- 3.8
 1) Comme la suite (u_n)_{n∈ℕ} converge vers a, en choisissant ε = 1, on doit avoir l'existence d'un n₀ ∈ ℕ tel que pour tout n ≥ n₀ on ait |u_n a| < 1.
 Or |u_n a| < 1 si et seulement si u_n ∈]a 1; a + 1[.
 C'est pourquoi, seuls les termes u₁, u₂, ..., u_{n₀-1}, en nombre fini, sont susceptibles d'être en dehors de l'intervalle]a 1; a + 1[.
 - 2) Posons $m = \min(u_1, u_2, \dots, u_{n_0-1}, a-1)$. Alors $m \leq u_n$ pour tout $n \in \mathbb{N}$. Posons $M = \max(u_1, u_2, \dots, u_{n_0-1}, a+1)$. Alors $u_n \leq M$ pour tout $n \in \mathbb{N}$.
 - 3) On a ainsi montré que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée et majorée, c'est-à-dire bornée.