Déterminants.

I - Applications multilinéaires

1) Définition.

Soient $E_1,...,\,E_n,\,F$ n+1 espaces vectoriels . Soit f une application de $E_1\times...\times E_n$ dans F.

f est n-linéaire $\Leftrightarrow f$ est linéaire par rapport à chaque variable

$$\Leftrightarrow \forall (\alpha_i)_{1\leqslant i\leqslant n}, \; \forall i\in \llbracket 1,n\rrbracket, \; \text{l'application} \; E_i \quad \rightarrow \qquad F \qquad \text{est linéaire.} \\ x_i \quad \mapsto \quad f(\alpha_1,...,\alpha_{i-1},x_i,\alpha_{i+1},...,\alpha_n)$$

Exemple. Un produit scalaire est bilinéaire. Dans \mathbb{R}^3 euclidien orienté, $f: \mathbb{R}^3 \times \mathbb{R}^3$ est bilinéaire. $(x,y) \mapsto x \wedge y$

Si $E_1 = ... = E_n = E$ et $F = \mathbb{K}$, on obtient les formes n-linéaires sur E.

2/ Formes symétriques, antisymétriques, alternées.

def : Soit f une forme n-linéaire sur E.

- 1) f est symétrique $\Leftrightarrow \forall (x_1,...,x_n) \in E^n, \ \forall \sigma \in S_n, \ f(x_{\sigma(1)},...,x_{\sigma(n)}) = f(x_1,...,x_n).$
- $2) \text{ f est antisymétrique} \Leftrightarrow \forall (x_1,...,x_n) \in E^n, \ \forall \sigma \in S_n, \ f(x_{\sigma(1)},...,x_{\sigma(n)}) = \epsilon(\sigma)f(x_1,...,x_n).$
- 3) f est alternée $\Leftrightarrow \forall (x_1,...,x_n) \in E^n, [(\exists (i,j) \in [\![1,n]\!]^2/\ i \neq j \ \mathrm{et}\ x_i = x_j) \Rightarrow f(x_1,...,x_n) = 0].$

 $\mathbf{Th}: f \text{ est antisymétrique} \Leftrightarrow \forall (x_1,...,x_n) \in E^n, \ \forall \tau \text{ transposition de } \llbracket 1,n \rrbracket, \ f(x_{\tau(1)},...,x_{\tau(n)}) = -f(x_1,...,x_n).$

Démonstration. Soit $\sigma \in S_n$, on écrit $\sigma = \tau_1 \circ ... \circ \tau_k$ où les τ_i sont des transpositions et on sait que $\varepsilon(\sigma) = (-1)^k$.

Th : Soient E un \mathbb{K} -espace vectoriel (\mathbb{K} sous-corps de \mathbb{C}) puis f une forme \mathfrak{n} -linéaire sur E. f alternée \Leftrightarrow f antisymétrique.

Démonstration.

 \Rightarrow / Soit $(x_1,...,x_n) \in E^n$. Soient $i \neq j$ puis $\tau = \tau_{i,j}$.

$$0 = f(x_1, ..., x_i + x_j, ...x_i + x_j, ..., x_n)$$

$$= f(x_1, ..., x_i, ..., x_i, ..., x_n) + f(x_1, ..., x_i, ..., x_j, ..., x_n) + f(x_1, ..., x_j, ..., x_i, ..., x_n) + f(x_1, ..., x_j, ..., x_n)$$

$$= f(x_1, ..., x_i, ..., x_j, ...x_n) + f(x_1, ..., x_j, ..., x_i, ..., x_n).$$

Donc pour tout $(x_1,...,x_n) \in E^n$, pour toute transposition τ , $f(x_{\tau(1)},...,x_{\tau(n)}) = -f(x_1,...,x_n)$ et f est antisymétrique. \Leftarrow / Soit $(x_1,...,x_n) \in E^n$ tel qu'il existe $i \neq j$ tel que $x_i = x_j = x$.

 $\begin{array}{l} \text{L'\'egalit\'e} \ f(x_1,...,x_i,...,x_j,...x_n) = -f(x_1,...,x_j,...,x_i,...x_n) \ s'\'ecrit \ \text{encore} \ f(x_1,...,x,...,x,...x_n) = -f(x_1,...,x,...,x,...x_n) \\ \text{ou encore} \ 2f(x_1,...,x,...,x,...x_n) = 0 \ \text{ou enfin} \ f(x_1,...,x,...,x,...x_n) = 0. \end{array}$

II- Définition de la forme déterminant dans une base.

1) Théorème fondamental. Soit E un espace vectoriel de dimension finie $n \ge 1$. On note $\Lambda_n^*(E)$ l'ensemble des formes n-linéaires alternées sur E.

 $\mathbf{Th}: 1) \Lambda_{\mathbf{n}}^{*}(\mathsf{E})$ est un \mathbb{K} -espace vectoriel de dimension 1.

2) Si $\mathscr{B}=(e_i)_{1\leqslant i\leqslant n}$ est une base donnée de E, il existe une et une seule forme f \mathfrak{n} -linéaire alternée sur E telle que $f(\mathscr{B})=1$.

Définition. L'unique forme f \mathfrak{n} -linéaire alternée sur E telle que $f(\mathcal{B}) = 1$ s'appelle la forme déterminant dans la base \mathcal{B} et se note $\det_{\mathcal{B}}$.

$$\textbf{D\'{e}monstration.} \ \mathrm{Soit} \ (x_1,...,x_n) \in E^n. \ \mathrm{Pour} \ j \in [\![1,n]\!], \ \mathrm{posons} \ x_j = \sum_{i=1}^n x_{i,j} e_i \ (\mathrm{o\`{u}} \ \mathrm{les} \ x_{i,j} \ \mathrm{sont} \ \mathrm{dans} \ \mathbb{K}).$$

Soit f une forme \mathfrak{n} -linéaire alternée sur E. En développant $f(x_1,...,x_n)$ par \mathfrak{n} -linéarité, on obtient une somme de \mathfrak{n}^n termes du type $x_{\chi(1),1}...x_{\chi(n),n}f\left(e_{\chi(1)},...,e_{\chi(n)}\right)$ où χ est une application quelconque de $[\![1,\mathfrak{n}]\!]$ dans lui-même.

f est alternée et les termes correspondant aux applications χ telles que $\exists i \neq j/\chi(i) = \chi(j)$, sont nuls. Donc tous les termes pour lesquels χ n'est pas injective disparaissent. Maintenant, $[\![1,n]\!]$ étant un ensemble fini, χ est injective si et seulement si χ est une bijection de $[\![1,n]\!]$ sur lui-même ou encore une permuation de $[\![1,n]\!]$.

Il ne reste donc que les termes du type $x_{\sigma(1),1}...x_{\sigma(n),n}f(e_{\sigma(1)},...,e_{\sigma(n)})=\varepsilon(\sigma)x_{\sigma(1),1}...x_{\sigma(n),n}f(e_1,...,e_n)$ où σ est une élément quelconque de S_n .

On a montré que nécessairement

$$\forall (x_1,...,x_n) \in E^n, \ f(x_1,...,x_n) = f(e_1,...,e_n) \sum_{\sigma \in S_n} \epsilon(\sigma) x_{\sigma(1),1}...x_{\sigma(n),n}.$$

1

Pour $(x_1,...,x_n) \in E^n$, posons $\varphi(x_1,...,x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) x_{\sigma(1),1}...x_{\sigma(n),n}$.

• φ est une forme n-linéaire sur E car linéaire par rapport à chaque variable.

• φ est non nulle car $\varphi(e_1,...,e_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \delta_{\sigma(1),1}...\delta_{\sigma(n),n} = 1$.

• φ est alternée. En effet, soit $(x_1,...,x_n) \in E^n$ tel que $x_i = x_j$ pour un certain couple (i,j) tel que $i \neq j$.

- Soit $\tau = \tau_{i,j}$. On sait que si λ_n est l'ensemble des permutations paires, $\lambda_n \tau$ est l'ensemble des permutations impaires.

$$\begin{split} \phi(x_1,...,x_i,...,x_j,...,x_n) &= \sum_{\sigma \in A_n} x_{\sigma(1),1}...x_{\sigma(n),n} - \sum_{\sigma \in A_n} x_{\sigma\tau(1),1}...x_{\sigma\tau(n),n} \\ &= \sum_{\sigma \in A_n} x_{\sigma(1),1}...x_{\sigma(i),i} \dots x_{\sigma(j),j} \dots x_{\sigma(n),n} - \sum_{\sigma \in A_n} x_{\sigma(1),1}...x_{\sigma(j),i} \dots x_{\sigma(i),j} \dots x_{\sigma(n),n} \\ &= \sum_{\sigma \in A_n} x_{\sigma(1),1}...x_{\sigma(i),i} \dots x_{\sigma(j),j} \dots x_{\sigma(n),n} - \sum_{\sigma \in A_n} x_{\sigma(1),1}...x_{\sigma(j),j} \dots x_{\sigma(i),i} \dots x_{\sigma(n),n} \text{ (car } x_i = x_j) \\ &= 0. \end{split}$$

Finalement, $\Lambda_n^*(E) = \operatorname{Vect}(\phi)$ avec $\phi \neq 0$ et $\Lambda_n^*(E)$ est un \mathbb{K} -espace vectoriel de dimension 1. On a vu que $\phi(\mathscr{B})=1$ et que si $f\in \Lambda_n^*(E),\, f=f(\mathscr{B})\phi.$ Par suite, $f(\mathscr{B})=1\Leftrightarrow f=\phi.$

2) Propriétés.

Th:

- 1) $\det_{\mathscr{B}}(\mathscr{B}) = 1$.
- $2) \det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}.$
- 3) $\det_{\mathscr{B}}(\mathscr{B}') \times \det_{\mathscr{B}'}(\mathscr{B}) = 1.$
- 4) $\det_{\mathscr{B}}(\mathscr{B}') \times \det_{\mathscr{B}'}(\mathscr{B}'') = \det_{\mathscr{B}}(\mathscr{B}'').$

Démonstration. On applique : $\forall f \in \Lambda_n^*(E), f = f(\mathcal{B}) \det_{\mathcal{B}}.$

3) Applications.

a) Th: Soit \mathcal{B} une base de E de dimension finie $\mathfrak{n}\geqslant 1$ et \mathcal{B}' une famille de \mathfrak{n} vecteurs de E. \mathcal{B}' est une base de E si et seulement si $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$.

Démonstration. Si \mathscr{B}' est une base, $\det_{\mathscr{B}}(\mathscr{B}') \times \det_{\mathscr{B}'}(\mathscr{B}) = 1$ et en particulier $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$. Si \mathcal{B}' n'est pas une base, puisque $\operatorname{card}(\mathcal{B}) = n$, \mathcal{B}' est liée. Par suite, l'un des vecteurs de \mathcal{B}' est combinaison linéaire des autres vecteurs de \mathscr{B}' . Par n linéarité de $\det_{\mathscr{B}}$ et puisque $\det_{\mathscr{B}}$ est alternée, on a bien $\det_{\mathscr{B}}(\mathscr{B}')=0$.

b) Orientation.

Soient \mathscr{B} et \mathscr{B}' deux bases de $E \neq \{0\}$. On définit la relation : « \mathscr{B}' a même orientation que $\mathscr{B} \Leftrightarrow \det_{\mathscr{B}}(\mathscr{B}') > 0$ ». La relation précédente est une relation d'équivalence à deux classes. On appelle arbitrairement l'une des deux classes, classe des bases directes et l'autre, classe des bases indirectes. L'espace E est alors orienté.

III - Déterminant d'une matrice carrée. Déterminant d'un endomorphisme.

1) Déterminant d'une matrice carrée.

a) Définition.

 $\mathrm{Si}\ A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr{M}_n(\mathbb{K}), \ \mathrm{le}\ \mathrm{d\acute{e}terminant}\ \mathrm{de}\ A\ \mathrm{est}\ \mathrm{le}\ \mathrm{nombre}\ \mathrm{det}(A)=\sum_{\sigma\in S_n}\epsilon(\sigma)\mathfrak{a}_{\sigma(1),1}...\mathfrak{a}_{\sigma(n),n}.$

Notation. $det(A) = |a_{i,j}|_{1 \le i, i \le n}$.

b) Propriétés.

 $\mathbf{Th}: \det A = \det \left(A^{\mathsf{T}} \right).$

$$\mathbf{D\acute{e}monstration.} \ \det \left(A^T \right) = \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{1,\sigma(1)} ... \alpha_{n,\sigma(n)}.$$

Soit σ un élément donné de S_n . Si on pose $i_1=\sigma(1),\ldots,\,i_n=\sigma(n),\,\mathrm{alors}\,\,\sigma^{-1}(i_1)=1,\ldots,\,\sigma^{-1}(i_n)=n.$ Le monôme $a_{1,\sigma(1)}...a_{n,\sigma(n)}$ s'écrit $a_{\sigma^{-1}(i_1),i_1}...a_{\sigma^{-1}(i_n),i_n}$ ou encore $a_{\sigma^{-1}(1),1}...a_{\sigma^{-1}(n),n}$, après avoir remis dans l'ordre les n facteurs. Donc,

$$\begin{split} \det\left(A^{\mathsf{T}}\right) &= \sum_{\sigma \in S_{\mathfrak{n}}} \epsilon(\sigma) \alpha_{1,\sigma(1)} ... \alpha_{\mathfrak{n},\sigma(\mathfrak{n})} = \sum_{\sigma \in S_{\mathfrak{n}}} \epsilon(\sigma) \alpha_{\sigma^{-1}(1),1} ... \alpha_{\sigma^{-1}(\mathfrak{n}),\mathfrak{n}} \\ &= \sum_{\sigma \in S_{\mathfrak{n}}} \epsilon(\sigma^{-1}) \alpha_{\sigma^{-1}(1),1} ... \alpha_{\sigma^{-1}(\mathfrak{n}),\mathfrak{n}} = \sum_{\sigma' \in S_{\mathfrak{n}}} \epsilon(\sigma') \alpha_{\sigma'(1),1} ... \alpha_{\sigma'(\mathfrak{n}),\mathfrak{n}} \\ &= \det(A) \end{split}$$

 ${\rm car}\ l'application}\ \sigma\mapsto\sigma^{-1}\ {\rm est}\ {\rm une}\ {\rm permutation}\ {\rm de}\ S_{\mathfrak{n}}\ ({\rm puisque}\ {\rm application}\ {\rm involutive}\ {\rm de}\ S_{\mathfrak{n}}\ {\rm dans}\ {\rm lui-m{\hat e}me}).$

 $\mathbf{Th}: 1) \ \forall (A, B) \in (\mathscr{M}_n(\mathbb{K}))^2, \det(AB) = (\det A)(\det B).$

- 2) $\det(I_n) = 1$.
- 3) $\forall A \in \mathcal{M}_n(\mathbb{K}), [A \in GL_n(\mathbb{K}) \Leftrightarrow \det A \neq 0] \text{ et dans ce cas } \det(A^{-1}) = (\det A)^{-1}.$

L'ensemble des matrice carrées de déterminant 1 est un sous-groupe de $(GL_n(\mathbb{K}), \times)$ noté $SL_n(\mathbb{K})$ (groupe spécial linéaire).

Th: Deux matrices semblables ont même déterminant.

 $\mathbf{Th}: \forall A \in \mathscr{M}_n(\mathbb{K}), \, \forall \lambda \in \mathbb{K}, \, \det(\lambda A) = \lambda^n \det(A).$

Danger. En général, $det(A + B) \neq det(A) + det(B)$.

c) Application aux calculs de rang.

Th: Le rang d'une matrice A est le format maximum d'un déterminant extrait de A et non nul.

- 2) Déterminant d'un endomorphisme.
- a) Définition.

def : Soit $f \in \mathcal{L}(E)$. Le déterminant de f, noté det(f), est le déterminant de sa matrice dans une base donnée (ne dépend pas du choix d'une base car deux matrices semblables ont même déterminant).

b) Propriétés.

Th: Soit $f \in \mathcal{L}(E)$.

- 1) Pour toute base \mathscr{B} de E, pour tout $(x_1,...,x_n) \in E^n$, $\det_{\mathscr{B}}(f(x_1),...,u(x_n)) = (\det(f)) \times \det_{\mathscr{B}}(x_1,...,x_n)$.
- 2) Pour toute base \mathscr{B} de E, $\det_{\mathscr{B}}(f(\mathscr{B})) = \det(f)$.

Th:

- 1) $\det(Id_{E}) = 1$.
- 2) $\forall (f,g) \in (\mathcal{L}(E))^2$, $\det(g \circ f) = (\det(f)) \times (\det(g))$.
- 3) $\forall f \in \mathcal{L}(E)$, $(f \in GL(E) \Leftrightarrow \det(f) \neq 0)$ et dans ce cas, $\det(f^{-1}) = (\det(f))^{-1}$.

Th: $\forall f \in \mathcal{L}(E), \ \forall \lambda \in \mathbb{K}, \ \det(\lambda f) = \lambda^{n}(\det(f)) \ (\text{où } n = \dim(E)).$

Danger. En général, $det(u + v) \neq detu + detv$.

IV - Calculs de déterminants

- 1) Transposition. $det A = det (A^T)$ et donc toutes les règles portant sur les colonnes sont encore valables sur les lignes.
- 2) Matrices triangulaires. Le déterminant d'une matrice triangulaire est égal au produit de ses coefficients diagonaux. En particulier, le déterminant d'une matrice diagonale est le produit de ses coefficients diagonaux.
- 3) Opérations élémentaires.
- a) $\forall \sigma \in S_n$, $\det(C_{\sigma(1)}, ..., C_{\sigma(n)}) = \varepsilon(\sigma) \det(C_1, ..., C_n)$. Quand on permute des colonnes, le déterminant est multiplié par la signature de la permutation. (et de même pour les lignes)
- b) Si on ajoute à une colonne une combinaison linéaire des autres colonnes, le déterminant garde la même valeur. (et de même pour les lignes)
- c) det est n-linéaire et donc $\det(C_1, ..., C_i + C_i', ..., C_n) = \det(C_1, ..., C_i, ..., C_n) + \det(C_1, ..., C_i', ..., C_n)$ et $\det(C_1, ..., \lambda C_i, ..., C_n) = \lambda \det(C_1, ..., C_n)$.

 $\mathrm{Danger.}\ \det(A+B) \neq \det A + \det B\ \mathrm{en}\ \mathrm{g\acute{e}n\acute{e}ral}\ \mathrm{et}\ \det(\lambda A) = \det(\lambda C_1,...,\lambda C_i,...,\lambda C_n) = \lambda^n \det(C_1,...,C_n) = \lambda^n \det(A+B)$

4) Calculs par blocs.

$$\mathbf{Th}: \mathrm{Si} \ \mathrm{les} \ A_{i} \ \mathrm{sont} \ \mathrm{des} \ \mathrm{matrices} \ \mathrm{carr\acute{e}es}, \ \mathrm{det} \left(\begin{array}{ccc} A_{1} & \times & \ldots & \times \\ 0 & \ldots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \ldots & 0 & A_{p} \end{array} \right) = \mathrm{det} \left(A_{1} \right) \times \mathrm{det} \left(A_{2} \right) \times \ldots \times \mathrm{det} \left(A_{p} \right).$$

5) Développement suivant une ligne ou une colonne.

Th: On note $\mathfrak{m}_{i,j}$ le mineur de $\mathfrak{a}_{i,j}$ et $A_{i,j} = (-1)^{i+j} \mathfrak{m}_{i,j} = \text{le cofacteur de } \mathfrak{a}_{i,j}$. Alors, $\forall (i,j) \in [1,n]^2$,

$$\begin{split} \det(A) &= \sum_{k=1}^n \alpha_{i,k} A_{i,k} \ (\text{d\'eveloppement suivant la ligne \mathfrak{i}}) \\ &= \sum_{k=1}^n \alpha_{k,j} A_{k,j} \ (\text{d\'eveloppement suivant la colonne \mathfrak{j}}) \end{split}$$

Démonstration. Il suffit de démontrer la formule de développement suivant une colonne car $\det A = \det (A^{\mathsf{T}})$.

Ensuite, il suffit de démontrer la formule de développement suivant la première colonne car alors, si on veut développer suivant la colonne j, on effectue la permutation des colonnes $C_i \to C_1 \to C_2 \dots \to C_{i-1}$ dont la signature est $(-1)^{j-1}$ (signature d'un cycle de longueur j), puis en développant suivant la première colonne, on obtient

$$\det(A) = (-1)^{j-1} \sum_{k=1}^n \alpha_{k,j} (-1)^{k+1} m_{k,j} = \sum_{k=1}^n \alpha_{k,j} A_{k,j}.$$

Il reste à démontrer la formule de développement suivant la première colonne.

 $C_1 \text{ est somme de n colonnes du type} \left[\begin{array}{c} \vdots \\ 0 \\ a_{i,1} \\ 0 \\ \vdots \end{array} \right] \text{ et par n-linéarité du déterminant, } \det A = \sum_{i=1}^n \det A_i \text{ où }$

$$\det (A_i) = \begin{pmatrix} 0 & a_{1,2} & \dots & a_{1,n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{i-1,2} & \dots & a_{i-1,n} \\ a_{i,1} & a_{i,2} & \dots & a_{i,n} \\ 0 & a_{i+1,2} & \dots & a_{i+1,n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Si i = 1, un calcul de déterminant par blocs fournit det $(A_1) = a_{1,1}A_{1,1}$. Si $i \ge 2$, on passe L_i en L_1 , L_1 en L_2 ,..., L_{i-1} en L_i . On obtient

$$\det\left(A_{i}\right) = (-1)^{i-1} \left| \begin{array}{cccccc} a_{i,1} & a_{i,2} & \dots & \dots & a_{i,n} \\ 0 & a_{1,2} & \dots & & \dots & a_{1,n} \\ \vdots & \vdots & & & \vdots \\ 0 & a_{i-1,2} & \dots & & \dots & a_{i-1,n} \\ 0 & a_{i+1,2} & \dots & & \dots & a_{i+1,n} \\ \vdots & \vdots & & & & \vdots \\ 0 & a_{n,2} & \dots & & \dots & a_{n,n} \end{array} \right| = A_{i,1} \; (\text{calcul par blocs})$$

et finalement $det A = \sum_{i=1}^{n} a_{i,1} A_{i,1}$.

V - Comatrice. Inverse d'une matrice .

La comatrice de la matrice carrée A de format n est la matrice, notée com(A), dont le coefficient ligne i, colonne j, est le cofacteur de l'élément $a_{i,j}$ de A, c'est-à-dire si $A = (a_{i,j})_{1 \leq i,j \leq n}$, alors $com(A) = (A_{i,j})_{1 \leq i,j \leq n}$. La transposée de la comatrice de A est appelée matrice complémentaire de A et est notée Ã.

- $1) \ \forall A \in \mathscr{M}_n(\mathbb{K}), \ A\tilde{A} = \tilde{A}A = (\mathrm{det}A)I_n \ \mathrm{ou\ encore}\ A(\mathrm{com}(A))^T = (\mathrm{com}(A))^TA = (\mathrm{det}A)I_n.$
- $2) \ \forall A \in \mathscr{M}_n(\mathbb{K}), \ (A \in GL_n(\mathbb{K}) \Leftrightarrow \det(A) \neq 0) \ \mathrm{et \ dans \ ce \ cas}, \ A^{-1} = \frac{1}{\det A} (\mathrm{com}(A))^T.$

Démonstration. Le coefficient ligne i, colonne j de $A(com A)^T$ vaut $\sum_{i=1}^{N} a_{i,k} A_{j,k}$.

- Si i = j, cette expression n'est autre que le développement de $\det(A)$ suivant sa i-ème ligne et vaut donc $\det(A)$. Si $i \neq j$, $\sum_{k=1}^{n} a_{i,k} A_{j,k}$ est le développement suivant la ligne j du déterminant déduit de $\det(A)$ en remplaçant la

ligne j de $\det(A)$ par sa ligne i (et en ne modifiant pas sa ligne i). Cette expression est donc nulle puisque égale à un déterminant ayant deux lignes identiques. Ceci montre que $A(\text{com}A)^T = (\text{det}(A))I_n$.

4