Site frequency spectrum (SFS)

Neutral, constant-size population SFS 0.25 Proportion sites 0.15 0.05 0.00 2 12 13 14 15 16 17 18 19 Derived allele frequency

SFS for quality control game

SFS =
$$\mathbf{P} = (p_0, p_1, p_2, p_3, p_4, ..., p_{2n})$$

 p_j : proportion of sites in the genome with j derived alleles n = diploid sample size

Likelihood of the SFS (P) assuming we know the genotypes:

(sequencing reads) G: genotype vector =
$$(G_1, G_2, G_3, ..., G_n)$$

$$P(X, G|P) = \sum_{j=0}^{2n} p(X, G|s_d = j) p(s_d = j|P)$$

 s_d : number of derived alleles in genotype vector, G

Likelihood of the SFS (P) assuming we know the genotypes:

$$\begin{split} P(X, \boldsymbol{G}|\boldsymbol{P}) &= \sum_{j=0}^{2n} p(X, \boldsymbol{G}|s_d = j) p(s_d = j|\boldsymbol{P}) \\ &= p_j \\ p(a, b|c) &= p(a|b) p(b|c) \quad \text{Recall that SFS} = \boldsymbol{P} = (p_o, p_s, ..., p_{2n}) \\ &= \sum_{j=0}^{2n} p(X|\boldsymbol{G}) p(\boldsymbol{G}|s_d = j) p(s_d = j|\boldsymbol{P}) \end{split}$$

Likelihood of the SFS (P) assuming we know the genotypes:

$$P(X, \mathbf{G}|\mathbf{P}) = \sum_{j=0}^{2n} p(X, \mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

$$= p_j$$

$$p(a, b|c) = p(a|b) p(b|c) \quad \text{Recall that SFS} = \mathbf{P} = (p_o, p_1, ..., p_{2n})$$

$$= \sum_{j=0}^{2n} p(X|\mathbf{G}) p(\mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

$$= \sum_{j=0}^{2n} \left(\prod_{i=1}^{n} p(X|G_i) \right) p(\mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

Likelihood of the SFS (*P*) assuming we know the genotypes:

$$P(X, G|P) = \sum_{j=0}^{2n} \left(\prod_{i=1}^{n} p(X|G_i)\right) p(G|s_d = j) p(s_d = j|P)$$

Probability based on the number of ways to have j derived alleles in G out of the total number of ways to to arrange j derived alleles in 2n chromosomes (i.e. choose(2n, j)).

Assumes HWE

Example with 4 diploid individual with derived allele T.

$$j = 2$$
, k = # heterozygotes = 2

$$2^{j} = 2^{2} = 4$$
 combinations

$$P(X, \mathbf{G}|\mathbf{P}) = \sum_{j=0}^{2n} p(X, \mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

Allow for unknown genotypes (need to use genotype likelihoods)

$$P(X|\mathbf{P})=$$

$$\sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2,\}} \cdots \sum_{G_d \in \{0,1,2,\}} \prod_{d=1}^{n} p(X_d | G_d)$$

Likelihood of **P** for a site \rightarrow these are the allele frequency likelihoods at a site (-doSaf 1):

$$P(X^{\nu}|\mathbf{P})=$$

$$\sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2,\}} \cdots \sum_{G_d \in \{0,1,2,\}} \prod_{d=1}^{n} p(X_d | G_d)$$

Assume sites are independent

Likelihood of genome-wide **P**:

$$P(X|P) =$$

$$\prod_{v=1}^{\text{all sites}} \sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2,\}} \cdots \sum_{G_d \in \{0,1,2,\}} \prod_{d=1}^{n} p(X_d^v | G_d^v)$$

Estimating diversity from the SFS

Estimating diversity from the SFS

How to estimate posterior probabilities of allele frequencies

-doSaf 1:

	0	1	2	3	4	2n
Site1	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site2	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site3	-76.63	-37.87	-10.42	0.00	-9.59	-467.13
Site4	0.00	-2.24	-5.53	-6.99	-9.63	-237.55
Sitek	0.00	-8.62	-19.22	-30.67	-43.27	-626.78

$$P(\theta|X) = P(X|\theta)P(\theta)$$

How to estimate posterior probabilities of allele frequencies

2-dimensional SFS

Population j derived allele frequency

		0	1	2	3	4	 2n
Population i derived allele frequency	0						
	1						
	2						
	3						
	4						
	:						
Popul	2n						

$$F_{ST} = \frac{E(a|X)}{E(a|X) + E(b|X)}$$

$$E(a|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} a_{popi,popj}^{k,z} P(X_{i,j}|s_d = k) P(X_{i,j}|s_d = z) Q_{i,j}^{k,z}$$

$$E(b|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} b_{popi,popj}^{k,z} P(X_{i,j}|s_d = k) P(X_{i,j}|s_d = z) Q_{i,j}^{k,z}$$