# NeuPrint Manual



An introduction to NeuPrint and the Cypher Query Language

# **Table of Contents**

# **Basics of NeuPrint**

| Neo4j and NeuPrint Introduction       | 2     |
|---------------------------------------|-------|
| Important Data Set Properties         | 3     |
| NeuPrint and Cypher Query Language    |       |
| NeuPrint Data Model                   | 4-6   |
| Cypher Query Language                 | 7     |
| NeuPrint Cypher Clauses               | 8-10  |
| MATCH                                 | 8     |
| WHERE                                 | 9     |
| RETURN                                | 10    |
| Cypher - Additional Features          | 11-13 |
| Additional Clauses                    | 11    |
| Cypher Syntax                         | 12    |
| Regex and Special Characters          | 12    |
| Neuron Node Label (Segment vs Neuron) | 13    |
| Pathway Query                         | 13    |
| NeuPrint Datasets Meta Node           | 13    |
| Property Use Index                    | 14-15 |
| Glossary of Terms                     |       |
| NeuPrint                              | 16    |
| NeuPrint Data Model                   | 17    |
|                                       |       |
| Biology                               | 18    |

# Introduction to Neo4j and NeuPrint



## Neo4j

**Neo4j** is a graph database that Neuprint is built on. Stores massive amounts of data as linked lists and index tables. One can traverse relationships between elements in the data model by following links (memory pointers)

**Nodes** are entities in the graph can hold properties can be tagged with labels

**Relationships** are connections between nodes have a type, direction, start and end node can hold properties

**Properties** are key-value pairs stored on nodes or relationships

## **NeuPrint**

NeuPrint - A set of tools for loading and analyzing connectome data into a Neo4j database

**NeuPrint Explorer** - A single page web application that provides simple interfaces to query an EM connectome stored in NeuPrint

**NeuPrint Python** - Python client utilities for interacting with the NeuPrint connectome analysis service. For information about installing and running neuprint-python see the neuPrint-python Manual

NeuPrint API - REST interface for neuPrint

## **NeuPrint Datasets**

**Hemibrain:v1.0** - Dataset containing nearly half of a female adult Drosophila brain. Imaged to include central complex and right hemisphere mushroom body. This dataset has been frozen and reflects the data cited in the neuprint paper

Additional datasets may be added in the future

# **Important Properties**



# **Body IDs**

**Overview.** A **body** is generated by automatically predicting cell membranes in electron microscopy images of brain tissue. Bodies are manual proofread to correct errors made by the automatic segmentation algorithm and then assigned a **status** depending on their size/completeness. Statuses can be assigned automatically or manually by proofreaders and biologists.

| Status      | Description                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traced      | A body more complete than 'Roughly traced' (usually traced by a lab) and validated by a biological expert (Shin-ya Takemura, Kazunori Shinomiya)                    |
| Orphan      | A body that can't be traced and does not exit the volume                                                                                                            |
| Assign      | Small body that is within the set required for a 0.5 connectome - Has approximately $\geq$ 2 T-bars or $\geq$ 10 PSDs (starting bodies for OL and focused workflow) |
| Unimportant | A body irrelevant to reconstructing neurons and the connectome such as glial profiles and out-of-bounds bodies                                                      |

# **Neuron Types and Instances**

**Overview.** The **type** property contains the general neuron type. Neuron **instance** contains names more specific to the individual neuron or neuron subtype.

**Nomenclature.** The nomenclature of neuron type and instances can be found in section 2.7 of the hemibrain paper.

e.g. The format abc\_X indicates neuron of morphology abc of connectivity subtype X.

# **Brain Regions**

**Overview.** A brain region (also referred to as "region of interest" or ROI) is a volumetric area of the dataset often marked by the boundaries of a neuropil, or a synaptically dense brain region. The hemibrain dataset also contains brain regions marked by fiber bundles, or a collection of neuronal projections with a low density of synapses. The hemibrain dataset contains 109 manually annotated brain regions. For more information about creating brain regions, see section 2.5 of the paper *A Connectome of the Adult Drosophila Central Brain*.

**Organization.** Brain regions are organized into supercategories and may contain subregions. For hierarchical organization and abbreviations see the **Brain Region Explorer**.

**Nomenclature.** The nomenclature of brain regions of the hemibrain mostly follow *A Systematic Nomenclature for the Insect Brain.* More information can be found in section 1.1 of *A Connectome of the Adult Drosophila Central Brain.* 



### Neuron nodes connect to other Neuron nodes

**Neuron** nodes hold neuron properties (body Id, instance, status, etc.)

**ConnectsTo** relationships hold connection properties (weight, ROI info)





## Neuron nodes contain synapse set nodes

Synapse set nodes connect to Synapse Set nodes from other Neuron nodes

Synapse Set nodes hold Synapse Set properties (size, ROI info)





### Synapse set nodes contain Synapse nodes

**Synapse** nodes **connect to Synapse** nodes from other **Synapse Set** nodes **Synapse** nodes hold **Synapse** properties (type, location, etc.)



# Cypher Query Language



**Cypher** is Neo4j's query language. Queries are composed of multiple clauses. The following are the most common clauses:

MATCH - specifies the pattern Neo4j will search for in the graph WHERE - adds content to the query and filters the search results RETURN - defines what information to include in the results

### **EXAMPLE**

Return body ID, instance, and number of connections between input neuron 1315529069 and output neuron(s)

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.bodyId = 5813020698
RETURN b.bodyId, b.instance, w.weight
```

Use (:`dataset-Neuron`) when using neuPrint Python API i.e. (:`hemibrain-Neuron`)

### **NeuPrint Data Model**



**MATCH clause** - *Input hemibrain neuron (a) connects to output hemibrain neuron (b)* 

MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)

a, b, and w are variables assigned to nodes and relationships. Use variable.property in the WHERE or RETURN clause to reference a node or relationship property

(:`hemibrain-Neuron`) specifies hemibrain dataset label and neuron node type

-[:ConnectsTo]-> specifies relationship type and direction

WHERE clause - The body ID (bodyId) of input neuron (a) is 1315529069

**WHERE a.**bodyld = 1315529069

**RETURN clause** - Return body ID (bodyId) and instance (instance) of output neuron (b). Return number of connections (w.weight) from input neuron (a) to output neuron (b)

**RETURN b**.bodyld, **b**.instance, **w**.weight

### **Results Table**

| b.bodyId  | b.instance    | w.weight |  |
|-----------|---------------|----------|--|
| 294800293 | FB07a(SFS1)_R | 69       |  |
| 885262311 | FB07c(SFS1)_R | 64       |  |
| 850764542 | Delta6e_04    | 55       |  |
| :         | :             | :        |  |

# **NeuPrint Cypher - MATCH**

The **MATCH** clause specifies the pattern Neo4j will search for in the graph. The MATCH clause syntax closely follows the graph data model. To write efficient queries, search the graph for as few nodes as possible

### **MATCH CLAUSE EXAMPLES** - Search graph for:

Neuron nodes

```
MATCH (:Neuron)
```

(:`Label`) specifies a node in the graph tagged with a label

Synapse nodes contained in a hemibrain neuron node

```
MATCH(:Neuron)-[:Contains]->(:`SynapseSet`)-[:Contains]->(:Synapse)
```

-[:Type]-> specifies a relationship in the graph with a type and direction

Neuron nodes that connect to neuron nodes

```
MATCH (:Neuron)-[:ConnectsTo]->(:Neuron)
```

Neuron nodes that connect to neuron nodes via synapse set nodes

```
MATCH (:Neuron)-[:Contains]->(:`SynapseSet`)-[:ConnectsTo]->
(:`SynapseSet`)<-[:Contains]-(:Neuron)
```

Neuron nodes that connect to neuron nodes via synapse nodes

```
MATCH (:Neuron)-[:Contains]->(:`SynapseSet`)-[:Contains]->(:SynapseSet`)<-[:SynapsesTo]->(:Synapse)<-[:Contains]-(:`SynapseSet`)<-[:Contains]-(:Neuron)
```



# NeuPrint Cypher - WHERE



The **WHERE** clause uses properties of nodes and relationships in the MATCH clause to filters the search results. Note: The WHERE clause is optional

### **WHERE CLAUSE EXAMPLES** - Filter on:

*Neuron node property (bodyld)* 

```
MATCH (a:Neuron)
WHERE a.bodyld = 707854989

MATCH (a:Neuron)
```

WHERE a.bodyld IN [707854989, 707863263, 707858790]

WITH [707854989, 707863263, 707858790, 1011797706, 917647959] AS bodyID\_list UNWIND bodyID\_list AS bodyID MATCH (a:Neuron)
WHERE a.bodyId = bodyID

Use IN operator to specify multiple values for a given property

*Neuron node property (instance)* 

```
MATCH (a:Neuron)
WHERE a.instance = "MBON.*"
```

Use regular expressions to filter by strings.

See 'Regex and Special Characters' on page 13 for information about regular expressions

Neuron node property (bodyld, status) and ConnectsTo relationship property (weight)

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.bodyId = 707863263 AND w.weight > 5 AND NOT b.status = "Traced"
```

Use boolean operators (AND, OR, XOR, NOT) in the WHERE clauses to add filters Use inequality operators (<, <=, >, >=) to check if value is inside certain range

ConnectsTo relationship property (roiInfo)

```
MATCH (:Neuron)-[w:ConnectsTo]->(:Neuron)
WHERE apoc.convert.fromJsonMap(w.roiInfo)["SMP(R)"] > 5
```

Use apoc.convert.fromJsonMap to access values within the roiInfo string. Can also use apoc.convert.fromJsonMap in the RETURN clause

```
MATCH (:Neuron)-[w:ConnectsTo]->(:Neuron)
WHERE apoc.convert.fromJsonMap(w.roiInfo)["SMP(R)"] IS NOT NULL
```

Use IS NULL or IS NOT NULL to check if property exist. Null is used to represent missing or undefined values

Synapse node property (<roi>)

```
MATCH (:Neuron)-[:Contains]->(:`SynapseSet`)-[:Contains]->(s:Synapse)
WHERE s.`CA(R)` OR s.`a'L(R)`
```

The <ROI> property on neuron and synapse nodes are boolean values. If the neuron node contains a synapse in an ROI (brain region) or a synapse node is located in an ROI, the ROI exists as a property on the node. To check if the property exists, use property.ROI. Use back quotes (`) around the ROI.

# NeuPrint Cypher - RETURN



The **RETURN** clause defines what information to include in the results

### <u>RETURN CLAUSE EXAMPLES</u> - Return:

Neuron node properties (bodyld, instance, status)

```
MATCH (a:Neuron)
WHERE a.instance =~ "MBON.*"
RETURN a.bodyld, a.instance, a.status
```

Use comma to separate return items. Each item will be a column in the results table

Neuron node properties (bodyld, instance) and ConnectsTo relationship property (weight)

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.instance =~ 'MBON.*' AND w.weight > 10
RETURN a.bodyld AS InputID, w.weight AS weight, b.bodyld AS OutputID, b.instance AS OutputInstance
```

Use AS <new name> to rename a column in the results table

Neuron node properties (bodyld, instance) and calculated value (pre + post)

```
MATCH (a:Neuron)
WHERE a.instance =~ 'MBON.*'
RETURN a.bodyld, a.instance, (a.pre + a.post) AS total_synapses
```

Use mathematical operators (+, -, \*, /, %, ^) to calculate value in results table

Number of neuron nodes

```
MATCH (a:Neuron)
WHERE a.instance =~ 'MBON.*'
RETURN count(a)
```

Use aggregating function (count(), sum(), avg(), min(), max()...) to aggregate data

Neuron node property (type), number of neuron nodes (count(type)), total number of connections (sum(weight))

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE b.bodyId = 5813020698 AND NOT a.type IS NULL
RETURN a.type, count(a.type), sum(w.weight) AS W
```

Synapse node property (location)

```
MATCH (a:Neuron)-[:Contains]->(:SynapseSet)-[:Contains]->(:Synapse)
-[:`SynapsesTo`]->(s:Synapse)<-[:Contains]-(:SynapseSet)<-[:Contains]-(b:Neuron)
WHERE a.bodyId = 5813020698 and b.bodyId = 294800293
RETURN s.type, s.location.x, s.location.y, s.location.z
```

Unique neuron node property (bodyld, instance) and total number of connections (sum(weight))

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.instance = '.*ring.*'
RETURN DISTINCT b.bodyId, b.instance, sum(w.weight)
```

Use DISTINCT operator to return unique values

# Cypher - Additional Features



## Additional Cypher Clauses. For more information see Cypher Manual: Clauses

ORDER BY - follows RETURN or WITH to sort output in ascending (ASC) or descending (DESC) order WITH - allows manipulation of output before being passed to following parts of the query UNWIND - transforms list into individual rows

SKIP - defines from which row to start including the rows in the output

LIMIT - limits the number of results returned

UNION - combines results of 2 or more queries and removes duplicates.

UNION ALL - same as UNION, but does not remove duplicates from the result set

OPTIONAL MATCH - specifies patterns to search for in the database while using nulls for missing parts of the pattern

### **EXAMPLES**

ORDER BY and LIMIT. Returns top 20 outputs of given neuron. Results ordered by weight

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.bodyld = 949710555
RETURN b.bodyld, w.weight AS W
ORDER BY W DESC
LIMIT 20
```

**UNION**. Return presynaptic and postsynaptic connections to a neuron in a single results table

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE a.bodyld = 949710555 AND w.weight >= 5
RETURN a.bodyld AS InputID, w.weight AS W, b.bodyld AS OutputID
UNION
MATCH (a:Neuron)<-[w:ConnectsTo]-(b:Neuron)
WHERE a.bodyld = 949710555 AND w.weight >= 5
RETURN a.bodyld AS InputID, w.weight AS W, b.bodyld AS OutputID
```

Note: The number and names of columns must be identical in queries combined with UNION. If a query times out, splitting it up into multiple queries and uniting them with UNION may make it run.

**OPTIONAL MATCH**. Returns outputs to a given neuron. If connection does not exist, returns null

```
MATCH (a:Neuron)
WHERE a.bodyld IN [1348653495, 1251032454, 5812990157]
OPTIONAL MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)
WHERE b.bodyld = 1313038188 AND w.weight > 4
RETURN a.instance, w.weight, b.bodyld
```

Note: When using OPTIONAL MATCH, query must also include a MATCH clause

Multiple MATCH clauses. Finds neurons both upstream of 1570922129 and downstream of 5813027266

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)

MATCH (b:Neuron)-[w2:ConnectsTo]->(c:Neuron)

WHERE a.bodyId = 981194127 AND c.bodyId = 5813057404

RETURN b.instance, b.bodyId, w.weight, w2.weight, sum(w.weight + w2.weight) AS sumweight

ORDER BY sumweight DESC
```

# **Cypher - Additional Features**

**Cypher Syntax**. There are often multiple ways to write the same query. For more information see Cypher Manual: Syntax

### **EXAMPLES**

Search for hemibrain neuron node with body ID 5901213440

```
MATCH (a:Neuron)
WHERE a.bodyld = 5901213440
OR
MATCH (a:Neuron{bodyld:5901213440})
OR
MATCH (a:Neuron)
WHERE a.bodyld IN [5901213440]
OR
UNWIND [5901213440] AS ID
MATCH (a:Neuron)
WHERE a.bodyld = ID
```

Filter by neurons with Delta6 in the instance

```
WHERE a.instance =~ '.*Delta6.*'

OR

WHERE a.instance CONTAINS "Delta6"
```

Search for hemibrain neurons in the LO

```
MATCH (a:Neuron{`LO(R)`:true})
OR
MATCH (a:Neuron)
WHERE a.`LO(R)`
```

**Regex and Special Characters.** A regular expression is a string of characters defining a search pattern. Specific characters are reserved for special use. To use these reserved characters as part of the search pattern, escape them.

### **EXAMPLES**

Writing regular expressions

```
WHERE a.instance = "KC.*"
```

Indicates 'KC' is at the beginning of the instance

```
WHERE a.instance =~ '.*KC.*'
```

Indicates 'KC' is at the beginning, middle, or end of the instance

```
WHERE a.instance =~ '.*KC'
```

Indicates 'KC' is at the end of the instance

Escape special characters ()

```
MATCH (a:Neuron)
WHERE a.instance =~ "ExR3\\(ring\\).*"
RETURN a.bodyld, a.instance
```

# Cypher - Additional Features

**Neuron Node Labels (Segment vs Neuron)**. All neuron nodes have a **Segment** label. However, only neuron nodes with 2 or more presynaptic sites or 10 or more postsynaptic sites have a **Neuron** label. Therefore, use the **Segment** label in the MATCH clause to query ALL neuron nodes

### **EXAMPLE**

Search for all hemibrain neuron nodes with 1 presynaptic site in CA and under 300000 voxels

```
MATCH (a:Segment)
WHERE a. `CA(R)` AND apoc.convert.fromJsonMap(a.roiInfo)["CA(R)"].pre = 1 AND a.size < 30000
RETURN a.bodyld, a.size
```

**Pathway Query.** Use multiple ConnectsTo relationships in the MATCH clause to query pathways. Note: Result tables can get large quick. Use filters on nodes and connections

### **EXAMPLE**

Find one hop pathways from MBONs to FB07 neurons

```
MATCH (a:Neuron)-[w:ConnectsTo]->(b:Neuron)-[w2:ConnectsTo]->
(c:Neuron)
WHERE a.instance =~ 'MBON.*' AND c.instance =~ 'FB07.*' AND w.weight >= 5 AND w2.weight >= 5
RETURN a.bodyld, a.instance, w.weight, b.bodyld, b.instance, w2.weight, c.bodyld, c.instance
ORDER BY w.weight DESC
```

**META node.** Each dataset stored in NeuPrint contains a META node. The META nodes holds dataset properties

### **EXAMPLES**

Total number of presynaptic and postsynaptic sites in the Hemibrain dataset

```
MATCH (m:Meta)
WHERE m.dataset = "hemibrain"
RETURN m.totalPreCount, m.totalPostCount
```

Threshold for high confidence (weightHP) synapses in the Hemibrain dataset

```
MATCH (m:Meta)
RETURN m.postHPThreshold, m.preHPThreshold
```



dataset: "string" lastDatabaseEdit: timestamp latestMutationId: int64 meshHost: "string" (json) neuroglancerlnfo: "string" (json) postHighAccuracyThreshold: float preHPThreshold: float preHPThreshold: float roilnfo: "string" (json) primaryRois: array ("string") totalPostCount: int totalPreCount: int

**Uuid: "string"** 

# **Property Use Index - Neuron**

**bodyld**: unique numerical identifier

WITH

[123,456,789] AS TARGETS

MATCH

(x:Neuron{bodyld:123})

WHERE

x.bodyld = "123"

x.bodyld IN [123,456,789]

RETURN

x.bodyld

cropped: boolean indicating if a significant portion of the body leaves the imaged area

MATCH

(x:Neuron{cropped:True})

WHERE

x.cropped = True

x.cropped IS NULL

RETURN

N/A (will return blank or NULL)

instance: individual neuron name

WHERE

- x.instance = "KCg-d"

x.instance =~ '.\*Delta6d.\*'

x.instance STARTS WITH "KC"

x.instance CONTAINS "KC"

RETURN

x.instance

post: number of postsynaptic sites

**MATCH** 

(x:Neuron{post:50})

WHERE

x.post >= 50

RETURN

x.post

(x.post + x.pre)

**pre**: number of presynaptic sites

**MATCH** 

(x:Neuron{pre:50})

WHERE

x.pre > 50

RETURN

x.pre

(x.pre + x.post)

size: volume of body in voxels

WHERE

- x.size > 30000

RETURN

x.size

roilnfo: the ROIs this neuron is in

WHERE

(apoc.convert.fromJsonMap(x.roiInfo)["C A(R)"]) IS NULL

NOT

(apoc.convert.fromJsonMap(x.roiInfo)["S LP(R)"]) IS NULL

RETURN

(apoc.convert.fromJsonMap(x.roiInfo)["a"

(apoc.convert.fromJsonMap(x.roiInfo)["C A"]).post

x.roiInfo

**somaLocation**: cartesian location of soma

WHERE

x.location.x > 2000+500

x.location.y <= 2000

x.location.z >= 2000

RETURN

x.location

x.location.x, x.location.y, x.location.z

[x.location.x, x.location.y, x.location.z]

somaRadius: radius of soma

WHERE

x.somaRadius < 20000

RETURN

x.somaRadius

**status**: tracing completion level of a neuron

WHERE

x.status = "Traced"

x.status CONTAINS "Orphan"

x.status IS NULL

NOT x.status IS NULL

RETURN

x.status

type: neuron cell type

WHERE

x.type = "KCg"

x.type CONTAINS "KC"

RETURN

x.type

<roi>: boolean for each ROI (brain region), true if

neuron is in the ROI, false if not

MATCH

(x:Neuron{`ROI`:true})

WHERE

x.ROI

x.ROLIS NULL

RETURN

N/A (will return blank or NULL)

# Property Use Index - ConnectsTo and Synapse



## **ConnectsTo**

weight: number of connections

#### **WHERE**

- w.weight > 50

#### RETURN

- w.weight
- SUM(w.weight)

weightHP: high confidence number of connections

#### **WHERE**

- w.weightHP > 50

### **RETURN**

- w.weightHP
- SUM(w.weightHP)

<u>roilnfo</u>: the ROIs (brain regions) connections are in

#### WHERE

- apoc.convert.fromJsonMap(n.roiInfo)["ROI"].postHP IS NULL
- NOT
   apoc.convert.fromJsonMap(n.roiInfo)["ROI"]
   IS NULL
- apoc.convert.fromJsonMap(n.roiInfo)["ROI"].pre IS NULL

#### **RETURN**

- apoc.convert.fromJsonMap(n.roiInfo)["ROI"].postHP
- apoc.convert.fromJsonMap(n.roiInfo)["ROI"].pre

# **Synapse**

type: pre or postsynaptic

### **WHERE**

- s.type = "pre"
- s.type = "post"

### RETURN

s.type

**confidence**: certainty that a predicted synapse is in fact a synapse

#### **WHERE**

- s.confidence > .5

### RETURN

S.confidence

**location**: cartesian location of a synapse

### **WHERE**

s.location.x > 5000,
 s.location.y < 5000,</li>
 s.location.z => 5000

### **RETURN**

- s.location
- s.location.x, s.location.y, s.location.z
- [s.location.x, s.location.y, s.location.z]

<roi>: boolean for each ROI (brain region), true if synapse is in the ROI, false if not.

#### WHERE

- s.ROI

### **RETURN**

- N/A (will return blank or NULL)

## **NeuPrint Terms**



#### **Neo4j and Cypher**

**Neo4j** - A graph database. For more information see https://neo4j.com/

Cypher - Neo4j's query language. For more information see https://neo4j.com/docs/cypher-manual/

Node - An entity in a graph that can hold properties and can be tagged with labels

**Relationship** - A connection between nodes that have a type, direction, start and end node, and can hold properties

**Property** - A key-value pair stored on a node or relationship

#### **NeuPrint Terms**

NeuPrint - A set of tools for loading and analyzing connectome data into a Neo4j database

**NeuPrint Explorer** - Single page web application that provides simple interfaces to query an EM connectome stored in NeuPrint

NeuPrintHTTP - A connectomics REST interface that leverages the NeuPrint data model

**NeuPrint Python API** - Python client utilities for interacting with the NeuPrint connectome analysis service. For more information see https://github.com/connectome-neuprint/neuprint-python

#### **NeuPrint Datasets**

**Hemibrain** - Dataset containing nearly half of a female adult Drosophila brain. Imaged to include central complex and right hemisphere mushroom body

Fib25 - Medulla 7 column dataset

From "Synaptic circuits and their variations within different columns in the visual system of Drosophila" (Takemura, et al. 2015)

Mb6 - Mushroom body dataset

From "A connectome of a learning and memory center in the adult Drosophila brain" (Takemura, et al. 2017)

#### **Dataset Terms**

**Segmentation** - Partitioning electron microscopy images of brain tissue into segments (bodies) by automatically predicting cell membranes

**Body** - A segment generated by automatically predicticting cell membranes in electron microscopy images of brain tissue. NeuPrint includes bodies with a soma or at least 1 synapse

**Synapse** - Structure that permits the passage of a signal from one neuron to neuron to one or more neurons. Can refer to presynaptic (t-bar) or postsynaptic site (PSD) on a body

T-bar - Presynaptic protein where vesicles bind and neurotransmitter is released into the synaptic cleft

PSD (postsynaptic density) - Postsynaptic receptor proteins that signify uptake of neurotransmitter

**ROI (Region of interest)** - Commonly referred to as brain region. Named for the most part using the Insect Brain Name Working Group nomenclature

Soma - Cell body

**Interconnectivity** - How a group interacts within itself, usually body ID or brain region interconnectivity

Interneuron - A neuron that serves as a connection bridge of two target neurons / brain regions

#### **Reconstruction Statuses**

Traced - A body more complete than 'Roughly traced' (usually traced by a lab) and validated by a biological expert

Orphan - Body that can't be traced and does not exit the volume

**Orphan Artifact** -Body that can't be traced due to imaging artifact and does not exit the volume

Orphan Hotknife -Body that can't be traced through a hotknife and does not exit the volume

## NeuPrint Data Model Terms



#### **Nodes**

<a href="color: blue;"><dataset></a> - Node label on all nodes in NeuPrint. This label allows multiple datasets to be stored on the database, but partitioned when querying is targeted for one dataset. Add <dataset>\_ (i.e. hemibrain\_Neuron) before other node label (this is optional on the site). See 'NeuPrint Datasets' for data sets stored in NeuPrint

#### Neuron

#### Labels

Segment - Body with <2 t-bars, < 10 PSD's

Neuron - Body with >= 2 t-bars, >= 10 PSD's, an instance, a type, a status, or a soma

### **Properties**

**bodyId** - A randomly generated number that is unique to each body in the dataset. No overlap across datasets.

<u>cropped</u>- boolean indicating if a body leaves the dataset

instance - a name assigned by biologist to indicate instance of cell type

**post** - the number of postsynaptic sites (PSD) on a body

pre - the number of presynaptic sites (t-bar) on a body

<u>cellBodyFiber</u> - information on which cell body tract the neuron belongs to

<u>roilnfo</u> - a string in json format ({"roiA":{"pre":1,"post":2},...}) containing the number of presynaptic and postsynaptic sites in each brain region

size - the size of a body in voxels

**somaLocation** - x, y, z coordinates in center of cell body

**somaRadius** - radius of cell body in pixels

status - a string used to designate completion level of a body (see 'Dataset Terms: Reconstruction Statuses')

statusLabel - a string indicating the status of the body in a previous version of the data

timeStamp - indicates the time at which this body was last edited

type - a name assigned by biologist to indicate cell type.

<rois> - boolean indicating body is located in a particular brain region

#### **SynapseSet**

#### Labels

**SynapseSet** - Contains all synapses between neuron nodes

#### **Properties**

timeStamp - indicates the time at which the synapse set was last edited

#### Synapse

#### Labels

Synapse - Structure that permits the passage of a signal from one neuron to neuron to one or more neurons.

Can refer to presynaptic (t-bar) or postsynaptic site (PSD) on a body

#### **Properties**

confidence - The certainty that an annotated synapse is correct and valid. Determined by algorithm

<u>location</u> - x, y, z coordinates of a synaptic site

type - a string that indicate synapse type (pre or post)

<rois> - Boolean indicating synapse is located in a particular brain region (if present, always true)

timeStamp - indicates the time at which the synapse was last edited

#### Relationships

ConnectsTo - type of relationship between Neuron nodes or SynapseSet nodes

#### **Properties**

<u>roilnfo</u> - a string in json format ({"roiA":{"pre":1,"post":2},...}) containing the number of connections between neuron nodes in each brain region

weight - the number of connections between neuron nodes

<u>weightHP</u> - the number of high confidence connections between neuron nodes. Confidence threshold can be checked on Meta node for each dataset

Contains - type of relationship between Neuron node and SynapseSet node or SynapseSet node and Synapse node

# **Biology Terms**

**EM** - Electron Microscope or Electron Microscopy. An imaging technique for obtaining high resolution images of biological and non-biological specimens. It is used in biomedical research to investigate the detailed structure of tissues, cells, organelles and macromolecular complexes, and electron microscopy images are the basis of the neurons in neuPrint **Fib-sem** - Focused Ion Beam scanning electron microscope. Technique used to image the data in hemibrain

#### **Sections of the Brain**

**Connectome** - A comprehensive map of all the neurons and synapses within an organism's nervous system. It may be thought of as a wiring diagram

**Neuropil** - Any area in the nervous system composed of mostly axons, dendrites, and glial cell processes that forms a synaptically dense region containing a low number of cell bodies

ROI - (Brain) Region of interest. Can represent level 1, 2, or 3 neuropils, or a fiber bundle

**Supercategories** - (Level 1 neuropil) Large neuropil blocks that can be further partitioned into smaller areas. No overlap between level 1 neuropils

Unit neuropils - (Level 2 neuropil) Subdivisions of neuropil supercategories

**Subregions** - (Level 3 neuropil) Subdivisions of unit neuropils

Ganglia - A structure containing a number of nerve cell bodies, and often forming a swelling on a nerve fiber

**Glomeruli** - Clusters of nerve endings

Tract - A collection of fibers that travel together from one part of the brain to another

Fiber bundles - A collection of fibers that travel together from one part of the brain to another

**Commissure** - A band of nerve tissue that crosses from one side of the brain to the other. Connects two regions contralaterally

**Neuromere** - Transient segment of the developing brain

Cell body layer - The layer on the outside of the fly brain that contains cell bodies

**Neural circuits** - A population of neurons interconnected by synapses to carry out a specific function when activated **Glia** - \*This type of cell is not recorded in this dataset\* Non-neuronal cells in the nervous system that maintain homeostasis and provides support and protection for neurons

**Hemisphere** - The two halves of the brain representing the right and left side. The brain is roughly symmetrical across these two hemispheres

#### **Neuron Anatomy**

Dendrite - A branched extension of a nerve cell, along which impulses from other cells are received

Axon - A branched extension of a nerve cell along which impulses are conducted to other cells

Arbor - A branch of a neuron

**Synapse** - Structure that permits one neuron to pass an electrical or chemical signal to one or more neurons. Can send electrical or chemical signals. (\*dataset here records only chemical synapses\*) Chemical Synapses contain a presynaptic site, a postsynaptic site, a synaptic cleft, and a postsynaptic protein

**Presynaptic neuron** - The neuron that sends the signal in a given synapse

Postsynaptic neuron - The neuron that receives the signal in a given synapse

**Receptor** - A membrane protein on the postsynaptic neuron in a chemical synapse that binds to the neurotransmitter and creates an effect in the postsynaptic neurons

Vesicle - A phospholipid circular container in a presynaptic neuron that contains neurotransmitter

**T-bar** - Presynaptic membrane protein in drosophila that allows vesicles to release their neurotransmitter into the synaptic cleft

**PSD** - Stands for the postsynaptic density. Area on the membrane of the postsynaptic neuron that is dense with proteins. The EM image of a PSD shows a dense, dark membrane

**Synaptic cleft** - The space between neurons that synapse with each other through which electrical or Neurotransmitter - A molecule that is the physical medium of the signal sent out by the presynaptic neuron in a chemical synapse

Claw - Claw link branching structures with many PSD's that wrap around the bouton of another neuron

**Bouton** - A ballooning structure filled with vesicles and t-bars on a neuron. Sends information to many neurons, some of which form claws around the bouton

**Membrane** - The thin layer of tissue that acts as the boundary and lining of a cell. In neurons, this membrane is is a bilayer of lipid molecules with many proteins embedded inside