项目文件	作用
base_eva.py	获取 air 或 mete 特征,直接用分类器分类,
	如 SVC。 在代码里可以选择单独使用 air,
	mete 特征或合并使用。
consistent_eav.py	对于每个测试样本,选取与其相关度较高的
	训练样本用于预测
SGD_weight_eva.py	原理同 consistent_eva.py, 但是:
	(1) 分类器为 SGDClassifier, 对于每个测
	试样本,用每个训练样本与它的相
	关度作为该训练样本的权重
	(2) 有不同的过滤条件(4 种不同的函
142	数,不同的阀值)
txt2csv.py 参数:	在使用 moa 的 HoeffdingAdaptiveTree 和 OzaBagAdwin 时,采用的是 one-against-one
参数: (train/test/total): 读取 train 样本还是 test 样	的策略。为此需要先得出每个 binary 分类器
本还是都读进来合并	的精确度。此文件的作用是根据参数提取出
m 二元分类的第一类	每个二元分类器所需要的数据并存为 csv 格
n 二元分类的第二类(0,1,2,3,4,5)	式,便于后续直接用 weka 提供的接口转为
(1/2) 是单独使用 air 还是结合 air, mete	arff 文件。
(single/all), 二元分类(只读取 m,n 两类的	
数据) 还是读取所有类别的数据	
weka.jar	用里面的 weka.core.converters.CSVLoader 接
	口将 csv 转成 arff
ridofcomma.py	对上述生成的 arff 文件做一些调整,例如要
参数:作用同 txt2csv.py	分类的类别等。
Train/test/total	
M	
moa.jar sizeofag.jar	Moa 在命令行中使用
multi_accuracy.py	根据 one-against-one 策略合并所有上述二
	元分类器对全部测试数据的分类结果,并得
	到最终合并的预测结果,统计精确度
Concept_drift_multiaccuracy.bat	用批处理脚本文成上述所有二元分类和最
可以在代码里控制运行 4 部分里的那一部	终合并的处理。
分	具体分成4部分:
实际上只有第 4 部分是 concept drift, 前面	1. 读取所有的 test sample 并转成 arff 文件
三部分都是最初用 evaluatemodle 而不是	因为每个二元分类器都要对全部测试样
evaluateprequential(合并训练和测试数	本进行预测
据,concept drift)时采用 one-against-one 方法	读取每组二元分类的训练样本并进行训
时的工作。	练,再运用得出的分类器对全部测试样
最后在做实验时是使用 moa 的	本进行预测
evaluatePrequential 方法做 concept drift,所以之前的二元公米这部公司以道作用不士	2. 运用 multi-accuracy.py 得到合并后多元 公米的结果 (雲麗 1 的运行结果)
以之前的二元分类这部分可以说作用不大。	分类的结果(需要1的运行结果) 3. 单独统计每个二元分类器用于自己对应
	3. 单独统计每个二元分类器用于自己对应

	的两类数据预测时的精度 4. 合并 train sample 和 test sample,全部作为训练数据,运用 moa 的 EvaluatePrequential 方法(concept drift)进行预测
arima.r	R 语言实现的 arima 模型预测
splitweight.py	在比较不同的 correlation(0,1,2,3,01,02)时,用 job3 读取每对 snapshot_i 和 snapshot_j 所对应的不同种类的 correlation 值时,是把这15 种情况的值合并成1 个字符串并用#分割。此文件用于解析上述读的结果并为每种correlation 单独写一个文件。
Correlation_compare.bat	在比较不同的 correrlation 时,需要遍历 15 中 correlation 和从 0.5 到 0.95 的阀值,用此 批处理脚本完成
Easy.py	简单的脚本,将上述结果写入 csv 文件
Forecastio 文件夹	爬取数据
Smog_forecast	从数据库读取数据 java 工程

使用方法:

- 1. 可以直接运行 base_eva.py, consistent.py, SGD_weight_eva.py 测试对某次样本的测试
- 2. Arima 模型测试直接运行 arima.r
- 3. 不同过滤函数、阀值可以在 SGD_weight_sva.py 里设置
- 4. Concept drift 部分可以直接运行 Concept_drift_multiaccuracy.bat 的不同部分完成(结果保存在 concept drift 文件夹里)
- 5. Correlation 比较部分,先运行 splitweight.py, 再运行 correlation_compare.bat 完成(结果保存在 different_correlation 文件夹里)。对于每一种 correlation 和阀值,通过 SGD_weight_eva.py 得到预测精度。

每次样本的意义:

样本文件存在 samples 文件夹中

Exp	意义
006	aqi(t-5)~t
007	aqi(t-5)~t air spatial(t)邻近两个 station
008	Aqi(t-5)~t air
009	同 008
010	同 008
Consistent_weight.txt consistent_train_txt	原先的 correlation
Consistent_weight_10.txt	15 种 correlation 合并保存的文件
total_009.txt	Train samples 和 test samples 合并在一起的
	文件