#### Statistical Inference for a Relative Risk Measure

Y. He, Y. Hou, L. Peng and J. Sheng

January 28, 2021

Published by Journal of Business and Economics Statistics (2009).

Presented by Liujun Chen.



## Table of Contents

Introduction

Main Results For Independent Data



## Systemic Risk

- A formal definition of systemic risk does not exist arguably.
- It is commonly agreed that systemic risk involves the co-movement of several key financial variables.
- Many measures have been proposed in the literature.



## Relative Risk Measure

- From regulators' point of view, having risk measures from each agency does not help understand/measure systemic risk at all.
- It would be more meaningful to have some relative risk measures reported by each agency with respect to a common benchmark.

Therefore, an interesting question becomes:

- (a) how to define a relative risk measure, which should be quite sensitive to the market co-movement for the purpose of studying systemic risk
- (b) how to infer such a relative risk measure.



## Mathematical Definition

- Let X denote the loss of an individual portfolio; Y denote the loss of some benchmark (a financial market index).
- Consider the commonly employed expected shortfall risk measure at level  $\alpha \in (0,1)$ , defined as

$$\mathsf{ES}_{\alpha}(X) = E[X|F_1(X) > 1 - \alpha]$$
  
$$\mathsf{ES}_{\alpha}(Y) = E[Y|F_2(X) > 1 - \alpha]$$

 A quick way to compare these two risk measures is to look at their ratio

$$\frac{\mathsf{ES}_{\alpha}(X)}{\mathsf{ES}_{\alpha}(Y)}$$



#### Relative Risk

- this ratio is invariant to the copula of X and Y, that is, it is irrelevant to the market comovement.
- To capture the extreme dependence between X and Y, Agarwal et al.(2017) proposed to multiply the above ratio by the coefficient of (upper) tail dependence

$$\lambda = \lim_{t \downarrow 0} P(F_1(x) > 1 - t | F_2(Y) > 1 - t).$$

• Since the coefficient of tail dependence is defined in a limiting way, nonparametric estimator for it has a slower rate of convergence than that for the ratio of expected shortfalls.



## Relative Risk

Agarwal et al.(2017) proposes to define the relative risk as

$$\rho_{\alpha} = \rho_{\alpha}(X, Y) = P(F_1(X) > 1 - \alpha | F_2(Y) > 1 - \alpha) \frac{\mathsf{ES}_{\alpha}(X)}{\mathsf{ES}_{\alpha}(Y)}$$

• This article aims to derive asymptotic limit for a nonparametric estimator and its smoothed version of the above relative risk measure and to provide an effective way to construct an interval by considering either a fixed level or an intermediate level.

## Table of Contents

Introduction

Main Results For Independent Data

#### Notations

- Let  $(X_1, Y_1), \ldots, (X_n, Y_n)$  be i.i.d. random vectors with joint d.f. F(x, y) and marginals  $F_1, F_2$ .
- Order the  $X_i$ 's as  $X_{1,n} \leq X_{2,n} \leq \cdots \leq X_{n,n}$  and  $Y_i$ 's as  $Y_{1,n} \leq Y_{2,n} \leq \cdots \leq Y_{n,n}$ .
- $\bar{F}_i = 1 F_i$  and  $Q_i = F_i^{\leftarrow}$ .
- Use  $\bar{F}_{n1}(x)$  and  $\bar{F}_{n2}(y)$  denote the empirical survival function of X and Y respectively.
- Define survival copula function

$$C(u,v) = P(\bar{F}_1(X) < u, \bar{F}_2(Y) < v).$$



## Non-parametric Estimation

We can rewrite

$$\rho_{\alpha} = \frac{1}{\alpha} C(\alpha, \alpha) \frac{\mathsf{ES}_{\alpha}(X)}{\mathsf{ES}_{\alpha}(Y)}.$$

Substituting the right-hand-side components by their empirical counterparts yields our nonparametric estimator

$$\rho_{\alpha} = \frac{1}{\alpha} \widetilde{C}(\alpha, \alpha) \frac{\widetilde{\mathsf{ES}}_{\alpha}(X)}{\widetilde{\mathsf{ES}}_{\alpha}(Y)}.$$

## Smoothed Estimator

With some density function k, its distribution function K and the bandwidth h = h(n) > 0, a smoothed estimator of  $\rho_{\alpha}$  is given by

$$\rho_{\alpha} = \frac{1}{\alpha} \widehat{C}(\alpha, \alpha) \frac{\widehat{\mathsf{ES}}_{\alpha}(X)}{\widehat{\mathsf{ES}}_{\alpha}(Y)},$$

where

$$\widehat{C}(\alpha, \alpha) = \frac{1}{n} \sum_{j=1}^{n} K\left(\frac{1 - \bar{F}_{n1}(X_i)/a}{n}\right) K\left(\frac{1 - \bar{F}_{n2}(Y_i)/a}{n}\right)$$

$$\widehat{ES}_{\alpha}(X) = \frac{1}{n\alpha} \sum_{j=1}^{n} (X_i - X_{n-[n\alpha],n}) K\left(\frac{1 - \bar{F}_{n1}(X_i)/a}{n}\right) + X_{n-[n\alpha],n}$$

$$\widehat{ES}_{\alpha}(Y) = \frac{1}{n\alpha} \sum_{i=1}^{n} (Y_i - Y_{n-[n\alpha],n}) K\left(\frac{1 - \bar{F}_{n2}(Y_i)/a}{n}\right) + Y_{n-[n\alpha],n}$$

# Assumption 1 (Fixed level).

- (1.a) For j=1,2,  $Q_j$  is Lipschitz continuous in a neighborhood of  $1-\alpha$  with  $Q_j(1-\alpha)>0$ , and  $F_j$  is strictly increasing and differentiable in a neighborhood of  $Q_j(1-\alpha)$ . Moreover, for some  $\delta>0$ ,  $\mathbb{E}(X_+^{2+\delta})<\infty$  and  $\mathbb{E}(Y_+^{2+\delta})<\infty$
- (1.b) The copula C has continuous first-order derivatives  $C_1(x,\alpha) = \frac{\partial C(x,\alpha)}{\partial x}$  and  $C_2(x,\alpha) = \frac{\partial C(\alpha,y)}{\partial y}$  in a neighborhood of, respectively,  $x=\alpha$  and  $y=\alpha$ .

#### Theorem (fixed level)

For any  $\alpha \in (0,1)$  satisfying  $C(\alpha,\alpha) > 0$ , Assumption 1 implies that

$$\sqrt{nlpha}\left(rac{ ilde{
ho}_{lpha}}{
ho_{lpha}}-1
ight)\stackrel{d}{
ightarrow} extsf{N}(0,\sigma_{lpha}^2),$$

with  $\sigma_{\alpha}^2 = \text{Var}(\Lambda_{\alpha} + \Theta_{\alpha,1} - \Theta_{\alpha,2})$ , where

$$\begin{split} \Lambda_{\alpha} &= \frac{\sqrt{\alpha}}{C(\alpha,\alpha)} \left\{ B_C(\alpha,\alpha) - C_1(\alpha,\alpha) B_C(\alpha,1) \right. \\ &- C_2(\alpha,\alpha) B_C(1,\alpha) \right\}, \\ \Theta_{\alpha,1} &= -\frac{\frac{1}{\sqrt{\alpha}} \int_0^1 B_C(\alpha x,1) dQ_1(1-\alpha x)}{ES_\alpha(X)}, \\ \Theta_{\alpha,2} &= -\frac{\frac{1}{\sqrt{\alpha}} \int_0^1 B_C(1,\alpha y) dQ_2(1-\alpha y)}{ES_\alpha(Y)}. \end{split}$$

Here,  $B_C$  is a C-Brownian bridge, that is, a zero-mean Gaussian process with covariance function

$$\mathbb{E}(B_C(u_1, v_1)B_C(u_2, v_2)) = C(u_1 \wedge u_2, v_1 \wedge v_2) - C(u_1, v_1)$$
$$\times C(u_2, v_2), \quad (u_1, v_1), (u_2, v_2) \in [0, 1]^2.$$



#### fixed level

Furthermore, if k is a symmetric density with support [-1,1] and bounded first derivative and the bandwidth h=h(n)>0 satisfies

$$nh^2 \to \infty$$
 and  $nh^4 \to 0$ ,

then we have that, as  $n \to \infty$ ,

$$\sqrt{n\alpha}\left(rac{\hat{
ho}_{lpha}- ilde{
ho}_{lpha}}{
ho_{lpha}}
ight) \stackrel{P}{
ightarrow} 0.$$

#### Intermediate level

When  $\alpha$  is close to zero (but not extremely), it is often useful to model  $\alpha$  as an intermediate sequence of n in such a way that as  $\alpha = \alpha_n \to 0$  and  $n\alpha_n \to \infty$ .

For the study of an intermediate level  $\alpha$ , we need to control the tail behaviour of the distribution.

# Assumption 2(intermediate level)

• For some  $\gamma_j \in (0, 1/2), \beta_j \leq 0$  and function  $A_j$  with a constant sign near infinity,

$$\lim_{t\to\infty}\frac{1}{A_j(1/\bar{F}_j(t))}\left(\frac{\bar{F}_j(tx)}{\bar{F}_j(t)}-x^{-1/\gamma_j}\right)=x^{-1/\gamma_j}\frac{x^{\beta_j/\gamma_j}-1}{\gamma_j\beta_j}.$$

• There exists a function  $R:(0,\infty)^2 \to [0,\infty]$  such that

$$\lim_{t\to\infty} C(t^{-1}x, t^{-1}y) = R(x, y)$$

and it has continuous first-order derivatives on a neighborhood of (1,1).

• The function C has first-order derivatives on  $(0, \delta)^2$  for some  $\delta > 0$  and as  $t \to \infty$ ,

$$\sup_{x,y\in(1-\delta,1+\delta)}\left|C_i(t^{-1}x,t^{-1}y)-R_i(x,y)\right|\to 0.$$