TD1: Algorithmes, modèle de calcul, complexité

« Grand () »

Exercice 1. Bon algorithme, bon programme

Pour résoudre un problème algorithmique, dont la variable d'entrée est notée n, on dispose de deux algorithmes : ALGO-BOF dont la complexité en temps est de $O(n^2)$ et ALGO-TOP dont la complexité en temps est de $O(n \log n)$.

- ALGO-BOF est codé par un super programmeur qui garantit que le programme fait exactement $2n^2$ opérations élémentaires, il le fait en plus tourner sur sa super machine, capable d'effectuer 20 000 000 000 d'opérations élémentaires par seconde.
- Algo-top, quant-à-lui est codé par un programmeur moyen qui pense que le programme ne fait pas plus de $50n \log n$ opérations élémentaires et il le fait tourner en salle TP tout en regardant YouTube, sa machine n'effectuant alors que 1 000 000 000 d'opérations élémentaires par seconde.
- 🖎 À partir de quelle valeur de n le programme codant ALGO-TOP est-il plus rapide que celui codant ALGO-BOF?

Exercice 2. FAQ

- 1. Est-il vraiment correct de dire « cet algorithme a une complexité en temps en au plus $O(n^2)$ »?
- **2.** A-t-on $2^{n+1} = O(2^n)$? Et $2^{2n} = O(2^n)$?
- **3.** Montrer que si on a f(n) = O(g(n)) et g(n) = O(h(n)) alors on a aussi f(n) = O(h(n)).
- **4.** Proposer deux fonctions f et g telles que f(n) = O(g(n)) et g(n) = O(f(n)). Si ce n'est pas le cas pour votre proposition, donner deux telles fonctions qui ne sont pas proportionnelles (c'est-à-dire, telles qu'il n'existe pas une constante c telle que $f(n) = c \cdot g(n)$.
- 5. Proposer deux fonctions f et g, à valeurs strictement positives, telles que $f(n) \neq O(g(n))$ et $g(n) \neq O(f(n))$.

Exercice 3. O à la chaîne

Pour les paires de fonctions (f,g) suivantes, est-ce que f(n) = O(g(n))? Et g(n) = O(f(n))?

a. f(n) = n + 100 et g(n) = n **b.** $f(n) = \sqrt{n}$ et $g(n) = n^{2/3}$ **c.** $f(n) = \sqrt{n}$ et $g(n) = (\log n)^3$ **d.** $f(n) = n^{1,01}$ et $g(n) = n\log^2 n$ **e.** $f(n) = 2^n$ et $g(n) = 3^n$ **f.** $f(n) = 10n + \log n$ et $g(n) = n + \log^2 n$ **g.** $f(n) = n^2/\log n$ et $g(n) = n\log^2 n$ **h.** $f(n) = n^5$ et $g(n) = 3^{\log n}$ **i.** $f(n) = 2^n$ et g(n) = n!

Exercice 4. Restes du cours

Prouver les résulats suivants, qui sont donnés dans un lemme du cours :

- **1.** Si h = O(f) alors f + h = O(f).
- **2.** $O(f) \times O(g) = O(f \times g)$ (c-à-d, si $h_1 = O(f)$ et $h_2 = O(g)$ alors $h_1 \times h_2 = O(f \times g)$).

Complexité algorithmique

Exercice 5. Combien de temps?

Établir la complexité en temps des six algorithmes suivants (les <op elem> prennent un temps O(1)).

```
1 Algorithme: ALGO1(n)
                                 1 Algorithme: ALGO2(n)
                                                                     1 Algorithme: ALGO3(n)
2 pour i de 0 à n-1 :
                                 2 si n = 0: renvoyer val
                                                                     2 <op elem>
     pour j de 0 à n-1:
                                 3 ALGO2(n-1)
                                                                     3 tant que n > 1:
        pour k de 0 à j :
                                 4 <op elem>
                                                                          n \leftarrow n/3
           <op elem>
                                 5 ALGO2(n-1)
                                                                         <op elem>
                                 6 <op elem>
                                                                     6 <op elem>
6 pour i de 0 à n-1:
7 < op elem>
                                                                     1 Algorithme: ALGO6(n)
1 Algorithme: ALGO4(n)
                                 1 Algorithme: ALGO5(n)
2 si n \le 1: renvoyer 17
                                                                     2 si n \le 1: renvoyer 4
                                 2 tant que n \ge 0:
3 pour t de 0 à n-1:
                                                                     3 ALGO6(|n/2|)
                                      <op elem>
4 ALGO4(n-1)
                                      n \leftarrow n - 3
                                                                     4 <op elem>
                                 5 <op elem>
```

Exercice 6. Complexité par l'exemple

- 1. Écrire un programme qui prend une valeur n en entrée et qui effectue un nombre d'opérations proportionnel à n^2 , sans écrire n^2 dans votre code!
- **2.** Même question avec $\log n$ au lieu de n^2 , sans écrire $\log n$ dans votre code!
- **3.** Même question avec n!, sans écrire n! dans votre code!

Algorithmes

Exercice 7. Tri à bulles

Voici une version du classique TRI-A-BULLES:

Données : Un tableau T contenant n nombres réels. **Résultat** : Le tableau T trié. 1 **pour** i de n-1 \grave{a} 1 : 2 **pour** j de 0 \grave{a} i-1 : 3 **si** $T_{[j]} > T_{[j+1]}$: Échanger les contenus de $T_{[j]}$ et $T_{[j+1]}$

- **1.** Dérouler l'algorithme sur le tableau T = [12, 3, 7, 0].
- 2. Calculer la complexité en temps de l'algorithme.
- 3. Prouver la validité de l'algorithme TRI-A-BULLES.

Exercice 8. Somme de 3

Étant donné un tableau T de taille n, on veut écrire un algorithme qui trouve trois indices distincts i, j et k de $\{0, \ldots, n-1\}$ tels que $T_{[i]} + T_{[j]} = T_{[k]}$, ou qui signale si trois tels indices n'existent pas.

- 1. Écrire un tel algorithme de complexité en temps $O(n^3)$.
- **2.** On va essayer d'avoir un algorithme de complexité quadratique. Pour cela, on va traiter d'abord le sous problème suivant : étant donné un tableau S trié de taille n et un nombre x, écrire un algorithme de complexité linéaire en temps qui décide s'il existe deux indices distincts i et j tels que $T_{[i]} + T_{[j]} = x$ (on pourra commencer par comparer $T_{[0]} + T_{[n-1]}$ et x).
- 3. En déduire un algorithme de complexité en temps quadratique pour résoudre le problème initial.