	Parties 0
	Problem 2
	If the incoming beam mattern is access
	If the incoming beam pattern is gaussian then the intensity at any given point on the dish depends on how far you
	are from the center and the snape of the gaussian (o).
	2D representation:
	looking down on the dish:
	The area of the entire
	dish is:
	$A = \Upsilon R^2$
	But the effective area depends on the integrated gaussian:
+	$A_{eff} = \int_{e}^{R} \frac{(-r)^{2} \sigma^{2}}{2mrdr}$
	THEN E ZINYON
	To properly normalize we need to calculate A, however
	this will eventually >1 if T is too large causing
	spillover (the signal will go beyond the dish and hit the ground). To understand the fraction of the beam that stays
	ground). To understand the fraction of the beam that stays
	on the dish:
-	f = Joe 2 Mrdr
	$f = \frac{\int_0^\infty e^{-\frac{2\pi}{2\sigma^2}}}{\int_0^\infty e^{-\frac{r^2}{2\sigma^2}}} 2\pi r dr$

See code for remainder of problem.

1968