Proving that $L_{a,b}$ is not a regular language

Lemma

There is no finite state automaton accepting $L_{a,b}$.

Proof.

By Pigeon Hole Principle.

Suppose $\exists i, j \in \mathbb{N}$ such that $i \neq j$,

automaton reaches the same state after reading both a^i, a^j .

Then $a^i \cdot b^j$ and $a^j \cdot b^j$ are both accepted or both rejected, which is a contradiction.

Pumping lemma

A recipe for proving that a given language is non-regular.

Lemma (Pumping Lemma)

If L is a regular language, then $\exists p \in \mathbb{N}$ such that for any strings x, y, z with $x \cdot y \cdot z \in L$ and $|y| \geq p$,

- there exist strings u, v, w, s.t. y can be written as $y = u \cdot v \cdot w$,
- |v| > 0.

To prove that a given language L is not regular, the contrapositive of the above statement is useful.

Contrapositive of the pumping lemma

Lemma

We say that a language L satisfies **Property-NR** if the following conditions hold:

$$\forall p \geq 0$$
,

$$\exists x, y, z \text{ such that } x \cdot y \cdot z \in L \text{ and } |y| \ge p$$
,

$$\forall u, v, y \text{ such that } |v| > 0, y = u \cdot v \cdot w,$$

$$\exists i \ x \cdot u \cdot v^i \cdot w \cdot z \notin L.$$

If L satisfies Property-NR then L is not regular.

Using the pumping lemma

We say that a language *L* satisfies **Property-NR** if the following conditions hold:

- \odot $\forall p \geq 0$,
- $\exists x, y, z \text{ such that } x \cdot y \cdot z \in L \text{ and } |y| \ge p$,
- $\forall u, v, y \text{ such that } |v| > 0, y = u \cdot v \cdot w,$
- $\exists i \ x \cdot u \cdot v^i \cdot w \cdot z \notin L.$

If L satisfies Property-NR then L is not regular.

We will now use the lemma to prove that $L_{a,b} = \{a^n b^n \mid n \ge n\}$ is not regular.

For any chosen $p \ge 0$, let $x := a^p$, $y := b^p$, $z = \epsilon$.

For any split of y as $u \cdot v \cdot w$, if we take $x \cdot u \cdot v^i \cdot w = 0^p 1^q$, where q > p as long as i > 0.

In particular, $x \cdot u \cdot v^2 \cdot w \cdot z \notin L$.