NOM: Prénom: Note:

1. Soit (u_n) la suite telle que $u_0 = 0$, $u_1 = 1$ et $u_{n+2} = 5u_{n+1} - 6u_n$ pour tout $n \in \mathbb{N}$. Montrer que $\forall n \in \mathbb{N}$, $u_n = 3^n - 2^n$. Soit \mathcal{P}_n l'hypothèse de récurrence $u_n = 3^n - 2^n$. \mathcal{P}_0 et \mathcal{P}_1 sont évidemment vraies. Supposons que \mathcal{P}_n et \mathcal{P}_{n+1} soient vraies pour un certain $n \in \mathbb{N}$. Alors

$$u_{n+2} = 5(3^{n+1} - 2^{n+1}) - 6(3^n - 2^n)$$

$$= 15 \cdot 3^n - 10 \cdot 2^n - 6 \cdot 3^n + 6 \cdot 2^n$$

$$= 9 \cdot 3^n - 4 \cdot 2^n$$

$$= 3^2 \cdot 3^n - 2^2 \cdot 2^n = 3^{n+2} - 2^{n+2}$$

Par récurrence double, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

2. Résoudre l'inéquation $x + 2 \le \sqrt{|2x + 3|}$.

Tout d'abord l'inéquation est vérifiée pour tout $x \le -2$ car une racine carrée est positive. Supposons maintenant $x \ge -2$. Alors

$$x + 2 \le \sqrt{|2x + 3|}$$

$$\iff (x + 2)^2 \le |2x + 3|$$

$$\iff (x + 2)^2 \le 2x + 3 \text{ ou } 2x + 3 \le -(x + 2)^2$$

$$\iff x^2 + 2x + 1 \le 0 \text{ ou } x^2 + 6x + 7 \le 0$$

$$\iff (x + 1)^2 \le 0 \text{ ou } x^2 + 6x + 7 \le 0$$

$$\iff x = -1 \text{ ou } -3 - \sqrt{2} \le x \le -3 + \sqrt{2}$$

Mais comme on a supposé $x \ge -2$ et comme $-3 - \sqrt{2} \le -2$, cette dernière assertion équivaut à

$$x = -1 \text{ ou } x \le -3 + \sqrt{2}$$

Finalement, l'ensemble des solutions est $\{-1\}\cup]-\infty, \sqrt{2}-3]$.

3. Calculer
$$S_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right)$$
.

$$S_n = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right) = \sum_{k=1}^n \ln(k+1) - \ln(k) = \ln(n+1) - \ln(1) = \ln(n+1)$$

4. Soit $n \in \mathbb{N}$. Calculer $S_n = \sum_{k=2}^{n+5} (2k-1)$ sous forme factorisée.

Il s'agit d'une série arithmétique.

$$S_n = \frac{(n+4)(3+2n+9)}{2} = (n+4)(n+6)$$

5. Soit $n \in \mathbb{N}$. Calculer $S_n = \sum_{k=1}^{n+2} 3^{k-1} 2^{2-k}$.

Il s'agit d'une série géométrique.

$$S_n = 2 \times \frac{(3/2)^{n+2} - 1}{3/2 - 1} = 4\left(\left(\frac{3}{2} - 1\right)^{n+2}\right)$$

6. Soit $n \in \mathbb{N}^*$. Calculer $S_n = \sum_{k=2}^{n+1} \binom{n}{k-2} 3^{k+1} 2^{n-k+2}$.

On procède d'abord à un changement d'indice.

$$S_n = \sum_{k=0}^{n-1} \binom{n}{k} 3^{k+3} 2^{n-k}$$

On fait ensuite apparaître une formule du binôme.

$$S_n = 27 \sum_{k=0}^{n-1} {n \choose k} 3^k 2^{n-k} = 27 \left(\sum_{k=0}^n {n \choose k} 3^k 2^{n-k} - 3^n \right) = 27 \left((3+2)^n - 3^n \right) = 27 (5^n - 3^n)$$