Scilab Textbook Companion for Principles Of Electronic Instrumentation by D. Patranabis¹

Created by
Vivek Gurmukhdas Goklani
B.E(EXTC)
Others
Mumbai University
College Teacher
Rasika Naik
Cross-Checked by
Manisha Chattopadhyay

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Electronic Instrumentation

Author: D. Patranabis

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 2

Year: 2009

ISBN: 978-81-203-3355-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	5
1	Basic Concepts	9
2	Measurement Of Electrical Quantities	15
3	Digital Elements and Features	24
4	Combinational And Sequential Logic Circuits	28
5	ADC and DAC	40
6	Cathode Ray Oscilloscope	46
7	Phase Frequency and Time	54
8	Q factor Power and Power Factor	60
9	Analyzers	70
10	Bridge Circuits	74
11	Test Signal Generation	85
12	Display Record And Acquisition Of Data	93
13	Shielding And Grounding	100
14	Transducers And The Measurement System	103

List of Scilab Codes

Exa 1.1	unknown resistance	9
Exa 1.2	unknown resistance	9
Exa 1.3	find ammeter reading	10
Exa 1.4	unknown resistance	11
Exa 1.5	find input vlotage	11
Exa 1.6	find shunt resistance	12
Exa 1.7	find series resistor	12
Exa 1.8	sensitivity	13
Exa 1.9	error in measurment	13
Exa 2.1	output voltage	15
Exa 2.2	find Ad CMRR and Acm	16
Exa 2.3	find full scale output and input min	17
Exa 2.4	output voltage	18
Exa 2.5	find unknown resistance	18
Exa 2.6	find CMRR	19
Exa 2.7	tolerance in parameters	19
Exa 2.8	output voltage	20
Exa 2.9	difference in output voltage	21
Exa 2.10	find crest factor	22
Exa 2.11	find unknown resisance	22
Exa 3.1	equivalence comparator	24
Exa 3.2	antivalence comparator	24
Exa 3.3	simplify Boolean function	25
Exa 3.4	simplify Boolean function	25
Exa 3.5	obtain truth table	26
Exa 3.6	scheme of gates	27
Exa 4.1	find output and carry	28
Exa 4 2	find difference and borrow	29

Exa 4.3	find final output
Exa 4.4.a	decoder output
Exa 4.4.b	decoder output
Exa 4.5	convert 8421 to 2421 code
Exa 4.6	Xcess 3 code
Exa 4.7	8 to 1 MUX
Exa 4.8	truth table of RS flip flop
Exa 4.9	JK flip flop
Exa 4.10	3 bit binary counter
Exa 4.11	6 modulo counter
Exa 4.12	3 bit 5 modulo counter
Exa 5.1	output voltage
Exa 5.2	voltage division ratio and feedback resistor 40
Exa 5.3	output voltage
Exa 5.4	find count
Exa 5.5	find integrator output voltage
Exa 5.6	find rise in output voltage and charging time 43
Exa 5.7	find count of counter
Exa 5.8	find input voltage
Exa 5.9	conversion number
Exa 5.10	signal to noise ratio
Exa 6.1	calculate ADC speed
Exa 6.2	find frequency at horizontal plate
Exa 6.3	find length of vertical axis of ellipse
Exa 6.4	find voltage applied between plates
Exa 6.5	deflection sensitivity
Exa 6.6	find deflection of electron
Exa 6.7	cutoff frequency of filter
Exa 6.8	phase difference
Exa 6.9	rise time of pulse
Exa 6.10	find speed of conversion
Exa 6.11	find total collector resistance
Exa 6.12	deflection plates voltage
Exa 7.1	find pulse width
Exa 7.2	detector sensitivity
Exa 7.3	phase measured
Exa 7.4	measured phase difference
Exa 7.5	find phase difference 56

Exa 7.6	states for stages required
Exa 7.7	find time base division
Exa 7.8	frequency of sinusoid
Exa 7.9	count of counter
Exa 7.10	find time between events
Exa 8.1	inductance and Q factor of coil
Exa 8.2	truncation error
Exa 8.3	find ratio errror and phase angle 61
Exa 8.4	inductor Q factor and resistance
Exa 8.5	actual Q factor and resistance
Exa 8.6	find Q factor
Exa 8.7	find lag
Exa 8.8	find truncation error
Exa 8.9	find frequency of PF meter
Exa 8.10	calculate ratio error and phase angle
Exa 8.11	calculate ratio error and phase angle
Exa 9.1	variable frequency oscillator
Exa 9.2	DFT coefficients
Exa 9.3	find improvement ratio
Exa 9.4	find distortion factor
Exa 9.5	find percentage change in feedback
Exa 9.6	time uncertainity and measurable time
Exa 10.1	wheatstone bridge
Exa 10.2	high resistance measurement bridge
Exa 10.3	capacitance and resistance of AC bridge
Exa 10.4	schering bridge
Exa 10.5	wein bridge
Exa 10.6	balance condition in wein bridge
Exa 10.7	relation between Vo and t for Vi given
Exa 10.8	find deflection in galvanometer
Exa 10.9	find insulating post resistance
Exa 10.10	maxwell bridge
Exa 10.11	hay bridge
Exa 10.12	find C1 C3 and dissipation factor
Exa 10.13	wein bridge
Exa 11.1	limits of duty cycle
Exa 11.2	determine sinewave amplitude and segment slopes 86
Exa 11.3	find inductance

Exa 11.4	resonance frequency of crystal
Exa 11.5	find R in CR section
Exa 11.6	find phase difference in wein network 89
Exa 11.7	digital frequency synthesizer
Exa 11.8	find controlling voltage
Exa 11.9	find limits of duty factor
Exa 11.10	find output voltage V1 and V2 92
Exa 12.1	find excitation voltage and electrode areas 93
Exa 12.2	find deviation factor
Exa 12.3	find wavelength of radiation
Exa 12.4	thickness of LCD crystal
Exa 12.5	find current density
Exa 12.6	find magnetic flux in tape
Exa 12.7	channel accomodation
Exa 12.8	sensor signal transmission
Exa 12.9	ROM access time
Exa 13.1	find diagnostic ratio
Exa 13.2	find diagnostic ratio
Exa 13.3	find ground loop current
Exa 14.1	find percentage change in resistance 103
Exa 14.2	find bridgemann coefficient
Exa 14.3	pt100 RTD
Exa 14.4	senstivity in measurement of capacitance 105
Exa 14.5	find max gauge factor
Exa 14.6	find Young modulus
Exa 14.7	find capacitance of sensor
Exa 14.8	find ratio of collector currents
Exa 14.9	find normalized output
Exa 14.10	find load voltage
Exa 14.11	find error and sensitivity parameters 109
Exa 15.1	find increamental phase
Exa 15.2	find additional length travelled
Exa 15.3	find interacting length
Exa 15.4	wavelength suitable for laser light
Exa 15.5	find rate of change of RI wrt T

Chapter 1

Basic Concepts

Scilab code Exa 1.1 unknown resistance

```
//chapter1 , Example1_1 , pg 481

Ir=10*10^-3//current drawn by resistor

Vr=100//voltage across resistor

Rv=40*10^3//voltmeter resistance

Ru=(Vr/Ir)*(1/(1-(Vr/(Ir*Rv))))//unknown resistance

printf("output resistance\n")

printf("output resistance\n")

printf("\nRu=%.2 f ohm", Ru)
```

Scilab code Exa 1.2 unknown resistance

```
\frac{1}{2} //chapter1, Example1_2, pg 481
```

```
Ir=10*10^-3//current drawn by resistor

Vr=100//voltage across resistor

Rv=40*10^3//voltmeter resistance

Ra=1//ammeter resistance

Ru=(Rv/Ir)-Ra//unknown resistance

printf("output resistance\n")

printf("\nRu=%.2f ohm",Ru)
```

Scilab code Exa 1.3 find ammeter reading

```
//chapter1, Example1_3, pg 481

Rv=40*10^3//voltmeter resistance

Ra=1//ammeter resistance

Vr=40//voltmeter reading

Ru=10*10^3//unknown resistance

Ir=(Vr*(Rv+Ru))/(Ru*Rv)//current reading-case1

printf("ammeter reading case1\n")

printf("\nIr=%.4 f A",Ir)

Ir1=(Vr/(Ru+Ra))//current reading -case2

printf("\nammeter reading case2\n")
```

Scilab code Exa 1.4 unknown resistance

```
//chapter1 , Example1_4 , pg 482

Vs=3//supply voltage

Vu=2.75//voltmeter reading

Rp=10*10^3//parallel resistance

Ru=Rp*((Vs/Vu)-1)//unknown resistance

printf("unknown resistance\n")

printf("\nRu=%.2 f ohm", Ru)
```

Scilab code Exa 1.5 find input vlotage

```
//chapter1, Example1_5, pg 482
//with input voltage exceding 2Vd, diodes conduct and
the voltage divider circuit with diodes can
allow only a Vi given by Vi=2Vd

printf("\ninput voltage to amplifier\n")

printf("\nVi=2Vd")
```

Scilab code Exa 1.6 find shunt resistance

```
//chapter1, Example1_6, pg 482
3 Rm=1000//meter resistance
  Is=900*10^-6//shunt current
   Vm=100*10^{-3}/drop across meter
  Rs=Vm/Is//ohm's law
10
11
  It=1*10^-3
12
13 // Is = It *(Rm/(Rs+Rm))
14
15 Rs = (Rm*(It-Is))/Is
16
17 printf("\nshunt resistance\n")
18
19 printf("\nRs=\%.2 \text{ f ohm}", Rs)
```

Scilab code Exa 1.7 find series resistor

```
//chapter1 , Example1_7 , pg 483

If=100*10^-6//full scale current

Rm=1000//meter resistance

Vf=10//full scale voltage

Rs=(Vf/If)-Rm//series resistance

printf("\nseries resistance\n")
```

Scilab code Exa 1.8 sensitivity

```
1 //chapter1 , Example1_8 , pg 483
2
3 If=100*10^-6
4
5 S=1/If
6
7 printf("\nsensitivity\n")
8
9 printf("\nS=%.2 f ohm/volt",S)
```

Scilab code Exa 1.9 error in measurment

```
//chapter1, Example1_9, pg 483
//assume that the voltmeter full scale reading is 12
V which gives its resistance as 1.2*10^6 ohm
which is in parallel with 10*10^6 ohm making as
equivalent of Rq given as

R=1.2*10^6//voltmeter resistance

R1=10*10^6//voltage divider resistance

Rq=(R*R1)/(R+R1)//equivalent resistance

Vin=12//input voltage to divider network

Rs=4*10^6//series resistance
```

Chapter 2

Measurement Of Electrical Quantities

Scilab code Exa 2.1 output voltage

```
1 //chapter2 ,Example2_1 ,pg 23
2
3 //for fig . 2.7
4
5 ic=1*10^-3//constant current source
6
7 Rf=15*10^3//feedback resistance
8
9 Rs=10*10^3//input resistance
10
11 Rx=1*10^3//unknown resistance
12
13 Vo1=ic*Rf*(Rx/(1+(Rx*Rs)))//output voltage case-1
14
15 printf("output voltage for case-1\n")
16
17 printf("\nVo1=%.4 f V\n", Vo1)
18
19 //for fig . 2.8
```

```
20
21 R1=10//unknown resistance
22
23 R2=1*10^3//input resistance
24
25 Vo2=ic*Rx*(R1/(1+R1*R2))//output voltage case-2
26
27 printf("output voltage for case-2\n")
28
29 printf("\nVo2=%.4 f V\n", Vo2)
```

Scilab code Exa 2.2 find Ad CMRR and Acm

```
//chapter2, Example2_2, pg 22
3 V1 = 5 / / input - 1
5 \ V2=5/input-2
  V12=50*10^{-3}//difference input
9 Vo=2//output voltage
10
  acc=0.01//accuracy
11
12
13 Ad=(Vo/V12)//diffrential gain
14
15
  //error at the output should be less than (2/100)V
      or 20mV. if common mode gain is the only source of
       error then
16
17
  err=Vo*acc//error
18
19 Acm = (err/V1) //common mode gain
20
```

```
21 CMRR=20*log10(Ad/Acm)//common mode rejection ratio
    in dB
22
23 printf("diffrential gain \n")
24
25 printf("\nAd=%.1 f \n", Ad)
26
27 printf("common mode gain \n")
28
29 printf("\nAcm=%.4 f \n", Acm)
30
31 printf("\nCMRR=%.1 f dB\n", CMRR)
```

Scilab code Exa 2.3 find full scale output and input min

```
1 / \text{chapter} -2, \text{Example } 2 - 3, \text{pg} 484
 3 Aol=10*10^4//open loop gain
5 R2 = 10 * 10^3
 7 R3 = 10 * 10^3
   R1=100*10^3//input resistance
10
11 Vac=24//maximum input
12
13 Vo=(R2/R1)*Vac//output full scale
14
15 printf("output FS voltage\n")
16
17 printf ("Vo=\%.2 \text{ f V} \setminus \text{n}", Vo)
18
19 Vth=0.6//threshold voltage
20
```

```
21 Vn=(Vth/Ao1)//minimum input
22
23 printf("minimum input voltage\n")
24
25 printf("Vn=%.8 f V\n", Vn)
```

Scilab code Exa 2.4 output voltage

```
//chapter -2, Example 2.4, pg 484

Vp=1//peak input voltage

f=50//frequency

//R1=R2

//since halfwave rectification is done, integration gives the value

Vo=0.5*((2*Vp)/3.14)//output voltage, pi=3.14

printf("output voltage\n")

printf("Vo=%.4 f V\n", Vo)
```

Scilab code Exa 2.5 find unknown resistance

```
1 //chapter -2, Example2_5, pg 484
2
3 ic=0.1*10^-3//constant current source
4
5 Vo=2//output voltage
6
```

```
7 Rf=22*10^3//feedback resistance
8
9 Rs=10*10^3//input resistance
10
11 Rx=(1/((ic*Rf)/(Vo*Rs))-(1/Rs)))//unknown
         resistance
12
13 printf("unknown resistance\n")
14
15 printf("Rx=%.2 f ohm\n",Rx)
```

Scilab code Exa 2.6 find CMRR

```
//chapter -2, Example2_6, pg 484
a=0.9//parameter of diff. amplr.
b=1.1//parameter of diff. amplr.

CMRR=0.5*(((1+a)*b+(1+b)*a))/((1+a)*b-(1+b)*a)//
common mode rejection ratio

printf("CMRR=%.2f \n", CMRR)
```

Scilab code Exa 2.7 tolerance in parameters

```
//\text{CMRR} = 0.5*((4(+/-)3*\text{delbeta}*(k1-k2))/((+/-)\text{delbeta})
      *(k1-k2))
8
   //\text{CMRR} = 0.5 * ((4(+/-)3*(a1-a2))/((+/-)(a1-a2)))
9
10
   //a1->k1*delbeta, a2->k2*delbeta
11
12
   delalpha = (2/CMRR)/a1-a2=delalpha
13
14
15 printf ("tolerance in parameters \n")
16
17 printf ("delalpha=\%.7 f \ n", delalpha)
18
19 printf("Therefore, if a varies by 1 percent, b
      should not vary more than 2*10^-3 percent of
      variation of a ")
```

Scilab code Exa 2.8 output voltage

```
16
17 printf ("Vo1=\%.2 \text{ f V} \text{ N}", Vo1)
18
19 R32=100*10^3//R3, case -2
20
21 Vo2 = ((1+(R2/R1)+(R2/R32))*V1)-(R2/R1)*V2//output
      voltage case -2
22
  printf("output voltage case -2\n")
23
25 printf ("Vo2=\%.2 f V\n", Vo2)
26
27 R33 = 1000 * 10^3 / R3, case - 3
28
29 Vo3 = ((1+(R2/R1)+(R2/R33))*V1)-(R2/R1)*V2//output
      voltage case -3
30
31 printf("output voltage case -3\n")
32
33 printf ("Vo3=\%.2 f V", Vo3)
```

Scilab code Exa 2.9 difference in output voltage

```
//chapter -2, Example 2_9, pg 486
//(R3/R1) = 0.98^-1(R2/R4)

R1 = 10*10^3
R3 = 10*10^3

I1 = 130*10^-6

Vo1 = R1*(1+0.98)*I1//output for case -1, (R2/R4) = 0.98
```

```
13 //(R1/R3)=(R4/R2)
14
15 Vo2=R1*(1+(R3/R1))*I1//output for case-2
16
17 Vo12=((Vo2-Vo1)/Vo2)*100//percent difference
18
19 printf("difference in output voltage\n")
20
21 printf("Vo12=%.4 f ohm", Vo12)
```

Scilab code Exa 2.10 find crest factor

```
//chapter -2, Example2_10, pg 486

dutcyc=0.4//duty cycle

CF=sqrt((1-dutcyc)/dutcyc)//crest factor

printf("crest factor\n")

printf("CF=%.4f", CF)
```

Scilab code Exa 2.11 find unknown resisance

```
1 //chapter -2, Example2_11, pg 486
2
3 R1=10*10^3
4
5 R4=10*10^3
6
7 Idss=1*10^-3//drain saturation current
8
9 Vp=2.2//peak voltage
```

```
10
11  Vo=10//output voltage
12
13  V2=2//input-1
14
15  V1=-2//input-2
16
17  R5=((R1*R4)/Vo)*((-2*Idss/(Vp^2)))*V1*V2
18
19  printf("R5=%.2 f ohm",R5)
20
21  //R5  should satisfy the condition R5=((1+R1*(-2*Idss*Vp)/R2)*R3*R6) and with Vp negative it is obiviously possible
```

Chapter 3

Digital Elements and Features

Scilab code Exa 3.1 equivalence comparator

Scilab code Exa 3.2 antivalence comparator

```
1 //chapter -3, Example3_2, pg 487
2
3 in1=1//input-1
```

```
5 in2=bitcmp(in1,1)//input-2
6
7 out=(bitcmp(in1,1)+bitcmp(in2,1))*(in1+in2)//output
8
9 printf("output of comparator\n")
10
11 printf("out=%.2f",out)
```

Scilab code Exa 3.3 simplify Boolean function

```
// chapter -3, Example 3_3, pg 487
\frac{3}{\sqrt{\text{Fabc}=\text{m6+m4+m2+m7+m5+m3}}}
   //Fabc=abc'+ab'c'+abc+ab'c+a'bc
   //a' = bitcmp(a, 1)
   //Fabc=ac '(b+b')+a'bc'+ac(b+b')+a'bc
10
   //Fabc=ac '+a ' bc '+ac+a ' bc
11
12
   //Fabc=c '(a+a 'b)+c(a+a 'b)
13
14
   // Fabc = (a+b)c' + (a+b)c
15
16
17 / \text{Fabc} = (a+b) (c+c')
18
19 printf("boolean function in simplified form\n")
20
  printf("a+b")
21
```

Scilab code Exa 3.4 simplify Boolean function

```
//chapter -3, Example3_4, pg 487
//Fabc=M7*M6
//Fabc=M7*M6=(a+b+c)(a+b+c')
//Fabc=a+ab+ac'+ab+b+bc'+ac+bc+cc'
//Fabc=(a+b)+(a+b)c'+(a+b)c+ab+ab+cc'
//Fabc=((a+b)+c)((a+b)+c')
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
//Fabc=(a+b)(a+b)+(a+b)c'+(a+b)c
```

Scilab code Exa 3.5 obtain truth table

```
//chapter -3, Example 3_5, pg 488
//enter binary values only (1 bit)

a=input("enter value of a")//input-1

b=input("enter value of b")//input-2

c=input("enter value of c")//input-3

x=bitcmp(bitand(a,b),1)

y=bitor(x,c)//final output

printf("\noutput\n")
```

```
16
   printf("y=\%.2 f n", y)
17
18
   printf(" verify from truth table\n")
19
20
                                         y \ n")
21
   printf("a
                    b
                       ^{\mathrm{c}}
22
   printf("0
                         0
                                          1 \ n")
23
24
   printf("0
                        1
                                          1 \setminus n")
25
26
   printf("0
                         0
                                          1 \setminus n")
27
28
   printf("0
                         1
                                          1 \setminus n")
29
30
                                         1 \backslash n")
   printf("1
                    0
                        0
31
32
   printf("1
                        1
                                          1 \setminus n")
33
34
   printf("1
                                          0 \setminus n")
35
                         0
36
                                         1 \backslash n")
37 printf("1
                         1
```

Scilab code Exa 3.6 scheme of gates

```
//chapter -3, Example3_6, pg 488
printf("it is an EX-OR gate\n")
printf("scheme using AND/OR gates\n")
printf("AND(A*,B) OR AND(A,B*)")//A*=bitcmp(A)
```

Chapter 4

Combinational And Sequential Logic Circuits

Scilab code Exa 4.1 find output and carry

```
1  //chapter -4,Example4_1,pg 488
2
3  //it is a half-adder circuit with the output 'a' and carry 'c' given by the boolean equations
4
5  b1=1//input-1
6
7  b2=1//input-2
8
9  a=bitand(b1,bitcmp(b2,1))+bitand(bitcmp(b1,1),b2)// sum
10
11  c=bitand(b1,b2)//carry
12
13  printf("sum\n")
14
15  printf("a=%.f\n",a)
16
17  printf("carry\n")
```

```
18
19 printf("c=%.f",c)
```

Scilab code Exa 4.2 find difference and borrow

```
// chapter -4, Example 4_2, pg 489
3 //the circuit is that of a half subtractor
5 / case -1
7 b1 = 1 / / input - 1
9 B1=0//input -2
10
d1=bitand(b1,bitcmp(B1,1))+bitand(B1,bitcmp(b1,1))//
      difference
12
13 r1=bitand(b1,bitcmp(B1,1))//borrow
14
15 / \cos e - 2
16
17 b2=1
18
19 B2=1
20
d2 = bitand(b2, bitcmp(B2, 1)) + bitand(B2, bitcmp(b2, 1))
22
23 \text{ r2=bitand(b2,bitcmp(B2,1))}
24
25 printf("difference case -1 \ n")
26
27 printf("d1=\%.f\n",d1)
29 printf("difference case -2\n")
```

```
30
31 printf("d2=%.f\n",d2)
32
33 printf("borrow case-1\n")
34
35 printf("r1=%.f\n",r1)
36
37 printf("borrow case-2\n")
38
39 printf("r2=%.f\n",r2)
```

Scilab code Exa 4.3 find final output

```
//chapter -4, Example4_3, pg 489
b=1//input -1

B=0//input -2

y=bitor((bitcmp(bitor(b,B),1)), bitand(b,B))//final output

printf("final output\n")

printf("y=%.f",y)
```

Scilab code Exa 4.4.a decoder output

```
1 //chapter -4, Example4_4_a, pg 489
2
3 //initial conditions
4
5 b=0
```

```
7 Bi=0//initial value
9 Bf=1//final value
10
11 //initial state of outputs
12
13 y1i=bitcmp(bitor(b,Bi),1)
14
15 y2i=bitcmp(bitor(b,bitcmp(Bi,1)),1)
16
17 y3i=bitcmp(bitor(Bi,bitcmp(b,1)),1)
18
19 y4i=bitcmp(bitor(bitcmp(Bi,1),bitcmp(b,1)),1)
20
21 //final state of outputs
22
23 y1f=bitcmp(bitor(b,Bf),1)
24
25 y2f=bitcmp(bitor(b,bitcmp(Bf,1)),1)
26
27 y3f=bitcmp(bitor(Bf,bitcmp(b,1)),1)
28
29 y4f=bitcmp(bitor(bitcmp(Bf,1),bitcmp(b,1)),1)
30
31 printf("first: ")
32
33 printf("y1=\%.f",y1i)
34
35 \text{ printf} ("y2=\%. f ", y2i)
36
37 printf("y3=\%.f",y3i)
38
39 printf ("y4=\%. f\n", y4i)
40
41 printf("next: ")
42
43 printf("y1=\%.f",y1f)
```

```
44
45 printf("y2=%.f",y2f)
46
47 printf("y3=%.f",y3f)
48
49 printf("y4=%.f",y4f)
```

Scilab code Exa 4.4.b decoder output

```
1 / \text{chapter} -4, Example 4_4, pg 489
3 //initial conditions
5 b = 1
7 Bi=0//initial value
9 Bf=1//final value
10
11 //intial state of outputs
12
13 y1i=bitcmp(bitor(b,Bi),1)
14
15 y2i=bitcmp(bitor(b,bitcmp(Bi,1)),1)
16
17 y3i=bitcmp(bitor(Bi,bitcmp(b,1)),1)
18
19 y4i=bitcmp(bitor(bitcmp(Bi,1),bitcmp(b,1)),1)
20
21 //final state of outputs
22
23 y1f=bitcmp(bitor(b,Bf),1)
24
25 y2f=bitcmp(bitor(b,bitcmp(Bf,1)),1)
26
```

```
27 y3f=bitcmp(bitor(Bf,bitcmp(b,1)),1)
28
29 y4f=bitcmp(bitor(bitcmp(Bf,1),bitcmp(b,1)),1)
30
31 printf("first: ")
32
33 printf("y1=\%.f",y1i)
34
35 \text{ printf} ("y2=\%. f ", y2i)
36
37 printf("y3=%.f",y3i)
38
39 printf ("y4=\%. f\n", y4i)
40
41 printf("next: ")
42
43 printf("y1=\%.f",y1f)
44
45 printf("y2=\%.f",y2f)
46
47 printf("y3=\%.f",y3f)
48
49 printf("y4=\%.f",y4f)
```

Scilab code Exa 4.5 convert 8421 to2421 code

```
1 //chapter -4,Example4_5,pg 489
2
3 //if A8,B8,C8,D8 is the binary in 8421 code, for 12
          this would be 1100(DCBA)
4
5 //in 8421-code
6 A8=0
7
8 B8=0
```

```
9
10 C8=1
11
12 D8=1
13
14 // in 2421 - code
15
16 D2=D8
17
18 C2=bitor(C8,D8)
19
20 B2=bitor(B8,D8)
21
22 \quad A2 = A8
23
24 printf("2421-code for 12 is\n")
25
26 printf("%.f ",D2)
27
28 printf("%.f ",B2)
29
30 printf("%.f ",C2)
31
32 printf("%.f ",A2)
```

Scilab code Exa 4.6 Xcess 3 code

```
//chapter -4, Example4_6, pg 490
add="0011"//binary -3 to be added
x="0010"//binary -2
x=bin2dec(x)
```

```
9 add=bin2dec(add)
10
11 \quad XS31=x+add
12
13 XS31=dec2bin(XS31)
14
15 y = 0100'' / binary - 4
16
17 y=bin2dec(y)
18
19 \text{ XS32=y+add}
20
21 XS32=dec2bin(XS32)
22
23 z = 0111'' / binary - 7
24
25 \text{ z=bin2dec(z)}
26
27 XS33=z+add
28
29 XS33=dec2bin(XS33)
30
31 printf("XS-3 for 2 n")
32
33 disp(XS31)
34
35 printf("XS-3 for 4 \ n")
36
37 disp(XS32)
38
39 printf("XS-3 for 7 n")
40
41 disp(XS33)
```

Scilab code Exa 4.7 8 to 1 MUX

```
//chapter -4, Example4_7, pg 490
//one can see from relations of AND gate outputs in terms of address bits and input bit that there are possibilities depending on which input is low
//if I7=0, by making all address bits s1, s2, s3 as 1 one can have the conditions satisfied
// printf("this requires all the outputs from AND gates should be low")
```

Scilab code Exa 4.8 truth table of RS flip flop

```
1 / \text{chapter} -4, Example 4_8, pg 490
3 //enter binary 1-bit values only
5 printf("RS flip-flop truth table\n")
7 S=input("enter value of S")
9 R=input("enter value of R")
10
11 Qn=input("Enter previous value of Q")
12
13 En=input("enter enable value")
14
15 if En==0
             then
16
17 op=Qn
18
19 printf ("op=\%. f", op)
20
21 else if S==0\&R==0 then
```

```
22
23 \text{ op=Qn}
24
25 printf("op=%.f",op)
26
27 else if S==0\&R==1 then
28
29 \text{ op=0}
30
31 printf ("op=%.f",op)
32
33 else if S==1\&R==0 then
34
35 \text{ op} = 1
36
37 printf("op=%.f",op)
38
39 else if (S==1&R==1) then
40
41 printf("output not determinable \n")
42
43 end
44
45 \, \, \operatorname{end}
46
47 end
48
49 \text{ end}
50
51 printf("the relations are \n")
52
53 printf("Qn=(R+Qn*)*\n")//Q*=bitcmp(Q)
54
55 printf("Qn*=(S+Qn)*")
```

Scilab code Exa 4.9 JK flip flop

```
//chapter -4, Example4_9, pg 491
//Q=(Q*+Q.K)* and Q*=(Q+Q*.J)*
//with J=K=0 Q=Q and Q*=Q*
//Q* is bitcmp(Q)

printf("operational equations\n")

printf("Q=(Q*+Q.K)* and Q*=(Q+Q*.J)*\n")

printf("hold good where Q and Q* should be given appropriate values")
```

Scilab code Exa 4.10 3 bit binary counter

```
//chapter -4, Example4_10, pg 491

printf("it remains positive from the falling edge of pulse -2, then falling edge of 4th, 6th and 8th pulses and so on...")
```

Scilab code Exa 4.11 6 modulo counter

```
//chapter -4, Example4_11, pg 491

printf("all modulo counters are basically scalars.A
6-modulo counter is a 6-scaler so that after 6-
input pulses the content of counter becomes 000(
reset)")
```

Scilab code Exa 4.12 3 bit 5 modulo counter

```
1 //chapter -4, Example4_12, pg 491
2
3 printf("normal count would be 2^3=8, while 5-modulo counter would limit it to 5, so that illegitimate states are 8-5=3")
```

Chapter 5

ADC and DAC

Scilab code Exa 5.1 output voltage

```
//chapter -5, Example5_1, pg 491

Vref=12//ref. voltage

n=4//no. of binary weighted resistors

n1=3//input-1

n2=1//input-2

vo=-(Vref/2^n)*(2^n1+2^n2)

printf("output voltage\n")

printf("Vo=%.2 f V", Vo)
```

Scilab code Exa 5.2 voltage division ratio and feedback resistor

```
1 / \text{chapter} -5, \text{Example } 5_2, \text{pg} 491
3 //serie arm resistance=10k, since the divider arm
      resistance Rsh=2Rse therefore for straight binary
       code, one should have section voltage ratio as
      Vos/Vis=0.5
4
5 printf("voltage section ratio=0.5 \n")
7
  //Vo/Vref = 0.5
  Rse=10*10^3/series resistance (Rsh/2)
10
11 Rf=0.5*(16*Rse)/15//feedback resistor
12
13 printf("feedback resistor\n")
14
15 printf ("Rf=%.3 f ohm", Rf)
```

Scilab code Exa 5.3 output voltage

```
//chapter -5, Example 5_3, pg 492
Rse=1*10^3//series resistance
Rsh=2*10^3//shunt resistance
Vref=5//ref. voltage
n1=0//input-1
n2=3//input-2
Ro=0.22*10^3//load resistance
```

Scilab code Exa 5.4 find count

Scilab code Exa 5.5 find integrator output voltage

```
//chapter -5, Example5_5, pg 492
Tu=1*10^-3//wave time
Vi=0.2//input voltage
t=4*10^-3//integration time constant(1/RC)
```

```
9 V1=((Vi*Tu)/t)//integrator output voltage
10
11 printf("integrator output voltage\n")
12
13 printf("V1=%.2 f V", V1)
```

Scilab code Exa 5.6 find rise in output voltage and charging time

```
// chapter -5, Example 5_6, pg 493
3 Tz=0.6*10^-3//discharge time
5 Vref=1//ref. voltage
  t=4*10^-3//integrator time const.
9
  Vk=((Vref*Tz)/t)//rise in output integrator
10
11 printf("rise in integrator output\n")
12
13 printf("Vk=\%.2 f V\n", Vk)
14
15 Vi=0.2//input voltage
16
17 Tu=Vref*(Tz/Vi)//charging time
18
19 printf ("charging time \n")
20
21 printf ("Tu=%.4 f sec", Tu)
```

Scilab code Exa 5.7 find count of counter

```
1 // chapter -5, Example 5_7, pg 493
```

```
2
3 Vref=1//ref. voltage
4
5 Vi=0.2//input voltage
6
7 n=15//no. of counts before reset(n+1)
8
9 N=((n+1)*Vi)/Vref//no.of counts over charging time
10
11 printf("no. of counts over charging time\n")
12
13 printf("N=\%.2f",N)
```

Scilab code Exa 5.8 find input voltage

```
//chapter -5, Example 5_8, pg 493

Nx=64//2^6, 6 bit counteer register

Vref=2.2//ref. voltage

N=32//SAR output

Vi=(N/(Nx+1)*Vref)//input voltage

printf("input voltage\n")

printf("vi=%.2 f V", Vi)
```

Scilab code Exa 5.9 conversion number

```
\frac{1}{2} //chapter -5, Example 5_9, pg 493
```

Scilab code Exa 5.10 signal to noise ratio

```
1 //chapter -5, Example5_10, pg 493
2
3 n=3//3-bit ADC
4
5 SbyN=(((2^(n-1)*12^0.5)/2^0.5))//S/N ratio
6
7 printf("S/N ratio\n")
8
9 printf("SbyN=%.4 f \n", SbyN)
10
11 printf("this produces an error due to noise nearly 0.10")
```

Chapter 6

Cathode Ray Oscilloscope

Scilab code Exa 6.1 calculate ADC speed

```
//chapter -6,Example6_1,pg 169

n=8//8-bit resolution(conversion of 1 in 256)

Tr=10*10^-6//total trace time(256 conversions in 10*10^-6 s)

Nc=256//total conversions

S=(Nc/Tr)//speed of ADC

printf("speed of ADC\n")

printf("S=%.2f conversions/sec",S)
```

Scilab code Exa 6.2 find frequency at horizontal plate

```
1 / chapter -6, Example 6_2, pg 178
```

```
fy=1.8*10^3//frequency at vertical plates

fy=1.8*10^3//frequency at vertical plates

Nv=2//vertical tangencies

Nh=3//horizontal tangencies

fx=fy*(Nv/Nh)//frequency at horizontal plates

printf("frequency of other wave\n")

printf("fx=%.2f Hz",fx)
```

Scilab code Exa 6.3 find length of vertical axis of ellipse

```
//chapter -6, Example6_3, pg 178

phi=(%pi/180)*30//conversion into radian

bplus=3//ellipse cutting +ve minor axis

bminus=-3//ellipse cutting -ve minor axis

theta=atan(2/1)//angle of major axis of ellipse(Vy/Vh=2:1)

y1=(bplus/sin(phi))//length of vertical axis

printf("length of vertical axis \n")

printf("y1=%.2 f cm",y1)
```

Scilab code Exa 6.4 find voltage applied between plates

```
//chapter -6, Example 6_4, pg 493

d=1*10^-3//separation between plates

fe=300//acceleration of electron

e=1.6*10^-19//charge of 1 electron

me=9.1*10^-31//mass of 1 electron

Vp=((me*fe*d)/e)//voltage apllied between plates

printf("voltage applied between plates\n")

printf("Vp=%.14f Kgm^2/s^2C", Vp)
```

Scilab code Exa 6.5 deflection sensitivity

```
//chapter -6, Example6_5, pg 494

l=1*10^-2//axial length of plates

D=22*10^-2//distance between centre of plate and screen

Vap=1.3*10^3//acceleration mode voltage

del=1*10^-3//output in mm

Sd=500*1*(D/(del*Vap))//deflection senstivity

printf("deflection sensitivity\n")

printf("Sd=%.2 f mm/V",Sd)
```

Scilab code Exa 6.6 find deflection of electron

```
// chapter -6, Example 6_6, pg 494
3 Vp=0.1*10^3//deflection plate voltage
5 e=1.6*10^-19/charge of electron
  1=1*10^-2//axial length of plates
  del1=1*10^-3//output in mm
10
  m=9.1*10^-31/mass of electron
11
12
13 D=0.22*10^-2//distance between centre of plates and
      screen
14
15 t=0.1*10^-6//time of flight
16
17 del=((Vp*e*l*D)/(del1*m))*(10^-10)//deflection of
      electron beam from null pos.
18
19
  printf("deflection of electron beam from null pos.\n
20
21 printf(" del=\%.2 f cm", del)
```

Scilab code Exa 6.7 cutoff frequency of filter

```
1 //chapter -6, Example6_7, pg 494
2
3 R=10*10^5//scope input impedance
```

```
4
5 C1=0.31*62*10^-12//probe capacitance
6
7 C2=22*10^-12//probe input impedance
8
9 fcut=(1/(2*%pi*R*(C1+C2)))//cutoff frequency of filter
10
11 printf("cutoff frequency\n")
12
13 printf("fcut=%.2f Hz",fcut)
```

Scilab code Exa 6.8 phase difference

```
1 / chapter -6, Example 6_8, pg 494
3 bplus=3//ellipse parameter
5 bminus=-3//ellipse parameter
   aplus=1.5//ellipse parameter
  aminus=-1.5//ellipse parameter
10
  // case -1
11
12
13 y=6//y-intercept
14
15 x=3//x-intercept
16
17 phi1=asin(3/6)/phase difference
18
19 phi1=(180/%pi)*phi1//conversion into degree
20
21 / \operatorname{case} -2
```

```
22
23 phi2=180-phi1//major axis in 2 and 4 quad.
24
25
   // case -3
26
27 phi3=asin(0)/y2=0
28
29 / \cos -4
30
31 phi4=180-phi3//y2=0 (major axis in 2 and 4 quad.)
32
33 printf ("phi1=\%.2 \,\mathrm{f} \, \setminus \mathrm{n}", phi1)
34
35 printf("phi2=\%.2 f \n",phi2)
36
37 printf("phi3=\%.2 f \n",phi3)
38
39 printf("phi4=\%.2 f \n",phi4)
```

Scilab code Exa 6.9 rise time of pulse

```
//chapter -6, Example6_9, pg 495

B=25*10^6//bandwidth of scope

tr=(3.5/B)//rise time of scope

printf("rise time of scope \n")

printf("tr=%.8f s",tr)
```

Scilab code Exa 6.10 find speed of conversion

```
//chapter -6, Example 6_10, pg 495

Res = (1/2^8) // resolution

T = 8*10^-6 // total time

n = 256 // no. of conversions

t = (T/n) // time req. by one conversion

S = (1/t) // speed of conversion

printf("speed of conversion \n")

printf("S=%.2 f Hz\n",S)
```

Scilab code Exa 6.11 find total collector resistance

```
//chapter -6, Example6_11, pg 495

C=0.01*10^-6//timing capacitor

T=10*10^-3//time period

Rt=T/(4*C)//total collector resistance

printf("total collector resistance\n")

printf("Rt=%.2 f ohm\n", Rt)
```

Scilab code Exa 6.12 deflection plates voltage

```
1/chapter-6, Example 6_12, pg 495
```

```
2
3 d1=1.03*10^-2//separation of plates
4
5 theta=(6/5)//deflection of electron(1(deg.)12'=(6/5) deg.)
6
7 1=2.2*10^-2//length of deflection plate
8
9 Vap=2.2*10^3//accelerating potential
10
11 x=tan((%pi/180)*(6/5))//x=(d/D)(conversion into radian)
12
13 Vp=(x/1)*d1*Vap*2//potential between plates
14
15 printf("potential between plates\n")
16
17 printf("Vp=%.2f V\n", Vp)
```

Chapter 7

Phase Frequency and Time

Scilab code Exa 7.1 find pulse width

```
//chapter -7, Example7_1, pg 496

delt=1*10^-3// pulse width

//w=2wo

//delt at w=2wo

delT=(delt/2)// changed in pulse width

printf("pulse width\n")

printf("delT=%.4 f s",delT)
```

Scilab code Exa 7.2 detector senstivity

```
\begin{array}{cc} 1 & //\operatorname{chapter} -7, \operatorname{Example7\_2}, \operatorname{pg} & 496 \\ 2 & \end{array}
```

```
//senstivity of phase detection
//Sphi=(Vo/sin(B))=(Vo/B)=(+/-)0.5Vmax

Vmax=1//amplitude of cosine waves
//B is phase displacement

Sphi=(1/2)*Vmax

printf("senstivity of phase detection\n")

printf("Sphi=%.2f V/rad",Sphi)
```

Scilab code Exa 7.3 phase measured

```
//chapter -7, Example7_3, pg 496

Vp=1.3//pulse height

delt=0.31*10^-3//pulse width

T=1*10^-3//pulse repetion rate

Vphi=Vp*(delt/T)//phase deviation

phi=2*%pi*(Vphi/Vp)//phase

printf("phase measured\n")

printf("phi=%.4f rad",phi)
```

Scilab code Exa 7.4 measured phase difference

```
//chapter -7, Example7_4, pg 497

delt=0.13*10^-3//time delay

T=1.3*10^-3//time period

n=(1/3)*(1+(delt/T))//order of phase meter

delphi=(n-(1/3))*1080//measured phase difference

printf("measured phase difference\n")

printf("delphi=%.2f deg",delphi)
```

Scilab code Exa 7.5 find phase difference

```
//chapter -7, Example7_5, pg 497

n=8//8-bit counter

N2=64//output digital count

theta=%pi*(N2/(2^n-1))//phase difference

printf("measured phase difference\n")

printf("theta=%.6 f radian", theta)
```

Scilab code Exa 7.6 states for stages required

```
\frac{1}{2} //chapter -7, Example 7.6, pg 497
```

```
3 //since the no. is more than 9, the two-stage
      counting is required. the states of the stages
      are
4
  printf("
                  D
                        \mathbf{C}
                               В
                                      Α
                                            decimal
      equivalent")
6
  a1 = [0 \ 0 \ 0 \ 1]
                     1]
9 a5 = [0 1 0 1
                     5]
10
11
  disp(a1)
12
13 printf("\n")
14
15 disp(a5)
```

Scilab code Exa 7.7 find time base division

```
//chapter -7, Example 7.7, pg 498

fd=10*10^6// frequency meter input

fc=10*10^3// counter clock

fi=100*10^6// actual input frequency

k=fc*(fd/fi)// division time base

printf("division time base\n")

printf("k=%.2f",k)
```

Scilab code Exa 7.8 frequency of sinusoid

```
//chapter -7, Example 7.8, pg 498

V2=0.130//output -1

V1=0.103//output -2

Vx=0.4//peak amplitude

delt=0.1*10^-3//time delay

f1=(1/(2*%pi*delt))*(asin(V2/Vx)-asin(V1/Vx))//frequency of sinusoid

printf("frequency of sinusoid\n")

printf("f1=%.2f Hz",f1)
```

Scilab code Exa 7.9 count of counter

```
1 //chapter -7, Example 7.9, pg 498
2
3 //refer fig. 7.30(a),(b),(c)
4
5 //N=(2*fc/fs^2)*fi
6
7 fs=10*10^2//sampler frequency
8
9 fc=10*10^3//counter clock
10
11 M=(fs^2)/(2*fc)//multiplication factor
12
13 fi=113//input frequency
14
```

```
15 N=(1/M)*fi//count of counter
16
17 printf("count of counter\n")
18
19 printf("N=%.2f",N)
```

Scilab code Exa 7.10 find time between events

```
1 //chapter -7, Example7_10, pg 498
2
3 n=10*10^2//scale factor = (1/n)
4
5 fc=10*10^5//clock frequency
6
7 N=10//count
8
9 Tp=(n/fc)*N//time between events
10
11 printf("time between events\n")
12
13 printf("Tp=%.4 f s",Tp)
```

Chapter 8

Q factor Power and Power Factor

Scilab code Exa 8.1 inductance and Q factor of coil

```
1 //chapter -8, Example 8.1, pg 234
2
3 fr=400*10^3//resonance frequency
4
5 C=400*10^-12//tuned capacitance
6
7 R=10//resistance of coil
8
9 n=40//Cp=nC
10
11 Cp=n*(100/400)*10^-12//interwinding capacitance
12
13 L=(1/(4*(%pi^2)*(fr^2)*(C+Cp)))//inductance of coil
14
15 Q=2*%pi*fr*(L/R)//observed Q-factor
16
17 printf("observed Q-factor\n")
18
19 printf("Q=%.2 f ",Q)
```

Scilab code Exa 8.2 truncation error

```
1 / chapter -8, Example 8_2, pg 240
3 \text{ fs=50*10^3//sampling rate}
5 delt=2//summation interval
  f=50//signal frequency
  n=(fs/delt)//value of samples for 2s
10
  maxer1=100/(2*n)//max error for synchronous case
12
13 \max = (100/(2*fs*delt*sin((2*%pi*f)/fs)))/\max
      error for asynchronous case
14
15 printf("max error for synchronous case\n")
16
17 printf("maxer1=\%.4 f \n",maxer1)
18
19 printf("max error for asynchronous case\n")
20
21 printf("maxer2=\%.2 f", maxer2)
```

Scilab code Exa 8.3 find ratio errror and phase angle

```
1 //chapter -8, Example 8_3, pg 258
2
3 //assume no iron loss and magnetizing current=1% of 10A, i.e 0.01A
```

```
5 Xs=1.884//reactance of secondary
7 Rs=0.5//resistance of secondary
9 Xm=20//reactance of meter
10
11 Rm=0.4//reactance of meter
12
13 B=atan((Xs+Xm)/(Rs+Rm))
14
15 B=B*(180/%pi)//conversion into degree
16
17 Im=0.01//magnetizing current
18
19 //nominal ratio (n2/n1)=10/1
20
21 \quad n2 = 10
22
23 n1=1
24
25 R=n2+((Im*sin(B))/n1)//actual impedance
26
27 R1=0.0097//practical impedance
28
29 perer=(R1/R)*100//percentage error
30
31 theta=((Im*cos(B))/n2)//phase angle
32
33 theta=theta*(%pi/180)//conversion into radian
34
35 printf("percentage error\n")
36
37 printf ("perer=\%.4 \text{ f} \setminus \text{n}", perer)
38
39 printf("phase angle\n")
40
41 printf("theta=\%.6f rad", theta)
```

Scilab code Exa 8.4 inductor Q factor and resistance

```
// chapter -8, Example 8_4, pg 499
3 Vc=100//voltage across capacitor
5 Vi=12//input voltage
7 Q = (Vc/Vi)//Q - factor
  f=100//frequency of operation
10
11 Vl=100//Vc=Vl at resonance
12
13 Ir=5//current at resonance
14
15 Xl=(Vl/Ir)//inductive reactance
16
17 L=(X1/(2*\%pi*f))//inductance
18
19 Rl = (X1/Q) / resistance
20
21 printf("inductance of coil\n")
22
23 printf("L=\%.4 f Henry\n",L)
24
25 printf("Q-factorn")
26
27 printf("Q=\%.3 f \n",Q)
28
29 printf("resistance of coil\n")
30
31 printf("Rl=%.2 f ohm", R1)
```

Scilab code Exa 8.5 actual Q factor and resistance

```
// chapter -8, Example 8_5, pg 499
3 //when switch is open
5 C1=0.011*10^-6//capacitance-1
7 Q1=10//Q-factor-1
  //when switch is closed
10
  C2=0.022*10^{-6}/capacitance-2
11
12
13 Q2 = 100 / /Q - factor - 2
14
15 Qac = ((Q1*Q2)/(Q1-Q2))*((C1-C2)/C1)//actual Q-factor
16
17 Rp=((Q1*Q2)/(Q2-Q1))*(1/(2*\%pi*C2))/parallel
      resistance
18
19 printf("actual Q-factor\n")
20
21 printf("Qac=\%.2 f \n",Qac)
22
23 printf ("parallel resistance \n")
24
25 printf ("Rp=%.2 f ohm", Rp)
```

Scilab code Exa 8.6 find Q factor

```
1 / chapter -8, Example 8_6, pg 499
```

```
2
3 Cr=0.01*10^-6//capacitance at resonance
4
5 Cu=0.014*10^-6//capacitance at upper half
6
7 Cl=0.008*10^-6//capacitance at lower half
8
9 Qac=((2*Cr)/(Cu-Cl))//actual Q-factor
10
11 printf("actual Q-factor\n")
12
13 printf("Qac=%.2f\n",Qac)
```

Scilab code Exa 8.7 find lag

```
//chapter -8,Example8_7,pg 499

V=10//v=10sin6280t

I=1//current peak
P=3.1//active power

phi=acos((P*2)/V)//phase in radian

w=6280//v=10sin6280t

lag=(phi/w)//lag

printf("lag=%.5 f s\n",lag)
```

Scilab code Exa 8.8 find truncation error

```
// chapter -8, Example 8_8, pg 500
3 V=4//peak voltage
5 I=0.4//peak current
  f=1*10^3//operating frequency
  fs=40*10^3//sampling rate
10
11 delt=2.2//time interval
12
13 phi = ((2*\%pi*f)/fs)//phase
14
15 Et=(V*I*phi)/(4*%pi*f*delt*sin(phi))//truncation
      error
16
17 printf("truncation error\n")
18
19 printf ("Et=%.8 f ",Et)
```

Scilab code Exa 8.9 find frequency of PF meter

```
1 //chapter -8, Example 8_9, pg 500
2
3 ar=1//gain of rectifier
4
5 nc=40//turns ratio (1:40)
6
7 Vm=4//peak load voltage
8
9 PF=0.85//power factor
10
11 f=(1/%pi)*ar*Vm*nc*PF//frequency
12
```

```
13 printf("frequency of digital power meter \n")
14
15 printf("f=\%.2 f Hz",f)
```

Scilab code Exa 8.10 calculate ratio error and phase angle

```
1 / chapter -8, Example 8_10, pg 500
 3 Rp=94//primary resistance
5 Xp=64.3//primary reactance
 7 Rs=0.85//secondary resistance
   Im=31*10^-3//magnetizing current
10
11 PF=0.4//power factor
12
13 B = acos(PF)
14
15 R=Rp+Rs//total resistance
16
17 n=10//PT ratio
18
19 Is=1//load current
20
21 Vs = 110 / /n = (Vp/Vs)
22
23 \operatorname{nerr} = n + ((\operatorname{Is/n}) * (\operatorname{R} * \cos(B) + \operatorname{Xp} * \sin(B) + \operatorname{Im} * \operatorname{Xp}) / \operatorname{Vs}) / / \operatorname{ratio}
         error
24
25 theta=((\cos(B)*(Xp/n))-(\sin(B)*(R/n))-(Im*Rp))/(Vs*n)
       )//phase angle
26
27 printf("ratio error\n")
```

```
28
29 printf("nerr=%.3f \n",nerr)
30
31 printf("phase angle\n")
32
33 printf("theta=%.3f",theta)
```

Scilab code Exa 8.11 calculate ratio error and phase angle

```
1 / chapter -8, Example 8_{11}, pg 500
3 n=20/(Vs/Is)
5 \text{ Is=} 5//n = (\text{Vs/Is})
7 Vs = 100 / / n = (Vs / Is)
  N=0.25//resistance to reactance ratio
10
11 Bur=15//burden of CT=15VA (rating)
12
13 V=(Bur/Is)//voltage rating
14
15 B=atan(N)/cos(B)—> power factor
16
17 B=B*(180/%pi)//conversion into degree
18
19 IL=0.13//iron loss
20
21 I=(Bur/Vs)//current rating
22
23 I1 = (IL/I)
24
  Im=1.3//magnetizing current
25
26
```

```
Rac=0.23//actual value
27
28
29 R=n+((I1*cos(B)+Im*sin(B))/Is)//calculated value
30
31 theta=((Im*cos(B)-I1*sin(B))/Vs)/phase angle
32
33 nerr=-(Rac/R)*100//ratio error
34
35 printf("ratio error\n")
36
37 printf("nerr=\%.4 f \ \n",nerr)
38
39 printf("phase angle \n")
40
41 printf("theta=\%.4f", theta)
```

Chapter 9

Analyzers

Scilab code Exa 9.1 variable frequency oscillator

Scilab code Exa 9.2 DFT coefficients

```
1 / \text{chapter} -9, \text{Example } 9_2, \text{pg} 502
```

```
3 N=22/\text{no.} of acquistioned data
  delt=2*10^-3//time period
  n=4//4th DFT coeff.
  q=3//no. of discrete points
10
  //An = (2/N) *V(n) * cos((2 * \%pi * n * q)/N)
11
12
  printf ("A4=(1/11)V(4)\cos(12 pi/11) n")
13
14
  //Bn = (2/N) *V(n) *sin((2*\%pi*n*q)/N)
15
16
  printf ("B4=(1/11)V(4) \sin (12 \text{ pi}/11) \ln")
17
```

Scilab code Exa 9.3 find improvement ratio

```
//chapter -9, Example 9_3, pg 502

N=64//data units
//implimentation steps for DFT=64^2
//for FFT

r=(log2(N)/N)//implimentation ratio
printf("implimentation ratio\n")

printf("r=%.4 for (3/32)",r)
```

Scilab code Exa 9.4 find distortion factor

```
//chapter -9, Example9_4, pg 502

3 D3=1.3*10^-2//3rd harmonic(unit value)

5 D5=0.31*10^-2//5th harmonic(unit value)

6 D7=0.04*10^-2//7th harmonic(unit value)

8 Dt=sqrt((D3^2)+(D5^2)+(D7^2))//distortion ratio

10 printf("distortion ratio\n")

12 printf("Dt=%.5f",Dt)
```

Scilab code Exa 9.5 find percentage change in feedback

```
//chapter -9, Example 9.5, pg 502

Q=10//Q-factor

m=5//improvement factor

a=(1/((3*Q)-1))//filter factor

Qr=Q*m//rejection Q-factor

ar=(1/((3*Qr)-1))//rejection filter factor

perf=((a-ar)/a)*100//percent change in feedback

printf("percent change in feedback\n")

printf("perf=%.5f", perf)
```

Scilab code Exa 9.6 time uncertainity and measurable time

```
//chapter -9, Example9_6, pg 503

fc=100*10^6//clock frequency

Nm=4*10^6//memory size

Te=(1/fc)//timing uncertainity

Tm=(Nm/fc)//measurable time

printf("timing uncertainity\n")

printf("Te=%.11f s\n",Te)

printf("measurable time\n")

printf("measurable time\n")

printf("Tm=%.4 f s",Tm)
```

Chapter 10

Bridge Circuits

Scilab code Exa 10.1 wheatstone bridge

```
1 / \text{chapter} -10, \text{Example} 10_{-1}, \text{pg} 292
3 Vs=12//source voltage
5 R=120//resistance of arms
7 delv=0.3//variation in output voltage (+/-)0.3
  delRbyR=(4/Vs)*(delv)*100//percent change in
      resistance
10
11 Rm=100//meter resistance
12
13 delIm = (delRbyR/100)/(4*R*(1+(Rm/R)))//current
      variation
14
15 printf("percent change in resistance\n")
16
17 printf("delRbyR=\%.2 f \ n",delRbyR)
18
19 printf("current variation\n")
```

Scilab code Exa 10.2 high resistance measurement bridge

```
1 / \text{chapter} -10, Example 10_{-2}, pg 295
3 //in absence of the guard point arrangement, two
      10^10 ohm resistances in series become parallel
      to the 10<sup>9</sup> ohm resistance, making the effective
      unknown resistance
4
5 / \operatorname{case} -1
6
7 Rh=10^9
9 Ra1=10^10
10
11 Rb1=10^10
12
13 Rue1=((Rh*2*Ra1)/(Rh+(2*Ra1)))/(effective\ resistance)
14
15 err1=((Rh-Rue1)/Rh)*100//percentage error
16
17
  // case -2
18
19 Ra2=10^9
20
21 Rb2=10<sup>9</sup>
22
23 Rue2=((Rh*2*Ra2)/(Rh+(2*Ra2)))//effective resistance
24
25 err2=((Rh-Rue2)/Rh)*100//percentage error
26
27 printf ("percentage error case -1\n")
```

```
28
29 printf("err1=%.2 f \n",err1)
30
31 printf("percentage error case-2\n")
32
33 printf("err2=%.2 f ",err2)
```

Scilab code Exa 10.3 capacitance and resistance of AC bridge

```
// \text{chapter} -10, Example 10_3, pg 297
3 Z1=complex(20,80)//impedance in first arm
5 Z2=complex(200)//impedance in second arm
  Z3=complex(100,200)//impedance in third arm
7
9 f=50//excitation frequency
10
11 Zu = ((Z2*Z3)/Z1)/impedance of fourth arm
12
13 Cu = -(1/(2*\%pi*f*imag(Zu)))//capacitance in fourth
      arm
14
15 printf("capacitance in fourth arm\n")
16
17 printf ("Cu=\%.9 f F\n", Cu)
18
19 Ru=real(Zu)//resistance in fourth arm
20
21 printf ("resistance in fourth arm \n")
22
23 printf ("Ru=\%.2 f ohm\n", Ru)
```

Scilab code Exa 10.4 schering bridge

```
// chapter -10, Example 10_{-4}, pg 301
3 C3=0.001*10^-6//capacitor
5 Fd=6*10^-4//dissipation factor
  f=1*10^3//schering bridge frequency
  Ru=(Fd/(2*%pi*f*C3))//standard resistor
10
11
   R1 = 10 * 10^3
12
13 R2=10*10^3
14
15 C1 = C3 * (1/R2) * Ru
16
17 printf("standard resistor\n")
18
19 printf("Ru=\%.3 \text{ f ohm} \n", Ru)
20
21 printf("capacitor\n")
22
23 printf("C1=\%.16 f F",C1)
```

Scilab code Exa 10.5 wein bridge

```
1  //chapter -10, Example 10_5, pg 303
2
3  R=10*10^3//resistor
```

```
5 C=0.001*10^-6//capacitor
6
7 f=(1/(2*%pi*R*C))//supply frequency
8
9 R3=10*10^3//reistance in third arm
10
11 R4=(R3/2)//reistance in fourth arm
12
13 printf("supply frequency\n")
14
15 printf("f=%.2 f Hz\n",f)
16
17 printf("reistance in fourth arm\n")
18
19 printf("R4=%.2 f ohm",R4)
```

${f Scilab\ code\ Exa\ 10.6}$ balance condition in wein bridge

```
//chapter -10, Example 10_6, pg 303

f = 47.76*10^3//supplu frequency

CR = (1/(2*%pi*f)) // resistor capacitor product

C=10^-9//assume

R = (CR/C) // resistor

printf("for (R3/R4)=2 R3 and R4 may be maintained at earlier values")
```

Scilab code Exa 10.7 relation between Vo and t for Vi given

```
// \text{chapter} -10, Example 10_{-7}, pg 309
3 a1=3.81*10^{-3}
5 \quad a2 = -6.17 * 10^{-7}
7
   //R1=(R2/2), i.e. R2/R1=2
  R1=10*10^3
10
11 R2 = 20 * 10^3
12
13 R5 = 4 * 10^3
14
15 R6=20*10<sup>3</sup>
16
17 B=(R5/(R5+R6))
18
   //using relation 10.68(b)
19
20
21 printf ("(Vo/Vi) = (-3.05*10^{-3}) t/(1+0.76*10^{-3}) t/n")
22
23 printf("thus for, t \le 130 \, \text{C}, Vo is approx. linear.
       this however can be extended with proper choice i
       e R5 and R6 in relation to R1, R3 and R4")
```

Scilab code Exa 10.8 find deflection in galvanometer

```
1  //chapter -10, Example 10_8, pg 503
2
3  R1 = 120 // resistance of arm -1
4
5  R2 = 120 // resistance of arm -2
6
7  R3 = 120 // resistance of arm -3
```

```
9 R4=121//resistance of arm-4
10
11 Rm=100//meter resistance
12
13 Vs=6//source voltage
14
15 n=1*10^-3/meter sensitivity
16
17 Vm=Vs*((R1/(R1+R2))-(R3/(R3+R4)))//voltage across
      meter
18
19
  Rb = (R1*R2)/(R1+R2) + (R3*R4)/(R3+R4)//thevenised
      bridge resistance
20
21 Ig=(Vm/(Rb+Rm))//current through galvanometer
22
23 D = Ig * 10^6
24
25 printf("deflection in meter\n")
26
27 printf("D=\%.2 \text{ f mm} \ n",D)
```

Scilab code Exa 10.9 find insulating post resistance

```
//chapter -10, Example 10_9, pg 503

rr=0.5*10^-2//(+/-)0.5%

R=100*10^6//test resistance
//Re=((R*2*Rip)/(R+(2*Rip)))

Re1=R-(err*R)//err=+0.5
```

```
11 Re2=R-(-err*R) // err=-0.5
12
13 Rip1=((R*Re1)/(2*(R-Re1))) // err=+0.5
14
15 Rip2=((R*Re2)/(2*(R-Re2))) // err=-0.5
16
17 printf("resistance of each insulating post-1\n")
18
19 printf("Rip1=%.2 f ohm\n", Rip1)
20
21 printf("resistance of each insulating post-2\n")
22
23 printf("Rip2=%.2 f ohm", Rip2)
```

Scilab code Exa 10.10 maxwell bridge

```
//chapter -10, Example 10_10, pg 504
Ru=130//resistance
Lu=31*10^-3//inductance
R2=10*10^3//resistance in arm-2

C1=0.01*10^-6//capacitance in arm
R3=(Lu/(C1*R2))//resistance in arm-3
R1=((R2*R3)/Ru)//resistance in arm-1

printf("R1=%.2 f ohm\n",R1)
rintf("R3=%.2 f ohm\n",R3)

printf("yes values are unique")
```

Scilab code Exa 10.11 hay bridge

```
// chapter -10, Example 10_11, pg 504
3 f=1000//supply frequency
5 C1=0.04*10^-6//capacitance
  R1=220//resistance in arm-1
   Lu=22*10^-3//inductance
10
  Ru = ((2*\%pi*f)^2)*C1*R1*Lu//resistance
12
13 R3=((R1*Ru)+(Lu/C1))/R2//resistance in arm-3
14
15 printf("resistance of inductor\n")
16
  printf("Ru=\%.2 f ohm n", Ru)
17
18
19 printf ("resistance of arm -3 \ n")
20
21 printf("R3=\%.2 \text{ f ohm} \ \text{n}",R3)
```

Scilab code Exa 10.12 find C1 C3 and dissipation factor

```
1 //chapter -10, Example 10_12, pg 505
2
3 C4=0.0033*10^-6//lossy capacitor
4
5 R2=12*10^3//arm-2 resistance
```

```
7 R1=10*10^3/\arctan-1 resistance
9 C3=((C4*R2)/R1)//standard capacitance
10
11 R4 = 0.1
12
13 C1 = ((R4 * C3)/R2)
14
15 Fd=2*%pi*f*C4*R4//dissipation factor
16
17 printf("capacitance set value\n")
18
19 printf("C1=\%.16 f F\n",C1)
20
21 printf("value of standard capacitance\n")
22
23 printf("C3=\%.14f F\n",C3)
24
25 printf("dissipation factor\n")
26
27 printf("Fd=\%.12 f n", Fd)
```

Scilab code Exa 10.13 wein bridge

```
//chapter -10, Example 10_13, pg 505

f=10*10^3//supply frequency

R1=10*10^3//reistance of arm-1

C1=0.01*10^-6

C2=0.01*10^-6

10
```

```
11 R3=20*10^3//resistance of arm-3
12
13 w=2*%pi*f//angular supply frequency
14
15 R2=(1/(w^2))*(1/(C1*C2*R1))//resistance of arm-2
16
17 R4=(R3/((R1/R2)+(C2/C1)))//resistance of arm-4
18
19 printf("resistance of arm-2\n")
20
21 printf("R4=%.2 f ohm\n",R2)
22
23 printf("resistance of arm-4\n")
24
25 printf("R2=%.2 f ohm\n",R4)
```

Chapter 11

Test Signal Generation

Scilab code Exa 11.1 limits of duty cycle

```
1 //chapter -11, Example 11_1, pg 343
3 R1=1*10^3//input resistance
5 R2=1*10^3//feedback resistor
7 R3=1*10^3// non inverting ter. resistor
9 R8=1*10^3//potentiometer
10
11 R4=1*10<sup>3</sup>
12
13 DF1=(R1/((2*R1)+R8))/duty factor lim.-1
14
15 DF2=(R1+R4)/((2*R1)+R8)//duty factor lim.-2
16
  //T = (((2*R4*C*((2*R1)+R8)))/R1)*(Vt/Vi) = ((6*R4*C*Vt))
17
     /Vi)
18
  printf("range of duty factor is DF1 to DF2 i.e\n")
19
20
```

```
21 printf("%.2 f to ",DF1)
22
23 printf("%.2 f",DF2)
24
25 printf("\nlimits of t1 and t2\n")
26
27 printf("(T/3) to (2T/3)")
```

Scilab code Exa 11.2 determine sinewave amplitude and segment slopes

```
// chapter -11, Example 11_2, pg 344
3 Vtx=5//triangular peak(+/-)5
5 Vsx=(2/%pi)*Vtx//sinewave peak
  //if n=3 then there are 2*3=6 break points these are
       at o/p voltages
9 n=3//break point parameter
10
11 Vs1=(2/\%pi)*Vtx*sin((1*\%pi)/((2*n)+1))
12
13 Vs2=(2/\%pi)*Vtx*sin((2*\%pi)/((2*n)+1))
14
15 Vs3=(2/\%pi)*Vtx*sin((3*\%pi)/((2*n)+1))
16
17
  //calculating slopes
18
  ms1 = (((2*n)+1)/\%pi)*(sin((\%pi*(1+1))/((2*n)+1))-sin
      ((\%pi*1)/((2*n)+1)))
20
21 ms2 = (((2*n)+1)/\%pi)*(sin((\%pi*(2+1))/((2*n)+1))-sin
      ((\%pi*2)/((2*n)+1)))
22
```

```
23 ms3 = (((2*n)+1)/\%pi)*(sin((\%pi*(3+1))/((2*n)+1))-sin
      ((\%pi*3)/((2*n)+1)))
24
25 printf ("break points \n")
26
27 printf("output voltages\n")
28
29 printf ("Vs1=\%.2 f V", Vs1)
30
31 printf("Vs2=\%.2 f V", Vs2)
32
33 printf ("Vs3=\%.2 f V n", Vs3)
34
35 printf("segment slopes\n")
36
37 \text{ printf} (\text{"ms1}=\%.2 \text{ f} \text{",ms1})
38
39 printf("ms2=\%.2f",ms2)
40
41 printf ("ms3=\%.2 f \n", ms3)
```

Scilab code Exa 11.3 find inductance

```
1 //chapter -11, Example 11_3, pg 505
2
3 R1=0//resistance
4
5 C=0.1*10^-6//capacitance
6
7 f=1*10^3//frequency
8
9 L=(1/((2*%pi*f)^2))*(1/C)//inductance
10
11 printf("inductance of circuit\n")
12
```

Scilab code Exa 11.4 resonance frequency of crystal

```
// chapter -11, Example 11_4, pg 506
3 C1=4*10^-12
5 L=94*10^-3/inductance
  C=13*10^-9/capacitance
9 R=91.3//resistance
10
11 f1=(1/(2*\%pi))*((L*C)^(-1/2))/resonance frequency-1
12
13 f2=(sqrt(1+(C/C1))/(2*%pi*sqrt(L*C)))//resonance
      frequency -2
14
  printf ("resonance frequency -1 \n")
15
16
17 printf ("f1=\%.2 \text{ f Hz} \ \text{n}", f1)
18
19 printf ("resonance frequency -2\n")
20
21 printf ("f2=\%.2 f Hz", f2)
```

Scilab code Exa 11.5 find R in CR section

```
1 //chapter -11,Example11_5,pg 506
2
3 f=1*10^3//frequency
```

```
5  C=0.01*10^-6//capacitance
6
7  //f=(1/(2*%pi))*(1/(6^(1/2)*RC))
8  P=(1/(2*%pi*(6^(1/2)*C*f)))//resistance of circuit
10  printf("resistance of circuit\n")
11  printf("R=%.2 f ohm",R)
```

Scilab code Exa 11.6 find phase difference in wein network

```
// chapter -11, Example 11_6, pg 506
2
3 epsi=0.01///detuning parameter
5 eta1=1//(f/fo)=1
  eta2=2.2//(f/fo)=2.2
8
9
  //\operatorname{case} -1
10
11 phi1=atan((3*eta1*((eta1^2)-1)*(3+(2*epsi))))/((((
      eta1^2)-1)^2*(3+epsi)-(9*epsi*(eta1^2))))/phase
       difference
12
13 / \cos -2
14
15 phi2=atan((3*eta2*((eta2^2)-1)*(3+(2*epsi))))/((((
      eta2^2)-1)^2)*(3+epsi)-(9*epsi*(eta2^2))))/phase
       difference
16
17 printf ("phase difference for case -1\n")
18
19 printf("phi1=\%.2f rad\n",phi1)
```

```
20
21 printf("phase difference for case-2\n")
22
23 printf("phi2=%.2 f rad\n",phi2)
```

Scilab code Exa 11.7 digital frequency synthesizer

```
1 / \text{chapter} -11, \text{Example} 11_{-7}, \text{pg} 507
3 \text{ N=} 12//12 - \text{bit synthesizer}
5 k1=1//sampling rate at sampler's rate
7 k2=4//sampling rate at 4 times sampler's rate
  // case -1
9
10
   adv1=(360/(2^N))//advancement of o/p register
11
12
13 / 2 pi rad = 360 deg.
14
15 / \cos -2
16
17 adv2 = (4*(360)/(2^N))/advancement of o/p register
18
19 printf("advancement of o/p register for case -1\n")
20
21 printf ("adv1=\%.4 f \n",adv1)
22
23 printf("advancement of o/p register for case -2\n")
24
25 printf("adv2=\%.4 f \ n",adv2)
```

Scilab code Exa 11.8 find controlling voltage

```
//chapter -11, Example11_8, pg 507

f=1*10^3// frequency

R6=10*10^3// feed - back resistor

R5=22*10^3// feed - in resistor

R4=10*10^3// integrator resistor

C=0.1*10^-6// integrator capacitor

Vsx=2// comparator pulse amplitude

Vi=((f*R4*R5*C)/(R6*4*Vsx))// controlling voltage

printf("controlling voltage\n")

printf("Vi=%.2 f V\n", Vi)
```

Scilab code Exa 11.9 find limits of duty factor

```
11 lim1=(R1/((2*R1)+R8))///limit-1 of duty factor
12
13 lim2=((R1+R4)/((2*R1)+R8))//limit-2 of duty factor
14
15 printf("lim1=%.2f\n",lim1)
16
17 printf("lim2=%.2f\n",lim2)
```

Scilab code Exa 11.10 find output voltage V1 and V2

```
// chapter -11, Example 11_10, pg 507
3 Vi=1.3//input voltage
5 R2 = 10 * 10^3
7 R3 = 10 * 10^3
9 R8=10*10^3//potentiometer
10
11 B=1/3//wiper distance
12
13 V1=((R3*Vi)/(R3+(B*R8)))//output voltage -1
14
15 V2 = -((R2 * Vi) / (R1 + ((1 - B) * R8))) / output voltage -2
16
17 printf("ouput voltage -1\n")
18
19 printf ("V1=\%.4 f V\n", V1)
20
21 printf("ouput voltage -2\n")
22
23 printf ("V2=\%.4 \text{ f } V \setminus n", V2)
```

Chapter 12

Display Record And Acquisition Of Data

Scilab code Exa 12.1 find excitation voltage and electrode areas

```
//chapter -12, Example 12_1, pg 371

E=10^6//electric field

1=10^-6//thickness of LCD

V=E*1//excitation potential

I=0.1*10^-6//current

rho=E/I//crystal resistivity

P=10*10^-6//power consumption

A=(P/(V*I))//area of electrodes

printf("excitation potential\n")

printf("V=%.2f V\n", V)
```

```
20
21 printf("crystal resistivity\n")
22
23 printf("rho=%.2f ohm-cm\n",rho)
24
25 printf("area of electrodes\n")
26
27 printf("A=%.2f cm^2",A)
```

Scilab code Exa 12.2 find deviation factor

```
1 / \text{chapter} -12, \text{Example} 12_2, \text{pg} 383
3 fc=10<sup>6</sup>/carrier frequency
5 \text{ m=0.4//modulation index}
  fs=100//signal frequency
9 V=2//(+/-)2V \text{ range}
10
11 delfc1=m*fc//frequency deviation for FS(full scale)
12
   //(+/-) 2V corresponds to delfc Hz deviation
      assuming linear shift, for (+/-)1V
14
  delfc2=delfc1/V//frequency deviation for (+/-)1V
      range
16
17 sig=(delfc1/fs)//deviation factor
18
19 printf("frequency deviation for FS\n")
20
21
  printf(" delfc1=\%.2f Hz\n", delfc1)
22
```

```
23 printf("frequency deviation for given range\n")
24
25 printf("delfc2=%.2f Hz\n",delfc2)
26
27 printf("deviation factor\n")
28
29 printf("sig=%.2f",sig)
```

Scilab code Exa 12.3 find wavelength of radiation

```
// chapter -12, Example 12_3, pg 508
3 h=6.63*10^-34//planck's const.
  e=1.6*10^-19/electron charge
   c=3*10^8//speed of light
  E=2.02//energy gap
10
   lam=((h*c)/E)//wavelength of radiation(m/eV)
11
12
13 / 1eV = 16.017*10^{-20} J
14
15 lam = (lam/(16.017*10^-20))/conversion in meter
16
17 printf ("wavelength of radiation \n")
18
19 printf ("lam=\%.12 \text{ f m/n}", lam)
```

Scilab code Exa 12.4 thickness of LCD crystal

```
1 / \text{chapter} -12, Example 12_4, pg 508
```

```
2
3 V=1.3//excitation voltage
4
5 Vgrad=10^5//potential gradient
6
7 //10^5 V/mm*thickness in mm=excitation voltage
8
9 l=(V/Vgrad)//thickness of LCD
10
11 printf("thickness of LCD\n")
12
13 printf("l=%.8f m\n",1)
```

Scilab code Exa 12.5 find current density

```
//chapter -12, Example 12_5, pg 508

tho = 4*10^12// resistivity of LCD

Vgrad = 10^6// potential gradient

j = (Vgrad/rho) // current density

printf("current per cm^2\n")

printf("j=%.8 f A/cm^2\n",j)
```

Scilab code Exa 12.6 find magnetic flux in tape

```
1 //chapter -12,Example12_6,pg 508
2
3 f=2*10^3//frequency of signal
```

```
5  v=1//velocity of tape
6
7  w=0.05*10^-3//gap width
8
9  N=22//no.of turns on head
10
11  V=31*10^-3//rms voltage o/p
12
13  x=(%pi*f*w)/v
14
15  x=x*(%pi/180)
16
17  M=((V*w)/(2*v*N*sin(x)))//magnetic flux in tape
18
19  printf("magnetic flux in tape\n")
20
21  printf("M=%.8f Wb\n",M)
```

Scilab code Exa 12.7 channel accomodation

```
//chapter -12, Example 12_7, pg 509

Br=576*10^3// bit rate conversion

n=8//resolution requirement per channel

fs=1000//sampling rate

N=(Br/(fs*3*n))//no. of channels

printf("no. of channels accommodated\n")

printf("N=%.2 f \n",N)
```

Scilab code Exa 12.8 sensor signal transmission

```
// chapter -12, Example 12_8, pg 509
3 Rsmax=1*10^3//sensor resistance max.
   Rsmin=100//sensor resistance min.
  Vs=5//sensor voltage
  Io=(Vs/Rsmax) // current source -> ohm's law
10
   Vmin=Rsmin*Io//min. output voltage
11
12
  printf("current source\n")
14
  printf("Io=\%.4fA\n",Io)
15
16
17 printf("min. output voltage\n")
18
19 printf ("Vmin=\%.2 \text{ f V} \text{ N}", Vmin)
```

Scilab code Exa 12.9 ROM access time

```
1 //chapter -12, Example12_9, pg 509
2
3 //ROM 22*5*7
4
5 N=5//no. of gates in bitand plane
6
7 n=22//no.of inputs
```

```
9 f=913//refresh rate
10
11 //considering column display
12
13 ts=(1/(N*f*n))//ROM access time
14
15 printf("ROM access time\n")
16
17 printf("ts=%.6 f s\n",ts)
```

Chapter 13

Shielding And Grounding

Scilab code Exa 13.1 find diagnostic ratio

```
1 / \text{chapter} -13, Example 13_1, pg 405
3 t1=0.1*10^-6//time span for voltage
5 //voltage switching
7 V1 = 0.5 / / level - 1
9 V2=5//level-2
10
  //current switching
12
13 I1=0//level-1
14
15 I2=10*10^{-3}/level-2
16
17 t2=1*10^-6//time span for current
18
19 DR = (((V2-V1)/t1)/((I2-I1)/t2))
20
21 printf("dissipation ratio\n")
```

```
22
23 printf("DR=%.2 f ohm\n", DR)
24
25 printf("DR is quite large indicating noise
    interference by capacitive coupling")
```

Scilab code Exa 13.2 find diagnostic ratio

```
1 / \text{chapter} -13, Example 13_2, pg 509
3 t1=1*10^-6//time span for voltage
5 //voltage switching
7 V1 = 0.5 / / level - 1
9 \quad V2 = 1 / level - 2
10
  //current switching
11
12
13 I1=1*10^-3//\text{level}-1
14
15 I2=10*10^{-3}/level-2
16
  t2=1*10^-6//time span for current
17
18
19 DR = (((V2-V1)/t1)/((I2-I1)/t2))
20
21 printf("pseudoimpedance\n")
22
23 printf ("DR=\%.2 f ohm\n", DR)
24
25 printf("DR is not quite large indicating noise
      interference by inductive coupling")
```

Scilab code Exa 13.3 find ground loop current

```
//chapter -13, Example13_3, pg 510

Vi=12//input DC voltage

Vo=3.182//output voltage

Rg=130*10^3//grounding resistance

R2=1*10^3//output resistance

R1=6.8*10^3//divider chain

Ig=((Vo-((R2*Vi)/(R1+R2)))/Rg)//grounding loop current

rintf("grounding loop current\n")

printf("Ig=%.9f A\n", Ig)
```

Chapter 14

Transducers And The Measurement System

Scilab code Exa 14.1 find percentage change in resistance

```
//chapter -14,Example14_1,pg 421
delVo=120*10^-3//output voltage

Vs=12//supply voltage
R=120//initial resistance

delR=(delVo*2*R)/Vs//change in resistance
per=(delR/R)*100//percent change in resistance
printf("percent change in resistance\n")
printf("per=%.2f",per)
```

Scilab code Exa 14.2 find bridgemann coefficient

```
//chapter -14,Example14_2,pg 423
lam=175//gauge factor

mu=0.18//poisson's ratio

E=18.7*10^10//young's modulus

si=((lam-1-(2*mu))/E)//bridgemann coefficient

printf("bridgemann coefficient\n")

printf("si=%.14f m^2/N",si)
```

Scilab code Exa 14.3 pt100 RTD

```
//chapter -14, Example14_3, pg 428
//pt100 RTD

R4=10*10^3
R2=R4-0.09*R4

R0=-2.2*10^3//output resistance
R1=(Ro*((R2^2)-(R4^2)))/(R2*(R2+R4))//design resistor

resistor

printf("resistance R1 and R3\n")
printf("R1=R3=%.2f ohm",R1)
```

Scilab code Exa 14.4 senstivity in measurement of capacitance

```
//chapter -14, Example14_4, pg 435
//assuming eps1 = 9.85*10^12

x=4//separation between plates
x3=1//thickness of dielectric
eps1 = 9.85*10^12//dielectric const. of free space
eps2 = 120*10^12//dielectric const. of material

Sx=(1/(1+((x/x3)/((eps1/eps2)-1))))//sensitivity of measurement of capacitance

rintf("sensitivity of measurement of capacitance\n")

printf("Sx=%.2f",Sx)
```

Scilab code Exa 14.5 find max gauge factor

```
1 //chapter -14, Example 14_5, pg 510 2 3 //if (delp/p)=0, the gauge factor is lam=1+2u 4 5 u=0.5//max. value of poisson's ratio 6 7 lam=1+(2*u) 8
```

```
9 printf("max. gauge factor\n")
10
11 printf("lam=%.2f",lam)
```

Scilab code Exa 14.6 find Young modulus

```
//chapter -14, Example14_6, pg 510
lam=-150//max. gauge factor
si=-9.25*10^-10//resistivity change
mu=0.5//max poisson's ratio

E=((lam-1-(2*mu))/si)//young's modulus
printf("young modulus\n")
printf("E=%.2f N/m^2",E)
```

Scilab code Exa 14.7 find capacitance of sensor

```
//chapter -14, Example14_7, pg 510

d1=4*10^-2//diameter of inner cylinder

d2=4.4*10^-2//diameter of outer cylinder

h=2.2//level of water

H=4//height of tank
```

Scilab code Exa 14.8 find ratio of collector currents

```
//chapter -14, Example14_8, pg 511

VobyT=0.04//extrapolated bandgap voltage

RE1byRE2=(1/2.2)//ratio of emitter resistances of Q1, Q2

kBbyq=0.86*10^3//kB->boltzman const., q->charge

//(1+a)log(a)=(VobyT/RE1byRE2)*kBbyq, a->ratio of collector currents

printf("ratio of collector currents\n")

printf("a=23.094")
```

Scilab code Exa 14.9 find normalized output

```
1 / \text{chapter} -14, \text{Example} 14_{-9}, \text{pg} 511
```

```
2
3 //LVDT parameters
5 \text{ Rp} = 1.3
7 \text{ Rs} = 4
9 Lp=2.2*10^-3
10
11 Ls=13.1*10<sup>-3</sup>
12
13 //M1-M2 varies linearly with displacement x, being
      maximum 0.4 cm
14
15 //when M1-M2=4mH so that k = (4/0.4) = 10mH/cm
16
17 k = 10 * 10^{-3}
18
19 f = 50 / frequency
20
21 w=2*%pi*f//angular frequency
22
23 tp=(Lp/Rp)//time const.
24
25 N=((w*k)/(Rp*sqrt(1+(w^2)*(tp^2))))//normalized
      output
26
27 phi = (\%pi/2) - atan(w*tp) / phase angle
28
29 phi=phi*(180/%pi)//conv. into degree
30
31 printf("normalized output\n")
32
33 printf("N=\%.4 f V/V/cm n", N)
34
35 printf("phase angle\n")
36
37 printf ("phi=\%.2 f", phi)
```

Scilab code Exa 14.10 find load voltage

```
1 / chapter -14, Example 14_10, pg 511
3 //for barium titanate, g cost. is taken as 0.04 \mathrm{Vm/N}.
       (it varies depending in composition and
      processing)
5 t=1.3*10^{-3}/thickness
7 \text{ g=0.04}//\text{const}.
  f = 2.2*9.8 / force
10
  w = 4 * 10^{-3} / width
12
13 1=4*10^-3//length
14
15 p=(f/(w*1))/pressure
16
17 Vo=g*t*p//voltage along load application
18
19 printf("voltage along load application\n")
20
21 printf("Vo=\%.2 f V", Vo)
```

Scilab code Exa 14.11 find error and senstivity parameters

```
1 //chapter -14,Example14_11,pg 512
2
3 //ADC outputs counts
```

```
4 N11=130
6 N22 = 229
7
8 N12 = 220
10 N21=139
11
12 //variable values
13
14 v1 = 4
15
16 \text{ v} 2 = 6.7
17
18 //temperatures
19
20 \text{ theta1=20}
21
22 \text{ theta2=25}
23
24 // parameters
25
26 B2=((N22+N11-N12-N21)/(v2-v1)*(theta2-theta1))//
      temperature coefficient of resistivity
27
28 a2=((N22-N21)/(v2-v1))//zero error sensitivity
29
30 B1=(N22-N12)/(theta2-theta1)//temperature
      coefficient of zero point
31
32 a1=N22-(B1*theta2)-(a2*v2)//zero error
33
34 printf("zero error\n")
35
36 \text{ printf} ("a1=\%.2 \text{ f} \n", a1)
37
38 printf("zero error sensitivity\n")
39
```

```
40 printf("a2=%.2f\n",a2)
41
42 printf("temperature coefficient of zero point\n")
43
44 printf("B1=%.2f\n",B1)
45
46 printf("temperature coefficient of resistivity\n")
47
48 printf("B2=%.2f",B2)
```

Chapter 15

Fibre Optics Sensors And Instrumentation

Scilab code Exa 15.1 find increamental phase

```
//chapter -15,Example15_1,pg 470

n1=1.48//refractive index of fibre

mu=0.2//poisson's ratio

p=2.2*10^2//pressure applied

lam=690*10^-9//laser beam wavelength

Y=2.2*10^11//young's modulus

delphi=((4*%pi*n1*mu*p)/(lam*Y))//increamental phase

printf("increamental phase\n")

printf("delphi=%.5f rad",delphi)
```

Scilab code Exa 15.2 find additional length travelled

```
//chapter -15,Example15_2,pg 474

r=4.5//radius of fibre loop

a=%pi*(r^2)//area of fibre loop

Q=1//linear velocity(cm/s)

Co=3*10^10//velocity of light(cm/s)

delL=((4*a*Q)/Co)//additional length travelled

printf("additional length travelled\n")

printf("delL=%.12 f cm",delL)
```

Scilab code Exa 15.3 find interacting length

```
//chapter -15, Example15_3, pg 512
//(Po1/Po2)=1/2 and Po1+Po2=3Po2=Pi

Po2byPi=1/3//(Po2/Pi)
kL=acos(sqrt(Po2byPi))//k->coupling coefficient

L=kL//L=kL/k L->interacting length
printf("interacting length\n")

printf("interacting length\n")
```

Scilab code Exa 15.4 wavelength suitable for laser light

```
// chapter -15, Example 15.4, pg 512
3 We=7.6*10^-5//speed od gyro
5 L=490
  d = 0.094
  c = 3 * 10^8
10
   delphi=7.69*10^-5/phase shift
11
12
   lam=((2*%pi*L*d*We)/(c*delphi))//wavelength of laser
       light
14
  printf("wavelength of laser light\n")
15
16
17 printf("lam=%.11f m", lam)
```

Scilab code Exa 15.5 find rate of change of RI wrt T

```
1  //chapter -15,Example15_5,pg 513
2
3  //(delphi/delT)=(2pi/lam)(n*(delL/delT)+L*(deln/delT)
              ))=(deln/delT)
4
5  lam=635*10^-9//wavelength of light beam
6
7  delphi=139//phase angle
```