StatsI — Exercise 4

- 1. (a) Let X be a random variable with mean μ and variance $\sigma^2 \in (0, \infty)$. Show that $P(|X \mu| > 2\sigma) \le 0.25$. What does this inequality tell us about the distribution of X?
 - (b) Let X_1, \dots, X_n be an IID sample from a population with mean μ and variance $\sigma^2 \in (0, \infty)$. Show that for any $\epsilon > 0$, $P(|\bar{X}_n \mu| > \epsilon \sigma) \le \frac{1}{n\epsilon^2}$. Compare this bound with the approximation implied by the CLT when n is large.

Note. The conditions required for these inequalities are minimum.

- 2. Let X and Y be two r.v.s with positive and finite variances. The correlation coefficient of X and Y is defined as $\rho = \text{Cov}(X,Y)/\sqrt{\text{Var}(X)\text{Var}(Y)}$. (If $\rho = 0$, X and Y are called <u>uncorrelated</u> or linearly independent.)
 - (a) Show that $|\rho| \le 1$.
 - (b) If Y = aX + b for some constants $a(\neq 0)$ and b, show that $|\rho| = 1$.

Note. In fact $|\rho| = 1$ if and only if Y = aX + b for some constants $a(\neq 0)$ and b.

- 3. Let X_1, \dots, X_n be a sample from a distribution with mean μ and variance $\sigma^2 \in (0, 1)$. Let $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$, where \bar{X}_n is the sample mean.
 - (a) Show that $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n X_n^2 \frac{n}{n-1} \bar{X}_n^2$
 - (b) Using Slutsky's theorem, show that $S_n^2 \stackrel{P}{\longrightarrow} \sigma^2$.