Series

• A series is a sum of well-defined terms of a sequence of real or complex numbers and variables

Classification of Series

- A finite series contains a finite number of
- · An infinite series contains an infinite number of terms

Copyright © 2015, S. K. Mitra

Series

- For brevity, a series is written using the Greek symbol ∑
- Example: $\sum_{n=0}^{\infty} b_n$ is an infinite series
- Example: $\sum_{n=0}^{N} b_n$ is a finite series
- The sum of all terms in a finite series is finite if each term in the series has finite value

Copyright © 2015, S. K. Mitra

Series

- The sum of all terms in an infinite series may or may not be finite
- If the sum of all terms is finite, then the infinite series is said to be a convergent series, otherwise it is a divergent series

Copyright © 2015, S. K. Mitra

Arithmetic Series

Types of Series Arithmetic Series

- The terms $\{a_n\}$ of arithmetic series are from an arithmetic sequence
- The difference between two consecutive terms of an arithmetic series is constant

Arithmetic Series

- An infinite arithmetic series is a divergent
- A finite arithmetic series is a convergent series

Example -

• Determine the sum $S = \sum_{k=1}^{N} a_k$ where $a_k = a + (k-1)\delta$

Copyright © 2015, S. K. Mitra

Arithmetic Seriess

- The first term of the series is $a_1 = a$
- The last term of the series is $a_N = a + (N-1)\delta$
- The sum *S* can be written as

$$S = \sum_{k=1}^{N} [a_1 + (k-1)\delta] = Na_1 + \sum_{k=1}^{N} (k-1)\delta$$
 and also as

and also as
$$S = \sum_{k=1}^{N} [a_N - (k-1)\delta] = Na_N - \sum_{k=1}^{N} (k-1)\delta$$
Copyright © 2015, S. K. Mitra

Arithmetic Series

• Adding these two expressions for S we get $2S = N(a_1 + a_N) = Na + N[a + (N-1)\delta]$

which leads to $S = Na + \frac{N(N-1)\delta}{2}$

• It follows from the above

$$\sum_{k=1}^{N} k = N + \frac{N(N-1)}{2} = \frac{N(N+1)}{2}$$

Copyright © 2015, S. K. Mitra

Geometric Series

Geometric Series

 One commonly encountered convergent series is the infinite length geometric series given by

 $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, |\alpha| < 1,$

where α is a complex number

8

Copyright © 2015, S. K. Mitra

Geometric Series

 Another series that is sometimes encountered is the finite-length geometric series

$$\sum_{n=0}^{N-1} \alpha^n = \begin{cases} \frac{1-\alpha^N}{1-\alpha}, & \alpha \neq 1\\ N, & \alpha = 1 \end{cases}$$

9

Copyright © 2015, S. K. Mitra

Geometric Series

• In one application we have $e^{j2\pi(k-\ell)/N}$, which when substituted in the previous expression leads to, for r an integer,

$$\begin{split} \sum_{n=0}^{N-1} e^{j2\pi(k-\ell)n/N} &= \frac{1-e^{j2\pi(k-\ell)n}}{1-e^{j2\pi(k-\ell)n/N}} \\ &= \begin{cases} 0, & \text{for } k \neq \ell \\ N, & \text{for } k = \ell + rN \end{cases} \end{split}$$

10

Copyright © 2015, S. K. Mitra

Modulo Operation

Definition

- Let the range of integer values of the argument be 0,1,2,...,N-1
- Let *K* be an arbitrary integer defining the argument
- If *K* is outside the above range of integer values, then it is replaced with

$$R = K + \gamma N$$

11

Copyright © 2015, S. K. Mitra

Modulo Operation

where γ is an integer chosen so that takes a value in the range 0,1,2,...,N-1

- The integer *R* obtained using the modulo operation is called the residue
- The modulo operation is denoted by the notation

$$\langle K \rangle_N = K \text{ modulo } N$$

where $\langle K \rangle_N$ is the residue

12

Modulo Operation

Example: Let N = 9 and K = 37We have then $R = 37 + \gamma 9$

• If we choose $\gamma = -4$, then we get

$$R = 37 - 4 \times 9 = 1$$

which is an integer in the range of integer values 0.1,2....8

• Hence, $\langle 37 \rangle_9 = 1$

13

Copyright © 2015, S. K. Mitra

Modulo Computation Using MATLAB

• The function mod can be used to implement the modulo operation

Example: The MATLAB statement

```
r = mod(37,9) yields
```

r

= 1

14

Copyright © 2015, S. K. Mitra

Greatest Common Divisor

Definition

- The divisor or factor *D* of an integer *N* is an integer dividing *N* with a zero remainder
- The greatest common divisor (GCD) between two or more non-zero positive integers is the largest common integer factor of these integers

15

Copyright © 2015, S. K. Mitra

Greatest Common Divisor

 GCD of two non-zero positive integers N₁ and N₂ is usually denoted as GCD(N₁, N₂)

Example: Determine GCD(36,42)

• The factors of 36 and 42 are determined by expressing each as a product of two integers:

$$36 = 36 \times 1 = 18 \times 2 = 12 \times 3 = 9 \times 4 = 6 \times 6$$

 $42 = 42 \times 1 = 21 \times 2 = 14 \times 3 = 7 \times 6$

16

Copyright © 2015, S. K. Mitra

Greatest Common Divisor

• Thus, the factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18

and the factors of 42 are

1, 2, 3, 6, 7, 14, 21

• The common factors between 36 and 42 are

1, 2, 3, 6

• The largest common factor is 6

Hence, GCD(36,42) = 6

Copyright © 2015, S. K. Mitra

Greatest Common Divisor

• The factors of 42 are determined by expressing it as a product of two integers:

$$42 = 42 \times 1 = 21 \times 2 = 14 \times 3 = 7 \times 6$$

• Thus, the factors of 42 are

• The common factors between 36 and 42 are

18

GCD Computation Using MATLAB

- The MATLAB function to compute the GCD is gcd
- The MATLAB statement

```
D = gcd(36,42)
yields
D = 6
```

19

Copyright © 2015, S. K. Mitra

Least Common Multiple

Definition

 The multiples of a non-negative integer, called natural number, are given by the product of this number by each member of the set of natural numbers

Example: The multiples of 4 are given by 4×1 , 4×2 , 4×3 , 4×4 that is, 4, 8, 12, 16,...

20

Copyright © 2015, S. K. Mitra

Least Common Multiple

• The least common multiple (LCM) of two or more natural numbers is the smallest multiple that is common to these numbers

Example: Determine LCM(12,18)

• The multiples of the number 12 are 12, 24, 36, 48, 60, 72, ...

and the multiples of the number 18 are 18, 36, 54, 72, 90, 108, ...

21

Copyright © 2015, S. K. Mitra

Least Common Multiple

- Two common multiples of 12 and 18 are thus 36 and 72
- Smallest common multiple is 36
- Hence, LCM(12,18) = 36

LCM Computation Using MATLAB

• MATLAB function to compute the LCM is lcm

22

Copyright © 2015, S. K. Mitra

LCM Computation Using MATLAB

Example: The MATLAB statement

M =

36

23

Copyright © 2015, S. K. Mitra

Relation Between GCD and LCM

• The LCM and the GCD of two natural numbers N_1 and N_1 are related through:

LCM
$$(N_1, N_2) = \frac{N_1 N_2}{GCD(N_1, N_2)}$$

24

Decibel

- In some applications, the ratio of two physical quantities is described in terms of a logarithmic unit called decibel
- It is logarithm to base 10 of the ratio multiplied by 10
- If \mathcal{P}_1 and \mathcal{P}_2 denote the two power values, their ratio \mathcal{R}_{dB} in decibel is given by

$$\mathcal{R}_{dB} = 10 \log_{10} \left(\frac{\mathcal{P}_1}{\mathcal{P}_2} \right) dB$$

25

Copyright © 2015, S. K. Mitra

Decibel

• Ratio of two signal amplitudes A_1 and A_2 in dB is computed using

$$\mathcal{R}_{dB} = 20 \log_{10} \left(\frac{A_1}{A_2} \right) dB$$

- If the power ratio in dB is a positive number, then it is called as the gain
- If the power ratio in dB is a negative number, then it is called as the loss

26

Copyright © 2015, S. K. Mitra

Decibel

- Ratio of the signal power to that of the background noise is called the signal-tonoise ratio, usually abbreviated as SNR or S/N
- The signal-to-noise ratio is usually specified in dB
- Logarithm to the base 10 of a positive number can be computed in MATLAB

using the function log10

Copyright © 2015, S. K. Mitra

Decibel

Example: Let the input power to an analog amplifier be 12 watts and the output power be 360 watts

• The gain G_{dB} in dB of the amplifier is then

$$G_{dB} = 10 \log_{10} \left(\frac{360}{12} \right) = 10 \log_{10} (30)$$

= 14.7712 dB

28