

Simplex Method

1

Y Aditya and G V V Sharma*

Abstract—This manual explains the Simplex Method for solving Linear Programming problems through examples.

1 Iterations and Pivoting

Problem 1.1. Maximize

$$f = 6x_1 + 5x_2 \tag{1.1}$$

with constraints

$$x_1 + x_2 \le 5$$

 $3x_1 + 2x_2 \le 12$
where $x_1, x_2 \ge 0$

Solution: Introduce two dummy variables x_3 , x_4 to convert inequalities to equations

$$x_1 + x_2 + x_3 = 5$$

$$3x_1 + 2x_2 + x_4 = 12$$
 (1.2)

where $x_3, x_4 \ge 0$

1. From (1.2), we obtain

$$x_3 = 5 - x_1 - x_2 \tag{1.3}$$

$$x_4 = 12 - 3x_1 - 2x_2 \tag{1.4}$$

Setting $x_2 = 0$ in (1.4),

$$x_3 > 0 \Rightarrow 5 - x_1 > 0 \Rightarrow x_1 < 5$$

$$x_4 > 0 \Rightarrow 12 - 3x_1 > 0 \Rightarrow x_1 < 4$$
 (1.5)

and

$$f_1 = 6x_1 + 5x_2 \tag{1.6}$$

2. (Pivoting): (1.4) results in a lower bound for x_1 .

Rearranging (1.4),

$$x_{1} = 4 - \frac{2}{3}x_{2} - \frac{1}{3}x_{4}$$

$$x_{3} = 5 - x_{1} - x_{2}$$

$$= 5 - \left(4 - \frac{2}{3}x_{2} - \frac{1}{3}x_{4}\right) - x_{2}$$

$$= 1 - \frac{1}{3}x_{2} + \frac{1}{3}x_{4}$$
(1.8)

and substituting $x_4 = 0$ results in

$$x_1 > 0 \implies x_2 < 6 \tag{1.9}$$

$$x_3 > 0 \implies x_2 < 3$$
 (1.10)

and

$$f_2 = 6\left(4 - \frac{2}{3}x_2 - \frac{1}{3}x_4\right) + 5x_2 \tag{1.11}$$

$$= 24 + x_2 - 2x_4 \tag{1.12}$$

3. The lower bound $x_2 < 3$ results from (1.8). Choosing (1.8) for pivoting for x_2 and rearranging,

$$x_2 = 1 + x_4 - 3x_3, (1.13)$$

$$x_1 = 4 - \frac{2}{3}(1 + x_4 - 3x_3) - \frac{1}{3}x_4$$
 (1.14)

$$=\frac{10}{3}-x_4+2x_3\tag{1.15}$$

and

$$f_3 = 24 + x_2 - 2x_4 \tag{1.16}$$

$$= 24 + (1 + x_4 - 3x_3) - 2x_4 \tag{1.17}$$

$$= 25 - x_4 - 3x_3 \tag{1.18}$$

Since $x_3, x_4 \ge 0$, the maximum value of $f_3 = 25$ and this is the desired answer. The iteration ends when the coefficients of the variables in f_i , where i is the ith iteration are all negative.

5) Complete iteration three, pivoting x_2 , and find the maximum value of the expression. Solve

^{*} The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

for corresponding x_1 and x_2

Problem 1.2. Maximise $5x_1 + 3x_2$ w.r.t the constraints

$$x_1 + x_2 \le 2$$

 $5x_1 + 2x_2 \le 10$
 $3x_1 + 8x_2 \le 12$
where $x_1, x_2 \ge 0$

2 Tabular Method

Problem 2.1. Maximize

$$f = 6x_1 + 8x_2 \tag{2.1}$$

with constraints:

$$x_1 + x_2 \le 10 \tag{2.2}$$

$$2x_1 + 3x_2 \le 25 \tag{2.3}$$

$$x_1 + 5x_2 \le 35 \tag{2.4}$$

Solution: Introducing dummy variables x_3, x_4, x_5

$$x_1 + x_2 + x_3 = 10 (2.5)$$

$$2x_1 + 3x_2 + x_4 = 25 \tag{2.6}$$

$$x_1 + 5x_2 + x_5 = 35 \tag{2.7}$$

The objective function in (2.1) becomes

$$f = 6x_1 + 8x_2 + 0x_3 + 0x_4 + 0x_5 \tag{2.8}$$

1. Set up a table as below. Note that the numbers in

TABLE 2.1.1

the first row are the coefficients of x_1, x_2 in (2.1).

2. Define, c_i = coefficient of x_i in (2.8), where j =

1, 2, 3, 4, 5.

$$z_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \tag{2.9}$$

$$z_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \tag{2.10}$$

:

$$z_{RHS} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} . \begin{pmatrix} 10 \\ 25 \\ 35 \end{pmatrix} \tag{2.11}$$

where the scalar products of the column vectors are being computed.

		6	8	0	0	0	
		x_1	x_2	x_3	x_4	χ_5	RHS
0	<i>x</i> ₃	1	1	1	0	0	10
0	x_3 x_4	2		0		0	25 35
0	x_5	1	5	0	0	1	35
	$c_j - z_j$	6	8↑	0	0	0	$z_{RHS} = 0$

TABLE 2.1.2

3. For j = 2, $c_j - z_j = 8 - 0 = 8$ which is the largest among all j. So x_2 is going to enter into next iteration. Which variable is going to leave? Make a new column θ as in Table 2.1.3 where

$$\theta = \frac{\text{RHS value}}{\text{corresponding values in column of } x_2}$$
(2.12)

TABLE 2.1.3

4. From Table 2.1.3, it is clear that 7 is the smallest value of θ and corresponds to the row with x_5 . So x_5 is going to leave the iteration. 5 in Table 2.1.3 corresponds to the x_2 column (max $c_j - z_j$) and x_5 row (min θ) is called the **pivot**. The pivot element should be made 1 in the next iteration

$$Row_{x_5} = \frac{Row_{x_5}}{5}$$
 (2.13)

5. As x_5 is leaving, this becomes row corresponding to x_2 . All the other elements of column containing pivot should be made 0 by row operations. See Table 2.1.4.

$$R_{x_3} = R_{x_3} - R_{x_2} \tag{2.14}$$

$$R_{x_4} = R_{x_4} - 3R_{x_2} \tag{2.15}$$

		6	8	0	0	0		
		x_1	x_2	x_3	x_4	x_5	RHS	θ
0	x_3	1	1	1	0	0	10	10
0	χ_4	2	3	0	1	0	25	$\frac{25}{3}$
0	x_5	1	5	0	0	1	35	7 →
	$c_j - z_j$	6	8↑	0	0	0	$z_{RHS} = 0$	
0	<i>x</i> ₃	4/5	0	1	0	-1/5	3	15/4
0	x_4	2/5	0	0	1	-3/5	4	20/7 →
8	x_2	1/5	1	0	0	1/5	7	35
	$c_j - z_j$	22/5↑	0	0	0	-8/5	$z_{RHS} = 56$	

TABLE 2.1.4

6. Continue the table until all $c_j - z_j$ values are either zero or negative. The corresponding final z_{RHS} is the maximum value. Also find corresponding x_1 and x_2

NOTE:

- 1) θ is always positive. In case it is coming as negative or undefined, leave the slot in the table blank.
- 2) Don't convert fractions into decimals. Final answers are natural numbers.

Problem 2.2. Maximise

$$6x_1 + 5x_2$$

with the constraints

$$x_1 + x_2 \le 5$$

 $3x_1 + 2x_2 \le 12$
where $x_1, x_2 \ge 0$

using the tabular method. Find the corresponding values of $x_1 \& x_2$.