ZKP IAP: Session 5 Homework

Brian Justin Stout*

September 28, 2023

Problem 1. How can use the secret value τ to make a fake KZG opening proof if you had it?

Suppose verifer sends y and I desire to send $w \neq z = f(y)$ with a proof $\pi = g^n$ that satisfies the pairing.

The verifier will check the pairing formula, where c_f is the commitment to f:

$$e(\frac{c_f}{g^w}, g) = e(\pi, \frac{g^{\tau}}{g^y})$$
$$= e(f^{f(\tau)-w}, g) = e(g^n, g^{\tau-y})$$
$$= e(g, g)^{f(\tau)-w} = e(g, g)^{n(\tau-y)}$$

Which will hold if we compute π using $n = \frac{f(\tau) - w}{\tau - y}$, and is computable if we know τ .

Problem 2. Construct a vector commitment scheme from the ZKG polynomial commitment scheme.

Suppose our message space was $\mathcal{M} = \mathbb{F}^n = \{(m_1, ..., m_n) | m_i \in \mathbb{F}\}$. Let $m \in \mathcal{M}$ be a message. Construct the ordered pairs

$$(1, m_1), ..., (n, m_n)$$

and let f_m be the degree n-1 polynomial over \mathbb{F} defined by Lagrange interpolation. Finally, define the commitment of m to be the ZKG commitment of f_m , which we denote by c_m .

The commitment scheme is defined as follows:

- $Setup(1^{\lambda})$ is the same as the ZKG set up, assuming d > n. Outputs SRS = (ck, vk)
- Commit(ck, m) produces c_m the ZKG commitment to f_m .
- $Open(SRS, c_m, i, m_i)$ produces a ZKG proof that $f_m(i) = m_i$.

^{*}email: bjstout@proton.me

Problem 3. Can you extend ZKG polynomial commitment scheme to produce a multiproof π that convinces us of $p(x_i) = y_i$ for a list of points and evaluations (x_i, y_i) ?

Suppose we had a commitment to a polynomial p and had several challenges (x_i, y_i) for i = 1, ..., r. Interpolate I(x) using Lagrange interpolation. Then p(x) - I(x) has roots at $x_1, ..., x_r$ and therefore $\Pi_i(x - x_i)$ divides this polynomial. Let q be the quotient polynomial. Set the opening proof $\pi = [q(\tau)]_1$.

We claim this opening proof will validate with any (x_i, y_i) . The pairing check is:

$$e(\frac{c_p}{g^{y_i}}, g) = e(\pi, \frac{g^{\tau}}{g^{x_i}})$$
$$= e(g, g)^{p(\tau) - y_i} = e(g, g)^{q(\tau)(\tau - x_i)}$$

which holds since the interpolated polynomial $I(x_i) = y_i$.