Chapter 10: Organic reactions

Knowledge organiser

Organic chemistry

There are lots of different 'families' of carbon-containing compounds, for example, alkanes and **alkenes**. These families are called a **homologous series**. Each compound within a homologous series has similar properties and reactions. They all contain specific atoms in specific orders, called the **functional group**.

Homologous series	Functional group	First four of homologous series	Formation	Uses	Combustion reaction	Other reactions	Other information
alkenes)c=c($\begin{array}{cccccccccccccccccccccccccccccccccccc$	cracking	 formation of polymers a chemical feedstock 	 complete combustion produces carbon dioxide and water incomplete combustion more likely, resulting in a smoky yellow flame both types of alkene combustion release less energy per mole than alkanes 	double bond to form an alkane.	Alkenes are called unsaturated because they have double bonds. As such, atoms can be added to the molecule by breaking the double bond. This contrasts with alkanes which are called saturated as there is no space to add more atoms. Alkenes have a general formula C_nH_{2n} .
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Addition with steam React with steam at high temperature and pressure in the presence of a catalyst to form alcohols. $ C_2H_4 + H_2O \rightarrow C_2H_5OH \\ H = C + H_2O \rightarrow C_2H_5OH \\ $	
alcohols	-ОН	H H H H H H H H H H H H H H H H H H H	Ethanol can be formed from the fermentation of sugar – warm a sealed mixture of yeast and a sugar solution.	 ethanol is used in alcoholic drinks first four alcohols mix easily with water, so are used as solvents for substances that don't dissolve in water common in perfumes, aftershaves and mouthwashes 	 short alcohols are very effective fuels and combust easily, burning with a blue flame and producing carbon dioxide and water 2CH₃OH + 3O₂ → 2CO₂ + 4H₂O 	Reaction with sodium Alcohols react with sodium to release hydrogen. The product from this reaction is called an alkoxide , which if added to water forms a strongly alkaline solution.	Alcohols are highly flammable and must not be handled near naked flames.
		H H H propanol H H H H H—C—C—C—C—O—H H H H H H H H H butanol	glucose \rightarrow ethanol + carbon dioxide $C_6H_{12}O_6(aq) \rightarrow$ $2C_2H_5OH(aq)$ + $2CO_2(g)$			Oxidation Alcohols can react with oxidising agents, like potassium dichromate, to form carboxylic acids.	
carboxylic acids	_с_о_н	H-C H-C-C O-H H O-H methanoic acid ethanoic acid H H O H-C-C-C-C	oxidation of alcohols	ethanoic acid is used in vinegar	as a fuel	Carboxylic acids react in the same way as other acids. Reaction with sodium carbonate Carboxylic acids react with bases to form salts. For example, carboxylic acids react with a metal carbonate to produce a salt, carbon dioxide, and water.	(HT only) When added to water, carboxylic acids are partially ionised to form weakly acidic solutions. They are weak acids.
		H H H O—H propanoic acid H H H H O H—C—C—C—C H H H H O—H butanoic acid				Reaction with alcohols Carboxylic acids react with alcohols to make water and esters. The reaction requires sulfuric acid as a catalyst. Esters have distinctive smells and are used in perfumes and flavourings. The product of ethanol and ethanoic acid is ethyl ethanoate.	

(P) Key terms

Make sure you can write a definition for these key terms.

addition reaction alcohols alkene alkoxide carboxylic acid ester fermentation cracking functional group homologous series oxidation oxidising agent saturated unsaturated