Monades, Comonades et Automates cellulaires

Jérémy S. Cochoy

INRIA Paris-Saclay

Octobre 2015

- Monades
 - Types
 - Fonctions
 - Foncteurs
 - Monades
- Automates Cellulaires
- Comonades

Qu'est-ce qu'un type?

C'est un *ensemble* de valeurs.

- $Int = \{-2147483648, \dots, 2147483647\}$
- $Bool = \{True, False\}$
- Char = $\{'a', b', c', \ldots\}$
- \bullet [Bool] = {[], [True], [False], [True, False], [False, True], ...}
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- $Char = \{'a', 'b', 'c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char = $\{'a', b', c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char = $\{'a', b', c', \ldots\}$
- $[Bool] = \{[], [True], [False], [True, False], [False, True], \ldots \}$
- [a]

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Just, Nothing, InABox etc portent le doux nom de constructeur de type. C'est aussi le cas de //.

Ce sont les traitements que l'on peut implémenter.

Une fonction ne lance pas de fusé.

Ce sont les traitements que l'on peut implémenter.

Une fonction ne lance pas de fusé.

Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2) :: Int -> Int
- id : : a -> a
- map::(a->b)->[a]->[b]

Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2) :: Int -> Int
- id : : a -> a
- map : : (a -> b) -> [a] -> [b]

Ça se compose

- f1::a-> b
- f2::b->c
- f2 . f1 :: a -> c
- .: (a -> b) -> (b -> c) -> (a -> c)

Ça se compose

- f1::a-> b
- f2 :: b -> c
- f2 f1 :: a -> c
- .:: (a -> b) -> (b -> c) -> (a -> c)

Ça se compose

- f1::a-> b
- f2::b->c
- f2 f1::a-> c
- . : : (a -> b) -> (b -> c) -> (a -> c)

La collection de tous les types forme une catégorie. Les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.

Les foncteurs

Un foncteur F agit sur les types ...

- a => F a
- \bullet a => Maybe a
- a => [a]

- fmap (+2):: F Int -> F Int
- fmap id : : Fa -> Fa

Les foncteurs

Un foncteur F agit sur les types ...

- a => F a
- \bullet a => Maybe a
- a => [a]

... et sur les fonctions

- a -> b => F a -> F b
- fmap (+2) : : F Int -> F Int
- fmap id : : Fa -> Fa

Donnée dans un contexte

Un foncteur permet de passer d'un monde (les types a) vers un autre (les types F a).

TODO: Remplacer l'image par a -> F a

Functorial mapping

On ne peut plus appliquer la fonction telle quelle les diagrammes suivant commutent :

Functorial mapping

Mais le foncteur nous donne une nouvelle flèche.

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap (p . q) = (fmap p) . (fmap q)

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- $fmap(p \cdot q) = (fmap p) \cdot (fmap q)$

Un foncteur est un endofoncteur de la catégorie des types.

TODO: Funny picture here.

Donnée dans un contexte

Une monade place une valeur dans un contexte.

L'exemple de Maybe : Just 3

Donnée dans un contexte

Un contexte peut aussi ne pas contenir de valeur.

L'exemple de Maybe : Nothing

Placer une donnée dans un contexte

L'opérateur pure

pure :: a -> F a

Quelques cas particuliers

- Just
- **●** (: □)
- Right

Un traitement qui peut échouer,

Une fonction de type Int -> Maybe Int.

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f :: a -> M b avec fmap g ::
M b \rightarrow M (M c).
```

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f::a \rightarrow M b avec f map g::
M b \rightarrow M (M c).
```

```
Que faire d'un M (M c)?
```

L'opérateur join

join :: M (M a) -> M a

join \$ Just (Just 3)

L'opérateur join

join :: M (M a) -> M a

join \$ Just (Just 3).

L'opérateur join

join :: M (M a) -> M a

join \$ Just (Nothing).

L'opérateur join

join :: M (M a) -> M a

join \$ Just (Nothing).

L'opérateur *bind*

On cherche à définir la composition.

$$(>=>)$$
 :: $(a -> M b) -> (b -> M c) -> (a -> M c)$

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

$$f >=> g \equiv join \cdot (fmap g) \cdot f.$$

L'opérateur *bind*

On cherche à définir la composition.

$$(>=>)$$
 :: $(a -> M b) -> (b -> M c) -> (a -> M c)$

Nous avons:

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

f >=> g
$$\equiv$$
 join . (fmap g) . f.

L'opérateur bind

On cherche à définir la composition.

$$(>=>)$$
 :: $(a -> M b) -> (b -> M c) -> (a -> M c)$

Nous avons:

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

On peut maintenant composer f et g.

$$f >=> g \equiv join . (fmap g) . f.$$

Récapitulatif

Une monade, c'est

- fmap : : (a -> b) -> (M a -> M b)
- pure : : a -> M a
- join :: M (M a) -> M a

Une monade doit respecter des lois

- \bullet pure . f \equiv (fmap f) . pure
- ullet join . fmap (fmap f) \equiv (fmap f) . join
- join . fmap join ≡ join . join
- join . fmap pure ≡ join . pure = id

Monades - Catégories

Une monade (T, μ, η) est la donné d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$.

Dans notre cas, C est la catégorie des types.

Monades - Catégories

Une monade (T, μ, η) est la donné d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$. Dans notre cas, C est la catégorie des types.

pure est une T.N.

pure . $f \equiv (fmap f)$. pure

$$X \xrightarrow{f} Y$$

$$\downarrow^{\eta_X} \qquad \qquad \downarrow^{\eta_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

join est une T.N.

join . fmap $(fmap f) \equiv (fmap f)$. join

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

$$\downarrow^{\mu_X} \qquad \qquad \downarrow^{\mu_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

Associativité

join . fmap join ≡ join . join

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$\mu \circ T\mu = \mu \circ \mu_T$$

Existence d'un neutre

join . fmap pure \equiv join . pure = id

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$\mu \circ T\eta = \mu \circ \eta_T = id_T$$

Automates cellulaires

Toison d'or

Qu'est-ce qu'un automate cellulaire?

Un automate cellulaire, c'est :

- Un nombre fini d'états S,
- Une grille de cellules,
- ullet La notion de voisinage d'une cellule V_c ,
- D'une fonction de transition qui à une cellule associe sont nouvelle état.

Combien d'automates cellulaires différents?

On a le choix:

- De la dimension de la grille,
- Des lois,
- Du nombres d'états (couleurs),
- De la forme du voisinages (boules de rayon r, etc.),
- De ne pas être déterministe.

The "Game of Life"

Jeu de la vie (J. H. Conway)

Étude d'un cas : Rule 30

La grille

La grille de l'automate

- Une grille 1D
- Deux états (Blanc / Noir)

Un voisinage de 3 cellules.

Les règles

On peux aussi écrire

Ancien état	111	110	101	100	011	010	001	
Nouvel état				1	1	1	1	

Un voisinage de 3 cellules.

Les règles

On peux aussi écrire :

Ancien état	111	110	101	100	011	010	001	
Nouvel état				1	1	1	1	

Un voisinage de 3 cellules.

Les règles

On peux aussi écrire :

Ancien état	111	110	101	100	011	010	001	000
Nouvel état	0	0	0	1	1	1	1	0

Comonades

 ${\sf TODO}: {\sf Funny} \ {\sf comonad} \ {\sf picture}$

C'est le dual d'une monade

- extract (copure) (co uinit) : : M a -> a
- duplicate (cojoin) (co product δ) : : M a -> M (M a)

Dura lex sed lex

Une comonade doit respecter des lois

- ullet (fmap (fmap f)) . duplicate \equiv duplicate . fmap f
- duplicate . duplicate = fmap duplicate . duplicate
- ullet duplicate \equiv fmap duplicate . duplicate (commut)
- ullet fmap extract . duplicate \equiv extract . duplicate \equiv id (counit)

Comonades - Catégories

Une comonade (T, δ, ϵ) est la donné d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\Delta: T \to T \circ T$ et $\epsilon: T \to 1_C$ telles que :

$$T(X) \xrightarrow{\Delta_X} T(T(X)) \qquad T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_{T(X)} \qquad \Delta_X \downarrow \qquad \qquad \downarrow \epsilon_{T(X)}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X))) \qquad T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

c'est à dire $\Delta_T \circ \Delta = T\Delta \circ \Delta$ et $T\epsilon \circ \Delta = \epsilon_T \circ \Delta = id$.

extract est une T.N.

f . extract \equiv extract . (fmap f)

$$X \xrightarrow{f} Y$$

$$\uparrow^{\epsilon_X} \qquad \stackrel{\epsilon_Y}{\uparrow}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

duplicate est une T.N.

(fmap (fmap f)) . $duplicate \equiv duplicate$. fmap f

$$T(X) \xrightarrow{T(f)} T(Y)$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_Y$$

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

Coassociativité

duplicate . duplicate = fmap duplicate . duplicate

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_{T(X)}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X)))$$

$$\Delta \tau \circ \Delta = T\Delta \circ \Delta$$

Existence d'une counité

extract . duplicate = fmap extract . duplicate = id

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\downarrow^{\epsilon_{T(X)}}$$

$$T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

$$\epsilon \tau \circ \Delta = T \epsilon \circ \Delta = i d \tau$$

