ML to knit

Andreas Methling

30/11/2021

```
library(tidyverse)
library(lubridate)
library(magrittr)
library(FactoMineR)
library(factoextra)
library(uwot)
library(GGally)
library(rsample)
library(ggridges)
library(xgboost)
library(recipes)
library(parsnip)
library(glmnet)
library(tidymodels)
library(skimr)
library(VIM)
library(visdat)
library(ggmap)
library(ranger)
library(vip)
library(SnowballC)
library(tokenizers)
library(formatR)
```

Warning: pakke 'formatR' blev bygget under R version 4.1.2

Data

replace_na(list(Pop = 0, "Hip Hop" = 0, Rock = 0, "Funk Carioca" = 0, "Sertanejo" = 0, Samba = 0)) %

i Use 'spec()' to retrieve the full column specification for this data.

Data Rock or Pop

ungroup() %>%

distinct()

left_join(artists_data, by = c("Artist")) %>%
select(-c(Genre, Genres, Popularity, Songs)) %>%

##

```
data_genre = data_start %>%
  filter(Idiom == "ENGLISH") %>%
  rename("Link" = "ALink") %>%
  inner_join(artists, by = c("Link")) %>%
  distinct() %>%
  mutate(name = paste(Artist, SName))%>%
  rename(text=Lyric) %>%
  filter(Pop==1 | Rock==1) %>%
  select(name, text, Pop, Rock) %>%
  distinct(name, .keep_all = T)

data_pop_rock=data_genre %>%
  mutate(genre = ifelse(Pop==1 & Rock == 1, "pop/rock", ifelse(Rock==1 & Pop==0, "Rock", ifelse(Rock == select(-c(Pop, Rock)))

data_pop_rock_labels= data_pop_rock %>%
  select(name, genre)
```

Data Rock and Pop

```
data = data_start %>%
  filter(Idiom == "ENGLISH") %>%
  rename("Link" = "ALink") %>%
  inner_join(artists, by = c("Link")) %>%
  distinct() %>%
  mutate(name = paste(Artist, SName))%>%
  rename(text=Lyric) %>%
  filter(Rock==1 & Pop==1) %>%
  select(name, text)%>%
  distinct(name, .keep_all = T)
```

Preprocessing / EDA

First we tokenize the data.

```
library(tidytext)
text_genre_tidy = data_pop_rock %>% unnest_tokens(word, text, token = "words")
head(text_genre_tidy)
```

We remove short words and stopwords.

stem

##

<chr> <int>

```
text_genre_tidy %<>%
filter(str_length(word) > 2 ) %>%
group_by(word) %>%
ungroup() %>%
anti_join(stop_words, by = 'word')
```

We use the hunspell package, which seems to produce the best stemming for our data. Reducing a word to its "root" word.

```
library(hunspell)
text_genre_tidy %>%
  mutate(stem = hunspell_stem(word)) %>%
  unnest(stem) %>%
  count(stem, sort = TRUE)
## # A tibble: 21,941 x 2
```

```
## 1 love 138187
## 2 time 70143
## 3 baby 62667
          62082
## 4 feel
## 5 yeah 59708
## 6 gonna 44342
## 7 wanna 42810
## 8 girl 41029
## 9 day
            39207
## 10 heart 39135
## # ... with 21,931 more rows
text_genre_tidy %<>%
 mutate(stem = hunspell_stem(word)) %>%
 unnest(stem) %>%
  select(-word) %>%
 rename(word = stem)
```

We weight the data using tf-idf (Term-frequency Inverse document frequency).

```
# TFIDF weights
text_tf_idf= text_genre_tidy %>%
group_by(name) %>%
  count(word, sort = TRUE) %>%
  ungroup() %>%
  bind_tf_idf(word, name, n) %>%
  arrange(desc(tf_idf))

text_genre_tf_idf = text_tf_idf %>%
  left_join(data_pop_rock_labels)
```

```
## Joining, by = "name"
```

We show the 25 most common words.

```
# TFIDF topwords
text_genre_tidy_rock= text_genre_tf_idf %>%
    filter(genre == "Rock")%>%
count(word, wt = tf_idf, sort = TRUE) %>% #remove
head(25)

text_genre_tidy_rock_pop= text_genre_tf_idf %>%
    filter(genre == "pop/rock")%>%
count(word, wt = tf_idf, sort = TRUE) %>% #remove
head(25)

text_genre_tidy_pop= text_genre_tf_idf %>%
    filter(genre == "Pop")%>%
count(word, wt = tf_idf, sort = TRUE) %>% #remove
head(25)
```

```
labels_words <- text_genre_tf_idf %>%
group_by(genre) %>%
count(word, wt = tf_idf, sort = TRUE, name = "tf_idf") %>%
dplyr::slice(1:20) %>% #slice
ungroup()
```

```
labels_words %>%
mutate(word = reorder_within(word, by = tf_idf, within = genre)) %>% #Pop & Rock
ggplot(aes(x = word, y = tf_idf, fill = genre)) +
geom_col(show.legend = FALSE) +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~genre, ncol = 2, scales = "free") +
coord_flip() +
scale_x_reordered() +
theme(axis.text.y = element_text(size = 6))
```


Machine learning model

Making labels

```
text_tidy = data %>% unnest_tokens(word, text, token = "words")
head(text_tidy)
```

```
## # A tibble: 6 x 2
##
     name
                                   word
##
     <chr>>
                                   <chr>>
## 1 10000 Maniacs More Than This i
## 2 10000 Maniacs More Than This could
## 3 10000 Maniacs More Than This feel
## 4 10000 Maniacs More Than This at
## 5 10000 Maniacs More Than This the
## 6 10000 Maniacs More Than This time
text_tidy %<>%
  filter(str_length(word) > 2 ) %>%
  group_by(word) %>%
  ungroup() %>%
  anti_join(stop_words, by = 'word')
We use stemming
text_tidy %<>%
  mutate(stem = hunspell_stem(word)) %>%
  unnest(stem) %>%
   select(-word) %>%
  rename(word = stem)
```

```
top_10000_words=text_tidy %>%
  count(word,sort = T) %>%
  head(10000) %>%
  select(word)
data_top_10000=top_10000_words %>%
  left_join(text_tidy, by= c("word"))
```

Bing

```
sentiment_bing= data_top_10000 %>%
  inner_join(get_sentiments("bing")) %>%
  mutate(sentiment= ifelse(sentiment == "positive", 1,0))

## Joining, by = "word"

sentiment_bing %<>%
  group_by(name) %>%
  summarise(mean= mean(sentiment))%>%
  mutate(label= ifelse(mean>=0.5, 1,0))
```

Afinn

```
sentiment_afinn= data_top_10000 %>%
  inner_join(get_sentiments("afinn"))

## Joining, by = "word"

sentiment_afinn %<>%
  group_by(name) %>%
  summarise(mean= mean(value))%>%
  mutate(label= ifelse(mean>=0, 1,0))
```

Data

```
data_bing= sentiment_bing %>%
  inner_join(data)%>%
  select(text, label, name)

## Joining, by = "name"

data_afinn= sentiment_afinn %>%
  inner_join(data)%>%
  select(text, label, name)

## Joining, by = "name"
```

We now want to create a multiclass supervised machine learning model to predict the sentiment of a song based on its lyrics.

First we look for missing values.

```
library(visdat)
vis_dat(data_bing)
```


We remove NA's and look at the distribution between the two classes.

```
data_bing %<>%
  drop_na() %>%
  rename(y = label) %>%
  select(-name)
data_bing$y <- as.factor(data_bing$y)
data_bing %>%
  count(y) %>%
  ggplot(aes(x = y, y = n)) +
  geom_col()
```


We can see that negative sentiment is much more represented than positive sentiment, so we have to do some down or upsampling.

We will create three different receipes: one using embedding, one using tf-idf and one using Hash.

So we load the embeddings using the "textdata" package.

```
library(textdata)
glove6b <- embedding_glove6b(dimensions = 100)</pre>
```

We create a training and test dataset using strata=y to get the same ratio between the classes in both the training and test dataset.

```
library(rsample)
set.seed(19)
tidy_split <- initial_split(data_bing, strata = y)
train_data <- training(tidy_split)
test_data <- testing(tidy_split)</pre>
```

We use downsampling only on the training data to better fit the model

```
train_data <- recipe(y~., data = train_data) %>%
  themis::step_downsample(y) %>%
  prep() %>%
  juice()
```

Registered S3 methods overwritten by 'themis':

```
##
     method
                             from
##
     bake.step_downsample
                             recipes
##
     bake.step_upsample
                             recipes
     prep.step_downsample
##
                             recipes
##
     prep.step_upsample
                             recipes
##
     tidy.step_downsample
                             recipes
##
     tidy.step upsample
                             recipes
     tunable.step_downsample recipes
##
##
     tunable.step_upsample
                             recipes
train_data %>%
  count(y)
```

```
## # A tibble: 2 x 2
## y n
## <fct> <int>
## 1 0 936
## 2 1 936
```

And can now see that the classes are evenly distributed.

We create the three recipies we want to use.

```
library(textrecipes)
tf_idf_rec <- recipe(y~., data = train_data) %>%
  step_tokenize(text) %>%
  step_stem(text) %>%
  step_stopwords(text) %>%
  step_tokenfilter(text, max_tokens = 1000) %>%
  step_tfidf(all_predictors())
embeddings_rec <- recipe(y~., data = train_data) %>%
  step_tokenize(text) %>%
  step_stem(text) %>%
  step_stopwords(text) %>%
  step_tokenfilter(text, max_tokens = 1000) %>%
  step_word_embeddings(text, embeddings = embedding_glove6b())
hash_rec <- recipe(y~., data = train_data) %>%
  step_tokenize(text) %>%
  step_stem(text) %>%
  step_stopwords(text) %>%
  step_tokenfilter(text, max_tokens = 1000) %>%
  step_texthash(text, num_terms = 100)
```

Define models Term frequency

We define three models:

We set some of the parameters for tuning.

Logistic model

```
#model_lg <- logistic_reg(mode = 'classification', penalty = tune(), mixture = 0.5) %>%
    #set_engine('glm', family = binomial)
model_lg <- logistic_reg(mode = 'classification') %>%
    set_engine('glm', family = binomial)
```

KNN model

```
model_knn <- nearest_neighbor(neighbors = tune()) %>%
  set_engine("kknn") %>%
  set_mode("classification")
```

Random Forrest

```
model_rf <-
rand_forest(trees = NULL, mtry = NULL, min_n = NULL) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")
```

Decision tree

Workflow

We create workflows for each recipe.

tf_idf

```
workflow_general_tf <- workflow() %>%
  add_recipe(tf_idf_rec)
workflow_lg_tf <- workflow_general_tf %>%
  add_model(model_lg)
workflow_knn_tf <- workflow_general_tf %>%
  add_model(model_knn)
workflow_rf_tf <- workflow_general_tf %>%
  add_model(model_rf)
workflow_dt_tf <- workflow_general_tf %>%
  add_model(model_dt)
```

Embeding

```
workflow_general_emb <- workflow() %>%
  add_recipe(embeddings_rec)
workflow_lg_emb <- workflow_general_emb %>%
  add_model(model_lg)
workflow_knn_emb <- workflow_general_emb %>%
  add_model(model_knn)
workflow_rf_emb <- workflow_general_emb %>%
  add_model(model_rf)
workflow_dt_emb <- workflow_general_emb %>%
  add_model(model_dt)
```

hash

```
workflow_general_hash <- workflow() %>%
  add_recipe(hash_rec)
workflow_lg_hash <- workflow_general_hash %>%
  add_model(model_lg)
workflow_knn_hash <- workflow_general_hash %>%
  add_model(model_knn)
workflow_rf_hash <- workflow_general_hash %>%
  add_model(model_rf)
workflow_dt_hash <- workflow_general_hash %>%
  add_model(model_dt)
```

Hyper tuneing

We use vfold_cv to create resampled data. to perfrom hypertuning and fitting.

Define Grids

We define the grids we want to use for the hypertuning

```
#logistic_grid <- grid_regular(parameters(model_lg), levels = 3)
logistic_grid <- 5
# knn_grid <- grid_regular(parameters(model_knn), levels = 5, filter = c(neighbors > 1))
knn_grid <- 5
dt_grid <- 5
rf_grid <- 5</pre>
```

The level defines the amount of parameters that should be considered.

Define tuning process

We define which measures we want to be able to choose best parameters from.

```
model_control <- control_grid(save_pred = TRUE)
model_metrics <- metric_set(accuracy, sens, spec, mn_log_loss, roc_auc)</pre>
```

Tune Models

We tune the three different models

```
library(text2vec)
```

```
##
## Vedhæfter pakke: 'text2vec'

## Det følgende objekt er maskeret fra 'package:infer':
##
## fit

## Det følgende objekt er maskeret fra 'package:parsnip':
##
## fit
```

```
# Tune hash models
knn_hash_res <- tune_grid(</pre>
  model_knn,
 hash_rec,
 grid = knn_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
#rf_hash_res <- tune_grid(</pre>
  #model_rf,
  #hash_rec,
  #grid = rf_grid,
  #control = model_control,
  #metrics = model_metrics,
  \#resamples = k_folds_data
dt_hash_res <- tune_grid(</pre>
 model_dt,
 hash_rec,
 grid = dt_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
```

```
# Tune embed models
knn_embed_res <- tune_grid(</pre>
  model_knn,
  embeddings_rec,
  grid = knn_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
#rf_embed_res <- tune_grid(</pre>
  #model_rf,
  #embeddings_rec,
  #grid = rf_grid,
  #control = model_control,
  #metrics = model_metrics,
  \#resamples = k_folds_data
dt_embed_res <- tune_grid(</pre>
  model_dt,
  embeddings_rec,
 grid = dt_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
# Tune tf-idf models
knn_tf_res <- tune_grid(</pre>
  model_knn,
 tf_idf_rec,
 grid = knn_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
#rf_tf_res <- tune_grid(</pre>
  #model_rf,
  \#tf\_idf\_rec,
  #qrid = rf_qrid,
  #control = model_control,
  #metrics = model_metrics,
  \#resamples = k_folds_data
dt_tf_res <- tune_grid(</pre>
  model_dt,
 tf_idf_rec,
 grid = dt_grid,
 control = model_control,
 metrics = model_metrics,
 resamples = k_folds_data
```

Best parameters

We look at the different optimizations and choose the best parameters.

```
knn_hash_res %>%
  autoplot()
```


 knn_embed_res

```
best_param_knn_hash_res <- knn_hash_res %>% select_best(metric = 'accuracy')
best_param_knn_hash_res
```

```
## # A tibble: 1 x 2
## neighbors .config
## <int> <chr>
## 1 10 Preprocessor1_Model4
```

```
dt_hash_res %>%
  autoplot()
```


decision tree hash

```
knn_embed_res %>%
autoplot()
```


knn_embed_res

```
best_param_knn_embed_res <- knn_embed_res %>% select_best(metric = 'accuracy')
best_param_knn_embed_res
```

```
## # A tibble: 1 x 2
## neighbors .config
## <int> <chr>
## 1 15 Preprocessor1_Model5
```

```
dt_embed_res %>%
  autoplot()
```


dt_embed_res

```
best_param_dt_embed_res <- dt_embed_res %>% select_best(metric = 'accuracy')
best_param_dt_embed_res
```

```
## # A tibble: 1 x 4
## cost_complexity tree_depth min_n .config
## <dbl> <int> <int> <chr>
## 1 0.0000000589 3 13 Preprocessor1_Model4
```

```
knn_tf_res %>%
  autoplot()
```


knn_tf_res

```
best_param_knn_tf_res <- knn_tf_res %>% select_best(metric = 'accuracy')
best_param_knn_tf_res
```

```
## # A tibble: 1 x 2
## neighbors .config
## <int> <chr>
```

```
dt_tf_res %>%
   autoplot()
```


dt_tf_res

Finalize workflows

We now fit the best parameters into the workflow of the two models that needed hypertuning.

Hash

```
workflow_final_knn_hash <- workflow_knn_hash %>%
  finalize_workflow(parameters = best_param_knn_hash_res)
#workflow_final_rf_hash <- workflow_rf_hash %>%
  # finalize_workflow(parameters = best_param_rf_hash_res)
workflow_final_dt_hash <- workflow_dt_hash %>%
  finalize_workflow(parameters = best_param_dt_hash_res)
```

Tf-idf

```
workflow_final_knn_tf <- workflow_knn_tf %>%
  finalize_workflow(parameters = best_param_knn_tf_res)
#workflow_final_rf_tf <- workflow_rf_tf %>%
# finalize_workflow(parameters = best_param_rf_tf_res)
workflow_final_dt_tf <- workflow_dt_tf %>%
  finalize_workflow(parameters = best_param_dt_tf_res)
```

Embedings

```
workflow_final_knn_emb <- workflow_knn_emb %>%
  finalize_workflow(parameters = best_param_knn_embed_res)
#workflow_final_rf_emb <- workflow_rf_emb %>%
# finalize_workflow(parameters = best_param_rf_embed_res)
workflow_final_dt_emb <- workflow_dt_emb %>%
  finalize_workflow(parameters = best_param_dt_embed_res)
```

Evaluate models

here we us the resampled data to evaluate the models.

Logistic regression

```
log_res_hash <-
workflow_lg_hash %>%
fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
        recall, precision, f_meas,
        accuracy, kap,
        roc_auc, sens, spec),
    control = control_resamples(
        save_pred = TRUE)
)
```

hash

```
## ! Fold1, Repeat1: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
## ! Fold2, Repeat1: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
## ! Fold1, Repeat2: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
## ! Fold2, Repeat2: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
```

```
## ! Fold2, Repeat3: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
## ! Fold3, Repeat3: preprocessor 1/1, model 1/1: glm.fit: fitted probabilities numerically 0...
log_res_hash %>% collect_metrics(summarize = TRUE)
## # A tibble: 8 x 6
##
             .estimator mean
    .metric
                                   n std_err .config
    <chr>
              <chr>
                         <dbl> <int>
                                       <dbl> <chr>
## 1 accuracy binary
                         0.661
                                   9 0.0103 Preprocessor1_Model1
## 2 f meas
              binary
                         0.670
                                   9 0.0106 Preprocessor1 Model1
## 3 kap
                         0.322
                                   9 0.0205 Preprocessor1_Model1
              binary
## 4 precision binary
                         0.652
                                   9 0.00919 Preprocessor1_Model1
## 5 recall
                         0.689
                                   9 0.0131 Preprocessor1_Model1
              binary
## 6 roc_auc
              binary
                         0.719
                                   9 0.0107 Preprocessor1_Model1
## 7 sens
                         0.689
                                   9 0.0131 Preprocessor1_Model1
              binary
## 8 spec
                                   9 0.00988 Preprocessor1_Model1
              binary
                         0.632
```

```
log_res_tf <-
workflow_lg_tf %>%
fit_resamples(
   resamples = k_folds_data,
   metrics = metric_set(
    recall, precision, f_meas,
    accuracy, kap,
   roc_auc, sens, spec),
   control = control_resamples(
    save_pred = TRUE)
)
```

Tf_idf

```
## ! Fold1, Repeat1: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold1, Repeat1: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold2, Repeat1: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold2, Repeat1: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold3, Repeat1: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold3, Repeat1: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold1, Repeat2: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold1, Repeat2: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
```

```
## ! Fold2, Repeat2: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold2, Repeat2: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold3, Repeat2: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold3, Repeat2: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold1, Repeat3: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold1, Repeat3: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold2, Repeat3: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold2, Repeat3: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
## ! Fold3, Repeat3: preprocessor 1/1, model 1/1: glm.fit: algorithm did not converge, glm.fi...
## ! Fold3, Repeat3: preprocessor 1/1, model 1/1 (predictions): prediction from a rank-defici...
log_res_tf %>% collect_metrics(summarize = TRUE)
## # A tibble: 8 x 6
##
     .metric .estimator mean
                                   n std_err .config
     <chr>
              <chr> <dbl> <int>
                                        <dbl> <chr>
## 1 accuracy binary
                         0.616
                                   9 0.00435 Preprocessor1_Model1
## 2 f meas
              binary
                         0.617
                                   9 0.00405 Preprocessor1 Model1
                                   9 0.00870 Preprocessor1_Model1
## 3 kap
              binary
                         0.233
## 4 precision binary
                         0.617
                                   9 0.00496 Preprocessor1_Model1
## 5 recall
                         0.617
                                   9 0.00585 Preprocessor1_Model1
              binary
              binary
## 6 roc auc
                         0.640
                                   9 0.00591 Preprocessor1 Model1
## 7 sens
                                   9 0.00585 Preprocessor1_Model1
              binary
                         0.617
## 8 spec
              binary
                          0.616
                                   9 0.00849 Preprocessor1_Model1
log_res_emb <-</pre>
  workflow_lg_emb %>%
  fit_resamples(
   resamples = k_folds_data,
   metrics = metric_set(
     recall, precision, f_meas,
     accuracy, kap,
     roc_auc, sens, spec),
    control = control_resamples(
     save_pred = TRUE)
```

Embeding

log_res_emb %>% collect_metrics(summarize = TRUE)

KNN model

```
knn_res_hash <-
  workflow_final_knn_hash %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
      recall, precision, f_meas,
      accuracy, kap,
      roc_auc, sens, spec),
    control = control_resamples(
      save_pred = TRUE)
    )
knn_res_hash %>% collect_metrics(summarize = TRUE)
```

Hash

```
knn_res_tf <-
workflow_final_knn_tf %>%
fit_resamples(
   resamples = k_folds_data,
   metrics = metric_set(
    recall, precision, f_meas,
   accuracy, kap,
```

```
roc_auc, sens, spec),
control = control_resamples(
    save_pred = TRUE)
)
knn_res_tf %>% collect_metrics(summarize = TRUE)
```

TF-idf

```
## # A tibble: 8 x 6
## .metric .estimator mean
                                     n std_err .config
     <chr>
               <chr> <dbl> <int> <dbl> <chr>
## 1 accuracy binary 0.555
## 2 f_meas binary 0.441
                                 9 0.00589 Preprocessor1_Model1
                                     9 0.0240 Preprocessor1_Model1
## 3 kap
               binary 0.110
                                     9 0.0118 Preprocessor1_Model1
## 4 precision binary     0.595     9 0.0115 Preprocessor1_Model1
## 5 recall binary     0.361     9 0.0326 Preprocessor1_Model1
## 5 recall binary 0.361
## 6 roc_auc binary
                          0.588 9 0.00680 Preprocessor1_Model1
## 7 sens
              binary
                          0.361
                                     9 0.0326 Preprocessor1_Model1
                          0.749
## 8 spec
               binary
                                     9 0.0299 Preprocessor1_Model1
```

```
knn_res_emb <-
workflow_final_knn_emb %>%
fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
        recall, precision, f_meas,
        accuracy, kap,
        roc_auc, sens, spec),
    control = control_resamples(
        save_pred = TRUE)
    )
knn_res_emb %>% collect_metrics(summarize = TRUE)
```

Embedings

```
## # A tibble: 8 x 6
##
    .metric .estimator mean
                                n std_err .config
    <chr>
             <chr> <dbl> <int> <dbl> <chr>
## 1 accuracy binary
                       0.584 9 0.00882 Preprocessor1_Model1
             binary 0.595
## 2 f_meas
                                9 0.00591 Preprocessor1_Model1
                    0.169 9 0.0176 Preprocessor1_Model1
## 3 kap
             binary
                             9 0.00931 Preprocessor1_Model1
## 4 precision binary
                       0.581
                      0.610 9 0.00478 Preprocessor1_Model1
## 5 recall binary
## 6 roc_auc binary
                       0.617
                                9 0.00704 Preprocessor1_Model1
## 7 sens
                                9 0.00478 Preprocessor1_Model1
             binary
                       0.610
                       0.558
## 8 spec
             binary
                                9 0.0170 Preprocessor1_Model1
```

Random forest model

```
rf_res_hash <-
  workflow_rf_hash %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
      recall, precision, f_meas,
      accuracy, kap,
      roc_auc, sens, spec),
    control = control_resamples(
      save_pred = TRUE)
    )
rf_res_hash %>% collect_metrics(summarize = TRUE)
```

hash

```
## # A tibble: 8 x 6
##
    .metric .estimator mean
                               n std_err .config
    <chr>
             <chr> <dbl> <int> <dbl> <chr>
## 1 accuracy binary
                      0.687
                             9 0.00660 Preprocessor1_Model1
            binary
## 2 f meas
                      0.706
                               9 0.00742 Preprocessor1 Model1
## 3 kap
             binary 0.374 9 0.0132 Preprocessor1_Model1
## 4 precision binary 0.666 9 0.00513 Preprocessor1_Model1
                    0.751
                            9 0.0124 Preprocessor1_Model1
## 5 recall
             binary
                            9 0.00913 Preprocessor1_Model1
## 6 roc_auc binary
                      0.758
## 7 sens
                     0.751 9 0.0124 Preprocessor1 Model1
            binary
## 8 spec
                      0.623
                               9 0.00733 Preprocessor1_Model1
            binary
```

```
rf_res_tf <-
  workflow_rf_tf %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
      recall, precision, f_meas,
      accuracy, kap,
      roc_auc, sens, spec),
    control = control_resamples(
      save_pred = TRUE)
    )
rf_res_tf %>% collect_metrics(summarize = TRUE)
```

TF-idf

```
## 4 precision binary 0.715 9 0.00595 Preprocessor1_Model1
## 5 recall binary 0.775 9 0.0105 Preprocessor1_Model1
## 6 roc_auc binary 0.818 9 0.00599 Preprocessor1_Model1
## 7 sens binary 0.775 9 0.0105 Preprocessor1_Model1
## 8 spec binary 0.691 9 0.00692 Preprocessor1_Model1
```

```
rf_res_emb <-
  workflow_rf_emb %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
    recall, precision, f_meas,
    accuracy, kap,
    roc_auc, sens, spec),
    control = control_resamples(
        save_pred = TRUE)
    )
rf_res_emb %>% collect_metrics(summarize = TRUE)
```

Embedings

Decision tree

```
dt_res_hash <-
  workflow_final_dt_hash %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
    recall, precision, f_meas,
    accuracy, kap,
    roc_auc, sens, spec),
    control = control_resamples(
        save_pred = TRUE)
    )
dt_res_hash %>% collect_metrics(summarize = TRUE)
```

hash

```
dt_res_tf <-
  workflow_final_dt_tf %>%
  fit_resamples(
    resamples = k_folds_data,
    metrics = metric_set(
    recall, precision, f_meas,
    accuracy, kap,
    roc_auc, sens, spec),
    control = control_resamples(
        save_pred = TRUE)
    )
dt_res_tf %>% collect_metrics(summarize = TRUE)
```

Tf_idf

```
## # A tibble: 8 x 6
                                        n std_err .config
     .metric .estimator mean
     <chr>
                <chr> <dbl> <int>
                                             <dbl> <chr>
## 1 accuracy binary 0.630
## 2 f_meas binary 0.700
                                        9 0.00400 Preprocessor1_Model1
                                        9 0.00431 Preprocessor1_Model1
## 3 kap
                binary 0.260
                                        9 0.00799 Preprocessor1_Model1
## 4 precision binary 0.589
                                        9 0.00416 Preprocessor1_Model1
                binary 0.867 9 0.0166 Preprocessor1_Model1
binary 0.634 9 0.00530 Preprocessor1_Model1
binary 0.867 9 0.0166 Preprocessor1_Model1
                binary
## 5 recall
## 6 roc_auc binary
## 7 sens
## 8 spec
                binary
                            0.393
                                        9 0.0191 Preprocessor1_Model1
```

```
dt_res_emb <-
workflow_final_dt_emb %>%
fit_resamples(
   resamples = k_folds_data,
   metrics = metric_set(
   recall, precision, f_meas,
   accuracy, kap,
```

```
roc_auc, sens, spec),
control = control_resamples(
    save_pred = TRUE)
)
dt_res_emb %>% collect_metrics(summarize = TRUE)
```

Embeding

```
## # A tibble: 8 x 6
##
    .metric .estimator mean
                                 n std_err .config
##
             <chr>
                        <dbl> <int>
                                     <dbl> <chr>
    <chr>>
## 1 accuracy binary
                        0.604 9 0.00355 Preprocessor1_Model1
## 2 f_meas
             binary
                       0.612
                                 9 0.0181 Preprocessor1_Model1
## 3 kap
             binary
                       0.207
                                 9 0.00711 Preprocessor1_Model1
## 4 precision binary
                       0.600
                                 9 0.00659 Preprocessor1_Model1
                       0.640 9 0.0407 Preprocessor1 Model1
## 5 recall
             binary
## 6 roc auc binary
                       0.620
                                 9 0.00714 Preprocessor1 Model1
## 7 sens
             binary
                        0.640
                                 9 0.0407 Preprocessor1_Model1
## 8 spec
             binary
                        0.567
                                 9 0.0357 Preprocessor1_Model1
```

Compare performance

We get a summary for the performed models. We add the model name to each metric to keep the models appart from each other later on.

```
log_metrics_tf <-</pre>
  log_res_tf %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "Logistic Regression TF-idf")
log_metrics_emb <-</pre>
  log_res_emb %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "Logistic Regression Embeding")
log_metrics_hash <-</pre>
  log_res_hash %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "Logistic Regression Hash")
rf_metrics_tf <-
  rf_res_tf %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "Random Forest TF-idf")
rf_metrics_emb <-
  rf_res_emb %>%
  collect metrics(summarise = TRUE) %>%
  mutate(model = "Random Forest Embeding")
rf_metrics_hash <-
  rf res hash %>%
  collect metrics(summarise = TRUE) %>%
  mutate(model = "Random Forest Hash")
knn_metrics_tf <-
  knn_res_tf %>%
  collect_metrics(summarise = TRUE) %>%
```

```
mutate(model = "Knn TF-idf")
knn_metrics_emb <-
  knn_res_emb %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "Knn Embeding")
knn_metrics_hash <-
  knn_res_hash %>%
  collect metrics(summarise = TRUE) %>%
  mutate(model = "Knn Hash")
dt_metrics_tf <-</pre>
  dt_res_tf %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "DT TF-idf")
dt_metrics_emb <-
  dt_res_emb %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "DT Embeding")
dt_metrics_hash <-</pre>
  dt_res_hash %>%
  collect_metrics(summarise = TRUE) %>%
  mutate(model = "DT Hash")
model_compare <- bind_rows(</pre>
                           log_metrics_tf,
                           log_metrics_emb,
                           log_metrics_hash,
                           rf_metrics_tf,
                           rf_metrics_emb,
                           rf_metrics_hash,
                           knn_metrics_tf,
                           knn_metrics_emb,
                           knn_metrics_hash,
                           dt_metrics_tf,
                           dt_metrics_emb,
                           dt_metrics_hash
                            )
model_comp <-
  model_compare %>%
  select(model, .metric, mean, std_err) %>%
  pivot_wider(names_from = .metric, values_from = c(mean, std_err))
library(RColorBrewer)
nb.cols <- 12
mycolors <- colorRampPalette(brewer.pal(8, "Set2"))(nb.cols)</pre>
model comp %>%
  arrange(mean_f_meas) %>%
  mutate(model = fct_reorder(model, mean_f_meas)) %>%
  ggplot(aes(model, mean_f_meas, fill=model)) +
  geom_col() +
  coord_flip() +
  scale_fill_manual(values = mycolors) +
  #scale_fill_brewer(palette = "Blues") +
  geom_text(
```

size = 3,

```
aes(label = round(mean_f_meas, 2), y = mean_f_meas + 0.08),
    vjust = 1
)
```



```
model_comp %>%
  arrange(mean_roc_auc) %>%
  mutate(model = fct_reorder(model, mean_roc_auc)) %>%
  ggplot(aes(model, mean_roc_auc, fill=model)) +
  geom_col() +
  coord_flip() +
  scale_fill_manual(values = mycolors) +
  #scale_fill_brewer(palette = "Blues") +
    geom_text(
    size = 3,
    aes(label = round(mean_roc_auc, 2), y = mean_roc_auc + 0.08),
    vjust = 1
)
```


Choose model

The best model seems to be Random Forest using TF-idf we also look at the second best model which is random forest using hash.

So we only continue with the two best ones.

Random forest model with TF IDF

Performance metrics Show average performance over all folds:

```
rf_res_tf %>% collect_metrics(summarize = TRUE)
```

```
## # A tibble: 8 x 6
##
     .metric
               .estimator mean
                                    n std_err .config
##
     <chr>>
               <chr>
                          <dbl> <int>
                                        <dbl> <chr>
## 1 accuracy binary
                          0.733
                                    9 0.00700 Preprocessor1_Model1
## 2 f_meas
               binary
                          0.744
                                    9 0.00740 Preprocessor1_Model1
## 3 kap
               binary
                          0.467
                                    9 0.0140 Preprocessor1_Model1
## 4 precision binary
                          0.715
                                    9 0.00595 Preprocessor1_Model1
                                    9 0.0105 Preprocessor1_Model1
## 5 recall
               binary
                          0.775
## 6 roc auc
               binary
                          0.818
                                    9 0.00599 Preprocessor1 Model1
                                    9 0.0105 Preprocessor1_Model1
## 7 sens
               binary
                          0.775
## 8 spec
                          0.691
                                    9 0.00692 Preprocessor1_Model1
               binary
```

Collect model predictions To obtain the actual model predictions, we use the function collect_predictions and save the result as rf_pred_tf:

```
rf_pred_tf <-
    rf_res_tf %>%
    collect_predictions()
```

Confusion Matrix We can now use our collected predictions to make a confusion matrix

We can see the model does okay predicting the correct classes.

ROC curve We will now create the ROC curve with 1 - specificity on the x-axis (false positive fraction = FP/(FP+TN)) and sensitivity on the y axis (true positive fraction = TP/(TP+FN)).

```
rf_pred_tf %>%
  roc_curve(y,.pred_0) %>%
  autoplot()
```


Random forest model hash

Collect model predictions To obtain the actual model predictions, we use the function collect_predictions and save the result as rf_pred_hash:

```
rf_pred_hash <-
    rf_res_hash %>%
    collect_predictions()
```

Performance metrics Show average performance over all folds (note that we use rf_res):

```
rf_res_hash %>% collect_metrics(summarize = TRUE)
```

```
## # A tibble: 8 x 6
##
    .metric
              .estimator mean
                                   n std_err .config
##
    <chr>
              <chr>
                         <dbl> <int>
                                       <dbl> <chr>
## 1 accuracy binary
                                   9 0.00660 Preprocessor1_Model1
                         0.687
## 2 f_meas
              binary
                         0.706
                                   9 0.00742 Preprocessor1_Model1
## 3 kap
                                   9 0.0132 Preprocessor1_Model1
              binary
                         0.374
```

```
9 0.00513 Preprocessor1_Model1
## 4 precision binary
                          0.666
## 5 recall
               binary
                          0.751
                                    9 0.0124 Preprocessor1_Model1
## 6 roc_auc
               binary
                                    9 0.00913 Preprocessor1_Model1
                          0.758
## 7 sens
                          0.751
                                    9 0.0124 Preprocessor1_Model1
               binary
## 8 spec
               binary
                          0.623
                                    9 0.00733 Preprocessor1_Model1
```

Confusion Matrix We can now use our collected predictions to make a confusion matrix

ROC curve We will now create the ROC curve with 1 - specificity on the x-axis (false positive fraction = FP/(FP+TN)) and sensitivity on the y axis (true positive fraction = TP/(TP+FN)).

```
rf_pred_hash %>%
  roc_curve(y, .pred_0) %>%
  autoplot()
```


Models on test data

We now want to look at how the two models perform on test data.

Random forest model TF IDF

```
last_fit_rf %>%
collect_metrics()
```

A tibble: 8 x 4

```
##
     .metric
               .estimator .estimate .config
     <chr>
##
               <chr>
                              <dbl> <chr>
## 1 recall
               binary
                              0.954 Preprocessor1_Model1
## 2 precision binary
                              0.720 Preprocessor1_Model1
## 3 f_meas
               binary
                              0.821 Preprocessor1_Model1
## 4 accuracy binary
                              0.740 Preprocessor1_Model1
## 5 kap
               binary
                              0.381 Preprocessor1_Model1
## 6 sens
                              0.954 Preprocessor1_Model1
               binary
## 7 spec
               binary
                              0.387 Preprocessor1_Model1
                              0.831 Preprocessor1_Model1
## 8 roc_auc
               binary
```

We can again make a confusion matrix on the test data predictions

```
last_fit_rf %>%
  collect_predictions() %>%
  conf_mat(y, .pred_class) %>%
  autoplot(type = "heatmap")
```



```
last_fit_rf %>%
  collect_predictions() %>%
  roc_curve(y, .pred_0) %>%
  autoplot()
```


Random forest hash

```
last_fit_rf_hash %>%
collect_metrics()
```

```
## # A tibble: 8 x 4
##
     .metric
              .estimator .estimate .config
##
     <chr>
               <chr>
                              <dbl> <chr>
## 1 recall
               binary
                              0.942 Preprocessor1_Model1
## 2 precision binary
                              0.714 Preprocessor1_Model1
                              0.813 Preprocessor1_Model1
## 3 f_meas
               binary
                              0.729 Preprocessor1_Model1
## 4 accuracy
               binary
                              0.356 Preprocessor1_Model1
## 5 kap
               binary
## 6 sens
                              0.942 Preprocessor1_Model1
               binary
## 7 spec
               binary
                              0.377 Preprocessor1_Model1
                              0.768 Preprocessor1_Model1
## 8 roc_auc
               binary
```

```
last_fit_rf_hash %>%
  collect_predictions() %>%
  conf_mat(y, .pred_class) %>%
  autoplot(type = "heatmap")
```


last_fit_rf_hash %>%
 collect_predictions() %>%
 roc_curve(y, .pred_0) %>%
 autoplot()

