定理 5.12 (Schröder-Bernstein 定理)

- (1) 设 A, B 为二集合, 若 $A \leq B$ 且 $B \leq A$, 则 $A \approx B$;
- (2) 设 κ , λ 为二基数, 若 $\kappa \leq \lambda$ 且 $\lambda \leq \kappa$, 则 $\kappa = \lambda$.

定理 5.13 $\mathbb{R} \approx (\mathbb{N} \to 2)$, 其中 $\mathbb{N} \to 2 = 2^{\mathbb{N}}$.

定理 5.14

- (1) 设 A 为任意的无穷集合,则 \mathbb{N} ≼· A;
- (2) 设 κ 为任意的无穷基数,则 $\aleph_0 \leq \kappa$.

推论1 设 κ 为任意的基数, $\kappa < \aleph_0$ 当且仅当 κ 是有穷基数.

推论2有穷集合的子集一定是有穷集合.

推论 3 设 $A \in \mathbb{N}$ 的无穷子集,则 $\operatorname{card} A = \aleph_0$.

定理 5.15 集合 A 是无穷可数集当且仅当 A 可以写成如下形式:

$$\{a_1,a_2,\cdots,a_n,\cdots\}.$$

定理 5.16 可数集的子集是可数集.

定理 5.17 可数个可数集的并集是可数集.

定理 5.18 设 A 为无穷集,则 $\mathcal{P}(A)$ 不是可数集.

定理 **5.19** 设 K_1, K_2, L_1, L_2 为 4 个集合, 若 $K_1 \approx K_2, L_1 \approx L_2$, 则

- (1) 如果 $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, 则 $K_1 \cup L_1 \approx K_2 \cup L_2$;
- (2) $K_1 \times L_1 \approx K_2 \times L_2$;
- (3) $L_1 \to K_1 \approx L_2 \to K_2$.

定理 5.20

- (1) 设 A 为一集合,则 $2^{\operatorname{card} A} = \operatorname{card} \mathcal{P}(A)$;
- (2) 设 κ 为一基数,则 $\kappa < 2^{\kappa}$.

推论 (1) $\operatorname{card} \mathcal{P}(\mathbb{N}) = 2^{\aleph_0}$; (2) $\operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\aleph}$; (3) $\aleph = 2^{\aleph_0}$.

定理 5.21 设 κ , λ , μ 是三个任意的基数, 则

- (1) $\kappa + \lambda = \lambda + \kappa$, $\kappa \cdot \lambda = \lambda \cdot \kappa$; (2) $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$, $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$
- (3) $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu;$ (4) $\kappa^{\lambda + \mu} = \kappa^{\lambda} \cdot \kappa^{\mu};$
- (5) $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$; (6) $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$.

推论 设 κ, λ 为任意二基数,则

(1)
$$\kappa + (\lambda + 1) = (\kappa + \lambda) + 1;$$
 (2) $\kappa \cdot (\lambda + 1) = \kappa \cdot \lambda + \kappa;$ (3) $\kappa^{\lambda + 1} = \kappa^{\lambda} \cdot \kappa$

定理 5.22 设 κ, λ, μ 为三个基数, 若 $\kappa < \lambda$, 则

(1)
$$\kappa + \mu \le \lambda + \mu$$
; (2) $\kappa \cdot \mu \le \lambda \cdot \mu$;

(3)
$$\kappa^{\mu} \leq \lambda^{\mu}$$
; (4) $\mu^{\kappa} \leq \mu^{\lambda}$, κ, μ 不同时为 0.

定理 5.23 设 κ 为任意的无穷基数,则 $\kappa \cdot \kappa = \kappa$.

定理 5.24 设 κ , λ 为二基数, 其中较大的为无穷基数, 较小的不为 0, 则

$$\kappa + \lambda = \kappa \cdot \lambda = \max{\{\kappa, \lambda\}}.$$

推论 设 κ 为一无穷基数,则 $\kappa + \kappa = \kappa \cdot \kappa = \kappa$.

定理 5.25 设 κ 为无穷基数,则 $\kappa^{\kappa} = 2^{\kappa}$.