Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen 15 avril 2024

Résumé

Bienvenue très chers camarades sereins, ce document contient les questions de khôlles de mathématiques de la MP1 de Fermat. Il est coécrit par Kylian Boyet, George Ober, Hugo Vangilluwen (qui maintient la structure du projet, la compilation et le paquet kholles.sty) avec la contribution de Jérémie Menard. Il n'est malheureusement pas exhaustif. Si vous voulez nous aider, lisez CONTRIBUER.md et envoyez-nous votre code LATEX ou plus simplement dites-nous quand vous rencontrez une erreur.

Table des matières

6	Sen	naine 6	5		
	6.1	Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples	5		
	6.2	exemples	5		
	6.3	Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in$			
		$\left(\mathbb{R}_+^*\right)^2\ldots\ldots\ldots$	6		
	6.4	Présentation exhaustive de la fonction arcsin	8		
	6.5	Présentation exhaustive de la fonction arccos	8		
	6.6	Présentation exhaustive de la fonction arctan	9		
	6.7	2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \sin[-1, 1]$, dont une basée sur une interpré-	1.0		
	6.8	tation géométrique du cercle trigonométrique	10 11		
	0.8	Presentation analytique rapide des fonctions cosn et sinn	11		
7	Semaine 7				
	7.1	Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale			
		nulle sur un cercle centré en l'origine a tous ses coefficients nuls.	12		
	7.2	Preuve de la Linéarité de la dérivation d'une fonction complexe	13		
	7.3	Dérivée composée d'une fonction à valeurs complexes	13		
	7.4	Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle	13		
8	Sen	Semaine 8			
	8.1	Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coeffi-			
		cients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression			
	0.0	des solutions à valeurs complexes des EDLH2 à coeff. constants)	14		
	8.2	Existence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur I (cas complexe puis cas réel).	14		
	8.3	Les solutions d'une EDL ₂ constituent un espace vectoriel	16		
	8.4	Formules de Cramer pour les systèmes $2 \times 2 \dots \dots \dots$	16		
9		naine 9	19		
	9.1	Deux classes d'équivalence sont disjointes ou confondues. Les classes d'équivalence	10		
	9.2	constituent une partition de l'ensemble sur lequel on considère la relation d'équivalence. Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une	19		
	3.4	borne supérieure dans A c'est sont plus grand élément	19		
	9.3	Théorème de la division Euclidienne dans \mathbb{Z}	20		
	9.4	Une suite décroissante et minorée de nombres entiers relatifs est stationnaire	20		

10	Sem	aine 10 21			
	10.1	Caractérisation de la densité d'une partie A de $\mathbb R$ dans une partie B de $\mathbb R$ la contenant			
		avec des ε			
	10.2	Théorème de la division pseudo-euclidienne dans \mathbb{R}			
	10.3	\mathbb{Q} est dense dans \mathbb{R} et $\mathbb{R} \setminus \mathbb{Q}$ est aussi dense dans \mathbb{R}			
	10.4	Preuve de l'unicité de la limite d'une suite convergente			
		Une suite convergente est bornée			
11	Sem	Semaine 11			
	11.1	Caractérisation séquentielle de la densité			
		Théorème de la convergence monotone			
	11.3	Théorème de Césarò			
	11.4	Théorème de passage à la limite dans une inégalité			
		Théorème des suites adjacentes			
		Facultative Théorème de Bolzano-Weierstrass			
	11.7	*Facultative* Caractérisation de la convergence par l'unicité d'une valeur d'adhé-			
		rence pour une suite bornée			
12	Sem	aine 12 29			
	12.1	Résolution d'une relation de récurrence linéaire d'ordre 1 à coefficients constants et			
		avec second membre			
	12.2	Résolution d'une relation de récurrence linéaire homogène d'ordre 2 à coefficients			
		constants dans $\mathbb C$ lorsque l'équation caractéristique possède un discriminant non nul 29			
	12.3	Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une			
		suite bornée			
	12.4	Monotonie de u et des sous-suites des termes pairs et impairs de la suite $u_{n+1} = f(u_n)$			
	10.5	selon la monotonie de f			
		L'intérieur de l'ensemble des rationnels est vide			
	12.0	Théorème sans nom version continue au voisinage de a			
13		aine 13 33			
		Théorème de composition des limites			
		Théorème des valeurs intermédiaires			
	13.3	Théorème de Weierstraß			
14		aine 14 36			
		Expression de dérivées successives			
	14.2	Dérivé d'une bijection réciproque			
		Dérivée d'un extremum local intérieur au domaine de définition			
		Théorème de Rolle et formule des accroissements finis			
		Inégalité des accroissements finis			
		Caractère lipschitzien d'une fonction C^1 sur un segment			
		Théorème du prolongement de la propriété de la dérivabilité			
	14.8	La fonction ζ (pas celle-là une autre) est de classe \mathcal{C}^{∞} sur \mathbb{R}			
15		aine 15 42			
	15.1	Inégalité de Jensen			
	15.2	Inégalité arithmético-géométrique			
16	Sem	taine 16			
	16.1	Deux fonctions équivalentes au voisinage de a ont le même signe sur un voisinage de a 4			
		Condition nécessaire et suffisante pour qu'une fonction \mathcal{C}^{∞} admette un extremum			
		local ou un point d'inflexion			
17	Sem	taine 17			
	17.5	Théorème de Bézout			
	17.7	Théorème de Gauss			
		Résoudre une équation du type $ax + yb = c$			

18		aine 18 47
	18.1	L'ensemble des nombres premiers est infini
	18.2	Caractérisation de la valuation p-adique
	18.3	Caractérisation de $a b$ par les valuations p -adiques et preuve de leur propriété de morphisme
	18.4	Expression du pgcd et du ppcm à partir des décomposition en facteurs premiers de a et b
	18.5	Pour p premier, $(a+b)^p \equiv a^p + b^p \mod p$, en déduire le petit Th. de Fermat (2 versions), expression du résultat dans $\mathbb{Z}/p\mathbb{Z}$
	18.6	$\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier
		Les éléments inversibles d'un anneau A forment un groupe multiplicatif noté (A^{\times}, \times) 49
		L'image directe par un morphisme d'anneau d'un sous-anneau de l'anneau de départ est un sous anneau de l'anneau d'arrivée. De même pour l'image réciproque 50
19	Sem	aine 19 51
-0		$(A \times B)^T = B^T \times A^T $
	19.2	Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker 51
		Les matrices triangulaires supérieures forment un sous-anneau de $\mathcal{M}_n(\mathbb{K})$ 52
		Si A est une matrice d'ordre n et λ un scalaire non nul d'un corps, alors la transposée de A et λA sont inversibles aussi
	19.5	Si N est une matrice d'ordre n nilpotente, alors $I_n + \lambda N$ est inversible pour tout λ ,
	10.0	scalaire d'un corps
	19.6	Caractérisation de l'inversibilité pour les matrices
		Caractérisation des matrices diagonales inversibles
20		aine 20 54
		Éléments inversibles de l'anneau $\mathbb{K}[X]$
		Théorème d'interpolation de lagrange
		Formule de Taylor dans $\mathbb{K}[X]$ (caractéristique nulle)
		Caractérisation de la multiplicité d'une racine
		Identification de $\mathbb{K}[X]$ à $\mathbb{K}[x]$, par l'injectivité de Φ
	20.6	Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions
	20.7	symétriques élémentaires
	20.7	Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques 58
21	Sem	aine 21 59
	21.1	Caractériser les polynômes irréductibles de degré 1, 2 et 3 dans $\mathbb{K}[X]$ 59
		Décrire les polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$
		Montrer que $X^3 - 2$ est irréductible dans $\mathbb{Q}[X]$
	21.4	Pour $P = \prod_{k=1}^{p} (X - z_k)^{m_k} \in \mathbb{C}[X]$ avec $m_k \in \mathbb{N}^*$ pour tout $k \in [1, p]$, montrer que $P \wedge P' = \prod_{k=1}^{p} (X - z_k)^{m_k - 1} \dots $
	21.5	Justifier la bonne définition de la dérivée d'une fraction rationnelle 60
	21.6	Théorème de Gauss-Lucas et interprétation graphique
		Donner deux expressions du coefficient associé à un pôle simple dans une décomposition en éléments simples
	21.8	Donner des expressions des deux coefficients associés à un pôle double dans une décomposition en éléments simples
20	Q	
44		aine 22 63 Caractérisation d'une famille liée 63
		Caractérisation d'une la familie nee
		Le noyau et l'image d'une application linéaire sont des sous-espaces vectoriels 64
		L'image par une application linéaire d'une partie génératrice engendre l'image de
	44.4	l'application linéaire
	22.5	Caractérisation inj/surj/bij d'une application linéaire par l'image d'une base de
		l'espace de départ
	22.6	Caractérisation d'une application linéaire par l'image d'une base $\dots \dots \dots$

23	Sem	aine 23	68
	23.1	L'ensemble des automorphisme d'un espace vectoriel muni de la loi de composition	
		forme un groupe	68
	23.2	Caractérisation de la somme directe de p sous-espaces vectoriels $\dots \dots$	68
24	Sem	aine 24	69
	24.1	Existence d'un supplémentaire en dimension finie	69
	24.2	Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$	69
	24.3	Formule de Grassman	69
	24.4	Caractérisation injectivité/bijectivité/surjectivité par le rang	70
	24.5	Théorème du rang	71
	24.6	Rang d'une composition d'applications linéaires	71
	24.7	Caractérisation des hyperplans	71
		Proportionnalité des formes linéaires ayant le même noyau	72
		Intersection d'hyperplans	73

6.1 Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples.

Démonstration. Soit $f: I \to F$, avec I, F deux parties non-vides de \mathbb{R} , une telle fonction et notons f^{-1} sa bijection réciproque. Si f est impaire sur I, alors pour tout $x \in I$, $-x \in I$, ainsi I est centré en 0 et on a :

$$\forall x \in I, \ f(-x) = -f(x).$$

Ainsi, prenons $y \in F$, alors $-y \in F$ par imparité et bijectivité de f. On a donc :

$$f^{-1}(-y) = f^{-1}(-f(f^{-1}(y)))$$

= $f^{-1}(f(-f^{-1}(y)))$
= $-f^{-1}(y)$.

D'où l'imparité de f^{-1} .

Pour ce qui est de l'exemple, prenons notre fonction bijective impaire préférée, la fonction $\sin | \frac{[-1,1]}{[-\frac{\pi}{2},\frac{\pi}{2}]}$ que l'on notera $\widetilde{\sin}$. Sa bijection réciproque est bien entendu arcsin : $[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$.

De la même manière que dans la démonstration du cas général, prenons $y \in [-1,1]$, comme [-1,1] est centré en $0, -y \in [-1,1]$, on a dès lors :

$$\begin{array}{rcl} \arcsin(-y) & = & \arcsin(-\widetilde{\sin}(\arcsin(y))) \\ & = & \arcsin(\widetilde{\sin}(-\arcsin(y))) \\ & = & -\arcsin(y). \end{array}$$

Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in \left(\mathbb{R}_{+}^{*}\right)^{2}$.

Démonstration. Premièrement, posons :

$$\forall (x, \alpha, \beta) \in [1, +\infty[\times (\mathbb{R}_+^*)^2, \quad f_{\alpha, \beta}(x) = \frac{(\ln x)^{\alpha}}{r^{\beta}}.$$

Deuxièmement, montrons que :

$$\frac{\ln(x)}{x^2} \xrightarrow[n \to +\infty]{} 0.$$

Soit $x \in [1, +\infty[$ = \mathcal{A} . Nous savons que la fonction ln est concave sur \mathbb{R}_+^* , donc en particulier sur \mathcal{A} . Ainsi, ln est en dessous de toutes ses tangentes, d'où :

$$\forall x \in \mathcal{A}, \quad 0 \le \ln(x) \le x - 1.$$

Illustration de l'inégalité :

Figure 1. ln en rouge et la première bissectrice en bleu.

On peut alors diviser par x^2 (car $x \neq 0$):

$$\forall x \in \mathcal{A}, \quad 0 \leq \underbrace{\frac{\ln(x)}{x^2}}_{f_{1,2}(x)} \leq \underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{x^2}}_{x \to +\infty}.$$

Donc par théorème d'encadrement $f_{1,2}(x) \xrightarrow[x \to +\infty]{} 0$.

Dernièrement, le cas général. Soit $x \in \mathcal{A}$ et soient $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On fait une preuve directe.

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} = \left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

$$= \underbrace{\left(\frac{2\alpha}{\beta}\right)^{\alpha}}_{c^{\frac{te}{\alpha}} \text{ (définie!)}} \cdot \underbrace{\left(\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)}{\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}\right)^{\frac{\alpha}{2}}}_{x \to +\infty} \cdot \underbrace{\left(\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)^{\alpha}}{\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}\right)^{\frac{\alpha}{2}}}_{par \text{ composition des limites}}$$

$$\xrightarrow[par \text{ par produit}]{}$$

Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha,\beta) \in \left(\mathbb{R}_+^*\right)^2$.

 $\begin{array}{c} D\acute{e}monstration. \\ \text{Montrons que } \xrightarrow[x^2]{1-\cos(x)} \xrightarrow[x\to 0]{} \frac{1}{2}. \end{array}$

On fait toujours une preuve directe.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{2x}{2}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)}{\frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)}{\frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{1}{2}$$

$$= \frac{1}{2}$$

Trouvons la limite, sous réserve d'existence, de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ suivant n en $+\infty$.

Remarquons que si $q \leq 0$, il est **nécessaire** d'avoir $\alpha \in \mathbb{Z}^*$ sinon l'expression n'a tout simplement **aucun sens**. De fait, on supposera q > 0 tout le long, les cas q < 0 se font naturellement (convergence pour $q \in \mathbb{R}_-$).

Soit donc 0 < q < 1, ce cas est immédiat, $((q^n)^\alpha)_{n \in \mathbb{N}} = ((q^\alpha)^n)_{n \in \mathbb{N}}$, donc il s'agit de la suite géométrique de raison $q^\alpha \in]0,1[$ et de premier terme $q^{\min_I(n)\alpha}$ ($\min_I(n)$, avec I une partie non vide de \mathbb{N} , car la suite ne démarre pas forcément à 0), donc elle converge vers 0.

Si $q \ge 1$, on montre le cas trivial $\alpha = \beta = 1$:

$$\forall n \in \llbracket \lfloor q \rfloor + 1, +\infty \llbracket, \quad 0 \leq \frac{q^n}{n!} = \underbrace{\frac{q}{1} \times \frac{q}{2} \times \cdots \times \frac{q}{\lfloor q \rfloor}}_{= \ \lambda \ (\text{une constante})} \times \underbrace{\frac{q}{\lfloor q \rfloor + 1}}_{\leq 1} \times \cdots \times \underbrace{\frac{q}{n-1}}_{\leq 1} \times \underbrace{\frac{q}{n}}_{n \rightarrow +\infty} \times \underbrace{\frac{q}{n$$

Par théorème d'existence de limite par encadrement, $\left(\frac{q^n}{n!}\right)_{n\in\mathbb{N}}$ converge et sa limite est 0.

Soient $(\alpha, \beta) \in \mathbb{R}_+^*$, montrons le cas général pour $q \geq 1$.

$$\forall n \in \mathbb{N}, \quad \frac{(q^n)^{\alpha}}{(n!)\beta} = \left(\frac{\left(q^{\frac{\alpha}{\beta}}\right)^n}{n!}\right)^{\beta} = \underbrace{\left(\frac{q^{\frac{\alpha}{\beta}}\right)^n}{n!}}_{\substack{n \to +\infty \\ \text{o'est le cas trivial}}}\right)^{\beta}$$
par composition des limites $(\beta > 0)$

6.4 Présentation exhaustive de la fonction arcsin.

 $D\acute{e}monstration$. Premièrement, ladite fonction est la bijection réciproque de la fonction $\widetilde{\sin}$ (voir 1.). D'où :

$$\arcsin = \begin{cases} [-1,1] & \to & \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ x & \mapsto & \left(\widetilde{\sin}\right)^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1, 1]$, $\arcsin(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\sin}$:

- 1. arcsin est impaire.
- 2. arcsin est strictement croissante sur [-1, 1].
- 3. $\arcsin \in C^0([-1,1],[-\frac{\pi}{2},\frac{\pi}{2}]).$
- 4. $\arcsin \in \mathcal{D}^1(]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 5. $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 6. arcsin admet deux demi-tangentes verticales en -1 et 1.

Graphe de arcsin :

Figure 2. arcsin en bleu, sin en vert et la première bissectrice en rouge.

On a aussi, grâce au taux d'accroissement en 0 d'arcsin :

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1.$$

Puis finalement (visible sur le graphe) :

$$\forall x \in [0, 1], \quad \arcsin(x) \ge x.$$

6.5 Présentation exhaustive de la fonction arccos.

 $D\acute{e}monstration$. Premièrement, ladite fonction est la bijection réciproque de la fonction $\cos \left| {{[1,1]}\atop{[0,\pi]}} \right| := \widetilde{\cos}$. D'où :

$$\arccos = \left\{ \begin{array}{ccc} [-1,1] & \to & [0,\pi] \\ x & \mapsto & \left(\widetilde{\cos}\right)^{-1}(x) \end{array} \right.$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$, $\cos(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\cos}$:

- 1. \arccos est strictement décroissante sur [-1, 1].
- 2. $\operatorname{arccos} \in \mathcal{C}^0([-1,1],[0,\pi]).$
- 3. $\arccos \in \mathcal{D}^1(]-1,1[,]0,\pi[)$.
- 4. $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos :

Figure 3. arccos en vert, $\widetilde{\cos}$ en violet, la première bissectrice en rouge et $y = \frac{\pi}{2} - x$ en rose.

6.6 Présentation exhaustive de la fonction arctan.

Démonstration

Premièrement, la dite fonction est la bijection réciproque de la fonction $\tan \left|_{]-\frac{\pi}{2},\frac{\pi}{2}[}\right| := \widetilde{\tan}$. D'où :

$$\arctan = \begin{cases} \mathbb{R} & \to & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\widetilde{\tan}\right)^{-1} (x) \end{cases}$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\tan(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\tan}$:

- 1. arctan est impaire.
- 2. $\arctan \in \mathcal{C}^0\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2} \right]\right)$.
- 3. $\arctan \in \mathcal{D}^1(\mathbb{R},]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan:

Figure 4. arctan en vert, tan en bleu, la première bissectrice en rouge, et les fonctions $y=\pm\frac{\pi}{2}$ et $x=\pm\frac{\pi}{2}$ en noir.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \le x.$$

Et enfin:

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

6.7 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ sur } [-1, 1]$, dont une basée sur une interprétation géométrique du cercle trigonométrique.

 $D\acute{e}monstration$. L'interprétation géométrique sur [0,1], celle sur [-1,0] est laissée au lecteur car il s'agit du même principe modulo des détails :

Figure 5.

Preuve formelle:

Soit
$$x \in [-1, 1]$$
. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi :
$$\arcsin(x) + \arccos(x) = \varphi + \arccos(\sin(\varphi)) = \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$

or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où arccos $\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :

$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

6.8 Présentation analytique rapide des fonctions cosh et sinh.

Démonstration.

• Domaine de définition et symétries. sinh et cosh sont définies sur \mathbb{R} .

De plus,

(i) $\forall x \in \mathbb{R}, -x \in \mathbb{R},$ (ii) $\forall x \in \mathbb{R}, \begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} \\ \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$

Donc sinh et cosh sont respectivement impaire et paire.

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes $(\mathcal{C}_{sinh}$ et $\mathcal{C}_{cosh})$ de ces fonctions sur \mathbb{R} à partir de ceux $(\mathcal{C}_{sinh}^+$ et $\mathcal{C}_{cosh}^+)$ obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe (O, \overrightarrow{j}) :

$$C_{\sinh} = C_{\sinh}^{+} \cup s \left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r \left(C_{\cosh}^{+}\right)$

- Variations : triviales.
- Branches infinies en $+\infty$ et position relative de \mathcal{C}_{sinh} et \mathcal{C}_{cosh} .

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} + \infty$$

Donc le graphe de cosh admet une branche parabolique de direction asymptotique $(O, \overrightarrow{\jmath})$. On a :

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Donc les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

• Tangente au graphe de sinh à l'origine et position relative.

Il s'agira d'étudier $g: x \in \mathbb{R}_+ \mapsto \sinh(x) - x$, de remarquer sa dérivabilité d'en étudier les variations puis de conclure, en précisant que cette étude révèle l'inflexion du graphe de sinh en 0.

7.1 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

 $D\acute{e}monstration.$ Soit $m \in \mathbb{Z}$ fq. Calculons :

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt$$

Si $m \neq 0$:

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt &= \frac{1}{2\pi} \left[\frac{e^{mt}}{im} \right]_0^{2\pi} \\ &= \frac{1}{2\pi} \left(\frac{1}{im} - \frac{1}{im} \right) = 0 \end{split}$$

Si m = 0:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \int_0^{2\pi} dt = \frac{2\pi}{2\pi} = 1$$

Donc

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \begin{cases} 1 \text{ si } m = 0\\ 0 \text{ si } m \neq 0 \end{cases}$$

Soit $n \in \mathbb{N}$ fq

Soient $(a_0, ..., a_n) \in \mathbb{C}^{n+1}$ les coefficients de $P(z) = \sum_{k=0}^n a_k z^k$, et $s \in \mathbb{Z}$, et $r \in \mathbb{R}_+^*$ fq. tels que P soit nulle lorsqu'elle est évaluée sur $\mathscr{C}(0, r)$

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} P(re^{it}) e^{-imt} dt &= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (re^{it})^k \right) e^{-imt} dt \\ &= \sum_{k=0}^n a_k r^k \underbrace{\int_0^{2\pi} \frac{e^{it(k-s)}}{2\pi} dt}_{L} \end{split}$$

On remarque que :

— Si $s \notin [[0, n]], \{k \in [[0, n]] \mid k = s\} = \emptyset$, Donc

$$\sum_{k \in [[0,n]]} a_k s^k I_k = \sum_{\substack{k \in [[0,n]]\\k=s}} a_k r^k = 0$$

— Si $s \in [[0, n]], \{k \in [[0, n]] \mid k = s\} = s$, Donc

$$\sum_{k \in [[0,n]]} a_k s^k I_k = \sum_{\substack{k \in [[0,n]] \\ k-s}} a_k s^k = a_s r^s$$

Or, puisque P s'annule sur le cercle de rayon r et de centre 0, $\mathcal{C}(0,r)$, ces sommes sont aussi nulles. On en déduit, en particularisant pour un $s \in [[0,n]]$ fixé quelconque que :

$$\sum_{k \in [[0, n]]} a_k s^k I_k = a_s r^s = 0 \implies a_s = 0$$

Donc

$$(\exists r \in \mathbb{R}_+^* : \forall \theta \in \mathbb{R}, P(re^{i\theta}) = 0) \implies \forall s \in [[0,n]]$$

Pour la preuve réciproque, soit $n \in \mathbb{N}$ fq. Soient $(a_0,...,a_n) \in \{0\}^{n+1}$ les coefficients nuls de la fonction polynomiale $P \in \mathbb{C}[z]$ définie pour tout $z \in \mathbb{C}$.

En remarquant que $\forall z \in \mathbb{C}, P(z) = 0$, puisque n'importe quel cercle centré en 0 est un sous ensemble de \mathbb{C} , $\exists r \in \mathbb{R}_+^* : \forall z \in \mathscr{C}(0,r), P(z) = 0$.

7.2 Preuve de la Linéarité de la dérivation d'une fonction complexe

Démonstration. Définissons les fonctions f_r et f_i comme les parties réelles et imaginaires de f. Soient $(f,g) \in \mathcal{F}(I,\mathbb{C})^2$, $(\alpha,\beta) \in \mathbb{C}^2$ fixés quelconques.

$$f_r = \operatorname{Re}(f), f_i = \operatorname{Im}(f)$$
 $g_r = \operatorname{Re}(f), g_i = \operatorname{Im}(g)$
 $\alpha_r = \operatorname{Re}(\alpha), \alpha_i = \operatorname{Im}(f)$ $\beta_r = \operatorname{Re}(f), \beta_i = \operatorname{Im}(g)$

$$\operatorname{Re}(\alpha f + \beta g) = \operatorname{Re}((\alpha_r + i\alpha_i)(f_r + if_i) + (\beta_r + i\beta_i)(g_r + ig_i))$$

$$= \underbrace{\alpha_r f_r + \beta_r g_r - \alpha_i f_i - \beta_i g_i}_{\text{Combinaison linéaire de }} \underbrace{(f_r, f_i, g_r, g_i) \in \mathcal{D}^1(I, \mathbb{R})^4}_{\text{car}(f, g) \in \mathcal{D}^1(I, \mathbb{R})^2}$$

Donc, selon le théorème de stabilité par combinaison linéaire des fonctions à valeurs réelles, $\operatorname{Re}(\alpha f + \beta g) \in \mathcal{D}^1(I,\mathbb{R})$ et $\left(\operatorname{Re}(\alpha f + \beta g)\right)' = \alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i'$ On montre de même que $\operatorname{Im}(\alpha f + \beta g) \in \mathcal{D}^1(I,\mathbb{R})$ et $\left(\alpha f + \beta g\right)' = \alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r'$

Ainsi,

$$(\alpha f + \beta g)' = (\alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i') + i(\alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r')$$

$$= \alpha_r (f_r' + i f_i') + \beta_r (g_r' + i g_i') + \alpha_i \underbrace{(-f_i' + i f_r')}_{i(f_r' + i f_i')} + \beta_i \underbrace{(-g_i' + i g_r')}_{i(g_r' + i g_i')}$$

$$= \alpha f' + \beta g'$$

7.3 Dérivée composée d'une fonction à valeurs complexes

Démonstration. Soient $f \in \mathcal{D}^1(J,\mathbb{C})$ et $h \in \mathcal{D}^1(I,J)$ (I et J sont deux intervalles réels) fixés quelconques. Notons f_r et f_i respectivement la partie réelle et imaginaire de f.

$$\left. \begin{array}{l} h \in \mathcal{D}^1(I,J) \\ f_r \in \mathcal{D}^1(J,\mathbb{R}), \ \mathrm{car} \ f \in \mathcal{D}^1(J,\mathbb{C}) \end{array} \right\} \implies f_r \circ h \in \mathcal{D}^1(I,\mathbb{R})$$

On montre de même que $f_i \circ h \in \mathcal{D}^1(I, \mathbb{R})$ donc $f \circ h \in \mathcal{D}^1(I, \mathbb{C})$. De plus,

$$(f \circ h)' = (f_r \circ h)' + i(f_i \circ h)'$$

$$= (f'_r \circ h) \times h' + i((f'_i \circ h) \times h')$$

$$= (f'_r \circ h + if'_i \circ h) \times h'$$

$$= (f' \circ h) \times h'$$

7.4 Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle

Démonstration. Soit $f \in \mathcal{D}^1(I,\mathbb{C})$ où I est un intervalle réel; Posons $f_r = \text{Re}(f)$ et $f_i = \text{Im}(f)$.

$$\forall t \in I, f'(t) = 0 \iff \forall t \in I, f'_r(t) + if'_i(t) = 0$$

$$\iff \begin{cases} \forall t \in I, f'_r(t) = 0 \\ \forall t \in I, f'_i(t) = 0 \end{cases}$$

$$\iff \begin{cases} \exists \lambda_r \in \mathbb{R} : \forall t \in I, f_r(t) = \lambda_r \\ \exists \lambda_i \in \mathbb{R} : \forall t \in I, f_i(t) = \lambda_i \end{cases}$$

$$\iff \exists \lambda \in \mathbb{C} : \forall t \in I, f(t) = \lambda$$

8.1 Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coefficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression des solutions à valeurs complexes des EDLH2 à coeff. constants).

Démonstration. Notons $\mathcal{S}_{H,\mathbb{C}}$ et $\mathcal{S}_{H,\mathbb{R}}$ les ensembles des solutions complexes et réelles de l'équation différentielle, puisque nous nous plaçons dans le cas $\Delta < 0$ et $\alpha \pm i\beta$ les deux racines complexes conjuguées.

$$\mathcal{S}_{H,\mathbb{C}} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto \lambda e^{(\alpha + i\beta)t} + \mu e^{(\alpha - i\beta)t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Montrons que $\forall f \in \mathcal{S}_{H,\mathbb{C}}, \operatorname{Re}(f) \in \mathcal{S}_{H,\mathbb{R}}$ Soit $f \in \mathcal{S}_{H,\mathbb{C}}$ fq.

$$f \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) \implies \operatorname{Re}(f) \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$$

Et, de plus, par morphisme additif de Re

$$a_2 \text{Re}(f)'' + a_1 \text{Re}(f)' + a_0 \text{Re}(f) = \text{Re}(a_2 f'' + a_1 f' + a_0 f) = 0$$

D'où, avec $f: t \mapsto e^{(\alpha+i\beta)t}$; $\operatorname{Re}(f(t)) = \operatorname{Re}(e^{(\alpha+i\beta)t}) = e^{\alpha t} \cos(\beta t)$. Qui appartient donc à $\mathcal{S}_{H,\mathbb{R}}$ En suivant le même raisonnement pour $\operatorname{Im}(f)$, $(t \mapsto e^{\alpha} \sin(\beta t)) \in \mathcal{S}_{H,\mathbb{R}}$

Ainsi, par combinaison linéaire (qui se base sur le principe de superposition),

$$\left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\} \subset \mathcal{S}_{H, \mathbb{R}}$$

Réciproquement, soit $f \in \mathcal{S}_{H,\mathbb{R}}$ fq. Puisque $\mathbb{R} \subset \mathbb{C}$, $f \in \mathcal{S}_{H,\mathbb{C}}$.

$$\exists (a,b) \in \mathbb{C}^2 : f \mid \begin{array}{c} \mathbb{R} \to \mathbb{C} \\ t \mapsto ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t} \end{array}$$

Or, puisque toutes les valeurs de f sont réelles, en notant (a_r, a_i, b_r, b_i) les parties réelles et imaginaires respectives de a et b.

$$\forall t \in \mathbb{R}, f(t) = \operatorname{Re}(f(t))$$

$$= \operatorname{Re}(ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t})$$

$$= \operatorname{Re}((a_r + ia_i)e^{(\alpha+i\beta)t} + (b_r + ib_i)e^{(\alpha-i\beta)t})$$

$$= a_r \cos(\beta t)e^{\alpha} - a_i \sin(\beta t)e^{\alpha} + b_r \cos(\beta t)e^{\alpha} + b_i \sin(\beta t)e^{\alpha}$$

$$= (a_r + b_r)\cos(\beta t)e^{\alpha} + (b_i - a_i)\sin(\beta t)e^{\alpha}$$

Ainsi,

$$f \in \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Ce qui conclut la preuve par double inclusion.

8.2 Existence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur *I* (cas complexe puis cas réel).

Considérons le problème de Cauchy suivant :

$$\begin{cases} a_{2}y'' + a_{1}y' + a_{0}y = b \text{ sur } J \\ y(t_{0}) = \alpha_{0} \\ y'(t_{0}) = \alpha_{1} \end{cases} \quad \text{où } (\alpha_{0}, \alpha_{1}) \in \mathbb{K}^{2}, t_{0} \in J, (a_{0}, a_{1}, a_{2}) \in \mathbb{K}^{2} \times \mathbb{K}^{*}, b \in \mathcal{F}(J, \mathbb{K})$$

Si b est continu sur J, alors ce problème de Cauchy admet une unique solution définie sur J.

Démonstration. Cas 1. $\mathbb{K} = \mathbb{C}$

Nous savons que sous l'hyphothèse de continuité de b sur J, les solutions de (EDL2) définies sur J constituent le plan affine S:

$$S = \left\{ \lambda f_1 + \mu f_2 + s | (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

où s est une solution particulière de (EDL2), (f_1, f_2) sont deux solutions de (EDLH2) qui engendrent S_h . On a :

$$f: J \to \mathbb{C} \text{ est sol. du pb de Cauchy} \iff \begin{cases} f \text{ sol de (EDL2) sur } J \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \begin{cases} f \in S \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2(t_0) + s(t_0) = \alpha_0 \\ \lambda f'_1(t_0) + \mu f'_2(t_0) + s'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f'_2(t_0) = \alpha_0 - s(t_0) \\ \lambda f'_1(t_0) + \mu f'_2(t_0) = \alpha_1 - s'(t_0) \end{cases}$$

On en déduit donc que (λ, μ) doit être solution d'un système linéaire (2, 2). On a une unique solution si et seulement si les déterminant de ce système est nul. Explicitons alors le déterminant de ce système, que l'on notera D.

$$D = \begin{vmatrix} f_1(t_0) & f_2(t_0) \\ f'_1(t_0) & f'_2(t_0) \end{vmatrix} = f_1(t_0) \cdot f'_2(t_0) - f_2(t_0) \cdot f'_1(t_0)$$

Notons Δ le discriminant de l'équation caractéristique de (EDL2) $(a_2r^2 + a_1r^1 + a_0 = 0)$. On distingue alors deux cas selon la nullité ou non de Δ . Traitons d'abord le cas $\Delta \neq 0$. On peut choisir :

$$f_1(t_0) = e^{r_1 t_0}$$
 et $f_2(t_0) = e^{r_2 t_0}$
 $f'_1(t_0) = r_1 e^{r_1 t_0}$ et $f'_2(t_0) = r_2 e^{r_2 t_0}$

Donc (en sachant que $\Delta \neq 0 \Rightarrow r_1 \neq r_2$):

$$D = e^{r_1 t_0} \cdot r_2 e^{r_2 t_0} - r_1 e^{r_1 t_0} \cdot e^{r_2 t_0} = (r_2 - r_1) \cdot e^{r_1 t_0 + r_2 t_0} \neq 0$$

Dans le deuxième cas, on a $\Delta = 0$; on peut alors prendre :

$$f_1(t_0) = e^{r_0 t_0}$$
 et $f_2(t_0) = t_0 e^{r_0 t_0}$

Ainsi:

$$D = e^{r_0 t_0} \left(r_0 t_0 e^{r_0 t_0} + e^{r_0 t_0} \right) - r_0 e^{r_0 t_0} \times t_0 e^{r_0 t_0} = e^{2r_0 t_0} \neq 0$$

On remarque alors que, dans les deux cas, $D \neq 0$, donc le système (2,2) étudié admet une unique solution, donc il existe un unique couple (λ, μ) le vérifiant d'où l'unicité et existence d'une solution au problème de Cauchy.

Cas 2.
$$\mathbb{K} = \mathbb{R}$$
 $(a_0, a_1, a_2) \in \mathbb{R}^2 \times \mathbb{R}^*, (\alpha_0, \alpha_1) \in \mathbb{R}^2, b \in C^0(J, \mathbb{R})$

Existence : Puisque $\mathbb{R} \subset \mathbb{C}$, le problème de Cauchy admet, dans \mathbb{R} , une solution à valeurs complexes g. Posons f = Re(g) et montrons que f est une solution réelle du problème de Cauchy.

$$\star g \in \mathcal{D}^2(J, \mathbb{C}) \text{ donc } f \in \mathcal{D}^2(J, \mathbb{R})$$

 $\star g$ vérifie $a_2g'' + a_1g' + a_0g = b$ sur J donc en prenant $\text{Re}(\cdot)$:

$$\operatorname{Re}(a_2 g'' + a_1 g' + a_0 g = b) = \operatorname{Re}(b) \iff a_2 \operatorname{Re}(g'') + a_1 \operatorname{Re}(g') + a_0 \operatorname{Re}(g) = b$$

$$\iff a_2 f'' + a_1 f' + a_0 f = b \operatorname{sur} J$$

- $\star f(t_0) = \operatorname{Re}(g(t_0)) = \operatorname{Re}(\alpha_0) = \alpha_0$
- * $f'(t_0) = \text{Re}(g(t_0))' = \text{Re}(g'(t_0)) = \text{Re}(\alpha_1) = \alpha_1$

Donc f est une solution réelle définie sur J au problème de Cauchy.

Unicité : Soient f_1 et f_2 deux fonctions à valeurs réelles solutions du problème de Cauchy ci-dessus fixées quelconques : puisque $\mathbb{R} \subset \mathbb{C}$, f_1 et f_2 sont des fonctions à valeurs dans \mathbb{C} solutions du même problème de Cauchy ; or il y a unicité de la solution au problème de Cauchy dans les fonctions à valeurs complexes, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{C})$, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{R})$.

8.3 Les solutions d'une EDL₂ constituent un espace vectoriel.

Soient $(a,b) \in \mathbb{C}^2$, f et g les solutions, définies sur \mathbb{R} à valeurs dans \mathbb{C} , des problèmes de Cauchy suivants :

$$\begin{cases} y'' + ay' + by = 0 \\ y(3) = 1 \\ y'(3) = 0 \end{cases} \text{ et } \begin{cases} y'' + ay' + by = 0 \\ y(3) = 0 \\ y'(3) = 1 \end{cases}$$

Comment s'exprime la solution définie sur \mathbb{R} de $\begin{cases} y'' + ay' + by = 0 \\ y(3) = \alpha & \text{pour } (\alpha, \beta) \in \mathbb{R}^2 \text{ fixés ?} \\ y'(3) = \beta \end{cases}$

Peut-on affirmer que le plan vectoriel des solutions définies sur \mathbb{R} à valeurs dans \mathbb{C} de y'' + ay' + by = 0 est $\{\lambda \cdot f + \mu \cdot g | (\lambda, \mu) \in \mathbb{C}^2\}$

Démonstration. La solution s'exprime simplement comme combinaison linéaire de f et g, plus précisément, la combinaison linéaire en α et β . En effet, soient de tels scalaires, et soient f et g de telles solutions, on a :

$$(\alpha \cdot f + \beta \cdot g)'' + a(\alpha \cdot f + \beta \cdot g)' + b(\alpha \cdot f + \beta \cdot g) = 0$$
, par définition des espaces vectoriels.

Et de même, $(\alpha \cdot f + \beta \cdot g)'(3) = \alpha \cdot f'(3) + \beta \cdot g'(3) = \alpha$, et $(\alpha \cdot f + \beta \cdot g)''(3) = \alpha \cdot f''(3) + \beta \cdot g''(3) = \beta$. Ce qui suffit par unicité des solutions (de la donc) d'un problème de Cauchy dans le cadre du théorème du cours.

Pour ce qui est du plan vectoriel des solutions, noté Ω , notons aussi Φ l'ensemble proposé. L'inclusion $\Phi \subset \Omega$ est triviale par propriété de linéarité des espaces vectoriels. Finalement, pour $\Omega \subset \Phi$, soit $\omega \in \Omega$, forcément, ω vérifie l' EDL_2 , mais aussi des conditions de Cauchy bien que celles-ci soient non-spécifiées, ainsi posons $\omega'(3) = \delta$ et $\omega''(3) = \theta$, donc en particulier, $\omega = \delta \cdot f + \theta \cdot g$, d'où l'égalité par double inclusion.

8.4 Formules de Cramer pour les systèmes 2×2

Résolution générale des systèmes linéaires à 2 équations et 2 inconnues en fonction du déterminant du systèmes (tous les cas ne sont pas nécessairement à envisager)

Considérons le système linéaire à deux équations et à deux inconnues (x, y):

$$(S) \begin{cases} ax + by = b_1 & (E_1) \\ cx + dy = b_2 & (E_2) \end{cases}$$
 (1)

dont $(a, b, c, d) \in \mathbb{K}^4$ sont les coefficients et $(b_1, b_2) \in \mathbb{K}^2$ sont les seconds membres.

1. (S) admet une unique solution si et seulement si $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$. De plus, dans ce cas, la solution est

$$\left(\frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} a & b_1 \\ c & d \end{vmatrix}}, \frac{\begin{vmatrix} a & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}\right)$$
(2)

2. Si ad - bc = 0, alors l'ensemble des solutions est soit vide, soit une droite affine de \mathbb{K}^2 , soit \mathbb{K}^2 .

Démonstration. Procédons par disjonction de cas.

- Supposons que $ad bc \neq 0$.
 - Supposons que $a \neq 0$.

$$(S) \iff \begin{cases} ax + by = b_1 \\ (d - \frac{bc}{a})y = b_2 - \frac{c}{a}b_1 & (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ (ad - bc)y = ab_2 - cb_1 & (L_1 \leftarrow aL_1) \end{cases}$$

$$\iff \begin{cases} ax = \frac{1}{a}\left(b_1 - b\frac{ab_2 - cb_1}{ad - bc}\right) = \frac{1}{a}\frac{adb_1 - bcb_1 + abb_2 - bcb_2}{ad - bc}$$

$$y = \frac{ab_2 - cb_1}{ad - bc}$$

$$\iff \begin{cases} ax = \frac{db_1 - bb_2}{ad - bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$$\Leftrightarrow \begin{cases} y = \frac{ab_2 - cb_1}{ad - bc} = \frac{\begin{vmatrix} a & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} a & b_1 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée.

• Supposons que a = 0. L'hypothèse $ad - bc \neq 0$ implique $bc \neq 0$ donc $b \neq 0$ et $c \neq 0$.

$$(S) \iff \begin{cases} by = b_1 \\ cx + dy = b_2 \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{c} \left(b_2 - d \frac{b_1}{b} \right) \\ y = \frac{b_1}{b} \end{cases}$$

$$\iff \begin{cases} ax = \frac{db_1 - bb_2}{-bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} 0 & b \\ c & d \end{vmatrix}}$$

$$y = \frac{-cb_1}{-bc} = \frac{\begin{vmatrix} 0 & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} 0 & b_1 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée.

ad - bc = 0.

 \bullet Supposons $\,a \neq 0.$ En reprenant la méthode pivot de Gauss

$$(S) \iff \begin{cases} ax + by = b_1 \\ \left(d - \frac{bc}{a}\right)y = b_2 - \frac{c}{a}b_1 & (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ \underbrace{(ad - bc)}_{0}y = ab_2 - cb_1 & (L_1 \leftarrow aL_1) \end{cases}$$

Donc le système est de rang 1 avec une condition de compatibilité. Si $ab_2 - cb_1 \neq 0$, (S) n'admet aucune solution.

Sinon $ab_2 - cb_1 = 0$

$$(S) \iff ax + by = b_1 \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{b_1}{a} - b\frac{t}{a} \\ t \end{pmatrix} \mid t \in \mathbb{K} \right\}$$
 (3)

Donc (S) admet un droite affine de solutions.

• Supposons a = 0. Puisque ad - bc = 0, alors bc = 0 donc b ou c est nul.

• Si
$$c = 0$$
,

$$(S) \iff \begin{cases} by = b_1 \\ dy = b_2 \end{cases}$$

• Si b = 0,

$$(S) \iff \left\{ \begin{array}{rcl} by & = & b_1 \\ 0 & = & b_2 \end{array} \right.$$

- Si $b_2 = 0$, (S) n'admet aucune solution.
- Si $b_2 \neq 0$, $(S) \iff dy = b_2$
 - Si d=0, $(S)\iff 0=b_2$. (S) n'admet aucune solution $(b_2\neq 0)$ ou admet \mathbb{K}^2 comme ensemble des solutions $(b_2 = 0)$.
 - Si $d \neq 0$, $(S) \iff y = \frac{b_2}{d} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} t \\ \frac{b_2}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$. Donc (S) admet une droite affine de solutions.

• Si $b \neq 0$

$$(S) \iff \begin{cases} y = \frac{b_1}{b} \\ 0 = b_2 - \frac{db_1}{b} \end{cases}$$

- Si $b_2 \frac{db_1}{b} \neq 0$, (S) n'admet aucune solution
- Si $b_2 \frac{db_1}{b} = 0$, $(S) \iff y = \frac{b_1}{b} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} t \\ \frac{b_1}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.
- Si $c \neq 0$ alors b = 0

$$(S) \iff \left\{ \begin{array}{rcl} 0 & = & b_1 \\ cx + dy & = & b_2 \end{array} \right.$$

- Si $b_1 \neq 0$, (S) n'admet aucune solution.
- Si $b_1 = 0$, $(S) \iff x = \frac{b_2}{c} \frac{d}{c}y \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{b_2}{c} \frac{d}{c}t \\ t \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.

Deux classes d'équivalence sont disjointes ou confondues. Les classes d'équivalence constituent une partition de l'ensemble sur lequel on considère la relation d'équivalence.

Soit \mathcal{R} une relation d'équivalence sur E.

Soit $x \in E$.

La classe de x, notée \bar{x} , est l'ensemble des éléments de E en relation avec x.

$$\bar{x} = \{ y \in E \mid x \mathcal{R} y \} \tag{4}$$

Démonstration. Montrons que deux classes d'équivalence sont disjointes ou confondues.

Soit $(x,y) \in E^2$ fq.

- Si $\bar{x} \cap \bar{y} = \emptyset$, rien à démontrer.
- Sinon $\bar{x} \cap \bar{y} \neq \emptyset$ donc $\exists z \in \bar{x} \cap \bar{y}$. Fixons un tel z. Soit $x' \in \bar{x}$ fq.

$$x' \in \bar{x} \implies x\mathcal{R}x' \underset{sym\acute{e}trie}{\Longrightarrow} x'\mathcal{R}x \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \underset{sym\acute{e}trie}{\Longrightarrow} y\mathcal{R}x'$$

Donc $x' \in \bar{y}$ donc $\bar{x} \subset \bar{y}$.

En échangeant les rôles de x et y, on montre la deuxième inclusion $\bar{y} \subset \bar{x}$.

Montrons que les classes d'équivalence de E constituent une partition de E. Soit S un système de représentant des classes fixé quelconque.

- Soit $s \in \mathcal{S}$ fq. $\bar{s} \neq \emptyset$ car $s\mathcal{R}s$ par réflexivité.
- Soit $(s, s') \in S^2$ fq. D'après la démonstration ci-dessus ci-dessus, $\bar{s} \cap \bar{s'} = \emptyset$ ou $\bar{s} = \bar{s'}$. Si $\bar{s} = \bar{s'}$ alors s et s' représente la même classe ce qui est impossible car un système de représentants des classes contient un unique représentant de chaque classe. Par conséquent, \bar{s} et $\bar{s'}$ sont disjoints.
- $\bigcup \bar{s} \subset E \text{ car } \forall s \in \mathcal{S}, \bar{s} \in E \text{ par definition d'une classe d'équivalence.}$

Réciproquement, soit $x \in E$ fq.

Par réflexivité de \mathcal{R} , $x \in \bar{x}$.

Par définition d'un système de classe $\exists ! s_x \in \mathcal{S} : s_x \in \bar{x} \text{ donc } \bar{s_x} = \bar{x}.$ Donc $x \in \bar{s_x} \subset \bigcup_{\bar{s}} \bar{s}.$

Donc $E \subset \bigcup_{s \in \mathcal{S}} \bar{s}$. Par double inclusion, $E = \bigcup_{s \in \mathcal{S}} \bar{s}$.

Ainsi,

$$E = \coprod_{s \in \mathcal{S}} \bar{s} \tag{5}$$

Si A admet un plus grand élément c'est aussi sa borne supérieure. Si 9.2A admet une borne supérieure dans A c'est sont plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E.

Si A admet un plus grand élément alors A admet une borne supérieure et sup $A = \max A$.

Si A admet une borne supérieure appartenant à elle-même alors A admet un plus grand élément et $\max A = \sup A$.

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons l'ensemble des majorants de A, $M(A) = \{m \in E \mid \forall a \in A, \ a \leq m\}$.

Par définition:

$$\forall m \in M(A), M \leq m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$.

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Comme $S \in M(A)$, par définition, S est plus grand que tous les éléments de A mais appartient à A, donc de tous les éléments de A, S est le plus grand.

9.3 Théorème de la division Euclidienne dans \mathbb{Z}

$$\forall (a,b) \in \mathbb{Z}^2, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{N} : \begin{cases} a = bq + r \\ r \in [0; |b| - 1] \end{cases}$$
 (6)

Démonstration. Unicité Soient deux tels entiers $(a,b) \in \mathbb{Z}^2$ et deux couples $((q,r),(q',r')) \in (\mathbb{Z} \times \mathbb{N})^2$ tels que

$$\begin{cases} a = bq + r \\ 0 \leqslant r \leqslant |b| - 1 \end{cases} \qquad \begin{cases} a = bq' + r' \\ 0 \leqslant r' \leqslant |b| - 1 \end{cases}$$

Directement,

$$b(q - q') = r' - r,$$

mais comme $-(|b|-1) \le r'-r \le |b|-1$, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Existence Posons pour $b \ge 1$, $\Omega = \{k \in \mathbb{Z} \mid kb \le a\}$

- $-\Omega \subset \mathbb{Z}$
- non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit ...)
- Ω est majoré par |a| car supposons, par l'absurde, que $\exists k \in \Omega : k > |a|$, alors kb > |a|b > a ce qui contradiction avec la définition d' Ω .

Donc Ω admet un plus grand élément, notons-le q.

Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $\Omega \subset \mathbb{Z}$, $q \in \mathbb{Z}$ donc $r \in \mathbb{Z}$. Par suite, $q \in \Omega$ donc $bq \leqslant a$ d'où $0 \leqslant r$. Et $q = \max \Omega$ donc b(q+1) > a d'où b > r, c'est-à-dire, $r \in [0, |b| - 1]$.

Si b < 1, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de la
dite écriture de a.

9.4 Une suite décroissante et minorée de nombres entiers relatifs est stationnaire

 $D\acute{e}monstration$. Soit $u \in \mathbb{Z}^{\mathbb{N}}$ une suite décroissante et minorée fixée quelconque. Considérons $A = \{u_n \mid n \in \mathbb{N}\}$ c'est-à-dire l'ensemble des valeurs prises par la suite u. A est :

- une partie de $\mathbb Z$ car u est à valeur dans $\mathbb Z$
- non vide car $u_0 \in A$
- minoré car u est minorée

Donc A admet un plus petit élément. Donc $\exists n_0 \in \mathbb{N} : u_{n_0} = minA$. Fixons un tel n_0 . Soit $n \in \mathbb{N}$ fq tq $n \ge n_0$.

$$\left. \begin{array}{l} u_n \in A \implies u_n \geqslant \min A = u_{n_0} \\ u \text{ est décroissante et } n \geqslant n_0 \text{ donc } u_n \leqslant u_{n_0} \end{array} \right\} \implies u_n = u_{n_0}$$

Ainsi, u est stationnaire.

10.1 Caractérisation de la densité d'une partie A de \mathbb{R} dans une partie B de \mathbb{R} la contenant avec des ε .

Soient $(A, B) \in \mathcal{P}(\mathbb{R})^2$ fq. Définition de la densité

$$A \text{ est dense dans } B \text{ si } \begin{cases} A \subset B \\ \text{ et } \\ \forall (u,v) \in \mathbb{R}^2, B \cap]u; v[\neq \emptyset \implies A \cap]u; v[\neq \emptyset \end{cases}$$
 (7)

Caractérisation de la densité par les ε

$$A \text{ est dense dans } B \iff \begin{cases} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b - a| < \varepsilon \end{cases}$$
 (8)

Démonstration. Montrons la caractérisation de la densité Sens Direct Supposons A dense dans B

- Par déf $A \subset B$
- Soit $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fq

Appliquons le (ii) de la déf de Densité pour $u \leftarrow b - \varepsilon$ et $v \leftarrow b + \varepsilon$

$$B\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset\implies A\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset$$

Or, $B \cap [b - \varepsilon, b + \varepsilon] \neq \emptyset$ est vraie donc $A \cap [b - \varepsilon, b + \varepsilon] \neq \emptyset$

Ce qui permet de choisir $a \in A \cap]b - \varepsilon, b + \varepsilon[$. Un tel a vérifie $a \in A$ et $a \in]b - \varepsilon, b + \varepsilon[\iff |b - a| < \varepsilon$

 $\begin{array}{l} \textit{Sens r\'eciproque} \; \text{Supposons} \; \left\{ \begin{array}{l} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon \end{array} \right. \end{array}$

- On a donc $A \subset B$
- Soient $(u, v) \in \mathbb{R}^2$ fq tq $B \cap]u, v \neq \emptyset$

Soit $b \in B \cap]u,v[$ fq. Appliquons l'hypothèse pour $b \leftarrow b$ et $\varepsilon \leftarrow \min\{v-b,b-u\}$, qui est autorisé v-b et b-u sont positifs

Donc $\exists a \in A : |b - a| < \varepsilon$

Fixons un tel a, alors:

$$b - \varepsilon < a < b + \varepsilon$$

Donc

$$\begin{cases} a < b + \varepsilon = b + \underbrace{\min\{v - b, b - u\}}_{\leqslant v - b} \leqslant b + v - b = v \\ \text{et} \\ a > b - \varepsilon = b - \underbrace{\min\{v - b, b - u\}}_{\leqslant b - u} \geqslant b - (b - u) = u \end{cases}$$

Donc $a \in]u,v[$.

Donc $A \cap]u, v \neq \emptyset$

10.2 Théorème de la division pseudo-euclidienne dans \mathbb{R}

$$\forall (a,b) \in \mathbb{R} \times \mathbb{R}^*, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{R} : \begin{cases} a = bq + r \\ r \in [0; |b|] \end{cases}$$
 (9)

Démonstration. Unicité Soient deux tels entiers $(a,b) \in \mathbb{R}^2$ et deux couples $((q,r),(q',r')) \in (\mathbb{Z} \times \mathbb{R})^2$ tels que

$$\begin{cases} a=bq+r \\ r\in [0;|b|[\end{cases} \qquad \begin{cases} a=bq'+r' \\ r'\in [0;|b|[$$

Directement,

$$b(q - q') = r' - r,$$

mais comme -|b| < r' - r < |b|, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Existence Posons pour b > 0, $\Omega = \{k \in \mathbb{Z} \mid kb \leq a\}$

- $-\Omega \subset \mathbb{Z}$
- non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit ...)
- Ω est majoré par |a| car supposons, par l'absurde, que $\exists k \in \Omega : k > |a|$, alors kb > |a|b > a ce qui contradiction avec la définition d' Ω .

Donc Ω admet un plus grand élément, notons-le q.

Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $r \in \mathbb{R}$.

Par suite, $q \in \Omega$ donc $bq \leqslant a$ d'où $0 \leqslant r$. Et $q = \max \Omega$ donc b(q+1) > a d'où b > r, c'est-à-dire, $r \in [0, |b|]$.

Si b < 0, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de ladite écriture de a.

$10.3 \quad \mathbb{Q} ext{ est dense dans } \mathbb{R} ext{ et } \mathbb{R} \setminus \mathbb{Q} ext{ est aussi dense dans } \mathbb{R}$

Démonstration. Soit $x \in \mathbb{R}$ fq. Posons $\forall n \in \mathbb{N}, a_n = \frac{\lfloor 2^n x \rfloor}{2^n}$. Soit $n \in \mathbb{N}$ fq.

 $-a_n \in \mathbb{Q} \text{ car } |2^n x| \in \mathbb{Z} \text{ et } 2^n \in \mathbb{N}.$

$$a_n = \frac{\lfloor 2^n x \rfloor}{2^n} \implies \frac{2^n x - 1}{2^n} \leqslant a_n \leqslant \frac{2^n x}{2^n} \implies x - \frac{1}{2^n} \leqslant a_n \leqslant x$$

Or $1/2^n \xrightarrow[n \to +\infty]{} 0$ donc d'après le théorème d'existence de limite par encadrement, $a_n \xrightarrow[n \to +\infty]{} x$.

Donc d'après la caractérisation séquentielle de la densité, $\mathbb Q$ est dense dans $\mathbb R$.

Soit $x \in \mathbb{R}$ fq.

Alors $x + \sqrt{2} \in \mathbb{R}$. D'après la démonstration précédente, $\exists b \in \mathbb{Q}^{\mathbb{N}} : b_n \xrightarrow[n \to +\infty]{} x + \sqrt{2}$.

Fixons un telle suite b. Considérons $c = b - \sqrt{2}$. Soit $n \in \mathbb{N}$ fq.

 $-c_n \in \mathbb{R} \setminus \mathbb{Q} \text{ car } b_n \in \mathbb{Q} \text{ et } \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

$$\begin{vmatrix}
b_n & \xrightarrow{n \to +\infty} & x + \sqrt{2} \\
c_n & = b_n - \sqrt{2}
\end{vmatrix} \implies c_n \xrightarrow[n \to +\infty]{} x$$

Donc d'après la caractérisation séquentielle de la densité, $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

10.4 Preuve de l'unicité de la limite d'une suite convergente

Soit $u \in \mathbb{K}^{\mathbb{N}}$, $(\ell_1, \ell_2) \in \mathbb{K}^2$ Si u converge vers ℓ_1 et ℓ_2 , alors $\ell_1 = \ell_2$

Démonstration. Par l'absurde, supponsons que u converge vers ℓ_1 et ℓ_2 , et $\ell_1 \neq \ell_2$. On prendra $\varepsilon_0 = \varepsilon_1 = \varepsilon_2$ assez petit pour que les tubes soient disjoints. Posons donc $\varepsilon_0 = \frac{|\ell_1 - \ell_2|}{3}$

— Appliquons la définition de la convergence de u vers ℓ_1 , pour $\varepsilon \leftarrow \varepsilon_0$, ce qui est autorisé car $\varepsilon_0 \in \mathbb{R}_+^*$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell_1| \leqslant \varepsilon_0 \tag{10}$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_2 \implies |u_n - \ell_2| \leqslant \varepsilon_0 \tag{11}$$

Fixons de tels N_1 et N_2 .

- Posons $n_0 = N_1 + N_2$
 - $n_0 \geqslant N_1$, donc (??) s'applique : $|u_{n_0} \ell_1| \leqslant \varepsilon_0$
 - $n_0 \geqslant N_2$, donc (??) s'applique : $|u_{n_0} \ell_2| \leqslant \varepsilon_0$

$$\begin{aligned} |\ell_1 - \ell_2| &= |\ell_1 - u_{n_0} + u_{n_0} - \ell_2| \\ &\leqslant \underbrace{|\ell_1 - u_{n_0}|}_{\leqslant \varepsilon_0} + \underbrace{|u_{n_0} - \ell_2|}_{\leqslant \varepsilon_0} \\ &\leqslant 2\frac{|\ell_1 - \ell_2|}{3} \\ \implies 1 \leqslant \frac{2}{3} \end{aligned}$$

Contradiction

10.5 Une suite convergente est bornée

Démonstration. Soit $u \in \mathbb{K}^{\mathbb{N}}$ convergente. Posons $\ell = \lim u$ Appliquons la définition de la convergence pour $\varepsilon \leftarrow 1$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell| \leqslant 1$$

Fixons un tel N_1 Posons alors $M = \max\{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell|+1\}$, qui est bien défini, car toute partie finie, non vide d'un ensemble totalement ordonné (ici (\mathbb{R}, \leq)) admet un pgE.

Soit $n \in \mathbb{N}$ fq.

- Si $n \in [[0, N_1]], |u_n| \in \{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\} \text{ donc } |u_n| \leq M$
- Sinon,

$$\begin{array}{ll} n > N_1 \implies |u_n - \ell| \leqslant 1 \\ \implies |u_n| - |\ell| \leqslant 1 \\ \implies |u_n| \leqslant 1 + |\ell| \leqslant M \end{array}$$

23

Ainsi, $\forall n \in \mathbb{N}, |u_n| \leq M$.

11.1 Caractérisation séquentielle de la densité.

Soient $(A, B) \in (\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\})^2$. Montrons que :

$$A \text{ est dense dans } B \iff \left\{ \begin{array}{l} A \subset B \\ \forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n) \text{ converge vers } b \end{array} \right.$$

Démonstration. Sens indirect : supposons $A \subset B$ et $\forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n)$ converge vers b :

- $\star A \subset B$ par hypothèse.
- \star Montrons que $\forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon$ (on utilise la caractérisation de la densité avec les ε)

Soient $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fixés quelconques :

Par hypothèse appliquée pour $b \leftarrow b : \exists (a_n) \in A^{\mathbb{N}} : a_n \xrightarrow[n \to +\infty]{} b$

Appliquons la définition de la convergence de (a_n) vers b pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow |a_n - b| \leqslant \frac{\varepsilon}{2}$$

Fixons un tel N:

En particulier, $a_N \in A$ et $|a_N - b| \leqslant \frac{\varepsilon}{2} \leqslant \varepsilon$

Donc A est dense dans B.

Sens direct : supposons A dense dans B :

- \star Par définition, $A \subset B$
- \star Soit $b \in B$ fixé quelconque.

Soit $n \in \mathbb{N}$ fixé quelconque :

Appliquons la caractérisation de la densité par les ε pour $\varepsilon \leftarrow \frac{1}{2^n}$ (autorisé car $\frac{1}{2^n} > 0$), et $b \leftarrow b$:

$$\exists a \in A : |a - b| \leqslant \frac{1}{2^n}$$

Notons a_n un tel élément. Nous venons de construire $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ vérifiant :

 $\forall n \in \mathbb{N}, |a_n - b| \leqslant \frac{1}{2^n}$ Or: $\lim_{n \to +\infty} \frac{1}{2^n} = 0$

Ainsi, d'après le théorème sans nom, $(a_n)_{n\in\mathbb{N}}$ converge vers b.

Théorème de la convergence monotone 11.2

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite monotone :

- 1. Si u est croissante
 - (i) Soit u est majorée, et dans ce cas, $\lim u = \sup\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $+\infty$.
- 2. Si u est décroissante :
 - (i) Soit u est minorée, et dans ce cas, $\lim u = \inf\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $-\infty$.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ monotone fq.

- 1. Supposons que u est croissante.
 - (i) Supposons que u est majorée.

Alors $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$. Fixons un tel M.

 $\Omega = \{u_k | k \in \mathbb{N}\} \text{ est }$

- une partie de \mathbb{R}
- non vide car u_0 y appartient
- majorée par M

donc elle admet un borne supérieure et notons-la σ .

Soit $\epsilon \in \mathbb{R}_+^*$ fq.

 $\sigma - \epsilon < \sigma$ donc $\sigma - \epsilon$ ne majore pas Ω . Donc $\exists N \in \mathbb{N} : u_N > \sigma - \epsilon$. Fixons un tel N.

Soit $n \in \mathbb{N}$ fq tq $n \geqslant N$.

Alors
$$u_n \geqslant u_N \geqslant \sigma - \epsilon$$
 et $u_n \leqslant \sigma$.

par défintion de σ

Ainsi,

$$\sigma - \epsilon \leqslant u_n \leqslant \sigma \implies -\epsilon \leqslant u_n - \sigma \leqslant 0$$
$$\implies |u_n - \sigma| \leqslant \epsilon$$

Donc $u_n \xrightarrow[n \to +\infty]{} \sigma$.

(ii) Supposons que u n'est pas bornée.

Soit $A \in \mathbb{R}$ fq.

u n'est pas bornée donc $\exists N \in \mathbb{N} : u_N > A$.

Or u est croissante donc $\forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant A$.

Donc $u_n \xrightarrow[n \to +\infty]{} +\infty$.

2. Supposons que u est décroissante.

Il suffit dans la preuve ci-dessus de remplacer les inégalités inférieures par des inégalités supérieures et inversement et d'utiliser la notion de borne inférieure plutôt que de borne supérieure.

- $\begin{array}{ll} (i) \ \mbox{Si u est minorée, u_n} & \xrightarrow[n \to +\infty]{} & \inf\{u_k | k \in \mathbb{N}\}. \\ (ii) \ \mbox{Si u n'est pas bornée, u_n} & \xrightarrow[n \to +\infty]{} & -\infty. \end{array}$

Théorème de Césarò 11.3

Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui converge vers $\ell \in \mathbb{R}$.

Alors la moyenne arithmérique des $n \in \mathbb{N}$ premiers termes (appelée moyenne de Césarò) converge vers ℓ .

Démonstration. Soient u une telle suite, $\varepsilon \in \mathbb{R}_+^*$ et $\ell \in \mathbb{R}$ ladite limite de u. Appliquons la définition de la convergence de u pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N \implies |u_n - \ell| \le \frac{\varepsilon}{2}.$$

Fixons un tel N. Posons $\omega = \sum_{k=0}^{N-1} |u_k - \ell| \in \mathbb{R}$. Soit $n \in \mathbb{N}$ tel que $n \ge N$. Calculons :

$$\left|\frac{1}{n}\sum_{k=0}^{n-1}u_k-\ell\right| = \left|\frac{1}{n}\left(\sum_{k=0}^{n-1}u_k-n\ell\right)\right| = \left|\frac{1}{n}\sum_{k=0}^{n-1}(u_k-\ell)\right| \leq \underbrace{\frac{1}{n}\sum_{k=0}^{N-1}|u_k-\ell|}_{=\;\omega\in\mathbb{R}} + \underbrace{\frac{1}{n}\sum_{k=N}^{n}|u_k-\ell|}_{\leq\;\frac{\varepsilon}{2}} \leq \underbrace{\frac{\omega}{n}}_{=\;\frac{\varepsilon}{2}}.$$

Ces majorations sont issues de l'inégalité triangulaire et de la convergence de u. De plus, comme la suite $(v_n)_{n\in\mathbb{N}}=\left(\frac{\omega}{n}\right)_{n\in\mathbb{N}}$ converge vers 0, on écrit sa définition pour $\varepsilon\leftarrow\frac{\varepsilon}{2}$:

$$\exists N' \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N' \implies |v_n| \le \frac{\varepsilon}{2}.$$

On fixe un tel N' et on pose $\Lambda = \max(N, N')$ qui a bien un sens car $\{N, N'\}$ est une partie finie de N. De la même manière qu'auparavant, pour $n \in \mathbb{N}$ tel que $n \geq \Lambda$, on a :

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} u_k - \ell \right| \le \underbrace{\frac{\omega}{n}}_{\le \frac{\varepsilon}{2}} + \frac{\varepsilon}{2} \le \varepsilon.$$

C'est le théorème souhaité.

Théorème de passage à la limite dans une inégalité.

Soient $(u, v) \in \mathbb{R}^{\mathbb{N}}$:

(i) Si $\begin{vmatrix} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0 \\ u \text{ converge} \\ \text{Alors } \lim u \geqslant 0 \end{vmatrix}$

(ii) Si $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n$ u et v convergent

Démonstration.

(i) L'hypothèse $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0$ permet d'affirmer que u et |u| coïncident à partir d'un certain rang.

Par ailleurs, la convergence de u et la continuité de $|\cdot|$ sur $\mathbb R$ donc en $\lim u$ donnent |u|converge vers $|\lim u|$.

Le caractère asymptotique de la limite permet de conclure que u et |u| ont la même limite. Donc $\lim u = |\lim u| \ge 0$

(ii) $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n \Rightarrow v_n - u_n \geqslant 0$ u et v convergent $\Rightarrow v - u$ converge vers $\lim v - \lim u$.

On applique (i) pour $u \leftarrow v - u$, autorisé car u et v convergent.

On obtient $\lim v - \lim u \ge 0$ d'où $\lim u \le \lim v$.

Théorème des suites adjacentes 11.5

Soient u et v deux suites réelles adjacentes. Alors u et v convergent et ont la même limite.

 $D\acute{e}monstration$. Soient u et v de telles suites. Quitte à inverser les rôles desdites suites, prenons ucroissante et v décroissante.

On a donc:

$$\forall n \in \mathbb{N}, \ (u_n \le v_n \le \underbrace{v_0}_{\in \mathbb{R}}) \land (\underbrace{u_0}_{\in \mathbb{R}} \le u_n \le v_n),$$

car la monotonie des suites induit ces inégalités. D'après le théorème de limite monotone, u étant croissante et majorée elle converge, v étant décroissante et minorée elle converge.

Il s'en suit que par définition des suites adjacentes :

$$0 = \lim_{n \to +\infty} (u_n - v_n) = \lim_{u,v \text{ convergent}} \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n.$$

Ainsi, $\lim u = \lim v$.

Facultative Théorème de Bolzano-Weierstrass

Toute suite bornée réelle admet une sous-suite convergente.

L'ensemble des valeurs d'adhérence d'une suite réelle bornée est non vide.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ fq bornée.

Alors $\exists M \in \mathbb{R}_+ : \forall n \in \mathbb{N}, |u_n| \leq M$.

Construisons une suite de segments dans [-M; M] de plus en plus petits par dichotomie.

Posons $a_0 = -M$, $b_0 = M$ et définissons les suites c et I pour tout n dans \mathbb{N} par $c_n = \frac{a_n + b_n}{2}$ et $I_n = [a_n; b_n].$

Soit $n \in \mathbb{N}$ fq. Supposons a_n et b_n construits et $\{k \in \mathbb{N} \mid u_k \in I_n\}$ infini. Construisons les termes

Posons $\begin{vmatrix} I_n^- &= \{k \in \mathbb{N} \mid u_k \in [a_n; c_n]\} \\ I_n^+ &= \{k \in \mathbb{N} \mid u_k \in [c_n; b_n]\} \\ \text{Nous avons } I_n^- \cup I_n^+ = \{k \in \mathbb{N} \mid u_k \in I_n\} \text{ donc } I_n^- \text{ ou } I_n^+ \text{ est infini.}$

— Si
$$I_n^-$$
 est infini, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \end{vmatrix}$
Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^-$ est infini.

— Si
$$I_n^+$$
 est infini, posons $\begin{vmatrix} a_{n+1} &= c_n \\ b_{n+1} &= b_n \end{vmatrix}$
Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^+$ est infini.

Étudions la suite $(I_n)_{n\in\mathbb{N}}$.

- Nous avons toujours $a_n \leq b_n$ donc $\forall n \in \mathbb{N}, I_n \neq \emptyset$
- Par construction, $\forall n \in \mathbb{N}, I_{n+1} \subset I_n$
- $|I_{n+1}| = |a_{n+1} b_{n+1}| = \frac{1}{2}|a_n b_n| = \frac{1}{2}|I_n|$ donc la suite des cardinaux est une suite géométrique de raison 1/2. Donc $|I_n| \xrightarrow[n \to +\infty]{} 0$.

Donc, d'après le théorème des segments emboîtés, $\exists ! l\ell \in \mathbb{R} : \bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$. Fixons un tel ℓ .

Construisons maintenant une extractrice φ de u.

Posons $\varphi(n) = 0$.

Soit $n \in \mathbb{N}$ fq. Supposons $\varphi(n)$ construite.

$$\varphi(n+1) = \min\{k \in \mathbb{N} | u_k \in I_{n+1} \land k > \varphi(n)\}\$$

 $\varphi(n+1)$ est bien définie car $\{k \in \mathbb{N} | u_k \in I_{n+1}\}$ est une partie de \mathbb{N} non bornée (car infinie).

Ainsi, nous avons construit $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante. Nous pouvons extraire une sous-suite de u. Or $\forall n \in \mathbb{N}, u_{\varphi(n)} \in I_n$ donc

$$\forall n \in \mathbb{N}, \quad \underbrace{a_n}_{n \to +\infty} \ell \leqslant u_{\varphi(n)} \leqslant \underbrace{b_n}_{n \to +\infty} \ell$$

Donc, d'après le théorème d'existence de limite par encadrement, $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$. Ainsi $\ell \in L_u$.

11.7 *Facultative* Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur $\mathbb C$ est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = {\ell}$.

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : n \ge N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min \{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} . Posons ensuite $\varphi(1) = \min \{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, |u_{\varphi(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, \ |u_n| \leq M,$$

donc pour tout n dans \mathbb{N} , $|u_{\varphi(n)}| \leq M$, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est

aussi une extractrice par composition d'applications strictement croissantes, $\operatorname{donc}(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{\frac{\left|u_{\varphi\circ\psi(n)}-\ell\right|}{\sum_{n\to+\infty}\left|\ell'-\ell\right|}}>\varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle. \square

12.1 Résolution d'une relation de récurrence linéaire d'ordre 1 à coefficients constants et avec second membre

Soient $a \in \mathbb{K}$ et $v \in \mathbb{K}^{\mathbb{N}}$ où \mathbb{K} peut être \mathbb{C} ou \mathbb{R} . L'ensemble des solutions de l'équation $\forall n \in \mathbb{N}, u_{n+1} = au_n + v_n$ est la droite affine :

$$\left\{ w + \lambda \left(a^n \right)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{K} \right\} \tag{12}$$

 $D\acute{e}monstration$. Posons w la suite définie par

$$\begin{cases} w_0 = 1 \\ \forall n \in \mathbb{N}, w_{n+1} = aw_n + v_n \end{cases}$$

w est "évidemment solution de particulière de l'équation"

Maintenant que nous disposons d'une solution particulière, et ayant observé que l'équation est linéaire, mettons en œuvre l'artillerie classique pour exprimer l'ensemble des solutions par l'habituelle technique.

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + v_n \iff \forall n \in \mathbb{N}, u_{n+1} - au_n = v_n$$

$$\iff \forall n \in \mathbb{N}, u_{n+1} - au_n = w_{n+1} - aw_n$$

$$\iff \forall n \in \mathbb{N}, (u - w)_{n+1} = a(u - w)_n$$

$$\iff u - w \in \text{Vect}\left\{(a^n)_{n \in \mathbb{N}}\right\}$$

$$\iff \exists \lambda \in \mathbb{K} : u - w = \lambda (a^n)_{n \in \mathbb{N}}$$

$$\iff \exists \lambda \in \mathbb{K} : \forall n \in \mathbb{N}, u_n = w_n + \lambda a^n$$

$$\iff u \in \left\{(w_n + \lambda a^n)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{K}\right\}$$

12.2 Résolution d'une relation de récurrence linéaire homogène d'ordre 2 à coefficients constants dans $\mathbb C$ lorsque l'équation caractéristique possède un discriminant non nul

Soient $(a,b) \in \mathbb{C}^2$. L'ensemble des solutions S_H de l'équation d'inconnue $u \in \mathbb{C}^{\mathbb{N}}$

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n \tag{13}$$

est le plan vectoriel $\operatorname{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}$ où r_1 et r_2 sont les racines de l'équation caractéristique $(r^2=ar+b)$ quand $\Delta\neq 0$.

Démonstration. Soient $(a, b) \in \mathbb{C}^2$ fq.

<u>Lemme</u> Soit $r \in \mathbb{C}$. $(r^n)_{n \in \mathbb{N}}$ est solution de l'équation de récurrence si et seulement si $r^2 = ar + b$.

$$(r^n)_{n\in\mathbb{N}}$$
 est solution $\iff \forall n\in\mathbb{N}, r^{n+2} = ar^{n+1} + br^n$
 $\iff \forall n\in\mathbb{N}, r^n \left(r^2 - ar - b\right) = 0$
 $\iff r^2 - ar - b = 0$
En particularisant pour $n\leftarrow 0$

 $\iff r^2 = ar + b$

Considérons le cas où l'équation $r^2 = ar + b$ admet deux racines distinctes $(\Delta \neq 0)$ r_1 et r_2 . D'après le lemme, $(r_1^n)_{n \in \mathbb{N}}$ et $(r_2^n)_{n \in \mathbb{N}}$ sont solutions. Par linéarité de l'équation, toute combinaison linéaire est solution de l'équation homogène. Donc $\text{Vect}\{(r_1^n)_{n \in \mathbb{N}}, (r_2^n)_{n \in \mathbb{N}}\} \subset S_H$.

Réciproquement, soit $u \in \S_H$ fq. Étudions le système à deux inconnues $(\lambda, \mu) \in \mathbb{C}^2$:

$$\begin{cases} \lambda r_1^0 + \mu r_2^0 = u_0 \\ \lambda r_1^1 + \mu r_2^1 = u_1 \end{cases} \iff \begin{cases} \lambda + \mu = u_0 \\ \lambda r_1 + \mu r_2 = u_1 \end{cases}$$

 $\begin{vmatrix} 1 & 1 \\ r_1 & r_2 \end{vmatrix} = r_2 - r_1 \neq 0$ Donc d'après les formules de Cramer, ce système admet une unique solution. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par :

$$u_n = \lambda r_1^n + \mu r_2^n$$
 et $u_{n+1} = \lambda r_1^{n+1} + \mu r_2^{n+1}$

- $\mathcal{P}(0)$ est vrai par construction de λ et μ .
- Soit $n \in \mathbb{N}$ fq tq $\mathcal{P}(n)$ vrai. D'après $\mathcal{P}(n)$, $u_{n+1} = \lambda r_1^{n+1} + \mu r_2^{n+1}$.

$$u_{n+2} = au_{n+1} + bu_n$$

$$= a \left(\lambda r_1^{n+1} + \mu r_2^{n+1} \right) + b \left(\lambda r_1^n + \mu r_2^n \right) \quad \text{d'après } \mathcal{P}(n)$$

$$= \lambda r_1^n \left(ar_1 + b \right) + \mu r_2^n \left(ar_2 + b \right)$$

$$= \lambda r_1^{n+2} + \mu r_2^{n+2} \quad \text{car } r_1 \text{ et } r_2 \text{ sont racine de } r^2 = ar + b$$

Ainsi $S_H \subset \operatorname{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}.$ Par double inclusion, $S_H = \operatorname{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}.$

12.3 Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur $\mathbb C$ est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = {\ell}$.

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : \ n \ge N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} . Posons ensuite $\varphi(1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, |u_{\omega(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, |u_n| < M,$$

donc pour tout n dans \mathbb{N} , $|u_{\varphi(n)}| \leq M$, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est aussi une extractrice par composition d'applications strictement croissantes, donc $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{\frac{|u_{\varphi \circ \psi(n)} - \ell|}{|u_{\varphi \circ \psi(n)} - \ell|}}_{n \to +\infty} > \varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle.

12.4 Monotonie de u et des sous-suites des termes pairs et impairs de la suite $u_{n+1} = f(u_n)$ selon la monotonie de f

Soient $f: \mathcal{D} \to \mathbb{R}$ et $I \subset \mathcal{D}_f$ une intervalle f-stable.

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ la suite récurrente associée à la fonction f c'est-à-dire $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$.

— Si f est croissante sur I.

Si $u_1 \geqslant u_0$ alors u est croissante.

Si $u_1 \leq u_0$ alors u est décroissante.

— Si f est décroissante sur I.

Les sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotone et ont une monotonie opposée (utiliser les premiers termes pour trouver leur monotonie respectives).

Démonstration. Soient de tels f, I et u.

— Supposons que f est croissante sur I. Supposons $u_1 \geqslant u_0$. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n)$$
: " $u_{n+1} \geqslant u_n$ "

Par hypothèse, $u_1 \geqslant u_0$ donc $\mathcal{P}(0)$ est vrai.

Soit $n \in \mathbb{N}$ fq tq $\mathcal{P}(n)$ vrai.

$$u_{n+1} \geqslant u_n \underset{f \text{ est croissante sur } I}{\Longrightarrow} f(u_{n+1}) \geqslant f(u_n) \implies u_{n+2} \geqslant u_{n+1}$$

Donc $\mathcal{P}(n+1)$ est vrai.

Si $u_1 \leqslant u_0$, il suffit de changer \geqslant par \leqslant dans la récurrence ci-dessus.

— Supposons que f est décroissante sur I.

Donc $\forall n \in \mathbb{N}, u_{2(n+1)} = f \circ f(u_{2n})$ et $u_{2(n+1)+1} = f \circ f(u_{2n+1})$. Or $f \circ f$ est croissante, donc $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones.

Supposons que $(u_{2n})_{n\in\mathbb{N}}$ est croissante. Soit $n\in\mathbb{N}$ fq. Alors

$$u_{2n} \leqslant u_{2(n+1)} \underset{f \text{ est décroissante sur } I}{\Longrightarrow} f(u_{2n}) \geqslant f(u_{2(n+1)}) \implies u_{2n+1} \geqslant u_{2(n+1)+1}$$

Donc $(u_{2n+1})_{n\in\mathbb{N}}$ est décroissante.

De même, si $(u_{2n})_{n\in\mathbb{N}}$ est décroissante alors $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante.

12.5 L'intérieur de l'ensemble des rationnels est vide.

Montrons que : $\overset{\circ}{\mathbb{Q}} = \emptyset$

Démonstration. Par l'absurde, supposons que Q possède au moins un point intérieur.

Fixons $r_0 \in \mathbb{Q}$. Par définition d'un point intérieur, il existe $\varepsilon \in \mathbb{R}_+^* :]r_0 - \varepsilon$, $r_0 + \varepsilon [\subset \mathbb{Q}]$. Or, par densité des irrationnels dans \mathbb{R} , il existe $\alpha \in \mathbb{R} \setminus \mathbb{Q}$: $r_0 - \varepsilon < \alpha < r_0 + \varepsilon$. On en déduit que $\alpha \in]r_0 - \varepsilon$, $r_0 + \varepsilon [$, or $]r_0 - \varepsilon$, $r_0 + \varepsilon [\subset \mathbb{Q}]$ donc $\alpha \in \mathbb{Q}$ ce qui contredit le choix de $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Ainsi, $\mathbb{Q} = \emptyset$

12.6 Théorème sans nom version continue au voisinage de a

Soient $f, g : \mathcal{D} \to \mathbb{R}$, $\ell \in \mathbb{R}$ et $a \in \overline{\mathcal{D}}$ tels que $|f(x) - \ell| \leq g(x)$ au voisinage de a et g tend vers 0 en a. Alors f tend vers ℓ en a.

Démonstration. On traite le cas $a \in \mathbb{R}$. Par définition de $|f(x) - \ell| \leq g(x)$ au voisinage de a,

$$\exists \eta \in \mathbb{R}_+^* : \forall x \in \mathcal{D}, |x - a| \le \eta \implies |f(x) - \ell| \le g(x).$$

Fixons un tel η .

Soit $\omega \in \mathbb{R}_+^*$. Appliquons la définition de $\lim_{x\to a} g(x) = 0$ pour $\varepsilon \leftarrow \omega$:

$$\exists \eta' \in \mathbb{R}_+^* : \forall x \in \mathcal{D}, |x - a| \le \eta' \implies |g(x)| \le \omega.$$

Fixons un tel η' .

Posons $\Omega = \min \{ \eta, \eta' \}.$

Soit $x \in \mathcal{D}$ tel que $|x - a| \le \Omega$.

$$|f(x) - \ell| \le g(x) \le \omega,$$

car la définition de Ω permet de remplir les conditions des deux propriétés.

Théorème de composition des limites 13.1

Soient g une fonction définie sur $\mathcal{D}_g \subset \mathbb{R}$ et f une fonction définie sur $\mathcal{D}_f \subset \mathbb{R}$ telle que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. $\left. \begin{array}{l} g \text{ admet une limite } \ell \in \overline{\mathbb{R}} \text{ en } b \in \overline{\mathcal{D}_g} \\ f \text{ admet } b \text{ comme limite en } a \in \overline{\mathcal{D}_f} \end{array} \right\} \text{ alors } g \circ f \text{ admet } \ell \text{ comme limite en } a.$

Démonstration. Traitons le cas où $\ell \in \mathbb{R}$, $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

Soit $\varepsilon \in \mathbb{R}_+^*$ fq.

Appliquons la définition de $g(y) \xrightarrow[y \to b]{} \ell$ pour cet ε :

$$\exists \eta_q \in \mathbb{R}_+^* : \forall y \in \mathcal{D}_q, |y - b| \leqslant \eta_q \implies |g(y) - \ell| \leqslant \varepsilon$$

Appliquons la définition de $f(x) \xrightarrow[x \to a]{} b$ pour cet η_g :

$$\exists \eta_f \in \mathbb{R}_+^* : \forall x \in \mathcal{D}_f, |x - a| \leqslant \eta_f \implies |f(x) - b| \leqslant \eta_g$$

Posons $\eta = \eta_f$.

Soit $x \in \mathcal{D}_{g \circ f}$ fq tq $|x - a| \leq \eta$. Or $f(\mathcal{D}_f) \subset \mathcal{D}_g$ donc $\mathcal{D}_{g \circ f} = \mathcal{D}_f$. Ainsi, $x \in \mathcal{D}_f$ et $|x - a| \leq \eta_f$ d'où $|f(x) - b| \leq \eta_g$ d'où $|g(f(x)) - \ell| \leq \varepsilon$. Donc

$$g \circ f \xrightarrow[x \to a]{} \ell$$

13.2 Théorème des valeurs intermédiaires

Soit une fonction continue $f : [a, b] \to \mathbb{R}$ avec $(a, b) \in \mathbb{R}^2$ et a < b.

Si $f(a)f(b) \leq 0$ alors $\exists c \in [a;b] : f(c) = 0$.

On rencontre aussi : $Si\ f(a)f(b) < 0\ alors\ \exists c \in]a;b[:f(c) = 0.$

Démonstration. La démonstration repose sur la technique de la dichotomie.

Soient a,b,f de tels objets. Procédons à la construction des suites $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}$. Posons $a_0=a,\ b_0=b$ et $c_0=\frac{a+b}{2}$ (le milieu du segment [a;b]). Nous avons, par hypothèse

Soit $n \in \mathbb{N}$ fq. Supposons les trois suites construites au rang n telles que $f(a_n)f(b_n) \leq 0$ et $c_n = \frac{a_n + b_n}{2}$ (milieu de $[a_n; b_n]$).

- Si $f(a_n)f(b_n) \le 0$, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \\ c_{n+1} &= \frac{a_{n+1}+b_{n+1}}{2} \end{vmatrix}$

— Sinon $f(a_n)f(b_n) > 0$. Or $f(a_n)f(b_n) \le 0$, donc $f(a_n)^2 f(b_n)f(c_n) \le 0$. Donc $f(b_n)f(c_n) \le 0$.

 $a_{n+1} = c_n$ Posons $\begin{vmatrix} b_{n+1} & = & b_n \\ c_{n+1} & = & \frac{a_{n+1} + b_{n+1}}{2} \end{vmatrix}$ Ainsi, nous avons bien construits $a_{n+1}, b_{n+1}, c_{n+1}$ telles que $f(a_{n+1})f(b_{n+1}) \leq 0$ et $c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2}$ (milieu de $[a_{n+1}; b_{n+1}]$).

Par récurrence immédiate, $(a_n)_{n\in\mathbb{N}}$ est croissante, $(b_n)_{n\in\mathbb{N}}$ est décroissante et $\forall n\in\mathbb{N}, b_n-a_n=\frac{b-a}{2^n}$ d'où $b_n-a_n\xrightarrow[n\to+\infty]{}$ 0. Donc les suites a et b sont adjacentes. D'après le théorème des suites adjacentes, elles convergent vers la même limite. Notons la c.

D'après le bonus de ce même théorème, $\forall n \in \mathbb{N}, a_n \leqslant c \leqslant b_n$ donc pour $n = 0, a \leqslant c \leqslant b$. Ainsi,

$$c \in [a; b]$$

Par ailleurs, $\forall n \in \mathbb{N}, f(a_n)f(b_n) \leq 0$. Par continuité de f sur [a;b] donc en c, $f(a_n) \xrightarrow[n \to +\infty]{} f(c)$ et $f(b_n) \xrightarrow[n \to +\infty]{} f(c)$. Par passage à limite dans l'inégalité,

$$f(c) \times f(c) \leqslant 0$$

Or $f(c)^2 \ge 0$, d'où $f(c)^2 = 0$. Ainsi,

$$f(c) = 0$$

Donc c est un point fixe.

13.3 Théorème de Weierstraß

L'image d'un segment par une fonction continue sur ce segment est un segment : soient $(a, b) \in \mathbb{R}^2$ tels que a < b et $f : [a, b] \to \mathbb{R}$. Si $f \in \mathcal{C}^0([a, b], \mathbb{R})$ alors $\exists (x_1, x_2) \in \mathbb{R}^2 : f([a, b]) = [f(x_1), f(x_2)]$

Démonstration. — Étape 1 Montrons que f([a,b]) est majoré.

Par l'absurde, supposons que f([a,b]) n'est pas majoré

Alors

$$\forall A \in \mathbb{R}, \exists x \in [a, b] : f(x) > A \tag{14}$$

Soit $n \in \mathbb{N}$ fq. Appliquons (??) pour $A \leftarrow n : \exists x \in [a,b] : f(x) > n$, et fixons un tel x que l'on note x_n Nous venons de créer la suite $(x_n)_{n \in \mathbb{N}} \in [a,b]^{\mathbb{N}}$ qui vérifie :

$$\left. \forall n \in \mathbb{N}, f(x_n) \geqslant n \atop \lim_{n \to \infty} n = +\infty \right. \right\} \underset{\text{th\'eor\`eme de divergence par minoration}}{\Longrightarrow} f(x_n) \xrightarrow[n \to +\infty]{} +\infty$$

 $(x_n)_{n\in\mathbb{N}}$ est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

$$\exists \ell \in \mathbb{R}: \exists \varphi: \mathbb{N} \to \mathbb{N}: \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} +\infty \end{cases}$$

donc $(f(x_{\varphi(n)}))_{n\in\mathbb{N}}$, tend vers $+\infty$, ce qui est absurde, donc f est majorée.

On fait de même pour la minoration.

— Étape 2 : Montrons que f([a,b]) admet un pge et un ppe.

Montrons donc que f([a,b]) admet une borne sup, qui, puisque c'est une valeur atteinte, deviendra un max.

$$f([a,b])$$
 est
$$\begin{cases} \text{ une partie de } \mathbb{R} \\ \text{ non vide car contient } f(a) \\ \text{majorée d'après l'étape 1} \end{cases}$$

f([a,b]) admet donc une borne supérieure σ .

Appliquons la caractérisation séquentielle de la borne supérieure :

$$\exists (y_n)_{n\in\mathbb{N}}, \in f([a,b])^{\mathbb{N}} : (y_n) \text{ converge vers } \sigma$$

$$\forall n \in \mathbb{N}, y_n \in f([a,b]) \implies \exists x_n \in [a,b] : f(x_n) = y_n$$

Fixons un tel x_n pour tout y_n . On a donc construit $(x_n)_{n\in\mathbb{N}}\in[a,b]^{\mathbb{N}}:f(x_n)\xrightarrow[n\to+\infty]{}\sigma$

De plus, (x_n) est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß :

$$\exists \ell \in \mathbb{R} : \exists \varphi : \mathbb{N} \to \mathbb{N} : \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$.

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} \sigma \end{cases}$$

Par unicité de la limite, $\sigma = f(\ell)$.

On montre de même qu'il existe $\ell' \in [a, b] : f(\ell') = \inf f([a, b])$

Ainsi,
$$f(\ell) = \max f([a, b])$$
 et $f(\ell') = \min f([a, b])$

— Étape 3 : Montrons que $f([a,b]) = [f(\ell'), f(\ell)]$.

Par la construction précédente, $\forall y \in f([a,b]), y \in [f(\ell'), f(\ell)].$

Ainsi, $f([a, b]) \subset [f(\ell'), f(\ell)].$

Réciproquement, l'image par la fonction continue f du segment [a,b] qui est un intervalle est un intervalle :

$$\left. \begin{array}{l} f([a,b]) \text{ est un intevalle} \\ f(\ell) \in f([a,b]) \\ f(\ell') \in f([a,b]) \end{array} \right\} \implies [f(\ell'),f(\ell)] \subset f([a,b])$$

D'où $[f(\ell'), f(\ell)] = f([a, b])$

Expression de dérivées successives 14.1

Soit
$$f \mid_{x \mapsto \frac{\ln x}{x}}^{\mathbb{R}^*}$$
.

Soit $f \begin{vmatrix} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{\ln x}{x} \end{vmatrix}$. Exprimer $f^{(n)}$ pour tout $n \in \mathbb{N}$.

Démonstration. Soit $x \in \mathcal{D}_f$.

Considérons le prédicat $P(\cdot)$ définit pour $n \in \mathbb{N}$ par :

$$P(n)$$
: " $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right]$ "

Initialisation:

Pour n=0,

$$f^{(0)}(x) = f(x) = \frac{\ln(x)}{x} = \frac{(-1)^0 0!}{x^{0+1}} \left[\ln(x) - \sum_{k=1}^{0} \frac{1}{k} \right],$$

donc P(0) est vrai.

Hérédité:

Soit $n \in \mathbb{N}$ tel que P(n). On a,

$$f^{(n+1)}(x) = (f^{(n)}(x))' = \left(\frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right] \right)'$$

par véracité de P(n). Ainsi,

$$f^{(n+1)}(x) = \frac{(-1)^n n! x^n - (-1)^n (n+1)! x^n \left[\ln(x) - \sum_{k=1}^n \frac{1}{k}\right]}{x^{2(n+1)}}$$

$$= \frac{(-1)^{n+1} (n+1)! \ln(x) - (-1)^{n+1} (n+1)! \sum_{k=1}^{n+1} \frac{1}{k}}{x^{n+2}}$$

$$= \frac{(-1)^{n+1} (n+1)!}{x^{n+2}} \left[\ln(x) - \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

c'est l'expression recherchée, donc P(n+1) est vrai.

Par théorème de récurrence sur \mathbb{N} , P(n) est vraie pour tout $n \in \mathbb{N}$.

Dérivé d'une bijection réciproque 14.2

Soit $f:I\to f(I)\subset\mathbb{R}$ continue, strictement monotone sur I et dérivable en $a\in I$. Si $f'(a)\neq 0$ alors f est bijective, f^{-1} est dérivable en f(a) et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

Démonstration. Soient de tels objets.

Rappelons le lemme inattendu. Soit $g:J\to\mathbb{R}$ monotone (où J est un intervalle). Nous avons l'équivalence suivante :

$$f(J)$$
 est un intervalle \iff f est continue sur J

Par définition, f est surjective. Comme elle est strictement monotone, f est injective. Ainsi f est

D'après le lemme inattendu, f(I) est un intervalle. Nous avons $f^{-1}: f(I) \to I$ avec f(I) et I des intervalles donc f^{-1} est continue sur f(I).

Calculons la limite du taux d'accroissement de f^{-1} en f(a):

$$\forall x \in f(I), \tau_{f^{-1}, f(a)} = \frac{f^{-1}(x) - f^{-1}(f(a))}{x - f(a)}$$

Posons $u = f^{-1}(x)$. D'où :

$$\tau_{f^{-1},f(a)} = \frac{u-a}{f(u) - f(a)}$$

De plus, par continuité de f^{-1} , $u \xrightarrow[x \to f(a)]{} f^{-1}(f(a)) = a$. Par dérivabilité en a et par continuité

de
$$x \mapsto x^{-1}$$
 en $f(a) \neq 0$, $\frac{u-a}{f(u)-f(a)} \xrightarrow[u\to a]{} \frac{1}{f('(a))}$.
Ainsi, f^{-1} est dérivable en $f(a)$ et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

Dérivée d'un extremum local intérieur au domaine de définition

Soit $f: I \to \mathbb{R}$. Si f admet un extremum local en $a \in \overset{\circ}{I}$ et si f est dérivable en a alors f'(a) = 0

Démonstration. Soient de tels objets.

 $a \in \overset{\circ}{I} \implies \exists \eta_1 \in \mathbb{R}_+^* : [a - \eta_1; a + \eta_1] \subset I$ Fixons un tel η_1 . Calculons le taux d'accroissement en a.

$$\forall x \in [a - \eta_1; a + \eta_1], \tau_{f,a}(x) = \frac{f(x) - f(a)}{x - a}$$

Or f est dérivable en a donc $\tau_{f,a}(x)$ admet une limite lorsque $x \to a$. Traitons le cas où a est maximum local. Par définition:

$$\exists \eta_2 \in \mathbb{R}_+^* : \forall x \in [a - \eta_2; a + \eta_2], f(x) \leqslant f(a)$$

Fixons un tel η_2 . Soit $x \in [a - \eta_2; a + \eta_2] \setminus \{a\}$ fq.

Alors $f(x) - f(a) \le 0$.

Si x > a, x - a > 0. Alors $\frac{f(x) - f(a)}{x - a} \le 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \le 0$. Sinon x < a, x - a < 0. Alors $\frac{f(x) - f(a)}{x - a} \ge 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \ge 0$.

Ainsi $0 \leqslant \lim_{x \to a} \tau_{f,a}(x) \leqslant 0$. Donc f'a) = 0.

Théorème de Rolle et formule des accroissements finis 14.4

Soient $(a, b) \in \mathbb{R}^2$ tels que a < b. Soit I le segment a, b.

Soit $f:I\to\mathbb{R}$ continue sur ledit segment et dérivable sur l'ouvert associé.

(i) Théroème de Rolle :

Si
$$f(a) = f(b)$$
, alors $\exists c \in \overset{\circ}{I}$ tel que $f'(c) = 0$

FIGURE 1 - Théorème de Rolle

(ii) Formule des accroissements finis :

$$\exists c \in \overset{\circ}{I} : f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Figure 2 – Formule des accroissements finis

Démonstration. Soient de tels objets.

Prouvons (i), donc supposons f(a) = f(b).

f est continue sur I donc par le théorème de Weierstraß, elle est bornée et atteint ses bornes sur ce segment :

$$\exists (x_m, x_M) \in I^2 : (f(x_m) = \min f(I)) \land (f(x_M) = \max f(I))$$

donc, si $(x_m, x_M) \in \{a, b\}^2$, alors,

$$\forall x \in I, \ f(a) = f(x_m) \le f(x) \le f(x_M) = f(a)$$

donc $\forall x \in I, f(x) = f(a)$ c'est-à-dire que f est constante et donc tous les points intermédiaires à I sont des c valides.

Sinon, $(x_m \notin \{a,b\}) \lor (x_M \notin \{a,b\})$, quitte à prendre l'autre valeur, supposons que $x_M \notin \{a,b\}$, ainsi, $x_M \in \mathring{I}$ et $f(x_M)$ est un maximum global donc, f étant dérivable sur \mathring{I} elle est dérivable en x_M donc $f'(x_M) = 0$, on pose $c = x_M$, ce qui conclut.

Prouvons (ii).

Posons $d: I \to \mathbb{R}$, $x \mapsto f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$. d est continue sur I et dérivable sur I comme combinaison linéaire de telles fonctions. On a d(a) = 0 et d(b) = 0 donc d(a) = 0 = d(b). On peut alors appliquer le Théorème de Rolle pour $f \leftarrow d, a \leftarrow a$ et $b \leftarrow b$: il existe $c \in I$ tel que d'(c) = 0, c'est le résultat.

14.5 Inégalité des accroissements finis

Soit $f \in \mathcal{C}^0(I,\mathbb{R}) \cap \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$ et $x_0 \in I$, posons $X_- =]-\infty; x_0]$ la demi-droite fermée en x_0 et vers $-\infty$, de même $X_+ = [x_0; +\infty[$ la demi-droite fermée en x_0 et vers $+\infty$.

$$(i) \star \operatorname{Si} \exists \ m \in \mathbb{R} \ : \ \forall x \in \overset{\circ}{I}, \ m \leq f'(x), \ \operatorname{alors}, \\ \forall x \in I \cap X_+, \ f(x_0) + m(x - x_0) \leq f(x) \\ \text{et} \\ \forall x \in I \cap X_-, \ f(x) \leq f(x_0) + m(x - x_0) \\ \star \operatorname{Si} \exists \ M \in \mathbb{R} \ : \ \forall x \in \overset{\circ}{I}, \ f'(x) \leq M, \ \operatorname{alors}, \\ \forall x \in I \cap X_+, \ f(x) \leq f(x_0) + M(x - x_0) \\ \text{et} \\ \forall x \in I \cap X_-, \ f(x_0) + M(x - x_0) \leq f(x) \\ \end{cases}$$

* Si
$$\exists (m, M) \in \mathbb{R}^2 : \forall x \in \overset{\circ}{I}, m \leq f'(x) \leq M, \text{ alors},$$

$$\forall x \in I \cap X_+, \ f(x_0) + m(x - x_0) \le f(x) \le f(x_0) + M(x - x_0)$$

 et

$$\forall x \in I \cap X_{-}, \ f(x_0) + M(x - x_0) \le f(x) \le f(x_0) + m(x - x_0)$$

(ii) Si $\exists M \in \mathbb{R} : \forall x \in \overset{\circ}{I}, |f'(x)| \leq M, \text{ alors},$

$$\forall (x,y) \in I^2, |f(y) - f(x)| \le M|y - x|$$

FIGURE 3 – Interprétation géométrique des accroissements finis

Démonstration. (i) Soit $x \in I$ et posons S le segment d'extrémités x et x_0 .

 \star Si $x \neq x_0$, f est continue sur S et dérivable sur $\overset{\circ}{S}$, la formule des accroissements finis donne alors l'existence d'un c appartenant à $\overset{\circ}{S}$ tel que

$$f(x) - f(x_0) = (x - x_0)f'(c)$$

Si $x > x_0$, $x - x_0 > 0$, or $m \le f'(c) \le M$ donc

$$m(x-x_0) \le (x-x_0)f'(c) \le M(x-x_0)$$

si bien que

$$m(x-x_0) \le f(x) - f(x_0) \le M(x-x_0)$$

d'où

$$f(x_0) + m(x - x_0) \le f(x) \le f(x_0) + M(x - x_0).$$

Si $x < x_0$, il suffit de retourner l'inégalité lors de la première multiplication et (i) est prouvé.

(ii) Soit $y \in I$.

L'hypothèse $\forall x \in \overset{\circ}{I}, |f'(x)| \leq M$ équivaut à $\forall x \in \overset{\circ}{I}, -M \leq f'(x) \leq M$, donc on peut appliquer (i) pour $x_0 \leftarrow y, M \leftarrow M$ et $m \leftarrow -M$:

$$\forall x \in I \cap [y, +\infty[, f(y) - M(x - y) \le f(x) \le f(y) + M(x - y)$$

Or x - y > 0 donc $|f(x) - f(y)| \le M|x - y|$. Et

$$\forall x \in I \cap]-\infty, y], \ f(y) + M(x-y) \le f(x) \le f(y) - M(x-y)$$

Or
$$x - y < 0$$
 donc $|f(x) - f(y)| \le M|x - y|$.
Par conséquent, $\forall (x, y) \in I^2$, $|f(y) - f(x)| \le M|y - x|$.

Caractère lipschitzien d'une fonction C^1 sur un segment

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$, I le segment a,b. Alors f est $||f'||_{\infty,I}$ -lipschitzienne sur I.

Démonstration. Soient de tels objets.

- $\star f \in \mathcal{C}^1(I, \mathbb{R}) \text{ donc } f \in \mathcal{C}^0(I, \mathbb{R}).$
- * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc $f \in \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$. * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc f' est continue sur I donc le réel $||f'||_{\infty,I}$ est bien défini et

$$\forall x \in \overset{\circ}{I}, |f'(x)| \le ||f'||_{\infty,I}.$$

Ces propriétés permettent d'appliquer le corollaire du TAF qui conclut que f est $||f'||_{\infty,I}$ -lipschitzienne.

Théorème du prolongement de la propriété de la dérivabilité 14.7

Soit $f \in \mathcal{F}(I, \mathbb{R})$ et $a \in I$.

$$\begin{array}{c} \textit{Lemme}: \\ \text{Si} \left\{ \begin{array}{c} f \text{ est d\'erivable sur } I \backslash \{a\} \\ f \text{ est continue en } a \\ f'_{|I \backslash \{a\}} \text{ admet une limite } \ell \in \overline{\mathbb{R}} \text{ en } a \end{array} \right., \text{ alors } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell$$

$$Th\acute{e}or\grave{e}me: \\ Si \left\{ \begin{array}{c} f \text{ est d\'erivable sur } I\backslash\{a\} \\ f \text{ est continue en } a \\ f'_{|I\backslash\{a\}} \text{ admet une limite finie } \ell\in\mathbb{R} \text{ en } a \end{array} \right., \\ alors \left\{ \begin{array}{c} f \text{ est d\'erivable en } a \\ f'(a) = \ell \text{ (donc } f' \text{ est continue en } a) \end{array} \right.$$

Démonstration. Prouvons le lemme pour $\ell \in \mathbb{R}$, c'est le cas qui nous intéresse. Soient de tels objets. Soit $\varepsilon \in \mathbb{R}_+^*$. Appliquons la définition de $\lim_{x \to a \atop x \neq a} f'_{|I \setminus \{a\}}(x) = \ell$ pour $\varepsilon \leftarrow \varepsilon$:

$$\exists \ \eta \in \mathbb{R}_+^* \ : \ \forall x \in I \backslash \{a\}, \ |x - a| \leq \eta \ \implies \ |f'_{|I \backslash \{a\}}(x) - \ell| \leq \varepsilon.$$

Fixons un tel η .

Soit $x \in I \setminus \{a\}$ tel que $|x - a| \le \eta$.

La fonction f est continue sur I donc f est continue sur le segment d'extrémités a et x qui est par ailleurs inclus dans I par convexité d'un intervalle.

La fonction f est dérivable sur I donc f est dérivable sur l'intervalle ouvert a, x qui est aussi inclus dans \tilde{I} par convexité.

L'égalité des accroissements finis s'applique à f sur l'intervalle a et x:

$$\exists c_x \in]a, x[\cup]x, a[: \frac{f(x) - f(a)}{x - a} = f'(c_x)$$

Or $|c_x - a| \le |x - a| \le \eta$ donc ladite définition de la limite s'applique pour $x \leftarrow c_x : |f'(c_x) - \ell| \le \varepsilon$ si bien que

$$\left|\frac{f(x) - f(a)}{x - a} - \ell\right| \le \varepsilon.$$

D'où le lemme.

Prouvons alors le théorème.

Sous ces hypothèses, le lemme s'applique donc $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \ell$, or $\ell \in \mathbb{R}$, donc le taux d'accroissement de f en a admet une limite finie en a ce qui prouve la dérivabilité de f en a et $f'(a) = \ell$.

14.8 La fonction ζ (pas celle-là une autre) est de classe \mathcal{C}^{∞} sur \mathbb{R}

Posons
$$\zeta \mid_{x \mapsto \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ 0 & \text{si } x \leq 0 \\ \mathrm{e}^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}}$$
. Montrons que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

Démonstration.

- * $\zeta_{]-\infty;0[}$ est constante donc $\zeta \in \mathcal{C}^{\infty}(]-\infty;0[,\mathbb{R}).$
- * $x \mapsto -\frac{1}{x} \in \mathcal{C}^{\infty}(]0; +\infty[,] -\infty; 0[)$ et $\exp \in \mathcal{C}^{\infty}(]-\infty; 0[,\mathbb{R})$ donc, par stabilité de \mathcal{C}^{∞} par composition, $\zeta \in \mathcal{C}^{\infty}(]0; +\infty[,\mathbb{R})$.

Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$:

$$\mathcal{P}: \text{``} \exists P_n \in \mathbb{R}[x]: \forall x \in \mathbb{R}^*, \ \zeta^{(n)} = \left\{ \begin{array}{ll} 0 & \text{si } x < 0 \\ \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}} & \text{si } x > 0 \end{array} \right. , \tag{15}$$

- $\star \mathcal{P}(0)$ est vrai par définition de ζ en posant $P_0(x)=1$
- * Soit $n \in \mathbb{N}^*$ fixé quelconque tel que \mathcal{P} est vrai. D'une part, $\forall x \in]-\infty; 0[,\zeta^{(n)}(x)=0$ donc

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = 0$$

D'autre part, $\forall x \in]0; +\infty[, \zeta^{(n)}(x)] = \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}}$ ce qui est un produit de trois expressions dérivables. D'où :

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = \left(P'_n(x)\frac{1}{x^{2n}} + P_n(x)\frac{-2n}{x^{2n+1}} + \frac{P_n(x)}{x^{2n}}\frac{1}{x^2}\right) e^{-\frac{1}{x}}$$
$$= \frac{x^2 P'_n(x) - 2nx P_n(x) + P_n(x)}{x^{2(n+1)}} e^{-\frac{1}{x}}$$

Si bien qu'en posant $P_{n+1}(x) = x^2 P'_n(x) - 2nx P_n(x) + P_n(x) \in \mathbb{R}[x]$, on obtient :

$$\forall x \in]0; +\infty[, \zeta^{(n+1)}(x) = \frac{P_{n+1}(x)}{r^{2(n+1)}} e^{-\frac{1}{x}}$$

Par conséquent, $\mathcal{P}(x)$ est vrai.

Appliquons maintenant le théorème de prolongement du caractère \mathcal{C}^{∞} .

- * Nous avons montré que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R} \setminus \{0\}, \mathbb{R})$.
- \star Calculons les limites à gauche et à droite de 0. Soit $k \in \mathbb{N}$ fixé quelconque.
 - ** $\zeta^{(k)}$ est nulle sur $]-\infty;0[,\zeta^{(k)}\xrightarrow[x\to 0^-]{}0.$
 - ** De plus, $\exists P_n \in \mathbb{R}[x] : \forall x \in]0; +\infty[, \zeta^{(k)}(x) = \frac{P_k(x)}{x^{2k}} e^{-\frac{1}{x}}$. Posons $u = \frac{1}{x}$, ainsi $\zeta^{(k)}(x) = u^{2k} P_k(\frac{1}{u}) e^{-\frac{1}{x}}$ et $u \xrightarrow[x \to 0^+]{} +\infty$.

Le théorème des croissances comparées donne $u^{2k}P_k(\frac{1}{u})\mathrm{e}^{-u} \xrightarrow[u\to+\infty]{} 0$ donc $\zeta^{(k)}(x) \xrightarrow[x\to0^+]{} 0$.

Donc $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

15.1 Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ convexe sur I.

Soit $n \in \mathbb{N}^*$. Soient $x \in I^n$, $\lambda \in [0,1]^n$ telle que $\sum_{k=1}^n \lambda_k = 1$.

$$\sum_{k=1}^{n} \lambda_k x_k \in I \wedge f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f\left(x_k\right) \tag{16}$$

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}^*$ par :

$$\mathcal{P}(n): \text{``}\forall x \in I^n, \forall \lambda \in [0;1]^n, \sum_{k=1}^n \lambda_k = 1 \implies \sum_{k=1}^n \lambda_k x_k \in I \land f\left(\sum_{k=1}^n \lambda_k x_k\right) \leqslant \sum_{k=1}^n \lambda_k f\left(x_k\right) \text{'`}$$

* Soient $x \in I^1$ et $\lambda \in [0;1]^1$ tel que $\sum_{k=1}^1 \lambda_k = 1$. Alors $\lambda_1 = 1$. Trivialement, $\sum_{k=1}^1 \lambda_k x_k = \lambda_1 x_1 = x_1 \in I$. De plus, $f\left(\sum_{k=1}^1 \lambda_k x_k\right) = f\left(\lambda_1 x_1\right) = f\left(x_1\right) = \lambda_1 f\left(x_1\right) = \sum_{k=1}^1 \lambda_k f\left(x_k\right)$. Donc $\mathcal{P}(1)$ vrai.

* Soit $n \in \mathbb{N}^*$ tel que $\mathcal{P}(n)$ vrai. Soient $x \in I^{n+1}$ et $\lambda \in [0;1]^{n+1}$ tel que $\sum_{k=1}^{n+1} \lambda_k = 1$. $\{x_k \mid k \in [1;n+1]\}$ est une partie non vide $(n \ge 1)$ d'un ensemble totalement ordonnée (\mathbb{R}, \le) . Posons $a = \min\{x_k \mid k \in [1;n+1]\}$ et $b = \max\{x_k \mid k \in [1;n+1]\}$. D'où

$$a = \sum_{k=1}^{n+1} \lambda_k a \leq \sum_{a \leq x_k} \sum_{k=1}^{n+1} \lambda_k x_k \leq \sum_{x_k \leq b} \sum_{k=1}^{n+1} \lambda_k b = b$$

$$\sum_{k=1}^{n+1} \lambda_k a \leq \sum_{a \leq x_k} \sum_{k=1}^{n+1} \lambda_k x_k \leq \sum_{k=1}^{n+1} \lambda_k b = b$$

Or $\{x_k \mid k \in [1; n]\} \subset I \text{ (car } x \in I^n) \text{ donc } a \in I \land b \in I. \text{ Donc } a \in I \land b \in I.$

$$\sum_{k=1}^{n+1} \lambda_k x_k \in [a;b] \qquad \qquad \bigcup_{\substack{\text{par convexit\'e} \\ \text{de l'intervalle } I}} I$$

 $\sum_{k=1}^{n+1} \lambda_k = 1 \text{ donc } \exists i_0 \in [[1; n+1]] : \lambda_{i_0} \neq 1 \text{ (sinon } \sum_{k=1}^{n+1} \lambda_k = n+1 \neq 1 \text{ car } n \neq 0).$ Fixons un tel i_0 .

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = f\left(\sum_{k=1}^{n+1} \lambda_k x_k + \lambda_{i_0} x_{i_0}\right)$$

$$= f\left(\lambda_{i_0} x_{i_0} + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

$$\underset{\text{Par convexit\'e}}{\leq} \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) f\left(\sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

Or
$$\forall i \in \llbracket 1; n+1 \rrbracket \lambda_i \leqslant \sum_{\substack{k=1 \\ k \neq i_0}}^{n+1} \lambda_k = 1 - \lambda_{i_0} \text{ Donc } \frac{\lambda_i}{1-\lambda_{i_0}} \in [0;1] \text{ et } \sum_{\substack{k=1 \\ k \neq i_0}}^{n+1} \frac{\lambda_k}{1-\lambda_{i_0}} = 1. \text{ Nous }$$

pouvons appliquer $\mathcal{P}(n)$ pour $\lambda_i \to \frac{\lambda_i}{1-\lambda_{i_0}}$:

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) \leqslant \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} f(x_k)$$

$$\leqslant \lambda_{i_0} f(x_{i_0}) + \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

$$\leqslant \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

$$\leqslant \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

Donc $\mathcal{P}(n+1)$ vrai.

15.2 Inégalité arithmético-géométrique

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+^{*n}$.

$$\left(\prod_{k=1}^{n} x_k\right)^{1/n} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_k \tag{17}$$

Démonstration. Soit de tels objets. Posons $\forall k \in [1; n], \lambda_k = 1/n$.

Sachant que l'exponentielle est convexe, appliquons l'inégalité de Jensen pour $x_k \leftarrow ln(x_k)$ (autorisé car $x_k \in \mathbb{R}_+^*$) :

$$\exp\left(\sum_{k=1}^{n} \frac{1}{n} \ln\left(x_{k}\right)\right) \leqslant \sum_{k=1}^{n} \frac{1}{n} \exp\left(\ln\left(x_{k}\right)\right)$$

L'exponentielle est la bijection réciproque du logarithme népérien et est un morphisme additif. Nous obtenons ainsi l'inégalité recherchée. $\hfill\Box$

16.1 Deux fonctions équivalentes au voisinage de a ont le même signe sur un voisinage de a

Démonstration. Soient $f: \mathcal{D} \to \mathbb{R}$ et $g: \mathcal{D} \to \mathbb{R}$ telles que $f(x) \underset{x \to a}{\sim} g(x)$ avec $a \in \mathcal{D}$.

Appliquons la définition de l'équivalence pour $\epsilon \leftarrow \frac{1}{2}$, il existe un voisinage V de a tel que :

$$\forall x \in V \cap \mathcal{D}, |f(x) - g(x)| \leq \frac{1}{2}|g(x)|$$

Fixons un tel voisinage V. Nous obtenons :

$$\forall x \in V \cap \mathcal{D}, \underbrace{g(x) - \frac{1}{2}|g(x)|}_{\text{du signe de } g(x)} \leqslant f(x) \leqslant \underbrace{g(x) + \frac{1}{2}|g(x)|}_{\text{du signe de } g(x)}$$

Ainsi f(x) et g(x) ont le même signe sur $V \cap \mathcal{D}$.

16.2 Condition nécessaire et suffisante pour qu'une fonction C^{∞} admette un extremum local ou un point d'inflexion

Soient $f \in \mathcal{C}^{\infty}(\mathcal{D}, \mathbb{R})$ et $a \in \mathcal{D}$. Supposons que $E_0 = \{p \in \mathbb{N}^* \setminus \{1\} \mid f^{(p)}(a) \neq 0\}$ est non vide. Posons $p_0 = \min E_0$.

f admet un extremum local en a si et seulement si f'(a) = 0 et p_0 est pair.

f admet un point d'inflexion en a si et seulement si p_0 est impair.

 $D\acute{e}monstration$. Soient de tels objets. Traitons le cas de l'extremum local. $f \in \mathcal{C}^{\infty}$ donc, la formule Taylor-Young donne un $DL_{p_0}(a)$ de f:

$$f(x) = \sum_{k=0}^{p_0} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^{p_0})$$

En développant :

$$f(x) \underset{x \to a}{=} f(a) + \underbrace{f'(a)(x-a)}_{=0} + \underbrace{\dots + \frac{f^{(p_0-1)}(a)}{(p_0-1)!}(x-a)^{p_0-1}}_{=0 \text{ par defintion de } p_0} + \underbrace{\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}}_{=0} + o\left((x-a)^{p_0}\right)$$

Ainsi (car $f^{(p_0)}(a) \neq 0$)

$$f(x) - f(a) \underset{x \to a}{\sim} \frac{f^{(p_0)}(a)}{p_0!} (x - a)^{p_0}$$
 (18)

Au voisinage de a, f(x) - f(a) et $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ ont le même signe.

Supposons que f admette un extremum local en a. Or $a \in \mathcal{D}$ et f est dérivable en 0, donc f'(a) = 0. Comme f admette un extremum local en a, f(x) - f(a) est de signe constant au voisinage de a. Donc $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ est de signe constant au voisinage de a. Par conséquent, p_0 est pair.

Réciproquement, supposons que f'(a) = 0 et que p_0 est pair. $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ est de signe constant au voisinage de a. Donc f(x) - f(a) est de signe constant au voisinage de a. Ainsi, a est un extremum local de f.

Traitons le cas du point d'inflexion. La formule de Taylor-Young donne :

$$f(x) - \underbrace{(f(a) + (x - a)f'(a))}_{\text{tangente en } (a, f(a))} \sim_{x \to a} \frac{f^{(p_0)}(a)}{p_0!} (x - a)^{p_0}$$
(19)

Le signe de l'écart courbe/tangente en a est donc celui de $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$. Ce qui conclut de la même manière que l'extremum local.

17.5 Théorème de Bézout

Soient $a, b \in \mathbb{N}^*$ et $c \in \mathbb{Z}$. Il existe des entiers $x, y \in \mathbb{Z}$ tels que ax + yb = c si et seulement si c est multiple du pgcd de a et b.

Démonstration. Soient $a, b \in \mathbb{N}^*$. On suppose l'algorithme d'Euclide réalisé pour a, b, ainsi à la fin de ce dernier on a un entier naturel r_n tel que $r_n = a \wedge b$. Comme l'algorithme est terminé, on peut remonter chaque ligne de proche en proche, on aurait, à titre d'exemple, pour une première itération, $r_n = r_{n-2} - q_n \cdot r_{n-1}$. En réalisant toutes les étapes nécessaires, on obtient une relation entre r_n et a, b, cette relation s'écrit :

$$\exists (x_0, y_0) \in (\mathbb{Z}^*)^2 : a \wedge b = r_n = ax_0 + y_0 b.$$

Si c est un multiple de $a \wedge b$, alors il existe $k \in \mathbb{Z}^*$ tel que $c = k(a \wedge b)$, donc en multipliant le résultat montré au dessus par k, on a le sens indirect. Si pour $c \in \mathbb{Z}$, il existe des entiers $x, y \in \mathbb{Z}$ tels que ax + yb = c, alors le pgcd de a et b divise le membre de gauche et donc par égalite le membre de droite aussi donc c est multiple de $a \wedge b$, ce qui suffit.

17.7 Théorème de Gauss

Soient a, b, c trois entiers naturels non nuls. Si c est premier avec a et divise le produit ab, alors il divise b.

 $D\acute{e}monstration$. Soient a, b, c des entiers naturels vérifiant les hypothèses.

Comme c est premier avec a on écrit une relation de Bézout pour 1, leur pgcd et on multiplie le tout par b:

$$\exists (u, v) \in (\mathbb{N}^*)^2 : au + vc = 1 \implies abu + vbc = b,$$

or c divise ab et lui-même donc aussi le membre de gauche donc par égalité, le membre droite, c'est le théorème.

17.9 Résoudre une équation du type ax + yb = c

Soient $a, b, c \in \mathbb{Z}$. Résoudre l'équation

$$ax + yb = c,$$

d'inconnues x et y dans \mathbb{Z} .

Démonstration. Soient $a, b, c \in \mathbb{Z}$ et une telle équation, notée (i), en lesdites inconnues. Si $a \wedge b \not\mid c$, alors le théorème de Bézout, affirme que l'équation n'a pas de solution.

Supposons le contraire. Posons $d=a \wedge b$. Le lemme technique affirme l'existence de a' et b' dans \mathbb{Z} , tels que a'd=a, b'd=b et $a' \wedge b'=1$. Donc, comme d divise c, il existe c' tel que c=c'd. On réécrit l'équation, notée (ii):

$$a'x + yb' = c'.$$

On sait d'après le théorème de Bézout qu'il existe des solutions, en particulier grâce à l'algorithme d'Euclide on construit (x_0, y_0) , une solution de la nouvelle équation, puis on l'injecte et on raisonne par équivalence, on note ω l'ensemble des solutions de (ii) et Ω celui de (i):

$$(x,y) \in \Omega \iff (x,y) \in \omega$$

$$\Leftrightarrow a'x + yb' = c'$$

$$\Leftrightarrow a'x + yb' = a'x_0 + y_0b'$$

$$\Leftrightarrow a'(x - x_0) = b'(y_0 - y)$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y_0 - y &= a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y_0 - y &= a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y &= y_0 - a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} x &= x_0 + b'k \\ y &= y_0 - a'k \end{cases}$$

$$\Leftrightarrow (x, y) \in \{(x_0 + b'k, y_0 - a'k) \mid k \in \mathbb{Z}\}$$

La première ligne découle de la divisibilité des coefficients par d, la deuxième est la définition d'appartenance à ω , la troisième est une réécriture du fait que (x_0,y_0) soit solution de (ii), la quatrième est une factorisation banale, la cinquième une utilisation du théorème de Gauss pour le sens direct et le sens indirect ne pose pas de problème, la sixième est une réécriture de la deuxième relation, la septième découle de l'expression de y pour le sens direct et le sens indirect s'obtient en multipliant avec parcimonie l'équation, la huitième est une réécriture de la septième qui ne pose pas de problème. C'est Ω , par équivalence.

L'ensemble des nombres premiers est infini 18.1

Démonstration. Notons l'ensemble des nombres premiers $\mathcal{P} = \{n \in \mathbb{N} \mid |\mathcal{D}(n) \cup \mathbb{N}| = 2\}$ Par l'absurde, supposons que \mathcal{P} est fini.

Posons
$$m = 1 + \prod_{p \in \mathcal{P}} p \in \mathbb{N}$$
.

Comme $2 \in \mathcal{P}$, $m \geqslant 2$. Donc m admet un diviseur premier, $\exists q \in \mathcal{P} : q \mid m$. Donc $q \land m = q$.

Par ailleurs,
$$m = 1 + q \left(\prod_{\substack{p \in \mathcal{P} \\ p \neq q}} p \right)$$
. Donc $m - q \left(\prod_{\substack{p \in \mathcal{P} \\ p \neq q}} p \right) = 1$. D'après le théorème de Bézout,

 $q \wedge m = 1$.

Donc q = 1 ce qui est une contradiction avec $q \in \mathcal{P}$.

Caractérisation de la valuation p-adique

Soit $n \in \mathbb{N}^*, p \in \mathcal{P}, k_0 \in \mathbb{N}$.

$$\nu_p(n) = k_0 \iff \exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0} m \\ m \land p = 1 \end{cases}$$
 (20)

 $D\acute{e}monstration. \implies \text{Supposons que } \nu_p(n) = k_0.$

Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n$ donc $p^{k_0} \mid n$. Notons $m \in \mathbb{Z}$ le quotient de la division euclidienne de n par p^{k_0} . Nous avons $n = p^{k_0}m$.

Comme $m \wedge p \in \mathcal{D}(p) \cap \mathbb{N}$, $m \wedge p \in \{1, p\}$. Par l'absurde, supposons que $m \wedge p = p$.

$$p \mid m \implies \exists m' \in \mathbb{Z} : m = pm'$$

$$\implies \exists m' \in \mathbb{Z} : n = pp^{k_0}m' = p^{k_0+1}m'$$

$$\implies k_0 + 1 \in \{k \in \mathbb{N} \mid p^k \mid n\}$$

$$\implies k_0 + 1 \leqslant \max\{k \in \mathbb{N} \mid p^k \mid n\} = \nu_p(n) = k_0$$

Ce qui est une contradiction donc
$$m \wedge p = 1$$
.
 \iff Supposons $\exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0}m \\ m \wedge p = 1 \end{cases}$

Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n$ donc $p^{\nu_p(n)} \mid p^{k_0} m$. Or $m \land p = 1$ donc $m \land p^{\nu_p(n)} = 1$ 1. D'après le théorème de Gauss, $p_{\nu_p(n)} \mid p^{k_0}$. Donc $\exists \alpha \in \mathbb{Z} : \alpha p_{\nu_p(n)} = p^{k_0}$

$$\begin{split} \alpha p_{\nu_p(n)} &= p^{k_0} \implies p^{k_0} - \alpha p_{\nu_p(n)} = 0 \\ &\implies p^{k_0} \left(1 - \alpha p^{\nu_p(n) - k_0} \right) = 0 \text{ car } k_0 \leqslant \nu_p(n) \\ &\implies \alpha p^{\nu_p(n) - k_0} = 1 \text{ car } \mathbb{Z} \text{ est intègre} \\ &\implies p^{\nu_p(n) - k_0} \in \mathcal{D}(1) \cap \mathbb{N} \\ &\implies p^{\nu_p(n) - k_0} = 1 \\ &\implies \nu_p(n) - k_0 = 0 \\ &\implies \nu_p(n) = k_0 \end{split}$$

18.3 Caractérisation de a|b par les valuations p-adiques et preuve de leur propriété de morphisme.

$$\forall (a,b) \in \mathbb{Z}^2, \ a|b \iff \forall p \in \mathcal{P}, \ \nu_n(a) \le \nu_n(b) \tag{21}$$

Démonstration. Premièrement, montrons que la valuation p-adique est un morphisme de (\mathbb{Z}^*,\times) dans $(\mathbb{N}, +)$.

Soient de tels entiers relatifs a, b.

$$\exists \ m,n \in (\mathbb{Z}^*)^2 \ : \ \left(\left(a=p^{\nu_p(a)}m\right) \ \land \ \left(m \land p=1\right)\right) \ \land \ \left(\left(b=p^{\nu_p(b)}n\right) \ \land \ \left(n \land p=1\right)\right),$$

donc $ab=p^{\nu_p(a)+\nu_p(b)}mn$ et $mn\wedge p=1$, par la réciproque de la caractérisation des valuations p-adiques :

$$\nu_p(ab) = \nu_p(a) + \nu_p(b).$$

Prouvons le sens réciproque de la susdite caractérisation. Supposons le membre de droite. D'après le théorème de décomposition en facteurs premiers,

$$|b| = \prod_{p \in \mathcal{P}} p^{\nu_p(b)} = \prod_{p \in \mathcal{P}} p^{\nu_p(a)}(p^{\nu_p(b) - \nu_p(a)}) = \prod_{p \in \mathcal{P}} p^{\nu_p(a)} \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)} = |a| \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)},$$

la première manipulation se justifie par hypothèse et la seconde peut se justifier par le calcul. Ainsi, |a|||b| donc a|b.

Prouvons le sens direct. Supposons le membre de gauche.

Soit $p \in \mathcal{P}$. Il existe $k \in \mathbb{Z}$ tel que ak = b car a|b. Ainsi,

$$\nu_p(b) = \nu_p(ak) = \nu_p(a) + \nu_p(k) \ge \nu_p(a).$$

Ce qui suffit.

18.4 Expression du pgcd et du ppcm à partir des décomposition en facteurs premiers de a et b.

Le pgcd comme produit des p à la puissance du minimum des ν_p et le ppcm comme le produit des p à la puissance du maximum des ν_p .

$$a \wedge b = \prod_{p \in \mathcal{P}} p^{\min(\nu_p(a), \nu_p(b))}$$

$$a \vee b = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$
(22)

Démonstration. Prouvons la formule du pgcd et déduisons-en la formule du ppcm.

Soient $(a,b) \in (\mathbb{Z}^*)^2$. Soit $p \in \mathcal{P}$. Il faut et il suffit de montrer que $\nu_p(a \wedge b) = \min(\nu_p(a), \nu_p(b))$ pour obtenir le résultat. On a $a \wedge b | a$ et $a \wedge b | b$ donc d'après la caractérisation de la divisibilité par les valuations p-adiques, $\nu_p(a \wedge b) \leq \nu_p(a)$ et $\nu_p(a \wedge b) \leq \nu_p(b)$ donc $\nu_p(a \wedge b) \leq \min(\nu_p(a), \nu_p(b))$. Posons $m = \min(\nu_p(a), \nu_p(b))$. On a

$$|a| = \prod_{q \in \mathcal{P}} q^{\nu_q(a)} = p^m \left((p^{\nu_p(a) - m}) \prod_{q \in \mathcal{P} \setminus \{p\}} q^{\nu_q(a)} \right),$$

car par définition, $m \leq \nu_p(a)$, donc $p^m|a$, on montrerait de même que $p^m|b$, donc par définition, $p^m|a \wedge b$, donc une nouvelle fois en appliquant la caractérisation de la divisibilité par les valuations p-adiques, $m \leq \nu_p(a \wedge b)$. Finalement, $\nu_p(a \wedge b) = m$.

On en déduit la formule du ppcm :

$$|a||b| = (a \wedge b)(a \vee b) \implies a \vee b = \prod_{p \in \mathcal{P}} p^{\nu_p(a) + \nu_p(b) - \min(\nu_p(a), \nu_p(b))} = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$

18.5 Pour p premier, $(a+b)^p \equiv a^p + b^p \mod p$, en déduire le petit Th. de Fermat (2 versions), expression du résultat dans $\mathbb{Z}/p\mathbb{Z}$.

Petit Th. de Fermat :

- (i) $\forall a \in \mathbb{Z}, \ a^p \equiv a \mod p$ $\forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^p = x$
- $\begin{array}{ccc} (ii) \ \forall a \in \mathbb{Z}, \ p \not | a, &\Longrightarrow a^{p-1} \equiv 1 \mod p \\ \forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^{p-1} = 1 \end{array}$

Démonstration. Soient a, b de tels entiers relatifs et soit p un nombre premier. Calculons,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k \equiv a^p + b^p \mod p,$$

car $\forall k \in [1, p-1], \ p|\binom{p}{k}$ (élémentaire), d'où le résultat. Dans $\mathbb{Z}/p\mathbb{Z}$, ce résultat s'énonce comme suit :

$$\forall (x,y) \in \mathbb{Z}/p\mathbb{Z}^2, \ (x+y)^p = x^p + y^p.$$

En guise d'application, démontrons le petit Th. de Fermat énoncé plus haut. Démonstration du (i). Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur $\mathbb N$ par :

$$\mathcal{P}(a)$$
: " $a^p \equiv a \mod p$ ".

Initialisation : Pour a = 0, rien à faire, donc $\mathcal{P}(0)$ est vrai.

Hérédité : Soit $a \in \mathbb{N}$ tel que $\mathcal{P}(a)$. Calculons,

$$(a+1)^p \equiv a^p + 1 \mod p \stackrel{\mathcal{P}(a)}{\equiv} a + 1 \mod p,$$

donc $\mathcal{P}(a+1)$ vrai.

Par Th. de récurrence sur \mathbb{N} , $\mathcal{P}(a)$ est vrai pour tout $a \in \mathbb{N}$.

Il faut maintenant étendre le résultat à \mathbb{Z} . Soit $p \in \mathcal{P} \setminus \{2\}$, ainsi p est impair. Soit $a \in \mathbb{Z} \setminus \mathbb{N}$. Calculons,

$$a^p \equiv (-|a|)^p \mod p \equiv -|a|^p \mod p \stackrel{\text{Th. de Fermat}}{\equiv} -|a| \mod p \equiv a \mod p.$$

Si p=2, $a^2\equiv |a|^2 \mod 2\equiv |a| \mod 2\equiv -|a| \mod 2\equiv a \mod 2$. Le (ii), soit $a\in\mathbb{Z}$ tel que $p\not|a$.

$$(p \nmid a) \land (p \in \mathcal{P}) \implies p \land a = 1,$$

d'après le (i), $p|a^p-a \implies p|a(a^{p-1}-1) \stackrel{\text{Th. de Gauss}}{\Longrightarrow} p|a^{p-1}-1 \implies a^{p-1} \equiv 1 \mod p$. Les écritures dans $\mathbb{Z}/p\mathbb{Z}$ ne posent pas de problème.s, ce qui conclut.

18.6 $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Démonstration. Montrons le sens réciproque, supposons $n \in \mathcal{P}$.

Soit $x \in \mathbb{Z}/n\mathbb{Z}$ tel que $x \neq \overline{0}$.

 $\exists a \in [0, p-1]$: $c = \overline{a}, I = [0, p-1]$ étant un système de représentant des classes.

Comme $a \in I$, $n \not| a$, or $n \in \mathcal{P}$, donc $n \wedge a = 1$. Par Bezout, il existe $u, v \in \mathbb{Z}^2$ tels que au + nv = 1, donc u est l'inverse de a modulo n donc $a \in \mathbb{Z}/n\mathbb{Z}^{\times}$, dès lors, tout élément non nul de $\mathbb{Z}/n\mathbb{Z}$ est inversible, or c'est un anneau commutatif, donc c'est un corps.

Montrons le sens direct en raisonnant par contraposition, supposons $n \notin \mathcal{P}$.

Comme n n'est pas premier et est plus grand que 2, il admet un diviseur, d, dans $I \setminus \{0,1\} = J$. Notons d' le quotient de la division euclidienne de n par d, on a alors a = dd' et $d' \in J$. Donc $\overline{dd'} = \overline{0}$ et comme $d, d' \in J$, on a $d, d' \neq 0$, donc \overline{d} est un diviseur de zéro de $\mathbb{Z}/n\mathbb{Z}$, donc \overline{d} est un élément non nul de $\mathbb{Z}/n\mathbb{Z}$ non inversible, donc $\mathbb{Z}/n\mathbb{Z}$ n'est pas un corps. En contraposant ce que nous venons de démontrer on a le résulat. Ce qui conclut.

18.7 Les éléments inversibles d'un anneau A forment un groupe multiplicatif noté (A^{\times}, \times)

Démonstration. Soit $(A, +, \times)$ un anneau.

Un élément inversible (ou unité) est un élément de A symétrisable pour la loi \times . Posons l'ensemble des éléments inversibles $A^{\times} = \{a \in A \mid \exists b \in A : a \times b = b \times a = 1_A\}$.

★ Montrons que la LCI × se restreint bien à A^{\times} en un LCI ×_A×. Soient $(a_1, a_2) \in A^{\times 2}$. Par défintion de A^{\times} , $\exists (b_1, b_2) \in A^2 : a_1 \times b_1 = b_1 \times a_1 = 1_A$ et $a_2 \times b_2 = b_2 \times a_2 = 1_A$.

$$(a_1 \times a_2) \times (b_2 \times b_1)$$
 $\underset{\text{loi associative}}{=} a_1 \times \underbrace{a_2 \times b_2}_{= 1_A} \times b_1 = a_1 \times b_1 = 1_A$

$$(b_2 \times b_1) \times (a_1 \times a_2) = b_2 \times \underbrace{b_1 \times a_1}_{= 1_A} \times a_2 = b_2 \times a_2 = 1_A$$

Donc $(a_1 \times a_2) \in A^{\times}$.

- \star La loi \times est associative donc la loi \times_{A^\times} l'est aussi.
- * 1_A vérifie $1_A \times 1_A = 1_A$ donc $1_A \in A^{\times}$. De plus, $\forall a \in A^{\times}, 1_A \times_{A^{\times}} a = a \times_{A^{\times}} 1_A = a$ donc $\times_{A^{\times}}$ admet 1_A comme élément neutre.
- * Soit $a \in A^{\times}$. Par définition de A^{\times} , $\exists b \in A : a \times b = b \times a = 1_A$. D'où $b \in A^{\times}$. En pensant les égalités ci-dessus dans A^{\times} ,

$$a \times_{A^{\times}} b = b \times_{A^{\times}} a = 1_A$$

Donc a est inversible dans A^{\times} .

Ainsi, $(A^{\times}, \times_{A^{\times}})$ est un groupe.

18.8 L'image directe par un morphisme d'anneau d'un sous-anneau de l'anneau de départ est un sous anneau de l'anneau d'arrivée. De même pour l'image réciproque.

Démonstration. Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux et $f: A \to B$ un morphisme d'anneau. Soit A' un sous-anneau de A. Montrons que f(A') est un sous-anneau de B.

- * Par définition de $f, f(A') \subset B$ et $(B, +, \times)$ est un anneau.
- ★ Soient $(u, v) \in f(A')^2$. Alors $\exists (a, b) \in A'^2 : f(a) = u$ et f(b) = v. f est un morphisme d'anneau donc un morphisme de groupe de (A, +) dans (B, +) donc

$$u - v = f(a) - f(b) = f(a - b)$$

Comme A' est un sous-anneau, $a - b \in A'$. Donc $u - v \in f(A')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$u \times v = f(a) \times f(b) = f(a \times b)$$

Comme A' est un sous-anneau, $a \times b \in A'$. Donc $u \times v \in f(A')$.

* f est un morphisme d'anneau donc $1_B = f(1_A)$. Or A' est un sous-anneau donc $1_A \in A'$. D'où $1_B \in f(A')$.

Soit B' un sous-anneau de B. Montrons que $f^{-1}(B')$ est un sous-anneau de A.

- * Par définition de f, $f^{-1}(B') \subset A$ et $(A, +, \times)$ est un anneau.
- ★ Soient $(a, b) \in f^{-1}(B')^2$. f est un morphisme d'anneau donc un morphisme de groupe de (A, +) dans (B, +) donc

$$f(a-b) = \underbrace{f(a)}_{\in B'} - \underbrace{f(b)}_{\in B'} \in B'$$

Donc $a - b \in f^{-1}(B')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$f(ab) = \underbrace{f(a)}_{\in B'} \underbrace{f(b)}_{\in B'} \in B'$$

Donc $ab \in f^{-1}(B')$.

* f est un morphisme d'anneau donc $1_B = f(1_A)$. Or B' est un sous-anneau donc $1_B \in B'$. D'où $1_A \in f^{-1}(B')$.

19.1
$$(A \times B)^T = B^T \times A^T$$

Pour une matrice $A \in \mathcal{M}_{(n,p)}(\mathbb{K})$, la matrice transposée est définie :

$$\forall (k,l) \in [1,p] \times [1,n], [A^T]_{kl} = A_{lk}$$

Formellement, la transposition est une application de $\mathcal{M}_{(n,p)}(\mathbb{K})$ dans $\mathcal{M}_{(p,n)}(\mathbb{K})$.

Démonstration. Soit $(A, B) \in \mathcal{M}_{(n,p)}(\mathbb{K}) \times \mathcal{M}_{(p,q)}(\mathbb{K})$. $(A \times B)^T \in \mathcal{M}_{(q,n)}(\mathbb{K})$. Soit $(i,j) \in [1,q] \times [1,n]$.

$$\begin{split} \left[\left(A \times B \right)^T \right]_{i,j} &= \left[A \times B \right]_{j,i} \\ &= \sum_{k=1}^p A_{j,k} \times_{\mathbb{K}} B_{k,i} \\ &= \sum_{k=1}^p B_{k,i} \times_{\mathbb{K}} A_{j,k} \\ &= \sum_{k=1}^p \left[B^T \right]_{i,k} \times_{\mathbb{K}} \left[A^T \right]_{k,j} \\ &= \left[\left(B^T \right) \times \left(A^T \right) \right]_{i,j} \end{split}$$

19.2 Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker

Le symbole de Kronecker est défini de la manière suivante :

$$\forall (x,y) \in \mathbb{R}^2, \delta_{xy} = \begin{cases} 0 \text{ si } x \neq y \\ 1 \text{ si } x = y \end{cases}$$

La matrice $E^{i,j} \in \mathcal{M}_{(n,p)}(\mathbb{K})$ avec $(i,j) \in [1,n] \times [1,p]$ ne possède que des coefficients nuls sauf le coefficient de la i^e ligne et j^e colonne qui vaut 1. Formellement :

$$\forall (r,s) \in [1,n] \times [1,p], \ [E^{i,j}]_{rs} = \delta_{ir}\delta_{js}$$

Démonstration. Calculons $E^{i,j}(n,p) \times E^{k,l}(p,q)$. Soient $(r,s) \in [1,n] \times [1,q]$ fq

$$[E^{i,j} \times E^{k,l}]_{rs} = \sum_{t=1}^{n} E^{i,j}_{r,t} E^{k,l}_{t,s}$$
$$= \sum_{t=1}^{n} \delta_{ir} \delta_{jt} \delta_{kt} \delta_{ls}$$
$$= \delta_{jk} \delta_{ir} \delta_{ls}$$
$$= \delta_{jk} [E^{i,l}]_{rs}$$

Donc $E^{i,j} \times E^{k,l} = \delta_{jk} E^{i,l}$. Ainsi, pour le calcul de $(E^{i,j})^2$, $q \leftarrow n, k \leftarrow i, l \leftarrow j$.

$$(E^{i,j})^2 = \delta_{ji}E^{i,j} = \begin{cases} E^{i,j} & \text{si } i = j \\ 0_{n,p} & \text{si } i \neq j \end{cases}$$

Les matrices triangulaires supérieures forment un sous-anneau de 19.3 $\mathcal{M}_n(\mathbb{K})$

Démonstration. $\mathcal{T}_n^+(\mathbb{K}) \subset (M)_n(\mathbb{K})$ et $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau. Soient $(A, B) \in \mathcal{T}_n^+(\mathbb{K})^2$. Soient $(i, j) \in [1, n]^2$ tels que i > j.

$$(A - B)_{i,j} = \underbrace{A_{i,j}}_{=0 \text{ car } A \in \mathcal{T}_n^+(\mathbb{K})} - \underbrace{B_{i,j}}_{=0 \text{ car } B \in \mathcal{T}_n^+(\mathbb{K})} = 0$$

Donc, $A - B \in \mathcal{T}_n^+(\mathbb{K})$.

$$(A \times B)_{i,j} = \sum_{k=1}^{n} A_{i,k} \times_{\mathbb{K}} B_{k,j}$$

$$= \sum_{k=1}^{j} \underbrace{A_{i,k}}_{=0 \text{ car } i > j \geqslant k \text{ et } A \in \mathcal{T}_{n}^{+}(\mathbb{K})} \times_{\mathbb{K}} B_{k,j} + \sum_{k=j+1}^{n} A_{i,k} \times_{\mathbb{K}} \underbrace{B_{k,j}}_{=0 \text{ car } k > j \text{ et } B \in \mathcal{T}_{n}^{+}(\mathbb{K})}$$

$$= 0$$

Donc, $A \times B \in \mathcal{T}_n^+(\mathbb{K})$.

Si A est une matrice d'ordre n et λ un scalaire non nul d'un corps, alors la transposée de A et λA sont inversibles aussi.

Démonstration. Soient $A, \lambda \in \mathcal{GL}_n(\mathbb{K}) \times \mathbb{K}^*$, avec \mathbb{K} un corps. Par définition, il existe $B \in \mathcal{GL}_n(\mathbb{K})$ tel que $AB = BA = I_n$. Ainsi :

$$(AB)^T = I_n^T \iff B^T A^T = I_n,$$

donc A^T admet un inverse à gauche, B^T , donc un inverse tout court et donc A^T est inversible (on notera que A^T reste dans les matrices d'ordre n). De même,

$$\lambda AB = \lambda I_n \iff (\lambda A)B = \lambda I_n \iff (\lambda A)\left(\frac{1}{\lambda}B\right) = I_n,$$

car les scalaires commutent avec toutes les matrices. Ainsi, λA admet un inverse à droite, donc un inverse tout court, donc est inversible, d'inverse $\frac{1}{\lambda}B$. Concluant la preuve.

Si N est une matrice d'ordre n nilpotente, alors $I_n + \lambda N$ est inversible 19.5pour tout λ , scalaire d'un corps.

 $D\acute{e}monstration$. Soient N une matrice d'ordre n à coefficient dans \mathbb{K} , un corps, nilpotente, d'indice de nilpotence k (un entier naturel donc) et $\lambda \in \mathbb{K}$. Calculons :

$$I_n^{2k+1} + (\lambda N)^{2k+1} = I_n^{2k+1} - (-\lambda N)^{2k+1} = (I_n + \lambda N) \sum_{i=0}^{2k} (-\lambda N)^i = (I_n + \lambda N) \sum_{i=0}^{k-1} (-\lambda N)^i,$$

car λN commute avec I_n , or le membre de gauche est égal à I_n car 2k+1>k, donc $I_n+\lambda N$ est inversible à droite, donc inversible tout court, d'inverse $\sum_{i=0}^{k-1} (-\lambda N)^i$. Ce qui conclut la preuve.

19.6 Caractérisation de l'inversibilité pour les matrices

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

$$\forall A \mathcal{M}_n(\mathbb{K}), A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$$
 (23)

Démonstration. Supposons que $A \in \mathcal{GL}_n(\mathbb{K})$. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{K})$ fixé quelconque. $AX = Y \iff A^{-1}AX = A^{-1}Y \iff X = A^{-1}Y$ donc l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

Supposons maintenant que $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$. Pour $i \in [1, n]$, notons X_i la solution de $AX = E^{i,1}$.

Posons
$$B = \begin{bmatrix} X_1 & X_2 & \dots & X_n \end{bmatrix}$$
.

Calculons $AB = \begin{bmatrix} AX_1 & AX_2 & \dots & AX_n \end{bmatrix} = \begin{bmatrix} E^{1,1} & E^{2,1} & \dots & E^{n,1} \end{bmatrix} = I_n$.

Ainsi A est inversible à droite donc $A \in \mathcal{GL}_n(\mathbb{K})$ et $A^{-1} = B$.

19.7 Caractérisation des matrices diagonales inversibles

Une matrice diagonale est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

$$\forall D = diag(d_1, d_2, \dots, d_n) \in \mathcal{D}_n(\mathbb{K}), D \in \mathcal{GL}_n(\mathbb{K}) \iff \prod_{i=1}^n d_i \neq 0$$
 (24)

Démonstration. Soit $D \in \mathcal{D}_n(\mathbb{K})$ de coefficients diagonaux $d_1, d_2, \dots, d_n \in \mathbb{K}^n$.

Soit
$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$
. Étudions l'équation $DX = Y$ d'inconnue $X = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$.

$$DX = Y \iff \begin{cases} d_1 x_1 & = y_1 \\ d_2 x_2 & = y_2 \\ \vdots & = y_n \\ d_n x_n & = y_n \end{cases}$$

- Si $\exists i_0 \in [1; n] : d_{i_0} = 0$, la i_0 -ème ligne du système ci-dessus deviens une condition de compatibilité $0 = y_{i_0}$ qui ne sera pas respecté pour $Y = E^{i_0,1}$. Donc $D \notin \mathcal{GL}_n(\mathbb{K})$.
- Sinon $\forall i \in [1; n] : d_i \neq 0$, le système est donc triangulaire à coefficients diagonaux non nuls. Il admet donc une unique solution. Ainsi $D \in \mathcal{GL}_n(\mathbb{K})$.

$$DX = Y \iff \begin{cases} x_1 & = d_1^{-1}y_1 \\ x_2 & = d_2^{-1}y_2 \\ & \ddots & = d_2^{-1}y_2 \\ & & x_n & = d_2^{-1}y_2 \end{cases}$$

Ainsi $D^{-1} = diag(d_1^{-1}, d_2^{-1}, \dots, d_n^{-1}).$

20.1 Éléments inversibles de l'anneau $\mathbb{K}[X]$

$$\mathbb{K}[X]^{\times} = \left\{ \lambda X^{0}, \lambda \in \mathbb{K}^{*} \right\}$$
 (25)

Démonstration. Soit P un élément inversible de $\mathbb{K}[X]$. Alors $\exists Q \in \mathbb{K}[X] : P \cdot Q = Q \cdot P = 1_{\mathbb{K}[X]}$. En prenant les degrés des polynômes, deg $P + \deg Q = 0$.

Or deg : $\mathbb{K}[X] \to \mathbb{N}$ donc deg $P = \deg Q = 0$. Donc $\exists \lambda \in \mathbb{K}^* : P = \lambda$.

Ainsi $\mathbb{K}[X]^{\times} \subset \{\lambda X^{0}, \lambda \in \mathbb{K}^{*}\}.$ Soit $\lambda \in \mathbb{K}^{*}$. Considérons $P = \lambda$. Posons $Q = \lambda^{-1}$ (car \mathbb{K} est un corps). $P \cdot Q = \lambda \lambda^{-1} = 1$ et $Q \cdot P = \lambda^{-1}\lambda = 1$ donc P est inversible. Ainsi $\{\lambda X^0, \lambda \in \mathbb{K}^*\} \subset \mathbb{K}[X]^{\times}$.

Théorème d'interpolation de lagrange 20.2

Le problème d'interpolation de Lagrange est, pour $n \in \mathbb{N}$ avec $a \in \mathbb{K}^{n+1}$ et $b \in \mathbb{K}^{n+1}$, l'ensemble des polynômes passant par tous les points de coordonnée (a_i, b_i) . C'est-à-dire l'ensemble des $P \in \mathbb{K}[X]$ vérifiant :

$$\forall i \in [0; n], P(a_i) = b_i \tag{26}$$

Il existe une unique solution P de degré $\leq n$ au problème d'interpolation de lagrange, et elle s'exprime de la manière suivante en posant

$$L_{i} = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{X - a_{j}}{a_{i} - a_{j}} \tag{27}$$

$$P = \sum_{i=0}^{n} b_i L_i \tag{28}$$

Démonstration. Unicité

Supposons qu'il existe $(P,Q) \in \mathbb{K}_n[X]^2$ solutions du problème d'interpolation.

Alors $\forall i \in [0, n], \tilde{P}(a_i) = \tilde{Q}(a_i) = b_i$

Posons H = P - Q, alors, $\forall i \in [0, n], \tilde{H}(a_i) = \tilde{P}(a_i) - \tilde{Q}(a_i) = 0$.

De plus, $\deg H = \deg(P - Q) \leq \max \{\deg P, \deg Q\}$

Donc H est un polynôme de degré $\leq n$ avec |[0, n]| = n + 1 racines.

Donc H est le polynôme nul.

Existence Soit $i \in [0, n]$ fq Notons L_i une solution de degré $\leq n$ au problème Pb_i suivant :

$$(Pb_i) \begin{cases} \tilde{P}(a_0) = 0 \\ \vdots \\ \tilde{P}(a_{i-1}) = 0 \\ \tilde{P}(a_i) = 1 \\ \tilde{P}(a_n) = 0 \\ \vdots \\ \tilde{P}(a_n) = 0 \end{cases}$$

On remarque que $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont n racines deux à deux distinctes de L_i . Or L_i est de degré $\leq n$ et n'est pas le polynôme nul (car $L_i(a_i) = 0$) donc $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont les seules racines de L_i , toutes simples.

Dès lors,

$$\exists c \in \mathbb{K}^* : L_i = c \prod_{\substack{j=0\\ i \neq i}}^n (X - a_j)$$

Pour trouver le c, remarquons que

$$\tilde{L}_i(a_i) = 1 \iff c \prod_{\substack{j=0\\j \neq i}}^n (a_i - a_j) = 1$$

$$\iff c = \prod_{\substack{j=0\\j \neq i}}^n \left(\frac{1}{a_i - a_j}\right)$$

Ainsi, s'il existe une solution au problème Pb_i c'est nécéssairement

$$L_i = \prod_{\substack{j=0\\ i \neq i}}^n \left(\frac{X - a_j}{a_i - a_j} \right)$$

Réciproquement, cette solution est correcte puisque

$$\forall k \in [0, n], k \neq i, \tilde{L}_i(a_k) = \prod_{\substack{j=0 \ j \neq i}}^n \left(\frac{a_k - a_j}{a_i - a_j} \right) = 0$$

Et

$$\tilde{L}_i(a_i) = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{a_i - a_j}{a_i - a_j}\right) = \prod_{\substack{j=0\\j\neq i}}^n 1 = 1$$

Posons donc $P = \sum_{i=0}^{n} b_i Li$. Alors, par construction,

$$\forall k \in [0, n], \tilde{P}(a_k) = \sum_{i=0}^{n} \left(b_i \prod_{\substack{j=0 \ j \neq i}}^{n} \left(\frac{a_k - a_j}{a_i - a_j} \right) \right) = \sum_{i=0}^{n} \left(b_i \delta_{ki} \right) = b_k \delta_{kk} = b_k$$

Nous avons donc construit une solution unique au problème d'interpolation de Lagrange

20.3 Formule de Taylor dans $\mathbb{K}[X]$ (caractéristique nulle)

Soient P à coefficients dans \mathbb{K} et $a \in \mathbb{K}$. On a :

$$P = \sum_{n \in \mathbb{N}} \frac{\widetilde{P^{(n)}}(a)}{n!} (X - a)^n \tag{29}$$

 $D\acute{e}monstration$. Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur \mathbb{N} par :

$$\mathcal{P}(n)$$
: " $\forall P \in \mathbb{K}_n[X], P = \sum_{k=0}^n \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^k$ "

Initialisation : pour n = 0, soit $P \in \mathbb{K}_0[X]$.

$$\exists p_0 \in \mathbb{K} : P = p_0 X^0 \text{ et } \sum_{k=0}^0 \frac{\widetilde{P^{(k)}(a)}}{k!} (X - a)^k = \frac{\widetilde{P^{(0)}(a)}}{1} X^0 = p_0 X^0, \text{ donc } \mathcal{P}(0) \text{ vrai.}$$

Hérédité : Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$. Soit $P \in \mathbb{K}_{n+1}[X]$. On a donc $\deg P' = \deg P - 1 \leq n$ donc $\mathcal{P}(n)$ s'applique à P' :

$$P' = \sum_{k=0}^{n} \frac{\widetilde{P'^{(k)}(a)}}{k!} (X - a)^k = \left(\sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}(a)}}{k!} \frac{(X - a)^{k+1}}{k+1} \right)',$$

donc:

$$\left(P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1}\right)' = 0 \implies \exists \ \mu \in \mathbb{K} : \ P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1} = \mu,$$

ainsi:

$$P = \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}(a)}}{(k+1)!} (X-a)^{k+1} + \mu = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}(a)}}{k!} (X-a)^k + \mu,$$

donc en a par φ_a :

$$\widetilde{P}(a) = \mu \implies P = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k + \widetilde{P}(a) = \sum_{k=0}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k,$$

donc $\mathcal{P}(n+1)$ vrai. Ainsi par théorème de récurrence sur \mathbb{N} , $\mathcal{P}(n)$ est vrai pour tout $n \in \mathbb{N}$. \square

20.4 Caractérisation de la multiplicité d'une racine

Soit $P \in \mathbb{K}[X]$. Soit $a \in \mathbb{K}$.

$$a$$
 est une racine de P de multiplicité au moins $m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \end{cases}$ (30)

$$a \text{ est une racine de } P \text{ de multiplicit\'e d'exactement } m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \\ P^m(a) \neq 0 \end{cases} \tag{31}$$

Démonstration. • Supposons que a est une racine de P de multiplicité au moins m. Alors $\exists Q \in \mathbb{K}[X] : P = (X - a)^m Q$. D'après la formule de Leibniz, pour tout $k \in [0; m - 1]$,

$$\begin{split} P^{(k)} &= \sum_{i=0}^{k} \binom{k}{i} \left((X-a)^{m} \right)^{(k-i)} Q^{(i)} \\ &= \sum_{i=0}^{k} \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^{m-(k-i)} Q^{(i)} \\ &= \underbrace{(X-a)^{(m-k)}}_{\text{c'est un bien un polynôme}} \sum_{i=0}^{k} \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^{i} Q^{(i)} \end{split}$$

Donc $\forall k \in [0; m-1], P^{(k)}(a) = 0.$

• Supposons que $\forall k \in [0; m-1], P^{(k)}(a) = 0$. Appliquons la formule de Taylor a.

$$P = \sum_{n \in \mathbb{N}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= \sum_{n=0}^{m-1} \underbrace{\frac{P^{(n)}(a)}{n!}}_{=0} (X - a)^n + \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= (X - a)^m \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} \underbrace{(X - a)^{n-m}}_{\in \mathbb{K}[X] \ car \ n - m \in \mathbb{N}}$$

Donc $(X-a)^m|P$. Donc a est racine de P de multiplicité au moins m.

- Supposons que a est une racine de P de multiplicité exactement m. Nous pouvons appliquer le point précédent car la multiplicité est supérieur à $m: \forall k \in$ $[0; m-1], P^{(k)}(a) = 0.$
 - Par l'absurde, si $P^{(m)}(a) = 0$ alors le point précédent donne que a a une multiplicité supérieur à m+1 donc $m \ge m+1$ ce qui est une contradiction.

Par conséquent, $P^{(m)}(a) \neq 0$.

• Supposons $\forall k \in [0; m-1], P^{(k)}(a) = 0 \text{ et } P^{(m)}(a) \neq 0.$ En reprenant le calcul précédent, pour k=m, en sachant que $(X-a)^{(m-k)}=X^0$,

$$P^{(m)} = {m \choose 0} \frac{m!}{0!} (X - a)^0 P + \sum_{i=1}^m {m \choose i} \frac{m!}{i!} (X - a)^i Q^{(i)}$$

D'où $P^{(m)}(a)=m!$ Q(a) donc $Q(a)=\frac{P^{(m)}(a)}{m!}$. Donc $Q(a)\neq 0$. Par l'absurde, supposons que $(X-a)^{m+1}|P$. Alors $\exists R\in\mathbb{K}[X]:P=(X-a)^{m+1}R$. Donc $(X-a)^{m+1}R=(X-a)^mQ$ d'où Q=(X-a)R. Nous obtenons Q(a)=0 ce qui est une contradiction avec Q(a) = 0.

Donc a est une racine de P de multiplicité strictement inférieur à m+1 et, d'après le point précédent, supérieur à m. Donc a est une racine de P de multiplicité exactement m.

Identification de $\mathbb{K}[X]$ à $\mathbb{K}[x]$, par l'injectivité de Φ 20.5

 $D\acute{e}monstration$. Montrons que l'application Φ définie comme suit est injective :

$$\Phi: \left| \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathcal{F}(\mathbb{K},\mathbb{K}) \\ P & \longmapsto & \widetilde{P} \end{array} \right..$$

Soit donc $P \in \ker \Phi$, on a:

$$\Phi(P) = \widetilde{0} \implies \widetilde{P} = \widetilde{0} \text{ sur } \mathbb{K} \implies P = 0_{\mathbb{K}[X]},$$

donc $\ker \Phi \subset \{0_{\mathbb{K}[X]}\}.$

Réciproquement, on calcule l'image du polynôme nul par Φ :

$$\Phi(0_{\mathbb{K}[X]}) = \widetilde{0},$$

donc $0_{\mathbb{K}[X]} \in \ker \Phi$, ainsi on a l'égalité ensembliste et donc cela suffit.

Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions symétriques élémentaires

Les fonctions symétriques élémentaires $(\sigma_k)_{k \in [0;n]}$ pour une famille $(x_k)_{k \in [1;n]}$ sont définies par

$$\sigma_k = \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \prod_{j=1}^k x_{i_j} \tag{32}$$

Démonstration. Sous forme développée, $P = X^3 - (x1 + x_2 + x_3)X^2 + (x_1x_2 + x_1x_3 + x_2x_3)X$ $x_1x_2x_3 = X^3 - \sigma_1X^2 + \sigma_2X - \sigma_3$. Comme x_1, x_2, x_3 sont racines de P, nous avons les trois égalité suivantes:

$$0 = P(x_1) = x_1^3 - \sigma_1 x_1^2 + \sigma_2 x_1 - \sigma_3$$

$$0 = P(x_1) = x_2^3 - \sigma_1 x_2^2 + \sigma_2 x_2 - \sigma_3$$

$$0 = P(x_1) = x_3^3 - \sigma_1 x_3^2 + \sigma_2 x_3 - \sigma_3$$

En sommant ces trois équation,

$$0 = x_1^3 + x_2^3 + x_3^3 - \sigma_1(x_1^2 + x_2^2 + x_3^2) + \sigma_2(x_1 + x_2 + x_3) - 3\sigma_3$$

Cherchons la somme des carrés.

$$(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

$$\implies x_1^2 + x_2^2 + x_3^2 + x_1x_2 = \sigma_1^2 - 2\sigma_2$$

Ainsi

$$x_1^3 + x_2^3 + x_3^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$$

20.7 Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques.

Les sommes de Newton $(S_k)_{k\in\mathbb{Z}^*}$ pour une famille $(x_k)_{k\in\mathbb{N}^*}$ sont définies par (sous réserve d'existence pour k<0):

$$S_k = \sum_{i=1}^n x_i^k \tag{33}$$

Démonstration.

$$\sigma_{1}^{2} = \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} x_{i} x_{j}$$

$$\implies S_{2} = \sigma_{1}^{2} - 2\sigma_{2}$$

$$S_{-1} = \sum_{i=1}^{n} \frac{1}{x_{i}} = \frac{\sum_{i=1}^{n} \prod_{\substack{j=1 \ j \neq i \ j \neq i}}^{n} x_{j}}{\prod_{i=1}^{n} x_{i}} = \frac{\sigma_{n-1}}{\sigma_{n}}$$

$$S_{-2} = \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$= \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2} - 2 \sum_{1 \leq i < j \leq n} \frac{1}{x_{i}} \frac{1}{x_{j}}$$

$$= \frac{\sigma_{n-1}^{2}}{\sigma_{n}^{2}} - 2 \frac{\sum_{1 \leq i < j \leq n} \prod_{\substack{k=1 \ k \notin \{i,j\}}}^{n} \frac{1}{x_{j}}}{\sigma_{n}}$$

$$= \frac{\sigma_{n-1}^{2} - 2\sigma_{n-2}\sigma_{n}}{\sigma_{n}^{2}}$$

21.1 Caractérisation des polynômes irréductibles de degré 1, 2 et 3 dans $\mathbb{K}[X]$.

Tous les polynômes de degré 1 sont irréductibles, les polynômes irréductibles de degré 2 ou 3 sont les polynômes sans racine.s dans le corps de base.

 $D\acute{e}monstration$. Un polynôme de degré 1 ne peut s'écrire comme produit de 2 polynômes de degré > 1 donc il est irréductible.

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible de degré 2 ou 3.

Par définition, P n'a pas de racine.s dans \mathbb{K} , donc la première inclusion.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 2.

Montrons que si P n'a pas de racine dans \mathbb{K} alors P est irréductible. Montrons la contraposée. Supposons P non-irréductible.

$$\exists A, B \in \mathbb{K}[X] : P = AB \text{ et deg } A, \deg B \ge 1,$$

On a alors, $P = AB \implies 2 = \deg A + \deg B \implies \deg A$, $\deg B = 1$ donc:

$$\exists \alpha, \gamma \in \mathbb{K}^* \times \mathbb{K} : A = \alpha X + \gamma,$$

ainsi, $P = (\alpha X + \gamma)B = \alpha \left(X + \frac{\gamma}{\alpha}\right)B$, donc P admet $-\frac{\gamma}{\alpha} \in \mathbb{K}$ comme racine, ce qui montre la contraposée.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 3.

Montrons, de même, la contraposée. Supposons ${\cal P}$ non-irréductible. De même, on a :

$$\exists\ A,\ B\in\mathbb{K}[X]\ :\ P=AB\ \mathrm{et}\ \deg A,\ \deg B\geq 1,$$

Puis encore, $P = AB \implies 3 = \deg A + \deg B \implies \deg A$, $\deg B \in \{2,1\}$ (l'un n'étant pas l'autre). Donc l'un des deux est de degré 1 donc P admet une racine dans \mathbb{K} , donc encore une fois cela montre la contraposée, ce qui démontre l'inclusion réciproque.

21.2 Polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1 et ceux de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant strictement négatif.

Démonstration. Le premier point est immédiat, les polynômes irréductibles d'un corps contiennent les polynômes de degré 1 et par le théorème de D'Alembert-Gauss, tout polynôme de $\mathbb{C}[X]$ (deg ≥ 2) est scindé dans $\mathbb{C}[X]$, donc non-irréductible.

Pour le second point, le cas du degré 1 est réglé. Soit P un polynôme irréductible de $\mathbb{R}[X]$.

Supposons que P soit de degré supérieur ou égal à 3. Si son degré est impair, le TVI conclut quant à l'existence d'une racine, donc non-irréductible. Si son degré est pair, par D'Alembert-Gauss, on obtient deg P couples de racines possiblement égaux.

Or, $P \in \mathbb{R}[X]$ donc $\forall z \in \mathbb{C}$, $P(z) = 0 \implies P(\overline{z}) = 0$ donc les racines se rassemblent 2 à 2 pour former un polynôme scindé dans \mathbb{R} , donc non-irréductible. Ainsi, deg P = 2, immédiatement, si le discriminant de P est positif ou nul, P admet une ou deux racines dans \mathbb{R} , donc non irréductible. Enfin, son discriminant est alors négatif, de cette manière P n'admet pas de racine dans \mathbb{R} et est donc irréductible. Ce qui achève la preuve.

21.3 $X^3 - 2$ est irréductible dans $\mathbb{Q}[X]$.

Il s'agit donc de montrer que racine cubique de 2 n'est pas un rationnel.

Démonstration. Supposons, par l'absurde, qu'il existe $r \in \mathbb{Q}$ tel que $r^3-2=0$. Prenons $p,q \in \mathbb{Z} \times \mathbb{N}^*$ le représentant irréductible de r dans \mathbb{Q} . On a alors, $p^3=2q^3$ donc $2\mid p^3$ or $2\in \mathcal{P}$ donc $2\mid p$ ainsi, il existe $k\in \mathbb{Z}$ tel que p=2k. Par conséquent, $2(2k^3)=q^3$ donc $2\mid q^3$ or $2\in \mathcal{P}$ donc $2\mid q$ donc ceci contredit p et q premiers entre eux, par définition d'un représentant irréductible. Ainsi, $P=X^3-2$ n'admet pas de racine dans \mathbb{Q} , c'est donc un polynôme irréductible. □

21.4 PGCD d'un polynôme de $\mathbb{C}[X]$ et son polynôme dérivé

Pour $P = \prod_{k=1}^{p} (X - z_k)^{m_k} \in \mathbb{C}[X] \setminus \{0_{\mathbb{C}[X]}\}$ avec $m_k \in \mathbb{N}^*$ pour tout $k \in [1, p]$, on a

$$P \wedge P' = \prod_{k=1}^{p} (X - z_k)^{m_k - 1}$$
(34)

C'est une conséquence de la définition du pgcd de deux polynômes $P \wedge Q = \prod_{i \in I} P_i^{\min\{m_i, p_i\}}$, où les P_i sont les facteurs irréductibles de P et Q dans leur décomposition.

Démonstration. Soit P un tel polynôme et p un entier naturel non nul. Naturellement, P' hérite de P, deg P-p racines, lesquelles sont les z_k pour $k \in [1, p]$, de multiplicité $m_k - 1$. Ainsi,

$$\exists B \in \mathbb{C}[X] : \left[P' = \left(\prod_{k=1}^p (X - z_k)^{m_k - 1} \right) B \right] \land \left[\deg B = p \right],$$

de cette manière on peut écrire :

$$P' = \left(\left(\prod_{k=1}^{p} (X - z_k)^{m_k - 1} \right) B \right) P^0 \text{ et } P = \left(\prod_{k=1}^{p} (X - z_k)^{m_k} \right) (P')^0,$$

de façon à faire apparaître dans les deux décompositions les mêmes facteurs, possiblement avec une puissance 0, histoire de coller à la définition de manière explicite. Ceci fait, il ne reste plus qu'à appliquer la définition du pgcd et de remarquer que seuls les $(X - z_k)^{m_k - 1}$ subsistent. Notons \Im l'ensemble des facteurs de leur décomposition, on a alors :

$$P \wedge P' = \prod_{D \in \mathfrak{I}} D^{\min\{\nu_D(P),\nu_D(P')\}} = \prod_{k=1}^p (X - z_k)^{m_k - 1},$$

où $\nu_D(\cdot)$ est la valuation D-adique au sens des polynômes irréductibles. Ce qui conclut. \Box

21.5 Justifier la bonne définition de la dérivée d'une fraction rationnelle.

Il s'agit là de vérifier que la définition que l'on souhaiterait le plus, c'est-à-dire la même que pour la dérivée d'une fraction de fonctions, s'applique effectivement aux fractions rationnelles, c'est-à-dire que cette définition ne dépend pas du représentant choisi.

Démonstration. Montrons que pour $A,\ B\in\mathbb{K}[X]\times\mathbb{K}[X]\backslash\{0_{\mathbb{K}[X]}\},$ on a :

$$\left(\frac{A}{B}\right)' = \frac{A'B - B'A}{B^2}.$$

Soient A et B de tels polynômes et C, $D \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}$ tels que AD = BC, en dérivant on obtient A'D + D'A = B'C + C'B. Calculons :

$$\begin{array}{rcl} (A'B-B'A)D^2 & = & D(A'BD-(AD)B') \\ & = & D(A'BD-BCB') \\ & = & BD(A'D-CB') \\ & = & BD(C'B-D'A) \\ & = & B(C'BD-(AD)D') \\ & = & B^2(C'BD-BCD') \\ & = & B^2(C'D-D'C), \end{array}$$

ce qui prouve que le résultat ne dépend pas du représentant, par définition de $\mathbb{K}(X)$ comme structure quotient.

21.6 Théorème de Gauss-Lucas et interprétation graphique.

Les racines du polynôme dérivée sont dans l'enveloppe convexe des racines du polynôme. Soit $P \in \mathbb{C}[X]$ de degré au moins 2 et notons z_1, \ldots, z_n ses racines répétées avec multiplicité. Soit u une racine de P'. Alors :

$$\exists (c_1, \dots, c_n) \in \mathbb{R}_+^* : \sum_{k=1}^n c_k z_k = u \text{ et } \sum_{k=1}^n c_k = 1.$$
 (35)

Démonstration. Pour ce qui est de l'interprétation graphique, elle n'est pas prévue à l'heure qu'il est dans ce pdf, pour la faire soi-même dessiner des points et les "clôturer" dans un polygone convexe, ou même faire ceci avec un cas concret.

 \rightarrow Si u est une racine de P alors noter k_0 son indice et utiliser le symbole de Kronecker. $\sum_{k=1}^{n} \delta_{k,k_0} z_k = u$ et $\sum_{k=1}^{n} \delta_{k,k_0} = 1$.

 \rightarrow Sinon, u n'appartient pas aux racines de P, donc u n'est pas pôle de $\frac{P'}{P}$ ce qui permet de prendre l'image par le morphisme d'évaluation en u de cette même fraction rationnelle :

$$0_{\mathbb{K}} = \frac{P'(u)}{P(u)} = \sum_{k=1}^{n} \frac{1}{u - z_k} = \sum_{k=1}^{n} \frac{\overline{u} - \overline{z_k}}{|u - z_k|^2} = \sum_{k=1}^{n} \frac{\overline{u}}{|u - z_k|^2} - \sum_{k=1}^{n} \frac{\overline{z_k}}{|u - z_k|^2}.$$

Donc en passant la seconde somme à gauche et en prenant le conjugué :

$$\sum_{k=1}^{n} \frac{u}{|u-z_{k}|^{2}} = \sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}} \implies u = \frac{\sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}}}{\sum_{k=1}^{n} \frac{1}{|u-z_{k}|^{2}}} = \sum_{k=1}^{n} \underbrace{\frac{1}{|u-z_{k}|^{2}}}_{= c_{k}} \underbrace{z_{k}}_{= c_{k}} \underbrace{z_{k}}_{= c_{k}}$$

ce qui démontre la première partie du résultat, il est immédiat de vérifier que $\sum_{k=1}^{n} c_k = 1$, vérification laissée aux lecteurs. Ce qui achève la preuve.

 $P = (X+4)^3(X+1-3i)(X-2-2i)^2(X-3-i)(X-1+i)(X+1+2i)^2$ Les racines de P' sont dans le polygone bleu.

21.7 Deux expressions du coefficient associé à un pôle simple dans une décomposition en éléments simples.

 $D\acute{e}monstration$. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant $\deg P < \deg Q$. En appliquant le théorème de décomposition en éléments simples, on obtient un expression de la forme :

$$\exists \ R \in \mathbb{K}(X) \ : \ \frac{P}{Q} = \sum_{k=1}^{n} \frac{a_k}{X - z_k} + R,$$

П

où les z_k pour $k \in [1, n]$ sont racines de Q. Ainsi, en prenant $k_0 \in [1, n]$ tel que z_{k_0} soit racine simple,

$$\frac{P(X - z_{k_0})}{Q} = a_{k_0} + \sum_{k=0 \text{ et } k \neq k_0} \frac{a_k(X - z_{k_0})}{X - z_{k_0}} + R(X - z_{k_0}),$$

une première expression se trouvera en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X-z_k)^{\nu_{(X-z_k)}(Q)}$, on a alors :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_{k_0}.$$

Une autre expression est possible en explicitant \widetilde{Q} . Pour ce faire, remarquons plutôt :

$$Q' = \sum_{k=1}^{n} \nu_{(X-z_k)}(Q)(X-z_k)^{\nu_{(X-z_k)}(Q)-1} \prod_{\substack{i=1\\i\neq k}}^{n} (X-z_i)^{\nu_{(X-z_i)}(Q)},$$

donc en prenant l'image par le morphisme d'évaluation en z_{k_0} on obtient :

$$Q'(z_{k_0}) = \prod_{\substack{i=1\\i\neq k_0}}^n (z_{k_0} - z_i)^{\nu_{(X-z_i)}(Q)},$$

il s'agit exactement de $\widetilde{Q}(z_{k_0})$. Ainsi,

$$\frac{P(z_{k_0})}{Q'(z_{k_0})} = a_{k_0},\tag{36}$$

ce qui suffit.

21.8 Expressions des deux coefficients associés à un pôle double dans une décomposition en éléments simples.

 $D\acute{e}monstration$. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant deg $P < \deg Q$. En appliquant le théorème de décomposition en éléments simples on obtient un expression de la forme suivante en considérant z_{k_0} , une racine double de Q:

$$\exists R \in \mathbb{K}(X) : \frac{P}{Q} = \frac{a_1}{X - z_{k_0}} + \frac{a_2}{(X - z_{k_0})^2} + R \qquad (\star)$$

puis de même,

$$\frac{P(X - z_{k_0})^2}{Q} = a_2 + \left(\frac{a_1}{X - z_{k_0}} + R\right) (X - z_{k_0})^2,$$

donc en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X - z_k)^{\nu_{(X-z_k)}(Q)}$, on a :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_2,$$

c'est une première expression. Pour la suivante, encore une fois, explicitons $\widehat{Q}.$ Remarquons que :

$$\exists A \in \mathbb{K}[X] : \left[Q'' = 2 \prod_{\substack{k=1 \ k \neq k_0}}^n (X - z_k)^{\nu_{(X - z_k)}(Q)} + A \right] \land [A(z_{k_0}) = 0],$$

donc, en remarquant que :

$$2\widetilde{Q}(z_{k_0}) = Q''(z_{k_0}),$$

on a finalement:

$$\frac{2P(z_{k_0})}{Q''(z_{k_0})} = a_2.$$

Pour récupérer a_1 , on multiplie (\star) par $(X-z_{k_0})^2$ puis on dérive :

$$\left(\frac{P(X-z_{k_0})^2}{Q}\right)' = a_1 + R'(X-z_{k_0})^2 + 2R(X-z_{k_0}),$$

soit,

$$\frac{((P'(X-z_{k_0})^2+2P(X-z_{k_0}))Q-Q'P(X-z_{k_0})^2}{Q^2}=a_1+R'(X-z_{k_0})^2+2R(X-z_{k_0})$$

Pour cette semaine, $\mathbb K$ désigne un corps commutatif, E et F des $\mathbb K$ -espaces vectoriels, E' et F'des sous-espaces vectoriels respectivement de E et de F, I un ensemble quelconque non vide.

22.1Caractérisation d'une famille liée

Une famille est liée si et seulement si l'un de ses vecteurs est une combinaison linéaires d'autres vecteurs de la famille.

$$(x_i)_{i \in I}$$
 est liée $\iff \exists i_0 \in I : \exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i . x_i$ (37)

 $D\acute{e}monstration$. Supposons que $(x_i)_{i\in I}$ est liée.

Par définition,
$$\exists (\mu_i)\mathbb{K}^{(I)}: \left\{ \begin{array}{l} \sum_{i\in I} \mu_i x_i = 0_E \\ (\mu_i)_{i\in I} \neq (0_{\mathbb{K}})_{i\in I} \end{array} \right.$$

Donc $\exists i_0 \in I: \mu_{i_0} \neq 0_{\mathbb{K}}$. Fixons un tel i_0 .
 $\mu_{i_0} x_{i_0} + \sum_{i\in I\setminus\{i_0\}} \mu_i x_i = 0_E$

$$\mu_{i_0} x_{i_0} + \sum_{i \in I \setminus \{i_0\}} \mu_i x_i = 0_E$$

Or
$$\mu_{i_0} \neq 0$$
, donc $x_{i_0} = \sum_{i \in I \setminus \{i_0\}} (\mu_{i_0}^{-1} \times (-\mu_i)) \cdot x_i$.

En posant
$$\lambda_i = \mu_{i_0}^{-1} \times (-\mu_i)$$
, on obtient $x_{i_0} = \sum_{i \in I \setminus \{i_0\}} \lambda_i \cdot x_i$.

Supposons maintenant que
$$\exists i_0 \in I : \exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i.$$

Alors
$$-x_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i = 0_E$$
. Posons $\mu_{i_0} = -1_{\mathbb{K}}$ et $\forall i \in I \setminus \{i_0\}, \mu_i = \lambda_i$. Ainsi, $(\mu_i)_{i \in I} \in \mathbb{K}^{(I)}$ et $\sum_{\substack{i \in I \\ i \neq i_0}} \mu_i \cdot x_i = 0_{\mathbb{K}}$. Or $\mu_{i_0} \neq 0_{\mathbb{K}}$ donc $(\mu_i)_{i \in I} \neq (0_{\mathbb{K}})_{i \in I}$.

$$\sum_{i \in I} \mu_i . x_i = 0_{\mathbb{K}}. \text{ Or } \mu_{i_0} \neq 0_{\mathbb{K}} \text{ donc } (\mu_i)_{i \in I} \neq (0_{\mathbb{K}})_{i \in I}.$$

$$\text{Donc } (\mu_i)_{i \in I} \text{ est liée.}$$

Caractérisations d'une base 22.2

Soit \mathcal{F} une famille de vecteurs de E. Les propositions suivantes sont équivalentes :

- (i) \mathcal{F} est une base.
- (ii) Tout vecteur de E se décompose de manière unique dans \mathcal{F} .
- (iii) \mathcal{F} est génératrice minimale (au sens de l'inclusion)
- (iv) \mathcal{F} est libre maximale (au sens de l'inclusion)

Démonstration. Notons $(e_i)_{i\in I}$ la famille \mathcal{F} .

 $(i) \implies (ii)$ Supposons que \mathcal{F} est une base de E.

Soit $x \in E$ fixé quelconque. Montrons que x s'écrit de manière unique comme une combinaison linéaire des vecteurs de \mathcal{F} .

 \mathcal{F} est une base donc elle est une famille génératrice et libre de E. La propriété génératrice donne, par définition, l'existence d'une telle écriture tandis que la propriété libre donne l'unicité d'une telle écriture.

 $(ii) \implies (iii)$ Supposons que tout vecteur de E s'écrit de manière unique comme une combinaison linéaire de vecteurs de \mathcal{F} .

L'existence d'un telle décomposition permet d'affirmer que \mathcal{F} est génératrice.

Supposons que \mathcal{F} ne soit pas génératrice minimale c'est-à-dire qu'il existe une famille \mathcal{F}' de vecteurs de E telle que $\mathcal{F}' \subsetneq \mathcal{F}$ et \mathcal{F}' engendre E.

Alors $\exists i_0 \in I : e_{i_0} \notin \mathcal{F}'$. Comme \mathcal{F}' est génératrice, $\exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : e_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot e_i$.

Donc

$$e_{i_0} = 0_{\mathbb{K}}. e_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i. e_i$$
$$e_{i_0} = 1_{\mathbb{K}}. e_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} 0_{\mathbb{K}}. e_i$$

 e_{i_0} peut donc s'écrire de deux manières différentes au moins comme combinaison linéaire de vecteurs de \mathcal{F} ce qui contredit le caractère libre de \mathcal{F} .

Par conséquent, \mathcal{F} est génératrice et minimale parmi les familles génératrices.

 $(iii) \Longrightarrow (iv)$ Supposons que \mathcal{F} est une famille génératrice minimale. Par l'absurde, supposons que \mathcal{F} est liée. Alors il existe un $i_0 \in I$ tel que e_{i_0} s'écrit comme une combinaison linéaire d'autres vecteurs de \mathcal{F} donc $(e_i)_{i \in I \setminus \{i_0\}}$ est génératrice de E. Or cette famille est strictement incluse dans \mathcal{F} ce qui contredit la propriété de génératrice minimale.

Donc \mathcal{F} est libre.

Par l'absurde, supposons que \mathcal{F} n'est pas libre maximale c'est-à-dire qu'il existe une famille \mathcal{F}' de vecteurs de E telle que $\mathcal{F} \subseteq \mathcal{F}'$ et \mathcal{F}' est libre.

Alors $\exists x \in \mathcal{F}' : x \notin \mathcal{F}$. Or \mathcal{F} est génératrice d'où :

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} : x = \sum_{i \in I} \lambda_i \cdot x_i = 0_{\mathbb{K}} \cdot x + \sum_{i \in I} \lambda_i \cdot x_i + \sum_{\substack{y \in \mathcal{F}' \\ y \notin \mathcal{F} \\ y \neq x}} 0_{\mathbb{K}} \cdot y$$

Puisque $x \in \mathcal{F}'$,

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} : x = 1_{\mathbb{K}}. x + \sum_{i \in I} 0_{\mathbb{K}}. x_i + \sum_{\substack{y \in \mathcal{F}' \\ y \notin \mathcal{F} \\ y \neq x}} 0_{\mathbb{K}}. y$$

Donc x s'écrit de deux manières différentes au moins comme combinaison linéaire de vecteurs \mathcal{F}' , ce qui contredit la liberté de \mathcal{F}' .

Par conséquent, \mathcal{F} est libre maximale.

 $(iv) \implies (i)$ Supposons que \mathcal{F} est une famille libre maximale.

Par hypothèse même, \mathcal{F} est libre. Par l'absurde, supposons que \mathcal{F} n'est pas génératrice. Alors il existe $x \in E$ tel que $x \notin \text{Vect } \mathcal{F}$. Donc $\mathcal{F} \wedge \{x\}$ est libre et contient strictement \mathcal{F} , ce qui contredit la propriété de liberté maximale.

Par conséquent, \mathcal{F} est aussi génératrice, donc une base.

$$\begin{array}{ccc} (i) & \Longrightarrow & (ii) \\ \uparrow & & \downarrow \\ (iv) & \Longleftarrow & (iii) \end{array}$$

22.3 Le noyau et l'image d'une application linéaire sont des sous-espaces vectoriels

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

$$\ker f = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$

$$\operatorname{Im} f = \{y \in F \mid \exists x \in E : f(x) = y\}$$
(38)

Nous démontrerons le résultat plus général suivant :

- (i) f(E') est un sous-espace vectoriel de F.
- (ii) $f^{-1}(F')$ est un sous-espace vectoriel de E.

Démonstration. (i) $0_E \in E'$ et $f(0_E) = 0_F$ donc $0_F \in f(E')$ d'où $f(E') \neq \emptyset$ Soit $(\alpha, \beta, y, y') \in \mathbb{K}^2 \times f(E')^2$ fixés quelconques. Par définition, $\exists (x, x') \in E'^2 : f(x) = y \land f(x') = y$.

$$\begin{aligned} \alpha y + \beta y' &= \alpha f(x) + \beta f(x') \\ &= f(\alpha x + \beta x') \quad \text{car } f \in \mathcal{L}_{\mathbb{K}}(E, F) \\ &\in f(E') \quad \text{car } \alpha x + \beta x' \in E' \text{ puisque } E' \text{ est un sous-espace vectoriel} \end{aligned}$$

Donc f(E') est un sous-espace vectoriel .

(ii) $0_F \in F'$ et $f(0_E) = 0_F$ donc $0_E \in f^{-1}(F')$ d'où $f(F') \neq \emptyset$ Soit $(\alpha, \beta, x, x') \in \mathbb{K}^2 \times f^{-1}(F')^2$ fixés quelconques. Par définition, $\exists (y, y') \in F'^2 : f(x) = y \land f(x') = y$. Or F' est sous-espace vectoriel donc $\alpha y + \beta y' \in F'$. $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ d'où $f(\alpha x + \beta x') = \alpha y + \beta y'$. Donc $\alpha x + \beta x' \in f^{-1}(F')$.

Ainsi, $f^{-1}(F')$ est un sous-espace vectoriel .

En appliquant pour E' = E et $F' = \{0_F\}$, nous obtenons que $\ker f$ et $\operatorname{Im} f$ sont des sous-espaces vectoriels.

22.4 L'image par une application linéaire d'une partie génératrice engendre l'image de l'application linéaire

Soient (E, F) deux K-espaces vectoriels $f \in \mathcal{L}_{\mathbb{K}}(E, F)$, $\mathcal{F} = (x_i)_{i \in I}$ une base de E.

$$\operatorname{Vect} \underbrace{f(\mathcal{F})}_{\{f(x_i)|i \in I\}} = f(\operatorname{Vect} \mathcal{F})$$
(39)

Démonstration. Soit $y \in \text{Vect} f(\mathcal{F})$ Alors $\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}$ tel que $y = \sum_{i \in I} \lambda_i f(x_i)$ Mais

$$y = \sum_{i \in I} \lambda_i f(x_i)$$
$$= f\left(\sum_{i \in I} \lambda_i x_i\right) \implies y \in f(\text{Vect}\mathcal{F})$$

Réciproquement soit $y \in f(\text{Vect}\mathcal{F})$ fq.

$$\exists x \in \text{Vect}\mathcal{F} : f(x) = y \implies \exists (x_i)_{i \in I} : x = \sum_{i \in I} \lambda_i x_i$$

Donc:

$$y = f(x) = f\left(\sum_{i \in I} \lambda_i x_i\right)$$
$$= \sum_{i \in I} \lambda_i f(x_i) \in \text{Vect} f(\mathcal{F})$$

22.5 Caractérisation inj/surj/bij d'une application linéaire par l'image d'une base de l'espace de départ.

Nous donnerons les caractérisations au fur et à mesure de la démonstration.

Démonstration. Soient donc pour la suite, $f \in \mathcal{L}_{\mathbb{K}}(E,F)$, $\mathcal{B} = (e_i)_{i \in I}$ une base de E, $\mathcal{B}' = (e'_i)_{i \in I}$ une base de F, $\mathcal{F} = (x_i)_{i \in I}$ une famille libre de E et $\mathcal{G} = (y_i)_{i \in I}$ une famille génératrice de E, ces objets servent ici de notation et seront utilisés indépendamment lors de la preuve.

Montrons que l'image d'une base \mathcal{B} par une application injective est une famille libre \mathcal{F} . Supposons f injective, donc pour $(\lambda_i)_{i\in I}\in\mathbb{K}^{(I)}$,

$$0_F = \sum_{i \in I} \lambda_i f(e_i) = f\left(\sum_{i \in I} \lambda_i e_i\right) \stackrel{f \text{ inj}}{\Longrightarrow} \sum_{i \in I} \lambda_i e_i = 0_E \stackrel{\mathcal{B} \text{ base donc libre}}{\Longrightarrow} (\lambda_i)_{i \in I} = \widetilde{0_{\mathbb{K}}},$$

donc $f(\mathcal{B}) = \mathcal{F}$ libre.

Supposons qu'il existe $\mathcal B$ telle que $f(\mathcal B)$ soit libre, montrons qu'alors f est injective. Soit $x\in\ker f$:

$$\exists \ (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} : \ 0_F = f(x) = f\left(\sum_{i \in I} \lambda_i e_i\right) = \sum_{i \in I} \lambda_i f(e_i) \overset{f(\mathcal{B}) \text{ libre}}{\Longrightarrow} \ (\lambda_i)_{i \in I} = \widetilde{0_{\mathbb{K}}},$$

donc $x = 0_E$ donc $\ker f = \{0_E\}$ et f injective.

Montrons que l'image d'une base $\mathcal B$ par une application surjective est une famille génératrice $\mathcal G$.

Supposons f surjective. Ainsi, Im f = F, or \mathcal{B} est une base donc est génératrice donc :

Vect
$$f(\mathcal{B}) = f(\text{Vect } \mathcal{B}) = f(E) = \text{Im} f = F$$
,

donc $f(\mathcal{B}) = \mathcal{G}$ est génératrice.

Supposons qu'il existe \mathcal{B} telle que $f(\mathcal{B})$ soit génératrice, montrons que f est surjective. On a ainsi,

$$F = \text{Vect } f(\mathcal{B}) = f(\text{Vect } \mathcal{B}) = f(E) = \text{Im} f,$$

donc f surjective.

Montrons que l'image d'une base \mathcal{B} par un isomorphisme est une base \mathcal{B}' .

Supposons que f soit un isomorphisme. f est injective et \mathcal{B} est une base donc $f(\mathcal{B})$ est libre. f est surjective et \mathcal{B} est une base donc $f(\mathcal{B})$ est génératrice. Ainsi, $f(\mathcal{B}) = \mathcal{B}'$ est une base.

Réciproquement, supposons qu'il existe \mathcal{B} telle que $f(\mathcal{B}) = \mathcal{B}'$ soit une base, montrons que f est un isomorphisme.

 \mathcal{B}' est une base donc est libre donc f est injective. \mathcal{B}' est une base donc est génératrice donc f est surjective. Ainsi, f est un isomorphisme.

22.6 Caractérisation d'une application linéaire par l'image d'une base

Il existe une unique application linéaire de E dans F qui envoie une base donnée de E sur une famille de F imposée.

Soient $(e_i)_{i\in I}$ une base de E et $(y_i)_{i\in I}$ une famille de F.

$$\exists ! f \in \mathcal{L}_{\mathbb{K}}(E, F) : \forall i \in I, f(e_i) = y_i \tag{40}$$

Nous pouvons expliciter une telle application :

$$f \left| \begin{array}{ccc} E & \to & F \\ \sum_{i \in I} \lambda_i \cdot e_i & \mapsto & \sum_{i \in I} \lambda_i \cdot y_i \end{array} \right. \tag{41}$$

Démonstration.

Analyse Supposons qu'il existe $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ tel que $\forall i \in I, f(e_i) = y_i$.

Tout vecteur de E peut se décomposer de manière unique dans la base $(e_i)_{i \in I}$, ce qui détermine son image. Ainsi, f est unique.

Synthèse Posons une telle application f.

- $(e_i)_{i\in I}$ est une base donc $(\lambda_i)_{i\in I}$ est presque nulle et unique donc $\sum_{i\in I} \lambda_i$. y_i existe et unique. Ainsi, f est bien définie.
- Soient $(\alpha, \beta, x, x') \in \mathbb{K}^2 \times E^2$ fixés quelconques. Notons $(\lambda_i)_{i \in I}$ et $(\lambda'_i)_{i \in I}$ les coordonnées de x et x' dans $(e_i)_{i \in I}$.

$$f(\alpha x + \beta x') = f\left(\alpha \sum_{i \in I} \lambda_i. e_i + \beta \sum_{i \in I} \lambda'_i. e_i\right)$$

$$= f\left(\sum_{i \in I} (\alpha \lambda_i + \beta \lambda'_i). e_i\right)$$

$$= \sum_{i \in I} (\alpha \lambda_i + \beta \lambda'_i). y_i \quad \text{par d\'efiniton de } f$$

$$= \alpha \sum_{i \in I} \lambda_i y_i + \beta \sum_{i \in I} \lambda'_i y_i$$

$$= \alpha f(x) + \beta f(x')$$

Donc f est linéaire.

— Soit $j \in I$ fixé quelconque.

$$f(e_j) = f\left(\sum_{i \in I} \delta_{i,j} \cdot e_i\right)$$
$$= \sum_{i \in I} \delta_{i,j} \cdot y_i$$
$$= y_j$$

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F, I un ensemble quelconque non vide.

23.1 L'ensemble des automorphisme d'un espace vectoriel muni de la loi de composition forme un groupe

Démonstration. Montrons que $(\mathcal{GL}_{\mathbb{K}}(E), \circ)$ est un sous-groupe de $(\mathcal{S}(E), \circ)$.

- $\mathcal{GL}_{\mathbb{K}}(E) \subset \mathcal{S}(E)$ et $(\mathcal{S}(E), \circ)$ est bien un groupe.
- $-\mathcal{GL}_{\mathbb{K}}(E) \neq \emptyset$ puisque $Id_E \in \mathcal{GL}_{\mathbb{K}}$.
- Soit $(f,g) \in \mathcal{GL}(E)$. Montrons que $f \circ g^{-1} \in \mathcal{GL}(E)$. Soit $(\alpha, \beta, x, y) \in \mathbb{K}^2 \times E^2$ fixés quelconques.

$$(f \circ g^{-1}) (\alpha x + \beta y) = f (g^{-1} (\alpha x + \beta y))$$

$$= f (g^{-1} (\alpha g^{-1} (g(x)) + \beta g^{-1} (g(y))))$$

$$= f (g^{-1} (\alpha g (g^{-1}(x)) + \beta g (g^{-1}(y))))$$

$$= f (g^{-1} (g (\alpha g^{-1}(x) + \beta g^{-1}(y)))) \quad \text{car } g \text{ est linéaire}$$

$$= f (\alpha g^{-1}(x) + \beta g^{-1}(y))$$

$$= \alpha f (g^{-1}(x)) + \beta f (g^{-1}(y))$$

$$= \alpha (f \circ g^{-1}) (x) + \beta (f \circ g^{-1}) (y)$$

23.2 Caractérisation de la somme directe de p sous-espaces vectoriels

Soit $(E_i)_{i \in \llbracket 1;p \rrbracket} \in E^p$ p sous-espace vectoriel de E avec $p \in \mathbb{N}^*$ fixé quelconque. Par définition, cette famille est en somme directe si tout vecteur de $E_1 + E_2 + \ldots + E_p$ peut s'écrire comme une somme unique d'élément de $E_1 \times E_2 \times \ldots \times E_p$. Formellement :

$$\forall x \in \sum_{i=1}^{p} E_i, \exists! x \in \underset{i=1}{\times} E_i : x = \sum_{i=1}^{p} x_i$$
 (42)

Nous allons démontrer que E_1, E_2, \ldots et E_p sont en somme directe si et seulement si

$$\forall x \in \underset{i=1}{\overset{p}{\times}} E_i, \left(\sum_{i=1}^p x_i = 0_E \implies \forall i \in [1; p], x_i = 0_E\right)$$

$$(43)$$

Démonstration. Supposons que $E_1, E_2, \dots E_p$ sont en somme directe.

Soient $x \in \mathop{\times}_{i=1}^{r} E_i$ fixés quelconquestels que $x_1 + x_2 + \ldots + x_p = 0_E$.

Or $0_E = \underbrace{0_E}_{\in E_1} + \underbrace{0_E}_{\in E_2} + \ldots + \underbrace{0_E}_{\in E_p}$. Par unicité de l'écriture de x comme somme d'éléments de $\overset{p}{\underset{i=1}{\times}} E_i$,

Supposons maintenant l'équation de la caractérisation.

Soit $x \in \underset{i=1}{\times} E_i$ tel que x puisse s'écrire comme somme de $x' \in \underset{i=1}{\times} E_i$ et somme de $x'' \in \underset{i=1}{\times} E_i$. Montrons que x' = x''.

$$\sum_{i=1}^{p} x_i' = x = \sum_{i=1}^{p} x_i''$$

Donc

$$\sum_{i=1}^{p} (x_i'' - x_i'') = 0_E$$

D'après l'équation de la caractérisation, $\forall i \in [1; p], x'_i - x''_i = 0_E$. Donc $\forall i \in [1; p], x'_i = x''_i$

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F.

Nous rappelons que $\dim\{0_E\} = 0$ et que $\{0_E\} = \text{Vect }\emptyset$.

24.1 Existence d'un supplémentaire en dimension finie

Pour tout sous-espace vectoriel de E, il existe un sous-espace vectoriel complémentaire.

Démonstration.

Théorème de la base incomplète (admis ici mais démontré dans le cours) : pour toute famille libre de E, nous pouvons y adjoindre une partie d'une famille quelconque génératrice de E (généralement une base, la base canonique si elle a un sens) pour en faire une base de E.

Posons $n = \dim E$ et $p = \dim E'$. Ainsi, il existe (e_1, \ldots, e_p) base de E'. Appliquons le théorème de la base incomplète pour cette famille. Il existe (e_{p+1}, \ldots, e_n) n-p vecteurs de E tel que (e_1, \ldots, e_n) est un base de E. Posons $E'' = \text{Vect } \{e_{p+1}, \ldots, e_n\}$ et vérifions qu'il est complémentaire à E'.

Par définition de Vect, E'' est un sous-espace vectoriel . Trivialement, E'+E''=E . $\{0_E\}\subset E'\cap E''$ car E' et E'' sont deux sous-espaces vectoriels . Soit $x\in E'\cap E''$. $X\in E'\Longrightarrow \exists (\lambda_1,\ldots,\lambda_p)\in \mathbb{K}^p: x=\sum_{i=p+1}^p \lambda_i e_i$ et $X\in E''\Longrightarrow \exists (\lambda_{p+1},\ldots,\lambda_n)\in \mathbb{K}^{n-p}: x=\sum_{i=p+1}^n \lambda_i e_i$. Par différence, $\sum_{i=1}^p \lambda_i e_i + \sum_{i=p+1}^n (-\lambda_i) e_i = 0_E$. Or $(e_i)_{i\in \llbracket 1;n\rrbracket}$ est une base de E donc $\forall i\in \llbracket 1;p\rrbracket,\lambda_i=0_{\mathbb{K}}$. donc $x=0_E$. Ainsi, $E'\cap E''=\{0_E\}$.

24.2 Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$

 $\mathcal{L}_{\mathbb{K}}(E,F)$ est dimension finie et

$$\dim \mathcal{L}_{\mathbb{K}}(E, F) = \dim E \times \dim F \tag{44}$$

Démonstration. Notons $n = \dim E$ et $(e_i)_{i \in [1:n]}$ une base de E. Considérons

$$\varphi \left| \begin{array}{ccc} \mathcal{L}_{\mathbb{K}}(E,F) & \to & F^n \\ f & \mapsto & (f(e_i)))_{1 \leqslant i \leqslant n} \end{array} \right|$$

 φ est linéaire et, d'après le théorème de création des applications linéaires, bijective. Ainsi, $\mathcal{L}_{\mathbb{K}}(E,F)$ et F^n sont isomorphes. F^n est de dimension finie, ce qui conclut.

24.3 Formule de Grassman

Supposons E de dimension finie.

Soient E_1 et E_2 deux sous-espaces vectoriels . Alors $E_1 + E_2$ est de dimension finie et

$$\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2 \tag{45}$$

 $D\acute{e}monstration$. Commençons par prouver une version simplifier de la somme directe. Supposons que E_1 et E_2 sont en somme directe.

Fixons \mathcal{B}_1 et \mathcal{B}_2 deux bases de E_1 et E_2 . Alors $(\mathcal{B}_1, \mathcal{B}_2)$ engendre $E_1 + E_2$. Or $(\mathcal{B}_1, \mathcal{B}_2)$ est finie donc $E_1 + E_2$ est de dimension finie.

Posons $n = \dim E_1$ et $p = \dim E_2$. Notons $(e_i)_{i \in [\![1:n]\!]}$ la base \mathcal{B}_1 et $(f_i)_{i \in [\![1:n]\!]}$ la base \mathcal{B}_2 .

Soient
$$\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_p \in \mathbb{K}^{n+p}$$
 fixés quelconques tels que $\sum_{i=1}^n \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0_E$. Alors $\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^p (-\mu_i) f_i$. Or $\sum_{i=1}^n \lambda_i e_i \in E_1$ et $\sum_{i=1}^n (-\mu_i) e_i \in E_2$ donc $\sum_{i=1}^n \lambda_i e_i \in E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = 0$. De même, $\mu = 0$. Donc $(\mathcal{B}_1, \mathcal{B}_2)$ est libre.

Ainsi, $(\mathcal{B}_1, \mathcal{B}_2)$ est une base de $E_1 \oplus E_2$. Donc dim $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| = \dim E_1 + \dim E_2$.

Enlevons l'hypothèse que E_1 et E_2 sont en somme directe. $E_1 \cap E_2$ est un sous-espace vectoriel de E_2 . Comme E_2 et un \mathbb{K} -espace vectoriel de dimension finie, il existe E'_2 sous-espace vectoriel de E_2 tel que $E_2 = (E_1 \cap E_2) \oplus E'_2$.

Montrons que $E_1 + E_2 = E_1 \oplus E_2'$

$$E_1 \cap E_2' = E_1 \cap (E_2' \cap E_2)$$
 car $E_2' \subset E_2$
= $(E_1 \cap E_2) \cap E_2'$ car \cap est associative et commutative
= 0_E car E_1 et E_2 sont en somme directe et E_2' sev

Donc E_1 et E'_2 sont en somme directe.

 $E_2' \subset E_2$ donc $E_1 + E_2' \subset E_1 + E_2$. Soit $x \in E_1 + E_2$. Alors $\exists (x_1, x_2) \in E_1 \times E_2 : x = x_1 + x_2$. Or $E_2 = (E_1 \cap E_2) \oplus E_2'$ donc $\exists (x_{21}, x_2') \times E_2' : x_2 = x_{21} + x_2'$. D'où $x = x_1 + x_{21} + x_2'$. Or $x_1 + x_{21} \in E_1$ et $x_2' \in E_2$ donc $x \in E_1 + E_2$.

Ainsi, E_1 et E_2' étant des sous-espace vectoriel de dimension finie, $\dim E_1 \oplus E_2' = \dim E_1 + \dim E_2'$. De plus, $\dim E_2 = \dim(E_1 \cap E_2) \oplus E_2' = \dim E_1 \cap E_2 + \dim E_2'$. Donc $\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2$.

24.4 Caractérisation injectivité/bijectivité/surjectivité par le rang

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

(i) Si E est de dimension finie

$$f \text{ injective } \iff \operatorname{rg} f = \dim E$$
 (46)

(ii) Si F est de dimension finie

$$f \text{ surjective } \iff \operatorname{rg} f = \dim F$$
 (47)

 $(iii)\,$ Si E et F sont de même dimension finie

$$f$$
 bijective $\iff f$ injective $\iff f$ sujective

C'est l'accident de la dimension finie!

 $D\'{e}monstration.$

(i) Supposons E de dimension finie, fixons (e_1, \ldots, e_n) une base de E (avec $n = \dim E$) Supposons f injective:

$$\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \}$$

Donc $(f(e_1), \dots f(e_n))$ est génératrice. $(f(e_1), \dots f(e_n))$ est de plus libre car f est injective. Donc c'est une base, donc

$$\dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \} = n = \dim E$$

donc $\operatorname{rg} f = \dim E.$ Réciproquement, supposons que $\operatorname{rg} f = \dim E = n.$ Alors

$$n = \operatorname{rg} f = \dim \operatorname{Vect} \{ f(e_1), \dots, f(e_n) \}$$

Donc $(f(e_1), \ldots f(e_n))$ est génératrice de cardinal n, égal à la dimension du sous-espace vectoriel engendré. C'est donc une base du sous-espace vectoriel engendré. Donc $(f(e_1), \ldots, f(e_n))$ est libre, donc f est injective.

(ii) Supposons F de dimension finie

$$f \text{ surjective } \iff \operatorname{Im} f = F \iff \dim \operatorname{Im} f = \dim F$$

(iii) Supposons E et F de même dimension finie

$$f$$
 injective \iff rg $f = \dim E \iff$ rg $f = \dim F \iff f$ surjective

D'où la bijectivité.

24.5 Théorème du rang

Si E est de dimension finie alors pour toute $f \in \mathcal{L}_{\mathbb{K}}(E,F)$ application linéaire,

$$\dim E = \operatorname{rg} f + \dim \ker f \tag{48}$$

Démonstration. Démontrons d'abord le lemme suivant. Soient $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ et H un supplémentaire de $\ker f$ dans E. Alors $f_{|H}^{|\mathrm{Im}f}$ est un isomorphisme de H sur $\mathrm{Im}f$.

Notons \hat{f} un telle restriction et corestriction. Cette application est bien définie (car $f(H) \subset \text{Im} f$) et $\hat{f} \in \mathcal{L}_{\mathbb{K}}(H, \text{Im} f)$.

Calculons son noyau. $\ker \hat{f} = \{x \in H \mid \hat{f}(x) = 0_E\} = \{x \in H \mid x \in \ker f\} = H \cap \ker f = \{0_E\}$ car H et $\ker f$ sont complémentaire. Donc \hat{f} est injective.

Soit $y \in \text{Im} f$. D'où $\exists x \in E : y = f(x)$. Décomposons x dans $E = H \oplus \ker f$, $\exists (x_H, x_k) \in H \times \ker f : x = x_H + x_k$. Ainsi, $y = f(x) = f(x_H) + f(x_k) = f(x_H)$ car $x_k \in \ker f$. Donc y admet un antécédent par \hat{f} (qui est x_H). Donc \hat{f} est surjective.

Donc $f_{|H}^{|\text{Im}f}$ est un isomorphisme de H sur Imf.

Supposons maintenant que E est de dimension finie. Soit $f \in \mathcal{L}_{\mathbb{K}}(E,F)$. D'après le théorème d'existence d'un supplémentaire en dimension finie, $\ker f$, étant un sous-espace vectoriel de E, admet un supplémentaire H c'est-à-dire $E = H \oplus \ker f$. En prenant la dimension sur cette égalité, $\dim E = \dim \ker f + \dim H$. D'après le lemme précédent, $\dim H = \dim \operatorname{Im} f = \operatorname{rg} f$. D'où $\dim E = \operatorname{rg} f + \dim \ker f$.

24.6 Rang d'une composition d'applications linéaires

Soit G un \mathbb{K} -espace vectoriel et $(u,v) \in \mathcal{L}_{\mathbb{K}}(E,F) \times \mathcal{L}_{\mathbb{K}}(F,G)$. Si E et F sont de dimension finie alors

$$\operatorname{rg} u = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u \tag{49}$$

Démonstration. Considérons que E et F sont de dimension finie. Soient de tels objets. Appliquons le théorème du rang à $v_{|\text{Im}u}$ ce qui est autorisé puisque $v_{|\text{Im}u}$ est une application linéaire et Imu est un \mathbb{K} -espace vectoriel de dimension finie (car sev de F).

$$\dim \operatorname{Im} u = \operatorname{rg} \, v_{|\operatorname{Im} u} + \dim \ker v_{|\operatorname{Im} u}$$

Ainsi, $\ker v_{|\operatorname{Im} u} = \{y \in \operatorname{Im} u \mid v(y) = 0_G\} = \{y \in \operatorname{Im} u \mid y \in \ker v\} = \operatorname{Im} u \cap \ker v \text{ et } \operatorname{Im} v_{|\operatorname{Im} u} = v(\operatorname{Im} u) = \operatorname{Im} v \circ u \text{ (cette égalité est vraie pour deux fonctions de } E \text{ dans } F \text{ et de } F \text{ dans } G \text{ quelconques, pas forcément linéaires). Ce qui conclut.}$

24.7 Caractérisation des hyperplans

Soit H un sous-espace vectoriel de E. Les conditions suivantes sont équivalentes :

- (i) H est un hyperplan de $E: \exists \varphi \in E^*: H = \ker \varphi$
- (ii) H admet une droite vectorielle comme supplémentaire : $\exists a \in E \setminus \{0_E\} : H \oplus \text{Vect } \{a\} = E$

Démonstration. (i) \Longrightarrow (ii) Supposons que H est un hyperplan de E. Appliquons la définition de l'hyperplan, $\exists \varphi \in E^* : H = \ker \varphi$. Par l'absurde, supposons que $E \setminus H = \emptyset$. Or $H \subset E$ donc E = H. Donc $\varphi = 0_{E^*}$ ce qui est une contradiction.

Ainsi fixons $a \in E \setminus H$ quelconque. Montrons que $E = H \oplus \text{Vect } \{a\}$. Trivialement, $\{0_E\} \subset H \cap \text{Vect } \{a\}$. Soit $x \in H \cap \text{Vect } \{a\}$. $x \in \text{Vect } \{a\}$ donc $\exists \lambda \in \mathbb{K} : x = \lambda$. De plus, $x \in H = \ker \varphi$ donc $0_{\mathbb{K}} = \varphi(x) = \lambda \varphi(a)$. Si $\lambda \neq 0_{\mathbb{K}}$, alors $a \in \ker \varphi$ ce qui est impossible car $a \notin H$. Donc $\lambda = 0_{\mathbb{K}}$, d'où $x = 0_E$. Ainsi, $H \cap \text{Vect } \{a\} = \{0_E\}$. H et $\text{Vect } \{a\}$ sont en somme directe.

Trivialement, $H + \text{Vect } \{a\} \subset E$. Soit $x \in E$ fixé quelconque. $a \notin H$ donc $\varphi(a) \neq 0_{\mathbb{K}}$. $\varphi(a)$ est inversible dans \mathbb{K} d'où :

$$\varphi(x) = \frac{\varphi(x)}{\varphi(a)} \cdot \varphi(a) = \varphi\left(\frac{\varphi(x)}{\varphi(a)} \times a\right)$$

Donc $x - \frac{\varphi(x)}{\varphi(a)} \cdot a \in H$. D'où

$$x = \underbrace{x - \frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in H} + \underbrace{\frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in \text{Vect } \{a\}}$$

Ainsi, $E = H + \text{Vect } \{a\}.$

 $(ii) \implies (i)$ Supposons maintenant que H soit un sous-espace vectoriel tel que $\exists a \in E \setminus \{0_E\}$: $E = H \oplus \text{Vect } \{a\}$. Posons $\varphi : E = H \oplus \text{Vect } \{a\} \to \mathbb{K}$ Montrons que φ est une forme linéaire non triviale dont H est le noyau.

 φ est bien définie (car h_x et λ_x sont uniques), linéaire, à valeur dans le corps de base $\mathbb K$ donc φ est un forme linéaire. $\varphi \neq 0_{E^*}$ car $\varphi(a) = 1_{\mathbb{K}} \neq 0_{\mathbb{K}}$. Soit $x \in E$ fixé quelconque. Alors $\exists (h_x, \lambda_x) \in H \times \mathbb{K} : x = h_x + \lambda_x \cdot a.$

$$x \in \ker \varphi \iff \varphi(x) = 0_{\mathbb{K}} \iff \lambda_x = 0_{\mathbb{K}} \iff x \in H$$

donc $\ker \varphi = H$. Donc H est un hyperplan de E.

Si E est de dimension finie, alors les deux conditions sont équivalentes à

- (iii) H est de codimension 1 c'est-à-dire de dimension n-1.
- $(ii) \implies (iii)$ Il faut prendre la dimension de l'égalité $H \oplus \text{Vect } \{a\}$.
- $(iii) \implies (ii)$ Supposons que dim H = n 1. Comme E est de dimension finie, H admet un supplémentaire I dans $E: H \oplus I = E$. En prenant la dimension, dim I = 1. Donc I est une droite vectorielle. D'où $\exists a \in E : I = \text{Vect } \{a\}. \ a \notin H \text{ car sinon } I \subset H \text{ ce qui contradit } I \cap H = \{0_E\} \ (I \cap H)$ et H sont en somme directe).

24.8 Proportionnalité des formes linéaires ayant le même noyau

Lemme fondamental dans l'étude des formes linéaires Soit $\varphi \in E^* \setminus \{0_{E^*}\}.$

Tout vecteur de E n'appartenant pas au noyau de φ engendre une droite qui est supplémentaire au noyau de φ dans E.

$$\forall a \in E \setminus \ker \varphi, \ E = \ker \varphi \oplus \text{Vect } \{a\}$$
 (50)

Deux formes linéaires non nulles φ et ψ ont le même noyau si est seulement si elles sont proportionnelles ce qui revient à dire que la famille (φ, ψ) est liée.

$$\forall (\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2, \ker \varphi = \ker \psi \iff \exists \lambda \in \mathbb{K}^* : \varphi = \lambda \cdot \psi$$
 (51)

Démonstration. Commençons par prouver le lemme. Soit $a \in E \setminus \ker \varphi$.

Soit $x \in E$ fixé quelconque. Exhibons la décomposition unique de x dans ker φ + Vect $\{a\}$.

Analyse Supposons qu'il existe $(x_k, \lambda) \in \ker \varphi \times \mathbb{K}$ tel que $x = x_k + \lambda a$. Puisque $x_k \in \ker \varphi$, $\varphi(x) = \lambda \cdot \varphi(a)$. Or $\varphi(a) \neq 0_{\mathbb{K}}$ (car $a \notin \ker \varphi$) donc $\varphi(a)$ est inversible dans \mathbb{K} . D'où $\lambda = \frac{\varphi(x)}{\varphi(a)}$ et $x_k = x - \frac{\varphi(x)}{\varphi(a)}$.

Ainsi, sous réserve d'existence,
$$\lambda$$
 et x_k sont uniques.
$$Synth\`ese \text{ Posons } \begin{cases} \lambda &=& \frac{\varphi(x)}{\varphi(a)} \\ x_k &=& x - \frac{\varphi(x)}{\varphi(a)} \end{cases} \text{ Nous avons bien } x = x_k + \lambda \cdot a, \ \lambda \cdot a \in \text{Vect } \{a\} \ (\text{car } \lambda \in \mathbb{K}) \end{cases}$$
 et $x_k \in \ker \varphi \ (\text{car } \varphi(x_k) = \varphi(x) - \varphi \left(\frac{\varphi(x)}{\varphi(a)}a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = 0_{\mathbb{K}}). \text{ Ainsi } E = \ker \varphi \oplus \text{Vect } \{a\}.$

et
$$x_k \in \ker \varphi \ (\operatorname{car} \varphi(x_k) = \varphi(x) - \varphi \left(\frac{\varphi(x)}{\varphi(a)}a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = 0_{\mathbb{K}})$$
. Ainsi $E = \ker \varphi \oplus \operatorname{Vect} \ \{a\}$.

Soient $(\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2$ fixés quelconques.

Sens direct Supposons que $\ker \varphi = \ker \psi$. $\varphi \neq 0_{E^*}$ donc $\ker \varphi \neq E$ donc $\exists a \in E : a \notin \ker \varphi$. Appliquons la lemme ci-dessus :

$$E = \begin{cases} \ker \varphi \\ \ker \psi \end{cases} \oplus \operatorname{Vect} \{a\} \to \mathbb{K}$$

$$\varphi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \varphi(x)$$

$$\psi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \psi(x)$$

 $\operatorname{Or}\left(x-\frac{\varphi(x)}{\varphi(a)}\cdot a\right)\in \ker\psi \text{ donc } \psi(x)=\frac{\psi(a)}{\varphi(a)}\varphi(x). \text{ Ainsi, } \psi=\frac{\psi(a)}{\varphi(a)}\varphi. \text{ Donc } \varphi \text{ et } \psi \text{ sont proportion-}$

Sens réciproque Supposons que φ et ψ sont proportionnelles. Alors $\exists \lambda \in \mathbb{K}^* : \varphi = \lambda \psi$. $\varphi =$ $\lambda\psi\implies\ker\psi\subset\ker\varphi$ et $\psi=\lambda^{-1}\varphi\implies\ker\varphi\subset\ker\psi$. Ce qui donne l'égalité.

24.9 Intersection d'hyperplans

Soit $\varphi \in E^*$ une forme linéaire non nulle. Soit F un sous-espace vectoriel de E de dimension finie $p \in \mathbb{N}$, alors

$$\dim_{\mathbb{K}} F \cap \ker \varphi = \begin{cases} p & \text{si } F \subset \ker \varphi \\ p - 1 & \text{sinon} \end{cases}$$
 (52)

En particulier, on a toujours $\dim_{\mathbb{K}} F \cap \ker \varphi \geqslant p-1$

Supposons que E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soient $m \in \mathbb{N}^*$ et $(H_i)_{n \in [\![1,m]\!]}$, m hyperplans de E. Alors

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{m} H_i \geqslant n - m \tag{53}$$

Démonstration. Si $F \subset \ker \varphi$, $F \cap \ker \varphi = F$ donc dim $F \cap \ker \varphi = p$ Sinon, il existe $a \in F$ tel que $a \notin \ker \varphi$. Ainsi,

$$\operatorname{Vect} \{a\} \oplus \ker \varphi = E$$

Montrons alors que $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$.

$$\operatorname{Vect}\left\{a\right\}\cap\left(F\cap\ker\varphi\right)=\underbrace{\operatorname{Vect}\left\{a\right\}\cap F}_{=\operatorname{Vect}\left\{a\right\}}\cap\ker\varphi=\operatorname{Vect}\left\{a\right\}\cap\ker\varphi=\left\{0_{E}\right\}$$

car les deux espaces sont supplémentaires donc en somme directe.

Par double inclusion, montrons que $\mathrm{Vect}\,\{a\} + (F\cap\ker\varphi) = F$. Pour l'inclusion directe, remarquons que $a\in F$ donc $\mathrm{Vect}\,\{a\}\subset F$ or $F\cap\ker\varphi\subset F$ donc leur somme est bien incluse $\mathrm{Vect}\,\{a\} + (F\cap\ker\varphi)\subset F$. Réciproquement, soit $x\in F$ fixé quelconque. Puisque $\mathrm{Vect}\,\{a\}\oplus\ker\varphi = F$

$$\exists (\lambda, x_K) \in \mathbb{K} \times \ker \varphi : x = \lambda . a + x_K$$

De plus, $x_K = x - \lambda . a \in F$ car $(a, x) \in F^2$ donc

$$x = \underbrace{\lambda.a}_{\in \operatorname{Vect}\{a\}} + \underbrace{x_K}_{\in F \cap \ker \varphi} \in \operatorname{Vect}\{a\} + (F \cap \ker \varphi)$$

D'où l'inclusion réciproque.

Donc $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$. En passant à la dimension :

$$\underline{\dim F} = \underline{\dim \operatorname{Vect} \{a\}} + \dim(F \cap \ker \varphi)$$

Donc $\dim(F \cap \ker \varphi) = p - 1$.

Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $m \in \mathbb{N}^*$ par :

$$\mathcal{P}(m)$$
: "pour tous H_1, \ldots, H_m hyperplans de $E, \dim_{\mathbb{K}} \bigcap_{i=1}^m H_i \geqslant n-m$ "

Soit H_1 un hyperplan de E fixé quelconque. D'après la caractérisation des hyperplans en dimension finie,

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{1} H_i = \dim_{\mathbb{K}} H_1 = n - 1 \geqslant n - 1$$

Donc $\mathcal{P}(1)$ est vraie.

Soit $m \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(m)$ est vraie. Soient H_1, \ldots, H_m et H_{m+1} m+1 hyperplans de E. D'après la définition d'un hyperplan, il existe $\varphi \in E^*$ non nulle telle que $H_{m+1} = \ker \varphi$.

Appliquons donc le lemme précédent pour $F \leftarrow \bigcap_{i=1}^m H_i$ (autorisé car c'est un sous espace de l'espace E, qui est de dimension finie, donc ses sous espaces les sont aussi) et $\varphi \leftarrow \varphi$ (autorisé car c'est une forme linéaire non nulle) :

$$\dim_{\mathbb{K}} \underbrace{\left(\bigcap_{i=1}^{m} H_{i}\right) \cap \ker \varphi}_{=\left(\bigcap_{i=1}^{m} H_{i}\right) \cap H_{m+1}} \geqslant \dim_{\mathbb{K}} \left(\bigcap_{i=1}^{m} H_{i}\right) - 1 \underset{\text{en appliquant } \mathcal{P}(m) \text{ pour } H_{1}, \dots, H_{m}}{\geqslant n - m - 1}$$

Donc par associativité de l'intersection, $\dim_{\mathbb{K}} \bigcap_{i=1}^{m+1} H_i \geqslant n - (m+1)$. Donc $\mathcal{P}(m+1)$ est vraie.