Proposition 3.6 ([15, Corollary 1.4]). Consider the assumption in Theorem 3.5. Then, $\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})$ has no proper Λ -submodules with finite index.

By the above proposition and a property of the Fitting ideal (cf. [10, Lemma A.7]), we have

$$\operatorname{Fitt}_{\Lambda} \left(\operatorname{Sel}_{p^{\infty}}^{\pm} (E/K_{\infty})^{\vee} \right) = \operatorname{char}_{\Lambda} \left(\operatorname{Sel}_{p^{\infty}}^{\pm} (E/K_{\infty})^{\vee} \right). \tag{3.1}$$

Last, we prove the control theorem for $\mathrm{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})$ in our situation by the similar arguments to [1]. We prepare the following lemma for the proof. Let w be a prime of K_{∞} above p.

Lemma 3.7. The natural map $f_n^{\pm}: H_{\pm}^1(K_{n,p}, E[p^{\infty}]) \longrightarrow H_{\pm}^1(K_{\infty,w}, E[p^{\infty}])[\omega_n^{\pm}]$ is injective, and the cokernel of f_n^{\pm} is a finite group for any positive integer n. Here, we define $H_{\pm}^1(K_{\infty,w}, E[p^{\infty}]) := \varinjlim H_{\pm}^1(K_{n,p}, E[p^{\infty}])$.

Proof. Note that we have $E[p^{\infty}]^{G_{K_{\infty,p}}} = 0$ by [15, Proposition 3.2]. By Inflation-Restriction exact sequence, we see that the canonical map

$$f_n: H^1(K_{n,p}, E[p^{\infty}]) \longrightarrow H^1(K_{\infty,p}, E[p^{\infty}])^{\operatorname{Gal}(K_{\infty,p}/F_{n,p})} = H^1(K_{\infty,p}, E[p^{\infty}])[\omega_n]$$

is injective. Since the map f_n^{\pm} is the restriction of f_n to $H^1_{\pm}(K_{n,p},E[p^{\infty}]), f_n^{\pm}$ is also injective. For the claim for Coker f_n^{\pm} , it suffices to show that both the \mathbb{Z}_p -coranks of $H^1_{\pm}(K_{n,p},E[p^{\infty}])$ and $H^1_{\pm}(K_{\infty,w},E[p^{\infty}])[\omega_n^{\pm}]$ are same. Since we have $H^1_{\pm}(K_{\infty,w},E[p^{\infty}])^{\vee} \simeq \Lambda^2$ as Λ -module by the Rubin conjecture, we see that

$$H^{1}_{\pm}(K_{\infty,w}, E[p^{\infty}])[\omega_{n}^{\pm}]^{\vee} \simeq (H^{1}_{\pm}(K_{\infty,w}, E[p^{\infty}]))^{\vee}/\omega_{n}^{\pm}(H^{1}_{\pm}(K_{\infty,w}, E[p^{\infty}]))^{\vee}$$
$$\simeq \Lambda^{2}/\omega_{n}^{\pm}\Lambda^{2}.$$

On the other hand, we have $H^1_{\pm}(K_{n,p}, E[p^{\infty}]) = \widehat{E}(K_{n,p})^{\pm} \otimes (\mathbb{Q}_p / \mathbb{Z}_p)$ by the definition. Thus, we see that $H^1_{\pm}(K_{n,p}, E[p^{\infty}])^{\vee} \simeq \Lambda_n^2 / \omega_n^{\pm} \Lambda_n^2$ by Proposition 3.4. Therefore, the \mathbb{Z}_p -rank of $H^1_{\pm}(K_{n,p}, E[p^{\infty}])$ and $H^1_{\pm}(K_{\infty,w}, E[p^{\infty}])[\omega_n^{\pm}]$ are the same.

Proposition 3.8. Consider the assumption in Theorem 3.5. Then, the canonical homomorphism

$$\operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{\infty})[\omega_{n}^{\pm}] \longrightarrow \operatorname{Sel}_{p^{\infty}}^{\pm}(E/K_{n})[\omega_{n}^{\pm}]$$

is injective, and the order of the cokernel is finite for any n.

Proof. We take the finite subset $\Sigma = \{p\} \cup \{\text{bad primes of } E\}$. Then, we have the following commutative diagram:

$$0 \longrightarrow \operatorname{Sel}_{p}^{\pm}(E/K_{n})[\omega_{n}^{\pm}] \longrightarrow H^{1}(K_{\Sigma}/K_{n}, E[p^{\infty}])[\omega_{n}^{\pm}] \xrightarrow{a} \prod_{\substack{v_{n}|v\\v\in\Sigma}} \frac{H^{1}(K_{n,v_{n}}, E[p^{\infty}])[\omega_{n}^{\pm}]}{H^{1}_{\pm}(K_{n,v_{n}}, E[p^{\infty}])},$$

$$\downarrow s_{n}^{\pm} \qquad \qquad \downarrow s_{n}^{\pm} \qquad \qquad \downarrow s_{n}^{\pm} = \prod s_{n,v_{n}}^{\pm}$$

$$0 \longrightarrow \operatorname{Sel}_{p}^{\pm}(E/K_{\infty})[\omega_{n}^{\pm}] \longrightarrow H^{1}(K_{\Sigma}/K_{\infty}, E[p^{\infty}])[\omega_{n}^{\pm}] \longrightarrow \prod_{\substack{v_{\infty}|v\\v\in\Sigma}} \frac{H^{1}(K_{\infty,v_{\infty}}, E[p^{\infty}])[\omega_{n}^{\pm}]}{H^{1}_{\pm}(K_{\infty,v_{\infty}}, E[p^{\infty}])[\omega_{n}^{\pm}]}.$$

Since we have $E[p^{\infty}]^{G_{K_{\infty}}} = 0$, the map $H^1(K_{\Sigma}/K_n, E[p^{\infty}]) \longrightarrow H^1(K_{\Sigma}/K_{\infty}, E[p^{\infty}])[\omega_n]$ induced by the restriction map is isomorphism by the Inflation-Restriction exact sequence. Therefore, h_n^{\pm} is also isomorphism. By the snake lemma, s_n^{\pm} is injective, and it suffices to calculate the kernel of g_n^{\pm} .

We first consider the case $v \in \Sigma \setminus \{p\}$. Then, $K_{\infty,v_{\infty}}/K_{n,v_n}$ is the trivial extension or the unramified \mathbb{Z}_p -extension. If the extension $K_{\infty,v_{\infty}}/K_{n,v_n}$ is trivial, then it is clear that $\ker g_{n,v_n}^{\pm} = 0$. Assume that $K_{\infty,v_{\infty}}/K_{n,v_n}$ is the unramified \mathbb{Z}_p -extension. Write $B_{v_{\infty}} := E[p^{\infty}]^{G_{K_{\infty},v_{\infty}}}$. We consider the exact sequence

$$0 \longrightarrow H^1(K_{\infty,v_{\infty}}/K_{n,v_n},B_{v_{\infty}}) \longrightarrow H^1(K_{n,v_n},E[p^{\infty}]) \longrightarrow H^1(K_{\infty,v_{\infty}},E[p^{\infty}])$$