SUITES NUMÉRIQUES PART2 E02

EXERCICE N°2 (Le corrigé)

Soit t la suite définie par $t(n)=3^n$

1) Calculer les trois premiers termes de la suite t.

$$t(0)=3^{0}$$
, ainsi $t(0)=1$
 $t(1)=3^{1}$, ainsi $t(1)=3$
 $t(2)=3^{2}$, ainsi $t(2)=9$

2) Représenter graphiquement les trois premiers termes de la suite t.

3) D'après la représentation graphique, la suite t semble-t-elle géométrique ? Justifier.

Les points du nuage semblent suivre une courbe exponentielle. La suite t semble géométrique .

4) Démontrer que t est géométrique. Préciser sa raison

On ne peut pas se contenter d'exemples...

Il est évident qu'aucun terme de la suite n'est nul.

En effet : $3^0 = 1$ et pour n > 1 3^n est un produit de facteurs tous égaux à 3...

Cette remarque nous autorise à considérer les quotients qui vont suivre.

Soit *n* un entier naturel.

$$\frac{t(n+1)}{t(n)} = \frac{3^{n+1}}{3^n} = 3$$

Les quotients successifs sont tous égaux à 3 donc la suite t est géométrique de raison q=3

5) Préciser le sens de variation de t.

La suite \underline{t} est géométrique de premier terme $\underline{t}(0)=1>0$ et de raison $\underline{q}=3>1$ On en déduit que \underline{t} est strictement croissante .