Modal Symbolic Learning: Day 2

NATOPS: Interpretable gesture recognition

```
In [ ]: using Pkg
          Pkg.activate(".")
          Pkg.instantiate()
          Pkg.update()
          Pkg.status()
           Activating project at `~/Desktop/modal-symbolic-learning-course`
              Updating registry at `~/.julia/registries/General`
             Updating git-repo `https://github.com/JuliaRegistries/General.git`
            Installed BenchmarkTools — v1.4.0
Installed LoweredCodeUtils — v2.3.2
            Installed ModalDecisionTrees - v0.3.3
            Installed SoleLogics ---- v0.6.11
Installed SoleModels --- v0.5.3
             Updating `~/Desktop/modal-symbolic-learning-course/Project.toml`
            [e54bda2e] ↑ ModalDecisionTrees v0.3.2 ⇒ v0.3.3
            [b002da8f] \uparrow SoleLogics v0.6.10 \Rightarrow v0.6.11
            [4249d9c7] \uparrow SoleModels \lor 0.5.2 \Rightarrow \lor 0.5.3
             Updating `~/Desktop/modal-symbolic-learning-course/Manifest.toml`
            [6e4b80f9] \uparrow BenchmarkTools v1.3.2 \Rightarrow v1.4.0
            [6f1432cf] ↑ LoweredCodeUtils v2.3.1 ⇒ v2.3.2
            [e54bda2e] ↑ ModalDecisionTrees v0.3.2 ⇒ v0.3.3
            [b002da8f] \uparrow SoleLogics v0.6.10 \Rightarrow v0.6.11
            [4249d9c7] \uparrow SoleModels v0.5.2 \Rightarrow v0.5.3
         Precompiling project...
           ✓ BenchmarkTools
           LoweredCodeUtils
           ✓ Revise
           ✓ SoleLogics
           ✓ SoleModels
 In [8]: # Import libraries for statistics & Machine Learning
          using Random
          using DataFrames
          usina Plots
          using StatsBase
          usina MLJ
          using Sole
In [13]: using JLD2
          using DataFrames # (Maybe need version v1.6.1?)
          JLD2.@load "COVID-dataset.jld2"
          (X1 df, X2 df, y) = dataset;
 In [9]: | countmap(y)
```

```
└ dimensionalities: (1, 1)
- Modality 1 / 2
   └ dimensionality: 1
197×30 SubDataFrame
Row | cough_F1
                                            cough_F2
С ...
      SubArray...
                                            SubArray...
S ...
   1 \mid [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0... [0.0658202, 0.0389503, 0.505408,...]
   2 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [1.62005, 0.648436, 0.248455, 0....
   3 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [2.95991, 1.13398, 0.151934, 0.1...
[
   4 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [3.66094, 0.709991, 0.342895, 0....
[
   5 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [1.26265, 0.966647, 0.281845, 0....
[ ...
   6 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [4.12442, 2.09424, 0.267123, 0.1...
   7 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [3.42468, 1.26102, 0.164075, 0.0...
   8 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [10.8754, 0.646552, 0.395368, 0....
   9 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                            [18.1984, 2.61893, 1.77536, 1.02...
[ ...
                                            [3.37013, 1.19436, 0.97079, 0.60...
  10 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
  11 \mid [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0..., [2.34154, 0.925767, 0.378433, 0...]
  :
188 | [0.0726378, 0.00766837, 0.016578... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
189 | [0.35084, 0.093121, 0.0471824, 0...
                                            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[ ...
 190 | [0.00220116, 0.0199147, 0.166516...
                                            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
191 | [0.0770436, 0.00820453, 0.001445...
                                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
193 | [3.23477e-5, 0.000132317, 0.0001...
                                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
 194 | [0.127782, 0.101379, 0.0369538, ...
                                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
195 | [0.00149723, 0.000397901, 0.0010...
                                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
196 | [0.00252365, 0.0540424, 0.065236... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
197 | [0.115361, 0.0464483, 0.0123202,... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
[ ...
```

28 columns and 176 rows om

Out[21]: • MultiModalDataset{DataFrame}

```
itted
- Modality 2 / 2
   └ dimensionality: 1
197×30 SubDataFrame
Row breath_F1
                                       breath_F2
b ...
     Array...
                                       Array...
Α ...
  1 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                                      [0.0275974, 0.123487, 0.954918, ...
[ ...
  2 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.00551542, 0.738461, 1.23345, ...
[
  3 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.0171132, 0.0128541, 0.175568,...
[
  4 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.0713483, 0.191903, 0.0599709,...
[
  5 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.0346951, 0.026089, 6.83611, 2...
  6 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.0372815, 1.61098, 7.59596, 1....
  7 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.0179035, 0.0158171, 6.72805, ...
[
  8 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.038656, 0.202587, 0.0588298, ...
[
  9 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.177666, 0.296219, 0.00581333,...
 10 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
                                       [0.407654, 0.4168, 0.0640127, 0....
 11 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0... [0.0442603, 0.0363921, 1.94756, ...
  :
190 | [0.000243355, 0.000393873, 0.000...
                                      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
191 | [0.000504018, 0.00280926, 0.0030...
                                      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
192 | [0.00447856, 0.0114002, 0.004106... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
193 | [0.00081567, 0.00117782, 0.00106...
                                      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
[ ...
195 | [0.00159912, 0.00231749, 0.00020... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
196 | [0.0280692, 0.0461481, 0.218395,... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...
```

197 | [0.251001, 0.0259159, 0.0174663,... [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0...

[...

In [23]: modality(X_multimodal, 1) # Cough modality

R	ow	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	c
		SubArray	SubArray	SubArray	SubArray	SubArray	S
	1	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0658202, 0.0389503, 0.505408, 0.659653, 0.479911, 0.198311, 0.038341, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0130705, 0.00773471, 0.100364, 0.130993, 0.0953002, 0.0393805, 0.00761372, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.00454093, 0.00181044, 0.00463918, 0.00812784, 0.0114677, 0.00279443, 0.00452539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
	2	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1.62005, 0.648436, 0.248455, 0.272204, 0.115829, 0.701655, 0.730142, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.321709, 0.128766, 0.0493379, 0.0540539, 0.0230012, 0.139334, 0.144991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0714415, 0.0461039, 0.0216893, 0.0326628, 0.019149, 0.0363546, 0.0479683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[4 2 3 1 3 4 0 0 0
	3	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[2.95991, 1.13398, 0.151934, 0.122773, 0.0847807, 0.0358195, 0.023554, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.587777, 0.225185, 0.0301709, 0.0243801, 0.0168357, 0.00711301, 0.00467733, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.287868, 0.100246, 0.00532329, 0.00555218, 0.00194837, 0.00139787, 0.0025744, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
	4	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[3.66094, 0.709991, 0.342895, 0.265306, 0.0468018, 0.0975574, 0.0396136, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.726986, 0.140989, 0.0680918, 0.0526841, 0.00929385, 0.0193729, 0.00786644, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.596604, 0.143737, 0.0243013, 0.017446, 0.00756199, 0.00591798, 0.000982618, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1 2 1 0 0 0 0 0
	5	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1.26265, 0.966647, 0.281845, 0.14006, 0.0330181, 0.0189545,	[0.250736, 0.191956, 0.0559685, 0.027813, 0.00655671, 0.00376397,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.128993, 0.0764966, 0.0233883, 0.0117256, 0.00282783, 0.00201767,	[7 2 1 0

Row	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	c
	SubArray	SubArray	SubArray	SubArray	SubArray	S
		0.0202496, 0.00427777, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.00402115, 0.000849476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,		0.00842082, 0.00644938, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	0 0 0 0
6	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[4.12442, 2.09424, 0.267123, 0.100803, 0.104586, 0.0637793, 0.0165705, 0.0220245, 0.0118193, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.819024, 0.415873, 0.053045, 0.0200174, 0.0207686, 0.0126652, 0.00329055, 0.0043736, 0.00234707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.164946, 0.138568, 0.0176139, 0.00586853, 0.00260732, 0.00219175, 0.00100813, 0.00768144, 0.00797681, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
7	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[3.42468, 1.26102, 0.164075, 0.0827096, 0.0727358, 0.0332375, 0.00864315, 0.0294517, 0.0301729, 0.0451799, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.680069, 0.250411, 0.0325819, 0.0164244, 0.0144438, 0.00660026, 0.00171635, 0.00584848, 0.00599171, 0.00897178, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.201791, 0.102281, 0.0150567, 0.00414152, 0.00349754, 0.00190844, 0.000577779, 0.000441292, 0.00100831, 0.00227998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[10.8754, 0.646552, 0.395368, 0.306463, 0.0464313, 0.0182149, 0.0898324, 0.11998, 0.025443, 0.011258, 0.0263648, 0.0, 0.0, 0.0, 0.0, 0.0,	[2.15962, 0.128392, 0.0785118, 0.0608572, 0.00922028, 0.00361709, 0.0178388, 0.0238254, 0.00505245, 0.00223559, 0.00523549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.531624, 0.0291421, 0.0249703, 0.0202988, 0.00218111, 0.00111567, 0.00265106, 0.00404789, 0.00576916, 0.00679558, 0.00494477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	[2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[18.1984, 2.61893, 1.77536, 1.02094, 0.197965, 0.506792, 0.250556, 0.112402,	[3.61381, 0.520065, 0.35255, 0.202737, 0.0393117, 0.100638, 0.0497552, 0.0223206,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1.0694, 0.227274, 0.472316, 0.224377, 0.0118801, 0.0112027, 0.0299956, 0.0321187,	[2 4 2 1 1 2 3

Row	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	c
	SubArray	SubArray	SubArray	SubArray	SubArray	S
		0.234197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.0465066, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]		0.027308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	2 0 0 0
10	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[3.37013, 1.19436, 0.97079, 0.600305, 0.176715, 0.0773258, 0.0182055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.669236, 0.237175, 0.192778, 0.119208, 0.0350919, 0.0153553, 0.00361524, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.446583, 0.20182, 0.068445, 0.0334676, 0.0137318, 0.00983118, 0.00542909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[· 1 6 3 1 0 0 0 0
11	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[2.34154, 0.925767, 0.378433, 0.123683, 0.0554886, 0.0348641, 0.0349075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.464981, 0.183838, 0.0751489, 0.0245608, 0.0110189, 0.00692327, 0.0069319, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.388725, 0.139274, 0.0471144, 0.0156152, 0.0121435, 0.0237099, 0.0155309, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1 1 1 2 1 0 0
12	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[3.07298, 2.57072, 0.687283, 0.322323, 0.214695, 0.0641531, 0.0246654, 0.0356907, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.61023, 0.510491, 0.13648, 0.0640066, 0.0426338, 0.0127395, 0.00489802, 0.00708743, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.204552, 0.231794, 0.051393, 0.0287529, 0.0233669, 0.00844628, 0.00442164, 0.00340762, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[2 5 2 2 0 0 0 0 0 0 0 0
13	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1.77748, 0.796787, 0.0738923, 0.0442614, 0.0555183, 0.0385192, 0.0508226, 0.101736, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.352971, 0.158225, 0.0146735, 0.00878938, 0.0110248, 0.0076491, 0.0100923, 0.0202027, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.203237, 0.0634473, 0.00590952, 0.00739434, 0.0543729, 0.0397721, 0.0168973, 0.0131004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[6 0 0 5 3 1 1 0 0 0

Row	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	c
:	SubArray	SubArray	SubArray	SubArray	SubArray	S
186	[0.0174438, 0.00310092, 0.00849625, 0.026699, 0.0209502, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0132189, 0.00241784, 0.0035302, 0.00828464, 0.00804756, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.00534833, 0.000978251, 0.00142831, 0.00335194, 0.00325602, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	[0 0 0 0 0
187	[0.0291811, 0.0169011, 0.0162059, 0.0177519, 0.121101, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0421715, 0.00966519, 0.00904388, 0.0169365, 0.0497429, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0170625, 0.00391051, 0.00365913, 0.00685247, 0.0201259, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	0 0 0 0 0 0
188	[0.0726378, 0.00766837, 0.016578, 0.0160573, 0.0146287, 0.011821, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0858145, 0.00341952, 0.00950763, 0.0234871, 0.0317684, 0.0292289, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0347203, 0.00138353, 0.00384676, 0.00950284, 0.0128534, 0.011826, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	0 0 0 0 0
189	[0.35084, 0.093121, 0.0471824, 0.766623, 6.82305, 1.83248, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.204067, 0.0762902, 0.0502624, 0.666629, 5.60448, 1.80846, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.082565, 0.0308668, 0.020336, 0.269717, 2.26756, 0.731699, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0 0 8 4 0 0 0
190	[0.00220116, 0.0199147, 0.166516, 0.0951876, 0.128625, 0.459631, 0.263766, 0.0405767,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.00105089, 0.0269954, 0.201371, 0.124756, 0.0703357, 0.288238, 0.229707, 0.0601887,	[0.000425188, 0.0109223, 0.0814741, 0.0504759, 0.0284576, 0.11662, 0.0929391, 0.0243522,	[0 0 0 0 1 1

Row	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	c
	SubArray	SubArray	SubArray	SubArray	SubArray	S
	2.5724, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]			3.26771, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	1.32211, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	5 0 0 0
191	[0.0770436, 0.00820453, 0.00144554, 0.0066907, 0.143037, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.115118, 0.00808703, 0.00118068, 0.0132742, 0.0605214, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0465763, 0.00327199, 0.000477701, 0.00537071, 0.0244868, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
192	[0.0453022, 0.00469916, 0.00193911, 0.00619609, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0162656, 0.00264962, 0.000846998, 0.00225862, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.00658101, 0.00107203, 0.000342693, 0.000913833, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	[0 0 0 0 0 0
193	[3.23477e-5, 0.000132317, 0.000143602, 0.000385296, 0.0215862, 0.0367591, 0.00904464, 0.0214649, 0.0223188, 0.0445251, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[1.90018e-5, 7.08086e-5, 6.93151e-5, 0.000174685, 0.00977338, 0.0182157, 0.00556471, 0.0112506, 0.00797403, 0.0179365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[7.68809e-6, 2.8649e-5, 2.80447e-5, 7.06772e-5, 0.00395429, 0.00737002, 0.00225147, 0.00455199, 0.00322627, 0.00725706, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	[550000000000
194	[0.127782, 0.101379, 0.0369538, 0.019505, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.136504, 0.0900751, 0.0530071, 0.0228197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.055229, 0.0364442, 0.0214465, 0.00923281, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0 0 0 0 0
195	[0.00149723, 0.000397901, 0.0010245,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.000619492, 0.000181285, 0.000723292,	[0.000250645, 7.33474e-5, 0.000292642,	[0 0

Row	cough_F1	cough_F2	cough_F3	cough_F4	cough_F5	C
	SubArray	SubArray	SubArray	SubArray	SubArray	S
	0.17157, 0.276365, 0.0568549, 0.0536703, 0.439603, 0.599519, 0.126497, 0.00765833, 0.0, 0.0, 0.0,	0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.162552, 0.357302, 0.139281, 0.0253212, 0.291274, 0.288937, 0.064765, 0.00581977, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.0657682, 0.144563, 0.0563528, 0.0102449, 0.117849, 0.116903, 0.0262038, 0.00235467, 0.0, 0.0, 0.0,	
196	[0.00252365, 0.0540424, 0.0652368, 0.019338, 0.0124232, 0.00385076, 0.00511448, 0.00346474, 0.00342869, 0.0238765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.00247622, 0.117222, 0.19843, 0.0274702, 0.0143665, 0.00181369, 0.00400859, 0.00402005, 0.00280431, 0.0134033, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.00100187, 0.0474279, 0.0802844, 0.0111144, 0.00581265, 0.000733817, 0.00162187, 0.0016265, 0.00113462, 0.00542295, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	
197	[0.115361, 0.0464483, 0.0123202, 0.0632743, 0.11675, 0.0424258, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.206398, 0.0766185, 0.0210895, 0.0674126, 0.107959, 0.0308161, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	[0.0835083, 0.0309996, 0.00853277, 0.027275, 0.0436798, 0.0124681, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	0 0 0 0 0 0

In [26]: names(X1_df)

```
Out[26]: 30-element Vector{String}:
                   "cough F1"
                   "cough F2"
                   "cough F3"
                   "cough F4"
                   "cough F5"
                   "cough F6"
                   "cough F7"
                   "cough F8"
                   "cough F9"
                   "cough F10"
                   "cough F11"
                   "cough F12"
                   "cough F13"
                   "cough_F19"
                   "cough F20"
                   "cough F21"
                   "cough F22"
                   "cough F23"
                   "cough F24"
                   "cough F25"
                   "cough F26"
                   "cough F27"
                   "cough F28"
                   "cough F29"
                   "cough F30"
In [39]: # Let's inspect some instances
                plot(map(i->plot(collect(X1_df[i,:]), labels=nothing,title=y[i]), 1:35:(35*6
                                                                                POSITIVE
                                                                                                                           POSITIVE
                                                                                                       8.0×10<sup>6</sup>
Out[39]:
                                                                                                       6.0×10<sup>6</sup>
                                                           1,50×10<sup>6</sup>
                3.0×10<sup>6</sup>
                                                                                                       4.0×10<sup>6</sup>
                                                            1.00×10<sup>6</sup>
                2.0×10<sup>6</sup>
                1.0{\times}10^6
                                                            5.00×10<sup>5</sup>
                                   NEGATIVE 12
                                                                             NEGATIVE 12
                                                                                                                          NEGATIVE 12
                                                                                                       3.0×10<sup>6</sup>
                1.50×10<sup>7</sup>
                                                                                                       2.0 \times 10^{6}
                1.00×10<sup>7</sup>
                                                            2.0 \times 10^{6}
                                                                                                       1.0 \times 10^{6}
                5.00×10<sup>6</sup>
                                                            ^{1.0\times10^6}
In [41]: # All instances, grouped by class
                plot(map((((X mod, mod name), y),)->plot(collect.(eachrow(X mod[findall(
                                           POSITIVE cough
                                                                                                             POSITIVE breath
Out[41]:
                                                                                 1.00×10<sup>7</sup>
                2.0×10<sup>7</sup>
                                                                                 5.00×10<sup>6</sup>
                1.0×10<sup>7</sup>
                                                                      15
                                           NEGATIVE cough
                                                                                                            NEGATIVE breath
                6.0×10<sup>7</sup>
                                                                                  4.0×10<sup>7</sup>
                5.0×10<sup>7</sup>
                4.0×10<sup>7</sup>
                                                                                  3.0×10<sup>7</sup>
                3.0×10<sup>7</sup>
                                                                                  2.0×10<sup>7</sup>
                                                                                  1.0×10<sup>7</sup>
                1.0 \times 10^{7}
```

```
Out[71]: \blacksquare {1}((G)(min[V31] \ge 0.001853897887096119))
                        [ \checkmark \{1\} ((G) ((min[V31] \ge 0.001853897887096119)) \land (AO) (min[V27] < 76685.177202) ]
                        24746)))
                         0224746) \wedge (min[V28] < 44762.952262639636))))
                         20224746) \Lambda (min[V28] < 44762.952262639636) \Lambda (\overline{DBE}) (min[V50] \geq 1885.5712367
                        271199))))
                         |\cdot|\cdot| \sim \{1\}((G)((\min[V31] \ge 0.001853897887096119)) \land (\overline{A0})((\min[V27] < 76685.17))
                        720224746) \Lambda (min[V28] < 44762.952262639636) \Lambda (\overline{DBE})((min[V50] \geq 1885.57123
                         67271199) \land (min[V13] \ge 1.400957923736261)))))
                           || |- NEGATIVE
                             | | Lx POSITIVE
                            || Lx NEGATIVE
                           Lx POSITIVE
                           Lx NEGATIVE
                          L_X {1}((G)(min[V27] \geq 2.170219509362793e6))
                           \sqrt{\{1\}}((G)((\min[V27] \ge 2.170219509362793e6)) \land (G)(\min[V46] \ge 5838.39077545)
                         7752)))
                            | → POSITIVE
                             28)))
                                 ► NEGATIVE
                             6534)))
                                   ► NEGATIVE
                                   Lx POSITIVE
                             ^{L}x \{1\}((G)(min[V28] \ge 553537.8712413169)) 
                              ► POSITIVE
                              \{1\}(\langle G \rangle (\min[V2] \ge 0.17083754207872534))
                                 \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[\] \[ \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] 
                        035)))
                                  ├✓ NEGATIVE
                                  Lx POSITIVE
                                 Lx NEGATIVE
```

In [46]: report(mach).solemodel

```
Out[46]: \blacksquare \{1\}(\langle G \rangle (min[V37] \ge 0.0013205573259328035))
           \{1\}((G)((\min[V37] \ge 0.0013205573259328035)) \land (\overline{L})(\min[V27] \ge 226321.99121)
           13276)))
            ⊢✓ NEGATIVE
           \lfloor \frac{1}{x} \{1\} ((G)((\min[V37] \ge 0.0013205573259328035)) \land (\min[V48] \ge 1242.190476996)
           1468)))
           [-\sqrt{1}]((G)((\min[V37] \ge 0.0013205573259328035)) \land (\min[V48] \ge 1242.19047699)
           61468) \Lambda (A0) (min[V40] \geq 3.51978641624239)))
           | \cdot \cdot \cdot \cdot | \cdot \cdot \cdot \cdot \cdot \cdot | (\(\frac{1}{\text{(G)}(\text{(min}[V37]} \geq 0.0013205573259328035)\) \(\text{min}[V48] \geq 1242.1904769\)
           961468) \land (A0)((min[V40] \ge 3.51978641624239) \land (A0)(min[V31] \ge 1.6207745800)
           042226e-5))))
              || Lx NEGATIVE
              Lx POSITIVE
             Lx NEGATIVE
            ^{L}x {1}((G)(min[V27] \geq 2.170219509362793e6))
            [V] = \{1\} ((G) ((min[V27] \ge 2.170219509362793e6)) \land (G) (min[V46] \ge 5838.39077545) \}
           7752)))
             | → POSITIVE
             | \mathbf{x} \{1\} ((G)((\min[V27] \ge 2.170219509362793e6)) \land (\min[V30] < 1.6492884918659) 
           376e6)))
               ⊢ POSITIVE
               Lx NEGATIVE
             ^{L}x {1}((G)(min[V28] \geq 672777.1743629333))
              → POSITIVE
              \{1\}((G)(\min[V30] \ge 1.0114283593133552e6))
               ► NEGATIVE
               Lx POSITIVE
 In [ ]: X = scalarlogiset(X df)
          println(X)
 In [ ]:
 In [ ]: # Accessibles on multirelation frames
          # Get the structure ("frame") of the first instance. It is a "dimensional"
          fr = SoleLogics.frame(X, 1)
 In [ ]: # Enumerate all worlds
          collect(allworlds(fr))
 In [ ]: using SoleLogics: Interval
          # Enumerate the intervals that are "Later" than [1,10]
          accessibles(fr, Interval(1,10), IA L) |> collect
 In [ ]: # Remember that features are computed on each world
          # Let's compute the minimum of the first variable on an arbitrary interval,
           feature = UnivariateMin(1)
           Sole.featvalue(feature, X, 1, Interval(10,30))
 In [ ]: # Remember that atoms are *scalar conditions on features*
          # Let's check one on an interval of the first instance
```

```
p = Atom(ScalarCondition(feature, >, -0.5))
        check(p, X, 1, Interval(10,30))
In [ ]: # I can check any formula
        p = Atom(ScalarCondition(UnivariateMin(1), >, -0.5))
        q = Atom(ScalarCondition(UnivariateMin(2), <=, 10))</pre>
        \varphi = p V q
        check(\varphi, X, 1, Interval(10,30))
In [ ]: # Generate a random HS formula with scalar conditions on features, and check
        features = [UnivariateMin(i variable) for i variable in 1:ncol(X df)]
        alpha = [Atom(ScalarCondition(feat, >, thresh)) for feat in features for thr
        HS connectives = SoleLogics.diamondsandboxes(SoleLogics.IARelations)
        propo connectives = SoleLogics.BASE PROPOSITIONAL CONNECTIVES
        println("Propositional connectives: $(join(syntaxstring.(propo connectives),
        println("HS connectives: $(join(syntaxstring.(HS connectives), ", "))")
        propo weights = fill(1/length(propo connectives), length(propo connectives))
        HS weights = fill(1/length(HS connectives), length(HS connectives))
        connectives = vcat(propo connectives, IA connectives)
        opweights = vcat(propo weights, HS weights)
        treeheight = 3
        φ2 = randformula(Random.MersenneTwister(30), treeheight, alpha, connectives;
        println()
        println("Random formula:")
        println(syntaxstring(φ2))
        check(\varphi2, X, 1, Interval(10,30))
In [ ]: # Let's check a formula on all the instances
        check mask = check(\varphi2, X, Interval(10,30))
In [ ]: # It holds on part of the instances
        sum(check mask)
In [ ]: # Let's ask whether the formula holds *all* intervals, instead of checking i
        println("Applying the universal global operator: ", SoleLogics.globalbox)
        println()
        universal \varphi = globalbox(\varphi 2)
        println("Formula: ", syntaxstring(universal φ))
        check mask = check(universal \varphi, X)
        # It holds on no instance... Too restrictive!
        sum(check mask)
In [ ]: # Let's ask whether there exists any interval where the formula holds
        println("Applying the existential global operator: ", SoleLogics.globaldiamo
        println()
```

```
existential \varphi = globaldiamond(\varphi2)
        println("Formula: ", syntaxstring(existential φ))
        check mask = check(existential \varphi, X)
        # It holds on more instances
        sum(check mask)
In [ ]: # Question: does it lead to a good rule?
        println(syntaxstring(existential φ))
        println()
        println(SoleLogics.experimentals.formula2natlang(existential φ))
In []: neg existential \varphi = normalize(\neg existential \varphi;
            profile = :readability,
            remove implications = true,
            allow atom flipping = true
        syntaxstring(neg existential \varphi; remove redundant parentheses = false)
In [ ]: (SoleLogics.precedence(v))
In [ ]: countmap(y)
In [ ]: println(existential φ)
        countmap(y[check mask])
In [ ]: println(neg existential φ)
        countmap(y[(!).(check mask)])
In [ ]: branch = Branch(neg_existential_φ, "I have command", "Spread wings")
In [ ]: y preds = SoleModels.apply(branch, X)
        println("Accuracy of this branch: $(sum(y .== y preds)/length(y))")
        println("Random chanc e: $(60/length(y))")
In [ ]:
In [ ]: println(X)
In [ ]: # Randomly split the data: 20% training, 80% testing
        N = nrow(X df)
        perm = randperm(Random.MersenneTwister(1), N)
        train_idxs, test_idxs = perm[1:round(Int, N*.2)], perm[round(Int, N*.2)+1:er
        println("Using $(length(train idxs)) instances for training")
        println("Using $(length(test idxs)) instances for testing")
In [ ]: using ModalDecisionTrees
```

```
# Bind a machine learning algorithm to logiset & labels
        mach = machine(ModalDecisionTree(; relations = :IA7, features = [minimum]),
        # Train!
        @time fit!(mach; rows=train idxs);
        # Compute accuracy
        yhat = predict mode(mach; rows=test idxs)
        MLJ.accuracy(yhat, y[test idxs])
In [ ]: # Show the restricted MDT learnt
        printmodel(report(mach).rawmodel full; hidemodality = true)
In [ ]: # Show its *pure* version
        printmodel(report(mach).solemodel full; show metrics = true, hidemodality =
In [ ]: simplified restricted tree = ModalDecisionTrees.prune(report(mach).rawmodel
        printmodel(simplified restricted tree)
        println()
        println("# Leaves: ", nleaves(simplified restricted tree))
In [ ]: solemodel = ModalDecisionTrees.translate(simplified restricted tree)
In [ ]: # Print leaf rules + their training performances
        ruleset = listrules(solemodel)
        printmodel.(ruleset; show metrics = true, threshold digits = 2, variable name
In [ ]: last rule = ruleset[end]
        last antd = antecedent(last rule)
        println("First formula, translated:")
        println(SoleLogics.experimentals.formula2natlang(last antd; threshold digits
        for (i rule, rule) in enumerate(ruleset)
            println()
            println("[$i rule]")
            antd = antecedent(rule)
            println(SoleLogics.experimentals.formula2natlang(antd; threshold digits
        end
In [ ]: # Print rules + their *test* performances
        # Sprinkle the model with the test instances!
        predictions, tree test = report(mach).sprinkle(X df[test idxs,:], y[test idx
        # Extract ruleset and print its metrics
        ruleset test = listrules(tree test);
        # printmodel.(ruleset test; show metrics = true, threshold digits = 2, varia
        printmodel.(ruleset test; show metrics = true, threshold digits = 2, parenth
```

```
In []: println("IF\n\t", SoleLogics.experimentals.formula2natlang(antecedent(rulese
    println("THEN\n\t", consequent(ruleset_test[4]))
In []: # Obtain class rules & show their *test* metrics
    condensed_ruleset_test = joinrules(ruleset_test)
    printmodel.(condensed_ruleset_test; show_metrics = true, threshold_digits =
```

Exercise

ModalDecisionTrees.jl can also handle images! In which case, they use a 2D logic of rectangles instead of a 1D logic of intervals.

Apply ModalDecisionTrees to Indian Pines, a benchmark dataset for Land Cover Classification with 16 classes. The dataset consists of a hyperspectral image (i.e., 200 color channels instead of the typical 3 RGB channels) where many pixels have been labelled as belonging to one of the classes.

Sketch of the idea:

- Load the image and the ground truths. The package MAT.jl can be helpful;
- From the 145×145 image provided, sample a (small) number m of 3×3 patches for each class, and label each patch with the class label for the central pixel;
- Gather the ground truths into a vector of strings $\,$ y , and the samples into a Julia DataFrame $\,$ X $\,$ with 200 columns, 16m rows and 3×3 $\,$ matrices in the cells;
- Use MLJ to train a ModalDecisionTree on X and y, similarly to the above case.

Suggestion: since the formulas are desirably rotation-invariant, ask the algorithm to use *topological* relations instead of *directional* relations. Rrefer to the doc to know more.