С.А.Лифиц

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

Материалы к урокам по теме: "Исследование функций с помощью производных"

Поурочное планирование (25 часов)

- **Урок 1.** Критерий постоянства функции на промежутке. Доказательство тождеств.
- **Урок 2.** Условия монотонности функции на промежутке.
- Урок 3. Нахождение локальных экстремумов функции (первое правило).
- **Урок 4.** Достаточные условия существования локального экстремума функции по знаку второй или высших производной.
- **Урок 5.** *Самостоятельная работа* по теме: "Монотонность. Экстремумы".
- **Урок 6.** Нахождение наибольших и наименьших значений функции на промежутке.
- **Урок 7.** Упражнения, связанные с нахождением наибольших и наименьших значений функции на промежутке. Замена переменной. Задачи, содержащие квадратные трехчлены. Использование неравенств между средними.
- **Урок 8.** Решение уравнений с использованием информации о монотонности и экстремумах функций. Локализация корней.
- **Урок 9.** Доказательство неравенств с использованием информации о монотонности и экстремумах функций.
- **Урок 10.** Решение задач геометрического содержания, сводящихся к нахождению наибольших и наименьших значений функции на промежутке.
- **Урок 11.** *Самостоятельная работа* по теме: "Наибольшие и наименьшие значения функции на промежутке. Неравенства".
- Урок 12. Задачи с параметрами на монотонность.
- **Урок 13.** Задачи с параметрами на экстремумы.
- Урок 14. Решение уравнений и неравенств с параметрами.
- **Урок 15.** Понятие выпуклой функции. Геометрический смысл определения. Условия выпуклости функции.
- **Урок 16.** Точки перегиба.
- **Урок 17.** *Самостоятельная работа* по теме: "Выпуклость. Точки перегиба. Решение задач с параметрами".
- **Урок 18.** Схема исследования функции.
- Урок 19. Построение графиков функций при помощи производных.
- **Урок 20.** Упражнения на построение графиков функций при помощи производных.
- **Урок 21.** Упражнения на построение графиков функций при помощи производных.
- **Урок 22.** *Самостоятельная работа* по теме: "Построение графиков функций при помощи производных".
- Урок 23. Обобщающий урок по теме.
- Урок 24. Контрольная работа.
- **Урок 25.** Анализ контрольной работы.

Урок 1. Критерий постоянства функции на промежутке

Домашнее задание

1) Докажите тождества:

(1)
$$\arcsin x + \arccos x = \frac{\pi}{2};$$
 (2) $\arcsin x = \arctan \frac{x}{\sqrt{1 - x^2}};$

(3)
$$\arccos x = 2 \arccos \sqrt{\frac{1+x}{2}};$$
 (4) $\arctan |x| = \arccos \frac{1}{\sqrt{1+x^2}}.$

2) Найдите значения следующих выражений при всех допустимых значениях x:

(1)
$$\arcsin|x| + \arcsin\sqrt{1-x^2}$$
; (2) $\arccos x - \arctan\frac{\sqrt{1-x^2}}{x}$.

Урок 2. Условия монотонности функции на промежутке

Домашнее задание

1) Определите промежутки монотонности следующих функций:

(1)
$$y = 3x - x^3$$
; (2) $y = \frac{2x}{1 + x^2}$;

(3)
$$y = \cos \frac{\pi}{x}$$
; (4) $y = \frac{x^2}{2^x}$;

(5)
$$y = x^n e^{-x} \ (n > 0, x \ge 0).$$

2) Докажите, что при увеличении числа сторон периметры P_n правильных n-угольников, вписанных в окружность, возрастают, а периметры Π_n правильных n-угольников, описанных около этой окружности, убывают. Пользуясь этим, докажите, что последовательности P_n и Π_n имеют общий предел при $n \to \infty$.

3) Докажите, что многочлен $f(x) = a_0 + a_1 x + \ldots + a_n x^n \quad (n \geqslant 1, \ a_n \neq 0)$ является монотонной (в строгом смысле) функцией в интервалах $(-\infty, -M)$ и $(M, +\infty)$, где M – достаточно большое положительное число.

Урок 3. Нахождение локальных экстремумов функции (первое правило)

Домашнее задание

Определите промежутки монотонности и найдите экстремумы следующих функций:

3

1)
$$f(x) = x^2 (x - 12)^2$$
; 2) $f(x) = \frac{x^2 - x + 4}{x - 1}$;

3)
$$f(x) = x^2 \sqrt{1 - x^2}$$
;

$$4) \ f(x) = \frac{x}{\ln x};$$

$$5) \ f(x) = \frac{e^x}{x};$$

6)
$$f(x) = \lg^3 x - 3\lg x + 5;$$

$$7) f(x) = 2\sin x + \cos 2x.$$

Достаточные условия существования локального **Урок** 4. экстремума функции

Домашнее задание

1) Определите точки экстремума следующих функций:

(1)
$$f(x) = x \ln x$$
;

$$(2) f(x) = 2\sin x + \sin 2x;$$

(1)
$$f(x) = x \ln x;$$
 (2) $f(x) = 2 \sin x + \sin x$
(3) $f(x) = \sqrt{(2x+3)(x-3)^2};$ (4) $f(x) = \frac{x^2 - 7x + 6}{x - 10}.$

(4)
$$f(x) = \frac{x^2 - 7x + 6}{x - 10}$$
.

2) Определите промежутки монотонности и найдите экстремумы следующих функций:

(1)
$$f(x) = \frac{(x-2)^2}{x^2+4}$$
;

(2)
$$f(x) = \sqrt{8x^2 - x^4}$$
;

$$(3) \ f(x) = e^x \sin x.$$

Урок 6. Нахождение наибольших и наименьших значений функции на промежутке

Домашнее задание

1) Найдите наибольшее и наименьшее значения функций на заданном промежутке:

(1)
$$f(x) = 4x^3 - 27x^2 + 24x - 6$$
, $x \in [0; 2]$;

(2)
$$f(x) = \sqrt{100 - x^2}, x \in [-6; 8];$$

(3)
$$f(x) = e^{2x} + e^{-2x}, x \in [-2; 1];$$

(4)
$$f(x) = 3^{x^2+2x-1}, x \in [-2; 0];$$

(5)
$$f(x) = \operatorname{tg} x + 2\operatorname{ctg} x - \sqrt{3}, \ x \in \left[\frac{\pi}{6}; \frac{\pi}{3}\right];$$

(6)
$$f(x) = \frac{1}{3}e^{-2x}\cos 2x, \ x \in \left[0; \frac{3\pi}{4}\right];$$

(7)
$$f(x) = |x^2 + x - 2| - \ln \frac{1}{x}, \ x \in \left[\frac{1}{2}; 2\right].$$

2) Найдите множество значений функции $f(x) = 2x + 3\sqrt[3]{x^2}$ при $x \in [-1, 5; 8]$.

Урок 7. Упражнения, связанные с нахождением наибольших и наименьших значений функции на промежутке

Домашнее задание

- 1) Найдите наибольшее и наименьшее значения функций на заданном промежутке:
 - (1) $f(x) = 2 \cdot 3^{3x} 4 \cdot 3^{2x} + 2 \cdot 3^x, x \in [-1; 1];$
 - (2) $f(x) = |x^2 6x + 5|, x \in [2; 6].$
- 2) Найдите наибольшее и наименьшее значения функции $f(x) = 2^{\sqrt{1-x^2}}$.
- 3) Найдите множество значений функции $f(x) = 2\log_2^3 x 15\log_2^2 x + 36\log_2 x$ при $x \in [4; 16]$.
- 4) Найдите число, которое превышало бы свой утроенный квадрат на наибольшее значение.
- 5) При каком значении x произведение $P(x) = (1-x)^5 (1+x) (1+2x)^2$ достигает наибольшего значения на $[0; +\infty)$ и каково это значение?

Урок 8. Решение уравнений с использованием информации о монотонности и экстремумах функций. Локализация корней

Домашнее задание

- 1) Решите уравнения:
 - (1) $e^x 1 = x$;
 - (2) $5x^5 + 3\sqrt[3]{3x + 11} + \arcsin(1+x) = 1$;

(3)
$$(3x+1)\left(3+\sqrt{(3x+1)^2+2}\right)+2x\left(3+\sqrt{4x^2+2}\right)=0.$$

- 2) Определите число вещественных корней уравнения и локализуйте эти корни:
 - (1) $4e^{-x}(x^2+x-5)=1$;
 - (2) $2x^3 + 3x^2 36x + 47 = 0$.
- 3) При каких значениях a уравнение $x^4 2x^2 + 3 = a$ имеет три различных вещественных корня?
- 4) Для каждого a укажите количество корней уравнения $\frac{a}{2x+1} = e^{-x^2}$.

Урок 9. Доказательство неравенств с использованием информации о монотонности и экстремумах функций

Домашнее задание

1) Докажите неравенства:

(1)
$$\operatorname{tg} x > x + \frac{x^3}{3}, \ x \in \left(0; \frac{\pi}{2}\right);$$

- (2) $2x \ln x \le x^2 1$, $x \ge 1$;
- (3) $e^x > 1 + \ln(1+x), x > -1;$
- (4) $\sin x \sin 2x < 0,77$.
- 2) а) Докажите что при $x \geqslant 0$ справедливо неравенство $\operatorname{arctg} x \leqslant x$.
 - б) Пусть α, β, γ углы остроугольного треугольника. Докажите, что

$$\operatorname{arctg} \alpha + \operatorname{arctg} \beta + \operatorname{arctg} \gamma < \pi.$$

Урок 10. Решение задач геометрического содержания

Домашнее задание

- 1) На графике функции $y = \frac{1}{x-1}, x > 1$ найдите точку B, ближайшую к точке A(1;0).
- 2) Найдите косинус угла при вершине равнобедренного треугольника, имеющего наибольшую площадь при данной постоянной длине медианы, проведенной к его боковой стороне.
- 3) В круг радиуса R вписан равнобедренный треугольник. При каком соотношении сторон треугольник будет иметь наибольшую площадь?
- 4) Из куска жести, представляющего собой прямоугольник 11×10 с отрезанным уголком в виде прямоугольного треугольника с катетами 8 и 4 (больший катет лежит на большей стороне), вырезали прямоугольник наибольшей площади, стороны которого параллельны сторонам исходного прямоугольника. Вычислите площадь вырезанного прямоугольника.
- 5) Завод А расположен на расстоянии a км от прямолинейного участка железной дороги, идущей в город B, и на расстоянии b км от города B. Под каким углом к железной дороге следует провести шоссе от завода A, чтобы доставка грузов из A в B была наиболее дешевой, если стоимость перевозок по шоссе в k раз дороже, чем по железной дороге?

Урок 12. Задачи с параметрами на монотонность

Домашнее задание

- 1) Найдите все значения параметра p, при которых функция $f(x) = -x^3 + 3x + 5$ убывает на интервале (p; p + 0, 5).
- 2) При каких значениях параметра m функция $f(x) = 2e^x me^{-x} + (1+2m)x 3$ монотонно возрастает на всей числовой оси?
- 3) При каких значениях параметра a функция $f(x) = \frac{a+1}{2}x^2 + x + (3-a)\ln x$ является монотонной на множестве положительных чисел?
- 4) При каких значениях параметра a функция $f(x) = 2ax^3 + 3(a+1)x^2 + 6x 2$ убывает на отрезке $\left[-1; -\frac{1}{3}\right]$?
- 5) При каких b и каких отрицательных a функция $f(x) = ax^5 + bx^4 b^2x^3 1$ убывает при положительных x?
- 6) При каких значениях параметра а функция

$$f(x) = \sin x - a \sin 2x - \frac{1}{3} \sin 3x + 2ax$$

возрастает на всей числовой оси?

Урок 13. Задачи с параметрами на экстремумы

Домашнее задание

1) Для каждого значения параметра a найдите критические точки функции

$$f(x) = 0.5e^{2x} + (1-a)e^x - ax + \ln 5.$$

- 2) При каких значениях параметра a функция $f(x) = x^3 + 3x^2 + ax 1$ не имеет критических точек?
- 3) При каких значениях параметров a и b функция $f(x) = ae^{2x} + be^{-x}$ не имеет экстремумов?
- 4) При каких значениях параметра m точки экстремумов функции

$$f(x) = x^3 - 3mx^2 + 3(m^2 - 1)x - 4$$

лежат в промежутке (-2;4)?

5) При каких значениях параметра а функция

$$f(x) = \frac{a}{3}x^3 + (a+2)x^2 + (a-1)x + 2$$

имеет отрицательную точку минимума?

6) При каких значениях параметров а и в все значения экстремумов функции

$$f(x) = \frac{5a^2}{3}x^3 + 2ax^2 - 9x + b$$

положительны и максимум находится в точке $x_0 = -\frac{5}{9}$?

Урок 14. Решение уравнений и неравенств с параметрами

Домашнее задание

- 1) При каких значениях параметра a сумма обратных величин корней уравнения $x^2-(a+1)\,x+a^2=0$ будет наименьшей?
- 2) При каких значениях параметра a неравенство $2(x-a)^4 \leqslant 1-x$ имеет хотя бы одно решение?
- 3) Найдите наименьшее значение параметра a, при котором уравнение

$$\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a$$

имеет хотя бы одно решение на интервале $(0; \frac{\pi}{2})$?

4) При каких значениях параметра a уравнение $x^2e^x=a$ имеет три корня?

Урок 15. Выпуклые функции

Домашнее задание

- 1) а) Докажите, что произведение выпуклой вниз функции на положительную постоянную есть выпуклая вниз функция.
 - б) Докажите, что сумма конечного числа выпуклых вниз функций есть выпуклая вниз функция.
 - в) Можно ли сказать что-либо конкретное о произведении двух выпуклых вниз функций?

- 2) а) Докажите, что если f(x) выпуклая вниз возрастающая функция, а g(x) выпуклая вниз функция, то сложная функция $f\left(g(x)\right)$ выпуклая вниз функция.
 - б) Докажите, что если f(x) выпуклая вниз убывающая функция, а g(x) выпуклая вверх функция, то сложная функция $f\left(g(x)\right)$ выпуклая вниз функция.
 - в) Докажите, что если f(x) выпуклая вверх возрастающая функция, а g(x) выпуклая вверх функция, то сложная функция $f\left(g(x)\right)$ выпуклая вверх функция.
 - г) Докажите, что если f(x) выпуклая вверх убывающая функция, а g(x) выпуклая вниз функция, то сложная функция f(g(x)) выпуклая вверх функция.
- 3) а) Докажите, что если f(x) выпуклая вниз строго возрастающая функция, то обратная функция $f^{-1}\left(x\right)$ выпуклая вверх функция.
 - б) Докажите, что если f(x) выпуклая вниз строго убывающая функция, то обратная функция $f^{-1}(x)$ выпуклая вниз функция.
 - в) Докажите, что если f(x) выпуклая вверх строго убывающая функция, то обратная функция $f^{-1}(x)$ выпуклая вверх функция.
 - г) Докажите, что если f(x) выпуклая вверх строго возрастающая функция, то обратная функция $f^{-1}(x)$ выпуклая вниз функция.
- 4) Докажите, что выпуклая вниз на промежутке [a;b] функция f(x), отличная от постоянной, не может достигать своего наибольшего значения внутри этого промежутка.
- 5) Пусть f(x) выпукла вниз на промежутке $[a;b], [x_1;x_2] \subset [a;b]$. Докажите, что тогда соотношение $f(\alpha_1x_1+\alpha_2x_2) \leqslant \alpha_1f(x_1)+\alpha_2f(x_2)$ выполняется либо всегда со знаком равенства, либо всегда со знаком неравенства.
- 6) Введем следующее определение:

Средним степенным порядка α двух положительных чисел a u b называется функция $S_{\alpha}(a,b)$, определяемая следующим образом:

$$S_{\alpha}(a,b) = \begin{cases} \left(\frac{a^{\alpha} + b^{\alpha}}{2}\right)^{1/\alpha}, & ecnu \ \alpha \neq 0; \\ \lim_{\alpha \to 0} S_{\alpha}(a,b), & ecnu \ \alpha = 0. \end{cases}$$

Докажите, что

a)
$$S_0(a, b) = \sqrt{ab};$$

- 6) $\min(a, b) \leqslant S_{\alpha}(a, b) \leqslant \max(a, b)$;
- в) функция $S_{\alpha}(a,b)$ при $a \neq b$ есть возрастающая функция переменной α ;
- $\Gamma \lim_{\alpha \to -\infty} S_{\alpha}\left(a,b\right) = \min\left(a,b\right); \quad \lim_{\alpha \to +\infty} S_{\alpha}\left(a,b\right) = \max\left(a,b\right).$

Урок 16. Точки перегиба

Домашнее задание

1) Исследуйте функции на выпуклость и найдите точки перегиба:

(1)
$$f(x) = \frac{a^3}{a^2 + x^2}$$
, $a > 0$;

(2)
$$f(x) = \sqrt{1+x^2}$$
;

(3)
$$f(x) = e^{-x^2}$$
;

(4)
$$f(x) = x \ln 3 - \sqrt[5]{x - 3}$$
;

$$(5) f(x) = x \sin(\ln x);$$

(6)
$$f(x) = x^x$$
.

2) Докажите, что функция $f(x) = \frac{x+1}{x^2+1}$ имеет три точки перегиба, лежащие на одной прямой.

Урок 18. Схема исследования функции

Для исследования функции y = f(x) и построения ее графика надо действовать по следующей схеме:

- 1) Найти область определения функции f(x).
- 2) Найти область значений функции f(x).
- 3) Исследовать функцию f(x) на четность.
- 4) Исследовать функцию f(x) на периодичность.
- 5) Исследовать функцию f(x) на непрерывность, найти точки разрыва.
- 6) Исследовать поведение функции f(x) вблизи точек разрыва, выяснить, имеются ли вертикальные асимптоты.
- 7) Исследовать поведение функции f(x) на бесконечности, выяснить, имеются ли наклонные и горизонтальные асимптоты.
- 8) Найти точки пересечения графика функции f(x) с осями координат и промежутки постоянства знака.

- 9) Исследовать функцию f(x) на монотонность, найти точки экстремумов.
- 10) Исследовать функцию f(x) на выпуклость, найти точки перегиба.

Урок 19. Построение графиков функций с помощью производных

Постройте графики функций:

1)
$$f(x) = x^3 - 3x^2 + 2$$
;

2)
$$f(x) = \frac{x+2}{x^2-9}$$
;

3)
$$f(x) = \frac{6}{x\sqrt{4-x^2}}$$
.

Домашнее задание

Постройте графики функций:

1)
$$f(x) = \frac{1}{5}x^5 - \frac{1}{3}x^3$$
;

2)
$$f(x) = \frac{6(x-1)}{x^2+3}$$
;

3)
$$f(x) = x^2 \sqrt{2-x}$$
.

Урок 20. Упражнения на построение графиков функций при помощи производных

Постройте графики функций:

1)
$$f(x) = \sqrt[3]{(x+2)^2} + \sqrt[3]{(x-2)^2}$$
;

2)
$$f(x) = xe^{-x^2}$$
;

3)
$$f(x) = \frac{(x-2)^2}{x^2+4}$$
.

Домашнее задание

Постройте графики функций:

1)
$$f(x) = 2(x+1) - 3\sqrt[3]{(x+1)^2}$$
;

2)
$$f(x) = 4x \cdot e^{x/2}$$
;

3)
$$f(x) = \sqrt[3]{x(x-3)^2}$$
.

Урок 21. Упражнения на построение графиков функций при помощи производных-2

Постройте графики функций:

$$1) \ f(x) = \frac{x}{\ln x};$$

$$2) f(x) = 2\sin x - \cos 2x;$$

3)
$$f(x) = \log_{1/2} \sin x$$
.

Домашнее задание

Постройте графики функций:

1)
$$f(x) = \sqrt{x} \cdot \ln x$$
;

$$2) \ f(x) = \sin x \cdot \sin 2x;$$

$$3) f(x) = \frac{6\sin x}{2 + \cos x}.$$