TR Convergence Proof Difference

Jiaxin Hu 06/12/2020

1 LOCAL CONVERGENCE

Proposition 1 (Local Convergence). Assume the solution to each block update in the alternating optimization exists and is unique. Let $\mathcal{B}^* = (\mathcal{C}^*, \{\mathbf{M}_1^*, \dots, \mathbf{M}_K^*\})$ be a local minimizer of $\mathcal{L}_{\mathcal{X}}$ and assume the Hessian at \mathcal{B}^* is strictly negative definite in every direction except those tangent to with respect to the block variables module the orthogonal transformation of \mathbf{M}_k^* . Then the sequence $\mathcal{B}^{(t)} = \mathcal{C}^{(t)} \times \{\mathbf{M}_1^*, \dots, \mathbf{M}_K^*\}$ generated by alternating algorithm linearly converges to \mathcal{B}^* ; i.e.

$$\left\| \mathcal{B}^{(t)} - \mathcal{B}^* \right\|_F \le \rho^t \left(\left\| \mathcal{C}^{(0)} - \mathcal{C} \right\|_F + \sum_{k=1}^K \left\| \boldsymbol{M}_k^{(0)} - \boldsymbol{M}_K^* \right\|_F \right),$$

for any initialization $(\mathcal{C}^{(0)}, \{\boldsymbol{M}_k^{(0)}\})$ sufficiently close to $(\mathcal{C}^*, \{\boldsymbol{M}_k^*\})$. Here $t \in \mathbb{N}^+$ is the iteration number and $\rho \in (0,1)$ is a contraction parameter.

PROOF

For notational convenience, we drop the subscript \mathcal{Y} from the objective $\mathcal{L}_{\mathcal{Y}}(\cdot)$ and simply write as $\mathcal{L}(\cdot)$. Let $\mathcal{A} = (\mathcal{C}, M_1, \dots, M_K) \in \mathbb{R}^{d_{\text{total}}}$ denote the collection of decision variables used in the alternating optimization, where $d_{\text{total}} = \prod_k r_k + \sum_k r_k d_k$. The objective function can be viewed either as a function of decision variables \mathcal{A} or a function of coefficient tensor $\mathcal{B} := \mathcal{C} \times_1 M_1 \times_2 \cdots \times_K M_K$. With slight abuse of notation, we write both functions as $\mathcal{L}(\cdot)$ but the meaning should be clear given the context.

Let We use $S: \mathbb{R}^{d_{total}} \to \mathbb{R}^{d_{total}}$ denote the update mapping that sends the t-th iterate to (t+1)-th iterate, where $d = r_1 \dots r_K + \sum_k r_k (d_k - 1)$ is the number of decision variables. Then, we have $S(\mathcal{A}^{(t)}) = \mathcal{A}^{(t+1)}$ and $S(\mathcal{A}^*) = \mathcal{A}^*$. According to the alternating algorithm, there are K+1 micro-steps for each block of decision variables in one iteration. That implies S is composed by a composition of K+1 block-wise mappings. Each block-wise mapping is continuously differentiable, so the mapping S is also continuously differentiable. Next we prove S is continuously differentiable through decomposing the S.

To decompose S, let $C_k : \mathbb{R}^{d-r_k(d_k-1)} \mapsto \mathbb{R}^{r_k(d_k-1)}$ denote the mapping to obtain M_k given $(\mathcal{C}, M_1, \dots, M_{k-1}, M_{k+1}, \dots, M_K)$, for $\forall k \in [K]$ and let $C_{K+1} : \mathbb{R}^{d-r_1 \dots r_K} \mapsto \mathbb{R}^{r_1 \dots r_K}$ denote the mapping to obtain \mathcal{C} given $\{M_k\}$:

$$\underline{C_k(\mathcal{C}, M_1, \dots, M_{k-1}, M_{k+1}, \dots, M_K)} \stackrel{\Delta}{=} C_k, \text{ where } \nabla_{M_k} \mathcal{L}(\mathcal{C}, M_1, \dots, M_{k-1}, C_k, M_{k+1}, \dots, M_K) = 0}$$

$$\underline{\text{and } C_{K+1}(\{M_k\})} \stackrel{\Delta}{=} C_{K+1}, \text{ where } \nabla_{\mathcal{C}} \mathcal{L}(C_{K+1}, \{M_k\}) = 0.$$

$$(1)$$

Because each block update exists a unique solution, there exists such a C_k satisfies the condition 1 and $\nabla_{M_k,M_k}\mathcal{L}(\mathcal{C},M_1,\ldots,M_{k-1},C_k,M_{k+1},\ldots,M_K)$ is non-singular $\forall k \in [K]$. By implicit function theorem, $C_k, \forall k \in [K]$ is continuously differentiable. Similarly, C_{K+1} is also continuously differentiable. Then we define the block-wise mapping $S_k : \mathbb{R}^d \to \mathbb{R}^d$ based on C_k :

$$\underline{S_k(\mathcal{C},\{M_k\})} \stackrel{\Delta}{=} (\mathcal{C},M_1,\ldots,M_{k-1},C_k,M_{k+1},\ldots,M_K), \forall k \in [K]$$

$$\underline{S_{K+1}(\mathcal{C},\{M_k\})} \stackrel{\Delta}{=} (C_{K+1},\{M_k\})$$

Since C_k s are continuously differentiable, S_k , $\forall k \in [K+1]$ are continuously differentiable. The update mapping S can be decomposed as:

$$S(\mathcal{C}^{(t)}, \{M_k^{(t)}\}) = S_{K+1} \circ \cdots \circ S_1(\mathcal{C}^{(t)}, \{M_k^t\}).$$

Therefore S is continuously differentiable.

Next, we want to find the first order derivative of S at $(\mathcal{C}^*, \{M_k^*\})$. For simplicity, let $\mathcal{A} = (\mathcal{C}, \{M_k\})$ denote the decision variables. Define the function $F_k : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}^{r_k(d_k-1)}$ for $\forall k \in [K]$ as:

$$F_k(\mathcal{A}, \mathcal{A}') \stackrel{\Delta}{=} \nabla_{M_k} \mathcal{L}(\mathcal{C}', M_1, \dots, M_k, M'_{k+1}, \dots, M'_{K+1})$$

-Similarly, define $F_{K+1}: \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}^{r_1...r_K}$ as $F_{K+1}(\mathcal{A}, \mathcal{A}') = \nabla_{\mathcal{C}}\mathcal{L}(\mathcal{A})$. Let $F = (F_1, \dots, F_{K+1})$. Using F, define $G: \mathbb{R}^d \mapsto \mathbb{R}^d$ as:

$$G(\mathcal{A}) \stackrel{\Delta}{=} F(S(\mathcal{A}), \mathcal{A}).$$

Intuitively, k-th block component of G can be considered as the partial derivative for M_k of \mathcal{L} , given the half-step iterate after updating M_k . Because each block update exists a unique solution, $G(\mathcal{A}) = 0$ holds in the neighborhood of (\mathcal{A}^*) . Differentiate the both side of $G(\mathcal{A}^*) = 0$, then we have:

$$\nabla G(\mathcal{A}^*) = \nabla_{\mathcal{A}} F(S(\mathcal{A}^*), \mathcal{A}) \nabla S(\mathcal{A}^*) + \nabla_{\mathcal{A}'} F(S(\mathcal{A}^*), \mathcal{A}^*) = 0$$
(2)

To solve $\nabla S(\mathcal{A}^*)$, the Hessian of \mathcal{L} at \mathcal{A}^* is: Let $\mathcal{A}^* = (\mathcal{C}^*, M_1^*, \dots, M_K^*) \in \mathbb{R}^{d_{\text{total}}}$ be a local maximum. By the definition of alternating optimization, \mathcal{A}^* is also a fixed point for the mapping S; that is, $S(\mathcal{A}^*) = \mathcal{A}^*$. The Hessian of the objective function $\mathcal{L}(\cdot)$ at \mathcal{A}^* is

$$H(\mathcal{A}^*) = \nabla^2 \mathcal{L} \left(\mathcal{C}^*, \boldsymbol{M}_1^*, \cdots, \boldsymbol{M}_K^* \right) = \begin{pmatrix} \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ M_1 C & M_1 M_1 & \cdots & M_1 M_K \\ \vdots & \vdots & \ddots & \vdots \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ M_K C & M_K M_1 & \cdots & N_K M_K \end{pmatrix} = :L + D + L^{\mathsf{T}},$$

where D collects the diagonal blocks and L collects the lower-diagonal blocks. By assumption Sinee, $H(\mathcal{A}^*)$ is strictly negative definite at every direction except the direction of orthogonal transformation. That implies that the diagonal block, the diagonal block of $H(\mathcal{A}^*)$, D, is strictly negative definite and thus $(L+D)^{-1}$ invertible. By [Bezdek, 2003, Lemma2], we have Reorganized the equation2,

we can get $\nabla S(\mathcal{A}^*) = -(L+D)^{-1}L^T$. Next, we construct the contraction relationship between iterates $\mathcal{B}^{(t+1)}$ and $\mathcal{B}^{(t)}$ using the property of ∇S in the neighborhood of \mathcal{A}^* .

We need to introduce some additional notation. For simplicity, Let $\|A - A'\|_F$ denote the Eeuclidean distance between two decision variables, where

$$\|\mathcal{A} - \mathcal{A}'\|_F = \|\mathcal{C} - \mathcal{C}'\|_F + \sum_{k=1}^K \|\mathbf{M}_k - \mathbf{M}'_K\|_F.$$

And we define the orthogonal transformation of \mathcal{A} . If \mathcal{A}' is an orthogonal transformation of \mathcal{A} , there are orthogonal matrices $\{P_k\} \in \mathbb{O}_{r_k}$ such that: We introduce the equivalent relationship induced by orthogonal transformation. Let $\mathbb{O}_{d,r}$ be the collection of all d-by-r matrices with orthogonal columns, $\mathbb{O}_{d,r} := \{P \in \mathbb{R}^{d \times r} : P^T P = \mathbf{1}_r\}$, where $\mathbf{1}_r$ is the r-by-r identity matrix.

Definition 1 (Equivalence relationship). Two decision variables $A' = (C', M'_1, \dots, M'_k)$, $A = (C, M_1, \dots, M_k)$ are called equivalent, denoted $A \sim A'$, if and only if there exist a set of orthogonal matrices $P_k \in \mathbb{O}_{d_k, r_k}$ such that

$$\boldsymbol{M}_{k}^{(t)}\boldsymbol{P}_{k}^{T} = \boldsymbol{M}_{k}^{*}, \forall k \in [K]; \quad \boldsymbol{C}^{(t)} \times_{1} \boldsymbol{P}_{1} \times_{2} \cdots \times_{K} \boldsymbol{P}_{K} = \boldsymbol{C}^{*}; \quad \Rightarrow \boldsymbol{\mathcal{B}}(\boldsymbol{\mathcal{A}}) = \boldsymbol{\mathcal{B}}(\boldsymbol{\mathcal{A}}')$$

In our context, let $A \in \Omega_O$ if A is an orthogonal transformation of A^* , otherwise let $A \in \Omega$. If $A \in \Omega_O$, then $A - A^*$ is a direction that tangent to the orthogonal transformation of A^* . Equivalently, two decision variables A, A' are equivalent if the corresponding Tucker tensors are the same, $\mathcal{B}(A) = \mathcal{B}'(A')$. We use Ω_O to denote all decision variables that are equivalent to the local optimum A^* , $\Omega_O := \{A \in \mathbb{R}^{d_{\text{total}}}: A \sim A^*\}$. Here, we discuss two cases at a sufficiently-small neighborhood of A^* . Here, we discuss two cases.

Case 1: The iterate $\mathcal{A}^{(t)} \in \Omega_O$. There exists an iteration number $t' \in \mathbb{N}_+$ such that $\mathcal{A}^{(t')} \in \Omega_O$. For such $\mathcal{A}^{(t')}$, we have $\mathcal{B}(\mathcal{A}^{(t')}) = \mathcal{B}(\mathcal{A}^*)$. Therefore, Trivially,

$$\underbrace{0}_{E} = \left\| \mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^{*}) \right\|_{E} = \underbrace{0}_{E} \le \left\| \mathcal{A}^{(0)} - \mathcal{A}^{*} \right\|_{E}.$$
(3)

for any $\mathcal{A}^{(0)}$.

Case 2: The iterate $\mathcal{A}^{(t)} \in \Omega$. The entire sequence of iterates $\mathcal{A}^{(t)} \in \mathbb{R}^{d_{total}}/\Omega_O$. By assumption, $H(\cdot)$ is strictly negative definite for all t large enough. Therefore, $\mathcal{A}^{(t)} - \mathcal{A}^*$ is not on a direction that tangent to the orthogonal transformation of \mathcal{A}^* and thus $H(\mathcal{A}^*)$ is strictly negative definite on the direction $\mathcal{A}^{(t)} - \mathcal{A}^*$. For any such $\forall \mathcal{A}^{(t)} \in \Omega$, we have:

$$(\mathcal{A}^{(t)} - \mathcal{A}^*)^T H(\mathcal{A}^*) (\mathcal{A}^{(t)} - \mathcal{A}^*) < 0$$
(4)

Consider the matrix $\nabla S(\mathcal{A}^*)^T H(\mathcal{A}^*) \nabla S(\mathcal{A}^*) - H(\mathcal{A}^*)$. Let $H, \nabla S$ be the short of $H(\mathcal{A}^*), \nabla S(\mathcal{A}^*)$.

We have:

$$\underline{\nabla S(A^*)^T H(A^*) \nabla S(A^*) - H(A^*)} = \underline{\nabla S H \nabla S - H}$$

$$= (I - (L+D)^{-1}H)^T H (I - (L+D)^{-1}H) - H$$

$$= -H^T (L+D)^{-1,T} H - H (L+D)^{-1} H + H^T (L+D)^{-1,T} H (L+D)^{-1} H$$

$$= H^T (L+D)^{-1,T} \{ -(L+D) - (L+D)^T + H \} (L+D)^{-1} H$$

$$= H^T (L+D)^{-1,T} \{ -D \} (L+D)^{-1} H$$
(5)

Since D is negative definite, then -D is positive definite. For arbitrary $\mathcal{A}^{(t)} \in \Omega$, let $v \stackrel{\Delta}{=} \mathcal{A}^{(t)} - \mathcal{A}^*$. Due to equation 1, $Hv \neq 0$. Multiplying v on both side of equation 5, we have:

$$\frac{v^T(\nabla SH\nabla S - H)v = v^TH^T(L+D)^{-1,T}\{-D\}(L+D)^{-1}Hv > 0}{\Rightarrow -v^THv > -(\nabla Sv)^TH(\nabla Sv)}$$

Pick a v which is an eigenvector of ∇S with eigenvalue λ , then:

$$-v^T H v > -\lambda^2 v^T H v; \quad \Rightarrow \lambda^2 < 1$$

That implies, for $\mathcal{A}^{(t)} \in \Omega$, the largest eigenvalue of ∇S that corresponds to eigenvectors in form of $\mathcal{A}^{(t)} - \mathcal{A}^*$ is smaller than 1. Therefore, $\|\nabla S(\mathcal{A}^{(t)} - \mathcal{A}^*)\|_F \le \rho \|\mathcal{A}^{(t)} - \mathcal{A}^*\|_F$ for $\forall \mathcal{A}^{(t)} \in \Omega$, where $\rho \in (0,1)$. Recall that the differential map $\nabla S(\mathcal{A}^*) = -(L+D)^{-1}L^T$, where L,D are the lower- and diagonal-block of the Hession $H(\mathcal{A}^*)$, respectively. Define contraction coefficient

$$\rho = \max_{\boldsymbol{x} \in \mathbb{R}^{d_{\text{total}}}/\Omega_{O}, \|\boldsymbol{x}\|_{2}=1} \boldsymbol{x}^{T} \left[(L+D)^{-1} L \right] \in (0,1).$$

Consider the iterate $\mathcal{A}^{(t)} \in \Omega$, we have

$$\underline{\left\|S(\mathcal{A}^{(t)}) - S(\mathcal{A}^*)\right\|_{F}} = \underline{\left\|\int_{0}^{1} \nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))(\mathcal{A}^* - \mathcal{A}^{(t)})du\right\|_{F}}$$

$$\leq \int_{0}^{1} \left\|\nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))(\mathcal{A}^* - \mathcal{A}^{(t)})\right\|_{F} du. \tag{6}$$

Since $\nabla S(\mathcal{A})$ is continuous and $\rho < 1$, pick a $\epsilon > 0$ such that $\epsilon + \rho < 1$, there exists a $\delta > 0$ such that

If
$$\|\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}) - \mathcal{A}^*\|_F \le \|\mathcal{A}^{(t)} - \mathcal{A}^*\|_F \le \delta$$
, then $\|\nabla S - \nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))\|_F \le \epsilon$

Therefore, the inequality 6 becomes:

$$\frac{\left\|S(\mathcal{A}^{(t)}) - S(\mathcal{A}^*)\right\|_F}{\leq \int_0^1 \left\|\nabla S(\mathcal{A}^* - u(\mathcal{A}^* - \mathcal{A}^{(t)}))(\mathcal{A}^* - \mathcal{A}^{(t)})\right\|_F du.}{\leq (\rho + \epsilon) \left\|\mathcal{A}^{(t)} - \mathcal{A}^*\right\|_F}$$

If any previous iterate $\mathcal{A}^{(t')}, t' < t$ is not in Ω_O , then we have:

$$\left\| \mathcal{A}^{(t)} - \mathcal{A}^* \right\|_F \le \rho^t \left\| \mathcal{A}^* - \mathcal{A}^{(0)} \right\|_F,$$

By the contraction principle, we have

$$\|\mathcal{A}^{(t)} - \mathcal{A}^*\|_F \le \rho^t \|\mathcal{A}^{(0)} - \mathcal{A}^*\|_F, \tag{7}$$

for $\mathcal{A}^{(0)}$ sufficiently closes to \mathcal{A}^* and is not a local maximizer. By the Lemma 3.1 of Han[2020] [Han et al., 2020, Lemma 3.1], there exists a constant c such that:

$$\left\| \mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*) \right\|_{F} \le c \left\| \mathcal{A}^{(t)} - \mathcal{A}^* \right\|_{F}, \quad \forall t \in \mathbb{N}_+.$$
 (8)

If there exists a iterate $\mathcal{A}^{(t')}$, t' < t such that $\mathcal{A}^{(t')} \in \Omega_O$, then we goes to case 1.

Combining Combine the equation 3 and 8, we can summarize our local convergence as:

$$\left\| \mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*) \right\|_F \le c\rho^t \left\| \mathcal{A}^* - \mathcal{A}^{(0)} \right\|_F,$$

for some constant c and $\mathcal{A}^{(0)}$ sufficiently closes to \mathcal{A}^* and is not a local maximizer. Combining cases 1 and 2, we obtain that

$$\|\mathcal{B}(\mathcal{A}^{(t)}) - \mathcal{B}(\mathcal{A}^*)\|_F^2 \le c\rho^{2t} \left(\|\mathcal{C}^{(0)} - \mathcal{C}^*\|_F^2 + \sum_{k=1}^K \|\mathbf{M}_k^{(0)} - \mathbf{M}_k^*\|_F^2 \right),$$

for some constant c > 0 and any initialization $\mathcal{A}^{(0)} = (\mathcal{C}^{(0)}, M_1^{(0)}, \dots, M_K^{(0)})$ sufficiently close to $\mathcal{A}^* = (\mathcal{C}^*, M_1^*, \dots, M_K^*)$.

2 GLOBAL CONVERGENCE

Proposition 2 (Global Convergence). Assume the set $\{A : \mathcal{L}(A) \geq \mathcal{L}(A^{(0)})\}$ is compact and the stationary points of $\mathcal{L}(A)$ are isolated module equivalence. Then any sequence $A^{(t)}$ generated by alternating algorithm converges to a stationary point of $\mathcal{L}(A)$ up to equivalence.

PROOF

Pick an arbitrary iterate $\mathcal{A}^{(t)}$. Because of the compactness of set $\{\mathcal{A}: \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ and the boundedness of the decision domain, the domain of $\mathcal{A}^{(t)}$ is bounded and thus—there exists convergent a sub-sequences of $\mathcal{A}^{(t)}$ that converges. Let \mathcal{A}^* denote a one of the limiting points of $\mathcal{A}^{(t)}$. Since $\mathcal{L}(\mathcal{A}^{(t)})$

increases monotonically along with $t \to \infty$, then \mathcal{A}^* is a stationary point of $\mathcal{L}(\mathcal{A})$. Let $\mathcal{S} = \{\mathcal{A}^*\}$ denote the set of all the limiting points of $\mathcal{A}^{(t)}$. We have $\mathcal{S} \subset \{\mathcal{A} | \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ and thus \mathcal{S} is a compact set. According to By [Lange, 2012], \mathcal{S} is also connected. Note that all points in \mathcal{S} are also stationary points of $\mathcal{L}(\cdot)$, because of the monotonic increase of $\mathcal{L}(\mathcal{A}^{(t)})$ as $t \to \infty$.

Consider the equivalence of Tucker tensor representation. We define the equivalent class of \mathcal{A} as:

$$\mathcal{E}(\mathcal{A}) = \{ \mathcal{A}' | M_k' = M_k P_k^T, \mathcal{C}' = \mathcal{C} \times \{ P_1, \dots, P_K \}, \text{ where } P_k^T \in \mathbb{O}_{d_k, r_k}, \forall k \in [K] \}.$$

Notice that, for arbitrary \mathcal{A} , $\mathcal{E}(\mathcal{A})$ is a non-empty open set. For arbitrary two non-equivalent points \mathcal{A}_1 and \mathcal{A}_2 , we have $\mathcal{E}(\mathcal{A}_1) \cap \mathcal{E}(\mathcal{A}_2) = \emptyset$ and thus $\mathcal{E}(\mathcal{A}_1) \cup \mathcal{E}(\mathcal{A}_2)$ is not connected. Using the definition of equivalent class, let \mathcal{S}_E denote the enlarged set of \mathcal{S} , such that:

We define an enlarges set \mathcal{E}_S induced by the set \mathcal{S} ,

$$\underbrace{\mathcal{S}_E}_{\mathcal{E}_S} = \bigcup_{\underline{\mathcal{A} \in \mathcal{S}}} \{ \mathcal{E}(\mathcal{A}^*) : \mathcal{A}^* \in \mathcal{S} \}.$$

The enlarged set $S_E \mathcal{E}_S$ satisfies below two properties below:

- 1. [Union of Stationary Point] The set $\mathcal{S}_{E} \in \mathcal{E}_{S}$ is an union of equivalent classes generated by the stationary points in \mathcal{S} .
- 2. [Connectedness model the equivalence] The set $S_E \in S$ is connected between different equivalent elasses module the equivalence relationship. That property is obtained by the connectedness of S

Property 1 is obtained by rewriting the definition of S_E . Property 2 is concluded by the connectedness of S_{-} .

Now, note that the isolation of stationary points and Property 1 imply that $S_E \mathcal{E}_S$ only contains only finite number of different equivalent classes. Otherwise, there is a sequence of non-equivalent stationary points whose limit is not isolated, which contradicts the isolation assumption. Combined Combining the finiteness with the definition of equivalent class and Property 2, we can conclude that $S_E \mathcal{E}_S$ only contains only a single equivalent class; i.e. $\mathcal{E}_S \mathcal{S}_E = \mathcal{E}(\mathcal{A}^*)$, where \mathcal{A}^* is a stationary point of $\mathcal{L}(\mathcal{A})$. Therefore, all the convergent sub-sequences of $\mathcal{A}^{(t)}$ converge to one stationary point \mathcal{A}^* up to equivalence. In other words, We conclude that, any iterate $\mathcal{A}^{(t)}$ generated by Algorithm 1 converges to a stationary point of $\mathcal{L}(\mathcal{A})$ up to equivalence.