MAPEO DE RUTAS CORTAS CON MENOS RIESGO DE ACOSO

(MRCMRA)

Daniela Álvarez Acevedo Universidad EAFIT Colombia dalvareza1@eafit.edu.co Tomás Jaramillo Gaviria Universidad EAFIT EAFIT tjaramillg@eafit.edu.co Andrea Serna Universidad EAFIT Colombia asernac1@eafit.edu.co Mauricio Toro Universidad EAFIT Colombia mtorobe@eafit.edu.co

RESUMEN

Se requiere buscar la ruta más corta con las calles de Medellín con menor nivel de acoso callejero. Para identificar rutas seguras, prevenir el riesgo de acoso y aumentar la seguridad de las personas. A tal extremo que se pueda reducir también los delitos comunes como lo son los atracos, secuestros, violaciones y entre otros.

¿Cuál es el algoritmo que has propuesto para resolver el problema? ¿Qué resultados cuantitativos has obtenido? ¿Cuáles son las conclusiones de este trabajo? El resumen debe tener **como máximo 200 palabras**. (En este semestre, debes resumir aquí los tiempos de ejecución, y los resultados del camino de menor riesgo y del camino más corto).

Palabras clave

Camino más corto restringido, acoso sexual callejero, identificación de rutas seguras, prevención del crimen.

1. INTRODUCCIÓN

En este semestre, la motivación es porque requerimos buscar la ruta más corta sin superar cierto nivel de acoso callejero y a su vez sin superar cierta distancia. En ciertos casos, el nivel de acoso representa un peligro bastante grande para las personas, ya que, dependiendo el caso, puede ser perjudicial.

1.1. Problema

En este semestre, el problema consiste en que no solemos saber cuál puede ser la ruta más corta sin superar cierto nivel de riesgo por acoso sexual y sin superar cierta distancia. Así que sería útil resolver este problema para aumentar la seguridad de las personas y permitir que estas puedan movilizarse sin sentirse inseguras, debido a que la problemática tratada afecta directamente a la integridad de las personas.

1.2 Solución

Explica, brevemente, tu solución al problema (En este semestre, la solución son algoritmos para caminos más cortos restringidos. ¿Qué algoritmos has elegido? ¿Por qué?)

1.3 Estructura del artículo

A continuación, en la Sección 2, presentamos trabajos relacionados con el problema. Posteriormente, en la Sección 3, presentamos los conjuntos de datos y los métodos utilizados en esta investigación. En la Sección 4,

presentamos el diseño del algoritmo. Después, en la Sección 5, presentamos los resultados. Finalmente, en la Sección 6, discutimos los resultados y proponemos algunas direcciones de trabajo futuro.

2. TRABAJOS RELACIONADOS

A continuación, explicamos cuatro trabajos relacionados con la búsqueda de caminos para prevenir el acoso sexual callejero y la delincuencia en general.

2.1 Algoritmos para la determinación del circuito de menor longitud en un grafo

Determinar la menor longitud de un circuito en un grafo. Se implementaron diferentes algoritmos como por ejemplo Dijkstra que resuelve el problema con caminos mínimos en un grafo ponderado dirigido de pesos no negativos.

Rayco Hernández D. 2016. Algoritmos para la determinación del circuito de menor longitud en un grafo (julio, 2016).

2.2 Algoritmos para calcular la ruta más corta en la malla vial de la ciudad de Bogotá

Encontrar la ruta más corta entre dos puntos dentro de la ciudad de Bogotá. Se utilizó el algoritmo de A-Estrella, este garantiza que se encuentre el camino más corto entre dos nodos dados.

Leonardo Rodríguez C. 2005. Algoritmos para calcular la ruta más corta en la malla vial de la ciudad de Bogotá (junio, 2005).

2.3 Algoritmos para la determinación del circuito de menor longitud en un grafo

Determinar la menor longitud de un circuito en un grafo. Se utilizó el algoritmo Floyd y Warshall y se basa en lo que hace es buscar directamente las longitudes de los caminos mínimos entre todos los pares de vértices, construyendo lo que se denomina como matriz de distancias mínimas.

Rayco Hernández D. 2016. Algoritmos para la determinación del circuito de menor longitud en un grafo (julio, 2016).

2.4 Algoritmos para calcular la ruta más corta en la malla vial de la ciudad de Bogotá

Encontrar la ruta más corta entre dos puntos dentro de la ciudad de Bogotá. Para este se utilizó el algoritmo Dijkstra, el cuál es el más simple para encontrar la ruta más corta entre un nodo y todos los demás nodos pertenecientes al grafo G.

Leonardo Rodríguez C. 2005. Algoritmos para calcular la ruta más corta en la malla vial de la ciudad de Bogotá (junio, 2005).

3. MATERIALES Y MÉTODOS

En esta sección, explicamos cómo se recogieron y procesaron los datos y, después, diferentes alternativas de algoritmos del camino más corto restringido para abordar el acoso sexual callejero.

3.1 Recogida y tratamiento de datos

El mapa de Medellín se obtuvo de Open Street Maps (OSM) ¹y se descargó utilizando la API² OSMnx de Python. La (i) longitud de cada segmento, en metros; (2) la indicación de si el segmento es de un solo sentido o no, y (3) las representaciones binarias conocidas de las geometrías se obtuvieron de los metadatos proporcionados por OSM.

Para este proyecto, se calculó la combinación lineal (CL) que captura la máxima varianza entre (i) la fracción de hogares que se sienten inseguros y (ii) la fracción de hogares con ingresos inferiores a un salario mínimo. Estos datos se obtuvieron de la encuesta de calidad de vida de Medellín, de 2017. La CL se normalizó, utilizando el máximo y el mínimo, para obtener valores entre 0 y 1. La CL se obtuvo mediante el análisis de componentes principales. El riesgo de acoso se define como uno menos la CL normalizada. La Figura 1 presenta el riesgo de acoso calculado. El mapa está disponible en GitHub³.

¹ https://www.openstreetmap.org/

Figura 1. Riesgo de acoso sexual calculado como una combinación lineal de la fracción de hogares que se sienten inseguros y la fracción de hogares con ingresos inferiores a un salario mínimo, obtenida de la Encuesta de Calidad de Vida de Medellín, de 2017.

3.2 Alternativas de camino más corto con restricciones

A continuación, presentamos diferentes algoritmos utilizados para el camino más corto restringido

3.2.1 Algoritmo DFS (Depth First Search)

Es un algoritmo de búsqueda no informada utilizado para recorrer todos los nodos de un grafo o árbol (teoría de grafos) de manera ordenada, pero no uniforme. Su funcionamiento consiste en ir expandiendo todos y cada uno de los nodos que va localizando, de forma recurrente, en un camino concreto. Cuando ya no quedan más nodos que visitar en dicho camino, regresa (Back tracking), de modo que repite el mismo proceso con cada uno de los hermanos del nodo ya procesado.

Complejidad

Figura Vectorial

3.2.2 Algoritmo BFS (Breadth First Search)

Es un algoritmo de búsqueda para lo cual recorre los nodos de un grafo, comenzando en la raíz (eligiendo algún nodo como elemento raíz en el caso de un grafo), para luego

² https://osmnx.readthedocs.io/

³https://github.com/mauriciotoro/ST0245Eafit/tree/master/proyecto/Datasets/

explorar todos los vecinos de este nodo. A continuación, para cada uno de los vecinos se exploran sus respectivos vecinos adyacentes, y así hasta que se recorra todo el grafo. Cabe resaltar que, si se encuentra el nodo antes de recorrer todos los nodos, concluye la búsqueda.

Complejidad

Figura vectorial

3.2.3 Algoritmo Dijkstra

Es un algoritmo para la determinación del camino más corto, dado un vértice origen, hacia el resto de los vértices en un grafo que tiene pesos en cada arista.

Complejidad

Figura vectorial

Es un algoritmo que encuentra, siempre y cuando se cumplan unas determinadas condiciones, el camino de menor coste entre un nodo origen y uno objetivo.

Complejidad

Figura vectorial

4. DISEÑO E IMPLEMENTACIÓN DEL ALGORITMO

A continuación, explicamos las estructuras de datos y los algoritmos utilizados en este trabajo. Las implementaciones de las estructuras de datos y los algoritmos están disponibles en Github⁴.

4.1 Estructuras de datos

Explica la estructura de datos que se utilizó para implementar el algoritmo del camino más corto restringido y haz una figura que lo explique. No utilice figuras de Internet. (En este semestre, los ejemplos de las estructuras de datos son la matriz de adyacencia, la lista de adyacencia, la lista de adyacencia utilizando un diccionario). La estructura de los datos se presenta en la Figura 2.

^{3.2.4} Algoritmo A* (A-Estrella)

⁴ http://www.github.com/???????? /.../proyecto/

Figura 2: Un ejemplo de mapa de calles se presenta en (a) y su representación como lista de adyacencia en (b). (Por favor, siéntase libre de cambiar esta gráfica si utiliza una estructura de datos diferente).

4.2 Algoritmos

En este trabajo, proponemos algoritmos para el problema del camino más corto restringido. El primer algoritmo calcula el camino más corto sin superar un riesgo medio ponderado de acoso r. El segundo algoritmo calcula el camino con el menor riesgo medio ponderado de acoso sin superar una distancia d.

4.2.1 Primer algoritmo

Explica el diseño del algoritmo para calcular el camino más corto sin superar una media ponderada de riesgo de acoso r y haz tu propia gráfica. No utilices gráfica de Internet, haz las tuyas propias. (En este semestre, el algoritmo podría ser DFS, BFS, una versión modificada de Dijkstra, una versión modificada de A^* , entre otros). El algoritmo se ejemplifica en la Figura 3.

Figura 3: Resolución del problema del camino más corto restringido con la Búsqueda Primera Profunda (DFS). (Por favor, siéntase libre de cambiar esta figura si utiliza un algoritmo diferente).

4.2.2 Segundo algoritmo

Explica el diseño del algoritmo para calcular el camino con el menor riesgo medio ponderado de acoso sin superar una distancia d y haz tu propia gráfica. No utilices gráficas de Internet, haz las tuyas propias. (En este semestre, el algoritmo podría ser DFS, BFS, una versión modificada de Dijkstra, una versión modificada de A*, entre otros). El algoritmo se ejemplifica en la Figura 4.

Figura 4: Resolución del problema del camino más corto restringido con la Búsqueda Primera Profunda (DFS). (Por favor, siéntase libre de cambiar esta gráfica si utiliza un algoritmo diferente).

4.4 Análisis de la complejidad de los algoritmos

Explica, con tus propias palabras, el análisis, para el peor caso, utilizando la notación O. ¿Cómo ha calculado esas complejidades? Explique brevemente.

Algoritmo	Complejidad temporal
Nombre del algoritmo	O(V ² *E ²)
Nombre del segundo algoritmo (en caso de que haya probado dos)	O(E ³ *V*2 ^V)

Tabla 1: Complejidad temporal del nombre de su algoritmo, donde V es... E es... (*Por favor, explique qué significan V y E en este problema*).

Estructura de datos	Complejidad de la memoria
Nombre de la estructura de datos	O(V*E*2 ^E)
Nombre de la segunda estructura de datos (en caso de que haya intentado dos)	O(2 E*2 V)

Tabla 2: Complejidad de memoria del nombre de la estructura de datos que utiliza su algoritmo, donde V es... E es... (*Por favor, explique qué significan V y E en este problema*).

4.5 Criterios de diseño del algoritmo

Explique por qué el algoritmo fue diseñado de esa manera. Utilice criterios objetivos. Los criterios objetivos se basan en la eficiencia, que se mide en términos de tiempo y memoria. Ejemplos de criterios NO objetivos son: "estaba enfermo", "fue la primera estructura de datos que encontré en Internet", "lo hice el último día antes del plazo", "es más fácil", etc. Recuerda: Este es el 40% de la calificación del proyecto.

5. RESULTADOS

En esta sección, presentamos algunos resultados cuantitativos sobre el camino más corto y el camino con menor riesgo.

5.1.1 Resultados del camino más corto

A continuación, presentamos los resultados obtenidos para el camino más corto, sin superar un riesgo medio ponderado de acoso *r*; en la Tabla 3.

Origen	Destino	Distancia más corta	Sin exceder r
Universidad EAFIT	Universidad de Medellín	??	0.84
Universidad de Antioquia	Universidad Nacional	???	0.83
Universidad Nacional	Universidad Luis Amigó	??	0.85

Tabla 3. Distancias más cortas sin superar un riesgo de acoso medio ponderado r.

5.1.2 Resultados de menor riesgo de acoso

A continuación, presentamos los resultados obtenidos para el trayecto con menor riesgo de acoso medio ponderado, sin superar una distancia *d*, en la Tabla 4.

Origen	Destino	Acoso más bajo	Sin exceder d
Universidad EAFIT	Universidad de Medellín	??	5,000
Universidad de Antioquia	Universidad Nacional	???	7,000
Universidad Nacional	Universidad Luis Amigó	??	6,500

Tabla 3. Menor riesgo de acoso ponderado sin superar una distancia d (en metros).

5.2 Tiempos de ejecución del algoritmo

En la Tabla 4, explicamos la relación de los tiempos medios de ejecución de las consultas presentadas en la Tabla 3.

Calcule el tiempo de ejecución de las consultas presentadas en la Tabla 3. Indique los tiempos de ejecución medios.

	Tiempos medios de ejecución (s)
Universidad EAFIT a Universidad de Medellín	100.2 s
De la Universidad de Antioquia a la Universidad Nacional	800.1 s
De la Universidad Nacional a la Universidad Luis Amigó	845 s

Tabla 4: Tiempos de ejecución del nombre del *algoritmo* (Por favor, escriba el nombre del algoritmo, por ejemplo, DFS, BFS, un A* modificado) para las consultas presentadas en la Tabla 3.

6. CONCLUSIONES

Explique los resultados obtenidos. ¿Son los caminos más cortos significativamente diferentes de los caminos con menor riesgo de acoso? ¿Qué utilidad tiene esto para la ciudad? ¿Son razonables los tiempos de ejecución para utilizar esta implementación en una situación real?

6.1 Trabajos futuros

Responda, ¿qué le gustaría mejorar en el futuro? ¿Cómo le gustaría mejorar su algoritmo y su aplicación? ¿Continuará este proyecto trabajando en la optimización? ¿En estadística? ¿Desarrollo web? ¿Aprendizaje automático? ¿Realidad virtual? ¿Cómo?

AGRADECIMIENTOS

Identifique el tipo de agradecimiento que desea escribir: para una persona o para una institución. Tenga en cuenta las siguientes pautas: 1. El nombre del profesor no se menciona porque es un autor. 2. No debe mencionar a los autores de los artículos con los que no se ha puesto en contacto. 3. Debe mencionar a los alumnos, profesores de otros cursos que le han ayudado.

A modo de ejemplo: Esta investigación ha sido apoyada/parcialmente apoyada por [Nombre de la Fundación, Donante].

Agradecemos la ayuda con [técnica particular, metodología] a [Nombre Apellido, cargo, nombre de la institución] por los comentarios que mejoraron en gran medida este manuscrito.

Los autores agradecen al profesor Juan Carlos Duque, de la Universidad EAFIT, por facilitar los datos de la Encuesta de Calidad de Vida de Medellín, de 2017, procesados en un *Shapefile*.

REFERENCIAS

- 1. Rayco Hernández D. 2016. Algoritmos para la determinación del circuito de menor longitud en un grafo (julio, 2016).
- 2. Leonardo Rodríguez C. 2005. Algoritmos para calcular la ruta más corta en la malla vial de la ciudad de Bogotá (junio, 2005).