MAT1375, Classwork12, Fall2025

Ch12. Solving inequalities

1. The Strategy for Solving Inequalities (Application of **Number Line Test**):

Step1. Replace '>' (' \geq ') or '<' (' \leq ') by '=' and solve the equation.

Step 2. Mark the solutions on the number line and check Sign (positive / wegotive) in each subinterval.

Step3. Check the employed of the subintervals to see if they are included in the solution set.

2. Given
$$x^{3} + 15x \ge 7x^{2} + 9$$
. Solve for x .

(1) $x^{3} - 7x^{2} + 15x - 9 \ge 0$.

Replace ">" with "=", f(x) = $x^{3} - 7x^{2} + 15x - 9 = 0$

(2) Find the voot(s) of f(x) = $x^{3} - 7x^{2} + 15x - 9 = 0$

Possible voot(s) of f(x) = $x^{3} - 7x^{2} + 15x - 9 = 0$

Possible voot(s) of f(x) = $x^{3} - 7x^{2} + 15x - 9 = 0$
 $x^{2} + 15x + 9 = 0$
 $x^{2} + 15$

3. Solve for x: $|2x-3| \ge 7$.

(i) $|2x-3| \ge 7$ Replace |2x-3| = 7(ii) $|2x-3| \ge 7$ Replace |2x-3| = 7(iii) $|2x-3| \ge 7$ Replace |2x-3| = 7(iv) $|2x-3| \ge 7$ Replace |2x-3| = 7(iv) $|2x-3| \ge 7$ Replace |2x-3| = 7(iv) $|2x-3| \ge 7$ Replace |2x-3| = 7(iv) |2x-3| = 7(iv)