Tema 4: <u>MORFOLOGÍA BINARIA</u>

INGENIERÍA INFORMÁTICA

- La morfología matemática se basa en operaciones de teoría de conjuntos. En el caso de imágenes binarias, los conjuntos tratados son subconjuntos de Z² y en el de las imágenes en escala de grises, se trata de conjuntos de puntos con coordenadas en Z³.
- La morfología matemática se puede usar, entre otros, con los siguientes objetivos:
 - -Supresión de ruidos, detección de esquinas o pequeños detalles con cierta forma, etc.
 - -Destacar la estructura de los objetos: extraer el esqueleto, extraer el borde, rellenado de regiones, etc.

• Operaciones básicas sobre conjuntos:

- Operaciones básicas sobre conjuntos:
 - Traslación de B por z:

$$B_z = \{x \mid x = b + z, b \in B\}$$

- Reflexión de B:

$$\widehat{B} = \{x \mid x = -b, b \in B\}$$

• Elementos estructurales:

- Conjuntos pequeños o subimágenes usadas para aplicar las operaciones morfológicas.

Tema 4: Morfología Morfología Imágenes en escala Imágenes binarias de grises Operaciones Aplicaciones Operaciones morfológicas morfológicas **Aplicaciones** Extracción de fronteras Gradiente y componentes Dilatación, erosión, morfológico, conexas, rellenado de transformada de Dilatación, erosión, regiones, trasformada Top-Hit-or-Miss, apertura y cierre. adelgazamiento y Hat, texturas y apertura y cierre. engrosamiento, granulometrías. esqueleto y poda.

• DILATACIÓN: Definición

Dada una imagen binaria, sea A el conjunto de píxeles de la imagen que forman el objeto (1) sobre un fondo (0). Dado un elemento estructural B, la **dilatación de A por B** se define como:

$$A \oplus B = \{x \mid (\widehat{B})_x \cap A \neq \emptyset\}$$

Tengamos en cuenta que, para la intersección sólo consideramos los píxeles del objeto A y B.

En general, la dilatación significa un engrosamiento del objeto en una forma que dependerá del elemento estructural B.

• DILATACIÓN: Ejemplo
$$A \oplus B = \{x \mid (\widehat{B})_x \cap A \neq \emptyset\}$$

0,0	0,1	0,2	0,3	0,4
1,0	1,1	1,2	1,3	1,4
2,0	2,1	2,2	2,3	2,4
3,0	3,1	3,2	3,3	3,4

 $A \oplus B$

Observación: Es importante tener en cuenta que el sistema de coordenadas que se considera aquí es (fila, columna).

También es importante saber **sobre qué píxeles estamos trabajando**, blancos o negros.

• DILATACIÓN: Ejemplo
$$A \oplus B = \{x \mid (\widehat{B})_x \cap A \neq \emptyset\}$$

 $A \oplus B$

• DILATACIÓN: Ejemplo de aplicación

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Los segmentos de los caracteres rotos se han unido.

• EROSIÓN: Definición

Dada una imagen binaria, sea A el conjunto de píxeles de la imagen que forman el objeto (1) sobre un fondo (0). Dado un elemento estructural B, la **erosión de A por B** se define como:

$$A \ominus B = \{x \mid B_x \subseteq A\}$$

Tengamos en cuenta que sólo consideramos los píxeles del objeto de A y B.

La erosión es la propiedad morfológica dual a la dilatación.

La erosión se concibe usualmente como una reducción de la imagen original.

• EROSIÓN: Ejemplo

$$A \ominus B = \{x \mid B_x \subseteq A\}$$

A

 $A \ominus B$

• EROSIÓN: Interpretación geométrica

• EROSIÓN: Interpretación geométrica

• Ejemplo: Erosión seguida de dilatación

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de píxeles blancos de tamaño 13 x 13.

• **Ejemplo:** Erosión seguida de dilatación

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de píxeles blancos de tamaño 13 x 13.

- Los cuadrados de lados menor que 15 desaparecen mientras que el de lado 15 pasa a ser de lado 3.

• **Ejemplo:** Erosión seguida de dilatación

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de píxeles blancos de tamaño 13 x 13.

Dilatación de la imagen central con el mismo elemento estructural.

• Ejemplo: Erosión seguida de dilatación

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de 1s de tamaño 13 x 13.

- Los cuadrados vuelven a ser de tamaño 15.

· Teorema de dualidad:

La dilatación y la erosión son muy similares en el sentido de que lo que uno hace al objeto el otro lo hace al fondo. Esta relación puede formularse como una relación de dualidad:

$$(A \ominus B)^c = A^c \oplus \widehat{B}$$

$$(A \oplus B)^c = A^c \ominus \widehat{B}$$

·Algunas propiedades de la dilatación y la erosión:

1. Mientras que la dilatación se podía representar como la unión de los trasladados, $A \oplus B = \bigcup_{b \in B} A_b$

la erosión se puede representar como la intersección de los trasladados negativos:

 $A \ominus B = \bigcap_{b \in B} A_{-b}$

2. La dilatación es conmutativa, pero la erosión no lo es.

$$A \oplus B = B \oplus A$$

• Aplicación 1: EXTRACCIÓN DE FRONTERAS

В

• Aplicación 1: EXTRACCIÓN DE FRONTERAS

• Aplicación 1: EXTRACCIÓN DE FRONTERAS

$$F(A)=A-A\ominus B$$

• Aplicación 1: EXTRACCIÓN DE FRONTERAS

A F(A)

· Aplicación 2: RELLENADO DE REGIONES

Partimos del borde de una región A y de un punto p del interior de A. El siguiente procedimiento rellena el interior de A:

$$\begin{cases} X_0 = p \\ X_k = (X_{k-1} \oplus B) \cap A^c, & k = 1, 2, 3, ... \end{cases}$$

donde B es el siguiente elemento estructural:

El algoritmo termina en la iteración k si $X_k = X_{k+1}$.

La unión de X_k y A define la frontera y la región rellena de A.

 $\mathbf{A}^{\mathbf{c}}$

• Aplicación 2: RELLENADO DE REGIONES

Xo

• Aplicación 2: RELLENADO DE REGIONES

• Aplicación 2: RELLENADO DE REGIONES

Xo

 X_1

 X_2

• Aplicación 2: RELLENADO DE REGIONES

 $\mathbf{A}^{\mathbf{c}}$

Xo

 X_1

 X_2

Relleno

• Aplicación 2: RELLENADO DE REGIONES

<u>Inconveniente</u>: hay que determinar un punto interior de cada región que hay que rellenar.

• Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

Supongamos que Y representa una componente conexa (un conjunto de píxeles conectados entre sí) contenida en un conjunto A y supongamos que conocemos un punto p que pertenece a dicha región. Entonces, el siguiente procedimiento puede utilizarse para extraer Y:

$$X_0 = p$$

$$X_k = (X_{k-1} \oplus B) \cap A, \quad k = 1, 2, 3, ...$$

donde B es el siguiente elemento estructural:

El algoritmo termina en la iteración k si $X_{k-1} = X_k$. Con $Y = X_k$.

• Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

A

E

$$Xo=P$$

• Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

Xo=P

A

В

 X_1

Δ

В

 X_1

 X_2

X3 X4

Como hemos visto hasta ahora, cuando el elemento estructural contiene al origen, la dilatación expande la imagen mientras que la erosión la reduce.

- APERTURA:

Generalmente suaviza los contornos de una imagen y elimina pequeños salientes. También puede eliminar franjas o zonas de un objeto que sean "más estrechas" que el elemento estructural.

- CLAUSURA:

La clausura elimina pequeños huecos (rellenándolos) y une componentes conexas cercanas.

APERTURA: Definición

La apertura de A por un elemento estructural K se define como la erosión de A por K, seguido de la dilatación del resultado por K:

$$A \circ K = (A \ominus K) \oplus K$$

Si A no cambia al realizarle una apertura con K, diremos que A es *abierto respecto a K*.

Ejercicio: Da un ejemplo de un conjunto A y un elemento estructural K de más de un píxel de manera que A sea abierto respecto a K.

• APERTURA: Interpretación geométrica

• APERTURA: Ejemplo. Aquí se ilustra cómo podemos usar la apertura para descomponer objetos en partes con distinta morfología. (¡Ojo! En este ejemplo estamos trabajando sobre píxeles negros).

• APERTURA: Ejemplo. Aquí se ilustra cómo podemos usar la apertura para descomponer objetos en partes con distinta morfología. (¡Ojo! En este ejemplo estamos trabajando sobre píxeles negros).

APERTURA: Propiedades

- 1. La apertura es antiextensiva: $A \circ K \subseteq A$
- 2. La apertura es idempotente: $X \circ B = (X \circ B) \circ B$
- 3. Si tomamos un disco como elemento estructural, la apertura suaviza contornos, rompe uniones estrechas entre partes de conjuntos y elimina salientes estrechos.

· CLAUSURA: Definición

La clausura de A por un elemento estructural B se define como la dilatación de A por K, seguido de la erosión del resultado por K:

$$A \bullet K = (A \oplus K) \ominus K$$

Si A no cambia con la clausura por K, diremos que A es **cerrado respecto a K**.

Ejercicio: Da un ejemplo de un conjunto A y un elemento estructural K de más de un píxel de manera que A sea cerrado respecto a K. ¿Es también abierto? Si no lo es, busca un ejemplo de conjunto cerrado y abierto respecto a un mismo elemento estructural.

• CLAUSURA: Interpretación geométrica

Dualidad entre apertura y cierre:

$$(A \bullet K)^c = A^c \circ \widehat{K}$$

CLAUSURA: Propiedades

1. La clausura es extensiva: $A \subseteq A \bullet K$

2. La clausura es idempotente: $X \bullet B = (X \bullet B) \bullet B$

3. Si tomamos un disco como elemento estructural, la clausura tiende a suavizar las secciones de contornos pero en sentido inverso: une separaciones estrechas, elimina golfos estrechos y elimina huecos.

• APERTURA Y CLAUSURA: Ejemplo

• APERTURA Y CLAUSURA: Ejemplo

• APERTURA Y CLAUSURA: Ejemplo

La apertura suaviza los contornos, rompe uniones estrechas entre partes de conjuntos y elimina salientes estrechos.

La clausura tiende a suavizar las secciones de contornos pero en sentido inverso: une separaciones estrechas, elimina golfos estrechos y elimina huecos.

• Aplicación 1: FILTRO MORFOLÓGICO

Filtro morfológico para la eliminación de ruido sal y pimienta:

$$(A \circ B) \bullet B$$

El elemento de estructural B debe ser físicamente mayor que todos los elementos de ruido.

 $A \ominus B$

- (+) El ruido del fondo se ha eliminado completamente al erosionar.
- (-) El ruido contenido en las huella dactilar (puntos negros) aumenta de tamaño al erosionar.

- $(A \ominus B) \oplus B = A \circ B$
- (+) Reducimos o incluso eliminamos el ruido de la huella aplicando una dilatación a la imagen erosionada (apertura).
- (-) Nuevas separaciones en las huellas dactilares han sido creadas.

(+) Los cortes de las huellas se

(-) Engrosamiento.

han restaurado.

 $(A \circ B) \oplus B$

 $A \ominus B$

 $[(A\circ B)\oplus B]\ominus B=(A\circ B)\cdot B$

 $(A \ominus B) \oplus B = A \circ B$

(+) Adelgazamos la huella con la erosión de la dilatación (clausura).

FIGURE 9.11

- (a) Noisy image.
- (b) Structuring element.
- (c) Eroded image.
- (d) Opening of A.
- (e) Dilation of the opening.
- (f) Closing of the opening.
- (Original image courtesy of the National Institute of Standards and Technology.)

· Bibliografía básica:

R.C. González, R.E. Woods, Digital Image Processing, Pearson, 2018