AIE111 Artificial Intelligence

25/12/2024

Sheet 2

Question 1: Loading and Exploring the Wine Dataset

- **A.** Write Python code to load the Wine dataset using sklearn.datasets.load wine.
- **B.** Display the first 5 rows of the dataset along with their corresponding labels.

Question 2: Splitting the Dataset

Write code to split the Wine dataset into training and testing sets using an 80:20 ratio.

Question 3: Implementing Naive Bayes

- **A.** Train a Naive Bayes classifier on the Wine dataset using the GaussianNB class from sklearn.
- **B.** Evaluate the accuracy of the classifier on the test set.

Question 4: Decision Tree Implementation

- **A.** Train a Decision Tree classifier on the Wine dataset using the DecisionTreeClassifier class from sklearn.
- **B.** Visualize the Decision Tree using plot_tree.
- C. Evaluate the accuracy of the Decision Tree on the test set.

Question 6: Feature Importance

- **A.** Identify the most important features for classification using the Decision Tree model.
- **B.** Plot a bar chart of feature importance scores.

Question 7: Classification Report

Write code to generate a classification report for both Naive Bayes and Decision Tree models using classification_report from sklearn.metrics.

Question 8: Confusion Matrix Analysis

- **A.** Write code to compute the confusion matrix for both Naive Bayes and Decision Tree classifiers using the test set.
- **B.** Visualize the confusion matrix using a heatmap from the seaborn library.
- **C.** Explain the meaning of True Positives, False Positives, True Negatives, and False Negatives in the context of the confusion matrix.

Question 9: Comparison of Algorithms

Write a function to compare the precision, recall, and F1 scores of Naive Bayes and Decision Tree classifiers on the Wine dataset.

Question 10: Alternative Dataset: Breast Cancer

- **A.** Load the Breast Cancer dataset from sklearn.datasets.
- B. Train both Naive Bayes and Decision Tree classifiers on this dataset.
- C. Evaluate and compare their performances in terms of accuracy, precision, and recall.

Question 11: Naive Bayes Probabilities

Given a dataset with the following class distributions:

Feature Class A Class B

$$X1 = 1 \quad 0.6 \qquad 0.4$$

$$X2 = 2 \quad 0.7 \qquad 0.3$$

A. Calculate the posterior probability of Class A and Class B for a sample with X1 = 1 and X2 = 2 using Python. Assume equal priors.

Question 12: Entropy and Information Gain

- **A.** Write Python code to calculate the entropy of a dataset with two classes: 30 instances of Class A and 20 instances of Class B.
- **B.** Write code to compute the information gain for splitting the dataset on a feature that separates it into subsets: 20 Class A, 5 Class B (subset 1) and 10 Class A, 15 Class B (subset 2).

Question 13: Gini Impurity

A. Write Python code to calculate the Gini Impurity for a dataset with the following distribution: 50% Class A, 30% Class B, and 20% Class C.

Question 14: Decision Tree on Digits Dataset

- **A.** Load the Digits dataset from sklearn.datasets.
- **B.** Train a Decision Tree classifier on this dataset and report its accuracy.
- C. Visualize the Decision Tree using plot_tree.

Question 15: Comparing Classifiers on Custom Dataset

- A. Load a custom dataset of your choice (CSV file with labeled data).
- **B.** Train both Naive Bayes and Decision Tree classifiers on this dataset.
- C. Compare their performance in terms of accuracy, precision, and recall.