

X

گیت ها(دریچه ها) $\mathbf{A} = \mathbf{x} \cdot \mathbf{y}$

Non d	\mathbf{x}	X	${f y}$	A=(x.y)
Nand)— A	0	0	1
	y	0	1	1
		1	0	1
		1	1	0

گیت ها(دریچه ها)

X	\mathbf{y}	$\mathbf{A} = \mathbf{x} + \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	1

	X	\mathbf{y}	$\mathbf{A} = (\mathbf{x} + \mathbf{y})^*$
_	0	0	1
_	0	1	0
	1	0	0
•	1	1	0

گیت ها

 $\begin{array}{ccc} Xor & \mathbf{x} & \longrightarrow & \longrightarrow & & & & & & & \\ & \mathbf{y} & \longrightarrow & & & & & & & & & & & & \\ \end{array}$

X	\mathbf{y}	$\mathbf{x} \oplus \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	0

X	y	xOy
0	0	1
0	1	0
1	0	0
1	1	1

گیت ها

تقویت کننده Buffer

NOTمتمّم

X	x'
0	1
1	0

روش های پیاده سازی توابع منطقی در سطح گیت(implementaion)

"OR-AND" و "AND - OR" نمایش های

نمایش به صورت AND - OR کافی است تابع را به صورت SOP نمایش دهیم. در این نمایش سطح اول را گیت های OR تشکیل می دهند.

نمایش به صورت OR - AND کافی است تابع را به صورت POS نمایش دهیم. در این نمایش سطح اول را گیت های OR و سطح دوم را گیت های OR تشکیل می دهند.

نمایش های AND – OR و OR

مثال: یک تابع منطقی با سه ورودی و دو خروجی در نظر بگیرید. جدول درستی آن در زیر آمده است.

این مدار را به صورت "AND - OR" و "OR - AND" پیاده سازی کنید.

X	y	Z	F1	F2
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	0

$$F1 = x\bar{z} + \bar{x}.yz$$
 (SOP)

$$\overline{F1} = xz + \overline{x}.\overline{y} + \overline{x}.\overline{z}$$

$$F1 = (\overline{x} + \overline{z}).(x + y).(x + z)$$
(POS)

$$F2 = x\bar{y} + \bar{x}.\bar{z}$$
 (SOP)

$$\overline{F2} = \overline{x}.z + xy$$

$$F2 = (x + \overline{z}).(\overline{x} + \overline{y}) \text{ (POS)}$$

نمایش های AND – OR و OR

- همون گیتهای پایه ای مثل َ AND و OR و NOT اگر بخواهیم در ۳ طبقه پیاده سازی کنیم
 - فقط با گیتهای NAND
 - فقط با گیتهای NOR
 - با استفاده از گیت های open collector

این نوع پیاده سازی را wired -And هم میگویم چون خروجی ۲ تا گیت را به هم میبندیم در نتیجه گیت And را داریم

روش های پیاده سازی 🗓

• با استفاده از گیتهای NOR از نوع NOR از نوع

این نوع پیاده سازی را wired -Or هم میگویم چون خروجی ۲ تا گیت را به هم میبندیم

در نتیجه کیت Or را داریم

- روش (AOI) And-Or- invert
- روش(OAI) Or-And- invert

NAND گيت

پیاده سازی مدارات منطقی با گیت NAND

ابتدا تابع را با استفاده از گیت های AND و OR پیاده سازی می کنیم.

همه ی گیت های AND (با سمبل AND – Invert) و OR (با سمبل NAND) به گیت NAND تبدیل می شوند.

همه ی حباب های مدار چک می شوند. هرجایی که در مسیر جبران نشده اند، یک وارونگر اضافه می شود یا لیترال ورودی متمم می گردد.

مثال: تابع NAND پیاده سازی کنید. $F=A.(B+CD)+Bar{C}$ پیاده سازی کنید.

NOR گیت

پیاده سازی مدارات منطقی با گیت NOR

ابتدا تابع را با استفاده از گیت های AND و OR پیاده سازی می کنیم.

همه ی گیت های AND (با سمبل Invert - AND) و OR (با سمبل AND) به گیت NOR تبدیل می شوند.

همه ی حباب های مدار چک می شوند. هرجایی که در مسیر جبران نشده اند، یک وارونگر اضافه می شود یا لیترال ورودی متمم می گردد.

مثال: تابع \overline{VOR} پیاده سازی کنید. $F=A.(B+CD)+B\overline{C}$ پیاده سازی کنید.

منطق Wired-Logic) Wired

در برخی گیت های NAND و NOR (نه همگی آنها) می توان خروجی دو گیت را بهم متصل کرد تا تابع خاصی را پیاده سازی کرد. این نوع اتصال را Wired گویند.

۲ نوع گیت Wired وجود دارد: ٫

Wired – AND ← Wired – OR ←

گیت های Wired-AND و Wired-OR گیت فیزیکی نیستند، بلکه تنها یک سمبل هستند که معرف نحوه ی عملکرد اتصال Wired مربوطه می باشند.

Wired – AND

ان کار ام است ایان ران کار ام است ایان

منطق Wired-Logic) Wired

اتصال خروجی دو گیت NAND کلکتور باز ساخته شده با تکنولوژی TTL، به صورت یک گیت AND عمل می کند. (یعنی در شکل زیر اگر t=0 out t=0 باشد، t=0 و در غیر این صورت t=0 می باشد. بنابراین این اتصال را با سمبل زیر که معرف گیت Wired-AND می باشد، نشان می دهند.

$$out1 = \overline{(AB)}out2 = \overline{(CD)}$$

$$F = out1.out2 = \overline{(AB)}.\overline{(CD)} = \overline{(AB + CD)}$$

بنشكاء عم است ابان

منطق Wired-Logic) Wired

اتصال خروجی دو گیت NOR ساخته شده با تکنولوژی ECL، به صورت یک گیت OR عمل می کند. (یعنی در شکل زیر اگر F=1 می باشد، F=1 و در غیر این صورت F=1 می باشد. بنابراین این اتصال را با سمبل زیر که معرف گیت F=0 می باشد، نشان می دهند.

$$out1 = \overline{(A+B)}out2 = \overline{(C+D)}$$

$$F = out1 + out2 = \overline{(A+B)} + \overline{(C+D)} = \overline{[(A+B).(C+D)]}$$

منطق (Wired-Logic) Wired

اگرچه گیت های Wired – AND و Wired – OR گیت های فیزیکی نیستند ولی دو پیاده سازی زیر پیاده سازی های دو سطحی در نظر گرفته می شوند.

مثال : تابع زیر را در هشت فرم مختلف در سطح گیت نمایش دهید. $F\left(w,x,y,z\right)=\sum(0,2,4,5,7,13,15)$

$$F = \overline{w}\overline{x}\overline{z} + \overline{w}\overline{y}\overline{z} + xz$$
(SOP)

$$\overline{F} = \overline{x}z + w\overline{x} + xy\overline{z} + w\overline{y}\overline{z}$$

$$F = (x+\overline{z}).(\overline{w}+x).(\overline{x} + \overline{y}+z).(\overline{w}+y+z)$$
(POS)

$$F = \overline{w}\overline{x}\overline{z} + \overline{w}\overline{y}\overline{z} + xz$$

$$F = (x+\overline{z}).(\overline{w}+x).(\overline{x} + \overline{y}+z).(\overline{w}+y+z)$$

$$\mathbf{F} = (\overline{w + x + z}) + (\overline{w + y + z}) + \overline{(\overline{x} + \overline{z})}$$

