Differentiable NAS

Shusen Wang

Reference

1. Liu, Simonyan, & Yang. DARTS: Differentiable Architecture Search. In *ICLR*, 2019.

2. Wu et al. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search. In *CVPR*, 2019.

• User manually defines some (e.g., 9) candidate blocks.

• User manually defines some (e.g., 9) candidate blocks.

Example: a candidate block

- User manually defines some (e.g., 9) candidate blocks.
- User specifies the number of layers, e.g., 20 layers.
- Each layer can be one of the 9 candidate blocks.
- Size of search space (i.e., # of possible architectures) is 9^{20} .

Super-net

- $[\alpha_1, \dots, \alpha_9] = \text{Softmax}(\theta_1, \dots, \theta_9).$
- Output: $\mathbf{z} = \sum_{j=1}^{9} \alpha_j \cdot \mathbf{f}_j(\mathbf{x}; \mathbf{w}_j)$.

One Layer

The super-net has 20 layers; each layer contains 9 parallel blocks.

Trainable Parameters of Super-net

- Each layer has the following trainable parameters:
 - \mathbf{w}_1 , ..., \mathbf{w}_9 (tensors): parameters of the 9 blocks.
 - $\theta_1, \dots, \theta_9$ (scalars): parameters that determine the weights, $\alpha_1, \dots, \alpha_9$.

- Layers do not share parameters.
 - Each layer has its own parameters, $\mathbf{w_1}$, \cdots , $\mathbf{w_9}$ and θ_1 , \cdots , θ_9 .
 - Parameters are not shared across layers.

Trainable Parameters of Super-net

- Blocks: $j = 1, \dots, 9$.
- Layers: $l = 1, \dots, 20$.
- Trainable parameters of the l-th layer and j-th block:
 - $\mathbf{w}_{j}^{(l)}$ (tensors) and $\theta_{j}^{(l)}$ (a scalar).
- All the trainable parameters of the super-net:
 - $\mathcal{W} = \left\{ \mathbf{w}_{j}^{(l)} \right\}_{j,l}$ and $\Theta = \left\{ \theta_{j}^{(l)} \right\}_{j,l}$.

Train the Super-net

- $\mathbf{x}_1, \dots, \mathbf{x}_n$: training images.
- y_1, \dots, y_n : targets (aka labels).
- $\mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)$: a prediction made by the 20-layer super-net.

Train the Super-net

- $\mathbf{x}_1, \dots, \mathbf{x}_n$: training images.
- y_1, \dots, y_n : targets (aka labels).
- $\mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)$: a prediction made by the 20-layer super-net.
- Learn \mathcal{W} and Θ from the training set by minimizing the cross-entropy loss:

$$\min_{\mathcal{W},\Theta} \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_{i}, \mathbf{p}(\mathbf{x}_{i}; \mathcal{W}, \Theta)).$$

Train the Super-net

- $\mathbf{x}_1, \dots, \mathbf{x}_n$: training images.
- y_1, \dots, y_n : targets (aka labels).
- $\mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)$: a prediction made by the 20-layer super-net.
- Learn \mathcal{W} and Θ from the training set by minimizing the cross-entropy loss:

$$\min_{\mathcal{W},\Theta} \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_i, \mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)).$$

Knowing the optimal Θ , we have the weights $\alpha_j^{(l)} = \frac{\exp(\theta_j^{(l)})}{\sum_{k=1}^9 \exp(\theta_k^{(l)})}$

Knowing the optimal Θ , we have the weights $\alpha_j^{(l)} = \frac{\exp(\theta_j^{(l)})}{\sum_{k=1}^9 \exp(\theta_k^{(l)})}$.

Knowing the optimal Θ , we have the weights $\alpha_j^{(l)} = \frac{\exp(\theta_j^{(l)})}{\sum_{k=1}^9 \exp(\theta_k^{(l)})}$.

For each layer, select the block that has the biggest weight, α .

For each layer, select the block that has the biggest weight, α .

For each layer, select the block that has the biggest weight, α .

Computational Efficient Design

Reference:

1. Wu et al. FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search. In *CVPR*, 2019.

- A trained CNN takes as input an image and makes a prediction.
- Small latency (i.e., time cost of prediction making) is preferable.
- Latency can be considered during architecture search.
 - Different candidate blocks cause different accuracies and different latencies.
 - Trade off accuracy and latency.

- Suppose the selected CNN will be deployed to iPhone 12.
- On iPhone 12, measure the latency caused by each block.

- Suppose the selected CNN will be deployed to iPhone 12.
- On iPhone 12, measure the latency caused by each block.

Weighted average of latencies: $\sum_{j=1}^{9} t_j \cdot \alpha_j$.

- For layers $l=1,\cdots,20$ and blocks $j=1,\cdots,9$:
 - Denote the measured latency (ms) by $t_i^{(l)}$.
 - Denote the weights by $\alpha_j^{(l)} = \frac{\exp(1)}{\sum_{k=1}^{9} \exp(\theta_k^{(l)})}$.

- For layers $l=1,\cdots,20$ and blocks $j=1,\cdots,9$:
 - Denote the measured latency (ms) by $t_i^{(l)}$.

• Denote the weights by
$$\alpha_j^{(l)} = \frac{\exp(\theta_j^{(l)})}{\sum_{k=1}^9 \exp(\theta_k^{(l)})}$$
.

• Define: Lat(
$$\Theta$$
) = $\sum_{l=1}^{20} \sum_{j=1}^{9} t_j^{(l)} \cdot \alpha_j^{(l)}$.
$$= \sum_{l=1}^{20} \sum_{j=1}^{9} t_j^{(l)} \cdot \frac{\exp(\theta_j^{(l)})}{\sum_{k=1}^{9} \exp(\theta_k^{(l)})}.$$

Latency caused by the 20 layers:

$$\operatorname{Lat}(\Theta) = \sum_{l=1}^{20} \sum_{j=1}^{9} t_{j}^{(l)} \cdot \frac{\exp(\theta_{j}^{(l)})}{\sum_{k=1}^{9} \exp(\theta_{k}^{(l)})}.$$

- Encourage Lat(⊖) to be small.
- Apply (add or multiply) Lat(Θ) to the loss function.
- Lat(Θ) is a differential function of the parameters, Θ .

Trade off accuracy and latency

• Additive:

$$\min_{\mathcal{W},\Theta} \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_{i}, \mathbf{p}(\mathbf{x}_{i}; \mathcal{W}, \Theta)) + \lambda \cdot \text{Lat}(\Theta).$$

Trade off accuracy and latency

Additive:

$$\min_{\mathcal{W},\Theta} \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_i, \mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)) + \lambda \cdot \text{Lat}(\Theta).$$

• Multiplicative [1]:

$$\min_{\mathcal{W},\Theta} \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_{i}, \mathbf{p}(\mathbf{x}_{i}; \mathcal{W}, \Theta)) \cdot \log^{2}[\text{Lat}(\Theta)].$$

Reference:

1. Wu et al. FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search. In *CVPR*, 2019.

Hardware Awareness

- Some candidate blocks are suitable for GPU, while some are suitable for mobile devices.
 - For example, a candidate block is too small to fit in GPU.
 - But it can make full use of the A14 processor on iPhone 12.
- The optimal architectures for GPU and iPhone 12 are different.
 - For a GPU, the optimal architecture contains big Conv layers (good for accuracy, bad for latency.)
 - For iPhone 12, the optimal architecture contains DepthWise Conv layers (bad for accuracy, good for latency.)

Summary

Differentiable Architecture Search

- DARTS [1] automatically search neural architectures.
- This lecture explains DARTS using the example of [2].
- The objective function is a differentiable function of the parameters, $\Theta = \left\{\theta_j^{(l)}\right\}$, that determine network architecture.

Reference:

- 1. Liu, Simonyan, & Yang. DARTS: Differentiable Architecture Search. In ICLR, 2019.
- 2. Wu et al. FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search. In *CVPR*, 2019.

Candidate Blocks & Super-net

- User manually prepare some (e.g., 9) candidate blocks.
- User manually specify the number of layers (e.g., 20.)
- Build a super-net: 20 layers; each layer contains the 9 parallel blocks.
- The output of each layer is the weighted sum of the 9 blocks; the weights are $\{\alpha_j^{(l)}\}$.

Candidate Blocks & Super-net

- Train the super-net (on the training set) to find the weights, $\alpha_j^{(l)}$ (for blocks $j=1,\ldots,9$ and layers $l=1,\ldots,20$).
- For the *l*-th layer, select the one among the 9 candidate blocks that has the biggest weight:

$$\underset{j \in \{1, \dots, 9\}}{\operatorname{argmax}} \alpha_j^{(l)}.$$

• The selected architecture has 20 layers, and each layer is one of the 9 candidate blocks.

Graph Perspective

Graph Perspective

Take efficiency into account

- Measure the latency (i.e., runtime of prediction making) caused by each of the $9\times20=180$ blocks.
- Take the weighted average (weights: $\alpha_j^{(l)}$) of the measured latencies for the 9 blocks in the l-th layer.
- Lat(Θ): sum of the latencies across the 20 layers.
- Apply (add or multiply) Lat(⊖) to the loss function.

Thank You!