Εργαστήριο 4: Φαινόμενα μεταφοράς φορέων στο Octave

1.1 Έγχυση μόνιμης κατάστασης από την μια πλευρά

Το Σχήμα 1 δείχνει έναν ημιαγωγό Si τύπου n με n_i = 10^{10} , p_{no} = 10^5 , p_n = 10^{12} και n_n = 10^{12} όπου οι φορείς υπέρβασης έχουν εγχυθεί από την μια πλευρά σαν αποτέλεσμα της φωτονικής ακτινοβόλησης. Σαν μόνιμη κατάσταση υπάρχει μια βάθμωση συγκέντρωσης δίπλα στην επιφάνεια. Η διαφορική εξίσωση για τους φορείς μειονότητας στον ημιαγωγό είναι:

Σχήμα 1. Έγχυση φορέων σε μόνιμη κατάσταση από την μία πλευρά. (α) Ημι-άπειρο τεμάχιο (b) τεμάχιο μήκους W.

(b)

Οι οριακές συνθήκες είναι $p_n(x=0)=p_n(0)=10^{12}cm^{-3}$

кац
$$p_n(x \to \infty) = p_{no} = 10^5 cm^{-3}$$
 .

Το μήκος L_p είναι ίσο με $\sqrt{D_p t_p}$ και καλείται μήκος διάχυσης. Το Σχήμα 1 δίνει την μεταβολή της πυκνότητας μειονότητας που φθίνει με ένα χαρακτηριστικό μήκος L_p .

Άσκηση 1:

Χρησιμοποιώντας τις οριακές συνθήκες $p_n(0), p_{no}$ να παρασταθεί γραφικά με χρήση Octave η εξίσωση διάχυση φορέων σε ημιαγωγό ημιάπειρου μήκους: $p_n(x) = p_{no} + \sum_{x}^{\infty} p_n(x)$

$$(p_n(0) - p_{no})e^{-\frac{x}{L_p}}$$

Το μήκος L_p να υπολογισθεί από το διάγραμμα του, γνωρίζοντας ότι ο ημιαγωγός είναι πυρίτιο και έχει 10^{15} cm⁻³ συγκέντρωση προσμίξεων με t_p =17μs.

Σχήμα 2. Κινητικότητα και διαχυσιμότητα στο Si και στο GaAs στους 300K ως συνάρτηση της συγκέντρωσης προσμίξεων.

Ασκηση 2

Αν αλλάξουμε την δεύτερη οριακή συνθήκη όπως δείχνεται στο Σχήμα 1b έτσι ώστε να υπολογισθούν όλοι οι φορείς υπέρβασης στο $x=W=50\mu m$, ήτοι $p_n(W)=p_{no}$, τότε βρίσκουμε μια νέα λύση για την εξίσωση 84:

$$p_n(x) = p_{no} + (p_n(0) - p_{no}) \frac{\sinh(\frac{W - x}{L_p})}{\sinh(\frac{W}{L_p})}$$
(86)

Χρησιμοποιώντας τις οριακές συνθήκες $p_n(0), p_{no}$ να παρασταθεί γραφικά με χρήση Octave η εξίσωση διάχυση φορέων σε ημιαγωγό καθορισμένου μήκους W

1.2 Φορείς μειονότητας στην επιφάνεια

Όταν εισάγεται μια επιφανειακή επανασύνδεση στο ένα άκρο του ημιαγωγού κάτω από ομοιόμορφη φωτονική ακτινοβολία (Σχήμα 3), η πυκνότητα ρεύματος οπών που ρέει στην επιφάνεια από τον όγκο του ημιαγωγού δίνεται από το qU_S , όπου η U_S δίνεται από την Εξίσωση

$$U = v_{th}\sigma_n N_{st}(p_s - p_{no}) \tag{73}.$$

Σχήμα 3. Επανασύνδεση επιφανείας στο x=0. Η κατανομή των φορέων μειονότητας κοντά στην επιφάνεια εξαρτάται από την ταχύτητα της επιφανειακής επανασύνδεσης.

Η επιφανειακή επανασύνδεση οδηγεί σε χαμηλότερη συγκέντρωση φορέων στην επιφάνεια. Αυτή η βάθμωση της συγκέντρωσης οπών οδηγεί σε πυκνότητα ρεύματος διάχυσης που είναι ίση με το ρεύμα επιφανειακής επανασύνδεσης.

Έτσι, η οριακή συνθήκη στο x=0 είναι:

$$qD_p \frac{dp_n}{dx}|_{x=0} = qU_S = qS_{lr}(p_n(0) - p_{no})$$
(88)

Η οριακή συνθήκη στο $x = \infty$ δίνεται από την εξίσωση

$$p_n = p_{no} + t_p G_L \tag{45a}$$

Σε μόνιμη κατάσταση η διαφορική εξίσωση είναι:

$$\frac{\partial p_n}{\partial t} = 0 = D_p \frac{d^2 p_n}{dx^2} + G_L - \frac{p_n - p_{no}}{t_p} \tag{89}$$

Η λύση της εξίσωσης, που είναι συνάρτηση των παραπάνω οριακών συνθηκών είναι:

$$p_n(x) = p_{no} + t_p G_L \left(1 - \frac{t_p S_{lr} e^{-\frac{x}{L_p}}}{L_p + t_p S_{lr}} \right)$$
(90)

Η απόκριση της εξίσωσης για ένα δοσμένο S_{lr} δίνεται στο Σχήμα 3. Όταν $S_{lr} \to 0$, τότε $p_n(x) \approx p_{no} + t_p G_L$. όταν $S_{lr} \to \infty$, τότε:

$$p_n(x) = p_{no} + t_p G_L \left(1 - e^{-\frac{x}{L_p}} \right) \tag{91}$$

Άσκηση 3

Να απεικονιστεί με χρήση Octave η συνάρτηση (91), για τις ίδιες οριακές συνθήκες (σε άλλη κατεύθυνση) και για $G_L=U=rac{p_n-p_{no}}{t_p}$

1.3 Το πείραμα Haynes – Shockley

Ένα από τα κλασσικά πειράματα στην φυσική των ημιαγωγών είναι η επίδειξη της ολίσθησης και της διάχυσης των φορέων μειονότητας, που υλοποιήθηκε αρχικά από τους JR Haynes και W Shockley. Η βασική διάταξη του πειράματος Haynes – Shockley δίνεται στο Σχήμα 4α. Χωρικά συγκεντρωμένοι παλμοί φωτός δημιουργούν φορείς υπέρβασης σε μια ημιαγώγιμη ράβδο. Μετά από ένα παλμό, η εξίσωση μετάβασης δίνεται από την εξίσωση 82, θέτοντας $G_L=0$ και $\frac{\partial E}{\partial x}=0$ (δηλαδή το εφαρμοζόμενο πεδίο είναι σταθερό κατά μήκος της ημιαγώγιμης ράβδου):

$$\frac{\partial p_n}{\partial t} = -\mu_n E \frac{\partial p_n}{\partial x} + D_p \frac{\partial^2 p_n}{\partial x^2} - \frac{p_n - p_{no}}{t_n}$$
(92)

Αν δεν εφαρμόζεται πεδίο κατά μήκος του ημιαγωγού, η λύση δίνεται από την:

$$p_n(x,t) = p_{no} + \frac{N}{\sqrt{4\pi D_p t}} e^{-\frac{x^2}{4D_p t} - \frac{t}{tp}}$$
(93)

Άσκηση 4

Χρησιμοποιείστε το Octave για την γραφική λύση της 93.

Όπου N είναι ο αριθμός των ηλεκτρονίων και των οπών που γεννήθηκαν ανά μονάδα επιφανείας $N=10^{-1}2$ cm⁻². Το Σχήμα 4β δίνει την λύση καθώς οι φορείς διαχέονται μακριά από το σημείο έγχυσης και επανασυνδέονται.

Αν ένα ηλεκτρικό πεδίο εφαρμόζεται κατά μήκος του ημιαγωγού, η λύση έχει την μορφή της εξίσωσης 93, εκτός του ότι το x αντικαθίσταται από το $x-\mu_p Et$ (Σχήμα 4c). Έτσι, όλοι οι φορείς υπέρβασης προχωρούν προς την αρνητική πλευρά του δοκιμίου με μια ταχύτητα ολίσθησης $\mu_p E$. Την ίδια στιγμή, οι φορείς διαχέονται προς τα έξω και επανασυνδέονται όπως στην περίπτωση χωρίς πεδίο. Να σχολιάσετε τι σηματοδοτεί αυτή η μετακίνηση των καμπυλών προς την αρνητική πλευρά του δοκιμίου όταν εφαρμόζεται ηλεκτρικό πεδίο όπως φαίνεται στη σχήμα 4c.

Σχήμα 4. Το πείραμα Haynes – Shockley. (α) Πειραματική διάταξη (b) Κατανομές ρευμάτων χωρίς εφαρμοζόμενο πεδίο (c) Κατανομές φορέων με επιβαλλόμενο πεδίο.