养阴通脑颗粒中关键成分对脑缺血再灌 注的影响

2024-03-15

LiChuang Huang

@ 立效研究院

Contents

1	摘要			-
	1.1	需求 .		
	1.2	结果 .		
		1.2.1	整体复方	
		1.2.2	权衡 Hirudin 的作用	
2	前言			-
3	材料	和方法	·	-
	3.1	材料 .		
	3.2	方法 .		
4	分析	结果		•
_	٨٧٨			
5	结论			2
6	附:	分析流程	程	2
	6.1	养阴通	重脑颗粒	
		6.1.1	成分	
		6.1.2	成分靶点	
		6.1.3	脑缺血再灌注 cerebral ischemia reperfusion (CIR) 靶点	
		6.1.4	网络药理-疾病	 (
		6.1.5	PPI 网络	
		6.1.6	富集分析 (Top30)	
		6.1.7	CIR 的 GEO 数据差异分析	 1
			6.1.7.1 差异分析	 15
			6.1.7.2 由大鼠基因映射到人类基因	 15
			6.1.7.3 富集分析	 13
		6.1.8	复方靶点通路与 CIR DEGs 富集结果的共同富集通路	 1
		6.1.9	复方对 MARK 通路	 10
			6.1.9.1 复方作用于 MARK 通路的成分	 1'
	6.2	水蛭素	K Hirudin	 18
		6.2.1	Hirudin 靶点 (获取更多靶点)	 18
			6.2.1.1 GeneCards 获取化合物靶点	 18
		6.2.2	Hirudin 靶点与 CIR DEGs 交集	 20
			6.2.2.1 交集基因的富集分析	 20
			6.2.2.2 与复方共同作用的信号通路	 2
	6.3	最终筛	筛选 (着重考虑 Hirudin)	 2
		6.3.1	复方对筛选通路的靶向	 25
			6.3.1.1 相关成分	 2
		6.3.2	Hirudin 对筛选通路的靶向	 2

Refer	ence	26
\mathbf{List}	of Figures	
1	Intersection of all compounds	4
2	Overall targets number of datasets	5
3	Network pharmacology with disease	7
4	Targets intersect with targets of diseases	7
5	HERBS raw PPI network	8
6	HERBS Top30 MCC score	9
7	HERBS KEGG enrichment	9
8	RAT Model vs Control DEGs	12
9	MAP KEGG enrichment	14
10	HERBS hsa04010 visualization	15
11	Network pharmacology target MARK	17
12	Intersection of Hirudin Targets with CIR DEGs	20
13	HIRUDIN CIR KEGG enrichment	21
14	HERBS hsa04066 visualization	22
15	HERBS hsa04371 visualization	23
16	HIRUDIN hsa04066 visualization	25
17	HIRUDIN hsa04371 visualization	25
\mathbf{List}	of Tables	
1	Herbs information	2
2	Components of Herbs	3
3	Tables of Herbs compounds and targets	4
4	CIR GeneCards used data	6
5	HERBS KEGG enrichment data	10
6	RAT metadata	12
7	RAT Mapped DEGs	13
8	MAP KEGG enrichment data	14
9	HERBS pathways intersection	16
10	Network pharmacology target MARK data	17
11	Hirudin targets in HERB database	18
12	Hirudin targets from GeneCards	19
13	HIRUDIN Herbs pathways intersection	21
14	All pathways intersection	22
15	Compounds target HIF 1 signaling pathway	23
16	Compounds target Apelin signaling pathway	24

1 摘要

1.1 需求

- 养阴通脑颗粒中治疗脑缺血再灌注的关键成分及相应信号通路(信号通路需要创新性的), 1-3 条
- 同时重点分析水蛭素对应的治疗脑缺血再灌注的信号通路

养阴通脑颗粒: 地黄 15g、黄芪 15g、葛根 18g、石斛 15g、水蛭 3g、川芎 9g

1.2 结果

1.2.1 整体复方

- 常规网络药理学, 见 Fig. 3, 富集结果见 Fig. 7
- 额外对 CIR 的 GEO 数据差异分析, 富集结果 Fig. 9
- 综合以上富集,发现 MARK 通路 (Fig. 10) 可能是治疗的关键通路之一,其靶向成分见 Tab. 10

1.2.2 权衡 Hirudin 的作用

HERBs 数据库 (其他数据库也是如此) 包含的 Hirudin 靶点较少。这里,额外从 GeneCards 获取了 Hirudin 的靶点 (Tab. 12)。

为了缩小可选通路范围,这里尝试将以下的富集结果取共同的交集(已在上述部分完成):

- 复方靶向 CIR (靶点来源见 Fig. 2) 的通路 (富集见 Fig. 7)
- GEO 数据集 (GSE163614) CIR DEGs 的富集结果的通路 (富集见 Fig. 9)
- 获取了更多靶点信息 (因为 HERBS 数据库或其他数据库包含的靶点信息太少,不利于分析) 的 Hirudin 靶向 CIR (GEO DEGs) 的基因的富集分析 (Fig. 13)

得到 (去除了名称包含其他疾病的通路): Tab. 14

- HIF-1 signaling pathway
- Apelin signaling pathway

更多信息见 6.3.1 和 6.3.2

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE163614**: Examination of MCAO/R and Sham rat brain samples (n=3)

3.2 方法

Mainly used method:

- The BindingDB database was used for discovering association between Ligands and Receptors¹.
- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)².
- R package ClusterProfiler used for gene enrichment analysis³.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets⁴⁻⁶.
- Website HERB http://herb.ac.cn/ used for data source⁷.
- R package Limma and edgeR used for differential expression analysis^{8,9}.
- R package PubChemR used for querying compounds information.
- R package STEINGdb used for PPI network construction 10,11 .
- Web tool of Super-PRED used for drug-targets relationship prediction 12.
- The MCC score was calculated referring to algorithm of CytoHubba¹¹.
- R package UniProt.ws used for querying Gene or Protein information.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

- 5 结论
- 6 附:分析流程
- 6.1 养阴通脑颗粒

6.1.1 成分

Table 1 (下方表格) 为表格 Herbs information 概览。

(对应文件为 Figure+Table/Herbs-information.xlsx)

注:表格共有6行18列,以下预览的表格可能省略部分数据;表格含有6个唯一'Herb_'。

Table 1: Herbs information

Herb_	Herb_p	Herb_c	Herb_e	Herb_l	Proper	Meridians	UsePart	Function	Indica
HERB00	CHUAN	川芎	Chuanx	Radix	Warm;	Liver;	rhizome	1. To	Cerebr
HERB00	DI HUANG	地黄	Radix	NA	NA	NA	NA	NA	NA
HERB00	GE GEN	葛根	root o	Radix	Cool;	Spleen	tuberoid	To rel	Angina
HERB00	HUANG QI	黄芪	root o	Radix	Warm;	Lung;	root	To rei	Common
HERB00	SHI HU	石斛	Dendro	Herba	Minor	Stomac	Dendro	Treatm	1. Den

Herb_	Herb_p	${\rm Herb_c}$	Herb_e	${\rm Herb_l}$	Proper	Meridians	UsePart	Function	Indica
HERB00	SHUI ZHI	水蛭	Bigflo	Garden	Mild;	Liver	fruit	To cle	Heat t

Table 2 (下方表格) 为表格 Components of Herbs 概览。

(对应文件为 Figure+Table/Components-of-Herbs.xlsx)

注:表格共有 725 行 4 列,以下预览的表格可能省略部分数据;表格含有 696 个唯一'Ingredient.name'。

Table 2: Components of Herbs

howh id	Ingradiant id	Ingradient name	Ingradient alies
herb_id	Ingredient.id	Ingredient.name	Ingredient.alias
${\rm HERB}002560$	HBIN001244	13-hydroxy-9,11-o	NA
${\rm HERB}002560$	HBIN002016	1,7-Dihydroxy-3,9	1,7-dihydroxy-3,9
${\rm HERB}002560$	${\rm HBIN}003405$	$20\hbox{-Hexadecanoylin}$	20-hexadecanoylin
${\rm HERB}002560$	HBIN003436	20(r)- $21,24$ -cyclo	20(r)-21,24-cyclo
${\rm HERB}002560$	HBIN004319	2',4'	2', 4'
${\rm HERB}002560$	HBIN005731	2'-hydroxy-3	NA
${\rm HERB}002560$	HBIN005735	2'-hydroxy-3	NA
${\rm HERB}002560$	HBIN005744	2-hydroxy-3-metho	NA
${\rm HERB}002560$	HBIN006143	2-Nonyl acetate	ANW-21203; SCHEMB
${\rm HERB}002560$	HBIN006743	(2S)-4-methoxy-7	(2S)-4-methoxy-7
${\rm HERB}002560$	HBIN007657	3,5-dimethoxystil	78916-49-1; TR-03
${\rm HERB}002560$	HBIN007848	3,9-di-O-methylni	NA
${\rm HERB}002560$	HBIN008647	3-Hydroxy-2-picoline	BTB 09012; 3-Hydr
${\rm HERB}002560$	HBIN008667	3'-hydroxy-4	NA
${\rm HERB}002560$	HBIN008668	3'-Hydroxy-4	3- $(3$ -hydroxy- 4 -me
	•••		

Figure 1 (下方图) 为图 intersection of all compounds 概览。

(对应文件为 Figure+Table/intersection-of-all-compounds.pdf)

Figure 1: Intersection of all compounds

All_intersection:

(上述信息框内容已保存至 Figure+Table/intersection-of-all-compounds-content)

6.1.2 成分靶点

Table 3 (下方表格) 为表格 tables of Herbs compounds and targets 概览。

(对应文件为 Figure+Table/tables-of-Herbs-compounds-and-targets.xlsx)

注: 表格共有 13356 行 9 列,以下预览的表格可能省略部分数据; 表格含有 696 个唯一'Ingredient.id'。

Table 3: Tables of Herbs compounds and targets

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	SHI HU	10,12	NA	HBTAR0	ATIC	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	FPGS	NA	NA	

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	SHI HU	10,12	NA	HBTAR0	GART	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD1	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD2	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	ALDH1L1	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD1L	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTFMT	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	ALDH1L2	NA	NA	
HBIN00	SHI HU	10,12	NA	${\rm HBTAR0}$	$\mathrm{MTHFD2L}$	NA	NA	
HBIN00	SHI HU	10 ,13	NA	NA	NA	NA	NA	
HBIN00	CHUAN	10-(be	10-(NA	NA	NA	NA	
HBIN00	CHUAN	1,1-Di	3658-9	NA	NA	NA	NA	
HBIN00	CHUAN	1,2,3,	NA	NA	NA	NA	NA	
HBIN00	CHUAN	1,3,8	1,3,8	HBTAR0	ACHE	NA	NA	

6.1.3 脑缺血再灌注 cerebral ischemia reperfusion (CIR) 靶点

Figure 2 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 2: Overall targets number of datasets

Table 4 (下方表格) 为表格 CIR GeneCards used data 概览。

(对应文件为 Figure+Table/CIR-GeneCards-used-data.xlsx)

注: 表格共有 139 行 7 列,以下预览的表格可能省略部分数据; 表格含有 139 个唯一'Symbol'。

Table 4: CIR GeneCards used data

Symbol	Description	Category	$UniProt_ID$	GIFtS	GC_id	Score
BDNF-AS	BDNF Antis	RNA Gene		28	GC11P027466	11.94
CERNA3	Competing	RNA Gene		19	GC08P056101	6.64
MEG3	Maternally	RNA Gene		34	GC14P115583	6.13
SNHG12	Small Nucl	RNA Gene	Q9BXW3	29	GC01M030655	6.06
MIR211	MicroRNA 211	RNA Gene		28	GC15M031065	5.85
SNHG14	Small Nucl	RNA Gene		24	GC15P147532	5.69
SOD2-OT1	SOD2 Overl	RNA Gene		18	GC06M159772	5.41
H19	H19 Imprin	RNA Gene		34	GC11M001995	4.64
GAS5	Growth Arr	RNA Gene		30	GC01M173947	4.56
TUG1	Taurine Up	Protein Co	A0A6I8PU40	32	GC22P030969	4.15
MIR496	MicroRNA 496	RNA Gene		16	GC14P115621	4.07
BCL2	BCL2 Apopt	Protein Co	P10415	59	GC18M063123	3.7
MIR532	MicroRNA 532	RNA Gene		23	GC0XP056752	3.7
SCARNA5	Small Caja	RNA Gene		23	GC02P233275	3.7
NFE2L2	NFE2 Like	Protein Co	Q16236	60	GC02M177227	3.64

6.1.4 网络药理-疾病

Figure 3 (下方图) 为图 Network pharmacology with disease 概览。

(对应文件为 Figure+Table/Network-pharmacology-with-disease.pdf)

Figure 3: Network pharmacology with disease

Figure 4 (下方图) 为图 Targets intersect with targets of diseases 概览。

(对应文件为 Figure+Table/Targets-intersect-with-targets-of-diseases.pdf)

Figure 4: Targets intersect with targets of diseases

Intersection:

IL10, HMOX1, MMP9, PTGS2, SOD2, MPO, NOS2, IL6, CAT, CXCL2, TLR4, ALOX5, RELA, CCL2, CASP3, SELE, XDH, FOS, EDN1, TLR2, PLAT, PTEN, MAPK8, PPARA, CDKN1A, KDR, ADORA2A, CXCL1, PLAU, BCL2, SOD1, PPARG, NOS3, TNF, IL1B, MAPK9, ICAM1, TERT, JUN, ADORA2B, EFNB2, HGF, CD36, IRAK3, SLPI, IL12A, CXCL8, C...

(上述信息框内容已保存至 Figure+Table/Targets-intersect-with-targets-of-diseases-content)

6.1.5 PPI 网络

Figure 5 (下方图) 为图 HERBS raw PPI network 概览。

(对应文件为 Figure+Table/HERBS-raw-PPI-network.pdf)

Figure 5: HERBS raw PPI network

Figure 6 (下方图) 为图 HERBS Top30 MCC score 概览。

(对应文件为 Figure+Table/HERBS-Top30-MCC-score.pdf)

Figure 6: HERBS Top30 MCC score

6.1.6 富集分析 (Top30)

Figure 7 (下方图) 为图 HERBS KEGG enrichment 概览。

(对应文件为 Figure+Table/HERBS-KEGG-enrichment.pdf)

Table 5 (下方表格) 为表格 HERBS KEGG enrichment data 概览。

(对应文件为 Figure+Table/HERBS-KEGG-enrichment-data.xlsx)

注:表格共有 181 行 9 列,以下预览的表格可能省略部分数据;表格含有 181 个唯一'ID'。

1. pvalue: 显著性 P。

Table 5: HERBS KEGG enrichment data

ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
hsa05167	Kaposi	19/29	194/8661	3.0530	5.5259	1.0605	207/59	19
hsa05212	Pancre	14/29	76/8661	3.1769	2.8751	5.5178	207/59	14
hsa05205	Proteo	17/29	205/8661	4.7725	2.8794	5.5261	207/85	17
hsa05418	Fluid	15/29	139/8661	3.5822	1.6209	3.1109	207/85	15
hsa05161	Hepati	15/29	162/8661	3.8556	1.3957	2.6786	207/13	15
hsa05208	Chemic	16/29	223/8661	1.1000	3.3185	6.3688	207/19	16
hsa04917	Prolac	12/29	70/8661	1.3458	3.4799	6.6785	207/59	12
hsa04933	AGE-RA	13/29	100/8661	1.6908	3.8255	7.3418	207/59	13
hsa04010	MAPK s	17/29	301/8661	3.5870	7.2139	1.3844	207/13	17
hsa05210	Colore	12/29	86/8661	1.8784	3.4000	6.5252	207/59	12
hsa05235	PD-L1	12/29	89/8661	2.9003	4.4268	8.4958	207/19	12
hsa05417	Lipid	15/29	215/8661	2.9349	4.4268	8.4958	207/23	15
hsa04151	PI3K-A	17/29	359/8661	7.1506	9.9559	1.9106	207/13	17
hsa01522	Endocr	12/29	98/8661	9.7631	1.2622	2.4224	207/59	12
hsa01521	EGFR t	11/29	79/8661	5.3600	6.2132	1.1924	207/19	11

6.1.7 CIR 的 GEO 数据差异分析

Data Source ID:

GSE163614

data_processing:

paired-end reads were harvested from Illumina NovaSeq 6000 sequencer, and were quality controlled by Q30.

data_processing.1:

After 3' adaptor-trimming and low quality reads removing by cutadapt software (v1.9.3), the high quality trimmed reads were aligned to the rat reference genome (UCSC RN5).

data_processing.2:

Then, guided by the Ensembl gtf gene annotation file with hisat2 software (v2.0.4), cuffdiff software (v2.2.1, part of cufflinks) was used to get the gene level FPKM as the expression profiles of mRNA, and fold change and p-value were calculated based on FPKM, differentially expressed mRNA were i...

data_processing.3:

Genome build: UCSC RN5

(Others):

...

Table 6 (下方表格) 为表格 RAT metadata 概览。

(对应文件为 Figure+Table/RAT-metadata.csv)

注:表格共有6行9列,以下预览的表格可能省略部分数据;表格含有6个唯一'sample'。

1. sample: 样品名称

2. group: 分组名称

Table 6: RAT metadata

sample	group	lib.size	norm.f	rownames	title	strain	time.p	tissue
MCAO1	Model	523780	1	GSM498	MCAO/R-1	Spragu	24 h	brain
MCAO2	Model	531002	1	$\operatorname{GSM498}$	MCAO/R-2	Spragu	24 h	brain
MCAO3	Model	582734	1	$\operatorname{GSM498}$	MCAO/R-3	Spragu	24 h	brain
Sham1	Control	599207	1	$\operatorname{GSM498}$	Sham-1	Spragu	24 h	brain
Sham2	Control	585317	1	$\operatorname{GSM498}$	Sham-2	Spragu	24 h	brain
Sham3	Control	588288	1	$\operatorname{GSM498}$	Sham-3	Spragu	24 h	brain

6.1.7.1 差异分析

Figure 8 (下方图) 为图 RAT Model vs Control DEGs 概览。

(对应文件为 Figure+Table/RAT-Model-vs-Control-DEGs.pdf)

Figure 8: RAT Model vs Control DEGs

6.1.7.2 由大鼠基因映射到人类基因

使用 biomart 将基因映射。

Table 7 (下方表格) 为表格 RAT Mapped DEGs 概览。

(对应文件为 Figure+Table/RAT-Mapped-DEGs.tsv)

注: 表格共有 2921 行 23 列,以下预览的表格可能省略部分数据;表格含有 2921 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. pathway: 相关通路。
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')
- 8. gene_id: GENCODE/Ensembl gene ID
- 9. strand: genomic strand

Table 7: RAT Mapped DEGs

hgnc_s	rgd_sy	rownames	gene_id	gene_s	biotype	strand	locus	Synonyms	dbXrefs
GPNMB	Gpnmb	4927	ENSRNO	Gpnmb	protei	+	chr4:1	-	RGD:71
PDPN	Pdpn	8530	ENSRNO	Pdpn	protei	-	${\rm chr} 5{:}1$	E11 Gp	RGD:61
STAT3	Stat3	11467	ENSRNO	Stat3	protei	-	chr10:	-	RGD:37
CNN3	Cnn3	6554	ENSRNO	Cnn3	protei	+	chr2:2	-	RGD:71
DDX21	Ddx21	18611	ENSRNO	Ddx21	protei	-	chr20:	Ddx21a	RGD:13
FLNC	Flnc	4001	ENSRNO	Flnc	protei	+	$chr 4{:}5$	ABP-L	RGD:13
IGFBP3	Igfbp3	4835	ENSRNO	Igfbp3	protei	-	chr14:	IGF-BP3	RGD:28
MMP9	Mmp9	10085	ENSRNO	Mmp9	protei	+	chr3:1	-	RGD:62
PDE10A	Pde10a	6404	ENSRNO	Pde10a	protei	-	$chr1{:}5$	Pde10a3	RGD:68
SBNO2	Sbno2	7959	ENSRNO	Sbno2	protei	+	${\rm chr}7{:}1$	RGD130	RGD:13
SERPINA3	Serpina3n	5928	ENSRNO	Serpina3n	protei	+	chr6:1	CPi-26	RGD:37
CSF2RB	Csf2rb	83	ENSRNO	Csf2rb	protei	+	${\rm chr}7{:}1$	Csf2rb1	RGD:62
FLNA	Flna	17331	ENSRNO	Flna	protei	+	chr1:1	RGD156	RGD:15
LCP1	Lcp1	5808	ENSRNO	Lcp1	protei	+	chr15:	-	RGD:13
MAST3	Mast3	12964	ENSRNO	Mast3	protei	+	chr16:	_	RGD:15
<u></u>									

6.1.7.3 富集分析

Figure 9 (下方图) 为图 MAP KEGG enrichment 概览。

(对应文件为 Figure+Table/MAP-KEGG-enrichment.pdf)

Figure 9: MAP KEGG enrichment

Table 8 (下方表格) 为表格 MAP KEGG enrichment data 概览。

(对应文件为 Figure+Table/MAP-KEGG-enrichment-data.xlsx)

注:表格共有 337 行 9 列,以下预览的表格可能省略部分数据;表格含有 337 个唯一'ID'。

1. pvalue: 显著性 P。

Table 8: MAP KEGG enrichment data

ID	Descri	GeneRatio	$\operatorname{BgRatio}$	pvalue	p.adjust	qvalue	geneID	Count
hsa04724	Glutam	57/1486	115/8661	9.1917	3.0976	1.6641	107/19	57
hsa05033	Nicoti	27/1486	40/8661	2.0977	3.5346	1.8989	773/77	27
hsa04010	MAPK s	98/1486	301/8661	2.5161	2.8264	1.5185	10000/	98
hsa04727	${\rm GABAer}$	42/1486	89/8661	4.4346	3.7361	2.0072	18/107	42
hsa05205	Proteo	73/1486	205/8661	9.9744	6.7227	3.6117	60/71/	73
hsa05163	Human	76/1486	225/8661	7.0361	3.9519	2.1231	107/19	76
hsa04971	Gastri	36/1486	76/8661	9.5518	4.5985	2.4705	60/71/	36
hsa04925	Aldost	42/1486	98/8661	1.8482	7.7857	4.1828	107/19	42
hsa04510	Focal	69/1486	203/8661	3.2209	1.2060	6.4794	60/71/	69
hsa04933	AGE-RA	42/1486	100/8661	3.8738	1.3054	7.0136	183/10	42
hsa04015	Rap1 s	70/1486	210/8661	6.3009	1.8176	9.7653	60/71/	70
hsa05032	Morphi	39/1486	91/8661	7.0065	1.8176	9.7653	107/19	39
hsa04360	Axon g	63/1486	182/8661	7.0117	1.8176	9.7653	655/65	63
hsa04611	Platel	48/1486	124/8661	7.7305	1.8608	9.9974	60/71/	48
hsa04670	Leukoc	45/1486	115/8661	1.5365	3.4520	1.8546	60/71/	45

ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
						•••		

可以发现, 'MARK' 通路居于首位。以下展示 Fig. 7 富集结果的 'MARK' 通路:

Figure 10 (下方图) 为图 HERBS hsa04010 visualization 概览。

(对应文件为 Figure+Table/hsa04010.pathview.png)

Figure 10: HERBS hsa04010 visualization

Interactive figure:

 $\rm https://www.genome.jp/pathway/hsa04010$

6.1.8 复方靶点通路与 CIR DEGs 富集结果的共同富集通路

Table 9 (下方表格) 为表格 HERBS pathways intersection 概览。

(对应文件为 Figure+Table/HERBS-pathways-intersection.xlsx)

注:表格共有 99 行 9 列,以下预览的表格可能省略部分数据;表格含有 99 个唯一'ID'。

1. pvalue: 显著性 P。

Table 9: HERBS pathways intersection

ID	Descri	GeneRatio	$\operatorname{BgRatio}$	pvalue	p.adjust	qvalue	geneID	Count
hsa05167	Kaposi	19/29	194/8661	3.0530	5.5259	1.0605	207/59	19
hsa05212	Pancre	14/29	76/8661	3.1769	2.8751	5.5178	207/59	14
$\rm hsa05205$	Proteo	17/29	205/8661	4.7725	2.8794	5.5261	207/85	17
hsa05418	Fluid	15/29	139/8661	3.5822	1.6209	3.1109	207/85	15
hsa05161	Hepati	15/29	162/8661	3.8556	1.3957	2.6786	207/13	15
hsa04933	AGE-RA	13/29	100/8661	1.6908	3.8255	7.3418	207/59	13
hsa04010	MAPK s	17/29	301/8661	3.5870	7.2139	1.3844	207/13	17
hsa05210	Colore	12/29	86/8661	1.8784	3.4000	6.5252	207/59	12
hsa05417	Lipid	15/29	215/8661	2.9349	4.4268	8.4958	207/23	15
hsa04151	PI3K-A	17/29	359/8661	7.1506	9.9559	1.9106	207/13	17
hsa01522	Endocr	12/29	98/8661	9.7631	1.2622	2.4224	207/59	12
hsa04510	Focal	14/29	203/8661	5.4923	6.2132	1.1924	207/85	14
hsa05207	Chemic	14/29	212/8661	1.0132	1.0787	2.0703	207/13	14
hsa05163	Human	14/29	225/8661	2.3412	2.3542	4.5181	207/13	14
hsa04926	Relaxi	12/29	129/8661	2.9702	2.8295	5.4304	207/13	12
								

6.1.9 复方对 MARK 通路

Figure 11 (下方图) 为图 Network pharmacology target MARK 概览。

(对应文件为 Figure+Table/Network-pharmacology-target-MARK.pdf)

Figure 11: Network pharmacology target MARK

6.1.9.1 复方作用于 MARK 通路的成分

Table 10 (下方表格) 为表格 Network pharmacology target MARK data 概览。

(对应文件为 Figure+Table/Network-pharmacology-target-MARK-data.xlsx)

注: 表格共有 297 行 3 列,以下预览的表格可能省略部分数据;表格含有 6 个唯一'Herb_pinyin_name'。

Table 10: Network pharmacology target MARK data

Herb_pinyin_name	Ingredient.name	Target.name
HUANG QI	1,7-Dihydroxy-3,9-dimethoxy	MAPK14
CHUAN XIONG	1-Acetyl-beta-carboline	MAPK14
CHUAN XIONG	1-beta-ethylacrylate-7-alde	MAPK14
HUANG QI	3,9-di-O-methylnissolin	MAPK14
CHUAN XIONG	3-butylidene-phalide	TP53
GE GEN	3'-Methoxydaidzein	MAPK14
HUANG QI	5'-hydroxyiso-muronula	RELA

Herb_pinyin_name	Ingredient.name	Target.name
HUANG QI	(6aR,11aR)-9,10-dimethoxy-6	MAPK14
GE GEN	7,8,4'-Trihydroxyisofl	MAPK14
HUANG QI	7-O-methylisomucronulatol	MAPK14
HUANG QI	acetic acid	FOS
HUANG QI	acetic acid	RELA
HUANG QI	acetic acid	FOS
HUANG QI	acetic acid	RELA
HUANG QI	adeninenucleoside	FOS

6.2 水蛭素 Hirudin

6.2.1 Hirudin 靶点 (获取更多靶点)

HERBs 数据库包含的 Hirudin 靶点较少:

Table 11 (下方表格) 为表格 Hirudin targets in HERB database 概览。

(对应文件为 Figure+Table/Hirudin-targets-in-HERB-database.csv)

注:表格共有 4 行 3 列,以下预览的表格可能省略部分数据;表格含有 1 个唯一'Herb_pinyin_name'。

Table 11: Hirudin targets in HERB database

Herb_pinyin_name	Ingredient.name	Target.name
SHUI ZHI	hirudin	F2
SHUI ZHI	hirudin	F3
SHUI ZHI	hirudin	F5
SHUI ZHI	hirudin	MIF

6.2.1.1 GeneCards 获取化合物靶点

bindingdb, drugbank, 以及预测工具 Super-Pred 等都难以获取更多关于 hirudin 靶点信息。因此,这里使用 GeneCards 搜索。

The GeneCards data was obtained by querying:

hirudin

Restrict (with quotes):

FALSE

Filtering by Score: :

Score > 0

Advance search: :

[compounds] (hirudin)

Table 12 (下方表格) 为表格 Hirudin targets from GeneCards 概览。

(对应文件为 Figure+Table/Hirudin-targets-from-GeneCards.xlsx)

注: 表格共有 45 行 7 列,以下预览的表格可能省略部分数据;表格含有 45 个唯一'Symbol'。

Table 12: Hirudin targets from GeneCards

Symbol	Description	Category	$UniProt_ID$	GIFtS	GC_id	Score
F2	Coagulatio	Protein Co	P00734	58	GC11P047386	2.58
F2R	Coagulatio	Protein Co	P25116	55	GC05P076716	2.23
F10	Coagulatio	Protein Co	P00742	58	GC13P113122	1.76
FGA	Fibrinogen	Protein Co	P02671	58	GC04M154583	1.76
PLAT	Plasminoge	Protein Co	P00750	57	GC08M042174	1.76
F3	Coagulatio	Protein Co	P13726	54	GC01M094825	1.76
PLG	Plasminogen	Protein Co	P00747	58	GC06P160702	1.59
CPA1	Carboxypep	Protein Co	P15085	51	GC07P130380	1.12
PLAU	Plasminoge	Protein Co	P00749	60	GC10P073909	0.64
SERPINE1	Serpin Fam	Protein Co	P05121	59	GC07P101127	0.64
CCL2	C-C Motif	Protein Co	P13500	58	GC17P034255	0.64
CD40LG	CD40 Ligand	Protein Co	P29965	58	GC0XP136649	0.64
CD55	${\rm CD55~Molec}$	Protein Co	P08174	58	GC01P207321	0.64
SERPINC1	Serpin Fam	Protein Co	P01008	58	GC01M174899	0.64
TBXA2R	Thromboxan	Protein Co	P21731	58	GC19M003594	0.64

6.2.2 Hirudin 靶点与 CIR DEGs 交集

Figure 12 (下方图) 为图 Intersection of Hirudin Targets with CIR DEGs 概览。

(对应文件为 Figure+Table/Intersection-of-Hirudin-Targets-with-CIR-DEGs.pdf)

Figure 12: Intersection of Hirudin Targets with CIR DEGs

Intersection:

PLAT, PLAU, SERPINE1, VWF, THBD, SELP, THBS1, TIMP1, PLAUR, F2RL1, SELE, PROCR, FGL2, SCG5

(上述信息框内容已保存至 Figure+Table/Intersection-of-Hirudin-Targets-with-CIR-DEGs-content)

6.2.2.1 交集基因的富集分析

Figure 13 (下方图) 为图 HIRUDIN CIR KEGG enrichment 概览。

(对应文件为 Figure+Table/HIRUDIN-CIR-KEGG-enrichment.pdf)

Figure 13: HIRUDIN CIR KEGG enrichment

6.2.2.2 与复方共同作用的信号通路

因为在 Hirudin 的富集分析前,额外从 GeneCards 获取了 Hirudin 的靶点,这一部分在复方分析中是不包含的;因此,这里尝试寻找它们共同的靶向通路 (复方与获取了额外靶点的 Hirudin 的共同富集通路)。

Table 13 (下方表格) 为表格 HIRUDIN Herbs pathways intersection 概览。

(对应文件为 Figure+Table/HIRUDIN-Herbs-pathways-intersection.csv)

注:表格共有7行9列,以下预览的表格可能省略部分数据;表格含有7个唯一'ID'。

1. pvalue: 显著性 P。

Table 13: HIRUDIN Herbs pathways intersection

ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
hsa04933	AGE-RA	3/12	100/8661	0.0003	0.0034	0.0018	6401/5	3
hsa05418	Fluid	3/12	139/8661	0.0008	0.0068	0.0035	5327/6	3
hsa05205	Proteo	3/12	205/8661	0.0024	0.0139	0.0073	5328/5	3
hsa04115	p53 si	2/12	75/8661	0.0046	0.0224	0.0118	5054/7057	2
hsa05215	Prosta	2/12	97/8661	0.0076	0.0287	0.0151	5327/5328	2
hsa04066	HIF-1	2/12	109/8661	0.0095	0.0324	0.0170	5054/7076	2
hsa04371	Apelin	2/12	139/8661	0.0151	0.0469	0.0247	5327/5054	2

6.3 最终筛选 (着重考虑 Hirudin)

为了缩小可选通路范围,这里尝试将以下的富集结果取共同的交集(已在上述部分完成):

- 复方靶向 CIR (靶点来源见 Fig. 2) 的通路 (富集见 Fig. 7)
- GEO 数据集 (GSE163614) CIR DEGs 的富集结果的通路 (富集见 Fig. 9)
- 获取了更多靶点信息 (因为 HERBS 数据库或其他数据库包含的靶点信息太少,不利于分析) 的 Hirudin 靶向 CIR (GEO DEGs) 的基因的富集分析 (Fig. 13)

得到 (去除了名称包含其他疾病的通路):

Table 14 (下方表格) 为表格 All pathways intersection 概览。

(对应文件为 Figure+Table/All-pathways-intersection.csv)

注:表格共有2行9列,以下预览的表格可能省略部分数据;表格含有2个唯一'ID'。

1. pvalue: 显著性 P。

Table 14: All pathways intersection

ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
hsa04066	HIF-1	11/29	109/8661	2.1482	1.4400	2.7637	207/10	11
hsa04371	Apelin	3/29	139/8661	0.0108	0.0141	0.0027	207/59	3

6.3.1 复方对筛选通路的靶向

Figure 14 (下方图) 为图 HERBS hsa04066 visualization 概览。

(对应文件为 Figure+Table/hsa04066.pathview.png)

Figure 14: HERBS hsa04066 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04066

Figure 15 (下方图) 为图 HERBS hsa04371 visualization 概览。

(对应文件为 Figure+Table/hsa04371.pathview.png)

Figure 15: HERBS hsa04371 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04371

6.3.1.1 相关成分

Table 15 (下方表格) 为表格 Compounds target HIF 1 signaling pathway 概览。

(对应文件为 Figure+Table/Compounds-target-HIF-1-signaling-pathway.xlsx)

注: 表格共有 137 行 9 列,以下预览的表格可能省略部分数据;表格含有 38 个唯一'Ingredient.id'。

Table 15: Compounds target HIF 1 signaling pathway

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	CHUAN	3-buty	NA	HBTAR0	CDKN1A	NA	NA	
HBIN01	HUANG QI	5'	NA	HBTAR0	RELA	NA	NA	
HBIN01	HUANG QI	acetic	AI3-02	HBTAR0	RELA	NA	NA	

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN01	HUANG QI	acetic	AI3-02	HBTAR0	RELA	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	HIF1A	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	VEGFA	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	HIF1A	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	VEGFA	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	HIF1A	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	VEGFA	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	HIF1A	NA	NA	
HBIN01	HUANG QI	adenin	NA	HBTAR0	VEGFA	NA	NA	
HBIN01	HUANG QI	astram	AC1L3V	HBTAR0	AKT1	NA	NA	
HBIN01	HUANG QI	astram	AC1L3V	HBTAR0	TEK	NA	NA	
HBIN01	HUANG QI	beta c	Spectr	HBTAR0	AKT1	NA	NA	

Table 16 (下方表格) 为表格 Compounds target Apelin signaling pathway 概览。

(对应文件为 Figure+Table/Compounds-target-Apelin-signaling-pathway.xlsx)

注: 表格共有 61 行 9 列,以下预览的表格可能省略部分数据; 表格含有 17 个唯一'Ingredient.id'。

Table 16: Compounds target Apelin signaling pathway

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	CHUAN	3-buty	NA	HBTAR0	CCND1	NA	NA	
HBIN01	HUANG QI	5'	NA	HBTAR0	CCND1	NA	NA	
HBIN01	HUANG QI	astram	AC1L3V	HBTAR0	AKT1	NA	NA	
HBIN01	HUANG QI	beta c	Spectr	HBTAR0	AKT1	NA	NA	
HBIN01	HUANG QI	beta c	Spectr	HBTAR0	AKT1	NA	NA	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	AKT1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	MAPK1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	AKT1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	MAPK1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	$\mathrm{HSDB}~8$	${\rm HBTAR0}$	AKT1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	MAPK1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	AKT1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	$\mathrm{HSDB}~8$	${\rm HBTAR0}$	MAPK1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	AKT1	NA	HBREF0	
HBIN01	HUANG QI	calycosin	HSDB 8	HBTAR0	MAPK1	NA	HBREF0	

6.3.2 Hirudin 对筛选通路的靶向

Figure 16 (下方图) 为图 HIRUDIN hsa04066 visualization 概览。

(对应文件为 Figure+Table/hsa04066.pathview.png)

Figure 16: HIRUDIN hsa04066 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04066

Figure 17 (下方图) 为图 HIRUDIN hsa04371 visualization 概览。

(对应文件为 Figure+Table/hsa04371.pathview.png)

Figure 17: HIRUDIN hsa04371 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04371

Reference

- 1. Gilson, M. K. *et al.* BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. *Nucleic acids research* 44, D1045–D1053 (2016).
- 2. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 3. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 4. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 5. Stelzer, G. et al. The generates suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 6. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 7. Fang, S. et al. HERB: A high-throughput experiment- and reference-guided database of traditional chinese medicine. *Nucleic Acids Research* 49, D1197–D1206 (2021).
- 8. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. *Nucleic Acids Research* 43, e47 (2015).
- 9. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.
- 10. Szklarczyk, D. et al. The string database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49, D605–D612 (2021).
- 11. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).
- 12. Nickel, J. et al. SuperPred: Update on drug classification and target prediction. Nucleic acids research 42, W26–W31 (2014).