## Week 12

#### Business Research Methods

#### Bhaswar Chakma

11 May 2021



# Objectives

- Create "Toy Data"
  - data.frame()
  - tibble()
  - tribble()
- Reproducible example
- Export
- RMD:
  - tables: regression; statistics
  - equations

# "Toy Data"

- data.frame?
- tibble?

## data.frame

```
class(iris)
## [1] "data.frame"
iris
    Sepal.Length Sepal.Width Petal.Length
                           3.5
              5.1
                                         1.4
              4.9
                           3.0
                                         1.4
3
              4.7
                           3.2
                                         1.3
              4.6
                           3.1
                                         1.5
              5.0
                           3.6
                                         1.4
```

**Bhaswar Chakma** Week 12 11 May 2021 4 / 4

## tibble

| # 4 | A tibble: 150 | x 5         |              |             |             |
|-----|---------------|-------------|--------------|-------------|-------------|
|     | Sepal.Length  | Sepal.Width | Petal.Length | Petal.Width | Species     |
|     | <dbl></dbl>   | <dbl></dbl> | <dbl></dbl>  | <dbl></dbl> | <fct></fct> |
| 1   | 5.1           | 3.5         | 1.4          | 0.2         | setosa      |
| 2   | 4.9           | 3           | 1.4          | 0.2         | setosa      |
| 3   | 4.7           | 3.2         | 1.3          | 0.2         | setosa      |
| 4   | 4.6           | 3.1         | 1.5          | 0.2         | setosa      |
| 5   | 5             | 3.6         | 1.4          | 0.2         | setosa      |
| 6   | 5.4           | 3.9         | 1.7          | 0.4         | setosa      |
| 7   | 4.6           | 3.4         | 1.4          | 0.3         | setosa      |
| 8   | 5             | 3.4         | 1.5          | 0.2         | setosa      |
| 9   | 4.4           | 2.9         | 1.4          | 0.2         | setosa      |
| 10  | 4.9           | 3.1         | 1.5          | 0.1         | setosa      |

Bhaswar Chakma Week 12 11 May 2021 6

# ... with 140 more rows

More details:

https://r4ds.had.co.nz/tibbles.html

# data.frame()

```
class(df1)
## [1] "data.frame"

df1

## guitarist year song
## 1 Joe Satriani 1987 Always With Me, Always With You
## 2 Eric Johnson 1990 Cliffs of Dover
```

# tibble()

```
class(df2)
## [1] "tbl df"
                   "tbl"
                                "data frame"
df2
## # A tibble: 2 \times 3
## guitarist year song
## <chr>
                 <dbl> <chr>
## 1 Joe Satriani 1987 Always With Me, Always With You
## 2 Eric Johnson 1990 Cliffs of Dover
```

# tribble()

```
class(df3)
## [1] "tbl df"
                   "tbl"
                                "data frame"
df3
## # A tibble: 2 \times 3
## guitarist year song
## <chr>
                 <dbl> <chr>
## 1 Joe Satriani 1987 Always With Me, Always With You
## 2 Eric Johnson 1990 Cliffs of Dover
```

# Reproducible Example







FIND HELP



CONTRIBUTE



**EXPLORE** 

## Select your code

```
Edit Code View Plots Session Build Debug Profile Tools Help
O → O Go to file/function
                                          # → R → Addins →

□ Untitled1* ×

↓ □ □ □ Source on Save □ Q  

▼ ▼ □ □
                                          Run Source - =
     library(tibble)
     df3 <- tribble(
       ~ guitarist, ~ year, ~ song,
      "Joe Satriani", 1987, "Always With Me, Always With You",
      "Eric Johnson", 1990, "Cliffs of Dover"
```

## Olick Addins then Reprex selection



https://community.rstudio.com/t/test-post-brm-lab-2021-please-do-not-reply/104182

### Test Post: BRM Lab 2021 (Please do not reply) 🖋



r-lab 1.0° 20

FAQ: What's a reproducible example (`reprex`) and how do I create one? meta

Why reprex? Getting unstuck is hard. Your first step here is usually to create a reprex, or reproducible example. The goal of a reprex is to package your code, and information about your problem so that others can run it and feel your pain. Then, hopefully, folks can more easily provide a solution. What's in a Reproducible Example? Parts of a reproducible example: background information - Describe what you are trying to do. What have you already done? complete set up - include any library() calls and data to reproduce your issue. data for a reprex: Here's a discussion on setting up data for a reprex make it run - include the minimal code required to reproduce your error on the data p...





# Export("write")

Boss: Give me

- an Excel file.
- a CSV file.

Colleague (who speaks R):

• Give me your data.

```
df <- gapminder::gapminder %>%
  filter(year >= 2000) %>%
  group by (year, continent) %>%
  summarise(mean life exp = mean(lifeExp)) %>%
  pivot wider(
    names from = year,
    values from = mean life exp
```

```
## # A tibble: 5 \times 3
##
     continent `2002` `2007`
##
    <fct>
               <dbl>
                      <dbl>
## 1 Africa
              53.3 54.8
## 2 Americas
             72.4 73.6
## 3 Asia
                69.2 70.7
## 4 Europe
                76.7
                       77.6
## 5 Oceania
                79.7
                       80.7
```

```
# CSV using readr package
readr::write_csv(df, "data/boss.csv")

# Excel using the writexl package
writexl::write_xlsx(df, "data/boss.xlsx")

# RDS
saveRDS(df, "data/colleague.RDS")
```

# Import("read")

```
readr::read csv("data/boss.csv")
## # A tibble: 5 x 3
##
     continent `2002` `2007`
##
     <chr>
                <dbl>
                       <dbl>
                 53.3 54.8
## 1 Africa
## 2 Americas
             72.4 73.6
## 3 Asia
                 69.2
                        70.7
                 76.7
                     77.6
## 4 Europe
                        80.7
## 5 Oceania
                 79.7
```

#### readxl::read excel("data/boss.xlsx") ## # A tibble: $5 \times 3$ ## continent `2002` `2007` <dbl> ## <chr> <dbl> 53.3 54.8 ## 1 Africa ## 2 Americas 72.4 73.6 69.2 70.7 ## 3 Asia 76.7 77.6 ## 4 Europe 79.7 80.7 ## 5 Oceania

### readRDS("data/colleague.RDS")

```
## # A tibble: 5 \times 3
##
     continent `2002` `2007`
##
                <dbl>
                       <dbl>
     <fct>
                        54.8
## 1 Africa
                 53.3
              72.4 73.6
## 2 Americas
                        70.7
## 3 Asia
                 69.2
                      77.6
## 4 Europe
                 76.7
## 5 Oceania
                 79.7
                        80.7
```

# Survey



# UCP - Business School Survey

• S1: between 17:00 and 18:30.

• S2: between 15:30 and 17:00.

## Regression

```
install.packages("stargazer")
We will use 25.8 An Example
Get the Tables-Equations.Rmd from here
```

Table 1: Results

|          | Dependent variable: |                   |                |  |  |
|----------|---------------------|-------------------|----------------|--|--|
|          |                     |                   |                |  |  |
|          | OLS                 | logistic          | probit         |  |  |
|          | (1)                 | (2)               | (3)            |  |  |
| smoke    | 0.186***            | 1.041***          | 0.635***       |  |  |
|          | (0.071)             | (0.391)           | (0.228)        |  |  |
| race     | 0.081**             | 0.471**           | 0.281**        |  |  |
|          | (0.039)             | (0.213)           | (0.124)        |  |  |
| ht       | 0.377***            | 1.851***          | 1.110***       |  |  |
|          | (0.137)             | (0.690)           | (0.414)        |  |  |
| ui       | 0.188**             | 0.867*            | 0.537**        |  |  |
|          | (0.092)             | (0.451)           | (0.274)        |  |  |
| ftv      | 0.005               | 0.056             | 0.026          |  |  |
|          | (0.031)             | (0.169)           | (0.100)        |  |  |
| age      | -0.004<br>(0.006)   | -0.027<br>(0.035) | -0.017 (0.021) |  |  |
| lwt      | -0.002**            | -0.014**          | -0.008**       |  |  |
|          | (0.001)             | (0.007)           | (0.004)        |  |  |
| Constant | 0.424*              | -0.118            | -0.087         |  |  |
|          | (0.230)             | (1.264)           | (0.744)        |  |  |

```
# ols
m0 <- lm(low ~ smoke + race + ht + ui + ftv + age + lwt,
         data = MASS::birthwt)
# logit
m1 <- glm(low ~ smoke + race + ht + ui + ftv + age + lwt,
          data = MASS::birthwt,
          family = binomial(link = "logit"))
# probit
m2 <- glm(low ~ smoke + race + ht + ui + ftv + age + lwt,
          data = MASS::birthwt,
          family = binomial(link = "probit"))
```

#### **Important:**

- results='asis' must be included
- label = "tab:regression1" is needed for cross-referencing
  - You can regression1; use something else

## Equations

We need LATEX!



## Copy!

 $\label{left} $\left(x+a\right)^n=\sum_{k=0}^{n}{\left(\frac{n}{k}x^ka^{n-k}\right)}$$ 

```
\begin{equation}
 \left(x+a\right)^n=\sum_{k=0}^{n}{\binom{n}{k}x^ka^{n-k}}
 (\#eq:binomial)
\end{equation}
```

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k} \tag{1}$$

# Wrap-up









- https://r4ds.had.co.nz
- https://adv-r.hadley.nz
- https://bookdown.org/yihui/rmarkdown

## Questions?

bhaswar.chakma@ucp.pt