

Attention-Based Autoregression for Accurate and Efficient Time **Series Forecasting**

Jaemin Yoo and U Kang

Computer Science & Engineering

Seoul National University

SDM 2021

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Time Series Forecasting

- Core problem that has numerous applications
 - Stock price prediction
 - Product sales forecasting
 - Weather forecast

https://www.simplilearn.com/tutorials/data-science-tutorial/time-series-forecasting-in-r

Multivariate Time Series

- Most time series data are multivariate
 - Such variables have correlations to each other
 - Prices of stocks, sales of products, ...

Problem Definition

- Multivariate time series forecasting
 - Given
 - Multivariate time series $\mathbf{X} \in \mathbb{R}^{d \times w}$
 - d is the number of variables
 - w is the number of recent observations
 - Prediction horizon h
 - Larger h makes the problem more difficult
 - Predict
 - The observation $\mathbf{y} \in \mathbb{R}^d$ after h time steps

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

AR Models

- Autoregressive (AR) models have been used widely for time series forecasting
 - AR is the simplest model for univariate forecasting
 - VAR extends AR to multivariate settings

Limitations

- They learn linear relationships between X and y
- VAR requires too many parameters: $O(d^2w)$
 - *d* is the number of variables, and *w* is the window size

TRMF

- TRMF (Yu et al., 2016) improves AR models based on matrix factorization (MF)
 - Applies an AR model to the time embedding matrix

Limitations

Burdensome generation of the time embeddings

RNN

- Recurrent neural networks (RNN) have been used widely for modeling sequential data
 - GRU and LSTM are popular variants of RNNs
- How to apply RNNs to multivariate forecasting
 - The *d* observations at each step become an input

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTNet

- LSTNet (Lai et al., 2018) is a recent approach based on recurrent neural networks (RNN)
 - Improves RNNs by applying temporal attention and skip connections between distant cells

Limitations

- Large number of parameters
 - The length of state vectors should be larger than d
 - This makes the model contain at least d^2 parameters
- High sensitivity to its many hyperparameters

Summary

- Existing models are either too simple or have too many parameters
 - AR and TRMF
 - Cannot capture complex patterns in time series
 - VAR, LSTM, GRU, and LSTNet
 - · Contain too many parameters and easily overfit

Research motivation:

To correlate variables with minimal parameters

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Overview

- AttnAR (attention-based autoregression)
 - Our approach for efficient multivariate forecasting
 - End-to-end framework of three separable modules
 - Extractor, attention and predictor modules
 - Module structure is our key idea for high efficiency

Extractor Module Attention Module Predictor Module

Extractor Module (1)

- Extractor module captures univariate patterns
 - Transforms a raw observation x_i of each variable i into a pattern vector \mathbf{u}_i by a neural network
 - u_i is fed into both attention and predictor modules
 - Which network should we use for efficiency?

Extractor Module Attention Module Predictor Module

Extractor Module (2)

- MCE (mixed-convolution extractor)
 - Our proposed model for efficient pattern extraction
 - Shallow dense layers
 - Connect distant time steps
 - Low degree of abstraction
 - Deep convolution layers
 - Focus on adjacent time steps
 - High degree of abstraction

Attention Module (1)

- Attention module correlates given variables
 - The main component of our AttnAR
 - Correlates the pattern vectors $\{\mathbf{u}_i\}$ of variables by an attention map $\mathbf{S} \in \mathbb{R}^{d \times d}$ and returns $\{\mathbf{v}_i\}$
 - · We propose three options as the attention function

Extractor Module Attention Module Predictor Module

Attention Module (2)

- We use the time-invariant attention (TIA) as our attention function
 - Learns a static embedding \mathbf{h}_i for each variable i
 - Generates the attention map from \mathbf{h}_i , excluding \mathbf{u}_i
- The attention becomes robust and consistent

(b) Hybrid attention (Section 3.3.2).

(c) Time-invariant attention (S. 3.3.3).

Predictor Module

 Lastly, the predictor module simply produces the final prediction given the pattern vectors:

$$\hat{y}_i = f_{\text{mlp}}(\mathbf{u}_i \parallel \mathbf{v}_i)$$

Extractor Module Attention Module Predictor Module

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Experimental Setup

We use four multivariate time series datasets

Dataset	Length	Dim.	Granularity
Traffic	17,544	862	1 hour
Electricity	$26,\!304$	321	1 hour
Solar-Energy	$52,\!560$	137	10 minutes
Exchange-Rate	7,587	8	$1 \mathrm{day}$

- The prediction horizon h varies in $\{6, 12, 24\}$
- Evaluation: Root relative squared error (RSE)
 - RMSE divided by the standard deviation of Y

Forecasting Accuracy

- AttnAR makes the most accurate predictions in nine of the twelve cases
 - Exchange-Rate is very noisy, and AR does the best
 - The improvement is significant in Solar-Energy

Method	Traffic			Electricity		Solar-Energy		Exchange-Rate				
	h=6	h=12	h=24	h=6	h=12	h=24	h=6	h=12	h=24	h=6	h=12	h=24
AR	.4647	.4659	.4675	.0930	.0983	.1007	.3120	.4195	.5235	.0238	.0329	.0433
VAR	.5909	.6008	.6088	.0964	.1010	.1014	.2965	.4112	.4974	.0496	.0652	.0872
TRMF	.4871	.4909	.5120	.1050	.1062	.1275	.6001	.7112	.8434	.0425	.0466	.0542
MLP	.4368	.4436	.4464	.0871	.0965	.1010	.2747	.3592	.4652	.0238	.0328	.0436
GRU	.5158	.5225	.5340	.1088	.0974	.1049	.2485	.3229	.4370	.0322	.0465	.0639
LSTM	.5195	.5268	.5337	.1043	.1008	.1062	.2539	.3328	.4323	.0412	.0503	.0658
LST-Skip	.4811	.4900	.5013	.0993	.0959	.1120	.2537	.3448	.4582	.0279	.0425	.0553
LST-Attn	.4780	.4895	.4996	.0936	.0990	.1141	.2552	.3528	.5007	.0379	.0473	.0590
AttnAR	.4287	.4370	.4396	.0871	.0942	.0989	.2272	.3057	.4205	.0240	.0336	.0448

Parameter-Efficiency (1)

- AttnAR makes the best parameter-efficiency
 - The error often increases with the model size
 - Overfitting is common in multivariate forecasting

Parameter-Efficiency (2)

- RNN-based models requires many parameters, especially in a dataset with many variables
- AttnAR has up to 42.6× fewer parameters

Method	Traffic	Elec.	Solar	Exchange
GRU	4665.3K	1445.4K	$2066.9\mathrm{K}$	14.5K
LSTM	4665.3K	$1445.4\mathrm{K}$	$2066.9 \mathrm{K}$	804.4K
LST-Skip	1086.1K	1114.1K	$218.7\mathrm{K}$	$65.4\mathrm{K}$
LST-Attn	1621.5K	144.1K	170.5K	18.6K
AttnAR	25.5 K	9.5 K	10.7 K	0.9 K

Attention Map

- AttnAR generates interpretable attention maps
 - Strong correlations in Solar-Energy
 - Weak correlations in Traffic and Electricity
 - No correlations in Exchange-Rate

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Conclusion

- AttnAR (attention-based autoregression)
 - Our proposed model for multivariate forecasting
- Main ideas of AttnAR
 - End-to-end learning of three separable modules
 - MCE for efficient extraction of univariate patterns
 - TIA for consistent and robust attention maps
- Experimental results
 - AttnAR consistently outperforms existing models

Thank you!

Jaemin Yoo (jaeminyoo@snu.ac.kr)
Supported by SIAM Travel Awards