

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2023

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 15 pages./ Hierdie nasienriglyne bestaan uit 15 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION 1/VRAAG 1

1.1.1	$x^{2}-7x+12=0$ $(x-4)(x-3)=0$ Answer only: Full Marks	✓ factors $\checkmark x = 4$ $\checkmark x = 3$ (3)
1.1.2	$3x^{2} + 5x - 1 = 0$ $x = \frac{-5 \pm \sqrt{5^{2} - 4(3)(-1)}}{2(3)} = \frac{-5 \pm \sqrt{37}}{6}$ $\therefore x = 0.18 \text{ or } x = -1.85$	✓ standard form ✓ substitution into the correct formula ✓ $x = 0.18$ ✓ $x = -1.85$ (4)
1.1.3	$x^{2} + 2x - 15 < 0$ $(x - 3)(x + 5) < 0$ $x = 3 \text{ or } x = -5$ $-5 < x < 3$	✓ standard form ✓ critical values ✓ ✓ answer (4)
1.1.4	$\sqrt{2(1-x)} = x-1$ $(\sqrt{2(1-x)})^2 = (x-1)^2$ $2-2x = x^2 - 2x + 1$ $x^2 - 1 = 0$ $\therefore x = 1 \text{and} x \neq -1$	✓ squaring both sides ✓ simplification ✓ standard form ✓ answer with selection (4)

1.2	$3^{x+y} = 27$		
	$x^2 + y^2 = 17$		
	$3^{x+y} = 3^3$	$\checkmark 3^{x+y} = 3^3$	
	$x + y = 3 \dots (1)$	$\checkmark x + y = 3$	
	y = 3 - x		
	$x^2 + (3 - x)^2 = 17$	✓substitution	
	$2x^2 - 6x - 8 = 0$		
	$x^2 - 3x - 4 = 0$	✓standard form	
	(x-4)(x+1)=0		
	x = 4 or x = -1	✓x-values	
	y = -1 or y = 4	✓y-values	(6)
	OR/OF	OR/OF	
	$3^{x+y} = 27$		
	$x^2 + y^2 = 17$		
	$3^{x+y} = 3^3$	$\checkmark 3^{x+y} = 3^3$	
	$x + y = 3 \dots (1)$	$\checkmark x + y = 3$	
	x = 3 - y		
	$(3-y)^2 + y^2 = 17$	✓substitution	
	$9 - 6y + y^2 + y^2 - 17 = 0$		
	$2y^2 - 6y - 8 = 0$		
	$y^2 - 3y - 4 = 0$	✓standard form	
	(y-4)(y+1) = 0		
	y = -1 or y = 4	✓y-values	
	x = 4 or x = -1	✓x-values	(6)

1.3	$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}$ $= \frac{1}{\sqrt{1} + \sqrt{2}} \times \frac{\sqrt{1} - \sqrt{2}}{\sqrt{1} - \sqrt{2}} + \dots$ $+ \frac{1}{\sqrt{99} + \sqrt{100}} \times \frac{\sqrt{99} - \sqrt{100}}{\sqrt{99} - \sqrt{100}}$	✓rationalisation	
	$\sqrt{99} + \sqrt{100} \sqrt{99} - \sqrt{100}$ $= -1 + \sqrt{2} - \sqrt{2} + \sqrt{3} - \sqrt{3} + 2 \dots - \sqrt{99} + 10$	✓ simplification	
	=-1+10		(2)
	= 9	✓ answer	(3)
			[24]

QUESTION 2/VRAAG 2

2.1.1	1 1 1	
	$\frac{1}{5} + \frac{1}{15} + \frac{1}{45} + \dots$	
	1	
	$r = \frac{\frac{1}{15}}{\frac{1}{5}} = \frac{1}{3}$ $-1 < \frac{1}{3} < 1$	$\checkmark r = \frac{1}{3}$
	$\frac{1}{2}$ 3	3
	5	
	$-1 < \frac{1}{2} < 1$	✓ answer (any indicator
	∴ the series is convergent.	of convergence) (2)
2.1.2		
	$S_{\infty} = \frac{a}{1 - r}$	
	1	
	$=\frac{\frac{1}{5}}{1-\frac{1}{3}}$	
	$1-\frac{1}{2}$	✓ substitution
	3	
	$=\frac{3}{10}$	✓ answer (2)
2.2.1	, 1	
	$4x$; $\frac{1}{81}$	$\checkmark 4x \checkmark \frac{1}{81} $ (2)
2.2.2	$T_n = x + (n-1)x$ Answer only:	✓ substitution
	= x + xn - x Full Marks	✓ answer (2)
2.2.3	= xn	✓ answer (2)
2.2.3	$T_n = ar^{n-1}$	
	$T_{13} = \frac{1}{3} \left(\frac{1}{3}\right)^{13-1}$	$\checkmark n = 13$
	3(3)	$\checkmark n = 13$ $\checkmark r = \frac{1}{3}$
	12	3
	$T_{13} = \left(\frac{1}{3}\right)^{13}$ or $\frac{1}{1594323}$ or $6,27 \times 10^{-7}$ or 3^{-13}	✓ answer (3)
	15 (3) 1594323	(6)
	21	
2.2.4	$\sum_{n=1}^{21} P_n = S_{11} + S_{10}$	$\checkmark S_{11} \checkmark + S_{10}$
		$\mathbf{v} \mathbf{s}_{11} \mathbf{v} + \mathbf{s}_{10}$
	$\frac{1}{1} \left 1 - \left(\frac{1}{1} \right)^{10} \right $	✓ arithmetic sum
	$=\frac{11}{2}\left[2x+10x\right]+\frac{3\left[3\right]}{2}$	✓ geometric sum
	$= \frac{11}{2} \left[2x + 10x \right] + \frac{\frac{1}{3} \left[1 - \left(\frac{1}{3} \right)^{10} \right]}{1 - \frac{1}{2}}$	
	= 66 x + 0.5	$\checkmark 66 x + 0.5$ (A)
	33.5 = 66 x + 0.5	$\checkmark 66 x + 0.5$ (A)
	$\therefore x = \frac{1}{2}$	✓ answer (6)
	$\frac{1}{2}$	` ,
		[17]

QUESTION 3/VRAAG 3

3.1 $x ; x ; T_3 ; \dots$ $0 T_3 - x$ 10	
2a = 10 $a = 5$ $3a + b = 0$ $b = -15$	$\checkmark 2a = 10$ $\checkmark 3a + b = 0$
$T_3 - x - 0 = 10$ $T_3 = x + 10$	$\checkmark T_3 = x + 10$
$2x + T_3 = 28$ $2x + x + 10 = 28$	$\checkmark 2x + T_3 = 28$
3x = 18 $x = 6$ $a + b + c = 6$	$\checkmark x = 6$
5-15+c=6 $c=16$	$\sqrt{5-15}+c=6$ (6)
$T_n = 5n^2 - 15n + 16$	
OR/OF	OR/OF
$2a = 10$ $\therefore a = 5$	$\checkmark 2a = 10$
$T_1 = a + b + c$ $T_2 = 4a + 2b + c$ $T_3 = 9a + 3b + c$ = $5 + b + c$ = $20 + 2b + c$ = $45 + 3b + c$	
5+b+c = 20+2b+c $b = -15$	$\checkmark 5 + b + c = 20 + 2b + c$
$T_1 = -10 + c$ $T_2 = -10 + c$ $T_3 = c$ $T_1 + T_2 + T_3 = -10 + c - 10 + c + c$	$\checkmark T_1 = -10 + c$ $\checkmark T_2 = -10 + c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\checkmark 28 = 3c - 20$
c=16	$\checkmark c = 16 \tag{6}$

3.2	$T_n = 5n^2 - 15n + 16$		
	$216 = 5n^2 - 15n + 16$	✓ equating	
	$5n^2 - 15n - 200 = 0$		
	$n^2 - 3n - 40 = 0$	✓ standard form	
	$(n-8)(n+5) = 0$ $n=8 \text{or} n \neq -5$		
	$n = 8 \text{or} n \neq -3$ $\therefore T_8 = 216$	$\checkmark n = 8$	(3)
	18 – 210		[9]
			[9]

QUESTION 4/VRAAG 4

4.1.1	decreasing	✓ decreasing	(1)
4.1.2	$y = \left(\frac{1}{3}\right)^x$		
	$x = \left(\frac{1}{3}\right)^{y}$	\checkmark swop x and y	
	$\therefore y = \log_{\frac{1}{3}} x$	✓ answer	(2)
	$ \mathbf{OR/OF} \\ y = 3^{-x} $	OR/OF	
	$y = 3$ $x = 3^{-y}$	\checkmark swop x and y	
	$\therefore y = -\log_3 x$	✓ answer	(2)
4.1.3	$x > 0; x \in R$	✓ answer	(1)
4.1.4	y = -5	✓ answer	(1)
4.2.1	x = 1	$\checkmark x = 1$	
	y = 2	$\checkmark y = 2$	(2)
4.2.2	$\frac{4}{x-1} + 2 = 0$ $4 = -2x + 2$ $2x = -2$	$\checkmark \text{ let } y = 0$	
	x = -1	$\checkmark x = -1$	(2)

QUESTION 5/VRAAG 5

5.1	T.P(-3;4)	√ -3	
		√ 4	(2)
5.2	$y \le 4$ or $y \in (-\infty; 4]$	✓answer	(1)
5.3	f(x) = g(x)		
	$-(x+3)^2 + 4 = x+5$	✓ equating	
	$-x^2 - 6x - 9 + 4 = x + 5$	$\sqrt{-x^2-6x-9}$	
	$-x^2 - 7x - 10 = 0$	✓ standard form	
	$x^2 + 7x + 10 = 0$	✓ factors	(4)
	(x+5)(x+2) = 0 x = -5 or $x = -2$	• factors	(4)
5.4	The graph must shift more than 2 and less than 5 units to the right		
	$\therefore -5 < c < -2$	✓✓answer	(2)
5.5	$D(x) = f(x) - g(x) = -x^2 - 7x - 10$	✓distance	(-)
	Max: $-2x-7=0$ OR/OF $x = \frac{-(-7)}{2(-1)}$	$\checkmark -2x - 7 = 0$	
	$x = -\frac{7}{2}$	$\checkmark x = -\frac{7}{2}$	
	$D\left(-\frac{7}{2}\right) = -\left(-\frac{7}{2}\right)^2 - 7\left(-\frac{7}{2}\right) - 10 = 2,25$		
	$\therefore k = 2,25$	✓ k = 2,25	
	$\therefore h(x) = x + 7.25$	$\checkmark h(x) = x + 7,25$	(5)
			[14]

QUESTION 6/VRAAG 6

6.1.1	$A = P(1+i)^n$	
01111	$A = 150\ 000(1+0.065)^5$	✓ substitution into the
	$A = 130\ 000(1 + 0.003)$ $A = R205\ 513$	correct formula
		✓ answer (2)
6.1.2	A = P(1 - in)	
	$A = 150\ 000(1 - 0.09 \times 5)$	✓ substitution into the
	$A = 150\ 000 - 67\ 000$	correct formula
(10	A = R82 500	✓ answer (2)
6.1.3	SF = A - T = 205 513 - 82 500	
	$= R123\ 013$	✓ answer
	$F = \frac{x[(1+i)^n - 1]}{i}$	
	$x = \frac{F \times i}{(1+i)^n - 1}$	
	$x = \frac{123\ 013 \times \frac{0,0785}{12}}{\left[\left(1 + \frac{0,0785}{12} \right)^{59} - 1 \right] \left(1 + \frac{0,0785}{12} \right)}$	$\checkmark i = \frac{0,0785}{12}$
	$\left[\left(1 + \frac{0,0785}{12} \right)^{39} - 1 \right] \left(1 + \frac{0,0785}{12} \right)$	✓ 59 and $\left(1 + \frac{0,0785}{12}\right)$ (A)
	= R1 704,01	✓ answer (A) (4)
6.2	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$200\ 000 = \frac{6\ 000 \left[1 - \left(1 + \frac{0,0525}{4}\right)^{-4n}\right]}{\frac{0,0525}{4}}$	✓ substitution into correct formula
	$\frac{7}{16} = 1 - \left(1 + \frac{0,0525}{4}\right)^{-4n}$	✓ simplification
	$\frac{9}{16} = \left(\frac{1621}{1600}\right)^{-4n}$	
	$-4n = \frac{\log \frac{9}{16}}{\log \left(\frac{1621}{1600}\right)}$	✓ use of logs
	-4n = -44,1243	$\checkmark -4n = -44,1243$
	n = 11,03 years	✓ $n = 11,03 \text{ years}$ (5)
		[13]

QUESTION 7/VRAAG 7

7.1	$f(x) = -2x^2 - 1$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{-2(x+h)^2 - 1 - (-2x^2 - 1)}{h}$	✓ substitution into the correct formula	
	$f'(x) = \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 - 1 + 2x^2 + 1}{h}$	$\checkmark -2x^2 - 4xh - 2h^2 - 1$	
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	$\checkmark -4xh-2h^2$	
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓ common factor	(-)
	=-4x	✓answer	(5)
	OR/OF	OR/OF	
	$f(x+h) = -2(x+h)^2 - 1$		
	$f(x+h) = -2x^{2} - 4xh - 2h^{2} - 1$ $f(x+h) - f(x) = -2x^{2} - 4xh - 2h^{2} - 1 + 2x^{2} + 1$	$\checkmark -2x^2 - 4xh - 2h^2 - 1$	
	$f(x+h)-f(x) = -2x^{2} - 4xh - 2h^{2} - 1 + 2x^{2} + 1$ $f(x+h)-f(x) = -4xh - 2h^{2}$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark -4xh-2h^2$	
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$ $h(-4x-2h)$	✓ substitution into the correct formula	
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓common factor	
	=-4x	✓answer	(5)
7.2.1	$f(x) = -2x^{3} + 3x^{2}$ $f'(x) = -6x^{2} + 6x$	$\begin{array}{c} \checkmark -6x^2 \\ \checkmark +6x \end{array}$	(2)
7.2.2	$f'(x) = -6x^2 + 6x$ $y = 2x + \frac{1}{\sqrt{4x}}$		
	$y = 2x + \frac{1}{2}x^{-\frac{1}{2}}$	$\checkmark \frac{1}{2} \checkmark x^{-\frac{1}{2}}$	
	$\frac{dy}{dx} = 2 - \frac{1}{4}x^{-\frac{3}{2}}$	$\checkmark 2 \checkmark -\frac{1}{4} x^{-\frac{3}{2}}$	(4)
7.3	x < 1	✓✓ answer	(2)
			[13]

QUESTION 8/VRAAG 8

8.1	y = -10	✓ answer	(1)
8.2	$f(x) = x^3 + 4x^2 - 7x - 10$		2
	$f(2) = 2^3 + 4(2)^2 - 7(2) - 10 = 0$	✓ substitution of $x = $ ✓ $f(2) = 0$	(2)
0.2	$f(x) = (x-2)(x^2 + 6x + 5)$		(2)
8.3	f(x) = (x-2)(x+6x+3) f(x) = (x-2)(x+5)(x+1)	$\checkmark (x-2)$ $\checkmark (x+5)$	
	f(x) = (x-2)(x+3)(x+1)		
		\checkmark $(x+1)$	(3)
8.4	-10 -10 -10 -10 -10 -10	✓ x- intercepts ✓ y-intercept ✓ sketching the grap with turning point 2 nd and 4 th quadran	s in
			(3)
8.5.1	$x \in (-3,4;0,7)$	$\checkmark \checkmark x \in (-3,4;0,7)$	(2)
	OR / OF $-3.4 < x < 0.7$		(2)
8.5.2	- 5,4 < \(\lambda\) < 0,7		
0.5.2	$f(x) = x^3 + 4x^2 - 7x - 10$		
	$f'(x) = 3x^2 + 8x - 7$	((() () () ()	
	f''(x) = 6x + 8 = 0	$\checkmark f''(x) = 6x + 8$	
	$\therefore x = -\frac{8}{6} = -\frac{4}{3} = -1,33$	✓ answer	(2)
	$\frac{1}{6} \frac{1}{3} \frac{1}$		
	OR/OF	OR/OF	
	$\frac{-3.4+0.7}{2} = -1.35 = -1.35$		
	${2}$ = -1,35 = -1,35	✓ substitution	(2)
		✓ answer	(2)
8.5.3	$x \le -3.4 \text{ or } -1.33 \le x \le 0.7$	$\checkmark x \le -3,4$ (A)	
	OR/OF	\checkmark -1,33 \le x \le 0,7	
	$x \in (-\infty; -3,4] \cup [-1,33; 0,7]$	(A 0,7)	
			(3)
			[16]

QUESTION 9/VRAAG 9

9.1	Perimeter of the square = $12-6x$	$\checkmark 12-6x$
	Side length of square $=\frac{12-6x}{4} = \frac{6-3x}{2} = 3 - \frac{3}{2}x$	✓ answer (2)
9.2	$V = \left(\frac{6-3x}{2}\right)^2 (4x)$	$\checkmark \left(\frac{6-3x}{2}\right)^2 (4x)$
	$= \left(\frac{36 - 36x + 9x^2}{4}\right)(4x)$	$\checkmark \left(\frac{36 - 36x + 9x^2}{4} \right)$
	$=36x - 36x^2 + 9x^3$	
	$V(x) = 36x - 36x^2 + 9x^3$	$\checkmark 36x - 36x^2 + 9x^3$
	$V'(x) = 36 - 72x + 27x^2$	$\bigvee V'$
	$36 - 72x + 27x^2 = 0$	$\begin{array}{c} \checkmark V' \\ \checkmark V' = 0 \end{array}$
	$9x^2 - 24x + 12 = 0$	
	$3x^2 - 8x + 4 = 0$	
	(3x-2)(x-2) = 0	
	$x = \frac{2}{3}$ or $x = 2$	✓ values
	$V\left(\frac{2}{3}\right) = 36\left(\frac{2}{3}\right) - 36\left(\frac{2}{3}\right)^2 + 9\left(\frac{2}{3}\right)^3$	
	$= \frac{32}{3} \mathrm{m}^3 = 10,67 \mathrm{m}^3$	✓ answer (7)
		[9]

QUESTION 10/VRAAG 10

10.1.1	Event A	Event B		
10.1.1	Z v cm r r	С	НС	✓ Event A
		$\frac{3}{5}$		
	<u>1</u> _H	~		✓ Event B Medication:
	$\frac{1}{2}$ H	$\frac{2}{N}$	IINI	for $P(C) = \frac{3}{5}$
		5	HN SC	5
	1	$\frac{2}{5}$ N $\frac{3}{10}$ C		✓ Event B sugar pill:
	$\frac{1}{2}$ S	10		for $P(NC) = \frac{7}{10}$
		7	CNI	$\frac{1011(140) - \frac{1}{10}}{10}$
		$\frac{7}{10}$ N	SN	(2)
10.1.2	P(Not Cured)	$= P(H) \times P(NC) + 1$	$P(S) \times P(NC)$	(3)
10.1.2	T (T (ot Curcu)			
		$= \left(\frac{1}{2}\right)\left(\frac{2}{5}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$	$\overline{10}$	✓substitution
		$=\frac{11}{20}=0.55$		✓answer (2)
10.2.1	D(A D) D	20	1.0	✓answer (2)
10.2.1		(A) + P(B) - P(A an	d B)	
	P(A and B) =	$\frac{13}{20} - \frac{2}{5} - \frac{1}{4} = 0$		✓ substitution
		20 0 .		
	Events are mu	tually exclusive		✓ answer $(P(A \text{ and } B) = 0)$
	OR/OF			OR/OF (2)
		2 1		OK/OF
	P(A) + P(B) =	$\frac{-}{5} + \frac{-}{4}$		✓ substitution
	=	<u>13</u>		
	D(A - : D) D	20 (A) + P(P)		
	P(A or B) = P(A and B) = 0			
		tually exclusive		✓ answer ($P(A \text{ and } B) = 0$)
		-		(2)

10.2.2	$P(B \text{ and } C) = \frac{1}{5} = 0.2$	\checkmark P(B and C) = $\frac{1}{5}$ (A)		
	P(only C) = $\frac{7}{10} - \frac{2}{5} - \frac{1}{5} = \frac{1}{10} = 0,1$		$\sqrt{\frac{7}{10} - \frac{2}{5} - \frac{1}{5}}$	
	$ \begin{array}{c c} A & C \\ \hline 0 & \frac{2}{5} & \frac{1}{10} \end{array} $	$ \begin{array}{c c} B \\ \hline \frac{1}{5} & \frac{1}{20} \end{array} $	$\checkmark \frac{1}{10}$	(3)
10.2.3	P(no event) = $1 - \left(\frac{2}{5} + \frac{1}{10} + \frac{1}{5} + \frac{1}{20}\right)$	\checkmark 1 – (P(A) or P(B) or P(C))		
	$(5 \ 10 \ 5 \ 20)$	✓answer	(2)	
10.3.1	$3! \times 5!$ $= 720$	Answer only: Full Marks	✓ 3! ✓ 3! × 5! (A)	(2)
10.3.2	$\frac{7! - 6! \times 2}{7!} = \frac{5}{7} = 0,71$		✓ 7!-6!×2 ✓ denominator (7!) ✓ answer	(3)
	$ \mathbf{OR}/\mathbf{OF} \\ 1 - \frac{6! \times 2}{7!} \\ = 1 - \frac{2}{7} $	OR/OF ✓ 6!×2 ✓ denominator (7!)		
	$\frac{7}{5} = \frac{5}{7} = 0.71$		✓ answer	(3)
				[17]

TOTAL/TOTAAL: 150