DIGITAL ELECTRONICS 2 LAB ASSIGNMENT 2

Name: Demirkan Korbey Baglamac

1)

DDRB	Description
0	Input pin
1	Output pin

PORTB	Description		
0	Output low value		
1	Output high value		

DDRB	PORTB	Direction	Internal pull-up resistor	Description
0	0	input	no	Tri-state, high-impedance
0	1	input	yes	Pxn will source current
1	0	output	no	Output low
1	1	output	no	Output high

Port	Pin	Input/output usage?
Α	X	Microcontroller ATmega328P does not contain port A
В	0	Yes (Arduino pin 8)
	1	Yes (Arduino pin ~9)
	2	Yes (Arduino pin ~10)
	3	Yes (Arduino pin ~11)
	4	Yes (Arduino pin 12)
	5	Yes (Arduino pin 13)
	6	
	7	
С	0	Yes (Arduino pin A0)
	1	Yes (Arduino pin A1)
	2	Yes (Arduino pin A2)
	3	Yes (Arduino pin A3)
	4	Yes (Arduino pin A4)
	5	Yes (Arduino pin A5)
	6	
	7	

D	0	Yes (Arduino pin RX<-0)
	1	Yes (Arduino pin TX ->1)
	2	Yes (Arduino pin 2)
	3	Yes (Arduino pin ~3)
	4	Yes (Arduino pin 4)
	5	Yes (Arduino pin ~5)
	6	Yes (Arduino pin ~6)
	7	Yes (Arduino pin 7)

C Code with two leds and a push button:

```
/* Defines -------
--*/
#define LED GREEN PB5 // AVR pin where green LED is connected
#define LED RED PC0
#define BLINK DELAY 500
#define BTN
            PD0
#ifndef F CPU
#define F_CPU 16000000 // CPU frequency in Hz required for dela
У
#endif
/* Includes ------
--*/
/* Functions ------
--*/
/**
 * Main function where the program execution begins. Toggle two LEDs
 * when a push button is pressed.
int main(void)
{
   /* GREEN LED */
   // Set pin as output in Data Direction Register...
   DDRB = DDRB | (1<<LED GREEN);</pre>
   // ...and turn LED off in Data Register
   PORTB = PORTB & ~(1<<LED GREEN); //Turn OFF
   /* second LED */
   DDRC = DDRC | (1<<LED RED);</pre>
   PORTC = PORTC & ~(1<<LED RED); // Turn ON
   /* PUSH BUTTON*/
   DDRD = DDRD & ~(1<<BTN); //input</pre>
   PORTD = PORTD | (1<<BTN); //enable internal pull up</pre>
   // Infinite loop
   while (1)
   {
      // Pause several milliseconds
      delay ms(BLINK DELAY);
      // WRITE YOUR CODE HERE
```

```
if(bit_is_clear(PIND, BTN))
{
        PORTB = PORTB ^ (1<<LED_GREEN); //Invert
        PORTC = PORTC ^ (1<<LED_RED); //Invert
    }
}

// Will never reach this
return 0;
}</pre>
```

Screenshot of SimulIDE Ciruit:

2) Knight Rider Application Code:

```
#ifndef F CPU
#define F CPU 16000000 // CPU frequency in Hz required for dela
У
#endif
/* Includes ------
--*/
/* Functions ------
--*/
void clear();
/**
 * Main function where the program execution begins. Toggle two LEDs
 * when a push button is pressed.
 */
int main(void)
{
   /* Setting the DDRx as output for LEDs */
   DDRB = DDRB | (1<<LED1);</pre>
   DDRB = DDRB | (1<<LED2);</pre>
   DDRB = DDRB | (1<<LED3);
   DDRB = DDRB | (1<<LED4);</pre>
   DDRB = DDRB | (1<<LED5);
   /* PUSH BUTTON*/
   DDRD = DDRD & \sim(1<<BTN); //input
   PORTD = PORTD | (1<<BTN); //enable internal pull up
   // Infinite loop
   while (1)
   {
          clear();
          loop until bit is clear(PIND, BTN);
          PORTB = PORTB | (1<<LED1);
          loop_until_bit_is_clear(PIND, BTN);
          clear();
          PORTB = PORTB | (1<<LED2);
          loop_until_bit_is_clear(PIND, BTN);
          clear();
          PORTB = PORTB | (1<<LED3);
          loop_until_bit_is_clear(PIND, BTN);
          clear();
          PORTB = PORTB | (1<<LED4);
```

```
loop_until_bit_is_clear(PIND, BTN);
            clear();
            PORTB = PORTB | (1<<LED5);
            loop_until_bit_is_clear(PIND, BTN);
    }
    // Will never reach this
    return 0;
}
void clear() {
    // Pause several milliseconds
    _delay_ms(BLINK_DELAY);
    //Making all outputs low for the LEDs
    PORTB = PORTB & ~(1<<LED1);
    PORTB = PORTB & ~(1<<LED2);
    PORTB = PORTB & ~(1<<LED3);
    PORTB = PORTB & \sim(1<<\text{LED4});
    PORTB = PORTB & \sim(1<<\text{LED5});
}
```

Knight Rider Application Circuit:

