Particle spectrograph

Wave operator and propagator

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2 - t_1$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2^+}^{\sharp 1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{i} k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1^{-}}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1^{-}}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}-$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\bar{\imath}k^{X}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon}_{\delta}-$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\bar{\imath}{\it k}^{X}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\delta\alpha}-$	
	2 $\eta^{\alpha\beta}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi}_{\chi}$ -	
	$4 \bar{\imath} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gau	ge generators:	16

† ^{αβ}	$\beta \chi$)	0	<u>t</u> 1 2	Quadratic (free) action
					$S == \iiint (\frac{1}{6} (2 \omega_{\alpha}^{\alpha i} (t_1 \omega_{i\theta}^{\theta} - 2t_3 \omega_{i\kappa}^{\kappa}) + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} -$
					$4 t_1 \omega_{\alpha \ \theta}^{\ \theta} \partial_{i} f^{\alpha i} + 8 t_3 \omega_{\alpha \ \kappa}^{\ \kappa} \partial_{i} f^{\alpha i} + 4 t_1 \omega_{i \ \theta}^{\ \theta} \partial^{i} f^{\alpha}_{\ \alpha} -$
					$8 t_3 \omega_{i\kappa}^{\kappa} \partial_i f_{\alpha}^{\alpha} - 2 t_1 \partial_i f_{\theta}^{\theta} \partial_i f_{\alpha}^{\alpha} + 4 t_3 \partial_i f_{\kappa}^{\kappa} \partial_i f_{\alpha}^{\alpha} -$
					$2 t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f_{\alpha}^{\ \theta} + 4 t_1 \partial^{i} f^{\alpha}_{\ \alpha} \partial_{\theta} f_{i}^{\ \theta} - 6 t_1 \partial_{\alpha} f_{i\theta} \partial^{\theta} f^{\alpha i} -$
ſ					$3t_1\partial_{\alpha}f_{\theta i}\partial^{\theta}f^{\alpha i} + 3t_1\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha i} + 3t_1\partial_{\theta}f_{\alpha i}\partial^{\theta}f^{\alpha i} +$
σ_{0}^{\sharp}	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	$3t_1 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 6t_1 \omega_{\alpha\theta i} (\omega^{\alpha i\theta} + 2\partial^{\theta} f^{\alpha i}) +$
1+ 0.	0	0	0	0	$8 r_2 \partial_{\beta} \omega_{\alpha_l \theta} \partial^{\theta} \omega^{\alpha \beta_l} - 4 r_2 \partial_{\beta} \omega_{\alpha \theta_l} \partial^{\theta} \omega^{\alpha \beta_l} +$
1		Ιm			$4 r_2 \partial_{\beta} \omega_{i\theta\alpha} \partial^{\theta} \omega^{\alpha\beta i} - 2 r_2 \partial_{i} \omega_{\alpha\beta\theta} \partial^{\theta} \omega^{\alpha\beta i} +$
r ₀ +	$\sqrt{2} k$ $2 k^2)^2$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	$2 r_2 \partial_\theta \omega_{\alpha\beta_l} \partial^\theta \omega^{\alpha\beta_l} - 4 r_2 \partial_\theta \omega_{\alpha_l\beta} \partial^\theta \omega^{\alpha\beta_l} +$
	- (1+)	(1+2			$6r_5\partial_i\omega_{\theta\kappa}^{\kappa}\partial^{\theta}\omega_{\alpha}^{\alpha_i}-6r_5\partial_{\theta}\omega_{i\kappa}^{\kappa}\partial^{\theta}\omega_{\alpha}^{\alpha_i}+$
) ² t ₃) ² t ₃			$4t_3\partial_i f^{\alpha_i}\partial_{\kappa}f_{\alpha}^{\kappa} - 8t_3\partial^i f^{\alpha}_{\alpha}\partial_{\kappa}f_{i}^{\kappa} - 6r_5\partial_{\alpha}\omega^{\alpha_i\theta}\partial_{\kappa}\omega_{i\theta}^{\kappa} +$
0	$\frac{1}{(1+2k^2)^2t_3}$	$i \sqrt{2} k$ $1 + 2k^2)^2 i$	0	0	$12 r_5 \partial^{\theta} \omega^{\alpha i}_{\alpha} \partial_{\kappa} \omega_{i\theta}^{\kappa} + 6 r_5 \partial_{\alpha} \omega^{\alpha i \theta} \partial_{\kappa} \omega_{\theta}^{\kappa}$
I	+	+	+	+	$12 r_5 \partial^{\theta} \omega^{\alpha_i}_{\alpha} \partial_{\kappa} \omega_{\theta_i}^{\kappa}))[t, x, y, z] dz dy dx dt$
	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$\tau_0^{\#2}$	$\sigma_{0}^{\#1}$	$\alpha^{\circ} \alpha^{\circ} \alpha^{\circ} \alpha^{\circ} \beta^{\circ} \beta^{\circ} \beta^{\circ} \alpha^{\circ} \alpha^{\circ$

_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$ au_{1}^{\#1}$ α	$ au_1^{\#2}$ α
$\sigma_{1}^{\sharp 1}\dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$ au_1^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	0	0	0	0
$\sigma_1^{\!\scriptscriptstyle \# 1}\dagger^lpha$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2k^2)(3t_1t_3 + 2k^2r_5(t_1 + t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{2 i k (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2k^2(6k^2r_5\!+\!t_1\!+\!4t_3)}{(1\!+\!2k^2)^2(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$

J							
υ т.	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^{2}(t_{1}+t_{3})$
ב	0	0	0	0	0	0	0
ı a	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{\varepsilon_{J+L_{\overline{J}}}}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$ 0
ı a	0	0	0	$0 \frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
u up i up	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
dη τ	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
I ap	$\omega_{1}^{#1} + \alpha \beta k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\left. \omega_{1}^{\#1} + ^{lphaeta} ight $	$\omega_1^{#2} + \alpha \beta$	$f_{1+}^{#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} + \alpha$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$				
Spin:	1				
Parity:	Odd				

Massive particle	
Pole residue: $-\frac{1}{r_2} > 0$	(INO IIIdssiess
Polarisations: 1	200
Square mass: $\frac{t_1}{r_2} > 0$	
Spin: 0	
Parity: Odd	מו נוכופא)

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$