I. Bijection between order ideals in $\lambda \times [n]$ and increasing tableaux.

Background. We call a nonempty finite subset $\lambda \subset \mathbb{Z}^{d-1}$ a *shape*. Let e_i be the standard basis vector in \mathbb{R}^{d-1} . Let $\pi_1(x)$ be the projection onto the i^{th} coordinate.

We say that λ is *convex* if whenever x and $x+ke_i$ are both contained in λ , than $x+je_i \in \lambda$ for j=1,...,k-1. We say that λ is *connected* if for all $x,x'\in \lambda$, there are sequences of coordinates $i_1,...,i_s$ and parities $n_1,...,n_s$ such that $x+\sum_{k=1}^{j}(-1)^{n_k}e_{i_k}\in \lambda$ for j=1,...,s and $x+\sum_{k=1}^{s}e_{i_k}=x'$. We say that λ is justified if λ lies in the first quadrant and that $\min_{(i,j)\in\lambda}i=\min_{(i,j)\in\lambda}j=0$.

Let $\lambda \times [n]$ be the partially ordered set $\{x \times y \in \mathbb{Z}^d : x \in \lambda, y \in [0, n-1]\}$, where $p \geq q$ if and only if $p-q \in \mathbb{Z}^d_{>0}$. For any poset P, we write J(P) to be the collection of order ideals of P.

Let $a_i(\lambda) = \max_{x \in \lambda} \pi_i(x)$ and $a_{\lambda} = (a_1(\lambda), ..., a_n(\lambda)) \in \mathbb{Z}^{d-1}$. Define $\lambda^* = \{a_{\lambda} - x : x \in \lambda\}$. It is clear if λ is convex/connected/justified, then λ^* is convex/connected/justified.

For a shape $\mu \subset \mathbb{Z}^{d-1}$, an increasing tableau of height n is a map $T: \mu \to \{1, ..., n\}$ such that for all $x \in \mu$ and i = 1, ..., d-1, $T(x) > T(x - e_i)$ whenever $x - e_i$ is contained in μ . Let $\operatorname{Inc}^n(\mu)$ be the set of increasing tableaux of height n with base shape μ .

Any subset of \mathbb{Z}^d is ranked by the function $\operatorname{rk}(x_1,...,x_d) = \sum_{i=1}^d x_i$.

The main bijection. Define the map $\Phi: J(\lambda \times [n]) \to \operatorname{Inc}^{\max \operatorname{rank}(\lambda)+n}$ as follows. First define the function $\operatorname{Ht}: \mathbb{Z}_{>0}^{d-1} \times P(\mathbb{Z}_{>0}^d) \to \mathbb{N}$ so that for $x \in \mathbb{Z}^{d-1}$, $(x, I) \mapsto \max_{(x,y) \in I} y$. Then define

$$\Phi(I) = \left(a_{\lambda} - x \mapsto \operatorname{Ht}(x, I) + \operatorname{rk}(a_{\lambda} - x) + 1\right)$$

II. Equivariance when $\mathbf{d} = \mathbf{2}$. Following Lemma 4.2, we claim that Ψ intertwines $\operatorname{Pro}_{\mathrm{id},(1,1,-1)}$ and K-Pro. Let λ be a convex, connected, justified shape in \mathbb{Z}^2 . Let $a = a_1$ and let $b = a_2$, that is, $(a,b) = a_{\lambda}$. Take $P \in J(\lambda \times [n])$.

By Proposition 2.4, *LIMITS ISSUES*

$$K\text{-Pro} = K\text{-BK}_{a+b+n-1} \circ \dots \circ K\text{-BK}_1(T)$$

By definition,

$$\mathrm{Pro}_{\mathrm{id},(1,1,-1)} = T_{\mathrm{id},(1,1,-1)}^{a+b-(a+b+n-1)} \circ \dots \circ T_{\mathrm{id},(1,1,-1)}^{a+b}$$

Therefore it suffices to show

$$\Psi(T_{\mathrm{id},(1,1,-1)}^{a+b-l}(P)) = K\text{-BK}_l(\Psi(P))$$

for all l and all $P \in J(\lambda \times [n])$.

 $T_{\mathrm{id},(1,1,-1)}^{a+b-l}$ is by definition the product of toggles t_x where $x=(i,j,k)\in\lambda\times[n]$ and $\langle x,(1,1,-1)\rangle=i+j-k=a+b-l$. Now if $(i,j,k)\in P$, then (a-i,b-j) is an element of λ^* and is labeled at least $k+\mathrm{rk}(a-i,b-j)+1=k+(a-i)+(b-j)+1=l+1$. Fix an element (i,j,k) on this hyperplane with $(i,j)\in\lambda$.

• Say $(i, j, k) \in P$.

- On the one hand, if (i, j, k+1) in P, then $t_x(P) = P$, since removing x from P would not result in an order ideal. In addition, K-BK $_l$ does not affect entry (a-i, b-j) because $\Psi(P)(a-i, b-j) > l+1$.
- On the other hand, if (i, j, k+1) is not in P, then (a-i, b-j) is labeled with l+1 so it is affected by K-BK $_l$. It will only be changed when it is part of a trivial short ribbon, meaning $\Psi(P)(u, v)$ is less than l for all $(u, v) \in \lambda^*$ covered by (a i, b j). The convexity and connectedness assumptions imply that only the elements (a i 1, b j) and (a i, b j 1) can be covered by (a x) in λ^* .

Say that (a-i-1,b-j) or (a-i,b-j-1) is contained in λ^* and labeled l. Then K-BK $_l$ does not change the (a-i,b-j) entry. In addition, either (i+1,j) or (i,j+1) has height k in P. Therefore $P \setminus \{x\}$ is not an order ideal, so t_x does not alter P.

On the other hand, say that neither element is contained in λ^* with label l. There are three possibilities:

- * If both positions are part of λ^* , and (a-i-1,b-j) < l and (a-i,b-j-1) < l, then we are reduced to the case covered in the paper.
- * If one entry, say (a-i-1,b-j) is absent in λ^* , and the other has label less than l, then $P \setminus \{x\}$ defines an order ideal. For say (u,v) > (i,j) in λ . By convexity, we must have v > j since (u,v) cannot be contained on the line $\{(i+g,j): g \in \mathbb{Z}_+\}$, and $u \geq i$. But then $(u,v) \geq (i,j+1)$, and $\Psi(P)(a-i,b-j-1) < l$, so $\operatorname{Ht}(u,v) \leq \operatorname{Ht}(i,j+1) < k$. Since all elements in the column over (i,j) below (i,j,k) are less than x, this proves that there is no element in P greater than x, so $P \setminus \{x\}$ is an ideal.
- * Say that both entries are absent in λ^* . Then (i,j) is maximal in λ . For say (r,s) > (i,j) for some $(r,s) \in \lambda$. By connectedness, there is a path from (i,j) to (r,s). By convexity, no element of this path can be contained in the lines $\{(i+g,j):g\in\mathbb{Z}_+\}$ or $\{(i,j+g):g\in\mathbb{Z}_+\}$. Let (m,n) be the first element hit by this path that is greater than (i,j). Such a square must exist because (r,s) > (i,j). Then (m,n) (i,j) = (x,0) or (0,x) for some x>0. But this point is contained on one of the two excluded lines, a contradiction
- Say $(i, j, k) \notin P$.
 - If $(i, j, k-1) \notin P$, then $P \cup \{x\}$ is not an ideal so t_x does not affect P. In addition, $\Psi(P)(a-i, b-j) < l$ so K-BK $_l$ does not affect (a-i, b-j).
 - If $(i, j, k-1) \in P$, then $\Psi(P)(a-i, b-j) = l$. K-BK_l will change entry (a-i, b-j) exactly when it is not part of a trivial short ribbon, meaning that all elements that cover it are labeled at least l+2. If either (a-i+1, b-j) or (a-i, b-j+1) is an element of λ^* and is labeled l+1, then (a-i, b-j) is unchanged. In addition, this implies that (i-1, j) or (i, j-1) has height k-1 respectively, in which case $P \cup \{x\}$ is not an ideal. Otherwise, we have three possibilities as above:
 - * If both (a-i+1,b-j) and (a-i,b-j+1) are contained in λ^* and labeled at least l+2, then we are reduced to the case from the paper.

- * If one label, say (a-i+1,b-j) is absent from λ^* and the other (a-i,b-j+1) is labeled at least l+2, then $P \cup \{x\}$ is an ideal. For say (u,v) < (i,j) in λ . By convexity, we must have v < j since (u,v) cannot be contained on the line $\{(i-g,j): g \in \mathbb{Z}_+\}$, and $u \le i$. But then $(u,v) \le (i,j-1)$, so $\operatorname{Ht}(u,v) \ge k$, and so (i,j,k).
- * Finally, if both labels are absent, then (i,j) is minimal as above, so $P \cup \{x\}$ is an ideal.

III. Counterexample with d = 3.

This counterexample shows that K- BK_l and T_x will not act in the same way on the tableau of these vertices. For K- BK_l will decrement entry (1,1,1) to l, but T_x cannot decrease the height of (0,0,0) because (1,0,1) has height k. My guess is that we could successfully replace the convexity condition with the requirement that λ be "twistless," defined as the condition that every two elements are connected by a strictly increasing path.