Vehicle Test and Validation, Vehicle Operation

3D Vehicle Model (point cloud) processing in Python environment

Igor Racca K45DZH

Project

- Supervisor: Gábor Vida
- András Rövid
- Júlia Nagy
- Another student

Motivation

Evaluate the amount of damage on a vehicle (if any)

Project

- Neural Network
- Python, Pytorch
- Input Vehicle Model
- Output Damage

Input

- Point Cloud
- Values:

-1	Lack of volume	
1	Extra volume	
0	Normal volume	

• torch.Tensor

Input

- Size: 500 * 200 * 200 = 20 M
- Vehicle models: 50
- Future changes
 - Inner points
 - New input: shell
 - Computational time

NN - Model

- Model was previously made
- It was not changed

```
(0): Conv3d(1, 3, kernel_size=(10, 5, 5), stride=(10, 5, 5))
(1): BatchNorm3d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): Conv3d(3, 2, kernel_size=(5, 5, 5), stride=(1, 1, 1))
(3): BatchNorm3d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Conv3d(2, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1))
(5): BatchNorm3d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): AdaptiveMaxPool3d(output size=(1, 1, 10))
```

NN

- Loss function: MSE
- Output in [0,1]
- Convenient for percentages
- Activation function: Sigmoid

NN - Dataset

• Dataset: only 50 vehicle models

• Split Samples

• Training: 30

• Validation: 10

• Test: 10

NN - Training and Validation

- Batchmode (Batch size is equal to the total dataset)
- Shuffling training set (performed bad)
- Epochs = 50 is a good number
- Changing Learning Rate from 0.0001 to 0.01 resulted on a big improvement

NN - Training and Validation

NN - Training and Validation

Improvements

- Bad at predicting not damaged vehicles
- Try Mini-batches and shuffling
- Try Dropout
- Check Overfitting / Underfitting (more data needed)

Conclusion

- More data is required to better evaluation
- Optimization of the inputs is required to process more data
- This works will serve as documentation for next students

Thank you!