

Datenbanksysteme

SQL DAL

Jan Haase

2024

Abschnitt 10

Wiederholung: Kategorien von SQL-Befehlen

DQL (Data Query Language)

Abfrage und Zusammenstellung von Daten

- SELECT
- DML (Data Manipulation Language)

Umgang mit Tabelleninhalten

- INSERT
- UPDATE
- DELETE

Erstellen und Ändern von Datenbanken und Tabellen

- CREATE
- ALTER
- DROP
- DAL (Data Administration Language)
 - TCL (Transaction Control Language)
 - DCL (Data Control Language)

Externe Sicht

Konzeptionelle Ebene

Interne Ebene

Themenübersicht

- Grundbegriffe und Datenbankentwurf
- Entity-Relationship-Modelle
- Relationales Datenbankmodell
- Normalisierung
- Arbeiten mit relationalen Datenbanken (SQL)
 - DQL
 - DML
 - DDL
- DAL (Data Administration Language)

Themenübersicht

- Grundbegriffe und Datenbankentwurf
- Entity-Relationship-Modelle
- Relationales Datenbankmodell
- Normalisierung
- Arbeiten mit relationalen Datenbanken (SQL)
 - DQL
 - DML
 - DDL
 - DAL (Data Administration Language)
 - TCL (Transaction Control Language)

Transaktionen – Motivation und Definition

Motivation

- In großen Datenbanksystemen kommt es zu (fast) gleichzeitigen Zugriffen verschiedener Nutzer auf dieselben Datenbanktabellen.
- Das kann zu Problemen mit der Datenkonsistenz führen.
- Probleme entstehen auch bei Programmabstürzen oder Stromausfällen.
- Das DBMS sollte dafür sorgen, dass kritische Zustände vermieden werden und kein Nutzer auf andere Nutzer Rücksicht nehmen muss.
- Dazu dienen u. a. Transaktionen.

Definition: Transaktion

- Eine Transaktion ist eine feste Folge von Datenbankoperationen, die eine logische Einheit bilden.
- Diese sollen komplett ausgeführt werden, ohne dass nebenläufige Operationen von anderen Nutzern stören.
- Transaktionen beziehen sich auf die Veränderung von Tabelleninhalten, nicht auf das Erzeugen oder Löschen von Tabellen.

Transaktionen – ACID-Merkmale

Mit dem Begriff der Transaktion sind vier Merkmale verbunden (ACID-Eigenschaften):

- Atomicity (Atomarität, Unteilbarkeit)
 Eine Aktualisierung wird entweder komplett oder gar nicht ausgeführt.
- Consistency (Konsistenz)
 Jede Aktualisierung führt von einem konsistenten (d. h. logisch fehlerfreien Datenbankzustand) in einen konsistenten Zustand über.
- Isolation

Jede Aktualisierung wird so ausgeführt, als würde sie die Datenbank alleine nutzen.

Durability (Dauerhaftigkeit)
 Der von einer abgeschlossen Aktualisierungsoperation bewirkte
 Datenbankzustand ist dauerhaft.

DIRTY READ

- Transaktion T1 transferiert 300 € von Konto A nach Konto B, wobei zunächst Konto A belastet wird und danach die Gutschrift auf Konto B erfolgt. T1 wird aber vorzeitig, vor dem Schreiben auf Konto B abgebrochen.
- Transaktion T2 schreibt gleichzeitig dem Konto A 3% Zinseinkünfte gut.

Schritt	T1	T2
1.	read (A,a ₁)	
2.	$a_1 = a_1 - 300$	
3.	write (A,a ₁)	
4.		read (A,a ₂)
5.		$a_2 = a_2 * 1.03$
6.		write (A,a ₂)
7.	read (B,b ₁)	
8.		
9.	abort	

LOST UPDATE

- Transaktion T1 transferiert 300 € von Konto A nach Konto B, wobei zunächst Konto A belastet wird und danach die Gutschrift auf Konto B erfolgt.
- Transaktion T2 schreibt gleichzeitig dem Konto A 3% Zinseinkünfte gut.

Schritt	T1	T2
1.	read (A,a ₁)	
2.	$a_1 = a_1 - 300$	
3.		read (A,a ₂)
4.		$a_2 = a_2 * 1.03$
5.		write (A,a ₂)
6.	write (A,a ₁)	
7.	read (B,b ₁)	
8.	$b_1 = b_1 + 300$	
9.	write (B,b ₁)	

PHANTOMPROBLEM

- Transaktion T2 berechnet zweimal die Summe der Kontostände aller Konten.
- Zwischen der ersten und zweiten Abfrage schreibt Transaktion T1 einen neuen Datensatz in die Tabelle Konten.
- In der zweiten Abfrage von T2 tauchen nun Ergebnisse auf, die in der ersten nicht sichtbar waren.

Schritt	T1	T2
1.		SELECT SUM(KontoStand) FROM Konten
2.	INSERT INTO Konten VALUES (C,1000,)	
3.		SELECT SUM(KontoStand) FROM Konten

Übersicht: Befehle zur Transaktionssteuerung

 Transaktionsmanager (Komponente des DBMS) kann mit SQL-Anweisungen gesteuert werden:

BEGIN TRANSACTION

Start einer Transaktion.

Achtung, bei ORACLE beginnt der Transaktionsbeginn implizit!

COMMIT

Die vorher eingegebenen Befehle werden endgültig in die Datenbank übernommen.

ROLLBACK

Die Transaktion wird explizit (per Programm) oder implizit (Fehlersituation bei Commit) abgebrochen. Änderungen, die seit dem letzten Ende einer Transaktion stattgefunden haben, werden verworfen.

SAVEPOINT

Ein Sicherungspunkt wird gesetzt. Mit dem nächsten ROLLBACK werden nur die SQL-Befehle verworfen, die nach dem Sicherungspunkt ausgeführt wurden.

Transaktionen dürfen nicht verschachtelt werden.

Es lassen sich aber mehrere Sicherungspunkte in ORACLE erstellen.

Transaktionen – Beispiel (1/2)

In der Tabelle Konten werden Geldbeträge gespeichert:

- Die Summe der beiden Konten muss immer 2000 betragen.
 - Erfolgreiche Überweisung:

```
UPDATE Konten SET Kontostand=Kontostand-100
WHERE Name='Meyer';

UPDATE Konten SET Kontostand=Kontostand+100
WHERE Name='Schulze';

COMMIT;
```

Transaktionen – Beispiel (2/2)

Abgebrochene Überweisung:

```
UPDATE Konten SET Kontostand=Kontostand-100
WHERE Name='Meyer';

UPDATE Konten SET Kontostand=Kontostand+100
WHERE Name='Schulze';
ROLLBACK;
```

• Abbruch der Überweisung nach SAVEPOINT:

```
UPDATE Konten SET Kontostand=Kontostand-100
WHERE Name='Meyer';
SAVEPOINT S1;
UPDATE Konten SET Kontostand=Kontostand+100
WHERE Name='Schulze';
ROLLBACK TO SAVEPOINT S1;
```


Übungsaufgabe Transaktionen

Ein Nutzer A führt auf einer Datenbank folgende SQL-Anweisungen aus:

```
INSERT INTO T1 (Name, Alt) VALUES ('Heinz', 42);
UPDATE T1 SET Alt = Alt+1;
COMMIT;
```

 Ein zweiter Nutzer B führt auf der gleichen Datenbank folgende SQL-Befehle aus:

```
INSERT INTO T1 (Name, Alt) VALUES ('Verena', 33);
UPDATE T1 SET Alt = Alt+1;
COMMIT;
```

Gehen Sie davon aus, dass die Tabelle T1 mit den Spalten Name und Alt erfolgreich angelegt wurde und leer ist, bevor A und B tätig werden.

- Aufgaben:
- a) Welche Endzustände k\u00f6nnen in der Tabelle T1 erreicht werden, wenn die Datenbank keine Transaktionssteuerung hat? Dabei seien einzelne INSERT und UPDATE nicht unterbrechbar.
- b) Welche Endzustände können in der Tabelle T1 erreicht werden, wenn die Datenbank eine vollständige Transaktionssteuerung hat?

Zusammenfassung

- TCL (Transaction Control Language)
 - Motivation / Definition
 - A tomicity
 - C onsistency
 - I solation
 - D urability
 - Anomalien
 - Lost Update
 - Dirty Read
 - Phantomproblem
 - Transaktionsmanager
 - BEGIN TRANSACTION
 - COMMIT
 - ROLLBACK
 - SAVEPOINT