EEP1 ELogBook – Week 8

AXXXXXXX - Brians Tjipto Meidianto

Studio

Activity 1a:

- 1. Question 1
 - a. Initial Current of C1:

$$((10 - V) / 80) + ((10 - V) / 100) = (V / 20) + (V / 400)$$

V = 3

$$I_c = I_2 - I_1 = (3 / 20) - (7 / 80) = 0.0625A$$

b. Steady state voltage of C1:

Vba =
$$10 * (100 / (100 + 400)) - 10 * (80 / (80 + 20)) = -6V$$

- 2. Question 2
 - a. Initial current of L1:

I = 0A, open circuit

b. Steady state voltage of L1:

V = 0V, Short circuit

- 3. Warm up exercise 1:
 - a. At $t = 0^+$

i. Current: 0A

ii. Capacitor voltage: 0V

iii. Inductor voltage: 5V

b. Steady state

i. Current: 0A

ii. Capacitor voltage: 5V

iii. Inductor voltage: 0V

- 4. Warm up exercise 2:
 - a. At $t = 0^+$

i. Capacitor current: 0A

ii. Capacitor voltage: 0V

iii. Inductor current: 0A

iv. Inductor voltage: 12V

b. Steady state

i. Capacitor current: 0A

ii. Capacitor voltage: $R_2 / (R_1 + R_2) * V_1 = 22k\Omega / (21k\Omega + 22k\Omega) * 12 = 6.13 V$

iii. Inductor current: $V_1 / (R_1 + R_2) = 12 / (21k\Omega + 22k\Omega) = 0.28 \text{ mA}$

iv. Inductor voltage: 0V

Activity 1b:

- 1. Capacitor:
 - a. Receiving energy:
 - i. The capacitor voltage will gradually increase over time, following an exponential growth curve.
 - ii. The capacitor current will be initially high and decrease exponentially toward zero.
 - b. Giving out energy:

- i. The capacitor voltage will gradually increase over time, following an exponential growth curve.
- ii. The capacitor current will be initially high and decrease exponentially toward

2. Inductor:

- a. Receiving energy:
 - i. The capacitor voltage will gradually increase over time, following an exponential growth curve.
 - ii. The capacitor current will be initially high and decrease exponentially toward zero.
- b. Giving out energy:
 - i. The capacitor voltage will gradually increase over time, following an exponential growth curve.
 - ii. The capacitor current will be initially high and decrease exponentially toward zero.

Activity 1c:

Once you add an extra resistor, the initial condition will change, Vc(0) = V0, while I(0) = I0.

Activity 2:

1.
$$\omega_n = \frac{1}{\sqrt{(1 \times 10^{-9})(1 \times 10^{-3})}} = 1 \times 10^6 \ rad/s$$

$$\zeta = \frac{220}{2} \sqrt{\frac{1 \times 10^{-9}}{1 \times 10^{-3}}} = 0.11$$

$$\omega_d = 1 \times 10^6 \ \sqrt{1 - 0.11^2} = 0.9939 \ \times \ 10^6$$

2.
$$R_{cd} = 2\sqrt{\frac{1\times10^{-3}}{1\times10^{-9}}} = 2 \times 10^{3}\Omega$$

Time difference: 6.342us

 $2\pi f = 2\pi/T$

 $2\pi f = 990726.2$

f = 157679Hz = 157.7kHz

$$\zeta = \frac{2000}{2} \sqrt{\frac{1\times 10^{-9}}{1\times 10^{-3}}} = 1 - \text{Critically Damped}$$

$$\zeta = \frac{3000}{2} \sqrt{\frac{1 \times 10^{-9}}{1 \times 10^{-3}}} = 1.5 - \text{Over Damped}$$

The value of damping ratio significantly influences the nature of the response in a dynamic system; a ζ of 1 indicates critical damping, resulting in a well-balanced response without oscillations, $\zeta > 1.5$ leads to overdamping, causing sluggish and slow responses, while a low ζ of 0.11 signifies underdamping, leading to oscillatory and potentially unstable responses.

Lab

Activity 1

Length	Extension	Weight
6.4	0	0
8.1	1.7	0.25
10	1.9	0.5

Gradient is 3.8

Tn = 504ms

Wn = $2\pi/Tn$

Wn = 12.5 rad/s

Wn,th =
$$\sqrt{\frac{k}{m}} = \sqrt{\frac{3.8}{0.75}} = 2.25$$

The machine is not working as expected, and it resulted in the damping ratio being 0, theoretically, the damping ratio should be a bit larger than 0, and not 0.

Activity 2

Resistor	Capacitor	Inductor	ζ	ωn	ωd
220	0.000000001	0.001	0.11	1000000	993931.5872
1000	0.000000001	0.001	0.5	1000000	866025.4038
2000	0.000000001	0.001	1	1000000	-
3300	0.000000001	0.001	1.65	1000000	-

T = 5.880 us

 $T = 2\pi/f$

 $5.880*10^{-6} = 2\pi/f$

f = 1068568.9 = 1068.6 kHz

Time taken to reach steady state = 13.48 us

T = 2.280us

 $T = 2\pi/f$

 $2.280*10^{-6} = 2\pi/f$

f = 2755783Hz = 275.6 kHz

The damping of the 220 Ohm is lowest meaning it is underdamped, while the 3300 Ohm, one shows it being overdamped. The one with the lower Capacitor, had a lower value for ζ , making it more underdamped, and had a lower frequency compared to the 1000pF one.