<u>Tutorial Sheet-5</u> [Laser Technology and Applications, 16B1NPH533, Odd Semester 2020]

- 1. [CO 4] Determine the axial <u>mode number</u> at the extreme ends of the visible region (400-700nm) for a resonator cavity of length 0.35 m and refractive index 1.3.
- 2. [CO 4] Determine <u>wavelength</u> in the following cases of Laser resonators (assuming mirrors are attached at the ends of active medium).
 - (a) Ruby Laser with crystal refractive index of 1.6, number of modes is 10⁶ and length of ruby rod is 21.7 cm.
 - (b) He-Ne Laser with medium refractive index 1.055, number of modes 4x10⁶ and length of cavity is 1.2 m.
- 3. [CO 4] (a) Starting from dispersion relation $\omega = v$. k, Show that the oscillation frequency (v_{mnq}) of various modes in three dimensional closed cavity (with sides

a,b,d) is given by
$$v_{mnq} = \frac{c}{2n_0} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{q^2}{d^2} \right)^{\frac{1}{2}}$$
, where m,n,q are modes, n₀ is

refractive index, c is speed of light in vacuum, ω is angular frequency, v is speed of light in medium and k is propagation constant.

- (b) Further obtain ' ν_q ' and ' $\Delta\nu_{q'}$ for m,n<<q or a,b>> d for open cavity.
- (c) Also show that the separation between two adjacent transverse modes ' $\Delta v_{\rm m}$ ' is given by $\Delta v_{\rm m} = \Delta v_{\rm q} \frac{\lambda d}{2a^2} \left(m + \frac{1}{2} \right)$ and much smaller than $\Delta v_{\rm q}$.
- (d) If d=50 cm, a=2 cm, n0=1 and λ =500nm. Determine $\nu_{q=5}$, $\Delta\nu_q$ and $\Delta\nu_{m=1}$.