Міністерство освіти і науки України

Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

3 лабораторної роботи №2

3 дисципліни: «Моделювання комп'ютерних систем»

На тему: «Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan3A FPGA»

Варіант 2

Виконав: ст. гр. КІ-202

Соніч Орест

Прийняв:

Козак Н.Б.

Львів 2024 ЛАБОРАТОРНА РОБОТА №2

Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan3A FPGA

Мета роботи: На базі стенда реалізувати цифровий автомат світлових ефектів

Вхідні параметри

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0
4	1	1	1	1	1	0	0	0
5	1	1	1	1	1	1	0	0
6	1	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1	1

- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(SPEED):
 - Якщо *SPEED=0* то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 2 РАЗИ НИЖЧОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток 1).
- Для керування сигналами RESET/SPEED використати будь якІ з PUSH BUTTON кнопок (див. Додаток – 1).

Порядок виконання лабораторної роботи.

- 1. Інтерфейс пристрою та функціонал реалізувати згідно отриманого варіанту завдання.
- 2. Логіку переходів реалізувати з використанням мови опису апаратних засобів.
- 3. Логіку формування вихідних сигналів реалізувати з використанням мови опису апаратних засобів.
- 4. Згенерувати символи для описів логіки переходів та логіки формування вихідних сигналів.
- 5. Зінтегрувати всі компоненти логіку переходів логіку формування вихідних сигналів та пам'ять станів в єдину систему. Пам'ять станів реалізувати за допомогою графічних компонентів з бібліотеки.
- 6. Промоделювати роботу окремих частин автомата та автомата вцілому за допомогою симулятора ISim.
- 7. Інтегрувати створений автомат зі стендом додати подільник частоти для вхідного тактовового сигналу призначити фізичні виводи на FPGA.
- 8. Згенерувати файал та перевірити роботу за допомогою стенда Elbert V2 Spartan3A FPGA.
- 9. Підготувати і захистити звіт.

Виконання лабораторної роботи:

MODE	CURR_STATE(2)	CURR_STATE(1)	CURR_STATE(0)	NEXT_STATE(2)	NEXT_STATE(1)	NEXT_STATE(0)
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Рис.1.1 (Логіка переходів для всіх станів автомата)

Логіка переходів на мові VHDL

 $NEXT_STATE(0) = not(CURR_STATE(0));$

NEXT_STATE(1) = ((not(MODE) and not(CURR_STATE(1)) and CURR_STATE(0)) or (not(MODE) and CURR_STATE(1) and not(CURR_STATE(0))) or (MODE and not(CURR_STATE(1)) and not(CURR_STATE(0))) or (MODE and CURR_STATE(1) and CURR_STATE(0)));

NEXT_STATE(2) <= ((not(MODE) and CURR_STATE(2) and not(CURR_STATE(1))) or (CURR_STATE(2) and CURR_STATE(1)) and not(CURR_STATE(0))) or (MODE and CURR_STATE(2) and CURR_STATE(0)) or (not(MODE) and not(CURR_STATE(2)) and CURR_STATE(1) and CURR_STATE(0)) or (MODE and not(CURR_STATE(2)) and not(CURR_STATE(1)) and not(CURR_STATE(0)));

Рис.1.2. Граф переходів автомата між станами.

Логіка формування вихідних сигналів

OUT_BUS(0) <= '1' after 1 ns;

OUT_BUS(1) <= (IN_BUS(2) or IN_BUS(1) or IN_BUS(0)) after 1 ns;

OUT_BUS(2) <= (IN_BUS(2) or IN_BUS(1)) after 1 ns;

OUT BUS(3) \leq ((IN BUS(2)) or (IN BUS(1) and IN BUS(0))) after 1 ns;

OUT BUS(4) \leq = (IN BUS(2)) after 1 ns;

OUT_BUS(5) <= ((IN_BUS(2) and IN_BUS(0)) or (IN_BUS(2) and IN_BUS(1))) after 1 ns;

OUT_BUS(6) <= (IN_BUS(2) and IN_BUS(1)) after 1 ns;

OUT_BUS(7) <= (IN_BUS(2) and IN_BUS(1) and IN_BUS(0)) after 1 ns;

Рис.1.2 (Згенеровані схематичні схеми)

Рис.1.3 (Інтеграція всіх створених компонентів разом з пам'ятю станів автомата)

Демонстрація симуляції схем наведених зверху

Рис. 1.5 Результати симуляції логіки переходів в ISim.

Рис. 1.6. Результати симуляції логіки вихідних сигналів в ISim.

Puc.1.7. Peзультати симуляції автомата (MODE = 0, RESET = 0).

Puc.1.8. Результати симуляції автомата (MODE = 1, RESET = 0).

Рис.1.9. Результати симуляції автомата (MODE = 0, RESET = 1).

Рис.2.1. Результати симуляції автомата (MODE = 1, RESET = 1).

Рис.2.2. Результати симуляції автомата (SPEED = 0).

Рис.2.3. Результати симуляції автомата (SPEED = 1).

Реалізація Test Brench

Рис.2.4 (Часова діаграма)

```
ISim>
# run 30s
ISim>
# run 5s
ISim>
```

Рис.2.5 (Консоль під час тестування)

```
UCF for ElbertV2 Development Board
    CONFIG VCCAUX = "3.3" ;
                                   LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
    ......
10
   11
       NET "OUTPUT(0)"
NET "OUTPUT(1)"
NET "OUTPUT(2)"
NET "OUTPUT(3)"
NET "OUTPUT(4)"
NET "OUTPUT(5)"
NET "OUTPUT(6)"
NET "OUTPUT(7)"
                                  LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
12
13
14
15
16
17
18
19
20
21
22
    ......
23
24
25
26
27
28
29
30
31
32
    # DP Switches
       NET "MODE"
                         LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
       .
       NET "RESET" LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SPEED" LOC = P79 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
33
34
35
```

Рис.2.6. Призначення фізичних входів та виходів.

Висновок:

В ході виконання цієї лабораторної роботи я реалізував на базі стенда Elbert V2 – Spartan3A FPGA цифровий автомат світлових ефектів згідно заданих вимог.