König's Theorem

:באמר ש-2 צלעות הן בת"ל אם אין להן קודקוד משותף – Independent Edges

ילי. בה בת"ל: $M\subseteq E(G)$ הצלעות בה בת"ל: $M\subseteq E(G)$

.(ופס"). את הקודקודים ש"י א ע"י ש"י את הקודקודים ש-V(M)את גסמן נסמן ע"י

(V(M),M) י"י המיוצג ע"י בתור תת גרף של M-לפעמים נתייחס ל-

 $V(G),\phi$ - ייקרא (לדוגמה - על הקודקודים). תת-גרף שמכיל את של V(M)=V(G) המקיים ($V(G),\phi$) ייקרא (תת-גרף פורש של

שידוך מושלם – 1-factor

עבור גרף G, קבוצה $M\subseteq E(G)$ מיקרא שידוך מושלם:

בעיית *Max Matchings:* בהינתן גרף, נמצא שידוך בגודל מקסימום. הבעיה הזו נמצאת ב-P. כל שידוך מושלם הוא בפרט גם שידוך מקסימום. בעיית אפשר לפתור ע"י אלגוריתם (בהמשך). בגרף כללי אפשר לפתור ע"י אלגוריתם *Edmonds* או השיטה ההונגרית (בהמשך).

כיסוי קודקודים – Vertex Covers

 $v \in V$ או $u \in V$ מתקיים: $(u,v) \in E(G)$ אם לכל צלע של G אם בקודקודים על כיסוי עיקרא עיקרא $V \subseteq V(G)$ מתקיים: $V \subseteq V$

G של בקודקודים ביסוי היא V(G) הקבוצה של באופן טריוויאלי,

. במינימום קודקודים: G במינימו בהינתן גרף, נרצה למצוא בהינתן: $Min.\ Vertex-Cover$

עבור גרף כללי ללא הגבלות, הבעיה היא NPC

הקשר בין כיסוי קודקודים מינימום ושידוך מקסימום

. (tau טאו, $\tau(G)$ מסומן מסומן המינימום בגרף המינימום (וו, $\nu(G)$ (נו, $\nu(G)$ נו, $\nu(G)$ טאו, גודל השידוך המקסימום בגרף מסומן

 $\tau(G) \ge \nu(G)$ באופן טריוויאלי, מתקיים ש

כי בהינתן שידוך מקסימום, כל כיסוי (ובפרט המינימום) יצטרך להשקיע לפחות קודקוד אחד בכל צלע בשידוך כדי לכסות אותן.

ייתכנו גרפים שבהם $u(G) > \nu(G)$ לדוגמה:

עבורה נוכיח ש: G משפחת גרפים לכל

 $\forall G \in \mathcal{G}, \quad \tau(G) = \nu(G)$

.Min. Vertex-Cover-יהיה לנו אלגוריתם פולינומי ל

Pל-NPCל מבעיה מביא את הבעיה הזה כלומר כלומר

?יאם מעפחה (מעניינת מספיק, שימושית מספיק) שמקיימת את התנאי

König, Hall, & Frobenius

:König's Theorem

. au(G)=
u(G) יהי G גרף דו"צ. אזי,

 $:K_{3,3}$ לדוגמה, עבור

:Hall's Theorem

יהי $G = (A \cup B, E)$ יהי

. נסמן: S אזי, ניתן לשדך את A ל-B אמ"מ לכל S תת-קבוצה של A מספר השכנים של S הוא לפחות כמו מספר הקודקודים של

$$A \cup B \iff \forall S \subseteq A : |N_G(S)| \ge |S|$$

.(Hall condition) צד ימין נקרא תנאי הול

 $\forall S \subseteq A: |N_G(S)| \ge |S|$:תנאי הול

ידוך: שידוך לתוך אידוך: כל מהוות שיש בין Aל-
 משתדך לתוך אידוך: ארכוונה א-Aל- משתדך לתוך לתוך אידוף:

:Forbenius' Theorem

יהי גרף דו"צ. $G = (A \cup B, E)$ יהי

. אזי, קיים ב-G שידוך מושלם אמ"מ B, שווים בגודלם וגם אחד מהם מקיים את תנאי הול.

טענה: 3 המשפטים שקולים.

הטענה אוויאלית, כי *Forbenius* הוא מקרה פרטי של $Hall \rightarrow Forbenius היא טריוויאלית, כי החתונה של הול).$

נכון. König נכון ונוכיח שמשפט Forbenius שמשפט. Forbenius → König נכון ונוכיח

יהי הול. מחד מהם מקיים את משלם אמ"מ B, שידוך מושלם אמ"מ G בהנחה, קיים ב-G ע"פ ההנחה, קיים ב-G שידוך מושלם אמ"מ σ . ע"פ ההנחה, קיים ב- σ . ע"פ ההנחה, קיים ב- σ .

 $. au(G) \leq
u(G)$ הוכיח להוכיח אז מספיק אז מחקיים באופן טריוויאלי מתקיים $. au(G) \geq
u(G)$

 $.Hall \Leftrightarrow K\"{o}nig$ ש נותר להוכיח

.König את ונוכיח Hall נניח

 $A \cup B \Leftrightarrow \forall S \subseteq A$: $|N_G(S)| \ge |S|$, לפי משפט הול, $G = (A \cup B, E)$ יהי גרף דו-צדדי.

 $. au(G) \leq
u(G)$ אז מספיק להוכיח ש טריוויאלי מתקיים טריוויאלי מתקיים. באופן טריוויאלי . au(G) =
u(G) אז מספיק להוכיח נרצה להוכיח

 $. au(G) \leq
u(G)$ אז יגרור המקסימום, זה השידוך מכיוון אז מכיוון ש . au(G) אז מכיוון ב-. au(G) בגודל לפחות

 $|\mathcal{C}| = \tau(G)$ כיסוי מינימום בקודקודים של כלומר כיסוי מינימו מינימום כיסוי מינימום כיסוי מינימום כיסוי

 $.B \setminus \mathit{C}, \ B \cap \mathit{C}$ ל: את את ל
. $A \setminus \mathit{C}, \ A \cap \mathit{C}$ ל: את לחלק את ניתן לחלק

:הותה אכסה לCכי ,
 $B \setminus C$ ל-, $A \setminus C$ בין צלע אין לב שאין נשים לב

:G נגדיר 2 תתי-גרפים של

$$H := G[A \cap C, B \setminus C], \qquad H' := G[B \cap C, A \setminus C]$$

נשים לב שמתקיים:

$$\tau(G) = |C| = |A \cap C| + |B \cap C|$$

.B-ל או ל-A או ל-כי כל קודקוד ב-C שייך גם כי כי

H', בגודל מושלם בשני שידוך שיש שידוך נרצה להראות, נרצה לפחות, בגודל לפחות, בגודל לפחות, נרצה להראות שיש שידוך מושלם בשני הגרפים, מספיק להראות ש

$$\nu(H') \ge |B \cap C|, \qquad \nu(H) \ge |A \cap C|$$

.(H' - ו- $B \cap C$ ו-עבוד גם על טיעון טיעון (בה"כ. אותו - ו- $A \cap C$ ו-

 $B \setminus C$ לתוך לתוך את לשדך שאפשר להראות רוצים בעצם אנחנו אנחנו

. הול. את תנאי את מקיימת א $A\cap \mathcal{C}$ הקבוצה אה שבגרף להראות מספיק להראות שבגרף לפי

 $|N_G(S)| < |S|$ -ש כך כך $S \subseteq C \cap A$ הול, ולכן הול, את מקיימת את א $A \cap C$ ש עב"ש גב"ש

נגדיר את הכיסוי בקודקודים הבאים:

$$X := (N_H(S) \cup (B \cap C)) \cup ((A \cap C) \setminus S)$$

כך (השטח המקושקש בציור):

. ותר. קטנה קטנה שהיא אהיא $N_H(S)$ הורדת S והורדת ע"י הורדת X שהיא קבוצה ע"י מתקבלת לב

 $N_H(S)$ - היא מחוברות האלה הצלעות מ-S, וכל הצלעות שיוצאות משפיע רק ל-S, כי השינוי משפיע רק ל-S לכן נקבל:

$$|X| < |C| = \tau(G)$$

.C של מינימליות של

.Hall ונוכיח את König כיוון שני: נניה

 $A \circlearrowleft B \Leftrightarrow \forall S \subseteq A : |N_G(S)| \geq |S|$ נרצה להוכיח $G = (A \cup B, E)$ יהי גרף דו-צדדי יהי

. $\forall S \subseteq A$: $|N_G(S)| ≥ |S|$ הכיוון \rightarrow משתדך לתוך משתדך משתדך טריוויאלי כי אם \rightarrow

A לא משתדכת לתוך (כי אם יש קבוצה שיש לה פחות שכנים מאשר קודקודים, אז A

.B משתדך לתוך A-ש מקיים את תנאי הול. נוכיח ש-A- משתדך לתוך בכיוון

 $u(G) \geq |A|$ מספיק להוכיח ש $u(G) = \nu(G)$ ומכאן הגרף דו"צ אז הגרף לפי קניג, אם הגרף לפי לפי קניג, אם הגרף דו"צ אז הגרף דו"צ אז $u(G) \geq |A|$

.(B-לפחות אידוך בגודל לפחות אידוך מוכיח ש-A משתדכת לתוך מוכיח לפחות בגודל לפחות אידוך בגודל לפחות מוכיח ש-A משתדכת לתוך מינימום בקודקודים של $C\subseteq V(G)$ יהי

 $|C| \ge |A|$ נרצה להוכיח ש

> ,כה"כ, ובסה וובסה . | $B \cap C$ | $\geq |N_G(A \setminus C)| \geq |A \setminus C|$ אז נקבל ש

$$\tau(G) = |C| = |A \cap C| + |B \cap C| \geq |A \cap C| + |A \setminus C| = |A|$$

כנדרש.