Classiq

July 28, 2023

1 Preamble.

This document. On May-2022, Classiq, a pioneer quantum computing company, has lunched the first (at least at that scale) competition in quantum circuits programming. The purpose of this document is to describe a proposal solution for the Lithium simulation problem. Hence it important to notice that even that this paper has been written in LATEX it is not an academic paper, that it, This paper might contains errors (and grammar mistakes for surly). Yet a lot of energy have been spent to bring that work to what it is, so the case that entire of it turned out to be completely nonsense probably won't happen.

The paper organized in the follow systematically manner, first in the preamble we will present the problem and talk about the general concepts which describe our specific Hamiltoinan, including the quantities regime (i.e number of qubits vs number of hamiltonians terms), the naive solution, and how mach improvement we could hope to make.

Then in next section we review all the techniques that we have used to improve a local gates assignment. Namely, this section deals with the question of how presenting each of the local term as subgate.

In contrast, the third and the forth sections reviews methods to determinate an order which clearly superior comparing to the naive approach. The forth section presenting an concept of analyzing the "product graph" a concept which could be thought as the second order analyses of the alternate path from the third section.

The problem. Generate a circuit, using no more than 10 qubits, that approximates the unitary e^{-iH} where H is the qubit Hamiltonian of a **LiH** (lithium hydride) molecule. The **LiH** Hamiltonian is composed of 276 Pauli strings, and can be found HERE. The approxi-

mation error is defined in the next section, and should be less than 0.1. The circuit should be composed of the CX and single qubit gates only.

Naive approach. Before diving into the technical details let's review our competitor first. Consider the straightforward assignment Lie-Trotter [Tro59] just handle each of Hamiltonian terms one by one. Assume the the hamming weight of the support of H_i equal to d_i . so we pay two steps to rotate each wire into the parity base and uncompute it in the end. then we could apply the CX from each qubit in the support to a chosen one which will sum the wires parity and finally will propgate the sum trough the RZ (Δt) gate (rotation by the coefficient of the term and the step size). So in total we pay $(2+2d_i$ for each term and therefore the whole circuit will require:

$$D^{\text{naive}}\left(n,m\right) = \sum_{i} 2 + 2d_{i} = m \sum_{i} \frac{2 + 2d_{i}}{m} = 2m \left(1 + \mathbb{E}_{\sim i}[H]\right)$$

Where $D^{\text{naive}}(n,m)$ is the depth of the circuit which compute a single Δt step of Lie-Trotter formula[Tro59]. In order to getting a more solid feeling about what is good solution, let's assume for the moment that $\mathbb{E}_{\sim i}[H] > 5$, in that case we obtain that the naive approach obtain a circuit at depth $\geq 2 \cdot 276 \cdot 6 \sim 3100$. In the end we will see that our solution yields a 1759-depth circuit.

Characterize our LiH. A native question that one might ask is whether exists a more efficient way to presents the Hamiltonian. So even we can't a sign that there is not, let's try to estimate how mach improvement

can be achived by applying the Kitaev transformation. In one sentence, Kitaev has showed that the ladder and the annihilation operators has pauli representation such each operator touch at least $\log{(n)}$ of the qubits. By the fact that Hamiltonian in the energy base has "product" of four operators (i.e $a_i^\dagger b_j^\dagger a_n b_m$) we get that there are might be operators in the computing base which touch $4\log{(n)}$ qubits. In our case, $n=10 \Rightarrow 4\log{(n)} > n$. Bottom line, It seems that the known techniques for reducing asymptotically the support of the terms don't work here. Hence, it's also an hint that 10-factor improvement is unlikely. Therefore we will aim to 2-factor of improvement over the naive.

2 Single Term Heuristics.

Main wire principle. From now on we will call to the wire which sum the parity of the state the main wire. For given term we have chose the main wire to be the median of the wire in it's support. For example consider the following term:

XXXXIII

Then as the second wire is above (and beanth) half of the wires, it will be the main wire in that case. the separation into upper and lower sides will enable to us to guarantee that at least two CX will be sum-up in parallel (using the next heuristic).

Upper and lower summations. We summing the parity as follow, denote by $i_1, i_2, ... i_W, ... i_k \subset [n]$ the indices in the support of given term, such that i_W is the main wire. Then after rotate the wires into the phase base then we summing the parity of $i_1, i_2, ... i_{W-1}$ into i_{W-1} , That it, We apply a $CX(i_j, i_{W-1})$ for j < W-1.

As all the segements $[i_j, i_{W-1}]$ disjoint to any segments of the form $[i_{W+1}, i_j]$ for j > W+1 then we could sum the parity of $i_{W+1}, i_{W+2}..i_k$ wires into i_{W+1} in parallel. It's easy to see that this heuristic cut by almost half the depth of single term.

Figure 1: Demonstration of the above methods, applied over the following terms XIXZZXIXXZ XIXXZXIXXZ. The fifth wire (qubit) is the main wire which sum the parity.

3 Greedy Order Heuristics.

Next, we will review our methods to impose the gates order. Clearly the order does matter, to see that consider an hamiltonian pair which differ by only single coordinate i.e XXXX and XXXZ. In that case the contribute of the first tree qubits remain the same for both of them, and therefore there is no needed to uncompute them after the applying of the first gate.

Sample Greedy Diameters. Assume that we given a set of therms with a promise that it might has a lot of "closer" terms (relative to the Hamming distance of their supports). Our first simple heuristic goal is to chain them together in greedy manner such that the distance of each adjacent terms will be minimal.

Algorithm 1: Chain an Hamiltonian set

```
while G \neq \mathbf{do}

T \leftarrow \text{Greedy Spanning Tree } (G)

D_i \leftarrow \text{Diameter } (T)

G \leftarrow G/Di

end

return D_0...D_l
```

It's worth to note that replacing the Greedy Spanning Tree by MST (and the diameter by just the DFS scanning order of the MST) could be proving as 2-OPT in the terms of chaining. We think about the uncompute stage as the climbing back at the tree, and therefore $\mathbf{OPT} < 2w$ (MST). But also it easy to see that every

path which contain all the vertices has weigth greater than w (MST), Hence 2w (MST) $\leq 2\mathbf{OPT}$. Yet, By the fact that we have already improved the naive solution at factor which close to $\frac{1}{2}$ and by the intuition that the optimal depth is not very far from the naive (don't expect that $D^{\text{naive}} \geq 4\mathbf{OPT}$ we decided to stick to the greedy construction, which in the next chapter will generalized to the product graph.

Hyperplanes separation. The cost of chaining pair of Hamiltonians isn't a monotone function of their Hamming distance, for example consider the case of two terms which have not overlapping at all, i.e XXXXIIII and IIIIXXXX then it's clear that those two can be impose such they will be computed in parallel.

Figure 2: Example for a case in which chaining terms with high distance reduce the depth of the circuit. Here the terms are : XIXZZIIIIII XXXZIIIIIII IIIIIIIXXZX IIIIIIIZIZX.

Technically we have separated those groups by follow, first we have sorted the term collection by the follow weight functions f,g such that:

$$f(H_i) = \min j : H_{j'} = I \text{ for } j' > j$$

 $g(H_i) = \max j : H_{j'} = I \text{ for } j' \le j$

And then we have matched pairs till we get into intersection.

4 The Product Graph.

The main disadvantage of the last separation is that it doesn't take into a count any relation between terms which classified in the same side of the plane. The suggested solution: We will say that the pair H_i, H_j share a "solid product" if $f(H_i) \leq g(H_j)$ where f, g defined above. We denote such relation by $(H_i, H_j) \in \mathbf{SP}$. Define the graph $G^2 = (V \times V, E')$ where V is the set of the terms, to be:

$$E' = \{\{(u, v), (w, z)\} : (u, v), (w, z), (u, z), (w, v) \in \mathbf{SP}\}$$

$$w(e) = w(\{(u, v), (w, z)\}) = \max w(u, w), w(v, z)$$

Note, that in the G^2 path which pass through all the vertices contain an |V| copies of each term. Hence looking for spanning trees makes no sense. Therefore our diameters sampler will be more appropriate for that task (when we ensure that each sampled tree contains at most one copy of each term).

Another advantage of this method that it can be easily generalize to scanning triples or higher orders by taking higher power of the graph, the main disadvantage is (of course) processing time.

The final submission is a mixture of all the methods we have reviewed above.

References

[Tro59] H. F. Trotter. "On the Product of Semi-Groups of Operators". In: *Proceedings of the American Mathematical Society* 10.4 (1959), pp. 545–551. ISSN: 00029939, 10886826. URL: http://www.jstor.org/stable/2033649 (visited on 07/28/2023).

```
1
2 from importlib.resources import path
3 from math import ceil
4 from struct import unpack
5 from qiskit import QuantumCircuit
6 from qiskit.visualization import circuit_drawer
7 from matplotlib import pyplot as plt
8 import datetime
9 import numpy as np
10
                            = 4
11 N
12 WIRES
                            = 10
                            = "NOT"
13 TEST
14 RANDOMSTACTICS
                            = True
                            = "PRODUCT"
15 STRATEGY
16 OUTSIDE_OF_CIRCUIT
                            = WIRES + 1
17 PATHFILE
                                "NOT" : "./LiH",
18
                                "YES" : "./LiH_test",
19
                                "PRODUCT" : "./LiH_test_product_space"
20
21
                                }[TEST]
22
23
   class local_Hamiltonian():
24
       def __init__(self, tensor, weight) -> None:
25
           self.tensor = tensor
26
27
           self.weight = weight
28
           self.parent = self
29
30
       def tensorspace(self, other) -> bool:
31
           for A,B in zip( list(self.tensor), list(other.tensor)):
               if "I" not in [A, B]:
32
33
                   return False
34
           return True
35
       def dis(self, other) -> int:
36
37
           for A,B in zip(list(self.tensor), list(other.tensor)):
38
39
               if A != B:
40
                   ret += 1
41
           return ret
42
43
       def solid_product(self, other):
44
           indices = []
45
           for j in range(1,WIRES):
46
               l= "X" * j + "I" * (WIRES-j)
               r = "I" * j + "X" * (WIRES-j)
47
48
               if local_Hamiltonian(1,0).tensorspace(self) and\
49
                   local_Hamiltonian(r,0).tensorspace(other):
50
                   indices.append(j)
51
52
           if len(indices) > 0:
53
               return True, indices
54
           return False, []
55
56
       def newbase(self, perm):
57
           tensor = [ "" ] * len(self.tensor)
58
           for i in range(len(perm)):
59
               tensor[i] = self.tensor[perm[i]]
60
           ret = local_Hamiltonian(tensor,self.weight)
61
           ret.parent = self.parent
62
           return ret
63
```

```
64
        def median(self):
 65
            support = list(filter( lambda x : self.tensor[x] != 'I', range(WIRES)))
 66
            if len(support) != 0:
 67
                return support[int(len(support)/2)]
 68
 69
 70
        def seconed_wires(self):
 71
            j = self.median()
 72
 73
            def find_nearset_nontrival(sign):
 74
 75
                gen = [ (i,v) for i,v in list(enumerate(self.tensor))[j+1:]] if sign ==1\
 76
 77
                     else [ (i,v) for i,v in list(enumerate(self.tensor))[j-1::-1]]
 78
 79
                for i,v in gen:
 80
                    if v != "I":
 81
                         return i
 82
                return j
 83
            pos_wire = j
 84
 85
            neg_wire = j
            if j + 1 < WIRES:
 86
 87
                pos_wire = find_nearset_nontrival(1)
            if j - 1 >= 0:
 88
 89
                neg_wire = find_nearset_nontrival(-1)
 90
 91
            return neg_wire, pos_wire
 92
 93 def parser_line(line) -> local_Hamiltonian:
 94
        line = line.split()
 95
        return local_Hamiltonian( list(line[-1]),
         { "-" : -1 , "+" : 1 }[line[0]] * np.float64(line[1]) / N )
 96
 97
 98 def parser() -> None:
 99
        hamiltonians = [ ]
100
        for line in open(PATHFILE).readlines():
101
            if len(line) > 1:
102
                hamiltonians.append(parser_line(line))
103
        return hamiltonians
104
105 def donothing(_):
106
        pass
107
108 def rotateY(cir):
109
        def _func(wire):
110
            cir.s(wire)
111
            cir.h(wire)
112
        return _func
113
114 def unrotateY(cir):
115
        def _func(wire):
116
            cir.h(wire)
117
            cir.sdg(wire)
118
        return _func
119
120 def MulByterm (circuit : QuantumCircuit, term ,next_terms = [], last_terms = [],
     main_wire = WIRES-1) -> QuantumCircuit:
121
122
123
        def reqursive_manner(tensor, wire, weight, last_wire, _sign, first_not_trival=True):
124
125
            if wire < 0 or wire == WIRES:</pre>
126
                return QuantumCircuit(WIRES),QuantumCircuit(WIRES)
127
```

```
128
            compute =
                       {
129
                "X" : lambda cir : cir.h,
                "Y" : lambda cir : rotateY(cir),
130
                "Z" : lambda cir : donothing,
131
                "I" : lambda cir : donothing }
132
133
134
135
            uncompute = {
136
                "X" : lambda cir : cir.h,
                "Y" : lambda cir : unrotateY(cir),
137
                "Z" : lambda cir : donothing,
138
                "I" : lambda cir : donothing }
139
140
141
            pauli = tensor[wire]
142
            if wire == main_wire:
                circuit_node = QuantumCircuit(WIRES)
143
                LU, RU = reqursive_manner(tensor, wire-1, weight, last_wire, -1, first_not_trival = True)
144
                LD, RD = reqursive_manner(tensor, wire+1, weight, last_wire, 1, first_not_trival = True)
145
146
                compute[pauli](circuit_node)(wire)
147
148
                for L in [ LD, LU]:
149
                    circuit_node = circuit_node.compose(L)
150
                circuit_node.rz(2*weight, main_wire)
151
                for R in [ RD, RU]:
152
                    circuit_node = circuit_node.compose(R)
153
                uncompute[pauli](circuit_node)(wire)
154
                return circuit_node
155
            if pauli == 'I':
156
157
158
159
                # temp_wire = last_wire + _sign if first_not_trival else last_wire
160
                return reqursive_manner(tensor, wire + _sign, weight,
161
                 last_wire, _sign, first_not_trival = first_not_trival)
162
            else:
163
164
165
                temp_wire = wire if first_not_trival else last_wire
166
                parity_collector = False
167
                if first_not_trival:
168
                    parity_collector = True
169
170
171
                L, R = reqursive_manner(tensor, wire + _sign, weight, temp_wire, _sign, first_not_trival =
False)
172
                circuit_left, circuit_right = QuantumCircuit(WIRES),QuantumCircuit(WIRES)
173
174
                if (parity_collector) or not (\
                     (last_terms[wire][0] == pauli) and\
175
176
                      (last_terms[wire][1][ { 1 : 1 , -1 : 0 }[_sign] ] == last_wire)):
177
178
                    compute[pauli](circuit_left)(wire)
179
                    circuit_left = circuit_left.compose(L)
180
                    circuit_left.cx(wire, last_wire)
181
182
                else:
183
                    circuit_left = L
184
185
                if (parity_collector) or not (
186
                     (next_terms[wire][0] == pauli) and\
187
                      (next_terms[wire][1][ { 1 : 1 , -1 : 0 }[_sign] ] == last_wire)):
188
189
                    circuit_right.cx(wire, last_wire)
190
                    circuit_right = circuit_right.compose(R)
```

```
191
192
                    uncompute[pauli](circuit_right)(wire)
193
                else:
194
                    circuit_right = R
195
                return circuit_left, circuit_right
196
197
        circuit = circuit.compose(reqursive_manner(term.tensor, main_wire, term.weight, main_wire, 0))
198
        return circuit
199
200
201 def cutting(circuit : QuantumCircuit):
        '''Second optimization, cuts the gates which are follwed by their
202
203
        uncompute '''
204
        def filter_by_wire(wire):
205
            return list(filter( lambda item :\
206
                any( [register.index == wire for register in item[1][1]] ), enumerate(circuit.data) ))
207
208
        UNCOMPTE = {
209
            "h" : "h",
210
            "cx" : "?",
211
            "rz" : "?"
212
            "s" : "sdg",
213
            "sdg" : "s",
214
            "sxdg" :"?" }
215
216
217
        indices_todelete = []
218
        for wire in range(WIRES):
219
            operators = filter_by_wire(wire)
220
            j = 0
221
            while (j < len(operators) - 1 ):</pre>
222
                if ( UNCOMPTE[operators[j][1][0].name] == operators[j+1][1][0].name ):
223
                    indices\_todelete.append( \ operators[j][\emptyset] \ )
224
225
                    indices_todelete.append( operators[j+1][0] )
                j += 1
226
227
228
        for index in reversed(sorted(indices_todelete)):
229
            circuit.data.pop(index)
230
231
        return circuit
232
233
234 def genreate_circut(terms = None):
235
        circuit = QuantumCircuit(WIRES)
236
        terms = parser() if terms == None else terms
237
        print(len(terms))
238
        for i, term in enumerate(terms):
239
240
            main_wire = term.median()
241
            next_terms,last_terms = [],[]
242
            for _j in range(WIRES):
243
244
                found = False
245
                if i+1 < len(terms):</pre>
246
                     for _term in terms[i+1:]:
247
                         if _term.tensor[_j] != 'I':
248
                             next_terms.append( (_term.tensor[_j], _term.seconed_wires() ))
249
                             found = True
250
                             break
251
                if not found:
                    next_terms.append( ('I', OUTSIDE_OF_CIRCUIT ))
252
253
254
                found = False
```

```
if i > 0:
255
256
                    for _term in terms[i-1::-1]:
257
                        if _term.tensor[_j] != 'I':
258
                            last_terms.append( (_term.tensor[_j], _term.seconed_wires() ))
                            found = True
259
                            break
260
                if not found:
261
                    last_terms.append( ('I', OUTSIDE_OF_CIRCUIT ))
262
263
264
            circuit = MulByterm(circuit, term, main_wire=main_wire,
265
             next_terms=next_terms, last_terms=last_terms )
266
267
        return circuit
268
269 def genreate_optimzed_circut(circuit, terms, svg =False, entire = False):
        circuit = cutting(cutting(circuit))
270
271
        if entire:
272
273
            for _ in range(ceil(np.log(N))):
274
                circuit = circuit.compose(circuit)
275
            circuit = cutting(circuit)
276
        print(f"TERMS: {len(terms)}, DEPTH:{circuit.depth()}")
277
278
279
        if svg:
280
           circuit_drawer(circuit, output='mpl',style="bw", fold=-1)
281
            plt.title( f"TERMS: {len(terms)}, DEPTH:{circuit.depth()}")
282
            plt.tight_layout()
283
            plt.savefig(f'Ham_{STRATEGY}-{datetime.datetime.now()}.svg')
284
285
        if entire:
286
            open(f"Ham_{STRATEGY}-{datetime.datetime.now()}.qasm", "w+").write(circuit.qasm())
287
288
        return circuit.depth()
289
290
```

291

```
1 from copy import deepcopy
 2 import networkx as nx
3 from Hamiltonian_parser import WIRES, parser, local_Hamiltonian,genreate_circut,genreate_optimzed_circut
 4 from itertools import permutations, product, combinations
 5 from random import choice
6 import pickle as pkl
8
  from matplotlib import pyplot as plt
9
10
11 class Permutation_Base():
12
       def __init__(self, arr) -> None:
           self.arr = arr
13
           self.parent = self
14
15
16
17 def generated_the_product_graph(terms = parser()):
18
       def generated_the_product_graph_by_base(_terms, number_premu=0):
19
20
                    = nx.Graph()
           Gproduct = nx.Graph()
21
22
23
           edges_set = set()
24
25
           for (H1, H2) in product(_terms, _terms):
26
               if H1.tensorspace(H2):
27
                   G.add_edge(H1, H2)
28
                   edges_set.add( (H1,H2) )
29
                   G.edges[(H1, H2)]['weight'] = H1.dis(H2)
30
                   G.edges[(H1, H2)]['solid'] = True
31
                   G.edges[(H1, H2)]["permutation"] = j
32
           for e in G.edges():
33
34
               H1,H2 = e
35
               for H3,H4 in \
36
                   product(list(G.adj[H1]), list(G.adj[H2])):
37
                   if (H1,H4) in edges_set and\
38
                        (H3,H4) in edges_set and
39
                            (H2,H3) in edges_set:
40
                       Gproduct.add_edge((H1,H2), (H3, H4))
41
                       Gproduct.edges[(H1, H2), (H3, H4)]['weight'] = max(H1.dis(H3), H2.dis(H4))
                       Gproduct.edges[(H1, H2), (H3, H4)]['solid'] = True
42
43
                       Gproduct.edges[(H1, H2), (H3, H4)]["permutation"] = j
44
45
           for (H1, H2) in product(_terms, _terms):
46
               if (H1,H2) not in edges_set:
47
                   G.add_edge(H1, H2)
48
                   G.edges[(H1, H2)]['weight'] = H1.dis(H2)
49
                   G.edges[(H1, H2)]['solid'] = False
50
                   G.edges[(H1, H2)]["permutation"] = j
51
52
           print(f"vertices:{Gproduct.number_of_nodes()}\t edges: ~{Gproduct.number_of_edges()}")
53
           return Gproduct, G, _terms
54
55
       return pkl.load( open(f"mainG-276-1.pkl", "br"))
56
57
       permutations = list(map(lambda x: Permutation_Base(x) , [
58
           # [0,2,4,6,8,1,3,5,7,9],
59
           [0,1,2,3,4,5,6,7,8,9]
60
           # [0,7,4,6,8,9,3,5,2,1]
61
       ]))
62
       graphs = []
63
       perm_terms = []
```

```
64
        mainG = nx.Graph()
65
        mainProductG = nx.Graph()
 66
        for j, permutation in enumerate(permutations):
 67
            perm\_terms = list(map( lambda x : x.newbase(permutation.arr), terms))
 68
            productG, G, _ = generated_the_product_graph_by_base(perm_terms, number_premu=j)
 69
 70
            if mainG.number_of_nodes() == 0:
 71
                mainG = nx.compose(mainG, G)
 72
            mainProductG = nx.compose(mainProductG, productG)
73
74
        pkl.dump((mainG, mainProductG, terms ,permutations), open(f"mainG-{len(terms)}-
{len(permutations)}.pkl", "bw+"))
75
        return mainG, mainProductG, terms, permutations
76
 77 def select(_list, v, G, flag = True):
        minimal = min(_list, key =lambda u : G.edges[v,u]['weight'] )
 78
 79
        return choice( [r for r in _list if G.edges[v,r]['weight'] == \
80
             G.edges[v,minimal]['weight'] ])
81
82 def notcolorized(node, _set):
        if isinstance(node, tuple):
83
            term1, term2 = node
84
85
            if (term1.parent in _set) or (term2.parent in _set):
86
                return False
 87
            return True
 88
        else:
 89
            return node.parent not in _set
90
91 def colirize(node, _set):
92
        if isinstance(node, tuple):
93
            term1, term2 = node
94
95
            if (term1.parent in _set) or (term2.parent in _set):
96
                return False, _set, 1
97
            _set.add(term1.parent)
98
            _set.add(term2.parent)
99
            return True
100
        else:
101
            if node.parent in _set:
102
                return False
103
            else:
104
                _set.add(node.parent)
105
                return True
106
107
108 #randomized DFS.
109 def sample_path(G, terms) -> tuple((nx.Graph, set)):
110
        print("sample_path")
111
        color = set()
112
113
        def DFS(v, T, _color, sign=0, flag =True):
114
115
            if not colirize(v, _color):
116
                return _color, sign
117
            can_packed = [None]
118
            while len(can_packed) > 0 :
119
120
                can_packed = list(filter(lambda x :\
121
                    notcolorized(x, _color), G.adj[v]))
122
123
                if len(can_packed) > 0:
124
                    u = select( can_packed, v, G, flag=flag)
125
                    T.add_edge(v,u)
126
                    if 'permutation' in G.edges[v,u]:
```

```
127
                        T.edges[v,u]['permutation'] = G.edges[v,u]['permutation']
128
                    T.edges[v,u]['sign'] = sign
129
                    _color, sign = DFS(u, T, _color, sign=sign+1, flag=flag)
130
            return _color, sign
131
132
        T = nx.DiGraph()
133
        1 = []
134
135
        for v in G.nodes():
136
            T.add_node(v)
137
            1.append(v)
138
139
        _sign = 0
140
        for v in G.nodes():
            color, _sign = DFS(v, T, color, sign=_sign, flag=False)
141
142
143
        return T, color
144
145 def get_Diameter(Tree: nx.Graph) -> tuple((tuple(([], int))), tuple(([], int)))) :
146
147
        def DFS_tree_depth(G, v):
148
149
            if len(list(G.adj[v])) == 0 :
150
                return (([v],1),([v],1))
151
            branches = []
152
            maxinnerpath, maxinnerdepth = [],0
153
            for u in list(G.adj[v]):
154
155
                ((temppath, tempdepth), \
156
                    (tempinnerpath, tempinnerdepth)) = DFS_tree_depth(G,u)
157
158
                if maxinnerdepth < tempinnerdepth:</pre>
159
                    maxinnerpath, maxinnerdepth = tempinnerpath, tempinnerdepth
160
161
                branches.append((temppath, tempdepth))
162
            maxpath, maxdepth = [],0
163
164
165
            for (b1, d1), (b2, d2) in combinations(branches, r=2):
166
                if 1 + d1 + d2 > maxinnerdepth:
167
                    maxinnerpath
                                    = b1 + [v] + b2
168
                    maxinnerdepth
                                   = 1 + d1 + d2
169
170
            for b,d in branches:
171
                if 1 + d > maxdepth:
172
                    maxpath = [v] + b
173
                    maxdepth = 1 + d
174
            return ((maxpath,maxdepth), (maxinnerpath, maxinnerdepth))
175
176
        ((maxpath, maxdepth), (maxinnerpath, maxinnerdepth)) = DFS_tree_depth(Tree, list(Tree.nodes)[0])
177
        print(maxdepth, maxinnerdepth)
178
        return maxpath if maxdepth > maxinnerdepth else maxinnerpath
179
180
181 def generate_simple_graph(_terms):
182
        G = nx.Graph()
183
        for (H1, H2) in product(_terms, _terms):
184
            G.add_edge(H1, H2)
185
            G.edges[(H1, H2)]['weight'] = H1.dis(H2)
186
        return G
187
188 def greedy_path( terms ):
189
        G = generate_simple_graph(terms )
190
```

```
191
        def reqursive_form( _terms ):
192
            if len(_terms) < 3:</pre>
193
                return _terms
194
            else:
195
196
                T, _ = sample_path(G, _terms)
197
198
                Q = get_Diameter(T)
199
                color = set()
200
201
                ret = []
                for H in Q:
202
203
                    if H.parent not in color:
204
                         color.add(H.parent)
205
                         ret.append(H.parent)
206
                         G.remove_node(H)
207
208
                remain_terms = [ term for term in _terms if term not in color ]
209
                return ret + reqursive_form(remain_terms)
210
        return reqursive_form(terms)
211
212 def Hamiltonian_sorting(hamiltonians):
        groups = [[] for _ in product(range(WIRES), range(WIRES))]
213
214
        for term in hamiltonians:
215
            x,y = term.seconed_wires()
            groups[x + WIRES*y].append(term)
216
217
218
        ret = [ ]
219
        for group in groups:
220
            group = greedy_path(group)
221
            ret += group
222
        return ret
223
224 def enforce_seapration(hamiltonians):
225
        def seperate(terms):
226
227
228
            def sort_tensor_by_geometrical_support(tensor, up = True):
229
230
231
                for j,pauli in enumerate( { True: tensor, False: reversed(tensor) }[up] ):
232
                     if pauli != "I":
233
                         if up:
234
                             return 10 - j
235
                         else:
236
                             return 10 - j
237
                else:
238
                    return 10
239
240
                   = sorted(terms, \
241
                 key=lambda x : sort_tensor_by_geometrical_support(x.tensor, up=True))
242
            beneath = sorted(terms, \
243
                 key=lambda x : sort_tensor_by_geometrical_support(x.tensor, up=False))
244
245
            contact_point = min( range(len(terms)), \
246
                key = lambda i : above[i].tensorspace(beneath[i]))
247
248
            print(f"contact point: {contact_point}")
249
            path = []
250
            for x,y in zip( sorted(above[:contact_point], key = lambda z : z.tensor),\
251
                sorted(beneath[:contact_point], key = lambda z : z.tensor)):
252
                path.append(x)
253
                path.append(y)
254
```

```
255
            new\_terms = []
256
            for x in above[contact_point:]:
257
                 if x not in beneath[:contact_point]:
258
                     new_terms.append(x)
259
            return new_terms, path
260
        path = [ ]
261
        terms ,temppath = seperate(deepcopy(hamiltonians))
262
        path += temppath
263
        print(f"terms:{len(terms)}")
264
265
        return path, terms
266
267 def alternate_path_v2(mG : nx.Graph, G : nx.Graph, \
         terms, permutations, single_iteration = False):
268
269
        other_color = set()
270
271
        T, _ = sample_path(G, terms)
272
        Q = get_Diameter(T)
273
        ret = []
274
275
        for (u,v) in Q:
            for H in [u,v]:
276
                if H not in other_color:
277
                    other_color.add(H)
278
279
                     ret.append(H)
280
281
        made_progress = True
282
        _single_iteration = True
283
        while _{\rm single\_iteration} and (_{\rm len}(Q) > 2 and made_{\rm progress}):
284
            made_progress = False
285
            for u,v in Q:
286
                for H in [u,v]:
287
                     if H.parent not in other_color:
288
                         ret.append(H)
289
                         other_color.add(H.parent)
290
                     for w in list(G.nodes()):
291
                         if H in w:
292
                             G.remove_node(w)
293
                             made_progress = True
294
295
                     if mG.has_node(H):
296
                         mG.remove_node(H)
297
298
            T, _ = sample_path(G, terms)
299
            if T.number_of_edges() > 1:
300
                Q = get_Diameter(T)
301
            else:
302
303
            _single_iteration = not single_iteration
304
305
        if not single_iteration:
306
            for term in terms:
307
                 if term.parent not in other_color:
308
                     ret.append(term)
309
310
        return ret, terms, other_color
311
312 def main_enforce(hamiltonians):
313
        path, terms = enforce_seapration(hamiltonians)
314
        path += Hamiltonian_sorting(terms)
315
        circuit = genreate_circut(path)
        depth = genreate_optimzed_circut(circuit, hamiltonians, svg=False, entire=False)
316
317
        return circuit
318
```

```
319 def compose_alternate_enforce():
320
            G, mainProductG, terms, permus = generated_the_product_graph()
321
            canidates = [ ]
322
            for _ in range(5):
323
                path, terms, color = alternate_path_v2( deepcopy(G), deepcopy(mainProductG), terms, permus,
single_iteration=True)
324
                circuit = genreate_circut(path)
325
                genreate_optimzed_circut(circuit, terms, svg=False, entire=False)
                remain_terms = [ term for term in terms if term not in color ]
326
327
                circuit = circuit.compose( main_enforce( remain_terms ) )
                depth = genreate_optimzed_circut(circuit, terms, svg = False, entire=False )
328
329
                canidates.append( (depth, circuit) )
                print(f"DEPTH: {depth}")
330
331
            depth, circuit = min(canidates, key = lambda x : x[0])
332
            depth = genreate_optimzed_circut(circuit, terms, svg = False, entire=True)
333
            # depth = genreate_optimzed_circut(circuit, terms, entire=True)
334
            return circuit,terms
335
336
337
338
339 def demonstrate_fig( ):
        path = [ local_Hamiltonian( "XIXZZIIIII", 0.5 ),
340
341
          local_Hamiltonian( "XXXZIIIIIII", 0.5 ),
          local_Hamiltonian( "IIIIIIXXZX", 0.5 ),
342
343
          local_Hamiltonian( "IIIIIIIZIZX", 0.5 ),
344
          local_Hamiltonian( "IIIXIIZIZX", 0.5 ) ]
345
346
        path, terms = enforce_seapration(path)
347
        circuit = genreate_circut(path)
348
        genreate\_optimzed\_circut(circuit ,path, \ svg= \colored{True}, \ entire= \colored{False})
349
350
351 if __name__ == "__main__":
352
353
        circuit, terms = compose_alternate_enforce()
354
355
356
```