

Fince K is antidependence with.

f g i j. It need to wait for them
all done.

	Func 1	Funcz	
K,	f	ł	
kz	9	T	
K3			
K4			since all include
KS	h		in loop,
K6			no necessary-to
K7	3	K	generate
1/8	1		prologue and
			epiloque.

a addI rap @x => r@x

b addI rap @y => r@y

c addI rap @z => r@z

d loadI o => retr

e loadI o >> retr

fli= loadAo retr. r@x => rx

g loadAo retr r@y=> ry

h mutt rx. ry => rz

i cmp_IT retr rub => rcc

d store Ao rz

k addI retr 4 >> retr

lobr rec >> LoadI

mult rcc >> LoadI

but if can. change j. store Ao $r_2 \Rightarrow r_{ctr}, r_{@2}$ to store Ao $r_2 \Rightarrow r_{ctr-4}, r_{@2}$, the kernel scheduling Would be:

		Funi		Funz		
	Pi	f				
	P2	9		ì		
	P3			Kaddi	10	~ 1C °
	P4	e. if Year 2 Yus gotoel	i.	Vaccij	retr. 4	=> lotn
	KI	+		h		
	K2	9		ì		
	< 3	J V=> VCtr-4 toz		K		
	K4	ł L	et.	hop		
-		if retrizionel				
	e,	nop	h			_
	62	Kop	nop			
	ez	J 1/2 => roor-4, 1/02 goto L2	nop			
	24	goto Lz				

1. WadAl. Parp -4 => PK

)	Υ,	r>	V3
name	L	1	X W
next	000	200	005
Free	T	T	*F

2. Load Al. Vap -8 > 1/2

	Υ,	Y- Y3	
name		XVIS Vri)
next	\propto	04 5	Ym
Free	T	TF F	[h]

3 loadi 4 > 1/3.

	۲,	1/2	Y3	
name	×13	Vrs	V.	.]
next	204	4	5	
				X
	TF			X

4 mult the Ms => MS+

name
$$\frac{V_1}{V_2}$$
 $\frac{V_2}{V_1}$ $\frac{V_1}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_1}$ $\frac{5}{V_2}$ $\frac{5}{V_1}$ $\frac{5}{$

5. add. VXI, VX4 > VXX

6. badi 10 > Vra

	۲ı	Y2_	1 3	
name	TALP	Vrz	1	
next	207	9	∞	181
fræ	± 20°6 207 ↑F	F	T	[Y3]

7. store Ma > Vis

	h	12	Y3	
noune.	VK6.L	VYZ	TAKET	1/3
next	7,00	9	do 20	X
-f108	KT	F	TXT	

8. Load Al Youp. -12 => VY

	(,	Y2	3	
name	2 E	Vrz	117	1
next	20	9	009	1-
free	T	F	TE	Y

name
$$\perp$$
 r_2 r_3

name \perp r_4 r_5 r_7

name r_7 r_8 r_7

free r_8 r_8 r_8 r_8 r_8 r_9 r_9

name
$$1 \text{ VY8} \times \text{VY3}$$
next ∞ 10 ∞ 11 \times 17 \times 17 \times 17 \times 17 \times 18 \times 10 \times 11 \times 18 \times 10 \times 11 \times 17 \times 17 \times 18 \times 19 \times 1

mutt 1/2 /3 /2 > XX9

hame
$$1 \times 10^{12} \times 10^{13}$$

here $1 \times 10^{11} \times 10^{11}$
from $1 \times 10^{11} \times 10^{11}$

1). Store $Vr3 \Rightarrow Vr4$

П	1	1/2	13	_
hame	1	AxaT	773-1	1/2/
next	~	1/20	T+ 80	1/3
free	T	KT	太丁	n
1	1			

Done

d

top down live range

$$a = \{B1 \mid B2 \mid B3 \mid B4\}$$
 $b = \{B1 \mid B3 \mid B4\}$
 $d = \{B2 \mid B3 \mid B4\}$
 $\chi = \{B1 \mid B2 \mid B3 \mid B4\}$

