

BANK MARKETING ANALYSIS

PROJECT

OF

MACHINE LEARNING

(SPRING 2022)

PREPARED BY: **SOHIL VHORA**MENTOR: **DR.SALMA PIRZADA**

BSc. Data Science

20167007

Bank Marketing Dataset

This dataset refers to the problem of telemarketing for a bank. The dataset is collected from a Portuguese bank and the bank wants to have an effective telemarketing strategy to sell long-term deposit accounts (e.g., bonds, saving accounts, etc.). These marketing campaigns were based on phone calls and multiple contacts were often needed to determine whether a customer would subscribe to a long-term deposit account. Your team of data scientists will help this bank in determining such customers and devising an effective telemarketing strategy by applying data analytics method on the given dataset.

- 1. Age: Age of the customer (numeric).
- 2. Job: Type of job (qualitative).
- 3. Marital: Marital status (qualitative).
- 4. Education: Education of the customer (qualitative).
- 5. Default: Shows whether the customer has credit in default or not (qualitative).
- 6. Balance: Average yearly balance in Euros (numeric).
- 7. Housing: Shows whether the customer has housing loan or not (qualitative).
- 8. Loan: Shows whether the customer has personal loan or not (qualitative/categorical).
- Contact: Shows how the last contact for marketing campaign has been made (qualitative)
- 10. Day: Shows on which day of the month last time customer was contacted (numeric).
- 11. Month: Shows on which month of the year last time customer was contacted (qualitative).
- 12. Duration: Shows the last contact duration in seconds (numeric).
- 13. Campaign: Number of contacts performed during the marketing campaign and for this customer (numeric).
- 14. Pdays: Number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted).
- 15. Previous: Number of contacts performed before this campaign and for this client (numeric).
- 16. Poutcome: Outcome of the previous marketing campaign (qualitative).
- 17. Y Class attribute showing whether the client has subscribed a term deposit or not (binary: "yes","no")

IMPORTING LIBRARIES

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import seaborn as sns
```

LOADING, DISPLAYING AND PLOTTING DATA

LOADING DATA

Below are the list of column we have in our data:

- 1. Age: Age of the customer (numeric).
- 2. Job: Type of job (qualitative).
- 3. Marital: Marital status (qualitative).
- 4. Education: Education of the customer (qualitative).
- 5. Default: Shows whether the customer has credit in default or not (qualitative).
- 6. Balance: Average yearly balance in Euros (numeric).
- 7. Housing: Shows whether the customer has housing loan or not (qualitative).
- 8. Loan: Shows whether the customer has personal loan or not (qualitative/categorical).
- 9. Contact: Shows how the last contact for marketing campaign has been made (qualitative)
- 10. Day: Shows on which day of the month last time customer was contacted (numeric).
- 11. Month: Shows on which month of the year last time customer was contacted (qualitative).
- 12. Duration: Shows the last contact duration in seconds (numeric).
- 13. Campaign: Number of contacts performed during the marketing campaign and for this customer (numeric).
- 14. Pdays: Number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted).
- 15. Previous: Number of contacts performed before this campaign and for this client (numeric).
- 16. Poutcome: Outcome of the previous marketing campaign (qualitative).
- 17. Y Class attribute showing whether the client has subscribed a term deposit or not (binary: "yes", "no")

In [3]:

```
# Load dataset
df_bank = pd.read_csv('bank.csv')

# Drop 'duration' column
df_bank = df_bank.drop('duration', axis=1)

# print(df_bank.info())
print('Shape of dataframe:', df_bank.shape)
df_bank.head()
```

Shape of dataframe: (4521, 16)

Out[3]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mo
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	n
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	n
4											•

VIEW DATASET DETAILS

In [4]:

```
#SHAPE
df_bank.shape
```

Out[4]:

(4521, 16)

We have 4521 rows and 16 columns in our banking dataset.

DATA TYPES OF COLUMNS

In [5]:

```
df_bank.dtypes
```

Out[5]:

```
int64
age
job
             object
marital
             object
education
             object
default
             object
balance
              int64
housing
             object
loan
             object
contact
             object
day
              int64
month
             object
campaign
              int64
pdays
              int64
previous
              int64
poutcome
             object
             object
dtype: object
```

We can see, some columns are object types, that we have to convert them into numerical data. Before that let us visualize our dataset.

VISUALIZE DATASET

Let us see the count of each type of job.

In [6]:

```
job_count = df_bank['job'].value_counts()
job_count
```

Out[6]:

```
management
                 969
blue-collar
                 946
technician
                 768
admin.
                 478
services
                 417
retired
                 230
self-employed
                 183
entrepreneur
                 168
unemployed
                 128
housemaid
                 112
student
                  84
                   38
unknown
Name: job, dtype: int64
```

In [7]:

```
plt.figure(figsize = (8, 5))
job_count.plot(kind = "bar")
plt.title("Type of Job Distribution")
```

Out[7]:

Text(0.5, 1.0, 'Type of Job Distribution')

PLOT DEFAULT COLUMN

Column default says that client has credit in default or not. It has categorical value: 'no','yes','unknown'.

In [8]:

```
default_count = df_bank['default'].value_counts()
default_count
```

Out[8]:

no 4445 yes 76

Name: default, dtype: int64

In [9]:

```
plt.figure(figsize = (8, 5))
default_count.plot(kind='bar').set(title='Default Column Distribution')
```

Out[9]:

[Text(0.5, 1.0, 'Default Column Distribution')]

PLOT MARITAL STATUS

In [10]:

```
marital_count = df_bank['marital'].value_counts()
marital_count
```

Out[10]:

married 2797 single 1196 divorced 528

Name: marital, dtype: int64

In [11]:

```
plt.figure(figsize = (8, 5))
marital_count.plot(kind = "bar").set(title = "Merital Distribution")
```

Out[11]:

[Text(0.5, 1.0, 'Merital Distribution')]

PLOT THAT CUSTOMER HAS PERSONAL LOAN OR NOT

In [12]:

```
loan_count = df_bank['loan'].value_counts()
loan_count
```

Out[12]:

no 3830 yes 691

Name: loan, dtype: int64

In [13]:

```
plt.figure(figsize = (8, 5))
loan_count.plot(kind = "bar").set(title = "Loan Distribution")
```

Out[13]:

[Text(0.5, 1.0, 'Loan Distribution')]

As per data, some client has taken the personal loan.

PLOT THAT CLIENT HAS HOUSING LOAN OR NOT

In [14]:

```
housing_count = df_bank['housing'].value_counts()
housing_count
```

Out[14]:

yes 2559 no 1962

Name: housing, dtype: int64

In [15]:

```
plt.figure(figsize = (8, 5))
housing_count.plot(kind = "bar").set(title = "Housing Loan Distribution")
```

Out[15]:

[Text(0.5, 1.0, 'Housing Loan Distribution')]

Most of the client has taken the housing loan.

PLOT EDUCATION COLUMN

In [16]:

```
education_count = df_bank['education'].value_counts()
education_count
```

Out[16]:

secondary 2306 tertiary 1350 primary 678 unknown 187

Name: education, dtype: int64

In [17]:

```
plt.figure(figsize = (8, 5))
education_count.plot(kind = "bar").set(title = "Education Column Distribution")
```

Out[17]:

[Text(0.5, 1.0, 'Education Column Distribution')]

PLOT CONTACT COLUMN

Contact column says client were contacted by cellular or telephone.

In [18]:

```
contact_count = df_bank['contact'].value_counts()
contact_count
```

Out[18]:

cellular 2896 unknown 1324 telephone 301

Name: contact, dtype: int64

In [19]:

```
plt.figure(figsize = (8, 5))
contact_count.plot(kind = "bar").set(title = "Contact Column Distribution")
```

Out[19]:

[Text(0.5, 1.0, 'Contact Column Distribution')]

PLOT MONTH COLUMN

In [20]:

```
month_count = df_bank['month'].value_counts()
month_count
```

Out[20]:

```
may
       1398
        706
jul
aug
        633
        531
jun
nov
        389
apr
        293
feb
        222
jan
        148
oct
         80
         52
sep
         49
mar
dec
         20
Name: month, dtype: int64
```

In [21]:

```
plt.figure(figsize = (8, 5))
month_count.plot(kind = "bar").set(title = "Month Data Distribution")
```

Out[21]:

[Text(0.5, 1.0, 'Month Data Distribution')]

PLOT pdays COLUMN

'pdays' column into a binary variable indicating whether they were contacted or not.

In [22]:

```
plt.figure(figsize = (8, 5))
df_bank['pdays'].hist(bins = 50)
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0afda5e10>

PLOT pdays WHOSE VALUES IS GREATER THAN 0

In [23]:

```
plt.figure(figsize = (8, 5))
df_bank[df_bank['pdays'] > 0]['pdays'].hist(bins=50)
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0aff23518>

PLOT TARGET COLUMN

In [24]:

```
target_count = df_bank['y'].value_counts()
target_count
```

Out[24]:

no 4000 yes 521

Name: y, dtype: int64

In [25]:

```
plt.figure(figsize = (8, 5))
target_count.plot(kind = "bar").set(title = "Target Distribution")
```

Out[25]:

[Text(0.5, 1.0, 'Target Distribution')]

PLOT THAT CLIENT HAS SUBSCRIBED A TERM DEPOSIT

In [26]:

```
df_bank[df_bank['y'] == 'yes'].hist(figsize = (20,20))
plt.title('Client has subscribed a term deposite')
```

Out[26]:

Text(0.5, 1.0, 'Client has subscribed a term deposite')

In [27]:

```
df_bank[df_bank['y'] == 'no'].hist(figsize = (20,20))
plt.title('Client has not subscribed a term deposite')
```

Out[27]:

Text(0.5, 1.0, 'Client has not subscribed a term deposite')

DATA PREPROCESSING

In [28]:

df_bank.head(10)

Out[28]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mo
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	n
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	n
5	35	management	single	tertiary	no	747	no	no	cellular	23	
6	36	self- employed	married	tertiary	no	307	yes	no	cellular	14	n
7	39	technician	married	secondary	no	147	yes	no	cellular	6	n
8	41	entrepreneur	married	tertiary	no	221	yes	no	unknown	14	n
9	43	services	married	primary	no	-88	yes	yes	cellular	17	

→

We can see there are some binary columns(default, housing, loan) which are object type, we need to convert into numeric value.

There are categorical columns also, but there are a limited number of choices. They are job, marital, education, contact, month, and poutcome. That also need to converted into numerical format.

All feature columns we need to convert into numeric values then only we can feed into the model.

CONVERT DEFAULT COLUMN INTO NUMERIC VALUE

We can convert the yes values to 1, and the no values to 0 for default column.

In [29]:

```
df_bank['is_default'] = df_bank['default'].apply(lambda row: 1 if row == 'yes' else 0)
```

In [30]:

```
df_bank[['default','is_default']].tail(10) #view
```

Out[30]:

	default	is_default
4511	no	0
4512	no	0
4513	no	0
4514	no	0
4515	no	0
4516	no	0
4517	yes	1
4518	no	0
4519	no	0
4520	no	0

CONVERT HOUSING COLUMN INTO NUMERIC VALUE

For housing column also we will do the same.

In [31]:

```
df_bank['is_housing'] = df_bank['housing'].apply(lambda row: 1 if row == 'yes' else 0)
df_bank[['housing','is_housing']].tail(10)
```

Out[31]:

	housing	is_housing
4511	yes	1
4512	yes	1
4513	no	0
4514	yes	1
4515	yes	1
4516	yes	1
4517	yes	1
4518	no	0
4519	no	0
4520	yes	1

CONVERT LOAN COLUMN INTO NUMERIC VALUE

In [32]:

```
df_bank['is_loan'] = df_bank['loan'].apply(lambda row: 1 if row == 'yes' else 0)

df_bank[['loan', 'is_loan']].tail(10)
```

Out[32]:

	loan	is_loan
4511	no	0
4512	no	0
4513	no	0
4514	no	0
4515	no	0
4516	no	0
4517	yes	1
4518	no	0
4519	no	0
4520	yes	1

CONVERT TARGET COLUMN 'y' INTO NUMERIC VALUE

In [33]:

```
df_bank['target'] = df_bank['y'].apply(lambda row: 1 if row == 'yes' else 0)
df_bank[['y', 'target']].tail(10)
```

Out[33]:

	у	target
4511	yes	1
4512	no	0
4513	no	0
4514	no	0
4515	no	0
4516	no	0
4517	no	0
4518	no	0
4519	no	0
4520	no	0

CREATING ONE-HOT ENCODING FOR NON-NUMERIC MARITAL COLUMN

For marital column, we have three values married, single and divorced. We will use pandas' get_dummies function to convert categorical variable into dummy/indicator variables.

In [34]:

```
marital_dummies = pd.get_dummies(df_bank['marital'], prefix = 'marital')
marital_dummies.tail()
```

Out[34]:

	marital_divorced	marital_married	marital_single
4516	0	1	0
4517	0	1	0
4518	0	1	0
4519	0	1	0
4520	0	0	1

In [35]:

```
# Merge marital_dummies with marital column
pd.concat([df_bank['marital'], marital_dummies], axis=1).head(n=10)
```

Out[35]:

	marital	marital_divorced	marital_married	marital_single
0	married	0	1	0
1	married	0	1	0
2	single	0	0	1
3	married	0	1	0
4	married	0	1	0
5	single	0	0	1
6	married	0	1	0
7	married	0	1	0
8	married	0	1	0
9	married	0	1	0

We can see in each of the rows there is one value of 1, which is in the column corresponding the value in the marital column.

There are three values, if two of the values in the dummy columns are 0 for a particular row, then the remaining column must be equal to 1. It is important to eliminate any redundancy and correlations in features as it becomes difficult to determine which feature is most important in minimizing the total error.

So let us remove one column divorced.

In [36]:

```
# Remove marital_divorced column
marital_dummies.drop('marital_divorced', axis=1, inplace=True)
marital_dummies.head()
```

Out[36]:

	marital_married	marital_single
0	1	0
1	1	0
2	0	1
3	1	0
4	1	0

In [37]:

```
# Merge marital_dummies into main dataframe

df_bank = pd.concat([df_bank, marital_dummies], axis=1)
df_bank.head()
```

Out[37]:

	age	job	marital	education	default	balance	housing	loan	contact	day	
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	

5 rows × 22 columns

CREATING ONE HOT ENCODING FOR JOB COLUMN

In [38]:

```
job_dummies = pd.get_dummies(df_bank['job'], prefix = 'job')
job_dummies.tail()
```

Out[38]:

	job_admin.	job_blue- collar	job_entrepreneur	job_housemaid	job_management	job_retired
4516	0	0	0	0	0	0
4517	0	0	0	0	0	0
4518	0	0	0	0	0	0
4519	0	1	0	0	0	0
4520	0	0	1	0	0	0

→

In [39]:

```
job_dummies.drop('job_unknown', axis=1, inplace=True)
```

In [40]:

```
# Merge job_dummies into main dataframe

df_bank = pd.concat([df_bank, job_dummies], axis=1)
df_bank.head()
```

Out[40]:

	age	job	marital	education	default	balance	housing	loan	contact	day	
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	

5 rows × 33 columns

CREATING ONE HOT ENCODING FOR EDUCATION COLUMN

In [41]:

```
education_dummies = pd.get_dummies(df_bank['education'], prefix = 'education')
education_dummies.tail()
```

Out[41]:

	education_primary	education_secondary	education_tertiary	education_unknown
4516	0	1	0	0
4517	0	0	1	0
4518	0	1	0	0
4519	0	1	0	0
4520	0	0	1	0

In [42]:

```
education_dummies.drop('education_unknown', axis=1, inplace=True)
education_dummies.tail()
```

Out[42]:

	education_primary	education_secondary	education_tertiary
4516	0	1	0
4517	0	0	1
4518	0	1	0
4519	0	1	0
4520	0	0	1

In [43]:

```
df_bank = pd.concat([df_bank, education_dummies], axis=1)
df_bank.head()
```

Out[43]:

	age	job	marital	education	default	balance	housing	loan	contact	day	
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	

5 rows × 36 columns

In [44]:

```
contact_dummies = pd.get_dummies(df_bank['contact'], prefix = 'contact')
contact_dummies.tail()
```

Out[44]:

	contact_cellular	contact_telephone	contact_unknown
4516	1	0	0
4517	0	0	1
4518	1	0	0
4519	1	0	0
4520	1	0	0

In [45]:

```
contact_dummies.drop('contact_unknown', axis=1, inplace=True)
contact_dummies.tail()
```

Out[45]:

contact_cellular contact_telephone 4516 1 0 4517 0 0 4518 1 0 4519 1 0 4520 1 0

In [46]:

```
df_bank = pd.concat([df_bank, contact_dummies], axis=1)
df_bank.head()
```

•

Out[46]:

	age	job	marital	education	default	balance	housing	loan	contact	day	
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	

5 rows × 38 columns

In [47]:

```
poutcome_dummies = pd.get_dummies(df_bank['poutcome'], prefix = 'poutcome')
poutcome_dummies.tail()
```

Out[47]:

	poutcome_failure	poutcome_other	poutcome_success	poutcome_unknown
4516	0	0	0	1
4517	0	0	0	1
4518	0	0	0	1
4519	0	1	0	0
4520	0	1	0	0

In [48]:

```
poutcome_dummies.drop('poutcome_unknown', axis=1, inplace=True)
poutcome_dummies.tail()
```

Out[48]:

	poutcome_failure	poutcome_other	poutcome_success
4516	0	0	0
4517	0	0	0
4518	0	0	0
4519	0	1	0
4520	0	1	0

In [49]:

```
df_bank = pd.concat([df_bank, poutcome_dummies], axis=1)
df_bank.head()
```

Out[49]:

	age	job	marital	education	default	balance	housing	loan	contact	day	
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	

5 rows × 41 columns

```
In [50]:
```

```
months = {'jan':1, 'feb':2, 'mar':3, 'apr':4, 'may':5, 'jun':6, 'jul':7, 'aug':8, 'sep'
:9, 'oct':10, 'nov':11, 'dec': 12}
df_bank['month'] = df_bank['month'].map(months)
df_bank['month'].head()
```

Out[50]:

0 10 1 5 2 4 3 6

4

Name: month, dtype: int64

pdays COLUMN

5

'pdays' column indicates the number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted). If the value of 'pdays' is '-1', if so we will associate that with a value of 0,

In [51]:

```
df_bank[df_bank['pdays'] == -1]['pdays'].count()
```

Out[51]:

3705

In [52]:

```
df_bank['was_contacted'] = df_bank['pdays'].apply(lambda row: 0 if row == -1 else 1)
df_bank[['pdays','was_contacted']].head()
```

Out[52]:

	pdays	was_contacted
0	-1	0
1	339	1
2	330	1
3	-1	0
4	-1	0

In [53]:

```
df_bank.drop(['job', 'education', 'marital', 'default', 'housing', 'loan', 'contact',
'pdays', 'poutcome', 'y'], axis=1, inplace=True)
```

View After converting all columns into numeric column

In [59]:

df_bank.dtypes

Out[59]:

int64 age balance int64 day int64 month int64 campaign int64 previous int64 is_default int64 is_housing int64 is_loan int64 target int64 marital_married uint8 marital_single uint8 job_admin. uint8 job_blue-collar uint8 job_entrepreneur uint8 job_housemaid uint8 job_management uint8 job_retired uint8 job_self-employed uint8 job_services uint8 job_student uint8 job_technician uint8 job_unemployed uint8 education_primary uint8 education_secondary uint8 education_tertiary uint8 contact_cellular uint8 contact_telephone uint8 poutcome_failure uint8 poutcome_other uint8 poutcome_success uint8 was_contacted int64

dtype: object

In [60]:

```
df_bank.head(10)
```

Out[60]:

	age	balance	day	month	campaign	previous	is_default	is_housing	is_loan	target	<u></u>
0	30	1787	19	10	1	0	0	0	0	0	
1	33	4789	11	5	1	4	0	1	1	0	
2	35	1350	16	4	1	1	0	1	0	0	
3	30	1476	3	6	4	0	0	1	1	0	
4	59	0	5	5	1	0	0	1	0	0	
5	35	747	23	2	2	3	0	0	0	0	
6	36	307	14	5	1	2	0	1	0	0	
7	39	147	6	5	2	0	0	1	0	0	
8	41	221	14	5	2	0	0	1	0	0	
9	43	-88	17	4	1	2	0	1	1	0	

10 rows × 32 columns

```
→
```

CONVERT INTO X(features) and y(target)

```
In [61]:
```

```
#The axis=1 argument drop columns
X = df_bank.drop('target', axis=1)
y = df_bank['target']
```

SHAPE of X and y

In [62]:

```
X.shape
```

Out[62]:

(4521, 31)

In [63]:

```
y.shape
```

Out[63]:

(4521,)

DIVIDE FEATURES AND TARGET INTO TRAIN AND TEST DATA

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
= 32)
VIEW THE SHAPE OF X_train, X_test, y_train, y_test
In [65]:
X_train.shape
Out[65]:
(3616, 31)
In [66]:
y_train.shape
Out[66]:
(3616,)
In [67]:
X_test.shape
Out[67]:
(905, 31)
In [68]:
y_test.shape
Out[68]:
```

MODELLING

(905,)

In [64]:

In [69]:

```
def evaluate model(model, X test, y test):
   from sklearn import metrics
    # Predict Test Data
   y pred = model.predict(X_test)
   # Calculate accuracy, precision, recall, f1-score, and kappa score
    acc = metrics.accuracy_score(y_test, y_pred)
    prec = metrics.precision_score(y_test, y_pred)
    rec = metrics.recall_score(y_test, y_pred)
    f1 = metrics.f1_score(y_test, y_pred)
    kappa = metrics.cohen_kappa_score(y_test, y_pred)
   # Calculate area under curve (AUC)
   y_pred_proba = model.predict_proba(X_test)[::,1]
    fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
    auc = metrics.roc_auc_score(y_test, y_pred_proba)
    # Display confussion matrix
    cm = metrics.confusion_matrix(y_test, y_pred)
    return {'acc': acc, 'prec': prec, 'rec': rec, 'f1': f1, 'kappa': kappa,
            'fpr': fpr, 'tpr': tpr, 'auc': auc, 'cm': cm}
```

After making sure our data is good and ready we can continue to building our model. In this notebook we will try to build 4 different models with different algorithm. In this step we will create a baseline model for each algorithm using the default paramaeters set by sklearn and after building all 4 of our models we will compare them to see which works best for our case.

DECISION TREE

Decision tree is a tree shaped diagram used to determine a course of action. Each branch of the tree represents a possible decision, occurrence or reaction.

BUILDING MODEL

```
In [70]:
```

In [71]:

```
# Evaluate Model
dtc_eval = evaluate_model(dtc, X_test, y_test)

# Print result
print('Accuracy:', dtc_eval['acc'])
print('Precision:', dtc_eval['prec'])
print('Recall:', dtc_eval['rec'])
print('F1 Score:', dtc_eval['f1'])
print('Cohens Kappa Score:', dtc_eval['kappa'])
print('Area Under Curve:', dtc_eval['auc'])
print('Confusion Matrix:\n', dtc_eval['cm'])
```

Accuracy: 0.8121546961325967 Precision: 0.1984126984126984 Recall: 0.26595744680851063 F1 Score: 0.22727272727273

Cohens Kappa Score: 0.12292203498050303 Area Under Curve: 0.5707099194585094

Confusion Matrix:

[[710 101] [69 25]]

RANDOM FOREST

Random forest or Random Decision Forest is a method that operates by constructing multiple decision trees during training phases. The decision of the majority of the trees is chosen as final decision.

BUILDING MODEL

```
In [72]:
```

```
from sklearn.ensemble import RandomForestClassifier
# Building Random Forest model
rf = RandomForestClassifier(random state=0)
rf.fit(X_train, y_train)
C:\Users\sohil\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245:
FutureWarning: The default value of n_estimators will change from 10 in ve
rsion 0.20 to 100 in 0.22.
  "10 in version 0.20 to 100 in 0.22.", FutureWarning)
Out[72]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gin
                       max_depth=None, max_features='auto', max_leaf_nodes
=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=10,
                       n_jobs=None, oob_score=False, random_state=0, verbo
se=0,
                       warm_start=False)
MODEL EVALUATION
```

In [73]:

```
# Evaluate Model
rf_eval = evaluate_model(rf, X_test, y_test)

# Print result
print('Accuracy:', rf_eval['acc'])
print('Precision:', rf_eval['prec'])
print('Recall:', rf_eval['rec'])
print('F1 Score:', rf_eval['f1'])
print('Cohens Kappa Score:', rf_eval['kappa'])
print('Area Under Curve:', rf_eval['auc'])
print('Confusion Matrix:\n', rf_eval['cm'])
```

Accuracy: 0.8994475138121547 Precision: 0.55555555555556 Recall: 0.1595744680851064 F1 Score: 0.24793388429752067

Cohens Kappa Score: 0.21137806547989535 Area Under Curve: 0.7278379725581762

Confusion Matrix:

[[799 12] [79 15]]

NAIVE BAYES

Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set. There is not a single algorithm for training such classifiers, but a family of algorithms based on a common principle: all naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable.

BUILDING MODEL

In [74]:

```
from sklearn.naive_bayes import GaussianNB

# Building Naive Bayes model
nb = GaussianNB()
nb.fit(X_train, y_train)
```

Out[74]:

GaussianNB(priors=None, var_smoothing=1e-09)

MODEL EVALUATION

In [75]:

```
# Evaluate Model
nb_eval = evaluate_model(nb, X_test, y_test)

# Print result
print('Accuracy:', nb_eval['acc'])
print('Precision:', nb_eval['prec'])
print('Recall:', nb_eval['rec'])
print('F1 Score:', nb_eval['f1'])
print('Cohens Kappa Score:', nb_eval['kappa'])
print('Area Under Curve:', nb_eval['auc'])
print('Confusion Matrix:\n', nb_eval['cm'])
```

Confusion Matrix:

[[715 96] [56 38]]

K-NEAREST NEIGHBORS

K-Nearest Neighbors (KNN) classify new data by finding k-number of closest neighbor from the training data and then decide the class based on the majority of it's neighbors.

BUILDING MODEL

```
In [76]:
```

```
from sklearn.neighbors import KNeighborsClassifier

# Building KNN model
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
```

Out[76]:

In [77]:

```
# Evaluate Model
knn_eval = evaluate_model(knn, X_test, y_test)

# Print result
print('Accuracy:', knn_eval['acc'])
print('Precision:', knn_eval['prec'])
print('Recall:', knn_eval['rec'])
print('F1 Score:', knn_eval['f1'])
print('Cohens Kappa Score:', knn_eval['kappa'])
print('Area Under Curve:', knn_eval['auc'])
print('Confusion Matrix:\n', knn_eval['cm'])
```

Accuracy: 0.8939226519337017

Precision: 0.25

Recall: 0.010638297872340425 F1 Score: 0.02040816326530612

Cohens Kappa Score: 0.01203120380267908 Area Under Curve: 0.5475706377731722

Confusion Matrix:

[[808 3] [93 1]]

LOGISTIC REGRESSION

```
In [78]:
```

MODEL EVALUATION

In [79]:

```
# Evaluate Model
logr_eval = evaluate_model(logr, X_test, y_test)

# Print result
print('Accuracy:', logr_eval['acc'])
print('Precision:', logr_eval['prec'])
print('Recall:', logr_eval['rec'])
print('F1 Score:', logr_eval['f1'])
print('Cohens Kappa Score:', logr_eval['kappa'])
print('Area Under Curve:', logr_eval['auc'])
print('Confusion Matrix:\n', logr_eval['cm'])
```

Cohens Kappa Score: 0.2390347875398423 Area Under Curve: 0.7008027914054097 Confusion Matrix:

[[803 8] [78 16]]

MODEL COMPARISON

After building all of our model, we can now compare how well each model perform. To do this we will create two chart, first is a grouped bar chart to display the value of accuracy, precision, recall, f1, and kappa score of our model, and second a line chart to show the AUC of all our models.

```
# Intitialize figure with two plots
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Model Comparison', fontsize=16, fontweight='bold')
fig.set figheight(7)
fig.set_figwidth(14)
fig.set_facecolor('white')
# First plot
## set bar size
barWidth = 0.2
dtc_score = [dtc_eval['acc'], dtc_eval['prec'], dtc_eval['rec'], dtc_eval['f1'], dtc_ev
al['kappa']]
rf_score = [rf_eval['acc'], rf_eval['prec'], rf_eval['rec'], rf_eval['f1'], rf_eval['ka
nb_score = [nb_eval['acc'], nb_eval['prec'], nb_eval['rec'], nb_eval['f1'], nb_eval['ka
ppa']]
knn_score = [knn_eval['acc'], knn_eval['prec'], knn_eval['rec'], knn_eval['f1'], knn_ev
al['kappa']]
logr_score = [logr_eval['acc'], logr_eval['prec'], logr_eval['rec'], logr_eval['f1'], l
ogr_eval['kappa']]
## Set position of bar on X axis
r1 = np.arange(len(dtc score))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
r4 = [x + barWidth for x in r3]
r5 = [x + barWidth for x in r4]
## Make the plot
ax1.bar(r1, dtc_score, width=barWidth, edgecolor='white', label='Decision Tree')
ax1.bar(r2, rf_score, width=barWidth, edgecolor='white', label='Random Forest')
ax1.bar(r3, nb_score, width=barWidth, edgecolor='white', label='Naive Bayes')
ax1.bar(r4, knn_score, width=barWidth, edgecolor='white', label='K-Nearest Neighbors')
ax1.bar(r5, logr_score, width=barWidth, edgecolor='white', label='Logistic Regression')
## Configure x and y axis
ax1.set_xlabel('Metrics', fontweight='bold')
labels = ['Accuracy', 'Precision', 'Recall', 'F1', 'Kappa']
ax1.set_xticks([r + (barWidth * 1.5) for r in range(len(dtc_score))], )
ax1.set xticklabels(labels)
ax1.set ylabel('Score', fontweight='bold')
ax1.set_ylim(0, 1)
## Create legend & title
ax1.set_title('Evaluation Metrics', fontsize=14, fontweight='bold')
ax1.legend()
# Second plot
## Comparing ROC Curve
ax2.plot(dtc_eval['fpr'], dtc_eval['tpr'], label='Decision Tree, auc = {:0.5f}'.format(
dtc_eval['auc']))
ax2.plot(rf_eval['fpr'], rf_eval['tpr'], label='Random Forest, auc = {:0.5f}'.format(rf
_eval['auc']))
ax2.plot(nb_eval['fpr'], nb_eval['tpr'], label='Naive Bayes, auc = {:0.5f}'.format(nb_e
val['auc']))
ax2.plot(knn_eval['fpr'], knn_eval['tpr'], label='K-Nearest Nieghbor, auc = {:0.5f}'.fo
rmat(knn_eval['auc']))
ax2.plot(logr_eval['fpr'], logr_eval['tpr'], label='Logistic Regression, auc = {:0.5f}'
.format(logr_eval['auc']))
```

```
## Configure x and y axis
ax2.set_xlabel('False Positive Rate', fontweight='bold')
ax2.set_ylabel('True Positive Rate', fontweight='bold')

## Create Legend & title
ax2.set_title('ROC Curve', fontsize=14, fontweight='bold')
ax2.legend(loc=5)

plt.show()
```

Model Comparison Evaluation Metrics ROC Curve 1.0 Decision Tree 1.0 Random Forest Naive Bayes K-Nearest Neighbors Logistic Regression 0.8 0.8 **Frue Positive Rate** 0.6 Decision Tree, auc = 0.57071 Random Forest, auc = 0.72784 Naive Baves, auc = 0.69878 K-Nearest Nieghbor, auc = 0.54757 Logistic Regression, auc = 0.70080 0.4 0.4 0.2 0.0 0.0 0.8 10

Overall, Logistic Regression is the top contributor in four out of six categories, except recall and F1 score. So we can assume that Logistic Regression is the right choice to solve our problem.

False Positive Rate

MODEL OPTIMIZATION

Now, we will try to optimise our RandomForest model by tuning the hyper parameters available from the scikit-learn library. After finding the optimal parameters we will then evaluate our new model by comparing it against our base line model before.

Tuning Hyperparameter with GridSearchCV

We will use GridSearchCV functionality from sklearn to find the optimal parameter for our model. We will provide our baseline model (named rf_grids), scoring method (in our case we will use recall as explained before), and also various parameters value we want to try with our model. The GridSearchCV function will then iterate through each parameters combination to find the best scoring parameters.

This function also allow us to use cross validation to train our model, where on each iteration our data will be divided into 5 (the number are adjustable from the parameter) fold. The models then will be trained on 4/5 fold of the data leaving the final fold as validation data, this process will be repeated for 5 times until all of our folds are used as validation data.

```
from sklearn.model selection import GridSearchCV
# Create the parameter grid based on the results of random search
param_grid = {
    'max_depth': [50, 80, 100],
    'max_features': [2, 3, 4],
    'min_samples_leaf': [3, 4, 5],
    'min_samples_split': [8, 10, 12],
    'n_estimators': [100, 300, 500]
}
# Create a base model
rf_grids = RandomForestClassifier(random_state=0)
# Initiate the grid search model
grid_search = GridSearchCV(estimator=rf_grids, param_grid=param_grid, scoring='recall',
                           cv=5, n_jobs=-1, verbose=2)
# Fit the grid search to the data
grid_search.fit(X_train, y_train)
grid_search.best_params_
Fitting 5 folds for each of 243 candidates, totalling 1215 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent worker
s.
[Parallel(n_jobs=-1)]: Done 17 tasks
                                           elapsed:
                                                         5.6s
[Parallel(n_jobs=-1)]: Done 138 tasks
                                           | elapsed:
                                                        16.2s
[Parallel(n_jobs=-1)]: Done 341 tasks
                                           | elapsed:
                                                        35.9s
[Parallel(n_jobs=-1)]: Done 624 tasks
                                           elapsed: 1.1min
[Parallel(n_jobs=-1)]: Done 989 tasks
                                           elapsed:
                                                       1.7min
[Parallel(n_jobs=-1)]: Done 1215 out of 1215 | elapsed: 2.1min finished
Out[89]:
```

EVALUATING OPTIMIZED MODEL

{'max_depth': 50,
 'max_features': 4,
 'min_samples_leaf': 3,
 'min_samples_split': 12,
 'n_estimators': 100}

After finding the best parameter for the model we can access the best estimator attribute of the GridSearchCV object to save our optimised model into variable called best_grid. We will calculate the 6 evaluation metrics using our helper function to compare it with our base model on the next step.

In [90]:

```
# Select best model with best fit
best_grid = grid_search.best_estimator_

# Evaluate Model
best_grid_eval = evaluate_model(best_grid, X_test, y_test)

# Print result
print('Accuracy:', best_grid_eval['acc'])
print('Precision:', best_grid_eval['prec'])
print('Recall:', best_grid_eval['rec'])
print('F1 Score:', best_grid_eval['f1'])
print('Cohens Kappa Score:', best_grid_eval['kappa'])
print('Area Under Curve:', best_grid_eval['auc'])
print('Confusion Matrix:\n', best_grid_eval['cm'])
```

Accuracy: 0.9060773480662984 Precision: 0.7368421052631579 Recall: 0.14893617021276595 F1 Score: 0.24778761061946902

Cohens Kappa Score: 0.22056275521060265 Area Under Curve: 0.7352362462943043

Confusion Matrix:

[[806 5] [80 14]]

MODEL COMPARISON

In [91]:

```
# Intitialize figure with two plots
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Model Comparison', fontsize=16, fontweight='bold')
fig.set figheight(7)
fig.set_figwidth(14)
fig.set_facecolor('white')
# First plot
## set bar size
barWidth = 0.2
logr_score = [logr_eval['acc'], logr_eval['prec'], logr_eval['rec'], logr_eval['f1'], 1
ogr_eval['kappa']]
best_grid_score = [best_grid_eval['acc'], best_grid_eval['prec'], best_grid_eval['rec']
], best_grid_eval['f1'], best_grid_eval['kappa']]
## Set position of bar on X axis
r1 = np.arange(len(logr_score))
r2 = [x + barWidth for x in r1]
## Make the plot
ax1.bar(r1, logr_score, width=barWidth, edgecolor='white', label='Logistic Regression
 (Base Line)')
ax1.bar(r2, best_grid_score, width=barWidth, edgecolor='white', label='Logistic Regress
ion (Optimized)')
## Add xticks on the middle of the group bars
ax1.set_xlabel('Metrics', fontweight='bold')
labels = ['Accuracy', 'Precision', 'Recall', 'F1', 'Kappa']
ax1.set_xticks([r + (barWidth * 0.5) for r in range(len(dtc_score))], )
ax1.set_xticklabels(labels)
ax1.set_ylabel('Score', fontweight='bold')
# ax1.set_ylim(0, 1)
## Create Legend & Show graphic
ax1.set_title('Evaluation Metrics', fontsize=14, fontweight='bold')
ax1.legend()
# Second plot
## Comparing ROC Curve
ax2.plot(logr_eval['fpr'], logr_eval['tpr'], label='Logistic Regression, auc = {:0.5f}'
.format(logr eval['auc']))
ax2.plot(best_grid_eval['fpr'], best_grid_eval['tpr'], label='Logistic Regression, auc
= {:0.5f}'.format(best_grid_eval['auc']))
ax2.set_title('ROC Curve', fontsize=14, fontweight='bold')
ax2.set_xlabel('False Positive Rate', fontweight='bold')
ax2.set ylabel('True Positive Rate', fontweight='bold')
ax2.legend(loc=4)
plt.show()
print('Change of {:0.2f}% on accuracy.'.format(100 * ((best grid eval['acc'] - logr eva
1['acc']) / logr_eval['acc'])))
print('Change of {:0.2f}% on precision.'.format(100 * ((best grid eval['prec'] - logr e
val['prec']) / logr_eval['prec'])))
print('Change of {:0.2f}% on recall.'.format(100 * ((best_grid_eval['rec'] - logr_eval[
'rec']) / logr_eval['rec'])))
print('Change of {:0.2f}% on F1 score.'.format(100 * ((best grid eval['f1'] - logr eval
['f1']) / logr_eval['f1'])))
```

```
print('Change of {:0.2f}% on Kappa score.'.format(100 * ((best_grid_eval['kappa'] - log
r_eval['kappa']) / logr_eval['kappa'])))
print('Change of {:0.2f}% on AUC.'.format(100 * ((best_grid_eval['auc'] - logr_eval['au
c']) / logr_eval['auc'])))
```

Model Comparison

Change of 0.12% on accuracy. Change of 10.53% on precision. Change of -12.50% on recall. Change of -8.63% on F1 score. Change of -7.73% on Kappa score. Change of 4.91% on AUC.

The result show that our optimised performed little bit better than the original model, as well as slightly decrease in case of recall, F1 and Kappa. The optimised models show an increase in 3 out of the 6 metrics.

OUTPUT

As data scientist it's important to be able to develop a model with good re-usability. In this final part I will explain on how to create a prediction based on new data and also how to save (and load) your model using joblib so you can use it in production or just save it for later use without having to repeat the whole process.

PREDICTION

In this step we will predict the expected outcome of all the row from our dataset then save it into a csv file for easier access in the future.

In [92]:

```
df_bank['deposit_prediction'] = logr.predict(X)
df_bank['deposit_prediction'] = df_bank['deposit_prediction'].apply(lambda x: 'yes' if
x==0 else 'no')

# Save new dataframe into csv file
df_bank.to_csv('deposit_prediction.csv', index=False)

df_bank.head(10)
```

Out[92]:

	age	balance	day	month	campaign	previous	is_default	is_housing	is_loan	target	
0	30	1787	19	10	1	0	0	0	0	0	
1	33	4789	11	5	1	4	0	1	1	0	
2	35	1350	16	4	1	1	0	1	0	0	
3	30	1476	3	6	4	0	0	1	1	0	
4	59	0	5	5	1	0	0	1	0	0	
5	35	747	23	2	2	3	0	0	0	0	
6	36	307	14	5	1	2	0	1	0	0	
7	39	147	6	5	2	0	0	1	0	0	
8	41	221	14	5	2	0	0	1	0	0	
9	43	-88	17	4	1	2	0	1	1	0	
10	rows	× 33 colu	ımns								
4											

SAVING MODEL

We can also save our model for further model reusability. This model can then be loaded on another machine to make new prediction without doing the whole training process again.

In [93]:

```
from joblib import dump, load

# Saving model
dump(logr, 'bank_deposit_classification.joblib')
# Loading model
# clf = load('bank_deposit_classification.joblib')
```

Out[93]:

['bank_deposit_classification.joblib']

CONCLUSION

For a simple model we can see that our model did decently on classifying the data. But there are still some weakness on our model, especially shown on the recall metric where we only get about 17%. This means that our model are only able to detect 17% of potential customer and miss the other 83%. But, referring to the positive part our model gives us 90% accuracy and 66% precision. Our AUC is around 70%, the higher the AUC, the better the performance of the model at distinguishing between the positive and negative classes. The result is not that much different after optimising the model using GridSearchCV which can means that we hit our limit with this model. To improve our performance we can try to look into another algorithm such as GradientBoostingClassifier.

In []:			