UNIVERSITY OF TARTU

Institute of Computer Science Computer Science Curriculum

Sten Sootla

Analysing information distribution in complex systems

Bachelor's Thesis (9 ECTS)

Supervisor: Raul Vicente Zafra, PhD

Supervisor: Dirk Oliver Theis, PhD

Contents

1	Inti	roduction	3					
2	Classical information theory							
	2.1	Entropy	4					
	2.2	Joint and Conditional Entropy	6					
	2.3	Kullback-Leibler distance	6					
	2.4	Mutual information	7					
	2.5	Conditional mutual information	8					
3	Partial information decomposition							
	3.1	Formulation	9					
	3.2	Calculating partial information decomposition	10					
	3.3	Numerical estimator	10					
4	Elementary cellular automata							
	4.1	Problem description	11					
	4.2	Related work	11					
	4.3	Experimental setup	11					
	4.4		11					
	4.5		11					
5	Isin	ng model	12					
	5.1	~	12					
	5.2		12					
	5.3		12					
	5.4		12					
	5.5		12					
6	Cor	nclusion	13					

1 Introduction

TODO!

Vabandust, et sissejuhatust veel hetkel ei ole. Minu jaoks on alati sissejuhatus kõige raskem osa olnud kirjatükkides, ja pole olnud kordagi, kus sissejuhatus poleks jäänud absoluutselt viimaseks osaks. Sissejuhatus annab ülevaate kogu minu tööle, mistõttu arvan, et seda on paslik koostada siis, kui on millest ülevaade teha.

Kui sissejuhatuse eesmärk hetkel on lihtsalt töö läbimõtlemine ja kirjutamisoskuse demonstreerimine, siis ehk piisab hetkel sisukorrast ja esimesest peatükist, mis tasapisi edeneb. Kui mitte, siis mõistagi tuleb mul see sissejuhatus lihtsalt ära teha kiiremas korras.

In Chapter 1, the basics of information theory and partial information decomposition are covered. The chapter ends with an overview of the numerical estimator for PID. The subsequent 3 chapters each introduce a specific complex system and the results of measuring information distribution in them, while they are naturally evolving. In the final, concluding chapter, a summary of the contributions of this thesis is given, alongside suggestions for further work.

2 Classical information theory

In order to understand partial information decomposition, which is the mathematical framework that is used in this thesis to analyse complex systems, a solid understanding of basic information theory is essential. This section fills that gap, giving a brief overview of the fundamental concepts of information theory. Where appropriate, the rather abstract definitions are further elaborated on by providing the reader with intuitive explanations and concrete examples.

In the following discussion, when not specified otherwise, it is assumed that X is a discrete random variable with possible realizations from the set $\{x_1, x_2, ..., x_n\}$ and a probability mass function $p_X(x_i) = Pr\{X = x_i\}$ (i = 1, ..., n). Similarly, Y is a discrete random variable with possible realizations from the set $\{y_1, y_2, ..., y_m\}$ and a probability mass function $p_Y(y_j) = Pr\{Y = y_j\}$ (j = 1, ..., m).

2.1 Entropy

The most fundamental quantity of information theory is entropy, being a basic building block of all the other information theoretic functionals introduced in this thesis. The entropy of the random variable X is defined by Shannon [Sha48] as follows:

$$H(X) = -\sum_{i=1}^{n} p_X(x_i) \log_2 p(x_i)$$
 (1)

If the base of the logarithm is 2, the units the entropy is measured in are called *bits*. Another common base for the logarithm is Euler's number $e \approx 2.718$, in which case the units of measurement are called *nats*.

Intuitively, entropy can be thought of as the average amount of uncertainty of a random variable. It is indeed an *average*, as the uncertainty of a single relatization of x_i of a random variable X can be quantified by $-log_2p(x_i)$. Viewed from this angle, the definition of entropy can be rewritten as an expectation of the random variable $-\log_2 p(X)$:

$$H(X) = \mathbb{E}\left[-\log_2 p(X)\right] = \mathbb{E}\left[\log_2 \frac{1}{p(X)}\right].$$

To see why this intuition should correspond to the mathematical definition, it is instructive to look at a concrete example, inspired by [CT06]. Suppose we have a

binary random variable X, defined as follows:

$$X = \begin{cases} 1 & \text{with probability } p, \\ 0, & \text{with probability } 1 - p. \end{cases}$$

Essentially, this random variable encodes a coin toss, where the probability of flipping heads is p and the probability of flipping tails is 1-p. If p=0.5, the coin is considered to be unbiased, otherwise it is called biased.

Using equation 1, it is straightforward to calculate the entropy of X, given some specific value of p. Figure 1 graphs the value of H(X) against every possible $p \in [0,1]$. When $p \in \{0,1\}$, then the outcome of the coin toss is completely deterministic, meaning there is no uncertainty in the outcome. Accordingly, the entropy is 0 at these points. Conversely, when the coin is fair, we are completely uncertain about the outcome, unable to favour neither heads or tails. Again, the mathematical definition and intuition agree, as the entropy is indeed at its maximum when p = 0.5.

Figure 1: Entropy of X plotted against the value of p.

2.2 Joint and Conditional Entropy

Let the joint distribution of the random variables X and Y be $p(x_i, y_j) = Pr\{X = x_i, Y = y_j\}$ (i = 1, ..., n; j = 1, ..., m). The joint entropy [CT06] of the pair (X, Y) is defined as

$$H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 p(x_i, y_j)$$
 (2)

This is a direct generalization of entropy to multiple variables. Joint entropy for more than 2 random variables can be defined analogously.

The conditional entropy [CT06] of the pair (X, Y) is defined as

$$H(Y|X) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 p(y_j|x_i)$$
(3)

Conditional entropy can be thought of as the amount of uncertainty one has about a random variable Y, given that X has already been observed. As a special case, if X and Y are independent, observing X does not reveal anything about Y, and H(Y) = H(Y|X).

2.3 Kullback-Leibler distance

Let $p_X(x)$ and $q_X(x)$ be two probability mass functions over the support of the random variable X. The relative entropy or Kullback-Leibler distance [CT06] between $p_X(x)$ and $q_X(x)$ is defined as

$$D(p||q) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{p_X(x_i)}{q_X(x_i)}$$
(4)

The above quantity is called a distance, because it can be thought of as measuring the distance between two probability mass functions. Importantly, the relative entropy is non-negative, with inequality exactly when the 2 probability distributions are equal [CT06], again corresponding to our intuitive notion of distance. Indeed, when the two probability mass functions are equal, the logarihm in equation 4 evaluates to 0, which in turn yields a relative entropy of 0.

However, it must be stressed that since the Kullback-Leibler distance it is not symmetric and does not satisfy the triangle inequality, it is not a formal distance in the mathematically rigorous sense.

2.4 Mutual information

The mutual information [CT06] between the random variables X and Y is given by

$$MI(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p_X(x_i)p_Y(y_j)}$$
 (5)

An attentive reader might notice that the mutual information is the Kullback-Leibler distance between the joint distribution p(x, y) and the product distribution $p_X(x)p_Y(y)$.

Because the mutual information is just a special case of Kullback-Leibler distance, all the properties that hold for relative entropy must also hold for mutual information. In particular, mutual information must be non-negative and 0 exactly when the random variables X and Y are independent. The latter statement must hold, because if X and Y are independent, then $p(x,y) = p_X(x)p_Y(y)$ by definition.

Considering mutual information as a special case of Kullback-Leibler distance, it can be intuitively seen as measuring how far the two random variables X and Y are from being independent. Indeed, when the two are completely independent, one would expect that they contain no information about each other, and this is indeed the conclusion that was reached mathematically directly from equation 5.

The picture of mutual information as a distance between two probability distributions yields a straightforward answer to the question: "when is there no information between two random variables?" However, it does not help in answering the orthogonal question: "when is the information maximized?" To answer the latter, the following identity, which relates mutual information directly to entropy, is of importance:

$$MI(X;Y) = H(X) - H(X|Y) \tag{6}$$

Intuitively, using identity 6, mutual information between random variables X and Y can be thought of as the reduction in the uncertainty of X due to the knowledge of Y [CT06]. Because mutual information is symmetric, the converse statement would also hold, meaning that the amount of information X has about Y is always equal to the amount of information Y has about X.

2.5 Conditional mutual information

Let Z be a discrete random variable. The conditional mutual information [CT06] of the random variables X and Y given Z is defined by

$$MI(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$
(7)

Intutively, the conditional mutual information measures the reduction in the uncertainty of X due to the knowledge of Y, given that Z has already been observed.

When the information between two random variables is measured in a system with many other dependent variables, conditional mutual information is used to eliminate the influence of the other variables, in order to isolate the two variables of interest [WB10]. For example, it has been used to analyse the functional connectivity of different brain regions in schizoprenic patients [SAG⁺10].

3 Partial information decomposition

Mutual information measures the amount of information two random variables, or more generally, two random vectors have about each other. However, it is often worthwhile to ask how much information does an ensebmble of "input" random variables carry about some "output" variable.

A trivial solution would be to measure the mutual information between the whole input ensemble considered as a single random vector and the output. However, this would not capture the interactions between the input variables themselves. Moreover, by considering the input ensemble as a single unit, knowledge about how the interactions between specific individual units and the output differ is lost.

This section introduces *partial information decomposition* - a mathematical framework for decomposing mutual information between a pair of input variables and single source variable.

3.1 Formulation

The simplest non-trivial system to analyse that has an ensemble of inputs and a single output is a system with *two* inputs. Given this setup, one can ask how much information does one input variable have about the output that the other does not, how much information do they share about the output, and how much information do they jointly have about the output such that both sources must be present for this information to exist.

More formally, let Y and Z be two random variables that are considered as sources to a third random variable X. By equation 5 the mutual information between the pair (Y, Z) and X is defined as

$$I(X : Y, Z) = H(X) - H(X|Y, Z).$$

The partial information decompositon framework decomposes this mutual information into unique, redundant and complementary information terms.

Unique information quantifies the amount of information that only one of the input variables has about the output variable. The unique information that Y has about output X is denoted as $UI(X:Y\setminus Z)$. Similarly, $UI(X:Z\setminus Y)$ denotes the unque information that Z has about the output X.

Y	Z	X	Pr
0	1	01	1/4
0	3	03	1/4
2	1	21	1/4
2	3	23	1/4

Table 1: unique information

Y	Z	X	Pr
0	0	0	1/2
1	1	1	1/2

Table 2: redundant information

Shared information

Complementary information

$$SI(X:Y,Z) = SI(X:Y;Z) + UI(X:Y \setminus Z) + UI(X:Z \setminus Y) + CI(X:Y;Z)$$

Williams and Beer [WB10] argued that Classical information theory as defined by Shannon is not able to quantify such intricate interactions.

[BRO⁺13] show that the optimization problems involved in the definitions of \widetilde{UI} , \widetilde{SI} and \widetilde{CI} are convex optimization problems on convex sets.

3.2 Calculating partial information decomposition

3.3 Numerical estimator

Y	Ζ	X	Pr
0	0	0	1/4
0	1	1	1/4
1	0	1	1/4
1	1	0	1/4

Table 3: Table lol

- 4 Elementary cellular automata
- 4.1 Problem description
- 4.2 Related work
- 4.3 Experimental setup
- 4.4 Results
- 4.5 Discussion

- 5 Ising model
- 5.1 Problem description
- 5.2 Related work
- 5.3 Experimental setup
- 5.4 Results
- 5.5 Discussion

6 Conclusion

References

- [BRO⁺13] Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, Jürgen Jost, and Nihat Ay. Quantifying unique information. *CoRR*, abs/1311.2852, 2013.
- [CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, 2006.
- [SAG⁺10] R. Salvador, M. Anguera, J. J. Gomar, E. T. Bullmore, and E. Pomarol-Clotet. Conditional mutual information maps as descriptors of net connectivity levels in the brain. *Front Neuroinform*, 4:115, 2010.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *Bell System Technical Journal*, 27(3):379–423, 1948.
- [WB10] Paul L. Williams and Randall D. Beer. Nonnegative decomposition of multivariate information. CoRR, abs/1004.2515, 2010.

Non-exclusive licence to reproduce thesis and make thesis public

- I, Sten Sootla (date of birth: 17th of January 1995),
- 1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
- 1.1 reproduce, for the purpose of preservation and making available to the public, including for addition to the DSpace digital archives until expiry of the term of validity of the copyright, and
- 1.2 make available to the public via the web environment of the University of Tartu, including via the DSpace digital archives until expiry of the term of validity of the copyright,

Analysing information distribution in complex systems

supervised by Raul Vicente Zafra and Dirk Oliver Theis

- 2. I am aware of the fact that the author retains these rights.
- 3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights or rights arising from the Personal Data Protection Act.

Tartu, dd.mm.yyyy