Lenses

Hector Villarrubia-Rojo*

June 26, 2023

Contents

1	Rescaling	1
2	Magnification	1
3	Singular Isothermal Sphere (SIS)	2
4	Cored Isothermal Sphere (CIS)	2
5	Point lens	2
6	Uniform density sphere	2
7	Navarro-Frenk-White (NFW)	2

1 Rescaling

$$w \equiv 8\pi G M_{Lz} f \tag{1}$$

$$M_{Lz} \equiv \frac{\xi_0^2}{4Gd_{\text{eff}}} \tag{2}$$

2 Magnification

From [2] (ch.5, p.162)

$$\phi(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} |\boldsymbol{x} - \boldsymbol{y}|^2 - \psi(\boldsymbol{x})$$
(3)

$$A_{ij} = \frac{\partial y_i}{\partial x_j} = \phi_{ij} = \delta_{ij} - \psi_{ij} \quad \to \quad \mu = \frac{1}{\det A}$$
 (4)

Defining

$$\gamma_1 = \frac{1}{2}(\psi_{11} - \psi_{22}) \tag{5}$$

$$\gamma_2 = \psi_{12} \tag{6}$$

$$\kappa = \frac{1}{2}(\psi_{11} + \psi_{22}) \tag{7}$$

^{*}hector.villarrubia-rojo@aei.mpg.de

And then we can write

$$eig(A) = 1 - \kappa \mp \gamma \tag{8}$$

$$\det A = (1 - \kappa)^2 - \gamma^2 \tag{9}$$

$$\operatorname{tr} A = 2(1 - \kappa) \tag{10}$$

where $\gamma = \sqrt{\gamma_1^2 + \gamma_2^2}$. The different types of images are

Type I (minimum)
$$\rightarrow \det A > 0$$
, $\operatorname{tr} A > 0$ (11)

Type II (saddle)
$$\rightarrow \det A < 0$$
 (12)

Type III (maximum)
$$\rightarrow \det A > 0, \text{ tr } A < 0$$
 (13)

(14)

3 Singular Isothermal Sphere (SIS)

4 Cored Isothermal Sphere (CIS)

- Point lens 5
- Uniform density sphere 6

Navarro-Frenk-White (NFW) 7

Following [1], we start with

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2} \tag{15}$$

and we have the lensing potential

$$\psi(r) = \frac{1}{2}\psi_0 \left(\log^2(u/2) + (u^2 - 1)\mathcal{F}(u) \right) , \qquad \psi_0 = \frac{4\kappa_s r_s^2}{\xi_0^2}$$
 (16)

where $u \equiv r/r_s = x/x_s$ and $x \equiv r/\xi_0$. We also have

$$\kappa_s = \frac{\rho_s r_s}{\Sigma_{\text{crit}}} \tag{17}$$

$$\kappa_s = \frac{\rho_s r_s}{\Sigma_{\text{crit}}}$$

$$\Sigma_{\text{crit}} = \frac{1}{4\pi G d_{\text{eff}} (1 + z_L)}$$
(17)

$$d_{\text{eff}} = \frac{D_L D_{SL}}{(1 + z_L) D_S} \tag{19}$$

Then

$$\psi_0 = \frac{1}{\xi_0^2} 4\kappa_s r_s^2 = \frac{4Gd_{\text{eff}}(1+z_L)M_{\text{NFW}}}{\xi_0^2}$$
 (20)

where $M_{\rm NFW} \equiv 4\pi \rho_s r_s^3$. We can then choose

$$\xi_0^2 = 4Gd_{\text{eff}}(1+z_L)M_{\text{NFW}} \tag{21}$$

$$M_{Lz} = (1 + z_L)M_{NFW} \tag{22}$$

We can relate the NFW parameters to the concentration parameter defined as [Wikipedia]

$$r_{\rm vir} = c \, r_s \tag{23}$$

$$M_{\rm vir} = \int_0^{r_{\rm vir}} 4\pi r^2 \rho(r) dr = M_{\rm NFW} \left(\log(1+c) - \frac{c}{1+c} \right)$$
 (24)

Ref.	ξ_0	ψ_0	x_s	M_{Lz}
Fairbairn+	$R_E(M_{ m vir})$	$M_{ m NFW}/M_{ m vir}$	$r_s/R_E(M_{ m vir})$	$(1+z_L)M_{ m vir}$
Guo+	r_s	$R_E(M_{ m NFW})/r_s$	1	$(1+z_L)M_{\rm NFW}\frac{r_s^2}{R_E^2(M_{\rm NFW})}$
Ours (?)	$R_E(M_{ m NFW})$	1	$r_s/R_E(M_{ m NFW})$	$(1+z_L)M_{ m NFW}$

Table 1: Possible choices of normalization. Here $R_E(M) \equiv \sqrt{4Gd_{\text{eff}}(1+z_L)M}$.

with typical values ranging from 10 to 15 for the Milky Way and 4 to 40 for halos. With the additional definition of the virial radius

$$M_{\rm vir} = \frac{4}{3}\pi r_{\rm vir}^3 \ 200\rho_{\rm crit} \tag{25}$$

we can obtain $r_s(M_{\rm vir},c)$ and $M_{\rm NFW}(M_{\rm vir},c)$. So finally we have

$$M_{Lz} = \frac{(1+z_L)}{\log(1+c) - \frac{c}{1+c}} M_{\text{vir}}$$
 (26a)

$$\xi_0^2 = 4Gd_{\text{eff}}M_{Lz} \tag{26b}$$

$$x_s \equiv \frac{r_s}{\xi_0} = \frac{1}{\xi_0} \left(\frac{3M_{\text{vir}}}{800\pi c^3 \rho_{\text{crit}}} \right)^{1/3}$$
 (26c)

References

- [1] Charles R. Keeton. A catalog of mass models for gravitational lensing. 2 2001.
- [2] Peter Schneider, Jürgen Ehlers, and Emilio E. Falco. Gravitational Lenses. 1992.