2 Corbes a l'espai: Triedre de Frenet

Exercici 13: Considerem una corba $\alpha: I \longrightarrow \mathbb{R}^3$ i un vector fix $v \in \mathbb{R}^3$. Demostreu que si $\alpha'(s)$ és ortogonal a v per a cada $s \in I$ llavors la corba és plana.

Exercici 14: Determineu (si es pot) una parametrització per l'arc de les corbes definides per

- (a) $\alpha(t) = (e^t \sin(t), 1, e^t \cos(t)),$
- (b) $\alpha(t) = (\cosh(t), \sinh(t), t),$
- (c) $\alpha(t) = (t, t^2, t^3)$.

Exercici 15: Sigui $\gamma(t)$ la parametrització d'una corba regular (no necessàriament per l'arc). Demostreu les fórmules següents per a la curvatura i la torsió $\tau(t)$ d'aquesta corba

$$k(t) = \frac{|\gamma'(t) \wedge \gamma''(t)|}{|\gamma'(t)|^3},$$

$$\tau(t) = -\frac{\langle \gamma'(t) \wedge \gamma''(t), \gamma'''(t) \rangle}{|\gamma'(t) \wedge \gamma''(t)|^2}.$$

Exercici 16: Trobeu la curvatura, la torsió i el triedre de Frenet de les corbes següents:

- 1. $\alpha(t) = (t, t^2, t^3)$.
- 2. $\alpha(t) = (t, \frac{1-t}{t}, \frac{1-t^2}{t})$. Proveu a més que la corba és plana i determineu el pla que la conté.
- 3. $\alpha(t) = (e^t, e^{-t}, \sqrt{2} t)$.
- 4. $\alpha(t) = (2t, \log(t), t^2)$.
- 5. $\alpha(t) = (3t t^3, 3t^2, 3t + t^3)$. En aquest cas proveu que $k(t) = \pm \tau(t)$.

Exercici 17: Sigui $\alpha: I \longrightarrow \mathbb{R}^3$ una corba regular amb curvatura idènticament nul·la. Demostreu que $\alpha(I)$ està continguda en una línia recta.

Exercici 18: Sigui $\alpha: I \to \mathbb{R}^3$ una corba regular amb curvatura mai nul·la. Demostreu que α és plana si i només si tots els plans osculadors són paral·lels a un pla fix.

Proveu també que α és plana si i només si la torsió de α és idènticament zero.

Exercici 19: Considerem l'aplicació de \mathbb{R} en \mathbb{R}^3 de classe C^{∞} definida per

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}) & \text{per } t > 0 \\ (t, e^{-1/t^2}, 0) & \text{per } t < 0 \\ (0, 0, 0) & \text{per } t = 0. \end{cases}$$

Comproveu que aquesta corba té torsió nul·la però no està continguda en un pla.

Exercici 20: Demostreu que una corba regular $\alpha(t)$ té imatge continguda en una recta si i només si $\alpha''(t)$ és proporcional a $\alpha'(t)$.

Exercici 21 (Corbes de Bertrand): Siguin $\alpha(t)$ i $\beta(t)$ dues corbes diferents tals que per a cada $t \in (a, b)$ la recta normal principal a $\alpha(t)$ en el punt de coordenada t coincideix amb la recta normal principal a $\beta(t)$ en el punt de coordenada la mateixa t. Suposem que la curvatura $k_{\alpha}(t)$ i la torsió $\tau_{\alpha}(t)$ de $\alpha(t)$ són no nul·les en tot punt.

- 1. Proveu que existeix una constant $r \neq 0$ tal que $\beta(t) = \alpha(t) + rN_{\alpha}(t)$, $\forall t \in (a, b)$, on $N_{\alpha}(t)$ és el vector normal principal a la corba $\alpha(t)$. En particular la distància entre $\alpha(t)$ i $\beta(t)$ és constant.
- 2. Proveu que l'angle entre els vectors tangents a $\alpha(t)$ i $\beta(t)$, en els punts corresponents al mateix paràmetre t, és constant.
- 3. Proveu que hi ha una relació lineal entre la curvatura i la torsió de $\alpha(t)$ (és a dir, que existeixen constant A, B tals que $A k_{\alpha}(t) + B \tau_{\alpha}(t) = 1$, on A, B són constants).

Exercici 22: Demostreu que si $\gamma(s)$ és una corba de curvatura constant llavors la corba formada pels centres de curvatura també és de curvatura constant i la corba dels seus centres de curvatura és la corba inicial. En particular són corbes de Bertrand.