Syntax

- Bool $\in T$, $i_{Bool} = 2$
- $\bullet \ \, {\tt True} \equiv D_1^{\tt Bool}, {\tt False} \equiv D_2^{\tt Bool}$
- $ty(True) = \{v:Bool \mid v \Leftrightarrow true\}, \text{ and } ty(False) = \{v:Bool \mid v \Leftrightarrow false\}$
- if e then e_1 else $e_2 \doteq \mathrm{case}_{\mathtt{Bool}} \ e \ x$ of $\{\mathtt{True} \Rightarrow e_1; \mathtt{False} \Rightarrow e_2\}$

Erasing

$$\lfloor \{v : b \mid e\} \rfloor = b$$

$$\lfloor x : \tau_x \to \tau \rfloor = \lfloor \tau_x \rfloor \to \lfloor \tau \rfloor$$

Substitutions

$$(\{v:b \mid e\}) [e_y/y] = \{v:b \mid e [e_y/y]\}$$

$$(x:\tau_x \to \tau) [e_y/y] = x:(\tau_x [e_y/y]) \to (\tau [e_y/y])$$

Interpretations

Definition 1. Let $Fin_i(\star)$ and $Valid_i(\star)$ be predicates on expressions such that

- 1. For $\emptyset \vdash e: \{v:b \mid e_r\}$ $(\forall i.Fin_i\ (e) \Rightarrow Valid_i\ (e_r))$ is a "meaningful" soundness predicate.
- 2. For any x, e, e_r, θ , if $e \hookrightarrow e'$ then $\forall i. Valid_i (\theta e_r [e'/x]) \Rightarrow Valid_i (\theta e_r [e/x])$ and $\forall i. Valid_i (\theta e_r [e/x]) \Rightarrow Valid_i (\theta e_r [e'/x])$.

3. For any e_1, e_2 ,

$$Valid_i(e_1) \wedge Valid_i(e_2) \Rightarrow Valid_i(e_1 \wedge e_2)$$

Typing

 $\Gamma \vdash e:\tau$ $\frac{\Gamma \vdash e : \{v : b \mid e'\}}{\Gamma \vdash e : \{v : b \mid v =_b e\}} \quad \text{T-Ex}$ $\frac{(x, \{v:b \mid e\}) \in \Gamma}{\Gamma \vdash x: \{v:b \mid v =_b x\}} \quad \text{T-Var-Base} \qquad \frac{(x, \tau) \in \Gamma \quad \tau \equiv x': \tau_x' \to \tau'}{\Gamma \vdash x: \tau} \quad \text{T-Var}$ $\Gamma \vdash e: \{v:T \mid e_T\} \qquad \Gamma \vdash \tau$ $\forall (1 \leq i \leq i_T). \begin{cases} \operatorname{ty}(D_i^T) = \overline{x:\tau_{D_i^T}} \to \{v:T \mid e_T'\} & \theta = [y_i/x] \\ \Gamma, \overline{y_i:\theta} \ \tau_{D_i^T}, x: \{v:T \mid e_T \land \theta e_T'\} \vdash e_i:\tau \end{cases}$ $\Gamma \vdash \operatorname{case}_T \ e \ x \ \operatorname{of} \ \overline{D_i^T} \ \overline{y_i} \to e_i:\tau$ $\Gamma \vdash \operatorname{Case}_T \ e \ x \ \operatorname{of} \ \overline{D_i^T} \ \overline{y_i} \to e_i:\tau$ $\frac{\lfloor \Gamma \rfloor, v : b \vdash_B e : \text{bool}}{\Gamma \vdash \{v : b \mid e\}} \text{ WF-Base } \frac{\Gamma \vdash \tau_x \quad \Gamma, x : \tau_x \vdash \tau}{\Gamma \vdash x : \tau_x \to \tau} \text{ WF-Fun}$ $\frac{\Gamma, v : b \vdash e_1 \Rightarrow e_2}{\Gamma \vdash \{v : b \mid e_1\} \leq \{v : b \mid e_2\}} \preceq \text{-Base} \qquad \frac{\Gamma \vdash \tau_x' \leq \tau_x \quad \Gamma, x : \tau_x' \vdash \tau \leq \tau'}{\Gamma \vdash x : \tau_x \to \tau \leq x : \tau_x' \to \tau'} \preceq \text{-Fun}$ $\frac{\forall \theta.\Gamma \vdash \theta \land \forall i. \text{Valid}_i \ (\theta \ e_1) \Rightarrow \text{Valid}_i \ (\theta \ e_2)}{\Gamma \vdash e_1 \Rightarrow e_2} \Rightarrow \text{-Base}$ $\vdash \Gamma$ $\begin{array}{c|c} \vdash \Gamma & \Gamma \vdash \tau \\ \hline \vdash x : \tau . \Gamma & & \vdash \emptyset \end{array}$ $\Gamma \vdash \theta$ $\frac{\forall x \in \text{Dom}(\Gamma).\theta(x) \in [|\theta \ \Gamma(x)|]}{\Gamma \vdash \theta}$

Constants and Data Constructors

Definition 2. For each constant or data constructor w

- 1. $\emptyset \vdash w:ty(w)$ and $\vdash ty(w)$
- 2. If $ty(w) = x:\tau_x \to \tau$, then for each v such that $\emptyset \vdash v:\tau_x [|w|](v)$ is defined and $\vdash [|w|](v):\tau[v/x]$

Also, for all $e \in [|\tau_x|]$, we have $w \in [|\tau[e/x]|]$

3. If $ty(w) = \{v:b \mid e\}$, then $(\forall i.Fin_i (w) \Rightarrow Valid_i (e[w/v]))$ and $\forall w' w' \neq w.\neg((\forall i.Fin_i (w) \Rightarrow Valid_i (e[w'/v])))$

Moreover, for any base type b, $=_b$ is a constant and

• For any expression e we have

$$\forall i. Valid_i \ (e =_b e)$$

• For any base type b

$$ty(=_b) \equiv x:b \rightarrow y:b \rightarrow bool$$

For each T there are exactly i_T constants with result type $\{v:T \mid e_T\}$, namely D_i^T , $\forall 1 \leq i \leq i_T$.

Semantic Typing

$$\Gamma \vdash e \in \tau \doteq \forall \theta. \Gamma \vdash \theta \Rightarrow \theta \ e \in [|\theta \ \tau|]$$

$$\Gamma \vdash \tau_1 \subseteq \tau_2 \doteq \forall \theta. \Gamma \vdash \theta \Rightarrow [|\theta \ \tau_1|] \subseteq [|\theta \ \tau_2|]$$

Lemma 1. .

- 1. If $\Gamma \vdash \tau_1 \leq \tau_2$ then $\Gamma \vdash \tau_1 \subseteq \tau_2$
- 2. If $\Gamma \vdash e : \tau \text{ then } \Gamma \vdash e \in \tau$

proved

Lemma 2 (Substitution). If $\Gamma \vdash e_x \in \tau_x$ and $\vdash \Gamma, x : \tau_x, \Gamma'$, then

- 1. If $\Gamma, x:\tau_x, \Gamma' \vdash \tau_1 \leq \tau_2$ then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] \tau_1 \leq [e_x/x] \tau_2$
- 2. If $\Gamma, x:\tau_x, \Gamma' \vdash e:\tau$ then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] e: [e_x/x] \tau$
- 3. If $\Gamma, x:\tau_x, \Gamma' \vdash \tau$ then $\Gamma, [e_x/x] \Gamma' \vdash [e_x/x] \tau$

proved

Lemma 3. If $\Gamma \vdash e:\tau$ then $\lfloor \Gamma \rfloor \vdash_B e: \lfloor \tau \rfloor$.

Lemma 4. *If* $\vdash \Gamma$ *and* $\Gamma \vdash e : \tau$ *then* $\Gamma \vdash \tau$.

proved

Operational Semantic

Soundness

Lemma 5. If $e \hookrightarrow e'$ then $\Gamma \vdash \tau [e'/x] \preceq \tau [e/x]$.

proved

Lemma 6 (Preservation). If $\emptyset \vdash e:\tau$ and $e \hookrightarrow e'$ then $\emptyset \vdash e':\tau$.

proved

Lemma 7 (Progress). If $\emptyset \vdash e:\tau$ and $e \neq v$ then there exists an e' such that $e \hookrightarrow e'$.

proved

Interpretations

$$\text{Fin }(e) \doteq \exists v.e \hookrightarrow^{\star} v$$

$$\text{Valid}(e) \Leftrightarrow e \hookrightarrow^{\star} v \Rightarrow e \hookrightarrow^{\star} \text{true}$$

$$[|x|] = x$$
 $[|\lambda x.e|] = f$ $[|e_1|] = [|e_1|]([|e_2|])$

Claim 1.

$$\left\{ \bigwedge_{(x,\{b:v|e\})\in\Gamma} (Fin\ (x)\Rightarrow [|e\ [x/v]\ |])\Rightarrow [|e_1|]\Rightarrow [|e_2|] \right\}\Rightarrow \{\Gamma\vdash e_1\Rightarrow e_2\}$$