计算机组成原理期末考试试卷(1)

—.	选	择题(下列每题有且仅有一个正确答案,每小题 2 分,共 20 分)
	1.	假设下列字符码中最后一位为校验码,如果数据没有错误,则采用偶校验的字符码的
		是。
		A. 11001011 B. 11010110 C. 11000001 D. 11001001
	2.	在定点二进制运算器中,减法运算一般通过 来实现。
		A. 补码运算的二进制加法器 B. 补码运算的二进制减法器
		C. 补码运算的十进制加法器 D. 原码运算的二进制减法器
	3.	下列关于虚拟存储器的说法,正确的是。
		A. 提高了主存储器的存取速度
		B. 扩大了主存储器的存储空间,并能进行自动管理和调度
		C. 提高了外存储器的存取速度
		D. 程序执行时, 利用硬件完成地址映射
	4.	下列说法正确的是。
		A. 存储周期就是存储器读出或写入的时间
		B. 双端口存储器采用了两套相互独立的读写电路,实现并行存取
		C. 双端口存储器在左右端口地址码不同时会发生读/写冲突
		D. 在 cache 中,任意主存块均可映射到 cache 中任意一行,该方法称为直接映射方式
	5.	单地址指令中,为了完成两个数的算术运算,除地址码指明的一个操作数外,另一个
		操作数一般采用寻址方式。
		A. 堆栈 B. 立即 C. 隐含 D. 间接
	6.	指令系统中采用不同寻址方式的目的主要是。
		A. 实现存储程序和程序控制 B. 提供扩展操作码的可能并降低指令译码难度
		C. 可以直接访问外存 D. 缩短指令长度,扩大寻址空间,提高编程灵活性
	7.	下列说法中,不符合 RISC 指令系统特点的是。
		A. 指令长度固定,指令种类少
		B. 寻址方式种类尽量少,指令功能尽可能强
		C. 增加寄存器的数目,以尽量减少访存的次数

D. 选取使用频率最高的一些简单指令,以及很有用但不复杂的指令

8.	指令周期是指。
	A. CPU 从主存取出一条指令的时间 B. CPU 执行一条指令的时间
	C. CPU 从主存取出一条指令加上执行这条指令的时间 D . 时钟周期时间
9.	假设微操作控制信号用 C_n 表示,指令操作码译码输出用 I_m 表示,节拍电位信号用
	M_k 表示,节拍脉冲信号用 T_i 表示,状态反馈信息用 B_i 表示,则硬布线控制器的控制
	信号 C_n 可描述为。
	A. $C_n = f(I_m, T_i)$ B. $C_n = f(I_m, B_i)$
	C. $C_n = f(M_k, T_i, B_i)$ D. $C_n = f(I_m, M_k, T_i, B_i)$
10	. 下列关于 PCI 总线的描述中,正确的是。
	A. PCI 总线的基本传输机制是猝发式传送
	B. 以桥连接实现的 PCI 总线结构不允许多条总线并行工作
	C. PCI 设备一定是主设备
	D. 系统中允许只有一条 PCI 总线
二. 填	真空题(下列每空 2 分,共 32 分)
1.	IEEE754 标准的 32 位规格化浮点数,所能表达的最大正数为。
2.	对存储器的要求是容量大,速度快,成本低。为了解决这方面的矛盾,计算机
	采用多级存储体系结构。
3.	DRAM 存储器之所以需要刷新是因为。
4.	有静态 RAM 与动态 RAM 可供选择,在构成大容量主存时,一般就选择_动态
	RAM。
5.	在集中式总线仲裁中,方式响应最快,方式对电路故障最敏感。
6.	某 CRT 的分辨率为1024×1024, 灰度级为 256, 帧频为 75Hz, 则刷存总带宽应为
	$\underline{\hspace{1cm}}$ MB/s。
7.	Pentium 系统有两类中断源:由 CPU 外部的硬件信号引发的称为中断,它又可分为
	和,由指令执行引发的称为,其中一种是执行异
	常,另一种是。

8.	中断接口电路中的 EI 触发器的作用是_	,RD 触	!发器的作用
	是, DMA 控制器中的内存	地址计数器的作用是	0
9.	字节多路通道可允许每个设备进行	型操作,数据传送单位是	0

三. 简答题(共24分)

1. (8分) 设浮点数的阶码为 4位 (补码表示,含阶符),尾数为 6位 (补码表示,含尾符),x,y中的指数、小数项均为二进制真值。

$$x = 2^{01} \times 0.1101$$
, $y = 2^{11} \times (-0.1010)$, $\Re x + y$.

- 2. (8分)某机器字长 16位,主存容量为 64K字,共 64条指令,试设计单地址单字长指令格式,要求操作数有立即数、直接、变址和相对寻址 4 种方式,并写出寻址模式定义和在每种寻址方式下的有效地址计算公式。
- 3. (8分)一盘组共11片,每片双面记录,最上最下两个面不用。内外磁道直径分别为10、14英寸,道密度为100道/英寸,数据传输率为983040字节/秒,磁盘组的转速为3600转/分。设每个记录块记录1024字节,现某计算机系统挂接16台这样的磁盘,试设计适当的磁盘寻址格式,并计算该系统总存储容量。

四. 分析与设计题(从下列3题中选做2题,共24分)

- 1. (12 分)假设存储器的容量为 32 字,字长 64 位,现已用若干存储芯片构成 4 个模块 M_0-M_3 ,每个模块 8 个字。
 - 1) 试分别用顺序方式和交叉方式构造存储器,要求画图并说明。
 - 2) 设起始地址为00000,那么在交叉方式中,第26号字存储单元的地址是多少?
 - 3) 若存储周期为 200ns,数据总线宽度为 64 位,总线传送周期为 50ns,求交叉存储器方式中,存储器的带宽是多少?
- 2. (12分)流水线中有三类数据相关冲突:写后读(RAW)、读后写(WAR)和写后写(WAW)相关,某CPU具有五段流水线IF(取指令)、ID(指令译码和取寄存器操作数)、EXE(ALU执行)、MEM(访存)和WB(结果写回寄存器),现有按以下次序流入流水线的指令组:

$$I_1$$
 SUB R_2, R_1, R_3 ; $R_2 \leftarrow R_1 - R_3$
 I_2 AND R_5, R_2, R_4 ; $R_5 \leftarrow R_2$ and R_4

$$\begin{array}{lll} I_3 & OR & R_7, R_6, R_2 & ; & R_7 \leftarrow R_6 \ or \ R_2 \\ \\ I_4 & ADD & R_7, R_2, R_2 & ; & R_7 \leftarrow R_2 + R_2 \end{array}$$

- 1) 判断存在哪种类型的数据相关。
- 2) 假定采用将相关指令延迟到所需操作数被写回寄存器堆后再进行 ID 的方式来解决上述冲突,那么处理器执行这 4 条指令共需要多少个时钟周期?要求用表格方式分析。
- 3. (12 分)某计算机微程序控制器控制存储容量为 256×32 位,共 71 个微操作控制信号,构成了 5 个相斥的微命令组,各组分别含有 4、8、17、20 和 22 个微命令。下图给出了其部分微指令序列的转移情况,方框内的字母表示一条微指令,分支点 a 由指令寄存器的 IR_5 , IR_6 两位决定,修改 μA_5 μA_6 ,分支点 b 由条件码标志 C_0 决定,修改 μA_4 。现采用断定方式实现微程序的顺序控制。
 - 1) 给出采用断定方式的水平型微指令格式。
 - 2) 假设微指令 A 和 F 的后继地址分别为 10000000 和 11000000, 试给出微指令 C、E 和 G 的二进制编码地址。
 - 3) 画出微地址转移逻辑表达式和电路图。

1	2	3	4	5	6	7	8	9	10
D	A	В	В	С	D	В	С	D	A

填空题(每空2分,共20分)

- 1. $[1+(1-2^{-23})]\times 2^{128}$
- 2. 速度快
- 3. 有信息电荷泄漏,需定期补充
- 4. 动态 RAM
- 5. 独立请求方式, 菊花链查询方式
- 6. 75
- 7. 可屏蔽中断, 非屏蔽中断, 异常, 执行软件中断指令
- 8. 是否允许中断源的中断请求被发出,外设准备好时发出就绪信号,存放内存中要交换的数据块的首地址
- 9. 传输, 字节

六. 简答题(每小题5分,共10分)

1. $\Re: x + y = 2^{010} \times (-0.11010)$ x = 0001, 0.11010y = 0011, 1.01100

1) 求阶差对阶

$$\Delta E = [E_x]_{ij} + [-E_y]_{ij} = 0001 + 1101 = 1110 = (-2)_{10} < 0$$
 故 M_x 需右移 2 位变为: 0.00110(10)

2) 尾数用双符号位求和

$$\frac{00.00110(10)}{+11.01100}$$

$$\frac{11.10010(10)}{11.10010(10)}$$

3) 规格化

左规为: 11.00101(0),指数为0010

4) 所以有:

$$x + y = 2^{010} \times (-0.11010)$$

2. 由于有 64 条指令故操作码 0P 字段占 6 位; 寻址模式字段 X 占 2 位; 剩余 8 位留给 D 字段, 故指令格式为:

$15 \sim 10$	9~8	7 ~ 0
OP	Х	D

X=00, 立即数寻址 D=操作数

X=01, 直接寻址 EA=D

X=10, 变址寻址 EA=(R)+D, R为16位变址寄存器

X=11, 相对寻址 EA= (PC) +D, PC 为 16 位程序计数器

3.
$$M = C/r = 983040 \div \frac{3600}{60} = 16384B$$

所以,扇区数= $16384 \div 1024 = 16$

故,表示磁盘地址格式的所有参数为:台数 16,记录面 20,磁道 200,扇区数 16,由此可得磁盘的地址格式为:

磁盘的总存储容量为: $16 \times 20 \times 200 \times 16384B = 1048576000B$

七. 分析与设计题(共35分)

- 1. 解: 1) 图略
 - 2) 第26号存储单元的地址为:

交叉方式: 11010

3) $q = 64bit \times 4 = 256bit$

$$t = T + (m-1)\tau = 200 + 3 \times 50 = 350ns = 3.5 \times 10^{-7} s$$

$$W = q/t = 256/(3.5 \times 10^{-7}) = 7.3 \times 10^{8} bit/s$$

2. 解: 1) I_1 和 I_2 I_3 之间存在 RAW 数据相关

 I_3 和 I_4 之间存在 WAW 数据相关

2) 如下表所示:

时钟 周期	1	2	3	4	5	6	7	8	9	10	11
I_1	IF	ID	EXE	MEM	WB						
I_2		IF				ID	EXE	MEM	WB		

Ī	I_3		IF			ID	EXE	MEM	WB	
Ī	I_4			IF			ID	EXE	MEM	WB

3.

解: 1) 71 个微命令不可能采用直接表示法,故采用字段译码法,控存容量为256,故后继地址为8位,微指令格式为:

$31 \sim 29$	$28 \sim 25$	$24 \sim 20$	$19 \sim 15$	$14 \sim 10$	9~8	7∼0
4 个	8个	17 个	20 个	22 个	2 个条件	后继地址

2) C: 10000010 E: 10000110

G: 11001000

3)
$$\mu A_6 = P_1 \cdot IR_6 \cdot T_4$$

$$\mu A_5 = P_1 \cdot IR_5 \cdot T_4$$

$$\mu A_4 = P_2 \cdot C_0 \cdot T_4$$

