定点数的编码表示

BCD: Binary-Coded Decimal, 用二进制编码的十进制

BCD码

二进制: 0, 1

方便计算机处理

十进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

符合人类习惯

 $K_n \times r^n + K_{n-1} \times r^{n-1} + \dots + K_2 \times r^2 + K_1 \times r^1 + K_0 \times r^0$ 转换麻烦

快速转换: 一一对应 BCD: Binary-Coded Decimal

8421码的映射关系:

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

十进制: 5 + 8 13 1 3 1 3

8421码: 0101 + 1000 1101 + 0110 10011 0001 0011

不在映射表里

8421码中 1010~1111 没有定义

注: 若相加结果在合法范围内,则无需修正。

8421码的映射关系:

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

4个二进制位 -> 16种不同的状态

BCD码直使用其中10种 -> 不同的映射方案

余3码: 8421码 + (0011)。

	0	1	2	3	4	5	6	7	8	9
0	011	0100	0101	0110	0111	1000	1001	1010	1011	1100

2421码: 改变权值定义

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	1011	1100	1101	1110	1111

定点小数

定点整数、定点小数

原码

定点小数原/反/补码的转换

定点小数的加/减运算

对两个定点小数A、B进行加法/减法时,需要先转换为补码

计算机硬件如何做定点小数补码的加法:从最低位开始,按位相加(符号位参与运算),并往更高位进位

计算机硬件如何做定点小数补码的减法:

- 1. "被减数"不变,"减数"全部位按位取反、末位+1,减法变加法
- 2. 从最低为开始,按位相加,并往更高位进位

定点小数vs定点整数

n+1 bit	合法表示范围	最大的数	最小的数	真值0的表示
定点整数:原码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,111111 = -(2 ⁿ -1)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点整数:反码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -(2 ⁿ -1)	$[+0]_{\overline{\boxtimes}} = 0,000000$ $[-0]_{\overline{\boxtimes}} = 1,111111$
定点整数:补码	$-2^n \le x \le 2^n - 1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -2 ⁿ	[0] _补 = 0 ,000000 真值0只有一种补码
定点小数:原码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,111111 = -(1-2 ⁻¹⁷)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点小数:反码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,000000 = -(1-2-11)	[+0] _反 = 0 ,000000 [-0] _反 = 1 ,111111
定点小数: <mark>补码</mark>	$-1 \le x \le 1 - 2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,000000 = -1	[0] _补 = 0 ,000000 真值0只有一种补码

$$1-2^{-n}=\frac{2^n-1}{2^n}$$

定点小数vs定点整数

特别注意: 位数扩展时, 拓展位置不一样

定点小数: [x]原=1.110

定点整数: [x]原= **1,**110

[x]原= **1.**1100000

[x]_原 = **1,**0000110

整数补码的加法运算

8bit寄存器

8bit寄存器

0	0	0	0	0	0	0	0

8bit寄存器

计算机硬件如何做补码的加法:从最低位开始,按位相加(符号位参与运算),并往更高位进位

小数补码的加法运算

A: +0.1484375 → 补码

0	0	0	1	0	0	1	1

8bit寄存器

B: -0.1484375 → 补码

8bit寄存器

8bit寄存器

整数补码的减法运算

计算机硬件如何做带符号数补码的减法:

- 1. "被减数"不变,"减数"全部位按位取反、末位+1,减法变加法
- 2. 从最低位开始,按位相加,并往更高位进位

小数补码的减法运算

