

 REC'D
 2 9 SEP 1998

 WiPO
 PCT

Patent Office Canberra

I, KIM MARSHALL, MANAGER EXAMINATION SUPPORT AND SALES, hereby certify that the annexed is a true copy of the Provisional specification in connection with Application No. PO 9108 for a patent by COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION and THE AUSTRALIAN NATIONAL UNIVERSITY filed on 12 September 1997.

I further certify that the annexed specification is not, as yet, open to public inspection.

PRIGRITY DOCUMENT

WITNESS my hand this Seventeenth day of September 1998

KIM MARSHALL

MANAGER EXAMINATION SUPPORT AND

SALES

AUSTRALIA Patents Act 1990

PROVISIONAL SPECIFICATION

Applicant(s): COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH

ORGANISATION

and

THE AUSTRALIAN NATIONAL UNIVERSITY

Invention Title: REGULATION OF GENE EXPRESSION IN PLANTS

The invention is described in the following statement:

REGULATION OF GENE EXPRESSION IN PLANTS

This invention relates to methods of modulating the expression of desired genes in plants, and to DNA sequences and genetic constructs for use in these methods. In one preferred embodiment, the invention relates to methods and constructs for targeting of expression specifically to the endosperm of the seeds of cereal plants such as wheat, and for modulating the time of expression in the target tissue. This is achieved by the use of promoter sequences from enzymes of the starch biosynthetic pathway. In preferred embodiments of the invention, the sequences and/or promoters are those of starch branching enzyme I, starch branching enzyme II, soluble starch synthase, and starch debranching enzyme, all derived from Triticum tauschii, the D genome donor of hexaploid bread wheat.

BACKGROUND OF THE INVENTION

10

15

35

grains and of flours, accounting for about 65-67% of the weight of the grain at maturity. It is produced in the amyloplast of the grain endosperm by the concerted action of a number of enzymes, including ADP-Glucose pyrophosphorylase (EC 2.7.7.27), starch synthases

25 (EC 2.4.1.21), branching enzymes (EC 2.4.1.18) and debranching enzymes (EC 3.2.1.41 and EC 3.2.1.68) (Ball et al, 1996; Martin and Smith, 1995; Morell et al, 1995). Some of the proteins involved in the synthesis of starch can be recovered from the starch granule (Denyer et al, 1995; Rahman et al, 1995).

Most wheat cultivars normally produce starch containing 25% amylose and 75% amylopectin. Amylose is composed of large linear chains of α (1-4) linked α -D-glucopyranosyl residues, whereas amylopectin is a branching form of α -glycan linked by α (1-6) linkages. The ratio of amylose and amylopectin, the branch chain length and the

number of branch chains of amylopectin are the major factors which determine the properties of wheat starch.

5

Wheat contains three sets of chromosomes (A, B and D) in its very large genome of about 10¹⁰ bp. The donor of the D genome to wheat is *Triticum tauschii*, and by using a suitable accession of this species the genes from the D genome can be studied separately (Lagudah et al, 1991).

used in industry, food science and medical science. High amylose wheat can be used for the plastic substitutes and in paper manufacture to protect the environment; in health foods to reduce bowel cancer and heart disease; and in sport food to improve the athletes' performance. High amylopectin wheat may be suitable for Japanese noodles and is used as a thickener in the food industry.

There is comparatively little variation in starch structure found in wheat varieties, because the hexaploid nature of wheat prevents mutations from being readily identified. Dramatic alterations in starch structure are expected to require the combination of homozygous recessive alleles from each of the 3 wheat genomes, A, B and D. This requirement renders the probability of finding such mutants in natural or mutagenised populations very low. Variation in wheat starch is desirable in order to enable better tailoring of wheat starches for processing and end-user requirements.

Key commercial targets for the manipulation of starch biosynthesis are:

- 1. "Waxy" wheats in which amylose content is decreased to insignificant levels. This outcome is expected to be obtained by eliminating granule-bound starch synthase activity.
- 2. High amylose wheats, expected to be obtained by suppressing starch branching enzyme-II activity.

- 3. Wheats which continue to synthesise starch at elevated temperatures, expected to be obtained by identifying or introducing a gene encoding a heat stable soluble starch synthase.
- 4. "Sugary types" of wheat which contain increased amylose content and free sugars, expected to be obtained by manipulating an isoamylase-type debranching enzyme.

There are two general strategies for obtaining 10 wheats with altered starch structure:

- (a) using genetic engineering strategies to suppress the activity of a specific gene, or to introduce a novel gene into a wheat line; and
- (b) selecting among existing variation in wheat 15 for missing (or "null") or altered alleles of a gene in each of the genomes of wheat, and combining these by plant breeding.

Branching enzymes are involved in the production of glucose α (1,6) branches. Of the two main constituents of starch, amylose is essentially linear, but amylopectin is highly branched; thus branching enzymes are thought to be directly involved in the synthesis of amylopectin but not amylose. There are two types of branching enzymes in plants , starch branching enzyme I (SBE I) and starch

20

branching enzyme II (SBE II), and both are about 85 kDa in size. At the nucleic acid level there is about 65% sequence identity between types I and II in the central portion of the molecules; the sequence identity between SBE I from different cereals is about 85% overall (Burton et al, 1995; Morell et al, 1995).

In cereals, SBE I genes have so far been reported only for rice (Kawasaki et al, 1991) and wheat (Rahman et al, 1997). A cDNA sequence for wheat SBE I is available on

the Genbank database. As far as we are aware, no promoter

35 sequence for wheat SBE I has been reported. We have characterised an SBE I gene (called wSBE I-D2) from Triticum tauschii (the donor of the D genome to wheat),

that encoded a novel protein sequence in that it was missing approximately 65 amino acids at the C-terminal end, and appeared not to contain some of the conserved amino acid motifs characteristic of this class of enzyme (Svensson, 1994). Although wSBE I-D2 was expressed as mRNA, no corresponding protein has yet been found in our analysis of SBE I isoforms from the endosperm, and thus it is possible that this gene is a transcribed pseudogene.

5

10

15

Genes for SBE II are less well characterised; the only one for cereals which has been fully characterised is that of rice (Kawasaki et al, 1993). A cDNA sequence for SBE II from wheat is available on the Genbank database; although the sequences are very similar to those reported herein there are differences near the N-terminal of the protein, which specifies its intracellular location. No promoter sequences have been reported, as far as we are aware.

Wheat granule-bound starch synthase (GBSS) is responsible for amylose synthesis, while wheat branching 20 enzymes together with soluble starch synthases are considered to be directly involved in amylopectin biosynthesis. A number of isoforms of soluble and granulebound starch synthases have been identified in developing wheat endosperm (Denyer et al, 1995). There are three 25 distinct isoforms of starch synthases, 60 kDa, 75 or 77 kDa and 100-105 kDa, which exist in the starch granules (Denyer et al, 1995; Rahman et al, 1995). The 60 kDa GBSS is the product of the wx gene. The 75 or 77 kDa protein is a wheat soluble starch synthase (SSS) which is present in both the soluble fraction and the starch granule-bound 30 fraction of the endosperm. However, the 100-105 kDa proteins, which are another type of soluble starch synthase, are located only in starch granules (Denyer et al, 1995; Rahman et al, 1995). To our knowledge there has been no report of any complete wheat SSS sequence, either 35 at the protein or the nucleotide level.

Both cDNA and genomic DNA encoding a soluble starch synthase I of rice have been cloned and analysed (Baba et al, 1993; Tanaka et al, 1995). The cDNAs encoding potato soluble starch synthase SSII and SSIII and pea soluble starch synthase SSII have also been reported (Edwards et al, 1995; Marshall et al, 1996; Gernot et al, 1996; Dry et al, 1992). However, corresponding cDNA sequences for wheat have hitherto not been available, and the genes for other enzymes involved in starch biosynthesis have not previously been isolated.

Approach (b) referred to above has been demonstrated for the gene granule bound starch synthase. Null alleles on chromosomes 7A, 7D and 4A were identified by the analysis of GBSS protein bands by electrophoresis, and combined by plant breeding to produce a wheat line containing no GBSS, and no amylose. Subsequently, PCR-based DNA markers have been identified, which also identify null alleles for the GBSS loci on each of the three wheat genomes.

20

10

15

SUMMARY OF THE INVENTION

In this application we report the isolation and identification of novel genes from T. tauschii, the Dgenome donor of wheat, that encode SBE I, SBE II, a 75 kDa 25 SSS, and an isoamylase-type debranching enzyme (DBE). Because of the very close relationship between T. tauschii and wheat, as discussed above, results obtained with T. tauschii can be directly applied to wheat with little if any modification. Such modification as may be required 30 represents routine trial and error experimentation. Sequences from these genes can be used as probes to identify null or altered alleles in wheat, which can then be used in plant breeding programes to provide modifications of starch characteristics. sequences of the invention can be used in genetic engineering strategies or to introduce a desired gene into a host plant, to provide antisense sequences for

suppression of one or more specific genes in a host plant, in order to modify the characteristics of starch produced by the plant.

In its most general aspect, the invention provides a nucleic acid sequence encoding an enzyme of the starch biosynthetic pathway in a cereal plant, said enzyme being selected from the group consisting of starch branching enzyme I, starch branching enzyme II, starch soluble synthase, and debranching enzyme, with the proviso that the enzyme is not soluble starch synthase I of rice, or starch branching enzyme I of rice or maize.

5

10

15

20

Preferably the nucleic acid sequence is a DNA sequence, and may be genomic DNA or cDNA. Preferably the sequence is one which is functional in wheat. More preferably the sequence is derived from *Triticum* species, most preferably *Triticum tauschii*.

Where the sequence encodes soluble starch synthase, preferably the sequence encodes the 75 kD soluble starch synthase of wheat.

Biologically-active untranslated control sequences of genomic DNA are also within the scope of the invention. Thus the invention also provides the promoter of an enzyme as defined above.

In a preferred embodiment of this aspect of the
invention, there is provided a genetic construct comprising
a nucleic acid sequence of the invention, a biologicallyactive fragment thereof, or a fragment thereof encoding a
biologically-active fragment of an enzyme as defined above,
operably linked to one or more nucleic acid sequences
facilitating expression of said enzyme in a plant,
preferably a cereal plant. The construct may be a plasmid
or a vector, preferably one suitable for use in
transformation of plant. Such a suitable vector is a
bacterium of the genus Agrobacterium, preferably

35 Agrobacterium tumefacens. Methods of transforming cereal plants using Agrobacterium tumefaciens are known; see for

example Australian Patent No. 667939 by Japan Tobacco Inc., and Tingay et al (1997).

In a second aspect, the invention provides a genetic construct for targeting of a desired gene to endosperm of a cereal plant, and/or for modulating the time of expression of a desired gene in endosperm of a cereal plant, comprising one or more promoter sequences selected from SBE I promoter, SBE II promoter, SSS promoter, and DBE promoter, operatively linked to a nucleic acid sequence encoding a desired protein, and optionally also operatively linked to one or more additional targeting sequences and/or one or more 3' untranslated sequences.

10

The nucleic acid encoding the desired protein may be in either the sense orientation or in the antisense orientation. Preferably the desired protein is an enzyme 15 of the starch biosynthetic pathway. For example, the antisense sequences of GBSS, starch debranching enzyme, SBE II, low molecular weight glutenin, or grain softness protein I, may be used. Preferred sequences for use in sense orientation include those of bacterial isoamylase, 20 bacterial glycogen synthase, or wheat high molecular weight glutenin Bx17. It is contemplated that any desired protein which is encoded by a gene which is capable of being expressed in the endosperm of a cereal plant is suitable 25 for use in the invention.

In a third aspect, the invention provides a method of modifying the characteristics of starch produced by a plant, comprising the step of:

- (a) introducing a gene encoding a desired 30 enzyme of the starch biosynthetic pathway into a host plant, and/or
 - (b) introducing an anti-sense nucleic acid sequence directed to a gene encoding an enzyme of the starch biosynthetic pathway into a host plant,
- wherein said enzymes are as defined above.

 Where both steps (a) and (b) are used, the enzymes in the two steps are different.

Preferably the plant is a cereal plant, more preferably wheat or barley.

As is well known in the art, anti-sense sequences can be used to suppress expression of the protein to which the anti-sense sequence is complementary. It would be evident to the person skilled in the art that different combinations of sense and anti-sense sequences may be chosen so as to effect a variety of different modifications of the characteristics of the starch produced by the plant.

In a fourth aspect, the invention provides a method of targeting expression of a desired gene to the endosperm of a cereal plant, comprising the step of transforming the plant with a construct according to the invention.

10

According to a fifth aspect, the invention provides a method of modulating the time of expression of a desired gene in endosperm of a cereal plant, comprising the step of transforming the plant with a construct according to the second aspect of the invention.

Where expression at an early stage following anthesis is desired, the construct preferably comprises the SBE II promoter. Where expression at a later stage following anthesis is desired, the construct preferably comprises the SBE I promoter.

In a sixth aspect, the invention provides a method of identifying a null or altered allele encoding an enzyme of the starch biosynthetic pathway, comprising the steps of subjecting DNA from a plant suspected to possess such an allele to a DNA fingerprinting assay, wherein DNA probes used in the assay comprise one or more of the nucleic acid sequences of the invention. The nucleic acid sequence may be a genomic DNA or a cDNA, and may comprise the full-length coding sequence or a fragment thereof.

DNA fingerprinting methods are well known in the art, and any suitable technique may be used.

While the invention is described in detail in relation to wheat, it will be clearly understood that it is

also applicable to other cereal plants of the family Gramineae, such as maize, barley and rice.

Methods for transformation of monocotyledonous plants such as wheat, maize, barley and rice and for

5 regeneration of plants from protoplasts or immature plant embryos are well known in the art. See for example Lazzeri et al, 1991; Jahne et al, 1991 and Wan and Lenaux, 1994 for barley; Wirtzens et al, 1997; Tingay et al, 1997; Canadian Patent Application No. 2092588 by Nehra; Australian Patent

10 Application No. 61781/94 by National Research Council of Canada, and Australian Patent No. 667939 by Japan Tobacco Co.

The sequences of ADP glucose pyrophosphorylase from barley (Australian Patent Application No. 65392/94),

15 starch debranching enzyme and its promoter from rice (Japanese Patent Publication No. Kokai 6261787 and Japanese Patent Publication No. Kokai 5317057), and starch debranching enzyme from spinach and potato (Australian Patent Application No. 44333/96) are all known.

20

30

Detailed Description of the Drawings

The invention will be described in detail by reference only to the following non-limiting examples and to the figures.

Figure 1 shows the hybridisation of genomic clones isolated from *T. tauschii*.

DNA was extracted from the different clones, digested with BamHI and hybridised with the 5' end of the maize SBE I cDNA. Lanes 1, 2, 3 and 4 correspond to DNA from clones λ E1, λ E2, λ E6 and λ E7 respectively. Note that clones λ E1 and λ E2 give identical patterns, the SBE I gene in λ E6 is a truncated form of that in λ E1, and λ E7 gives a clearly different pattern.

Figure 2 shows the hybridisation of DNA from 35 *T. tauschii*.

DNA from T. tauschii was digested with BamHI and the hybridisation pattern compared with DNA from $\lambda E1$ and

 λ E7 digested with the same enzyme. Fragment E1.1 (see Figure 3) from λ E1 was used as the probe; it contains some sequences that are over 80% identical to sequences in E7.8. Approximately 25 μ g of T. tauschii DNA was electrophoresed in lane 1, and 200 pg each of λ E1 and λ E7 in lanes 2 and 3, respectively.

Figure 3 shows the restriction maps of clone λ E1 and λ E7. The fragments obtained with EcoRI and BamHI are indicated. The fragments sequenced from λ E1 are E1.1, E1.2, a part of E1.7 and a part of E1.5.

Figure 4 shows the nucleotide sequence of part of wSBE I-D4, and the deduced amino acid sequence and

N-terminal sequence of SBE I (Morell et al, 1997).

5

10

Figure 5 shows the hybridisation of SBE I genomic 15 clones with the following probes,

- A. wSBE I-D45 (derived from the 5' end of the gene and including sequence from fragments E1.1 and E1.7), and
- B. wSBE I-D43 (derived from the 3' end of the 20 gene and containing sequences from fragment E1.5).

Clones λ E7 and λ E22 do not hybridise to either of the probes, but do hybridise with a probe from E1.1. Clone λ E30 contains a sequence unrelated to SBE I.

Figure 6 shows the intron-exon structure of
25 wSBE I-D4 compared to the corresponding structures of rice
SBE I (Kawasaki et al, 1993) and wSBE I-D2 (Rahman et al,
1997). The intron-exon structure of wSBE I-D4 is deduced
by comparison with the major species of wSBE I-D4 cDNA
present in the endosperm.

The dark rectangles correspond to exons and the light rectangles correspond to introns. The bars above the structures indicate the percentage identity in sequence between the indicated exons and introns of the relevant genes. Note that intron 2 shares no significant sequence identity and is not indicated.

Figure 7 shows the alignment of cDNA clones to obtain the sequence represented by wSBE I-D4 cDNA. BED4

and BED5 were obtained from screening the cDNA library with maize BEI (Baba et al, 1991). BED1, 2 and 3 were obtained by RT-PCR using defined primers.

Figure 8 shows the amino acid sequence of SBE I as deduced from the sequence of wSBE I-D4 cDNA. The N-terminal sequence of SBE I (Morell et al, 1997) is in bold, and residues considered by Svensson (1994) to be invariant in the α -amylase family are underlined.

Figure 9 shows the comparison of deduced amino acid sequence of wSBE I-D4 cDNA with the deduced amino acid sequence of rice SBE I (Nakamura et al, 1992), maize SBE I (Baba et al, 1991), wSBE I-D2 type cDNA (Rahman et al, 1997), pea SBE II (equivalent to maize SBE I, Burton et al, 1995), and potato SBE I (Cangiano et al, 1993). Residues present in at least three of the sequences are identified in the consensus sequence in capitals.

Figure 10 shows the expression of SBE I type sequences during endosperm development. The probe used was wSBE I-D43C, corresponding to the untranslated 3' end of wSBE I-D4 cDNA. There is no hybridisation to RNA extracted from leaves or florets prior to anthesis.

Figure 11 shows the comparison of wSBE I-D4 and rice SBE I genomic sequence (Kawasaki et al, 1993; Accession Number D10838) using the programs Compares and DotPlot (Devereaux et al, 1984). The programs used a window of 21 bases with a stringency of 14 to register a dot.

Figure 12 shows the hybridisation of wheat DNA from chromosome-engineered lines using the following probes:

- A. wSBE I-D45 (from the 5' end of the gene),
- B. wSBE I-D43 (from the 3' end of the gene),

and

20

25

30

C. wSBE I-D4R (repetitive sequence

approximately 600 bp 3' to the end of wSBE I-D4 sequence.

N7AT7B, no 7A chromosome, four copies of 7B chromosome; N7BT7D, no 7B chromosome, four copies of 7D

chromosome; NTDT7A, no 7D chromosome, four copies of 7A chromosome. The chromosomal origin of hybridising bands is indicated.

Figure 13 shows the entire sequence of the wSBE I-D4 gene. The promoter sequences is given in (a) up to the first translated amino acid. The coding sequence of the gene is given in (b), with about 50 bases of the promoter sequence.

Figure 14 shows the sequence of wSBE I-D43C, representing the 3' untranslated region of wSBE I-D4cDNA.

10

15

30

Figure 15 shows the hybridisation of genomic clones F1, F2, F5 and F6 with the entire SBE-9 sequence. The DNA from the clones was purified and digested with either BamHI or EcoRI, separated on agarose, blotted onto nitrocellulose and hybridised with labelled SBE-9 (a SBE II type cDNA). The pattern of hybridising bands is different in the four isolates.

Figure 16a shows the N-terminal sequence of SBE II from wheat as in Morell et al, (1997).

Figure 16b shows the deduced amino acid sequence from part of wSBE II-D1 that encodes the N-terminal sequence as described in Morell et al, (1997).

Figure 16c shows the deduced amino acid sequence from SBE-9 (a SBE II type cDNA).

Figure 17 shows the deduced exon-intron structure for a part of wSBE II-D1. The scale is marked in bases. The dark rectangles are exons.

Figure 18 shows the hybridisation of DNA from chromosome engineered lines of wheat (cultivar Chinese Spring) with a probe from nucleotides 550-850 from SBE-9. The band of approximately 2.2 kb are missing in the line in which missing chromosome 2D is absent.

T2BN2A: four copies of chromosome 2B, no copies of chromosome 2A;

T2AN2B: four copies of chromosome 2A, no copies of chromosome 2B;

T2AN2D: four copies of chromosome 2A, no copies of chromosome 2D.

Figure 19 shows the entire sequence of the wSBE II-D1 gene. The promoter sequence is given in (a) up to the first translated amino acid, and the coding sequence of the gene is given in (b).

Figure 20a shows the N-terminal sequence of SSS protein isolated from starch granules (Rahman et al, 1995) and deduced amino acid sequence of part of Sm2.

Figure 20b shows the nucleotide sequence of cDNA clone (sm2) for wheat soluble starch synthase.

Figure 20c shows the nucleotide sequence of genomic clone for SSS.

Figure 21 shows the deduced amino acid sequence 15 of cDNA clone (sm2) for SSS.

Figure 22 shows the hybridisation of genomic clones sg1, 3, 4, 6 and 11 with the cDNA clone (sm2) for SSS. DNA was purified from indicated genomic clones, digested with BamHI or SacI and hybridised to sm2. Note that the hybridisation patterns for sg1, 3 and 4 are clearly different from each other.

20

Figure 23 shows the hybridisation of RNA from wheat tissues with the cDNA clone for SSS (sm2) as well as indicated regions of SBE II and SBE I. The tissues

indicated are leaves, florets and endosperm 5-8, 10-15 and 18-22 days after anthesis (glasshouse grown material).

Figure 24 shows the hybridisation of DNA from chromosome engineered lines of wheat (cultivar Chinese Spring) digested with PvuII, with the sm2 probe.

N7AT7B: no 7A chromosome, four copies of 7B chromosome;

N7BT7D: no 7B chromosome, four copies of 7D chromosome;

N7DT7A: no 7D chromosome, four copies of 7A chromosome.

A band is missing in the N7BT7A line. Figure 25 shows the promoter sequence of soluble

starch synthase from wheat endosperm. The sequence up to the first encoded methionine (codon ATG) is included.

Figure 26 shows the comparison of wheat and rice soluble starch synthase genomic sequences. The dark rectangles indicate exons and the light rectangles represent introns. The break indicates the area where sequencing needs to be completed.

Figure 27a shows the DNA sequence of a portion of the wheat debranching enzyme (WDBE-1) PCR product. The PCR product was generated from wheat genomic DNA (cultivar Rosella) using primers based on sequences conserved in debranching enzymes from maize and rice.

10

15

20

25

30

Figure 27b shows a comparison of the nucleotide sequence of wheat debranching enzyme I (WDBE-I) PCR fragment with the maize Sugary-1 sequence.

Figure 28 shows the Southern blotting of *T. tauschii* DNA with DBE PCR product. DNA from *T. tauschii* was digested with BamHI, electrophoresed, blotted and hybridised to DBE PCR product. A band of approximately 2 kb hybridised.

Figure 29 illustrates the design of 9 intron spanning BE II primer sets. Primers were based on wSBE II-D1 sequence (Figure 19) and were designed such that intron sequences in the wSBE II-D1 sequence (deduced from Figure 17) were amplified by PCR.

Figure 30 shows the results of SBE II-Intron 6 primer set on chromosome 2 nullisomic :tetrasomic lines of the wheat cultivar Chinese Spring.

BBD: tetra 2B nulli 2A;

AAD: tetra 2A nulli 2B;

AAB: tetra 2A nulli 2D;

CS Chinese Spring normal;

ADD: tetra 2D nulli 2B;

ABB: tetra 2B nulli 2D;

AABB: tetraploid wheat having only the A and B genomes.

The horizontal axis indicates the size of the product.

Figure 31 shows the results obtained using the SBE II-Intron 6 primer set on the wheat varieties (a) Chinese Spring and (b) Rosella.

5

Example 1 Identification of Gene Encoding SBE I Construction of Genomic Library and Isolation of Clones

The genomic library used in this study was

10 constructed from Triticum tauschii, var strangulata,
accession number CPI 100799. Of all the accessions of
T. tauschii surveyed, the genome of CPI 100799 is the most
closely related to the D genome of hexaploid wheat
(Dr E. Lagudah, CSIRO Plant Industry, personal
communication).

Triticum tauschii, var strangulata (CPI accession number 110799) was kindly provided by Dr E Lagudah. Leaves were isolated from plants grown in the glasshouse.

DNA was extracted from leaves of Triticum

tauschii using published methods (Lagudah et al, 1991),
partially digested with Sau3A, size fractionated and
ligated to the arms of lambda GEM 12 (Promega). The
ligated products were used to transfect the methylation
tolerant strain PMC 103 (Doherty et al. 1993). A total of

25 2 x 10⁶ primary plaques were obtained with an average insert size of about 15 kb. Thus the library contains approximately 6 genomes worth of *T. tauschii* DNA. The library was amplified and stored at 4°C until required.

Positive plaques in the genomic library were selected as those hybridising with the 5' end of a maize starch branching enzyme I cDNA (Baba et al, 1991) using moderately stringent conditions as described in Rahman et al, (1997).

35 Preparation of Total RNA from Wheat

Total RNA was isolated from leaves, pre-anthesis pericarp and different developmental stages of wheat

endosperm of the cultivar, Hartog and Rosella. This material was collected from both the glasshouse and the field. The method used for RNA isolation was essentially the same as that described by Higgins et al (1976). RNA was then quantified by UV absorption and by separation in 1.4% agarose-formaldehyde gels which were then visualized under UV light after staining with ethidium bromide (Sambrook et al, 1989).

10 DNA and RNA analysis

15

20

25

30

35

- 海技術院の一次では一個の一個の一人

DNA was isolated and analysed using established protocols (Sambrook et al, 1989). DNA was extracted from wheat (cv. Chinese Spring) using published methods (Lagudah et al, 1991). Southern analysis was performed essentially as described by Jolly et al (1996). Briefly, 20 µg wheat DNA was digested, electrophoresed and transferred to a nylon membrane. Hybridisation was conducted at 42°C in 25% or 50% formamide, 2 x SSC, 6% Dextran Sulphate for 16h and the membrane was washed at 60°C in 2 x SSC for 3 x 1h unless otherwise indicated. Hybridisation was detected by autoradiography using Fuji X-Omat film.

RNA analysis was performed as follows. 10 µg of total RNA was separated in a 1.4% agarose-formaldehyde gel and transferred to a nylon Hybond N⁺ membrane (Sambrook et al, 1989), and hybridized with cDNA probe at 42°C in Khandjian hybridizing buffer (Khandjian, 1989). The 3' part of wheat SBE I cDNA (designated wSBE I-D43, see Table 1) was labelled with the Rapid Multiprime DNA Probe Labelling Kit (Amersham) and used as probe. After washing at 60°C with 2 x SSC, 0.1% SDS three times, each time for about 1 to 2 hours, the membrane was visualized by overnight exposure at -80°C with X-ray film, Kodak MR.

Example 2 Frequency of Recovery of SBE I Type Clones from the Genomic Library

An estimated 2 x 10^6 plaques from the amplified library were screened using an $\it EcoRI$ fragment that

contained 1200 bp at the 5' end of maize SBE I (Baba et al, 1991) and twelve independent isolates were recovered and purified. This corresponds to the screening of somewhat fewer than the 2 x 10⁶ primary plaques that exist in the original library (each of which has an average insert size of 15 kb) (Maniatis et al, 1982), because the amplification may lead to the representation of some sequences more than others. Assuming that the amplified library contains approximately three genomes of T. tauschii, the frequency with which SBE I-positive clones were recovered suggests the existence of about 5 copies of SBE I type genes within the T. tauschii genome.

10

30

Digestion of DNA from the twelve independent isolates by the restriction endonuclease BamHI followed by 15 hybridisation with a maize SBE I clone, suggested that the genomic clones could be separated into two broad classes (Figure 1). One class had 10 members and a representative from this class is the clone λ E1 (Figure 1, lane 1); λ E6 (Figure 1, lane 3) is a member of this class, but is 20 missing the 5' end of the E1-SBE I gene because the SBE I gene is at the extremity of the cloned DNA. hybridisation studies at high stringency with the extreme 5' and 3' regions of the SBE'I gene contained in λ E1 suggested that the other clones contained either identical 25 or very closely related genes.

The second family had two members, and of these clone $\lambda E7$ (Figure 1, lane 4) was arbitrarily selected for further study. These two members did not hybridise to probes from the extreme 5' and 3' regions of the SBE I gene that were contained in $\lambda E1$, indicating that they were a distinct sub-class.

The DNA from T. tauschii and the lambda clones λ E1 and λ E7 was digested with BamHI and hybridised with fragment E1.1, as shown in Figure 2. This fragment contains sequences that are highly conserved (85% sequence identity over 0.3 kB between λ E1 and λ E7), corresponding to exons 3, 4 and 5 of the rice gene. The bands in the

genomic DNA at 0.8 kb and 1.0 kb correspond to identical sized fragments from λ E1 and λ E7, as shown in Figure 2; these are fragments E1.1 and E7.8 of λ E1 and λ E7 genomic clones respectively. Thus the arrangement of genes in the genomic clones is unlikely to be an artefact of the cloning procedure. There are also bands in the genomic DNA of approximately 2.5 kb, 4.8 kb and 8 kb in size which are not found from the digestion of λ E1 or λ E7; these could represent genes such as the 5' sequences of wSBE I-D1 or wSBE I-D3; see below.

5

10

30

Example 3 Tandem Arrangement of SBE I Type Genes in the T. tauschii Genome

Basic restriction endonuclease maps for λ E1 and λ E7 are shown in Figure 3. The map was constructed by performing a series of hybridisations of *Eco*RI or *Bam*HI digested DNA from λ E1 or λ E7. The probes used were the fragments generated from *Bam*HI digestion of the relevant clone. Confirmation of the maps was obtained by PCR analysis, using primers both within the insert and also

analysis, using primers both within the insert and also from the arms of lambda itself. PCR was performed in 10 μl volume using reagents supplied by Perkin-Elmer. The primers were used at a concentration of 20 μM. The program used was 94°C, 2 min, 1 cycle, then 94°C, 30 sec; 55°C,

25 30 sec; 72°C, 1min for 36 cycles and then 72°C, 5 min; 25°C, 1 min.

Sequencing was performed on an ABI sequencer using the manufacturer's recommended protocols for both dye primer and dye terminator technologies. Deletions were carried out using the Erase-a-base kit from Promega.

Sequence analysis was carried out using the GCG version 7 package of computer programs (Devereaux et al, 1984).

The PCR products were also used as hybridisation probes. The positioning of the genes was derived from sequencing the ends of the BamHI subclones and also from sequencing PCR products generated from primers based on the

insert and the lambda arms. The results indicate that there is only a single copy of a SBE I type gene within $\lambda E1$. However, it is clear that $\lambda E7$ resulted from the cloning of a DNA fragment from within a tandem array of the SBE I type genes. Of the three genes in the clone, which are named as wSBE I-D1, wSBE I-D2 and wSBE I-D3); only the central one (wSBE I-D2) is complete.

Example 4 Construction and Screening of cDNA Library

10

A wheat cDNA library was constructed from the cultivar Rosella using pooled RNA from endosperm at 8, 12, 18 and 20 days after anthesis.

The cDNA library was prepared from poly A^{\dagger} RNA that was extracted from developing wheat grains (cv.

Rosella, a hexaploid soft wheat cultivar) at 8, 12, 15, 18, 21 and 30 days after anthesis. The RNA was pooled and used to synthesise cDNA that was propagated in lambda ZapII (Stratagene).

The library was screened with a genomic fragment from \$\lambda E7\$ encompassing exons 3, 4 and 5 (fragment E7.8 in Figure 3). A number of clones were isolated. Of these an apparently full-length clone appeared to encode a novel type of cDNA for SBE I. This cDNA has been termed SBE I-D2 type cDNA. The putative protein product is compared with

the maize SBE I and rice SBE I type sequences in Figure 4. The main difference is that this putative protein product is shorter at the C-terminal end, with an estimated molecular size of approximately 74 kD compared with 85 kDa for rice SBE I (Kawasaki et al, 1993). Note that amino

acids corresponding to exon 9 of rice are missing in SBE I-D2 type cDNA, but those corresponding to exon 10 are present. There are no amino acid residues corresponding to exons 11-14 of rice; furthermore, the sequence corresponding to the last 57 amino acids of SBE I-D2 type

has no significant homology to the sequence of the rice gene.

We expressed SBE I-D2 type cDNA in E. coli in order to examine its function. The cDNA was expressed as a fusion protein with 22 N-terminal residues of β -galactosidase and two threonine residues followed by the SBE I-D2 cDNA sequence either in or out of frame. Although an expected product of about 75 kDa in size was produced from only the in-frame fusion, we could not detect any enzyme activity from crude extracts of E. coli protein (data not shown). Furthermore the in-frame construct could not 10 complement an E. coli strain with a defined deletion in glycogen branching, although other putative branching enzyme cDNAs have been shown to be functional by this assay (data not shown). It is therefore unclear whether the wSBE I-D2 gene in λ E7 codes for an active enzyme in vivo.

15

Example 5 Gene Structure in E7

i. Sequence of wSBE I-D2

We sequenced 9.2 kb of DNA that contained wSBE I-D2. This corresponds to fragments 7.31, 7.8 and 20 7.18. Fragment 7.31 was sequenced in its entirety (4.1 kb), but the sequence of about 30 bases about 2 kb upstream of the start of the gene could not be obtained because it was composed entirely of Gs. Elevation of the temperature of sequencing did not overcome this problem. 25 Fragments 7.8 (1 kb) and 7.18 (4 kb) were completely sequenced, and corresponded to 2 kb downstream of the last exon detected for this gene. It was clear that we had isolated a gene which was closely related (approximately 95% sequence identity) to the SBE I-D2 type cDNA referred 30 to above, except that the last 200 bp at the 3' end of the cDNA are not present. The wSBE I-D2 gene includes sequences corresponding to rice exon 11 which are not in the cDNA clone. In addition it does not have exons 9, 12, 13 or 14; these are also absent from the SBE I-D2 type 35 The first two exons show lower identity to the corresponding exons from rice (approximately 60%) (Kawasaki

et al, 1993) than to the other exons (about 80%).

diagrammatic exon-intron structure of the wSBE I-D2 gene is indicated in Figure 6. The restriction map was confirmed by sequencing the PCR products that spanned fragments 7.18 and 7.8 and 7.8 and E7.31 (see Figure 3) respectively.

5

30

35

ii. Sequence of wSBE I-D3

This gene was not sequenced in detail, as the genomic clone did not extend far enough to include the 5' end of the sequence. The sequence is of a SBE-I type. 10 orientation of the gene is evident from sequencing of the relevant BamHI fragments, and was confirmed by sequence analysis of a PCR product generated using primers from the right arm of lambda and a primer from the middle of the gene. The sequence homology with wSBEI-D2 is about 80% 15 over the regions examined. The 2 kb sequenced corresponded to exons 5 and 6 of the rice gene; these sequences were obtained by sequencing the ends of fragments 7.5, 7.4 and 7.14 respectively, although the sequences from the left end of fragment 7.14 did not show 20 any homology to the rice sequences. The gene does not appear to share the 3' end of SBE I-D2 type cDNA, as a probe from 500 bp at the 3' end of the cDNA (including sequences corresponding to exons 8 and 10 from rice) did not hybridise to fragment 7.14, although it hybridised to 25 fragment 7.18 (data not shown).

iii. Sequence of wSBE I-D1

This gene was also not sequenced in detail, as it was clear that the genomic clone did not extend far enough to include the 5' sequences. Limited sequencing suggests that it is also a SBE I type gene. The orientation relative to the left arm of lambda was confirmed by sequencing a PCR product that used a primer from the left arm of lambda and one from the middle of the gene (as above). Its sequence homology with wSBE I-D2 ,D3 and D4 (see below) is about 75% in the region sequenced corresponding to a part of exon 4 of the rice gene.

Starch branching enzymes are members of the α amylase protein family, and in a recent survey Svensson (1994) identified eight residues in this family that are invariant, seven in the catalytic site and a glycine in a short turn. Of the seven catalytic residues, four are changed in SBE I-D2 type. However, additional variation in the 'conserved' residues may come to light when more plant cDNAs for branching enzyme I are available for analysis. In addition, although exons 9, 11, 12, 13 and 14 from rice 10 are not present in the SBE I-D2 type cDNA (Figure 5), comparison of the maize and rice SBE I sequences indicate that the 3' region (from amino acid residue 730 of maize) is much more variable than the 5' and central regions (Figure 4). The active sites of rice and maize SBE I 15 sequences, as indicated by Svensson (1994), are encoded by sequences that are in the central portion of the gene. When SBE II sequences from Arabidopsis were compared by Fisher et al (1996) they also found variation at the 3' and 5' ends. SBE I-D2 type cDNA may encode a novel type of 20 branching enzyme whose activity is not adequately detected in the current assays for detecting branching enzyme activity; alternatively the cDNA may correspond to an endosperm mRNA that does not produce a functional protein.

25 Example 6 Cloning of Specific cDNA Regions of Wheat SBEI Using RT-PCR

The first strand cDNAs were synthesized from 1 μg of total RNA, derived from endosperm 12 days after pollination, as described by Sambrook *et al* (1989), and then used as templates to amplify two specific cDNA regions of wheat SBE I by PCR.

Two pairs of primers were used to obtain the cDNA clones BED1 and BED3 (Table 1). Primers used for cloning of BED3 were the degenerate primer NTS5'

5' GGC NAC NGC NGA G/AGA C/TGG 3'

30

35

(SEQ ID NO. 1)

in which the 5' end is at position 168 of wSBE I-D4 cDNA, as shown in Table 1), based on the N-terminal sequence of wheat SBE I, and NTS3'

5 5' TAC ATT TCC TTG TCC ATCA 3'

(SEQ ID NO. 2)

in which the 5' end is at position 1590 of wSBE I-D4 cDNA, (see Table 1), derived from the conserved regions of the nucleotide sequences of BED5 and the maize and rice SBE I cDNAs. For clone BED1, the primers used were BEC5'

5' ATC ACG AGA GCT TGC TCA

20

(SEQ ID NO. 3)

- in which the 5' end is at position 1 of wSBE I-D4 cDNA, (see Table 1); the sequence was based on wSBE I-D4, and BEC3'
 - 5' CGG TAC ACA GTT GCG TCA TTT TC 3' (SEQ ID NO. 4)

in which the 5'end is at position 334 of wSBE I-D4 cDNA (see Table 1), and the sequence was based on BED 3.

Table 1 Positions of Sequences Relative to wSBE I-D4 Sequences

Sequence Name	wSBE I-D& Sequence	wSBE I-D& cDNA Sequenc
Putative initiation of	4900	11 .
translation		
N-terminal sequence of SBE I	5550	124
End of translated SBE I	10225	2431
sednence		
End of wSBE I-D4 cDNA sequence	10461	2687
wSBE I-D45	4870, 5860	1,357
wSBE I-D43	9430, 10435	see below
wSBE-I-D43C	see above	2338,2657
WSBE I-D4R	2kb of sequence approx 600bp	not applicable
,	3' to position 10461	
E 1.1	5680, 6400	380,630
BED 1	not referred to	1,354
BED 2	not referred to	169,41.8
BED 3	not referred to	151,1601
BED 4	not referred to	867,2372
BED 5	not referred to	867,2687

\\MELB01\home\$\anna\Keep\specia\CSIRO gene expression.doc 11/09/97

Example 7 Identification of a gene encoding the major N-terminal of SBE I from the endosperm

We have isolated two classes of SBE I genomic clones from T. tauschii. One class contained two genomic clone isolates, and this class has been characterised in some detail (Rahman et al, 1997). The complete gene contained within this class of clones was termed wSBE I-D2; there were additional genes at either ends of the clone, and these were designated wSBE I-D1 and 10 wSBE I-D3. The other class contained nine genomic clone isolates. Of these λ E1 was arbitrarily taken as a representative clone, and its restriction map is shown in Figure 3; the SBE I gene contained in this clone was called wSBE I-D4. Fragments E1.1 (0.8 kb) and E1.2 (2.1 kb) and fragments E1.7 (4.8 kb) and E1.5 (3 kb) respectively were 15 completely sequenced. Fragment E1.7 was found to encode the N-terminal of the SBE I, which is found in the endosperm as described in Morell et al (1997). This is shown in Figure 4. Using antibodies raised against the N-20 terminal sequence, Morell et al (1997) found that the D genome isoform was the most highly expressed in the cultivars Rosella and Chinese Spring. We have thus isolated from T. tauschii a gene, wSBE I-D4, whose homologue in the hexaploid wheat genome encodes the major isoform for SBE I that is found in the wheat endosperm. 25

All nine genomic clones isolated from *T. tauschii* appear to contain the *wSBE I-D4* gene, or very similar genes, on the basis of PCR amplification and hybridisation experiments. However, the restriction patterns obtained for the clones differ with *BamHI* and *EcoRI*, among other enzymes, indicating that either the clones represent near-identical but distinct genes or they represent the same gene isolated in distinct products of the *Sau* 3A digest used to generate the library.

30

Example 8 Investigation of other SBE I genomic clones isolated

All ten members of the E1-like class of SBE I genomic clones were investigated by hybridisation with probes derived from fragment E1.7 (sequence wSBE I-D45, encoding the translation start signal and the first 100 amino acids from the N-terminal end and intron sequences; see Table 2) and from fragment E1.5 (sequence wSBE I-D43, corresponding largely to the 3' untranslated sequence and containing intron sequences, see Table 1). The results obtained were consistent with one type of gene being isolated in different fragments in the different clones, as shown in Figure 5. The PCR products were obtained from the clones λ E1, 2, 9, 14, 27, 31 and 52. These hybridised to wSBE I-D45 using primers that amplify near the 5' end of the gene (positions 5590-6162 of Sequencing showed no differences in sequence wSBE I-D4). of a 200 bp product.

5

10

15

Analysis of the promoter for wSBE I-D4 allows us 20 to investigate the presence of motifs previously described for promoters that regulate gene expression in the endosperm. Kreis et al (1985) compared prolamin promoters, and suggested that the presence of a motif approximately -300 bp upstream of the transcription start point, called the endosperm box, was responsible for endosperm-specific 25 expression. The endosperm box was subsequently considered to consist of two different motifs: the endosperm motif (EM) (canonical sequence TGTAAAG) and the GCN 4 motif (canonical sequence G/ATGAG/CTCAT). The GCN4 box is considered to regulate expression according to nitrogen 30 availability (Muller and Knudsen, 1993). The wSBE I-D4 promoter contains a number of imperfect EM-like motifs at approximately -100, -300 and -400 as well as further However, no GCN4 motifs could be found, which 35 lends support to the idea that this motif regulates response to nitrogen, as starch biosynthesis is not as directly dependent on the nitrogen status of the plant as

storage protein synthesis. Comparison of the promoters for wSBE I-D4 and D2 (Rahman et al, 1997) indicates that although there are no extensive sequence homologies there is a region of about 100 bp immediately before the first encoded methionine where the homology is 61% between the two promoters. In particular there is an almost perfect match in the sequence over twenty base pairs CTCGTTGCTTCC/TACTCCACT, (position 4723-4742 of the wSBE I sequence), but the significance of this is hard to gauge, as it does not occur in the rice promoter for SBE I. availability of more promoters for starch biosynthetic enzymes may allow firmer conclusions to be drawn. are putative CAAT and TATA motifs at positions 4870 and 4830 respectively of wSBE I-D4 sequence. The putative start of translation of the mRNA is at position 4900 of wSBE I-D4.

Figure 6 shows the structure of the wSBE I-D4 gene, compared with the genes from rice and wheat (Kawasaki et al, 1993; Rahman et al, 1997). The rice SBE I has 14 exons compared with 13 for wSBE I-D4 and 10 for wSBE I-D2. There is good conservation of exon-intron structure between the three genes, except at the extreme 5' end. In particular the sizes of intron 1 and intron 2 are very different between rice SBE I and wSBE I-D4.

25

30

10

15

20

Example 9 Isolation of cDNA for SBE I

Using the maize starch branching enzyme I cDNA as a probe (Baba et al, 1991), 10 positive plaques were recovered by screening approximately 10⁵ plaques from a wheat endosperm cDNA library. On purifying and sequencing these plaques it was clear that even the longest clone (BED5, 1822 bp) did not encode the N-terminal sequence obtained from protein analysis. Degenerate primers based on the protein N-terminal and the sequence from BED5 were then used to amplify the 5' region: this produced a cDNA clone termed BED 3 (Table 1 and Figure 7). This cDNA clone overlapped extensively and had 100% sequence identity with

BED5 and BED4 (Figure 7). As almost the entire protein Nterminal sequence had been included in the primer sequence design, this did not provide independent evidence of the selection of a cDNA sequence in the endosperm that encoded the protein sequence of the main form of SBE I. BED3 to screen a second cDNA library produced BED2, which is shorter than BED3 but confirmed the BED3 sequence at 100% identity between positions 169 and 418 (Figure 7 and In addition the entire cDNA sequence for BED3 could be detected at a 100% match in the genomic clone λ E1. 10 Primers based on the putative transcription start point combined with a primer based on the incomplete cDNAs recovered were then used to obtain a PCR product from total endosperm RNA by reverse transcription. This led to 15 the isolation of the cDNA clone, BED1, of 300 bp, whose sequence is shown in Figure 7. By analysing this product, a sequence was again obtained that could be found exactly in the genomic clone λ E1, and which overlapped precisely with BED3.

The N-terminal of the protein matches that of SBE I isolated from wheat endosperm by Morell et al (1997), and thus it is likely that wSBE I-D4 cDNA represents the gene for the predominant SBE I isoform expressed in the endosperm. The encoded protein is 87 kDa; this is similar to proteins encoded by maize (Baba et al, 1991) and rice (Nakamura et al, 1992) cDNAs for SBE I and is distinct from the wSBE I-D2 cDNA described previously, in which the encoded protein was 74 kDa (Rahman et al, 1997).

Five cDNA clones were sequenced and their

sequences were assembled into one contiguous sequence using a GCG program (Devereaux et al, 1984). This is illustrated in Figure 8. The intact cDNA sequence, wSBE I-D4 cDNA, is 2687 bp and contains one large open reading frame (ORF), which starts at nucleotides 11 to 13 and ends at nucleotides 2432 to 2434. It encodes a polypeptide of 807 amino acids with a molecular weight of 87 kDa.

Comparison of the amino acid sequence encoded by wSBE I-D4

cDNA with that encoded by maize and rice SBE I cDNAs showed that there is 75-80% identity between any of two these sequences at the nucleotide level and almost 90% at the amino acid level. Alignment of these three polypeptide sequences, as shown in Figure 9, along with the deduced sequences for pea, potato and wSBE I-D2 type cDNA, indicated that the sequences in the central region are highly conserved, and sequences at the 5' end (about 80 amino acids) and the 3' end (about 60 amino acids) are variable.

5

10

15

20

Svensson et al (1994) indicated that there were several invariant residues in sequences of the α -amylase super-family of proteins to which SBE I belongs. In the sequence of maize SBE I these are in motifs commencing at amino acid residue positions 341,415,472,537 respectively; these are also encoded in the wSBE I-D4 sequence (Figure 7), further supporting the view that this gene encodes a functional enzyme. This is in contrast to the results with the wSBE I-D2 gene, where three of the conserved motifs appear not to be encoded (Rahman et al, 1997).

There is about 90% sequence identity in the deduced amino acid sequence between wSBE I-D4 cDNA and rice SBE I cDNA in the central portion of the molecule 25 (between residues 160 and 740 for the deduced amino acid product from wSBE I-D4 cDNA). The sequence identity of the deduced amino acid sequence of the wSBE I-D4 cDNA to the deduced amino acid sequence of wSBE I-D2 is somewhat lower (85% for the most conserved region, between residues 285 to 30 390 for the deduced product of wSBE I-D4 cDNA). Surprisingly, however, wSBE I-D4 cDNA is missing the sequence that encodes amino acids at positions 30 to 58 in rice SBE I (see Figure 8). This corresponds to residues within the transit peptide of rice SBE I. A corresponding sequence also occurs in the deduced amino acid sequence 35 from maize SBE I (Baba et al, 1991) and wSBE I-D2 type cDNA (Rahman et al, 1997). Consequently the transit sequence

encoded by wSBE I-D4 cDNA is unusally short, containing only 38 amino acids, compared with 55-60 amino acids deduced for most starch biosynthetic enzymes in cereals (see for example Ainsworth, 1993; Nair et al, 1997). wSBE I-D4 gene does contain this sequence, but this does not appear to be transcribed into the major species of RNA from this gene, although it can be detected at low relative This raises the possibility of alternative abundance. splicing of the wSBE I-D4 transcript, and also the question of the relative efficiency of translation/transport of the The possibility of alternative splicing in two isoforms. both rice and wheat has been considered for soluble starch synthase (Baba et al, Rahman et al, 1995). Alternative splicing of soluble starch synthase would give a transit sequence of 40 amino acids, which is the same length proposed for the product of wSBE I-D4 cDNA.

10

15

35

We have previously used probes based on exons 4, 5 and 6 (E7.8 and E1.1, see Rahman et al., 1997) of wSBE-D2 to probe wheat and T. tauschii genomic DNA cleaved with 20 PvuII and BamHI respectively. This region is highly conserved within rice SBE I, wSBE I-D2 and wSBE I-D4 and produced ten bands with wheat DNA and five with T. tauschii DNA. Neither PvuII nor BamHI cleaved within the probe sequences suggesting that each band represented a single 25 type of SBE I gene. We have described four SBE I genes from T. tauschii: wSBE I-D1, wSBE I-D2, wSBE I-D3 and wSBE I-D4 (Rahman et al, 1997 and this specification), and so we may have accounted for most of the genes in T. tauschii and, by extension, the genes from the D genome 30 of wheat. In wheat, at least two hybridising bands could be assigned to each of chromosomes 7A, 7B and 7D.

Example 10 Tissue specificity and expression during endosperm development

The 300 bp of 3' untranslated sequence of $wSBE\ I-D4$ cDNA does not show any homology with either the $wSBE\ I-D2$ type cDNA that we have described earlier (Rahman

et al, 1997) or with BE-I from rice, as shown in Figure 7. We have called this sequence wSBE I-D43C. It seemed likely that wSBE I-D43C would be a specific probe for this class of SBE-I, and thus it was used to investigate the tissue specificity. The results are shown in Figure 10. A RNA species of about 2700 bases in size was found to hybridise. This is very close to the size of the wSBE I-D4 cDNA sequence. RNA hybridising to wSBE-I-D43C is most abundant at the mid-stage of endosperm development (Figure 10) and in field grown material is relatively constant during the period 12-18 days, the time at which there is rapid starch and storage protein accummulation (Morell et al, 1995).

The sequence contained within the wSBE I-D4 gene appears to be expressed only in the endosperm (Figure 9).

We could not detect any expression in the leaf. This could be because another isoform is expressed in the leaf, and/or because the amount of SBE I present in the leaf is much less than what is required in the endosperm. Isolation of SBE I clones from a leaf cDNA library would enable this question to be resolved.

Example 11 Intron-Exon Structure of SBE I

10

25

30

35

By comparison of the cDNA sequence of SBE I with that of wSBE I-D4 we can deduce the intron-exon structure of the gene for the major isoform of SBE I that is found in the endosperm. The structure contains 14 exons compared to 14 for rice (Kawasaki et al, 1993). These 14 exons are spread over 6 kb of sequence, a distance similar to that found in both rice SBE I and wSBE I-D2. A dotplot comparison of wSBE I-D4 sequence and that of rice SBE I sequence, depicted in Figure 11, shows good sequence identity over almost the entire gene starting from about position 5100 of wSBE I-D4; the identity is poor over the first 5 kb of sequence corresponding largely to the promoter sequences. The sequence identity over introns (about 60%) is lower than over exons (about 85%).

Example 12 Repeated Sequences in SBE I

5

10

15

Sequencing of wSBE I-D4 revealed there was a repeated sequence of at least 300 bp contained in a 2kb fragment about 600 bp after the 3' end of the gene. have called this sequence wSBE I-D4R. This repeated sequence is within fragment E1.5 (Figure 10 and Table 2) and is flanked by non-repetitive sequences from the genomic We have previously shown that the restriction pattern obtained by digesting λ E1 with the restriction enzyme BamHI is also obtained when T. tauschii DNA is Thus wSBE I-D4R is unlikely to be a cloning digested. A search of the GeneBank Database searches revealed that wSBE I-D4R shared no significant homology with any sequence in the database. Hybridisation experiments with wSBE I-D4R showed that all of the other SBE I-D4 type genomic clones (except number 29) contained this repeated sequence (data not shown). The wSBE I-D4R sequence was not highly repeated and occurred in the wheat genome with a similar frequency as the wSBE I-D4 sequence.

20 When SBE I-D4R was used as the probe on wheat DNA from the nulli-tetra lines, four bands were obtained; two of these bands could be assigned to chromosome 7A and the others to chromosomes 7B and 7D (Figure 11C). One of the two BamHI fragments from wheat DNA which could be assigned 25 to chromosome 7A was distinct from the single band from chromosome 7A detected using wSBE I-D43 as the probe; the other three bands coincided in the autoradiograph with bands obtained with wSBE I-D43, and are likely to represent the same fragment. However, one of these fragments was 30 distinct from the BamHI fragment that hybridised to the wSBE I-D43 sequence. In wSBE I-D4 the wSBE I-D43 sequence is only 300 bp upstream of wSBE I-D4R, and occurs in the same BamHI fragment. These results suggest that the wSBE I-D4R sequence can occur independently of wSBE I-D4 in 35 the wheat genome.

Example 13 Isolation of Genomic Clones Encoding SBE II

Screening of a cDNA library prepared from the wheat endosperm with the maize BE I clone (Baba et al, 1991) at low stringency led to the isolation of two classes of positive plaques. One class was strongly hybridising, and led to the isolation of wheat SBE I cDNA clones, as described in Example 5 and in Rahman et al (1997). The second class was weakly hybridising, and one member of this class was purified. This weakly hybridising clone was termed SBE-9, and on sequencing was found to contain a sequence that was distinct from that for SBE I. This sequence showed greatest homology to maize BE II sequences, and was considered to encode part of the wheat SBE II sequence.

10

30

15 The screening of approximately 5 x 10⁵ plaques from a genomic library constructed from *T. tauschii* with the SBE-9 sequence led to the isolation of four plaques that were positive. These were designated wSBE II-D1 to wSBE II-D4 respectively, and were purified and analysed by restriction mapping. Although they all had different hybridization patterns with SBE-9, as shown in Figure 15, the results were consistent with the isolation of the same gene in different-sized fragments.

25 Example 14 Identification of the N-terminal sequence of SBE II

Sequencing of the SBE II gene contained in clone 2, termed SBE II-D1, showed that it coded for the N-terminal sequence of the major isoform of SBE II as identified by Morell et al (1997). This is shown in Figure 16a.

In addition to encoding the N-terminal sequence of sBE II, as shown in Example 10, the cDNA sequence reported by Nair et al (1997) was also found to have 100% sequence identity with part of the sequence of wSBE II-D1.

Thus the intron-exon structure can be deduced, and this is shown in Figure 17.

Example 16 Number of SBE II Genes in T. tauschii and Wheat

Hybridisation of the SBE II conserved region with *T. tauschii* DNA revealed the presence of three gene classes. However, in our screening we only recovered one class. Hybridisation to wheat DNA indicated that the locus for SBE II was on chromosome 2, with approximately 5 loci in wheat; most of these appear to be on chromosome 2D, as shown in Figure 18.

Example 17 Expression of SBE II

Investigation of the pattern of expression of SBE II revealed that the gene was only expressed in the endosperm. However the timing of expression was quite distinct from that of SBE I, as illustrated in Figure 10.

Whereas SBE I gene expression is only clearly
detectable from the mid-stage of endosperm development
(Figure 7), SBE II gene expression is clearly seen much
earlier, in endosperm tissue at 5-8 days after development
(Figure 10), corresponding to an early stage of endosperm
development in Figure 7.

25

30

35

5

10

15

Example 18 RT-PCT Amplication of SSS cDNA Sequence from Wheat

A conserved sequence region was used for the synthesis of primers for amplification of SSS by comparison with the nucleotide sequences encoding soluble starch synthases of rice and pea. A 300 bp RT-PCR product was obtained by amplification of cDNA from wheat endosperm at 12 days post anthesis. The 300 bp RT-PCT product was then cloned, and its sequence analysed. The comparison of its sequence with rice SSS cDNA showed about 80% sequence homology. The 300 bp RT-PCR product was 100% homologous to

the partial sequence of a wheat SSS in the database produced by Block et al (1997).

5

30

Example 19 Cloning of Wheat Soluble Starch Synthase cDNA

The 300 bp cDNA fragment of wheat soluble starch synthase isolated in Example 14 was used as a probe for the screening of a wheat endosperm cDNA library (Rahman et al, Eight cDNA clones were selected. One of the 10 largest cDNA clones was used for DNA sequencing analysis, and gave a 2662 bp nucleotide sequence. A large open reading frame of this cDNA encoded a 647 amino acid polypeptide, starting at nucleotides 247 to 250 and terminating at nucleotides 2198 to 2200. The deduced 15 polypeptide was shown by protein sequence analysis to contain the N-terminal sequence of a 75 kDa granule-bound protein (Rahman et al, 1995). This is illustrated in Figures 21a and 21b. The location of the 75 kDa protein was determined both the soluble fraction and starch 20 granule-bound fraction by the method of Denver et al (1995). Thus this cDNA clone encoded a polypeptide comprising a 41 amino acid transit peptide and a 606 amino acid mature peptide. The cleavage site LRRL was located at amino acids 36 to 39 of the transit peptide of this deduced 25 polypeptide.

Comparison of wheat SSS with rice SSS and potato SSS showed that there is 87.4% or 75.9% homology at the amino acid level and 74.7% or 58.1% homology at the nucleotide level. Some amino acids in the at N-terminal sequences of the SSS of wheat and rice were conserved.

Example 20 Isolation of Genomic Clone of Wheat Soluble Starch Synthase

Seven genomic clones were obtained with a 300 bp cDNA probe by screening approximately 5 x 10⁵ plaques from a genomic DNA library of *Triticum tauschii*, as described above. DNA was purified from 5 of these clones and

digested with BamHI and SacI. Southern hybridization analysis using the 300 bp cDNA as probe showed that these clones could be classified into two classes, as shown in Figure 23. One genomic clone, sg3, contained a long insert, and was digested with BamHI or SacI and subcloned into pBluescript KS+ vector.

These subclones were analysed by sequencing, and the sequence of the genomic clone sg3is shown in Figure 21c

10 Example 21 Northern Hybridization Analysis of the Expression of Genes Encoding Soluble Starch Synthase

anthesis material, and various stages of developmental
endosperm at 5-8, 10-15 and 18-22 days post anthesis.
Northern hybridization analysis showed that mRNAs encoding wheat SSS were specifically expressed in developmental endosperm. Expression of this mRNAs in the leaves and preanthesis materials could not be detected by northern
hybridization analysis under this experimental condition.
Wheat SSS mRNAs started to express at high levels at an early stage of endosperm, 5-8 days post anthesis, and the expression level in endosperm at 10-15 days post anthesis, was reduced. These results are summarized in Figure 24.

25

5

Example 22 Genomic Localisation of Wheat Soluble Starch Synthase

DNA from chromosome engineered lines was digested with the restriction enzyme BamHI and blotted onto

30 supported nitrocellulose membranes. A probe prepared from the 3' end of the cDNA sequence, from positions 2345 to 2548, was used to hybridise to this DNA. The presence of a specific band was shown to be associated with the presence of chromosomes 7A (Figure 25). These data demonstrate

35 location of the SSS gene on chromosome 7.

Example 23 Isolation of SSS Promoter

10

15

20

25

30

35

We have isolated the promoter that drives this pattern of expression for SSS. The pattern of expression for SSS is very similar to that for SBE II: the SSS gene transcript is detectable from an early stage of endosperm development until the endosperm matures. The sequence of this promoter is given in Figure 26.

Example 24 Isolation of the Gene Encoding Debranching Enzyme from Wheat

The sugary mutation in maize results in mature dried kernels that have a glassy and translucent appearance; immature mature kernels accumulate sucrose and other simple sugars, as well as the water-soluble polysaccharide phytoglycogen (Black et al, 1966). Most data indicates that in sugary mutants the concentration of amylose is increased relative to that of amylopection. Analysis of a particular sugary mutation (su-Ref) by James et al, (1995) led to the isolation of a cDNA that shared significant sequence identity with bacterial enzymes that hydrolyse the α 1,6-glucosyl linkages of starch, such as an isoamylase from Pseudomonas (Amemura et al, 1988), ie. bacterial debranching enzymes.

We have now isolated a sequence amplified from wheat endosperm cDNA using the polymerase chain reaction (PCR). This sequence is highly homologous to the sequence for the *sugary* gene isolated by James *et al*, (1995). This sequence has been used to isolate homologous cDNA sequences from a wheat endosperm library and genomic sequences from *Triticum tauschii*.

Comparison of the deduced amino acid sequences of DBE from maize with spinach (Accession SOPULSO, unpublished), *Pseudomonas* (Amemura *et al*, 1988) and rice (Nakamura *et al*, 1997) enabled us to deduce sequences which could be useful in wheat. When these sequences were used as PCR amplification primers with wheat genomic DNA a product of 256 bp was produced. This was sequenced and was

compared to the sequence of maize *sugary* isolated by James *et al*, (1995). The results are shown in Figure 28a and 28b. This sequence has been termed wheat debranching enzyme sequence I (WDBE-I).

5 WDBE-1 was used to investigate a cDNA library constructed from wheat endosperm (Rahman et al, 1997) enables us to isolate two cDNA clones which hybridise strongly to the WDBE-I probe. Use of WDBE 1 to investigate a genomic library constructed from T. tauschii, as 10 described above has led to the isolation of four genomic clones which hybridised strongly to the WDBE-I sequence. Hybridization of WDBE-I to DNA from T. tauschii indicates one hybridizing fragment (Figure 29).

We have clearly isolated a sequence from the

wheat genome that has high identity to the debranching
enzyme cDNA of maize characterised by James et al (1997).

The isolation of homologous cDNA sequences and genomic
sequences enables further characterisation of the
debranching enzyme cDNA and promoter sequences from wheat

and T. tauschii. These sequences and the WDBE I sequences
shown herein are useful in the manipulation of wheat starch
structure through genetic manipulation and in the screening
for mutants at the equivalent sugary locus in wheat.

25 Example 25 Use of probes from granule-bound starch synthase and SBE II sequences to identify null or altered alleles for use in breeding programmes

There are two general strategies for obtaining wheats with altered starch structure:

- (a) using genetic engineering strategies to suppress the activity of a specific gene, or to introduce a novel gene into a wheat line.
- (b) selecting among existing variation in wheat
 for missing ("null") or altered alleles of a gene in each
 of the genomes of wheat, and combining these by plant
 breeding.

DNA primer sets were designed to enable amplification of the first 9 introns of the SBE II gene The design of the primer sets is illustrated in using PCR. Primers were based on the wSBE II-D1 sequence Figure 30. (Figure 19) and were designed such that intron sequences in the wSBE II sequence (deduced from Figure 17) were amplified by PCR. These primer sets individually amplify the first 9 introns of SBE II. One primer set, for intron 6, was found to amplify products from each of 10 chromosomes 2A, 2B and 2D of wheat. This is shown in Figure 31, which illustrates results obtained with chromosome 2 nullisomic tetrasomic lines of the cultivar Chinese Spring.

Figure 32 compares results of amplification with
the Intron 6 primer set for normal lines of the cultivars
Chinese Spring and Rosella. In Chinese Spring a PCR
product of 213 bp is absent, indicating that this cultivar
possesses a potential null allele. Thus Chinese Spring can
be used as a parental line for breeding programmes for
generation of new lines in which expression of SBE II is
diminished or abolished, with consequent increase in
amylose content of the wheat grain. Thus a high amylose
wheat can be produced.

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

Reference cited herein are listed on the following pages, and are incorporated herein by this reference.

35

REFERENCES

Ainsworth, C., Clark, J. and Balsdon, J. Plant Molecular Biology, 1993 22 67-82

5

Amemura, A., Chakrabort, R., Fujita, M., Noumi, T. and Futai, M.

J. Biol. Chem., 1988 <u>263</u> 9271-9275

10 Baba, T., Kimura, K., Mizuno, K., Etoh, H., Ishida, Y., Shida, O. and Arai, Y.
Biochem. Biophys. Res. Commun., 1991 181 87-94.

Black, R.C., Loerch, J.D., McARdle, F.J. and Creech, R.G.

15 Genetics, 1966 53 661-668

Burton, R.A., Bewley, J.D., Smith, A.M., Bhattacharya, M.K., Tatge, H., Ring, S., Bull, V., Hamilton, W.D.O. and Martin, C.

20 The Plant Journal, 1995 7 3-15.

Cangiano, G., La Volpe, A., Poulsen, P. and Kreiberg, J.D. Plant Physiology, 1993 102 1053-1054.

25 Clarke, B.C., Mukai, Y. and Appels, R. Chromosoma, 1996 <u>105</u> 269-275

Devereaux, J., Haeberli, P. and Smithies, O. Nucleic Acids Res., 1984 12, 387-395.

30

Denyer, K., Hylton, C.M., Jenner, C.F. and Smith, A.M. Planta, 1995 196 256-265

Doherty, J.P., Lindeman, R., Trent, R.J., Graham, M.W. and Woodcock, D.M.
Gene, 1992 124 113-120

Gill, B.S. and Appels, R. Plant Syst. Evol., 1988 <u>160</u> 77-90.

Jahne, A., Lazzeri, P.A., Jager-Gussen, M. and Lorz, H.

5 Theor. Appl. Genet., 1991 <u>82</u> 47-80

James, M.G., Robertson, D.S. and Myers, A.M. Plant Cell, 1995 $\underline{7}$ 417-429

10 Jolly, C.J., Glenn, G.M. and Rahman, S.
 Proc. Natl Acad. Sci., 1996 93 2408-2413.

Kawasaki, T., Mizuno, K., Baba, T. and Shimada, H. Molec. Gen. Genet., 1993 237 10-16.

15

Lagudah, E.S., Appels, R. and McNeill, D. Genome, 1991 $\underline{34}$ 387-395

Lazzeri, P.A., Brettschneider, R., Luhrs, R. and Lorz, H. 20 Theor. Appl. Genet., 1991 81 437-444

Maniatis, T., Fritsch, E.F. and Sambrook, J.
Molecular cloning. A Laboratory Manual., New York. Cold
Spring Harbor Laboratory, 1982

25

Mizuno, K., Kawasaki, T., Shimada, H., Satoh, H., Koyabashi, E., Okumura, S., Arai, Y. and Baba, T. J.Biol. Chem., 1993 268 19084-19091.

30 Martin, C. and Smith, A.
The Plant Cell, 1995 7 971-985.

Morell, M.K., Blennow, A., Kosar-Hashemi, B. and Samuel, M.S.

35 Plant Physiol., 1996 113 201-208.

Morell, M.K., Rahman, S., Abrahams, S.L. and Appels, R. Aust.J. of Plant Physiol., 1995 22 647-660.

Nair, R., Baga, M., Scoles, G.J., Kartha, K. and Chibbar, R.
Plant Science, 1997 1222 153-163

Nakamura, Y., Takeichi, T., Kawaguchi, K. and Yamanouchi, H.

10 Physiologia Plantarum, 1992 84 329-335.

Nakamura, Y., Umemoto, T. and Sasaki, T. Planta, 1996 199 209-214

Preiss, J.

Biology and Molecular Biology of starch synthesis and its regulation. In 'Oxford Surveys of Plant Molecular and Cell Biology., 1991 Vol. 7.' (Ed. B. J. Miflin.) pp. 59-114.(Oxford University Press: Oxford.)

Rahman, S., Kosar-Hashemi, B., Samuel, M., Hill, A., Abbott, D.C., Skerritt, J.H., Preiss, J., Appels, R. and Morell, M.

Aust. J. Plant Physiol., 1995 22 793-803.

Rahman, S., Abrahams, S., Mukai, Y., Abbott, D., Samuel, M., Morell, M. and Appels, R. Genome, 1997 40 465-474

30 Sambrook, J., Fritsch, E.F. and Maniatis, T.

Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed 1989)

Svensson, B.

20

25

35 Plant Mol. Biol., 1994 <u>25</u> 141-157.

Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Bretell, R.

The Plant Journal, 1997 11 1369-1376

5 Wan, Y. and Lemaux, P.G.
Plant Physiology, 1994 <u>104</u> 37-48

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION and

10 THE AUSTRALIAN NATIONAL UNIVERSITY

12 September 1997

と と を行いている 一般的で記録を終めている

¥.

FIGURE 3

FIGURE 4

7

A

5 6

8

9 10 11 12 13

B

1 2 3 4 5 6 7 8 9 10 11 12

- 8

- 4.5

- 2

FIGURE 6

FIGURE 7

1	MLCLTAPSCS	PSLPPRPSRP	AADRPGPGIS	AKSKFSVPVS	APRDYTMATA
51	EDGVGDLPIY	DLDPKFAGFK	EHFSYRMKKY	LDQKHSIEKH	EGGLEEFSKG
.01	YLKFGINTEN	DATVYREWAP	AAMDAQLIGD	FNNWNGSGHR	MTKDNYGVWS
.51	IRISHVNGKP	AIPHNSKVKF	RFHRGDGLWV	DRVPAWIRYA	TFDASKFGAP
01	YDGVHWDPPS	GERYVFKHPR	PRKPDAPRIY	EAHVGMSGER	PEVSTYREFA
51	DNVLPRIKAN	NYNTVQLMAI	MEHSILCFFW	YHVTNFFAVS	SRSGTPEDLK
01	YLVDKAHSLG	LRVLMDVVHS	HASSNMTDGL	NGYDVGQNTQ	ESYFHTGERG
51	YHKLWDSRLF	NYANWEVLRY	LLSNLRYWMD	EFMFDGFRFD	GVTSMLYNHH
101	GINMSFAGNY	KEYFGLDTDV	DAVVYMMLAN	HLMHKILPEA	TVVAEDVSGM
151	PVLCRSVDEG	GVGFDYRLAM	AIPDRWIDYL	KNKDDLEWSM	SAIAHTLTNR
501	RYTEKCIAYA	ESHDQSIVGD	KTMAFLLMDK	EMYTGMSDLQ	PASPTIDRGI
551	ALQKMIHFIT	MALGGDGYLN	FMGNEFGHPE	WIDFPREGNN	WSYDKCRRQW
501	SLSDIDHLRY	KYMNAFDQAM	NALDDKFSFL	SSSKQIVSDM	NEEKKIIVFE
551	RGDLVFVFNF	HPSKTYDGYK	VGCDLPGKYK	VALDSDALMF	GGHGRVAQYN
701	DHFTSPEGVP	GVPETNFNNR	PNSFKVLSPP	RTCVAYYRVE	EKAENLRMKE
751	LLLGAKLLLG	TSMLKPLVSK	TQQMVRRLLV	PKRRLQGGDS	SKKGINFVFO
801	SPDKDNK*			•	

```
RSBEI '
                          *...***pl lp****** **ag*****
MSBEI '
         D4cDNA
PESBEII'
         POSBE '
         meinfkvlsk pirgsfp*f* pkv*sgas*n kic*psqh*t *lkf*sqers
D2cDNA
         Consensus
         MICLISSSS SP-S-APPK- SKS-ADRPSP GIIAGGGNVR
RSBEI
         l..**v*... *p*****g** *tn***pa** rk****v*vv ***..****
         l..**l**qc ka***gv*** ****ataa*v q*d*****ak g**..****
MSBEI
D4cDNA
         ······ ******p*s* prdy****a* *g*..gd***
PESBEII
         POSBE
         w..d*s*t*k *rv*kde*mk h*saisa*lt d**s***pl* ***kt*nigl
         rlsv*p***f ll**l****a ***sf*s*** rg**ia**.. tgygs*****
D2cDNA
         ---SV-SVP- S-RRSWPRKV KSKFSV-VTA -DNKTMAT-E EDV--DHLPI
Consensus
RSBEI
         ********e* ****n**i** *****C**** ******* *********
MSBEI
         ********i* ******** *****gs**e n**s**s*** ********n
D4cDNA
         ******ag* ****s***k *****s*** ******* ***
         lnv*ss**p* ****k**** **h**k***e y****q**a* *****f*r*
PESBEII
         ln***t**p* l****h*** *v***m**** y**p****aq *****f*r*
POSBE
         ****l**ae* ****d*trn* *i****** ***g***** *******
D2cDNA
        YDLDPKLE-F KDHFRYRMKR YLDQKHLIEK HEGGLEEFSK GYLKFGINTE
Consensus
RSBEI
         *g******* ******** ******ak* *****k*** **k*****
         *dg***** *****e** ***d***a** ****k*** **k*d**k**
MSBEI
         nd******* ******* *******g* r*t**n*** ********
D4cDNA
PESBEII
         *dgis**** ******i** ***g****1 h****q*** **q*pdad*n
         *gci***** ****dev** ***g***** m****q*** ****pd*ds*
POSBE
         hg*s***** ***e***** ******g* **a**n*** *******
D2cDNA
Consensus
         --ATVYREWA PAAQEAQLIG DFNNWNGSNH KMEKD-FGVW SIRISHVNGK
         ******** ***T**g*a* ******* **f***** ******
RSBEI
MSBEI
         ******** ***l*.g*** *****l*** ******* *******
         ******** ***hr*d*l* ******* **f***** *****
D4cDNA
PESBEII
         *V******* ***k**n*** ******k* **a**t**a* *****y***
POSBE
         ******** ***r*.h*** **q****** ***t**es** ****l****
D2cDNA
Consensus
         PAIPHNSKVK FRF-HG-GVW VDRIPAWIRY ATVDASKFGA PYDGVHWDPP
RSBEI
         ac****** ******* ****** *****
MSBEI
         a****t*** **s**a*** ******* k*a***** *******
D4cDNA
         l****q**** ****k*** *******s **r*ns*** **d*****e
PESBEII
POSBE
         P****h**y* *****r*** *******ss **r*ns**** **d****k*
         s******n** ******v*** ********** kl*ag***** p*****cl**
D2cDNA
Consensus -SERYVFKHP RPPKPDAPRI YEAHVGMSGE EPEVSTYREF ADNVLPRIRA
```

```
RSBEI
MSBEI
D4cDNA
                 ******* *****ilcf* w****.*** ******
PESBEII
                 ******** ******* W****Kp*** ******
POSBE
                 ******** ******g** *****.*** ****y*n*** *******
D2cDNA
                 t*******g *****ds*** ****** ******** *******
Consensus
                NNYNTVQLMA- IMEHSYYASF GYHVTN-FFA VSSRSGTPED LKYL-DKAHS
RSBEI
                 ********* ******** *****************
MSBEI
                 D4cDNA
                 ***n***** ******** ******* s*q****a** ******
PESBEII
                 анаралука анавалана праволого каланана и правольно в правольно в правольно в праволения в право
POSINE
                 ******** ******** ******* dir***Afee Keeli***lige
D2cDNA
Consensus
                 LGLRVLMDVV HSHASNNVTD GLNGYDVGQS TQESYFH-GD RGYHKLWDSR
                         ***** ******** ******* ****** *****
RSBEI
                 ******* ******* ******
MSBEI
                 D4cDNA
PESBEII
                 *******ks. s******* ****k**** ******* ******
POSBE
                 ******** ******* ******* *V****** *N*******
D2cDNA
                 LFNYANWEVL RFLLSNLRYW -DEFMFDGFR FDGVTSMLYH HHGINMGFTG
Consensus
RSBEI
                  ******** ******* *******
MSBEI
                 ******g*** ******** ******j** ******* ******g**
D4cDNA
PESBEII
                 d*n****e** ******** **s*v*di** ***d***** ***g*g***s
POSBE
                 **n****ea* ******** **n*i**i** ******* ***g*g***s
                 *****ig*** n***f**** ******l** **i***v*** *******
D2cDNA
Consensus
                 NYKEYFSLDT DVDAVVYMML ANHLMHK-LP EATVVAEDVS GMPVLCRPVD
                  RSBEI
                  ******** ******* ****** ****** **g*.*ah** ********
MSBEI
                  D4cDNA
                  *V****** *****k*** ****k*** **k*.*sln* ******
PESBEII
POSBE
                  D2cDNA
                 ***1*****q **t****** **e**g*qq* ***sv*sq** ****p**f*
Consensus
                 EGGVGFDYRL AMAIPDRWID YLKNKDDSEW SMSE-I--TL TNRRYTEKCI
RSBEI
                  ******** ******** ******* *****
MSBEI
                  ******** ******* *******
D4cDNA
                  ******* ***** ****** ****
PESBEII
                  POSBE
                     D2cDNA
                  ****rqnh** **s**m**** **w*t*s*** a*d*d**** *a******
Consensus AYAESHDQSI VGDKTIAFLL MDKEMY-GMS DLQPASPTID RGIALQKMIH
```

A Company of the Comp

```
RSBEI
MSBEI
D4cDNA
PESBEII
         ******** ******* ******* **g****** lt**n****n
POSBE
         D2cDNA
         FITMALGGDG YLNFMGNEFG HPEWIDFPRE GNNWSYDKCR -RQWSLVDTD
Consensus
RSBEI
         ********** ********* ****** ********
MSBEI
         ******** ******** *******
D4cDNA
            ***** ******** ****** *****
PESBEII
         ********* *r***l**** **i*a*t*** **st*n**** ****
POSBE
         ********* *r***s*** ****a*g*** **s*d**n** ********
D2cDNA
         ....***** v**vdtps** c*****n*t a*h*****g sa*tk*....
Consensus
         HLRYKYMNAF DQAMNALD-K FSFLSSSKOI VSDMNEE-KV IVFERGDLVF
RSBEI
         ********** K******** ******* **V****** *****
MSBEI
         ******K*** ******** ******* **V****** *******
D4cDNA
         PESBEII
         ******en** ******** ******* *te***** ***a*q****
         POSBE
D2cDNA
         .*thlragc* *p....a** stasc**......*gpanqapf akpfig*pgc
         VFNFHP-KTY EGYKVGCDLP GKYRVALDSD AL-FGGHGRV GHDVDHFTSP
RSBEI
MSBEI
         有意意表示表示表示 未完全的
D4cDNA
PESBEII
         ******* ***** *********** ****h*****
POSBE
         ******** **g*qipskc cllrehvwli telmnacq*l kitrq*f*vs
         ifcc*lfkge *.....
D2cDNA
        EG-PGVPETN FNNRP----
                          ------ ----NSFKV LSPPRTCVAY
RSBET
         *...****dr ****rggava s**i.vtey. ....***e*t sgetisggwk
MSBEI
         *...****ag agr**hakae t***sp*es. ....**k*s ra....*ske
D4cDNA
         *...****ka *n***ke**l ga*l*lgtsm lkp**sk*qq mvrrllvpkr
PESBEII
         *...*****q **snnpn*gs *ee**a*adt dvar*pdvs* e*..ed*nld
POSBE
         *yqqp*sr*v trnlkiry*q *sv**tnacq klk*trq*f* v*yyqqpilr
D2cDNA
         Consensus
         Y---RVDER- EELR---LL- -GKTL-A--- ----IDVTA- -S----S---
RSBEI
         gs*kd*cg** *mk***r*** e*c*d.
MSBEI
         dk*atagg** *wk*arqp** q*t**.
         *lqgg*ss** *in***g*p* k*n**.
D4cDNA
PESBEII
         ***dnsedav dagilkver* vvgdn*
POSBE
         **trklkdsl stnist*...
D2cDNA
Consensus R-E--D--KK G--FVF-SSD -D-K--
```


FIGURE 10

DOTPLOT of: d10838.pnt Density: 12614.77 February 18, 1997 11:43

COMPARE Window: 21 Stringency: 14.0 Points: 20,788

FIGURE 11

1	GGGTGGCGGG	TCGGGCGGCA	AGGCGCGGGG	CGGCGGGGCG	GCNCGGGGCG
51	GCNGCGGCGĞ	CGCGGGCGGC	AGCGGCGGCT	AGGGTTTCGC	GGCGGCGGCG
101	ACTTGGGCTG	AGGCGGGGCA	CGGGCTGCGG	CTTTAAAGGC	CGGCCAGGCT
151	GAGGTGTCCG	GGTCGGACAC	GGCCCGTAAG	GCGGTTGACT	ТТАААААТТ
201	ATAATTCGGA	CATGCAAAAA	AGTAAGAAAA	GAAATAATAA	ACGGACTCCA
251	AAAATCCCGA	AGTAAATTTT	TCCCCATTCT	TAAAAATAAG	CCGGACAAGA
301	TGAACATTTA	TTTGGGCCTA	AAATGCAATT	TTGAAAAATG	CGTATTTTTC
351	CTAATTCGGA	ATAAAATCAA	ATAAAATCCA	ААТААААТСА	AATATTTGTT
401	TTTAATATTT	TTCCTCCAAT	ATTTCATTAT	TTGTGAAGAA	GTCATTTTAT
451	CCCATCTCAT	ATATTTTGÁT	ATGAAATATT	TTCGGAGAGA	AAAATAATTA
501	AAACAAATGA	TCCTATTTTC	AAAATTTGAG	AAAACCCAAA	TATGAAAATA
551	ACGAAATCCC	CAACTCTCTC	CGTGGGTCCT	TGAGTTGCGT	GAAATTTCTA
601	GGATCACAAA	TCAAAATGCA	ATAAAATATG	ATATGCATGA	TGATCTAATG
651	TATAACATTC	CAATTGAAAA	TTTGGGATGT	TACATATAAC	TCAAATTCTA
701	TAATTATGAA	CACAGAAATA	TTAATGTAGA	ACTCTATTTT	GTTTTGAAAT
751	TGTATTATTT	TTTAGAATTA	GTCTAGAGCA	TTTCGTGAAC	TTGAATCAAA
801	CCTTTAAATA	AAACAAAGCA	TAAAAATGAC	AAATTCACAT	ATGAAATAAC
851	TTGTGTTACA	TAGATTTATT	ACAATAGCGT	TGTATGTGTG	TATGTGTGCG
901	TGAGTGCCTA	TGGTAATATC	AATAAATATC	TTGATAGATG	TTTCTACAAT
951	TCACGGGTCT	AACTAGTAAT	GCAATGCAAT	GCATGCTAAA	AGAATAGAAC
1001	CTTAGTTTCA	TTTAACTAAC	AATTTTCAAA	TGTATGAGTT	GCCAACAAGT
1051	GGCATACTTG	GCACTGTTTG	TTTGTTCATT	TTATGGAAAG	TTCTTCTCTT

1101	TTTACATGGT	TTAGATTCCA	GCATGTAGCC	ACAAAATATG	ATTGTCAAAA
1151	GATAATACCT	CATAATACAA	TTCCACTAAA	GTCACCTAGC	CCAAGTGACC
1201	GACCTGATCC	TGAAATAAAA	TCAGAAGATT	TGGTGTCATC	ATCATGACAA
1251	CAAATTATTA	GGCGGTAGAT	CTTGTGGTAG	TACTCATGAT	GTAAAATTAT
1301	CAAGAGGGAG	AGAATGTATG	GAGATTTATG	TGAAGTACAT	CGTACACCAG
1351	ACATAGTTGA	CACATCGATT	TTTTAAGATA	CATTTGGACG	CGCCTTGTGG
1401	GAGTGTAAAG	TACTACCATG	TATTAGAAGA	GGTGAAATGA	GAAATGCCAT
1451	AGCTAGCAAG	TAGGCCTAGT	TAAGGAAATT	CTTCCTTAGA	NTCCCCTTCT
1501	CCCGAAGAGT	GAAGTGCTTC	AACTAAAGGT	TAGACCCACT	TAAAAAATGT
1551 CA	CTTTGAAT CTTT	GCTTCC CTTGT	CGTAA TCCTGTC	CAT TTGTAGGT	CC
1601	CTCGGATCTG	AGCCCTTTCT	CCAAGCCCTT	CATTGGATTC	CCCTGGATGT
1651	CTTTTTGTTA	CATTTTATTG	AAGTGAGAGT	GAATTATTAT	ATGCCCATAG
1701	GAGGTGGGAT	ATAAAGGCTG	TTGGTATTCT	GCACCATACA	TGCTAGAGŢA
1751	GGGAGGAGAG	GCTGGTGCAT	GATACATGGT	GGACTAGCCC	ATATATTTAC
1801	CCCTCCCCA	CCCACNTAAC	AAGTTTTTTT	NTATTAGGTC	TTCATCCTCT
1851	GATTTGTTTT	TCTGTTAGCC	CATTCTTCAT	CATGGACTTA	TTAATCATGA
1901	TTAGTTTCTT	GGATTTTTGT	TTACTTGACT	TGAATTTGAC	AATGTGCCTC
1951	ATATATGGCA	TGTGGGACTG	ATAGGAAGAT	ATATTCTCAC	AACATTAACT
2001	TAAAAAGGAT	TATTTTTTTG	GTGCAGTCGT	AAAGAAAACT	ACTTTCTTTT
2051	ATGCTAAAAG	TTATTCAAAC	ATAGATTTAT	AAACAAAGGA	TATCACCATG
2101	CATGACCATG	CGCTCTCTCA	TGTTTACTCT	AGAAACCATA	TATCTCTTTG
2151	TTGCAAAATA	TTTAATCTAT	CCTCCTTGTT	TCTGGGAATG	AGTCGGGGAA

2201	GGTAATCTTA	GGGAAGGTTA	AAGTGAGGCA	AGTAAGAGCA	ACTCTAGCAG
2251	AGTCGCGATA	TGCCCAATCG	CCATAATGCC	AATATGGCAT	TTTTGGCCCA
2301	AAATGGCACT	TCAGAAGAGT	CACCATATCC	CTTCGGATAG	CCATAATTTA
2351	GGGAGCTCGC	TCCACAAACA	AGCTTCGAGC	CTCCAAATAT	GGAGGCCATG
2401	GATTCGTTGT	TTGGCACTCA	CTCCATATCC	AACCGCAAGC	GCATGCATGA
2451	GGGAAGTTTT	AGCTTCTTCC	TCCTTGCGCC	AACGCCGGGA	TTTTACACAG
2501	CGCATTACAG	GTACATGAAC	CAGCATGCAC	AGATAATCAC	CGACGAGTGG
2551	GGTGACAAGA	AGGATAAGCA	CCCTCCCATT	AGTGGTGCGC	CCACTCCCCT
2601	CAAATTCATG	AGGCAGCCAT	TTGGATGGTC	ATCGCGTGGC	ATAAGCTCCG
2651	АСТАТААААТ	CTCAACGGCA	TCACCAAAAC	CATAGCTGCC	GCCTCCCCCT
2701	TCCTCGGCAT	CACCTCCCCA	AGACATCTCC	TCCCCTCTAT	GCCACAATGT
2751	CATCATTATG	GAGAGACACA	ACNTACTGGN	TAAACCGCAT	ACCCAATCAT
2801	GGTTTACCGG	CAGTGCGAAC	CCCACCTTCC	TCCCACGATG	GTAGGATATT
2851	CTCCTCCTAG	AATGGCGCGT	GTGGCGCTTC	CTCCTCCCGA	GGCTGATATG
2901	TCGGCTCCCA	TGATGGCGTG	CATCATTGAT	TTGGCGCTTC	GGGTCCATCA
2951	TACATGTTAA	CGAGGTCATC	CCCATTGATG	TCGTTGGTCC	CCTTGCCCCC
3001	CAGTCGGATC	CTGAGGACCC	GTTCGATGTC	GCAATGCGAC	TCTCCAAACT
3051	CAAAGCTCAC	AATGAGGAGT	ACGTCCTCTA	GGAGTTCCGC	CCCGCAACCA
3101	TCTATAAGGA	GGAGCAACGA	TAGCTCTCCC	CTACGCCTTC	CTCGACGATC
3151	TCTCTTAGGA	GGACAACGGC	TAGACGACGG	CGGCGGCGGC	GAAGGTACTG
3201	CAGGTAGTAG	AACATAGCAA	TGTCGAATGG	CGACATTGCA	TATTTTGAAA
3251	ATGTCGCTCA	ACGACTTTTG	AAGTCGCAAA	TAAAATGTAG	TGTGACTACT

3301	TTTGGCCAGC	AATATAAGTT	TATCACATTT	GATAATGATT	TGAACCGGTG
3351	TGGTTCAACT	AAATGTACCA	TAAATTGAAC	ATACAAATTT	TTAGCAAATG
3401	AAAAAAGAAA	CAAGTAAGAC	CACAAATATG	AAAGCCGCAT	ATCGCGACTA
3451	TGTGTTTGAG	CCGCAGCTGC	CÃÃĞTÀCA'I'A	TGAAGCGTAC	TCCATATGAC
3501	ATACGACAAC	CATACATATG	AAGACTCTAC	TAGAGTTCTC	TAAGGCCGCT
3551	TTTAGCGCCT	TTCGTGCAGT	GGTGCCCATA	GGGAGTGAGG	GTAGTTGGAC
3601	TGTTCGTTTC	CCCTTTTTTC	ATTTCTTTGA	AATCTATTTT	ATTTTTTTC
3651	TCTTTTGTAG	GTTTCCCAAA	TTTATATACC	ATTTTTCTGT	TTCTCGCTAT
3701	TTTTTGTTGT	TATATTCTAG	TTTCATATTT	TTCTATTATT	AATTTGTGTC
3751	TCTTATGAGA	AGTCCAGACT	TGCATATGGA	GGTGCACACA	CAAACATATA
3801	AAGTATAAAT	ACTAACTTGA	GAAGTATGTT	TGCGTGGTCA	AAAAAACATC
3851	ATCAAAACCT	GCCAATATGA	GATATAGTTT	TGAATATATC	AATATGAGCA
3901	ACGCAACCAT	TTAAAATGTG	AACAATTGTT	TTTTTAGAAA	AAATATAAGA
3951	AATAACTCCA	ACCCAGCCAA	ACCACATGCT	ATACACTTGC	TCCATATGAA
4001	ACCATGTTTG	CTATTGGGCA	GTTGCCTGAA	ACCGAAAGTA	ATGTTAGCCG
4051	TTTTTCTATT	CAAAGAAGAA	GGAGAGTCGA	GGTGACGCGA	TGCTTAGACG
4101	NTGAGATGGG	GATGACCACA	ACGTCCCTAC	AGAGACCTCA	CCGGAGATGG
4151	GGACATTGCA	GTTGACACGA	GAGCGGTGAG	GGGCTGCGAT	GCGTGTGCGG
4201	CAACATGTGG	CGAGGCGGAC	GTCGGGCTGG	CAGGTAGGGG	GGAGGGGGAA
4251	GGACCGGGGG	AGGAAGAAGA	GGAGTAGCCT	GCAAAACATG	GTACACCAGT
4301	TTTCTGCCCT	ACGAAAACCT	CATTTCATTC	CCCCACCCTG	ACAAGCAACA
4351	ACCAACCATC	GCAGTCCCAC	ATGTCCCTCT	GGTCTTTGCA	AAAAGTAATT

4401	GTTCTTGCTG	GACAGCGCAA	AGAGTAAACT	TTTGTTAGTT	TTCATTTCTA
4451	GAAAAAGCAA	TCCTTTTATA	GTTCTTTTGT	GAAAGTAATG	CTTTTATAGT
4501	GATTGGGATG	TTCTTTTAGA	GCAAATATCT	TCTTTTTTT	TTAGGGAAAA
4551	GAGCAAATAT	CTTCCACTTT	TCACAAAACT	GACGAAGGCT	GAAAGTGGCG
4601	AGACANGTGA	GGGCCCATAG	CTTTCGTCCG	GCCCAGCGGC	GCACGACCGT
4651	CCACGTGCAC	CCCGGCCCTC	CCGGGCCCGC	AGATCCGNTT	CTCCCTCGCC
4701	CCCGTTTCCC	CCTCCCTCCC	TCTCGTTGCT	TCCACTCCAC	TGTTCTCCTC
4751	TTCCTGTCCA	AAGCGGCCAC	GGACCGGAAA	AAAATCACGC	CTTTCCGTTG
4801	GGTCTCCGGC	GCCACACTCC	TCCTCCGGCC	GATATAAAGC	GCGCGGGGCC
4851	ACGGGCCCGG	CGCAAAATGG	GATTCCCGTC	CGCCGCCATG	GAGGAAGATG

1	ACGGGCCCGG	CGCAAAATGG	GATTCCCGTC	CGCCGCCATG	GAGGAAG <u>AT</u> G
51	TTCTGCTTCA	CCGCCCCTTC	CTGNTCGCCA	TNTCTCCCGC	CGCGCCCNTC
101	CCGTCCCGNT	GCTGACCGGC	CCGGACCGGG	GATCTCGGTG	AGTCAGTCGG
151	GATCTTCATT	TCTTTTCTTT	TCTTTCGTTT	CCGGCNTCCG	TTCTGCCGGG
201	GTTTCCCTGA	TGCGATGCCG	CGCGCGCGCA	GGGCGGCGC	AATGTGCGGC
251	TGAGCGCGGT	GCCCGCGCCC	TCTTCGCTCC	GCTGGTGTGG	CCGCGGAAGG
301	TGAGCCCTCT	CCCCTGTCTA	CCCAGATTTG	CGACCGTGAT	CCCCTGTTGT
351	CGCCGGGCAA	ACGGAATCTG	ATCCACGGTG	GTTATTGGAA	ATAGTATATA
401	СТАСТААТАА	ACTTGAGGCT	GGGATTCGTC	CACTGAGGAA	CAAGTGGATG
451	CGATTTCGAT	TGGATTTCTC	TGCTTTATGC	GATCCGTACG	CAGAATATCC
501	CTCCTGCAGT	GTCTCAACCG	TATTACTGGA	TGTACAACCC	AAATGTGTAT
551	AATCTGTGCT	GAATGTATCA	ACCAATAATT	GCTGCATTGT	GAAAACATAA
601	TCCTGTGTTG	TGTCTCTACT	ACTTGTTCAG	TCCTGATCTG	CCGCTTATCC
651	TAACTTTTGT	TCATTTATGG	AAGGCCAAGA	GCAAGTTCTC	TGTTCCCGTG
701	TCTGCGCCAA	GAGACTACAC	CATGGCAACA	GCTGAAGATG	GTGTTGGCGA
7 51	CCTTCCGATA	TACGATCTGG	ATCCGAAGTT	TGCCGGCTTC	AAGGAACACT
801	TCAGTTATAC	GATGAAAAA	TACCTTGAC	AGAAACATT(GATTGAGAAG
851	CACGAGGGA	GCCTTGAAG	GTTCTCTAA	A GGTTAGCTT	TGTTTCATGT
901	GTTTGAAAC	A ATAGTTACA	CTTGTGGCG	r ccgcagcac	A AAAGACATAA
951	TGCGACTCT	TTTTGTAGG	C TATTTGAAG	TTGGGATCA	A CACAGAAAAT
1001	GACGCAACT	G TGTACCGGG	A ATGGGCCCC	r gcagcaatg	T AAGTTCTAGT
1051	GTTGTCACG	C AACTAATTG	C AATGGTCGT	T GGTTAACTT	A .TGAAGTGCTG

1101	ATGAAACTGT	CTTAAGAGTT	TATGGCTTGT	CTTTTCTGAT	TCTAGCTAGT
1151	AAAGAGTAGA	TAAATATGAA	ATATGTTTTC	CCTTTTCTAG	TTATGGTCAT
1201	GGTTGGCTGG	TATTCATTTC	TTTTATGGCA	ATACTTGCTT	CTAACTATCT
1251	TTAGTAGATT	CATGTATTTA	CTTGTGAGTC	ATTACTTTAT	GGGTGTAGGG
1301	ATGCACAACT	TATTGGTGAC	TTCAACAACT	GGAATGGCTC	TGGGCACAGG
1351	ATGACAAAGG	ATAATTATGG	TGTTTGGTCA	ATCAGGATTT	CCCATGTCAA
1401	TGGGAAACCT	GCCATCCCCC	ATAATTCCAA	GGTTAAATTT	CGATTTCACC
1451	GTGGAGATGG	ACTATGGGTC	GATCGGGTTC	CTGCATGGAT	TCGTTATGCA
1551	TCCACCTTCT	GGTGAAAGGT	CTACTTTTAG	TGGCTCGAGA	GCAAGAAATC
1601	TAAGTAAAAC	CCACACAATT	AACTTACATT	AATGTGGAGA	CATGATACTT
1651	TTATTGCTCG	TTTTGCAGGT	ATGTGTTTAA	GCATCCTCGG	CCTCGAAAGC
1701	CTGACGCTCC	ACGTATTTAC	GAGGCTCATG	TGGGGATGAG	TGGTGAAAAG
1751	CCTGAAGTAA	GCACATACAG	AGAATTTGCA	GACAATGTGT	TACCGCGCAT
1801	AAAGGCAAAC	AACTACAACA	CAGTTCAGCT	GATGGCAATC	ATGGAACATT
1851	CCATATTATG	CTTCTTTTGG	GTACATGTTG	ACGAATTTCT	TCGCAGTTAG
1901	CAGCAGATCA	GGAACCCAGA	AGACCTCCAA	TATCTTGTTG	ACAAGGCACA
1951	TAGTTTAGGT	TGCGTGTTCT	GATGGATGTT	GTCCATAGCC	ATGCGAGCAG
2001	TAATAAGACA	GATGGTCTTA	ATGGCTATGA	TGTTGGGCAA	AACACACAGG
2051	AGTCCTATTT	CCACACAGGA	GAAAGGGGCT	ATCATAAACT	GTGGGATAGC
2101	CGCCTGTTCA	ACTATGCCAA	TTGGGANGTC	TTACGATTTC	TTCTTTCTAA
2151.	TCTGAGATAT	TGGATGGACG	AATTCATGTT	TGATGGCTTC	CGATTTGATG

2201	GGGTAACATC CATGCTATAT AATCACCATG GTATCAATAT GTCATTCGCT
2251	GGAAGTTACA AGGAATATTT TGGTTTGGAT ACTGATGTAG ATGCAGTTGT
2301	TTACCTGATG CTTGCGAACC ATTTAATGCA CAAACTCTTG CCAGAAGCAA
2351	CTGTTGTTGC AGAAGATGTT TCAGGCATGC CAGTGCTTTG TCGGTCAGTT
2401	GATGAAGGTG GAGTAGGGTT TGACTATCGC CTGGCTATGG CTATTCCTGA
2451	TAGATGGATC GACTACTTGA AGAACAAAGA TGACCTTGAA TGGTCAATGA
2501	GTGGAATAGC ACATACTCTG ACCAACAGGA GATATACGGA AAAGTGCATT
2551	GCATATGCTG AGAGCCATGA TCAGGTATGT TTTCCCTCCT TTGTCGCTGT
2601	GCGTGAGTAT GTGTTCTTTT TTTATGGGGC ACTGGTCTAA GAACATACAG
2651	TTCAAAGGTG AGACACTTTC TTTGCCTGGT AGACAAATTT GAGAAATAAA
2701	CATTTCGCTT GATGACTTTT AGTTGCTTCA CAAGTTCGAA TTAAGTTAGT
2751	TATATTCTGA TAACTAGTGA TAGTACCCAC TAACCAGCTA TTACGGACCA
2801	TGTAAGAATG TCCGAAGACT GCAGTTATAT ATCGTTGACT TTGTGTTCAT
2851	CTATTGAAAC AACTTAGTAG TTAACTTTCA CGCAAATTTT CAGTCTATTG
2901	TTGGCGACAA GACTATGGCA TTTCTCTTGA TGGACAAGGA AATGTATACT
2951	GGCATGTCAG ACTTGCAGCC TGCTTCGCCT ACAATTGATC GTGGAATTGC
3001	ACTTCAAAAG GTTCGATTCG TTTTAAGTAT TCCTGAATTT GATGTTCTAG
3051	TTCCAGACGA GTATTGTAAT GTTCGTTGTT ACTCAGAGTT CTGCTTAGTC
3101	CTTGAAGATA ATGTATTCCA GTCCCTTTTG GTACATTTGG CTTATTTTGT
3151	TACAAATATT TCAGATGATT CACTTCATCA CCATGGCCCT TGGAGGTGAT
3201	GGCTACTTGA ATTTTATGGG TAATGAGGTA ATATCTGGTT ATCTGTCAAA
3251	ACTTATTTCT GATCAATATG TTTCGGGATT CCCTCGAAAA AAATCCTTTG
3301	GGCAGGGCGA AAAGTTTAAA CATCTGTTTT CTATGATAGC CAAGTACTCC
3351	CCAGCTATTT CCATGTTATC ACGTATCATT TAGCTGTGCC GGTAGTTAAT

3401	CTTTATTCTA ATTCATTGTT GTTTTTTAGC GTGGCAGTCT ATTGTTGGAT
3451	CCTCTTATTC CAATTACATA TATGCCGACA TCACACACTT ATGAATATTC
3501	CCTGTTTAAA AGATTTTTAT TTTATACCAA TGTTTCTCCG TAAATGATGC
3551	AAACATGATA GAGATGTTAG CATGTCTTTC TTAACCTACT CATGTTTTAC
3601	ATATCACGAC AAGCTTCTTG CAGAAAATCA GCAGTATATG GCAAATTGCT
3651	GCAACCTGAC. AACGTTTATA TCTGTTTTCT AACTCATACT GACGGTGCAA
3701	TTTCCTTTTA GTTTGGCCAC CCAGAATGGA TTGACTTTCC AAGAAGAAGG
3751	CAACAACTGG AGTTATGATA AATGCAGACG CCAGTGGAGC CTCGCAGACA
3801	TTGATCACCT ACGATACAAG GTTATGCCTA TGTATATTTT TACAGTTTCT
3851	GGTCTGGTAG CTCTCTTGGG ATCTTGACCT CACTTAGTTC CTTCATCTCT
3901	GACTGTAGCT TATTTACACT GTGTTCCAAC TTCTGTCTTG TGGATAAATT
3951	CTCCCTTCTA ACGTTTCATA TTAAGCCTTT CAAACTAAAC TAAATTGCTG
4001	ATCTACTACT AGTTGCTCAG TACGATGACC AAATCTTGCC TGTGGTAACC
4051	TAGTAATTTT CTTGATTCTT ACACATTAGT GATATGCAGT GCATACATTA
4101	TCCATATAAA TTGACATTGC AATTTCCCAA ATATTATTTG AAGGCTGTGT
4151	TCTTTTGTTA ACAGGAAGTT ATTTTCTCTG CATCTGATAA ATAATAATAG
4201	CCTTTCACGA TTTTTCTCAT ATTTTATCCA ACTTTTCTGC ATTCAAGCAT
4251	TTTTTGTTTC TCGCCTAACA TATATAATTT GAACAGTACA TGAACGCATT
4301	TGATCAAGCA ATGAATGCGC TCGACGACAA ATTTTCCTTC CTATCATCAT
4351	CAAAGCAGAT TGTCAGCGAC ATGAATGAGG AAAAGAAGTA GTTAACTATA
4401	CAATGTTTAG TCAGGGCAGC TGTTGCATCA TTTGATTCAC TCCTACTCTT
4451	AAGAATAGCA ACTCTGACTT GTGCGTTTTA TGTTACCAAA TAAGTTGAAA
4501	CCGTATCTGT TTGATATGAA CCATTGTTGT CTCAAAATGG GCTATGGACT
4551	CAATCCAACT TCCTTTCCAG ATTATTGTAT TTGAACGTGG ANATCTGGTC

4601	TTCGTCTTCA	ATTTTCATCC	CAGTAAAACT	TATGATGGGT	AACTGATCTC
4651	TTGCAAGCTT	TGCCTTTCAA	TATTTCTTCT	GCTTAATGAC	TAATGTGCTT
4701	AATCTCGTTT	CCACTTTTAA	AACACGCAGT	TACAAAGTCG	GATGTGACTT
4751	GCCTGGGAAG	TACAAGGTAG	CTCTGGACTC	TGATGCTCTG	ATGTTTGGTG
4801	GACATGGAAG	AGTAAGCAAT	GTTAATGATG	TTCAAGATCT	<u>ĠŢŢŢŢĠĊĸ</u> ĸĊ
4851	ACTATGTTCT	TCTATAGAAG	GGGCCATCAA	GGCTGCATCA	GATAATCTTA
4901	TTTGCAGTGT	TGATCTGTGC	TGCATCGCAG	GTGGCCCATG	ACAACGATCA
4951	CTTTACGTCA	CCTGAAGGAG	TACCAGGAGT	ACCTGAAACA	AACTTCAACA
5001	ACCGCCCTAA	CTCATTCAAA	ATCCTGTCTC	CATCCCGCAC	TTGTGTGGTA
5051	ATGCTAATTA	CTAGGAGGAT	TTAGTAACAA	TAAATAAATA	ACAGCAAAAG
5101	ATATCTGCAG	TACGATCTCA	CAAAATGCTC	TCTTGCCAGG	CTTACTATCG
5151	CGTCGAGGAG	AAAGCGGAAA	AGCCCAAGGA	TGAAGGAGCT	GCTTTCTTGG
5201	GGGAAACTGC	TCTCGGGTAC	ATCGATGTTG	AAGCCACTGG	CGTCAAAGAC
5251	GCAGCAGATG	GTGAGGCGAC	TTCTGGTTCC	GAAAAGGCGT	CTACAGGAGG
5301	TGACTCCAGC	AAGAAGGGAA	TTAACTTTGT	CTTTCTGTCA	CCCGACAAAG
5351	ACAACAAATA	AGCACCATAT	CAACGCTTGA	TCAGGACCGT	GTGCCGACGT
5401	CCTTGTAATA	CTCCTGCTAT	TGCTAGTAGT	AGCAATACTG	TCAAACTGTG
5451	CAGACTTGAA	ATTCTGGCTT	GGACTTTGCT	GAGGTTACCT	ACTATATAGA
5501	AAGATAAATA	AGCGGTGATG	GTGCGGGTCG	AGTCCAGCTA	TATGTGCCAA
5551	ATATGCGCCA	TCCCGAGTCC	TCTGTCATAA	AGAAAGTTTC	GGGCTTCCAT
5601	CCCAGAATAA	AAACAGTTGT	CTGTTTGCAA	TTTCTTTTTG	TCTTGCATAG
5651	TTACATGATA	ATTGATGCAT	' ATTGCTATAA	GCCTGGATTG	CATCTTCTTT
5701	TGCTAATAAC	TGCAGGGCCA	AGAAAGCCTA	GATTGTATCT	TTTTTTGCTA
5751	ATAACTGCAG	TGCTGGGGAA	GCTTCAGTCC	TTGTTTCCGT	TCTCGAGACA

5801	AGGCGTCATG	TTTGGCGCAC	AAAGGTAAGC	CATCATCTTA	TCAAGTCCCA
5851	AAATTCTCTG	GTTGAAAGAA	ACCATCACTA	ACTTGTTCCA	GGTGTTGGTT
5901	CCTCCACAAC	CAAAAGGCGA	CCATCGTCGT	CATCATCGCT	CACAGCACTG
5951	ACCATCGAAG	CCACGGTGGG	CATGANAANT	GCGCATCGCC	CAAGACTTGG
6001	GACCGTTTCA	AAANTATCAC	AAACTGCCAT	GGNCATCTTC	TGCCAAAGGC
6051	TGCACTGCAC	CTTTGGCATG	AACAGAAGCA	ANNCAGGGGC	TTGGAACTGA
6101	ACNGCCGAAA	ATAAAGTCAA	NACCGGCTGG	GCCGGATTGA	AAGGGGAAAC
6151	GNCCAAAATC	CACTTNAATT	TGAATGGAAG	GANGGAATGG	TTCTTGCTGG
6201	TNTTCAACTC	TGCANGGCTT	CCNCTCTGAA	TTTCACACGG	ANGNCCATT

1	GCGACTTCTG	GTTCCAAAAA	GGCGTCTACA	GGGAGGTGAC	TCCAGCAAGA
51	AGGGAATTAA	CTTTGTCTTC	GGGTCACCTG	ACAAAGATAA	CAAATAAGCA
-01	CCATATCAAC	GCTTGATCAG	AACCGTGTAC	CGACGTCCTT	GTAATATTCC
L 5 1	TGCTATTGCT	AGTAGTAGCA	ATACTGTCAA	ACTGTGCAGA	CTTGAGATTC
201	TGGCTTGGAC	TTTGCTGAGG	TTACCTACTA	TATAGAAAGA	TAAATAAGAG
251	GTGATGGTGC	GGGTCGAGTC	CGGCTATATG	TGCCAAATAT	GCGCCATCCC
301	GAGTCCTCTG	TCATAAAGGA			

Genomic clones from *T. tauschii* for SBE-II

EcoBI EcoBI

FIGURE 15

N-terminal sequences of cereal starch branching enzymes

					ı
7	7		S	>	
7	-		Ь Ч	လလ	1
7	0		<u>م</u>	4 4	
	0		Σ	7 7	i
-	∞		Ö	D	l
	7			Q Q	l
-	۰	>>>	S	S S	
	~	国の口	万	田田	1
	4	田口に	5	5	1
_	۳	> m >	4 ш	Ωш	l
_	7	> 4 <	₹ 🛋	ਂ ਖ	
_	_		-	>>	
_		`> ∢ <	I X	ן Z	
9 1 1 1 1 1 1 1 1 1 1 1 1		$\Sigma \Sigma \Sigma$	E >	· > >	
5 6 7 8		H H H	- . ,	, ∢	
7		∠ ×	4 ш	XX	ļ
ý	-	ZQC	ם י	₽	
٧,		发 段 E	i) o	ЬР	
4		R P		S A	
m		44	ک د	4 4	
1 2 3		For	- 4	< <	
-	<	4>		< <	ļ
Protein		RICEBEI [®] WBE-I _{AD}	MAIZE BEI ^c RICEBEII	^D WBE-II MAIZE	BEII®

A N-terminal amino acid of the mature polypeptide. B Kawasaki et al. (1993), C Babu et al. (1991),

Residues in the wheat sequences showing identity with the respective maize or rice branching enzyme isoforms are highlighted in bold text.

^D Mizuno et al. (1993),^B Fisher et al. (1993)

	TICCCTTTTTTTTTTTCCCNC2C2ATCCCCCATCATTTT
	1+ 60 AAGGGAAAAAAAAAAAACCCNCCCCTACCGGACAACCTACNACAAGGGGTTACTTAAA
a b c	F P F F F G ? G M A C W M ? F P N E F - S L F F S L G G G W P V G ? C S P M N F - P F F F L W ? G D G L L D ? V P Q * I S -
	CCATGGAGTGAGAGAGATAGTTGGATNAGGGATCGCGNITCCNGGAACTGTATTTTTTTC 61+ 120 GGTACCTCACTCTCTCTATCAACCTANTCCCTAGCGCNAAGGNCCTTGACATAAAAAAAG
a b c	PWSERDSW?RDR?S?NCIFF - HGVREIVG?GIA?PGTVFFS - ME*ER*LD?GSRF?ELYFFP-
	CCCNGCGGGGAAATGGCGTTAGTGTCNACCCAGGCCCTGGTGTTACCACGGCTTTGATC
	121+ 180 GGGNCGCCCCTTTACCGCAATCACAGNTGGGTCCGGGACCACAATGGTGCCGAAACTAG
a b c	P?GGNGVSV?PGPGVTTALI - PAGEMALVSTQALVLPRL*S - ?RGKWR*C?PRPWCYHGFDH-
	ATTCTTCGTTTCATTATATATTTTCTCATTCTTTTCTTCCTGTTCTTGCTGTAA 181+
	TAAGAAGCAAAGTAAGACTATATAAAAAGAGTAAGAAAAAGAAGGACAAGAACGACATT
a b c	ILRFILIYIFSFFFFLFLL* - FFVSF*YIFSHSFSSCSCCN- SSFHSDIYFLILFLPVLAVT-
	CTGCAAGTTGTGGCGTTTTTTCACTATTGTAGTCATCCTTGCATTTTGCAGGCGCCGTCC 241
a b c	L Q V V A F F H Y C S H P C I L Q A P S - C K L W R F F T I V V I L A F C R R P - A S C G V F S L L * S S L H F A G A V L -
	TGAGCOGCGCCTCTCCAGGCAAGGTCCTGGTGCCTGACGGGGAGAGNGACGACTTGG 301+ 360
	ACTOGGOGOGGAGAGGTCCCTTCCAGGACCACGGACTGCCGCTCTCNCTGCTGAACC
a b c	* A A R P L Q G R S W C L T A R ? T T W - E P R G L S R E G P G A * R R E ? R L G - S R A A S P G K V L V P D G E ? D D L A -
•	CAAGTCCGGCGCAACCTGAAGAATTACAGGTACACACACTCGTGCCGGTAAATCTTCATA
	361+ 420 GTTCAGGCCGCGTTGGACTTCTTAATGTCCATGTGTGAGCACGGCCATTTAGAAGTAT
a b c	Q V R R N L K N Y R Y T H S C R * I F I - K S G A T * R I T G T H T R A G K S S Y - S P A Q P E E L Q V H T L V P V N L H T -
	CAATCGTTATTCACTTACCAAATGCCGGATGAAACCAACC
a b	OSIFTYOMPDETNHGCVRFR- NRYSLTKCRMKPTTDASGFE-

FIGURE 16b

1	MATFAVSGAT	LGVARPPAAA	QPEELQIPED	IEEQTAEVNM	TGGTAEKLES
51	SEPTQGIVET	ITDGVTKGVK	ELVVGEKPRV	VPKPGDGQKI	YEIDPTLKDF
101	RSHLDYRYSE	YRRIRAAIDQ	HEGGLEAFSR	GYEKLGFTRS	AEGITYREWA
151	PGAHSAALVG	DFNNWNPNAD	TMTRDDYGVW	EIFLPNNADG	SPAIPHGSRV
201	KIRMDTPSGV	KDSISAWIKF	SVQAPGEIPF	NGIYYDPPEE	EKYVFQHPQP
251	KRPESLRIYE	SHIGMSSPEP	KINSYANFRD	EVLPRIKRLG	YNAVQIMAIQ
301	EHSYYASFGY	HVTNFFAPSS	RFGTPEDLKS	LIDRAHELGL	LVLMDIVHSH
351	SSNNTLDGLN	GFDGTDTHYF	HGGPRGHHWM	WDSRLFNYGS	WEVLRFLLSN
401	ARWWLEEYKF	DGFRFDGVTS	MMYTHHGLQM	TFTGNYGEYF	GFATDVDAVV
451	YLMLVNDLIH	GLHPDAVSIG	EDVSGMPTFC	IPVPDGGVGF	DYRLHMAVAD
501	KWIELLKQSD	ESWKMGDIVH	TLTNRRWLEK	CVTYAESHDQ	ALVGDKTIAF
551	WLMDKDMYDF	MALDRPSTPR	IDRGIALHKM	IRLVTMGLGG	EGYLNFMGNE
601	FGHPEWIDFP	RGPQTLPTGK	VLPGNNNSYD	KCRRRFDLGD	ADFLRYHGMQ
651	EFDQAMQHLE	EKYGFMTSEH	QYVSRKHEED	KVIIFERGDL	VFVFNFHWSN
701	SFFDYRVGCS	RPGKYKVALD	SDDALFGGFS	RLDHDVDYFT	TEHPHONRPR
751	SFSVYTPSRT	AVVYALTE*			

Branching Enzyme-II Genes

Intron/Exon structure of wheat BE-II

Schematic Diagram of a cDNA for BE-II

FIGURE 17

Wheat DNA Probed with 5' end of SBE-II

N2AT2B N2BT2A N2DT2A

8 kb

2.2 kb

1	AGAAACACCT	CCATTTTAGA	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	GTTCTTTTCG	GACGGTGGGT
51	CGTGGAGAGA	TTAGCGTCTA	GTTTTCTTAA	AAGAACAGGC	CATTTAGGCC
101	CTGCTTTACA	AAAGGCTCAA	CCAGTCCAAA	ACGTCTGCTA	GGATCACCAG
151	CTGCAAAGTT	AAGCGCGAGA	CCACCAAAAC	AGGCGCATTC	GAACTGGACA
201	GACGCTCACG	CAGGAGCCCA	GCACCACAGG	CTTGAGCCTG	ACAGCGGACG
251	TGAGTGCGTG	ACACATGGGG	${\tt TCATCTATGG}$	GCGTCGGAGC	AAGGAAGAGA
301	GACGCACATG	AACACCATGA	TGATGCTATC	AGGCCTGATG	GAAGGAGCAA
351	CCATGCACCT	TTTCCCCTCT	GGAAATTCAT	AGCTCACACT	TTTTTTAAT
401	GGAAGCAAGA	GTTGGCAAAC	ACATGCATTT	TCAAACAAGG	GAAAATTAAT
451	TCTCAAACCA	CCATGACATG	CAATTCTCAA	ACCATGCACC	GACGAGTCCA
501	TGCGAGGTGG	AAACGAAGAA	CTGAAAATCA	ACATCCCAGT	TGTCGAGTCG
551	AGAAGAGGAT	GACACTGAAA	GTATGCGTAT	TACGATTTCA	TTTACATACA
601	TGTACAAATA	CATAATGTAC	CCTACAATTT	GTTTTTTGGA	GCAGAGTGGT
651	GTGGTCTTTT	TTTTTTACAC	GAAAATGCCA	TAGCTGGCCC	GCATGCGTGC
701	AGATCGGATG	ATCGGTCGGA	GACGACGGAC	AATCAGACAC	TCACCAACTG
751	CTTTTGTCTG	GGANACAATA	AATGTTTTTT	GTAAACAAAA	TAAATACTTA
801	TAAACGAAGG	GTACTAGAGG	CCGCTAACGG	CATGGCCAGG	TAAACGCGCT
851	CCCAGCCGTT	GGTTTGCNAT	CTCGTCCTCC	CGCACGCAGC	GTCGCCTCCA
901	CCGTCCGTCC	GTCGCTGCCA	CCTCTGCTGT	GCGCGCGCAC	AAGGGAGGAA
951	AACAACGCCG	CACACACACT	CACACACGGN	ACACTCCCCG	TGGGTCCCCT
1001	TTCCGGCTTG	GCNTCTATCT	ССТСТССССС	GCCCATCCCC	ATGCACTGCA
1051	CCGTACCCGC	CAGCTTCCAC	CCCCGCCGCA	CACNTTGCTC	CCCCTTCTCA
1101	TCGCTTCTCA	ATTAATATCT	CCATCACTCG	GGTTCCGCGC	TGCATTTCGG
1151	CCGGCGGGTT	GAGTGAGATC	TGGGCGACTG	GCTGACTCAA	TCACTACGCG
1201	GGGATG				

ı	CCGGCGGGTT	GAGTGAGATC	TGGGCGACTG	GCTGACTCAA	TCACTACGCG
51	GGGATGGCGA	CGTTCGCGGT	GTCCGGCGCG	ACTnTCGGTG	TGGCGCGGC
101	CGGCGTCGGA	GTGGCGCGGG	CCGGCTCGGA	GCGGAGGGC	GGGGCGACT
151	ŢĠĊĊĠŢĊĠĊŢ	GCTCCTCACG	AAGAAGGACT	CCTCTCGTAC	ĞĊCTCGCTCT
201	CTCGAATCTC	CCCCGTCTGG	CTTTGGCTCC	CCTTCTCTCT	CCTCTGCGCG
251	CGCATGGCCT	GTTCGATGCT	GTTCCCCAAT	TGATCTCCAT	GAGTGAGAGA
301	GATAGCTGGA	TTAGGCGATC	GCGCTTCCTG	AACCTGTATT	TTTTCCCCCG
351	CGGGGAAATG	CGTTAGTGTC	ACCCAGGCCC	TGGTGTTACC	ACGGCTTTGA
401	TCATTCCTCG	TTTCATTCTG	ATATATATT	TCTCATTCTT	TTTCTTCCTG
451	TTCTTGCTGT	AACTGCAAGT	TGTGGCGTTT	TTTCACTATT	GTAGTCATCC
501	TTGCATTTTG	CAGGCGCCGT	CCTGAGCCGC	GCGGCCTCTC	CAGGGAAGGT
551	CCTGGTGCCT	GACGGCGAGA	GnGACGACTT	GGCAAGTCCG	GCGCAACCTG
601	AAGAATTACA	GGTACACACA	CTCGTGCCGG	TAAATCTTCA	TACAATCGTT
651	ATTCACTTAC	CAAATGCCGG	ATGAAACCAA	CCACGGATGC	GTCAGGTTTC
701	GAGCTTCTTC	TATCAGCATT	GTGCAGTACT	GCACTGCCTT	GTTCATTTTG
751	TTAGCCTTGG	CCCCGTGCTG	GCTCTTGGGC	CACTGAAAAA	ATCAGATGGA
. 80,1	TGTGCATTCT	AGCAAGAACT	TCACAACATA	ATGCACCGTT	TGGGGTTTCG
851	TCAGTCTGCT	CTACAATTGO	TATTTTCGT	GCTGTAGATA	CCTGAAGATA
901	TCGAGGAGCA	AACGGCGGAA	GTGAACATGA	A CAGGGGGGAC	TGCAGAGAAA
951	CTTCAATCTT	CAGAACCGAC	TCAGGGCATT	T GTGGAAACAA	TCACTGATGG

1001	TGTAACCAAA	GGAGTTAAGG	AACTAGTCGT	GGGGGAGAAA	CCGCGAGTTG
1051	TCCCAAAACC	AGGAGATGGG	CAGAAAATAT	ACGAGATTGA	CCCAACACTG
1101	AAAGATTTTC	GGAGCCATCT	TGACTACCGG	TAATGCCTAC	CCGCTGCTTT
1151	CGCTCATTTT	GAATTAAGGT	CCTTTCATCA	TGCAAATTTG	GGGAACATCA
1201	AAGAGACAAA	GACTAGGGAC	CACCATTTCA	TACAGATCCC	TTCGTGGTCT
1251	GAGAATATGC	TGGGAAGTAA	ATGTATAATT	GATGGCTACA	ATTTGCTCAA
1301	AATTGCAATA	CGAATAACTG	TCTCCGATCA	TTACAATTAA	AGAGTGGCAA
1351	ACTGATGAAA	ATGTGGTGGA	TGGGTTATAG	ATTTTACTTT	GCTAATTCCT
1401	CTACCAAATT	CCTAGGGGGG	AAATCTACCA	GTTGGGAAAC	TTAGTTTCTT
1451	ATCTTTGTGG	CCTTTTTGTT	TTGGGGAAAA	CACATTGCTA	AATTCGAATG
1501	ATTTTGGGTA	TACCTCGGTG	GATTCAACAG	ATACAGCGAA	TACAAGAGTG
1551	CTGCTATTGA	CCAACATGAA	GGTGGATTGG	AAGCATTTTC	CTCGTGGTTAT
1601	GAAAAGCTTG	GATTTACCCG	CAGGTAAATT	TAAAGCTTTA	TTATTATGAA
1651	ACGCCTCCAC	TAGTCTAATT	GCATATCTTA	TAAGAAAATT	TATAATTCCT
1701	GTTTTCCCCT	CTCTTTTTTC	CAGTGCTGAA	GGTATCGTCT	AATTGCATAT
1751	CTTATAAGAA	AATTTATATI	CCTGTTTTCC	CCTATTTTC	AGTGCTGAAG
1801	GTATCACTTA	CCGAGAATGG	GCTCCCTGGA	GCGCATGTT	A TGTTCTTTA
1851	AGTTCCTTAA	CGAGACACCI	TCCAATTTAT	TGTTAATGG	CACTATTCAC
1901	CAACTAGCTT	ACTGGACTTA	CAAATTAGCT	TACTGAATA	C TGACCAGTTA
1951	CTATAAATTT	ATGATCTGG	TTTTGCACCC	TGTTACAGT	C TGCAGCATTA

FIGURE 19b (cont.)

2001	GTAGGTGACT	TCAACAATTG	GAATCCAAAT	GCAGATACTA	TGACCAGAGT
2051	ATGTCTACAG	CTTGGCAATT	TTCCACCTTT	GCTTCATAAC	TACTGATACA
2101	TCTATTTGTA	TTTATTTAGC	TGTTTGCACA	TTCCTTAAAG	TTGAGCCTCA
2151	ACTACATCAT	ATCAAAATGG	TATAATTTGT	CAGTGTCTTA	AGCTTCAGCC
2201	CANACATTCT	ACTGAATTTA	GTCCATCTTT	TTGAGATTGA	AAATGAGTAT
2251	ATTAAGGATG	AATGAATACG	TGCAACACTC	CCATCTGCAT	TATGTGTGCT
2301	TTTCCATCTA	CAATGAGCAT	ATTTCCATGC	TATCAGTGAA	GGTTTGCTCC
2351	TATTGATGCA	GATATTTGAT	ATGGTCTTTT	CAGGATGATT	ATGGTGTTTG
2401	GGAGATTTTC	CTCCCTAACA	ACGCTGATGG	ATCCTCAGCT	ATTCCTCATG
2451	GCTCACGTGT	AAAGGTAAGC	TGGCCAATTA	TTTAGTCGAG	GATGTAGCAT
2501	TTTCGAACTC	TGCCTACTAA	GGGTCCCTTT	TCCTCTCTGT	TTTTTAGATA
2551	CGGATGGATA	CTCCATCCGG	TGTGAAGGAT	TCAATTTCTG	CTTGGATCAA
2601	GTTCTCTGTG	CAGGCTCCAG	GTGAAATACC	TTTCAATGGC	ATATATTATG
2651	ATCCACCTGA	AGAGGTAAGT	ATCGATCTAC	ATTACATTAT	TAAATGAAAT
2701	TTCCAGTGTT	ACAGTTTTTT	AATACCCACT	TCTTACTGAC	ATGTGAGTCA
2751	AGACAATACT	TTTGAATTTG	GAAGTGACAT	ATGCATTAAT	TCACCTTCTA
2801	AGGGCTAAGG	GGCAACCAAC	CTTGGTGATG	TGTGTATGCT	TGTGTGTGAC
2851	ATAAGATCTT	ATAGCTCTTT	TATGTGTTCT	CTGTTGGTTA	GGATATTCCA
2901	TTTTGGCCTT	TTGTGACCAT	TTACTAAGGA	TATTTACATG	CAAATGCAGG
2951	AGAAGTATGT	CTTCCAACAT	CTCAACTAAA	CGACCAGAGT	CACTAAGGAT

FIGURE 19b (cont.)

3001	TTATGAATCA	CACATTGGAA	TGAGCAGCCC	GGTATGTCAA	TAAGTTATTT
3051	CACCTGTTTC	TGGTCTGATG	GTTTATTCTA	TGGATTTTCT	AGTTCTGTTA
3101	TGTACTGTTA	ACATATTACA	TGGTGCATTC	ACTTGACAAC	CTCGATTTTA
3151	TTTTCTAATG	TCTTCATATT	GGCAAGTGCA	AAACTTTGCT	TCCTCTTTGT
3201	CTGCTTGTTC	TTTTGTCTTC	TGTAAGATTT	CCATTGCATT	TGGAGGCAGT
3251	GGGCATGTGA	AAGTCATATC	TATTTTTTT	TTGTCAGAGC	ATAGTTATAT
3301	ATTGTTGTTG	CAATAGCTCG	GTATAATGTA	ACCATGTTAC	TAGCTTAAGA
3351	TTTCCCACTT	AGGATGTAAG	AAATATTGCA	TTGGAGCGTC	TCCAGCAAGC
3401	CATTTCCTAC	CTTATTAATG	AGAGAGAGAC	AAGGGGGGG	GGGGGGGGG
3451	GGTTCCCTTC	ATTATTCTGC	GAGCGATTCA	AAAACTTCCA	TTGTTCTGAG
3501	GTGTACGTAC	TGCAGGGATC	TCCCATTATG	AAGAGGATAT	AGTTAATTCT
3551	TTGTAACCTA	CTTGGAAACT	TGAGTCTTGA	GGCATCGCTA	ATATATACTA
3601	TCATCACAAT	ACTTAGAGGA	TGCATCTGAA	nATTTTAGTG	TGATCTTGCA
3651	CAGGAACCGA	AGATAAATTC	ATATGCTAAT	TTTAGGGATG	AGGTGTTGCC
3701	AAGAATTAAA	AGGCTTGGAT	ACAATGCAGT	GCAGATAATG	GCAATCCAGG
3751	AGCATTCATA	CTATGCAAGC	TTTGGGTATT	CACACAATCO	ATTTTTTCT
3801	GTATACACnT	CTTCACCCAT	TTGGAGCTAT	TACATCCTAA	TGCTTCATGC
3851	ACATAAAATA	TTTGGATATA	ATCCTTTATI	AGATATATA	TACAACTACA
3901	CTTAGTATTC	TGAnnAAnA/	A GATCATTTI	A TTGTTGTTGC	CTTGTTCCAG
3951	GTACCATGT	C ACTAATTTT	TTGCACCAA	TAGCCGTTT	r ggaactccag

4001	AGGACTTAAA	ATCCTTGATC	GATAGAGCAC	ATGAGCTTGG	TTTGCTTGTT
4051	CTTATGGATA	TTGTTCATAG	GTAATTAGTC	CAATTTAATT	TTAGCTGTTT
4101	TACTGTTTAT	CTGGTATTCT	AAAGGGAAAT	TCAGGCAATT	ATGATACATT
4151	GTCAAAAGCT	AAGAGTGGCG	AAAGTGAAAT	GTCAAAATCT	AGAGTGGCAT
4201	AAGGAAAATT	GGCAAAAACT	AGAGTGGCAA	TTAAAATAAA	TTCCCATCCT
4251	AAATGGCAGG	GCCCTATCGC	CGAATATTTT	TCCATTCTAT	ATAATTGTGC
4301	TACGTGACTT	CTTTTTTCTC	AGATGTATTA	AACCAGTTGG	ACATGAAATG
4351	TATTTGGTAC	ATGTAGTAAA	CTGACAGTTC	CATAGAATAT	CGTTTTGTAA
4401	TGGCAACACA	ATTTGATGCC	ATAGATGTGG	ATTGAGAAGT	TCAGATGCTA
4451	TCAATAGAAT	TAATCAACTG	GCCATGTACT	CGTGGCACTA	CATATAGTTT
4501	GCAAGTTGGA	AAACTGACAG	CAATACCTCA	CTGATAAGTG	GCCAGGCCCC
4551	ATTTGAACAT	ATTACTTAAA	GTTCTTCATT	TGTCCTAAGT	CAAACTTCTT
4601	TAAGTTTGAC	CAAGTCTATT	GGAAAATATA	TCAACATCTA	CAACACCAAA
4651	TTACTTTGAT	CAGATTAACA	ATTTTTATTT	TATTATATTA	GCACATCTTT
4701	GATGTTGTAG	ATATCAGCAC	ATTTTTCTAT	AGACTTGGTC	AAATATAGAG
4751	AAGTTTGACT	TAGGACAAAT	CTAGAACTTC	AATCAATTTG	GATCAGAGGG
4801	AACATCAAAT	AATATAGATA	GATGTCAACA	CTTCAACAAA	AAAATCAGAC
4851	CTTGTCACCA	TATATGCATC	AGACCATCTG	TTTGCTTTAG	CCACTTGCTT
4901	TCATATTTAT	GTGTTTGTAC	CTAATCTACT	TTTCCTTCTA	CTTGGTTTGG
4951	TTGATTCTAT	TTCAGTTGCA	TTGCTTCATC	AATGATTTTG	TGTACCCTGC

5001	AGTCATTCGT	CAAATAATAC	CCTTGACGGT	TTGAATGGTT	TCGATGGCAC
5051	TGATACACAT	TACTTCCACG	GTGGTCCACG	CGGCCATCAT	TGGATGTGGG
5101	ATTCTCGTCT	ATTCAACTAT	GGGAGTTGGG	AAGTATGTAG	CTCTGACTTC
5151	TGTCACCATA	TTTGGCTAAC	TGTTCCTGTT	AATCTGTTCT	TACACATGTT
5201	GATATTCTAT	TCTTATGCAG	GTATTGAGAT	TCTTACTGTC	AAACGCGAGA
5251	TGGTGGCTTG	AAGAATATAA	GTTTGATGGA	TTTCGATTTG	ATGGGGTGAC
5301	CTCCATGATG	TATACTCACC	ATGGATTACA	AGTAAGTCAT	CAAGTGGTTT
5351	CAGTAACTTT	TTTAGGGCAC	TGAAACAATT	GCTATGCATC	ATAACATGTA
5401	TCATGATCAG	GACTTGTGCT	ACGGAGTCTT	AGATAGTTCC	CTAGTATGCT
5451	TGTACAATTT	TACCTGATGA	GATCATGGAA	GATTGGAAGT	GATTATTATT
5501	TATTTTCTTT	CTAAGTTTGT	TTCTTGTTCT	AGATGACATT	TACTGGGAAC
5551	TATGGCGAAT	ATTTTGGATT	TGCTACTGAT	GTTGATGCGG	TAGTTTACTT
5601	GATGCTGGTC	AACGATCTAA	TTCATGGACT	TTATCCTGAT	GCTGTATCCA
5651	TTGGTGAAGA	TGTAAGTGCT	TACAGTATTT	ATGATTTTTA	ACTAGTTAAG
5701	TAGTTTTATT	TTGGGGATCA	GTCTGTTACA	CTTTTTGTTA	GGGGTAAAAT
5751	CTCTCTTTTC	ATAACAATGC	TAATTTATAC	CTTGTATGAT	AATGCATCAC
5801	TTAnGTAATT	TGAAAAGTGC	AAGGGCATTC	AAGCTTACGA	GCATATTTTT
5851	TGATGGCTGT	AATTTATTTG	ATAGTATGCT	TGTTTGGGTT	TTTCAATAAG
5901	TGGGAGTGTG	TGACTAATGT	TGTATTATTT	ATTTAATTGC	GGAAGAAATG
5951	GGCAACCTTG	TCAATTGCTT	CAGAAGGCTA	ACTTTGATTC	CATAAACGCT

6001	TTGGAAATGA	GAGGCTATTC	CCAAGGACAT	GAATTATACT	TCAGTGTGTT
6051	CTGTACATGT	ATTTGTAATA	GTGGTTTAAC	TTAAATTCCT	GCACTGCTAT
6101	GGAATCTCAC	TGTATGTTGT	nAGTGTACAC	ATCCACAAAC	AAGTAATCCT
6151	GAGCTTTCAA	CTCATGAGAA	AATAnGAnGT	CCGCTTCTGC	CAGCATTAAC
6201	TGTTCACAGT	TCTAATTTGT	GTAACTGTGA	AATTGTTCAG	GTCAGTGGAA
6251	TGCCTACATT	$TTGC \underline{A} \underline{T}CCC \underline{T}$	GTTCCAGATG	GTGGTGTTGG	TTTGACTAC
6301	CGCCTGCATA	TGGCTGTAGC	AGATAAATGG	ATTGAACTCC	TCAAGTAAGT
6351	GCAGGAATAT	TGGTGATTAC	ATGCGCACAA	TGATCTAGAT	TACATTTTCT
6401	AAATGGTAAA	AAGGAAAATA	TGTATGTGAA	TATCTAGACA	TTTGCCTGTT
6451	ATCAGCTTGA	ATACGAGAAG	TCAAATACAT	GATTTAAATA	GCAAATCTCG
6501	GAAATGTAAT	GGCTAGTGTC	TTTATGCTGG	GCAGTGTACA	TTGCGCTGTA
6551	GCAGGCCAGT	CAACACAGTT	AGCAATATTT	TCAGAAACAA	TATTATTAT
6601	ATCCGTATAT	GAnGAAAGTT	AGTATATAAA	CTGTGGTCAT	TAATTGTGTT
6651	CACCTTTTGT	CCTGTTTAAG	GATGGGCAGT	AGGTAATAAA	TTTAGCCAGA
6701	TAAAATAAAT	CGTTATTAGG	TTTACAAAAG	GAATATACAG	GGTCATGTAG
6751	CATATCTAGT	TGTAATTAAT	GAAAAGGCTG	ACAAAAGGCT	CGGTAAAAA
6801	AACTTTATGA	TGATCCAGAT	AGATATGCAG	GAACGCGACT	AAAGCTCAAA
6851	TACTTATTGC	TACTACACAG	CTGCCAATCT	GTCATGATCT	GTGTTCTGCT
6901	TTGTGCTATT	TAGATTTAAA	TACTAACTCG	ATACATTGGC	AATAATAAAC
6951	TTAACTATTC	AACCAATTTG	GTGGATACCA	GAnATTTCTG	CCCTCTTGTT

7001	AGTAATGATG	TGCTCCCTGC	TGCTGTTCTC	TGCCGTTACA	AAAGCTGTTT
7051	TCAGTTTTTT	GCATCATTAT	TTTTGTGTGT	GAGTAGTTTA	AGCATGTTTT
7101	TTGAAGCTGT	GAGCTGTTGG	TACTTAATAC	ATTCTTGGAA	GTGTCCAAAT
7151	ATGCTGCAGT	GTAATTTAGC	ATTTCTTTAA	CACAGGCAAA	GTGACGAATC
7201	TTGGAAAATG	GGCGATATTG	TGCACACCCT	AACAAATAGA	AGGTGGCTTG
7251	AGAAGTGTGT	AACTTATGCA	GAAAGTCATG	ATCAAGCACT	AGTTGGTGAC
7301	AAGACTATTG	CATTCTGGTT	GATGGATAAG	GTACTAGCTG	TTACTTTTGG
7351	ACAAAAGAAT	TACTCCCTCC	CGTTCCTAAA	TATAAGTCTT	TGTAGAGATT
7401	CCACTATGGA	CCACATAGTA	TATAGATGCA	TTTTAGAGTG	TAGATTCACT
7451	CATTTTGCTT	CGTATGTAGT	CCATAGTGAA	ATCTCTACAG	AGACTTATAT
7501	TTAGGAACGG	AGGGAGTACA	TAATTGATTT	GTCTCATCAG	ATTGCTAGTG
7551	TTTTCTTGTG	ATAAAGATTG	GCTGCCTCAC	CCATCACCAG	CTATTTCCCA
7601	ACTGTTACTT	GAGCAGAATT	TGCTGAAAAC	GTACCATGTG	GTACTGTGGC
7651	GGCTTGTGAA	CTTTGACAGT	TATGTTGCAA	TTTTCTGTTC	TTATTTATTT
7701	GATTGCTTAT	GTTACCGTTC	ATTTGCTCAT	TCCTTTCCGA	GACCAGCCAA
7751	AGTCACGTGT	TAGCTGTGTG	ATCTGTTATC	TGAATCTTGA	GCAAATTTTA
7801	TTAATAGGCT	AAAATCCAAC	GAATTATTTG	CTTGAATTTA	AATATACAGA
7851	CGTATAGTCA	CCTGGCTCTT	TCTTAGATGA	TTACCATAGT	GCCTGAAGGC
7901	TGAAATAGTT	TTGGTGTTTC	TTGGATGCCG	CCTAAAGGAG	TGATTTTTAT
7951	TGGATAGATT	CCTGGCCGAG	TCTTCGTTAC	AACATAACAT	TTTGGAGATA

8001	TGCTTAGTAA	CAGCTCTGGG	AAGTTTGGTC	ACAAGTCTGC	ATCTACACGC
8051	TCCTTGAGGT	TTTATTATGG	CGCCATCTTT	GTAACTAGTG	GCACCTGTAA
8101	GGAAACACAT	TCAAAAGGAA	ACGGTCACAT	CATTCTAATC	AGGACCACCA
8151	TACTAAGAGC	AAGATTCTGT	TCCAATTTTA	TGAGTTTTTG	GGACTCCAAA
8201	GGGAACAAAA	GTGTCTCATA	TTGTGCTTAT	AACTACAGTT	GTTTTTATAC
8251	CAGTGTAGTT	TTATTCCAGG	ACAGTTGATA	CTTGGTACTG	TGCTGTAAAT
8301	TATTTATCCG	ACATAGAACA	GCATGAACAT	ATCAAGCTCT	CTTTGTGCAG
8351	GATATGTATG	ATTTCATGGC	TCTGGATAGG	CTTCAACTCT	TCGCATTGAT
8401	CGTGGCATAG	CATTACATAA	AATGATCAGG	CTTGTCACCA	TGGGTTTAGG
8451	TGGTGAAGGC	TATCTTAACT	TCATGGGAAA	TGAGTTTGGG	CATCCTGGTC
8501	AGTCTTTACA	ACATTATTGC	ATTCTGCATG	ATTGTGATTT	ACTGTAATTT
8551	GAACCATGCT	TTTCTTTCAC	ATTGTATGTA	TTATGTAATC	TGTTGCTTCC
8601	AAGGAGGAAG	TTAACTTCTA	TTTACTTGGC	AGAATGGATA	GATTTTCCAA
8651	GAGGCCCACA	AACTCTTCCA	ACCGGCAAAG	TTCTCCCCTG	GAAATAACAA
8701	TAGTTATGAT	AAATGCCGCC	GTAGATTTGA	TCTTGTAAGT	TTTAGCTGTG
8751	CTATTACATT	CCCTCACTAG	ATCG		

COMPARISON OF N-TERMINAL SEQUENCES OF SOLUBLE STARCH SYNTHASE

Deduced from wheat cDNA

Wheat N-terminal

FIGURE 20a

GRYVAELSREGPAARP

1	TCTCCCACTC	TTCTCTCCCC	GCGCACACCG	AGTCGGCACC	GGCTCATCAC
51	CCATCACCTC	GCCTCGCCC	ACCGGCAAAC	CCCCGATCC	GCTTTTGCAG
101	GCAGCGCACT	AAAACCCCGG	GGAGCGCGCC	CCGCGGCAGC	AGCAGCACCG
151.	CAGTGGGAGA	GAGAGGCTTC	GCCCGGCCC	GCACCGAGCG	GGGCGATCCA
201	CCGTCCGTGC	GTCCGCACCT	CCTCCGCCTC	CTCCCCTGTC	ccccccccc
251	ACACCCATGG	CGGCGACGGG	CGTCGGCGCC	GGGTGCCTCG	CCCCCAGCGT
301	CCGCCTGCGC	GCCGATCCGG	CGACGGCGGC	CCGGGCGTCC	GCCTGCGTCG
351	TCCGCGCGCG	GCTCCGGCGC	TTGGCGCGGG	GCCGCTACGT	TGCCGAGCTC
401.	AGCAGGGAGG	GCCCGCGGC	GCGCCCGCG	CAGCAGCAGC	AACTGGCCCC
451	GCCGCTCGTG	CCAGGCTTCC	TCGCGCCGCC	GCCGCCCGCG	CCCGCCCAGT
501	CGCCGGCCCC	GACGCAGCCG	CCCCTGCCGG	ACGCCGGCGT	GGGGGAACTC
551	GCGCCCGACC	TCCTGCTCGA	AGGGATTGCT	GAGGATTCCA	TCGACAGCAT
601	AATTGTGGCT	GCAAGTGAGC	AGGATTCTGA	GATCATGGAT	GCGAATGAGC
651	AACCTCAAGC	TAAAGTTACA	CGTAGCATCG	TGTTTGTGAC	TGGTGAAGCT
701	GCTCCTTATG	CAAAGTCAGG	GGGGCTGGGA	GATGTTTGTG	GTTCGTTACC
751	AATTGCTCTT	GCTGCTCGTG	GTCACCGTGT	GATGGTTGTA	ATGCCAAGAT
801	ACTTGAATGG	GTCCTCTGAT	AAAAACTATO	CAAAGGCATT	TATACACTGGG
851	AAGCACATTA	AGATTCCATC	CTTTGGGGG	A TCACATGAA	G TGACCTTTTT
901	TCATGAGTAT	AGAGACAACO	TCGATTGGGT	GTTTGTCGA	CATCCGTCAT
951	ATCATAGACO	CAGGAAGTTT	A TATGGAGATA	ATTTTGGTG	TTTTGGTGAT

1001	AATCAGTTCA GATACACACT CCTTTGCTAT GCTGCATGCG AGGCCCCACT
1051	AATCCTTGAA TTGGGAGGAT ATATTTATGG ACAGAATTGC ATGTTTGTTG
1101	TGAACGATTG GCATGCCAGC CTTGTGCCAG TCCTTCTTGC TGCAAAATAT
1151	AGACCATACG GTGTTTACAG AGATTCCCGC AGCACCCTTG TTATACATAA
1201	TTTAGCACAT CAGGGTCTGG AGCCTGCAAG TACATATCCT GATCTGGGAT
1251	TGCCAccTGA ATGGTATGGA GCTTTAGAAT GGGTATTTCC AGAATGGGCA
1301	AGGAGGCATG CCCTTGACAA GGGTGAGGCA GTTAACTTTT TGAAAGGAGC
1351	AGTCGTGACA GCAGATCGAA TTGTGACCGT CAGTCAGGGT TATTCATGGG
1401	AGGTCACAAC TGCTGAAGGT GGACAGGGCC TCAATGAGCT CTTAAGCTCC
1451	CGAAAAAGTG TATTGAATGG AATTGTAAAT GGAATTGACA TTAATGATTG
1501	GAACCCCACC ACAGACAAGT GTCTCCCTCA TCATTATTCT GTCGATGACC
1551	TCTCTGGAAA GGCCAAATGT AAAGCTGAAT TGCAGAAGGA GCTGGGTTTA
1601	CCTGTAAGGG AGGATGTTCC TCTGATTGGC TTTATTGGAA GACTGGATTA
1651	CCAGAAAGGC ATTGATCTCA TTAAAATGGC CATTCCAGAG CTCATGAGGG
1701	AGGACGTGCA GTTTGTCATG CTTGGATCTG GGGATCCAAT TTTTGAAGGC
1751	TGGATGAGAT CTACCGAGTC GAGTTACAAG GATAAATTCC GTGGATGGGT
1801	TGGATTTAGT GTTCCAGTTT CCCACAGAAT AACTGCAGGT TGCGATATAT
1851	TGTTAATGCC ATCCAGGTTT GAACCTTGTG GTCTTAATCA GCTATATGCT
1901	ATGCAATATG GTACAGTTCC TGTAGTTCAT GGAACTGGGG GCCTCCGAGA
1951	CACAGTCGAG ACCTTCAACC CTTTTGGTGC AAAAGGAGAG GAGGGTACAG

2001	GGTGGGCGTT	CTCACCGCTA	ACCGTGGACA	AGATGTTGTG	GGCATTGCGA
2051	ACCGCGATGT	CGACATTCAG	GGAGCACAAG	CCGTCCTGGG	AGGGGCTCAT
2101	GAAGCGAGGC	ATGACGAAAG	ACCATACGTG	GGACCATGCC	GCCGAGCAGT
2151	ACGAGCAGAT	CTTCGAATGG	GCCTTCGTGG	АССААСССТ<u>А</u>	<u>CGTCATGTAG</u>
2201	ACGGGGACTG	GGGAGGTCGA	AGCGCGGGTC	TCCTTGAGCT	CTGAAGACAT
2251	GTTCCTCATC	CTTCCGCGGC	CCGGAAGGAT	ACCCCTGTAC	ATTGCGTTGT
2301	CCTGCTACAG	TAGAGTCGCA	ATGCGCCTGC	TTGCTTGGTC	CGCCGGTTCG
2351 -	AGAGTAGATG	ACGGCTGTGC	TGCTGCGGCG	GTGACAGCTT	CGGGTGGATG
2401	ACAGTTACAG	TTTTGGGGAA	TAAGGAAGGG	ATGTGCTGCA	GGATGGTTAA
2451	CAGCAAAGCA	CCACTCAGAT	GGCAGCCTCT	CTGTCCGTGT	TACAGCTGAA
2501	ATCAGAAACO	AACTGGTGAC	TCTTTAGCCT	TAGCGATTG	GAAGTTTGTT
2551	GCATTCTGTG	TATGTTGTC	TGTCCTTAG	TGACAAATA	TAGACCTGTT
2601	GGAGAATTT	ATTTATCTT	GCTGCTGTT	G TTTTTGTTT	r Gttaaaaaa
2651	MAAAAAAA	A AA			

1	GAGCTCCGAG	AAnAGATTCC	TATCATCGTC	TTGGTGAGGT	GAGGTTATGG
51	TTTCTTGTCA	TGTGGGCAGA	TTTGGTGCCA	GATGCTTCAT	ATCTATTCAA
101	GGGTTCAGCG	GCAACAACTG	CGGCTCCAGA	GCGATGGTCC	TTAAGGGCAC
151	GTGCACGAAG	ACTTCACGGC	TGTTATCGAC	AAGGTCAAGC	CGGCTCCGAT
201	AGGGGAGCAG	CGACAGCGGC	GCGTCAACCG	CTCGTTCTGG	CGGCAGTAGT
251	GGTCGTTCGG	TGCTCTCGGA	ACCTCGATGT	AATTTTTATG	ATTTTAGAGA
3.01	TGCTTTGTAc	TTCcGATCGa	TGAACTCTGA	TAATAGATAT	CTCTTCTCTC
351	GCAAAAAAaG	aGAGTTTTCA	AcTGAAAACA	AAaGaGTTTC	ACTAGTTCTT
401	CTTTTAGAAA	CAGAGTTTCA	CTAGCACTTT	TTTTTGcGAG	AAGTCGAGTT
451	TCACTAAGTA	cTAAaCCCAC	GCAaTTATTC	TCAAAAAAAA	AACCCAcGcA
501	ACTGTcTGgA	TCCATCTTCG	TTTTTTCCCC	GAGAATCGTC	TGgATcCATT
551·	TTCGTGTGCG	AgGCATCCTC	TCATTTTGcA	cGgcCcAGcT	cTcTTcTcGC
601	CGGcGTAcGc	TGctAcATgT	cGgcAcTCcA	CGCAAACAAA	AaGAaGCCCA
651	ACCGAAAAcG	cAcGcGCcTT	TcCAgGcTCA	ccACGGaAAA	AAaTACcAcG
701	cGCcGcTcAC	GAgCAAACCG	TgACAACAGC	CAGCCAGATA	TGGCAACGGA
751	GGcACGGGCC	GCACACAGCC	AcTGAAAACC	GCAGCTGCTC	TTCCGTCCGT
801	CCGTCCcTCC	GCCCGTCCGC.	gCcAcTCCAc	TCGCCTTGCC	CCAcTCCCAc
851	TCTTCTCTCC	CCGCGCACAC	CGAGTCGGCA	CCGGCTCATC	ACCCATCACy
901 -	TCGGCcTCGG	CCACCGGCAA	ACCCCCGAT	CCGCTTTTGC	AGGCAGCGCA
951	СТААААСССС	GGGGAGCGCG	CCCCGcgg.C	AGCAGCAGCA	CCGCAGTGGG
1001	AGAGAGAGGC	TTCGCCCCGG	CCCGCACCGA	GCGGGGCGAT	CCACCGTCCG
1051	TGCGTCCGCA	CCTCCTCCGC	CTCCTCCCCT	GTCCCGCGCG	CCCACACCCA

1101	TGGCGGCGAC	GGGCGTCGGC	GCCGGGTGCC	TCGCCCCAG	CGTCCGCcTG
1151	CGCGCCGATC	CGGCGACGGC	GGCCCGGGCG	TCCGCtTGCG	TCGTCCGCGC
1201	GCGGCTCCGG	CGcTTGGCGC	GGGgCCGyTA	CGTCGCCGAG	CTCaGcAgGG
1251	AGGGCCCCGC	GGcGCGCCCC	GCGCAGCAGC	AGCAACTGGC	CCCGCCGCTC
1301	GTGCCAGGCT	TCCTCGCGCC	GCCGCCGCCC	GCGCCCGCCC	AGTCGCCGGC
1351	CCCGACGCAG	CCGCCCcTGC	CGGACgCCGG	CgTGGGgGAA	CTCGCGCCcG
1401	ACCTCCTGCT	CGAAGGTAAA	AAACAaggct	gaatcCtcAg	atcaCtcCGc
1451	gTcttcgTTt	taccAaAtac	ggtactGcga	aGtgGtgcTg	TATaTGtgaa
1501	gTtTcTgtcg	aTtTcttcct	gacggaTgtt	cagtcgattc	agtTgTATAT
1551	aTGtgAtacg	ttcgtTgttc	atcgatcgtA	cAgaTttacc	agCACactAg
1601	atAgAaatcG	AgaccgaCGc	GggcAgatca	AtAgaTTTtT	ctagaskTTT
1651	wwTkGrwtCG	TGAGATGATT	GATTGGGGTG	GCGTGTCGAT	ACGATAGCGG
1701	TGCACCGCCG	ATGTATCGGG	GCATGTGCAC	GTGGTTGGGT	CTCAGCAGAC
1751	ATATCACTAG	ACTGGTATCG	ТААТТТАСТА	GTACTACTGG	AAAGAGGACT
1801	AAAAAGGCTA	GGCCAAGTGC	ACGCATGTTG	GGAACGTTGT	TAAATTGATG
1851	AGTTTGTCCT	TTGCTTGGGC	TGGTATTATT	ACCAAAAAAT	GGTGTTAGTC
1901	CCTGTACTTA	TTAATGGGaA	AATCTTAACA	TGACACTgGG	GTTTATGAGT
1951	CTCCAATTGT	ATATTCTCAG	CACTCAACTG	ATTTTACTGA	TACTGTAGTG
2001	GAAATGACAC	GTGAGCACCC	CCCTTCAAGG	AATGCAATGC	TTCTTTCTGT
2051	TTTAtATTAC	AGGAACTAGA	AGGAGCTTCC	ACCTTTGAGT	ACAGAAGTAC
2101	TCCCTCCGTT	CCAAAATAGA	TGACTCAACT	TTGTACTAAT	TTTGTACTAT
2151	AGTTAGTACA	AAGTTGAGTC	ATCTATTTA	GAACGGAGGG	AGTAGTATCG

2201	AAATTGAAGA	CCCTTGTATT	ACTGTCTTGT	TTTTCAATGA.	AAATGGGAGG
2251	CCCATGCAGT	AAGTCACATG	GGCACCTGGG	AGGCTGGGAT	CATGTGTGCT
2301	TTGCAGAGTA	CTAGACCCAG	CTCACCCTCT	GTTAGATTAC	TTGTTGGGCT
2351	GCTACTTTGT	GTTTGCTGTG	CAGTATATCA	GACATCCTGA	ATTTGGCATC
2401	TAGCTGAGAA	CAGAATGCAG	GTTGCACCAT	TCTTATTATT	GCTAAACTGT
2451	TGTCACGCAA	TTTATAAAGA	ATGTGATCTT	CTGAGTATTA	ATTAATCATG
2501	TTCTGCTAAT	ATCTGTCCTC	GCTCTGGTGT	TGACAAATAT	ACCATATGAA
2551	TATTTTCCAT	TTTGCAACCA	GGGATTGCTG	AGGATTCCAT	CGACAGCATA
2601	ATCGTGGCTG	CAAGTGAGCA	GGATTCTGAG	ATCATGGATG	CGAATGAGCA
2651	ACCTCAAGCT	AAAGTTACAC	GTAGCATCGT	GTTTGTGACT	GGTGAAGCTG
2701	CTCCTTATGC	AAAGTCAGGG	GGGCTGGGAG	ATGTTTGTGG	TTCGTTACCA
2751	ATTGCTCTTG	CTGCTCGTGG	TCACCGTGTG	ATGGTTGTAA	TGCCAAGATA
2801	CTTGAATGGG	TCCTCTGATA	AAAACTATGC	AAAGGCATTA	TACACTGCGA
2851	AGCACATTAA	GATTCCATGC	TTTGGGGGAT	CACATGAAGT	GACCTTTTTT
2901	CATGAGTATA	GAGACAACGT	CGATTGGGTG	GGTACACAAT	CACCTTCTTA
2951.	TTCTCTGTTG	AATTGTAGCA	ACTGTTTATC	CTTGTTTACA	CTTCTTTTAG
3001	CCCTGCAAAG	ACATATGTGA	TTTCCATACT	TTTTTGTTAT	TTCCCTTGTA
3051	CTCTTGCTCA	TGAAGGTCAA	AATATCATAT	ATCCATGGAA	GTCATGCATG
3101	TGCCTAGTAT	TTTTGGTGTC	GGTGCCTTTA	ACTTTCAGGG	ATTAATACGT
3151	GGAATTTGAT	AACTAAAGTT	TATTTTATTG	AAAAAAATTG	TAGGTTGGCT
3201	GAGCCCACAG	CCACGCAGTG	GCACCACTGC	TTGCACATGA	TTTTGCATTT
3251	CTGTTTGCAC	CGAGCACTTC	ATGTGAATAA	GGTGTAAAAT	CATAAAGTAC

3301	CAATTTTATT	CTGCCAATTG	CACTTAAGAG	TATATACATT	TATCTTGGCC
3351	TCAATCATGG	GAGTACTGTG	CATTCAGTGC	ACCATCATTG	TTCTAAGGAG
3401	AAAATGTGGG	TGCAAGGAAG	ACACTTTTGT	CCCTTAATAA	AAGGCAGGCA
3451	CTCTGTTGTC	ATATAGATAG	AAAGCAACAA	ACTTATTTCA	AAGAGCTAAC
3501	AATGGCAAAA	GAACCAAAAA	AAGCATGCTA	AGGCGGTGAC	ACCAAAAGGT
3551	GAGGGGGCC	TTGTGACTGA	CAGCACCCCA	AACTATTGCC	ATTGTTTTAC
3601	TAAATGAAGA	TCATTTTAGA	AGCTCTCAGG	AACTTCGAAA	ACAGTGGCTT
3651	TCCGTCCACA	GATCGTCTGT	TAATATTTT	GTCCAGTGAT	ACTTTTTTTG
3701	CTCCTTACAA	GAGTGCCTAT	GTTGACATAT	ACATTGTTAA	GTTGTTCATA
3751	AGTTTACTTC	TTATTCTAAA	CAGCAAGTGC	CTAATGCTTG	CATTTATTTT
3801	GGCTATTTAT	TTTTATTCTC	ATTTCAATCA	ACACTTTTGT	TCAGGTGTTT
3851	GTCGATCATC	CGTCATATCA	TAGACCAGGA	AGTTTATATG	GAGATAATTT
3901	TGGTGCTTTT	GGTGATAATC	AGGTACACTA	CACTATACTA	AGCTCCTAGT
3951	TGACTAAGTC	GTAAGTTGTA	CCTCCTCGCT	GACCGGCTGC	TCTATGTCGT
4001	GCAGTTCAGA	TACACACTCC	TTTGCTATGC	TGCATGCGAg	GCCCCACTAA
4051	TCCTTGAATT	GGGAGGATAT	ATTTATGGAC	AGAATTGCAT	GTTTGTTGTG
4101	AACGATTGGC	ATGCCAGCCT	TGTGCCAGTG	TACGTTGTTT	GTGGATCTGA
4151	AAGTCCAATC	CTTTATTCAT	TCTCTGCTTT	GCAGTGTGCC	CATGTCTACA
4201	TTTCTTTTAT	GCTTTTTTCA	TGTCTGTTCT	TATATTGCAT	ATATGCTTAT
4251	GGAGTCTAAA	AGTTACCGGA	GGGAATAACT	CtTAAGGAtT	TCCTCAATCA
4301.	ATTATCTTTA	GCtTTAGTTA	ACATTTACTG	TGGCAAACAT	AATGTGTTT
4351	GAGATTTACA	ArkTCAGAGA	TTgCACtTCA	CTAGtTCGTA	gCTAAtCyGA

4401	tGtTTTCCCC	GAGaAAATGC	Ctaaagcttt	gtGTCtTGAT	gCAtTGATAG
4451	aAAAAGAgtT	TATGTaCACT	CCcaAAGAgG	GGACCcaAAA	TTaCaACAcC
4501	Acaccctga	GaACtAgGcG	CtGCCgGAAg	AAgCGATgCa	AGCCCCACTG
4551	CCCCTGCCTT	AGCTCAAAGC	CGGGCgTCAG	cCTTGATTrT	GTCAAGTAAG
4601	CTAGCAGTGC	TAGATTGCGC	AAGGTCGATT	CGTCGAAGAT	GACAGTGTTG
4651	CGCTGCTTCC	AAATCCACCA	AACTATGAGC	ATGATCACTG	GAGAAGTACC
4701	TTTTCTCGCG	GCTGAGGGGG	TGGACTGGTG	GTCTGCTGCT	GCCAGTTTTC
4751	AGATAATCTG	AAAAATGCAT	GTTTTGATGA	TTTTAGTATC	TTGCGGACCC
4801	TGGGTACCAC	CTAAGCTTTC	ACACAGTAAT	TTGCAGTTAC	ACCTATAAAA
4851	GTAACGGTCA	TGATATGCAT	GTGTTTTGGG	TAGATCATGG	TGCATGCATT
4901	TTAGGAATTA	GGACATGCCA	GAACCACGTG	AGGCTTATGG	GGCAATTCAT
4951	TTGTTCCATT	ATACGAGTCA	TGAATATGGT	TCAGCATGTT	TGGACGCTAC
5001	TTGTTTGGGG	CAATTTCAGA	TGGTGAATTG	TAGCTGCTTG	ATGTTGGCTA
5051	GCTGGCTTAT	TTTGTACAAG	TATCGATGTT	AGATGCATAT	TTCCTTTTGT
5101	TCTTGTGCTG	TTTGCCATGT	TGTATTCCCC	TTTTCTGTCG	CCAGTGTTGC
5151	ATGTTAAATT	GGTTTTCATT	ACATAATCAA	CTTTGTTGCT	GACATCAGTC
5201	ATTTTTATTC	AGCCTTCTTG	CTGCAAAATA	TAGACCATAC	GGTGTTTACA
5251	GAGATTCCCG	CAGCACCCTT	GTTATACATA	ATTTAGCACA	TCAGGTTTGG
5301	GTCTATCACC	TTTCATTATC	CGTACATGGC	TTTGTAAGTC	GGTTCACACG
5351	TATCGTCATA	CTGTATGTTA	TTTCAATGTC	ATTAgGGTGT	GGAGCCTGCA
5401	AGTACATATC	CTGATCTGGG	ATTGCCACCT	GAATGGTATG	GAGCTTTAGA
5451	ATGGGTATTT	CCAGAATGGG	CAAGGAGGCA	TGCCCTTGAC	AAGGGTGAGG

5501	CAGTTAACTT	TTTGAAAGGA	GCAGTTGTGA	CAGCAGATCG	AATTGTGACC
5551	GTCAGTCAGG	TGAAATACTC	AATACTTCTC	TTTTTTCTTT	GCGGGATGTT
5601	CTTCAGTTCA	ATTGCCCTGT	CTTTCACCCA	ATTAAGAAAT	GATTTAATCT
5651	TTTGTTTCTA	GGGTTATTCA	TGGGAGGTCA	CAACTGCTGA	<u>АССТССАСАС</u>
5701	GGCcTCAATG	AGCTCTTAAG	CTCCCGAAAA	AGTGTAtTGA	ATGGTAACTA
5751	TATTTGAATC	CACTTATCTT	C.TTCTGAAA	CATATTTACA	GAAATAGATG
5801	GATGGGTTGC	AAGAATAAAT	TCAGTTTGCT	CTTTCGGTAT	GAAGGAATTG
5851	TAAATGGAAT	TGACATTAAT	GATTGGAACC	CCACCACAGA	CAAGTGTCTC
5901	CCTCATCATT	ATTCTGTCGA	TGACCTCTCT	GGAAAGGTGT	GTGGATAGTA
5951	СССТАТАТАА	TAACATGTAT	ATCTGATC.T	AGTACTTTCT	TTTTCTTTGC
6001	TAGTTTGCTT	CCCATGATGT	TCTCACTAAC	TAATCCTATG	TGGTTTGGCA
6051	TACTTGTCAG	GCCAAATGTA	AAGCTGAATT	GCAGAAGGAG	CTGGGTTTAC
6101	CTGTAAGGGA	gGATGTTCcT	CTGGTTaGAT	ACAAACCCCT	aAGATATaTA
6151	TETETTAAAT	СССТААААА	AAcTTGCCGA	TCATCTCaTT	AGCTTGATTC
6201	ACAGATTGGC	TtTATTGGAA	GACTGGATTA	CCAGAAAGGC	ATTGATCTCA
6251	TTAAAATGGC	CATTCCAGAG	CTC		

1	MAATGVGAGC	LAPSVRLRAD	PATAARASAC	VVRARLRRLA	RGRYVAELSR
51	EGPAARPAQQ	QQLAPPLVPG	FLAPPPPAPA	QSPAPTQPPL	PDAGVGELAP
101	DLLLEGIAED	SIDSIIVAAS	EQDSEIMDAN	EQPQAKVTRS	IVFVTGEAAP
151	YAKSGGLGDV	CGSLPIALAA	RGHRVMVVMP	RYLNGSSDKN	YAKALYTGKH
201	IKIPCFGGSH	EVTFFHEYRD	NVDWVFVDHP	SYHRPGSLYG	DNFGAFGDNQ
251	FRYTLLCYAA	CEAPLILELG	GYIYGQNCMF	VVNDWHASLV	PVLLAAKYRP
301	YGVYRDSRST	LVIHNLAHQG	LEPASTYPDL	GLPPEWYGAL	EWVFPEWARR
351	HALDKGEAVN	FLKGAVVTAD	RIVTVSQGYS	WEVTTAEGGQ	GLNELLSSRK
401	SVLNGIVNGI	DINDWNPTTD	KCLPHHYSVD	DLSGKAKCKA	ELQKELGLPV
451	REDVPLIGFI	GRLDYQKGID	LIKMAIPELM	REDVQFVMLO	SGDPIFEGWN
501	RSTESSYKDK	FRGWVGFSVF	VSHRITAGCI	ILLMPSRFE	CGLNQLYAM
551	YGTVPVVHGT	GGLRDTVETE	NPFGAKGEEG	G TGWAFSPLT	/ DKMLWALRT
601	MSTFREHKPS	WEGLMKRGMT	KDHTWDHAAI	E QYEQIFEWA	F VDQPYVM*

Soluble Starch Synthase Genomic Clones

FIGURE 22

FIGURE 23

56/66

Wheat DNA probed with Soluble Starch Synthase

N7AT7D N7DT7B N7BT7A

FIGURE 24

1	GAGCTCCGAG	AAnAGATTCC	TATCATCGTC	TTGGTGAGGT	GAGGTTATGG
51	TTTCTTGTCA	TGTGGGCAGA	TTTGGTGCCA	GATGCTTCAT	ATCTATTCAA
101	GGGTTCAGCG	GCAACAACTG	CGGCTCCAGA	GCGATGGTCC	TTAAGGGCAC
151	GTGCACGAAG	ACTTCACGGC	TGTTATCGAC	AAGGTCAAGC	CGGCTCCGAT
201	AGGGGAGCAG	CGACAGCGGC	GCGTCAACCG	CTCGTTCTGG	CGGCAGTAGT
251	GGTCGTTCGG	TGCTCTCGGA	ACCTCGATGT	AATTTTTATG	ATTTTAGAGA
301	TGCTTTGTAc	TTCcGATCGa	TGAACTCTGA	TAATAGATAT	CTcTTCTcTc
351	GCAAAAAAaG	aGAGTTTTCA	ACTGAAAACA	AAaGaGTTTC	Actagttctt
401	CTTTTAGAAA	CAGAGTTTCA	cTAGCAcTTT	TTTTTGcGAG	AAGTcGAGTT
451	TCACTAAGTA	cTAAacccac	GCAaTTATTC	ТСААААААА	AACCCAcGcA
501	ACTGTcTGgA	TcCATCTTCG	TTTTTTCCCC	GAGAATCGTC	TGgATcCATT
551	TTCGTGTGCG	AgGCATCCTC	TCATTTTGCA	cGgcCcAGcT	cTcTTcTcGC
601	CGGcGTAcGc	TGctAcATgT	cGgcAcTCcA	CGCAAACAAA	AaGAaGCCCA
651	ACCGAAAAcG	cAcGcGCcTT	TcCAgGcTCA	ccACGGaAAA	AAaTACcAcG
701	cGCcGcTcAC	GAgCAAACCG	TgACAACAGC	CAGCCAGATA	TGGCAACGGA
751	GGcACGGGCC	GcACACAGCC	Actgaaaacc	GCAGcTGcTC	TTCCGTCCGT
801	CCGTCCcTCC	GCCCGTCCGC	gCcAcTCCAc	TCGCCTTGCC	CCAcTCCCAc
851	TCTTCTCCC	CCGCGCACAC	CGAGTCGGCA	CCGGCTCATC	ACCCATCACY
901	TCGGCcTCGG	CCACCGGCAA	ACCCCCGAT	CCGCTTTTGC	AGGCAGCGCA
951	CTAAAACCCC	GGGGAGCGCG	CCCCGcgg.C	AGCAGCAGCA	CCGCAGTGGG
1001	AGAGAGAGGC	TTCGCCCCGG	CCCGCACCGA	GCGGGGCGAT	CCACCGTCCG
1051	TGCGTCCGCA	CCTCCTCCGC	CTCCTCCCCT	GTCCCGCGCG	CCCACACCCA
1101	TGG				

引きなる 各人記事

Comparison of Wheat and Rice Soluble Starch Synthase Genomic DNA Sequences

FIGURE 26

```
ATACTACATACTATATGCTTGCACCCAAGGGACACTTTTATAACTATTCTGGCTGTGGGA
                                                                      Z
                             TATGATGTATGATATACGAACGTGGGTTCCCTGTGAAAATATTGATAAGACCGACACCCT
                                                                                                                       ATACCTTCAACTGTAATCATCCTGTGGTTCGTCAATTCATTGTAGATTGTTTAAGATACT
                                                                                                                                                    TATGGAAGTTGACATTAGTAGGACACCAAGCAGTTAAGTAACATCTAACAATTCTATGA
                                                                                                                                                                                                                                              GGGTGACGGAAATGCATGTTGATGGTTTTTCGTTTTGACCTT
                                                                                                                                                                                                                                                                           CCCACTGCCTTTACGTACAACTACCAAAAGCAAAACTGGAA
                                                                                                                                                                                                                    Ø
                                                                                                                                                                                                                    Ö
                                                                                                                                                                                                                    O
                                                                                                                                                                                                                    ß
                                                                                                                                                                                                                                                                                                                                       Ö
              80
                                                                                                                                      140
                                                                                                                                                                                                                                                            200
                                                             d d o
                                                                                                                                                                                    d to
                                                                                                                                                                                                                                                                                                            d
Д
```

199

The second second

化分子子 医牙牙 野河 人名

139

Enzymes that do not cut

ECORI

Enzymes that do cut

NONE

Comparison of Wheat Debranching Enzyme-I (WDBE-I) PCR fragment with maize Sugary-1 DNA sequence

aniian hae wala	
SUGARY. DNA	1098 1107 1117 1127 1137 1147 1157 TGAGGTGATCATGGATGTTGTCTTCAATCATGAGCTGAAGGTAATGAGAAGGCCCAAT
WHEAT1.DNA	TGGT(
FILE NAME SUGARY.DNA	1158 1167 1177 1187 1197 1207 1217 ATTATCCTTTAGGGGGATAGTACTACTACATGCTTGCACCTAAGGGAAGGTT
WHEAT1.DNA	ATTATCATTTAGGGGGTCGATAATACTACATACTATGCTTGCACCCAIGGGACACTT 57 66 76 116 117 117 117 118 118 118 118 118 118 118
FILE NAME SUGARY.DNA	1218 1227 1237 1247 1257 1277 TTATAATTATTCTGGTTGTAATACCTTCAATTGTAATCCTGTAGTCCGTGAATT
WHEAT1.DNA	TTATAACTATICTGGCTGTGGGNATACCTTCAACTGTAATCATCCTGTGGTTCGTCAATT 117 126 136 146 156 156 166 176
FILE NAME SUGARY.DNA	1297 1307 1317 1327 CTTGAGATACTGGGTAACAGAAATGCATGTTGTGGTTTTCC
WHEAT1.DNA	
FILE NAME SUGARY, DNA	1338 1347 1357 CCTTGCATCTATACT-G
WHEAT1.DNA	
MATCHING PERCENTAGE TOTAL WINDOW ALIGNMENT WIN	NG PERCENTAGE TOTAL WINDOW 84% (219/260) ALIGNMENT WINDOW 86% (219/253)

Southern blot of T. tauschii Genomic DNA

1X 3X

BamHI Digest

T. tauschii Genomic DNA Probed With The Wheat Debranching Enzyme PCR Product

Sequences of Primers which Direct PCR amplification of WSBEII-D1 introns

Infron	diron Foward primer Fw	Foyered primer Soq.	Reverse primer	Reverse primer Seq	Predicted Length of Product
_ -	sr854.1180F	CTG GCT GAC TCA ATC ACT ACG	WSBE9E2R	GGC ACG AGT GTG TGT A C TGT A	601
2	WBE2EIF	CGT CGC TGC TCC TCA GGA AG	WBE2E2R	CAG GAC CTT CCC TGG A(JA GG	401
(m	WBE2E2F	CGC AAC CTG AAG AAT TAC AG	sr866F	TAT CTT CAG GTA TCT ACA GC	309
4	WBE2E3F	ATT TTC GGA GCC ATC TTG AC	WBE2E4R2	ATG CTT CCA ATC CAC CTT CA	>450
2	WBE2E4F	TCG TGG TTA TGA AAA GCT TGG	WBE2ESR	GAG CCC ATT CTC GGT AA G TGA	234
9	sr913F	ATC ACT TAC CGA GAA TGG G	WBE2E6R	CTG CAT TTG GAT TCC AAT TG	232
7	WBE2E6F	ACA ATT GGA ATC CAA ATG CA	WBE2E7R	GGG AGG AAA ATC TCC C/\A AC	402
∞	WBE2E7F	AGC TAT TCC TCA TOO CTC AC	sr915F	CCA TTG AAA GGT ATT TCA CC	203
6	WBE2E8F	TGC AGG CTC CAG GTG AAA TA	sr912F	TAA CTT ATT GAC ATA CC3 G	439

FIGURE 30

FIGURE 30 (cont.)

FIGURE 31a

FIGURE 31b