

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 874 045 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 28.10.1998 Bulletin 1998/44
- (21) Application number: 97935810.8
- (22) Date of filing: 19.08.1997

- (51) Int. Cl.6: C12N 15/00, C12P 21/00
- (86) International application number: PCT/JP97/02859
- (87) International publication number:
 WO 98/07840 (26.02.1998 Gazette 1998/08)
- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB IE IT LI LU NL SE
- (30) Priority: 19.08.1996 JP 235928/96
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant:

 SNOW BRAND MILK PRODUCTS CO., LTD.
 Sapporo-shi, Hokkaldo 065 (JP)
- (72) Inventors:
 - NAKAGAWA, Nobuaki, Nishlura Heights 2-4 Shimotsuga-gun, Tochigi 329-05 (JP)
 - YASUDA, Hisataka
 Kawachi-gun, Tochigi 329-04 (JP)
 - MORINAGA, Tomonori Shimotsuga-gun, Tochigi 321-02 (JP)
- (74) Representative:
 Wakerley, Helen Rachael
 Reddle & Grose,
 16 Theobalds Road
 London WC1X 8PL (GB)

(54) NOVEL DNAS AND PROCESS FOR PRODUCING PROTEINS BY USING THE SAME

(57) DNAs having the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table and a process for producing a protein which comorises inserting these DNAs into expression vectors to thereby produce a protein having molecular weights of about 60 kD (under reductive conditions) and about 60 kD and 120 kD (under non-reductive conditions) and being capable of inhibiting formation of osteoclast. These proteins are useful in the treatment of osteoporosis and rheumatism.

EP 0 874 045 A1

Description

10

FIELD OF TECHNOLOGY

The present invention relates to a novel DNA and a process for preparing a protein which possesses an activity to inhibit osteoclast differentiation and/or maturation (hereinafter called osteoclastogenesis-inhibitory activity) by a genetic engineering technique using the DNA. More particularly, the present invention relates to a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesis-inhibitory activity and a process for preparing said protein by a genetic engineering technique using the genomic DNA.

BACKGROUND OF THE INVENTION

Human bones are constantly repeating a process of resorption and formation. Osteoblasts controlling formation of bones and osteoclasts controlling resorption of bones take major roles in this process. Osteoporosis is a typical disease caused by abnormal metabolism of bones. This disease is caused when bone resorption by osteoclasts exceeds bone formation by osteoblasts. Although the mechanism of this disease is still to be elucidated completely, the disease causes the bones to ache, makes the bones fragile, and may results in fracturing of the bones. As the population of the aged increases, this disease results in an increase in bedridden aged people which becomes a social problem. Urgent development of a therapeutic agent for this disease is strongly desired. Disease due to a decrease in bone mass is expected to be treated by controlling bone resorption, accelerating bone formation, or improving balance between bone resorption and formation.

Osteogenesis is expected to increase by accelerating proliferation, differentiation, or activation of the cells controlling bone formation, or by controlling proliferation, differentiation, or activation of the cells involved in bone resorption. In recent years, strong interest has been directed to physiologically active proteins (cytokines) exhibiting such activities as described above, and energetic research is ongoing on this subject. The cytokines which have been reported to accelerate proliferation or differentiation of osteoblasts include the proteins of fibroblast growth factor family (FGF: Rodan S. B. et al., Endocrinology vol. 121, p l917, 1987), insulin-like growth factor I (IGF-I: Hock J. M. et al., Endocrinology vol. 122, p 254, 1988), insulin growth factor II (IGF-II: McCarthy T. et al., Endocrinology vol. 124, p 301, 1989), Activin A (Centrella M. et al., Mol. Cell. Biol., vol. 11, p 250, 1991), transforming growth factor- β , (Noda M., The Bone, vol. 2, p 29, 1988), Vasculotropin (Varonique M. et al., Biochem. Biophys. Res. Commun., vol. 199, p 380, 1994), and the protein of heterotopic bone formation factor family (bone morphogenic protein; BMP: BMP-2; Yanaguchi A. et al., J. Cell Biol. vol. 113, p 682, 1991, OP-1; Sampath T. K. et al., J. Biol. Chem. vol. 267, p 20532. 1992, and Knutsen R. et al., Biochem. Biophys. Res. Commun. vol. 194, P 1352, 1993).

On the other hand, as the cytokines which suppress differentiation and/or maturation of osteoclasts, transforming growth factor-β (Chenu C, et. al., Proc. Natl. Acad. Sci. USA, vol. 85, p 5683, 1988), interleukin-4 (Kasano K. et al., Bone-Miner., vol. 21, p 179, 1993), and the like have been reported. Further, as the cytokines which suppress bone resorption by osteoclast, calcitonin (Bone-Miner., vol. 17, p 347, 1992), macrophage colony stimulating factor (Hattersley G. et al., J. Cell. Physiol. vol. 137, p 199. 1988), interleukin-4 (Watanabe, K. et al., Biochem. Biophys. Res. Commun. vol. 172. P 1035, 1990), and interferon-γ (Gowen M. et al., J. Bone Miner. Res., vol. I, p 46.9, 1986) have been reported.

These cytokines are expected to be used as agents for treating diseases accompanying bone loss by accelerating bone formation or suppressing of bone resorption. Clinical tests are being undertaken to verify the effect of improving bone metabolism of some cytokines such as insulin-like growth factor-I and the heterotopic bone formation factor family. In addition, calcitonin is already commercially available as a therapeutic agent for osteoporosis and a pain relief agent. At present, drugs for clinically treating bone diseases or shortening the period of treatment of bone diseases include activated vitamin D₃, calcitonin and its derivatives, and hormone preparations such as estradiol agent, ipriflavon or calcium preparations. These agents are not necessarily satisfactory in terms of the efficacy and therapeutic results. Development of a novel therapeutic agent which can be used in place of these agents is strongly desired.

In view of this situation, the present inventors have undertaken extensive studies. As a result, the present inventors had found protein OCIF exhibiting an osteoclastogenesis-inhibitory activity in a culture broth of human embryonic lung fibroblast IMR-90 (ATCC Deposition No. CCL186), and filed a patent application (PCT/JP96/00374). The present inventors have conducted further studies relating to the origin of this protein OCIF exhibiting the osteoclastogenesis-inhibitory activity. The studies have matured into determination of the sequence of a genomic DNA encoding the human origin OCIF. Accordingly, an object of the present invention is to provide a genomic DNA encoding protein OCIF exhibiting osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA.

DISCLOSURE OF THE INVENTION

Specifically, the present invention relates to a genomic DNA encoding protein OCIF exhibiting osteoclastogenesisinhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA. The DNA of the present invention includes the nucleotide sequences No. 1 and No. 2 in the Sequence Table attached hereto.

Moreover, the present invention relates to a process for preparing a protein, comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the following physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique,

- (a) molecular weight (SDS-PAGE):
 - (i) Under reducing conditions: about 60 kD,
 - (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
- (b) amino acid sequence:

includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,

(c) affinity:

15

20

25

- exhibits affinity to a cation exchanger and heparin, and
- (d) thermal stability:
 - (i) the osteoclast differentiation and/or maturation inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclast differentiation and/or maturation inhibitory activity is lost when treated with heat at 90°C for 10 minutes.

The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity. This protein is effective as an agent for the treatment and improvement of diseases involving decrease in the amount of bone such as osteoporosis, diseases relating to bone metabolism abnormality such as rheumatism, degenerative joint disease, or multiple myeloma, and is useful as an antigen to establish an immunological diagnosis of such diseases.

35 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a result of Western Blotting analysis of the protein obtained by causing genomic DNA of the present invention to express a protein in Example 4 (iii), wherein lane 1 indicates a marker, lane 2 indicates the culture broth of COS7 cells in which a vector pWESRα(COIF (Example 4 (iii))has been transfected, and lane 3 is the culture broth of COS7 cell in which a vector pWESRα(control) has been transfected.

BEST MODE FOR CARRYING OUT THE INVENTION

The genomic DNA encoding the protein OCIF which exhibits osteoclastogenesis-inhibitory activity in the present invention can be obtained by preparing a cosmid library using a human placenta genomic DNA and a cosmid vector and by screening this library using DNA fragments which are prepared based on the OCIF cDNA as a probe. The thus-obtained genomic DNA is inserted into a suitable expression vector to prepare an OCIF expression cosmid. A recombinant type OCIF can be obtained by transfecting the genomic DNA into a host organism such as various types of cells or microorganism strains and causing the DNA to express a protein by a conventional method. The resultant protein exhibiting osteoclastogenesis-inhibitory activity (an osteoclastogenesis-inhibitory factor) is useful as an agent for the treatment and improvement of diseases involving a decrease in bone mass such as osteoporosis and other diseases relating to bone metabolism abnormality and also as an antigen to prepare antibodies for establishing immunological diagnosis of such diseases. The protein of the present invention can be prepared as a drug composition for oral or nonoral administration. Specifically, the drug composition of the present invention containing the protein which is an osteoclastogenesis-inhibitory factor as an active ingredient can be safely administered to humans and animals. As the form of drug composition, a composition for injection, composition for intravenous drip, suppository, nasal agent, sublingual agent, percutaneous absorption agent, and the like are given. In the case of the composition for injection, such a composition is a mixture of a pharmacologically effective amount of osteoclastogenesis-inhibitory factor of the present

invention and a pharmaceutically acceptable carrier. The composition may further comprise amino acids, saccharides, cellulose derivatives, and other excipients and/or activation agents, including other organic compounds and inorganic compounds which are commonly added to a composition for injection. When an injection preparation is prepared using the osteoclastogenesis-inhibitory factor of the present invention and these excipients and activation agents, a pH adjuster, buffering agent, stabilizer, solubilizing agent, and the like may be added if necessary to prepare various types of injection agents.

The present invention will now be described in more detail by way of examples which are given for the purpose of illustration and not intended to be limiting of the present invention.

10 Example 1

20

(Preparation of a cosmid library)

A cosmid library was prepared using human placenta genomic DNA (Clonetech; Cat. No. 6550-2) and pWE15 cosmid vector (Stratagene). The experiment was carried out following principally the protocol attached to the pWE15 cosmid vector kit of Stratagene Company, provided Molecular Cloning: A Laboratory Mannual (Cold Spring Harbor Laboratory (1989)) was referred to for common procedures for handling DNA, E. coli, and pharge.

(i) Preparation of restrictive enzymolysate of human-genomic DNA

Human placenta genomic DNA dissolved in 750 μl of a solution containing 10 mM Tris-HCl, 10 mM MgCl₂, and 100 mM NaCl was added to four 1.5 ml Eppendorf tubes (tube A, B, C, and D) in the amount of 100 μg each. Restriction enzyme Mbol was added to these tubes in the amounts of 0.2 unit for tube A, 0.4 unit for tube B, 0.6 unit for tube C, and 0.8 unit for tube D, and DNA was digested for 1 hour. Then, EDTA in the amount to make a 20 mM concentration was added to each tube to terminate the reaction, followed by extraction with phenol/chloroform (1:1). A two-fold amount of ethanol was added to the aqueous layer to precipitate DNA. DNA was collected by centrifugation, washed with 70% ethanol, and DNA in each tube was dissolved in 100 μl of TE (10 mM HCl (pH 8.0) + 1 mM EDTA buffer solution, hereinafter called TE). DNA in four tubes was combined in one tube and incubated for 10 minutes at 68°C. After cooling to room temperature, the mixture was overlayed onto a 10%-40 % linear sucrose gradient which was prepared in a buffer containing 20 mM Tris-HC1 (pH 8.0), 5 mM EDTA, and 1 mM NaC1 in an centrifugal tube (38 ml). The tube was centrifuged at 26,000 rpm for 24 hours at 20°C using a rotor SRP28SA manufactured by Hitachi, Ltd. and 0.4 ml fractions of the sucrose gradient was collected using a fraction collector. A portion of each fraction was subjected to 0.4% agarose electrophoresis to confirm the size of DNA. Fractions containing DNA with a length of 30 kb (kilo base pair) to 40 kb were thus combined. The DNA solution was diluted with TE to make a sucrose concentration to 10% or less and 2.5-fold volumes of ethanol was added to precipitate DNA. DNA was dissolved in TE and stored at 4°C.

(ii) Preparation of cosmid vector

The pWE15 cosmid vector obtained from Stratagene Company was completely digested with restriction enzyme BamHI according to the protocol attached to the cosmid vector kit. DNA collected by ethanol precipitation was dissolved in TE to a concentration of 1 mg/m1. Phosphoric acid at the 5'-end of this DNA was removed using calf small intestine alkaline phosphatase, and DNA was collected by phenol extraction and ethanol precipitation. The DNA was dissolved in TE to a concentration of 1 mg/ml.

5 (iii) <u>Ligation of genomic DNA to vector and in vitro packaging</u>

1.5 micrograms of genomic DNA fractionated according to size and 3 μg of pWE15 cosmid vector which was digested with restriction enzyme BamHI were ligated in 20 μl of a reaction solution using Ready-To-Go T4DNA ligase of Pharmacia Company. The ligated DNA was packaged in vitro using Gigapack™ II packaging extract (Stratagene) according to the protocol. After the packaging reaction, a portion of the reaction mixture was diluted stepwise with an SM buffer solution and mixed with E. coli XL1-Blue MR (Stratagene) which was suspended in 10 mM MgC1₂ to cause pharge to infect, and plated onto LB agar plates containing 50 μg/ml of ampicillin. The number of colonies produced was counted. The number of colonies per 1 μl of packaging reaction was calculated based on this result.

(iv) Preparation of a cosmid library

The packaging reaction solution thus prepared was mixed with E. coli XL1-Blue MR and the mixture was plated onto agarose plates containing ampicillin so as to produce 50,000 colonies per agarose plate having a 15 cm of diam-

eter. After incubating the plate overnight at 37°C, an LB culture medium was added in the amount of 3 ml per plate to suspend and collect colonies of E. coli. Each agarose plate was again washed with 3 ml of the LB culture medium and the washing was combined with the original suspension of E. coli. The E. coli collected from all agarose plates was placed in a centrifugal tube, glycerol was added to a concentration of 20%, and ampicillin was further added to make a final concentration of 50 μg/m1. A portion of the E. coli suspension was removed and the remainder was stored at -80°C. The removed E. coli was diluted stepwise and plated onto an agar plates to count the number of colonies per 1 ml of suspension.

Example 2

10

(Screening of cosmid library and purification of colony)

A nitrocellulose filter (Millipore) with a diameter of 14.2 cm was placed on each LB agarose plate with a diameter of 15 cm which contained 50 μg/m1 of ampicillin. The cosmid library was plated onto the plates so as to produce 50,000 colonies of E. coli per plate, followed by incubation overnight at 37°C. E. coli on the nitrocellulose filter was transferred to another nitrocellulose filter according to a conventional method to obtain two replica filters. According to the protocol attached to the cosmid vector kit, cosmid DNA in the E. coli on the replica filters was denatured with an alkali, neutralized, and immobilized on the nitrocellulose filter using a Stratalinker (Stratagene). The filters were heated for two hours at 80°C in a vacuum oven. The nitrocellulose filters thus obtained were hybridized using two kinds of DNA produced, respectively, from 5'-end and 3'-end of human OCIF cDNA as probes. Namely, a plasmid was purified from E. coli pKB/OIF10 (deposited at The Ministry of International Trade and Industry, the Agency of Industrial Science and Technology, Biotechnology Laboratory, Deposition No. FERM BP-5267) containing OCIF cDNA. The plasmid containing OCIF cDNA was digested with restriction enzymes KpnI and EcoRI. Fragments thus obtained was separated using agarose gel electrophoresis. Kpnl/EcoRl fragment with a length of 0.2 kb was purified using a QIAEX II gel extraction kit (Qiagen). This DNA was labeled with ³²p using the Megaprime DNA Labeling System (Amasham) (5'-DNA probe). Apart from this, a BamHI/EcoRV fragment with a length of 0.2 kb which was produced from the above plasmid by digestion with restriction enzymes BamHI and EcoRV was purified and labeled with 32p (3'-DNA probe). One of the replica filters described above was hybridized with the 5'-DNA probe and the other with the 3'-DNA probe. Hybridization and washing of the filters were carried out according to the protocol attached to the cosmid vector kit. Autoradiography detected several positive signals with each probe. One colony which gave positive signals with both probe was identified. The colony on the agar plate, which corresponding to the signal on the autoradiogram was isolated and purified. A cosmid was prepared from the purified colony by a conventional method. This cosmid was named pWEOCIF. The size of human genomic DNA contained in this cosmid was about 38 kb.

5 Example 3

40

(Determination of the nucleotide sequence of human OCIF genomic DNA)

(i) Subcloning of OCIF genomic DNA

Cosmid pWEOCIF was digested with restriction enzyme EcoRI. After the separation of the DNA fragments thus produced by electrophoresis using a 0.7% agarose gel, the DNA fragments were transferred to a nylon membrane (Hybond -N, Amasham) by the Southern blot technique and immobilized on the nylon membrane using Stratalinker (Stratagene). On the other hand, plasmid pBKOCIF was digested with restriction enzyme EcoRI and a 1.6 kb fragment containing human OCIF cDNA was isolated by agarose gel electrophoresis. The fragment was labeled with ³²P using the Megaprime DNA labeling system (Amasham).

Hybridization of the nylon membranes described above with the ³²P-labeled 1.6-kb OCIF cDNA was performed according to a conventional method detected that DNA fragments with a size of 6 kb, 4 kb, 3.6 kb, and 2.6 kb. These fragments hybridized with the human OCIF cDNA were isolated using agarose gel electrophoresis and individually subcloned into an EcoRI site of pBluescript II SK + vector (Strategene) by a conventional method. The resulting plasmids were respectively named pBSE 6, pBSE 4, pBSE 3.6, and PBSE 2.6.

(ii) Determination of the nucleotide sequence

The nucleotide sequence of human OCIF genomic DNA which was subcloned into the plasmid was determined using the ABI Dideoxy Terminator Cycle Sequencing Ready Reaction kit (Perkin Elmer) and the 373 Sequencing System (Applied Biosystems). The primer used for the determination of the nucleotide sequence was synthesized based on the nucleotide sequence of human OCIF cDNA (Sequence ID No. 4 in the Sequence Table). The nucleotide

ple which was diluted with α-MEM culture medium containing 1x10⁻⁸ M activated vitamin D₃ and 10% fetal bovine serum was added. After 7 days from the start of culturing, the cells were washed with a phosphate buffered saline and fixed with a ethanol/acetone (1:1) solution for one minute at room temperature. The osteoclast formation was detected by staining the cells using an acidic phosphatase activity measurement kit (Acid Phosphatase, Leucocyte, Cat.No. 387-A, Sigma Company). A decrease in the number of cells positive to acidic phosphatase activity in the presence of tartaric acid was taken as the OCIF activity. The results are shown in Table 1, which indicates that the conditioned medium exhibits the similar activity to natural type OCIF obtained from the IMR-90 culture medium and recombinant OCIF produced by CHO cells.

10

15

40

55

TABLE 1

Activity of OC	CIF expresse	d by COS-7 c	ells in the cor	nditioned med	lium	
Dilution	1/10	1/20	1/40	1/80	1/160	1/320
OCIF genomic DNA introduced	++	++	++	++	+	٠.
Vector introduced	-	-	-	-	-	-
Untreated	-	-	-	-	-	-

[&]quot;++" indicates an activity inhibiting 80% or more of osteoclast formation, "+" indicates an activity inhibiting 30-80% of osteoclast formation, and "-" indicates that no inhibition of osteoclast formation is observed.

(iii) Identification of the product by Western Blotting

A buffer solution (10 μ l) for SDS-PAGE (0.5 M Tris-HC1, 20% glycerol, 4% SDS, 20 μ g/m1 bromophenol blue, pH 6.8) was added to 10 μ 1 of the sample for the measurement of OCIF activity prepared in (ii) above. After boiling for 3 minutes at 100°C, the mixture was subjected to 10% SDS polyacrylamide electrophoresis under non-reducing conditions. The proteins were transferred from the gel to a PVDF membrane (ProBlott, Perkin Elmer) using semi-dry blotting apparatus (Biorad). The membrane was blocked and incubated for 2 hours at 37°C together with a horseradish peroxidase-labeled anti-OCIF antibody obtained by labeling the previously obtained OCIF protein with horseradish peroxidase according to a conventional method. After washing, the protein which has bound the anti-OCIF antibody was detected using the ECL system (Amasham). As shown in Figure 1, two bands, one with a molecular weight of about 120 kilo dalton and the other 60 kilo dalton, were detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESR α OCIF was transfected. On the other hand, these two bands with a molecular weight of about 120 kilo dalton and 60 kilo dalton were not detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESR α Vector was transfected, confirming that the protein obtained was OCIF.

INDUSTRIAL APPLICABILITY

The present invention provides a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA. The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity and is useful as an agent for the treatment and improvement of diseases involving a decrease in the amount of bone such as osteoporosis, other diseases resulting from bone metabolism abnormality such as rheumatism or degenerative joint disease, and multiple myeloma. The protein is further useful as an antigen to establish antibodies useful for an immunological diagnosis of such diseases.

NOTE ON MICROORGANISM

50 Depositing Organization:

The Ministry of International Trade and Industry, National Institute of Bioscience and

Human Technology, Agency of Industrial Science and Technology

Address: Date of Deposition: 1-3, Higashi-1-Chome, Tsukuba-shi, Ibaraki-ken, Japan

June 21, 1995 (originally deposited on June 21, 1995 and transferred to the international

deposition according to the Budapest Treaty on October 25, 1995)

Accession No. FERM BP-5267

TABLE OF SEQUENCES

C	~	7
Sequence	number:	1

Length of sequence: 1316

Sequence Type: nucleic acid

Strandedness: double

Topology: linear

Molecular type: genomic DNA (human OCIF genomic DNA-1)

Sequence:

CTGGAGACAT ATAACTTGAA CACTTGGCCC TGATGGGGAA GCAGCTCTGC AGGGACTTTT TCAGCCATCT GTAAACAATT TCAGTGCCAA CCCGCGAACT GTAATCCATG AATGGGACCA 120 CACTITACAA GTCATCAAGT CTAACTICTA GACCAGGGAA TTAATGGGGG AGACAGCGAA 180 CCCTAGAGCA AAGTGCCAAA CTTCTUTCGA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG 240 AGGCTACTCC AGAACTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTGATGATGG 300 TEGEGITTEGT GAAGGGAACA CTGCTCCGCA AGGTTATCCC TGCCCCAGGC AGTCCAATTT 360 TCACTCTGCA GATTCTCTCT GGCTCTAACT ACCCCAGATA ACAAGGAGTG AATGCAGAAT 420 AGCACGGCCT TTAGGGCCAA TCAGACATTA GTTAGAAAAA TTCCTACTAC ATGGTTTATG TAAACTTGAA GATGAATGAT TGCGAACTCC CCGAAAAGGG CTCAGACAAT GCCATGCATA 540 AAGAGGGGCC CTGTAATITG AGGTTTCAGA ACCCGAAGTG AAGGGGTCAG GCAGCCGGGT 600 ACGGCGGAAA CTCACAGCTT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACTCCAAC 660 TGCGTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGCAGCT 720 GCCCAGCGTG TGCCCAGCCC TCCCACCGCT GGTCCCGGCT GCCAGGAGGC TGGCCGCTGG CEGGAAGGGG CCGGGAAACC TCAGAGCCCC GCGGAGACAG CAGCCGCCTT GTTCCTCAGC 840 CCGGTGGCTT TTTTTTCCCC TGCTCTCCCA GGGGACAGAC ACCACCGCCC CACCCCTCAC 900 GCCCCACCTC CCTGGGGGAT CCTTTCCGCC CCAGCCCTGA AAGCGTTAAT CCTGGAGCTT 960 TCTGCACACC CCCCGACCGC TCCCGCCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTTG 1020 GTCCAGGATA GAAAAATGAC TGATCAAAGG CAGGCGATAC TTCCTGTTGC CGGGACGCTA 1080 TATATAACGT GATGAGCGCA CGGGCTGCGG AGACGCACCG GAGCGCTCGC CCAGCCGCCG 1140

55

10

15

20

25

30

35

	CCTCCAAGCC CCTGAGGTTT CCGGGGACCA CA ATG AAC AAG TTC CTG TGC TGC 119
5	Net Asn Lys Leu Leu Cys Cys
	-20 -15
10	GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCC GGCGCCTGGG 124
	Ala Leu Val
15	GAEGETGETG CCACCTGGTC TECCAACCTE ECAGEGGACE GGEGGGGAGA AGGETECACT 130
	CGCTCCCTCC CAGG
20	Sequence number: 2
	Length of sequence: 9898
25	Sequence Type: nucleic acid
	Strandedness: double
30	Topology: linear
	Molecular type: genomic DNA (human OCIF genomic DNA-2)
35	Sequence: GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAC AGGACTTTGA GTCAAATGAT 60
40	ACTOTTGCAC ATAAGAACAA ACCTATTTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC 120 TCCTTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT 171
	Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe
45	-10 -5 1
	CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG 219
50	Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu
	5 10 , 15

	TGT	GAC	AAA	TGT	CCT	CCT	GGT	ACC	TAC	CTA	AAA	CAA	CAC	TGT	ACA	GCA	267
5	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr	Tyr	Leu	Lys	Gla	His	Cys	Thr	Ala	
	20					25					30					35	
10																	
			AAG														315
	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Туг	Tyr	Thr	Asp	
15					40					45					50		
	AGC	TGG	CAC	ACC	AGT	GAC	GAG	TGT	CTA	TAC	TGC	AGC	CCC	GTG	TGC	AAG	363
20	Ser	Тгр	His	Thr	Ser	Asp	Glu	Cys	Leu	Туг	Cys	Ser	Pro	Yal	Cys	Lys	
				55		-			60					65	•	-	
25															•		
•	GAG	CTG	CAG	TAC	GTC	AAG	CAG	GAG	TGC	AAT	CGC	ACC	CAC	AAC	CGC	GTG	411
	Glu	Leu	Glo	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	
30			70					75					80				
35	TGC	GAA	TGC	AAG	GAA	GGG	CGC	TAC	CTT	GAG	ATA	GAG	TTC	TGC	TTG	AAA	459
			Çys												_	_	
		85	~	-, •		÷-•	90					95				:	
40		•								•							
	CAT	AGG	AGC	TGC	CCT	CCT	GGA	TTT	GGA	GTG	GTG	CAA	GCT	G G1	ACGT	GTCA	509
45	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala				
	100					105					110				÷		
50		1001		~-				ma 4 :		.mo + -						0.0	F.0.0
	ATGT	UCA(ica a	ITAAI	TTAA	A GG	ATCA	TIGCA	L AAG	TUAG	ATA	GITG	IGAC	ag 1	TTAG	GAGAA	569

	CACTITIGIT	CIGATGACAT	TATAGGATAG	CAAATTUCAA	AGGTAATGAA	ACCTGCCAGG	623
5	TAGGTACTAT	GTGTCTGGAG	TGCTTCCAAA	GGACCATTGC	TCAGAGGAAT	ACTTTGCCAC	689
	TACAGGGCAA	TTTAATGACA	AATCTCAAAT	GCAGCAAATT	ATTCTCTCAT	GAGATGCATG	749
	ATGGTTTTTT	TITITITIT	TAAAGAAACA	AACTCAAGTT	GCACTATTGA	TAGTTGATCT	809
10	ATACCTCTAT	ATTTCACTTC	AGCATGGACA	CCTTCAAACT	GCAGCACTTT	TTGACAAACA	869
	TCAGAAATGT	TAATTTATAC	CAAGAGAGTA	ATTATGCTCA	TATTAATGAG	ACTCTGGAGT	929
15	GCTAACAATA	AGCAGTTATA	ATTAATTATG	TAAAAAATGA	GAATGGTGAG	GGGAATTGCA	989
	TTTCATTATT	AAAAACAAGG	CTAGTTCTTC	CTTTAGCATG	GGAGCTGAGT	GTTTGGGAGG	1049
•	STAAGGACTA	TAGCAGAATC	TCTTCAATGA	GCTTATTCTT	TATCTTAGAC	AAAACAGATT	1109
20	GTCAAGCCAA	GAGCAAGCAC	TTGCCTATAA	ACCAAGTGCT	TTCTCTTTTG	CATTTTGAAC	1169
	AGCATTGGTC	AGGGCTCATG	TGTATTGAAT	CTTTTAAACC	AGTAACCCAC	GTTTTTTTC	1229
25	TGCCACATTT	GCGAAGCTTC	AGTGCAGCCT	ATAACTTTTC	ATAGCTTGAG	AAAATTAAGA	1289
	GTATCCACTT	ACTTAGATGG	AAGAAGTAAT	CAGTATAGAT	TCTGATGACT	CAGTTTGAAG	1349
	CAGTGTTTCT	CAACTGAAGC	CCTGCTGATA	TTTTAAGAAA	TATCTGGATT	CCTAGGCTGG	1409
30	ACTCCTTTTT	GTGGGCAGCT	GTCCTGCGCA	TTGTAGAATT	TTGGCAGCAC	CCCTGGACTC	1469
	TAGCCACTAG	ATACCAATAG	CAGTCCTTCC	CCCATGTGAC	AGCCAAAAAT	CTCTTCAGAC	1529
35	ACTGTCAAAT	GTCGCCAGGT	GGCAAAATCA	CTCCTCGTTG	AGAACAGGGT	CATCAATGCT	1589
	AAGTATCTGT	AACTATTTTA	ACTCTCAAAA	CTTGTGATAT	ACAAAGTCTA	AATTATTAGA	1649
	CGACCAATAC	TTTAGGTTTA	AAGGCATACA	AATGAAACAT	TCAAAAATCA	AAATCTATTC	1709
40	TGTTTCTCAA	ATAGTGAATC	TTATAAAATT	AATCACAGAA	GATGCAAATT	GCATCAGAGT	1769
	CCCTTAAAAT	TCCTCTTCGT	ATGAGTATTT	GAGGGAGGAA	TTGGTGATAG	TTCCTACTTT	1829
45	CTATTGGATG	GTACTTTGAG	ACTCAAAAGC	TAAGCTAAGT	TETETETETE	TCAGGGTGCG	1889
	GGGTGTGGAA	TCCCATCAGA	TAAAAGCAAA	TCCATGTAAT	TCATTCAGTA	ACTTGTATAT	1949
	GTAGAAAAAT	GAAAAGTGGG	CTATGCAGCT	TGGAAACTAG	AGAATTITGA	AAAATAATGG [']	2009
50	AAATCACAAG	GATCTTTCTT	AAATAAGTAA	GAAAATCTGT	TTGTAGAATG	AAGCAAGCAG	2069
	GCAGCCAGAA	GACTCAGAAC	AAAAGTACAC	ATTTTACTCT	GTGTACACTG	GCAGCACAGT	2129

10

15

20

25

30

35

45

50

55

GGGATTTATT TACCTCTCCC TCCCTAAAAA CCCACAGGC GGTTCCTCTT GGGAAATAAG 2189 AGGTTTCCAG CCCAAAGAGA AGGAAAGACT ATGTGGTGTT ACTCTAAAAA GTATTTAATA 2249 TACTICATIC TGITAATICC TGIGGAATTA CITAGAGCAA GCATGGIGAA TICTCAACTG 2369 TAAAGCCAAA TITCTCCAIC ATTATAATIT CACATITTGC CTGGCAGGTT ATAATTITTA 2429 TATTTCCACT GATAGTAATA AGGTAAAATC ATTACTTAGA TGGATAGATC TITTTCATAA 2489 AAAGTACCAT CAGTTATAGA GGGAAGTCAT GTTCATGTTC AGGAAGGTCA TTAGATAAAG 2549 CTTCTGAATA TATTATGAAA CATTAGTTCT GTCATTCTTA GATTCTTTT GTTAAATAAC 2609 TTTAAAAGCT AACTTACCTA AAAGAAATAT CTGACACATA TGAACTTCTC ATTAGGATGC 2669 AGGAGAAGAC CCAAGCCACA GATATGTATC TGAAGAATGA ACAAGATTCT TAGGCCCGGC 2729 ACGGTGGCTC ACATCTCTAA TCTCAAGAGT TTGAGAGGTC AAGGCGGGCA GATCACCTGA 2789 GGTCAGGAGT TCAAGACCAG CCTGGCCAAC ATGATGAAAC CCTGCCTCTA CTAAAAATAC 2849 AAAAATTAGC AGGGCATGGT GGTGCATGCC TGCAACCCTA GCTACTCAGG AGGCTGAGAC 2909 AGGAGAATCT CTTGAACCCT CGAGGCGGAG GTTGTGGTGA GCTGAGATCC CTCTACTGCA 2969 CTCCAGCCTG GGTGACAGAG ATGAGACTCC GTCCCTGCCG CCGCCCCGC CTTCCCCCCC 3029 AAAAAGATTC TTCTTCATGC AGAACATACG GCAGTCAACA AAGGGAGACC TGGGTCCAGG 3089 TGTCCAAGTC ACTTATTTCG AGTAAATTAG CAATGAAAGA ATGCCATGGA ATCCCTGCCC 3149 AAATACCTCT GCTTATGATA TTGTAGAATT TGATATAGAG TTGTATCCCA TTTAAGGAGT 3209 AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACA GAAAACCCTC TTTGCTTTGT 3269 AAGGTGGTTC CTAAGATAAT GTCAGTGCAA TGCTGGAAAT AATATTTAAT ATGTGAAGGT 3329 TITAGGCTGT GTTTTCCCCT CCTGTTCTTT TTTTCTGCCA GCCCTTTGTC ATTTTTGCAG 3389 GTCAATGAAT CATGTAGAAA GAGACAGGAG ATGAAACTAG AACCAGTCCA TTTTGCCCCT 3449 TITITTATIT TCTGGTTTTG GTAAAAGATA CAATGAGGTA GGAGGTTGAG ATTTATAAAT 3509 GAAGTTTAAT AAGTTTCTGT AGCTTTGATT TTTCTCTTTC ATATTTGTTA TCTTGCATAA 3569 GCCAGAATTG GCCTGTAAAA TCTACATATG GATATTGAAG TCTAAATCTG TTCAACTAGC 3629 TTACACTAGA TGGAGATATT TTCATATTCA GATACACTGG AATGTATGAT CTAGCCATGC 3689

GTAATATAGT CAAGTGTTTG AAGGTATTTA TTTTTAATAG CGTCTTTAGT TGTGGACTGG 3749
TTCAAGTTTT TCTGCCAATG ATTTCTTCAA ATTTATCAAA TATTTTTCCA TCATGAAGTA 3809
AAATGCCCTT GCAGTCACCC TTCCTGAAGT TTGAACGACT CTGCTGTTTT AAACAGTTTA 3869
AGCAAATGGT ATATCATCTT CCGTTTACTA TGTAGCTTAA CTGCAGGCTT ACGCTTTTGA 3929
GTCAGCCGCC AACTTTATTG CCACCTTCAA AAGTTTATTA TAATGTTGTA AATTTTTACT 3989
TCTCAACGTT AGCATACTTA GGAGTTGCTT CACAATTAGG ATTCAGGAAA GAAAGAACTT 4049
CAGTAGGAAC TGATTGGAAT TTAATGATGC AGCATTCAAT GGGTACTAAT TTCAAAGAAT 4109
GATATTACAG CAGACACACA GCAGTTATCT TGATTTTCTA GGAATAATTG TATGAAGAAT 4169
ATGGCTGACA ACACGGCCTT ACTGCCACTC AGCGGAGGCT GGACTAATGA ACACCCTACC 4229
CTTCTTTCCT TTCCTCTCAC ATTTCATGAG CGTTTTGTAG GTAACGAGAA AATTGACTTG 4289
CATTTGCATT ACAAGGAGGA GAAACTGGCA AAGGGGATGA TGGTGGAAGT TTTGTTCTGT 4349
CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGTGCAA CATAATAGTA GCAGTAAAAA 4409
CCAAGTGAAA AGTCTTTCCA AAACTGTGTT AAGAGGGCAT CTGCTGGGAA ACGATTTGAG 4469
GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA ACC CCA GAG CGA AAT ACA 4523
GIY Thr Pro Glu Arg Asd Thr

10

15

20

25

30

35

50

55

- 115

GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT 4571

Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser

120 125 130 135

AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TIT GGT CTC CTG 4619

Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu

140 145 150

CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC 4667

Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn 155 160 165

175

5

10

15

20

25

30

35

40

45

50

55

170

AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715 Ser Glu Ser Thr Gla Lys Cys Gly-Ile

GTCTTTGTAC GATTTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775 -ACATTOTICG TOALACTTAC ATTITECETT TOTIGAATOT TAACCAGOTA AGGOTACTOT 4835 CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT 4895 AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA 4955 AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015 CUTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC 5075 TAAGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCCT 5135 ATAATCCCAA CATTTTGGGG GGCCAAGGTA GGCAGATCAC TTGAGGTCAG GATTTCAAGA 5195 CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA ATACAAAAAT TAGCTGGGCA 5255 TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC 5315 CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG 5375 AGCAAGATTT CATCACACAC ACACACACAC ACACACACA ACACATTAGA AATGTGTACT 5435 TGGCTTTGTT ACCTATCGTA TTAGTGCATC TATTGCATGG AACTTCCAAG CTACTCTGGT 5495 TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA 5555 TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCCAC 5615 CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5675 TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5735 TACAAAGAAG TITATGAAGC AGAGAAATGT GAATTGATAT ATATATGAGA TICTAACCCA 5795 CTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5855

TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5915 TITAACATIC ICTITAATTA ATTCATTITT AATTITACTI TITTICATTI ATTCTCCACT 5975 TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA AAAACACTGT GAAAGTTGCT 6035 TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC AAAGCCAGGT CTGATGAATC 6095 CAAAAACAAA CACCCATTAC TCCCATTTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155 GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6215 GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6275 AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335 ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 6395 TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6455 ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6515 ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6575 TITTATTCAA ACTITGCATT TIAGCATATT TTATCTIGGA AAATTCAATT GIGTIGGTTT 6635 TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG 6695 GTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747 Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg

10

15

20

25

30

35

40

45

50

55

180 185

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

190 195 200

GAC AAT TTG CCT GGC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA 6843
Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215

AAA CGG CAA CAC AGC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA 6891

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

220 225 230 235

TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G 6940
Trp Lys His Glo Aso Lys Asp Glo Asp Ile Val Lys Lys Ile Ile Glo
240 245 250

GTATGATAAT CTAAAATAAA AAGATCAATC AGAAATCAAA GACACCTATT TATCATAAAC 7000 CAGGAACAAG ACTGCATGTA TGTTTAGTTG TGTGGATCTT GTTTCCCTGT TGGAATCATT 7060 GTTGGACTGA AAAAGTTTCC ACCTGATAAT GTAGATGTGA TTCCACAAAC AGTTATACAA 7120 GGTTTTGTTC TCACCCCTGC TCCCCAGTTT CCTTGTAAAG TATGTTGAAC ACTCTAAGAG 7180 AAGAGAAATG CATTTGAAGG CAGGGCTGTA TCTCAGGGAG TCGCTTCCAG ATCCCTTAAC 7240 GCTTCTGTAA GCAGCCCCTC TAGACCACCA AGGAGAAGCT CTATAACCAC TTTGTATCTT 7300 ACATTGCACC TCTACCAAGA AGCTCTGTTG TATTTACTTG GTAATTCTCT CCAGGTAGGC 7360 TTTTCGTAGC TTACAAATAT GTTCTTATTA ATCCTCATGA TATGGCCTGC ATTAAAATTA 7420 TITTAATGGC ATATGTTATG AGAATTAATG AGATAAAATC TGAAAAGTGT TTGAGCCTCT 7480 TGTAGGAAAA AGCTAGTTAC AGCAAAATGT TCTCACATCT TATAAGTTTA TATAAAGATT 7540 CTCCTTTAGA AATGGTGTGA GAGAGAACA GAGAGAGATA GGGAGAGAG TGTGAAAGAA 7600 TCTGAAGAAA AGGAGTTTCA TCCAGTGTGG ACTGTAAGCT TTACGACACA TGATGGAAAG 7660 ACTTCTGACT TCAGTAAGCA TTGGGAGGAC ATGCTAGAAG AAAAAGGAAG AAGAGTTTCC 7720 ATAATGCAGA CAGGGTCAGT GAGAAATTCA TTCAGGTCCT CACCAGTAGT TAAATGACTG 7780 TATAGTCTTG CACTACCCTA AAAAACTTCA AGTATCTGAA ACCGGGGCAA CAGATTTTAG 7840 GAGACCAACG TCTTTGAGAG CTGATTGCTT TTGCTTATGC AAAGAGTAAA CTTTTATGTT 7900 TTGAGCAAAC CAAAAGTATT CTTTGAACGT ATAATTAGCC CTGAAGCCGA AAGAAAAGAG 7960 AAAATCAGAG ACCGTTAGAA TTGGAAGCAA CCAAATTCCC TATTTTATAA ATGAGGACAT 8020

55

5

10

15

20

25

30

35

40

45

	TT	CAAC	CCAG	AAA	GATG/	AAC	CGAT	TTGG	CT T	AGGG	CTCAC	: AG	ATAC	TAAG	TGA	CTCATGT	8080
5	CA1	TAA1	[AGA	AAT(TTA(TT	CCTC	CCTC1	T A	GCTT	TGTAC	CC	TAGC	TTAT	TACT	I GAAATA	8140
,	TTC	TCTA	IGGC	TGT(TGTO	CTC	CTTT	AGTTO	C T	CGAC	CTCAT	GT	CTT	GAGT	TTT	CAGATAT	8200
	CCT	CCTC	ATG	GAGG	TAGT	CC '	TCTG(STGCI	A TO	GTGT/	ATTC1	TT	AAA G	GCTA	GTTA	CGGCAA	8260
10	TTA	ACTI	ATC	AAC1	AGCG	icc 1	F ACTA	LATGA	A A	TTT	TATE	ACA	LAAG	TAGC	TAAC	TTGAAT	8320
	ACT	TTCC	TTT	TITI	CTGA	AA 1	rgtta	TGGT	'G G1	TAATT	TCTC	AAA	CTT	TTC	TTAG	AAAACT	8380
15	GAG	AGTC	ATG	TGTC	TATT	TT 1	CTAC	TGTT	'A A1	TITO	AAAA	TTA	lGGA(CTT	CTTC	CAAAGT	8440
	TTT	GTTG	GAT	GCCA	AAAA	TA 1	TATAG	CATA	T TA	TCTT	ATTA	TAA	CAA	LAAA	TATT	TATCTC	8500
, ₹,	AGT	TCTT	AGA	AATA	aatg	GT 0	TCAC	TTAA	C TC	CCTC	TCAA	AAG	AAA	GGT	TATC	ATTGAA	8560
20	ATA'	TAAT	TAT	GAAA	TTCT	GC A	AGAA	CCTT	T TG	CCTC	ACGC	TTG	TTT	ATG	ATGG	CATTGG	8620
	ATG	AATA	TAA	ATGA	TGTG	AA C	ACTT	ATCT	G GG	CTTT	TGCT	TTA	TGCA	G A1	ATT	GAC	8676
25														Asp	lle	Asp	
	CTC	TGT	GAA	AAC	AGC	GTG	CAG	CGG	CAC	ATT	GGA	CAT	GCT	AAC	CTC	ACC	8724
30	Leu	Cys	Glu	Asn	Ser	Val	Glo	Arg	His	Ile	Gly	His	Ala	Asa	Leu	Thr	s.
	255					260					265					270	
35																	
															AAA		8772
	Phe	Glu	Gln	Leu		Ser	Leu	Met	Glu		Leu	Pro	Gly	Lys	Lys	Val	
40					275					280					285		
												•					
45	GGA	GCA	GAA	GAC	ATT	GAA	AAA	ACA	ATA	AAG	GCA	TGC	AAA	CCC	AGT	GAC	8820
	Gly	Ala	Glu	Asp	He	Glu	Lys	Thr	He	Lys	Ala	Cys	Lys	Pro	Ser	Asp	
50				290					295					300			
50																	
	CAG	ATC	CTG	AAG	CTG	CTC	AGT	TTG	TGG	CGA	ATA	AAA	AAT	GGÇ	GAC	CAA	8868

	QIII	110	LCU	Lys	Leu		061	Deu	11 h	ur 2	116	LJS	, uar	i GT	y vzt	GLD	
5			305					310					315	•			
	GAC	ACC	TTC	AAG	GGC	СТА	ATG	CAC	GCA	CTA	AAG	CAC	TCA	AAG	ACG	TAC	8916
10	Asp	Thr	Leu	Lys	Gly	Leu	Met	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	
		320					325	:				330					
15																	
	CAC	Ш	CCC	AAA	ACT	GTC	ACT	CAG	AGT	CTA	AAG	AAG	ACC	ATC	AGG	TTC	8964
•	His	Phe	Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	
20	. 335					340					345					350	
		_															
25				_											TTA		9012
	Leu	His	Ser	Phe		Met	Tyr	Lys			G1n	Lys	Leu		Leu	Glu	
30					355					360				٠	365		
	ATC	ATA	ቦሶሞ	A A O	ርልሮ -	ሮሞሮ	CAA	ም ሮ እ	ር ሞል	443	171	100	ሞቦድ	ተሞ ል			0054
		ATA															9054
35	Mer	lle		370	Afn	ATI	AIII		975	r)2	116	SEL	LYS				
				310				•	913					380			
40	TAAC	TGGA	AA T	GGCC	ATTG	A GC	TGTT	TCCT	CAC	AATT	GGC	GAGA	TCCC	AT C	:GATG	AGTAA	9114
•	ACTG	TTTC	TC A	GGCA	CTTG	A GG	CTTT	CAGT	GAT	ATCT	TTC	TCAT	TACC	AG 1	GACT	AATTT	9174
	TGCC	ACAG	GG T	ACTA	AAAG	A AA	CTAT	GATG	TGG	AGAA.	AGG	ACTA	ACAT	CT (CTCC	AATAA	9234
45	ACCC	CAAA	TG G	TTAA	TCCA	A CT	GTCA	GATC	TGG	ATCG	TTA	TCTA	CTGA	CT A	TATT	TTCCC	9294
	TTAT	TACT	GC T	TGCA	GTAA	T TC	AACT	GGAA	ATT	AAAA	AAA .	AAAA	ACTA	GA C	TCCA	CTGGG	9354
50	CCTT	'ACTA	AA T	'ATGG	GAAT	g TC	TAAC	TTAA	ATA	GCTT	TGG	GATT	CCAG	CT A	TGCT	AGAGG	9414
	مخشا	ተለተተ	AC 4	4 ACC	CATA!	ጥ ጥጥ	ተተላጥ	የተ	A A A	الملمان	ለርጭ	4 A T A	ጥ ለ ጥሶ	ሞቦ ቱ	*A A C 4	ቦጥ ል ኮጥ	0.474

ACAGTATTGC TATTTATATT CATTCAGATA TAAGATTTGG ACATATTATC ATCCTATAAA 9534
GAAACGGTAT GACTTAATTT TAGAAAGAAA ATTATATTCT GTTTATTATG ACAAATGAAA 9594
GAGAAAATAT ATATTTTAA TGGAAAGTTT GTAGCATTTT TCTAATAGGT ACTGCCATAT 9654
TTTTCTGTGT GGAGTATTTT TATAATTTTA TCTGTATAAG CTGTAATATC ATTTTATAGA 9714
AAATGCATTA TTTAGTCAAT TGTTTAATGT TGGAAAACAT ATGAAATATA AATTATCTGA 9774
ATATTAGATG CTCTGAGAAA TTGAATGTAC CTTATTTAAA AGATTTTATG GTTTTATAAC 9834
TATATAAATG ACATTATTAA AGTTTTCAAA TTATTTTTA TTGCTTTCTC TGTTGCTTTT 9894
ATTT

Sequence number: 3

Length of sequence: 401

Sequence Type: amino acid

Strandedness: single stranded

Topology: linear

Molecular type: protein

Sequence:

10

15

20

25

40

50

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp [le Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 1 5

Tyr Asp Glu Glu Thr Ser His Gla Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

	Ile	Gln	Asp	lle	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	lle
5	250					255					260				
	Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	M et	Glu
10	265					270					275				
	Ser	Leu	Pro	Gly	Lys	Lys	Yal	Gly	Ala	G1u	Asp	Ile	Glu	Lys	Thr
	280				•	285	:				290				
15	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gla	Ile	Leu	Lys	Leu	Leu	Ser
. 4	e 29 5					300					305				
20	Leu	Trp	Arg	[le	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu
	310					315				. •	320				
25	Net	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr
	325					330				•	335				•
3 <i>0</i>	Val	Thr	G1n	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
	340					345					350				
	Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	G1 u	Met	lle	Gly
35	355					360					365				
	Asa	Gln	Yal	Gln	Ser	Val	Lys	[]e	Ser	Cys	Leu				
10	370					375				-	380			•	•
	Seque	ence	num	ber	: 4										
15	Lengt					120)6						-		
	Seque	ence	тур	e: r	nucl	eic	acio	i				•	•		
	Stran	ndedi	ness	: si	ingl	e st	rand	ded							
50	Topol	ogy	: li	neaı	c										
	Molec	ula	r ty	pe:	CDN	A				•					

	ocquence.						
5	ATGAACAACT	TCCTCTCCTC	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCAC	60
•	CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTC	120
	TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
10	GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGACTGT	240
	CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
15	CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
	CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GAACCCCAGA	GCGAAATACA	420
3 =	GTTTGCAAAA	GATGTCCAGA	TGGGTTCTTC	TCAAATGAGA	CGTCATCTAA	AGCACCCTGT	480
20	AGAAAACACA	CAAATTGCAG	TGTCTTTGGT	CTCCTGCTAA	CTCAGAAAGG	AAATGCAACA	540
	CACGACAACA	TATGTTCCGG	AAACAGTGAA	TCAACTCAAA	AATGTGGAAT	AGATGTTACC	600
25	CTGTGTGAGG	AGGCATTCTT	CAGGTTTGCT	GTTCCTACAA	AGTTTACGCC	TAACTGGCTT	660
	AGTGTCTTGG	TAGACAATTT	GCCTGGCACC	AAAGTAAACG	CAGAGAGTGT	AGAGAGGATA	720
	AAACGGCAAC	ACAGCTCACA	AGAACAGACT	TTCCAGCTGC	TGAAGTTATG	GAAACATCAA	780
30	AACAAAGACC	AAGATATAGT	CAAGAAGATC	ATCCAAGATA	TTGACCTCTG	TGAAAACAGC	840
	GTGCAGCGGC	ACATTGGACA	TGCTAACCTC	ACCTTCGAGC	AGCTTCGTAG	CTTGATGGAA	900
35	AGCTTACCGG	GAAAGAAAGT	GGGAGCAGAA	GACATTGAAA	AAACAATAAA	GGCATGCAAA	960
	CCCAGTGACC	AGATCCTGAA	GCTGCTCAGT	TTGTGGCGAA	TAAAAAATGG	CGACCAAGAC	1020
40	ACCTTGAAGG	GCCTAATGCA	CGCACTAAAG	CACTCAAAGA	CGTACCACTT	TCCCAAAACT	1080
40	GTCACTCAGA	GTCTAAAGAA	GACCATCAGG	TTCCTTCACA	GCTTCACAAT	GTACAAATTG	1140
	TATCAGAAGT	TATTTTAGA	AATGATAGGT	AACCAGGTCC	AATCAGTAAA	AATAAGCTGC	1200
45	TTATAA						1206

SEQUENCE LISTING

	(1) GENERAL INFORMATION:	
5	•	
	(i) APPLICANT:	
	(A) NAME: SNOW BRAND MILK PRODUCTS CO., LTD.	
	(B) STREET: 1-1, NAEBOCHO 6-CHOMB (C) CITY: HIGASHI-KU, SAPPORO-SHI	
	(D) STATE: HOKKAIDO	
10	(E) COUNTRY: JP	
,,	(P) POSTAL CODE (ZIP): NONE	
	(ii) TITLE OF INVENTION, NOVEL DAY AND AND	
	(11) TITLE OF INVENTION: NOVEL DNA AND PROCESS FOR PREPARING PROTEIN USING THE DNA	N
	//// ·	
15	(iii) NUMBER OF SEQUENCES: 4	
	(iv) COMPUTER READABLE FORM:	
•	(A) MEDIUM TYPE: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)	
20	(v) CURRENT APPLICATION DATA:	
	APPLICATION NUMBER: RP 97935810 9	
	(V1) PRIOR APPLICATION DATA:	
	(A) APPLICATION NUMBER: JP 235928/96	
	(B) FILING DATE: 19-AUG-1996	
25	(2) INFORMATION FOR SEQ ID NO:1:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1316 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-1)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	CTGGAGACAT ATAACTTGAA CACTTGGCCC TGATGGGGAA GCAGCTCTGC AGGGACTTTT 60	
35	TORGODATOT GTARACARTT TCAGTGGCAA CCCGCGAACT GTAATCCATC AATGGGA GGA	
	CICATORA GICATORAGI CICACOTORA GACCAGA MANAMOGOGO AGAGA GACAGA GA	
	COCIAGAGOA AAGIGCCAAA CITCTGTCGA TACCTTGACA CTACTARA CACCTGGA TA	
	AGGCTACTCC AGAAGTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTGATGATGG 300 TGGGGTTGGT GAAGGGAACA GTGCTCCGCA AGGTTATCCC TGCCCCAGGC AGTCCAATTT 360	
	TOROICIGOR GATTUTUTUT GGCTCTAACT ACCCCACATA ACAACCACTTC AATTO	
40	ACCACGGGCT TTAGGGCCAA TCAGACATPA GTPAGAAAA TTAGGGCTACTAC AMACTIONAL	
40	THE COLUMN CATGARTERY TECGRACTER CYCLARACTER CONTROL TO	
	ANOMOGOGO CIGINATITY AGGITTCAGA ACCCCAACTG AACCCCTTCAC COACCCCTTCAC	
	ACGGCGGAAA CTCACAGCTT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACTCCAAC 660 TGCGTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGCAGCT 720	
	TOCCACCECT GETTCCCACCECT CCCACCACCACCA TOCCACCACCA	
	COUNTING COGGRANCE TEAGRETTE GEGETATE CACCOCCOMM COMMON CO	
45	COGGGGCIT TITTITUUCC TGCTCTCCCA GGGGACAGAC ACCACCCCCA CACCCCCACACACA	
	TOTAL COLORGERY CONTROL CONTROL STORMS AND COMPANY OF THE STORY OF THE	
	TCTGCACACC CCCCGACCGC TCCCGCCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTTG 1020 GTCCAGGATA GAAAAATGAC TGATCAAAGG CAGGCGATAC TTCCTGTTGC CGGGACGCTA 1080	
	COLORAGOT CCGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC 1193	
50	Met Asn Lys Leu Leu Cys Cys	
	-20 -15	
	GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCC GGCGCCTGGG 1242	
	1242	

GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGGAGA AGGCTCCACT 1302

Ala Leu Val

5	CGCTCCCTCC CAGG	1316
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9898 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-2)	
	(ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-2) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
15	GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAC AGGACTTTGA GTCAAATGAT ACTGTTGCAC ATAAGAACAA ACCTATTTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC TCCTTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe -10 -5 1	120 171
20	CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu 5 10 15	219
25	TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala 20 25 30 35	267
	AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC TAC ACA GAC Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp 40 45 50	315
30	AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys 55 60 65	363
35	GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC CAC AAC CGC GTG Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val 70 75 80	411
	TGC GAA TGC AAG GAA GGG CGC TAC CTT GAG ATA GAG TTC TGC TTG AAA Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95	459
40	CAT AGG AGC TGC CCT CCT GGA TTT GGA GTG GTG CAA GCT G GTACGTGTCA His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110	, 509
45	ATGTGCAGCA AAATTAATTA GGATCATGCA AAGTCAGATA GTTGTGACAG TTTAGGAGAA CACTTTTGTT CTGATGACAT TATAGGATAG CAAATTGCAA AGGTAATGAA ACCTGCCAGG TAGGTACTAT GTGTCTGGAG TGCTTCCAAA GGACCATTGC TCAGAGGAAT ACTTTGCCAC TACAGGGCAA TTTAATGACA AATCTCAAAT GCAGCAAATT ATTCTCTCAT GAGATGCATG ATGGTTTTTT TTTTTTTTT TAAAGAAACA AACTCAAGTT GCACTATTGA TAGTTGATCT	629 689 749
	ATACCTCTAT ATTTCACTTC AGCATGGACA CCTTCARACT GCAGCACTTT TTGACAAACA TCAGAAATGT TAATTTATAC CAAGAGAGTA ATTATGCTCA TATTAATGAG ACTCTGGAGT GCTAACAATA AGCAGTTATA ATTAATTATG TAAAAAATGA GAATGGTGAG GGGAATTGCA TTTCATTATT AAAAACAAGG CTAGTTCTTC CTTTAGCATG GGAGCTGAGT GTTTGGGAGG	A 869 P 929 A 989 G 1049
50	GTAAGGACTA TAGCAGAATC TCTTCAATGA GCTTATTCTT TATCTTAGAC AAAACAGATT GTCAAGCCAA GAGCAAGCAC TTGCCTATAA ACCAAGTGCT TTCTCTTTTG CATTTTGAAC AGCATTGGTC AGGGCTCATG TGTATTGAAT CTTTTAAACC AGTAACCCAC GTTTTTTTTTC TGCCACATTT GCGAAGCTTC AGTGCAGCCT ATAACTTTTC ATAGCTTGAG AAAATTAAGA GTATCCACTT ACTTAGATGG AAGAAGTAAT CAGTATAGAT TCTGATGACT CAGTTTGAAG	1109 1169 1229 1289
	Control Bostoneso inimiotinis Montainas servicaise Montainas	

	Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn
- •	155 160 165
_	AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715
5	Ser Glu Ser Thr Gln Lys Cys Gly Ile 170 175
	GTCTTTGTAC GATTTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775
	ACATTCTTGG TCARACTTAC ATTTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT 4835
	CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT 4895
10	AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA 4955
	AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015
	CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC 5075
	TANGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCCT 5135
	ATAATCCCAA CATTITGGGG GGCCAAGGTA GGCAGATCAC TTGAGGTCAG GATTTCAAGA 5195 CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA ATACAAAAAT TAGCTGGGCA 5255
	TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC 5315
15	CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG 5375
	AGCARGATTT CATCACACAC ACACACACA ACACACACA ACACATTAGA AATGTGTACT 5435
	TEGETTTETT ACCTATEGTA TTAGTECATC TATTECATES AACTTCCAAS CTACTCTEGT 5495
, st. e	TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA 5555 TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCCAC 5615
. 19.	CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5675
20	TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5735
	TACAARGAAR TTTATGAARC AGAGAAATGT GAATTGATAT ATATATGAGA TTCTAACCCA 5795
	CTTCCACCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5855
	TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5915
	TITRACATTC TCTTTAATTA ATTCATTTT AATTTACTT TTTTCATTT ATTGTGCACT 5975 TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA AAAACACTGT GAAAGTTGCT 6035
25	TRICTATGTGG TACTGTGCTA TAGAGGCTTT ARCATTAIN AMARCACTOT GRANGITHT TO TRICTATGTATT ANACCCAGGT CTGATGAATC 6095
23	CAAAAACAAA CACCCATTAC TCCCATTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155
	GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6215
	GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6275
	AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335 ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 6395
	TAGATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6455
30	ATTTCACTOT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6515
	ATTRIBAÇÃO ACGTARGOTO AGTTGGTOTO TGCCACTARG ACCAGOCARO AGRAGOTTGA 6575
	TTTTATTCAA ACTITGCATT TTAGCATATT TTATCTTGGA AAATTCAATT GTGTTGGTTT 6635
•	TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG 6695
	GTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747 Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg
35	180 185
	TTT GCT GTT CCT ACA AAG TTT ACG CCT AAC TGG CTT AGT GTC TTG GTA 6795
•	Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val
	190 195 200
40	GAC AAT TTG CCT GGC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA 6843
70	Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
	205 210 215
	and car and car are the cas cas car are the car end car are the car of the 6891
	AAA CGG CAA CAC AGC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA 6891 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu
	220 225 230 235
45	
	TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G 6940
	Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile GIn
	240 245 250 ;
	GTATGATAAT CTAAAATAAA AAGATCAATC AGAAATCAAA GACACCTATT TATCATAAAC 7000
50	CACCAACAC ACTOCATOTA TOTTAGTTG TGTGGATCTT GTTTCCCTGT TGGAATCATT 7060
	CTPCCCCCCCA AAAACTTTCC ACCTGATAAT GTAGATGTGA TTCCACAAAC AGTTATACAA /12U
	CONTROL TO TO COCCOGO POCCOAGTTT COTTGTAAAG TATGTTGAAC ACTCTAAGAG 7180
	AAGAGAAATG CATTTGAAGG CAGGGCTGTA TCTCAGGGAG TCGCTTCCAG ATCCCTTAAC 7240

•	GCTTCT	GTAA	GCA	ccc	CTC	TAG	BACCA	CCA	AGG	GAAG	CT (TATA	LACCI	C T	PTGT/	TCTT '	7300
	ACATTO	CACC	TCT	CCA	AGA	AGC	TCT	DTT	TAT	TACT	TTG (TAAT	TCT	T C	CAGG!	PAGGC '	7360
	TTTTC	TAGC	TTAC	'AAA	TAT	GTT	CTTA	ATTA	ATC	CICAI	rga :	PATGO	CCT	C A	LTAN	LATTA '	7420
5	TTTTA	TGGC	ATA:	GTT	ATG	AG	LTTA	LATG	AGA?	LAAA1	ATC 1	rgaaj	LAGT	T T	rgago	CTCT '	7480
	TGTAGG	KAKA	AGC:	PAGI	TAC	AGC	CAAAJ	\TGT	TCT	CACAT	ÇT :	LATA	GTT	CA T	ATAA	AGATT '	7540
	CTCCTT	PTAGA	MAK	GTG	TGA	GAC	GAGAI	VVCY	GAG	AGAG	ATA (GGA	agai	AG T	GTGA	AAGAA	7600
	TCTGA	IGNAA	AGG	AGTI	TCA	TC	CAGT	FTGG	ACT	JTAA(CT '	PTAC(ACA	CA T	GATG	DAAAG	7660
•	AGTTC	PGACT	TCA	STAA	GCA	TT(3GGA(GAC	ATG	CTAG	AAG 2	LAAA	AGGA	AG A	AGAG	TTCC	7720
•	ATAATO	3CAGA	CAG	3GTC	AGT	GA	GAAA!	PTCA	TTC	AGGT	CCT	CACCI	AGTA	T T	TKAA	GACTG	7780
10	TATAG	CTTG	CAC	racc	CTA	λN	AAAC!	PTCA	AGT	ATCT	BAA A	ACCG	3GGC	MA C	AGAT	TTAG	7840
,	GAGAC	CAACG	TCT	rtga	LGAG	CI	GATT	CTT	TTG	CITA:	rgc A	RAAG	AGTA	RA C	1111	ATGTT	7900 7050
	TTGAG	CAAAC	CAA	AAGI	TTA	CT.	TTGA	ACGT	ATA	ATTA	300	CIGAL	AGCC	ia a	RGAA.	AAGAG	7300
	AAAAT	CAGAG	ACC	GTTA	IGAA	TT	GGAA	3CAA	CCA	AATTY		rait.	CTATA	AA A	TGAG Ca Co	Gacat Catgt	9020 9090
	TTTAAC	CCCAG	AAA	GATO	MAC	CG	ATTT	الالال	TAG	00C11	ERC .		TOTAL BOTH	74. T	SULCI.	AAATA	8140
	CATTA	ATAGA	AAT	3777 3777	rear.	CU:	DELAC!		ACC.		CATE	Gel-Cele CCTV	THE A	መጥ ጥ	ጥሞር እ	GATAT	8200
15	TICIC	ragge Bor bo	TGT	9191		ma.	TING.		TOU	CTATE	Den I	TTAL		TA G	TTAC	GGCAA	8260
15	CCTCC	TCATE	LAG	GIA	3100	TO.	COUNTY TOOL	aciyy Aciw	701	OTAL	Filhilb TOT	ACAA	AGTA	GC T	AACT	TGAAT	8320
	A COMPAN	COMPA LINIT	THE PARTY	TAGG	2000	TA:	ΔΑΓΑ CTVTC	CCTC	GTA	ATTT	CTC	AAAC	TTTT	TC T	TAGA	AAACT	8380
	CACAC	LC3 LC	TILL	T CT (Tababa Servers	TO	ጥልርጥ	GTTA	ATT	TTCA	AAA	TTAG	GAGC	TT C	TTCC	aaagt	8440
, is	THE PROPERTY.	TCCAT	CCC	DAR!	מדב	TA	TAGC	ATAT	TAT	CTTA	TTA	TAAC	AAAA	AA T	ATTT	ATCTC	8500
\$ -	y Carac	TOGET	TAA	AAA'	PGGT	GT	CACT	TAAC	TCC	CTCT	CAA	λλGλ	AAAG	GT I	ATCA	TTGAA	8560
	ATATA	ATTAI	GAA	ATT	CTGC	: AA	GAAC	CTTT	TGC	CTCA	CGC	TTGT	TTTA	TG A	TGGC	ATTGG	8620
20	ATGAA	TATA	ATG	ATG'	TGAA	CA	CTTA	TCTG	GGC	TTTT	GCT	TTAT	GCAG	AT	ATT	GAC	8676
•						-	-							Asp	Ile	Asp	
	CTC T	GT G	A AA	C A	GC G	TG	CAG	CGG	CAC	ATT	GGA	CAT	GCT	AAC	CTC	ACC	8724
	Leu C	ys G	u As	n S	er V	al	Gln	Arg	His	Ile	Gly	His	Ala	Asn	Leu	Thr	
	255	-				860					265					270	
25																	
	TTC G	AG C	G CI	T C	GT ₽	\GC	TTG	ATG	GAA	AGC	ATT	CCG	GGA	AAG	AAA	GTG	8772
	Phe G	lu G	ln Le	u A	rg 8	Ser	Leu	Met	Glu	Ser	Leu	Pro	Gly	Lys	FÄS	Val	
				2	75					280					285		
																	0000
	.GGA G	CA G	AA . GI	C A	TT.	GAA	AAA	ACA	ATA	AAG	GCA	TGC	AAA	CCC	AGT	GAC	8820
30	Gly A	la G	lu As	p I	le (Glu	Lys	Thr		Lys	Ala	Сув	Lys	PTO	ser	ASP	
			29	0					295					300			
														000	CNC	CÁA	8868
	CAG A	ATC C	rg a	AG C	TG	CTC	AGT	TTG	TGG	CGA	ATA	AAA	AAT	Clu	Aen	Gln	0000
	Gln. I			/8 I	eu :	Leu	ser		TTD	Arg	TTE	цув	315	GIŞ	voñ	G111	
		3	05					310					313				
35	GAC A					~~~	1 mg	~~	OCA	COTT	AAG	CAC	ጥሮል	AAG	ACG	TAC	8916
	GAC Asp 1	ACC T	TG A	AG G	GC	CIA	ATG	UAC	Ala	LAU	T.ve	His	Ser	Lvs	Thr	Tyr	
			eu L	A8 G	HY.	ren		HIB	WIG	Dea	шую	330	D C-	-,-			
	•	320					325					J J0				•	
	CAC !		~~ ·		~m	ame.	እርጥ	CAG	ልርሞ	СТА	AAG	AAG	ACC	ATC	AGG	TTC	8964
	His !	TTT C	CC A	AA /	N.→	770 T	WPA	Gin	Ser	Len	LVS	Lvs	Thr	Ile	Arg	Phe	
40		rue r	IO L	AR .		340		GIII			345	-, -			-	350	•
	335					340											
	CTT	CAC B	<i>ር</i> ሮ ሞ	TC 2	ACA	ATG	TAC	AAA	TTG	TAT	CAG	AAG	TTA	TTI	TTA	GAA	9012
	Leu	unc a	or P	he '	Phr	Met	Tvr	Lvs	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	
	Deg .	1115			355		-,-			360		-			365		
				•													
45	ATG	ATA (GT A	AC (CAG	GTC	CAA	TCA	GTA	AAA	ATA	AGC	TGC	TTA			9054
70	Mot	Ile (ilv A	an (Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Сув	Leu	L		
	ncc			70					375					380)		
	TAAC	TGGA	LA TO	GCC	ATTO	a G	CTGT	TTCC	T CA	CAAT	TGGC	GAG	ATCC	CAT	GGAI	GAGTA	9114
	3.000	mmrci	NC 30	COD.	COPPORT	2N G	COPT	ጥ ሮልር	IT GA	TATC	TTTC	: TÇA	TTAC	CAG	TGAC	TAATT	. AT.4
50	macca	TO BO	2/2 102	ርሞን	AAAC	2A A	ACTA	TGAT	rg TC	GAGA	LAAGG	ACT	AACA	TCT	CCIC	CARTA	1 7424
50	1000	~~ ~ ~ ~ .	PC C9	TA A	でつい	1 A	ግጥርንጥና	ነል ርል 1	PC TO	GATC	:GTTX	TCI	ACTO	ACT	ATAT	TTTCC	2 7474
	mm a G	MD 2 (MD)	५० क्य	ፈግርን	CTAZ	ነጥ ፕ	CAAC	TGGI	LA A	TAAA	LAAA J	KAA /	AACI	AGA	CTC	ACTGG	3 7334
	COM	IN COTTO	AN TOZ	ምርር	CAAT	PC T	ር ፈጥግላ	CTT	LA AI	ľAGCT	TTG(GAT	TCC	GCT	ATG	TAGAG	3 3414
	CTTI	TATT	AG AZ	AGC	CAT	AT I	TTT	TCT	ST A	LAAG 1	TAC	ראג י	'ATA'	CTG	TAAC	ACTAT	r 9474

ACAGTATTGC TATTTATATT CATTCAGATA TAAGATTTGG ACATATTATC ATCCTATAAA 9534
GAAACGGTAT GACTTAATTT TAGAAAGAAA ATTATATTCT GTTTATTATG ACAAATGAAA 9594
GAGAAAATAT ATATTTTTAA TGGAAAGTTT GTAGCATTTT TCTAATAGGT ACTGCCATAT 9654
TTTTCTGTGT GGAGTATTTT TATAATTTTA TCTGTATAAG CTGTAATATC ATTTTATAGA 9714
AAATGCATTA TTTAGTCAAT TGTTTAATGT TGGAAAACAT ATGAAATATA AATTATCTGA 9734
ATATATAAATG CTCTGAGAAA TTGAATGTAC CTTATTTAAA AGATTTTATG GTTTTATAAA 9834
TATATTAAATG ACATTATTAA AGTTTTCAAA TTATTTTTTA TGCCTTTCT TGTTGCTTTT 9894
ATTT

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 -20 -15 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser

```
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
                                         320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
325
                    330
                                         335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
340
                    345
                                         350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
                    360
                                         365
Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
370
                    375
                                         380
```

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1206 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

```
ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC
                                                                     60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG
                                                                    120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC
                                                                    180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT
                                                                    240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC
                                                                    300
CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA
                                                                    360
Cataggaget geceteetgg atttggagtg gtgcaagetg gaaceecaga gegaaataca
                                                                    420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT
                                                                    480
AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA
                                                                    540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC
                                                                    600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT
                                                                    660
AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA
                                                                    720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA
                                                                    780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAAACAGC
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA
                                                                    900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200
TTATAA
                                                                   1206
```

Claims

5

10

15

20

25

30

35

- 50 1. A DNA comprising the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table.
 - The DNA according to claim 1, wherein the Sequence ID No. 1 includes the first exon of the OCIF gene and the Sequence ID No. 2 includes the second, third, fourth, and fifth exons.
- 55 3. A protein exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics,
 - (a) molecular weight (SDS-PAGE):

- (i) Under reducing conditions: about 60 kD,
- (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
- (b) amino acid sequence:
- includes an amino acid sequence of the Sequence ID No. 3 in the Sequence Table,
- (c) affinity:

10

20

25

30

35

40

50

- exhibits affinity to a cation exchanger and heparin, and
- (d) heat stability:
 - (i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes.
- 4. A process for producing a protein exhibiting an activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics,
 - (a) molecular weight (SDS-PAGE):
 - (i) Under reducing conditions: about 60 kD,
 - (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
 - (b) amino acid sequence:
 - includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,
 - (c) affinity:
 - exhibits affinity to a cation exchanger and heparin, and
 - (d) heat stability:
 - (i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes,

the process comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the above-mentioned physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique.

Figure 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02859

A. CLA	SSIFICATION OF SUBJECT MATTER								
Int.	Int. Cl ⁶ Cl2N15/00, Cl2P21/00								
According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED									
Minimum documentation searched (classification system followed by classification symbols)									
Int.	C16 C12N15/00, C12P21/00								
Documentat	ion searched other than minimum documentation to the e	xtent that such documents are included in th	e fields scarched						
Electronic di	ate base consulted during the international search (name	of data base and, where practicable, search t	erms used)						
WPI,	GENETYX-CDROM, BIOSIS		·						
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where a		Relevant to claim No.						
A	Cancer Research, (1995), Vo Yoneda, et al. "Sumarin su hypercalcemia and osteoclas in nude mice bearing a huma P. 1989-1993	1 - 4							
A	Proc. Natl. Acad. Sci. USA Kukita A. et al. "Osteoind inhibits formation of huma cells" P. 3023-3026	uctive factor	1 - 4						
,			. ,						
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.							
"A" docume to be of "E" earlier o "L" docume cited to special "O" docume means "P" docume	categories of cited documents: cat defining the general state of the art which is not considered particular relevance socument but published on or after the international filing date not which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) cut referring to an oral disclosure, use, exhibition or other east published prior to the international filing date but later than eity date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive attep when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family							
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report						
§	ember 29, 1997 (29. 09. 97)	October 7, 1997 (0	•						
Name and n	nailing address of the ISA/	Authorized officer							
ł	nese Patent Office								
Facsimile No. Telephone No.									
Form PCT/ISA/210 (second sheet) (July 1992)									

oim i C1/15/0210 (second ancet) (July 1992)