Capstone Project-3

EXploratory Data Analysis (EDA) Project

Project-Heart Failure Analysis

import numpy as np import pandas as pd

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

1) Load the Data File link text

df=pd.read_csv('/content/heart_failure_clinical_records_dataset (1).csv') df

_	а	ge a	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_s
	0 7	5.0	0	582	0	20	1	265000.00	1.9	
	1 5	5.0	0	7861	0	38	0	263358.03	1.1	
	2 6	5.0	0	146	0	20	0	162000.00	1.3	
	3 50	0.0	1	111	0	20	0	210000.00	1.9	
	4 6	5.0	1	160	1	20	0	327000.00	2.7	
2	94 62	2.0	0	61	1	38	1	155000.00	1.1	
2	. 95 5	5.0	0	1820	0	38	0	270000.00	1.2	
2	96 4	5.0	0	2060	1	60	0	742000.00	0.8	
2	97 4	5.0	0	2413	0	38	0	140000.00	1.4	
2	. 98 50	0.0	0	196	0	45	0	395000.00	1.6	
29 ∢	9 rows	× 13	columns)

Next steps:

Generate code with df

New interactive sheet

2) Print first 5 rows of data

df.head()

→		age	anaemia	creatinine_phosphokinase	diabetes	${\it ejection_fraction}$	high_blood_pressure	platelets	serum_creatinine	serum_sod
	0	75.0	0	582	0	20	1	265000.00	1.9	
	1	55.0	0	7861	0	38	0	263358.03	1.1	
	2	65.0	0	146	0	20	0	162000.00	1.3	
	3	50.0	1	111	0	20	0	210000.00	1.9	
	4	65.0	1	160	1	20	0	327000.00	2.7	
	4									>

Next steps:

Generate code with df

View recommended plots

New interactive sheet

3)Print last 5 rows of data

df.tail()

		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_s
	294	62.0	0	61	1	38	1	155000.0	1.1	
	295	55.0	0	1820	0	38	0	270000.0	1.2	
	296	45.0	0	2060	1	60	0	742000.0	0.8	
	297	45.0	0	2413	0	38	0	140000.0	1.4	
	298	50.0	0	196	0	45	0	395000.0	1.6	
	4									•

4)Basic cleaning of data (checking null values, missing value)

#cheak null values df.isnull().sum()

dtype: int64

#Drop rows with missing values df=df.dropna()

₹		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_s
	0	75.0	0	582	0	20	1	265000.00	1.9	
	1	55.0	0	7861	0	38	0	263358.03	1.1	
	2	65.0	0	146	0	20	0	162000.00	1.3	
	3	50.0	1	111	0	20	0	210000.00	1.9	
	4	65.0	1	160	1	20	0	327000.00	2.7	
	294	62.0	0	61	1	38	1	155000.00	1.1	
	295	55.0	0	1820	0	38	0	270000.00	1.2	
	296	45.0	0	2060	1	60	0	742000.00	0.8	
	297	45.0	0	2413	0	38	0	140000.00	1.4	
	298	50.0	0	196	0	45	0	395000.00	1.6	
2	299 ro	ws × 1	3 columns							
4										▶

Next steps:

Generate code with df

View recommended plots

New interactive sheet

5) Some information

1.Anaemia: 0 -> No || 1 -> Yes

2.diabetes: 0 -> No || 1 -> Yes

3.high_blood_pressure: 0 -> No || 1 -> Yes

4.sex: 0 -> Female || 1 -> Male

5.smoking: 0 -> No || 1 -> Yes

6.DEATH_EVENT: 0 -> No || 1 -> Yes

6)Get some info on the dataset

df.info()

```
RangeIndex: 299 entries, 0 to 298
   Data columns (total 13 columns):
                               Non-Null Count Dtype
       Column
    ---
        -----
    0
        age
                               299 non-null
                                              float64
    1
        anaemia
                               299 non-null
                                              int64
        creatinine_phosphokinase 299 non-null
                                              int64
                               299 non-null
                                              int64
                              299 non-null
        ejection_fraction
                                              int64
                             299 non-null
        high_blood_pressure
                                              int64
       platelets
                                              float64
                              299 non-null
299 non-null
        serum creatinine
                                              float64
                                              int64
    8
        serum_sodium
                               299 non-null
                                              int64
        sex
    10 smoking
                               299 non-null
                                              int64
    11 time
                               299 non-null
                                              int64
    12 DEATH_EVENT
                               299 non-null
                                              int64
   dtypes: float64(3), int64(10)
   memory usage: 30.5 KB
```

7)Remove un-needed data - time colum

Start coding or generate with AI.

8)Get some description of the data.

df.describe()

→		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_cre
	count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	29
	mean	60.833893	0.431438	581.839465	0.418060	38.083612	0.351171	263358.029264	
	std	11.894809	0.496107	970.287881	0.494067	11.834841	0.478136	97804.236869	
	min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000	
	25%	51.000000	0.000000	116.500000	0.000000	30.000000	0.000000	212500.000000	
	50%	60.000000	0.000000	250.000000	0.000000	38.000000	0.000000	262000.000000	
	75%	70.000000	1.000000	582.000000	1.000000	45.000000	1.000000	303500.000000	
	max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000	
	4								>

9)Shape of the Datase

df.shape

→ (299, 13)

10)Find how many records are there. (value_counts)

- 1) gender
- 2)high blood pressure
- 3)diabetes
- 4)smoking
- 5)death_event
- #1)gender

df['sex'].value_counts()

count

sex

1 194

0 105

dtype: int64

```
#2)high blood pressure
df['high_blood_pressure'].value_counts()
```

```
        high_blood_pressure

        0
        194

        1
        105
```

dtype: int64

#3)diabetes

df['diabetes'].value_counts()

count diabetes 0 174 1 125

dtype: int64

#4)Smoking
df['smoking'].value_counts()

dtype: int64

#5)Death event
df['DEATH_EVENT'].value_counts()

dtype: int64

Visualization

import seaborn as sns
import matplotlib.pyplot as plt

1)Pairplot with relation to death event:

sns.pairplot(df,hue='DEATH_EVENT')
plt.title('DEATH_EVENT',color='red')
plt.show()


```
sns.countplot(x='sex',data=df)
plt.title('Sex',color='blue')
plt.show()
```


3)Bar plot for 'DEATH_EVENT':

```
sns.countplot(x='DEATH_EVENT',data=df,color='Gray')
plt.title('DEATH_EVENT',color='blue')
plt.show()
```


4)Death event per each sex using barplot:

```
sns.countplot(x='DEATH_EVENT',data=df)
plt.title('DEATH_EVENT',color='pink')
plt.show()
```


5)Sex correlated with Death rate using heatmap:

```
corr=df.corr()
sns.heatmap(corr,annot=True,cmap='Greens')
plt.title('SEX CORRELATED WITH DEATH RATE',color='red')
plt.show()
```


6) Smoking aganist Death using Barplot:

```
sns.countplot(x='smoking',hue='DEATH_EVENT',data=df)
plt.title('SMOKING AGANIST DEATH EVENT',color='blue')
plt.show()
```


7) High blood pressure with age using catplot:

