For problems #1 - 4, prove or disprove the statement.

1. [8 points] Let R be a relation on A with Dom(R) = A. If R is symmetric and transitive, then R is also reflexive.

The statement is **true**. Proof: Let $a \in A$. Since $a \in Dom(R)$, there exists $b \in A$ such that $(a, b) \in R$. Since R is symmetric, it must also be true that $(b, a) \in R$, and since R is transitive, $(a, b) \in R$ and $(b, a) \in R$ implies that (a, a) in R. So, R is reflexive.

2. [4 points] Let R be a relation that is antisymmetric. Then R is not symmetric.

The statement is **false**. Consider $R = \{(1,1), (2,2), (3,3)\}$. Then R is both symmetric and antisymmetric.

3. [not graded] Let R be a relation that is asymmetric. Then R is antisymmetric.

The statement is **true**. Suppose R is asymmetric. Then there do not exist any ordered pairs (a,b) in R such that (b,a) is also in R. The definition of antisymmetry is then satisfied vacuously – since there aren't any two pairs (a,b), (b,a) in R, the definition $\forall a,b \in A, (a,b) \in R$ and $(b,a) \in R \rightarrow a = b$ is true.

Alternatively, we can prove the contrapositive. Suppose that R is not antisymmetric. Then, there exist $a, b \in A$ such that aRb and bRa and $a \neq b$. But since this requires aRb and bRa, R cannot be asymmetric. So by contraposition, if R is asymmetric, R must be antisymmetric.

4. [8 points] Let (A, \prec) be a poset where \prec is a linear (total) order. Then any maximal element of (A, \prec) must be a maximum.

The statement is **true**. Let a be a maximal element of (A, \prec) . By definition, $\not\exists b \in A, a \prec b$, or in other words, $\forall b \in A, a \not\prec b$. But since \prec is a linear order, if $a \not\prec b$ for all b, it must be true that $b \prec a$ for all b. Therefore a is a maximum.

- 5. [14 points] Let U be a nonempty universal set. As discussed in class, $(\mathcal{P}(U), \subseteq)$ is a partially ordered set. Suppose as well that $\mathcal{B} \subseteq \mathcal{P}(U)$, that is, \mathcal{B} is a set containing some (but not necessarily all) subsets of U.
 - (a) Give an example demonstrating why \subseteq is not a total order on $\mathcal{P}(U)$. Suppose U is the set of all integers. Then, $\{1\}$, $\{2\}$ are both elements of $\mathcal{P}(U)$, but $\{1\} \not\subseteq \{2\}$ and $\{2\} \not\subseteq \{1\}$. Therefore \subseteq is not a total order.
 - (b) Give an example demonstrating why \mathcal{B} might not have a maximum element. Similarly to above, suppose $\mathcal{B} = \{\{1\}, \{2\}\}$. Then both $\{1\}$ and $\{2\}$ are maximal, but neither is a maximum, since $\{1\} \not\subseteq \{2\}$ and $\{2\} \not\subseteq \{1\}$.
 - (c) Prove that $\bigcup_{B \in \mathcal{B}} B$ is an upper bound on \mathcal{B} .

We need to show that for all $S \in \mathcal{B}$, $S \subseteq \bigcup_{B \in \mathcal{B}} B$. So, let $S \in \mathcal{B}$, and let $x \in S$. By definition,

 $x \in \bigcup_{B \in \mathcal{B}} B$ if there exists $B \in \mathcal{B}$ such that $x \in B$. But this is clearly the case, since $x \in S$ and

 $S \in \mathcal{B}$. Therefore $x \in \bigcup_{B \in \mathcal{B}} B$, and so it is an upper bound.

(d) Prove that $\bigcap_{B \in \mathcal{B}} B$ is a lower bound on \mathcal{B} .

We need to show that for all $S \in \mathcal{B}$, $\bigcap_{B \in \mathcal{B}} B \subseteq S$. So, let $x \in \bigcap_{B \in \mathcal{B}} B$. By definition, it follows that $x \in S$ for all $S \in \mathcal{B}$. Therefore $\bigcap_{B \in \mathcal{B}} B \subseteq S$ for all $S \in \mathcal{B}$, and so it is a lower bound.

(e) Prove that $\bigcup_{B \in \mathcal{B}} B$ and $\bigcap_{B \in \mathcal{B}} B$ are in fact the least upper bound and greatest lower bound, respectively, on \mathcal{B} .

Let T be any upper bound on \mathcal{B} . We must prove that $\bigcup_{B \in \mathcal{B}} B$ is a subset of T. So, let $x \in \bigcup_{B \in \mathcal{B}} B$. By definition, $x \in S$ for at least one $S \in \mathcal{B}$. But since T is an upper bound on \mathcal{B} , it must be true that $S \subseteq T$, so $x \in T$. So, $\bigcup_{B \in \mathcal{B}} B \subseteq T$ for any upper bound T, and therefore it is a least upper bound.

Now, Let T be any lower bound on \mathcal{B} . We must prove that $T\subseteq\bigcap_{B\in\mathcal{B}}B$. So, let $x\in T$. Since $T\subseteq B$ for all $B\in\mathcal{B}$, it follows that $x\in B$ for all $B\in\mathcal{B}$. Therefore $x\in\bigcap_{B\in\mathcal{B}}B$. So, $T\subseteq\bigcap_{B\in\mathcal{B}}B$ for any lower bound T, and therefore it is a greatest lower bound.

Hint: Parts (c)-(e) require using element chasing arguments, but the proofs should not be too long! For problems # 6 - 8, prove whether the specified function is

- i) one-to-one
- ii) onto the specified codomain.
- 6. [8 points] $g: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}$, $g(x) = \frac{x}{x-1}$ (Graphing is not an acceptable proof).

g is one-to-one since if $g(x_1) = g(x_2)$, it follows that

$$\frac{x_1}{x_1 - 1} = \frac{x_2}{x_2 - 1}$$
$$x_1(x_2 - 1) = x_2(x_1 - 1)$$
$$x_1x_2 - x_1 = x_2x_1 - x_2$$
$$x_1 = x_2$$

g is onto since, if we take $y \in \mathbb{R}$ and try to find a corresponding x value, we would need

$$y = \frac{x}{x-1}$$

$$y(x-1) = x$$

$$yx - x = y$$

$$x = \frac{y}{y-1},$$

which exists provided that $y \neq 1$. So for every $y \in \mathbb{R} \setminus \{1\}$, we can take $x = \frac{y}{y-1}$ to find an x such that f(x) = y.

7. [8 points] $\mathcal{I}: F \to \mathbb{R}$, $\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$, where F is the set of all functions with a finite integral on [-1,1].

 \mathcal{I} is **not one-to-one** since many different functions could have the same definite integral on [-1,1]. For example, $\int_{-1}^{1} x \, dx = 0$ and $\int_{-1}^{1} -x \, dx = 0$, but $x \neq -x$.

 \mathcal{I} is onto \mathbb{R} since we can always find a function f such that $\int_{-1}^{1} f(x) dx = y$ for any $y \in \mathbb{R}$. The simplest choice is just to take the constant function, $f(x) = \frac{y}{2}$.

8. [not graded] $\varphi : \mathbb{N} \to \mathbb{N}$, where $\varphi(n)$ is the sum of the divisors of n.

So for example $\varphi(6) = 1 + 2 + 3 + 6 = 12$, $\varphi(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$, etc.

This function is **not one-to-one** since, for example, $\varphi(11) = 1 + 11 = 12$, which is the same as $\varphi(6)$.

It is also **not onto** \mathbb{N} , since for example, there are no numbers whose divisors sum to 2. $\varphi(1) = 1$, $\varphi(2) = 3$, and $\varphi(n) \geq n + 1$ for any other number n, since 1 and n always divide into n. (Other numbers that are not in the range include 5, 9, 10, 11, etc.).

- 9. Bonus: [up to 10 additional points]. Let (A, \prec_A) and (B, \prec_B) be posets.
 - (a) Prove that the lexicographic ordering \prec_L (defined on p. 99 of the text) is a partial ordering of $A \times B$.

Recall that the lexicographic ordering is defined as: $(a, b) \prec_L (c, d)$ if and only if:

- i. $a \prec_A c$ and $a \neq c$, or
- ii. a = c and $b \prec_B d$.

We prove that this relation is reflexive, antisymmetric, and transitive.

First, we note that $(a, b) \prec_L (a, b)$ since in this case, a = a, and $b \prec_B b$ since \prec_B is a partial order (and therefore reflexive). So we can conclude that \prec_L is reflexive.

Second, suppose that $(a,b) \prec_L (c,d)$ and $(c,d) \prec_L (a,b)$. We consider two cases. If $a \neq c$, then this implies that $a \prec_A c$ and $c \prec_A a$. But since \prec_A is a partial ordering, this would imply a = c since \prec_A is antisymmetric. So we conclude that $a \neq c$ is not possible. Since a = c, the definition then implies that $b \prec_B d$ and $d \prec_B b$. Since \prec_B is a partial ordering, this implies that b = d. Since a = c and b = d, we conclude that (a,b) = (c,d), and therefore \prec_L is antisymmetric.

Finally, suppose that $(a,b) \prec_L (c,d)$ and $(c,d) \prec_L (e,f)$. We consider four cases:

- i. $a \neq c$ and $c \neq e$: in this case, $a \prec_A c$ and $c \prec_A e$, so since \prec_A is transitive, we conclude that $a \prec_A e$. Since $a \neq e^1$, the first rule of lexicographic ordering implies that $(a, b) \prec_L (e, f)$.
- ii. a = c and $c \neq e$: In this case we can conclude that $a \neq e$ and also that $a \prec_A e$, since a = c. Thus $(a, b) \prec_L (e, f)$ by the first rule.
- iii. $a \neq c$ and c = e: In this case we can also conclude that $a \neq e$ and also that $a \prec_A e$, since $a \prec_A c$. Thus $(a,b) \prec_L (e,f)$ by the first rule.
- iv. a = c and c = e: in this case, a = e, $b \prec_B d$, and $d \prec_B f$. Since \prec_B is transitive, we can conclude that $b \prec_B f$. Therefore $(a, b) \prec_L (e, f)$ by the second rule.

We conclude that \prec_L is transitive, and therefore that it is a partial ordering.

(b) Prove that if \prec_A and \prec_B are total orderings, then \prec_L is also a total ordering. Let $(a,b),(c,d) \in A \times B$. Since $a,c \in A$, and since \prec_A is a total ordering, it must be true that $a \prec_A c$ or $c \prec_A a$. If $a \prec_A c$ and $a \neq c$, then the first rule of lexicographic ordering implies that $(a,b) \prec_L (c,d)$, and if $c \prec_A a$ and $c \neq a$, the same rule implies that $(c,d) \prec_L (a,b)$. The only other possibility is that a = c. In this case, since \prec_B is a total ordering, it must be true that

¹There is a subtle point here – note that $a \neq c$ and $c \neq e$ does not imply $a \neq e$, in general. But in this case, we can say that $a \neq e$ by the following reasoning. Suppose that a = e. By reflexivity, it must then be true that $e \prec_A a$. But since we also had $a \prec_A c$, this implies by transitivity that $e \prec_A c$, which implies that e = c since we also had $c \prec_A e$. Since we assumed $c \neq e$, by contradiction we can conclude that $a \neq e$.

 $b \prec_B d$, in which case $(a,b) \prec_L (c,d)$ by the second rule, or $d \prec_B b$, in which case $(c,d) \prec_L (a,b)$ by the second rule. We see that in every case, either $(a,b) \prec_L (c,d)$, or $(c,d) \prec_L (a,b)$, and so \prec_L is a total ordering on $A \times B$.

Note: While solutions will be provided to all of these problems, not all problems may be fully graded.