Exercice 1.

On considère $\mathcal{B} = \{(2,1),(5,3)\}$ une base de \mathbb{R}^2 et $\mathcal{C} = \{(1,0,1),(1,1,0),(1,1,1)\}$ une base de \mathbb{R}^3 . Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$. l'application linéaire dont la matrice relativement aux bases \mathcal{B} et \mathcal{C} est donnée par

$$M_{\mathcal{C},\mathcal{B}}(f) = \begin{pmatrix} 7 & -3\\ 2 & 1\\ 8 & 0 \end{pmatrix}$$

Trouver la matrice $M_{\mathcal{E}',\mathcal{E}}(f)$ où \mathcal{E},\mathcal{E}' sont les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 respectivement.

Exercise 1

$$P_{E,c} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $D_{C} plus, avec E = \{e_1, e_2\}: e_1 = 3b_1 - b_2\}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$
 $P_{B,E} = \begin{pmatrix} 3$

Exercice 2.

Soient $\mathcal{E}_1 = \{v_1, v_2, v_3\}, \mathcal{B}_1 = \{5v_1 - 3v_2 + 2v_3, v_1 + 2v_2 - v_3, v_1 + v_2 + v_3\}$ deux bases de \mathbb{R}^3 et $\mathcal{E}_2 = \{w_1, e_2\}, \mathcal{B}_2 = \{w_1 + 2w_2, -w_1 - w_2\}$ deux bases de \mathbb{R}^2 . Soit $f : \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire dont la matrice relativement aux bases \mathcal{E}_1 et \mathcal{E}_2 est donnée par

$$M_{\mathcal{E}_2,\mathcal{E}_1}(f) = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 1 & -3 \end{pmatrix}$$

Déterminer $M_{\mathcal{B}_2,\mathcal{B}_1}(f)$.

Exercice 3.

1. Soit σ la permutation de $\{1, 2, 3, 4, 5, 6, 7, 8\}$ définie par

$$\sigma(1) = 7, \quad \sigma(2) = 5, \quad \sigma(3) = 3, \quad \sigma(4) = 1, \quad \sigma(5) = 2, \quad \sigma(6) = 4, \quad \sigma(7) = 6, \quad \sigma(8) = 8.$$

Écrire la décomposition de σ en produit de cycles et une décomposition de σ en produit de transpositions.

- 2. Écrire la décomposition en cycles du produit des permutations (1 2 3)(2 3 4) dans le groupe symétrique S_n , où n est un entier, $n \ge 4$.
- 3. Calculer la signature de la permutation $\sigma \in S_5$ définie par $\sigma(1) = 4$, $\sigma(2) = 1$, $\sigma(3) = 5$, $\sigma(4) = 3$, $\sigma(5) = 2$.
- 4. Calculer la signature de la permutation $\sigma \in S_n$ définie par $\sigma = (12 \dots k)$ (cycle de longueur k).

Exercise 3

1.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 5 & 3 & 1 & 2 & 4 & 6 & 8 \end{pmatrix} = \begin{pmatrix} 25 \end{pmatrix} \begin{pmatrix} 176 & 4 \end{pmatrix} = \begin{pmatrix} 25 \end{pmatrix} \begin{pmatrix} 17 \end{pmatrix} \begin{pmatrix} 76 \end{pmatrix} \begin{pmatrix} 64 \end{pmatrix}$$

2. $(123)(234) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & + & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 4 & 2 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 34 \end{pmatrix}$

3. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 174 & 35 & 2 \end{pmatrix} = \begin{pmatrix} 14 \end{pmatrix} \begin{pmatrix} 43 \end{pmatrix} \begin{pmatrix} 35 \end{pmatrix} \begin{pmatrix} 52 \end{pmatrix} dooc sign(\sigma) = \begin{pmatrix} 11 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 23 \end{pmatrix} \Rightarrow \begin{pmatrix} 12 \end{pmatrix} \Rightarrow \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 23 \end{pmatrix} \Rightarrow \begin{pmatrix} 12 \end{pmatrix} \Rightarrow \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 23 \end{pmatrix} \Rightarrow \begin{pmatrix} 12 \end{pmatrix} \Rightarrow$

Exercice 4.

Soit $\sigma \in S_5$ la permutation définie par $\sigma(1) = 2$, $\sigma(2) = 1$, $\sigma(3) = 4$, $\sigma(4) = 5$, $\sigma(5) = 3$. Quel est le plus petit entier $k \ge 1$ pour que σ^k (la composée k fois de σ) soit l'identité?

Exercice 5.

Soient $A \in \mathcal{M}_{n,n}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer que $\det(\lambda A) = \lambda^n \det(A)$.

Exercice 6.

Soit $A \in \mathcal{M}_{n,n}(\mathbb{C})$. Montrer que $\det(\overline{A}) = \overline{\det(A)}$, où \overline{A} est la matrice conjuguée complexe définie par $\overline{A} = (\overline{a_{ij}})_{i,j=1,...,n}$.

Exercice 7.

Soit $A \in \mathcal{M}_{n,n}(\mathbb{K})$.

- 1. Montrer que le rang de A est égal au nombre maximal de colonnes linéairement indépendantes de A.
- 2. Montrer que le rang de A est égal au nombre maximal de lignes linéairement indépendantes de A.
- 3. Montrer que le rang de A est égal au nombre de pivots de la matrice A (Indication : regarder l'effet des opérations élémentaires de la méthode du pivot sur le rang).

xerc	ace 7
1.	Soit & l'application linéaire associée à A, alors le roog de A est donné part la dimension de l'image de p. Soit {é,, en} la base canonique de IK, alors {f(e),, f(e)} génère Im(e).
	dim(Im(A)) est donc le acombre de vecteurs linéairement indépendents de {f(e),, r(e), }. Comme cos vecteurs forment Epolément les colonnes de A co conclut que rang(A) est égal au nombre de molonnes linéairement indépendentes de A.
2.	Puisque Action si une colonno as est linéairement dépendante des autres, alors la ligne a, i= à est linéairement dépendante des autres.
	Dorc le nombre de lignes et de colonnes linéairement indépendentes de A sont égaux, et il suit de l. que congla) est égal au nombre de lignes inéairement indépendentes de A.
3.	Puisque les opérations élémentaires conservent l'indépendance linéaire des lignes entre elles le nombre de lignes linéairement indépendantes de A est égal au nombre de lignes linéairement indépendantes de su porme échelomée i. é. de son nombre de pivots.
	Il suit alors de 2. que rang (A) est égal au nombre de pivots de A.