CSE 3521: Introduction to Artificial Intelligence

Supervised learning

• Data type: $\{(x_1, y_1), ..., (x_N, y_N)\}$

- Goal: Build a model so that given a future data instance x, it can tell the label y
 - Example: Nearest neighbors
- The "label" in $\{(x_1, y_1), ..., (x_N, y_N)\}$ provides supervision of how to give each data instance a label
- The label can be "numerical" (regression) or "categorical" (classification)

The general representation of data instances

• Definition:

- A categorical value takes one category from a set of categories.
 - There is no intrinsic ordering of the categories
- A numerical value is a real number.
 - There is a clear ordering and space between values.

• Examples:

- Ocin instance: weight = 2.5 (g), size = 16.5 (mm)
- Car instance: brand = Mazda, year = 2015, color = blue

The general representation of data instances

- Mathematical representations:
 - Numerical values: vectors

or
$$\begin{bmatrix} 2.5 \\ 16.5 \end{bmatrix}$$

o Categorical values: a one-hot vector for each feature variable (each has exactly one 1)

Mazda	1		Mazda	1
Toyota	0		Toyota	0
Honda	0		Honda	0
			blue	1
blue	1	concatenation	red	0
red	0	concatenation	gray	0
gray	0		year	2015

Properties

- A vector element: index & value
- Every two one-hot vectors of different categories are of <u>the</u> <u>same distance</u>

Popular data instances in applications

• Computer vision: image & video

• Natural language processing: sentence & document

• **Speech:** utterance

• Robotics: LiDAR point cloud

• Health care: electronic health record (EHR)

Computer vision

Image (s)

Video (s) = sequence of images

RGB image (s): Three matrices

Gray images (s): One matrix

Character \rightarrow Word \rightarrow Sentence \rightarrow Document \rightarrow Doc. collections \rightarrow ...

Artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals. Leading AI textbooks define the field as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Colloquially, the term "artificial intelligence" is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the human mind, such as "learning" and "problem solving"

computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop conventional algorithms to perform the needed tasks.

Machine learning (ML) is the study of

Character \rightarrow Word \rightarrow Sentence \rightarrow Document \rightarrow Doc. collections \rightarrow ...

ASCII Code (symbol):

{0, 1,, 255}

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	।Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	ISPACE1	64	40	@	96	60	*
i	i	[START OF HEADING]	33	21	1	65	41	Ă	97	61	а
2	2	ISTART OF TEXT1	34	22	ii .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENOUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i i
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	5
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B		123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	T.
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

Are these numbers "numerical values" or "categorical values" (indices)?

Is "a" (97) semantically closer to "b" (98) than "p" (112)?

If we change the order in the codebook, does it matter?

Character \rightarrow Word \rightarrow Sentence \rightarrow Document \rightarrow Doc. collections \rightarrow ...

Character \rightarrow Word \rightarrow Sentence \rightarrow Document \rightarrow Doc. collections \rightarrow ...

- A word can be represented as a sequence of character indices (a sequence of one-hot vectors)
- A word can be also represented just by a <u>one-hot vector</u>
- More: "happy": 0001235, "pleased": 0128736, "sad": 0059875, (from a dictionary)
- What is the vector dimension?

Character \rightarrow Word \rightarrow Sentence \rightarrow Document \rightarrow Doc. collections \rightarrow ...

- O A sequence of words OR a unique index of each sentence?
- o If there are 10K unique words, and each sentence is of length 10, how many indices?

tokenization

Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. ...

"<Start>" "machine" "learning" "("
"<UNK>" ")" "is" "the" "study" "of"
"computer" "algorithms" "that"
"improve" "automatically" "through
experience" ":" "<End>" "<Start>"
"it" "is" "seen" "as" "a" "subset" "of"
"artificial" "intelligence" ":" "<End>" ...

- Sequences of indices/one-hot vectors of words
- <UNK>: out-of-vocabulary (OOV) words

Speech

• Utterance: a spoken word, statement, or vocal sound

• Time-frequency representation:

Health care

- Electronic health/medical record (HER/EMR)
 - ICD-9/ ICD-10 codes

Diagnosis	ICD-9	ICD-10
Cervical Sprain, initial encounter	847.0	S13.4xxA
Thoracic Sprain, initial encounter	847.1	S23.3xxA
Lumbar Sprain, initial encounter	847.2	S33.5xxA
Cervical Degenerative Disc Disease	722.4	M50
Thoracic Degenerative Disc Disease	722.51	M51
Lumbar Degenerative Disc Disease	722.52	M51.2

Properties

- Multi-hot
- One-hot
- All-zero

Every time you see a doctor, some diagnoses are made (with codes)

In summary

- Data instances from many different applications can be represented by vectors or matrices!
- Linear algebra is a very efficient and effective way to perform computation (e.g., discovering patterns) on them!
- There are many other ways to represent data instances!

Data representations (aka features)

Machine learning (ML): detect patterns in data

From the perspective of first-order logic:

○ A coin with weight = 5.65 g and diameter = 23.6 mm \Rightarrow 10 cent ○ A coin with weight * 0.2 + diameter * 0.04 < 2 \Rightarrow 10 cent

Patterns:

- to be detected by ML
- Built upon features

Feature variables:

- Values (facts) are to be <u>extracted</u> from the data
- What feature variables should we use/define?

Data vs. features

- Can we use raw data representation as features?
- If so, why bother further extracting features from the raw data?
 - o simplify the data, remove unrelated information, domain knowledge,

Feature extraction

Feature extraction starts from an initial set of measured data and builds derived values (features) intended to be:

- Informative
- non-redundant
- facilitating the subsequent learning and generalization steps
- leading to better human interpretations

Feature extraction

Bag-of-words (BOW) representation

- BOW for natural language processing and computer vision
- Feature normalization: L1 and L2 normalized

Dataset representation

- Histogram and Parzen window
- Feature correlation
- Feature normalization: z-score, whitening

Dimensionality reduction

Principal component analysis (PCA)

A simplified representation of sentences (documents) for classification or retrieval by counting the occurrences of each unique word (or phrase)

- o ignore the grammar
- o ignore the word order
- keep the word counts (frequencies)
- o lead to a "fixed"-size vector representation

"Baseball" "is" "a" "bat-and-ball"
"game" "played" "between"
"two" "opposing" "teams"
"who" "take" "turns" "batting"
"and" "fielding" "."

A sequence of tokens (and their indices)

Given:

○ A dictionary, vocabulary, or codebook: $f(token) \rightarrow index \in \{1, \dots, D\}$ or N/A

```
○ An all-0 vector: \mathbf{x} = \begin{bmatrix} x[1] \\ \vdots \\ x[D] \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}
```

Input: A sequence of word tokens w[1], w[2], w[M]

```
for m = 1 : M
if f(w[m]) ~= N/A
```

end

x[f(w[m])] += 1

- Out-of-vocabulary
- "Stop" words: too frequent in all sentences/documents and less informative in differentiating them (e.g., "is", "are", "and",)

Word token counts

end

Return: $\boldsymbol{\mathcal{X}}$

Example: BOW for classification

- Consider a document classification:
 - {sports, economics}
- Nearest neighbor classification (NNC)
 - Compute distance to all training documents, each of them is represented by BOW
 - Output the "label" of the nearest document

Baseball is a bat-and-ball game played between two opposing teams who take turns batting and fielding.

Training documents

Example: BOW for classification

Distance

Euclidean (L₂) distance:

$$\|x - x_n\|_2 = \left(\sum_{d=1}^{D} (x[d] - x_n[d])^2\right)^{1/2}$$

○ L₁ distance:

$$\|x - x_n\|_1 = \sum_{d=1}^{D} |x[d] - x_n[d]|$$

○ L_p norm:

$$\|x - x_n\|_p = \left(\sum_{d=1}^D |x[d] - x_n[d]|^p\right)^{1/p}$$

x: 2-dimensional vectors

Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

Example: BOW for classification

Return: *y*

```
Given: a distance metric dis, a training set = \{(x_1, y_1), ..., (x_N, y_N)\}, t = \infty (min distance), y (predicted label)

Input: a test data instance x y \in \{\text{sports, economics}\} for n = 1 : N y \in \{-1, 1\} \text{ or } \{0, 1\} y \in \{1, ..., C\} y = y_n t = \text{dis}(x, x_n) end

end
```

Bag of Words (BOW) for images

BOW can be applied to vision

- Vocabulary: D image patches
- Each image: a bag of patches
- BOW representation: D-dim
 - For each image patch I[m], find the "nearest" patch in the vocabulary and use its index ∈ {1, ..., D} to represent I[m]
 - Count the time that each index shows up in the image

What do we lose?

What the original sequence was

Baseball is a bat-and-ball game played between two opposing teams who take turns batting and fielding.

Pros:

O Simplified, easily-understandable, fixed-size

Cons:

- o missing the sequential information (e.g., "sheep follow wolfs" vs. "wolfs follow sheep")
- not normalized (e.g., comparing long vs. short documents)
- words treated as independent (e.g., no synonyms and antonyms)
- o highly sparse, high dimensional

N-gram vocabulary

Cons 1: Missing the sequential information "sheep" 1-gram One solution: N-gram vocabulary ○ 1-gram (unigram): "sheep", "follow", "wolfs" "follow" 1 o 2-gram (bigram): "sheep-follow", "follow-wolfs" o 3-gram: "sheep-follow-wolfs" "wolfs" 0 ... 2-gram "sheep-follow" \circ Size of the vocabulary: $D + D^2 + D^3$ 1 "follow-wolfs" o "Sheep follow wolfs" becomes: 1

"sheep-follow-wolfs"

3-gram

Dataset-independent normalization

Cons 2: not normalized

Sheep follow wolfs.

"sheep" 1
"follow" 1
"wolfs" 1 ...

Sheep follow wolfs. Sheep follow wolfs.

"sheep"	2
	:
"follow"	2
	•••
"wolfs"	2

Dataset-independent normalization

Cons 2: not normalized

- One solution: feature normalization
- O Vector norm (i.e., length or magnitude):

$$\|x\|_p = \left(\sum_{d=1}^D |x[d]|^p\right)^{1/p}$$

○ L_p normalization:

$$\mathbf{z} = \frac{\mathbf{x}}{\|\mathbf{x}\|_p} = \begin{bmatrix} \frac{x[1]}{\|\mathbf{x}\|_p} \\ \vdots \\ \frac{x[D]}{\|\mathbf{x}\|_p} \end{bmatrix}$$

Properties

- After $\mathbf{L_p}$ normalization, $\|\mathbf{z}\|_p = 1$
- Proof:

$$\left\| \frac{x}{\|x\|_{p}} \right\|_{p} = \left(\sum_{d=1}^{D} \left| \frac{x[d]}{\|x\|_{p}} \right|^{p} \right)^{1/p}$$

$$= \left(\left(\frac{1}{\|x\|_{p}} \right)^{p} \sum_{d=1}^{D} |x[d]|^{p} \right)^{1/p}$$

$$= \frac{1}{\|x\|_{p}} \left(\sum_{d=1}^{D} |x[d]|^{p} \right)^{1/p}$$

$$= 1$$

Dataset-independent normalization

Cons 2: not normalized

- One solution: feature normalization
- L₁ normalization: popular for counts (frequency, probability)

○ L₂ normalization: widely used if the vector angle plays an important role

Cons:

- o missing the sequential information (e.g., "sheep follow wolfs" vs. "wolfs follow sheep")
- not normalized (e.g., comparing long vs. short documents)
- words treated as independent (e.g., no synonyms and antonyms)
- o highly sparse, high dimensional

Summary

- Data and data representation (features)
 - Numerical vs. categorical variables
 - Feature extraction: from raw data to simplified, informative, non-redundant, or more interpretable representations
- Bag-of-words (BoW) representation
 - Fixed-sized representations for sentences and documents (and images)
 - Nearest neighbor classification based on distance metrics