3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Quasiconvex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

are convex for all α

- ullet f is quasiconcave if -f is quasiconvex
- ullet f is quasilinear if it is quasiconvex and quasiconcave

- $\overline{|x|}$ is quasiconvex on ${f R}$
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \mathbf{dom} \ f = \{x \mid \underline{c^T x + d} > 0\}$$

$$\underbrace{\frac{\alpha^7 \times + b}{c^7 \times + d}}_{\mathcal{T}_{X} + d} \stackrel{\geq}{\leq} \qquad \Rightarrow \qquad \underbrace{\alpha^7 \times + b}_{\leq} \stackrel{\leq}{c^7 \times + d}_{\mathcal{X}}$$

is quasilinear

$$\frac{a^{7}x+b}{c^{7}x+d} \stackrel{\geq}{\leq} \propto$$

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \iff \text{dom } f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

sums of quasiconvex functions are not necessarily quasiconvex

log f(0x + (1-0) f(v)) > 0/ogf(x) + (1-0)/og f(y)

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

$$f(x) = x^{\alpha}$$
 $f(x) = \alpha / 3g^{\alpha}$

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- \bullet many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T (\Sigma)^{-1}(x-\bar{x})}$$

ullet cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

 $\bigcirc |\times\rangle$

hy the

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if $f(x)\nabla^2 f(x) \subseteq \nabla f(x)\nabla f(x)^T$

for all $x \in \operatorname{\mathbf{dom}} f$

• product of log-concave functions is log-concave

sum of log-concave functions is not always log-concave

• integration: if $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \ dy$$

is log-concave (not easy to show)

consequences of integration property

ullet convolution f*g of log-concave functions f, g is log-concave

$$(f * g)(x) = \int \underbrace{f(x - y)g(y)} dy$$

• if $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \mathbf{prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int \underline{g(x+y)p(y)} \, dy, \qquad \underline{g(u)} = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

~ ~ NUC 3-26

example: yield function

$$Y(x) = \mathbf{prob}(x + w \in S)$$

- $x \in \mathbb{R}^n$: nominal parameter values for product
- $w \in \mathbb{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if S is convex and w has a log-concave pdf, then

• Y is log-concave

• yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex

log-concave => quesi-concave (log: monotone)

Convexity with respect to generalized inequalities

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

$$\begin{cases} f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y) \end{cases}$$

for x, $y \in \operatorname{dom} f$, $0 \le \theta \le 1$

example $f: \mathbf{S}^m \to \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}^m_+ -convex $(\mathbf{Q}_{X} + \mathbf{P}_{\Theta})$

proof: for fixed $\underline{z} \in \mathbf{R}^m$, $\underline{z}^T X^2 z = \|Xz\|_2^2$ is convex in X, i.e.,

$$z^T(\theta X + (1-\theta)Y)^2 z \le \theta z^T X^2 z + (1-\theta)z^T Y^2 z$$

for $X, Y \in \mathbf{S}^m$, $0 < \theta < 1$

$$\frac{2}{(0\chi^{2}+1)+9)\gamma^{2}} = \frac{2}{(0\chi^{2}+1)+9)\gamma^{2}} - \frac{2}{(0\chi^{2}+1)+9)\gamma^{2}} = \frac{2}{(0\chi^{2}+1)+9)\gamma^{2}} = \frac{2}{(0\chi^{2}+1)+9} = \frac{2}$$

therefore $(\theta X + (1-\theta)Y)^2 \preceq \theta X^2 + (1-\theta)Y^2$

4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ s.t. $h_i(x)=0, \quad i=1,\ldots,p$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints) inf $\phi = \infty$
- ullet $p^\star = -\infty$ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{\mathbf{dom}} f_0$ and it sa<u>tis</u>fies the constraints

a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points

x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to $f_i(z)$

)
$$f_0(z)$$

 $f_i(z) \le 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p$
 $\|z - x\|_2 \le R$

examples (with $\underline{n} = 1$, m = p = 0)

•
$$f_0(x) = -\log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$

•
$$f_0(x) = x \log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal

• $f_0(x) = x^3 - 3x$, $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- ullet we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

$$-\log x : \text{Convex}$$

$$\underline{\mininimize} \quad f_0(x) = \underbrace{\sum_{i=1}^k \log(b_i - a_i^T x)}_{} \quad \text{convex}$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$ $\forall h \in \{1, 2, ..., k\}$

Feasibility problem

find
$$\underline{x}$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize
$$0$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

minimize subject to
$$\underbrace{f_0(x)}_{f_i(x) \leq 0} \underbrace{i=1,\ldots,m}_{i=1,\ldots,p}$$

- ullet f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- ullet problem is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$
$$Ax = b$$

important property: feasible set of a convex optimization problem is convex

example

$$f(x) = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = x_1 \\ \end{array}$$
 minimize
$$f_0(x) = x_1^2 + x_2^2$$
 subject to
$$f_1(x) = x_1/(1+x_2^2) \leq 0$$

$$h_1(x) = (x_1+x_2)^2 = 0$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose \underline{x} is locally optimal, but there exists a feasible \underline{y} with

$$f_0(y) < f_0(x)$$

x locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

•
$$||y - x||_2 > R$$
, so $0 < \theta < 1/2$

 $\frac{-x\|_{2}}{\|2-x\|_{2}} = \frac{10y-0}{10y-0} = 0$ \bullet z is a convex combination of two feasible points, hence also feasible

$$\bullet \ \underline{\|z-x\|_2} = R/2 \text{ and}$$

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) \le f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

< Aa, b) = < a, A'5)

ullet unconstrained problem: x is optimal if and only if

$$x \in \operatorname{dom} f_0, \quad \nabla f_0(x) = 0$$

minimize
$$f_0(x)$$
 subject to $Ax = b$

 \boldsymbol{x} is optimal if and only if there exists a ν such that

Layrunge multiple

 $x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$ $X : Ax = b, \qquad \forall y = b$ V = x - y A(x - y) = b - b = 1 V = x - y

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

• minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad x \succeq 0,$$

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \quad \left\{ \begin{array}{ll} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right\}$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & \underline{Ax=b} \end{array}$$

is equivalent to

minimize (over
$$z$$
) $f_0(\underline{Fz+x_0})$ subject to $f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

$$A(FZ+X_0) = 0+b=1$$

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \leq 0, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, y_i) $f_0(y_0)$ subject to $f_i(y_i) \leq 0, \quad i=1,\ldots,m$ $y_i=A_ix+b_i, \quad i=0,1,\ldots,m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to
$$a_i^T x + \underline{s_i} = b_i, \quad i = 1, \dots, m$$

$$s_i \geq 0, \quad i = 1, \dots m$$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x$$
, t) subject to

trick minimize (over
$$x$$
, t) t subject to
$$f_0(x) - t \leq 0$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

minimizing over some variables

minimize
$$\underline{f_0(x_1,x_2)}$$
 subject to $f_i(x_1) \leq 0, \quad i=1,\ldots,m$

is equivalent to

minimize
$$\underbrace{\tilde{f}_0(x_1)}_{\text{subject to}} \leq 0, \quad i = 1, \dots, m$$

where
$$\widetilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

with $f_0: \mathbf{R}^n o \mathbf{R}$ quasiconvex, f_1 , . . . , f_m convex

can have locally optimal points that are not (globally) optimal

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- ullet t-sublevel set of $\underline{f_0}$ is 0-sublevel set of ϕ_t , i.e.,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

example

$$f_0(x) = \underbrace{\frac{p(x)}{g(x)}}_{\text{g}(x)} = \underbrace{\frac{p$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} \widetilde{f_0}$

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- ullet if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method for quasiconvex optimization

given $l \leq p^{\star}$, $u \geq p^{\star}$, tolerance $\epsilon > 0$. repeat

- 1. t := (l+u)/2. 2. Solve the convex feasibility problem (1) 3. if (1) is feasible, u := t; else l := t. until $u - l \leq \epsilon$.

prest, w

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

Linear program (LP)

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1 , . . . , x_n of n foods

- ullet one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- ullet healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize
$$C^T x$$
 subject to $Ax \succeq b$, $x \succeq 0$

piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$
 subject to $a_i^T x + b_i \le t, \quad i = 1, \dots, m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid \underline{a_i^T x \le b_i}, \ i = 1, \dots, m\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid \|u\|_2 \le r\}$$

• $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{\underbrace{a_i^T(x_c+u) \mid \|u\|_2}_{C_i^T(x_c)} \leq r\} = \underbrace{a_i^Tx_c + r\|a_i\|_2}_{C_i^T(x_c)} \leq b_i$$

ullet hence, x_c , r can be determined by solving the LP

maximize
$$x$$
 subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$

 $_{_{\circ}}x_{\mathrm{cheb}}$

111/1/25 Y

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \text{minimize} & c^Ty+dz\\ \text{subject to} & Gy \preceq hz\\ & Ay=bz\\ & e^Ty+fz=1\\ & z \geq 0 \end{array}$$

generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}$

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over
$$x$$
, x^+) $\min_{i=1,...,n} x_i^+/x_i$ subject to $x^+ \succeq 0$, $Bx^+ \preceq Ax$

- $x, x^+ \in \mathbf{R}^n$: activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced, resp. consumed, amounts of good i
- x_i^+/x_i : growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Gx \leq h$ $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x)$$
 subject to $Gx \leq h$, $Ax = b$

- ullet c is random vector with mean \bar{c} and covariance Σ
- ullet hence, c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- \bullet $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m$ $Fx=g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

• inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$$

- ullet for $n_i=0$, reduces to an LP; if $c_i=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

ullet deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \ldots, m$,

ullet stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

robust LP

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \dots, m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where
$$\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$$
 is CDF of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \Phi^{-1}(\eta) \|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i=1,\ldots,m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom}\, f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \, f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1, \quad i = 1, \dots, m$
 $h_i(x) = 1, \quad i = 1, \dots, p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log\left(\sum_{k=1}^{K}\exp(a_{0k}^{T}y+b_{0k})\right)$$
 subject to
$$\log\left(\sum_{k=1}^{K}\exp(a_{ik}^{T}y+b_{ik})\right)\leq 0,\quad i=1,\ldots,m$$

$$Gy+d=0$$

Design of cantilever beam

- ullet N segments with unit lengths, rectangular cross-sections of size $w_i imes h_i$
- given vertical force F applied at the right end

design problem

minimize total weight subject to upper & lower bounds on w_i , h_i upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segment upper bound on vertical deflection at the end of the beam

variables: w_i , h_i for $i = 1, \ldots, N$

objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- ullet the vertical deflection y_i and slope v_i of central axis at the right end of segment i are defined recursively as

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for i = N, N - 1, ..., 1, with $v_{N+1} = y_{N+1} = 0$ (E is Young's modulus) v_i and y_i are posynomial functions of w, h

formulation as a GP

minimize
$$w_1h_1+\cdots+w_Nh_N$$
 subject to $w_{\max}^{-1}w_i \leq 1, \quad w_{\min}w_i^{-1} \leq 1, \quad i=1,\dots,N$ $h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i=1,\dots,N$ $S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i=1,\dots,N$ $6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \leq 1, \quad i=1,\dots,N$ $y_{\max}^{-1}y_1 \leq 1$

note

• we write $w_{\min} \leq w_i \leq w_{\max}$ and $h_{\min} \leq h_i \leq h_{\max}$

$$w_{\min}/w_i \le 1, \qquad w_i/w_{\max} \le 1, \qquad h_{\min}/h_i \le 1, \qquad h_i/h_{\max} \le 1$$

• we write $S_{\min} \leq h_i/w_i \leq S_{\max}$ as

$$S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1$$