Convex Optimization Example 2.25

Dual of a norm cone

Let $\|\cdot\|$ be a norm in \mathbb{R}^n . The dual of the associated cone $K = \{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \leq t\}$ is the cone defined by dual norm, i.e.,

$$K^* = \{(u, v) \in \mathbb{R}^{n+1} \mid ||u||_* \le v\},\$$

where the dual norm is given by $||u||_* = \sup\{u^T x \mid ||x|| \le 1\}$ Things to learn

- Learn to appreciate and use the definition of dual norm.
- Read (A.1.6)

Solution

We need to show if $x^T u + tv \ge 0$,

$$||x|| \le t \Longleftrightarrow ||u||_* \le v.$$

- 1. The only if part: if $x^Tu+tv\geq 0$ and $\|x\|\leq t$ need to prove $\|u\|_*\leq v$. From $x^Tu+tv\geq 0,\ u^T(\frac{-x}{t})\leq v$. From $\|x\|\leq t,\ \|\frac{-x}{t}\|\leq 1$. From the definition of dual norm $\|u\|_*\leq v$.
- 2. The if part: rewrite the definition of dual norm as

$$||x|| = \sup\{x^T u \mid ||u||_* \le 1\}$$

From $x^T u + tv \ge 0$, $x^T(\frac{-u}{v}) \le t$. From $||u||_* \le v$, $||\frac{-u}{v}||_* \le 1$. From the definition of above dual norm $||x|| \le t$.