5.1 Convergência pontual e convergência uniforme

Exemplos:
$$f_n(x) = x^n, x \in [0, 1]; g_n(x) = \frac{x^n}{n}, x \in [0, 1]$$

Sejam (f_n) uma sucessão de funções reais definidas em $D \subseteq \mathbb{R}$ e $f: D \to \mathbb{R}$. Diz-se que (f_n) converge pontualmente para f em D se, para todo $x \in D$, temos

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Sejam (f_n) uma sucessão de funções definidas em $D \subseteq \mathbb{R}$ e $f: D \to \mathbb{R}$. Diz-se que (f_n) converge uniformemente para f em D se a sucessão numérica de termo geral

$$M_n := \sup_{x \in D} |f_n(x) - f(x)|$$

é um infinitésimo.

5.1 Convergência pontual e convergência uniforme

Proposição Se (f_n) converge uniformemente para f num conjunto D, então (f_n) converge pontualmente para f nesse conjunto.

Teorema Seja (f_n) uma sucessão de funções contínuas em [a, b]. Suponha-se que (f_n) converge uniformemente para f num intervalo [a, b]. Então:

- f é contínua em [a, b];
- ② f é integrável em [a, b] e $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$
- ③ Se as funções f_n têm derivadas contínuas em [a,b] e a sucessão (f'_n) converge uniformemente em [a,b], então f é diferenciável neste intervalo $f'(x) = \lim_{n \to \infty} f'_n(x), \forall x \in [a,b]$

5.2.1 Convergência pontual e uniforme (Séries)

A série $\sum_{n=1}^{\infty} f_n$ converge pontualmente (resp., unif.) em D se a sucessão (S_n) das somas parciais convergir pontualmente. (resp., unif.) em D.

Teorema Seja $\sum_{n=1}^{\infty} f_n$ uma série de funções contínuas em [a, b]. Suponha-se que $\sum_{n=1}^{\infty} f_n$ converge uniformemente em [a, b] com soma S. Então:

- **1** A soma S é contínua em [a, b];
- \bigcirc (integração termo a termo) A soma S é integrável em [a,b] e

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$

(derivação termo a termo) Se cada f_n é de classe C^1 em [a,b] e $\sum_{n=1}^{\infty} f'$ converge uniformemente em [a,b], então S é diferenciável neste intervalo e

$$S'(x) = \left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x), \ x \in [a, b]$$

5.2.1 Convergência pontual e convergência uniforme

Teorema (Critério de Weierstrass) Sejam (f_n) uma sucessão de funções definidas em D e $\sum_{n=1}^{\infty} a_n$ uma série numérica convergente de termos não negativos, tais que $|f_n(x)| \leq a_n, \ \forall n \in \mathbb{N}, \ \forall x \in D$. Então a série $\sum_{n=1}^{\infty} f_n$ converge uniformemente em D.

Exemplos:

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}, \quad \sum_{n=1}^{\infty} \frac{\cos(nx)}{2^n + n}, \quad \sum_{n=1}^{\infty} \frac{x^2}{(1 + x^2)^n}.$$

5.2.2. Séries de potências (revisitado)

Exemplo: $\sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n+1}$

Teorema Seja $\sum_{n=1}^{\infty} a_n(x-c)^n$ uma série de potências com raio de convergência $R \neq 0$. Então a série converge uniformemente em qualquer subintervalo fechado e limitado do seu intervalo de convergência |c-R,c+R|.

Teorema (Teorema de Abel) Seja $\sum_{n=1}^{\infty} a_n(x-c)^n$ uma série de potências com raio de convergência $R \neq 0$. Se a série converge no ponto x = c + R (resp., no ponto x = c - R), então ela converge uniformemente em [c, c + R] (resp., em [c - R, c]).

Exemplo: $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n+1}}$

5.2.2. Séries de potências (revisitado)

Teorema Sejam $\sum_{n=0}^{\infty} a_n (x-c)^n$ uma série de potências com raio de convergência $R \neq 0$. Então:

- A função f é contínua em I :=]c R, c + R[.
- A função f é diferenciável em I e $f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}, \forall \in I$.
- A função F, definida por $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$, é a primitiva de f em I tal que F(c) = 0.
- A função f é integrável em qualquer subintervalo [a,b] do domínio de convergência e

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} a_{n}(x-c)^{n} \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} a_{n}(x-c)^{n} dx$$

Observe-se que o teorema anterior garante, em particular, que a função soma de uma série de potências admite derivadas finitas de qualquer ordem no intervalo de convergência.

5.2.2. Séries de potências (revisitado)

Teorema (Unicidade de representação em série de potências) Se $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ é uma série de potências com raio de convergência $R \neq 0$, então f possui derivadas finitas de qualquer ordem em I =]c - R, c + R[e

$$a_n=\frac{f^{(n)}(c)}{n!},$$

para todo $n \in \mathbb{N}_0$.

Exemplos: $\frac{1}{(1-x)^2}$, $\ln \frac{1}{1-x}$, $\ln x$, $\arctan x$, e^x , $\sin x$, $\cos x$.