THE SOUTH CHINA NORMAL UNIVERSITY

School of Mathematical Sciences

Numerical Analysis (2023-2024 The Second Term)

Homework 11

Due Date: June 5, 2024 (Wednesday)

Name:	Student No.:	Date:	May 30, 202
			,

§7.3 Recursive Rules and Romberg Integration

Exercise 1.

(a) Start with T(0) = (h/2)(f(a) + f(b)). Then a sequence of trapezoidal rules $\{T(J)\}$ is generated by the recursive formula

$$T(J) = \frac{T(J-1)}{2} + h \sum_{k=1}^{M} f(x_{2k-1}) \quad \text{for} \quad J = 1, 2, \dots,$$
 (1)

where $h = (b - a)/2^J$, $M = 2^{J-1}$ and $\{x_k = a + kh\}$.

Show that the sequential trapezoidal rule converges to L (i.e., $\lim_{J\to\infty} T(J) = L$).

(b) Suppose that $\{T(J)\}$ is the sequence of trapezoidal rules generated by (1). If $J \ge 1$ and S(J) is Simpson's rule for 2^J subintervals of [a,b], then S(J) and the trapezoidal rules T(J-1) and T(J) obey the relationship

$$S(J) = \frac{4T(J) - T(J-1)}{3}$$
 for $J = 1, 2, \dots$ (2)

Show that the sequential Simpson rule converges to $L(i.e., \lim_{J\to\infty} S(J) = L)$.

Solve 1