Econ 6190 Final Exam

© Chen Qiu. Do not reproduce or share with any third party 9:00 am - 11:30 am, 14 December 2021

Instructions

This exam consists of three questions, not of equal length or difficulty. Answer all questions. Remember: (1) read the questions carefully; (2) always explain your answer; (3) relax and good luck!

1. The density of a normal distribution $N(\mu, \sigma^2)$ with mean μ and variance $\sigma^2 > 0$ is

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Answer the following questions.

- (a) [30 pts] Suppose we have a random sample $\{X_i, i = 1 \dots n\}$ drawn from $X \sim N(\mu_0, \sigma^2)$ where μ_0 is **known** but σ^2 is **unknown**.
 - i. Find the Fisher information \mathcal{F} for estimating σ^2 .
 - ii. Find the MLE for σ^2 , say $\tilde{\sigma}^2$.
 - iii. Is $\tilde{\sigma}^2$ Cramer-Rao efficient? If yes, show the claim is true; if not, explain why [hint: the 4th central moment of X is $3\sigma^4$].
 - iv. Based on $\tilde{\sigma}^2$, derive a **finite sample valid** two sided 95% confidence interval for σ^2 .
 - v. Fisher information \mathcal{F} depends on the unknown parameter σ^2 and is usually unknown. Propose an estimator for \mathcal{F} , say $\tilde{\mathcal{F}}$, and find the asymptotic distribution of $\sqrt{n}(\tilde{\mathcal{F}}-\mathcal{F})$.
- (b) [15 pts] Suppose now $X \sim N(\mu, \sigma^2)$ where both μ and σ^2 are **unknown**. We hope to use a random sample $\{X_i, i = 1 \dots n\}$ drawn from X to test hypothesis: $\mathbb{H}_0 : \mu = \mu_0$ for some $\mu_0 \in \mathbb{R}$ against $\mathbb{H}_1 : \mu \neq \mu_0$.
 - i. Let $\beta = (\mu, \sigma^2)$. Write down the log likelihood of β under \mathbb{H}_0 .
 - ii. The unconstrained MLE of β is $\hat{\beta} = (\bar{X}_n, \hat{\sigma}^2)$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$. Based on this and your answer to (b)-(i), derive the likelihood ratio statistic LR_n for testing $\mathbb{H}_0: \mu = \mu_0$ vs $\mathbb{H}_1: \mu \neq \mu_0$. Simplify as much as you can.

- iii. Show the likelihood ratio test based on $LR_n > c$ for some c is equivalent to |T| > b for some b, where $T = \frac{\bar{X}_n \mu_0}{\sqrt{\hat{\sigma}_n^2}}$.
- 2. Let $\{X_i, i = 1 \dots n\}$ be a random sample from a distribution with pdf

$$f(x|\theta) = \frac{1}{\theta}, \ 0 \le x \le \theta, \theta > 0.$$

Answer the following questions.

- (a) [20 pts] First, we are interested in estimating of θ .
 - i. Find a method of moment estimator of θ , say $\hat{\theta}_{MME}$.
 - ii. Find the mean square error of $\hat{\theta}_{MME}$.
 - iii. The MLE estimator of θ is $\hat{\theta}_{MLE} = \max\{X_i, i = 1 \dots n\}$. The density of $\hat{\theta}_{MLE}$ is

$$f(t) = \begin{cases} \frac{n}{\theta^n} t^{n-1} & 0 \le t \le \theta \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Based on (1), find the mean square error of $\hat{\theta}_{MLE}$.

- iv. Thus find the stochastic order of magnitude of both $\hat{\theta}_{MME}$ and $\hat{\theta}_{MLE}$. Which estimator would you prefer and why?
- (b) [10 pts] Second, we hope to test hypothesis $\mathbb{H}_0: \theta = 1$ vs $\mathbb{H}_1: \theta < 1$.
 - i. Consider a test that rejects \mathbb{H}_0 if $\hat{\theta}_{MLE} < b$ when sample size is 10. Find the value of b such that size of the test is exactly 0.1. What is the power of this test when $\theta < 1$?
- (c) [10 pts] We still hope to test hypothesis \mathbb{H}_0 : $\theta = 1$ vs \mathbb{H}_1 : $\theta < 1$. But now, instead of trying to control size exactly, we only hope to control size asymptotically using some statistic constructed from $\hat{\theta}_{MME}$.
 - i. As a first step, find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_{MME} \theta)$.
 - ii. Let the asymptotic variance of $\sqrt{n}(\hat{\theta}_{MME} \theta)$ be V. Find an estimator of V and show it is consistent.
 - iii. Based on (i) and (ii), propose a test that controls size asymptotically at 10%. Carefully state your reasoning.
- 3. Let X be a random variable with finite second moment. Answer the following questions.
 - (a) **[5 pts]** Show the solution of $\min_{a \in \mathbb{R}} \mathbb{E}[X a]^2$ is $\mathbb{E}X$.
 - (b) [10 pts] Let $\{X_i\}_{i=1}^n$ be a sample from X that are identically distributed but **not** independent: specifically, $var(X_i) = \sigma^2$, $cov(X_i, X_j) = \sigma_{ij}^2 > 0$ for $i \neq j, i = 1 \dots n, j = 1 \dots n$. Derive a set of condition(s) under which we can show $\frac{1}{n} \sum_{i=1}^n X_i \stackrel{p}{\to} \mathbb{E}X$.