Efficient Flow Scheduling in Distributed Deep Learning Training with Echelon Formation

Rui Pan*, Yiming Lei*, Jialong Li, Zhiqiang Xie, Binhang Yuan, Yiting Xia

HotNets '22, Nov 14-15 2022, Austin, TX, USA

Deep Neural Networks (DNNs) are popular

Image Classification

Speech-to-Text

Machine Translation

Game Playing

Network

DNNs

Distributed Training in GPU Clusters

Distributed Training in GPU Clusters

GPT-3

Year

2020

CoFlow: network abstraction for flow scheduling

- CoFlow: network abstraction for flow scheduling
- A group of semantically-related flows, optimized to finish at the same time

- CoFlow: network abstraction for flow scheduling
- A group of semantically-related flows, optimized to finish at the same time

- CoFlow: network abstraction for flow scheduling
- A group of semantically-related flows, optimized to finish at the same time

- CoFlow: network abstraction for flow scheduling
- A group of semantically-related flows, optimized to finish at the same time
 - Big data frameworks

- CoFlow: network abstraction for flow scheduling
- A group of semantically-related flows, optimized to finish at the same time
 - Big data frameworks
 - ML training paradigms

Training paradigm	Examples
Data Parallelism	AllReduce, Parameter Server
Pipeline Parallelism	GPipe, PipeDream
Tensor Parallelism	Megatron-LM
Fully Sharded Data Parallelism	ZeRO, FairScale

Training paradigm	Examples
Data Parallelism	AllReduce, Parameter Server
Pipeline Parallelism	GPipe, PipeDream
Tensor Parallelism	Megatron-LM
Fully Sharded Data Parallelism	ZeRO, FairScale

 Parallelization paradigms have different communication patterns

Training paradigm	Examples
Data Parallelism	AllReduce, Parameter Server
Pipeline Parallelism	GPipe, PipeDream
Tensor Parallelism	Megatron-LM
Fully Sharded Data Parallelism	ZeRO, FairScale

- Parallelization paradigms have different communication patterns
- Lack of good network abstraction

(b) Coflow Scheduling

Definition

Definition

• EchelonFlow: a set of flows whose ideal finish times are related

Definition

- EchelonFlow: a set of flows whose ideal finish times are related
 - Not necessarily equal

Definition

- EchelonFlow: a set of flows whose ideal finish times are related
 - Not necessarily equal
 - Can be represented by an arrangement function

Expressiveness

Training paradigm	Examples	CoFlow compliance	EchelonFlow compliance
Data Parallelism	AllReduce, Parameter Server		
Pipeline Parallelism	GPipe, PipeDream		
Tensor Parallelism	Megatron-LM		
Fully Sharded Data Parallelism	ZeRO, FairScale		

Case study: pipeline parallelism

Case study: pipeline parallelism

Arrangement function:

$$d_j = d_{j-1} + T$$

d_j: ideal finish time of flow j T: time of one forward pass of one micro-batch

Properties

Properties

General to diverse distributed training paradigms

Properties

- General to diverse distributed training paradigms
- A superset of CoFlow

Properties

- General to diverse distributed training paradigms
- A superset of CoFlow
- Same complexity as CoFlow scheduling

EchelonFlow Implementation

Implementation

 We know: flow size, computation time, and computationcommunication dependencies

Implementation

- We know: flow size, computation time, and computationcommunication dependencies
- Highly iterative → predictable

Implementation

- We know: flow size, computation time, and computationcommunication dependencies
- Highly iterative → predictable
- Computation time and dependencies can be profiled a priori

Implementation

- We know: flow size, computation time, and computationcommunication dependencies
- Highly iterative → predictable
- Computation time and dependencies can be profiled a priori

EchelonFlow enables flow scheduling in distributed training

- EchelonFlow enables flow scheduling in distributed training
- A new network abstraction

- EchelonFlow enables flow scheduling in distributed training
- A new network abstraction
 - Flow finish times are not necessarily the same, but follow a pattern

- EchelonFlow enables flow scheduling in distributed training
- A new network abstraction
 - Flow finish times are not necessarily the same, but follow a pattern
 - Arrangement function for high training throughput