第5回リメディアル数学 (化学システム工学科) 2023/5/24 略解

問題 1.

(1) y' = 3(x-1)(x+1) より、増減表は以下のようになる. よって極大値は 1(x=-1)、極小値は -3(x=1) である.

x		-1		1	
y'	+	0	_	0	+
y	7	1	×	-3	7

(2) y' = 3x(x-2)(x+1) より増減表は以下のようになる. よって、極大値は 3(x=3)、極小値は $\frac{7}{4}$ (x=-1)、 $\frac{7}{4}$ - $\frac{7}$

x		-1		0		2	
y'	_	0	+	0	_	0	+
y	×	$\frac{7}{4}$	7	3	×	-5	7

(3) $y' = \frac{1}{x^2}(x-2)(x+2)$ であり, x = 0 における漸近 挙動は

$$\lim_{x\to +0}\left(x+\frac{4}{x}\right)=\infty,\quad \lim_{x\to -0}\left(x+\frac{4}{x}\right)=-\infty$$

であることから増減表は以下のようになる. よって、極大値は -4 (x = -2), 極小値は 4 (x = 2) である.

x		-2		0		2	
y'	+	0	_		_	0	+
y	7	-4	>		>	4	7

問題 2.

(1) $y'=e^{-x}(1-x)$ であり $,+\infty,-\infty$ における漸近挙動は

$$\lim_{x \to +\infty} xe^{-x} = 0, \quad \lim_{x \to -\infty} xe^{-x} = -\infty$$

であることから、増減表は以下のようになる. よって、最大値は $\frac{1}{e}$ (x=1) であり、最小値は存在しない.

α	,	$(-\infty)$		1		$(+\infty)$
y	′		+	0	-	
y	1	0	7	$\frac{1}{e}$	¥	0

(2) $y'=rac{-2(x-2)(x+2)}{(x^2+4)^2}$ であり $,+\infty,-\infty$ における 漸近挙動は

$$\lim_{x \to +\infty} \frac{2x}{x^2 + 4} = 0, \quad \lim_{x \to -\infty} \frac{2x}{x^2 + 4} = 0$$

であることから、増減表は以下のようになる. よって、最大値は $\frac{1}{2}$ (x=2)、最小値は $-\frac{1}{2}$ (x=-2) である.

x	$(-\infty)$		-2		2		$(+\infty)$
y'		_	0	+	0	_	
y	0	×	$-\frac{1}{2}$	7	$\frac{1}{2}$	×	0

(3) $y' = -\frac{x}{\sqrt{4-x^2}} - 1$ より、増減表は以下のようになる.よって、最大値は $2\sqrt{2}$ $(x = -\sqrt{2})$ 、最小値は -2 (x = 2) である.

x	-2		$-\sqrt{2}$		2
y'		+	0	_	
y	2	7	$2\sqrt{2}$	>	-2

問題 3.

- (1) $|A| = 2 \cdot 7 4 \cdot 3 = 2$, $|B| = 4 \cdot 3 10 \cdot 5 = -38$, $|C| = 2 \cdot (-6) (-3) \cdot 4 = 0$.
- $(2) \ A^{-1} = \frac{1}{2} \begin{pmatrix} 7 & -4 \\ -3 & 2 \end{pmatrix}, \ B^{-1} = -\frac{1}{38} \begin{pmatrix} 3 & -10 \\ -5 & 4 \end{pmatrix},$ C の逆行列は存在しない.

(3)
$$X = A^{-1}B = \frac{1}{2} \begin{pmatrix} 8 & 58 \\ -2 & -24 \end{pmatrix} = \begin{pmatrix} 4 & 29 \\ -1 & -12 \end{pmatrix},$$

 $Y = BA^{-1} = \frac{1}{2} \begin{pmatrix} -2 & 4 \\ 26 & -14 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 13 & -7 \end{pmatrix}$

問題 4. $F = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{pmatrix}$ である.

- (1) 求める点は $F\begin{pmatrix}2\\3\end{pmatrix}=\begin{pmatrix}rac{2\sqrt{3}+3}{2}\\rac{-2+3\sqrt{3}}{2}\end{pmatrix}$.
- (2) (i) 求める点は $F\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{pmatrix}$, $F\begin{pmatrix} 1\\4 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}+4}{2}\\ \frac{-1+4\sqrt{3}}{2} \end{pmatrix}$
 - (ii) 求める直線の方程式を y = ax + b とおくと, (i) より連立方程式

$$\begin{cases} \frac{\sqrt{3}}{2} = \frac{1}{2}a + b \\ \frac{-1 + 4\sqrt{3}}{2} = \frac{\sqrt{3} + 4}{2}a + b \end{cases}$$

を得る. これを解くと $a=\frac{-6+5\sqrt{3}}{3},\ b=\frac{3-\sqrt{3}}{3}.$ よって求める直線の方程式は $y=\frac{-6+5\sqrt{3}}{3}x+\frac{3-\sqrt{3}}{3}.$