

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION

国际创新药学院

Class Pharm, BioPharm

Course Fundamentals of Medicinal & Pharmaceutical Chemistry

Code FUNCHEM.1

Title Chemistry in Medicine and the Health Sciences:

An introductory lecture

Lecturer Prof. Xinchen Teng

Date 2024-10-09

Why Study Chemistry

The principles of chemistry are fundamentally embedded in health and biological sciences.

To the untrained eye it may be not obvious that chemistry is at the heart of invention and understanding in medical and biological systems.

Chemistry can provide the answers to the *how and why* questions constantly encountered in medical and biological disciplines.

Our goal is to show you how to move confidently between the chemical, biological and medical scientific worlds.

Note:

this lecture is an introduction; all topics will be covered in this years courses

Molecule of Life: From Letters to Structure

Molecule of Life: From Letters to Structure

It is at the level of chemical structure that fundamental understanding can be found

Discovery and Understanding of Cisplatin

The invention of the anticancer drug cisplatin is a story of chemistry hidden in the science of biology.

Cisplatin has broad spectrum anticancer activity and is particularly effective against testicular and ovarian tumours, head, neck and bladder cancers.

Cisplatin is often used in combination with other drugs such as vinblastin or bleomycin.

With the use of cisplatin in combination chemotherapy testicular cancer has gone from being 80% incurable to 95% curable.

Dr Barnett Rosenberg and Cisplatin

Experimental Observations Sparks Curiosity

Similarity between mitotic spindles during cell division and force lines of electric fields?

Cell division

Electric field

Fluorescence image of metaphase

Rosenberg's Experiment

E. coli bacteria cultured at 37°C in aerated medium containing -

NH₄Cl, NaCl, MgCl₂, Na₂SO₄, glucose, Na₂HPO₄/NaH₂PO₄ (pH 7 buffer)

Pt electrodes used in order to subject bacteria to electric fields.

Rosenberg's Results

- Inhibition of normal cell division.
- The bacteria grew into rod like long filaments.
- Cell division inhibited but no effect on growth of cells.

Rosenberg's Control Experiment

Control experiments showed that electrolysis of the media alone (without *E. coli*) and then growing *E. coli* in the media (without further electrolysis) afterwards <u>also</u> gave rise to the inhibition of normal cell division.

Rosenberg's Conclusions

Inhibition of cell division was shown to have nothing to do with electrical fields.

Explained by the unexpected formation of Pt compounds due to a reaction of the electrode with components of the cell media.

Further investigation of the Pt compounds being formed lead to the specific discovery of cisplatin.

These results lead to its testing as an anticancer agent

Cisplatin: How Does it Work

Cisplatin reacts with a nitrogen atom on two guanine base pairs forming two nitrogen to Pt bonds which inhibits cell replication.

<u>Cis</u>platin versus <u>Trans</u>platin

Note: cis means on the same side; trans means on opposite sides

Cisplatin

~95% cure rate for testicular cancer

Transplatin

trans form is inactive!

but why when it looks so similar to cisplatin?

Answers are in the Chemistry and Cell Biology

cisplatin forms intra-strand crosslinks: poorly repaired

trans-platin forms inter-strand crosslinks: repaired more efficiently

more chemically reactive than cisplatin leading to its breakdown in vivo too quickly

From Understanding Comes Improvements

carboplatin

Lower chemical reactivity than cisplatin
gives rise to improved therapeutic efficacy, less toxicity with less severe side effects
and

the story continues today with much research still on-going.

Amino Acids: Building Blocks of Proteins

Proteins are large biomolecules consisting of long chains of amino acid residues

20 naturally occurring amino acids give rise to all proteins, enzymes, hormones, antibodies, all encoded for by the DNA

Polar, uncharged side groups

Aromatic side groups

Positively charged side groups

Negatively charged side groups

Covalent Joining the Amino Acid Building Blocks

Counting How Many Amide Bonds?

4 myoglobins in haemoglobin

Sickle cell anemia

Caused by the mutation of a single nucleotide (Adenine to Thymine) of the β-globin gene, which results in one glutamate amino acid being substituted by a valine

~280 million haemoglobins in a red blood cell

~ 2-3 x10¹³ (20 – 30 trillion) in a human

Differing Views of Protein Bio-synthesis

Cellular view

Semi-structural view

Pictorial view

Amide bond forming view

amino acid

Chemical Mechanism of Amide Bond Formation in Protein Biosynthesis

Enzyme Inhibition for Therapeutic Effect

From Schematics to Chemical Reaction Mechanisms

To inhibit an enzyme from functioning, the chemist can design adrug which binds irreversibly to the active site and block itpermanently.

These types of drugs typically react with an amino acid at the activesite of the enzyme to form a covalent bond.

Amino acids such a serine which has a reactive OH group is commonly present in enzyme active sites.

What is the Chemistry Behind Penicillin?

Alexander Fleming

The β -lactam ring is central to its mode of action

Bacterial cell wall is made up of long chains of sugars joined together by short peptide links which make the wall rigid.

The bacterial enzyme transpeptidase catalyses the peptide cross linking step of cell wall construction making it rigid and strong.

Inhibition of transpeptidase enzyme prevents the formation of the bacterial cell wall and leads to bacterial cell death (antibiotic).

Penicillin Reacts with Serine Amino Acid Residue in Transpeptidase Enzyme

What Chemistry Does Aspirin Do To Relieve Pain

Prostaglandins are hormones which in very low concentrations in the body control production of pain, fever and inflammatory responses.

Acetylsalicylic Acid

Prostaglandins are made from arachidonic acid with the enzyme PGH₂ synthase being the catalyst for the reaction

The acetyl (CH₃CO) group of aspirin is transferred to an alcohol group of the enzyme in a nucleophilic addition reaction, leaving the enzyme inactive

Reaction of OH from Serine Amino Acid Residue in PGH₂ Synthase with Ester of Aspirin

Covid-19 Related Chemistry

Good Luck with Your Chemistry Studies!

Come to your lectures / tutorials / labs and all will be explained!

