductivity, elasticity tensile strength is isotropic
- (in) no long range order. short range / medium rauge order possible.
- (iv) no storp melting point.

There are polycrystalline substances which are composed of many small domains/regions of single crystals. Crystalline substances are distinguished from amorphous solids by their anisotropic behaviour (direction dependent).

Ideal crystal : infinite repetition of identical structure in space.

Periodic arrangement of unit (atoms, molecules, ions) in a

orystal is alled the lattice, defined by three fundamental translation vectors \vec{a} , \vec{b} , \vec{c} . / basis vectors

Atomie position vector
$$\vec{r}' = \vec{r} + \vec{T}$$

= $\vec{r} + n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$

where n, u2, u3 are integers.

primitive lattice & Unit cell

Unit cell is volume from which entire crystal can be constructed by translational repitition. (OABC parallelogram)

primitive cell is a type of unit cell that contain 1 lettier point at corners & minimum in volume = $|(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Basis in coystal stoucture, every lattice point is associated with an unit assembly of atoms/molecules/ions. This unit is called basis.

Basis can contain even hundreds & thousands of molecules.

A translation operation leaves the crystal invariant. $f(\vec{r}) = f(\vec{r} + \vec{T})$

$$f(\vec{r}) = f(\vec{r} + T)$$
physical: number density $n(\vec{r}) = \sum_{\vec{r}} S(\vec{r} - \vec{T})$
significance (point mass atom)
$$density \quad p(\vec{r}) = \sum_{\vec{r}, d} m_d S(\vec{r} - \vec{T} - \vec{c}_d)$$

where my is man of atom at lattice sile Ex.

$$p(\vec{r}) = p(\vec{r} + \vec{T})$$

For cubie structure $|\vec{\alpha}| = |\vec{b}| = |\vec{c}|$ $\alpha = \beta = \delta = \frac{\pi}{2}$

Wigner_Sielz primitive cell

- 1. Draw lines connecting near by lattice points.
- 2. Draw planes/lines at midpoint of line I perpendicular to it.
 This is WS primitive cell.

Elements of symmetry A symmetry operation transforms the crystal to itself. Robotion $N\beta = 2\pi$ N = multiplicity of robotion axis. $\sum_{r=0}^{r=0} \phi = 60^{\circ}$ $\sum_{r=0}^{r=0} \phi = 60^{\circ}$

= 1,2,3,4,×,6. A 2D square lattice has 4-fold rotational symmetry.

(iii) Reflection mirror image

(in) Inversion

Symmetry operation performed about a point/line are called point group symmetry. 3 type of point group (i) plane of symmetry (reflection), (ii) axis of symmetry (rotation), (iii) centre of symmetry (inversion)

5-fold rotational symmetry: quasicrystals. But why 5-fold rotational symmetry is not permissible in onestal structure?

A' chand B' $AB = a = |\vec{a}| = |\vec{r}_1 - \vec{r}_2|$ = AA' = BB'Suppose AB = qlal (q=integer) LA'AC' = LD'BB' = 0- 7/2 A'e' = D'B' = 1 al $\cos \theta$:. A'B' = 1 al + 1 al cos 0 + 1 al cos 0 VIal = (a) + 21 a) wio $cr |cor\theta| = |\frac{\psi^{-1}}{2}|$ as cost <1, allowed values of q are -1,0,1,2,3 $\{q=-1, \theta=\frac{2\pi}{2}\}, \{q=0, \theta=\frac{2\pi}{3}\}, \{q=1, \theta=\frac{2\pi}{4}\}$ { q= 2, 0= 2√3, 2 q= 5, 0= 2√3 So, $n = 1, 2, 3, 4, 6 \longrightarrow hexad$ diad triad telrad Point group & space group [translation, rotation, reflection] (point) point group. Total 32 point groups. Group of all symmetry elements is space group. In 20: 17, 30: 230. Bravais lattie: Tat, 161, & 5combination: symmetry operations are P primitive reelangular Centered sectangular I square I heragonal 1前=1前, 中=3 は1+1前, 中=う はまは, ゆ=至 $|\vec{a}| \neq |\vec{b}|, \phi \neq \frac{\pi}{2}$ $|\vec{a}| = |\vec{b}|, \phi = \frac{\pi}{2}$ {2²} {²/₂} 多一个,一个 reflection rotation rotation rotation Scanned by CamScanner

length of primitive Angle Type & number Clan a=b=c++ 00 d= p= 7 = 90° P, F, ICubie a=b # c d= p= 1= 50 PI Tetragonal a=b#c d= B= 90, 7=120 Hexagonal asbsc d=p=1+ 90 4120 Rhombohedral/ Trigonal a + b + c d= = = = 90 P, F, I, C (Orthorhombie a + b + c d=7=90 7 p Monodinie a+b+c d # B # d Triclinie

Altours per unit cell

(i) Eight corner atoms in cubic unit cell 18th atom
(ii) Six face atoms in unit cell 1th atom.

(iii) If on edge then stared latween 4 unit, 14th atom

(iv) If inside cell, then (off course) I atom as whole.

Simple cubic cell (se)

of atoms/ unit cell = 2 = 1.

Body centered cubic cell (bcc)

of atoms/unit cell = \frac{8}{8} + 1\frac{1}{8} = 2

face centered cubic cell (5cc)

of atoms / unit cell = $\frac{8}{8} + \frac{6}{2} = 4$

Coordination Number In crystal lattice, the number of nearest neighbours of an atom is called coordination no.

se cell, coord no. = 6.

bcc cell, coord us. = 8

fee cell, word no. = $4 \times 3 = 12$ $6 \times 7, 72, \times 2$ plane Atomie radius Distance between centre of two touching atoms.

[bee]

$$(4r)^2 = (\sqrt{2}a)^2 + a^2$$

or $r = \sqrt{\frac{3}{4}} a$

[fee]

[se]

or
$$r = \frac{\alpha}{2}$$

Atomie packing fraction/factor/ relative packing density

P. F. (3) = volume of atoms in unit cell volume of unit cell.

[bec] 2 atoms/ unil cell, $\gamma = A \frac{13}{4}a$

: vol. of atomo = 2x \frac{1}{3} \tau \gamma^3, vol. of unit cell = a3.

:.
$$f = \frac{2 \times \frac{4}{3} \pi \times (\frac{\sqrt{3}}{4} \alpha)^3}{\alpha^3} = \frac{\sqrt{3} \pi}{8} = \frac{68\%}{8}$$

Example: Barium, chromium, sodium, iron, caesium chloride

[fee] 4 atoms/unit cell, $r = \frac{\alpha}{212}$

$$f = \frac{4 \times \frac{4}{3} \pi \times \left(\frac{\alpha_{\nu}}{212}\right)^{3}}{\alpha^{3}} = \frac{\pi}{3\sqrt{2}} = \frac{74\%}{4\%}$$

[se] 1 atom/unt cell, $v = \frac{a}{2}$

$$5. \int = \frac{\frac{4}{3} \pi \left(\frac{\alpha}{2}\right)^3}{\alpha^3} = \frac{\pi}{6} = \frac{52\%}{6}$$

example: polonium, potassium chloride

HW 1. Privitive translation vector of hcp lattice of $\vec{d} = \frac{13}{2}a\hat{i} + \frac{2}{2}\hat{j}$, $\vec{c} = -\frac{13}{2}a\hat{i} + \frac{2}{2}\hat{j}$, $\vec{c} = c\hat{k}$. Compute the volume of the primitive cell.

copper, aluminium lithius commun, saduum, saduum,

2. Show that for a fee crystal structure, lattice constant is $\alpha = \left(\frac{4M}{(PN)}\right)^{3}$ where M is the gram molecular weight of molecules at lattice points, I is the density of N is Avogadro's number.

Nacl Structure

ionic crystal Nat S. Cl., fec Bravais

Na (0,0,0) $(\frac{1}{2},\frac{1}{2},0)$ $(\frac{1}{2},0,\frac{1}{2})$ $(0,\frac{1}{2},\frac{1}{2})$

Cl (シャシッシ) (0,0,シ) (0,シ,0) (シ,0,0)

4 Nace molecule in unit cube.

Nat (0,0,0) \downarrow Cl $(\frac{a}{2},0,0)$ \rightarrow 6 neasest neighbour (coordination number).

Miller indices To designate the position of orientation of a crystal plane according to following rule:

(a) In terms of lattice constant, find the intercept of the plane on crystal axes a, b, c (primitive or nonprimitive)

(2,0,0), (0,3,0), (0,0,1) -> 2a,3b, C.

(b) Take reciprocals of them I reduce to smallest 3 integers, Denote with (h, K, L)

So 20,36, C reciproc 2, 3, 1 smallest

Willer index is (3,2,6) plane

If plane cuts negative side of axis, M. index (h, k, e) 6-faces of cubic crystal, N-index (1,0,0), (0,1,0), (0,0,1) = \$1,0,0
according through rotation, all faces (1,0,0), (0,1,0), (0,0,1) because through rotation, all faces So (2,0,0) plane intercepts on 2,5,2 are 1a, on, or. I parallel are equivalent & written in & 3. to (1,0,0) 1 (1,0,0) plane. Indices of a direction [h, K, E] & direction & peopendicular lo plane (h,k,e). à axis = [1,0p], -6 axis = [0,1,0]
body d'agoral = [1,1,1] Spacing of planes in sc lattice simple unit cell à 1 b 1 è f a plane (n,k,l) (miller index). Intercepts a/h, b/k, c/L on a, b, c axes 7 if d & P OP I (h, k, l) plane I OP=d. 1 LAOP = d, LBOP = B, LCOP = d. L LAPO = LBPO = LCPO = 90. $\frac{OP}{OA} = \cos d$ or $OP = OA \cos d$ or $d = \frac{a}{h} \cos d$ or $\cos d = \frac{dh}{a}$ Similarly cosp = dk, cost = dl. Law of direction cosines, cost + cost 3+ cost = 1 $c_0 d^2 \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{k^2}{c^2} \right) = 1$ or d = 1 If cubic lattice, a=b=c, d= \(\frac{a}{h+k+1}^2 \) $d_{100} = \frac{\alpha}{\sqrt{1+6+0}} = \alpha, \quad d_{110} = \frac{\alpha}{\sqrt{1+1+0}} = \frac{\alpha}{\sqrt{2}}, \quad d_{111} = \frac{\alpha}{\sqrt{3}} = \frac{\alpha}{\sqrt{3}}$

Spacing of planes in bee lattice

One atom at each corner + one atom at cube centre.

(portion) (whole)

: $d_{100} = \frac{a}{2}$ as additional (1,0,0) is there halfway between (100) plane of sc.

 $d_{110} = d_{110} = \frac{a}{\sqrt{2}}$. but $d_{111} = \frac{1}{2} \frac{a}{\sqrt{3}}$ on (1,1,1) plane lies midway of (111) plane of se.

Spacing of planes in fee lattice

one atom at each corner + one atom at each face. (portion) (portion)

:. $d_{100} = \frac{a}{2}$ as additional (1,0,0) is there halfway

between (1,90) plane of se.

But $d_{110} = \frac{1}{2} \frac{a}{\sqrt{2}}$ on additional set of (110) is there halfway between (1,1,0) plane.

 $d_{111} = \frac{a}{\sqrt{3}}$ as centre of all face plane without new plane.

$$\Re \vec{r}_1 = \vec{a}_{k_1}, \vec{r}_2 = \vec{b}_{k_2}, \vec{r}_3 = \vec{c}_{k_2}$$

ha+ kb+ le represents [h, k, L]

Now (\$1-\$2). (ha+ kb+le) = (\$-\frac{1}{h}-\frac{1}{k}). (ha+kb+le)

 $= \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 0$. (as $|\omega| = |b|$)

Similarly (\$1-\$3). (ha+ kb+ lc) = 0 (as M=1el)

As vectors $\vec{r}_1 - \vec{r}_2$ & $\vec{r}_1 - \vec{r}_3$ lie in (h, k, L) plane, so [h,k,l] is perpendicular to plane (h,k,L).

Reciprocal lattice To represent slope & interplanas spacing 5 of crystal plane, each set of parallel plane in a space lettice for a, b, c, we describe reciprocal basis vectors a, b, c* Cprimitive) such that $\vec{a} \cdot \vec{a}^* = 2\pi$, $\vec{b} \cdot \vec{a}^* = 0$, $\vec{c} \cdot \vec{a}^* = 0$ $\vec{a} \cdot \vec{b}^* = 0$, $\vec{b} \cdot \vec{b}^* = 2\pi$, $\vec{c} \cdot \vec{c}^* = 0$ $\vec{a} \cdot \vec{c}^* = 0$, $\vec{b} \cdot \vec{c}^* = 0$, $\vec{c} \cdot \vec{c}^* = 2\pi$. $\vec{a}' = g\pi \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \quad \vec{b}'' = g\pi \frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \quad \vec{c}'' = g\pi \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$ reciprocal lattice vector 3x = hax+ kbx+ lcx properly (i) reciprocal lattice is normal to lattice plane of direct crystal lattice-7x. (3,-32) = (hax+ kbx+ lex). (2,-2) = 0. Similarly 7x. (7,-73) =0. in direct lattice is reciprocal of reciprocal lattice. se = self-reciprocal. bee >> fee reciprocal of each other. Definition of R.L. $\vec{T} = u_1\vec{a} + u_2\vec{b} + u_3\vec{e}$ direct lattice vector of say k constitutes a plane wave eik. I which may not have the periodicity of Bravais lattice but R has that periodicity. $e^{i\vec{k}\cdot(\vec{\tau}+\vec{\tau})}=e^{i\vec{k}\cdot\vec{r}}$ or $e^{i\vec{k}\cdot\vec{\tau}}=1$ R = K, a* + K2 b* + K3 c* = : k. + = 2x(K, n, + K2u2 + K3u3) If eik. = 1, then k. + must be 2x x integer => Kukzik, integers

So from \vec{k} only \vec{k} which is linear combination of $\vec{a}^*, \vec{b}^*, \vec{c}^*$ with integral wefficient makes \vec{k} a reciprocal lattice vector.

Reciprocal of reciprocal lattice

As by construction, reciprocal lattice is a Brawais lattice, reciprocal gives back the direct lattice.

$$b^{**} = 2\pi \frac{\vec{c}^* \times \vec{a}^*}{\vec{a}^* \cdot \vec{b}^* \times \vec{c}^*}$$
, $\vec{c}^{**} = 2\pi \frac{\vec{a}^* \times \vec{b}^*}{\vec{a}^* \cdot \vec{b}^* \times \vec{c}^*}$ as three vectors generated by primitive vectors \vec{a}^* , \vec{b}^* , \vec{c}^* . Check first, $\vec{a}^* \cdot \vec{b}^* \times \vec{c}^* = \frac{(2\pi)^3}{\vec{a} \cdot \vec{b} \times \vec{c}}$ I then show that $\vec{a}^* = \vec{a}$.

$$\therefore \vec{a}^* = 2\pi \frac{b\hat{j} \times c\hat{k}}{a\hat{i} \cdot (b\hat{j} \times c\hat{k})} = 2\pi \frac{be}{abe} \hat{i} = \frac{2\pi}{a} \hat{i}$$

$$\vec{b}^* = 2\pi \frac{c\hat{k} \times a\hat{i}}{a\hat{i} \cdot (b\hat{j} \times c\hat{k})} = \frac{2\pi}{b}\hat{j} = \frac{2\pi}{a}\hat{j} \quad (a=b=c)$$

$$\vec{c}^* = 2\pi \frac{\hat{a}(x b)}{\hat{a}(b)^2 \times \hat{c}(k)} = \frac{2\pi}{c} \hat{k} = \frac{2\pi}{a} \hat{k}$$

lattier constant = 27/a.

Reciprocal of bee lattice

$$\frac{1}{2} = \frac{a_{2}(\hat{i} + \hat{j} - \hat{k})}{2} = \frac{a_{2}(\hat{i} + \hat{j} + \hat{k})}{2} = \frac{a_{2}(\hat{i} + \hat{j} + \hat{k})}{2} = \frac{a_{2}(\hat{i} - \hat{j} + \hat{k})}{2}.$$

volume of primitive cell =
$$\vec{\alpha} \cdot \vec{k} \times \vec{c} = \vec{a}/2$$
.

 $\vec{a} \times = 3\pi \frac{\vec{k} \times \vec{c}}{\vec{k} \cdot \vec{k} \times \vec{c}} = \frac{2\pi}{\alpha} (\hat{i} + \hat{j})$,

 $\vec{b} \times = 3\pi \frac{\vec{k} \times \vec{c}}{\vec{k} \cdot \vec{k} \times \vec{c}} = \frac{2\pi}{\alpha} (\hat{i} + \hat{k})$.

 $\vec{c} \times = 3\pi \frac{\vec{k} \times \vec{c}}{\vec{k} \cdot \vec{k} \times \vec{c}} = \frac{2\pi}{\alpha} (\hat{i} + \hat{k})$.

Reciprocal of fee lattice $\vec{a} = \frac{2\pi}{\alpha} (\hat{i} + \hat{k})$.

 $\vec{c} = \frac{2\pi}{\alpha} (\hat{i} + \hat{k})$.

volume of primitive cell = $\vec{a} \cdot \vec{b} \times \vec{c} = \frac{3}{4}$.

and $\vec{a} \times = \frac{2\pi}{\alpha} (\hat{i} + \hat{j} - \hat{k})$, $\vec{b} \times = \frac{2\pi}{\alpha} (-\hat{i} + \hat{j} + \hat{k})$, $\vec{c} \times = \frac{2\pi}{\alpha} (\hat{i} + \hat{j} + \hat{k})$.

Reciprocal bee lattice vectors = primitive fee lattice vectors.

Reciprocal fee lattice vectors = primitive bee lattice vectors.

Crystal diffraction

Why use X-ray for crystollagraphy?

Atomic spacing (say for Nacl) is 2.8 Å. When X-ray is produced by accelerating electrons through a potential difference V, eV = hr? = he are not as a second of the control of

Maximum intensity from reflected beam (waves) from two different atomic planes (deavage planes) with path difference equal to integral multiple of 2 x-ray.

Cleavage planes/ Bragg planes I

Path difference between ray
[AB,BC] L [DE, EF] is KE + EL

= dsind + dsind = 2 deind. So for constructive interference,

$$2d sin \theta = h \lambda$$
, $n = 1, 2, 3, \dots \Rightarrow Bragg's law.$

A, O = Known, d = unknown.

Assumptions: (a) The primary X-ray beam travels within the crystal at the speed of light. (b) Each scattered wavelet travels through the crystal without getting rescattered.

Say N, number of points along direction à N2 number of points along direction à N3 number of points along direction à Total N = N, N2 N3 points in the crystal lattice.

Path difference between two x-roys is $d = \vec{r}_n \cdot \vec{s} - \vec{r}_n \cdot \vec{s}_0 = \vec{r}_n \cdot \vec{s}$: Phase difference is $\frac{2\pi}{2}d = \frac{2\pi}{2}\vec{r}_n \cdot \vec{s} = k\vec{r}_n \cdot \vec{s}$

remember: \vec{s} , \vec{s} , unit vector, $|\vec{s}| = 8 = a \sin \theta$, $\vec{r}_n = n th lattice$ point from origin = $\vec{T} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{e}$.

Scanned by CamScanner

If y is the displacement of the scattered wave from origin at a distance R at time t with amplitude Ao, then Jo = Ao eint. : displacement from on is y = Ao e int oikin. 3 i. Total displacement due to the whole Bravais lattice is Y = Z Ao eint eixin. Z = $\sum_{N_1=0}^{N_2-1} \sum_{N_2=0}^{N_2-1} \sum_{N_3=0}^{N_3-1} e^{i\kappa [(n_1\vec{a}+n_2\vec{b}+n_3\vec{c})\cdot\vec{B}]} \frac{A_0}{R} e^{i\omega t}$ $= \frac{\Lambda_0}{R} e^{i\omega t} \sum_{N_1=0}^{N_1-1} e^{i\kappa n_1 \vec{a} \cdot \vec{k}} \sum_{N_2=0}^{N_2-1} e^{i\kappa n_2 \vec{b} \cdot \vec{k}} \sum_{N_3=0}^{N_3-1} e^{i\kappa n_3 \vec{c} \cdot \vec{k}}$ Now \(\frac{1}{2} = \frac{1}{2} \tau \frac{1}{2} = \frac{1}{2} \tau \frac{1}{2} \tau \frac{1}{2} = \frac{1}{2} \tau \frac{1 $\frac{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}{1-e^{iKn_{1}\vec{a}\cdot\vec{z}}} = \frac{1-e^{i(\vec{a}\cdot\vec{z})K}}{1-e^{i(\vec{a}\cdot\vec{z})K}}$ $\frac{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}{N_{1}=0} = \frac{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}{N_{1}(\vec{a}\cdot\vec{z})K}$ $= \frac{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}} = \frac{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}{1-e^{iN_{1}(\vec{a}\cdot\vec{z})K}}$ $= \frac{1-e^{iN_1(\vec{a}\cdot\vec{x})K}}{1-e^{i(\vec{a}\cdot\vec{x})K}} \times \frac{1-e^{-iN_1(\vec{a}\cdot\vec{x})K}}{1-e^{-i(\vec{a}\cdot\vec{x})K}}$ = 1- cos {N, (a. &) k} + i sin {N, (a. &) k} x 1- cos{(a. \$)K} - isin\$(a. \$)K}. 1- 65 & N, (a. 3) K3 + isin & N, (a. 3) K3 1- cos & (a. 2) k} + isin & (a. 2) k} = (1- cos & N, (a. B) K})2+(sin & N, (a. B)K})2 (1- ws & (a. 8)K) 2+ (sin s(a. 8)K)2 $\frac{1-\cos\xi\,N_1(\vec{a}\cdot\vec{z})K^2_3}{1-\cos\xi\,(\vec{a}\cdot\vec{z})K^2_3} = \frac{\sin^2\xi\,N_1(\vec{a}\cdot\vec{z})K^2_3}{\sin^2\xi\,(\vec{a}\cdot\vec{z})K^2_3} = \frac{\sin^2(N_1\Psi_1)}{\sin^2(\Psi_1)}$ sin (N, 41)

where $\psi_1 = \frac{1}{2} \, \text{Ka.Z.}$ is Total intensity $I = YY^* = \left(\frac{|A_0|}{R}\right)^2 \frac{\sin^2(N_1 \Psi_1)}{\sin^2(\Psi_1)} \frac{\sin^2(N_2 \Psi_2)}{\sin^2(\Psi_2)} \frac{\sin^2(N_3 \Psi_3)}{\sin^2(\Psi_3)}$ 41 = 1 Ka. 3 = 1 Klall slosd = 1 2 a 2 sind wid = 2 xa sind wid Similarly 42 = 1 Kb. = 276 sind cosps, 43 = 1 K c. 8 = 2xc sind ws 8 [Notice the analogy of I with [h, K, 1] plane with anglis d, T, B] In $\lim_{\Psi_1 \to h\pi}$, $\frac{\sin^2(N_1 \Psi_1)}{\sin^2 \Psi_1}$ is maximum = N_1^2 Similarly $\lim_{\gamma \to KX} \frac{\sin^2(N_2 \psi_2)}{\sin^2(\gamma)} = N_2^2$, $\lim_{\gamma \to LX} \frac{\sin^2(N_3 \psi_3)}{\sin^2(\gamma)} = N_3^2$ Then $I_{\text{max}} = \left(\frac{|A_0|}{R}\right)^2 N_1^2 N_2^2 N_3^2 = \frac{|A_0|^2}{\rho^2} N^2$ 2a sino cosd = ha. $2\pi b \sin \theta \cos \beta = k\pi$, $2b \sin \theta \cos \beta = k\lambda$ 20 sino cost = 22 exceindoso = ex, " Laure equations! Bragg's law from Laure equations from Laue equation, direction cosiner of \$ are $cosd = \frac{h\lambda}{2a sin\theta}$, $cos \beta = \frac{k\lambda}{2b sin\theta}$

But also see that if (h,K,L) is a miller plane with equation $\frac{\alpha}{a/h} + \frac{y}{b/k} + \frac{z}{e/e} = 1 \quad \text{then} \quad \frac{a}{h} \cos \alpha = \frac{b}{k} \cos \beta = \frac{c}{k} \cos \beta = d.$