0.1. Lección 16

0.2. Optimización: Cálculo de máximos y mínimos absolutos de funciones en intervalos cerrados y acotados.

En lo que sigue vemos cómo se utiliza la continuidad y derivabilidad de una función, que llamaremos función objetivo, para resolver problemas de optimización (Maximización y Mínimización)

MAXIMIZAR (MINIMIZAR):

$$f(x)$$
 si $a \le x \le b$.

- ¿Existen el máximo o mínimo absoluto? Si la función es continua en el intervalo cerrado y acotado [a, b] el teorema de Weierstrass nos asegura que existen el máximo y el mínimo absoluto de f.
- ¿Cómo calcularlo? Buscamos los **posibles extremos absolutos** de la función entre los siguientes puntos :
- \triangleright Los extremos del intervalo x = a o x = b.
- \triangleright Los puntos $c \in (a, b)$ en los que f no es derivable.
- \triangleright Los puntos $c \in (a, b)$ en los que f es derivable y f'(c) = 0.

Una vez obtenidos todos los posibles extremos evalúamos f en todos ellos: el punto (o puntos) donde el valor de f(x) es mayor es el máximo (o los máximos) absoluto y el punto (o puntos) donde el valor f(x) es menor es el mínimo (o mínimos) absoluto.

Vemos cómo modelizamos dos problemas de optimización:

Problema: ¿ Cuál es el valor máximo del producto de dos números reales positivos cuya suma es 1?

Si $x, y \ge 0$ y x + y = 1, se trata de maximizar xy. Pasamos a un problema en una variable, puesto que y = 1 - x y las restricciones $x, y \ge 0$ son equivalentes a $x \ge e$ $1 - x \ge 0 \iff x \le 1$ el problema se puede modelizar de la siguiente forma:

Modelización: Maximizar f(x) = x(1-x) si $0 \le x \le 1$.

- ullet Puesto que f es continua, f alcanza el máximo absoluto en [0,1] por el teorema de Weierstrass.
- Posibles extremos absolutos:

- \triangleright Los extremos del intervalo x = 0 o x = 1.
- \triangleright Los puntos $c \in (0,1)$ en los que f no es derivable: no hay, f es derivable en \mathbb{R} .
- \triangleright Los puntos $x \in (0,1)$ en los que f es derivable y $f'(x) = 0 = 1 2x \iff x = \frac{1}{2}$.

Puesto que f(0) = f(1) = 0 y $f(\frac{1}{2}) = \frac{1}{4}$ se tiene que f alcanza el máximo absoluto en $x = \frac{1}{2}$ siendo $\frac{1}{4}$ el valor máximo de f en [0, 1], por lo que:

Solución del problema: Los números son $x=y=\frac{1}{2}$ y el valor máximo es $\frac{1}{4}$.

Ejemplo 1. Calcular los máximos y mínimos absolutos de f(x) = |x - 1|x en [0, 2]. Puesto que f(x) es continua en [0, 2] podemos asegurar que existe el máximo y el mínimo absoluto. Buscamos los **posibles extremos**:

- \triangleright Los extremos del intervalo $\boxed{x=0}$ o $\boxed{x=2}$
- \triangleright Los puntos $x \in (0,2)$ en los que f puede no ser derivable. La función puede no ser derivable en x = 1 (de hecho, se puede probar que no lo es).
- \rhd Los puntos $x\in(a,b)$ en los que f es derivable y f'(x)=0. Nótese que:

$$f'(x) = \begin{cases} 1 - 2x & \text{si} & 0 < x < 1 \\ 2x - 1 & \text{si} & 1 < x < 2 \end{cases}$$

Por lo tanto f'(x) = 0 sólo en $x = \frac{1}{2}$

Finalmente, evalúamos f en dichos puntos, f(0) = 0, f(2) = 2, f(1) = 0 y $f(\frac{1}{2}) = \frac{1}{4}$. Conclusión:

- Los puntos x = 0 y x = 1 son mínimos absolutos de f(x) en [0,2] y 0 es el valor mínimos de f en [0,2].
- El punto 2 es el máximo absoluto de f(x) en [0,2] y 2 es el valor máximo de f en [0,2].

0.2.1. Optimización en intervalos no acotados.

En algunos problemas de optimización el intervalo en el que tenemos que maximizar o minimizar la función objetivo no es acotado. En estos casos, cuando las funciones verifican ciertas propiedades en el límite, obtenemos algunos resultados que aseguran la existencia de máximos o mínimos absolutos de algunas funciones en intervalos no acotados:

Proposición 2. Sea f continua en $(-\infty, \infty)$. Supongamos que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \infty$$

Entonces f alcanza el mínimo absoluto en \mathbb{R} .

Demostración. Consideremos f continua en $(-\infty, \infty)$ y

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \infty$$

En primer lugar, consideramos R = |f(0)| > 0;

ightharpoonup Puesto que $\lim_{x\to\infty}f(x)=\infty$, existe M>0 tal que si x>M que $f(x)>|f(0)|\geq f(0)$ si x>M.

 \rhd Puesto que $\lim_{x\to -\infty} f(x) = \infty,$ existe S<0 tal que $f(x)>|f(0)|\geq f(0)$ si x< S .

ightharpoonup Consideramos ahora el intervalo [S,M] y puesto que f es continua en dicho intervalo, por el teorema de Weierstrass la función alcanza mínimo absoluto en [R,M]; es decir, existe $c \in [S,M]$ tal que $f(x) \geq f(c)$ para todo $x \in [S,M]$. En particular, $f(c) \leq f(0)$. Entonces f alcanza un mínimo absoluto en x=c. En efecto, si $x \in (-\infty,S] \cup [M,\infty)$ se tiene que $f(x) > f(0) \geq f(c)$. Por otra parte, si $x \in [S,M]$ también se tiene que $f(x) \geq f(c)$. Luego para todo $x \in \mathbb{R}$ se tiene que $f(x) \geq f(c)$.

De forma análoga se obtienen las siguientes versiones en intervalos del tipo $(-\infty, b]$ o $[a, \infty)$

Proposición 3. 1. Sea f una función continua en $[a, \infty)$ tal que $\lim_{x \to \infty} f(x) = \infty$, entonces f alcanza el mínimo absoluto en $[a, \infty)$.

2. Sea f una función continua en $(-\infty, b]$ tal que $\lim_{x \to -\infty} f(x) = \infty$, entonces f alcanza el mínimo absoluto en $(-\infty, b]$.

Otro resultado del mismo tipo:

Proposición 4. Sea f una función continua en \mathbb{R} tal que $f(x) \geq 0$ para todo $x \in (a,b)$. Si

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

Entonces f alcanza el máximo absoluto en \mathbb{R} .

Ejemplo 5. Calcula, si existe, el máximo absoluto de la función $f(x) = \frac{1}{1+x^2}$ en \mathbb{R} . Puesto que f es continua en \mathbb{R} y $\lim_{x\to\infty}\frac{1}{1+x^2}=\lim_{x\to-\infty}\frac{1}{1+x^2}=0$ y $f(x)\geq 0$ podemos asegurar la existencia de máximo absoluto. Como f(x) es derivable, para buscar el extremo absoluto basta resolver la ecuación f'(x)=0:

$$f'(x) = \frac{-2x}{(1+x^2)^2} = 0 \iff x = 0,$$

luego el máximo absoluto de f en \mathbb{R} es x=0 y el valor máximo de f en \mathbb{R} es f(0)=1. Nótese que esto se podría haber probado directamente puesto que $f(x) \leq 1$ para todo $x \in \mathbb{R}$ puesto que $1+x^2 \geq 1$ y f(0)=1.

Ejemplo 6. Calcula, si existe, el mínimo absoluto de $f(x)=x^2+bx+c$. Puesto que f(x) es continua en \mathbb{R} y $\lim_{x\to\infty} f(x)=\lim_{x\to-\infty} f(x)=\infty$ existe el mínimo absoluto. Como f(x) es derivable y

$$f'(x) = 2x + a = 0 \iff x = 0$$

el mínimo absoluto es $x = \frac{-b}{2}$ y el valor mínimo de f(x) en \mathbb{R} es $f(\frac{-b}{2}) = \frac{4c - b^2}{4}$.

0.3. La derivada segunda. Aplicaciones.

En lo que sigue vemos las derivadas de orden dos.

Función dos veces derivable en un punto Sea f(x) una función derivable en un intervalo abierto I y sea $a \in I$. Diremos que f es dos veces derivable en a si la función f' es derivable en a. A la derivada de f' en a se la llama derivada segunda de f en a y se denota por f''(a). Es decir,

$$f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a}.$$

Cuando decimos que f es dos veces derivable en a estamos asumiendo que f es derivable en algún intervalo abierto que contiene al punto a; por lo tanto, f es derivable en a y continua en a.

Diremos que una función es dos veces derivable en un intervalo abierto I si f es dos veces derivable en todos los puntos de I, siendo la función derivada segunda de f la función

derivada de f', es decir, f'' = (f')' en I. La derivada segunda tiene una importante aplicación para la determinación de extremos relativos.

Teorema 7. (El criterio de la derivada segunda para clasificación de extremos locales) Sea f una función derivable en (a-r,a+r) para algún r>0 y tal que f'(a)=0. Supongamos que f esa dos veces derivable en a, y $f''(a) \neq 0$. Entonces,

- 1. Si f''(a) > 0 la función f tiene un mínimo relativo en x = a.
- 2. Si f''(a) < 0 la función f tiene un máximo relativo en x = a.

Demostración. Suponemos el caso f''(a) > 0 (el otro caso es análogo). Puesto que f'(a) = 0 y f es dos veces derivable en a,

$$\lim_{x \to a} \frac{f'(x) - f'(a)}{x - a} = \lim_{x \to a} \frac{f'(x)}{x - a} > 0,$$

por las propiedades de conservación del signo del límite tenemos que hay algún intervalo centrado en a, (a-r,a+r) tal que f'(x) < 0 si $x \in (a-r,a)$ y f'(x) > 0 si x > a.

(a-r,a)	(a, a+r)
f' < 0	f' > 0
f decreciente	f decreciente

Por lo tanto, puesto que f es continua en a (por ser derivable en a) y

 $\triangleright f$ es estrictamente creciente en (a-r,a] y por tanto si $x \in (a-r,a)$ se tiene que f(x) < f(a).

 $\triangleright f$ es estrictamente decreciente en (a-r,a] y por tanto si $x \in (a,a+r)$ se tiene que f(x) < f(a).

Podemos afirmar entonces que f tiene un mínimo relativo en a.

0.3.1. Concavidad y convexidad.(*)

Sea f(x) una función definida en un intervalo (a,b). Diremos que f(x) es convexa en el intervalo (a,b) si para todo $x,y\in(a,b)$ y $0\leq\lambda\leq1$ se tiene que

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

De forma análoga, diremos que f(x) es cóncava en el intervalo (a,b) si para todo $x,y\in(a,b)$ y $0\leq\lambda\leq1$ se tiene que

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

Gráficamente, la convexidad significa que dados dos puntos x, y la gráfica de la función queda por debajo de la recta que une los puntos la gráfica (x, f(x)) y (y, f(y)).

Teorema 8. Sea f(x) una función dos veces derivable en un intervalo abierto I.

- 1. Si f''(x) > 0 para todo $x \in (a,b)$ entonces f(x) es convexa en (a,b).
- 2. Si f''(x) < 0 para todo $x \in (a,b)$ entonces f(x) es cóncava en (a,b).

Un punto $c \in (a, b)$ es un punto de inflexión de f(x) si existe r > 0 tal que f(x) es convexa (resp. cóncava) en (c - r, c) y cóncava (resp. convexa) en (c, c + r).

Lema 9. Si f(x) es dos veces derivable en (a,b) y c es un punto de inflexión de f(x) entonces f''(c) = 0.

Observación 10. No es cierto, en general, que si f''(c) = 0 el punto c sea un punto de inflexión. Basta considerar la función $f(x) = x^4$ que es convexa en todo \mathbb{R} y sin embargo f''(0) = 0.

0.4. Funciones *n*-veces derivables. Funciones de clase \mathcal{C}^n y \mathcal{C}^{∞} .

De la misma forma que se define la derivada segunda, para cualquier $n \geq 2$ se pueden definir recursivamente las derivadas n-ésimas de una función en un punto a medidante la derivada de la funció f^{n-1} en el punto a; dicha derivada n-ésima de f en a se denota como $f^{n)}(a)$. Si f es n-veces derivable en todos los puntos de un intervalo abierto I denotamos por $f^{n)}(x)$ a la derivada n-ésima de f en f, que es precisamente la derivada f f -1-ésima de la función f.

En secciones anteriores hemos introducido las funciones de clase C^1 ; generalizamos esta noción al caso de funciones de clase C^n .

Sea $n \in \mathbb{N}$, diremos que una función f es de clase \mathcal{C}^n en un intervalo abierto I si f es n-veces derivable en el intervalo I y la función $f^{n)}$ es continua en I. Diremos que f es de clase \mathcal{C}^{∞} en I si f es de clase \mathcal{C}^n en I para todo $n \in \mathbb{N}$.

Ejemplo 11. Todos los polinomios son de clase C^{∞} en \mathbb{R} . De hecho, si p(x) es un polinomio hay un $k \in \mathbb{N}$, tal que $p^{k)}(x) \equiv 0$ (siendo $k = \operatorname{grado}(p) + 1$) en \mathbb{R} . Más aún, utilizando resultados de las secciones anteriores se puede probar que si una función verifica que para algún $k \in \mathbb{N}$ se tiene que $f^{k)}(x) \equiv 0$ entonces la función es un polinomio de grado k-1.

Ejemplo 12. Todas las funciones elementales, es decir, las funciones polinómicas, exponenciales, logarítmicas y trigonométricas, y composición de funciones elementales, son de clase C^{∞} en su dominio. Sin embargo, hay funciones que no son de clase C^{∞} en su dominio. Por ejemplo, la función $f(x) = x^{5/3}$ es derivable en \mathbb{R} siendo su función derivada $f'(x) = \frac{5}{3}x^{2/3}$ continua en \mathbb{R} ; sin embargo, f' no es derivable en 0 por lo que se tiene que la función f es de clase C^1 en \mathbb{R} pero no es de clase C^2 en \mathbb{R} . Más generalmente, si $N \in \mathbb{N}$, la función $f(x) = x^{N+\frac{1}{3}}$ con $N \in \mathbb{N}$ es de clase C^N en \mathbb{R} pero no es de clase C^{N+1} ; en efecto, $f^{N}(x) = (N + \frac{1}{3})(N - 1 + \frac{1}{3})\dots(1 + \frac{1}{3})x^{1/3}$ que es continua en \mathbb{R} pero no es derivable en \mathbb{R} (no es derivable en 0).

Ejemplo 13. Un ejemplo de función interesante que no es de clase C^2 es la función definida a trozos,

$$f(x) = \begin{cases} x^2 & \text{si } x \ge 0 \\ -x^2 & \text{si } x < 0 \end{cases}$$

Se puede comprobar que f es derivable en \mathbb{R} siendo f'(x) = 2|x|; sin embargo, claramente f' no es derivable en \mathbb{R} .