

Lecture 5: Automatic Chinese Word Segmentation

Xu Ruifeng

Harbin Institute of Technology, Shenzhen

Today's class – Automatic Chinese Word Segmentation

- Chinese Word Segmentation
- Problem Statement
 - Segmentation Ambiguity
 - Unknown Word Identification
- Automatic Word Segmentation Algorithm
- Benchmarks
- Open Resources

Automatic Chinese Word Segmentation

Definition

— A sentence S is a sequence of Chinese characters $(C_1, C_2, ..., C_M)$. An n-character token, namely word, of S beginning at the i^{th} character is an ordered n-tuple of the form $(C_i, C_{i+1}, ..., C_{i+n-1})$ A partition W of a sentence partitions all its characters into non-overlapping tokens of various length $(C_1, C_2, ..., C_{i_1-1})$, $(C_{i_1}, C_{i_1+1}, ..., C_{i_2-1})$, $(C_{i_{N-1}}, C_{i_{N-1}+1}, ..., C_M)$.

Name the elements of W as respectively.

$$(W_1, W_2, \ldots, W_N),$$

Why We Need Word Segmentation

- Accurate word segmentation is the foundation of Chinese language processing
 - Information Retrial
 - 和服 | 务 | 于三日后裁制完毕,并呈送将军府中
 - 王府饭店的设施 | 和 | 服务 | 是一流的。
 - Text to Speech
 - 他们是来 | 查 | 金泰 | 撞人那件事的。"查" cha
 - 行侠仗义的 | <u>查金泰</u> | 远近闻名。"查" zha
 - Machine Translation
 - 我看见周星驰同张学友打招呼
 - Transtar: I see week star Chi open together study friend greet.

Segmentation Difficulties

- 这样|的|人才|能|经受|住|考验
 - vs. 这样|的|人|才能|经受|住|考验
- 白|天鹅|在|水|中|游来游去
 - vs. 白天|鹅|在|水|中|游来游去
- 我|将来|要|上|大学
 - vs. 我 | 将 | 来 | 上 海
- 两|个|人|一起|去
 - vs. 这|是|个人|问题

Segmentation Difficulties

今天|学生|会面讨论|这个|问题 vs.他|是|学生会|主席 这|篇|文章|太|平淡|了 vs.难得一个|太平|盛世 莱温斯基|本来|就|很|不|爽

vs.莱温斯|基本|来|就|很|不|爽

夏尔·莫里斯·塔列朗|的|祖先|从|10世纪|卡佩 王朝|建立|时|起|就|已经|是|宫廷|贵人|了。 他|的|父亲|塔列朗伯爵|查理-达尼埃尔|同| 国王|路易十六|还|是|表兄弟

Natural language generation/Retrieval

- 白痴
 - 小白痴痴地等着她回来
- 如果
 - 汽水不如果汁好喝
- 本来
 - 那书本来打头会很痛

Two Main Challenges

- Two main Challenges
 - Ambiguity
 - Unknown word (Out of Vocabulary words, OOV)
- Types of ambiguity
 - Overlapping ambiguity (交叉型歧义) "人才|能" and "人|才能"
 - Combinational ambiguity (组合型歧义)
 "个人" and "个人"
 - Mixed ambiguity (混合型歧义) "太平|淡" and "太|平淡"

Overlap of common characters: Examples

• one: 和尚未

• two: 结合成分

• three: 为人民工作

• four: 中国产品质量

• six: 努力学习语法规则

• seven: 治理解放大道路面积水

Overlap of Common Characters: Status

链长	1	2	3	4	5	6	7	8	总计
词频	47402	28790	1217	608	29	19	2	1	78248
%	50.58	47.02	1.56	0.78	0.04	0.02	0	0	100
字段数	12686	10131	743	324	22	5	2	1	23914
%	53.05	42.36	3.11	1.35	0.09	0.02	0.01	0.01	100

- Table 1. Statistics on 5M-word news corpus
- -- 刘开瑛, 2000, 《中文文本自动分词和标注》, 商务印书馆, 第65页

National Standard

- 信息处理用现代汉语分词规范
 - GBT 13715-1992
- 刘源,谭强,沈旭昆《信息处理用现代汉语分词规范及自动分词方法》
- 《资讯处理用中文分词规范》台湾中研院
- 《人民日报》语料库词语切分规范

Out-of-vocabulary (OOV) problem

- Words unknown to dictionary "莱温斯基" "铁西"
- They are typically Named Entities 命名实体
 - Person name, e.g. "温家宝""查理-达尼埃尔"
 - Location name , e.g. "马甸"
 - Organization name, e.g. "微软"
 - Informal word or new word in Internet, e.g. "欺实 马""亲们""酱油帝"
- The unknown words caused the word segmentation accuracy loss at least five times more than word ambiguity [Huang and Zhao 2007]

Tasks of Typical Word Segmentation Module

- Dictionary lookup to get words
- Recognition of 重叠词、离合词 and 词缀(SC*)
 - 重叠词: 高兴 → 高高兴兴, 高兴高兴
 - 离合词: 担心→担什么心,洗澡→洗了个热水澡
 - 词缀:标准→超标准,科学→科学家
- Disambiguation in word segmentation
- OOV word detection
 - Named entity recognition (命名实体识别)

Automatic Word Segmentation Approach

Word Segmentation

Character-based Approaches

Word-based Approaches

Neural-based Approaches

Single Characterbased Approaches Multi
Characterbased
Approaches

Statistics -based

Compre hension -based

Dictionary -based

Other Approac hes

Simple Statistical Approach es Statistical dictionary
-based
Approach
es

FMMbased Approac hes BMMbased Approac hes Bidirection al-based Approache s

Word-based Approach: Dictionary-based

- Forward Maximum Matching method
 - Greedy search routine
 - Find the longest string starting from the very point in the sentence that matches a word entry
- Backward Maximum Matching method
 - Greedy search routine
 - Similar to FMM, but backward
 - More accurate

Forward Maximum Matching method

Algorithm:

- 1. I ← the number of Chinese characters in the longest word in the dictionary.
- 2. segment_{match} ←one segment with length of I from the corpus.
- 3. If *segment*_{match} in the dictionary: then match success, make segment_{match} as a word, goto 6.
- 4. Else match failed, remove the last Chinese character in *segment*_{match},
- 5. Repeat 3-4 until match success.
- 6. Goto 1 until all the words in the sentence are segmented.

Forward Maximum Matching method

Analyze:

- "市场/中国/有/企业/才能/发展/"
- Not a good solution to the overlapping ambiguity and combinational ambiguity.
- segmentation error: 1/169.
- It's often used with other methods.

Backward Maximum Matching method

- BMM is similar to FMM, it just starts from the end of the corpus, and removes the first Chinese character not the last one when match fails.
- "市场/中/国有/企业/才能/发展/"
- segmentation error: 1/245
- can recognize the overlapping ambiguity

Word-based Approach: Dictionary-based

- Optimized Maximum Matching
 - Optimize the entries in the dictionary according to their frequency
 - Speed matching
 - No performance improvement
- Bi-directional Maximum Matching approach
 - applies FMM and then BMM
 - compares the two segmentation results to resolve any inconsistency and ambiguity
- Dictionary-based approach is difficult to process combinational ambiguities

Word-based Approach: Statistical-based

- Simple statistical approaches
 - [Sproat et al 2000] estimate the mutual information of two adjacent characters to determine whether they form a two-character word
 - [Sun et al 1998] further consider mutual information and the difference of t-score between characters

Word-based Approach: Statistical-based

- [Ge et al 1999]: a probabilistic model based on the Expectation Maximization (EM) algorithm
 - H1:There are a finite number of words of length 1 to k
 - H2:Each word has an unknown probability of occurrence
 - H3:Words are independent of each other
- Method: Use EM algorithm to multi pass estimation
 - Word are the candidate multi-grams from training corpus
 - Word probabilities are randomly assigned initially
 - They are used to segment the text
 - The word probabilities are re-estimated based on segmented results
 - The text are re-segmented using re-estimated probabilities
 - Iterates until convergence

Statistical dictionary-based Approach

- Combine statistical and dictionary-based approaches
 - [Peng et al 2001]
 - a variant of the EM algorithm for Chinese segmentation
 - keeps a core lexicon which contains real words and a candidate lexicon that contains all other multi-grams not in the core lexicon
 - EM algorithm is used to maximize the likelihood of the training Corpus given the two lexicons and suggest new words as candidates for the core lexicon
 - Once a new word is added to core lexicon, the EM algorithm is reinitialized by giving half of the total probability mass to the core lexicon
 - Iterates until convergence

Comprehension-based Approach

- Taking into account the syntactic structure of sentences vs. ignore previous sentence
 - (Chen et al 1997)
 - used a segmented training Corpus to learn a set of rules to discriminate monosyllabic words from monosyllabic morphemes that may be parts of unknown words
 - monosyllabic words as instances of lexical units
 - examine the instances lexical units and non-lexical units as well as their contexts in the corpus
 - derive a set of context-dependent rules
 - The rules are sequentially applied to distinguish proper and improper characters

– [Chen et al 2002] extend

- used a set of context free morphological rules to model the structure of unknown words
- a bottom-up merging algorithm that consults the morphological rules to extract unknown words
- [Wu et al 1988]
 - applied the technology of sentence understanding to word segmentation
 - segment words based on the syntactic parser

Machine learning-based Approaches

- Transformation-based Algorithm
 - transformation-based learning (TBL) algorithm[Brill 1995]
 - requires a pre-segmented reference Corpus and an initial segmenter
 - the learning algorithm compares the initial segmentation with the reference Corpus
 - identifies a rule to correct the segmentation errors
 - initial segmentation is updated to outputs a set of ranked rules

Word Lattice

 Apply different machine learning based algorithms to identify the most likely path in the word lattice

The word lattice based Approaches

- The shortest path
- The maximum probability path
- The maximum probability sum path
- The maximum probability sum with shorter path
- •

Hidden Markov Model based Method

- Needs the information of POS tagging
- deals with word segmentation and POS tagging at the same time
- The goal is to find the POS sequence T and word sequence W that maximize

$$W, T = arg \max_{W,T,W(S)=S} P(T,W \mid S)$$

$$= arg \max_{W,T,W(S)=S} P(W,T)$$

$$= arg \max_{W,T,W(S)=S} P(W \mid T)P(T)$$

$$P(w_i \mid t_i) = \frac{F(\langle w_i, t_i \rangle)}{F(t_i)}$$

$$P(t_i \mid t_{i-1}) = \frac{F(t_i, t_{i-1})}{F(t_{i-1})}$$

- Source Channel Model [Gao et al 2005]
 - Five word classes: namely, lexicon words, morphologically derived words, factoids, named entities, and new words
 - Each character sequence was segmented into a word class sequence using Source Channel Model

$$w^* = \underset{w \in GEN(s)}{argmax}P(w|s) = \underset{w \in GEN(s)}{argmax}P(w)P(s|w)$$

Generalized as linear mixture models to incorporate a very large number of linguistic and statistical features

$$Score(w, s, \lambda) = \sum_{d=0}^{D} \lambda_d f_d(w, s)$$
 $w^* = \underset{w \in GEN(s)}{argmax} Score(w, s, \lambda)$

Word-based Approach

- Dictionary-based approach
 - Easy to implement
 - High precision for known word
 - Low to detect new words
- Statistics-based approach
 - Requires large annotated corpus for training
- Comprehension approaches
 - Theoretically high precision but perform poor

Character-based Approach: Single Character-based

- Purely mechanical processes that extract certain number of characters (to form a string) from texts
- Divides Chinese texts into single characters
- Improved in Chinese Word Segmentation and Automated Indexing System (CWSAIS)
- Easy to implement
- Precision is low

Character-based Approach: Multi Character based

Status of Chinese words

One Character	Two Character	Three Character	Four or More Character
5%	75%	14%	6%

- [Wu et al 1984]
 - segment texts into strings containing two (bigram), three or more characters
 - the bigram approach that segments a linear string of characters ABCDEF into AB, CD, EF and generates most of the correct Chinese word

Conditional Random Fields based

Transfer word segmentation to Character labeling

```
上海/计划/到/本/世纪/末/实现/人均/国内/生产/总值/五千美元/。
```

上 / B海 / E计 / g划 / E到 / S本 / s世 / B纪 / E末 / S实 / B现 / E人 / B均 / E国 / g内 / E生 / B产 / E总 / B值 / E五 / B千 / M美 / M元 / E。 / S

B: the first character of a multi-character word

M: intermediate character in a multi-character word

E: the last character in a multi-character word

S: one character word

- [Peng et al 2004, Tseng et al 2005, Zhou et al 2005] Conditional Random Fields
 - CRF are undirected graphical models trained to maximize a conditional probability of the whole graph structure
 - CRF is a discriminative model which can capture many correlated features of the inputs
 - Suitable for sequence labeling
 - More accurate than the generative models
- Advantages of Character-based Approach
 - Simplicity and ease of application
 - Reduced costs and minimal overheads

ICTCLAS

- A Hierarchical Hidden Markov Model and Class-based Chinese word segmentation
- Developed by Huaping Zhang
- A widely used tool for it is open
- The performance is good

ICTCLAS: The Architecture

- Atom segmentation
 - To segment original text into atom sequence 菜温斯基本来就很不爽
 - →莱/温/斯/基/本/来/就/很/不/爽
- NSP-based rough segmentation
 - The top-N shortest path for segmentation
 - →(1) 莱/温/斯/基本/来/就/很/不/爽
 - →(2) 莱/温/斯/基/本来/就/很/不/爽

- OOV recognition
 - Locate boundary of a unknown word
 - Identify word class and
 - The association probability
 - →莱温斯基/本来/就/很/不/爽

Role-based HMM

Role-based HMM - 1

• What is Role

角色	意义	例子
В	姓氏	<u>张</u> 华平先生
С	双名的首字	张 <u>华</u> 平先生
D	双名的末字	张华 <u></u> 先生
Е	单名	张 <u>浩</u> 说:"我是一个好人"
F	前缀	<u>老</u> 刘、 <u>小</u> 李
G	后缀	王 <u>总</u> 、刘 <u>老</u> 、肖 <u>氏</u> 、吴 <u>姆</u> 、叶 <u>帅</u>
K	人名的上文	又 <u>来到</u> 于洪洋的家。
L	人名的下文	新华社记者黄文摄
M	两个中国人名之间的成分	编剧邵钧林 <u>和</u> 稽道青说
U	人名的上文和姓成词	这里 <u>有关</u> 天培的壮烈
V	人名的末字和下文成词	龚学 <u>平等</u> 领导,邓颖 <u>超生</u> 前
X	姓与双名的首字成词	王国维、
Y	姓与单名成词	<u>高峰、汪洋</u>
Z	双名本身成词	张朝阳
A	以上之外其他的角色	

Role-based HMM

• Example: Role in Chinese Organization Name

	中文机构名称构成角色表									
角色	意义	例子								
Α	上文	参与亚太经合组织的活动								
В	下文	中央电视台报道								
Х	连接词	北京电视台和天津电视台								
С	特征词的一般性前缀									
F	特征词的译名性前缀	美国摩托罗拉公司								
G	特征词的地名性前缀	交通银行北京分行								
H	特征词的机构名前缀	中共中央顾问委员会								
1	特征词的特殊性前缀	中央电视台								
J	特征词的简称性前缀	1								
D	机构名的特征词									
Z	非机构名成份	1								

Role-based HMM - 2

label

Word sequence	$W = (w_1, w_2,, w_n)$
Role sequence	$R = (r_1, r_2,, r_n)$
Class sequence	$C = (c_1, c_2,, c_n)$
Optimal role sequence	$R^{\#} = \arg\min \sum_{i=1}^{n} -\ln p(c_{i} r_{i}) - \ln p(r_{i} r_{i})$
Possibility of word is assigned such a class	$p(w_i \mid c_i) = \prod_{j=0}^{k-1} p(c_{p+j} \mid r_{p+j}) \times \prod_{j=1}^{k-1} p(r_{p+j} \mid r_{p+j-1})$

- Recursive OOV recognition
 - Higher level Role-based HMM
 - Round 1

```
p(周恩来|PER)=p(周|C)p(恩|D)p(来|E)p(C|D)p(D|E)p(邓颖超|PER)=p(邓|C)p(颖|D)p(超|E)p(C|D)p(D|E)
```

Round 2

```
p(周恩来和邓颖超纪念馆|ORG)
=p(周恩来|PER)p(和|B)p(邓颖超|PER)
p(纪念馆|F)p(PER|B)p(B|PER)p(PER|F)
```

Class-based HMM for word segmentation

```
Atom sequence A = (a_1, a_2, ... a_n)

Word sequence W = (w_1, w_2, ... w_n)

Class sequence C = (c_1, c_2, ... c_n)
```

Optimal word sequence $W^{\#} = \underset{W}{\operatorname{arg max}} p(W \mid A) = \underset{W}{\operatorname{arg max}} p(W, A) p(A)$

- POS tagging
 - The top level HMM

- The strategy to improve word segmentation and POS tagging at the same time.
 - Using a few word segmentation candidates rather than only one optimal considering only word
 - Applying p(w|c) to find the optimal result

- Sequence labeling schemes approaches
 - Zheng et al. (2013) first adapted the slidingwindow based sequence labeling (Collobert et al., 2011) with character embeddings as input.

- Sequence labeling schemes approaches
 - Pei et al. (2014)
 introduced tag
 embedding.
 - Max-Margin Tensor
 Neural Network,
 MMTNN

- Sequence labeling schemes approaches
 - Chen et al. (2015a)
 proposed to model ngram features via a gated recursive neural network (GRNN)

- Sequence labeling schemes approaches
 - Chen et al. (2015b) used a Long shortterm memory network (LSTM) (Hochreiter and Schmidhuber, 1997) to capture long-distance context.

General architecture of neural model for Chinese word segmentation.

LSTM Memory Unit.

- Sequence labeling schemes approaches
 - Chen et al. (2015b) used a Long-short term memory network (LSTM) (Hochreiter and Schmidhuber, 1997) to capture long-distance context.

Chen proposed LSTM architectures for Chinese word segmentation.

- Sequence labeling schemes approaches
 - Xu and Sun (2016)

 integrated both GRNN and LSTM for deeper feature extraction.
 - Called dependency-based gated recursive neural network(DGRNN).

Architecture of DGRNN for Chinese Word Segmentation. Cell is the basic unit of GRNN.

- Sequence labeling schemes approaches
 - Traditional Model VS Neural Sequence Model

结构化建模演进(每行展示结构化建模对应的两种模型)

结构分解	传统模型	神经模型
分类模型	Xue (2003)	
Markov模型	Ng and Low (2004); Low et al. (2005)	Zheng et al. (2013) Pei et al. (2014)
标准串学习建模	CRF: Peng et al. (2004) semi-CRF: Andrew (2006); Sun et al. (2009)	LSTM: Chen et al. (2015b) Liu et al. (2016)
全局模型	Zhang and Clark (2007)	Cai and Zhao (2016) Cai et al. (2017)

- Other schemes approaches
 - Ma & Hinrichs (2015) proposed a characterbased embedding matching approach.

- Other labeling schemes approaches
 - Zhang et al. (2016) proposed a transition-based framework.

Meishan Zhang, Yue Zhang, and Guohong Fu. Transition-based neural word segmentation.

Scorer for the neural transition-based Chinese word segmentation model.

Input representations of LSTMS

- Other labeling schemes approaches
 - Liu et al. (2016) used a zero-order semi-CRF based model.

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, and Ting Liu. Exploring segment representations for neural segmentation models.

neural semi-CRF model with segment representation from input composition and segment embeddings.

- Other labeling schemes approaches
 - Cai and Zhao (2016)
 proposed to score
 candidate segmented
 outputs directly
 - Employing a gated combination neural network over characters for word representation generation and an LSTM scoring model for segmentation result evaluation.

Architecture of proposed neural network scoring model

- Other labeling schemes approaches
 - Cai and Zhao (2017) presented a fast and accurate word segmentor using neural networks.

Neural network scoring for word candidate

- Is Word Segmentation necessary for deep learning of Chinese representations?
 - Meng et al.(2019) found that in the Chinese environment, using character-based models (e.g., BERT) is more suitable than word-based models. As the latter often suffers from data sparsity and out-of-vocabulary problems.
 - The experiments on four end-to-end NLP benchmark tasks: Language Modeling, Machine Translation, Sentence Matching/Phrasing and Text Classification.

Results on text classification datasets

Dataset	description	char valid	word valid	char test	word test
chinanews	1260K/140K/112K	91.81	91.82	91.80	91.85 (+0.05)
dianping	1800K/200K/500K	78.80	78.47	78.76 (+0.36)	78.40
ifeng	720K/80K/50K	86.04	84.89	85.95 (+1.09)	84.86
jd_binary	3600K/400K/360K	92.07	91.82	92.05 (+0.16)	91.89
jd_full	2700K/300K/250K	54.29	53.60	54.18 (+0.81)	53.37

Visualization

- Neural Chinese Word Segmentation with Dictionary Knowledge
 - Liu et al.(2019) find that many neural network based methods require a large number of labeled sentences and usually cannot utilize the useful information in Chinese dictionary.
 - They proposed two methods to exploit the dictionary information for Chinese Word Segmentation.
 - The experiments on on two benchmark Chinese word segmentation datasets.

Results on CWS datasets

et e	1%			10%			100%		
	P	R	F	P	R	F	P	R	F
Chen et al. [3]	75.50	75.80	75.64	87.71	86.22	86.96	94.24	93.35	93.80
LSTM-CRF	75.88	74.86	75.36	85.52	84.81	85.16	94.26	93.29	93.78
CNN-CRF	75.59	74.43	75.00	89.72	89.14	89.43	95.03	94.53	94.78
Zhang et al. [17]	75.75	75.95	75.85	89.52	89.01	89.27	95.71	95.41	95.56
Ours_Pseudo	80.58	77.97	79.25	90.49	89.59	90.04	95.36	94.71	95.03
Ours_Multi	78.47	77.31	77.88	89.91	89.27	89.59	95.10	94.50	94.80

	5%			25%			100%		
	P	R	F	P	R	F	P	R	F
Chen et al. [3]	82.31	82.60	82.44	88.00	89.90	88.94	90.79	92.92	91.84
LSTM-CRF	81.08	80.88	80.98	86.76	88.40	87.57	91.39	92.58	91.98
CNN-CRF	82.44	84.50	83.46	89.95	91.57	90.75	92.22	93.84	93.02
Zhang et al. [17]	83.38	84.98	84.17	89.93	91.41	90.66	92.60	93.89	93.24
Ours_Pseudo	87.37	86.56	86.97	90.97	92.04	91.50	92.77	94.09	93.43
Ours_Multi	84.59	86.22	85.40	90.43	91.68	91.05	92.35	93.93	93.13

Case Study

20	Example 1	Example 2
Original	5 名男子和被害人有恩怨	警方一口气带回了50多人
		警方/一/口/气/带回/了/50多/人
		警方/一口气/带回/了/50多/人
+External dictionary	5/名/男子/和/被害人/有/恩怨	警方/一口气/带回/了/50多/人

Benchmark - Standards

- Peking University Standard
 - Contemporary Chinese Corpus
 - Characterized by a large set of specific rules
 - Each rule explains how a particular kind of character string should be segmented
 - Grammatical Knowledge-Base of Contemporary
 Chinese: 73,000 entries
 - Used as a reference lexicon

Academia Sinica Standard

- Sinica Corpus developed by Academia Sinica
- Assumes the use of a reference lexicon for segmentation
- No large set of specific rules
- Two segmentation principles and four specific segmentation guidelines
- A segmentation unit is defined as the smallest string of characters with an independent meaning and a fixed grammatical category

- University of Pennsylvania Standard
 - Similar to the Peking University Standard in the sense
 - Also consists of a large set of specific rules.
 - Each rule specifies how a particular kind of character string should be handled
 - Do not assume the use of any reference lexicon for segmentation.
 - Needs to determine the wordhood status for each character string without lexicion
 - The rules in the standard attempt to cover all possible scenarios, and the set become inevitably large

Benchmark - Bakeoffs

- To compare the accuracy of various method
- The "Bakeoff evaluation" first held at the 2nd SIGHAN Workshop at ACL in 2003
- Four corpora
 - Academia Sinica, Hong Kong CityU, Upenn, PKU
- Open Track
 - Allowed to use any other resources such as dictionaries or more training data
- Close Track
 - Only training data is allowed

Bakeoff Evaluation

- SigHan Bakeoff are evaluated in five measurements
 - recall, precision and F-measure for overall segmentation
 - recall for unknown words and known words

$$Recall = \frac{number \ of \ correctly \ segmented \ words}{total \ number \ of \ words \ in \ gold \ data}$$

$$Precision = \frac{number \ of \ correctly \ segmented \ words}{total \ num \ ber \ of \ w \ ords \ segm} \ ented}$$

$$F - measure = \frac{2 \times Recall \times Precision}{Recall + Precision}$$

$$Recall (OOV) = \frac{number \ of \ correctly \ segmented \ unknown \ words}{total \ number \ of \ unknown \ words \ in \ gold \ data}$$

$$Recall (IV) = \frac{number \ of \ correctly \ segmented \ known \ words}{total \ number \ of \ known \ words \ in \ gold \ data}$$

4th Bakeoff Evaluation

- New Tasks
 - Chinese Word Segmentation
 - Chinese Named Entity Recognition
 - Chinese POS-tagging
- Seven Corpora
 - Academia Sinica, Hong Kong CityU, Microsoft
 Research Asia, PKU, Shanxi University, National
 Chinese Corpus, Chinese Tree Bank

Agreement on Words

- Wu Dekai 1995 nk-blind
 - N person segmentation
 - K person agree 0<k<n
 - N=8 all-agree rate 30% at-least-one agree rate 90%
- Sproat 1996
 - Based on one person's output
 - Agree rate 0.76

Agreement on Words

Human Agreement on Words

	M1	M2	M3	T1	Т2	Т3
M 1		0.77	0.69	0,71	0.69	0.70
M2	30		0.72	0.73	0.71	0.70
M 3				0.89	0.87	0.80
T1					0.88	0.82
T2						0.78

Corpora Agreement

,	에 나가 그런 네티 뉴스		分词系统					
测试话	则试语料库	As	СТВ	CityU	MSRA			
I	AS2006	1.0	0.9593	0.925 6	0.8583			
(CTB2006	0.942 0	1.0	0.9104	0,877 4			
(CityU2006	0.932 1	0.934 6	1.0	0.848 8			
1	MSRA2006	0,857 0	0.886 6	0,848 3	1.0			

Open Resources

- NLPIR ICTCLAS
 - Beijing Institute of Technology
 - http://ictclas.nlpir.org/
- JIEBA Word Segmentation System
 - https://github.com/fxsjy/jieba
- HIT LTP Platform
 - www.ltp-cloud.com/

The Next Lecture

Lecture 6
 Unknown Word Identification and Normalization

Questions?