ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Using CRISPR/Cas9 to generate a heterozygous *COL2A1* p.R719C iPSC line (MCRIi019-A-6) model of human precocious osteoarthritis

Kathryn M. Yammine ^a, Sophia Mirda Abularach ^a, Lisa Sampurno ^b, John F. Bateman ^{b,c}, Shireen R. Lamandé ^{b,c}, Matthew D. Shoulders ^{a,*}

- ^a Department of Chemistry, Massachusetts Institute of Technology, United States
- b Murdoch Children's Research Institute, Australia
- ^c Department of Paediatrics, University of Melbourne, Australia

ABSTRACT

The human iPSC line MCRIi019-A-6 was generated using CRISPR/Cas9-mediated gene editing to introduce a heterozygous *COL2A1* exon 33 c.2155C>T (p.R719C) mutation into the control human iPSC line MCRIi019-A. Both the edited and parental lines display typical iPSC characteristics, including the expression of pluripotency markers, the ability to be differentiated into the three germ lines, and a normal karyotype. This cell line, along with the isogenic control line, can be used to study the molecular pathology of precocious osteoarthritis in a human model, more broadly understand type II collagenopathies, and explore novel therapeutic targets for this class of diseases.

Resource table

Unique stem cell line identifier MCRIi019-A-6 Alternative name(s) of stem cell line 1502.3 COL2A1 p.R719C (MCRIi019-A-6) Murdoch Children's Research Institute. Institution Melbourne, Australia Contact information of the reported cell Professor Matthew Shoulders line distributor mshoulde@mit.edu Associate Professor Shireen Lamandé shireen.lamande@mcri.edu.au Type of cell line iPSC Human Additional origin info (applicable for Age: 12 weeks gestation human ESC or iPSC) Sex: Female Ethnicity: Black Cell Source Dermal fibroblast-derived human induced pluripotent cell line MCRIAi019-A (https://hpscreg.eu/cell-line/MC RIAi019-A) Method of reprogramming Episomal vectors Clonality Clonal N/A

Resource table (continued)

Evidence of the reprogramming transgene loss (including genomic copy if applicable) The cell culture system used Matrigel (Corning) Type of the Genetic Modification Induced mutation Osteoarthritis with Mild Associated disease Chondrodysplasia (OMIM #604864) Gene/locus COL2A1 c.2155 CGT>TGT (p.R719C) Chromosome 12q13.11 Method of modification / user-CRISPR/Cas9 customisable nuclease (UCN) used, the resource used for design optimisation User-customisable nuclease (UCN) Plasmid transfection delivery method All double-stranded DNA genetic pSMART-COL2A1-sgRNA material molecules introduced into the cells Analysis of the nuclease-targeted allele Sequencing of the targeted allele Method of the off-target nuclease SNP array and STR profiling activity prediction and surveillance Descriptive name of the transgene N/A Eukaryotic selective agent resistance N/A cassettes (including inducible, gene/ cell type-specific)

(continued on next page)

https://doi.org/10.1016/j.scr.2023.103020

Received 14 December 2022; Received in revised form 4 January 2023; Accepted 5 January 2023 Available online 6 January 2023

1873-5061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author at: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-573A, Cambridge, MA, USA. *E-mail address:* mshoulde@mit.edu (M.D. Shoulders).

Resource table (continued)

Inducible/constitutive expression system details	N/A
Date archived/stock creation date	February 2020
Cell line repository/bank	https://hpscreg.eu/cell-line/MCR Ii019-A-6
Ethical/GMO work approvals	This study was approved through the Human Research Ethics Committee of the Royal Children's Hospital (HREC35121A), Victoria, Australia.
Addgene/public access repository recombinant DNA sources' disclaimers (if applicable)	pSMART-sgRNA (Sp) was a gift from Sara Howden & Melissa Little (Addgene plasmid # 80427; https://n2t.net/addg ene:80427; RRID:Addgene_80427)

1. Resource utility

This precocious osteoarthritis iPSC line (*COL2A1* p.R719C) and its parental isogenic control provide human cell models to study precocious osteoarthritis and type II collagenopathies. These cell lines facilitate experiments to elucidate underlying mechanisms of cellular pathology, as well as efforts to discover new therapeutic approaches for this class of diseases (See Table 1).

2. Resource details

Collagen type II constitutes the main proteinaceous scaffold of the cartilage extracellular matrix. The mature protein is composed of a long triple-helical domain made up of repeated Gly-Xaa-Yaa triplets. While

Gly substitutions destabilize the triple helix (Wong and Shoulders, 2019), the biophysical consequences of Xaa-or Yaa-position substitutions for collagen-II triple helices are less clear (Chakkalakal et al., 2018).

Autosomal dominant mutations in the gene encoding type II procollagen (*COL2A1*) lead to a variety of disorders with symptoms ranging from mild to severe (https://databases.lovd.nl/shared/genes/COL2A1). These disorders are known as type II collagenopathies. Patients commonly display skeletal phenotypes, including aberrant development of the growth plate and articular cartilage defects. One such disease is precocious osteoarthritis arising from the heterozygous *COL2A1* c.2155 CGT>TGT in exon 33 encoding p.R719C, an arginine to cysteine substitution in the Yaa position (Knowlton et al., 1990). Patients with this mutation present with signs of osteoarthritis, including pain and progressive articular cartilage degeneration, starting as early as the second decade of life (OMIM #604864).

Collectively, collagenopathies are difficult to study owing to a paucity of robust model systems. They are poorly modeled in cells alone, as pathology is most acutely observed in affected tissues as a whole. They are also often poorly represented by mouse models, owing to differences in physiology and pathology (Perlman, 2016). We developed this human iPSC mutant line, along with its parental isogenic control line, to provide an *in vitro* human tissue system to model precocious osteoarthritis, to help uncover the molecular basis of pathology, and to discover new therapeutic targets for type II collagenopathies.

The *COL2A1* p.R719C human iPSC line MCRIi019-A-6 described herein was produced by CRISPR/Cas9 editing of a previously characterized control iPSC line, MCRIi019-A (Kung et al., 2020), derived from dermal fibroblasts (ATCC cat: CRL-1502; https://hpscreg.eu/cell-line/MCRIAi019-A). Briefly, the control line was co-transfected with

Table 1
Characterization and validation.

Classification (optional italicized)	Test	Result	Data
Morphology	Photography	Typical primed pluripotent human stem cell morphology	Fig. 1 panel C
Pluripotency status evidence for the described cell line	Qualitative analysis (i.e. Immunocytochemistry, western blotting)	Expression of pluripotency markers Oct4 and Nanog	Fig. 1 panel C
	Quantitative analysis (i.e. Flow cytometry, RT-qPCR)	N/A	N/A
Karyotype	Karyotype (G-banding) and higher-resolution,	46XX, Resolution: 0.50 Mb	Fig. 1 panel G
	array-based assays (KaryoStat, SNP, etc.)	20 metaphase cells counted SNP array	Supplementary Fig. 1
Genotyping for the desired genomic alteration/allelic status of the gene of	PCR across the edited site or targeted allele- specific PCR	Heterozygous <i>COL2A1</i> c.2155C>T mutation confirmed in MCRIi019-A-6	Fig. 1 panel B
interest	Evaluation of the - (homo-/hetero-/hemi-) zygous status of introduced genomic alteration (s)	PCR and subsequent NGS sequencing confirm the presence of both parental and edited alleles	Fig. 1 panel B
	Transgene-specific PCR (when applicable)	N/A	N/A
Verification of the absence of random plasmid integration events	PCR	Plasmid not detected in gDNA of gene-edited cell line	Supplementary Fig. 4
Parental and modified cell line genetic identity evidence	STR analysis, microsatellite PCR (mPCR) or specific (mutant) allele seq	DNA STR Profiles match	Supplementary Fig. 2
•		$Amelogenin + 23\ loci\ are\ matched\ between\ cell\ lines$	Supplementary Fig. 2
Mutagenesis / genetic modification outcome analysis	Sequencing (genomic DNA PCR or RT-PCR product)	Heterozygous <i>COL2A1</i> c.2155C>T mutation confirmed in MCRIi019-A-6 in gDNA and cDNA, and not in the parental MCRIi019-A	
	PCR-based analyses	N/A	N/A
	Southern Blot or WGS; western blotting (for knock-outs, KOs)	N/A	N/A
Off-target nuclease activity analysis	PCR across top 5/10 predicted top likely off- target sites, whole genome/exome sequencing	N/A	N/A
Specific pathogen-free status	Mycoplasma	Mycoplasma testing by luminescence. Both lines confirmed negative.	Supplementary Fig. 3
Multilineage differentiation potential	Directed differentiation	Endoderm: Sox17	Fig. 1 panels D, E,
-		Ectoderm: Nestin and Pax6 Mesoderm: Brachyury	F
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype - additional histocompatibility	Blood group genotyping	N/A	N/A
info (OPTIONAL)	HLA tissue typing	N/A	N/A

K.M. Yammine et al. Stem Cell Research 67 (2023) 103020

Fig. 1.

Cas9gem mRNA, a plasmid encoding a *COL2A1*-specific sgRNA, and an oligodeoxynucleotide (ODN) repair template containing the desired *COL2A1* mutation with homology arms flanking the targeted nucleotide (Fig. 1A). Targeted clones were identified by PCR, and the heterozygous mutation was confirmed by next generation sequencing (NGS) of the gDNA and mRNA (Fig. 1B).

The gene edited line displayed normal stem cell morphology (Fig. 1C, brightfield) and expression of pluripotency markers Oct4 and Nanog, as observed by immunocytochemistry (Fig. 1C). Moreover, the cell line could be differentiated into the three main germ layers: endoderm, confirmed by the expression of endoderm marker Sox17 (Fig. 1D); mesoderm, confirmed by the expression of Brachyury (Fig. 1E); and neuroectoderm, confirmed by the co-expression of Nestin and Pax6 (Fig. 1F).

G-Band karyotyping confirmed the absence of chromosomal abnormalities in the edited iPSC line (Fig. 1G). Single nucleotide

polymorphism (SNP) arrays revealed no aneuploidies or large deletions or insertions. SNP Duo analysis confirmed that MCRIi019-A-6 has >99.9 % identity to the parental line MCRIi019-A (Kung et al., 2020) (SI, Fig. 1). Short tandem repeat (STR) profiling further confirmed that the alleles of MCRIi019-A-6 match those of the parental line MCRIi019-A, and that both lines were free of other contaminating cell lines (SI, Fig. 2). MCRIi019-A-6 was confirmed free of mycoplasma contamination (SI, Fig. 3).

3. Materials and methods

3.1. Cell culture

MCRIi019-A-6 cells were cultured at 37 $^{\circ}$ C in 5 $^{\circ}$ C CO₂(g) on Matrigel (Corning)-coated plates in Essential 8 (E8) medium (Thermo Fisher Scientific), which was changed daily. Cells were passaged (1:4–1:6)

Table 2
Reagents details.

Antibodies and stains used for immunocytochemistry/flow-cytometry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency Marker	Oct-4A (C30A3) Rabbit Monoclonal Antibody	1:400	Cell Signaling Technology Cat# 2840S, RRID: AB 2167691		
Pluripotency Marker	Purified anti-Nanog Antibody	1:200	BioLegend Cat# 674202, RRID: AB 2564574		
Endoderm Marker	Human Sox17 Antibody	1:100	R&D Systems Cat# AF1924, RRID: AB 355060		
Ectoderm Marker	PAX6 Monoclonal Antibody (13B10-1A10)	1:200	ThermoFisher Scientific Cat#MA1-109; RRID: AB 2536820		
Ectoderm Marker	Anti-Nestin Antibody, clone 10C2	1:200	Merck Cat# MAB5326, RRID: AB 2251134		
Mesoderm Marker	Recombinant anti-Brachyury Antibody	1:500	Abcam Cat# ab209665, RRID: AB 2750925		
Secondary Antibody	Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	1:1000	ThermoFisher Scientific Cat# A11008, RRID: AB 143165		
Secondary Antibody	Donkey anti-Goat IgG H&L (Alexa Fluor® 488)	1:1000	Invitrogen Cat# A-11055, RRID: AB 2534102		
Secondary Antibody	Goat anti-Mouse IgG (H $+$ L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	1:500	ThermoFisher Scientific Cat# A11029; RRID: AB 2534088		
Site-specific nuclease					
Nuclease information	Cas9	Cas9gem			
Delivery method	Transfection	Neon Transfection System (Thermo Fisher) (1100 V, 30 ms, 1 pulse)			
Selection/enrichment strategy	PCR screening				
Primers and Oligonucleotides used in this study					
	Target	Forward/Reverse primer (5'-3')			
sgRNA	COL2A1 Exon 33	ACCATCAGTGCCAGGAGTGC			
Repair Template (ODN) Sequence	COL2A1 Intron 32 – exon 33/intron 33	CTGCCGCAGGGTGAACGAGGTTTCCCAGGTGAACG			
(Mutations bolded, synonymous mutations italicized)	introil 52 Caon 55/ introil 55	TGGCTCT	CCCGGTGCCCAGGGCCTCCAGGGTCC TT G		
			TGGCCTCCCGGTACTCCTGGCACTGATGGTCCCAA		
			GAGGCTGCATC		
COL2A1-719mut – mutation screening PCR (only binds	COL2A1	AGGGCCTCCAGGGTCCTTG/ GAAACCTTCATCACCAGGTGC			
successfully targeted gene)	Exon 33/intron 34				
COL2A1 gDNA – PCR for gDNA sequencing	COL2A1	CTTTGTT	CTCCAGGGTGTTCC/		
3 3	Intron 31 - exon 32/intron 34	GAAACCT	TCATCACCAGGTGC		
COL2A1 cDNA – PCR for cDNA sequencing	COL2A1	GCAAAGA	TGGTGAGACAGGTGCTGCAGGAC/		
	Exon 29/exon 35	GGGCTCCCTCAGGGCCTTTCTCAC			
pSMART-sgRNA – PCR for off-target integration	pSMART-sgRNA plasmid	ATCGCGT	ATTTCGTCTCGCT/		
	-	CGGACAG	GTATCCGGTAAGC		

every 3–4 days using 0.5 mM EDTA in PBS for 3–4 min.

3.2. CRISPR/Cas9-mediated gene editing

The sgRNA targeting *COL2A1* was designed using https://crispr.mit.edu/ (in 2018). sgRNA oligonucleotides were annealed, ligated into pSMART-sgRNA plasmid (Addgene #80427), and sequence-confirmed. One million control MCRIi019-A iPS cells were harvested with TrypLE (Thermo Fisher) 2 d after passaging. Cells were electroporated (1100 V, 30 ms, 1 pulse) using Neon Transfection System (Thermo Fisher) with 5 µg of *in vitro*-transcribed Cas9gem mRNA (*In Vitro* Transcription Kit, Takara Bio), 2 µg pSMART-COL2A1-sgRNA plasmid, and 0.5 µg of the ODN repair template incorporating the mutation. Electroporated cells were plated in a Matrigel-coated 6-well dish in E8 medium with 10 µM ROCK inhibitor (Y-27632; Stem Cell Technologies). The next day, media was switched to E8 lacking Y-27632 and changed daily. Individual colonies were isolated and expanded in E8.

3.3. PCR screening and sequencing

Targeted clones were identified using PCR primers that bind only the correctly targeted *COL2A1* R719C mutation. Genomic DNA (gDNA) was extracted using a DNAeasy Kit (Qiagen). PCR was performed using indicated primers in Table 2, with an Applied Biosystems Thermocycler

(Veriti), and analyzed via agarose gel electrophoresis.

To further confirm the presence of the mutation in the genome, a PCR product was generated from the gDNA using primers flanking the mutation site (Table 2) and sequenced using Primordium Labs' full plasmid and long PCR product NGS service. To assess the presence of the mutation in mRNA, RNA was extracted using an RNA extraction kit (Omega), reverse transcribed using an Applied Bioscience cDNA kit, amplified using primers flanking the mutation site, and sequenced by Primordium Labs NGS.

To ensure the sgRNA plasmid did not randomly integrate into the genome of the edited line (SI, Fig. 4), PCR was performed using primers specific to the plasmid (Table 2).

3.4. Immunocytochemistry

Cells (passage 37) were fixed in 10 % neutral buffered formalin (Millipore) o/n, followed by permeabilization with 0.05 % Triton X-100 (Millipore) in PBS for 10 min at 4 $^{\circ}$ C. 3 % bovine serum albumin in PBS for 30 min at rt was used to block non-specific interactions. Cells were then incubated with primary antibodies for 2 h at rt, followed by secondary antibodies and DAPI for 1 h at rt (Table 2). Cells were visualized on a fluorescence microscope (Nikon Eclipse TE200).

3.5. Directed differentiation

iPSCs (passage 39) were differentiated in monolayer culture into the three main germ layers (endoderm, ectoderm, and mesoderm) using the STEMdiff Trilineage Differentiation Kit (Stemcell Technologies). Successful differentiation was assessed by immunocytochemistry for lineage-specific markers (Table 2).

3.6. STR analysis

Live cells were submitted to Cell Line Genetics and genomic DNA was analyzed using GenePrint® 24 System for co-amplification with a five-dye profile of 23 STR loci and Amelogenin (SI, Fig. 2).

3.7. Mycoplasma detection

Cell lines were confirmed free of mycoplasma by a luminescence-based assay (Lonza MycoAlert Plus Mycoplasma Testing Kit) (SI, Fig. 3).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the NIH (Grant 1R01AR071443), a Research Grant from the G. Harold and Leila Y. Mathers Foundation

(both to M.D.S.), and National Health & Medical Research Council, Australia (GNT2003393 and GNT1146952 both to S.R.L. and J.F.B., and GNT1146902 to J.F.B.), and the Victorian Government's Operational Infrastructure Support Program. K.M.Y. was supported by an NIH Ruth L. Kirschstein Predoctoral Fellowship (F31AR079263). This hiPSC line was generated from ATCC®CRL-1502 $^{\text{TM}}$ fibroblasts by the MCRI Gene Editing Core Facility, which is supported by the Stafford Fox Medical Research Foundation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.scr.2023.103020.

References

- Chakkalakal, S.A., Heilig, J., Baumann, U., Paulsson, M., Zaucke, F., 2018. Impact of arginine to cysteine mutations in collagen II on protein secretion and cell survival. Int. J. Mol. Sci. 19, 541.
- Knowlton, R.G., Katzenstein, P.L., Moskowitz, R.W., Weaver, E.J., Malemud, C.J., Pathria, M.N., Jimenez, S.A., Prockop, D.J., 1990. Genetic linkage of a polymorphism in the type II procollagen gene (*COL2A1*) to primary osteoarthritis associated with mild chondrodysplasia. N. Engl. J. Med. 322 (8), 526–530.
- Kung, L.H.W., Sampurno, L., Yammine, K.M., Graham, A., McDonald, P., Bateman, J.F., Shoulders, M.D., Lamandé, S.R., 2020. CRISPR/Cas9 editing to generate a heterozygous COL2A1 p. G1170S human chondrodysplasia iPSC line, MCRIi019-A-2, in a control iPSC line, MCRIi019-A. Stem Cell Res. 48, 101962.
- Perlman, R.L., 2016. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 170–176.
- Wong, M.Y., Shoulders, M.D., 2019. Targeting defective proteostasis in the collagenopathies. Curr. Opin. Chem. Biol. 50, 80–88.