

Peter Stanley Jørgensen

Simulation of physics

10 April 2024 DTU Energy

Today

Simulation of physics from the big picture to a code implementation

- Introduction to materials modeling
- The heat equation
- The finite difference method
- Overview of a Matlab solver for the heat equation
- Exercise Explore and extend the Matlab solver for the heat equation
 - Learning how to do things in Matlab is a part of the exercise
- ~11:00 I will go through a few previous exam questions for the content in this module.
- ~11:45 Recap of exercise and solution

Learning objectives and exam

Course learning objectives for this module

Simulate materials behavior related to their internal structure

Exam questions

- On the content of this presentation
- On the exercise
 - A solution will be uploaded after the module
- You will not be asked to do programming at the exam.

Introduction to materials simulation

A crash test

https://www.youtube.com/watch?v=A2Av9nygEoI

Why model and simulate?

- Avoid trial and error
 - Creating the object could be expensive.
 - Predict failure in rare events
 - Earthquake
 - Typhoone
- Optimize the design parameters
 - How little material can I use and still meet the safety standards for the building?
 - How should this material be distributed? (Topology optimization)

https://en.wikipedia.org/wiki/Molecular_dynamics

Molecular dynamics simulation of water molecules on a picosecond timescale

Components of a simulation?

- Geometry
 - A tetrahedral mesh
 - A grid
- Material properties
 - Thermal conductivity, density...
- Physics models
 - Mathematics, partial differential equations
- Boundary conditions
 - Limit ourselfs to a certain domain.
 - What should happen at material interfaces?
- A solver
 - How to solve the equations on the model.

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$\frac{\partial u}{\partial n} = f$$

The heat equation

10 April 2024

The heat equation

• Descripes how the distribution of heat changes in a solid medium with time

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

- *u* temperature
- t time
- -x, y, z spatial coordinates
- $\frac{\partial u}{\partial t}$ is the change in temperature with time.
- α is a material parameter, the thermal diffusivity, $\alpha = \frac{k}{c\rho}$
 - k thermal conductivity
 - c specific heat capacity
 - $-\rho$ density
- Very similar equations govern many other different types of physics. E.g. Electrical currents, diffusion, pressure etc.

The heat equation - intuition

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

- Whenever the second derivative is non-zero the temperature changes ($\frac{\partial u}{\partial t}$ is non-zero). i.e. where the curvature of the temperature with space is large.
- In a steady state solution (no change with time) the right hand side is zero everywhere.

- If the average temperature in the surroundings is higher
 - Heat up
- If the average temperature is lower
 - Cool down

1D example

The Laplacian

$$\bullet \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \nabla^2 u$$

- ∇^2 is the Laplacian differential operator, convenient for compact notation.
- Can be seen as a generalization of the second derivative to n dimensions.

2D example

Is this temperature distribution a steady state solution to the heat equation?

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \alpha \nabla^2 u$$

NO! The laplacian is not zero everywhere. According to the heat equation the temperature will change

12

2D example

10

Is this temperature distribution a steady

30

50

20

state solution to the heat equation?

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \alpha \nabla^2 u$$

YES! The laplacian is (very close to) zero everywhere.

Which solution do we want?

- Infinitely many solutions, we need some constraints.
- What is the initial state of the system?
- Bondary conditions
 - What should happen at the edges of the simulation domain?
- Dirichlet boundary conditions, u = f
 - Set a boundary to having a constant value (temperature).
- Neumann boundary conditions, $\frac{\partial u}{\partial n} = f$
 - Set a boundary to having a specific (temperature) gradient.
 - The n means that it's the gradient normal to the boundary.

Modeling the real world

- The mathematical boundary conditions have direct real world interpretations.
- Dirichlet boundary conditions, u = f
 - Model a part of the boundary as having a set temperature that never changes.
 - The system is in contact with something that can be considered having a constant temperature.
- Neumann boundary conditions, $\frac{\partial u}{\partial n} = f$
 - $-\frac{\partial u}{\partial n} = 0$
 - Ideal insulating surface, no heat can be transferred.
 - $-\frac{\partial u}{\partial n} > 0$
 - Introduce heat into the system.
 - $-\frac{\partial u}{\partial n} < 0$
 - Remove heat from the system

Guess a boundary condition...

What boundary conditions do you think were used on each side of the system?

10

The initial temperature was set to 10 °C everywhere. However, since this is the steady state solution the initial temperature is inconsequential.

Break!

Install Matlab if you haven't already – instructions on DTU Learn

The finite difference method

How do we solve this?

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

- Here we will use an iterative approach since it is the simplest (other methods exist).
- We want to find an update formula for what the temperature should be in our system at each iteration (at each step in time)
- This update formula should only contain expressions that a computer can evaluate. E.g. no continuous math (derivatives, integrals)
- Discretization...

Nomenclature for working on a grid with discrete time steps

Spatial discretization

- $u_{i,j}$ is the temperature at grid point (i,j)
- Neigboring gridpoints are defined relative to the $u_{i,j}$ grid point
- Think of i,j as the row and column number of a matrix.

Temporal discretization

- u^n is the temperature at the current time.
- u^{n+1} is the temperature at the next time step.

Spatial and temporal discretization

- $u_{i,j}^n$ is the temperature at the current time at grid point i,j.

Finite differences $\frac{\partial u}{\partial t} = \alpha (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Forward differences in time:

$$\frac{\partial u}{\partial t} \approx \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t}$$

Central differences in space:

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1,j}^n - u_{i,j}^n}{\Delta x}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{(\Delta x)^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{(\Delta y)^2}$$

It is just comparing the surroundings

Putting it together

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \alpha \left(\frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{(\Delta x)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{(\Delta y)^{2}} \right)$$

 $u_{i,j}^{n+1}$ is the only unknown.

$$u_{i,j}^{n+1} = u_{i,j}^n + \alpha \Delta t \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{(\Delta x)^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{(\Delta y)^2} \right)$$

You will use this in the exercise

A toy Matlab implementation

Introduction to the implementation

• You will work with a barebones implementation of a 2D heat equation solver in Matlab that uses the update formula arrived at above.

•
$$u_{i,j}^{n+1} = u_{i,j}^n + \Delta t \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{(\Delta x)^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{(\Delta y)^2} \right)$$

Matlab – the loop in pseudo code

Initialization - set the initial temperature $u_{i,j}^n$

Loop

$$u_{i,j}^{n+1} = u_{i,j}^n + \Delta t \left(\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{(\Delta x)^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{(\Delta y)^2} \right)$$

Enforce boundary conditions

$$u_{i,j}^n = u_{i,j}^{n+1}$$

end

Matlab - initialization

The temperature u is a matrix.

$$u_{i,j}^n$$
 is quivalent to $u_n(i,j)$

To initilialize the temperature to be 10 °C everywhere.

$$u_n = ones(60,60)*10;$$

Boundary conditions

• Dirichlet boundary conditions, u = fu_n(1,:)=100; u_n(end,:)=0;

• Neumann boundary conditions, $\frac{\partial u}{\partial n} = f$

Here
$$\frac{\partial u}{\partial n} = \theta$$

 $u_n(:,1) = u_n(:,2);$
 $u_n(:,end) = u_n(:,end-1);$

• That's it! The update formula does the rest

Matlab – the loop in pseudo code

Initialization - set the initial temperature

Loop

$$u_{i,j}^{n+1} = u_{i,j}^{n} + \Delta t \left(\frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{(\Delta x)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{(\Delta y)^{2}} \right)$$

Enforce boundary conditions

$$u_{i,j}^n = u_{i,j}^{n+1}$$

end

Implement the update formula and see it in action in the exercise.

When do we stop the loop?

Stopping criteria for a steady state solution

Strategies?

- Run plenty of iterations
- When the change in temperature is below a threshold at a specific location
- When the relative change in temperature is below a threshold at a specific location
- When the relative change in temperate is low everywhere

Back to reality

Non-toy simulations

- It takes a lot of resources to develop robust simulation packages.
 - The rabbit hole goes much deeper than we have explored here.
- Use a mature package instead of implementing your own methods
 - Unless you are specifically improving or developing a new simulation approach.
- Commercial software can often be used without knowing how the solver works.
 - However, Garbage in = Garbage out

To be a successful modeler

- · Knowledge about the materials you are making simulations of.
 - Do you know their properties?
 - Which simplification or assumptions are OK to make?

 $\partial t = \partial x^2 = \partial y^2$

- Knowledge of the solver you are using to solve those equations.
 - Complex models can be unsolvable using standard solvers.
 - Which solver should you use and how should you tweak its settings?

Matlab quick tips

- Run a highlighted/selected chunk of code: F9 (in windows)
- Print a variable to the command window: double click it to highlight and press F9
- Run the entire script: F5
- Stop printing to command window: Ctrl-c (also interrupts a program that is running)
- See your variables: whos
- Get help on a function: help function_name

Exercise

• Open "Exercise - Simulation.pdf" for instructions.

• Visual tutorial for setting up Matlab and running the script...

Al can be a great help in understanding code syntax and errors: Copilot (microsoft.com)

As always, there is no guarantee that the AI answer is correct

11:00 Examples of exam questions

Boundary conditions 1

Consider <u>a modeling</u> the temperature distribution in a rod of metal as a 1D heat transfer problem using the heat equation. At one end of the metal rod the boundary condition $\frac{\partial u}{\partial n} = 0$ is used. What is the type and the physical interpretation of this boundary condition.

- 1. A Neumann boundary condition describing an insulating boundary.
- 2. A Neumann boundary condition describing a boundary with a set temperature of 0 °C.
- 3. A Dirichlet boundary condition describing an insulating boundary.
- 4. A Dirichlet boundary condition describing a boundary with a set temperature of 0 °C.
- 5. A Laplacian boundary condition describing an insulating boundary
- 6. A Laplacian boundary condition describing a boundary with a set temperature of 0 °C.

Q1 Boundary conditions

Consider simulating the temperature distribution in a rod of metal as a 1D heat transfer problem using the heat equation. The rod is 1m long. The two ends of the rod are defined at x=0 m (point A) and x=1 m (point B). In the steady state solution, the temperature in the center of the rod is 30 °C. Which combination of initial temperature (in the entire rod), boundary condition at point A and boundary condition at point B could **not** have produced this result?

- Initial temperature 20° C, point A: u=30° C, point B: $\frac{\partial u}{\partial n} = 0$
- Initial temperature 20° C, point A: $\frac{\partial u}{\partial n} = 0$, point B: $\frac{\partial u}{\partial n} = 0$
- Initial temperature 30° C, point A: u=20° C, point B: u=40° C
- Initial temperature 20° C, point A: u=20° C, point B: u=40° C

Strategy: Make a quick sketch of each of the setups

11:45 I will recap and go through solutions to exercises

10 April 2024

A solution pdf and code files are available on Learn

What we did today!
The components of a simulation?

- Geometry
 - A tetrahedral mesh
 - A grid
- Material properties
 - Thermal conductivity, density...
- Physics models
 - Mathematics, partial differential equations
- Boundary conditions
 - Limit ourselfs to a certain domain.
 - What should happen at material interfaces?
- A solver
 - How to solve the equations on the model
 - A simple working code implementation

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$\frac{\partial u}{\partial n} = f$$

