AULA 4

Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado

Roteiro

Motivação Relaxamento Algoritmo de Bellman-Ford Algoritmo de Dijkstra

Motivação

Suponha que você deseja encontrar o caminho mais curto possível do Rio de Janeiro a São Paulo.

Como determinar a rota mais curta?

Caminho mais curto de origem única.

Temos um grafo orientado ponderado G=(V,A) Uma função peso w: $A \to \Re$ O peso do caminho $p=<v_0,v_1,...,v_k>$ é:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Definimos <u>o peso do caminho mais curto desde u at</u>é v por:

$$\mathcal{S}(u,v) = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\}, \text{ se existe caminho de } u \text{ at } v \\ \infty, \text{ caso contrário} \end{cases}$$

Sub-estrutura ótima

Seja G=(V,A) um grafo orientado ponderado, com função peso w:A→统:

Seja o caminho $p=\langle v_1, v_2, ..., v_k \rangle$ um caminho mais curto de v_1 até v_k .

Seja p_{ij}=<v_i,v_{i+1},,...,v_j> o sub-caminho de p desde o vértice v_i até o vértice v_j, para quaisquer i e j tais que 1<=i<=j<=k.

Então p_{ij} é um caminho mais curto de v_i até v_j.

Sub-estrutura ótima

Suponha que caminho mais curto de Rio de Janeiro a São Paulo é mostrado no mapa. Então o sub-caminho de Guaratinguetá São Paulo também é um sub-caminho mais curto entre elas.

Podem existir arestas cujos pesos são negativos. Se existe um ciclo de peso negativo acessível a partir de s, os pesos de caminhos mais curtos não são bem definidos pois sempre será possível encontrar um caminho de peso menor que o já encontrado.

Se existe um ciclo de peso negativo em algum caminho entre s até v, definimos:

Lembrando:

$$\mathcal{S}(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\sim} v\}, \text{ se existe caminho de } u \text{ at } e v \\ \infty, \text{ caso contrário} \end{cases}$$

E se existe um ciclo de peso negativo accesível a partir de s então δ(s,v)= -∞

Lembrando:

$$\mathcal{S}(u,v) = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\}, \text{ se existe caminho de } u \text{ at } e v \\ \infty, \text{ caso contrário} \end{cases}$$

E se existe um ciclo de peso negativo accesível a partir de s então δ(s,v)= -∞

Os vértices e e f formam um ciclo de peso negativo acessível a partir de s, então o peso de caminho mais curto deles é -∞

Lembrando:

$$\mathcal{S}(u,v) = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\}, \text{ se existe caminho de } u \text{ at } e v \\ \infty, \text{ caso contrário} \end{cases}$$

 E se existe um ciclo de peso negativo accesível a partir de s então δ(s,v)= -∞

O vértice g também tem um peso de caminho mais curto igual a $-\infty$, uma vez que ele é acessível a partir de um vértice cujo peso de caminho mais curto é $-\infty$.

Lembrando:

$$\mathcal{S}(u,v) = \begin{cases} \min\{w(p): u \stackrel{p}{\sim} v\}, \text{ se existe caminho de } u \text{ at } e v \\ \infty, \text{ caso contrário} \end{cases}$$

 E se existe um ciclo de peso negativo accesível a partir de s então δ(s,v)= -∞

Algoritmos para caminho mais curto de origem única

Algoritmo de Dijkstra: supõe que todos os pesos das arestas no grafo de entrada são não negativos. Ex: mapa rodoviário.

Algoritmo de Bellman-Ford: permite arestas de peso negativo no grafo de entrada e produz uma resposta correta detectando a existência de ciclos.

Árvore do caminho mais curto

É uma árvore enraizada que contém um caminho mais curto desde a origem s até todo vértice acessível a partir de s.

Os algoritmos de Dijkstra e Bellman-Ford usam a técnica de relaxamento.

É calculada uma estimativa do caminho mais curto:

d[v]: limite superior sobre o peso de um caminho mais curto desde a origem s até v

Inicialização: são inicializadas as estimativas de caminhos mais curtos e os predecessores de cada vértice.

INITIALIZE-SINGLE-SOURCE(V,A,s)

- 1. for cada vértice $v \in V$
- 2. d[v] ←∞
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

O processo de relaxar uma aresta (u,v) consiste em testar se podemos melhorar o caminho mais curto para v encontrado até agora pela passagem através de u e, neste caso, atualizar d[v] e π [v].

```
RELAX(u,v,w)

1. if d[v]>d[u]+w(u,v)

2. then d[v] \leftarrow d[u]+w(u,v)

3. \pi[v] \leftarrow u
```

O processo de relaxar uma aresta (u,v) consiste em testar se podemos melhorar o caminho mais curto para v encontrado até agora pela passagem através de u e, neste caso, atualizar d[v] e π [v].

- Resolve o problema de caminhos mais curtos de única origem no caso mais geral
- Os pesos das arestas podem ser negativos
- Devolve verdadeiro se existe um ciclo de peso negativo acessível a partir da origem.
- Se não existe tal ciclo, o algoritmo encontra os caminhos mais curtos

```
BELLMAN-FORD (V,A, w, s)
```

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

BELLMAN-FORD (V,A, w, s)

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

Usa o processo de relaxamento diminuindo a estimativa d[v]: peso de uma caminho mais curto desde a origem s até v

BELLMAN-FORD (V,A, w, s)

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

Procuramos por um ciclo de peso negativo

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

$$(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)$$

vértice	S	t	х	у	Z
d	0	∞	∞	∞	00
π	NIL	NIL	NIL	NIL	NIL

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

vértice	S	t	Х	у	Z
d	0	6	∞	7	∞
π	NIL	S	NIL	S	NIL

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

vértice	S	t	Х	у	Z
d	0	6	4	7	2
π	NIL	S	у	S	t

BELLMAN-FORD (V,A, w, s)

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then

vértice

- 7. return FALSE
- 8. return TRUE

/,X),	(,x), (y,z), (z,x), (z,s), (s,t), (s,y)							
	S	t	Х	у	Z			
	0	2	4	7	2			
	NII	x	V	ς	t			

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

vértice	S	t	Х	у	Z
d	0	2	4	7	2
π	NIL	X	у	S	t

BELLMAN-FORD (V,A, w, s)

- 1. INITIALIZE-SINGLE-SOURCE (V, A, s)
- 2. for i = 1 to |V| 1 do
- 3. for each edge (u, v) in A do
- 4. RELAX (u, v, w)
- 5. for each edge (u, v) in A do
- 6. if d[u] + w(u, v) < d[v] then
- 7. return FALSE
- 8. return TRUE

vértice	S	t	Х	у	Z
d	0	2	4	7	2
π	NIL	Х	у	S	t

Se conseguir relaxar as arestas depois das V-1 iterações, é porque o grafo possui um ciclo de peso negativo!

O algoritmo retorna TRUE

Aplicar o algoritmo de Bellman-Ford para o grafo a seguir, considerar a origem s.

Podemos modificar o algoritmo para devolver quais vértices podem ser alcançados com custo -∞?

Algoritmo guloso que resolve o problema de caminhos mais curtos de única origem.

Os pesos das arestas são não negativos. Consequentemente não possui ciclos de peso negativo.

O tempo de execução é inferior ao algoritmo de Bellman-Ford.

Trabalha com dois conjuntos de vértices:

S: vértices cuja menor distância para a raiz já é conhecida (definitiva).

V-S: vértices em que a distância conhecida ainda é uma estimativa (provisória).

Para isso, o algoritmo utiliza:

S: um conjunto de vértices cuja distância já é definitiva.

Q: uma fila de prioridade mínima de vértices com distância provisória

Algoritmo de Dijkstra: métodos usados

```
INITIALIZE-SINGLE-SOURCE(V,A,s)

for cada vértice v \in V

d[v] \leftarrow \infty

\pi[v] \leftarrow NIL

d[s] \leftarrow 0
```

```
RELAX(u,v,w)

if d[v]>d[u]+w(u,v)

then d[v] \leftarrow d[u]+w(u,v)

\pi[v] \leftarrow u
```



```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q \leftarrow V
4. while Q is not empty do
      u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
6.
       // Relaxar cada vértice adjacente a u
7.
       for each vertex v in Adj[u] do
               RELAX (u, v, w)
8.
```

DIJKSTRA (V, A, w, s)

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

Fonte: Wikimedia Commons

VÉRTICE	s	t	х	У	z
d					
π					
Q					
S					

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

Fonte: Wikimedia Commons

VÉRTICE	s	t	х	У	z
d	0	∞	∞	∞	∞
π	NIL	NIL	NIL	NIL	NIL
Q					
S					

```
DIJKSTRA (V, A, w, s)
```

1. INITIALIZE SINGLE-SOURCE (V,A, s)

```
2. S ← { }
```

- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. S ← S ∪ {u} // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

Fonte: Wikimedia Commons

VÉRTICE	s	t	X	У	z
d	0	∞	∞	∞	∞
π	NIL	NIL	NIL	NIL	NIL
Q	✓	✓	✓	✓	✓
S					

```
DIJKSTRA (V, A, w, s)

1. INITIALIZE SINGLE-SOURCE (V,A, s)

2. S \leftarrow \{\}

3. Q \leftarrow V
```

- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. S ← S ∪ {u} // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

Q		✓	✓	✓	✓
π	NIL	NIL	NIL	NIL	NIL
d	0	∞	∞	∞	∞
VÉRTICE	s	t	x	У	z

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

VÉRTICE	s	t
d	0	∞
π	NIL	NIL
Q		✓

Será que podemos melhorar o caminho mais curto para t encontrado até agora pela passagem através de s?
Será que podemos melhorar o caminho mais curto para y encontrado até agora pela passagem através de s?

```
DIJKSTRA (V, A, w, s)

1. INITIALIZE SINGLE-SOURCE (V,A, s)

2. S ← {}

3. Q ← V

4. while Q is not empty do

5. u ← EXTRACT_MIN(Q)

6. S ← S U {u}

// Relaxar cada vértice adjacente a u

7. for each vertex v in Adj[u] do
```

RELAX (u, v, w)

s	✓				
Q			V	J	./
π	NIL	s	NIL	s	NIL
d	0	10	∞	5	∞
VÉRTICE	s	t	x	У	z

```
DIJKSTRA (V, A, w, s)

1. INITIALIZE SINGLE-SOURCE (V,A, s)

2. S ← {}

3. Q ← V

4. while Q is not empty do

5. u ← EXTRACT_MIN(Q)

6. S ← S U {u}

// Relaxar cada vértice adjacente a u

7. for each vertex v in Adj[u] do
```

RELAX (u, v, w)

VÉRTICE	s	t	x	У	z
d	0	10	∞	5	∞
π	NIL	s	NIL	s	NIL
Q		•	~		•
S	✓			✓	

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$

// Relaxar cada vértice adjacente a u

- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

A distância definitiva (mínima) até o vértice y é 5.

VÉRTICE	S	t	X	У	Z
d	0	10	∞	5	∞
π	NIL	s	NIL	s	NIL
Q		•	~		✓
S	✓			✓	

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$

// Relaxar cada vértice adjacente a u

7. for each vertex v in Adj[u] do

8. RELAX (u, v, w)

5	<u>5</u>	2
ue podemos me encontrado até a		
ue podemos me		
encontrado até	agora pela	a passagem
ue podemos me encontrado até		
encontrado ate	ayura pera	a passagem

Será qu

6

através de

através de

através de


```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. S ← S ∪ {u} // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

S	•			~	
Q		•	✓		✓
π	NIL	у	у	s	у
d	0	8	14	5	7
VÉRTICE	s	t	x	У	Z

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

S	✓			✓	✓
Q		✓	✓		
π	NIL	у	у	s	У
d	0	8	14	5	7
VÉRTICE	S	t	X	У	z

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

A distância definitiva (mínima) até o vértice z é 7.

VÉRTICE	S	t	Х	У	Z
d	0	8	14	5	7
π	NIL	у	у	s	у
Q		~	•		
S	✓			✓	✓

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

Será que podemos melhorar o caminho mais curto para x encontrado até agora pela passagem através de z?

S	•			•	~
Q		✓	•		
π	NIL	у	у	s	У
d	0	8	pola paddagom atravod ao 2:		
VERTICE	S	T .	pela passagem através de z?		7?

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
       // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


VÉRTICE	s	t	х	У	z
d	0	8	13	5	7
π	NIL	у	Z	s	у
Q		~	✓		
S	✓			✓	•

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
        // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


VÉRTICE	s	t	x	У	z
d	0	8	13	5	7
π	NIL	у	z	s	у
Q			✓		
S	✓	✓		✓	✓

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT_MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

A distância definitiva (mínima) até o vértice t é 8.

VÉRTICE	S	t	X	У	Z
d	0	8	13	5	7
π	NIL	у	z	s	у
Q			✓		
S	✓	✓		✓	✓

```
DIJKSTRA (V, A, w, s)

1. INITIALIZE SINGLE-SOURCE (V,A, s)

2. S \leftarrow \{\}

3. Q \leftarrow V

4. while Q is not empty do
```


6. S ← S ∪ {u} // Relaxar cada vértice adjacente a u

7. for each vertex v in Adj[u] do

8. RELAX (u, v, w)

Será que podemos melhorar o caminho mais curto para x encontrado até agora pela passagem através de t?

S	✓	✓		•	✓	
Q			•			
π	NIL	у	z	s	У	
d	0	8				
VERTICE	S	t	pela passagem através de t?			

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
       // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


VÉRTICE	s	t	x	У	z
d	0	8	9	5	7
π	NIL	у	t	s	у
Q			•		
S	✓	✓		✓	✓

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
        // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


S	~	✓	✓	✓	•
Q					
π	NIL	у	t	s	у
d	0	8	9	5	7
VÉRTICE	s	t	x	У	z

```
DIJKSTRA (V, A, w, s)
```

- 1. INITIALIZE SINGLE-SOURCE (V,A, s)
- 2. S ← { }
- 3. Q ← V
- 4. while Q is not empty do
- 5. $u \leftarrow EXTRACT MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
 - // Relaxar cada vértice adjacente a u
- 7. for each vertex v in Adj[u] do
- 8. RELAX (u, v, w)

A distância definitiva (mínima) até o vértice x é 9.

VÉRTICE	S	t	Х	У	Z
d	0	8	9	5	7
π	NIL	у	t	s	У
Q					
S	✓	✓	•	~	✓

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
       // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


VÉRTICE	s	t	x	У	z
d	0	8	9	5	7
π	NIL	у	t	s	у
Q					
S	✓	✓	•	•	•

```
DIJKSTRA (V, A, w, s)
1. INITIALIZE SINGLE-SOURCE (V,A, s)
2. S ← { }
3. Q ← V
4. while Q is not empty do
       u \leftarrow EXTRACT MIN(Q)
5.
       S \leftarrow S \cup \{u\}
       // Relaxar cada vértice adjacente a u
        for each vertex v in Adj[u] do
              RELAX (u, v, w)
```


S	•	•	✓	~	•
Q					
π	NIL	у	t	s	у
d	0	8	9	5	7
VÉRTICE	s	t	х	У	z

Problemas:

- –O algoritmo de Dijkstra pode ser optimizado para encontrar o menor caminho entre um par de vértices?
- -Qual estrutura de dados pode ser usada para Q?
- Como encontrar os caminhos mais curtos de destino único?

AULA 4

Problema do caminho mais curto de uma única origem em grafos Karina Valdivia Delgado