8. freiwillige Hausaufgabe - Logik

Abgabe: bis 10:30 am 13.01.2023 im ISIS-Kurs [WiSe 2022/23] Logik

Hausaufgabe 1

Sei $\sigma := \{E\}$ eine Signatur, wobei E ein zweistelliges Relationsymbol ist. Betrachten Sie die folgenden drei σ -Strukturen, welche wir als Graphen angeben, und die folgenden FO $[\sigma]$ -Formeln. Entscheiden Sie, welche der Strukturen welche Formeln erfüllen.

- (i) $\varphi_1 := \exists x \forall y \ E(x,y)$
- (ii) $\varphi_2 := \forall x \exists y \exists z (E(x,y) \land E(x,z) \land y \neq z)$

(iii)
$$\varphi_3 := \exists x_1 \exists x_2 \exists x_3 \exists x_4 (E(x_1, x_2) \land E(x_3, x_4) \land \bigwedge_{1 < i < j < 4} x_i \neq x_j)$$

Hausaufgabe 2

Sei $\sigma := \{E, f, g\}$ eine Signatur, wobei E ein zweistelliges Relationsymbol, f ein einstelliges Funktionssymbol und g ein einstelliges Funktionssymbol ist. Entscheiden Sie für die folgenden Formeln $\varphi_i \in \text{FO}[\sigma]$, mit $i \in \{1, 2\}$, jeweils ob φ_i unerfüllbar, erfüllbar mit einem endlichen Modell und/oder erfüllbar mit einem unendlichen Modell ist.

(i)
$$\varphi_1 := \forall x \exists y (E(x,y) \land E(y,x)) \land \forall a \forall b (g(a) = b \land f(b) = a \leftrightarrow E(a,b))$$

(ii)
$$\varphi_2 := \exists x \forall y (E(x,y) \land E(y,x)) \land \forall a \forall b (g(a) = b \land f(b) = a \leftrightarrow E(a,b))$$

Hausaufgabe 3

Sei $\tau := \{ \leq, +, \cdot \}$ eine Signatur in der \leq ein zweistelliges Relationssymbol ist und + und \cdot zweistellige Funktionssymbole sind. Wir definieren $\mathcal{N} := (\mathbb{N}, \leq^{\mathcal{N}}, +^{\mathcal{N}}, \cdot^{\mathcal{N}})$, wobei $\leq^{\mathcal{N}}$ die übliche Kleiner-Gleich-Relation auf \mathbb{N} ist und $+^{\mathcal{N}}$ und $\cdot^{\mathcal{N}}$ die übliche Addition und Multiplikation auf \mathbb{N} sind. Analog definieren wir auch $\mathcal{R} := (\mathbb{R}, \leq^{\mathcal{R}}, +^{\mathcal{R}}, \cdot^{\mathcal{R}})$ und $\mathcal{Z} := (\mathbb{Z}, \leq^{\mathcal{Z}}, +^{\mathcal{Z}}, \cdot^{\mathcal{Z}})$.

- (i) Zeigen oder widerlegen Sie: $\mathcal{N} \cong \mathcal{R}$.
- (ii) Zeigen oder widerlegen Sie: $\mathcal{N} \cong \mathcal{Z}$.
- (iii) Sei $\tau_1 = \{+\} \subset \tau$ und $\tau_2 = \{\cdot\} \subset \tau$.
 - a) Zeigen oder widerlegen Sie: $\mathcal{N}_{|\tau_1} \cong \mathcal{Z}_{|\tau_1}$.
 - b) Zeigen oder widerlegen Sie: $\mathcal{N}_{|\tau_2} \cong \mathcal{Z}_{|\tau_2}$.