Proteine	Chemie	GK 11	Name:
			Datum:

Aufbau von Proteinen

Die Proteinstruktur wird in vier verschiedene Strukturebenen gegliedert. Die Primärstruktur gibt die Aminosäurensequenz der Peptidkette wieder. Um die Primärstruktur übersichtlich darstellen zu können, wurde ein Drei- bzw. Einbuchstabencode eingeführt, wodurch jede Aminosäure abgekürzt aufgeschrieben werden kann.

Aminosäure	3- Buchstabe n	1- Buchstabe n
Alanin	Ala	Α
Arginin	Arg	R
Asparagin	Asn	N
Asparaginsäur e	Asp	D
Cystein	Cys	С
Glutamin	Gln	Q
Glutaminsäure	Glu	Е
Glycin	Gly	G
Histidin	His	Н
Isoleucin	lle	1

Aminosäur e	3- Buchstabe n	1- Buchstabe n
Leucin	Leu	L
Lysin	Lys	K
Methionin	Met	М
Phenylalani n	Phe	F
Prolin	Pro	Р
Serin	Ser	S
Threonin	Thr	T
Tryptophan	Trp	W
Tyrosin	Tyr	Υ
Valin	Val	V

Bei der Schreibweise der Primärstruktur ist darauf zu achten, dass die N-terminale Aminosäure immer links steht. Die Abfolge Ala – Gly – Ser – Phe entspricht demnach folgendem Peptid:

Abb. 1: Primärstruktur eines Peptids (K. Bossert)

Proteine	Chemie	GK 11	Name:
			Datum:

Durch Wasserstoffbrückenbindungen zwischen dem Sauerstoff der -C=O-Gruppe und dem Wasserstoff der -NH-Gruppe der Peptidbindungen erfolgt eine Faltung des Proteins in einem lokalen Bereich und sorgt so für eine räumliche Struktur. Diese Ebene wird als Sekundärstruktur bezeichnet.

Zwei bekannte Beispiele sind die α -Helix (z. B. DNA) und β -Faltblatt-Struktur.

(© Wolfgang Zettlmeier)

Abb. 2: α-Helix mit H-Brücken

Die Tertiärstruktur beschreibt die räumliche Struktur einer Untereinheit im Protein und wird durch Disulfidbrücken, Ionenbindungen, Wasserstoffbrücken und hydrophobe Wechselwirkungen bestimmt.

Abb. 3: Tertiärstruktur mit strukturformenden Wechselwirkungen

Mehrere Proteine können sich zu einem Proteinkomplex anordnen, um z. B. Enzyme zu bilden. Diese räumliche Struktur mit allen Untereinheiten wird als Quartärstruktur bezeichnet.

Abb. 4: Hämoglobin, Quartärstruktur mit vier Untereinheiten. Jede Untereinheit (grün, gelb, blau und orange) hat eine eigene Tertiärstruktur (K. Bossert)

Proteine	Chemie	GK 11	Name:
			Datum:

Aufgaben

1. Bearbeiten Sie die Aufgabe im folgenden Link:

https://raabe.click/ch-ASCode

2. Bestimmen Sie, aus welchen Aminosäuren folgendes Protein aufgebaut ist.

3. Bestimmen Sie den Einbuchstabencode des folgenden Proteins.

- 4. Beschreiben Sie die Begriffe Primär-, Sekundär-, Tertiär- und Quartärstruktur.
- 5. **Begründen** Sie, welche Aminosäure für Disulfidbrücken verantwortlich ist.