细胞的增殖/分化/凋亡

<mark>笔记源文件: <u>Markdown</u>, 长</mark>图, <u>PDF, HTML</u>

1. 细胞周期与细胞周期调控

1.1. 细胞分裂概述(红线为周期检验点)

阶段	描述
G_1 期	染色体凝集,合成蛋白糖类脂肪RNA,准备合成DNA
G_1 期限制点	决定细胞是否进入新一轮细胞周期,不进入的停留在 G_1 期,称之为 G_0 期
S期	DNA复制,组蛋白合成,组装成核小体
G_2 期	合成蛋白和RNA,存在检验点(检验DNA是否复制完成)
M期	分裂期

补充

- 1 细胞周期长短取决于G1长短
- 2细胞周期的三类细胞:周期中(一直分裂), G₀(暂时不分裂),终末分化(不分裂)

1.2. 细胞周期的调控

细胞周期蛋白依赖的蛋白激酶复合物(CDK)调控

1.2.1. 原理基础

1 结构: 周期蛋白 $\operatorname{cyclin} \xrightarrow{\operatorname{4fe} \operatorname{Ann} + \operatorname{4fe} \operatorname{Ann} + \operatorname{4fe$

2 Cyclin含量周期变化,会被降解

3 CDK蛋白激酶活性周期性变化,只有和Cyclin结合才有活性,不会被降解

⁴ MPF=cdk+Cyclin

1.2.2. 调控大致流程

1 DNA复制前

 G_0 细胞 $\xrightarrow[\text{cyclin D-bcdk4}]{\text{edglin D-bcdk4}}$ 推进细胞周期 $\xrightarrow[\text{dhediag}]{\text{cyclin E-bcdk2}}$ 推进细胞周期 $\xrightarrow[\text{dhediag}]{\text{cyclin E-bcdk2}}$ 进入S期 $\xrightarrow[\text{cdk2}]{\text{cdk2}}$ $\xrightarrow[\text{cdk2}]{\text{cdk2}}$ $\xrightarrow[\text{homographical E-bcdk2}]{\text{cdk2}}}$ DNA复制

2 DNA复制完后

1.2.3. 调控细节

 ${f 1}$ ${f CDK}$ 通过磷酸化 ${f Rb}$ 释放 ${f E2F}$ 推动细胞通过 ${f G_1}$ 期检验点

1. G₁中期

Rb蛋白 + 转录因子E2F(抑制转录) $\xrightarrow{\text{cyclin D-cdk4/6部分磷酸}(Rb)}$ 释放部分E2F转录活性

2. G1末期

 $E2F \rightarrow$ 转录生成cyclin E-cdk2 \rightarrow 完全磷酸化 $Rb \rightarrow$ 释放所有 $E2F \rightarrow$ 生成更多cyclin E-cdk2

2 DNA损伤检验点: G1/S and G2/M期检验点

 ${
m DNA}$ 损伤 ightarrow 激活p53基因表达出p53蛋白 ightarrow 刺激p21基因表达出p21蛋白 ightarrow p21结合 ${
m S-cdk}$ 阻止进入 ${
m S/M}$ 期

2. 细胞分裂: 无丝/有丝/减数

时 期	标志性事件	
前期	・ 染色质凝缩・ 细胞分裂极确立, 纺锤体开始装配・ 核仁解体, 细胞器分离	
前中期	核膜崩解完成纺锤体装配,形成有丝分裂器染色体整列	
中期	・染色体排列到赤道面上	
后期	・姐妹染色单体分离	
末期 胞质分裂	 染色体在纺锤体两端聚集,解凝缩 核膜重新组装 细胞器重新形成 动物细胞:形成收缩环、分裂沟 植物细胞:形成细胞板 形成两个子细胞 	

2.2. 减数分裂

1基本过程

1. 减数分裂I(同源染色体的分离) + 减数分裂II(姐妹染色单体的分离)

2. 间期的详细补充

- 2 减数分裂的生物学意义
 - 1. 染色体数目世代恒定
 - 2. 遗传三大定律的细胞学基础
 - 3. 产生可遗传的变异(交叉互换, 随即交换
- 3 精子卵子的发生

- 1. 男性出生时携带的是精原细胞
- 2. 女性出生时携带的是初级卵母细胞,排卵排出的是次级卵母细胞,卵子受精的标志是在卵细胞膜和透明带间看到两个极体

3. 癌细胞

1基本概念

1. 癌:起源于上皮组织的恶性肿瘤,有浸润和转移能力

2. 癌细胞: 增殖失控, 能侵袭和转移的变异细胞

2 癌细胞基本特征(记住)

1. 过度生长增殖,可以侵袭转移,异常蛋白表达,异常能量代谢,失去接触抑制,基因组不稳定

2. Ps. 正常细胞体外培养: 贴壁, 接触抑制

3 癌症发生过程:增生→异常增生→恶性增生

4 癌症治疗: 传统策略, 靶向策略, 肿瘤免疫治疗

4. 细胞分化

<mark>4.1. 定义</mark>

4.2. 分化的发生

1基因的分类(要能举例)

1. 管家基因: 所有细胞中均要表达,产物维持细胞基本生命活动,辅助分化

2. 组织特异性基因:特定分化细胞中表达,产物赋予细胞特异性结构功能,不影响细胞生存

2 基因的差异表达: 基因不同顺序表达 → 不同的细胞类型的出现

4.3. 干细胞: 自我更新+分化潜能细胞

1 干细胞种类 I (按照分化潜能)——要求能举例

类型	能力	示例
全能干细胞	能产生完整个体	植物细胞、受精卵、16个细胞内的早期卵裂球细胞
多潜能干细胞	能发育成任一种机体细胞	胚胎干细胞,iPS细胞
多能干细胞	能分化成有限类细胞	造血干细胞
单能/寡能干细胞	只能分化成一种/几种细胞	如神经干细胞, 表皮干细胞

2 干细胞分类Ⅱ(按来源)

类型	能力
成体干细胞	已经分化组织中的未分化细胞,能分化成该组织中任意类型细胞
胚胎干细胞	囊胚阶段的内细胞团,可以分化发育成任意一种机体细胞
诱导多能干细胞	已分化细胞变干细胞

5. 细胞死亡

5.1. 细胞死亡方式

1 凋亡与坏死

比较内容	细胞凋亡	细胞坏死
质膜	不破裂	破裂
细胞核	固缩,DNA片段化	弥漫性降解
细胞质	由质膜包围形成凋亡小体	溢出,细胞破裂成碎片
细胞质生化改变	溶酶体的酶增多	溶酶体解体
蛋白质合成	有	无
基因活动	有基因调控	无基因调控
自吞噬	常见	缺少
线粒体	自身吞噬	肿胀
诱发因素	生理性信号	强烈刺激信号
对个体影响	生长、发育、生存所必需	引起炎症

1. 凋亡: 细胞程序性死亡, 由基因控制, 复杂信号调节

2. 坏死:细胞病理上被杀

2细胞自噬: Ⅱ型程序性细胞死亡

1. 意义: 一种自我保护机制

3. 功能: 饥饿条件的应激, 防御微生物入侵, 销毁衰老细胞器延长寿命, 控制癌变细胞死亡

5.2. 凋亡的形态学改变和生理生化特征

