# EEE363

# **Electrical Machines**

Lecture # 5

Dr Atiqur Rahman

# **Generated EMF**





 $I_a = I_L + I_{sh}$ 

$$E_g = V + I_a R_a$$

# **Generated EMF**



$$E_g = V + I_a R_a + I_a R_{se}$$



$$E_g = V + I_a R_a + I_a R_{se}$$

#### Mechanical losses

#### These losses are due to friction and windage

- (i) Friction loss e.g., bearing friction, brush friction etc.
- (ii) Windage loss i.e., air friction of rotating armature.

Iron losses and mechanical losses together are called Stray losses

#### Constant and Variable Losses

- (i) Constant losses
- (a) iron losses (b) mechanical losses (c) shunt field losses

- (ii) Variable losses
- (a) Copper loss in armature winding
- (b) Copper loss in series field winding

### Condition for Maximum Efficiency

Generator output = 
$$V I_L$$
  
Generator input = Output + Losses  
=  $V I_L + Variable losses + Constant losses$   
=  $V I_L + I_a^2 R_a + W_C$   
=  $V I_L + (I_L + I_{sh})^2 R_a + W_C$ 



The shunt field current  $I_{sh}$  is generally small as compared to  $I_L$  and, therefore, can be neglected.

Generator input =  $VI_L + I_L^2 R_a + W_C$ 

$$\eta = \frac{\text{output}}{\text{input}} = \frac{\text{VI}_{L}}{\text{VI}_{L} + \text{I}_{L}^{2} \text{R}_{a} + \text{W}_{C}}$$

$$= \frac{1}{1 + \left(\frac{I_L R_a}{V} + \frac{W_C}{V I_L}\right)}$$

The efficiency will be maximum when the denominator of the expression is minimum

$$\frac{d}{dI_L} \left( \frac{I_L R_a}{V} + \frac{W_C}{V I_L} \right) = 0$$

$$R_a \quad W_C$$

$$\frac{R_a}{V} - \frac{W_C}{VI_L^2} = 0$$

$$\frac{R_a}{V} = \frac{W_C}{VI_c^2} \quad \text{or} \quad I_L^2 R_a = W_C$$



$$I_{L} = \sqrt{\frac{W_{C}}{R_{a}}}$$

Example 26.26. A long-shunt dynamo running at 1000 r.p.m. supplies 22 kW at a terminal voltage of 220 V. The resistances of armature, shunt field and the series field are 0.05, 110 and 0.06 Ω respectively. The overall efficiency at the above load is 88%. Find (a) Cu losses (b) iron and friction losses (c) the torque exerted by the prime mover.

$$I_{sh} = 220/110 = 2 \text{ A}$$
  
 $I = 22,000/220 = 100 \text{ A},$   
 $I_a = 102 \text{ A}$ 

Drop in series field winding =  $102 \times 0.06 = 6.12 \text{ V}$ 

(a) 
$$I_a^2 R_a = 102^2 \times 0.05 = 520.2 \text{ W}$$
  
Series field loss =  $102^2 \times 0.06 = 624.3 \text{ W}$   
Shunt field loss =  $4 \times 110 = 440 \text{ W}$ 

Total Cu losses = 520.2 + 624.3 + 440 = 1584.5 W

- (b) Output = 22,000 W; Input = 22,000/0.88 = 25,000 W
- :. Total losses = 25,000 22,000 = 3,000 W
- : Iron and friction losses = 3,000 1,584.5 = 1,415.5 W



(c) 
$$T \times \frac{2\pi N}{60} = 25,000$$

$$T = \frac{25,000 \times 60}{1,000 \times 6.284} = 238.74 \text{ N-m}$$

A shunt generator has a full load current of 196A at 220V. The stray losses are 720W and the shunt field coil resistance is 55  $\Omega$ . It has a FL (full load) efficiency of 88%. Find i) Armature resistance ii) current corresponding to maximum efficiency.

Total loss = Stray loss + Cu loss

Cu loss = Armature Cu loss + shunt field loss

$$I_{sh} = 220/55 = 4 \text{ A}$$
  $I_a = 196 + 4 = 200 \text{ A}$ 



#### **Armature Reaction**

- ✓ The effect of magnetic field set up by the armature current on the distribution of main pole flux.
  - ✓ It has two effects:
    - i. It demagnetises or weakens the main flux
    - ii. It cross-magnetizes or distorts the flux

# Geometric Neutral Axis (GNA) & Magnetic Neutral Axis (MNA)







Flux due to armature current only

### **Armature Reaction**



#### Resultant Flux







# Demagnetizing & Cross-magnetizing conductors



# Demagnetizing & Cross-magnetizing conductors





### **Demagnetizing Effect**

#### Let

Z = Total number of armature conductors

P = Number of poles

I = Armature conductor current in Amperes

=  $I_a/2$  for simplex wave winding

= I<sub>a</sub>/P for simplex Iap winding

 $\theta_{\rm m}$  = Forward lead of brush in mechanical degrees.



Total number of armature conductors lying in angles AOC and BOD = 
$$\frac{4 \theta_m}{360} \times Z$$

Since two conductors from one turn, Total number of turns in these angles =  $\frac{1}{2} \cdot \frac{4 \theta_m}{360} \times Z = \frac{2 \theta_m}{360} \times Z$ 

Demagnetising amp-turns = 
$$\frac{2 \theta_m}{360} \times IZ$$

Demagnetising amp-turns / pole = 
$$\frac{\theta_m}{360} \times IZ$$

$$AT_d$$
 per pole =  $ZI \times \frac{\theta_m}{360}$ 

# **Cross-magnetizing Effect**

The conductor which are responsible for cross magnetizing ampere turns are lying between the angles AOD and BOC, as shown in the Fig.

Total armature-conductors / pole = Z/P

Demagnetising conductors / pole = 
$$Z = \frac{2\theta_m}{360}$$

Cross magnetising conductors/pole = 
$$\frac{Z}{P} - Z \frac{2\theta_m}{360} = Z \left[ \frac{1}{P} - \frac{2\theta_m}{360} \right]$$

Cross magnetising amp-conductors / pole = 
$$ZI\left[\frac{1}{P} - \frac{2\theta_m}{360}\right]$$

Since two conductors from one turn,

Cross magnetising amp-turns / pole = 
$$\frac{1}{2}$$
. ZI  $\left[\frac{1}{P} - \frac{2\theta_m}{360}\right] = ZI \left[\frac{1}{2P} - \frac{\theta_m}{360}\right]$ 

$$AT_c \text{ per pole } = ZI \left[ \frac{1}{2P} - \frac{\theta_m}{360} \right]$$



# Remedy for De/Cross-Magnetizing Effect

✓ Demagnetizing effect

Additional field turns

✓ Cross-Magnetizing effect



Compensating winding





Compensating winding

# Compensating Winding (CW)

- ➤ Windings are embedded in slots in the pole shoe and are connected in series with the armature.
- ➤ Used for large DC machines which are subject to large fluctuations in load.
- In the absence of compensating winding, the flux will be shifting forward and backward with every change in load.
- This change in flux causes statically induced emf in armature coil and thus result in sparking between commutator segments.

A 4-pole generator has a wave-wound armature with 722 conductors, and it delivers 100 A on full load. If the brush lead is 8°, calculate the armature demagnetising and cross-magnetising ampere turns per pole.

$$I = I_{a}/2 = 100/2 = 50A; Z = 722; \theta_{m} = 8^{\circ}$$

$$AT_{d}/ \text{ pole} = ZI. \frac{\theta_{m}}{360} = 722 \times 50 \times \frac{8}{360} = 802$$

$$AT_{c}/ \text{ pole} = ZI. \left(\frac{1}{2P} - \frac{\theta_{m}}{360}\right)$$

$$= 722 \times 50 \left(\frac{1}{2 \times 4} - \frac{8}{360}\right) = 37/8$$

A 4-pole generator supplies a current of 143 A. It has 492 armature conductors (a) wave-wound (b) lap-wound. When delivering full load, the brushes are given an actual lead of 10°. Calculate the demagnetising amp-turns/pole. This field winding is shunt connected and takes 10 A. Find the number of extra shunt field turns necessary to neutralize this demagnetisation.

$$Z = 492$$
;  $\theta_m = 10^\circ$ ; AT<sub>d</sub>/pole =  $ZI \times \frac{\theta_m}{360}$   
 $I_a = 143 + 10 = 153 \text{ A}$ ;  $I = 153/2$  (wave winding)  
= 153/4 (Lap winding)

(a) 
$$\therefore AT_d/pole = 492 \times \frac{153}{2} \times \frac{10}{360} = 1046 AT$$

Extra shunt field turns = 1046/10 = 105 (approx.)

(b) 
$$AT_d$$
 pole =  $492 \times \frac{153}{2} \times \frac{10}{360} = 523$ 

Extra shunt field turns = 523/10 = 52 (approx.)