La energía y el hamiltoniano

uuQué otra conservación podríamos visitar? La conservación de la energía, obviamente. Pero, en el camino, encontraremos otra... Empecemos con un ejemplo.

Ejemplo: Conservación del hamiltoniano y la energía mecánica. Volvamos al problema de la bolita en el aro. Habíamos calculado el lagrangiano:

$$\mathcal{L}(\theta, \dot{\theta}) = \frac{1}{2} mR^2 (\dot{\theta}^2 + \omega^2 \sin^2 \theta) + mgR \cos \theta.$$

De aquí podríamos inmediatamente encontrar la ecuación de movimiento, que aprendimos a analizar sin resolverla. Vamos a tratar de encontrar alguna cantidad conservada.

¿Hay alguna coordenada cíclica? No, $\mathcal{L} = \mathcal{L}(\theta)$. Así que el momento angular no se conserva. :(

¿Será la energía la que se conserva? No, porque hay una acción externa imponiendo $\omega =$ cte. Eso cuesta energía. Escribámosla igual:

$$E = T + U = \frac{1}{2}mR^2(\dot{\theta}^2 + \omega^2 \sin^2 \theta) - mgR\cos\theta.$$
 (2.11)

Qué lástima, no se conserva.

¿Nada se conserva? ¿El lagrangiano, se conservará? Bueno, calculemos su derivada temporal:

$$\frac{d}{dt}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \theta}\dot{\theta} + \frac{\partial \mathcal{L}}{\partial \dot{\theta}}\ddot{\theta} + \frac{\partial \mathcal{L}}{\partial t}^{0} \quad \text{por Regla de la Cadena}$$

$$= \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\dot{\theta} + \frac{\partial \mathcal{L}}{\partial \dot{\theta}}\frac{d}{dt}\dot{\theta} \quad \text{usando Ec. Euler-Lagrange}$$

$$= \frac{d}{dt} \left[\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\dot{\theta} \right] \quad \text{sacando factor común } d/dt.$$

¡No dio cero! Pero dio *otra* derivada temporal. Si la paso de miembro y las junto, tengo algo que sí se conserva:

$$\Rightarrow \frac{d}{dt} \left[\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \dot{\theta} - \mathcal{L} \right] = 0.$$
jesto se conserva!

Calculémoslo:

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mR^2 \dot{\theta} \xrightarrow{\times \dot{\theta}} mR^2 \dot{\theta}^2$$

$$\Rightarrow \underbrace{mR^2\dot{\theta}^2 - \frac{1}{2}mR^2\dot{\theta}^2}_{} - \frac{1}{2}mR^2\omega^2\sin^2\theta - mgR\cos\theta,$$

$$= \frac{1}{2}mR^2\dot{\theta}^2 - \frac{1}{2}mR^2\omega^2\sin^2\theta - mgR\cos\theta,$$

$$= \frac{1}{2}mR^2\left(\dot{\theta}^2 - \omega^2\sin^2\theta\right) - mgR\cos\theta, \text{ (comparar con (2.11))},$$

$$:= \mathcal{H}.$$

 \mathcal{H} se llama hamiltoniano, y se conserva cuando \mathcal{L} no depende explícitamente del tiempo. Ojo que puede no ser igual a la energía: en este caso, vemos un signo menos en lugar de un signo más con respecto a la expresión que calculamos en (2.11). Pero si los vínculos no dependen del tiempo (que es lo que falla en este caso) y si U no depende de las velocidades, \mathcal{H} es igual a la energía. En un rato lo veremos en general.

Así que, como \mathcal{H} se conserva, podemos imaginar otro sistema, un sistema conservativo efectivo, que tenga el mismo \mathcal{H} , que sea su energía:

$$E_{ef} = \underbrace{\frac{1}{2}mR^2\dot{\theta}^2}_{T_{ef}} \underbrace{-\frac{1}{2}mR^2\omega^2\sin^2\theta - mgR\cos\theta}_{U_{ef}}.$$

Moraleja: el potencial efectivo lo identificamos en la ecuación de movimiento o en el hamiltoniano, no en el lagrangiano.

Simetría de traslación temporal

Hagamos ahora el cálculo en general para n grados de libertad, para un sistema cuyo lagrangiano es independiente del tiempo, es decir que el sistema es invariante ante la traslación temporal, tiene simetría de traslación temporal:

$$\frac{d}{dt}\mathcal{L} = \sum_{i=1}^{n} \left(\frac{\partial \mathcal{L}}{\partial q_{i}} \dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{i} \right) + \frac{\partial \mathcal{L}}{\partial t}^{0}$$

$$= \sum_{i=1}^{n} \left(\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{d}{dt} \dot{q}_{i} \right) \text{ (usando las Ec. de Euler-Lagrange)}$$

$$= \frac{d}{dt} \sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} \text{ (sacando } d/dt \text{ factor común)}$$

Es lo mismo que vimos en el ejemplo: la derivada total temporal del lagrangiano no da cero, pero da otra derivada temporal. Así que la paso restando para obtener una derivada temporal igual a cero:

$$\frac{d}{dt} \left(\sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L} \right) = \frac{d}{dt} \left(\sum_{i=1}^{n} p_{i} \dot{q}_{i} - \mathcal{L} \right) = 0$$

Tenemos así una cantidad conservada asociada a la simetría de traslación temporal. La llamamos \mathcal{H} , en homenaje a William Rowan Hamilton.

$$\mathcal{H} = \sum_{i=1}^{n} p_i \, \dot{q}_i - \mathcal{L}$$

Entonces: si \mathcal{L} no depende explícitamente del tiempo, el hamiltoniano es una constante de movimiento.

No nos quedemos con esto. El hamiltoniano es genial, y acabó convirtiéndose en el objeto central de toda la Física, pero estábamos hablando de la conservación de la energía. Resulta que, *bajo ciertas condiciones*, el hamiltoniano es igual a la energía mecánica. Pero tenemos que estudiar esas condiciones.

El hamiltoniano vs la energía

Por un lado, necesitamos vínculos esclerónomos, que no dependan ni de las velocidades ni del tiempo. En tal caso²³ la energía cinética es una

²³Veremos la demostración un poco mas adelante, en la Sección 2.6.

función cuadrática homogénea de las \dot{q} . Si además el potencial no depende de las velocidades, $U = U(\mathbf{r}_i) = U(q_i)$, con $\partial U/\partial \dot{q}_i = 0$. En tal caso:

$$\mathcal{H} = \sum_{i=1}^{n} p_{i} \dot{q}_{i} - \mathcal{L} = \sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L}$$

$$= \sum_{i=1}^{n} \frac{\partial T - \mathcal{U}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L} = \sum_{i=1}^{n} \frac{\partial T}{\partial \dot{q}_{i}} \dot{q}_{i} - (T - U)$$

$$= 2T - T + U = \boxed{T + U = E}, \qquad (2.12)$$

donde la última línea explota el hecho de que T es cuadrática homogénea en las velocidades, lo cual permite usar un teorema de Euler sobre funciones homogéneas: Si f es homogénea de grado k, entonces $\sum x_i \partial f / \partial x_i = k f$.

O sea, la constancia de \mathcal{H} en el caso de vínculos esclerónomos (holónomos + independientes del tiempo) da la conservación de E. Sólo en el caso de los vínculos esclerónomos el hamiltoniano es igual a la energía mecánica: el potencial U no genera las fuerzas de vínculo, y el trabajo que hacen éstas es nulo.

Notar: si llegara a ocurrir que $\partial \mathcal{L}/\partial t = 0$ y los vínculos son holónomos pero dependientes del tiempo, entonces se conserva \mathcal{H} , pero $\mathcal{H} \neq T + U$.

Resumiendo:

- Si las fuerzas (aplicadas y de vínculo) son conservativas (no hay disipación en calor u otra forma de energía), entonces la energía mecánica se conserva.
- Si el sistema es invariante ante traslaciones temporales, el hamiltoniano se conserva.
- Si los vínculos son esclerónomos y el potencial no depende de las velocidades, el hamiltoniano es igual a la energía mecánica.

La pregunta ¿es $\mathcal{H}=E$? y ¿se conserva E? son aspectos diferentes del sistema, que deben ser analizados por se-pa-ra-do.

¿Podríamos tener que $\mathcal{H} \neq E$, pero que la energía se conserve? ¡Sí! Por ejemplo, un sistema conservativo, descripto en coordenadas en movimiento: un proyectil visto desde un auto en movimiento. Las ecuaciones de transformación de \mathbf{r} a \mathbf{q} dependen del tiempo, y la energía cinética no es una función cuadrática homogénea de las $\dot{\mathbf{q}}$. La elección del sistema de coordenadas generalizadas, claramente no puede cambiar el hecho físico de que la energía se conserve. Lo que pasa es que en el sistema en movimiento \mathcal{H} no es igual a la energía mecánica.