Introduction to Focus Areas in Bioinformatics – WS21/22

Lecturer: Tim Conrad

2 Project 2

- Deadlines: For the REPORT: 06.11.2021, 18:00; For the REVIEWS: 09.11.2021, 18:00
- All files need to be available through your GIT repository, in the directory "Project 2".
- Remark: everything that is crossed-out is optional and is not mandatory.

2.1 The Data

We will use the Breast Cancer Wisconsin (Diagnostic) Data (see https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)

There are three databases ("data"/"name" pairs). A database contains an ID, a diagnosis and biomedical attributes extracted from digitized images of fine needle aspirate tissues. In the following, choose one database to perform the tasks.

2.2 Task 1: Take a closer look at the data - Statistics

- Gather statistical information about the data, such as summary statistics, histograms, outliers, or variable relationships (e.g. correlation) about at least three of the attributes.
- You can start with this example code:
 - o https://www.kaggle.com/kanncaa1/statistical-learning-tutorial-for-beginners

2.3 Task 2: Build (train) Classifiers

- Develop (or: train) two classifiers to allow classification of the given class (diagnosis).
- Perform tuning of the hyper-parameters (if any).
- You can start with this example code:
 - o https://www.kaggle.com/kanncaa1/feature-selection-and-data-visualization
- Hint 1: Check the next task before you choose a classifier.
- Hint 2: Make sure to define and use appropriate train- and test-sets to determine the error on unseen data.

2.4 Task 3: Analyze the Classifier

- Find and use a method that gives you information about the most important features (or attributes) of the individual classifiers.
- You can start with this example code: https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e

2.5 Task 4: Evaluate the Classifiers

- Perform the evaluation as described in the lecture (accuracy, precision/recall, ROC analysis) and two more methods that you find from the literature. Compare the results for the two classifiers in each category use a table to display the results. And make sure to discuss the evaluation results in the results section, for example what it means that a classifier is better in precision compared to recall (or the other way round) and what that means for a potential application.
- Use the trained classifier to evaluate it on the other two datasets that you didn't use.

2.6 Task 5: Use a "Sparse" Classifier

• For both classifiers: take only the 3 most important features (basically create a new dataset that only contains these features) and perform training and evaluation of the classifier again.

2.7 Deliverables

Your need to upload all source codes and the report to your GIT repository AND the report to the Eduflow system.

If your code is in Python, I must be able to run your code within a Google Colab notebook (
https://colab.research.google.com – so you can test it yourself). If your code is not in Python or R, you must provide a manual how to compile and run it on a Linux machine.

- The report should be about **1500-2000** words in length.
- The report must be delivered in PDF format.
- The report must contain a screenshot of the final classifier results.
- The following sections must be present (you can add more if needed):
 - Scientific background
 - Goal
 - o Data
 - o Results
 - For each task, describe what you did (e.g. which steps you took and which methods you used) and what the results are.
 - Discussion 1: Discuss your results from a methods point of view and from an application point of view.
 - Discussion 2: Discuss briefly, whether this is a typical project for a data-scientist? (Or why not?)