LAB - 6

B.IT inverter

Exercise A to C is in LTSpice and D is hardware implementation of it.

A. Implement a BJT inverter circuit explained in section 5.10 of your text book. Plot the VTC as shown in diagram 5.75 for an input varying from 0 to 5V. In addition, for a steady input fill up the following table.

V _{IN} (V)	$V_{\rm E}$	V _B	V _C	Mode of
				operation
0				
0.5				
0.7				
1				
1.5				
2				
2.5				
3				
3.5				
4				
4.5				
5				

- B. Change the value of R_B and R_C while keeping one value constant as given (in section 5.10) and observe the change in VTC. Prove the behavior by using the inverter equations.
- C. Further extend it to a NOR gate as in example 5.171. On similar line implement NAND gate. Plot truth table for the same.
- D. Implement the above exercise in hardware using different registers value given to you in addition to 1 K and 10 K ohms. Plot the truth table of it.