Nome: nUSP:
Allan Baldissin 8657904
Danilo Alves 10408390
Marcela Tiemi Shinzato 10276953

SSC0740 - Sistemas Embarcados

Professor: Vanderlei Bonato

Câmera de segurança com TensorFlow Lite

Explicação do modelo Tensor Flow Lite

O TensorFlow Lite é uma biblioteca que provê uma rede neural, que pode ser treinada ou não, para classificar imagens usando inteligência artificial. O processo de aprendizado consiste em alimentar o algoritmo com imagens rotuladas e o algoritmo deve extrair quais características dessas imagens as fazem serem rotuladas como tal. Por exemplo, ao se apresentar imagens de casas, dizendo que são casas, o algoritmo deve encontrar os padrões dessas imagens, e, quando se apresentar uma imagem de teste, ele dirá o quanto essa imagem se assemelha ao conceito que ele assimilou como casa. O TensorFlow Lite possui muitas classes de imagens treinadas, e, ao embarcá-lo no Android, ele exibe as 3 classes com maior similaridade à imagem de teste, juntamente com suas porcentagens de similaridade.

Aplicação escolhida

Na presente aplicação, usaremos a rede já treinada Mobile Net V2 para implementar um algoritmo que detecta a presença de algum ser humano na câmera de um celular Android e, se for encontrado, envia uma mensagem ao dono do dispositivo via app Whatsapp. Dessa forma, configura-se um sistema de segurança, no qual o usuário poderia deixar a câmera ligada para vigiar uma área, a qual espera-se que não seja adentrada por pessoas.

Desenvolvimento da aplicação

Para a construção do algoritmo, usou-se o *software* Android Studio e o código do TensorFlow presente em https://github.com/tensorflow/examples>. O celular Android deve estar conectado a internet e, assim, torna-se possível usar a aplicação no sistema embarcado.

Conforme solicitado, o modelo original foi usado no Google Colab, e convertido para uso no Android usando a função de conversão da classe TFLiteConverter. Para fazer a comunicação, criou-se um servidor em Node.JS no qual foi implementada a comunicação com a API Twilio para que as mensagens fossem enviadas para o Whatsapp. O servidor funciona na porta 3000 e precisa de credenciais do Twilio nas variáveis do ambiente da máquina onde está rodando e também credenciais do protocolo SSL.

Assim, sempre que a aplicação identifica uma pessoa, é enviado um request para o servidor e uma mensagem é enviada no Whatsapp do número descrito no código.

Desempenho

No Google Colab em computadores, usando imagens estáticas, os resultados não foram favoráveis. Por exemplo, uma foto caricata de um ladrão retornou "máscara de esqui" com precisão 78,9904%; uma foto de Mark Zuckerberg retornou rótulos com baixa precisão (a maior foi 9,264664% para "terno"); uma silhueta masculina retirada de uma câmera de segurança retornou "aspirador de pó" com 30,389252%; a foto de uma mulher retornou "estola" com precisão 39,878854%.

No entanto, ao embarcar a aplicação no celular Android, ambos modelos (original e convertido) funcionaram corretamente: identificaram pessoas e enviaram as mensagens de aviso no Whatsapp. A seguir, mostramos capturas de tela do app:

Nota-se uma precisão superior a 50% em todos os casos, rapidamente detectada, e também nota-se que as mensagens foram enviadas imediatamente.

Dificuldades encontradas

O software Android Studio exige muita memória RAM, portanto não foi usado por todos os membros do grupo.

A classificação de imagens se mostrou diferente usando imagem estática como entrada no Google Colab e pela aplicação Android, e o motivo dessa diferença não foi identificado. Suspeitamos que na aplicação Android exista um pré processamento da imagem que possa melhorar a identificação, ou que o nosso modelo não esteja sendo carregado devidamente na aplicação Android.