Eina Shiny per a l'anàlisi de rutes

Vasyl Druchkiv

13 de juny, 2019

Continguts

- 1 Que és l'anàlisi de rutes?
- 2 Què necessitem per començar?
- 3 Quins mètodes hi ha?
 - ORA
 - GSEA
 - Topologia de rutes
- 4 Instal·lació de l'aplicació
- 5 Exemple d'ús

Qué és l'anàlisi de rutes?

Un Pathway és un conjunt de gens que actuen junts per dur a terme un procès biològic.

Què és l'anàlisi de rutes?

- Reducció de la informació/complexitat resultant de l'experiment d'expressió genètica
- Millor comprensió del funcionament mecànic de la biologia de la condició estudiada
- Agrupació de gens relacionats en un conjunt (set)
 - Funció biològica
 - Funció molecular
 - Component cel · lular
- Permet valorar:
 - Relació entre els gens
 - Relativa importància de cada gen etc.
- Més potència estadístic via reducció del nombre d'hipòtesis múltiples

Què necessitem per començar?

• Dades d'un experiment de microarrays

Figure 1: El procès d'anàlisi de microarrays.

- ightarrow Llista ordenada de gens anotats amb Entrez ID
- ightarrow log Fold Change per a cada gen
- ightarrow Un *subset* de gens diferencialment expressats

Què necessitem per començar?

- Una base de dades d'anotació de les rutes/conceptes
 - Gene Ontology (GO)
 - Biological proces
 - Molecular function
 - Cellular component
 - KEGG
 - Metabolism
 - Genetic Information Processing
 - Environmental Information Processing
 - Cellular Processes
 - Organismal Systems
 - Human Deseases
 - ▶ Drug Development
 - Reactome

Figure 2: Mètodes per a anàlisi de les rutes.

ORA

- 1 Selecció dels gens diferencialment expressats.
- 2 Determinar si algunes rutes anoten la llista especificada de gens amb la freqüència més alta que la que s'esperaria per casualitat.

$$p = 1 - \sum_{i=0}^{k-1} \frac{\binom{M}{i} \binom{N-M}{n-i}}{\binom{N}{n}}$$

3 Ajustament de valors de P per a Multiple hypothesis testing

```
ORA. Exemple.
d \leftarrow matrix(c(25, 237, 177, 11323),
          nrow = 2.
          dimnames = list(c("DE", "Not DE"),
                        c("In GS", "Not in GS")))
d
       In GS Not in GS
      25 177
DE
Not DE 237 11323
fisher.test(d, alternative = "greater") $p. value
[1] 2.815289e-12
```

GSEA

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Auroin Galemanicas², Pablic Tampey², Yamir K. Mootshe², Siyan Makhinger, Boyinnin L. Dere², Molison Galemanicas², Pablic Tampey², Yamir K. Mootshe², Siyan Makhinger, Boyinnin L. Dere², and II P. Molison² Makhinger, C. Mootshe², Pablic Canada, C. Mootshee, C.

- 1 Càlcul de la puntuació d'enriquement (ES: Enrichment Score).
- 2 Estimació del nivell de significació per a la puntuació ES.
- 3 Càlcul del valor de P ajustat.

Visualització ORA i GSEA

- Bar Plot
- Dot Plot
- GSEA Plot

Topologia de les rutes

- Gràfic de les rutes KEGG
- Gràfic de les rutes Reactome.

Altres gràfics interessants

- GO Plots
 - \rightarrow Relacions is a, part of, regulate
- Enrichment Map
 - ightarrow Reduir/simplificar la informació obtinguda mitjançant els mètodes ORA o GSEA
- Gene-Concept Network
 - $\rightarrow \ \mathsf{Els} \ \mathsf{gens} \ \mathsf{compartits} \ \mathsf{entre} \ \mathsf{les} \ \mathsf{categories}/\mathsf{rutes}$

Instal·lacio de l'aplicació

L'aplicació està empaquetada i guardada en GitHub

```
if(!require(BiocManager))install.packages("BiocManager")
if(!require(devtools))install.packages("devtools")
devtools::install_github("vdruchkiv/TFM/5_Packages/PathwayApp/PathwayApp")
PathwayApp::runPathwayApp()
```


Instal·lacio de l'aplicació

Els paquets que s'instal·laran

Paquet	Font
clusterProfiler	Bioconductor
ReactomePA	Bioconductor
pathview	Bioconductor
pathviewPatched	GitHub vdruchkiv/TFM
dplyr	CRAN
ggplot2	CRAN
knitr	CRAN
kableExtra	CRAN
formattable	CRAN
shiny	CRAN
shinydashboard	CRAN
shinyhelper	CRAN
shinycssloaders	CRAN

L'usuari ha de baixar les bases d'anotacions d'interès!!!

L'exemple d'ús

- Dades de Li et al. (2017).
- GSE100924
- Organism: Mus Musculus
- Dades normalitzades i preanalitzades en Github Sanchez Pla
- Comparació KO vs. WT a temperatures fredes

OBJECTIU: Analitzar l'associació del gen Zbtb7b amb la producció dels greixos marrons

