An Introduction to GPU Architecture and Programming

Hao WangThe Ohio State University

wang.2721@osu.edu hwang121@gmail.com

Graphics Processing Units (GPUs) are Everywhere

Mobile Phones

In September 2019, **Apple** announced their fastest GPU inside **A13 BIONIC** chip for iPhone 11, 11 pro, and 11 pro max.

Desktops / Laptops

In November 2019, NVIDIA recommended their GPUs for high detail-level (60+ FPS) game REDDEAD REDEMPTION II.

Data Center Severs

Amazon presents a list of products for "Customers who bought this item also bought". Algorithms of the recommendation system are running on GPUs of Amazon Cloud.

GPU Timeline: from GPU to GPGPU

- Graphics Processing Unit (GPU)
 - Originally designed for video decoding, gaming, visualization, etc. (1970s 1990s)
 - Also called video cards
- NVIDIA GeForce 256 (in 1999)
 - "the world's first GPU"
 - Integrated transform, lighting, triangle setup/clipping, and rendering engines

Question: We already have CPU for general-purpose computing. Why do we need GPGPU?

- NVIDIA CUDA: Compute Unified Device Architecture (in 2007)
 - A parallel computing platform and application programming interface model
 - Programmers can code and execute algorithms on GPU

Moore's Law and Dennard Scaling

Gordon Moore

The number of transistors in a dense integrated circuit doubles about every two years.

-- Gordon Moore in 1965

Robert H. Dennard

As transistors get smaller, their power density stays constant, so that the power use stays in proportion with area.

-- Robert H. Dennard in 1974

Growth of Computer Performance

Growth of computer performance using integer programs (SPECintCPU)

John L. Hennessy, David A. Patterson, "A New Golden Age for Computer Architecture", Comm. Of the ACM, February 2019

Intel Multicore CPUs in Past 5 Years

Intel Core i7-5960X (Haswell-E) Octacore CPU (in 2014)

A large portion of wafer area is used for shared L3 cache, memory controller, and I/O controller.

Intel Core i7-8705G (Kaby Lake) Quad-core CPU (in 2018)

The die area is also used for the integrated graphics.

Q2: The figure in the previous slide said the growth of CPU performance is reaching an end. But, wait, how can we check CPU performance?

Theoretical Peak Performance

- FLOPS FLoating-point Operations Per Second
 - MFLOPS: mega FLOPS $(10^6 = 1,000,000)$
 - GFLOPS: giga FLOPS $(10^9 = 1,000,000,000)$
 - TFLOPS: tera FLOPS ($10^{12} = 1,000,000,000,000$)

Theoretical Peak Performance =

computing unit clock speed * vector operations per cycle * number of cores

Intel Core i7-5960X (Haswell-E) (in 2014)

- 3.0 GHz Frequency
- 16 FP64 operations per cycle (double precision)
- 8 cores

3.0 * 16 * 8 = **384 GFLOPS**

Intel Core i7-8705G (Kaby Lake) (in 2018)

- 3.1 GHz Frequency
- 16 FP64 operations per cycle (double precision)
- 4 cores

Growth of Computer Performance

Growth of computer performance using integer programs (SPECintCPU)

John L. Hennessy, David A. Patterson, "A New Golden Age for Computer Architecture", Comm. Of the ACM, February 2019

Overview of Architectures of CPU and GPU

MULTIPLE CORES

CPUs have a few powerful cores optimized for serial and general-purpose computing.

GPU THOUSANDS OF CORES

GPUs have thousands of smaller and less-powerful cores for parallel and specific computing.

NVIDIA GPUs

Each SM of NVIDIA V100:

- 64 INT cores
- 64 single-precision (FP32) cores
- 32 double-precision (FP64) cores
- 8 Tensor cores
- 128 KB L1 data cache + shared memory
- 256 KB register file

- NVIDIA Tesla V100 (Volta) GPU (released in Dec 2017) includes
 - 80 SMs (Streaming Multiprocessor)
 - 5120 INT cores + 5120 FP32 cores + 2560 FP64 cores + 640 tensor cores

Theoretical Peak performance: 1.38 GHz * 2 * 2560 = 7.066 TFLOPS (7.8 TFLOPS in NVIDIA

Sequential Execution Flow of CPU

Multicore CPU Architecture

- Each core has **independent** ALU and control logic units (PC, IR, etc.)
- A group of cores share memory controller and I/O controller

Manycore GPU Architecture

- Independent ALU
- Shared control logic units (PC, IR, Scheduler...)

In each SM of NVIDIA Tesla V100*, a group of cores share IR and warp scheduler.

^{*} In earlier NVIDIA GPU architectures, e.g., Pascal and Fermi, a group of cores share a single PC; while, Volta has the perthread performance counter architecture.

Summary – from perspective of CPU/GPU Architectures

CPU: a few powerful cores

GPU: thousands of smaller and less-powerful cores

GPU

THOUSANDS OF CORES

Less cores but larger caches

 For temporal locality and spatial locality (reduce data access latency)

Sophisticated control

- Branch prediction (reduce branch latency)
- Data forwarding (reduce data access latency)

Powerful ALUs

Reduce operation latency

More cores but smaller caches

Boost memory throughput

Simpler control

- No branch prediction
- No data forwarding
- Shared control logic units

Energy-efficient ALUs

Pipelined for high throughput

GPUs require massive number of threads to hide latency.

Summary -- from perspective of Memory Accesses

- CPU has host memory (DDR4 SDRAM)
 - Usually tens to hundreds GB in a compute node
 - Around 76.8 GB/sec (DDR4) memory access bandwidth
- GPU has its own device memory (GDDR5 or HBM or HBM2)
 - Usually 6, 12, 16 GB in a GPU
 - HBM2 (NVIDIA Tesla V100 GPU) has up to 900 GB/sec peak bandwidth
- GPU is connected to the host via PCIe or NVLink connection
 - Data needs to move between host memory and device memory (between CPU and GPU)

15

Application Code

- On CPU, an application process will
 - Execute all instructions of the program
 - Read and write data from the main memory (via memory hierarchy)
 - Can make system calls and switch between the user mode and the kernel mode

Rewrite Program for GPU

- The program needs to
 - Divide into GPU part (for parallel execution) + CPU part (for sequential execution)
 - Move input data into GPU device memory before GPU execution (H2D)

Application Code

- An application will be executed in a hybrid mode on CPU + GPU
 - An application process is started on CPU

- An application will be executed in a hybrid mode on CPU + GPU
 - An application process is started on CPU
 - Launch GPU kernels to run parallel GPU code with multiple threads

- An application will be executed in a hybrid mode on CPU + GPU
 - An application process is started on CPU
 - Launch GPU kernels to run parallel GPU code with multiple threads
- OHIO -STATE

Return to CPU to execute sequential CPU code

- An application will be executed in a hybrid mode on CPU + GPU
 - GPU code can access GPU memory space, including device memory, L1/L2 caches, shared memory, register files, and others

CUDA Programming Concepts

- A GPU kernel is a function that can be executed on GPU
 - In a Grid-Block-Thread layout
 - Blocks of a grid and threads of a block can be arranged in 1, 2, or 3 dimensions

CUDA Programming Concepts

- Kernel 1 is a two-dimensional kernel, having
 - 1 Grid
 - 6 thread blocks (2 * 3) in the grid
 - 15 threads (3 * 5) in each block
- Each thread can count its global thread IDs

```
/* blockDim.x: how many threads in x dimension of a block*/
```

threadIdx.x

threadIdx.y

Thread (2, 0): blockDim.x is 5, blockIdx.x is 1, threadIdx.x is 2

idx is
$$5 * 1 + 2 = 7$$

idy is
$$3 * 1 + 0 = 3$$

CUDA Programming Concepts

- A GPU kernel is a function that can be executed on GPU
 - In a Grid-Block-Thread layout
 - Blocks of a grid and threads of a block can be arranged in 1, 2, or 3 dimensions
 - All threads share GPU device memory
- A block of threads are scheduled on the same SM (by Thread Block Scheduler)
 - Share L1 cache and shared memory in a SM
 - Cooperate with others by synchronization functions (CUDA API)
- A warp is a group of 32 threads
 - 32 threads in a warp are scheduled to execute code together (by Warp Scheduler)
 - A thread block consists of multiple warps

David B. Kirk and Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands-on Approach, 3rd Edition", Morgan Kaufmann, December 7, 2016

CPU code for vector add

```
void add (float *A, float *B, float *C) {
   for (i = 0; i < N; i++)
        C[i] = A[i] + B[i];
}
int main(void) {
   /* allocate memory for A, B, C; work on A and B */
   add(A, B, C);
   /* continue working on C; free A, B, C */
}</pre>
```



```
/* Main function, executed on host (CPU) */
int main(void) {
     /* 1. Allocate memory on GPU */
     /* 2. Copy data from Host to GPU */
     /* 3. Execute GPU kernel */
     /* 4. Copy data from GPU back to Host */
     /* 5. Free GPU memory */
     return(0);
```



```
/* Main function, executed on host (CPU) */
int main(void) {
    /* 1. Allocate memory on GPU */
    float *d A = NULL, *d B = NULL, *d C = NULL;
    if (cudaMalloc((void **)&d_A, size) != cudaSuccess)
   exit(EXIT FAILURE);
   cudaMalloc((void **)&d B, size);
   cudaMalloc((void **)&d_C, size);
   return(0);
```



```
/* Main function, executed on host (CPU) */
int main(void) {
     /* 1. Allocate memory on GPU */
     /* 2. Copy data from Host to GPU */
     cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
     cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
     return(0);
```



```
/* Main function, executed on host (CPU) */
int main(void) {
     /* 3. Execute GPU kernel */
     /* Calculate number of blocks and threads */
     int threadsPerBlock = 256;
     int blocksPerGrid = (numElements + threadsPerBlock
                          - 1) / threadsPerBlock;
     /* Launch GPU kernel */
     add<<<br/>blocksPerGrid, threadsPerBlock>>>(d A, d B,
                        d C, numElements);
     /* Wait for all the threads to complete */
     cudaDeviceSynchronize();
     return(0);
```

```
/* Main function, executed on host (CPU) */
int main(void) {
     /* 4. Copy data from GPU back to Host */
     cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);
     /* 5. Free GPU memory */
     cudaFree (d A);
     cudaFree (d B);
     cudaFree (d C);
     return(0);
```



```
/* GPU Kernel */
 global void add(float *A,
                    float *B,
                    float *C,
                    int numElements) {
     /* Calculate the position in A, B, C*/
     int i = blockDim.x * blockIdx.x + threadIdx.x;
     /* Add A[i] and B[i] to C[i] */
     if (i < numElements) C[i] = A[i] + B[i];
```


Let's Recall Vector Add Example

```
/* Main function, executed on host (CPU) */
int main(void) {
     /* 1. Allocate memory on GPU */
     /* 2. Copy data from Host to GPU */
     /* 3. Execute GPU kernel */
     /* 4. Copy data from GPU back to Host */
     /* 5. Free GPU memory */
     return(0);
```


Widely Used Libraries on GPU

GPU Libraries -- Thrust

https://developer.nvidia.com/thrust

Thrust is a powerful library of parallel algorithms and data structures;

C++ developers can write just a few lines of code to perform GPU-accelerated sort, scan, transform, and reduction operations orders of magnitude faster than the latest multi-core CPUs.

```
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <cstdlib>

int main(void)
{
    // generate random data on the host
    thrust::host_vector<int> h_vec(100);
    thrust::generate(h_vec.begin(), h_vec.end(), rand);

    // transfer to device and compute sum
    thrust::device_vector<int> d_vec = h_vec;
    int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0, thrust::plus<int>());
    return 0;
}
```


GPU Libraries -- cuBLAS

https://developer.nvidia.com/cublas

cuBLAS is a fast GPU-accelerated implementation of the standard basic linear algebra subroutines (BLAS).

Complete support for all 152 standard BLAS routines, for single, double, complex, and double complex data types.

GEMM: $C = \alpha AB + \beta C$

```
C(i, j) = \alpha * \sum_{k=0}^{n-1} A(i, k) * B(k, j) + \beta * C(i, j)
```


Use **cuBLAS**: $C = \alpha AB + \beta C$

Use **cuBLAS**: $C = \alpha AB + \beta C$

```
/* Main */
int main(int argc, char **argv) {
    /* 0. Initialize CUBLAS */
    cublasCreate(&handle);
     /* 1. allocate memory on GPU */
     cudaMalloc((void **)&d A, n2 * sizeof(d A[0]));
     /* 2. Copy data from Host to GPU */
     status = cublasSetVector(n2, sizeof(h A[0]), h A, 1, d A, 1);
     /* 3. Execute GPU kernel */
     cublasDgemm( handle,
           CUBLAS OP N, CUBLAS OP N, N, N, N, &alpha, d A, N, d B, N, &beta, d C, N );
     /* 4. Copy data from GPU back to Host */
     cublasGetVector(n2, sizeof(h C[0]), d C, 1, h C, 1);
     /* 5. Free GPU memory */
     cudaFree(d A);
```


GEMM Kernel on GPU

- The GEMM kernel includes
 - 1 Grid
 - 16 thread Blocks in the grid
 - 16 Warps (SIMD Threads) in each block
 - 32 threads in each warp
- 1 * 16 * 16 * 32 = 8192 parallel threads

John L. Hennessy, David A. Patterson, "Computer Architecture: A Quantitative Approach 6th Edition", Morgan Kaufmann, 2017

Performance on GPU

Shared control logics

- All threads in a warp (32 threads) need to execute the same instruction at the same time
- All threads in a warp require to access consecutive memory addresses for efficient memory load and store

To Avoid: Branch Divergence

- Branch divergence will waste computational resources
- When a GPU kernel has a branch
 - Some threads will go into Path A, and the rest will go into Path B
 - All threads will first execute Path A, and then execute Path B
 - Hardware supported execution mask will control the write back of results
 - The execution of Paths A and B is serialized

```
Kernel(...) {
    ...
    if(a[tid]) {
        //Path A
        ...
    }else{
        //Path B
        ...
    }
}
Path B
Path B
```


To Avoid: Uncoalesced Memory Accesses

- Coalesced memory accesses
 - If a warp of threads access consecutive memory addresses in a memory segment, data can be loaded in a single memory transaction
- Un-coalesced memory accesses
 - If a warp of threads access different memory addresses in a memory segment, data will be loaded in multiple memory transactions
- Uncoalesced memory accesses will lower memory bandwidth

Coalesced Memory Accesses

Consecutive accesses on a memory segment Loaded by a single 128-byte transaction

Uncoalesced Memory Accesses

Random accesses across N segments Loaded by N 32-byte transaction

Further Reading

David B. Kirk and Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands-on Approach, 3rd Edition", Morgan Kaufmann, December 7, 2016

John L. Hennessy, David A. Patterson, "Computer Architecture: A Quantitative Approach 6th Edition", Morgan Kaufmann, 2017

