XMS3GU050 - EARTH AND PLANETARY INTERIORS GEOMAGNETISM PRACTICAL

filipe.terranova@univ-nantes.fr

CODES https://github.com/filipecros/Geomag_TP

GEOMAGNETIC FIELD REPRESENTATION The radial component of Earth's magnetic field can be written:

$$B_r(r, \theta, \phi) = \sum_{\ell=1}^{\ell_{max}} \left(\frac{a}{r}\right)^{\ell+2} \sum_{m=0}^{\ell} (g_{\ell}^m \cos m\phi + h_{\ell}^m \sin m\phi) P_{\ell}^m$$

SYNTHETIC Manipulate the spherical harmonic coefficients (Gauss coefficients) to produce fields that are purely dipolar ($\ell = 1$), quadrupolar ($\ell = 2$), octopolar ($\ell = 3$), zonal ($\ell = 0$), non-zonal ($\ell \neq 0$), sectoral ($\ell = m$) or tesseral ($\ell \neq m$) can be produced.

- What g_2^0/g_1^0 ratio gives $B_r = 0$ at the CMB at latitude $30^\circ N$?
- For h_1^1 , what g_1^1/g_1^0 ratio gives dipole tilt of 10° ? Does the radial distance matter?

REAL Using a model based on observations of Earth's magnetic field model (COV-OBS.x2, Huder et al., (2020)) for the historical and modern era:

- Plot B_r at the CMB for different ℓ_{max} and calculate $\max(|B_r|)$ vs. ℓ_{max} for $\ell_{max}=5$ –14.
- Plot $B_{r_{dip}}$ $(\ell=1)$ and $B_{r_{ndip}}$ $(\ell>1)$. Where are the largest non-dipole contributions?
- Plot $B_{r_{zon}}$ (m=0) and $B_{r_{nzon}}$ $(m\neq 0)$. Where are the largest non-zonal contributions?
- Plot $B_{r_{sym}}$ ($\ell+m$ even) and $B_{r_{nsym}}$ ($\ell+m$ odd). Is the field more equatorially symmetric or anti-symmetric?

SPECTRUM The magnetic field spectrum R_{ℓ} at the CMB can be expressed as a function of spherical harmonic degree ℓ in terms of the Gauss coefficients of the core field as (Lowes, 1974):

$$R_{\ell} = (\ell+1) \left(\frac{a}{c}\right)^{2\ell+4} \sum_{m=0}^{\ell} \left((g_{\ell}^{m})^{2} + (h_{\ell}^{m})^{2} \right)$$

where c is the radius of Earth's outer core.

• Plot R_{ℓ} as a function of ℓ at the core-mantle boundary. How would you describe Earth's magnetic field based on its spectral analysis?

TIMESERIES: Studying the time-dependence of the strength of the axial dipolar component of Earth's magnetic field.

- Plot the axial dipolar component of the field as a function of time. What is the average decrease rate? If it continues to decrease at the current rate, when will the field reverse?
- Plot the dipole tilt $\theta_{dip} = atan\left(\frac{\sqrt{(g_1^1)^2 + (h_1^1)^2}}{g_1^0}\right)$ as a function of time. Does the present day dipole tilt behave like a beginning of a reversal?