

Hieroglyphs

Uma equipa de investigadores está a estudar as semelhanças entre sequências de hieróglifos. Eles representam cada hieróglifo com um inteiro não-negativo. Para realizarem o seu estudo, eles usam os seguintes conceitos sobre sequências.

Para uma dada sequência A, uma sequência S é chamada de **subsequência** de A se e só se S puder ser obtida através de remoção de alguns elementos (possivelmente nenhum) de A.

A tabela seguinte mostra alguns exemplos de subsequências de uma sequência A = [3, 2, 1, 2].

Subsequência	Como pode ser obtida a partir de ${\cal A}$	
[3, 2, 1, 2]	Nenhum elemento é removido.	
[2, 1, 2]	[3 , 2, 1, 2]	
[3, 2, 2]	[3, 2, 1 , 2]	
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]	
[3]	[3, 2 , 1 , 2]	
[]	[3 , 2 , 1 , 2]	

Por outro lado, [3,3] ou [1,3] não são subsequências de A.

Considera duas sequências de hieróglifos, A e B. A sequência S é chamada de **subsequência comum** de A e B se e só se S for uma subsequência tanto de A como de B. Mais do que isso, dizemos que uma sequência U é uma **subsequência comum universal** de A e B se e só se as sequintes duas condições forem cumpridas:

- U é uma subsequência comum de A e B.
- Todas as subsequências comuns de A e B são também subsequências de U.

Pode ser mostrado que quaisquer duas sequências A e B têm no máximo uma subsequência comum universal.

Os investigadores descobriram duas sequências de hieróglifos A e B. A sequência A consiste em N hieróglifos e a sequência B consiste em M hieróglifos. Ajuda os investigadores a calcular a subsequência comum universal de A e B, ou determina que essa subsequência não existe.

Detalhes de Implementação

Deves implementar a seguinte função.

```
std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
```

- A: array de tamanho N descrevendo a primeira sequência.
- ullet B: array de tamanho M descrevendo a segunda sequência.
- Se existir uma subsequência comum universal de A e B, a função deve devolver um array contendo essa sequência. Caso contrário, a função deve devolver [-1] (um array de tamanho 1, cujo único elemento é -1).
- Esta função é chamada exatamente uma vez para cada caso de teste.

Restrições

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $ullet 0 \leq A[i] \leq 200\,000$ para cada i tal que $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ para cada j tal que $0 \leq j < M$

Subtarefas

Subtarefa	Pontos	Restrições Adicionais
1	3	$N=M$; cada uma das sequências A e B consiste N em inteiros ${f distintos}$ entre 0 e $N-1$ (inclusive)
2	15	Para qualquer inteiro k , a soma entre (o número de elementos de A iguais a k) e (o número de elementos de B iguais a k) é no máximo 3 .
3	10	$A[i] \leq 1$ para cada i tal que $0 \leq i < N$; $B[j] \leq 1$ para cada j tal que $0 \leq j < M$
4	16	Existe uma subsequência comum universal de A e B .
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Nenhuma restrição adicional.

Exemplos

Exemplo 1

Considera a seguinte chamada.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Aqui, as subsequências de A e B são as seguintes: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] e [0,1,0,2]

Como [0,1,0,2] é uma subsequência comum de A e B, e todas subsequências comuns de A e B são subsequências de [0,1,0,2], a função deve devolver [0,1,0,2].

Exemplo 2

Considera a seguinte chamada.

```
ucs([0, 0, 2], [1, 1])
```

Aqui, a única subsequência comum de A e B é a sequência vazia $[\,]$. Daqui decorre que a função deve devolver um array vazio $[\,]$.

Exemplo 3

Considera a seguinte chamada.

```
ucs([0, 1, 0], [1, 0, 1])
```

Aqui, as subsequências comuns de A e B são $[\,],[0],[1],[0,1]$ e [1,0]. Pode ser mostrado que uma subsequência comum universal não existe. Portanto, a função deve devolver [-1].

Avaliador Exemplo

Formato de input:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Formato de output:

```
T
R[0] R[1] ... R[T-1]
```

Aqui, R é o array devolvido por ucs e T o seu tamanho.