Dr. Andrey Soldatenkov

Übungen zur Einführung in die komplexe Analysis – Blatt 2

Aufgabe 8. (Exponential funktion unter Konjugation, 2+1+1 Punkte) Man beweise, dass $e^{\bar{z}} = \overline{e^z}$, $\cos(\bar{z}) = \overline{\cos(z)}$, and $\sin(\bar{z}) = \overline{\sin(z)}$ für alle $z \in \mathbb{C}$.

Aufgabe 9. (Abschluss, Inneres, Rand, 1+1+1+1+1 Punkte) Man beschreibe Abschluss, Inneres und Rand der folgenden Mengen: (i) $D_1(0) \setminus \{0\}$, (ii) \mathbb{H} , (iii) $\mathbb{C} \setminus \{x \in \mathbb{R} \mid |x| > 0\}$, (iv) $\mathbb{C} \setminus p^{-1}(0)$, wobei p ein Polynom ist,

und (v) $\{p+iq\mid p,q\in\mathbb{Q}\}$. Insbesondere entscheide man welche dieser Mengen offen bzw. abgeschlossen sind.

Aufgabe 10. (Cauchy–Riemann Differentialoperatoren, 3+1+1 Punkte) Sei $U \subset \mathbb{C}$ offen, $z_0 \in U$ und $f = (u, v) : U \to \mathbb{C} = \mathbb{R}^2$.

1. Sei f differenzierbar in $z_0 \in U$. Man beweise, dass dann für die Ableitung $Df(z_0) \in$ $M(2 \times 2, \mathbb{R})$ und beliebige $h \in \mathbb{C}$ die folgende Gleichung gilt

$$Df(z_0) h = \frac{\partial f}{\partial z}(z_0) h + \frac{\partial f}{\partial \bar{z}}(z_0) \bar{h}.$$

- 2. Sei f holomorph in z_0 . Man beweise die Formel $\det(Df(z_0)) = |f'(z_0)|^2$.
- 3. Sei wiederum f holomorph in z_0 . Man beweise, dass $f'(z_0) = 2\frac{\partial u}{\partial z}(z_0)$.

Aufgabe 11. (Real- und Imaginärteil, Polarkoordinaten, 1+1+1+1+1+1+1 Punkte) Man bestimme Real- und Imaginärteil folgender komplexer Zahlen: (i) (i+1)(i-2)(i+3), (ii) $\frac{2+i}{2-i}$, (iii) $(1+i)^{-1}$ (iv) -5i.

Man bestimme Argument und Absolutbetrag folgender komplexer Zahlen: (i) 1 + i, (ii) -3, (iii) 4i,

Aufgabe 12. (Konvergenzradius, 2+3 Punkte) Sei $\sum a_n z^n$ eine Potenzreihe mit positivem Konvergenzradius R. Man zeige, dass dann R auch Konvergenzradius der Potenzreihen $\sum na_nz^n$ und $\sum na_nz^{n-1}$ ist.

Seien $\sum a_n z^n$ und $\sum a'_n z^n$ Potenzreihen mit Konvergenzradien R und R'. Was lässt sich über den Konvergenzradius der Potenzreihen $\sum (a_n + a'_n) z^n$ und $\sum (a_n a'_n) z^n$ aussagen?

Aufgabe 13. (Bernoulli Zahlen, 2+2+2 Punkte)

Die Bernoulli Zahlen B_n , $n \ge 0$ sind durch die Gleichung

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n$$

definiert.

Abgabe: Freitag 27.4. vor(!) der Vorlesung.

- 1. Man beweise $B_{2k+1} = 0$ für alle k > 0. (Hinweis: Man betrachte die Funktion $z/(e^z 1) + (z/2)$ und verwende, dass die ungeraden Koeffizienten einer geraden Potenzreihe verschwinden.)
- 2. Man zeige, dass für alle n > 1 gilt:

$$\frac{B_0}{n!} + \frac{B_1}{(n-1)!1!} + \dots + \frac{B_{n-1}}{1!(n-1)!} = 0.$$

3. Man berechne B_n , für n = 1, 2, 3, 4.

Aufgabe 14. (Lokale Injektivität, 3 Punkte)

Sei $f: U \to \mathbb{C}$ eine holomorphe Funktion auf einer offenen Menge $U \subset \mathbb{C}$, so dass $f'(z) \neq 0$ für alle $z \in U$. Man zeige, dass dann für alle $z \in U$ eine offene Menge $z \in V \subset U$ existiert, so dass $f(z') \neq f(z'')$ für alle $z' \neq z'' \in V$.