Introdução à Análise Combinatória

25 de setembro de 2018

4 CAPÍTULO 1.

6 CAPÍTULO 2.

8 CAPÍTULO 3.

10 CAPÍTULO 4.

12 CAPÍTULO 5.

 $\begin{array}{c}
ab \\
cd
\end{array} (6.1)$

n-3 é ímpar (resp., par). Aplicando a equação de recorrência a t_{n-3} e usando a informação já adquirida sobre o valor de t_n para n=3,4 e 5, reformulamos (6.2) como segue:

$$t_0 = 0, \quad t_1 = 0, \quad t_2 = 0, \quad t_3 = 1, \quad t_4 = 0, \quad t_5 = 1$$

$$t_n = \begin{cases} \left\lfloor \frac{n-2}{4} \right\rfloor + t_{n-6}, & \text{se } n \text{ \'e par, } n \ge 6. \\ \left\lfloor \frac{n+1}{4} \right\rfloor + t_{n-6}, & \text{se } n \text{ \'e impar, } n \ge 6. \end{cases}$$
(6.3)

Torna-se claro pela relação acima que a sequência (t_n) é na verdade composta por 6 sequências independêntes: (i) $(t_0, t_6, t_{12}, \ldots)$, (ii) $(t_1, t_7, t_{13}, \ldots)$, (iii) $(t_2, t_8, t_{14}, \ldots)$, (iv) $(t_3, t_9, t_{15}, \ldots)$, (v) $(t_4, t_{10}, t_{16}, \ldots)$, (vi) $(t_5, t_{11}, t_{17}, \ldots)$. Introduzindo a notação $t_{l+6j} = \triangle_j$, temos que a $l^{\underline{e}sima}$ sequência especificada é igual à sequência $(\triangle_0, \triangle_1, \triangle_3, \ldots)$. Reduzimos, então o problema de calcular uma fórmula fechada para t_n a calcular fórmulas fechadas para cada uma das seis sequências. A vantagem dessa abordagem é que cada uma das novas sequências tem uma relação de recorrência mais simples que (6.2) e que pode, portanto, ser resolvida com facilidade, tanto pelas técnicas da presente seção, quanto pelas da próxima seção. Ilustramos o procedimento calculando uma fórmula fechada para $\triangle_j = t_{0+6j} = t_{6j}$. Substituindo os valores apropriados em (6), obtendo a seguinte relação de recorrência \lessdot :

$$\hat{\triangle}_{0} = 0$$

$$\hat{\triangle}_{j} = \left\lfloor \frac{6j - 2}{4} \right\rfloor + \hat{\triangle}_{j-1}$$

$$= \frac{3j}{2} - \frac{3}{4} - \frac{1}{4}(-1)^{j} + \hat{\triangle}_{j-1}, \quad \text{para } j \ge 1.$$
(6.4)

Calculamos agora as funções particulares f(j), d(j) e b(j), associados aos termos $\frac{3j}{2}, -\frac{3}{4}$ e $-\frac{1}{4}(-1)^j$, respectivamente. Para tal, observamos que 1 é a única raiz da equação característica da equação homogênea associada a (6.4).

$$\begin{cases} A_0 - A_1 = 0 \\ 2A_1 = \frac{3}{2}. \end{cases}$$