Assessing two-stage Approximation Algorithms for the Routing and Wavelength Assignment Problem

Jesse Hellendoorn

Master Thesis OR MSc Econometrics & Operations Research Vrije Universiteit Amsterdam

> May 25, 2023 GitLab [RL4RWA]

The Routing and Wavelength Assignment Problem

The National Science Foundation Network (NSFNET)

The Routing and Wavelength Assignment Problem

- Multicommodity flow problem
- 2. Distinct wavelength assignment (clash)
- 3. Wavelength continuity

Graph
$$G = (V, E)$$

Graph
$$G = (V, E)$$

Demands $C = \{c_1, \dots, c_n\}$ with $c = (s_c, d_c) \forall c$

Graph
$$G=(V,E)$$

Demands $C=\{c_1,\ldots,c_n\}$ with $c=(s_c,d_c)\,\forall c$
Paths $P=\{p_{c_1}^1,\ldots,p_{c_1}^k,\ldots,p_{c_n}^1,\ldots,p_{c_n}^k\}$

Graph
$$G=(V,E)$$

Demands $C=\{c_1,\ldots,c_n\}$ with $c=(s_c,d_c)\,\forall c$
Paths $P=\{p_{c_1}^1,\ldots,p_{c_1}^k,\ldots,p_{c_n}^1,\ldots,p_{c_n}^k\}$
Wavelengths $\Lambda=\{\lambda_1,\ldots,\lambda_l\}$

Multicommodity Flow Problem

Graph
$$G=(V,E)$$

Demands $C=\{c_1,\ldots,c_n\}$ with $c=(s_c,d_c)\,\forall c$
Paths $P=\{p_{c_1}^1,\ldots,p_{c_1}^k,\ldots,p_{c_n}^1,\ldots,p_{c_n}^k\}$
Wavelengths $\Lambda=\{\lambda_1,\ldots,\lambda_l\}$

Goal: Given above resources, maximize the amount of concurrent demands that can be supported in the network

Problem Formulation

- * Distinct wavelength assignment (clash) $\forall e \in E$, for each $\lambda \in \Lambda$ at most one path is supported
- Wavelength continuity

Every p_c with demand c is assigned to a single $\lambda \in \Lambda$ or to ε

Lightpath: a tuple (p_c, λ) comprising a path p_c and a wavelength λ

Optimization Function

Let $P^+ \subseteq P$ be the set of accepted paths, where a connection c is provisioned by at most a single p_c^+ or not at all

$$f(P^+) = |P^+| + \frac{1}{1 + \sum_{p^+ \in P^+} |p^+|}$$

Then optimize $Z = \max f(P^+)$

Research Question

"What is the approximation ratio of the best performing reinforcement learning algorithms compared to the best performing non-reinforcement learning algorithms?"

Model Assumptions

Vertices can be endpoint or transit to multiple connections

Model Assumptions

Vertices can be endpoint or transit to multiple connections Edges have unit distance and are symmetric, bidirectional

Model Assumptions

Vertices can be endpoint or transit to multiple connections Edges have unit distance and are symmetric, bidirectional Connections are static, knowable, and continuous without queuing or delaying under the condition that $c_s \neq c_d$

Model Assumptions

Vertices can be endpoint or transit to multiple connections Edges have unit distance and are symmetric, bidirectional Connections are static, knowable, and continuous without queuing or delaying under the condition that $c_s \neq c_d$ Paths k=25

Model Assumptions

Vertices can be endpoint or transit to multiple connections Edges have unit distance and are symmetric, bidirectional Connections are static, knowable, and continuous without queuing or delaying under the condition that $c_s \neq c_d$

Paths k = 25

Time Complexity RWA \in NP-Complete and P \neq NP

$$|V| = 14, |E| = 21$$

$$|V| = 14, |E| = 21$$

 $|\Lambda| = \left\lceil \frac{|V|}{\sqrt{|E|}} \right\rceil = 4$

$$|V| = 14, |E| = 21$$

$$|\Lambda| = \left\lceil \frac{|V|}{\sqrt{|E|}} \right\rceil = 4$$

$$|C| \sim U\left(\left\lceil \sqrt{|V| \cdot |\Lambda|} \right\rceil, 2\left\lceil \sqrt{|V| \cdot |\Lambda|} \right\rceil\right) = U(15, 30)$$

$$\begin{aligned} |V| &= 14, |E| = 21 \\ |\Lambda| &= \left\lceil \frac{|V|}{\sqrt{|E|}} \right\rceil = 4 \\ |C| &\sim U\left(\left\lceil \sqrt{|V| \cdot |\Lambda|} \right\rceil, 2\left\lceil \sqrt{|V| \cdot |\Lambda|} \right\rceil\right) = U(15, 30) \\ C \text{ using random sampling pairs from } V \end{aligned}$$

State space S

```
Short: \{\lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \varepsilon, \varepsilon\} with dim(S) = (|\Lambda| + 1)^{|C|}
```

Binary: $\{1, 1, 1, 1, 1, 1, 1, 1, 0, 0\}$ with $dim(S) = 2^{|C|}$

State space S

```
Short: \{\lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \lambda, \varepsilon, \varepsilon\} with dim(S) = (|\Lambda| + 1)^{|C|}
```

Binary: $\{1, 1, 1, 1, 1, 1, 1, 1, 0, 0\}$ with dim $(S) = 2^{|C|}$

Action space A

$\forall c \in C$

Add path of c opt

Add path of c prob

Remove any path of c

with $dim(A) = 3 \cdot |C|$

Q-learning & Deep Q-learning

Advantage Actor Critic & Proximal Policy Optimization

Other algorithms and the MCF Upper Bound

Multicommodity flow upper bound

$$|C| + \frac{1}{1 + \sum_{c \in C} |p_c^1|}$$

Other algorithms and the MCF Upper Bound

Multicommodity flow upper bound

$$|C| + \frac{1}{1 + \sum_{c \in C} |p_c^1|}$$

Integer Linear Programming

Solving ILP with GEKKO's Advanced Process OPTimizer (APOPT) solver

Other algorithms and the MCF Upper Bound

Multicommodity flow upper bound

$$|C| + \frac{1}{1 + \sum_{c \in C} |p_c^1|}$$

Integer Linear Programming

Solving ILP with GEKKO's Advanced Process OPTimizer (APOPT) solver

Dependency Graph Algorithm

Combination of identifying rewarding paths and random sampling

- 1. SP Q-learning algorithm 18.938
- 2. SP Deep Q-learning algorithm 18.799
- 3. Rand Deep Q-learning algorithm 18.779

- 1 SP Q-learning algorithm 18.938
- 2. SP Deep Q-learning algorithm 18.799
- 3 Rand Deep Q-learning algorithm 18.779

MCF upper bound 21.382 SP dependency graph algorithm 21.256

Conclusion

Research Question

"What is the approximation ratio of the best performing reinforcement learning algorithms compared to the best performing non-reinforcement learning algorithms?"

Conclusion

Research Question

"What is the approximation ratio of the best performing reinforcement learning algorithms compared to the best performing non-reinforcement learning algorithms?"

Average Approximation Ratios

Best RL to best dependency graph algorithm: 0.984 (0.902)

Best RL to ILP is: 0.974 (0.899)

Conclusion

Research Question

"What is the approximation ratio of the best performing reinforcement learning algorithms compared to the best performing non-reinforcement learning algorithms?"

Average Approximation Ratios

Best RL to best dependency graph algorithm: 0.984 (0.902)

Best RL to ILP is: 0.974 (0.899)

Best Performing RL Algorithms

- 1 Shortest-path Q-learning Algorithm
- 2. Shortest-path Deep Q-Learning Algorithm
- 3. Random Deep Q-Learning Algorithm

Discussion

Reflection on Limitations

- Only considered NSFNET & a single wavelength intensity
- Reliance on base algorithms and residual wavelength assignment, imprecise state representation
- Static perfectly predictable, stable discrete-time connections
- Graph edge uniformity

Thank you for your attention!

Thesis' Contributions

- Created a comprehensive model for RWA benchmarking
- Demonstrated how RWA can be solved using RL
- * Introduced methods to assess the algorithmic performance for RWA