Trignometric Functions Unit circle approach

unit circle is a circle whose readins is I and whose centers is at the origin of a nectorgular coordinate system.

Circumference of circle with readius Tr is 27T.

let the arreal numbers and let P=(x, y) be the point on the unit circle that corresponds to t.

The sine function associates with t the y-coordinate of P and is denoted by sint = J

The cosine function associates with the y-coordinate P and is denoted by cost = x

Example: If $P = (-\frac{1}{2}, \frac{13}{2})$ be the point on the unit circle. Find values of sint, cost, tant, cosect.

301n! Here
$$x=-\frac{1}{2}$$
, $J=\frac{3}{2}$

$$cost = y = \sqrt{3}$$

$$cost = x = -1$$

$$tant = \frac{sint}{cost} = \frac{x}{x} = -\sqrt{3}$$

$$cosect = \frac{1}{y} = \frac{2}{\sqrt{3}}$$

Mulliples of 90°

When we drow a unit circle and label angles that are multiples of 90°. These angles are known as quadrontal angles, have theirs terrminal side on either the x-axis or the y-axis.

Quadrantal engles

O (realism)	O(Legress)	sin 0	caso	ton 0	cosec o	seco	coto
0	o "	O	1	0	undefined	1	undefined
至	%°	1	0	Undefinel	1	undefind	0
が	1800	0	— <u>1</u>	0	undefined	-1	underred
3x 2	270°	-1	0	Undefinal	-1	undefied	٥
27	360°	0	\(\sigma_{\circ} \)	0	undermed	1	undefinal

The or angle is said to be coterminal angle with the 360° angle. Coterminal angles are angles dreawn in standard Position that share a terminal side.

Ex Find the exact value of sin 31

Solm: Here
$$0 = 3\pi$$

$$5 = 5 \ln (2\pi + \pi)$$

$$= 9 = 0$$

(-1,0)

multiples of 30°

multiples of Go°

For It = 45°, the point P(2,y) lies on cittele 2° ty = 1 and bisect quedrant I. i.e P lies on the line y=x.

:
$$x^{x}+y^{x}=1 \Rightarrow x^{x}+x^{x}=1 = 2x^{x}=1 \Rightarrow x = \frac{1}{\sqrt{2}}$$
 and $y = \frac{1}{\sqrt{2}}$

For = 60°, we have

 $x = \frac{1}{2}$, therefore by Pythagorrean theorem

De.

FOR T = 30' we have x= 13, y= 1/2

O(redian) a(degrees) sino coso temo coneco seco coto π 30° $\frac{1}{2}$ $\frac{13}{15}$ $\frac{1}{2}$ $\frac{2}{\sqrt{3}}$ $\frac{2}{\sqrt{3}}$

$$\frac{7}{6}$$
 30° $\frac{1}{2}$ $\frac{3}{\sqrt{3}}$

$$\frac{1}{3}$$
 60° $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$

Ex:
$$315^{\circ} = -\frac{1}{12}$$
 $\sin 135^{\circ} = \sin 37 = \frac{1}{12}$
 $\tan 315^{\circ} = \frac{1/\sqrt{2}}{-\frac{1}{12}} = -1$
 $\sin(-\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{12}$ $\sin(-60^{\circ}) = \sin(-\frac{\pi}{4})$

$$\cos \frac{9\pi}{3} = \cos \left(\frac{2\pi + \frac{2\pi}{3}}{3}\right) = \cos \frac{1\pi}{3} = -\frac{1}{2}$$

= -51/13=-13

Domain and Range of traignometric function:

Function	Domain	Range
Sino	(-00,00)	-1 = Sin0 = 1
താര	(-00,00)	-15 CBB 21
tan O	All rue numbers except old integers multiples of 7/2	(-w, m)
Cozeco	All real numbers except integers multiples of Tr	conecos_1 on conecos/
SECO	All ned numbers except od integer multiples of 12	Sec 04-1 on Sec 071
coto	All red numbers except integer multiples of x	$(-\infty,\infty)$

periodic function!

A function f is called periodic if there is a positive number P such that whenever O in the domain of f so is O+P and f(O+P)=f(O)

If there is a smallest such number P, this smallest value is called the peruod of f.

$$Sim(0+2\pi)=Sim0$$
 $tam(0+2\pi)=tam0$ $Sec(0+2\pi)=Sec0$
 $crs(0+2\pi)=Cos0$ $aot(0+2\pi)=cot0$ $cosec0(0+2\pi)=cosec0$

Find the exact value of

1.
$$\sin \frac{174}{4} = \sin \left(4 + \frac{\pi}{4}\right) = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

Defermine the sign of trugnometric functions:

Fundamental identities:

tano =
$$\frac{\sin \theta}{\cos \theta}$$
, $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$
 $\cot \theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$
 $\sin \theta + \cos \theta = 1$ $\tan \theta + 1 = \sec \theta$ $\cot \theta + 1 = \cot \theta$

Ex: If sino= \frac{1}{3} and coso < 0, find the exact value of each of the tramaining five trignometric functions.

30/m we know,

since, coso to, chose the minus sign and use sino= }

$$COSO = -\sqrt{1-Sin^{2}O}$$

$$= -\sqrt{1-\frac{1}{9}} = -\sqrt{\frac{9-1}{3}} = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}$$

$$tano = \frac{6in0}{\cos 0} = \frac{\sqrt{3}}{\frac{-2\sqrt{2}}{3}} = -\frac{1}{2\sqrt{2}}$$
 ext $0 = \frac{1}{\tan 0} = -2\sqrt{2}$

$$\cot \theta = \frac{1}{\tan \theta} = -2\sqrt{2}$$

$$3000 = \frac{1}{\cos \theta} = \frac{1}{-\frac{2\sqrt{2}}{3}} = \frac{-3}{2\sqrt{2}}$$
 coreco = $\frac{1}{\sin \theta} = \frac{1}{3} = 3$

$$coreco = \frac{1}{\sin 0} = \frac{1}{13} = 3$$

Even-OPD properties:

A function is even if
$$f(-0) = f(0)$$

A function is add if
$$f(-0) = -f(0)$$

Cosine and secant functions are even functions, the others are odd functions.

$$\cos(-0) = \cos\theta$$

$$tan(-0) = -tan0$$

$$sec(-0) = sec0$$

Find the exact value of

1.
$$\sin(-45^{\circ}) = -\sin 45^{\circ} = -\frac{1}{\sqrt{2}}$$
 [old function]

$$11. \cos(-\pi) = \cos\pi = -1$$

reven function

Todd function?

rodd function?