```
Oppgave 1)
```

a)

sannsynligheten for at en tilfeldig bolt ikke oppnår kravet til strekkstyrken er

$$z = (18-19)/0.4 = -2.5$$

så slår vi opp -2.5 i tabellen.

$$P(z < -2.5) = 0.0062$$

$$P(X < 18) = 0.0062$$

Sannsynligheten for at begge er svakere = $0.0062^2 = 0.0003844$

b)

y får poisson fordelingen

forventet my = $1-e^{-0.0062*1} = 161.2903$

c)

$$19.1 + 19.1 + 19.5 + 18.6 + 18.2 = 94.5/5 = 18.9$$

$$(19.1 - 18.9)^2 + (19.1 - 18.9)^2 + (19.5 - 18.9)^2 + (18.6 - 18.9)^2 + (18.2 - 18.9)^2 = 1.02$$

S = sqrt $(1.02/5-1)$ = sqrt (0.255) = 0.504

Gjennomsnitt = 18.9

Standardavvik = 0.504

d)

H1: μ < 19

H0: μ ≥ 19

Forkaster H0 dersom μ er mye mindre enn 19

Finn hva "mye mindre" er

 $P(\bar{x} \le k \mid \mu = 19) = 0.05$

G((k-19)/0.042) = 0.05

(k-19)/0.042 = -1.645

k = 19 - (1.645 * 0.042) = 18.93091

Mye mindre er dersom $\bar{x} \le 18.931$

Her kan vi se at \bar{x} "18.85" ER mye mindre enn vår forventet verdi "19", som vil si at vi forkaster vår H0 hypotese på 5.0% nivå

Styrken av P(forkaster H0 | μ = 18.85) er: 0.973 altså 97.3%

p verdien vår er langt utenfor sigma sitt konfidensintervall 95% KI for σ : [0.5529,0.7304]

g) sannsynligheten for at en tilfeldig bolt ikke oppnår kravet til strekkstyrken er z = (18.49-18.85)/0.42 = -0.857 så slår vi opp -2.5 i tabellen. P(z<-0.857)=0.1957 $P(X\leq 18.49)\colon 0.1957$

Her kan vi se at $P(X \le 18.49)$ er ca 20%

Gjennomsnitt: 18.85, Median: 18.85, Standardavvik: 0.2122

H1: $\mu < 18.85$ H0: $\mu \ge 18.85$

Forkaster H0 dersom μ er mye mindre enn 18.85

Mye mindre er dersom $\bar{x} \le T$ s = sqrt(3.241/(73-1)) = 0.2122T = ((18.85 - 18.85)/(0.2122/sqrt(100))) = 0

Testobservator T = 0

Frihetsgradene her er 100-1 = 99

Forkastningsområde: $(-\infty, -1.6604] \cup [1.6604, \infty)$

Testobservatoren er innenfor vårt forkastningsområdet, som betyr at vi beholder H0 på 5.0% nivå

Oppgave 2)

a)

her ser vi etter P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9) jeg har laget min egen python kalkulator som finner dette for meg, så jeg bruker denne siden det ikke blir bedt om utregning.

Sannsynligheten for at minst 9 av 10 kan brukes = 40.1%

Har også en geometrisk kalkulator (koden til alt vil mest sannsynlig bli lagt med)

$$P(X=0) = 5\%$$

$$P(X \le 3) = 18.5\%$$

b)

med hjelp av en binomisk fordeling så får vi

Probability of X where $0 \le X \le 185 = 0.0781$

Som vil si at det er 7.8% sjanse for å få en for kort bolt, men er 7.8% en stor nok økning?

H1: $\mu \neq 0.05$

H0: $\mu = 0.05$

 $P(T < k1, eller T > k2 | \mu = 0.05)$

Finner k1

 $P(\bar{x} < k1) = 0.025)$

 $P(\bar{x} < k1) = G((k1 - 0.05) / 2) = 0.025)$

(k1 - 0.05)/2 = -1.96

k1 = 0.05 - (1.96 * 0.0013) = 0.0474

Finner k2

 $P(\bar{x} < k2) = 0.025$

 $P(\bar{x} < k2) = G((k2 - 0.05) / 2) = 0.025$

(k2 - 0.05)/2 = -1.96

k2 = 0.05 + (1.96 * 0.0013) = 0.0526

Testobservator = (0.05-0.078) / 3.082 * sqrt(200) = -0.128

Forkast H0 hvis $T \le 0.0474$ eller $T \ge 0.0526$

Forkastningsområde: $(-\infty, 0.0474] \cup [0.0526, \infty)$

(T: -0,128) er ikke innenfor forkastningsområdet så H0 må forkastes på 5% nivå

Styrken av P(forkaster H0 | $\mu = 0.0178$) er: 1.0 altså 100.0%

c)

sannsynligheten for å gjøre type 1 feil i vårt tilfelle = 5%

Type 1 feil er sjansen for å akseptere en 0 hypotese når den egentlig er sann

Type 1 feil kan kalles «Falsk positiv»

Med z-verdi = -1.96

Og fordelig = N(0,1)

Så blir P-verdien i vårt datamateriale = 0.0499