Variables aleatorias continuas

Jessica Nathaly Pulzara Mora jessica.pulzara@udea.edu.co

Departamento de ingeniería de sistemas

Variable aleatoria continua

 Una v.a X es continua si su rango es un intervalo o la unión de intervalos de los números reales, acotados o no acotados.

 Ejemplos: tiempo de duración de una bombilla, medición de la corriente de un alambre, estatura, masa, temperatura,... Función de densidad de probabilidad

Función de densidad de probabilidad

Sea X una variable aleatoria continua. La función de densidad de probabilidad (f.d.p) de X, representada por $f_X(x)$ es tal que:

•
$$f_X(x) \geq 0$$
, $-\infty < x < \infty$.

Probabilidad del espacio muestral:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

 La densidad representa la probabilidad relativa de tomar un valor en el intervalo dx. La probabilidad de que la variable tome valores dentro de un intervalo está dada por la integral de la densidad:

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$

= $P(a < X < b)$

Note que la probabilidad del intervalo $a \le X \le b$ es el área acotada por la función de densidad y las rectas X = a y X = b.

Función de distribución acumulada v.a. continua

Función de distribución acumulada v.a continua

La función de distribución acumulada $F_X(x)$ de una v.a continua X es la probablidad de que X tome un valor menor o igual a x, es decir:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_Y(y) dy$$

 $F_X(x)$ es el área acotada por la función de densidad que se encuentra a la izqueirda de la recta X=x.

Propiedades

$$0 \le F_X(x) \le 1 \quad \forall x \in \mathbb{R}$$

$$\lim_{x \to -\infty} F_X(x) = 0 \quad \text{y} \quad \lim_{x \to +\infty} F_X(x) = 1$$

Propiedades

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$

= $P(a < X < b) = F_X(b) - F_X(a)$

Propiedades

$$P(X > a) = 1 - P(X \le a) = 1 - F_X(a)$$

$$\frac{dF_X(x)}{dx} = f_X(x)$$

Ejemplo

Sea X una variable aleatoria continua.

 Determine el valor de k de tal manera que la siguiente función sea una f.d.p:

$$f_X(x) = \begin{cases} kx^2, & \text{si } -1 \le x \le 1 \\ 0, & \text{en otro caso.} \end{cases}$$

- b. Determine la función de distribución acumulada de X y grafíquela.
- c. Calcular $P(X \ge 1/2)$ y $P(-1/2 \le X \le 1/2)$.

Gráficamente:

Ejemplo

Sea X la duración en horas de una bombilla. Su f.d.p está dada por:

$$f_X(x) = \begin{cases} \frac{a}{x^3}, & \text{si } 1500 \le x \le 2500\\ 0, & \text{en otro caso.} \end{cases}$$

Calcule:

- a. $P(X \le 2000)$
- b. $P(X \le 2000 | X \ge 1800)$

Primero es necesario hallar el valor de a. Como

$$\int_{-\infty}^{+\infty} f(x) \, dx = 1$$

entonces

$$\int_{-\infty}^{1500} f(x) dx + \int_{1500}^{2500} f(x) dx + \int_{2500}^{+\infty} f(x) dx = 1$$

$$\Leftrightarrow \int_{1500}^{2500} \frac{a}{x^3} dx = 1 \quad \Leftrightarrow \quad -\frac{a}{2x^2} \Big|_{1500}^{2500} = 1 \quad \Rightarrow \quad a = 7031250$$

$$P(X \le 2000) = \int_{1500}^{2000} \frac{a}{x^3} dx = \frac{a}{2} \left[\frac{1}{1500^2} - \frac{1}{2000^2} \right] \cong 0.68359$$

$$P(X \le 2000 \mid X \ge 1800) = \frac{P(1800 \le X \le 2000)}{P(X \ge 1800)}$$
$$= \frac{\int_{0}^{2000} \int_{0}^{\frac{a}{x^{3}}} dx}{\int_{1800}^{\frac{a}{x^{3}}} dx} \approx 0.39452$$