반달: OpenCV 라이브러리를 이용한 얼굴인식 출결 관리 애플리케이션

하유진, 유정현, 엄성용 서울여자대학교 소프트웨어융합학과 wertyuio5768@naver.com, yujj326@gmail.com, osy@swu.ac.kr

Bandal : Face Recognition Attendance Management System using OpenCV Library

You-Jin Ha, Jeong-Hyun Yu, Seong-Yong Ohm Dept. of Software Convergence, Seoul Women's University wertyuio5768@naver.com, yujj326@gmail.com, osy@swu.ac.kr

요 익

본 논문에서는 기존의 전자 출결을 위한 시스템들이 학생들의 스마트폰 사용을 기반으로 하고 있다는 문제들을 해결하기 위하여 사전등록을 통한 얼굴인식 인공지능을 활용한 전자 출결 관리 시스템인 <반달>을 소개한다.

본 논문에서는 얼굴인식 인공지능을 통한 식별 및 애플리케이션을 통한 출결 사항 확인과 수정 기능을 포함하여 통합적인 출결 관리를 가능하게 하였다. 학생들 개개인 스마트폰의 소지를 필수로 요구하지 않아 제약이 적은 라즈베리파이와 데이터베이스를 사용한 설치형 출결 관리 시스템을 제안한다.

1. 서론

최근 별도의 인원이나 큰 시간 할애없이 간편하게 출결 확인이 가능한 전자 출결 시스템의 사용이 크게 늘어나고 있다. QR 코드를 활용한 시스템, 확인 코드를 활용한 시스템 등 현재 많이 사용되고 있는 전자 출결 시스템은 공통적으로 출석 대상의 스마트폰을 통한 별도의 절차를 기반으로 출결이 이루어진다. 이로 인해 스마트폰 소유를 필수로 한다는 점과 본인확인이 어려워 대리 출석에 취약하다는 문제점이 발생하고 있다.[1]

이러한 문제를 해결하기 위하여 얼굴을 인식하여 출결을 자동으로 진행하는 얼굴인식 인공지능 전자 기반 출결 시스템을 제안한다. 실물 기기 설치를 위 하여 라즈베리파이[2]를 사용하였고, 얼굴인식과 학습 모델의 비교를 위해 Face_recognition 라이브러리를 이 용하였다.

본 논문에서는 2 장에서 얼굴 인식에 관련된 연구에 대해 기술한다. 3 장에서 전체 구성도를 통하여 사용 알고리즘과 전체 시스템을 기술한다. 4 장에서 애플리케이션의 화면 별 주요기능을 기술한다. 마지막으로 5 장에서 결론 및 향후 연구와 보완점으로 끝을 맺는다.

2. 관련기술

2.1 OpenCV

OpenCV(Open Source Computer Vision)는 오픈소스 컴퓨터 비전 C 라이브러리로 다양한 플랫폼에서 실시간이미지 처리에 중점을 둔 라이브러리이다. 일반적으로 많이 활용되는 Windows, MacOS, Linux 뿐 아니라모바일 운영체제인 Android 및 iOS 를 지원한다. OpenCV 는 2000 년 인텔에서 개발한 IPL(Image Processing Library)에 뿌리를 두고 있으나 현재는 오픈소스 라이브러리로 성격이 바뀌었다. 또한 BSD 라이선스를 사용하기 때문에 상업적으로 이용할 수 있는 특징을 가지고 있다. OpenCV 의 본래 개발 목적은 머신의 시간에 해당하는 부분을 연구하는 것이었으나,현재는 머신 러닝에서의 영상, 이미지 인식, 검색 등에 이용되고 있으며 의료, 항공, 차량 등의 다양한 분야에서 사용 되고있다.[3]

2.2 Face_recognition

Python 에서 제공하는 Face_recognition 라이브러리는 딥러닝 기반으로 제작된 Dlib 의 최첨단 얼굴 인식 기 능을 사용하여 구축된 모델로 99.38%의 정확도를 가 진다. 본 라이브러리는 다음 순서로 작동한다.[4]

사진에서 사람 얼굴에 해당하는 모든 얼굴을 찾는 다.

(그림 1) 얼굴 찾기

사진에 있는 얼굴의 특징(턱의 위치, 윤곽, 눈, 코, 입)을 찾고 조작한다.

(그림 2) 얼굴의 특징 찾기

사진 속 얼굴의 신원을 확인해 누구인지 인식한다.

(그림 3) 얼굴의 신원 확인

3. 통합 시스템 구성도

(그림 4) 전체 시스템 구성도

- ① 시스템 사용 전에 등록된 학생의 사진을 학습 후 생성된 데이터를 학번을 고유번호로 지정하 여 데이터베이스에 적재한다.
- ② 학습진행자는 애플리케이션 조작을 통해 라즈 베리파이의 얼굴인식 시스템을 작동시킨다. 카 메라로 받아온 사진 정보를 서버에 전송한다.
- ③ 입력된 사진 데이터를 Face recognition 라이브 러리를 이용해 분석한다. 학습된 학생정보와 비교하여 가장 근접한 값을 가진 얼굴과 매핑 한다. 이 과정에서 범위를 벗어난 정보에 대해 서는 인식이 되지 않는 이미지로 판단한다.
- ④ 매핑한 학생정보 결과는 출석 현황 데이터베 이스에 적용된다.
- ⑤ 데이터베이스에 저장된 출결 처리 결과는 애 플리케이션을 통하여 학습진행자의 요구에 따 라 가공되어 출력된다.

4. 주요 기능 및 화면 구성

4.1 메인 화면

첫 실행시 그림 5. 와 같은 로그인 화면이 뜬다. 아 이디와 비밀번호를 받아 사용자를 확인하며 재실행시 엔 다시 묻지 않는다. 아이디와 비밀번호는 서버로 전송되어 그림 6 .은 메인 화면이다. 메인 화면에 보 이는 상단의 사용자 이름과 각각 수업시작과 출결 현 황 메뉴의 강의 선택지를 구성한다.

4.2 출결 시작 기능

메인 화면의 수업시작 메뉴에서 원하는 강의를 선 택하면 그림 7.의 출결 시작 화면으로 넘어간다. 시작 버튼이 활성화 되어있는 해당 강의의 출결이 시작된 다. 출결 시작과 함께 종료버튼으로 바뀌며 종료버튼 선택시 출결이 종료된다. 출결 종료시 완료버튼이 뜨 며 간단한 출결 상황을 확인할 수 있다.

(그림 7) 출결시작화면

(그림 8) 출결시작화면

4.3 출결 관리 기능

메인 화면의 수업시작 메뉴에서 원하는 강의를 선택하면 그림 9.의 강의별 수강생을 확인할 수 있는 출결현황 화면으로 넘어간다. 그림.10 의 출결현황 화면에서 강의를 듣는 학습자의 정보와 개인 출결 정보확인이 가능하다. 학습자의 개별 출결 상태 수정이가능하다.

(그림 9) 출결현황화면 (그림 10) 출결현황화면

5. 결론 및 향후 연구와 보완점

라즈베리파이에 연결된 카메라를 통해 들어온 이미지를 사전에 등록되어 학습된 얼굴인식 모델을 통해 사용자를 식별하고 연결된 웹 데이터베이스에 해당정보를 저장해 출결 관리에 활용하는 시스템이다.

향후, 학습진행자 애플리케이션에서 학생 별 출결 현황 관리페이지와 총 통계 페이지를 추가하여 보다 직관적인 정보를 한눈에 제공하 수 있도록 보완해야 할 것이다. 얼굴인식을 담당하는 모델의 경우 넓은 공간에서 다수의 학생들을 보다 효과적으로 인식할 수 있도록 저해상도 환경과 다인 인식에 최적화되도 록 학습모델을 개선해야 할 것이다.

ACKNOWLEDGEMENT

* 본 연구는 과학기술정보통신부 및 정보통신기술진 흥센터의 SW 중심대학지원사업의 연구결과로 수행되 었음(2016-0-00022).

참고문헌

- [1] 이재학, 이희화 "전자출결 시스템의 문제점과 해결방안에 대한 연구-사용자 인식을 중심으로-" 17(5). pp.41-49 2019.
- [2] 이강희, 가니에프흐 아실백 "라즈베리파이 3 활용 IoT 교육과정 핵심요소 도출을 위한 한국의 상용 서비스 현황 고찰" pp.623-630 2017.
- [3] 우석준, "머신러닝 얼굴인식 기술을 이용한 자동 출석 프로그램 개발 및 적용." 국내석사학위논문 서울 교육대학교 교육전문대학원, 2020.
- [4] face_recognition, https://github.com/ageitgey/face_recognition/blob/master/README_Korean.md
- [5] Kwon, Ki-Hyeon, & Lee, Hyung-Bong "스마트폰을 이 용한 얼굴인식 출입관리 시스템" 한국컴퓨터정보학회 논문지, 16(11), 2011, pp.9-15.
- [6] 이원찬. "Haar-like feature 와 PCA 를 이용한 실시간 얼굴 검출과 인식." 국내석사학위논문 수원대학교 대학원, 2005.