Intro to Logistic Regression

Classification

- Logistic Regression
 - A method of classification
 - Binary Classification Having two classes 0 or 1
- Regression problems Predict continuous values
- Classification problems Predict discrete values

Sigmoid Function

• The Sigmoid (aka Logistic) Function takes in any value and outputs it to be between 0 and 1

Binary Classifier

- This results are in form of probability
- Defined always between 0 to 1

• We can set a cutoff point at 0.5, anything below it results in class 0,

anything above is class 1

Evaluate

- CONFUSION MATRIX: Used to evaluate classification problems
- "The confusion matrix shows the ways in which your classification model is confused when it makes predictions."

		Actual class		
		Cat	Dog	Rabbit
Pa	Cat	5	2	0
Predicted	Dog	3	3	2
Pre	Rabbit	0	1	11

Confusion Matrix

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Example: Test for presence of disease NO = negative test = False = 0 YES = positive test = True = 1

"true positive" for correctly predicted event values.

"false positive" for incorrectly predicted event values.

"true negative" for correctly predicted no-event values. "false negative" for incorrectly predicted no-event values.

Confusion Matrix

Precision, Recall, F1

Precision: When it predicts yes, how often is it correct? TP/predicted yes = 100/110 = 0.91

True Positive Rate: When it's actually yes, how often does it predict yes?

TP/actual yes = 100/105 = 0.95 also known as "Sensitivity" or "Recall"

F1 score: Harmonic average of the precision and recall.

1 : Best value at 1 (perfect precision and recall)

0 : Worst at 0.

Confusion Matrix - Terminology

Accuracy
TP + TN/ Total

Error Rate (FP + FN)/Total

F1 Score 2TP / (2TP + FP + FN)

$$F_1 = rac{2}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}}$$

Accuracy & Specificity

Accuracy: Overall, how often is the classifier correct? (TP+TN)/total = (100+50)/165 = 0.91

Error Rate: Overall, how often is it wrong? (FP+FN)/total = (10+5)/165 = 0.09 equivalent to 1 minus Accuracy

False Positive Rate: When it's actually no, how often does it predict yes? FP/actual no = 10/60 = 0.17

Specificity: When it's actually no, how often does it predict no?

- TN/actual no = 50/60 = 0.83
- equivalent to 1 minus False Positive Rate

Confusion Matrix - Terminology

Accuracy 100+50/ (100+5+10+50) = 0.91

Error Rate 1-0.91 = 0.09

F1 Score 2*100 / (2*100 + 10 + 5) = 0.93

ROC and AUC

ROC curve - visualize the performance of a binary classifier Receiver operating characteristic

AUC - Summarize its performance in a single number More AUC better the model.

Logistic Regression Examples

- 1. Spam versus "Ham" emails
- 2. Loan Default (yes/no)
- 3. Disease Diagnosis