REMARKS

Claims 23-34, 38-41, 44-50 and 52-54 are pending.

Claim 23 is amended to recite the feature of dependent Claim 43 reciting a Si-content in the range of 0.23 to 0.30%. In view of this, dependent Claims 42 and 43 are cancelled.

Claim 23 is combined with Claim 55 to recite the "consisting essentially of" language and to no longer recite Zr and to recite 0<Fe≤0.10. In view of this, dependent claim 55 is cancelled.

All claim amendments are made without prejudice or disclaimer.

Claim Rejection under 35 USC § 112 Rejections

The Office action rejects Claims 23-34, 38-50, 52 and 53 under 35 USC §112, second paragraph. The Office action asserts the language "essentially free of Mn" is unclear.

In response, claim 23 is amended to remove the phrase "essentially free of Mn". The invention as now presented has no reference to Mn content. Thus, Mn can only be present as an "incidental element or impurity." Thus, Mn can be present to a level of <0.05 as defined in paragraph [0069] of the present application. Such low level Mn is also consistent with paragraph [0072] reading that in a preferred mode: "Mn is in a range of incidental elements and impurities. That means that the amount of Mn should be 0 or at least neglectable."

Thus, it is respectfully submitted this rejection is overcome.

II. 35 USC § 101

Claim 55 is rejected for reciting a use without method steps.

The claim is a dependent method claim which narrows the composition of the base method claim. Thus, it is respectfully submitted this rejection is overcome.

III. 35 USC § 103

A. Claims 23-30, 32-34, 38-50, 52, 53 and 55

The Office action rejects Claims 23-30, 32-34, 38, 40-50, 52, 53 and 55 under 35 USC §

103(a) as allegedly being unpatentable over US 6,563,154 to Rioja et al. alone or optionally in view of Dif et al. (US 2004/0079455 A1).

A comparison of the composition windows of Rioja et al. and Dif et al. and present amended claim 23 is provided below.

The Office action asserts Rioja et al. (col. 5, lines Present Amended Claim 23: 5-7, 16-18, claim 6) teaches a process of casting. casting an ingot [[comprising]] consisting working, and heat treating an Al-Cu alloy essentially of (wt. %) comprising: 4.3 - 4.9Cu: 3.4-4.0% Cu. Mg: 1.0 - 1.8 1.0-1.6% Mg, Si: [[0.10 - 0.40]] 0.23 to 0.30 0-0.4% Mn. $[Zr: \leq 0.15]$ 0.09-0.12% Zr. Cr: < 0.15 up to 1% Si, [[Fe:]] $0 < \text{Fe} \le 0.10$, up to 1% Fe. the balance essentially aluminum and incidental elements and impurities, wherein the alloy product is essentially The Office action also asserts Rioja et al. (col. 5, lines 5-7, col. 4, lines 60-64) teaches an Al-Cu Mn-free and comprises Fe allov with a) wherein the ingot is cast by semi-3.5-4.5% Cu. continuous direct chill (DC) casting, 0.6-1.6% Mg, b) homogenizing and/or pre-heating the 0.3-0.7% Mn. ingot after the casting step, 0.08-0.13% Zr, c) hot rolling the homogenized and/or preup to 1% Si. heated ingot and optionally cold rolling up to 1% Fe. into a rolled product. d) solution heat treating the hot rolled Dif et al (paragraphs [0007-0008] and claims 1 product. and 6) e) quenching the solution heat treated product. Cur 3.6 - 4.5f) stretching the quenched product, and Mn <0.05 (< 0.01 in claim 6) g) naturally ageing the stretched, rolled Mg 1.0 - 1.6and heat-treated product. Zr 0.08 - 0.2Si < 0.09 Fe < 0.08

Rioja et al.

As stated in the above table, the Office action asserts Rioja et al. teaches a process of casting, working, and heat treating an Al-Cu alloy comprising: 3.4-4.0% Cu, 1.0-1.6% Mg, 0-

0.4% Mn, 0.09-0.12% Zr, up to 1% Si, up to 1% Fe.

The Office action also asserts Rioja et al. teaches an Al-Cu alloy with 3.5-4.5% Cu, 0.6-1.6% Mg, 0.3-0.7% Mn, 0.08-0.13% Zr, up to 1% Si and up to 1% Fe.

Mn Level

The Office Action asserts Rioja et al. teaches an alloy having elemental percentages which overlap the percentages recited by the present claims with the exception that "Rioja does not teach the elevated range of Cu combined with a[n] amount of very low Mn amount, such as <0.1%".

It is respectfully submitted the fact that "Rioja does not teach the elevated range of Cu combined with a[n] amount of very low Mn amount, such as <0.1%" is sufficient for the present invention to distinguish over the reference. It is respectfully submitted the above-mentioned second alloy of Rioja et al. implies that if sufficiently high level of Cu is employed to approach or overlap the 4.3-4-9 range of present Claim 23 then a Mn level higher than that of present Claim 23 is employed.

Claim 39 reciting 4.4 to 4.5% Cu further distinguishes over Rioja et al. because it has a Cu level further above that of the above-mentioned second Al-Cu alloy of Rioja et al. with very low Mn.

b. Si level

The introduction of 0.23 to 0.30 % Si into base Claim 23 further distinguishes the present invention over the cited prior art documents. This makes the data for Alloy 2 listed in the Table 1 at page 9 of the present specification further commensurate in scope with Claim 23.

The Office Action refers to Rioja et al. as teaching in col. 5, lines 15-22 the addition of up to 1% Si for the formation of strengthening precipitates. However, all the examples in Rioja et al. have a very low Si-content in the range of 0.00 to 0.04% (see Tables 1 and 2). Rioja et al. does not illustrate the effect of Si as strengthening element. Likewise, the examples in the present application do not indicate the effect of Si as a strengthening element. Thus, it is respectfully submitted Rioja et al. as a whole teaches aluminum sheet products for acrospace use and emphasizes the aluminum alloy has Si as an impurity element to a maximum of 0.2%, and typically less than 0.04%.

Moreover, this teaching of Rioja et al. is consistent with Dif et al. (US2004/0079455A1) which teaches a Si-content of <0.09%.

Also, this teaching of Rioja et al. is consistent with the teaching of Cassada III (US-5,593,516) which teaches Si content up to 0.10%, and preferably up to 0.06%. Therefore, the teachings of each of Rioja et al. and Dif et al. and Cassada III are consistent with present paragraph [0070] mentioning that in current aerospace grade materials the Si-content is typically <0.10, and preferably <0.07%.

c. Zr Level

The first alloy of Rioja et al. relied upon by the Office action is for Al-Cu aluminum sheet products containing Zr in a range of 0.09 to 0.12%. The second alloy relied upon by the Office action Rioja et al. has Zr in a range of 0.08-0.13%. Such Zr-levels are outside the present claims which permit Zr as an impurity or incidental element.

Thus, the presently claimed invention distinguishes over Rioja et al. and withdrawal of this ground of rejection is respectfully requested.

Rioia et al. in view of Dif et al.

The Office Action in paragraph 5 asserts the combination of Rioja et al. and Dif et al. (US2004/0079455A1) would lead to the claimed subject matter.

Rioja et al. does not teach the elevated range of Cu combined with an amount of very low Mn, such as < 0.1%. Thus, Dif et al. is relied upon as teaching Al-Cu-Mg alloys that are substantially Mn-free and contain 3.6-4.5% Cu exhibit a good compromise between strength and toughness (see paragraphs [0007] and [0008]).

Thus, the Office action asserts it would have been obvious to have an Al-Cu alloy with elevated Cu and low Mn, as taught by Dif et al., for the process of casting, heat treating and working an Al alloy as taught by Rioja et al. because Dif et al. teaches added Cu achieves excellent mechanical properties (Page 1) and low Mn is beneficial for a good compromise between strength and toughness.

Si Levels

As stated above, the Office Action refers to Rioja et al. as teaching in col. 5, lines 15-22 the addition of up to 1% Si for the formation of strengthening precipitates. However, as also

stated above, it is respectfully submitted that Rioja et al. as a whole emphasizes aluminum sheet products for aerospace use and the aluminum alloy has Si only as impurity element to a maximum of 0.2%, and typical values of less than 0.04%. Thus, it emphasizes an impurity element and not a purposive alloying element up to 1%.

Furthermore, the combination of the teachings of both documents would lead the skilled person to an aluminum alloy product having <0.09% Si, to be consistent with the teaching of Rioja et al. Such lower Si-content is the opposite of the present invention having the purposive addition of Si in a range of 0.23-0.30%.

b. Zr Level

Dif et al. requires addition of Zr in the range of 0.08-0.20%, or preferred narrower ranges, see paragraphs [0007], [0046], [0047] to compensate for the lack of Mn. Thus, the combined teaching of Rioja et al. and Dif et al. would also lead the skilled person to an AlCu alloy having less than 0.09% Si and with the purposive addition of Zr at a level of more than 0.08%. This is the opposite of the direction followed by the present invention. The alloy product according to the present invention does not have Zr other than as inevitable impurity, meaning that it should be less than 0.05%.

c. Mn Level

Dif et al. replaces Mn with zirconium or zirconium plus scandium. Paragraph [0010] of Dif et al. states, "According to embodiments of the present invention, manganese has been totally replaced by zirconium or by zirconium + 300 µg/g of scandium."

In contrast, Claim 23 lacks added zirconium and scandium. Thus, the motivation to omit

Mn of Dif et al. is irrelevant to this claim and there is no reason to combine the references to

arrive at the invention of this claim.

Claims 52 and 53 recite 0% Mn, with the exception of unavoidable impurities, and further emphasize a lack of added zirconium, scandium and Mn. Dif et al. does not suggest reducing the Mn level to 0% with only "incidental levels or impurity levels" when the Cu level is in the range of 4.3-4.9 %. Also, Dif et al. does not teach or suggest Alloy 1 of the present invention, having 4.4 % Cu, 0% Mn, 0% Zr, 1.68% Mg and 0.25% Si, has comparable UTS and superior fatigue crack growth rate to the AA2024 and AA2524 alloys as shown by data at pages

10 and 11 of the present application.

d. Applicant's Priority Date

As argued in Applicants' reply of September 22, 2006 the July 9, 2003 filing date of Difet al. is after the August 20, 2002 priority date of the present application.

It is respectfully submitted present amended claim 23 is also entitled to the priority date of its priority document EP 02078444.3 as shown in the following table. Thus, Dif et al. is not a reference against present Claim 23.

Support in EP 02078444.3
(Priority Document)
filed August 20, 2002
Claim 7
Claim 7, with Cu lower limit
of page 7, line 13,
the change from "consisting"
language to "consisting
essentially of" language is
not new matter;
Claim 7 recited Fe: ≤ 0.10 .
Table 1 discloses 0 % Zr.
Claim 7
Claim 7
Claim 7
Claim 7

Page 4 of the Office action asserts paragraph [0007] of Dif et al. teaches Al-Cu-Mg alloys that are substantially Mn-free and contain 3.6-4.5% Cu and paragraph [0008] of Dif et al. teaches these alloys exhibit a good compromise between strength and toughness.

Thus, an issue is whether these teachings are in provisional application no. 60/394,234 (the '234 application) filed July 9, 2002 from which Dif et al. claims priority. The '234 application discloses a Mn-free alloy including 3.6-4.5% Cu (paragraph bridging pages 3 and 4). Paragraph [0008] of Dif et al. is not in the '234 application. However, the '234 application does present fracture toughness and static tensile properties.

Also, the alloys of Dif et al. and the '234 application have 0.08-0.20% or 0.08-0.14% Zr. Page 1 of the '234 application says, "According to embodiments of the present invention, manganese has been totally replaced by zirconium or by zirconium + 300 ppm of scandium." In contrast, as mentioned above, the present alloys do not have added Zr.

B. Claim 31

Claim 31 stands rejected as being unpatentable over Rioja et al. or Cassada III as applied to Claim 23 and further in view of "Metals Handbook Desk Edition" p. 445-446. Applicants respectfully assert the same arguments for Claim 31 as asserted for its base Claim 23.

C. Cassada III (US-5,593,516)

The Office Action rejects Claims 23, 24, 26-30, 32-34, 38-41, 45-50, and 52-55 under 35 USC §103(a) as being unpatentable over Cassada III (US 5,593,516).

The Office Action asserts Cassada III teaches an aluminum based alloy sheet (typically 0.400 in. thick, col. 7 line 16) with 2.5-5.5% Cu, 0.1 - 2.3% Mg, up to 0.15% Fe, up to 0.10% Si, up to 0.20% Zr, up to 0.05% Ti (Cassada claims 1,2,6) which overlaps the presently claimed alloying ranges of Cu, Mg, Si, Fe, Mn and Zr (cl. 23, 38-41, 45, 50, 52-55)." The Office Action also asserts, "Cassada teaches that Zr replaces Mn as a grain growth and recrystallization inhibitor in said composition (column 5 lines 57-61), because Mn lowers the fracture toughness". Thus, the Office Action asserts "[b]ecause Cassada teaches a process of working and heat treating an Al-Cu-Mg alloy that overlaps or touches the boundary of the presently claimed alloying ranges, then it is held that Cassada has created a prima facie case of obviousness of the presently claimed invention." Thus, the Office Action asserts there is an overlap with the presently claimed alloying ranges, including up to 0.10% Si.

It is respectfully submitted this rejection is overcome as there is no longer an overlap with

respect to the Si-content. Furthermore Cassada III teaches towards a lower Si-content of less than 0.06%. In contrast, the presently claimed invention has a significantly higher Si-content than Cassada III, while achieving advantages neither disclosed nor suggested in Cassada III.

D. Cassada III in view of Rioja et al.

Claim 25 stands rejected as being unpatentable over Cassada in view of Rioja et al. It is respectfully submitted Rioja et al. does not make up for the above-described deficiencies of Cassada III. Moreover.

E. Data Shows Unexpected Results

The present specification has comparative alloys AA2024 and AA2524 with low Sicontent consistent with each of the three cited prior art documents. Data in the application demonstrates that increasing the Si content in the absence of added Mn and Zr within the presently claimed range results in a significantly improved fatigue crack growth rate. This effect of Si on this property has not been disclosed in any of the prior art documents.

As mentioned above, although Rioja et al. in col. 5 lines 15-22 discloses the addition of Si up to 1% may have an effect as strengthening element, Applicants assert they have not found such an effect. In the present specification, Alloy 1 of the present invention is compared with AA2024 and AA2524. Each of AA2024 and AA2524 has a low Si content, in a similar range as the examples of Rioja et al. The results of Table 2 of the present specification show the product according to the present invention, and having a Si-content of 0.25%, does not have higher yield strength and tensile strength (although, the lack of Mn may have had a role in this also). Thus, this may imply Si did not act as a strengthening element at least where there is a lack of Mn and Zr. Thus, the motivation of Rioja et al. involving strengthening is irrelevant. However, the present inventors did find a different effect of the Si, namely improved toughness and fatigue crack growth rate, in particular with no purposive addition of Mn and Zr.

This effect is not disclosed or suggested in any of the three cited prior art documents alone or in any proper combination.

Moreover, Claims 52 and 53 reciting 0% Mn with the exception of unavoidable impurities, are further commensurate in scope with the unexpected results, shown by the comparison of the present invention with AA2x24 alloys. This further supports patentability of

these claims over Cassada II alone or in view of Rioja et al. or the "Metals Handbook Desk Edition" reference. The ranges of Cu and Mg taught in Cassada to be critical for achieving alloys with the claimed high strength and fracture toughness in Cassada do not teach the use of a high Cu content with a very low level of Mn and controlled amounts of Si, Zr and Fe to achieve applicant's demonstrated improvement over the AA2x24 alloys.

F. Dependent Claim 54

Claim 54 recites a lower limit of Mg of 1.68% as supported Table 1 at page 9 of the present specification. Rioja et al. and Dif et al. neither teach nor suggest such a Mg percentage range. Thus, Applicants respectfully submit this claim further distinguishes over the cited references.

IV. Conclusion

In view of the above, it is respectfully submitted that all objections and rejections are overcome. Thus, a Notice of Allowance is respectfully requested.

Please charge any fee deficiency or credit any overpayment relating to this Amendment to Deposit Account No. 19-4375.

Respectfully submitted, /anthony p venturino/

Date: April 16, 2007 By:

Anthony P. Venturino Registration No. 31,674

APV/bms ATTORNEY DOCKET NO. APV31645 STEVENS, DAVIS, MILLER & MOSHER, L.L.P. 1615 L Street, N.W., Suite 850 Washington, D.C. 20036 Tcl: 202-785-0100 / Fax. 202-785-0200