Linux编程技术

第6章 进程间通信

——共享内存

主 讲: 黄 茹

什么是共享内存

- · 共享内存是System V IPC的一种,不依赖于进程的存在而存在。
- 其通信原理如下图所示:

建立共享内存——shmget

			shmget	,,,
	功能	创建共	享内存	
	头文件	/usr/ind	clude/sys/shm.h	
	函数原型	int shmg	get(key_t key, size_t size, int shmfl	g);
	参数	key	创建共享内存的关键字	
		size	设定共享内存的大小	
		shmflg	共享内存的访问权限	
	返回值	>0	共享内存ID	
		-1	失败	

• IPC_CREAT

表示创建新的IPC

• IPC_EXCL

表示如果已存在该名称的IPC则出错

• IPC_NOWAIT

表示当需要挂起等待时直接返回错误

连接共享内存——shmat

		shmat			
功能	将共享内存附加到进程空间中				
头文件	/usr/include/sys/shm.h				
函数原型	<pre>void * shmat(int shmid, void *shmaddr, int shmflg);</pre>				
	shmid	共享内存的id号			
参数	shmaddr	指定共享内存在当前进程中的地	址		
	shmflg	共享内存的使用权限			
× - 12	>0	共享内存的首地址			
返回值	-1	失败			

• shmaddr

- •=0 将此段连接到由内核选择的第一个可用地址上
- ≠0 根据shmflg的取值连接到shmaddr上或一个伪随 机地址上
- · 通常将shmaddr指定为0

• shmflg

- 使用了SHM_RDONLY,则以只读方式使用此共享 内存段
- 否则,以读写方式连接此段

解脱共享内存——shmdt

		shmc	lt			
功能	解脱	共享内存段				
头文件	/usr/	/usr/include/sys/shm.h				
函数原型	int sh	ldr);		- 17 NO		
参数	addr	调用shmat	时返回的	共享内存-	首地址	
返回值	0	成功				
	-1	失败				

操作共享内存——shmctl

		shmc	tl		
功能对共享内存执行各种操作					
头文件	/usr/include/sys/shm.h				
函数原型	int shmctl(int shmid,int cmd,struct shmid_ds *buf);				
	shmid	共享内存的	句id号		
& W)	cmd	对共享内在	字要执行的	勺操作	
参数	buf	设置共享内接收共享风		的数据或 6内存地址	
	0	成功			
返回值	-100	失败			,,00

对shmctl的说明

Linux编程技术

• cmd:

- IPC_STAT 获取共享内存段的shmid_ds结构,将其存放在由buf指向的结构中。
- IPC_SET 按buf指向结构中的值设定此段相关结构中的 shm_perm.uid、 shm_perm.gid、 shm_perm.mode
- IPC_RMID 从系统中删除共享内存段
- · SHM_LOCK将共享内存锁定在内存中
- · SHM_UNLOCK解锁共享内存段

谢拂大家!

