Applications of cell culturing

Example of screening in CANCER

Apoptosis (programmed cell death- PCD)

Necrosis

(A form of cell death characterized by ATP and NAD+ depletion, cell swelling, membrane rupture and disorganized digestion of the cellular contents)

Continued.....

- Apoptosis or programmed cell death, is carefully coordinated collapse of cell, protein degradation, DNA fragmentation followed by rapid engulfment of corpses by neighbouring cells. (Tommi, 2002)
- Essential part of life for every multicellular organism from worms to humans. (Faddy et al.,1992)
- Apoptosis plays a major role from embryonic development to senescence.

Why should a cell commit suicide?

4 Apoptosis is needed for proper development

Examples:

- The resorption of the tadpole tail
- The formation of the fingers and toes of the fetus
- The sloughing off of the inner lining of the uterus

Apoptosis is needed to destroy cells

Examples:

- Cells infected with viruses
- Cells of the immune system
- Cells with DNA damage
- Cancer cells

What makes a cell decide to commit suicide?

Withdrawal of positive signals

examples:

- growth factors for neurons
- Interleukin-2 (IL-2)

4Receipt of negative signals

examples:

- increased levels of oxidants within the cell
- damage to DNA by oxidants
- death activators :
 - Tumor necrosis factor alpha (TNF- α)
 - Lymphotoxin (TNF-β)
 - Fas ligand (FasL)

Necrosis vs. Apoptosis

Necrosis

- Cellular swelling
- Membranes are broken
- ATP is depleted
- Cell lyses, eliciting an inflammatory reaction
- DNA fragmentation is random, or smeared
- In vivo, whole areas of the tissue are affected

Apoptosis

- Cellular condensation
- Membranes remain intact
- Requires ATP
- Cell is phagocytosed, no tissue reaction
- Ladder-like DNA fragmentation
- In vivo, individual cells appear affected

APOPTOSIS: Morphological events

- cell shrinkage
 - organelle reduction
 - mitochondrial leakage
 - chromatin condensation
 - nuclear fragmentation

membrane blebbing & changes

Blebbing & Apoptotic bodies

The control retained over the cell membrane & cytoskeleton allows intact pieces of the cell to separate for recognition & phagocytosis by macrophages

Apoptosis: Pathways

"Extrinsic Pathway"

Example - Prescreening of bioactive extracts (Cytotoxicity or Growth Inhibition assay)

The assay is based on the capacity of mitochondrial dehydrogenase enzymes in living cells to convert the yellow water-soluble substrate 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a dark blue formazan product, which is insoluble in water.

After incubation with extract for 12 h

Growth Inhibition

Strains are selected based on their ability to inhibit cell growth

HeLa cells treated with Marine Baterial Extract for 24 h

Estimating apoptotic activities of marine microbial extracts

APOPercentage dye binds only to the cells undergoing apoptosis and allows quantitative measurement of dead cells

HeLa cells treated with Marine Bacterial Extracts for 48 h

Mitochondrial Outer Membrane Potential (MOMP) in cells treated with microbial extracts

- MOMP is an indicator of cell health
- Measured with JC-1 dye –

red healthy mitochondria

green **>** disrupted MOMP

 Disrupted MOMP leads to growth arrest and/or apoptosis

Caspase-3/7 Assay and Western Blotting

Caspase assay allows measurement of activity of enzymes involved in cell death

Western blotting measures expression of proteins involved in apoptosis

Understanding mechanism of action

HeLa cells treated with 500 μg/mL concentration of extracts

Extract	PS exposure (percentage of stained cells)	Caspase-3/7 activity (fold change)	МОМР	PARP-1 cleavage	үН2Ах	Caspase-9 reduction	Caspase-8 cleavage
P3-86A	+ (73.95%)	+ (1.7)	+	+	-	-	+
K30	+ (86.74%)	+ (50.0)	-	-	+	+	-
Р3-37В	+ (84.89%)	+ (4.2)	-	+	+	+	+
K18	+ (85.85%)	+ (5.9)	-	+	+	+	+
P3-86B(2)	+ (80.01%)	+ (282.1)	+	+	+	+	+
P3-37C	+ (84.77%)	+ (229.7)	-	+	+	+	+

^{&#}x27;+' represents a positive observation, whereas '-'represents a negative observation

or TNF) Plasma membrane receptor **b** Extrinsic a Intrinsic Anti-apoptotic BCL-2 DNA damage or ER stress proteins BH3-only protein activation MOMP membrane IMS Mitochondrion OMI-Cytochrome c APAFI Pro-caspase 9 Apoptosome **Apoptosis DNA fragmentation** Nature Reviews | Molecular Cell Biology 16

Death