SESA3029 Aerothermodynamics

Lecture 1.3

1D gasdynamics

Intro: Grandli can't be used anymore since we are working with high speeks (compressable)

Aerothermodynamics toolkit (1)

Perfect gas

$$p = \rho RT$$

$$p = \rho RT$$
 $R = \frac{\hat{R}}{\hat{M}} = \frac{\text{Universal gas constant}}{\text{Molar mass}}$

Calorically perfect gas

$$e = c_{_{\scriptscriptstyle V}} T$$
 $h = c_{_{\scriptscriptstyle p}} T$

 $e = c_v T$ e=internal energy $h = c_v T$ h=enthalpy h = e + pv

$$h = e + pv$$

Entropy

$$ds = \left(\frac{\delta q}{T}\right)_{\text{rev}}$$

$$s_2 - s_1 = c_p \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{p_2}{p_1}\right)$$

Isentropic flow

$$\left(\frac{p_2}{p_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$$

Aerothermodynamics toolkit (2)

(347+ MUPP PARTICLE Standing)

Steady flow energy equation $h + \frac{V^2}{2} = \text{constant} = h_0$

$$h + \frac{V^2}{2} = \text{constant} = h_0$$

h₀ is called the stagnation enthalpy (the enthalpy that is recovered when we bring the fluid to rest adiabatically) $\frac{a_0^2}{a^2} = 1 + \frac{\gamma - 1}{2}M^2$ $\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2$

$$\frac{a_0^2}{a^2} = 1 + \frac{\gamma - 1}{2}M^2$$

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2$$

For adiabatic flow brought to rest isentropically we also have:

$$\frac{p_0}{p} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{p_0}{p} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}} \frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

$$\sqrt{\frac{2}{\chi-1}\left(\frac{T_0}{T}-I\right)} = M$$

Example: Nozzle Flow

For a nozzle flow with T_0 =1000K and T_e =600K find M_e

From the problem statement $T_e/T_0=0.6$

	Isentropic-flow table ($\gamma = 1.4$):							
М	p/p ₀	$ ho/ ho_0$	T/T_0	v (deg.)	A / A *			
1.8000	0.1740	0.2868	0.6068	20.7251	1.4390			
1.8200	0.1688	0.2806	0.6015	21.3021	1.4610			
1.8400	0.1637	0.2745	0.5963	21.8768	1.4836			
1.8600	0.1587	0.2686	0.5910	22.4492	1.5069			
1.8800	0.1539	0.2627	0.5859	23.0190	1.5308			

Nearest value M=1.82

Linear interpolation M=1.826 (1.82577 to 5 d.p.)

Exact (easy in this case) M=1.826 (1.82574 to 5 d.p.)

Bow shock wave

Control volume for analysis of a normal shock wave

Control volume for a normal shock wave (M₁>1)

$$\rho_1 V_1 (V_2 - V_1) = p_1 - p_2$$

$$a_0^2 = a_1^2 + \frac{\gamma - 1}{2}V_1^2 = a_2^2 + \frac{\gamma - 1}{2}V_2^2$$

$$V_{2} - V_{1} = \frac{\rho_{1}V_{1}}{\rho_{2}V_{2}} - \frac{\rho_{2}V_{2}}{\gamma V_{1}}$$

$$V_{2} - V_{1} = \frac{a_{1}^{2}}{\gamma V_{1}} - \frac{a_{2}^{2}}{\gamma V_{2}}$$

 $\begin{array}{c} \rho_2 \\ \rightarrow \rho_2 \\ a_2 \\ h_2 \\ V_2 \end{array}$ \text{ \text{div} 9} \text{ \text{div} 9} \text{ \text{div} 9} \text{ \text{div} 9} \text{ \text{div} 1} \text{div} 1 \text{ \text{div} 1} \text{div} 1 \tex

(2) Newton's second law

(3) Energy conservation

(total enthalipy is conserved)

ha = haz = To = To z

$$V_2 - V_1 = \frac{a_1^2}{\gamma V_1} - \frac{a_2^2}{\gamma V_2}$$

$$a_0^2 = a_1^2 + \frac{\gamma - 1}{2} V_1^2 = a_2^2 + \frac{\gamma - 1}{2} V_2^2$$
 (3)

Combine with (3)
$$V_{2} - V_{1} = a_{0}^{2} \left(\frac{1}{\gamma V_{1}} - \frac{1}{\gamma V_{2}} \right) - \frac{\gamma - 1}{2\gamma} (V_{1} - V_{2})$$

$$= a_{0}^{2} \left(\frac{V_{2} - V_{1}}{\gamma V_{1} V_{2}} \right) + \frac{\gamma - 1}{2\gamma} (V_{2} - V_{1})$$

$$\frac{a_{0}^{2}}{\gamma V_{1} V_{2}} = 1 - \frac{\gamma - 1}{2\gamma} \qquad = \frac{\gamma + 1}{2\gamma}$$

$$V_{1} V_{2} = \frac{2a_{0}^{2}}{\gamma + 1} \qquad (4)$$

Prandtl relation in terms of stagnation sound speed and, hence, the jump relations by rearranging (1)-(4)

Summary of shock jump relations

$$\frac{\rho_2}{\rho_1} = \frac{M_1^2 (\gamma + 1)}{2 + (\gamma - 1) M_1^2}$$

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma (M_1^2 - 1)}{\gamma + 1}$$

$$\frac{T_2}{T_1} = \frac{\rho_2/\rho_1}{\rho_2/\rho_1}$$

$$M_2^2 = \frac{2 + (\gamma - 1) M_1^2}{2\gamma M_1^2 - (\gamma - 1)}$$

All are functions of M₁ alone Tabulated in NST

Quick examples

Example 1: find M_2 for a monatomic gas in the limit $M_1 \rightarrow \infty$

$$M_2^2 = \frac{2 + (\gamma - 1)M_1^2}{2\gamma M_1^2 - (\gamma - 1)}$$
 $M_{2,\min} = \sqrt{\frac{\gamma - 1}{2\gamma}} = \frac{1}{\sqrt{5}}$

What are the limiting relations for density, pressure and temperature?

Example 2: For air, given $p_2/p_1=1.25$ and $T_1=15$ °C, find M_2 and V_2

Example using shock tables

Normal-shock table ($\gamma = 1.4$):

M_{n1}	M_{n2}	p_2/p_1	$ ho_2/ ho_1$	T_2/T_1
1.0000	1.0000	1.0000	1.0000	1.0000
1.0200	0.9805	1.0471	1.0334	1.0132
1.0400	0.9620	1.0952	1.0671	1.0263
1.0600	0.9444	1.1442	1.1009	1.0393
1.0800	0.9277	1.1941	1.1349	1.0522
1.1000	0.9118	1.2450	1.1691	1.0649
1.1200	0.8966	1.2968	1.2034	1.0776
1.1400	0.8820	1.3495	1.2378	1.0903
1.1600	0.8682	1.4032	1.2723	1.1029
1.1800	0.8549	1.4578	1.3069	1.1154

Given $p_2/p_1=1.25$ and $T_1=15$ °C, find M_2 and V_2

By linear interpolation

Interpolation factor (proportion of change from one row to the next)

$$f = \frac{1.25 - 1.2450}{1.2968 - 1.2450} = 0.09653$$

$$M_2 = 0.9118 + 0.09653 \times (0.8966 - 0.9118) = 0.9103$$

$$\frac{T_2}{T_1}$$
 = 1.0649 + 0.09653×(1.0776 - 1.0649) = 1.0661

$$T_2 = 1.0661 \times 288.15 = 307.2 \text{ K}$$

$$V_2 = M_2 \sqrt{\gamma R T_2}$$

= $0.9103 \sqrt{1.4 \times 287 \times 307.2} = 319.8 \,\text{m/s}$