Q2 Regression analysis:

In [11]:

```
#Importing Libraries
import pandas as pd
import numpy as np
from sklearn import linear_model
import statsmodels.api as sm
import matplotlib.pyplot as plt
import math
```

Loading the data and looking at the first 15 rows

```
In [12]:
```

```
df = pd.read_csv("Comp1_IE529.csv", header = None)
df.head(15)
```

Out[12]:

	0	1
0	37.5	6.4
1	51.5	10.2
2	61.3	12.4
3	61.3	13.0
4	63.6	13.2
5	66.1	13.0
6	70.0	12.7
7	92.7	13.9
8	90.5	15.5
9	90.5	15.8
10	94.8	15.8
11	97.0	16.8
12	97.0	17.1
13	97.0	17.8
14	102.0	14.8

In [13]:

```
X = np.array(df)
X = np.insert(X, 0, 1, axis=1) #Inserting a column of 1s so that we can model a simpl
e linear regression
```

Fitting a simple linear regression model to the data \begin{align}

 $\hat{y} = \hat{\omega} + \hat{\omega} + \hat{\omega}$

We use statsmodel.api library in python and call the OLS function which stands for ordinary least squares to fit a simple linear regression model to the data with minimum sum of squared errors

In [14]:

```
model = sm.OLS(X[:,2],X[:,:2]).fit()
model.summary()
```

Out[14]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.831
Model:	OLS	Adj. R-squared:	0.828
Method:	Least Squares	F-statistic:	294.9
Date:	Thu, 09 Nov 2017	Prob (F-statistic):	7.76e-25
Time:	11:08:52	Log-Likelihood:	-101.07
No. Observations:	62	AIC:	206.1
Df Residuals:	60	BIC:	210.4
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	5.6796	0.580	9.784	0.000	4.518	6.841
x 1	0.0995	0.006	17.174	0.000	0.088	0.111

Omnibus:	1.396	Durbin-Watson:	1.071
Prob(Omnibus):	0.497	Jarque-Bera (JB):	1.300
Skew:	-0.219	Prob(JB):	0.522
Kurtosis:	2.443	Cond. No.	365.

The coefficients obtained are \begin{align}

 $\hat{0} = 5.6796 \ \hat{0} = 0.0995 \$

Sum of squared error for this model

In [15]:

```
ssr =[]
ssr.append(model.ssr)
print('\033[1m'+ 'Sum of squared residuals= ' + '\033[0m',model.ssr)
```

Sum of squared residuals= 94.5794789741

Plot the fitted model overlaying the scatter plot of our original dataset

In [16]:

```
x=model.params[0] + model.params[1] * X[:,1]
plt.scatter(X[:,1], X[:,2])
plt.plot(X[:,1], x, color = 'g', linewidth=5.0)
plt.title("Simple Linear Regression")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
```


Fitting a second order polynomial linear regression model to the data \begin{align}

 $\hat{y} = \hat{0} + \hat{0} + \hat{0} + \hat{0} + \hat{0} = 1$

In [17]:

```
df['a'] = df[0]**2 #Adding a square term to the dataframe
#Next three lines to move output variable to the end of dataframe
cols = list(df.columns.values) #Make a list of all of the columns in the df
cols.pop(cols.index(1)) #Remove 1 from list
df = df[cols+[1]] #Create new dataframe with columns in the order you want
X = np.array(df) #Converting to numpy array to use further
X = np.insert(X, 0, 1, axis=1) #Inserting a column of 1s for constant term
```

In [18]:

```
model = sm.OLS(X[:,3],X[:,:3]).fit() #Fitting the model
model.summary()
```

Out[18]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.909
Model:	OLS	Adj. R-squared:	0.906
Method:	Least Squares	F-statistic:	293.6
Date:	Thu, 09 Nov 2017	Prob (F-statistic):	2.15e-31
Time:	11:09:11	Log-Likelihood:	-81.969
No. Observations:	62	AIC:	169.9
Df Residuals:	59	BIC:	176.3
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-1.5254	1.104	-1.382	0.172	-3.734	0.683
x 1	0.2791	0.026	10.858	0.000	0.228	0.331
x2	-0.0010	0.000	-7.088	0.000	-0.001	-0.001

Omnibus:	2.658	Durbin-Watson:	1.398
Prob(Omnibus):	0.265	Jarque-Bera (JB):	1.608
Skew:	-0.104	Prob(JB):	0.448
Kurtosis:	2.239	Cond. No.	1.05e+05

The coefficients obtained are \begin{align}

The sum of squared error is for this model

```
In [19]:
```

```
ssr.append(model.ssr)
print('\033[1m'+ 'Sum of squared residuals= ' + '\033[0m',model.ssr)
```

Sum of squared residuals= 51.0810573979

Plot the fitted model overlaying the scatter plot of our original dataset

In [21]:

```
x=model.params[0] + model.params[1] * X[:,1] + model.params[2] * X[:,2]
plt.scatter(X[:,1], X[:,3], color = 'b')
plt.plot(np.sort(X[:,1]), np.sort(x), color = 'g', linewidth=5.0)
plt.title("Second order Polynomial Regression")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
```


The scond order polynomial regression model fits the data points much better and also lessens the sum of squares error. From the plot and ss residual, it seems like the second order fits the data better than the simple linear regression model

We will now apply higher order models before making a decision

Fit a third order polynomial linear regression model to the data \begin{align}

 $\frac{y} = \frac{0}{x^2} + \frac{y} = \frac{0}{x^2} + \frac{$

In [22]:

In [23]:

```
model = sm.OLS(X[:,4],X[:,:4]).fit()
model.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.920
Model:	OLS	Adj. R-squared:	0.916
Method:	Least Squares	F-statistic:	223.4
Date:	Thu, 09 Nov 2017	Prob (F-statistic):	8.10e-32
Time:	11:13:03	Log-Likelihood:	-77.744
No. Observations:	62	AIC:	163.5
Df Residuals:	58	BIC:	172.0
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-9.4058	2.901	-3.243	0.002	-15.212	-3.599
x 1	0.5894	0.109	5.391	0.000	0.371	0.808
x2	-0.0047	0.001	-3.687	0.001	-0.007	-0.002
х3	1.348e-05	4.63e-06	2.910	0.005	4.21e-06	2.27e-05

Omnibus:	0.477	Durbin-Watson:	1.542
Prob(Omnibus):	0.788	Jarque-Bera (JB):	0.377
Skew:	0.186	Prob(JB):	0.828
Kurtosis:	2.914	Cond. No.	3.47e+07

The coefficients obtained are \begin{align}

Lets now see what the sum of squared error is for this model

In [25]:

```
ssr.append(model.ssr)
print('\033[1m'+ 'Sum of squared residuals= ' + '\033[0m',model.ssr)
```

Sum of squared residuals = 44.5729109596

Plotting the fitted model overlaying the scatter plot of the original dataset

In [26]:

```
x=model.params[0] + model.params[1] * X[:,1] + model.params[2] * X[:,2] + model.params[
3] * X[:,3]
plt.scatter(X[:,1], X[:,4], color = 'b')
plt.plot(np.sort(X[:,1]), np.sort(x), color = 'g', linewidth=5.0)
plt.title("Third order Polynomial Regression")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
```


The third order polynomial fits better but the sum of squared residuals has not reduced much. One needs to keep in mind the simplicity of the model before making any decision

Similarly for fourth order polynomial

In [30]:

```
df['c'] = df[0]**4
cols = list(df.columns.values) #Make a list of all of the columns in the df
cols.pop(cols.index(1)) #Remove 1 from list
df = df[cols+[1]] #Create new dataframe with columns in the order you want
X = np.array(df)
X = np.insert(X, 0, 1, axis=1)
model = sm.OLS(X[:,5],X[:,:5]).fit()
model.summary()
```

Out[30]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.915
Method:	Least Squares	F-statistic:	165.1
Date:	Thu, 09 Nov 2017	Prob (F-statistic):	1.23e-30
Time:	11:38:22	Log-Likelihood:	-77.669
No. Observations:	62	AIC:	165.3
Df Residuals:	57	BIC:	176.0
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-12.2319	8.145	-1.502	0.139	-28.542	4.078
x1	0.7447	0.432	1.724	0.090	-0.120	1.610
x2	-0.0076	0.008	-0.948	0.347	-0.024	0.008
х3	3.684e-05	6.3e-05	0.585	0.561	-8.94e-05	0.000
x4	-6.556e-08	1.76e-07	-0.372	0.711	-4.19e-07	2.88e-07

Omnibus:	0.448	Durbin-Watson:	1.535
Prob(Omnibus):	0.799	Jarque-Bera (JB):	0.435
Skew:	0.190	Prob(JB):	0.804
Kurtosis:	2.842	Cond. No.	1.19e+10

The coefficients obtained are \begin{align}

Lets see what the sum of squared error is for this model

In [31]:

```
ssr.append(model.ssr)
print('\033[1m'+ 'Sum of squared residuals= ' + '\033[0m',model.ssr)
```

Sum of squared residuals = 44.4651118142

In [32]:

```
x=model.params[0] + model.params[1] * X[:,1] + model.params[2] * X[:,2] + model.params[
3] * X[:,3] +model.params[4] * X[:,4]
plt.scatter(X[:,1], X[:,5], color = 'b')
plt.plot(np.sort(X[:,1]), np.sort(x), color = 'g', linewidth=5.0)
plt.title("Fourth order Polynomial Regression")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
```


The sum of squares residual whe going from 3rd to 4th order regression hardly changes.

Observing the RSS of different order models

In [33]:

```
plt.bar(np.arange(len(ssr)),ssr)
plt.xticks(np.arange(len(ssr)),[i for i in range(1,5)])
plt.xlabel("degree of polynomial")
plt.ylabel("Residual sum of squares")
plt.show()
```


We can infer from the above plots that the 2nd degree of polynomial would be the best fit as increasing complexity further does not reduce the sum of squared errors to a large extent.

Logistic Regression

```
In [53]:
```

lm = linear_model.LogisticRegression(C=1e10)

```
In [54]:
X = np.array(df)
Y = X[:,4]
X = X[:,0].reshape((62,1))
model = lm.fit(X,Y)
ValueError
                                           Traceback (most recent call las
t)
<ipython-input-54-73ff87589d59> in <module>()
      2 Y = X[:,4]
      3 X = X[:,0].reshape((62,1))
----> 4 model = lm.fit(X,Y)
C:\Users\karan\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
y in fit(self, X, y, sample_weight)
                X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float
   1172
64,
                                 order="C")
   1173
-> 1174
                check_classification_targets(y)
   1175
                self.classes_ = np.unique(y)
   1176
                n_samples, n_features = X.shape
C:\Users\karan\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in
check_classification_targets(y)
   170
            if y_type not in ['binary', 'multiclass', 'multiclass-multiout
put',
                    'multilabel-indicator', 'multilabel-sequences']:
    171
                raise ValueError("Unknown label type: %r" % y_type)
--> 172
    173
    174
ValueError: Unknown label type: 'continuous'
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```

Model does not fit the data as logistic regression is used when output variable lies between 0 and 1. But here the output variable has values above 1