Hanoi University of Science and Technology School of Engineering Physics

LAB REPORT

For Electrics and Thermodynamics PH1026

Experiment 1

Student name: Nguyen Viet Anh

Student ID : 20150143

Group number: 1

Name: Nguyen Viet Anh

Date: 1st April 2017

ID : 20150143

Experiment 1

Measurement of Resistance, Capacitance, Inductance and Resonant Frequencies of RLC using Oscilloscope

1. Measurement of resistance, capacitance, and inductance

a. Measurement of unknown resistance

f (Hz)	$R_{0}\left(\Omega\right)$	$R_{x}(\Omega)$	$\Delta R_{x}(\Omega)$
500	332.0	332.0	0.3
1000	332.0	332.0	0.3
1500	331.0	331.0	0.7
		$\overline{R_X} \approx 331.7$	$\overline{\Delta R_X} \approx 0.4$

$$s.d._{Rx} = \sqrt{\frac{\sum_{i=1}^{3} (R_{X_i} - \overline{R_{X_i}})^2}{3}} \approx 0.5(\Omega)$$

$$S.D._{Rx} = \Delta R_X = \frac{s.d}{\sqrt{n}} \approx 0.3(\Omega)$$

Result:
$$R_X = \overline{R_X} \pm \Delta R_X = 331.7 \pm 0.3(\Omega)$$

b. Measurement of unknown capacitance

f (Hz)	$\mathbf{Z}_{\mathrm{c}} = \mathbf{R}_{0} \left(\mathbf{\Omega} \right)$	$\Delta Z_{c}\left(\Omega ight)$	$C_x = \frac{1}{2\pi f R_0} \; (\mu F)$
1000	154.0	154.0	1.033
2000	78.0	78.0	1.020
3000	52.0	52.0	1.020
			$\overline{C_x} \approx 1.024$

$$s.d._{Cx} = \sqrt{\frac{\sum_{1}^{3}(\overline{C_{x}} - C_{i})^{2}}{3}} \approx 0.006(\mu F)$$

$$S.D._{Cx} = \frac{s.d.}{\sqrt{n}} = \frac{0.006}{\sqrt{3}} \approx 0.003(\mu F)$$

Result: $C_X = \overline{C_X} \pm \Delta C_X = 1.024 \pm 0.003 \, (\mu F)$

	3.6	•	-	• • •	
C	Measurement	Λt	unknown	induct	ance
•	Wicasul Cilicii	U	umanown	muuci	ance

f (Hz)	$R_{0}\left(\Omega ight)$	$L_{x} = \frac{R_{0}}{2\pi f} (mH)$
10000	57.5	0.915
20000	114.0	0.907
30000	105.0	0.875
		$\overline{L_X} \approx 0.899$

$$s.d._{Lx} = \sqrt{\frac{\sum_{1}^{3}(\overline{L_{x}} - L_{i})^{2}}{3}} \approx 0.017(mH)$$

$$S.D._{Lx} = \frac{s.d.}{\sqrt{n}} \approx 0.009(mH)$$

Result: $L_X \approx \overline{L_X} \pm \Delta L_X = 0.899 \pm 0.009$ (mH)

2. Determination of resonant frequency of RLC circuit

a. Series RLC circuit

Trial	f _s (kHz) (series circuit)	$\Delta f(kHz)$
1	5.283	0.056
2	5.231	0.094
3	5.167	0.060
	$\bar{f} \approx 5.311(kHz)$	

$$s.d. = \sqrt{\frac{\sum_{1}^{3} (\bar{f} - f_i)^2}{3}} \approx 0.047 (kHz)$$

$$S.D. = \frac{s.d.}{\sqrt{n}} = \frac{0.047}{\sqrt{3}} \approx 0.027(kHz)$$

Result: $f_s = \bar{f} \pm \Delta f = 5.227 \pm 0.027 (kHz)$

b. Parallel RLC circuit

Trial	f _p (kHz) (parallel circuit)	$\Delta f(kHz)$
1	5.385	0.074
2	5.216	0.095
3	5.332	0.021
	$\bar{f} \approx 5.311(Hz)$	

$$s.d. = \sqrt{\frac{\sum_{1}^{3} (\bar{f} - f_i)^2}{3}} \approx 0.071(kHz)$$

$$S.D. = \frac{s.d.}{\sqrt{n}} = \frac{0.071}{\sqrt{3}} \approx 0.041(kHz)$$

Result:
$$f_p = \bar{f} \pm \Delta f = 5.311 \pm 0.041 (kHz)$$

*** Comparison

Theoretical frequency:

$$\overline{f_0} = \frac{1}{2\pi\sqrt{\overline{L_x}\times\overline{C_x}}} = \frac{1}{2\times3.14\times\sqrt{0.899\times10^{-3}\times1.024\times10^{-6}}} \approx 5.245 \ (kHz)$$

From those results we have following conclusions:

- The measured frequency of parallel RLC circuit is a little bigger than those of series circuit.
- The resonant frequency is quite different from two frequencies obtain of series and parallel RLC because of low-quality equipment.