МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский

Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ

«Реализация класса »

выполнил:	студент	группы	
381706-2			
Крюков Дмит	грий Алексе	евич	
Γ	- Іодпись		
Научный руководитель:			
ассистент каф. МО	ОСТ ИИТМ	M	
Лебедев Илья Ген	надьевич		
Под	цпись		

Содержание

Содержание	2
1. Введение	
2. Постановка задачи	
3. Руководство пользователя	5
4. Руководство программиста	6
4.1 Описание структуры программы	6
4.2 Описание структур данных	6
4.3 Описание алгоритмов.	7
5. Заключение	8
6. Литература	9

1. Введение

Таблицы, в которых записи располагаются в порядке возрастания (или убывания) ключей, называются сортированными (упорядоченными)

Упорядоченность таблиц может быть организована только при возможности сравнения ключей (на множестве ключей задано отношение линейного порядка)

Операции под таблицей

- -Поиск записи по ключу
- -Вставка новой записи
- -Удаление записи

Сложность вставки и удаления в упорядоченных таблицах вызвана использованием непрерывной памяти, что приводит, как следствие, к необходимости перепаковок данных Устранение перепаковок возможно только при использования списковой памяти, но в этом случае теряется возможность прямого доступа к данным.

2. Постановка задачи

Представление таблиц с использованием деревьев поиска

- -Общая характеристика подхода
- -Понятие деревьев поиска
- -Структура хранения
- -Реализация (схема наследования, алгоритмы обхода)
- -Выполнение операций (поиск, вставка, удаление, итератор)

3. Руководство пользователя

Данная программа предназначена для тестирования динамической структуры сортированная таблица с использованием деревьев поиска

```
Press Enter to Start
0 - exit
1 - add record
2 - delete record
3 - find record
4 - delete record
5 - exit
1 - add record
6 - exit
1 - add record
1 - add record
1 - add record
2 - delete record
3 - find record
1 - add record
2 - delete record
3 - find record
1 - add record
2 - delete record
3 - find record
1 - add record
1 - add record
2 - delete record
3 - find record
3 - find record
4 - add record
5 - exit
1 - add record
2 - delete record
3 - find record
5 - exit
1 - add record
2 - delete record
3 - find record
5 - exit
1 - add record
2 - delete record
3 - find record
5 - exit
1 - add record
2 - delete record
3 - find record
```

пользователю предлагается набор команд:

- вставка записи в таблицу
- удаление записи из таблицы
- поиск записи в таблице

4. Руководство программиста

4.1 Описание структуры программы

- 1. Модуль treetablelib (TtreeTable.h, TTreeNode.h) реализация класса таблица и класса звено таблицы
- 2. tablelib (TabRecord.h, TKey.h, TKey.cpp) реализация класса запись таблицы, ключ
- 3. Модуль treetable(main.cpp) реализация программы для тестирования динамической структуры таблица с использованием деревьев поиска
- 4. Модуль treetabletest(treetable_test.cpp) тестирование класса таблица с использованием деревьев поиска при помощи Google C++ Testing Framework.

4.2 Описание структур данных

Структура TTreeNode

TTreeNode унаследовано от TTabRecord и имеет те же методы а так же

Поля:

```
pLeft — указатель на запись слева

pRight — указатель на запись справа
```

Структура TTreeTable

Поля:

```
pRoot — указатель на корень дерева

ppRef — адрес указателя на вершину результат в search

dataCount – число записей таблицы
```

Методы:

```
Add(TTreeNode<ValType> *tr) — добавляет запись в таблицу

Delete(TKey k) — удаляет запись из таблицы

Search(TKey k) — поиск по ключу

operator[] (TKey k) — обращение по ключу, в случае отсутствия записи добавляет пустую запись с заданным ключем

Print() - вывод таблицы
```

4.3 Описание алгоритмов

Поиск:

```
pTemp = pRoot

ppRef = &pRoot

пока (pTemp != NULL)

если (pTemp->key == k)

вернуть pTemp

если (pTemp->key > k)

ppRef = &(pTemp->pRight)

иначе

ppRef = &(pTemp->pLeft)

pTemp = *ppRef

вернуть NULL
```

5. Заключение

В ходе работы был реализован класс класса таблица с использованием деревьев поиска, в нем реализованы функции удаления, вставки и поиска, а так же добавлена индексация по ключу

6. Литература

1. Гергель В.П. Методические материалы по курсу «Методы программирования 2», Нижний Новгород, 2015.