A. Proofs

A.1. Proof of Theorem 2

Proof. For simplicity, we assume the signal vector \mathbf{x} to be non-negative. Note that we can convert \mathbf{x} into a non-negative input layer $\mathbf{H}^{(0)}$ by a linear transformation. We consider a weaker version of GCNII by fixing $\alpha_{\ell}=0.5$ and fixing the weight matrix $(1-\beta_{\ell})\mathbf{I}_n+\beta_{\ell}\mathbf{W}^{(\ell)}$ to be $\gamma_{\ell}\mathbf{I}_n$, where γ_{ℓ} is a learnable parameter. We have

$$\mathbf{H}^{(l+1)} = \sigma \left(\tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \left(\mathbf{H}^{(\ell)} + \mathbf{x} \right) \gamma_{\ell} \mathbf{I}_{n} \right).$$

Since the input feature x is non-negative, we can remove the ReLU operation:

$$\mathbf{H}^{(\ell+1)} = \gamma_{\ell} \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \left(\mathbf{H}^{(\ell)} + \mathbf{x} \right)$$
$$= \gamma_{\ell} \left(\left(\mathbf{I}_{n} - \tilde{\mathbf{L}} \right) \cdot \left(\mathbf{H}^{(\ell)} + \mathbf{x} \right) \right).$$

Consequently, we can express the final representation as

$$\mathbf{H}^{(K-1)} = \left(\sum_{\ell=0}^{K-1} \left(\prod_{k=K-\ell-1}^{K-1} \gamma_k\right) \left(\mathbf{I}_n - \tilde{\mathbf{L}}\right)^{\ell}\right) \mathbf{x}. \quad (8)$$

On the other hand, a polynomial filter of graph \tilde{G} can be expressed as

$$\left(\sum_{k=0}^{K-1} \theta_k \tilde{\mathbf{L}}^k\right) \mathbf{x} = \left(\sum_{i=0}^k \theta_k \left(\mathbf{I}_n - \left(\mathbf{I}_n - \tilde{\mathbf{L}}\right)\right)^k\right) \mathbf{x}$$
$$= \left(\sum_{k=0}^{K-1} \theta_k \left(\sum_{\ell=0}^k (-1)^\ell {k \choose \ell} \left(\mathbf{I}_n - \tilde{\mathbf{L}}\right)^\ell\right)\right) \mathbf{x}.$$

Switching the order of summation follows that a K-order polynomial fiter $\left(\sum_{k=0}^{K-1} \theta_k \tilde{\mathbf{L}}^k\right) \mathbf{x}$ can be expressed as

$$\left(\sum_{k=0}^{K-1} \theta_k \tilde{\mathbf{L}}^k\right) \mathbf{x} = \left(\sum_{\ell=0}^{K-1} \left(\sum_{k=\ell}^{K-1} \theta_k (-1)^{\ell} {k \choose \ell}\right) \left(\mathbf{I}_n - \tilde{\mathbf{L}}\right)^{\ell}\right) \mathbf{x}.$$
(9)

To show that GCNII can express an arbitrary K-order polynomial filter, we need to prove that there exists a solution γ_ℓ , $\ell=0,\ldots,K-1$ such that the corresponding coefficients of $\left(\mathbf{I}_n-\tilde{\mathbf{L}}\right)^\ell$ in equations (8) and (9) are equivalent. More precisely, we need to show the following equation system

$$\prod_{k=K-\ell-1}^{K-1} \gamma_k = \sum_{k=\ell}^{K-1} \theta_k (-1)^{\ell} \binom{k}{\ell}, \ k = 0, \dots, K-1,$$

has a solution γ_{ℓ} , $\ell=0,\ldots,K-1$. Since the left-hand side is a partial product of γ_k from $K-\ell-1$ to K-1, we

can solve the equation system by

$$\gamma_{K-\ell-1} = \sum_{k=\ell}^{K-1} \theta_k (-1)^{\ell} {k \choose \ell} / \sum_{k=\ell-1}^{K-1} \theta_k (-1)^{\ell-1} {k \choose \ell-1},$$
(10)

for $\ell=1,\ldots,K-1$ and $\gamma_{K-1}=\sum_{k=0}^{K-1}\theta_k$. Note that the above solution may fail when $\sum_{k=\ell-1}^{K-1}\theta_k(-1)^{\ell-1}\binom{k}{\ell-1}=0$. In this case, we can set $\gamma_{K-\ell-1}$ sufficiently large so that equation (10) is still a good approximation. We also note that this case is rare because it implies that the K-order filter ignores all features from the ℓ -hop neighbors. This proves that a K-layer GCNII can express the K-th order polynomial filter $\left(\sum_{i=0}^k \theta_i \mathbf{L}^i\right) \mathbf{x}$ with arbitrary coefficients θ .

A.2. Proof of Theorem 1

To prove Theorem 1, we need the following *Cheeger Inequality* (Chung, 2007) for lazy random walks.

Lemma 1 ((Chung, 2007)). Let $\mathbf{p}_i^{(K)} = \left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1}}{2}\right)^K \mathbf{e_i}$ is the K-th transition probability vector from node i on connected self-looped graph \tilde{G} . Let $\lambda_{\tilde{G}}$ denote the spectral gap of \tilde{G} . The j-th entry of $\mathbf{p}_i^{(K)}$ can be bounded by

$$\left|\mathbf{p}_{i}^{(K)}(j) - \frac{d_{j}+1}{2m+n}\right| \leq \sqrt{\frac{d_{j}+1}{d_{i}+1}} \left(1 - \frac{\lambda_{\tilde{G}}^{2}}{2}\right)^{K}.$$

Proof of Theorem 1. Note that $I_n = \tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{D}}^{1/2}$, we have

$$\mathbf{h}^{(K)} = \left(\frac{\mathbf{I}_n + \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}}{2}\right)^K \cdot \mathbf{x}$$

$$= \left(\tilde{\mathbf{D}}^{-1/2} \left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1}}{2}\right) \tilde{\mathbf{D}}^{1/2}\right)^K \cdot \mathbf{x}$$

$$= \tilde{\mathbf{D}}^{-1/2} \left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1}}{2}\right)^K \cdot \left(\tilde{\mathbf{D}}^{1/2} \mathbf{x}\right).$$

We express $\tilde{\mathbf{D}}^{1/2}\mathbf{x}$ as linear combination of standard basis:

$$\tilde{\mathbf{D}}^{1/2}\mathbf{x} = \left(\mathbf{D} + \mathbf{I}_n\right)^{1/2}\mathbf{x} = \sum_{i=1}^n \left(\mathbf{x}(i)\sqrt{d_i + 1}\right) \cdot \mathbf{e_i},$$

it follows that

$$\mathbf{h}^{(K)} = \tilde{\mathbf{D}}^{-1/2} \left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1}}{2} \right)^K \cdot \sum_{i=1}^n \left(\mathbf{x}(i) \sqrt{d_i + 1} \right) \cdot \mathbf{e_i}$$
$$= \sum_{i=1}^n \mathbf{x}(i) \sqrt{d_i + 1} \cdot \tilde{\mathbf{D}}^{-1/2} \left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1}}{2} \right)^K \cdot \mathbf{e_i}.$$

We note that $\left(\frac{\mathbf{I}_n + \tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1}}{2}\right)^K \cdot \mathbf{e_i} = \mathbf{p}_i^{(K)}$ is the K-th transition probability vector of a random walk from node i. By Lemma 1, the j-th entry of $\mathbf{p}_i^{(K)}$ can be bounded by

$$\left|\mathbf{p}_{i}^{(K)}(j) - \frac{d_{j}+1}{2m+n}\right| \leq \sqrt{\frac{d_{j}+1}{d_{i}+1}} \left(1 - \frac{\lambda_{\tilde{G}}^{2}}{2}\right)^{K},$$

or equivalently,

$$\mathbf{p}_{i}^{(K)}(j) = \frac{d_{j} + 1}{2m + n} \pm \sqrt{\frac{d_{j} + 1}{d_{i} + 1}} \left(1 - \frac{\lambda_{\tilde{G}}^{2}}{2}\right)^{K}.$$

Therefore, we can express the j-th entry of $\mathbf{h}^{(K)}$ as

$$\mathbf{h}^{(K)}(j) = \left(\sum_{i=1}^{n} \sqrt{d_i + 1} \mathbf{x}(i) \cdot \tilde{\mathbf{D}}^{-1/2} \mathbf{p}_i^{(K)}\right)(j)$$

$$= \sum_{i=1}^{n} \sqrt{d_i + 1} \mathbf{x}(i) \frac{1}{\sqrt{d_j + 1}} \cdot \left(\frac{d_j + 1}{2m + n} \pm \sqrt{\frac{d_j + 1}{d_i + 1}} \left(1 - \frac{\lambda_{\tilde{G}}^2}{2}\right)^K\right)$$

$$= \sum_{i=1}^{n} \frac{\sqrt{(d_j + 1)(d_i + 1)}}{2m + n} \mathbf{x}(i) \pm \sum_{i=1}^{n} \mathbf{x}(i) \left(1 - \frac{\lambda_{\tilde{G}}^2}{2}\right)^K.$$

This proves

$$\mathbf{h}^{(K)} = \frac{\left\langle \tilde{\mathbf{D}}^{1/2} \mathbf{1}, \mathbf{x} \right\rangle}{2m+n} \tilde{\mathbf{D}}^{1/2} \mathbf{1} \pm \left(\sum_{i=1}^{n} x_i \right) \cdot \left(1 - \frac{\lambda_{\tilde{G}}^2}{2} \right)^K \cdot \mathbf{1},$$

and the Theorem follows.

B. Hyper-parameters details

Table 6 summarizes the training configuration of GCNII for semi-supervised. L_{2d} and L_{2c} denote the weight decay for dense layer and convolutional layer respectively. The searching hyper-parameters include numbers of layers, hidden dimension, dropout, λ and L_{2c} regularization.

Table 7 summarizes the training configuration of all model for full-supervised. We use the full-supervised hyperparameter setting from DropEdge for JKNet and IncepGCN on citation networks. For other cases, grid search was performed over the following search space: layers (4, 8, 16, 32,64), dropedge (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), α_{ℓ} (0.1, 0.2, 0.3, 0.4, 0.5), λ (0.5, 1, 1.5), L_2 regularization (1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6).

Table 6. The hyper-parameters for Table 2.

Dataset	Hyper-parameters
Cora	layers: 64, α_{ℓ} : 0.1, lr: 0.01, hidden: 64, λ : 0.5, dropout: 0.6, L_{2_c} : 0.01, L_{2_d} : 0.0005
Citeseer	layers: 32, α_{ℓ} : 0.1, lr: 0.01, hidden: 256, λ : 0.6, dropout: 0.7, L_{2_c} : 0.01, L_{2_d} : 0.0005
Pubmed	layers: 16, α_{ℓ} : 0.1, lr: 0.01, hidden: 256, λ : 0.4, dropout: 0.5, L_{2_c} : 0.0005, L_{2_d} : 0.0005

Table 7. The hyper-parameters for Table 5.

Dataset	Method	Hyper-parameters
Cora	APPNP	α : 0.1, L_2 : 0.0005, lr: 0.01, hidden: 64, dropout: 0.5
	GCNII	layers: 64, α_{ℓ} : 0.2, lr: 0.01, hidden: 64, λ : 0.5, dropout: 0.5, L_2 : 0.0001
Cite.	APPNP	α : 0.5, L_2 : 0.0005, lr: 0.01, hidden: 64, dropout: 0.5
	GCNII	layers: 64, α_{ℓ} : 0.5, lr: 0.01, hidden: 64, λ : 0.5, dropout: 0.5, L_2 : 5e-6
Pubm.	APPNP	α : 0.4, L_2 : 0.0001, lr: 0.01, hidden: 64, dropout: 0.5
	GCNII	layers: 64, α_{ℓ} : 0.1, lr: 0.01, hidden: 64, λ : 0.5, dropout: 0.5, L_2 : 5e-6
Cham.	APPNP	α : 0.1, L_2 : 1e-6, lr: 0.01, hidden: 64, dropout: 0.5
	JKNet	layers: 32, lr: 0.01, hidden: 64, dropedge: 0.7, dropout: 0.5, L ₂ : 0.0001
	IncepGCN	layers: 8, lr: 0.01, hidden: 64, dropedge: 0.9, dropout: 0.5, L_2 : 0.0005
	GCNII	layers: 8, α_{ℓ} : 0.2, lr: 0.01, hidden: 64, λ : 1.5, dropout: 0.5, L_2 : 0.0005
Corn.	APPNP	α: 0.5, L ₂ : 0.005, lr: 0.01, hidden: 64, dropout: 0.5
	JKNet	layers: 4, lr: 0.01, hidden: 64, dropedge: 0.5, dropout: 0.5, L ₂ : 5e-5
	IncepGCN	layers: 16, lr: 0.01, hidden: 64, dropedge: 0.7, dropout: 0.5, L_2 : 5e-5
	GCNII	layers: 16, α_{ℓ} : 0.5, lr: 0.01, hidden: 64, λ : 1, dropout: 0.5, L_2 : 0.001
Texa.	APPNP	α : 0.5, L_2 : 0.001, lr: 0.01, hidden: 64, dropout: 0.5
	JKNet	layers: 32, lr: 0.01, hidden: 64, dropedge: 0.8, dropout: 0.5, <i>L</i> ₂ : 5e-5
	IncepGCN	layers: 8, lr: 0.01, hidden: 64, dropedge: 0.8, dropout: 0.5, L ₂ : 5e-6
	GCNII	layers: 32, α_{ℓ} : 0.5, lr: 0.01, hidden: 64, λ : 1.5, dropout: 0.5, L_2 : 0.0001
Wisc.	APPNP	α : 0.5, L_2 : 0.005, lr: 0.01, hidden: 64, dropout: 0.5
	JKNet	layers: 8, lr: 0.01, hidden: 64, dropedge: 0.8, dropout: 0.5, L ₂ : 5e-5
	IncepGCN	layers: 8, lr: 0.01, hidden: 64, dropedge: 0.7, dropout: 0.5, <i>L</i> ₂ : 0.0001
	GCNII	layers: 16, α_{ℓ} : 0.5, lr: 0.01, hidden: 64, λ : 1, dropout: 0.5, L_2 : 0.0005