LL クト ハリ Hリ ハハ 「日 有田 70文 1英 際 事 務 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H03H 9/145, 9/25

(11) 国際公開番号 A1

WO98/52279

(43) 国際公開日

1998年11月19日(19.11.98)

(21) 国際出願番号

PCT/JP97/01584

(22) 国際出願日

1997年5月12日(12.05.97)

(71) 出願人(米国を除くすべての指定国について) 株式会社 日立製作所(HITACHI, LTD.)[JP/JP]

〒101 東京都千代田区神田駿河台四丁目6番地 Tokyo、(JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

礒部 敦(ISOBE, Atsushi)[JP/JP]

〒187 東京都小平市上水本町5-17-8-3 Tokyo, (JP)

疋田光孝(HIKITA, Mitsutaka)[JP/JP]

〒193 東京都八王子市横川町30-7 Tokyo, (JP)

柴垣信彦(SHIBAGAKI, Nobuhiko)[JP/JP]

〒187 東京都小平市上水本町5-17-3-3 Tokyo, (JP)

浅井健吾(ASAI, Kengo)[JP/JP]

〒185 東京都国分寺市西恋ケ窪3-8-1日立恋ケ窪寮68号 Tokyo, (JP)

田窪千咲紀(TAKUBO, Chisaki)[JP/JP]

〒192 東京都八王子市子安町2-32 日立子安台アパートD-308 Tokyo, (JP)

(74) 代理人.

弁理士 小川勝男(OGAWA, Katsuo) 〒100 東京都千代田区丸の内一丁目5番1号

株式会社 日立製作所内 Tokyo, (JP)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: ELASTIC WAVE DEVICE

(54)発明の名称 弹性波装置

(57) Abstract

In order to realize a subminiature elastic wave device, which has an electric property comparable to at least that of a conventional elastic surface wave device and of which reliability is not degraded even when undergoing resin sealing or bare chip packaging, an elastic boundary wave device of three-medium construction, in which films (29, 30) of two or more kinds are formed on a piezoelectric substrate (28), is excited. Formed on the piezoelectric substrate formed with an interdigital electrode (14) are a polycrystal silicon dioxide film (29) and a polycrystal silicon film (30). The piezoelectric substrate is formed from a single crystal substance. The polycrystal silicon dioxide film and the polycrystal silicon film are formed as by a sputtering method, CVD method and a coating method. Formation of the polycrystal silicon film enables elastic wave excited by the interdigital electrode to be confined to the polycrystal silicon dioxide film, and even when

the polycrystal silicon film is deteriorated in its film quality, the elastic boundary wave device exhibits an electric property superior to that of a conventional elastic surface wave device. Also, since the polycrystal silicon dioxide film and the polycrystal silicon film protect the interdigital electrode, the elastic boundary wave device can have a high reliability.

(57)要約

従来の弾性表面波装置と同等以上の電気特性を有し、かつ樹脂封止またはベアチップ実装を行っても信頼性が劣化せず、かつ超小型の弾性波装置を実現するため、圧電基板28上に2種類の膜29,30が成膜された三媒質構造の弾性境界波を励振する。櫛形電極14を形成した圧電基板上に多結晶酸化珪素膜29と多結晶珪素膜30を形成する。圧電基板には単結晶物質を用いる。多結晶酸化珪素膜と多結晶珪素膜はスパッタ法,CVD法,塗布法で成膜する。多結晶珪素膜を形成することにより、櫛形電極で励振される弾性波は多結晶酸化珪素膜に閉じこめることができ、かつ、弾性境界波装置の電気特性は、多結晶珪素膜の膜質が劣化しても従来の弾性表面波装置より優れた電気特性を示す。また、多結晶酸化珪素膜と多結晶珪素膜が櫛形電極を保護するため、高い信頼性を有することができる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

フィンランド フランス ガボン スロヴァキア シエラ・レオネ セネガル スワジランド アルノニア アルメニア オーストリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ AM GA GB ガラググガガダクガガガ S N S Z AZ BA チャー ード GE GH TG TJ バルバドス ベルギー MD タジキスタン ガンビア ギニア BE MG トルクメニスタン ブルギナ・ファソ ブルガリア BF GN GW マケドニア旧ユーゴスラヴィア TRトルコ ギニア・ビサオ 共和国 トリニダッド・トバゴ ウクライナ ウガンダ B J ギリシャクロアチア ペデジル ブラジルーシ カナダ 中央 アフリカ B R B Y HR ΗÜ ハンガリ MR モーリタニア MW マラウイ リアンタ 米国 ウズベキスタン ヴィェトナム ユーゴースラビア CA UZ VN マフワイコ エジェール オランナー ノールウェー ニュー・ジューランド ΙE MXコンゴー スイス コートジボアール NE NL ジンバブエ カメルーン 中国 占本 NZ PL 日本 ケニア キルギスタン KE KG KP ポーランド 下回 キューバ キプロス ポルトガル 北朝鮮 韓国 カザフスタン セントルシア チェッコ ドイツ K Z L C デンマーク エストニア スペイン ヘータン スウェーデン シンガポール スロヴェニア SE SG SI LI リヒテンシュタイン LK スリ・ランカ

明細書

弹性波装置

5 技術分野

本発明は、弾性波装置、更に詳しくいえば、圧電性物質と櫛形電極を有する弾性境界波または弾性表面波トランスデューサを持ち、共振器やフィルタ等の固体回路素子を構成する弾性波装置に関する。

背景技術

10 従来、高周波用通信機器の共振器やフィルタ等の固体回路素子として、 弾性表面波装置がある。弾性表面波装置の断面図を、第1図に示す。

圧電性を有し、0.8~2mm角に加工された弾性表面波チップ(1)の表面に、電極指を有する櫛形電極が成膜されている。櫛形電極とパッケージの電気配線(5)は、金属ワイヤ(2)で接続されている。弾性表面15 波チップの裏面は接着剤(4)でセラミックパッケージ(3 a)に固定されている。

弾性表面波チップの表面において、電極指が形成されている部分は機械的に振動しているため、固体と接触させることはできない。また、電極指は通常100nm程度の金属薄膜で形成されており、固体との接触で容易に破損する。このため、電極指は、ギャップを有するように、中空のパッケージ(3a,3b)で保護されている。

また、櫛形電極の金属薄膜の変質防止のため、中空のパッケージ内部は乾燥窒素が充填されている。

広く用いられている弾性表面波装置の例として、圧電材料に36度回転 25 YカットX伝搬タンタル酸リチウム単結晶(36YX-LT)を用い、櫛 形電極の材料にアルミニウム(A1)を用いたものがある(例えば、19

77年信学会超音波研資料, US77-42, 第31頁乃至第36頁)。

しかし、上述の弾性表面波装置は、体積の大部分を電極指の保護のための高価なパッケージで占められている。主に流通している小型の弾性表面波装置の大きさは、縦と横が3.5 mmであり、厚さが1 mmである。この大きさでは、I Cカード等の超小型機器に実装することができないという問題が生じる。このため、縦が2 mm, 横が1.25 mm, 厚さが0.8 mm程度に小型化する必要があるといわれており、パッケージングを必要としない新しい弾性波装置が必要とされている。

また、従来、パッケージを必要としない弾性波装置として、2 媒質構造 の弾性境界波装置が考えられている。弾性表面波は、第2図(a)に示すように、媒質1(6)の表面に機械振動エネルギーが集中する波であるが、 弾性境界波は、第2図(b)に示すように、媒質1(7)と媒質2(8)が 接している場合その境界に機械振動エネルギーが集中する波である。

弾性境界波装置では、異なる媒質間の境界に櫛形電極を設けることで、 機械振動を弾性表面波チップ内部に閉じこめることができ、また、櫛形電 極を媒質1と媒質2で保護することができるため、パッケージングを必要 としないと考えられていた。

15

しかし、弾性境界波装置とするためには、媒質1 (7)と媒質2 (8) の少なくとも一方を圧電物質とする必要がある。この場合の媒質間の境界 20 に完全な弾性境界波を存在させるには、媒質1と媒質2の選定が難しく、 媒質1と媒質2の組合せの例として僅かに1例が知られているに過ぎない。また、かかる例でも、圧電材料に36YX-LTを用いた弾性表面波 装置と比較すると、共振器特性やフィルタ特性が著しく劣るため、実用化には到っていない。

25 このため、従来、3媒質構造の弾性境界波装置が考えられている。3媒質構造の弾性境界波装置は、第2図(c)に示すように、媒質1(10)と

媒質2(11)に挟まれた媒質3(9)を薄膜圧電物質である酸化亜鉛(ZnO)薄膜とし、媒質1と媒質3の境界或いは媒質2と媒質3の境界に櫛形電極を設け、媒質3に機械振動エネルギーを閉じこめることで、機械振動を弾性表面波チップ内部に閉じこめることができ、また、櫛形電極は媒質1と媒質3或いは媒質2と媒質3で保護することができるため、パッケージングを必要としない(例えば、1986年電子情報通信学会研究会資料,US-86-39,第47頁乃至第54頁)。

発明の開示

上述した従来の3媒質構造の弾性境界波装置では、媒質1と媒質2に挟 10 まれた媒質3に薄膜圧電物質を用い、媒質3が電気信号と機械信号の変換 を行うため、媒質3の膜質劣化が弾性境界波装置の電気特性の劣化につな がってしまうといった問題が生じる。スパッタ法等の従来の成膜技術で膜 質の良いZnO薄膜を作成することは困難であり、その結果、現在のとこ ろ実用化可能な3媒質構造の弾性境界波装置を提供することはできてい 15 ない。

従って、本発明の主な目的は、超小型の弾性波装置を提供することであり、言い換えると、3 媒質構造の弾性境界波装置を提供することである。本発明の他の目的は、上記目的を達成すると同時に、膜質劣化が弾性境界波装置の電気特性の劣化とならない新しい構造の弾性境界波装置を提20 供することである。

本発明のさらに他の目的は、上記目的を達成すると同時に、既存の弾性 表面波装置と同等以上の共振器特性やフィルタ特性を有する弾性境界波 装置を提供することである。

本発明のさらに他の目的は、低価格の弾性境界波装置を提供することで 25 ある。

本願発明者等は、3 媒質構造の弾性境界波装置において、弾性境界波が

閉じこめられる媒質と電気信号と機械信号の変換を行う媒質とを分けることにより上記目的を達成できることを見出し、弾性境界波が閉じこめられる媒質を損失の小さい非圧電物質とすることによって上記目的を達成できる弾性境界波装置を実現した。すなわち、第3図に示すように、媒質1(28)を圧電性を有する物質とし、媒質3(29)を損失の小さい非圧電非金属物質とし、媒質1と媒質3の境界に櫛形電極を設置した。ここで、媒質1と媒質2(30)は、弾性境界波を媒質3に閉じ込める働きをし、媒質1は電気信号と機械信号の変換を行う働きをする。

媒質2と媒質3は、圧電性を有する必要がないため、その材質を高品質 にする必要がない。そのため、媒質3はスパッタ法やCVD法や塗布法で 成膜できる。媒質2は、前記手法以外に、メッキ法またはバルク材料を媒質3に張り合わせる手法でも作成できる。これらの製造工程は、電子デバイスの製造過程で広く用いられているので、本発明の弾性境界波装置は従来の製造装置で容易に実現することができる。

15 また、媒質1にはチョコラルスキー法やブリッジマン法やフローティン グ法や水熱合成法により作製した高品質な単結晶ウエハを使用できるた め、圧電特性の劣化が生じない弾性境界波装置を実現できる。

図面の簡単な説明

第1図は、弾性表面波装置の断面図であり、第2図は、弾性表面波装置の機械振動エネルギーの分布(a), 2媒質構造の弾性境界波装置の機械振動エネルギーの分布(b)及び3媒質構造の弾性境界波装置の機械振動エネルギーの分布(c)を示した図であり、第3図は、本発明による3媒質構造の弾性境界波装置の一実施形態における断面図であり、第4図は、本発明による3媒質構造の弾性境界波装置の一実施形態における弾性境界波 明による3媒質構造の弾性境界波装置の一実施形態における弾性境界波

素-解析解結合法のモデルであり、第7図は、本発明が施される3媒質構 造の弾性境界波装置の一実施形態における多結晶酸化珪素膜の膜質が劣 化した場合の弾性境界波装置の基本特性を示した図であり、第8図は、反 共振周波数における伝搬損失の多結晶酸化珪素膜厚依存性を示した図で 5 あり、第9図は、θ度回転YカットX伝搬タンタル酸リチウム基板上に多 結晶酸化珪素膜と多結晶珪素膜を形成した場合における共振周波数と反 共振周波数の伝搬損失の θ 依存性を示した図であり、第10図は、θ度 回転YカットX伝搬ニオブ酸リチウム基板上に、 $h_1 = 0.3 \lambda$ (a), $h_1 = 0.45\lambda$ (b), $h_1 = 0.6\lambda$ (c) の多結晶酸化珪素膜と、 10 多結晶珪素膜を形成した場合における共振周波数と反共振周波数の 伝搬損失のθ依存性を示した図であり、第11図は、本発明による3媒 質構造の弾性境界波装置の一実施形態における弾性境界波通過形フィル タの平面図であり、第12図は、36度回転YカットX伝搬タンタル酸リ チウム基板14上に多結晶酸化珪素膜12と多結晶珪素膜13と多結晶 酸化珪素膜26と多結晶窒化珪素膜27と樹脂21を形成した本発明に よる弾性境界波装置の部分断面図であり、第13図は、本発明の一実施例 であるセラミック基板を用いた弾性境界波装置の断面図であり、第14図 は、本発明の一実施例であるリードフレームを用いた弾性境界波装置の断 面図であり、第15図は、本発明の一実施例であるフェイスダウン実装法 20 を用いた弾性境界波装置の断面図であり、第16図は、本発明の一実施例 であるセラミック基板上に弾性境界波装置とインダクタを実装した弾性 境界波マルチチップモジュールの断面図であり、第17図は、弾性境界波 チップとセラミック基板の間にエラストマを挿入した弾性境界波装置の 断面図である。

25 発明を実施するための最良の形態 本発明に係る実施の形態を詳細に説明する。

第4図は、本発明による弾性境界波装置の一実施形態を示す平面図であり、第5図は、第4図中のA-A² 部の部分断面図である。本実施形態は一開口共振器であって、櫛形電極(14)上に形成された2種類の膜(29,30)の存在を除いては従来の構成と同じである。即ち、36 Y X - L T 単結晶(28)の基板表面に、A 1を主成分とする金属膜で櫛形電極(14)がパターニングされ、櫛形の電極指が互いに間挿された2つの電極(14A,14B)間に高周波信号が加えられている。個々の電極指は、櫛形電極の膜厚が h、幅が L、電極指周期が λ(弾性境界波の伝搬波長と実質同じ)である。隣接する電極指間には幅 S の間隙が設けられている。

10 櫛形電極上には、膜厚が h_1 の多結晶酸化珪素膜(29)が形成されている。多結晶酸化珪素膜の表面には、膜厚が h_2 の多結晶珪素膜(29)が形成されている。櫛形電極は、膜厚h=100nm,電極指周期 $\lambda=4\mu$ m,幅L=幅 $S=1\mu$ m,電極指対数400対,開口長 15λ であり、多結晶酸化珪素膜の膜厚 h_1 は 2.5μ m、多結晶珪素膜の膜厚 h_2 は 5μ m

本実施形態における特徴は、36 Y X - L T 単結晶と多結晶酸化珪素膜と多結晶珪素膜の3 媒質構造を成し、弾性境界波が閉じこめられる媒質 (多結晶酸化珪素膜)と電気信号と機械信号の変換を行う媒質(36 Y X - L T 単結晶)を分け、弾性境界波が閉じこめられる媒質に非圧電非金属膜を用いたことにあり、櫛形電極の構造や個数に関して限定されることはない。

20

25

本発明者等は、本実施形態の特性を詳細に調べるため、弾性境界波共振器の解析シミュレータを作成した。シミュレーションは、弾性表面波共振器の解析に実績のある有限要素-解析解結合法(例えば、1994年第15回超音波シンポジウム,第275頁乃至第276頁)を基に行っている。弾性境界波共振器の解析には、弾性表面波共振器の解析と同様に、第6

図に示されるように、境界 Γ 1 と境界 Γ 2 に挟まれた電極指1本分に有限要素 Γ 8 を適用し、 Γ 1 と Γ 2 に半周期境界条件を課した。

しかし、弾性表面波共振器の解析とは異なり、弾性境界波共振器の解析には、媒質1と媒質2($h_2=\infty$)に解析解法を適用する必要がある。このため、媒質1(28)の内部に境界 Γ 3を設定し、媒質2(30)の内部に境界 Γ 4を設定し、 Γ 1と Γ 2と Γ 3と Γ 4に囲まれた閉領域に有限要素法を、 Γ 1と Γ 3と Γ 2に囲まれた開領域及び Γ 1と Γ 4と Γ 2に囲まれた開領域に解析解法を適用した。

薄膜装置で形成された薄膜は、理想的なホモエピタキシャル膜以外は通 10 常多孔質膜になる。多孔質膜の膜質を評価するパラメータに密度減少率 δ が用いられる。スパッタ法では δ < 0.0 4、C V D 法では δ ~ 0.1 である。多結晶酸化珪素膜の弾性定数 $C_{1,1}$ 、 $C_{4,4}$ 及び密度 p は、

$$C_{11} = 165 \times 10^{9} \times e^{-3 \times \delta}$$
 GPa/m²
 $C_{44} = 80 \times 10^{9} \times e^{-3.9 \times \delta}$ GPa/m²
 $p = 2.33 \times 10^{3} \times (1 - \delta)$ kg/m³

と表わされる。

15

第7図に、本実施形態の特性の解析結果を纏める。第7図から明らかなように、δ=0の時でも、比帯域幅と伝搬損失は従来の36 Y X - L T を用いた弾性表面波装置と略同等の性能を示し、温度係数は本実施形態の弾性境界波装置の方が優れた値を示した。

一方、膜質が劣化するに従い(δ>0)、本実施形態の弾性境界波共振器の特性は、従来例とは異なり劣化しない。温度係数は反対に向上する。また、酸化膜であるため膜質が劣化しても電気抵抗の劣化は起こらないことからも、弾性境界波が閉じこめられる媒質と電気信号と機械信号の変換を行う媒質を分け、弾性境界波が閉じこめられる媒質に非圧電非金属膜を用いたことにより、本実施形態の構造が容易に実現できることが解る。

3 媒質構造の弾性境界波装置において、媒質 1 が 3 6 Y X - L T の場合、媒質 3 の 9 結晶酸化珪素膜は、機械振動エネルギーの 3 6 Y X - L T 内部 への消失を防ぐ働きもしている。第 8 図に示すように、9 結晶酸化珪素膜は 0.8 μ m以上 $(h_2/\lambda t 0.2$ 以上)の厚さにするほうが好ましい。

本実施形態において、機械振動エネルギーの大部分は媒質3の多結晶酸 5 化珪素膜に閉じこめられているが、僅かに多結晶珪素膜中にもしみ出して いる。多結晶珪素膜中の機械振動エネルギー密度は、多結晶酸化珪素膜と の境界からの距離の指数関数に比例して減衰するため、媒質2の多結晶珪 素膜の膜厚は一定膜厚以上であれば、多結晶珪素膜表面の機械振動エネル ギー密度は無視できる。本実施形態の場合、多結晶珪素膜中の機械振動エ ネルギー密度は $e^{-9Z/\lambda}$ (Zは多結晶酸化珪素膜からの距離)で減衰する。 多結晶珪素膜の膜厚h。が $1 \mu m$ (h。 $/\lambda = 0.2$)のとき、多結晶珪素 膜表面の機械振動エネルギー密度は、多結晶酸化珪素膜との境界部の機械 振動エネルギー密度の1/10 ($e^{-9z/\lambda}=0.1$)、 2μ mのとき1/ $100(e^{-9Z/\lambda}=0.01)$ であるから、h,が 1μ m以上であれば、多 15 結晶珪素膜表面の機械振動エネルギー密度は無視できる。このため、媒質 2の外側にはいかなる物質が存在しても弾性境界波装置の電気的特性を 損ねることはない。

h₂が1μm未満の場合、多結晶珪素膜表面の機械振動エネルギーは存 20 在するから、この場合、弾性表面波が励振される。この弾性表面波は従来 の弾性表面波と比べると表面の機械振動エネルギーは極めて小さいから、 弾性境界波の優れた特性を一部有する。例えば、ハンドリングミスによる 多結晶珪素膜表面の損傷,不純物の付着に対して損失,周波数ずれ等電気 特性の劣化が小さい。このため、本発明を弾性表面波装置に適用した場合、 弾性境界波装置に適用した場合より効果は小さいが、同様の効果を得ることができる。

媒質 2 中における機械振動エネルギー密度の減衰定数 α は、弾性境界波の伝搬速度 V と媒質 2 の弾性定数 C α α と密度 p を用いて、

$$\alpha = 4 \pi \left(1 - \left(p / C_{44} \right) V^{2} \right)^{1/2}$$

で表わされるため、 (p/C_{44}) が小さい媒質ほど減衰定数を大きくすることができる。このため、媒質 2 の材料には、多結晶珪素以外にも、アモルファス珪素,窒化珪素,炭化珪素,アルミナ(酸化アルミニウム),窒化アルミニウム,ホウ素,酸化ホウ素,ダイヤモンドでも同様の効果が得られる。

媒質1に θ YX-LTや θ 度回転YカットX伝搬ニオブ酸リチウム(θ 10 YX-LN)等の単結晶圧電物質を用いた場合、媒質2と媒質3は多結晶体かアモルファス体であることが望ましい。この時、媒質2と媒質3でSH (shear horizontal)波成分からSV (shear vertical)波成分への変換が全く生じないため、櫛形電極で発生させたSH波成分を主とする機械振動は、不必要な成分変換を受けずにすむ。

- 15 例えば、媒質1に36 Y X L T 単結晶圧電物質を用いた場合、 S V 波成分に対しては機械振動エネルギーを媒質3に閉じこめることはできない。しかし、媒質2と媒質3が多結晶体かアモルファス体であると、S V 波成分を励振せず、かつS H 波成分からS V 波成分への変換が全く生じないため、機械振動エネルギーが媒質3から逃げることはない。
- 20 媒質2または媒質3が単結晶体の場合、その結晶方位は、SH波成分からSV波成分への変換が生じにくい方位にする必要がある。

媒質1に θ Y X - L T 単結晶圧電物質を用いた場合、第9図に示すように、 θ は36から50度に設定すると伝搬損失が非常に小さい弾性境界波装置を提供することができる。また一般に、実装に伴いQは1000程度(伝搬損失に換算すると56/1000=0.056dB/ λ)に劣化することを考慮すると、20から62度に設定することにより、略伝搬損失

25

を無視することができる。

また、媒質 1 に θ Y X - L N 単結晶圧電物質を用いた場合、第 1 0 図に示すように、 $h_1/\lambda = 0.3$ のとき(a)は $-13 \le \theta \le 15$ または $32 \le \theta \le 55$ 、 $h_1/\lambda = 0.45$ のとき(b)は $0 \le \theta \le 82$ 、 $h_1/\lambda = 0.6$ のとき(b)は $23 \le \theta \le 95$ に設定することにより、伝搬損失を 0.056 d B/λ 以下にすることができる。

第11図は、本発明による弾性境界波装置の一実施形態を示す平面図である。本実施形態は通過形フィルタであって、櫛形電極部(14)は、第4図に示された一開口共振器の実施形態と同じであり、櫛形電極の上に多結晶酸化珪素膜(29)と多結晶珪素膜(30)を形成してある。しかし弾性境界波は、櫛形電極間を伝搬する。本実施形態においては、伝搬部分にも多結晶酸化珪素膜と多結晶珪素膜を形成することにより、櫛形電極間を低損失に伝搬させることができる。

第12図は、本発明による弾性境界波装置の一実施例を示す櫛形電極部分の断面図である。36 Y X - L T 単結晶圧電基板(28)上に A I 櫛形電極(14),多結晶酸化珪素膜(29),多結晶珪素膜(30),多結晶酸化珪素膜(12),窒化珪素膜(27)を形成している。窒化珪素膜の表面には、ギャップを設けずにポッティング樹脂(20)を塗布している。ポッティング樹脂を塗布することにより、第4図に示される弾性境界波装置より、一層信頼性を高めている。

20 第13図と第14図は、セラミック基板(3)またはリードフレーム(22)を用いた弾性境界波装置の一実施形態を示す断面図である。36 Y X - L T 単結晶圧電基板上に A l 電極,多結晶酸化珪素膜,多結晶珪素膜,多結晶酸化珪素膜,窒化珪素膜を形成した弾性境界波チップ(19)を接着剤(5)でセラミック基板に固定し、金属ワイヤ(2)と弾性境界波チップの表面をギャップを設けずに封止樹脂(21)で固めている。第1図に示される従来の弾性表面波装置と比較して、本実施例は、金属ワイヤが

固定されているため信頼性が高く、かつ、薄い弾性境界波装置を提供する ことができる。

第15図は、フェイスダウン実装を用いたことを特徴とする弾性境界波装置の一実施形態を示す断面図である。本実施例は、弾性境界波チップ(19),バンプ(25),リードフレーム(22)間の接着が樹脂(21)で補強されているため、信頼性が高く、小型の弾性境界波装置を提供することができる。

第16図は、セラミック基板(3)上に、弾性境界波チップ(19)とインダクタ(26)を実装したマルチチップモジュールの一実施形態を示す断面図である。弾性表面波チップはフェイスダウン実装されており、弾性境界波チップの表面とセラミック基板の間は樹脂(21)で満たされている。このため、本実施例は、櫛形電極の放熱効果が優れており、耐電力特性に優れた弾性境界波装置を提供することができる。また、弾性境界波装置とインダクタを同時に樹脂封止できるため、実装効率の高い弾性表面波モジュールを提供することができる。この場合、インダクタに限定されずキャパシタ、抵抗、IC等でも同様の効果が有り、複数の弾性境界波装置を同一セラミック基板に実装すると一層実装効率を高めることができる。また、セラミック基板の代わりにポリイミド基板を用いても同様である。

20 第17図は、チップサイズパッケージ(CSP)を用いた本発明の一実施形態を示す断面図である。弾性境界波チップ(19)はフェイスダウン実装されており、弾性境界波チップの表面とセラミック基板(3)の間はエラストマ(31)(弾性材料)で満たされている。このため、本実施例は、バンプ(22)に加わる応力をエラストマが緩和するため、一層信頼25 性に優れた弾性境界波装置を提供することができる。

以上説明したように、本発明によれば、圧電単結晶基板と誘電材料の間

に、非金属非圧電材料を挟むことにより、超小型の弾性境界波装置を作成することができる。例えば、チップの厚さが 0.3 6 5 mm, 縦が 2 mm, 横が 0.6 mmの場合、従来では、厚さが 1 mm, 縦が 3.5 mm, 横が 3.5 mmであったが、本発明によれば、厚さが 0.3 6 5 mm, 縦が 2 mm, 横が 0.6 mmの超小型の弾性境界波装置を実現することができる。また、本発明によれば、電気的特性も従来の弾性表面波装置と同等以上であり、特に、温度特性の優れた弾性境界波装置を実現できる。また、本発明によれば、膜質劣化が電気特性の劣化にならないため、本弾性境界波装置を容易に作成することができる。また、本発明によれば、セラミックパッケージを省くことが可能であるため、低価格の弾性境界波装置を提供することができる。

産業の利用可能性

以上のように、本発明にかかる弾性波装置は、3 媒質構造の弾性境界波 装置として有用であり、特に、高周波用通信機器の共振器やフィルタ等の 個体回路素子に用いるのに適している。

請求の範囲

- 1. 媒質1と、上記媒質1と異なる材質からなる媒質2と、上記媒質1及び上記媒質2と異なる材質からなり、上記媒質1と上記媒質2の間に挟ま
- 5 れた媒質3、上記媒質1と上記媒質3の間に形成された電極とを有し、上 記媒質1が圧電性を有する物質であることを特徴とする弾性波装置。
 - 2. 請求の範囲第1項において、前記媒質1が単結晶物質であり、前記 媒質2が非酸化物又は酸化アルミニウム又は酸化硼素を主成分とす る物質であり、前記媒質3が酸化アルミニウム及び酸化硼素を除く非
- 10 圧電性酸化物を主成分とする物質であることを特徴とする弾性波装置。
 - 3. 請求の範囲第2項において、前記媒質2と前記媒質3の少なくとも一方がスパッタ法又はCVD法又は塗布法で成膜されてなることを特徴とする弾性波装置。
- 4. 請求の範囲第2項において、前記媒質2がバルク材料であることを特15 徴とする弾性波装置。
 - 5.請求の範囲第2項において、前記媒質3が酸化珪素を主成分とする膜であることを特徴とする弾性波装置。
 - 6.請求の範囲第2項において、前記媒質2が珪素又は窒化珪素又は酸化 アルミニウム又は窒化アルミニウム又はホウ素又は酸化ホウ素又は炭素 を主成分とする膜であることを特徴とする弾性波装置。
 - 7. 請求の範囲第2項において、前記媒質2と前記媒質3の少なくとも一方が多結晶体又はアモルファス体であることを特徴とする弾性波装置。
 - 8. 請求の範囲第2項において、前記媒質1がタンタル酸リチウム又はニオブ酸リチウム単結晶であることを特徴とする弾性波装置。
- 25 9. 請求の範囲第8項において、前記媒質1の面方位が結晶のX軸と垂直 であることを特徴とする弾性波装置。

10. 請求の範囲第9項において、前記媒質1が θ 度回転Yカットタンタル酸リチウム単結晶であり、 $20 \le \theta \le 62$ であることを特徴とする弾性波装置。

- 1 1. 請求の範囲第 9 項において、前記媒質 1 が θ 度回転 Y カットタンタ 5 ル酸リチウム単結晶であり、3 $6 \le \theta \le 5$ 0 であることを特徴とする弾性 波装置。
- 12.請求の範囲第10項において、前記媒質3が酸化珪素を主成分とする膜であり、前記媒質2が珪素又は窒化珪素又は酸化アルミニウム又は窒化アルミニウム又はなウ素又は酸化ホウ素又は炭素を主成分とする膜であることを特徴とする弾性波装置。
 - 13.請求の範囲第9項において、前記媒質1が6度回転Yカットニオブ酸リチウム単結晶であり、前記媒質3が酸化珪素を主成分とする膜であり、前記媒質2が珪素又は窒化珪素又は酸化アルミニウム又は窒化アルミニウム又はホウ素又は酸化ホウ素又は炭素を主成分とする。
- 15 る膜であり、前記電極が複数の電極指を有する櫛形電極であり、上記櫛形電極の電極指周期を λ , 前記媒質 3 の膜厚を h_1 としたとき、 h_1 $<0.375\lambda$ 且つ $-13\le\theta\le15$ 、又は、 $h_1<0.375\lambda$ 且つ $32\le\theta\le55$ 、又は、 $0.375\lambda\le h_1\le0.525\lambda$ 且つ $0\le\theta\le82$ 、又は、 $0.585\lambda\le h_1$ 且つ $23\le\theta\le95$ であることを特徴と 20 する弾性波装置。
 - 14. 請求の範囲第12項において、前記電極が複数の電極指を有する櫛形電極であり、上記櫛形電極の電極指周期を λ ,前記媒質3の膜厚を h_1 としたとき、 $h_1 \ge 0.2 \lambda$ であることを特徴とする弾性波装置。
- 15. 請求の範囲第14項において、前記媒質2の膜厚を h_2 としたとき、25 $h_2 \ge 0.25 \lambda$ であることを特徴とする弾性波装置。
 - 16.請求の範囲第15項において、前記媒質3の密度が1982~20

- 23kg/m³の範囲内にあることを特徴とする弾性波装置。
- 17. 請求の範囲第15項において、前記媒質2の表面の少なくとも一部に酸化膜又は窒化膜を成膜したことを特徴とする弾性波装置。
- 18.請求の範囲第1項乃至第17項の何れかの弾性波装置において、前記媒質1,媒質2及び媒質3以外に、絶縁物質を有し、前記媒質1及び媒質2及び媒質3及び上記絶縁物質が直接または固体を介して接続されており、前記媒質1または媒質2または媒質3と上記絶縁物質の間に気体又は真空によるギャップが存在しないことを特徴とする弾性波装置。
 - 19.請求の範囲第第1項乃至第17項の何れかの弾性波装置において、
- 10 前記媒質1及び媒質2及び媒質3の外部に電気端子を有し、前記電極と上 記電気端子が金属ワイヤまたはバンプで電気的に接続されており、上記金 属ワイヤまたはバンプと前記媒質3が直接又は固体を介して絶縁物質で 保持されていることを特徴とする弾性波装置。
- 20.請求の範囲第1項乃至第17項の何れかの弾性波装置と、少なくと 15 も一個のインダクタンス素子または容量素子または抵抗素子または半導体素子を有し、上記弾性波装置と上記インダクタンス素子または容量素子または抵抗素子または半導体素子が同一絶縁物質で保持されていることを特徴とするマルチチップモジュール。

20

25

第1図

第2図

第3図

第4図

第5図

第6図

第7図

	共振			反共振			
δ	周波数 (MHz)	伝搬損失 (dB/λ)	温度係数 (ppm°C)	周波数 (MHz)	伝搬損失 (dB/λ)	温度係数 (ppm℃)	比帯域幅 (%)
0	819.6	0.0004	-16.1	839.0	0. 0021	-35. 2	2. 31
0.02	815.4	0. 0006	-13.6	835.8	0.0062	-30. 5	2. 44
0.04	810.8	0. 0016	- 8.7	831.2	0.0126	-20. 9	2. 45
0.06	805.8	0. 0034	- 6.2	825.6	0. 0203	-13.7	2. 40
0.08	800.0	0. 0056	- 1.1	818.8	0. 0276	- 6.3	2.30
0.09	797.0	0. 0068	0.0	815.2	0. 0307	- 3.8	2. 23
0.10	793.8	0. 0081	1.5	811.0	0. 0333	1.2	2. 12

第8図

第9図

第10図

第11図

第12図

第13図

第14図

第15図

第16図

第17図

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/	JP97/01584					
	SSIFICATION OF SUBJECT MATTER							
Int.	Int. Cl ⁶ H03H9/145, 9/25							
	According to International Patent Classification (IPC) or to both national classification and IPC							
	B. FIELDS SEARCHED							
Minimum do	ocumentation searched (classification system followed by	classification symbols)	·					
Int.	. С16 нозн9/00-9/76							
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Jits Koka	suyo Shinan Koho ai Jitsuyo Shinan Koho oku Jitsuyo Shinan Koho	1926 - 1997 1971 - 1996 1994 - 1997						
	ata base consulted during the international search (name		terms used)					
		•	Ź					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a		Relevant to claim No.					
X Y	JP, 5-67941, A (Sumitomo E)	ectric Industries,	1					
1	Ltd.), March 19, 1993 (19. 03. 93)		2 - 20					
	Fig. 2 (Family: none)	,						
Y	JP, 56-31213, A (Matsushita	Electric Industrial	2 - 20					
_	Co., Ltd.),	. Dicetile industrial	2 20					
	March 30, 1981 (30. 03. 81)	,						
	Fig. 3 (Family: none)							
A	JP, 4-258008, A (Murata Mfc	. Co I+d \	1 - 20					
71	September 14, 1992 (14. 09)	92).	1 - 20					
	Fig. 1 (Family: none)	. 32,,						
-								
A	JP, 54-158895, A (Matsushit	a Electric	1 - 20					
	Industrial Co., Ltd.), December 15, 1979 (15. 12.	70)						
	Fig. 2 (Family: none)	791,						
Furthe	Further documents are listed in the continuation of Box C. See patent family annex.							
•	categories of cited documents:	"T" later document published after the int						
to be of	A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention							
cited to	'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be							
"O" docume	O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is							
"P" document published prior to the international filing date but later than being obvious to a person skilled in the art								
the priority date claimed "&" document member of the same patent family								
	actual completion of the international search	Date of mailing of the international se						
August 5, 1997 (05. 08. 97) August 19, 1997 (19. 08. 9								
Name and n	Name and mailing address of the ISA/ Authorized officer							
Japanese Patent Office								

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No.

発明の属する分野の分類(国際特許分類(IPC)) Α.

Int. C1° H03H9/145, 9/25

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

H 0 3 H 9 / 0 0 - 9 / 7 6

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1997年

日本国公開実用新案公報 1971-1996年

日本国登録実用新案公報 1994-1997年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

O. NET CILLO STORY							
引用文献の		関連する					
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号					
X	JP, 5-67941, A(住友電気工業株式会社)19.3月.1993(19	1					
Y	. 03.93), 第2図, (ファミリーなし)	$2 - 2 \ 0$					
Y	JP, 56-31213, A(松下電器産業株式会社) 30. 3月. 1981 (3	$2 - 2 \ 0$					
	0. 03.81), 第3図, (ファミリーなし)						
A	】 P , 4 − 2 5 8 0 0 8 , A (株式会社村田製作所) 1 4 . 9 月 . 1 9 9 2 (1 4	1 - 2 0					
	. 09.92), 第1図, (ファミリーなし)						
A	JP, 54-158895, A(松下電器産業株式会社) 15. 12月. 1979	1 - 2 0					
	(15.12.79), 第2図, (ファミリーなし)						
1		1					

□ C欄の続きにも文献が列挙されている。

| パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 05.08.97 国際調査報告の発送日

19.08.97

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 工藤 一光

5 J 9 2 7 4

電話番号 03-3581-1101 内線 3538