ОЕМА 4

 $m=2\,mg$ και ηλεκτρικό φορτίο $q=2\cdot 10^{-8}\,$ C, και το οποίο στη συνέχεια το αφήνουμε ελεύθερο, όπως φαίνεται στο σχήμα. Δίνονται ότι $({\rm AB})=({\rm B}\Gamma)=1\,m$ και η ηλεκτρική σταθερά $k_c=9\cdot 10^9 \frac{N\cdot m^2}{C^2}$. Θεωρούμε μηδενική την αντίσταση του αέρα και δεν λαμβάνεται υπόψη η δύναμη της βαρύτητας.

Να υπολογίσετε:

4.1. Την ηλεκτρική δυναμική ενέργεια του συστήματος, που περιλαμβάνει το σημειακό ηλεκτρικό φορτίο Q και το σημειακό φορτισμένο αντικείμενο Σ , όταν το Σ βρίσκεται ακίνητο στο σημείο Σ .

Μονάδες 5

4.2. Την αύξηση ή την ελάττωση της ηλεκτρικής δυναμικής ενέργειας του πιο πάνω συστήματος (Σ,Q) , όταν το αντικείμενο Σ μετακινηθεί από το σημείο Β, στο σημείο Γ.

Μονάδες 6

4.3. Την ταχύτητα με την οποία φτάνει το αντικείμενο Σ στο σημείο Γ. Θεωρούμε ότι η μοναδική δύναμη που ασκείται στο Σ είναι η ηλεκτρική δύναμη Coulomb.

Μονάδες 7

4.4. Την ταχύτητα του φορτισμένου αντικειμένου Σ , μόλις αυτό φτάσει σε σημείο εκτός του ηλεκτρικού πεδίου του σημειακού φορτίου Q. Θεωρούμε ότι η μοναδική δύναμη που ασκείται στο Σ είναι η δύναμη Coulomb.

Μονάδες 7