

# Circuitos Digitais Combinacionais

Tabelas de consulta, PLAs, FPGAs

#### Roteiro da aula



- Prototipação de circuitos integrados.
- Métodos de projeto.
- Metodologia de projeto de CI.
- Sistemas digitais.
- Dispositivos programáveis em campo: PROM, PLA, FPGA.
- FPGA : Princípios de funcionamento, programação e características.
- Linguagens de descrição de hardware.
- VHDL.
- Síntese de alto nível.
- Ferramenta desenvolvimento FPGA+VHDL: Quartus.

# Prototipação de circuitos integrados



• Protótipo – Primeiro tipo ou exemplar, original. (Dicionário Aurélio)

 <u>Circuitos integrados (CI)</u> – É um circuito eletrônico miniaturizado produzido na superfície de um substrato de material semicondutor e que realiza uma função (ou muitas) função (ões) específica (s).

Conclusão: Estamos lidando com o projeto dos primeiros exemplares de um CI especificado para realizar uma determinada função. Basicamente é um projeto de hardware.

#### Métodos de projeto



- A unidade básica para o projeto de CIs são os transistores.
- Os projetos podem ser de dois tipos:
  - Full custom Especifica o layout de cada transistor individual bem como a forma de interligações entre eles.
  - Semi-custom Blocos de transistores podem ser projetados e utilizados como blocos fundamentais.

# Exemplo: full custom vs semi custom



Projeto da função lógica:

$$z = \overline{(a \bullet b)} \bullet c$$





Projeto semi custom

# Processo de fabricação de CI (1)





# Processo de fabricação de CI (2)





**Prof: Daniel Chaves** 

#### Metodologia de projeto de CI





#### Metodologia de projeto de CI





**Prof: Daniel Chaves** 

#### Metodologia de projeto de Cl





**Prof: Daniel Chaves** 

#### Metodologia de projeto de Cl



Análise de requisitos

# Vamos abordar sistemas digitais de hardware configuráveis.



**Prof: Daniel Chaves** 

#### Sistemas digitais



 Sistema digital – Um sistema no qual os sinais envolvidos têm um número finito de valores discretos.

#### • Evolução:

- Sistemas programáveis com fios.
- Portas lógicas.
- Sistemas programáveis (memórias).
- Hardware de propósito geral.
- Hardware de propósito geral com periféricos integrados.
- Hardware programável em campo (FPGA).
- System on Chip















Primeiro microprocessador Intel 4004 (1971)



Primeiro microtrolador Intel 8048 (1978)



Primeiro FPGA Xlink (1985)



• Possuem dois barramentos: Endereço e Dados







• Possuem dois barramentos: Endereço e Dados









• Possuem dois barramentos: Endereço e Dados



| Memória |       |       |       |       |  |  |
|---------|-------|-------|-------|-------|--|--|
| End     | $D_3$ | $D_2$ | $D_1$ | $D_0$ |  |  |
| 00      | 0     | 1     | 0     | 1     |  |  |
| 01      | 0     | 1     | 1     | 0     |  |  |
| 10      | 0     | 1     | 1     | 0     |  |  |
| 11      | 1     | 0     | 1     | 0     |  |  |
|         |       |       |       |       |  |  |





Possuem dois barramentos: Endereço e Dados



# Dispositivos programáveis em campo



- Primeiro dispositivo PROM (Programable Read Only Memory)
- Pode ser usada para implementar funções digitais





# Dispositivos programáveis em campo



- Primeiro dispositivo PROM (Programable Read Only Memory)
- Pode ser usada para implementar funções digitais





# Dispositivos programáveis em campo



- Primeiro dispositivo PROM (Programable Read Only Memory)
- Pode ser usada para implementar funções digitais







 Princípio: Toda função lógica combinacional pode ser implementada como soma de mintermos ou "soma" de "produtos".

$$f(x, y, z) = f(0,0,0)m_0 + ... + f(1,1,1)m_7$$













**Prof: Daniel Chaves** 





**Prof: Daniel Chaves** 









**Prof: Daniel Chaves** 

# Field Programmable Gate Array - FPGA



 FPGA consiste de uma matriz de elementos (blocos lógicos) "descompromissados", um conjunto de recursos de interconexão e um conjunto de portas de entrada/saída.

O usuário final configura o FPGA através "programando" o

dispositivo.

- Alguns Fabricantes:
  - Xilinx, Altera, Lattice Semi.
  - Actel, QuickLogic, Atmel.

# Organização do FPGA





# FPGA – Algumas características



- Número de blocos lógicos ~ 10k à 1M.
- Tecnologias para armazenamento da configuração:
  - SRAM
  - Flash
  - OTP

| Tipo  | Reconfigurável? | Volátil? |
|-------|-----------------|----------|
| SRAM  | Sim             | Sim      |
| FLASH | Sim             | Não      |
| OTP   | Não             | Não      |

# FPGA – Blocos lógicos – "look-up tables"



- Utiliza "look-up tables" (LUT) para formação dos blocos lógicos.
- È possível implementar qualquer função combinacional com uma LUT.
- Princípio: Armazene o valor da função desejada para cada entrada possível.

| Entradas |   | Saída |
|----------|---|-------|
| 0        | 0 | 0     |
| 0        | 1 | 1     |
| 1        | 0 | 1     |
| 1        | 1 | 1     |

# FPGA - Blocos lógicos - "look-up tables"

memória



Porta AND com uma LUT

| Entradas |              | Saída |
|----------|--------------|-------|
| X        | $\mathbf{y}$ | Z     |
| 0        | 0            | 0     |
| 0        | 1            | 0     |
| 1        | 0            | 0     |
| 1        | 1            | 1     |

Implementação



**Prof: Daniel Chaves** 

# FPGA - Blocos lógicos - "look-up tables"





#### FPGA – Blocos lógicos





**Prof: Daniel Chaves** 

#### FPGA - Blocos lógicos





**Prof: Daniel Chaves** 

# FPGA – Blocos lógicos: Como Configurar





**Prof: Daniel Chaves** 

# FPGA - Interligações





#### FPGA - Interligações





**Prof: Daniel Chaves** 

# FPGA - Interligações





#### Como configurar o FPGA?



- Imagine o seguinte cenário:
  - Um sistema com dezenas de milhares de portas lógicas.
  - Projete o sistema e encontre uma forma de implementar no FPGA se preocupando com interligações de blocos lógicos, LUTs etc.
- Muito complexo!
- Este processo deve ser feito de forma automática:
  - Projetista descreve o sistema e um "compilador" sintetiza e encontra uma forma de colocar no FPGA.

# Linguagem de descrição de hardware



- Uma alternativa à entrada esquemática de um circuito digital.
- O projetista cria um arquivo de texto, seguindo certo conjunto de regras, conhecido como sintaxe da linguagem.
- Uma ferramenta CAD gera o circuito digital de forma automática a partir da descrição.