Assignment #00100 Report

Introduction

In this assignment, I will implement customized Batch Normalization to MLP and CNN models with starter codes provided by Ankur Mali [1]. The dataset used for both models is Fashion MNIST. I will compare the performance of pre-activation and post-activation implementations on both models. Therefore, there will be 4 results in the end. The detailed code can be viewed at my Github: https://github.com/Yuxuan-Liu-Eason/IST-597-01000

Pre-activation

MLP

After running 5 trials with 10 epochs, the test accuracies are as follows. The optimizer is SGD with lr = 0.1. The batch size is 100.

trial	Test acc
1	0.8624
2	0.8730
3	0.8710
4	0.8718
5	0.8681

The mean accuracy is 0.8693.

CNN

The optimizer is Adams with lr = 0.01. The batch size is 128.

trial	Test acc
1	0.9075
2	0.9087
3	0.9068
4	0.9065
5	0.9053

The mean accuracy is 0.9069. We can see that CNN has better performance than MLP.

Post-activation

MLP

The optimizer is SGD with lr = 0.1. The batch size is 100.

trial	Test acc
1	0.8691
2	0.8585
3	0.8650
4	0.8680
5	0.8714

The mean accuracy is 0.8664, which is slightly lower than pre-activation.

CNN

The optimizer is Adams with lr = 0.01. The batch size is 128.

-	
trial	Test acc
1	0.8884
2	0.8939
3	0.9076
4	0.8970
5	0.9033

The mean accuracy is 0.8983, which is also lower than pre-activation.

Conclusion

In this assignment, I implemented different batch normalization functions during training and testing. It is not surprising that CNN has better performance than MLP of the FMNIST dataset. Moreover, I found that pre-activation batch normalization has a slightly better performance.