1 The Differentials

DEFINITION. These provide us with a way of estimating the amount a function changes as a result of a small change in input values. The equation

Date: Term 1, Fall '23 Notes: A.L. Maagma

$$\triangle y \approx dy$$

can and will only be considered if Δx is "close enough". The approximation of the equation becomes better as Δx becomes smaller.

NOTE. We equate $\triangle x = dx$.

1.1 The Differential of the Independent Variable

DEFINITION. If the function f is definited by the equation y = f(x), then the differential of y, denoted by dy, is given by

$$dy = f'(x) dx \longrightarrow f'(x) = \frac{dy}{dx}$$

where x is any number in the domain of f' and $\triangle x$ is an arbitrary increment of x.

EXAMPLE 1.1.1. Find dy for $y = (x^3 + 5x - 1)^{2023}$.

$$f'(x) = 2023(x^3 + 5x - 1)^{2022}(3x^2 + 5)$$

$$\therefore dy = 2023(x^3 + 5x - 1)(3x^2 + 5x) dx$$

EXAMPLE 1.1.2. Find the differential dy of the function $y = 4x^2 + x + 3$.

$$(8x+1) dx$$

EXAMPLE 1.1.3. Find the differential dy of the function $y = \cos(x)$.

$$dy = -\sin(x) \, dx$$

NOTE. The following figures represent the corresponding derivatives of trigonometric identities or functions.

f(x)	f'(x)
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\sec^2(x)$
$\cot(x)$	$-\csc^2(x)$
sec(x)	$\sec(x)\tan(x)$
$\csc(x)$	$-\csc(x)\cot(x)$

EXAMPLE 1.1.4. Compare the values of $\triangle y$ and dy if $y = f(x) = x^3 + x^2 - 2x + 1$ and x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

$$x = 2 \Delta y = f(x + \Delta x) - f(x) dy = f'(x) dx$$

$$x + \Delta x = 2.05 = f(2.05) - f(2) = (3x^2 + 2x - 2) dx$$

$$\Delta x = 0.05 = 0.7176 = (3(2)^2 + 2(2) - 2)(0.05)$$

$$dx = 0.05 = 0.7$$

NOTE. The final equation utilized our solution at x=2, $\triangle x=dx=0.05$. Observe the approximation of $\triangle y \approx dy$ becomes better as $\triangle x$ becomes smaller.

Practice Exercises

- 1. Find dy and $\triangle y$ for the given values of x and $\triangle x$.
 - 1.1. $y = x^2$, x = 2, and $\triangle x = 0.5$
 - 1.2. $y = x^3$, x = 2, and $\triangle x = 0.5$
 - 1.3. $y = \sqrt[3]{x}$, x = 8, and $\triangle x = 1$
 - 1.4. $y = \sqrt{x}, x = 4, \text{ and } \triangle x = 1$
- 2. Find (a) $\triangle y$, (b) dy, (c) $\triangle y dy$.
 - 2.1. $y = x^2 3x$, x = 2, and $\triangle x = 0.03$
 - 2.2. $y = x^2 3x$, x = -1, and $\triangle x = 0.02$
 - 2.3. $y = \frac{1}{x}$, x = -2, and $\triangle x = -0.1$
 - 2.4. $y = \frac{1}{x}$, x = 3, and $\triangle x = -0.2$
 - 2.5. $y = x^3 + 1$, x = 1, and $\triangle x = -0.5$
 - 2.6. $y = x^3 + 1$, x = -1, and $\triangle x = 0.1$
- 3. Find dy.
 - 3.1. $y = (3x^2 2x + 1)^3$
 - 3.2. $y = \frac{3x}{x^2+2}$
 - 3.3. $y = x^2 \sqrt{2x+3}$
 - 3.4. $y = \sqrt{4 x^2}$
 - 3.5. $y = \frac{2 + \cos(x)}{2 \sin(x)}$
 - 3.6. $y = \tan^2(x) \sec^2(x)$
- 4. Solve the following problems.
 - 4.1. The measurement of an edge of a cube is found to be 15 cm with a possible error of 0.01 cm. Use differentials to find the approximate error in computing from this measurement: (a) the volume; (b) the area of one of the faces.
 - 4.2. An open cylindrical tank is to have an outside coating of thickness 2 cm. If the inner radius is 6 m and the altitude is 10 m, find by differentials the approximate amount of coating material to be used.
 - 4.3. A burn on a person's skin is in the shape of a circle. Use differentials to find the approximate decrease in the area of the burn when the radius decreases from 1 cm to 0.8 cm.
 - 4.4. A tumor in a person's body is spherical in shape. Use differentials to find the approximate increase in the volume of the tumor when the radius increases from $1.5~\mathrm{cm}$ to $1.6~\mathrm{cm}$.

3

Answer Key

- 1. Find dy and $\triangle y$ for the given values of x and $\triangle x$.
 - 1.1. dy = 2, $\triangle y = 2.25$
 - 1.2. dy = 6, $\triangle y = 7.625$
 - 1.3. $dy = \frac{1}{12} \approx 0.083, \, \Delta y = \sqrt[3]{9} 2 \approx 0.080$
 - 1.4. dy = 0.25, $\triangle y = \sqrt{5} \sqrt{4} \approx 0.236$
- 2. Find (a) $\triangle y$, (b) dy, (c) $\triangle y dy$.
 - 2.1. (a) 0.0309, (b) 0.03, (c) 0.0009
 - 2.2. (a) -0.0996, (b) -0.1, (c) 0.0004
 - 2.3. (a) $\frac{1}{42} \approx 0.0238$, (b) $\frac{1}{40} = 0.025$, (c) $-\frac{1}{840} \approx -0.0012$
 - 2.4. (a) $\frac{1}{42} \approx 0.0238$, (b) $\frac{1}{45} = 0.022$, (c) $\frac{1}{630} \approx -0.0016$
 - 2.5. (a) -0.875, (b) -1.5, (c) 0.625
 - 2.6. (a) 0.271, (b) 0.3, (c) -0.029
- 3. Find dy.
 - 3.1. $dy = 3(3x^2 2x + 1)^2(6x 2) dx$
 - 3.2. $dy = \frac{3(2-x^2)}{(x^2+2)^2} dx$
 - 3.3. $dy = \frac{x(5x+6)}{(2x+3)^{1/2}} dx$
 - 3.4. $dy = \frac{-x}{\sqrt{4-x^2}} dx$
 - 3.5. $dy = \frac{1-2\sin(x)+2\cos(x)}{(2-\sin(x))^2} dx$
 - 3.6. $dy = 2\tan(x)\sec^2(x)x(2\tan^2(x) + 1) dx$
- 4. Solve the following problems.
 - 4.1. (a) $6.75 cm^3$, (b) $0.3 cm^2$
 - 4.2. $\frac{12}{5}\pi m^3$
 - 4.3. $0.4\pi \ cm^2$
 - 4.4. $0.9\pi \, cm^3$

1.2 Error Propagation

DEFINITION. In practice, differentials can be used in the estimation of errors propagated by physical measuring devices. If the measure value of x is used to compute another value f(x), then the difference between $f(x + \Delta x)$ and f(x) is the propagated error.

$$f(x + \triangle x) - f(x) = \triangle y \approx dy$$

where:

 $x + \triangle x = \text{Exact Value}$

 $\triangle x$ = Measurement Error f(x) = Measured Value $\triangle y$ = Propagated Error

NOTE. How do you know if the propagated error is large or small? The answer is best given in *relative* terms by comparing dA and A. The ratio is called the relative error and further be expressed as percentage error.

EXAMPLE 1.2.1 A radius of a sphere is to be 3 cm with a possible error of 0.02 cm. (1) Use differentials to approximate the error in calculating the volume. (2) What is the relative error and percentage error?

$$V = \frac{4}{3}\pi r^3$$

$$dV = V' dr$$

$$= 4\pi r^2 dr$$

$$= 4\pi (3)^2 (\pm 0.02)$$

$$(2.1) = \pm 2.2619 cm^3$$

$$(2.2) = \pm 2\%$$

SUMMARY. The essence of differentials provide us with a way of estimating the amount a function changes as a result of a small change in input values.

REMARK. Although the application of differentials to approximate function values is not very important in the age of technology, differentials are important as a convinient notational device for the computation of antiderivatives.

2 Antidifferentiation: Indefinite Integration

EXAMPLE 2.0.0 In order to find a function F whose derivative is $F'(x) = 3x^2$, we use our knowledge of derivatives to conclude the following:

$$F(x) = x^3$$
 since $\frac{d}{dx}[x^3] = 3x^2$

The function F is considered an antiderivative of f.

DEFINITION. A function F is an antiderivative of f of an interval I when

$$F'(x) = f(x)$$

for all x in I. As for the previous example, $F(x) = x^3$ is an antiderivative of $f(x) = 3x^2$.

NOTE. An antiderivative of f is not unique because of the infinite possible values for the constant C.

2.1 General Antiderivative of a Function

DEFINITION. If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form

$$G(x) = F(x) + C$$

for all x in I, where C is a constant.

DEFINITION. The operation of finding the antiderivatves of a function is called antidifferentiation, or indefinite integration, and is denoted by an integral sign \int . Additionally, the equation below states that when we antidifferentiate the differential of a function, we obtain the function plus an arbitrary constant.

$$\int f(x) \, dx = F(x) + C$$

 \int = Integration Symbol

f(x) = Integrand

dx = Differential of X

F(x) =One Antiderivative

C = Constant of Integration

NOTE. The expression $\int f(x) dx$ is read as "the antiderivative of f with respect to x". The differential dx serves to identify x as the variable of integration. The term indefinite integral is a synonym for antiderivative.

2.2 Basic Integration Rules

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 dx = C$
$\frac{d}{dx}[kx] = k$	$\int k dx = kx + C$
$\frac{d}{dx}[kf(x)] = kf'(x)$	$\int kf(x) dx = k \int f(x) dx$
$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
$\frac{d}{dx}[x^n] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$

2.3 Power Rule of Integrals

DEFINITION. As for the power rule of integrals, as long as $n \neq 1$,

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

EXAMPLE 2.3.1. Find the antiderivative of $\int x^5 dx$.

$$=\frac{x^6}{6}+C$$

EXAMPLE 2.3.2. Find the antiderivative of $\int \sqrt{x} dx$.

$$= \int x^{1/2} dx$$

$$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C$$

$$= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C$$

$$= \frac{2x^{\frac{3}{2}}}{3} + C$$

EXAMPLE 2.3.3. Find the antiderivative of $\int 3x \, dx$.

$$= 3 \int x \, dx$$
$$= 3 \cdot \frac{x^2}{2}$$
$$= \frac{3x^2}{2} + C$$

EXAMPLE 2.3.4. Find the antiderivative of $\int \frac{1}{x^3} dx$.

$$= -\frac{1}{2x^2} + C$$

EXAMPLE 2.3.5. Find the antiderivative of $\int 2 \sin x \, dx$.

$$= 2 \int \sin x \, dx$$
$$= 2 \cdot - \cos x$$
$$= -2 \cos x + C$$

EXAMPLE 2.3.6. Find the antiderivative of $\int (3x^4 - 5x^2 + x) dx$.

$$= 3 \int x^4 dx - 5 \int x^2 dx + \int x dx$$
$$= \frac{3x^5}{5} - \frac{5x^3}{3} + \frac{2x^2}{2} + C$$

EXAMPLE 2.3.7. Find the antiderivative of $\int \frac{x+1}{\sqrt{x}} dx$.

$$= \int \left(\frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}}\right) dx$$

$$= \int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

$$= \int x^{\frac{1}{2}} dx$$

$$= \int x^{\frac{1}{2}} dx$$

$$= \frac{2\sqrt{x^3}}{3}$$

$$= \frac{2\sqrt{x}}{3} + 2\sqrt{x}$$

$$= \frac{2\sqrt{x}(x+3)}{3} + C$$

NOTE. The following are reciprocal and pythagorean identities for trigonometric integrals.

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

$$\csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\sec^2 x = 1 + \tan^2 x$$

$$\sec^2 x = 1 + \cot^2 x$$

EXAMPLE 2.3.8. Find the antiderivative of $\int \frac{\sin x}{\cos^2 x} dx$.

$$= \frac{1}{\cos x} + C$$
$$= \sec x + C$$