Définition: het zeR. We say z'es positive if I Ct Quo and N enth that If NZN, anzc. We say z'es negative if I ceQo and N such that I nZN, an E-C.

Lumma 1: Let xell and n +0. If n = (an), then 7 ccQ, and N such that $\forall n \ge N$, $|a_n| \ge c$.

The above hemma was proved in class.

humong: ht nER and x to. The notion of being positive or regative is well-defined, that is, independent of the choice of representative.

Proof: Let us assume that $r = (a_n) \cdot (b_n)$. First assume that for (a_n) we have $c \in Q_{>0}$ and N such that $V \in Q_{>0}$ and $V \in Q_{>0}$ and $V \in Q_{>0}$ there is C' and V' such that $V \in Q_{>0}$ we have $V \in Q_{>0}$ and $V \in Q_{>0}$ there is $V' \in Q_{>0}$.

Since $(a_n)_n$ (b_n) , for E = C/2, there is N, such that $|a_n-b_n| \le E$. This simplies that $-E \le b_n - a_n \le E$. This shows that $a_n - E \le b_n$ $\forall n \ge N$, If we take $N' = \max \{N, N, \}$ then we get $C = C - C \le a_n - C \le b_n$. Thus, taking C' = C and N' we get what we wanted to prove.

Next consider the case $a_n \leq -c$ for $n \geq N$. Then we need to show that $\exists c' \in Q_n$ and N' such that $\exists n \geq N'$ we have $b_n \leq -c'$. This is done sum larly, and is left as an exercise. This completes the proof $\exists j$ the hemma.

Remarks: (1) If n is positive then $z \neq 0$. Similarly, if n is regative then $z \neq 0$. (2) n convot be both the and -ve. (3) If n is the then - n is -ve. If n is -ve then -n is the. The proof of this remark is left as an exercise.

Proposition: het xER and 2 to. Then either is positive or it Proof: Let us assume that x is not negative. Then we need to show that it is positive. Let us represent $x = (a_n)$. By human 1, there is $c \in Q_{20}$ and N such that $\forall n \geq N$, $|a_n| \geq c$. het us take E = C/2. Since (an) is a Caruly seq there is N_1 such that $\forall n, m > N_1$ we have $|a_n - a_m| \leq E = C/2$. Since (an) is not negative, if we fine c, then there is no Nz such that $\forall n \not > Nz$ we have $a_n \leq -C$. In sother words, given any Nz, there is an $m \not > Nz$ such that $a_m > -C$.

Thus, $\exists Mz \max \xi N, N, \overline{S}$ such that $a_m > -C$. We claim that # $n \ge M$, $a_n \ge c$. First note that $|a_M| \ge c$ and $|a_M| \ge c$ \Rightarrow $|a_M| \ge c$. For any $|a_M| \ge m$, we have $|a_M - a_M| \le c$ \Rightarrow $|a_M| \ge c$ \Rightarrow $|a_M|$ As $a_{M} \ge c \implies c \le a_{M} - c \ge a_{N} \implies a_{N} > 0$. As $|a_{M}| \ge c$.
This process that x = x = x = x = 0. Proposition: The following are easily proved using definitions: 1) If n is the then n' is the. (2) If n, y have the same pointy then my is the 3 If n, y have different parity then my is - we. Yroof. Write 2= (an) with an to. Then 2 = (an). Since a is the, FCEQ so and N such that an > C + n> N. As (an) is Cauchy => lan(EM. Thus, + n>N, are home cEanEM. => +n>N we have 1 > 1 an M

For (2), write $n = (a_n)$ and $y = (b_n)$. Then $my = (a_nb_n)$. There exists c, c', N such that $\forall n \ni N$ $a_n \ni c$, $b_n \ni c' = \sum_{n \mid b_n \mid i \mid c' \mid i} a_nb_n \ni cc'$.

This proves my > 0. Similarly, do(3).

Démition: We say noy is noy is the. We say noy if noy is

herring: If n>y>0 then y'>x'.

Pred: Since my is tre, y'-n't his the same parity as

(y'-n') my = n-y, which is tre.

Proposition: Let n= (an). If ai 20, then n 20.

Proof: If nco, then n is ne => 3 CE Q20 and N such
that Hn ZN an <- c which is a contradiction.

Covollary: If $n = (a_n)$ and $y = (b_n)$ and $a_n \ge b_n + n$, then $n \ge y$.

Proof: $n - y = (a_n - b_n)$ and now apply the previous proposition to get $n - y \ge 0$ \Rightarrow $n \ge y$.

Proposition: but 2>y. Then we can find get such that a>q>y.

Proof: but 2=(an) and y=(bn). Then 2-y=(an-bn)>0. Then,

I colors and N such that + n>N we have an-bn>c.

 $\exists N, \text{ such that } \forall n, m \geq N, |a_n - a_m| \leq c/4 \text{ and } |b_n - b_m| \leq c/4$. het $q = \frac{a_{N,1} + b_{N,1}}{2}$. Then for all $m \geq N$, we have

 $\frac{q - bm}{z} = \frac{1}{z} \left(\frac{b}{N_1 - bm} + \frac{1}{z} \left(\frac{a_{N_1} - bm}{z} \right) + \frac{1}{z} \left(\frac{b_{N_1} - bm}{z} \right) + \frac{1}{z} \left(\frac{b_{N_1} - bm}{z} \right) + \frac{1}{z} \left(\frac{a_{N_1} - bm}{z} \right) + \frac{1}{z$

⇒ 9-9 > 0.

 $a_{m}-q = \frac{1}{2}(a_{m}-a_{N_{1}}) + \frac{1}{2}(a_{m}-b_{N_{1}}) = (a_{m}-a_{N_{1}}) + \frac{1}{2}(a_{N_{1}}-b_{N_{1}})$ $= \frac{2}{2}-c/4 + c/2 = c/4$

=> nyg.

heart Upper Round: het ECR be a subset. For simplicity we shall assume that E is bounded, that is, I in light M such that every no E satisfies $-M \le n \le M$.

Definition (Upper Bound): A real number & is said to be an upper bound for E if $\forall z \in E$ we have $z \leq x$. A real number E is said to be a least upper bound for E if E is an upper bound for E and given any other upper bound x for E, we have $E \leq x$.

Proposition: Let ECR be a subset, then E can have abmost one least upper bound.

Pros: Suppose \$1 and \$2 are two least upper bounds for E, then we have \$16 \$2 and \$2 6 \$1. Thun, \$1 = \$2.

Theorem: Let ECR be a bounded subset. Then E has a unique least upper bound.

Proof: Smile E is bounded, we have that $\forall n \in E$, $-M \le n \le M$.

Thus, M is an upper bound for E. For each $n \ge 1$, we comider the finite collection of vational $\ge -M + \frac{i}{2n} \mid i = 0,... M \ge^{n+1} \ge 1$. There is a unique i such that $-M + \frac{i}{2}$ is an upper bound for E and $-M + \frac{i-1}{2^n}$ is not an upper bound for E. Let us denote this i by i(n).

Note that $-M + \frac{i(n)}{2^n} = -M + \frac{2i(n)}{2^{n+1}}$, is an upper bound for E. Thus, i(n+1) < 2i(n). Also note that - M+ i(n)-1 = -M+ 2i(n)-2, which is not an upper bound for \pm . Thus, $i(nH)-1 \ge 2i(n)-2$, that is, $i(nH) \ge 2i(n)-1$. Thus, $2i(n)^{-1} \le i(nH) \le 2i(n)$. 1) We claim that the segnence - M + i(n) is a Camby seq. $\left| -M + \frac{i(n)}{2^{n}} - \left(-M + \frac{i(m)}{2^{m}} \right) \right| = \left| \frac{i(n)}{2^{n}} - \frac{i(m)}{2^{m}} \right| \qquad (m > n)$ $\leq \left| \frac{i(n)}{2^n} - \frac{i(n+1)}{2^{n+1}} \right| + --- \cdot \left| \frac{i(n-1)}{2^{m-1}} - \frac{i(n)}{2^m} \right|$ $\leq \frac{1}{2^{n+1}} + \dots + \frac{1}{2^m} = \frac{(1-1/2)}{(1-1/2)} = \frac{1}{2^{n+1}} - \frac{1}{2^m + (1-2)} = \frac{1}{2^n} - \frac{1}{2^m}$ $\leq \frac{1}{2^n}$ Thus, if N is such that $\frac{1}{2^N} \leq \epsilon$, then $\forall m \geq n \geq N$ me have $\left| -M + \frac{i(n)}{2^n} - \left(-M + \frac{i(n)}{2^m} \right) \right| \leq \frac{1}{2^n} \leq \frac{1}{2^N} \leq \epsilon$. This proves (amby)

but us call the real number represented by this sequence B. We claim B is an upper bound for E. First we need a human.

het not and let $y=(a_n)$. Suppose $n \le a_n + n$, then $n \le y$. If not, then y < n. het q be such that y < q < n. Then $q < x \le a_n + n$. By the above Corollary we $q \le y$, which is a contradiction.

If $n \in E$, then $n \leq -M + \frac{i(n)}{2^n}$ $\forall n \Rightarrow n \leq \beta$.

Next we claim that β is the least upper bound. Suppose α is an upper bound for ξ . By construction, $-M+\frac{i(n)-1}{2^n}$ is not an upper bound for ξ . Thus, $\exists \ n \in \xi$ such that $-M+\frac{i(n)-1}{2^n} < n \leq \alpha$.

It is easy to check, using the same method as whome, that

(-M + i(n) -1) is a (andy seq. It is also easy to check that

this seq is equivalent to the seq (-M + i(n))

Again, we have the following Lemma. Let $n \in \mathbb{R}$ and $y = (a_n)$. Suppose $a_n \leq n$ $\forall n$, then $y \leq n$.

Applying this to $B = \left(-M + i(n) - 1\right)$ and κ , we get that $B \leq \alpha$.

This completes the proof of the Theorem.

The least upper bound is often called the supremum, and almoted sup E. Similar to the least upper bound me have the greatest bower bound. The definition and existence are similar. In fact, using the observation sup (-E) = - inf E me get amother proof of existence. In other words show that - sup (-E) is a greatest bower bound for E.

Bofore we proceed, let us prove a few useful results.

hemma: If nin represented by a Cauchy seq (qn) of vationals, then In is represented by the Cauchy seq (1qui).

Proof: Let us first show that the sequence (1qui) is Cauchy.

By triangle inequality he have $|qu| = |qm + (qn - qm)| \leq |qm| + |qu - qm|$ $\Rightarrow |qn| - |qm| \leq |qn - qm|.$

Sumilarly, suitching n, m we get $|q_m| - |q_m| \le |q_m - q_m| = |q_n - q_m|$.

Thus, $|q_m| - |q_m| \le |q_m - q_m|$.

Given $E \in Q_{20}$, $\exists N$ such that $\exists n, n \geq N$ are have $|q_n - q_m| \leq E$. Thus, $||q_n| - |q_m|| \leq ||q_n - q_n|| \leq E$. Thus, $(|q_n|)$ is a Cauchy seg.

If n>0, then I cc Qso and N such that In > N,

qn > C. Thus, we also bone that I n > N, |qn| = qn > C.

This shows that the sequences (|qn|) and (qn) are the same for

n> N and a they represent the same vational number. Since n>0,

lal = n. Thus, if follows that ((qu)) represents n, that is,

(|qu|) represents |a| if n>0.

If z = 0, then $\exists c \in Q_{>0}$ and $\forall c = q_{n} > c$. Thus, the $q_{n} = -c$. Thus, we have $\forall x > N$, $(q_{n}| = -q_{n} > c$. Thus, the seq $(|q_{n}|)$ and $(-q_{n})$ different only at funitary many places and so they represent the same number. Since $(-q_{n})$ represent -n, if follows $(|q_{n}|)$ represents -x = |a|. Thus, $(|q_{n}|)$ represents |a| if z < 0.

If n=0, then this means that the sequences (0,0,...) and (9,92,...) are equivalent. That is, for EE Qso, there is N such that

HuzN, we have $|q_{in}-o|=|q_{in}|\leq c$. But this shows that the sequence $(|q_{i}),|q_{2}|,...)$ is also equivalent to (0,0,...). Thus, $(|q_{in}|)$ represents $0=|q_{in}|$. This completes the proof of the huma. homma; but at R and assume that a is represented by the Caushy sequence (qn), qi & Q. Then for every & & Qso, F N such that frzN, la-qul < E Proof: but E + Qs. Then JN such that them > N we have 19n-9ml \(\xi\) be number n-9n \(\xi\) is Ry the premions human, the number (n-qu) is represented by the Camby seg (|q1-qn|, |q2-qn|, ...) . Recall that if two Camby seg differ at finitely many places, then they define the same number. Thus, consider the sequence (0,0,.... 0, 19NH-9n1, 19NH2-9n1,...) This also represents $|z-q_n|$, het us call this seg (bm). Then for every m, we have $b_m \le \epsilon \implies if m \le N$ them $b_m = 0$ m>N, then use (9,) in Recall we proved that if $y=(a_m)$ and $a_m \in q$, $q \in Q$, then $y \leq q$. Using this we get $|x-q_m| \leq C$. This happens for all $n \geq N$. Thus, the proof of the homma is complete. Proposition 5.5. 12: There is a real number on such that n=2. We saw that there were gaps in Q, and the above proposition shows that R fills at least one of these. Are there gaps in R?. We can define Cauchy sequenced of reals as follows.
Say that a seq (an) is (andry if for every to Qso, IN such that I now >N, lan-aml se.

	We define an equivalence relation on the Set of Camby sequences
	We define an equivalence relation on the set of Camby sequences of reals (note that we wed to reall inequality for reals to do this, but this easily follows from the one for vationals).
	do this, but this easily follows from the one for vationals).
	There is a natural inclusion R () Equivalences clauses of Cauchy eq.
_	Theorem: This map is surjective.
	Proof: Let (20) he a Country seg of reals. For each is, choose a vation
	Theorem: This map is swelctive. Proof: Let (20) he a Country seg of reals. For each is, choose a valued que such that $2u < qu < 2u + \frac{1}{n}$. We claim that (qu) form a Country seg. To see this, consider
	seg. To see this, consider
	qn-qm = qn-xn+nn-xm+ nm-qm € qn-xn + nn-xm + nn-qm .
	$ q_{n} - q_{m} = q_{n} - x_{n} + x_{n} - x_{m} + x_{m} - q_{m} \leq q_{n} - x_{n} + x_{n} - x_{m} + x_{n} - x_{m}$
_	Grain $\epsilon \in \mathbb{Q}_{>0}$, choose N canh that $1 \leq \frac{\epsilon}{N}$ and $\frac{1}{N} = \frac{1}{3}$.
_	The Hours N 424 for 10 6 1 1 1 5 1 1 2 2 4 6 6
	Then Hn, m > N we have $ q_n - q_m \le 1 + \frac{\epsilon}{3} + \frac{1}{m} \le \frac{2}{N} + \frac{\epsilon}{3} \le \epsilon$.
	hat a ER by the class of the reguence (g.). We want to show
	hat $n \in \mathbb{R}$ be the class of the sequence (q_n) . We want to show that the Canaly $n = (n_1, n_2, \dots)$. Since $(q_n) = n_n$
	by earlier lampa use get for E/ 7 N. Such Hot Hnz N.
	by earlier Lamona, we get for ξ/z , $\exists N$, such that $\forall n \ge N$, $\exists N = \{n = N\}$, $\exists N = \{n$
	N_{ν}
,	then $ x_n-q_n \le \frac{1}{n} \le \frac{1}{N_2} \le \varepsilon_2$. Thus, $ x_n-x_n \le x_n-x_n + q_n-x_n $
	h N ₂ 12
	$\leq \frac{\xi}{2} + \frac{\xi}{2} = \frac{\xi}{2}$
_	
	This proves the sequences are equivalent and completes the
	This proves the sequences are equivalent and completes the proof of the Theorem.

	The above theorem shows that there are us gape" in R,
	The above theorem shows that there are us "gaps" in R, that is, R is complete.
	(74)
	Corollary Definition: Given a Carely seg of reals, the whom theorem
	shows that there is a mique real number L (is the map ROEC
	is an indusion) such that (2m) ~ (L, L,). This number L will be called the limit of (2m) and we write him 2n = L,
	n-so
	humana: hit (an) he - (andy seg of reals. Let M be a real
	number. Then lim on = M (=) lim (on-M) = 0 (=> lim (on-M) = 0
	Proof: Def of him n= M is for every & E Q >0 7 N such that
	Thomas m-M E E.
	Dof of human-M=0 is for every $f \in Q_{>0}$,
	Del 51 lm (2, M) =0 is for every & & Q. a. 7 N such Part
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	het (an) be a seg of real numbers, not necessarily (auchy.
	Suppose 7 a real number L such that $+ \in C$ $= 7 N(E)$ such that $+ \in C$ $= 7 N(E)$
	that no converges to L, and that no is a convergent req.
	· ·
_	Lenning: A convergent seg is Carely. Proof: (nu) is convergent. Thus, IN such that It no N [na-L \le \(\mathcal{E} \) \(\le 2 \). \(= \) \[nn-nm \le nn-L + -nm \le nn-L + nm-L \]
_	Prof: (nu) is convergent. Thus, IN such that I no N
	$ n_n - L \le E/2. \Longrightarrow n_n - n_m = n_n - L + L - n_m \le n_n - L + n_m - L $
	≥ E Hn,m2N.
	Clearly, the Camby say (an) satisfies him no = L.

The theorem was personal showed that (auchy sequences are convergent.

Convergence of Monotone Sequences: Let (nn) he a sequence of reals, assume $n_1 \leq n_2 \leq -...$ and n_n 's are bounded above by M. Then (nn) is a convergent sequence.

Proof: Let $L = \sup_{n = \infty} \sum_{n = \infty} \sum_{$

Sum las to the above, we have the following: If 2,7,22...

and an are bounded below by M, then (an) is a convergent sequence. In this case it comerges to inf Exis.

Since $E_1 \supset E_2 \supset \dots \Longrightarrow \sup_{z \to \infty} E_z \supset \dots$

het is assume that (nn) is bounded. Then we get that FM and - M < nn < M + n. Thun, - M < nn < sup EN. By the wonotone convergence theorem we get that this seq converges. The limit of this sequence is denoted him sup E.

Thun, sup E1 > sup E2 > ... > limit cup E.

Similarly, if EcF then we get inf $F \le \inf E$ and so inf $E_i \le \inf E_j \le \dots$. As the sequence is bounded above by M, we have $\inf E_i \le \pi_i \le M$. Thus, the seq inf $E_i \le \dots$ is bounded above by M and so there is a limit which we denote $\lim \inf E \cdot Thun$, and $\lim \inf E \cdot Thun$.

<u>Main</u>: lim inf E ≤ lim sup E.

To prove the claim me need the following human for reals.

Let (an) and (yn) be (auchy requences of reals such that I'm an & yn. The proof is by contradiction. Assume him yn = B < lim mn = A.

Fin m, then from me have EncEm >

inf Enc inf Enc sup Enc sup Enc. Thun, for fined m, me see that

inf Enc sup Em +n > him inf E < sup Em.

hetting the m vary we get lim inf E < ... Sup Emrz < Sup Emy < ...

> lim inf E < him sup E.

Proposition: $E = \xi_{nn} \Im$ is a convergent seq \iff him if E = his cap E.

Proof: Let us assume that $\lim_{n \to \infty} I = L$. Grim $f \in Q_{>0}$, $\exists N \in \mathbb{N}$ such that $f \in Q_{>0}$, $\exists N \in \mathbb{N}$ has have $|n_N - L| \leq E$. Thus, $|n_N \in L + E = F \in \mathbb{N}$. Thus, $|n_N \in L + E = F \in \mathbb{N}$ happens for every $|e| \in Q_{>0}$. This shows that $|h_N \cap h_N \cap h_N$

for all EE Q >> lin inf E > L. Thus, me have $L \leq \liminf_{n \to \infty} E \leq \lim_{n \to \infty} E \leq L \implies All \text{ are equal}.$

Conversely, suppose lim inf E = lim sup E = L. Then we have

if E, ≤ inf E, ≤ ... inf En ∈ ... ≤ L ≤ ... sup En ∈ ... ≤ sup E, ≤ sup E, and both converging to L. Thur, for every & & Qso IN Such that In >N me have | L- inf En | < E and | L- sup En | < E -Note that inf En & an & sup En. Thus, L-inf En > L- nn > L-sup En => 6 > L-nn > -6 => |L-nn| Et + n> N. Thur, linn=L-

Sories: Grien a requence (an) of real mundous, me can form another sequence so as follows. Define Sn:= n+-- + nn. We may ask if the sequence (Sn) is Cauchy, or equivalently, if it converges. For this sequence to be Camby, applying the definition me get that for every E & Qzo, There is N such that I n, m > N he have \su-sm\ \le \gamma that is, \tau, m > N, me have

 $\left| \frac{M}{\sum_{i=n+1}^{m} a_i} \right| \leq \epsilon$

Re sequence son is called the sequence of partial sums. If (son) is a carely requence then we say the series $\sum_{i \ge 1} n_i$ converges to the limit $\lim_{i \ge 1} s_i = L$.

Due final aim in this part of the course is to show that R is not comptable.

hamma: but X be a set. Recall the set $\mathcal{B}(x)$ whose elements are subset of X. Then X is not in Ligertion with $\mathcal{P}(x)$.

$x \in X \ (\underline{not} \ A)$

Proof: het us assume that there is a bijection f: X->B(X). Counder the cutset A:= {ac A | a & f(a)}. Since f is a hijection, there is y EX such that f(y) = A. If y & f(y) = A, then by the defining property of A, we see that y & A, which is a contradiction On the other hand, if y & f(y) = A, then again, by the defining property of A, we get that y & f(y) = A, a Contraliction. Thus, there is no much f

This shows that the "size" of B(x) is sterictly largor than the "size" of X. Obviously X can be put into B(X), the simplest way being X > O(X) 2 > 373.

We will now define an embedding P(N) <> R, which will show that the "rize" of R is sterictly greater than the size of N. Given a subset A C IN, define the number of as follows. If A= & then define &= 0. If not, then define Am = \(\frac{1}{2} n \in A \) n \(\le m \) 3-Define $\propto_{Am} = \sum_{n \in A_m} 10^{-n}$. This is clearly a mountaine sequence as $\propto_{A_1} \leq \propto_{A_2} \leq \cdots$. $d_{Am} = \sum_{n \in A_m} 10^{-n} \leq \sum_{n=0}^{m} 10^{-n} = \left(1 - \frac{1}{10^{m+1}}\right) \frac{10}{9} \leq \frac{10}{9}$. Thus, this

segnence is also bounded above and so converges to a mumber which me take to be da.

Thus, we have defined a map P(N) -> R. We need to chark this is an indusion. Suppose A+B. Then either A &B or B&A Thun, there is some in such that nEAB or nEBA. Choose the smallest such n, that is, choose the smallest element in (A/B) U (B(A). Call this element no. Let us areane that no EA/B. Then if non, we have n GA (=> n & B.

For mono, let us consider (& Am - & Bm). From the definition we $\left| \alpha_{Am} - \alpha_{Bm} \right| = \left| \sum_{i \in J} \left| \sum_{j \in J} \left| \sum_$ $= \left[\frac{\sum_{i} 10^{-j} + 10^{-n_0} + \sum_{i} 10^{-j} - \left(\frac{\sum_{i} 10^{-j} + \sum_{i} 10^{-j} \right)}{j \in A_{m_0-1}} \right] + \frac{\sum_{i} 10^{-j} + \sum_{i} 10^{-j$ = 10 + 2 10 d - 2 10 Je Bm \ Bno > (10" + \(\frac{10^{-j}}{Je Am\}\) Ano \(\frac{10^{-j}}{Je Bm\}\) Bno $= 10^{-10} - 10^{-(M-M_0T)} \frac{10}{9} \left(1 - 10^{-(M-M_0T)}\right)$ $\geq 10 - 10$ for $M > N_0 + 1$. Thun, taking limit un-soo we get | da - dB | > 10 8 > 0. Thus, $\alpha_A \neq \alpha_B$. This shows that $\#(R) = \#(\mathcal{G}(N)) > \#(N)$.
Thus, R is not countable. Finally, let us slow that between any two real numbers acy there is an irrational. It is easily checked that the set S= { a e R | a < a < y 3 is in Lizectron with R. Sina Q is countable, it follows that SAQ is countable. Thus, there is an element of S which is not in Q.