(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月7 日 (07.07.2005)

PCT

(10) 国際公開番号 WO 2005/062672 A1

(51) 国際特許分類⁷: **H04S 1/00**, 5/02, H04R 1/20

(21) 国際出願番号: PCT/JP2004/018192

(22) 国際出願日: 2004年12月7日(07.12.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願 2003-426502

2003 年12 月24 日 (24.12.2003) JP

(71) 出願人 (米国を除く全ての指定国について): 三 菱電機株式会社 (MITSUBISHI DENKI KABUSHIKI KAISHA) [JP/JP]; 〒1008310 東京都千代田区丸の内 二丁目 2番 3号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 木村 勝 (KIMURA, Masaru) [JP/JP]; 〒1008310 東京都千代 田区丸の内二丁目 2 番 3 号 三菱電機株式会社内 Tokyo (JP). 松岡 文啓 (MATSUOKA, Bunkei) [JP/JP]; 〒1008310 東京都千代田区丸の内二丁目 2番 3 号 三 菱電機株式会社内 Tokyo (JP).
- (74) 代理人: 高橋 省吾, 外(TAKAHASHI, Shogo et al.); 〒1008310 東京都千代田区丸の内二丁目 2番 3 号 三 菱電機株式会社 知的財産センター内 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,

/続葉有/

(54) Title: ACOUSTIC SIGNAL REPRODUCING METHOD

(54) 発明の名称: 音響信号再生方法

(57) Abstract: There has been conventionally filters including a transfer function for canceling the crosstalk component from a speaker to the left or right ear of the listener. However, the crosstalk between the speakers in the case of a portable terminal cannot be appropriately reduced. Therefore, when the input signal is expected to have a stereophonic effect, portable terminals have no 3-D sound image positioning function. A crosstalk canceling method of this invention comprises a processing step (1) of reducing the spatial crosstalk caused in the space from the speaker to the ear of the listener in relation to the input signal inputted into the speaker and a processing step (2) of reducing the crosstalk caused between the speakers in the case in relation to the signal passed through the processing step (1).

(57) 要約: 従来から、スピーカから聴取者の右耳又は左耳に到達するクロストーク成分をキャンセルするための伝達関数を畳み込まれたフィルタは存在したが、携帯端末装置の筐体内におけるスピーカ相互間のクロストークを適切に減少させることができなかった。そのため、入力信号が立体音響効果を期待されている場合、携帯端末装置では3D音像定位機能が実現されていなかった。この発明のかかるクロストークキ

WO 2005/062672 A1

ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

ャンセル方法は、筐体内部に少なくとも2つのスピーカが収容された携帯端末装置の音響信号再生方法において、スピーカへの入力信号に対して、スピーカから受聴者の耳に到るまでの空間で生じる空間クロストークを低減させる処理ステップ1と、処理ステップ1を経た信号に対して、筐体内でスピーカ間に生じるクロストークを低減させる処理ステップ2とを備えて構成されている。

WO 2005/062672 1 PCT/JP2004/018192

明細書

音響信号再生方法

技術分野

[0001] この発明は、携帯端末装置使用の際に生じるクロストークを低減させる音響信号再生 方法に関する。

背景技術

- [0002] 従来のクロストークキャンセラーは、入力信号が対応する仮想音像が聴取者の右耳 又は左耳に到達するとされる伝達関数に対して、聴取者の右耳又は左耳に到達する クロストーク成分をキャンセルするための伝達関数が畳み込まれたフィルタを特徴と する。
- [0003] 特許文献1:特開平09-327099号公報(第1-2頁) 特許文献2:特開2002-111817号公報(第1-2頁、第9-10頁)

発明の開示

発明が解決しようとする課題

[0004] 従来から、スピーカから聴取者の右耳又は左耳に到達するクロストーク成分をキャンセルするための伝達関数を畳み込まれたフィルタは存在したが、携帯端末装置の筐体内におけるスピーカ相互間のクロストークを適切に減少させることができなかった。そのため、入力信号が立体音響効果を期待されている場合、携帯端末装置では3D音像定位機能が実現されていなかった。

課題を解決するための手段

[0005] この発明のかかるクロストークキャンセル方法は、筐体内部に少なくとも2つのスピーカが収容された携帯端末装置の音響信号再生方法において、スピーカへの入力信号に対して、スピーカから受聴者の耳に到るまでの空間で生じる空間クロストークを低減させる処理ステップ1と、処理ステップ1を経た信号に対して、筐体内でスピーカ間に生じるクロストークを低減させる処理ステップ2とを備えて構成されている。発明の効果

[0006] この発明のかかるクロストークキャンセル方法は、筐体内部に少なくとも2つのスピー

カが収容された携帯端末装置の音響信号再生方法において、スピーカへの入力信号に対して、スピーカから受聴者の耳に到るまでの空間で生じる空間クロストークを低減させる処理ステップ1と、処理ステップ1を経た信号に対して、筐体内でスピーカ間に生じるクロストークを低減させる処理ステップ2とを備えて構成されるものであり、入力信号が立体音響効果を期待されている場合、携帯端末装置では3D音像定位機能が実現することができる。

図面の簡単な説明

[0007] [図1]実施の形態1-6における筐体内、空間の再生システムの再生モデルを示す図である。

「図2]実施の形態1におけるクロストークキャンセルの概念図である。

[図3]実施の形態2におけるクロストークキャンセルの概念図である。

[図4]実施の形態3におけるクロストークキャンセルの概念図である。

[図5]実施の形態4におけるクロストークキャンセルの概念図である。

[図6]実施の形態6におけるクロストークキャンセルの概念図である。

[図7]実施の形態7における筐体内、空間の再生システムの再生モデルを示す図である。

[図8]実施の形態7におけるクロストークキャンセルの概念図である。

[図9]実施の形態7におけるクロストークキャンセルの概念図である。

符号の説明

[0008] 1R 第1のスピーカ

1L 第2のスピーカ

2R スピーカ1R用のチャンネル

2L スピーカ1L用のチャンネル

3LR 第1の筐体加工手段

3RL 第2の筐体加工手段

4R 第1の加算手段

4L 第2の加算手段

5RR 第1の筐体直接加工手段

- 5LL 第2の筐体直接加工手段
- 6LR 第1の筐体交差加工手段
- 6RL 第2の筐体交差加工手段
- 7RR 第1の筐体後加工手段
- 7LL 第2の筐体後加工手段
- 8LR 第1の筐体乗算加工手段
- 8RL 第2の筐体乗算加工手段
- 9LR 第1のサブバンド分割手段
- 9RL 第2のサブバンド分割手段
- 10LR 第1のサブバンド加工手段
- 10RL 第2のサブバンド加工手段
- 11LR 第1のサブバンド合成手段
- 11RL 第2のサブバンド合成手段
- 12LR 第1の低域通過手段
- 12RL 第2の低域通過手段
- 13RR 第1の空間直接加工手段
- 13LL 第2の空間直接加工手段
- 14LR 第1の空間交差加工手段
- 14RL 第2の空間交差加工手段
- 15R 加算手段
- 15L 加算手段
- 16RR 第1の空間後加工手段
- 16LL 第2の空間後加工手段
- 23 相関算出手段
- 24 制御手段
- 25LR 第1のスイッチ
- 25RL 第2のスイッチ
- 26LR 第1の信号加工手段

WO 2005/062672 4 PCT/JP2004/018192

26RL 第2の信号加工手段

27R 第1の制御点

27L 第2の制御点

発明を実施するための最良の形態

[0009] 実施の形態1.

発明者による研究の結果、携帯端末装置のサイズを小型化するために後気室を共通にした場合、一方のスピーカから再生される音波が筐体内で音響的に結合して、他方のスピーカに漏れこむという現象が生じることが判明した。この音響結合を筐体内クロストークと呼ぶことにする。図1の左部はこの現象をモデル化したものである。また、一方のスピーカから再生される音波が本来受聴者の一方の耳に伝達されるところ他方の耳で結合して、他方の耳に漏れこむという現象が生じていることも判明した。この音響結合を空間クロストークと呼ぶことにする。図1の右部はこの現象をモデル化したものである。

[0010] 図1に示す第1のスピーカ1R(一方のスピーカ)と第2のスピーカ1L(他方のスピーカ)とは図示しない携帯端末の筐体内に設置されており、後気室を共通にしている。また同図に示すように、第2のスピーカ1Lを駆動するための駆動信号LDが少なくとも筐体内での音響結合により変形されて、第1のスピーカ1Rから放射されるまでの伝達特性をH_{LR}で表し、第1のスピーカ1Rを駆動するための駆動信号RDが少なくとも筐体内での音響結合により変形されて、第2のスピーカ1Lから放射されるまでの伝達特性をH_{RL}で表す。更に、第1のスピーカ1Rを駆動する駆動信号RDがアンプ又はスピーカ特性などによって変形されて、第1のスピーカ1Rから放射されるまでの伝達特性をH_{RR}で表し、第2のスピーカ1Lを駆動する駆動信号LDがアンプ又はスピーカ特性などによって変形されて、第2のスピーカ1Lから放射されるまでの伝達特性をH_{LL}で表わす。更に、上記の変形により第1のスピーカ1Rから放射されるスピーカ放射信号をSLで表す。そして、スピーカ放射信号SRが空間で変形されて、第1の制御点27Rの例である受聴者の第1の耳に到達されるまでの伝達関数をG_{RR}で表し、スピーカ放射信号SLが空間で変形されて、第2の制御点27Lの例である受聴者の第2の耳に到達されるまで

WO 2005/062672 5 PCT/JP2004/018192

の伝達関数を G_{LL} で表す。スピーカ放射信号SLが空間で変形されて、受聴者の第1の耳に到達されるまでの伝達関数を G_{LR} で表し、スピーカ放射信号SRが空間で変形されて、受聴者の第2の耳に到達されるまでの伝達関数を G_{RR} で表す。

[0011] 図1に示したとおり、筐体内で音響結合がある携帯端末装置では、駆動信号RDはHという伝達特性が付与され、また駆動信号LDがHLという特性で音響結合される。そして、当該両信号は、加算されて放射される。一方、駆動信号LDはHLという特性が付与され、また駆動信号RDがHLという特性で音響結合される。そして、当該両信号は、加算されて放射される。従って、第1のスピーカ放射信号SR、第2のスピーカ放射信号SLは、下記1のように表わすことができる。

[0012] [数1]

$$S_R = RdH_{RR} + LdH_{LR}$$
$$S_L = LdH_{LL} + RdH_{RL}$$

なお、本実施の形態においては、第1のスピーカ1Rと第2のスピーカ1Lとは、携帯端末装置の筐体内において筐体に対して対称的に配置され、スピーカ同士が類似していると考える。よって、伝達特性H_{RL}と伝達特性H_{LR}及び伝達特性H_{RR}と伝達特性H_Lと伝達特性H_{LR}が、共通している場合又は共通しているとみなせるほど近似していると考えられるので、H_{LR}=H_{RL}=H_LとH_Lとみなす。よって本実施の形態では、第一のスピーカ放射信号SR及び第2のスピーカ放射信号SLは、数式2のように表すことができる。

「0013] 「数2]

$$S_R = RdH_D + LdH_X$$

 $S_L = LdH_D + RdH_X$

更に再生された第1のスピーカ放射信号SRはG_{RR}という伝達特性が付与され、第2のスピーカ放射信号SLはG_{LR}という伝達特性が付与される。そして、当該両信号は、加算されて受聴者の第1の耳に伝達される。一方、第2のスピーカ放射信号SLはG_{LL}という伝達特性が付与され、また第1のスピーカ放射信号SRはG_{RL}という伝達特性が付与される。そして、当該両信号は、加算されて受聴者の第2の耳に伝達される。受聴者の第1の耳に伝達される信号ER、第2の耳に伝達される信号ELは、数式3のよ

WO 2005/062672 6 PCT/JP2004/018192

うに表すことができる。

「0014] 「数3]

$$\begin{split} E_{R} &= S_{R}G_{RR} + S_{L}G_{LR} \\ &= (RdH_{D} + LdH_{X})G_{RR} + (LdH_{D} + RdH_{X})G_{LR} \\ &= Rd(H_{D}G_{RR} + H_{X}G_{LR}) + Ld(H_{D}G_{LR} + H_{X}G_{RR}) \\ E_{L} &= S_{L}G_{LL} + S_{R}G_{RL} \\ &= (LdH_{D} + RdH_{X})G_{LL} + (RdH_{D} + LdH_{X})G_{RL} \\ &= Rd(H_{D}G_{RL} + H_{X}G_{LL}) + Ld(H_{D}G_{LL} + H_{X}G_{RL}) \end{split}$$

立体的音響効果を実現するためには、立体音響効果を得ることが期待される信号を生成し、この信号をできるだけ正しく左右の耳に提示することが必要とされる。しかし、この数式3が示すように、第1の耳の伝達信号ERには、駆動信号RD、駆動信号LDの両成分が含まれ、第2の耳の伝達信号ELには、駆動信号RD、駆動信号LDの両成分が含まれる。このため、何の前処理もしなければ、筐体内、空間での音響結合のある場合にスピーカで再生しても再生音像が極端に狭くなったり、臨場感のある再生が実現できなかったりする。発明者は、以上の現象に着目し、図2に示す音響信号再生回路を図1に示す再生システムモデルの前段に設けることにより、筐体内クロストーク及び空間クロストークの低減を図ることとした。

[0015] 図2はこの発明の実施の形態1にかかる携帯端末装置に用いられる音響信号再生回路の概略図である。図2に示すように、この実施の形態にかかる音響信号再生回路は、上述第1のスピーカ1R用のチャンネル2R及び、上述第2のスピーカ1L用のチャネル2Lを備える。また、この音響信号再生回路は、第1のスピーカ1Rへの入力信号Rを加工して第1のスピーカ1Rに対する直接成分を生成する第1の空間直接加工手段13RRと、第2のスピーカ1Lへの入力信号Lを加工して第1のスピーカ1Rに対する交差成分を生成する第1の空間交差加工手段14LRと、上記両信号を加算して、加算信号を生成する加算手段15Rを備える。同様に第2のスピーカ1Lへの入力信号Lを加工して第2のスピーカ1Lに対する直接成分を生成する第2の空間直接加工手段13LLと、第1のスピーカ1Rへの入力信号Rを加工して第2のスピーカ1Lに対する交差成分を生成する第2の空間交差加工手段14RLと、上記両信号を加算して、加算信号を生成する加算手段15Lを備える。

- [0016] 更に、第1の加算手段15Rで加算された信号を更に加工する第1の空間後加工手段 16RR及び第2の加算手段15Lで加算された信号を更に加工する第2の空間後加工 手段16LLを備える。
- [0017] 以上の空間クロストーク処理手段(処理手段1)に加えて更に以下の筐体内クロストーク処理手段(処理手段2)が備えられる。第2の空間後加工手段16LLにより加工された信号(処理手段1を経た他方のスピーカへの信号)を更に加工して、第1のスピーカ1Rに対する交差成分を生成する第1の筐体加工手段3LRと、この第1の筐体加工手段3LRの出力信号を、第1の空間後加工手段16RRの出力信号(処理手段1を経た一方のスピーカへの信号)に加算して駆動信号RDを出力する第1の加算手段4Rとを備える。同様に第1の空間後加工手段16RRにより加工された信号を更に加工して、第2のスピーカ1Lに対する交差成分を生成する第2の筐体加工手段3RLと、この第2の筐体加工手段3RLの出力信号を、第2の空間後加工手段16LLの出力信号に加算して駆動信号LDを出力する第2の加算手段4Lとを備える。
- [0018] この実施の形態では、この駆動信号RD、駆動信号LDを上述の図1で説明した駆動信号RD、駆動信号LDとしてそれぞれ使用する。
- [0019] 次に、動作について説明する。本発明の携帯端末装置の第1のチャンネルに入力された入力信号Rは分岐されて、一方は第2の空間交差加工手段14RLに入力され、他方は第1の空間直接加工手段13RRに入力される。同様に、本発明の携帯端末装置の第2のチャンネルに入力された入力信号Lは分岐されて、一方は第1の空間交差加工手段14LRに入力され、他方は第2の空間直接加工手段13LLに入力される。次に、第2の空間交差加工手段14RLに入力された入力信号は、例えば、一GRLという特性フィルタを通過し、第2の加算手段15Lに入力される。第1の空間直接加工手段13RRに入力された入力信号は、例えば、GLという特性フィルタを通過し、第1の加算手段15Rに入力された入力信号は、例えば、一GRという特性フィルタを通過し、第1の加算手段15Rに入力された入力信号は、例えば、一GRという特性フィルタを通過し、第1の加算手段15Rに入力された入力信号は、例えば、GRという特性フィルタを通過し、第2の加算手段15Lに入力された入力信号は、例えば、GRという特性フィルタを通過し、第2の加算手段15Lに入力される。
- 「0020」 次に、第1の加算手段15Rに入力された両信号は加算され第1の空間後加工手段1

6RRに入力され、第2の加算手段15Lに入力された両信号は加算され第2の空間後 加工手段16LLに入力される。次に、第1の空間後加工手段16RRに入力された信 号は、例えば、 $1/(G_{LL}G_{RR}G_{LR}G_{RL})$ という特性フィルタを通過し、分岐して、一方 は交差成分として第2の筐体加工手段3RLに入力され、他方は直接成分として第1 の加算手段4Rにそれぞれ入力される。同様に、第2の空間後加工手段16LLに入 力された信号は、例えば、 $1/(G_{LL}G_{RR}-G_{LR}G_{RL})$ という特性フィルタを通過し、分岐 して、一方は交差成分として第1の筐体加工手段3LRに入力され、他方は直接成分 として第2の加算手段4Lにそれぞれ入力される。第1の筐体加工手段3LRに入力さ れた信号LAとすると、信号LAは、第1の筐体加工手段3LRによって、例えば $-H_x$ H_pという特性を持つフィルタを通過し、第1の加算手段4Rに入力される。第1の加算 手段4Rでは、第1の筐体加工手段3LRからの出力信号(交差成分)と、第1の空間 後加工手段16RRから出力される信号RA(直接成分)とを加算することによって、駆 動信号RDを生成する。同様に、第2の筐体加工手段3RLに入力された信号RAは 第2の筐体加工手段3RLによって、例えば-H、/H、という特性を持つフィルタを通 過し、第2の加算手段4Lに入力される。第2の加算手段4Lでは、第2の筐体加工手 段3RLからの出力信号(交差成分)と、信号LA(直接成分)とを加算することによって 、駆動信号LDを生成する。ここで、駆動信号RD、駆動信号LDは数式4のようになる

[0021] [数4]

$$Rd = \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_X}{H_D}$$

$$Ld = \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_X}{H_D}$$

上記処理によって生成された駆動信号RD、駆動信号LDで第1のスピーカ1R、第2のスピーカ1Lを駆動すると、図1より、スピーカRから放射されるスピーカ放射信号SR、スピーカ放射信号SLは、数式5のようになる。

[0022] [数5]

WO 2005/062672 9 PCT/JP2004/018192

$$\begin{split} S_{R} &= RdH_{D} + LdH_{X} \\ &= (\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_{X}}{H_{D}})H_{D} + (\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_{X}}{H_{D}})H_{X} \\ &= (RG_{LL} - LG_{LR})(H_{D} - \frac{H_{X}^{2}}{H_{D}})(\frac{1}{G_{LL}G_{RR} - G_{LR}G_{RL}}) \\ S_{L} &= LdH_{D} + RdH_{X} \\ &= (\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_{X}}{H_{D}})H_{D} + (\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} - \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} \cdot \frac{H_{X}}{H_{D}})H_{X} \\ &= (LG_{RR} - RG_{RL})(H_{D} - \frac{H_{X}^{2}}{H_{D}})(\frac{1}{G_{LL}G_{RR} - G_{LR}G_{RL}}) \end{split}$$

よって、第1の耳への到達信号ER、第2の耳への到達信号ELは数式6のようになる

0

[0023] [数6]

$$\begin{split} E_{L} &= G_{LL} S_{L} + G_{RL} S_{R} \\ &= G_{LL} \left(\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D} - \frac{H_{X}^{2}}{H_{D}}) \right) \\ &+ G_{RL} \left(\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D} - \frac{H_{X}^{2}}{H_{D}}) \right) \\ &= \frac{(H_{D} - \frac{H_{X}^{2}}{H_{D}})}{G_{LL}G_{RR} - G_{LR}G_{RL}} ((LG_{RR}G_{LL} - RG_{RL}G_{LL} + RG_{RL}G_{LL} - LG_{RL}G_{LR}) \\ &= L(H_{D} - \frac{H_{X}^{2}}{H_{D}}) \end{split}$$

$$\begin{split} E_{R} &= G_{RR} S_{R} + G_{LR} S_{L} \\ &= G_{RR} \bigg(\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D} - \frac{H_{X}^{2}}{H_{D}}) \bigg) \\ &+ G_{LR} \bigg(\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D} - \frac{H_{X}^{2}}{H_{D}}) \bigg) \\ &= \frac{(H_{D} - \frac{H_{X}^{2}}{H_{D}})}{G_{LL}G_{RR} - G_{LR}G_{RL}} \bigg((RG_{RR}G_{LL} - LG_{LR}G_{RR} + LG_{LR}G_{RR} - RG_{RL}G_{LR}) \\ &= R(H_{D} - \frac{H_{X}^{2}}{H_{D}}) \end{split}$$

数式6からわかるように、振幅又は位相特性の変形は受けるものの、クロストーク成分

を完全にキャンセルすることができる。ここで、3D音像定位において、左右信号の位相差、振幅差が重要となることが知られている。数式6によると、左右の信号が同様の変形を受けているので、左右信号の位相差、振幅差の関係を保っており、良好な立体音響効果を得ることができる。つまり、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と、筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。

- [0024] なお、図2において、 $H_D/(H_D^2-H_X^2)$ という特性の補正フィルタを空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16 LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、第一の耳への到達信号ER及び第2の耳への到達信号ELが入力信号R及び入力信号Lとなる。図2において、 $H_D/(H_D^2-H_X^2)$ という特性を近似したフィルタを空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、両耳に提示する信号が完全に入力信号R及び入力信号Lとなる。
- [0025] また、この実施の形態では、筐体内で、他方のスピーカから一方のスピーカに漏れこむ音を低減させる低減信号を、第2の空間後加工手段の出力信号(処理ステップ1を経た他方のスピーカへの信号)を加工することにより得る場合について説明した。しかし、この発明はこれに限定されるものではなく、その生成方法はどのようなものであってもよい。別途作成した信号を加工することにより上記低減信号を生成してもよい。
- [0026] また、この発明の実施の形態においては、2チャネル入力、2スピーカ再生の場合の音響信号再生方法について説明した。しかし、この特性補償方法は、2チャネル入力、2スピーカ再生の場合に限定されるものではなく、N(Nは3以上)個のスピーカの特性補償方法についても該当する。
- [0027] また、伝達特性H は筐体内での音響結合に加えて、スピーカ特性やアンプ特性が 含まれる場合がある。
- [0028] また、この実施の形態では空間クロストーク処理と筐体内クロストーク処理を一体とし

WO 2005/062672 11 PCT/JP2004/018192

て説明した。しかしそれぞれ独立して設け独立して機能させることもできる。

[0029] 実施の形態2

実施の形態1においては、筐体内のクロストークを低減させる処理ステップとして、第1の筐体加工手段3LRと第2の筐体加工手段3RLを用いたが、本実施の形態においては後述する第1の筐体直接加工手段5RR、第2の筐体直接加工手段5LL、第1の筐体交差加工手段6LR、第2の筐体交差加工手段6RLを用いる場合について説明する。なお、筐体内クロストークの再生については実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストークの再生についても実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストーク処理手段については図2における左部と同様であるためにここでは説明を省略する。略する。

- [0030] 図3はこの発明の実施の形態2にかかる携帯端末装置に用いられる音響信号再生回路の概略図である。図3に示すように、この実施の形態にかかる音響信号再生回路は、上述の空間クロストーク処理手段を備えるとともに、第1の筐体加工手段3RL及び第2の筐体加工手段3LRにかえて、第1の空間後加工手段16RRの出力信号RAを加工して第1のスピーカ1Rに対する直接成分を生成する第1の筐体直接加工手段5RRと、第2の空間後加工手段16LLの出力信号LAを加工して第1のスピーカ1Rに対する交差成分を生成する第1の筐体交差加工手段6LRと、上記両加工によって生成される信号を加算して駆動信号RDを出力する第1の加算手段4Rを備える。同様に、第2の空間後加工手段16LLの出力信号LAを加工して第2のスピーカ1Lに対する直接成分を生成する第2の筐体直接加工手段5LLと、第1の空間後加工手段16RRの出力信号RAを加工して第2のスピーカ1Lに対する交差成分を生成する第2の筐体交差加工手段6RLと上記両加工によって生成される信号を加算して駆動信号LDを出力する第2の加算手段4Lを備える。
- [0031] 次に、動作について説明する。第1の空間後加工手段16RRの出力信号RAは分岐されて、一方は第2の筐体交差加工手段6RLに入力され、他方は第1の筐体直接加工手段5RRに入力される。同様に、第2の空間後加工手段16LLの出力信号LAは分岐されて、一方は第1の筐体交差加工手段6LRに入力され、他方は第2の筐体直

接加工手段5LLに入力される。第1の筐体交差加工手段6LRに入力された第2の空間後加工手段16LLの出力信号LAは第1の筐体交差加工手段6LRによって、例えば一H_{LR}という特性を持つフィルタを通過し、第1の加算手段4Rに入力される。第1の筐体直接加工手段5RRに入力された第1の空間後加工手段16RRの出力信号RAは第1の筐体直接加工手段5RRによって、例えばH_{LL}という特性を持つフィルタを通過し、第1の加算手段4Rに入力される。この第1の加算手段4Rにより、両信号が加算され、駆動信号RDを生成する。同様に、第2の筐体交差加工手段6RLに入力された第1の空間後加工手段16RRの出力信号RAは第2の筐体交差加工手段6RLに入力された第1の空間後加工手段16RRの出力信号RAは第2の筐体交差加工手段6RLに入力される。第2の筐体直接加工手段5LLに入力された第2の空間後加工手段16LLの出力信号LAは第2の筐体直接加工手段5LLに入力された第2の空間後加工手段16LLの出力信号LAは第2の筐体直接加工手段5LLに入力された第2の空間後加工手段16LLの口力信号LAは第2の節体直接加工手段5LLに入力される。この第2の加算手段4Lに入力される。この第2の加算手段4Lにより、両信号が加算され駆動信号LDを生成する。駆動信号RD及び駆動信号LDは数式7のようになる。

[0032] [数7]

$$Rd = \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} H_{LL} - \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} H_{LR}$$

$$Ld = \frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} H_{RR} - \frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} H_{RL}$$

上記処理によって生成された駆動信号RD、駆動信号LDで第1のスピーカ1R、第2のスピーカ1Lを駆動すると、図1より、第1のスピーカ1Rから放射されるスピーカ放射信号SR、第2のスピーカ1Lから放射されるスピーカ放射信号SLは数式8のようになる。

[0033] [数8]

$$\begin{split} S_{R} &= RdH_{RR} + LdH_{LR} \\ &= (\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}})(H_{LL}H_{RR} - H_{LR}H_{RL}) \\ S_{L} &= LdH_{LL} + RdH_{RL} \\ &= (\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}})(H_{LL}H_{RR} - H_{LR}H_{RL}) \end{split}$$

WO 2005/062672 13 PCT/JP2004/018192

上記スピーカ放射信号SR、スピーカ放射信号SLは音響結合等の影響を受けるため、第1の耳への到達信号ER、第2の耳への到達信号ELは数式9のようになる。

[0034] [数9]

$$\begin{split} E_{R} &= G_{RR}S_{R} + G_{LR}S_{L} \\ &= G_{RR} \left(\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{LL}H_{RR} - H_{LR}H_{RL}) \right) \\ &+ G_{LR} \left(\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{LL}H_{RR} - H_{LR}H_{RL}) \right) \\ &= \frac{(H_{LL}H_{RR} - H_{LR}H_{RL})}{G_{LL}G_{RR} - G_{LR}G_{RL}} ((RG_{RR}G_{LL} - LG_{LR}G_{RR} + LG_{LR}G_{RR} - RG_{RL}G_{LR}) \\ &= R(H_{LL}H_{RR} - H_{LR}H_{RL}) \end{split}$$

$$E_{L} &= G_{LL}S_{L} + G_{RL}S_{R} \\ &= G_{LL} \left(\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{LL}H_{RR} - H_{LR}H_{RL}) \right) \\ &+ G_{RL} \left(\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{LL}H_{RR} - H_{LR}H_{RL}) \right) \\ &= \frac{(H_{LL}H_{RR} - H_{LR}H_{RL})}{G_{LL}G_{RR} - G_{LR}G_{RL}} ((LG_{RR}G_{LL} - RG_{RL}G_{LL} + RG_{RL}G_{LL} - LG_{RL}G_{LR}) \\ &= L(H_{LL}H_{RR} - H_{LR}H_{RL}) \end{split}$$

数式9からわかるように、振幅又は位相特性の変形は受けるものの、クロストーク成分を完全にキャンセルすることができる。ここで、3D音像定位において、左右信号の位相差、振幅差が重要となることが知られている。数式9によると、左右の信号が同様の変形を受けているので、左右信号の位相差、振幅差の関係を保っており、良好な立体音響効果を得ることができる。つまり、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と、筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。なお、図3において、図示されていない1/(HLHRHLH)という特性の補正フィルタを、空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、第1の耳への到達信号ER、第2の耳への到達信

WO 2005/062672 14 PCT/JP2004/018192

号ELが入力信号Rおよび入力信号Lとなる。図3において、図示されていない1/(H_{LL} H_{RR} -H_{LR} H_{LR})という特性を近似したフィルタを空間クロストーク処理の後、具体的には空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、第1の耳への到達信号ER、第2の耳への到達信号ELが入力信号Rおよび入力信号Lとなる。

[0035] また、伝達特性H_{RL}と伝達特性H_{LR}及び伝達特性H_{RR}と伝達特性H_{LL}が、共通している場合又は共通しているとみなせるほど近似している場合にはH_{LR}=H_{RL}=H_X、H_{RR}=H_L=H_Dとみなすことができる。よって、第1の筐体直接加工手段5RRと第2の筐体直接加工手段5LLの伝達特性は、H_Dとすることができる。同様に第1の筐体交差加工手段6LRと第2の筐体交差加工手段6RLの伝達特性は、-H_Dとすることができる。この場合、受聴者の第1の耳への到達信号ER、受聴者の第2の耳への到達信号ELは、数式10、数式11のようになる。

[0036] [数10]

$$\begin{split} E_{R} &= G_{RR}S_{R} + G_{LR}S_{L} \\ &= G_{RR} \left(\frac{RG_{LL} - LG_{LR}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D}^{2} - H_{X}^{2}) \right) \\ &+ G_{LR} \left(\frac{LG_{RR} - RG_{RL}}{G_{LL}G_{RR} - G_{LR}G_{RL}} (H_{D}^{2} - H_{X}^{2}) \right) \\ &= \frac{(H_{D}^{2} - H_{X}^{2})}{G_{LL}G_{RR} - G_{LR}G_{RL}} \left((RG_{RR}G_{LL} - LG_{LR}G_{RR} + LG_{LR}G_{RR} - RG_{RL}G_{LR}) \\ &= R(H_{D}^{2} - H_{X}^{2}) \end{split}$$

「0037] 「数11]

$$\begin{split} E_{L} &= G_{LL} S_{L} + G_{RL} S_{R} \\ &= G_{LL} \left(\frac{L G_{RR} - R G_{RL}}{G_{LL} G_{RR} - G_{LR} G_{RL}} (H_{D}^{2} - H_{X}^{2}) \right) \\ &+ G_{RL} \left(\frac{R G_{LL} - L G_{LR}}{G_{LL} G_{RR} - G_{LR} G_{RL}} (H_{D}^{2} - H_{X}^{2}) \right) \\ &= \frac{(H_{D}^{2} - H_{X}^{2})}{G_{LL} G_{RR} - G_{LR} G_{RL}} \left((L G_{RR} G_{LL} - R G_{RL} G_{LL} + R G_{RL} G_{LL} - L G_{RL} G_{LR}) \right) \\ &= L (H_{D}^{2} - H_{X}^{2}) \end{split}$$

従って、例えば、スピーカが筐体内において左右対称又は上下対称に配置されている場合など、当該、直接加工手段5又は交差加工手段6の共通化により、信号加工手段の製造コスト削減の効果を得ることができる。

- [0038] また、図3において、1/(H_D²-H_x²)という特性の補正フィルタを、空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、第1の耳への到達信号ER、第2の耳への到達信号ELが入力信号Lおよび入力信号Rとなる。図3において、1/(H_D²-H_x²)という特性を近似したフィルタを空間クロストーク処理の後、具体的には、空間クロストーク処理の後、具体的には第1の空間後加工手段16RR及び第2の空間後加工手段16LLの直後又は第1の加算手段4R及び第2の加算手段4Lの直後にもうけてもよい。これにより、第1の耳への到達信号ER、第2の耳への到達信号ELが入力信号Lおよび入力信号Rとなる。
- [0039] また、この実施の形態では、発明の実施の形態1と同一又は相当する部分については同一の符号を付する等して説明を省略し、異なる部分についてのみ説明した。
- [0040] 実施の形態3

実施の形態1においては筐体内のクロストークを低減させる処理ステップとして、第1の筐体加工手段3LRと第2の筐体加工手段3RLを用いたが、本実施の形態においては後述する、第1の筐体乗算加工手段8LR、第2の筐体乗算加工手段8RLを用いる場合について説明する。

- [0041] なお、筐体内クロストークの再生については実施の形態1における図1と同様である ためにここでは説明を省略する。また、空間クロストークの再生についても実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストーク 処理については図2における左部と同様であるためにここでは説明を省略する。
- [0042] 図4はこの発明の実施の形態3にかかる携帯端末装置に用いられる音響信号再生回路の概略図である。図4が示すようにこの実施の形態にかかる音響信号再生回路は第2の空間後加工手段16LLの出力信号LAを加工して第1のスピーカ1Rに対する交差成分を生成する第1の筐体乗算加工手段8LRと、第1の空間後加工手段16RRの出力信号RAを加工して第2のスピーカ1Lに対する交差成分を生成する第2の筐

体乗算加工手段8RLを備える。

- [0043] 次に、動作について説明する。第1の空間後加工手段16RRの出力信号RAは分岐されて、一方は第2の筐体乗算加工手段8RLに入力され、他方は直接成分として第1の加算手段4Rにそれぞれ入力される。同様に、第2の空間後加工手段16LLの出力信号LAは分岐されて、一方は第1の筐体乗算加工手段8LRに入力され、他方は直接成分として第2の加算手段4Lにそれぞれ入力される。
- [0044] 第2の空間後加工手段16LLの出力信号LAは第1の筐体乗算加工手段8LR、例えば1未満のスカラー値βを乗算し、符号を反転させるという特性を持つフィルタを通過し、第1の加算手段4Rに入力される。第1の加算手段4Rでは、第1の筐体乗算加工手段8LRからの出力信号と、第1の空間後加工手段16RRの出力信号RAを加算することによって、駆動信号RDを生成する。同様に、第1の空間後加工手段16RRの出力信号RAは第2の筐体乗算加工手段8RL、例えば1未満のスカラー値αを乗算し、符号を反転させるという特性を持つフィルタを通過し、第2の加算手段4Lに入力される。第2の加算手段4Lでは、第2の筐体乗算加工手段8RLからの出力信号と第2の空間後加工手段16LLの出力信号LAとを加算することによって、駆動信号LDを生成する。
- [0045] 上記処理によって生成された駆動信号RD、駆動信号LDで第1のスピーカ1R、第2のスピーカ1Lを駆動すると、図1より、スピーカRから放射されるスピーカ放射信号SRは、数式12のようになる。

「0046] 「数12]

$$\begin{split} S_R &= RdH_{RR} + LdH_{LR} \\ &= (RA - \beta LA)H_{RR} + (LA - \alpha RA)H_{LR} \\ &= RA(H_{RR} - \alpha H_{LR}) - LA(\beta H_{RR} - H_{LR}) \end{split}$$

また、第2のスピーカ1Lから放射されるスピーカ放射信号SLは、数式13のようになる

「0047] 「数13]

$$S_{L} = LdH_{LL} + RdH_{RL}$$

$$= (LA - \alpha RA)H_{LL} + (RA - \beta LA)H_{RL}$$

$$= LA(H_{LL} - \beta H_{RL}) - RA(\alpha H_{LL} - H_{RL})$$

WO 2005/062672 17 PCT/JP2004/018192

[0048] 次に、第1の筐体乗算加工手段8LRに使用する最適な係数 β を決定する。すなわち、第1のスピーカ1Rのスピーカ放射信号SRが第2の空間後加工手段16LLの出力信号LAとのセパレーションを高めるためには、(β H $_{RR}$ $_{LR}$)の値がゼロに最も近くなるような値を決定するにすればよいことが判る。つまり、最適な係数 β *は、数式14になる。

[0049] [数14]

$$\beta^* = \arg\min_{\beta} \left| (\beta H_{RR} - H_{LR}) \right|$$

このことは、第1の筐体乗算加工手段8LRにおいて、第2の空間後加工手段16LLの出力信号LAに対して最適な係数 β *を乗算することによって、駆動信号RDにおいてRA成分だけが放射され、他の信号成分(LA成分)がキャンセル又は減少されることが判る。同様に、第2の筐体乗算加工手段8RLに使用する最適な係数 α を決定する。すなわち、第2のスピーカ1Lのスピーカ放射信号SLが第1の空間後加工手段16RRの出力信号RAとのセパレーションを高めるためには、(α H $_{LL}$ $_{RL}$)の値がゼロに最も近くなるような値を決定するにすればよいことが判る。つまり、最適な係数 α * は、数式15になる。

「0050] 「数15]

$$\alpha^* = \underset{\alpha}{\operatorname{arg\,min}} \left| (\alpha H_{LL} - H_{RL}) \right|$$

このことは、第2の筐体乗算加工手段8RLにおいて、第1の空間後加工手段16RR の出力信号RAに対して最適な係数 α *を乗算することによって、駆動信号LDにおいてLA成分だけが放射され、他の信号成分(RA成分)がキャンセル又は減少されることが判る。

以上のことから α^* 、 β^* を決定し α^* 、 β^* を、第2の筐体乗算加工手段8RL、第1の筐体乗算加工手段8LRに用いることで、振幅及び位相特性の変形は受けるものの、筐体内のクロストーク成分をキャンセルすることができ、筐体内の音響結合がキャンセルされた信号を再生することが可能となる。ここで、3D音像定位において、左右信号の位相差、振幅差が重要となることが知られている。つまり、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストー

クをキャンセルさせる手段と、上記筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。

- [0051] また、上記乗算加工手段8は製造コストが安価であるために、低いコストでスピーカの 特性補償を実現できるという効果がある。
- [0052] また、この実施の形態では、発明の実施の形態1と同一又は相当する部分については同一の符号を付する等して説明を省略し、異なる部分についてのみ説明した。
- [0053] 実施の形態4.

実施の形態1においては筐体内のクロストークを低減させる処理ステップとして、第1の筐体加工手段3LRと第2の筐体加工手段3RLを用いたが、本実施の形態においては後述する、第1のサブバンド分割手段9LR、第1のサブバンド加工手段10LR、第1のサブバンド合成手段11LR、第2のサブバンド分割手段9RL、第2のサブバンド分割手段9RL、第2のサブバンドカ加工手段10RL、第2のサブバンド合成手段11RL、を用いる場合について説明する。

- [0054] なお、筐体内クロストークの再生については実施の形態1における図1と同様である ためにここでは説明を省略する。また、空間クロストークの再生についても実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストーク 処理については図2における左部と同様であるためにここでは説明を省略する。
- [0056] 次に、動作について説明する。第2の空間後加工手段16LLの出力信号LAは、第2 の加算器4L及び第1のサブバンド分割手段9LRに入力される。サブバンド分割手段

9LRでは、信号LAを周波数の高低を基準にK個のサブバンドに分割する。サブバンド分割手段9LRによって分割された信号を低域から順に信号L1、L2、…LKとする。信号L1は、第1のサブバンド加工手段10LR1へ入力される。信号L2は、第1のサブバンド加工手段10LR2へ入力される、順番に信号LKまで、それぞれ対応する第1のサブバンド加工手段10LRj(j=1,2…K)へと入力される。第1のサブバンド加工手段10LRjでは、入力された信号Ljを加工して出力する。例えば、一H_{LR}/H_{RR}という特性の中で帯域jに相当する帯域と同等の特性を切り出し、入力された信号Ljを加工する。さらに当該信号に対してある係数γjを乗算した特性を付加する加工を施す。加工された第1のサブバンド加工手段10LRjからの出力信号は、第1のサブバンド合成手段11LRによって合成され、第1の加算手段4Rに入力される。第1の加算手段4Rでは、第1の空間後加工手段16RRの出力信号RAと第1のサブバンド合成手段11LRからの出力信号を加算して第1のスピーカ1Rを駆動するための駆動信号RDを出力する。

[0057] 同様に、第1の空間後加工手段16RRの出力信号RAは、第1の加算器4R及び第2のサブバンド分割手段9RLに入力される。サブバンド分割手段9RLでは、信号RAを周波数の高低を基準にK個のサブバンドに分割する。サブバンド分割手段9RLによって分割された信号を低域から順に信号R1、R2、…RKとする。信号R1は、第2のサブバンド加工手段10RL1へ入力される。信号R2は、第2のサブバンド加工手段10RL2へ入力される、順番に信号RKまで、それぞれ対応する第2のサブバンド加工手段10RLjでは、入力された信号Rjを加工して出力する。例えば、一HRL HLという特性の中で帯域に相当する帯域と同等の特性を切り出し、入力された信号Rjを加工する。さらに当該信号に対してある係数γjを乗算した特性を付加する加工を施す。加工された第2のサブバンド加工手段10RLjからの出力信号は、第2のサブバンド合成手段11RLによって合成され、第2の加算手段4Lに入力される。第2の加算手段4Lでは、第2の空間後加工手段16LLの出力信号LAと第2のサブバンド合成手段11RLからの出力信号を加算して第2のスピーカ1Lを駆動するための駆動信号LDを出力する。

[0058] 以上の処理により、全ての帯域で y jを1とすれば、実施の形態1と同様の効果が得ら

れる。γjを変化させれば、帯域ごとに加工の度合いを変化させることができ、例えば、低域信号のγjを大きめに設定することにより、出力信号の低域信号成分を強調することが可能となる。また、以上の筐体内クロストークキャンセルの処理と空間クロストークキャンセルの処理とを組み合わせることにより、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と上記筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。

- [0059] なお、この実施の形態では、上述の実施の形態と同一又は相当する部分については 同一の符号を付する等して説明を省略し、異なる部分についてのみ説明した。
- [0060] 実施の形態5.

実施の形態1においては筐体内のクロストークを低減させる処理ステップとして、第1の筐体加工手段3LRと第2の筐体加工手段3RLを用いたが、本実施の形態においては図示されていないが後述する第1の低域通過手段、第2の低域通過手段を用いる形態について説明する。なお、当該実施の形態は図2における第1の筐体加工手段3LRを第1の低域通過手段におきかえ、第2の筐体加工手段3RLを第2の低域通過手段におきかえた図に等しい。

[0061] なお、筐体内クロストークの再生については実施の形態1における図1と同様である ためにここでは説明を省略する。また、空間クロストークの再生についても実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストーク のキャンセル処理については図2における左部と同様であるためにここでは説明を省 略する。

この実施の形態にかかる音響信号再生回路は、第2の空間後加工手段16LLの出力信号LAを加工して第1のスピーカ1Rに対する交差成分を生成する第1の低域通過手段と、第1の空間後加工手段16RRの出力信号RAを加工して第2のスピーカ1 Lに対する交差成分を生成する第2の低域通過手段を備える。

[0062] 次に、動作について説明する。第2の空間後加工手段16LLの出力信号LAは、第2 の加算器4L及び第1の低域通過手段に入力される。第1の低域通過手段では、例 えば、一H_{LR}/H_{RR}にLPF(LoW Pass Filter: 低域通過フィルタ)を通して得られる特性を付与する加工を施す。加工された第1の低域通過手段からの出力信号は、第1の加算手段に入力される。第1の加算手段では、第1の空間後加工手段16RRの出力信号RAと第1の低域通過手段からの出力信号を加算して第1のスピーカ1Rを駆動するための駆動信号RDを出力する。同様に、第1の空間後加工手段16RRの出力信号RAは、第1の加算器4R及び第2の低域通過手段に入力される。第2の低域通過手段では、例えば、一H_{RL}/H_{LL}にLPFを通して得られる特性を付与する加工を施す。加工された第2の低域通過手段からの出力信号は、第2の加算手段に入力される。第2の加算手段では、第2の空間後加工手段16LLの出力信号LAと第2の低域通過手段からの出力信号を加算して第2のスピーカ1Lを駆動するための駆動信号LDを出力する。

- [0063] 本実施の形態によれば、低域信号成分のみについて、クロストークキャンセル処理を行うことになる。従って、高域信号成分をキャンセルする信号の位相の不整合によって起こる、高域成分の強調感を減少させることができるため、快適に音響信号を受聴することができるという効果がある。また、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と、筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。
- [0064] なお、この実施の形態では、発明の実施の形態1と同一又は相当する部分については同一の符号を付する等して説明を省略し、異なる部分についてのみ説明した。 また、この実施の形態に記載した技術は、実施の形態1以外にも適応可能である。
- [0065] 実施の形態6.

実施の形態1においては筐体内のクロストークを低減させる処理ステップとして、第1の筐体加工手段3LRと第2の筐体加工手段3RLを用いたが、本実施の形態においては後述する、相関算出手段23、制御手段24、第1のスイッチ25LRa、第1のスイッチ25LRb、第2のスイッチ25RLb、第1の信号加工手段26LR、第2の信号加工手段26RL、を用いる場合について説明する。

[0066] なお、筐体内クロストークの再生については実施の形態1における図1と同様である

ためにここでは説明を省略する。また、空間クロストークの再生についても実施の形態1における図1と同様であるためにここでは説明を省略する。また、空間クロストーク処理については図2における左部と同様であるためにここでは説明を省略する。

- [0067] 図6はこの発明の実施の形態6にかかる携帯端末装置に用いられる音響信号再生回路の概略図である。図6が示すようにこの実施の形態にかかる音響信号再生回路は、第1の空間後加工手段16RRの出力信号RA、第2の空間後加工手段16LLの出力信号LAの周波数成分毎の相関を算出する相関算出手段23と、信号LA及び信号RAの相関に基づいて第1のスイッチ25LR及び第2のスイッチ25RLを制御する制御手段24と、入力された信号を加工する第1の信号加工手段26LR、第2の信号加工手段26RLを備える。第1のスイッチ25LRは、第1の信号加工手段26LR1〜第1の信号加工手段26LRKのいずれか1つと第2のスイッチ25RLは、第2の信号加工手段26RLKのいずれか1つと第2の信号加工手段26RLKのいずれか1つと接続する。
- [0068] 次に、動作について説明する。第1の空間後加工手段16RRの出力信号RAは、第1の加算器4R、第2のスイッチ25RLA、及び相関算出手段23に入力される。第2の空間後加工手段16LLの出力信号LAは、第2の加算器4L、第1のスイッチ25LRA、及び相関算出手段23に入力される。相関算出手段23では、信号RA及び信号LAの相関を周波数成分ごとに算出し、算出結果を制御手段24に入力する。算出結果が入力された制御手段24では、信号RA及び信号LAの周波数ごとの相関係数に応じて、第1のスイッチ25LRA、第1のスイッチ25LRb及び第2のスイッチ25RLA、第2のスイッチ25RLbを切り替える。例えば、ある帯域の相関が高い場合には、その帯域に相当する帯域の信号強度をゼロとする信号加工手段26RL又は第2の信号加工手段26LRに接続されるように第1のスイッチ25を制御する。第1の信号加工手段26RLとしては、例えば、ある特定の帯域の信号強度をゼロにしてから、一H_{LR}/H_{RR}という特性を付与する加工を施す場合がある。第2の信号加工手段26LRとしては、例えば、ある特定の帯域の信号強度をゼロにしてから、一H_{LL}/H_{LL}という特性を付与する加工を施す場合がある。
- [0069] ここで、ある帯域の相関が高いときには、信号LA、信号RAのある帯域の信号成分が 同相に近いことを意味する。このとき、音響結合をキャンセルするための処理によって

、元の信号と、元の信号の逆相に近い信号を加算することになるため、相関が高い帯域の成分が減少してしまい、聴感上の劣化が生じることになる。しかしながら、上記の実施例によると、相関が高い帯域の信号成分は、ゼロを加算することになるため、上記のような聴感上の劣化が発生しなくなるという効果がある。さらに、もともと同相成分は中央に定位する音であるため、同相成分に対しては音響結合をキャンセルしなくても、受聴者は良好な音像を得ることが可能である。また、入力信号R及び入力信号Lが、左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と、筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。

[0070] なお、この実施の形態では、発明の実施の形態1と同一又は相当する部分については同一の符号を付する等して説明を省略し、異なる部分についてのみ説明した。

「0071] 実施の形態7.

複数のスピーカからなる再生システムをモデル化したものを図7に示す。この図7において、左部は筐体内における再生システムをモデル化したものであり、筐体内再生システムと呼ぶ。一方、右部は空間(筐体外)における再生システムをモデル化したものであり、空間再生システムと呼ぶ。図7の左部に示した通り、この筐体内再生システムでは、N個のスピーカの気室が共通となるため、筐体内において相互に音響結合が生じる。この音響結合を筐体内クロストーク特性と呼ぶ。また、本再生システムでは、再生システムのあるチャネルに入力された信号が直接伝達して該当するスピーカから放射される際に生じるアンプやスピーカ特性を、筐体内ダイレクト特性と呼ぶ。同様に、図7の右部に示した通り、この空間再生システムでは、一方のスピーカから再生される音波が本来受聴者の一方の耳に伝達されるところ他方の耳で結合して、他方の耳に漏れこむという現象が生じる。この音響結合を空間クロストーク特性と呼ぶ。また、本再生システムでは、一方のスピーカから再生される音波が本来受聴者に伝達される当該一方の耳に直接伝達する際の特性を空間ダイレクト特性と呼ぶ。

[0072] 図7の左部において、再生システムでi番目のスピーカを直接成分として駆動する信号を駆動信号SDiと、再生システムでi番目のスピーカから放射される信号をスピーカ

放射信号Siと、iチャネルの駆動信号SDiがスピーカ特性やアンプ特性等により変形されてiスピーカから放射されるまでの伝達特性(筐体内ダイレクト特性)を伝達特性Hiiと、iチャネルの駆動信号SDiが、音響結合により変形されj個目のスピーカから放射されるまでの伝達特性(筐体内クロストーク特性)を伝達特性Hij、とする。同様に、図7の右部において、スピーカ放射信号Siが空間を経て受聴者の第iの耳に到達されるまでの伝達特性(空間ダイレクト特性)をW。と、スピーカ放射信号Siが空間での音響結合により変形されて、受聴者の第jの耳に到達されるまでの伝達特性(空間クロストーク特性)をW。とする。

図7のスピーカ放射信号S、駆動信号SD、筐体内における伝達特性H、空間における伝達特性Wは数式16のようになる。

[0073] [数16]

$$\begin{split} \mathbf{S} &= [S_{1}, S_{2}, \cdots, S_{N}]^{T} \\ \mathbf{Sd} &= [Sd_{1}, Sd_{2}, \cdots, Sd_{N}]^{T} \\ \mathbf{H} &= \begin{bmatrix} H_{11}, H_{21}, \cdots, H_{N1} \\ H_{12}, H_{22}, \cdots, H_{N2} \\ \cdots \\ H_{1N}, H_{2N}, \cdots, H_{NN} \end{bmatrix} \\ \mathbf{W} &= \begin{bmatrix} W_{11}, W_{21}, \cdots, W_{N1} \\ W_{12}, W_{22}, \cdots, W_{N2} \\ \cdots \\ W_{1N}, W_{2N}, \cdots, W_{NN} \end{bmatrix} \end{split}$$

この場合の、放射信号S、受聴者の耳に到達する信号Eはそれぞれ数式17で示されるようになる。

[0074] [数17]

$$S = HSd$$

$$= \begin{bmatrix} H_{11}Sd_1 + H_{21}Sd_2 + \dots + H_{N1}Sd_N \\ H_{12}Sd_1 + H_{22}Sd_2 + \dots + H_{N2}Sd_N \\ \dots \\ H_{1N}Sd_1 + H_{2N}Sd_2 + \dots + H_{NN}Sd_N \end{bmatrix}$$

E = WHSd

- WS

$$= \begin{bmatrix} W_{11}, W_{21}, \dots, W_{N1} \\ W_{12}, W_{22}, \dots, W_{N2} \\ \dots \\ W_{1N}, W_{2N}, \dots, W_{NN} \end{bmatrix} \begin{bmatrix} H_{11}Sd_1 + H_{21}Sd_2 + \dots + H_{N1}Sd_N \\ H_{12}Sd_1 + H_{22}Sd_2 + \dots + H_{N2}Sd_N \\ \dots \\ H_{1N}Sd_1 + H_{2N}Sd_2 + \dots + H_{NN}Sd_N \end{bmatrix}$$

$$= \begin{bmatrix} W_{11}(H_{11}Sd_1 + H_{21}Sd_2 + \dots + H_{N1}Sd_N) + \dots + W_{N1}(H_{1N}Sd_1 + H_{2N}Sd_2 + \dots + H_{NN}Sd_N) \\ W_{12}(H_{11}Sd_1 + H_{21}Sd_2 + \dots + H_{N1}Sd_N) + \dots + W_{N2}(H_{1N}Sd_1 + H_{2N}Sd_2 + \dots + H_{NN}Sd_N) \\ \dots \\ W_{1N}(H_{11}Sd_1 + H_{21}Sd_2 + \dots + H_{N1}Sd_N) + \dots + W_{NN}(H_{1N}Sd_1 + H_{2N}Sd_2 + \dots + H_{NN}Sd_N) \end{bmatrix}$$

数式17から、受聴者の耳に到達する信号Eは、他のチャネルの筐体内クロストーク成分や空間クロストーク成分を含んだ複雑な信号であることが分かる。

図8は、図7に示したクロストーク成分をキャンセルするためのクロストークキャンセラーを示す概念図である。図8において、Xiは入力信号であり、Vijは筐体内クロストークキャンセルフィルタであり、Gijは空間クロストークキャンセルフィルタである。これらを数式18に示す。

[0075] 「数18]

$$\mathbf{X} = \begin{bmatrix} X_{1}, X_{2}, \cdots, X_{N} \end{bmatrix}^{T}$$

$$\mathbf{V} = \begin{bmatrix} V_{11}, V_{21}, \cdots, V_{N1} \\ V_{12}, V_{22}, \cdots, V_{N2} \\ \cdots \\ V_{1N}, V_{2N}, \cdots, V_{NN} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} G_{11}, G_{21}, \cdots, G_{N1} \\ G_{12}, G_{22}, \cdots, G_{N2} \\ \cdots \\ G_{1N}, G_{2N}, \cdots, G_{NN} \end{bmatrix}$$

数式18のGおよびVのフィルタ特性として、例えば、数式19のようにおくことができる

0

[0076] [数19]

$$\mathbf{V} = \begin{bmatrix} \mathbf{W}_{11}, \mathbf{W}_{12}, \dots, \mathbf{W}_{1N} \\ \mathbf{W}_{21}, \mathbf{W}_{22}, \dots, \mathbf{W}_{2N} \\ \dots \\ \mathbf{W}_{N1}, \mathbf{W}_{N2}, \dots, \mathbf{W}_{NN} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{H}_{11}, \mathbf{H}_{12}, \dots, \mathbf{H}_{1N} \\ \mathbf{H}_{21}, \mathbf{H}_{22}, \dots, \mathbf{H}_{2N} \\ \dots \\ \mathbf{H}_{N1}, \mathbf{H}_{N2}, \dots, \mathbf{H}_{NN} \end{bmatrix}$$

ただし、数式19において、Wijは、行列Wの(i,j)成分の余因子であり、Hijは、行列Hの(i,j)成分の余因子である。図8の構成で処理を施すと、駆動信号SDは数式20のようになる。

[0077] [数20]

$$\mathbf{Sd} = \mathbf{GVX}$$

$$= \begin{bmatrix} \mathbf{H}_{11}, \mathbf{H}_{12}, \dots, \mathbf{H}_{1N} \\ \mathbf{H}_{21}, \mathbf{H}_{22}, \dots, \mathbf{H}_{2N} \\ \dots \\ \mathbf{H}_{N1}, \mathbf{H}_{N2}, \dots, \mathbf{H}_{NN} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{11}, \mathbf{W}_{12}, \dots, \mathbf{W}_{1N} \\ \mathbf{W}_{21}, \mathbf{W}_{22}, \dots, \mathbf{W}_{2N} \\ \dots \\ \mathbf{W}_{N1}, \mathbf{W}_{N2}, \dots, \mathbf{W}_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_N \end{bmatrix}$$

よって、受聴者の耳に到達する信号Eは、数式21のようになる。

「0078] 「数21]

WO 2005/062672 27 PCT/JP2004/018192

E = WHSd

= WHGVX

$$\begin{bmatrix} W_{11}, W_{21}, \cdots, W_{N1} \\ W_{12}, W_{22}, \cdots, W_{N2} \\ \cdots \\ W_{1N}, W_{2N}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} H_{11}, H_{21}, \cdots, H_{N1} \\ H_{12}, H_{22}, \cdots, H_{N2} \\ \cdots \\ H_{1N}, H_{2N}, \cdots, H_{NN} \end{bmatrix} \begin{bmatrix} H_{11}, H_{12}, \cdots, H_{1N} \\ H_{21}, H_{22}, \cdots, H_{2N} \\ \cdots \\ H_{N1}, H_{N2}, \cdots, H_{NN} \end{bmatrix} \begin{bmatrix} W_{11}, W_{12}, \cdots, W_{1N} \\ W_{21}, W_{22}, \cdots, W_{2N} \\ \cdots \\ W_{N1}, W_{2N}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} \det \mathbf{H}, 0, \cdots, 0 \\ 0, \det \mathbf{H}, 0, \cdots, 0 \\ 0, \det \mathbf{H}, 0, \cdots, 0 \\ \cdots \\ 0, \cdots, 0, \det \mathbf{H} \end{bmatrix} \begin{bmatrix} W_{11}, W_{12}, \cdots, W_{1N} \\ W_{21}, W_{22}, \cdots, W_{2N} \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ X_N \end{bmatrix}$$

$$= \det \mathbf{H} \begin{bmatrix} W_{11}, W_{21}, \cdots, W_{N1} \\ W_{12}, W_{22}, \cdots, W_{N2} \\ \cdots \\ W_{1N}, W_{2N}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} W_{11}, W_{12}, \cdots, W_{1N} \\ W_{21}, W_{22}, \cdots, W_{2N} \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ X_N \end{bmatrix}$$

$$= \det \mathbf{H} \begin{bmatrix} \det \mathbf{W}, 0, \cdots, 0 \\ 0, \det \mathbf{W}, 0, \cdots, 0 \\ 0, \det \mathbf{W}, 0, \cdots, 0 \\ \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ W_{N1}, W_{N2}, \cdots, W_{N$$

 $= (\det H)(\det W)X$

なお、(det H)X = Y、Yは入力信号Xに対してスピーカから受聴者の耳に到るまでの空間で生じる空間クロストークを低減させる処理ステップを経た信号である。

数式21からわかるように、DetHおよびDetWは周波数特性をもった定数であり、図8の処理によって再生された信号が受聴者の耳に到達する信号Eは、DetHおよびDetWという特性が付加されるが、筐体内クロストーク成分や空間クロストーク成分が除去されることが判る。ここで、複数のスピーカが存在する場合であっても、3D音像定位を受ける場合、複数の信号の位相差、振幅差が重要となることが知られている。数式21によると、上記複数の信号が同様の変形を受けているので各々が信号の位相差、振幅差の関係を保っており、良好な立体音響効果を得ることができる。つまり、入力信号Xが、複数の左右の耳に提示すべき立体音響効果が期待されている場合、空間クロストークをキャンセルさせる手段と、筐体内クロストークをキャンセルさせる手段とを組み合わせることにより、従来は携帯端末装置では実現できなかった3D音像定位機能の実現が可能となる。

受聴者の耳に伝わる信号Eを入力信号Xに一致させたい場合には、図8の処理の後段に1/(DetH・DetW)という特性のフィルタを信号数、すなわちこの場合はNだけ

設ければよい。

- [0079] なお、筐体内伝達特性Hii及びHijが共通している場合又は共通しているとみなせる ほど近似している場合には、Hii=H 及びHij=H とみなせることができる。これにより、例えば、スピーカが対称的に携帯端末装置に備えられている場合には伝達特性 の共通化により製造コストの削減が計られる。
- [0080] また、空間伝達特性Wii及びWijが共通している場合又は共通しているとみなせるほど近似している場合には、Wii=W_D及びWij=W_xとみなせることができる。これにより、例えば、スピーカの正面に受聴者がいる場合を想定して携帯端末装置を製造する場合には伝達特性の共通化により製造コストの削減が計られる。
- [0081] また、伝達特性Hijは、筐体内での音響結合に加えてスピーカ特性が含まれる場合がある。

以下具体的に、スピーカが3個の場合について説明する。まず、スピーカが3個の場合は、再生システムから放射される信号S、駆動信号SD、筐体内における伝達特性H、空間における伝達特性Wは数式22のようにする。

[0082] [数22]

$$\mathbf{Sd} = [Sd_1, Sd_2, Sd_3]^T$$

$$\mathbf{H} = \begin{bmatrix} H_{11}, H_{21}, H_{31} \\ H_{12}, H_{22}, H_{32} \end{bmatrix}$$

 $S = [S_1, S_2, S_3]^T$

$$\mathbf{W} = \begin{bmatrix} W_{11}, W_{21}, W_{31} \\ W_{12}, W_{22}, W_{32} \\ W_{13}, W_{23}, W_{33} \end{bmatrix}$$

ここで筐体内クロストークキャンセルフィルタG及び空間クロストークキャンセルフィルタVとして例えば、

数式23のようにおくことができる。

[0083] [数23]

WO 2005/062672 29 PCT/JP2004/018192

$$\mathbf{V} = \begin{bmatrix} \mathbf{W}_{11}, \mathbf{W}_{12}, \mathbf{W}_{13} \\ \mathbf{W}_{21}, \mathbf{W}_{22}, \mathbf{W}_{23} \\ \mathbf{W}_{31}, \mathbf{W}_{32}, \mathbf{W}_{33} \end{bmatrix}$$

$$= \begin{bmatrix} W_{22}W_{33} - W_{23}W_{32}, W_{21}W_{33} - W_{23}W_{31}, W_{21}W_{32} - W_{22}W_{31} \\ W_{12}W_{33} - W_{13}W_{32}, W_{11}W_{33} - W_{13}W_{31}, W_{11}W_{32} - W_{12}W_{31} \\ W_{12}W_{23} - W_{13}W_{22}, W_{11}W_{23} - W_{13}W_{21}, W_{11}W_{22} - W_{12}W_{21} \end{bmatrix}$$

$$[\mathbf{H}_{11}, \mathbf{H}_{12}, \mathbf{H}_{13}]$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{H}_{11}, \mathbf{H}_{12}, \mathbf{H}_{13} \\ \mathbf{H}_{21}, \mathbf{H}_{22}, \mathbf{H}_{23} \\ \mathbf{H}_{31}, \mathbf{H}_{32}, \mathbf{H}_{33} \end{bmatrix}$$

$$= \begin{bmatrix} H_{22}H_{33} - H_{23}H_{32}, H_{21}H_{33} - H_{23}H_{31}, H_{21}H_{32} - H_{22}H_{31} \\ H_{12}H_{33} - H_{13}H_{32}, H_{11}H_{33} - H_{13}H_{31}, H_{11}H_{32} - H_{12}H_{31} \\ H_{12}H_{23} - H_{13}H_{22}, H_{11}H_{23} - H_{13}H_{21}, H_{11}H_{22} - H_{12}H_{21} \end{bmatrix}$$

数式23のフィルタ特性によって、図9の構成で処理を施すと、駆動信号SDは数式2 4のようになる。

[0084] [数24]

$$\mathbf{Sd} = \mathbf{GVX}$$

$$= \begin{bmatrix} \mathbf{H}_{11}, \mathbf{H}_{12}, \mathbf{H}_{13} \\ \mathbf{H}_{21}, \mathbf{H}_{22}, \mathbf{H}_{23} \\ \mathbf{H}_{31}, \mathbf{H}_{32}, \mathbf{H}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{11}, \mathbf{W}_{12}, \mathbf{W}_{13} \\ \mathbf{W}_{21}, \mathbf{W}_{22}, \mathbf{W}_{23} \\ \mathbf{W}_{31}, \mathbf{W}_{32}, \mathbf{W}_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

Eよって、受聴者の耳に到達する信号は、数式25のようになる。

[0085] [数25]

WO 2005/062672 30 PCT/JP2004/018192

E = WHSd

- WHGVX

$$= \begin{bmatrix} W_{11}, W_{21}, W_{31} \\ W_{12}, W_{22}, W_{32} \\ W_{13}, W_{23}, W_{33} \end{bmatrix} \begin{bmatrix} H_{11}, H_{21}, H_{31} \\ H_{12}, H_{22}, H_{32} \\ H_{13}, H_{23}, H_{33} \end{bmatrix} \begin{bmatrix} H_{11}, H_{12}, H_{3N} \\ H_{21}, H_{22}, H_{23} \\ H_{31}, H_{32}, H_{33} \end{bmatrix} \begin{bmatrix} W_{21}, W_{22}, W_{23} \\ W_{31}, W_{32}, W_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= \begin{bmatrix} W_{11}, W_{21}, W_{31} \\ W_{12}, W_{22}, W_{32} \\ W_{13}, W_{23}, W_{33} \end{bmatrix} \begin{bmatrix} \det H_{10}, 0 \\ 0, \det H_{10} \\ 0, 0, \det H \end{bmatrix} \begin{bmatrix} W_{11}, W_{12}, W_{13} \\ W_{21}, W_{22}, W_{23} \\ W_{31}, W_{32}, W_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= \det H \begin{bmatrix} W_{11}, W_{21}, W_{31} \\ W_{12}, W_{22}, W_{32} \\ W_{13}, W_{23}, W_{33} \end{bmatrix} \begin{bmatrix} W_{11}, W_{12}, W_{13} \\ W_{21}, W_{22}, W_{23} \\ W_{31}, W_{32}, W_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= \det H \begin{bmatrix} \det W_{10}, 0 \\ 0, \det W_{10}, 0 \\ 0, \det W_{10}, 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= \det H \begin{bmatrix} \det W_{11}, W_{12}, W_{13} \\ W_{12}, W_{22}, W_{23} \\ W_{31}, W_{32}, W_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= \det H \begin{bmatrix} \det W_{11}, W_{12}, W_{13} \\ W_{12}, W_{23}, W_{33} \\ W_{31}, W_{32}, W_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

= (det H)(det W)X

なお、(det H)X=Y、Yは入力信号Xに対してスピーカから受聴者の耳に到るまでの空間で生じる空間クロストークを低減させる処理ステップを経た信号である。

$$\det \mathbf{H} = H_{11}H_{22}H_{33} - H_{11}H_{23}H_{32} + H_{12}H_{23}H_{31}$$

$$-H_{12}H_{21}H_{33} + H_{13}H_{21}H_{32} - H_{13}H_{22}H_{31}$$

$$\det \mathbf{W} = W_{11}W_{22}W_{33} - W_{11}W_{23}W_{32} + W_{12}W_{23}W_{31}$$

$$-W_{12}W_{21}W_{33} + W_{13}W_{21}W_{32} - W_{13}W_{22}W_{31}$$

DetHおよびDetWは周波数特性をもった定数であり、図9の処理によって再生された信号が受聴者の耳に到達する信号Eは、DetHおよびDetWという特性が付加されるが、筐体内クロストーク成分や空間クロストーク成分が除去されることが判る。受聴者の耳に到達する信号Eを入力信号Xに完全に一致させたい場合には、図9の処理の前段か後段に1/(DetH・DetW)という特性のフィルタを信号数、すなわちこの場合には3だけ設ければよい。

請求の範囲

- [1] 筐体内部に少なくとも2つのスピーカが収容された携帯端末装置の音響信号再生方法において、上記スピーカへの入力信号に対して、上記スピーカから制御点に到るまでの空間で生じる空間クロストークを低減させる処理ステップ1と、上記処理ステップ1を経た信号に対して、上記筐体内で上記スピーカ間に生じるクロストークを低減させる処理ステップ2とを備えたことを特徴とする音響信号再生方法。
- [2] 上記処理ステップ2は、上記筐体内で、他方の上記スピーカから一方の上記スピーカ に漏れこむ音を低減させる低減信号を、上記処理ステップ1を経た一方のスピーカへ の信号に加算するステップを備えたことを特徴とする請求項1に記載の音響信号再 生方法。
- [3] 上記低減信号は、上記処理ステップ1を経た他方のスピーカへの信号を加工すること により生成したものであることを特徴とする請求項2に記載の音響信号再生方法。
- [4] 上記処理ステップ1を経た他方のスピーカへの信号の加工は、上記他方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記一方のスピーカから放射されるまでの伝達特性を、上記一方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記一方のスピーカから放射されるまでの伝達特性で、除算し、符号を反転させた特性に基づいて行われることを特徴とする請求項3に記載の音響信号再生方法。
- [5] 上記処理ステップ2は、上記処理ステップ1を経た一方のスピーカへの信号を加工して上記一方のスピーカに対する直接成分を得る第1の筐体直接加工ステップと、上記処理ステップ1を経た他方のスピーカへの信号を加工して上記一方のスピーカに対する交差成分を得る第1の筐体交差加工ステップと、上記両加工後の信号を加算して上記一方のスピーカを駆動するための駆動信号を生成する第1の加算ステップと、上記処理ステップ1を経た他方のスピーカへの信号を加工して上記他方のスピーカに対する直接成分を得る第2の筐体直接加工ステップと、上記処理ステップ1を経た一方のスピーカへの信号を加工して上記他方のスピーカに対する交差成分を得る第2の筐体交差加工ステップと、上記両加工後の信号を加算して上記第2のスピーカを駆動するための駆動信号を生成する第2の加算ステップとを備えたことを特徴とする

請求項1記載の音響信号再生方法。

- [6] 上記第1の筐体直接加工ステップは、上記他方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記他方のスピーカから放射されるまでの伝達特性に基づく加工であり、上記第1の筐体交差加工ステップは、上記他方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記一方のスピーカから放射されるまでの伝達特性に基づく加工であり、上記第2の筐体直接加工ステップは、上記一方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記一方のスピーカから放射されるまでの伝達特性に基づく加工であり、上記第2の筐体交差加工ステップは、上記一方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記他方のスピーカから放射されるまでの伝達特性に基づく加工であることを特徴とする請求項5記載の音響信号再生方法。
- [7] 上記一方の加算された信号を、上記一方のスピーカから放射されるスピーカ放射信号が、上記処理ステップ1を経た一方のスピーカへの信号の振幅又は位相に略一致するように更に加工する後加工ステップを備えたことを特徴とする請求項5記載の音響信号再生方法。
- [8] 上記処理ステップ1の後であって処理ステップ2の前に、上記一方のスピーカ放射信号が、上記処理ステップ1を経た一方のスピーカへの信号の振幅又は位相に略一致するように上記処理ステップ1を経た一方のスピーカへの信号を加工する前加工ステップを備えたことを特徴とする請求項5に記載の音響信号再生方法。
- [9] 上記処理ステップ1を経た他方のスピーカへの信号の加工は、上記処理ステップ1を 経た他方のスピーカへの信号のサブバンド単位で行うことを特徴とする請求項3又は 請求項4のいずれかに記載の音響信号再生方法。
- [10] 上記処理ステップ1を経た他方のスピーカへの信号の加工は、上記特性に低域通過フィルタを通して得られる特性に基づいて行われることを特徴とする請求項4に記載の音響信号再生方法。
- [11] 上記処理ステップ1を経た他方のスピーカへの信号の加工は、周波数成分単位で上 記処理ステップ1を経た他方のスピーカへの信号と上記処理ステップ1を経た一方の

- スピーカへの信号との相関をもとめ、当該相関に応じて行うことを特徴とする請求項3 又は請求項4のいずれかに記載の音響信号再生方法。
- [12] 上記処理ステップ1を経た他方のスピーカへの信号の加工は、上記処理ステップ1を 経た他方のスピーカへの信号に1未満のスカラー値を乗算し、符号を反転させた特 性に基づいて行われることを特徴とする請求項3記載の音響信号再生方法。
- [13] 一方の筐体直接加工ステップと他方の筐体直接加工ステップ又は一方の筐体交差加工ステップと他方の筐体交差加工ステップとは、略共通することを特徴とする請求項5記載の音響信号再生方法。
- [14] 筐体内部に少なくとも2つのスピーカが収容された携帯端末装置において、上記スピーカへの入力信号に対して、上記スピーカから制御点に到るまでの空間で生じる空間クロストークを低減させる処理手段1と、上記処理手段1を経た信号に対して、上記筐体内で上記スピーカ間に生じるクロストークを低減させる処理手段2とを備えたことを特徴とする携帯端末装置。
- [15] 上記処理手段2は、上記筐体内で、他方の上記スピーカから一方の上記スピーカに 漏れこむ音を低減させる低減信号を、上記処理手段1を経た一方のスピーカへの信 号に加算することを特徴とする請求項14に記載の携帯端末装置。
- [16] 上記低減信号は、上記処理手段1を経た他方のスピーカへの信号を加工することにより生成したものであることを特徴とする請求項15に記載の携帯端末装置。
- [17] 上記処理手段1を経た他方のスピーカへの信号の加工は、上記他方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記一方のスピーカから放射されるまでの伝達特性を、上記一方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記一方のスピーカから放射されるまでの伝達特性で、除算し、符号を反転させた特性に基づいて行われることを特徴とする請求項16に記載の携帯端末装置。
- [18] 上記処理手段2は、上記処理手段1を経た一方のスピーカへの信号を加工する第1 の筐体直接加工手段と、上記処理手段1を経た他方のスピーカへの信号を加工して 上記一方のスピーカに対する交差成分を得る第1の筐体交差加工手段と、上記両加 工後の信号を加算して上記一方のスピーカを駆動するための駆動信号を生成する

第1の加算手段と、上記処理手段1を経た他方のスピーカへの信号を加工する第2 の筐体直接加工手段と、上記処理手段1を経た一方のスピーカへの信号を加工して 上記他方のスピーカに対する交差成分を得る第2の筐体交差加工手段と、上記両加 工後の信号を加算して上記第2のスピーカを駆動するための駆動信号を生成する第 2の加算手段とを備えたことを特徴とする請求項14に記載の携帯端末装置。

- [19] 上記第1の筐体直接加工手段は、上記他方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記他方のスピーカから放射されるまでの伝達特性に基づく加工を行い、上記第1の筐体交差加工手段は、上記他方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記一方のスピーカから放射されるまでの伝達特性に基づく加工を行い、上記第2の筐体直接加工手段は、上記一方のスピーカを駆動させるための駆動信号が少なくともアンプ又はスピーカ特性により変形されて上記一方のスピーカから放射されるまでの伝達特性に基づく加工を行い、上記第2の筐体交差加工手段は、上記一方のスピーカを駆動させるための駆動信号が少なくとも音響結合により変形されて上記他方のスピーカから放射されるまでの伝達特性に基づく加工を行うことを特徴とする請求項18に記載の携帯端末装置。
- [20] 上記一方の加算された信号を、上記一方のスピーカから放射されるスピーカ放射信号が、上記処理手段1を経た一方のスピーカへの信号の振幅又は位相に略一致するように更に加工する後加工手段を備えたことを特徴とする請求項18に記載の携帯端末装置。
- [21] 上記処理ステップ1の後であって処理ステップ1の前に上記両加工をする前に、上記 一方のスピーカ放射信号が、上記処理手段1を経た一方のスピーカへの信号の振幅 又は位相に略一致するように上記処理手段1を経た一方のスピーカへの信号を加工 する前加工手段を備えたことを特徴とする請求項18に記載の携帯端末装置。
- [22] 上記処理手段1を経た他方のスピーカへの信号の加工は、上記処理手段1を経た他方のスピーカへの信号のサブバンド単位で行うことを特徴とする請求項16又は請求項17のいずれかに記載の携帯端末装置。
- [23] 上記処理手段1を経た他方のスピーカへの信号の加工は、上記特性に低域通過フィ

ルタを通して得られる特性に基づいて行われることを特徴とする請求項17に記載の 携帯端末装置。

- [24] 上記処理手段1を経た他方のスピーカへの信号の加工は、周波数成分単位で上記 処理手段1を経た他方のスピーカへの信号と上記処理手段1を経た一方のスピーカ への信号との相関をもとめ、当該相関に応じて行うことを特徴とする請求項16又は請 求項17のいずれかに記載の携帯端末装置。
- [25] 上記処理手段1を経た他方のスピーカへの信号の加工は、上記処理手段1を経た他方のスピーカへの信号に1未満のスカラー値を乗算し、符号を反転させた特性に基づいて行われることを特徴とする請求項16に記載の携帯端末装置。
- [26] 一方の直接加工手段と他方の直接加工手段又は一方の交差加工手段と他方の交差加工手段とは、略共通することを特徴とする請求項18に記載の携帯端末装置。
- [27] 筐体内部にN個のスピーカが収容された携帯端末装置の音響信号再生方法において、i番目のスピーカから放射されるスピーカ放射信号Siが、上記i番目のスピーカを駆動するための駆動信号Sdiが少なくとも筐体内の音響結合により変形されてj番目のスピーカから放射されるまでの伝達特性Hijとi番目のスピーカを駆動するための駆動信号が少なくともアンプ又はスピーカ特性により変形されてi番目のスピーカから放射されるまでの伝達特性Hiiとを備えたH行列を用いて以下の式であらわされる場合に、

「数1]

$$\begin{bmatrix} S_1 \\ S_2 \\ \dots \\ S_N \end{bmatrix} = \mathbf{HSd} - \begin{bmatrix} H_{11}, H_{21}, \cdots, H_{N1} \\ H_{12}, H_{22}, \cdots, H_{N2} \\ \dots \\ H_{1N}, H_{2N}, \cdots, H_{NN} \end{bmatrix} \begin{bmatrix} Sd_1 \\ Sd_2 \\ \dots \\ Sd_N \end{bmatrix}$$

上記i番目のスピーカの駆動信号Sdiを、入力信号に対して上記スピーカから制御点に到るまでの空間で生じる空間クロストークを低減させる処理ステップを経た信号で

あって上記i番目のスピーカに対する信号Yiに対して、上記行列Hの(i, j)成分の余 因子Qijに基づく下記のフィルタ特性Gによる処理を行う事により生成することを特徴 とする音響信号再生方法。

「数2]

$$\begin{bmatrix} Sd_1 \\ Sd_2 \\ \dots \\ Sd_N \end{bmatrix} = \mathbf{G} \begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_N \end{bmatrix}$$
 但し、 $\mathbf{G} = a \begin{bmatrix} Q_{11}, Q_{12}, \dots, Q_{1N} \\ Q_{21}, Q_{22}, \dots, Q_{2N} \\ \dots \\ Q_{N1}, Q_{N2}, \dots, Q_{NN} \end{bmatrix}$

[28] 筐体内部にN個のスピーカが収容された携帯端末装置において、i番目のスピーカから放射されるスピーカ放射信号Siが、上記i番目のスピーカを駆動するための駆動信号Sdiが少なくとも筐体内の音響結合により変形されてj番目のスピーカから放射されるまでの伝達特性Hijとi番目のスピーカを駆動するための駆動信号が少なくともアンプスはスピーカ特性により変形されてi番目のスピーカから放射されるまでの伝達特性Hiiとを備えたH行列を用いて以下の式であらわされる場合に、

「数3]

$$\begin{bmatrix} S_1 \\ S_2 \\ \dots \\ S_N \end{bmatrix} = \mathbf{HSd} = \begin{bmatrix} H_{11}, H_{21}, \dots, H_{N1} \\ H_{12}, H_{22}, \dots, H_{N2} \\ \dots \\ H_{1N}, H_{2N}, \dots, H_{NN} \end{bmatrix} \begin{bmatrix} Sd_1 \\ Sd_2 \\ \dots \\ Sd_N \end{bmatrix}$$

上記i番目のスピーカの駆動信号Sdiを、入力信号に対して上記スピーカから制御点に到るまでの空間で生じる空間クロストークを低減させる処理手段を経た信号であって上記i番目のスピーカに対する信号Yiに対して、上記行列Hの(i, j)成分の余因子Qijに基づく下記のフィルタ特性Gによる処理を行う事により生成することを特徴とする携帯端末装置。

[数4]

$$\begin{bmatrix} Sd_1 \\ Sd_2 \\ \dots \\ Sd_N \end{bmatrix} = \mathbf{G} \begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_N \end{bmatrix} \quad \text{但し、} \mathbf{G} = a \begin{bmatrix} Q_{11}, Q_{12}, \dots, Q_{1N} \\ Q_{21}, Q_{22}, \dots, Q_{2N} \\ \dots \\ Q_{N1}, Q_{N2}, \dots, Q_{NN} \end{bmatrix}$$

[図4]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018192

		101/012	001/010101				
	CL ⁷ H04S1/00, H04S5/02, H04R1/20						
According to International Patent Classification (IPC) or to both national classification and IPC							
	S SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H04S1/00, H04S5/02, HO4R1/20							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922–1996 Toroku Jitsuyo Shinan Koho 1994–2005 Kokai Jitsuyo Shinan Koho 1971–2005 Jitsuyo Shinan Toroku Koho 1996–2005							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)							
C. DOCUMENTS CONSIDERED TO BE RELEVANT							
Category'	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
A	JP 2002-111817 A (NEC Corp.) 12 April, 2002 (12.04.02), & US 2004/23697 A1 & WO		1-28				
A	JP 2003-264895 A (Yamaha Cor) 19 September, 2003 (19.09.03) (Family: none)		1-28				
A	JP 2003-250199 A (Kabushiki Research), 05 September, 2003 (05.09.03) (Family: none)		1-28				
А	JP 2004-56403 A (Onkyo Corp. 19 February, 2004 (19.02.04), (Family: none)		1-28				
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.					
* Special to be o "E" earlier filing docum cited to special "O" docum docum priority	categories of cited documents: ent defining the general state of the art which is not considered f particular relevance application or patent but published on or after the international	"T" later document published after the inte date and not in conflict with the application the principle or theory underlying the in "X" document of particular relevance; the considered novel or cannot be considered novel or tannot be considered novel or be considered novel or cannot be considered novel or cannot be considered to involve an inventive scombined with one or more other such being obvious to a person skilled in the "&" document member of the same patent for Date of mailing of the international sear	ation but cited to understand avention laimed invention cannot be lered to involve an inventive laimed invention cannot be step when the document is documents, such combination art				
03 March, 2005 (03.03.05)		22 March, 2005 (22.					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					
Facsimile N	0	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018192

Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
E,A	JP 2004-363717 A 24 December, 2004 (Family: none)	(Sanyo Electric Co., L (24.12.04),	td.),	1-28	
				1	
9.000					
	•				

電話番号 03-3581-1101 内線 3541

発明の属する分野の分類(国際特許分類(IPC)) Α. Int. Cl. 1 H04S1/00, H04S5/02, H04R1/20 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1. H04S1/00, H04S5/02, H04R1/20 最小限資料以外の資料で調査を行った分野に含まれるもの 1922-1996年 日本国実用新案公報 日本国公開実用新案公報 1971-2005年 日本国登録実用新案公報 1994-2005年 日本国実用新案登録公報 1996-2005年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP 2002-111817 A (日本電気株式会社) 2002.04.12 1 - 28Α & US 2004/23697 A1 & WO 02/28064 A1 _IP 2003-264895 A (ヤマハ株式会社) 2003.09.19 (ファミリーなし) 1 - 28Α JP 2003-250199 A (株式会社メカニカルリサーチ) 2003.09.05 (ファミリー 1-28Α なし) JP 2004-56403 A (オンキョー株式会社) 2004.02.19 (ファミリーなし) 1 - 28Α JP 2004-363717 A (三洋電機株式会社) 2004.12.24 (ファミリーなし) 1 - 28E, A | パテントファミリーに関する別紙を参照。 │ C欄の続きにも文献が列挙されている。 * 引用文献のカテゴリー の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願目前の出願または特許であるが、国際出願目 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 22.03.2005 03, 03, 2005 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 5 C 8733 日本国特許庁 (ISA/JP) 志摩 兆一郎 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号