

Machine Learning

Problem formulation

Example: Predicting movie ratings

→ User rates movies using one to five stars

Machine Learning

Content-based recommendations

Content-based recommender systems

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)}} \in \mathbb{R}^3$. Predict user j as rating movie $(\theta \otimes h) \uparrow h x^{(i)}$ stars. $\searrow \bullet \circ h \bullet \circ h$

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0 \\ 1 \end{bmatrix} \longrightarrow \begin{array}{c} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} & \begin{pmatrix} 0 \\ 0 \end{pmatrix}^T \chi^{(3)} = 54.999 \\ = 4.95 \end{array}$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- \rightarrow $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- \rightarrow $x^{(i)}$ = feature vector for movie i
- ightharpoonup For user j , movie i , predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $m^{(j)} = \text{no. of movies rated by user } j$ To learn $\theta^{(j)}$:

$$\min_{Q(i)} \frac{2}{2} \frac{1}{(Q(i))^{T}(X(i))} - \frac{1}{2} \frac{1}{(Q(i))^{T}(X(i))} + \frac{2}{2} \frac{1}{(Q(i))^{T}} + \frac{2}{2} \frac{1}{(Q(i))^{T}}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2 (6(1) (0(n))

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

	·	,1011				•	X ₄ =
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X Love at last	⊅ 5	≈ 5	<u> , 0</u>	7 0	1.1.0	A 0-	0
Romance forever	5	?	?	0	?	j	x (1) = [1:6]
Cute puppies of love	?	4	0	?	?	?	(0-0)
Nonstop car chases	0	0	5	4	?	?	~(·) =
Swords vs. karate	0	0	5	?	?	5	× (=)
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ \mathbf{S} \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(i) (e) (e)	(6") ⁷ x", 25 (6") ⁷ x", 20 (6") ⁷ x", 20 (6") ⁷ x", 20

Optimization algorithm

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $\underline{x^{(1)},\dots,x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

و (زنز)

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, can estimate $x^{(1)}, \dots, x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

$$\rightarrow$$
 Given $x^{(1)}, \dots, x^{(n_m)}$, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:
$$\frac{1}{2} \sum_{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2$$

 $\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left\{ \frac{1}{2} \sum_{j=1} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 \right\}$

 \rightarrow Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, estimate $x^{(1)}, \ldots, x^{(n_m)}$:

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n (x_i^{(i)})^2 + \frac{\lambda}{2}$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

$$\left(\bigcirc^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	^	^	1	1

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering / X (ii) ' <

$$(Q_{\partial J})_{A}(x_{(U)})$$

ال (زیزا)

$$\begin{bmatrix} 0 \\ 0 \\ ? \\ 4 \end{bmatrix}$$

$$\theta^{(1)} T(x^{(1)}) \\ \theta^{(1)} T(x^{(2)})$$

$$(\theta^{(2)})^T(x^{(1)}) \dots (\theta^{(n_u)})^T(x^{(1)}) \dots (\theta^{(n_u)})^T(x^{(2)}) \dots (\theta^{(n_u)})^T(x^{(2)})$$

$$\begin{bmatrix} 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} \\ -(x^{(2)})^{T} \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(i)})^{\intercal} - \\ -(o^{(i)})^{\intercal} - \end{bmatrix}$$

Andrew Ng

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$ and i are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

			-		V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Г~	L	0	0	
→ Love at last	_5	5	0	0	5,0		5	5	0	0	?
Romance forever	5	?	?	0	5 Q	V	$\frac{5}{2}$?	?	0	?
Cute puppies of love	?	4	0	?	5 D	Y =		4	U		
Nonstop car chases	0	0	5	4	□			0	5 F	4	2
Swords vs. karate	0	0	5	?	3 ₽		Γo	U	Э	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{$$

Mean Normalization:

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 \\ 2 \\ 1.25 \end{bmatrix}$$

$\begin{bmatrix} 2.5 \\ 2.5 \end{bmatrix}$	(2.5) ?	$ \begin{array}{c} (-2.5) \\ ? \end{array} $	-2.5 -2.5	?
$\begin{bmatrix} ? \\ -2.25 \end{bmatrix}$	$ \begin{array}{c} 2 \\ -2.25 \end{array} $	-2 2.75	? 1.75	?
-1.25	-1.25	3.75	-1.25	

For user j, on movie i predict: $\Rightarrow (\bigcirc^{(i)})^{\mathsf{T}} (\times^{(i)}) + \mathcal{H}_{i}$

$$\Rightarrow (\Theta_{(i)})_{i}(x_{(i)}) + \mu_{i}$$

User 5 (Eve):

