

Universidad Autonoma de Nuevo León

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

PROYECTO 2

Autores:

Jesús Eduardo Loera Casas 1898887

Cesar Efrén Valladares Rocha 1841555

Vrani Chavez Islas 1990044

18 de abril de 2021

Índice

1. Euler-Lagrange

1

Resumen

En este documento nuestro equipo presenta el Proyecto 2 del curso de mecánica teórica, donde encontramos la ecuación de Euler-Lagrange para una variable independiente y dos dependientes con ligadura.

1. Euler-Lagrange

Solución.

Consideremos la integral:

$$J = \int_{x_1}^{x_2} f[y, z, y_x, z_x; x] dx$$
 (1)

Donde tenemos:

$$y_x = \frac{\partial y}{\partial x} \tag{2}$$

$$z_x = \frac{\partial z}{\partial x} \tag{3}$$

Y también una restricción de la forma:

$$g[y,z;x] = 0 (4)$$

Consideremos la condición para que J sea un valor extremo:

$$\left[\frac{\partial J}{\partial \alpha}\right]_{\alpha=0} = 0 \tag{5}$$

Primeramente demos una forma paramétrica a y,z, en términos de α , x:

$$y(\alpha, x) = y(0, x) + \alpha \eta_1(x) \tag{6}$$

$$z(\alpha, x) = z(0, x) + \alpha \eta_2(x) \tag{7}$$

Con las siguientes condiciones:

- 1. En los extremos $\eta_1(x)$ y $\eta_2(x)$ son iguales a cero.
- 2. $\eta_1(x)$ y $\eta_2(x)$ son diferenciables en (x_1,x_2)

Aplicamos la condición (5) a (1):

$$\frac{\partial J}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left[\int_{x_1}^{x_2} f[y, z, y_x, z_x; x] dx \right]$$

Aplicamos la regla de la cadena al lado derecho de la igualdad:

$$\frac{\partial J}{\partial \alpha} = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \frac{\partial y}{\partial \alpha} + \frac{\partial f}{\partial y_x} \frac{\partial y_x}{\partial \alpha} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \alpha} + \frac{\partial f}{\partial z_x} \frac{\partial z_x}{\partial \alpha} \right] dx \tag{8}$$

Derivando parcialmente respecto a α las ecuaciones de (6) y (7)

$$\frac{\partial}{\partial \alpha} y(\alpha, x) = \frac{\partial}{\partial \alpha} \left[y(0, x) + \alpha \eta_1(x) \right]$$
$$= \frac{\partial}{\partial \alpha} y(0, x) + \frac{\partial}{\partial \alpha} \alpha \eta_1(x)$$
$$= \eta_1(x)$$

$$\frac{\partial}{\partial \alpha} z(\alpha, x) = \frac{\partial}{\partial \alpha} \left[z(0, x) + \alpha \eta_2(x) \right]$$
$$= \frac{\partial}{\partial \alpha} z(0, x) + \frac{\partial}{\partial \alpha} \alpha \eta_2(x)$$
$$= \eta_2(x)$$

Por tanto, tenemos las siguientes ecuaciones:

$$\frac{\partial y}{\partial \alpha} = \eta_1(x) \tag{9}$$

$$\frac{\partial z}{\partial \alpha} = \eta_2(x) \tag{10}$$

Ahora hallamos $\frac{\partial y_x}{\partial \alpha}$ y $\frac{\partial z_x}{\partial \alpha}$:

$$\frac{\partial y_x}{\partial \alpha} = \frac{\partial}{\partial \alpha} \frac{dy}{dx}$$

$$= \frac{\partial}{\partial \alpha} \frac{d}{dx} [y(0, x) + \alpha \eta_1(x)]$$

$$= \frac{\partial}{\partial \alpha} \left[y'(0, x) + \alpha \eta'_1(x) \right]$$

$$= \eta'_1(x)$$

$$= \frac{d\eta_1}{dx}$$

$$\frac{\partial z_x}{\partial \alpha} = \frac{\partial}{\partial \alpha} \frac{dz}{dx}$$

$$= \frac{\partial}{\partial \alpha} \frac{d}{dx} \left[z(0, x) + \alpha \eta_2(x) \right]$$

$$= \frac{\partial}{\partial \alpha} \left[z'(0, x) + \alpha \eta'_2(x) \right]$$

$$= \eta'_2(x)$$

$$= \frac{d\eta_2}{dx}$$

Por tanto tenemos las siguientes ecuaciones:

$$\frac{\partial y_x}{\partial \alpha} = \frac{d\eta_1}{dx} \tag{11}$$

$$\frac{\partial z_x}{\partial \alpha} = \frac{d\eta_2}{dx} \tag{12}$$

Sustituyendo (9), (10), (11) y (12) en (8):

$$\frac{\partial J}{\partial \alpha} = \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial y} \eta_1 + \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} + \frac{\partial f}{\partial z} \eta_2 + \frac{\partial f}{\partial z_x} \frac{d\eta_2}{dx} \right] dx$$

Separamos la integral en sumas de integrales:

$$\frac{\partial J}{\partial \alpha} = \int_{x_1}^{x_2} \frac{\partial f}{\partial y} \eta_1 dx + \int_{x_1}^{x_2} \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} dx + \int_{x_1}^{x_2} \frac{\partial f}{\partial z} \eta_2 dx + \int_{x_1}^{x_2} \frac{\partial f}{\partial z_x} \frac{d\eta_2}{dx} dx \tag{13}$$

Prestemos atención en los siguientes términos

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} dx$$
$$\int_{x_1}^{x_2} \frac{\partial f}{\partial z_x} \frac{d\eta_2}{dx} dx$$

de la ecuación (13).

•

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} dx$$

Hacemos $u=\frac{\partial f}{\partial y_x}$ y $dv=\frac{d\eta_1}{dx}dx$

Entonces $du = \frac{d}{dx} \frac{\partial f}{\partial y_x} dx$ y $v = \eta_1(x)$

Por lo tanto

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} dx = \left[\frac{\partial f}{\partial y_x} \eta_1(x) \right] \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta_1(x) \frac{d}{dx} \frac{\partial f}{\partial y_x} dx$$

Como $\eta_1(x_1) = \eta_1(x_2) = 0$ implica que:

$$\left[\frac{\partial f}{\partial y_x}\eta_1(x)\right]\Big|_{x_1}^{x_2} = 0$$

Sustituyendo esta expresión en la integral anterior:

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial y_x} \frac{d\eta_1}{dx} dx = -\int_{x_1}^{x_2} \eta_1(x) \frac{d}{dx} \frac{\partial f}{\partial y_x} dx \tag{14}$$

penepenepene