Curriculum Vitae: Yun-Pil Shim, Ph.D.

Contact Information

Name: Yun-Pil Shim (심윤필) Address: Department of Physics

The University of Texas at El Paso

500 W. University Ave. El Paso, TX 79968, USA

Office: PSCI Building 121A E-mail: yshim@utep.edu

Education

The University of Texas at Austin (USA) Ph.D. in Physics (2006) Seoul National University (Rep. of Korea) B.S. in Physics (2000)

Appointments

09/2020 ~ present Assistant Professor

Department of Physics, The University of Texas at El Paso

El Paso, TX, USA

03/2016 ~ 08/2020 Faculty Specialist

Department of Physics, University of Maryland

& Laboratory for Physical Sciences

College Park, MD, USA

11/2012 ~ 03/2016 Research Associate

Department of Physics, University of Maryland

& Laboratory for Physical Sciences

College Park, MD, USA

09/2009 ~ 11/2012 Research Associate

Department of Physics, University of Wisconsin-Madison

Madison, WI, USA

12/2006 ~ 09/2009 CIFAR-IMS Research Associate

National Research Council of Canada

Ottawa, ON, Canada

<u>Professional Membership</u>

American Physical Society (APS)

APS Division of Quantum Information (DQI)

Korean-American Scientists and Engineers Association (KSEA)

Professional Activities

Refereeing service:

Physical Review Letters, Physical Review A,B,X, Physical Review Applied, Nano Letters, Solid State Communications, Journal of Physics: Condensed Matter, National Science Review, Physical Status Solidi B

Main Research Areas

Theoretical/computational condensed matter physics

Quantum information and computation in condensed matter systems

Quantum algorithms for Noisy Intermediate-Scale Quantum (NISQ) systems

Selected Publications

- 16. Daniel L. Campbell, **Yun-Pil Shim**, Bharath Kannan, Roni Winik, David K. Kim, Alexander Melville, Bethany M. Niedzielski, Jonilyn L. Yoder, Charles Tahan, Simon Gustavsson, and Will Oliver, *Universal Nonadiabatic Control of Small-Gap Superconducting Qubits*, Physical Review X **10**, 041051 (2020).
- 15. **Yun-Pil Shim**, Rusko Ruskov, Hilary M. Hurst, and Charles Tahan, *Induced quantum dot probe for material characterization*, <u>Applied Physics Letters **114**, 1523105 (2019)</u>.
- 14. **Yun-Pil Shim** and Charles Tahan, *Barrier versus tilt exchange gate operations in spin-based quantum computing*, Physical Review B **97**, 155402 (2018).
- 13. **Yun-Pil Shim** and Charles Tahan, *Charge-noise-insensitive gate operations for always-on exchange-only qubits*, <u>Physical Review B **93**, 121410(R) (2016)</u>.
- 12. **Yun-Pil Shim** and Charles Tahan, *Semiconductor-inspired design principles for superconducting quantum computing*, Nature Communications **7**, 11059 (2016).
- 11. **Yun-Pil Shim** and Charles Tahan, *Superconducting-semiconductor quantum devices: from qubits to particle detectors*, <u>IEEE Journal of Selected Topics in Quantum Electronics 21</u>, 9100209 (2015).
- 10. **Yun-Pil Shim** and Charles Tahan, *Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor*, Nature Communications **5**, 4225 (2014).
- 9. Chang-Yu Hsieh, **Yun-Pil Shim**, Marek Korkusinski, and Pawel Hawrylak, *Physics of lateral triple quantum dot molecules with controlled electron numbers*, <u>Reports on Progress in Physics **75**, 114501 (2012)</u>.
- 8. Zhan Shi, C. B. Simmons, J. R. Prance, John King Gamble, Teck Seng Koh, **Yun-Pil Shim**, Xuedong Hu, D. E. Savage, M. G. Lagally, M. A. Eriksson, Mark Friesen, and S. N. Coppersmith, *Fast Hybrid Silicon Double-Quantum-Dot Qubit*, Physical Review Letters **108**, 140503 (2012).
- 7. **Yun-Pil Shim**, Sangchul Oh, Xuedong Hu, and Mark Friesen, *Controllable anisotropic exchange coupling between spin qubits in quantum dots*, <u>Physical Review Letters **106**, 180503 (2011)</u>.
- 6. **Y.-P. Shim**, A. Sharma, C.-Y. Hsieh, and P. Hawrylak, *Artificial Haldane gap material on a semiconductor chip*, <u>Solid State Communications</u> **105**, 2065 (2010).
- 5. **Y.-P. Shim**, F. Delgado, and P. Hawrylak, *Tunneling spectroscopy of spin-selective Aharonov-Bohm oscillations in lateral triple quantum dot molecules*, <u>Physical Review B **80**</u>, 115305 (2009).
- 4. **Y.-P. Shim** and A. H. MacDonald, *Spin-orbit interactions in bilayer excitonic condensate ferromagnets*, <u>Physical Review B **79**, 235329 (2009)</u>.

- 3. F. Delgado, **Y.-P. Shim**, M. Korkusinski, L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, and P. Hawrylak, *Spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot*, <u>Physical Review Letters **101**</u>, <u>226810</u> (2008).
- 2. **Yun-Pil Shim** and Pawel Hawrylak, *Gate-controlled spin-spin interactions in lateral quantum dot molecules*, Physical Review B **78**, 165317 (2008).
- 1. **Y.-P. Shim**, R. A. Duine, and A. H. MacDonald, *Fulde-Ferrell-Larkin-Ovchinnikov* vortex lattice states in fermionic cold-atom systems, <u>Physical Review A 74</u>, 053602 (2006).

Patents

Microwave-free control of a superconductor-based quantum computer, Yun-Pil Shim and Charles George Tahan, US patent US 9996801 (2018)

Patent applications under review:

Systems, methods, and devices for noise-insensitive qubit gate operations, Yun-Pil Shim and Charles George Tahan, US patent application No. 15/419743 (2017) Induced quantum dots for material characterization and quantum computers, Charles George Tahan, Rousko T. Hristov, Yun-Pil Shim, Hilary Hurst, US patent application No. 16/552764 (2019)

Selected Presentations

Seminars

- 17. Encoded qubit approach to superconducting quantum computing, The University of Texas at El Paso, El Paso, TX, USA, January 27, 2020.
- 16. Encoded qubit approach to superconducting quantum computing, University of Rhode Island, Kingston, RI, USA, January 22, 2020.
- Composite qubit approach to superconducting quantum computing,
 Korea Research Institute of Standards and Science (KRISS), Daejeon, South
 Korea, May 22, 2019.
- 14. Composite qubit approach to superconducting quantum computing, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea, May 22, 2019.
- 13. Composite qubit approach to superconducting quantum computing, Colloquium, Binghamton University The State University of New York, Binghamton, NY, USA, February 18, 2019
- Semiconductor quantum dot spin qubits and mitigating charge noise on exchange interaction, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea, May 2, 2018.
- 11. Semiconductor quantum dot spin qubits and mitigating charge noise on exchange interaction, Center for Quantum Nano Science, Ewha Womans University, Seoul, South Korea, April 30, 2018.

- 10. Quantum Computing in Solid State Devices Superconducting and semiconductor qubits, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea, May 24, 2017.
- New designs for superconducting and semiconductor qubits by learning from each other, LPS Seminar, Laboratory for Physical Sciences, College Park, MD, USA, April 27, 2016
- 8. Superconducting semiconductors and their applications, Seminar, University of Ottawa, Ottawa, ON, Canada, November 19, 2014
- 7. Superconducting and Josephson junction devices inside a Group-IV semiconductor, LPS QC Seminar, Laboratory for Physical Sciences, College Park, MD, USA, November 1, 2013.
- 6. *Quantum Computation on a Spin Chain*, Laboratory for Physical Sciences, College Park, MD, USA, July 23, 2012.
- 5. Engineering non-Heisenberg interactions between quantum dot spin qubits, National Research Council of Canada, Ottawa, ON, Canada, August 05, 2010.
- 4. Electronic, spin, and transport properties of a triple quantum dot molecule, Institute for Quantum Computing at University of Waterloo, Waterloo, ON, Canada, May 08, 2009.
- 3. *Electronic, spin, and transport properties of a triple quantum dot molecule*, University of Wisconsin-Madison, Madison, WI, USA, May 06, 2009.
- 2. Ferromagnetic Excitonic Condensation, National Research Council of Canada, Ottawa, ON, Canada, March 16, 2007.
- 1. Ferromagnetic Excitonic Condensation, University of Oklahoma, Norman, OK, USA, July 21, 2006.

Lectures

- Lectures on Quantum Computation and Superconducting Qubits, (virtual) lectures given at Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea, August 10-14, 2020.
- Superconducting Qubit based Quantum Computing I & II, lectures given at the 8th School of Mesoscopic Physics, Pohang, South Korea, May 24, 2019.
- 3. Basic theory of quantum dot devices, lecture given at Seoul National University, Seoul, South Korea, May 31, 2017.
- Introduction to Quantum Computation, lecture given at Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea, May 29, 2017.
- Quantum dot basics, quantum manipulation and measurements in semiconductors, Lectures given at the 6th School of Mesoscopic Physics, Pohang, South Korea, May 25, 2017

Invited Conference presentations

6. High fidelity encoded gate operations for composite superconducting qubit, invited talk, KPS Spring Meeting (virtual), July 14, 2020.

- 5. Composite qubit approach to superconducting quantum computing, invited talk, KSEA VWMRC 2020 (virtual), May 09, 2020.
- 4. Mitigating charge noise in exchange gate operations between spin qubits, Invited talk, KPS Spring Meeting, Daejeon, South Korea, April, 26, 2018
- 3. Semiconductor-inspired superconducting quantum computing, Invited talk, APS March meeting, Baltimore, MD, USA, March 16, 2016
- 2. Semiconductor-inspired superconducting quantum computing, invited talk, Joint AKPA-KPS session in APS March Meeting, Baltimore, MD, USA, March 13, 2016.
- Bottom-up superconducting and Josephson junction devices and qubits inside a group-IV semiconductor, Invited talk, APS March meeting, Denver, CO, USA, March 4, 2014