SP 06

FUNGSI ALIH PENGUKURAN

A. Tujuan

Mahasiswa mampu memahami bagaimana fungsi transfer pengukuran dapat terbentuk melalui pengukuran nilai konduktivitas termal dari beberapa material.

B. Alat dan Bahan

Alat dan bahan yang digunakan dalam praktikum ini antara lain:

- 1. Dudukan alat
- 2. Kotak ruang uap
- 3. Material uji: kaca, keramik, pertinaks, dan PVC
- 4. Pembangkit uap
- 5. Selang
- 6. Neraca digital
- 7. Gelas ukur
- 8. Jangka sorong
- 9. Stopwatch
- 10. Es batu
- 11. Plastisin

Gambar 6.1. Alat Konduktivitas Termal PHT 320

C. Langkah-langkah

- 1. Hubungkan pembangkit uap dengan kotak ruang uap menggunakan selang.
- 2. Ukur suhu lingkungan pada saat melakukan pengukuran dan jaga agar suhu lingkungan di sekitar kotak ruang uap tidak berubah.
- 3. Isi air ke dalam pembangkit uap lalu nyalakan pembangkit uap.
- 4. Timbang massa wadah kosong yang digunakan untuk menampung air es. Catat sebagai m_q .

- 5. Ukur dan catat nilai ketebalan material uji, h.
- 6. Ukur diameter permukaan es yang akan bersentuhan dengan material uji, d_1 .
- 7. Letakkan es di atas material uji. Pasang material uji di atas wadah uap, dengan bukaan V mengarah ke wadah agar air lelehan es tidak bocor dan dapat mengalir ke wadah air. (Usahakan baut penahan material uji tidak dipasang terlalu kencang)
- 8. Diamkan es selama beberapa menit hingga es mulai mencair. Jangan mulai mengambil data sebelum es mulai mencair, karena suhunya bisa saja lebih rendah daripada 0 °C.
- 9. Jika permukaan es sudah mulai mencair, nyalakan stopwatch dan tunggu selama 10 menit, catat nilai tersebut sebagai t_1 .
- 10. Setelah 10 menit, timbang massa air dari es yang mencair pada suhu ruang, m_1 .
- 11. Kosongkan kembali wadah penampung air es.
- 12. Panaskan pembangkit uap dan jika uap dari pembangkit uap sudah mulai keluar di wadah uap.
- 13. Saat suhu uap sudah mulai konstan hubungkan pembangkit uap dengan wadah uap dengan menggunakan selang kemudian tunggu hingga uap mengalir secara konstan ke wadah uap.
- 14. Ulangi langkah 6 9 dan catat nilai d_2 , t_2 , dan m_2 pada suhu uap panas.
- 15. Ulangi seluruh langkah dengan menggunakan material yang berbeda.

Gambar 6.2. *Set Up* Eksperimen

Tabel 6.1. Material uji: kaca

h	d1	d2	t1	m1	t2	m2	<mark>davg</mark>	Α	R

Tabel 6.2. Material uji: PVC

h	d1	d2	t1	m1	t2	m2	<mark>davg</mark>	Α	R

Tabel 6.3. Material uji: keramik

h	d1	d2	t1	m1	t2	m2	<mark>davg</mark>	Α	R

Tabel 6.4. Material uji: petrinaks

h	d1	d2	t1	m1	t2	m2	<mark>davg</mark>	Α	R

D. Analisis Data (Laporan)

1. Nilai konduktivitas termal dari material uji (k) dapat dihitung menggunakan persamaan fungsi transfer

$$k = \frac{(R)(L_f)(h)}{(A)(\Delta T)}$$

di mana R adalah laju pencairan es, L_f adalah kalor peleburan es menjadi air, A adalah luas aliran kalor antara es dan wadah uap, dan ΔT adalah perbedaan suhu antara uap dan es. Jelaskan persamaan tersebut berdasarkan prinsip perpindahan kalor.

- 2. Hitung rata-rata diameter es d_{avg} dari nilai d_1 dan d_2 . Gunakan nilai d_{avg} untuk menentukan nilai A. Asumsikan bahwa A hanya luas es yang bersentuhan langsung dengan material uji.
- 3. Hitung laju pencairan es (R) dengan menggunakan persamaan

$$R = \frac{m_2 - m_1}{t_2 - t_1}$$

- 4. Hitung nilai konduktivitas termal dari material uji (k) dengan menggunakan persamaan pada nomor 1.
- 5. Bandingkan nilai konduktivitas termal tiap material uji yang didapatkan dari pengukuran dengan referensi (secara teori).
- 6. Tentukan manakah jenis material yang lebih baik dalam hal menghambat kalor berdasarkan analisis perbandingan kualitas masing-masing nilai konduktivitas termal material uji.