

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Ankit Pal Singh Mobile No: 9149024234

Roll Number: B20181 Branch:EE

1 a.

	Prediction Outcome								
Label	96	21							
True	38	181							

Figure 1 KNN Confusion Matrix for K = 1

	Prediction Outcome								
Label	96	21							
True	22	197							

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	97	20
True	19	200

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

	Classification
K	Accuracy (in %)
1	82.440
3	87.202
4	88.392

Inferences:

- 1. The highest classification accuracy is obtained with K = 5.
- 2. As the value of K increases the accuracy increases but this only happens in this case, otherwise increasing K doesn't mean increasing accuracy, the correct value of Value of K is based on experiment.
- 3. Here with increasing value of K, the areas predicting each class will be more smoothed.
- 4. As the classification accuracy increases with the increase in value of K, the number of elements in the diagonal of confusion matrix are increasing (which means the corrected predictions are increasing).
- 5. The reason of increase in value of diagonal is (with increase in value of K, the predicted values are coming right).
- 6. As the classification accuracy increases with the increase in value of K the number of element in the off diagonal decreases (which means the wrong predicted values decreases with increase in value of K).
- 7. The reason of decrease in value of off diagonal is (with increase in value of K, the predicted values are coming right).

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction	Outcome
Label	110	7
True	3	216

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction Outcome								
Label	110	7							
True	4	215							

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction Outcome								
Label	109	8							
True	5	214							

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	97.023
3	96.726
5	96.130

Inferences:

- 1. Normalization increases the Accuracy in this K nearest neighbor method.
- 2. The reason for the increase in accuracy Is as normalization is a way of taking data that is slightly dissimilar but giving it a common state.
- 3. The highest classification accuracy is obtained with K = 1.
- 4. With increasing in value of K the accuracy decreases.
- 5. Since the data is normalized then with increasing in value of K, the test example have to find Euclidian distance with few number of training examples (because now the data is more scattered).
- 6. As the classification accuracy decreases with the increase in value of K , the number of elements in the diagonal decreases.
- 7. The reason of decrease in value of diagonal is (with increase in value of K, the predicted values are not coming right)
- 8. As the classification accuracy decreases with the increase in value of K infer, the number of values in the off diagonal increases (as the predicted values are not coming right.

3

	Prediction Outcome								
Label	106	11							
True	1	218							

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 96.428 %.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S.	Attribute Name	Me	ean
No.		Class 0	Class 1
:	X_Maximum	295.0	722.0
2	Y_Maximum	1662085.0	1525503.0
;	Pixels_Areas	7254.0	492.0
4	X_Perimeter	361.0	49.0
į	Y_Perimeter	211.0	44.0
(Sum_of_Luminosity	807542.0	51893.0
-	Minimum_of_Luminosity	55.0	95.0
8	Maximum_of_Luminosity	138.0	131.0
Ģ	Length_of_Conveyer	1385.0	1478.0
	Steel_Plate_Thickness	40.0	100.0
	Edges_Index	0.0	0.0
	Empty_Index	0.0	0.0
	Square_Index	1.0	1.0
	Outside_X_Index	0.0	0.0
	Edges_X_Index	1.0	1.0
	Edges_Y_Index	1.0	1.0
:	Outside_Global_Index	0.0	1.0
:	LogOfAreas	4.0	2.0
	Log_X_Index	2.0	1.0
2	Log_Y_Index	2.0	1.0
2	Orientation_Index	-0.0	0.0
	Luminosity_Index	-0.0	0.0
	SigmoidOfAreas	1.0	1.0

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	X
1	-:																						SigmoidOf
_	nı 63525.6																			-40.5102			
	nι -9.4E+07															-49590.3		233881	159608		-129742		
_	re -385745							-14600.9									21.295	2857.1		1648.31		-230.446	
	et -18239.2							-437.696					31.1661					137.091	71.769				
	et -9468.3			44474.3				-83.1602											40.5528	51.797	17.4743		16.9014
	L -4.2E+07			1.6E+08	1E+08			-1119251											169104	192903		-20351.7	
	n_ 4505.14																			-11.5714			
	m 2734.17												2.32229							-2.47242			-3.31066
10 Length_								-30.2199							-2.17186		4.56817			2.0947			
11 Steel_Pla					-5.66014						-0.02552			0.0075			0.06744					-0.05927	
12 Edges_Ir																	0.02905						
13 Empty_I															-0.01646				0.03333			-0.00545	0.01692
14 Square_	In 4.80594	-78652.2	474.706	31.1661						-0.00512	0.00725	0.00138	0.06724	-0.0057	-0.03662			-0.0054	-0.0272	0.02187	0.07328	0.01729	-0.01466
15 Outside	X -1.74619						-1.70221		-0.29954		-0.00708	0.00632			-0.00136		-0.01148				-0.01166	-0.00477	0.00844
16 Edges_X	_1 25.7757	-14281	-877.557																		-0.0429		-0.02836
17 Edges_Y	_I 31.8496	-49590.3	-679.37	-35.1256	-20.3094						0.02851			-0.0084			0.02734			-0.05171	0.02396	0.0191	-0.03383
18 Outside	<u>G</u> 33.0013						5.02803		4.56817				0.07254	-0.01148	-0.03614		0.21132		-0.0822	0.00686	0.13837	0.03471	-0.03305
19 LogOfAr	ea -97.0068	233881	2857.1	137.091	80.1725	325216	-24.1522	-7.69569	0.58665	-0.05202	-0.09831	0.04859	-0.0054	0.03246	-0.10078	-0.10764	-0.07453	0.46256	0.27006	0.23018	-0.06073	-0.07754	0.13901
20 Log_X_I	nc -60.523	159608	1514.76	71.769	40.5528			-5.52523							-0.04031					0.12329	-0.07647	-0.05207	0.08497
21 Log_Y_I	nc -40.5102	76399.6	1648.31	85.1562	51.797	192903	-11.5714	-2.47242		-0.01525	-0.0438	0.03103	0.02187	0.0155	-0.07097	-0.05171	0.00686	0.23018	0.12329	0.13246	0.01276	-0.02867	0.06619
22 Orientat	ic 32.0118	-129742	217.6	21.3399	17.4743	37565.5	4.02566	4.51266	4.83508	0.05675	0.02871	-0.00266	0.07328	-0.01166	-0.0429	0.02396	0.13837	-0.06073	-0.07647	0.01276	0.1321	0.03481	-0.02956
23 Luminos	it 23.0782	-69558.3	-230.446	-9.0211	-4.05004	-20351.7	5.12806	3.40163	-0.70319	-0.05927	0.02234	-0.00545	0.01729	-0.00477	0.00541	0.0191	0.03471	-0.07754	-0.05207	-0.02867	0.03481	0.03212	-0.03071
24 Sigmoid	of -35.8983	105631	613.37	29.6859	16.9014	67932.3	-7.46646	-3.31066	0.01739	0.01731	-0.03352	0.01692	-0.01466	0.00844	-0.02836	-0.03383	-0.03305	0.13901	0.08497	0.06619	-0.02956	-0.03071	0.05396
25																							

Covariance matrix of Class 0

Covariance matrix of Class 1

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

- 1. The classification accuracy obtained from Bayes Classifier is 96.428 %, and it is more than KNN (without normalized data) but less than KNN (with normalized data).
- 2. The values at diagonal of covariance matrix are maximum than all those at off diagonal places, as the diagonal elements of the covariance matrix contain the variances of the variables and the off diagonal elements contain the covariances between all possible pairs of variables.

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	88.392
2.	KNN on normalized data	97.023
3.	Bayes	96.428

Inferences:

- 1. KNN model has highest accuracy of 97.023 when normalized data is given and KNN model has lowest accuracy of 88.392 when data given is unnormalized.
- 2. KNN (without normalized data) < Bayes classifier < KNN (with normalized data).