Kai Gao

Website: gaokai15.github.io **Email:** kg627@scarletmail.rutgers.edu **LinkedIn:** https://www.linkedin.com/in/kai-gao-473a10195/ **GitHub:** https://github.com/gaokai15

EDUCATION

Rutgers, the State University of New Jersey

Aug. 2019 - Present

PhD, Robotics/Computer Science Advisor: by Dr. Jingjin Yu

Piscataway, USA

IROS 2023 Finalist of Best RoboCup Paper Award. (Top 6% among accepted papers)

University of Science and Technology of China (USTC)

Aug. 2015 - Jun. 2019

Bachelor, Mathematics

Hefei, China

WORK EXPERIENCE

Applied Scientist Co-op

Feb. 2024 - Present

Amazon Robotics

North Reading, USA

- 1. Participated in a project to train an imitation learning model for object grasping with closed-loop control, responsible for deciding on the object set and demonstrated behaviors for subsequent data collection based on the roll-out performance of trained policies.
- 2. Developed a simulation environment using Nvidia Isaac Sim for multi-step non-prehensile manipulation tasks, enabling effective demonstration collection and analysis of varying observation types and task descriptions (language prompts or images).
- 3. Fine-tuned transformer-based foundation models (generalist policies) for hardware-agnostic skill learning and multi-skill chaining.

Advanced Robotics Intern

May. 2022 - Sep. 2022

Siemens Corporation

Berkeley, USA

- 1. Designed and implemented a model-free online algorithm for the bin packing problem with irregularly shaped objects. The method consists of a depth-image preprocessing process and a gradient-based optimizer.
- 2. Built a prototype pick-and-pack system utilizing a UR5 robot and RealSense cameras, seamlessly integrating the proposed packing strategy with Siemens' FlexGrasp.
- 3. Created demonstration videos of the pick-n-pack system, which helped the team find potential customers.

RESEARCH EXPERIENCE

Robot Arm Manipulation Planning

Mar. 2020 - Present

Research Assistant Advised by Dr. Jingjin Yu

Algorithmic Robotics and Control Lab (ARCL), Rutgers University, USA

- 1. Designed and implemented perception-planning-control pipelines for multiple real-world robotic systems, utilizing UR5 robots in tabletop rearrangement settings and a Baxter Robot for shelf-based object retrieval scenarios.
- 2. Applied deep learning models for precise object segmentation, grasp pose generation, and prediction of object pose stability.
- 3. Designed and constructed simulation scenarios for shelf, tabletop, room environments using physics engines such as PyBullet, Issac Gym, Drake, ROS+Gazebo, and Moveit.
- 4. Explored dual-arm motion planning through C-space decomposition on MIT Drake and GPU-accelerated parallel RRT-connect on Nvidia Isaac Gym.

Language-Guided Semantic Object Rearrangement

Mar. 2023 - Sep. 2023

Research Assistant Advised by Dr. Jingjin Yu

Algorithmic Robotics and Control Lab (ARCL), Rutgers University, USA

- 1. Explored language-guided manipulation planning strategies in collaboration with Dr. Abdeslam Boularias' team.
- 2. Developed a Monte-Carlo Tree Search based task planner that uses goal state conditions, interpreted by large language models from human language instructions, as input.

Image Registration

Sep. 2017 – Jun. 2019

Research Assistant Advised by Dr. Juyong Zhang

Graphics & Geometric Computing Laboratory (GCL), USTC, China

- 1. Developed a non-rigid image registration algorithm based on Iterative Closest Points and Quasi-Newton method adept at handling noise and outliers.
- 2. Implemented the algorithm in C++ and utilized OpenGL for enhanced visualization and thorough code testing.

Lab Toolkits Development, and Miscs

Jul. 2018 - Present

Research Assistant Advised by Dr. Jingjin Yu

Algorithmic Robotics and Control Lab (ARCL), Rutgers University, USA

- 1. Developed camera calibration software to precisely evaluate the perception accuracy of RealSense cameras.
- 2. Created a pose estimation dataset featuring synthesized desktop scenes from diverse camera angles, using Blender.

SELECTED CERTIFICATES & AWARDS

IROS 2023 Finalist of Best RoboCup Paper Award.

Gold Award of China Undergrad. Math. Contest in Modeling in Anhui Province (1/65 in USTC) Reinforcement Learning Specialization.

Outstanding Graduates (2019)

Outstanding Student Scholarship (2015-2016) (2017-2018)

IROS, Oct 2023

2017 Coursera, July 2023

USTC, Jun. 2019

USTC, 2016, 2018

SKILLS

Programming Languages: Python, C++, Matlab

Tools: Git, ROS, Docker, PyBullet, Gazebo, OpenCV, PyTorch, Gurobi, Drake, Isaac Gym, Unreal Engine, Blender

INVITED TALKS

Fast High-Quality Tabletop Rearrangement in Bounded Workspace.

TRIPODS/DATA-INSPIRE Graduate Student Workshop

March 2022 Virtual

On Minimizing the Number of Running Buffers for Tabletop Rearrangement

TRIPODS (Transdisciplinary Research in Principles of Data Science) Seminar

May 2021 Virtual

PUBLICATIONS

Published First-Author

- K. Gao, J. Yu, T. S. Punjabi, and J. Yu. "Effectively Rearranging Heterogeneous Objects on Cluttered Tabletops."
 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023) (Finalist of Best RoboCup Paper Award.).
- Andy Xu*, K. Gao*, S. W. Feng*, and J. Yu. "Optimal and Stable Multi-Layer Object Rearrangement on a Tabletop."
 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023).
- K. Gao, S. W. Feng, B. Huang, and J Yu. "Minimizing Running Buffers for Tabletop Object Rearrangement: Complexity, Fast Algorithms, and Applications." The International Journal of Robotics Research (IJRR).
- K. Gao, and J. Yu. "On the Utility of Buffers in Pick-n-Swap Based Lattice Rearrangement." 2023 IEEE International Conference on Robotics and Automation (ICRA 2023).
- K. Gao and J. Yu. "Toward Efficient Task Planning for Dual-Arm Tabletop Object Rearrangement." 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022).
- K. Gao, D. Lau, B. Huang, K. E. Bekris and J. Yu. "Fast High-Quality Tabletop Rearrangement in Bounded Workspace." 2022 IEEE International Conference on Robotics and Automation (ICRA 2022).
- K. Gao and J. Yu. "Capacitated Vehicle Routing with Target Geometric Constraints." 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021).
- K. Gao, S. W. Feng, and J Yu. "On Minimizing the Number of Running Buffers for Tabletop Rearrangement." 2021 Robotics: Science and Systems (RSS 2021).
- R. Wang*, **K. Gao***, D. Nakhimovich*, J. Yu, and K. E. Bekris. "Uniform Object Rearrangement: From Complete Monotone Primitives to Efficient Non-Monotone Informed Search." 2021 IEEE International Conference on Robotics and Automation (ICRA 2021).

Published Co-Author

- E. R. Vieira, **K. Gao**, D. Nakhimovich, J. Yu and K. E. Bekris. "Effective and Robust Non-Prehensile Manipulation via Persistent Homology Guided Monte-Carlo Tree Search" the 18th International Symposium on Experimental Robotics (ISER 2023).
- E. R. Vieira, D. Nakhimovich, **K. Gao**, R. Wang, J. Yu and K. E. Bekris. "Persistent Homology for Effective Non-Prehensile Manipulation" 2022 IEEE International Conference on Robotics and Automation (ICRA 2022).
- R. Wang, **K. Gao**, J. Yu and K. E. Bekris. "Lazy Rearrangement Planning in Confined Spaces." the 32nd International Conference on Automated Planning and Scheduling (ICAPS 2022).

- S. W. Feng, **K. Gao**, J. Gong, and J. Yu. "Sensor Placement for Globally Optimal Coverage of 3D-Embedded Surfaces." 2021 IEEE International Conference on Robotics and Automation (ICRA 2021).
- S. W. Feng, S. D. Han, **K. Gao**, and J. Yu. "Efficient Algorithms for Optimal Perimeter Guarding." 2019 Robotics: Science and Systems (RSS 2019).

UNDER REVIEW

- K. Gao*, Z. Ye*, D. Zhang*, B. Huang, and J. Yu "Toward Holistic Planning and Control Optimization for Dual-Arm Rearrangement." Submitted to IROS 2024.
- H. Chang, **K. Gao**, K. Boyalakuntla, A. Lee, B. Huang, H. U. Kumar, J. Yu, and A. Boularias "LGMCTS: Language-Guided Monte-Carlo Tree Search for Executable Semantic Object Rearrangement." Submitted to IROS 2024.