John Smith, Ph.D.

Department of Computer Science University Name

Email: email@university.edu Website: www.university.edu

July 13, 2025

Introduction to Q-learning and SARSA

Overview

In this chapter, we will explore two fundamental algorithms in Reinforcement Learning: **Q-learning** and **SARSA**. These algorithms are critical for learning optimal policies to maximize cumulative rewards in an environment.

Key Concepts - Part 1

■ Reinforcement Learning Basics:

- An agent interacts with an environment through actions.
- Receives feedback in forms of rewards to update its knowledge.
- Objective: Learn a policy that maximizes expected rewards.

Q-learning:

- A model-free, off-policy algorithm.
- Learns the value of actions in a state, known as the **Q-value**.

SARSA:

■ An on-policy algorithm that updates Q-values based on the agent's actions.

Key Comparisons

Feature	Q-learning	SARSA
Policy Type	Off-policy	On-policy
Update Rule	Uses maximum Q-value	Uses the action taken
Exploration Strategy	More flexible	More conservative
Convergence	Guarantees under certain conditions	Converges at the current policy

Table: Comparison of Q-learning and SARSA

Mathematical Notation

Q-value Update Equation (Q-learning):

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$
(1)

Q-value Update Equation (SARSA):

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma Q(s',a') - Q(s,a) \right)$$
 (2)

- Where:
 - s = current state
 - a = action taken
 - r = reward received
 - $\mathbf{s}' = \text{next state}$
 - a' = action taken in next state
 - α = learning rate
 - $\gamma =$ discount factor

Overview of Q-learning and SARSA

Key Concepts

Introduction to Reinforcement Learning (RL) strategies, focusing on Q-learning and SARSA as foundational algorithms.

Q-learning

- **Definition**: Q-learning is an off-policy method that learns the value of the optimal policy regardless of the actions taken.
- Q-value Update Rule:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R + \gamma \max_{a} Q(s',a') - Q(s,a)\right)$$
(3)

- s: current state
- a: action taken
- R: reward received after taking action a
- \bullet s': next state after taking action a
- γ : discount factor
- lacksquare α : learning rate
- **Example**: In a grid world, reaching a goal state might update the Q-value to reflect a reward of +10.

SARSA: State-Action-Reward-State-Action

- **Definition**: SARSA is an on-policy method that updates Q-values based on the agent's actual actions, learning from the current policy.
- Q-value Update Rule:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R + \gamma Q(s',a') - Q(s,a)\right) \tag{4}$$

- \bullet a': next action taken in state s'
- **Example**: Different actions taken in the grid world will affect Q-values, potentially leading to slower convergence.

Comparison of Q-learning and SARSA

- Learning Type:
 - Q-learning: Off-policy
 - SARSA: On-policy
- **Exploration vs. Exploitation**: Both implement epsilon-greedy strategies.

J. Smith

Conclusion - Chapter 3: Q-learning and SARSA

- Summary of reinforcement learning algorithms focusing on Q-learning and SARSA.
- Importance of understanding off-policy and on-policy methods.
- 3 Practical implications and applications in various domains.

Summary of Key Concepts

Q-learning

- Off-policy reinforcement learning algorithm.
- Learns optimal action value without any environmental model.
- Q-value update:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

Summary of Key Concepts (continued)

SARSA (State-Action-Reward-State-Action)

- On-policy reinforcement learning algorithm.
- Q-value updates based on the action taken in the next state:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma Q(s', a') - Q(s, a) \right]$$

Comparison

- Q-learning: off-policy, learns optimal policy independently of agent's behavior.
- SARSA: on-policy, learns from actions taken by current policy.

Practical Implications and Key Points

- Q-learning more effective in exploratory contexts.
- SARSA preferred in safety-critical environments.
- Both methods focus on maximizing cumulative rewards through interaction.
- Understanding exploration vs. exploitation is critical for algorithm effectiveness.

Application Example

Game Playing

- Q-learning: Suitable for complex games allowing aggressive exploration (e.g., chess).
- SARSA: Better for scenarios where safety matters (e.g., human-robot interactions).