산업기술R&D연구기획사업 최종보고서

(사업기획보고서)

- ※ 다음 순서에 따라 작성하여 별책으로 제출함
- ※ 표지는 백색바탕, 흑색활자로 작성
- ※ A4(국배판, 가로×세로, 210×297mm) 크기로 작성
- ※ 상하 여백 준수 요망

(뒷면)		(앞면)
이 보고서는 산업기술혁신 사업의 기획보고서입니다. (뒷면 중앙에 표시)	수여 5cm산업기술 R ⊗ D 연구기획사업최종보고서	↑ 위 여백 5cm 미래 자동차 경량화 이종소재 용접·접합 플랫폼 구축 및 부품실증사업 기획연구 (사업기획보고서) 2020. 02. 14. 주관기관 (재)경북테크노파크 (명조체, 18포인트)
	산업 통상자원부	산업통상자원부
	아래 여백 3cm ↓	아래 여백 5cm ↓

(좌 철) (양면인쇄)

제 출 문

한국산업기술평가관리원장 귀하

산업기술R&D연구기획사업 "미래 자동차 경량화 이종소재 용접·접합 플랫폼 구축 및 부품실증사업 기획연구"(개발기간: 2019.07. ~ 2019.12.)과제의 최종보고서 10 부를 제출합니다.

2020. 02. 14.

주관기관 : (재)경북테크노파크

대표자 이재훈

(인)

기획위원회명: 미래카 이종접합 플랫폼 위원회

위원장 : 박영도

총괄책임자 : 김숙환

위 원 : 박기영

위 원 : 이목영

위 원 : 양종원

위 원 :김기순

산업기술혁신사업 공통 운영요령 제37조에 따라 보고서 열람에 동의합니다.

목 차

제1장 사업 개요 및 필요성	1
제1절 사업 개요	
제2절 추진배경 및 필요성	5
제2장 대내외 환경분석	7
제1절 국내산업동향	
제2절 해외산업동향	11
제3절 국내기술동향	16
제4절 해외기술동향	18
제3장 유사사업 분석 및 수요조사	25
제1절 유사사업 및 기술수준 분석	25
제2절 수요조사	28
제4장 사업목표 및 전략	32
제1절 사업목표 및 전략	32
제2절 총사업비	36
제3절 추진체계	38
제5장 과학기술적 타당성 분석	39
제1절 사업목표의 적절성	39
제2절 세부활동 및 추진전략의 적절성	41
제6장 정책적 타당성 분석	44
제1절 국내정책동향	44
제2절 해외정책동향	46
제3절 사업 추진상의 위험요인	47
제7장 경제적 타당성 분석	48
제1절 분석 개요	
제2절 편익 항목 설정	49
제3절 경제성 분석	
제8장 기대효과 및 종합 시사점	
제1절 기대효과	
제2절 종합 시사점	55

제1장 사업 개요 및 필요성

제1절 사업 개요

□ 추진 배경 및 목적

- (배경 및 목적) 다양한 경량소재 및 접합공정이 적용되는 미래(수소) 전기자동차 및 수송(항공)기기의 차체·배터리를 포함한 부품들은 종래 연구개발 개별지원 형태로는 종합지원이 불가능하고 비용의 효용성 및 기술의 적기성 측면에서도 한계
- ☞ 미래(수소)전기자동차 및 수송기기 용접기술 개발에 대한 많은 지원에도 불구하고 멀티머트리얼 부품의 상용화는 요원하며, 향후 투자자원의 한계에 봉착할 것으로 예상되어 국가예산의 효율적인 운용이 요구됨

※ 사업의 필요성

- 기존의 철강소재 기반 주력산업에는 동종의 용용용접이 주로 사용된 반면 미래 스마트산업은 다양한 경량소재가 적용되어, 난이도가 높은 멀티머트리얼 이종접합 기술이 필수
- 국내 미래(수소)자동차, 수송(항공)기기, 전기배터리 등 관련 산업현황을 연계한 혁신적 소재 경량화 프로그램 및 이를 통합하여 활용할 수 있는 국가주도 플랫폼 개발이 필요하며, 플랫폼의 경우 구축 방법 및 컨텐츠 항목이 다양하므로, 사업 수행을 위해 출연기관의 자율적 판단이 매우 중요
- 경량소재 이종접합 DB구축 + 수요·공급의 원클릭 접근이 가능한 디지털 플랫폼 + 미래(수소)전기 자동차·수송(항공)기기·전기배터리 산업의 부품실증 등으로 구성되는 공유형 허브 플랫폼 R&D 사업은 고도의 전문성을 요하는 사업으로 그 필요성이 매우 높음
- 현재 경량화 이종접합 용접기술의 경우 관련 설비는 모두 외산 수입 100%에 의존하고 있어 장비의 국산화 및 스마트화가 시급하며 장기적으로 소재·부품·장비의 기술독립이 반드시 필요

□ 새업 내용

- ① (총괄) R&D 허브플랫폼·실증·교육센터 및 R&D 실증 총괄기획운영
- R&D 허브플랫폼 및 실증테스트베드 운용과 기업지원 교육 시스템 운용
- R&D 로드맵 기획⇨실행 및 실증부품개발⇨사업화·기술이전 총괄 기획 운영
- ② (세부 1) 스마트 유연생산공정 IIoT 테스트베드 기반 기업지원시스템 개발
- 개발기술 부품 실증을 위한 스마트 유연생산공정지원 IIoT(Industry Internet of Things, 산업사물인터넷) 테스트베드 및 시스템 개발
- IIoT 테스트베드 스마트고도화 지원, AR(증강현실)기반 원격지원 관제시스템 및 VR(가상현실) 교육 시스템 개발
- 디지털데이터 가공을 통한 빅데이터화 및 DB 기반 수요가지원 플랫폼 개발

- ❸ (세부 2) 블록체인기술 기반 R&D 메가허브 스마트 제조혁신플랫폼 개발
- 제품설계·시뮬레이션-디지털트윈 연동기반 AI(인공지능) 빅데이터 제조혁신플랫폼(PaaS) 개발
- 블록체인기술기반 B2B(Business to Business) 클라우드 서비스플랫폼(SaaS) 개발
- 4 (세부 3) IIoT 연계 이종접합 공정 표준화 기술 개발
- IIoT 연계형 이종접합 공정기술 개발 및 DB화 기술 개발
- IIoT 연계형 이종접합 공정 DB 표준화 정립
- Al 기반 접합부 품질예측 요소기술 개발
- **6** (세부 4) 이종소재 접합 장비 플랫폼 국산화 개발 및 부품실증 연구
- 스마트 공장 연동을 위한 이종소재 접합 장비 플랫폼 국산화 개발
- 용접접합 공정 솔루션 DB를 적용한 경량화 차체 부품 이종소재 접합 실증 연구

<그림. 1. 미래자동차 경량화 이종소재 용접·접합 플랫폼 개념도>

🗆 기대효과

- 미래(수소)전기자동차·수송(항공)기기·배터리 및 타 연관 산업 발전
- ☞ 국내외 미래(수소)전기자동차 산업 뿐 아니라, 글로벌 수송기기 및 우주 항공분야와 같은 경량구조의 수요가 큰 산업분야에서 매우 중요한 기술로, 부품소재의 선진제품 기술종속화 탈피, 기술적 자립화 및 후방산업 연관 업체의 매출 증대효과 기대

- ☞ 높은 수입 의존율을 보이는 이종소재 접합장비의 국산화 및 스마트화를 통하여 장비의 외산 종속화 탈피 및 와전 자립달성
- ☞ 공유형 허브 플랫폼 R&D를 통한 자율주행 EV 등 미래형 수송기기산업의 핵심인 멀티머트리얼 이종접합 기술을 최소비용, 최단시간, 고완성도로 개발하여 미래자동차 및 수송(항공)기기, 배터리 시장 선점
- ☞ 또한, 소재산업 및 기계관련 산업 등 다양한 산업 분야에서 원천기술이 전파되어 국내 산업 발전의 토대가 될 것으로 예상됨
- ☞ 장비-데이터의 디지털 통합형 스마트플랫폼 모델로 스마트제조기술 분야에 확대 적용
- ☞ 첨단 과학기술 및 스마트 혁신제조 전문인력을 위한 양질의 일자리를 창출하여 전통 소재·부품·장비 제조산업의 스마트 제조혁신 전환 및 지속적인 성장

□ 기존 지원된 정부과제와의 차별성

 국내의 경우 선진 자동차사 및 수송(항공)기 제조사 등이 양산화한 접합 기술 설비를 도입하여 이를 적용한 개발 성격의 시제품을 제작하고 있으나, 개발 노하우 및 다양한 소재조합에 대한 DB 및 실증경험이 부족하여 기술의 완성도가 낮음

< 그림, 2. 기존 지원된 정부과제와의 차별성 >

○ 본 미래(수소)전기자동차·수송(항공)기기·배터리 이종접합 R&D 허브 제조혁신 플랫폼*은 기 수행/구축된 인프라와 기술데이터를 클라우드로 연결하고, 신규 R&D는 IIoT 및 AI 기술을 활용하여 이종접합 기술개발 및 부품제조 스마트공정 최적화 및 실증개발 디지털화경 제공

※ 제조혁신 플랫폼(Platform)이란?

수요와 공급산업 참여자들이 연결과 협력을 통해 공통역량을 공유함으로써 생산과 거래의 한계 비용을 감소시키고 새로운 가치를 창출하는 산업생태계 혁신시스템

< 그림, 3. 미래자동차 경량화 이종소재 용접·접합 플랫폼 구성도 >

제2절 추진배경 및 필요성

□ 수송기기 경량화 기술의 중요성

- 수송기기로 대표되는 자동차, 철도차량, 선박 및 항공 산업에서는 연비 효율 향상을 위해 오래전부터 수송기기 경량화를 위해 노력하고 있으며, 많은 부분이 대체소재의 적용으로 경량화 문제에 대응하고 있음
- ☞ 항공 및 선박 분야는 이미 알루미늄 및 복합소재와 같은 대체소재 사용을 통해 경량화를 달성한 것에 반해 자동차 산업은 아직 소비자의 구매력과 직결되는 원가 문제로 인해 개발에 소극적인 움직임을 보임
- ☞ 미래 자동차 산업의 트렌드는 동력원의 전기화, 자동차의 스마트화와 함께 자동차의 경량화 기술이 주를 이룰 것으로 예측
- ☞ 향후 전기차를 포함한 미래자동차*시대에서는 경량화추세로 인해 비철 소재 시장규모가 큰 폭으로 상승할 전망이며, 이에 따른 이종·다중소재 접합기술 개발이 필수

※ 미래(수소)전기자동차 경량화란?

신규 충돌안전 법규 도입 및 이산화탄소 규제, 친환경 자동차 도입에 따른 기능성 부품 증가 등의 대응을 위한 차체, 섀시 등 자동차의 50% 이상을 차지하는 부품을 기존 소재에 Al, Mg, EP, CFRP를 융합한 Multi-material이 적용된 차량으로 정의

□ 경량화 소재 접합기술 시급도 및 현황

- 유로카 바디(Euro Car Body Conference, 2018) 전시회에서 참석자들을 상대로 설문조사를 진행한 결과, 미래자동차 차체 부품 개발의 최대 목표는 "경량화"로 나타났으며, 이에 대한 핵심기술로 "접합기술"이 가장 중요한 것으로 나타남
- ☞ 자동차 알루미늄 판재 및 부품시장의 규모는 2015년 약 31조 5,000억원에서 2020년 약 75조 4.000억원까지 증가할 것으로 예상
- 국내 접합 및 소재 관련 산학연 기관을 대상으로 한 수요기관 설문조사 결과, 접합 기술이 시급하다는 의견이 92%를 차지하였으며, 그 중에서도 매우 시급하다는 의견이 42%를 나타냄

< 그림. 4. 접합 기술 시급도와 DB 구축 수준의 수요기관 설문조사 결과 >

□ Super-Light Car 프로젝트(EU)

- 자동차 100kg의 중량을 감소하기 위해서는 다양한 소재 적용 및 기계적 체결 기술 개발이 필수이며, 자동차 소재시장의 지속적인 성장으로 인해 비철-철강 이종 소재 부품 및 이종 접합* 시장이 급격히 확대
- 자동차 경량화 추세로 인해 비철소재 시장규모가 큰 폭으로 상승할 전망이며, 이에 따른 이종 및 **다중소재 접합 기술 개발이 필수**

※ 이종 접합(Dissimilar Joining)이란?

자동차 환경규제로 인한 연비개선 및 경량화요구에 따른 알루미늄-스틸, 알루미늄 -CFRP(Carbon Fiber Reinforced Plastics)등의 이종소재 접합을 의미하며, 본 사업에서는 서로 다른 계열의 알루미늄 합금(1000~7000계)의 경우나 마그네슘(Mg), 티타늄(Ti)합금의 계열 간도 이종소재로 정의

제2장 대내외 환경분석

제1절 국내산업동향

□ 자동차 부품 산업

- 자동차 경량화 요구증가에 따라 국내 알루미늄 등의 경량소재 규모는2012년 2.4조 원에서 연평균 10% 이상의 성장세를 이어감
- ☞ 국내 자동차 차체 알루미늄 합금 시장규모는 2017년 8,862억 원 규모에서 연평균 6.2%의 성장률을 보이며 2022년 약 11,875억 원에 달할 것으로 전망

< 그림. 5. 국내 자동차 차체 알루미늄 합금 시장 규모 및 전망 >

(출처: 중소기업기술로드맵 2018-2020)

- ☞ 자동차 부품에 활용되고 있는 알루미늄 부품이 엔진/변속기 케이스 및 휠 등에서 차체 판넬류 등으로 급속히 확대되고 있는 추세
- ☞ 즉, 전 세계적인 연비 및 환경 규제 등으로 후드, 도어, 테일게이트, 펜더, 루프를 비롯한 모든 차체(BIW)와 구조물에 알루미늄 적용확대
- 자동차 부품 산업의 경우, 제조단가와 생산성 및 충돌 안정성 확보 측면에서 단일 소재가 아니라 다중 소재의 적용과 그에 따른 접합 기술의 필요성이 증가

□ 이종소재 용접·접합 산업

- 차체 경랑화를 위한 알루미늄·CFRP·마그네슘 등의 경량소재 적용을 위해서는 각각의 부품을 하나로 합치기 위한 이종재료 접합기술이 필수
- ☞ 이종소재 접합을 위한 방법은 크게 기계적 툴을 이용하여 접합하는 기계적 체결, 용접 등의 금속학적 접합과 무기 및 유기 접착제를 이용하여 접합하는 접착제 접합 등으로 분류
- 용접분야의 국내시장 규모는 2016년 약 8.5조, 2018년 10조원이상 성장
- ☞ 접합 분야는 2015년 약 1.2조원 규모에서 2018년까지 약 13% 성장

< 표. 1. 용접·접합분야 국내시장 규모 >

(단위: 억원)

구분	품목	2013	2014	2015	2016	2017	2018
	용접 시공	64,097			85,605	94,272	103,816
	용접 기자재	605		623	633	642	636
국내시장	용접 재료	5,512		6,911	7,739	8,666	9,704
	접합 공정	7,950			11,820	13,590	15,474
	접합 소재	1,630	1,700	1,830	1,943	2,056	2,178

(출처: 중소기업전략기술로드맵, 2016~2018)

- 자동차용 저항점용접 로봇의 국내수요는 2018년 2천대(790억) 수준으로 저항점용접에서 기계적 체결로의 전환이 10% 수준으로 이루어지는 경우 약 200억원의 장비시장 수요가 예측됨
- ☞ 국내 용접시장 규모 성장률 (5.6%, 중소기업 전략기술로드맵 2018)을 감안하면 2026년에는 약 150억원의 장비시장 수요가 예측되며, 기계적 체결이 중심인 항공기 산업으로의 수평 전개시 더 많은 수요가 기대

< 그림. 6. 저항점용접 수요 기반 국내 이종접합 기계적 체결 장비 시장 전망 >

□ 플랫폼 산업

- 제품 중심의 제조업이 플랫폼 중심으로 변화하고 있으며, 산업의 가치사슬 특징과 자산 및 자본의 특징이 달라지고 있음
- ☞ 승자가 독식하고, 표준이 지배하고, 플랫폼이 지배하는 IT산업의 특징이 제조업 영역으로까지 확대되고 있음
- ☞ 플랫폼을 지배하는 기업들의 기업가치가 그렇지 않은 기업들에 비해 훨씬 더 크게 시장에서 인정받고 있음

< 그림. 7. 플랫폼을 지배하는 선두 그룹의 기업가치 상승 >

(출처: 대한민국 혁신성장을 위한 제조혁신플랫폼, 2018)

- ☞ 향후 제조업의 핵심 역량은 플랫폼 형성을 통해 생산에서 소비까지 독점력을 행사하고 독점과 혁신의 속도를 가속하여 경쟁 기업이 극복할 수 없는 네트워크형 생태계를 형성하는 것임
- 중소기업 생산성 제고를 위한 R&D 투자 및 정책자금 확대에도 불구하고 기술혁신 및 개발기술 사업화 등의 생산성 향상은 정체됨

- ☞ 제조업은 타 산업군에 비해 초기 투자의 위험부담이 크고 진입장벽이 높기 때문에 신산업 활성화 및 새로운 가치, 새로운 시장을 창출하는 선순환적인 혁신을 이룰 수 있는 해법에 대한 고민이 필요
- ☞ 즉, 우리나라 경제의 30%를 차지하는 제조업 기반 공유형 제조혁신 허브 플랫폼 구축의 기술개발이 필요함

□ 국내 R&D 기반 제조혁신 플랫폼 산업의 사례

① Steel-Al 제조 플랫폼

- 철강-산업생태계 간 연결/협업을 통한 기술의 신산업화 및 철강산업의 제조공정 스마트화
 - → 철강사는 조업 노하우 및 데이터를 플랫폼에 제공, 솔루션 공급기업은 혁신 기술을 활용하여 수요에 맞는 첨단 부품, 장비 및 공정 개선 솔루션 개발 플랫폼

2 스페셜티 화학소재 제품화 솔루션 제조혁신 플랫폼

- · 스페셜티 고분자 산업생태계 내 가치사슬 간 연결 및 협업을 통해 혁신기술의 신산업화 및 고분자 산업의 진화를 지원하는 수요창출형 플랫폼 구축
- → 고분자 원소재 기업과 가공 중간재 및 부품 최종 수요 기업과의 제조/평가결과 데이터 공유 및 협업을 통해 고분자 응용제품의 고부가화 및 시장 확산 목표

❸ I-Ceramic 제조혁신 플랫폼

- · 세라믹 핵심 공정에 대한 정보 생성, 빅데이터 및 AI를 이용한 지능형 제조공정 플랫폼
- → 산업데이터 기반 지능형 플랫폼을 통한 첨단세라믹 제품 산업체, 장비 기업, 수요 기업 등다수 공급·수요자가 지능정보기술 기반 신공정·신제품·신서비스 창출 플랫폼

◆ 고부가 특수합금 소재부품 제조혁신 플랫폼

- 축적된 철강산업의 기술과 산업 경쟁력을 고부가가치의 특수 합금 분야로 확대시키고, 고부가가치의 선진국형 제조업으로 패러다임 전환 플랫폼
- → 항공부품 제조기업, 장비기업, 수요기업 등 다수의 공급 수요자가 설계, 해석, 소재물성 및 제조 DB, 실증/인증을 위한 시험평가 DB 등 제조 데이터 공유/협업/확산 플랫폼

6 3D 프린팅 제조혁신 플랫폼

- · 3D 프린팅을 활용한 제조부품생산에 필요한 정보, 데이터, 기술, 인프라 및 제조환경을 맞춤형으로 공급하고 제공받을 수 있는 플랫폼
 - → 3D 프린팅 기술과 실물제조기술을 연계하여 다양한 수요자 니즈에 부합하는 기술 공급망을 제공하고 수요확보를 통한 사업화를 촉진할 수 있는 상생형 플랫폼

6 강관 제조데이터 공유 플랫폼

- · 생산 및 제품 물성 data를 온라인 연결하여 철강-강관사 간 상호연결이 가능한 플랫폼
 - → 고부가 강관생산을 위한 철강사 소재 품질 및 강관사 제품생산/물성 데이터를 온라인 연결하여 제조공정 최적화와 제조공정 맞춤형 소재 공급

7 기타 플랫폼

• 의류패션 스마트 제조 플랫폼, 혁신 공정 플랫폼, 무절연 초전도 고자기장 플랫폼 등

(출처: 대한민국 혁신성장을 위한 제조혁신플랫폼, 2018)

제2절 해외산업동향

□ 자동차 부품 산업

- 자동차 부품 산업에서 알루미늄의 경우 기존의 럭셔리카 위주에서 최근 전기차 등의 고부가가치 차량 및 중소형 차종까지 적용 확대
- ☞ 글로벌 자동차 부품의 알루미늄 시장은 2018년 약 337억 달러
- 2019년부터 2025년까지 CAGR이 8.7% 증가할 것으로 예상

< 그림. 8. 자동차 부품에 사용되는 알루미늄 규모와 전망 >

(출처: Market Research Report, 2019)

- 세계적 알루미늄 제조기업 노벨리스, 알코아 등은 자동차 경량화 수요의 폭등으로 자동차 부품시장의 알루미늄 수요 상승 예측
- ☞ 즉, 2011년 1,150만 톤에서 2025년 2,480톤으로 확대될 것으로 전망
- 북미 지역의 평균 경량 차량의 경우 2015년에는 알루미늄이 397파운드 사용되었으며, 2028년까지 565파운드로 증가할 것으로 예측
- 자동차 차체의 경우, 연비규제가 강력한 북미 자동차 제조사를 중심으로 후드, 트렁트 리드 등에 활용됨
- ☞ Benz, BMW, Volkswagen등의 유럽 자동차 제조사의 경우, 럭셔리카를 중심으로 후드, 펜더, 루프, 도어 등의 구조재로 알루미늄 합금을 채택하고 있으며, Ford사 F-150 모델의 BIW에 알루미늄 적용
- Tesla의 Model S, Land Rover의 Range Rover, Audi의 A8/S8, Ford 의 F-150 등이 알루미늄 합금 판재의 차제 적용범위를 확대

< 표. 2. 해외 주요업체 자동차 부품의 알루미늄 차체 적용 현황 >

국가	업체	차종	자동차 부품
	Porsche	928	Hood, Door
독일	Mercedes-Benz	420Sel	Hood
	Audi	A2, A8, S8	All body
스웨덴	Volvo	760GLE	Hood
미국	GM	Cadillac, Olds Aurora	Hood/Deck Lid
미국	Ford	Lincon LS, F-150	Hood/Deck Lid
	Mazda	RX-7, RX-8, MX-5	Hood
일본	Nissan	Altima, Skyline GT-R	Hood/Deck Lid
일근	Honda	NSX	All body
	Toyota	Supra	Hood
 한국	현대자동차	에쿠스, 제네시스	Trunk Lid/Hood

(출처: 기계와 재료, 2018)

□ 해외 이종소재 용접·접합 산업

- 이종소재 용접·접합 산업은 최종 산업에서 다양한 용도로 사용되고 있어 꾸준히 성장할 것으로 예상되며, 특히 자동차, 우주항공, 조선 산업 등 수리 및 제조가 필요한 수송기기 산업 분야에서 필수임
- 용접은 크게 용융 용접, 고상 용접으로 구분되며, 용융 용접은 가스, 아크, 저항 및 레이저 용접 등이 있고, 고상 용접은 확산, 마찰, 초음파 용접 등이 있음

< 그림, 9. 글로벌 용접시장의 최종 사용 산업별 시장 규모 및 전망 >

(출처: TechNavio)

☞ 글로벌 용접 시장은 자동차, 건설, 항공우주·방위 및 조선해양 산업 분야 등으로 분류되며, 2016년 기준 자동차산업 분야가 26.65%로 가장 높은 점유율을 보이며, 규모는 2021년까지 급격히 성장할 것으로 예측됨

- ☞ SPR, FDS 등의 기계적 체결 기술은 주로 알루미늄 차체를 대상으로 널리 사용되며. 최근에는 용접이 불가능한 CFRP 부품 등에도 적용
- ☞ 2018년 전세계 산업용 파스너 시장 규모는 833억 4000만 달러로 추산 되며, 연평균 성장률 약 4.1%로 증가할 것으로 전망
 - 특히 자동차 부품산업에서 알루미늄 및 CFRP 제품 사용량 증가와 더불어 파스너 시장의 성장을 촉진할 것으로 예측됨
 - BMW는 복합재료의 적극적인 채용으로 차체 40kg 경랑화를 달성하였으며, 접합공정은 다양한 기계적 체결법이 사용. BMW 7 series의 경우 스틸 66%, 알루미늄 26%, CFRP 3% 채택

U.S. industrial fasteners market size, by application, 2014 - 2025 (USD Billion)

< 그림. 10. 기계적 체결을 위한 글로벌 파스너 시장 규모 >

(출처: Market Research Report, 2019)

- Audi 신형 A8 차체는 역대 최다 소재를 사용하며, 이는 소재 사용 최적화 원칙(The right material in the right place in the right amount) 을 적용한 결과물로, 다양한 소재 결합을 위해 14가지 기계적 체결방식을 개발하여 적용
- 철계 및 비철계 금속과 중합체 기반의 복합재료의 기계적 체결장비는 동종금속의 접합에 활용되는 저항 점용접의 시장을 잠식해 가고 있으나, 대부분의 장비는 유럽과 북미산이 장악하고 있으며 국산장비는 현재 개발·상용화되지 않은 상태
- ☞ Stanley (북미)는 SPR 장비를 공급함에 있어 지역/기술별 브랜드 특화를 통하여 시장을 확대 하는 중

- ☞ Bollhoff (독일)는 SPR, REW 등의 장비를 공급하고 있으며 유럽 자동차 제작사에 공급 중
- EJOT (독일) 및 Atlas Copco (스웨덴)는 이면 접근이 불필요한 Flow thermal drilling 기술을 각각 FDS, K-Flow 등으로 명명하여 장비 공급을 진행 중
- ☞ Herorivet (중국)은 SPR 장비를 개발 및 공급함에 있어 높은 가격 경쟁력을 통해 시장을 확장 해 나가는 중
- 자동차용 저항점용접 로봇의 글로벌 수요는 2018년 기준 4만1천대
 (2조3천억) 수준으로 저항점용접에서 기계적 체결로의 전환이 10%
 수준으로 이루어지는 경우 약 2천억 워의 장비시장 수요가 예측됨
- ☞ 해외 용접시장 규모 성장률 (5.4%, 중소기업 전략기술로드맵 2018)을 감안하면 2026년에는 약 3천억 원의 장비시장 수요가 예측됨

< 그림. 11. 저항점용접 수요 기반 글로벌 이종접합 기계적 체결 장비 시장 전망 >

□ 해외 플랫폼 산업

○ 전 세계적으로 산업의 경쟁력 제고를 위해 디지털 트랜스포메이션을 통한 산업 혁신이 추구되고 있으며, 이러한 혁신을 바탕으로 다양한 분야 에서 플랫폼 산업이 구축됨

● 미국의 플랫폼 산업

- 정부와 민간이 연계하여 제조업이 당면한 문제점 해결 및 제조업 연구기반을 마련하기 위한 「국가제조혁신네트워크(NNMI)」를 구축
 - → 목표: 온라인 플랫폼을 중심으로 클라우드 서비스 등 웹 기반 기술의 표준화 구축
 - → 3D 프린팅, 경량소재, 차세대 전략, 디지털 디자인 및 제조, 복합소재 등 첨단 제조기술 분야의 지역별 제조혁신연구소를 설립

2 독일의 플랫폼 산업

- `15년 기존 '인더스트리 4.0'에서 도출된 문제점을 보완한 '플랫폼 인더스트리 4.0' 전략을 수립하여, 정부 역할의 재정립 및 R&D 지원을 확대
 - → 목표: 오프라인 플랫폼 중심 협력관계 강화와 융합의 시너지를 극대화, 독일내 제조시스템 기반을 활용한 실물경제 중심 표준화 구축
 - → 사이버물리시스템 연구강화를 통해 기존 우위를 유지하고 있던 자동차·항공전자·철도분야의 제조업을 대상으로 온라인 시스템 연계

3 영국의 플랫폼 산업

• 첨단제조기술연구소(AMRC)와 민간연구소에서 고부가가치 제조업 전반 혁신 네트워크 구축 → 성장잠재력이 큰 기술과 전문 분야에 대한 집중적인 혁신을 통해 신기술의 개발 추진

▲ 중국의 플랫폼 산업

- 제조업 강화를 통한 품질 제고, SW·AI 분야 기술에 집중하는 혁신기술 추격 전략 시행
 - → 성장잠재력이 큰 기술과 전문 분야에 대한 집중적인 혁신을 통해 신기술의 개발 추진
 - → 내수시장과 대규모인력기반, 소수혁신기업과 정부의 강력한 시장보호를 통한 혁신전략고수

6 캐나다의 플랫폼 산업

- CARIC은 제조업체, 연구기관 및 교육기관 간 매치메이킹을 통해 R&D 프로젝트 로드맵을 수립하고 재정적 지원을 제공
 - → 캐나다 항공우주산업은 OEM 및 Tier 1급의 대형 업체와 Tier 2, 3 수준의 중소업체들이 전체 시장구도를 형성

6 싱가포르의 플랫폼 산업

- ARTC은 싱가포르의 우수한 제조·R&D능력을 확인한 전세계 많은 기업들과 파트너십을 구축 → 적극적으로 R&D 거점화를 통해 유치하고 ARTC를 통해 파트너십을 구축한 업종들은 대부분 4차 산업혁명에 중요한 기반이 되는 첨단제조 분야이고 솔루션임
- * R&D 플랫폼 산업: 기획-설계-R&D-제조-판매-서비스 등 R&D 산업의 전 과정에서 참여자간 데이터 공유 & 사용을 기반으로 하는 네트워킹 및 협력을 촉진하는 장으로, 궁극적인 목표는 모든 R&D 산업 모든 영역에서 발생하는 이슈들을 해결할 수 있는 환경제공 및 정보공유

제3절 국내기술동향

□ 자동차 부품 산업

- 친환경자동차 등의 미래(수소)전기자동차 시장에서 경량화 요구 증가로 인해, 알루미늄은 친환경 자동차의 경량화를 위한 가장 현실적인 경량화 소재로 최근 급속한 증가가 예측됨
- (현대/기아자동차) 기존 스틸의 강도를 향상시켜 두께를 저감하는 초고장력강의 경량화 전략을 채택하고 있으며, 최근 준중형급에는 약 40%까지 초고장력강, 중대형 차량의 경우에는 50% 이상의 초고장력강을 적용
- ☞ 2000년대 초부터 엔진, 자동변속기 모듈 등의 제작에 들어가는 부품 중 일부를 알루미늄 소재로 제작하고 있으나 아직까지 차체는 그 사용 비중이 크지 않음
- 제네시스(구형), 에쿠스의 후드에 알루미늄을 적용하고, 아이오닉, 니로 등에 세계 최대 알루미늄 판재 메이커인 노벨리스에서 개발한 '노벨리스 어드밴즈'를 전량 수입, 적용함
- 2018년 기존차량의 후속 모델의 후드/도어/펜더/트렁크 리드/쇼크 업소버 하우징/범퍼백 빔을 알루미늄으로 대체함
- ☞ 초저연비차 및 환경대응용 차량을 대상으로 알루미늄 스페이스 프레임을 이용한 차체 개발을 추진하고 있음
- ☞ 고성능 EV의 BIW에 알루미늄을 채택하여 차량당 137kg/대 수준의 알루미늄을 사용할 계획
- (쌍용자동차) 티볼리에 71.4%의 초고장력강을 적용하고 있으며, 현재까지 다종 소재보다는 초고장력강을 이용한 경량화 기술이 주류
- ☞ 여러 종류의 재질을 조합할 수 있는 접합기술은 국내 자동차사의 초고장력강 경량화 전략, 경량소재 기업의 영세성, 작은 시장규모 및 낮은 생산기술 수준 등 복합적인 이유로 점용접 등 전통적인 용접기술이 주류를 형성
- (한국GM자동차) 국내 알루미늄 적용 계획이 가장 많은 기업임
- ☞ 독일 오펠의 최신 디젤 엔진 개발 기술이 집약된 신형 알루미늄 엔진을 쉐보레 크루즈 1.6 디젤 모델에 채택함

- 무거운 주철 대신 견고하고 가벼운 알루미늄으로 제작, 차체경량화에 기여
- 쉐보레 신형 말리부는 섀시·서스펜션 너클·후드 등에 알루미늄을 적용, 차체중량을 약 136kg 경량화
- 주행거리연장전기차(EREV) '볼트(Volt)'는 후드·도어·테일게이트·펜더 등 차량 외부 전체를 알루미뉴으로 제작하여 기존모델보다 45kg 경량화

< 표. 3. 자동차 부품 경량화 관련 국내 기업 동향 >

기업명	주요동향
	• Multi-Material Mix 초경량 승용차체 기술 개발
취미 /기이다 두 취	• 2020년까지 친환경 시장 2위 도약 목표
현대/기아자동차	• 2020년까지 연비 25% 개선 목표
	• 2024년 4단계 자율주행 상용화 목표
한국GM	• 알루미늄을 사용한 고강도강 및 초강도강 사용 확대
쌍용자동차	• 친환경 컨셉의 디젤 하이브리드 기술 개발
65/15/1	• 포스코와 고품질 자동차 소재 공급 MOU 체결
르노삼성	• 포스코와 소재관련 MOU 체결
알루코	• 알루미늄 소재를 이용한 차량 경량화 부품 개발
	• 엔진 부품, 범퍼, 시트 프레임 등을 생산
조일알미늄	• 저합금계 알루미늄 합금 박판 연속 주조기술 보유
	• 고부가 Al Clad Sheet 기술 개발

(출처: 국가전략프로젝트 경량소재 기획보고서)

□ 이종소재 용접·접합신업

- 우리나라에서 기계적 접합은 파워트레인 등 타 자동차 부품에 널리 사용되고 있는 반면, 차체 분야는 적용사례가 거의 없음
- ☞ 국내 완성차 업계에서 알루미늄 차체의 양산화를 구현한 사례가 없었기 때문에 이종재료 및 난용접성 소재의 접합기술로 사용되는 기계적 접합을 차체에 적용할 기회가 없었음
- ☞ 국내 자동차 업계도 경량소재의 활용을 점차 증가하고 있는 상황이므로 기계적 접합의 차체 적용은 곧 이루어 질것으로 예상됨
- 이종소재 용접·접합 관련 국내 특허동향을 살펴보면 자동차 관련 연구 개발은 대기업 중심으로 이루어지고 있음
- ☞ 아크용접을 이용한 이종 접합기술에서는 차량의 흡입계 레조네이터와 알루미늄 합금파이프의 이종재 접합기술 등 대기업 중심으로 집중 연구

제4절 해외기술동향

□ 자동차 부품 산업

- ㅇ 자동차는 차체, 섀시, 파워트레인 등으로 구분할 수 있으며, 경량화 관련 연구 및 적용은 차체 부품에 활발히 수행되고 있음
- ☞ Alcoa, Chinalco, UACJ, Novelis 등이 세계 알루미늄 시장 주도

< 표. 4. 알루미늄 관련 주요 기업 사업내용 및 동향 >

기업	주요 동향
	• 승용차 및 소형트럭 알루미늄 합금 제품
λ 1	• '마이크로밀 (Micromill)' 기술로 알루미늄 판재 생산 시간 단축
Alcoa	• 포드(Ford)와의 공동연구를 통해 뉴 F-150의 테일게이트에 신 공정으로 개발된
	알루미늄 소재를 적용
	• 자동차, 트럭 및 고속 철도용 알루미늄 제품
	• 포드, 랜드로버, 재규어 등 세계적인 완성차 메이커에 알루미늄합금 판재를 공급
Novelis	• 기존 차량용 알루미늄합금 대비 강도가 2배 이상 뛰어난 고강도 알루미늄 합금
	어드밴즈(AdvanzTM) 7000 시리즈를 개발하여 전 세계 완성차에 납품 예정
	• 화학 기업 Henkel과 자동차용 알루미늄 판재 접합 기술 공동 개발
UACJ	• 자동차 차체용 고성형성 판재
Chinalco	• 자동차 차체용 알루미늄 합금 판재와 알루미늄 고력 합금 압출 및 단조제품
	• 승용차용 냉연 및 압출 알루미늄 제품

(출처: 경량 금속부품소재산업의 기술개발 동향과 산업 전략, 2018)

또한, Volvo, BMW, Audi, Porsche, Renault, GM, Chrysler, Ford, VolksWagen, Mazda, Toyota 등 대부분의 업체에서 적용하고 있으며, 유럽에서 연간 4백만 개 이상의 자동차 범퍼에 알루미늄 적용

Tesla - Model S

- · World Car of the Year Award Winner
- · Automobile Magazine's Car of the Year
- 5 Star Safety Rated

Land Rover - Range Rover

- · World's First All-
- Aluminum SUV
- · 39% lighter body

Chevrolet

- Corvette Stingray
- · Aluminum Frame 100lbs lighter than prior
- 57% stiffer

<그림. 12. 알루미늄 소재 적용 차량>

(출처: 중소·중견기업 기술로드맵 2017-2019, 2016)

< 표. 5. 경량화를 위한 기업별 자동차 부품 기술 개발 현황>

국가명	기업명	기술현황 및 주요동향	
		• 2020년까지 트럭 무게 최대 450kg 경량화 등 경량소재 활용에 투자	
	General	• Al, CFRP 등의 집중 적용을 통한 자동차 중량 15% 감소 계획	
	Motors	• 알루미늄 차체를 전면 적용한 픽업트럭 개발을 위해 Alcoa/Novelis와 계약	
		• 주력모델 쉐보레 실버라도와 GMC 시에라 2019년형에 알루미늄 차체 적용	
	Ford	• F-150 픽업 트럭 알루미늄 바디 적용	
미국	1.01 d	• 구조 경량화를 바탕으로 한 경량소재 개발	
		• 자동차용 5000 ~ 6000계 판재의 생산라인 구축	
	Marralia	• 차세대 알루미늄 소재로 항복강도 500MPa급 7000계 판재 생산	
	Novelis	• 독일 및 중국공장 개선에 5.5억 달러 투자하는 등 자동차용 알루미늄 생산을	
		위한 대규모 시설 투자에 착수	
	Aleris	• 3억 5천만 달러를 투자하여 6000계 자동차용 알루미늄 판재 생산라인 증설	
	 Benz	• 알루미늄 및 플라스틱, 고강도 강판 확대로 경량화 추진	
	Deliz	• 알루미늄 외판 패널 적용 및 알루미늄/스틸 Multi-material 적용 확대	
	BMW	• 경량화를 위해 Front-end 및 Body shell에 알루미늄 적용	
E 01		• Audi RS6: 20% 알루미늄, 초고장력 강판 사용	
독일	VolksWagen	• Golf: 알루미늄 등을 활용한 100kg 경량화 및 연비 23% 개선	
	Rheinfelden	• Audi A8, R8: Aluminum Space Frame(ASF) 활용	
		• 자동차 차체 성형용 알루미늄 다이캐스팅 합금에 열처리 여부에 따른 2종의	
		합금 개발	
	Toyota	• 중/소형차 차체 무게 10~30% 경량화 목표	
일본	Nissan	• 알루미늄 및 기타 경량소재 사용 확대	
2단	Honda	• Hood/Front fender 알루미늄 적용	
	Kobe	• Toyota 통상과 합작으로 미국 내 자동차용 알루미늄 판재공장 설립 검토	

(출처: 국가전략프로젝트 경량소재 기획보고서, 2016)

□ 이종소재 용접・접합 산업

- 자동차 기계적 체결을 위한 기술 중 RIVTAC은 High speed joining 기술로, 소재 관통을 위해 못을 사용하며 20~40m/s의 속도로 삽입 체결완료
- ☞ Benz의 경우 자동차업체 최초로 SL클래스에서 RIVTAC 기술을 적용

<그림. 13. Benz에서 최초로 적용한 RIVTEC 기술>

(출처: RIVTEC 2016)

- SPR(Self-Piercing Riveting)은 현재 자동차 부품 접합을 위해 가장 널리 사용되고 있는 기술로, RIVTAC 기술대비 피로 특성 우수
- Benz, Chevrolet, BMW, Audi, Lamborghini, Rolls-Royce 등의 럭셔리카로 구분되는 고급 대형차 위주로 적용되고 있음

<표. 6. SPR 기술을 적용한 자동차 업체의 모델과 사용 리벳 수>

기업명	모델명	사용 리벳 수
Joguan	XJ	3,185
Jaguar	XK	2,620
Audi	A8(D4)	1,847
Audi	TT	1,606
Lamborghini	Gallardo	1,300
Rolls Royce	Phantom	725
Mercedes-Benz	SLS AMG	975
Mercedes-benz	SL (R231)	1,235
Aston Martin	Vanquish	176
Chevrolet	Corvette Z06	236
BMW	5 and 6 series	598

(출처: RIVTAC 2016)

○ FDS(Flow Drill Screw)는 나사못 형태의 스크류로 부품을 결합하는 기계적 체결법으로, 공정이 단순하고, 접합부 성능이 균일하며, 접합가능한 소재 제약이 적음

<그림. 14. 자동차 부품의 기계적 체결을 위한 FDS 기술의 process>

(출처: RIVTAC 2016)

○ 또한, 얇은 시트 형태의 이종재료를 접합함에 있어 체결 홀의 사전가공 없이 우수한 내진동성 및 강도와 반복체결이 가능하며, Benz, Porsche, Audi, Lamborghini 등의 고급차 위주로 적용

<표. 7. FDS 기술을 적용한 자동차 업체의 모델과 사용 screw 수>

기업명	모델명	사용 스크류 수
Mercedes-Benz	SLS AMG	581
Mercedes-benz	SL (R231)	152
	A8(D4)	632
Audi	TT	229
	R8	310
Lamborghini	Gallardo	200
Aston Martin	Vanquish	76
Porsche	911 Boxster	190
GM Opel	Speedster	
Jaguar	XK / X150	
Volkswagen	Cross Touran	
Lotus	Evora	

(출처: RIVTAC 2016)

- o Resistance Element Welding(REW)는 통전이 되지 않는 재료의 구멍으로 리벳을 삽입하여 통전이 가능한 재료와 저항용접을 하는 방법으로 기존의 저항용접 장비를 일부 활용할 수 있음
- ☞ REW기술 개발에는 Volkswagen 이 참여하여 Passat GTE 모델에 적용
- ☞ 소성변형 및 블랭킹을 수반하는 다른 기술대비 높은 강성을 가지는 초고장력강과의 접합에 유용
- Clinching은 위 아래로 겹쳐진 판재의 소성변형을 통해 기계적으로 접합하는 체결법으로, 겹쳐진 판재는 펀치에 의해 아래판의 밑 방향으로 확장되어 다이의 밑부분에 접촉하면서 반경방향으로 확장
- Rolls Royce, Benz, Audi에서 Clinching 공정을 일부 채택 중

<표. 8. Clinching 기술을 적용한 자동차 업체의 모델과 사용회수>

기업명	모델명	Clinch Point
Rolls Royce	Phantom	30
Mercedes-Benz	SL (R231)	213
Audi	TT	172

(출처: RIVTAC 2016)

- Friction Stir Welding(FSW)은 잘 섞이지 않는 두 이종금속을 접합할 수 있는 유력한 기술임
- Tower Automotive의 Space frame 및 Engine supporter mount, Pipe & Die Cast의 Intake manifolder, Volvo의 트럭용 Seat Frame 등에도 FSW가 적용된 것으로 보고되고 있음

<표. 9. 해외 주요 자동차기업의 FSW 기술개발 현황>

개발주체	국가	개발 내용
Ford	미국	GT모델 Center Tunnel부품의 FSW 기술개발
Mazda	일본	RX-8 모델의 리어 도어의 FSSW 기술 개발
Tower Automotive	미국	Space frame, Engine supporter mount의 FSW 기술 개발
Pipe&DieCast	미국	Intake manifolder에 FSW 적용

(출처: 중소기업 전략기술로드맵 2019-2021 : 첨단소재, 2018)

- Refill Friction Stir Spot Welding(RFSSW) 기술은 핀 반복 삽입에 의한 충진기능으로 기존 마찰 교반 점용접의 표면 압흔 자국 개선
- ☞ BMW에서는 기술에 대한 공학적 검증을 끝내고 차세대 접합기술로 선정하여 2020년 신규라인 양산을 목표로 하고 있음
- ☞ GM은 '어드밴스드 스팟용접을 개발하여 융착점이 다른 알루미늄과 고장력강을 결합시킴
- ☞ Hood나 Trunk lid 등의 부분은 가벼운 알루미늄으로 제조하고, 나머지 차체는 견고한 스틸 프레임을 사용하고 있으며, 값 비싸고 무거운 리벳 (rivet)의 사용을 줄이게 됨
- ㅇ 자동차 관련 국내외 기업들은 이종접합 소재의 연구개발을 추진

<표. 10. 이종접합 소재 개발 관련 국내외 기업 동향>

회사명	국가	개발 내용
		• 알루미늄 차체 개발 1위 (ASF: Aluminium space frame)
Audi	독일	• Al, Mg 등 비철금속 및 CFRP를 사용한 이종소재 차체 개발
		• 다양한 소재결합을 위해 14가지 접합 방식 적용
		• 차량 Space frame에 CFRP 적용
DMM	E 0)	• CFRP 중심의 이종소재 성형 및 접합 기술 개발
BMW	독일	• BMW 7 시리즈는 16개 파트에 4가지 성형공법을 적용
		• Center pillar, Roof rail, Roof side outer 등의 부품에 CFRP적용
		• F-150 알루미늄 풀바디 적용
Earl	m) 7	• 금속-고분자접합-성형 하이브리드 공정 기술 개발
Ford	미국	• DOE(Department of Energy)의 Multi Material Lightweight Vehicle
		(MMLV) 프로젝트를 통한 이종소재 경량화 기술 개발
VollraWagan	두이	• 스틸과 경금속을 오버랩 시킨 후 레이저 용접을 통한 접합 기술 개발
VolksWagen	olksWagen 독일	• 알루미늄, 마그네슘 합금 또는 플라스틱의 레이저 이종접합 기술 개발
Torroto	이빔	• 열경화성 CFRP와 알루미늄 프레임 구조의 프론트 바디 접합 기술
Toyota	일본	• 클래드재와 알루미늄의 마찰 교반 접합 기술
Mercedes	독일	• 알루미늄 및 스틸 이종소재 클린칭 리벳과 접착제의 하이브리드 접합
Benz	一	• 알루미늄-스틸 접합 ImpAcT (Impulsed Accelerated Tacking) 기술

Magna	오스트	, ORDD 그성 저장기소가 저하면 가네네 비전투서에 대한 여고
Steyr	리아	• CFRP-금속 접합기술과 접합부 갈바닉 부식특성에 대한 연구
현대	한국	• 알루미늄-마그네슘 합금 판재의 마찰교반용접 기술 • 알루미늄과 FRP 접합에 삽입부재와 접착제 이용한 이종접합 기술
성우하이텍	한국	• 국내 차체 성형 전문 기업
		• Al Fender Apron, Al Front Side Member 부품화 기술 보유
신영	한국	• 차체 및 섀시 성형과 관련된 금형 전문 기업
		• 레이저 접합 등에 대한 접합 기술 확보

(출처: 중소기업 전략기술로드맵 2019-2021 : 첨단소재, 2018)

- 이종소재 접합 중 기계적체결 공법에 대한 개발 및 장비의 공급처는
 주로 유럽과 북미가 장악, 일부기술의 경우 중국기업이 높은 가격경쟁력과 함께 시장 참여
- ☞ 기계적체결 공법에 대한 국내수요는 많으나 공급이 없는 상태에서 기술적 독립을 위해서는 장비의 개발 및 공급이 필수임
- 화학적 조성과 기계적 성질이 다른 이종 알루미늄간의 접합은 전통적인 용융용접인 아크용접과 저항점용접의 활용이 용이하나 재료특성상 기존 탄소강용 장비를 활용할 경우 신뢰성이 떨어지는 문제로 전용장비의 개발·판매가 진행 중
- (아크)탄소강 대비 열전도율이 높기 때문에 상대적으로 높은 입열량이 필요하나, 고온균열 민감성으로 인해 특수한 전원파형(펄스 모듈레이션 기능 外)기능을 가진 용접기가 요구됨
- (저항점용접) 탄소강 대비 저항이 낮고 열전도율이 높아 상대적으로 높은 가압력을 가진 서보건과 1,200A 이상의 출력이 가능한 용접전원이 필요하며 표면산화피막에 의하여 저항발열이 불안정한 문제로 다단가압 혹은 표면제어 기술이 요구됨
- (저항점용접) 기존 탄소강 용접용 장비를 판매 하는 주요 업체는 기술적 인 한계로 알루미늄 접합 시장을 점유하지 못하며, 신 기술기반 업체는 타 접합공법 대비 높은 가격 문제로 시장확대가 어려운 상황

□ (기술수요) 유럽 자동차 차체 조립 허브 플랫폼

- 유럽 자동차사의 경우 대표적으로 Volvo가 국내에서 개발하려는 허브 플랫폼과 유사한 시스템을 개발 중이며 본 플랫폼의 개발 시 해외에서 유사 플랫폼 개발보다는 구매 후 현장 적용의 순서로 진행이 예상됨
- 현재는 해외에서도 대부분 전통적인 단순 협력모델로 차체 이종소재 용접접합 개발 중임
- 유럽 및 미국의 경우에서도 허브 플랫폼을 활용하여 차체 부품 제작에 응용하는 경우는 전무함. 따라서 본 과제에서의 개발이 원활하게 진행 된다면 해외에서의 수요 창출이 가능할 것으로 판단됨
- 해외 Carmaker의 경우 이종소재 용접 접합에 대한 플랫폼 형태의 진행이 아닌 개별 접합기술 개발에 따라 효율성이 높지 않기 때문에 이종소재 용접접합 스마트 팩토리 패키지 형으로 해외 수요가 높을 것을 예상

<그림. 15. 자동차 차체 조립 관련 플랫폼 사례>

(출처: Volvo, 2019)

제3장 유사사업 분석 및 수요조사

제1절 유사시업 및 기술수준 분석

□ 기술수준 분석

- 국내의 경우 기계적 체결에 대한 연구개발 사업은 수행되었지만, 적용 사례는 없으며, 용접·접합 공정의 연구개발 및 DB 플랫폼화 사업은 전무
- ☞ 기계적 체결을 이용한 이종소재 접합·적용은 대부분 해외 수행 사례

<표. 11. 이종접합 소재 개발 관련 국내외 기업 동향>

Materials Joining Technology		St-Al	St-Mg	St-Com	Al-Mg	Al-Com	Mg-Com
Resistance S	pot Welding	0 🔳					
Resistance Element Welding		100				iii	
MIG/TIG	Welding						
Friction Stir S	pot Welding	0					
Laser Welding/	Laser Brazing	0					
Fastener	SPR	*	0	*	*	*	0
Fastener	FDS	*					
Fastener	Blind Rivet	*					
Fastener	Bolts	*					
Clinching		0	0		0		
Adhesive	Bonding	*	*	*	*	*	*
Magnetic Pulse Welding		0			0		
Ultrasonic	: Welding						
St = steel, Al = alu	minum alloy alloy, Com = polymer		현재 적용 중 *	향후 적용가능 연구개		실증내용 : 소재개발,	공정개발, 부품적8 부식, 크랙) 시뮬러

□ 국내 기존 유사사업과의 중복성 분석

- 기존사업의 경우 단품 및 모듈 단위의 차량 경량화를 위한 소재 및 성형 공정 중심으로 제품화의 한계를 보임
- ☞ 본 연구의 미래자동차 플랫폼 구축 사업의 경우 이종소재 용접·접합 기술 및 상용화를 위한 스마트 제조기술 실증의 플랫폼 기획 및 구현사업 으로 중복성에 문제가 되지 않음
- ☞ 특히 무질서하게 산재해 있는 이종용접·접합관련 정보를 DB화하고 추가 확장성을 고려한 "공유형 허브 플랫폼" 시스템으로 뿌리산업 전반에 파급효과를 극대화할 수 있도록 체계화된 연계시스템으로 구성하고자 함

<표. 12. 국내 기존 연구 사업과의 차별성>

구분	本 연구 기획 범위	세라믹소재 종합솔루션 센터 구축	차세대 차량용 고안전 경량 AI 차체 모듈 및 BIW 조립 기술	자동차용 경량 도어를 위한 이종재료 접합 기술개발	열처리형 알루미늄합금 적용 이종소재 쿼터 이너 로워 어셈블리 경량화 기술 개발
수행기관	(재)경북테크노파크	한국세라믹기술원	성우하이텍	한국생산기술연구원	동해금속
본 연구와의 차이점	미래 자동차 경량화 이종소재 용접·접합 플랫폼 구축 사업 기존에는 이종소재 단일 용접 접합 기술의 최적화만 진행 본 사업에서는 경량화 이종 소재 용접 접합에 대한 DB 기반의 제조혁신 플랫폼 구축 수요가 실증형 HUB 확보를 통한 제조 생태계 가치창출이 핵심	세라믹소재 물성정보에 대한 DB 구축과 운영 과제 경량화 이종소재 용접 접합 플랫폼 구축사업과 연관성 없음	Al 적용 경량화를 위한 차체부품 시제품 제작 및 평가 R&D 과제임 경량화 이종소재 용접 접합 플랫폼 구축사업과 연관성 없음	자동차 산업의 연비경쟁 제고를 위한 이종재료 점합기술로, R&D 과제 임 경량화 이종소재 용접 점합 플랫폼 구축사업과 연관성 없음	열처리형 AI 합금을 적용한 이종소재 경량화 기술 개발과 평가를 수행한 R&D 과제임 경량화 이종소재 용접 접합 플랫폼 구축사업과 연관성 없음

- 본 사업은 산업통상자원부 및 중소벤처기업부 스마트팩토리 등의 관련 사업과 유사중복 이슈가 발생할 수 있음
- ☞ 그러나, 스마트팩토리 관련 등의 타사업과는 지원분야에서 본 사업과 차이가 있음. 본 사업은 이종소재 분야에서 IIoT를 기반으로 공정기술의 최적화 및 실증기술 개발을 지원하는 사업임

<그림. 16. 본 사업 이종접합 IIoT 및 서비스 플랫폼의 아키텍처>

- ☞ 사업범위에 있어서 본 사업은 이종소재 용접접합 DB 구축 운영으로 공정별로 최적화 및 품질요소 개발, 표준화 및 신뢰성 검증에서 이종소재 부품 개발의 전 공정을 지원함
- ☞ 본 사업은 미래 자동차 제조에 필수적인 이종접합기술의 현황을 분석 하여 중요도를 파악하고, "기술수요-재료/장비공급-이종접합 R&D-실제 사용 성능"의 플랫폼(공유형 허브 플랫폼) 구조를 확립

<그림. 17. 미래카 이종접합 공유형 허브 플랫폼 상세 설계>

제2절 수요조사

세종공업

고려용접

세원

LG화학

□ 이종 용접접합 공정 DB 및 경량화 기술 개발 수요

○ 산·학·연 83개 기관을 대상으로 한 수요 조사 결과 이종접합 DB가 시급 하다는 의견이 92%로 나타났으며, 경량화 기술 개발 시급성도 91%로 도출되었음

	산		학	연
일지테크	삼성중공업	㈜성신앤큐	경북대학교	한국원자력연구원
코미	삼익키리우㈜	㈜신영	부산대학교	한국항공우주연구원
㈜영진	현대제철	㈜영해엔지니어링	서울시립대학교	전자부품연구원
성우하이텍	한빛레이저	㈜이브이레이저	한밭대학교	중소조선연구원
우신이엠시	코히런트코리아	㈜아우라테크	울산대학교	한국자동차연구원
성부	이래에이엠에스㈜	㈜대진씨티앤티	한국해양대학교	한국조선해양기자재연구원
한라이비텍	현대종합금속	㈜성일튜브	목포대학교	자동차부품연구원
MDT	엔텍인더스트리	㈜핫스터프	한양대학교	국방과학연구소
LG전자	진합볼호프	경창산업㈜	공주대학교	자동차부품산업진흥재단
트럼프코리아	한국이에스아이	고려기술㈜	영남대학교	경북하이브리드연구원
큐씨에스	㈜은혜기업	대우공업㈜	동의대학교	한국화학융합시험연구원
현대자동차	㈜산화철팩	대우조선해양㈜	금오공과대학교	한국섬유기계융합연구원
기아자동차	엘라인	동국제강	충북대학교	고등기술연구원
포스코	한국차폐기술	디에스미래기술㈜	창원대학교	한국생산기술연구원
신명테크	㈜화신	모니텍㈜	인천대학교	RIST

서울대학교

한국기계연구원

베스트에프에이㈜

이레테크

<표. 13. 이종용접 DB 및 플랫폼 구축 수요조사 응답 산·학·연>

<그림. 18. 수요기관 설문조사 결과 1>

<그림. 19. 수요기관 설문조사 결과 2>

□ 플랫폼 구축 수요

○ 응답기관을 대상으로 한 플랫폼 수요조사 결과, 플랫폼 구축시 활용 하겠다는 의견이 87%로 나타났으며, 선호하는 "이종소재 용접·접합 플랫폼 실증"의 데이터의 형태는 디지털 데이터(46%), 그래프 등의 문서(28%), 사진 및 동영상(13%) 등의 순임

<그림. 20. 수요기관 설문조사 결과 3>

□ 자동차 실증 부품 수요

- 수요기업의 자동차 실증 부품 조사 결과, Package Tray, Cowl Cross Member, Rear Floor, Moving Parts, Reinf Side Outer Assy, Cowl, 배터리 케이스 등이 주 관심 부품이었으며, 이를 통해 본 연구에서 적용 부품을 실증할 계획
- 그 밖에 자동차 차체 경량화를 위한 이종소재 용접·접합 기술 분야에서 필요한 장비는 Robot FSW, Laser, 마찰용접, SPR, Refill-FSSW, Friction Bit Joining 등으로 조사됨

<표. 14. 국내 수요기업의 자동차 실증 부품 도출>

	<u> </u>	동자 실증 무품 노출>
업체 명	자동차 실증 부품	부품 형상
A업체	Front Floor, Center Floor, Rear Floor, Side Structure, Package Tray	
B업체	Cowl Cross Member	
C업체	Reinf Side Outer	
D업체	Package Tray Module	

E업체	Front Sub-frame	
F업체	A, B Filler 및 Side Structure	
G업체	Rear Floor	
H업체	배터리 케이스 부품	
I업체	Cowl, Door, Trunk lid	

제4장 시업목표 및 전략

제1절 시업목표 및 전략

□ 사업목표

○ 미래카 경량화 이종소재 용접·접합 기술 개발 및 DB 기반 공유형 허브 플랫폼 개발을 통한 수송기기 경량화 부품 실증 연구 사업

<그림. 21. 본 사업의 목표 및 전략>

□ 비전

- 미래카 경량화 이종소재 용접·접합 공정별 DB 구축 및 부품 실증 연구
- ☞ 산·학·연 통합 R&D 및 DB 구축을 통한 부품 개발 실증 실현
- ☞ 클라우드 IIoT 빅데이터 AI플랫폼 구축을 통한 R&D 및 부품실증

<그림. 22. 본 사업의 비전 및 목적>

□ 시업 추진내용

- 공유형 허브 플랫폼 내 수요업체의 자발적 참여 및 실증기반 DB 구축을 통한 다양한 차체 실증부품의 표준조건 제공
- ☞ 제품 개발 기간 및 생산비용 단축과 일괄 기업지원
- (총괄) 공유형 허브 플랫폼·실증·교육센터 및 R&D 실증 총괄기획운영

<그림. 23. 본 사업의 플랫폼 관제실 운영방안>

- ☞ 공유형 허브 플랫폼, 실증테스트베드 및 실증지원교육 시스템 운용
- ☞ R&D 로드맵 기획➡실행 및 실증부품개발➡사업화·기술이전 총괄 운영
- (세부 1) 스마트 유연생산공정 IIoT 테스트베드 기반 기업지원시스템 개발
- ☞ 개발기술 부품 실증을 위한 스마트 유연생산공정지원 IIoT 테스트베드 및 시스템 개발
- ☞ IIoT 테스트베드 스마트고도화 지원, AR기반 원격지원 관제시스템 및 VR 교육 시스템 개발
- ☞ AR, VR 및 MR(혼합현실)을 통한 이종용접접합 기업지원시스템 개발
- (세부 2) 블록체인기술 기반 R&D 메가허브 스마트 제조혁신플랫폼 개발
- ☞ 제품설계·시뮬레이션-디지털트윈 연동기반 AI 빅데이터 제조혁신플랫폼 (PaaS) 개발
- ☞ 블록체인기술기반 B2B 클라우드 서비스플랫폼(SaaS) 개발
- (세부 3) IIoT 연계 이종접합 공정 표준화 기술 개발
- ☞ IIoT 연계형 이종접합 공정기술 개발 및 DB화 기술 개발
- ☞ IIoT 연계형 이종접합 공정 DB 표준화 정립
- ☞ Al 기반 접합부 품질예측 요소기술 개발
- (세부 4) 이종소재 접합 장비 플랫폼 국산화 개발 및 부품실증 연구
- ☞ 스마트 공장 연동을 위한 이종소재 접합 장비 플랫폼 국산화 개발
- ☞ 용접접합 공정 솔루션 DB를 적용한 경량화 차체 부품 이종소재 접합 실증 연구

□ 사업 추진전략

- 외부 플랫폼과의 연결을 통한 메가 플랫폼 구축 및 산·학·연 통합 자생적 상호작용 촉진을 통한 빅데이터화
- 기술개발 ➡ 데이터베이스 ➡ 플랫폼 ➡ 부품 실증 ➡ 사업화 ➡ 기술이전의 선순환 생태계 구축

- ☞ 기술개발 : 수요기업 니즈를 반영한 이종소재 접합기술 개발
- ☞ 데이터베이스 : 기존 기술개발 DB 및 실증 데이터 DB의 클라우드 서비스
- ☞ 플랫폼 개발 : 수요기업 주도 공유형 허브플랫폼 구축 및 생태계 조성
- ☞ 부품 실증 : 플랫폼을 통한 실증부품 표준조건 제공 및 AR 워격지워

<그림. 24. 본 사업의 프로젝트 단계별 실무 교육 방안>

제2절 총시업비

□ 총 사업비 377.78억 (국비 290.78억, 지방비+민간 87억)

○ 세부별 총예산

(단위:억원)

구분	총괄	1세부	2세부	3세부	4세부	합계
국 고	16.17	79.40	67.03	60.27	67.91	290.78
민 자	1.33	20.55	30.87	21.44	12.81	87.00
합 계	17.50	99.95	97.90	81.71	80.72	377.78

ㅇ 년차별 예산

(단위:억원)

구분	총사업비	1차년도	2차년도	3차년도	4차년도	5차년도
국 고	290.78	34.27	87.34	66.27	53.88	49.02
민 자	87.00	10.25	26.13	19.83	16.12	14.67
합 합계	377.78	44.52	113.47	86.10	70.00	63.69

☞ 본 사업의 총 사업비는 377.78억(국비 290.78억, 지방비+민간 87억)으로 5년간 수행하며 사업의 성공적 수행을 위해 재원조달이 안정적으로 이루어져야 함

○ 전체 과제별 세부예산

(단위:억원)

	비목	예산(억원)	구성비 (%)	(단위:억원) 비고
	기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	에선(목권) 15.91	90.90	미끄
	1.1 인건비	2.26	12.90	
	1.2 연구시설 . 장비 및 재료비	9.98	57.00	
총괄	1.3 연구활동비	1.93	11.00	
ㅇ ㄹ	1.4 연구과제추진비	0.53	3.00	
	1.5 참여기관	1.23	7.00	
	2. 간접비	1.59	9.10	직접비의 10.01%
	합계	17.50	100.00	7 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	1. 직접비	90.85	90.90	
	1.1 인건비	11.89	11.90	
	1.2 연구시설.장비 및 재료비	64.97	65.00	
	1.3 연구활동비	7.00	7.00	
1세부	1.4 연구과제추진비	3.00	3.00	
	1.5 참여기관	4.00	4.00	
	2. 간접비	9.10	9.10	직접비의 10.01%
	합계	99.95	100.00	16 1 1 20.0176
	1. 직접비	88.99	90.90	
	1.1 인건비	9.69	9.90	
	1.2 연구시설 . 장비 및 재료비	58.74	60.00	
0.77.1	1.3 연구활동비	10.77	11.00	
2세부	1.4 연구과제추진비	2.94	3.00	
	1.5 참여기관	6.85	7.00	
	2. 간접비	8.91	9.10	직접비의 10.01%
	합 계	97.90	100.00	
	1. 직접비	74.27	90.90	
	1.1 인건비	7.27	8.90	
	1.2 연구시설 . 장비 및 재료비	58.42	71.50	
o all H	1.3 연구활동비	5.31	6.50	
3세부	1.4 연구과제추진비	1.63	2.00	
	1.5 참여기관	1.63	2.00	
	2. 간접비	7.44	9.10	직접비의 10.01%
	합 계	81.71	100.00	
	1. 직접비	73.37	90.90	
	1.1 인건비	7.59	9.40	
	1.2 연구시설.장비 및 재료비	55.29	68.50	
4세부	1.3 연구활동비	5.25	6.50	
47川十	1.4 연구과제추진비	2.42	3.00	
	1.5 참여기관	2.83	3.50	
	2. 간접비	7.35	9.10	직접비의 10.01%
	합 계	80.72	100.00	

제3절 추진체계

□ 산·학·연 통합 추진체계 구성

- 세부별 전문기술 보유 중소·중견기업 참여 확대를 통한 관련기업 육성
- 본 사업은 한국산업기술평가관리원이 전담기관인 사업으로 산업기술 혁신사업 공통 운영요령 등에 따라 사업을 관리

총괄	R&D 허브
Project Manager	연구기관

산업통상자원부	한국산업기술관리평가원
사업 기획 및 공고	사업 기획 평가 관리
프로젝트 관리 및 예산 지원 승인	년차별 산출물 평가 및 목표 개선

총괄	1세부	2세부	3세부	4세부
주관: 연구기관	주관: 연구기관	주관: 기업	주관: 연구기관	주관: 연구기관
참여: 산·학·연				

제5장 과학기술적 타당성 분석

제1절 사업목표의 적절성

□ 사업 논리 모형을 바탕으로 한 목표 설정

- 사업 목표·세부 세업간 내용 유기적 연계
- ☞ 문제/이슈제기부터 세부목표 설정, 수혜자 명확화, 투입—활동—산출— 성과/영향 내용 통합연계 구성

□ 사업목표

○ 미래카 경량화 이종소재 용접·접합 DB 및 IIoT 플랫폼 구축 및 실증

□ 사업내용

- ① 스마트 유연생산공정 IIoT 테스트베드 기반 기업지원시스템 개발
- ② 블록체인기술 기반 R&D 메가허브 스마트 제조혁신플랫폼 개발
- ③ IIoT 연계 이종접합 공정 표준화 기술 개발 ④ 이종소재 접합 장비 플랫폼 국산화 개발 및 부품실증 연구

1. 문제 및 이슈

- (현황) 다양한 경량소재 및 접합공정이 적용되는 미래 자동차 차체는 기존의 연구개발 개별지원 형태로는 종합지원이 불가능하고 비용의 효용성 및 기술의 적기성 측면에서도 한계에 직면
- 철강소재 기반의 주력산업에는 동종의 용융용접이 사용되는 반면, 미래 스마트 산업에는 다양한 경량소재가 적용되어 다중소재 이종접합 기술이 필수적임
- 주요 선진국에서는 이종접합 관련 DB를 기반으로 수요자의 요구에 대응하고 있으나 국내에는 폐쇄적인 기술개발 환경으로 인하여 이를 해결할 수 있는 지원체계 등이 미흡한 실정임
- (해결방안) 자동차 경량화로 강화되는 규제에 능동적 대체를 위해 국가적 차원의 지원 로드맵을 통한 전략적 경량화와 산업 생태계로의 육성이 필요
- 다중소재 이종접합 D/B 구축 운영을 통해 미래자동차 부품 실증으로 연결되는 수요/공급 공유형 플랫폼을 활용함으로써 관련 산업 경쟁력을 확보

1

2. 목표

- 미래카 경량화 이종소재 용접·접합 공정별 DB 및 IIoT 플랫폼 구축 실증
- 이종접합 DB시스템 개발
- : 차체·섀시 소재 DB 구축: 200건, 알고리즘 개발: 3건
- 공유형 이종접합 장비 네트워크 구축 및 평가기술 개발
- : 용접공정 수: 10 개, 이종접합 강도(동종 대비): 80%
- 미래자동차 이종접합 부품 실증기술 개발
- : 실증 부품 수: 3 개 이상, 이종접합 품질: 모재 강도 85% 이상

3. 수혜자

- 자동차 부품 생산업체
- 수송기기 경량화 부품업체
- 이종접합공정 모니터링업체
- 대학 및 관련 정부출연연구소
- S/W, DB, 플랫폼 전문 기업

4. 투입 5. 활동 6. 산출 7. 성과/영향 • IIoT기반 디지털 • 사업비 용접접합 플랫폼 • 자동차 실증 • 이종접합분야 부품수: 3개 - 377.78억원 기술 개발 원천기술 확보 • 이종접합 데이터 • 공유형 허브 • 자동차 경량화 (국비290.78억원 +민간87억원) 베이스 시스템 개발 플랫폼 구축 : 1건 소재·부품 기술 • 연구수행조직 • 이종접합 공정기술 • 자동차 차체 및 화보 - 스마트허브 섀시 소재 DB • 제조업 매출 확대 및 표준화 신뢰성 R&D 플랫폼 평가 기술 개발 구축 : 200 건 • 일자리 창출 - 인력: 123명 • 이종접합 부품 • 전문인력 양성 • 국제경쟁력확보 실증기술 개발

8. 가정

- 소재 부품 산업 글로벌 경쟁력 강화를 위한 정부의 정책 기조 유지
- 신규 R&D 사업에 대한 소재 부품 기업의 적극적 참여 의지
- 본 사업은 기존 이종소재 용접접합 기술개발 수행상 발생한 성과의 한계점을 보완하고 실태조사 및 수요조사로 도출된 관련 업계의 애로사항을 고려하여 구성하였음
- 본 사업의 최종목표를 이종접합 DB시스템 개발, 공유형 이종접합 장비 네트워크 구축 및 평가기술 개발, 미래자동차 이종접합 부품 실증기술 개발로 정량적으로 제시하였음

제2절 세부활동 및 추진전략의 적절성

□ 기획 세부활동

○ 기획 참여 전문가 구성의 적절성 : 본 사업은 자동차 경량화 이종소재 용접·접합 관련 산학연 전문가를 다양하게 활용하여 구성하였음

<그림. 25. 19년도 미래자동차 경량화 이종접합 플랫폼 기획 활동 1>

<그림. 26. 19년도 미래자동차 경량화 이종접합 플랫폼 기획 활동 2>

○ 기획 참여 전문가를 플랫폼기획연구위원회와 연구추진위원회로 구성하여 산·학·연 전문가 의견 및 관련 업계의 다양한 의견 수집

- 차체 경량화 이종소재 용접접합 관련 산학연 전문가가 참여하는 플랫폼 기획연구위원회와 본연구추진위원회를 구성하여 기술성, 경제성, 정책성 및 중복성을 체계적으로 분석하고 사업 방향 및 세부사업 설계
- (플랫폼기획연구위원회) : 최종의사결정기관으로 사업의 필요성 등을 검토·확인하고 사업 방향 등의 검토 및 조정 등을 수행
- (연구추진위원회) : 사업방향에 따른 전략 및 세부사업 수립 등을 수행
- 기획 참여 전문가 수는 총 62명으로, 산학연이 각각 34명, 6명, 22명으로 구성하였으며 이종소재 용접·접합과 관련한 연구를 위해 다양한 전문가 등이 참여하는 위원회를 구성하여 운영하였음

□ 기획과정의 적절성

- 본 사업은 ①사전기획단계 ②사업설계단계 ③의견수렴단계를 거쳐 세부 사업을 기획 구성함
- ☞ ① 사전기획단계에서는 추진주체 등이 참여하여 사업의 추진 필요성을 공유하고 기존 사업과 실태조사로 기획방향을 설정함
- ② 사업설계단계에서는 관련 자료 등의 분석으로 사업 추진 근거 및 방향을 확정하고 세부 사업 설계안을 도출함
- ③ 의견수렴단계에서는 수요조사 및 실태조사를 통해 관련 업계의 수요를 파악하여 세부 사업 설계안에 반영함

<표. 15. 사업 기획 프로세스>

 관련 분야 기술개발 수요 파악의 적절성 : 본 사업의 세부 사업은 관련 업계의 수요조사 결과를 반영하여 본 사업 추진을 통해 관련 업계의 수요를 파악하여 구성하였음

- ☞ 수요기관 설문조사 결과 자동차 차체 경량화 관련 기술개발이 시급한 것으로 나타났으며 경량화를 위한 후보 소재 중 알루미늄이 가장 많이 고려되고 있음
- ☞ 국내 이종 용접·접합 기술 및 관련 기술 DB 구축 수준은 낮은 것으로 판단되고 있으며 DB 구축 후 경량화 실증 부품 품질 향상 효과는 상당한 것으로 기대하고 있음

□ 시업 추진체제 및 추진의지

- 본 사업은 다양한 기관의 참여로 통합운영을 위한 스마트 R&D 허브 플랫폼을 구축하여 기관간 협력 체계를 마련하여 운영
- ☞ 주관기관: 사업 총괄 및 이종소재 용접·접합 플랫폼과 수요기업의 정보 공유 및 지속적 네트워크를 통한 완성차 및 차체 협력사의 공통 실증기술 로드맵 완성
- ☞ 산업계: 사업 관련 수요기술 및 실증 제품 정보 제공, 사업 관련 공유형 허브 플랫폼 전체 설계 및 스마트제조기술 모델 선정
- ☞ 연구계 : 사업 관련 이종소재 접합부의 (신)기술·제품 조사 분석 및 로드맵 작성
- ☞ 학계: 사업 관련 이종소재 접합부의 DB 분석 및 평가, 사업 관련 구축 시뮬레이션 조사 및 연구
- ☞ 본 사업은 다양한 추진주체(산학연)가 참여하고 다수의 전문가 참여로 기획하여 높은 사업 추진 의지 보유 중
- ☞ 관련 분야 실태 조사 등을 통해 업계의 애로사항 발생 현황을 파악 및 해결 방안 도출(수요조사)하여 동 사업의 실질적 필요성을 파악하여 세부 사업을 기획 구성함
- ☞ 동 사업 기획방향 관련 발표 및 의견수렴으로 사업의 필요성 및 객관성을 확보하고 현장의 의견을 반영하여 추진함

제6장 정책적 타당성 분석

제1절 국내정책동향

□ 근거법령

- 「산업기술혁신촉진법」 제11조, 19조
- ☞ 상기 조항에 의해 산업통상자원부장관은 "산업기술 분야의 미래 유망 기술"의 개발을 위한 "산업기술개발사업" 추진 가능
- 「부품·소재 전문기업 등의 육성에 관한 특별조치법」 3, 11, 19, 24조
- ☞ 소재의 개발 및 상용화를 위한 기술지원, 소재분야 연구개발 인력의 양성 지원, 또한 신뢰성향상기반구축사업 추진

□ 산업통상자원부 중점 추진과제

- 5대 신산업 프로젝트에 집중 투자
- ☞ 2018년 산업기술 R&D 예산의 약 30%를 2022년까지 50%로 확대
- ☞ (투자방향) 산업원천기술, 업종특화 핵심기술과 함께 신산업 시장 조기 창출을 위한 융합, 플랫폼, 실증에 대한 투자 확대
- ※ 산업통상자원부 중점 추진과제 및 투자방향과 본 사업의 부합성 산업통상자원부 중점 추진과제 中 미래 모빌리티 사회를 위한 전기·자율주행차와 본 사업은 부합하며, 투자방향인 산업원천기술·업종특화 핵심기술·융합·플랫폼·실증 키워드가 본 사업과 동일함

<그림. 27. 산업통상자원부 중점 투자 방향>

(출처: 산업통상자원부, 2019)

□ 정부계획 및 기술개발 로드맵과의 부합성

- `제4차 과학기술기본계획'
- ☞ 중점추진과제 6-주체 간, 분야 간 협력·융합 활성화, 11-4차 산업혁명 대응기반 강화, 13-제조업 재도약 및 서비스업 육성과 부합
- `제7차 산업기술혁신계획'
- ☞ 중점추진 3-6 데이터플랫폼·표준화·실증 위주 신산업창출 조성 부합
- `미래자동차 국가비전 선포식 개최' ('19.10.15, 정부)
- ☞ 「2030 미래차 산업 발전전략」합동 발표
- 핵심 원천기술 자립역량 강화를 위한 「소재·부품·장비 연구개발 투자 전략 및 혁신대책」발표 ('19.08, 정부)
- ☞ 일본 수출 규제 관련 핵심품목진단 및 연구개발 혁신방안 수립
- ☞ 소재·부품·장비 수출규제 대응 '연구개발 중심의 근본적 해결' 추진
- 첨단뿌리기술 66개 中 용접·접합 기술 ('15.02. 산업통상자원부)
- ☞ 첨단뿌리기술의 개발과 해외시장 개척 등 집중 지원
- 9대 국가전략 프로젝트* 추진계획 中 경량소재 및 가상증강현실 분야

※ 9대 국가전략 프로젝트란?

인공지능·가상·증강현실·자율주행치·경량소재·스마트시티 등 미래성장동력으로 키울 수 있는 5개 분야와 삶의 질 향상을 위한 4개 과제가 선정. 정부가 발표한 9대 국가전략 프로젝트 중 가장 우선 순위에 둔 경량소재는 향후 7년간 민관이 합동으로 R&D투자 계획

- 중소·중견기업 기술로드맵 2017-2019' 전략제품 中 경량소재분야
- 소재·부품 미래비전 2020, 제3차 소재부품발전 기본계획 수립
- ☞ 2020년까지 소재부품 4대 강국 진입을 목표로 R&D 추진
- `제4차 소재·부품 발전 기본계획 ('16.12 산업통상자원부)
- ☞ 1-2 신소재·부품개발 위한 정부역량 결집, 2-4 소재·부품 인프라를 미래형(Virtual)으로 전환과 부합

제2절 해외정책동향

□ 기술선진국 자동차 수송기기 부품산업 연구핵심은 경량화 및 접합기술

- ① 미국: 에너지부(DOE)를 중심으로 Lightweight Materials 프로그램을 운영 Lightweight Materials 프로그램 세부 내용
- 특성향상 및 제조 공정기술 : 철강, Al, Mg, CFRP 등의 특성 및 제조공정
- 다종소재 융합기술 : 철강-비철금속, 금속-고분자 등 다양한 소재 융복합
- 모델링 및 해석기술 : 성형공정 모델링 및 해석을 통한 정밀 예측 기술
- ② 일본: 경제산업성의 혁신적 신구조재료 기술개발 (ISMA) 프로그램 운용
- 이종소재 접합기술 :철강, Al, Mg, Ti, CFRP 소재 간 접합기술 개발
- 30GPa 강성지수 스틸: 강도 1.5GPa, 연신율 20% 철강소재 개발
- 자동차용 고특성 저가 비철 : 구조재용 고강도 저가형 Al. Mg. Ti 소재 개발
- 저가 대량생산 CFRP : 항공기 이외의 수송기기 적용 가능한 CFRP 개발
- 전략적 원천소재 : 혁신 구조재, 평가기술 및 파괴 메카니즘 규명 등 원천기술 확보
- ❸ 중국 : 신에너지자동차 및 자율주행차 등의 미래자동차 산업 육성 정책 강화
- 신에너지자동차에 대해 2020년까지 보유세를 면제
- 1,600cc 미만의 소형 승용차의 보유세 절반 인하
- · 2020년까지 수소연료 전지차의 R&D 역량을 확보해 1만대의 차량을 보급
- 2025년까지 주요 부품의 국산화 및 로컬브랜드 모델 10만대를 보급할 계획
- 2030년까지 100만대의 수소차를 보급하고 수소충전소 1천기를 구축 계획
- 2035년까지 스마트카의 개발과 상용화를 선도한다는 장기 목표를 수립
- 자동차 경량화기술 창조전략 연맹 설립을 통한 차량경량화 지원
- 신에너지자동차에 대해 2020년까지 보유세 면제
- 연료 소모량 감축을 위해 승용차 8~10%, 상용차 300kg의 경량화 계획 수립
- 2020년까지 자율주행 레벨 2 수준의 모델이 판매에서 차지하는 비중을 50%까지 계획
- 2025년까지 신차 판매에서 차지하는 반자율 주행자동차의 비중을 10~25%로 계획
- 2030년까지 완전자율주행차량 판매 비중을 10%로 확대할 계획
- ♪ 유럽연합 : Super Light Car(SLC) 등의 자동차 경량화에 대한 연구 수행
- European Green Car Initiative (FP7): 미래카 첨단 경량소재 및 부품개발 수행
- → 기존 SLC 프로젝트에서 달성한 차체 중량 감소의 20%이상 추가 달성 목표
- 비전 2030의 실현: European Aluminum Association(EAA)
- → European Aluminum Technology Platform(EATP)의 환경친화, 비용절감, 소재효율 제고

제3절 사업 추진상의 위험요인

- 국내 기업은 자체개발 중심 기업문화 및 폐쇄적 연구 진행으로 인해 연구 데이터 공유와 개방 혁신이 미정착
- ☞ 보유기술에 대한 유출 우려로 인해 기업 자체적 개발 방식 선호
- 국내 대기업을 정점으로 대기업-중견기업-중소기업 간 수직적 계층구조를 가진 산업 생태계로, 다양성 및 유연성이 결여되어 있으며, 국내 DB 기반 수요가 지원 플랫폼 미 구축으로 인해 글로벌 산업 환경에 유연하게 대처 하지 못함
- ☞ 글로벌 제조 경쟁력 확보 및 제조 산업 생태계 진화를 위해 민간 주도의 혁신 역량 공유형 플랫폼 구축이 필요
- 기존에 정부 R&D 지원을 통해 수행된 다양한 분야의 DB 플랫폼의 경우 아날로그 DB의 한계를 극복하지 못하고 확장성이 부족하여 제 기능을 하지 못하기 때문에 과제 종료 후 단절되는 경우가 대부분임
- ☞ 따라서 무질서하게 산재해 있는 이종소재 용접·접합관련 정보를 DB화하고 추가 확장성을 고려한 공유형 허브 플랫폼 시스템으로 뿌리산업 전반에 파급효과 극대화를 위한 체계화된 연계시스템 구성
- ☞ 이종재료 기계적 접합 기술의 경우 연구소 및 학교 단위로 공정조건과 품질에 대한 데이터베이스를 구축 중에 있으나 널리 활용되지 못함
- 이종소재 용접·접합 관련 장비는 대부분 고가이고 외산에 크게 의존하고 있어 국내 이종소재 접합수요는 급증하고 있으나 확산은 정체 상황
- ☞ 이종 기계적 접합 장비의 경우 국내 개발/공급사가 전무하여 전량 수입 장비에 의존상태로 높은 가격 및 유지/보수비용으로 인해 도입 정체
- ☞ 알루미늄 아크용접을 위해 전류 및 전압 파형의 모듈레이션을 통한 입열 제어가 필수이나 국내의 경우 해당기능이 없어 외산용접기에 의존
- ☞ 알루미늄 소재 저항점용접은 국내외적으로 완벽한 솔루션을 제공하는 장비가 없으며, 일부 새로운 공법을 기반으로 한 해외업체 장비의 경우 높은 장비단가로 보급이 크게 지연되고 있음

제7장 경제적 타당성 분석

제1절 분석 개요

□ 비용 내역

○ 본 사업은 총 사업비 377억원(국비 290, 지방비+민간 87)의 예산을 투입하여 5년 간(2021년~2025년) 진행됨

<표. 16. 본 사업의 연차별 총 사업비>

(억원)

구분	총사업비 (억원)	1차년도	2차년도	3차년도	4차년도	5차년도
국 고	290.78	34.27	87.34	66.27	53.88	49.02
민 자	87.00	10.25	26.13	19.83	16.12	14.67
 합 계	377.78	44.52	113.47	86.10	70.00	63.69

□ 기본 가정

- 편익 회임 기간: 과제 종료 1년 후 매출이 발생하는 것으로 가정 (「국가연구개발사업 예비타당성조사 수행 세부지침」에서는 연구개발단계별 편익 회임기간을 기초연구는 5년, 개발·응용연구는 3년으로 제시하고 있으나 본 사업의 특성상 과제 종료 후 1년 후 매출이 발생하는 것으로 가정함)
- 편익 발생 기간 : 본 사업의 경우 별도의 기술 수명기간을 분석하는 대신 수행된 유관성이 있는 사업의 TCT를 적용하여 7년으로 설정

<표. 17. 본 사업의 사업수행기간 및 편익 발생 기간 추정>

구분		사업	수행	기간		편익 회임 기간			편익	발생	기간		
	'21	'22	'23	'24	'25	'26	'27	'28	'29	'30	'31	'32	'33
미래자동차 경량화													
이종소재 용접·접합 플랫폼							XXXXXX	****	XXXXXX	*****	******	XXXXXX	******
구축 및 부품실증사업													

○ 할인율 : 예비타당성조사 지침 상의 사회적할인율 5.5%, 2018년 국고채 10년 평균 금리 2.5%와 두 개 할인율의 중간값 4.0%를 각각 적용

제2절 편익 항목 설정

- 본 사업으로 이종소재 용접·접합분야의 플랫폼 도입으로 생산비용을 절감시켜 편익을 발생시킬 수 있으며 관련 분야 시장 점유율 확대로 편익을 발생 시킬 수 있음
- ☞ 생산비용절감 편익은 기존 기술의 개선 및 개량, 새로운 생산 공정 기술의 개발, 대체요소 투입을 통해 생산의 효율성이 증가하고 산출비용이 감소 하여 발생
- ☞ 시장점유율 확대(가치창출) 편익은 새로운 제품·서비스 개발을 통해 시장에서 해당 제품·서비스가 실제 거래되며 매출 및 부가가치가 발생
- 생산비용절감 편익은 이종소재 용접·접합 플랫폼 구축 운영으로 이종소재 분야 기술개발 활성화에 기여하므로 수요를 중심으로 편익을 산정함
 - (참여기업수) 본 사업 관련 수요기관 설문조사 결과 참여의향조사에 응답한 산학연 83개중(산:51, 학:16, 연:16) 참여의향(88.89%)을 반영한 73개로 산정
 - ☞ (기술활용 수) 기반기술 활용 수 평균인 1건/년을 반영함(19년 기준)
 - ☞ 시제품 제작지원 11개사에서 요청하여 11건 지원, 기술정보제공 10개사 에서 요청하여 10건 지원
 - ☞ (R&D비용절감액) R&D 비용 절감액은 중소기업 R&D 비용 3.4억원 (중소기업 R&D 투자 현황과 전망(2019))에서 비용절감효과 23%(민관 협동 스마트공장 추진단)을 반영하여 R&D 비용절감액 0.8억원을 반영
 - ☞ (R&D기여율) '국가연구개발사업의 예비타당성조사 수행지침'에 의해 '제3차 과학기술기본계획'에서 명시한 35.4%를 적용함

<표. 18. 생산비용절감 편익 산정결과>

	'27	'28	'29	'30	'31	'32	'33
참여 기업 수	73	73	73	73	73	73	73
기반기술 활용 수	1	1	1	1	1	1	1
R&D비용절감액	0.8	0.8	0.8	0.8	0.8	0.8	0.8
R&D기여율	0.354	0.354	0.354	0.354	0.354	0.354	0.354
편익(억원)	21	21	21	21	21	21	21

- 시장점유율 확대(가치창출) 편익은 이종소재 용접·접합 플랫폼 구축 운영으로 인한 자동차 경량화 소재의 시장 점유율 확대로 편익을 산정함
- ☞ (시장규모) 본 사업 관련 분야인 자동차 적용 소재 세계시장 규모와 전망은 다음과 같음(2017 중소기업기술로드맵 전략보고서('08. 미래형 자동차 중 친환경 경량화 부품))

<표. 19. 자동차 적용 소재 세계시장 규모와 전망>

(단위: 백만달러)

						(_ 1	1 1 1/
구분	'16	'17	'18	'19	'20	'21	CAGR
 세계 시장	7,910	8,806	9,803	10,912	12,148	13,523	11.32%

☞ 내연기관 자동차 소재 세계시장의 CAGR은 11.32%이며 이를 기반으로 편익발생 시점인 '27~'33까지 시장규모를 추정함

<표. 20. 자동차 적용 소재 세계시장 전망>

(단위: 백만 달러)

구분	'27	'28	'29	'30	'31	'32	'33
시장 전망	25,734	28,647	31,890	35,500	39,519	43,992	48,972

☞ (경량화 소재 적용 비율) 본 사업은 자동차 소재 중 알루미늄과 고분자 /복합재를 대상으로 하므로 적용 비율을 17%로 산정(차체일반 자동차의 소재별 적용 비율은 철강 64%, 고분자 및 복합재 9%, 알루미늄 8%)

- (세계시장대비 국내시장 점유율) 세계시장 소재·부품 12대 업종별· 주요국별 시장점유율에서 동 사업의 성과물과 가장 부합하는 조립금속제품을 기준으로 4.1%를 적용함
- ☞ (사업기여율) 수요기관 설문조사에서 품질향상 기대효과 중 긍정적 효과 57%를 반영
- ☞ (R&D기여율) '국가연구개발사업의 예비타당성조사 수행지침'에 의해 '제3차 과학기술기본계획'에서 명시한 35.4%를 적용함
- ☞ (R&D 사업화성공률) 산업통상자원부 지식경제기술혁신사업의 성공률 39.6%를 적용함
- (부가가치율) 한국은행 산업 연관표를 기준으로 동 사업의 성과물과 가장 부합하는 금속제품의 기초 가격 거래표를 활용하여 부가가치율 30.4%를 산정
- ☞ (환율) KEB 하나은행 2018년 매매기준율 평균 환율인 1,101.08원/달러 적용

<표. 21. 시장점유율 확대 편익 산정결과>

	'27	'28	'29	'30	'31	'32	'33
시장전망	25,734	28,647	31,890	35,500	39,519	43,992	48,972
경량화 소재 적용 비율	0.17	0.17	0.17	0.17	0.17	0.17	0.17
세계시장대비 국내시장 점유율	0.041	0.041	0.041	0.041	0.041	0.041	0.041
사업기여율	0.57	0.57	0.57	0.57	0.57	0.57	0.57
R&D기여율	0.354	0.354	0.354	0.354	0.354	0.354	0.354
R&D사업화 성공률	0.396	0.396	0.396	0.396	0.396	0.396	0.396
 부가가치율	0.304	0.304	0.304	0.304	0.304	0.304	0.304
환율	1,101.08	1,101.08	1,101.08	1,101.08	1,101.08	1,101.08	1,101.08
편익(억원)	52	58	64	72	80	89	99

제3절 경제성 분석

○ 본 사업의 성과물에 대한 생산비용 절감 및 시장점유율 확대 편익 산정 결과의 경제적 편익은 3,046억원으로 추정됨

<표. 22. 편익 분석 종합>

	'29	'30	'31	'32	'33	'34	'35
생산비용절감 편익(억원)	21	21	21	21	21	21	21
시장점유율 확대 편익(억원)	52	58	64	72	80	89	99
합계(억원)	73	79	85	93	101	110	120

○ 명목가를 기준으로 본 사업의 총사업비 377억원 투입 시 총 편익은 661억원으로 산정되며 B/C 분석 결과는 다음과 같이 정리할 수 있음

<표. 23. 본사업의 총비용과 편익추정 결과(할인율)>

(단위: 억원)

	비용	비용	비용(할인율 반영) 편익		편익(할인율 반영)			-11	
	(명목가)	5.50%	4.00%	2.5%	(명목가)	5.50%	4.00%	2.5%	비고
'21	33.5	31.8	32.2	32.7					사업착수
'22	65.1	58.5	60.2	62.0					
'23	101.0	86.0	89.8	93.8					
'24	94.1	76.0	80.4	85.2					
'25	83.3	63.7	68.5	73.6					사업종료
'26									회임기간
'27					73	50	55	61	편익발생
'28					79	51	58	65	
'29					85	52	60	68	
'30					93	54	63	73	
'31					101	56	66	77	
'32					110	58	69	82	
'33					120	60	72	87	편익종료
계	377	316.0	331.1	347.3	661	382	442	513	

○ 경제성 분석 결과 본 사업의 산출 편익의 현재가치 대비 소요예산의 현재 가치를 고려한 B/C ratio는 모두 1.0 이상으로 경제성 확보가 가능

<표. 24. 본 사업의 BC 분석 결과>

사회적 할인율	5.50%	4.00%	2.25%
편익의 현재가치	382	442	513
비용의 현재가치	316.0	331.1	347.3
B/C ratio	1.2	1.3	1.5

제8장 기대효과 및 종합 시사점

제1절 기대효과

- □ 수요자-공급자-허브 플랫폼 간 입체적 협업으로 복합 이슈 해결
- □ 기존 R&D DB-실증 데이터의 실시간 공유 및 재사용을 통한 Trial & Error 최소화
 - (사회·경제적 효과) 생산유발 및 부가가치창출효과
 - 취약한 미래(수소)전기자동차·수송(항공)기기·배터리 분야 경량소재 부품분야에서 이종소재 용접· 접합 플랫폼 구축 및 부품 실증사업으로 상당한 기술력 확보로 관련 국내생산 유발, 대외 의존도 제거로 인한 관련 부가가치의 국내 잔류 효과가 예상됨
 - → 이종소재 용접·접합 관련, 해외 기술 및 생산 의존으로 인한 부가가치 유출을 막고 관련 분야 시장점유율을 높이는 계기가 되며 이는 소재부품 경쟁력확보로 연결될 것으로 예상
 - 금속가공제품의 경우 2017년 기준으로 금속가공제품(C08)의 생산 유발계수는 2.037, 부가가치 유발계수는 0.731로 추정됨
 - · 본 사업에 직접적으로 해당되는 금속가공제품: 2017년 기준 금속가공제품(C08)의 생산유발 계수 2.307, 부가가치유발계수 0.731
 - · 본 사업에 간접적으로 해당되는 수송기기: 2017년 기준 운송장비(C08)의 생산유발 계수 1.789, 부가가치유발계수 0.391
 - → 본 시업의 총 소요예산 377억원 투입시 직접적/간접적 생산유발효과는 총 767.9억/674.4억원으로 전망되며, 이는 이종소재 분야 기술개발로 관련 분야(금속소재 + 수송기기) 국내 생산이 유발될 수 있음 → (직접적) 767.9억원 + (간접적) 674.5억원 = 1,442.4억원
 - → 본 사업의 총 소요예산 377억원 투입시 직접적/간접적 부가가치유발효과는 275.5억/147.4억원을 유발하는 것으로 전망되며 이는 국내에 잔류하게 될 부가가치 규모를 추정할 수 있음
 - → (직접적) 275.5억원 + (간접적) 147.4억원 = 422.9억원
 - (사회·경제적 효과) 취업 및 고용유발효과
 - 자동차 경량화 소재부품 및 이종소재 용접·접합 분야 기술력 확보로 인한 생산 확대가 적용될 경우 관련 취업 및 고용효과가 증대될 수 있음
 - → 우선 직접적 고용효과로 관련 핵심기술 확보에 따른 관련 전문인력 취업자 및 고용증가가 예상되며 스마트제조기술을 포함한 파생 핵심기술 확보로 시장 점유율이 확대되는 시점에 추가적인 고용 창출 효과도 예상할 수 있음
 - 본 사업에 직접적으로 해당되는 금속가공제품: 2017년 기준 금속가공제품(C08)의 취업유발 계수 7.4, 고용유발계수 5.7로 추정됨

- 본 사업에 간접적으로 해당되는 수송기기: 2017년 기준 운송장비(C08)의 취업유발계수 8.0, 고용유발계수 6.6으로 추정됨(단위: 명/10억원)
- · 본 사업의 총 소요예산 377억원 투입시 직접적/간접적 취업유발효과는 279명/302명, 직접적/ 간접적 고용유발효과는 215명/249명으로 전망됨
- → (취업유발효과) (직접적) 279명 + (간접적) 302명 = 581명
- → (고용유발효과) (직접적) 215명 + (간접적) 249명 = 464명

○ (과학기술적 효과) 과학기술 수준 제고 효과

- IIoT 기반 용접접합 플랫폼 구축 운영으로 관련분야 과학기술 수준을 최고기술 보유국 수준으로 높일 수 있으며 이는 소재·부품 관련 과학기술 수준을 높이는 역할까지 확대될 것
 - → 스마트팩토리 관련 우리나라 과학기술 수준은 최고기술 보유국(미국, EU 100%) 대비 67.5%로 기술격차는 3.5년으로 나타나며, 본 사업을 통해 이종소재 분야에서 선진국과 기술격차를 감소시킬 수 있을 것으로 예상
 - → 소재·부품 관련 우리나라 과학기술 수준은 최고기술 보유국(미국 100%) 대비 78.0%로 기술격차는 3.0년으로 나타나며, 본 사업을 통해 소재·부품 분야에서 선진국과 기술격차를 감소 시킬 수 있을 것으로 예상

제2절 종합 시사점

- 미래(수소)전기자동차, 수송(항공)기기, 배터리의 소재시장 규모는 2030년 약 25조 원 수준으로 증가할 것으로 예상
- ☞ 이중 경량화 이종소재의 적용 비중이 67%로 증가하여 급격한 수요 증가가 예상
- ☞ 차량 경량화에 있어서 비철 소재 시장 규모가 큰 폭으로 상승할 것으로 전망되며, 이에 따라 차체에 적용되는 부품 개발업체는 대부분 동종소재 에서 이종 및 다중소재 용접 접합으로 전환에 대비한 생태계 구축이 필요
- ☞ 미래 자동차 경량화 정책이 가속화됨에 따라 완성차와 부품업체들의 경량화부품에 대한 용접·접합기술의 확보가 시급한 상황에서 공유형 제조 혁신 플랫폼 활용은 선택이 아닌 필수
- 정부는 미래(수소)전기자동차, 수송(항공)기기, 배터리 등 미래 주력산업의 핵심 경쟁력으로 부상하고 있는 경량소재 개발 및 국내 산업생태계 육성을 위하여 국가 전략과제 사업 형태로 진행
- ☞ 최근에는 미래형 친환경 자동차 수요산업의 급성장과 글로벌 수요기업 공급선 다변화 추세에 따라 경량소재 시장이 확대되고 있으며, 앞으로도 매우 증가할 전망
- ☞ 기업별 또는 개별기술별 연구개발 시 중복 개발의 가능성이 크고 플랫폼化 되지 못하면 개발 이종소재 용접·접합 기술의 공개성 및 개방성이 저하되어 개발기술의 지속성장과 확산이 어려움
- ☞ 정부주도의 전기·수소차 부품고도화 등 신산업육성사업에 대한 지속적 R&D투자와 연계하여 공동 연구개발 대상의 필요성이 높음
- ☞ 기술의 개방성, 공유성 및 참여기업의 다양성이 부족하여 개발기술의 지속적 성장 및 발전에 한계 존재
- 지속적으로 이종소재 용접·접합기술의 첨단화 및 비용 절감에 대한 시장의 요구에 개별 기업의 단위요소 기술개발은 한계에 봉착
- 따라서 이종소재 용접·접합이라는 '물리적 가치'에 네트워크를 활용한 제조기술의 플랫폼화의 '정보적 가치'를 더해 새로운 가치 창출이 요구됨

- 국내에서는 아직 이종소재 용접·접합 등을 통한 경량화의 적용 초기 단계로 부품단위의 제조기술에 적용할 수 있는 용접·접합 제조업 플랫폼(//가 필요
- 국가적으로 추진하고 있는 4차 산업혁명에 대응할 수 있는 시스템과 연동하여 활용한 시너지 극대화 방안이 필요
- ☞ 국가적으로 추진하고 있는 4차 산업혁명에 대응할 수 있는 시스템과 연동하여 활용한 시너지 극대화를 위해서는 공정데이터수집, 품질예측, 품질제어 기능이 포함된 자동화 장비의 국산화가 필요