

Sviluppo di sistemi di controllo su piattaforma LEGO Mindstorms

Candidati: <u>lacopo Finocchi</u> Niccolò Monni

Relatore: Ing. Michele Basso

Correlatori:

Dott. Franco Quercioli Dott. Massimo Vassalli

Contesto

Questa tesi si è svolta presso il Consiglio Nazionale delle Ricerche, nei laboratori dell' Istituto Sistemi Complessi.

Obiettivi

Analizzare e testare le effettive potenzialità del nuovo sistema LEGO Mindstorms NXT

Effettuare esperimenti di controllo interfacciando il LEGO NXT con un PC esterno.

Perché NXT?

- E' un dispositivo economico
- E' diffuso in molti laboratori di didattica/ricerca a livello internazionale, data la sua flessibilità e semplicità di utilizzo.
- Risalta le caratteristiche degli algoritmi di controllo che devono sopperire alle carenze tecniche della struttura e dei sensori.

Mindstorms RCX

Mindstorms NXT

Mindstorm NXT

 4 sensori e 3 attuatori nel kit base

 Processore a 32bit, classe ARM7 (multitasking)

256Kb di memoria

flash

64Kb RAM

 Connettività bluetooth

Porta USB 2.0

Sensori

Rotazione

0000

- →Scarsa sensibilità (circa 22 gradi)
- →Difficoltà di unione con i nuovi componenti LEGO
- →Unico sensore di rotazione a disposizione

- →Buona sensibilità
- →Collegamenti semplici
- →Molto influenzato dai disturbi esterni (luce solare, neon, etc)

Attuatori

Encoder

- Velocità massima funzione del carico applicato, a vuoto 160 giri/min
- Coppia massima 24 Ncm

 L'encoder presente nel motore,
 è l'unico sensore di rotazione ufficiale disponibile per l'NXT

Comunicazione NXT-PC

Comunicazione NXT-NXT

Comunicazione NXT multipli

Software

Analisi dei software disponibili (proprietari e opensource)

Lego IVXI O	
Vantaggi	Svantaggi
Grafico	Elavata dimensione dei file prodotti
Intuitivo	Libertà di programmazione limitata
	Crescita della difficoltà di programmazione con

l'aumento dei comandi

Lego NIXTG

Software

Robolab		
Vantaggi	Svantaggi	
Grafico	Non è open-source	
Programmazione ad un livello superiore rispetto all'NXTG		
Proprio firmware		

Software

Le specifiche per un utilizzo avanzato sono:

Velocità d'esecuzione del programma Possibilità di scrittura ad un livello avanzato

Dimensioni ridotte del file prodotto

Linguaggio NXC

Esperimenti svolti

Pendolo di Furuta

Legway

Pendolo di Furuta

Un particolare tipo di pendolo inverso, presente in alcuni laboratori di Santa Marta

Caratteristiche:

- Comportamento intuitivo
- Controllo non banale

Pendolo di Furuta

Problematiche della struttura:

- Masse in gioco non trascurabili
- Collegamenti non rigidi
- Torsione della colonna centrale
- Instabilità meccanica
- Sensori inadatti, installazione complessa

Sensori

Si cercano accorgimenti per ovviare a queste carenze tecniche:

Prima soluzione

- Sistemi di ruote dentate per aumentare la sensibilità del trasduttore.
- Sistemi per il collegamento del sensore

Seconda soluzione

- Accoppiamento ruota dentata-cremagliera, per rendere rettilineo il movimento del pendolo (A)
- Sistemi di specchi per poter sfruttare il sensore di luce (B)

Pendolo di Furuta

Carenze meccaniche

Nuova struttura

Caratteristiche:

- → Più leggera e reattiva
- → Assenza della flessione verticale del braccio
- Impossibilitata la rotazione completa del pendolo
- Assenza di una flessione evidente degli elementi
- Dinamica modificabile in funzione della altezza
 della massa

Pendolo di Furuta

Motore con carico

La presenza di fenomeni non modellati rende instabile la struttura

Motore libero

Abbandono del progetto

Sviluppo di sistemi di controllo su piattaforma LEGO Mindstorms

Candidati: lacopo Finocchi <u>Niccolò Monni</u>

Relatore: Ing. Michele Basso

Correlatori:

Dott. Franco Quercioli Dott. Massimo Vassalli

Legway

Il nome deriva dall'unione delle parole LEGO e Segway, il mezzo di trasporto di recente diffusione.

Il controllo consiste nel mantenere il robot in posizione di equilibrio instabile su due ruote.

Vantaggi

 Tipologia di controllo simile a quella del pendolo di Furuta

Dinamica più semplice

 Struttura più compatta e rigida

Problematiche

- Misurazione affidabile dell'angolo di inclinazione, non eseguibile attraverso l'encoder delle ruote
- Evitare velocità elevate sul piano

Obiettivo aggiuntivo:

Controllo remoto

Variabili di stato

Lo stato del sistema è definito dalle variabili θ , $\dot{\theta}$, x, \dot{x}

Angolo di inclinazione calcolato con la lettura differenziale dei sensori S1 e S2

Spostamento sul piano, determinato tramite lettura dell'encoder delle ruote

Ricostruzione dello stato

Angolo di inclinazione:

si utilizzano i sensori di luce montati in modo differenziale per migliorare la linearità

Velocità angolare:

rapporto incrementale dell'angolo calcolato rispetto al tempo

Filtro sul rapporto incrementale:

per diminuire l'influenza del rumore

$$\theta_k = S1_k - S2_k$$

$$\dot{\bar{\theta}}_{k} = \frac{\theta_{k} - \theta_{k-1}}{T}$$

$$\dot{\theta}_{k} = \alpha \cdot \dot{\theta}_{k-1} + (1 - \alpha) \cdot \dot{\overline{\theta}}_{k}$$

Spostamento sul piano:

si utilizzano gli encoder interni ai motori, trascurando l'inclinazione

$$x_k = r \cdot \phi_k$$

$$x_k = \frac{x_k^{(l)} + x_k^{(r)}}{2}$$

Velocità sul piano:

rapporto incrementale dello spostamento calcolato rispetto al tempo

$$\dot{\bar{x}}_k = \frac{x_k - x_{k-1}}{T}$$

Filtro sul rapporto incrementale:

per evitare che le variazioni di inclinazione incidano sulla velocità

$$\dot{x}_k = \beta \cdot \dot{x}_{k-1} + (1 - \beta) \cdot \dot{\overline{x}}_k$$

Software di controllo

Controllore:

$$u_{k} = c_{1} \cdot \theta_{k} + c_{2} \cdot \dot{\theta}_{k} + c_{3} (x_{k} + a_{k}) + c_{4} \cdot \dot{x}_{k}$$

$$u_{k}^{(l)} = u_{k} + b_{k}$$

$$u_{k}^{(r)} = u_{k} - b_{k}$$

Joystick

Controllo del movimento del Legway

Caratteristiche:

→ Comunicazione bluetooth con il Legway

- → Lettura di due rotazioni tramite encoder dei motori
- → Possibilità di aggiungere funzioni, tramite pulsanti.

Generazione dei comandi nel joystick

Segnale a:

generato con un algoritmo incrementale, con incremento proporzionale alla posizione del rotore A

Segnale b:

generato proporzionalmente alla posizione del rotore B

Feedback sui rotori:

il motori generano una coppia che tende a riportarli in posizione iniziale (effetto molla del joystick)

Scienza ludica

L'Istituto Sistemi Complessi ha creato il sito Scienza Ludica, dove vengono raccolti tutti gli esperimenti sviluppati con il LEGO

www.scienzaludica.it

Obbiettivi Futuri

- → Creare connessioni multiple di più robot, capaci di interagire tra loro.
- Interfacciare l'NXT con Matlab e Simulink al fine di creare esperimenti real time con modalità corrispondenti a quelle dei laboratori di Santa Marta di automatica.
- → Utilizzo di Mindstorms nei laboratori didattici universitari per lo sviluppo di sistemi di controllo

