Homework 4, NSL

P1. Consider the system:

$$\dot{x}_1 = \tanh x_1 (ax_1 + x_2)$$

$$\dot{x}_2 = bx_1 x_2 + \frac{1}{1 + x_2^2} u$$

Suppose a=2 and b=3. Use backstepping to design a feedback control law $u(x_1,x_2)$ which asymptotically stabilizes the equilibrium at the origin. Simulate the closed loop system response for initial conditions $x_1(0)=x_2(0)=1$. Show plots of $x_1(t)$ and $x_2(t)$ versus time and a plot of $x_1(t)$ versus $x_2(t)$. Prove that indeed you have asymptotic stability for the first closed loop used in backstepping. There is no need to do that for the second closed loop system. Hint: Cast the equations in the format used in class and use $V=\eta^2/2$, and $\phi(\eta)=-a\eta-\eta^2$. For the constant k use k=1 in your simulations (and you are free to explore other values to see how the system behaves).

P2. Consider the same system like in P1 but with a and b uncertain (unknown). The only knowledge you have is that $a \in [1,3], b \in [2,4]$. Use sliding mode control to design a feedback control law $u(x_1, x_2)$ which asymptotically stabilizes the equilibrium at the origin. Simulate the closed loop system response for initial conditions $x_1(0) = x_2(0) = 1$. Show plots of $x_1(t)$ and $x_2(t)$ versus time and a plot of $x_1(t)$ versus $x_2(t)$. In your sliding mode control law implementation use the saturation function instead of the signum function. Use your simulations to explore the effect of different values of the small parameter ε . Hint: will be provided in class.