Apparel, Events, and Hospitality Management

Leveraging Large Language Models for Business Analytics

Chunsheng (Jerry) Jin

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Review of previous class

Naïve Bayes

- Spam email detection
 - Good performance
 - 95% accuracy

- Sentiment analysis on Twitter data
 - Poor performance
 - 76% accuracy

at lowa State

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Review of previous class

Limitations of Naïve Bayes

- Strong assumption of independence between words
 - Ignore grammar and order
 - Do not distinguish same words with different meanings (free beer vs. free speech)

Apparel, Events, and Hospitality Management

Review of previous class

Limitations of Naïve Bayes

- Strong assumption of independence between words
 - Ignore grammar and order
 - Do not distinguish same words with different meanings (free beer vs. free speech)
- How to solve this issue?
 - Large Language Models (LLMs)

Apparel, Events, and Hospitality Management

Class activity 1

https://app.sli.do/event/2wy9SoazGcMhzSCuTyzxpe

M E at lowa State

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Input Data

Understanding LLMs

Machine Learning (ML)

- Naïve Bayes
- Linear regression
- Logistic regression
- Clustering analysis

Deep Learning (DL)

Artificial neural networks (ANNs)

Image source: https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb

Apparel, Events, and Hospitality Management

Understanding LLMs

Machine Learning (ML)

- Naïve Bayes
- Linear regression
- Logistic regression
- Clustering analysis

Input Data

Deep Learning (DL)

- Artificial neural networks (ANNs)
 - Deep neural networks (DNNs)
 - Convolutional neural networks (CNNs)
 - Recurrent neural networks (RNNs)
 - Transformer
 - LLMs (e.g., GPT, Claude)

Image source: https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb

How do LLMs work?

Data

Text

at lowa State

- Wikipedia
- Books
- Scientific papers
- Social media data
- Etc.

Large
Language
Training
Model

Tasks

- QuestionAnswering
- Sentiment analysis
- Information extraction
- Text summarization

at lowa State

Data

Text

- Wikipedia
- Books
- Scientific papers
- Social media data
- Etc.

Tasks

- QuestionAnswering
- Sentiment analysis
- Information extraction
- Text summarization

Apparel, Events, and Hospitality Management

How do LLMs work?

Training : Self-Supervised Learning

- Causal language modeling
 - Automatically predict the next word based on the previous words
 - "I am happy because I am studying at CSU Chico."
 - Input: "I" → Output: "am"
 - Input: "I am" → Output: "happy"
 - Input: "I am happy" → Output: "because"
 - Input: "I am happy because" → Output: "I"
 - Input: "I am happy because I" → Output: "am"
 - Input: "I am happy because I am" → Output: "studying"
 - Input: "I am happy because I am studying" → Output: "at"
 - Input: "I am happy because I am studying at" → Output: "CSU"
 - Input: "I am happy because I am studying at CSU" → Output: "Chico"

at Iowa State

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Large Language Models (LLMs)

- Leading LLMs
 - OpenAI: GPT
 - Anthropic: Claude
 - Google: Gemini

- Perform NLP tasks
 - Question answering
 - Machine translation
 - Text summarization
 - Programming code generation

Apparel, Events, and Hospitality Management

Current Capabilities of LLMs

OpenAl introduced Operator on January 23, 2025

Apparel, Events, and Hospitality Management

GPT API

GPT (Generative Pre-trained Transformer)

- Generate natural language
- Pre-trained on big data
- Transformer architecture
- GPT models: GPT4o and GPT4o mini
- ChatGPT is the Chatbot developed based on the GPT models.

Apparel, Events, and Hospitality Management

GPT API

API (Application Programming Interface)

Allow different software applications to communicate with each other

Apparel, Events, and Hospitality Management

GPT API

Provide access to GPT models to perform various NLP tasks

Advantages of GPT API over ChatGPT

- Integrate the capabilities of GPT into your own applications
- Scalability: Request large volumes of requests
 - OpenAl o1: 50 messages a week (as of December 2024)
- Consistent Performance:
 - e.g., set parameter of temperature=0

at Iowa State

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Get GPT API Access

• Go to the OpenAl website and sign up for an account.

• Go to Dashboard on the top right corner.

Apparel, Events, and Hospitality Management

Get GPT API Access

Click "API keys" on the left column => Click "Create new secret key"

Apparel, Events, and Hospitality Management

Get GPT API Access

Create an API key in a pop-up window for secret key.

Apparel, Events, and Hospitality Management

Python code and datasets

https://github.com/chunshengj/Chico_Demo

Jupyter Notebook on Anaconda

https://chunshengj.github.io/579-class/data_analysis/Install_Anaconda_Jupyter_Package.html

Alternative: Google Colab (cloud-based Jupyter Notebook)

https://drive.google.com/file/d/1YeFIxjdyAxUvm2s72rfJ2OogfN_7Hojx/view?usp=sharing

Apparel, Events, and Hospitality Management

Group discussion

Two students are paired to discuss the question below and share your discussion with the class:

Can we trust the results generated by LLMs? Why or why not?

Apparel, Events, and Hospitality Management

Model Evaluation

- Confusion Matrix
 - A table used to describe the performance of a classification model

	Predicted Positive	Predicted Negative	
Actual Positive	True Positive (TP)	False Negative (FN)	
Actual Negative	False Positive (FP)	True Negative (TN)	

Apparel, Events, and Hospitality Management

Model Evaluation

Confusion Matrix

	Predicted Positive	Predicted Negative	
Actual Positive	True Positive (TP)	False Negative (FN)	
Actual Negative	False Positive (FP)	True Negative (TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall or
$$=$$
 TP
Sensitivity $=$ TP + FN

Model Evaluation

Confusion Matrix

	Yes	No	
Yes	5	1	
No		4	

$$Accuracy = \frac{correctly\ predicted\ instances}{total\ number\ of\ instances} = \frac{9}{10} = 90\%$$

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall or
$$=$$
 TP
Sensitivity TP + FN

Apparel, Events, and Hospitality Management

Model Evaluation

- Ground truth
 - True classification values used to compare with GPT-generated results for model evaluation
- In the example, our true sentiment values are the star ratings by reviewers.
 - 1 & 2 stars => negative
 - 4 & 5 stars => positive

Apparel, Events, and Hospitality Management

Model Evaluation

Draw a Confusion Matrix

Apparel, Events, and Hospitality Management

Improving GenAl Performance

Sentiment analysis using standard prompt

prompt = f"""

What is the sentiment of the following hotel review, which is delimited with triple backticks?

Give your answer as a single word, either "positive" or "negative".

Review text: ```{review}```

Iteration	Models	Precision	Recall		Accuracy
	GPT-3.5	0.8783	0.9471	0.9034	0.921
	GPT-40	0.8263	0.9149	0.8487	0.8717
2	GPT-3.5	0.8781	0.9470	0.9032	0.9220
	GPT-40	0.8253	0.9142	0.8475	0.8706
3	GPT-3.5	0.8787	0.9476	0.9038	0.925
	GPT-40	0.8269	0.9154	0.8495	0.8724

11 11 11

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Improving GenAl Performance

Sentiment analysis using standard prompt

prompt = f"""
What is the sentiment of the following hotel review, which is delimited with triple backticks?
Give your answer as a single word, either "positive" or "negative".
Review text: ```{review}```

Models	Fleiss' Kappa	p-value
GPT-3.5	0.990	0.00
GPT-40	0.965	0.00

Apparel, Events, and Hospitality Management

How can we improve model performance?

Apparel, Events, and Hospitality Management

Improving GenAl Performance

Prompt engineering techniques

- Chain of Thought (CoT)
- Self-Reflection (SR)

at lowa State

IOWA STATE UNIVERSITY

Apparel, Events, and Hospitality Management

Improving GenAl Performance

Chain of Thought (CoT)

Involve a sequence of intermediate reasoning steps

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

"Let's think step by step"

Adding reasoning step

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Apparel, Events, and Hospitality Management

Improving GenAl Performance

- Self-Reflection (SR)
 - Involves an LLM reflecting or evaluating its output to understand its reasoning process
 - E.g., ask the model "are you sure?" about the generated output

Apparel, Events, and Hospitality Management

Improving GenAl Performance

Sentiment analysis using CoT+SR prompt

Models	Prompts	Precision	Recall	F1	Accuracy
GPT-40	CoT+SR	0.9317	0.9714	0.9491	0.9610

 Let's look at how the model performance can be improved through Python Jupyter Notebook

Apparel, Events, and Hospitality Management

Thank You

Apparel, Events, and Hospitality Management

References

- Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models., 35, 24824-24837. *Advances in neural information processing systems*
- Chebbi, K., Ammari, A., Athari, S. A., & Abbass, K. (2024). Do US states' responses to COVID-19 restore investor sentiment? Evidence from S&P 500 financial institutions. *Financial Innovation*, *10*(1), 99.
- Wang, X., Tang, L. R., & Kim, E. (2019). More than words: Do emotional content and linguistic style matching matter on restaurant review helpfulness?. *International Journal of Hospitality Management*, 77, 438-447.
- Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837.
- Gola, A. (2024, February 29). *Reflection agents*. LangChain Blog. https://blog.langchain.dev/reflectionagents/
- DeepLearning.AI. (2024). ChatGPT Prompt Engineering for Developers. https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
- DeepLearning.AI. (2024). Building Systems with the ChatGPT API. https://www.deeplearning.ai/short-courses/building-systems-with-chatgpt/

