의료 Artificial Intelligence

지도 학습 / 비지도 학습 (chap7,8)

2022.05.26

오늘 배울 내용 …

- 1. 지도학습과 비지도학습
- 2. 인공지능 실습
- 3. mblock 실습

어렵지 않다 쉬운 것도 아니다

인공지능 이론

머신러닝과 구분

- · 입력하는 데이터에 <u>레이블(명시적인 정답)을 주느냐, 아니냐에 따라 지도학습, 비지도학습</u>으로 구분
- · 강화학습은 행동(상태)의 변화 후에 환경으로부터 보상을 받아 학습

지도학습(Supervised Learning)

- ·문제(Feature)와 정답(Label, Annotation)이 있는 데이터(Training Set)를 컴퓨터에 학습시킨 후 새로 입력된 데이터(Test Set)를 분류하거나 예측하는 학습 방법
- · <u>입력 데이터x와 그에 대한 정답 레이블Label y의 쌍Pair (x, y)</u>를 이용해서 학습
- · 지도학습의 목적은 입력 데이터와 결괏값을 이용해 특정한 타깃을 예측하는 것

비지도 학습(Unsupervised Learning)

- · 지도학습과 달리 훈련 데이터에 정답 레이블이 없음. 입력된 데이터를 받아 컴퓨터가 스스로 데이터의 특징을 찾아 내는 것
- · <u>비지도학습은 데이터의 숨겨진 특징(Hidden Feature)을 찿아내는 것에 목적</u>
- . 비지도학습의 목표는 데이터의 특성을 분석해서 <u>유사한 속성을 가진 값끼리 그룹화(군집, Clustering)</u> 하고 그룹의 특징을 <u>찾아 냄</u>

▲ 가공되지 않은 데이터와 클러스터화된 데이터

강화학습

· 강화학습은 준지도학습으로 행동한 결과(처리 결과)에 대해 보상(평가) 알고리즘을 제공하여 스스로의 행동을 개선하는 방법

지도학습 알고리즘

k-최근접 이웃(k-Nearest Neighbors)

새로운 데이터가 무엇인지 구분하기 위해 훈련에 사용됐던 데이터에서 가장 가까운 데이터의 유형, 즉 최근접 이웃을 찾음

로지스틱 회귀(Logistic Regression)

선형 함수 결과를 시그모이드 함수를 이용해 0~1 사이로 압축한다. 로지스틱 회귀는 다중 분류도 지원한다.

- Binary Classification(이진 분류), Multiclass Classification(다중 분류)
- 스팸 분류, 암 진단, 꽃의 품종 판별, 손글씨 숫자 분류

서포트 벡터 머신(Support Vector Machine)

두 카테고리 중 어느 하나에 속한 데이터의 집합이 주어졌을 때, 새로운 데이터가 어느 카테고리에 속할지 판단하기위해 데이터들의 경계 중 가장 큰 폭을 가진 경계를 찾는 알고리즘

유형

나이브 베이즈(Naive-Bayes)

복잡한 베이즈 정리를 간단한 조건부 확률 방법을 이용해 분류하는 알고리즘. 나이브 베이즈 분류는 텍스트 분류에 유용하게 사용되며 스팸메일 필터, 텍스트 분류, 감정 분석, 추천 시스템에서 효과적이다.

의사결정 트리(Decision Trees)

스무고개 하듯 예/아니요 질문을 이어가며 특정 기준(질문)에 따라 데이터를 구분하는 학습 모델. 신용 등 급 분류, 식물 분류, 환자 판별 등에 사용.

랜덤 포레스트(Decision Trees)

분류, 회귀분석 등에 사용되는 앙상블 학습 방법의 일종으로, 훈련 과정에서 구성한 다수의 결정 트리로부터 분류 또는 평균 예측값(회귀분석)를 출력함으로써 과적합을 막는 학습이 가능

신경망/딥러닝(Neural Networks/Deep Learning)

인간의 신경 모델을 모방한 학습 방법으로, 여러 개의 층으로 이뤄진 뉴런들의 가중값을 구함. 딥러닝의 등장으로 이미지 인식, 언어 처리 등 인공지능의 전성기를 이루고 있는 알고리즘

· k-NN: 새로운 데이터가 주어질 때 기존 데이터 가운데 가장 가까운 k개 이웃의 정보로 새로운 데이터 예측

- <u>학습 절차 없음</u>

- · 가장 가까이에 있는 단일 자료만 보는 것이 아니라 주변에 분포돼 있는 데이터들의 거리를 측정해 가장 많이 이웃한 것으로 분류하는 방법을 사용
- ·k는 분류를 판단하기 위해 참조할 주변의 데이터 수를 의미함.

작은 원은 k=1 일 경우 → 가장 가까운 1개로 분류를 판단하겠다는 것 두 번째 원은 k=5일 경우 → 가장 가까운 5개의 데이터로 분류를 판단하겠다는 것

- ·k가 1일 경우★은■에 속하는 것으로 분류
- ·k가 5일 경우★은 에 속하는 것으로 분류

- ·k의 값이 커질수록 분류 자체를 하지 못할 수 있으므로 가능한 한 작은 수 사용
- · k값은 기본적으로 홀수를 사용

· k-NN은 거리 측정 방법에 따라 결과가 달라지므로 표준화된 거리 측정 방법이 중요. 주로 유클리드 거리로 계산

$$\sqrt{(Ax - Bx)^2 + (Ay - By)^2}$$

· 상품 판매에서 무게와 가격으로 배치되었을 때 다음 그림의 y좌표 단위가 달러일 경우 새로운 상품의 유사도를 구하기 위한 유클리드 거리

가와 N의 유클리드 거리는
$$\sqrt{(5-2)^2+(5-6)^2}=\sqrt{9+1}=\sqrt{10}=3.162$$
 나와 N의 유클리드 거리는 $\sqrt{(5-3)^2+(5-7)^2}=\sqrt{4+4}=\sqrt{8}=2.828$ 그러므로 나와 N이 가깝다.

- · 장점: 원리가 간단해 구현하기 쉬움.
 - 수치 기반 데이터에서 분류, 비슷한 것 찿기 등에서 많이 활용
- · 단점 : 분석할 때 적합한 최적 이웃의 수와 거리 척도의 방법을 연구자 임의로 정해야 하고 새로운 관측 값과 학습 데이터 사이의 거리를 전부 측정해야 하므로 시간이 오래 걸림
- · 활용 : 얼굴 인식, 개인 영화 추천, 단백질 및 질병 추출을 위한 유전자 데이터 패턴 식별 등에 활용

비지도 학습

- · 비지도학습은 알고리즘에 <u>입력 데이터만 제공하고 데이터의 패턴을 스스로 식별</u>.
- · 목표는 알고리즘이 <u>데이터에서 기본 패턴 또는 특징을 식별해 이를 더 잘 이해</u>하는 것
- ㆍ지도학습의 입력 데이터(데이터 군집결과)로 활용해서 지도학습의 성능을 끌어올리는 용도로 활용

비지도학습의 유형

군집

k-평균(k-means)

: 주어진 데이터를 지정된 클러스터 갯수(k)로 그룹핑. 한 클러스터 내의 데이터들은 동일 한 성질을 가지며 다른 그룹에 대해 구별됨.

계층 군집 분석(Hierarchical Cluster Analysis, HCA)

: 계층 군집은 유사한 군집끼리 묶어가면서 최종 적으로는 하나의 케이스가 될 때까지 군집을 묶는 클러스터링. 군집 간의 거리를 기반으로 클러스터링을 하는 알고리즘이며 K-평균과는 다르게 군집의 수를 미리 정해주지 않아도 됨.

k-평균 알고리즘 주요 용어

- 클러스터: 유사한 특성(중심을 기준으로 가까운 것)을 가진 데이터끼리의 묶음
- 클러스터링: 어떤 데이터들이 주어질 때, 그 데이터들을 클러스터로 무리 지어 주는 것
- 센트로이드(Centroid): 무리, 즉 클러스터의 중심
- k: 몇 개의 무리로 클러스터링할 것인지. 데이터를 3개로 클러스터링한다면 k = 3

7개의 데이터가 있고, k= 3으로 가정

① 무작위로 3개의 센트로이드를 설정

② 데이터 하나씩 가장 가까이에 있는 센트로이드를 찾는다.

1의 데이터의 경우 3개의 센트로이드 중 c1이 가장 가까 우므로 c1으로 클러스터 링한다. 이런 방법으로 데이터와 센트로이 드 간의 거리를 측정해 클러스터링한다.

③ 앞의 2번 과정의 결과 위 그림처럼 클러스터링 됨

④ 각 센트로이드가 클러스터링 된 데이터 간의 평균거리로 중심점을 옮긴다

⑤ 센트로이드의 중심점이 옮겨졌으므로 각 데이터의 센트로이드와의 거리를 다시 측정

⑥ 데이터 4의 경우 c3과 가까워져 클러스 터가 바뀌고 나머지 데이터들은 변경이 없다.

⑦ 다시 한번 센트로이드를 중심으로 각 데이터 간의 평균 거리를 구하고 중심점을 옮긴다.

⑧ 이러한 방법으로 데이터와 센트로이드 간의 거리를 구하고 중심점이 더 바뀌지 않을 때까지 반복한다.

mblock에서 day12_ex1프로젝트 실행

https://animalface.site/ko/index.html

실습 1

- 데이터 불러오기 : 'Delivery.csv'
- 데이터 모델: k-Means

실습 1-2: 지도상에 표시

- 데이터 불러오기 : 'Delivery.csv'
- 데이터 모델: Geo-

MBlock 실습

day12_ex1프로젝트 불러 오기


```
이동 ▼ 을(를) 받았을 때
   0.5 초 동안 x: cluster_place ▼ 의 1 번째 항목 y: cluster_place ▼ 의 2 번째 항목 로(으로) 이동하7
   kmean center ▼ 에 1 번째 항목을 cluster place ▼ 의 1 번째 항목 로 바꾸기
   kmean_center ▼ 에 2 번째 항목을 cluster_place ▼ 의 2 번째 항목 로 바꾸기
   0.5 초 동안 x: cluster_place ▼ 의 3 번째 항목 y: cluster_place ▼ 의 4 번째 항목 로(으로) 이동하
   kmean center ▼ 에 3 번째 항목을 cluster place ▼ 의 3 번째 항목 로 바꾸기
   kmean_center ▼ 에 4 번째 항목을 cluster_place ▼ 의 4 번째 항목 로 바꾸기
  0.5 초 동안 x: cluster_place ▼ 의 5 번째 항목 y:
                                           cluster place ▼ 의 6 번째 항목 로(으로) 이동하
  kmean_center ▼ 에 (5) 번째 항목을 (cluster_place ▼ 의 (5) 번째 항목 로 바꾸기
  kmean center ▼ 에 6 번째 항목을 cluster place ▼ 의 6 번째 항목 로 바꾸기
이동 ▼ 을(를) 받았을 때
  0.5 초 동안 x: cluster_place ▼ 의 7 번째 항목 y: cluster_place ▼ 의 8 번째 항목 로(으로) 이동하지
  kmean center ▼ 에 7 번째 항목을 cluster place ▼ 의 7 번째 항목 로 바꾸기
  kmean center ▼ 에 ⑧ 번째 항목을 cluster place ▼ 의 ⑧ 번째 항목 로 바꾸기
  0.5 초 동안 x: cluster_place ▼ 의 9 번째 항목 y:
                                          cluster_place ▼ 의 (10) 번째 항목 <mark>로(으로) 이동하</mark>기
  kmean_center ▼ 에 9 번째 항목을 cluster_place ▼ 의 9 번째 항목 로 바꾸기
  kmean_center ▼ 에 10 번째 항목을 cluster_place ▼ 의 10 번째 항목 로 바꾸기
```

얼굴인식 출입기

코스튬 수: 2

팀 활동