Attack on Image Recognition

Attack on Image Recognition

Todo List
Synthesizing Robust Adversarial Examples
Contribution
Notes
Links

Todo List

- 1. Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial examples in the physical world. 2016.
- 2. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing properties of neural networks. 2013.
- 3. Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of the International Conference on Learning Representations (ICLR), 2015.
- 4. Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In IEEE Symposium on Security & Privacy, 2017c.
- 5. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., and Song, D. Robust PhysicalWorld Attacks on Deep Learning Models. 2017.

Synthesizing Robust Adversarial Examples

Contribution

- 1. 提出了一种增加物理环境下对抗样本鲁棒性的一般化方法 EOT;
- 2. 不仅在 2D 下测试,而且在 3D 下测试;
- 3. 模拟物理变换的想法十分具有借鉴意义,已被后续的对抗攻击算法广泛使用;

Notes

- 1. **白盒**的、**针对物理环境**下的、**有目标**的对抗攻击算法。攻击的算法不仅在 2D 下可行,同时在 **3D** 下也可以生成成功的对抗样本;
- 2. 已有的对抗攻击算法, 训练的目标如下:

$$\underset{x'}{\operatorname{arg\,max}} \quad \log P(y_t|x')$$
subject to
$$||x' - x||_p < \epsilon$$

$$x' \in [0, 1]^d$$

但是这样生成的对抗样本,在视角等物理环境发生改变时**无法保持对抗性**。故作者提出改进后的训练目标 **EOT** (Expectation Over Transformation):

$$\underset{x'}{\operatorname{arg \, max}} \quad \mathbb{E}_{t \sim T}[\log P(y_t | t(x'))]$$
subject to
$$\mathbb{E}_{t \sim T}[d(t(x'), t(x))] < \epsilon$$

$$x \in [0, 1]^d$$

其含义是,**在保证对抗样本经过物理变换的"感受"修改量在一定范围内时,使得对抗样本** (经过物理变换) 能够尽可能地被分类为目标类别。这类物理变换可以是 2D/3D 的变换,包括随机旋转、平移、噪声、视角变化、光照等。作者将公式转换为 <u>Carlini &Wagner (2017c)</u>的形式,并使用二级范数和 **PGD** (Projected Gradient Descent) 优化器进行计算:

$$\underset{x'}{\arg\max} \mathbb{E}_{t \sim T} \left[\log P(y_t | t(x')) - \lambda || LAB(t(x')) - LAB(t(x))||_2 \right]$$

其中 LAB 代表指的是 LAB 色域。

3. Distributions of Transformations:

(1) 2D Case

Transformation	Minimum	Maximum
Scale	0.9	1.4
Rotation	-22.5°	22.5°
Lighten / Darken	-0.05	0.05
Gaussian Noise (stdev)	0.0	0.1
Translation	any in-bounds	

(2) 3D Case

Transformation	Minimum	Maximum
Camera distance	2.5	3.0
X/Y translation	-0.05	0.05
Rotation	ar	ny
Background	(0.1, 0.1, 0.1)	(1.0, 1.0, 1.0)

(3) Physical Case

Transformation	Minimum	Maximum	
Camera distance	2.5	3.0	
X/Y translation	-0.05	0.05	
Rotation	any		
Background	(0.1, 0.1, 0.1)	(1.0, 1.0, 1.0)	
Lighten / Darken (additive)	-0.15	0.15	
Lighten / Darken (multiplicative)	0.5	2.0	
Per-channel (additive)	-0.15	0.15	
Per-channel (multiplicative)	0.7	1.3	
Gaussian Noise (stdev)	0.0	0.1	

4. Evaluation:

- (1) 攻击基于数据集 ImageNet 的 **Inception V3** 模型 (Top-1 Accuracy = 78.0%),随机选择目标分类;
- (2) **Robust 2D adversarial examples**:在 2D 下考虑的物理变换有 **缩放、旋转、亮度调节、高斯噪声和平移**。每个样本都在 **1000** 个随机的模拟物理变换上进行测试,结果如下:

Images	Classifica	Classification Accuracy Adversarial		ariality	ℓ_2	
ge	mean	stdev	mean	stdev	mean	
Original	70.0%	36.4%	0.01%	0.3%	0	
Adversarial	0.9%	2.0%	96.4%	4.4%	5.6×10^{-5}	

(3) **Robust 3D adversarial examples**:在 3D 下考虑**不同的相机距离、照明条件、对象的平移和旋转以及纯色背景色**。挑选了 10 个 3D 模型 —— 木桶、棒球、够、橘子、海龟、小丑鱼、沙发、泰迪熊、汽车和出租车。每个 3D 模型都挑选 20 个随机的目标分类标签;每个样本都在 100 个随机的模拟物理变换上进行测试,结果如下:

Images	Classifica	tion Accuracy	Adversariality		ℓ_2
·····ges	mean	stdev	mean	stdev	mean
Original	68.8%	31.2%	0.01%	0.1%	0
Adversarial	1.1%	3.1%	83.4%	21.7%	5.9×10^{-3}

(4) **Physical adversarial examples**:在 3D 的基础上,考虑**摄像机的噪声、照明的影响和颜色的失真。**作者考虑将 "海龟" 错误分类成 "手枪"、"棒球" 错误分类成 "咖啡" 两种情况,将对抗样本经过 3D 打印后,拍 100 张照片进行测试,结果如下:

Object	Adversarial	Misclassified	Correct
Turtle	82%	16%	2%
Baseball	59%	31%	10%

(5) **Perturbation budget**: 在物理环境下越鲁棒,需要模拟更多的物理变换,添加的噪声也会更多;

Links

- 论文链接: <u>Athalye, Anish, et al. "Synthesizing robust adversarial examples." *International conference on machine learning.* PMLR, 2018.</u>
- 开源代码: prabhant/synthesizing-robust-adversarial-examples (github.com)