Example 2.1 MM 5ed

• Simplify the boolean functions:

1.
$$x(x' + y)$$

2.
$$x + x'y$$

3.
$$(x + y)(x + y')$$

4.
$$xy + x'z + yz$$

5.
$$(x + y)(x' + z)(y + z)$$

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x+y)'=x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x
Theorem 4, associative Postulate 4, distributive Theorem 5, DeMorgan	(a) (a) (a)	x + (y + z) = (x + y) + z $x(y + z) = xy + xz$ $(x + y)' = x'y'$	(b) (b) (b)	x(yz) = (xy)z $x + yz = (x + y)(x + y)' = x' + y'$

$$x + 0 = x$$

$$x \cdot 1 =$$

(a)

$$x + x' = 1$$

$$x \cdot x' = 0$$

$$x + x = x$$

x + 1 = 1

$$x \cdot x = x$$

$$(x')' = x$$

$$(b) x \cdot 0 = 0$$

$$xy = yx$$

a)
$$x + (y + z) = (x + y) + z$$

x + y = y + x

(b)
$$x(yz) = (xy)z$$

(a)
$$x(y+z) = xy + xz$$

(b)
$$x + yz = (x + y)(x + z)$$

(a)
$$(x + y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

(a)
$$x + xy = x$$

$$(b) \quad x(x+y) = x$$

Zgates

$$x + x'y$$

$$(x + x')(x + y)$$

$$(x + y)$$

$$(x + y)$$

$$x + y$$

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x+y)'=x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

$$\begin{array}{c} (xy + x'z + yz, 1) \\ xy + x'z + yz (x + x') \\ xy + x'z + yz (x + x') \\ xy + x'z + xyz + x'yz \\ xy (1 + z) + x'z (1 + y') \\ xy \cdot 1 + x'z \cdot 1 \\ xy \cdot 1 + x'z \cdot 1 \end{array}$$

Postulate 2 (a)
$$x + 0 = x$$
 (b) $x \cdot 1 = x$

Postulate 5 (a) $x + x' = 1$ (b) $x \cdot x' = 0$

Theorem 1 (a) $x + x = x$ (b) $x \cdot x = x$

Theorem 2 (a) $x + 1 = 1$ (b) $x \cdot 0 = 0$

Theorem 3, involution

Postulate 3, commutative (a) $x + y = y + x$ (b) $xy = yx$

Theorem 4, associative (a) $x + (y + z) = (x + y) + z$ (b) $x(yz) = (xy)z$

Postulate 4, distributive (a) $x(y + z) = xy + xz$ (b) $x + yz = (x + y)(x + z)$

Theorem 5, DeMorgan (a) $(x + y)' = x'y'$ (b) $(xy)' = x' + y'$

x + xy = x

$$yz,1=yz$$

$$yz(x+zi)$$

(a)

Theorem 6, absorption

x(x+y)=x

(b)

Postulate 2 (a)
$$x + 0 = x$$
 (b) $x \cdot 1 = x$
Postulate 5 (a) $x + x' = 1$ (b) $x \cdot x' = 0$
Theorem 1 (a) $x + x = x$ (b) $x \cdot x = x$
Theorem 2 (a) $x + 1 = 1$ (b) $x \cdot 0 = 0$

Theorem 3, involution $(x')' = x$
Postulate 3, commutative (a) $x + y = y + x$ (b) $xy = yx$
Theorem 4, associative (a) $x + (y + z) = (x + y) + z$ (b) $x(yz) = (xy)z$
Postulate 4, distributive (a) $x(y + z) = xy + xz$ (b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan (a) $(x + y)' = x'y'$ (b) $(xy)' = x' + y'$
Theorem 6, absorption (a) $x + xy = x$ (b) $x(x + y) = x$

$$xy + x'z + yz = xy + x'z$$
 $(x+y)(x+z)(y+z) = (x+y), (x'+z)$

Example 2.2 MM 5ed

• Find the complement of functions $F_1 = (x'yz' + x'y'z)$, $F_2 = x(y'z' + yz)$

$$F_{1} = (x'yz' + x'y'z)'$$

$$= (x'yz') \cdot (x'y'z)'$$

$$= (x+y'+z) \cdot (x+y+z')$$