11. TIME SERIES ANALYSIS [IT2110]

By Department of Mathematics and Statistics Faculty of Humanities and Sciences, SLIIT

CONTENTS

- Introduction
- Components of Time Series
- Time Series Analysis
 - Additive Model
 - Multiplicative Model

INTRODUCTION

• A time series is a collection of observations made sequentially in time.

- Examples,
 - OMonthly inflation rates
 - ODaily temperature
 - OAnnual sales of breads
 - OAnnual birth rates

Discrete & Continuous Time Series

• A time series is said to be discrete when observations are taken only at specific time points. (Eg: Daily Temperature)

- A time series is said to be continuous when observations are made continuously in time. (Heart beat of a patient in every second)
- In both cases, the measured variable can be either discrete or continuous.

Objectives of T.S. Analysis

- Description
 - Simple descriptive measures of time series. Eg: trend, seasonality
- Explanation
 - Use variation in one time series to explain another
- Forecasting (Most important)
- Control
 - Applicable in quality control

COMPONENTS OF TIME SERIES

- A time series is made up of one or more components mentioned below.
 - o Trend
 - Measures the average change in the variable per unit time
 - Seasonality
 - Periodic variations that recur with some degree of regulatory within a year of shorter
 - Cyclical variations
 - Recurring up and down movements which are extended over long period (Usually 2 yrs or more).
 - Irregular variations
 - Random fluctuations

Time Series Analysis

• There are two main classical methods of analyzing time series data.

OAdditive Model

OMultiplicative Model

• Other classical Methods:

• Curve Fitting

- ✓ Polynomial Models
- ✓ Exponential Models

Model Selection

• Additive Model: Magnitude of the seasonal component is constant over the time

• *Multiplicative Model*: Magnitude of the seasonal component is increasing / deceasing with time

• If the model can not be clearly identify, fit the both models and use forecasts to choose the better model.

Fitting an Additive Model

• Additive Model:

$$Y_t = T + S + C + I$$

• Can be fitted only when magnitude of the seasonal component is constant over the time

Fitting a Multiplicative Model

• Multiplicative Model:

$$Y_t = T \times S \times C \times I$$

• Can be fitted only when magnitude of the seasonal component is increasing / deceasing with time

THANK YOU!

Good Luck for the Exam!

