

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 8709/6

MATHEMATICS

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	6

	1	- 40F - 2 4400	,		F2 4400
1		$\sum x = 105 \qquad \qquad \sum x^2 = 1439$	B1		For $\sum x^2 = 1439$
		mean = 13.1	B1		For answer
		sd = 2.76	B1	3	For answer
2	(a)	Number of ways is $_{10}P_6$ or $10 \times 9 \times 8 \times 7 \times 6 \times 5$	B1		May be implied
		= 151200	B1	2	
	(b)	4! x 3!	B1		For 4!
			B1		For 3!
		= 144	B1	3	For answer
	(1)	D(B#4		For two O forter towns
3	(i)	P(receives message) = $0.4 \times 0.6 + 0.5 + 0.1 \times 0.8$	M1		For two 2-factor terms
	ļ		M1	_	For adding 0.5
		= 0.82	A1	3	For correct answer
	(ii)	P(Email Receives)	B1		For correct expression for numerator
			M1		For dividing by their 0.82
		= 0.293	A1	3	For correct answer
4	(i)	Class width 20, 20, 20, 40, 100, 100	B1		For class widths
		Frequency density: 2.3, 5.5, 6.1, 2.5, 0.86, 0.36	M1		Attempt at frequency density or scaled frequency
		fd T	M1		Graph with 6 bars of appropriate relative widths (any height)
			A1		For <i>x</i> -axis going from 0 – 300 properly
		Number of people	A1	5	All correct including axes labelled
	(ii)	$\left(\frac{122+110+46}{500}\right)^3=0.172$	M1		For cubing their probability
		500	A1	2	For correct answer
				_	

Page 2 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	6

			,		
5	(i)	$z = \frac{10 - 15}{42} = -1.190$	M1		Standardising and using tables
	(1)	4.2	M1		For subtracting a probability from 1
		$P(X<10) = \Phi(-1.190) = 1 - 0.883 = 0.117$	A1	3	For correct answer
	(ii)	z = 1.282	B1		For correct z-value
		$\frac{T-15}{4.2} = 1.282$	M1		For an equation relating ${\cal T}$ and their z
		<i>T</i> = 20.4	A1	3	For correct answer
	(iii)	$P(z>1.19) = 1 - \Phi(1.19) = 1 - 0.8830 = 0.117$	B1		For 0.883 seen (or symmetry)
		Number of people = 0.117 x 200 (= 23.4)	M1		For multiplying a probability by 200
		Answer = 23	A1	3	For correct answer 23
6	(i)	$1 - \left\{ 0.65^{10} \times 0.35^2 \times {}_{12}C_{10} + 0.65^{11} \times 0.35^1 \right.$	M1		For calculating P(10), P(11),
		$\times_{12}C_{11} + 0.65^{12}$			P(12)
			M1		For correct use of binomial coefficients
			A1		For correct numerical expression
		= 0.849	A1	4	For correct answer
	(ii)	$\mu = 120 \times 0.65 = 78;$	B1		For both mean and variance correct
		σ^2 = 120 x 0.65 x 0.35 = 27.3	M1		For correct standardising process with or without cc
		$P(X<70) = \Phi\left(\frac{69.5 - 78}{\sqrt{27.3}}\right)$	A1		For correct use of continuity correction
		= Φ(- 1.627)	M1		For correct use of tables
		= 1 - 0.9481			
		= 0.0519	A1	5	For correct answer

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations - November 2001	8709	6

7 (i)	EITHER	$P(X=0) = \frac{7}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{1}{6}$	M1		For multiplying 4 probabilities together
			A1		For correct given answer
		and P(X = 1) = $\frac{3}{10} \times \frac{7}{9} \times \frac{6}{8} \times \frac{5}{7} \times 4 = \frac{1}{2}$	M1		For multiplying by 4
		10 9 8 7 2	A1		For obtaining given answer legitimately
	OR	$_{7}C_{4} \div {}_{10}C_{4} = 1/6$ $_{7}C_{3} \times {}_{3}C_{1} \div {}_{10}C_{4} = 1/2$	B2 B2	4	For showing given answer legitimately
(ii)	X Prob	0 1 2 3 0.167 0.5 0.3 0.03333	M1		For attempting to find P(X = 0,1,2,3)
	in the state of th		A1	3	For 0.3 or 3/10 For 0.0333 or 1/30
(iii)	E(X)	= 1.2	M1		For $\sum x_j p_j$
			A1		For correct answer (must be exact)
	Var (X)	$= \sum x_i^2 p_i - their 1.2^2$	M1		For $\sum x_i^2 p_i - their 1.2^2$
		= 0.56	A1	4	For correct answer

