Algébre Linéaire

 $March\ 20,\ 2024$

7 madox

Contents

1	Les	_	es Vectoriels 7
	1.1	Introd	uction
		1.1.1	Définitions:
		1.1.2	Exemples:
	1.2	Sous-e	space vectoriel
		1.2.1	Définition:
		1.2.2	Caracterisation:
		1.2.3	Sous-espace vectoriel engendré
		1.2.4	Somme de Sous-espaces vectoriels
		1.2.5	Intersection de Sous-espaces vectoriels
		1.2.6	Supplémentaire de Sous-espaces vectoriels
		1.2.7	Produit Cartésien de Sous-espaces vectoriels
	1.3	Famill	e de Vecteurs
		1.3.1	Famille génératrice
		1.3.2	Famille libre, liée
		1.3.3	Base d'un espace vectoriel
	1.4	Dimen	sion
		1.4.1	Théorème de la base incomplète:
		1.4.2	Proposition:
		1.4.3	Proposition:
		1.4.4	Formule de Grassman:
2	Los	Appli	cations Linéaires 21
4	2.1		tions
	2.1	2.1.1	Application Linéaire:
		2.1.1	Noyau, Image:
	2.2		terisation par les bases:
	$\frac{2.2}{2.3}$		etions, Symétries:
	۷.5	2.3.1	Projecteurs:
		2.3.1 $2.3.2$	
	2.4		V
	2.4		
	2.5	Rang:	
	0.0	2.5.1	Théorème du rang:
	2.6	otabili	lté:

4 CONTENTS

	2.7	Exercices:							
		2.7.1 Projecteurs:							
		2.7.2 Lemmes de factorisation:							
		2.7.3 Inégalité de Sylvester:							
		2.7.4 Endomrophismes particuliers:							
	2.8	Compléments:							
		2.8.1 Drapeaux:							
		2.8.2 Espace vectoriel quotient:							
		2.8.3 L'espace L(E):							
3	Tag	Matrices 35							
3	3.1	Matrices 35 Généralités:							
	5.1								
		1							
	2.0								
	3.2	$\operatorname{Mn}(K)$							
	3.3	Matrice d'une application linéaire							
	0.4	3.3.1 Proposition:							
	3.4	Changement de bases:							
		3.4.1 Remarque:							
		3.4.2 Proposition:							
	3.5	Rang:							
	3.6	Equivalence, similitude et trace:							
		3.6.1 Equivalence:							
		3.6.2 Similitude:							
		3.6.3 Trace							
	3.7	Exercices:							
	3.8	Compléments:							
		3.8.1 Matrice diagonalement dominantes -HP 44							
4	Déterminants 47								
	4.1	Formes multilinéaires							
	4.2	Déterminant d'une famille de vecteurs dans une base 48							
	4.3	Déterminant d'un endomorphisme							
	4.4	Déterminant d'une matrice carrée							
	4.5	Calcul d'un déterminant							
5	Con	npléments: Dualité et $Gl_n(K)$ 53							
6	DR	OBLEMES 55							
U	6.1	Traces:							
	0.1	6.1.1 Matrice de trace nulle							
		6.1.2 Traces modulo p							
	6.2	Formule de Burnside, Théorème de Mashke(après matrice hehe-							
	0.2	,							
	6 2	hehe)							
	6.3								
	6.4	Famille positivement génératrice:							

CONTENTS 5

	6.5	Décom	aposition de Fitting	57
	6.6		té de Sylvester, Identité de Jacobi	58
	6.7		$\operatorname{le}\operatorname{Mn}(\operatorname{\check{K}})$	58
	6.8	Stabili	sation du GLn(K)	59
	6.9	Interse	ection des hyperplans avec GLn(K)	59
	6.10		rvation de similitude par passage vers un surcorps	59
	6.11	Dimen	sion maximale d'un sous-espace vectoriel de $M_n(K)$ de	
		rang p		60
	6.12	Décom	aposition de Bruhat	60
-	D / 1			01
7	Rea 7.1		des endomorphismes et matrice carrées	61 61
	1.1		alités:	-
		7.1.1 7.1.2	Elements propres d'un endomorphisme et de matrice carrée	63
			Polynome caractéristique	
		7.1.3	Diagonalisation	64
		7.1.4	Trigonalisation	65
	7.0	7.1.5	Réduction simultanée-HP	66
	7.2		ome d'endomorphisme, et de matrice carrée	66
		7.2.1 7.2.2	Généralités	66 67
		7.2.3	Polynôme minimal	69
		7.2.4	Théorème de Cayley-Hamilton	69 69
	7.0		Sous-espace caractéristiques	
	7.3	Exerci		70
	7 4	7.3.1	Techniques de Diagonalisation	70
	7.4	7.4.1	léments	70
		7.4.1 $7.4.2$	Matrice circulantes	70 71
		7.4.2 $7.4.3$	Matrice de Toeplitz	71
		7.4.3 $7.4.4$		72
		7.4.4	Matrices de transvections et de dilatation	72
		7.4.6		72
		7.4.0 $7.4.7$	Dunford	72
			Jordan	72
		7.4.8	Frobenius	72 72
		7.4.9	Simplicité	
		7.4.10	Nilpotence	72 72
		7411	SLOCHASLIONE	().

6 CONTENTS

Chapter 1

Les Espaces Vectoriels

1.1 Introduction

Un espace vectoriel est une structure algébrique stable par addition interne (de vecteurs) et par multiplication externe (par un scalaire).

1.1.1 Définitions:

Définition

Soit E un ensemble non vide, et (K,+,x) un corps dont le neutre pour la loi "+" est noté, et pour la loi "x" est noté .

On note l'ensemble E muni d'une loi interne " + " et d'une loi externe " \cdot " ."

On dit que est un K-espace vectoriel lorsque :

- i) (E,+) forme un groupe abélien, dont l'élément neutre, noté 0_E , est appelé le vecteur nul.
- ii) La loi est distributive par rapport à la loi + :

$$\forall \lambda \in K, \forall (x,y) \in E^2, \lambda.(x+y) = (\lambda.x) + (\lambda.y)$$

iii)
$$\forall (\lambda,\mu) \in K^2, \forall x \in E, (\lambda+\mu).x = (\lambda.x) + (\mu.x)et(\lambda*\mu).x = \lambda.(\mu.x)$$

iv)
$$\forall x \in E, 1_K.x = x$$

Les éléments de E s'appellent des vecteurs et les éléments de K des scalaires.

1.1.2 Exemples:

 $(R^2, +, *)$ est un R-espace vectoriel, en effet:

• (i): $(R^2, +)$ est un groupe abélien de neutre (0,0).

• (ii): Soient $\lambda \in R$, $(x,y) \in R^2 * R^2$ tel que $x = (x_1,x_2)$ et $y = (y_1,y_2)$, on a :

$$\lambda(x+y) = \lambda(x_1 + y_1, x_2 + y_2)$$

$$\Leftrightarrow = (\lambda x_1 + \lambda y_1, \lambda x_2 + \lambda y_2)$$

$$\Leftrightarrow = ((\lambda x_1, \lambda x_2) + (\lambda y_1, \lambda y_2))$$

$$\Leftrightarrow = \lambda(x_1, x_2) + \lambda(y_1, y_2)$$

$$\Leftrightarrow = (\lambda x) + (\lambda y)$$

• (iii): Soient $(\lambda, \mu) \in \mathbb{R}^2, x \in \mathbb{R}^2$ tel que $x = (x_1, x_2)$ on a:

$$\begin{split} (\lambda + \mu).x &= (\lambda + \mu).(x_1, x_2) \\ \Leftrightarrow &= (\lambda.x_1 + \mu.x_1, \lambda.x_2 + \mu.x_2) \\ \Leftrightarrow &= (\lambda.x_1, \lambda.x_2) + (\mu.x_1, \mu.x_2) \\ \Leftrightarrow &= (\lambda.x) + (\mu.x) \\ (\lambda * \mu).x &= (\lambda * \mu.x_1, \lambda * \mu.x_2) \\ \Leftrightarrow &= \lambda.(\mu.x_1, \mu.x_2) \end{split}$$

(Car la multiplication est associative dans R.)

(iv) Soit
$$x \in R^2$$
 tel que $x = (x_1, x_2)$ on a: $1_R.x = 1.x = (1.x_1, 1.x_2) = (x_1, x_2) = x$. (Car x_1, x_2 sont dans R.)

Donc $(R^2,+,.)$ est un R-espace vectoriel, on peut visualiser cet espace et illustrer les proposition et les theorèmes qu'on va étudier sur cet espace, on peut également les illustrer à travers le R-espace vectoriel $(R^3,+,.)$ pour lequel la démonstration est similaire à ce qu'on a déja fait.

Illustration (vecteur, addition, par scalaire) jj

Propriétés

- $\forall \lambda \in K, \forall x \in E, \lambda.x = 0 \Leftrightarrow \lambda = 0_K \text{ ou } x = 0_E.$
- $\forall x \in E, (-1_K).x = -x.$ $(-1_K$ est l'opposé de 1_K dans K et -x est l'opposé de x dans E.)

Remarque: On verra lors de l'étude de l'algebre linéaire plusieurs exemples d'espaces vectoriels dont on va détaillera l'étude et les propriétés prochainement.

1.2 Sous-espace vectoriel

1.2.1**Définition:**

Définition

Soit E un K-espace vectoriel et F une partie de E, F est un sous-espace vectoriel si la restriction des lois "+", "." sur F lui confère la structure d'un espace vectoriel, c'est à dire, si F est aussi un K-espace vectoriel.

Exemples: Si E est un K-espace vectoriel alors E et $\{0_E\}$ sont les deux des sous espaces vectoriels de E.

1.2.2Caracterisation:

Caractérisation:

oit F une partie de E. On peut montrer que F est un sous-espace vectoriel de E si les conditions suivantes sont réalisées:

 $i)F \neq .$

ii) $\forall (x, y) \in E, \forall (\lambda, \mu) \in K, \lambda.x + \mu.y \in F.$

Remarque: 0_E est dans F et $0_F = 0_E$, généralement, on montre qu'un ensemble est un sous-espace vectoriel d'un K espace vectoriel en utilisant cette caractérisation en commencant par montrer que 0_E est dans F, souvent on montre aussi qu'un ensemble est un K espace vectoriel en montrant qu'il est en effet un sous-espace vectoriel d'un K espace vectoriel usuel.

Exemples:

Sous-espace vectoriel engendré 1.2.3

Combinaison linéaire

Soit I un ensemble eventuellement infini.

Définition

On appelle combinaison linéaire d'éléments de la famille de vecteurs $(x_i)_{i\in I}$ tout vecteur v de E tel qu'il existe une famille de scalaires $(\lambda_i)_{i\in I}\in K$ tel que les $(\lambda_i)_{i\in I}$ sont nuls sauf un nombre fini d'entre eux et qu'elle vérifie $v = \sum_{i \in I} \lambda_i x_i$.

Exemples:-illus Soient (0,1), (3,2), (5,1) trois vecteurs du -espace vectoriel \mathbb{R}^2 , alors (-1,-3/5) est une combinaison linéaire de ces vecteur, en effet on a:

 $(1,-1,2/5) \in R$ tels que (-1,-3/5) = 1*(0,1) - 1*(-3,2) + 2/5*(5,1) S-ev engendré par une famille de vecteurs

Définition

On appelle sous-espace vectoriel de E engendré par la famille $(x_i)_{i\in I}$, qu'on note $\mathrm{Vect}\,((x_i)_{i\in I})$: l'ensemble des combinaisons linéaires d'éléments de $(x_i)_{i\in I}(x_i)_{i\in I}$:

$$\operatorname{Vect}((x_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i x_i \mid (\forall i \in I), \lambda_i \in K \right\}.$$

L'ensemble $\text{Vect}((x_i)_{i \in I})$ est, au sens de l'inclusion, le plus petit sousespace vectoriel de E contenant tous les x_i .

Exemples: -illus S-ev engendré par une partie

Définition

Soient E un espace vectoriel sur K et $A \subset E$.

On appelle sous-espace vectoriel engendré par A, et l'on note $\mathrm{Vect}(A)$ l'ensemble de toutes les combinaisons linéaires d'éléments de A:

$$\operatorname{Vect}(A) = \left\{ \sum_{i=1}^{n} \lambda_i . a_i \mid n \in \mathbb{N}, (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, (a_1, \dots, a_n) \in \mathbb{A}^n \right\}$$

Il s'agit, au sens de l'inclusion, du plus petit espace vectoriel contenant A.

Exemples-illus

11

1.2.4 Somme de Sous-espaces vectoriels

Définition

Soient FetG deux sous-espaces vectoriels de E. On définit la somme de Fet G comme l'ensemble :

$$F+G=\{u+v\mid (u,v)\in F\times G\}.$$

Remarque: $F + G = \text{Vect}(F \cup G)$.

Exemples-illus

1.2.5 Intersection de Sous-espaces vectoriels

Proposition

Toute intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Démonstration: Soient E un K-espace vectoriel, F et G deux sous espaces vectoriel de E,

- i) puisque F et G sont deux sous espaces vectoriel de E , $0_E \in F$ et $0_E \in G$ donc $0_E \in F \cap G$ donc $F \cap G \neq$.
- ii) Soient $(x, y, \lambda) \in F \cap G * F \cap G * K$, on a $(x, y, \lambda) \in F * F * K$ donc $x + \lambda y \in F$ car F est un sous espace vectoriel de E, De même $(x, y, \lambda) \in G * G * K$ donc $x + \lambda y \in G$ car G est un sous espace vectoriel de E, donc $x + \lambda y \in F \cap G$.

Donc d'après la caractérisation des sous espaces vectoriel on déduit que $F \cap G$ est un sous espace vectoriel de E.

Pour une intersection de plus de deux sous espaces vectoriel , on montre la proposition en utilisant la récurrence sur le nombre des sous espaces vectoriel, en fait l'hérédite se montre exactement comme on a fait ci-dessus.

Remarque: Cette dernière n'est pas toujours vraie pour la réunion.

Proposition-HP

Si K est un corps commutatif et E un K-espace vectoriel et F et G deux sous espaces vectoriel de E tel que $F \cup G$ est un sous espace vectoriel de E, alors $F \subset G$ ou $G \subset F$.

Démonstration: Raisonnement par absurde:

Soient K est un corps commutatif et E un K-espace vectoriel et F et G deux sous espaces vectoriel de E tel que $F \cup G$ est un sous espace vectoriel de E,

Supposons le contraire de " $F \subset G$ ou $G \subset F$ ", c'est à dire " $F \not\subset G$ et $G \not\subset F$ " alors il existe $x \in F, x \notin G$ et $y \in G, y \notin F$.

On a $x+y\in F\cup G$ donc $x+y\in F$ ou $x+y\in G$ Si $x+y\in F$, puisque $x\in F, -x\in F,$ donc $x+y+(-x)=x+y-x=y\in F,$ ce qui est absurde. De même si $x+y\in G,$ on obtient $x\in G,$ ce qui est aussi absurde.

Donc dans tous les cas , par raisonemment par absurde on obtient $F\subset G$ ou $G\subset F.$

1.2.6 Supplémentaire de Sous-espaces vectoriels

Définition

Deux sous-espaces vectoriels F et G de E sont dits supplémentaires si F+G=E et $F\cap G=\{0\}$ autrement dit : si $E\subset F+G$ et $F\cap G\subset \{0\}$ On note alors $E=F\oplus G$.

Proposition-HP

Exemples-illus

1.2.7 Produit Cartésien de Sous-espaces vectoriels

Définition

Soient E et F deux K-espaces vectoriels.

On définit l'espace produit de E et F comme l'ensemble produit $E\times F,$ muni des deux lois suivantes, qui en font un K-espace vectoriel :

$$(x,y) +_{E \times F} (x',y') := (x +_E x', y +_F y')$$
 et $\lambda \cdot_{E \times F} (x,y) := (\lambda \cdot_E x, \lambda \cdot_F y)$

Exemples:

1.3 Famille de Vecteurs

1.3.1 Famille génératrice

Définition

La famille $(x_i)_{i\in I}$ est dite génératrice de E si $E = \text{Vect}((x_i)_{i\in I})$. Cela équivaut à dire que tout vecteur de E s'exprime comme combinaison linéaire de la famille $(x_i)_{i\in I}$:

$$\forall v \in E \quad \exists (\lambda_i)_I \in K^{Card(I)} \quad v = \sum \lambda_i x_i$$

Remarque: Si A est une partie de E et E = Vect(A), on dit que A est une partie génératrice de E.

Exemples:

• fonctions.

1.3.2 Famille libre, liée

Définitions:

Définitions

On dit que la famille $(x_i)_{i\in I}$ est libre, ou que les vecteurs x_i sont linéairement indépendants, si aucun vecteur n'est combinaison linéaire des autres vecteurs.

Cela équivaut à dire que :

$$\forall (\lambda_i)_{i \in I} \in K^{Card(I)} \quad \sum \lambda_i x_i = 0 \Rightarrow \forall i \in I \quad \lambda_i = 0.$$

Une famille qui n'est pas libre est dite liée. Elle est donc liée si un vecteur est une combinaison linéaire des autres dans , c'est-à-dire :

$$\exists (\lambda_i)_{i \in I} \in K^{Card(I)} \quad \sum \lambda_i x_i = 0 \text{ et } (\lambda_i)_{i \in I} \neq (0).$$

Exemples: Dans le R-espace vectoriel des fonctions continues de R dans R , les familles suivantes sont des familles libres:

i)
$$(f_{\lambda})_{{\lambda} \in R}$$
 oû $f_{\lambda} : R \to R \ x \mapsto \exp({\lambda} x)$.

- ii) $(f_{\lambda})_{\lambda \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto \cos(\lambda x)$.
- iii) $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto |x \lambda|$.
- iv) $(f_k)_{\in N}$ où $f_n: R \to R \ x \mapsto \cos(x^n)$.
- v) Soit K un sous corps de C , dans le K-espace vectoriel K[X], la famille $(1,X,...,X^{n-p-1},P(X),P(X+1),...,P(X+p))$ avec $P\in K[X]$ de degré $n \ge 1$ et $p \in [0, n]$, est libre quelque soit $p \in [0, n]$.

Démonstration:

i) On note le R-espace vectoriel par E et on montre par absurde que la famille est

On suppose que la famille $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto \exp({\lambda} x)$ est liée. On aura donc:

 $\exists (\lambda_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \exists (\mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \text{ avec les } \mu_i \text{ sont non tous nuls telles que}$

$$\sum_{1 \le i \le n} \mu_i \lambda_i = 0_E$$

On indexe les λ_i de sorte que $\lambda_i \leq \lambda_j$ si $j \leq i$, c'est à dire: $\lambda_n \leq ... \leq \lambda_1$.

Soit $k \in [|1, n|]$ tel que $k = min\{\{1, .., n\} | \mu_i \neq 0_R\}$

 $\begin{array}{l} Lim_{x\to +\infty}exp(-\lambda_1x)\sum_{i=k}^n\mu_iexp(\lambda_ix)=\sum_{i=k}^n\mu_iexp(\lambda i-\lambda_1)=\mu_1.\\ \text{car pour tout } i\geq 2, \lambda_i-\lambda_1\leq 0..\\ \text{Or } \sum_{i=k}^n\mu if_{\lambda_i}=0, \text{, donc } u_1=0, \text{ ce qui est absurde.} \end{array}$

On conclut par raisonnement par absurde que la famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R \to R \ x \mapsto \exp(\lambda x)$ est libre.

La famille $(f_{\lambda})_{\lambda \in R}$ oû $f_{\lambda}: R \to R \ x \mapsto \cos(\lambda x)$ étant libre est équivalent à

$$\forall (\mu_i) \in K^{Card(I)} \sum_{i \in I} \mu_i x_i = 0 \Rightarrow \forall \in I, \mu_i = 0.$$

l'ensemble I qui indexe les μ_i contient qu'un nombre fini d'éléments non nuls qu'on note $n \in N^*$ donc $(\mu_i)_{i \in I} = (\mu_i)_{i \in [|1,n|]}$,

On conclut donc qu montrer que la liberté de la famille est équivalent à montrer que:

$$\begin{array}{l} P: \forall n \in N^*, \forall (\lambda_i)_{i \in [|1,n|]} \in R^n \ \forall (\mu_i)_{i \in [|1,n|]} \in R^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \\ \Rightarrow \forall i \in [|1,n|], \mu_i = 0_R \end{array}$$

Or le cos étant paire on va prendre (les λ_i distincts dans R^+). On montrera alors cette proposition par récurrence simple sur $n \in N^*$

Initialisation: P(1)

Pour n=1, soient $(\lambda_1, \mu_1) \in \mathbb{R}^2$ telles que $\mu_1 f_{\lambda_1} = 0_E$, on a donc $\forall x \in$ $R, \mu_1.\cos \lambda_1 x = 0_R$, pour $x = 0, \cos(0) = 1$ donc $\mu_1 = 0_R$).

On a montré donc

$$\forall \mu_1 \in R, \forall \lambda_1 \in R^+, (\mu_1 f_{\lambda_1} = 0_E) \Rightarrow (\mu_1 = 0_R).$$

Hérédité: $P(n) \Rightarrow P(n+1)$

Soit $n \geq 1$, supposant la proposition vraie au rang n, et montrons la au rang

Soient $(\mu_i)_{i \in [|1,n+1|]}$ et $(\lambda_i)_{i \in [|1,n+1|]}$ telles que

 $\sum_{i \in [|1, n+1|]} \mu_i f_{\lambda_i} = 0_E$

Par double dérivation et puisque (les λ_i distincts dans R^+) on a:

 $\sum_{i=1}^{n+1} \mu_i(-\lambda_i^2) f_{\lambda_i} = 0_E \ (1)$

et par multiplication par $\lambda_n^2:\sum_{i=1}^{n+1}\mu_i(\lambda_n^2)f_{\lambda_i}=0_E$ (2) On ajoute (1) et (2) et on obtient $\lambda_{n+1}^2:\sum_{i=1}^n\mu_i(\lambda_{n+1}^2-\lambda_i^2)f_{\lambda_i}=0_E$ D'après l'hypothèse de la récurrence "P(n)", on a :

 $\forall i \in [|1, n|], \mu_i(\lambda_{n+1}^2 - \lambda i^2) = 0_R$

Et puisque les λ_i distincts dans R^+ on déduit que :

 $\forall i \in [|1, n|], \mu_i = 0_R$

Donc $\sum_{i \in [|1,n+1|]} \mu_i f_{\lambda_i} = 0_E$ devient $\mu_{n+1} f_{\lambda_{n+1}} = 0_E$ ce qui veut dire $\forall x \in R, \mu_{n+1} f_{\lambda_{n+1}}(x) = 0_R$ donc $\mu_{n+1} = 0_R$.

Donc $\forall i \in [|1, n+1|], \mu_i = 0_R$

On a montré que , en supposant que P(n) est vraie on déduit que : $\sum_{i \in [1,n+1]} \mu_i f_{\lambda_i} =$ $0_E \Rightarrow \forall i \in [|1, n+1|], \mu_i = 0_R$

Finalement par raisonnement par récurrence :

La famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R\to R$ $x\mapsto \cos(\lambda x)$ est libre.

On montrerai par absurde que la famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R \to R \ x \mapsto |x-\lambda|$ est libre.

Supposant que la famille $(f_{\lambda})_{\lambda \in R}$ est liée, alors comme précédemment la libérté de la famille étant équivalent à

 $P: \forall n \in N^*, \forall (\lambda_i)_{i \in [[1,n]]} \in \mathbb{R}^n \ \forall (\mu_i)_{i \in [[1,n]]} \in \mathbb{R}^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \Rightarrow \forall i \in \mathbb{R}^n$ $[|1, n|], \mu_i = 0_R$

On supposera:

 $P(bar): \exists n \in N^*, \exists (\lambda_i)_{i \in [|1,n|]} \in R^n, \exists (\mu_i)_{i \in [|1,n|]} \in R^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \text{ et les}$ μ_i non tous nuls.

D'après la proposition il existe $\lambda_0 \in R$ tel que f_{λ_0} est combinaison linéaire des

 $(f_{\lambda})_{\lambda \in R - \{\lambda_0\}}$ ce qui est équivalent à : $\exists n \in N^*, \exists (\lambda_i)_{i \in [|1,n|]} \in R^n - \{\lambda_0\}, \exists (\mu_i)_{i \in [|1,n|]} \in R^n f_{\lambda_0} = \sum_{i=1}^n \mu_i f_{\lambda_i}$ Pour tout $\lambda \in R$ la fonction de R dans R $x \mapsto |x - \lambda|$ est dérivable en tout $x \neq \lambda$ donc $\forall i \in [|1, n|], f_{\lambda_i}$ est dérivable sur λ_0 car $\forall i \in [|1, n|], \lambda_0 \neq \lambda_i$

Cependant, par addition de fonction dérivable au même point et multiplication par scalaires $\sum_{i=1}^{n} \mu_i f_{\lambda_i}$ est dérivable en λ_0 or $f_{\lambda_0} = \sum_{i=1}^{n} \mu_i f_{\lambda_i}$ donc f_{λ_0} est dérivable en λ_0 ce qui est absurde.

Finalement on a montré que la proposition $P: \forall n \in N^*, \forall (\lambda_i)_{i \in [|1,n|]} \in \mathbb{R}^n$ $\forall (\mu_i)_{i \in [[1,n]]} \in \mathbb{R}^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \Rightarrow \forall i \in [[1,n]], \mu_i = 0_R \text{ est vraie, donc}$

La famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R \to R \ x \mapsto |x-\lambda|$ est libre.

1.3.3 Base d'un espace vectoriel

Définition

Une famille $(e_i)_{i\in I}$ de vecteurs de E est une base de E si et seulement si elle est libre et génératrice de E.

Ce qui est équivalent à:

Tout vecteur de E s'écrit comme une combinaison linéaire unique des e_i

$$\forall v \in E \quad \exists ! (\lambda_i)_{i \in I} \in K^{Card(I)} \quad v = \sum \lambda_i e_i$$

Les $(\lambda_i)_{i\in I}$ sont tous nuls sauf un nombre fini, et sont alors appelées les coordonnées de v dans la base $(e_i)_{i \in I}$.

Exemple:

- (1,i) est une base du R-espace vectoriel (C,+,.).
- il existe une certaine type de base dit priviligée qui s'appele base canonique, elle apparait comme la base la plus simple pour un espace vectoriel: Soit $n \in {}^*$, la base canonique du R-espace vectoriel n est $B_c =$

1.4. DIMENSION 17

 $(e_1, e_2, \ldots, e_n \text{ avec } \forall i \in [|1, n|], e_i = (0, \ldots, 1, \ldots, 0)$, le 1 étant le i-ème coefficient du vecteur e_i , tout simplement e_i est le vecteur dont tous ces coefficients sont nuls sauf le i-ème qui égale à 1.

Cette base parait celle la plus naturelle à considérer, en fait prenant l'exemple de $(R^3, +, .)$ un vecteur de ce dernier s'écrit sous la forme : (a, b, c) avec $a, b, c \in R$ donc :

$$(a,b,c) = a * (1,0,0) + b * (0,1,0) + c * (0,0,1)$$

du coup la base canonique de $(R^2, +, .)$ est $((1,0,0), (0,1,0), (0,0,1)), e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$, il faut bien retenir et comprendre la base canonique car elle est utilisée extensivement en algébre linéaire.

Théorème

Si E est un espace vectoriel engendré par une famille de vecteurs finie $(x_i)_{i\in[|1,n|]}, n\in N^*$, alors:

- i) Toute famille libre a au plus n vecteurs.
- ii) Toute famille génératrice a au moins n vecteurs.

Démonstration Soit E Si E est un espace vectoriel engendré par une famille de vecteurs finie $(x_i)_{i \in [|1,n|]}, n \in N^*$,

- i) Soit L une famille libre de E, raisonnant par absurde et supposant qu'elle a n+1 vecteurs, choisissant un vecteur v dans L, v est combinaison linéaire des $(x_i)_{i\in[|1,n|]}, n\in N^*$, or chaque vecteur de L s'écrit sous forme de combinaison linéaire des $(x_i)_{i\in[|1,n|]}, n\in N^*$ puisque on a n vecteurs restant dans L, on peut écrire chaque $(x_i)_{i\in[|1,n|]}, n\in N^*$ sous forme de combinaison linéaire des vecteurs de L et puisque v est combinaison linéaire des $(x_i)_{i\in[|1,n|]}, n\in N^*$, il sera aussi combinaison linéaire des vecteurs de L, or L est libre d'oû la contradiction.
- ii) Soit G une famille génératrice de E, donc E= Vect(G)=Vect($(x_i)_{i\in[|1,n|]}$), $n\in N$, donc nécéssairement G a au moins n vecteurs.

1.4 Dimension

Définition

Un espace vectoriel est dit de dimension finie s'il existe un famille génératrice finie de celui ci, dans le cas contraire , on parle d'espace vectoriel de dimension infinie.

Remarque: Il faut faire attention au corps de base de l'espace vectoriel car il agit sur la dimension, par exemple (, ., + est un espace vectoriel de dimension 2

si on le voit en tant que R-espace vectoriel, en fait sa base est (1,i), cependant en tant qu'un C-espace vectoriel, il est de dimension 1.

On aborde cette remarque avec plus de détail dans les subsections concernant la notion hors programme d'extension de corps.

Exemples:

• Soit $n \in N^*$ alors $(R^n, +, *)$ est de dimension n.

1.4.1 Théorème de la base incomplète:

Théorème de la base incomplète:

Soit E un espace de dimension finie, si $G = (x_i)_{i \in I}$ est une famille génératrice de E et il existe $J \in I$ pour laquelle la famille $L = (x_i)_{i \in J}$ est libre, alors il existe une base B de E tq $L \subset B \subset G$

Démonstration: On considère l'ensemble de toutes les sous-familles libres d'éléments de G. Cet ensemble est non vide puisqu'il contient L. Il existe un nombre finie de telles familles car G est un ensemble fini. On en choisit une de cardinal maximum. Notons la B, et montrons que B est une base de E. Déjà B est libre par construction. Soit g G B. Alors la famille B g est de cardinal plus grand que celui de B, donc est liée. Comme B est libre, c'est que le vecteur ajouté g est combinaison linéaire des éléments de B. Ceci étant vrai pour tous les éléments de G B, on en déduit Vect B = Vect G = E, et donc B est aussi génératrice de E. C'est donc une base de E.

Corollaire

Soit E un K-espace vectoriel de dimension finie,

De toute famille génératrice de E, on peut en extraire une base en prenant les vecteurs linéairement indépendants.

Toute famille libre de E peut être complétée en une base, en ajoutant des vecteurs qui ne sont pas une combinaison linéaire des vecteurs de la famille libre.

Définition

Soit E un K-espace vectoriel de dimension finie, toutes les bases de E ont le même cardinal qu'on note $\dim_K E$.

Par convention : $dim_K E = 0$ pour $E = \{0\}$.

1.4. DIMENSION 19

1.4.2 Proposition:

Proposition

Soit E un K-espace vectoriel de dimension $n \in N^*$:

i) Toute famille de n vecteurs libre de est une base de E.

ii) Toute famille de n vecteurs génératrice est une base de E.

Démonstration: Soit E un K-espace vectoriel de dimension $n \in N^*$:

i) Par hypothèse, E possède une base B avec n éléments. Soit une famille libre L avec n éléments. Supposons L non génératrice, c'est-à-dire qu'il existe un vecteur v E qui n'est pas combinaison linéaire des vecteurs de L, dans ce cas, {L₀} est aussi libre or elle a plus d'éléments qu'une famille génératrice B, ce qui est contradictoire.

ii) Soit une famille génératrice G avec n éléments. Supposons G non libre, donc elle contient un élément v qui est combinaison linéaire des autres, la famille $G\{v\}$ est encore génératrice or elle a moins d'éléments qu'une famille libre B, ce qui est contradictoire.

1.4.3 Proposition:

Proposition

Soit E un K-espace vectoriel de dimension finie et F un sous espace vectoriel de E alors:

 $dim_K E \leq dim_K F$.

Cas d'égalité: Si $dim_K E = dim_K F$, on a E = F.

Démonstration:

1.4.4 Formule de Grassman:

Formule de Grassman

Soit E un K-espace vectoriel et E_1 et E_2 deux sous espace vectoriels de E alors E_1+E_2 est aussi un sous espace vectoriel de E et on a la formule suivante:

$$dim_K E_1 dim_K E_2 = dim_K (E_1 + E_2) - dim_K (E_1 \cap E_2)$$

$$\begin{aligned} dim_K E &= dim_K E_1 + dim_K E_2 \text{ et } E_1 \cap E_2 = \{0\}. \\ &\iff dim_K E &= dim_K E_1 + dim_K E_2 \text{ et } E = E_1 + E_2 \iff E = E_1 \oplus E_2 \end{aligned}$$

Chapter 2

Les Applications Linéaires

2.1 Definitions

Soient E et F deux K-espaces vectoriels:

2.1.1 Application Linéaire:

Définition

Une application $u:E\to F$ est dite linéaire si elle vérifie :

- i) L'additivité: $\forall (x,y) \in E^2, u(x+y) = u(x) + u(y)$
- ii) L'homogéniété: $\forall x \in E, \forall \lambda \in K, u(\lambda x) = \lambda u(x)$

ou encore, si elle vérifie :

$$\forall (x,y) \in E^2, \forall \lambda \in K, u(\lambda x + y) = \lambda u(x) + u(y).$$

Elles s'appellent donc des homomorphismes (ou tout simplement morphismes) et leur ensemble est un K-espace vectoriel noté L(E,F)

Exemples: rr

Propriétés

- L'addition, composée, de deux applications linéaires est une application linéaire.
- Une application linéaire reste linéaire si elle est multipliée par un scalaire.
- La reciproque d'une bijection linéaire est encore linéaire.

Termes

On appelle:

- Endomorphisme de E : toute application linéaire de E dans E.
- Isomorphisme de E vers F: toute bijection linéaire de E dans F ;
- Automorphisme de E: tout endomorphisme bijectif de E, ou encore, tout isomorphisme de E dans E.
- Forme linéaire sur E: toute application linéaire de E dans K.

Remarque:

- L'ensemble L(E,E) des endomorphismes de E se note plus simplement L(E).
- L'ensemble des automorphismes de E s'appelle le groupe linéaire de E et se note GL(E).
- L'ensemble L(E, K) des formes linéaires sur E se note plus simplement E* et porte le nom de dual de E. (On va voir plus tard).

2.1.2 Noyau, Image:

Définitions

Soit $u \in L(E, F)$. On appelle :

- L'ensemble $f(E) = \{u(x) \mid x \in E\}$, s'appele l'image de u et est noté Im(u).
- L'ensemble $f^{-1}(\{0_F\}) = \{x \in E \mid u(x) = 0_F\}$, s'appele le noyau de u et est noté Ker(u).

Remarque: La notation "Ker" vient du mot allemand "Kern" qui signifie noyau.

Théorème

Soit $u \in L(E, F)$.

L'image réciproque par u d'un sous-espace vectoriel de F est un sous-espace vectoriel de E ; L'image directe par u d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

Corollaire

- Ker(u) est un sous-espace vectoriel de E.
- Im(u) est un sous-espace vectoriel de F.

Théorème

Soit $u \in L(E, F)$.

- i) u est injective si et seulement si Ker(u) = 0.
- ii) u est surjective si et seulement si Im(u) = F.

Demonstration:

- i) Supposons f injective. Soit x Ker(u), alors u(x) = 0 = u(0) donc x = 0 par d'efinition de l'injectivité. On a donc Ker(u) = 0. Réciproquement, supposons que Ker(u) = 0. Soient x et y deux éléments de E tels que u(x) = u(y). Par linéarité de E, on en d'eduit que E que E0 donc E1 KerE1. Or KerE2 E3 donc E4 E4 est injective.
- ii) On a im(u) = u(E), et on sait que u est surjective si et seulement si u(E)=F d'oû le résultat.

2.2 Caracterisation par les bases:

Théorème

Pour toute base $(e_i)_{i\in I} deE$, l'application

$$u \mapsto (u(e_i))_{i \in I}$$

est bijective.

Théorème

Soit $u \in L$ (E,F).

- u est surjective si et seulement si l'image par u d'au moins une famille génératrice de E est génératrice de F (de plus, l'image par u de toute famille qui engendre E est alors génératrice de F).
- u est injective si et seulement si l'image par u d'au moins une base de E est libre (de plus, l'image par u de toute famille libre est alors libre); u est un isomorphisme si et seulement si l'image par u d'au moins une base (ou de toute base) de E est une base de F.

2.3 Projections, Symétries:

2.3.1 Projecteurs:

Définition

Soient E_1 et E_2 deux sous espaces vectoriels de E tel que $E_1 \oplus E_2 = E$ ie: $\forall x \in E, \exists ! (x_1, x_2) \in E_1 x E_2$ tel que $x = x_1 + x_2$

L'application $p: E \to E$ $x \mapsto x_1$ s'appelle la projection sur E_1 parallèlement à E_2 .

- i) $p \in L(E)$.
- ii) $Im(p) = E_1$ et $Ker(p) = E_2$.
- iii) $p \circ p = p$.

Reciproquement si $p \in L(E)$ et $p \circ p = p$ alors p est un projecteur.

Théorème

Soit $p \in L(E)$ p est un projecteur \Leftrightarrow p est la projection sur Im(p) parallèlement à Ker(p).

Dans ce cas $E = Im(p) \oplus Ker(p)$

Proposition HP

Soient E un espace vectoriel, et p,q deux projecteurs de E tels que $Im(p) \in Ker(q)$,

Si r = p + q - pq, alors r est un projecteur et $Ker(r) = Ker(p) \cap Ker(q)$ et $Im(r) = Im(p) \oplus Im(q)$

Démonstration

- i) On a $(p+q-pq)(p+q-pq) = p^2+pq-p^2q+qp+q^2-qpq-pqp-pq^3+pqpq$ or $Im(p) \subset Ker(q)$ **donc** $\forall x \in E, q(p(x)) = 0_E$ **donc** $qp = 0_{L(E)}$ et on a $p^2 = 0_{L(E)}, q^2 = 0_{L(E)}.$ $\Leftrightarrow (p+q-pq)(p+q-pq) = p+pq-pq+q-pq$ $\Leftrightarrow (p+q-pq)(p+q-pq) = p+q-pq.$ Donc p+q-pq est un projecteur.
- ii) Soit $x \in Ker(p+q-pq)$ On a $p(x)+q(x)+p(q(x))=0_E$ $\Leftrightarrow p^2(x)+p(q(x))+p(p(q(x)))=p(0_E)$ $\Leftrightarrow p^2(x)=0_E$ $\Leftrightarrow p(x)=0_E$ Donc $x \in Ker(p)$, alors $Ker(p+q-pq) \subset Ker(p)$, de même pour q et on obtient $Ker(p+q-pq) \subset Ker(p) \cap Ker(q)$. On a aussi $x \in Ker(p) \cap Ker(q) \Rightarrow p(x)+q(x)-p(q(x))=0_E$, donc $Ker(p) \cap Ker(q) \subset (p+q-pq)$. On a montré donc :

$$Ker(p+q-pq) = Ker(p) \cap Ker(q).$$

iii) Soit $y \in Im(p+q-pq)$, donc $\exists x \in E, (p+q-pq)(x) = y$ $\Leftrightarrow p(x) - p(q(x)) + q(x) = y$ $\Leftrightarrow p(x-q(x)) + q(x) = y$ Reciproquement, soit $y \in Im(p) + Im(q)$ alors $\exists y_p, y_q \in Im(p) \mathbf{x} Im(q)$ tel que: $y = y_p + y_q$ On a $q(y) = q(y_p + y_q) = q(y_q) = y_q$ car $q(y_p) = 0_E$ vu que $Ker(q) \subset Im(p)$. On a donc $(p+q-pq)(y) = p(y) + q(y) - p(q(y)) = y_p + y_q - p(y_q) = y_p + y_q = y$. Et puis $y \in Im(p+q-pq)$ et donc $Im(p+q) \subset Im(p+q-pq)$ et puisque $Im(p) \subset Ker(q)$ on a finalement:

$$Im(p+q-pq) = Im(p) \oplus Im(q)$$

2.3.2 Symétrie:

Définition

Soient E_1 et E_2 deux sous espaces vectoriels de E tel que $E_1 \oplus E_2 = E$ ie: $\forall x \in E, \exists ! (x_1, x_2) \in E_1 x E_2$ tel que $x = x_1 + x_2$

L'application $s: E \to E \ x \mapsto x_1 - x_2$ s'appelle symétrie par rapport à E_1 parallèlement à E_2 .

- i) $s \in L(E)$.
- ii) Si $p \in L(E)$ est la projection sur E_1 parallèlement à E_2 alors: $s = 2p Id_E$

Proposition

Dans le cadre du programme , K=R ou C donc on a le résultat suivant: $s \in L(E)$ est une symétrie $\Leftrightarrow s \circ s = Id_E$

Dans ce cas si $p = 1/2(s + Id_E)$, p est un projecteur et s est la symétrie par rapport à Im(p) parallèlement à Ker(p).

On expliquera plus loin, plus ce résultat et d'ou il vient (Voir Notion Caractéristique d'un corps).

2.4 L'espace L(E,F):

Théorème

Si E est de dimension finie alors $\dim(L(E, F)) = \dim(E) \times \dim(F)$..

Remarque: Si $u \in L(E, F)$ et $v \in L(F, G)$ alors $v \circ u \in L(E, G)$.

2.5 Rang:

Définition

Le rang d'une application linéaire est la dimension de son image. Si $u: E \to F$ est une application linéaire alors on note son rang par rg(u) et on a : $rg(u) = dim_K(Im(u))$.

2.6. STABILITÉ: 27

Théorème

La composition par un isomorphisme laisse le rang invariant, c'est à dire : Soit $u \in \mathcal{L}(E,F)$:

 $\forall v \in L(F,G)$ bijective $rg(v \circ u) = rg(u)$.

 $\forall v \in L(F, G)$ bijective $rg(v \circ u) = rg(u)$.

2.5.1 Théorème du rang:

Théorème du rang

Soit E un K-espace vectoriel de dimension finie et F un espace vectoriel , et $u \in L(E,F)$ alors: u est de rang fini et on a : $dim_K(E) = dim_K(Im(u)) + dim_K(Ker(u))$

Corollaire

Soient E, F deux K-espaces vectoriel de même dimension finie $u\in L(E,F)$, alors les assertions suivantes sont équivalentes:

- i) u bijective.
- ii) u surjective.
- iii) u injective.

2.6 Stabilité:

2.7 Exercices:

2.7.1 Projecteurs:

Exercice:

2.7.2 Lemmes de factorisation:

Exercice:

Soient E,F,G 3 K-espaces vectoriels de dimension finie, et soit $g:E\to G$ une application linéaire.

- 1) Soit $f: E \to F$ une application linéaire, montrer que: $(\exists h: F \to G \in L(F, G)$ telle que $g = h \circ f$.) $\Leftrightarrow (Kerf \subset Kerg.)$
- 2) Soit $h: F \to G$ une application linéaire, montrer que: $(\exists f: E \to F \in L(E, F), \text{ tel que } g = h \circ f.) \Leftrightarrow (Img \subset Imh.)$
- 3) On suppose maintenant que $g: E \to F \in L(E, F)$, montrer que: $(rgg \le rgf.) \Leftrightarrow (\exists h \in GL(F) \text{ et } k \in L(E) \text{ tels que } h \circ g = f \circ k.)$

Correction:

1) (\Rightarrow) Supposant que : $(\exists h: F \to G \in L(F,G) \text{ tel que } g = h \circ f.)$, On a donc : $\forall x \in Ker(f), g(x) = h(f(x)) = h(0_F) = 0_G$, donc $x \in Ker(g)$. $\forall x \in Ker(f), x \in Ker(g)$, donc $Ker(f) \in Ker(g)$.

$$(\exists h: F \to G \in L(F,G) \text{ telle que } g = h \circ f.) \Rightarrow (Kerf \subset Kerg.)$$

 (\Leftarrow)

Reciproquement, supposant $Ker(f) \in Ker(g)$

On pose $h_{Im(f)}$ une application telle que :

 $\forall y \in Im(f), h_{Im(f)} = g(x)$ avec $x \in E, f(x) = y$, on peut faire ca car g(x) ne dépend pas de x.

En effet $si(x,x') \in E^2$, f(x) = f(x') alors $f(x-x') = 0_F$ (car f est linéaire) donc $x - x' \in Ker(f)$ donc $x - x' \in Ker(g)$ et donc g(x) = g(x').

 $\forall x \in E, h_{Im(f)}(f(x)) = g(x) \text{ donc } h_{Im(f)} \circ f = g$

 $h_{Im(f)}$ est aussi linéaire car $\forall (y,y') \in (Im(f))^2, \exists (x,x') \in E^2, f(x) = y, f(x') = y', \forall (\alpha,\beta) \in K^2, h_{Im(f)}(\alpha.y+\beta.y') = h_{Im(f)}(\alpha.f(x)+\beta.f(x')) = h_{Im(f)}(f(\alpha.x+\beta.x'))) = g(\alpha.x+\beta.x') = \alpha.g(x) + \beta.g(x') = \alpha.h_{Im(f)}(y) + \beta.h_{Im(f)}(y').$

Si une application $h \in L(F,G)$ a sa restriction à Im(f) égale à $h_{Im(f)}$ alors elle répond à notre question donc:

$$(Kerf \subset Kerg.) \Rightarrow (\exists h : F \to G \in L(F,G) \text{ telle que } g = h \circ f.)$$

Finalement:

$$(\exists h: F \to G \in L(F,G) \text{ telle que } g = h \circ f.) \Leftrightarrow (Kerf \subset Kerg.)$$

 $2) \ (\Rightarrow) \\ \text{jjj}$

 (\Leftarrow) Reciproquement, supposant que $Im(g) \subset Im(h)$.

On considère un supplémentaire H dans F, notant l'isomorphisme induit par h sur H par h_H .

L'application $f=h_H^{-1}\circ g$ est linéaire et bien définie car $Im(g)\subset Im(h)$ et on a :

 $\forall x \in Eh(f(x)) = h(H)^{-1}(g(x))) = g(x) \text{ alors } g = h \circ f.$ donc:

$$(Im(g) \subset Im(h).) \Rightarrow (\exists f : E \to F \in L(E, F), \text{ tel que } g = h \circ f.)$$

Finalement:

$$(\exists f: E \to F \in L(E, F), \text{ tel que } q = h \circ f.) \Leftrightarrow (Imq \subset Imh.)$$

 $3) (\Rightarrow)$ On suppose que $rg(g) \leq rg(f)$: Notant rg(f) = p, rg(g) = q et posant $B_f = (x_1, \dots, x_p, \dots, x_n)$ base de E avec (x_{p+1},\ldots,x_n) base de Ker(f)posant aussi $B_g = (y_1, \dots, y_p, \dots, y_n)$ base de E avec (y_{+1}, \dots, y_n) base de Ker(g)Les familles $(f(x_1), \ldots, f(x_p)), (g(y_1), \ldots, g(y_q))$ étant des bases de Im(f) et Im(g)respectivement, on les complète en deux bases de F: $(f(x_1), \ldots, f(x_p), f_{p+1}, f_m)$ et $(g(y_1), \ldots, g(y_q), g_{q+1}, g_m)$. On définit maintenant $k \in L(E)$ et $h \in GL(F)$ par : $\forall i \in [|1,q|], k(y_i) =$ $x_i, \forall j \in [|q+1, n|], k(y_j) = 0_E$ et $\forall i \in [|1, q|] h(g(y_i)) = f(x_i), \forall j \in [|q+1, m|] h(g_i) = f_i$. On a donc: $\forall i \in [|1,q|], (f \circ k)(y_i)f(k(y_i)) = f(x_i) = h(g(y_i)) = (h \circ g)(y_i)$ et $\forall i > q, (f \circ k)(y_i) = (h \circ g)(y_i) = 0_F$ Donc $h \circ g = f \circ k$. Finalement:

$$(rg(g) < rg(f)) \Rightarrow ()(\exists h \in GL(F) \text{ et } k \in L(E) \text{ tels que } h \circ g = f \circ k.)$$

2.7.3 Inégalité de Sylvester:

Exercice:

Soient E un K-espace vectoriel de dimension finie, F un K-espace vectoriel et $f,g\in L(E,F)$:

- 1) Montrer que $|rgf rgg| \le rg(f+g) \le rgf + rgg$.
- 2) Supposant maintenant que f et g sont les deux des endomorphismes de E, montrer que : $(rg(f+g)=rg(f)+rg(g).) \Leftrightarrow (Im(f)\cap Im(g)=\{0_F\}etKer(f)+Ker(g)=E.)$
- 3) Montrer l'inégalité de Sylvester : $rg(f) + rg(g) dim_K(E) \le rg(fg) \le min(rg(f), rg(g))$.

Correction:

1) Soient $f, g \in L(E, F)$.

On a alors:

 $Im(f+g) \subset Im(f) + Im(g)$ donc $rg(f+g) \leq dim(Im(f) + Im(g)) \leq rg(f) + rg(g)$ donc $rg((f+g) + (-g)) \leq rg(f+g) + rg(-g)$ or rg(g) = rg(-g)donc $rg(f) \leq rg(f+g) + rg(g)$

du coup $rg(f) - rg(g) \le rg(f+g)$ Si on refait la même démarche avec f+g et -f on obtient:

 $rg(g)-rg(f) \le rg(f+g)$ donc $|rg(f)-rg(g)| \le rg(f+g)$. et puisque on a démontré que: $rg(f+g) \le rg(f)+rg(g)$, on a donc :

$$\forall f, g \in L(E, F) |rg(f) - rg(g)| \le rg(f + g) \le rg(f) + rg(g).$$

- 2) (\Rightarrow) Supposant rg(f+g) = rg(f) + rg(g),
 - i) On avait vu que $rg(f+g) \leq dim_K(Im(f+g)) \leq dim_K(Im(f)+Im(g)) \leq rg(f)+rg(g)$ donc $dim_K(Im(f)+Im(g))=rg(f)+rg(g)$ Or on a $dim_K(Im(f)+Im(g))=dim_K(Im(f))+dim_K(Im(g))-dim_K(Im(f)\cap Im(g))$ donc $dim_K(Im(f)+Im(g))=rg(f)+rg(g)-dim_K(Im(f)\cap Im(g))$ donc $dim_K(Im(f)\cap Im(g))=0_K$ donc $Im(f)\cap Im(g)=\{0_F\}$.
 - ii) On a $dim_K(Ker(f) + Ker(g)) = dim_K(Ker(f)) + dim_K(Ker(g)) dim_K(Ker(f) \cap Ker(g))$ donc $dim_K(Ker(f) + Ker(g)) = dim_K(E) - rg(f) + dim_K(E) - rg(g) - dim_K(Ker(f) \cap Ker(g)).$

2.7. EXERCICES: 31

```
On a Ker(f) \cap Ker(g) = Ker(f+g).
                                En effet, si x \in Ker(f+g), (f+g)(x) = 0_F or puisque f(x) = -g(x)
                                on a f(x) \in Im(f)etIm(g) de même pour g(x) \in Im(g) et Im(f)
                                f(x), g(x) \in Im(f) \cap Im(g) \text{ or } Im(f) \cap Im(g) = \{0_F\} \text{ donc } f(x) = \{0_F\} \text{ donc }
                                g(x) = 0_F \text{ donc } x \in Ker(f) \cap Ker(g)
                                On obtient donc Ker(f+g) \subset Ker(f) \cap Ker(g) et puisque on sait que
                                Ker(f) \cap Ker(g) \subset Ker(f+g) \text{ donc } Ker(f) \cap Ker(g) = Ker(f+g).
                                On a maintenant:
                                dim_K(Ker(f) + Ker(g)) = dim_K(E) - rg(f) + dim_K(E) - rg(g) -
                                dim_K(Ker(f+q)).
                                \Leftrightarrow dim_K(Ker(f) + Ker(g)) = dim_K(E) - rg(f) + dim_K(E) - rg(g) - dim
                                dim_K(E) + rg(f+g)
                                \Leftrightarrow dim_K(Ker(f) + Ker(g)) = dim_K(E) - rg(f) - rg(g) + rg(f+g)
                                Finalement on a:
                                dim_K(Ker(f) + Ker(g)) = dim_K(E) et puisque Ker(f) + Ker(g) \subset
                                E on conclut que:
                                Ker(f) + Ker(g) = E
On a montré que :
```

$$(rg(f+g) = rg(f) + rg(g).) \Rightarrow$$

 $(Im(f) \cap Im(g) = \{0_F\}etKer(f) + Ker(g) = E.)$

 (\Leftarrow)

Supposons maintenant que:

$$(Im(f) \cap Im(g) = \{0_F\}etKer(f) + Ker(g) = E.$$

Comme on a déja démontré $Ker(f+g) = Ker(f) \cap Ker(g)$, et donc:

$$rg(f+g) = dim_K(E) - dim_K(Ker(f+g)) = dim_K(E) - dim_K(Ker(f)) \cap Ker(g)$$

$$\Leftrightarrow rg(f+g) = dim_K(E) - (dim_K(f) + dim_K(g) - dim_K(Ker(f) + Ker(g)))$$

$$\Leftrightarrow rg(f+g) = dim_K(E) - (dim_K(f) + dim_K(g) - dim_K(E))$$

$$\Leftrightarrow rg(f+g) = dim_K(E) - dim_K(f) + dim_K(E) - dim_K(g)$$

$$\Leftrightarrow rg(f+g) = rg(f) + rg(g).$$

On a montré que :

$$(Im(f) \cap Im(g) = \{0_F\}etKer(f) + Ker(g) = E \Rightarrow (rg(f+g) = rg(f) + rg(g).).)$$

Finalement on a:

$$(rg(f+g)=rg(f)+rg(g).)\Leftrightarrow (Im(f)\cap Im(g)=\{0_F\}etKer(f)+Ker(g)=E.)$$

3) On montre maintenant l'inégalité de Sylvester: Puisque on a $Im(fg) \leq Im(f)$ alors $rg(fg) \leq rg(f)$. Or on a aussi $rg(fg) \leq rg(g)$. Donc $rg(fg) \leq min(rg(f), rg(g))$. (1) Considèrons la restriction de f sur Im(g): $f_{Im(g)}$ On a $Im(f_{Im(g)}) = Im(fg)$ et $Ker(f_{Im(g)}) = Ker(f) \cap Ker(g)$. D'après le Théorème du rang : $dim_K(Im(fg)) = dim_K(Im(f)) - dim_K(Ker(f) \cap Im(g)) \geq dim_K(Im(f)) - dim_K(Ker(f)) \geq rg(g) - (dim_K - rg(f))$. Donc $rg(fg) \geq rg(f) + rg(g) - dim_K(E)$. Finalement on a montré que:

$$rg(f) + rg(g) - dim_K(E) \le rg(fg) \le min(rg(f), rg(g)).$$

2.7.4 Endomrophismes particuliers:

Exercice:

Soient E un K-espace vectoriel de dimension finie et $u \in L(E)$:

- 1) Montrer que les assertions sont équivalentes:
 - i) $E = Keru \oplus Imu$.
 - ii) $\exists v \in L(E), v \circ u = 0etv + u \in GL(E).$
 - iii) $Keru = Keru^2$.
 - iv) $Imu = Imu^2$.

Correction:

2.8 Compléments:

2.8.1 Drapeaux:

2.8.2 Espace vectoriel quotient:

Définitions

Soient E un K-espace vectoriel et F un sous espace vectoriel de E, La relation R() définit une relation d'equivalence sur E. L'espace quotient E/F muni des lois "+":x+y=x+y, ".": $\lambda.x=\lambda.x$ est un K-espace vectoriel

si E/F est de dimension finie, On appele codimension de F la dimension de E/f tel que :

 $dim_K(E/F) = codim_E(F)$.

Dans ce cas on dit que F est de codimension finie.

Proposition

Soit E un K-espace vectoriel et F un sous espace vectoriel de E. (F est de codimension finie) \Leftrightarrow (F admet un supplémentaire S dans E). Dans ce cas $dim_K(S) = codim_E(F)$.

Démonstration: j

Corollaire

Si E est un K-espace vectoriel de dimension finie et F un sous espace vectoriel de E , alors F est de codimension finie et : $dim_K(E/F) = dim_K(E) - dim_K(F).$

Corollaire

Si E, F sont deux K-espaces vectoriel et $u \in L(E,F)$, alors Im(u) est isomorphe à E/Ker(u).

2.8.3 L'espace L(E):

Théorème-Programme

 $({\rm L}(E),+,\cdot,\circ)$ est une K-algèbre associative unifère (non commutative si $\dim(E)\geq 2).$

Définition

On appelle homothétie $u \in L(E)$ de rapport $\lambda \in K$ l'endomorphisme $\lambda.Id_E$

Proposition

Soit $u \in L(E)$,

(u est une homothétie) \Leftrightarrow $(\forall x \in E, \text{ la famille } (x, f(x)) \text{ est liée.})$

Démonstration: On a

Proposition-HP

Le centre du groupe linéare Gl(E) est l'ensemble des homotéthie de rapport non nul.

Démonstration: hh

Proposition-HP

Soit E un K-espace vectoriel de dimension finie $n \in N^*$ $u \in L(E)$, (u est une homothétie) \Leftrightarrow (si $k \in [|1, n-1|]$ u stabilise tous les sous-espace vectoriels de E de dimension k)

Démonstration: Idéaux de L(E)

Proposition-HP

Proposition-HP

Proposition-HP

Chapter 3

Les Matrices

3.1 Généralités:

Définition

Une matrice à coefficients dans K est une famille $(a_{i,j})_{(i,j)\in[1,m]\times[1,n]}$ d'éléments de K.

Les nombres m et n sont appelés dimensions de la matrice. On dit qu'une matrice est de taille m \times n.

Les éléments $a_{i,j}$ sont appelés coefficients de la matrice.

Une matrice $A=(a_{i,j})_{(i,j)\in [\![1,m]\!]\times [\![1,n]\!]}$ est notée de la manière suivante :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,n} \end{pmatrix}$$

Remarques:

- L'ensemble des matrices de dimensions données à coefficients dans K est noté $\mathcal{M}_{m,n}\left(K\right)$.
- L'ensemble $M_{n,n}(K)$ est noté plus simplement $M_n(K)$.
- \bullet Une matrice de largeur n=1 est appelée vecteur, ou plus spécifiquement vecteur colonne.
- Une matrice de hauteur m = 1 est appelée vecteur ligne.
- $\bullet\,$ Une matrice telle que m = n est appelée matrice carrée.

3.1.1 Opérations sur les matrices:

Définition

Addition

Soient A et B deux matrices de même taille à coefficients dans K. Alors il est possible de les additionner. Leur somme est une matrice A+B à coefficients dans K, de même taille que A et B:

$$(a_{i,j})_{(i,j)\in[1,m]\times[1,n]} + (b_{i,j})_{(i,j)\in[1,m]\times[1,n]} := (a_{i,j} + b_{i,j})_{(i,j)\in[1,m]\times[1,n]}$$

Définition

Produit par un scalaire

Le produit d'une matrice $A \in \mathcal{M}_{m,n}(K)$ par un scalaire $\lambda \in K$ est la matrice $\lambda A \in \mathcal{M}_{m,n}(K)$ dont les coefficients sont ceux de A multipliés par λ :

$$\lambda \ (a_{i,j})_{(i,j)\in [\![1,m]\!]\times [\![1,n]\!]} := (\lambda a_{i,j})_{(i,j)\in [\![1,m]\!]\times [\![1,n]\!]}.$$

Définition

Produit de deux matrices

Soient $A = (a_{i,j})_{(i,j) \in [\![1,m]\!] \times [\![1,n]\!]} \in \mathcal{M}_{m,n(K)}$ et $B = (b_{i,j})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p(K)}$ deux matrices telles que . Le produit de A par B est la matrice suivante :

$$AB = \left(\sum_{k=1}^{n} a_{i,k} b_{k,j}\right)_{(i,j) \in \llbracket 1,m \rrbracket \times \llbracket 1,p \rrbracket} \in \mathcal{M}_{m,p(K)}.$$

Remarque: La condition pour la possibilité du produit matricielle est que le nombre de colonnes de la première matrice est égale au nombre de lignes de la deuxième.

Propriété

Le produit matriciel est associatif.

Démonstration: Laissée exercise pour le lecteur.

37

3.1.2 Matrices élémentaires:

Définition

Matrice nulle

La matrice nulle de $M_{m,n}(K)$, notée 0 ou $\mathbf{0}_{M_{m,n}(K)}$, est : $\mathbf{0}_{M_{m,n}(K)} := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mathbf{0}_{M_{m,n}(K)} := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \text{ où } 0 \text{ est }$

l'élément neutre pour l'addition dans l'anneau K — siK=R ou C, c'est simplement le zéro habituel.

Définition

Matrice identité

On appelle matrice identité de taille n la matrice:

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Propriétés

- $\forall A \in \mathcal{M}_{m,n}(K)$ $AI_n = A$.
- $\forall B \in M_{n,p}(K) \quad I_n B = B$

Définitions

Matrice triangulaire

Soit A une matrice de $M_n(K)$

On appele A triangulaire supérieure si $a_{i,j} = 0$ pour $i \geq j$.

On appale A triangulaire inférieure si $a_{i,j} = 0$ pour $i \leq j$.

Définitions

Matrice diagonale

Soit A une matrice de $M_n(K)$

On appele A diagonale si $a_{i,j} = 0$ pour $i \neq j$.

Définition

Matrice scalaire

Soit A une matrice de $M_n(K)$

On appelle A matrice scalaire si $\exists \lambda \in K^*$ tel que $A = \lambda I_n$

3.2 Mn(K)

Proposition

 $\mathcal{M}_n\left(K\right)$, muni de l'addition des matrices et du produit matriciel, est un anneau unifère.

Remarque: $M_n(K)$ n'est pas un anneau intègre du coup AB=0 n'implique pas A=0 ou B=0

Définition

Transposition d'une matrice

La matrice transposée ou la transposée d'une matrice $A \in M_{m,n}(K)$ est la matrice notée ${}^{t}A \in M_{n,m}(K)$ (aussi notée A^{T} ou A^{t}), B telle que:

$$\forall (i,j) \in \{1,\ldots,n\} \times \{1,\ldots,m\} \qquad b_{i,j} = a_{j,i}.$$

Définition

Inverse d'une matrice

Soit A une matrice carrée de taille n \times n. Lorsqu'elle existe, on appelle inverse à gauche (resp à droite) de A, une matrice telle que : $A_G^{-1} A = I_n$.(resp $A A_D^{-1} = I_n$) Lorsqu'une matrice admet un inverse à gauche et à droite on dit que cette matrice est inversible , cet inverse ainsi est unique et l'on note A^{-1} ,

Remarque:

- L'ensemble des matrice inversible est un groupe qu'on note $Gl_n(K)$, on étudiera prochainement ce groupe plus profondèment dans son propre chapitre.
- Le produit de deux matrices inversible est aussi une matrice inversible : A, B deux matrices $deM_n(K)$ inversibles d'inverses respectivement A^{-1}, B^{-1} alors AB est inversible d'inverse $B^{-1}A^{-1}$ (il est facile de voir que $B^{-1}A^{-1}AB = ABB^{-1}A^{-1} = I_n$.

Théorème

Une matrice carrée A est inversible si et seulement si det $A \neq 0$, et dans ce cas, on a :

$$A^{-1} = \frac{1}{\det A} t(\operatorname{com} A)$$

Remarque: Ce résultat ne substit pas si K n'est pas un corps commutatif, en fait la condition det $A \neq 0$ faut étre compris en tant que det A est inversible

3.2. MN(K) 39

dans K ce qui sera different si K n'était pas un corps commutatif, comme par exemple dans $A \in \mathcal{M}_n(Z)$, la condition deviendra det A1 ou det A-1

Proposition

Soit $A \in M_n(K)$. Les propositions suivantes (dans lesquelles on identifie Mn,1(K) à Kn) sont équivalentes :

- i) A est inversible.
- ii) l'application linéaire $K^n \to K^n$, $X \mapsto AX$ est bijective (ou, ce qui est équivalent : injective, ou encore : surjective).
- iii) A est inversible à gauche, c'est-à-dire qu'il existe une matrice B telle que ${\rm BA}={\rm In}.$
- iv) A est inversible à droite, c'est-à-dire qu'il existe une matrice B telle que AB = In.
- v) les colonnes de A forment une base de Kn ; la transposée de A est inversible (et dans ce cas, on a $({}^tA)^{-1} = {}^t(A^{-1})$.

Propriétés

- Si $\lambda \in K^*\lambda \in K^*$, la matrice scalaire λI_n est inversible : $(\lambda I_n)^{-1} = \frac{1}{\lambda} I_n$.
- Plus généralement, une matrice diagonale diag $(\lambda_1, \ldots, \lambda_n)$ est inversible si et seulement si tous ses termes diagonaux λ_i sont non nuls, et son inverse est alors diag $\left(\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}\right)$.
- Si une matrice carrée Aest inversible, alors sa transposée l'est aussi, et la transposée de l'inverse de Aest égale à l'inverse de sa transposée : ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$.
- $(n, \dim =2)$

Définitions

Matrices symétriques et antisymétriques

Soit A une matrice de $M_n(K)$,

- On appelle A matrice symétrique si $\forall (i,j) \in [|1,n|]^2, a_{i,j} = a_{j,i}$ (c'est à dire si ${}^tA = A$).
- On appele A matrice antisymétrique $\forall (i,j) \in [|1,n|]^2, a_{i,j} = -a_{j,i}$ (c'est à dire si ${}^{t}A = -A$).

Définitions

Matrice nilpotente

Soit A une matrice de $M_n(K)$, on dit que A est nilpotente s'il existe $p \in \mathbf{N}^*$ tel que : $A^p = \mathbf{0}_{\mathbf{M}_{m,n}(K)}$

3.3 Matrice d'une application linéaire

Soient E, F, G trois espace vectoriels, avec : $B = (e_1,, e_m)$ base de E, $C = (f_1,, f_n)$ base de F, et D base de G.

Définition

Une application $u: E \to F$ est linéaire si et seulement s'il existe une matrice $A \in \mathcal{M}_{m,n}(K)$ telle que pour tout vecteur x de E:

Si X désigne la matrice colonne des coordonnées de x dans la base B c'est à dire si X=... avec $x=\sum i\in [|1,m|]x_ie_i$ et Y celle des coordonnées de u(x) dans la base C, c'est à dire si Y= avec $u(x)=\sum i\in [|1,n|]y_if_i$, alors

$$Y = AX$$
.

De plus, cette matrice A est alors unique : pour tout $j \in [\![1,n]\!]$, sa j-ème colonne est constituée des coordonnées de $u(e_j)$ dans la base C. La matrice A est donc appelée la matrice de u dans les bases B, C et notée $\mathrm{Mat}_{B,C}(u)$.

Remarque: Si F = E et C = B, on l'appelle la matrice de udans la base B.

Théorème

L'application $\mathrm{Mat}_{B,C}:\mathrm{L}(E,F)\to\mathrm{M}_{m,n}(K)$ est un isomorphisme d'espaces vectoriels.

3.3.1 Proposition:

Proposition

Soient $u: E \to F$ et $v: F \to G$ deux applications linéaires. Alors, $\operatorname{Mat}_{B,D}(v \circ u) = \operatorname{Mat}_{C,D}(v) \operatorname{Mat}_{B,C}(u)$.

3.4 Changement de bases:

Définition

La matrice de passage de Ba B' est :

la matrice $Mat_{B',B}(Id_E)$ de l'application identité IdE, de E muni de la base B' dans E muni de la base B ou, ce qui est équivalent :

la matrice dont les colonnes sont les coordonnées dans Bdes vecteurs de $B^\prime.$

3.4.1 Remarque:

Définition

Soit P la matrice de passage de B à B'. Il résulte immédiatement de la définition que :

Pest inversible : son inverse est la matrice de passage de B'à B; si un même vecteur de E a pour coordonnées X dans B et X' dans B', alors X = PX'.

3.4.2 Proposition:

Proposition

Soient:

 $u: E \to F$ une application linéaire ; Pla matrice de passage de B à B' (bases de E); Q la matrice de passage de C à C' (bases de F). Alors, $\operatorname{Mat}_{B',C'}(u) = Q^{-1} \operatorname{Mat}_{B,C}(u) P$.

3.5 Rang:

Définition

Soit A une matrice de $M_{(p,q)}(K)$, on appelle rang de A , le rang de ses vecteurs colonnes dans K^p , et on le note $\operatorname{rg}(A)$. Dans le cas oû A est une matrice d'une application linéaire u , on a : $\operatorname{rg}(A) = \operatorname{rg}(u)$.

Propriétés

- Si $A \in M_{p,q}(K)$, $rg(A) \leq inf\{p,q\}$.
- Si $A \in M_n(K)$ alors (A est inversible.) \Leftrightarrow (rg(A)=n.)

Définition

Soit $A=(a_{i,j})_{(i,j)\in[|1,p|]*[|1,q|]}\in M_{(p,q)}(K)$, et soient deux sousensembles non vide $I\subset\{1,...,p\}$ et $J\subset\{1,...,q\}$. On appelle la matrice $(a_{i,j})_{(i,j)\in I*J}\in M_{(p,q)}(K)$ matrice extraite et A matrice bordante.

Théorème

Soient $A \in M_{p,q}(K)$, son rang est égale à la taille de la plus grande matrice carrée inversible qu'on peut extraire de cette dernière.

Corollaire

Le rang de la transposée d'une matrice est égal à celui de la dernière.

3.6 Equivalence, similitude et trace:

3.6.1 Equivalence:

Définition

Deux matrices M et N sont dites équivalentes s'ils existent deux matrices inversibles P et Qtelles que : $N=Q^{-1}MP$.

Théorème

Soient $A\in M_{p,q}(K)$ et $r\in N^*,$ rg(A)=
r si et seulement si A est équivalent à J_r avec

$$J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

Théorème

Deux matrices de même taille sont équivalentes si et seulement si elles ont même rang.

Démonstration: Soit B matrice de rang r équivalent à A alors : ils existent deux matrices inversibles P et Qtelles que :

 $A = Q^{-1}BP$. or B étant de rang r elle est équivalent à J_r donc de plus ils existent deux matrices inversibles P' et Q'telles que :

 $B = Q'^{-1}J_rP'$. donc $A = Q^{-1}Q'^{-1}J_rP'P$. avec $Q^{-1}Q'^{-1}$ et P'P les deux inversibles (produit de deux matrices inversibles) donc A est équivalente à J_r , finalement A est de rang r le même que B.

3.6.2 Similitude:

Définition

Deux matrices carrées M et N sont dites semblables s'il existe une matrice inversible Ptelle que :

 $N = P^{-1}MP.$

3.6.3 Trace

Définition

Soit A une matrice carrée. La trace de A est la somme des éléments diagonaux de A (les éléments de sa diagonale principale). Elle est notée : $\operatorname{tr} \mathbf{A}$, ou $\operatorname{Tr} \mathbf{A}$.

Propriété

L'application $tr: M_n(K) \to K$ est une forme linéaire.

Propriétés

Soient **A** et **B** deux matrices carrées de même taille et a un scalaire. Alors : tr $(\mathbf{A} + \mathbf{B}) = \text{tr } \mathbf{A} + \text{tr } \mathbf{B}$; tr $(a \mathbf{A}) = a \text{ tr } \mathbf{A}$; tr $({}^{t}\mathbf{A}) = \text{tr } \mathbf{A}$;

Démonstration: Laissée exercise pour le lecteur.

Remarque: Si $A, B, C \in M_n(K)$ on peut avoir tr(ABC) = tr(CAB) = tr(BCA) mais $tr(ABC) \neq tr(ACB)$.

Corollaire

Soient $\mathbf{A} \in \mathcal{M}_{m,n}(K)$ et $\mathbf{B} \in \mathcal{M}_{n,m}(K)$. Alors : tr (\mathbf{AB}) = tr (\mathbf{BA}) .

Démonstration: Laissée exercise pour le lecteur.

Propriété

Deux matrices semblables ont même trace.

Propriété

Soit E un K-espace vectoriel et $p \in L(E)$ un projecteur, alors $trp = rg(p).1_K$

Démonstration: Notons r le rang de p, p étant projecteur on a : $E = Kerp \oplus$ Imp, considèrant les deux bases $(e_1,...,e_r)$ de Imp et $(e_{r+1},...,e_n)$ puisque E= $Kerp \oplus Imp$, la base B obtenue par concatenation des deux bases $(e_1, ..., e_r)$ et $(e_{r+1},...,e_n)$ est base de E, et donc la matrice de p dans cette base est $\begin{pmatrix} I_r \\ 0 \end{pmatrix}$ Finalement, sa trace $trp = r = rg(p).1_K$.

Exercices: 3.7

3.8 Compléments:

Matrice diagonalement dominantes -HP 3.8.1

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in M_n(C)$ A est dite de diagonale dominante si :

$$\forall i \in [|1, n|], \sum_{1 \le j \le n, j \ne i} |a_{i,j}| \le |a_{i,i}|$$

Lemme de Hadamard

Si A une matrice de diagonale dominante, alors A est inversible.

Démonstration Dire que A est inversible est équivalent à dire que les vecteurs colonnes de A forment une famille libre, on montrera par raisonnement par absurde le résultat dérnier.

Supposant que les vecteurs colonnes de A forment une famille liée,

On note les coéfficients de A par $a_{i,j}, i,j \in [|1,n|]$, d'après notre supposition :

$$\exists (\lambda_1, \dots, \lambda_n) \in C^n$$
 non tous nuls tels que $\forall i \in [|1, n|], \sum_{j=1}^n \lambda_j a_{i,j} = 0_C$,

Posant $k \in [|1, n|]$ tel que $|\lambda_k| = \sup_{j \in [|1, n|]} |\lambda_j|$, puisque les $(\lambda_j)_{j \in [|1, n|]}$ sont non

tous nuls cette définition a un sens et $\lambda_k \neq 0$. On a maintenant $\sum_{j=1}^n \lambda_j a_{k,j} = 0_C$ donc $\sum_{j=1,j\neq k}^n (\lambda_j a_{k,j}) + \lambda_k a_{k,k} = 0_C$ donc

 $a_{k,k} = \sum_{j=1, j \neq k}^{n} \lambda_j / \lambda_k a_{k,j}$ $\operatorname{du coup} |a_{k,k}| \leq \sum_{j=1, j \neq k}^{n} |\lambda_j| / |\lambda_k| |a_{k,j}| \leq \sum_{j=1, j \neq k}^{n} |a_{k,j}| (\operatorname{puisque} \forall j \in [|1, n|] |\lambda_j| \leq 1)$ $|\lambda_k|$

ce qui est contradictoire avec l'hypothèse que ${\bf A}$ est de diagonale dominante, finalement :

Si A est de diagonale dominante alors A est inversible.

Chapter 4

Déterminants

4.1 Formes multilinéaires

Soit E un K-ev.

Définition

Soient $E_1, ..., E_n$ et F des K-ev. Une application f, à valeurs dans F, est dite n-linéaire lorsque $f: E_1 * ... * E_n \to F$ f est linéaire par rapport à chacune de ses variables, c'est-à-dire : $\forall i \in \{1, ..., n\} \quad \forall x \in E^n \quad \forall y_i \in E \quad \forall \lambda \in K$

$$f(x_1, \dots, x_{i-1}, \lambda x_i + y_i, x_{i+1}, \dots, x_n) = \lambda f(x_1, \dots, x_i, \dots, x_n) + f(x_1, \dots, y_i, \dots, x_n)$$

Lorsque $E_1 = ... = E_n = E$ et F = K f est une forme n-linéaire sur E.

Remarque:

- Une application $f: E_1*E_2 \to F$ est bilinéaire si : $\forall \lambda \in K \quad \forall (x,y,z) \in E_1*E_1*E_2f(\lambda x+y,z) = \lambda f(x,z) + f(y,z)$ et $\forall \lambda \in K \quad \forall (x,y,z) \in E_1*E_2*E_2f(x,\lambda y+z) = f(x,z) + \lambda f(x,y)$.
- L'ensemble des formes n-linéaire est noté $L_n(E, K)$.

Exemples: r

Proposition

 $dim_K(L_n(E,K)) = (dim_K(E))^n.$

Définitions

- Une application n-linéaire f est dite symétrique si $\forall i < j \ f(x_1,\ldots,x_{i-1},\ldots,x_j,\ldots,x_i,x_{j+1},\ldots,x_n) = f(x_1,\ldots,x_n).$
- Une application n-linéaire f est dite antisymétrique si $\forall i < j \ f(x_1,\ldots,x_{i-1},\ldots,x_j,\ldots,x_i,x_{j+1},\ldots,x_n) = -f(x_1,\ldots,x_n).$
- Une application n-linéaire f est dite alternée si, appliquée à un n-uplet où deux vecteurs sont égaux, elle s'annule, c'est-à-dire si $\forall i < j \quad f(x_1, \ldots, x_i, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n) = 0.$

Propriété

Puisque une permutation $\sigma \in S_n$ est composée de transpositions alors :f est symétrique si et seulement si $\forall \sigma \in S_n f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$ f est antisymétrique si et seulement si $\forall \sigma \in S_n f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = \epsilon(\sigma) f(x_1, \ldots, x_n)$

Proposition

Soient E un K-ev et $f \in L_n(E, K)$ alternée. Si $(x_1, ..., x_n) \in E^n$ une famille de vecteurs liée alors $f(x_1, ..., x_n) = 0_K$.

4.2 Déterminant d'une famille de vecteurs dans une base

Définition

Soit B base de E, il existe une seule forme n-linéaire alternée sur E prenant la valeur 1 sur B et telle que toute forme n-linéaire dans B est multiple de celle ci. On la note par det_B et on l'appelle déterminant dans la base B.

Soit x_1, \ldots, x_n une famille de vecteurs dans B alors leur déterminant s'exprime ainsi:

• $det_B(x_1,\ldots,x_n) = \sum_{\sigma \in S_n} \epsilon(\sigma) x_{1,\sigma(1)} \ldots x_{n,\sigma(n)}$

Démonstration: THEOREME

Propriété

Si B et B' sont deux bases de E, alors pour toute famille $(x_1,\ldots,x_n)\in E, det_{B'}(x_1,\ldots,x_n)=det_{B'}B.det_B(x_1,\ldots,x_n)$ et on a $det_{B'}B.det_BB'=1$.

Thoérème

Une famille $(x_1, \ldots, x_n) \in E$ est base de $E \Leftrightarrow \text{pour toute base } B$ de E $det_B(x_1, \ldots, x_n) \neq 0 \Leftrightarrow \text{pour une base } B$ de E $det_B(x_1, \ldots, x_n) \neq 0$.

4.3 Déterminant d'un endomorphisme

Définition

Soit u un endomorphisme de E et $B=(e_1,\ldots,e_n)$ base de E. On appelle déterminant de e $det_B(u(e_1),\ldots,u(e_n))$, il ne dépend pas de la base choisie et on le note detu.

Proposition

- Si $u, v \in L(E), det(u \circ v) = detu * detv$.
- $detId_E = 1$.
- Soit $u \in L(E)$, $inGl(E) \Leftrightarrow detu \neq 0$, et $(detu)^{-1} = det(u^{-1})$.

4.4 Déterminant d'une matrice carrée

Définition

Soit $A \in M_n(K)$ le déterminant de A est défini par :

$$det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$$

avec S_n l'ensemble des permutations de l'ensemble $\{1,...,n\}$, et $\epsilon(\sigma)$ la signature de la permutation σ .

Remarque On note souvent le déterminant de A sous la forme suivante:

- le déterminant d'une matrice ne change pas de valeur quand on ajoute à une colonne ou une matrice une combinaison linéaire des autres.
- Si A est la matrice d'un endomorphisme alors leurs déterminants sont égaux.

Propriétés

Soient $A, B \in M_n(K)$, on a alors:

- Le déterminant est invariant par transposition: $det A = det A^{T}$.
- $\forall \lambda \in \mathbf{K}, det(\lambda A) = \lambda^n. det(A)$.
- det(AB) = detA * detB.
- Si A et B sont semblables alors det A = det B.
- $det A \neq 0 \Leftrightarrow A \in Gl_n(\mathbf{K})$.

• Si
$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$
(ie. triangulaire) alors $\det A = 0$

Définitions

Soit $A = (a_{i,j})_{i,j \in [[1,n]]} \in M_n(\mathbf{K})$. Pour tout $(i,j) \in [[1,n]]$ on appelle cofacteur de $a_{i,j}$, le scalaire $(-1)^{i+j} det A_{i,j}$ avec $A_{i,j}$ la matrice obtenue de A en éliminant la i-ème ligne et la j-ième colonne.

Remarque On appelle aussi le scalaire $det A_{i,j}$ mineur de l'élément $a_{i,j}$ et mineurs principaux de A les déterminants $det(a_{i,j})_{i,j\in[|1,k|]}$ pour $k\in[|1,n|]$, mais ces définitions sont hors-programme.

Définitions

Soit $A \in M_n(\mathbf{K})$, la matrice des cofacteurs des élements de A s'appelle comatrice de A et est notée com(A).

Proposition

Si $A \in M_n(\mathbf{K})$ alors $com(A).A^{\mathrm{T}} = com(A)^{\mathrm{T}}.A = (det A).I_n$.

Corollaire

Si A est inversible alors $A^{-1} = (1/det A).com(A)^{T}$.

4.5. CALCUL D'UN DÉTERMINANT

51

Remarque Si $A \in M_2(K)$ inversible telle que $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ alors $A^{-1} = 1/(ad-bc) * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

4.5 Calcul d'un déterminant

Proposition

Soit $A=(a_{i,j})_{i,j\in[|1,n|]}\in M_n(\mathbf{K})$ avec $A_{i,j}$ les cofacteurs des élements de A, on calcule généralement un déterminant en développant par rapport à la i-ème ligne ou la j-ième colonne selon :

• Développement par rapport à la i-ème ligne:

$$det A \sum_{j=1}^{n} (a_{i,j} A_{i,j}).$$

• Développement par rapport à la i-ème ligne:

$$det A \sum_{i=1}^{n} (a_{i,j} A_{i,j}).$$

Chapter 5

Compléments: Dualité et

 $Gl_n(K$

Chapter 6

PROBLEMES

6.1 Traces:

6.1.1 Matrice de trace nulle

Matrice de trace nulle

Soit $A \in M_n(R)$ telle que $TrA = 0_R$

- 1) Montrer que A est semblable à une matrice n'ayant que de $\mathbf{0}_R$ dans sa diagonale.
- 2) Montrer que $\exists X, Y \in M_n(R)$ tels que A = XY YX

Correction

1) On montre par récurrence sur $n \in \mathbf{N}^*$ la proposition suivante :

P: $\forall n \in N^*$, Si $A \in M_n(R)$ est de trace nulle alors elle est semblable à une matrice n'ayant que des 0 sur la diagonale principale.

Initialisation: P(1)

On a $M = tr(M) = 0_{\mathbf{R}}$.

Hérédité: $P(n-1) \rightarrow P(n)$

Supposant que la proposition P est vrai pour le rang n-1 et montrant la pour le rang n.

Soit u un endomorphisme de ${\bf R}^n$ dont la matrice dans la base canonique R^n est notée A. On traitera deux cas:

- i) $\forall x \in R^n$, la famille (x, u(x)) est liée. On a vu donc que u est une homothétie ie: $\exists \lambda \in R$ tel que $u = \lambda Id_E$ donc $tr(\lambda Id_E) = n\lambda = tr(u) = tr(A) = 0_R$ du coup $\lambda = 0_R$ et donc $u = 0_{L(R^n)}$, finalement A est la matrice nulle.
- ii) $\exists x \in R^n$ tel que la famille (x, u(x)) soit libre. On complète cette famille en base $B = (x, u(x), e_3, \dots, e_n)$ de R^n , la matrice de u dans cette base est : $[u]_B = \begin{pmatrix} 0 & \dots & \\ 1 & N \\ 0 & \end{pmatrix}$

On a $tr(N) = tr([u]_B) = 0_R$, donc d'après l'hypothèse de récurrence $\exists Q \in Gl_{n-1}(R)$ telle que $Q^{-1}NQ$ n'ait que des zéros sur la diagonale

principale. On pose
$$Q' \in Gl_n(R)$$
, telle que $Q' = \begin{pmatrix} 1 & \dots & \\ 0 & Q \\ 0 & \end{pmatrix}$

$$Q^{-1}[u]_B Q = \begin{pmatrix} 0 & \dots & \\ 0 & Q^{-1}NQ \\ 0 \end{pmatrix} \text{ et puisque } Q^{-1}NQ \text{ n'a que des zéros}$$

dans sa diagonale principale et puisque A est semblable à $[u]_B$ A est semblable à $Q^{-1}[u]_BQ$, la récurrence étante établie, on a prouvé:

 $P: \forall n \in N^*$, Si $A \in M_n(R)$ est de trace nulle alors elle est semblable à une matrice n'ayant que des 0 sur la diagonale principale.

2) On déduit de la question précedente que $\exists Q \in Gl_n(R)$ telle que $A = Q^{-1}NQ$ avec $N = (n_{i,j})_{i,j \in [|1,n|]}$ n'ayant que des zéros sur sa diagonale principale.

Posant X'=
$$\begin{pmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{pmatrix} \in M_n((R)), x_i \neq x_j sii \neq j$$

 $Y' = (y_{i,j})_{i,j \in [|1,n|]} \in M_n(R), y_{i,j} = n_{i,j}/(x_i - x_j)sii \neq j \text{ et } y_{i,i} = 0_R$ sinon.

On a $(X'Y'-Y'X')_{i,j}=n_{i,j}(x_i-x_j)/(x_i-x_j)=n_{i,j}sii\neq j$ et $(X'Y'-Y'X')_{i,j}=0_R$ sinon, alors X'Y'-Y'X'=N donc $A=(P^{-1}X'P)(P^{-1}Y'P)-(P^{-1}Y'P)(P^{-1}X'P)$

On pose $X = P^{-1}X'P, Y = P^{-1}Y'P$, finalement :

$$\exists X, Y \in M_n(R), A = XY - YX.$$

6.1. TRACES: 57

6.1.2 Traces modulo p

Exercice:

Soit p un nombre premier et $A, B \in M_n(Z)$.

- 1) Montrer que $Tr((A+B)^p) = Tr(A^p) + Tr(B^p)[p]$.
- 2) En déduire que $Tr(A^p) = Tr(A)[p]$.
- 3) Soit la suite récurrente (u_n) définie par $u_0 = 3, u_1 = 0, u_2 = 2$ $\forall n \in \mathbb{N}, u_{n+3} = u_{n+1} + u_n.$ Montrer p divise u_p .

Correction:

- 1) Soient $A, B \in M_n(\mathbf{Z})$. On traite deux cas :
 - i) 1er cas: A et B commutent. On a, d'après la formule de **Newton**: $(A+B)^p = A^p + B^p + \sum_{k=1}^{p-1} (\binom{r}{p}, k) A^k B^{p-k})$ donc $tr((A+B)^p) = tr(A^p) + tr(B^p) + \sum_{k=1}^{p-1} (\binom{r}{p}, k) Tr(A^k B^{p-k}))$ Or p étant premier on a $\forall k \in [|1, p-1|], p/\binom{r}{p}, k)$, donc, par factorisation $(a_k)_{k \in [|1, p-1|] \in \mathbf{Z}^p}$ $\sum_{k=1}^{p-1} (\binom{r}{p}, k) Tr(A^k B^{p-k})) = p. \sum_{k=1}^{p-1} (a_k. Tr(A^k B^{p-k}))$ Et puisque $A, B \in M_n(Z)$, les $Tr(A^k B^{p-k})$ sont des entiers et donc: $tr((A+B)^p) = tr(A^p) + tr(B^p) + p. \sum_{k=1}^{p-1} (a_k. Tr(A^k B^{p-k}))$ Alors :

pour tout p premier et $A, B \in M_n(Z)$, $Tr((A+B)^p) = Tr(A^p) + Tr(B^p)[p]$.

- 6.2 Formule de Burnside, Théorème de Mashke(après matrice hehehehe)
- 6.3 Dérivation:
- 6.4 Famille positivement génératrice:
- 6.5 Décomposition de Fitting

Exercice:

Soient E un K-espace vectoriel de dimension finie $n \in {}^*$, et $u \in L(E)$:

- 1) Montrer que les suites $(Imu^k)_{k\in N}$ et $(Keru^k)_{k\in N}$ sont strictement monotones pour l'inclusion jusqu'un certain rang m d'oû elle deviennent stationnaire.
- 2) Montrer que la suite $(dim_K Ker(u^{k+1}) dim_K Ker(u^k))_{k \geq 0}$ est décroissante.
- 3) Montrer que $E = keru^m \oplus Imu^m$.

4)

6.6 Identité de Sylvester, Identité de Jacobi

Exercice:

- 1) Identité de Jacobi: Soit $A \in Gl_n(K)$. On note $T = A^{-1}$ et on considère l'écriture par blocs des matrices A et T: $A = \begin{pmatrix} B & C \\ S & E \end{pmatrix} T = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix} \text{ avec } B, W \in M_r(K) \text{ et } 1 \leq r \leq n.$ Montrer que (detA)(detW) = detE.
- 2) Soient $I, J \subset \{1, ..., n\}$, $card(I) = card(J) = r, A = (a_{i,j})_{(i,j)\in[|1,n|]^2} \in M_n(K)$ On note $A_{I,J} \in M_r(K)$ la matrice extraite de A. Notons I*, J* les complémentaires de I, J das $\{1, ..., n\}$ et $S(I, J) = \sum_{i \in I} i + \sum_{j \in J} j$. Montrer que : $(A \in Gl_n(C) \text{ avec } T = A^{-1}) \Rightarrow ((detA)(detT_{J,I}) = (-1)^{S(I,J)}(detA_{I*,J*}))$
- 3) Identité de Sylvester: Soit $A=(a_{i,j})_{(i,j)\in[|1,n|]^2\in M_n(K)},$ on pose : $\Gamma_{I,J}=det(com(A))_{I,J}, \Delta_{I,J}=det(A_{I*,J*}).$ Montrer que :

$$\Gamma_{I,J} = (-1)^{S(I,J)} \cdot \Delta_{I,J} \cdot (detA)^{r-1}$$

*

Correction:

6.7 Dual de Mn(K)

Exercice:

Si $A \in M_n(K)$, on note ϕ_A la forme linéaire définie par : $\phi_A : M_n(K) \to K$ $X \mapsto Tr(AX)$ Montrer que $\phi : M_n(K) \to M_n(K)^*$ $A \mapsto \phi_A$ est un isomorphisme.

6.8 Stabilisation du GLn(K)

Exercice

Soit $A \in M_n(C)$ et $\phi \in L(M_n(C))$ tel que : $(A \in Gl_n(C)) \Rightarrow (\phi(A) \in Gl_n(C))$

- 1) Montrer que : $(A \in Gl_n(C)) \Leftrightarrow (\exists P \in Gl_n(C), \forall \lambda \in C, P-\lambda.A \in Gl_n(C))$
- 2) Montrer que $(\phi(A) \in Gl_n(C)) \Rightarrow (A \in Gl_n(C))$

Correction:

6.9 Intersection des hyperplans avec GLn(K)

Exercice:

Soit $n \geq 2$, Montrer que tout hyperplan de $M_n(K)$ coupe $Gl_n(K)$ c'est à dire :

$$H \subset M_n(K) \Rightarrow Gl_n(K) \cap H \neq$$
.

Correction:

6.10 Conservation de similitude par passage vers un surcorps

Exercice:

- 1) Soient $A, B \in M_n(R)$ semblabes sur C. Montrer qu'elles sont semblabes sur R.
- 2) Cas general: Soient K un corps infini et L une extension de K. Montrer que si $A, B \in M_n(K)$ semblabes sur L, alors elles sont semblabes sur K.

6.11 Dimension maximale d'un sous-espace vectoriel de $M_n(K)$ de rang p

Exercice:

Soit $n \geq 2$ et K un corps commutatif infini.

Soit V un sous-espace vectoriel de $M_n(K)$, posons $p = max\{rgA|M \in$ V} avec $p \le n$.

- 1) Montrer que V est isomorphe à un sous-espace vectoriel contenant $J = \begin{pmatrix} I_p & 0_{p,n-p} \\ 0_{n-p,p} & 0_{p,p} \end{pmatrix}$. Dans la suite on suppose que $J \in V$.
- 2) Montrer que $siM \in V,$ alors $\exists (A,B,C) \in M_p(K) * M_{p,n-p}(K) *$ $M_{n-p,p}(K)$, tel que (M= $\begin{pmatrix} A & B \\ C & 0_{p,p} \end{pmatrix}$. et $BC=0_{M_{n-p,n-p}(K)}$ On notera d'ailleurs pout tout $M \in V, A=a(M), B=b(M), C=$
- 3) Soient $M \in V$ tel que $C = 0_{M_{n-p,p}(K)}$ et E un sev de K^p tel que $E = \bigcup_{N \in V} Im(C)$ Montrer que $E \subset Ker(b(M))$.
- 4) notons $r = dim_K E$ et soit $(e_1, ..., e_r)$ une base de E complété par $(e_{r+1},...,e_p)$ en une base de K^p . Posons l'application suivante: $\phi: V \to M_p(K) * K^{n-pp-r} * M_{p,n-p}(K)$

$$M = \begin{pmatrix} A & B \\ C & 0_{p,p} \end{pmatrix} \mapsto (A, Be_{r+1}, ..., Be_p, C)$$

Montrer alors que $dim_K V \leq np$.

5) Supposons K = R Montrer que $dim_K V \leq np$.

Correction:

Décomposition de Bruhat 6.12

Exercice:

Chapter 7

Réduction des endomorphismes et matrice carrées

7.1 Généralités:

7.1.1 Elements propres d'un endomorphisme et de matrice carrée

Cas d'endomorphisme:

Soient K un corps, E un K-espace vectoriel et u un endomorphisme de L(E).

Définition

Soit $\lambda \in K$, on dit que λ est une valeur propre de u si $\exists x \in E \setminus \{0_E\}$ tel que : $u(x) = \lambda x$ ce qui est équivalent aux assetions suivantes:

- i) $ker(u \lambda . Id_E) \neq \{0_E\}.$
- ii) $u \lambda . Id_E$ n'est pas injective.
- iii) $u \lambda I d_E$ n'est pas inversible (Seulement si E est de dimension finie).

L'ensemble des valeurs propres d'un endomorphisme s'appelle son spectre et il dépend du corps de base de l'espace vectoriel ainsi on note:

$$Sp_K(u) = \{\lambda \in K | \exists x \in E \setminus \{0_E\}, u(x) = \lambda.x\}$$

64CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

Définition

Soit $x \in E \setminus \{0_E\}$, on dit que x est une valeur propre de u si $\exists \lambda \in K$ tel que : $u(x) = \lambda x$

Remarque:

- Une valeur propre peut être nulle.
- Un vecteur propre ne peut jamais être nul.

Définition

Si λ est une valeur propre, on appelle sous-espace propre : l'ensemble des vecteurs propres associées à cette valeur qu'on note $E_{\lambda}(u)$ ainsi on a :

$$E_{\lambda}(u) = ker(u - \lambda.Id_E)$$

Cas d'une matrice carrée:

Définitions

Toutes les définitions précédentes s'étend pour les matrices carrées en considèrant, pour une matrice $A \in M_n(K)$ l'endomorphisme : $\varphi_A: K^n \to K^n, \ X \mapsto AX$. c'est à dire :

- $\lambda \in K$ est une valeur propre de u si $\exists X \in K^n \setminus \{0_{K^n}\}$ tel que : $AX = \lambda X$ ce qui est équivalent à $ker(A \lambda I_n) \neq \{0_{K^n}\}$.
- $X \in K^n \setminus \{0_{K^n}\}$ est une valeur propre de A si $\exists \lambda \in K$ tel que : $AX = \lambda X$.
- $E_{\lambda}(A) = ker(A \lambda I_n)$ est le sous-espace propre associé à la valeur propre λ .

Théorème

Soit $k \in N^*$ si $\lambda_1, ..., \lambda_k$ des valeurs propres distincts deux à deux d'un endomorphisme u alors les sous-espaces propres $E_{\lambda_1}, ..., E_{\lambda_k}$ sont en somme directe.

Démonstration: k

Proposition

Si E est un K-espace vectoriel de dimension finie $n \in K^*$ alors si u est un endomorphisme de E, il admet au plus n valeurs propres.

Démonstration: k

7.1.2 Polynome caractéristique

Depuis maintenant, on considera que E est un espace vectoriel de dimension $n \in N^*$

Définition

Soit $A\in M_n(K),$ on appelle polynôme caractéristique de A , le polynôme noté χ_A définit par :

$$\chi_A(X) = det(A - X.I_n)$$

Définition

Soit $u\in L(E)$, on appelle polynôme caractéristique de u , le polynôme caractéristique de sa matrice dans une base quelconque de E, et on le note χ_u .

Remarque: Par convention, le polynôme caractéristique est unitaire.

Proposition

Soit $A \in M_n(K)$, alors $\chi_A = \chi_A$

Proposition

Deux matrices semblables ont le même polynôme caractéristique.

Démonstration: k

Proposition-induit

Proposition

Soit $u \in L(E)$, on a:

 $(\lambda \text{ valeur propre de } u) \Leftrightarrow (\chi_u(\lambda) = 0_K)$

Définition

Soit $u \in L(E)$ et $\lambda \in Sp_K(u)$, on appelle multiplicité de λ sa multiplicité en tant que racine du polynôme caractéristique de u et on la note par m_{λ} .

Proposition

Soit $u \in L(E)$ et $\lambda \in Sp_K(u)$ on a :

 $dim_K(E_{\lambda}) \leq m_{\lambda}.$

7.1.3 Diagonalisation

Définition

Soit $u \in L(E)$, u est diagonalisable s'il existe une base de E composée seulement de vecteurs propres de u.

Dans une telle base, sa matrice est diagonale d'oû la définition suivante: Un endomorphisme est diagonalisable si sa matrice est semblable à une matrice diagonale.

Démonstration: k

Définition

Une matrice $A \in M_n(K)$ est diagonalisable si elle est semblable à une matrice diagonale c'est à dire si :

 $\exists P \in Gl_n(K), \exists \Lambda = diag(\lambda_1, ..., \lambda_n) \in M_n(K), A = P\Lambda P^{-1}.$

Conditions de diagonalisabilité

Soit $u \in L(E)$, avec $r = card(Sp_K(u)), Sp_K(u) = \{\lambda_1, ..., \lambda_r\}$. Conditions nécessaires de diagonalisabilité:

Les assertions suivantes sont équivalentes:

- i) u est diagonalisable.
- ii) χ_u est scindé et $\forall i \in [|1,r|] \lambda_i$, $m_{\lambda_i} = dim_K(E_{\lambda_i})$.
- iii) $E = \bigoplus_{i \in [|1,r|]} E_{\lambda_i}$

Conditions suffisantes de diagonalisabilité:

Les assertions suivantes sont équivalentes:

- i) $r = dim_K(E)$.
- ii) χ_u est scindé et à racines simples.
- iii) les valeurs propres de u sont distinctes deux à deux.

Dans le cas oû une des assertions ci-dessus est verifié alors u est diagonalisable.

Démonstration: k

Proposition

Si $u \in L(E)$ est diagonalisable et F un sous-espace vectoriel de E stable par u alors $u_{|F}$ est diagonalisable.

7.1.4 Trigonalisation

Définition

Soit $u \in L(E)$, u est trigonalisable s'il existe une base dans laquelle sa matrice est triangulaire supérieure.

Définition

Soit $A \in M_n(K)$, A est trigonalisable si elle est semblable à une matrice triangulaire supérieure c'est à dire si:

Proposition

Soit $u \in L(E)$ (resp $A \in M_n(K)$), u (resp A) est diagonalisable si χ_u (resp χ_A) est scindé sur K.

Démonstration: k

7.1.5 Réduction simultanée-HP

7.2 Polynome d'endomorphisme, et de matrice carrée

7.2.1 Généralités

Définition

Soient $u \in L(E), A \in M_n(K)$ les applications $f_u : K[X] \to L(E)$ $P \mapsto P(u), f_A : K[X] \to M_n(K)$ $P \mapsto P(A)$ sont des morphismes d'algèbres tels que:

$$\forall P \in K[X] \ f_u(P) = P(u) = \text{et } f_A(P) = P(A) =$$

Si $\exists r \in N^*$ et $\exists (a_i)_{i \in [[0,r]]} \in K^r$ tel que $P(X) = \sum_{i \in [[1,r]]} a_i X^i$ alors

$$P = \sum_{i \in [|1,r|]} a_i . u^i, P = \sum_{i \in [|1,r|]} a_i . A^i$$

on a donc: $\forall x \in E, f_u(P)(x) = \sum_{i \in [[1,r]]} a_i.u^i(x)$

Remarque:

- Notons que pour $i \in N^*, u^i = u \circ u \circ ... \circ u$ (i fois).
- $P(u) \in L(E)$, ie: P(u) est un endomorphisme!!
- $P(A) \in M_n(K)$, ie: P(A) est une matrice!!
- si

Proposition

- i) $Ker f_u = \{P \in K[X] | P(u) = 0_{L(E)}\}$ est un idéal de K[X].
- ii) $Imf_u = \{P(u)|P \in K[X]\}$ est une sous algèbre commutative de L(E) noté K[u].

Démonstration: .

7.2.2Polynôme minimal

Définition

On considère l'ideal $I=Kerf_u=\{P\in K[X]|P(u)=0_{L(E)}\}$, on a $I\neq\{0_{K[X]}\}$ alors il est généré par un seul élément noté " μ_u " ou " π_u " c'est à dire:

$$I = \pi_u K[X]$$

On a donc:

$$(\forall P \in K[X], P(u) = 0.) \Leftrightarrow (\pi_u - P.)$$

Démonstration:

Remarque: Le polynôme minimal est unitaire.

Définition

De même on considère l'ideal $I=Kerf_A=\{P\in K[X]|P(A)=0_{M_n(K}\},$ on a $I\neq\{0_{K[X]}\}$ alors il est généré par un seul élément noté " μ_A " ou " π_A " c'est à dire:

$$I = \pi_A K[X]$$

On a donc:

$$(\forall P \in K[X], P(A) = 0.) \Leftrightarrow (\pi_A - P.)$$

Proposition

Si d est le degré du Polynôme minimal d'un endomorphisme alors la famille $(u^k)_{1 \le k \le d-1}$ est une base de K[u].

70CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

Proposition

Soit $u \in L(E), \lambda \in K$ on a :

Les racines de μ_{λ} dans K sont les valeurs propres de u. ce qui est equivalent à

$$(\mu_{\lambda}(\lambda) = 0_K) \Leftrightarrow (\lambda \in Sp_K(u).)$$

Lemme de décomposition de noyaux

Soient $P_1,...,P_r$ des polynômes premiers entre eux deux à deux tel que $P=\Pi_{i=1}^rPi$ alors:

$$Ker(P(u)) = \bigoplus_{i=1}^{r} Ker(P_i(u)).$$

Démonstration: k

Proposition

Soit $u \in L(E)$, les assertions suivantes sont équivalentes:

- i) u est diagonalisable.
- ii) μ_u est scindé dans K à racines simples.
- iii) $\exists P \in K[X]$ scindé à racines simples tel que $P(u) = 0_{L(E)}$.

Proposition

De même si $A \in M_nK$, les assertions suivantes sont équivalentes:

- i) A est diagonalisable.
- ii) μ_A est scindé dans K à racines simples.
- iii) $\exists P \in K[X]$ scindé à racines simples tel que $P(A) = 0_{M_nK}$.

Démonstration: k

Proposition

Si F est un sous-espace vectoriel de E, stable par u et $u_{|F}$ l'endomorphisme induit par u sur F alors $\mu_{u_{|F}}$ divise μ_u . Et si u est diagonalisable alors $u_{|F}$ est aussi diagonalisable.

Soit $u \in L(E)$, les assertions suivantes sont équivalentes:

- i) u est trigonalisable.
- ii) μ_u est scindé dans K.
- iii) $\exists P \in K[X]$ scindé tel que $P(u) = 0_{L(E)}$.

Proposition

De même si $A \in M_n(K, \text{ les assertions suivantes sont équivalentes:}$

- i) A est trigonalisable.
- ii) μ_A est scindé dans K.
- iii) $\exists P \in K[X]$ scindé tel que $P(u) = 0_{M_nK}$.

7.2.3 Théorème de Cayley-Hamilton

Théorème

Soit $u \in L(E)$, χ_u son polynôme caractéristique, alors $\chi_u = 0_{L(E)}$

Démonstration: k

7.2.4 Sous-espace caractéristiques

Définition

Soit $u \in L(E)$ tel que son polynôme caractéristique χ_u est scindé dans K ie : $\exists s \in N^*$ tel que $\exists (\lambda_1,...,\lambda_s) \in K^s, (\alpha_1,...,\alpha_s) \in N^s, P = (X - \lambda_1)_1^{\alpha}...(X - \lambda_s)_s^{\alpha}$

Pour tout $i \in [|1, s|]$ on appelle sous-espace caractéristique le sous-espace vectoriel $Ker(u - \lambda_i.Id)_i^{\alpha}$.

Proposition

- i) Pour tout $i \in [|1, s|], Ker(u \lambda_i.Id)_i^{\alpha}$ est stable par u.
- ii) $E = \bigoplus_{i=1}^{s} Ker(u \lambda_i.Id)_i^{\alpha}$.
- iii) Pour tout $i \in [|1, s|], dim_K(Ker(u \lambda_i.Id)_i^{\alpha}) = \alpha_i.$

Démonstration: k

72CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

7.3 Exercices

7.3.1 Techniques de Diagonalisation

7.4 Compléments

7.4.1 Matrice circulantes

Généralités

Définition

Soit $M \in M_n(C)$, on dit que M est une matrice circulante si elle s'écrit

sous la forme suivante :
$$M = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ c_n & c_1 & \dots & c_{n-1} \\ c_{n-1} & c_n & \dots & c_{n-2} \\ \vdots & \ddots & \vdots & & \\ c_2 & c_3 & \dots & c_1 \end{pmatrix}$$
 avec $\forall i \in [|1, n|] \ c_i \in C)$

Proposition

On note une matrice circulante de sorte que la matrice précédente est noté $M(c_1,...,c_n)$

On pose alors
$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$
 de sorte que

J = M(0, 1, ..., 0), on a donc:

(M est une matrice circulante) ⇔ (M est un polynôme en J)

Démonstration: k

Proposition

L'ensemble des matrice circulantes est une sous-algébre commutative de ${\cal M}_n(C)$

Démonstration: k

73

Réduction des matrices circulantes

Réduction de la matrice J

La matrice J est diagonalisable, ses valeurs propres sont les racines nièmes de l'unité et ses vecteurs propres s'expriment ainsi:

On pose $w = exp(2i\pi/n)$ alors pour tout $k \in [|1, n|], w^k$ est valeur propre

de J et :
$$\forall k \in [|1, n|], = \begin{pmatrix} 1 \\ w^k \\ w^{2k} \\ \vdots \\ w^{(n-1)k} \end{pmatrix}$$
 est vecteur propre de J.

Démonstration On a $J^n=I_n$ donc le polynôme X^n-1 est annulateur de J, ce dernier étant scindé a racines simples dans C, J est diagonalisable. Les valeurs propres de J sont les racines de X^n-1 , du coup elles sont les racines n-ièmes de l'unité

Réduction d'une matrice circulante

7.4.2 Matrice de Toeplitz

Définition

Définition

Matrice de Toeplitz tridiagonale

Définition

Valeurs propres

Démonstration k

7.4.3 Matrice de Hankel

Définition

- 7.4.6 Dunford
- 7.4.7 Jordan
- 7.4.8 Frobenius
- 7.4.9 Simplicité
- 7.4.10 Nilpotence
- 7.4.11 Stochastique