1. Méthodologie

L'objectif de ce projet est de développer un modèle prédictif fiable pour estimer les prix des biens immobiliers au Maroc à partir d'un ensemble de données collectées en ligne. Plusieurs étapes ont été suivies : collecte des données, exploration, nettoyage, transformation, sélection de variables, modélisation et évaluation.

2. Analyse Exploratoire des Données (EDA)

- **Dimensions** du jeu de données : 9595 lignes × 9 colonnes.
- ➤ Colonnes principales : surface, ville, nombre_chambres, prix, type_bien, meublé, garage, balcon, ascenseur.
- ➤ Valeurs manquantes : Quelques valeurs nulles ont été détectées dans surface et nombre chambres.
- ➤ Valeurs aberrantes : Des prix supérieurs à 10 millions MAD ou des surfaces supérieures à 1000 m² ont été considérés comme extrêmes.
- ➤ Corrélation : surface, nombre_chambres, et la ville ont montré une certaine corrélation avec prix.

3. Prétraitement des Données

✓ Nettoyage :

Suppression des doublons.

Remplissage ou suppression des valeurs manquantes.

✓ Conversion de texte :

Un dictionnaire de traduction a été utilisé pour convertir les villes de l'arabe au français.

✓ Encodage :

Variables catégorielles (ville, type bien) encodées en One-Hot.

✓ Normalisation :

Les variables numériques ont été standardisées pour les modèles sensibles à l'échelle comme SVR.

✓ Division des données :

Train-test split: 80% entraînement / 20% test.

4. Modèles Testés

Les modèles suivants ont été testés avec validation croisée et optimisation d'hyperparamètres :

- > Régression Linéaire
- > Random Forest
- > Gradient Boosting
- > SVR (Support Vector Regression)

Chaque modèle a été évalué avec :

- ♦ MAE (Mean Absolute Error)
- ♦ RMSE (Root Mean Squared Error)
- ♦ R² (coefficient de détermination)
- ♦ Validation croisée (R² moyen et écart-type)

5. Résultats

Modèle	$\mathbf{MAE} \left(\downarrow \right)$	RMSE (↓)	$\mathbb{R}^{2}\left(\uparrow\right)$
Linear Regression	296 631.49	406 709.09	0.22
Random Forest	310 784.40	442 306.76	0.07
SVR	335 500.54	462 741.35	-0.01
Gradient Boosting	291 608.24	416 827.42	0.18

Meilleur modèle: Linear Regression

6. Conclusion

SVR est le **pire** ici ($R^2 < 0 \rightarrow$ le modèle fait pire qu'une moyenne constante).

Random Forest ne donne pas de bons résultats non plus (faible R²).

Gradient Boosting est **prometteur** en MAE, mais pas supérieur à la régression linéaire en R².

Linear Regression reste le meilleur compromis ici.

Améliorations possibles :

- > Ajouter plus de variables explicatives (quartier, année de construction...).
- > Appliquer un logarithme sur prix pour réduire la variance.
- > Entraı̂ner des modèles plus robustes ou des réseaux de neurones.