Sayali Mahajan – (001576540) Program Structures & Algorithms Summer 2021 Assignment No. 3

Task 1

- (a) Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ...END IMPLEMENTATION.
- (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).

Output

UF HWQUPC Test

Task 2

Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected() to determine if they are connected and union() if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count() that takes n as the argument and returns the number of connections; and a main() that takes n from the command line, calls count() and prints the returned value. If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).

Output

UF HWQUPC Client

```
Run: UF_HWQUPC_client ×

/Users/sayalimahajan/Library/Java/JavaVirtualMachines/openjdk-15.0.1/Contents/Home/bin/java -javaagent:

******please enter -1 to exit or positive integer to continue*****

Input: Number of objects/sites (n): 200

491 Random Pairs (m) generated for 200 objects (n).

Input: Number of objects/sites (n): 400

1481 Random Pairs (m) generated for 400 objects (n).

Input: Number of objects/sites (n): 800

2551 Random Pairs (m) generated for 800 objects (n).

Input: Number of objects/sites (n): -1

Process finished with exit code 1
```

Task 3

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e. to reduce the number of components from n to 1). Justify your conclusion in terms of your observations and what you think might be going on.

Evidence to support the conclusion

Column1	Column 2	Column 3
number of Objects (n)	Number of connections (m)	Approx to n* In(n)/2
50	115	97.8
100	259	230
200	491	529
400	1348	1198
800	2551	2673
1600	6456	5902
3200	14791	12913
6400	29248	28044
12800	64884	60526

Graphical Representation

Conclusion

- 1. From the number of experiments carried out It is observed that, relationship between the number of objects (n) and the number of pairs (m) is m is equivalent to $n * \ln(n)/2$. Evidence provided above clearly shows that, cloumn 2 and column 3 are equivalent.
- 2. In theory, Weight Quick-Union with Path Compression is not quite linear.
- 3. In practice, Weight Quick-Union with Path Compression is linear.