1 definition

if the n-th term of a sequence can be expressed as a function of previous terms

$$x_n = F(x_{n-k}, ..., x_{n-1}) + g_n, \ n > k,$$
 (1)

then this equation is called a k-th order recurrence relation, the values $x_1, ..., x_k$ are called *initial* conditions, if $g_n \equiv 0$, the recurrence equation is called homogeneous, otherwise it's called non-homogeneous

2 solving first order recurrences

this class of recurrences can be solved by *iteration*, which is, i think, taught in high school, thus i omit it.

3 solving second order recurrences

this class of recurrences can be solved using a characteristic equation, when we have constant coefficients.

example:Fibonacci numbers the Fibonacci sequence is defined by:

$$a_n = a_{n-1} + a_{n-2}, a_0 = 0, a_1 = 1 (2)$$

we obtain a polynomial equation, which is called a characterstic equation

$$\lambda^2 = \lambda + 1 \tag{3}$$

which has two roots, $\lambda_1 = \frac{1-\sqrt{5}}{2}$ and $\lambda_2 = \frac{1+\sqrt{5}}{2}$, therefore, λ_1^n and λ_2^n and their linear combination $c_1\lambda_1^n + c_2\lambda_2^n$ are solutions to this recurrence, then, from initia conditions, we find c_1 and c_2 .

4 multiple roots

what if some of the roots of the characteristic equation are the same?

example

$$a_n = 2a_{n-1} - a_{n-2} (4)$$

the characteristic equation has two identical roots $\lambda_1 = \lambda_2 = 1$, so the first solution is 1^n , to get the second solution, we consider a new equation

$$b_n = (2 + \epsilon)b_{n-1} - (1 + \epsilon)b_{n-2} \tag{5}$$

, if $\epsilon \to 0$, then b_n approaches a_n , the characteristic equation for b_n has two roots $1, 1 + \epsilon$, and $c_1 = 1 - \frac{1}{\epsilon}, c_2 = \frac{1}{\epsilon}$, thus $b_n = (1 - \frac{1}{\epsilon} + \frac{1}{\epsilon} * (1 + \epsilon)^n)$, consider when $\epsilon \to 0$, we have $a_n = 1 + n$.

Theorom let λ be a root of a multiplicity p of the characteristic equation, then $\lambda^n, n\lambda^n, ..., n^{p-1}\lambda^n$ are all solutions to the recurrence.

5 non-homogeneous equations

Theorom a recurrence of the form

$$x_n + c_1 x_{n-1} + \dots + c_k x_{n-k} = b^n P(n)$$
(6)

where c_k and b are all constants, and P(n) is a polynomial of the order d can be transformed into the characteristic equation

$$(r^k + c_1 r^{k-1} + \dots + c_k)(r-b)^{d+1} = 0$$
(7)

latest version: 2018/02/26 Page 1

6 generating functions

example we are going to derive a generating function for this sequence

$$a_n - 3a_{n-1} + 2a_{n-2} = 0, a_0 = 0, a_1 = 1$$
(8)

first, we define

$$f(x) = \sum_{k=0}^{\infty} a_k x^k \tag{9}$$

then we have

$$f(x) - 3xf(x) + 2x^{2}f(x) = a_{0} + a_{1}x - 3a_{0}x = x$$
(10)

thus,

$$f(x) = \frac{1}{1 - 2x} - \frac{1}{1 - x} \tag{11}$$

by means of a geometric series, we have

$$f(x) = (2-1)x + (2^2 - 1)x^2 + \dots (12)$$