Laboratório 6:

Análise e síntese de circuitos sequenciais síncronos

Professor: Osamu Saotome

Alunos:

Rodrigo Alves de Almeida

(<u>rodrigoalalmeida@gmail.com</u>)

Eduardo Menezes Moraes

(eduardomenezesm@msn.com)

Comp 22

4.1. Montagem do circuito Moore

Segue a montagem do modelo de Moore juntamente com figuras que verificam o funcionamento do mesmo de acordo as especificações exigidas. Vale ressaltar, tanto para esse como para o circuito de Mealy, que os interruptores representam, da esquerda para direita, respectivamente, X e CLK.

4.2. Montagem do circuito Mealy

Segue nas figuras abaixo estados que verificam o funcionamento da montagem do circuito Mealy, analogamente ao circuito de Moore:

5.1 - Projeto e simulação de um contador síncrono reversível

a) Grafo de transição de estados:

Para Ep = 0, a tabela de transição é a seguinte:

Quando Ep = 1, a partir de qualquer estado k, $0 \le k < 16$, é possível ir para outro estado $k^{'}$, $0 \le k^{'} < 16$, sendo $k^{'}$ a representação decimal da sequência de bits $d_1d_2d_3d_4$

b) Tabela de transição de estados:

Estado Atual	Ер	= 0	Ep = 1
	Rev = 0	Rev = 1	
$Q_1Q_2Q_3Q_4$	$D_1 D_2 D_3 D_4$	$D_1D_2D_3D_4$	$D_1 D_2 D_3 D_4$
0000	0001	1111	$d_1d_2d_3d_4$
0001	0010	0000	$d_1d_2d_3d_4$
0010	0011	0001	$d_1d_2d_3d_4$
0011	0100	0010	$d_1d_2d_3d_4$
0100	0101	0011	$d_1 d_2 d_3 d_4$
0101	0110	0100	$d_1 d_2 d_3 d_4$
0110	0111	0101	$d_1 d_2 d_3 d_4$
0111	1000	0110	$d_1d_2d_3d_4$
1000	1001	0111	$d_1 d_2 d_3 d_4$
1001	1010	1000	$d_1d_2d_3d_4$
1010	1011	1001	$d_1d_2d_3d_4$
1011	1100	1010	$d_1d_2d_3d_4$
1100	1101	1011	$d_1d_2d_3d_4$
1101	1110	1100	$d_1d_2d_3d_4$
1110	1111	1101	$d_1d_2d_3d_4$
1111	0000	1110	$d_1d_2d_3d_4$

c) Mapa de Karnaugh para Ep = 0 e equações booleanas:

D₁

• D₃

QQ2 Q3Q4	00	01	1.1	10	Q3Q4	200	ΟΛ	٨٨	10	
00	0	0	0	0	00	1	1	4	1	
01	1	1	1	1	01	0	0	0	0	
11	0	0	0	0	.11	1	1	1	1	
10	1	1	1	1	10	0	0	0	10	\
		Rever)				1 12	ev = !	7	2
P	3= K	Zev (Q3 (3	9 Qu	+ Rev	(Q=	, DG	24)=	-	
	= ‡	Zev G) Q2		Qy					

d) Flip-Flops

Será utilizado um flip flop para cada variável de saída. Como, para o flip-flop D, a equação característica é $Q_{n+1}=D$, temos:

$$\begin{split} D_1 &= E_p(d_1) + \overline{E_p}(\overline{Rev}(\underline{Q_1} \oplus Q_2 Q_3 Q_4) + Rev(\underline{Q_1} \oplus \overline{\underline{Q_2}} \ \overline{\underline{Q_3}} \ \overline{Q_4} \)) \\ D_2 &= E_p(d_2) + \overline{E_p}(\overline{Rev}(\underline{Q_2} \oplus \underline{Q_3} Q_4) + Rev(\underline{Q_2} \oplus \overline{Q_3} \ \overline{Q_4} \)) \\ D_3 &= E_p(d_3) + \overline{E_p}(\overline{Rev} \oplus \underline{Q_3} \oplus Q_4)) \\ D_4 &= E_p(d_4) + \overline{E_p}(\overline{Q_4}) \end{split}$$

e) Diagrama esquemático:

f) Diagrama de temporização:

5.2 - Projeto e simulação de um registrador de deslocamento de 4 bits

a) Tabela de transição de estados **parte síncrona**

Estado Atual	Próximo Estado				
	R = 0	R = 1			
$Q_1Q_2Q_3Q_4$	$Q_{1}^{'}Q_{2}^{'}Q_{3}^{'}Q_{4}^{'}$	$Q_{1}^{'}Q_{2}^{'}Q_{3}^{'}Q_{4}^{'}$			
0000	d _{ser} 000	000 d _{ser}			
0001	d_{ser} 000	001 d _{ser}			
0010	d _{ser} 001	$010~d_{ser}$			
0011	d _{ser} 001	011 <i>d_{ser}</i>			
0100	d _{ser} 010	$100~d_{ser}$			
0101	d _{ser} 010	101 d _{ser}			
0110	<i>d_{ser}</i> 011	$110 \ d_{ser}$			
0111	<i>d_{ser}</i> 011	$111 d_{ser}$			
1000	d _{ser} 100	$000~d_{ser}$			
1001	d _{ser} 100	$001~d_{ser}$			
1010	<i>d_{ser}</i> 101	$010~d_{ser}$			
1011	<i>d_{ser}</i> 101	011 <i>d_{ser}</i>			
1100	<i>d_{ser}</i> 110	$100 \ d_{ser}$			
1101	<i>d_{ser}</i> 110	$101 d_{ser}$			
1110	<i>d_{ser}</i> 111	$110 \ d_{ser}$			
1111	<i>d_{ser}</i> 111	$111 d_{ser}$			

b) Equações booleanas parte síncrona

Como há apenas o deslocamento de bits, não é necessário a montagem do mapa de Karnaugh:

$$Q'_{1} = \overline{R} d_{ser} + R Q_{2}$$

$$Q'_{2} = \overline{R} Q_{1} + R Q_{3}$$

$$Q'_{3} = \overline{R} Q_{2} + R Q_{4}$$

$$Q'_{4} = \overline{R} Q_{3} + R d_{ser}$$

c) Flip-Flop

Para o flip-flop JK, a equação característica é $Q_{N+1}=J$ $\overline{Q_N}+\overline{K}$ Q_N . Porém, verifica-se que as equações booleanas das variáveis de estado são do tipo $Q_i^{'}=\overline{R}$ A+R B, sendo A e B sempre diferentes de Q_i . Desse modo, devemos fazer com que JK=10 quando $Q_i^{'}=1$ e JK=01 quando $Q_i^{'}=0$. Ou seja:

$$J_{i} = \underline{Q'_{i}}$$
$$K_{i} = \underline{Q'_{i}}$$

d) Tabela verdade e equações booleanas **parte assíncrona**

Para a parte assíncrona, pode-se utilizar as entradas preset e clear dos flip-flops:

E_p	d_{i}	$\overline{P_i}$	$\overline{C_i}$
0	x	1	1
1	0	1	0
1	1	0	1

$$\frac{\overline{P_i}}{\overline{C_i}} = \frac{\overline{E_p \ d_i}}{\overline{E_p \ \overline{d_i}}}$$

e) Diagrama esquemático:

f) Diagrama de temporização:

Para o diagrama de temporização, foi colocado inicialmente Ep=1 para inicializar Q com 0000.

Mais detalhadamente:

5.3 - Projeto e simulação de uma máquina sequencial síncrona

Conforme os passos do item 3.3, segue:

a) Diagrama de transição de estados

De acordo com o enunciado, pode-se obter o diagrama de estados para a máquina sequencial síncrona de Mealy, conforme a figura abaixo.

E a forma de onda:

b) Tabela de transição de estados

A partir disso, como realizado anteriormente, obtém-se:

Estado XY	00	01	11	10
A B C D	A10 A10 A10	A10 10 10	810 810 1011 1010	A10 A10 A10

c) Tabela de transição Flip-Flops

Dessa tabela, percebemos a escolha do Flip-Flop JK é mais adequada.

do	Qn	1	K	D /	R	5	1 T
0	0	0	X	0	X	0	0
P	1	1	X	1	0	1	1
1	0	X	1	0	1	0	1
4	1	X	0	1	10	X	0
		1					

d) Tabela de estados codificados

Assim, obtemos:

0000	0010	0110	00/0
		0110	0060
0000		1111	0060
	0010	0010 1010	0010 1010 0100

e) Equação de excitação e de saída

Finalmente, através das minimizações, semelhantemente ao que foi feito nos itens anteriores, chega-se nas equações:

$$Z = XYQ_0Q_1$$

$$K_0 = Q_1 + Y'Q_1'$$

$$J_0 = XY + YQ_1$$

$$K_1 = X \oplus Q_0 + Y'$$

$$J_1 = X'YQ_0$$

f) Diagrama esquemático

g) Diagrama de temporização

Segue o diagrama, ratificando a funcionabilidade do circuito lógico.

