Department of Electronic and Telecommunication Engineering University of Moratuwa, Sri Lanka

EN3053 - Digital Communications - I

Lab Assignment

Eye diagrams and Equalization

Submitted by

Thalagala B.P.

180631J

Submitted on

December 12, 2021

Contents

List of Tables			
1	Task 1		
	1.1	Generation of an Impulse Train Representing BPSK Symbols	
	1.2	Transmit Signal	
	1.3	Sinc function as the Impulse response	
	1.4	Eye Diagram	
2	Tas	k 2	

List of Figures

List of Tables

 ${\it Note:}$ MATLAB R2018a of the MathWorks Inc. is used for the implementation.

1 Task 1

Please note that for the MATLAB implementation bit rate(bits/second) of the generator was assumed to be 10. As we consider BPSK for the Task 1 and 2, the symbol rate(symbols/second) is remain the same as the bit rate of the generator.

1.1 Generation of an Impulse Train Representing BPSK Symbols

Binary data of the generator $D \in \{0,1\}$ is mapped in to an impulse train according to the following function where A(Amplitude) of the impulse was taken as 1 in the MATLAB implementation.

amplitude of the
$$k^{th}$$
 impulse =
$$\begin{cases} +A & if \ D = 1 \\ -A & if \ D = 0 \end{cases}$$

1.2 Transmit Signal

1.3 Sinc function as the Impulse response

Function sinc(t) in MATLAB is defined as follows.

$$\mathtt{sinc}(\mathtt{t}) = \begin{cases} \frac{sin(\pi.t)}{\pi.t} & if \ t \neq 0 \\ 1 & if \ t = 1 \end{cases}$$

In order to generate a sinc pulse that aligns with our time scale the function argument should be given as mentioned below. Where T_b is the separation between successive transmitted pulses.

$$sinc \ pulse = sinc(\frac{t}{T_h})$$

1.4 Eye Diagram

2 Task 2

Task 2 is a repetition of the Task 1, but in the presence of additive white Gaussian noise (AWGN). Variance of the noise $N_0/2$ was set such that the Power efficiency $\gamma = E_b/N_0 = 10 \ dB$. Where E_b is the average bit energy and N_0 is the noise power spectral density.

$$\gamma \ in \ dB = 10. \log_{10}(E_b/N_0)$$

$$\gamma/10 = \log_{10}(E_b/N_0)$$

$$10^{\gamma/10} = E_b/N_0$$

$$N_0 = \frac{E_b}{10^{\gamma/10}}$$

$$\therefore \ \sigma_{noise}^2 = N_0/2 = \frac{E_b}{2 \times 10^{\gamma/10}}$$

Assuming the P(D=0) = P(D=1) = 1/2 as we consider sufficient large amount of bits in the initial bit stream,

$$E_b = \frac{1}{2} \times [(+A)^2 + (-A)^2] = \frac{1}{2} \times [(+1)^2 + (-1)^2] = 1$$