<u>음악과 플레이리스트의 메타데이터를 활용한 하이브리드</u> <u>음악 추천 시스템에 관한 연구</u>

2021198696 Business Informatics 이현태

Table of Contents

서론

선행 연구

연구 설계 및 절차

결과

고찰

1. 서론

- 연구 배경 및 목적
- ▶ 음악 스트리밍 기업이 대거 등장함에 따라 변하는 음악 소비 형태
- ▶ 실질적인 음반을 사기 보다는 개인 취향에 맞는 음악을 골라서 듣는 형태로 바뀌게 됨
- 따라서 고객 개개인의 취향에 맞는 플레이리스트 추천의 중요성이 음악 스트리밍 기업에서 커지게 됨
- ➤ Spotify는 개인의 취향에 맞는 플레이리스트 추천으로 유명해진 대표적인 기업

1. 서론

● 연구 배경 및 목적

- 하지만 음악 플레이리스트 추천 도메인에서도 사용 이력이 없는 새로운 유저 혹은 아이템에 대해서 추천해 줄 수 없는 콜드 스타트 문제에 직면할 수 밖에 없음
- 이러한 배경에 발맞춰서 카카오 아레나에서는 플레이리스트 데이터를 공 개함
- ▶ 본 연구에서는 해당 데이터를 활용하여 상황에 따라 다른 추천 일고리즘 을 적용하는 멜론 서비스 도메인에 맞는 하이브리드 추천 전략을 제시함

1. 서론

● 연구 내용

- ▶ 멜론 플레이리스트 데이터셋에 주어진 음악 메타데이터 중 장르, 아티스트, 발매연도를 활용
- ▶ 어떠한 메타데이터를 활용해야 기존 Matrix Factorization 기법인 ALS와 BPR 그리고 Word2Vec을 활용한 Item2Vec보다 높은 추천 성능을 가질 수 있을지 탐색
- ▶ 구성 곡의 ID와 메타 데이터를 활용한 LightFM과 구성 곡의 ID와 플레이리스트의 태그와 제목을 학습한 Item2Vec의 결과를 앙상블
- ➤ 구성 곡이 없는 경우에는 플레이리스트의 태그와 제목을 기반으로 추천 (FastText 활용)
- ▶ 상황에 따라 추천 방식을 달리하는 하이브리드 추천 전략을 제시함
- 연구 질문
- ▶ 주요 연구 질문
- 1. LightFM을 기반으로 어떠한 메타데이터를 활용해야 기존 MF (ALS, BPR) 방법보다 향상된 추천 성능을 낼 수 있는가?
- 2. 수록 곡이 없는 상황에 어떻게 대용할 수 있는가?
- 3. 어떠한 방법으로 수록 곡 개수가 적은 상황에서 성늉 항상을 이룰 수 있는가?

- 선행 연구
- ▶ 추천 시스템 개요
- 추천 시스템은 크게 콘텐츠 기반 필터링, 협업 필터링, 하이브리드 추천 시스템으로 나눌 수 있음
- 콘텐츠 기반 필터링은 유저에 대한 정보를 활용하지 않아도 된다는 장점이 있음
- 하지만 유저가 선호한 아이템과 비슷한 아이템을 추천함으로 추천의 다양성이 떨어질 수 있음
- 콘텐츠 기반 필터링보다 협업 필터링이 더 좋은 성능을 보임

추천 시스템의 종류 (Roy et al., 2022)

- 선행 연구
- 협업 필터링 (Matrix Factorization)

저자	방법론	활용 데이터	한계점	
Sarwar et al., 2001	Item-based collaborative filtering	유저 아이템 상호작용 평점 데 이터(명시적 피드백 데이터)	유저-아이템 상호작용 데이터 를 사용해 사용이력이 없는 유	
Koren et al., 2009	Matrix Factorization		저와 새로운 아이템을 대상으 로 추천해줄 수 없는 콜드 스타	
Hu et al., 2008	Alternating Least Squares		트 상황이 발생함	
Rendle et al., 2009	Bayesian Personalized Ranking	암시적 피드백 데이터		

- 선행 연구
- 워드 임베딩을 활용한 추천 시스템

저자	빙법론	활용 데이터	한계점
Grbovic et al., 2015	Prod2Vec	과거 소비 제품 목록	아이템의 메타데이터를 사용
Barkan et al., 2016	Item2Vec	과거 소비 데이터	하지 않았음
Vasile et al., 2016	Meta-Prod2Vec	과거 소비 데이터(음악 재생이력), 아이템 메타데이터(아티스트)	아이템 메타데이터 중에 아티 스트만을 활용, 소비 데이터가 없는 상황에서의 대안은 제시 안함
Misztal-Radeck et al., 2021	Meta-User2Vec	과거 소비 이력, 유저와 아이 템의 메타데이터 레이블	해당 연구에서는 레이블로 된 메타데이터를 사용해 본 연구 에서 사용하는 텍스트 데이터 로 이루어진 플레이리스트 메 타데이터를 해당 방법론으로 활용하기에는 한계가 있음

- 선행 연구
- ▶ 음악 플레이리스트 추천 시스템

저자	빙법론	활용 데이터	한계점	
Hao et al., 2020	Word2Vec + Naïve Bayes	플레이리스트 구성 곡 ID와 플레	단어 빈도수 기반으로 텍스	
Rubstov et al., 2018	LightFM	이리스트 제목 텍스트 데이터	트 데이터를 벡터화시킴으로써 노이즈가 많은 텍스트에는 대응하지 못함	
Yang et al., 2018	Multimodal AutoEncoder(CharCNN)	플레이리스트 구성 곡 ID, 아티스 트 메타데이터, 플레이리스트 제목 텍스트 데이터	곡 메타데이터 중에 아티스 트 그리고 플레이리스트의 메타데이터인 제목을 활용 해 좋은 추천 성늉을 보여 줬지만, 아티스트 외에 다 른 음악의 메타데이터 활용 에 따른 성늉 분석은 수행 하지 않음	

- > 아티스트뿐만 아니라 다른 메타데이터도 함께 활용해 음악의 어떠한 메타데이터가 음악 추천 성능 향상에 기여하는지 LightFM을 통해 일아봄
- ➤ 콜드 스타트 상황에서 플레이리스트의 태그와 제목과 같은 텍스트 데이터를 활용할 경우, 카운트 기반이 아닌 FastText 임베딩 기법을 사용

- 선행 연구
- ▶ 하이브리드 기반 추천
- Burke et al.(2002)은 하이브리드 추천 시스템을 형태에 따라 총 7가지로 분류함

하이브리드 방법론	설명
Weighted	여러 추천 시스템 기술의 점수를 결합해 단일 추천 결과 생성
Switching	상황에 맞는 추천 기술을 선택해 사용
Mixed	여러 추천 시스템의 결과를 동시에 보여줌
Feature Combination	여러 추천 시스템에서 사용된 특성들을 병합해 하나의 추천 일고리즘의 변수로 활용
Cascade	첫 번째 추천 시스템 기술을 활용하여 후보군을 선정하고 두 번째 추천 기술로 추천을 세분화
Feature Augmentation	추천 시스템의 아웃풋을 또 다른 추천 시스템의 특성으로 활용함
Meta-level	첫 번째로 생성된 추천 시스템 모델을 다음 추천 시스템의 인풋으로 활용

• 본 논문에서는 Switching 방법론을 기반으로 한 멜론 서비스 도메인에 맞는 하이브리드 추천 시스템을 제안함

- 하이브리드 추천 시스템 Flow Chart
- > 주어진 플레이리스트와 동반된 노래정보(Metadata)을 활용하여 플레이리스트 예측하는 과제
- ➤ Burke et al.(2002) 이 분류한 하이브리드 추천 방법론 중에 Switching 전략을 기반으로 한 하이브리드 추천 시스템

- 활용 데이터
- > 주어진 플레이리스트와 동반된 노래정보(Metadata)을 활용하여 플레이리스트 예측하는 과제
- ▶ 본 연구에서는 곡 장르 리스트, 아티스트 리스트, 빌매일을 활용해 분석함

707989 rows x 9 columns

<장르 데이터>

	gnr_code	gnr_name
0	GN0100	발라드
1	GN0101	세부장르전체
2	GN0102	'80
3	GN0103	'90
4	GN0104	'00
	1444	544
249	GN2900	뮤지컬
250	GN2901	세부장르전체
251	GN2902	국 <mark>내</mark> 뮤지컬
252	GN2903	국외뮤지컬
253	GN3000	크리스마스

254 rows × 2 columns

<곡 메타 데이터>

	song_gn_dtl_gnr_basket	issue_date	album_name	album_id	artist_id_basket	song_name	song_gn_gnr_basket	artist_name_basket	id
0	[GN0901]	20140512	불후의 명곡 - 7080 추억의 얄개시대 팝송 베스트	2255639	[2727]	Feelings	[GN0900]	[Various Artists]	0
1	[GN1601, GN1606]	20080421	Bach : Partitas Nos. 2, 3 & 4	376431	[29966]	Bach : Partita No. 4 In D Major, BWV 828 - II	[GN1600]	[Murray Perahia]	1
2	[GN0901]	20180518	Hit	4698747	[3361]	Solsbury Hill (Remastered 2002)	[GN0900]	[Peter Gabriel]	2
3	[GN1102, GN1101]	20151016	Feeling Right (Everything Is Nice) (Feat. Popc	2644882	[838543]	Feeling Right (Everything Is Nice) (Feat. Popc	[GN1100]	[Matoma]	3
4	[GN1802, GN1801]	20110824	그남자 그여자	2008470	[560160]	그남자 그여자	[GN1800]	[Jude Law]	4
	C011	- 650	.510		310	8555			100
707984	[GN2001]	19991219	The Best Best Of The Black President	65254	[166499]	Coffin For Head Of State	[GN2000]	[Fela Kuti]	707984
707985	[GN0901]	19860000	True Colors	44141	[11837]	Change Of Heart	[GN0900]	[Cyndi Lauper]	707985
707986	[GN0105, GN0101]	20160120	행보 2015 윤 종신 / 작사가 윤종신 Live Part.1	2662866	[437]	스치듯 안녕	[GN0100]	[윤종산]	707986
707987	[GN1807, GN1801]	20131217	명상의 시간을 위한 뉴에이지 음악	2221722	[729868]	숲의 빛	[GN1800]	[Nature Piano]	707987
707988	[GN0601, GN0604]	19980000	김경호 Live	34663	[895]	Queen 명곡 멜로디	[GN0600]	[김경호]	707988

- song_gn_dtl_gnr_basket: 곡 세부 장르 리스트
- issue_date: 발매일
- album_name: 앨범 이름
- album_id: 앨범 ID
- artist_id_basket: 아티스트 ID 리스트
- song_name: 곡 제목
- song_gn_gnr_basket: 곡 장르 리스트
- artist_name_basket: 아티스트 리스트
- id: 곡 ID

- 활용 데이터
- > 주어진 플레이리스트와 동반된 노래정보(Metadata)을 활용하여 플레이리스트 예측하는 과제
- ▶ 본 논문에서는 태그 리스트와 플레이리스트 제목을 활용해 구성 곡이 없는 콜드 스타트 상황에 대용함<학습용 플레이리스트 원본 데이터>

	tags	id	plyIst_title	songs	like_cnt	updt_date
0	[락]	61281	여행같은 음악	[525514, 129701, 383374, 562083, 297861, 13954	71	2013-12-19 18:36:19.000
1	[추억, 회상]	10532	요즘 너 말야	[432406, 675945, 497066, 120377, 389529, 24427	1	2014-12-02 16:19:42.000
2	[까페, 잔잔한]	76951	편하게, 잔잔하게 들을 수 있는 곡	[83116, 276692, 166267, 186301, 354465, 256598	17	2017-08-28 07:09:34.000
3 [5	면말, 눈오는날, 캐럴, 분위기, 따듯한, 크리스 마스캐럴, 겨울노래, 크리스마스,	147456	크리스마스 분위기에 흠뻑 취하고 싶 을때	[394031, 195524, 540149, 287984, 440773, 10033	33	2019-12-05 15:15:18.000
4	[댄스]	27616	추억의 노래 ㅋ	[159327, 553610, 5130, 645103, 294435, 100657,	9	2011-10-25 13:54:56.000
•••	i i i i i i i i i i i i i i i i i i i	222	1448	1993	(Ace)	X
115066	[록메탈, 밴드사운드, 록, 락메탈, 메탈, 락, extreme]	120325	METAL E'SM #2	[429629, 441511, 612106, 516359, 691768, 38714	3	2020-04-17 04:31:11.000
115067	[일렉]	106976	빠른 리스너를 위한 따끈따끈한 최신 인기 EDM 모음!	[321330, 216057, 534472, 240306, 331098, 23288	13	2015-12-24 17:23:19.000
115068	담시, 가족, 눈물, 그리움, 주인공, 나의_이야 기, 사랑, 친구]	11343	#1. 눈물이 앞을 가리는 나의_이야기	[50512, 249024, 250608, 371171, 229942, 694943	4	2019-08-16 20:59:22.000
115069	[잔잔한, 버스, 퇴근버스, Pop, 풍경, 퇴근길]	131982	퇴근 버스에서 편히 들으면서 하루를 마무리하기에 좋은 POP	[533534, 608114, 343608, 417140, 609009, 30217	4	2019-10-25 23:40:42.000
115070	[노래추천, 팝송추천, 팝송, 팝송모음]	100389	FAVORITE POPSONGIII	[26008, 456354, 324105, 89871, 135272, 143548,	17	2020-04-18 20:35:06.000

• tags: 태그 리스트

• id: 플레이리스트 ID

• plylst_title: 플레이리스트 제목

• songs: 곡 리스트

• like_cnt: 좋아요 개수

• updt_date: 수정 날짜

115071 rows × 6 columns

● 학습 및 평가를 위한 분리된 데이터 셋의 구성표

데이터	구성	비율	개수
훈련용 데이터	모든 데이터	0.8	92056
	곡 데이터 절반 마스킹	0.06	6904
검증용 데이터	곡과 태그 데이터 절반 마스킹	0.10	11508
	태그 데이터 절반만 보존	0.03	3452
	제목 데이터만 보존	0.01	1151
정답 데이터	마스킹된 데이터 (정답 데이터)	0.2	23,015

- ▶ 다양한 상황에 대용할 수 있는 하이브리드 추천 시스템의 성늉을 평가하기 위한 데이터 셋
- ▶ 태그 절반과 제목 데이터만 보존된 데이터는 플레이리스트 안에 구성 곡이 전부 마스킹이된 데이터 셋
- ▶ 마스킹이된 플레이리스트의 구성 곡들은 정답 데이터에 저장됨
- ▶ 본 논문에서는 훈련용 그리고 검증용 데이터에 있는 구성 곡을 모델 학습에 사용함
- ▶ 학습된 모델을 토대로 정답 데이터에 있는 구성 곡을 추정하는 것을 목적으로 함

- 활용 일고리즘
- > LightFM
- 유저와 아이템을 각자의 콘텐츠 특성의 잠재요소로 표현한 하이브리드 Matrix Factorization 모델 (Kula et al., 2015)
- 유저와 아이템의 메타데이터를 활용해 각각의 잠재요소 벡터를 생성함 (각 특성의 잠재요소의 합으로 정의됨)
- 유저와 아이템 잠재요소 벡터의 내적으로 평점 및 선호도 예측을 함 (Kula et al., 2015)

$$\hat{r}_{ui} = f(q_u \cdot p_u + b_u + b_i)$$

• LightFM 목적함수 (Kula et al., 2015)

$$L(e^{u}, e^{I}, b^{U}, b^{I}) = \prod_{(u,i) \in S^{+}} \hat{r}_{ui} \times \prod_{(u,i) \in S^{-}} (1 - \hat{r}_{ui})$$

• LightFM 학습을 위해 설정된 하이퍼파라미터 (LightFM 라이브러리 활용)

하이퍼파라미터 명	설정 값
차원 수(no_components)	100
훈련 횟수(epochs)	200
아이템 L2 정규화(item_alpha)	1e-6
손실함수	warp

- 활용 일고리즘
- > Item2Vec
- Skip-gram with Negative Sampling(SGNS)을 활용해 생성된 각 아이템의 임베딩 벡터를 기반으로 추천에 활용

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} log p(w_{t+j}|w_t)$$

Skip-gram 모델의 목적 함수(Mikolov et al., 2013)

• 추천 대상 플레이리스트 ID와 유사한 플레이리스트를 찾기 위해 코사인 유사도를 사용

$$similarity = \cos(\theta) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

• Gensim 라이브러리 활용

- 활용 일고리즘
- > Item2Vec
- Item2Vec 사전 학습을 위한 하이퍼파라미터

하이퍼파라미터 명	설정 값
임베딩 차원(vector size)	100
단어 최소 등장 허용 횟수(min_count)	1
Skip-gram 사용 여부 (sg)	1 (skip-gram 사용)
Hierarchical-softmax 사용 여부(hs)	0 (negative sampling 사용)
Negative sampling 개수(negative)	50
윈도우 크기 (window)	300
훈련 횟수 (epochs)	10

- 플레이리스트 내 최대 수록 곡 개수는 200개
- 플레이리스트의 태그와 제목을 같이 학습해야 하므로 여기서 윈도우 크기는 300으로 설정
- 각 아이템 별로 플레이리스트 내에 있는 모든 구성 곡을 반영한 임베딩 벡터를 생성하기 위해 윈도우 크기를 210으로 설정함

- 활용 일고리즘
- > FastText
- Item2Vec과 동일한 학습 과정
- 아이템 ID 대신에 플레이리스트 제목과 태그를 활용해 플레이리스트 임베딩 벡터 생성
- 단어를 전체를 학습하는 대신에 n-gram 단위로 학습 (OOV, rare words 대용 가능)
- 텍스트 데이터 특성상 노이즈가 많고 제목과 태그를 합쳐 평균적으로 9개 단어로 구성된 찗은 텍스트
- FastText 학습을 위한 설정 파라미터 (Gensim 활용, n-gram은 1로 설정)

하이퍼파리미터 명	설정 값
임베딩 차원 (vector size)	100
단어 최소 등장 허용 횟수(min_count)	1
Skip-gram 사용 여부 (sg)	1 (skip-gram 사용)
Hierarchical-softmax 사용 여부(hs)	0 (negative sampling 사용)
Negative sampling 개수 (negative)	50
윈도우 크기(window)	30
훈련 횟수(epochs)	10

- 평가 지표
- > NDCG
- 정답 데이터와 예측 결과 목록 간에 순서와 일치성을 계산하는 평가 지표
- 랭킹 기반 추천 시스템에 활용됨
- 정답 데이터를 상위에 노출시키면 높은 점수를 얻을 수 있음 (정답 데이터를 가장 먼저 예측하는 것이 중요함)
- 1에 가까울수록 좋음
- 곡 100개 추천한 결과에 대한 성능을 바탕으로 비교 분석함(NDCG@100)

Recommendations Order = [2, 3, 3, 1, 2]

 $Ideal\ Order = [3, 3, 2, 2, 1]$

$$DCG = \frac{2}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{3}{\log_2(3+1)} + \frac{1}{\log_2(4+1)} + \frac{2}{\log_2(5+1)} \approx 6.64$$

$$iDCG = \frac{3}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{2}{\log_2(3+1)} + \frac{2}{\log_2(4+1)} + \frac{1}{\log_2(5+1)} \approx 7.14$$

$$NDCG = \frac{DCG}{iDCG} = \frac{6.64}{7.14} \approx 0.93$$

- 실험 결과 및 분석
- 2.1 메타데이터 활용에 따른 성능 평가
- ➤ 검증용 플레이리스트 데이터 안에 구성 곡이 없는 경우에는 비개인화 추천 방식인 인기도 기반 추천으로 함(POP)
- ➤ 음악의 메타데이터를 조합한 LightFM 모델보다 아티스트만을 특성 벡터로 활용한 LightFM 모델이 제일 향상된 성능을 보임
- ➤ 좋은 성능을 보인 LightFM(아티스트)는 추후에 Item2Vec 모델과의 앙상블 모델에 활용

일고리즘	NDCG@100
인기도 기반 추천(POP)	0.0169
징르 기반 추천	0.0409
BPR + POP	0.0435
ALS + POP	0.1149
LightFM(장르) + POP	0.1201
<u>LightFM(아티스트) + POP</u>	<u>0.1656</u>
LightFM(장르, 발매연도) + POP	0.1149
LightFM(장르, 아티스트) + POP	0.1490
LightFM(발매연도, 아티스트) + POP	0.1558
LightFM(발매연도, 아티스트, 장르) + POP	0.1431

● 실험 결과 및 분석

2.2 수록 곡이 없을 때의 대유 방안

- ▶ 검증용 플레이리스트 안에 구성 곡이 없는 콜드 스타트 상황에서는 인기도 기반 추천 대신 태그와 제목을 기반으로 추천
- ▶ 비슷한 태그와 제목을 가진 플레이리스트는 유사한 구성 곡을 가진다는 가정을 함
- ➤ FastText 기반 추천이 더 좋은 성늉을 보여줌 (n-gram 단위 학습에 대한 효과가 있음)
- ▶ 자모 단위 토큰화의 성능 상승 효과는 없었음
- ▶ 전체 검증용 데이터 셋에 관한 성능 비교

일고리즘	NDCG@100
인기도 기반 추천(POP)	0.0169
징르 기반 추천	0.0409
Word2Vec	0.0887
FastText(자모 단위 토큰화)	0.0903
<u>FastText</u>	0.0922

● 실험 결과 및 분석

2.2 콜드 스타트 대응

- ➤ Switching 기법을 활용해 구성 곡이 있는 경우에는 LightFM(아티스트)를 바탕으로 추천, 없으면 FastText 추천
- ▶ 콜드 스타트 상황에서 인기도 기반 추천보다 FastText 추천이 다양한 상황에서 더 좋은 성능을 얻어낼 수 있음

일고리즘	NDCG@100
LightFM(아티스트) + POP	0.1656
<u>LightFM(아티스트) + FastText</u>	<u>0.1823</u>

● 실험 결과 및 분석

2.3 수록 곡 개수가 적을 때의 대유 방안

- ➤ 플레이리스트 안에 구성 곡이 있는 경우, LightFM(아티스트)과 Item2Vec의 결과를 앙싱블
- ▶ 텍스트 데이터로 이루어진 플레이리스트의 메타데이터인 태그와 제목을 LightFM의 특성 벡터로 사용하는데 한계가 있음
- ▶ Item2Vec의 결과를 같이 활용해 이러한 한계점에 대한 보완책을 마련
- ▶ 잉싱블에 활용한 Item2Vec은 기존 곡 ID만을 사용하지 않고 플레이리스트 태그 및 제목을 같이 학습함
- ▶ 두 모델이 생성한 추천 결과에 공통된 결과는 리스트 앞에 보내고 나머지는 LightFM(아티스트)의 결과로 채움
- ▶ 이러한 과정을 거친 하이브리드 추천 일고리즘이 제일 좋은 성늉을 낼 수 있었음
- ▶ 수록 곡이 적은 상황에서도 더 좋은 성능을 낼 수 있었음 (수록 곡 개수가 1개 이상 5개 이하)

	tags	id	plyIst_title	songs	like_cnt	updt_date
2	[]	45679	모진이네 방(팝)	[690947, 156049, 18368, 135346]	5	2009-06-07 11:30:36.000
12	[아기동화]	81602	동화로 배워봐 유아 영어 동화	[329899, 611802, 361943, 435829, 391345]	3	2020-03-05 14:39:00.000
41	0	17614	여름에 들으면 시원해지는 노래	[507194, 388924]	5	2015-07-20 01:53:03.000
86	[초]애]	86513	#POP MUSIC	[106500, 633618, 477206, 596968]	636	2018-05-31 06:41:53.000
106	[추억]	75062	DJ 미러볼 11 회: 리아	[271259, 556021, 71980, 218634, 365463]	31	2014-09-01 14:03:33.000
22961	0	132071	클래식 최신곡 모음집 (2015년 11월 30일)	[353629, 123697, 58314, 233712]	0	2015-12-01 18:00:25.000
22966	[]	141517	라디오 696	[288958, 464767, 111811, 606057]	8	2010-06-10 09:30:58.000
22980	[댄스]	138357	맑은가을하늘 듣기 좋은 댄스	[365398,191431,489908,319354,515358]	4	2017-10-12 07:07:51.000
22993	[]	107635	깊고 깊은 우울	[639720, 1508, 367433, 429971]	4	2008-05-25 23:04:26.000
23014	[]	7706	라디오 389	[243082, 383812, 218279, 297891]	7	2009-10-01 13:58:17.000

1273 rows × 6 columns

● 실험 결과 및 분석

2.3 성능 향상을 위한 앙상블

- ▶ 수록 곡이 적은 콜드 스타트 상황에서의 성늉 결과
- > 앙상블 모델의 Item2Vec은 플레이르스트의 구성 곡 ID와 제목과 태그를 같이 학습함
- ▶ 베이스라인 Item2Vec 모델은 플레이리스트의 구성 곡ID만 학습함

일고리 <u>즘</u>	선행연구	NDCG@100
BPR + POP (Rendle et al., 2009)	Bayesian personalized ranking for implicit feed back	0.0761
ALS + POP (Hu et al., 2008)	Collaborative filtering for implicit feedback datasets	0.1137
Item2Vec + POP (Barkan et al., 2016)	Item2Vec: neural item embedding for collaborative filtering	0.1734
LightFM(아티스트) + POP (Kula et al, 2015)	Metadata embeddings for user and item cold-start recommendations	0.1745
Ensemble(LightFM(아티스트), Item2Vec) + FastText (본 논문에서 제안한 최종 하이브리드 추천 모델)		<u>0.1923</u>

● 실험 결과 및 분석

2.3 성늉 향상을 위한 앙상블

▶ 플레이리스트 안에 구성 곡이 있는 경우, 성늉 향상을 위해 좋은 성늉을 보여준 LightFM과 Item2Vec의 결과를 앙상블

일고리즘	NDCG@100
BPR + POP (Rendle et al., 2009)	0.0435
ALS + POP (Hu et al., 2008)	0.1149
Item2Vec + POP (Barkan et al., 2016)	0.1784
LightFM(아티스트) + POP (Kula et al, 2015)	0.1656
Ensemble(LightFM(아티스트), Item2Vec) + FastText (본 논문에서 제안한 최종 하이브리드 추천 모델)	0.2072

4. 고찰

> 의의

- 1. 음악 추천 이라는 특정 도메인에 추천 성늉 항상에 가장 도움이 되는 메타데이터 조합이 무엇인지를 실험 분석을 통해 증명함
- Yang et al.(2018)과 Vasile et al.(2016) 음악 아이템의 메타데이터 중에 아티스트의 데이터만을 활용함
- 본 논문에서는 음악 추천 도메인에서 추천 성늉 향상에 가장 기여를 많이 하는 메타데이터를 탐색함
- 추후 아티스트 기반 협업 펄티링 음악 추천 시스템 연구의 근거로 활용할 수 있음
- 2. 기존 협업 필터링에서 발생할 수 있는 콜드 스타트 문제를 해결하기 위해서 멜론 서비스 도메인에 맞는 하이브리드 추천 전략을 제안함
- 기존 연구 에서는 (Vasile et al.(2016))에서는 사용 이력이 없는 사용자가 등장했을 때 발생하는 콜드 스타트 상황에 대용책을 마련하지 않음
- 본 논문에서는 Burke et al.(2002)이 분류한 7가지 하이브리드 추천 전략 중 Switching 방법을 사용함
- 플레이리스트 안에 구성 곡이 없는 경우, 플레이리스트의 태그와 제목을 FastText 기반으로 임베딩한 벡터를 추천에 활용(콜드 스타트 대용)
- 3. 아이템의 특성 뿐만 아니라 텍스트 데이터로 이루어진 플레이리스트의 특성도 함께 활용한 방안을 제시함
- 플레이리스트 제목 뿐만 아니라 태그도 주어지는 멜론의 서비스 도메인 특성을 반영함
- 곡의 메타데이터를 활용한 LightFM과 태그와 제목을 활용한 Item2Vec의 결과를 동시에 활용한 방안을 제시함

4. 고찰

- 한계점 및 추후 연구
- 1. 음악의 메타데이터와 플레이리스트의 태그와 제목을 독립적으로 학습함
- 텍스트 데이터와 메타데이터를 동시에 학습한다면 더 정교한 추천이 가능할 것이라고 기대됨
- 2. Switching 방법을 기반으로 한 하이브리드 추천 시스템은 서로 다른 모델을 만들어야 함
- 다양한 콜드 스타트 상황에 대응할 수 있는 단일 모델을 만든다면 효율적인 추천 시스템 모델을 설계할 수 있음
- 다양한 콜드 스타트 상황에 대응할 수 있는 단일 모델 구현에 관한 연구가 필요해 보임

참고문헌

Barkan, O., & Koenigstein, N. (2016, September). Item2vec: neural item embedding for collaborative filtering. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1-6). IEEE.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. *Transactions of the association for computational linguistics*, 5, 135–146.

Breese, J.S., Heckerman, D., & Kadie, C.M. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. *ArXiv*, *abs/1301.7363*.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. *User modeling and user-adapted interaction*, 12(4), 331-370.

Çano, E., & Morisio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487-1524.

Ferraro, A., Kim, Y., Lee, S., Kim, B., Jo, N., Lim, S., Lim, S., Jang, J., Kim, S., Serra, X., & Bogdanov, D. (2021). Melon Playlist Dataset: A Public Dataset for Audio-Based Playlist Generation and Music Tagging. *ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 536-540.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., & Sharp, D. (2015, August). E-commerce in your inbox: Product recommendations at scale. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining* (pp. 1809–1818).

Hao, Y., & Downie, J. S. (2020). Using latent semantics of playlist titles and descriptions to enhance music recommendations. In *Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA)* (pp. 18–22).

Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In *2008 Eighth IEEE international conference on data mining* (pp. 263–272). Ieee.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. *Computer*, 42(8), 30–37.

Kula, M. (2015). Metadata embeddings for user and item cold-start recommendations. arXiv preprint arXiv:1507.08439.

Kula, M. (2016). The LightFM model class. *LightFM*. Retrieved December 6, 2022, from https://making.lyst.com/lightfm/docs/index.html

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. *Advances in neural information processing systems*, 26.

Misztal-Radecka, J., Indurkhya, B., & Smywiński-Pohl, A. (2021). Meta-User2Vec model for addressing the user and item cold-start problem in recommender systems. *User Modeling and User-Adapted Interaction*, 31(2), 261-286.

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. *arXiv preprint arXiv:1205.2618*.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. *Conference on Computer Supported Cooperative Work.*

Roy, D., Dutta, M. A systematic review and research perspective on recommender systems. J Big Data 9, 59 (2022). https://doi.org/10.1186/s40537-022-00592-5

Rubtsov, V., Kamenshchikov, M., Valyaev, I., Leksin, V., & Ignatov, D. I. (2018). A hybrid two-stage recommender system for automatic playlist continuation. In *Proceedings of the ACM Recommender Systems Challenge 2018* (pp. 1-4).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In *Proceedings of the 10th international conference on World Wide Web* (pp. 285-295).

Son, J., Kim, S. B., Kim, H., & Cho, S. (2015, April 15). Review and Analysis of Recommender Systems. Journal of Korean Institute of Industrial Engineers. Korean Institute of Industrial Engineers. https://doi.org/10.7232/jkiie.2015.41.2.185

Vasile, F., Smirnova, E., & Conneau, A. (2016, September). Meta-prod2vec: Product embeddings using side-information for recommendation. In *Proceedings of the 10th ACM conference on recommender systems* (pp. 225-232).

참고문헌

Yang, H., Jeong, Y., Choi, M., & Lee, J. (2018). Mmcf: Multimodal collaborative filtering for automatic playlist continuation. In *Proceedings of the ACM Recommender Systems Challenge 2018* (pp. 1–6).

Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008, June). Large-scale parallel collaborative filtering for the netflix prize. In *International conference on algorithmic applications in management* (pp. 337-348). Springer, Berlin, Heidelberg.

THANK YOU HAVE A NICE DAY!