Introduction to Machine Learning

Evaluation: Cost Curves

Learning goals

- Understand cost curves
- As alternative to ROC curves

COST CURVES

- Directly plot the misclassif costs / error
- Might be easier to interpret than ROC, especially in case of different misclassif costs or priors

Example:

- f_1 and f_2 with intersecting ROC curves
- f_2 dominates first, then f_1

BUT: Unclear for which thresholds, costs or class distribs f_2 better than f_1

Nathalie Japkowicz (2004): Evaluating Learning Algorithms : A Classification Perspective. (p. 125)

COST CURVES

With law total probab, can write misclassif rate as function of π_+ :

$$\begin{split} \rho_{\textit{MCE}}(\pi_{+}) &= (1 - \pi_{+}) \cdot \mathbb{P}(\hat{y} = 1 | y = 0) + \pi_{+} \cdot \mathbb{P}(\hat{y} = 0 | y = 1) \\ &= (1 - \pi_{+}) \cdot \textit{FPR} + \pi_{+} \cdot \textit{FNR} \\ &= (\textit{FNR} - \textit{FPR}) \cdot \pi_{+} + \textit{FPR} \end{split}$$

Can do the same for costs:

$$extit{Costs}(\pi_+) = (1 - \pi_+) \cdot extit{FPR} \cdot extit{cost}_{FP} + \pi_+ \cdot extit{FNR} \cdot extit{cost}_{FN}$$
 $extit{Costs}_{norm}(\pi_+) = rac{(1 - \pi_+) \cdot extit{FPR} \cdot extit{cost}_{FP} + \pi_+ \cdot extit{FNR} \cdot extit{cost}_{FN}}{(1 - \pi_+) \cdot extit{cost}_{FP} + \pi_+ \cdot extit{cost}_{FN}} \in [0, 1]$

- Denominator = max(Costs) = all obs misclassified (i.e., FPR = FNR = 1).
- If $cost_{FN} = cost_{FP}$, than $Cost_{norm} = \rho_{MCE}$

Confusion matrix					
		True class			
		y = 1	y = 0		
Pred.	ŷ = 1	TP	FP		
class	$\hat{y} = 0$	FN	TN		

Cost matrix							
		True class					
		y = 1	y = 0				
Pred.	ŷ = 1	0	cost _{FP}				
class	$\hat{y} = 0$	cost _{FN}	0				

COST CURVES

- Simplifying assumption: equal misclassification costs, i.e., $cost_{FN} = cost_{FP}$.
- Normalized costs (or error rate in the case of $cost_{FN} = cost_{FP}$) is plotted as a function of the proportion of positive instances, $\pi_+ = \mathbb{P}(y = 1)$.
- Cost curves are point-line duals of ROC curves, i.e., a single classifier is represented by a point in the ROC space and by a line in the cost space.

Chris Drummond and Robert C. Holte (2006): Cost curves: An improved method for visualizing classifier performance.

Machine Learning, 65, 95-130 (URL).

Cost curve of a classifier with slope (FNR - FPR) and intercept FPR:

$$\rho_{MCE}(\pi_+) = (FNR - FPR) \cdot \pi_+ + FPR$$

- Hard classifiers are points (TPR, FPR) in ROC space
- The cost curve of a classifier connects (π₊, ρ_{MCE})-points at (0, FPR) and (1, 1 – TPR)
- Classifier 3 always dominates classifier 1
- Classifier 3 is better than classifier 2 when $\pi_+ < 0.7$

Cost curves plot different values of

- Horizontal dashed line: worst classifier (100% error rate for all π_+). $\Rightarrow FNB = FPB = 1$
- x-axis: perfect classifier (0% error rate for all π_+). \Rightarrow FNR = FPR = 0

- Horizontal dashed line: worst classifier (100% error rate for all π_+). \Rightarrow *FNR* = *FPR* = 1
- x-axis: perfect classifier (0% error rate for all π_+). \Rightarrow FNR = FPR = 0
- Dashed diagonal lines: trivial classifiers, i.e., ascending diagonal always predicts negative instances (\$\Rightarrow\$ FNR = 1 and FPR = 0) and vice versa.

 $\rho_{\textit{MCE}} = (\textit{FNR} - \textit{FPR}) \cdot \pi_{+} + \textit{FPR}$ $\begin{array}{c|c} & \text{Confusion matrix} \\ & \text{True class} \\ & y = 1 \quad y = 0 \\ \hline \\ \textit{Pred.} \quad \hat{y} = 1 \quad \textit{TP} \quad \textit{FP} \\ \textit{class} \quad \hat{y} = 0 \quad \textit{FN} \quad \textit{TN} \\ \end{array}$

- Horizontal dashed line: worst classifier (100% error rate for all π_+). \Rightarrow *FNB* = *FPB* = 1
- x-axis: perfect classifier (0% error rate for all π_+). \Rightarrow FNR = FPR = 0
- Dashed diagonal lines: trivial classifiers, i.e., ascending diagonal always predicts negative instances (⇒ FNR = 1 and FPR = 0) and vice versa.
- Descending/ascending bold lines: two families of classifiers A and B (represented by points in their respective ROC curves).

$\rho_{MCE} = (FNR - FPR) \cdot \pi_{+} + FPR$

	Confusi	on matrix True class		
		<i>y</i> = 1	y = 0	
Pred.	ŷ = 1	TP	FP	
class	$\hat{y} = 0$	FN	TN	

ROC CURVES VS. COST CURVES

- ROC curves do not indicate in which situations classifier A is superior to another classifier B.
- Cost curves can do exactly that and therefore provide practically more relevant information than ROC curves.
- For simplification, we focused on cost curves based on the misclassification error by assuming cost_{FN} = cost_{FP}. However, cost curves can also be defined for different misclassification costs.