Electroquímica

Práctico

Prof. Laura C. Lerici

Electroquímica

Estudia la conversión entre la <u>energía eléctrica</u> y la <u>energía química</u>.

Los procesos electroquímicos son <u>reacciones</u> redox.

Ejes temáticos de Electroquímica

- 1. Reacciones oxido-reducción (Redox)
- 2. Espontaneidad de las Redox
- 3. Celdas galvánicas
- 4. Electrolisis y corrosión

1. Reacciones Redox

Consta de 2 semi reaciones:

OXIDACIÓN: Pérdida de electrones (aumento en el número de oxidación).

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Agente Reductor: Sustancia capaz de reducir a otra, por lo tanto ella se oxida

<u>REDUCCIÓN:</u> Ganancia de electrones (disminución del número de oxidación)

$$Ag^++ 1e^- \rightarrow Ag$$

Agente Oxidante : Sustancia capaz de oxidar a otra, por lo tanto ella se reduce.

Siempre que se produce una oxidación debe producirse simultáneamente una reducción.

Número de oxidación o estado de oxidación (E.O.)

Es la carga que un átomo tendría en una molécula (o en un compuesto iónico) si los electrones fueran transferidos completamente.

¿Cómo determinar los E.O.?

 Los elementos libres (sin combinar) en su estado mas estable tienen un número de oxidación igual a cero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

- En iones monoatómicos, el número de oxidación es igual a la carga del ion: Li⁺, Li = +1; Fe³⁺, Fe = +3; O²⁻, O = -2
- El número de oxidación del oxígeno es por lo general -2, excepto en peróxidos (ej. H_2O_2) donde es -1

¿Como determinar los E.O.?

- El número de oxidación del hidrógeno es +1 excepto cuando esto es vinculado a metales en compuestos binarios. En estos casos, su número de oxidación es -1.
- Los metales del grupo IA tienen +1, los metales del IIA tienen
 +2 y el del flúor es siempre -1.
- La suma de los números de oxidación de todos los átomos en una molécula es igual a cero y en un ión es igual a la carga.

¿Cuales son los números de oxidación de todos los átomos en el (HCO₃)-?

$$(HCO_3)^{-1}$$
 $O = -2$ $H = +1$
 $3x(-2) + 1 + C = -1$
 $C = +4$

2.- Señale el número de oxidación del S en los siguientes compuestos:

	K ₂ SO ₄	CaSO ₃	Na ₂ S	SO ₃
K ₂ SO ₄		Ca	SO ₃	
K=+1 O=-2 1*2-2*4+ EO=+6	EO=0	O= 2*2	=+2 -2 L-2*3+EO=(=+4)
Na ₂ S		S	O ₃	
Na=+1 2*1+EO=0 EO=+2	0	-	-2 '3+EO=0 =+6	

3.- Distinga cuáles de las siguientes ecuaciones representan a reacciones redox, J.S.R:

a)	3 AgNO ₃	+	K ₃ PO ₄	\rightarrow	Ag ₃ PO ₄	+	3 KNO ₃	No redox
b)	2 CO	+	O ₂	\rightarrow	2 CO ₂			redox
c)	CaCO ₃			\rightarrow	CaO	+	CO ₂	No redox
d)	2 KCIO ₃			\rightarrow	2 KCI	+	3 O ₂	redox
e)	Fe	+	3 O ₂	\rightarrow	2 Fe ₂ O ₃			redox
f)	C	+	O ₂	\rightarrow	CO ₂			redox

- Los compuestos que se <u>disocian</u> en una reacción de oxido reducción son los <u>ACIDOS</u>, <u>HIDROXIDOS</u> y <u>SALES</u>.
- Los óxidos, peróxidos y sustancias simples (ej. O₂) no se disocian.

Resolver!!

Disociar cuando corresponda y encontrar el EO de cada elemento.

- a. $KMnO_4 \rightarrow K^+ + MnO_4^-$ sal
- b. Cl₂ elemento libre, no se disocia
- c. $Na_2Cr_2O_7 \rightarrow Na^+ + Cr_2O_7^{-2}$ sal
- d. ZnO óxido, no se disocia
- e. CuS \rightarrow Cu²⁺ + S²⁻ sal
- f. Fe_2O_3 óxido, no se disocia

BALANCES REDOX - Medio Acido Método ion -electrón

1. Escribir la ecuación sin balancear en forma iónica.

$$CIO_3^-$$
 + $CI^ \rightarrow$ CI_2 + CIO_2

2. Identificar las especies que se oxidan y reducen separar la ecuación en dos semireacciones:

Oxidación: $Cl^- \rightarrow ClO_2$

Reducción: $ClO_3^- \rightarrow Cl_2$

Aumento del EO, pérdida de e-

Disminución del EO, ganancia de e-

3. Balancear por inspección todos los elementos que no sean ni oxígeno ni hidrógeno en las dos semireacciones.

$$Cl^{-} \rightarrow ClO_2$$

$$2 ClO_3^- \rightarrow Cl_2$$

BALANCES REDOX - Medio Acido Método ion -electrón

4. Para reacciones en medio ácido, agregar H₂O para balancear los átomos de O. Para balancear los átomos de H, agregamos H⁺.

$$Cl^{-} + 2 H_{2}O \rightarrow ClO_{2} + 4 H^{+}$$

$$12 H^{+} + 2 ClO_{3}^{-} \rightarrow Cl_{2} + 6 H_{2}O$$

5. Agregar electrones en el lado apropiado de cada una de las semireacciones para balancear las cargas.

$$Cl^{-} + 2 H_{2}O \rightarrow ClO_{2} + 4 H^{+} + 5 e^{-}$$

 $10 e^{-} + 12 H^{+} + 2 ClO_{3}^{-} \rightarrow Cl_{2} + 6 H_{2}O$

6. Si es necesario, igualar el número de electrones en las dos semireacciones multiplicando cada una de las reacciones por un coeficiente apropiado.

Lerici

BALANCES REDOX - Medio Acido Método ion -electrón

7. Se cancelan los electrones en ambas partes. Se suman los reactivos y productos de ambas semirreacciones.

$$2 \text{ Cl}^{-} + 4 \text{ H}_{2}^{-}\text{O} \rightarrow 2 \text{ ClO}_{2} + 8 \text{ H}^{+} + 10 \text{ e}^{-}$$

$$10 \text{ e}^{-} + 12 \text{ H}^{+} + 2 \text{ ClO}_{3}^{-} \rightarrow \text{Cl}_{2} + 6 \text{ H}_{2}\text{O}$$

$$2 \text{ Cl}^{-} + 4 \text{ H}^{+} + 2 \text{ ClO}_{3}^{-} \rightarrow 2 \text{ ClO}_{2} + \text{Cl}_{2} + 2 \text{ H}_{2}\text{O}$$

8. Trasladar los coeficientes estequiométricos a la reacción molecular (si correspondiera).

$$2CIO_3^-$$
 + $2CI^-$ + $4H^+$ \rightarrow CI_2 + $2CIO_2$ + $2H_2O$

- 8.- Balancee las siguientes ecuaciones redox por el método del ión-electrón, e identifique en cada caso el agente oxidante y el agente reductor.
 - j) CuS + HNO₃ \rightarrow CuSO₄ + HNO₂ (en medio ácido)

Paso 1 y 2: Identificar especies que se oxidan y reducen y escribirlas en forma iónica

Paso 3 y 4: Balancear atomos.

Paso 5: Balancear cargas

Paso 6 y 7: Igualar electrones de ambos lado y sumar la semirreacciones

Paso 8: Trasladar coeficientes estequiométricos a la reacción.

CuS +4 HNO₃ \rightarrow CuSO₄ +4 HNO₂

10.- Para la reacción de óxido-reducción:

$$KMnO_4 + KCI + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + CI_2 + H_2O_4$$

- a) Calcule los gramos de cloro que pueden formarse por reacción de 100 g de KMnO₄.
- b) Calcule cuántos gramos de KMnO₄ se necesitan para preparar 500 mL de una solución 0,05 M.

<u>Primero!</u> Balacear la reacción empleando el método del ión-electrón

Paso 1 y 2

Paso 3, 4 y 5

Paso 6 y 7

Paso 8

2 KMnO₄+
$$\frac{10}{10}$$
KCl +8 H₂SO₄ → 2MnSO₄ +5K₂SO₄ +5Cl₂ +8H₂O

a.

b.

0,05 mol permanganto ---- 1000 mL solución x=0,025 mol permanganato ---- 500 mL

M=0,025 mol permanganato x 158,03 g/mol M=3,95 g

3. Celdas galvánicas o voltaicas

Son aquellas en las cuales las reacciones químicas *espontáneas* producen energía eléctrica (electricidad) la cual sale a un circuito eléctrico.

En el ánodo:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

En el cátodo:
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
;

Reacción global: $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

Pila de Daniell

Oxidación se lleva a cabo en el Ánodo

Por convención el ánodo es el polo negativo (-). Los e⁻ salen de él.

Reducción se lleva a cabo en el Cátodo

Por convención el cátodo es el polo positivo (+). Los e⁻ van hacia él.

3. Celdas galvánicas o voltaicas

La diferencia de potencial eléctrico entre el ánodo y el cátodo se llama:

- Voltaje de la celda
- Fuerza electromotriz (fem) o
- Potencial de la celda.

El <u>potencial estándar de reducción (E°</u>) es el voltaje asociado con una reacción de reducción en un electrodo cuando todo los solutos se encuentran a 1 M y todos los gases están a 1 atm.

Tabla de potenciales de reducción estándar

Sistema	Semirreacción	E° (<i>V</i>)
Li*/Li	Li* 1 e⁻ → Li	-3,04
K* / K	K+ + 1 e ⁻ → K	-2,92
Ca2+ /Ca	$Ca^{2+}+2e^{-}\rightarrow Ca$	-2,87
Na+ / Na	Na++ 1 e ⁻ → Na	-2,71
Mg ²⁺ / Mg	$Mg^{2+}+ 2 e^- \rightarrow Mg$	-2,37
Al ³⁺ / Al	Al ³⁺ + 3 e ⁻ → Al	-1,66
Mn²+ / Mn	$Mn^{2s} + 2e^- \rightarrow Mn$	-1,18
Zn ²⁺ / Zn	Zn2++ 2 e ⁻ → Zn	-0,76
Cr3+ / Cr	Cr³* + 3 e ⁻ → Cr	-0,74
Fe2+ / Fe	Fe ²⁺ + 2 e ⁻ → Fe	-0,41
Cd2+ / Cd	$Cd^{2+} + 2 e^- \rightarrow Cd$	-0,40
Ni²+ / Ni	$Ni^{2+} + 2e^- \rightarrow Ni$	-0,25
Sn²+ / Sn	Sn2* + 2 e ⁻ → Sn	-0,14
Pb2+ / Pb	Pb ²⁺ + 2 e ⁻ → Pb	-0,13
H+ / H ₂	2 H+ + 2 e ⁻ → H ₂	0,00
Cu2+ / Cu	$Cu^{2+} + 2 e^- \rightarrow Cu$	0,34
l₂/	l ₂ + 2 e ⁻ → 2 l ⁻	0,53
MnO ₄ -/MnO ₂	$MnO_4^-, + 2 H_2O + 3 e^- \rightarrow MnO_2 + 4$ OH^-	0,53
Hg2+ / Hg	Hg2* + 2 e ⁻ → 2 Hg	0,79
Ag* / Ag	Ag* + 1 e ⁻ → Ag	0,80
Br ₂ /Br-	$Br_2 + 2 e^- \rightarrow 2 Br^-$	1,07
Cl ₂ /Cl-	Cl ₂ + 2 e ⁻ → 2 Cl ⁻	1,36
Au ³⁺ / Au	Au³+ + 3 e ⁻ → Au	1,500
MnO ₄ -/ Mn ²⁺	MnO_4^- + 8 H++ 5 e ⁻ \rightarrow Mn^2 + + 2 H ₂ O	1,51

- El valor de E° para cada semireaccion de reducción aparece en la tabla de Potenciales de Reducción.
- Cuanto mayor es E° mayor tendencia reducirse.
- Las semirreacciones son reversibles. Se cambia el signo del potencial cuando se invierte.

2. Espontaneidad de las reacciones Redox

$$\Delta G = -nFE_{celda}$$

$$D = -nFE_{celda}$$

Ecuación de Nerst

$$E = E^{0} - \frac{0.0257 \text{ V}}{n} \ln Q$$
 $E = E^{0} - \frac{0.0592 \text{ V}}{n} \log Q$

18.- De acuerdo a los potenciales normales de reducción, selecciona cuál es el mejor agente oxidante y cuál es el mejor agente reductor: Cl₂, MnO₄-, Fe²⁺, Sn²⁺.

	MnO ₄ -	Cl ₂	Sn ²⁺	Fe ²⁺
ε°	1,507	1,360	-0,14	-0,41
	Se reduce más fácilmente . Mejor Ag. Oxidante			Se oxida más fácilmente . Mejor Ag. Reductor

20.- Indique J.S.R. si se producirá una reacción espontánea al añadir bromo molecular a una solución que contenga NaCl y Nal a 25 °C, considerando que todas las especies se encuentran en estado estándar.

$$Br_2/Br$$
- Ered°= 1,08 V

$$Cl^{-}/Cl_{2}$$
 Eoxid°=-1,360 V

$$I^{-}/I_{2}$$
 Eoxid°=-0,535 V

El bromo molecular se reduce y el ioduro se oxida a I2

- 24.-Se construye una celda voltaica, donde un compartimiento de electrodo se compone de una tira de zinc inmersa en una solución de nitrato de zinc, y el otro contiene una tira de níquel colocada en una solución de NiCl₂.
 - a) Dibuje un esquema de la celda voltaica e indique cuál es el ánodo, cuál es el cátodo y el sentido en que migran los electrones y los iones.
 - b) Explique por qué los electrones fluyen en el sentido señalado.
 - c) Indique las funciones que cumple el puente salino en la celda.

 d) Escriba las hemi-reacciones que se llevan a cabo en los compartimentos de los electrodos y la reacción global de la celda.

$$Zn^{2+} + 2e \rightleftharpoons Zn$$
 $Ni^{2+} + 2e \rightleftharpoons Ni$

a. ¿Quien se oxida y quien se reduce??

d.
$$Zn \leftrightarrow Zn^{2+} + 2 e^{-}$$
 E°=0,76 V

$$Ni^{2+} + 2 e^{-} \leftrightarrow Ni$$
 E°=-0,25 V

$$Zn + Ni^{2+} \longleftrightarrow Zn^{2+} + Ni$$
 E°=0,51 V

Zn se oxida ----- ánodo

Ni²⁺se reduce ---- cátodo

- b. Los e- salen del ánodo y van hacia el cátodo
- c. El puente salino tiene la función de compensar las cargas

- 29.- Se tiene una pila formada por un electrodo de cobre y otro de zinc introducido en soluciones acuosas de sus respectivos iones.
 - a) Indique cuál es el polo positivo y el polo negativo.
 - b) Calcule el valor de la fem de la pila si la concentración de ambos iones es 1 M en sus respectivas soluciones.
 - c) Calcule la fem de la pila si la $[Cu^{2+}] = 2 \text{ M y } [Zn^{2+}] = 0,3 \text{ M}.$

a y b.
$$z_{n^{2^{+}} + 2e} \rightleftharpoons z_{n}$$
 $z_{n^{2^{+}} + 2e} \rightleftharpoons cu$ $z_{n^{2^{+}} + 2e} cu$ $z_{n^{2^{+}} + 2e} = cu$ $z_{n^{2^{+}} + 2e} = cu$ $z_{n^{2^$

$$Zn + Cu^{2+} \leftrightarrow Zn^{2+} + Cu$$
 E°=1,097 V

$$E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$$

$$Q=[Zn^{2+}]/[Cu^{2+}]$$

$$Q = 0.3/2$$

4. Electrólisis y corrosión

<u>Electrólisis</u> es el proceso en el que se usa energía eléctrica para hacer que una reacción química no espontánea tenga lugar.

La cantidad de sustancia que experimenta oxidación o reducción en cada electrodo durante la electrólisis es directamente proporcional a la cantidad de electricidad que pasa por ella.

- 40.- Para cada uno de los siguientes procesos de electrólisis, calcule:
 - a) Los gramos de calcio metálico que pueden obtenerse al pasar 0,5 A a través de cloruro de calcio fundido durante 30 minutos.
 - b) La masa de plata metálica depositada en el cátodo al pasar por una solución acuosa de Ag⁺ una corriente de 2 A durante 42,5 minutos.
 - c) El tiempo (en horas) necesario para que una corriente de 4 A deposite 127 g de cobre de una solución acuosa de CuSO₄.
 - d) Los Faraday que se necesitan para producir 1,5 L de cloro molecular a 750 mmHg y 20° C a partir de NaCl fundido.

$$Ca^{2+} + 2 e^{-} \leftrightarrow Ca$$

c.
$$63,54 \text{ g/mol Cu}^{2+}$$
 — $2*96500 \text{ C}$
 127 g Cu — $x=3,85 \times 10^5 \text{ C}$
 $q=i \times t \equiv t=q/i$
 $t=3,85 \times 10^5 \text{ C}/4 \text{ A}$
 $t=9,64 \times 10^4 \text{ s}$
 $t=26.79 \text{ h}$

t = 26,79 h

Par redox	E°
$F_2 + 2H^+ + 2e \Longrightarrow 2HF(aq)$	3.06
$F_2 + 2e \Longrightarrow 2F$	2.87
$O_3 + 2H^+ + 2e \Longrightarrow O_2 + H_2O$	2.07
$S_2O_8^{2-} + 2e \rightleftharpoons 2SO_4^{2-}$	2.01
$Co^{3+} + e \rightleftharpoons Co^{2+}$	1.82
$H_2O_2 + 2H^+ + 2e \rightleftharpoons 2H_2O$	1.77
$MnO_4^- + 4H^+ + 3e \Longrightarrow MnO_2 + 2H_2O$	1.70
$PbO_2 + SO_4^{2-} + 4H^+ + 2e \Longrightarrow PbSO_4 + 2H_2O$	1.69
$Au^+ + e \Longrightarrow Au$	1.68
$HClO_2 + 2H^+ + 2e \Longrightarrow HClO + H_2O$	1.64
$HCIO + H^+ + e \Longrightarrow \frac{1}{2}Cl_2 + H_2O$	1.63
$Ce^{4+} + e \Longrightarrow Ce^{3+}$	1.61
$Bi_2O_4 + 4H^+ + 2e \Longrightarrow 2BiO^+ + 2H_2O$	1.59
$BrO_3^- + 6H^+ + 5e \rightleftharpoons \frac{1}{2}Br_2 + 3H_2O$	1.52
$MnO_4^- + 8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O$	1.51
$PbO_2 + 4H^+ + 2e \Longrightarrow Pb^{2+} + 2H_2O$	1.46
$Cl_2 + 2e \rightleftharpoons 2Cl^-$	1.36
$Cr_2O_7^{2-} + 14H^+ + 6e \Longrightarrow 2Cr^{3+} + 7H_2O$	1.33
$MnO_2 + 4H^+ + 2e \Longrightarrow Mn^{2+} + 2H_2O$	1.23
$O_2 + 4H^+ + 4e \Longrightarrow 2H_2O$	1.23
$\frac{O_2 + 4H}{103^- + 6H^+ + 5e} \stackrel{2H_2O}{\rightleftharpoons} \frac{1}{2}I_2 + 3H_2O$	1.20
$CIO_4^- + 2H^+ + 2e \rightleftharpoons CIO_3^- + H_2O$	1.19
$Br_2(aq) + 2e \Longrightarrow 2Br$	1.09
	1.07
$Br_2(liq) + 2e \Longrightarrow 2Br^-$ $Br_3^- + 2e \Longrightarrow 3Br^-$	1.05
$VO_2^+ + 2H^+ + e \Longrightarrow VO^{2+} + H_2O$	1.00
$AuCl_4 + 3e \Longrightarrow Au + 4Cl^-$	1.00
$AUCI_4 + 3e \rightleftharpoons AU + 4CI$ $NO_3 + 4H^+ + 3e \rightleftharpoons NO + 2H_2O$	0.96
$NO_3 + 4H + 3e \rightleftharpoons NO + 2H_2O$	0.94
$NO_3^- + 3H^+ + 2e \Longrightarrow HNO_2 + H_2O$	0.94
$2Hg^{2+} + 2e \Longrightarrow Hg_2^{2+}$	0.92
$AuBr_4 + 3e \rightleftharpoons Au + 4Br$	
$Cu^{2+} + I^{-} + e \Longrightarrow CuI$	0.86
$Hg^2 + 2e \Longrightarrow Hg$	0.85
$Ag^+ + e \rightleftharpoons Ag$ $Hg_2^{2+} + 2e \rightleftharpoons 2Hg$	0.80
Hg_2 + $2e \rightleftharpoons 2Hg$	0.79
$Fe^{3+} + e \Longrightarrow Fe^{2+}$	0.77
$PtCl_4^{2^-} + 2e \Longrightarrow Pt + 4Cl^-$	0.73
$Q+2H^++2e \Longrightarrow H_2Q$	0.70
$O_2 + 2H^+ + 2c \Longrightarrow H_2O_2$	0.68
$PtBr_4^{2-} + 2e \Longrightarrow Pt + 4Br$	0.58
$MnO_4^- + e \Longrightarrow MnO_4^{2-}$	0.56
$H_3AsO_4 + 2H^+ + 2e \Longrightarrow HAsO_2 + 2H_2O$	0.56
$I_3^- + 2e \Longrightarrow 3I^-$	0.54
$I_2(s) + 2e \Longrightarrow 2I^-$	0.54
$Cu^+ + e \Longrightarrow Cu$	0.52
$4H_2SO_3 + 4H^+ + 6e \Longrightarrow S_4O_6^{2-} + 6H_2O$	0.51

Par redox	E°
$2H_2SO_3 + 2H^+ + 4e \Longrightarrow S_2O_3^{2-} + 3H_2O$	0.40
$Fe(CN)_6^{3-} + e \Longrightarrow Fe(CN)_6^{4-}$	0.36
$VO^{2+} + 2H^+ + e \rightleftharpoons V^{3+} + H_2O$	0.36
$Cu^{2+} + 2e \rightleftharpoons Cu$	0.34
$Hg_2Cl_2 + 2e \Longrightarrow 2Hg + 2Cl^-$	0.28
$IO_3^- + 3H_2O + 6e \rightleftharpoons I^- + 6OH^-$	0.26
$AgCl + e \Longrightarrow Ag + Cl^{-}$	0.22
$HgBr_4^{2-} + 2e \Longrightarrow Hg + 4Br^{-}$	0.21
$Cu^{2+} + e \Longrightarrow Cu^{+}$	0.15
$\operatorname{Sn}^{4+} + 2e \Longrightarrow \operatorname{Sn}^{2+}$	0.15
$S + 2H^+ + 2e \Longrightarrow H_2S$	0.14
$CuCl + e \rightleftharpoons Cu + Cl$	0.14
$AgBr + e \Longrightarrow Ag + Br$	0.10
$S_4O_6^{2-} + 2e \Longrightarrow 2S_2O_3^{2-}$	0.08
$CuBr + e \Longrightarrow Cu + Br$	0.03
$2H^{+} + 2e \Longrightarrow H_{2}$	0.00
$HgI_4^{2-} + 2e \rightleftharpoons Hg + 4I^-$	-0.04
$Pb^{2+} + 2e \rightleftharpoons Pb$	-0.13
$\operatorname{CrO_4^{2-}} + 4\operatorname{H_2O} + 3e \Longrightarrow \operatorname{Cr(OH)_3} + 5\operatorname{OH}^{-1}$	-0.13
$\operatorname{Sn}^{2+} + 2e \Longrightarrow \operatorname{Sn}$	-0.14
$AgI + e \Longrightarrow Ag + I^{-}$	-0.14
$Ag1 + e \rightleftharpoons Ag + 1$ $CuI + e \rightleftharpoons Cu + 1$	-0.19
$\operatorname{Cul} + e \rightleftharpoons \operatorname{Cu} + 1$ $\operatorname{Ni}^{2^+} + 2e \rightleftharpoons \operatorname{Ni}$	-0.19
$V^{3+} + e \rightleftharpoons V^{2+}$	-0.25
$V + e \rightleftharpoons V$ PbCl ₂ + 2e \rightleftharpoons Pb + 2Cl	-0.20
	-0.27
$Co^{2+} + 2e \Longrightarrow Co$	-0.28
$PbBr_2 + 2e \Longrightarrow Pb + 2Br$	
$PbSO_4 + 2e \Longrightarrow Pb + SO_4^2$	-0.36
$PbI_2 + 2e \Longrightarrow Pb + 2I^-$	-0.37
$Cd^{2+} + 2e \Longrightarrow Cd$	-0.40
$\operatorname{Cr}^{3+} + e \Longrightarrow \operatorname{Cr}^{2+}$	-0.41
$Fe^{2+} + 2e \Longrightarrow Fe$	-0.44
$2CO_2(g) + 2H^+ + 2e \Longrightarrow H_2C_2O_4(aq)$	-0.49
$Cr^{3+} + 3e \rightleftharpoons Cr$	-0.74
$Zn^{2+} + 2e \Longrightarrow Zn$	-0.76
$H_2O + e \rightleftharpoons \frac{1}{2}H_2 + OH^-$	-0.83
$Cr^{2+} + 2c \Longrightarrow Cr$	-0.91
$Mn^{2+} + 2e \Longrightarrow Mn$	-1.18
$Al^{3+} + 3e \Longrightarrow Al$	-1.66
$Mg^{2+} + 2e \Longrightarrow Mg$	-2.37
$Na^+ + e \Longrightarrow Na$	-2.71
$Ca^{2+} + 2e \Longrightarrow Ca$	-2.87
$Sr^{2+} + 2e \Longrightarrow Sr$	-2.89
$Ba^{2+} + 2e \Longrightarrow Ba$	-2.90
$K^+ + e \Longrightarrow K$	-2.93
Li⁺ + e ⇒ Li	-3.05