

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

		(MI 13 um. 11.). Buymant	l)
ФАКУЛЬТЕТ	ИНФОР	МАТИКИ И СИСТЕМ УП	ГРАВЛЕНИЯ
		ОТЕРНЫЕ СИСТЕМЫ И	
			, , , , , , , , , , , , , , , , , , ,
		Отчет	
по	домашнему з	ваданию № 2 (Вариант №	27)
Дисцип.	лина: Теорет	ические основы электрот	ехники
		D "	
Название до	омашнеи рао	оты: Расчёт цепи переме	енного тока
Студент гр.			
	ИУ6-34	29.09.17	Габолаев Г.К.
		Подпись, дата)	(И.О. Фамилия)
Преподавате	ель		Иванов С.Р.
		(Подпись, дата)	(И.О. Фамилия)

Задание:

- 1. Для приведённого на рисунке варианта схемы получить аналитическое описание коэффициента передачи цепи по напряжению $K_U(j\omega)$.
- 2. Используя полученное описание $K_U(j\omega)$, вычислить значение модуля коэффициента передачи по напряжению и угла сдвига по фазе между выходным и входным напряжением.
- 3. Пользуясь пакетом прикладных программ MultiSim построить АЧХ и ФЧХ анализируемой цепи, а также получить временные диаграммы входного и выходного токов и напряжений.
- 4. Сопоставить расчётные и экспериментальные данные и сделать необходимые выводы об особенностях поведения схемы во временной и частотной областях.

Выполнение:

1. Дано

Параметры:

$$f=6*10$$
 Hz $\rightarrow \omega=376991$ Hz

$$L_1 = 2 * 10^{-2} H$$

$$c_1 = 10^{-9} \text{ F}$$
 $R_1 = 10 * 10^3 \Omega$

$$R_2 = 5 * 10^3 \Omega$$

Примечание:

Так как разметка математических формул моего текстового редактора не поддерживает русский язык, пришлось использовать международные обозначения величин.

2. Расчёт аналитического описания коэффициента передачи

$$\begin{split} \dot{K}_{U}(j\omega) &= \frac{U_{out}}{\dot{U}_{in}}; \quad \dot{U}_{out} = \dot{I}_{C_{1}} \frac{1}{j\omega C_{1}}; \quad \dot{U}_{in} = U_{1}; \\ \dot{I}_{C_{1}} &= \dot{I} \frac{j\omega L_{1}}{R_{1} + j\omega L_{1} + \frac{1}{j\omega C_{1}}}; \quad \dot{I} = \frac{U_{1}}{\dot{Z}_{eq}}; \\ \dot{\dot{Z}}_{eq} &= R_{2} + \frac{j\omega L_{1}(R_{1} + \frac{1}{j\omega C_{1}})}{R_{1} + j\omega L_{1} + \frac{1}{j\omega C_{1}}}; \\ \dot{\dot{I}}_{C_{1}} &= \frac{U_{1}j\omega L_{1}}{R_{2}(R_{1} + j\omega L_{1} + \frac{1}{j\omega C_{1}}) + j\omega L_{1}(R_{1} + \frac{1}{j\omega C_{1}})}; \\ \dot{K}_{U}(j\omega) &= \frac{j\omega L_{1}}{j\omega C_{1}(R_{2}(R_{1} + j\omega L_{1} + \frac{1}{j\omega C_{1}})) + j\omega L_{1}(R_{1} + \frac{1}{j\omega C_{1}}))} = \\ &= \frac{j\omega L_{1}}{R_{2}(R_{1}j\omega C_{1} + j^{2}\omega^{2}L_{1}C_{1} + 1) + j\omega L_{1}(R_{1}j\omega C_{1} + 1)} = \\ &= \frac{j\omega L_{1}}{R_{2} - w^{2}L_{1}C_{1}R_{2} - \omega^{2}L_{1}C_{1}R_{1} + j\omega(C_{1}R_{1}R_{2} + L_{1})} = \\ &= \frac{j\omega L_{1}}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2})) + j\omega(C_{1}R_{1}R_{2} + L_{1})} = \\ &= \frac{j\omega L_{1}((R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2})) - j\omega(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} - j^{2}\omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}} = \\ &= \frac{j\omega L_{1}(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2})) - j^{2}\omega^{2}L_{1}(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}} = \\ &= \frac{\omega^{2}L_{1}(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}} + \frac{\omega L_{1}(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}} = \\ &= \frac{\omega^{2}L_{1}(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}} = \\ &= \frac{\omega^{2}L_{1}(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}} = \\ &= \frac{\omega^{2}L_{1}(C_{1}R_{1}R_{2} + L_{1})}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2})^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}}{(R_{2} - \omega^{2}L_{1}C_{1}(R_{$$

3. Вычисление значения модуля и коэффициента передачи по напряжению

$$\begin{split} |\dot{K}_{U}(j\omega)| &= \sqrt{Re^{2}[\dot{K}_{U}(j\omega)] + Im^{2}[\dot{K}_{U}(j\omega)]} = \frac{\omega L_{1}}{\sqrt{(R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2}))^{2} + \omega^{2}(C_{1}R_{1}R_{2} + L_{1})^{2}}} = \\ &= \frac{376991Hz \cdot 2 \cdot 10^{-2}H}{\sqrt{(5 \cdot 10^{3}\Omega - (376991Hz)^{2} \cdot 2 \cdot 10^{-2}H \cdot 10^{-9}F \cdot (10 + 5) \cdot 10^{3}\Omega)^{2} + (376991Hz)^{2}(10^{-9}F \cdot 10^{4}\Omega \cdot 5 \cdot 10^{3}\Omega + 2 \cdot 10^{-2}H)^{2}}} = 0.164 \end{split}$$

4. Вычисление угла сдвига по фазе между выходным и входным напряжением

$$\begin{split} \varphi &= arctg(\frac{Im[\dot{K}_{U}(j\omega)]}{Re[\dot{K}_{U}(j\omega)]}) = arctg(\frac{R_{2} - \omega^{2}L_{1}C_{1}(R_{1} + R_{2})}{\omega(C_{1}R_{1}R_{2} + L_{1})}) = \\ &= arctg(\frac{5 \cdot 10^{3}\Omega - (376991Hz)^{2} \cdot 2 \cdot 10^{-2}H \cdot 10^{-9}F \cdot (5 \cdot 10^{3} + 10 \cdot 10^{3})\Omega}{376991Hz(10^{-9}F \cdot 5 \cdot 10^{3}\Omega \cdot 10^{-3}\Omega + 2 \cdot 10^{-2}H}) = -54.9^{\circ} \end{split}$$

5. АЧХ и ФЧХ

Отсюда:
$$|\dot{K}_{IJ}| = 0.164$$
 $\varphi = -54.96^{\circ}$

6.Временные диаграммы входного и выходного токов и напряжений.

Cursor					
1	V(1)	V(3)	I(C1)*3000	I (V1) *3000	
<u>x1</u>	4.1673u	4.1673µ	4.1673µ	4.1673µ	
<u>y1</u>	5.0000	621.1768m	513.0411m	-1.6012	
x2	6.7573µ	6.7573µ	6.7573µ	6.7573µ	
y1 x2 y2 dx	3.5258	819.5215m	937.0688µ	-1.6219	
dx	2.0900µ	2.0900µ	2.0900µ	2.0900µ	
dy	-1.4742	198.3446m	-512.1041m	-20.6799m	
dy/dx	-705.3600k	94.9017k	-245.0259k	-9.8947k	
1/dx	478.4689k	478.4689k	478.4689k	478.4689k	

Отсюда:

$$\varphi = \omega \cdot \Delta t;$$

$$\Delta t = (4.1673 - 6.2573) * 10^{-6} sec = -2.54 \cdot 10^{-6} sec;$$

$$\varphi = 376991 Hz \cdot (-2.54 \cdot 10^{-6}) sec = -0.958 rad = -54.89^{\circ}$$

$$|\dot{K}_U| = \frac{U_{out}}{U_{in}} = \frac{0.82V}{5V} = 0.164$$

7. Выводы

- Расчётные и экспериментальные (полученные в программе MultiSim) данные совпадают.
- Из частотной диаграммы следует, что в частотной области схема меньше всего ослабляет сигнал при средних частотах.
- Из временной диаграммы входного и выходного токов и напряжений следует, что во временной области выходной сигнал опережает входной.