Singular value decomposition

DSE 210

Generalizing the spectral decomposition

For **symmetric** matrices (e.g. covariance matrices), we have seen:

- Results about existence of eigenvalues and eigenvectors
- Eigenvectors form an alternative basis
- Resulting spectral decomposition, used in PCA

What about **arbitrary** matrices $M \in \mathbb{R}^{p \times q}$?

Singular value decomposition (SVD)

Any $p \times q$ matrix $(p \le q)$ has a singular value decomposition:

$$M = \underbrace{\begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix}}_{p \times p \text{ matrix } U} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix}}_{p \times p \text{ matrix } \Lambda} \underbrace{\begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \ddots & \vdots \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}}_{p \times q \text{ matrix } V^T}$$

- u_1, \ldots, u_p are orthonormal vectors in \mathbb{R}^p
- v_1, \ldots, v_p are orthonormal vectors in \mathbb{R}^q
- $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$ are singular values

Low-rank approximation

Singular value decomposition of $p \times q$ matrix M (with $p \leq q$):

$$M = \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix} \begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}$$

A concise approximation to M, for any $k \leq p$

$$\widehat{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow \\ u_1 & \cdots & u_k \\ \downarrow & \downarrow \end{pmatrix}}_{\substack{p \times k}} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{pmatrix}}_{\substack{k \times k}} \underbrace{\begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \vdots \\ \longleftarrow & v_k & \longrightarrow \end{pmatrix}}_{\substack{k \times q}}$$

 \widehat{M} is the **best rank**-k **approximation** to M.

Optimality property

Let M be any $p \times q$ matrix.

Want to approximate M by a $p \times q$ matrix \widehat{M} of the form UW:

- U is $p \times k$ and W is $k \times q$
- $k \le p, q$ is of our choosing

SVD yields the best such approximation \widehat{M} , minimizing the squared error

$$\sum_{i,j}(M_{ij}-\widehat{M}_{ij})^2.$$

Example: Topic modeling

Blei (2012):

Latent semantic indexing (LSI)

Given a large corpus of n documents:

- Fix a vocabulary, say of V words.
- Bag-of-words representation for documents: each document becomes a vector of length V, with one coordinate per word.
- The corpus is an $n \times V$ matrix, one row per document.

	, Ze ₂	Sol	house	809x	89708	<i>§</i>
Doc 1	4	1	1	0	2	
Doc 1 Doc 2 Doc 3	0	0	3	1	0	
Doc 3	0	1	3	0	0	
		:				

Let's find a concise approximation to this matrix M.

Latent semantic indexing, cont'd

Use SVD to get an approximation to M: for small k,

$$\begin{pmatrix}
\longleftarrow & \text{doc } 1 \longrightarrow \\
\longleftarrow & \text{doc } 2 \longrightarrow \\
\longleftarrow & \text{doc } 3 \longrightarrow \\
\vdots & & \\
\vdots & & \\
\hline
& n \times V \text{ matrix } M
\end{pmatrix}
\approx
\begin{pmatrix}
\longleftarrow & \theta_1 \longrightarrow \\
\longleftarrow & \theta_2 \longrightarrow \\
\longleftarrow & \theta_3 \longrightarrow \\
\vdots & & \\
\longleftarrow & \theta_n \longrightarrow \end{pmatrix}
\begin{pmatrix}
\longleftarrow & \Psi_1 \longrightarrow \\
\vdots & & \\
\longleftarrow & \Psi_k \longrightarrow \\
\hline
& k \times V \text{ matrix } \Psi
\end{pmatrix}$$

Think of this as a *topic model* with k topics.

- Ψ_j is a vector of length V describing topic j: coefficient Ψ_{jw} is large if word w appears often in that topic.
- Each document is a combination of topics: θ_{ij} is the weight of topic j in document i.

Document i originally represented by ith row of M, a vector in \mathbb{R}^V . Can instead use $\theta_i \in \mathbb{R}^k$, a more concise "semantic" representation.

Example: Collaborative filtering

Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.

• Given: data on prior purchases/interests of users

• Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

- Model dependencies between different products, and between different users.
- Can give reasonable recommendations to a relatively new user.

Two strategies for collaborative filtering:

- Neighborhood methods
- Latent factor methods

Neighborhood methods

Latent factor methods

The matrix factorization approach

User ratings are assembled in a large matrix M:

	Skar	Matris	41.	Camelanca	20/2/05	i sther
User 1	5	5	2	0	0	
User 1 User 2 User 3	0	0	3	4	5	
User 3	0	0	5	0	0	
		:				

- Not rated = 0, otherwise scores 1-5.
- For *n* users and *p* movies, this has size $n \times p$.
- Most of the entries are unavailable, and we'd like to predict these.

Idea: Find the best low-rank approximation of M, and use it to fill in the missing entries.

User and movie factors

Best rank-k approximation is of the form $M \approx UW^T$:

$$\begin{pmatrix}
\longleftarrow & \text{user } 1 \longrightarrow \\
\longleftarrow & \text{user } 2 \longrightarrow \\
\longleftarrow & \text{user } 3 \longrightarrow \\
\vdots & & & \\
\downarrow & \text{user } n \longrightarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\longleftarrow & u_1 \longrightarrow \\
\longleftarrow & u_2 \longrightarrow \\
\longleftarrow & u_3 \longrightarrow \\
\vdots & & \\
\longleftarrow & u_n \longrightarrow
\end{pmatrix}
\begin{pmatrix}
\uparrow & \uparrow & \uparrow \\
w_1 & w_2 & \cdots & w_p \\
\downarrow & \downarrow & \downarrow
\end{pmatrix}$$

$$\downarrow & \downarrow & \downarrow & \downarrow$$

$$\downarrow & \downarrow & \downarrow$$

Thus user i's rating of movie j is approximated as

$$M_{ij} \approx u_i \cdot w_j$$

This "latent" representation embeds users and movies within the same k-dimensional space:

- Represent *i*th user by $u_i \in \mathbb{R}^k$
- Represent jth movie by $w_j \in \mathbb{R}^k$

Top two Netflix factors

