Первое знакомство с методом Галеркина и с конечно-элементной аппроксимацией

ревизия*№2

Дмитрий ${\rm Maльkob}^\dagger$

г. Комсомольск-на-Амуре

8 ноября 2014 г.

Аннотация

Учебная статья для ознакомления с часто применяемым, но обычно недостаточно хорошо понимаемым методом Галеркина. Снабжена примерами.

^{*}статьи время от времени пересматриваются и исправляются, скачивайте свежайшие версии с домашней страницы автора

[†]Email: maldmitrix@gmail.com, сайт: http://maldmitrix.github.io

Содержание

1	Me	год Галеркина	3
	1.1	Введение в метод взвешенных невязок	3
	1.2	Невязка решения уравнения	3
	1.3	Невязка аппроксимации функции	3
	1.4	Базисная функция	4
	1.5	Разложение по базисным функциям	4
	1.6	Внутреннее произведение двух функций и условие их ор-	
		тогональности	5
	1.7	Метод взвешенных невязок на примере краевой задачи теп-	
		лопроводности в твердом теле	5
	1.8	Метод Галеркина на примере обыкновенного дифференци-	
		ального уравнения	8
	1.9	Метод Галеркина на примере задачи изгиба балки	9
2	Введение в метод Галеркина с МКЭ-аппроксимацией		13
	2.1	Определение метода Галеркина-МКЭ	13
	2.2	Обзор метода Галеркина-МКЭ и пример использования	13
Π	Литература		20

1 Метод Галеркина

1.1 Введение в метод взвешенных невязок

Сразу уточним: метод Галеркина (или Бубнова-Галеркина) не является вариационным методом. Об этом говорит уже то, что им можно решать те задачи, для которых еще не придумали вариационных принципов. В то время как для любых вариационных методов наличие вариационных принципов для рассматриваемой задачи является обязательным условием ее решения – без этого невозможно задать функционал.

Существует два семейства методов для численного решения дифференциальных уравнений: метод взвешенных невязок (Weighted Residuals Method) и вариационные методы. К первым относятся метод Галеркина, метод коллокаций, интегральный метод, метод моментов, метод наименьших квадратов и другие. Эти методы работают с дифференциальным уравнением и условиями на границе напрямую, в то время как вариационные методы работают с функционалом, связанным с дифференциальным уравнением, и с условиями на границе. В отличие от метода взвешенных невязок, вариационные методы не универсальны.

Метод Галеркина изобрел и первым опубликовал Борис Галеркин швейцарский математик Вальтер Ритц (1909). А конкретно для решения задач теории упругости его применил российский математик Борис Галеркин Иван Бубнов (1913). Наконец, теоретическое обоснование методу дал советский математик Борис Галеркин Мстислав Келдыш (1942).

1.2 Невязка решения уравнения

Предположим, нам нужно найти такой x, чтобы известная нам функция f(x) принимала какое-то известное значение b. Подставляя вместо x любое приближенное значение x_0 и вычисляя $b - f(x_0)$, получаем значение $a_0 = a_0 + a_$

Например, нужно решить уравнение $\sin x = 0.7$. Возьмем «с потолка» $x_0 = \pi/4$, тогда $\sin x_0 = 0.707$ и невязка решения равна -0.007. Можно выбрать другое значение, дающее меньшую невязку, а можно оставить очень компактное решение $x_0 = \pi/4$. Но, вообще, решений данного уравнения много, а именно по два на каждый период, лучше записать $x_0 = \{\pi/4 + 2\pi n, \pi - \pi/4 + 2\pi n\}$.

1.3 Невязка аппроксимации функции

Пусть нам дано операторное уравнение T(f(x)) = g(x), где неизвестна функция f(x), а известный оператор $T(\cdot)$ отображает ее в функцию

g(x). Мы можем аппроксимировать решение f(x) некоторой функцией $\tilde{f}(x)$. Тогда невязкой аппроксимации функции можно назвать чтонибудь из списка:

- 1. разность функций $g(x) T(\tilde{f}(x));$
- 2. если \tilde{f} есть усредненное решение f на области Ω , то невязкой назовем максимум нормы разности $\max_{x \in \Omega} |g(x) T(\tilde{f}(x))|$ на этой области;
- 3. некоторый интеграл функции разности, например, $\int_{\Omega} |g(x) T(\tilde{f}(x))|^2$;
- 4. что-нибудь другое, но чтобы отражало погрешность аппроксимации.

В большинстве случаев, чем меньше невязка, тем аппроксимированное значение ближе к точному решению.

1.4 Базисная функция

Базисная функция – это функция, через которую можно *линейно* выразить другую функцию из определенного класса функций. Примеры:

- 1. любой вектор является базисным для любого другого вектора, параллельного ему;
- 2. любые два непараллельных вектора является базисными для любого другого третьего вектора, компланарного¹ им;
- 3. две функции $H_0(x) = 1$ и $H_1(x) = x$ составляют систему базисных функций, через линейную комбинацию которых можно выразить любую прямую на декартовой плоскости, кроме строго вертикальных. Эти две функции называются первыми двумя полиномами Эрмита.

1.5 Разложение по базисным функциям

Пусть нам даны n базисных функций $f_1(x), f_2(x), \ldots, f_n(x)$, причем число n может быть неопределенным. Тогда можно представить функцию f(x) как

$$f(x) \approx \tilde{f}(x) = \sum_{i=1}^{n} c_i f_i(x).$$

Символ ≈ использован, чтобы не оговаривать условия, при которых такое разложение будет точным, а не приближенным. Не каждая функция

 $^{^1}$ компланарный чему-то — лежащий с чем-то в одной плоскости или в параллельной для чего-то плоскости.

имеет разложение по тому или иному базису. Примеры разложения по базису:

- 1. разложение радиус-вектора по ортонормированным базисным векторам $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k};$
- 2. разложение непрерывной линии в тригонометрический ряд;
- 3. разложение аналитической функции в ряд Тейлора.

1.6 Внутреннее произведение двух функций и условие их ортогональности

Внутреннее произведение $\langle f,g \rangle$ вещественных скалярных функций f(x) и g(x) в области Ω определяется как

$$\langle f, g \rangle = \int_{\Omega} f g \ d\Omega.$$

Две вещественные скалярные функции f(x) и g(x) ортогональны в некоторой области, если их внутреннее произведение в этой области равно нулю:

$$\langle f, g \rangle = \int_{\Omega} fg \ d\Omega = 0.$$

Покажем, что на интервале $[0,\pi]$ функции $\sin x$ и $\cos x$ ортогональны. Посчитаем их внутреннее произведение на этом интервале:

$$\langle \sin x, \cos x \rangle = \int_0^{\pi} \sin x \cos x \, dx = \left(\cos^2 x - \sin^2 x \right) \Big|_0^{\pi} =$$
$$= (-1)^2 - 0^2 - 1^2 + 0^2 = 1 - 1 = 0.$$

Также можно доказать, что на интервалах $[0,2\pi]$ и $[\pi,2\pi]$ функции $\sin x$ и $\cos x$ также ортогональны. Но они не ортогональны на интервале $[0,\frac{3\pi}{2}]$.

Примечание: в разной литературе под внутренним произведением, под условием ортогональности функций и под обособлением угловыми скобками $\langle . \ , \ . \rangle$ может пониматься отличное от здесь представленного.

1.7 Метод взвешенных невязок на примере краевой задачи теплопроводности в твердом теле

Пусть дана краевая задача:

$$abla^2 T = 0$$
 в области $\Omega(x,y)$

$$T = T_0$$
 на границе Γ области Ω ,

где $\nabla^2 T = T_{xx} + T_{yy}, T_{xx} = \frac{d^2T}{dx^2}$. Пробное решение \tilde{T} берется в форме

$$T \approx \tilde{T} = T_0 + \sum_{i=1}^{n} c_i T_i,$$

где все функции T_i должны обращаться в нуль на границе, а за значение аппроксимации на самой границе Γ отвечает главный член T_0 . Тогда какими бы ни были коэффициенты c_i , пробное решение будет отвечать граничным условиям поставленной задачи. Подставляем это пробное решение в исходное дифференциальное уравнение и получаем выражение невязки

$$R(c_i, x, y) = \nabla^2 T_0 + \sum_{i=1}^n c_i \nabla^2 T_i.$$

Если бы пробная функция была точным решением, то невязка была всюду равна нулю. Но это обычно не так. Нужно подобрать коэффициенты c_i таким образом, чтобы невязка была равна нулю только в области $sadaчu \ \Omega$. Приравняем к нулю внутренние произведения невязки и весовых функций (запишем условие ортогональности выражения невязки $R(c_i, x, y)$ и весовых функций w_j):

$$\langle w_j, R \rangle = 0, \quad j = 1, 2, \dots, n.$$

Покажем подробнее внутренние произведения невязок и весовых функций:

$$\langle w_j, R \rangle = \langle w_j, \nabla^2 T_0 \rangle + \sum_{i=1}^n c_i \langle w_j, \nabla^2 T_i \rangle = 0.$$

Перепишем уравнение:

$$\sum_{i=1}^{n} c_i \langle w_j, \nabla^2 T_i \rangle = -\langle w_j, \nabla^2 T_0 \rangle, \quad j = 1, 2, \dots, n,$$

или компактнее:

$$\sum_{i=1}^{n} B_{ji} c_i = d_j, \quad j = 1, 2, \dots, n,$$

где $B_{ji} = \langle w_j, \nabla^2 T_i \rangle$ и $d_j = -\langle w_j, \nabla^2 T_0 \rangle$. Поскольку функции T_0 и T_i нам известны, а выбор весовых функций w_j определен ниже, то можно вычислить значения матрицы B_{ji} и вектор-столбца d_j . Тогда останется инвертировать матрицу B_{ji} , чтобы найти коэффициенты c_i .

Весовые функции могут быть выбраны многими путями, каждый выбор будет соответствовать уникальному критерию метода. Мы можем

разбить область Ω на n подобластей Ω_i и задать

$$w_j = \left\{ \begin{array}{l} 1, & x \in \Omega_j, \\ 0, & x \notin \Omega_j. \end{array} \right.$$

Дифференциальное уравнение, проинтегрированное по подобласти, равно нулю. Этот вариант весовой функции предложили в 1923 году датские инженеры Бизено и Кох для решения задач устойчивости стержней, валов и пластин. Это метод подобластей.

В методе коллокаций весовые функции есть дельта Дирака:

$$w_i = \delta(x - x_i),$$

которая обладает свойством

$$\int_{\Omega} w_j R d\Omega = R \bigg|_{x_j}.$$

Тогда невязка равна нулю в n точках коллокации x_j . Этот метод предложили в 1934 году Слатер для задач электростатики в металлах и в 1937 году Барта для задач кручения прямоугольных призм. Сейчас это общий метод для решения обыкновенных дифференциальных уравнений.

В 1795 году Гаусс и в 1806 году Лежандр предложили весовую функцию $w_j = \partial R/\partial c_j$ для метода наименьших квадратов. Этот метод был использован Беккером в 1964 году для задач, возникающих в ядерных реакторах.

Наиболее широко известен с 1915 года метод Галеркина. Вместо весовых функций нужно просто взять еще раз базисные функции, то есть $w_i = T_i$ (i = 1, 2, ..., n). При этом множество $\{T_i\}_{i=1}^n$ должно быть полным множеством линейно независимых функций. Конкретный вид функций w_i определяется из специфики задачи и удобства работы. Часто применяются тригонометрические функции, ортогональные полиномы (полиномы Лежандра, Чебышева, Эрмита и др.).

Примечание: функции T_i в иной литературе могут называться пробными функциями (их линейная комбинация в сумме с главным членом составляет пробное решение \tilde{T}); функции w_j могут называться поверочными или тестовыми функциями.

1.8 Метод Галеркина на примере обыкновенного дифференциального уравнения

Рассмотрим в качестве иллюстрации обыкновенное дифференциальное уравнение:

$$u'' + \lambda u = 0,$$

с граничными условиями u(0) = u(1) = 0. Точное решение данного уравнения известно:

$$u(x) = \sin \pi m x, \quad \lambda = \pi^2 m^2, \quad m = 1, 2, \dots$$

Для первого нетривиального решения (m=1) собственное число равно $\lambda=\pi^2\approx 9.869.$ Теперь применим метод Галеркина. Выберем сперва множество базисных функций, которое состоит всего из одной функции:

$$u_1(x) = x(1-x).$$

Эта функция дважды дифференцируема, на интервале [0,1] и отдаленно похожа на горб синусоиды, Запишем пробное решение $\tilde{u}(x)$ в форме разложения по имеющемуся базису:

$$\tilde{u}(x) = c_1 u_1(x).$$

Подставим в исходное дифференциальное уравнение и получим выражение невязки:

$$R(c_i, x) = c_1(u_1'' + \lambda u_1).$$

Запишем требование ортогональности невязки к самим же базисным функциям в области задачи:

$$\langle w_j, R \rangle = \int_0^1 u_1'' u_1 dx + \lambda \int_0^1 u_1^2 dx = 0.$$

Отсюда находим:

$$\lambda = -\frac{\int_0^1 u_1'' u dx}{\int_0^1 u_1^2 dx} = \frac{\int_0^1 (u_1')^2 dx}{\int_0^1 u_1^2 dx} = \frac{\int_0^1 1 - 4x + 4x^2 dx}{\int_0^1 x^2 - 2x^3 + x^4 dx} = \frac{\left(x - 2x^2 + 4x^3/3\right)\Big|_0^1}{\left(x^3/3 - x^4/2 + x^5/5\right)\Big|_0^1} = \frac{1 - 2 + 4/3}{1/3 - 1/2 + 1/5} = \frac{1/3}{1/30} = 10.$$

Получается, что по методу Галеркина в первом приближении $\lambda=10$, что менее чем на 1.5% отличается от точного решения. Задание большего числа базисных функций позволяет уточнить уже известное значение

 λ , а также получить первое приближение для следующего (соответствующего m=2).

Представим пробное решение в виде линейной комбинации n базисных функций:

$$u(x) = \sum_{i=1}^{n} c_i u_i(x).$$

Подставим пробное решение в исходное дифференциальное уравнение $u'' + \lambda u = 0$. Получим выражение невязки:

$$R(c_i, x) = \sum_{i=1}^{n} R_i(c, x) = \sum_{i=1}^{n} c_i(u_i'' + \lambda u_i)$$

Запишем требование ортогональности невязки к базисным функциям в области задачи:

$$\langle u_j, R \rangle = \sum_{i=1}^n c_i \int_0^1 u_j (u_i'' + \lambda u_i) dx = 0, \quad j = 1, 2, \dots, n.$$

В этом случае собственные значения находятся из условия разрешимости системы (равенство нулю ее определителя):

$$\det(A_{ji}) = 0; \quad A_{ji} = \int_0^1 u_j(u_i'' + \lambda u_i) dx.$$

Важно помнить, что сходимость метода Галеркина не всегда быстро достигается.

1.9 Метод Галеркина на примере задачи изгиба балки

Задача: определить прогиб в середине пролета однопролетной шарнирно опертой балки длины ℓ и постоянной жесткости EI, загруженной сосредоточенной поперечной силой P в середине пролета.

Дифференциальное уравнение изгиба балки постоянной жесткости:

$$EI\frac{d^4u}{dx^4} - p(x) = 0, \quad x \in [0, \ell].$$

Запишем граничные условия шарнирно опертой балки:

$$u(0) = \frac{d^2u}{dx^2} = u(l) = \frac{d^2u}{dx^2} = 0.$$

Учитывая то, что пробное решение $\tilde{u}(x)$ для однородной задачи должно состоять из функций, принимающих на границе нулевые значения, примем пробное решение для прогиба балки в виде ряда

$$u(x) \approx \tilde{u}(x) = \sum_{i} c_i u_i(x), \quad i = 1, 2, \dots, n$$

где $u_i(x) = \sin i\pi \frac{x}{\ell}$ – выбранные нами базисные функции, c_i – неизвестные коэффициенты, которые нужно найти, чтобы невязка в области задачи была равна нулю. Запишем выражение невязки:

$$R(c_i, x) = EI \sum_i c_i \left[\left(\frac{i\pi}{\ell} \right)^4 \sin \frac{i\pi}{\ell} x \right] - p(x), \quad i = 1, 2, \dots, n.$$

Множество весовых функций $\{w_i\}$ возьмем такое же, как и множество базисных $\{u_i\}$. Запишем условие ортогональности выражения невязки R и весовых функций $w_i = u_i$:

$$\langle R, w_j \rangle = 0 =$$

$$= \int_0^\ell EI \sum_i c_i \left[\left(\frac{i\pi}{\ell} \right)^4 \sin \frac{i\pi}{\ell} x \right] \sum_j \sin \frac{j\pi}{\ell} x - p(x) \sum_j \sin \frac{j\pi}{\ell} x \, dx,$$

$$j = 1, 2, \dots, n$$

или

$$\int_0^\ell EI \sum_i c_i \left[\left(\frac{i\pi}{\ell} \right)^4 \sin \frac{i\pi}{\ell} x \right] \sum_j \sin \frac{j\pi}{\ell} x \ dx = \int_0^\ell p(x) \sum_j \sin \frac{j\pi}{\ell} x \ dx.$$

Меняем местами операции суммирования и интегрирования:

$$\sum_{i} EI\left(\frac{i\pi}{\ell}\right)^{4} \sum_{i} \int_{0}^{\ell} c_{i} \left[\sin\frac{i\pi}{\ell}x\right] \sin\frac{j\pi}{\ell}x \ dx = \sum_{i} \int_{0}^{\ell} p(x) \sin\frac{j\pi}{\ell}x \ dx.$$

В правой части можно заменить индекс суммирования:

$$\sum_{i} EI\left(\frac{i\pi}{\ell}\right)^{4} \sum_{i} \int_{0}^{\ell} c_{i} \left[\sin\frac{i\pi}{\ell}x\right] \sin\frac{j\pi}{\ell}x \ dx = \sum_{i} \int_{0}^{\ell} p(x) \sin\frac{i\pi}{\ell}x \ dx.$$

Избавляемся от внешней операции суммирования, но получаем взамен

систему n уравнений с различными значениями i:

$$EI\left(\frac{i\pi}{\ell}\right)^4 \sum_{j} c_i \int_0^{\ell} \left[\sin\frac{i\pi}{\ell}x\right] \sin\frac{j\pi}{\ell}x \, dx = \int_0^{\ell} p(x) \sin\frac{j\pi}{\ell}x \, dx,$$
$$i = 1, 2, \dots, n.$$

Эту систему уравнений можно записать так:

$$Kc = f$$

где $K_{ij} = EI\left(\frac{i\pi}{\ell}\right)^4 \int_0^\ell \left[\sin\frac{i\pi}{\ell}x\right] \sin\frac{j\pi}{\ell}x \ dx; \ f_i = \int_0^\ell p(x)\sin\frac{j\pi}{\ell}x \ dx; \ c_i$ – вектор-столбец искомых коэффициентов. Это матричное уравнение легко решить, когда будут вычислены все коэффициенты матрицы K_{ij} и вектор-столбца f_i .

Рассмотрим случай, когда n=1. Система вырождается в одно уравнение:

$$EI\left(\frac{\pi}{\ell}\right)^4 c_1 \int_0^{\ell} \left[\sin\frac{\pi}{\ell}x\right]^2 dx = \int_0^{\ell} p(x) \sin\frac{\pi}{\ell}x dx$$

Отсюда

$$c_1 = \frac{1}{EI} \left(\frac{\ell}{\pi}\right)^4 \frac{\int_0^\ell p(x) \sin \frac{\pi}{\ell} x \, dx}{\int_0^\ell \left[\sin \frac{\pi}{\ell} x\right]^2}.$$

Функция p(x) имеет значение, равное P в точке $x=\ell/2$, а во всех остальных точках равна нулю. Поэтому интеграл в числителе равен $P\sin\frac{\pi}{\ell}x\big|_{x=\frac{\ell}{2}}$. Интеграл в знаменателе можно легко найти в справочнике²: $\int_a^b \sin^2 \lambda x \ dx = \left(\frac{x}{2} - \frac{1}{4\lambda}\sin 2\lambda x\right)\Big|_a^b$. Имеем коэффициент

$$c_1 = \frac{1}{EI} \left(\frac{\ell}{\pi}\right)^4 \frac{P \sin \frac{\pi}{2}}{\frac{\ell}{2} - \frac{\ell}{4\pi} \sin 2\frac{\pi}{\ell}\ell} = \frac{1}{EI} \left(\frac{\ell}{\pi}\right)^4 \frac{2P}{\ell} = \frac{2}{\pi^4} \frac{P\ell^3}{EI}$$

и решение

$$u(x) = \frac{2}{\pi^4} \frac{P\ell^3}{EI} \sin \pi \frac{x}{\ell}.$$

Находим пробное значение прогиба в середине балки при n=1:

$$\tilde{u}_{(1)}\left(\frac{\ell}{2}\right) = \frac{2}{\pi^4} \frac{P\ell^3}{EI} \cdot 1 \approx 0.02057 \frac{P\ell^3}{EI}.$$

²http://www.sosmath.com/tables/tables.html

Классическое (точное) решение из теории сопротивления материалов:

$$u\left(\frac{\ell}{2}\right) = \frac{1}{48} \frac{P\ell^3}{EI} \approx 0.02083 \frac{P\ell^3}{EI}.$$

Метод Галеркина при n>1 позволяет уточнить полученный в случае n=1 результат. Так при n=2,3 имеем прогибы в середине балки:

$$\tilde{u}_{(2)} = \left(\frac{\ell}{2}\right) = \frac{2}{\pi^4} \frac{P\ell^3}{EI} \left(1 + \frac{1}{3^4}\right) \approx 0.02079 \frac{P\ell^3}{EI},$$

$$\tilde{u}_{(3)} = \left(\frac{\ell}{2}\right) = \frac{2}{\pi^4} \frac{P\ell^3}{EI} \left(1 + \frac{1}{3^4} + \frac{1}{5^4}\right) \approx 0.02082 \frac{P\ell^3}{EI}.$$

Ошибки $\delta_{(n)}$ приближенных решений $\tilde{u}_{(n)}(x)$ в точке x_0 при знании точного решения u(x) вычисляются по формуле:

$$\delta_{(n)} = \frac{u - \tilde{u}_{(n)}}{u} 100\%, \quad x = x_0.$$

Получили ошибки:

$$\delta_{(1)} = 1.4\%,$$
 $\delta_{(2)} = 0.2\%,$
 $\delta_{(3)} = 0.05\%.$

Таким образом уже первое приближение (первый член ряда) дает практически точное значение прогиба.

2 Введение в метод Галеркина с МКЭ-аппроксимацией

2.1 Определение метода Галеркина-МКЭ

Напомним, что метод Галеркина — это метод взвешенных невязок, в котором весовые функции выбираются из того же полного множества, что и базисные функции для аппроксимации решения. При этом в методе Галеркина не уточняется, какие функции должны входить в множество базисных функций: эти функции могут простираться и рассматриваться на всей области задачи «от края до края», а могут быть локальными, определенными в подоблостях задачи и вырождающимися в нуль на территории других подобластей.

Memod конечных элементов — это метод взвешенных невязок, в котором множество базисных функций состоит только из компактных локальных функций.

Объединяем эти два метода в один и получаем метод Галеркина с МКЭ-аппроксимацией — метод взвешенных невязок, в котором множество базисных функций для аппроксимации решения состоит из компактных локальных функций, а множество весовых функций совпадает с множеством базисных функций. Далее будем коротко называть этот метод методом Галеркина-МКЭ.

2.2 Обзор метода Галеркина-МКЭ и пример использования

Коротко и схематично метод Галеркина-МКЭ можно представить как

$$\mathbf{(S)}\Leftrightarrow\mathbf{(W)}\approx\mathbf{(G)}\Leftrightarrow\mathbf{(M)}$$

и расшифровать так: берем исходную задачу, записанную в сильной форме (S), переписываем ее в слабую форму (W), аппроксимируем решение методом Галеркина, но используя локальные функции (G), записываем задачу в матричной форме M.

Рассмотрим простой пример. Вертикальный стержень длины ℓ , защемленный в верхнем сечении и свободный в остальных сечениях, нагружен осевой растягивающей равномерно распределенной по его длине силой $p(x) = p_0$ (растянут под действием собственного веса). Нужно найти функцию осевых перемещений его точек u(x). Направим луч Ox от верхнего сечения вертикально вниз и запишем эту задачу в сильной

форме:

$$EA\frac{d^2u}{dx^2} = -p_0, \quad u(0) = 0, \quad EA\frac{du}{dx}\big|_{x=\ell} = 0, \quad x \in [0, \ell],$$

где E — модуль Юнга при растяжении, A — площадь поперечного сечения. С точки зрения математической физики это есть однородная краевая задача для одномерного уравнения Пуассона.

Напомним, что сильная форма задачи — это когда задача дается в виде набора из дифференциального уравнения и условий на границе. Теперь переформулируем задачу в слабой форме — вариационной постановке задачи, при которой задается интеграл по всей области задачи, под которым интегрируется невязка приближенного решения, умноженная на весовую функцию w(x). Выбрать весовую функцию можно произвольно. Запишем выражение невязки:

$$R(c_i, x) = \frac{d^2u}{dx^2} + p_0,$$

теперь частично запишем задачу в *слабой форме* (частично, потому что нужно будет еще добавить в набор слабой формы условия на границе, но пока запишем только уравнение):

$$\int_0^\ell \left(\frac{d^2u}{dx^2} + p_0\right) w(x)dx = 0.$$

Теперь, вместо того, чтобы искать точное решение повсюду, мы будем искать решение, удовлетворяющее сильной форме, но только в пределах области задачи. Решение сильной формы всегда и везде удовлетворяет условиям слабой формы, но не наоборот.

Если мы можем сами выбирать весовую функцию³, так пусть она будет удовлетворять однородным краевым условиям, то есть обращаться в нуль на границе: w(0) = 0. Еще раз запишем интеграл из слабой формы (раздельно по слагаемым его подынтегральной функции) и применим

³при определении весовой функции, в методе Галеркина-МКЭ одновременно определяется и базисная как равная весовой, весовая и базисная функции обладают одинаковыми свойствами, поэтому не имеет значения свойства какой функции определить первыми, а какой – вторыми.

интегрирование по частям:

$$\int_{0}^{\ell} \frac{d^{2}u}{dx^{2}} w(x) dx + \int_{0}^{\ell} p_{0}w(x) dx =
= -\int_{0}^{\ell} \frac{du}{dx} \frac{dw}{dx} dx + \left[w(x) \frac{du}{dx} \right] \Big|_{0}^{\ell} + \int_{0}^{\ell} p_{0}w(x) dx =
= -\int_{0}^{\ell} \frac{du}{dx} \frac{dw}{dx} dx + w(\ell) \frac{du}{dx} \Big|_{x=\ell} - w(0) \frac{du}{dx} \Big|_{x=0} + \int_{0}^{\ell} p_{0}w(x) dx = 0.$$

Теперь запишем полностью задачу в слабой форме:

$$u(0) = 0, \quad \frac{du}{dx}\Big|_{x=\ell} = 0, \quad w(0) = 0,$$

$$\int_0^\ell \frac{du}{dx} \frac{dw}{dx} dx + w(\ell) \frac{du}{dx}\Big|_{x=\ell} - w(0) \frac{du}{dx}\Big|_{x=0} = \int_0^\ell p_0 w(x) dx.$$

Заметим, что в последнем уравнении в левой части второе и третье слагаемые исчезают. Это означает, что слабая форма удовлетворяет условиям Неймана (или граничным условиям второго рода) автоматически.

Выберем множество локальных базисных функций $\{u_i\}_{i=1}^n$. Тогда пробное приближенное решение $\tilde{u}(x)$ запишется как положено в методе взвешенных невязок (для однородной задачи):

$$\tilde{u}(x) = \sum_{i} c_i u_i, \quad i = 1, 2, \dots, n,$$

где c_i – коэффициенты, которые нужно найти. Весовую функцию w(x), как это положено в методе Галеркина, разложим по тому же базису:

$$w(x) = \sum_{i} b_i u_i,$$

где b_i – коэффициенты, которые можно выбрать независимо. Подставим эти две функции в слабую форму:

$$\int_0^\ell \sum_j c_j \frac{du_j}{dx} \sum_i b_i \frac{du_i}{dx} dx = \int_0^\ell \sum_j b_j u_j(x) p_0 dx.$$

Знаки интеграла и суммы можно поменять местами:

$$\sum_{j} \sum_{i} c_j b_i \int_0^\ell \frac{du_j}{dx} \frac{du_i}{dx} dx = \sum_{j} b_j \int_0^\ell u_j(x) p_0 dx.$$

Ничто не мешает в правой части поменять индекс на другой:

$$\sum_{i} b_i \sum_{j} c_j \int_0^\ell \frac{du_j}{dx} \frac{du_i}{dx} dx = \sum_{i} b_i \int_0^\ell u_i(x) p_0 dx.$$

Теперь можно сократить левую и правую части на одинаковую внешнюю операцию суммирования и избавится заодно от коэффициентов b_i , но получив взамен n уравнений с различным значением индекса i:

$$\sum_{j} c_j \int_0^\ell \frac{du_j}{dx} \frac{du_i}{dx} dx = \int_0^\ell u_i(x) p_0 dx, \quad i, j = 1, 2, \dots, n.$$

С точки зрения линейной алгебры, мы получили матричное уравнение $\mathbf{Kc} = \mathbf{f}$, где мы можем легко посчитать все элементы квадратной матрицы $K_{ij} = \int_0^\ell \frac{du_j}{dx} \frac{du_i}{dx} dx$ и все элементы вектор-столбца $f_i = \int_0^\ell u_i(x) p_0 dx$, так как все базисные функции $u_i(x)$ нам известны. Поскольку мы можем спокойно менять местами значения i и j в интеграле $\int_0^\ell \frac{du_j}{dx} \frac{du_i}{dx} dx$, получая одно и то же его значение при фиксированных i и j, то матрица K_{ij} будет cимметричной.

Теперь можно по правилам линейной алгебры найти вектор-столбец неизвестных коэффициентов \mathbf{c} :

$$\mathbf{Kc} = \mathbf{f}$$
 $\mathbf{K}^{-1}\mathbf{Kc} = \mathbf{K}^{-1}\mathbf{f}$
 $\mathbf{c} = \mathbf{K}^{-1}\mathbf{f}$

где \mathbf{K}^{-1} – обратная к \mathbf{K} матрица. Найденные коэффициенты c_i подставим в разложение по базису пробной функции $\tilde{u}(x)$, посчитаем сумму и запишем приближенный ответ к исходной задаче:

$$\tilde{u}(x) = \sum_{i} c_i u_i, \quad i = 1, 2, \dots, n.$$

Представим, что наш вертикальный стержень разбит на две равные подоблости:

$$\Omega_1: x \in \left[0, \frac{\ell}{2}\right], \quad \Omega_2: x \in \left[\frac{\ell}{2}, \ell\right].$$

В качестве базисных функций мы можем выбрать весьма разные функции, но для простоты выберем сейчас кусочно-линейные холмообразные функции, имеющих наибольшее значение – единицу.

Приближенное решение $\tilde{u}(x)$ будет линейной комбинацией этих функ-

Рис. 1: Базисные кусочно-линейные функции u_i для одномерных элементов (холмообразные)

ций:

$$\tilde{u}(x) = \sum_{i=1}^{3} c_i u_i.$$

Поскольку выбранные функции удовлетворяют условию $\tilde{u}_i(x_j) = \delta_{ij}$, то решение $\tilde{u}(x)$ будет интерполяцией.

Поскольку мы знаем, что $\tilde{u}(0)=0$, то $c_1=0$, и мы можем отбросить функцию u_i из расчета для экономии времени: $c_1u_1=0$ – повсюду. Для остальных функций:

$$u_2(x) = \begin{cases} 2\frac{x}{\ell}, & x \in \left[0, \frac{\ell}{2}\right] \\ -2\frac{x-\ell}{\ell}, & x \in \left[\frac{\ell}{2}, \ell\right] \end{cases}, \quad u_3(x) = \begin{cases} 2\frac{x}{\ell} - 1, & x \in \left[\frac{\ell}{2}, \ell\right] \\ 0, & x \notin \left[\frac{\ell}{2}, \ell\right] \end{cases}.$$

Мы нашли все интересующие нас базисные функции. Теперь составим матрицы жесткости. Сначала найдем производные от базисных функций:

$$\frac{du_2}{dx} = \begin{cases} \frac{2}{\ell}, & x \in \left[0, \frac{\ell}{2}\right] \\ -\frac{2}{\ell}, & x \in \left[\frac{\ell}{2}, \ell\right] \end{cases}, \quad \frac{du_3}{dx} = \begin{cases} \frac{2}{\ell}, & x \in \left[\frac{\ell}{2}, \ell\right] \\ 0, & x \notin \left[\frac{\ell}{2}, \ell\right] \end{cases}.$$

Запишем матричное уравнение $\mathbf{Kc} = \mathbf{f}$:

$$\begin{bmatrix} \int_{0}^{\ell} \left(\frac{du_{1}}{dx}\right)^{2} dx & \int_{0}^{\ell} \frac{du_{1}}{dx} \frac{du_{2}}{dx} dx & \int_{0}^{\ell} \frac{du_{1}}{dx} \frac{du_{3}}{dx} dx \\ \int_{0}^{\ell} \frac{du_{1}}{dx} \frac{du_{2}}{dx} dx & \int_{0}^{\ell} \left(\frac{du_{2}}{dx}\right)^{2} dx & \int_{0}^{\ell} \frac{du_{2}}{dx} \frac{du_{3}}{dx} dx \\ \int_{0}^{\ell} \frac{du_{1}}{dx} \frac{du_{3}}{dx} dx & \int_{0}^{\ell} \frac{du_{2}}{dx} \frac{du_{3}}{dx} dx & \int_{0}^{\ell} \left(\frac{du_{3}}{dx}\right)^{2} dx \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} \int_{0}^{\ell} u_{1}(x) p_{0} dx \\ \int_{0}^{\ell} u_{2}(x) p_{0} dx \\ \int_{0}^{\ell} u_{3}(x) p_{0} dx \end{bmatrix}.$$

Поскольку $c_1 = 0$, то первый столбец и первая строка матрицы жесткости не нужны, также не нужны первые строки в вектор-столбцах неизвестных коэффициентов и сил. Скроем от глаз и вычислений ненужные

строки и столбцы, как бы визуально понижая ранг матрицы и размерность вектор-столбцов, но с сохранением старых значений индексов (это эквивалентно обнулению всех ненужных компонентов, чтобы они не мешались при матричных операциях):

$$\begin{bmatrix} \int_0^\ell \left(\frac{du_2}{dx}\right)^2 dx & \int_0^\ell \frac{du_2}{dx} \frac{du_3}{dx} dx \\ \int_0^\ell \frac{du_2}{dx} \frac{du_3}{dx} dx & \int_0^\ell \left(\frac{du_3}{dx}\right)^2 dx \end{bmatrix} \begin{bmatrix} c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} \int_0^\ell u_2(x) p_0 dx \\ \int_0^\ell u_3(x) p_0 dx \end{bmatrix}.$$

Вычислим все коэффициенты, заданные формулами. Везде стоят пределы интегрирования от 0 до ℓ . Однако из-за того, что функции u_i являются кусочно-линейными функциями, интегрировать следует последовательно от точки преломления до точки преломления, то есть вместо интегрирования от 0 до ℓ будем интегрировать от 0 до $\frac{\ell}{2}$, затем от $\frac{\ell}{2}$ до ℓ и складывать значения интегралов. При этом будем обращать внимание на то, что функция u_3 и ее производная равна нулю слева от $x = \frac{\ell}{2}$. Не забудем о симметричности матрицы жесткости.

$$K_{2,2} = \int_0^{\ell/2} \left(\frac{du_2}{dx}\right)^2 dx + \int_{\ell/2}^{\ell} \left(\frac{du_2}{dx}\right)^2 dx =$$

$$= \int_0^{\ell/2} \left(\frac{2}{\ell}\right)^2 dx + \int_{\ell/2}^{\ell} \left(-\frac{2}{\ell}\right)^2 dx = \frac{4}{\ell^2} \int_0^{\ell} dx = \frac{4}{\ell}.$$

$$K_{2,3} = \int_0^{\ell/2} \frac{du_2}{dx} \frac{du_3}{dx} dx + \int_{\ell/2}^{\ell} \frac{du_2}{dx} \frac{du_3}{dx} dx = \int_{\ell/2}^{\ell} \left(-\frac{2}{\ell} \right) \left(\frac{2}{\ell} \right) dx =$$

$$= -\frac{4}{\ell^2} \int_{\ell/2}^{\ell} dx = -\frac{4}{\ell^2} \left(\ell - \frac{\ell}{2} \right) = -\frac{4}{\ell^2} \frac{\ell}{2} = -\frac{2}{\ell}.$$

$$K_{3,3} = \int_0^{\ell/2} 0 \, dx + \int_{\ell/2}^{\ell} \left(\frac{2}{\ell} \right)^2 dx = \frac{4}{\ell^2} \left(\ell - \frac{\ell}{2} \right) = \frac{2}{\ell}.$$

Используя геометрический смысл определенного интеграла (смотрим на графики u_2 и u_3 и вспоминаем формулу площади треугольника, высота которого равна единице), находим:

$$f_2 = \int_0^{\ell} u_2(x) p_0 dx = p_0 \frac{\ell}{2},$$
$$f_3 = \int_0^{\ell} u_3(x) p_0 dx = p_0 \frac{\ell}{4}.$$

Через геометрический смысл брать интегралы линейных функций ока-

зывается проще и нагляднее. Матричное уравнение запишется:

$$\frac{1}{\ell} \left[\begin{array}{cc} 4 & -2 \\ -2 & 2 \end{array} \right] \left[\begin{array}{c} c_2 \\ c_3 \end{array} \right] = p_0 \ell \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{4} \end{array} \right].$$

Теперь в программе Scilab легко найдем коэффициенты c_i . В интерактивной консоли вводим и получаем:

```
-->K = [4 -2; -2 2]; \\ Вводим матрицу жесткости
-->f = [1/2; 1/4]; \\ Вводим столбец сил
-->c = K \ f \\ Делим "справа" 'f' на 'K'...
c =

0.375
0.5
```

Напомним, что в Scilab «деление справа» означает умножение обратной матрицы для матрицы, стоящей слева от знака операции, на матрицу или столбец, стоящий справа от этого знака ($\mathbf{K} \setminus \mathbf{f} \equiv \mathbf{K}^{-1} \cdot \mathbf{f}$). Получили

$$c_i = p_0 \ell^2 \begin{bmatrix} \frac{3}{8} \\ \frac{1}{2} \end{bmatrix}, \quad i = 2, 3.$$

Запишем приближенное решение:

$$\tilde{u}(x) = \begin{cases} \frac{3}{4} p_0 \ell x, & x \in [0, \frac{\ell}{2}] \\ \frac{1}{2} p_0 (\ell^2 + \ell x), & x \in [\frac{\ell}{2}, \ell] \end{cases}$$

Можно сравнить с известным точным решением $u(x) = p_0 \ell x - \frac{p_0 x^2}{2}$, подставив конкретные значения p_0 , ℓ и x в него и в наше $\tilde{u}(x)$. Поскольку \tilde{u} – кусочно-линейная интерполяция функции u для трех заданных узлов $x_k = \{0, \frac{\ell}{2}, \ell\}$, то в этих узлах $\tilde{u}(x_k) = u(x_k)$. В остальных точках графики функций u и \tilde{u} немного расходятся.

Список литературы

- [1] Bruce A. Finlayson The method of weighted residuals and variational principles. Academic ress, inc., New York, 1972.
- [2] Иванов В.Н. Вариационные принципы и методы решения задач теории упругости: Учеб. пособие М.: Изд-во РУДН, 2004. 176 с.: ил.
- [3] Бабенко К.И. Основы численного анализа. М.: Наука, 1986.