Package 'HDLSSkST'

October 12, 2022

Type Package

Title Distribution-Free Exact High Dimensional Low Sample Size k-Sample Tests

Version 2.1.0

Date 2022-02-01

Maintainer Biplab Paul <paul.biplab497@gmail.com>

Description

Testing homogeneity of k multivariate distributions is a classical and challenging problem in statistics, and this becomes even more challenging when the dimension of the data exceeds the sample size.

We construct some tests for this purpose which are exact level (size) alpha tests based on clustering.

These tests are easy to implement and distribution-

free in finite sample situations. Under appropriate

regularity conditions, these tests have the consistency property in HDLSS asymp-

totic regime, where the

dimension of data grows to infinity while the sample size remains fixed. We also consider a multiscale

approach, where the results for different number of partitions are aggregated judiciously. Details are in

Biplab Paul, Shyamal K De and Anil K Ghosh (2021) <doi:10.1016/j.jmva.2021.104897>; Soham Sarkar and Anil K Ghosh (2019)

<doi:10.1109/TPAMI.2019.2912599>; William M Rand (1971) <doi:10.1080/01621459.1971.10482356>;

Cyrus R Mehta and Nitin R Patel (1983) <doi:10.2307/2288652>; Joseph C Dunn (1973)

<doi:10.1080/01969727308546046>; Sture Holm (1979) <doi:10.2307/4615733>;

Yoav Benjamini and Yosef Hochberg (1995) <doi:10.2307/2346101>.

License GPL (>= 2)

Imports Rcpp (>= 1.0.3), stats, utils

LinkingTo Rcpp

Author Biplab Paul [aut, cre], Shyamal K. De [aut], Anil K. Ghosh [aut]

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-02 08:00:08 UTC

R topics documented:

HDLS	SkST-package	Distribution Tests	-Free Exa	ect High Dimer	nsional Low Samp	le Size k-Sample
Index						20
	Kitest					2.
	rctab					
	randfun					
	pmf					
	MTRItest					
	MTFStest					
	Holm					
	gMADD_DI					
	gMADD					
	FStest					
	BenHoch					
	ARItest					
	AFStest					
	HDLSSkST-packag	ge			· · · · · · · · · · · ·	

Description

Testing homogeneity of k (\geq 2) multivariate distributions is a classical and challenging problem in statistics, and this becomes even more challenging when the dimension of the data exceeds the sample size. We construct some tests for this purpose which are exact level (size) α tests based on clustering. These tests are easy to implement and distribution-free in finite sample situations. Under appropriate regularity conditions, these tests have the consistency property in HDLSS asymptotic regime, where the dimension of data d grows to ∞ while the sample size remains fixed. We also consider a multiscale approach, where the results for the different number of partitions are aggregated judiciously. This package includes eight tests, namely (i) RI test, (ii) FS test, (iii) MRI test, (iv) MFS test, (v) MTRI test , (vi) MTFS test, (vii) ARI test and (viii) AFS test. In MRI and MFS test, we modified the RI and FS test, respectively, using an estimated clustering number. In the multiscale approach (MTRI and MTFS), we use Holm's step-down-procedure (1979) and Benjamini-Hochberg FDR controlling procedure (1995).

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

AFStest 3

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Soham Sarkar and Anil K Ghosh (2019). On perfect clustering of high dimension, low sample size data, *IEEE transactions on pattern analysis and machine intelligence*, doi:10.1109/TPAMI.2019.2912599.

William M Rand (1971). Objective criteria for the evaluation of clustering methods, *Journal of the American Statistical association*, 66(336):846-850, doi:10.1080/01621459.1971.10482356.

Cyrus R Mehta and Nitin R Patel (1983). A network algorithm for performing Fisher's exact test in rxc contingency tables, *Journal of the American Statistical Association*, 78(382):427-434, doi:10.2307/2288652.

Joseph C Dunn (1973). A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters, doi:10.1080/01969727308546046.

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

AFStest

k-Sample AFS Test of Equal Distributions

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime. This an aggregate test of the two sample versions of the FS test over $\frac{k(k-1)}{2}$ numbers of two-sample comparisons, and the test statistic is the minimum of these two sample FS test statistics. Holm's step-down-procedure (1979) and Benjamini-Hochberg procedure (1995) are applied for multiple testing.

Usage

```
AFStest(M, sizes, randomization = TRUE, clust_alg = "knwClustNo", kmax = 4, multTest = "Holm", s_psi = 1, s_h = 1, lb = 1, n_sts = 1000, alpha = 0.05)
```

Arguments

M $n \times d$ observations matrix of pooled sample, the observations should be grouped

by their respective classes

sizes vector of sample sizes

randomization logical; if TRUE (default), randomization test and FALSE, non-randomization

test

clust_alg "knwClustNo"(default) or "estclustNo"; modified K-means algorithm used

for clustering

4 AFStest

maximum value of total number of clusters to estimate total number of clusters kmax for two-sample comparition, default: 4 "H0lm"(default) or "BenHoch"; different multiple tests multTest function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$, s_psi 4 for $\log(1+t)$, 5 for ts_h function required for clustering, 1 for \sqrt{t} , 2 for t 1b each observation is partitioned into some numbers of smaller vectors of same length lb, default: 1 number of simulation of the test statistic, default: 1000 n_sts alpha numeric, confidence level α , default: 0.05

Value

AFStest returns a list containing the following items:

AFSStat value of the observed test statistic

AFCutoff cut-off of the test

randomGamma randomized coefficient of the test

decisionAFS if returns 1, reject the null hypothesis and if returns 0, fails to reject the null

hypothesis

multipleTest indicates where two populations are different according to multiple tests

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Cyrus R Mehta and Nitin R Patel (1983). A network algorithm for performing Fisher's exact test in rxc contingency tables, *Journal of the American Statistical Association*, 78(382):427-434, doi:10.2307/2288652.

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

ARItest 5

Examples

```
# muiltivariate normal distribution:
\# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)</pre>
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)</pre>
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
#AFS test:
results \leftarrow AFStest(M=X, sizes = c(n1,n2,n3,n4))
 ## outputs:
 results$AFSStat
 #[1] 5.412544e-06
 results$AFCutoff
 #[1] 0.0109604
 results$randomGamma
 #[1] 0
 results$decisionAFS
 #[1] 1
 results$multipleTest
 # Population.1 Population.2 rejected pvalues
 #1
                            2
                                    TRUE
               1
               1
                             3
                                    TRUE
 #2
                                                0
 #3
               1
                             4
                                    TRUE
                                                0
 #4
               2
                             3
                                    TRUE
                                                0
 #5
               2
                             4
                                    TRUE
                                                0
 #6
               3
                                    TRUE
                                                0
```

ARItest

k-Sample ARI Test of Equal Distributions

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime. This an aggregate test of the two sample versions of the RI test over $\frac{k(k-1)}{2}$ numbers of two-sample comparisons, and the test statistic is the minimum of these two sample RI test statistics. Holm's step-down-procedure (1979) and Benjamini-Hochberg procedure (1995) are applied for multiple testing.

6 ARItest

Usage

```
ARItest(M, sizes, randomization = TRUE, clust_alg = "knwClustNo", kmax = 4, multTest = "Holm", s_psi = 1, s_h = 1, lb = 1, n_sts = 1000, alpha = 0.05)
```

Arguments

M $n \times d$ observations matrix of pooled sample, the observations should be grouped

by their respective classes

sizes vector of sample sizes

randomization logical; if TRUE (default), randomization test and FALSE, non-randomization

test

clust_alg "knwClustNo"(default) or "estclustNo"; modified K-means algorithm used

for clustering

kmax maximum value of total number of clusters to estimate total number of clusters

for two-sample comparition, default: 4

multTest "HOlm"(default) or "BenHoch"; different multiple tests

s_psi function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$,

4 for $\log(1+t)$, 5 for t

s_h function required for clustering, 1 for \sqrt{t} , 2 for t

1b each observation is partitioned into some numbers of smaller vectors of same

length lb, default: 1

n_sts number of simulation of the test statistic, default: 1000

alpha numeric, confidence level α , default: 0.05

Value

ARItest returns a list containing the following items:

ARIStat value of the observed test statistic

Cutoff cut-off of the test

randomGamma randomized coefficient of the test

decisionARI if returns 1, reject the null hypothesis and if returns 0, fails to reject the null

hypothesis

multipleTest indicates where two populations are different according to multiple tests

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

ARItest 7

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

William M Rand (1971). Objective criteria for the evaluation of clustering methods, *Journal of the American Statistical association*, 66(336):846-850, doi:10.1080/01621459.1971.10482356.

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

```
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 \leftarrow matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 <- matrix(rnorm(n4*d, mean=1.5, sd=1), n4, d)</pre>
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
#ARI test:
results \leftarrow ARItest(M=X, sizes = c(n1,n2,n3,n4))
 ## outputs:
 results$ARIStat
 #[1] 0
 results$ARICutoff
 #[1] 0.3368421
 results$randomGamma
 #[1] 0
 results$decisionARI
 #Г17 1
 results$multipleTest
 # Population.1 Population.2 rejected pvalues
 #1
               1
                      2
                                    TRUE
 #2
               1
                             3
                                    TRUE
 #3
               1
                             4
                                    TRUE
                                               0
 #4
               2
                             3
                                    TRUE
                                               0
 #5
               2
                             4
                                    TRUE
                                               0
 #6
               3
                                    TRUE
```

8 BenHoch

BenHoch

Benjamini-Hochbergs step-up-procedure (1995)

Description

Benjamini-Hochbergs step-up-procedure (1995) for multiple tests.

Usage

```
BenHoch(pvalues, alpha)
```

Arguments

pvalues vector of p-values

alpha numeric, false discovery rate controlling level α , default: 0.05

Value

a vector of 0s and 1s. 0: fails to reject the corresponding hypothesis and 1: reject the corresponding hypothesis

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

```
# Benjamini-Hochbergs step-up-procedure:
pvalues <- c(0.50,0.01,0.001,0.69,0.02,0.05,0.0025)
alpha <- 0.05
BenHoch(pvalues, alpha)
## outputs:
#[1] 0 1 1 0 1 0 1</pre>
```

FStest 9

FStest	k-Sample FS Test of Equal Distributions
--------	---

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime.

Usage

```
FStest(M, labels, sizes, n_clust, randomization = TRUE, clust_alg = "knwClustNo", kmax = 2 * n_clust, s_psi = 1, s_psi = 1, lb =
```

Arguments

М	$n\times d$ observations matrix of pooled sample, the observations should be grouped by their respective classes
labels	length n vector of membership index of observations
sizes	vector of sample sizes
n_clust	number of the Populations
randomization	logical; if TRUE (default), randomization test and FALSE, non-randomization test $% \left(1\right) =\left(1\right) \left(1\right) $
clust_alg	$\hbox{\it "knwClustNo"} (default) \ or \ \hbox{\it "estclustNo"} (for \ MFS \ test); \ modified \ K-means \ algorithm \ used for clustering$
kmax	maximum value of total number of clusters to estimate total number of clusters in the whole observations, default: $2*n_clust$
s_psi	function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$, 4 for $\log(1+t)$, 5 for t
s_h	function required for clustering, 1 for \sqrt{t} , 2 for t
1b	each observation is partitioned into some numbers of smaller vectors of same length lb , default: 1
n_sts	number of simulation of the test statistic, default: 1000
alpha	numeric, confidence level α , default: 0.05

Value

FStest returns a list containing the following items:

estClustLabel	a vector of length n of estimated class membership index of all observations
obsCtyTab	observed contingency table

ObservedProb value of the observed test statistic

FCutoff cut-off of the test

randomGamma randomized coefficient of the test

10 FStest

estPvalue estimated p-value of the test

decisionF if returns 1, reject the null hypothesis and if returns 0, fails to reject the null

hypothesis

estClustNo total number of the estimated classes

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Cyrus R Mehta and Nitin R Patel (1983). A network algorithm for performing Fisher's exact test in rxc contingency tables, *Journal of the American Statistical Association*, 78(382):427-434, doi:10.2307/2288652.

```
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
k = 4
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)</pre>
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 <- matrix(rnorm(n4*d, mean=1.5, sd=1), n4, d)</pre>
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
results <- FStest(M=X, labels=levels, sizes = c(n1,n2,n3,n4), n_clust = k)
## outputs:
results$estClustLabel
results$obsCtyTab
      [,1] [,2] [,3] [,4]
#[1,]
      10
             0
                 0
#[2,]
        0
            10
                 0
                      0
#[3,]
        0
             0
                10
                      0
#[4,]
             0
                     10
results$ObservedProb
#[1] 2.125236e-22
```

gMADD

```
results$FCutoff
#[1] 1.115958e-07
results$randomGamma
#[1] 0
results$estPvalue
#[1] 0
results$decisionF
#[1] 1
```

gMADD

Modified K-Means Algorithm by Using a New Dissimilarity Measure, MADD

Description

Performs modified K-means algorithm by using a new dissimilarity measure, called MADD, and provides estimated cluster (class) labels or memberships of observations.

Usage

```
gMADD(s_psi, s_h, n_clust, lb, M)
```

Arguments

s_psi	function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$, 4 for $\log(1+t)$, 5 for t
s_h	function required for clustering, 1 for \sqrt{t} , 2 for t
n_clust	total number of the classes in the whole observations
lb	each observation is partitioned into some numbers of smaller vectors of same length $lb\/$
М	$n\times d$ observations matrix of pooled sample, the observations should be grouped by their respective classes

Value

a vector of length n of estimated cluster (class) labels of observations

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

12 gMADD_DI

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Soham Sarkar and Anil K Ghosh (2019). On perfect clustering of high dimension, low sample size data, *IEEE transactions on pattern analysis and machine intelligence*, doi:10.1109/TPAMI.2019.2912599.

Examples

gMADD_DI

Modified K-Means Algorithm by Using a New Dissimilarity Measure, MADD and DUNN Index

Description

Performs modified K-means algorithm by using a new dissimilarity measure, called MADD and DUNN index, and provides estimated cluster (class) labels or memberships and corresponding DUNN index of the observations.

Usage

```
gMADD_DI(s_psi, s_h, kmax, lb, M)
```

Arguments

s_psi	function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$, 4 for $\log(1+t)$, 5 for t
s_h	function required for clustering, 1 for \sqrt{t} , 2 for t
kmax	maximum value of total number of clusters to estimate total number of clusters in the whole observations

 $gMADD_DI$ 13

1b	each observation is partitioned into some numbers of smaller vectors of same length $lb\/$
М	$n \times d$ observations matrix of pooled sample, the observations should be grouped by their respective classes

Details

DUNN index is used for cluster validation, but here we use it to estimate total number of cluster k by $\hat{k} = argmax_{2 \le k' \le k^*} DI(k')$. Here DI(k') represents the DUNN index and we use $k^* = 2 * k$.

Value

a $kmax \times (n+1)$ matrix of the estimated cluster (class) labels and corresponding DUNN indexes of observations

Note

The result of this gMADD_DI function is a matrix. The 1st row of this matrix doesn't provide anything about estimated class labels or DUNN index of observations since the DUNN index is only defined for $k \geq 2$. The last column of this matrix represents the DUNN indexes. The estimated cluster labels of observations are calculated by finding out the corresponding row of maximum DUNN index.

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Soham Sarkar and Anil K Ghosh (2019). On perfect clustering of high dimension, low sample size data, *IEEE transactions on pattern analysis and machine intelligence*, doi:10.1109/TPAMI.2019.2912599.

Joseph C Dunn (1973). A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters, doi:10.1080/01969727308546046.

```
# Modified K-means algorithm:
# muiltivariate normal distribution
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
```

14 Holm

Holm

Holm's step-down-procedure (1979)

Description

Holm's step-down-procedure (1979) for mutiple tests.

Usage

```
Holm(pvalues, alpha)
```

Arguments

pvalues vector of p-values

alpha numeric, family wise error rate controlling level α , default: 0.05

Value

a vector of 0s and 1s. 0: fails to reject the corresponding hypothesis and 1: reject the corresponding hypothesis

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

MTFStest 15

Examples

```
# Holm's step down procedure:
pvalues <- c(0.50,0.01,0.001,0.69,0.02,0.05,0.0025)
alpha <- 0.05
Holm(pvalues, alpha)

## outputs:
#[1] 0 0 1 0 0 0 1</pre>
```

MTFStest

k-Sample MTFS Test of Equal Distributions

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime. This test is a multiscale approach based on FS test, where the results for different number of partitions are aggregated judiciously.

Usage

```
MTFStest(M, labels, sizes, k_max, multTest = "Holm", s_psi = 1, s_h = 1, lb = 1, n_sts = 1000, alpha = 0.05)
```

Arguments

М	$n \times d$ observations matrix of pooled sample, the observations should be grouped by their respective classes
labels	length n vector of membership index of observations
sizes	vector of sample sizes
k_max	maximum value of total number of clusters which is required for the test
multTest	"HOlm" (default) or "BenHoch"; different multiple tests
s_psi	function required for clustering, 1 for t^2 , 2 for $1-\exp(-t)$, 3 for $1-\exp(-t^2)$, 4 for $\log(1+t)$, 5 for t
s_h	function required for clustering, 1 for \sqrt{t} , 2 for t
1b	each observation is partitioned into some numbers of smaller vectors of same length $lb, \mbox{default:} 1$
n_sts	number of simulation of the test statistic, default: 1000
alpha	numeric, confidence level α , default: 0.05

16 MTFStest

Value

MTFStest returns a list containing the following items:

RIvec a vector of the Rand indices based on different number of clusters

Pvalues a vector of FS test p-values based on different number of clusters

decisionMTRI if returns 1, reject the null hypothesis and if returns 0, fails to reject the null

hypothesis

contTabs a list of the observed contingency table based on different number of clusters mulTestdec a vector of 0s and 1s. 0: fails to reject the corresponding hypothesis and 1: reject

the corresponding hypothesis

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

```
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 \leftarrow matrix(rnorm(n2*d, mean=0.5, sd=1), n2, d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)</pre>
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
#MTFS test:
results <- MTFStest(X, levels, c(n1,n2,n3,n4), 8)
 ## outputs:
 results$fpmfvec
#[1] 7.254445e-12 6.137740e-16 2.125236e-22 2.125236e-22 2.125236e-22 2.125236e-22 2.125236e-22
 results$Pvalues
```

MTFStest 17

```
results$decisionMTFS
#[1] 1
results \$ cont Tabs
#$contTabs[[1]]
# [,1] [,2]
#[1,] 10 0
#[2,] 10 0
#[3,] 0 10
#[4,] 0 10
#$contTabs[[2]]
# [,1] [,2] [,3]
#[1,] 10 0 0
           0
#[2,] 0 10
#[3,] 0 8 2
#[4,] 0 0 10
#$contTabs[[3]]
# [,1] [,2] [,3] [,4]
#[1,] 10 0 0 0
#[2,] 0 10 0 0
#[3,] 0 0 10 0
#[4,] 0 0 0 10
#$contTabs[[4]]
# [,1] [,2] [,3] [,4] [,5]
#[1,] 10 0 0 0 0
#[2,] 0 10 0 0 0
#[3,] 0 0 4 6 0
#[4,] 0 0
          0 0 10
#$contTabs[[5]]
# [,1] [,2] [,3] [,4] [,5] [,6]
#[1,] 10 0 0 0 0 0
    0 10 0 0
                   0 0
#[2,]
    0 0 4
                  0 0
#[3,]
                6
    0 0
           0 0
                  8
                     2
#[4,]
#$contTabs[[6]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#[1,] 10 0 0 0 0 0 0
#[2,] 0 5 5 0 0 0 0
#[3,] 0 0 0 4 6 0 0
#[4,] 0 0 0 0 8 2
#$contTabs[[7]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#[1,] 8 2 0 0 0 0 0 0
#[2,] 0 0 5 5
                 0 0
                        0
                            0
#[3,] 0 0 0 4 6 0
                             0
```

#[1] 0 0 0 0 0 0 0

18 MTRItest

```
#[4,] 0 0 0 0 0 0 8 2
results$mulTestdec
#[1] 1 1 1 1 1 1 1
```

MTRItest

k-Sample MTRI Test of Equal Distributions

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime. This test is a multiscale approach based on RI test, where the results for different number of partitions are aggregated judiciously.

Usage

```
MTRItest(M, labels, sizes, k_max, multTest = "Holm", s_psi = 1, s_h = 1, lb = 1, n_sts = 1000, alpha = 0.05)
```

Arguments

М	$n\times d$ observations matrix of pooled sample, the observations should be grouped by their respective classes
labels	length n vector of membership index of observations
sizes	vector of sample sizes
k_max	maximum value of total number of clusters which is required for the test
multTest	"HOlm"(default) or "BenHoch"; different multiple tests
s_psi	function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$, 4 for $\log(1+t)$, 5 for t
s_h	function required for clustering, 1 for \sqrt{t} , 2 for t
1b	each observation is partitioned into some numbers of smaller vectors of same length lb , default: 1
n_sts	number of simulation of the test statistic, default: 1000
alpha	numeric, confidence level α , default: 0.05

Value

MTRItest returns a list containing the following items:

RIvec a vector of the Rand indices based on different number of clusters

Pvalues a vector of RI test p-values based on different number of clusters

decisionMTRI if returns 1, reject the null hypothesis and if returns 0, fails to reject the null hypothesis

contTabs a list of the observed contingency table based on different number of clusters mulTestdec a vector of 0s and 1s. 0: fails to reject the corresponding hypothesis and 1: reject

the corresponding hypothesis

MTRItest 19

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Sture Holm (1979). A simple sequentially rejective multiple test procedure, *Scandinavian journal of statistics*, 65-70, doi:10.2307/4615733.

Yoav Benjamini and Yosef Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, *Journal of the Royal statistical society: series B (Methodological)* 57.1: 289-300, doi: 10.2307/2346101.

```
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 \leftarrow matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 \leftarrow matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
#MTRI test:
results <- MTRItest(X, levels, c(n1,n2,n3,n4), 8)
## outputs:
results$RIvec
#[1] 0.25641026 0.14871795 0.00000000 0.03076923 0.05128205 0.08333333 0.10384615
results$Pvalues
#[1] 0 0 0 0 0 0 0
results$decisionMTRI
#[1] 1
results$contTabs
#$contTabs[[1]]
     [,1] [,2]
#[1,] 10
#[2,] 10
             0
#[3,]
        0
            10
#[4,]
         0
#$contTabs[[2]]
```

20 pmf

```
[,1] [,2] [,3]
#[1,] 10
#[2,]
       0
           10
                 0
#[3,]
        0
           10
                 0
#[4,]
        0
                10
#$contTabs[[3]]
     [,1] [,2] [,3] [,4]
#[1,] 10
           0
                 0
#[2,]
                      0
        0
           10
                 0
#[3,]
        0
                 10
                      0
            0
#[4,]
        0
                 0
                     10
             0
#$contTabs[[4]]
# [,1] [,2] [,3] [,4] [,5]
#[1,] 10
            0
                 0
                      0
#[2,]
        0
                 0
                      0
                           0
            10
#[3,]
        0
                 4
                      6
                           0
             0
#[4,]
                         10
#$contTabs[[5]]
# [,1] [,2] [,3] [,4] [,5] [,6]
#[1,] 10
            0
                 0
                      0
                           0
#[2,]
        0
                 0
                      0
                           0
                               0
            10
                           0
#[3,]
        0
            0
                      6
                               0
                 4
#[4,]
                 0
        0
             0
                      0
                           8
                                2
#$contTabs[[6]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#[1,] 10
            0
                 0
                      0
                           0
                               0
                                    0
#[2,]
        0
             5
                  5
                      0
                           0
                               0
                                    0
        0
                  0
                           6
                                    0
#[3,]
             0
                                0
                                    2
#[4,]
                                8
#$contTabs[[7]]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#[1,]
                      0
                           0
                                         0
        8
            2
                 0
                               0
#[2,]
                  5
                                         0
        0
                      5
                           0
                                    0
             0
                               0
#[3,]
        0
             0
                  0
                      0
                                    0
                                         0
                           4
                                6
                                         2
#[4,]
                  0
results$mulTestdec
```

pmf

#[1] 1 1 1 1 1 1 1

randfun 21

Description

A function that provides the probability of observing an $r \times c$ contingency table using generalized hypergeometric probability.

Usage

```
pmf(M)
```

Arguments

M $r \times c$ contingency table

Value

a single value between 0 and 1

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

Cyrus R Mehta and Nitin R Patel (1983). A network algorithm for performing Fisher's exact test in rxc contingency tables, *Journal of the American Statistical Association*, 78(382):427-434, doi:10.2307/2288652.

Examples

```
# Generalized hypergeometric probability of rxc Contingency Table:
mat <- matrix(1:20,5,4, byrow = TRUE)
pmf(mat)

## outputs:
#[1] 4.556478e-09</pre>
```

randfun

Rand Index

Description

Measures to compare the dissimilarity of exact cluster labels (memberships) and estimated cluster labels (memberships) of the observations.

22 rctab

Usage

```
randfun(lvel, dv)
```

Arguments

lvel exact cluster labels of the observationsdv estimated cluster labels of the observations

Value

a single value between 0 and 1

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

William M Rand (1971). Objective criteria for the evaluation of clustering methods, *Journal of the American Statistical association*, 66(336):846-850, doi:10.1080/01621459.1971.10482356.

Examples

```
# Measures of dissimilarity:
exl <- c(rep(0,5), rep(1,5), rep(2,5), rep(3,5))
el <- c(0,0,1,0,0,1,2,1,0,1,2,2,3,2,2,3,2,3,1,3)
randfun(exl,el)
## outputs:
#[1] 0.2368421</pre>
```

rctab

Generates an $r \times c$ Contingency Table

Description

A function that generates an $r \times c$ contingency table with the same marginal totals as given $r \times c$ contingency table.

Usage

```
rctab(M)
```

Arguments

M $r \times c$ contingency table

RItest 23

Value

```
generated r \times c contingency table
```

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Cyrus R Mehta and Nitin R Patel (1983). A network algorithm for performing Fisher's exact test in rxc contingency tables, *Journal of the American Statistical Association*, 78(382):427-434, doi:10.2307/2288652.

Examples

```
# Generation of rxc Contingency Table:
  set.seed(151)
  mat <- matrix(1:20,5,4, byrow = TRUE)
  rctab(mat)
  ## outputs:
         [,1] [,2] [,3] [,4]
  #[1,]
          3
               4
                   0
  #[2,]
          4
               5
                   10
                        7
  #[3,]
          8
               7
                   12
                       15
  #[4,]
         18
              16
                   13
                       11
  #[5,]
        12
             18
                   20 24
```

RItest

k-Sample RI Test of Equal Distributions

Description

Performs the distribution free exact k-sample test for equality of multivariate distributions in the HDLSS regime.

Usage

```
RItest(M, labels, sizes, n_clust, randomization = TRUE, clust_alg = "knwClustNo", kmax = 2 * n_clust, s_psi = 1, s_psi = 1, lb =
```

24 RItest

Arguments

M $n \times d$ observations matrix of pooled sample, the observations should be grouped

by their respective classes

labels length *n* vector of membership index of observations

 $\begin{array}{ll} \text{sizes} & \text{vector of sample sizes} \\ \text{n_clust} & \text{number of the Populations} \end{array}$

randomization logical; if TRUE (default), randomization test and FALSE, non-randomization

test

clust_alg "knwClustNo"(default) or "estclustNo"(for MRI test); modified K-means al-

gorithm used for clustering

kmax maximum value of total number of clusters to estimate total number of clusters

in the whole observations, default: 2*n_clust

s_psi function required for clustering, 1 for t^2 , 2 for $1 - \exp(-t)$, 3 for $1 - \exp(-t^2)$,

4 for $\log(1+t)$, 5 for t

s_h function required for clustering, 1 for \sqrt{t} , 2 for t

1b each observation is partitioned into some numbers of smaller vectors of same

length lb, default: 1

n_sts number of simulation of the test statistic, default: 1000

alpha numeric, confidence level α , default: 0.05

Value

RItest returns a list containing the following items:

estClustLabel a vector of length n of estimated class membership index of all observations

obsCtyTab observed contingency table
ObservedRI value of the observed test statistic

RICutoff cut-off of the test

randomGamma randomized coefficient of the test estPvalue estimated p-value of the test

decisionRI if returns 1, reject the null hypothesis and if returns 0, fails to reject the null

hypothesis

estClustNo total number of the estimated classes

Author(s)

Biplab Paul, Shyamal K. De and Anil K. Ghosh

Maintainer: Biplab Paul<paul.biplab497@gmail.com>

References

Biplab Paul, Shyamal K De and Anil K Ghosh (2021). Some clustering based exact distribution-free k-sample tests applicable to high dimension, low sample size data, *Journal of Multivariate Analysis*, doi:10.1016/j.jmva.2021.104897.

William M Rand (1971). Objective criteria for the evaluation of clustering methods, *Journal of the American Statistical association*, 66(336):846-850, doi:10.1080/01621459.1971.10482356.

RItest 25

```
# muiltivariate normal distribution:
# generate data with dimension d = 500
set.seed(151)
n1=n2=n3=n4=10
k = 4
d = 500
I1 <- matrix(rnorm(n1*d,mean=0,sd=1),n1,d)</pre>
I2 <- matrix(rnorm(n2*d,mean=0.5,sd=1),n2,d)</pre>
I3 <- matrix(rnorm(n3*d,mean=1,sd=1),n3,d)</pre>
I4 <- matrix(rnorm(n4*d,mean=1.5,sd=1),n4,d)</pre>
levels <- c(rep(0,n1), rep(1,n2), rep(2,n3), rep(3,n4))
X <- as.matrix(rbind(I1,I2,I3,I4))</pre>
# RI test:
results <- RItest(M=X, labels=levels, sizes = c(n1,n2,n3,n4), n_clust = k)
 ## outputs:
 results$estClustLabel
 results$obsCtyTab
       [,1] [,2] [,3] [,4]
 #[1,]
       10
            0
                0 0
 #[2,]
         0
            10
                 0
                       0
 #[3,]
         0
             0
                 10
 #[4,]
         0
                0 10
 results$ObservedRI
 #[1] 0
 results$RICutoff
 #[1] 0.3307692
 results$randomGamma
 #[1] 0
 results$estPvalue
 #[1] 0
 results$decisionRI
 #[1] 1
```

Index

* AFStest function AFStest, 3	HDLSSkST-package, 2 Holm, 14
* ARItest function	1101111, 11
ARItest, 5	MTFStest, 15
* BenHoch function	MTRItest, 18
BenHoch, 8	
* FStest function	pmf, 20
FStest, 9	10 01
* HDLSS	randfun, 21
HDLSSkST-package, 2	rctab, 22
* Holm function	RItest, 23
Holm, 14	
* MTFStest function	
MTFStest, 15	
* MTRItest function	
MTRItest, 18	
* RItest function	
RItest, 23	
* gMADD function	
gMADD, 11	
* gMADD_DI function	
gMADD_DI, 12	
* package	
HDLSSkST-package, 2	
* pmf function	
pmf, 20	
* randfun function	
randfun, 21	
* rctab function	
rctab, 22	
AFStest, 3	
ARItest, 5	
BenHoch, 8	
FStest, 9	
gMADD, 11 gMADD_DI, 12	