

Normalización Presentación de Modelos ER Sesión 08

Curso (DAT506 / ITI562)

Almacenes y Procesamiento de Datos

Bases de Datos

Otoño 2020

Agenda

- Normalización
- Presentación de los modelos Entidad-Relación del Proyecto Final

Mensaje de la sesión

Invitación

Normalización

- Es un proceso que consiste en designar y aplicar una serie de reglas para:
 - Evitar la redundancia de los datos.
 - Disminuir problemas de actualización.
 - Proteger la integridad de los datos.

Dependencia funcional

- Existe una dependencia funcional (DF) entre dos atributos monovalentes, A1 y A2 de una Entidad o Relación, si cada valor de A1 corresponde exactamente a un valor de A2.
- Decimos que A1 determina funcionalmente a A2, lo cual se denota también como
 A1 → A2; el atributo de la izquierda de la DF se llama determinante.

Dependencia funcional

- En un esquema correcto, todos los identificadores de las entidades **determinan funcionalmente** a los otros atributos monovalentes.
- Nombre, Categoría, Clasificación y Año son funcionalmente dependientes de ID.

Dependencia funcional

- Si $X \rightarrow (Y, Z)$ entonces $X \rightarrow Y, X \rightarrow Z$
- Si $(X,Y) \rightarrow Z$ entonces no es cierto $X \rightarrow Z$, $Y \rightarrow Z$

Dependencia transitiva

• Si A \rightarrow B, B \rightarrow C entonces A \rightarrow C

Primera forma normal

 Una entidad/relación está en primera forma normal si sus atributos contienen valores atómicos, lo que implica que los valores repetitivos o las listas no están permitidas.

Segunda forma normal

- Si está en 1FN y si no existe ninguna DF cuyo determinante esté propiamente contenido en el identificador y cuyo atributo del lado derecho sea no primo.
- **Primo:** Que pertenece al identificador.

Tercera forma normal

- Si está en 2FN y si no existe ninguna dependencia transitiva: si existen dos dependencias A → B, B → C, tales que A, B y C, sean grupos diferentes de atributos.
- Entonces, la dependencia A → C se puede inferir como una combinación de A → B,
 B → C, esta dependencia es redundante y causa anomalías.

Residencias

<u>IdEstudiante</u>

Edificio

CuotaResidencia

Forma normal Boyce-Codd

• Si cada determinante de sus DF es un identificador, normalmente se revisa cuando tenemos identificadores compuestos.

Estudiante

Matrícula

NSS

Nombre

Dirección

Sexo

FechaNacimiento

Cuarta forma normal

 Si está en 3FN y si no tiene dependencias de valores múltiples que pueden contener valores nulos.

AsignacionesEmpleado		
IdEmpleado		
Organización		
NumProyecto		

IdEmpleado	Organización	NumProyecto
123	Cruz Roja	
124	Casa de la Familia	3
126		4

Comentarios de los modelos ER en el Foro

Presentación de los modelos Entidad – Relación

Fuente: https://sensanalytics.com/executive-master-classes/introduction-data-science/

M2 – Bibliografia

- o Elmasri, R., Navathe, S. B., Fundamentals of Database Systems, Pearson, USA, Edición Kindle, 2016.
- Kendall, K. E., Kendall, J. E. (2005). Análisis y Diseño de Sistemas. Pearson. México. Sexta Edición. ISBN 970-26-0577-6.
- o Garrido, B.S., Diseño de Bases de Datos Un enfoque práctico. Edición Kindle, 2014.
- o Date, C.J., Darwen, H, Lorentzos, N., Temporal Databases in the Relational Model and SQL, Elsevier, Second Edition, 2014.
- Mensaje positivo: https://www.pinterest.com.mx/pin/747034656909861386, consultado en línea el 10 de septiembre de 2020.