# Метод «Гусеница»—SSA для анализа временных рядов с пропусками

Осипов Евгений Вадимович, 522-я группа

Санкт-Петербургский Государственный Университет
Математико-механический факультет
Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. **Н.Э. Голяндина** Рецензент — к.ф.-м.н. **В.В. Некруткин** 

#### Постановка задачи

- Базовый метод «Гусеница»—SSA эффективно решает задачу выявления составляющих временного ряда:
  - трендовой,
  - гармонических,
  - шумовых.
- Метод применим для рядов без пропусков.
- Многие реальные временные ряды часто содержат пропуски.
- Задача: построить модифицированный алгоритм, который
  - решает те же задачи,
  - заполняет пропуски.

#### Понятия метода «Гусеница»—SSA

- $F_N = (f_0, \dots, f_{N-1}), L$  длина окна;
- Вектора вложения  $\{X_i\}_{i=1}^K$ , K = N L + 1,  $X_i = (f_{i-1}, \dots, f_{i+L-1})^{\mathrm{T}}$ ,  $\mathbf{X} = [X_1 : \dots : X_L]$ ;
- $\mathcal{L}^{(L)}(F_N) = \text{span}(X_1, ..., X_L)$  траекторное пространство, его базис  $\{U_i\}$  собственные вектора  $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$ , SVD матрицы  $\mathbf{X}$ :  $\mathbf{X} = \sum \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$ ;
- Выделение  $F_N^{(1)}$  из  $F_N = F_N^{(1)} + F_N^{(2)}$ :
  - выбор  $\{i_1, \ldots, i_r\}$  и построение  $\mathcal{L}^{(1)} = \mathrm{span}(U_{i_1}, \ldots, U_{i_r});$
  - проектирование векторов  $\{X_i\}_{i=1}^K$  на  $\mathcal{L}^{(1)} \longrightarrow \widehat{\mathbf{X}}^{(1)} = [\widehat{X}_1^{(1)} : \cdots : \widehat{X}_L^{(1)}];$   $\widehat{X}_i^{(1)} = \mathbf{\Pi}^{(1)} X_i;$
  - диагональное усреднение:  $\widehat{\mathbf{X}}^{(1)} \longrightarrow \widehat{F}_N^{(1)}$ .

#### Понятия метода «Гусеница»—SSA

- $F_N = (f_0, \dots, f_{N-1}), L$  длина окна;
- Вектора вложения  $\{X_i\}_{i=1}^K$ , K = N L + 1,  $X_i = (f_{i-1}, \dots, f_{i+L-1})^{\mathrm{T}}$ ,  $\mathbf{X} = [X_1 : \dots : X_L]$ ;
- $\mathcal{L}^{(L)}(F_N) = \text{span}(X_1, ..., X_L)$  траекторное пространство, его базис  $\{U_i\}$  собственные вектора  $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$ , SVD матрицы  $\mathbf{X}$ :  $\mathbf{X} = \sum \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$ ;
- Выделение  $F_N^{(1)}$  из  $F_N = F_N^{(1)} + F_N^{(2)}$ :
  - выбор  $\{i_1, \ldots, i_r\}$  и построение  $\mathcal{L}^{(1)} = \mathrm{span}(U_{i_1}, \ldots, U_{i_r});$
  - проектирование векторов  $\{X_i\}_{i=1}^K$  на  $\mathcal{L}^{(1)} \longrightarrow \widehat{\mathbf{X}}^{(1)} = [\widehat{X}_1^{(1)} : \cdots : \widehat{X}_L^{(1)}];$   $\widehat{X}_i^{(1)} = \mathbf{\Pi}^{(1)} X_i;$
  - диагональное усреднение:  $\widehat{\mathbf{X}}^{(1)} \longrightarrow \widehat{F}_N^{(1)}$ .

#### Понятия метода «Гусеница»—SSA

- $F_N$  ряд конечного ранга d, если  $\dim \mathcal{L}^{(L)}(F_N) = d \quad \forall L$ .
- Пюбой ряд, являющийся линейной комбинацией произведений полиномов, экспонент и гармоник, является рядом конечного ранга.
- Прогнозирование значений ряда в  $\mathcal{L}^{(L)}(F_N)$ , т.е. получение последней компоненты вектора вложения в виде линейной комбинации остальных.
- $lacksymbol{\mathsf{F}}_N^{(1)}$  и  $F_N^{(2)}$  слабо разделимы, если  $\mathcal{L}^{(1)} \perp \mathcal{L}^{(2)}$  и  $\mathcal{K}^{(1)} \perp \mathcal{K}^{(2)}$ .
- **П** Наличие разделимости дает возможность выделить  $F_N^{(1)}$  из  $F_N^{(1)} + F_N^{(2)}$ .

## Построение базиса $\mathcal{L}^{(L)}(F_N)$

 $F_{12} = (\star \star , \quad L = 5, \ d = 2$ 

- **Предложение 1** Если среди векторов вложения, не содержащих пропущенные значения, найдется хотя бы d линейно независимых, то траекторное пространство столбцов находится точно.
- **Предложение 2** Если ряд  $F_N$  имеет ранг d,  $e_1$ ,  $e_L \notin \mathcal{L}^{(L)}(F_N)$ , и ряд имеет L + d 1 подряд идущих непропущенных значений, то траекторное пространство столбцов находится точно.

#### Проектирование векторов вложения

 $F_N = F_N^{(1)} + F_N^{(2)},$  разделимость  $(\mathcal{L}^{(1)} \perp \mathcal{L}^{(2)}), \{R_i\}_{i=1}^d -$ базис  $\mathcal{L}^{(1)};$ 

$$X = \begin{pmatrix} X |_{\mathcal{I} \setminus \mathcal{P}} \end{pmatrix} \xrightarrow{\mathrm{I}} \begin{pmatrix} X^{(1)} |_{\mathcal{I} \setminus \mathcal{P}} \end{pmatrix} \xrightarrow{\mathrm{II}} \begin{pmatrix} X^{(1)} |_{\mathcal{I} \setminus \mathcal{P}} \\ X^{(1)} |_{\mathcal{P}} \end{pmatrix},$$
  $\mathcal{P}$  — множество индексов пропущенных значений в  $X, \ \mathcal{I} = \{1, \dots, L\};$ 

Предложение 3 Пусть  $\mathcal{L}^{(1)}\Big|_{\mathcal{I}\setminus\mathcal{P}}\perp\mathcal{L}^{(2)}\Big|_{\mathcal{I}\setminus\mathcal{P}}.$ Тогда  $X^{(1)}\Big|_{\mathcal{I}\setminus\mathcal{P}}=\mathbf{\Pi}^{(1)}_{\mathcal{I}\setminus\mathcal{P}}\Big(X\Big|_{\mathcal{I}\setminus\mathcal{P}}\Big)$  и для  $\mathbf{R}=[R_1:\ldots:R_d]$ 

$$\Pi_{\mathcal{I}\backslash\mathcal{P}}^{(1)} = \mathbf{R} \Big|_{\mathcal{I}\backslash\mathcal{P}} \Big( \mathbf{R} \Big|_{\mathcal{I}\backslash\mathcal{P}} \Big)^{\mathrm{T}} + \mathbf{R} \Big|_{\mathcal{I}\backslash\mathcal{P}} \Big( \mathbf{R} \Big|_{\mathcal{P}} \Big)^{\mathrm{T}} \Big( \mathbf{E}_{|\mathcal{P}|} - \mathbf{R} \Big|_{\mathcal{P}} \mathbf{R}^{\mathrm{T}} \Big|_{\mathcal{P}} \Big)^{-1} \mathbf{R} \Big|_{\mathcal{P}} \Big( \mathbf{R} \Big|_{\mathcal{I}\backslash\mathcal{P}} \Big)^{\mathrm{T}};$$

Предложение 4 Пусть  $\operatorname{span}(e_i | i \in \mathcal{P}) \cap \mathcal{L}^{(1)} = \{0_L\}.$ Тогда  $X^{(1)}\Big|_{\mathcal{P}} = \left(\mathbf{E}_{|\mathcal{P}|} - \mathbf{R}\Big|_{\mathcal{P}} \mathbf{R}^{\mathrm{T}}\Big|_{\mathcal{P}}\right)^{-1} \mathbf{R}\Big|_{\mathcal{P}} \mathbf{R}^{\mathrm{T}}\Big|_{\mathcal{I} \setminus \mathcal{P}} X^{(1)}\Big|_{\mathcal{I} \setminus \mathcal{P}}.$ 

#### Группы пропусков и их заполнение

- Группа пропусков  $\longleftrightarrow$  набор векторов вложения группы пропусков (2):  $\begin{pmatrix} \star & \star & \cdot & \cdot & \cdot \\ \star & \cdot & \cdot & \star & \cdot \\ \end{pmatrix};$

Разные способы заполнения пропусков

$$\left(\begin{array}{ccccc} \star & \star & \blacktriangle & \blacktriangle & \blacktriangle \\ \star & \blacktriangle & \blacktriangle & \star & \star \\ \blacktriangle & \blacktriangle & \blacktriangle & \star & \star \end{array}\right).$$

#### Заполнение группы пропусков

- Применение формулы к каждому вектору набора векторов вложения группы «О∂новременное восстановление пропусков»;
- Другой способ «Последовательное восстановление слева (справа)» на основе формулы при  $\mathcal{P} = \{L\} \ (\mathcal{P} = \{1\}).$

$$\begin{pmatrix} f_{i_1-3} & f_{i_1-2} & f_{i_1-1} & L_1 & L_2 \\ f_{i_1-2} & f_{i_1-1} & L_1 & L_2 & f_{i_1+2} \\ f_{i_1-1} & L_1 & L_2 & f_{i_1+2} & f_{i_1+3} \\ L_1 & L_2 & f_{i_1+2} & f_{i_1+3} & f_{i_1+4} \end{pmatrix}.$$

#### Построение модифицированного алгоритма

#### Два способа построения модифицированного алгоритма:

Формальная замена скалярного произведения на операцию " \* ":

$$A = (a_1, ..., a_m)^{\mathrm{T}} - \mathrm{c}$$
 множеством индексов пропусков  $\mathcal{A}$ ,  $B = (b_1, ..., b_m)^{\mathrm{T}} - \mathrm{c}$  множеством индексов пропусков  $\mathcal{B}$ ,  $A^{\mathrm{T}} * B = \gamma \sum_{k: k \notin \mathcal{A} \cup \mathcal{B}} a_k b_k$ , где  $\gamma = \frac{m}{m - |\mathcal{A} \cup \mathcal{B}|}$ ;

Использование предложенных способов заполнения пропусков в выбранном подпространстве.

#### Программа

- Возможности программы позволяют обрабатывать реальные временные ряды;
- Реализовано много способов восстановления составляющих ряда с заполнением пропусков, что позволяет работать с различным расположением пропусков;
- Возможность применять различные методы к разным группам пропусков реализована в виде задания приоритетов методов.

## Пример: ряд Airpass

Объемы пассажироперевозок по месяцам, отсутствует 1 год, L=36



Осипов Евгений Вадимович, 522-я группа, Модификация метода «Гусеница»—SSA - p.11/12

#### Пример: ряд Airpass



Осипов Евгений Вадимович, 522-я группа, Модификация метода «Гусеница»—SSA - p.12/12