Summary: Exponential

Domain of definition:

- If $f(x) = e^x$, then f is defined for every real number x, therefore $\mathbf{D}_f = \mathbb{R} =]-\infty; +\infty[$. Note that: $e^x > 0$ for every real number x; $e^u > 0$ for every u.

Particular points:

$$e^0 = 1$$
; $e^1 = e$.

Limits:

$$\lim_{x \to -\infty} e^x = \mathbf{0}^+ \; ; \quad \lim_{x \to +\infty} e^x = +\infty \; ; \quad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = \mathbf{0}^+ \; ; \quad \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \; ; \quad \lim_{x \to -\infty} x^{\alpha} \; e^x = \mathbf{0}^-.$$
 Note that x is weaker than e^x .

Derivative:

- If $f(x) = e^x$; $f'(x) = (e^x)' = e^x > 0$ for every real x, then f is **strictly increasing** over \mathbb{R} .

Properties:

$$e^{x} \times e^{y} = e^{x+y} \; ; \; \frac{e^{x}}{e^{y}} = e^{x-y} \; ; \; (e^{x})^{y} = e^{x \cdot y} \; ; \; e^{-x} = \frac{1}{e^{x}} \; ; \; e^{\ln x} = x \; (x > 0) \; ; \; \ln e^{x} = x \; (x \in \mathbb{R}).$$

Equation and inequation:

- $e^x = e^y$ is equivalent to x = y for every x and y.
- $e^x > e^y$ is equivalent to x > y for every x and y.
- $e^x < e^y$ is equivalent to x < y for every x and y.
- $e^x = a$ is equivalent to $x = \ln a$ where a > 0.

Note that: $e^x = a$ where $a \le 0$ is impossible equation and has no solution.

- $e^x > a$ is equivalent to $x > \ln a$ where a > 0.
- $e^x < a$ is equivalent to $x < \ln a$ where a > 0.

Antiderivative and exponential function:

$$\int e^x dx = e^x + C \quad ; \quad \int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C \quad ; \quad \int u'e^u dx = e^u + C \text{ (by change of variable)}.$$

1