Op op ane east fo softman formulae $S(x) = e^{xi}$ $\sum_{i=1}^{n} e^{xi}$ P(y) =0) =0.65 (Pj=1) 2) 0.24/51 $(p\hat{q}^2 = 2)$ = $\frac{1.11}{11.22}$ p (ý = 2) = 0.91

$$\mathbf{X}^{[i]} = \mathbf{N}^{[i]} \times \begin{bmatrix} 0.742 & 0.744 \\ 0.561 & 1.0 \end{bmatrix} \begin{bmatrix} 0.5 \\ -1.0 \end{bmatrix}$$

(a)
$$\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$$

(b) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(c) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(d) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(e) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(f) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(g) $\frac{dy}{d2^{(3)}} = \frac{dy}{dy} = \frac{dy}{d2^{2}}$

(h) $\frac{dy}{d2^{(3)}} = \frac{dy}{d2^{(3)}} = \frac{dy}{d2^{(3)}}$

(g) $\frac{dy}{d2^{(3)}} = \frac{dy}{d2^{(3)}} = \frac{dy}{d2^{(3)}}$

(h) $\frac{dy}{d2^{(3)}} = \frac{dy}{d2^{(3)}} =$

8

4

0.633 2.266

10

16

1.26 5 3.53

Ex > 30

ZX = 30 = 6 = N.

Vor (x) 2 = (x-x)2.

40 = 10

Nar(x)= 10 ,

Op of the convergention

6x6 \$ 3x3 2 484.

30+0-30		30+0+0	20	0
20		2 30		
6 may 7,	0	30	80	0
1 1 2	0	30	30	
	0	- 30	30	0
1 6.0 - 2 -			12	