

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GODFREY LOWELL CABOT SCIENCE LIBRARY of the Harvard College Library

This book is FRAGILE

and circulates only with permission.

Please handle with care
and consult a staff member
before photocopying.

Thanks for your help in preserving Harvard's library collections.

SEATON & ROUNTHWAITE'S
MARINE ENGINEERING POCKET-BOOK.

STANDARD WORKS FOR ENGINEERS.

ELEVENTH EDITION, Price 18s. Handsome Cloth. With numerous Illustrations reduced from Working Drawings.

MARINE ENGINEERING (A Manual of). Comprising the Designing, Construction, and Working of Marine Machinery. By A. E. SEATON, M.Inst. C.E.; M.Inst. Mech. E.; M. of Council, Inst. N. A.; Lecturer on Marine Engineering to the Royal Naval College, Greenwich. 'In the three-fold capacity of enabling a Student to learn how to design,

construct, and work a modern Marine Steam Engine, Mr Seaton's Manual has

NO RIVAL,'-The Times.

- STEAM AND STEAM ENGINES. By Professor Jamieson, F.R.S.E., M.Inst. C.E., Glasgow and West of Scotland Technical College, With numerous Illustrations and Folding Plates. EIGHTH EDITION, 8s. 6d. 'The BEST BOOK yet published for the use of Students.'-The Engineer.
- THE STABILITY OF SHIPS. By Sir E. J. REED, K.C.B., F.R.S., M.P. Royal 8vo. Handsome Cloth, with numerous Illustrations and Tables, 25s.

'This VERY IMPORTANT TREATISE, . . . the most intelligible, instructive, and complete that has ever appeared.'—Nature.

TRAILL'S BOILERS, MARINE AND LAND. Their Construction and Strength. A Handbook of Rules, Formulæ, Tables, &c., relative to Material, Scantlings, and Pressures up to 200 lbs. per square inch. Safety-Valves, Springs, Fittings, and Mountings, &c. By T. W. TRAILL, M. Inst. C.E., F.E.R.N., Engineer Surveyor-in-Chief to the Board of Trade. Second Editions of Revised and Enlarged. Pocket Size, Leather, also for Office Use, Cloth, 12s.

'Contains an Enormous Quantity of Information arranged in a very convenient form. . . . Those who have to design boilers will find that they can settle the dimensions for any given pressure with almost no calculation by its aid. . . . A MOST USEFUL VOLUME, supplying information to be had nowhere else.'-The

Engineer.

MUNRO'S STEAM BOILERS. Their Defects, Management, and Construction. By R. D. MUNRO, Engineer of the Scottish Boiler Insurance and Engine Inspecting Company, SECOND EDITION, Illustrated. 4s. 6d.

'Trustworthy, clear, and practical. . . . A VERY USEFUL BOOK, especially

to Steam Users, Artisans, and Young Engineers.—Engineer.

- GAS, OIL, AND AIR ENGINES. A Practical Text-Book on Internal Combustion Motors without Boiler. By BRYAN DONKIN, Jr., M.Inst. C.E. In large 8vo. With 136 Illustrations, 21s.
- HYDRAULIC POWER and HYDRAULIC MACHINERY. By HENRY ROBINSON, M.Inst. C.E., Professor of Civil Engineering, King's College, London. SECOND EDITION, Revised and Enlarged. With 69 Lithographic Plates, 34s.

'A work of GREAT PROFESSIONAL USEFULNESS.'-Iron.

LONDON: CHARLES GRIFFIN & COMPANY, LIMITED, EXETER STREET, STRAND.

A POCKET BOOK OF

MARINE ENGINEERING RULES AND TABLES.

FOR THE USE OF

MARINE ENGINEERS, NAVAL ARCHITECTS, DESIGNERS, DRAUGHTSMEN, SUPERINTENDENTS,

AND ALL ENGAGED IN THE DESIGN AND CONSTRUCTION OF

MARINE MACHINERY, NAVAL & MERCANTILE.

BY

A. E. SEATON, M.Inst.C.E., M.Inst.Mech.E., M. of Council Inst.N.A.,

AND

H. M. ROUNTHWAITE, M.INST.MECH.E., M.INST.N.A

SECOND EDITION.

WITH DIAGRAMS.

LONDON: CHARLES GRIFFIN & COMPANY, LIMITED; EXETER STREET, STRAND.

NEW YORK: D. VAN NOSTRAND COMPANY, 23 MURRAY STREET AND 27 WARREN STREET. Eng 348.94.2

HARVARD COLLEGE LIBRARY
FROM THE LIBRARY OF
FRANCIS PEABODY MAGOUN
THE GIFT OF HIS SON
MAY 8, 1929

Þ

PREFACE.

---:0:----

A special Pocket-book of Memoranda, Tables, &c., has long been a desideratum with Marine Engineers. In the existing pocket-books, Marine Engineering matters are only dealt with generally, and such information as is given is in some cases very restricted, in others obsolete, and in all too scattered to be useful. We, ourselves, have experienced this want, and have heard on all hands the desire expressed for a Pocket-book in which Marine Engineering questions are dealt with thoroughly, are easy to find, and not "mixed up" with general information in such a way as to render the seeking of them difficult and tedious.

We therefore trust that in presenting this book to the public we have not only fulfilled the task we set ourselves, but have supplied this long felt want in a manner that will prove satisfactory to all engaged in Marine Engineering affairs. While we have been careful to make the book of special value to Marine Engineers, we have omitted nothing, so far as we know, that would be of use and importance to others having to do with Ships and their machinery; at the same time, we have avoided the introduction of extraneous matter of only general interest, which would make the volume so bulky, and the arrangement of it so complex, as to very materially detract from its usefulness. Hence, we have, while not altogether neglecting past experience, but omitting information now almost only historic, devoted our attention generally to the most modern and approved practice.

We have dealt with steel as the material in general use, and not, as heretofore, an exceptional thing to be found only in high-class structures; the Tables of Weights, &c., are, therefore, given fully for this material.

Inasmuch as the practice in a considerable part of the Mercantile Marine is now more nearly approaching that followed in Naval ships, as to speed and economy of weight, than was formerly the case, the information and formulæ pertaining to light fast-running machinery have been elaborated and based on the most recent practice of the leading firms of Manufacturing Engineers.

In conclusion, we trust that the book may be received favourably, and found of use by practical men, and that any short-comings may be overlooked on the score that it is the production, of the spare moments of busy men, rather than of those having ample leisure.

A. E. S. H. M. R.

November, 1893.

GENERAL TABLE OF CONTENTS.

	PAGES
Horse-powers.—Nominal Horse-power, Various rules for:	
Board of Trade rule, Lloyd's rule, North East Coast	
· Institution rule, North East Coast Standard practice,	
&c. : Indicated Horse-power: Method of determining	
I.H.P. from Diagrams: Planimeter: Coffin Averaging	
Instrument: Table of Constant Multipliers: Method of	
determining Pressures on Pistons: Indicator Pipes and	
Fittings: Method of ascertaining Weight of Steam	
used, &c.,	1-10
Efficiency of Engines.—Work absorbed in friction, &c.:	
Efficiency Curves: Efficiency as affected by Jacketing, .	10-12
Resistance and Propulsion of Ships Derivation of	
Admiralty Formulæ: Tables showing Values of Ad-	
miralty Co-efficients for both Naval and Merchant	
Vessels: Kirk's Analysis: Rankine's rules: Mr Mansel's	
Formulæ: Speed and Power Curves: Model Experi-	
ments: Co-efficients of Fineness: Surface Friction: to	
determine True Mean Speed: Relation of Speeds and	
Powers: Table of Times and Speeds: Table of 2/4rds	
Powers of Numbers 100 to 15,000,	12-32
Triple versus Compound Engines.—Relative Fuel Con-	0-
sumptions: Relative Magnitude of Strains, &c.,	33-35
Ratios of Cylinders. — Compound Engines of Paddle	00 00
Vessels: Auxiliary Engines: Triple Engines: Quad-	
ruple Engines: Naval Engines: various ways of arrang-	
ing Cylinders, &c.,	35-41
Equivalent Mean Pressures, &c Method of determin-	00 11
ing: Expansion of Steam: to determine Mean Pressures:	
Ratio of Actual to Theoretical Mean Pressure in various	
Types of Engine,	41-45
Piston Speed.—Speeds usually employed in Naval Vessels	
in Torpedo Boats, in Cargo Steamers, in Paddle Vessels,	
&c. : Comparison of Different Methods of obtaining high	
Piston Speed, &c.,	45-

	PAGES
Revolutions.—Revolutions usual in different classes of	
Vessels: Table showing relation between Stroke and	
Revolutions in Cargo Steamers,	46-47
Stroke.—Length of Stroke usual in various classes of	
Vessels,	47
Diameters of Cylinders.—How to calculate for given	
power, &c.,	47-48
Cylinder Ports, Pipes, and Passages.—Table of Speeds	
of Steam in Triple and Compound Engines: Table of	
Divisors for Areas of Ports, &c., for various Piston	
Speeds,	49-51
General Remarks on Strengths, &c., given in the	
Work,	51
Cylinder Barrels Formulæ and Tables for thicknesses in	
Triple and Compound Engines: very light Cylinders	
of Torpedo Vessels, &c.,	51-54
Cylinder Liners.—Formulæ and Tables for thicknesses of	
Iron and Steel Liners for various types of Engines,	
&c.,	54-55
Cylinder Ends and Covers.—Single and Double Ends and	
Covers: Rules and Tables for Thicknesses: remarks on	
design of, &c.,	55–5 8
Cylinder Valve-Boxes, Ports, &c.—Rules for thicknesses	
of: General Rule for Flat Surfaces: Thickness of False	•
Faces,	58-59
Cast-steel Cylinder Covers.—Rules and Tables for thick-	
nesses of : remarks on design of, &c.,	60-61
Cast-iron Valve-Box Covers.—Formula for circular ribbed	
Covers: Rectangular Doors, single and double, —Formulæ	
for Thicknesses of: Cast-steel doors,	61-62
Joints of Cylinder Covers, &c.—Sizes of Studs and Bolts:	
Widths of Joints: Pitch of Studs and Bolts: Thickness	
of Flanges, &c.,	62–63
Cylinder Relief or Escape Valves.—Rules for Sizes,	
Number, Position, &c.: Table of Sizes for all Sizes of	
Cylinder,	63-64
Receiver Safety Valves.—Rule for Size of,	• 64
Drain Valves or Cocks.—Table of Sizes for all Sizes of	
Cylinder: Drain Pipes, where led to: Jacket Drains:	04 OF
Auxiliary Engine Drains, &c.,	64–65
Starting, Pass, or Auxiliary Valves.—Number, Size, and	0 ° 00
Position for various Types of Engine,	65-66
Jacket Pipes and Valves.—Remarks as to arrangement of	
Supply and Drain Pipes, Reducing Valves, Safety	66
Valves, &c.,	66
Capacity of Receivers Remarks on, Column Feet and Bolts Rules for Strength of: Remarks	00
on design of,	67
OH GONGH OI,	U/

	PAGES
Design of Cylinders. — General remarks on design of	
various types: Horizontal Cylinders: Oscillating	
Cylinders, &c., Clearances.—Table of, in Cylinders of all sizes,	67-69
Clearances.—Table of, in Cylinders of all sizes.	69
Stuffing-Boxes.—Tables of Proportions of, for Elastic	
Packing and for combined Metallic and Elastic Pack-	
ings: Proportions of Glands, Neck-rings and Gland	
Studs, &c.,	70-72
Strengths, &c., of Studs and Bolts.—Table of loads	10-12
that man he comied by Iran Charle and Manter on Con-	
that may be carried by Iron, Steel, and Muntz or Gun-	
metal Bolts from 1/2-inch to 51/2 inches diameter: Table	
of sizes of Whitworth Nuts and Bolts, &c., Areas at	
Bottom of Thread, Check Nuts, Split Pins, &c.: Table	
of Proportions of Spanners,	72-76
Pistons.—Cast-steel single Pistons,—Formulæ and Tables	
for Proportions of: Pistons of Torpedo Vessels: Double	
Cast-Iron Pistons, Formulæ and Table for Proportions	
of: General remarks as to design of, &c.,	76-84
Piston Rods.—Rules and Tables for proportions of: Tensile	
Stresses: Compressive Stresses: Attachment of Piston	
to Rod: Attachment to Crosshead: Piston Rods of	
Oscillating Engines,	84-86
Piston Rod Guides and Guide Blocks. — Materials	
of: Pressures on: various types of: Thicknesses of	
Brasses,	86-89
Connecting Rods. — Hodgkinson & Gordon's formula:	
Grashof's formula: Authors' formula: various types of	
Rod: Proportions of and Loads on Gudgeons: Caps and	
Bolts, rules for: Formulæ and Tables for Thicknesses of	
Brasses: Proportions of Double Eyes, &c.,	89-95
Shafting.—Strength of: Stiffness of: Sizes of, for various	09-80
types of Engine, Screw, and Paddle: Hollow Shafts:	
Overhung Crank: Ordinary Crank: Equivalent Twist-	
ing Moment: Curves of Twisting Moments: Effect of	
Inertia of Reciprocating Parts: Surfaces of, and	
Pressures on Crank-pins and Main Bearings: Crank-	
shafts with two, three, or more Cranks,—Bending and	
Twisting Stresses in: Proportions of Solid Crank-arms:	
Couplings and Coupling Bolts: Built Crankshafts:	
Stresses in Crankshafts of various types of Paddle	
Engine: Proportions of Overhung Cranks: Keys for	
Cranks, &c.: Tail Shafts of Screw Engines: Taper at	
Propeller: Large Nut: Keys: Brass Casings, &c.:	
Board of Trade and Lloyd's rules regarding Shafts, .	95-111
Thrust Blocks.—Indicated Thrust: Mean Normal Thrust:	
Pressures per square inch on Surfaces: Proportions of	
Collars: various types of Block: Cap Bolts: Holding	
Down Bolts. &c	111-11

	FAULS
Stern Tubes.—Material of: Methods of Securing: Thick-	
nesses of Cast-iron and Gun-metal Tubes: Lengths of	
Bearings: Thicknesses of Bushes, &c.: Proportions of	
Stuffing Boxes, &c.: Table of Principal Dimensions of	
Tubes for Shafts of various sizes (6 inches to 20 inches	
	116-119
Main Bearings.—Stresses on Bolts and Caps in different	110-11
types of Engine: Rules for Proportions of Bolts and	
	110 100
Caps: Thicknesses of Brasses, &c., Framings.—Remarks on Stresses on, and Hints regarding	119-122
Framings.—Remarks on Stresses on, and fillus regarding	100 100
design of,	122-123
Columns.—Stresses on, and remarks on design of,	128-124
Condensers. — Jet Condensers: Capacity: Form: Position of	
Jet: Quantity of Injection Water: Area of Injection	
Orifice: Bilge Injection, &c.: Surface Condensers:	
Cooling Surface, remarks on: Tubes: Length Unsup-	
ported: Tube Plates: Pitch of Tubes: Number of Tubes	
per square foot of Tube Plate: Cooling Surface per cubic	
foot of Tubes: Quantity of Cooling Water: Application	
of Cooling Water: Construction: Naval Condensers:	
Condensers for Torpedo Vessels,	124-130
Air Pumps.—Various Types, Horizontal, Vertical, Inclined:	
Size of: Rods for: Connecting Rods of Trunk Pumps:	
Buckets and Valves: Thicknesses of Barrels for: Areas	
through Valves, &c.: Speeds of Bucket: Sizes of Suction	
	130-135
Circulating Pumps (Reciprocating).—Air Vessels: By-	
pass Valves: Single-acting and Double-acting: Size of	
Pump: Pump Rods: Thickness of Barrel: Bucket	
	135-137
Circulating Pumps (Centrifugal).—Compared with Re-	100
ciprocating Pumps: Sizes of Pipes: Size of Wheel:	
Stroke of Piston: Size of Cylinder: Rule for Power of	•
Pump: Speed of Periphery of Wheel: Size of Bilge	
	137-139
Feed Pumps, &c.—Capacity of, for Jet Condensing Engines:	101-198
Working Density of Water in Boilers: Salinometer:	
Consider of for Surface Condensing Engines Police	•
Capacity of, for Surface Condensing Engines: Relief Valves: Valve Boxes and Valves: Formula and Table	
for Sizes of Feed Pipes: Thickness of Metal of Plungers:	
Feed Tanks: Make-up Feed: Feed Heaters: Board of	
Trade and Lloyd's Rules relating to,	139-144
ige Pumps, &c.—Capacity of: Valves and Valve Boxes:	
Mud Boxes and Strainers: Directing or Distribution	
Valve Boxes: Board of Trade and Lloyd's Rules relating	
to,	144-146
Pump Levers and Links, &c.—Proportions of Levers:	
Strengths of Links and Table of Loads they may carry:	

	PAGES
Surfaces of Pins and Loads per square inch: Pump	
Crossheads: Lever Gudgeons, Diameters of, and Bearings	
for,	146-148
Slide Valves Various Types, Double and Treble Ported:	
Piston Valves: Travel of Valve: Surface of Valve:	
Areas of Passages in Valve: Relief Rings, &c.: Port	
Openings: Leads: Inside, or Exhaust Lap: Valve	
Diagrams: Zeuner Diagram and Müller's Circles: Effect	
of Linking Up, MacFarlane Gray's Method: Diagram to	
Determine Effect of Obliquity of Eccentric Rods:	
	148–159
Valve Gear.—Valve Rods, Size and Strength of: Cap Bolts	
for: Guides for: Reversing Quadrants or Links: Pro-	
portions of Slot Link: Proportions of Double Bar	
Link,—Rules and Table for: Position of Suspension Pins.	159-165
Eccentrics.—Construction of Sheaves: Material and Design	100-100
of Straps: Proportions of Sheaves and Straps, Formulæ	
and Table for : Sizes of Rods : Single Eccentric gear, .	165-170
Joy's Valve Gear.—Method of Laying Down Centre Lines,	170-178
Reversing Gear.—Steam and Oil Gears: "All-round" Gears:	-,,
Sizes of Weigh Shafts: Sizes of Cylinders of Reversing	
Engines: Proportions of Worms and Worm Wheels:	
Proportions of Weigh Shaft Levers, &c.,.	178-176
Steam Turning Gears.—Power Requisite: Size of Cylinder	
of Turning Engine: Material and Construction of Gear:	
Pitch of Teeth: Length of Tooth: Width of Face:	
	176–178
Screw Propellers.—Materials of: Pitch: Slip: Diameter:	
Table of Co-efficients for Fixing Diameter and Surface:	
Blade Area: Number of Blades: Thickness of Blades: Bending Stresses: Centrifugal Stresses: Tables of	
Thicknesses of Blade for Cast-iron, Steel, Bronze, and	
Gun-metal: Method of Setting Out Section of Blade:	
Studs for Attaching Blades to Boss: Thickness of Blade	
Flanges: Proportions of Bosses,	178-184
Paddle Wheels.—Radial Wheels: Feathering Wheels:	
Diameter of Wheel: Immersion of Floats: Number of	
Floats: Area of Floats: Breadth and Thickness of Steel	
and Wood Floats: Curvature of Floats: Wheel Frames:	
Proportions of Arms and Rings: Stays, Bracing, and	
Bolts: Material of Pins and Bushes, &c.: Outer	
Bearings, Proportions of, and Stresses on, &c.,	184-190
Sea Valves.—Material: Construction: Gratings: Various	
Methods of Attachment to Skin: Admiralty Method:	
Lloyd's Method: Blow-off Valves: Discharge Valves:	
Board of Trade and Lloyd's Rules relating to Sea Con- nections.	190-70
nections	

PAGES Pipes and Pipe Arrangements.-L.S.G. and Equivalents in Inches: L.S.G. and Equivalents in Millimetres: Proper Thicknesses of Copper Pipes for all Purposes: Tables showing Thicknesses required by Board of Trade Rule for Copper Pipes, and also for Wrought-iron Pipes: Proportions of Flanges for Copper Pipes: Thicknesses of Gun-metal Pipes, T Pieces, &c.: Brazed Pipes versus Solid Drawn: Board of Trade and Lloyd's Rules referring to Pipes: Remarks and Hints on Designing Pipe Arrangements, &c., Stop Valves. - Spindles: Nuts: Glands: Hand-wheels, &c.: Bodies: Material: Lettering or Marking, &c., &c., 206-207 Fuels, Combustion, &c. — Varieties and Composition of Coal: Wood: Patent Fuel: Calorific Values: Total Heat of Combustion: British Thermal Unit: Mechanical Equivalent of Heat: Oxygen Required to Burn Various Substances: Temperature of Products of Combustion: Specific Heat: Rates of Combustion: Efficiency of Short Bars: Chimney: Rankine's Formulæ: Chimney Temperatures: Formulæ for Area and Height of Chimney: Construction of Chimneys and Uptakes: Closed Stokehole: Closed Ashpit: Howden's System: Advantages of Forced Draught: Water Gauge: Tables showing Rates of Combustion and Evaporation in Various Classes of Steam Vessels: Tables showing Coal per I.H.P., I.H.P. per foot Grate, and Heating Surface per foot Grate in Various Classes of Vessel: Performances of Messrs Thornycroft's Torpedo Boats: Messrs Yarrow's Torpedo Boat Practice. . 207-220 Evaporation, Heating Surface, &c.—Relative Efficiencies of Heating Surface in Different Positions: Copper, Brass, and Steel or Iron: Condition of Surface: Circulation: Diameter of Tubes: Equivalent Evaporation from and at 212° F ... 220-222 Proportions of Boilers. - Grate Surface: Size of Furnace: Number of Furnaces: Heating Surface: Steam Room: Pitch of Tubes: Width of Water Spaces, &c.: Positions of Manholes, &c., &c.: Table of Dimensions of, and Weights of, Boilers already Made: Comparative Weights of Different Types of Boiler, Steel Boilers. - Admiralty, Board of Trade, and Lloyd's Tests of Material: Board of Trade Rules, with Tables to Facilitate Use: Lloyd's Rules, with Tables to Facilitate Use: Admiralty Instructions to Boiler-maker Overseers, 229-252 Boiler Mountings.—Stop Valves, Area of: Internal Steam Pipes: Safety-valves: Spiral Springs: Feed Check Valves: Internal Feed Pipes: Blow-off and Scum Valves: Water Gauges: Volume of Water at Different

	PAGES
Temperatures: Circulating Apparatus, &c.: Board of Trade and Lloyd's Rules relating to Boiler Mountings, . Furnace Fittings, —Material of: Size of Fire-door: Arrange-	252-267
ments for Admitting Air: Firebars, Proportions of:	
Slope of Grate: Bridges, Height of: Side-bars: Water-pans: Ash-pit Dampers, &c.,	267-269
Ladders and Platforms Table of Proportions of: Engine-	
room Ladders: Stokehole Ladders: Inclination of Ladders: Handrails and Staunchions: Floor Plates,	
&c.,	269-270
Engine and Boiler Seatings.—Construction for Vertical Engines: for Horizontal Engines: Methods of Attach-	٠,
ment for Various Types of Vessel : Seatings for Paddle	
Engines: Thrust Block Seatings: Holding-down Bolts:	
Staying of Engines: Boiler Seatings: Securing of Boilers, &c.: Lloyd's Rules relating to Seatings, and to Machin-	
ery Spaces generally,	270-276
Lloyd's Surveys.—Particulars as to, Lloyd's Requirements as to Spare Gear.—Particulars	277
of,	277-278
Board of Trade Rules.—Some Additional Rules that do not	278-282
come under any of the previous Headings, Chains and Ropes.—Table of Admiralty Tests for Stud-link	2/0-202
Cable: Admiralty Tests for Short-link Chain: Lloyd's	
Tests for Stud-link Cables: Safe Working Load on Chains: Proportions of Links: Weight of Chains: Steel	
Wire Ropes, Lloyd's Requirements and Admiralty	
Requirements: Hemp Ropes, Admiralty Requirements, Strengths, &c., of Materials.—Remarks on Cast-iron,	283 –288
Qualities of, Mixtures of, Contraction of, &c., Admiralty	
Tests of, &c.: Remarks on Wrought-iron, Bars, Plates,	
and Forgings: Remarks on Cast-steel, Contraction of, Annealing of, Admiralty Tests of, Lloyd's Tests of, &c.:	
Steel Bars, Plates, and Forgings: Admiralty Tests of	
Steel Forgings, &c.: Copper: Gun-metal, Mixtures of, Admiralty Tests of, &c.: Remarks on Phosphor Bronze,	
Manganese Bronze, Muntz Metal, Naval Brass, and	
White Metals: General Table of Lensile Strengths,	000 005
Elongations, &c., Bending Strains. — Graphic Representation of Bending	288-297
Moments and Shearing Strains in Simple Cases: Table	
of Moment of Inertia, Modulus, &c., of Various Sections: Forms of Beams of Uniform Strength,	298-305
Expansion of Metals by Heat, &c.—Table showing	290-300
Changes of Length of Various Metals for Rise of Tem-	
perature of 180°F.: Formula for Alterations of Length by Other Temperatures: Effect of Temperature on	
Strengths of Metals.	306

Melting Points of Metals.—Table giving Melting Points	
of Various Metals,	30
Weights of Materials.—General Table of: Weights of	
Round and Flat Bars: Weights of Iron and Steel Angle-	
bars: Weights of Iron Boiler Tubes: Table of Whit-	
worth Gas Threads: Weights of Brass Condenser Tubes:	
Weights of Solid Drawn Copper Pipes: Weights of	
Lead Pipes: Weights of Sheet Metals: Weights of	
Marine Machinery of Various Types.	308-3
Centre of Gravity of Machinery.—How to Determine, .	39
Miscellaneous Tables,	323-4

LIST OF TABLES.

I. Sizes of Cylinders for given N.H.P.,	4
II. Constant Multipliers for I.H.P.,	7
III. Values of Admiralty Displacement Co-Efficient	
for some Naval Vessels,	15
IV. Admiralty Co-Efficients and I.H.P. per 100	
feet of wetted surface for some Merchant	
Vessels,	16
V. Angles of Entrance, &c., for various types of	
vessel,	18
VI. Resistances of Wetted Surfaces of various kinds,	25
VII. Table of Times and Speeds,	27
VIII. Two-Thirds Powers of Numbers,	30
IX. Pressures of Steam and their relative efficiencies,	33
X. Comparison of Efficiencies of Triple and Com-	
pound Engines,	34
XI. Ratios of Cylinders for Various Pressures, .	36
XII. Theoretical Mean Pressures for given Number	
of Expansions,	42
XIII. Ratios of Actual Mean Pressures to Theoretical,	44
XIV. Numbers of Revolutions usual in various Types	
of Vessel,	46
XV. Usual relation between Stroke and Revolutions	
in Cargo Steamers,	47
XVI. Stroke of Piston usual in various Types of	
Vessel,	47
XVII. Speeds of Steam usual in Ports, &c., of Triple	
Engines,	49
XVIII. Divisors for Sizes of Ports, &c.,	50
XIX. Thicknesses of Cylinder Barrels of Triple	
Engines,	52
XX. Thicknesses of Cylinder Barrels of Compound	
Engines,	53
XXI. Thicknesses of Cylinder Barrels of Torpedo	
and Torpedo Gun Boats, &c.,	53

No. of Table.	
	This land of Contact to the Contact
AAII.	Thicknesses of Cast-Iron Cylinder Liners,
AAIII.	Thicknesses of Forged Steel Cylinder Liners, Thicknesses of Cast-Iron Cylinder Ends—Single
	and Double,
XXV.	Thicknesses of Cast Steel Cylinder Covers,
XXVI.	Sizes of Cylinder Relief or Escape Valves,
XXVII.	" Cylinder Drain Valves or Cocks,
XXVIII.	Clearances requisite in Cylinders of Various Diameters,
	Proportions of Stuffing Boxes and Glands for Elastic Packing,
XXX.	Proportions of Stuffing Boxes and Glands for Metallic Packing.
XXXI.	Loads that may be carried by Studs and Bolts of Various Materials,
XXXII	Dimensions of Nuts, Bolts, Screws, &c.,
XXXIII.	Proportions of Forged Steel Spanners,
XXXIV.	Proportions of Cast Steel Pistons,
XXXV.	Proportions of Cast Steel Pistons for Torpedo and
	Torpedo Gun Boats,
XXXVI.	Proportions of Cast-Iron Cellular Pistons,
	Loads that may be carried by Steel and Iron Piston Rods,
XXXVIII.	Thicknesses of Connecting Rod and Main Bearing Brasses,
XXXIX.	Constants for Shafting of Screw Engines,
XXXIXa.	Constants for Shafting of Paddle Engines,
XL.	Pressures that may be carried by Crank-Pins
	and Main Bearings,
XLI.	Board of Trade Constants for Shafting of Screw and Paddle Engines,
XLII.	Lloyd's Rules for Crank-Shafts of Screw Engines,
XLIII.	Thrust Surfaces per I.H.P. for various Speeds of Vessel.
XLIV.	Proportions of Cast-Iron and Gun-Metal Stern
XLV.	Tubes and Bushes, &c., Weights, Pressures, and Temperatures of Exhaust
XLVI.	Steam, Bulk of Surface Condenser necessary for given
VIVII	cooling surface,
ALVII.	Thickness of Barrel and Diameter of Rod for given Diameter of Air or Circulating Pump,
XLVIII.	Size of Feed Pipe requisite for a given Delivery,
XLIX.	Loads that may be carried by various sizes of
	Bolts in Pump Links,
L.	Proportions of Double-Bar Links,
	Proportions of Eccentric Sheaves and Straps, .

	LIST OF TABLES.	X
io. of Table.		P
	Co-Efficients for fixing Diameter and Surface of Screw Propellers,	1
LIII	Thicknesses of Propeller Blades of various	
LIIIa.	materials, Thicknesses of Propeller Blades at tips (various	1
LIV.	materials), Various Wire Gauges and their equivalents in	1
LV.	Decimals of an Inch, Legal Standard Wire Gauge and equivalents in	1
LVI.	Millimetres, . Thicknesses of Copper Pipes for various pressures	1
LVII.	and purposes, Thicknesses of Copper Pipes by Board of Trade Rule,	1
LVIII.	Thicknesses of Wrought-Iron Welded Pipes by Board of Trade Rule,	1
LIX.	Sizes of Flanges, numbers of Bolts, &c., for Copper or Gun-Metal Pipe Joints,	2
LX.	Thicknesses of Gun-Metal Pipes and T Pieces,	•
	Chemical Composition, Calorific Value, &c., of various fuels,	2
LXII.	Rates of Combustion and evaporation in various types of boiler,	•
LXIII.	Coal per I.H.P., I.H.P. per foot of grate, and heating surface per I.H.P., on sea trials of Various Classes of Vessel,	2
LXIIIa.	Performances of Messrs Thornycroft's Torpedo Boat Machinery,	2
LXIIIb.	Messrs Yarrow's Standard Torpedo Boat Practice,	2
LXIV.	Usual Steam Room allowed in various classes of Boiler,	2
LXV.	Dimensions and Weights of Boilers actually made,	2
LXVI.	Comparative Dimensions and Weights of various types of Boiler for 80 lbs. steam,	2
LXVIa.	Comparative Dimensions and Weights of various types of boiler for 160 lbs. steam,	2
LXVII.	Admiralty Tensile Tests of Boiler Steel,	2
LXVIIa.	Board of Trade Tensile Tests for Boiler Steel,	2
LXVIII.	Board of Trade Factors of Safety for Shells of Cylindrical Boilers,	2
LXIX.	Board of Trade Constants for Flat Surfaces of Steel Boilers,	2
LXX.	Pitch of, and Surface that may be supported by, Combustion Chamber Stays of Steel Boilers	-
	under Board of Trade Rules,	2

No. of Table.		P
LXXI.	Pitch of, and Surface that may be supported by,	- 1
	Steam Space Stays of Steel Boilers under	- 1
	Board of Trade Rules,	2
LXXIa.	Pitch of, and Surface that may be supported by,	7
	Steam Space Stays of Steel Boilers under	
	Board of Trade Rules	2
LXXII.	Lloyd's Constants for Flat Surfaces of Steel	- 1
	Boilers,	2
LXXIII.	Pitches of Stays of Steel Boilers by Lloyd's	7
	Rules,	22
T.XXIV	Surfaces that may be supported by Stays of	7
232222	given Sizes, in Steel Boilers, under Board	
	of Trade Rules,	24
T.XXIVa	Surfaces that may be supported by Stave of	1
1111111 1 6.	Surfaces that may be supported by Stays of given Sizes, in Steel Boilers, under Lloyd's	
	Rules,	24(
T.YYV	Loads that may be carried by Spiral Springs	231
HAA V.	under Board of Trade Rules,	257
	Safety Valve Areas required by Board of Trade	201
	Rules.	262
T.YYVT	Dimensions of Iron, &c., for Ladders and	202
DAA VI.	Gratings,	269
LYVVII	Sizes of Bilge Suction Pipes by Lloyd's Rules, .	276
T.YYVIII	Admiralty Tests, &c., of Stud-Link Chain Cable,	283
LXXVIIIa.	Short-Link Chain,	283
	Lloyd's Tests of Stud-Link Chain Cable,	284
	Particulars and Tests of Admiralty Flexible	201
цааа.	Steel Wire Ropes,	285
T.YYYI	Breaking Strengths of Steel Wire Ropes by	200
DAAAI.	Lloyd's Rules,	286
TXXXII	Particulars and Tests of Admiralty Tarred Hemp	200
DAAAII.	Cordage,	287
LYVVIII	Compositions and Qualities of various Grades of	201
DAAAIII.	Cast-Iron	288
T.YYYIV	General Table of Strengths of Materials,	297
I.YYYV	Graphic Representation of Bending Moments and	201
HAAA V.	Shearing Strains in Simple Cases,	298
T.YYYVI	Moment of Inertia, Modulus, &c., of some	200
DAAA 11.	Sections,	302
I.VVVVII	Forms of Beams of Uniform Strength,	304
I X X X X I II.	Expansion of various Metals by Heat,	306
LYYYII.	Melting Points of some Metals,	307
AU AVVIV	General Table of Weights of Materials,	308
	Weights of Round and Square Wrought-Iron Bars,	309
XCII.	Dougland Comes Des Cital	310
XCIII.	What Wronghe Iron Para	311
XCIV.	Flat Polled Steel Ross	312
XCV.	Inon Angle Reve	313
41U V.	,, Hou Angle Date,	010

	LIST OF TABLES.	xix
o. of Table.	•	PAGE
XCVI.	Weights of Steel Angle Bars,	314
	Whitworth Gas Threads,	315
	Weights of Brass Condenser Tubes,	315
XCIX.	,, Iron Boiler Tubes,	316
C.	,, Copper Pipes,	318
CI.	,, Lead Pipes, .	320
CII.	,, Sheet Metals,	320
CIII.	" Engines and Boilers of various Types,	821
	Surfaces of Tubes in Square Feet per Foot Run,	828
CV.	Bulk and Weight of Fresh Water,	323
CVA.	Bulk and Weight of Salt Water,	328
	Boiling Points, &c., of Sea Water of various	
	Densities	324
CVII.	Litres, Gallons, Cubic Metres, and Cubic Feet	
0,111	compared	324
CVIII.	Pressures of Water due to various Heads.	325
CIX.	Comparison of Thermometers.	326
CX.	Comparison of Thermometers,	333
CXI.	Knots, Miles, Kilometres, Feet per Min., and	
02220	Feet per Sec., compared,	340
CXII.	Kilometres and Admiralty Knots compared, .	342
CXIII.	Millimetres and Inches compared,	348
CXIV.	Decimal Equivalents of Fractions of an Inch,	348
	Metrical Equivalents of Inches and Fractions, .	348
	Square Feet and Square Metres compared, .	349
	Square Metres and Square Feet compared, .	350
	Pounds and Kilogrammes compared,	351
CXIX.	Kilogrammes and Pounds compared,	352
	Pounds per Square Inch and Kilogrammes per	
	Square Centimetre,	353
CXXI.	Kilogrammes per Square Centimetre, and Pounds	
	per Square Inch,	354
CXXII.	Areas of Segments of Circles	358
CXXIII.	Areas of Circles,	358
CXXIV.	Circumferences of Circles,	36
	Areas and Circumferences of small Circles, .	372
	Squares, Cubes, Square Roots, Cube Roots, and	
	Reciprocals	378
CXXVII.	Fourth Powers of Numbers,	418

MARINE ENGINEERING RULES AND TABLES.

HORSE-POWERS.

Mominal Horse-power, as understood by Watt, was both a measure of the commercial value of an engine, and of the power it might be expected to develop in ordinary work. Gradually, however, as it became possible to construct boilers to supply steam at higher than atmospheric pressure, the powers developed by engines exceeded the nominal horse-powers, until it was necessary to alter Watt's rule, or to devise another that would give values more in accordance with facts. Alterations of this kind were made from time to time, by various private persons and public bodies, in different parts of the country; but they rarely obtained general acceptance, and, being without any proper scientific basis, were soon rendered useless by the rapid advances made in engineering construction.

Thus, for many years, and until about ten years ago, a marine engine was expected to indicate about five times its nominal horse-

power. The rule then in use was as follows :-

boiler pressure, piston speed, &c., being left entirely out of consideration. It is, of course, hardly necessary to say that such a rule was quite useless for any scientific purpose; whilst, even for commercial purposes, it gave only a very imperfect idea of the relative values of different engines.

The matter was still in this chaotic condition when, in 1883, Mr Seaton, in his "Manual of Marine Engineering," suggested the use of E.H.P., or Estimated Horse-power, and gave the following

of E.H.P., or Estimated formula for calculating it:—

Rule 1. E.H.P. =
$$\frac{D^2 \times \sqrt{P} \times R \times S}{8500}$$

where D is diameter of L.P. cylinder; P, absolute boiler pressure; R, revolutions per minute; and S, stroke in feet.

This formula, which had already been tested by ten years' use, was at once adopted by several firms,—some employing E.H.P. in lieu of E.H.P. as being more easily comparable N.H.P., and others using

with the previously used N.H.P.

About 1887, the then recently-formed North-East Coast Institution of Engineers and Shipbuilders turned attention to the matter, and towards the end of 1888, issued the report of their committee on the subject, which,-further developing the E.H.P. idea,-proposed the following very complete formulæ as a solution of the question:—

N. I. H. P. = $(\frac{D^2\sqrt[3]{S} + 8H)\sqrt[3]{P}}{\sqrt{1 + 8H}}$ Rule 2.

Where N.I.H.P. = Maximum normal indicated horse power, on loaded trial trip, of surface-condensing screw engines, working at any pressure between 50 and 250 lbs., under "normal" conditions.

D-Diameter of L.P. cylinder, in inches (if more than

one D2 must equal sum of squares).

S-Stroke, in inches.

P-Working pressure, in lbs., above atmosphere.

H = Heating surface of boilers in sq. feet.

 P_m = Mean pressure, in lbs., referred to L.P. cylinder. The conditions assumed as "normal" are as follows:-That

(1) Steam of all pressures is expanded down to the same terminal pressure;

(2) Expansion is effected with same degree of efficiency for all pressures :

(3) Piston speeds are proportional to cube roots of strokes, and, further, actual loaded trial-trip piston speed may be taken as 144 VS;

(4) In all cases where relative proportions of engine and boiler prevent (1) being fulfilled without violating (3), the coal consumption will not be affected, but will be constant for the same boiler pressure;

(5) Boilers are of usual proportions and construction, and the horse-power proportional to heating surface (H), and to cube root of pressure $(\sqrt[3]{P})$; and further, actual loaded trial-trip

horse-power may be taken as $\frac{H\sqrt[3]{P}}{16}$;

(6) Efficiency of engine mechanism is constant, and the propeller such that engines will utilize boiler power, referred to in (5), in manner prescribed in (3) and (4).

As a result of (1) and (2), it follows that mean pressure referred to L.P. cylinder (P_m) may be assumed as proportional to cube root of boiler pressure $(\sqrt[3]{P})$, and further, that its actual loaded trial-trip value may be taken, without sensible error, as $5.6\sqrt[3]{\overline{P}}$.

The normal relation between engines and boilers is expressed by the equation.

$$H = \frac{D^2 \sqrt[3]{S}}{3 \cdot 25}$$
.

It is remarked that the results obtained by the above formula for N.I.H.P., if divided by 6, give quantities comparing very nearly with those given by the old nominal horse-power rule.

It is also claimed that,—for machinery of same type and design, proportions and arrangement, built of similar materials, under similar circumstances, to similar factors of safety, and not differing very widely in size,—the weights and costs will vary almost exactly as N.I.H.P.

For paddle engines the same rule may be used, with the co-efficients altered to suit the piston speeds usual for these engines. Assuming that, under (4), piston speed of paddle engines may be taken at $90\sqrt[3]{S}$, the rule may, without sensible error, be written,—

Rule 3. N. I. H. P. =
$$\frac{(D^2\sqrt[3]{8} + 5H)\sqrt[3]{P}}{160}$$

and the normal relation between engines and boilers will be expressed by,—

$$H = \frac{D^2 \sqrt[3]{S}}{5 \cdot 2}.$$

It is, of course, evident that for any rule to be general in its application, or to be possible at all, all engines must be assumed to conform to certain "normal" conditions; and it also seems clear that relative values of engines and boilers can be most conveniently and aptly expressed in terms of horse-power that would be indicated under such conditions; and it would therefore appear that the above rules satisfactorily comply with these preliminary considerations, and, having otherwise a thoroughly sound scientific basis, they should come into general use, and be of great value, both to professional and commercial men.

Another rule, now very generally accepted in the North East Coast district is,—

Rule 4: N.H.P. =
$$\frac{D_1^2 + D_2^2 + D_3^2}{92} \times \sqrt[3]{8}$$

where D₁D₂D₂ are the diameters of the cylinders in inches, and S,—the stroke,—also in inches.

The "Standard practice" of that district, for triple engines, working at 160 lbs. pressure, is based upon this rule, and the proportions adopted are shown by the following Table:—

Table I.—Sizes of cylinders, &c., and corresponding N.H.P.

N.H.P.	Diars. of cyls. in inches.			Stroke in ins.	N.H.P.	Diars. of cyls. in inches.			ns.
	н.р.	М.Р.	L.P.	Stri	N.A.P.	н.р.	М.Р.	L.P.	Stroke in ins.
20	8	13	22	18	140	19	311	511	36
30	91	15 1	26	21	150	20	32 1	53	36
40	11	18	30	21	160	20	33	54	39
50	121	20	33	24	170	201	34	56	39
60	13 1	22	36	24	180	21	35	57	39
70	14	23	38	27	190	211	36	59	39
80	15 1	25	40	27	200	22	361	60	42
90	16	26	43	30	225	23	38	63	42
100	161	27	45	80	250	241	40	66	45
110	17	28	46	33	275	25	411	69	45
120	18	29	48	33	300	26	43	71	48
130	18 1	30	50	33					

For registration purposes the Board of Trade still use the old rule for nominal horse-power above referred to, viz.:—

Rule 5. ... **N.H.P.** =
$$\frac{S}{30}$$

where S is the sum of the squares of the diameters, in inches, of all the cylinders.

The rule now used by Lloyds, for determining amount of survey fees, &c., was brought into use about three years ago, and is as follows:—

Rule 6. N.H.P. (of Triple engines) =
$$\frac{1}{2} \left(\frac{D^2 \times \sqrt{S}}{100} + \frac{H}{15} \right)$$

where D = diameter of L.P. cylinder in inches.

S = stroke in inches.

H - heating surface in square feet.

Indicated Horse-power.—The indicated horse-power of an engine may be defined as the measure of work done in the steam cylinder, as shown by the indicator diagrams, and is equal to (area of piston in square inches × mean pressure in Ibs. per square inch × number of feet travelled through by piston, per minute) ÷ 33,000; or,—

Rule 7. I.H.P.
$$=\frac{A \times P \times S}{33,000}$$

Piston speed, S, is equal to stroke in feet \times 2 \times number of revolutions per minute.

In the case of engines having more than one steam cylinder, the I.H.P. of each cylinder a determined separately, and the sum of

these is the I.H.P. of the engine.

Where accuracy is required, the sectional area of any piston rod, or rods, should be deducted in calculating the areas of pistons.

The mean pressure is determined from the indicator diagrams as

follows: --

Let fig. 1 represent a pair of diagrams from the L.P. cylinder of a compound engine. Draw two perpendiculars to the atmospheric line AB, one at each end of, and touching the diagrams. Then divide the space between these perpendiculars into ten equal parts, placing the division marks so that there shall be half a space at each end, and draw a vertical ordinate through each mark. Then take the scale corresponding to the spring used in the indicator, measure off the breadths of the diagrams at each ordinate, and figure them on ends of ordinates as shown, keeping the figures referring to each diagram in a separate column.

If these columns of figures are now added up, and the sum of each divided by ten, two mean pressures are obtained,—one of which refers to each side of the piston,—and the mean of these two is the mean pressure required.

In noting down the breadths of diagrams it is convenient and accurate enough for all ordinary purposes, to use one decimal place as shown.

Planimeter.—Where there are many diagrams to be calculated or compared with one another, it is quicker to use a planimeter in place of the method given above. The method is as follows:—Measure the

area of the figure by means of the instrument, and divide it by the length AB, when the quotient will be the mean breadth in inches; and this, multiplied by the "scale" of the spring used (the number of pounds required to compress it one inch) will give the mean pressure required. For purposes of comparison it is, of course, sufficient to note the areas of the figures.

The Coffin averaging instrument is a form of planimeter which has been specially designed for dealing with indicator diagrams. It leaves on the card two needle pricks, the distance between which is the mean breadth of the figure,—and thus performs mechanically the process of

dividing area of figure by length.

The following equivalents may be useful in calculations connected with the above :—

 $\begin{cases} \mbox{ Pounds per sq. inch} \times \mbox{ '07} = \mbox{Kilogrammes per sq. centimetre}. \\ \mbox{ Kilogrammes per sq. centimetre} \times 14 \mbox{ '22} = \mbox{ Pounds per sq. inch.}$

 $\begin{cases} Foot-pounds \times 7.233 = Kilogrammetres. \\ Kilogrammetres \times .138 = Foot-pounds. \end{cases}$

 $\begin{cases} \text{Horse-power} \times 1.0139 = \text{Chevaux.} \\ \text{Chevaux} \times .9863 = \text{Horse-power.} \end{cases}$

See also "Table of Pounds per square inch and Kilogrammes per square centimetre."

The Continental "Cheval" is equal to 4500 kilogrammetres, or 32,549 foot-pounds per minute, as against 33,000 foot-pounds per minute,—the value of the English "horse-power."

The following Table will considerably facilitate the computation of indicated horse-power:—

Table II.—Constant Multipliers for I.H.P.

Constant = area of cylinder; and I.H.P. = constant × mean press, × piston speed.												
38,000												
of	Constant	Diameter of	Constant.	Diameter of	Constant.	Diameter of	Constant.					
Cylinder.	0020	Cylinder.	00111111	Cylinder.	0011011111	Cylinder.	0020					
6	.00085	161/2	*00648	34	.02751	60	08569					
1/4	.00092	%	.00668	1∕2	02833	61	-08856					
1/4	·00100	17	.00688	85	.02916	62	.09149					
1/4 1/2 3/4	·00108	1/4	.00708	1/4	02999	68	.09447					
17 1	*00116	1/2	.00728	36	·03084	64	09748					
1/4	00125	 %	.00749	1/2	·03171	65	·10055					
1/4 1/2 3/4	.00134	18	.00771	87	.03258	66	·10868					
%	.00143	1/4 1/8	00792	1/2	.03347	67	·10684					
18	00152	1/2₃	00814	38	·03437	68	·11005					
1/4	.00162	%	.00836	₩.	.03528	69	11882					
1/4 1/2 3/4	00172	19	.00859	39	03620	70	·11668					
1 %	00182	1/4	.00882	1/2	.03713	71	11998					
19	.00192	1/ ₄	.00905	40	.03808	72	12339					
1/4	.00208	%	.00928	1/2	03904	78	12683					
1/4 1/2 8/4	00214	20	.00952	41	•04001	74	13033					
1,2%	00226	1/2	•01000	¼	.04099	75	18888					
10	00238	21	.01049	42	.04198	76	13748					
1/4	00250	1 %	.01100	1 %₂	04299	77	14112					
1/4 1/2 8/4	00262	22	.01152	48	04401	78	14481					
1,,%	00275	1 ⁄2	01205	, 1/	*04504	79	14854					
11,	00288	23	01259	44	.04608	80	·15232 ·15615					
1,4	00301	⅓ .	*01314	⅓	.04718	81	16003					
1/4 1/2 3/4	00314	24	01371	45	04820	82 83	16398					
12	00342	25 1/2	·01428 ·01487	46 46	·04927 ·05036	84	16795					
1	00342		01547		*05146	85	17198					
1/4 1/2 3/4	00372	26 1/2	01609	47	05140	86	17604					
72	00372		·01671		05370	87	18016					
13	00402	27 1/2	.01785	48 ¹ / ₂	05483	88	18432					
1 1/4	00417	<u>¼</u>	01800	1/2	.05598	89	18853					
1 12	00433	28	.01866	49 /2	.05714	90	19280					
1/2 8/4	.00449	~~~ <u>%</u>	.01933	1,74	.05832	91	19710					
14	-00466	29 12	02001	50 /1	.05950	92	20146					
1/4	.00483	1/2	02071	51	.06191	98	20587					
1/2	.00500	30 /2	02142	52	.06436	94	·21030					
3/4	.00517	1/2	.02214	53	.06685	95	21480					
15	.00535	31 ′2	.02287	54	.06940	96	21937					
1/4	.00553	1/2	.02362	55	.07200	97	22394					
1 1/2	-00571	32 2	.02437	56	.07464	98	22859					
1½ ¾	-00590	1/2	.02518	57	.07733	99	.23328					
16	.00609	33	.02592	58	·08006	100	23799					
1/4	-00628	1/4	.02671	59	08285	101	•24280					

When the effective or resultant pressure on the piston at each point in the stroke is required,—as for instance, when it is desired to calculate the twisting moment on the crankshaft,—diagrams should be constructed from the indicator diagrams, as follows:—

First,—draw line of no pressure, CD, at such a distance below the atmospheric line, AB, that AC=BD=14.7 lbs., to the same scale as the diagrams. Then, dealing with one stroke at a time, the curve EFG represents the varying pressures on one side of the piston, whilst the opposing pressures are represented by the curve JKB, which forms a part of the diagram from the other side of the piston.

FIG. 2.

Draw any ordinate FH, and set off HL=HF-HK; then L is a point in the required resultant diagram in which any number of other points may be found in a similar way; and at the point H, in the stroke CD, the effective pressure is HL. When the quantity corresponding to HF-HK is minus, it must be set off below the line of no pressure.

It is very important that the pipes leading from the ends of the cylinder to the indicator shall be large, short, of equal length, and as free from bends as possible; as, otherwise, there will be loss of area in the diagram, and the apparent I.H.P. will be less than that really exerted in the cylinder.

These pipes vary, in common practice, from 2-inch to 1-inch diameter, according to their length and to the piston speed of the engine, but are still, beyond doubt, the cause of very perceptible loss of area in the diagrams.

To make accurate tests of engines, with a view to determining water onsumption per I. H. P., &c., all indicator pipes should be removed, and a separate indicator fitted direct to each end of each cylinder. This practice is becoming more general now, and should always be dopted where anything like accuracy is required.

To ascertain the weight of steam used in any cylinder, take a wint A in the expansion curve of the diagram (Fig. 8), just below the

F1G. 3.

point of cut-off, and measure the absolute pressure at this point; then take another point B in the compression curve, just above the point at which the exhaust closes, and measure the absolute pressure here also; and from Table CX., page 838, ascertain the weight of a cubic foot of steam at each of the pressures AZ and BZ.

Now calculate the volume, in cubic feet, swept by the piston while travelling through the distance X, and multiply it by the weight per cubic foot at pressure AZ; also calculate the volume corresponding to the travel Y, and multiply it by the weight per cubic foot at pressure BZ; then subtract the second product from the first, and the remainder will be the number of pounds of steam accounted for by the diagram during the stroke.

A similar calculation from the other diagram of the pair will give the amount of steam accounted for during the return stroke, and the sum of the two—multiplied by the number of revolutions—will give the amount accounted for by the diagrams per minute or per hour.

The clearances need not be considered in these calculations.

EFFICIENCY OF ENGINES.

The indicated horse-power, calculated from diagrams as above described, gives only a measure of the work done in the cylinder, and the amount delivered at the propeller is, of course, less than this by the amount expended in working the pumps and in overcoming the friction of the various parts of the mechanism.

The mechanical efficiency of an engine is usually expressed by the

decimal fraction whose value is,-

Efficiency of engine = $\frac{\text{Net, or Brake, herse-power.}}{\text{Indicated horse-power.}}$

The expense and difficulty of making brake tests of large marine engines are so great that, up to the present, none have been made, and their efficiency can therefore only be estimated from a comparison of the results of experiments made on small engines of various types, and on engines employed in driving dynamos, with regard to which (and more especially to the latter class) a large amount of accurate information has been recorded.

The efficiency of the best class of small compound non-condensing engines varies from about '84 to about '92, and a fair average value is '88; and for compound condensing dynamo engines the average

efficiency may be taken at '90 to '94 according to size, &c.

But before any comparison can be made between engines of these classes and marine engines, it is necessary to subtract from the gross I.H.P. of the marine engine, the power absorbed in working the pumps—thus obtaining what may be called the corrected I.H.P. Assuming then that the corrected I.H.P. is 95 per cent. of the gross—in cases where air, circulating, feed, and bilge pumps are all driven from the main engines—and taking into consideration the various other circumstances tending to affect efficiency, there is ground for believing that the efficiency of vertical triple-expansion marine engines, of good modern design, is between '82 and '88, and that an average specimen delivers at the propeller fully 85 per cent. of the gross power developed in the cylinders.

When the efficiency of any engine (not driving its own pumps) is tested at various powers, and the curves of indicated and brake horse-power are laid down on the same diagram, the one curve is seen to be sensibly parallel to the other: that is to say—the power absorbed in overcoming the friction of the engine is practically a constant quantity, and is therefore the smallest percentage of the gross I.H.P. when the

latter is a maximum.

As there is considerable difficulty in experimentally determining the power absorbed in overcoming the friction of an engine, the following graphic method (suggested by the late Dr Froude) is of interest, and may sometimes prove useful:—

F1G. 4.

A series of progressive trials having been carried out, and the results carefully recorded—calculate the indicated thrusts (from the formula—

 $\mathbf{Indicated\ thrust-} \frac{L\ H.\ P.\ \times\ 33,000}{P\times R} \\ \mathbf{where}\ \ P\ \ is\ pitch\ \ of\ propeller\ in\ feet,}$

and R revolutions per minute) for each speed, and set them up as ordinates from a base line on which the speeds are set off—as shown in fig. 4. Then, supposing A to be the lowest known point on the curve, draw the tangent KA; divide BC at D so that BC = 1.87 DC, and through D draw the vertical line DE, cutting the tangent in F; and through F draw HG parallel to the base line. The height OH then represents the constant friction of the engine, and the point H is the vertex of the thrust curve which may now be completed.

The lengths of the ordinates intercepted between HG and the thrust curve represent power expended in overcoming ship's net

resistance, augment of resistance due to propeller, and friction of propeller blades, and are proportional to the ship's true resistance.

Efficiency as affected by Jacketing.

The most recent investigations show that all types of steam engines are rendered more efficient by the addition of steam jackets, and that the more completely the hot surfaces of cylinders, receivers, &c., are

jacketed, the greater is the saving effected.

This amounts to saying, in other words, that for every pound of steam condensed in the jackets, some greater quantity is saved in the cylinders. The ratio of steam saved in the cylinders to steam expended in the jackets, varies from a little under 2 to 1 in some

types of engine, to over 5 to 1 in other types.

The gain that may be expected to result from jacketing an engine depends on such a multitude of considerations—relating not only to the design of the engine and of the boiler, but also to the management of the machinery under steam—that it can only be very generally stated as lying between 5 and 25 per cent. of the total feed-water evaporated; but in the case of modern marine machinery, of good construction, it is not probable that the gain is over 10 per cent. of the total feed-water evaporated.

The limit of usefulness of jacketing is reached when the exhaust is

perfectly free from particles of water in suspension.

Small cylinders are more benefited by jacketing than large ones, in consequence of the ratio of area of hot surface to cubic contents being greater than in large ones.

It is important that there should be a thorough circulation of steam in the jackets, but the plan of passing the steam through the jackets

on its way to the H.P. cylinder should be avoided.

The transmission of heat to the steam in the cylinder varies inversely as the thickness of the cylinder wall.

THE RESISTANCE AND PROPULSION OF SHIPS.

In dealing with cubes, or with parallelepipeds of similar forms immersed in water until the uppermost face is just flush with the surface, it is found, on making the necessary calculations, that the wetted surface is exactly proportional to the 3rd power (or the square of the cube root) of the displacement. Taking the case of cubes,—

Let L=length of edge, D = displacement, W = wetted surface; then D = L^3 , or L = $\sqrt[3]{\overline{D}}$, and W = $5 \times L^2$ = $5 \times (\sqrt[3]{\overline{D}})^2$. That is, W varies as D_2^2 . It may also be noted that $L^2 = (\sqrt[4]{\overline{D}})^2$,—that is, L^2 (which corresponds to mid-ship section) also varies as D_3^2 ; and therefore W varies as L^2 , or, in other words, wetted surface varies as area of mid-ship section.

These results are not quite accurate for parallelepipeds which are not similar in form (that is, whose lengths, breadths, and depths are not of the same relative proportions), but the inaccuracy is only slight within considerable limits; so that, if ships of ordinary proportions are substituted for cubes or parallelepipeds, it is practically correct to say that wetted surface varies as area of mid-ship section, and also as and power of displacement.

For similar vessels displacement is also a measure of the fineness of the lines, since, when length and mid-ship section are the same, it

varies directly as the prismatic co-efficient of fineness.

Now the resistances of ships depend almost entirely upon these two elements,—wetted surface, and form, or fineness of lines, and may be classed under the three heads,—

(1) Resistance due to skin friction;

(2) Resistance due to eddy making;

(3) Resistance due to wave making.

The first of these depends on the extent and nature of the wetted surface, and the depth of immersion; the third, on the lines of the ship, and on her degree of fineness; and the second, on all of these combined.

It is therefore evident, from the above considerations, that the old speed and power formulæ rest on a sound basis, and are capable, in experienced hands, of giving fairly accurate results. These formulæ are.—

Rule 8. I.H.P.
$$=\frac{D_8^2 \times S^3}{C}$$

and I.H.P. =
$$\frac{\text{area of immersed mid-ship section} \times S^3}{K}$$

where D, is displacement in tons; S, speed in knots; and C and K, co-efficients.

The peculiar value of these formulæ lies in the fact that they can be applied at a very early stage of the work, before such data as angles of obliquity of stream lines can be obtained with any degree of accuracy: and thus the power, approximate weight, and an outline drawing of the machinery can be got out simultaneously with the design of the vessel,—a great advantage where time is limited, as is usually the case in preparing tenders.

It is important to notice, in connection with the above formulæ that—although the resistance of a ship, moving uniformly at any speed, varies as the *square* of that speed,—the power required to over-

come the resistance, and propel it at any speed, varies as the cube of that speed. For,—

Let S—speed in feet per minute; R—resistance in pounds at that speed; Then $R=S^2\times C$,—where C is a co-efficient; and, multiplying both sides by S $R\times S=S^3\times C$.

But $R \times S$ is the work done, in foot-pounds per minute, in overcoming the resistance R through the space S, and, divided by 33,000, is equal to the horse-power required to drive the ship. This law, of course, only holds for similar ships, driven at corresponding speeds (speeds proportional to the square roots of the linear dimensions) since it is evident that the resistance due to wave making can only be proportional under these conditions.

The second formula is useful as a check, or corrective to the first, where the vessels under consideration are not absolutely similar, but have same ratio of length to breadth and draught, with a variation in the rise of floor.

....

The following Table (given by Mr W. H. White), shows the values of C for some typical ships of very different classes, at various speeds, and, whilst indicating generally the range of the variations that occur, serves also to show the difficulties that the naval architect has to encounter in obtaining high speeds in vessels of small dimensions. (For method of using curves of values of C, see page 23.)

The figures for horse-powers are "round." The "Medusa's" figures for 20 knots are those obtained from Stokes Bay trials, and strikingly illustrate the retarding effect of shallow water on the speed of a vessel; the figures for the other ships at that speed are estimated

for deep water.

It is, perhaps, scarcely necessary to add that these co-efficients of performance represent the combined efficiency of ships and machinery, and that they are therefore just as liable to be affected by an unsuitable propeller as by a foul bottom or unsuitable lines; and also that for every model there is, as a rule, only one speed of maximum efficiency, though it is evident from the type of curve usually obtained, that there may be two speeds (one above and one below that of maximum efficiency) at which the efficiency is equal and slightly below the maximum.

Table III. - Relation of Powers and Speeds.

							I.H.P's.	I.H.P's, and Admiralty Co-efficients.	Iralty Co	efficient	.	
Description of Vessel.	Length in feet.	Length Breadth in in feet.	Draught (mean).	Displace- ment in tons.	10 Knots.	nots.	14 Knota.	nota.	18 Knots.	note.	20 Knota,	nota.
•			ft. In.		LH.P.	Co-eff.	I.H.P.	Co-eff.	I.H.P.	Co-eff.	I.H.P.	Co-eff.
Torpedo Boat,	135	14	5 1	103	110	200	260	282	870	147	1,130	156
Gunboat, Sharpshooter"	730	27	ss ∞	735	450	181	1100	208	2,500	190	8,500	186
3rd Class Cruiser, "Medusa,"	265	17	16 6	2,800	200	284	2100	259	6,400	181	10,000	159
2nd Class Cruiser, "Terpsichore,"	000	£	16 2	3,330	800	279	2400	255	6,000	217	000'6	198
1st Class Cruiser, "Edgar,"	360	99	23 9	7,390	1000	380	3000	847	7,500	295	11,000	276
1st Class Cruiser, "Blenheim,"	375	85	25 9	9,100	1500	290	4000	298	000'6	282	12,500	278
Atlantic Passenger Steamer,	525	63	21 3	11,550	2000	255	4 600	304	10,000	297	14,500	281

Table IIIa.—Results of Trial Trips of Steam Vessels of Medium and Small Size.

•	i											
Names.	SS A.	88 mi	န္တီး	SS Ci	82 24	SS F.	88 G.	SS H.	ss J.	SS K.	SS T	SS M.
Length, perpendiculars,	450′-0″	388′-0″	340′-0″	870′-0″	318'-6'	300′-0″	3000"	311′-6″	270′-0″	280′-0″	250'-0"	230'-0"
Breadth, extreme,	45'-2"	43'-0"	41'-0"	41'-0"	33′-6″	38,-0,	34'-6"	36′-0″	82′-6″	31′-0″	38′-0″	26'-5"
Mean draught water, .	23'-7"	17'-74"	17'-3"	18'-11"	18'-11" 14'-113"	13,-0,,	18'-9"	11′-6″	11'-1"	13′-6″	12-0"	11'-4"
Displacement (tons),	8200	4315	4135	4635	2480	2500	2200	1780	1270	1940	1370	1060
Area Imm. mid section, .	956	616	88	999	422	453	425	395	343	350	320	98
Wetted skin,	82,578	22,330	20,340	22,633	15,200	14,594	14,043	12,628	10,094	12,532	10,028	7678
K & Length, fore body,	129′-0″	142-0	105'-0"	123′-0′	.9-,201	106'-10"	106'-10" 119'-0"	152'-6"	140'-0"	.4581	100'-0"	80/-3"
ದ್ದಿ (Angle of entrance,	17°-16′	14°-0′	19°-36′	16°-4′	14°-56′	18°-36′	15°-16′	12'-30'	12°-20′	180	15,-10,	14°-30′
Displacement × 35	0.714	0.632	0.685	0.668	0.658	0.64	0.604	0.21	0.48	0.693	0.289	0-614
Speed (knots),	16.06	16.82	14.0	13.8	15:34	14.6	18.2	18.7	19.7	15.03	14.9	14-9
Indicated horse-power, .	4900	4660	4195	2500	2243	2801	4398	4000	4250	2373	2083	1538
I.H.P. per 100 feet of wetted skin,	15.04	20.87	14.9	11-04	14.75	17.8	31.32	31.67	42.11	19	8	17-92
I.H.P. per 100 feet of wetted shin reduced to 10 knots.	4.43	4.4	7.5	4 .2	4 ·09	2.9	6.19	4.8	26.97	8.	6.35	6.41
D ⁵ × 8 ³	888	509	235	262	536	230	231.7	250	5 1	225	194	703
I. mid area × S ³ , I.H.P.	642	626	504	689	849	542	283	129	670	209	205	559

Kirk's Analysis.

The following very simple and useful method of estimating the power required to drive a vessel at any given speed was devised by the late Dr A. C. Kirk, and is generally known as "Kirk's analysis":—

A diagram, resembling fig. 5, of what is called the "block model" is first made,—its dimensions bearing certain fixed relations to the dimensions of the vessel under consideration,—and the wetted surface of this "block model" (the whole surface minus that of the upper face) is then, within a very small error,—stated below,—equal to that of the proposed vessel. (Rule 9.) The I.H.P. is then found by assuming that 5 I.H.P. will drive 100 feet of wetted surface at 10 knots, and that the power required varies as the cube of the speed. When the vessel is exceptionally well proportioned, the bottom quite clean, and the efficiency of the machinery high, as low a rate as 4 I.H.P. for 100 feet of wetted surface may be assumed.

The dimensions of the "block model," fig. 5, are determined as follows:—

Length AB-length of ship (from forward side of stem to after side of stern-post, at mean trial draught).

Depth KL-depth of ship from mean trial draught to top of keel (if any).

Breadth $EK = \frac{Area \text{ of immersed mid-ship section.}}{KL}$

 $AH = GB = \frac{Displacement in tons \times 35^*}{Area of immersed mid-ship section.}$

Length of AD = $\sqrt{AG^2 + GD^2}$.

Then, the wetted surface of the "block model" is,—
(EK × AH) + (2KL × FK) + (4KL × AD).

^{*35} cubic feet of salt water weigh one ton, and are therefore equal to one ton displacement.

The angle of entrance is EBK; EBH is half that angle; and tan. EBH = $\frac{EH}{HB}$; or, the tangent of half the angle of entrance is equal to

Half breadth of model. Length of fore-body, and from this, by means of a table of natural tangents, the angle of entrance may be obtained.

The lengths of fore-body and angles of entrance for different types of vessel are as follows:—

Table IV. Angles of Entrance, &c.

Description of Vessel.	Angle of Entrance.	Ratio of length of fore-body to total length of block.
Ocean-going merchant steamers whose speed is from 14 knots upwards,	18° to 15°	'3 to '36
Ocean-going steamers whose speed is from 12 to 14 knots,	21° to 18°	·26 to ·3
Cargo steamers whose speed is from 10 to 12 knots,	30° to 22°	·22 to ·26

Example:—To find the I.H.P. necessary to drive a ship at 15 knots, the wetted skin of "block-model" being 16,200 square feet.

The I.H.P. per 100 square feet =
$$\left(\frac{15}{10}\right)^3 \times 5 = 16.875$$

and I.H.P. required = $16.875 \times 162 = 2744$.

In ordinary practice the wetted surface of the "block model" is found to exceed that of the actual ship by 2 per cent. (in the case of full ships), by 3 to 5 per cent. for ordinary steamers, and as much as 8 per cent. in the case of very fine steamers; but the error is in the right direction, and for all ordinary purposes it is sufficient to take the surface of the "block model."

The following Table gives, on inspection, the horse-powers required per 100 feet of wetted surface at various speeds and rates, and will facilitate calculations by the above method:—

Table V.—I. H. P. per 100 feet of wetted surface at different speeds.

Speeds in	<u> </u>	L	H.P.	per 1	00 sq.	feet	of wei	ted su	rface	at 10	knot	١.	
Knots.	4.0	4.1	4.3	4.8	4.4	4.2	4.6	4.7	4.8	4.9	5.0	5.1	5.3
9	2.92	2.49	3.06								8.64	8.71	8.78
9-5	3.43	8.21	3.60									4.36	
10	4.00												
10-5	4.63												
11	5.32												
11-5	6.08										7.60		
12	6.91	7.08	7.26	7.48	7.60						8.64	8.81	8.91
12-5	7.81	8.01						9.18				9.96	
13	8.79							10.32					
13-5								11.56					
14								12.90					
14.5								14.83					
15								15.86					
15.5								17.50					
16								19.25					
16.5								21.11					
17								23 09					
17.5								25.19					
18								27.41					
18.5								29.76					
19								32-24					
19.5	29.66	30.40	31.14	31.88	32.62	88.37	84.11	34.85	35.59	86.33	37 07	87.81	38

Rankine's Rules.

The following rules relating to the propulsion of vessels were given by the late Professor Rankine; but it must be understood that they are only applicable to ships whose lines are of the "wave line" type:—

Rule I.—In order that the resistance may not increase faster than the square of the speed (S^2) the length of the after-body in feet must not be less than $S^2 \times 375$.

To fulfil the same condition, the length of the fore-body must not be less than that of the after-body, as given above, and may with advantage be 1½ times as long.

Rule II.—The greatest speed in knots suited to a given length of after-body (l) is $\sqrt{\frac{3}{4}l}$.

Rule III.—When the speed does not exceed the limit given by Rule II., the probable resistance in pounds (R) will be,—

 $R = G \times L \times (1 + 4M) \times S^2 \times C$. Where G — mean immersed girth in feet;

L = length on water line in feet;

M = { mean square of sines of angles of obliquity of stream-lines + mean of fourth powers of sines:

S - Speed in knots;

C =

Ol for clean painted iron vessels;
Ol for clean coppered vessels;
Ol and upwards for moderately rough iron-vessel.

The product $G \times L \times (1 + 4M)$ is called the "Augmented surface

Rule IIIa.—An approximate value of R, in well-designed steamers with clean painted bottoms, is given by,—

 $R = S^2 \times D \times K$ Where D =the displacement in tons; K = 8 to 1.5 for different types of steamers.

Rule IV.—The net, or effective horse-power (E.H.P.) expended in propelling the vessel is,—

E.H.P.
$$-\frac{\mathbf{R}\times\mathbf{S}}{326}$$
.

Rule IVa.—The gross, or indicated horse-power (I.H.P.) will be the E.H.P., as found by Rule IV., divided by the combined efficiency of engine and propeller, which is ordinarily between '6 and '625, and averages say '613; therefore,—

$$I.H.P. = \frac{R \times S}{200}.$$

Note.—To obtain the mean immersed girth, proceed as follows:—

(a) Divide length on water line into an even number of intervals, and number the dividing points (the number of which will be one more than the number of spaces) 1, 2, 3, 4 &c.

(b) Measure the lengths of the half-girths at each point.

(c) Add together the two end-most lengths; four times the intermediate even-numbered lengths; and twice the intermediate odd-numbered lengths; and divide the sum by 3, and again by half the number of intervals,—and the result will be the mean immersed girth required.

In determining the "co-efficient of augmentation" (1 + 4M), the lines giving the half angles of entrance at the different water lines must be tangents to the curves at the points of contrary flexure.

Mr Mansel's Formulæ.

Mr Robert Mansel of Glasgow, who has devoted much time to the investigation of the relation of power to speed in steam-ships,—in drawing attention to the generally admitted imperfections of the

formula I.H.P. =
$$\frac{D^{\frac{2}{3}} \times S^3}{C}$$
, or I.H.P. = $\frac{D^{\frac{3}{3}}}{C} S \times S^2$ as he sometimes

writes it,—emphasizes the fact that the so-called constant is rarely or never constant for two different speeds (but decreases in value as the speed increases), and suggests the following modified form of the expression:—

$$I.H.P. = \frac{D^3}{C}S \times 10^{aS}$$

or I.H.P. =
$$\frac{D^3}{C}$$
S × 10^{a8}.

Where, instead of using the square of the speed, he uses the number whose logarithm is the speed multiplied by a small co-efficient a,—the value of which usually lies between '06 and '13. It should be mentioned, however, that in trying the same vessel through any great range of speeds, the value of a is not always the same throughout.

Speed and Power Curves, etc.

The most reliable method of determining the I.H.P. required to drive any proposed vessel at a given speed is to base the calculations upon the results obtained from the trials of "similar" vessels; the basis of which is the fact that "similar" vessels, driven at "corresponding" speeds have the same co-efficient of performance, when the efficiency of the machinery is the same.

"Similar" vessels are those having the same ratio of length to breadth, and to draught, and the same degree of fineness; and "corresponding" speeds are those which are proportional to the square roots of the linear dimensions of the respective vessels (e.g. propor-

tional to the square roots of the lengths).

Froude found that the resistances of such vessels varied almost

exactly as wetted surface × (speed)2.

But to render the results of former trials readily accessible for such a purpose it is very desirable to have them plotted down as a series of curves, somewhat in the following manner :-

Let P₁, P₂, P₃ be the indicated horse-powers developed in obtaining

the speeds S_1 , S_2 , S_3 knots, with R_1 , R_2 , R_3 revolutions per minute. Take a line AN (Fig 6.) as a base line, and on it take points B, C, D, so that AB, AC, AD, are proportional to S_1 , S_2 , S_3 ; at the points B, C, D erect ordinates Bb, Cc, Dd proportional to P1, P2, P3, and through the points b, c, and d draw the curve d c b a, which is called the "curve of power" or "curve of I.H.P." The nature of this curve is then such that if an ordinate he drawn through any other point X in the line AN, Xx will represent the power necessary to obtain the speed AX from the same vessel, or another vessel of the same form and dimensions.

If the curve be accurately drawn, it will be found that it does not pass through A, but at a distance Aa above that point, thus signifying that a certain amount of power is developed even at zero speed; Aa thus represents the power required to overcome the constant friction of the engines. (See also page 11, under "Efficiency of Engines.")

Similarly a curve of revolutions may be constructed by taking points r_1 , r_2 , r_3 in the ordinates so that Br, Cr, Dr, are proportional to

R₁, R₂, R₃. The slip may also be shown by a curve whose ordinates are proportional to the slips at the speeds S₁, S₂, S₃.

Examination of the curves will show :-

(1) The I.H.P., revolutions, and slip corresponding to any speed intermediate to those observed:

(2) The constant friction, and therefore general efficiency of the

engines :

(3) The suitability of the lines of the ship for the speeds,—a sudden rise of the curve towards the higher part, showing an undue increase of resistance at the higher speeds:

(4) The power of the speed with which the I.H.P. increases for

the particular type of ship;

5. The suitability of the propeller to the ship,—any sudden rise in the slip curve showing that the propeller is defective,

either as regards diameter or surface, or both.

Perhaps the most useful curve, however, for the purpose of determining the power required to propel some "similar" ship, of different size, at any given speed, is one constructed as shown in fig. 7, where the abscisse represent speeds in knots, and the ordinates numerical co-efficients of performance, derived, either from the Admiralty formula

$$\left(I.H.P. = \frac{D^{\frac{3}{2}} \times S^3}{C}\right)$$
 or other similar expression.

Rule 10.—Suppose fig. 7 to represent the curve given by a vessel 250 feet long, and 2400 tons displacement, and that it is required to determine the power necessary to drive a "similar" vessel of 360 fee long, and 7200 tons displacement, at say 13 knots. The question the is, -what co-efficient of performance must be assumed ?-and it is answered as follows :-

$$\sqrt{360}: \sqrt{250}:: 13: x$$

or $x = \frac{\sqrt{250} \times 13}{\sqrt{360}} = 10.8 = \begin{cases} \text{``corresponding'' speed of first, or type ship.} \end{cases}$

and running up the ordinate for 10.8 knots until it cuts the curve, and then along the abscissa from this point of intersection the figure 253 is found, and this, when used in connection with the formula, gives 3250 as the required I.H.P.

In cases where there are no records of exactly "similar" ships, the value of the estimate made will of course depend very largely on the experience of the estimator.

Determination by Model Experiments.

Another method, employed by the Admiralty, and by a few of our leading firms of shipbuilders, for determining the power required to propel any new type of vessel is, to ascertain the resistance of a model of the new vessel in the experimental tank, and to calculate the power from the results obtained; and, where widely divergent types have to be dealt with, the method is no doubt of great value, but the expense is necessarily great.

The models are usually made of paraffine, and are from 12 feet to 20 feet long, and from %-inch to 1%-inch thick; they are cast nearly to

shape, and then trimmed to the exact form on a special shaping machine the speeds and pulls on the tow-rope are automatically recorded on paper drums driven by clock-work. The height and position of the waves created,—which are of special importance in the case of paddle vessels,—can also be noted and recorded.

The horse-power required is calculated from the resistance of the model, by the same principle of "corresponding" speeds referred to

above, as follows:-

Let l and L=lengths of model and vessel, respectively;
v and V=corresponding speeds;
r and R=corresponding resistances;

Then
$$\frac{V}{v} = \sqrt{\frac{\overline{L}}{l}}$$
 and $\frac{R}{v} = (\frac{L}{l})^3$.

Example.—Suppose the E.H.P. (effective horse-power, or gross horse-power less that required to overcome friction of engines and propeller) necessary to drive a ship of 300 feet long at 15 knots is required. Let the length of the model be 12 feet, then the "corresponding" speed for it will be given by,—

$$v = 15 \sqrt{\frac{12}{300}} = 3 \text{ knots.}$$

Assume the resistance of the model at this speed to be 4 lbs., then resistance of ship, at 15 knots will be,—

$$R=4 \times \left(\frac{300}{12}\right)^3 = 62,500 \text{ lbs.};$$

and $\frac{62,500 \times 15 \times 6080}{60 \times 33,000} = 2879;$

er E.H.P. required is approximately 2879,—a slight correction having to be made for skin friction.

Co-efficients of Fineness.

The block co-efficient expresses the ratio borne by the displacement volume to that of the parallelepiped circumscribing the immersed body.

Let V - displacement in cubic feet;
L - length on water line;
B - greatest immersed breadth;
D - draught of water;
K - displacement co-efficient.

Then
$$K = \frac{V}{L \times B \times D}$$
.

The prismatic co-efficient,—which gives a truer measure of fineness of lines than the above,—expresses the ratio borne by the displacement volume to that of the prism swept by moving the immersed mid-ship section through the length at load water-line.

Surface Friction.

The following Table gives a general statement of the results of Froude's experiments on this subject; they were made on boards $\frac{2}{16}$ -inch thick and 19-inch deep, which were coated with the substances to be experimented on, and towed edgeways through the water. The resistances are given in lbs. per square foot at the standard speed of 600 feet per minute, and, as the power of the speed to which the friction is proportional is also given, the resistance at other speeds is easily calculated.*

Columns A give the power of the speed to which the resistance is approximately proportional; columns B give the mean resistance per square foot of the whole surface of a board of the lengths stated in the table; columns C give the resistance of a square foot of surface at the

distance sternward from the cutwater stated in the heading.

Table VI.—Resistances of Surfaces.

		Leng	th of	surfa	ce, or	dista	nce f	rom c	utwa	ter, i	a feet	•
Nature of Surface.	-	Fee:	t.	,	8 Feet	.	2	O Fee	t.	5	0 Fee	t.
	A	В	С	A	В	C	A	В	C	A	В	c
Varnish, Paraffine, Tinfoil, Calico, Fine sand, Medium, Coarse ,,	2:00 1:95 2:16 1:93 2:00 2:00	·38 ·30 ·87 ·81 ·90	*370 *295 *725 *690 *730	1.94 1.99 1.92 2.00 2.00	*314 *278 *626 *583 *625	·260 ·263 ·504 ·450 ·488	1.93 1.90 1.89 2.00 2.00	·271 ·262 ·531 ·480 ·534	·237 ·244 ·447 ·384 ·465	1·83 1·87 2·06 2·00	···· ·246 ·474 ·405	·232 ·423 ·337

True Mean Speed.

To determine the true mean speed of a vessel when the runs are taken on the measured mile, half with the tide, and half against:—

^{*} NOTE .- See Rule 11, page 26.

Rule:—Find the means of consecutive speeds continually found until only one remains.

Example.

Runs.	Observed Speeds.	1st Means.	2nd Means.	3rd Means.	4th Means.	Mean of Means.
1st	18.5	15.90				
2nd	13.3	15.35	15·625)	15.5750		
3rd	17.4	15.70	15.525	15.5750	15.52500	15.470305
4th	14.0	15.15	15.425	15.3875	15.43125	15.478125 True mean
5th	16.3	15.55	15.350	19.98/9		speed.
6th	14.8		1)61.925			
	8)94.2	0-	15.48125			
	15.70	-	linary mea			
Ord	linary m speed.		econd mean	18.		

The ordinary mean of second means is generally taken,—as unavoidable errors of observation render the third and following decimal places of very doubtful value.

Relation of Speeds and Powers.

Given two speeds of a vessel, and the corresponding horse-powers, to find what power of the speed the horse-power varies as:—

Let s and S = the two speeds.

,, p and P = the corresponding powers.

,, x = power of s and S that p and P vary as

Then
$$\frac{S}{gx} = \frac{P}{p}$$

or $x (\text{Log S} - \text{Log s}) = \text{Log P} - \text{Log p}$

Rule II. And $x = \frac{\text{Log P} - \text{Log p}}{\text{Log S} - \text{Log s}}$.

Table of Times and Speeds.

Given the time, in minutes and seconds, occupied by the vessel in running the measured mile, the following Table gives, on inspection the speed in knots:—

	to the time in which a vessel passes over the measu
	over
	раввев
٠	vessel
	which 8
ĎŠ,	g.
SPEE	time
Q	he
4	3.
TIMES AND SPEEDS,	le corresponding to
	corresi
	in this Table
	this
	ä
	er i
	The number
	ŭ
	ĕ

usured	14 min.	4.286 4.275 4.276 4.286	14 min.
the measured	18 min.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13 min.
ses over	12 min.	6 000 6	12 min.
ssel passes	11 min.	5 445 5 448 5 448 6 488 6 488 6 589 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11 min.
ich a vessel s.	10 min.	6 000 6	10 min.
EDS. in which in knots.	9 min.	6.6647 6.6428 6.6428 6.6438 6.6538 6.5537 6.5534 6.	9 min.
time peed	8 min.	7.590 7.454 7.459 7.459 7.457 7.597	8 min.
TIMES AND Iding to the mile is her s	7 min.	8 5571 8 5571 8 5571 8 5571 8 5571 8 5571 8 5582 8 5583 8 5583 8 5584 8	7 min.
Table corresponding to the mile is her s	6 min.	10-000 9-9722 9-9172 9-917 9-917 9-838 9-788 9-788 9-788 9-786 9-788 9-786 9-788 9-789 9-651 9-651 9-654 9-6	6 min.
e corre	5 min.	12.000 11.960 11.960 11.982 11.983 11.660 11.668 11.676 11	5 min.
this Tabl	4 min.	15.000 14.938 14.976 14.976 14.936 14.634 14.576 14.576 14.286 14.286 14.286 14.286 14.286 14.026 15	4 min.
	3 min.	20.000 19.890 19.875 19.675 19.459 19.459 19.048 18.947 18.657 18	3 min.
The number in	2 min.	20,000 20	2 min.
The	Secs.	012844667886015844667886	Secs.

Table VII.—continued.

sured	14 min.	44 186 44 171 44 171 44 171 44 172 44 172 44 173 45 173 46 173 47	14 min.
the mea	13 min.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13 min.
passes over the measured	12 min.	4 4 865 4 885 4 885 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	12 min.
a vessel pas	11 min.	6 7.28 4 2.28 6 7.29 4 2.28 6 7.29 6 7.29 6 7.29 6 7.29 6 7.29 6 7.29 6 7.20 6	11 min.
	10 min.	5.806 5.707 5.708 5.708 5.708 5.708 5.708 5.708 5.608	10 min.
EEDS. in which in knots.	9 min.	6.429 6.427 6.406 6.834 6.835 6.836	9 min.
TIMES AND SPEEDS, ding to the time in w	8 min.	7.200 7.180 7.181 7.114 7.114 7.116 7.010 7.010 7.010 7.010 7.010 7.010 6.927 6.960 6.960 6.960	8 min.
to t	7 min.	8-183 8-183 8-146 8-146 8-108 8-108 8-072 8-072 8-018 8-018 7-947 7-930 7-930 7-940	7 min.
Tn Table corresponding mile i	6 min.	9.474 9.424 9.424 9.424 9.335 9.336 9.326 9.231 9.204 9.137 9.137 9.137 9.137 9.137 9.137 9.137	6 min.
e corre	5 min.	11-250 11-250 11-146 11-146 11-143 11-043 10-942 10-942 10-942 10-943 10-943 10-943 10-943 10-943 10-943 10-943 10-943 10-943 10-943 10-968 10	5 min.
	4 min.	13.846 13.846 13.8688 13.8688 13.8688 13.853 13.853 13.238	4 min.
er in this	8 min.	18 · 000 17 · 910 17 · 920 17 · 641 17 · 641 17 · 641 17 · 641 17 · 640 17 · 640 17 · 640 18 · 660 16	3 min.
The number in	2 min.	888971 8889872 8889873 8889878 889888 889878 88988 8998 89988 8998	2 min.
The	Secs.	88348888888888888888888888888888888888	Secs.

TIMES AND SPEEDS.

· managament D.T. A. DEGE. F.

messured	14 min.	4 091	14 mm.
the mes	13 min.	4 830 4 830 4 837 4 837 6 837 6 837 8 837	то шш.
es over	12 min.	4 6527 4 6527 4 6527 4 6527 6 6527	12 mm.
vessel passes	11 min.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11 mm.
а ч	10 min.	6 4 4 7 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	10 mm.
SPEEDS. 16 in which d in knots.	9 min.	6.020 6.020 6.020 6.020 6.010 6.020 6.010 6.020 6.020 6.010	a min.
ND tin Spee	8 min.	6.6779 6.6779 6.6779 6.6779 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754 6.7754	o mm.
2	7 min.	7.836 7.772 7.775 7.775 7.775 7.775 7.725 7.643 7.643 7.643 7.643 7.651 7.651 7.653 7.653 7.653 7.653 7.653 7.653	, mm.
Table corresponding to mile is	6 min.	<u> </u>	o mm.
corres	5 min.	10.588 10.586 10.586 10.586 10.486 10.486 10.487 10.286 10.286 10.198 10.198 10.108 10.108 10.108 10.088 10.088 10.088	o min.
s Table	4 min.	12.286 12	4 mm.
r in this	8 min.	16.864 16.280 16.220 16.143 16.143 16.071 16.007 11.869 11.662 11.662 11.662 11.663 11	o min.
The number in	2 min.	25.00	Z min.
The	Secs.	\$4444444444444444444444444444444444444	2

Should the speed be required in kilometres,—multiply the speed in knots, from the above Table, by 1 853.

See also Tables of knots, miles, kilometres, &c., pp. 340 to 342.

The following Table of the % powers of numbers will be of service in all calculations for which displacement is taken as a basis.

Table VIII.—Two-thirds powers of numbers.

	Table '	VIII.—	Two-thi	rds pow	rers of r	umbers	•
Number.	ård power.	Number,	ård power.	Number.	ård power.	Number.	ård power.
100	21.54	480	61.30	860	90.43	1240	115.42
110	22.96	490	62.15	870	91.13	50	116.04
120	24.33	500	62.99	880	91.83	60	116.66
130	25.66	510	63.83	890	92.52	70	117.27
140	26.96	520	64.66	900	93.22	80	117.89
150	28.23	530	65.49	910	93.91	90	118.50
160	29.47	540	66.31	920	94.59	1300	119.11
170	30.69	550	67.13	930.	95.28	10	119.72
180	31.88	560	67.94	940	95.96	20	120.33
190	33.05	570	68.74	950	96.64	30	120.94
200	34.21	580	69.54	960	97:32	40	121.55
210	35.33	590	70.34	970	97.99	50	122.15
220	36.44	600	71.13	980	98.66	60	122.75
230	37.54	610	71.92	990	99.33	70	123:35
240	38.62	620	72.71	1000	100.00	80	123.95
250	39.68	630	73.49	10	100.66	90	124.55
260	40.74	640	74.26	20	101.33	1400	125.14
270	41.78	650	75.03	30	101.99	10	125.74
280	42.80	660	75.80	40	102.65	20	126:33
290	43.81	670	76.57	50	103.30	30	126.92
300	44.81	680	77:33	60	103.96	40	127.51
310	45.80	690	78.08	70	104.61	50	128.10
320	46.78	700	78.84	80	105.26	60	128.69
330	47.75	710	79.59	90	105.91	70	129 28
340	48.71	720	80.33	1100	106.56	80	129.87
350	49.66	730	81.07	10	107.20	90	130.45
360	50.61	740	81.81	20	107.85	1500	131.03
370	51.54	750	82.55	30	108.49	10	131 .61
380	52.46	760	83.28	40	109.13	20	132.19
390	53.38	770	84.01	50	109.76	30	132.77
400	54.29	780	84.73	60	110.40	40	133.35
410	55.19	790	85.46	70	111.03	50	133.93
420	56.08	800	86.18	80	111.67	60	134.50
430	56.97	810	86.89	90	112.30	70	135.08
440	57.85	820	87.61	1200	112.92	80	135.65
450	58.72	830	88.32	10	113.55	90	136.23
460	59.59	840	89:03	20	114.17	1600	136 .80
470	60.45	850	89.73	30	114.80	10	137 87
'		1 1		1	•	i /	- 1

Table VIII.—Two-thirds powers of numbers—continued.

Number.	₫rd power.	Number.	ard power.	Number.	∄rd power.	Number.	∄rd power.
1620	137-93	2080	162.94	2920	204 28	3760	241.80
30	138.50	2100	163.99	40	205.22	80	242.65
40	139.06	20	165.02	60	206.15	3800	243.51
50	139.63	40	166.05	80	207.08	20	244 36
60	140.19	60	167.09	3000	208.01	40	245.22
70	140.75	80	168.12	20	208.93	60	246.07
80	141.32	2200	169.15	40	209.85	80	246.91
90	141.88	20	170.17	60	210.76	3900	247.76
1700	142.44	40	171.19	80	211.68	20	248.61
10	143.00	60	172:20	3100	212.59	40	249.45
20	148.55	80	173.22	20	213.51	60	250.29
30	144.11	2300	174 ·24 ·	40	214.42	80	251.14
40	144.66	20	175.24	60	215.33	4000	251.98
50	145.22	40	176.25	80	216.24	20	252.82
60	145.77	60	177.25	3 200	217.15	40	253.65
70	146.32	80	178 26	20	218.05	60	254.49
80	146.87	2400	179.26	40	218.95	80	255:33
90	147.42	20	180.25	60	219.85	4100	256.16
1800	147.97	40	181.24	80	220.75	20	257.00
10	148.52	60	182.23	3300	221.65	40	257 83
20	149.06	80	183.22	20	222.54	60	258.67
30	149.61	2500	184.20	40	223.44	80	259.49
40	150.15	20	185.18	60	224.34	4200	260.31
50	150.70	40	186.16	80	225.22	20	261.14
60	151.24	60	187.14	3400	226.11	40	261.96
70	151.78	80	188.11	20	226.99	60	262 ·78
80	152.32	2600	189 08	40	227.88	80	263.60
90	152.86	20	190.05	60	228.76	4300	264.42
1900	153.40	40	191.02	80	229.64	. 20	265.24
10	153.94	60	191.98	3500	230.52	40	266 06
20	154.47	80	192.93	20	231 40	60	266.87
30	155.01	2700	193.89	40	232.27	80	267.69
40	155.24	20	194.85	60	233.14	4400	268.51
50	156.08	40	195.80	80	234.02	20	269.32
60	156.61	60	196.75	3600	234.89	40	270.13
70	157.14	80	197.71	20	235.76	60	270.95
80	157.68	2800	198 66	40	236.62	80	271.76
90	158.21	20	199.60	60	237.49	4500	272.56
2000	158.74	40	200.54	80	238.36	20	273.37
20	159.79	60	201.48	3700	239.22	40	274.17
40	160.84	80	202.42	20	240.08	60	274.98
60	161.89	2900	203.35	40	240.94	80	275.78

Table VIII.—Two-thirds powers of numbers-continued.

Number.	g rd power.	Number.	şrd power.	Number.	ård power.	Number.	grd power
4600	276.58	6150	335.67	8300	409.93	10,900	491.6
20	277:39	6200	337.49	50	411.57	11,000	494.6
40	278.19	50	339.30	8400	413.22	100	497.6
60	278.99	6300	341.11	50	414.85	200	500.5
80	279.78	50	342.91	8500	416.49	300	503.5
4700	280.58	6400	344.71	. 50	418.12	400	506.5
20	281.38	50	346.50	8600	419.75	500	509.4
40	$282 \cdot 17$	6500	348.29	50	421 .37	600	512.4
60 ,	282.96	50	350.07	8700	423 .00	700	515.3
80	283.76	6600	351.85	50	424.62	800	518.3
4800	284.55	50	353.62	8800	426.24	900	521 ·23
20	285.33	6700	355.39	50	427.85	12,000	524 1
40	286.11	50	357.16	8900	429 · 46	100	527.0
60	286.90	6800	358.93	50	431 06	200	529 ·9
80	287.68	50	360.68	9000	432.67	300	532 ·8
4900	288.47	6900	362.43	50	434.27	400	535.7
20	289.26	50	364.18	9100	435.86	500	538.6
40	290.05	7000	365.93	50	437 • 45	600	541.48
60	290.84	50	367:67	9200	439.04	700	544.3
80	291.62	7100	369.41	50	440.64	800	547 20
5000	292.40	50	371·1 3	9300	442.23	900	550 04
50	294 34	7200	372.86	50	443.82	13,000	552.88
5100	296 27	50	374.58	9400	445.40	100	555.70
50	298 • 21	7300	376:31	50	446.97	200	558.53
5200	300.15	50	378.02	9500	448.54	300	561 35
50	302.06	7400	379.74	50	450.11	400	564.16
5300	303.98	50	381 • 44	9600	451.68	50 0	566.96
50	305.89	7500	383.15	50	453.25	600	569.76
5400	307.80	50	384 .85	9700	454.82	700	572.54
50	309.68	760 0	386.55	50	456.39	800	575.38
5500	311.58	50	388.24	9800	457.95	1900	578.10
50	313.46	7700	389.93	50	459.50	14,000	580.88
5600	315.34	50	391.62	9900	461.06	100	583.63
50	317.21	7800	393.30	50	462.61	200	586.38
5700	319.09	50	394.98	10,000	464.16	300	589.13
50	320.95	7900	396.66	100	467.25	400	591.88
5800	322.81	50	398.33	200	470.33	500	594.61
50	324.66	8000	400.00	300	473.39	600	597.34
5900	326.51	50	401.66	400	476.44	700	600.07
50	328.35	8100	403.32	500	479.49	800	602.80
6000	330.19	50	404.97	600	482.54	900	605.51
50	332.02	8200	406.63	700	485.57	15,000	608.22
6100	333.85	50	408.28	800	488.60		

TRIPLE VERSUS COMPOUND ENGINES.

The great economy resulting from the use of high-pressure steam is due to the fact that the increased pressure is obtained by the expenditure of an amount of fuel quite insignificant compared with the additional amount of energy it renders available. The following tabular statement will make this clear at a glance:

Table IX.—Pressures and efficiencies.

Working pressures lbs. per sq. in.	Absolute pressure lbs. per sq. in.	Evaporation commences from	Evaporation effected at	Total heat of eva- poration in Thermal units per pound.	Specific volume cubic feet per pound.	Total effective external work by one pound of steam in ft. Ibs.	Heat used per 1000 ft. lbs. of work done Thermal units.	Saving of fuel at each step per cent.
30 75 125 175	45 90 140 190	100° F. 100° F.	274° F. 320° F. 353° F. 377° F.	1098 1112 1122 1129	9·26 4·81 3·17 2·38	126 256 174,472 206,994 231,200	8.696 6.373 5.420 4.833	26.7 14.9 9.9

Note.—The release pressure is taken to be 10 lbs. per square inch, absolute, in each case, and a back pressure of 4 lbs. per square inch, absolute, is assumed.

That is to say,—an engine using steam of 125 lbs. pressure should, other things being equal, consume nearly 15 per cent. less fuel than one using steam of 75 lbs. pressure; and one using steam of 175 lbs. pressure should effect a further saving of nearly 10 per cent.,—so that, by using 175 lbs. steam in place of 75 lbs., a saving of over 23 per cent. should be effected.

In practice, however, it is found that a compound engine, using steam of 140 lbs. pressure, shows very little economy over a similar engine using 90 lbs. steam; whilst a triple engine using 140 lbs. steam, shows even a greater economy than is theoretically due to the increased pressure,—owing, no doubt, chiefly to the diminished range of temperature in each cylinder.

The actual amount of fuel saved by using a modern triple engine, working at 160 lbs. pressure, in place of a compound engine using, say

75 lbs. steam is nearly 25 per cent.

The following Table shows the comparative performances of some Compound and Triple engines, and confirms the above statements:—

3

Table X.—Comparison of Triple and Compound Engines.

Name.	Cylinders and Stroke.	Work- ing press- ure.	LH.P.	Range of temper- ature in cyls.	Consumpt. water per I.H.P. from diagrams.	Percentages of fuel saved.
"Northern,"	26" and 56"	115 lbs.	1285	H.P. 102° L.P. 100°	15 4 lbs.	"Draco" over "Northern," 8-4 per cent.
"Kovno,"	25" and 50" 45"	90 lbs.	809	H. P. 93° L. P. 100°	16.6 lbs.	"Draco" over "Kovno," 15 per cent.
"Draco,"	21", 82", and 56" 86"	110 lbs.	618	H.P. 64° M.P. 68° L.P. 66°	14·1 lbs.	"Finland" over "Draco," 8.6 per cent.
" Finland,"	20", 32", and 56" 36"	150 lbs.	806	H.P. 70° M.P. 70° L.P. 83°	12 [.] 88 lbs,	"Finland" over "Northern," 16 per cent. "Finland" over "Kovno," 22:4 per cent.
" Bolama,"	24" and 45"	80 lbs.	561	H.P. 91° L.P. 92°	16·8 lbs.	" Dynamo " over " Bolama," 22.6 per cent.
"Dynamo,"	17", 27", and 48"	150 lbs.	63 8	H.P. 78° M.P. 70° L.P. 80°	13·0 lbs.	"Finland" over "Bolama," 23:3 per cent.

When the average magnitudes of the strains set up in the two types of engine are compared, the result is again greatly in favour of

the triple.

Suppose a three-crank triple engine and an ordinary compound, having same size of L.P. cylinder, same length of stroke, and developing the same power,—the one using steam at 150 lbs., and the other at 75 lbs.; also let the equivalent mean pressure be 24 lbs. in each case, and let the efficiency of the expansion be the same in the two cases. Then, further, let the L.P. area be represented in each case by the number 14; the H.P. area of triple by 2, and the H.P. area of compound by 4, and the M.P. area of triple by 5. Then, if the equivalent, or referred, mean pressure is equally divided between the cylinders in each case, the relative work done will be as follows:—

Triple engine.

H.P. cylinder, 2×56 or 112. M.P. ,, 5×22·4 or 112. L.P. .. 14×8 or 112.

Compound engine.

H.P. cylinder 4×42 or 168. L.P. , 14×12 or 168. That is,—the average strain on the rods, columns, guides, &c., is 50 per cent. more with the compound than with the triple engine. The triple engine is also better balanced than the compound, works with less vibration, gives a more equable turning moment, and consequently a higher efficiency of propeller.

It is not surprising, therefore, that the triple compares so favourably

with the compound as regards wear and tear.

RATIOS OF CYLINDERS.

Two-stage or Compound engines.—Engines of this type are, for various reasons, still commonly fitted in paddle vessels, and in small screw steamers; they are also used for many auxiliary purposes on board ship, such as, for driving independent air and circulating pumps, centrifugal circulating pumps, feed pumps, dynamos, &c.

When fitted in Paddle vessels, the boiler pressure is usually from 10 to 100 lbs. for oscillating engines, and from 90 to 120 lbs. for other types,—the latter pressure having been used in many recent first-class

vessels with diagonal engines.

With these boiler pressures, and a cut-off of say '75 in the H.P. clinder, the ratios of cylinders should be,—to give the same degree of conomy as is usual in mercantile screw engines,—from about 1:5.25

for 90 lbs., up to about 1:6.75 for 120 lbs.

But considerations of weight and bulk put these ratios out of the mestion, and experience has shown that a ratio of about 1:3.25, regardless of boiler pressure, makes the best compromise. The extra mantity of coal to be carried is of little consequence where the voyage

sonly of three or four hours duration.

The ratios of cylinders for auxiliary engines are also determined here from considerations of weight and bulk than of economy, and without regard to boiler pressures,—with the result that they are larely made so great as in the case of the propelling engines, even when the auxiliary engine must run hour for hour with the main engines; in practice this ratio is generally about 1:2.5 to 1:3 for cylinders side by side, and 1:3.5 to 1:4 for tandem engines.

Three-stage or Triple engines, and Four-stage or Quadruple engines.—In the case of main or propelling engines for merchant or mail steamers, space and weight are, within ordinary limits, of very little consequence, whilst coal consumption is of the utmost importance, and L.P. cylinders are therefore usually made large enough to expand the steam down to the full economical limit,—of say, 6 lbs.

absolute.

The following Table shows the ratios of cylinders necessary to effect this, with a cut-off in the H.P. of '6 of the stroke:—

Table XI.—Ratios of	Cylinders.
---------------------	------------

Absolute pressure,	125	185	145	155	165	175	185	195
Ratio M.P.	2.04	2·11	2·19	2.26	2:33	2.40	2.47	2.54
Ratio L.P.	5	5.4	5.8	6.2	6.6	7.0	7.4	7 ·8
Working pressure, (above atmosphere)	110	120	130	140	150	160	170	180

The values given in the above table for the ratio $\frac{\text{L.P.}}{\text{H.P.}}$ are such that the nominal rate of expansion is, in each case, $\frac{\text{absolute pressure}}{15}$; and

those for ratio M.P. are calculated by the formula,-

M.P. area =
$$\frac{\text{L.P. area}}{1.1 \times \sqrt{\text{Ratio of H.P. to L.P.}}}$$

When the working pressure exceeds 175 lbs., the steam should be expanded in four stages, or, in other words, the engine should be of the Quadruple type.

For Quadruple engines, working at 175 lbs. to 200 lbs. pressure, the relative areas of cylinders may be about 1:18:36:79;

or
$$\frac{1 \text{st M.P.}}{\text{H.P.}} = 1.8$$

 $\frac{2 \text{nd M.P.}}{1 \text{st M.P.}} = 2$

and
$$\frac{\text{L.P.}}{2\text{nd M.P.}} = 2.2$$

It is, of course, possible to arrange the cylinders of large engine in many different ways, and the designer must always keep in vice equality of strains, and of ranges of temperature in the variou cylinders.

Fig. 8. Triple Expansion Engines.

Fig. 8A. Triple Expansion Engines.

Fig. 8B. Triple Expansion Engines.

Fig. 80. Triple Expansion Engines.

Figs. 8, 8A, 8B, and 8c show some of these arrangements.

It should be remarked, however, that, wherever possible, three ranks should be employed, and the tandem arrangement should only be resorted to in cases where there would otherwise be a low-pressure whinder of very large size,—say over 100 inches diameter.

Naval engines.—In war-vessels economy is only a very secondary onsideration, whilst space and weight are of the first importance, and the L.P. cylinders of triple engines are therefore rarely made note than 4.7 to 5 times the high-pressures.

The ratio of M.P. to H.P. is usually 2 to 2.25.

The boiler pressure now used is almost invariably 155 lbs.

Cases will, of course, often occur, in which the relative importance of economy, and of weight and bulk, will lie between the two extremes, of the cargo vessel on the one hand, and of the war-ship on the other, and the designer must meet them by adopting such intermediate ratios of cylinders as best suit the circumstances. In fast argo steamers the ratio of H.P. to L.P. is commonly 1 to 5.5.

EQUIVALENT MEAN PRESSURES, ETC.

In estimating the mean pressure obtained in any multiple-stage agine, it is usual to refer it to the L.P. cylinder, i.e., to calculate the ressure that would be required if the work of all three cylinders were to be done in the L.P. cylinder.

The value of this equivalent mean pressure, or $\mathbf{E}p_m$, for a triple agine is therefore,—

Rule 12.

 $\mathbb{E}_{p_m} = \mathbb{L}$. P. mean press. $+\frac{M.P. \text{ mean press.}}{\text{Ratio of L.P. to M.P.}} + \frac{H.P. \text{ mean press.}}{\text{Ratio of L.P. to H.P.}}$

Records of the Ep_m obtained with each engine should be kept,—legether with notes of the various conditions under which the trials were made,—such as pressure of steam at H.P. valve casing, degree topening of throttle or regulator valve, amount gear is "linked-up," aroum in condenser, &c.,—as they supply a ready means of checking alculations for sizes of cylinders, cuts-off, &c. of proposed engines of he same type, and of determining the exact values of the factors, approximate values of which are given in Table XIII., page 44.

Expansion of Steam: to determine Mean Pressures.

The mean pressure obtained, and consequently the work done, in my steam cylinder, or series of steam cylinders, depends mainly on the absolute pressure at which the steam is admitted, and the number of times it is expanded before release.

Let
$$p_1$$
 -absolute initial pressure.

$$p_m - ,$$
, mean

r - number of expansions, or volume after expansion volume before expansion

r = cut-off (reciprocal of r).

Then,—assuming that the steam is moderately moist, and that expansion takes place in accordance with Boyle and Mariotte's law, so that pressure varies inversely as volume (or pressure volume=constant),—the expansion curve will be a hyperbola, and the p_m , or mean length of the ordinates to the curve will be given by the formula,—

Rule 13.
$$p_m = p_1 \frac{1 + \text{hyp. log } r}{r}.$$

The following Table gives the values of $\frac{1 + \text{hyp. log } r}{r}$ for various numbers of expansions, and will be found useful in calculations relating to mean pressures, &c.:—

Table	XII.—	Expansi	on (of S	iteam.
-------	-------	---------	------	------	--------

r	$\frac{1}{r}$	$\frac{1 + \text{hyp.log } r}{r}$	17-16r-18	,	$\frac{1}{r}$	1+hyp.logr	$\frac{17-16r^{-\frac{1}{18}}}{r}$
20	.050	·1998	186	5.00	•200	·5218	•506
18	.055	·2161		4.44	.225	5608	
16	.062	•2358		4.00	250	.5965	•582
15	.066	.2472		3.63	.275	6308	[
14	.071	.2599	l l	3.33	.300	·6615	·648
13.33	.075	.2690	.254	3.00	.333	•6993	
13	.077	.2742		2.86	.350	7171	·707
12	.083	2904		2.66	.375	·7440	
11	.091	.3089		2.50	.400	.7664	-756
10	.100	-3303	·314	2.22	·450	·8095	-800
9	.111	.3552	· I	2.00	.500	·8465	*840
8	.125	.3849	·370	1.82	.550	·8786	·874
7	.143	·4210		1.66	·600	9066	-900
6.66	.150	·4347	·417	1.60	*625	9187	l . .
6.00	.166	4653		1.54	.650	.9292	•926
5.71	.175	·4807		1.48	.675	9405	

Absolute initial pressure should be taken at 3 to 5 lbs. below the absolute boiler pressure, and back spressure at about 4 lbs.; also number of expansions is to be understood as the nominal number or L.P. capacity

H.P. capacity at cut-off,

occurrence of release in final cylinder before end of stroke.

Then, to determine the p_m , when the boiler pressure is fixed, and he best number of expansions agreed upon,—multiply the p_1 by the antity found in column 3 of the above Table opposite the proper umber of expansions, and subtract back pressure from the product. Column 4 gives the multipliers for dry saturated steam, calculated

y Rankine's formula $\frac{p_m}{p_1} = \frac{17 - 16r^{-\frac{1}{16}r}}{r}$ which is based on the

ssumption that pvH=constant. It will be seen however, that, xcepting at very high rates of expansion, there is no very great

ifference between column 3 and column 4.

As values of mean pressures, found by aid of above table, are etermined without taking into consideration such disturbing elements a clearance, compression, radiation, friction of ports and passages, ecciver "drop," initial condensation and subsequent re-evaporation, c., it is necessary to allow for these in some way; but, the alculations for their values being laborious, and involving so many sumptions as to be of doubtful accuracy when finished, it is best o allow for them all at once by multiplying by a single factor, the alue of which is derived from experience.

Then $p_m \times \text{factor} = \mathbb{E}p_m$, or equivalent mean pressure,—(q.v.

mage 41).

The following Table gives the average value of this factor for the arious types of engine, and under the various conditions named:—

Table XIII.—Ratios of Actual Mean Pressures to Theoretica

Description of Engine.		Jacketed.	Unjacketed.
(1) Expansion taking place all in one cylinder; ports of average size; and ordinary slide valve driven by ordinary eccentric;—as in various auxiliary engines,		•	76 to '80 MEAN '78
(2) Expansion taking place all in one cylinder; ports of average size: and ordinary slide valves driven by ordinary eccentric gear;—as in low-pressure paddle engines,			{ *68 to *75 MEAN *71
(3) Expansion taking place in two cylinders with receiver between; ports of average size; ordinary slide valves (H.P. single-ported, and L.P. double-ported); and ordinary eccentric gear;—as in paddle engines, small screw engines, and some auxiliary engines,	Screw Paddle Auxly.	{ '67 to '78 MEAN '70 .	*58 to *68 MEAN *63 { *55 to *65 MEAN *60 { *45 to *50 MEAN *47
(4) Expansion taking place in two cylinders, placed in same line, and exhausting direct from one to the other; ports, alide valves, and gear as in (3);—as occasionally used,			{ ·71 to ·75 MEAN ·72
(5) Expansion taking place in three cylinders, placed side by side, with receivers between them; ports of average size; ordinary slide values (say piston value for H.P. and double-ported flat slides for M.P. and L.P.; and ordinary eccentric gear;—as used in most merchant steamers,		('64 to '68) MEAN '66	-60 to -66 MEAN -63
(6) Engines same as (5); but ratio of H.P. to L.P. not exceeding 1:5; and running at 90 to 140 revolutions;—as in ironclads and cruisers,	• .	{ .55 to .65 MRAN .60	·
(7) Engines same as (5); but ratio of H.P. to L.P. not exceeding 1:5; and running at 200 to 350 revolutions;—as in torpedo gunboats, &c.,	•	•	{ '60 to '67 MEAN '63

In the case of any multiple-stage engine, where the power is divide equally amongst the cylinders, whose number is N, and where the

ivalent mean pressure is Epm, the mean pressures in the various Inders are as follows :--

L.P. mean pressure
$$=\frac{Ep_m}{N}$$
.

M.P. , $=\frac{Ep_m}{N} \times \frac{\text{L.P. area}}{\text{M.P. area}}$.

H.P. , $=\frac{Ep_m}{N} \times \frac{\text{L.P. area}}{\text{H.P. area}}$.

PISTON SPEED.

Usually reckoned in feet per minnte.

Mean value $-2 \times$ stroke in feet \times revolutions per minute.

Experience with naval machinery has shown that the largest istons (i.e., up to 100 inches diameter) may be safely run at speeds p to 850 and 900 feet per minute.

With the lighter machinery of torpedo gunboats speeds of 1000

a 1100 feet per minute have given perfectly satisfactory results.

In the case of torpedo boats, the speeds usually employed are from

300 to 1200 feet per minute. The standard practice in cargo steamers is very fairly represented by the expression 144 $\sqrt[4]{S}$, where S is the stroke in inches. (North-East Coast rule—sec page 2.)

In large passenger and mail steamers the speed is now commonly

160 to 800 feet per minute.

In the case of paddle engines, and especially of oscillating paddle agines, the available range of piston speeds is very closely limited by the other conditions of the case, and has not often in practice !xceeded.—

For vertical oscillating engines, . 450 feet per minute. .. inclined engines with connecting rods, 550 to 600,

As the powers obtained from a given weight and bulk of engine rary almost directly as the piston speed, the efforts of engineers are onstantly directed to obtain higher speeds, without undue increase f wear and tear, and there is therefore every probability of advance n this direction.

By increasing piston speed a perceptible reduction can also be made

n the percentage of heat lost by radiation.

There are two ways of getting increased piston speed, viz.:-

 Increase length of stroke and let revolutions remain same; (2) Increase revolutions and let length of stroke remain same;

but there is this important difference in the result obtained,—

In the first case, the cost, bulk, and weight of engines all increase lirectly as piston speed; whilst in the second case, there is practically no increase under any of these heads; and it is therefore in this second direction that the designer must go when limited as regar

On the other hand, it must not be forgotten that, for a give cylinder capacity, the long stroke and small diameter cylinder has distinct advantage over its rival, in its smaller piston area, and consequently reduced pressures and strains.

The most evident limits to increase of piston speed (and of revolutions) are,—the size of ports and consequent size and weight of valve

and the inertia of the reciprocating parts.

REVOLUTIONS.

In the case of paddle engines, the revolutions are, of course, strictly limited by the diameter of wheel and speed of vessel, and increased power must therefore be obtained either by increased stroke, pressure, or diameter of cylinders.

The following Table gives the maximum numbers of revolutions

per minute usual in the classes of vessels named :-

Table XIV.—Revolutions.

Description or Class.	Revolutions.	Indicated Horse-power.
Battle Ships and First Class Cruisers,	90 to 110	Per set of engines. 10,000 to 4000
Second Class Cruisers,	120 to 140	Per set of engines. 4500 to 3000
Torpedo Gunboats,	. 220 to 350	Per set of engines. 2500 to 1500
Torpedo Boats,	350 to 600	2000 to 800
Large Mail Steamers,	65 to 75	16,000 to 8000
Fast Passenger Steamers,	90 to 140	3000 to 1500
Ordinary Cargo Steamers, .	65 to 100	2500 to 300
Paddle Steamers,	25 to 55	

For ordinary cargo steamers, the relation between length of stroke and revolutions given by the rule—piston speed = 144 $\sqrt[3]{S}$ (see page 2) in the following Table:—

Table XV.—Relation between Stroke and Revolutions, Cargo Steamers.

Stroke in inches.	Revolutions per minute.	Stroke in inches.	Revolutions per minute.	Stroke in inches.	Revolutions per minute.
18	125	33	84	48	65
21	113	36	79	51	63
24	103	39	75	54	61
27	96	42	71	57	58
30	89	45	68	60	56

STROKE OF PISTON.

The following are the lengths of stroke usual in the various classes f vessels named:—

Table XVI.—Stroke of Piston.

	Cru	isers,		45 to 51 inches.
				36 to 42 ,,
				18 to 21 ,,
	,			9 to 18 ,,
				60 to 78 ,,
,				30 to 48 ,,
mers	3,			18 to 60 ,,
				30 to 102 ,
		· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·

When engines of the overhead beam type are used in paddle vessels the stroke is sometimes as much as 10 feet and even 12 feet.

In ordinary cargo steamers the length of stroke is usually about $66 \times$ diameter of L.P. cylinder. (See Table I., page 4.)

TO CALCULATE DIAMETER OF CYLINDER FOR A GIVEN POWER.

The following rules apply to L.P. cylinders only,—the sizes of M.P. and H.P. cylinders being supposed to be fixed from those of the L.P. by the rules given in section on "Ratio of cylinders," pages 35-41.

For rapid calculations, use the formula for Estimated Horse Power given on page 1, and here repeated; the result will usually be within 5 per cent.

Rule 14.

E. H. P:
$$=\frac{D^2 \times \sqrt{p} \times R \times S}{8500}$$

where D = diameter of L.P. cylinder in inches. p = absolute boiler pressure. R = revolutions per minute.

 $\mathbf{K} = \mathbf{revolutions}$ per min $\mathbf{S} = \mathbf{stroke}$ in feet.

If the size of cylinder is required for a given N.H.P., on the basi of a rule of the form,—

N.H.P. =
$$\frac{d_1^2 + d_2^2 + d_3^2}{F}$$

where d_1 , d_2 , d_3 , are respectively diameters of H.P., M.P., and L.F cylinders, and F is some factor representing number of circular inches

of piston per N.H.P.—put r for ratio $\frac{\text{H.P. area}}{\text{L.P. area}}$, and R for ratio $\frac{\text{M.P. area}}{\text{L.P. area}}$; then,—

Rule 15. Diameter of L.P. = $\sqrt{\frac{\overline{N.H.P.\times F}}{r+R+1}}$

If the rule takes the form,—

N.H.P. =
$$\frac{d_1^2 + d_2^2 + d_3^2}{F_1} \times \sqrt[3]{S}$$

where S is the stroke in inches; then,-

Rule 16. Diameter of L.P. =
$$\sqrt{\frac{N.H.P. \times F_1}{(r+R+1)\sqrt[3]{S}}}$$

If the size of cylinder for a given Indicated Horse-power i required, let S stand for piston speed in feet per minute, and Ep_m for the equivalent mean pressure in pounds per square inch (calculated by rules given on pages 41-45); then,—

Rule 17. Area of L.P. cylinder = $\frac{\text{I.H.P.} \times 33,000}{\text{E}p_m \times \text{S}}$; or, if piston speed is required,—

Rule 18. Piston speed $= \frac{I.H.P. \times 33,000}{L.P. area \times En.}$

or, again, if equivalent mean pressure is required,-

Rule 19. $Ep_m = \frac{\text{I.H.P.} \times 33,000}{\text{I.P. area } \times 8};$

and lastly, if I.H.P. is required,-

Rule 20. I.H.P. $=\frac{\text{L.P. area} \times \text{S} \times \text{E}p_m}{33,000}$

CYLINDER PORTS, PIPES, AND PASSAGES.

In fixing the sizes of cylinder ports, &c., it is necessary—as in so many other cases—to discover the best compromise. By increasing the port areas, for instance, "wire-drawing" is diminished, a freer exhaust is obtained, and the resulting indicator diagram is fuller; but, at the same time, the size and weight of cylinder, of slide-valve, and of valve-gear, are increased, and the loss may easily balance the gain.

The following figures give such speeds of steam as are usual in triple engines of the best class; but it must be understood that in dealing with very high piston speeds (say over 900 feet per minute), it is not always either possible or advisable to give such large areas:—

Table XVII.—Speeds of Steam.

```
Main steam pipe, 8000 ft. per minute; or, say 8100 ft., then-
 Diameter - Dia. of H.P. cyl. × VMean piston speed.
 (Nearly equivalent
   Ports (during ex-\begin{cases} H.P. - 5,800 \\ M.P. - 7,200 \\ L.P. - 8,600 \end{cases}
                                                        to 40, 50, and 60 c.
                                                ••
                                                        ft. of cylinder per
 haust).
                                                ,,
                                                        sq. inch of port per
                                                       (minute.
 Exhaust pipe or passage from one cylinder to next or L.P. — 4,500 L.P. — 7,000
                                                ,,
                                                ,,
                                                       (Nearly equivalent
Ports (during H.P. — 5,800 m.P. — 8,600 high-speed engines, L.P. — 11,500
                                                        to 40, 60, and 80 c.
                                                ,,
                                                        ft. of cylinder per
                                                ,,
                                                        sq. inch of port per
                                                        minute.
```

For Two-stage or Compound engines use the above figures, only omitting those referring to M.P. cylinders.

The following Table is based on the above figures, and gives the proportions at a glance,—where A is the area of the cylinder:—

Table XVIII.-Divisors for Ports, &c.

I. P. A. + Area of main eduction.	2860 2880 2880 2003 2003 1175 1175 1107 1107 1107 1107 1107 1107
M.P.A. Area of pipe from M.P. to L.P.	227 227 227 227 227 227 232 247 253 253 253 253 253 253 253 253 253 253
H.P.A. rea of pipe from H.P. to M.P.	221 1125 1125 1125 1125 1125 1125 1125
L.P.A. + Area of L.P. ports.	24.4 28.4 28.4 28.4 20.4 20.1 20.1 20.1 20.1 20.1 20.0 20.0 20.0
M.P.A. + Area of M.P. ports.	28 28 28 28 28 28 28 28 28 28 28 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
H.P.A. + Area of H.P. ports.	2890 11890 11800 11900 11000 1000 1000 10
I. P.A. † Mean area of L.P. max. openings.	2000 2000
M.P.A. ÷ Mean area of M.P. max. openings.	2888 2886 2886 2886 2866 2866 2866 2866
H.P.A. + Mean area of H.P. max. openings.	237.5 287.5 287.5 28.6 20.6 20.7 20.0 20.0 20.0 20.0 20.0 20.0 20.0
H.P.A. + Area of main steam.	8800 111.4 1000
Piston apped, feet per minute.	200 250 300 300 350 440 550 550 650 700 700 700 850 860 860

To determine the area of any port, pipe, passage, &c., for any given speed of piston,—Divide the area of the cylinder by the number found in the proper column opposite the given piston speed, and quotient will be area required.

GENERAL REMARKS ON STRENGTHS, &c.

The dimensions and proportions given for the various details of engines, in this and succeeding sections, are in all cases such as experience has shown to give satisfactory results, both as regards stiffness and strength, and also as regards durability. Where weight is not a consideration of importance, the various parts may be made heavier, or larger, but, with good material this is unnecessary; on the other hand, they may be, and are sometimes, made smaller or lighter,—as in some Naval vessels for example,—but in such cases, the increased risk of breakdown, and the increased wear and tear when working at full power, are understood, and accepted as the price that must be paid for reduction in weight.

CYLINDER BARRELS.

Cylinder barrels should be made of good sound cast-iron, at least twice melted, and of the thicknesses given by the following rules:—

Rule 21.
$$T = \frac{D}{6000}(p + 50) + 2$$
; for cylinders fitted with liners.

Rule 22.
$$T = \frac{D}{6000}(p + 50) + 4$$
; for cylinders without liners.

Where T is thickness of barrel, and D diameter of cylinder, both in inches; and p is maximum pressure in cylinder,—the values of which are assumed to be as follows:—

For H.P. cylinders of Triple and Quadruple

engines, p - boiler pressure. H.P. ,, $\hat{p} = \text{boiler pressure} + 20$. Compound ,, M.P. Triple ,, $p = 6 \times \text{boiler pressure.}$ M.P., Quadruple $p = 7 \times$ M.P., $p = 45 \times$,, Compound ,, $p = 5 \times \text{(boiler pressure + 20.)}$ L.P. ,, L.P. Triple ,, $p = .37 \times \text{boiler pressure.}$ Quadruple ,, $p = .3 \times$,, ,, L.P.

It is also assumed, as previously stated, that compound engines work at pressures between 70 lbs. and 120 lbs.; Triple engines between 120 lbs. and 175 lbs.; and Quadruple engines between 175 lbs. and 200 lbs.

For working pressure of 160 lbs. the formulæ may be reduced to the forms given at the heads of the columns in the following Table, which is calculated in accordance with them, for 160 lbs.:—

Table XIX.—Cylinder Barrels of Triple Engines (160 lbs.).

Cy- ing.	Thickness i	in inches, WI	TH LINERS.	Thick. in i	nches, WITH	OUT LINERS.	
Dia. of linder in	H.P. D 28·5+ ·2	M.P. D/41 + ·2	L. P. D 55 + 2	H.P D 28·5+·4	M.P. D/41+4	L.P. D 55+4	
30 35 40 45 50 55	90 15/6 1 07 1/6 1 25 1/4 1 42 17/6 1 60 15/6 1 77 13/4 1 95 115/6 2 12 21/8 2 30 25/6	81 15/6 16/6 198 1 105 11/6 117 11/6 117 11/6 117 11/6 11/6 11	.83 13/16 .93 15/16 1.02 11/16 1.11 11/16 1.20 11/14 1.29 15/16 1.38 13/16	1.4517,6 1.621% 1.8013/6 1.972 2.152% 2.322% 2.5022/2	-89 15/16 1 01 1 1 13 1 1/4 1 25 1 1/4 1 37 1 1/4 1 62 1 1/4 1 162 1 1/4 1 186 1 1/4 1 188 2 2 10 2 1/4 2 2 3 2 1/4 2 35 2 3/8	58 % 67 11/6 76 13/6 85 % 94 1 1 03 1 1/6 1 22 1 1/4 1 31 1 1/6 1 34 1 1/6 1 40 1 1/6 1 58 1 1/6 1 76 1 1/6 1 76 1 1/6 1 85 1 1/6 1 94 1 1/6/16 2 03 2 1/6 2 13 2 1/6 2 13 2 1/6 2 40 2 1/6	

The thicknesses given by the rule for the cylinders of Compound engines working at 100 lbs. pressure are exhibited in Table XX.

Table XX.—Cylinder Barrels of Compound Engines (100 lbs.).

	-		i Delli	em or C	ombon	na Pus	TICS (10	w iva. j.		
÷ <u>ä</u>	Thickne	ss in inch	es, WITI	H LINERS.	Thick.	Thick. in inches, WITHOUT LINERS				
Dia. of Clinder in	H. D 35·3	.P. + 2	T	L.P. H.P. D + 2 S5-3+4		1 D 55	.P. + 4			
10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95 100	76 91 1·05 1·19 1·33 1·47 1·61 1·75 1·90 2·04	34 15/16 11/16 13/16 11/2 15/8 11/2 21/16	*83 *93 1.02 1.11 1.29 1.38 1.47 1.56 1.64 1.83 1.93 2.02 2.02	13/16 11/16 11/16 11/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16 21/16 21/16	*68 *82 *96 1·11 1·25 1·39 1·53 1·67 1·81 2·10 2·24	1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 2 1/2	*58 *67 *85 *94 1.03 1.13 1.49 1.58 1.67 1.76 1.84 2.03 2.13 2.22 2.31	% 11/16 11/1		

For the very light machinery of torpedo gun-boats, &c., the thicknesses of cylinders for working pressure of 160 lbs. may be as shown in following Table:—

Table XXI.—Cylinder Barrels of Torpedo Gunboats.

		-cymide:	Danie	e or roth	cuo Gui	DUGIG.	
Diameter of cylinder in inches.	Thickne	I.P. ss in inches + 35.	Thickne	S in inches + 3.	L. P. Thickness in inche D + ·25.		
10 15 20 25 30 35 40 45 50	·57 ·68 ·79 ·90 1·01 1·12	9/16 11/16 18/16 16/16 1 1 1/8	 :58 :68 :78 :88 :97 1:07 1:16	% 1 1/16 13/16 7/8 1 11/16 1 15/16	.58 .67 .75 .83 .91 1.00 1.08	% 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16	

The mixture of iron for cylinders of this type must, of course, be of a very special character, and should contain a good proportion of best cold-blast iron.

For thicknesses of cylinder barrels for oscillating engines see page 68.

The barrels of all cylinders are improved by the addition of external stiffening ribs or rings; these may have a thickness of $1.5 \times$ thickness of barrel, and may stand $75 \times$ thickness of barrel above the surface, whilst they may be pitched about $12 \times$ thickness of barrel apart.

CYLINDER LINERS.

Cast-iron cylinder liners should be of thickness given by the rule,—

Rule 23.
$$T = .8 \left\{ \frac{D}{6000} (p+50) \right\} + .35$$

where T is thickness, and D diameter, both in inches, and p has the same values as given in section on cylinder barrels, above.

The following Table is calculated by means of the above formula, for liners of triple engines working at 160 lbs. pressure:—

Table XXII.—Cast-iron Cylinder Liners (160 lbs.).

Diameter in inches.		Thickness in inches.						Thickness in inches.					8.
D ta	В	H.P.		.P.	L	.P.	Dian in i	H	. P.	l N	1. P.	I	.P.
10 15 20 25 30 35 40 45 50 55	0.91 1.05 1.19 1.33 1.47 1.61 1.75 1.89	15/16 11/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16 15/16	0.83 0.93 1.03 1.13 1.22 1.32	15/16 15/16 11/8 11/4 15/16	0.85 0.92 1.00 1.08 1.15	2 / 7	1100			1.62 1.71 1.81 1.91 	1 1 3/16 1 1 5/16 1 1 5/16 	1·36 1·44 1·51	113/1 1%
60	2.03	2 2	1.52	11/2	1.22	11/4	1		 				

When of forged steel, cylinder liners should be of thickness given by

Rule 24.
$$T = .65 \left\{ \frac{D}{6000} (p+50) \right\} + .3$$

where all symbols have same meanings as above.

Table XXIII. is calculated by means of this formula, for liners triple engines working at 160 lbs. pressure.

Table XXIII.—Forged steel Cylinder Liners (160 lbs.).

Diam. of cylinder		Thickness in inches.								
in inches.	F	I.P.	.	1.P.	L	. P.				
20 25 30 35 40 45 50 65 70 75 80 85 90 96 100 105	.75 .87 .98 1-10 1-21 1-33 1-44 1-55 1-66	%4 %1 11%, 11%, 11%, 11%, 11%, 11%, 111%,	.77 -85 -93 1·01 1·09 1·17 1·25 1·38 1·41 1·49	13/16 16/16 1 11/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16	*83 *89 *95 1.01 1.07 1.12 1.18 1.24 1.30 1.36 1.42 1.42 1.54 1.60	1 1/4 e 1 1/4				

For liners of horizontal cylinders the above thicknesses may be increased by ½_a-inch.

For steel liners the piston packing rings should be of hard bronze, as east-iron will not work satisfactorily with forged steel.

CYLINDER ENDS AND COVERS.

In most engines the cylinder end has, in addition to supporting the uniformly distributed load due to the steam pressure, to take the more or less locally applied pull of the frames or columns, and distribute it to the barrel; and the various ribs or webs must therefore be carefully arranged to effect this.

When the L.P. diameter is over 70 inches, it is desirable to make the end double, and this must of course be done for any size when

steam jackets are required.

The double bottom adds considerably to the weight of a cylinder, as the inner metal must still be made strong enough to stand all local shock and strain; and it increases the risk of unsoundness in the casting.

In Naval work the double bottom is frequently dispensed with, on account of its weight; but owing to the use of the conical or "dished"

steel piston, the cylinder end can also be "dished," and is thus given such additional structural strength that L.P. cylinders are commonly made with single ends up to 90 inches diameter.

Table XXIV. gives the thicknesses of single and double cylinder ends for triple engines working at 160 lbs. pressure, the following conditions being assumed:—

- (a) The over all depth or thickness of a double end is not less than five times that of the metal given in the table.
- (b) In a single end, the total depth of the central ring (forming the hole for boring-bar) is not less than 5½ times the thickness of end given in the table.
- (c) The number, strengths, and positions of webs, &c., are as customary in "average" practice for two, three, or four columns or frame attachments.

As much depends on (c) the Table and rules from which it is calculated must be used with judgment, and checked by the rule for flat surfaces given on page 59.

The rules from which Table XXIV. is calculated are,-

Rule 25. Thickness of single cylinder end = $.85 \times f$.

Rule 26. Thickness of double cylinder end = $7 \times f$.

where f is thickness of barrel (columns 8, 10, and 12, Table XIX. + 25 in.

able XXIV.—Cylinder Er

_		
inches.	n inches. Double end.	25 25 25 25 25 25 25 25 25 25 25 25 25 2
#	-	83. 845. 889. 889. 889. 889. 889. 889. 889. 88
L.PThick. in inches.	Single end.	**************************************
	Sing	25:1001440 11:001468 11:001468 11:001688 11:001688 11:001688 11:001688 11:001688 11:001688 11:001688 11:001688 11:001688 11:001688
hes.	Double end.	**************************************
k. in inc	noŒ	\$\$\\ \frac{2}{2} \\ \
M.PThick. in inches	Single end.	22 22 22 22 22 22 22 22 22 22 22 22 22
1	Sing	26 27 27 27 27 27 27 27 27 27 27 27 27 27
hes.	Double end.	11 12 7 7 6 1 1 1 1 2 7 7 6 1 1 1 1 2 7 7 6 1 1 1 1 1 2 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c. in inc	Don	
H.P.—Thick. in inches	Single end.	% %%%%%%% % %%%%%%% % % % % % % % % % %
	Sing	20011 20011 20011 2012 2012 2013 2013 20
Diam.	cylin. Inches	01100 08884 080 080 080 080 080 080 080 080

There is something to be said in favour of the practice of making the inner metal of double bottoms and covers a little heavier than the outer in large cylinders, and if it is desired to do this, the inner metal may be made $\frac{1}{16}$ inch thicker than shown in table, and the outer $\frac{1}{16}$ inch lighter than table.

Single cylinder covers should not be used for larger sizes than about 12 inches H.P., 24 inches M.P., and 40 inches L.P.; and in vertical engines it is better to make all but the very smallest of the double type. Single covers may be much strengthened by adding small T or bulb heads to the ribs. Single covers should be of thickness given by,—

Rule 27. Thickness of single cylinder cover = $77 \times f$;

and for double covers,-

Rule 28. Thickness of double cylinder cover = $.65 \times f$;

similar general conditions being assumed, as in the case of cylinder ends.

A sufficiently close approximation to these thicknesses, for triple engines working at 160 lbs. pressure, may be obtained by multiplying

the thicknesses given in Table XXIV. for cylinder ends by 9.

In large cylinder covers and bottoms, or ends, care should be taken that there is no lack of strength in the central ring which surrounds the stuffing-box or manhole in the one case, and the boring hole in the other; it should have the same thickness as the metal of the cover or end, and good radii should be used in the corners formed by its junction with the metals of the bottom or cover, and of the various webs.

Very light cylinders, of the type referred to in Table XXI., are better made with loose covers for both ends, the thicknesses of which should be as follows:—

Rule 29. Thickness of end covers = $.5 \times f_1$;

where f_1 is the thickness of cylinder barrel (from Table XXI.) + 25 inch. They should be made of the same special iron as the barrels, and should each have from 6 to 12 deep stiffening ribs, the mean thickness of which (they should have $\frac{1}{16}$ -inch taper for moulding) may be $\frac{1}{16}$ -inch less than that of the cover.

CYLINDER VALVE BOXES, PORTS, ETC.

The casings, ports, passages, &c., for piston slide-valves should be made of thicknesses given by,—

Rule 30. Thickness of piston valve casing = $.8 \times f$;

and when flat slide-valves are used the thicknesses of casings

Rule 31. Thickness of valve casing $-7 \times f$;

f having, in both cases, the same value as above.

It will be noted that the latter value ('7 x f) is the same as for metal of double ends, the thicknesses of which (for triple engines working at

160 lbs. pressure) are given in Table XXIV.

It must be remembered that in the case of valve casings, as in that of cylinder ends, a very great deal depends on the number, size, and arrangement of stiffening webs, and the following rule should therefore be used in conjunction with the Table:—

Rule for flat surfaces.—All flat surfaces should be stiffened by webs or stays of some form, whose distance apart should not exceed.—

Rule 32. Pitch in inches
$$-\sqrt{\frac{l^2 \times C}{p}}$$
;

where t is the thickness in 16ths of an inch, p, the pressure in pounds per square inch on the surface, and C equals 50 for cast iron, and 120 for cast steel.

These webs should be of the same thickness as the flat surface, and their depth at least 2.5 times the thickness.

When flat slide-valves are used the thickness of the metal which separates the steam ports from the steam chest or receiver, and from the exhaust port, should be in accordance with the following rule,—it being understood that the ports of large cylinders are so divided by webs that no section or compartment exceeds 20 inches in width:—

Rule 33. Thickness of port metal = $.65 \times f$,

where f has the same value as before.

These thicknesses (for triple engines working at 160 lbs. pressure) may be obtained with sufficient accuracy by multiplying the figures found in columns 8 and 12 of Table XXIV. by '9.

The slide-valve faces of cylinders, when a false face is fitted, should be made of thickness given by the rule,—

Rule 34. Thickness of cylinder valve-face (when a false face is fitted) $- \cdot 8 \times f$,

and when no false face is used, the rule becomes,-

Rule 35. Thickness of cylinder valve-face (when no false face is used) = $.9 \times f$.

False faces of hard cast-iron may have a thickness,-

Rule 36. Thickness of cast-iron false face $-.75 \times f$.

CAST-STEEL CYLINDER COVERS.

For a flat plate secured round the edge after the manner of a cylinder cover, but yet not quite encastré, the formula may be written,—

$$t = \sqrt{\frac{3r^2p}{4f}} \qquad . \qquad . \qquad (a)$$

where t is the thickness in inches; r the radius of the cylinder,—also in inches; p the maximum pressure on cover in lbs. per square inch above atmosphere; and f the greatest permissible stress per square inch on the material. When a suitable value of f has been inserted, and a small constant quantity (necessary for practical reasons) added, this becomes,—

Rule 37.
$$t = \sqrt{\frac{3r^2p}{160,000}} + .25,$$

which gives the thickness (very nearly) of steel cylinder covers of the single type, ribbed as directed below, and coned to suit steel pistons, made in accordance with formulæ and Table given on pages 76-79.

For steel covers of triple engines, working at 160 lbs. pressure, this formula (after reduction and further slight adjustment of constant) takes the forms given at heads of columns in following Table:—

Table XXV.—Cast-Steel Cylinder Covers.

		H.P.			M.P.		L.P.		
Dia. of cylinder in inches,	Thick. i	in inches	No. of ribs D+20 6	Thick.	n inches	No. of ribs D+20 7.5	Thick, 1	n inches - 42.	No. of ribs D+20 9
10	.:52	%16	5	-52	% 3/4 7/8 1 ¹ /16	4	•52	%6	4
20	•79	13/18	7	·70	3/4	6	.62	1 %	5
30	1.07	11/16	9	·87	1 %	7	.72	8%	6
40	1.35	1%	10	1.05	11%	8	-82	% 8/4 7/8 1 5/1 6	7
50	1.63	1%	12	1.23	11/4	10	•92	15/16	8
60	1.91	115/16	14	1.41	17/16	11	1.02	11/16	9
70	•••			1.59	1%	12	1.12	11/8	10
80				1.77	113/16	14	1.22	11/4	12
90		•••					1.32	1%	13
100	•••						1.42	17/16	14
110	•••						1 52	1%16	15

Where the size of the cover permits it, and there is no centra stuffing-box, a very strong form may be obtained by fitting a centra manhole (say 15 inches diameter), and surrounding it by a good stouring of metal to form an abutment for the radial ribs.

The thickness of the ribs may be '9 x thickness of cover.

The steeper cone of the H.P. cover undoubtedly gives it considerable additional strength, but its greater liability to shock and strain from the presence of water may be considered as almost balancing the account.

CAST-IRON VALVE BOX COVERS.

Where these are circular, as in the case of covers for piston-valve boxes, a modification of the formula (a) given above may be again employed; the nature of the material renders the addition of a larger constant quantity necessary, and provision must be made for stiffness in L.P. covers by adding a constant to the pressure also. The formula may then be written,—

Rule 38.
$$t = \sqrt{\frac{3 \times r^2 \times (p+15)}{4 \times 45,000}} + 5.$$

This will be found to give practically the same results as Rule 28 and Table XXIV., and may be used in their place for cylinder covers, if preferred.

These covers should be stiffened by radial ribs which may have a thickness of '9×thickness of cover, and a depth at centre of 3.5×thickness of cover,—the outer edge of rib being a curve of the parabolic type when the cover is flat.

It will often happen that a cover can be made more or less curved, or dished one way or the other, and this should always be done where possible,—as the whole cover may then be made lighter.

The number of ribs may be the same as for cast-iron pistons (see

Table XXXVI., pages 82 and 83).

Where weigh-shaft brackets, or slide-rod guides, are attached to these covers, they must, of course, be made proportionately

stronger.

For rectangular doors consisting of a single flat plate of metal of thickness (t), stiffened by ribs, the greatest section of which is not less than $(3 \times t) \times (9t)$, and which are spaced in accordance with Rule 32 (page 59), the formula is,—

Rule 39.
$$t = \sqrt{\frac{K \times b^2 \times (p+15)}{c}} + 5$$
 . (b)

where t =thickness in inches.

b =breadth within flanges of valve-boxes, in inches.

 $K = \frac{Length^4}{Length^4 + breadth^4}$

 $p = \max$, pressure in lbs. per sq. inch to which door is subject.

c = 70,000 for single doors.

c = 450,000 for double doors (see next paragraph).

When the door is rectangular and of the double type—consisting of two equal thicknesses of metal tied together and locally stiffened by

ribs, in conformity with Rule 32—the overall thickness of the door at centre should be not less than $\frac{\text{Shortest span}}{5}$, and the outer surface

may be curved in both directions, like a "hog-back" girder. When these conditions are complied with, the formula (b), given above, will give the thickness of either the outer or inner metal if the value c=450,000 be employed.

Large doors of this type, when fitted to naval engines, are commonly made in cast-steel—to save weight. When this material is used the overall thickness of door at centre may be $\frac{\text{Shortest span}}{6.5}$, and the following variant of the above formula (b) may be used to determine thickness of metal:—

Rule 40.
$$t = \sqrt{\frac{K \times b^2 \times (p+15)}{250,000}} + 25.$$

A convenient method of saving some space and weight, in connection with doors of this type, is to slightly increase the thickness of the inner metal, and then make sufficient openings in it, towards the ends, to allow of the door itself being utilized as a passage for the steam from one end of the valve-box to the other.

When L.P. valve-boxes and doors, &c., are to be subjected to high test pressures—such as 90 or 100 lbs, per sq. inch—they should be designed as for about half that pressure—45 to 50 lbs. instead of for the usual 25 or 30 lbs. to which the receiver safety-valve is loaded.

JOINTS OF CYLINDER COVERS, ETC.

As the widths and thicknesses of flanges should vary directly as the diameter of the stud employed, it is best when designing a joint to fix this diameter first.

In fixing the diameter of stud the three following conditions must be satisfied:—

- (1) Total load on cover Effective area of 1 stud × No. of studs exceed value given in Table XXXI., page 78.
- Rule 41.—(2) The diameter of stud should not exceed '8 × thickness of flange; and the thickness of flange should not exceed 1.5 × thickness of metal to which it is attached.
- Rule 42.—(3) The pitch of the studs should not be less than diameter × 3.5—(to give room for spanner)—nor more than diameter × 4.75.

When no water test is required a pitch of 6 diameters is often used for L.P. doors, &c.

The diameter is usually settled in the first instance by a rough

process of trial and error.

Rule 43.—The width of joint may be from diameter × 2.3 to diameter × 3, but—unless weight is of the greatest importance—it should not be less than diameter × 2.8.

The thickness of cover flange may be from diameter, × 1 to

diameter \times 1.25.

The limit which the pitch should in no case exceed is given by the rule,—

Rule 44. Maximum pitch in inches =
$$\sqrt{\frac{t \times 100}{p}}$$

where t is the thickness of cover or door flange in sixteenths of an inch, and p the pressure in pounds per square inch, on the cover.

For covers of cast-steel the co-efficient in the above rule may be 150 in place of 100.

It is, of course, not at all necessary that stude should always carry the full load allowed by Table XXXI., and it is sometimes convenient to load them much more lightly—as, for instance, when it is desired to produce a more uniform effect by using the same size of stud for all the covers in connection with a set of cylinders.

Where bolts are used, as in the case of a steam joint between two cylinders, the thickness of the flanges should be about diameter of bolt \times 1°25, but should not exceed 1°5 \times (thickness of metal to which flange is attached); the width of the joint is, of course, also increased by an amount equal to about '6 of the thickness of that metal.

CYLINDER RELIEF OR ESCAPE VALVES.

Rule 45.—For the L.P. cylinder these should have a diameter of about one-fifteenth the diameter of the cylinder; for the H.P. cylinder, where priming water may have to be dealt with, the proportion may be one-eleventh of the cylinder diameter; and the M.P. cylinder, an intermediate proportion of say one-thirteenth.

In horizontal engines, there should be at least one valve at each end of each cylinder—(the Admiralty requirement is two valves at each end of each cylinder)—and in vertical engines there should be one at each end of the H.P. cylinders, and one at the bottom of each of the others.

The following Table of sizes of Relief-valves is calculated to give about the above named proportions, but the nearest half inch is given in most cases—as it is neither usual nor necessary to make patterns for every quarter of an inch.

Table XXVI.—Cylinder Relief Valves.

Dia. of	Dia. of B	telief Valv	e in Ins.	Dia. of	Dia. of F	telief Valve in Ins.		
cylinder.	н.р.	М.Р.	L.P.	cylinder.	H.P.	M.P.	L.P.	
15	11/2			65	6	5	41/2	
20	2	13/4		70		51/2	4 1/2	
25	21/4	2	1%4	75		6	5	
30	21/2	21/4	2	80	 	6	51/2	
35	3 ~	21/2	21/4	85			51/2	
40	31/2	3	$2\frac{1}{2}$	90			6	
45	4	31/2	3	95			6½ 6½	
50	41/2	4	31/2	100			61/2	
55	5	41/2	31/2	105			7	
60	51/2	41/2	4	110			7½	

The H.P. and L.P. columns are equally applicable to the cylinders of Compound, Triple, and Quadruple engines.

It is very desirable that all relief-valves should be fitted with guard rings, or other suitable appliances, to prevent thoughtless screwing un

of the springs whenever a slight leakage occurs. In confined engine-rooms it is also desirable to have light pipes fitted to convey any water that may escape down to the crank-pits of

For methods of calculating strengths and proportions of springs see page 256.

RECEIVER SAFETY VALVES.

For small and medium sized cylinders (up to 60 inches diameter say), these may be of the same size and pattern as the cylinder relief valves,-i.e., L.P. receiver valve same as L.P. cylinder valve, and so on; but this rule makes the valves unnecessarily large for large cylinders, and more appropriate sizes are given by the rule, -

Rule 46.

Diameter of Receiver Safety Valve = $\frac{\sqrt{\text{Diameter of cylinder.}}}{\sqrt{\text{Diameter of cylinder.}}}$

DRAIN VALVES, OR COCKS, FOR CYLINDERS. RECEIVERS, ETC.

These should be of the proportions given by the following Table :-

Table XXVII.—Drain Valves.

Diameter of Cylinder	Diameter	Diameter of Cylinder	Diameter
or L.P. Cylinder, if	of valve	or L.P. Cylinder, if	of valve
Compound, Triple, &c.	or cock.	Compound, Triple, &c.	or cock.
Up to 10° 11 to 15" 16 to 30° 31 to 45"	½"	46 to 60"	1½"
	%"	61 to 75"	1½"
	¾"	76 to 90"	1¾"
	1"	Above 90"	2"

In Compound, Triple, and Quadruple engines, the valves or cocks in connection with the H.P. and M.P. cylinders, should be of the same size as those for L.P. cylinder,

All pipes from H.P. and M.P. drain valves should be led to hot-well or feed tank, and should be fitted with self-acting non-return valves to prevent water getting back into cylinders. The pipes from L.P. drain valves should be led to the condenser, and also be fitted with non-return valves.

The drainage from the steam jackets should be collected in suitable vessels (each fitted with a gauge glass), and then led away to the hotwell or feed tank. The pipes should be fitted with adjustable screwdown valves, placed in sight of the gauge glasses, and within easy reach of the attendants.

Reversing engine drains should be led to the condenser, and fitted with non-return valves; but the drainage from other auxiliary engines is better led into the bilges, as it always contains a large percentage of oil.

Each steam jacket must have its own separate adjustable drainvalve, but the cylinder and receiver drains may be, to a certain extent, grouped, or led into common pipes so as to reduce the number of valves on hot-well or feed tank, and condenser.

Drain cocks of suitable sizes should be fitted to every pipe, passage, or place where water can lodge, so that, when engines are cold, they

may be quite free from water.

STARTING, PASS, OR AUXILIARY VALVES.

In small Paddle engines it is usual to arrange the slide-valves to be worked by hand, and starting valves are therefore unnecessary.

In larger low-pressure Paddle engines, where the valves are driven by double eccentrics and links, the cuts-off are so late that startingvalves are not required.

Compound engines, with cuts-off at about six-tenths of the stroke, would occasionally be unhandy without some means of admitting steam to one of the cylinders later than the main slide allows, and

starting valves should therefore be fitted to the L.P. cylinders so that

steam may be admitted into either top or bottom port.

Triple engines, with three cranks, require only a small valve to admit steam to each receiver; the valves should be raised from their seats by means of levers acting on the spindles, and should be held shut by small spiral springs in addition to the pressure of the steam. The steam supply should be taken from the boiler side of the regulator valve, and may be about one-fifth the diameter of the main steam, pipe.

JACKET PIPES AND VALVES.

If the cylinder barrels are to be jacketed, it is very desirable to use double covers and bottoms, or ends, and admit steam to these as well. Great care should be taken to place the drains at the lowest points, and to see that water can get freely to them from all parts. When possible, the internal ribs should be arranged so as to prevent the steam rushing straight through from the supply to the drain; it should be compelled to circulate as much as possible.

H.P. cylinders should be jacketed with steam of boiler pressure; M.P. and L.P. cylinders with steam of not less than 15 lbs. above the

highest pressure usually found in their respective receivers.

As it is necessary to fit reducing valves to secure these pressures in the jackets, and as reducing valves are notoriously uncertain in their action, great care should be taken,—by fitting thoroughly efficient safety-valves,—to guard against the presence of undue pressures in the jackets.

Supply and drain pipes need not exceed 11/2 inches in diameter, even

in the largest engines.

It is customary to connect the cover, barrel, and end jackets, either by means of small external copper pipes, or by passages in the castings, and so have only one supply and one drain for each cylinder. For drainage of jackets see also page 65.

CAPACITY OF RECEIVERS.

For Compound engines with cranks set at from 90° to 105°, the receiver capacity should be 1 to 1.5 times capacity of H.P. cylinder; when cranks are opposite one another this capacity may be very much reduced.

Triple engines, with cranks at 120°, require only very small receivers; the exhausts from one cylinder to the next may be as short and direct as possible, and only large enough to keep down the mean speed of steam to the limit given in Table XVII., page 49; whilst the spaces around the valves need not exceed those actually required for the passage of the steam to the cylinders. When the M.P. crank leads the H.P., an even smaller receiver will suffice.

COLUMN FEET AND BOLTS.

Great care should be exercised in designing these feet, for through them the whole force of the steam on the cover is transmitted; and, as the strain is always applied suddenly, very ample section of metal should be provided to sustain it.

Rule 47.—The area of section through these feet should be such that the strain does not exceed 600 lbs. per square inch.

The webs from the flanges of the feet should be well spread over the cylinder bottom and towards the sides, so as to distribute the strain.

Rule 48.—The bolts connecting the cylinder to the columns or frames should be such that the strain on them does not exceed 4000 lbs. per square inch of area at the bottom of the thread, and when there are a large number, of comparatively small size, it should not exceed 3000 lbs. per square inch.

See also Table XXXI., page 73, for loads that bolts may carry. The maximum or initial pressure should be used in calculating these

stresses.

The feet should always be formed so as to permit of bolts being used (not studs), and two at least, in each foot, should be a driving fit.

GENERAL REMARKS ON CYLINDERS.

Where weight is of great importance, as in Naval machinery, it is a common practice to shorten the cylinder, and form the port in the cover, as shown in Fig. 9,—the more ordinary plan being shown by Fig. 9A.

Fig. 9. Fig. 9A.

Another method of saving weight, sometimes practised in connection with the very light machinery of torpedo gun-boats, is to lead the exhaust steam through the middle of the relief-rings on the backs of the flat slides, thus doing away with the exhaust port in the cylinder face, and shortening the slide-valves and casings to that extent.

The corners of ports, both in false faces and in cylinder faces, should be well rounded, as the casings are very apt to crack if they are made quite square.

Steel screw-stays may be used with advantage to strengthen the

various ports and passages in cylinder castings.

Where a false face is secured by the usual "cheese-headed" screws, a certain measure of relief may be given to the slide-valve, and the lubrication may also be improved, by connecting the recesses in which the screw heads are sunk, by small grooves cut in the face.

Horizontal Cylinders.

Horizontal cylinder barrels should be stiffened by rings, as recommended on page 54; but they require something more than this, and should have—especially when the valve-box is on top—two strong ribs running up from each foot to the flange of the valve-box door, to prevent deformation of those portions of the barrel lying between the feet brackets and the valve-box; these ribs may have a thickness of 8× thickness of barrel, and may stand out about 2× thickness of barrel. Similar ribs should also be carried round under the bottom of the cylinder from foot to foot.

In bolting horizontal cylinders down to the seatings, fitted bolts should be used at the front ends only—sufficient clearance being allowed in the other bolt holes to permit the expansion of the

cylinder.

Oscillating Cylinders.

In cases where oscillating engines are employed, weight is generally of great importance, and the cylinder barrels are commonly made rather lighter than would be the case if the thickness were determined by the rules previously given (page 51). This reduction is rendered possible, partly by the absence of any strains communicated from the framing to the cylinder, and partly by the great stiffness imparted to the barrel by the steam and exhaust belts, valve-boxes, and ports, and their accompanying ribs. The H.P. cylinders of compound oscillating engines should be of thickness given by the following formula:—

Rule 49. Thickness of H.P. cylinder barrel = $\frac{D}{6200}$ (p+50) + 45 inch, where D is diameter of cylinder in inches, and p boiler pressure.

The formula also gives the thickness of barrel for the L.P. cylinders of compound engines, and for the cylinders of simple engines working at 30 to 35 lbs. per square inch, if p be taken as 25. The above

thicknesses are for cylinders without liners.

The trunnions should be all of the same diameter in the same pair of engines, whether engines are simple or compound, and must, of course, be large enough to allow proper area for exhaust. This plan allows of an annular air space between the steam pipe and the outer, or working surface of the trunnion, and so gives a comparatively cool bearing.

The area of section where the trunnion joins the cylinder barrel should be such that the value of the expression,—
Rule 50.

Max. effective pressure × area of piston + weight of cylinder in lbs.

2 x area of section

does not exceed 500; i.e., the shearing stress should not exceed 500

lbs. per square inch.

A length of trunnion of about '4 of the diameter will usually give a satisfactory amount of surface, but the area should be such that the pressure per square inch (excluding pressure due to weight of cylinder) does not exceed 350 lbs. A safe proportion, which should always be obtained where possible, is given by,—

Rule 51. Max. effective pressure x area of piston

2 x diameter of trunnion x length of same

A very strong attachment of trunnion is obtained by making the outer cylinder of barrel form, and arranging the steam and exhaust

belts between it and the inner cylinder or liner.

The valve faces should not be at right angles to the line joining valve-spindle and piston-red centres, but angled so that the side next the steam entrance is nearer to the cylinder barrel than the opposite or exhaust side; this will bring the centre of valve-spindle as close in to the cylinder as possible, whilst allowing free way for the exhaust.

The receivers of compound oscillating engines are commonly formed around the H.P. cylinder, between the inner cylinder or liner, and the outer shell to which the trunnions are attached. This method has the accompanying advantage of making the outer cylinders more nearly of a size.

CLEARANCE OF PISTON.

The following Table shows the clearances required in cylinders of the various diameters mentioned:—

Table 2	XXVIII	–Piston	Clearances.
---------	--------	---------	-------------

	Clear	ances.		Clearances.		
Diameter of Cylinder.	Crank end.	Cover end.	Diameter of Cylinder.		Cover end.	
Up to 14" 15 to 20" 21 to 40" 41 to 60"	3/8" 1/2" 5/8" 8/4"	1/" 3/4" 3/" /8 1/" /2 9/16"	61 to 80" 81 to 100" Above 100"	7/8" 15/16" 1"	5//′ /8 11/16 8/4″ 	

STUFFING BOXES, &c.

Table XXIX.—Stuffing-boxes for elastic packing. (Fig. 10.)

A	В	C	- 5	. 10	- 1	E	F	
^	В	'	D ₁ 50 lbs.	100 lbs.	D ₃ 150 lbs.	E	F	
Diameter of Rod.	Width of packing space.	Diameter of Box. 1.25×A+·55	Depth of packing.	Depth of packing of 1.15 × A + 775 green	Depth of packing. 1.4×A+.75	Overall depth of neck-ring.	Thickn's of bushes, gland, and neck. 045×A+·18	Number and diameter of studs.
34" % 1 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 2 ½ 4	3/3/8 3/8 7/16 7/16 7/16 7/16 7/16 1/2 1/2 9/16	1½" 15% 1% 2½ 2½ 2½ 2½ 3½ 3%	1%" 1½ 1% 1% 1% 1% 2% 2½ 2½ 2½ 2½	1%" 1%" 2 ½ 2½ 2½ 2½ 3½ 3½	2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1% 1%	*/ 6 */ 14 */ 14 */ 14 */ 14 */ 16 */ 16 */ 16	pur soumn
21/2	5%	31/4	3	33/4	41/4	11/2	5/16	{2- % 3- %
23/4	%	4	31/4	4	4%	1%	5/16	2-1 3- 3/4
3	11/16	4 3/8	31/2	41/4	5	1%	5/16	2-1 3- %
31/4	11/16	4%	3¾	4 3/4	5%	1%	%	\begin{cases} 2-1\begin{cases} \chi_3 &
31/2	8/4	5	4	5	5%	2	%	} 2-1 ⅓ 3-1
33/4	¾	51/4	41/4	51/4	6	21/8	3∕8	$\begin{cases} 2-1 \frac{1}{4} \\ 3-1 \end{cases}$
4	13/16	5%	41/2	5½	6.36	21/8	3∕8	$\begin{cases} 2-1 \frac{1}{4} \\ 3-1 \end{cases}$
41/2	%	61/4	4 3/4	6	7	2%	7∕16	}2-1¾ 3-1¼
5	15/16	6%	5	61/2	7%	2%	7∕16	} 2-1 ¾ 3-1 ¼
5½ 6 6½ 7 7½ 8 8½ 9½ 9½	1 1% 1% 1% 1% 1% 1% 1%	7½ 8¼ 8¾ 9½ 10 10¾ 11¼ 12 12½ 13	5 % 6 ¼ 6 % 7 ¼ 8 ¼ 8 ½ 8 % 9 % 9 % 4	7 75% 81% 83% 93% 10 101% 11 115% 121%	8½ 9¼ 9% 10¼ 11¼ 12 12¾ 14% 14%	2% 3 1/4 3 1/2 3 8/4 4 1/4 4 1/8 4 1/8	7/16 7/16 1/2 1/2 1/2 9/16 9/16 9/16 5/8	\begin{cases} \{2-1\forall \\ 3-1\forall \\ 4-1\forall \\

In all cases, the amount that the gland can enter (G) should be one-half the depth of the stuffing box $(D_1, D_2, \text{ or } D_3)$.

The width of packing space (B) given in above Table assumes that all glands are of gun-metal, as is usual in naval practice; if it is desired to use cast-iron glands bushed with gun-metal the width of space must be increased % inch in each case.

A 3/16" bush f	or a cast	iron gland may	be used	up to 1 1/4" dia.	of rod.
½ "	,,	,,	,,	2%"	,,
5 ∕16″	••	••	,,	3¼″	**

Where two numbers and sizes of studs are given, the larger studs are intended for use with pinion nuts and toothed rings.

The sizes of studs for rods of 51/4 inches diameter and upwards are fixed on the assumption that pinion nuts and toothed rings will always be used.

Fig. 10.

Fig. 11.

Table XXX.—Stuffing-boxes for Metallic Packing. (Fig. 11.)

A.	В.	C.	D.	ъ.	c.	d.
Diameter of rod.	Width of packing space.	Diameter of box. 1·2A+1·25	Depth of metallic packing. $2\sqrt{A}+5$.	Width of packing space.	Diameter of box.	Depth of elastic packing. $\frac{D}{3} + 1.15.$
3 3 3 3 4 4 4 4 4 5 6 6 7 7 7 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ¼ ½ 5 ½ 6 % 4 6 % 4 7 % 4 9 ½ 9 ½ 10 ½ 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	4½ 4¾ 5¼ 5½ 6½ 7½ 8½ 9¾	24%44%44%4 22222 2222 33444%4 3384
8½ 9 9½ 10	1% 1% 1% 1% 1%	10¾ 11¼ 12 12½ 13	6¼ 6¾ 6½ 6¾ 7	78 1 1 1	10¼ 11 11½ 12	3% 3% 4 4%

For the sake of uniformity the H.P., M.P., and L.P. stuffing boxes of triple engines are commonly made all of the same depth.

STRENGTH, ETC., OF STUDS AND BOLTS.

When a nut is screwed up tightly, as in making a joint, the stud or bolt is subjected to two distinct stresses, viz.:—tension, and torsion; and the tensile or axial stress cannot be set up, without at the same time producing the twisting stress. The twisting moment,—since it is due to the frictional resistances acting at the surfaces of the threads,—is probably very nearly proportional to the square of the diameter, whilst the moment of resistance of the bolt varies as the cube of the diameter. If, therefore, two bolts be screwed up until the axial stress per square inch of section is the same in both, the total stress will always be proportionately greater in the smaller of the two; and every day experience shows that the tightening up of small studs (below % inch),—especially if they are of such easily sheared material as muntz-metal,—must only be entrusted to skilled hands.

The readiest way of allowing for this twisting stress is to assume

progressively lower values for the *working* stress as the bolts diminish in size, and the Table below gives values which should not be exceeded.

The Table is based on the relation, -

Working stress per sq. in. – (Area at bottom of thread) $^{47} \times C$;

where C-5000 for iron or mild steel, and 1000 for muntz or gunmetal. For iron or steel bolts above 2 inches in diameter, and gunmetal or bronze ones above 3½ inches diameter, the moment of the twisting stress is so small, proportionately, that it may be neglected.

Table XXXI.—Strengths of Studs and Bolts.

	Iron or M	fild steel.	Muntz or C	lun-metal.
Dia. of stud or bolt.	Working stress in lbs. per square inch.	Effective strength of 1 stud or bolt in lbs.	Working stress in lbs. per square inch.	Effective strength of 1 stud or bolt in lbs.
14	2000	250	400	50
5%	2500	500	500	100
1/2 5% 84	3000	900	600	180
1 %	3400	1,450	680	290
1′°	3900	2,150	780	430
ī 1/6	4800	3,000	860	600
11/2	4700	4,200	940	840
1%	5100	5,400	1020	1,080
11/2	5500	7,100	1100	1,420
1 1 1 1 1 1	5800	8,500	1160	1,700
1 1 1 1 1 1	6300	11,000	1260	2,200
1%	6600	13,100	1820	2,620
2	7000	16,100	1400	3,220
21/4	7000	20,400	1560	4,560
21/2	7000	26,100	1780	6,450
21/4	7000	31,200	1860	8,300
3	7000	38,100	2030	11,000
31/4	7000	44,800	2170	13,900
31/2	7000	53,000	2350	17,800
31/4	7000	60,500	2500	21,600
4	7000	70,100	2500	25,000
41/4	7000	79,500	2500	28,400
41/2	7000	90,300	2500	32,200
4%	7000	100,800	2500	36,000
5	7000	113,000	2500	40,300
51/4	7000	124,600	2500	44,500
51/2	7000	138,000	2500	49,200

Studs and bolts may be loaded to the figures given in the above table whether the load is "dead" (as in the case of a joint), or "live" (as in the case of a connecting-rod bolt), as in the latter case mild steel will always be used, and the shearing stress due to tightening up is practically absent.

Mild steel studs and bolts should always be fitted with iron nuts, as steel ones have a much greater tendency to "seize," and so greatly increase the twisting stress: for the same reason muntz-metal or naval

brass studs, &c. should always have iron nuts if possible.

Gun-metal, and the various bronzes are unsatisfactory materials for small studs and bolts, not because of any lack of tensile strength,—which is often high,—but because of their very low elastic limit under a shearing stress.

Gun-metal, muntz-metal, &c., studs and bolts are not suitable for joints of covers, &c., on which the pressure exceeds 50 lbs. per square

inch.

When iron or steel studs are used in connection with gun-metal steam or water valves, &c., they must not be allowed to penetrate into the steam or water space, or they will rapidly corrode and come loose.

The part of a stud that is screwed into the work should be :-

Rule 52. Not less than 1½ diameters long when screwed into cast iron, and 1½ diameters when not inconvenient.

Not less than 1 diameter long when screwed into gun-metal wrought-iron, or cast-steel.

The general dimensions, numbers of threads, &c., for bolts and nut are given in Table XXXII.; the numbers of threads, and dimension depending thereon are in accordance with the Whitworth Standard and the sizes over flats and angles are the nearest sixteenth to the same.

The proportions of the Whitworth Standard thread are shown b Fig. 12.

Fig. 12.

Table XXXII.—Dimensions of Nuts, Bolts, etc.

Dia. of Bolt.	Head and nut over flats.	over angles.	of nut.	Height of head for screws and bolts.	No. of threads per inch.	Area at bottom of thread in sq. inches.	Thick. of check- nut.	Size of split- pin L. S. G.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2 11/16 1 1/8 1 1/16 1 1/16 1 1/16 1 1/16 2 1/16 2 1/16 2 1/16 2 1/16 2 1/16 2 1/16 2 1/16 2 1/16 3 1/8 3 1/8 3 1/8 3 1/8 3 1/8 4 1/2 4 1/8 6 1 1/8	2% 6 2 1 3 1 6 3 3 1 6 3 3 1 7 8 8 1 7 8 8 1 7 8 7 7 8 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 7 1 6 8 7 7 1 6 8 7 7 1 6 8 7 7 1 6 8 7 7 1 6 8 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7	1111111122233334444445	1 1/16 8/4 8 1 1/16 8	20 16 12 11 10 8 7 7 6 6 5 5 4 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 3 4 4 4 4 3 3 3 3 4 4 4 3	027 068 121 203 303 421 554 697 894 1 059 1 300 1 471 1 752 1 986 2 311 2 925 3 732 4 463 5 449 6 406 7 572 8 656 10 026 11 480 12 784 14 413 16 145	1 1/16 1 1 1/26 1 1 1	No. 14 13 12 11 10 8 7 6 7 4 13 10 11 10 10 10 10 10 10 10

The heads of all ordinary screws and bolts should be made hexagonal, and of the same size over flats as the corresponding nuts.

All check-nuts should be chamfered on both sides.

Set-screws that are frequently handled, such as those in the lockrings on the various large nuts, should have square heads, and should either be of hard steel or should have their heads properly casehardened.

Wherever a square is used about the engines in place of a hexagon care should be taken that it is made of the same size as some nut over flats, as otherwise much trouble and annoyance is often caused.

Spanners or Screw Keys.

Excellent proportions for these are given by the diagram below an Table on next page. They should be of forged steel, and the jaw should be case-hardened.

Fig. 12a.

For nuts above 2½ inches it is better to have a short-handled heavy or "striking" spanner, and a very light, or "handling" one.

Where "check" nuts are used, care should be taken that suitable

thin spanners are provided for handling them.

For very heavy nuts, such as those on the piston-rods, and on the end of the "tail" shaft, the spanners should be of the closed or "ring" type.

PISTONS.

For the case of a circular flat plate, supported at centre, and uniformly loaded, the formula may be written,—

$$t = \mathbf{C} \times \mathbf{D} \sqrt{p}$$
;

where t-thickness, and D diameter,—both in inches; p-effective absolute pressure (or greatest difference of absolute pressures on the two sides); and C-co-efficient.

Cast steel pistons.—These are made of a single thickness of metal, and should be coned, or "dished," to get the necessary rigidity. The three pistons of an ordinary triple engine should all be made of the same total depth, which should be such that the slope of the face of L.P. piston next crankshaft is about 1 in 3; this will give a perfectly

Table XXXIII.-Proportions of Spanners.

	· · · · · · · · · · · · · · · · · · ·
×	BRY LAKKKK LAKKKKKKK
M	***************************************
1	**************************************
M	**************************************
٦,	**************************************
ı	
н	22 22 22 22 22 22 22 22 22 22 22 22 22
ಶ	**************************************
F24	
M	
А	, %%%%; %%%% %%%%%%%; , %%%%; %%%%% %%%%%%%%;
υ	
ф	· ************************************
4	
Diam.	K*K* XXXXXX XXXXX *

rigid piston, and will also give room for a properly proportioned piston-rod stuffing-box.

The thickness near boss, for a piston of this type, is given very nearly by the above formula, when C = 0046; that is,—

Rule 53.
$$t=0.046 \text{ D}\sqrt{p}$$
 . . . (a)

For practical reasons, however, the addition of a small constant quantity, and other slight modifications are necessary, and the formulæ for the pistons of triple engines working at about 160 lbs pressure, and of compound engines working at about 100 lbs. pressure (since p will have practically the same values in both cases) will be,—

For H.P. pistons,
$$t = \frac{D}{23} + 24$$
 (value of p about 90).

For M.P. pistons,
$$t = \frac{D}{34} + 40$$
 (value of p about 60).

L.P. do.,
$$t = \frac{D}{50} + .48$$
 (value of p about 30).

The thicknesses near the edge, or rim, should be,-

Rule 54. For H.P. pistons, 65 × thickness near boss;

For the pistons of quadruple, or other engines, similar modifications of the general formula (a) above may be employed.

Table XXXIV. is calculated by means of the above formulæ, and may be used for compound engines by simply omitting the M.F. columns.

Cast-steel pistons for the lighter machinery of torpedo gun-boats giv perfectly satisfactory results, even up to 300 revolutions per minute when made of thickness, near boss, given by,—

Rule 55.
$$t = .0042 \text{ D} \sqrt{p} + .125$$

where the symbols have the same values as above.

The slope of the underside of L.P. piston should not be less than in 6.5. The thickness near edge should be half that near boss; an

the depth of rim may be
$$\frac{\text{L.P. Diameter}}{12}$$
. They are sometimes fitte

with Ramsbottom rings of hard gun-metal, and sometimes wit ordinary cast-iron packing rings.

They are, as a matter of course, turned all over on both sides.

Table XXXV. is calculated by means of the above formula for boile pressure of about 160 lbs.

Table XXXIV. -Cast Steel Pistons.

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
, je	Near edge.	X/W/X/WX/ "W" "W" "W" "W" "W" "W" "W" "W" "W" "W
. in Incl	r. in inch	265 265 265 265 265 265 265 265 265 265
L.P. Thick. in inches.	Near boss.	
	Nea	78 98 98 98 110 110 110 110 110 110 110 11
98.	Near edge.	
. in inch	Nea	669 669 669 669 677 669 669 669 669 669
M.P. Thick. in inches.	Near boss.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Nea	\$\$ 60.1111111998 \$\$ 60.10202020202020202020202020202020202020
es.	Near edge.	%%% %%%% : : : : : : : : : : : : : : :
. In Inch	Nea	53 42 42 11,00 11,43 11,53 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,54 11,
H.P. Thick, in inches.	r boss.	
	Nes	
Diam.	the the tracks the tracks.	25 25 25 25 25 25 25 25 25 25 25 25 25 2

### Table XXXV.—Pistons of Torpedo Gun-Boats.

Diameter	H.P. Thick. in inches.				M.P.	M.P. Thick. in inches.				L.P. Thick. in inches.			
of piston in inches.	Near	boss.	Near	edge.	Near	boss.	Near	edge.	Near	boss.	Near	edge	
10	•52	% %	•26			;;;	-::	:::					
15 20	·72 ·92	3/4 15/16	·36	%.	·61 ·77	. % 8/4	·31	%16 %16	•58	%6		5/1	
25 30	1·12 1·32	- /0	·56		·93 1·09	- /10	·47 ·55	½ %	·69	1 3/16	·35 ·40	1/	
35 40	:::	:::			1.26 1.42		·63 ·71	% %	·92	/10	·46 ·52	1	
45 50					•••			::: 1	1·15 1·26	11/8	·58 ·63		
55									1.38		.69	11	

Cast-iron Pistons.—These must be made of thoroughly sound and

good material, -at least twice melted.

A convenient unit on which to base the proportions of cast-iron box (or hollow) pistons is the thickness requisite, in a circular plate of cast-iron, to carry safely a given pressure per square inch when supported at centre and loaded uniformly.

Using again the general formula given above for such a case, viz :-

$$t = C \times D \sqrt{p}$$

and inserting a value of c that will limit the strain on the material to 3000 lbs. per square inch it becomes,-

$$t = .008 \text{ D}\sqrt{p}$$

If the necessary constant quantity be then added, the units (x) for pistons of triple engines working at about 160 lbs., and of compound engines working at about 100 lbs., will be given by,-

Rule 56. For H.P. pistons, 
$$x = .008 \text{ D } \sqrt{p} + .3$$

M.P. ,, 
$$x = .008 \text{ D } \sqrt{p} + .45$$

L.P. ,, 
$$x = .008 \text{ D } \sqrt{p} + .6$$

Other proportions are then as follows:-

Rule 57. Depths at centre,  $3.2 \times x$ .

- 57a. Thickness of metal of faces  $\begin{cases} near boss 33 \times (x+5). \\ near edge 3 \times (x+5). \end{cases}$ 
  - 57b. Thickness of webs, ...  $32 \times (x + 5)$ ·7 × 2.
- 57c. Thickness of boss round rod,
  - 57d. Depth of packing-ring,  $75 \times (L.P.x + 1.5)$
- 57e. Thickness  $22 \times (L.P.x + 1.5)$ 57f. Diameter of junk-ring bolts,  $(\cdot 2 \times L.P.x) + \cdot 5$

This spacing of webs will ensure that Rule 32, page 59 is not violated. In calculating local strength of piston face, care must be taken to use the gauge pressure acting on it, and not the effective pressure on piston as in above rules. A good method of increasing local strength, and at the same time assisting the moulder, is to cast a solid cylindrical through tie at the centre of gravity of each sector of the piston; the diameter of these ties may be  $6 \times \text{L.P.x.}$ . All holes provided for the removal of core material should be strengthened by an internal ring, the section of which may be, half thickness of face metal  $\times$  the same.

Pistons of Compound and Triple engines are usually, for practical reasons, made all of the same depth (except in the case of tandem engines); but, if a piston is made of less depth than that given in Table XXXVI., the metal of the faces must be increased in proportion.

The proportions given for packing-rings and junk-ring bolts are

equally applicable to cast-steel pistons.

All junk-ring bolts (or nuts, if studs are used), should be locked by means of a light wrought-iron ring, secured to junk-ring by studs having square bodies, which stand up through guard-ring, and through which stout split-pins are fitted: %-inch studs and No. 1

L.S.G. split-pins are commonly used for large pistons.

When the ordinary packing ring is used an excellent piston is produced by placing behind it,—one between every pair of junk-ring bolts,—a number of short spiral springs acting radially, and adjusted to give the pressures named above. For the pistons of auxiliary engines the Cameron spring (a corrugated steel ribbon) is most useful, and is also often employed for L.P. pistons of large size. The old fashioned coach spring should never be employed.

In horizontal engines solid packings should be used in lieu of springs for the lower one third circumference of piston, diagonal and

oscillating pistons are also better for some solid packings.

The following Table is calculated by means of the above formulæ and shows at a glance the various proportions of H.P., M.P. & L.P. pistons, from 15 inches to 110 inches diameter, for Triple engines working at about 160 lbs., and Compound engines working at about 100 lbs. pressure:—

## Table XXXVI.—Proportions

	Table India 1.—I Topordona									
Diameter of piston in inches.		Values of x.  Output  Depths at centre.  Depths at centre.  Depths at centre.								
eter of n inch	= .008D		45 M.P. 8 L.P.		=8·2×	r.	н.	.P.	м	.P.
Diam	H. P.	М.Р.	L.P.	H.P.	М.Р.	L.P.	Centre.	Edge.	Centre.	Edge.
15	1.44	1.37	1.25	4.60	4.38	4.00	•64	•58	•62	•56
20	1.82	1.68	1.46	5.82	5.37	4.67	•76	-69	.72	•65
25	2.20	1.99	1.68	7.04	6:37	5.36	-89	•81	-82	.75
30	2.58	2.30	1.89	8.25	7:35	6.05	1.01	.92	-92	·84
35	2.96	2.61	2.11	9.47	8.33	6.75	1.14	1.04	1.02	-93
40	3.34	2.91	2.33	10.69	9.31	7.45	1.27	1.15	1.12	1.02
45	3.72	3.22	2.55	11 .91	10.30	8.14	1.40	1.27	1.23	1.11
50	4.10	3.23	2.76	13.12	11 ·29	8.83	1.52	1.38	1.33	1.20
55	4.48	3.84	2.98	14.34	12:27	9.52	1.65	1.49	1.43	1.30
60	4.86	4.14	3.19	15.55	13.25	10.21	1.77	1.60	1.53	1.39
65		4.45	3.41		14.24	10.90		·	1.63	1.48
70		4.76	3.62		15·23	11.58			1.73	1.57
75	•	5.07	3.84		16.22	12:27			1.84	1.67
80		5.38	4.05		17.21	12.96		•••	1.94	1.76
85			4.27			13.66				
90			4.49			14:37				
95			4.71			15.06				
100			4.92			15.74				
105			5.14			16.43				
110			5.35			17·12				

TABLE XXXVI.--PROPORTIONS OF CAST-IRON PISTONS.

of Cast-Iron Pistons.

_					,					
	of Faces. $3\times(x+5)$ at edge.		THICK	ness of	1	ber of	Webs.	Packi	ng Ring.	2)+ 5
!	I	.P.		×x.	H.P.	M.P.	L.P.	75 × +1.6)	1.5)×	Junk P.z.x
:	Centre.	Edge.	H.P.	L.P.	D+20 9	D+20 10	D+20 11	Depth (L.P.z.+	Thick. 22 × (L. P.x+1·5).	Dia. of Junk-ring bolts (L.P. $x \times 2$ )+ 5
!	•58	.52	1.01	·87	4			2.06	.60	•75
	·65	•59	1.27	1.02	5	4	4	2.22	-65	.79
1	·72	.66	1.24	1.17	5	5	5	2.38	.70	·84
	·79	72	1.81	1.32	6	5	5	2.24	.75	-88
1	·86	•79	2.07	1.48	6	6	5	2.71	.80	.92
	-93	·85	2.34	1.63	7	6	6	2.87	•84	.96
	1.01	-92	2.60	1.78	8	7	6	3.03	-89	1.01
	1.08	·98°	2.87	1.93	8	7	7	3.19	-94	1.05
	1.15	1 05	3.13	2.08	9	8	7	3.36	-99	1.10
	1.22	1.11	3.40	2.23	9	8	8	3.52	1.03	1.14
i	1.30	1.17	•••	2.38		9	8	3.68	1.08	1.18
;	1:37	1.23	•••	2.53		9	9	3.84	1.13	1.22
	1.44	1 30		2.68		10	9	4.00	1.18	1.27
	1.50	1.36		2.83		10	9	4.16	1.22	1.31
	1.58	1.43		2.99			10	4.33	1.27	1.36
	1.66	1.50		3.14			10	4.49	1.32	1.40
	1.73	1.56		3.29			11	4.65	1.37	1.44
	1.80	1.62		3.44	·		11	4.81	1.41	1 · 48
i	1.87	1.69		3.28			12	4.97	1.46	1.53
'	1.93	1.75		3.74			12	5.13	1.51	1.57

When using above Table for Compound engines simply omit M.P. columns. The dimensions are given in inches and decimals only, and the proportions for pistons of intermediate diameter are more readily seen with this notation.

#### PISTON RODS.

These should be made of steel having an ultimate tenacity of not less than 35 tons per square inch,—as softer steels do not wear satisfactorily. The permissible stress per square inch of material should diminish with the size of the rod, in the same manner as laid down for bolts, &c., (see Table XXXI. page 73), but,—on the principle that the more serious the accident that would result from the breakage of the part, and the more difficult of inspection it is, the more lightly it should be loaded,—(Rule 61.) the maximum permissible stress per square inch at bottom of thread, or through cotter-hole, should not exceed 8000 lbs. for steel, and 6000 for wrought-iron.

For small rods it is not advisable, in ordinary work, to exceed the

limits given in the following Table, which is based on :-

Working stress per sq. in. – (Area at bottom of thread)  $\frac{1}{2} \times C$ , where C = 5000 for steel and 3800 for iron.

Table XXXVII.—Strengths of Piston Rods.

Diameter of	35 Ton	Steel.	Wrought Iron.			
piston-rod screw in inches.	Working stress in 1bs. per sq. inch.	Effective strength of rod in lbs.	Working stress in 1bs. per sq. inch.	Effective strength of rod in lbs.		
<b>7</b> /8	3700	1,560	2800	1,180		
1	4100	2,270	3100	1,720		
11/8	4400	3,070	3300	2,270		
11/4	4800	4,290	8600	3,220		
1 🔏	5100	5,400	8900	4,130		
	5400	7,020	4100	5.330		
1½ 1%	5700	8,380	4300	6,320		
1 1 1 1 1	6000	10,500	4600	8,060		
1%	6300	12,500	4800	9,530		
2	6600	15,200	5000	11,500		
21/4	7100	20,700	5400	15,800		
21/2	7700	28,700	5800	21,600		
2% and upwards	. 7700	•••	5800	•••		

The body of the rod should, theoretically, be considered as a structure or column in compression, but as the condition of the ends (wheth "fixed" or "loose") cannot be very accurately determined, and there is also a tolerably constant relation of diameter to length

ordinary marine engines, the safest and simplest way is to fix upon a special value of the working stress for each type of engine.

A convenient form of the formula is then,-

Rule 62.	Diameter	of	piston-rod —	Diameter of cylinder	$\times \sqrt{p}$
----------	----------	----	--------------	----------------------	-------------------

where p-greatest difference of absolute pressures on the two sides of the piston; and F-co-efficient whose values are,—

Naval engir	es,—direct-actir	ıg,		56
Mercantile,	—ordinary strok	e, direct-acting		52
79	long ,,	,,		49
,,	very long ,,	,,	•	46
,,	medium stroke	e, oscillating,	٠.	47
	long	••		44

The stroke of Naval engines rarely exceeds dia. of L.P. cylinder × ·6 and is usually between ·5 and ·6 × L.P. diameter.

"Ordinary" stroke, for the engines of a merchant steamer, is,—diameter of L.P. cylinder × '60 to '66; whilst '7 to '8 would be "long," and '8 to 1 "very long."

A "medium" stroke for an oscillating engine is,—diameter of cylinder × '95; or, if a compound engine,—diameter of L.P. cylinder × '8.

Compound diagonal engines would come under the heading "long," since they are usually given a stroke of L.P. diameter × '75, though the practice of different makers varies between '7 and 1'3 × L.P. diameter.

If it is more convenient to use areas of cylinders and of rods, and to proportion the rods to carry a certain stress per square inch of section, the above formula may be written,—

# Rule 62a. Area of section of piston-rod $-\frac{\text{Area of cylinder} \times p}{\mathbb{R}^2}$

where F² will then be the stress in lbs. per square inch,—in each case the square of the numerical co-efficient given above, viz.:—

Naval engir					3100
Mercantile,	ordinary	stroke,	direct acting,		2700
,,	long	,,	,,		2400
,,	very long	**_	oscillating,	•	2100
,,	medium s	troke,	oscillating,		2200
	long		••		1900

Attachment of Piston to Rod.—In small auxiliary engines it is a common practice simply to reduce the diameter of the piston-rod about ½ inch, and fit the piston up against the shoulder; but above 15 inches diameter of piston, it is better to leave only as much shoulder as may be desired for "trueing-up" the rod at some future time, and then give a taper of 1 in 4 on the diameters (Rule 63.) (i.e.,

if taper is 4 inches long, the smaller diameter will be 1 inch less than the larger), and continue it until it dies away into the parallel part near screw, the diameter of which has been determined as directed above.

Where a piston-rod is fitted into a cross head, the same shoulder,

taper, &c., should be used as for a piston.

The depth of piston-rod nut need not exceed the diameter of the screw; and it may be recessed as far into the piston as desired, as the strength of the piston is not materially affected thereby.

The piston-rods of oscillating engines are commonly made with a sort of cylindrical "bolt-head," which is recessed into the lower face

of the piston, whilst the nut is similarly recessed (to its full depth)

into the upper face.

The east-steel pistons of large Naval engines are sometimes made without any central boss, and attached to a circular flange (resembling a shaft coupling) on the piston-rod by means of a number of comparatively small bolts. This method, which was first used by the late Dr Kirk, has many good points, but the chief is perhaps the ease with which the connection can be made and broken again.

Rule 64. The diameter of this flange is about, diameter of pistonrod × 2.25, and its thickness about diameter of piston-rod × 33. The attaching bolts (usually between 21/2 inches and 31/2 inches diameter) should be of mild steel, but should not carry more than

6000 lbs. per square inch.

The cotter used for attaching the piston-rod head in the case of oscillating engines may have the following proportions:-

Rule 65. Breadth of cotter = Dia. of rod where "shouldered down" x .82.

Rule 65a. Thickness of cotter = Breadth × :33.

Rule 65b. Taper of cotter = \% inch per foot, or 1 in 32.

These proportions are adopted in order to save all possible height, and, with a properly proportioned rod, they give a shearing stress on the cotter (which should be of fairly hard steel) of about 9000 lbs. per square inch.

The stress on these cotters is in one direction only.

## PISTON ROD GUIDES AND GUIDE BLOCKS.

Piston-rod guides should, wherever possible, be made of hard close-grained cast-iron, and the guide blocks, or crosshead shoes should be made of the same material, since no combination of metals gives better results than cast-iron rubbing on cast-iron.

White metal is often used for the faces of the shoes (either fitted or cast into recesses in the cast-iron or gun-metal shoes), and gives results which, though quite satisfactory, are no better than those obtained with cast-iron on cast-iron, when the surfaces are properly proportioned and well looked after during the first few hours after being put to work.

Where steam is cut off later than half stroke, the greatest pressure on the guide occurs when the crank is at right angles to the centre line through cylinder, and may be determined graphically as follows:—



Let AC represent centre line through cylinder; AB connnecting rod; and BC crank; P effective load on piston; R re-action of connecting rod; and Q pressure on guide. Lay off P to some convenient scale on AC, and let it be represented by AD; then the perpendicular DE will be equal to the thrust Q, on the same scale.

Or, by calculation,—

Rule 66. . . . 
$$Q = P \times \frac{BC}{AC} = P \times tan. BAC.$$

and, AB and BC being known, AC can be found from the relation  $AC = \sqrt{AB^3 - BC^3}.$ 

Figs. 14, 15, 16, and 17 show types of piston-rod crosshead in common use for vertical engines,—the two former for small engines, and the two latter for large ones. The type shown in fig. 17 is specially suited for production as a steel casting, and is then strong, without unnecessary weight, and gives most excellent results.

The common method of fixing the sizes of crosshead shoes is to assume that the pistons, when at half stroke, have still the maximum effective pressures acting on them; to calculate the pressures on the guides from these loads in the manner described above; and then to fix the areas of the shoes so that the pressure per square inch may not exceed 80 lbs. (Rule 67.) For ordinary speeds of piston 70 lbs. is a fair value, but for the shoes of high-speed Naval engines 60 to 65 lbs. is a more usual pressure. Of course, where the indicator diagrams from similar engines are available, the actual effective pressures at half stroke may be ascertained and used, but the pressures per square





Frg. 17.

inch must then be limited to from 40 to 60 lbs., and should not exceed the latter figure.

It is very desirable to keep the crossheads and guides of compound and triple engines all of the same dimensions, and to effect this, the mean of the piston loads may be used to calculate from. The surfaces of the astern shoes may be from '5 to '7 of those of the ahead ones.

For gudgeons, and bolts and caps, see under Connecting Rods.

Where the gudgeon brasses are recessed into the piston-rod head, the inner or half-round brass may have a thickness.—

Rule 68. Thickness of inner half brass 
$$-\frac{\text{Diam. of gudgeon}}{8} + 2$$
,

whilst for the outer or flat half the thickness may be,-

Rule 68a. Thickness of outer half brass = 
$$\frac{\text{Diam. of gudgeon}}{7}$$
 + 2.

See note with reference to white metal under "Connecting rod gudgeons," page 91; also Table XXXVIII., page 94.

#### CONNECTING RODS.

The length of the connecting rod, measured from centre of gudgeon to centre of crank pin, should not be less than twice the stroke of the piston.

So far as tensile stress alone is concerned, a rod of the same

but there are also to be considered, compressive stress, bending stress due to the inertia of the rod itself, and bending stress due to the friction of the gudgeon and crank pin.

As marine connecting rods are usually between 10 and 16 diameters (measured at mid-length) long, they must, when compressive stresses

are under consideration, be treated as struts jointed at the ends.

Hodgkinson & Gordon's formula for the breaking strength of such a strut, of circular section, is,—

$$P = \frac{fs}{1 + 4a\frac{l^2}{d^2}}$$

where P is breaking load in lbs.; l length from centre to centre, and d diameter, both in inches; s area of section in square inches; and f and a co-efficients, whose values for wrought-iron or mild steel are 36,000 and  $\frac{1}{3,000}$  respectively.

It should be noted that the greatest thrust on the connecting rod is

to the effective load on the piston as AB (fig. 13) is to AC.

As the ratio of length to diameter rarely exceeds 16, however, it is probable that the following empirical rule (suggested by Grashof, and quoted by Unwin) will give more accurate results,—

Rule 69. 
$$P = \frac{KAI}{\frac{Al^2}{c} + I}$$

where P is greatest safe load in lbs.; A sectional area of rod in sq. ins.; I moment of inertia (equal to  $05d^4$  for circular section); l length in inches from centre to centre; and K and c constants whose values are respectively 12,000 and 5000 for steel, and 10,000 and 5600 for wrought-iron. The maximum working load on a connecting rod should not exceed '75P, and is commonly about '6P.

The bending stress, due to the inertia, may be found from the formula.—

Rule 70. 
$$f = 137 \frac{v^2 l^2}{q R d}$$

where v is velocity of crank-pin in feet per second; l length of rod from centre to centre, and d diameter of rod, both in inches; l

radius of crank in feet; and g = 32.

The value of f will be found to lie between 800 and 1800 lbs. per sq. inch for the various types of engine and numbers of revolutions met with in ordinary practice, and this value must be added to the compressive stress in estimating the total stress on the material of the rod.

In a three-crank engine, when one of the crank-pins heats, the bending stress set up in the connecting-rod by the continued action of all the pistons may be very great (if a "seize" could really occur "ould be destroyed instantly), but its magnitude cannot be

even approximately calculated, and the case is, therefore, one that can only be met by an empirical formula. The above formulæ may, therefore, be used as *checks*, but the following empirical rule will be more readily applied, and the results given by it will be found to agree very closely with good modern practice:—

Rule 71. 
$$D = \frac{\sqrt{L \times K}}{4}$$

where D is diameter of rod at middle, and L length from centre to centre, both in inches; and

K = '028 √Effective load on piston in lbs.—for Mercantile engines.

K = '022 √Effective load on piston in lbs.—for Naval engines.

Connecting-rods are usually made tapered from the gudgeon end to the middle, and parallel from the middle to the crank end.

Rule 713.—The gudgeon end may have a diameter equal to 875 of the diameter at the middle.

Connecting Rod Gudgeons.—The rods of small engines may have the gudgeon shrunk into the jaws or sides of the double-eye, and working in brasses fitted into a recess in the piston rod head, and secured by a cap and bolts; but larger engines should have the gudgeon shrunk into or formed with the piston-rod head or crosshead, and both jaws of the connecting-rod fitted with brasses, caps and bolts, &c. The great advantages of the latter plan are,—the ease with which the brasses can be overhauled and adjusted, and the fact that it does not require the piston-rod crosshead to be forged solid with the rod. It also braces or "trusses" the joint between the two rods, and, in a measure, compensates for the absence of side guides, which experience has shown are better omitted; and, further, should unequal wear of the brasses take place, it occurs at a distance from the axis, and is of less relative importance than unequal wear of the two sides of a single central brass would be.

Rule 72.—The loads on gudgeon bearings, from maximum effective pressures on pistons, should never exceed 1200 lbs. per sq. inch, and, when double brasses are used, they can be kept down to about 1000 lbs. per sq. inch without using dimensions in any way abnormal, and, of course, work all the better for it.

Where the gudgeons cannot conveniently be made of hard steel, but are of mild steel, or wrought-iron, they must be case-hardened, and

then carefully ground true.

White metal must not be used in the brasses for these bearings, as experience has shown that it is not suited for cases in which the pressures are great, and the angular movement small.

Rule 73.—The diameter of the gudgeon (when shrunk into the connecting-rod) may be  $1.25 \times \text{Diameter}$  of piston-rod, and the length is then given by,—

Length of Gudgeon =  $\frac{\text{Max. effective load on piston}}{\text{Diameter} \times 1200}$ .

Rule 74.—When the gudgeon is fixed into, or formed with, the piston-rod crosshead, the length of each end should be not less than '75 × Diameter of piston-rod, and is commonly made about '875,—with a diameter about the same as that of the piston-rod; but in Naval engines the proportions rise to 1 or 1.2 for the lengths, and 1.25 for the diameters.

Connecting Rod Caps and Bolts.—The stresses on bolts of piston-rods and connecting-rods, per square inch area at bottom of thread, may be those given in Table XXXI., page 73,—the bolts being in all cases of mild steel; but, where the load is carried by four bolts in place of two, the strain per square inch should be one-eighth less,—to allow for possible inequality in screwing up.

The bodies of the bolts should be turned down to the same diameter as the bottom of the thread, except where necessary for steadying the caps and brasses, and these remaining plain portions should be of slightly larger diameter than the screw thread,—say ½, inch up to

21/2 inch diameter, and 1/16 inch for larger sizes.

The nuts should be of wrought-iron,—as steel nuts on steel bolts have a great tendency to "seize" and tear when imperfectly lubricated.

The necessary section of cap is most readily determined by means of the ordinary formula for a beam supported at the ends, and uniformly loaded, viz.:—

Rule 75. 
$$w = \frac{8fz}{r^3}$$

where w is the working load per inch of length for any given value of f; l the length in inches, from centre of bolt to centre of bolt; and z the modulus of the section,—equal to  $\frac{\text{Breadth} \times \text{Depth}^2}{6}$  for a rectangular section. For wrought-iron, or mild steel, the values of f may be,—

Flat-backed brasses and caps,—load carried by one cap,—f=9,000. Half-round ,, ,, f=10,000. Flat-backed ,, ,, two caps,—f=8,000. Half-round ,, ,, f=9,000.

Half-round ,, ,, f = 9,000. In estimating the breadths of caps, care should be taken to deduct the diameters, or breadths, of all oil holes.

Connecting-Rod Brasses.—The overall thickness of these (i.e., the thickness including any white metal) should be as follows:—

Rule 76. Flat-backed brasses for gudgeon end,— Thickness =  $\frac{D}{7}$  + 2.

Rule 76a. Flat-backed brasses for crank end,— Thickness =  $\frac{D}{8} + 2$ . Rule 76c. Round brasses for crank end,—
Thickness =  $\frac{D}{9}$  + 2.

Rule 76d.—Thickness of white metal - '02D + '125.

Rule 76e.—When no white metal is  $\begin{pmatrix} \frac{D}{10} + .15 \text{ when flat backed.} \\ \frac{D}{11} + .12 \end{pmatrix}$ , round,

See Table XXXVIII., page 94, for proportions given by these rules.

The recesses in the brasses should be carefully tinned before the white metal is run in; and the practice of hammering the white metal to consolidate it should be avoided, as it tends to detach it from the brass.

Rule 77.—The width of the crank end of the connecting-rod should not be less than '7 × length of crank-pin,—as otherwise the brasses will not be properly supported.

The proportions of the double-eye at gudgeon end (fig. 18) should be as follows:—



Fig. 18.

Table XXXVIII.—Thickness of Brasses.

	, <del></del>									
1 1	Description of Bearing or Brasses.									
agga.	Conne rod gu whe pistor hea	dgeon n in n rod	Connerod gu when forked of con	dgeon n on d end mect.	Cra	nk-pins.		Main	Bearing	<b>S</b> .
Diameter of g	Inner half.	Outer half.	Round brass's.	Flat backed brasa's.	Round brasses.	Flat backed brasses.	White metal. -02D+-125	Round brasses.	Flat backed brasses.	e metal. D+ 125
	<u>8</u> +⋅2	D 7+ ·2	D 8+·2	D 7+·2	$\frac{D}{9}+2$	$\frac{D}{8} + \cdot 2$	Whit -021	<u>D</u> + •25	$\frac{8}{D}$ +.3	White 1
2	•45	· <b>4</b> 8	•45	•48	(⁺32	(*37	l	(.30	(.35	
21/2	•51	•56	•51	.56	🖺 ∫∙37	₽ ).43		🖺 )∙34	₽ 1.40	
3	•57	· <b>6</b> 3	.57	.63	+ 7.42	+ 7.48		+).39	+ \$.45 AIR .50	
31/2	•64	•70	.64	.70		A (.24				
4.,	.70	.77	.70	.77	*64	.70	.20	·65	·74	20
41/2	.76	.84	.76	*84	.70	.76	21	.70	.80	21
5	·82 ·89	.91	·82 ·89	91	.75	·82 ·89	22	•75 •80	·85 ·91	·22
51/2	.95	1.06	.95	1.06	*81 *87	95	23	-85	.97	23
6 61/	1.01	1.13	1.01	1.13	.93	1.01	25		1.03	25
6½ 7	1.07	1.20	1.07	1.20	.98	1.07	.26		1.08	-26
71/2	1.14	1.27	1.14	1.27	1.04	1.14	27	1.00	1.14	.27
18/2	1.20	1.34	1.20	1.34	1.09	1.20	•28		1.19	28
81/2			1.26	1.41	1.15	1.26	•29		1.25	-29
9'2			1.32	1.48	1.20	1.32	.30	1.15	1.30	.30
91/2			1.39	1.56	1.26	1.39	•31	1.20	1.36	•31
10	,		1.45	1.63	1.31	1.45	.32		1.41	•32
10½	'		1.21	1.70	1.37	1 51	.33		1.47	.33
11			1.57	1.77	1.42	1.57	'34		1.52	.34
12		·	1.70	1.91	1.53	1.70	.36		1.63	.36
13			1.82	2.06	1.64	1.82	.38		1.74	.38
14		•••	• • • •	•••	1.75	1.95	.40		1.85	.40
15	•••	•••			1.87	2.08	.42		1.97	.42
16	•••	•••			1.98	2.20	*44		2.08	*44
17	•••	•••		•••	2.09	2.33	*46		2.19	·46
18				•••	2·20 2·31	2.45	·48		2·30 2·41	-50
19 20	•••			•••	2.42	2.70	52		2.21	-52
20					2 4Z	2 10	1 52	2 20	2 52	52
<u></u>					<u> </u>	<u> </u>		1.	<u>!</u>	<u> </u>

Note.—Thicknesses given in above Table are total thicknesses including white-metal, if any.

Rules 78 and 78a. 
$$\frac{B}{A} - 1.82$$
, and  $\frac{C}{A} - .475$ .

Rules 78b and 78c. 
$$\frac{D}{G} = 1.2$$
, and  $\frac{F}{G} = .45$ .

The sectional area at D, or F, is then about '62 of that at G; and wea  $C \times J$  about '39 of that at G.

Rule 78d. Also 
$$\frac{E}{H}$$
 - 275.

When double brasses are used the proportions differ slightly from the above, and are approximately,—

Rule 78e, 78f, and 78g. 
$$\frac{D}{G} - 1.25$$
;  $\frac{K}{H} - 1.5$ ; and  $\frac{E}{H} - .47$ .

But of course, in this latter case, much depends on the type of mosshead employed, and the side of the jaw should be considered as a cantilever, and the section at S made such that the moment of P does not impose a load of more than 9000 lbs. per square inch, when P is taken as five-eighths of the total effective load on the piston. The proportions given above are for the case where the crosshead consists of a central cubic block, into which the piston-rod end is fitted, and from which the gudgeons project, one on either side,—as shown in fig. 17.

#### SHAFTING.

The resistance of a plain cylindrical shaft to a simple twisting stress is given by,—

Rule 79. 
$$T = .196 D^8 \times f,$$

where T is the twisting moment in inch lbs.; D the diameter of the shaft in inches; and f the greatest shearing strain on the material,—in lbs. per square inch.

When the shaft is hollow, the formula becomes,—

Rule 79a. 
$$T = 196 \frac{D^4 - d^4}{D} \times f,$$

where D and d are respectively the external and internal diameters. The values of f should not exceed the following:—

	Shafts below 10" dia.	Shafts above 10" dia.
Wrought-iron forging,	9,000	8,000
Scrap steel forging, .	10,500	9,000
Mont steel forming	19 000	10,000

The torsional stiffness of shafts may be estimated by the following formulæ (Rankine):—

Rule 80. For solid shafts 
$$\theta = \frac{10.2 \text{ T}l}{\text{CD}^4}$$
 nearly.

Rule 80a. For hollow shafts 
$$\theta = \frac{10.2 \text{ Tl}}{\text{C}(\overline{\text{D}^4} - d^4)}$$
 nearly.



FIG. 18A.

where  $\theta r$  is length of arc moved through at radius r; l length of shaft in inches; C constant, values of which are given below; and other symbols, as defined above.

. C=10,000,000 to 12,000,000.

Where a shaft is revolving uniformly, and transmitting power, the relation between the twisting moment and the horse-power applied is given by.—

Rule 81. 
$$T = \frac{I.H.P.}{R} \times 63,000.$$

The great majority of shafts, however, are turned by steam engines acting through cranks, and do not revolve uniformly, -because the tangential pressure on the crank-pin is constantly varying, -and must therefore be designed to resist the maximum twisting moment, instead of the mean given by the above equation.

The rule therefore takes the form,-

Rule 82. 
$$D^8$$
, or  $\frac{D^4 - d^4}{D}$ ,  $= \frac{I.H.P.}{R} \times F$ .

Where F is a co-efficient, the values of which depend on the number and relative positions of cranks, distribution of steam in the cylinders, &c., and are given in the following Tables:-

Table XXXIX.-Shafts for Screw Engines.

Description of Engine.	Value of F for Crank- shafts.	Value of F for Tunnel shafts.
Single crank, single cylinder, cut-off '5, .	150	130
Do. two cylinder compound, Two crank two cylinder compound, cranks	180	110
at right-angles,	100	85
Three crank triple engine, cranks at 120°,	85	74

## Table XXXIXa.—Shafts for Paddle Engines.

Description of Engine.	Value of F Intermediate shaft journal.	Value of F Paddle shaft inner journal.	Value of F Paddle shaft outer journal.
Single crank, single cylinder, . Two crank, two cylinder; cranks virtually at right-angles, and connected by	•••	80	100
link, Two crank, two cylinder, with intermediate shaft; cranks		58	65
at right-angles, Two crank, two cylinder; solid crankshaft; cranks at right-	58	50	65
angles,		55	65

For paddle steamers working only in smooth water the above values of F may be reduced 20 per cent.

The above values of F will suffice for iron shafts, but it is better not to reduce them when employing mild steel, unless the forgings are from ingots of the highest quality.

Hollow Shafting.—Shafting for ships of war is now almost invariably made hollow, in order to get maximum strength and stiffness with minimum weight.

The internal diameter is usually half the external, so that the saving in weight is 25 per cent., whilst the reduction of strength is only about 6 ½ per cent.

"Tail"-shafts are usually "set in," at the after end, after boring, so as to reduce the diameter of the hole within and near the propeller boss.

7

#### . CRANKSHAFTS IN GENERAL.

Crankshafts must be strong enough to bear, not only the maximum twisting stress, but also bending and shearing stresses, the magnitudes of which depend on the positions of the bearings. The conditions of loading and support are rather difficult to determine exactly,depending as they do on the rigidity of the surrounding parts, -but it suffices for most purposes to assume that, in a simple case of overhang, they are represented by the formula,—

Rule 83. 
$$W = \frac{fz}{l}$$
,

where W is maximum load on pin, in lbs. ; f the greatest permissible strain on the material in lbs. per square inch (for which see page 95); l length in inches from mid-length of crank-pin to mid-length of bearing; and z, for a circular section, is '0982 D's.

Where the crank has two arms, and is supported by a bearing on

each side, the formula may be taken as .-

Rule 84. 
$$W = \frac{6fz}{l}$$
,

l being the distance, in inches, between the centres of the two bearings.

Equivalent twisting moment.—When a shaft is subject to simultaneous twisting and bending, the combined stress on any section of it may be measured by calculating what is called the



FIG. 19.

equivalent twisting moment; that is, the two stresses may be so combined as to be treated as one twisting stress only, and the size of the shaft calculated accordingly. The formula for combining the stresses is.—

Rule 85. 
$$T_1 = M + \sqrt{M^2 + T^2}$$

where T is the twisting moment; M the bending moment at any section; and T, the equivalent twisting moment.

The shearing stresses on crank-shafts are relatively small, and are

usually allowed for in the value assumed for f or F.

Curve of twisting moments.—The twisting moment, at any position of the crank, may be determined graphically as on Fig. 19.

Let AB (Fig. 19) be the centre line of the engine, through the cylinder and shaft centres, AC the position of the crank, BC the connecting rod, and AD a line at right angles to AB. Produce BC to cut the line AD. Then, if P be the effective pressure on the piston, when the crank is in position AC, the twisting moment is  $P \times AD$ .

Let the twisting moment be determined at intervals of say 10° of angular movement of the crank, so that there will be 18 values obtained for the half revolution. Draw a line AB (Fig. 20), and



divide it into 18 equal parts,  $Aa_1$ ,  $a_1a_2$ , &c.; erect perpendiculars at these points, and cut off parts  $a_1b_1$ ,  $a_2b_2$ , &c., representing to scale the 18 values obtained; and through the points  $b_1$ ,  $b_2$ , &c., draw a curve, which will be the curve of twisting strain on the shaft during one stroke of the piston. By prolonging AB, and going through a similar operation for the second half of the revolution, the curve of strain during the return stroke may be obtained.

If the area enclosed by the curve and the line AB be divided by the length of AB, the quotient (AM in Fig. 20) is the *mean* twisting moment. The value of AM may be calculated by taking a mean of the values of  $a_1b_1$ ,  $a_2b_2$  &c. Where there are two or more pistons

acting on the same shaft, the curve of combined twisting moments is obtained by laying off the ordinates of the second piston, or crank, above or beyond the first curve, which is used as the base line, and so on, care being taken to step, or displace, the various curves in the direction AB, by an amount due to the angles between the cranks.

The polar form of this diagram, which is preferred by some engineers, is obtained by laying off the ordinates of the various curves radially from a circle which represents the crank path, instead of from a straight line representing the stroke of piston.

The effective pressures on the pistons at each point are obtained

from the indicator diagrams in the manner explained on page 8.

The bending moment on a section of the shaft will vary exactly with the pressure on the crank-pin, and to find the maximum equivalent twisting moment on a section, it is only necessary to construct a secondary curve from the formula  $T_1 = M + \sqrt{M^2 + T^2}$ , between the point of maximum twisting and that at which the pressure on the piston is greatest.

When steam is not cut off in the cylinder before 4 of the stroke, the maximum load on the piston may be used to calculate the bending moment which is to be combined with the maximum twisting

moment.

Effect of Inertia of Reciprocating parts.—The attention of practical engineers was first drawn to this very interesting subject by Mr Arthur Rigg, in his "Treatise on the Steam Engine," and it has since been treated by various other writers. So far as ordinary marine machinery is concerned (and this term may be taken to include the high-speed machinery of Torpedo Gun-Boats), the general effect of this inertia is to equalise the action of the crank in the same manner as a fly-wheel,—the energy expended in accelerating the reciprocating parts during the early part of the stroke being given out again during the latter part, when the steam pressure is lower. When a curve of twisting moments is constructed as described above, and corrected for the effects of inertia, it will generally be found to show that by far the greater part of the steam pressure at the commencement of the stroke is absorbed in producing acceleration, and that the remaining effective pressure is but a very small fraction of the whole.

It is not necessary, however, to take these effects into consideration when proportioning the various parts of an engine, since calculations based on the statical stresses will quite cover all that is necessary to

provide for dynamical stresses.

Surfaces of Crank-pins and Main Bearings.—If the effective bearing surfaces of pins and journals be considered as equal to-diameter multiplied by length, then, the pressures per square inch should not exceed those given in the following Table:—

### Table XL.-Pressures on Crank-pins and Main Bearings.

Crank-pin Screw engine r	may carry	400 to 500 lbs.	per square inch.
Main bearing do.	do.	800 to 400	do.
Crank-pin Paddle engine	do.	800 to 900	do.
Main bearing do.	do.	500 to 600.	do.

The pressures referred to in the above Table are those resulting from

the maximum effective loads on the pistons.

The main bearings of modern Naval engines (surfaces calculated as described above) are not usually loaded to more than about 275 lbs. per square inch (Rule 36), but the surface is reduced by recessing the brasses at the aides, so as to keep them clear of the shaft for one-third of its diameter at each side. The crank-pins, on the other hand, are loaded rather more heavily than Table allows, viz.,—to about 550 lbs. per square inch (Rule 37), and this is further increased by recessing the brasses similarly to those of the main bearings.

#### Crankshafts of Screw Engines.

Where a shaft has two, three, or more cranks in it, the after cranks have not only to resist the stresses imposed by their own cylinders, but have also to transmit the twisting stresses produced by all cylinders forward of them, so that,—were it not for practical reasons,—the sizes of crank-arms, journals, and pins, might be progressively reduced from after to forward end of shaft.

On the forward journal and forward arm of forward crank, there is little more twisting stress than is necessary to drive the forward eccentrics (if any), and the bending stresses are those due to half the load on the pin; whilst the after arm of the same crank, and the journal adjoining it, are subject to similar bending stress, and to

nearly the whole of the twisting stress due to the load.

If the bending moment in either journal be expressed by  $\frac{M}{2}$ , then, the equivalent twisting moment in after journal will be,—according to formula given on page 99 (Rule 85),—

$$T_1 = \frac{M}{2} + \sqrt{\left(\frac{M}{2}\right)^3 + T^2}$$

Coming now to the aftermost crank,—if  $T_2$  be the maximum total twisting moment produced by all cylinders forward of it;  $T_3$  the maximum twisting moment from its own cylinder; and  $M_3$  the corresponding bending moment; then, for the forward journal, the twisting moment is  $T_2$ , and the bending moment  $\frac{M_3}{2}$ , so that the equivalent twisting moment is,—

$$T_4 = \frac{M_3}{2} + \sqrt{\left(\frac{M_3}{2}\right)^2 + T_2^2}$$

whilst, on the after journal, the twisting moment is  $T_2 + T_3$ , and the bending moment  $\frac{M_3}{2}$ , so that the equivalent twisting moment is,—

$$T_5 = \frac{M_3}{2} + \sqrt{\left(\frac{M_3}{2}\right)^2 + (T_2 + T_3)^2}.$$

The maximum bending moment, acting in a plane perpendicular to the axis of the shaft, at any section of the aftermost crank-arm, distant x from the crank-pin centre is,—

$$\mathbf{M}_{5} = \frac{\mathbf{T}_{2} + \mathbf{T}_{8}}{\mathbf{L}} \times \mathbf{x},$$

and for the forward arm of the same crank,-

$$\mathbf{M_4} = \frac{\mathbf{T_2}}{\mathbf{L}} \times \mathbf{x},$$

where L is the length of the crank in inches.

The bending moment at the mid-length of the pin of a solid or rigidly built-up shaft is,—

$$M_6 = \frac{R \times L}{8}$$

where R is the load on pin, and L the distance between the centres of the main bearings on either side,—the shaft being considered as a continuous girder supported at the centres of the bearings.

In marine crankshafts, where the crank-arms are not less than '7 of the diameter in thickness, and where the bearings are close to the crank-arms, there is really little or no bending action at the journals.

At and near the ends of the stroke the crank-arms are subjected to a bending strain which acts in the plane of the axis of the shaft and has a magnitude,—

$$M_7 = \frac{R \times L_1}{8}$$
,

where L₁ is the distance from the mid-length of pin to the fore-andaft centre of the arm (Fig 21). Hence the thickness (α) of the forward arm of forward crank must never be less than,—

$$a = \sqrt{\frac{3R \times L_1}{4bf}}$$
.



In ordinary practice, however, to secure interchangeability, the crankshafts of merchant steamers are made with all journals of the same diameter, and all crank-arms of the same dimensions; but in light machinery for Naval purposes the forward crank-arms are sometimes reduced in fore-and-aft thickness.

Crank-arms, when forged solid with the shaft, will be found to satisfactorily resist all stresses to which they are subject, if made of

the following proportions:-

Rule 88. Breadth of arm - 1.1 × Diameter of shaft.

Rule 88a. Thickness of arm - '75 × Diameter of shaft,

When for any reason it is not possible to make the arms so thick as  $75 \times$  diameter of shaft, they may be made as thin as 75, or even, in special cases, 65; but when this is done, care must be taken to make the breadth such that,—

$$\frac{a \times b^2}{6} = .196 \,\mathrm{D}^3.$$

The most destructive of all stresses to crankshafts are, however, those resulting from the main bearings getting out of line, and the levels of these should therefore be verified every few months, and the shaft lifted and re-bedded whenever any unequal wear is apparent.

When crank-pins and shaft journals are designed for the pressures given in Table XL., page 101, they will be found to have about the following proportions:—

Rule 89.

Diameter of crank-pin . . . .  $-1 \times diam$ . of shaft.

Rule 89a.

**Length of crank-pin** (two crank compound) . =1 to  $1.5 \times$  do.

Ruie 89b.

**Length of crank-pin** (three crank triple) . -1 to  $1.25 \times do$ .

Rule 89c.

Length of main bearing (two crank compound) = 1.1 to  $1.3 \times do$ .

Rule 89d.

Length of main bearing (three crank triple) - 8 to 1.1 × do.

In high-speed Naval engines the bearings and crank-pins are often made longer than this, but the power transmitted through a given crankshaft, when forced draught is in use, is frequently 50 per cent. more than is usual in the merchant marine; in other words,—what is taken from the diameter of the journal is added to the length.

To ensure equal wear in the main bearings, they should, theor

cally, increase in length from forward aft, in proportion to the twisting moment at each journal,—as the turning force at the crankpin tends to cause the shaft to move round eccentrically within the bearing, and so cause the wear; and, as a matter of fact, the after bearing is found, in practice, to wear more rapidly than the others, and should not be cut away at the sides.

Shaft Couplings and Coupling Bolts.—(Rule 90.) When couplings are forged solid with the shaft they should have a thickness of *28 × diameter of shaft.

Coupling bolts should have little beyond a shearing stress to resist, and their size is therefore given by,—

Rule 91. Area of one bolt = 
$$\frac{196D^3}{N \times r}$$
 or  $\frac{196\left(\frac{D^4 - d^4}{D}\right)}{N \times r}$ 

if the material of the bolts and that of the shaft offer the same resistance to shearing; D being diameter of shaft, N number of coupling bolts, and r radius at which they are placed.

By way of making some allowance for screwing-up stresses on small bolts, coupling bolts below 1½ inch diameter may be made 20 per

cent. stronger than given by above rule.

Where the bolts in any coupling may require to be removed at times, they should be made with a taper of about 1/4 inch per foot on the diameters.

Rule 92.—It is by no means necessary, in large bolts, to make the screwed part equal in diameter to the body of the bolt, and bolts between 2½ and 3½ inches diameter may be reduced ¼-inch, and those above 3½ inches, ½-inch in diameter. The nuts may have a thickness of 75 to 8 × diameter of screw.

In two, three, and four throw crankshafts, above 10 inches diameter, each crank, with its adjacent journals, should be made as a separate forging, and the number and position of coupling bolts should be such that the shafts can be interchanged or reversed as may be desired.

When large cranks are coupled together in this way, a spigot on each, fitting into a recess in its neighbour, materially assists adjustment, and ensures the "truth" of the shafts when bolted together; such spigots may have a diameter of '5 to '7 × diameter of shaft, and a length of say %-inch for the projection, and "/16-inch for the recess.

Built Crankshafts.—With a view of obtaining sounder and more reliable work, crankshafts over 12 inches diameter are frequently built up of separate pieces, as shown in fig. 22; but great care is required in the construction of such shafts to ensure perfect truth when finished, and freedom from internal strain.

Rule 93.—The thickness of the crank-arms is the same as for solid cranks, viz.,—'75× diameter of shaft; and the external radius of end of arm should be 1.8 × radius of hole (into which pin or shaft body fits). The crank-arm is frequently stepped back so as to have a thick-

ness of say '65 at the pin end whilst remaining '75 at the ahaft end in order to get a larger pin. Of course such shafts are considerably heavier than solid ones, and are therefore not used in Naval work.



#### Crankshafts of Paddle Engines.

These may usually be classed under one of the following three heads:—

(a) Intermediate shaft type,—in which the outer crank-arms are keyed upon the paddle shafts, while the inner ones are similarly fixed to an intermediate shaft, the crank-pins being fixed in the inner crank-arms, and, to a certain extent, free in the outer ones, as shown in fig 23.

(b) The type in which the intermediate shaft and its crank-arms are absent, and the crank-pins are fixed in the paddle-shaft crank-arms, and left long enough to allow of the attachment of a link, or sling, which holds the crank-arms at the

required angle with one another.

(e) The solid shaft,—in which the cranks are forged in one with the shaft,—as in the case of a screw engine,—and the paddle-shafts connected with it by solid flange couplings, a little elasticity being obtained by the interposition of a thickness of leather, by helical springs on the coupling bolts, or by other similar devices.

The effect of the first arrangement is to communicate very equable stresses to the paddle-shafts, as the pressures from the crank-pins are always at right-angles to the cranks on the paddle-shafts; and, in smooth water, the power of each engine is very nearly equally divided between the two wheels, and the bending action on each paddle-shaft never exceeds half that due to its own cylinder, for, when near the dead-points, the bending moment is at its maximum, and is wholly taken by the inner crank-arm, to which the pin is secured. For these

reasons the intermediate shaft must be stronger than the paddle-shafts when the ship is intended to work in rough water, as it may have t transmit the whole twisting force of one engine, and always takes during certain parts of the revolution, the whole bending force from that engine.

Hence, if T be the maximum twisting moment from one piston of double cylinder paddle engine, and M the maximum bending momen from the same piston, then,—as in the general case (page 99),—th

maximum equivalent twisting moment T, will be,-

 $T_1$  (on intermediate shaft) -  $M + \sqrt{M^2 + T^2}$ 

and 
$$T_1$$
 (on paddle shafts) =  $\frac{M}{2} + \sqrt{\left(\frac{M}{2}\right)^2 + T^2}$ .

Rule 94.—With the second type of shaft (b), the axes of the cylinders are necessarily at an angle with one another, but the crank are usually so placed that the arrangement is equivalent to one is which the cylinders are in the same plane and the cranks at right angles.

Each shaft takes the whole of the bending moment from its own cylinder; and,—while usually transmitting half the combined twisting moment—may, in rough water, have to transmit the whole of th twisting moment of one engine. The inner journals of these shaft are therefore subject to precisely the same stresses as the intermediat shaft journals in type (a), and should be made of the same size, a indicated in Table XXXIXa., page 97.

The maximum pull in the coupling link may be taken as being equal to that in one connecting rod, but its ordinary value will only

be one half of this.

In the third case (that of the solid crank-shaft), the cranks wil generally be at right-angles, and the twisting stresses will be similar to those in the previous cases; the central part transmitting ordinarily half the stress from one piston, but occasionally the whole. The bending stresses in each crank-arm and journal will be those due to half the load on one piston, and may be determined by means of the formulæ previously given.

Paddle shafts.—The outer end of each paddle shaft is subjected to a bending stress, which is the resultant of the stresses due to the weight of the wheel, and to the re-action of the water on the floats, and the moment of which (M₁) may be taken as,—

$$M_1 = \sqrt{(M \text{ of weight})^2 + (M \text{ of re-action})^2}$$
.

The twisting stress at the outer end of a paddle shaft is the same as at the inner journal. The outer bearing may have a length of from 1.5 to  $2 \times$  diameter of journal, according to service for which boat is intended, and to weight of wheels.

Overhung cranks. Fig. 23 shows a pair of overhung cranks as commonly fitted in paddle wheel engines. The crank-pin is subject

o bending and shearing stresses due to the thrust on the connectingod. The maximum bending stress in the pin is close to the face of he crank and is.—

 $\mathbf{M} - \mathbf{R} \times \mathbf{l}$ 

where R is the thrust on the connecting-rod, and l the length on pins rom centre of connecting-rod to face of crank,

The diameter of the pin is given by,-

Rule 95. Diameter of crank-pin = 
$$\sqrt[3]{\frac{\mathbb{R} \times l}{f} \times 10^{\circ}2}$$

where f is the greatest permissible stress on the material, in lbs. per quare inch. This rule gives the diameter requisite for strength, but t may be necessary to make the pin larger in order to get sufficient surface to comply with Table XL., page 101.

The crank-arm is to be treated as a lever, so that,—if a is thickness neasured parallel to axis of shaft, and b breadth, at a section x inches from the crank-pin,—the bending moment at that section is,—

and, 
$$\frac{\mathbf{M} = \mathbf{R} \times \mathbf{x}}{6} = \frac{\mathbf{M}}{f}$$
$$\text{or } \mathbf{a} = \frac{6\mathbf{M}}{b^2 \times f}.$$

Rule 96. The bending moment decreases with the distance from the crank-pin, while the shearing stress is the same throughout the trank-arm; consequently the section near the crank-pin should have an extra square inch for each 8000 lbs. of thrust on the connecting-rod, beyond the area necessary to resist the bending moment.



The dimensions of the boss to receive the shaft may be determined from, —

Rule 97. 
$$T = 2R \frac{L}{D+e}$$

where T is the total stress on the section  $h \times e$ , and the other letter have the meanings shown in Fig. 23. The length h is usually 75 to  $1 \times \text{Diameter}$  of shaft, (Rule 98.) and,—when crank and shaft are 0 the same material,—h and e may have the following relative values:—

The crank-eye, or boss into which the crank-pin is fitted, should bear the same relation to the pin that the shaft boss does to the shaft.

The diameter of the shaft end, on which the crank is fitted, should

be  $1.1 \times \text{diameter of journal}$ .

Keys for Cranks, etc. These should be made of steel sever grades harder than the shaft and crank, and should be of the followin proportions:—

Rule 99. Breadth of Key = 
$$\frac{D}{4} + 125$$
.

Rule 99a. Thickness of Key = '5 × Breadth.

Depth of key-way in shaft, at edge, should be '17 × Breadth. Some engineers use two (smaller) keys placed 90° apart, in order to obtain at least three bearing points on shaft, and so avoid all risk of "rocking"; and large shafts are sometimes fitted with three keys. Where a lever is placed at some distance from the end of a shaft, so that the key cannot be fitted and driven from the end, it is a good plan to fit a small driving key alongside of the sunk key, as shown in Fig. 24.



### Tail Shafts of Screw Engines.

These must be strong enough to resist the bending stresses arising from the weight of the propeller, and from its action when partial immersed, in addition to the twisting stress. The former can course be readily determined by the rules already given for bending strains on crankshafts, but the calculation of the stresses resulting from "racing" of the propeller is too complex a subject to enter there. Experience has shown, however, that the tail shaft should have a diameter not less than that of the crank-shaft; and it is not at a

uncommon now to make them 10 per cent. stronger than the crank-shaft,—since the breakage of one may involve such serious conse-

quences.

Rule 100.—The taper of the end that fits into the propeller boss should not be less than %-inch per foot, and may, with advantage, be a little steeper,—say 1 inch per foot, i.e., for every foot of length in the tapered portion the diameter will alter 1 inch.

The thread of the large nut that holds the propeller on the shaft is commonly made 2½ threads per inch, regardless of the diameter; it should be left-handed when the propeller is right-handed, and vice-versd. The nut should be securely locked, preferably by a plate fixed to the after end of the boss by tap screws.

The propeller should be secured by one feather or key extending the

whole length of the boss, the proportions of which may be .-

Rule 101.—Breadth of key - '22 × largest diameter of shaft + '25.

Rule 1013.—Thickness of key - '55 × breadth.

The diameter of the screwed end of the shaft should be sufficiently reduced to allow of the key being fitted in, from the after end, clear of the thread.

The diameters over the brass casings at the bearings should differ by %-inch, to enable the shaft to be got in and out of the stern-tube more easily. The thickness of brass casing should not be less than,—

Rule 102.—Thickness of brass casing at bearings - 055D₁ + 15 where D₁ is the diameter of the shaft at the bearing, under the casing.

See Table XLIV., page 118.

## Board of Trade Regulations as regards Shafting.

Main, tunnel, propeller, and paddle shafts should not be passed if less in diameter than that found by the following formulæ, without previously submitting the whole case to the Board of Trade for their consideration. It will be found that first-class makers generally put in larger shafts than those obtained by the formulæ.

When shafts are proposed to be fitted whose diameters are less than

6 inches, the case should be submitted for consideration.

For compound condensing engines with two or more cylinders, when the cranks are not overhung:—

$$S = \sqrt[3]{\frac{C \times P \times D^2}{f\left(2 + \frac{D^2}{d^2}\right)}}$$
$$P = \frac{f \times S^3}{C \times D^2} \left(2 + \frac{D^3}{d^2}\right)$$

Where S-diameter of shaft in inches.

d²=square of diameter of H.P. cylinder, in inches; or sur of squares of diameters when there are two or mor H.P. cylinders.

D²=square of diameter of L.P. cylinder, in inches; or sur of squares of diameters when there are two or mor L.P. cylinders.

P=absolute pressure in lbs. per square inch,—that is, boile

pressure plus 15 lbs. C=length of crank in inches.

f-constant from following table.

Note.—Intermediate pressure cylinders do not appear in the formulæ.

For ordinary condensing engines, with one, two, or more cylinder when the cranks are not overhung:—

$$S = \sqrt[3]{\frac{C \times P \times D^2}{3 \times f}}$$

$$P = \frac{3 \times f \times S^3}{C \times D^2}$$

Where  $D^2$  is square of diameter of cylinder in inches; or sum squares of diameters when there are two or more cylinders; and oth letters have same meanings as above.

Table XLI.—Constants for Shafts.

For two Cranks. Angle between Cranks.	For Crank and Propeller (tail) Sha		For Tunnel Shafts.
90° 110° 110° 120° 180° 140° 150° 160° 170° 180°	For paddle engines of the direct act- ing type multiply constant in this column suitable for angle of cranks by 1 4.	1,047 966 904 855 817 788 766 751 743 740	1,221 1,128 1,055 997 953 919 894 877 867 864
For three Cranks. 120°		1,110	1,295

Note.—When there is only one crank, the constants applicable a those in the Table, opposite 180°.

#### Lloyd's Rules with regard to Shafting.

The diameters of crank and straight shafts are to be not less thanhose given by the following formulæ:-

Table XLII.—Diameters of Shafts.

Description of Engine.	Diameter of Crank Shaft in Inches.
Compound—Two cranks at right angles	$(0.04A + 0.00ED + 0.02S) \times \sqrt[8]{P}$ .
Triple — Three cranks at equal angles	(·038A + ·009B + ·002D + ·0165S) × ³ √P.
Quadruple—Two cranks at right angles	$(.084A + .011B + .004C + .0014D + .016S) \times \sqrt[3]{P}$
Do. —Three cranks	$(.028A + .014B + .006C + .0017D + .015S) \times \sqrt[8]{P}.$
Do. —Four cranks	$(.038A + .01B + .004C + .0018D + .0155S) \times \sqrt[3]{P}.$

Where A is diameter of H.P. cylinder in inches.

first I.P. cylinder in inches. do.

в second I.P. C do. do D do.

do. L.P.

stroke of pistons in inches.

boiler pressure above atmosphere in lbs. per square P inch.

The screw (tail) shaft to be the same diameter as is required for the erank shaft.

Intermediate (tunnel) shafting should be at least 18ths of the diameter required for the crank shaft. Where engines are of extreme proportions the case should be

specially submitted to be dealt with on its merits. 36. All shafts to be examined when rough turned and when

finished.

37. Gauges of an improved description for testing the truth of trank shafts are to be supplied with all new engines, and adjusted in the presence of a Surveyor.

#### THRUST BLOCKS.

To find the thrust along the shaft of a screw engine, it is necessary to know the speed of the ship, and the effective horse power.

The effective horse power is the power actually employed in propel-

ling the ship, and its relation to the indicated horse-power depends on the combined efficiency of the engines and propeller.

For the purpose of calculating the surface of thrust collars it is

sufficient to assume that E.H.P. is equal to two-thirds I.H.P.

Then.—

Rule 103. Indicated Thrust =  $\frac{I.H.P. \times 33,000}{S \times 101.8} = \frac{I.H.P. \times 326}{S}$ 

where S is the speed of the ship in knots; and,-

Rule 104. Mean Normal Thrust  $=\frac{I.H.P. \times 22,000}{S \times 101.3} = \frac{I.H.P. \times 217.}{S}$ 

As the thrust varies with the I.H.P., and inversely with the speed (see Table XLIII.), it may rise considerably above the "mean normal" value, if, from any cause, the speed is reduced without a corresponding decrease in the power, as, for instance, when "thrashing" against a head wind and sea, or when towing, and allowance must be made for such temporary increases.

Rule 105. The pressure per square inch, due to the mean normal thrust, should never exceed 70 lbs.; and, for tug boats and vessels specially exposed to severe weather, it should not exceed 50 lbs.

In ordinary practice the pressure is about 50 lbs. per square inch in Naval work, and about 40 lbs. per square inch in mercantile steamers, but when white metal is used these loads may be safely increased by 25 per cent.

For shafts of "mild" steel, as now generally used, gun-metal does not make a satisfactory rubbing surface, and white metal should always be employed.

The relation between depth and thickness of collars on shaft

is given by.—

Rule 106. Thickness =  $\cdot 25 \text{ (D} - d) + \cdot 4 \text{ inch,}$ 

where D is diameter over collars, and d diameter between collars. both in inches.

The spaces between collars on shaft should be as follows:—

Rule 107. When rings in block are solid gun metal, as shown in Space = 4 (D-d). fig. 25.

Rule 107a. When block is fitted with) cast-iron or cast steel "horse -shoes" faced with brass} or white metal, as shown in fig. 26.

**Space** =  $2\sqrt{(D-d)-1.5}$ 

Rule 107b. When rings are cut out of solid metal of block and cap, and entire corrugated \ surface is covered with uniform layer of whitemetal, as shown in fig. 27.

Space = 4(D-d) + 6 in



Fig. 25. -Thrust Block (Type 1).





Fig. 26.—Thrust Block (Type 2).



Fig. 27.—Thrust Block (Type 3).

Rule 108. The number of collars employed is, to some extent, optional with the designer, but is commonly '8 to  $9 \times$  diameter of shaft in inches, for types 1 and 3, and a good approximate rule for type (2)

is,—one collar for shafts up to 6 inches diameter, and an additional

one for every 2 inches of diameter beyond.

As in all other bearings, good working depends almost entirely on good lubrication, and the satisfactory results obtained with blocks of type (2) are undoubtedly mainly due to the oil-bath in which the collars run; but this type of block has the great disadvantage of requiring very deep collars, to form which it is necessary to cut very deeply into the forging (as much as 6 to 7 inches a side in the shaft of a large liner), thus leaving only what is, in very many cases, decidedly the inferior portion of the forging to take all the twisting stress.

To meet this objection, Mr Rounthwaite has designed the block shown in fig. 27, which has the following important advantages over

those hitherto used :-

(a) The most reliable portion of the shaft forging is not cut away as in type (2).

(b) The shaft may be run entirely submerged in oil, if so wished.

(c) The shaft can be stripped bare for examination in a few minutes, and the block, if injured in any way, can be removed and replaced without disconnecting and lifting the thrust-shaft.

(d) There is no risk of injury to the block or shaft by meddlesome or careless interference with the adjustment of the "horse-

shoes" as in type (2).

(e) Satisfactory results can be obtained with less weight and bulk of block than with any other type.

There should always be an ordinary plummer block close to the thrust block, to take the weight of the shaft, and prevent vibration, and so ensure an even and steady pressure over the whole surface of the collars. In Naval work this plummer-block and the thrust-block are frequently parts of the same casting.

In order to facilitate the examination of the thrust-blocks of large engines, when type (3) is not adopted, the thrust collars should be placed upon a special short length of shafting which can be got out

with comparative ease.

Large blocks of types (1) and (3) are much improved by having hollow caps and bodies, and arrangements for keeping up a continuous circulation of water through them.

Thrust blocks of all types should be carefully scraped and bedded to

a perfect bearing on the shaft before leaving the workshops.

Rule 109. The number and diameter of cap bolts for type (1) should be such that the shearing stress per square inch, at the bottom of the thread, due to the mean normal thrust, may be between 5000 and 6000 lbs. when the bolts are assisted by spigot pieces of usual proportions.

The sizes of bolts usually employed vary from 1 inch to 1% inch.

Rule 170. The number and diameter of holding down bolts should be such that the shearing stress per square inch, at the bottom of thread due to the mean normal thrust, may be between 1800 and 2200 lbs., when the bolts are unassisted by stops or angle bars riveted to the top plate of the seating, and between 3200 and 3800 lbs. when such stops are fitted. Stops should always be fitted where possible, as, when they are absent, the stress on the bolts is largely a bending stress, owing to the unavoidable presence of a certain thickness of packing.

The sizes of bolts usually employed vary from % inch to 11/2 inch.

Packing should be of cast-iron, not of wood.

Table XLIII.—Thrust Surfaces per I.H.P. for Various Speeds of Vessel.

Speed in knots.	Surface necessary to keep pressure 50 lbs. per sq. inch.						
8	Sq. inch.	12	Sq. inch.	16	8q. inch.	20	Sq. inch.
9	•48	13	-33	17	26	21	•21
10	·43	14	•31	18	•24	22	•21
11	•39	15	•29	19	•23	23	•19

#### STERN-TUBES.

In merchant vessels the stern-tube is almost invariably of cast-iron fitted with a brass bush, or bushes, to carry the lignum-vitæ strip which form the actual bearing surface for the shaft.

In Naval vessels, on the contrary, the stern-tube is always of gun metal, and the bushes are not required, as the lignum-vitæ strips an

fitted into grooves in the tube itself.

In twin-screw Naval vessels the shaft brackets are fitted with gun metal bushes, carrying strips of lignum-vites,—very similar to thos used for the after ends of stern-tubes in merchant vessels; and the forward ends of the stern-tubes are also fitted with long lignum-vite bearings, for the purpose of reducing vibration in the unsupported outboard shafts. Some foreign warships have been fitted with a second or intermediate shaft bracket to more effectually perform the same office.

The stern-tubes of merchant vessels should be secured in place by ring nut on the after end, made to screw up against the after face of the stern-post and draw the tube aft until a collar, formed on it, it close up to forward side of post; the forward end of tube being, a course, jointed to the collision bulkhead in the usual manner.

Naval stern-tubes do not require any fixing at the after end, as the are always surrounded by steel tubes, 1/2 to %-inch thick, which ti

the collision bulkhead to the post, or, in the case of twin-screw ships, to the special stern-tube brackets; they are simply drawn tightly into the post, or brackets, and bolted to the bulkhead at the forward end. When, as occasionally happens, they are put in from the after end, the flange at the stuffing box end is made separately and screwed on.

Cast-iron stern-tubes should be of the thickness given by. -

Rule 111.

$$\mathbf{T} = \frac{\mathbf{D}}{12} + \mathbf{.}\mathbf{5},$$

and gun-metal tubes and bushes for shaft-brackets by,-

Rule 111a.

$$T = \frac{D}{22} + .35,$$

where D is the greatest diameter of shaft, over casings. (See Table XLIV., page 118.)

The stern-bush, for either shaft-bracket or stern-tube, should be of such length that the pressure per square inch (taking surface as length × diameter) does not exceed 50 lbs., and a good rule is,—

Rule 112. Length of bush = 3 to 3.5 × diameter of shaft,

where "diameter of shaft" is again greatest diameter over casings.

This rule will be found to limit the pressure to about 30 lbs.

per square inch.
In Naval twin-screw vessels the bush at after end of stern-tube is

generally three diameters in length.

Rule 113.—The bush at forward end of stern-tube should not be shorter than one diameter for single screw vessels, and, for twin-screw vessels, where there is a length of unsupported shaft outside the stern-tube, the length of this bush should not be less than 1.5 to 1.75 × diameter of shaft.

These bushes in stern-tubes should have a thickness of metal at the

back of the lignum-vitæ not less than,—

Rule 114.

$$T_1 = \frac{D}{28} + .25$$
,

where D is diameter of shaft over casing.

The ribs between the lignum-vitæ strips may have a thickness of %-inch for a shaft 6 to 8 inches in diameter, increasing to %-inch for a shaft of 18 inches diameter.

The lignum-vitæ strips themselves may vary from ½-inch × 2 inches to 1 or 1½-inch × 4 inches, for shafts of the diameters just mentioned.

The stuffing-box and gland at the inner end of stern-tube may have the following proportions:—

Rule 115.

Depth of stuffing-box =  $\frac{D}{2} + 1.5$ .

Rule 115a.

Amount gland can enter  $=\frac{D}{5}+1$ .

Rule 115b.

Diameter of stuffing-box =  $(1.1 \times D) + 1.5$  for bushed glands.

Rule 115c.

**Diameter of stuffing-box** =  $(1.06 \times D) + 1.5$  for solid G.M. glands.

The gland studs may vary from four, 1 inch in diameter, for a shaft of 6 to 8 inches diameter, up to eight,  $1\frac{1}{4}$  inch diameter, for a 16 or 18 inch shaft. If pinion nuts and toothed rings are used, the gland studs must, of course, be made stouter to stand the bending stresses, and should then vary from  $1\frac{1}{4}$ -inch to  $1\frac{5}{8}$ -inch.

The following Table shows at a glance the thicknesses of shaft casings, stern-tubes, and stern bushes, and the dimensions of stern-tube stuffing-boxes, as calculated by Rules 102, 111, 114, and 115:—

Table XLIV.—Stern-Tubes and Bushes, etc.

Dia. of shaft under casing. (D ₁ )	Dia. of shaft over casing. (D) (casing= '055D ₁ +'15)	iron tube. D	tube or	Thickness of tube bushes at back of lignum-vitæ. D = 28+25	Depth of stuffing box. D 2+1.5	9   A Amount gland + can enter.	Dia. of stuffing box for bushed cast-iron gland. 1 1 D+1.5	Dia. of Stuffing buffing solid gun- metal gland. 1'06 D+1'5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7 8 9 10 1/4 11 3/8 12 1/2 13 5/8 14 3/4 15 7/8 17 18 19 1/6 20 1/4 21 3/6 22 1/2	1 1/16 1 3/16 1 1/4 1 3/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 2 1	11/16 8/4 8/4 15/16 7/8 15/16 15/16 11/16 11/16 11/16 13/16 11/4 15/16 13/16	1/2 1/2 9/16 5/8 11/16 3/4 1/16 3/4 1/16 1 1 1/16	81/4 87/8 93/4	2 %	9 ¼ 10 ¼ 11 ½ 12 ¾ 14 15 ¼ 16 ½ 17 ¾ 19 20 ¼ 21 ½ 22 ½ 23 ¾ 25 26 ¼	9 10 11 % 12 % 13 ½ 14 % 16 17 % 18 % 19 ½ 20 ½ 21 % 21 % 25 %

In designing gun-metal stern-tubes, shaft casings, &c., great care must be taken to avoid, as far as possible, all shoulders or steps in the longitudinal section, as the castings set so rapidly, and consequently grip the core so quickly, that everything tending to hinder the longi-

tudinal contraction is a source of danger; want of attention to this will probably cause a long tube to be torn into two or three separate pieces in cooling. The middle portions of Naval stern-tubes are commonly made about 30 per cent. thinner than the ends or portions containing the bearings.

### MAIN BEARINGS.

The surfaces and lengths of main bearings have already been dealt with on pages 101 and 103.

Main Bearing Bolts.—These should be of "mild" steel, with iron nuts, and, to allow for variations in adjustment, &c., should be pro-

portioned as follows:-

Rule II6. When there are two main bearings to each crank, and two bolts to each cap,—assume that each bolt must carry one third of maximum effective load on piston, and select the proper diameter from Table XXXI., page 73.

Rule 116a.—When there are two bearings to each crank, but four bolts to each cap,—assume that each bolt must carry one fifth of maximum effective load on piston, and select diameter from same Table.

Rule 116b.—Where there is only one long bearing with four cap bolts, between two cranks of a triple engine (cranks at 120°),—assume that each bolt must carry one fourth of maximum effective load on piston, and select diameter as before.

Rule 116c.—When the crank is overhung, as in various types of paddle-engine, and the whole thrust of the piston-rod, at the ends of the stroke, is resisted by two cap bolts,—call the thrust P; the distance from centre of piston-rod to centre of main bearing bolts pw; and the distance from centre of piston-rod to centre of outer bearing (in case of paddle-shaft), or of bearing at other end (in case of intermediate shaft) pf. Then (fig. 28),—



Fig. 28.

# Stress on main bearing bolts = $P \times \frac{pf}{uf}$

and each bolt must carry one half of this.

Rule 116d. When the conditions are similar to (c), but there are four bolts in each cap,—assume that each bolt must carry one third of total load on cap, and select suitable diameter from Table XXXI., page 73.

In cases (c) and (d) the stresses on the main bearing bolts due to the weight and re-action of the wheels should be calculated on the principle indicated above, and allowed for if necessary; their magnitude of course depends very greatly on the length of the paddle shaft.

Main Bearing Caps or Keeps.—In order to allow for variations in adjustment, either unnoticed or such as occur when a bearing warms up and has to be slacked, the loads on main bearing caps may be assumed to be as follows:—

Rule 117.

Two bearings to each crank (cases 116 and 116a). %×max. effect. load on piston.

Rule 117a.

One long bearing between two cranks (case 116b)

% × max. effect. load on piston.

Rule 117b.

One bearing to each crank (cases 116c and d)

.  $\frac{pf}{wf} \times \text{max.}$  effect, load on piston.

The load on a main bearing cap is neither a single central load, nor is it a uniformly distributed load, though probably nearer the latter than the former. If suitable values for the working stresses are employed, the most generally convenient formula is that for a beam supported at ends, and uniformly loaded, viz.:—

Rule 118.

$$w = \frac{8fz}{l^2}$$

where w = load in lbs. per inch of span (l);

'l-span, or distance from centre of cap bolt to centre of cap bolt;

z=Modulus of section  $\left(-\frac{\text{breadth} \times \text{depth}^2}{6} \text{ for a rectangular section; for other sections see Table of beam sections}\right);$ 

and f has the following values :-

Flat-backed brasses and caps  $\begin{cases} \text{Cast-iron} & . & . & . & . 2,500 \\ \text{Wrought iron or "mild" steel} & 9,000 \\ \text{Cast steel} & . & . & . & . & . 10,000 \end{cases}$ 

Half round brasses and caps { Cast-iron . . . . 3,000 Wrought iron or "mild" steel 10,000 Cast-steel . . . . . 11,000

When the caps are made of cast steel the section at the centre may, with advantage, be made to approximate to that of a "channel" bar by employing two deep external ribs; but in this case the value of f must not exceed 6000 (Rule 119). The values given above for cast steel are no doubt rather low, but there is,—in the present state of the manufacture,—always some risk of unsoundness, blow-holes, &c.

In estimating the breadths of caps care should be taken to deduct

the breadths, or diameters, of all hand holes, oil holes, &c.

Main Bearing Brasses.—For small engines, auxiliary engines, &c., the inner or under brass may be of a semi-octagonal form, and the outer or upper one flat on the back; but in larger engines the under brass at least should be of the "half-round" type, and, when the framing can be arranged to allow of it, it is both cheaper and better to make the upper one "half-round" also.

Although brasses of good gun-metal will give excellent results, when properly designed and looked after, less risk and trouble will be

incurred if white metal is used for the rubbing surfaces.

The overall thickness of the brasses (i.e. the thickness including white metal) should be as follows:—

Rule 120. Flat-backed brasses Thickness =  $\frac{D}{9}$  + 3-inch.

Rule 120a. Round brasses . . Thickness  $-\frac{D}{10} + 25$ -inch.

Rule 120b. White metal . . . Thickness = '02 D + '125 inch.

where D is diameter of journal in inches.

The recesses in the brasses should be carefully tinned before the white metal is run in, and the practice of hammering the white metal to consolidate it should be avoided.

When no white metal is used the thickness of brass at crown

should be. --

Rule 121.

Thickness of brass (when no white metal) =  $\begin{cases} \frac{D}{10} + 15 \text{ when flatbacked.} \\ \frac{D}{11} + 12 \text{ when round} \end{cases}$ 

Rule 122. Brasses should never overhang the frames or caps by more than "thickness of brass," as given by above rules, at each end. See Table XXXVIII., page 94, for the proportions given by the above rules.

The tendency of brasses to close, after being warm, and grip the

shaft, should be provided against either by securing them to the frames by screws or bolts, or, a simpler and better way, by H section liner strips fitted as shown in fig. 29.



Fig. 29.—Crank Shaft Bearing.

In large main bearings it is very useful to have the lock-rings of the nuts graduated, in order that, after being slacked back, the nuts make returned exactly to the old positions.

### FRAMINGS.

The section of the girder that carries the main bearing is usual either of the "H" or "box" type. For small engines either H or open bottom box is the best type, and for large engines the bit the frame is of cast-iron,—or the H,—if cast-steel is used.

In the case of vertical screw engines for Naval purposes this gir is sometimes cut down to the very slenderest proportions, so far as engine builder is concerned, and is built of steel plates and angles a part of the engine seating. In oscillating paddle engines, on the of hand, the girder receives no support from any seating, and must strong enough to deal with all stresses communicated to it from bearing. Between these two extremes almost every possible in mediate case is found in practice, and the designer must meet them

using one or other of the general formulæ for girders, and must use his judgment in deciding what co-efficients best express the conditions of loading, supporting or fixing, &c.,—not forgetting that the material is

subject to alternate tensile and compressive strains.

Rule 123. In the worst case (that of the oscillating paddle engine) the girder should be taken as supported only, and the load considered as a single central one, and the values of f may be 3000 for cast-iron, and 8000 for cast-steel. In this particular example there are frequently other stresses,—due to the unsymmetrical positions of the columns or pillars with regard to the bearings,—which must also be allowed for.

In vertical screw engines there are stresses on these girders communicated from the columns, and due to the thrusts on the guides, and also to the weight of the cylinders, &c., when the ship is rolling.

In paddle-wheel vessels there are also (as previously mentioned) stresses due to the weights and re-actions of the wheels, &c., &c.; but it is quite impossible to investigate each case separately here, and

these few hints must suffice.

Very valuable additional strength and stiffness may sometimes be obtained by using a forged or cast steel cap with lips at the ends which prevent the springing open of the gap containing the brasses, or, spigots or projections may be used which will prevent it either opening or closing.

#### COLUMNS.

The tensile stresses on the material of columns, and also on the bolts connecting them to the cylinders have been dealt with under the heading "Column feet and Bolts," page 67; but in vertical engines there are also bending stresses due to the thrusts on the guides, and to the weight of the cylinders, pistons, valves, rods, &c., when the ship is rolling. These may all be dealt with by means of the formula for a beam fixed at one end and loaded at the other, viz.:—

$$W = \frac{fz}{l}$$
,

and need not therefore be considered in detail here.

Where the guide is on one column only (port or starboard) the other may be considered as taking half the thrust on the guide, because the two are so tied together by the cylinder as to constitute one frame.

The bolts attaching the column feet to the bedplate or frame must of course be strong enough to carry the direct tensile stress, plus the stress caused by the tendency of the column to cant over on one edge of its base; and it must be noticed that only about one-fourth of the bolts in each column foot are, on on average, able to offer resistance to the latter stress.

When weight is of great importance, as in Naval work, and framing

are made of the lightest possible sections, special stresses,—such a those resulting from the action of the reversing engine, &c.,—mus be carefully considered and allowed for.

#### CONDENSERS.

### I. let Condensers.

The Capacity of a jet condenser should not be less than one-fourth that of the cylinder, or cylinders, exhausting into it, and need not be more than one-half,—unless the engine is a very quick running one one-third the capacity of cylinder is generally sufficient.

The Form of a jet condenser is not a matter of much consequence, and depends, to some extent, on the type and design of engine to which it is fitted. The inlet for steam should be high enough to prevent water getting into the cylinders, and the lower portion should be

so shaped that the water will all drain to the air-pump.

The Position of the Jet Pipe or nozzle, and the form of the delivery openings in it depend so much on the form of the condenser that no definite rule can be given; the nozzle pipe may have a number of small holes drilled it it, or the water may issue from transverse or longitudinal saw-cuts or slots, or may all issue in a sheet, from the end of the pipe, through a nozzle resembling a section of pipe which has been flattened and nearly closed.

The Quantity of Injection Water depends on the weight of steam to be condensed, and on its temperature, and,—to ascertain the exact quantity,—the temperature of the injection water, and the required temperature of feed water must also be known.

The vacuum with this type of condenser rarely exceeds 25 inches, and is more commonly 24 inches,—which corresponds to a temperature of about 140°; the temperature of the hot-well varies, in practice.

from 110° to 130°.

The number of pounds of injection water (Q) necessary to condense one pound of steam is given by,—

$$Q = \frac{1114 + (3 \times T_8) - T_H}{T_H - T_W},$$

where Ts = temperature of steam at exhaust.*

T =,, of hot-well.  $T_w =$ ,, of cooling water.

Rule 124. It is usual to make an allowance of injection water of from 27 to 30 times the weight of steam to be condensed, for vessels running in temperate climates, to 30 to 35 times for those running in the tropics.

The relation of weight of steam to volume, to temperature, and to release pressure is given in the following Table:—

^{*} Strictly, absolute temperatures (Fahrenheit temperatures+461°) should be med in this and all similar calculations.

Table XLV.-Weight, Pressure, and Temperature of Steam.

Absolute pressure in lbs. per sq. inch.	Number of cubic feet to weigh 1 lb.	Tempera- ture (Fahren- heit).	Absolute pressure in lbs. per sq. inch.	Number of cubic feet to weigh 1 lb.	Tempera- ture (Fahren- heit).
2.8	122	140°	10·1	37	194°
3.6	98	149	12.2	31	203
4.5	80	158	14.7	26	212
5.2	65	167	17.5	22	221
6.8	54	176	20.8	19	230
8.3	44	185	24.5	16	239

See also complete Table of Pressures, Temperatures, Volumes, Total

Heats, &c., pp. 333 to 339.

The Area of Injection Orifice, and size of pipes, is governed by the head of water, the vacuum, and the length of piping and number of bends, &c., or, in other words, by the equivalent head at the condenser.

Neglecting the resistance to flow at the orifice, and in the pipes and passages, the velocity at the condenser may be found as follows:—

Let h be the head, in feet, above the valve on the condenser; p, the pressure in the condenser in lbs. per sq. inch;  $h_1$  the equivalent head; and g, gravity. Then,—

$$h_1 = h + (15 - p) 2.3$$

and velocity in feet per second is  $\sqrt{2 gh_1}$  or  $8\sqrt{h_1}$ .

Rule 125. In practice, owing to the loss of head resulting from resistances at valves, and in pipes, &c., the actual velocity is only about half that given by the above rule; hence, in designing, it is usual to calculate on a velocity of only 25 feet per second for shallow draught steamers, and 30 feet per second for deeper ones.

The following more concise expressions are derived from the above rules.—

Rule 126.

Area of orifice \ \( \ldots \) No. of c. ft. of injection water per minute in sq. ins. \( \ldots \) \( \frac{10.4}{10.4} \) to 12.5 according to circumstances

Rule 126a.

or Area of orifice in sq. ins. \ = \frac{\text{Weight of injection water in lbs. per min.}}{650 to 780 according to circumstances}

The handle or lever for working the injection valve should be

placed close to the starting and reversing handles, in order that wa

may be promptly shut off when engine is stopped.

A snifting or overflow valve, held on its seat by atmosphe pressure only, should be provided, to prevent undue accumulation water in the condenser: its diameter should be the same as that of t injection valve.

A Bilge Injection Valve should also be fitted, having an area about two-thirds that of the sea injection, and suitable means shou be adopted to prevent its becoming choked by dirt from the bilges.

### 2. Surface Condensers.

These are now fitted to all classes of vessels excepting some swill low-pressure paddle steamers, employed in the cross-channel passenge services, in which the saving of weight is the first consideration. The extra coal consumption due to the necessary "blowing off" quit prohibits the use of the jet condenser on steamers making long voyages.

The net saving of fuel by the use of the surface condenser averages 15 per cent., and may, with care, reach 20 per cent.; and, in addition

the life of the boilers is very much prolonged.

On the other hand, the surface condenser is heavier and more costly, and occupies more space than the jet, and also requires an additional (circulating) pump.

The Cooling Surface per I.H.P. should be as follows:-

Rule 127. For modern Mercantile triple engines . . 1 3 sq. ft.

Rule 127a. ,, Naval ,, . . 1·1

The proportion of 1 1 sq. ft. per I.H.P. is found to give very satisfactory results in Naval vessels, although the pressure at release, when the engines are exerting maximum power, is not generally below 10 lbs. absolute; and a vacuum within 2½ inches of the weather barometer is usually obtained.

The following Table shows the increased surfaces necessary in cases where the terminal or release pressures are higher than in those

referred to above :-

As the efficiency of the condenser depends not only on the extent of the surface, but also on the mean difference of temperature between steam and water, if the surface be made less than above directed, the difference of temperature must be proportionately greater, and, to effect this, the speed of water must be greater, the general result being he discharge of a larger quantity of cooling water at a lower temperaure. If the quantity of water be not increased the temperature of endenser, and corresponding back pressure, will of course increase.

Correspondingly, if the surface be made greater, the action may be ss intense, and the quantity of water, and the pumping power less, he general result being the discharge of a smaller quantity of cooling rater at a higher temperature. If the quantity of water be not imminished the temperature of condenser will fall and the result be old feed water.

It would therefore appear that to keep the temperature of condenser onstant, while condensing a given quantity of steam with sea water t a given temperature, the quantity of water should be (approxiately) inversely proportional to the surface. The fact that the first cot of tube through which the water passes is the most efficient ondensing surface, and each succeeding foot less and less efficient is a simplicating element in these calculations.

The circulating pumps must of course be proportioned to suit the highest sea temperature that the vessel will meet with in ordinary

rork.

Condenser Tubes.—These are, as a rule, made of brass, solid frawn, the composition being 68 per cent. of best selected copper, and 32 per cent. of best Silesian spelter; the Admiralty, however, specify 70 per cent. copper and 1 per cent. tin.

Condenser tubes vary in diameter from 1/2 inch to 1 inch, but 1/4 inch tube, with a thickness of 18 L.S.C., is by far the most frequently used size, both in Merchant and Naval services; the Admiralty specifications usually state the thickness as 05 inch

however, whilst 18 L.S.G. corresponds with '048 inch.

Length unsupported.—(Rule 128) When tubes are secured at the tube-plates by screw ferrules and packing, the unsupported length should not exceed 100 diameters; or, when they are held by tightly fitting ferrules, 120 diameters. If the tubes are longer than this, they should be supported by intermediate diaphragms of rolled brass, from %-inch to %-inch in thickness, according to size; but care must be taken, in arranging the design, that these diaphragm plates do not interfere with the free flow of the steam to all parts of the condenser.

Tube-plates.—These should be of rolled brass of the following thicknesses:—

Rule 129.

When wood ferrules are used . . 1.5 × diameter of tube.

,, screw glands ,, . . I'I × ,,

"Diameter of tube" signifies, in all cases, external diameter. Fig. 30 shows the method of securing a tube by a wood ferrule, and Fig. 31 by means of a screw gland and packing; the dimensions on the figures give the proportions ordinarily adopted for %-inch tubes.



Spacing of Tubes.—The tubes should be spaced zigzag, an equilaterally (i.e., the centre of any tube should be at the sam distance from the centre of each of the immediately surrounding tubes. The pitch may be as follows:—

### Rule 130.

When wood ferrules are used—Dia. of hole for ferrule  $+ \frac{1}{4}$  in.

When screw glands are used—Extreme dia. of gland + 1/8 to 3/16 is

The following Table will be of assistance in making rough calculations for size of condenser:—

Table XLVI.—Size of Surface Condenser.

External diameter of tube—¾ inch.							
Pitch of tubes,	1 1/8"	15/32"	13/16"	17/32"	11/4		
Number of tubes per sq. ft. of tube plate,	131	124	118	112	106		
Cooling surface per cubic ft. of tubes,	25·7 sq. ft.	24·3 sq. ft.	23·1 sq. ft.	21.9 sq. ft.	20 · sq. f		

The surface of 1 foot of 3/4 inch tube is '1963 sq. ft. See also Table of Surfaces of Tubes, page 323.

Quantity of Cooling Water.—The quantity of water necessary for condensation is given by the formula,—

Rule 131. 
$$Q = \frac{1114 + (3 \times T_8) - T_H}{T_W - t_W}$$

where T_s = temperature of steam at release, T_w = ... hot-well.

 $t_{\mathbf{w}}$  and  $\mathbf{T}_{\mathbf{w}} = \text{initial}$  and final temperatures of cooling water.

With temperature of sea 60°, and ordinary engine temperatures, this quantity will be found to be about 27 times the weight of the steam

condensed; and with sea at 75°, about 42 times.

If the weight of steam discharged into the condenser by a modern triple engine be taken at 2 lb. per I.H.P., and the cooling surface provided be at the rate given above,—viz., 1 3 sq. ft. per I.H.P.,—the rate of condensation will be say 16 lb. per sq. ft. per minute, and the speeds of cooling water through tubes necessary to effect this are found to be.—

When sea temperature is 
$$60^{\circ}$$
 . . about 110 ft. per minute.

Rule 132. At these velocities the water requires to pass through about 20 ft. of tube in order to reach a temperature, at discharge, of 100°.

Where the tubes are very short this may be effected by causing the water to travel three times through the condenser; if this is not possible the speed of the water must be reduced in proportion, so as to give it time to rise to the discharge temperature. In Naval condensers the average run of the water is not more than 15 feet, and the speeds 80 feet and 125 feet per minute respectively.

Whenever possible the tubes should be arranged horizontally, as experiment seems to show that vertical tubes have an efficiency of

rather less than '7 of that of horizontal ones.

Application of Cooling Water.—The simplest method of applying the cooling water is to allow it to run direct from the sea into the condenser, and then to pump it overboard from the condenser; where this cannot be conveniently arranged, and the water is forced through the condenser by a reciprocating pump, a large airvessel should be provided as near to the pump as possible, to guard against shock from "racing" or sudden starting.

The centrifugal pumps, invariably employed for circulating purposes on ships of war, suck from the sea and drive the water through the condensers, but they are of course incapable of communicating any

shock to the structure.

In order to reduce the shock from reciprocating circulating pumps some engineers fit a screw-down by-pass valve which is opened more or less whenever "racing" occurs.

In merchant steamers the condenser commonly forms a part of the

framing, and is made of cast-iron; its strength of course depends largely on its form and position, and has little relation to the stresses

resulting from its action as condenser.

In war vessels, on the other hand, the condenser rarely, if ever, forms any part of the framing; it is commonly cylindrical in form, made of naval brass or gun-metal, and strong enough to bear an internal test pressure of 30 lbs. per sq. inch, which is applied to test the soundness of the casting, and the tightness of joints and tube packings.

Condensers for torpedo gun-boats, &c., up to about 5 feet diameter, usually have the barrels made of sheet brass (8 to 6 L.S.G.) with

flanges and stiffening rings riveted and soldered on.

Manholes, sight-holes, mud-holes, and air-cocks should always be provided; in Naval condensers fittings for introducing soda, and for boiling out, are always fitted in addition.

### AIR-PUMPS.

Wherever practicable these should be vertical, and single-acting, since this type is in every way the most efficient and satisfactory.

In vertical screw engines the air-pump should be driven by levers and links from the L.P. crosshead or gudgeon; when driven direct from the piston or crosshead the speed is objectionably high, and the pump is not usually convenient of access.

When the pump must be placed horizontally, or in an inclined position, its design,—whether it be single or double acting,—is a more difficult problem, and each detail and point should have the careful

attention of a skilled designer.

In horizontal screw engines the air-pump is usually placed horizontally beneath the condenser, and driven direct from the L.P. piston; in twin-screw vessels the condenser and pump are generally behind the cylinders, and in single-screw ships in front of the

cylinders, and on the opposite side of the shaft.

In paddle engines the air-pumps are placed in different positions, and driven in different ways according to the type of engine. In oscillating engines they are usually inclined, and driven by connecting rods from a crank formed in the middle of the intermediate shaft, or by an eccentric fixed in the same position; but are sometimes placed vertically, and driven through a lever or beam. In almost all other types of paddle engine they can be placed vertically without difficulty, and may be driven as found most convenient.

Size of Air-Pump.—Whether for jet or surface condenser, the quantity of water to be removed by the air-pump can be easily determined by the rules given under "Condenser," but the quantity of air is variable and cannot be calculated; and it is therefore necessary, especially in the case of surface condensing engines, to rely more on

experience than on calculation.

The most convenient formula is probably the following:—

Rule 133.

Capacity of Pump, in cubic inches, - I.H.P.  Revolutions per minu where C has the following values:—	$_{\overline{\text{ite}}} \times \mathbf{C},$
For single-acting vertical pump and jet condenser For single-acting vertical pump and surface condenser (mercantile).	C-700 C-800
,, double-acting horizontal pump ,, The proportions given above for the air-pumps of surface con	U OKO

engines are based on the assumption that no jet injection apparatus is fitted,—experience having shown that it is quite unnecessary.

As some engineers still prefer, when fixing the sizes of air-pumps for ordinary merchant steamers, to make the pump capacity bear a direct relation to the capacity of the L.P. cylinder, it may be of service to give the following approximate equivalent of the above rule (Rule 133) for this particular case :-

Rule 133a.

Air-Pump Rods.—These may be made either of iron cased in gun-metal, or of one of the rolled bronzes. Where a guide is fitted, and the stroke of the pump does not exceed 21/4 times its diameter, the rod (without regard to its material) may have a diameter given by,-

Rule 134. Diameter of rod - Diameter of pump + ·6 inch.

See Table XLVII. (page 134) for sizes given by this rule.

Where air, circulating, feed, and bilge pumps are grouped together, and the links are long, the guide is sometimes omitted, but it is not a plan that can be recommended, except for pumps of very short

stroke (say less than  $\frac{\text{Diameter}}{2}$ ); if it is followed however, the

diameter of the rods should be increased by 15 per cent., and the stuffing box should be kept as far above the end of the barrel as possible.

In the case of horizontal pumps, placed as described above, for twin-screw vessels, the length of unsupported rod between the stuffing boxes is not usually so great as to prevent Rule 134 from applying; in single-screw vessels a guide should be fitted if the pump is placed and driven as described above.

The Size of the Screw on the air-pump rod, by which it is attached to the air-pump crosshead, is given by,-

Rule 135. Area at bottom of thread - Area of bucket  $20 \times \sqrt{\text{diameter of bucket}}$ 

See Table XLVII. (page 134) for sizes given by this rule

This allows a stress of about 2000 lbs. per sq. inch of material in the rod for a 12-inch pump, increasing to 3800 lbs. per sq. inch in the rod for a 40-inch pump, the load on the bucket being taken as 30 lbs. per sq. inch. The rule may be taken as giving the size of screw whether the rod is of bronze or of wrought-iron or steel, as the bodies of the rods will be of the same diameter for both materials, and nothing is gained by reducing the ends of iron or steel rods.

When the number of reciprocations is high (say 200 to 350 per minute) the rods should be made 10 per cent. larger in diameter than given by the rule, although the stroke may be short, or even very short, since there is always a liability to sudden strain, owing to irregular or intermittent action of the pump, and the intensity of these strains will vary as the squares of the bucket speeds,—other

things being equal.

Very long rods must be specially considered, -as struts, -fixed or

jointed at the ends as the case may be.

Connecting Rods for Trunk Air-Pumps.—When of the type commonly employed for driving the pumps of oscillating paddle-engines these may have the following proportions:—

Rule 136. Area of section of rod - 'OI × area of bucket; or, in case of a round rod,—

Rule 136a. Diameter of rod—'1 × diameter of bucket; when two bolts are used to connect the brasses at the end,—

Rule 136b.

Diameter of each bolt (in body) - '056 × diameter of bucket.

Air-pump buckets are usually packed with manilla rope, from ½ to ¾-inch diameter; in the Navy an external ring gland is sometimes fitted to compress the packing, but it is unnecessary in ordinary cases, and may be a source of danger in careless hands.

When the air-pump valves are of india-rubber care should be taken to fit a quality that is capable of resisting the heat, &c.; the Admiralty specification is as follows:—

"To be made of the best Para caoutchouc, with no other materials whatever than sulphur and white oxide of zinc; the sulphur is not to exceed 1% per cent., and the oxide of zinc not to exceed 70 per cent. The india-rubber is to be made of the best materials, not re-manufactured, and to be of a homogeneous character throughout, thoroughly compressed, free from air-holes, pores, and all other imperfections.

"Samples of the india-rubber will be tested, and must be capable of enduring a dry heat test of 270° Fahrenheit for one hour, and a moist heat of 320° Fahrenheit for three hours, without impairing its quality."

Air-Pump Barrels.—For pumps below 20 inches in diameter the gun-metal barrel is usually surrounded by a cast-iron one, to which it forms a "liner"; above 20 inches the more common plan is to omit the outer barrel and secure the gun-metal one to cast-iron head and

foot boxes by means of ribbed flanges,—or, as in Naval work, to make barrel, and head and foot boxes all one gun-metal casting. Whichever type of construction is used, the working barrel should be of thickness given by.—

Rule 137.

Thickness of air-pump barrel  $=\frac{\text{Diameter of pump}}{60} + 25$ -inch.

See Table XLVII. (page 134) for thicknesses given by this rule.

When the pump is of the Naval type the portions above and below the working barrel may be from 1/16 to 1/8 inch thinner than the

barrel, according to size and design.

Where the gun-metal barrel is not enclosed in an outer casing, it is very desirable to have a manhole in the side, through which access may be had to the bucket and foot valves, without disturbing the cover or guides. Similarly, when the size of the pump renders it possible, hand or sight holes should be provided in the sides of the head box. for getting at the head valves.

The Areas through the Valve Gratings of foot, bucket, and head valves should be kept as large as possible; on an average, those of the foot and bucket valves run about one-third of the gross area of bucket, and those of the head valves a little larger; they can of course be increased by increasing the diameter of the pump, and decreasing the stroke.

Speeds of Bucket.—In ordinary mercantile engines the speed of bucket employed varies from 200 feet to 350 feet per minute; but in Naval engines it commonly ranges from 300 feet to 450 feet, and with pumps driven direct from the pistons is of course higher still. When the pump works in connection with a jet condenser the speed should not much exceed 200 feet per minute.

Sizes of Suction and Discharge Pipes.—For the pumps of surface condensing engines (where no jet apparatus is fitted) the diameter of suction pipe from condenser, in inches, is given by,—

Rule 138. Diameter of air-pump suction pipe  $-\frac{D}{50} \times \sqrt{S}$ .

or, Equivalent mean speed in pipe must not exceed 2500 ft. per min. where D is diameter of bucket in inches, and S its mean speed in feet per minute.

If there is a supplementary hot-well or feed-tank, the pipe connecting it with the air-pump should be of diameter given by.—

Rule 139. Diameter of air-pump delivery pipe  $-\frac{D}{62} \times \sqrt{S}$ .

or, Equivalent mean speed in pipe must not exceed 3850 feet per minute.

In addition, an air-pipe should be fitted as close to the pump as possible; its diameter may be,—

Rule 140. Diameter of air-pipe  $=\frac{D}{80} \times \sqrt{S}$ .

or, Equivalent mean speed in pipe must not exceed 6400 feet per minute.

If the pipe to feed-tank is long, or has many or sharp bends in it, these points must, of course, be considered and allowed for in fixing

the size.

When the pump works in connection with a jet condenser, the diameter of suction and delivery pipes may be,—

Rule 141. Diameter of Suction and delivery pipes =  $\frac{D}{25} \times \sqrt{S}$ .

or, Equivalent mean speed in pipe must not exceed 625 feet per minute.

The delivery pipes from air-pumps of jet condensing engines should have good large air-vessels (say capacity not less than capacity of pump) placed as near to the pumps as possible.

Table XLVII.—Air and Circulating Pumps.

Diameter of pump (single- acting).	Thickness of barrel (single- acting).	Thickness of barrel +10 per cent. (double- acting).	Diameter of rod.	Diameter of screw on outer end of rod.	Diameter of double acting pump of same capacity (circulating only).
11	2	8		5	6
inches.	inch.	inch.	inches.	inches.	inches.
8	<b>3</b> %		11/2	11/4	
10	3/8 7/16 7/16 1/2 1/2 9/16		1%	1½ 1½ 1¾	
12	7/16		${f 2}$	13/4	
14	⅓		21/4	2	
16	1/2	1/2	$2\frac{1}{2}$	21/4	111/2
18	9/16	1/2 1/2 9/16 9/16 9/16 5/8	21/2	21/4	13
20	9/16 5/8 5/8	1 %	$\frac{2\sqrt[3]{4}}{3}$	2½ 2¾	14
22	66.	9/10	3 -	28/4	151/2
- 24	5,	9/10	31/4	23/4	17
26	11/16	6%	31/2	3	181/2
28	11/	6%	3 %	3	20
30	8/10	11/16	4	31/4	21
32	8/2	11/16	41/4	31%	221/2
34	8/4 8/4 1 3/1 6	11/_	41%	31/4	24
36	1 16°	8/16	41%	3 1/4	251/2
38	1 %	8%	48%	· 4	27
40	% % %	8/4 8/4 13/16	4½ 4¾ 5	4	281/4

Column 2 is calculated in accordance with Rule 137.

,, 5 ,, ,, ,, ,, 185.

Column 2 is only to be read with column 1, and column 3 only with column 6; columns 4 and 5 may be read with either column 1 or column 6. Column 3 gives thickness in cases where barrel is fixed or carried by a flange at the mid-length only.

### RECIPROCATING CIRCULATING PUMPS.

These may be either single or double acting, and, as their efficiency is practically unaffected by position, they may be either vertical, horizontal, or inclined. In general design the various parts may resemble the corresponding parts of the air-pump (in practice the same patterns are sometimes used for both pumps), but circulating pumps require, in addition, large air vessels, non-return air or pet cocks, and, in the case of large double-acting pumps, a by-pass valve.

The air-vessel for a single-acting pump should have a capacity equal to twice that of the pump, when possible, but never less than once and a half. The delivery of the pump should be limited, when necessary, by opening the air-valve, not by partially closing the suction valve. Air or pet valves may vary from 1 inch for a 10 inch pump, to 2 inch for a 20 inch pump,—extra area being given if the

speed of bucket is exceptionally high.

The by-pass valve may have an area of about one-tenth the area of

the bucket.

When the size of pump required would, if made single-acting, exceed 20 inches in diameter, it is better to fit a double-acting pump of half the bucket area, and thus obtain a steadier delivery, whilst at the same time reducing the magnitude of the stresses and the sizes of the various parts.

Size of Circulating Pump.—This depends on quantity of cooling

water required, and number of strokes per minute.

Let Q = cubic feet of cooling water required per minute.

n = number of strokes per minute.

S=length of stroke in feet.

Then,-

Capacity of Circulating Pump =  $\frac{Q}{m}$  cubic feet.

and,—

Diameter of Circulating Pump =  $13.55\sqrt{\frac{Q}{n \times S}}$  inches.

In determining Q, the temperature of cooling water should be taken at the highest ordinary temperature encountered on the routes the ressel is intended to steam over.

If the efficiency of the pump be taken as unity, the capacity

necessary to deliver water equal in weight to 42 times the steam condensed is.—

Capacity of Circulating Pump (cubic ins.) =  $\frac{I.H.P.}{Revs. per minute} \times 227.$ 

allowing, however, an ordinary efficiency of pump, and for possible reduction in efficiency due to the use of sir-valve and by-pass valve, the capacity should be.—

Rule 142.

Capacity of Circulating Pump (cubic ins.) =  $\frac{I.H.P.}{Revs. per minute} \times 300.$ 

i.e., in the case of single-acting pumps working with surface condensers, the same capacity as for a single-acting air-pump.

Circulating Pump Rods.—For single-acting pumps, these should be of the same materials as the air-pump rods, and the same formula

may be used to obtain size. See Table XLVII.

Wherever possible the air and circulating pump rods should be made of exactly the same dimensions, in order that one spare rod may serve for either pump. With this object, when the circulating pump is made double-acting, the rod should be of the size suitable for a single-acting pump of the same capacity per double stroke; this will give a rather stiffer rod than is absolutely necessary to resist the compressive stress, but will be no disadvantage.

The rule for rods of double-acting circulating pumps will then

be,—

Rule 143. Diameter of Rod  $= \frac{D}{6.4} + 6$  inch (See Table XLVII.).

Although manilla rope and lignum-vitæ packings are both occasionally used, the buckets of circulating pumps really do not require any packing, and are better without it, since the unnecessary friction is

thereby saved.

The thicknesses of gun-metal barrels or liners for circulating pumps may be determined by the rule previously given for air-pump barrels (Rule 137), when the barrels are of similar type and similarly supported. When the barrel is fixed in place by means of a single flange placed at mid-length (a common method for double-acting circulating pumps), the thickness should be 10 per cent. above that given by the rule (see Table XLVII.).

The areas through the foot, bucket, and delivery valves should be kept as large as possible, but, as in the case of air-pumps, they will

usually average one-third of the gross bucket area.

The bucket speeds in common use are from 200 to 400 feet per minute.

The sizes of suction and delivery valves may be as follows:-

Rule 144. Diameter of Pipe =  $\frac{D}{F} \times \sqrt{S}$ .

Where D is the diameter of bucket in inches, S its mean speed in feet per minute, and F a co-efficient, the values of which are as follows :--

When any pipe is under 10 inches in diameter the velocity of flow through it should be kept 10 per cent. below that allowed by the above rule. Specially long or specially tortuous pipes must also have special consideration,—the velocity of flow being reduced in accordance with the circumstances of the case. Lloyd's rules require that a bilge injection or a bilge suction to the circulating pump shall be fitted, the diameter of which shall be at least two-thirds that of the sea inlet.

### CENTRIFUGAL CIRCULATING PUMPS.

In Naval work this type of pump is almost invariably used, and it is also not infrequently fitted in all classes of mercantile steamers. It is, no doubt, preferable to the reciprocating type where large bodies of water are to be moved against a merely nominal head, and especially where the main engines run at a high number of revolutions per minute, since there is an entire absence of shock, and, when the pipes are properly arranged, the work is done with a less expenditure of power. On the other hand, the centrifugal pump is more costly than the reciprocating, occupies more space, requires more attention, and necessitates rather larger pipes and valves.

Size of Pipes.—The size of pipes should be such that the speed

of water does not exceed 500 feet per minute, even when the sea temperature is 75°, or, in other words, when the sea temperature is 60°

the speed should be about 330 feet per minute.

When the pipes are under 10 inches diameter these speeds should not exceed 450 and 300 feet respectively, and if the pipes are not short and direct, with easy bends, the efficiency of the pump will be improved by keeping the speeds 50 feet per min. lower again.

A convenient form of the rule for size of pipe will then be as follows :---

Rule 145. Diameter of pipe in inches = 
$$64\sqrt{Q}$$
  
or,— Diameter of pipe in inches =  $\sqrt{\frac{I.H.P.}{20}}$ 

where Q is the maximum number of cubic feet of cooling water per minute. This corresponds with a speed of 450 feet per minute in the pipes.

Size of Fan or Wheel.—A good proportion for the diameter of

pump wheel is. -

Rule 146.

Diameter of pump wheel in inches = 2.8 × Diameter of pipes,

or,—

Rule 146a. Diameter of pump wheel in inches  $-1.8\sqrt{Q}$  where Q is maximum number of cubic feet of cooling water per minute, or, reversing the equation,—

Rule 146b.

$$Q = \frac{D^2}{3.24}$$
 cubic feet.

Width of Wheel at Periphery.—The width of wheel at the periphery, or width of vane at the tip may be,—

Rule 147.

Width of Wheel at Periphery - Diameter of Pipes.

Stroke of Piston.—The stroke of the centrifugal pump engine may be conveniently fixed as follows:—

Rule 148. Stroke of piston = '3 × Diameter of Fan.

Size of Steam Cylinder.—As centrifugal circulating pumps are invariably fitted with bilge suctions so as to be available as bilge pumps in case of need, and as the work done when pumping from the bilge is far in excess of that done when merely circulating water through the condenser, the size of steam cylinder must evidently be fixed with regard to the former duty.

The efficiency of the pump depends very greatly on the pipe arrangement; with direct pipes of good size; and easy bends, it may, when pumping from the bilge, approach 30 per cent., but a bad arrangement, with sharp bends, will very seriously affect it, and may easily reduce it below 20 per cent.; in ordinary practice, where reasonable care is exercised in scheming the pipes, it may be assumed to be 25 per cent. The efficiency also tends to diminish as the lift increases, so that a rather lower efficiency should be assumed in the case of large deep ships, and vice versa.

Then Indicated Horse-power = 4

where "water horse-power" is  $\frac{\text{lbs. water pumped per min.} \times \text{lift in ft.}}{33,000}$ 

or, putting it into another shape, -

Rule 149.

Tons water pumped per hour  $\times$  lift in feet  $\times$  150 -  $P_m \times A \times S$  where  $P_m$  - mean pressure in steam cylinder;

A = area of piston in square inches;

S - piston speed in feet per minute.

Speed of Periphery of Pump Wheel.—The speed of periphery of pump wheel necessary to discharge water at the velocities mentioned above against a head (h), under average conditions, is given by,-

Rule 150. 
$$V=11 \sqrt{h}$$

where V is velocity of periphery in feet per second, and h the actual lift in feet. With a very good arrangement of pipes the co-efficient may be as low as 9, in place of 11, but a bad arrangement will send it up to 13 or over.

In ordinary circulating work when inlet and outlet are both submerged, as is usual in Navy, V requires to be about 24 feet per second (1440 feet per minute), and the resistances may therefore be assumed

to be equivalent to a head of nearly 5 feet.

When pumping from the bilge, V varies from 30 feet to 50 feet per second (1800 feet to 3000 feet per minute) in ordinary Naval work, but, as shown by the above equation, it increases as the square root of the head.

Size of Bilge Suction Pipe. -- A convenient rule for area of this pipe is. -

Rule 151.

One square inch area for each 7 tons per hour to be pumped.

This limits the speed of water in the suction pipe to 580 feet per minute.

It is not desirable to have the area of bilge suction more than about 6 of the area of the circulating pipes, as the size of steam cylinder required soon becomes cumbersome for the ordinary circulating work.

The pump should be capable of performing the specified bilge duty with a steam pressure not exceeding two-thirds of the ordinary boiler pressure.

### FEED PUMPS. &c.

Capacity of Feed Pumps in jet-condensing engines.—This depends mainly on the degree of saltness at which the water in the boilers is to be maintained, or, in other words, on the proportion of the gross feed-water that is "blown off."

Let Q represent the net feed-water, or the quantity required as steam by the engines, and say water in boilers is to be kept down to ntimes the density (or saltness) of sea-water, then the amount of sea-water that must be pumped into boilers is,—

# Gross feed-water $=\frac{n}{n-1}\times Q$ .

To reduce the time required to bring the water in the boilers up to the working level again after "blowing off," it is usual to make each feed-pump capable of pumping twice this quantity; therefore. ---

# Rule 152. Each pump should supply $\frac{2n}{n-1} \times Q$ .

The net feed-water (Q) required by a jet condensing engine, working with steam of about 30 lbs. pressure, may be taken as 26 lbs. per I.H.P. per hour.

Of course, when pumps of this capacity are fitted, the question of

the efficiency of the pump need not be raised.

The amount of scale or salt deposited in the boilers does not depend on the density at which the water is kept, but only on the quantity of sea-water pumped into the boilers; 35°, or 3½ times the density of sea-water, is a good density at which to work the boilers of jet condensing engines, and 40° to 45°, or 4 to 4½ times, for boilers of surface condensing engines.

The Hydrometer, or Salinometer, by means of which the density of the water is ascertained, is, in the Navy, graduated in degrees, so that, when floating in pure water, the zero point is at the surface, and when in clean sea-water it marks 10°, when in water of twice the density of sea-water, 20°, and so on. In the Merchant Service, engineers either express the density in ounces per gallon (sea-water containing about 5 oz. per gallon), or in "thirty-twos,"—sea-water containing about 1/3,3 of its weight of solid matter.

Capacity of Feed-pumps for Surface Condensing Engines.—
It will be sufficient, with this type of engine, if the total capacity of each pump be made equal to twice the net feed water required; this allowance also covering any want of efficiency in the pumps.

If Q be the net feed water required in lbs. per hour, l length of stroke of feed pump in inches, and n number of strokes per minute; then,—

Rule 153.

Diameter of each feed-pump plunger, in inches =  $\sqrt{\frac{1.15 \times Q}{l \times n}}$ .

For ordinary compound engines the net feed water (Q) required may be taken at 18 lbs. per I.H.P. per hour, for triple engines 15 lbs. per I.H.P. per hour, and for quadruple engines 13.5 lbs. per I.H.P. per hour.

Or, if the formula be written,-

Rule 154. Capacity of feed-pump, in cubic inches  $=\frac{I.H.P.}{R} \times C$ ,

the values of C will be as follows :-

For Compound engines, C=16.5.

- " Triple engines, C=13.7.
- ,, Quadruple engines, C-12.4.

In determining the sizes of feed pumps for Naval boilers, it will generally be sufficient to take the natural draught power as the basis of the calculation; they are always fitted as independent auxiliary engines.

Where the feed pumps are driven by the main engines, there should be, except in very small engines, two pumps, each capable of supplying the boilers at full power, and so arranged that either may be worked independently of the other, and be easily put out of gear when not required.

Relief Valves.—When the pumps are driven by the main engines, or when they are independent auxiliary engines, but are not of a self-regulating type, each pump should be fitted with a relief valve, of a diameter equal to two-thirds that of the delivery pipe from that pump, and loaded to 1½ times the boiler pressure. Provision should be made for leading all water from relief valves back into suctions.

Feed-pump valve-boxes and valves.—These should be of best gun-metal; and since the seats, as well as the valves, wear out rapidly, loose seats should be fitted. The faces of the valve seats should be made flat, and the seating area, or area of faces in contact, should not be less than 20 per cent. of the gross area through valve; that is,—

# Rule 155.

# Width of faces in contact - 0475 × Diameter of valve.

The diameter of valve, measured inside the seat, should be equal to that of the delivery pipe.

The noise made by gun-metal valves on gun-metal seats may be much reduced by loading them with light spiral springs, made of plated

steel or of hard brass wire.

Each pump should have an air vessel of twice its own capacity. Non-return air, or "pet" valves, should be fitted between the suction and delivery valves; and sometimes the construction of the pump is such that a small cock is necessary to let out air that accumulates in the upper part of the chamber or barrel, but this type of construction should be avoided where possible.

Feed pipes.—The pipes leading to and from the feed pumps should be of such size that the velocity of flow, when working steadily at full power, does not exceed 400 feet per minute. The velocity should also be less as the pipes get smaller, to allow for the increased percentage of friction; and, if 400 feet be adopted as the limit in a 6-inch pipe, the limit in a 1½-inch pipe should be 200 feet; or, more briefly, velocity for any diameter of pipe should not exceed that given by.—

# Rule 156. V-164 √Diameter,

where V is in feet per minute and diameter is in inches.

The maximum deliveries of pipes, according to this formula, may then be shown in tabular form as follows:—

Table	XLV	ΊÌΙ.–	-Delivery	of	Feed	Pipes.
-------	-----	-------	-----------	----	------	--------

Diameter of pipe.	Delivery in cubic feet per minute. (C)	Delivery in lbs. per hour.	Diameter of pipe.	Delivery in cubic feet per minute. (C)	Delivery in lbs. per hour.
11/4	2.45	9,260	31/2	20.43	77,200
1½ 1¾	3.60	13,600	3%	24.30	91,800
2	5.04	19,050	4	28.63	108,200
21/4 21/2 28/4	6.79	25,660	41/4	33.30	125,800
21/2	8.81	33,300	4 1/2	38.42	145,200
28/4	11.22	42,400	5	50.00	189,000
3	13.94	52,700	51/2	63.36	239,500
31/4	17.00	64,200	6	78.92	298,300

Then, to find diameter of feed pipe, determine value of  ${\bf C}$  in equation,—

Rule 157. 
$$\frac{D^2 \times S}{184} = C,$$

where D is diameter of plunger in inches, and S its mean speed in feet per minute; look for the corresponding figure in column 2 or 5 of Table; and opposite, in column 1 or 4, will be found the appropriate diameter of pipe. If the exact figure does not appear in column 2 or 5, take the next higher. Of course, if the pump is single-acting, the deliveries will be one-half those given in above Table.

Although pumps of the plunger or single-acting type only propel the water during the "in" stroke, the mean speed should be calculated as though pump were of the solid bucket, or double-acting type, since the water, when in motion, travels at very nearly the same speed in each case,—air vessels producing little effect at the high pressures now used.

Feed pump plungers.—These should be of good gun-metal, and when of the single-acting ram type may be of thickness given by.—

Rule 158.

Thickness of metal of plunger = 
$$\sqrt{\frac{P \times D}{4660}}$$
 + 15 inch,

where P is working pressure in lbs. per square inch, and D is diameter of ram in inches.

The greater thickness at the end should merge gradually into the thickness of body, and the corner of the inner end should have a radius of about  $^{\cdot 4}$  × diameter of ram, when the end is not made quite hemispherical.

Feed Tanks.—To avoid waste of water through the occasional overflow of the hot-well, it is the rule in the Navy to fit a feed-tank,

or supplementary hot-well, into which the air pumps deliver, and from which the feed pumps draw; and, where fresh water only is used, such an arrangement is quite necessary.

Rule 159.—The size of tank is usually about 1 cubic foot for every 40 I.H.P., but where space is obtainable, and weight is not very

much restricted, a greater capacity is very desirable.

The tanks are commonly of %/16-inch steel plates, flanged over and single riveted, stayed for a pressure of 10 to 15 lbs. per square inch, and galvanised after completion. Each tank should have a manhole, an air pipe, an overflow pipe, three or four zinc blocks to prevent corrosion, and a water gauge giving a visible range of at least 3 feet; and where there are two or more engine rooms, with a tank in each, the various tanks should be connected one with another.

The feed-tanks should be placed as close to the air-pumps, and as low down as possible; where they are under the platforms a float and

index is more convenient than a water-gauge.

Reserve Tanks, &c.—Rule 160.—Where the boilers are fed with fresh water only, a sufficient reserve supply should be carried to provide about 21 cubic feet, or say 1800 lbs. "make up," or auxiliary feed, per 100 I.H.P. per 24 hours.

This supply may either be carried in reserve tanks, in the double bottom or elsewhere; or may be produced as required by evaporators delivering into the L.P. valve-casing, or into the condenser; or, a

combination of these two methods may be employed.

Feed Heaters. — Various types of feed heater are now in common use; and, where space and weight allow of their adoption they are, without doubt, a very desirable adjunct, since they keep a great deal of deposit out of the boilers, and, —when the exhaust steam from the auxiliary engines can be used in them,—save a considerable amount of heat that would otherwise be wasted.

# Board of Trade Rules relating to Feed Pumps, Pipes, &c.

Paragraph 136. — Each boiler of a passenger vessel, whether old or new, should be fitted with suitable check valves between it and the feed pipes, and the boilers of all new passenger vessels, passenger tugs, and other small passenger vessels, should be fitted with separate feeding arrangements in addition to, but unconnected with, the main feed pipes and valves. It is desirable that the main feed check valve chest on each boiler be separate and distinct from that of the auxiliary feed, and that a stop cock or stop valve be fitted in each chest or between each chest and the boiler, so that the latter may be shut off, and either of the check valves examined while the other feed is at work. In very small vessels an efficient hand-pump, instead of the donkey pump, may be passed if the Surveyor has satisfied himself as to its efficiency when steam is up, and provided there are separate feed pipes and valves as directed above. This is to apply also in the case of old vessels of the above description, when being fitted with new boilers.

The Surveyor should discourage the practice of using the same pump for the bilges and for feeding boilers.

# Lloyd's Rules relating to Feed Pumps, Pipes, &c.

26. The engines are to be fitted with two feed pumps, each capable of supplying the boilers; the pumps, &c., to be so arranged that either can be overhauled whilst the other is at work.

28. In engines of 70 H.P. and under, one feed pump will be

deemed sufficient, provided it is of adequate capacity.

The main feed pumps may be worked by independent engines, provided they are fitted with automatic regulators for controlling their speed. If only one such pump is fitted for the main feed, the auxiliary feed pump required by paragraph 31 should also be fitted

with an automatic speed regulator.

31. A steam pump is to be provided capable of supplying the boilers with water, and is to have suctions from hot-well and from A steam pump is to be so fitted as to pump from each compartment, to deliver water on deck, and, if no hand pump is fitted in engine-room, it must be fitted to be worked by hand. In small vessels in which only one steam pump is fitted, it must comply with all these requirements.

### BILGE PUMPS.

There is no basis of calculation for the size of these pumps, and no generally recognised rule. For jet condensing engines they are generally of the same size as the feed pumps, and for surface condensing engines the following rule may be used :-

# Rule 161. Capacity of Bilge pump = Capacity of Cylinder

In the case of a compound engine, capacity of L.P. cylinder is to be understood.

Where the pumps are driven by the main engines there should be, except in the case of very small engines,—two pumps of the size given by the above rule, arranged so that either may be worked quite independently of the other, and be readily put out of gear when not required.

The hinged clack valve is the best for this class of pump, as it is

less likely to choke than other types.

Covers or doors of pump valve-boxes and mud-boxes should be secured by hinged bolts and some form of wing nut, in order that they may be easily and quickly removed, and replaced whenever the choking or stoppage of the pump renders it necessary.

All strainer, or mud, boxes should be placed in easily accessible positions above the floor-plates, as terminal rose-boxes are always

troublesome, and may be a cause of serious danger.

The "directing," or "distribution" valve boxes should also be above the floor plates, and easily accessible; and each cover, or handwheel should bear a name plate indicating the compartment with which it opens communication; a very good, and also very cheap plan, is to cast the required letters or words on the upper face of the hand-wheel rim.

Where one bilge pump must also act as wash-deck or fire pump (to comply with Board of Trade regulations), a three-way open-bottom cock, with one port in plug, should be fitted, to prevent the possibility of sea water entering the ship; when the pipes are over three inches in diameter, however, it is not always convenient to fit a cock, and non-return valves may be fitted,—though they are less safe than the cock.

# Board of Trade Regulation referring to Bilge Pipes, &c.

Paragraph 139.—In all cases where pipes are so led or placed that water can run from the boiler or the sea into the bilge, either by accidentally or intentionally leaving a cock or valve open, they should be fitted with a non-return valve and a screw not attached, but which will set the valve down in its seat when necessary; the only exception to this is the fireman's ash cock, which must have a cock or valve on the ship's side, and be above the stoke-hole plates.

# Lloyd's Rules relating to Bilge Pumps, Pipes, &c.

27. The engines are to be fitted with two bilge pumps, which are to be so arranged that either can be overhauled whilst the other is at work.

28. In engines of 70 H.P. and under, one bilge pump will be deemed sufficient, if of adequate capacity.

29. A bilge injection, or bilge suction to the circulating pump, is to be fitted.

30. The engine bilge pumps are to be fitted to pump from each compartment of the vessel. The mud-boxes and roses in engineroom are to be placed where they are easily accessible, and to the satisfaction of the Surveyor.

31. A steam pump is to be provided capable of supplying the boilers with water, and is to have suctions from hot-well and sea. A steam pump is to be so fitted as to pump from each compartment, to deliver water on deck, and, if no hand pump is fitted in engine-room, it must be fitted to be worked by hand. In small vessels in which only one steam pump is fitted, it must comply with all these requirements.

35. Bilge suction pipes to be arranged to pump direct from each compartment,—the roses to be fixed in easily accessible places; for numbers and sizes of suctions required, see Rules relating to hulls of this property.

of ships, p. 276.

48. Cocks and valves connecting all suction pipes to be fixed above

the stoke-hole and engine-room platforms.

44. The arrangement of pumps, bilge injections, suction and delivery pipes, is to be such as will not permit of water being run from the sea into the vessel by an act of carelessness or neglect. Any defective arrangement to be reported to the Committee.

### PUMP LEVERS AND LINKS, &c.

In order to obtain quantitative results for guidance in proportioning pump gear, it is necessary to assume some maximum load per square inch of bucket, and the load here assumed is 30 lbs. for both air and circulating pumps.

Pump levers.—The strength of these may be determined by

means of the ordinary rule for beams,-

Rule 162. 
$$W = \frac{fz}{l}$$
,

and,—when the central hole cut in the plate to admit the gudgeon boss does not exceed ' $4 \times \text{depth}$  of beam, and the attachment of the central boss or gudgeon flange is made with rivets in the usual way,—the values of f may be as follows:—

For thin plates, f=4500 for screw engines, and 5500 for paddle

engines.

For solid levers (forged) f=5500 for screw engines, and 6500 for paddle engines.

In determining  $z \left(-\frac{\dot{b}d^2}{6}\right)$ , b is four times the thickness of the

plate, for ordinary plate beams, and d is the total depth or width of

the plate at the gudgeon.

A lower value of f is adopted for screw engines because, owing to their higher speeds, there is a much greater liability to severe strains from sudden starting and from irregular action of the air-pump. When air and circulating pump are both driven by the same pair of levers, the values of f should be reduced 15 per cent.,—as one lever of the pair may have to carry considerably more than half the load at times.

The outline of the lever is often determined by drawing lines tangent to the previously determined radii at centre and ends, but this gives rather a clumsy-looking form, and is, of course, heavier than one in which the modulus of section varies more nearly as its distance from the centre or fulcrum.

Pump links.—For the various reasons stated above, the bolts in

pump links require to be made very heavy.

Rule 163.—The link bolts of paddle engines, when two in number, may carry loads equal to those given in Table XXXI.; and when four

in number, 10 per cent. less, or 20 per cent. less according as airpump only, or both air and circulating pump are driven by one pair of levers. The link bolts of screw engines (usually four in number) may, in similar circumstances, carry loads 30 per cent., and 40 per cent. below those given in Table XXXI., page 73.

The loads that link bolts may carry under the various conditions

mentioned will then be as follows :-

Table XLIX.-Strengths of Pump Links.

	Total load in lbs. on one bolt.						
Diameter of		Paddle Engine	Screw Engine.				
link bolt in inches.	Two bolts.	Four bolts (air-pump).	Four bolts (air and circulating pumps).	Four bolts (air-pump).	Four bolts (air and circulating pumps).		
1 1% 1% 1% 1% 1% 1% 2 2%	2,150 3,000 4,200 5,400 7,100 8,500 11,000 13,100 16,100 20,400	1,980 2,700 8,800 4,800 6,400 7,600 10,900 11,800 14,500 18,800	1,720 2,400 3,400 4,300 5,700 6,800 9,300 10,500 12,800 16,200	1,500 2,100 2,900 3,800 5,000 6,000 7,700 9,100 11,200 14,200	1,800 1,800 2,500 3,200 4,200 5,100 6,600 7,800 9,600 12,200		

When the links are composed of pairs of parallel bolts, on to the ends of which the brasses are threaded, it will generally suffice to make the diameters of the middle portions of the bolts, between the brasses, the same as those of the end or bolt portions,—since the compressive stresses are usually much less than the tensile.

When the length of the plain or middle portion of the bolt reaches 20 diameters, however, it is advisable to substitute one central rod

with T ends for the two parallel ones.

If, in any case, the links are so placed that the compressive stresses exceed the tensile, and if the length of link be more than 10 diameters of bolt or pillar, but less than 24 diameters, a careful estimate of the compressive stress should be made (with due allowance for sudden starting, unequal loading, &c.), and the diameter be determined by means of Rule 69; in the case of a "parallel bolt" link the length may be taken as the length of the middle portions of the bolts, between the brasses, but for a "central pillar" link the length should be taken from centre of pin to centre of pin.

As the stroke of the pumps is commonly less than the stroke of the

piston, the load on the links at the piston-rod end of the levers is less than the load on those at the pump end in inverse proportion

to their distances from the fulcrum of the lever.

Surfaces of pins.—Rule 164.—The surfaces of the various pins (diameter × length) to which the pump links are attached, should be such that the load does not exceed 800 lbs. per square inch in large engines, and 600 lbs. per square inch in engines indicating less than 500 horse power.

Pump crossheads.—These should be calculated as beams loaded in

accordance with the circumstances of the case.

Rule 165.—Considering the sections usually employed, and the nature of the load, the value of f for wrought-iron or steel may be taken at 7000. For general formulæ for beams, see pp. 298–305.

Pump lever gudgeons.—The load on the pump lever gudgeon, and on its bearings, cap bolts, &c., is the sum of the loads on the two ends. The cap bolts should not carry greater loads than link bolts of corresponding diameters. (See Table XLIX., page 147.)

Rule 166.—The bearings may carry a load not exceeding 600 lbs. per square inch. The diameter of gudgeon will be most conveniently determined by considering the stresses to which it is subject as shearing stresses simply; then,—

Rule 167. Diameter of Gudgeon = 
$$\sqrt{\frac{}{K}}$$

where S-the sum of the total loads on the two ends of the pair of levers;

K=1200,—when there are two bearings, one close to each

lever, as is usual in screw engines;

K-1600,—when there is only one lever in place of a pair, with very short gudgeon and bearing at each side close to lever, as frequently fitted in paddle engines.

When bell-crank levers are used, the magnitude and direction of the stress on the gudgeon bearing will still be,—as in the case of straight levers,—the resultant of the stresses on the links at the ends.

### SLIDE-VALVES.



Fig. 32.—Common Locomotive Slide-Valve.



Fig. 33.—The Trick Valve.



Fig. 34.—Common Double-Ported Valve.



Fig. 35.—Church's Patent Valve.



Fig. 36.—The Piston Slide-Valve.

Travel of Valve.—(Rule 168) The travel of a slide-valve should be from 2½ to 3 times the length of the steam-port in cylinder face, measured parallel to axis of slide-rod.

As the work done in moving the valve is nearly proportional to the length of travel, it is important to keep this latter as short as possible, and the best way of effecting this is to use double or

triple-ported valves.

Single-ported valves should not be used for cylinders of more than 25 inches diameter; whilst triple-ported valves can only be conveniently employed for large engines of fairly long stroke, and are

therefore not usually applicable in Naval work.

Since the introduction of the triple engine, the piston-valve has been re-introduced, and is at present, the least objectionable form of valve that can be used for H.P. cylinders; their worst feature is their inability to leave the face when any dirt or grit is deposited on it, and the consequent severe strains that may be thrown on the valve-gear; also, as ordinarily fitted, they are not so steam-tight as the flat valve.

Surface of Valve.—Flat slide-valves often give unsatisfactory results owing to want of sufficient bearing surface,—that is to say, the pressure per square inch of rubbing surface is too great, and

undue wear, cutting, &c., result.

Where the ports are more than 20 inches wide, the surface should be increased by the insertion of a central bar, and in large faces there may be three or four bars, dividing the ports into widths of 16 to 20 inches. Care must be taken to provide proper grooves or recesses in these bars, and also in the side bars, to admit of the entry of steam for lubricating purposes.

Area of passages in valves.—In comparatively slow-moving engines, where weight is not of great importance, the areas of steam and exhaust passages in double and triple-ported valves may be 10 or 15 per cent. greater than the port areas in the cylinder faces,

but in other cases the areas should not exceed those of the cylinder

ports.

Relief-rings.—Flat slide-valves should be fitted with some arrangement for relieving the pressure on the back, and so reducing wear and tear, and the driving power required; and they also require a spring of some sort to replace them against the face, when they have been caused to leave it by the presence of water in the cylinder, or by other causes.

A very simple and cheap method of effecting both of these objects is to use a circular gun-metal "relief-ring," of angle-bar section, held out by about six spiral springs, against the valve-box door or other flat surface, and packed steam-tight by means of an india-rubber

or asbestos ring.

Rule 169.—The pressure per square inch of rubbing surface,

imposed by the springs, should not exceed 21/4 lbs.

Small valves may have one relief ring, and very wide ones two rings side by side; the areas may be made as large as can be got on the valve backs, when the relief pipe from M.P. valve is led to L.P. receiver, and that from L.P. valve to condenser in the usual manner; a greater difference of pressure than given by this arrangement is not desirable, as it would then be difficult to prevent leakage.

Port openings.—With given leads and cuts-off, both reckoned as percentages of the stroke of piston, the openings to steam are proportional to the travels, and may therefore be increased or diminished by increasing or diminishing the travel.

Lead of valve.—The lead given to the valve is generally decided arbitrarily, and varies from a bare  $\frac{1}{32}$  inch in small auxiliary engines to  $\frac{1}{42}$  inch in large L.P. valves; but the piston speed and momentum of moving parts should be taken into consideration, as in M.P. and L.P. cylinders the compression is rarely sufficient in itself to absorb all the momentum, and a certain amount of lead is necessary to prevent shock.

The extent to which the engine will probably be run "notched" or

"linked" up should also be considered.

Ordinarily, when the valves are properly set, the lead at the back or top end will be about half that at the front or bottom end, and the cut-off at the crank end will be earlier than at the other, but this will be compensated for by the larger opening and fuller diagram obtained.

Inside, or exhaust, lap.—As regards inside lap, the common plan of making length of exhaust port in valve exactly equal to (exhaust port in cylinder face + the two bars),—and then setting the valve so that its mid-position is slightly further away from the crank than the mid-length of the exhaust port in cylinder face,—tends to equalise the compressions, and gives very satisfactory results.

For a quick-running compound or triple engine, exhaust from H.P. cylinder should commence at 85 of the stroke, and for a

slow-working paddle engine, not later than '95 of the stroke.

Proportions of slide-valves.—Figures 37 and 38 show some of the elementary proportions of the common, and of the Trick valve.



Fig. 37.—Proportions of a Common Valve.



Fig. 38.—Proportions of a Trick Valve.

Let x be the *outside* lap of the valve at the front end, and y that at the backend. Then (Fig. 37),—

$$H = \frac{G}{2} + x$$
; and  $K = \frac{G}{2} + y$ .

Also, let z be the *inside* lap at the front, and w that at the back. Then (Fig. 37),—

$$B = \frac{F}{2} - z$$
; and  $C = \frac{F}{2} - w$ .

Referring now to Fig. 38,—let x, y, z, and w be the laps as before. Then,—



Fig. 39. - Diagram of the Piston Path.

Also, -

$$B = \frac{F}{2} - z$$
; and  $C = \frac{F}{2} - w$ .  
 $A = \frac{G}{2} + \frac{1}{2}$  inch; and  $D = \frac{G}{2} + \frac{1}{2}$  inch.

The openings through the valve laps or covers must be as large as possible, but need not exceed the ordinary opening of the valve to steam at the outer edge; then,—

G+P=K+N: and G+Q=H+M.

Valve diagrams.—Figures 39 and 40, when combined and used as described below, show at a glance the complete cycle of the operation of any proposed valve, and also the effect of varying any one of the elements,—travel, laps, leads, or openings.



Fig. 40.—Zeuner's Diagram for the Common Valve Motion.

In constructing the diagram for a proposed valve, the diagram Fig. 40, the extreme diameter of which is equal to the travel of the valve, should be placed in the centre of the diagram Fig. 39,—the former being drawn full size, and the latter 3/4 inch or 1 inch to the foot, as found most convenient.

Referring to Fig. 39, the outer circle TT'F represents the top or back end of the cylinder; the inner circle BB'E represents the

bottom, front, or crank end; and the eccentric circle gives the position of the piston corresponding to any angular position of crank. The diagram is drawn by setting off CD equal to crank, and DT equal to connecting rod, and then swinging DT round on D as a centre. T is the position of piston on top or back centre, and E its position on bottom or front centre; and the position corresponding to any other position of crank,—such as CR,—is found by producing CR to cut the circles, when PT' is the distance of the piston from one end of cylinder, and PB' its distance from the other.

Referring now to Fig. 40, the problem most frequently met with is,

—Given the travel, leads, and cuts-off, to determine the laps and

position of eccentric, -and it is solved as follows: -

Draw CE so that, when produced, it will cut the eccentric circle at a point corresponding to the given point of cut-off (i.e., if cut-off is to be at x inches from the back end of the stroke, the point in the eccentric circle must be x inches from the outer circle); then ACE is the angle through which the crank must move to arrive at the position of cut-off. With A as centre, and radius AF equal to the lead, draw part of a circle, and then draw EK. Next, draw CD perpendicular to, and bisecting EK in L. Then CL is the lap required, and BCD is the angle between the crank and eccentric; and since CD is the half-travel, LD is the maximum opening of port.

To extend the usefulness of the diagram,—on CD as diameter, describe a circle; and from centre C with radius CL, strike the arc GLM, which is called the lap circle. The part GH is then equal to AF, and represents the lead, or opening of valve when the crank is "on the centre," or in the position CA. XY likewise represents the

port opening when the crank is in position CY.

To determine the operation of the valve at the other end, produce DC to D', and describe a circle on CD'. Then let H'G' be the lead at this end; from C, with radius CG', draw the lap circle G'L'M', and through C and M' draw CE'. Then CE' is the position of the crank at cut-off, and CG' is the lap.

The positions of the crank, when the port commences to open, are

CK and CK'.

If the valve has no inside lap (i.e., if the ports are both just closed to exhaust when the valve is in mid-position), release will occur when the crank is at CR, a position at right angles to CD, and compression will commence at CR', also at right angles to CD.

If, however, the valve has positive inside lap at the front end, and negative inside lap at the back end, the positions of release and of commencement of compression will be altered as indicated, release taking place at S and S', and compression commencing at V and V'.

The points S, S' and V, V' are obtained by striking the small arcs indicated with the inside lap as radius; of course, if the lap is positive, the valve will open for exhaust later and close earlier; but if the lap is negative, the exhaust will be earlier and the compression commence later.

To obtain the position of piston corresponding with the various

crank positions, each radial line indicating a crank position must be continued until it meets the outer circle TT'F, and the position of piston can then be scaled off.

Effect of linking up.—The effect of "linking up" on the operation of the valve is most readily exhibited by the application to the above

diagrams of the following very closely approximate construction, suggested by Mr Macfarlane Gray:—



Fig. 41.—Diagram showing the effect of "Notching up."

Suppose the link (Fig. 42) to be notched up so that the link block M is distant MT from the point at which the eccentric rod is attached to the link.



Fig. 42.—Link Motion "Notched up."

Draw the valve diagram (Fig. 41) due to the position and throw of the eccentrics in Fig. 42, and through D and D' draw the arc of a circle with a radius found as follows:—

Radius = 
$$\frac{DT \times DD'}{2 \overline{TN}}$$
 (see Fig. 42).

Then divide this arc at Z so that DZ is to DD' as TM is to TN; join CZ, and on it as diameter describe a circle cutting the lap circle in L and E; and draw the lines CL and CE, the former indicating position of crank when valve opens, and the latter the position when valve closes.

It will thus be seen that the effect on the valve of notching the link up to the point M is the same as though it were driven by an eccentric having the angular position and eccentricity CZ; the lead is earlier, the opening is reduced to KZ, the cut-off is earlier, and a further examination would show that release occurs earlier, and compression commences earlier than when in full gear.

Open and crossed rods.—When the eccentric rods are arranged as shown in Fig. 42, they are said to be "open," but when the gear is so arranged that D is joined to N, and D' to T, whilst the crank remains turned away from the link TN, the rods are said to be "crossed"; in the diagram for this latter case the arc DD' must be drawn convex towards C, or its centre must be on side A.

When it is intended to work the engines linked-up to any considerable extent, the rods should be of the "open" type, as a greater range of expansion can be obtained with less reduction of port open-

ings than is possible with "crossed" rods.

Overhung gear.—Where the valve-gear is of the "overhung" type (i.e., the type in which T is always outside of M, even in full gear), the diagrams are constructed on the same principle as Fig. 41, and the position and eccentricity of the eccentrics are determined by producing the arc DD', and taking a point Z' beyond D, so that Z'D is to (DD'+2Z'D) as TM is to TN, and joining CZ'. CZ' is the required eccentricity of the sheaves, and BCZ' is the angle between them and the crank.

Obliquity of eccentric rods. — The valve diagram, as above described, takes no account of the effect produced by the obliquity of the eccentric rods; when the rods are so short as to make this disturbing effect noticeable, the diagram may be corrected as follows:—

From A and B (Fig. 43) drop perpendiculars AN and BN' upon RR', and through N and N', with length of eccentric rod as radius, strike an arc; also, with same radius, strike similar arcs through O and P and O' and P'. Then, if the points where these arcs cut the travel circle be joined with C, the corrected crank positions, at which the various events of the cycle occur, will be obtained; the radial

lines indicating these new crank positions may then be produced outwards so as to cut the eccentric circle and indicate the piston



Fig. 43.

positions as before. The correcting arcs for the exhaust laps have been omitted as tending to complicate the diagram, but they will be drawn on either side of the arc NN', at distances from it equal to the laps, and will give new points on the travel circle in a precisely similar wav.

When the eccentric rods are very short, and the locomotive or "slot" link is used, as in some types of horizontal engine, no diagram will give more than approximately accurate results, and the final adjustments should be made on a model; one that will serve every purpose may be rigged up on a drawing board with a few pieces of lath and some stout pins, in little more than half-an-hour.

For the solutions of other problems connected with the diagram for the ordinary slide valve, and for the methods of constructing diagrams for various types of expansion valve, see Mr Seaton's "Manual of

Marine Engineering."

Diagram for oscillating engine.—When the diagram Fig. 39, is applied to the case of an oscillating engine, the eccentric circle deviates slightly from a true circle, owing to the fact that there is

virtually a connecting rod of varying length; the necessary correction in the eccentric circle may be made as follows:—



Fig. 44.

Let A be the trunnion centre, and BLE the crank path; divide the half crank path into any number of equal parts (say six), at K, H, G, &c.; join each point with A; and from A, with radius AB, strike the are BDC. Then, referring to Fig. 45, set off the corresponding points E, F, G, &c., and transfer the lengths ED, FD, GD, &c., from Fig. 44 to the positions indicated by the corresponding letters on Fig. 45, and through the points D, D, D, &c., draw a curve; this curve will then be the true curve of successive positions of piston corresponding to the crank positions indicated by any radial lines.

GL in Fig. 45 (page 160) must, of course, represent GL in Fig. 44, either to the same or some other convenient scale.

# VALVE GEAR.

It must be understood that the various proportions given in the following sections on "Valve Gear" and "Eccentrice" are such as are suitable for *ordinary* speeds of engines of the two categories, Naval and Mercantile, and that both increased strengths and increased

surfaces will be required if the engines are to run at exceptionally high numbers of revolutions.



Fig. 45.

Valve or slide rods.—The power requisite to move a slide valve on its face is a constantly varying quantity, and care must be taken to use its highest ordinary value in all calculations for dimensions of valve gear.

To obtain this, the gain from using any relief arrangement, and also that due to the pressures on some portions being in equilibrium, should be neglected, and the total pressure on the valve taken as the maximum difference of absolute pressures between which it works, acting on its gross area,—these pressures being those of the steamchest or receiver on one side, and those of receiver or condenser on the other.

If L be the length and B the breadth of a valve, both in inches; d the maximum pressure per square inch, obtained as described above.

and '2 the co-efficient of friction for metallic surfaces rubbing together dry; then,—

Stress on valve rod =  $^{\circ}2$  (L × B × p) lbs.;

and,-Rule 170,-

Smallest diameter of valve rod =  $\sqrt{\frac{\overline{L} \times \overline{B} \times p}{12500}} + .25$ ;

and,—Rule 171,—

Diameter of valve rod in gland-  $\sqrt{\frac{L \times B \times p}{6500}} + .25$ .

The value of p should be taken as 30 lbs. for L.P. valves, and, as it is desirable to have the rods all of the same dimensions, the highest value of the above expression for any one cylinder should be used for all.

When piston-valves are used for the H.P. cylinders, the valve-rod is usually made of the same size as those for the flat slides of the M.P.

and L.P. cylinders.

Theoretically, the power required to move a piston-valve should be little more than is necessary to overcome the friction at the stuffing-box, but practically,—as mentioned under "Slide-valves,"—the power required is greatly in excess of this, and may have almost any value.

The above-mentioned diameter at the gland (which is on an average equivalent to Extreme diameter of valve), is, no doubt, greater than

necessary, but is convenient, and gives ample strength,—a consideration of perhaps greater importance in marine than in any other class of work. Some makers have used rods of diameter at the gland equal to Extreme diameter of valve

13

Rule 172. The cap-bolts for valve-rod end or eye must each carry a load equal to  $\frac{2(L \times B \times p)}{2}$ , and the size suitable for this load will be found

from Table XXXI., page 73. Their diameter will be found to very closely approach 5D+2 inch, where D is diameter of valve-rod found by Rule 170 above.

Valve-rod guides.—All valve-rods should be fitted with guides, placed as close to the link as possible; and, if they are not fitted with balance pistons, they should have guides at the tail ends as well.

The most satisfactory form of guide is one resembling a piston-rod slipper guide of the "single" type (i.e. one shoe and one guide for both ahead and astern) in miniature,—the shoe being cast with a small tubular crosshead which is bored to fit the valve-rod, and secured on it by a through cotter.

When this type is not adopted, and the guide is made to embrace

the valve-rod just below, or outside of, the gland, a square or two flats should (whenever space is available) be formed on the rod to take the guide, -as the various joints of the gear will then be to some extent relieved of the twisting stresses, due to the eccentrics and rods not being in exactly the same plane as the axis of the valve-rod, and will in consequence run longer without overhauling.

Reversing quadrants, or "links." — The old slot-link still

retains its place, as the most convenient of application in oscillating

paddle engines, and in some types of horizontal screw engines.

Its principal proportions should be as follows —the unit D being the diameter of valve-rod as found by Rule 170 :-



Fig. 46.

#### Rule 173, a to k.

		s of eccentric-	rod pins	(E)	2.75	to	3×thi			
(b)	Breadt	h of link (F)	•	•				1·1 D	+ 4	inch
(c)	Thickne	ess of bar (C)	{ with b	ridge	3				+ 25	
٠-,			withou	ιt,,					+ '25	
(d)	,,	(C')	{ with without	, ,,	•				+ 25	
٠.	,,	,, (- /	withou	ιt,,				L	) + :25	,,
(e)	Length	of block (H)	•	•				2.5 I		,,
(f)	Width	of slot (K) .						1.4 6	+ •35	,,,
(a)	Diam (	of eccentric-ro	inin (A)	∫sol	id bu	sh	orasses	I	+ '25	,,
(9)	Diam.		* P. (22)	l adj	iustal	ble l	rasses	1·1 I	) + •25	,,
(h)		drag-rod pin	(B) Jasi	n fig	; 				+ .25	
(,,,	**	and to him	(D) ( wh	en or	ı brid	lge		.8 T	+ 25	12
( <i>j</i> )		block-pin (G	√∫ when ∘	overł	nung	•			+ '25	,,
())	,,	prock-bin (a	¹] both e	nds a	secure	ed			+ .25	,,
/7.\		drag-rod at	if o	ne				·7 I	+ 25	,,
(k)	,,	drag-rod at e	if t	₩o			•	·48 I	+ .25	,,
_			_						-	

Theoretically, surfaces may be a little smaller for paddle engines, but it is better to give the extra surface and make them same as for screw engines.

For all vertical engines, and in all other cases where possible excepting where L.P. cylinder is below say 25 inches in diameter),

the double-bar link is preferable, as large working surfaces and pins are more easily obtained, and they are more accessible and more easily adjusted.

The principal proportions of the double-bar link should be as follows,—the unit being again D, or diameter of valve-rod as found

by Rule 170 :—

# Rule 174, a to n.

(a) Centres of eccentric rod pins .		3 x throw of eccentrics, or roughly 7.8 D.
(b) Depth of bars		1.4 D + .75 inch.
(c) Thickness of bars		·5 D+·15 "
(d) Width between bars and thickness of rod eye when gun-metal or bronz		
(e) Width between bars when cast-ste and gun-metal liners		)
(f) Dia. of valve-rod eye (G.M. or bronz		
(g) " (steel block and G.	M. liners	)1×
(h) Length of sliding block		3 D to 3.75 D.
(j) Diameter of eccentric-rod pins		$\cdot$ 85 D + $\cdot$ 5 inch.
(k) Length " "		'7 D+'4 "
(l) Diameter of drag-rod pins .	•	'7 × diameter of eccentric rod pin.
(m) Length " " .		1 × length of eccentric rod pin.
(n) Diameter of bolt through ends	of link )	$35 \times depth$ of link
bars	!	bar.

For proportions given by above rules, see Table L. (page 164).

Whether the links are forged from iron or steel, all the pins and working surfaces should be thoroughly case - hardened before

completion.

Position of suspension pins.—It is sometimes convenient to place the suspension, or drag-rod pins at the end, in the case of the slot link, but, when possible, they should always be placed at midlength of the link,—so as to coincide in position with the block-pin when the link is in mid-gear,—as there will then be the least "slotting" motion, or "wash" of link.

When the block-pin is at the half-travel position, a line drawn from its centre, at right angles to the axis of the valve-rod, should bisect the versed sine of the arc described by the centre of the

drag-rod pin in the end of the reversing lever.

The reversing lever, when in mid-position, commonly lies parallel to the valve-rod, but it is better to incline it slightly away from the valve-rod, and so reduce the "wash" of link when in ahead gear, whilst increasing it a little when in astern gear. The amount of inclination, measured on the arc, may be about one-eighth the length of the lever. See Fig. 47 (page 165).

Table L.—Proportions of Double-bar Links.

Dia- meter of end bolt.	in 100 to
Length of drag-rod pins.	inches. 17. 17. 22.22. 22.22. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25. 33.25.
Dis- meter of drag- rod pins.	in 100 m
Length of eccentric rod pins.	inches. 17. 17. 17. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
Dis- meter of ec- centric rod pins.	inches 8888
r Length of block on bars, (3.5 D)	inches.  6 %  7 %  7 %  10 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %  11 %
Diamete of valve- rod eye, steel block.	inches
Dia- meter of valve- rod eye, G.M. block.	inches. 5 % % % % % % % % % % % % % % % % % %
Width be- tween bars, steel block.	inches.
Width be- tween bars, G.M. block.	inches 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Thick- ness of bars.	in che 2002
Depth of bars.	in choin 2000 2000 2000 2000 2000 2000 2000 20
Centres of eccentric rod pins, (about)	inches. 12 14 14 16 20 20 22 23 25 29 83 83
Diameter Centres of eccentric valve.rod plus, (in valve). (about)	in the same of the

Note.—In Naval work the proportions and surfaces are usually somewhat greater than in Mercantile work; the above Table gives good average proportions. For paddle engines the surfaces may be same as for screw engines, since little is saved by reducing them.

The drag-rods should, of course, be as long as they can conveniently be made, and care should be taken that the angle they make with the reversing lever is not too obtuse when at its maximum.



Frg. 47.

When the most convenient length of drag-rod has been fixed upon, and the reversing lever arc has been drawn in what is apparently the best position, the arrangement should be checked by drawing down the paths described by the ahead and astern eccentricrod pins on the link, when respectively in gear. These paths should resemble attenuated figures of 8 (rather broader for the astern pin), and the are described by the end of the drag-rod, should divide them fairly down the centre; if the division is nearer one side than the other, the length of drag-rod should be altered so as to set it right.

Trial should also be made with higher and lower positions of suspension at the lever end of the drag-rod, to see whether the width of the 8's cannot be reduced, or whether they cannot be twisted more nearly into line with the valve-rod axis, and so

virtually reduced in width.

#### ECCENTRICS.

Eccentric sheaves.—These should be made of hard and tough cast-iron, and, when made in two pieces, the small piece should be of cold blast or other specially strong iron. The line of division should always be at right angles to the line through centres of shaft and of eccentric, and the key-way should be placed in the centre of the large piece. The joint separating the two portions should also have a small step in it, on each side of the shaft, to prevent motion of either portion in a plane perpendicular to the shaft axis.

The bolts holding the two portions together may either have

rectangular nuts fitted into recesses in the large portion, or ordinary nuts, or cotters, placed where the sheave is lightened out, or perforated. The recesses in which the bolt heads lie may be filled

up with white-metal if desired.

A good method of construction for large sheaves is to lighten them eut only,—leaving a continuous web or plate,—instead of completely perforating them; but the web must be placed close to one side to give room for the set sorews for fixing sheave on shaft, and holes may be cut through it as required for getting at nuts or cotters. When sheaves are constructed in this way they can be very conveniently secured back to back by means of a stout through bolt, which has the effect of causing the astern key to always share the work of the ahead one, and vice versa.

Eccentric straps.—These may be of good gun-metal for sheaves on shafts up to 10 inches in diameter, but for larger eccentrics they should be of cast-steel, with gun-metal liners.

For small high-speed engines the straps should be of gun-metal,

lined with white-metal between the side lips.

The straps should always have side lips, as shown in Figs. 48 and 49; and when gun-metal liners are used they should have external projecting rings fitting into grooves in the cast-steel straps, as shown in Fig. 50 (page 167).



Gun-metal Strap lined with White-metal.

Fig. 48.

Cast-steel Stran with Gun-metal liner. Fig. 49.

When gun-metal straps are used, each half should be made thicker at the middle, to allow for wear; and whether gun-metal or steel is used, the strap should be stiffened by ribs as indicated in Figs. 48, 49, and 50,—one central rib being used for steel, and two side ones for gun-metal.

The general proportions of sheave and strap should be as follows,—the unit D being still the diameter of valve-rod, as found by Rule 170:—

Rule 175, a to m.

(a) External diameter of sheave . 1.2 × (diameter of shaft + throw of eccentric), or roughly 7.8 D.

(b) Breadth of sheave at strap $\begin{cases} Mercantile & D+ \cdot 6 \text{ in.} \\ Naval & D+1\cdot 25 \end{cases}$
(c) Thickness of metal round shaft $\begin{cases} pierced sheave & 6D + 5 \\ lightened & & 45D + 25 \end{cases}$
(d) " at circumference $\begin{cases} pierced " \cdot 4D + 5" \\ lightened " \cdot 4D + 25" \end{cases}$
(e) Breadth of key
(g) Diameter of bolt connecting portions of sheave . 45D+ 25 "
(h) Thickness of G.M. straps at middle (ex. lips) (t). '4 D+ '5 " (j) " " sides " . '33D+ '5 "
(k) cost-steel strang (sn) 3 D ± .5
(I) G.M. liners for cast- steel straps. Dia. of sheave + 125 inch.
(m) Diameter of bolts connecting parts of strap 5 D +

For proportions given by above rules, see Table LI., page 168.

As a check on the diameter of bolts in strap, it should be seen that the loads on them are not in excess of those given in Table XXXI. See page 73.



Fig. 50.

Table LI.-Proportions of Eccentric Sheaves and Straps.

Diam. of bolt	necting strap.	(18)	SKXXX XXXXXX B.
Thick- ness of liners	for steel straps.	•	%%%* <i>i*k</i> %%*%*k
	steel straps.	શ	i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
less of netal ps.	S	Sides.	ins.  11.2%  11.2%  11.2%  11.2%  11.6%  22.  23.  24.  25.  26.  27.  27.  28.  28.  28.  28.  28.  28
Thickness of gun-metal straps.	છ	Middle.	RXXX XXXXXXXXXXXX
Diam. of bolt	necting sheave.	ŝ	%%% %%%%%%%% ;
Dimensions of Key.	S	Thick- ness.	7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Dime.	<b>છ</b>	Brdth	888888 8888888888888888888888888888888
sas of lat rence.		Light- ened.	%% %%%%%%%%% %i
Thickness of metal at circumference.	(g)	Pierced	SSKX SSKXSSKX:
ses of cound		Light- ened.	%%% %%%%%%%%% is
Thickness of metal round shaft.	(9)	Naval, Pierced	888 8888 88885 888 88888 88885
P. at		Naval.	0000000 44 4 4 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5
Bread( sheav stra	Breadth of sheave at strap.		00000000000000000000000000000000000000
	diam. of sheave (about)		ins. 122 14 16 20 20 21 22 22 23 24 28 33 33 33
Diam. of	valve- rod (in valve).		iii 821000000004444 822

Eccentric rods.—These should be sound forgings of good wroughtiron,—the double-eye at the link end being cut out of the solid forging. Though much may be said in favour of the rectangular section for the body of the rod, experience has decided that, on the whole, the circular section is the best. The diameter at the link end should be that given by,—

### Rule 176.

Diameter of eccentric rod at link end - '8 D + '2 inch.

The diameter at mid-length of rod may be calculated in the same manner as a connecting-rod (Rule 69), but for direct-acting engines of ordinary construction,—(where the length of connecting-rod is not more than 2 × stroke for Naval engines, and 2½ × stroke for Mercantile engines),—the rods may be made with a straight taper from end to end, and may have the following diameters at the ends next eccentrics:—

# Rule 177.

where D has the same value as before.

The studs by which the T end of the eccentric-rod is secured to the strap should be of the same strength as the bolts for valve-rod caps (Rule 172), and for connecting the two parts of the strap (Rule 175 m), and their diameter may be calculated in the same manner.

The cap-bolts at link end of rod should also, collectively, have the same strength as the valve-rod cap-bolts; but, as they will be considerably smaller, they must not carry so great a load per square inch of section at bottom of thread, and their diameter will be easily fixed by reference to Table XXXI., page 73.

Single eccentric gear.—This type of gear is well suited for use on small oscillating paddle-engines, where the power required to move the valves is not more than one man can easily exert.

The sheave should be cast with a balance weight, and with a "snug" or projection on the side, to engage with the stop on the shaft, and should be bored to be a nice working fit on the shaft.

The stop should be cut from a turned and bored ring of wrought steel, of rectangular section, and should be fixed to the shaft by two or three steel tap screws. The length of the stop may be such that it will embrace half the circumference of the shaft, and it must be fixed centrally opposite to the crank, as the action of the valve is reversed by the interposition of the valve-lever.

The "snug" on the sheave will then be placed centrally on the line connecting the shaft and eccentric centres, and will have a length, measured round the circumference of the shaft, given by,—

Rule 178.

Length of "snug" on sheave = { (Half circumference of shaft) - (part of circumference in tercepted between centre lines of ahead and astern eccentric positions).

The arrangement will be readily understood on reference to Fig. 51.



#### JOY'S VALVE GEAR.

The general arrangement of one form of this gear is shown in Fig. 52. The method of laying down the centre lines is as follows:—

Take a point d (Fig. 53, page 172) on or near the axis of the connecting-rod, such that its extreme transverse vibration is about twice the full stroke of the valve (better rather more than less); and through its extreme positions  $d_1 d_2$  draw zz. Then mark off e and  $e_1$ —the extreme longitudinal positions of the point d,—and from these points draw two lines to meet in a point f on zz, the position of which is such that the angle efe is not more than 90° (if there is room, a less angle is better).

The point f should be controlled so as to move as nearly as possible on the line z; this may be effected either by an "anchor" link 2,—which may be placed on either side of zz,—or by a sliding guide.



Fig. 52.

Next, on the valve rod centre 5, mark off  $g_1$  and  $g_2$ , so that  $gg_1$  is equal to lap + lead for the top or back end of cylinder, and  $gg_2$  equal to same for crank end of cylinder. Then take a point j on the link  $e_1f$  so that  $e_1j$  is about  $\frac{4}{3} \times dd_1$ , and draw  $jg_1$ , cutting zz in m; m will be the fulcrum of the lever 3, and will also be the centre of the curved reversing block in which the fulcrum slides. When swing links are used (as in Fig. 52), in lieu of a curved block, the arcs described by the link ends, when in ahead and astern positions, must intersect in M.

The position assumed for j in the first instance is approximate

only, and may not be quite correct; its position must be such that the point m in the lever  $jmg_1$  moves to an equal distance on either side of the centre of the reversing block,—also marked m. If no at first quite correct, it will generally be obtained on a second trial.



F1G. 53.

When the gear is correctly set out, the act of moving it from ahead to astern gear, or to any intermediate position, should leave the lead unaltered.

The valve-rod link, which is attached at g, may have any convenient length, but the length fixed on determines the radius of the curved

guides in the reversing block, or the length of the swing links, which-

ver construction is adopted.

It will be noticed that the lap and lead depend on the ratio of jm to mg₁, whilst the port openings (over and above the leads), depend only on the angle to which the reversing block is canted, and will be about 4/5ths of the distances ss, and ss, respectively.

Considerable deviations from the above-described positions and proportions may be made without materially affecting the nature of

he results.

Where the distance from centre of piston rod to centre of valve rod is different for the different cylinders (H.P., M.P., L.P.), the valve-rod link may be inclined as much as 1 in 12, but beyond that the point m should be moved, and the lengths jm and mg₁ altered.

For complete investigation of Bremme's or Marshall's gear see Mr

Seaton's "Manual of Marine Engineering."

#### REVERSING GEAR.

For all ordinary types of engine, when size renders hand-gear too slow in its action, the simplest and most efficient form of reversing engine is the direct-acting steam cylinder, combined with a brake cylinder containing oil or water. A very perfect form of this gear has long been associated with the name of Messrs Brown of Edinburgh; by the adoption of valve-gear of the "hunting" type they have produced a machine which is handled with the greatest ease and certainty, and which is, at the same time, quite automatic in its action. The action of the gear is as follows:—On moving the hand-lever through any fraction of its possible travel, the steam valve is displaced, or opened, a corresponding amount, and the piston begins to move; but, so soon as the gear begins to move, the steam valve begins to return to its central or closed position, and when the piston has travelled through the fraction of its stroke corresponding with the original movement of the hand-lever, the valve is again central, and the gear at rest.

Direct steam gears should never be fitted without the brake cylinder, as, in careless hands, the steam-power is apt to "take charge," overpower the controlling hand-gear, and "carry away" some

of the brackets, &c.

Another very excellent type of reversing gear, which is also adaptable to almost any type of engine, is that known as the "all-round" gear. In this gear a connecting-rod from the main lever on the weigh-shaft takes hold of a crank-pin on the side of a worm-wheel, and the worm gearing with this wheel is revolved by a small steam engine.

The great advantage of this gear is that,—as implied in its name,—it has no "stops," but can travel round continuously, without risk of carrying anything away, and is therefore perfectly safe in even the

most careless hands. It has also the further advantage,—resulting from the crank and connecting-rod principle embodied,—of requiring little or no power at the commencement and finish of its movement from ahead to astern, or vice versa, thus allowing the engine to "get way on it" in readiness for the load, and to come easily to rest again. The small engine is sometimes made with two cylinders and cranks, and is also sometimes made reversible; but these are both very doubtful improvements.

In all steam reversing gears, arrangements should be made to prevent the accumulation of water in the cylinders of the small engine, in order that it may be in condition to start instantly when the hand-

lever is moved.

Reversing gear weigh-shaft.—If the stresses on weigh-shafts were purely torsional, the diameters might vary as the cube-roots of the powers required to move the valves; but they have to withstand severe bending stresses, and must also remain fairly rigid under all conditions, and to do this, experience has shown that the diameters must vary more nearly as the square-roots of these powers, and therefore directly as the diameters of the valve-rods.

For ordinary triple engines, with H.P. and L.P. valves "outside" (or forward and aft of their respective cylinders in the ordinary arrangement), and piston-valves to H.P. cylinder only, the diameter of weigh-

shaft is given by the following rule:-

Diameter of weigh-shaft = 
$$2 \times \left( \sqrt{\frac{\overline{L \times B \times p}}{12,500}} + 25 \right)$$

But the quantity within the brackets is equivalent to the smallest diameter of valve-rod (See Rule 170), so that the rule for diameter of weigh-shaft may be written,—

### Rule 179.

# Diameter of weigh-shaft = 2 × smallest diameter of valve-rod.

In some cases it may be possible to save a little weight by tapering parts of the weigh-shaft, but, as a rule, it is better to use a practically parallel shaft, and, if weight is of great importance, make it hollow, as is commonly done in the case of large Naval engines; the necessary stiffness is then maintained without difficulty, and there is no fear of the bending stresses giving trouble.

When the H.P. and L.P. valves (or either of them) are "inside" of their respective cylinders, and the weight-shaft is thereby shortened, the necessary stiffness will be given by a smaller shaft, and the diameter may be reduced in the proportion indicated by Rules 80 and 80a.

Size of reversing engine cylinders. — For ordinary triple engines as described above, this may be obtained from the general relation,—

$$\frac{\mathbf{P} \times \mathbf{A} \times \mathbf{T}}{\mathbf{L} \times \mathbf{B} \times \mathbf{p}} = \mathbf{K} \qquad . \tag{1}$$

where L and B = length and breadth of one slide valve in inches; the one that gives the highest value of  $L \times B \times p$ .

p = greatest difference of absolute pressures between which valve works (See page 160) in lbs. per sq. in.

P = Boiler pressure-lbs. per sq. in.

A - Area of piston or pistons of reversing enginesquare inches.

T = Travel of piston or pistons, in feet, required to move gear over from "ahead" to "astern."

K = { '33 for direct gear. 1.6 for "all round" gear.

or, substituting smallest area (a) of valve-rod multiplied by 12,000, for  $L \times B \times p$ , the formula may be written with quite sufficient accuracy,-

Rule 180a.

$$\frac{P \times A \times T}{a \times 12,000} = K_1$$

where  $K_1$  is  $\begin{cases} .42 \text{ for direct gear.} \\ 2.00 \text{ for "all round" gear.} \end{cases}$ 

In their fear of giving too little power in steam reversing gears, there is little doubt that engineers often run to the other extreme, and give much more than necessary, even when two-thirds boiler pressure is assumed. The values assumed for the constants in the above formula (1) give ample size, and the constant 1.6 may even be reduced to 1, if space and weight are of great importance.

With "all-round" gears the small engine should not make less than 15 revolutions in moving the gear over, and where possible 20

should be allowed, and up to 25 in large engines.

The pitch of the worm-wheel teeth should never be less than 11/2 inches, and for large engines 21/2 inches is usual; they should be machine-cut, and should have no more clearance than is absolutely necessary.

The worm is usually forged solid with its spindle, and may have a diameter of pitch cylinder given by,-

### Rule 181.

Diameter of pitch cylinder of worm may be . 3 x pitch of teeth.

Rule 181a.

Width of face of worm-wheel

" . 2 ×

Rule 181b.

Length of worm (actual thread)

. 3 ×

Suitable proportions for weigh-shaft levers are given in Figs. 54 and 55.



#### STEAM TURNING GEARS.

The best type of turning gear is the now all but universal double worm gear,—in which the second, or auxiliary, worm shaft is coupled direct to the crank-shaft of the small turning engine, which makes from 1200 to 2000 revolutions for one turn of the main engines, according to size. The size of cylinder, or cylinders, of turning engine should be such that, with say 50 lbs. of steam, the main engine can be turned one revolution in from 5 to 8 minutes, according to size, which gives,—with the above-mentioned ratios of gearing,—a speed of 250 revolutions per minute for the turning engine.

In the Navy the turning engines have usually two cylinders and two cranks, and are made reversible by means of links or a reversing valve, but one cylinder is quite sufficient, and a loose eccentric

is all that is required for reversing.

In small vessels, where a special turning engine is not considered necessary, the auxiliary worm shaft may be driven from a donkey pump, or other auxiliary engine, by means of a pitch chain and wheels.

For ordinary three-crank triple engines, the sizes of cylinder for turning engine should be such as will satisfy the following relation,—the boiler pressure being assumed as 50 lbs. in all cases:—

Rule 182.  $\frac{A \times T}{D^3} = K,$ 

where A-area of piston or pistons of turning engine, in sq. inches;
T-travel of piston or pistons, in feet, while turning main
engines through one revolution;

D-diameter of crank-shaft of main engines;

K = 14.

In Naval work the main wheels are commonly of cast-steel, but this is totally unnecessary,—as cast-iron is eminently suitable for the purpose; cast-iron has also the advantage of working well with wrought-steel worms, which cast-steel will not do.

However carefully a worm-wheel may be moulded there is sure to be more or less distortion in cooling, and it is therefore the

cheapest in the long run to machine-cut the teeth.

The teeth should not be made too fine a fit; there is no objection to a good clearance.

The usual pitch for the teeth of the main wheel is as follows:—

For 6-inch to 8-inch crankshaft . . . 2-inch pitch.

When calculating the strength of the teeth, the number in gear at one time should not be taken at more than two.

Rule 183.—The length of tooth should not exceed '6 x pitch, viz.,

26 × pitch outside the pitch circle, and 34 × pitch within.

It is scarcely necessary to say that the pitch should be an even quarter or half inch, and that the diameter of the wheel must then be made such as will give the required number of teeth; also when the wheel is made in halves the number of teeth should be even.

The pitch of the auxiliary worm-wheel is usually 11/2-inch to

to 21/4-inch.

Rule 184.—The width of face of the wheels may be  $1.75 \times \text{pitch}$  of teeth when a solid worm is used, and  $2.1 \times \text{pitch}$  when the worm is loose on the spindle.

The diameter of the pitch cylinder of the worm may be,-

Rule 185.

When worm is forged with spindle . . 2.4 × pitch of teeth.

Rule 185a.

When worm is loose on spindle  $\begin{cases} \text{forged steel.} & 3 \times \\ \text{bronze} & 3.3 \times \end{cases}$ 

Length of worm (actual thread) may be 3 × pitch of teeth.

Wheels up to 3 feet diameter are best made with a continuous plate, or disc, in lieu of arms; larger wheels may have six radial ribs on each side of the disc (the flanges counting as two, when the wheel is in halves), and the disc may then be lightened by cutting six circular, or nearly circular, holes in it.

The thickness of rim, of disc plate, and of ribs, may be same as

thickness of tooth at pitch line.

Where possible the main wheel should be placed on a coupling. Where cast-steel brackets or bearings are used for the worm-shafts they should be bushed with gun-metal, -as "mild" steel shafts and cast-steel bearings have a great tendency to seize.

#### SCREW PROPELLERS.

Material of propeller.—For small merchant steamers propellers are almost invariably of cast-iron,—boss and blades being cast together in one piece. Experience has shown this material to be the cheapest in the end for this class of vessel, since, - though the life of the propeller seldom exceeds six years,—the first cost is low, and a new one can be fitted in a few hours.

For larger merchant steamers, mail-boats, &c., the propellers are constructed of various materials, but the blades are usually cast separately, and attached to the boss by studs or screws; the breakage of a blade can thus be made good without disturbing the boss,—a very important point, considering the practical impossibility of fitting a new boss properly without having the tail-shaft in the factory. Cast-steel blades have been used to some extent, but they cannot be recommended; the first cost is considerably above that of cast-iron, and the average life is not more than four years.

Various attempts have been made to prevent corrosion,—and so prolong the life, -of iron and steel blades, by casting on coatings of

white-metal (Johnstone's process), and by pinning on brass plates, but there is considerable difficulty in keeping out water from between the two metals, and the expenses,—direct and indirect,—are heavy.

There is therefore little doubt that, for first-class vessels, the gunmetal or bronze blade is the cheapest in the end; and, owing to its smoother surface, &c., it is certainly the most efficient propeller for all vessels.

For Naval purposes propellers are almost invariably of gun-metal or bronze, and,—except sometimes in the case of torpedo boats,—the

blades are always detachable.

Pitch of propeller.—For all ordinary cases,—take the intended speed of the ship in feet per minute (1 knot is equal to 101.33 feet per minute); increase it by one-tenth, and divide by the intended number of revolutions per minute; the quotient will be the pitch in For the large propellers of very bluff cargo boats, -increase the intended speed by one-twentieth only.

The general expression for the pitch, for any percentage (x) of

apparent slip is then,-

Rule 186.

Pitch of propeller = 
$$\frac{8 \times 101 \cdot 38}{R} \times \frac{100}{100 - x} = \frac{8}{R} \times \frac{10,188}{100 - x}$$

where S is the speed of vessel in knots, and R the revolutions per minute.

Apparent slip of propeller.—This is usually reckoned as a percentage of the nominal axial advance of the propeller (P x R), and its amount in any given case is.—

Rule 187.

Apparent slip (per cent.) = 
$$\frac{(P \times R) - (S \times 101 \cdot 33)}{P \times R} \times 100$$
,

where S is speed of ship in knots, P pitch of propeller in feet, and R

revolutions per minute.

The apparent slip should generally be about 8 to 10 per cent., at full speed; should it in any case be less than 5 per cent., it may be taken for granted that the propeller is not suited to the ship. In bluff cargo boats, however, the slip rarely exceeds 5 per cent., so that the preceding remark does not apply to them. A larger slip (say 12 to 18 per cent.) does not necessarily imply waste of power, and may be due to small diameter of propeller, but a larger percentage again would probably mean that the blade area or "surface" was too small. If this latter is the case, it at once becomes apparent when the indicated thrusts are plotted down and a curve drawn, for the curve will show a want of augmentation of thrust at the higher

speeds. (Indicated thrust  $-\frac{\text{I.H.P.} \times 33,000}{\text{P} \times \text{R}}$ ; for method of constructing curve, see page 21.)

Diameter of propeller.—For all ordinary cases the diameter of propeller should be that given by the following formula:—

Rule 188. Diameter of propeller – 
$$K \sqrt{\frac{I.H.P.}{\left(\frac{P \times R}{100}\right)^8}}$$
,

where P is the pitch in feet, R the revolutions per minute, and K a co-efficient, which has the values shown in the following Table:—

Table LII.—Propeller Co-efficients.

Description of Vessel.	Approximate speed in knots.	Number of screws.	Number of blades per screw.	Values of K.	Values of C.	Usual material of blades.
Bluff Cargo boats	8-10	Single	4.	17 -17:5	19 -17.5	Cast-iron
Cargo boats }moderate lines	10-18	do.	4	18 –19	17 -15.5	Cast-iron
Pass. and Mail boats —fine lines	18-17	do.	4	19.5-20.5	15 -13	{ Cast-iron or steel.
Pass, and Mail boats —fine lines	do.	Twin	4	20.5-21.5	14.2-12.2	Cast-iron or steel.
Pass. and Mail boats —very fine	17-22	Single	4	21 -22	12·5–11	Gun-metal or bronze
Pass. and Mail boats	do.	Twin	8	22 -23	10.5- 9	Gun-metal or bronze
Naval vessels —very fine	16-22	do.	4	21 -22.5	11.5–10.5	( or bronze
Naval vessels —very fine	do.	do.	8	22 -23.5	8.5- 7	Gun-metal or bronze
Torpedo boats —very fine	20-26	Single	3	25	7- 6	Bronze or forged steel

Or, if 
$$\left(\frac{P \times R}{100}\right)^{2.8}$$
 be used instead of  $\left(\frac{P \times R}{100}\right)^3$ , the co-efficient

(K) becomes practically constant, and the formula for four-bladed propellers becomes.—

Diameter = 
$$7.7$$
  $\sqrt{\frac{\text{I.H.P.}}{\left(\frac{P \times R}{100}\right)^{2.3}}}$ .

For three-bladed screws, --multiply the diameter thus found by 1 05.

Blade area or surface of propeller.—For all ordinary cases satisfactory results will be obtained if the blade area be that given by the following rule:—

Rule 189. Total developed area of blades = 
$$C \times \sqrt{\frac{\overline{1.H.P.}}{R}}$$

where R is number of revolutions per minute, and C is a co-efficient having the values given in column six of Table LII.

In Naval vessels the centre of the propeller is usually more deeply immersed, in proportion to the diameter, and the revolutions are

higher for a given power, than is the case in merchant vessels.

Number of blades.—Two bladed propellers are now seldom used on account of the vibration set up by the ever-varying resultant moment of the thrust reactions. Three bladed propellers work very steadily when the immersion is sufficient, and revolutions fairly high, but when the diameter of propeller becomes nearly as great as the draught of water, and revolutions are only moderate, four blades should be used, as being better balanced, and giving a more equable resultant moment of thrust reactions.

Thickness of propeller blades.—In determining the thickness of blade at the root, the two most important stresses to be considered are,—the bending stress due to the thrust reaction, and the tensile stress resulting from the centrifugal tendency of the mass of the blade. The first may be calculated from the mean normal thrust (see page 112), the blade being considered as a beam, fixed at one end and loaded at the other, the length of which is the distance from the root to the centre of pressure, and the load on which is the force, normal to the blade, due to one-third or one-fourth of the thrust reaction, according as the propeller is three or four bladed.

The stress resulting from the centrifugal tendency of the mass of the

blade is also easily determined by the ordinary formula, viz :-

$$C = \frac{wv}{gr}$$

where w is weight of blade in lbs.; v, velocity of centre of gravity in feet per second; r, radius of centre of gravity in feet; and g-32.

The material, whether of blade or of studs, is, of course, subject to

the sum of these two stresses.

The thickness of blade can, however, be determined much more easily, and with a close approach to accuracy, by means of the following formula:—

Rule 190. 
$$T = \sqrt{\frac{d^3}{n \times b} \times K}$$

where T is the thickness of blade at the centre of the shaft, or, in other words, the thickness the blade would have if continued through the boss to the centre of the shaft; d, the diameter of the tail shaft in inches; n, the number of blades; b, the breadth of blade in inches where it joins the boss, measured parallel to the shaft-axis, or, commonly, the length of boss; and K a co-efficient having values as follows:—

For cast-iron, .			K-4
,, cast-steel, .	•		K-1.5
,, gun-metal, .	•	•	K-2
" high-class bronze,			K-1.5

The thicknesses given by the above rule for gun-metal and bronze blades are such as are suited to propellers revolving at speeds usual in Naval work.

The great strength of cast-steel can only be partially taken advantage of, because propeller blades must not only be strong enough, but also stiff enough to prevent vibration; and, moreover, it corrodes rapidly.

See Table LIII., page 182, for results given by Rule 190.

The thickness of blades at the tip should be as follows :--

#### Rule 191.

Thickness of	blade at	tip-Cast-iron, .		'04D+'4 inch.
,,	,,	Cast-steel, .		·03D+·4 ,,
,,	,,	Gun-metal, .	•	.03D + .2 ,,
,,	,,	High-class bronze,	•	·02D+·3 ,,

where D is diameter of propeller in feet.

The following "rule of thumb," which is sometimes used, gives a very close approximation to the necessary thickness of blade:—

Thickness of blade (at shaft centre)—Cast-iron,  $\frac{1}{2}$  in. × No. of feet in diameter.

"	,,	,,	Cast-steel, 7/16 in. × No. of feet in diameter.
,,	"	"	Gun-metal, ½ in. +½, × No. of feet in diameter.

,, ,, ,, High-class bronze,  $\frac{7}{4}$ s in. ×
No. of feet in diameter.

See Table LIIIa., page 183, for results given by Rule 191.

Table LIII.—Thickness of Propeller Blades.

		ast-iron, ades.	Loose bladed propellers.							
Dia. of shaft in	of blade		Breadth of blade = '8 x dia.							
inches.	=length of boss= 2.7 × dia, of shaft.	blade (at	of flange =1.8×	4 blades	steel or	3 blades steel or bronze.	gun-	3 blades gun- metal.		
inches.	inches.	inches.	inches.	inches.	inches.	inches.	inches.	inches.		
6	16	33/4	10%	41/2	23/4	31/4	31/4	3%		
7	19	41/4	$12\frac{1}{2}$	51/4	31/4	3%	3%			
8	211/2	5	141/2	6	3 %	41/4	41/4	4% 4% 5% 6% 7% 7% 8% 9%		
9	24	5½ 6⅓ 6¾ 7¾ 8	161/4	684 7½	41/8	48/4	48/4	51%		
10	27	61/8	18	71/2	4%	5 1/4 5 1/8 6 1/8	5 1/4 5 1/8 6 3/8	61/8		
11	30	63/4	19%	81/4	1 5	5%	5%	63%		
12	321/2	7 3/8	211/2	9	51/2	63%	6%	7%		
13	35	8	231/2	9 9¾	6	6%	6% 7%	7 %		
14	38	81/2	251/4	101/2	6%	7%	1 7%	81/2		
15	401/2	91/8 93/4	27	111/4	6% 7%	8	18	91/8		
16	43	93/4	28%	12	7 3%	81/2	81/2	93/4		
17	46	10%	301/2	12%	7 3/4	9	9	10%		
18			321/2	131/2	7 %4 8 1/4	91/2	91/2	11		
19	***		341/4		8%	10	10	111/2		
20			36		91/8	101/2	101/2	121/8		

The thicknesses given in the above Table for cast-iron propellers assume that the metal has been at least twice melted; if metal that has been only once melted is used, the square of the thickness should be increased 10 per cent. Cast-steel and gun-metal are supposed to be to Admiralty specification.

If breadth of blade be made less than length of boss, thickness must, of course, be so increased that value of  $b \times t^2$  shall always agree with

that found from above Table.

The best method of setting out the longitudinal section of the blade is as follows:—



Determine AB (Fig. 56) from Table LIII., or by Rule 190; draw AC so as to give no thickness at tip; set off thickness at tip (from Table LIIIa.), and draw DE parallel to CB (at right angles to shaft axis), and then fill in the back of the blade near F so as to make DF die gradually into AC.

Table LIIIa.—Thickness of Propeller Blades at Tip.

iameter	Thickness at tip, in inches.						
of Propeller in feet.	Cast-iron ·04D+·4	Cast-steel '08D+'4	Gun-metal 108D+12	High-class Bronze '02D+'3			
7	11/16	5% 5% 11/16	7/1e	7/30			
8 9	% %	/8 11/	7/16 7/15	7/16			
10	9/4 13/16	11/16	719	1/26			
11	13/16	3/16	72	% % % % % % % % % % % % % % % % % % %			
12	z/16	8/4	1 12	1 6Z.			
13	184.	13/4	%	1 %			
14	7/8 15/16 13/16	18/16 18/16	/ %	1 %			
15	1	% % 18 16/16	<b>5%</b>	1 %			
16	11/16	1 %	%8 11/16 11/4	1 %			
17	1 1/1 6 1 1/2 1 1/4	15/16		5%			
18	11/8	16/16	3/4	11/16			
19	1%	1	1 34	11/16			
20	1%.	11/	13/16	11/16			
21 22	11/4	11/2.	18/16	8/4 8/4 8/4 13/16			
23	11/4	11/16	% % 15/16	8/4 8/			
24 24	1 3/16	1 1 1/8	1 18	13/			

Studs or screws for attaching blades to boss.—These are usually of naval brass (Muntz metal with addition of 1 per cent. tin), or of one of the stronger bronzes, for gun-metal or bronze propellers, and of mild steel for cast-iron or cast-steel propellers. They should be of size given by following formula :-

 $a \times N \times r = \frac{T \times L}{K}$ Rule 192.

where a = area of one stud or screw at bottom of thread (sq. inches):

N = number of studs or screws for one blade (usually 7 to 11);

r-radius of studs or screws (in inches);

I.H.P. × 33,000 T-indicated thrust -Pitch × revolutions;

 $L = 6 \times \text{total length of blade (flange joint to tip)}$ ;

 $K = \begin{cases} 17 \text{ for steel studs ;} \\ 14 \text{ for Naval brass or bronze studs.} \end{cases}$ 

Blade flanges.—These should be of the following proportions:—

Rule 193.—Diameter of flange—2'25 × diameter of tail shaft.

Rule 1932.

Thickness of flange =  $\begin{cases} .85 \times \text{diam. of stud for G.M., bronze, or steel.} \\ 1.4 \times ,, ,, \text{ cast-iron.} \end{cases}$ 

Proportions of propeller boss.—The bosses of solid cast-iron propellers should be of the following proportions:—

Rule 194.—Length of boss-27 × diameter of tail shaft.

Rule 194a.—Diameter of boss=2.7× ,,

Rule 194b.—The fore and aft section of the boss should be oval,--

the principal radius being 8 x diameter of boss.

The length of the tapered bore may be divided into three approximately equal parts, of which the two end ones will bear on the shaft, while the central one will be cored back.

The thickness of "shell" of the central, or cored out, portion of the

boss should be,—

Rule 194c.

Thickness of boss-65×thickness of blade at shaft axis.

Where the blade flanges are all within the sphere of the boss,—as is usual in Naval propellers,—the extreme diameter of boss is about  $3.3 \times$  diameter of tail shaft; the length of such a boss should be the same as that of a cost inco boss (Rule 194).

as that of a cast-iron boss (Rule 194).

As previously mentioned under "Tail shafts," the taper to which the boss is bored out should be about 1 inch on the diameter for each

foot of length, but never less than 34-inch.

#### RADIAL PADDLE WHEELS.

These are now rarely employed except in small tugs, where first

cost is a paramount consideration.

The effective diameter of a radial wheel is somewhat difficult to determine,—as it depends very much on the form of float, the amount of immersion, the waves set up by the wheel, &c.,—but it is usually measured between the centres of the opposite floats.

The slip of a radial wheel is from 15 to 30 per cent., according to

the size of float.

For method of determining size of wheel see under "Feathering paddle wheels."

The area of one float, in square feet, may be found by the following rule:—

Rule 195. Area of one float  $= \frac{I.H.P.}{D} \times C$ 

where D is the effective diameter in feet; I.H.P. the total indicated horse-power; and C, a multiplier varying from 25 in tugs to 175 in fast running light steamers.

Rule 1052.

The breadth of float is usually about Length of float.

Rule 195b. Thickness of float may be Breadth of float.

Rule 105c.—The number of floats varies directly with the diameter. and there should be one for every foot of diameter.

The floats should be of elm, or other tough strong wood that will

withstand the action of the water.

The corners should be rounded, and the dipping edges bevelled at the back, so as to enter the water as easily as possible.

#### FEATHERING PADDLE WHEELS.

To design a feathering wheel so that the floats shall enter edgeways when going at full speed, take P (Fig. 57, page 186), a point on the face of the float just entering the water, draw PA parallel to the water line, and cut off PA to represent the speed of the ship through the water, to some convenient scale; draw PB tangent to the circle through P, whose centre is the centre of the wheel, and cut off PB to represent the speed of the wheel on that circle; complete the parellelogram, and the resultant PR is the direction in which the floar enters the water.

Produce RP, and draw parallel to it, at a distance from it equal to distance from gudgeon centre to face of float, a line cutting the circle

of gudgeon centres in G.

Draw GH at right angles to PF, set off the breadth of the float, and

mark off GL equal to the length of lever required.

Now draw another float whose face is vertical and immediately under the centre of the wheel, and the end of whose lever is M; and with centres M and L, and radius GC, draw two arcs of circles intersecting in E. Then E is the centre of the eccentric pin, and LE the length of the radius rods; and the ends of all the other float levers will lie in a circle struck from E as centre, with radius LE.

The diameter of wheel is determined as follows:-

Let K - speed of vessel in knots;

S - percentage of slip;*

R-intended number of revolutions per minute.

Then,—

Rule 196.—Diameter of wheel at axis of floats  $-\frac{K(100+S)}{3.14 \times R}$ .

^{*} Usually 15 to 25 per cent.



The diameter must also, of course, be such as will suit the structure of the ship, and will give the necessary immersion of the float.

Immersion of floats.—When a vessel works always in smooth water, the immersion of the top edge of float should not exceed Breadth of float; and for general service at sea an immersion of

Breadth of float is sufficient. If the vessel is intended to carry cargo,

the immersion, when light, need not exceed 2 or 3 inches, and should not be more than the breadth of the float when at the deepest draught. -as the efficiency of the wheel falls off rapidly as the immersion increases.

Number of floats.—The number of floats should be the nearest

whole number to the value given by the following formula:-

Number of floats  $-\frac{60}{\sqrt{R}}$ Rule 197.

where R is number of revolutions per minute.

Area of float.—The area of float should be that given by the following formula :-

Rule 108.

Area of one float (in square feet) =  $\frac{I.H.P. \times 33,000 \times K}{N \times (D \times R)^3}$ 

where D-diameter of wheel to axes of floats, in feet;

N - number of floats in one wheel:

R-number of revolutions per minute;

whilst K has the following values:-

last four figures of the cube  $(D \times R)^3$  be taken as ciphers.

Proportions of float.—The breadth and thickness of float may be fixed by the following rules :-

Breadth of float - 35 x length. Rule 199.

Rule 200.

Thickness of wood float = Breadth according to nature of service.

Rule 200a.

Thickness of steel float = '16 × breadth in feet + '15-inch.

When an iron or steel float is curved, -

Radius of curvature of float - effective diameter of wheel.

Paddle-wheel frames.—These must be strong enough, in every case, to transmit the power of the engines to the water, and must also be stiff enough to work without undue springing or vibration. As the power of the engines is approximately proportional to the cube of the diameter of the shaft, the strength of the wheel frames should be in the same proportion, and the section of the arm would be given by the equation,—

$$t \times b^2 = \frac{K}{n} \times D^3,$$

where t and b are respectively thickness and breadth of arm, n total number of arms in one wheel, D diameter of inner, or engine, journal

of paddle-shaft, and K a co-efficient.

But when the diameter of shaft is small, this gives a section of arm which would not be stiff enough for practical purposes without more cross-bracing than is usual in small wheels; in practice, small wheels are commonly made without any diagonal bracing at all,—the arms being made proportionately stronger,—as experience has shown that it is not advisable to use sections below a certain degree of lightness.

The formula, therefore, requires the addition of a constant quantity,

and, if written as follows, gives very satisfactory results:-

Rule 201. 
$$t \times b^2 - \frac{K}{n} \times (D^8 + 600).$$

The value of K, for section of arm near boss, is 32,—and the other

symbols are as defined above.

The formula may be used exactly as it stands for ordinary oscillating engines with sectional crank-shafts (Class 3, Table XXXIXa.), but the shafts of other types are made larger, on account of the greater bending stresses to which they are subject, and what may be called the "equivalent cube of diameter" must be obtained before Rule 201 can be applied. The equivalent D³ is found by taking the cube of the actual diameter of the journal, and, if for example the engine be of Class 2 (Table XXXIXa.), taking 50 ths of it,—or multiplying it by 50 and dividing by 58.

Theoretically, the arms may be made lighter as they recede from the boss, but in practice it is usual to make them parallel,—partly for convenience of manufacture, and partly because, when diagonal stays are fitted, the arm is weakened near the inner ring by the necessary bolt holes.

When there is no outer rim, or ring, the portion of each arm beyond the inner rim must be strong enough to carry its own load without any help from the other arms, and must be considered as a beam fixed at one end and loaded at the other. As there is a tendency to contrary flexure of the arm within the ring, the arm is generally made widest at the ring,—tapering gradually towards the

boss, and quickly towards the gudgeon centre or end. The type of wheel is heavy and expensive, and the floats are deprived of such protection as is given by the outer rims, and are therefore so much

the more liable to injury.

Rule 202.—The ratio of breadth of arm to thickness is usually about 5 to 1. The arms must, of course, be locally widened out where the connection to the rim, or rims, is made. When there are two rims, from three to five bolts may be used at each joint, but with one rim only there should be six to ten bolts, according to size of wheel.

Nothing less than a %-inch bolt should be used on ordinary wheels, and both heads and nuts should be square; also, all holes

should be rymered out, and all bolts be driving fit.

# Rule 203.

The section of inner ring may be  $\cdot 7 \times$  section of arm at boss.

### Rule 203a.

The section of outer ,,  $6 \times ,,$  , Rule 203b.

The section of only ,,  $i \times ,,$  ,,

The proportions of breadth to thickness may be,-

Rule 204. Inner ring .  $\frac{b}{t}$  - 5.

Rule 2042. Outer ring . .  $\frac{b}{t}$  - 4.

Rule 204b. Only ring . .  $\frac{b}{t} = 6.5$ .

In large wheels, the inner rims (or arms near inner rims) should be stayed back to the opposite sides of the boss; the section of stays may be,—

### Rule 205.

Section of diagonal stay (if rectangular) 7 × section of inner rim.

Rule 205a.

Section of diagonal stay (if circular) 5× ,,

Rule 206.—Horizontal round ties, or distance rods, should also be fitted between each pair of gudgeon bearings, and as close as possible to them; they may have a diameter of  $1.3 \times$  thickness of arm.

It is a common practice to fix the centres of the gudgeons, on which the floats are hinged, slightly off the centre lines of the floats,—nearer the outer edges,—as the strains on the feathering

gear are thereby reduced; the amount is to a great extent optional with the designer, but varies in practice from one-tenth to one-

twentieth of the breadth of the float.

The whole of the gudgeons and pins should be cased with brass, and should work in lignum-vitæ bushes; unless the vessel is to work in sandy or muddy water,—when iron pins working in white-metal bushes, or pins cased with white-metal working in gun-metal

bushes, will give better results.

The outer bearing for the paddle-shaft may (as stated in Rule 94) have a length of 1.5 to 2 × diameter of journal,—according to nature of service and consequent weight of wheel; it should be strongly made and firmly fixed, as, in addition to the weight of wheel, the whole of the thrust is taken by it. The magnitude and direction of the resultant force on the bearing can be easily calculated, but, as its direction is always below the centre, the caps do not need to be very substantial; the bearing should admit of adjustment in the line of the resultant.

The lubricant is mainly water, but oiling pipes and tallow boxes

should be fitted.

A stuffing box should be fitted round the shaft where it passes through the ship's skin.

#### SEA VALVES.

All sea connections should be simple in construction, and of very ample strength in all parts, and the necks, especially, should be well

bracketed to the flanges attaching the valves to the ship's side.

Sea suction, or inlet, valves.—In the Merchant Service these are usually ordinary cast-iron stop-valves, opening inwards; in the Navy the Kingston valve is not now so much used, and ordinary stop-valves are also generally employed, but no material other than best gun-metal must be used in connection with them.

Brass strainer gratings should be fitted to all inlet valves, the mesh not exceeding half an inch in breadth, and the total area through the grating should be at least 20 per cent. greater than the

net area of the pipe.

Some makers place the gratings of the larger valves on the inboard side of the valve, and provide means for their withdrawal and examination whilst the ship is still afloat; if this is not done, there should be either a steam jet or a donkey delivery pipe fitted for clearing away any weed, &c. that may become fixed in the grating.

The number of valves on the ship's side should be as small as possible, and, where the nature of the service permits, one sea-valve may supply two or more systems of piping, shut-off valves being

fitted on the inboard side of the sea-valve.

Where possible, it is better to take the water-service supply from the delivery side of the circulating pump than from an independent valve on the ship's side, as a better supply is obtained in this way. The method of attachment to the ship's skin, recommended by Lloyd's, is shown in Fig. 58, and the Admiralty method in Fig. 59.

Blow-off valves.—These should always be gun-metal stop-valves opening inwards, and should have spigots passing through the ship's plating. If any guard cock is fitted, it should be placed between the valve on the boiler and the sea-valve, and independent of both.

The method of attachment recommended by Lloyd's is shown in Fig. 60 (page 192).



Fig. 58.

Fig. 59.

Where the valve has to open a communication through a double bottom, as is usually the case in Naval work, one of the Kingston type is generally employed, attached to the outer bottom as shown in Fig. 61 (page 192), and made tight by means of a stuffing box, where it passes through the inner bottom.

The use of cast-iron for boxes or casings of blow-off valves is

forbidden by paragraph 121 of the Board of Trade rules.

Discharge valves.—Here also, with the object of reducing the number of openings in the ship's skin, the smaller valves should, where possible, discharge into the casings of the larger ones, the outlets from the latter being increased in area as necessary.

In the Merchant Service, lifting non-return valves with cast-iron casings are generally used; but in the Navy, though the same type

of valve is used, the only material permitted is gun-metal.

Provision should be made for hanging up the valve, but, when the circulating pumps are of the reciprocating type, it should not be possible to fix it on its seat in any way.

All discharge valves should have spindles passing through the covers, and cross handles for turning them round on their seats.

In some cases, where room is pinched, a swinging flap-valve may



Fig. 60.

Fig. 61.

be employed with advantage; and where the pumps are of the centrifugal type, either valves of this class or sluice valves should be used, in order to reduce the resistances as much as possible.

There should always be a spigot passing through the skin plating of the vessel, and, where the valve is large, it is very desirable to have a doubling plate fitted inside of, and riveted to the skin plate.

The Board of Trade regulations referring to sea connections are as follows:—

137. All inlets or outlets in the bottom or side of a vessel near to, at, or below the deep-load water line other than the outlets of water-closet, soil, scupper, lavatory and urinal pipes, should have cocks or valves fitted between the pipes and the ship's side or bottom; such cocks or valves should be attached to the skin of the ship, and be so arranged that they can be easily and expeditiously opened or closed at any time; and the cocks, valves, and the whole length of the pipes should be accessible at all times.

Cocks or valves standing exceptional distances from the ship's plating, that is where the necks are longer than is necessary for making the joint, should not be passed without the sanction of the Board of Trade, and one condition of their being passed is that they should

be made of gun-metal, and well bracketed.

Although in the case of vessels which have already been granted passenger certificates it is very desirable that the cocks and valves above referred to should be so arranged that they can be opened and closed expeditiously by hand, and that they and the whole length of the pipes referred to should be accessible at all times, still in vessels in which there is a difficulty in attaining this object, a strict compliance with the above may be dispensed with, if after a consultation between the Principal Officer and the Surveyor they are satisfied that the difficulty is serious, and that the arrangements existing are on the whole safe.

The Principal Officer should in such cases always send a special report to the Board of Trade, with the Surveyor's report and statement of the arrangements on board, and of the reasons for authorising a

departure from the ordinary conditions.

138. With a view to the prevention of accidents to boilers through the blow-off cocks being left open after the boiler is run up, and to prevent water getting accidentally or intentionally into the ship by eocks being left open, all blow-off cocks and sea connections below the plates or out of sight, should be fitted with a guard over the plug, with a featherway in the same, and a key on the spanner, so that the spanner cannot be taken out unless the plug or cock is closed. When cocks are in sight guards need not be fitted provided the spanners are secured to the plugs by pins. The spanners should not be shrunk on the heads of the plugs. One cock should be fitted to the boiler, and another cock on the skin of the ship or on the side of the Kingston valve.

- 139. In all cases where pipes are so led or placed that water can run from the boiler or the sea into the bilge, either by accidentally or intentionally leaving a cock or valve open, they should be fitted with a non-return valve and a screw not attached, but which will set the valve down in its seat when necessary; the only exception to this is the fireman's ash cock, which must have a cock or valve on the ship's side, and be above the stoke-hole plates.
- 140. The exhaust pipe for the donkey engine should not be led through the ship's side, but should be led on deck or into the main waste steam pipe; * and in all cases should have a drain-cock on it. This will prevent water getting into the pipe when the ship is deeply laden or rolling.
- 141. In the case of the outlets of watercloset, soil, scupper, lavatory and urinal pipes which are below the weather deck, there should be an elbow of good substantial metal other than cast-iron or lead; and the pipe connected with this elbow should, if of lead, have a sufficient bend to provide for expansion in the pipe or any movement from the

13

^{*} AUTHOR'S NOTE.—This plan renders overhaul of main safety-valves difficult when vessel is in port; a separate waste pipe should always be fitted.

working of the ship. Pipes, no matter of what material they may be constructed, should never be fitted in a direct line between the apertures in the ship's side and its connection with the deck, or closet, or other fittings. Unless the watercloset and scupper pipes and their outlets are fitted in the way hereby required, or in a manner that will in the opinion of the Surveyor and of the Principal Officer be more or equally efficient and safe, the Surveyor should refuse to grant a Declaration. Where closets are fitted below the water line, as in the case of pumping closets, plans should be specially submitted for approval. For closets with their outlets above the weather deck, no special regulations are necessary. The pipes and valves should be protected from the cargo by a substantial casing of wood or iron, which need not be watertight.

This clause applies only to the case of sea-going steamers coming

under survey for the first time.

Lloyd's rules relating to sea connections are as follows:--

- 33. All discharge pipes to be, if possible, carried above the deep load line, and to have discharge valves fitted on the plating of the vessel in an accessible position.
- 34. No pipes to be carried through the bunkers without being properly protected.
- 40. All sea-cocks to be fitted on the plating of the vessel above the level of the stokehole and engine-room platforms, or attached to Kingston valves of a height sufficient to lift them up to the level of these platforms.
- 41. The bolts securing all cocks or sea connections to the plating of the vessel are to be tapped into the plating of the vessel or fitted with countersunk heads.
- 42. The blow-off cocks on the plating of the vessel are to be fitted with spigots passing through the plating, and a brass or gun-metal ring on the outside. The cocks are to be so constructed that the key or spanner can only be taken off when the cock is shut.

See also paragraphs 2 and 4 of section 27 of Lloyd's Rules. Page 274.

#### PIPES AND PIPE ARRANGEMENTS.

The thicknesses of copper and brass tubes or pipes are usually specified or given in terms of one of the "wire gauges." Table LIV. gives three of the most widely used of these "wire gauges," and their equivalents in decimals of an inch, but it is desirable in all new work to use only the Legal Standard Gauge (L.S.G.) as now by law established, as a multiplicity of standards tends only to cause confusion and annoyance.

Table LIV.—Wire Gauges and their equivalents.

	able LIV		iges and th		
	8. G. ard Wire Gauge.	Birmingham	V. G. Wire Gauge.	Whitworth	W. G. Wire Gauge.
No. of Gauge.	Equivalent in ins.	No of Gauge.	Equivalent in ins.	No. of Gauge.	Equivalent in ins.
7/0	•500	5/0	.500	300	-300
6/0	*464	4/0	·460	280	•280
5/0 4/0	·432	3/0	•420	260	<b>.</b> •260
4/0	<b>'4</b> 00	2/0	•380	250	•250
3/0	*372	1/0	·340	240	·240
2/0	*348	1	•300	220	-220
0	·32 <b>4</b>	2	-280	200	•200
1	.300	3	•260	180	·180
2	•276	4	•240	165	·165
8	-252	5	-220	150	·150
4	•232	6	•200	135	·135
5 6	•212	7	·180	125	·125
6	192	8	·164	120	·120
7	·176	9	·148	110	·110
8	·160	10	·132	100	·100
9	·144	11	·120	95	·095
10	·128	12	·108	90	-090
11	·116	13	-096	85	-085
12	.104	14	·084	80	•080
13	.092	15	.072	75	·075
14	.080	16	·064	70	•070
15	.072	17	056	65	•065
16	*064	18	048	60	.060
17	.056	19	.040	55	.055
18	·048	20	*036	50	•050
19 20	•040	21	*032	45	.045
20 21	1036	22	·028	40	·040
21	·032 ·028	23	·024	38	.038
23	·028	24	.022	86	.036
23 24	*02 <del>4</del>	25 26	*020 *018	34	·034
2 <del>4</del> 25	022	26 27	·018	32 30	.032
26	·020	27 28	·016	28	.030
27	0164	28 29	·014	28 26	*028 *026
28	*0148	30	•013	20 24	·026
29	·0136	30 31	•012	24 22	024
30	0130	32	·010	22 20	022
31	-0116	33	-009	19	019
32	-0108	84	-008	18	019
33	·0100	35	-007	17 .	017
34	*0092	36	-006	16	•016
35	-0084	37	-005	15	015
36	-0076	38	-004	14	-014
37	-0068	39	-003	13	-013
38	-0060	40	002	12	.012

The following Table shows the Legal Standard Wire Gauge and its equivalents in millimetres:—

Table LV.—Legal Standard Wire Gauge and Metric Equivalents.

Number	Equi	ivalents.	Number	Equivalents.				
of Gauge.	Inch.	Millimetre.	of Gauge.	Inch.	Millimetre.			
7/0	·500	12.700	23	.024	·610			
6/0	·464	11.785	24	·022	.559			
5/0	•432	10.973	25	.020	•508			
4/0	·400	10.160	26	·018	•457			
3/0	.372	9.449	27	0164	4166			
2/0	•348	8 839	28	·0148	.3759			
0	.324	8.229	29	.0136	*3454			
1	•300	7.620	80	.0124	·3150			
1 2 3	.276	7.010	31	0116	*2946			
3 .	.252	6.401	32	·0108	.2743			
4	·232	5.893	- 33	.0100	2540			
5	.212	5 385	34	.0092	2337			
6	·192	4.877	35	0084	+2134			
7	.176	4.470	36	.0076	1930			
8	·160	4.064	37	·0068	1727			
9	·144	3.658	38	.0060	1524			
10	·128	3 251	39	.0052	`1321			
11 '	·116	2.946	· 40	·0048	·1219			
12	104	2.642	41	0044	·1118			
13	.092	2.337	42	.0040	.1016			
14	.080	2.032	43	.0036	.0914			
15	.072	1.829	44	.0032	.0813			
16	.064	1.626	45	·0028 `	0711			
17	.056	1 422	· 46	.0024	.0610			
18	.048	1.219	¹ 47	.0020	.0508			
19	.040	1.016	· 48	•0016	.0406			
20	.036	914	49	0012	·0305			
21	.032	813	50	·0010	0254			
22	.028	711			•••			

Table LVI. has been drawn up as a general guide indicating the best thicknesses of pipes for various pressures and purposes, and may be taken as giving thoroughly reliable strengths for all ordinary marine work :—

Table LVI.—Thicknesses of Copper Pipes (L.S.G.).

of pipe			steam	pipes	•		xpaust	a pipes.	pipes.	suction and feed suction fire service.	edjd j	lon and action.
Diameter of pipe in inches.		Boiler	press	ures i	n lbs.	,	Auxiliary exhaust pipes.	Waste steam pipes.	Main water pipes.	ilge suction and isoh, feed suction and fire service.	Diameter of pipe	Main eduction and air-pump suction.
ā	200	180	155	125	85	50	Ψ	Was	3	Bilge disch.	켬	P Ke
22					0	7 7			4		35	
21 20	•••				1	7		•••	4		83	3
20				·	1	7			5		82	4
19					0 1 1 2 2 3 3	8			5		29	
18				4/0 3/0 2/0	2	8		13	5		28	5
17		•••	6/0 5/0 4/0 3/0 2/0	8/0	3	8		13	6		25	5
16		7/0 6/0 5/0 4/0 3/0 2/0	5/0	2/0	8	8		14	6		24	6
15		6/0	4/0	0	4	8		14	7		21	6
14	7/0	5/0	3/0	0	4	9	11	14	7	l l	20	7
13	6/0	4/0	2/0	1	5	9	11	14	7		17	7
12	5/0	3/0	0	2 3	5	9	11	14	8		16	8
11	4/0	2/0	1		6	9	11	15	8	l l	15	8
10	8/0	0	1	8	6	10	11	15	9	l l	14	9
9	7/0 6/0 5/0 4/0 8/0 2/0	1 2 3 4 6 7	1 2 3	4 5	4 5 6 6 7 8 9	10	11	15	5 5 6 6 7 7 7 8 8 9 9 9		13	9
8 7	1	2	3		8	10	12	15	9	i l	12	10
7	2 3 5	3	4 5 6 7	6	8	11	12	15	10	9	11	10
6 5	3	4	5	7		11	12	15	10	10	10	11
		6	6	8	9	11	12	15	11	10	9	11
4	6	7		9	10	12	12	15	11	11	8	12
3	8	9	9	10	11	12	12	15	12	11 11	8 7	12
3 2 1	10	11	11	11	12	12	12	. 15	12	12	6	13
1	13	13	13	13	13	13	13	15	13	13	5	13

	В	low-o	ff and	scum p	ipes.				
Dismeter of pipe in inches,	1	11/4	11/2	1%	2	21/4	21/2	2%	3
Thickness, L.S.G.	10	10	10	9	9	8	8	7	7

Feed discharge pipes to be as steam pipes for 30 per cent. higher pressure; but in no case to be taken lower than 125 lbs.

Receiver pipes to be as steam pipes for half the test pressure of the cylinder to which they lead steam; but in no case to be taken lower than 50 lbs...

The above gauges refer to straight pipes only; bends to be suitably strengthened.

The thickness of copper pipes requisite to comply with the Board of Trade rule (see page 204) are as follows:—

Table LVII.—Thickness of Copper Pipes by Board of Trade rule.

I able L					Cop	per r	ipes	<i>D</i> <b>y</b> <i>E</i>			TRUC	
			Thic	kness	on L	egal 8	tanda	rd W	ire Ga	uge.		
Diameter	150	lbs.	160	lbs.	170	lbs.	180	lbs.	190	lbs.	200	lbs.
of pipe in inches.	Brazed.	Solid.	Brazed.	Solid.	Brazed.	Solid.	Brazed.	Solid.	Brazed.	Solid.	Brazed.	Solid.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 12 12 12 12 11 10 10 9 9 8 8 8 7 7 6 5 5 5 4 4 3 3 2 2 1 1 0 0 2/0 3/0 3/0 4/0	16 16 15 14 13 13 12 12 11 11 10 9 9 8 7 6 5 5 5 4 4 4	18 12 12 11 11 10 9 9 8 8 8 7 7 6 5 5 5 4 3 3 2 2 2 1 0 0 2/0 3/0 3/0 4/0 4/0	16 15 15 14 13 13 12 12 11 10 10 9 9 8 7 6 6 6 5 4 4 4 8	13 12 11 11 10 10 9 9 8 8 8 7 7 7 7 6 5 5 4 4 4 3 2 2 1 0 0 2/0 2/0 3/0 4/0 4/0 5/0 5/0	16 15 14 13 13 12 12 11 11 10 9 9 8 8 7 6 6 5 4 4 4 3 2	12 12 11 11 10 9 9 8 8 8 7 7 7 6 5 5 4 3 2 2 1 0 0 2/0 2/0 4/0 4/0 5/0 5/0 5	16 15 14 13 13 12 11 10 10 9 9 8 7 6 5 5 5 4 3 2 2 	12 12 11 10 10 9 9 8 8 7 7 6 6 5 4 4 3 3 2 2 1 1 0 2/0 2/0 4 4/0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 15 14 18 12 12 12 11 10 10 9 9 8 8 7 6 6 5 4 4 8 3 2 2 1	12 12 11 10 9 9 8 8 7 7 6 6 5 5 5 4 4 3 2 2/0 3/0 4/0 4/0 	15 14 13 13 12 11 11 10 9 8 8 7 6 5 4 4 4 3 2 1 1 
18 13½	4/0 4/0		5/0 5/0		5/0	•••	•••		•••	•••		::
14	5/0	:::	6/0	•••		•••		:::			:::	
14½ 15	5/0 6/0					•••						
Note T						••••				•••		<u></u>

Note.—The Board of Trade rules (paragraph 119) state that "Feed pipes should "be made sufficient for a pressure 20 per cent. in excess of the boiler pressure."

The thicknesses of wrought-iron lap-welded pipes requisite to comply with the Board of Trade rule are shown in the following Table:—

Table LVIII.—Thickness of Wrought-Iron Pipes by Board of Trade rule.

iameter of pipe	Thi	icknes	s in ir	ches (	(Decin	nal an	d near	rest th	irty-s	cond	above	)_
in inches.	150 1	bs.	160	lbs.	170	lbs.	180	lbs.	190	bs.	200	lbs.
5	-250	1/4	.250	1/4	250	1/4	.250	1/4	.250	1/4	.250	1/4
51/2	ا ,, ا	11		11	., [	ii	1	"	ir.	11	.,	11
6	,,-	"	,,		,,			"	ir.	"	"	**
61/2	۱ ,, ۱	"	١ ,, ١	.,	.,	,,	.,	I		<b>,</b> ,	,,	**
7	۱ ,, ۱	"	,,	.,	.,,	,,		. ,,	**	,,	,,	**
71/2		11	,,	"	"	,,		.,,	250	1/4	250	1/4
8	,,	11	١,,	,,	١., ١	,,	250	1/4	.253	% 2	.267	<b>%</b>
81/2		***		,,	.250	1/4	.255	%32	.269	1/32	283	8/1
9 _		**	.250	1/4	.255	%3°s	270	1/32	.284	%16	.300	8/1
91/2		"	253	1/82	.269	%32	.285	%16	.300	6/16	·817	1 1/3
10	250	1/4	.267	<b>%</b> 32	.283	6/16	.300		.316		.338	11/3
101/2	2625	×32	.280	1/82	.297	5/16 5/16	.315	11/	.332	1 1/3 2	.350	
11	275	1 1/3 2	•293	5/16	.311	6/16	.330	11/33	*348	%	.367	% %
111/2	2875	1 6/10	.307	5/16	.326	11/33	.345	I% .	.364	<b>3</b> ∕ ₈	.383	1 8/3
12	.300	5/10	.320	11/32	•340		.360	% %	.379	13/99	•400	1 8%
121/2	3125	% a	.333	11/32	.354		.375	<b>3</b> %	.395	1 3/3 2 7/3 2 7/1 6	.417	1/
13	.325	1 1/3 2	347	3%	.368		.390	1 3/3 2	411	7/10	433	1/1
131/2	3375	1 1/3 2	360	3/8 3/8	-382		.405	1 3/3 2	.427	7/16		l
14	.350	1 3%	.373	8%	.396	1 3/3 2	•420		-443		١	١
141/2	8625	3%	387	1 3/3 2	·410	1/10	485	1/16			l	١
15	375	¾	1400		425	1/16	450	1 5/3 2				<b> </b>
$15\frac{1}{2}$	3875	13/	413	1/16	•439	1 5/3 2					,	٠
16	400	1 3/3 2	.427		.453			<b> </b>				١
161/2	4125	/16	1 440	1 5/3 2				۱				١
17	425	1/10	453						.,,			<b> </b>
171/2	4375	7/10						l				١
18	450	1 5/3 2		١	١			١		<b> </b>		١

Good proportions for the flanges of copper pipes for modern triple engines are given in the following Table:—

Table LIX.—Flanges for Copper Pipes.

		Thick	ness of			Numl	er of	bolts.	Pite (neare	ch of bo	olts. enth.)
Diameter of pipe in inches.	Diameter of flange.	Steam, feed, blow-off, &c.	Auxiliary exhaust, water pipes, waste and eduction, &c.	Diameter of bolts.	Radius of bolt circle.	Steam, feed, blow-off, &c.	Auxiliary exhaust and water pipes.	Waste and eduction pipes.	Steam, feed, blow-off, &c.	Auxiliary exhaust and water pipes.	Waste and eduction pipes.
ins. 1 1 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½	in 4 4 ½ % % % % % % % % % % % % % % % % %	in. 1/2 " 9/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16 " 11/16	in. 3/8 " 1/16 " " 1/2 " " 5/8 " " " 1/16 " " " 1/16 " " " 1/16 " " " 1/16 " " " 1/16 " " " 1/16 " " " " 1/16 " " " " 1/16 " " " " " 1/16 " " " " " " 1/16 " " " " " " " " " " " " " " " " " " "	in. 1/2 " " " " " " " " " " " " " " " " " " "	ins. 11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/	4 4 4 5 5 6 6 6 7 7 7 7 8 8 9 9 9 9 10 11 12 12 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 9 9 9 10 11 12 3 14 13 14 15	3 3 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 8 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	1122224844466 1222446664646464666666666666666666	1/13/	n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The flanges, of which particulars are given in the above Table, are designed either for coupling copper pipe to copper pipe, or copper pipe to gun-metal casting of corresponding strength, as indicated in Fig. 62; for connections with cast-iron pipes or valves the flange must be larger, unless studs are used.

Table LX. (page 202) gives suitable thicknesses for gun-metal pipes, elbows, T pieces, &c., and will be of assistance in designing gun-metal stop-valves, expansion stuffing boxes, &c.

The basis and method of construction of the Table are fully explained in the following memoranda:—



Fig. 62.

Memoranda.—H.P. includes feed and bilge delivery, blow-off, scum, steam, fire service, and all sea valves.

L.P. includes all suctions, water pipes not under pressure, exhaust,

and waste steam.

The necks of all boiler fittings should be 1/16-inch thicker than H.P. list.

For plain pipes or cylinders the list is calculated for working pressures of 180 lbs. and 90 lbs. per square inch, for the H.P. and L.P. columns respectively; the stress per square inch of material is taken at 2240 lbs., and a constant addition of 05 inch is made to cover errors in casting; the formulæ are therefore t=08 rads. +05 inch for H.P., and t=04 rads. +05 inch for L.P.

For H.P. T pieces the square of the thickness (before addition of 05 inch), has been increased by 33 per cent.,—as a T pipe with all three branches of equal diameter is considered to be that amount weaker than the corresponding plain cylinder without branch in side.

No increase is made in the thickness of L.P. T pieces (over plain pipes), as the pressure assumed, viz., 90 lbs., is already high.

Although brazed copper pipes have occasionally given way, owing to the metal in the neighbourhood of the seam having been "burned," or over-heated during the brazing, they are, on the whole, preferable to solid-drawn pipes, since the latter are not only frequently wanting in uniformity of thickness, but sometimes develop serious longitudinal splits without any warning, even after apparently satisfactory water-pressure tests.

When a brazed pipe is tested to destruction, the strength is rarely found to be more than about one-half of the theoretical strength, owing to the deterioration of the metal in the neighbourhood of the joint. Various suggestions have been made, and various devices tried with a view to overcoming this difficulty, but up to the present no really satisfactory solution has been found.

Table LX.—Thickness of Gun-metal Pipes, T Pieces, &c.

. 1		Plain	pipes.			T	ieces.	
Diameter in		lated mess.	Thickne	ss to be.		lated ness.	Thickne	ss to be.
inches.	Н.Р.	L.P.	H.P.	L.P.	H.P.	L.P.	H.P.	L.P.
inches.	inch.	inch.	inch.	inch.	inch.	inch.	inch.	inch.
1	.09	.07	14 14 14 14 14 14	1/4	.10	•07	1/4	1/4
11/4	.10		1/4	1/4	·11		1/4	1/4
11/2	.11	·08	1/4	1/4	.12	.08	1/4	1/4
1¼ 1½ 1¾	.12		1/4	1/4	·13		1/4	1/4
2	.13	.09	1/4	1/4	•14	-09	1/4	1/4
21/4	·14		1/4	1/4	.16		1/4	1/4
21/2	·15	·10	1/4	1/4	•17	·10	1/4	1/4
23/4	.16		1/4	1/4	•18		1/4	1/4
8	·17	·ii	1/2	1/4	·19	·iï	1/2	1/4
3½ 3½ 3¾	·18		1/4 1/4 1/4	1/4	•20		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/4
31/2	•19	·12	8/16	1/4	•21	·12	5/1g	1/4
3%	·20 .		5/16 5/16	1/4	-22		1/18	1/4
4′2	•21	•18	5/18	1/4	.23	•13	5/16	1/4
41/2	.23	·14	5/18	1/4	.26	•14	8/18	1/4
5	•25	·15	8/18	1/4	.28	·15	5/10	1/4
51/2	.27	·16	8/6	1/10	.30	.16	3%	6/16
6	•29	.17	1 8%	6/16	.33	•17	8%	6/16
6½	.31	•18	8%	6/18	•35	·18	%	6/18
7′2	.33	•19	5/16 5/16 5/16 5/16 3/8 3/8 3/8 3/8 3/8 3/8 3/8	8/18	•37	•19	1 8%	5/16
71/2	•35	.20	8%	5/.	•40	.20	1%.	6%
8′	.37	•21	8%	6/1	•42	.21	1/	6/14
81/2	•39	.22	1%	6/10	•44	.22	1/2	5/1
9′2	•41	.23	7/16 7/16 7/16 1/2 1/2	6/10	•46	.23	1/6	5/16
91/2	•43	.24	1/10	5/10	•49	.24	1/2	6/26
10	.45	25	146	6/1	•51	.25	6%.	6/1
101/2	.47	.26	1%	86	.53	.26	9/4	¾
11	•49	•27	1%	3%	•56	.27	9/1	🔏
111/2	•51	•28	1 %	8%	•58	.28	6%	¾
12	.53	-29	72 1/2 9/16 9/16	<b>3</b> % €	.60	.29	6%	3%
121/2	•55	.30	9/16 9/16 5/8 5/8 5/8 11/16 11/16	8%	.63	.30	%16 %16 %16 5%8 5%8	¾
13	•57	•31	1 5%	8%	•65	31	11/12	3%
131/2	•59	.32	5%	3½	•67	-32	11/16	3%
14	·61	.33	6%	3%	.70	.33	8/4	¾
141/2	.63	.34	11/12	8%	.72	.34	8/4	8%
1 1 5	.65	•35	11/14	%	.74	.35	8/4 8/4 8/4	1 %
15%	.67	.36	11/14	3%	.76	.36	13/12	¾
16′	-69	•37	8/4	8%	.79	.37	13/16 13/16 13/16	¾
16 ½	•71	•38	8/4	1/10	∙81	•38	18/14	1 1/4
17	73	.39	8/4	1/10	.83	39	½ · °	1 1/2
171%	.75	.40	8/4	1 1/2	.86	40	1 %	1 1/2
18	.77	.41	18/16	inch.  10.14.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	•88	•41	7/8 7/8 7/8 1 5/16	inch. 1444444444444444444444444444444444444
181/2	.79	.42	18/16	7/10	.90	.42	18/10	1 7/2

The Admiralty have tried winding all steam pipes over 8 inches in diameter with ³/₆-inch copper wire (making all bends, &c., in gun-metal), and have thereby about doubled the bursting pressure; but this can only be looked upon as a temporary expedient. The results of some tests showed that a wired pipe stood just about the pressure it ought to have stood when unwired, had the copper not been injured in the brazing.

One result of the above-mentioned difficulties has been to give an impetus to the use of welded wrought-iron pipes, and for modern high pressures they are probably the best type that can

be used.

Since the elastic limit of good sheet copper is reached at about 5500 lbs. per square inch, and the same limit for sheet copper more or less injured in brazing is undoubtedly considerably lower, great caution should be used in testing brazed pipes by water-pressure, and the test pressure should be no higher than is absolutely necessary. Opinions will, of course, differ as to what relation the test pressure should bear to the working pressure, but there can be no doubt that the test of double the working pressure (demanded by the Board of Trade and Lloyd's), is much too high for modern working pressure, and is likely to do more harm, by permanently injuring the pipes, than good by revealing defects.

With a view to keeping down the thickness of copper necessary, and thus ensuring more reliable brazed joints, with less risk of burned copper, some makers have employed two and three separate smaller pipes in place of one larger one, and when copper pipes are insisted

upon, the plan has its advantages.

## The Board of Trade rules referring to pipes are as follows:-

116. Surveyors should pay particular attention to the examination

and testing of steam pipes.

All new copper steam pipes should be tested by hydraulic pressure to not less than twice and not more than two and one half times the working pressure, unless the case has been specially submitted to the Board for consideration.

Wrought-iron lap-welded steam pipes should be tested by hydraulic pressure when new to at least twice the working pressure, but not to more than 3 times, unless the case has been specially submitted to the

Board for consideration.

As regards old pipes the Surveyor may at any time he thinks it necessary, before he gives a declaration, have them tested by hydraulic pressure to satisfy himself as to any doubtful part, but they should be tested, with the lagging removed for examination, at least once in about every four years to not less than double the working pressure. A record of the test should be kept in the office boiler book.

There should be efficient means provided for draining all the steam

pipes.

117. The working pressure of well made copper pipes when the joints are brazed is found by the following formula:—

$$\frac{6000 \times (T - \frac{1}{16})}{D} - \text{working pressure} ;$$

T = thickness in inches;
D = inside diameter in inches.

When the pipes are solid drawn and not over 8 inches diameter substitute in the foregoing formula  $\frac{1}{2}$  for  $\frac{1}{2}$ .

118. The internal pressure on wrought-iron pipes made of good material, which are lap-welded and are a sound job, may be determined by the following formula, provided that the thickness is not less than 1 inch:—

T = thickness in inches;

D - diameter inside in inches;

 $\frac{6000 \times T}{D}$  — working pressure.

119. Feed pipes should be made sufficient for a pressure 20 per cent. in excess of the boiler pressure.

120. In all cases in which a socket expansion joint is fitted to a bent steam pipe, the Surveyor should require a fixed gland and bolts to be fitted, in order to prevent the end of the pipe being forced out of the socket. This regulation should be complied with in all cases of bent pipes fitted with socket expansion joints. It is also desirable that fixed glands and bolts should be fitted to the expansion joints of straight steam pipes, as cases have occurred, particularly with small straight pipes, in which the ends of the pipes have been forced out of the sockets.

Tables LVII. and LVIII. are calculated in accordance with the rules given in paragraphs 117 and 118 of the above rules.

Lloyd's rule referring to pipes is as follows :-

32. In all steam pipes provision is to be made for expansion and contraction to take place without unduly straining the pipes, and all main steam pipes are to be tested by hydraulic pressure to twice the working pressure, in the presence of an Engineer-Surveyor.

Pipe arrangements.—The greatest care should be taken in scheming arrangements of steam and exhaust pipes to keep them as far as possible in the same horizontal plane; a "pocket" in which water can collect must never be permitted under any circumstances. Neither should a steam pipe which has been led horizontally for some distance be suddenly bent up into the vertical; all sharp bends are sources

of danger, and to be avoided, but sharp rising bends are specially so.

The provision of proper arrangements for draining all steam pipes, regulator valve boxes, shut-off valve boxes, &c., is also a matter requiring the closest attention,—as water that has once left the boilers and entered the steam pipes will never, with any ordinary arrangement of pipes, drain back to the boiler in the face of the issuing steam. Where the pipes are long it is very necessary to provide collectors of some sort,—as trape do not act with the necessary rapidity; the inlet pipes to the collectors should be large, and so placed as to arrest and lead away the rapidly moving water.

The question of the arrangements necessary to allow for the expansion of such pipes as vary much in temperature is a difficult one,

and can only be very generally treated here.

Steam pipes for modern pressures are so thick and so rigid that bends are of little or no use for giving elasticity, and stuffing-boxes should be provided wherever expansion and contraction will take place in ordinary work.

If expansion stuffing-boxes and glands are not entirely of gun-metal, as is usual in Naval work, the glands should be of that metal, and the bodies so bushed or lined with it as to prevent the possibility of rust-

ing up and consequent jamming.

These stuffing-boxes should be cast with the necessary flanges or brackets for securing them to the bulkheads or deck-beams, and the fixed end of each length of piping (the end furthest away from the stuffing-box), should be anchored in a similar way; if the pipe does not pass through a bulkhead to which it can be fixed by means of a "bulkhead flange," this anchorage may be obtained by casting a bracket on some T pipe or stop-valve, or by inserting a special short length of gun-metal pipe with the necessary bracket cast on it.

Care must be taken that bulkheads and other parts of the structure of the ship receiving thrusts from large steam pipes, are sufficiently strengthened or stiffened by means of brackets or angle-bars, or by

other suitable methods.

In the best class of work the end of the pipe that enters the stuffingbox is always made as a separate piece in cast gun-metal, and this method has the advantage that the pair of flanges at the junction between the gun-metal pipe and the copper or iron one, forms a convenient "guard flange," or flange to take the "guard" bolts which prevent the pipe from being blown out of the stuffing-box. These guard bolts should never be omitted except the pipe be very short and rigid, and the end attachments also very rigid,—as fatal accidents have occurred in the past owing to their absence.

It is also very important that those in charge of the fitting-up of the pipes on board ship should have full and clear information (a special small scale tracing or diagram is best) as to the amount of expansion anticipated, and to be provided for, at each

stuffing-box.

Cases sometimes occur in which a certain amount of relief is given by a long elbow, and the length in the direction of the general lead of the pipe is hardly so great as to necessitate a stuffing-box.

If AB (Fig. 63) is long (say not less than 10 diameters), and AC is too short to make a stuffing-box at C necessary, the strains at B may be reduced one-half by drawing the joint C together when cold, so as to bring AB into the position DB,—DA being equal to half the anticipated expansion of AC; then, when the pipe is hot, AB will assume the position EB instead of FB,—where AE is equal to one-half AF.



Fig. 63.

#### STOP VALVES.

These should always be made with the spindle a separate piece, distinct from the valve, and so attached as to allow a little "play,"—thus enabling the valve to accommodate itself to the seat when the latter is slightly "out of truth."

Steam stop valves, above about 3½ inches diameter, should have external and accessible spindle nuts, carried in crossheads or bridges; for water valves this is not so necessary, but it is usually best to make only one type of valve for both purposes,—only varying the strengths

of the parts.

Screw glands should not be used for valves over 1 inch in diameter, and, when used, should always be fitted with some means of locking.

Ordinary gland studs should be fitted with "check" or "lock"

nuts and split pins.

Hand-wheels for stop valves should never be turned and polished;

they are better left rough and served with twine.

For large valves (over 10 inches in diameter say) a forged cross-handle (four arms), with the ends turned over at right angles, either towards or away from the valve, is better than a wheel; many engineers prefer this type of handle to the hand-wheel for all valves above about 4 inches diameter, and there is much to be said in its favour.

For boiler-room valves a similar forged handle, but with only two

arms, one bent outwards and the other straight, is the best.

For very large stop valve chests the best material is, undoubtedly, cast-steel. Trouble is occasionally caused by unsound castings, but this cannot be regarded as unavoidable.

In Naval practice, all stop valves for water, oil, air, &c., are entirely of gun-metal, and steam valves of small and moderate sizes are constructed in the same way, whilst the larger sizes have commonly cast-steel chests with gun-metal seats, &c.

The number of joints may often be considerably reduced by casting the expansion stuffing-boxes along with the stop valve

chests.

The handling of large shut-off valves may be much facilitated by

the addition of a small by-pass valve.

The whole of the valves in any vessel should open or close by turning the hand-wheel in the same direction. The Admiralty rule is to close with a right-hand motion. To remove all doubt it is a good plan to cast on the upper surface of all hand-wheels the words "open" and "shut," thus:—OPEN —X—>SHUT.

## FUELS, COMBUSTION, &c.

Coal.—The chief varieties of coal and their leading characteristics are as follows:—

(1) Anthracite, consisting almost entirely of free carbon, generally jet black in appearance, but sometimes greyish like black lead, has a specific gravity generally of about 1.5, but sometimes as high as 1.9; it burns without emitting fiame or smoke, but requires a strong draught to burn at all. It is capable of evaporating (theoretically) nearly 16 times its weight of water, but to obtain good results from it careful stoking is necessary, as when suddenly exposed to heat it does not cake but becomes very friable, breaks up into small pieces, and falls through the bar-spaces if disturbed much. The fires should be worked light when using it, and the coal carefully spread. The heat is very intense and local, so that furnaces intended to burn it should be high in the crowns.

(2) Dry bituminous coal contains from 70 to 80 per cent. of carbon, and about 15 per cent. of volatilizable matter; its specific gravity is from 1.3 to 1.45. It burns easily and swells considerably while being converted into coke. The harder kinds do not burn so readily, nor do the pieces stick together so easily when burning, and are generally

well adapted for marine boilers.

(3) Bituminous caking coal, containing from 50 to 60 per cent. of carbon, is generally of about the same specific gravity as the dry bituminous; it contains, however, as much as 30 per cent. of volatilizable matter, and consequently develops hydro-carbon gases; it burns with a long flame, and sticks together in caking, so as to lose all trace of the original forms of the pieces. It requires special means to prevent smoke.

(4) Cannel coal, or long flaming coal. — This is seldom used for steam purposes, as it gives off large quantities of smoke, and is very

scarce. It is the best coal for the manufacture of gas.

(5) Lignite, or brown coal, is of later formation than the other

coals, and in some instances approaches to a peaty nature. It contains, however, when good, from 56 to 76 per cent. of carbon, and has a specific gravity from 1·20 to 1·35. It also contains large quantities of oxygen, and a small quantity of hydrogen. The commoner kinds of lignite are poor, and contain as little as 27 per cent. of carbon, and therefore are not suitable for steaming purposes.

Wood.—Dry wood contains on an average about 50 per cent.

of carbon, 41 of oxygen, and 6 of hydrogen.

Patent fuels.—These usually consist of coal-dust, mixed with a little coal-tar and pressed into hard bricks; their value depends very much

on the class of coal from which they are made.

The value of a fuel is determined by its chemical composition. All fuels contain more or less carbon, most have also hydrogen and oxygen in various proportions, and some contain small quantities of nitrogen, sulphur, &c., in addition.

The ordinary symbols for these substances and their combining

weights are as follows :--

- symbo	ıс	- combining w	reight 12
	H	,, ,	1.
	0	"	16
• • •	N		14
**	S		32
	- symbo	" H " O " N	" O "

When they combine chemically one with another, as in combustion, they invariably do so in the ratio of their combining weights, or of some multiple of the same. Thus,—

Atmospheric air is a mechanical mixture of nitrogen and oxygen in the proportion of 77 parts by weight of the former to 23 of the latter.

The heat devoloped by any substance during combustion is called its total heat of combustion, and is measured in units of heat or thermal units.

The British thermal unit is the amount of heat required to raise one pound of pure water one degree Fahrenheit when at or near its greatest density (39.1° F.).

The Mechanical equivalent of heat is the number (772) of footpounds of energy required to raise one pound of water one degree

Fahrenheit; or in other words,—

1 British thermal unit - 772 foot-pounds, or 1 Horse-power - 33,000 foot pounds - 42.74 thermal units.

To fully burn 1 lb. of carbon (or convert it into carbon dioxide or "carbonic acid"), 2.7 lbs. of oxygen, or 12 lbs. of air are required, and a total heat of combustion of 14,500 units is developed,—i.e., sufficient to evaporate 15 lbs. of water from and at 212°. If, however, the air

supply is restricted or deficient, there is a tendency to the production of carbon monoxide or "carbonic oxide,"—a product requiring only half the amount of oxygen for its formation,—and the total heat developed is then only 4400 units.

Each pound of hydrogen requires 8 lbs. of oxygen or 36 lbs. of air for its complete combustion, and developes in combining 62,032 units of heat,—sufficient to evaporate 64 lbs. of water from and at 212°.

Sulphur exists only in small quantities in good coal, and its total

heat of combustion is only about 4000 units per pound.

When two substances combine chemically, or are "burned," the weight of the products of combustion is the sum of the weights before combination,—e.g., 1 lb. of carbon uniting with 12 lbs. of air gives 13 lbs. of carbonic acid; and the temperature of the products is found by dividing the total heat of combustion by their weight multiplied by their specific heat.

The specific heat of any substance is the quantity of heat required to raise a pound of it one degree Fahrenheit, and is measured by the raise that this quantity bears to the quantity required to raise a pound of water one degree,—i.e., to the British thermal unit; thus,—the specific heat of hydrogen, at a pressure of 30 inches of mercury,

is 3.4, and of carbonic acid 216, &c.

When oxygen and hydrogen are both present in a fuel they combine to form water (or rather steam) without developing any heat, and it is therefore only when there is an excess of hydrogen that any heating effect is produced.

The following rules are deduced from the above considerations:-

Rule 208.—Theoretical evaporative power of one pound of fuel,—  $= 15 \left\{ C + 4.28 \left( H - \frac{O}{8} \right) \right\}.$  expressed in pounds of water

Rule 200.—Number of pounds of air required to burn one pound  $= 12C + 36\left(H - \frac{O}{8}\right)$ .

Ordinary coal or coke requires for its complete combustion 12 lbs. of air per pound of the fuel, but in practice, with chimney draught, twice this quantity must be supplied, as much air passes through the furnace in an uncombined state.

At the temperature of 62° F. and at the sea-level, the volume of 1 lb. of air is 13 14 cubic feet; therefore 315 cubic feet of air are necessary for the proper combustion of 1 lb. of coal or coke in an ordinary furnace. If artificial or forced draught is employed, this quantity may be reduced to about 250 cubic feet, more or less, according to the force of the draught.

The following Table gives additional information as to the composition, total heat of combustion, and evaporative value of various fuels:—

14

Table LXI. -Composition and Value of Fuels.

Description.	Carbon.	Hydrogen.	Oxygen.	Sulphur.	Ash, &c. including Nitrogen.	Total Heat of Com- bustion.	Evaporative Power from and at 212°.	One ton occupies in Cubic Feet.
Welsh-Ebbw Vale, .	87.78	5.15	6.3	1.03	3.66	Units.	Pounds.	
", Powell's Duffryn,	88.36	4.66	09-0	1.77	4.71	15788	16:34	:
" Llangeunech,	84.97	4.26	3.20	0.45	6.85	14682	15-20	: ;
" Græigola,	84.87	3.84	7.19	0.45	1.91	14130	14-63	: :
., Average, .	83-87	4.79	4.15	1.43	2.89	14858	15.52	42.7
Newcastle Average,	82.12	5.31	2.69	1.24	5.12	14820	15.32	45.3
Derbyshire Average,	79-68	4.94	10.28	1.01	<b>4</b> .06	13860	14.34	47.4
South Yorkshire,	81.88	<b>4</b> .83	74.7	0.54	2.95	14296	14.71	46.0
Lancashire Average,	77-90	22.9	89.6	1.44	6.18	13918	14.56	45.2
Scotch	78.53	2.61	69.6	1:1	2-03	14164	14.65	42.0
Irish Anthracite,	<b>8</b>	5.30	:	92.9	11.03	13302	14.5	36.7
American Anthracite, .	88.54	:	:	0.04	8.60	!		42.35
	73-21	:	:	0.42	11.27	: :	:	45.44
French Anthracite,	86.17	2.67	2.82	! :	8.56	14038	14.53	9
" Hard Bituminous,	99.88	4.88	4.38	: :	2.19	15525	16.10	42.75
", Caking ",	87.73	2.08	2.62		1.54	15422	16.00	42.75
	63.56	5.43	14.84	2.20	14.13	11030	11.68	
	70-20	:	:	:	22.9		: :	: ;
Patent Fuel-Warlichs, .	20 00 00 00 00 00 00 00 00 00 00 00 00 0	2.26	:	1.62	:	16495	17.07	: :
", Average,	83.40	26.7	2.79	1.56	6-01	15000	15.66	84.4
Lignite-Russian,	73.72	60.9	20.19	ash neg	lect	14263	14.7	<u> </u>
", Poor kinds,	66.51	4.72	28.77		. =	11444	12-0	: :
20	85 to 92	:	:	0.25 to 20	4 to 12	12832	13:30	: :
Woods-Beech,	49.36	6-01	42.69	:	1.91			94.4
,, Oak,	49.64	2.93	41.16	:	3.26	average	rage	94.4
"Birch,	20:30	6.20	41.62	:	1.96	when	drv	198
, Fir.	51.79	<b>6.</b> 58	41.93	:	:	7800		•
	49.96	96.9	99.68	: :	4.33	3	- -	10.1.7
Feat-Fairly dry,	29.6	2.80	29.6	6.0	4.7	9951	10:30	1 271
retroieum,	84.7	13.1	2.5	,	•	00000	00.00	::

Rate of combustion.—In the mercantile marine, when working economically with chimney draught only, the coal burned per square foot of grate per hour varies from about 15 lbs., with long bars (6 feet to 6 feet 6 inches), to about 20 lbs. when the length of the bars does not exceed 1.33 × diameter of furnace, and all calculations for grate areas of merchant steamers should be based on these figures; for, although larger quantities may be consumed by forcing the fires, or may, perhaps, be completely burned when the wind is strong and draught good, there will be, on the other hand, many days when the

quantity burned will be less than the average given above.

The higher efficiency of the shorter bars is largely due to the better air supply, since, with a given diameter of furnace, the area at the mouth of the ash-pit is the same whether the bars are long or short; and it is no doubt for this reason that Mr Macfarlane Gray's rule,—that the consumption of coal per foot of grate is very nearly proportional to the diameter of the furnace,—is found to be so nearly correct in everyday practice. Another cause of the higher efficiency of short bars is the fact that bars over about 5 feet in length cannot be properly stoked by hand,—the result being that the fire burns into holes at the back end, and allows cold air to rush in,—thus depriving the other parts of the fire of their due proportion of air and reducing the efficiency of the furnace. In practice the efficiency of a grate over 4 feet in length is nearly inversely as its length.

The rate of combustion also naturally depends a good deal on the quality or class of coal burned, but by far the most important factor

is the strength of the draught.

Chimney or funnel. —The draught obtained with any chimney depends mainly on its sectional area, its height, and the difference of absolute temperature between the gases in it and the external air.

Professor Rankine gave the following formulæ for chimney

draught:-

Let w be the weight of fuel burned in a given furnace per second in pounds.

 $V_0$  the volume at 32° of the air supplied per pound of fuel.  $\tau_0$  the absolute temperature at 32° Fahr., which is  $461^{\circ} + 32^{\circ}$ .

 $au_1$  the absolute temperature of the gas discharged by the chimney, whose sectional area is A; then,—

Velocity of the current in the chimney in feet per second is

$$= \frac{w \times V_0 \times \tau_1}{A \times \tau_0}.$$

The density of that current in pounds to the cubic foot is very nearly

$$=\frac{\tau_0}{\tau_1}\left(0.0807+\frac{1}{V_0}\right);$$

that is to say, from 0.084 to  $0.087 \times (\tau_0 \div \tau_1)$ .

Let *l* denote the whole length of the chimney, and of the flue leading to it, in feet;

m its "hydraulic mean depth;" that is, its area divided by its perimeter; which, for a square or round flue and chimney, is one quarter of the diameter;

f, a coefficient of friction, whose value for currents of gas moving

over sooty surfaces is estimated by Peclet at 0.012;

g, a factor of resistance for a passage of air through the grate, and the layer of fuel above it; whose value, according to the experiments of Peclet on furnaces burning from 20 to 24 pounds of coal per square foot of grate per hour, is 12.

Then according to Peclet's formula,-

The head required to produce the draught in question is

$$=\frac{\mu^2}{2q}\left(1+G+\frac{f.l}{m}\right),$$

which, with the values assigned by Peclet to the constants, becomes

$$= \frac{\mu^2}{2a} \left( 18 + \frac{0.012 + l}{m} \right).$$

When the head is given the value of  $\mu$  may be calculated, and

Weight of fuel which the furnace is capable of burning completely

per hour

$$=\frac{\mu\times A\times \tau_0}{V_0\times \tau_2}.$$

It is usual to reckon the head by taking one inch of water as the unit; then,—

Head in inches of water 
$$-0.192 \times h \times \frac{\tau_0}{\tau_1} \left(0.0807 + \frac{1}{V_0}\right)$$
.

Mr Thornycroft has found, by careful experiment with steam launches and torpedo boats working with a plenum (that is, with a closed stokehole into which air is forced), "that of the initial pressure, the resistance of the tubes accounts for about seven-tenths of the whole, the resistance of the fire and fire-bars being only about one-tenth;" and that "the pressure in the funnel, as measured, was sensibly equal to atmospheric pressure."

Professor Rankine also stated that if H be the height of the funnel,

7, the absolute temperature of the external air, then,-

Head produced by chimney draught

$$= H\left(0.96\frac{\tau_1}{\tau_2} - 1\right).$$

or, taking h as the head,

Height of chimney required to produce a given draught

$$=h\div\left(0.96\frac{\tau_1}{\tau_2}-1\right).$$

The velocity of the gas in the chimney is proportional to  $\sqrt{h}$ , and therefore to  $\sqrt{0.96} \frac{1}{\tau_1 - \tau_2}$ .

The density of that gas is proportional to  $\frac{1}{\pi}$ .

The weight discharged per second is proportional to velocity  $\times$  density, and therefore, to  $\frac{\sqrt{0.96\tau_1-\tau_2}}{\tau_1}$ ; which expression becomes

a maximum, when  $\tau_1 = \frac{25}{10}\tau_2$ . Therefore the best chimney draught

takes place when the absolute temperature of the gas in the chimney is to that of the external air as 25 to 12.

When this condition is fulfilled h - H.

That is, the height of the chimney for the best draught is equal to the head expressed in hot gas, and the density of the hot gas is half that of the air.

From the above it appears that the best temperature of gases at the base of the funuel is about 600°, and that therefore nearly one-fourth of the total heat of combustion is absorbed in creating the draught. With modern high pressures, and correspondingly high temperatures, it is not generally possible to keep the gases below about 750°-that is, -with the proportions of heating surface to grate surface, size of tubes, &c., commonly employed. During a Naval forced draught trial, the temperature at base of funnel is not usually much below 1200°.

A convenient and easily applied rule for size of chimney is as follows:--

Rule 210.—Height of chimney in feet =  $.007 \left(\frac{C}{A}\right)^2$ . Rule 210s.—Area of chimney in square feet  $=\frac{C \times .084}{4/\overline{\Omega}}$ .

> Where H = Height in feet, A - Area of section in square feet.

C-Consumption in lbs. per hour on grates,

Where the draught depends on the chimney alone, 40 feet should be regarded as the minimum height; chimneys measuring 90 feet from the dead plates have recently been fitted in some Naval ships, and in one recent case chimneys of 100 feet have been fitted in a large mail-boat.

Ordinarily, in the merchant service, the area of chimney is about th to ith of the grate area, whilst in the Navy they are seldom larger than \$th, and vary from \$th to \$th, according to the air-

pressure intended to be used.

The thickness of funnel plates may be approximately as follows: Upper plates ... 1-inch + ('025 inch for each foot of diameter). Middle ,, ... 125 ,, + ('025 ,, ,, ). Lower ,, ... 15 ,, + ('025 ,, ,, ). If the funnel is stiffened by angle, tee, or channel rings or hoops,

somewhat thinner plates may be used.

The funnels of Naval ships are made considerably lighter, the plates

rarely exceeding 3/18-inch in thickness.

When a number of boilers are served by the same funnel, and some of the furnaces are much further away from the base of the funnel than others (as is sometimes unavoidably the case in Naval Vessels) dampers for regulating the force of the draught should be fitted in each "leg" of the uptakes.

Similarly,—proper arrangements (flues, screens, &c.) should be fitted to distribute the air in the stokeholes, when the "closed stoke-

hole" system, of forced draught is used.

Smoke-box doors should be made "three thick,"—and arrangements should be made to obtain a good current of air between the inner and central plates, whilst the space between the central and outer plates should be filled with some good non-conducting substance.

Forced Draught.—In the Navy the "closed stoke-hole" system of forced draught is now generally used; as the name implies, the whole stoke-hole is made air-tight, and the fans force air down into it,—the men working under pressure and entering and leaving through air locks.

Of the "closed ash-pit" systems, Mr Howden's is the only one that is used to any considerable extent. In this system the air is led by pipes from the fans to each furnace separately, and can thus be shut off from any one before opening the door, so that the rush of cold air, which is such an objectionable feature in the closed stokehole system, is entirely avoided. Mr Howden also heats the air supply to 180° to 200° by passing it amongst a number of tubes placed in the uptake, and thus no doubt materially increases the efficiency of the furnace, since this increase of temperature so facilitates combustion as to give a gain much in excess of the actual amount of heat stored in the air.

The great advantage of artificial or forced draught is that it is at all times completely under control, and quite independent of wind or weather, thus ensuring a uniform efficiency of furnace with all ordinary qualities of coal, and with almost any rate of combustion that may be required. In Naval ships it is a necessity,—since the

chimney may be entirely destroyed at any moment.

Pressures of air in stoke-holes, &c., are usually reckoned in inches of water (often called for shortness "inches" simply), and are measured by a "water-gauge,"—an instrument consisting of a bert glass tube of U form, partially filled with water, and having the open end of one leg exposed to the pressure to be measured, and the other in communication with the outer air. The pressure is indicated by the difference in level of the water in the two legs, and is read off from a scale attached to the instrument.

The following Table shows the rates of combustion and of evaporation usual on sea trials of various classes of vessel, under the conditions named:—

TA	BLE LXII	RATI	<b>18</b> 0:	F CO	MBUS	TIO	N AI	(D	EV	AP	OR	ATIO	on, 21
	Pounds of water per ft. of grate per hour.	187	185	225-262	240	825	396	456	683	3	170	195	220
	Pounds of water per pound of coal.	9.15	9.52	9-8.75	æ	2.12	7. č4	8.9	& c		1.1	7.5	8.8
	Pounds of coal per ft. of grate per hour.	15	20	\$ 25-30	08 	42		, 67	96	9	23	} 27	<b>}</b> 25
•	Nature and force of draught.	Chimney only.	:	Chimney, and '575 in. water	Chimney, and 5 in. water .	Chimney, and 2 in. water .	Chimney, and 2.5 in. water	3 in. water	6 in. water	Z in. Water	Chimney only	Chimney, and 5 in. water	Chimney, and 5 in. water
	Type of boller, grate, &c.	Ordinary cylindrical, long	Ordinary cylindrical, short	Ordinary cylindrical medium bars	Ordinary cylindrical, very		Locomotive type, square			Water-tube boller .	hara hor, 1 1000	Rectangular box, 6 foot 6 inch bars, brass tubes	Ordinary cylindrical, 6 foot 6 inch bars, brass tubes .
		er .	•		•	•	•	•	•	•	•	•	•
	f vessel.	nt Steam	=	l Steame	ship .	•		•	•	•			•
	Description of vessel.	Ordinary Merchant Steamer	•	Passenger or Mail Steamer	Cruiser or Battle-ship	66	Torpedo Gunboat	Torpedo Boat	•	•	Paddle Steamer	•	

210	8		FUE	LS, C	омв	UST	on,	ETC.					
	Sq. ft. of heating surface per ft. of grate.	23	31	33-37	30	8	34	40	40	90	24	24	26
	Sq. ft. of Sq. ft. of heating surface surface per per ft. I.H.P.	2.5	2.2	2.5	61	1.67	1.63	1.66	1.33	2.73	2.8	8.5	5.6
te.	I.H.P. per foot of grate.	6.5	12.4	15-17-2	15	18	21	24	30	22	6.5	2.2	10
oot of Gra	Pounds of coal per I.H.P. per hour.	} 1.63	1.61	$\frac{1.66-}{1.74}$	ة حــــــــــــــــــــــــــــــــــــ	2.32	2.61	<b>5.8</b>	3.5	2.1	3.4	9.8	3.2
I.H.P. per fo	Type of engines and ratio of cylinders.	Triple, cyls. 7 to 1	=	Triple, cyls. 6.75 to 1	Triple, cyls. 5 to 1	=	=	Triple, cyls. 4.8 to 1	.=	=	Jet condens- ing simple	=	Compound, cyls. 8.25 to 1
Table LXIII.—Coal per I.H.P., and I.H.P. per foot of Grate.	Type of boller and grate, nature and force of draught, and working pressure.	Ordinary cylindrical; bars 6 ft. to 6 ft. 6 in.; chimney only; 160 lbs.	Ordinary cylindrical; bars 4 ft. 6 in. to 5 ft.;		Ordinary cylindrical; bars 7 ft.; chimney + 5 in. water: 150 lbs.	Ordinary cylindrical; bars 7 ft.; chimney + 2 in. water: 150 lbs.	Locomotive type; square grate; chimney + 2.5 in water: 150 lbs.	ĭ	Locomotive type; square grate; 6 in. water;	Water tube boiler; 2 in. water; 200 lbs.	Rectangular box boiler; 7 ft. bars; chimney only; 30 to 35 lbs.	Rectangular box; 6 ft. 6 in. bars; brass tubes, chimnev + 5 in. water: 30 to 35 lbs.	Ordinary cylindrical; 6 ft. 6 in. bars; chimney + 5 in. water; brass tubes; 120 lbs.
	Description of vessel.	Ordinary Merchant Steamer	"	Passenger or Mail St'r.	Cruiser or Battle-ship	•	Torpedo	Torpedo Boat	"		Paddle Steamer	•	"

With inferior coal, such as steamers are often obliged to use on foreign stations, the figures given in columns 5 and 6 may be reduced as nuch as 20 per cent., whilst on the other hand, with picked coal and highly skilled stokers, they may be increased nearly 10 per cent.

The feed temperatures usual in the respective classes of vessels are assumed, and allowance should be made for any special feed-heating

apparatus that may be fitted.

The evaporative efficiency of the boilers of cruisers and battle-ships appears lower than it really is, as a large amount of steam is consumed by the numerous auxiliary engines, but is left out of consideration here on account of the great difficulty of forming any

reliable estimate of its quantity.

By way of a comparison with the figures given in the above Table, it may be noted in passing that a goods locomotive consumes about 40 lbs. of coal per foot of fire-grate per hour, and an express passenger engine from 65 to 80 lbs.; and, as the evaporative efficiency of the locomotive boiler is high, the water evaporated per square foot of grate per hour may be taken as about 420 lbs. for the goods engine, and from 650 to 750 lbs. for the passenger engine.

Table LXIII. (page 216) shows the average amount of coal consumed per I.H.P. on sea trials of various types of steamship, the I.H.P. ordinarily obtained from each square foot of grate in the same circumstances, and also the usual proportions of heating surface.

For the following very valuable Table (page 218), —giving most complete details as to the performences of the machinery of a number of first-class Torpedo-boats,—the authors are indebted to the courtesy of Messrs J. I. Thornycroft & Co., the eminent Torpedo-boat builders of Chiswick, London, W.

The steam used by the various auxiliary engines is assumed to be

all consumed by the main engines.

The thanks of the Authors are also due to Messrs Yarrow & Co., the eminent Torpedo boat builders of Poplar, London, E., for the very interesting summary of their present practice, as regards 1st and 2nd Class Torpedo boats, given in Table LXIIIb. (page 219).

٠.
48
Į,
×
2
Thornverof
g
88
(Messra
Ŀ
Ţ
ă
:3
ä
≥
٠.
鱼
m
_
유
ĕ
Ĕ
ü
ਰ
is of Tornedo Boat Machinery.
ole LXIIIa.—Performances
Ĕ
8
Ë
육
ē
H
Į
g
Ξ
×
H
d:
4

· · · · · · · · · · · · · · · · · · ·	,			
Description of vessel.	ဝ	:	rpedo Boats.	First-class To
Distingulabing of engine.	Ъ	:	~~~~~	4207-8
Type of Boiler.	0	:	Госотогіvе type.	Thornycroft Water tube.
Pounds of steam per I.H.P. per hour.	z	원하는	26 26 26 25.75 25.75	17.65 16.9 18.9 18.7
Air pressure in inches of water.	M	:	သင်္ကာလ ကို လုံ	2112 213 35 35
Square feet of heating surface per foot grate.	П	КJ	31.6 31.6 31.6 31.6 37.9	60.53 60.53 60.53 57.46 57.46
Bquare feet of heating surface A.H.I 1sq	×	니ト	1.78 1.43 1.29 1.82	2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
toot 7eq .Y.H.I of grate.	٦	HCML	17.7 22.13 23.95 24.42 20.8	21.46 20.54 21.64 27.11 26.73
Pounds of coal per I.H.P. per hour.	ı	ರಾ	88888 999 27588 4	2.12 2.02 2.44 2.77
Steam pressure.	H	:	120 120 120 130	250 250 250
Ditto, steam from 100°.	ტ	CE	460 576 622 630 536	379 346 367 488 527
to toot req retaW mort mon req eterg .SIS ts bns	<b>F</b> 4	8	533 670 724 732 628	443 406 429 585 633
Ditto, steam from 100°.	भ	N	6.64 6.58 6.48 6.48	8.35 8.5 8.39 7.37
Water per lb. of coal from and at SIS.	А	F4 0	7.7 7.65 7.61 7.54 7.6	9.77 9.95 8.83 8.55
Coal per toot of grate per hour.	ပ	II FIO	69 3 87 5 95 2 82 82	45.4 40.7 43.76 66.2 74.1
Matio of Estimates	В	Equivalent values	1:2.68	1:2.04:5.05 $1:1.96:4.84$
Type of Engine.	A		Double Compound.	Compound.

# LXIIIB.—YARROW'S STANDARD TORPEDO BOAT PRACTICE. 219

Table LXIIIb. - Messrs Yarrow's Standard Torpedo boat practice.

Type of engine  Type of engine  Triple stroke  Ratios of Cylinders (Quadruple Quadruple Air pressure  Coal burned per square foot of grate Per minute at full power Quadruple Quadruple About 435  Triple engines Quadruple Quadruple Quadruple Quadruple About 435  Triple engines Area condensing three-crank in three crank are face condensing three-crank; or quadruple surface condensing three-crank in three crank are face condensing three-crank in three crank are face condensing three-crank; or quadruple surface condensing three-crank in three crank are face condensing three-crank are face condensing three-cr		practice.				
Displacement Load carried  Average { Triple engines speed { Quadruple ,,}  Type of engine  Cylinders and stroke { Quadruple }  Ratios of { Triple cylinders { Quadruple }  Type of boiler  Cylinders { Quadruple }  Ratios of { Triple cylinders { Quadruple }  Ratios of { Triple cylinders { Quadruple }  Type of boiler  Cylinders { Triple cylinders { Quadruple }  Ratios of cylinders { Triple cylinders { Quadruple }  Type of boiler  Cylinders { Triple cylinders { Quadruple }  Ratios of cylinders { Triple cylinders { Quadruple }  Type of boiler  Coal burned per square foot of grate per hour }  Heating surface per square foot of grate { Revolutions per minute at full power { Quadruple }  Revolutions { Triple per minute at full power { Quadruple }  About 16 tons  About 17½ knots  About 17½ knots  Inverted triple surface condensing three crank or quadruple surface condensing three-crank or quadruple surface condensing three crank or quadruple surface condensing three-crank or quadruple						
Load carried  Average { Triple engines speed } { Quadruple ,,} }  Type of engine  Cylinders and stroke   Quadruple    Ratios of cylinders { Quadruple   Quadruple	Standard Sizes $\begin{cases} \text{Length} \\ \text{Breadth} \end{cases}$					
Average { Triple engines speed { Quadruple }, }  Type of engine { Cylinders and stroke } { Cylinders and stroke } { Cylinders and stroke } { Cylinders } { Cylinders and stroke } { Cylinders } { Cyli	Displacement	85 to 90 tons	About 16 tons			
Type of engine  Type of engine  Triple stroke  Quadruple  Ratios of Cylinders (Quadruple)  Ratios of Cylinders (Apple (Ap	Load carried	25 tons	4 tons			
Type of engine    face condensing, three-crank   or quadruple four-crank     14½"-21"-32"   16" Stroke     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 4 · 87     1 : 2 · 09 : 5 · 61     Type of boiler    Type of boiler               Boiler			About 17½ knots			
Cylinders and stroke  Quadruple  Ratios of Cylinders { Triple Cylinders { Quadruple Cyli	•	face condensing, three-crank; or	surface condensing			
cylinders Quadruple   1:2.04:3.72:6.61   ———————————————————————————————————		16" Stroke 14"—20"—27"—36"				
Type of boiler  Boiler { Triple pressure { Quadruple } Air pressure { Coal burned per square foot of grate per hour } Heating surface per square foot to fight full power { Triple per minute at full power { Quadruple } Quadruple } About 435	Ratios of { Triple cylinders { Quadruple		1:2.25:4.78			
pressure Quadruple Air pressure { Coal burned per square foot of grate per hour } Heating surface per { Square foot of grate { Revolutions per minute at full power } Quadruple { Coal burned per square foot of grate }  With Locomotive boilers 45 to 50 square feet.  About 410   About 560   About 435   Triple engines and Locomotive boilers.	Type of boiler	By preference, Loco. type, for durability and easy access; but Water-tube boilers of "Yarrow" type" when high trial trip speed is first consideration.				
Coal burned per square foot of grate per hour   Heating surface per { square foot of grate { Revolutions per minute at full power { Quadruple } Quadruple }   Coal burned per square foot of grate at full power { Square foot of grate }   With Locomotive boilers 45 to 50 square feet.  About 410 About 560 About 435			160 to 180 lbs.			
foot of grate per hour   Heating surface per   With Locomotive boilers 45 to 50 square feet.  Revolutions   Triple per minute at full power   Quadruple   About 435   ———   Triple engines and Locomotive boilers.						
square foot of grate ( Revolutions   Triple   About 410   About 560   per minute at full power   Quadruple   About 435   ———————————————————————————————————						
Revolutions Priple About 410 About 560 per minute at full power Quadruple About 435 Triple engines and Locomotive boilers.						
at full power Quadruple About 435 ———————————————————————————————————	per minute	About 410				
		1				
I.H.P. per square foot of grate Quadruple engines and Loco. boilers, 37 and 40 I.H.P.	I.H.P. per square foot of grate	Quadruple engines and Loco, boilers,				

^{*}When water-tube boilers of the "Yarrow" type are used, the grate-bar area and heating surface obtained are about 50 per cent. greater than with Locomotive type boilers, and the quantity of coal burned per square foot of grate is much reduced.

With a 60 foot boat, fitted with triple engines and tubulous boiler, Messrs Yarrow have recently obtained a speed of 19% knots; and with a 130 foot boat, fitted with quadruple engines and Locomotive type boiler,—a speed of 24% knots on a two hours continuous run; and they believe these speeds to be the highest recorded for these classes of boat.

From one of their tubulous boilers, weighing 3 tons, they have obtained 300 I.H.P.,—a performance which they also believe to be the

highest on record.

## EVAPORATION, HEATING SURFACE, &c.

The efficiency of the heating surface of a boiler depends on,—its position, the material composing it and its thickness, the condition of the surfaces, and the circulation of the water in contact with it.

(1) Position.—The most efficient heating surface is that of the furnace crowns and combustion chambers; its high efficiency is due partly to the great difference of temperature between the two sides of the plates, partly to the freedom of the surfaces from deposit of soot or ash, and also in some measure to the fact that mineral or earthy matter deposited from the water does not readily adhere to vertical surfaces or to surfaces over which there is a good circulation of water.

Next in order of efficiency comes the upper surfaces of the tubes, more especially of the *upper* tubes at the ends next the combustion chambers, for the reason that the flame and heated gases always seek the highest possible course and rapidly lose heat in passing through the tubes, entering them at say 2400° and leaving them under 800°, and also because the bubbles of steam disengage themselves more easily when they can rise directly from a surface.

When a "nest" of tubes is made very deep (i.e. when there are many rows one above another) it very often happens, for the reason just given, that the lower rows do little or no work, and would be

much better absent from the boiler.

The surfaces below the level of the fire-bars, and the front tube-

plates are generally left out of consideration as of no value.

(2) Material.—Amongst ordinary metals suitable for boiler construction, copper is by far the most efficient conductor of heat, its efficiency compared with iron or steel being about as 3 to 1; for various reasons, however, its use is now almost confined to the fire-boxes of torpedo boats, even brass tubes being now very seldom used except for the boilers of fast paddle steamers.

Its high conductivity so reduces the possible difference in temperature between the fire side and the water side of a plate as to very materially diminish the racking strains that are ordinarily produced during the operation of getting up steam, and for this reason it is peculiarly suitable for the tube-plates of torpedo boat or other boilers in which the changes of temperature are sudden and great.

(3) Condition of surfaces.—A perfectly smooth and clean metallic surface does not give satisfactory results as a heating surface, but is apt to cause sudden and violent, though intermittent ebullition, and

for this reason, few boilers work satisfactorily and steadily until they

have acquired a thin film of scale or deposit.

Since the cooling of the products of combustion takes place mainly in the tubes, it is there that the soot is principally deposited, and tubes must be swept more or less frequently, according to the class of coal used, if the efficiency of the surface is to be maintained.

The external surfaces of the tubes, especially on the upper sides, are peculiarly liable to the accumulation of deposit where water containing salt or other mineral matter is used, as the upward circularing is naturally sluggish and much impeded in large "nests" of tubes.

(4) Circulation.—The proper circulation of the water over the heating surfaces is of the very greatest importance, and no boiler in which the design and arrangements are not such as to promote such a circulation will ever steam satisfactorily or evaporate anything like the quantity of water that it would do with proper arrangements. The principal evils that result from defective circulation are, deposit of scale on the heating surfaces, over-heating, and consequent buckling of plates and leaking of tubes, and irregular and much diminished evaporative efficiency, oftentimes accompanied by intermittent fits of "priming."

Special difficulty has been found in getting a proper circulation of water over the back tube-plates (or in the case of locomotive type boilers, *front* tube-plates) of Naval boilers, mainly on account of the close pitch of the tubes and consequent contraction of the water ways; and similar difficulty has also been experienced with the large flat (almost square) tops of the fire-boxes in boilers of the locomotive type.

In this latter case, the cure is found in one or two water tubes, similar in function to "Galloway" tubes, a cure which is just as effectual now as it was found to be many years ago in the case of large double-ended cylindrical boilers. A better arrangement still would probably be to divide the fire-box completely, making two distinct furnaces.

The ideal condition of heating surface, as regards circulation, is undoubtedly such as is found in the Herreshoff and Thornycroft boilers.

Diameter of tubes.—The diameter of tube has a considerable influence on the efficiency of the tube surface, for the contents increase as the square of the diameter, whilst the surface increases as the diameter only. Thus if a 4-inch tube be substituted for two 2-inch ones, the absorbing surface will remain the same, but twice the quantity of gas will be passed, if the velocity of flow remain the same. If the velocity of flow be reduced in the 4-inch tube (to one-half) so as to pass only the same quantity of gas as the two 2-inch ones, the 4-inch tube is still at a disadvantage,—inasmuch as the mean distance of the molecules of gas from its surface is greater than in the 2-inch ones.

When artificial or forced draught is used the diameter of tube should be smaller than for natural draught,—if length of tube and velocity of gas are to remain the same,—since the gases have a higher temperature and must be divided into smaller threads or streams if they are not to escape into the chimney at a wastefully high tempera-

ture: the draught, being of a positive nature, may be relied on to overcome the extra friction and prevent the closing up of the tubes by soot with undue rapidity.

The diameters of tube in ordinary use are as follows:-

(a) Merchant steamer. Chimney draught. 31 inch or 31 inch.

Artificial 3 inch. (c) Cruiser or battleship. 24 inch. Loco type boilers. 13 inch.

(d) Torpedo gunboat.
(e) Torpedo boat. 11 inch to 2 inch.

Quantity of water evaporated per pound of coal.—This of course depends not only on the quality of the coal, but on the type of boiler, and strength of draught, and on the skill of the stoker. The average evaporation of water that may be expected with good coal, under the various conditions indicated, is shown in columns 5 and 6 of Table LXII.

Equivalent evaporation from and at 212° F.—In order to compare evaporative results obtained with different temperatures of feed and pressures of steam, it is necessary to eliminate the effects of the varying conditions by reducing all the results to one common standard.

The standard generally employed is "the equivalent evaporation from and at 212° F.,"-i.e., the number of pounds of water that would be evaporated in each case, per pound of coal per hour, if the feed water were supplied at 212° F., and completely evaporated under the

pressure (one atmosphere) due to that temperature.

On reference to the Table "Properties of Saturated Steam," page 333, it is seen that 966 (practically) thermal units are required to evaporate 1 lb. of water from 212°, and under a pressure of one atmosphere; so that, if the number of thermal units imparted to the water by each pound of coal during the test be determined, and divided by 966, the quotient will be the equivalent evaporation from and at 212°. The quantity of heat imparted by each pound of coal is determined by referring to column 7 of the same table, opposite to the proper pressure, and there reading off the total heat, from 32°, contained in each pound of steam, deducting from this the number of units, above 32°, contained in each pound of feed-water as supplied, and then multiplying the remainder by the number of pounds of water evaporated, per pound of coal per hour, during the test. This operation is concisely expressed by the formula, -

$$N_{212} = N_T \left\{ \frac{H - (t - 32)}{966} \right\};$$

where N₂₁₂ = Number of lbs. water evaporated per lb. coal per hour, from and at 212°.

 $N_{\tau}$  = Number of lbs. water evaporated per lb. coal under test conditions.

H = total heat, from 32°, per lb. of steam at test temperature and pressure.

t = temperature at which feed was supplied during test.

#### PROPORTIONS OF BOILERS.

Grate surface.—From the information given in Tables LXII. and LXIII., it will be an easy matter to determine the I.H.P. per foot of grate that may be anticipated (or the grate area that must be provided for any given I.H.P.) in the case of proposed new boilers of any of the

types mentioned.

Size of furnace.—The furnaces of cylindrical boilers should not be less than 30 inches in diameter, nor more than 48 inches, unless in exceptional cases: wherever possible a diameter of not less than 40 inches should be given, as, with smaller furnaces,—owing to thickness of fire being practically constant for all diameters,—the space above the fuel is much contracted, and the combustion less perfect in consequence. As previously stated, long bars cannot be properly worked by hand, and are not so efficient as short ones: whenever possible they should be limited to a length of 5 feet.

Number of furnaces. -

Boilers up to 9 feet diameter may have 1 furnace.
... 13 ft. 6 ins. ... 2 furnaces

", ", 15 feet ", 3 ", beyond 15 feet ", 4 ".

If the boilers are double-ended the number of furnaces will, of

course, be double the figure given above.

Heating surface.—For the proper absorption of the heat developed in the furnaces and combustion chambers, the amount of heating surface necessary in the various types of boiler, and under the various conditions mentioned, is approximately that given in columns 6 and 7 of Table LXIII.; the amounts there given are ample for the purpose, and any addition will not only be ineffective (unless in very special circumstances), but will do positive harm by crowding up the water spaces, and spoiling the circulation.

Steam room.—The steam room allowed in the various types of boiler, working at or about the pressures named, may be as follows:—

Table LXIV.—Steam Room in Cubic Feet per I.H.P.

Description of Boiler, &c.	Type of Engines.	Working pressure.	Steam room c. ft. per I.H.P.
Ordinary cylindrical; mercantile,	Triple; screw,	160 lbs.	-60
Ordinary cylindrical;			
Naval (N.D., F.D.,	,,	,,	•55
( ''a'a' ) F.D., .	,,	,,	·45
Ordinary cylindrical,	Compound; paddle,	120 lbs.	•60
Rectangular box	Simple; paddle,	30 to 35 lbs.	·70
∫ Locomotive type (tor-	Fast running triple	160 to	
pedo boat, &c.), .	or quadruple,	220 lbs.	-20

In cylindrical boilers the top row of tubes should be not less than '3 x diameter of boiler from the top; if higher the contraction of water surface is apt to cause priming.

Table LXV.—Dimensions and Weights

			Shell.				20.	Furnaces.					
Rules on	which Co	nstructed	•	Material.	Dienotes	~!	Lonoth		Thickness.	Working Pressure.	Number.	Mean Diameter.	Thickness.
Admiralty	v			Steel	16	in.	Ft. 10 18 17	in.	Ins. 11 178 178 178 178 178	Lbs. 155	4	Ins. 44	Ins
11	·' :			"	16	.0	18	0	$1_{18}$	155	8	42	7. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
11			•	**	14	6	17	6	187	130	6	45 41	11
**	•	•	•	"	14	0	16 9	9	116	130 155	3	41	الح ا
"		:	•	"	13 13	1	18	6 7 6	i	155	6	42	OT AT ATT - AT ASSESSED THE CONTROL OF THE CONTROL
"	•	:	:	;;	13	1	9	6	1	155	3	42	14
"	:	:	:	1 11	12	6	9	6	1	155	3	36	ij
;;					11	R	17	8	3	155	4	42	15
_ 9				"	10	11 6 8	17	6 6 0	7887 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155	4	36	坩
Board of			•	"	14 14	ď	10	g	178	160 160	8	42	1 1 8
**	. 11	"	•	"	14	8	9	8	1 A	160	8	384 384	12
"	"	"	:	;;	14	ŏ	17	8	îŀ°	160	ĕ	40	35
,,			:	111	14	Ó	10	6	1 🖧	155	3	42	1.
11		**			13	9	19	0	18	80	4	48	<u> </u>
11	**	11	•	"	13		16	5	14	165 150	6	40 341	l K
**	" -	**	٠	"	13	8	16	0 5 3 0	133	165	4	45	11
17	"	"	•	"	18	0	16 11	ŏ	116	150	2	48	1 1 2
"	"	"	:	';	13 13 13 13 13	0	10	6	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	150	3	36	"[
,,	",	"	:	1,7	13 12	0	10	ol	1,3,	150	3	38	<del>81</del>
	**	**		17	12	9	11	0	1	160	8	40	1 1 1
**	**	11	•	**	112	8	16	6 3 11 6	1	160 150	4	38 39	1 .
**	11.	**	٠	**	12 12		16 9	11	博	150	2	39	17
"	"	"	٠	"	11	ä	15	18	13	160	4	39	15
**	"	"	:	;;	îî	9	9	ĕ	iX	150	2	89	186
Board of		."	:	;;	16	0	11	0	-22	80	8	48	ij
	11 .	•		"	14	9	16	6	1 <del>1</del> 1	160	ĕ.	42	13
		•		"	14		16	6	훃	80 90	6	42 45	‡‡
		•	•	"	13 13	b A	15 10	6	13	142	8	38	뜻
	"	•	•	"	12	Q	15	0	1	110	4	42	¹į́
		:	:	"	12	3	10	6	1 /4 1 8	160	2	42	OX OF CASE OX -01 OX -01 -01 -01 -01 -01 -01 -01 -01 -01 -01
••		•		111	12	3	9	6	18	200	2	42	ij
**		•		"	11		15	0	1	150	4	40	1 2
		•	•	**	11 10	9 6	11 9	0 3	1,	150 150	2	46 38	1 2
	11 .	•	•	"	ľĸ	6	8	6	7	150	2	30	li
	" .		:	;;	8	6	6	Ó	TOTAL TOTAL TRANSPORT	80	2	33	ń
**	**		:	111	8	0	8	6	1 g	90	1	42	161
Lloyd's,				"	15	6	11	0	7	85	4	86	3 1
11 .		•	•	"	14 12	3	10	8 6 6	₹,	80	3 2	42 41	
" .		•	٠	"	12	0	9	g	- 11	80 140	2	40	1
" '	• •	•	•	"	11	9	18	g	17	150	4	88	į
11	: :	:	:	"	10	6	9	3 11 6	-12	150	2	37	- 6
1 11					9	3	9	13	18	155	2	81	뱿
,,					9	0	8	ã	ŽĮ	150	2	32	17.

## of Boilers actually made,

bus.		T	ıbes.	,		ing.	,	Weight	of	of T	100 ft. eating	
No. of Combus-	Number.	Diameter.		Length.	Burface.	Total Heating Surface.	Boiler.	Water.	Total.	Boller.	Water.	Total.
		Ins.	Ft.	In.	Sq. ft.	8q. ft.	Tons.	Tons.	Tons.	Tons.	Tons.	Tons.
2	596		7	0	2676	8176	46.8	22.5	69.8	1.47	71	2.18
4	1200 700	2	6	7	5106	5905 3960	70·1 49·77	43·6 30·45	1137	1·19 1·26	74	1.92 2.08
3	804	3	6	9 44	3335 3288	3968	47-6	29-62	80·22 77·22	1.23	76	1.99
3	846	20 21 21 21	l ĕ	10	1602	1913	27.4	15.1	42.5	1.43	79	2.22
6	708	24	6	9	8218	3885	46.8	26.7	78.5	1.22	.70	1.98
3	354	24	6	9	1609	1917	26.4	13-9	40.8	1.88	-72 -82	2.10
3	336 576	24	6	6	1400 2355	1685 2770	24·8 33·0	13·8 19·8	38·6 52·8	1·47 1·19	71	2-29 1-91
i	524	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	101	2305	2580	29-6	16-6	46.2	1.17	-66	1.83
3	232	81	8	o~	1820	2250	40-0	23-0	63.0	1.77	1.02	2.80
3	590	31	6	8	3074	3620	57.75	30.6	88.35	1.60	*84	2.44
3	296 466	34	6	8	1587 2840	1910 8875	85·0 57·1	17·5 30·0	52·5 87·1	1.83	*91 *88	2·74 2·57
3	226	31	6	84	1484	1870	87-2	19.5	567	1.99	1.04	3-08
4	388	8	6	102	2388	2885	40.5	32.5	78-0	1.40	1.13	2.58
3	436	31	-6	4	2350	3000	51.0	20.0	77-0	170	-86	2.56
3 2	468 464	8	6	44	2490	3000	450	26.0	71.0	1.50	.86	2.86
2	176	31	6	8	2417 1270	2810 1590	467 81-3	28·6 17·2	75·8 48·5	1.66 1.96	1.02	2.68
3	152	3	7	ŏ	1024	1360	80.4	16.5	46.9	2.24	1.21	8.45
3	166	31	7	0	1085	1845	27.5	15.8	43.3	2.04	1.17	3.21
3	170	8	7 6	101	1220	1625	30-0	16.0	46.0	1.85	-98	2.88
1 2	344 364	34	5	7 54	2088 1775	2380 2260	39·7 38	22·55 28·2	62-25 66-2	1.67 1.68	-94 1-24	2·61 2·92
ĩ	182	žI	6	i	1000	1240	23.1	13.04	36.14	1.86	1.06	2.91
2	344	81	6	1	1755	2040	<b>32·0</b>	21.0	53.0	1.56	1.03	2.6
2	142	8	6	6.	830	1085	23-25	12.2	35.45	2.14	1.12	8.26
3	250 556	34	6	6	1360 3260	1800 8750	82·75 58·2	22·75 32·0	55·5 90·2	1.83 1.22	1·25 ·85	.8·08 2·4
3	392	ai l	6	2	2021	2500	40.2	28.25	68.45	1.61	1.13	2.74
2	420	31	5	71	1968	2310	81.7	26.0	60.7	1.50	1.12	2.62
3	192	8	7	8	1340	1780	31.2	20.2	51.4	1.8	1.16	2.96
2	380 180	8 3 3 3	5	10	1860 1195	2270 1480	85·7 24·5	23·8 15·0	59·0 39·5	1.57 1.65	1·03 1·01	2.60 2.66
i	192	31 I	8	4 <u>1</u>	1045	1300	27.0	130	40.0	2.07	1.00	8.07
2	348	31	6	ŏ	1740	2100	31.4	20.3	517	1.50	1.00	2.50
1 2	128	84 .	8	0	990 -	1250	22.6	14.0	.36-6	.1.80	1.12	2.92
2 2	118	3 <del>1</del>	6	.8	614	810	16.2	10.0	26.2	2.0	1.28	8-23
1	104	8	5	11 0	478 163	600 250	11·5 6·25	6·68	18·18 10 95	1.98 2.50	1·11 1·88	8.04 4.38
1 [	80	21 21 8	5	ğ	324	420	8.00	5.8	13.8	1.90	1.86	8.26
2	274	8	7	6	1858	2250	88.65	28.6	58.25	1.50	1.06	2.55
3	198	84	7	0	1251	1570	25.2	18.8	44.0	1.60	1.50	2.80
2 2	172 168	24	6	4 6	980 913	1205 1145	20°6 20°0	12.6 10.7	88·2 30·7	1.66	1·00	2.66 2.68
î	208	<b>3</b> 1	7	ő	1310	1685	84.8	21.2	55.5	2.08	1.30	3.33
1	110	8	6	0	642	800	16-2	9.0	25.2	2.02	1.12	8.15
1	104	34 34 35 35 35 35 35	6	3	541	692	13.2	8-0	21.2	1.90	1.12	3.02
2	100	31	6	0	500	655	12.6	6.2	18.6	1.92	1.00	2.95

Paddle engines should theoretically have considerably larger steam spaces than the faster running screw engine, but in practice weight of machinery is of such great importance that everything is cut down to the lowest limit, and many compound paddle engines, working at pressures of 100 to 120 lbs., have not more than '55 cubic feet per I.H.P.

Water spaces, &c.—The spaces between the furnaces themselves, between the furnaces and the shell, and between the combustion chambers, although sometimes made as narrow as 5 inches, are better 5½ inches, and even 6 inches when possible; the space between back of combustion chamber and end of boiler should be 6 inches at the bottom, increasing to 9, 10, or even 12 inches at the top.

A suitable pitch for tubes is 1.35 to 1.4 x external diameter of tube; where weight is of great importance, as in Naval vessels, the tubes are sometimes pitched a little closer than this, but with water spaces so contracted there is always risk of priming. A fair average pitch is

given by the rule,-

Pitch of tubes = D + 
$$\frac{\sqrt{D}}{2}$$
 + '35 inch;

where D is outside diameter of tube in inches.

Whenever possible the tubes should be placed in horizontal and vertical rows, and not arranged in any diagonal or zigzag fashion.

The clear space between the nests of tubes should never be less than 10 inches, and when possible should be 10½ or 11 inches,—in order that a man may be able to get down: manholes between the furnaces and tubes can then be dispensed with,—a very important point,—for the life of a boiler depends to a very considerable extent on the number of openings in its shell,—the leakage from such openings being most destructive. For the same reason, longitudinal seams below the water level should be avoided as much as possible.

Table LXV. gives particulars (dimensions and weights) of a number of boilers that have been actually constructed in accordance with different rules as indicated.

Tables LXVI. and LXVIa. show the various dimensions and weights necessary, with the different types of boiler indicated, to obtain a constant heating surface (of 2000 square feet).

Table LXVI.--Comparison of Boilers for 80 lb. pressure by Board of Trade Rules.

Concess Description	No.	- an	Shell.	ت.		Furnaces.	ij.		A	Tubes.	:	Total Heat-	Total Heat- Total-		Weight.	
TOTAL TRANSPORT	Boil.			વ	Š	Diam.	Leth	ž	Diam	Leth	Diam. Leth. No. Diam. Leth. No. Diam. Leth. Surf.	Sur- face.	ofty.	Boller.	Water Total	Total
Pouble anded belles her	<u> </u>	Ft. in. Ft. in.	<u> </u>	育		Ing	Ft. fp.	Ļ	Ing.		Ft. in. 8q. ft. 8q. ft. C. ft.	Sq. rt	C #	Tons.	Tons.	Tons. Tons.
ing two combustion cham- bers, each common to opposite furnaces,	-1-			•	4	8	<u>.</u>	8 376	<b>ಪ್</b>	- S	6 1725	2000 1582		26.9 iron 806 20 83.75 steel	} oz {	48-9 43-75
Double-ended boller, hav- ing two combustion cham- bers, each common to fur- naces at same end,	-1-	13		•	4	8	ro 	3 376	<b>*</b>		3 1643	3000	1582 {	2000 1582 { 27.15 fron 24.0 steel	} & {	47.16
Double-ended boiler, hav- ing four combustion chambers, one to each furnace,	-1-		2	-	4	8	ام س	3 376	ಪ್		3 1643	2000 1582	1582	27.4 fron 24.2 stoel	\$ 86 E	0.84 8.8 8.8
Single-ended boller, having three combustion cham- bers, one to each furnace,	-1-	7		7	တ	<b>2</b> <del>4</del>	. <b>9</b>	9 274	<del>क</del>	 9	9 1665	2000 1582	1582	29.75 fron 9	8	49-75 46-15
Two single-ended boilers, each having two combus- tion chambers, one to each furnace,	22	11 0		4	4	38	2 10	10 316	<b>18</b>	2 10	10 1650	2000 1582	1582	33-7 iron 30-6 steel	} & {	58.7 50.6

Table LXVIa. --Comparison of Steel Boilers for 160 lbs. pressure by Board of Trade Rules.

_		_					
	Total.	Tons.	29.3	29	67-9	28-52	9.09
Weight.	Boiler Water Total.	Tons. Tons.	21	ដ	21.6	83	\$1.₹
	Boiler		35.3	88	<b>7.</b> 98	87-25	88
Total	city.		1582	1582	1582	1582	1582
Total	Diam. Leth. No. Diam. Leth. No. Diam. Leth. Surface. Surface. city.	Sq. ft. C. ft.	2000	2000	5000	5000	5000
	Surface.	Ft. in. Sq. ft.	1715	1630	1610	1640	1646
Tubea.	Lgth.	řt. in.	5	5 3	. 61	6.	5 10
Ę	Diam.	Ing.	<b>*</b>	<b>#</b>	₹	48	ä.
	No.		6 376	3 376	2 876	9 274	10 840
	Ę.	Ft. in					5 10
Pres.	7		10	16			
Furnaces.	Diam	Ins.	4	<b>‡</b>	4		88
	No.		4	*	4	•	*
	gth.	r. in	•		-	6	<b>∞</b>
Shell.	<u> </u>	<u>E</u>	<del>_</del> ==	<del></del>		- 6	<del></del> -
<b>5</b> 2	Diam	Ft. in. Ft. in.	12	21	13		_=_
No.	ᅺ .		-		71		25
Gonerol Description		Double-ended holler hav.	ing two combustion cham- bers, each common to opposite furnaces,	Double-ended boiler, having two combustion chambers, each common to furnaces at same end,	Double-ended boiler, hav- ing four combustion chambers, one to each furnace,	single-ended boller, having three combustion chambers, one to each furnace,	Two single-ended bollers, each having two combustion chambers, one to each furnace,

#### STEEL BOILERS.*

The following is a summary of the Admiralty, Board of Trade, and Lloyd's rules relating to the construction of steel boilers:—

Admiralty tests of material.—Every plate, &c., used is to be tested, and must comply with the requirements stated below:—

Table LXVII.—Admiralty Tensile Tests.

Description of material.	Minimum ultimate ten- sile strength, tons per square inch.	sile strength, tons per	Limit of elasticity in tons per square inch.	Minimum elongation in 8 inches per cent.
Plate not exposed ) to flame,	27	80	14	
Plate that is ex- ) posed to flame, . \		27		20 %
Bars from which rivets are made,	25	27		20 %

For bending tests the specimens are to be heated to a low cherry red, and then cooled in water at 82° F.

Strips of plate 11/2 inches wide must bend double in press,—inner radius being 11/2 times thickness of plate.

Pieces of rivet bar must bend double in press, -inner radius being

1½ times diameter of bar.

Plates exposed to flame are also to be tested by welding and forging, some of the welds being broken in the testing machine to ascertain degree of perfection.

Angle, tee, and bar steel is to stand such other forge tests as the

overseer may direct.

Samples from each batch of rivets are also to stand the following tests:—To be bent double (cold), inner radius of bend being equal to diameter of rivet; to be bent double (hot) and hammered till the two parts of shank meet; head to be flattened (hot) without cracking until its diameter is 2½ times diameter of shank; and shank to be nicked on one side, and bent over to show quality of metal.

Tubes must stand drifting out at each end, when hot, to  $\frac{3}{16}$  inch larger diameter, and expanding out, when cold, to  $\frac{3}{16}$  inch larger

diameter, -in each case without fracture.

Board of Trade tests of material.—Strips 2 inches wide should be cut from at least one of every four ordinary plates, from each end of each plate over 15 feet in length, and from each corner of each plate over 20 feet × 6 feet, or over 2½ tons in weight; where more than one test piece is taken from a plate the mean result is to be adopted.

^{*} All reference to iron plates and iron rivets is excluded from this section.

Table LXVIIa.—Board of Trade Tensile Tests.

Description of	mate	rial.	sile strength, tons per	ultimate ten- sile strength,	Elongation on 10 inches, per cent.
Plates not ex	٠.	. ]	27	32	{ About 25 %, not less than 18 %.
Plates that posed to fla		ex-}	26	30	
Rivet bars,	•	•	26	30	$\begin{cases} \text{Not less than} \\ 25 \%. \end{cases}$
Stay bars,	•	•	27	32	About 25 %, not less than 20 %.
Rivets, .	•	•	27 .	32	Contraction of area about 60 %.

When stay or rivet bars do not exceed 1 inch diameter, 1 in each 20 may be tested.

When stay or rivet bars do not exceed 11/2 inch diameter, 1 in each

12 may be tested.

When stay or rivet bars are larger than 11/2 inch diameter, 1 in each

8 may be tested.

For bending tests the specimens should be 2 inches wide and 10 inches long, and should be bent double,—the inner radius being 1½ times the thickness of the plate; for plates not exposed to flame, the tests should be made on the plate in its ordinary condition, and for plates that are exposed to flame, the specimens should be heated to a cherry red, and cooled out in water at 80° F.

Lloyd's tests of material.—As far as practicable, one tensile and one temper test is to be made of the product of each furnace charge; but when a great number of charges are in question, one tensile and one temper test to every ten plates will suffice,—if all prove satisfactory.

The ultimate tensile strength of all material—plates, bars, and rivets—is to be not less than 26 tons per square inch, nor more than 30 tons per square inch, with an elongation of not less than 20 per cent. in 8 inches.

For bending tests the specimens are to be heated to a low cherry red, and quenched in water at 82° F., and then bent to a curve, the inner radius of which is not greater than 1½ times the thickness of the plate or bar.

The temper test is to be applied to samples taken from every plate intended to be used for furnaces or combustion chambers.

Board of Trade rules for cylindrical shells.—In all calculations for strength of shells the *minimum* strength of plate, as disclosed by the tests, must be used.

To ascertain the strength of shell, the relative sectional areas of plate and rivet must first be determined by the following formulæ:-

Rule 211. 
$$\frac{(\text{Pitch} - \text{Dia. of Rivet}) \times 100}{\text{Pitch}} = \begin{cases} \text{Percentage of strength} \\ \text{of plate at joint as compared with solid plate.} \end{cases}$$

For maximum permissible pitch of rivets, &c., see formulæ and sketches at end of this section. Pages 245 to 249.

Rule 212.

 $\frac{\text{(Area of rivet} \times \text{No. of rows of rivets)} \times 100}{\text{Pitch} \times \text{thickness of plate}} = \begin{cases} \text{Percentage of strength} \\ \text{of rivets as compared} \\ \text{with solid plate}. \end{cases}$ 

If the rivets are in double shear, multiply the percentage thus found by 1.75.

In consequence of the low shearing strength of steel rivets the Board require that in all types of joint the nominal rivet section shall be 3 of the net plate section; thus, in order that rivet section may be considered to have the same strength as plate section their relation must be :--

In lap joints,-

(Area of rivet × No. of rows of rivets) × 23 - (Pitch - diameter of rivet)  $\times$  thickness of plate  $\times$  28.

And in butt joints,—

(Area of rivet × No. of rows of rivets × 1.75) × 23 - (Pitchdiameter of rivets) × thickness of Plate × 28.

The working pressure per square inch that may be allowed on the safety valves is then given by .-

Rule 213.—Working Pressure = 
$$\frac{8 \times \% \times 2T}{D \times F}$$

where S = tensile strength of material in lbs. per square inch;

%-the smaller of the two percentages, found by Rules 211 and 212, divided by 100;

T-thickness of plate in inches;

D-inside diameter of boiler in inches (inside diameter of outer strake, if any);

F-factor of safety from following Table if % refers to plate section:

F-4.5 if % refers to rivet section.

Various penal additions are provided in the rules for cases in which the workmanship is of inferior character.

If it is proposed to use steel for superheaters particulars should ! submitted to the Board for consideration.

### Table LXVIII.—Board of Trade factors of safety.

When all rivet holes are drilled in place after bending; all seams fitted with double butt-straps, each at least five-eighths the thickness of the plates they cover; all seams at least double riveted; and boilers open to inspection during construction.	l
To be added when circumferential seams are lap and double riveted.	:1
To be added when longitudinal seams are lap and double riveted.	• •2
To be added when longitudinal seams are lap and treble riveted.	1
To be added when boiler is of such length as to fire from both ends.	3

Compensating rings should be fitted around all manholes and openings, of at least the same effective sectional area as the plate cut out, and in no case should rings be of less thickness than plate to which they are attached. Manholes in shells of cylindrical boilers should have their shorter axes placed longitudinally.

It is very desirable that compensating rings round openings in

flat surfaces be of L or T iron.

The neutral parts of shells under steam domes must be efficiently stiffened and stayed.

Lloyd's rules for cylindrical shells.— Rule 2132.—Working Pressure (ibs. per sq. in.) =  $\frac{C \times (T-2) \times B}{D}$ 

where D = mean diameter of shell in inches.

T-thickness of plate in sixteenths of an inch.

 $C = \begin{cases} 20 & \text{when longitudinal seams have double butt-straps of} \\ & \text{equal width.} \\ 19.25 & \text{when longitudinal seams have double butt-straps of} \\ & \text{unequal width.} \end{cases}$ 

18.5 when longitudinal seams are lap joints.

B-least percentage of strength of longitudinal joint, found as follows:

For plate at joint, . . .  $B = \frac{p-d}{p} \times 100$ For rivets at joint, . . .  $B = \frac{n \times a}{p \times t} \times 85$ 

where p = pitch of rivets in inches;

t-thickness of plate in inches;
d-diameter of rivet holes in inches;

n-number of rivets used per pitch in longitudinal joint;

a = sectional area of rivet in square inches.

When rivets are in double shear 1.75a is to be used in place of a. Inside butt-straps are to be at least three quarters the thickness of

the shell plate.

For the shells of superheaters or steam-chests enclosed in the uptakes, or exposed to the direct action of flame, the values of C should be only two-thirds of those given above.

Proper deductions are to be made for openings in shells; all man-

holes in shells to have compensating rings.

Shell plates under domes are to be adequately stayed.

Board of Trade rules for flat surfaces.—The highest permissible pressures on flat surfaces are found by the following formula:—

Rule 214. Working pressure (ibs. per square inch) =  $\frac{C \times (T+1)^2}{8-6}$ 

where T—thickness of plate in sixteenths of an inch; S—surface supported in square inches;

C-constant having values given in following table:—

Table LXIX.—Board of Trade Constants for Flat Surfaces.

Description of attachment of stay.	Plates not exposed to heat or flame.	to heat or flame	Plates exposed to heat or flame and in contact with water.
Stays with nuts and doubling strips, the latter of width equal to %rds pitch and thickness equal to plates to which they are riveted.	200		
Stays with nuts and riveted washers,—latter having diameter equal to %rds pitch and thickness equal to plates to which they are riveted.	187.5		<b></b>
Stays with nuts and washers,—latter having diameter three times that of stay and thickness %rds that of plate they cover.	125	75	<b></b> '
Stays fitted with nuts only.	} 112.5	67.5	
Stays screwed into plate and fitted with nuts.	}		100
Stays screwed into plate and riveted over.	}	39.6	66

When the circular flat end of a cylindrical shell is in question, S in the formula may be taken as the area of the square inscribed in the circle through centres of rivets securing end,—provided angle ring or flange is of sufficient thickness.

The following Tables are calculated by means of the Board of Trade

rules for flat surfaces :-

Table LXX.—Flat Surfaces of Combustion Chambers (B. of T.).

Pressure	:	Stays screwe	d into pla	tes and fitte	d with nu	ta.
in lbs. per:	-inch	plates.	-%-incl	n plates.	§-inch	plates.
adrage men	Pitch.	Surface.	Pitch.	Surface.	Pitch.	Surface.
150	7.74	60.0	8:52	72.6	9:31	86.6
155	7.63	58.2	8.39	70.5	9.16	84.0
160	7.52	56.6	8.27	68.5	9.03	81.6
165	7.42	55.1	8.16	66.6	8.91	79.3
170	7.82	53.6	8.05	64.8	8.78	77.2
175	7 .23	52.3	7.94	63.1	8.67	75.1
180	7.14	51.0	7.84	61.5	8.56	73.2
185	7.05	49.8	7.75	60.0	8.45	71.4
190	6.97	48.6	7.65	58.6	8.84	69.6
195	6.89	47.5	7.56	57.2	8.25	68.0
200	6.82	46.5	7.48	56.0	8.15	66.5

Table LXXI.—Flat Surfaces of Boiler ends in Steam Spaces (B. of T.).

Pressure in lbs. per	60	fitted with qual to greaters shield	is pitch	, and thic				
square inch.	}∦-inc	h plate.	₹-inch	plate.	}∦-inc	h plate.	1-incl	n plate.
	Pitch.	Surface.	Pitch.	Surface.	Pitch.	Surface.	Pitch.	Surface.
150	15.84	251.0	16:94	287.2	18.05	326.0	19.16	367-2
155	15.59	243.0	16.67	278.1	17.76	315.6	18.85	355.5
160	15.35	235.6	16.42	269.6	17:49	306.0	18.56	344.6
165	15.12	228.7	16.17	261.7	17.23	296.9	18.28	334.4
170	14.90	222.2	15.94	254.2	16.98	288.2	18.02	324.7
175	14.69	216.0	15.72	247.1	16.74	280.3	17.76	815.6
180	14.49	210.2	15.50	240.4	16.51	272.6	17.52	307.0
185	14.30	204.6	15.30	234.0	16.29	265.4	17-29	298.9
190	14.12	199.4	15.10	228.0	16.08	258.6	17.06	291.1
195	13.94	194.4	14.91	222.3	15.88	252.1	16.84	283.8
200	13.77	189.7	14.72	216.9	15.68	246.0	16.64	276.9

# Table LXXIa.—Flat Surfaces of Boiler ends in Steam spaces (B. of T.).

Pressure in lbs. per	- 60	ual to 🛊 r	ds pitch	, and thi	ckness :	ps, the lance as pom flame.	late to	width which
square inch.	ig-incl	plate.	1-inch	plate.	}{-inc	h plate.	1-inch	plate.
	Pitch.	Surface	Pitch.	Surface	Pitch.	Surface	Pitch.	Surface
150	16:35	267:3	17:49	306.0	18.68	347 .3	19.78	391.3
1 155	16.09	258.9	17.21	296.3	18.34	836.3	19.46	378.9
160	15.84	251.0	16.94	287 2	18.05	326.0	19.16	367.2
165	15.61	243.6	16.69	278.7	17.78	316.3	18.88	356.3
170	15.38	236.6	16.45	270.7	17.53	307-2	18.60	346.0
175	15.16	230.0	16.22	263.1	17.28	298.6	18.34	336.3
180	14.96	223.8	16.00	256.0	17.04	290.4	18.09	327·1
185	14.76	217.9	15.79	249.2	16.81	282.7	17.84	318.4
190	14.57	212.3	15.58	242.8	16.59	275.4	17.64	310.2
195	14.38	207.0	15.38	236.7	16.38	268.5	17.39	302.4
200	14.21	202.0	15.19	231.0	16.18	262.0	17:17	295.0

## Table LXXII.-Lloyd's Constants for Flat Surfaces.

Description of attachment of stay.	Value of C.
Screw stays with riveted heads,-	
Plates % - inch thick and under,	90
Plates over 1/16-inch thick,	100
Screw stays fitted with nuts,—	
Plates 1/4 inch thick and under.	110
Plates over 1/16-inch and under 1/16-inch,	120
Plates % - inch and over,	135
Stays fitted with double nuts,	175
Stays fitted with double nuts and with washers of	
diameter equal to 1/3 rd the pitch, and of thickness	1
equal to half the plate they cover,	185
Stays fitted with double nuts and with riveted washers	ļ
of diameter equal to 2/sths pitch, and of thickness	
equal to half the plate they cover,	200
Stays fitted with double nuts and with riveted washers	
of diameter equal to %rds pitch, and of thickness	1
equal to plate they cover,	220
Stays with double nuts and doubling strips, -latter	
having breadth equal to %rds distance between	1
rows of stays, and thickness equal to plate to	
which they are riveted,	220
Stays with double nuts and doubling strips, latter	1
having breadth equal to %rds pitch of stays,	Į.
and thickness equal to plate to which they are	
riveted,	240

Lloyd's rules for flat surfaces. — The strength of flat plates supported by stays is given by the following formula:—

Rule 214a.

Working pressure (lbs. per square inch) =  $\frac{C \times T^2}{P^2}$ 

where T = thickness of plate in sixteenths of an inch;

P-greatest pitch in inches;

C-constant having values given in preceding Table.

In the case of front plates of boilers in the steam space the values of C must be reduced 20 per cent. if the plates are not shielded from the direct action of heat.

For tube plates in the nest of tubes, C must be taken as 140, and P as the mean pitch of stay tubes.

For the wide spaces between nests of tubes, P is to be taken as the horizontal distance from centre to centre of the bounding rows of tubes and C, as follows:—

Pitch of Stay Tubes in bounding rows.	When tubes have no nuts outside plates.	When tubes are fitted with nuts outside plates.
Where there are two plain tubes be- tween each stay tube,	120	130
Where there is one plain tube be- tween each stay tube,	140	150
stay tube, and each alternate one has a nut,		170

Table LXXIII.—Flat Surfaces by Lloyd's Rules.

ntoni er	Screw wi	Screw stays fitted with nuts. Pitches in inches.	atted F. ches.				Plates 1	Plates protected from fire.	i from f		Pitches in inches.	inches.			
e in lbs. per squa	1- inch plates	fe- inch plates.	f- inch plates.	Doul D	Double nuts and riveted washers.  Diameter # pitch. Thickness # plate. C=200.	and rivers.  - pitch - plate - plate	oted 9.	Dough Midtl	Double nuts and rive washers or strips.  Dameter = # pitch. Width = # pitch of Thickness = thick. of C=220.	Double nuts and riveted washers or strips. strips. significant and pitch. Tidth = \$ pitch of rows. hickness = thick, of plate. C=220.	sted rowr. plate.	Dou's Width Thickn	16 II	inte and rive stripe.  § pitch.  † pitch.  † thick. of ]  C=240.	eted Slate.
	= 120	3=136	C=120 C=185 C=135	H	Thickness of plate.	of plate	6	-	hickness	Thickness of plate.		-	Thickness of plate	of plat	6
				##		**	1	**	**	*	-	**	a-pa	#	1
1150 1175 1185 1185 1185 1185 1185	6.53 6.28 6.28 6.28 6.28 6.28 6.28	88888884 45488677777777 46087777777 86084488	99999999999999999999999999999999999999	15.01 14.76 14.76 14.31 14.31 13.90 13.70 13.52 13.34 13.34	16:17 15:90 15:41 15:18 14:76 14:56 14:36 14:18	17.82 16.77 16.77 16.51 16.04 15.80 15.89 15.99 15.90	18:47 17:89 17:89 17:89 17:10 16:86 16:42 16:42 16:20 16:20	15.74 15.49 15.49 15.24 14.79 14.18 14.18 13.99 13.81	16.95 16.42 16.42 16.42 16.42 15.70 15.70 15.27 16.07 14.87	18:16 17:87 17:59 17:59 17:06 16:82 16:58 16:36 16:14 16:93 15:93	19:38 18:76 18:76 18:47 18:47 17:94 17:45 17:22 17:22 16:99	16 44 16 18 15 92 15 52 15 22 15 01 14 61 14 24	17.71 17.42 17.42 16.88 16.88 16.40 16.40 16.73 15.95 15.95 15.95 15.84	18 97 18 87 18 37 17 80 17 57 17 52 17 98 16 86 16 64	20.24 19.91 19.59 19.50 19.01 18.74 18.48 117.98 17.75

#### Board of Trade rule regarding compressive stresses on tube plates .--

Rule 215.

Working pressure (lbs. per square inch) =  $\frac{(D-d) T \times 16,000}{W \times D}$ 

where D = least horizontal distance between centres of tubes, in inches:

d = inside diameter of ordinary tube, in inches:

T - thickness of tube plate, in inches;

W - outside width of combustion chamber, in inches, -from tube plate to back of box, or from tube plate to tube plate in double-ended boilers, with common combustion chambers.

## Lloyd's rule regarding compressive stresses on tube-plates. —

Rule 215a.

$$\mathbf{T} = \frac{\mathbf{P} \times \mathbf{W} \times \mathbf{D}}{1600 \times (\mathbf{D} - d)},$$

where P = working pressure in lbs. per square inch;

W - width of combustion chamber over plates, -in inches;

D-horizontal pitch of tubes in inches;

d - inside diameter of plain tube in inches;

T - thickness of tube-plate in sixteenths of an inch.

Board of Trade rule for girders supporting combustion chamber tops, &c .--

Rule 216.

Working pressure (lbs. per square inch) = 
$$\frac{C \times d^2 \times T}{(W-P) D \times L}$$

where W = width of combustion chamber, —in inches;

P = pitch of supporting bolts

D-distance from centre to centre of girders,—in inches:

L-length of girder in feet;

d = depth of girder, -in inches;

T = thickness of girder ,,

 $C = \begin{cases} 550 \text{ when girder has one supporting bolt,} \\ 825 & ,, & ,, \\ 935 & ,, & ,, \end{cases}$ two or three ,,, four ,,,

Lloyd's rule for girders supporting combustion chamber tops, &c. -

Rule 2164.

Working pressure (lbs. per square inch) =  $\frac{\mathbf{C} \times d^2 \times \mathbf{T}}{(\mathbf{L} - \mathbf{P}) \mathbf{D} \times \mathbf{T}}$ ,

```
where L - width between tube-plates or tube-plate
                                                                                                                                          and back plate of chamber:
                                                             P - pitch of stays in girder;
D - distance from centre to centre of girder;
d - depth of girder at centre;
                                                             T - thickness of girder at centre;
                                                           C = \( \begin{array}{llll} 6,600 & when each girder has one stay, \\ 9,900 & \tau, & \tau, & \tau \\ 11,000 & \tau, & \tau, & \tau \\ 11,550 & \tau, & \tau, & \tau \\ 11,880 & \tau, & \tau, & \tau \\ \end{array} eight or respect to the control of the control of
                                                                                                                                                                                                                                                                                                                                                                     two or three stays.
                                                                                                                                                                                                                                                                                                                                                                 four or five
                                                                                                                                                                                                                                                                                                                                                               six or seven
```

Admiralty requirements as regards stays.—At the test pressure steel stays under 11/2 inch diameter may carry a load of 16,000 lbs. per square inch of net section, and those of 11/2 inch diameter and upwards, 18,000 lbs. Rivets or bolts used for securing stave must be at least 25 per cent. stronger than the stays.

,, eight or more ...

Board of Trade rules relating to stays. -Steel stays that have been welded, or worked in the fire, must not be used.

Rule 217.—Solid steel stays may be allowed a working stress of 9000 lbs. per square inch of net section.

Dished ends, unless of thickness required for a flat end, must be stayed; but where they are theoretically equal to the pressure needed. when considered as portions of spheres, the stays may carry a working load of 14,000 lbs. per square inch of net section. If they are not theoretically equal to the pressure needed they must be staved as flat surfaces.

The areas of diagonal stays are found as follows:-Find the area of direct stay necessary; multiply it by the length of the diagonal stay; and divide product by length of perpendicular from end of diagonal stay to surface supported; quotient will be area of diagonal stav.

When gusset stays are used their area should be in excess of that found in above way.

Lloyd's rules relating to stays. - No steel stays are to be welded.

#### Rule 217a.

Stays not exceeding 11/2 inch smallest diameter may carry 8000 lbs. per square inch net section.

Stays above 11/2 inch smallest diameter may carry 9000 lbs. per square inch net section.

Stav tubes may carry 7500 lbs. per square inch of net section.

Table LXXIV. -Surface that may be supported by one Stay. (Board of Trade rule.)

Diameter of	No. of threads	Area at bottom of	×	Maximum number of square inches of plate when strained to 9000 lbs.	number	of squar when str	of square inches of place that can be supported by one stay when strained to 9000 lbs. per square inch.	of plate 9000 lbs.	that can per squ	be suppare inch.	orted by	7 one sta	A
stay.	per inch.	thread. sq. in.	150 lbs.	150 lbs. 155 lbs. 160 lbs. 165 lbs. 170 lbs.	160 lbs.	165 lbs.	170 lbs.	175 lbs.	175 lbs. 180 lbs. 185 lbs. 190 lbs. 195 lbs.	185 lbs.	190 lbs.	195 lbs.	200 lbs.
1%	10	1.221	73.3	6.02	68.7	9.99	64.6	85.8	61.1		8. 29	56.3	
11%	3	1.448	6.98	84.1	81.4	0.62	9.92	74.5	72.4	70.4	9.89	8.99	65.1
1%	6	1.727	103.6	100.3	1. 26	94.5	91.4	8.88	86.3		81.8	7.67	
1%	<b>∞</b>	1.985	119.1	115.2	111.6	108.3	105.1	102.1	2.66		94.0	91.6	
1%	00	2.310	138.6	134.1	129.9	126.0	122.3	118.8	115.5	•	109.4	106.6	
67	2	2.593	155.6	150.6	145.9	141.4	137.3	133.4	129.6	• •	122.8	119.7	
21/2	2	3.356	201.4	194.9	188.8	183.0	177.7	172.6	167.8	• •	158.9	154.9	
272	9	4.107	246.4	238.5	231.0	224.0	217.4	211.2	205.3		194.5	189.2	_
2%	9	5.054	303.5	293.2	284.3	276.7	267.6	259.9	252.7		239.4	233.3	
ရာ	1G	5.914	354.8	343.4	332.7	322.6	313.1	304.1	295.7		280.1	272.9	
31/4	2	7.040	422.4	<b>408.8</b>	396.0	384.0	372.7	362.1	325.0		333.2	324.9	316.8
													ı

Table LXXIVa. -Surface that may be supported by one Stay. (Lloyd's Rules.)

- b	No. of	Area at bottom of	73	Maximum number of square inches of plate that can be supported by one stay when strained to 8000 lbs. per square inch.	number	of squar when str	re inches ained to	of plate 8000 lbs.	that can per squa	t be supr are inch.	oorted by	7 one sta	b.
stay.	per inch.	thread. sq. in.	150 lbs.	150 lbs. 155 lbs. 160 lbs. 165 lbs. 170 lbs.	160 lbs.	165 lbs.	170 lbs.	175 lbs.	175 lbs. 189 lbs. 185 lbs. 190 lbs. 195 lbs. 200 lbs.	185 lbs.	190 lbs.	195 lbs.	200 lbs
1%	10	1.221	65.1		61.0	59.5	2.29		54.3	52.8	l	20.1	48.8
7%	a	1.448	77.2	74.7	72.4	2.02	68.1	66.2	64.3	9.79	6.09	59.4	6.29
1%	6	1.727	92.1		86.3	88.7	81.3		7.87	74.7		8.02	69.1

Larger sizes of stays may all support the same surfaces as by Board of Trade rule, -shown in Table LXXIV. above.

Board of Trade rules relating to furnaces.—Cylindrical furnaces with longitudinal joints welded, or made with a butt-strap double riveted, or with double butt-straps single riveted,—when rivet holes are drilled in place after bending, and slightly countersunk from the outside, -may carry the working pressure given by,-

#### Rule 218

Working pressure (lbs. per sq. in.) =  $\frac{99,000 \times (\text{thick. of plate in ins.})^2}{(\text{Length in ft.} + 1) \times \text{dis. in ins.}}$ 

provided always that the pressure so found does not exceed that given by the following formula, -which limits the crushing stress per square inch of material to 4400 lbs. :-

Rule 218a.

Working pressure (ibs. per sq. in.) - \frac{8800 \times \text{thickness in inches}}{\text{diameter in inches}}.

When the furnace is made with rings the length is to be measured between the rings.

When the furnaces are corrugated and machine made,—as made by the Leeds Forge Co., or ribbed and grooved, as made by Messrs J. Brown & Co., Sheffield, -if they are practically circular in section, if the lengths of plain parts at ends do not exceed 6 inches, and if the plates are not less that 1/16 inch thick, -the working pressure may be that given by .-

#### Rule 218b.

Working pressure (lbs. per sq. in.) =  $\frac{14,000 \times \text{thickness in inches}}{D}$ ,

where D = 

{
 for corrugated furnace,—outside diameter in inches at bottom of corrugations; for ribbed and grooved furnace,—outside diameter in inches over plain portions.

#### In corrugated furnaces,—

Pitch of corrugations should not exceed 6 inches.

(from top outside to bottom inside) should Depth not be less than 2 inches.

not be less than z inches.

Plates at ends not to be unduly thinned in flanging.

16

In ribbed and grooved furnaces, -

Pitch of ribs should not exceed 9 inches.

Ribs should project at least 15/16 inches above plain parts.

Grooves should not exceed % inch in depth.

Ends should be rolled slightly thicker than plain parts and not reduced at any part, by flanging, below thickness of plain parts.

Lloyd's Rules relating to furnaces.—The pressures that may be carried by plain cylindrical furnaces are given by the following formula :-

Rule 218c.

Working pressure (lbs. per square inch) = 
$$\frac{89,600 \times T^2}{L \times D}$$
;

where T-thickness of plate in inches;

D = outside diameter of furnace in inches;

L-length of furnace in feet. If strengthening rings are fitted, the length between the rings is to be taken.

The pressure, however, must not exceed that given by,-

Rule 218d. 
$$\frac{C \times T}{D}$$
 = lbs. per square inch;

where  $C = \begin{cases} 8000 \text{ for plates } \%_6 \text{ inch thick and under.} \\ 8800 \text{ for plates over } \%_6 \text{ inch thick.} \end{cases}$ 

The working pressure that may be carried by furnaces fitted with Adamson rings is given by. -

Rule 218e.

Working pressure (lbs. per square inch) = 
$$\frac{C \times T}{D}$$
;

where  $C = \begin{cases} 10,400 \text{ for one Adamson ring (at about mid-length).} \\ 11,400 \text{ for two Adamson rings.} \end{cases}$ 

The working pressures that may be carried by various special types of furnace are as follows :---

Rule 218f.

Working pressure (lbs. per square inch) = 
$$\frac{C \times (T-2)}{D}$$
;

where T - thickness of plate in sixteenths of an inch;

plain parts of Holmes' patent furnace;

- C=1000 for steel corrugated furnaces when tensile strength of material is under 26 tons, and corrugations are 6 inches pitch and 1½ inches deep;
- C-1259 for steel furnaces corrugated on Fox's or Morison's plans, when tensile strength of material is between 26 and 30 tons;
- C-1160 for ribbed furnaces (ribs 9 inches apart);
- C-912 for spirally corrugated furnaces;
- C-945 for Holmes' patent furnaces, when corrugations are not more than 16 inches pitch, nor less than 2 inches high.

## Board of Trade rules relating to steel boilers generally. —

Hydraulic tests.—New boilers should be tested by hydraulic pressure, to twice the working pressure, in the presence and to the satisfaction of the Board's Surveyors. In the case of old boilers in a vessel, the hydraulic test should never exceed twice the calculated working pressure of the boiler, but must always exceed the working pressure.

Evaporators, generators, feed make-ups, &c., where the evaporation of water under pressure is an essential feature, should be regarded as steam boilers, whether the evaporation is effected by heat from coal gas, from steam, or from any other source, and the strength, quality of material, and method of construction of such apparatus, should be in accordance with the regulations for steam boilers, and they should be examined by the Surveyor on each occasion the vessel is surveyed for passenger certificate in the same manner as other boilers on board the vessel.

The mountings, &c., should as a general rule be similar to those required in the case of boilers on board passenger vessels, but the question of safety valves will in each case be considered by the Board, and full particulars to enable this to be done should be submitted by the Surveyor as early as possible.

The particulars of evaporators, their safety valves, &c., should be recorded on the declaration in the same manner as is now done in the

case of other auxiliary boilers.

Local heating of plates should be avoided.

Annealing.—All plates that are punched, flanged, or locally heated must be carefully annealed afterwards.

Welding.—Steel plates that have been welded should not be passed to carry a tensile stress; in other cases they should be efficiently annealed after welding.

Makers of steel.—When the steel is not to be made by any of the following makers the case will receive the special consideration of the Board, and this should be specially noted by the Surveyors.

Messrs W. Beardmore & Co.
,, J. Brown & Co.
,, C. Cammel & Co.
,, D. Colville & Sons.
,, The Consett Iron Co., Ltd.
,, The Glasgow Iron and Steel Co., Ltd.
,, The Leeds Forge Co.

For plates and angles, stay and rivet bars.

The Moor Steel and Iron Co., Ltd.
Palmer's Shipbuilding and Iron Co., Ltd.

,, The Steel Co. of Scotland.
.. The Weardale Iron and Coal Co.

The West Cumberland Iron and Steel Co.

,, The Lanarkshire Steel Co., Ltd.
.. Nettlefolds.

,, John Spencer & Sons, Ltd.

,, Wright, Butler, & Co.

For stay and rivet bars.

Boiler tracings, &c.—Difficulty has been experienced with regard to the survey of steel boilers owing to the fact that some makers were not aware, at the time the boilers were commenced, that a Board of Trade certificate would be necessary, and the makers have therefore omitted to submit tracings until the boilers have been nearly completed. Tracings of boilers may therefore be received for examination upon payment of the usual fee of £2, and the Surveyors may proceed as far as witnessing the hydraulic test before any further instalment of the survey fee is paid. Engineers and boiler makers should be advised of this arrangement.

Donkey Boilers that are in any way attached to, or connected with, the main boilers, or with the machinery used for propelling the vessel, should be surveyed and be fitted the same way as the main boilers, and have a water and steam gauge, and all other fittings complete, and, as regards safety valves, should comply with the same regulations as the main boilers.

Launch' Boilers.—The boilers of steam launches forming part of the statutory boat capacity of passenger steamers should as regards construction, strength, material, safety valves, and other fittings comply with the same regulations as the main boilers.

#### Lloyd's Rules relating to steel boilers generally.—

Hydraulic test.—Boilers to be tested by hydraulic pressure, in the presence of an Engineer-Surveyor, to twice the working pressure, and carefully gauged while under test.

Rivet holes, &c.—All the holes in steel boilers should be drilled, but if they are punched the plates must be annealed afterwards.

Annealing.—All plates that are dished or flanged, or in any way heated in the fire for working,—except those that are subjected to a compressive stress only,—are to be annealed after the operations are completed.

## BOARD OF TRADE RIVETED JOINTS.

The following sketches of riveted joints, and formulæ for determining their various proportions, are given in an appendix to the Board of Trade Rules; the formulæ are here given in a form differing slightly from that adopted in the Rules:—

F in the following formulæ stands for the factor of safety (for which see Table LXVIII., page 232), and r for percentage of plate left between rivet holes.

## ORDINARY CHAIN AND ZIGZAG RIVETED JOINTS.

Percentage of plate left between holes 
$$= \frac{100 \text{ (pitch - diameter of rivet)}}{\text{pitch}} - \tau$$
.

To find pitch so that nominal rivet section and net plate section may be of equal strength:—

Pitch 
$$=$$
  $\frac{\text{area of rivet} \times \text{No. of rows} \times \text{F}}{3.130 \text{ Butt}} + \text{diameter of rivet.}$ 
5.478 Lap  $\Rightarrow$  thickness of plate

To find pitch and diameter of rivet :-

Diameter of rivet - 
$$\frac{3.986 \text{ Butt}}{6.975 \text{ Lap}} \times r \times \text{thickness of plate}}{(100-r) \times \text{No. rows of rivets} \times F}$$
Pitch = 
$$\frac{3986 \text{ Butt}}{697.5 \text{ Lap}} \times r \times \text{thickness of plate}}{(100-r)^2 \times \text{No. rows of rivets} \times F}$$

Also, when diameter of rivet is found first :-

Pitch = 
$$\frac{100 \times \text{diameter of rivet}}{100 - r}$$
.

When double butt-straps are used each strap must have a thickness of %ths of the plate it covers.

A single butt strap must have a thickness equal to 1\% × thickness of plate it covers.

Distance from centre of rivet to edge of plate (E in Figs.)-1% × diameter of rivet.

Distance between rows of rivets:-

(a) Chain riveted joints (Figs. 2, 4, 9, 11),—

V-not less than  $2 \times \text{dia.}$  of rivet, preferably  $\frac{\text{(4 dia. rivet)} + 1}{2}$ 

(b) Zigzag riveted joints (Figs. 3, 5, 10, 12),—

$$V = \sqrt{(11 \text{ pitch} + 4 \text{ dia. rivet}) (\text{pitch} + 4 \text{ dia. rivet})}$$

Diagonal pitch (Figs. 3, 5, 10, 12),—

$$p_{\rm p} = \frac{6 \text{ pitch} + 4 \text{ dia. rivet}}{10}$$
.

RIVETED JOINTS WITH ALTERNATE RIVETS IN OUTER, OR OUTER AND INNER, ROWS LEFT OUT.

 $\begin{aligned} \textbf{Percentage of plate left between holes} = \frac{100 \text{ (pitch} - \text{dia. of rivet)}}{\text{pitch}}. \end{aligned}$ 

 $\frac{31.944 \text{ butt }}{18.254 \text{ lap}} \left\{ \begin{array}{c} \times \text{ area of rivet} \times \text{ No. of rows} \times \text{F} \\ \text{pitch} \times \text{thickness of plate} \end{array} \right.$ 

Percentage of combined plate and rivet section =

$$\frac{100 \text{ (pitch} - 2 \text{ dia. rivet)}}{\text{pitch}} + \frac{\text{Percentage of rivet section}}{\text{No. of rows of rivets}}$$

Double butt-straps for this type of joint must each be of thickness given by,—

Thickness of butt-strap = 
$$\frac{5 \times \text{thick. of plate} \times (\text{pitch} - \text{dia. of rivet})}{8 \times (\text{pitch} - 2 \text{ dia. of rivet})}$$
.

Distance from centre of rivet to edge of plate (E in Figs) =  $1\frac{1}{2} \times \text{diameter of rivet}$ .

Distance between rows of rivets:-

(a) Chain riveted joints (Fig. 15),-

$$V = \frac{\sqrt{(11 \text{ pitch} + 4 \text{ dia. rivet}) (\text{pitch} + 4 \text{ dia. rivet})}}{10}$$

or  $V = \text{not less than } 2 \times \text{dia. of rivet, and preferably}$   $\underbrace{(4 \times \text{dia. rivet}) + 1}_{\bullet}$ 

The greater of these two values to be used. (b) For joint K (Fig. 15), -

 $V_1 = 2 \times dia$ . of rivet as a minimum, but the value  $\frac{(4 \times dia. \text{ of rivet}) + 1}{2}$  is preferable.

(c) Zigzag riveted joints (Fig. 19), -

 $V = \sqrt{\frac{1}{10} \text{ pitch} + \text{dia. rivet}}$  ( $\frac{1}{10} \text{ pitch} + \text{dia. rivet}$ ).

Diagonal pitches:-

(a) Diagonal pitch (Figs. 17, 18, 19, 20),—  $p_{-} = \frac{3}{10} \text{ pitch + dia. of rivet.}$ 

(b) For joint J (Fig. 19),-

$$P_D = \frac{3 \text{ pitch} + 4 \text{ dia. rivet}}{10}$$

Distance between inner rows of rivets (Fig. 19), -

$$V_1 = \frac{\sqrt{(11 \text{ pitch} + 8 \text{ dia. rivet}) \text{ (pitch} + 8 \text{ dia. rivet})}}{20}$$

## Maximum Pitches for Riveted Joints.

When the work is of first-class quality, the pitches may, so far as safety is concerned, be those given by the following formula, but it is not always advisable to go quite up to these limits. The pitch must never exceed 10 inches, even with the thickest plates.

## **Maximum pitch** = $(C \times \text{thickness of plate}) + 1\%$

where C is a constant having the values given in the following Table:—

Number of rivets in one pitch.	Values of C for lap joints.	Values of C for double butt-strap joints.
1	1:31	1.75
2	2.62	3.50
• 3	3.47	4.63
4	4.14	5.52
5	•••	6.00
		i





#### SUPERVISION OF BOILER WORK.

The following instructions to boiler-maker overseers are those usually given in Admiralty specifications:—

The boilers will be subject to the supervision of an overseer, who will be directed to attend on the premises of the contractors during the progress of the work on the boilers, to examine the material and workmanship used in their construction, to witness the prescribed tests, and to see that this specification, as regards the boilers and work in connection, is conformed to in all respects by the contractors. The extent of supervision is described in the following paragraphs extracted from Admiralty instructions to overseers, and the contractors are to afford him every facility for their proper execution.

The plates and other material used in the construction of the boilers to be subjected to such tests as may be directed in the specification. Every plate used is to be carefully examined by the overseer for laminations, blisters, veins, and other defects, and to ensure that it is of the proper thickness and brand. No plate, angle, &c., which from any cause is considered by the overseer to be unfit for the intended use

is to be fitted.

During the construction of the various parts of the boilers, the overseer is to satisfy himself that the dimensions as shown on the

approved drawings are being adhered to by the contractors.

Whenever plates are flanged or welded, or in any case where iron or steel is worked in such manner that it is particularly liable to suffer in strength unless carefully handled, the overseer is to be present if possible on all occasions during the time the work on each article is in progress, and he is to fully satisfy himself that it is sound before he

allows any part to be put in the boilers.

Samples of the rivets being used for the boilers are to be taken by the overseer during the progress of the work and tested as specified hereafter, and any batches of rivets found defective are to be rejected. Before rivets are put in, the overseer is to see that the plates are brought properly together, and that the holes are fair with one another. He is not to allow drifting on any account, but he is to see that they are carefully rimed fair where necessary. He is also to make sure during the progress of the work that the rivets fill the holes completely, and that the heads are properly set up, well formed, and finished.

The overseer is to see that all internal parts of the boiler are riveted with rivets having heads and points of approved shape, and that any seams he considers necessary are riveted on the fire side. No snap heads are to be allowed in the internal parts. Any proposal for hydraulic riveting the internal parts is to be submitted to the Admiralty, with sketch of the proposed heads and points. In all parts where the rivets are not closed by hydraulic riveting machinery he is to see that the rivet holes are countersunk and that coned rivets are used. All holes in the plates, angles, &c., are to be drilled, and not punched, and are to be drilled in place after bending. The

clearance between rivet hole and rivet before closing is not to be

greater than approved by the overseer.

The overseer will see that the particulars of the form, dimensions, and pitch of the various stays shown on the drawings are adhered to, and a samples of them are to be tested as directed in this specification; and he will be guided by his experience as a workman in testing and judging of the soundness of the forging and construction of the various stays.

He is to see that palm stays if fitted are forged from the solid and not welded, that all short stays are nutted on all flat surfaces except where otherwise approved and screwed to a pitch of twelve threads per inch for stays of 1 inch diameter and above, that the holes for the screwed stays in the water spaces are drilled and tapped together after the furnaces and combustion chambers have been riveted in place in the boiler, that the combustion chamber stays are drilled square to the bevel of the combustion chamber plates, and that no bevel washers are inside the chamber. Any girder stays used for combustion chambers are to be well bedded on to the tube plates to the satisfaction of the overseer.

The overseer is to see that the arrangement of the zinc plates shown on the approved drawings is adhered to, that the metallic surfaces in contact are filed bright, and that means are adopted to secure a firm grip of the clips by which the plates are attached.

The overseer is to witness the testing, in all cases, of the boiler tubes, in accordance with this specification, before they are put in the boiler.

When the boilers are reported to the overseer by the contractors as being completed, ready for testing by water pressure, the overseer is to witness a preliminary test of them in accordance with the specification, carefully observing with the assistance of gauges and straight edges whether any bulging or deflection of the plates has taken place.

The official test will be conducted on all occasions in the presence of an inspecting officer. A test pressure gauge is supplied to the overseer from the Admiralty, and the official test is to be made with this gauge.

After the boilers have been tested by water pressure the overseer is to see that they are properly cleaned inside and outside, and then well painted with red lead. It is important that the whole surface of the boilers should be thoroughly cleaned of scale formed in manufacture before any paint is put on them. The boilers are not to be exposed to the weather till they are so painted, and properly cleaned and closed up to his satisfaction.

The overseer is to make himself fully acquainted with the progress of the whole of the work in its various stages, to satisfy himself that every part is sound before it is allowed to be put in the boilers, and to see that the following instructions for the treatment of mild steel are

strictly complied with.

Treatment of mild steel.—All plates or bars which can be bent cold are to be so treated; and if the whole length cannot be bent cold, heating is to be had recourse to over as little length as possible.

The front and end plates of the boilers are to be flanged by

hydraulic pressure.

In cases where plates or bars have to be heated, the greatest care should be taken to prevent any work being done upon the material after it has fallen to the dangerous limit of temperature known as a "bule heat"—say from 600° to 400° Fahrenheit. Should this limit be reached during working, the plates or bars should be reheated.

Where plates or bars have been heated throughout for bending, flanging, &c., and the work has been completed at one heat, or where simple forge work has been done, such as the formation of joggles, corners, and easy curves or bends, on portions of plates or bars, and the material has not been much distressed, subsequent annealing is unnecessary.

Plates or bers which have had a large amount of work put upon them while hot, and have had to be reheated, should be subsequently annealed. It is preferred that this annealing should be done simultaneously over the whole of each plate or bar when this can be done conveniently. If it is inconvenient to perform the operation of annealing at one time for the whole of a plate or bar, portions may be annealed separately, proper care being taken to prevent an abrupt termination of the line of heat. If the severe working has been limited to a comparatively small part of a plate or bar, annealing may be limited to the parts which have been heated, the same care being taken to prevent an abrupt termination of the line of heat.

In cases where any bar or plate shows signs of failure or fracture in working it is to be rejected. Any doubtful cases are to be referred to

the Admiralty.

## BOILER MOUNTINGS.

Stop-valves.—The diameter of the boiler stop-valves is generally fixed from the previously determined size of main steam pipe at engines. When the branch pipes from two or more separate but similar boilers join together into one main steam pipe, of diameter D, the size of each branch pipe may be that given by,—

Rule 219.—Diameter of Branch pipe to each boiler = D 
$$\sqrt{\frac{4}{3n}}$$

where n is the number of boilers or of branches.

For the boilers of merchant steamers where the rate of combustion is from 15 to 20 lbs. of coal per foot of grate per hour, the area of the stop-valve, or of the branch steam pipe, may be,—

Rule 220.—Area of stop-valve (sq. ins.) =

$$\left(\frac{\text{Grate area}}{4} + \frac{\text{Heating surface}}{100}\right) \times \sqrt{\frac{100}{\text{Working pressure.}}}$$

A more generally convenient form of rule,—since it takes into consideration the rate of combustion, or the extent to which the boiler is forced,—is,—

. Rule 221.

Area of stop-valve (sq. ins.) = 
$$\frac{I.H.P.}{19} \times \sqrt{\frac{100}{Working pressure}}$$

#### This rule gives about.-

1 sq. in. stop-valve area for each 10.4 I.H.P. at 30 lbs. working pressure. 1 60 lbs. 14.7 1 18.0 90 lbs. 99 . ٠, •• ٠. 19.0 1 100 lbs.

••

23 · 4 150 lbs. 180 lbs.

Where, as in Naval ships, the power taken out of any boiler may be temporarily increased, say 20 to 30 per cent. above natural draught full power, during an emergency, the designer must use his judgment as to what increase in area of stop-valve is advisable; using the above formula (Rule 221), and supposing I.H.P. to represent the mean power to be developed on forced draught trial, present practice would be fairly represented by .-

#### Rule 2218.

1

Area of stop-valve (sq. ins.) = 
$$\frac{I.H.P.}{26} \times \sqrt{\frac{100}{Working pressure.}}$$

When the pipes are below 6 inches in diameter, the proportionally greater friction in the smaller pipes should be allowed for by progressively diminishing the denominator of the I.H.P. fraction in the

formula as the diameters of the pipes decrease.

The more important points connected with the design and construction of stop-valves have already been dealt with (pages 206 and 207), and it is only necessary to add here that boiler stop-valves should have turned spigots fitting accurately into the holes in the boiler plates, - which should be carefully cut out by means of a bar and cutter, and not by hammer and chisel .- and that the flanges and necks should be extra strong and well ribbed, and the bolts or studs (bolts with heads inside the boiler are best) by which they are attached to the boiler, larger and more numerous than in pipe flanges of similar size: a %-inch bolt should be the smallest size used for attaching boiler mountings, -even for the smallest valve or cock.

In Naval work the boiler stop-valves are generally made entirely of gun-metal, and are of the non-return type: non-return valves are also placed at the various bulkheads, in order to localize as far as possible

the effects of injury to boilers or pipes by shot, &c.

Internal steam pipes. — Where the steam room in a boiler is small relatively to the I.H.P. taken from the boiler, internal pipes with closed ends, and provided with sufficient narrow transverse slits, (sawcuts) or small holes, to give a clear area equal to twice that of the pipe section, should be fitted. They are best made of sheet brass, -not copper. The number and arrangement of the pipes must be determined in accordance with the conditions of the case, but the Admiralty usually specify two pipes running the full length of the boiler; so that, with the stop-valve at one end, there are two pipes leading to it, each of about half the sectional area of the valve or of the branch

steam pipe from the boiler, and with the stop-valve on the shell at mid-length there are four shorter pipes converging to it.

The steam is then gently collected from a large area, and strong

currents, which might induce priming, are avoided.

Safety-valves.—The size of safety-valve should be such that it is capable of discharging all the steam that can be generated in the boiler, without allowing the pressure to rise more than 10 per cent. above that to which the valve is nominally loaded; it therefore depends mainly on area of grate, rate of combustion, and working pressure. A convenient and easily applied rule is,—

Rule 222.—Area in square inches of each of two valves—
$$\left( \frac{\text{Grate area}}{20} + \frac{\text{Heating surface}}{200} \right) \times \sqrt{\frac{100}{\text{Working pressure.}}}$$

Wherever possible, the valves should be placed with the spindles vertical, as the action of the valve (which is very sensitive to, and easily affected by any increase in the friction of its various parts) is then more certain. For the same reason all the parts should be a very easy fit, and the rubbing surfaces of the spindle should be drawfiled and polished with emery cloth in the same direction.

The whole of the parts must be cleaned from time to time, when in use, and the greatest care must be taken to avoid making any dints

or burrs on the working surfaces.

The spring should be so proportioned that its initial compression is not less than half the diameter of the valve; this result can be obtained with various proportions of spring, and when height is limited a shorter spring of larger diameter and larger section of steel may be used.

In Naval practice, the valves, valve-boxes, &c. are usually made entirely of gun-metal, and the valve is generally made as a separate piece (not cast with the spindle), while the easing gear is fitted to lift the valve from below. This construction has the advantage of preventing any bending or springing of the spindle, that may arise from the ends of the spring not being quite true and square by its axis, from affecting the tightness of the valve on its seat; and also permits examination of the valves to be made without disconnecting and taking down easing gear shafts, &c.

The valve faces should always be flat, not angled to 45 or 60 degrees.

When the design of the valve permits, it is a great convenience to those who will afterwards have charge of the machinery, to have a thread cut on the upper end of the spindle, so that, before taking the valve to pieces for examination or re-grinding, a nut may be put on to prevent the release or expansion of the spring when the joint at the base of the spring tower is broken; spring, tower, spindle and valve can then be readily and quickly removed in one piece.

When loose valve seats are used (as with cast-iron chests) they should be securely fixed in place by a flange, or lugs, and studs or screws.

The type of valve recommended by the Board of Trade is that shown in Fig. 64.



Fig. 64.

The valves, seats, spindles, compressing screws and nuts, spring washers, spindle bushes and cotters, stude and nuts for valve seats, and bushes for bearings of easing gear shafts, should be of good quality, brass or gun-metal.

The valve is shown both with and without lip, but valves without

lip are recommended as being less violent in action.

The point of the compressing screw should be well rounded and should enter from \$ to \$ inch into the spring washer.

Spiral springs.—The size of steel required by the Board of Trade is given by. -

Rule 223.

$$d = \sqrt[8]{\frac{\overline{S \times D}}{C}}$$

where d = diameter or side of square of steel in inches.

D = diameter of coil (centre to centre of wire) in inches.

In Naval work the values adopted for C are commonly 11,000 and

15,000 for round and square steel respectively.

Mr Traill, in his work on "Steam Boilers," recommends that d should always equal  $\frac{\mathbf{D}}{\epsilon}$ : when this proportion of spring is adopted the above rule becomes,-

$$\sqrt{\frac{S}{1600}} = d$$
and  $1600d^2 = S$  for round steel.
$$\sqrt{\frac{S}{2200}} = d$$
for square steel.

The relation between load on, and compression of, spiral springs is given by,-

Compression in inches =  $\frac{D^3 \times S \times N}{d^4 \times c}$ Rule 224.

where N = number of coils;

d-diameter or side of square of wire in sixteenths of an

 $a = \begin{cases} 26 \text{ for round steel,} \\ 32 \text{ for square steel;} \end{cases}$  and the other symbols have the same meanings as above.

In order to obtain correct results with the above formula, great care must be taken to count free coils only; coils at the ends of the spring, which touch one another, must not be counted.

Table LXXV. is obtained by the aid of the above formulæ.

Table LXXV.—Safety Valve Springs by Board of Trade Rules.

Dimensi- inche			rking in lbs.	Dimension inches			king in lbs.
Diameter or side of square of steel.	Mean diameter of coil.	Round steel.	Square steel.	Diameter or side of square of steel.	Mean diameter of coil.	Round steel.	Square steel.
<del>'</del> 4	11/4	100	137	25/32	82%2	976	1842
%2	113%	126	174	13/16	41/16	1056	1452
⁵∕1¢	1%	156	214	37/89	41/32	1189	1566
11/32	1.%	189	260	1%	4%	1225	1684
<b>3</b> ∕8	1%	225	309	2%2	417/82	1814	1806
13/32	21/32	264	363	15/16	411/16	1406	1983
<b>7/1€</b>	23/16	806	421	31/32	42 1/32	1501	2064
18/32	211/32	351	483	1	5	1600	2200
1/2	2 1/2	400	550	11/32	55/32	1701	2839
1 1/32	221/32	451	620	11/16	5%16	1806	2488
%	213/16	506	696	13/32	51%2	1914	2631
1%2	23 1/82	564	775	1%	5%	2025	2784
%	81/8	625	859	15/32	52%2	2139	2941
21/32	3%,	689	947	13/16	51 5/16	2256	3102
11/16	81/16	756	1039	17/32	63/32	2376	3267
23/32	81%3	826	1136	11/4	61/4	2500	8487
3/4	3%	900	1237	•••			

Mr Traill, in his above-mentioned work, fixes the values of a at 22 and 30 from experiments he has made, whilst Rankine gave 20 to 23 for round and 28.6 to 32.9 for square steel, and Mr Hartnell's experiments (quoted by Unwin) place the values for round steel at 21 to 24.8,—the higher figure for  $\frac{1}{2}$  inch wire, and the lower for  $\frac{1}{2}$  inch.

The superior transverse elasticity of the round sections, and especially of small round sections, compared with square ones, is probably due to the fact that the round wires are often drawn, whilst the square ones are only rolled; also the square section of steel is probably more affected by the coiling process than the round one.

For Board of Trade and Lloyd's rules relating to safety valves, see end of this section.

Feed check valves.—The sizes of feed pipes should be determined in accordance with the rules laid down in the section on "Feed pumps" (pp. 139-144), and the internal diameter of the valve seat of check valve should be at least ½ inch more than the diameter of pipe so found. Feed check valves should be very strongly made, and entirely of the best gun-metal; the necks by which they are attached to the boilers should be specially strong, and well ribbed to

the flanges. The spigots should be turned, and the holes in the boiler plates carefully bored to suit. The working faces of the valves, should be flat, and proportioned in accordance with Rule 155 (page 141). The spindles should be very stout, and provided with square threaded screws; if space allows the nuts to be placed in external crossheads or bridges, they are better so arranged.

The Admiralty require that the main feed check valve shall always be placed at the right hand, as one faces the boiler and the auxiliary

valve at the left hand.

Internal feed pipes.—The feed water should be led by an internal pipe (of brass) placed two or three inches below the water level, to a part of the boiler where there is a descending current, and there delivered downwards through a number of fine transverse alits or small holes. Care must be taken that this internal pipe is always filled with water, and not partly with water and partly with steam,—as in the latter case a severe hammering action would be set up, the joints would be started, and the pipe very quickly destroyed.

Blow-off, and scum, valves.—These should also be stoutly made valves of gun-metal,—ribbed as above directed for feed check valves,—and are best fitted so that the pressure tends to hold the valve on its seat, in order to reduce the risk of leakage as much as possible. Now that fresh water is so much used, and loss made up by means of evaporators, and from reserve tanks, the blow-off valve is much less necessary than formerly, and in some recent Naval vessels it has been

entirely omitted.

The scum valve should have an internal pipe leading to it from a circular "scum pan" or dished plate of sheet brass (about 15 inches diameter) fixed near to the centre of the water surface, and at about the lowest working level; or, if preferred, the internal pipe may reach a little beyond the centre of water surface, and may be closed at the end, and have simply a few longitudinal slits in its upper side to admit the soum.

The clear area through the blow-off valve may be that given by.-

Rule 225.

Area of blow-off pipe (square inches)  $-1 + \frac{\text{Tons of water in boiler}}{5}$ 

The area of scum pipe may be one-third that of blow-off pipe.

Water gauge.—All boilers, excepting small donkey boilers, should have two sets of water gauge fittings, and large double-ended boilers are better with three sets,—one of which may be fitted direct to the shell.

The gauge cocks and glass tubes should be carried on gun-metal stand-pipes, from which copper pipes should be led to the steam and

water spaces of the boilers.

The internal diameter of the stand-pipe and its connections should not be less than 1 inch, and for large boilers 1½ inch is desirable, and the connections should be made of extra stout piping,—say not thinner than 9 L.S.G.

No cocks or valves should be fitted where these connections join the boiler, -as serious accidents have occurred through their use. -and care should be taken not to place the inlets near to any opening through which there may be a current of steam or water, since the level of the water in the glass may be affected thereby, -a difference of pressure of one-tenth of a pound causing an alteration in level of 2.7 inches.

Also, in fixing the level at which the water is to stand in the glass. the lowering of level due to the cooling and consequent contraction of the water in the stand-pipe connection should not be forgotten. though it is always an error on the side of safety.

Rankine gave the following rule for determining the volume of

water at different temperatures:---

Let the volume of the water at its temperature of maximum density (39.2° F.) be represented by unity, and let its volume at T° be V, then,-

$$V = \frac{1}{2} \left( \frac{T + 461}{500} + \frac{500}{T + 461} \right).$$

He calls this an approximate rule, but states that the error is only one four-hundredth.

Circulating apparatus.—It is very desirable to have large rigidly constructed boilers fitted with some apparatus for circulating the water whilst getting up steam; if hydrokineters are not fitted, connections should be made with one of the auxiliary steam pumps.

In almost all cylindrical boilers the rate of evaporation may be improved by fitting a proper arrangement of circulating plates; the first cost is something, and they are rather in the way when the boiler is being cleaned, but the gain is often worth the cost and

trouble.

An air-cock should be fitted at the highest point of each boiler.

Admiralty proportions of safety valves.—For 150 lbs. pressure the Admiralty are at present fitting valves in the larger classes of vessel, with a total gross area of about 4 square inch per foot of grate.

The Board of Trade Rules referring to boiler mountings, &c.. are as follows:-

110. No boiler or steam chamber should be so constructed, fitted, or arranged that the escape of steam from it through the safety valves required by the Act of Parliament can be wholly, or partially,

intercepted by the action of another valve.

A stop valve should always be fitted between the boiler and the steam pipe, and, where two or more boilers are connected with a steam receiver or superheater, between each boiler and the superheater or steam receiver. The object of this is obvious, viz., to avoid the failure of all the boilers through the failure of one. The necks of stop valves should be as short as practicable.

Declarations should not be given for new steamers, for steamers that have not had passenger certificates before February 1871, nor for steamers that have had new boilers since February 1871, unless stop

valves are fitted between the boilers and the steam pipes.

111. Each boiler should be fitted with a glass water-gauge, at least three test cocks, and a steam gauge. Boilers that are fired from both ends, and those of unusual width, should have a glass water gauge and three test cocks at each end or side, as the case may be. When a steamer has more than one boiler, each boiler should be treated as a separate one, and have all the requisite fittings.

When the upper and lower glass water-gauge cocks are not attached directly to the shell of the boiler, but a stand pipe or column is fitted, cocks or valves, although the former are more desirable, should as a general rule be fitted between the boiler and the stand pipes, &c. Cocks or valves need not, however, be insisted on in cases where the columns, stand pipes, &c., are of moderate length and of extra strength, provided that the diameter of the bore at any part is not

less than 3 inches.

If the column, stand pipes, &c., are of less diameter than 3 inches, and the pipes are bolted to the boiler without the intervention of cocks or valves, the arrangement need not be objected to, if otherwise satisfactory, providing there is no difficulty in keeping the passages at the ends clear, and ascertaining that they are so. To do this it will be necessary that the passage in the part of the column between the top and bottom gauge-glass cocks be cut off or closed, which may be done permanently, or by the interposition of a cock or valve at that part. The latter is a convenient and desirable arrangement even when cocks are fitted on the boiler.

In the case of high pressures, it is desirable that the cocks or valves which prevent the escape of water or steam from the boiler, be fitted with handles which can be expeditiously manipulated from a

convenient position.

It is desirable in all cases that test cocks be fitted directly to the skin of the boiler, and when the passage in the part of the column to which the glass water-gauge cocks are attached (if so fitted) is permanently cut off, the test cocks nums be fitted directly to the skin of the boiler.

The Surveyors should satisfy themselves by actual examination whether the glass-water gauges of the boilers of the vessels they survey are fitted with automatic valves or fittings, as the existence of such fittings cannot always be ascertained by external examination. In all cases full particulars of automatic gauges should be submitted for consideration before the gauges are passed.

## The Board of Trade Rules referring to Safety-Valves are as follows:—

123. The Engineer Surveyor shall declare, amongst other things, the limits of the weight to be placed on the safety-valves; that the safety-valves are such, and in such condition as required by the Act, and

that the machinery is sufficient for the service for the time he fixes. and is in good condition for that time.

The locked-up valves, i.e., those out of the control of the engineer when steam is up, should have an area not less, and a pressure not greater. than those which are not locked up, if any such valves are fitted.

Cases have come under the notice of the Board of Trade in which steamships have been surveyed and passed by the Surveyors, with pipes between the boilers and the safety-valve chests. Such arrangement is not in accordance with the Act, which distinctly provides that the safety-valves shall be upon the boilers.

The Surveyors are instructed that in all new boilers, and whenever

alterations can be easily made, the valve chest should be placed directly on the boiler; and the neck, or part between the chest and the flange which is bolted on to the boiler, should be as short as possible, and be cast in one with the chest.

The Surveyors should note that it is not intended by this instruction that vessels with old boilers which have been previously passed with such an arrangement should be detained for the alterations to be carried out.

Of course, in any case in which a Surveyor is of opinion that it is positively dangerous to have a length of pipe between the boilers and the safety valve chest, it is his duty at once to insist on the requisite

alterations being made before granting a declaration.

If any person place an undue weight on the safety-valve of any steamship, or in the case of steamships surveyed under the Act, increase such weight beyond the limits fixed by the Engineer Surveyor, he shall, in addition to any other liabilities he may incur by so doing, incur a penalty not exceeding one hundred pounds.

124. The area per square foot of fire grate surface of the locked-up safety-valves should not be less than that given in the following Tables opposite the boiler pressure intended, but in no case should the valves be less than two inches in diameter. This applies to new vessels or vessels which have not received a passenger certificate.

When, however, the valves are of the common description, and are made in accordance with the Tables, it will be necessary to fit them with springs having great elasticity, or to provide other means to keep the accumulation within moderate limits; and as boilers with forced draught may require valves considerably larger than those found by the Tables, the design of the valves proposed for such boilers, together with the estimated coal consumption per square foot of fire-grate, should be submitted to the Board for consideration.

In ascertaining the fire-grate area, the length of the grate should be measured from the inner edge of the dead plate to the front of the bridge, and the width from side to side of the furnace on the top of

the bars at the middle of their length.

In the case of vessels that have not had a passenger certificate, if there is only one safety-valve on any boiler, the Surveyor should not grant a declaration without first referring the case to the Board for special instructions.

# Safety-Valve Areas (Board of Trade).

					·
Boiler Pressure.	Area of Valve per square foot of Fire-grate.	Boiler Pressure.	Area of Valve per square foot of Fire-grate.	Boiler Pressure.	Area of Valve per square foot of Fire-grate.
15 16 17 18 19 20 21 22 23 24 25	1·250 1·209 1·171 1·136 1·102 1·071 1·041 1·013 ·986 ·961 ·937	54 55 56 57 58 59 60 61 62 63 64	*548 *585 *528 *520 *513 *506 *500 *493 *487 *480 *474	93 94 95 96 97 98 99 100 101 102 103	**347 **344 **340 **337 **334 **331 **328 **326 **323 **320 **317
26 27 28 29 30 31 82 33	•914 •892 •872 •852 •833 •815 •797	65 66 67 68 69 70 71 72	•468 •462 •457 •451 •446 •441 •436	104 105 106 107 108 109 110	*315 *312 *309 *307 *304 *302 *300
34 35 36 37 38 39 40 41 42	.765 .750 .785 .721 .707 .694 .681 .669	78 74 75 76 77 78 79 80	•426 •421 •416 •412 •407 •403 •398 •394 •390	112 113 114 115 116 117 118 119	-295 -292 -290 -288 -286 -284 -281 -279 -277
43 44 45 46 47 48 49 50	•646 •635 •625 •614 •604 •595 •585	82 83 84 85 86 87 88 89	•386 •382 •378 •375 •371 •367 •364 •360	121 122 123 124 125 126 127 128	·275 ·273 ·271 ·269 ·267 ·265 ·264 ·262
51 52 53	568 559 551	90 91 92	·357 ·353 ·350	129 130 131	·260 ·258 ·256

### Safety-Valve Areas (Board of Trade)-continued.

Boiler Pressure.	Area of Valve per square foot of Fire-grate.	Boiler Pressure.	Area of Valve per square foot of Fire-grate.	Boiler Pressure.	Area of Valve per square foot of Fire-grate.
182 188 184 185 186 187 188 189 140 141 142 143 144 145 147 148 149 150 151 152 153 154	*255 *253 *251 *250 *248 *246 *245 *245 *241 *240 *238 *237 *235 *234 *232 *231 *230 *228 *227 *225 *224 *223 *221	155 156 157 158 159 160 161 162 163 164 165 166 167 168 170 171 172 173 174 175 177	*220 *219 *218 *216 *215 *214 *218 *211 *210 *209 *208 *207 *206 *204 *203 *202 *201 *200 *199 *198 *197 *196 *195	178 179 180 181 182 183 184 185 186 187 189 190 191 192 198 194 195 196 197 198 199 200	194 198 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 176 176

125. The Surveyor, in his examination of the machinery and boilers, is particularly to direct his attention to the safety-valves, and whenever he considers it necessary, he is to satisfy himself as to the pressure on the boiler by actual trial.

The Surveyor is to fix the limits of the weight to be placed on the safety-valves, and the responsibility of issuing a declaration before he is fully satisfied on the point is very grave. The law places on the Surveyors the responsibility of "declaring" that the boilers are in his judgment sufficient with the weights he states.

The Surveyor is to examine the whole of the valves, weights, and

springs at every survey.

The responsibility of seeing to the efficiency of the mode by which the valves are fitted so as to be out of the control of the engineer when steam is up rests with the Surveyor, as long as it is efficient, and the method adopted is approved of by the Board of Trade.

The safety-valves should be fitted with lifting gear, so arranged that the two or more valves on any one boiler can at all times be eased together, without interfering with the valves on any other boiler. The lifting gear should in all cases be arranged so that it can be worked by hand either from the engine-room or stoke-hole.

Care should be taken that the safety-valves have a lift equal to at least one-fourth their diameter; that the openings for the passage of steam to and from the valves, including the waste-steam pipe, should each have an area not less than the area of valves required by clause 124; and that each valve box has a drain pipe fitted at its lowest part. In the case of lever-valves, if the lever is not bushed with brass, the pin must be of brass; iron and iron working together must not be passed. Too much care cannot be devoted to seeing that there is proper lift, and free means of escape of waste steam, as it is obvious that unless the lift and means for escape of waste steam are ample, the effect is the same as reducing the area of the valves or putting on an extra load. The valve seats should be secured by studs and nuts.

The Surveyors are, as far as in their power, to make the opinion of the Board on these points generally known to the owners of passenger steamers.

126. When the Surveyor has determined the amount of pressure he is to see the valves weighted accordingly, and the weights or springs fixed in such a manner as to preclude the possibility of their shifting or in any way increasing the pressure. The limits of the weight on the valves is to be inserted in the declaration, and should it at any time come to a Surveyor's knowledge that the weights or the loading of the valves have been shifted, or otherwise altered, or that the valves have been in any way interfered with, so as to increase the pressure, without the sanction of the Board of Trade, he is at once to report the facts to the Board of Trade.

127. If the following conditions are complied with the Surveyor need raise no question as to the substitution of spring loaded valves for dead weighted valves:—

- (1.) That at least two valves are fitted to each boiler.
- (2.) That the valves are of the proper size, as by clause 124.
- (8.) That the springs and valves are so cased in that they cannot be tampered with.
- (4.) That provision is made to prevent the valves flying off in case of the springs breaking.
- (5.) That the requisite safety-valve area is cased in and locked up in the usual manner of the Government valves.
- (6.) That screw lifting gear is provided to ease all the valves, as by clause 125.

(7.) That the size of the steel of which the springs are made is in accordance with that found by the following formula:—

$$\sqrt[3]{\frac{s \times D}{c}} = d:$$

s - the load on the spring in lbs.

D - the diameter of the spring (from centre to centre of wire) in inches.

d - the diameter, or side of square, of the wire in inches.

c = 8000 for round steel.

c = 11,000 for square steel.

- (8.) That the springs are protected from the steam and impurities issuing from the valves.
- (9.) That when valves are loaded by direct springs, the compressing screws abut against metal stops or washers, when the loads sanctioned by the Surveyor are on the valves.
- (10.) That the springs have a sufficient number of coils to allow a compression under the working load of at least one quarter the diameter of the valve.
- 128. In no case is the Surveyor to give a declaration for spring-loaded valves, unless he has examined them and is acquainted with the details of their construction, and unless he has tried them under full steam, and full firing, for at least 20 minutes with the feed-water shut off and stop-valve closed, and is fully satisfied with the result of the test. In special cases, or when the valves are of novel design, the results of the tests under full steam should be reported to the Board, but if the Surveyors are fully satisfied with the results of the tests they need not delay the granting of the declaration for the vessel subject to approval of the Board. If the accumulation of pressure exceed 10 per cent. of the loaded pressure, he should not give his declaration without first reporting the case to the Board of Trade, accompanied by a sketch, and full particulars of the trial and the strength pressure of the boilers.
- 129. In the case of valves, of which the principle and details have already been passed by the Board of Trade, the Surveyor need not require plans to be submitted so long as the details are unaltered, of which he must fully satisfy himself; but in any new arrangement of valves, or in any case in which any detail of approved valves is altered, he should, before assuming the responsibility of passing them, report particulars, with a drawing to scale, to the Board of Trade. He can make this drawing himself from the actual parts of the valves fitted, but in order to save time, and to facilitate the survey, the owners or makers of engines may prefer to send in tracings of their own, before the valves are placed on the boiler. If they do this the survey can be more readily made, and delay and expense may be saved to owners, as the Surveyor will not then have to spend his time, and delay the ship, in preparing drawings and comparing them with the valves.

The tracings of new safety-valve designs should, if possible, be

transmitted to the Board of Trade for consideration before the con-

struction of the safety-valves is commenced.

In some spring valves the accumulation of pressure has reached cent. per cent., and therefore if the Surveyor had not required a trial, he would have passed valves which would have caused a pressure on the boiler double that intended by him. And in some cases in which the increase of pressure has not been great, defects that would have rendered the valves highly dangerous have been discovered on an examination of drawings.

The Surveyors should arrange with manufacturers so that the Surveyors may have the designs of valves which the manufacturers intend to use. An easy method of facilitating this matter is for the manufacturer to leave in the local Surveyor's office a plan or plans of his valve or valves when once agreed to, and then afterwards to inform the Surveyor that the valves fitted are according to drawing A, B, or C, as the case may be. By this means, when once a design has been agreed upon, and is adhered to, all subsequent questions and delays will be prevented.

- 131. It is clearly the duty of the masters and engineers of yessels to see, in the intervals between the surveys, that the locked-up safety-valves, as well as the other safety-valves and the rest of the machinery, are in proper working order. There is no provision in the Merchant Shipping Act, 1854, exempting the owner of any vessel, on the ground that she has been surveyed by the Board of Trade Surveyors, from any liability, civil or criminal, to which he would otherwise be subject. The Act of Parliament requires the Government safety-valves to be out of the control of the engineer when the steam is up; this enactment, far from implying that he is not to have access to them, and to see to their working, at proper intervals when the vessel is in port rather implies the contrary; and the master should take care that the engineer has access to them for that pur-Substantial locks that cannot be easily tampered with, and as far as possible weather-proof, should be used for locking up the safety-valve boxes.
- 132. In witnessing the hydraulic tests of boilers, &c., and in witnessing all safety-valve tests for accumulation of pressure, the Surveyors are to use the pressure gauges supplied by the Board of Trade for the purpose. The steam gauge should not be used without a syphon filled with water between it and the boiler, and in all cases in which the Surveyors have to adjust the safety-valves of passenger steamships they should state in the Remarks column of their declarations which of the Board's gauges was used in making the adjustment of each set of valves.

The rules relating to feed check valves and feed pipes have already been given at the end of the section on "Feed pumps, &c." (page 143), and those relating to blow-off cocks and pipes at end of section on "Sea valves" (page 192).

Lloyd's rules relating to boiler mountings, &c., are as follows:-

17. Two safety-valves are to be fitted to each boiler, and loaded to the working pressure in the presence of a Surveyor. In the case of boilers of greater working pressure than 60 lbs. per square inch, the safety-valves may be loaded to 5 lbs. above the working pressure. If common valves are used, their combined areas are to be at least half a square inch to each square foot of grate surface. If improved valves are used, they are to be tested under steam in the presence of the Surveyor; the accumulation is in no case to exceed 10 per cent. of the working pressure.

18. An approved safety-valve is also to be fitted to the super-

heater.

19. In winch boilers one safety-valve will be allowed, provided its area is not less than half a square inch per square foot of grate

surface.

20. Each valve is to be arranged so that no extra load can be added when steam is up, and must be fitted with easing gear which lifts the valve itself. All safety-valve spindles are to extend through the covers, and are to be fitted with sockets and cross handles, so that the valves can be lifted and turned round in their seats, and their efficiency tested at any time.

21. Stop valves are to be fitted so that each boiler can be worked

separately.

22. Each boiler is to be fitted with a separate steam gauge, to

accurately indicate the pressure.

23. Each boiler is to be fitted with a blow-off cock, independent of that on the vessel's outside plating.

#### FURNACE FITTINGS.

Furnace fronts, &c .- Furnace fronts and fire doors should always be of wrought-iron or steel, -never of cast-iron; but the internal protecting or baffle plates are better of cast-iron, since it burns away less rapidly than the wrought material. The baffle plate should be in several small pieces, free to expand in all directions, rather than in one large piece, which would probably very soon crack and get adrift.

The size of fire door, in the clear, may vary from 12 inches high by 18 inches wide, to 16 inches high by 24 inches wide,—the top of the opening being arched, and struck with a radius equal to the width

of the opening.

A very good arrangement is that in which the otherwise useless corners to right and left of, and above the fire door, inside the furnace, are filled in by curved cast-iron plates, perforated with small holes to allow the air to enter the furnace; the air is thus heated to a certain extent in these boxes or chambers before coming into contact with the fuel, and the riveted joint round the furnace mouth is protected from the fire.

Furnaces over 3 feet 6 inches diameter are perhaps better with two half doors hinged right and left, and meeting in the centre, only one of which need be opened at once; less cold air is then admitted, and one side of the fire can be attended to at a time.

Means should be provided for holding the doors open in a

sea-wav.

Fire-bars, &c.—When chimney draught only, or chimney and forced draught not exceeding 5 in. of water, is used, the bars are better in one length,—up to 5 feet, or even to 5 feet 6 inches long; when a greater air pressure is used, or when the grate is longer than 5 feet 6 inches, two lengths of bars may be used.

When one long bar is used, it should be hooked to the inner edge of the dead plate, and free to expand inwards, and slide on the bridgeplate; when two lengths are used, they should be hooked to the central bearer-bar, and free to slide on both the bridge-plate and the

dead-plate.

In either case care should be taken that the dead-plate is formed so as to hold or support the bars with their faces or upper surfaces flush with its own upper surface.

The thickness of bar and width of air space between bars must depend on the class of coal that will generally be used, and on the air

pressure with which it is intended to work.

The following are good average dimensions for fire-bars:—

Thickness	on face,					•	1 inch.
**	at bottom	edge,					<b>%</b> "
**	on face, ov	er dis	tance	pie	ces,	•	11/4 "
11	at bottom	edge,		٠.	•	•	11/4 "
Depth at	centre,	•			.6√	length	in inches.
n nea	r ends,				. `		2 "
Width of	air spaces,			•	•	•	⅓ inch.

The slope of the grate surface should never be less than 1 inch per foot of length, and is better 11/2 inch, or even more, when possible.

When corrugated or ribbed furnaces are used, the two side bars should be made to templates from the furnaces, and should fit as closely as possible into all the recesses.

Fire-bars should, of course, be made of the most refractory iron

obtainable; fine grey irons are quite unsuitable.

Bridges, &c. —In return-tube boilers the grate should never be so long that the front face of the bridge is less than 9 inches from the face of the back tube-plate.

The height of bridge should be such that the clear area above it may be from 16th to 18th of the area of grate; this proportion is obtained approximately when the clear height above the bridge at its centre is

 $\frac{1}{2}$  rd of the diameter of furnace.

In the case of corrugated or grooved furnaces, the ash-pits require to be fitted with thin lining plates to enable the rake to be used In Naval and other ships in which forced draught is used to any considerable extent, shallow pans which can be kept full of water are

necessarv.

Each ash-pit should also be fitted with a good stout pricker bar and with a damper; when the closed stoke-hole system of forced draught is used, the dampers are sometimes balanced and made to open inwards only,—closing against any pressure that may come from the furnace side.

## LADDERS AND PLATFORMS, &c.

The following Table gives ordinary dimensions of ladders and gratings:—

Table LXXVI.-Ladders and Gratings.

	Ladders.					Spill " Gr	atings.	
۳.	Size of si	de bars.	of cast- steps.	steps, size, itch of ars.	jo sign	er.	er of	,
Width of ladder.	Cast-iron steps.	Round bar-iron steps.	Width of iron ste	Bar st No., s and pitc bar	Width of grating.	Size of side bara	Diameter "spills."	Pitch of
in. 12	in. in.	in. in. 2¼×%	in. 	in. one %	in. in. 15 & 18	in. in. 2¾ × ¾	in. %	in. 2¼
15		3¼×%		{ two % } { 1% pitch }	21	3 × 1/16	3⁄4	2%
18	3 ¹ / ₂ × 3/ ₈	3 ¹ / ₂ × %	41/4	$\left\{\begin{array}{c} \text{two \%} \\ 1^{1}/_{2} \text{ pitch} \end{array}\right\}$	24	3 × 1/16	3⁄4	23%
21	3¾ × 1/1.		4%	•••	27	3 × 1/16	8⁄4	2%
24	4×1/16	•••	51/4	•••	$\left\{\begin{array}{c} 30\\ \text{and}\\ \text{above} \end{array}\right\}$	3×1/16	\begin{cases} \frac{5\frac{8}{8}}{\text{with}} \\ \text{centre} \\ \text{support} \end{cases}	21/4

^{%-}inch round iron "spills" should not be used for spans over 18 inches.

Ladder steps should be from 9 to 10 inches apart (face to face).

^{%-}inch round iron "spills" should not be used for spans over 27 inches.

For wider spans, additional supporting bars, of the same section as the side bars, should be used.

The corners of cast-iron steps should be rounded away, and they should be attached to the side bars of the ladder by two ½-inch bolts at each end.

The main engine-room ladder should be 21 inches wide where possible, and in large ships, where there is plenty of room, 24 inches looks better. Stoke-hole ladders need not exceed 18 inches in width.

Stoke-hole ladders are not usually fitted with cast-iron steps.

The inclination of a ladder to the vertical may be almost anything, and depends on the space available, and purpose for which ladder is fitted; the main engine-room ladder should be 1 in 2 1/4 when possible.

Handrails should be of solid wrought-iron, 1 inch in diameter.

Stanchions, when 3 feet high, may taper from 1 inch diameter at the top to 1¼-inch at the bottom; when short, for ladders, %-inch at top to 1 inch at bottom is enough. The ball through which the rail passes

may be 2 inches in diameter.

Engine and boiler room floors are best laid with chequered wroughtiron plates,—engine-room, %ie-inch thick, and boiler-room, %i-inch, exclusive of the raised pattern. In the Navy, ¼-inch and %ie-inch respectively are the usual thicknesses, but the numerous supporting bars necessary are supplied by the shipbuilders, and their weight is therefore not included under weight of machinery.

It is very desirable that floor plates should be secured to the bearers where possible, as cases have occurred in which an accumulation of water surging from side to side in the stoke-hole, has lifted the plates and driven them against the sea valves and pipes, and thus caused the

loss of the vessel.

### ENGINE AND BOILER SEATINGS, &c.

It is extremely difficult to lay down any general rules that will be of service in designing engine and boiler seatings, because so much depends on the type and structure of ship, strength and stiffness of engine framing or bedplate, type of boilers and position in which they are to be placed, &c., but the following hints may be of some use.

Seatings for vertical engines.—When the seating must be built upon the top edges of the ship's floors, it generally consists of two box girders, one under each side of the bedplate, parallel to the shaft axis. Whether additional cross girders should be fitted under each main bearing depends on the strength of the framing or bedplate.

Such girders usually have side plates varying from \(\frac{1}{2}\)-inch to \(\frac{2}{2}\)-inch to 1 inch thick, and the riveting varies from \(\frac{2}{2}\)-inch rivets at 4 inch pitch to \(\frac{2}{2}\)-inch rivets at

42 or 5 inches pitch.

One of the chief difficulties with this type of structure is to get a sufficiently good attachment to the floors; double reverse bars should always be fitted under the engines and boilers, and for large and heavy

engines the attachment of the vertical side plates to the reverse bars should also be by means of double angle bars, so that there may be four rivets at every crossing point. The second bar is sometimes represented by a separate short piece at each frame. In very lightly built ships it is often advisable to carry the vertical plates down between the floors, and to attach them to the skin plating as well as to the reverse bars.

In all cases where rigid girders are added to the structure of the ship for the purpose of properly distributing weights or strains, care should be taken that they do not stop abruptly at any point, bulkhead or otherwise, but gradually decrease in section, or taper down for three or four frame spaces, as otherwise serious results may ensue from the leading to the decrease of the structure.

the localization of the flexure or spring of the structure.

Very large and heavy engines are generally so constructed as to require only a plain flat surface of the same length and breadth as the bedplate for a seating, and where the ship is built with open floors this should be obtained by placing a number of longitudinal girders across the tops of the floors and plating them over, using only so

many athwartship girders as may be absolutely necessary.

When the vessel is of cellular construction and has an inner and outer skin, box girders may be placed upon the inner bottom,—the vertical plates being arranged to coincide with the longitudinals in the double bottom,—or the seating may be constructed by simply strengthening the longitudinal and athwartship girders already in the double bottom, putting an additional short length in here and there, and increasing the thickness of the inner bottom plating.

In this latter case, the holding down bolts should each be screwed through the top plating from below so as to make a water-tight

joint.

In either of the cases, if the shipbuilders are communicated with in time, there will not generally be any difficulty in modifying the spacing of the longitudinals slightly to suit the engines; a few inches in height may also sometimes be gained by forming troughs or recesses in the inner bottom under the cranks.

Where box girders are placed upon the inner skin as described above, the Admiralty rule is that they shall be made water-tight,

in order to prevent internal corrosion.

Seatings for horizontal engines.—These are usually plain flat surfaces constructed as described above for vertical engines and of sufficient extent to receive the whole of the cylinders and mainbearing frames. In Naval vessels the seating is usually formed raising the inner bottom to the required height (thus increasing the depth of the double bottom) and increasing the scantlings as necessary.

Of course the engines are not always placed exactly horizontal, nor is the seating for the main bearing frames always the same height

as that for the cylinder feet.

The seatings for paddle engines are usually constructed on one of the above described plans, or on a combination of them, and do

not require any special description. The cases in which the framing of the engine is constructed of plates and angles and built into the ship are of too special a nature to be advantageously treated here; and the various methods of stiffening the sides of the ship and attaching the brackets for carrying the outer bearings also fall into the same category.

Thrust block seatings should have specially strong and well extended attachments; they should extend over at least four frame spaces in small vessels, and over six or more in large ones, and as many as possible of the longitudinals of the engine seating should be

made continuous with those of the thrust seat.

Holding down bolts should be numerous and well distributed, and should have the points slightly burred over to prevent the slacking

back of the nuts.

Staying of engines.—The cylinders, &c., of vertical engines should never under any circumstances be stayed to the decks or upper works of the ship; nor should the two sets of engines in a twin-screw vessel be stayed to one another; there is no difficulty in obtaining all necessary stiffness by the expenditure of a little care and thought in designing the framing, and the risks run by using stays are serious, both when the ship is in a sea-way and when she is on the blocks in dry dock. In paddle vessels it is not practically possible to avoid connection between the engines and the upper works of the ship, but even here, where a certain amount of spring is allowed for, cracked entablatures, or top frames, are by no means uncommon.

Boiler seatings.—When either single or double-ended boilers are placed with their axes athwartships, the best type of seating is that in which H section girders (10 or 12 inches deep) running the full length of the boiler room are used, their lower flanges being riveted to the reverse bars, or to the inner skin, and their upper flanges carrying the wedge shaped or roughly triangular chocks which hold the boilers in place. When the vessel is of cellular construction these girders should be arranged to concide with the longitudinals in the double bottom.

When the boilers are placed with their axes fore and aft, and each cradle or bearer is built upon the top of a separate floor, the proper distribution of the weight is more difficult, but must be effected by putting in additional longitudinals, either intercostally or, preferably, on top of the floors. Care must be taken that these additional longitudinals do not prevent access to the underside of the boiler; if they are made of considerable depth manholes may be cut in them. When the construction of the vessel is cellular there is not usually any need to supplement the longitudinal connections.

Single ended boilers should have two cradles or pairs of chocks; double ended boilers of moderate size and weight, three; and very

large and heavy double ended boilers, four.

The boilers should be prevented from moving end-ways by "toe" plates or brackets riveted to some convenient portion of the seating or of the vessel's structure,

The greatest care must also be taken so to secure the boilers in their

seats that no probable movement of the vessel will throw any strain upon any of the pipes or connections. This is best done by riveting to the upper part of the shall of each boiler four plates, each of which has a "single eye" forged on it, and leading from each a rod or link to some convenient part of the vessel's structure (such as stringer or deckbeam), or to the neighbouring boiler. These eyes may be riveted in place when the riveting of the shell is done, and they then serve to sling the boiler by. Brackets of plate and angle-iron attached to the deck-beams and almost touching the top of the shell are also sometimes convenient as a means of fixing the boilers in their seats.

The present Admiralty method of securing the boilers is to rivet four eyes to the shell at about a foot above the top of the seatings and in the same planes with them, and four other similar eyes to the tops of the seatings themselves, and then connect each pair of eyes by a pair of flat

links and pins, &c.

Lloyd's Rules relating to Seatings and to machinery spaces generally are as follows:—

Section 26 (Seatings, &c.)—1. In steam vessels care must be taken that the engine and boiler bearers are properly constructed, having efficient longitudinal ties; and where the bearers may interfere with the longitudinal strength of the vessel, they must extend a sufficient distance beyond the bulkheads of the engine and boiler space to compensate for such interruption.

2. Where it is intended to fit engines of greater power than in ordinary cargo carrying steamers, the engine seating should be of proportionately greater strength, and be specially adapted with this object in view by being connected to the sides of the vessel; and other means adopted to ensure greater rigidity and strength to withstand the extra

vibration produced in this part of the vessel . . . . .

3. As many upper, middle, and hold or lower-deck, beams of extra strength, having double angles at upper and lower edges, of sizes as per Table G 4, are to be introduced in the engine and boiler space as may be practicable; all such beams to be pillared wherever practicable.

4. In the engine and boiler space, double reversed angles must be fitted to every floor, from bilge to bilge, and from margin plate to margin plate in vessels having double bottoms; and in vessels where the number for plating is 15,000 and above (excepting in way of double bottoms), or the depth from the top of keel to top of hold beams is 17 ft. or above, they are to extend sufficiently high to admit of the bilge stringer angles being riveted to them, unless the bilges are otherwise additionally strengthened by web-frames, beyond the requirements of the Rules. . . . . .

(Here follows a statement of the requirements as to strength, pitch, and attachments, &c., of web frames for vessels of various numerals.)

5. Where continuous bilge or side stringer bars pass through the webframes, efficient compensation to be introduced in way of the same.6. When hold beams are omitted in the engine and boiler space, the

web-frames are to be closer spaced than above described.

7. Where it is desired to adopt other plans than the foregoing for maintaining the necessary rigidity in the engine and boiler space, aketches of the same must be submitted for the approval of the Committee.

(Paragraph 8 states the requirements as to strength and stiffening of shaft tunnels and provides that a water-tight sluice door, capable of being worked from the upper deck, is to be fitted on the engine-room

bulkhead, at the entrance to the tunnel.)

Section 27 (Valves, etc.).—2. The shut-off valves or cocks of all openings for the inlet or outlet of water, in connection with the engines and boilers, are to be fitted close to the vessel's sides, and are to be accessible at all times.

4. Where soil pipes are attached to the outside plating below the load water-line, the lower length must be of steel or iron of substantial thickness, and be secured to the plating with a proper faced joint, and

extended for some distance above the load water-line.

5. If the remainder of the pipe be of lead, care must be taken that it is of substantial thickness, and that it is properly protected externally with zinc or iron, to the satisfaction of the Society's Surveyors.

Section 29 (Openings in Decks).—1. The engine and boiler openings of the weather-deck of steam vessels are to be properly framed for a height of not less than 18 inches above the deck, the coaming plates to extend to the lower edge of the beams, and iron trunk bulkheads connected to the coamings should be fitted to a height of about 7 feet above the deck . . . . . (here follows a statement of the thicknesses required and a reference to the illustrative sketches given at the end of the Rules).

2. The engine and boiler openings in the 'tween decks of all vessels are also to be enclosed by trunk bulkheads efficiently stiffened by angle bars 30 inches apart, and extending to the weather-deck beams,

to which they are to be secured.

3. Strong iron doors will be allowed in these trunk bulkheads, provided their lower parts are at least 18 inches above the deck, and

efficient arrangements made for their security.

4. When a poop, or bridge-house, covers the engine and boiler space, the coamings of the engine and boiler openings should not be less than 2 feet above such deck, unless these openings are constructed as provided for in the first paragraph of this section.

5. It is considered that in all cases the engine and boiler openings should be made as small as practicable, and be subdivided by athwartship iron divisional casings to secure the maximum safety of the vessel. The two sides of the casing should in all instances be efficiently

connected by angle beams within them at the upper part.

6. The engine-room skylights are to be in all cases substantially constructed and to be securely bolted or riveted to the coamings, and where the skylight top is not solid with bull's-eyes fitted in the same, efficient dead-lights of metal or wood must be provided. The grating openings over the stoke-hole must also be protected by plates, fitted with hinges, or otherwise in a manner satisfactory to the Surveyors.

7. Where either of the openings exceeds 15 ft., or the combined length exceeds 80 ft., the beams in way of the same are to be plated over from the stringer to the tie-plates, the plating extending two beam spaces beyond the openings, and tapered from thence towards the stringer plate for a distance not less than the breadth of the plating required to be fitted; the thickness of this plating to be the same as given in Table G for iron decks.

8. Where large openings are adjacent to each other, the intervening

space between the hatchways to be plated over.

Section 30 (Bunker Hatches, etc.).—Coal bunker pipes, where practicable, are to be formed so as to be at least 12 inches above the upper deck, fitted with lids having studs to fit in openings made in the pipes, for their security; the pipes to be so formed that tarpaulin may be securely lashed over them. When there are coal bunker hatches in the weather deck they must be properly framed with coaming plates of suitable height, having solid hatches secured by an iron bar or other approved fastening.

Section 35 (Cement).—1. The frames and plating of the bottom of all vessels to the upper parts of the bilges to be thickly and efficiently covered with Portland or other approved cement, which may be mixed with sand or other suitable substance. Care to be taken to have a proper substance of cement at its termination and to keep

the watercourses clear all fore and aft.

Section 38 (Pumps, etc.).—1. In steam vessels the pumping arrangements according to the division of holds, &c., to be as follows:—

2. Holds with double bottoms.—In the double bottom of each compartment of the hold, and of engine and boiler space, a steam pump suction is to be fitted at the middle line, and one on each side to clear the tanks of water when the vessel has a heavy list. Where there is considerable rise of floor towards the ends of the vessels, the middle line suction only will be required. A steam pump suction and a hand pump are also to be fitted to each bilge in each hold where there is no well. When there is a well, one or three steam pump suctions are to be fitted in the same, according as there is considerable or little rise of floor, and hand pumps fitted at the bilges.

3. Holds without double bottoms.—Where there is considerable rise of floor, one steam pump suction and one hand pump are to be fitted in each hold. In vessels with little rise of floor, two or three steam pump suctions and at least one hand pump to be fitted to each hold.

4. Engine and Boiler space.—Where a double bottom extends the whole length of engine and boiler space, two steam pump suctions are to be fitted to the bilge on each side. Where there is a well one steam pump suction should be fitted in each bilge and one in the well. Where there is no double bottom in the machinery space, centre and wing steam pump suctions should be fitted. The rose box of the bilge injection is to be fitted where easily accessible, and is to be used for bilge water only. The main and donkey pumps to draw from all compartments and the donkey to have also a separate bilge suction in the engine-room.

5. Fore and After Peaks.—If the peaks are fitted as water ballast tanks a separate steam pump suction is to be led to each. If not used for water ballast, an efficient pump is to be fitted to the fore peak.

6. Tunnel.—The tunnel well is to be cleared by a steam pump suction.

7. All Hand Pumps to be capable of being worked from the upper or main decks above the deep load water-line.

8. No Sluice or other Valves or cocks are to be fitted which are

not at all times accessible.

Sounding pipes to be fitted on each side of holds and ballast tanks, and a doubling plate is to be fitted under each.
 Air pipes to be fitted to each ballast tank as required.

13 and 14. The pipes for bilge or ballast suctions are to be fitted with flanged joints, in convenient lengths, so that they may be easily disconnected for clearing. Those to fore and after peaks and to the tunnel well should not be less than 21 inches inside diameter, except in vessels of less than 500 tons under deck, in which case they may be made 2 inches.

15. The Bilge injection should not be less than two-thirds of the

diameter of the sea inlet to the circulating pump.

The inside diameter of other bilge suction pipes should not be less than given in the following Table:—

Table LXXVII.—Sizes of Bilge Suction Pipes by Lloyd's Rules.

Tonnage under upper deck.	Engine room and hold centre suctions, and separate donkey suction in engine room.	no centre suctions fitted,	Wing suctions in holds when centre suctions are also fitted.
In vessels under 500 tons,	Inches.	Inches.	Inches. 2
In vessels 500 tons but under 1000 tons, . }	21/4	2	2
In vessels 1000 tons but under 1500 tons.	21/2	21/4	2
In vessels 1500 tons but under 2000 tons.	3	2%	21/4
In vessels 2000 tons but under 3000 tons,	31/2	3	21/2
In vessels above 3000 tons,	31/2	31/2	2¾
<u> </u>			

In cases where two or more of the suctions from any one compartment are connected to the pumps by a single pipe, this pipe should not be of less size than the centre suction.

#### LLOYD'S SURVEYS.

Lloyd's ordinary survey is made on the following items at the periods named:—

(a) On the different parts of the engines during erection.

(b) On the sea connections while being fitted to the vessel.

(c) On the boiler plates when they are bent, flanged and holed, ready for riveting, and on stays, &c., while being fitted.

(d) Testing the boilers by hydraulic pressure.

(e) When engines and boilers are being fixed on board the vessel.

(f) At the setting and testing of safety valves, and trying the machinery under steam.

**Lleyd's special survey.**—The additional regulations with regard to special surveys are as follows:—

(g) In steam vessels built under special survey, the machinery and boilers must also be constructed under special survey.

(A) In cases of machinery or new boilers being built under special survey, the distinguishing mark 其 will be noted in red, thus: "其 L版C," or "其 NE & B," or "其 NB."

(j) In order to facilitate this inspection, the plans of the machinery and boilers are to be examined, and from them the work-

ing pressure fixed.

(k) The Surveyors are to examine the materials and workmanship from the commencement of the work until the final test of the machinery under steam; any defects, &c., to be pointed

out as early as possible.

(1) The Surveyors may also, if desired, compare the work as it progresses with the requirements of the specification agreed upon by the parties concerned, and certify to the conditions thereof, as far as can be seen, being satisfactorily complied with.

For Lloyd's requirements as to steel castings see under Cast Steel in section on "Materials" (page 292).

### LLOYD'S RULES RELATING TO SPARE GEAR.

Lloyd's requirements as to spare gear are as follows :-

The articles of spare gear mentioned in the following list will be required to be carried in all steam vessels classed in the Society's Register Book, viz.:—

2 connecting rod, or piston rod, top end bolts and nuts.

bottom end bolts and nuts.

2 main bearing bolts. 1 set of coupling bolts.

1 set of feed and bilge pump valves.

1 set of piston springs (where common springs are used),

A quantity of assorted bolts and nuts.

Iron of various sizes.

In addition to the foregoing, the following articles are recommended to be carried with a view to expedite repairs and lessen delay in distant ports, viz.:—

Crank shaft.
Propeller shaft.
Propeller, or a full set of blades.
Stern-bush, or lignum-vitæ
lining for bush.

1 pair connecting-rod brasses.
1 pair crosshead brasses.

1 set of check valves. 6 cylinder cover bolts.

6 junk-ring bolts.

4 valve-chest cover bolts.

1 set of link brasses.
1 eccentric strap complete.
Air-pump rod.

Circulating-pump rod.

H.P. valve spindle.

2 dozen boiler tubes.

,, condenser tubes.
 cylinder escape-valve and spring.
 set of safety-valve springs.

## ADDITIONAL BOARD OF TRADE RULES.

The following Board of Trade rules concern the engineer, but cannot properly be placed under any of the preceding section headings:—

63. There should be for each compartment a pump of sufficient size which can be worked from the upper deck. A rose or perforated box of sufficient size should be fitted at the end of the suction pipe of each pump, and means provided for clearing the end of the suction pipe.

It is very desirable that the steam winches (if any) be so fitted and arranged that the deck pumps can be worked by them as well as by hand.

Deck pumps should be provided with suitable handles, and those of the smaller size should have handles long enough for at least two

men to work at them.

64. Sounding pipes should be fitted from the upper deck for ascertaining the depth of water in each compartment. The collision bulkhead should not have a valve or cock or any opening in it, nor

should pipes be led through it.

65. Pipes connected with pumps worked by the engines should be carried through the bulkheads into all the compartments fore and aft of the engine-room, except the compartment in front of the collision bulkhead, so that each compartment can be pumped out separately by the engines as well as by the deck pump. The pipes should be well secured where they pass through the bulkheads, and it is very desirable that cocks or valves be fitted between these suction pipes and the bulkheads, capable of being opened or shut from the upper or main deck.

66. A spare tiller, properly fitted to the rudder head, relieving tackle, &c., should, in all foreign-going and home trade steamers, be kept near the after steering gear ready for immediate service. The steering gear, including chains, should be thoroughly overhauled at every survey, and taken to pieces and thoroughly examined at least once a year. The chains and blocks that are liable to interfere with or endanger the passengers or crew should be guarded by portable but

properly secured guards.

With the view of relieving, as far as practicable, the rudders of vessels from severe and sudden shocks, springs have in some cases been fitted to the quadrant, or to the rods or chains at each side of the vessel, and the Board think that such fittings, or other efficient means. should be adopted, more particularly in the case of new vessels.

The Surveyors should note that the steam and exhaust pipes of steering engines in all new passenger steamships should be at least the same internal diameter respectively as the steam and exhaust connections on the cylinders, which they should see are sufficient for the purpose, and they should be so arranged that water cannot lodge in them. Right-angled bends should be avoided as much as possible. and the pipes should be used exclusively for the steering engines. In cases where this is not complied with, full particulars and aketches should be submitted to the Board for consideration.

Attention is also directed to a description of steam steering gear, in which a part of the shaft by which the helmsman actuates the controlling valve, passes through another shaft that is liable to be thrown out of line by the reaction of the spur gearing, and, consequently, liable to jam the inside shaft to such an extent as to deprive the helmsman of the control of the steering gear. steam steering gear should be carefully examined, and if any be found constructed in the manner described above, their use should be discouraged, and should not be approved, unless they have been tested from midship to hard over in both directions, and found satisfactory when the vessel is running at full speed.

It is very desirable that the man at the helm should be so placed that he has a clear lookout ahead, more especially in steamers that

frequent crowded harbours or rivers.

67. In passing a helm indicator, the Surveyor should ascertain by actual trial that whenever the pointer moves to the word "port" on the dial or plate, wherever that word may be, it shows that the helm is ported, and whenever the pointer points to the word "starboard," wherever that word may be, it means that the helm is starboarded.

In the foregoing directions it is assumed that "port helm" means that the helm is so moved as to turn the ship's head to the right, and "starboard helm" means that the helm is so moved as to turn the

ship's head to the left.

77. Passenger steamers going to sea should be provided with a hose adapted for the purpose of extinguishing fire in any part of the ship, and capable of being connected with the engines of the ship, or with the donkey engine, if it can be worked from the main boiler. The Surveyor must take care that it answers the required purpose.

The fire hose should be connected and stretched, to judge of its length, and thoroughly examined at every survey, and at least once a year (and at any other time that the Surveyor thinks it necessary) tested with the conductor in its place by pumping water through it by the main or donkey engines at full speed. A proper conductor and metal bend or goose neck form part of its equipment, and should be provided. Generally, leather hoses are the most durable, and should be supplied when a declaration for 12 months is required.

121. In all boilers in which the Surveyors find that cast-iron is employed in such a manner as to be subject to the pressure of steam or water, they are directed to report the circumstances to the Board of Trade, in order that they may receive instructions how to Cast-iron stand-pipes or cocks through which hot brine would have to pass should never be passed. Cast-iron should not be used for stays, and Surveyors should also discourage the use of cast-iron for checks and saddles for boilers. Particular attention should be paid to the chocking of boilers, more especially when they are fired athwartships.

143. In the case of steamers coming in for survey under the Passengers Acts, and other steamers performing ocean voyages, no question as to gear need be raised if the following spare gear and stores are supplied, or their equivalent which should be submitted to the Board for consideration. The heavier portions of this gear should have been fitted and tried in their places, and should be kept on board where access can

at all times be had to them :-

1 pair of connecting rod brasses.

1 air pump bucket, and rod, with guide.

1 circulating pump bucket and rod. 1 air pump head valve, seat and guard.

1 set of india-rubber valves for air pumps.

1 circulating pump head valve, seat and guard.

1 set of india-rubber valves for circulating pumps.

2 main bearing bolts and nuts.

2 connecting rod bolts and nuts.

2 piston rod bolts and nuts.

8 screw shaft coupling bolts and nuts.

1 set of piston springs suitable for the pistons. 3 sets, if of india-rubber, or 1 set if of metal, of feed pump

valves and seats. 3 sets, if of india-rubber, or 1 set if of metal, of bilge pump valves

and seats. hydrometer.

Boiler tubes, 3 for each boiler.

100 iron assorted bolts, nuts, and washers, screwed, but need not be turned.

12 brass bolts and nuts, assorted, turned, and fitted.

50 iron

50 condenser tubes.

100 sets of packing for condenser tube ends, or an equivalent. At least one spare spring of each size for escape valves.

1 set of water-gauge glasses.

th of the total number of fire-bars necessary.

3 plates of iron, assorted.

6 bars of iron, assorted.

1 complete set of stocks, dies, and taps, suitable for the engines.

1 smith's anvil.

1 fitter's vice.

Ratchet-braces, and suitable drills.

1 copper or metal hammer.

Suitable blocks and tackling for lifting weights. I dozen files, assorted, and handles for the same.

1 set of drifts or expanders for boiler tubes.

1 set of safety-valve springs (if so fitted) for every four valves; if there are not four valves, then at least one set of springs must be carried.

1 screw jack.

And a set of engineer's tools suitable for the service, including hammers and chisels for vice and forge; solder and soldering iron; sheets of tin and copper; spelter; muriatic acid, or other equivalent, &c., &c.

145. The distilling apparatus of emigrant ships should be taken to pieces every voyage, except in the cases of steamers holding passenger certificates, which should be taken to pieces at least once every six months, or oftener, if the Surveyor thinks it necessary, and the tubes or coils tested to at least twice the load on the safety-valve on the apparatus, or in cases where no safety-valve is fitted, to twice the highest working pressure of the boiler from which the apparatus can be worked, and the machinery and boilers thoroughly examined. After the distilling apparatus is put together again, it should be tested

as to the quantity and quality of the water made.

The water should be cold, pure, and fit to drink immediately it is drawn off from the filter. No distilling apparatus should be passed. unless fitted with a suitable sized filter, charged with animal charcoal; the charcoal should be taken out, cleansed, or renewed every voyage, except in case of steamers holding passenger certificates, in which case it need not be taken out, unless the Surveyor thinks it necessary, oftener than every six months. In such cases (where passenger steamers are coming freduently in for survey under the Passenger Acts. and such complete examination is not made previous to each voyage), the Surveyor will be held wholly responsible for the efficiency of the apparatus; but the quantity and quality of the water must be tried previous to every voyage. It therefore rests with him whether he orders them to be taken to pieces every voyage or not. The boilers should be at least equal in strength to the boilers of passenger steamers, and should have the same fittings as are necessary for them in accordance with the Board of Trade Regulations. The Surveyor must satisfy himself as to the capability of the man who is to have charge of the apparatus.

The steam for working the apparatus is not to be taken from the main boilers. No exhaust steam must be permitted to go into the condenser if appliances for the introduction of lubricants be fitted to the steam pipes, or steam cylinder of the pumping engine. The boiler of the apparatus must not be filled or fed with water from the surface condensers of the main engines, and must not be fitted with

cocks, &c., for the introduction of tallow or oil.

When the water is pumped into the condenser there should be an efficient escape-valve on the condenser, which cannot be readily tampered with, and if the condensing portion of the apparatus or the cooler and filter be unfit to bear the pressure on the boiler, an efficient safety-valve that cannot be readily overloaded should be fitted between the steam pipe and the apparatus.

146. It is advisable that the donkey engine for pumping water through the condenser be so fitted that it can be made available in case of emergency for extinguishing fire in any part of the ship; a leather hose, with suitable bends and conductors, should be supplied for this purpose.

147. The following list of tools and materials should be provided for distilling apparatus :---

1 set of stoking tools.

1 scaling tool.

1 spanner for boiler doors.

1 set of fire bars, suitable for boiler.

1 14-inch flat bastard file.

1 14-inch half-round file. 1 10-inch round file.

3 file handles.

2 hand cold chisels.

1 chipping hammer.

1 pair patent gas tongs.

1 soldering iron. 10 lbs. of solder.

2 lbs. of rosin.

6 gauge glasses.

24 india-rubber gauge glass washers.

30 bolts and nuts, assorted.

1 slide rod for donkey pump.

5 lbs. spun yarn. 10 lbs. cotton waste.

1 deal box, with lock, complete.

2 gallons machinery oil.

Animal charcoal sufficient to charge the filter at least twice.

1 can for machinery oil.

1 oil feeder.

1 small bench vice.

1 ratchet brace.

4 drills, assorted.

1 set dies and taps suitable for the bolts.

2 glass salinometers.

1 hydrometer and pot.

1 shifting spanner.

1 lamp for engineer.

And other articles that the particular distiller and boiler supplied may, in the Surveyor's judgment, require.

#### CHAINS AND ROPES.

The following Tables give the Admiralty requirements as to chains:—
Table LXXVIII.—Admiralty, Tests, &c., of Stud-link
Chain Cable.

Dia. of cable in inches.		Proof load in tons.	Weight of 100 fathoms in cwts.	Dia. of cable in inches.		Proof load in tons.	Weight of 100 fathoms in owts.
1/10	4.90	3.2	9.25	11/2	56.70	40·5 47·5	108.0
%.	6·30 7·70	4·5 5·5	12·0 15·25	1½ 1% 1%	66·50 77·17	55.125	126.75 147.0
1 1/1e	9·80 11·90	7·0 8·5	18·75 22·75	1%	88.55 100.80	63·25 72·0	168·75 192·0
% %	14.17	10.125	27.0	21/8	118.75	81.25	216.75
% 1	19 ·25 25 ·20	13·75 18·0	36·75 48·0	21/4 21/8	127·57 142·10	91·125 101·5	243·0 270·75
11%	31·85 39·37	22·75 28·125	60·75 75·0	21/2		112·5 129·3	800.0
1%	47.60	34.0	90.75	21/4 3		145.8	363·0 432·0

Up to and including 2½ inches diameter the above proof loads are equal to 630 lbs. per circular ½ inch of section of one side of link, and are the same as those required by the Chain Cables and Anchors Acts; but for 2¾ inch diameter the load is reduced to 598.5 lbs. per circular ½ inch, and for 3 inch diameter to 567 lbs. The formula for proof loads of chains up to 2½ inches diameter may also be written,—

Proof load in tons — 18 × (diameter in inches)².

The breaking strengths are placed at 40 per cent. above the proof loads.

Table LXXVIIIa.—Admiralty Tests, &c., of Short-link Chain.

Dia. of chain in inches.	Breaking strength in tons.	Proof load in tons.	Weight per fathom in pounds.	Dia. of chain in inches.	Breaking strength in tons.	Proof load in tons.	Weight per fathom in pounds.
1/2	1.87	.75	3.0	15/16	26:37	10.55	49.0
738	2.93	1.17	5.2	1	80.00	12.00	56.0
% //.	4.22	1.69	8.0	11//16	33.87	13.54	63.0
1/10	5.74	2.30	10.5	11/8	87.97	15.18	71.0
1/4	7.50	3.00	14.0	13%	42.30	16.92	79.0
%.	9.49	3.80	18.0	11/4	46.87	18.75	87.0
% 11/10	11.72	4.69	22.0	1%	51.68	20.67	96.0
11/16	14.18	5.97	27.0	1%	56.72	22.68	106.0
3/4	16.87	6.75	82.0	17/16	62.00	24.80	116.0
1 1/10	19.80	7.92	37.0	11/2	67.50	27.00	127.0
<b>%</b>	22.97	9.19	43.0		•••	•••	

The proof loads for short-link chains are %rds those for stud-link chains.

The rule may be written,—Proof load in tons—12×(diameter in inches)². The breaking strengths of short-link chains are placed at 2½ times the proof loads.

Lloyd's requirements as to chain cables, &c., are given in Table LXXIX.; the proof loads and breaking strengths are those required by the Act of Parliament; the breaking strengths for chains above 1½ inch diameter are the same as required by the Admiralty, but for chains of 1½ inch diameter and under, Lloyd's require a slightly higher breaking strength.

Table LXXIX.—Lloyd's Tests of Stud-link Chain Cables.

Diameter of chain in inches.	Proof load (Statutory) in tons.	Breaking strength (Statutory) in tons.	Diameter of chain in inches.	Proof load (Statutory) in tons.	Breaking strength (Statutory) in tons.
11/16	8:5	12:75	1%	47.5	66.5
8/4	10.125	15.125	111/16	51.25	71.75
18/	11.875	17.8	13/4	55.125	77.125
7/16 1 5/16	13.75	20.625	113/16	59.125	82.75
18/18	15.8	23.7	1%	63 25	88.5
1 1 1	18.0	27.0	115/16	67.5	94.5
11/16	20.3	30.4	2	72.0	100.8
11/8	22.75	84.125	21/16	76 <b>·</b> 5	107.1
13/16	25.375	38.0	21/8	81 25	113.75
11/4	28.125	42.125	23/16	86.125	120.5
15/16	<b>31 0</b> .	46.5	21/4	91.125	127.5
1%	34.0	51.0	25/16	96.25	134.75
11//16	37.125	55.625	2 %	101.5	142.1
1½	40.5	58.7	21/16	107.0	149.7
1%	43.9	61 • 4	21/2	112.5	157.5
				ļ	

Note.—Unstudded close-link chains will be admitted as cables if proved to two-thirds the load required for stud-link chains, and if the breaking strength is not less than twice such proof load.

In some recent tests of the chain cables of large steamers a 2%-inch cable gave an average ultimate strength of 212 tons, and a 2%_s-inch cable gave 223 tons as the lowest and 229 tons as the highest of seven tests.

The safe working load on chains should not be taken higher than half the proof load; if this proportion be adopted the formula becomes:—

Working load in tons =  $\begin{cases} 9 \times (\text{diameter in inches})^2 \text{ for stud-link.} \\ 6 \times (\text{diameter in inches})^2 \text{ for close-link.} \end{cases}$ 

For ordinary crane chains and slings  $4 \times (\text{diameter in inches})^2$  is high enough.

Table LXXX. - Admiralty Flexible Steel Wire Ropes.

Size of rope (cir- cumfer- ence) in inches.	Num- ber of wires in each strand.	Weight per fathom in lbs.	Mini- mum break- ing st'gth in tons.	Torsion test; No. of twists each wire must stand.	Ductility tests, &c.
8	30	53	148	9	Each rope to consist of 6 strands. Wires to be of best
7	30	41	113	11	crucible steel galvanized with pure zinc.
61/2	30	35	98	14	The rope is to be laid up
6	30	31	84	15	evenly and uniformly as regards size and angle, and is to con-
5½	24	28	71	16	tain a proper sized hemp core.
5	24	23	59	17	A latitude not exceeding 5 per cent. over or under the
41/2	12	14	39	15	prescribed weights will be allowed.
4	12	12	31	17	Elongation will be assumed to commence when one-sixth
3½	12	9	24	18	of the breaking-load has been applied.
3	12	7	17	22	Test A (torsion).—Each wire
2%	12	5½	141/2	25	to stand being twisted through the number of revolutions stated
21/2	12	41/2	11%	26	in column 5, in a length of 8 inches.
21/4	12	3¾	.9	28	Test B(bending). —Each wire
2	12	2¾	7	33	to stand coiling around itself eight turns and back again.
1%	12	2	5½	36	If, in being tested, one wire in seven fail, but the other six
11/2	12	1%	4	41	give fair and uniform results,
11/4	12	11/4	2%	47	the average being up to the standard, the rope will be con- sidered satisfactory in that
1	12	<b>¾</b>	1%	60	respect.

Proportions of links of chains.—The standard proportions of the links of chains, in terms of the diameter of the bar from which they are made, are as follows:—

The stud has usually a diameter at the centre of  $6 \times \text{diameter}$  of chain and at the ends  $1 \times \text{diameter}$  of chain.

Weight of chains.—The weight of stud-link chain cables is given very nearly by the rule.—

 $W = 55d^2$ 

where W - weight per fathom in pounds, and d - diameter of bar from which chain is made.

For close-link chain the rule becomes,-

 $W = 58d^2$ 

The above rules give weights about mid-way between those required by the Admiralty and those required by Lloyd's. The weight is of course much affected by the length of link used.

### Steel Wire Ropes.

The Admiralty requirements with regard to flexible steel wire ropes

are given in Table LXXX. on previous page.

Steel wire ropes for standing rigging are required to be made of fewer wires of larger diameter, are rather heavier, and must be of rather greater ultimate strength.

The following Table shows the breaking strengths that steel wire

hawsers, &c. must show in order to be accepted by Lloyd's :-

Table LXXXI.—Breaking strengths of Steel Wire Ropes by Lloyd's Rules.

Size (circumference) in inches.	Breaking strength in tons.	Size (circumference) in inches.	Breaking strength in tons.
2	7	3¾	29
21/4	91/2	4	33
21/2	•••	41/4	85
28/4	151/2	41/2	39
3	18	4 %	47
31/4	22	5	59
31/2	26	51/4	71

A short length of each of the wires composing the hawser, &c. will also be required, after being galvanised, to show a tensile strength equivalent to that given in the above Table, and the aggregate strength of the wires must not be less than 10 per cent. in excess of that strength.

Each wire must also be capable of being twisted around itself not less than eight times, and of being untwisted and straightened again

without breaking.

The strength of steel wire ropes, relatively to their girth, depends not only on the quality of the wire used, but also on the amount of hemp core used; usually there is a central hemp core, and sometimes strand has also a similar core, but sometimes there are no hemp cores at all. There would be no particular difficulty in obtaining ropes to stand twice the tests given in the above Table, but such ropes would probably be wanting in flexibility, and would require drums of very large diameter if they were to work satisfactorily and to last any time.

#### Hemp Ropes.

Hemp is laid up right-handed in yarns; and yarns are laid up left-handed into strands.

A hawser is composed of three strands laid up right-handed.

A cable is composed of three hawsers laid up left-handed. Shroud-laid rope has a core surrounded by four strands.

The strength of hemp ropes depends on the quality of the hemp used, on the type or make of the rope, and on its condition (i.e., wet or dry, tarred or untarred).

The twist diminishes the strength, but increases the solidity and durability, and the strength therefore depends to some extent on the twist.

When a rope is wet or tarred its strength is reduced by about one-

fourth.

The working strength is commonly taken as 1/8 th of the breaking

strength.

The Admiralty requirements as to various sizes of hawser-laid cordage in common use are given in Table LXXXII.; the 11-inch rope is specified to be of tarred Petersburg hemp, but all the smaller sizes are to be of tarred Riga hemp; all are to be three strand.

Table LXXXII.—Admiralty Tarred Hemp Cordage.

Size of rope (circumference) in inches.	Size of yarn.	Number of threads in the rope.		Standard breaking strength.	
			Tons.	cwt.	qrs.
1/4	40	6	0	8	Ť0
1 <u>/4</u> 1/4	,,	12	0	6	0
1	,,	15	0.	8	0
1½ 1½	,,	33	0	15	0
1¾	,,	42	1	0	0
2	,,	54	. 1	7	0
21/2	,,	84	2	0	0
8		120	3	0	0
31/2	80	123	8	18	0
4	,,	159	5	0	0
41/2	,,	201	6	9	0
5	,,	249	7	18	0
. 11	25	1008	36	10	0

All sizes are specified to be formed at an angle of 27°, hardened at

87°, and finished at 42°.

If the smallest size be excluded, the above Table gives breaking strengths which approximate very closely to those given by the formula.—

### Breaking strength in cwts. $=(6.2 \times \text{girth in inches}^2) + 2$ .

The weight in pounds per fathom of hawser-laid hemp ropes is given approximately by the rule,—

#### STRENGTH, &c., OF MATERIALS.

#### Cast-Iron.

The strength that an iron casting may be expected to possess depends on the quality of the iron, on the number of times it has been melted, on the design or form of the casting, and on the skill and care exercised in the foundry to ensure soundness and freedom from contraction stresses. The quality of the iron depends on its chemical constitution, and on the method of manufacture. The effects of variations in chemical composition are indicated in the following table:—

Table LXXXIII.—Compositions and qualities of Cast-Iron.

		Composition.	
Quality.	Combined carbon per cent.	Graphitic carbon per cent.	Silicon per cent.
Very soft,	·15	3.1	2.5
Very hard,	•••		under ·8
Great general strength, .	•5	2.8	1.42
Great tensile strength, .			1.8
Great crushing strength,	over 1.0	under 2.6	about .8

Pig irons are as a rule divided into seven classes, each of which is known by a number. No. 1 contains the most free or graphitic carbon, and, when broken, exhibits a very coarsely granular fracture with dark grey scales of considerable size; when melted, "it runs very thin," or is of extreme fluidity, and is therefore used mostly for

fine ornamental castings, and for mixing with other numbers when increased fluidity is required.

No. 2 pig is neither so soft nor so fluid as No. 1, but is not

sufficiently close grained for general use.

No. 3 pig is that usually employed for marine engine castings: by adding No. 1 a mixture suitable for complicated castings is obtained, and the addition of No. 4 gives a harder and closer-grained metal.

No. 4 is not much used in the foundry except for such mixing purposes; it still shows a grey fracture, but the grain is finer and more crystalline, and there is an absence of the graphitic scales so marked in Nos. 1, 2, and 3.

Nos. 5 and 6 are not used in the foundry at all, but are made for

conversion into wrought-iron, &c.

No. 7 pig shows a silvery white and crystalline fracture, contains practically no free carbon, and is extremely hard. Like Nos. 5 and 6 it is a "forge iron," and is sometimes called "white forge," whilst Nos.

5 and 6 are called "grey forge."

Iron from different districts, and made from different classes of ore, of course varies considerably in composition and quality, but quality is also considerably affected by the method of reduction,cold-blast iron being usually stronger, tougher, and closer grained than hot-blast, and therefore often used for mixing with other irons where exceptional strength and toughness is required.

Iron mixtures.—As all cast-irons are improved by re-melting, no important casting should be made entirely of new pig, and if maximum strength is required the whole of the material should

be re-melted.

For cylinders a strong, tough, and close-grained metal is required, and a metal of this character may be obtained by using equal proportions of picked scrap, best Scotch No. 3 pig, and Blaenavon (cold blast). If the cylinder is to have liners and false faces, most of the hardening elements may be omitted.

Cylinder liners and false faces require a fair amount of strength and great hardness, and may be made of No. 3 Scotch iron, Blaenavon, and selected hard scrap, or if that is not obtainable its place may be

taken by some No. 4 pig.

Castings of simple form, such as propeller blades and bosses, may be increased in hardness, strength, and closeness of grain by the addition of steel boiler plate scrap to the extent of even 10 per cent. Hæmatite is used for the same purpose.

The contraction of iron castings in cooling varies considerably with the form and proportions of the casting, but is, on an average,

1/10 to 1/8 inch per foot.

The cooling of large and intricate castings should be as gradual as possible, as the internal stresses are then somewhat relieved, and the risk of cracks diminished.

The weight of cast-iron also varies very considerably,—the differ ence between the heaviest and lightest kinds being nearly 40 lbs. per cubic foot; but a fair average value, and one easily remembered, is about 450 lbs. per cubic foot, or 28 lbs. per cubic inch. A plate 1 foot square × 1 inch thick will then weigh 37.5 lbs. Ordinary marine castings are probably rather above than below this weight.

Strength of cast-iron. - Cast-iron suitable for ordinary marine castings should not have a lower ultimate tensile strength than 17,000 lbs, per square inch, and when weight is of importance, and scantlings are cut down, a strength of 20,000 to 22,000 lbs. per square inch

should be aimed at.

The testing machine should be in constant use if there is to be any check on the foundry, or if any accurate knowledge as to the material

being turned out is required.

The ultimate strength of cast-iron in compression is about 90,000 lbs. per square inch; in ordinary construction it may carry three times as much as in tension.

The Admiralty requirements as to cast-iron are as follows:

Test pieces to be taken from such castings as the inspecting officer may consider necessary. The minimum tensile strength to be 9 tons (20,160 lbs.) per square inch, taken on a length of not less than 2 inches.

The transverse breaking load for a bar one inch square, loaded at the middle between supports one foot apart, is not to be less than 2000 lbs.

### Wrought Iron.

The quality of wrought iron, -provided it is free from such harmful ingredients as sulphur and phosphorus,-depends largely on the amount of work that has been done on it at the mill, -i.e., on the extent to which it has been rolled down and the fibre developed.

The appearance of the fracture depends a good deal on the manner in which it is broken; if good bar iron is nicked at one side, and slowly broken or bent back, it should show a clear white silvery, and almost entirely fibrous, fracture, whereas if nicked on two sides, or quickly broken, the fracture will show more of a fine white crystalline grain, and less fibre.

A specimen from a good forging will show a clear and silvery grain, but larger than that of the bar iron, with about 20 to 30 per cent. of

fibrous patches.

An inferior iron usually shows a coarse crystalline structure, or if

fibre is present, it is dull and earthy looking.

Coarse crystals, or large shining plates, generally indicate a "cold-short" iron, and "red-shortness" is indicated by an earthy, dull, or dark fracture.

Merchant bar is the commonest quality generally used by engineers; ladders, gratings, fire bars, bearer bars, &c., are made of it.

Best bar is the next quality; its tensile strength is about 24 tons (or say 54,000 lbs.) per square inch, and it may be used for all ordinary smithing purposes.

Best best har is a higher quality again, and has an ultimate tenacity of 26 to 27 tons (or say 58,000 to 60,000 lbs.) per square inch, with an elongation of about 25 per cent. in 8 inches, and a contraction of area of about 50 per cent.; the fibre is uniform and silky in appearance, and the bar may be bent double, cold, without fracture.

Best Yorkshire boiler plates.—This at one time indispensable material is now rarely used by marine engineers. Its ultimate tensile strength, with the grain, is about 24 tons (54,000 lbs.), and across the grain about 22 tons (49,000 lbs.) per square inch, with an elongation of about 13 and 8 per cent. respectively. Its elastic strength, with the grain, is nearly 12 tons (26,000 lbs.) per square inch.

Staffordshire plates.—This quality of iron is also little used by marine engineers now; it was largely used for boiler shells, &c. Its ultimate tensile strength is about as follows:—

Iron forgings.—The strength of iron forgings depends both on the quality of the scrap from which they are made, and on the size of forging, or the amount of work that has been done on them under the hammer.

For a large forging, 20 tons (45,000 lbs.) per square inch, with an extension of 8 or 10 per cent. in 8 inches, would be a very fair test result; with a small forging, about 22 tons (50,000 lbs.) per square inch, and an extension of 12 or 15 per cent., should be reached.

Weight of wrought iron.—Wrought iron varies slightly in density according to the method of manufacture, the form into which it is put, and the amount of impurity it contains. A fair average value is 485 lbs. per cubic foot, or 28 lb. per cubic inch; bars and Yorkshire plates give about this figure, but Staffordshire plates are rather lighter (about 480 lbs.), and large forgings lighter again (about 477 lbs.),—owing probably to the presence of cinder in a minutely divided condition. A square foot of plate, one inch thick, usually weighs 40 lbs.

#### Cast Steel.

Steel castings for the pistons, covers, framing, &c., of marine engines should have an ultimate tensile strength of 29 to 31 tons (65,000 to 69,000 lbs.) per square inch, with an extension of about 10 or 12 per cent. in 8 inches. For castings that are at all intricate, or thin in parts, it is necessary to use a rather stronger steel say up to

36 or 38 tons ultimate strength), as the milder and tougher steels are not sufficiently fluid when melted, but the extension obtainable will not then exceed about 8 per cent.

The contraction of cast steel in cooling is more variable than that of cast iron, but is on an average about  $\frac{3}{16}$  inch per foot, or the same as that of brass. Special care should therefore be taken in designing large pieces to be cast in this metal, and forms that will interfere with the contraction, or cause the casting to "draw" in cooling, should be avoided; when possible an open or H section should be preferred to a close or box section for framings, as the former is more likely to give a sound casting,—especially if plenty of small ribs are placed along in the angles (say  $\frac{3}{6}$ -inch thick and 6 inches pitch,—for large framings,—dying away at 3 inches out from the angle in both directions) and a good radius is used.

Annealing, for the purpose of relieving internal stresses set up in cooling, is very necessary for large or intricate castings, and desirable for all.

Soft steels of this class will contain about '3 per cent. of carbon; when the proportion reaches about 1 per cent. it becomes possible to harden or temper the steel.

Good hard cast steel, with an ultimate strength of 50 or 55 tons,

will probably contain 1.3 or 1.4 per cent. of carbon.

To weld properly, steel must not contain more than '5 per cent. of carbon.

Weight of steel castings.—Soft steels, of 28 to 35 tons ultimate strength, weigh about 490 lbs. per cubic foot, or '284 lb. per cubic inch: a plate 1 foot square and 1 inch thick will therefore weigh very nearly 41 lbs.

The Admiralty requirements as regards steel castings for machinery are as follows:—

Tensile strength to be not less than 28 tons (63,000 lbs.) per square inch, with an extension, in 2 inches of length, of, at least, 18½ per cent. for intricate castings, and not less than 18½ per cent. for simple ones.

Bars 1 inch square should be capable of bending, cold, without fracture, through an angle of 90°, over a radius not greater than 1% inches.

Test pieces are to be taken from each important ingot and casting.

Lloyd's requirements as to steel castings for machinery are as follows:—

For purposes for which cast-iron is ordinarily employed, such as propeller bosses and blades, bed-plates, engine framing and columns, brackets, weigh-shaft levers, pistons, cylinder covers, eccentric straps,

bearing bushes, &c., the castings must be sound, and are to be subjected to such drop and hammering tests as are practicable.

For shafts or parts of shafts, and for purposes for which forgings are ordinarily employed, the material must also be subjected to the following tests:—

A tensile test is to be made of a piece taken from each casting. The tensile strength is not to exceed 30 tons (67,000 lbs.) per square inch, and the elongation is not to be less than 10 per cent. in a length of 8 inches, and a test piece turned to 1½ inches diameter, or planed to 1½ inches square, is to be capable of being bent, cold, through an angle of 90°, over a radius not exceeding 1¾ inches, without fracture.

All steel castings are to be thoroughly annealed.

#### Steel Bars and Plates.

This material has now almost entirely superseded bars and plates of wrought-iron; even for ventilators, uptakes, chimneys, &c., it is cheaper than iron of the quality that would be necessary to stand the working, rolling, &c.

The tests required by the Admiralty, by the Board of Trade, and by Lloyd's, are fully given in the section on "Steel Boilers" (pages 229 and 230).

In steel boiler plates rolled from ingots, the strength of test pieces is found to be practically independent of the direction in which they are cut from the plate, i.e., whether the material is pulled asunder in the direction of rolling, or across that direction.

The percentage of carbon in mild steel bars and plates (27 to 30 tons

per square inch) is usually between '15 and '4 per cent.

Weight of steel bars and plates.—The average weight of steel of this description is about 490 lbs. per cubic foot, or '284 lb. per cubic inch, and a plate 1 foot square and 1 inch thick weighs about 41 lbs.

Experience in handling mild steel has shown that work cannot safely be continued after the red colour of the heat has disappeared; when cold, the material will stand very severe treatment, and it is equally ductile at a full red heat (say 1500° to 1800°), but below 800° it seems to be in a critical and at times brittle and unreliable condition, and should not be handled again until it has cooled below 500°, or been re-heated.

Also, when a plate has been locally heated or worked, the internal stresses set up seem to be much more severe than in the case of wrought-iron, and to avoid all risk of cracks, the plate should be care-

fully annealed, as soon as possible.

#### Steel Forgings.

Steel forgings are similar in most respects to bars and plates, but, of course, not quite so dense or so uniform in texture and strength.

The Admiralty require that all steel forgings for machinery shall be made from ingots, and test pieces from all important ingots and

forgings must satisfy the following conditions:-

Ultimate tensile strength, not less than 28 tons, with an extension in 2 inches of length, of at lesst 28 per cent. The maximum tensile strength is not to exceed 35 tons per square inch, with an extension in 2 inches of length of at least 24 per cent. The limit of elasticity to be not less than 55 per cent. of the ultimate strength.

Bars 1 inch square should bend cold, without fracture, through an

angle of 180°, over a radius not greater than % inch.

The weight of steel forgings may be taken as about 487 lbs. per

cubic foot, or '282 lb. per cubic inch.

Whitworth's fluid compressed steel weighs about 495 lbs. per cubic foot.

### Copper.

Copper in its unalloyed condition is used mainly for pipes and for fire-box plates of loco type boilers.

The tenacity of sheet copper is about 13½ tons (30,000 lbs.) per

square inch.

Annealed copper wire has a strength of about 18 tons (40,000 lbs.)

per square inch.

Sheet copper has a weight equivalent to about 550 lbs. per cubic foot, or 318 lb. per cubic inch.

For weights of copper pipes see page 318.

#### Gun-Metal.

Gun-metal is composed of copper and tin in various proportions, and a small percentage of zinc is usually added to ensure sound castings.

Its strength depends mainly on its composition, but is much affected by such circumstances as the size of the casting, the rate of cooling, and the skill of the founder in mixing the metals, ventilating the

moulds, relieving the cores, &c.

In large castings which cool slowly there is a great tendency for the metals to separate from one another to some extent, and the average strength is therefore usually less than in small castings; it is also a general rule that the more quickly the casting is cooled the stronger the metal is.

The metal sets very rapidly, and contracts nearly % inch per foot on an average, and in large castings the cores must be very quickly relieved if the casting is not to be drawn and porous and of low

tenacity.

With a mixture of 90 per cent. copper and 10 per cent. tin, a carefully made test bar may be got to show a strength of nearly 17 tons (38,000 lbs.) per square inch. With 84 per cent. copper and 16 per cent. tin, a much harder metal is obtained (the hardness of gun-metal varies almost directly with the percentage of tin in the mixture), with an ultimate strength of test piece of about 16 tons (35,000 lbs.) per square inch.

For heavy bearings, 79 per cent. copper and 21 per cent. tin is sometimes used; the resulting metal is very hard, and test pieces show a strength of 13½ to 14 tons (30,000 to 31,000 lbs.) per square

inch.

Admiralty gun-metal.—For all ordinary castings in connection with the machinery, the gun-metal used must contain not less than 8 per cent. of tin, and not more than 5 per cent. of zinc. For air-compressing machinery and torpedo fittings, &c. (where the working pressure is 1700 lbs. per square inch), the mixture specified is,—Copper, not less than 86 per cent.; Tin, not less than 10 nor more than 12 per cent.; Zinc, not more than 2 per cent. Cuttings to be sent to Portsmouth dockyard for analysis.

When carefully made, test bars of this metal will show a strength of nearly 15 tons (33,000 lbs.) per square inch, and the average strength of castings is about 131/4 tons (30,000 lbs.) per square

inch.

Fairly good ordinary gun-metal ought to show a strength of about 12 tons (27,000 lbs.) per square inch, and should extend 10 per cent. in a length of 2 inches before breaking.

Its weight is about 545 lbs, per cubic foot, or 315 lb, per cubic

inch.

#### Phosphor Bronze.

This metal is composed of copper and tin, with a small proportion (about ½ per cent.) of phosphorus. It is harder than ordinary gunmetal, very close grained, and of superior strength. The average ultimate strength is about 15½ tons (35,000 lbs.) per square inch, while that of some grades of the metal is as high as 22 tons; it is, however, very "red-short," and, when heated, is liable to crack. Great care is required in melting and running it, and repeated meltings very much reduce its virtue.

### Manganese Bronze.

Manganese bronze consists of copper and tin, or copper, tin, and zinc (according to the grade of metal required), with the addition of

a proportion of ferro-manganese. The quality generally used for propeller blades shows a strength of about 21 to 22 tons (47,000 to 49,000 lbs.) as ordinarily cast, but rather better results can be obtained by casting the blades on end, and giving a head of about 2 feet.

The weight of this material is about 535 lbs. per cubic foot, or

'31 lbs. per cubic inch.

Rolled rods of manganese bronze can be obtained of strengths varying from 28 to 32 tons (63,000 to 72,000 lbs.) per square inch, and showing an elongation of 40 per cent, to 15 per cent, in 2 inches.

#### Muntz Metal.

Muntz metal is composed of 60 per cent. of copper, and 40 per cent. of zinc. It is very ductile, and can be forged when hot, and has an ultimate tensile strength of about 22 tons (49,000 lbs.) per square inch. A cubic foot weighs about 512 lbs., and a cubic inch about 296 lbs.

#### Naval Brass.

Naval brass is composed of 62 per cent. copper, 37 per cent. zinc, and 1 per cent. tin, and possesses qualities very similar to those of muntz metal; the small addition of tin is found to protect it against the corrosive action of sea water, which causes muntz metal to "perish" or decay. Its strength is rather higher than that of muntz metal, and may be taken as about 24 tons (54,000 lbs.) per square inch.

#### White Metals.

The following Table shows the compositions of some of the best known white metals:—

	Copper.	Tin.	Zinc.1	Lead.	Antimony.
Parson's white brass	1	68	30.5	•5	
Babbit's white metal	8.5	83 16:6	 79		8.5
Fenton's white metal	4.4	10.0	19		••• ,

A very good white metal is made by mixing 6 parts of tin with 1 of copper, and 6 parts of tin with 1 of antimony, and then adding the two mixtures together.

# TABLE LXXXIV .-- STRENGTH, ETC., OF MATERIALS. Table LXXXIV.—Strengths, &c., of Materials (Summary).

Material.  Waterial.  Ultimate tensile strength. lbs. per square inch.		Elastic strength. lbs. per square inch.	Elongation per cent., when broken by tensile stress.	
Cast-iron (ordinary good)	18,000	11,000		
" (Admiralty) .	f not less than			
Wrought-iron bars (or-	( . 20,160			
dinary good) Yorkshire plate—	54,000	29,000	15 % in 8 ins.	
With grain	54,000	26,000	20 % " 14 % "	
Across " Staffordshire plate—	49,000	•••	14% "	
With grain	50,000	24,000	12% "	
Across "	41,000	<b></b>	12 % " 8 % "	
Iron forgings-				
Large Small	45,000 50,000		9% " 13% "	
Steel castings (ordinary	50,000	•••	13% "	
good)	67,000	35,000	10% "	
~. · · · · · · · · · · · · · · · · · · ·	not less		not less than	
Steel castings (Admiralty)	{ than 63,000 }	•••	13½-18½% in 2 ins.	
',, (Lloyd's) .	notexc'd'g }		$\begin{cases} \text{not less than} \\ 10\% \text{ in 8 ins.} \end{cases}$	
Steel boiler plate-	( 01,000 )		(10 % 111 0 1115)	
(Ordinary good) .	65,000	36,000	20 % "	
(Admiralty) internal.	notexc'd'g }		20 % "	
, shell .	60,480-67,200	f not less		
, snell .	00,200-07,200	31,360		
(B. of T.) internal .	58,240-67,200	•••		
	60,480-71,680	•••	18% in 10 ins.  ( not less than	
Lloyd's	58,240-67,200	•••	1 20 % in 8 ins.	
Steel forgings (Admiralty)	1 ' ' 1	$\begin{cases} 34,500 \text{ to} \\ 43,120 \end{cases}$	28 % to 24 % } in 2 ins.	
Sheet copper	30,000	5,600	35 % in 8 ins.	
Copper wire (annealed) . Gun - metal (ordinary	40,000			
good)	27,000	6,500	10 % in 2 ins.	
Gun-metal (Admiralty) . Phosphor bronze (cast) .	31,000 35,000	19,000	12 % in 2 ins.	
Manganese bronze , .	55,000	,	10% "	
" (rolled)	67,000	•••	20% "	
Muntz metal	50,000	30,000	30 % " 25 % in 8 ins.	
Naval brass	54,000	24,000	20 % in 8 ins.	

#### BENDING STRAINS.

Table LXXXV.—Graphic Representation of Bending Moments and Shearing Strains in Simple Cases.

Bending Moment.	Shearing Strain.											
f-greatest permissible stress on material; Z-modulus of section —see Table LXXXVI.; M-greatest bending moment; S-greatest shearing strain.												
Beams fixed at one end.												
$M = Wl$ Working load $-\frac{fz}{l}$	s-w											
M ₁ = W ₁ l ₁ ; and M ₂ = W ₂ l ₂ M ₃ = W ₁ l ₁ + W ₂ l ₂	S ₁ - W ₁ ; and S ₂ - W ₂ S ₈ - W ₁ + W ₂											

## Beams fixed at one end-continued.



Working load  $-4\frac{fz}{1}$ 

## Beams supported at both ends-continued.



Working load (per unit of length)

#### Beams fixed at both ends.

#### Bending Moment.



In this case the bending moments at x, x, and x are equal, and have the value,—

$$\mathbf{M} = \frac{\mathbf{W}l}{8}$$

Working load = 
$$\frac{8fz}{l}$$

#### Shearing Strain.



In this case the greatest bending moment occurs at x and x, and has the value,—

$$\mathbf{M} = \frac{wl^2}{12}$$

Working load (per unit of length) = 
$$\frac{12fz}{l^2}$$

"Modulus" of section.  $\frac{D^4 - d^4}{D}$  $g\left(\frac{S^4-s^4}{S}\right)$ The plane of bending is supposed perpendicular to plane of paper, and parallel to side of page.  $b(H^3-h^3)$ -0982d3  $\frac{\kappa}{n} = Z$ 6 Table LXXXVI. -- Moment of Inertia, Modulus, &c., of some Sections. Square of rads. of gyration of section.  $H^2 + hH + h^3$ - 14 |-|-S2+82 D2+d3 % |2 2 2 12 19 g section about axis through Moment of inertia of centre of gravity. ·0491 (D4 - a4)  $b (H^3 - h^3)$ ·049144 S4- 8 12 bh3 Area of section. 7854 (D3 - d2) p (H - h)S - S ·7854d² gy Form of section.

rved.	"Modulus" of section. $Z = \frac{I}{y}$	BH* – b/*	Bks+bHs 6日	(BH ² – bh ² ) ² – 4BHbh (H – h) ² 6 (BH ² + bh ² – 2bHh)
ctions—contin		H	B	(BH ³ - bh ³ ) ³ - 6 (BH ³ -
&c., of some Se	Square of rads. of gyration of section. $\rho^{3} = \frac{1}{\Lambda}$	$\frac{1}{12} \left( \frac{\mathrm{BH^3 - bh^3}}{\mathrm{BH - bh}} \right)$	į	Ē
Table LXXXVI.—Moment of Inertia, Modulus, &c., of some Sections—continued.	Moment of inertia of section about aris through centre of gravity.	$\frac{\mathrm{BH^3-6h^3}}{12}$	$\frac{\mathrm{B}h^3 + b \mathrm{H}^3}{12}$	(BH ² – bh ² ) ² – 4BHbh (H – h) ² 12 (BH – bh)
LXXXVI.—M	Area of section.	8Н - ЪЪ	Bh+bH	ВН-ы
Table	Form of section.	-8-1	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	

Table LXXXVII.—Forms of Beams of Uniform Strength.

Breadth (b) uniform t	hroughout
Elevation of arrangement.	Equation for dimensions.
Parabola W	$y = \sqrt{\frac{6Wx}{bf}}$
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	$y = \sqrt{\frac{3wx^3}{bf}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$y_1 = \sqrt{\frac{6Wl_2x_1}{bfl}}$ $y_2 = \sqrt{\frac{6Wl_1x_2}{bfl}}$
	$y = \sqrt{\frac{3w\left(\vec{l}^2 - 4x^2\right)}{4bf}}$

Table LXXXVII.—Forms of Beams of Uniform Strength.—cont.

Depth (A) uniform th	aroughout.
Plan of arrangement.	Equation for dimensions.
	$z = \frac{6 \mathrm{W} x}{h^2 f}$
	$z = \frac{3wx^2}{h^3f}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z_1 = \frac{6Wl_2x_1}{h^2fl}$ $z_2 = \frac{6Wl_1x_2}{h^2fl}$
parabola 12	$z = \frac{3w (l^2 - 4x^2)}{4h^2 f}$

#### EXPANSION OF METALS BY HEAT.

The following table shows approximately the extent to which metals, &c., expand under the action of heat:—

Table LXXXVIII.—Expansion of Metals, &c., for rise of Temperature of 180° F.

				Change	of length.
Mater	ial.		-	Fraction of total length.	Inches per foot.
Cast-iron, .		•		·00117	*0140
Wrought-iron,			.	·00122	-0146
Steel				.00120	*0146
Copper, .			.	.00182	·0218
Gun-metal.			.	·00187	-0247
Fire-brick, .			.	.000423	.0050

If  $t_1$  and  $t_2$  be the highest and lowest temperatures to which the object is exposed, the *alteration* in length is given by,—

Alteration in length (increase or diminution) = 
$$C \times \left(\frac{t_1 - t_2}{180}\right) \times L$$

where L is length in feet, value of C is taken from above table, and alteration of length is given in inches.

The expansion of metals, per degree rise of temperature, increases slightly as higher temperatures are reached, but for all practical purposes it may be assumed to be constant.

Effect of temperature on strengths of metals.—At 400° F. almost all alloys of copper, tin, and zinc lose from 15 to 20 per cent. of their ultimate strength.

Copper is similarly affected, and loses 8 to 10 per cent. of its strength at 400° F.

Cast-iron is practically unaffected up to 400° F.

Wrought-iron and mild steel gain from 10 to 15 per cent in ultimate strength at 400° F.

The changes seem to progress regularly with the changes of temperature.

### MELTING POINTS OF METALS.

Table LXXXVI. gives, approximately, the melting points of some ordinary metals; it should be understood that all temperatures above 900° to 1000° F. are only roughly approximate, as the readings of pyrometers cannot be relied upon to a hundred degrees or so.

# Table LXXXIX.—Melting Points of some Metals.

Wrought-iron	melts at a	bout			٠.	2700°-2900°
		,,				2700°
Steel (low car		,,				2600°
,, (high ca	rbon),,	,,				2400°
Cast-iron (whi	ite) ,,	,,				2250°
,, (gre	y) ,,	,,				2050°
C						. 2000°
Wrought-iron	-"cherry	-red "	heat			1500°-1800°
Gun-metal me	lts at abou	ıt				1700°
Red heat visib	le by dayl	ight a	bout			1100°
Zinc melts at	about	·				840°
Antimony	••		•			800°
Red heat visib	lé in dark	abou	t			750°- 800°
Lead melts at						630°
Bismuth ,						510°
Tin ,	•					440°
'.     .   .   .   .   .   .   .   .   .				 		

# WEIGHTS OF MATERIALS.

Table XC.—Weights of Materials (Summary).

Material.	Weight of a cubic foot in lbs.	Weight of a cubic inch in lbs.
Air (32° F. and 14.7 lbs. pressure)	0807	
( pure,	- 62.4	036
Water (60° F.) { river,	63	
868,	64	037
Colza, linseed, or olive oil, .	57-58	
Mineral oils,	56	•••
Tallow.	58	
Waste (moderately pressed),	11	
Elm, pine, or fir timber,*	30-40	
Beech, ash, or birch,	40-45	
Oak or teak,	45-55	
Greenheart, ,,	- about 65 -	
Lignum-vitæ, ,,	- about 80 -	
Fire brick.	- about 140 -	
Wrought-iron bars or plates, .	485	•281
Staffordshire plates,	480	•277
Iron forgings (large),	477	276
Steel bars and plates,	490	284
Steel forgings (large),	487	282
Steel-Whitworth compressed, .	496	287
Cast-iron,	450	260
Cast-steel (mild),	490	'284
Sheet copper,	550	318
Gun-metal	545	315
Muntz-metal,	512	296
Naval brass (rolled),	530	307
White metal (Babbit's),	456	263
Cooot	435	252
Zinc {cast, rolled,	450	260
Coot	708	'408
Lead { sheet,	711	411

A	plate	of	cast-iron 1 foot square	and 1	inch	thick	weighs	37.5	lbs.
	- 11		wrought-iron	11		*1		40	**
	**		cast-steel (mild)	11		**		41	**
	**		wrought-steel (mild)	**	,	**		41	**
	i,		gun-metal	11		11		45	**
	**		rolled brass	**		**		44	**

The Admiralty reckon 40 cubic feet of bunker space as 1 ton, but the usual allowance is 45 cubic feet to the ton; the actual average bulk of a ton is about 43 cubic feet, but if taken at 45 cubic feet a fair allowance is made for the upper portions under the deck-beams, which cannot be filled.

^{*}The following are the exact weights of the various kinds of pine wood in general use, as derived from a series of careful experiments recently made by Mr Seaton:—Yellow pine, very dry,

24 lbs. per cubic foot.

ıı in	planks,	seasoned,		•	•	28	**	. ,, 4
Baltic red pine,	11	**	•	•	•	<b>3</b> 0·5	11	**
Oregon pine,	11	**	•	•	•	35	11	**
Kauri pine,	11	11	•	•	•	42	**	11

Table XCI.—Table of the Weight of Round and Square Wrought-Iron Bars in iba. per Lineal Foot.

Dia.	Weight in lbs.		Dia.	Weigh	in lbs.	Dia.	Weight	in lbs.
or Side.	Round.	Square.	or Side.	Round.	Square.	or Side.	Round.	Square.
3/16	1093	•117	83/4	36.812	46.875	8	167.53	213.33
1/4 5/16 3/8	·164	•208	<b>%</b>	39.306	50.052	1/8 1/4	172.81	220.05
5/16	-256	*326		i		1/4	178.17	226.88
3/6	.368	•469	4	41.884	53.333	3/8	183.61	233.80
7/16 1/2 1/16	•501	•638	⅓	44.542	56.719	1/2	189.13	240.83
1/2	·654	•833	1/4 1/4 1/8	47.283	60.208	1/2 % 3/4	194.73	247.97
%16	*828	1.055	₩	50.105	63.802	3/4	200.42	255.21
5/8 11/16 3/.	1.023	1.302	1½ 5% 8%	53.009	67.500	<b>%</b>	206.19	262.55
11/16	1.237	1.576	· %	55.995	71.302			
3/4 1 3/1 6 7/2	1.478	1.875	₹4	59.062	75.208	9	212.04	270.00
13/16	1.728	2.201	<b>%</b>	62.212	79.219	⅓	217.97	277.55
7/8 15/16	2.004	2.552		Į.		1/4 1/4 1/2 1/8	223.98	285.21
15/16	2.300	2.930	5	65.443	83.333	- %	230.07	292.97
	1		1%	68.756	87.552	1/2	236.25	300.83
1	2.618	3.333	1/8 1/4	72.151	91.875	%	242.51	308·80
<b>1</b> %	3.313	4.219	%	75 628	96.302	3/4	248 85	316.88
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.090	5.208	% 1½ % %		100.83	<b>%</b>	255.27	325.05
3∕8	4.949	6.302	<b>%</b>	82 827	105.47			
1/2	5.890	7.500	34		110.21	10	261.77	333 33
<b>5</b> %	6.912	8.802	<b>%</b>	90.353	115.05	1/8	268.36	341.72
3/4	8.017	10.208	١.			1/4	275.03	350.21
%	9.203	11.719	6		120.00	1/4 3/8 1/2 5/8 8/4	281.77	358.80
1.			% 14% 12% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14		125.05	1/2	288.60	367.50
2	10.471	13.333	1/4	102.26	130.21	<b>%</b>	295.52	376.30
½s	11.821	15.052	<b>%</b>	106.39	135.47	%	302.51	385.21
1 %	13.252	16.875	<b>1</b> /2	110.60	140.83	7∕8	309.59	394.22
1/8 1/4 1/8 1/8 1/8	14.766	18.802	<b>7</b> 8	114.89	146.30	l	010.77	400.00
1 1/2	16:361	20.833	<b>%</b>	119.27	151.88	11,	316.75	403.33
1 %	18.038	22.969	<b>//8</b>	123.73	157.55	1/8	323.99	412.55
% %	19.797	25.208	7	128-27	163:33	1/4 1/8	331.31	421.88
<b>%</b>	21.637	27.552				78	338.71	431.30
3	23.560	30.000	78	132·89 137·60	169·22 175·21	1/2 5/8	346·20 353·76	440.83
	25.564	32.552	74 8/	142.98	181 30	78 8/	361.41	450·47 460·21
1 7/8 1/	27.650	35.208	78	147.25	187.50	% %	369.14	470.05
74 3/	29.818	37.969	1/4 1/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	152.20	193.80	<i>7</i> 8	009.14	#10 00
1 78	32.067	40.833	78 8/	157.23	200.21	12	376.95	480.00
1/8 1/4 1/8 1/8	34.399	43.802	74 %	162.34	206.72	14	010 95	200 00
78	04 059	10 002	78	102 04	200 12	٠.		
	<del></del>							L

For larger sizes take weight of bar of half the diameter or side and multiply it by four.

Table XCII.—Table of the Weight of Round and Square Bar Steel in lbs. per Lineal Foot.

Dia.	Weight in lbs.		Dia.	Weight	in lbs.	Dia.	Weight	in lbs.
or			or		ı	or		
Side.	Round.	Square.	Side.	Round.	Square.	Side,	Round.	Square.
1/8 3/16	.042	•053	35%	35 090	44.678	7%	165.60	210.85
3/16	.094	.120	8%	37.552	47.813			
1/4	.167	•213	<b>%</b>	40.097	51.053	8	170.90	217.60
1/4 5/16	.261	•332			1	<b>⅓</b>	176.29	225.25
8%	•375	·478	4	42.726	54.400	⅓ ⅓	181.75	231.41
% % %	•511	·651	1/8	45.438	57.853	<b>8</b> ∕4	187.80	238.48
1/2	•667	·850	1/4	48.233	61 413	1½ %	192.93	245.65
<b>9</b> /10	·845	1.076	<b>8</b> ₹	51.112	65.078	<i>5</i> ₹	198.65	252.93
5%	1.043	1.328	1/2	54.075	68.850	8/4	204.45	260.31
5/8 11/16 8/.	1.262	1.607	1/8 1/4 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	57.121	72.728	% %	210.33	267.80
	1.502	1.913	84	60.250	76.713			
13/16	1.762	2.245	<b>1</b>	63.463	80.803	9	216.30	275.40
7/8 15/16	2.044	2.603	'	ł	1	1/8 1/4 3/8 1/2 5/8	222.35	283.10
18/16	2.347	2.988	5	66 759	85.000	1/4	228.48	290.91
,			1/8	70.139	89.303	3/8	234.70	298.83
1	2.670	3.400	1/8 1/4 1/8 1/2 1/8	73.602	93.713	1/2	241.00	306.85
1/8	3.380	4:303	<b>%</b>	77.148	98.229	5%	248.38	314.98
1/8 1/4 8/8 1/2 5/8 8/4	4.172	5.313	1/2	80.778	102.85	8/4	253.85	323.21
₩.	5.049	6.428	%	84.492	107.58	<b>7</b> /8	260.40	331.55
1/2	6.008	7.650	8%	88*288	112.41			
<del>%</del>	7.051	8.978	% %	92.169	117:35	10.	267.04	340.00
<b>3</b> ⁄4	8.178	10.413		ļ		1/8	273.75	348.55
<b>%</b>	9.388	11.953	6	96.133	122.40	1/4	280.55	357.21
			1%	100.18	127.55	<b>3</b> √8	287.44	<b>365</b> ·98
2	10.681	13.600	½     ¼	104.31	132.81	1/8 1/4 1/2 1/8 1/2 5/8	294.41	374.85
⅓	12.058	15.358	<b>1</b> %	108.52	138.18	%	301.46	383.83
1/8 1/4 3/8 1/2 5/8 3/4	13.219	17.213	% ½ %	112.82	143.65	<b>¾</b>	308.59	392.91
3/8	15.062	19.178	1 %	117:20	149.23	<b>%</b>	315.81	402.10
1/2	16.690	21.250	% %	121.67	154.91			
%	18.400	23.428	<b>%</b>	126.22	160.70	11	323.11	411.40
3/4	20.195	25.713				1∕8	330.20	<b>420</b> ·80
<b>%</b>	22.072	28.103	7	130.85	166.60	1/4	337.97	430.31
			1/8 1/4	135.56	172.60	1/4 %	345.52	439.93
3	24.033	30.600	1/4	140.36	178.71	1/2	353.15	449.65
1/8	26.078	33.203	%	145.24	184.93	½ % %	360.87	459.48
1/4	28.206	35.913	% ½ %	150.21	191.25		368.68	469.41
1/8 1/4 8/8 1/2	30.417	38.728	%	155.26	197.68	<b>%</b>	376·5 <b>6</b>	479.45
1 1/2	32.712	41.650	8/4	160.39	204.21	12	384.53	489.60
	1							

For larger sizes take weight of bar of half the diameter or side and multiply it by four.

Table XCIII.-Table of the Weight of Flat Wrought-Iron Bars in lbs. per Lineal Foot.

Breadth	(Ing.)	-	1%	1%	7%	ė,	2%	2%	2%	60	8%	8%	8%	4	4%	4½	4%	20
	1 in.	8.83	4.16	2.00	28.93	29.9	2.20	8.33	21.6	10.00	10.83	11.67	12.20	13.33	14.17	15.00	16.83	16.67
	16%	8.18	8.91	4.69	2.47	6.25	7.08	7.81	8.28	88.6	10.16	10.94	11.72	12.20	13.28	14.06	14.84	15-63
	%	2.85	8.65	4.38	5.10	2.88	99.9	7.29	8.03	8.75	84.6	10.21	10.94	11.67	12.40	13.18	13.85	14.58
	18%	2.71																
Inch.	*	5.20																
s of an	11/46	5.58	2.86	8.44	4.01	4.58	5.16	5.78	8.80	88.9	7.45	8.03	8.29	9.17	9.74	10.31	10.89	11.46
Thickness in fractions of an inch	<b>%</b>	5.08	5.60	8.13	8.65	4.17	4.69	5.51	5.73	6.25	6.77	7.29	7.81	8.83	8.82	9.38	06.6	10.42
kness in	%		5.8	2.81	3.58	8.76	4.22	4.69	2.18	2.68	60.9	8.26	7.08	2.20	7.97	8.44	8.91	88-6
Thic	%	1.67	2.08	2.50	2.92	8.33	3.75	4.17	4.58	2.00	5.43	5.83	6.25	29.9	2.08	2.20	7.92	8.33
	%	1.48	1.82	2.19	2.22	2.92	3.58	3.65	4.01	4.38	4.74	2.10	5.47	5.83	6.50	6.56	6.93	7.29
	%	1.26	1.58	1.88	2.19	5.20	2.81	3.13	8.44	3.76	4.06	4.38	69.7	8.99	5.31	2.63	2.94	6.25
	%	1.04	1.30	1.58	1.82	5.08 7.08	2.84	2.60	2.86	8.13	8.30	3.65	3.91	4.17	4.43	<b>4.69</b>	4.95	6.21
	*	88	1.04	1.25	1.46	1.67	1.88	2.08	2.29	2.20	2.71	2.85	8.13	8.33	3.24	3.76	3.96	4.17
Breadti	Breadth of bar (ins.).		1%	11%	1%	67	27%	21%	2%	, es	37%	37%	8%	4	4 1/4	4%	4%	10

Table XCIV.—1able of the Weight of Flat Rolled Steel Bars in lbs. per Lineal Foot.

1			
	Breadth of bar	(ins.)	**** **** **** ****
		1 in.	8.45 6.10 7.65 7.65 10.20 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 111.05 110.05 110.05 110.05 110.05 110.05 110.05 110.05 110.05 110.05 110.
		16/16	3.19 8.58 6.58 6.58 7.17 7.97 8.79 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 11.96 1
		%	2998 4446 6695 6695 1110 1110 1110 1110 1110 1110 1110 11
		13/18	2.76 8.45 6.91 7.60 8.98 8.98 8.98 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 11.74 1
	ıch.	%	2555 8:195 6:146 6:38 7:401 7:401 7:401 8:93 8:93 8:93 8:93 8:93 8:93 8:93 8:93
	Thickness in fractions of an inch	11//8	2.932 2.932 4.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636
	fractions	%	22.13 26.68 27.22 27.23 27.23 27.23 27.24 27.24 27.24 27.24 27.24 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25
	kness in	%**	1191 22337 22337 23357 2458 2657 2657 2657 2657 2657 2657 2657 2657
	Thic	%	1.72 2.82 2.82 2.83 2.83 2.83 2.83 2.83 2.8
		7,18	11122222222222222222222222222222222222
		%	11.52 2.523 2.523 2.523 3.510 4.14 4.14 4.14 4.14 6.06 6.06 6.06
		91%	11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
		74	36.01 10.05 11.28 11.29 11.20 12.20 13.00 13.00 13.00 14.00 14.00 15.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16
	Breadth of har	(jus.)	

Table XCV.—Table of the Weight of Iron Angle-Bars in lbs. per Lineal Foot.

Sum of flanges (ins.).				Thickn	ess in	fractio	ns of a	n inch			
Sur flange	3/16	1/4	%.	%	7∕1€	1/2	%	%	11/16	3/4	18/16
216	1.45	1.88	2.28	2.66							
21/2 23/4	1.60	2.08	2.54	2.97							
3	1.76	2-29	2.80	3.28				l			
31/4	1.91	2.50	3.06	3.59	4.10		l				
31/2	2.07	2.71	3.32	3.91	4.47						
3 3/4	2.23	2.92	3.58	4.22	4.83				1		
4	2.38	3.13	8.84	4.53	5.20	5.83					l l
41/4	2.54	3.33	4.10	4.84	5.56	6.25			1		
41/2	2.70	3.54	4.36	5.16	5.92	6.67	١				! I
43/4	2.85	3.75	4.62	5.47	6.29	7.08	7.85		١		l l
5	l l	3.96	4.88	5.78	6.65	7.50	8.32			l	l I
51/4	·	4.17	5.14	6.09	7.02	7.92	8.79				l l
51/2	l l	4.38	5.40	6.41	7.38	8.33	9.26	10.16			
53/4	1		5.66	6.72	7.75	8.75	9.73	10.68			l l
6	1		5.92	7.03	8.11	9.17	10-20	11.20		<b>!</b>	l
61/4			6.18	7.84	8.48	9.58	10.66	11.72	12.75		
101/6				7.66	8.84	10.00	11.13	12.24	13.32		١ ا
68/4				7 -97					13.89		
7				8.28						15.63	
71/4				•••					15.04		
71/2 78/4									15.61		
7%		•••		•••	10.66						18.79
18				•••					16.76		
81/4				•••					17.33		
8 1/2				•••		13.33					20.82
83/4											21.50
9									19.05		
91/4 91/2							16:29				22.85
91/2				•••							23.23
93/4	•••								20.77		
10				•••				19.53	21.34	23.18	24.88
								L			

				Thicks	ess in	fractio	ns of a	n inch			
nanges (ma.).	3/16	1/4	5/16	<b></b> %	7/16	1/2	%6	%	1 1/16	3/4	13/16
4	1.47	1.91	2.32	2.71							
4	1.63	2.12	2.59	3.03	ا ا						l
	1.79	2.34	2.86	3.85				l	١	•••	l
4	1.95	2.55	3.12	3.67						•••	•••
1 2 4	2.11	2.76	3.39	8.98		•••	•••	•••	•••	•••	
	2.27	2.97	3.65	4.30	4.93			•••	•••	•••	
•	2.43	3.19	8.92	4.62	5.30	5.95	•••	••••	•••	•••	
	2.59	3.40	4.18	4.94	5.67	6.38	•••	•••	•••	•••	
•	2.75	3.61	4.45	5.56			•••	••	•••	•••	
2	2.91	3.82	4.71			6.80	***-	•••	•••		• • • •
Ŀ				5.28	6.41	7.23	8.01	•••	•••	•••	
,		4.04	4.98	5.90		7.65	8.49	•••		• • • •	
,	•••	4.25	5.25	6.55	7.16	8.08	8.96				۱
, B		4.46	5.51	6.23	7.53	8.20		10.36			١
Ĺ			5.78	6.82	7.90	8.83	9.92	10.89			<b>.</b>
			6.04	7.17	8.27	9.35	10.40	11.42	l		
Ĺ			6.31	7.49	8.65		10·88		13.00		
				7.81	9.02	10.20	11.36	12.48	18.50		l
	l			8.18	9.39	10.63	11.83	18.09	14.17	•••	
•				8.45					14.76	15.04	…
					10.13	11.48	10.70	14.00	18.04	10.84	
•			i 1	•••	10.51	11.00	19.07	14.01	15.00	10.09	
2					10.00	10.00	10.75	14.01	19.82	17.51	
				•••	10.88	12.99	19.19	19.14	10.91	17.85	19.1
,		•••		•••		12.40	14 22	10.67	17.09	18.49	19.8
1		• • • •		•••		13.18	14.70	16.50	17.68	19.18	20.5
}			'	•••		13.60	15.18	16.78	18.26	19.76	21 2
ı.				• • • •		•••	15.66	17:27	18.85	20.40	21.9
. '						•••	16.14	17.80	19.43	21.04	22.6
2				• • •			16.61	18:33	20.01	21.68	23.3
2						•••	١		20.60		
Ĺ	·				ا ا		l		21.18		
									21.77	28.59	

Table XCVII.—Whitworth Gas Threads.

Diameter of pipe (inside).	Diameter over threads.	Diameter at bettom of thread.	Number of threads per inch.
1"	*8825	•3367	28
Ĭ	·5180	4506	19
)	-6563	-5889	19
i	·8257	.7342	14
1	•9022	-8107	14
å	1.041	9495	14
7	1.189	1.0975	14
ı°	1.309	1.1925	11
11	1.492	1.8755	11 .
1 <u>1</u>	1.65	1.5335	111
1	1.745	1.6285	ii
11	1.8825	1.766	ii
	2.021	1.9045	ii
1§ 1\$	2.047	1.9305	111
11	2.245	2.1285	11
$ar{2}^ullet$	2:347	2.2305	11
2 <u>1</u>	2.5875	2.471	ii
$\frac{\overline{2}}{2}$	3.0013	2.8848	11
22	3.247	3.1305	11
3 '	3.485	3.3685	11
31	3.6985	8.582	ii
31	3.912	8.7955	11
82	4.1225	4.009	11
4	4.339	4.2225	ii

# Table XCVIII.—Weight of Brass Condenser Tubes.

L.S	3.G.	14	15	16	17	18	19	20
Inc	hes.	.080	.072	.064	.056	.048	.040	.036
Milli	netres.	2.032	1.829	1.626	1.422	1.219	1.016	·914
Ext, D	iameter.		Waigh	t of a T	ineal F	oot in r	mnde	,
Ins.	mm.		M. eign	, or a L	111001 1		ounus.	
*	15.9	·51	•46	.42	•37	.32	.27	.25
3	19.0	•62	.57	.51	.45	-89	.33	.80
1 8	22.2	.74	·67	:60	.53	· <b>4</b> 6	.89	.35
1	25.4	-86	.78	·70	.62	•53	.45	· <b>4</b> 0
ļ	1	!		1	1	1		J

Note.—The above weights are for tubes containing 70 per cent. copper.

## Table XCIX.—Weights of

												тні	CKN	E88
al .	L	S.G.	16	15	14	13	12	11	10	9	8	7	6	5
External Diam.	In	ches.	'064	072	.080	.092	.104	116	128	144	160	.176	192	-21
SP	Mill	imetres	1.626	1.829	2.032	2.337	2.642	2.946	3.251	3.658	4.064	4.470	4:877	5 38
Ins.	L	sual .8.G. and eight.									,	VEIG	нт 1	PER
1 11 11 12 12 12 12	14 14 13 13 13	0.771 0.875 1.116 1.236 1.356		0.794 0.888 0.982	0.875 0.980 1.085	0.995 1.116 1.236	1·112 1·248 1·384	1.074 1.226 1.377 1.529 1.681	1:336 1:504 1:671	1.479 1.668 1.856	1.617 1.826 2.036	1.749 1.979 2.210	1.876 2.127 2.378	2:02 2:30 2:58
15 13 14 15 2	13 13 13 12	1·477 1·597 1·718 2·065		1.265	1°399 1°504	1.597 1.718	1.793 1.929	1·833 1·985 2·137 2·288	2·174 2·342	2·422 2·610	2.664 2.873	2.901 3.131	3·132 3·384	3.41
21 21 21 21 21 21 21 21 21 21 21 21 21 2	12 12 11 11	2°201 2°337 2°744 2°896				2:079 2:199	2·337 2·473	2:440 2:592 2:744 2:896	2.844 3.012	3·176 3·364	3.502 3.711	3·822 4·053	4·138 4·389	4.52
25 25 25 25 25 25 25 3	11 11 11 11	3:048 3:200 3:351 3:503				2.561 2.681	2.882 3.018	3·048 3·200 3·351 3·503	3.514 3.682	3.930 4.118	4:339 4:549	4.744	5·143 5·394	5 63 5 91
31 31 31 31 31 31	10 10 10 10	4·017 4·185 4·352 4·520					3·426 3·562 3·698	3.655 3.807 3.959 4.111	4·185 4·352	4.684 4.872	5·177 5·387	5.665 5.896	6·148 6·400	6:744 7:02
35 31 31 31 4	10 10 9 9	4.687 4.855 5.626 5.815		Actu	of Ir	on at	3·835 3·971		4·855 5·022	5.438 5.626	6·015 6·224		7°154 7°405	7:854 8:132

For other metals— Steel, ... Brass, ... Copper, ... multiply by 1.012. ,, 1.080. ,, 1.185.

### Iron Boiler Tubes.

4	3	2	1	₽"	<b>∄</b> ″	₹"	<b>A</b> ″	8″	78"	<u>₹</u> ″	ᇃ.
-232	-252	-276	.300	·125	187	250	*313	*875	437	.200	External Diam.
·8 <b>93</b>	6:401	7.010	7-620	8·175	4.726	6.350	7-987	9.525	11.112	12.700	EX.
FOO	T IN	POUN	TDS.								Ins
	1-974	2.092	2.199	1.145	1.595	1.963	2.250	2.454	2.577	2.618	1
	2·304 2·634	2.454	2.592	1.309	1.841	2·291 2·618	2·659 3·068	2·945 3·436	3·150 3·723	3·272 3·927	1
	2 034 2 963	2·815 3·176	2 984	1.473 1.636	2·086 2·332	2.018	8.477	3 927	4.295	4.581	14
	3-293	8.538	8-770	1.800	2.577	3.272	3.886	4.418	4.868	5.236	1
384	3·623	3.899	4 163	1.963	2.822	3.600	4-295	4.909	5.440	5.890	15 17 17
	3.953	4-260	4.222	2.127	3.068	3.927	4.704	5:400	6.018	6.545	17
	4·283 4·613	4.621	4 948 5 341	2·291 2·454	8·318 3·559	4·254 4·581	5·113 5·522	5·890 6·381	6·586 7·159	7·199 7·854	28
- 200	7 010	1 000	0 021	2 101	0 000	2 001					
	4-943	5.344	5.733	2.618	3.804	4.909	5.981	6.872	7.731	8:508	21 21
	5-273	5 706	6.126	2.782	4.050	5.236	6.340	7·363 7·854	8.304	9.163	Z‡
	5 602 5 932	6.067	6·519 6·911	2·945 3·109	4.295	5·563 5·890	6·749 7·159	8:345	9.449	10.472	2 g 2 g
	0 002	0 120	0 011	3 100		000					_
	6-262	6.789	7.804	3.272	4.786	6.218	7.568	8.836	10.022	11.126	25
	6.592		7.697	3.436	5.031	6.545	7.977	9.327	10·595 11·167	11.781 12.485	23 24
	6-922 7-252	7.512	8.090	3·600 3·763	5 277 5 522	6·872 7·200	8.386	9.818	11.740	18 090	3
0 120	7 202	7.873	8.482	5.100	o bzz	7 200	0 100	10 306	11 110	10 000	
7.028	7.582	8-234	8.875	3.927	5.768	7.527	9.204	10.799	12.313	18.744	31
	7-911	8.596	9.268	4.091	6.013	7.854	9.613	11.290	12.885	14.399	31
	8-241	8 9 6 7	9.660	4-254	6-259	8 181	10.022	11.781	18.458	15.058	38
7.940	8.571	9.318	10.053	4.418	6.504	8.208	10.481	12.272	14.081	15.708	81
8-943	8-901	9.679	10.446	4.581	6.750	8.836	10.840	12.763	14.604	16:362	35
		10.041	10.838	4 745	6.995	9.163	11 249	13.254	15.176	17 017	3
		10.402	11.231	4.908	7.240	9.490	11.658 12.067	18.745 14.235	15.749	17.671	37
		10763	11.624	5.072	7.486	9.817			16.322	18.326	

Table C.—Weights of Seamless

							A CIR			
L. S. (	G	4/0	3/0	2/0	0	1	2	8	4	5
Inches		•400	•372	•348	*324	.800	•276	•252	·232	•212
Millime	etres .	10.160	9.449	8.839	8.229	7 ·620	7.010	6.401	5.893	<b>5·3</b> 85
	rnal neter.									
Inches	mm.	İ					We	ight o	f a lin	eal 
8/4	19:0		٠							
1-	25.4		•••		•••	•••		•••	•••	
11/4	31.7									
11/2	88.1									• • •
1%	44.4	•••			•••		•••	•••	•••	
2	20.8	•••			• •••		•••	•••	•••	•••
21/4	57.1		•••							•••
21/2	63.5							•••	•••	
23/4	69.8		•••							7.60
8	76.2					•••		•••	9.07	8.24
31/4	82.5					•••			9.77	8.88
31/2	88.9			.:.				11.44	10.47	9.52
3 1/4	95.2		•••				13.44	12.20	11.18	10.16
4	101.6						14.28	12.96	11.88	10 80
41/2	114.3							14.49		
5	127.0				20.87	19:23	17.62	16.01	14.68	18:37
51/2	139.7	l			22.88	21 05	19.29	17.54	16.09	14.65
6	152.4	l l		26.72	24.79	22.86	20.95	19.06	17:49	15.93
61/2	165.1	l	30.98	28.83	26.75	24 .68	22.62	20.58	18.89	17.21
7 7	177.8	l l	33.18	30.93	28.71	26.49	24.29	22.11	20.30	18.50
71/2	190.5							23.63		
8	208.2							25.16		
81/2	215.9							26.68		
9′″	228.6							28-21		
91/2	241.3							29.73		
10	254.0							31 25		
101/2	266.7							32.78		
11'	279.4							34.30		
111%	292.1							85.83		
12	304.8							37.85		
121/6	817.5							38.88		
13	330.2							40.40		
181/2	342.9							41.92		
14'	855.6							43.45		
7.5	900.0	80.80	04'08	00.40	90.14	DT.A0	47.67	45.49	58.A4	30.50

Mandril drawn Brazed Tubes weigh the Ordinary Brazed Copper Tubes weigh rather more than Seamless Tubes, the

### Copper Tubes.

6	7	8	9	10	11	12	13	14	15	16
·192	·176	.160	144	128	116	104	·092	·080	.072	.064
4 .877	4.470	4.064	8.658	3.251	2.946	2.642	2.377	2.082	1 .829	1.626

# foot in pounds.

•••			•••	1.36			.94	.80	•72	·63
	•••		•••	1.75			1.21	1.04	.93	-82
•••	•••	•••	2.48			170	1.49	1.29	1.15	1.02
	•••	8.51	2.86	2.25	2.27	2.02	1.77	1.58	1.37	1.21
•••		8.70		2-91	2.62	2.33	2.05	1.77	1.59	1.40
	4.68	4.18	3.78	8-29	2.97	2.65	2.33	2.01	1.80	1.60
5.67	5.16		4.17	8.68	8.82	2.96	2.61	2.25	2.02	1.79
6.25	5.70		4.61	4.07	8.67	3.28	2.88		2.24	1.98
6.83	6.28	5.63	5.04	4.46	4.02	3.29	3.16		2.46	2.18
7:41	6.76	6.12	5.48	4.84	4.37	8.90	3.44		2.68	2.37
7.99	7.29	6.60	5.91	5.23	4.72	4.22	3.72		2.89	2.57
8.28	7.83	7.08	6.35	5.62	5.07	4.58	4.00	8.46	8.11	2.76
9.16		7.57	6.78	6.00		4.85	4.28	8.71	8.38	2.95
9.74	8.89	8.02	7.22	6.89	5.78	5.16	4.55	8.95	8.55	8.15
10.90		9.02	8.09	7.17	6.48	5.79	5.11	4.43	3.98	3.58
12.06	11.02	8.88	8.96	7.94	7.18	6.42	5.67	4.92	4.42	3.92
13-22			9.83	8.71	7.88	7.05	6.22	5.40	4.85	4.81
14.38			10.70	9.49	8.58	7.68	6.78		5.29	4.69
15.54	14.21	12.89	11.27	10.26	9.28	8.81	7.84	6.37	5.72	5.08
16.70		13.86		11.04	9.99		7.89	6.85	6.16	5.47
17.87	16.34	14.83			10.69		8.45	7.84	6.60	5.86
19.03	17.41	15.79			11.89		9.01	7.82	7.03	6.24
20.19	18.47	16.76			12.09	10.82	9.56		7.47	6.68
21.85				14.13	12.79	11.45	10.12		7.90	7.02
22.51				14.91	13.49		10.68		8.34	
23.67	21.67	19.67	17.67	15.68		12.71	11.23		8.77	
24.83		20.63	18.54				11.79			- :::
26.00		21.60	19.41	17.23	15.60		12.34	10.72		
27.16	24.86	22.57	20.28	18.01	16.80		12.90			
28.32					17.00	15.23	13.46			
29.48					17.70					
30.64	28.05		22.90	20.33	18.41	16.49				
31.80		26.44		21.10				1		
32.86		27.41		21.88						
same a	s Seaml	ess Tub	88.						•••	

difference varying with the thickness, diameter, and class of joint.

Table CI.—Weight of Lead Pipes.

Thick- ness in				Weigh	t in p	ounds p	er foot	run.			
inches.	2"	21/4"	21/2"	2¾"	3"	31/4"	3½"	3¾"	4"	41/2"	5"
1/4	8.7	9.7	10.6 13.6	11.6 14.8	12.6 16.0		14·5 18·4	15·5 19·7	16·4 20·9	18·4 23·3	20·3 25·7
1/4 5/16 3/8 7/16	•••								25·4	28·3 33·4	

Lead pipes of these sizes and weights are usually manufactured in 10 ft. lengths.

Table CII.—Weight of Sheet Metals.

			eight or .			
Thickness		Weigl	ht in pound	s per squa	re foot.	
L.S.G.	Steel.	Iron.	Copper.	Brass.	Lead.	Zinc.
7/0	20.40	20.00	22.83	21.98	29.65	18.72
6/0	18.93	18.56	21.19	20.39	27.51	17:38
5/0	17.63	17.28	19.73	18.99	25.62	16.18
4/0	16.32	16.00	18.27	17.58	23.72	14.98
3/0	15.18	14.88	16.99	16.35	22.06	13.93
2/0	14.20	13.92	15.89	15.30	20.64	13.03
o	13.22	12.96	14.80	14.24	19.21	12.13
1	12.24	12.00	13.70	13.19	17.79	11.23
2	11.26	11.04	12.60	12.13	16.37	10.34
3 4	10.28	10.08	11.51	11.08	14.94	9.44
4	9.47	9.28	10.59	10.20	13.76	8.69
5	8.65	8.48	9.68	9.32	12.57	7.94
6	7.83	7.68	.8.77	8.44	11.38	7.19
6 7	7.18	7.04	8.04	7.74	10.44	6.59
8	6.53	6.40	7:31	7.03	9.49	5.99
9	5.88	5.76	6.58	6.33	8.54	5.39
10	5.22	5.12	5.84	5.63	7.59	4.79
11	4.73	4.64	5.30	5.10	6.88	4.34
12 .	4.24	4.16	4.75	4.57	6.17	3.89
13	3.75	3.68	4.20	4.04	5.45	3.44
14	3.26	3.20	3.65	3.52	4.74	3.00
15	2.94	2.88	3.29	3.16	4.27	2.70
16	2.61	2.56	2.92	2.81	3.79	2.40
17	2.28	2.24	2.56	2.46	3.32	2.10
18	1.96	1.92	2.19	2.11	2.85	1.80
19	1.63	1.60	1.83	1.76	2.37	1.50
20	1.47	1 44	1.64	1.58	2.13	1.35
21	1.31	1.28	1.46	1.41	1.90	1.20
22	1.14	1.12	1.28	1.23	1.66	1.05

## Table CIII.—Weights of Engines and Boilers, &c.

Description of Machinery, &c.	Engine room weights, including screw or wheels, &c. Lbs. per I.H.P.	Boiler room weights. Lus. per I.H.P.	Total weights. Lbs. and tons per I.H.P.
(a) Ordinary merchant steamer with triple engines and ordinary cylindrical boilers working at 150 or 160 lbs. pressure, with chimney draught	285	225	{ 460 •205
only; cylinders about 7 to 1; single screw)  (b) Passenger or mail boat with machinery similar to above, but larger, and worked with chimnery draught + 5 to 75 inches of air pressure;	(1) 215	200	{ 415 ·185 430
cylinders, say 6.75 to 1; (1) single screw, and (2) twin screw.  (c) Battle ship or first-class cruiser, with vertical	(2) 230	200	₹ 192
triple engines and ordinary cylindrical boilers working at 150 lbs. pressure, with chimney draught+5 inches, and 2 inches of	N.D. 115 F.D. 85	150 110	{ 265 ·118 ∫ 195
air pressure for N.D. and F.D. respectively; cylinders, 5 to 1; twin screws. (d) Torpedo gunboat with vertical triple engines	F.D. 60	110	ኒ ∙087
and loco type boilers working at 150 lbs. pressure, with about 2.5 inches of air pressure; cylinders, 5 to 1; twin screw.	85	60	{ 95 ₹•048
(c) Paddle steamer with oscillating jet condensing engines and rectangular or box boilers working at 30 to 35 lbs. pressure, with slight	(1) 140	170	{ 810 { ·138
assisted draught; (1) cylinders fore and att, (2) cylinders side by side. (f) Paddle steamer with compound oscillating)	(2) 160	170	§ 330 1·147
engines, surface condensers, and ordinary cylindrical bollers, working at about 100 lbs. pressure, with slight assisted draught: cylinders, 3 25 to 1.	206	175	{ 380 ⋅170
(g) Paddle steamer with compound diagonal engines, surface condensers, and ordinary cylindrical boilers, working at about 120 lbs.	(1) 170	180	{ 350 156
pressure, with slight assisted draught; cylinders, 3.25 or 3.5 to 1; (1) cylinders one on top of other, (2) cylinders side by side.	(2) 185	180	365 163
(h) Vertical compound two-crank engines and ordinary cylindrical boilers working at 80 to 90 lbs. pressure, as formerly fitted in merchant steamers.	220	240	{ 460 ⋅205
(i) Vertical compound single-crank engines and cylindrical boilers working at 80 to 90 lbs. pressure, as formerly fitted in some merchant steamers.	270	245	{ 515 ⋅280
(i) Twin-screw compound engines, as fitted in some fast cargo vessels; ordinary cylindrical boilers; 80 lbs. pressure.	220	230	{ 450 ·201

Between (c) and (d) come various classes of Naval vessels (second and third-class cruisers, &c.), the machinery for which varies from

150 to 200 lbs. per I.H.P.

The machinery of torpedo boats weighs about 30 to 35 lbs. per I.H.P. in the engine room, and about 45 to 50 lbs. in the boiler room, or say '036 ton per I.H.P. for both engine and boiler room. When water tube boilers are used, the boiler room weights are reduced to about 33 lbs. per I.H.P.

The machinery of Naval pinnaces weighs from 90 to 115 lbs., or say '045 ton per I.H.P., and that of Naval cutters from 150 to 190 lbs., or say '076 ton per I.H.P.,—the smaller sizes weighing rather heavier

than the larger.

The weights of paddle engines depend to some extent on the service for which the vessel is intended, since for cross channel work the wheels will be much heavier than for comparatively smooth water work.

#### CENTRE OF GRAVITY OF MACHINERY, &c.

When the common centre of gravity of a number of detached bodies.—such as the various portions of the machinery of a steamship,—is required, it is obtained as follows:—

r. Longitudinal position of centre of gravity.—On the longitudinal section drawing of the machinery, near where it is supposed the longitudinal position of the centre of gravity will be, draw a vertical line, to represent the edge of a plane cutting the ship transversely. Then, take the weight of each portion of the machinery, and multiply it by the distance of its centre of gravity from this transverse plane; distinguish the resulting quantities, or moments, by the signs + and -, according as they happen to be derived from the right or left side of the plane; and add together all the plus quantities, and all the minus quantities. Then obtain the resultant, by subtracting the less quantity from the greater, and place before it the sign of the greater.

If this resultant moment be now divided by the total weight of the whole system of bodies, on both sides of the plane, the quotient will be the distance of the longitudinal position of the centre of gravity from the plane; and it will lie to the right, or to the left, of the plane,

according as the sign of the quotient is plus or minus.

2. Transverse position of centre of gravity.—Assume another plane, perpendicular to the first, and represent it by a line on the transverse section drawings, and then proceed exactly as described above.

3. Vertical position of centre of gravity.—Assume a third plane, perpendicular to both those previously used (parallel to the water-line, that is), represent it by a line or lines as before, and again calculate position as described above.

#### MISCELLANEOUS TABLES.

### Table CIV.—Surface of Tubes in square feet per foot run.

Diam. in inches.	0	⅓	. 1/4	%	1/2	%	3/4	<b>%</b>
0		.0327	.0654	.0982	·1309	·1686	1963	•2291
1	2618	2945	*3272	*3600	*8927	.4254	•4581	4909
, <b>2</b>	•5236	.5563	.5890	·6218	6545	.6872	•7200	.7527
3	7854	*8181	*8508	·8836	.9163	.9490	.9817	1.0145
4	1.0472	1.0799	1.1126	1.1454	1.1781	1.2108	1.2435	1.2763
5	1.3090	1.3417	1.3744	1.4072	1.4399	1.4726	1.5053	1.5381
<u> </u>								<u> </u>

# Bulk and Weight &c. of Water.

#### Table CV.—Fresh Water.

Cubic inches.	Cubic feet.	Pounds.	Gallons.	Ton.
27·7 27·7 277 1728	*016 *160 1*0 85*9	**************************************	 11 1.0 6.24 224	 •00446 •0279 1•0

# Table CVa.—Salt Water.

Cubic inches.	Cubic feet.	Pounds.	Gallons.	Ton.
1 27 277 1728 	 •0156 •160 1•0 35•0	·037 1·0 10·26 64·0 2240	 1.0 6.24 218.3	 •00458 •0285 1•0

The above figures are very nearly correct for 62° F.: for bulk of water at other temperatures see page 259.

Table CVI.—Boiling Points &c. of Sea Water.

Proportion of salt in the water.	Temperature, Fahrenheit, at which it boils.	Specific Gravity
1/82	213·2°	1.029
2/32	214·4°	1.058
3/32	215·5°	1.087
4/3.2	216·7°	1.116
5/8 2	217·9°	1.145
% <u>,</u>	219·1°	1.174
7/32	220·3°	1.203
*%2	221·5°	1.232
%3°	222·7°	1.261
1 0/3 2	223·8°	1.290
11/2	225·0°	1.319
12/32	226·1°	1:348

# Table CVII.—Litre and Cubic Metre.

Litres.	Gallons.	Cubic Metre.	Cubic feet.
1	·22	·001	•0353
4·543	1·0	·00454	•1605
1000	220	1·0	35•316

### Table CVIII.—Pressure of Water due to various Heads.

Depth	Press	ure in	Depth	Press	ure in	Depth	Press	ure in
of Water.	Pounds per sq. in.	Kilos, per sq. c/m.	of Water.	Pounds per sq. in.	Kilos. per sq. c/m.	of Water.	Pounds per sq. in.	Kilos. per sq. c/m.
1 in.	.03608	.002537	27ft.	11.691	·82196	64ft.	27.712	1.94836
2	.07216	.005074	28	12.124	*85240	65	28.145	1.97880
3	·10824	.007611	29	12.557	*88284	66	28.578	2.00925
4	14432	010148	30	12.990	.91329	67	29.011	2.03969
5	·18040	.012685	31	18.423		68		2.07013
6		015222	32	13.856		69		2.10057
7	25256		33		1.00462	70		2.13102
8	28864				1 03406			2.16146
9		022833	35		1.06450	72		2.19190
10		.025370	86		1.09495	73		2 22235
11		027907	37		1.12539			2.25279
1 ft.		.030443	38		1.15583	75		2.28323
2		.060886	• •		1.18627	76		2.31368
3		091329			1.21773	77		2.34412
4		121773			1.24817	78		2.37456
5		152216			1.27861	79		2.40500
6		182659			1.80906			2.43545
7		213102			1.38950			2.46589
8		243545	45		1.36994	82		2.49633
.9	3.897		46		1.40039	83 84		2.52678
10		30443	47		1.43083			2.55722
11 12		33487	48 49		1·46127 1·49171	- 85 - 8 <b>6</b>		2·58766 2·61811
13		·36531 ·39576	50		1.52216			2.64855
14					1.55260			2.67899
15		·42620 ·45664	51 52		1.58304	89		2.70943
16		·48709	52 53		1.61349	90		2.73989
17	7:361		54		1.64393			2.77033
18			5 <del>4</del> 55		1.67437	92		2.80077
19	8.227		56		1.70482	93		2.83122
20		60886	57		1.78526	94		2.86166
20		63930	58		1.76570			2.89210
22		66974	59		1.79614	96		2.92255
23		.70019	60		1.82659			2.95299
24		73063	61		1.85703			2.98343
25		·76107	62		1.88747	99		3.01387
26		79152	63		1.91792	100		3.04432
	11 200	,0102	,		1.02			

The above Table is calculated for fresh water at a temperature of 62° F.

Table CIX.—Comparison of Thermometers.

<b>1 7 </b>	gu	D		G4:	Deer .	Bakar	Comb.	Bass
Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
	<u> </u>		<del></del>			<b>_</b>		
- 461 20	- 274.00	- 219.22				+	<u>+</u>	+
+ ,			21.20			44.60	7.	5.60
0.	17.78	14.22	22.	5.56			7.23	5.77
0.50	17.50	14.	23.	5.	4.	45.50	7.50	6.
1.	17.23	13.77	24'	4.45			7.78	6.55
1.40	17.	13.60	24.80			46:40	8.	6.40
2.	16.67	13.33	25.	3.89			8.34	6.66
2.75	16.25	13.	25.25	3.75		47.75	8.75	7.
3.	16.11	12.88	26.	3.34	2.66		8.89	7.11
3.20	16.	12.80	26.60	3.		48.20	9.	7.20
4.	15.26	12.44	27.	2.78			9.45	7.55
5.	15.	12.	27.50	2.20		50.	10.	8.
6.	14.45	11.55	28.	2.23	1.77		10.56	8.44
6.80	14'	11.20	28.40	2.		51 .80	11.	8 80
7	13 89	11.11	29	1.67	1.33		11.11	8 88
7.25	13.75	11.	29.75	1.25	1.	52.25	11.25	9.
8.	13.34	10.66	30.	1.11	0.88		11.67	9.33
8.60	13	10.40	30.50	1.		53.60	12.	9.60
9.	12.78	10.22	31.	0.26	0.44		12.23	9.77
9.50	12.50	10.	32.	0.			12.50	10.
10-	12.23	9.77	+33.	+0.26	+0.44		12.78	10.22
10.40	12.	9.60	33.80	1.			13•	10.40
11.	11.67	9.33	34.	1.11	0.88	56.	13.34	10.66
11.75	11.25	9.	34.25	1.25	1.	56.75	13.75	11.
12.	11.11	8.88	35.	1.67	1.33		13.89	11.11
12.20	11.	8.80	35.60	2.	1.60	57.20	14.	11.20
13.	10.56	8.44	36.	2.23	1.77	58.	14.45	11.55
14.	10.	8.	36.20	2.50	2.	59.	15.	12.
15.	9.45	7.55	37.	2.78	2.22	60.	15.56	12.44
15.80	9.	7.20	37.40	3.			16.	12.80
16.	8.89	7.11	38.	3.34	2.66	61.	16.11	12.88
16.25	8.75	7.	38.75	3.75			16.25	13.
17.	8.34	6.66	39.	3.89	3.11	62.	16.67	13.33
17.60	8.	6.40	39.20	4.	3.20	62.60	17.	13.60
18.	7.78	6.22	40.	4 · 45	3.55	63.	17.23	13.77
18.50	7.50	6.	41.	5.			17.50	14.
19.	7.28	5.77	42	5.56	4.44	64	17.78	14.22
19.40	7.	5.60	42.80	6.				14.40
20.	6.67	5.33	43.	6.11	4.88			14.66
20.75	6.25	5.	43.25	6.25				15.
21	6.11	4.88	44	6.67	5.33			15.11

# Table CIX.—Comparison of Thermometers—continued.

'ahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
F	+	+	+	+	+	+	+	+
66 20	19.	15.20	89.60	32.	25.60	111.20	44.	35.20
67	19.45	15.55	80.	32.23	25.77	112.	44.45	35.55
68.	20.	16.	90.50	32.20	26	113.	45.	36.
69.	20.56	16.44	91.	32.78	26.22	114.	45.56	36.44
69.80	21 ·	16.80	91.40	33.	26.40	114.80	46.	36.80
70.	21.11	16.88	92.	33.34	26.66	115.	46.11	36.88
70.25	21.25	17.	92.75	33.75	27 ·	115.25	46.25	37.
71.	21.67	17.83	93 •	33.89	27.11	116.	46.67	37 .33
71.60	22.	17.60	93 · 20	34.	27:20	116.60	47.	37.60
72.	22.23	17.77	94.	34.45	27.55	117	47.23	37.77
72.50	22.50	18.	95.	35.	28	117.50	47.50	38.
73.	22.78	18.22	96 ·	85·56	28.44	118	47.78	38.22
73.40	23	18.40	96.80	36.	28.80	118.40	48.	38.40
74.	23.34	18.66	97.	36.11	28.88	119	48.34	38.66
74.75	23.75	19.	97.25	36.25	29	119.75	48.75	39.
75.	23.89	19.11	98.	36.67	29:33	120	48.89	89.11
75.20	24.	19.20	98.60	87	29.80	120 20	49.	89.20
76.	24.45	19.55	99.	87 .23	29.77	121	49.45	39.55
77.	25.	20.	99.50	37.50	30.	122	50.	40.
78.	25.56	20.44	100	37.78	30.22	123	50.56	40.44
78.80	26	20.80	100.40	38	30.40	123.80	51.	40.80
79 ·	26.11	20.88	101	38.34	30.66	124	51.11	40.88
79.25	26.25	21.	101.75	38.75	31 ·	124 .25	51.25	41.
80.	26.67	21.33	102	38.89	31.11	125	51.67	41.33
80.60	27.	21.60	102.20	39.	31.20	125.60	52.	41.60
81.	27.23	21.77	103	39.45	31.55	126	52.23	41.77
81.50	27.50	22.	104	40.	32.	126.50	52.50	42.
82.	27.78	22.22	105	40.56	32.44	127	52.78	42.22
82.40	28	22.40	105.80		32.80	127.40		42.40
83.	28.34	22.66	106	41.11	32.88	128	53.34	42.66
83.75	28.75		106.25	41.25	33.	128.75		43.
84	28.89	23.11	107	41.67	33.33	129	58.89	43.11
84 20	29.	23.20	107.60	42	33.60	129 20	54.	43.20
85.	29.45	23.55	108	42.23	33.77	130	54.45	43.55
86	80.	24.	108.50	42.50	34.	131	55.	44.
87.	30.56	24.44	109	42.78	34.22	132	55.56	44.44
87.80	31	24.80	109.40	43.	34.40	132.80		44.80
88.	31.11	24.88	110	43.34	34.66	183	56.11	44.88
88.25	31.25	25.	110.75	43.75	35.	133 25		45.
89.	31.67	25.33	111.	43.89	35.11	134	56.67	45.33
						l		00

Table CIX.—Comparison of Thermometers—continued.

Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
+	+	+	+	+	+	+	+	+
134.60	57.00	45.60	156.20	69.	55.20	179.60	82.	65.60
135·50	57.23	45.77	157	69.45	55.55	180.	82.23	65.77
136	57.50	46.00	158	70.	56.	180.50	82.50	66.
136.40	57·78 58·	46·22 46·40	159.	70.56	56.44	181	82.78	66.22
137	58.34	46.66	159·80 160·	71· 71·11	56.80	181.40	83.	66.40
187.75	58.75	47.	160.25	71.11	56·88	182	83.34	66.66
138	58.89	47.11	161	71.67	57:33	182·75 183	83.75	67.
138.20	59	47.20	161.60	72.	57.60		88.89	67:11
139	59.45	47.55	162	72.23	57.77	183.20	84.	67.20
140.	60.	48.	162.50	72.50	58.	184 · 185 ·	84.45	67.55
141.	60.56	48.44	163	72.78	58.22	186	85·56	68.
141.80	61.	48.80	163.40	73.	58.40	186.80	86.	68:44
142	61.11	48.88	164	73.84	58.66	187	86.11	68.80
142.25	61.25	49.	164.75	73.75	59.	187.25	86.25	68.88
143	61.67	49.83	165.	73.89	59.11	188	86.67	69.33
143.60	62.	49.60	165.20	74.	59.20	188.60	87.	69.60
144	62.23	49.77	166	74.45	59.55	189	87.23	69.77
144.50	62.50	50.	167	75.	60.	189.50	87:50	70.
145.	62.78	50.22	168	75.56	60.44	190	87.78	70-22
145.40	63.	50.40	168.80	76	60.80	190.40	88.	70.40
146	63.34	50.66	169	76.11	60.88	191.	88.34	70.66
146.75	63.75	51.	169 25	76.25	61.	191.75	88.75	71.
147.	63.89	51.11	170	76.67	61.33	192	88.89	71.11
147.20	64.	51.20	170.60	77.	61.60	192.20	89.	71.20
148.	64.45	51.55	171	77.23	61.77	193	89.45	71.55
149.	65.	<b>52</b> ·	171.50	77.50	62	194	90.	72.
150.	65.56	52.44	172	77.78	62.22	195	90.56	72.44
150.80	66.	52.80	172.40	78.	62.40	195.80	91.	72.80
151.	66.11	52.88	173	78:34	62.66	196	91.11	72.88
151.25	66.25	53.	173.75	78.75	63.	196.25	91.25	73
152.	66.67	53.33	174.	78.89	63.11	197	91.67	73.33
152.60	67	53.60	174 20	79·	63.20	197 .60	92.	78.60
153.	67.28	53.77	175.	79.45	63.55	198	92.23	73.77
153.50	67.50	54.	176	80.	64 .	198.50	92.50	74.
154.	67.78	54.22	177	80.56	64.44	199•	92.78	74.22
154.40	68.	54.40	177.80	81.	64.80	199.40	<b>93</b> ·	74.40
155·75	68:34	54.66	178.	81.11	64.88	200	93.34	74.66
156.	68·75 68·89	55.	178.25	81.25	65.	200.75	93.75	75.
	עה סט	55.11	179	81.67	65.33	201	93.89	75.11

Table CIX.—Comparison of Thermometers—continued.

Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centil- grade degs.	Reau- mur degs.
+	+	+	+	+	+	+	+	+
201-20	94.	75.20	224 60	107.	85 60	246.20	119.	95.20
202	94.45	75.55	225	107.23	85.77	247	119:45	95.55
203	95.	76.	225.50	107.50	86.	248	120	96.
204	95.56	76.44	226	107.78	86.22	249	120.56	96.44
204 .80	96.	76.80	226.40	108	86.40	249.80	121	96.80
205	96.11	76.88	227	108:34	86.66	250	121.11	96.88
205.25	96.25	77.	227.75	108.75	87·	250.25	121.25	97.
206	96.67	77:33	228	108.89	87.11	251	121.67	97 .33
206:60	97.	77.60	228 20	109	87.20	251.60	122	97.60
207	97.23	77.77	229 ·	109.45	87.55	252	122.23	97:77
207:50		78·	230	110.	88.	252.20		
208	97.78	78-22	231	110.26	88.44	253	122.78	
208.40	98.	78.40	231.80	111.	88.80	253.40		98.40
209	98.34	78.66	$232 \cdot$	111.11	88.88	254	123.34	98 66
209.75		79.	232.25	111-25	89.	254.75	123.75	
210.	98.89	79.11	233.	111.67	88.33	255	123.89	99 11
210-20		79 20	233.60	112.	89 60	255~20	124	99.20
211	99.45	79.55	234.	112.23	89.77	256	124 45	99.55
212	100	80.	234.50	112.50	90.	257	125.	100
213	100.26	80.44	235	112.78	90.22	258		100.44
213.80		80.80	235.40	113.	90.40	258.80		100.80
214	101.11	80.88	236	113.34	90.66	259		100.88
	101-25	81,	236.75		91.	259.25		
215.	101.67	81.33	287	113.89	91.11	260		101.33
215.60		81.60	237.20		91.20	260.60		101.60
216	102.23	81.77	238	114.45	91.55	261		101.77
	102.50	82.	239	115.	92.	261.50		
217	102.78	82.22	240	115.26		262		102.22
217.40	1	82.40	240.80		92.80	262.40		102.40
218	103.34	82.66	241	116.11	92.88	263		102.66
	103.75	83.	241 25			263.75		1
219	103.89	83.11	242	116.67	93.33	264		103.11
219.20		83.20	242.60		93.60	264 20		103.20
220	104.45	83.55	243	117.23		265		103.55
221	105	84.	243.50			266	130	104
222	105.56	84.44	244.	117.78		267	1	104.44
222.80		84.80	244.40		94.40	267.80		104.80
223	106.11	84.88	245	118.34		268		104.88
	106.25	85.	245.75			268.25		
224	106.67	85.83	246	118.89	95.11	269	191.67	105.33
<u> </u>	L	L	<u>l</u>	l			L	

Table CIX.—Comparison of Thermometers—continued.

Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
+	+	+	+	+	+	+	+	+
269.60	132	105.60	291 20	144	115.20	314.60	157	125 60
270	132.23	105.77	292	144.45	115.55	315	157.23	125.77
270.50	132.50	106	293	145.	116	315.20	157.50	126
271	132.78	106-22	294	145.56	116.44	316	157.78	126-22
271.40	133	106.40		146	116.80	316.40	158.	126.40
272	133.34	106.66	295	146.11		317	158.34	126.66
272.75	133.75	107	295 25	146.25		317 .75	158.75	127
273	133.89	107:11	296	146.67			158.89	127 -11
273 · 20	134.	107 •20		147.	117.60	318:20	159	127 - 20
274	134.45	107.55		147:23	117.77	319·	159.45	127.55
275	135	108.	297.50	147.50	118.	320	160.	128
276	135.26	108.44		147.78			160.56	
276.80	136	108.80		148	118.40			128.80
277	136.11	108.88		148.34	118.66		161.11	128.88
277:25	136.25	109	299 75	148.75		322.25	161.25	129
278	136.67	109.33		148.89		328	161.67	129:33
278.60	137	109.60		149.	119 · 20		162	129.60
279	137.23	109.77	301.	149.45			162-28	129.77
279.50	137.50	110.	302.	150.	120	324.20	162.50	130
280	137.78	110.22	303.	150.56		325	162.78	130 22
280.40	138	110.40		151 ·	120.80		163	130.40
281	138.34	110.66		151.11	120.88	326	163.34	130.66
281.75	138.75	111.	304.25	151.25	121	326.75	163.75	131
282	138.89	111.11	305.	151.67	121.33	327·	163.89	131.11
282.20	139	111.50		152.	121.60	327.20	164.	131.20
283	139.45	111.22	306.	152.23	121.77	328	164.45	131.55
284	140.	112.	306.20	152.50	122	329	165	132
285	140.56	112.44	307·	152.78		330.	165.26	132.44
285.80	141.	112.80	307.40	153	122.40	330.80	166.	132.80
286	141.11	112.88	308	153.34	122.66		166.11	132.88
286.25	141.25	113.	308.75	153.75	123	331 .25	166.25	133
287	141.67	113.33	308.	153.89	123.11	332	166.67	133.33
287.60	142	113.60	309.20	154.	123.20	332.60	167	133.60
288	142.23	113.77	310.	154.45	128.55	333.	167.23	138.77
288:50	142.50	114.	311.	155	124	333.20	167.50	134
289	142.78	114.22	312	155.56	124.44	334	167.78	134.22
289.40	143	114.40	312.80	156.	124.80	334.40	168.	134.40
290.75	148.34	114.66	313.	156.11	124.88	335	168.34	134.66
290·75 291·	143.75	115.	313.25	156.25	125	335.75	168.75	135
tat.	143.89	115.11	314.	156.67	125.33	336	168.89	135.11
<del></del>						- 1		- 1

Table CIX.—Comparison of Thermometers—continued.

Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade dega.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
+	+	+	+	+	+	+	+	+
336.20	169	135.20	359.60	182	145.60	381 20	194	155.20
337·	169.45	135.55	360.	182-23	145.77	382	194.45	155.55
338·	170	136	360.50	182.50	146	383	195	156
339.	170.56	136.44	361·	182.78	146-22	384	195.56	156.44
339.80	171 ·	136.80	361 40		146.40	384.80	196	156.80
340·	171.11	136.88	362	183.34	146 66	385	196.11	156.88
340.25	171-25	137	362.75	183.75	147.	385-25	196.25	157
341	171 .67	137.83	363.	183.89	147.11	386	196.67	157.33
341.60	172	137.60	363-20	184	147.20	386.60	197	157.60
342	172.23	137.77	364	184.45	147.55	387	197.23	157.77
342.50	172.50	138	365.	185	148	887.50	197.50	158
343	172.78	138-22	366	185.56	148-44	388	197.78	158.22
343.40	173	138-40	366.80	186	148.80	388.40	198	158.40
344	173.34	138.66	367	186.11	148.88	389.	198.34	158.66
344.75	173.75	139	367 25	186.25	149.	389.75	198.75	159
345.	173.89	139.11	368	186.67	149.38	390·	198.89	159.11
345.20	174.	139.20	368.60	187	149.60	390.20	199	159.20
346	174.45	139.55	369	187.23	149.77	391	199.45	
347.	175.	140.	369.50	187:50	150·	392	200	160
348	175.56	140.44	370·	187.78	150.22	393.	200.56	160.44
348 80	176	140.80	370.40	188	150.40	393.80	201	160.80
349	176.11	140.88	371	188-34	150.66	394	201.11	160.88
349-25	176.25	141.	871.75	188.75	151.	394.25	201.25	161.
350	176.67	141.33	372	188.89	151.11	395	201.67	161.33
350.60	177.	141.60	372-20	189	151.20	395.60	202	161.60
351	177-23	141.77	373	189.45	151.55	396	202.23	161.77
351 .50	177.50	142.	374	190.	152.	396.50	202.50	162
352	177.78	142-22	375	190.56	152.44	397	202.78	162.22
352.40	178	142.40	375.80	191	152.80	397.40	203	162.40
353.	178.34	142.66	376	191.11	152.88	398.	203.34	162.66
358.75	178.75	143.	376.25	191.25	153.	398.75	203.75	163
354	178.89	143.11	377	191.67	153.33	399.	203.89	163 11
354.20	179	143.20	377.60	192	153.60	399.20	204	163.20
355	179.45	143.55	378	192.23	153.77	400·	204.45	163.55
356	180	144	378.50	192.50	154	401	205	164
357	180.56	144.44	879	192.78	154.22	402	205.56	164.44
357.80	181	144.80	379.40	193	154.40	402.80	206	164.80
358	181.11	144.88	380	193.34	154.66	403	206.11	164.88
358-25	181 25	145.	380.75	193.75	155	403.25	206.25	165
859	181.67	145.33	381	193.89	155.11	404	206.67	165.83

 ${\bf Table~CIX.--Comparison~of~Thermometers--} {\it continued}.$ 

Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.	Fahren- heit degs.	Centi- grade degs.	Reau- mur degs.
+	+	+	+	+	+	+	+	+
404.60	207	165.60	422	216.67	173.33	439.25	226.25	181.
405	207.23	165.77	422.60	217	173 60	440	226.67	181.33
405.20	207.50	166.	423	217:28	173.77	440.60	227	181.60
406	208.75	166 22	423.50	217.50	174.	441.	227.23	181 77
406.40	208	166.40	424	217.78	174 22	441.50	227.50	182
407	208.34	166.66	424.40	218	174.40	442	227.78	182.22
407.75	208.75		425	218.34	174.66	442.40	228	182.40
408	208.89	167.11	425.75	218.75		443	228.34	182.66
408-20	209 ·	167.20	426	218.89	175.11	443.75	228.75	183
409·	209.45	167.55	426.20	219.	175.20	444.	228.89	183.11
410·	210	168.	427	219.45	175.55	444.20	229	183.20
411.	210.56	168.44	428	220	176	445.	229.45	183·55
411.80	211	168.80		220.56	176.44	446	230	184.
412.	211.11	168.88		221	176.80	447	230.56	184.44
412.25	211.25	169.	430	221.11	176.88	447.80	231 ·	184.80
413	211.67	169:33	430.25	221 25	177	448	231.11	184 88
413.60	212.	169.60	431·	221 .67	177:33	448.25	231.25	185
414.	212.23	169.77	431.60	222	177.60	449.	231.67	185.33
414.50	212.50	170	432.	222.28	177.77	449.60	232	185.60
415	212.78	170.22	432.50	222.50	178	450	232.23	185.77
415.40	213	170.40	433 ·	222.78	178.22	450.50	232.50	186.
416.	213.34	170.66	433.40	223 ·	178.40	451.	232.78	186.22
416.75	213.75	171.	434	223.84	178.66	451.40	233	186.40
417.	213.89	171.11	434.75	223.75	179	452	233.34	186.66
417.20	214.	171.20	435	223.89	179.11	452.75	233.75	187
418	214.45	171.55	435.20	224	179.20	453	233.89	187.11
419·	215	172.	436	224.45	179.55	458 20	234	187.20
420	215.56	172.44	437	225	180	454.	234.45	187.55
420.80	216	172.80	438	225.56	180.44	455	235	188
421	216.11	172.88	438.80	226	180.80			ŀ
421.25	216.25	173	439	226.11	180.88			

Table CX.—Properties of Saturated Steam.

Pressure per Square Inch from Mean At- mospheric Pressure.	Tempera- ture in Fahren- heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per Ib.	Latent Heat of Evaporation in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
-14	90.4	28740	-002170	460.7	1051-1	1109.5	.7
-13	120.3	12480	-004998	200.1	1030-3	1118.6	1.7
-12	187.5	8080	.007720	129.5	1018 3	1123.9	2.7
-12 -11	149.8	6009	01038	96.32	1009.7	1127.6	3.7
-10	159.7	4799	.01300	76.92	1003 7	1130.7	4.7
-10	167.9	4003	*01558	64.17	997.0	1133.2	5.7
-8	174.9	3439	.01814	55.12	992.1	1135.3	6.7
-7	181.1	3010	.02072	48.25	987.8	1137.2	7.7
-6	186.7	2690	02319	43.12	983.9	1138.9	8.7
-5	191.8	2428	02568	38.93	980.3	1140.4	9.7
-4	196.4	2215	.02817	35.50	977.1	1141.9	10.7
-8	200.7	2036	.03063	32.64	974.0	1143.2	11.7
-2	2047	1886	.03307	30.24	971.2	1144.4	12.7
-1	208.5	1755	03553	28.14	968.5	1145.5	13.7
Atmosphere.	212.0	1643	.03797	26.34	966:1	1146.6	14.7
1	215.3	1544	.04039	24.76	963.8	1147.6	15.7
2	218.5	1457	·04280	23.36	961.5	1148.6	16.7
8	221.5	1380	04521	22.12	959.4	1149.5	17.7
4	224 · 4	1310	04761	21.0	957:3	1150.4	18.7
5	227 ·1	1248	·05000	20.0	955.4	1151.2	19.7
6	229.8	1191	05238	19.09	953.5	1152.0	20.7
7	232·3	1139	·0547 <b>5</b>	18.26	951.8	1152.8	21.7
8	234.7	1092	.05712	17.51	950.1	1153.5	22.7
9	237 1	1049	05949	16.81	948.4	1154.3	23.7
10	239 4	1009	.06184	16.17	946.7	1155.0	24.7
11	241.6	971.8		15.28	945.2	1155.6	25.7
12	243.7	937.5		15.03	943.7	1156.8	26.7
13	245.8	905.7		14.52	942.2	1156.9	27.7
14 15	247.8	876.0		14.04	940.8	1157.5	28.7
16	249.7	818-2	07355	13.60	939.4	1158.1	29.7
	251.6	822.2	·07587	13.18	938.1	1158.7	80:7

Table CX. - Properties of Saturated Steam-continued.

Pressure per Square Inch from Mean At- mospheric Pressure.	Fahren-	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absoluts Pressure per Square Inch.
<del></del>						<del></del>	
17	253.5	797 .8	.07819	12.79	936.8	1159.3	317
18	255.3	774.9	*08050	12.42	935.5	1159.8	32.7
19	257.0	753.2	08282	12.07	934.3	1160.8	33.7
20	258.7	732.8	.08513	11.75	933.1	1160.9	34.7
21	260.4	713.5	*08743	11.44	931.9	1161.4	35.7
22	262.0	695.2	08973	11.14	930.7	1161.9	36.7
23	263.6	677:9	•09203	10.87	929.6	1162.3	37.7
24	265.2	661.4	·0943 <b>3</b>	10.60	928.4	1162.8	88.7
25	266.7	645.7	.09661	10.35	927.4	1163 3	39.7
26	268.2	630.8	•09890	10.11	926.3	1163.8	40.7
27	269.7	616.6	·1011	9.883	925.2	1164.2	41.7
28	271.1	603.0	1034	9.666	924.3	1164.6	42.7
29	272.6	590.0	1057	9.458	923.2	1165.1	43.7
30	273.9	577.6	1080	9.259	922.8	1165.5	44.7
31	275.3	565.7	·1102	9.068	921.3	1165.9	45.7
32	276.7	554.3	1125	8.882	920.3	1166.3	46.7
33	278.0	543.4	·1148	8.710	919.3	1166.7	47.7
34	279.3	532.9	·1170	8.541	918.4	1167.1	48.7
35	280.5	522.8	1193	8.380	917.6	1167.5	49.7
86	281.8	513.1	1215	8.225	916.6	1167.9	50.7
37	283.0	503.8	1238	8.075	915.8	1168.3	51.7
38	284.2	494.8	1260	7.931	914.9	1168.6	52.7
39	285.4	486.1	1283	7.792	914.1	1169.0	53.7
40	286.6	477 7	1305	7.658	913.2	1169.4	54.7
41	287.8	469.7	1328	7.529	912.3	1169.7	55.7
42	288.9	461.9	1350	7:404	911 6	1170.1	56.7
48	290.1	454.4	1373	7.283	910.7	1170.4	57.7
44	291.2	447.1	1395	7.167	909.9	1170.8	58.7
45 46	292·3 293·4	440.0	1417	7.054	909-1	1171.1	59.7
47	293.4	433·2 426·6	·1440 ·1462	6.839	908·3 907·6	1171.4	60.7
l ."'	452.4	420.0	1402	0.098	801.0	1171.7	61.7

Table CX.—Properties of Saturated Steam—continued.

Pressure per Square Inch from Mean At- mospheric Pressure.  1bs.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32* Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67	295-5 296-5 297-6 299-6 300-5 301-5 302-5 303-5 304-4 305-3 306-3 307-2 308-1 309-9 310-8 311-6 312-5 313-3	420°2 414°1 408°0 396°5 391°0 385°4 370°4 361°0 356°4 352°7 343°5 339°4 331°5 331°5 327°7	-1484 -1529 -1551 -1573 -1595 -1617 -1639 -1661 -1684 -1706 -1728 -1750 -1772 -1794 -1816 -1838 -1860 -1882 -1904	6.736 6.540 6.540 6.546 6.356 6.267 6.181 6.098 6.017 5.938 5.714 5.673 5.573 5.573 5.506 5.440 5.313 5.252	906:8 906:14 904:6 903:9 903:9 902:5 901:8 901:1 900:9:8 899:1 898:5 897:2 896:5 896:5 896:5 896:5 896:5 896:5 896:3 896:1	1172-1 1172-7 1173-0 1173-3 1173-6 1173-9 1174-2 1174-5 1174-5 1175-4 1175-6 1176-5 1176-5 1176-7 1177-0 1177-3 1177-5	62.7 63.7 64.7 66.7 66.7 67.7 70.7 71.7 75.7 75.7 75.7 75.7 75.7 75.7 75
68 69 70 71 72 73 74 75 76 77	314-2 315-0 315-8 316-7 317-5 318-3 319-1 319-9 320-7 321-4 322-2	323·9 320·3 316·7 313·3 309·9 306·5 303·3 300·1 297·0 294·0 291·0	1926 1947 1969 1991 2013 2035 2056 2078 2100 2122 2144	5·192 5·184 5·077 5·021 4·967 4·914 4·862 4·811 4·761 4·712 4·664	893·4 892·9 892·3 891·6 891·1 890·5 889·9 889·3 888·3 888·3 887·7	1177·8 1178·0 1178·3 1178·5 1178·8 1179·0 1179·3 1179·5 1179·8 1180·0 1180·2	82·7 83·7 84·7 85·7 86·7 87·7 88·7 89·7 90·7 91·7 92·7

 ${\bf Table~CX.-Properties~of_Saturated[Steam-continued.}$ 

Pressure per Square Inch from Mean At- mospheric Pressure.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per 1b.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per
79	828.0	288.0	•2165	4.617	887.1	1180.5	93.7
80	323.8	285.2	2187	4.572	886.5	1180.7	94.7
81	324.5	282.4	2209	4.527	886.0	1180.9	95.7
82	325.2	279.6	•2230	4.483	885.5	1181.1	96.7
83	326.0	276.9	2252	4.439	885.0	1181.4	97.7
84	326.7	274.3	-2274	4.397	884.4	1181.6	98.7
85	327 .4	271.7	•2295	4.356	883.9	1181.8	997
86	328.1	269 2	2317	4.315	883 • 4	1182.0	100.7
87	328.9	266.7	2339	4.275	882.9	1182.3	101.7
88	329.6	264.3	•2360	4.236	882.4	1182.5	102.7
89	330.3	261.9	•2382	4.198	881.9	1182.7	103.7
90	331.0	259.5	•2404	4.160	881.3	1182.9	104.7
91	331.7	257.2	•2425	4.123	8:08	1183.1	105.7
92	332.3	254.9	•2447	4.087	880.4	1183.3	106.7
93	333.0	252.5	•2468	4 051	879 9	1183.5	107.7
94	333.7	250.5	*2490	4.016	879 4	1183.7	1087
95	334.4	248.4	•2511	3.981	878 9	1183.9	109.7
96	335.1	246.3	•2533	3.948	878· <b>4</b>	1184.2	110.7
97	335.7	244.2	<b>•2554</b>	3.914	878.0	1184.3	111.7
98	336.4	242.2	2576	3.882	877.4	1184.6	112.7
99	337.0	240.1	2598	8.849	877.0	1184.7	113.7
100	337.7	238.2	2619	3.818	976.5	1184.9	114.7
101	338.3	236.2	2640	3.787	876.1	1185.1	115.7
102	339.0	234.3	2662	8.757	875.6	1185.3	116.7
103	339.6	232.5	•2683	3.727	875.1	1185.5	117.7
104	340.2	230.6	2704	3.697	874.7	1185.7	118.7
105	340.9	228.8	2726	3.668	874.2	1185.9	119.7
106	341.5	227.0	2747	3.639	873.8	1186.1	120.7
107	342.1	225.1	2769	3.611	873.3	1186.3	121.7
108	342.7	223.6	2790	3.584	872.9	1186.5	122.7
109	343.8	221.9	*2811	3.226	872.5	1186.7	128.7

Table CX.—Properties of Saturated Steam-continued.

Pressure ser Square Inch from Mean At- mospheric Pressure.	Tempera- ture in Fahren- heit Degrees.	Specific or Relative Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32°; Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
	·					·	
110	848-9	220.1	•2833	8.530	872.0	1186.8	124.7
111	344.5	218.5	-2854	3.503	871.6	1187.0	125.7
112	845.1	216.9	•2875	8.477	871.2	1187.2	126.7
113	845.7	215.3	-2897	3.452	870 <i>·</i> 7	1187.4	127.7
114	846.3	213.7	-2918	8.426	870·3	1187.6	128.7
115	846.9	212.2	•2939	3.401	869.9	1187.8	129.7
116	847.5	210.7	-2961	3.377	869.4	1187.9	180.7
117	348.1	209.2	-2982	3.353	869.0	1188 · 1	131.7
118	848.7	207.7	-3003	3.329	868.6	1188· <b>3</b>	132.7
119	849.2	206.2	·3025	3.306	868-2	1188.5	133.7
120	349.8	204.8	*3046	3·283	867.8	1188.6	134.7
121	850.4	203.4	*8067	3.260	867 ·3	1188.8	185.7
122	851 0	202.0	·3088	3.237	866.9	1189.0	136.7
123	851.5	200.6	·8110	8.215	866.5	1189.2	137.7
124	852·1	199.2	*3131	3.194	866.1	1189.3	138.7
125	852.6	197.9	·3152	3.172	865.7	1189.5	139.7
126	853-2	196.6	·3173	3.151	865.3	1189.7	140.7
127	853.7	195.3	*3194	8.130	864.9	1189.8	141.7
128	854.8	194.0	·3216	3.109	864.5	1190.0	142.7
129	<b>354</b> ·8	192.7	·8237	8.089	864.1	1190.2	143.7
130	855.4	191.5	·8258	3.069	863.7	1190.3	144.7
131	355.9	190.2	·3279	3.049	863.3	1190.5	145.7
132	356.4	189.0	·3300	3.030	863 0	1190.7	146.7
133	857.0	187.8	·3321	3.010	862.5	1190.8	147.7
134	857.5	186.6	*3343	2.991	862.2	1191 0	148.7
135	858.0	185.4	*3364	2.973	861.8	1191.1	149.7
136	858.2	184.3	*3385	2.954	861.4	1191.3	150.7
137	859 1	182.9	*3406	2.936	861.0	1191.5	151.7
138	859.6	182.0	*8427	2.918	860.6	1191.6	152.7
139	860.1	180.9	*8448	2.900	860.3	1191.8	153.7
140	860.6	179.8	*8469	2.882	859.9	1191.9	154.7
-							

Table CX. - Properties of Saturated Steam-continued.

Pressure per Square Inch from Mean At- mospheric Pressure.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Incl.
141	361.1	178.7	•3490	2.865	859.6	1192.1	155.7
142	361.6	177.6	3511	2.848	859.2	1192.2	156.7
143	362.1	176.6	3532	2.831	858.8	1192.4	157.7
144	862.6	175.5	3554	2.814	858· <b>5</b>	1192.5	158.7
145	363.1	174.5	257.5	2.797	858.1	1192.7	159.7
146	363.6	173.5	3596	2.781	857.7	1192.8	160.7
147	364.1	172.5	•3617	2.765	857.4	1193.0	161.7
148	364 ⋅6	171 5	.3638	2.749	857.0	1193.2	162.7
149	365.1	170.5	•3659	2.733	856·6	1193.3	163.7
150	365.6	169.5	*3680	2.717	856.3	1193.5	164.7
151	366.1	168.6	·3701	2:702	855.9	1193.6	165.7
152 `	366.6	167.6	·3722	2.687	855·5	1193.8	166.7
153	367 · 1	166.7	•3743	2.672	855.2	1193.9	167.7
154	867.5	165.7	·3764	2.657	854.9	1194.0	168.7
155	368.0	164.8	·3785	2.642	854 <b>·5</b>	1194.2	169.7
156	368.5	163.9	·3806	2.627	854.2	1194.3	1707
157	369.0	163.0	3827	2.613	853.8	1194.5	171.7
158	369.4	162.1	*3847	2.599	853.5	1194.6	172.7
159	369.9	161.2	·3868	2.585	853.1	1194.8	173.7
160	870.4	160.4	3889	2.571	852·8 852·5	1194·9 1195·0	174.7
161 162	370·8 371·3	159·5 158·7	-3910 -3931	2·557 2·543	852·1	1195.0	175·7 176·7
163	371.7	157.8	3952	2.530	851.8	1195.3	177.7
164	371.7 372.2	157.0	3978	2.517	851.5	1195.5	178.7
165	372.7	156.2	3973	2.504	851.1	1195.6	179.7
166	373.1	155.4	4015	2.491	850.8	1195.7	1807
167	373.6	154.6	4036	2.478	850.4	1195.9	181.7
168	374.0	153.8	4057	2.465	850.2	1196.0	182.7
169	374·5	153.0	·4077	2.452	849.8	1196.2	183.7
170	874.9	152.2	4098	2.440	849.5	1196.3	184.7
171	375.4	151.4	·4119	2.427	849 1	1196.4	185.7

Tablé CX.-Properties of Saturated Steam-continued.

Pressure per Square Inch from Mean At- mospheric Pressure. Ibs.	Temperature in Fahren-heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
172 178 174 175 176 177 178 179 180 181 182 183 184 185	375-8 376-2 376-7 377-7 378-0 378-4 378-8 379-7 380-1 380-5 381-4 381-4 381-8	150 7 149 9 149 2 148 2 147 7 147 0 146 3 145 5 144 8 142 8 142 1 141 4 140 8	*4140 -4161 -4182 -4203 -4228 -4244 -4265 -4286 -4307 -4327 -4348 -4369 -4390 -4410 -4451 -4452	2:415 2:408 2:379 2:368 2:356 2:344 2:338 2:322 2:311 2:300 2:289 2:278 2:278 2:257 2:246	848.8 848.2 848.2 847.9 847.6 847.2 846.7 846.7 846.7 845.7 845.0 844.8 844.8	1196-6 1196-7 1196-8 1197-0 1197-1 1197-2 1197-5 1197-6 1197-8 1198-0 1198-2 1198-3 1198-3 1198-5	1867 1877 1887 1897 1907 1917 1927 1947 1957 1967 1977 2007
188 189 190 191 192 193 194 196 196 197 198 199 200	382 6 383 0 383 5 383 9 384 3 384 7 385 1 385 9 386 3 386 7 387 1 387 5	139 5 138 8 138 2 137 5 136 9 136 3 135 7 134 5 133 9 133 3 132 7 132 1	*4473 *4498 *4514 *4535 *4556 *4576 *4597 *4618 *4639 *4659 *4680 *4701 *4721	2-236 2-225 2-215 2-205 2-195 2-185 2-175 2-166 2-146 2-137 2-127 2-118	843 ° 9 843 ° 6 843 ° 2 842 ° 9 842 ° 3 842 ° 0 841 ° 8 841 ° 5 841 ° 9 840 ° 8	1198-6 1198-8 1198-8 1199-0 1199-2 1199-3 1199-4 1199-5 1199-8 1199-8 1199-9 1200-0 1200-1	202.7 203.7 204.7 205.7 206.7 207.7 208.7 209.7 210.7 211.7 212.7 213.7 214.7

Table CXI.—Knots, Miles, Kilometres, &c.

-	Speeds per hour	our.	Poof nor	Foot nor	aı	Speeds per hour.	OUT.	Post non	Post yes
dmiralty Knots.	Statute Miles.	Kilometres.	minute.	second.	Admiralty Knots.	Statute Miles.	Kilometres.	minute.	second.
4	4.6061	7.418	405.3	8.75	10	11.5151	18.532	1013.8	16.89
4.25	4.8939	7.876	430.7	7.17	10.52	11.8030	18-995	1038,7	17.81
4.5	5.1818	8.338	456	4.28	10.2	12.0909	19.428	1064	17.78
4.75	2.4697	8.802	481.8	8.03	10.75	12.3788	19-921	1089-3	18.16
20	5.7576	9.566	2.909	8.44	11	12.6667	20.382	1114.7	18.28
2.52	6.0454	9.729	532	8.86	11.25	12.9545	20.848	1140	19.00
2.2	6.3333	10.192	527.3	9.58	11.9	13.2424	21.811	1165.3	19.42
2.49	6.6212	10.656	282.7	9.71	11.75	13.5303	21.776	1190.7	19.85
•	6.9091	11.119	809	10.18	12	13.8182	22.238	1216	20.27
6.25	7.1970	11.582	638.3	10.22	12.25	14.1061	22.701	1241.3	20.69
9.2	7.4848	12.046	658.7	10.97	12.5	14.3939	23.165	1266.7	21.11
8.75	7-7727	12.209	684	11.40	12.75	14.6818	23.628	1292	21.24
_	8.0606	12-927	200.8	11.82	13	14.9697	24.091	1317.3	21.92
7.56	8.8485	13.435	734.7	12.24	18.26	16.2576	24.554	1842.7	22.38
4.2	8.6864	18.899	160	12.66	13.2	15.5454	25.018	1368	22.80
7.76	8.9242	14.862	785-3	13.09	18.75	15.8333	25.481	1898-8	28.22
∞	9.2121	14.825	810.7	13.21	14	16.1212	25.944	14187	28.64
8.56	9.2000	15.289	836	13.93	14.25	16.4091	26.408	1444	24.07
8.0	9.7879	15.752	861.3	14.85	14.5	16.6970	26.871	1469.8	24.49
8.72	10.0757	18.215	886.7	14.78	14.75	16.9848	27.834	1494.7	24.91
6	10.8636	16.678	912	15.20	15	17.2727	27.797	1520	88. 93.
9.52	10.6515	17.142	8.486	16.62	16.25	17.5808	28.261	1545.8	26.78
9	10.9894	17.605	962.7	16.04	15.5	17.8485	28.724	1670.7	26.18
2/2	11.2273	18.068	988	16.47	16.75	18.1364	29.187	1596	28.80

	Foot per sec. 1688 -01688	4 . es	Feet per min 10·133 1·0183		Kilometre. 1853 1853		te Mile. - 11515 - 011515	2	Statute Mile.  A Knot = 11  1ds ,, = .01
21.08	3065·3	26.058	84.8333	30-25	38.84	2380.7	_	42.623	26.4848 42.628
20.67	8040	262.22	84.5454	8	38.42	2305.3		42.160	
50.24	8014.7	65.132	84.2576	29-75	38.00	2280	_	41.696	
49.83	2989.3	24.668	88-9697	29.2	37.58	2254.7		41.233	
07.67	2964	202	83.6818	29-22	87.15	2229.3		692.07	
48.98	2938.7	58.742	88.888	28	86.73	2204		40.306	
48.55	2913.3	53 -279	83.1061	28.75	86.31	2178.7		39.843	_
48.13	2888	52.815	82-8182	28.2	35.89	2153.3		89.879	
47.71	2862.7	52.352	82.2803	28-22	35.47	2128	••		88.916
47.29	2837.3	51.889	82.5454	88	35.04	102.7	64		38.453
46.87	2812	51.425	81.9545	27-75	84.62	077.3	ন		37.990
77.97	2786.7	20.962	31.6667	27.5	34.20	062	Q	_	37.526
46.02	2761.3	20.499	31.3788	27 -25	83.78	7.97	ă		87.063
45.60	2736	50.035	81.0808	27	33.35	001.3	ঝ		36.600
45.18	2710.7	49.572	30-8030	26.75	82.98	976	Ä		86.187
44.78	2685.3	49.109	30.5151	26.2	82.51	2.096	-		
44.33	2660	48.646	30-2273	26.52	82.08	925.3	_	_	35.210
48.91	2634.7	48.182	29.9394	26	81.67	006	_		84.747
43.49	2609.3	47.719	29.6212	25.75	31.24	874.7	_		34.284
48.07	2584	47.258	29-3636	25.5	30.82	849.3	_		38.820
45.64	2558.7	46.792	29-0757	25.25	80.40	824	Ä		33.357
42-25	2583.3	46.829	28.7879	25	29.98	7.867	Ξ	_	82.894
41.80	2508	45.866	28.2000	24.75	29.62	73.3	Ξ	_	82.480
41.38	2482.7	46.408	28-2121	24.5	29.13	748	Η		31.967
40.95	2457.8	44.989	27-9242	24.52	28.71	122.7	7		
40.58	2482	84.478	27 -6864	24	28.29	8.76	9	_	81.041
<b>4</b> 0.11	2400-7	44.018	27.3486	23.75	27.87	72	19		80.577
9.68	2381.3	48.249	27 .0606	23.2	27.45	146.7	Ξ		80.114
27.68	2306	48.086	26.7727	23.52	20.42	8.17	16	-	29.621

The English standard yard is the distance between two marks on a bronze bar. measured when the bar is at a temperature of 62° F.

The French standard metre is the length of a platinum bar,

measured when the bar is at a temperature of 0° Cent. (32° F.).

The Standards Commission, in their Report of 1871-72, considered that a correction was needed to allow for this difference, but the original equivalents (as determined by Kater) were adopted without correction in the Weights and Measures Act of 1878.

A comparison of the corrected and adopted equivalents is given below:

	Metre.	Litre.	Kilogramme.
Corrected (Standards Com.), . Adopted (Act of 1878),	Inches.* 39.38203 39.37079	Gallons.† •22018 •2200967	Pounds. 2·20462 2·20462

^{*} At equal temperatures in ordinary air. † At equal temperatures.—distilled water.

### Table CXII.—Kilometres and Admiralty Knots.

Kilometres. Admiralty Knots.	Kilometres.	Knots.	Admiralty Knots.	Kilometres.	A dmiralty Knots.	Kilometres.	Admiraity. Knots
7.5 4.04 8 4.31 8.5 4.58 9 4.85 9.5 5.12 10 5.39 10.5 5.66 11 5.93 11.5 6.20 12 6.47 12.5 6.74 13 7.01 13.5 7.28 14.5 7.82 15 8.09 15.5 8.36 16 8.68 16 8.68 17 9.17	7 18 9.7 7 18 5 9.2 7 18 5 9.2 8 19 5 10.5 8 20 5 11.6 8 21.5 11.6 8 22.5 12.1 16 22 11.8 16 22.5 12.1 16 22.5 12.4 16 24.5 13.2 24.5 13.2 24.5 13.2 25.5 13.4 25.5 14.3	713 28 883 28·5 29·5 192 30 162 30·5 182 31·5 182 31·5 182 31·5 183 33·5 151 34·5 190 35·5 60 35·5 60 36·5	14·839 15·109 15·879 15·919 16·188 16·458 16·728 16·998 17·268 17·538 17·807 18·077 18·347 18·617 18·887 19·156 19·426 19·966	38 38·5 39·5 40·5 41·5 42·5 43·5 44·5 45·5 46·5	20 235 20 505 20 775 21 7045 21 315 21 315 21 385 21 385 22 124 22 124 22 394 22 364 22 32 3 473 23 773 24 713 24 552 24 822 25 692 25 692	48 48 5 49 5 50 5 51 5 52 5 53 5 54 5 55 5 5 5 5 5 5 5 5 5 5 5 5	25·632 25·901 26·171 26·441 26·711 26·981 27·251 27·520 28·600 28·330 28·600 28·869 29·139 29·409 29·679 29·949 30·218

Kilometre = '05896 of an Admiralty knot.

¹ Admiralty knot = 6080 ft. per hour.

¹ Statute mile = 5280 ft, 1 Kilometre = 8280:8992 ft.

### Table CXIII.—Millimetres and Inches.

Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli. metres.	Inches.
1	-03937	41	1.6142	81	3.1890	121	4.7639	161	6.3387
2	.07874	42	1.6536	82	3.2284	122	4.8032	162	6.3781
3	·11811	43	1.6929	83	3.2678	123	4.8426	163	6.4174
4	15748	44	1.7323	84	3.3071	124	4.8820	164	6.4568
5	19685	45	1.7717	85	3.3465	125	4.9214	165	6.4962
6	23622	46	1.8110	86	3.3859	126	4.9607	166	6.5356
7	27560	47	1.8504	87	3.4252	127	5.0001	167	6·5749 6·6143
8	·31497 ·35434	48 49	1.8898 1.9292	88 89	3·4646 3·5040	128 129	5·0395 5·0788	168 169	6.6537
10	3937	50	1.9685	90	8.5434	130	5.1182	170	6.6930
11	4831	51	2.0079	91	3.5827	131	5.1576	171	6.7324
12	4724	52	2.0478	92	3.6221	132	5.1969	172	6.7718
13	·5118	53	2.0866	93	3.6614	133	5.2363	173	6.8111
14	.5512	54	2.1260	94	8.7008	134	5.2757	174	6.8505
15	.5906	55	2.1654	95	3.7402	135	5.3150	175	6.8899
16	·6299	56	2.2048	96	3.7796	136		176	6.9293
17	-6693	57	2.2441	97	3.8190	187	5.3938	177	6.9686
18	7087	58	2.2835	98	3 8583	138		178	7.0080
19	·7480	59	2.3229	99	8.8977	139		179	7.0474
20	7874	60	2.3622	100	3.9371	140		180	7.0867
21	8268	61	2.4016	101	3.9764	141	5.5513	181	7.1261
22	*8662 *9055	62 63	2·4410 2·4804	102 103	4.0158	142		182 183	7·1655 7·2048
23 24	9449	64	2.5197	103		143 144		184	7.2442
25	9843	65	2.5591	105		145		185	7.2836
26	1.0236	66	2.5985	106		146		186	7.3230
27	1.0630	67	2.6378	107	4.2127	147		187	7.3623
28	1.1024	68	2.6772	108		148		188	7.4017
29	1.1418	69	2.7166	109		149		189	7.4411
30	1.1811	70	2.7560	110		150	5.9056	190	7.4804
31	1.2205	71	2.7953	111	4.3702	151		191	7.5198
32	1.2599	72	2.8347	112		152		192	7.5592
33	1.2992	73	2.8741	113		1.53		193	7.5986
34	1.3386	74	2.9134	114		154		194	7.6379
35	1.3780	75	2.9528	115		155		195	
36	1.4178	76	2.9922	116		156		196 197	7·7167 7·7560
37 38	1·4567 1·4961	77 78	3.0316	117 118	4.6064 4.6458	157 158		197	7.7954
38	1.5355	79	3.0709	118		158		199	7.8348
40	1.5748	80	3.1497	120		160		200	
l **	20.30	ľ	5 1 2 5 1	۱ **	1	1 ***	3 2000	=""	" "

Table CXIII. - Millimetres and Inches-continued.

# Table CXIII.—Millimetres and Inches—continued.

metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli. metres.	Inches.	Milli. metres.	Inches.
101 102 103 104 105 106 107 108 107 108 110 110 110 110 110 110 110 110 110	15 '7877' 15 '8271' 15 '8664 15 '9058 15 '9452' 15 '9845 16 '0239 16 '0633 16 '1026 16 '1420 16 '1814 16 '2208 16 '2801 16 '2995 16 '3839 16 '3782 16 '4176 16 '4570 16 '4964 16 '5357 11 '66588 16 '6982 16 '67826 16 '7720	441 442 444 445 446 447 448 450 451 452 453 454 456 461 462 463 464 465 463 464 465 466	17:3625 17:4019 17:4418 17:4806 17:5594 17:5594 17:5595 17:7169 17:7562 17:7562 17:7562 17:7956 17:7953 17:9137 17:9531 17:9137 17:9531 18:0318 18:0712 18:1106 18:1499 18:1893 18:2287 18:2680 18:3074 18:3468	481 482 483 484 485 486 487 489 490 491 492 493 496 497 498 500 501 502 503 504 505 505 505 505	18:9374 18:9767 19:0161 19:0555 19:0148 19:1342 19:1736 19:2130 19:2523 19:2917 19:3311 19:3704 19:4492 19:4885 19:5279 19:6066 19:6460 19:6854 19:7248 19:7248 19:7441 19:8035 19:8429 19:822 19:9216	521 522 523 524 525 526 527 528 530 531 532 533 534 535 537 538 541 542 542 544 545 546	20·5122 20·5516 20·5909 20·6893 20·6897 20·7090 20·7484 20·8272 20·8665 20·9059 20·9453 20·9846 21·0240 21·0240 21·1421 21·1815 21·2209 21·2309 21·3783 21·4177 21·4571 21·4571 21·4571 21·45964	561 562 564 565 566 568 569 570 571 575 574 575 578 581 582 583 584 586	22·0870 22·1264 22·1658 22·2051 22·2445 22·2839 22·8626 22·4020 22·4414 22·4807 22·5595 22·5988 22·6382 22·6776 22·7750 22·7563 22·7957 22·8351 22·8744 22·9138 22·9532 22·9925 23·0319 23·0713
427 428 429 430 431 432 438 436 436 436 436 446	16.8507 16.8901 16.9294 16.9688 217.0082 317.0476 17.0869 517.1263 317.1657 717.2050 317.2444	467 468 470 471 472 473 474 475 476 477 478 479 480	18:3862 18:4255 18:4649 18:5043 18:5436 18:5830 18:6224 18:6617 18:7011 18:7405 18:7799 18:8192 18:8586 18:8980	512 513 514 515 516	19:9610 20:0004 20:0397 20:0791 20:1185 20:1578 20:2760 20:2760 20:3153 20:3547 20:3941 20:4728	547 548 559 551 552 553 554 555 556 557 558 559 560	21:5858 21:5752 21:6146 21:6589 21:6938 21:7827 21:7720 21:8114 21:8508 21:9295 21:9689 22:0476	587 588 589 590 591 592 594 595 596 597 598 599 600	23:1106 23:1500 23:1894 23:2288 23:2681 23:3075 23:3469 23:4256 23:4256 23:450 23:5044 23:5437 23:5831 23:6225

Table CXIII.—Millimetres and Inches—continued.

Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.
601 602 603 604 605 606 607 608 610 611 612 613 614 615 616 617 617	23·6618 23·7012 23·7406 23·7800 23·8193 23·8587 23·9874 23·9674 24·0162 24·0566 24·0949 24·130 24·2524 24·2130 24·2524 24·2912	641 642 643 644 645 646 647 648 650 651 652 653 654 655 656	25·2367 25·2760 25·3154 25·3154 25·3942 25·4335 25·516 25·516 25·5910 25·6804 25·698 25·7485 25·7879 25·8272 25·8272 25·826 25·9060	681 682 683 684 685 686 687 691 692 693 694 695 696	26·8115 26·8509 26·9029 26·9029 27·0084 27·0477 27·1265 27·1658 27·2052 27·2446 27·22446 27·22446 27·3233 27·3627 27·4021 27·4408	721 722 723 724 725 726 727 728 729 730	28·3863 28·4257 28·5644 28·5643 28·5632 28·626 28·67407 28·7407 28·78104 28·8194 28·8588 28·8982 28·9375 28·9769 29·0163 29·0163	761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776	29.9612 30.0005 30.0399 30.0793 30.1187 30.1580 30.12761 30.3549 30.3549 30.4730 30.4730 30.5517 30.5517 30.6305
619 620 621 622 623 624 625 626 627 628 630 631 632 633 634	24·3705 24·4099 24·4493 24·5280 24·5674 24·668 24·6855 24·7249 24·642 24·8430 24·8823 24·9811 25·0004	659 660 661 662 663 664 665 666 667 668 670 671 672 673 674	25-9454 25-9847 26-0241 26-0685 26-1028 26-1422 26-2810 26-2297 26-3784 26-4178 26-4672 26-485 26-5559 26-5753	699 700 701 702 708 706 707 708 709 710 711 712 713 714 715	27·5202 27·5596 27·5896 27·5898 27·6883 27·6777 27·7170 27·7564 27·8352 27·8745 27·9139 27·953 27·952 28·0320 28·0714 28·1108 28·1108	739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754	29 · 0950 29 · 1844 29 · 1738 29 · 2151 29 · 2555 29 · 2019 29 · 3812 29 · 3812 29 · 4494 29 · 4494 29 · 5281 29 · 6668 29 · 6462 29 · 6462	779 780 781 782 788 784 785 786 787 788 789 790 791 792 793 794 795	30-6698 30-7092 30-7486 30-7880 30-8273 30-8667 30-9454 30-9848 31-0242 31-1636 31-1029 31-1423 31-1817 31-2210 31-2604 31-2998
636 637 638 639 640	25.0398 25.0792 25.1186 25.1579 25.1973	676 677 678 679 680	26·6147 26·6540 26·6934 26·7328 26·7721	716 717 718 719 720	28·1895 28·2289 28·2682 28·3076 28·3470	756 757 758 759 760	29.7643 29.8037 29.8431 29.8824 29.9218	796 797 798 799 800	31·3392 31·3785 31·4179 31·4573 31·4966

## Table CXIII. - Millimetres and Inches-continued.

		_				_			
metres.	Inches.	Milli. metres.	Inches.	Millii. metres.	Inches.	Milli- netres.	Inches.	Milli- metres.	Inches.
ia	ㅋ	M M	ı,	Ãă	ង	P A	ä	Ağ	4
		_							
101	31.5360	841	33.1108	881	34.6857	921	36 2605	961	37 ·8253
02	31 .5754	842	33.1502	882	34.7250	922	36.2999		37 . 87 47
303	31.6148	843	33.1896		34.7644	928	36 3392		37 9141
304	31.6541	844	83.2290		34.8038	924	36·3786		37.9534
305	31.6935	845	33.2683		34.8432		36.4180		37.9928
30 <b>6</b> 30 <b>7</b>	31·7329 31·7722	846 847	33·3077 33·3471	886 887	34.8825	926 927	36·4574 36·4967	966 967	38·0322 38·0716
308	31.8116	848	33.3864	888	34·9219 34·9618		36.5361	968	38.1109
309	31.8510	849	33.4258		35.0006		36.5755		38.1503
310		850	33.4652		35.0400		36.6148		38 1897
311	31 .9297	851	33.5046		85.0794	931	36.6542	971	38.2290
812		852	33.5439		35.1188		36.6936		38 2684
813		853	33.2833		35.1581	933	36.7330		38.3078
814		854	33.6227	894	35.1975	934	36.7723		88.3472
815		855	83.6620		35.2369		36.8117		38.3865
816 817		856 857	38·7014 33·7408	896 897	35·2762 35·3156	986 937	36·8511 36·8904	976 977	88·4259 88·4653
818		858	33.7801	898	35.3550	988	36.9298		38.5046
819		859	33.8195		35.3943	939	36.9692		38.5440
820		860	33.8589		35.4337	940	37.0086		38.5834
821	32.8234	861	33.8982	901	35.4731	941	37.0479	981	38.6228
822		862	33.9376	902	35.5125	942	37.0873	982	88.6621
823		863	33.9770	903	35.5518	943	37.1267		38.7015
824		864	34.0164	904	35.5912	944	37.1660		38.7409
825 826		865	34.0557	905	35.6306	945	37.2054		38.7802
827		866 867	34·0951 34·1345	906 907	35.6699 35.7093	946 947	37·2448 37·2841	986 987	38·8196 38·8590
828	32.5990	868	34.1738	908	35.7487	948	37.3235	988	38.8984
829	32.6384	869	34.2132	909	35.7880	949	37.3629	989	38.9377
830		870	34.2526	910	35.8274	950	37.4023		38.9771
831	32.7171	871	84.2920	911	35.8668	951	37.4416		39.0165
832		872	34.3313	912	35.9062	952	37.4810		39.0558
838		873	34.3707	913	85.9455	953	87.5204	993	39.0952
834		874	34.4101	914	35.9849	954	37.5597	994	39.1346
835		875	34.4494	915	36.0243	955	37.5991	995	39.1739
836 837		876	34·4888 34·5282	916 917	36·0636 36·1030	956 957	37·6385 37·6778	996 997	39·2183 39·2527
838		877 878	34.5676	917	36.1424	957	37.0778 37.7172	998	39.2527
839		879	34.6069	919	36.1818	959	37.7566	999	39 2820
840		880	34.6463	920	36.2211	960	37.7960		39.3708
"	1	303					-,		
				_					

Table CXIV.—Decimal equivalents of Fractions of an inch.

			:			Fractions.	İ
1/64 1/32	·015625	17/66 %2	·265625 ·28125	33/64 17/32	·515625 ·53125	49/64 25/32 51/64 13/16 53/64 27/32 55/64 7/8 57/64 29/32 59/64 15/16 61/64 51/32 63/64 1	·76562 ·78125
1/16 %4	.046875 .0625 .078125	5/16 21/44	*3125 *328125	%4 %4 37%4	5625 578125	13/16 53/4	*8125 *82812
%2 %4 L	·09375 ·109375	1 1/3 2 3/3 2 3/6 4	·34375 ·359375 ·975	19/32 39/64	·59375 ·609375	27/39 55/64	*84375 *85937
/8 %2 	·140625 ·15625	13/33 13/33	·390625 ·40625	78 4 1/6 4 2 1/3 2	·640625	⁷⁸ ⁵ ⁷ / ₆ 4	·89062 ·90625
3/16 1 3/64	171875 1875 203125	7/16 2.9%4	4375 4375 453125	1 1/16 4 5/6 4	671875 6875 703125	1 5/16 6 1/4	92187 9375 95312
7/32 15/64	·21875 ·234375 ·25	16/32 31/64	·46875 ·484375 ·5	3/3 2 4 7/6 4 8/4	.71875 .734375 .75	8 1/3 2 6 3/6 4	•96875   •98437   1

Table CXV.—Metrical equivalents of Fractions of an inch, &c.

Fractions of an inch.	Milli- metres.	Fractions of an inch.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.
1/32 1/16 3/32 1/8 5/32 3/16 7/32 1/4 9/32 5/16 11/32	1.5875 2.3812 3.1749 3.9687 4.7624 5.5561 6.3499 7.1436 7.9874	9/16 19/32 5/8 21/32 11/16 23/32 3/4 25/32 13/16 27/32	13·4935 14·2872 15·0810 15·8747 16·6684 17·4622 18·2559 19·0496 19·8434 20·6371 21·4309 22·2246	2 3 4 5 6 7 8 9 10	25·3995 50·7991 76·1986 101·5982 126·9977 152·3972 177·7968 203·1963 228·5959 253·9954 279·3950 304·7945	18 19 20 21 22 23 24 25 26 27	431 ·7922 457 ·1917 482 ·5918 507 ·9903 533 ·3904 558 ·7896 584 ·1894 609 ·5896 634 ·9888 660 ·3881 685 ·7876 711 ·1872
13/82 7/16	10:3186 11:1123 11:9060 12:6998	1 5/16 8 1/8 2	23·0183 23·8121 24·6058	13 14	330·1940 335·5936 380·9931 406·8926	29 30 31	736-586 761-986 787-385 812-785

Table CXVI.—Square Feet and Square Metres.

Square Feet,	Square Metres.	Square Feet.	Square Metres.	Square Feet.	Square Metres.	Square Feet.	Square Metres.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	**************************************	26 27 28 29 30 31 32 33 34 35 36 37 88 89 40 41 42 48	2·4154 2·5083 2·6012 2·6941 2·7870 2·8799 2·9728 3·0657 8·1586 8·2515 8·3444 8·4373 3·5302 3·6231 8·7160 8·8089 3·9018 8·9947	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	4·7879 4·8308 4·9287 5·0166 5·1095 5·2024 5·2958 5·8882 5·4811 5·5740 5·6669 5·7598 5·8527 5·9456 6·0385 6·1314 6·2243 6·8172	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	7.0604 7.1533 7.2462 7.3391 7.4820 7.5249 7.6178 7.7107 7.8036 7.8965 7.9894 8.0823 8.1752 8.2681 8.3610 8.4539 8.5468
19 20 21 22 23 24 25	1.7651 1.8580 1.9509 2.0438 2.1367 2.2296 2.8225	44 45 46 47 48 49 50	4·0876 4·1805 4·2784 4·3663 4·4592 4·5521 4·6450	69 70. 71 72 73 74 75	6·4101 6·5030 6·5969 6·6888 6·7817 6·8746 6·9675	94 95 96 97 98 99	8·7326 8·8255 8·9184 9·0113 9·1042 9·1971 9·2900

The above Table can, of course, be used for hundreds and thousands of feet, or for hundredths and thousandths of feet, by altering the position of the decimal point: e.g., —50 square feet — 4.645 square metres, and 5000 square feet — 464.5 square metres; also .5 square foot — .04645 square metre.

Table CXVII.—Square Metres and Square Feet.

Square Metres.	Square Feet.	Square Metres.	Square Feet.	Square Metres.	Square Feet.	Square Metres.	Square Feet
1	10.764	26	279.872	51	548-979	76	818:087
2	21 .529	27	290.636	52	559.744	77	<b>828</b> ·851
3	32.293	28	301 .400	53	570.508	78	839.615
4 5	43.057	29	312.165	54	581 272	79	850.380
	53.822	30	322.929	55	592.036	80	861 • 144
6	64.586	31	383.693	56	602:801	81	871.908
7	75.350	32	344.458	57	613.565	82	882.673
8	86.114	33	355.222	58	624.329	83	893-437
9	96.879	34	365.986	59	635.094	84	904-201
10	107.643	35	376.750	60	645.858	85	914.966
11	118.407	36	387.515	61	656.622	86	925.730
12	129.172	37	398 279	62	667:387	87	936-494
13	139.936	38	409.043	63	678.151	88	947.258
14	150.700	39	419.808	64	688.915	89	958.023
15	161 464	40	430.572	65	699.680	90	968.787
16	172-229	41	441 .336	66	710.444	91	979.551
17	182.993	42	452.101	67	721 .208	92	990.316
18	198.757	43	462.865	68	731.972	93	1001.080
19	204.522	44 -	473.629	69	742.737	94	1011.844
20	215.286	45	484.394	70	753.501	95	1022.608
21	226.050	46	495.158	71	764.265	96	1033-373
22	236.815	47	505.922	72	775.030	. 97	1044.137
23	247.579	48	516.686	73	785.794	98	1054 901
24	258.343	49	527.451	74	796.558	99	1065 666
25	269.108	50	538.215	75	807:322	100	1076.430

The above Table can, of course, be used for hundreds and thousands of metres, or for hundredths and thousandths of metres, by altering the position of the decimal point: e.g., —50 square metres — 538 215 square feet, and 5000 square metres = 53821 5 square feet; also 5 square metre — 5 38215 square feet.

Table CXVIII.—English Weights and Metric Equivalents.

1							
2         -9072         43         19·5045         84         38·1           3         1·3608         44         19·9581         85         38·5           4         1·8144         45         20·4117         86         39·4           5         2·2680         46         20·8653         87         39·4           6         2·7216         47         21·3189         88         39·9           7         3·1752         48         21·7724         89         40·3           8         3·6287         49         22·2260         90         40·8           9         4·0823         50         22·6796         91         41·2           10         4·5359         51         23·1332         92         41·7           11         4·9896         52         23·5868         93         42·1           12         5·4431         53         24·0404         94         43·2           13         5·8967         54         24·4940         95         43·2           14         6·3503         55         24·9476         96         43·5           15         6·8039         56         25·4012	ammes.	Kilogram	Lbs.	Kilogrammes.	Lbs.	Kilogrammes.	Lbs.
2         -9072         43         19·5045         84         38·1           3         1·3608         44         19·9581         85         38·5           4         1·8144         45         20·4117         86         39·4           5         2·2680         46         20·8653         87         39·4           6         2·7216         47         21·3189         88         39·9           7         3·1752         48         21·7724         89         40·3           8         3·6287         49         22·2260         90         40·8           9         4·0823         50         22·6796         91         41·2           10         4·5359         51         23·1332         92         41·7           11         4·9896         52         23·5868         93         42·1           12         5·4431         53         24·0404         94         43·2           13         5·8967         54         24·4940         95         43·2           14         6·3503         55         24·9476         96         43·5           15         6·8039         56         25·4012	6482	87.6	83	19:0509	42	•4536	1
3         1 3608         44         19 9581         85         38 5           4         1 8144         45         20 4117         86         39 0           5         2 2680         46         20 8653         87         39 0           6         2 7216         47         21 3189         88         39 9           7         3 1752         48         21 7724         89         40 3           8         3 6287         49         22 2260         90         40 82           9         4 0823         50         22 6796         91         41 21           10         4 5359         51         23 1332         92         41 7           11         4 9895         52         23 5868         93         42 1           12         5 4431         53         24 0404         94         42 6           13         5 8967         54         24 4940         95         43 5           14         6 3503         55         24 9476         96         43 5           15         6 8039         56         25 4012         97         43 5           16         7 2575         57         25 8548	1018						$ar{2}$
5         2.2680         46         20.8653         87         39.4           6         2.7216         47         21.3189         88         39.9           7         3.1752         48         21.7724         89         40.3           8         3.6287         49         22.2260         90         40.8           9         4.0823         50         22.6796         91         41.2           10         4.5359         51         23.1332         92         41.7           11         4.9895         52         23.5868         93         42.1           12         5.4431         53         24.0404         94         42.6           13         5.8967         54         24.9476         96         43.5           15         6.8039         56         25.4012         97         43.6           16         7.2575         57         25.8548         98         44.9           17         7.7111         58         26.3084         99         44.9           18         8.1647         59         26.7619         100         45.3           19         8.6182         60         27.2155	.5554			19.9581	44	1.3608	3
6 2.7216 47 21.3189 88 39.97 7 3.1752 48 21.7724 89 40.3 8 3.6287 49 22.2260 90 40.8 9 4.0823 50 22.6796 91 41.2 10 4.5359 51 23.1332 92 41.7 11 4.9895 52 23.5868 93 42.1 12 5.4431 53 24.0404 94 13 5.8967 54 24.4940 95 43.0 14 6.3503 55 24.9476 96 43.5 15 6.8039 56 25.4012 97 43.9 16 7.2575 57 25.8548 99 44.9 18 8.1647 59 26.7619 100 45.3 19 8.6182 60 27.2155 101 45.8 20 9.0718 61 27.6691 102 46.2 21 9.5254 62 28.1227 103 46.7 22 9.9790 63 28.5763 104 47.1 23 10.4326 64 29.0299 105 47.6 24 10.8862 65 29.4835 106 47.2 24 10.8862 65 29.4835 106 48.0 25 11.3398 66 29.9371 107 48.5 26 11.7934 67 30.3907 108 48.9 29 13.1542 70 68 30.8448 109 49.4 28 12.7006 69 31.297.0 100 49.8 29 13.1542 70 31.7515 111 50.3 30 13.6078 71 32.3051 112 50.8 31.14.0614 72 32.6567 200 90.7 33 14.9685 74 33.5668 400 181.4 34 15.4221 75 34.0194 500 226.7 35 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 57.5 37 16.7293 78 36.3802 800 362.8 50.5 362.8 57.5 37 16.7293 78 36.3802 800 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5 362.8 50.5	.0089	39.00	86	20.4117	45	1.8144	
7         3·1752         48         21·7724         89         40·3           8         3·6287         49         22·2260         90         40·8           9         4·0823         50         22·6796         91         41·2           10         4·5359         51         23·1332         92         41·7           11         4·9895         52         23·5868         93         42·1           12         5·4431         53         24·0404         94         42·6           13         5·8967         54         24·9476         96         43·0           14         6·3503         55         24·9476         96         43·0           15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·4           17         7·7111         58         26·7619         100         45·3           18         8·1647         59         26·7619         100         45·3           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227 </td <td>4625</td> <td>39.40</td> <td>87</td> <td>20.8653</td> <td>46</td> <td>2.2680</td> <td>5</td>	4625	39.40	87	20.8653	46	2.2680	5
8         3.6287         49         22.2260         90         40.8           9         4.0823         50         22.6796         91         41.2           10         4.5359         51         23.1332         92         41.7           11         4.9895         52         23.5868         93         42.1           12         5.4431         53         24.0404         94         42.6           13         5.8967         54         24.4940         95         43.0           14         6.3503         55         25.94012         97         48.9           15         6.8089         56         25.4012         97         48.9           16         7.2575         57         25.8548         98         44.4           17         7.7111         58         26.3084         99         44.9           18         8.1647         59         26.7619         100         45.3           19         8.6182         60         27.2155         101         46.2           20         9.0718         61         27.6691         102         46.2           21         9.5254         62         28.1227	.9161	39.91	88	21.3189	47		
9 4·0823 50 22·6796 91 41·2 10 4·5359 51 23·1332 92 41·7 11 4·9895 52 23·5868 93 42·1 12 5·4431 53 24·0404 94 42·6 13 5·8967 54 24·4940 95 43·0 14 6·3503 55 24·9476 96 43·5 15 6·8039 56 25·4012 97 43·6 16 7·2575 57 25·8548 98 44·4 17 7·7111 58 26·3084 99 44·9 18 8·1647 59 26·7619 100 45·3 19 8·6182 60 27·2155 101 45·8 20 9·0718 61 27·6691 102 46·2 21 9·5254 62 28·1227 103 46·7 22 9·9790 63 28·5763 104 47·1 23 10·4326 64 29·0299 105 47·6 24 10·8862 65 29·4835 106 48·0 25 11·3398 66 29·9371 107 48·5 26 11·7934 67 30·3907 108 48·9 27 12·2470 68 30·8448 109 49·4 28 12·7006 69 31·2979 110 49·8 28 12·7006 69 31·2979 110 49·8 28 12·7006 69 31·2979 110 50·8 29 13·1542 70 31·7515 111 50·3 30 13·6078 71 32·3051 112 50·8 31 14·0614 72 32·6587 200 90·7 32 14·5149 73 33·1123 300 136·0 33 14·9685 74 33·5658 400 181·4 34 15·4221 75 34·0194 500 226·7 35 15·8767 76 34·4780 600 27·21 36 16·3292 77 34·9266 700 317·5	·3697	40.36	89	21 .7724	48	3.1752	
10         4·5359         51         23·1332         92         41·7           11         4·9895         52         23·5868         93         42·1           12         5·4431         53         24·0404         94         95         43·0           13         5·8967         54         24·4940         95         43·0         43·0           14         6·3503         55         24·9476         96         43·5         43·0           15         6·8039         56         25·4012         97         43·9         44·9         16         7·2575         57         25·8548         98         44·9         18         8·1647         59         26·7619         100         45·3         18         8·1647         59         26·7619         100         45·3         19         8·6182         60         27·2155         101         45·8         20         9·0718         61         27·6691         100         45·8         20         9·0718         61         27·6691         102         46·2         22         10·3         46·7         22         9·9790         63         28·5763         104         47·1         23         10·4326         64         29·0	·8238	40.85	90				
11         4·9895         52         28·5868         93         42·1           12         5·4431         53         24·0404         94         42·6           13         5·8967         54         24·9440         95         43·0           14         6·3503         55         24·9476         96         43·0           15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·4           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·8           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         2	2769	41.27					
12         5·4481         53         24·0404         94         42·6           13         5·8967         54         24·4940         95         43·0           14         6·3503         55         24·9476         96         43·5           15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·9           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         46·2           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         48·6           24         10·8862         65         29·4835         106         48·9           25         11·3398         66 <td< td=""><td>·7305</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	·7305						
13         5·8967         54         24·4940         95         43·0           14         6·8503         55         24·9476         96         43·5           15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·9           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·2           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         48·6           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         <	·1841	42.18	93				
14         6·3503         55         24·9476         96         43·5           15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·9           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·8           19         8·6182         60         27·2155         101         45·8           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3388         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68	·6377	42.6					
15         6·8039         56         25·4012         97         43·9           16         7·2575         57         25·8548         98         44·4           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·8           20         9·0718         61         27·6691         102         46·2           21         9·5264         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·4           28         12·7006         69	.0913						
16         7·2575         57         25·8548         98         44·4           17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·3           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         48·6           24         10·8862         65         29·4835         106         48·6           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         80·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           29         13·1542         70	·5449						
17         7·7111         58         26·3084         99         44·9           18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·8           20         9·9718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         48·0           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           28         12·7006         69         31·2979         111         50·3           31         14·0614         72	.9982						
18         8·1647         59         26·7619         100         45·3           19         8·6182         60         27·2155         101         45·8           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·9           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·8           30         13·6078         71         32·3051         112         50·8           31         14·0614         72	·4521						
19         8·6182         60         27·2155         101         45·8           20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·26587         200         90·7           32         14·5149         73 <td>9057</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	9057						
20         9·0718         61         27·6691         102         46·2           21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         13·6·0           33         14·9685         74<	3593						
21         9·5254         62         28·1227         103         46·7           22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75	8128						
22         9·9790         63         28·5763         104         47·1           23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·9835         106         48·5           25         11·3898         66         29·9871         107         48·5           26         11·7984         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757							
23         10·4326         64         29·0299         105         47·6           24         10·8862         65         29·4835         106         48·0           25         11·3898         66         29·9871         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·7           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
24         10·8862         65         29·4835         106         48·0           25         11·3898         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8448         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         81·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4780         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         <							
25         11·3398         66         29·9371         107         48·5           26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8443         109         49·8           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292         77         34·9266         700         31·5           37         16·7293         78         36·3802         800         802							
26         11·7934         67         30·3907         108         48·9           27         12·2470         68         30·8448         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·8           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4780         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·8							
27         12·2470         68         30·8448         109         49·4           28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·8							
28         12·7006         69         31·2979         110         49·8           29         13·1542         70         31·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·8							
29         13·1542         70         81·7515         111         50·3           30         13·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         186·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4780         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·2							
30         18·6078         71         32·3051         112         50·8           31         14·0614         72         32·6587         200         90·7           32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4780         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·8							
31     14·0614     72     32·6587     200     90·7       32     14·5149     73     33·1123     300     136·0       33     14·9685     74     33·5668     400     181·4       34     15·4221     75     34·0194     500     226·7       35     16·8757     76     34·4780     600     272·1       36     16·3292     77     34·9266     700     317·5       37     16·7293     78     36·3802     800     362·8							
32         14·5149         73         33·1123         300         136·0           33         14·9685         74         33·5658         400         181·4           34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         36·3802         800         362·8							
33     14.9685     74     33.5658     400     181.4       34     15.4221     75     34.0194     500     226.7       35     15.8757     76     34.4780     600     272.1       36     16.3292     77     34.9266     700     317.5       37     16.7293     78     36.3802     800     362.8							
34         15·4221         75         34·0194         500         226·7           35         15·8757         76         34·4730         600         272·1           36         16·3292         77         34·9266         700         317·5           37         16·7293         78         35·3802         800         362·8							
35							
36							
37   16·7293   78   36·3802   800   362·8							
		408.2	900	35.8338	79	17.2865	38
		458.59					
1 1 1 1 1		907.18					
		1016.0					
	-210	10100					l

Table CXIX.—Metric Weights and English equivalents.

Kilo- grams.	Lbs.	Kilo- grams.	Lbs.	Kilo- grama.	Lbs.
1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 24 25 26 27 28 29 30 81 32 83 84 35 86	2·2046 4·4092 6·6139 8·8185 11·0281 13·2277 15·4324 17·6370 19·8416 22·0462 24·2508 26·4554 28·6601 30·8647 38·6832 41·8878 44·2970 48·5017 50·7063 52·9109 55·1155 57·3202 59·5248 61·7294 63·9340 66·1386 68·3433 70·5479 72·7525 74·9571 77·1617 79·3664	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 68 69 71 72 73	83:7756 85:9802 88:1848 90:3895 92:5941 94:7987 97:0034 99:2079 101:4126 103:6172 105:8218 108:0264 110:2311 112:4357 114:6403 116:8499 119:0495 121:2542 123:4588 125:6634 127:8680 130:67:27 132:2773 134:4819 136:6865 138:8911 141:0958 143:0958 143:0958 144:5050 147:7096 149:9142 152:1189 154:3235 156:5281 158:7327 160:9874	75 76 77 78 79 80 81 82 83 84 85 86 87 88 99 91 92 93 94 95 96 97 98 99 100 200 300 400 500 600 700 800 800 800 800 800 800 800 800 8	165 · 3466 167 · 5512 169 · 7559 171 · 9605 174 · 1651 176 · 3697 178 · 5743 180 · 7789 182 · 9836 185 · 1882 187 · 3928 189 · 5974 191 · 8020 194 · 0067 196 · 2113 198 · 4159 200 · 6205 202 · 8251 205 · 0298 207 · 2344 209 · 4390 211 · 6431 213 · 8482 216 · 0529 218 · 2575 220 · 4621 440 · 9243 661 · 3864 881 · 8485 1102 · 8106 1822 · 7728 1543 · 2349 1763 · 6970 1984 · 1591 2204 · 6213 2239 · 8952
87	81.5709	75 74	163.1419	1010	2208 Q#0Z

Table CXX -- Pounds per square inch and Kilogrammes per square centimetre.

Lbs. per sq. inch.	Kilos. per aq. cm.	Lbs. per sq. inch.	Kilos* per sq. cm.	Lbs. per sq. inch.	Kilos. per sq. cm.	Lbs. per sq. inch.	Kilos. per sq. cm.	Lbs. per sq. inch.	Kilos. per sq. cm.
1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 29 30 31 32	0703 1406 2109 2812 3515 4218 4921 5624 6327 7030 7733 8436 9140 9843 1-0546 1-1248 1-195 1-265 1-35 1-406 1-476 1-546 1-546 1-546 1-547 1-547 1-548 1-988 2-038 2-179 2-179 2-249	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 66 61 62 63 64 66 66 66	2·460 2·530 2·671 2·671 2·812 2·882 2·952 3·093 3·163 3·233 3·304 3·374 3·515 3·585 3·585 3·796 3·866 3·936 4·007 4·077 4·147 4·218 4·228 4·429 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4·569 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 99 100	4·850 4·921 4·991 5·061 5·202 5·342 5·413 5·483 5·624 5·553 5·624 5·764 5·764 5·766 6·116 6·186 6·256 6·327 6·487 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·6537 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748 6·748	103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 131 131 131 131 131 141 151 161 171 171 171 171 171 171 171 171 17	8.929 8.999 9.069 9.140 9.210 9.280 9.350 9.421	187 138 139 140 141 142 143 144 145 146 147 148 149 155 160 185 170 185 190 195 200 210 220 230 240 250 280	9.682 9.702 9.772 9.843 9.913 9.983 10.054 10.124 10.264 10.385 10.405 10.405 10.405 11.249 11.600 11.952 12.303 12.655 13.006 13.358 13.710 14.061 14.76 15.46 16.16 16.87 17.57 18.98 19.68
33 34	2·319 2·390	67 68	4·710 4·780	101 102	7·101 7·171	135 136		290 300	20.88

Table CXXI.—Kilogrammes per square centimetre and pounds per square inch.

Kilos.	Lbs. per	Kilos.	Lbs. per	Kilos.	Lbs. per	Kilos.	Lbs. per
per	square	per	square	per	square	per	square
sq. cm.	inch.	sq. cm.	inch.	sq. cm.	inch.	sq. cm.	inch.
1 2 3 4 5 6 7 8 9 10 1 1 2 3 1 4 5 6 1 7 8 9 2 2 8 4 2 5 6 7 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1·422 2·844 4·266 5·689 7·111 8·583 9·956 11·378 12·800 14·223 15·645 17·067 18·490 19·912 21·384 22·767 24·179 25·601 27·024 28·446 29·868 31·291 32·718 34·135 35·558 36·980 39·824	3·123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123·4·567890123-44890123-44890123-44890123-44890123-44890123-44890123-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890120-44890100-4489000000000000000000000000000000000	44·091 45·514 46·986 48·386 49·781 51·203 52·625 54·046 56·892 58·316 59·787 61·159 62·582 64·004 66·426 66·849 68·271 69·693 71·116 72·588 78·980 75·382 76·805 78·227 79·649 81·072 82·494	6 6 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8	86·761 88·183 89·606 91·028 92·450 93·873 95·295 96·717 98·140 99·562 100·984 102·407 103·829 105·251 106·674 108·096 109·518 110·940 112·363 113·785 115·207 116·630 118·052 119·474 120·897 122·319 123·741 125·164	9·1 9·2 9·3 9·6 9·7 9·8 10·0 11·5 11·0 12·5 13·0 14·5 16·5 17·0 17·0 18·5 18·5 18·5 18·5	129·431 130·853 132·275 133·698 135·120 136·542 137·965 139·387 140·809 142·232 149·343 156·455 163·566 170·678 177·790 184·901 192·013 199·124 206·236 218·348 220·459 227·571 234·682 241·794 248·906 256·017 263·129 270·240
2·9	41·247	5∙9	83·916	8.0	126.586	19·5	277·352
3·0	42·669	6∙0	85·339	8.8	128.008	20·0	284·464

## Table CXXII.—Areas of Segments of Circles.

To find the area of any segment of a circle,—Divide the versed sine or height of the segment (V) by the diameter of the circle of which it is a part (D), and multiply the square of the diameter by the value of

(see Table) corresponding to the value of  $\frac{\cdot}{D}$  obtained; that is,—

Area of Segment - Diameter  $^2 \times x$ .

$\frac{\mathbf{v}}{\mathbf{D}}$	x	V D	x	V D	x	V D	x
ש		_ D		<u> </u>		_D_	
.001	-000042	.038	.009768	.075	·026761	.112	.048262
.002	-000119	.039	·010148	.076	.027289	·118	.048894
-003	.000219	.040	.010537	.077	.027821	·114	049528
.004	.000337	·041	010931	.078	.028356	.115	.050165
-005	000470	.042	·011330	.079	.028894	116	.050804
.006	000618	.043	.011734	-080	.029435	117	051446
·007	·000779	*044	.012142	-081	.029979	·118	·052090
.008	000951	.045	.012554	.082	.030526	·119	052736
.009	'001185	.046	.012971	.083	.031076	.120	.053385
.010	.001329	.047	.013392	.084	.031629	·121	.054036
.011	001533	·048	013818	.085	.032186	·122	.054689
.012	·001746	·049	.014247	·086	.032745	·128	055345
.013	.001968	∙050	.014681	∙087	.033307	·124	•056003
.014	.002199	.051	.015119	∙088	.033872	·125	.056663
.015	002438	.052	.015561	.089	.084441	·126	057326
.016	.002685	.053	.016007	.080	.035011	·127	·057991
.017	.002940	.054	.016457	.091	.035585	.128	·058658
.018	.003202	.055	.016911	.092	.036162	129	.059327
.019	.003471	.056	.017369	.093	.036741	.130	-059999
.020	.003748	.057	·017831	.094	.037323	·181	.060672
.021	·004031	·058	·018296	.095	.037909	.132	·061348
.022	.004322	.059	.018766	.096	.038496	.133	.062026
.023	.004618	.060	.019239	.097	.039087	.134	.062707
.024	004921	.061	019716	.098	.039680	·135	.063389
.025	.005230	.062	.020196	.099	.040276	.136	·064074
026	005546	.063	.020680	.100	.040875	·137	.064760
.027	-005867	.064	.021168	.101	.041476	.138	.065449
.028	006194	.065	021659	102	042080	.139	·066140
.029	006527	.066	022154	.103	.042687	.140	066833
.030	.006865	.067	022652	.104	043296	141	-067528
.031	007209	·068.	023154	105	·043908	.142	.068225
.032	007558	.069	023659	.106	.044522	.143	.068924
.033	007913	.070	024168	.107	.045139	144	.069625
034	.008273	.071	.024680	108	045759	145	
.032	008638	.072	025195	.109	046381	146	
.036	.009008	.073	025714	110	.047005	.147	.071741
.037	.009383	.074	026236	.111	047632	·148	.072450

Table CXXII.—Areas of Segments of Circles—continued.

V D	æ	V D	x	$\frac{\mathbf{v}}{\mathbf{D}}$	x	V D	x
·149	.073161	·193	106261	•237	142387	·281	·180918
150	073101	·194	107051	238	143238	282	181817
151	074589	194	107842	239	144091	283	182718
151	074306	196	107642	240	144944	284	183619
153	078026	197	109430	·241	145799	285	184521
154	076747	198	110226	.242	146655	286	185425
155	077469	199	1110220	243	147512	287	186329
158	077408	200	111024	.244	148371	288	187234
157	078194	200	111623	245	149230	289	188140
158	078821	201	113426	.246	150091	290	189047
159	080380	.203	114230	247	150953	291	189955
160	081112	.204	115035	248	151816	292	190864
161	.081846	205	115842	249	152680	293	191775
162	.082582	206	116650	250	153546	294	192684
163	.083320	207	117460	251	154412	295	193596
164	·084059	208	118271	252	155280	296	194509
.165	.084801	209	119083	253	156149	.297	195422
.166	085544	210	119897	.254	157019	298	196337
.167	086289	211	120712	255	157890	299	197252
.168	.087086	212	121529	256	158762	.300	198168
.169	.087785	213	122347	.257	159636	.301	199085
170	.088535	214	123167	258	160510	302	200003
171	089287	215	123988	259	161386	.303	200922
172	090041	216	124810	260	162263	304	201841
173	.090797	217	125634	.261	163140	.305	202761
174	.091554	218	126459	262	164019	.306	203683
175	.092313	.219	127285	.263	·164899	307	204605
176	093074	•220	128113	.264	·165780	.308	.205527
177	.093836	.221	128942	.265	166663	.309	206451
178	.094601	.222	129773	.266	167546	·310	.207376
179	.095366	.223	130605	•267	·168430	·311	208301
180	096134	.224	·131438	268	169315	312	209227
181	.096903	225	.132272	269	.170202	·313	·210154
182	097674	.226	·133108	270	171089	·314	211082
183	.098447	•227	133945	271	·171978	·315	212011
7384	.099221	•228	.134784	.272	172867	·316	212940
185	099997	•229	135624	.273	173758	'317	213871
186	100774	230	136465	.274	174649	·318	214802
·187	101553	•231	137307	.275	.175542	·319	.215733
·188	102334	.232	·138150	.276	.176435	·320	216666
·189	103116	233	·138995	•277	·177330	·821	.217599
190	103900	234	139841	278	·178225	.322	218533
191	104685	•235	~140688	.279	·179122	.323	·219468
·192	105472	236	·141537	•280	·180019	·324	220404

Table CXXII.—Areas of Segments of Circles—continued.

$\frac{\mathbf{v}}{\mathbf{D}}$	x	v		V		V	
D	-	D	æ	D)	x	D	æ
325	*****	-000	-000010				
326	221340	.369	*263213	418	.806140	·457	*849752
	222277	•370	•264178	•414	*807125	458	·350748
327	228215	.371	265144	415	.308110	•459	351745
328	224154	.872	266111	416	•309095	·460	*852742
329	225093	.373	·267078	·417	· <b>3</b> 10081	· <b>4</b> 61	·353739
330	226033	.874	·268045	418	·311068	462	354736
331	· <del>2</del> 26974	.875	269013	· <b>419</b>	·312054	•463	·355732
332	227915	·376	·2 <b>6</b> 9982	· <b>42</b> 0	·313041	·464	·356730
333	·228858	.877	•270951	· <b>42</b> 1	*814029	·465	·357727
334	·229801	•378	271920	· <b>42</b> 2	·315016	·466	·358725
335	230745	.379	272890	· <b>4</b> 28	*816004	·467	359723
.336	•231689	·380	•273861	·424	·316992	· <b>46</b> 8	·360721
337	232634	•381	274832	·425	•317981	·469	361719
.338	233580	•382	•275803	· <b>4</b> 26	·318970	·470	·362717
.339	-234526	•383	•276775	-427	·319959	·471	*868715
.340	235478	.384	·277748	428	*320948	·472	·864713
·341	*236421	·385	•278721	•429	*321938	·473	·365712
.342	237369	·386	279694	•430	*322928	.474	366710
.343	-238318	·387	*280668	· <b>43</b> 1	·323918	•475	367709
·344	·239268	•388	.281642	· <b>4</b> 32	•324909	·476	368708
·345	•240218	·389	282617	· <b>43</b> 3	·325900	•477	·369707
·346	·241169	-390	283592	.434	·326892	·478	370706
·347	-242121	•391	*284568	•435	-327882	·479	·371705
.348	243074	·392	·285544	·436	328874	·480	372704
·349	-244026	•393	.286521	·437	*329866	·481	·373703
.350	·244980	·894	287498	·438	-330858	.482	·374702
·351	.245934	∙895	·288476	· <b>4</b> 39	•331850	.483	375702
352	246889	∙396	289458	.440	.332843	·484	·376702
·353	247845	·397	-290432	.441	*833836	·485	377701
354	248801	-398	-291411	.442	.334829	·486	·378701
·35 <b>5</b>	249757	-399	·292390	•448	.335822	·487	379700
·35 <b>6</b>	250715	·400	·298369	·444	.336816	<b>'488</b>	880700
.357	251673	•401	-294349	.445	*837810	·489	-381699
.358	252631	·402	295330	.446	.338804	·490	*882699
.359	258590	•403	.296311	.447	·339798	•491	•383699
.360	254550	•404	297292	•448	*340793	.492	*384699
.361	255510	•405	-298273	.449	·341787	.493	*885699
362	-256471	.406	299255	·450	*342782	.494	·386699
363	257433	.407	-300238	·451	·343777	.495	·887699
.364	258895	408	301220	452	344772	•496	388699
.365	259857	·409	*802203	•453	345768	•497	·389699
.366	260320	·410	·303187	·454	346764	•498	390699
·367	261284	411	304171	455	347759	499	·891699
.368	262248	412	*805155	•456	348755	•500	392699
000	202220	714	000100	200	940199	טטט	382088

# Table CXXIII.—Areas of Circles.

			_	L	_	L					_												
.erete.	mald	-	61	þ	4	صر	8	2	00	0	ខ	Ξ	_	138		12							
	%	2.7612	6.4918	11.7933	18.6655.	27.1086	87.1224	48.7071	61.8625	76.5888	92-8858	110.7587	180.192	151 202	178.782	197-938	223.655	250-948	279.811	810.245	842.250	875.826	410.978
	· %.	2.4058	2.9896	11.0447	17.7206	25.9673	35.7848	47.1781	60.1822	74.6621	90.7828	108.4843	127.677	148.490	170.874	194.828	220.324	247.450	276.117	806-355	888-164	871.548	408.494
	%.	2.0739	6.4118	10.8206	16.8002	24.8202	84.4717	45.6686	58.4264	72.7599	88 -6643	106.1894	125.185	145.802	167 -990	191.748	217-077	248.977	272.448	802.489	884.102	867-285	402.088
88.	%.	1.787.1	4.9087	9.6211	15.9048	23.7583	38.1831	44.1787	56.7451	70.8823	86-5903	103.8691	122.719	148.139	165.130	188.692	213.825	240.239	268.803	298.648	830.064	868.051	897-609
Areas	%.	1.4849	4.4301	8.9462	15.0330	22.6907	81.9191	42.7184	55.0884	69.0293	84.5409	101.6284	120.277	140.201	162.296	182.661	210.298	237.105	265.188	294.832	826.051	858.842	893-208
	%.	1-2272	3.9761	8.2928	14.1863	21.6476	30.6797	41.2826	53.4563	67-2008	82.5161	89-2055	117.859	137.887	159.485	182.655	207 -395	233.706	261.587	291.040	322-068	354.657	388.822
	%.	-99402	3.5466	6699. 2	13.3641	20.6290	29.4648	89-8713	51.8487	65 3968	80.2128	97-2055	115.486	185-297	156.700	179.673	204.216	280.331	258.016	287 -272	818 099	820.497	384.466
	0.	.78540	3.1416	2.0686	12.5664	19.6350	28.2744	38.4846	50.2656	63.6174	78.5400	95.0334	113.098	132.733	153.938	176-715	201.062	226.981	254.470	283 - 529	814.160	346.361	380.134
.arete											ន		_			_		_		_	_		

8
₹
2
3
δ
۲
-1
Ü
U
ซ
ircle
77
v
•
õ
9
R
Lea
ď
7
- 1
Ξ
м
О
7
u
_
U
Table
7
C
•

	-													:									
sameters.	1	28	<b>77</b>	22	28	27	28	29	80	31	82	33	34	35	36	37	88	39	40	41	42	43	44
ż	8/	447-690	485.979	525.838	567 -267	610.268	654.840	700-982	748-695	926-262	848.833	901 -259	955 255	1010-822	1067-960	1126:669	1186-948	1248.798	1312.22	1877-21	1443.77	1511-91	19.1891
9	*	443.015	481.107	520.769	562.003	604.807	649.182	695.128	742.645	791-732	842.391	894.620	948.420	1003.790	1060.732	1119.244	1179-327	1240.981	1304.21	1869.00	1435.87	1503.30	1572-81
39	9/	438.364	476.259	515.726	556.763	599.371	643.248	689 - 299	736.619	785.510	835.972	888 -005	941.609	996-788	1058-528	1111.844	1171.731	1233.188	1296-22	1860.82	1426.99	1494.73	1564.04
Areas.	2/	433-737	471.436	210.206	551.547	593-959	637-941	683.494	730.618	779-313	829.579	881-415	934.822	008.686	1046-349	1104.469	1164.159	1225.420	1288.25	1352.66	1418-63	1486.17	1555-29
Ar	·/•	429.135	466.638	505-712	546.356	588-571	632.357	677.714	724.642	773-140	828-210	874.850	928.061	982.842	1039.195	1097-118	1156.612	1217-677	1280.31	1844.52	1410.30	1477-64	1546.56
;	*/	424.558	461.864	500.742	541.190	583.209	626-798	671-959	718-690	766-992	816-865	868-309	921.823	975-909	1032.065	1089.792	1149.089	1209-958	1272-40	1336-41	1401-99	1469.14	1537.86
ķ	8/	420.004	457-116	495.796	536-048	277-870	621-264	666-228	712-763	260-869	810.545	861-792	914-611	000-696	1024.960	1082.490	1141.591	1202-263	1264.51	1328.32	1393.70	1460.66	1529-19
Ģ		415.477	452.390	490.875	580-930	572.557	615.754	660.521	206.860	754.769	804.250	855 301	907-922	962-115	1017-878	1075-218	1134.118	1194.593	1256.64	1320.26	1385.45	1452.20	1520.53
Mamoters.	I	28	77	25	56	27	28	58	30	31	32	88	34	35	36	37	æ	88	40	41	42	43	#

# Table CXXIII.—Areas of Circles.

			1	L		<u>i</u>																	
.arete	malŒ	1	C.	တ	4	6	9	7	œ	6	10	Ξ	12	13	14	15	16	17	18	19	ຊ	2	77
	%	2.7612	6.4918	11.7933	18.6655.	27.1086	87-1224	48.7071	61.8625	76-5888	92.8828	110.7587	180.192	151.202	173.782	197-933	223.655	250-948	279.811	310.246	842.220	875.826	410-973
	<b>%</b> .	2.4058	9686.9	11.0447	17.7206	25.9673	35.7848	47.1781	60.1822	74.6621	90-7628	108-4343	127.677	148.490	170.874	194.828	220.354	247.450	276.117	306-355	888.164	871.548	406.494
	%.	2.0739	6.4119	10.3206	16.8002	24.8505	84.4717	45.6636	58-4264	72-7599	88.6643	106.1894	125.185	145-802	167-990	191-748	217-077	248-977	272.448	802-489	884.102	867-285	402.088
88.	%.	1.767.1	4.9087	9.6211	15.9048	23.7588	33.1831	44.1787	56-7451	70-8823	86.2903	103.8691	122.719	143.139	165-130	188.692	218.825	240.238	268-803	298.648	880.064	868-051	897.609
Areas.	<b>%</b> .	1.4849	4.4301	8-9462	15.0330	22.6907	81.9191	42.7184	55.0884	69.0293	84.2409	101.6234	120.277	140.201	162.296	182.661	210.598	287.105	265.188	294.832	826.051	358.842	893.208
	%.	1-2272			_		30.6797	41.2826	53.4563	-8008-	82.5161	99.2022	117.859	187.887	159.485	182.655	207 -395	233.706	261.587	291-040	322-068	864.667	388.822
	%.	-99402					29.4648	39.8713	21.8487	65 3968	80.2128	97-2058	112.466	135-297	156.700	179-678	204-216	230.831	258-016	287 272	818-099	850.497	384.466
	0	.78540	3.1416	2.0686	12.5664	19.6350	28.2744	38.4846	50.2656	63.6174	78-5400	95.0334	113.098	132.733	153-938	176.715	201.062	226 981	254.470	288.529	814.160	346.361	380.184
.eriete	Diame	-	a	က	4	10	9	7	00	6	2	=	12	13	14	15	18	17	18	19	8	2	53

tinued.
Circles—con
g of
III.—Area
able CXX
Tabl

							_																
.81036	MINITE .	28	24	22	98	27	88	20	8	81	82	33	- 8£	35	36	87	38	38	40	41	42	43	44
	%.	447-690	485.979	525.838	567-267	610.268	654.840	700-982	748-695	797-979	848.838	901 -259	955.255	1010-82	1067 -960	1126:669	1186-948	1248 798	1812-22	1877.21	1448-77	1511-91	19.1891
•	%.	448.015	481.107	520.769	562.003	604-807	649.182	695.128	742.645	791 -732	842.391	894.620	948.420	1003.790	1060.732	1119-244	1179.827	1240.981	1304.21	1369.00	1435.87	1503.30	1572.81
	%.	488-364	476-259	515.726	556.763	599 371	643.248	689 . 299	736.619	785.510	885-972	888 .005	841.608	996.783	1053.528	1111.844	1171-781	1233.188	1296-22	1860.82	1426.99	1494.73	1564-04
Areas.	%.	483-787	471-436	210.706	551.547	593 -959	637.941	683.494	780.618	779.318	829.579	881-415	984.822	008-686	1046.349	1104.469	1164.159	1225.420	1288.25	1352.66	1418-63	1486.17	1555.29
Arc		429-135	466-638	505-712	546.356	688-571	682.857	677.714	724.642	778.140	823.210	874.850	928.061	982.842	1089.195	1097-118	1156.612	1217-677	1280.31	1844.52	1410.80	1477.64	1546.56
	%.	424.558	461.864	500.742	541.190	583.209	626-798	671.959	718-690	766.992	816.865	868-309	921.828	606-926	1032.065	1089.792	1149.089	1209-958	1272.40	1336.41	1401-99	1469.14	1537.86
	%.	420.004	467-116	495.798	536-048	577-870	621-264	666-228	712-763	598.094	810.545	861.792	914.611	000-696	1024.960	1082.490	1141.591	1202-263	1264.51	1328.32	1393.70	1460.66	1529·19
	0.	415.477	452.890	490.875	530-930	572.557	615.754	660.521	206.860	754.769	804.250	855.301	907-922	962.115	1017-878	1075-218	1134.118	1194.593	1256.64	1320.26	1385.45	1452.20	1520.53
.erete.	Diam	23	77	22	56	27	83	8	8	31	32	జ్ఞ	34	35	38	37	38	8	40	41	42	43	44

Table CXXIII. -Areas of Circles-continued.

HIDTE	Mah	45	46	47	48	49	8	2	22	83	25	20	28	24	28	20	8	6	62	88	9	92	99
	%.	1652-89	1725-78	1800.15	1876.14	1953-69	2032.82	2118.52	2195.79	2279.64	2365 .05	2452.03	2540.58	2630.71	2722.41	2815.67	2910.51	3006-92	3104.89	3204.44	3305 -56	3408.26	8512.52
	%.	1643.89	1716.54	1790.76	1866.55	1943.91	2022.85	2103.35	2185.42	2269.07	2354.29	2441.07	2529.43	2619.36	2710.86	2803-93	2898-57	2994.78	3092.26	8191.91	3292.84	8895.33	3499.40
	%.	1684.92	1707.87	1781.40	1856-99	1934.16	2012-89	2093 -20	2175.08	2258.53	2343.55	2430.14	2518.30	2608.03	2699.33	2792-21	2886-65	2982-67	3080.25	3179.41	3280-14	3382-44	3486.30
Areas.	%.	1625-97	1698-23	1772.08	1847.46	1924.43	2002-97	2083.08	2164.76	2248.01	2332.83	2419.23	2507.19	2596.78	2687.84	2780.51	2874.76	2970.58	8067-97	3166-98	8267.46	3369.56	3478.24
	%.	1617.05	1689.11	1762.74	1837.95	1914.72	1993.06	2072-98	2154.46	2287.52	2322.15	2408.34	2496.11	2585.45	2676.36	2768-84	2862-89	2958.52	3055-71	3154.47	8254.81	8856-71	8460.19
	*	1608.16	1680.02	1753.45	1828.46	1905.04	1983.18	2062.90	2144.19	2227.05	2311.48	2397-48	2485.05	2574.20	2664.91	2757-20	2851.05	2946.48	3043-47	8142.04	8242.18	8843.88	8447-17
	*	1599-28	1670.95	1744.19	1819.00	1895-38	1973-33	2052-85	2133-94	2216.61	2300.84	2386.65	2474.02	2562.97	2653-49	2745.57	2839-23	2934.48	8031 -26	3129-64	8229.28	8881.09	8484.17
	Ģ	1590-43	1661.91	1734.95	1809-56	1885:75	1963.20	2042.83	2123.72	2206.19	2290-23	2875-83	2463.01	2551.76	2642.09	2783-98	2827-44	2922.47	80.6108	8117-25	8217.00	8818.81	8421-20
.exeste	Man	45	48	47	48	48	20	5	22	 22	42	200	8	22	8	65	<u>ജ</u>	<u> </u>	22	 ജ	34	8	<u>~</u>

		_	_	_		_		_				_	_	_	_	_	_	_	_	_		_	
eters.	maid	67	88	8	2	7	22	23	74	22	28	73	78	2	8	8	88	88	8	8	86	84	88
	%.	3618.35	8725.75	8884.78	8945-27	4057.39	4171.08	4286.83	4408.16	4521.56	4641.53	4763.07	4886.18	5010.86	5137.12	5264-94	5894.34	5525.30	5657 -84	5791-94	5927-62	6064.87	6203.69
	%.	3605.04	8712.24	8821.02	8981.87	4043-29	4156.78	4271 -84	4388.47	4506.67	4626.45	4747.79	4870.71	4995.19	5121-25	5248.88	5378.08	5508.84	5641.18	5775.10	5910.58	6047.63	6186-25
	*	8591-74	3698-76	8807.34	8917.49	4029.21	4142.51	4257.87	4378.81	4491.81	4611.89	4732.54	4855-26	4979.55	5105.41	5232-84	5361.84	5492.41	5624.56	5758-27	5893-55	6030.41	6168.84
3	%	8578-48	8685 29	8793.68	8908.68	4015.16	4128.26	4242-98	4859.17	4476-98	4596.36	4717-81	4839.83	4968-92	2089.29	6216.82	5345.68	2476.01	26.2099	5741.47	5876.56	6013 -22	6151.45
Areas	*	3565-24	8671.86	8780-04	3889-80	4001.18	4114.04	4228.21	4344.55	4462.16	4581.35	4702.10	4824.43	4948 -33	5073-79	5200.83	6329.44	5459.62	5591.87	6724.69	5859.59	5996.05	6134-08
	%.	8552-02	3658.44	8766~43	8876-00	8987.18	4099-84	4214.11	4329-96	4447.38	4566.36	4686-92	90.6087	4932.75	5058-03	5184.87	5313-28	5443.26	5574.82	5707-94	5842.64	5978-91	6116-74
	*.	3588.83	8645.05	3752-85	8862-22	8978.15	4085-66	4199.74	4315.39	4432.61	4551-41	4671.77	4798.70	4917-21	5042.28	5168-93	5297.14	5426.93	5558 -29	5691.22	5825.72	6961.79	6099-43
	o.	8525.66	3631.69	3739-29	8848.46	3959 20	4071.51	4185.40	4300.85	4417.87	4536.47	4656.64	4778.87	4901.68	2026.56	5153.01	5281 .03	5410.62	5541.78	5674.51	5808-82	5944.69	6082-14
eters.	malQ	67	88	69	2	71	22	73	74	75	26	11	78	28	8	81	85	88	84	86	88	87	88

Table CXXIII.—Areas of Circles—continued.

.arete	maid	8	8	8	8	88	8	95	8	8	88	66	<u>음</u>	101	102	103	104	105	106	107	108	108	110
	%.	6344 .08	6486.04	6629.57	6774.68	6921.35	7069.59	7219-41	7870-79	7523-75	7678.28	7884.38	7992-03	8151.28	8312.09	8474.47	8688.42	:	:	:	:		:
	<b>%</b> .	6326-45	6468 21	6611.55	6756.45	6902-93	2050-98	200.00	7351-79	7504.55	7658.88	7814.78	7972-25	8131 30	8291 -91	8454.09	8617.85	8783.18	8950.07	9118-54	9288.58	9460.19	9633.37
	%.	6308.84	6450.40	6593.54	6738-25	6884.53	7032.39	7181.81	7332.80	7485.37	7639.50	7795.21	7952.47	8111.32	8271.73	8433.73	8697 28	:	:	:	:		:
88.	3/1.	6291 -25	6432.62	6575.56	6720.08	6866.16	7013-82	7163.04	7313.84	7466-21	7620.15	7775.66	7932-74	8091-39	8251.61	8413.40	8576.76	8741.70	8908.50	9076-28	9245 98	9417.14	9589 93
Areas	%.	6273.69	6414.86	6557.61	6701.93	6847.82	6995-28	7144.31	7294.91	7447.08	7600-82	7756-18	7913.00	8071.46	8231:49	8393.08	8556 25	:	:	:		:	:
	Х,	6256.15	6397 13	6539.68	6683.80	6829.49	92.9269	7125.59	7275-99	7427-97	7581.52	7786-63	7893.31	8051.58	8211.41	8372.81	8635.78	8700.32	8866.43	9034.11	9208.87	9374.19	9546.59
	%.	6238-64	6379-42	6521-78	6665.70	6811-20	6958-26	7106-90	7257-11	7408.89	7562-24	7717.16	7873.64	8031.69	8191-33	8352.58	8515.31	:	:	. :	:	:	:
	0.	6221.15	6361.74	6503-90	6647.63	6792.92	6939-79	7088-24	7238-25	7389.83	7542.98	7697.71	7854.00	8011.86	8171.30	8332.31	8494.89	8659.03	8824.75	8992.04	9160-91	9881 -34	9508.34
.srets.	Diam	88	8	91	35	63	94	95	96	97	86	66	8	101	102	.03	104	9	90	107	80	60	2

Table CXXIII. - Areas of Circles-continued.

.azeta	mald	Ξ	112	18	114	15	16	117	18	19	8	21	122	128	124	125	26	127	88	129	130	31	182	
ļ <u>-</u>		-	_		_	_	_	_	_	_	Ξ	_	_	_	H	=	=	H	=	Ξ	ř	Ξ	~	
	%.	:	:	:	:	:	፧	:	:	:	:	:	:	:	፥	:	:	:	:	:	:	:	:	
	%	9808-12	9984.45	10162.34	10341 .80	10522-84	10705-44	10889.62	11075-37	11262.69	11451.57	11642.03	11834.06	12027 -68	12222.84	:	:	:	:	:	:	:	:	
	%	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Areas.	%.	9764-29	9940-22	10117.72	10296.79	10477.43	10659.65	10843.48	11028.78	11215-71	11404.20	11594.27	11785-91	11979-12	12173-90	12370-25	12568·17	12767-68	12968.72	13171 35	18875.58	13581.33	18788-68	
Ϋ́Υ	*	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%.	9720.55	60-9686	10073-20	10251.88	10432.12	10613-94	10797 34	10982.30	11168.83	11356-93	11546.61	11737.85	11930.67	12125.05	:	:	:	:	:	:	:	:	
	*	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	o.	9676-91	9852.06	10028-77	10207-08	10386.91	10568-34	10751.84	10932-91	11122.05	11309.76	11499.04	11689.89	11882.32	12076.31	12271.87	12469.01	12667.72	12867-99	13069.84	13273 26	13478-25	13684.81	
.erets.	mald	H	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	

Table CXXIII.—Areas of Circles—continued.

.arete.	Man	183	184	135	136	187	138	189	140	141	142	143	144	145	146	147	148	149	150	
	%.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%. **	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%	   	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	
38.	%.	18997-60	14208.08	14420.14	14633.77	14848-97	15065-74	15284-08	15503.99	15725.48	15948.53	16173.15	16399.35	16627.11	16856-45	17087-86	17319-84	17558.89	17789-51	
Areas	**		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	*	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	
	<b>%</b> .	:	:	:	<i>;</i> :	:	:	:	:	:	:	;	:	:	:	:	:	:	;	
	o.	13892-94	14102-64	14813.91	14526.76	14741-17	14957.16	15174.71	15393.84	15614.54	15836-81	16060.64	16286.05	16513.03	16741.59	16971-71	17203.40	17436.67	17671.50	
.artete.	Diame	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	20	

Areas of intermediate sizes may also be obtained by shifting Where the diameter contains an odd sixteenth, take one fourth of the area of twice the diameter; the decimal point; e.g., area, 132-18684.81; area of 18.2-186.8481; area of 1.32-1.368481, &c. c.g., area of 21/16 - Area of 476, &c.,

arioto	Diam	-	67	00	*	10	•	7	00	۵	2	Ξ	12	13	14	12	18	14	2	19	20	2	87
	%	2.8902	9.0321	12.1787	15.3153	18.4569	21.5985	24.7401	27.8817	81.0283	34.1649	37 -3065	40.4481	48.5897	46.7313	49.8729	53-0145	56.1561	59.2977	62.4393	62.2809	68.7225	71.8641
	**	5.4978	8.6394	11.7810	14.9228	18-0642	21.2068	24.3474	27.4890	30.6306	33.7722	36-9138	40.0224	48.1970	46.3386	49.4802	52.6218	55.7634	58-9050	62.0466	65.1882	68.3298	71.4714
	*	5.1051	8-2467	11.3883	14.5299	17.6715	20.8131	23-9547	27 -0963	30.2379	33.3795	36.5211	39.6627	42.8043	45-9459	49.0875	52.231	55.3707	58 -5123	61.6539	64.7955	67.9371	71-0787
erences.	*/ _s	4.7124	7.8540	10.9956	14.1372	17.2788	20.4204	23.5620	26.7036	29.8422	32.9868	36.1284	39-2700	42.4116	45.5532	48.6948	51.8364	64.9780	58.1196	61.2612	64.4028	67.5444	70-6860
Circumferences.	*	4.3197	7.4613	10.6029	13.7445	16.8861	20.0277	23.1698	26.3109	29.4525	32.5941	35.7357	38.8773	42.0189	45 1605	48.3021	51.4437	54.5853	57.7269	60-8685	64.0101	67.1517	70-2983
	*	3.9270	7.0886	10.2102	18.3518	16.4934	19.6350	22.7766	25-9182	29.0298	32-2014	35.3430	38.4846	41.6262	849.7678	47.9094	51.0510	54.1926	57.3342	60.4758	63.6174	66-7590	9006-69
	*	8.5343	6.6729	9.8175	12.9591	16.1007	19.2428	22.3839	25.5255	28.6671	31.8087	34-9503	38.0919	41.2335	44.3751	47.5167	50.6583	53.7999	56.9415	60.0831	63.2247	66.3663	6202.69
	o.	8.1416	6.2832	9.4248	12.5664	15.7080	18.8496	21 .9912	25.1328	28 27 44	31.4160	34.5576	37.6992	40.8408	43.9824	47.1240	50.2656	53.4072	56.5488	59.6904	62.8320	65.9736	69.1152
erera.	mald	-	67	တ	4	20	8	7	00	6	2	=	12	13	14	15	16	17	18	19	20	21	22

Table CXXIV.—Circumferences of Circles—continued.

.erete.	mald	ន	77	22	-82	27	88	ន	8	31	82	88	34	32	38	34	88	88	40	41	42	48	44
	%.	75-0057	78-1473	81 -2889	84.4305	87.5721	90.7187	93.8553	6966.96	100.1385	$103 \cdot 2801$	106-4217	109.563	112.705	115.846	118-988	122.130	125-271	128-413	131.554	134.696	187.888	140.979
	%.	74.6130	77.7546	80.8862	84.0378	87.1794	90.3210	93.4626	96.6042	99 - 7458	102.8874	106 .0290	109.171	112.312	115.454	118.295	121.737	124.879	128.020	131.162	134 308	187.445	140.587
	%.																						140-194
Circumferences.	.1/2	73.8276	76-9692	80.1108	83.2524	86.3940	89.5356	92.6772	95.8188	98-9604	102.1020	105.2436	108.385	111.527	114.668	117.810	120.952	124.098	127.235	130.376	133.518	136.660	139.801
Circum	%.	78.4849	76-5765	79.7181	82.8597	86.0013	89 1 429	92.5845	95-4261	98-5677	101.7093	104.8509	107-992	111-134	114-276	117.417	120.559	128.700	126.842	129.984	138.125	186-267	139-408
	%.	1																				135.874	
	%.	72.6495	75.7911	78 9327	82-0743	85.2159	88 -3575	91.4991	94-6407	97.7823	100-9239	104.0655	107 -207	110.349	113.490	116.632	119.778	122-915	126.057	129.198	132-340	135.481	188.623
	Ģ	72-2568	75.3984	78.5400	81.6816	84.8232	87-9648	91.1064	94.2480	988.26	100.5312	103.6728	106.814	109-956	113-098	116.239	119.381	122.522	125.664	128.806	181.947	135.089	188-230
.grete	mald																					43	

Table CXXIV.—Circumferences of Circles—continued.

			Chount	Circumferences.				-1016
o	%	ж.	%	1/s	%	*	<b>%</b>	Diame
872	141.785	142.157	142.550	142.948	143.335	148.728	144.121	14
514	144.906	146 299	145.692	146.084	146.477	146.870	147.262	46
655	148.048	148.441	148.833	149.226	149.619	150.011	150.404	47
797	151.189	151.582	151-975	152.368	152.760	153-153	153.546	#
938	154.331	154.724	155-116	156.509	156-902	156-295	156.687	49
080	157.478	157.865	158-258	158.651	159.043	159.436	159.829	20
222	160.614	161 -207	161.400	161.792	162.185	162.578	162-970	5
.363	163.756	164.149	164.541	164.934	165-327	166-719	166.112	52
.202	166.897	167.290	167.688	168-076	168.468	168.861	169-254	23
.646	170.039	170.432	170.824	171-217	171-610	172.008	172.395	2
.788	173-181	178.578	173 966	174.359	174.751	176-144	176.587	20
-930	176.322	176.715	177 108	177.500	177-893	178.286	178.678	2
120.	179.464	179.857	180.249	180.642	181 .035	181 -427	181 820	2
.213	182.605	182-998	183.391	183.784	184.176	184.569	184.962	88
185.354	185.747	186.140	186.532	186-925	187.318	187-711	188.103	22
967.	188.889	189-281	189.674	190-061	190-429	190.852	191 -245	8
.638	192.030	192.423	192.816	193.208	193.601	193 994	194.396	8
.779	195 172	195.265	195-967	196.320	196-743	197.185	197.528	8
921	198 313	198.706	199-099	199.482	199.884	200.277	200.670	8
-062	201.455	201.848	202.240	202-633	203-026	203.419	203 811	6
-204	204.597	204-989	205 382	205.775	206.167	206.260	206-953	8
.84R	907.738	908-181	908-K94	908-016	008.006	900.700	10.004	RA

## Table CXXIII.—Areas of Circles.

			_	1		<u>!</u>			_		_		_	_		_					_	_	
.arete	maid	-	63	<u>(</u>	4	ص	9	~	∞	6	2	11	12	13	14	16	19	11	18	19	8	q	53
	%	2.7612	6.4918	11.7933	18.6655.	27.1086	87-1224	48.7071	61.8625	76.5888	92-8858	110.7537	130.192	151 202	173.782	197-938	223.655	250.948	279.811	310.245	342.250	875.826	410-978
	%.	2.4053	2.9396	11.0447	17.7206	25.9673	35.7848	47.1781	60.1322	74.6621	90-7628	108.4343	127.677	148.490	170.874	194.828	220.354	247.450	276.117	306.855	888.164	871.543	406.494
	%.	2.0739	5.4119	10.3206	16.8002	24.8505	84.4717	45-6686	58.4264	72.7699	88.6643	106.1394	125.185	145.802	167 -990	191.748	217-077	248.977	272.448	802.489	834.102	867-285	402.088
8.6.	%.	1.7671	4.9087	9.6211	15-9043	23.7583	83.1831	44.1787	56.7451	70.8823	86.2903	103.8691	122.719	143.139	165-130	188.692	213.825	240.23	268-803	298.648	830.064	863.051	897.609
Areas.	%.	1.4849	4.4301	8.9462	15.0330	22-6907	81.9191	42.7184	55.0884	69.0293	84.2409	101 .6234	120.527	140.201	162.296	182.661	210.298	287.105	265.183	294.832	826.051	858-842	893.208
	%.	1.2272	3.9761	8.2958	14.1863	21.6476	30.6797	41.2826	53.4563	67-2008	82.5161	89.2023	117-859	137.887	159.485	182.655	207.395	233.706	261.587	291.040	322.063	854.657	388.822
	%.	-99402	3.5466	6699. 2	13.3641	20.6290	29.4648	39.8713	51.8487	65.3968	80.2128	97-2055	112.466	185-297	156.700	179.673	204.216	230.331	258.016	287 -272	818-099	850.497	884.466
	0.	.78540	3.1416	7.0686	12.5664	19.6350	28-2744	38.4846	50.2656	68.6174	78.5400	95.0334	113.098	182.733	153-938	176.715	201.082	226.981	254.470	288.529	814.160	346.361	380.134
.azėte	malŒ	1	C)	တ	4	70	9	7	00	6	2	Ξ	12	13	77	12	16	17	18	13	ຂ	<b>5</b>	22

ircles—continued.
Areas of C
CXXIII.
Table

	,											. '		•										
.azeta	Diam	28	24	22	88	27	28	23	8	31	32	88	- 34	32	36	37	38	33	40	41	42	43	44	
	%.	447-690	485.979	525.838	567 267	610.268	078.799	700-982	748-695	797 -979	848.833	901 259	955 255	1010-822	1067-960	1126:669	1186.948	1248.798	1312-22	1377-21	1443-77	1511-91	1581.61	
	%.	448.015	481.107	520.769	562.003	604.807	649.182	695.128	742.645	791 -732	842.391	894.620	948.420	1003.790	1060.732	1119-244	1179.327	1240.981	1304.21	1369.00	1435.37	1503.30	1572.81	
	%.	438.364	476-259	515.726	556.763	599.371	643.248	689 -299	786.619	785.510	885-972	888 005	941.609	996.783	1053.528	1111.844	1171.731	1233 188	1296.22	1860-82	1426-99	1494.73	1564.04	•
Areas.	%.	483.787	471.486	510.706	551.547	593 -959	637-941	683.494	730.618	779.318	829.579	881-415	934.822	008.686	1046.349	1104.469	1164.159	1225.420	1288-25	1352.66	1418.63	1486.17	1555-29	
Are		429.135	466.638	506-712	546.356	588.571	632.357	677.714	724.642	773.140	828-210	874.850	928.061	982.842	1039.195	1097.118	1156.612	1217-677	1280.31	1844.52	1410.30	1477.64	1546.56	
	%.	424.558	461.864	500.742	541.190	583.208	626-798	621.988	718-690	766-992	816.865	868.309	921 -323	606-926	1032.065	1089.792	1149.089	1209-958	1272.40	1336-41	1401.99	1469.14	1537.86	
	%.	420.004	457.115	495.796	536.048	577-870	621.264	666-228	712-763	698.092	810.545	861-792	914.611	000-696	1024.960	1082.490	1141.591	1202-263	1264.51	1328.32	1893.70	1460.66	1529.19	
	0.	415.477	452.390	490.875	530.930	672.557	615.754	660.521	206.860	754.769	804-250	855.301	907-922	962.115	1017-878	1075-218	1134.118	1194.593	1256.64	1320.26	1385.45	1452:20	1520.53	
areta.	Maid	82	54	22	97	27	88	29	8	31	32	33	34	35	36	37	æ	33	40	41	42	5	44	

Table CXXIII.—Areas of Circles—continued.

-ETG16	maid	45	46	47	48	49	ಜ	2	25	23	24	22	28	24	89	29	8	61	8	8	64	92	99
	%.	1652-89	1725.73	1800.15	1876.14	1953-69	2032.82	2113.52	2195.79	2279.64	2365.05	2452.03	2540.58	2630.71	2722.41	2815.67	2910.21	3006 -92	3104.89	3204.44	3305 - 56	8408.26	8512.52
	.8%	1643.89	1716.54	1790.76	1866.55	1943-91	2022.85	2103.35	2185.42	2269.07	2354.29	2441.07	2529.43	2619.36	2710.86	2803-93	2898.27	2994.78	3092.28	8191.91	8292.84	3395.33	8499.40
	%.	1634.92	1707.37	1781.40	1856-99	1934.16	2012.89	2093 -20	2175.08	2258.53	2343.55	2430.14	2518.30	2608.03	2699-33	2792-21	2886.65	2982.67	3080.25	8179.41	8280.14	8382.44	8486.30
Areas.	%.	1625.97	1698-23	1772.08	1847.46	1924.43	2002-97	2083.08	2164.76	2248.01	2332.83	2419.23	2507.19	2596.73	2687.84	2780.51	2874.76	2970.58	3067-97	3166-93	8267.46	3369.56	3473.24
	%.	1617.05	1689.11	1762.74	1837-95	1914.72	1993.06	2072-98	2154.46	2237.52	2322.15	2408.34	2496.11	2585.45	2676.36	2768.84	2862.89	2968.52	3055.71	8154.47	8254.81	8856.71	8460.19
	%.	1608·16	1680.02	1753.45	1828-46	1905.04	1983.18	2062-90	2144.19	2227.05	2311.48	2397-48	2485.05	2574.20	2664.91	2757-20	2851.05	2946.48	3043.47	8142-04	8242.18	8848.89	8447-17
	%.	1599-28	1670.95	1744.19	1819-00	1895.38	1973.33	2052.85	2183.94	2216.61	2800-84	2386.65	2474-02	2562.97	2653.49	2745.57	2839.23	2934.46	8031-26	8129.64	8229.28	8881.09	8434.17
	0.	1590.43	1601.91	1784.95	1809.26	1885:75	1963.50	2042.83	2123.72	2206.19	2290 -23	2375.83	2463.01	2551.76	2642.09	2733-98	2827-44	2922-47	3019-08	3117.25	8217-00	8318.31	8421 -20
.BIOJe	maid	45	46	47	84	49	50	21	22	23	54	22	26	22	82	20	8	6	8	89	70	8	99

Table CXXIII.—Areas of Circles—continued.

.81939	Diam	<u> </u>	88	39	2		2	<u>ج</u>	7.	20	9	2	<u>∞</u>	6	2	=	<u></u>	బ్ల	*	20	و	-	<u></u>
	×2.	-	_	_	8945.27 7	_		-										_	_	_	_	_	
	%.	3605.04	8712-24	8821.02	8931.87	4043 -29	4156.78	4271 -84	4388.47	4506.67	4626.45	4747.79	4870-71	4995.19	5121.25	5248.88	80.828	5508.84	5641.18	5775.10	5910.58	6047.63	6186.25
	×.	8591-74	8698.76	3807.34	8917-49	4029-21	4142.51	4257.87	4378.81	4491.81	4611.39	4782.54	4855.26	4979.55	5105.41	5232.84	5361.84	5492.41	5624.56	6758-27	5893.55	6030.41	6168-84
Areas.		3578-48	8685 29	8793.68	8903.63	4015.16	4128.26	4242.93	4359.17	4476-98	4596-36	4717-31	4839.83	4963-92	2089.29	5216.82	5345.63	5476.01	26.2092	5741.47	5876.56	6013-22	6151-45
4	*	8565-24	3671.86	3780.04	3889-80	4001.18	4114.04	4228.51	4844.55	4462.16	4581.35	4702.10	4824.43	4948.33	5078-79	5200.83	6329.44	5459.62	5591.37	5724.69	5859.59	5996.05	6134.08
	**	8552-02	3658.44	3766-43	3876-00	3987-18	4099-84	4214.11	4329-96	4447.38	4566.36	4686.92	4809.05	4932.75	5058-03	5184.87	5313-28	5443.26	5574.82	5707-94	5842.64	5978-91	6116-74
	*.	8588.83	3645.05	3752-85	8862.22	3978-15	4085 -66	4199.74	4315-39	4482.61	4551.41	4671.77	4793-70	4917-21	5042.28	5168-93	5297.14	5426.93	5558-29	5691-22	5825-72	5961.79	6099-43
	o.	3525.66	3631.69	3739.29	3848-46	3959 20	4071.51	4185.40	4300.85	4417.87	4536.47	4656.64	4778-37	4901.68	5026.56	5153.01	5281 .03	5410.62	5541.78	5674.51	5808-82	6944.69	6082.14
.втоје	ranka	67	89	69	2	7	2	23	74	22	28	11	78	2	8	8	82	83	84	8	88	87	88

Table CXXIII.—Areas of Circles—continued.

		_	_			_	_	_	_		_	_			_	_	_	_				_	_
.arete	Diam	88	8	16	8	88	84	98	8	87	86	66	2	101	102	103	104	106	106	107	108	109	110
	%	6344.08	6486.04	6629.57	6774.68	6921 -35	2069.29	7219.41	7370-79	7523.75	7678-28	7834.38	7992.03	8151.28	8312.09	8474.47	8638.42	:	:	:	:	;	:
	<b>%</b> .	6326.45	6468.21	6611.55	6756.45	6902-93	7050-98	7200.60	7351.79	7504.55	7658.88	7814.78	7972-25	8131 ·30	8291-91	8454.09	8617.85	8783.18	8950.07	9118-54	9288.58	9460.19	9633.37
	<b>%</b> .	6308-84	6450.40	6593.54	6738-25	6884.53	7082.39	7181.81	7332.80	7485.37	7639.50	7795-21	7952.47	8111.32	8271.73	8433.73	8597-28	:	:	: :	:		:
848.	<b>%</b> .	6291 -25	6432.62	6575.56	6720.08	6866.16	7013-82	7163.04	7313.84	7466-21	7620.15	99.9222	7932.74	8091 33	8251.61	8418.40	8576.76	8741.70	8908-20	9076-28	9245 98	9417.14	9589.93
Areas	%.	6273-69	6414.86	6557.61	6701.93	6847.82	6995-28	7144.31	7294.91	7447.08	7600.82	7756.13	7913.00	8071.46	8231.49	8393.08	8556-25	:	:		: :	: :	:
	%.	6256-15	6397.13	6539.68	6683.80	6859.49	92.9269	7125.59	7275-99	7427-97	7581.52	7736-63	7893.31	8051.58	8211.41	8372-81	82.9898	8700.32	8866.43	9034.11	9203.87	9874.19	9546.59
	%.	6238.64	6379.42	6521.78	6665.70	6811.20	6958.26	2106.90	7257.11	7408.89	7562.24	7717-16	7873.64	8031.69	8191.33	8352.53	8515.31	:	:		:	: :	:
	0.	6221.15	6361.74	6503-90	6647.63	6792.92	62.6869	7088.24	7238.25	7389.83	7542.98	1697-71	. 7854.00	8011.86	8171.30	8332.31	8494.89	8659.03	8824.75	8992-04	9160-91	9881 .84	9503.34
.erese.	Mald	68	8	91	85	93	94	92	96	97	86	66	80	<u> </u>	102	801	701	201	90	0.7	108	109	110

Table CXXIII.—Areas of Circles—continued.

		_		_			_			_					_							_		
.eriode	Diam	Ξ	112	118	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	182	
	%.	   	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%.	9808.12	9984.45	10162.84	10341.80	10522.84	10705.44	10889-62	11075.37	11262.69	11451.57	11642.03	11834.06	12027 -66	12222.84	:	:	:	:	:	:	:	:	
	%	   	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Areas.	%.	9764.29	9940-22	10117-72	10296-79	10477-43	10659.65	10843.48	11028.78	11215.71	11404-20	11594.27	11785-91	11979.12	12178-90	12370-25	12568·17	12767-68	12968.72	13171.85	13375.56	13581 33	13788.68	
Ąre	%.		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%.	9720.55	60-9686	10073-20	10251.88	10432.12	10613.94	10797-34	10982.30	11168-83	11356-93	11646.61	11737.85	11930.67	12125.05	:	:	:	:	:	:	:	:	
	*	   	:	:	:	:	:	:	:	:	:	:	i	:	:	:	፥	:	:	:	:	:	:	
	0.	9676-91	9852-06	10028-77	10207-06	10386.91	10568-34	10751.84	10935-91	11122.05	11809.76	11499.04	11689.89	11882.32	12076.31	12271.87	12469.01	12667-72	12867-99	13069.84	13273-26	13478-25	13684.81	
.arete	mald	11	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	

Table CXXIII.—Areas of Circles—continued.

.81939.	Mak	188	184	135	136	187	138	139	140	141	142	143	144	145	146	147	148	149	150	
	%	:	፧	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	**	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	 %		:	:	:	:	:	:	:	:	:	:	:	:	• :	:	:	:	:	
88.	%	18997-60	14208.08	14420.14	14633.77	14848-97	15065-74	15284-08	15503.99	15725-48	15948.58	16173.15	16399-35	16627.11	16856.45	17087.86	17319.84	17553.89	17789.51	
Areas	**		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	7.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	
	*	:	:	-	<i>:</i>	;	:	:	;	:	:	:	:	:	:	:	:	:	:	
	ę	13892-94	14102.64	14313.91	14526.76	14741 .17	14957.16	15174-71	15393-84	15614.54	18836-81	16060.64	16286.05	16513-03	16741.59	16971-71	17203.40	17436.67	17671.50	
etera	mald	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	1

Areas of intermediate sizes may also be obtained by shifting out statemen, was one fourth of the area of twice the diameter; e.g., area of 21/4. - Area of 4 /6, &c.

the decimal point; e.g., area, 182-18684 81; area of 18.2-186.8481; area of 1.32-1 368481, &c.

JE 1	Diame	-	67	m	*	10	0	7	00	٥	10	11	12	18	14	15	16	17	18	19	20	21	22
	%	2.8902	9-0321	12.1787	15.3153	18.4569	21.5985	24.7401	27.8817	31 0233	34.1649	37.3065	40.4481	48.5897	46.7318	49.8729	53.0145	56.1561	59.2977	62.4393	65.2809	68-7225	71-8641
	**	5.4978	8.6394	11.7810	14-9226	18.0642	21 -2058	24.3474	27.4890	30.6806	33.7722	36-9188	40-0654	48.1970	46.3886	49.4802	52.6218	55.7634	58-9050	62.0466	65.1882	68.3298	71.4714
	*	5.1051	8 - 2467	11.3883	14.5299	17.6715	20.8131	23.9547	27 -0963	80.2379	33.3795	36.5211	39.6627	42.8043	45.9459	49.0875	52.2291	55.8707	58 5123	61.6539	64.7955	67.9371	71.0787
erences.	s/ ₇ ,	4.7124	7.8540	10.9956	14.1372	17-2788	20.4204	23.5620	26.7036	29.8452	32-9868	36.1284	39.2700	42.4116	45.5532	48.6948	51.8364	54.9780	58.1196	61.2612	64.4028	67.5444	20.6860
Circumferences.	**	4.3197	7.4618	10.6029	13.7445	16.8861	20.0277	23.1698	26.3109	29.4525	32.5941	35.7357	38.8773	42.0189	45 1605	48.3021	51.4437	54.5853	57.7269	60.8685	64.0101	67.1517	70.2988
	**	3-9270	2.0686	10.2102	18.3518	16.4934	19.6350	22.7766	25-9182	29.0298	82.2014	35.3430	38.4846	41.6262	44.7678	47-9094	91 -0190	54.1926	57.3342	60.4758	63.6174	96.7590	9006-69
	*	8.5848	6.6728	9.8175	12.9591	16.1007	19.2423	22.3839	25.5255	28 -6671	31.8087	34.9503	38.0919	41.2335	44.3751	47.5167	50.6583	53.7999	56.9415	60.0831	63 - 2247	66.3663	69.2018
	ė	8.1416	6.2832	9.4248	12.5664	15.7080	18.8496	21-9912	25.1328	28.2744	31.4160	34.5576	37.6992	40.8408	43.9824	47.1240	50.2656	53.4072	56.5488	59.6904	62.8320	65.9736	69.1152
.ETOJ6	maku	-	67	တ	4	9	9	7	œ	o.	2	=======================================	12	13	14	15	16	17	18	19	ន	21	22

Table CXXIV.—Circumferences of Circles—continued.

.erete.	mald	ន	24	22	- 92	27	88	8	8	31	32	33	34	32	38	87	88	88	40	41	42	<b>4</b> 3	44
	%	75.0057	78-1473	81 -2889	84.4805	87.5721	90-7187	93.8553	6966-96	100.1885	103.2801	106.4217	109.563	112.705	115.846	118-988	122.180	126 271	128.413	131.554	134.696	187.888	140.979
	%	74.6180	77.7546	80.8962	84.0378	87.1794	90.3210	93.4626	96.6042	99.7458	102.8874	106.0290	109.171	112.312	115.454	118-595	121.737	124.879	128.020	131 162	134.308	187.445	140.587
	%	74.2208	77.3619	80.2035	83.6451	86.7867	89-9283	6690-86	96.2115	99.8531	102.4947	105.6363	108.778	111.919	115.061	118-203	121.344	124.486	127.627	130.769	133.911	137.052	140.194
Circumferences.	.1/3	73.8276	76.9692	80.1108	83-2524	86.3940	89.5356	92.6772	95-8188	98-9604	102.1020	105 2436	108.382	111.527	114.668	117-810	120.952	124.098	127.235	130.876	133.518	186.660	189.801
Circum	.% 	73.4349	76.5765	79-7181	82.8597	86.0013	89.1429	92-2845	95.4261	98-5677	101.7093	104.8509	107.992	111-134	114.276	117.417	120.559	123.700	126.842	129.984	133.125	186-267	189.408
	*	73.0422	76-1838	79.3254	82.4670	82.6086	88.7502	91.8918	95-0334	98.1750	101.3166	104.4582	107-600	110.741	113.883	117.026	120.166	123.308	126.449	129.591	182.783	185.874	189.016
	*	72-6495	75.7911	78-9327	82.0743	85-2159	88.3575	91.4991	94.6407	97.7828	100-9289	104-0655	107 -207	110.349	113-490	116-632	119-773	122-915	126.057	129.198	132.840	135.481	188.623
	o.	72-2568	75-3984	78.5400	81.6816	84.8232	87.9648	91.1064	94.2480	94.3896	100.5312	103.6728	106.814	109-956	113.098	116-239	119.381	122.522	125.664	128.806	131-947	186-089	188-230
eters.	mald	23	77	8	88	23	88	23	ಜ	31	32	္အ	34	35	86	37	88	8	\$	7	27	43	44

Table CXXIV.—Circumferences of Circles—continued.

-erete	mald			47								-			_	_	_	_				_	
	%.	144.12]	147-269	150.404	158.54	156.687	159.826	162-970	166-115	169.254	172.390	176.587	178.678	181.820	184.962	188.108	191-245	194.896	197.528	200.670	203 -811	206.958	210-094
	*	148.728	146.870	120.011	153.153	156-295	159.436	162.578	166-719	168.861	172.008	176.144	178.286	181 -427	184.569	187-711	190.852	193 -994	197.135	200-277	203-419	206.260	209-702
	**	148.885	146.477	149.619	152.760	156-902	159.048	162.185	165.327	168.468	171-610	174 751	177-893	181.035	184.176	187-318	190-459	193.601	196.743	199-884	203.026	206.167	209-309
Circumferences.	.1/3	142.948	146.084	149.226	152.368	156.509	158.651	161.792	164.934	168.076	171-217	174.359	177.500	180.642	183.784	186-925	190-061	193-208	196.320	199.492	202 633	205.775	208-916
Choum	*	142.550	145.692	148.833	151 975	155-116	158-258	161.400	164.541	167.683	170.824	178-966	177.108	180-249	183.391	186.282	189.674	192.816	195-957	199-099	202.240	205 382	208.224
	**	142.157	146 299	148.441	151.582	154.724	157.865	161 207	164.149	167.290	170.432	178.578	176.715	179.857	182-998	186.140	189-281	192.423	195.262	198.706	201.848	204-989	208·131
	*	141.765	144.906	148.048	151 189	154.331	157.478	160.614	163.756	166.897	170.039	173.181	176.322	179.464	182.605	185-747	188-889	192.030	195 172	198.313	201.455	204.597	207-738
	Ģ	141.872	144.514	147.655	150.797	153-938	157.080	160.222	163.363	166.505	169.646	172.788	175-930	179-071	182.218	185.354	188.496	191.688	194.779	197-921	201 .062	204.204	207 346
.artede	maid	45	46	47	87	49	20	19	52	53	54	22	28	22	28	28	8	19	62	63	64	65	99

Table CXXIV.—Circumferences of Circles—continued.

-BJ919	mald	4	88	69	2	7	72	73	74	75	76	11	78	28	8	81	85	88	84	88	86	84	88
	%.	213-236	216.378	219.219	222.661	225 -802	228.944	232.086	235 227	238.369	241.510	244.652	247.794	250-935	254.077	257-218	260.360	263.202	266.643	269.785	272-926	276-068	279-210
	%	212.843	215.985	219.127	222.288	225.410	228.551	231.693	284.835	287.976	241.118	244.259	247.401	250 -543	253.684	256.826	259.967	263.109	266.251	269.392	272.534	275.675	278-817
	%	212.451	215.592	218.734	221 .875	225.017	228.158	231.300	234.442	237.583	240.725	243.867	247.008	250.150	253 291	256.433	259.575	262.716	265.858	268-999	272.141	275.283	278-424
Circumferences.	.1/2	212-058	215-200	218.341	221.483	224.624	227.766	230.908	234.049	237.191	240.332	243.474	246.616	249-757	252.899	256.040	259.182	262.324	265-465	268.607	271.748	274.890	278 032
Circum	<b>%</b> .	211.665	214.807	217.948	221.090	224.232	227.873	230.515	233.656	236.798	239-940	243.081	246.228	249.364	252.506	255.648	258.789	261 931	265.072	268-214	271.356	274.497	277-629
	Х,	211-278	214.414	217.558	220.697	223.839	226.981	230.122	233 .264	236.405	289.547	242.689	245.830	248.972	252.113	255 255	258 397	261.538	264-680	267 -821	270.968	274.105	277 -246
	%.	210.880	214.021	217.163	220.305	223.446	226.588	229.729	232.871	236.013	239.154	242.296	245 437	248.579	251.721	254.862	258.004	261.145	264.287	267-429	270.570	278.712	276.853
	0.	210.487	213.629	216.770	219.912	228.054	226.195	229.337	232.478	235.620	238.762	241 .903	246.045	248.186	251 .328	254.470	257.611	260-753	263.894	267.036	270.178	273.819	276.461
.arade	mald	29	89	69	2	7	72	73	74	22	76	11	28	20	8	81	85	88	84	82	88	87	88

Table CXXIV.—Circumferences of Circles—continued.

9				Circumferences	erences.		-	٠	ere)
mald	o	%.	%.	*.	.1/2	*	%	%	Diame
89	279.602	279-995	280.388	280.780	281.173	281.566	281.559	282.351	8
90	282.744	283·137	283.259	283.922	284.315	284.707	285.100	285.493	3
16	285.886	286.278	286.671	287.064	287.456	287.849	288.242	288.634	6
92	289.027	289.420	289.813	290 -205	290.298	290-991	291 .383	291.776	85
93	292.169	292.262	292.954	293 347	293.740	294.132	294.525	294.918	88
94	295.310	295.703	296.096	296.488	296.881	297-274	297.667	298.028	94
92	298.452	298.845	299 -237	299.630	300-023	300-415	808.008	301 201	8
96	301.594	301.986	302.379	302.772	303.164	808-557	303-950	304.342	8
26	304.735	305.128	305.521	305-913	306-306	806.699	307 -091	307.484	6
86	307-877	308-270	308.662	309.022	309.448	309.840	310.233	310.626	8
66	311.018	811.411	311.804	312.196	312.589	312.982	313.875	318-767	8
100	314.160	314.553	314-945	315.338	815-731	316.123	316.516	316.909	8
101	317.302	317.694	318.087	318.480	318.872	319.265	319.628	320.020	101
102	320.443	320.836	321 -229	321.621	322.014	322.407	322.799	323.192	102
103	323.585	323.977	324.370	324.763	325.156	325.548	325 -941	326.334	103
104	326.726	827-119	327 -512	327 .904	328 - 297	328.690	329.083	829.475	104
105	329.868	:	330.623	:	331.439	:	332 - 224	:	105
106	883 010	:	333.795	:	334.580	:	335.366		108
107	336.151	:	336 937	:	387.722	:	338.507	:	107
108	339-293	:	340.078	:	340.864	:	341.649	:	108
109	342.434	:	843 -220	:	344.005	:	344.791	:	109
110	345-576	:	346.361	:	347-147	:	847.932	:	2

Table CXXIV.—Circumferences of Circles—continued.

ariode.	mald	111	112	118	114	116	116	117	118	119	120	121	122	128	124	128	126	127	128	129	180	181	182
	%.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%.	351.074	354-215	357-357	860.499	363.640	366.782	369-928	373.065	876-207	379 348	382.490	385.631	888-773	391-915	:	:	:	:	:	:	:	:
	<b>%</b>	:	:	:	:	:	:	:	:	:	:	:	:	:	፥	:	፧	:	:	:	:	:	:
rences.	%.	350 -288	353.430	356.572	359.713	362.855	365.386	369.138	372-280	875-421	878.563	381.704	384.846	387-988	391 -129	394.271	397.412	400.224	408.696	406.837	409-979	418.120	416.262
Circumferences	%	:	:	:	:	:	:	:	፥	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	*	349.503	352.645	355.786	358-928	362-069	365-211	368.353	871.494	874-636	877-777	380.919	384.061	887.202	890.844	:	:	:	:	:	:	:	:
	×.	   	:	:	:	:	:	:	:	:	:	:	:	:	፧	:	:	:	:	:	:	:	:
	Ģ	348.718	351.859	355 .001	358.142	361.284	364.426	367.567	820-709	373-850	876-992	380.134	383.275	386.417	889.228	392.700	395-842	398-983	402.125	405 -266	408.408	411.220	414.691
.ariote	mald	Ξ	112	118	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	8	2 5	722

Table CXXIV.—Circumferences of Circles—continued

.arada	Diam	188	184	186	136	187	138	139	140	141	142	148	144	145	146	147	148	149	150	
	*	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	%	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	<b>≫</b>	:	<b>'</b> :	:	:	:		:	:	:	:	:	:	:	:	:	•	:	,	
Circumferences.	*	419.404	422.545	425.687	428.828	481.970	435.112	438.253	441 -395	444.536	447.678	450.820	453-961	457.103	460.244	463.386	466.528	469.669	472.811	-
Circum	%	:	:	:	:	:	:	:	:	:	:	:	:		: :	:	:	:	:	
	*	:	:	:	:	:	:	:	:	:	:	:	:		:				:	
	%.	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	
	۰.	417-833	420.974	424.116	427.258	430.399	433.541	436.682	439.824	442.966	446.107	449.249	452.390	455.532	458.674	461.815	464.957	468.098	471-240	
eters.	mald	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	

Table CXXV.-Areas and Circumferences of Small Circles.

Diameter.	Area.	Circum.	Diameter.	Area.	Circum.
1/32	.000767	·09817	17/39	22166	1.6690
½ ·	-003068	19635	%6	24850	1.7671
3/32	.006903	29452	19/32	-27688	1.8653
<b>⅓</b> ′° ′′	.012272	.39270	%	.30680	1.9635
· 5/32	·019175	49087	21/39	*33824	2.0617
%16 /3°	.027612	•58905	11/14	·37122	2.1598
7/32	.037583	.68722	23/32	.40574	2.2580
1/4	.049087	.78540	34	·44179	2.3562
~ %s	062126	·88357	25/	·47937	2.4544
%	.076699	98175	18/16 /32 27/32	·51849	2.5525
11/32	092806	1.0799	27/0	·55914	2.6507
% [/] **	·11045	1.1781	% /°°	·60132	2.7489
13/32	.12962	1.2763	29/	64504	2.8471
1/1. /°	.15033	1.3744	15/	69029	2.9452
15/39	.17257	1.4726	31/32	·73708	3.0434
1/4 /**	19635	1.5708	1 ′°°	·78540	3.1416

Table CXXVI.—Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of all Integer Numbers from 1 to 2200.

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1	1	1	1.0000000	1.0000000	1.000000000
2	4	8	1.4142136	1-2599210	·500000000
3	9	27	1.7320508	1.4422496	833383333
4	16	64	2.0000000	1.5874011	250000000
5	25	125	2.2360680	1.7099759	200000000
6 7	- 36	216	2.4494897	1.8171206	166666667
7	49	843	2.6457513	1.9129312	142857148
8	64	512	2.8284271	2.0000000	125000000
.9	81	729	3.0000000	2.0800837	·111111111 ·100000000
10	100	1000	3.1622777	2.1544347	090909091
11	121	1331	8.3166248	2·2239801 2·2894286	083333333
12 13	144	1728	3·4641016 3·6055513	2.3513347	076023077
14	169 196	2197 2744	3·7416574	2.4101422	071428571
15	225	8375	8.8729833	2.4662121	066666667
16	256	4096	4 0000000	2.5198421	062500000
17	289	4913	4.1231056	2.5712816	058823529
18	824	5832	4.2426407	2.6207414	055555556
19	861	6859	4.3588989	2.6684016	052631579
20	400	8000	4.4721360	2.7144177	•050000000
21	441	9261	4.5825757	2.7589243	047619048
22	484	10648	4.6904158	2.8020393	045454545
23	529	12167	4.7958315	2.8438670	043478261
24	576	13824	4.8989795	2.8844991	·041666667
25	625	15625	5.0000000	2 9240177	·040000000
26	676	17576	5.0990195	2.9624960	038461538
27	729	19683	5.1961524	8.0000000	•037037037
28	784	21952	5.2915026	8.0365889	035714286
29	841	24389	5.3851648	8.0723168	•034482759
30	900	27000	5.4772256	3.1072325	033333333
31	961	29791	5.5677644	3.1413806	032258065
32	1024	82768	5.6568542	8.1748021	*031250000 *030303030
33	1089	35937	5.7445626	3·2075343 3·2396118	029411765
34 35	1156 1225	39304 42875	5·8309519 5·9160798	3·2710668	028571429
36	1225	42875 46656	6.0000000	3.3019272	027777778
37	1369	50653	6.0827625	3.3322218	027027027
38	1444	54872	6.1644140	8.3619754	026315789
39	1521	59319	6.2449980	3.3912114	025641026
40	1600	64000	6.8245553	8.4199519	-025000000
41	1681	68921	6.4031242	8.4482172	024890244
42	1764	74088	6.4807407	3.4760266	023809524
43	1849	79507	6.5574385	3.5033981	023255814
44	1936	85184	6.6332496	8 5303488	022727273
45	2025	91125	6.7082089	3.5568933	02222222
-					

No.	Square	Cube	Square Root	Cube Root	Reciprocal
46	2116	97336	6.7823300	3.5830479	-021739130
47	2209	103823	6.8556546	3.6088261	021276600
48	2304	110592	6.9282032	3.6342411	020833333
49	2401	117649	7.0000000	3 6593057	020408163
50	2500	125000	7.0710678	8.6840314	-020000000
51	2601	132651	7.1414284	3.7084298	.019607843
52	2704	140608	7.2111026	8.7325111	019230769
53	2809	148877	7.2801099	3.7562858	018867925
54	2916	157464	7.3484692	3.7797631	*018518519
55	3025	166375	7:4161985	3.8029525	<b>-01818181</b> 8
56	3136	175616	<b>7·4833148</b>	3.8258624	·017857143
57	3249	185193	7.5498344	3.8485011	017543860
58	3364	195112	7.6157731	3.8708766	017241379
59	3481	205379	7.6811457	3.8929965	016949153
60	3600	216000	7.7459667	3.9148676	·016666667
61	3721	226981	7.8102497	3.9364972	016393443
62	3844	238328	7.8740079	3.9578915	•016129032
63	3969	250047	7.9372539	3.9790571	015873016
64	4096	262144	8.0000000	4.0000000	•015625000
65	4225	274625	8.0622577	4.0207256	015384615
66	4356	287496	8.1240384	4.0412401	015151515
67	4489	300763	8.1853528	4.0615480	014925373
68 69	4624	814432	8.2462113	4.0816551	014705882
70	4761 4900	328509 343000	8·3066239 8·3666003	4·1015661 4·1212853	014492754
71	5041	357911	8.4261498	4.1408178	·014285714 ·014084507
72	5184	373248	8.4852814	4.1601676	013888889
78	5329	389017	8.5440037	4.1793392	013698630
74	5476	405224	8.6023253	4.1983364	013513514
75	5625	421875	8.6602540	4 2171633	013333333
76	5776	438976	8.7177979	4 2358236	013157895
77	5929	456533	8.7749644	4.2543210	012987013
78	6084	474552	8.8317609	4.2726586	012820513
79	6241	493039	8.8881944	4.2908404	012658228
80	6400	512000	8.9442719	4.3088695	·012500000
81	6561	531441	9.0000000	4.3267487	012345679
82	6724	551368	9.0553851	4.3444815	·012195122
83	6889	57178 <b>7</b>	9.1104336	4 3620707	-012048193
84	7056	592704	9.1651514	4 3795191	011904762
85	7225	614125	9·2195445	4.3968296	·011764706
86	7396	636056	9.2736185	4.4140049	011627907
87	7569	658503	9.3273791	4.4310476	•011494253
88	7744	681472	9.3808315	4.4479602	011363636
89	7921	704969	9.4339811	4.4647451	011235966
90	8100	729000	9.4868330	4.4814047	011111111
91 92	8281	753571	9.5393920	4.4979414	·010989011
92	8464 8649	778688 '804857	9-5916630	4.5143574	•010869565
94	8836	830584	9·6436508 9·6958597	4·5306549 4·5468359	•010752688 •010638298
	, ~~	000003	a nannnal	# 0.3000fig	U10000200

	usacy CODEC,	MOOIS, AND		
Square	Cube	Square Root	Cube Root	Reciprocal
9025	857375	9.7467943	4.5629026	-010526316
9216	884786	9.7979590	4.5788570	•010416667
9409	912673	9.8488578	4.5947009	010309278
9604	941192	9.8994949	4.6104363	010204082
9801	970299	9-9498744	4.6260650	·010101010
				·010000000
				-009900990
				009803922
				009708788
				009615385
				-009523810
				·009433962 ·009345794
				009343794
				009259259
				-009090909
				-009009009
				008928571
				008849558
12996	1481544		4.8488076	-008771980
13225	1520875	10.7238053	4.8629442	003695652
18456	1560896	10.7708296	4.8769990	-008620690
13689	1601613	10.8166588	4.8909732	-008547009
13924	1643032	10.8627805	4.9048681	·008474576
				008403361
				008333383
				008264463
				•008196721
				·008130081 ·008064516
				008000000
				-007936508
				007874016
				007812500
				007751938
				007692308
	2248091	11.4455231	5.0787531	007633588
17424	2299968	11.4891253	5.0916434	.007575758
17689	2352637	11.5325626	5.1044687	-007518797
17956	2406104	11.5758369	5 1172299	·007462687
18225	2460375	11.6189500	5.1299278	·007407407
	2515456	11.6619038		007352941
				•007299270
				007246377
				007194245
				007142857
				-007092199 -007049954
				*007042254 *006993007
20448	2029201	11.9002007	0.77490710	VVV880VV/
	9025 9216 9409 9801 10200 10201 10404 10609 10816 11025 11236 11426 11881 12100 12821 12544 12769 12996 13225 13456 13689 13924 14161 14884 15129 15376 15625 15676 16129 16384 16640 17161 17424 17689 17956	9025 857375 9216 884736 9409 912673 9604 941192 9801 970299 10000 1000000 10201 1030301 10404 1061208 10609 1092727 10816 1124864 11025 1157625 11236 1191016 11449 1225043 11664 1259712 11881 1295029 12100 1331000 12321 1367631 12544 1404928 12769 1442897 12996 1461544 13225 1520875 13456 1560896 13689 1601613 13924 1643032 14161 1685159 14400 1723000 14641 1771561 14884 1815848 15129 1860867 15376 1906624 15625 1953125 15876 2000376 15129 2048383 16384 2097152 15625 1953125 15876 1906624 15625 1953125 15876 2000376 16129 2048383 16384 2097162 16641 214689 16900 2197000 17161 2248091 17424 2299968 17689 2352637 17956 2406104 18225 2460375 18496 2515456 18769 2571353 19044 2623072 19321 2685619 19600 2744000 19881 2803221 20164 2863288	9025 857875 9·7467943 9216 884786 9·7979590 9409 912673 9·8488578 9604 941192 9·8994949 9801 970299 9·9498744 10000 1000000 10·0000000 10·000000 10201 1030301 10·0498756 10404 1061208 10·0995049 10609 1092727 10·1488916 11025 1157625 10·2469508 11236 1191016 10·2956301 11449 1225043 10·340804 11654 1259712 10·3923048 11881 1296029 10·4403065 12321 1367631 10·5356588 12321 1367631 10·5356588 12321 1367631 10·5356588 12321 1367631 10·5356588 123644 1404928 10·5830062 12769 1442897 10·6901458 13225 1520875 10·7238063 13456 1560896 10·7708296 13489 1601613 10·8166588 13924 1643032 10·8627805 14161 1685159 10·9087121 14641 1771561 11·000000 14884 1815848 11·9453610 14884 1815848 11·0453610 14884 1815848 11·0453610 14884 1815848 11·0453610 14884 1815848 11·0453610 14884 1815848 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 1181548 11·0453610 14884 11860667 11·060036658 15876 2000376 11·385267 11·385267 11·385267 11·385267 11·385268 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385386 11·385388	9025 857375 9.7467943 4.5629026 9216 884736 9.7979590 4.5788570 9409 912673 9.8488578 4.5947009 9604 941192 9.8994949 4.6104383 9801 970299 9.9498744 4.6260650 10000 1000000 10-0000000 4.6415838 10201 1030301 10-0498756 4.657095 10404 1061208 10-0995049 4.6723287 10609 1092727 10-1488916 4.875482 11025 1157625 10-2469508 4.7176940 11025 1157625 10-2469508 4.7176940 11236 1191016 10-2956301 4.7826235 11449 1225043 10-3440804 4.744594 11654 1259712 10-3923048 4.7622032 11881 1296029 10-4408065 4.7768562 12100 1331000 10-4880885 4.7914199 12321 1367631 10-5356588 4.8058955 12544 1404928 10-5836052 4.8202245 12769 1442897 10-6301458 4.8345881 12996 1481544 10-6770783 4.8488076 13225 1520876 10-7238063 4.8629442 13456 1560896 10-7703296 4.8769990 13689 1601613 10-8166583 4.8909732 13924 1645032 10-8627805 4.9048681 14161 1685159 10-9087121 4.9186847 14400 1728000 10-9544512 4.9324242 14641 1771561 11-000000 4.9460874 14884 1815848 11-0458610 4.9596757 15129 1860867 11-0905865 4.9731898 15376 1906624 11-1855287 4.9866310 15625 1958126 11-1803399 5-0000000 15876 2000376 11-22489722 5-0132079 16129 2048383 11-2694277 5-0265257 161384 2097152 11-3187085 5-0396842 17689 2352637 11-593660 5-1229978 17424 2299968 11-4455231 5-08657970 17161 2248091 11-4455231 5-0857970 17161 2248091 11-455231 5-087581 17424 2299968 11-1855386 5-11722999 18225 2460375 11-18193085 5-11722997 16129 2048383 11-2694277 5-0265257 16384 2097152 11-3187085 5-0396842 17689 2352637 11-593660 5-11229978 18496 2515456 11-6619038 5-1425632 18769 2571353 11-7046999 5-15513867 19000 2197000 11-4017543 5-0857970 17161 2248091 11-4455231 5-0875631 194960 2197000 11-4017543 5-0857970 17161 2948091 11-475631 5-0787531 1794699 2571353 11-7046999 5-15513867 19000 2744000 11-8321596 5-11722997 18496 2515456 11-6619038 5-1425632 18769 2571353 11-7046999 5-15513867 19000 2744000 11-8321596 5-1924941 19881 2808221 11-7878261 5-1801015

Nø.	Square	Cube	Square Root	Cube Root	Reciprocal
144	20736	2985984	12 0000000	5.2414828	*006944444
145	21025	8048625	12.0415946	5.2535879	006896552
146	21316	8112136	12.0830460	5.2656374	006849315
147	21609	3176523	12.1243557	5.2776321	006802721
148	21904	8241792	12.1655251	5.2895725	006756757
149	22201	3307949	12.2065556	5.3014592	006711409
150	22500	8375000	12.2474487	5.3132928	006666667
151	22801	3442951	12.2882057	5.3250740	006622517
152	23104	3511808	12.3288280	5.3368033	006578947
153	23409	3581577	12.3693169	5.3484812	006535948
154	23716	3652264	12.4096736	5.3601084	*006493506
155	24025	3723875	12.4498996	5.3716854	006451613
156	24336	3796416	12.4899960	5.3832126	006410256
157	24649	3869893	12.5299641	5.3946907	006369427
158	24964	3944312	12.5698051	5.4061202	006329114
159	25281	4019679	12.6095202	5.4175015	006289308
160	25600	4096000	12.6491106	5.4288352	006250000
161	25921	4173281	12.6885775	5.4401218	-006211180
162	26244	4251528	12.7279221	5.4513618	006172840
163	26569	4330747	12.7671453	5.4625556	.006134969
164	26896	4410944	12.8062485	5.4737037	006097561
165	27225	4492125	12.8452326	5.4848066	006060606
166	27556	4574296	12.8840987	5.4958647	.006024096
167	27889	4657463	12.9228480	5.5068784	005988024
168	28224	4741632	12.9614814	5.5178484	005952381
169	28561	4826809	13.0000000	5.5287748	.005917160
170	28900	4913000	13.0384048	5.5396583	005882353
171	29241	5000211	13.0766968	5.5504991	.005847953
172	29584	5088448	13.1148770	5.5612978	.005813953
173	29929	5177717	13.1529464	5.5720546	005780347
174	30276	5268024	13.1909060	5.5827702	005747126
175	30625	5359375	13.2287566	5 5934447	005714286
176	30976	5451776	13.2664992	5.6040787	005681818
177	81329	5545233	13.3041347	5.6146724	005649718
178	31684	5639752	13.3416641	5.6252263	·005 <b>6179</b> 78
179	32041	5735339	13.3790882	<b>5·6</b> 357408	·005586592
180 ·	32400	5832000	13.4164079	5.6462162	005555556
181	32761	5929741	13.4536240	5.6566528	005524862
182	33124	6028568	13.4907376	5.6670511	·00 <b>5494</b> 505
183	33489	6128487	13.5277493	5.6774114	005464481
184	33856	6229504	13.5646600	5.6877340	•005434783
185	84225	6331625	13.6014705	5.6980192	·005405405
186	34596	6434856	13.6381817	5.7082675	.005376344
187	34969	6539203	13.6747943	5.7184791	005347594
188	85344	6644672	13.7113092	5.7286543	005319149
189	85721	6751269	13.7477271	5.7387936	005291005
190 191	36100	6859000	13.7840488	5.7488971	*005263158
192	36481 36864	6967871	13.8202750	5.7589652	·005235602
182	20004	7077888	13.8564065	5.7689982	*005208333

		LEAD, CUBES,	ROUIS, AND	RECIPROCA	.Lis. 0//
No.	Square	Cube	Square Root	Cube Root	Reciprocal
193	37249	7189057	18.8924440	5.7789966	-005181847
194	37636	7301384	13 9283883	5.7889604	005154639
195	38025	7414875	13.9642400	5.7988900	005128205
196	<b>88416</b>	752953 <b>6</b>	14-0000000	5.8087857	•005102041
197	88809	7645373	14.0356688	5.8186479	·005076142
198	89204	7762392	14 0712473	5.8284767	·005050505
199	39601	7880599	14.1067360	5.8382725	*005025126
200	40000	8000000	14.1421356	5.8480355	005000000
201	40401	8120601	14.1774469	5.8577660	004975124
202	40804	8242408	14.2126704	5.8674643	.004950495
203	41209	8365427	14.2478068	5.8771307	004926108
204	41616	8489664	14.2828569	5.8867653	*004901961
205	42025	8615125	14.8178211	5.8963685	004878049
206 207	42436 42849	8741816	14.8527001	5.9059406	004854369
	43264	8869743 8998912	14.3874946	5.9154817	004830918
208 209	43681	9129329	14·4222051 14·4568323	5.9249921	004807692
210	44100	9261000	14.4913767	5.9344721	*004784689
211	44521	9393931	14.5258390	5·9439220 5·9533418	*004761905 *004739336
212	44944	9528128	14.5602198	5.9627320	·004716981
213	45369	9663597	14.5945195	5.9720926	004710861 004694886
214	45796	9800344	14.6287388	5.9814240	004672897
215	46225	9938375	14.6628783	5.9907264	004651163
216	46656	10077696	14.6969385	6.0000000	•004629630
217	47089	10218313	14.7309199	6.0092450	004608295
218	47524	10360232	14.7648231	6.0184617	004587156
219	47961	10503459	14.7986486	6.0276502	004566210
220	48400	10648000	14.8323970	6.0368107	004545455
221	48841	10793861	14.8660687	6.0459435	004524887
222	49284	10941048	14.8996644	6.0550489	.004504505
223	49729	11089567	14.9331845	6.0641270	004484305
224	50176	11239424	14.9666295	6.0731779	.004464286
225	50625	11390625	15.0000000	6.0822020	·004444444
226	51076	11543176	15.0332964	6.0911994	·004424779
227	51529	11697083	15.0665192	6.1001702	·004405286
228	51984	11852352	15.0996689	6.1091147	·004385965
229	52441	12008989	15.1327460	6.1180332	004366812
230	52900	12167000	15 1657509	6.1269257	004347826
231	53361	12326391	15.1986842	6.1357924	•004329004
232	53824	12487168	15.2315462	6.1446337	·004310345
233	54289	12649337	15 2643375	6.1534495	•004291845
234	54756	12812904	15.2970585	6.1622401	004278504
235	55225	12977875	15.3297097	6.1710058	•004255319
236 237	56696 56169	13144256 13312053	15·3622915 15·3948043	6·1797466 6·1884628	*004237288
237	56644	13481272			004219409
239	57121	13651919	15·4272486 15·4596248	6·1971544 6·2058218	•004201681 •004184100
240	57600	13824000	15.4919334	6.2144650	004164100
241	58081	13997521	15.5241747	6.2230843	·004149378
~71		2000,022	10 0221 21	U 22000030	001110010

RES, CUBES, ROOTS, AND RECIPROCALS.

Cube	Square Root	Cube Root	Reciprocal
14172488	15.5563492	6.2316797	-004132231
14348907	15.5884578	6.2402515	004115226
14526784	15.6204994	6-2487998	-004098361
14706125	15 6524758	6.2573248	004081633
14886936	15.6843871	6.2658266	004065041
15069223	15.7162336	6.2743054	004048588
15252992	15.7480157	6.2827613	004032258
15438249	15.7797338	6.2911946	·004016064
15625000	15.8113883	6.2996053	-004000000
15813251	15.8429795	6·3079935	-003984064
16003008	15.8745079	6.3163596	·003968254
16194277	15.9059737	6.3247035	003952569
16387064	15.9373775	6.3330256	-003937008
16581375	15.9687194	6.3413257	003921569
16777216	16.0000000	6.3496042	-003906250
16974593	16.0312195	6.3578611	•003891051
17173512	16.0623784	6.3660968	-003875969
17373979	16.0934769	6.8743111	-003861004
17576000	16.1245155	6.3825043	003846154
17779581	16.1554944	6.3906765	003831418
17984728	16.1864141	6.3988279	·003816794
18191447	16.2172747	6.4069585	•003802281
18399744	16.2480768	6.4150687	·003787879
18609625	16 <i>-</i> 2788206	6.4231583	•003778585
1882109 <b>6</b>	16.3095064	6.4312276	003759898
19034163	16:3401346	6.4392767	003745318
19248832	16.3707055	6.4473057	003731843
19465109	16.4012195	6.4553148	003717472
19683000	16.4316767	6.4633041	-003708704
19902511	16.4620776	6.4712736	•003690037
20123648	16.4924225	6.4792236	003676471
20346417	16.5227116	6.4871541	-003663004
20570824	16.5529454	6.4950653	003649635
20796875	16.5831240	6.5029572	003636364
21024576	16.6132477	6.5108300	003628188
21253933	· 16·6433170	6.5186839	•003610108
21484952	16.6733320	6.5265189	003597122
21717639	16.7032931	6.5343351	003584229
21952000	16.7332005	6.5421326	003571429
22188041	16.7630546	6.5499116	+003558719 +003546099
22425768	16.7928556	6.5576722	003533569
22665187 22906304	16.8226033	6·5654144 6·5731385	003521127
23149125	16·8522995 16·8819430	6.5808443	003508772
23393656	16.9115345	6.5885323	003496508
23639903	16 9410743	6.5962023	003484321
23887872	16.9705627	6.6038545	-003479292
24137569	17.0000000	6.6114890	003460208
24389000	17.0293864	6.6191060	-003448276
	-, 5255552	0 0202000	***************************************
	·		

No.	Square	Cube	Square Root	Cube Root	Reciprocal `
291	84681	24642171	17.0587221	6-6267054	003436426
292	85264	24897088	17:0880075	6.6342874	003424658
293	85849	25158757	17·1172428	6 6418522	. *003412969
294	86436	25412184	17.1464282	6-6493998	008401861
295	87025	25672375	17.1755640	6.6569302	003389831
296	87616	25934336	17.2046505	6.6644437	003378378
297	88209	26198073	17.2336879	6-6719403	.003867008
298	88804	26463592	17.2626765	6.6794200	003856705
299	89401	26730899	17-2916165	6.6868831	•003344482
300	90000	27000000	17:3205081	6.6943295	003838383
301	90601	27270901	17:8498516	6.7017593	003322259
302	91204	27543608	17:3781472	6.7091729	*003311258
303 304	91809	27818127 28094464	17:4068952	6.7165700	003300330
305	92416	28372625	17:4855958	6.7239508	003289474
306	93025 93636	28652616	17·4642492 17·4928557	6·7313155 6·7386641	*003278689
307	94249	28934443	17.5214155	6.7459967	·003267974 ·003257329
308	94864	29218112	17.5499288	6.7533134	003237329
309	95481	29508629	17.5783958	6.7606143	003236246
310	96100	29791000	17.6068169	6.7678995	003236246
311	96721	30080231	17.6351921	6.7751690	003215434
312	97344	30371328	17.6635217	6.7824229	003205128
313	97969	30664297	17-6918060	6.7896613	003194888
314-	98596	30959144	17.7200451	6.7968844	003184713
315	99225	81255875	17.7482393	6.8040921	003174603
316	99856	31554496	17.7763888	6.8112847	003164557
317	100489	31855013	17.8044938	6.8184620	003154574
318	101124	32157432	17.8325545	6.8256242	003144654
319	101761	82461759	17.8605711	6.8327714	003134796
320	102400	32768000	17.8885438	6.8399037	003125000
321	103041	32076161	17-9164729	6.8470213	003115265
322	103684	33386248	17.9443584	6.8541240	.003105590
323	104329	83698267	17 9722008	6.8612120	.003095975
324	104976	84012224	18-0000000	6 8682855	.003086420
325	105625	34328125	18-0277564	6.8753443	003076923
326	106276	34645976	18.0554701	6.8823888	.003067485
327	106929	34965783	18 0831413	6.8894188	003058104
328	107584	35287552	18.1107703	6.8964345	·003048780
329	108241	85611289	18 1383571	6.9034359	·003039514
330	108900	85937000	18.1659021	6-9104232	.003030303
331	109561	36264691	18.1934054	6.9173964	003021148
332	110224	86594368	18.2208672	6.9243556	*003012048
333	110889	86926037	18.2482876	6.9313008	003003003
334	111556	87259704	18.2756669	6.9382321	•002994012
335	112225	87595375	18.3030052	6.9451496	002985075
336	112896	87933056	18.3303028	6.9520533	002976190
337	118569	88272753	18.3575598	6.9589434	002967359
338	114244	88614472	18.3847763	6.9658198	-002958580
339	114921	88958219	18-4119526	6.9726826	002949853
		l			

				·	
No.	Square	Cube	Square Root	Cube Root	Reciprocal
340	115600	39304000	18-4390889	6.9795321	•002941176
341	116281	39651821	18.4661853	6.9863681	-002932551
342	116964	40001688	18.4932420	6.9931906	-002923977
343	117649	40353607	18.5202592	7.0000000	002915452
344	118336	40707584	18.5472370	7.0067962	•002906977
345	119025	41063625	18.5741756	7.0135791	-002898551
346	119716	41421736	18 6010752	7.0208490	-002890173
347	120409	41781923	18-6279360	7 0271058	002881844
348	121104	42144192	18.6547581	7.0338497	002873563
349	121801	42508549	18:6815147	7 0405806	002865330
350	122500	42875000	18.7082869	7.0472987	•002857143
351	123201	43243551	18.7349940	7.0540041	*002849003
352	123904	43614208	18.7616630	7.0606967	-002840909
353	124609	43986977	18.7882942	7.0673767	·002832861
354	125316	44361864	18.8148877	7.0740440	002824859
355	126025	44738875	18.8414437	7.0806988	·002816901
356	126736	45118016	18.8679623	7.0873411	•002808989
357	127449	45499293	18 8944436	7 0939709	-002801120
358	128164	45882712	18.9208879	7.1005885	002793296
359	128881	46268279	18 9472953	7.1071937	002785515
360	129600	46656000	18 9736660	7.1137866	002777778
861	130321	47045881	19.0000000	7.1203674	002770083
362	131044	47437928	19.0262976	7.1269360	002762431
363	131769	47832147	19.0525589	7.1334925	002754821
364	132496	48228544	19.0787840	7.1400370	•002747253
365	133225	48627125	19.1049732	7.1465695	-002739726
366	183956	49027898	19.1311265	7.1530901	002732240
367	134689	49430863	19.1572441	7.1595988	002724796
368	135424	49836032	19.1833261	7.1660957	•002717391
369	136161	50243409	19.2093727	7.1725809	-002710027
370	136900	50653000	19.2353841	7.1790544	-002702708
371	137641	51064811	19.2613603	7.1855162	*002695418
372	138384	51478848	19-2873015	7.1919663	002688172
373	139129	51895117	19.3132079	7.1984050	002680965
374 375	139876   140625	52313624	19.3390796	7.2048322	-002673797
376	141376	52734375	19:3649167	7.2112479	002666667
377	142129	53157376 53582633	19.3907194	7.2176522	*002659574
378	142129		19.4164878	7.2240450	*002652520
379	143641	54010152 54439939	19·4422221 19·4679223	7·2304268 7·2367972	•002645503
380	144400	54872000	19 4079223	7.2431565	*002638522 *002631579
381	145161	55306341	19.5192213	7.2431505	·002631579 ·002624672
382	145924	55742968	19.5448203	7.2558415	*002617801
383	146689	56181887	19.5703858	7.2621675	·002610966
384	147456	56623104	19.5959179	7.2684824	002604167
385	148225	57066625	19.6214169	7 2747864	002597408
386	148996	57512456	19.6468827	7.2810794	002590674
387	149769	57960603	19.6723156	7.2873617	-002583979
388	150544	58411072	19:6977156	7.2936830	-002577320
l			-5 00,7100	. 2000000	302011000

	BQUA	RES, CUBES,	ROUIS, AND	RECIPROCA	.00.
No.	Square	Cube	Square Root	Cube Root	Reciprocal
389	151321	58863869	19.7230829	7-2998936	-002570694
390	152100	59319000	19.7484177	7.3061436	002564103
391	152881	59776471	19:7737199	7.3123828	•002557545
392	158664	60236288	19.7989899	7:3186114	002551020
393	154449	60698457	19 8242276	7:3248295	·002544529
394	155236	61162984	19.8494332	7:3310369	·002538071
395	156025	61629875	19.8746069	7.3372339	002531646
396	156816	62099136	19.8997487	7.3434205	002525253
397	157609	<b>6</b> 2570773	19.9248588	7.3495966	002518892
398	158404	63044792	19.9499378	7.3557624	·002512563
399	159201	63521199	19.9749844	7.3619178	•002506266
400	160000	64000000	20 0000000	7.3680630	•002500000
401	160801	64481201	20 0249844	7.3741979	•002493766
402	161604	64964808	20.0499377	7.3803227	•002487562
403	162409	65450827	20.0748599	7.3864373	002481390
404	168216	65939264	20 0997512	7.3925418	.002475248
405	164025	66430125	20.1246118	7.3986363	002469136
406	164836	66923416	20.1494417	7.4047206	·002463054
407	165649	67419143	20.1742410	7.4107950	•002457002
408	166464	67917312	20.1990099	7.4168595	•002450980
409	167281	68417929	20 2237484	7.4229142	•002444988
410	1681 00	68921000	20 2484567	7.4289589	002439024
411	168921	69426531	20.2731349	7.4349938	•002433090
412	169744	69934528	20.2977831	7.4410189	002427184
413	170569	70444997	20.3224014	7.4470342	•002421308
414	171396	70957944	20.3469899	7.4580399	•002415459
415	172225	71473375	20.3715488	7.4590359	•002409639
416	173056	71991296	20.3960781	7.4650223	*002403846
417	173889	72511713	20.4205779	7.4709991	*002398082
418	174724	73034632	20:4450483	7.4769664	002392344
419	175561	73560059	20.4694895	7.4829242	•002386635
420	176400	74088000	20.4989015	7.4888724	•002380952
421	177241	74618461	20.5182845	7.4948113	002375297
422	178084	75151448	20.5426386	7.5007406	•002369668
423	178929	75686967	20.5669638	7.5066607	002364066
424	179776	76225024	20.5912603	7.5125715	·002358491 ·002352941
425	180625	76765625	20.6155281	7.5184730	
426	181476	77308776	20.6397674	7.5243652	*002347418
427	182329	77854483	20.6639783	7.5302482	·002341920 ·002336449
428	183184	78402752	20 6881609	7.5361221	002331002
429	184041	78953589	20.7123152	7.5419867	•002325581
430	184900	79507000	20.7864414	7.5478423	002320186
431	185761	80062991	20.7605395	7.5536888	•002314815
432	186624	80621568	20.7846097	7.5595263	·002314815 ·002309469
433	187489	81182737	20.8086520	7.5653548	·002304147
434	188356	81746504	20.8326667	7.5711743	·002304147 ·002298851
435	189225	82312875	20·8566536 20·8806130	7·5769849 7·5827865	·002293578
436	190096	82881856		7.5885793	·002288330
437	190969	83453453	20.9045450	1 0000190	302230000
	1			1	

No.	Square	Cube	Square Root	Cube Root	Reciprocal
488	191844	84027672	20.9284495	7.5943633	•002283105
439	192721	84604519	20-9523268	7.6001385	002277004
440	193600	85184000	20.9761770	7 6059049	002272727
441	194481	85766121	21-0000000	7.6116626	-002267574
442	195364	86350888	21 0237960	7.6174116	002262443
443	196249	86938307	21.0475652	7.6231519	-002257336
444	197136	87528384	21 0718075	7.6288837	002252252
445	198025	88121125	21.0950231	7-6346067	•002247191
446	198916	88716536	21.1187121	7 6403213	<b>-00224215</b> 2
447	199809	8931 <b>4623</b>	21.1423745	7 6460272	-002237136
448	200704	89915392	<b>21·1660</b> 105	7.6517247	002232143
449	201601	90518849	21 1896201	7.6574138	·002227171
450	202500	91125000	21 2132034	7.6630943	002222222
451	203401	91733851	21 2367606	7.6687665	002217295
452	204304	92345408	21.2602916	7.6744303	002212889
458	205209	92959677	21.2837967	7 6800857	•002207506
454	206116	93576664	21.3072758	7.6857328	002202643
455	207025	94196375	21.3307290	7.6913717	002197802
456	207936	94818816	21.3541565	7 6970023	002192982
457	208849	95443993	21.3775583	7.7026246	002188184
458	209764	96071912	21.4009346	7.7082388	002183406
459 460	210681 211600	96702579	21.4242858	7.7138448	002178649
461	211000	97336000 97972181	21·4476106 21·4709106	7·7194426 7·7250325	•002173918 •0001 <i>e</i> 0107
462	218444	98611128	21.4941853	7·7200323 7·7806141	•002169197 •002164502
463	214369	99252847	21.5174348	7.7361877	002159827
464	215296	99897844	21.5406592	7.7417532	002155172
465	216225	100544625	21.5638587	7.7478109	•002150588
466	217156	101194696	21.5870331	7.7528606	002145923
467	218089	101847563	21.6101828	7.7584023	002141828
468	219024	102503232	21.6833077	7.7639361	002136752
469	219961	103161709	21.6564078	7.7694620	002132196
470	220900	103823000	21.6794834	7.7749801	002127660
471	221841	104487111	21.7025344	7.7804904	002123142
472	222784	105154048	21.7255610	7.7859928	-002118644
473	223729	105823817	21.7485632	7.7914875	•002114165
474	224676	106496424	21.7715411	7.7969745	•002109705
475	225625	107171875	21.7944947	7.8024538	·002105263
476	226576	107850176	21.8174242	7.8079254	002100840
477	227529	108531333	21.8403297	7.8133892	002096436
478	228484	109215352	21.8632111	7.8188456	<b>-002092</b> 050
479	229441	109902239	21.8860686	7.8242942	•002087683
480	230400	110592000	21 9089023	7.8297353	-002083333
481	231361	111284641	21.9317122	7.8351688	*002079002
482	232324	111980168	21.9544984	7.8405949	002074689
488 484	233289 234256	112678587	21.9772810	7.8460134	-002070893
485	234200	113379904 114084125	22 0000000	7.8514244	-002066116
486	236196	114791256	22·0227155 22·0454077	7 8568281 7 8622242	*002061856 *002057613
1		-17101400	22 02020//·	# 004444Z	-002001010
			,		

No.	Square	Cube	Square Root	Cube Root	Reciprocal
487	237169	115501808	22.0680765	7.8676180	-002058888
488	238144	116214272	22.0907220	7.8729944	002049180
489	239121	116930169	<b>22</b> ·1133444	7.8783684	002044990
490	240100	117649000	22.1359436	7.8837352	002040816
491	241081	118870771	22 1585198	7.8890946	002036660
492	242064	119095488	22.1810730	7:8944468	002032520
493	243049	119828157	22-2036033	7.8997917	002028398
494	244036	120553784	22.2261108	7.9051294	002024291
495	245025	121287375	22-2485955	7.9104599	002020202
496	246016	122023936	22.2710575	7.9157832	002016129
497	247009	122763473 123505992	22.2934968	7-9210994	002012072
498 499	248004	124251499	22·3159136 22·3383079	7.9264085	•002008032
500	249001 250000	125000000	22.3606798	7 9317104 7 9870058	*002004008
501	251001	125751501	22.3830293	7.9422931	*002000000 *001996008
502	252004	126506008	22.4053565	7-9475739	001992032
503	253009	127263527	22.4276615	7.9528477	001982032
504	254016	128024064	22.4499443	7-9581144	001984127
505	255025	128787625	22.4722051	7.9633748	-001980198
506	256036	129554216	22.4944438	7.9686271	001976285
507	257049	130323843	22.5166605	7.9738731	001972387
508	258064	131096512	22.5388553	7.9791122	001968504
509	259081	131872229	22.5610283	7.9843444	001964637
510	260100	132651000	22.5831796	7-9895697	001960784
511	261121	133432831	22:6053091	7 9947888	001956947
512	262144	134217728	22.6274170	8.0000000	001953125
513	263169	135005697	22.6495033	8 0052049	•001949318
514	264196	135796744	22.6715681	8.0104032	001945525
515	265225	136590875	22:6936114	8.0155946	-001941748
516	266256	137388096	. 22:7156334	8.0207794	001937984
517	267289	138188413	22:7376340	8.0259574	•001934236
518	268324	138991832	22.7596134	8 0311287	•001980502
519	269361	139798359	22:7815715	8 0362935	·001926782
520	270400	140608000	22.8035085	8.0414515	001928077
521	271441	141420761	22.8254244	8 0466030	-001919386
522	272484	142236648	22.8473193	8.0517479	•001915709
523	278529	143055667	22.8691933	8.0568862	001912046
524	274576	143877824	22.8910463	8.0620180	001908397
525	275625	144703125	22.9128785	8.0671432	001904762
526	276676	145581576	22-9346899	8.0722620	001901141
527	277729	146363183 147197952	22·9564806 22·9782506	8·0773743 8·0824800	001897533 001898939
528 529	278784 279841	148085889	23-0000000	8.0875794	001890859
530	280900	148877000	28-0217289	8.0926723	001886792
531	281961	149721291	28-0434372	8-0977589	·001883239
532	283024	150568768	28-0651252	8.1028390	•001879699
533	284089	151419437	23.0867928	8.1079128	001876173
534	285156	152278304	23.1084400	8.1129808	001872659
535	286225	153130375	23.1300670	8.1180414	-001869159
~00					

ROOTS, AND RECIPROCALS.

Square Root	Cube Root	Reciprocal
23:1516738	8.1230962	-001865672
23.1732605	8.1281447	·001862197
23:1948270	8.1331870	·001858736
23.2163735	8.1382230	·001855288
23.2379001	8.1432529	-001851852
23.2594067	8.1482765	-001848429
23-2808935	8.1532939	001845018
23.3023604	8.1583051	-001841621
23.3238076	8.1633102	·001838235
23.3452351	8.1683092	.001834862
23.3666429	8.1733020	-001831502
23.3880311	8.1782888	-001828154
23.4093998	8.1832695	•001824818
23.4307490	8.1882441	-001821494
23.4520788	8.1932127	-001818182
23.4733892	8.1981753	-001814882
23.4946802	8.2031319	001811594
23.5159520	8.2080825	-001808318
23.5372046	8.2130271	·001805054
23.5584380	8.2179657	001801802
23.5796522	8.2228985	-001798561
23.6008474	8.2278254	001795332
23.6220236	8.2327463	001792115
23.6431808	8.2376614	•001788909
23.6643191	8.2425706	001785714
23.6854386	8.2474740	001782531
23.7065392	8 2523715	001779359
23.7276210	8.2572633	•001776199
23.7486842	8.2621492	001773050
23.7697286	8.2670294	-001769912
23.7907545	8.2719039	·001766784
23 8117618	8.2767726	•001763668
23.8327506	8.2816355	·001760563
23.8537209	8.2864928	001757469
23.8746728	8.2913444	•001754386
23.8956063	8 2961903	•001751318
23.9165215	8 3010304	-001748252
23.9374184	8.3058651	•001745201
23.9582971	8·3106941	001742160
23.9791576	8.3155175	•001739130
24.0000000	8.3203353	•001736111
24.0208243	8.3251475	•001733102
24.0416306	8.3299542	*00173010 <del>1</del>
24.0624188	8.3347553	•001727116
24.0831891	8.3395509	001724188
24.1039416	8.3443410	001721170
24.1246762	8.3491256	•001718213
24.1453929	8.3539047	*001715266
24.1660919	8 3586784	·001712329

No.	Square	Cube	Square Root	Cube Root	Reciprocal
585	342225	200201625	24.1867732	8.3634466	·001709402
586	348396	201230056	24 2074369	8.3682095	001706485
587	344569	202262003	24 2280829	8.8729668	001703578
588	345744	203297472	24.2487113	8.3777188	·005700680
589	346921	204336469	24.2693222	8.3824653	.001697793
590	848100	205379000	24 2899156	8.8872065	.001694915
591	349281	206425071	24.3104916	8.3919423	·001692047
592	850464	207474688	24.3310501	8.3966729	•001689189
593	851649	208527857	24.3515913	8.4013981	-001686341
594	<b>3</b> 52836	209584584	24.3721152	8.4061180	-001683502
595	354025	210644875	<b>24·392</b> 6218	8.4108326	.001680672
596	855216	211708736	24.4131112	8.4155419	•001677852
597	356409	212776173	24.4335834	8.4202460	.001675042
598	357604	213847192	24.4540385	8.4249448	•001672241
599	<b>358801</b>	214921799	<b>24·47·14765</b>	8.4296383	•001669449
600	360000	216000000	24-4948974	8.4343267	•001666667
601	861201	217081801	24.5153013	8.4390098	•001663894
602	<b>362404</b>	218167208	24.5356883	8.4436877	·001661130
603	363609	219256227	24.5560583	8.4483605	•001658375
604	<b>364816</b>	220348864	24.5764115	8.4530281	.001655629
605	366025	<b>22144</b> 5125	<b>24</b> ·5967478	8.4576906	·001652893
606	3672 <b>36</b>	222545016	24.6170673	8.4623479	·001650165
607	3684 <i>4</i> 9	223648543	<b>24</b> ·6373700	8.4670000	•001647446
608	<b>369664</b>	224755712	24.6576560	8·4716471	•001644737
609	<b>370881</b>	225866529	24.6779254	8.4762892	001642036
610	372100	226981000	<b>24·69</b> 81781	8.4809261	·001639344
611	373321	228099131	<b>24</b> ·7184142	8.4855579	·001636661
612	374544	229220928	<b>24</b> ·7386338	8.4901848	·00163398 <b>7</b>
613	375769	230346397	<b>24·7588368</b>	8.4948065	·001631321
614	376996	231475544	24 7790234	8.4994233	·001 <b>628664</b>
615	378225	232608375	24.7991935	8.5040350	·001626016
616	379456	233744896	24 8193473	8.5086417	·001623377
617	380689	234885113	24 8394847	8.5132435	•001 <b>620746</b>
618	381 <del>924</del>	236029032	24 8596058	8.5178403	·001618123
619	383161	237176659	24.8797106	8.5224321	001615509
620	384400	238328000	24.8997992	8.5270189	.001612903
621	385641	239483061	24.9198716	8.5316009	·00161030 <b>6</b>
622	386884	240641848	24.9399278	8.5361780	.001607717
623	388129	241804367	24.9599679	8.5407501	·001 <b>605136</b>
624	389376	242970624	24.9799920	8.5453173	·001602564
625	390625	244140625	25.0000000	8.5498797	•001600000
626	391876	245314376	25.0199920	8.5544372	·001597444
627	393129	246491883	25.0399681	8.5589899	·001594896
628	394384	247673152	25.0599282	8.5635377	•001592357
629	395641 396900	248858189 250047000	25-0798724	8.5680807	•001589825
630	398161	251239591	25-0998008	8.5726189	001587302
631	399424	252435968	25.1197134	8.5771523	001584786
632	400689	253636137	25·1396102 25·1594913	8.5816809	*001582278
633	700000	200000101	TO 1004919	8.5862047	•001579779
		L			

	No.	Square	Cube	Square Root	Cube Root	Reciprocal
1	634	401956	254840104	25.1793566	8.5907238	-001577287
1	635	403225	256047875	25.1992063	8.5952380	001574803
	636	404496	257259456	25.2190404	8.5997476	·001572327
	637	405769	258474853	25.2388589	8.6042525	001569859
- 1	638	407044	259694072	25.2586619	8.6087526	001567398
	639	408321	260917119	25.2784493	8.6132480	001564945
	640	409600	262144000	25.2982213	8.6177388	001562500
1	641	410881	263374721	25.3179778	8.6222248	•001560062
1	642	412164	264609288	25.3377189	8-6267063	001557632
1	643	413449	265847707	25.3574447	8.6311830	001555210
	644	414736	267089984	25.3771551	8.6356551	•001552795
	645	416025	268336125	25.3968502	8.6401226	·001550388
	646	417316	269586136	25.4165301	8.6445855	001547988
	647 648	418609 419904	270840023 272097792	25·4361947 25·4558441	8·6490437 8·6534974	001545595 001543210
	649	421201	273359449	25.4754784	8.6579465	001543210
	650	422500	274625000	25.4950976	8.6623911	001538462
	651	423801	275894451	25.5147016	8.6668310	•001536098
	652	425104	277167808	25.5342907	8.6712665	001533742
	653	426409	278445077	25.5538647	8.6756974	·001531394
	654	427716	279726264	25.5734237	8.6801237	•001529052
-1	655	429025	281011375	25.5929678	8.6845456	001526718
	656	430336	282300416	25.6124969	8.6889630	•001524390
	657	431649	283593393	25.6320112	8.6933759	001522070
	658	432964	284890312	25.6515107	8.6977843	•001519757
	659	434281	286191179	25.6709953	8.7021882	·001517451
	660	435600	287496000	25.6904652	8.7065877	.001515152
	661	436921	288804781	·25·7099203	8.7109827	-001512859
	662	438244	290117528	25.7293607	8.7153734	·001510574
	663	439569	291434247	25.7487864	8.7197596	.001508296
	664	440896	292754944	25.7681975	8.7241414	·00150602 <del>4</del>
	665	442225	294079625	25.7875939	8.7285187	<b>•0015</b> 03759
	666	443556	<b>2954</b> 08296	25.8069758	8.7328918	•001501502
	667	444889	296740963	25.8263431	8.7372604	•001499250
	668	446224	298077632	25 8456960	8.7416246	•001497006
	669	447561	299418309	25.8650343	8.7459846	001494768
	670	448900	300763000	25.8843582	8.7503401	001492537
	671	450241	302111711	25.9036677	8.7546913	•001490313
	672	451584	303464448	25.9229628	8.7590383	001488095
	673	452929	804821217	25.9422435	8.7633809	*001485884
-	674	454276	306182024	25.9615100	8.7677192	•001483680
	675	455625	307546875	25.9807621	8·7720532 8·7763830	*001481481
	676	45697 <b>6</b> 45832 <b>9</b>	308915776	<b>26</b> 00000000 <b>26</b> 0192237	8.7807084	•001479290 •001477105
- 1	67 <b>7</b> 678	459684	310288733 311665752	26.0384331	8.7850296	001477100
	679	461041	813046889	26.0576284	8.7893466	001472754
	680	462400	814432000	26.0768096	8.7936593	001470588
	681	463761	815821241	26.0959767	8.7979679	-001468429
	682	465124	317214563	26.1151297	8.8022721	-001466276
		1				

No.	Square	Cube	Square Root'	Cube Root	Reciprocal
683	466489	919911097	04.1940407	8.8065722	-001464100
684	467856	818611987 820013504	26·1342687 26·1533937	8.8108681	•001464129 •001461988
685	469225	821419125	26.1725047	8.8151598	·001451965
686	470596	322828856	26.1916017	8.8194474	001457726
687	471969	824242703	26.2106848	8.8237307	001457720
688	473344	825660672	26.2297541	8.8280099	·001453488
689	474721	827082769	26.2488095	8.8322850	.001451379
690	476100	828509000	26.2678511	8.8365559	001149275
691	477481	829939371	26.2868789	8.8408227	.001447178
692	478864	831373888	26.3058929	8.8450854	·001445087
693	480249	332812557	26.3248932	8.8493440	001443001
694	481636	334255384	26.3438797	8.8535985	•001440922
695	483025	835702375	26.3628527	8.8578489	·001438849
696	484416	837153536	26:3818119	8.8620952	001436782
697	485809	838608873	26.4007576	8.8663375	001434720
698	487204	340068392	26.4196896	8.8705757	·001432665
699	488601	841532099	26.4386081	8.8748099	·001430615
700	490000	<b>34</b> 3000000	26.4575131	8.8790400	·001428571
701	491401	<b>8444</b> 72101	26.4764046	8.8832661	·001426534
702	492804	345948408	26.4952826	8.8874882	•001424501
703	494209	847428927	26.5141472	8.8917063	·001422475
704	495616	348913664	26.5329983	8.8959204	.001420455
705	497025	850402625	26.5518361	8.9001304	·001418440
706	498436	<b>351895816</b>	26.5706605	8.9043366	•001416431
707	499849	853393243	26.5894716	8.9085387	.001414427
708	501264	<b>354</b> 894912	26.6082694	8.9127369	001412429
709	502681	356400829	26.6270539	8.9169311	001410437
710	504100	857911000	26.6458252	8.9211214	001408451
711	505521	359425431	26.6645833	8.9253078	001406470
712	506944	360944128	26.6833281	8.9294902	001404494
713	508369	362467097 363994344	26.7020598	8·9336687 8·9378433	*001402525 *001400560
714 715	509796 511225	865525875	26·7207784 26·7394839	8.9420140	001398601
716	51265 <b>6</b>	367061696	26.7581763	8.9461809	001396648
717	514089	368601813	26.7768557	8.9503438	·001394700
718	515524	870146232	26.7955220	8.9545029	001392758
719	516961	371694959	26.8141754	8.9586581	•001390821
720	518400	373248000	26.8328157	8.9628095	•001388889
721	519841	374805361	26.8514432	8.9669570	001386963
722	521284	876367048	26.8700577	8.9711007	001385042
723	522729	877933067	26.8886593	8-9752406	001383126
724	524176	879503424	26.9072481	8.9793766	·001381215
725	525625	381078125	26.9258240	8.9835089	•001379310
726	527076	332657176	26.9443872	8 9876373	.001377410
727	528529	884240583	26.9629375	8.9917620	.001375516
728	529984	385828352	26.9814751	8.9958829	001373626
729	531441	887420489	27.0000000	9.00000000	•001371742
730	532900	<b>3</b> 89017000	27.0185122	9.0041134	001369863
731	534361	390617891	27.0370117	9.0082229	. 001367989

388	BQUA	ARES, CUBES,	ROOTS, AND	RECIPROCA	L& 
No.	Square	Cube	Square Root	Cube Root	Reciprocal
732	535824	392223168	27.0554985	9.0123288	-001366120
733	537289	393832837	27.0739727	9.0164309	•001364256
734	<b>538756</b>	395446904	27.0924344	9.0205293	·0013 <b>6239</b> 8
735	540225	897065375	27.1108834	9.0246239	·001360544
736	541696	398688256	27 1293199	9 0287149	·001358696
737	543169	400315553	27.1477439	9.0328021	001356852
738	544644	401947272	27.1661554	9.0368857	·0013 <b>55014</b>
739	546121	403583419	27.1845544	9.0409655	001353180
740	547600	405224000	27.2029410	9.0450417	001351351
741	549081	406869021	27.2213152	9.0491142	001349528
742	550564 552049	408518488 410172407	27.2396769	9.0531831	·001347709
743 744	553536	411830784	27·2580263 27·2763634	9.0572482	·0013 <b>45895</b> ·0013 <b>4408</b> 6
745	555025	413493625	27.2946881	9·0613098 9·0653677	·001344080
746	556516	415160936	27.3130006	9.0694220	-00134 <b>0483</b>
747	558009	416832723	27.3313007	9.0734726	001338688
748	559504	418508992	27.3495887	9.0775197	·001336898
749	561001	420189749	27.3678644	9.0815631	001335113
750	562500	421875000	27.3861279	9.0856030	·001333333
751	564001	423564751	27.4043792	9.0896392	001331558
752	565504	425259008	27.4226184	9.0936719	·001329787
753	567009	426957777	27.4408455	9.0977010	·001328 <b>021</b>
754	568516	428661064	27.4590604	9.1017265	·001326260
755	570025	430368875	27.4772633	9.1057485	·001324503
756	571536	432081216	27.4954542	9.1097669	001322751
757	573049	433798093	27.5136330	9.1137818	·001321004
758	574564	435519512	27.5317998	9.1177931	·00131 <b>9261</b>
759	576081	<b>4</b> 37245479	27.5499546	9.1218010	·001817528
760	577600	438976000	27.5680975	9.1258053	·00131578 <b>9</b>
761	579121	440711081	27:5862284	9.1298061	001314060
762	580644	442450728	27.6043475	9.1338034	001312336
763	582169	444194947	27.6224546	9.1377971	•001310616
764	583696	445943744	27.6405499	9.1417874	001308901
765 766	585225	447697125	27.6586334	9,1457742	·001307190
	586756	449455096	27.6767050	9.1497576	.001305483
767 768	588289 589824	451217663 452984832	27·6947648 27·7128129	9·1537375 9·1577139	•001303781 •001302083
769	591361	454756609	27 7308492	9.1616869	•001302000 •001300390
770	592900	456533000	27.7488739	9.1656565	•001300390 •001298701
771	594441	458314011	27.7668868	9.1696225	-001297017
772	595984	460099648	27.7848880	9.1735852	-001295337
773	597529	461889917	27.8028775	9.1775445	-001293661
774	599076	463684824	27.8208555	9.1815003	-001291990
775	600625	465484375	27.8388218	9.1854527	-001290323
776	602176	467288576	27.8567766	9.1894018	-001288660
777	603729	<b>4</b> 69097433	27.8747197	9.1933474	-001287001
778	605284	470910952	27.8926514	9.1972897	·001285847
779	606841	<b>4</b> 72729139	27.9105715	9.2012286	-001283697
780	608400	474552000	27 9284801	9.2051641	-001282061

No.	Square	Cube	Square Root	Cube Root	Reciprocal
781	609961	476379541	27-9468772	9-2090962	·001280410
782	611524	478211768	27.9642629	9-2180250	•001278772
783	613089	480048687	27-9821372	9-2169505	-001277139
784	614656	481890304	28.00000000	9-2208726	·001275510
785	616225	483736625	28-0178515	9.2247914	·00127388 <b>5</b>
786	617796	485587656	28 0356915	9-2287068	·001272265
787	619369	<b>4</b> 87 <b>4434</b> 03	28 0535203	9.2326189	001270648
788	620944	489303872	28-0713377	9.2365277	·001269036
789	622521	491169069	28.0891438	9.2404338	•001267427
790	624100	493039000	28.1069386	9·2443355	•001265823
791	625681	494913671	28.1247222	9.2482344	001264223
792	627264	496793088	28.1424946	9 2521300	·001262626
793	628849	498677257	28.1602557	9 2560224	•001261034
794	630436	500566184	28.1780056	9 2599114	001259446
795	632025	502459875	28.1957444	9 2637973	•001257862
796	633616	504358336	28-2134720	9 2676798	•001256281
797	635209	506261573	28.2311884	9.2715592	·001254705
798	636804	508169592	28-2488938	9.2754352	•001253133
799	638401	510082399	28.2665881	9.2793081	·001251564
800	640000	512000000	28.2842712	<b>9</b> ·283177 <b>7</b>	•001250000
801	641601	513922401	28.3019434	9.2870440	·001248439
802	643204	515849608	28.3196045	9.2909072	·001246883
803	644809	517781627	28.3372546	9.2947671	•001245330
804	646416	519718464	28.3548938	9.2986239	•001243781
805	648025	521660125	28.3725219	9.3024775	•001242236
806	649636	523606616	28.3901391	9.3063278	•001240695
807	651249	525557943	28.4077454	9.3101750	•001239157
808	652864	527514112	28.4258408	9.3140190	•001237624
809	654481	529475129	28.4429253	9.3178599	•001236094
810	656100	531441000	28.4604989	9.3216975	•001234568
811	657721	533411731	28.4780617	9.3255320	•001233046
812	659344	535387328	28.4956137	9.3293634	•001231527
813	660969	537367797	28.5131549	9.3331916	•001230012
814	662596	539353144	28.5306852	9.3370167	•001228501
815	664225	541343375	28.5482048	9.3408386	001226994
816	665856	543338496	28.5657137	9.3446575	•001225490
817	667489	545338513	28.5832119	9.3484731	001223990
818	669124	547343432	28.6006998	9.3522857	•001222494
819	670761	549353259	28.6181760	9.3560952	·001221001 ·001219512
820	672400	551368000	28.6356421	9.3599016	
821	674041	553387661	28.6530976	9·3637049 9·3675051	•001218027 •00121654 <b>5</b>
822	675684	555412248	28.6705424	9.3675051	•001216545 •001215067
823	677329	557441767	28.6879766		•001213592
824	678976	559476224 561515625	28·7054002 28·7228132	9·3750963 9·3788873	001212121
825	680625	563559976	28.7402157	9.3826752	·001212121 ·001210654
826	682276	565609283	28.7576077	9.3864600	001210054
827	683929			9.3902419	001203130
828	685584	567663552	28·7749891 28·7923601	9.3940206	001207729
829	687241	569722789	20.1920001	8.0940200	0012002/2
		<u>'                                    </u>	•		

No.	Square	Cube	Square Root	Cube Root	Reciprocal
830	688900	571787000	28.8097206	9.3977964	-001204819
831	690561	573856191	28 8270706	9.4015691	•001203369
832	692224	575930368	28.8444102	9.4053387	•00120192
833	693889	578009537	28.8617394	9.4091054	-00120048
834	695556	580093704	28.8790582	9.4128690	•00119904
835	697225	582182875	28.8963666	9.4166297	•00119760
836	698896	584277056	28.9136646	9.4203873	•00119617
837	700569	586376253	28 9309523	9.4241420	•00119474
838	702244	588480472	28.9482297	9·427893 <b>6</b>	•00119331
839	703921	590589719	28.9654967	9.4316423	•00119189
840	705600	592704000	28.9827535	9.4353880	·00119047
841	707281	594823321	29.0000000	9.4391307	•00118906
842	708964	596947688	29.0172363	9.4428704	•00118764
843	710649	599077107	29 0344623	9.4466072	•00118624
844	712336	601211584	29 0516781	9.4503410	•00118483
845	714025	603351125	29.0688837	9.4540719	•00118343
846	715716	605495736	29 0860791	9·4577999	-00118203
847	717409	607645423	29.1032644	9.4615249	•00118063
848	719104	609800192	29.1204396	9.4652470	•00117924
849	720801	611960049	29.1376046	9.4689661	•00117785
850	722500	614125000	29.1547595	9.4726824	•00117647
851	724201	616295051	29.1719043	9.4763957	•00117508
852	725904	618470208	29.1890390	9.4801061	•00117370
<b>853</b>	727609	620650477	29.2061637	9.4838136	•00117233
854	729316	622835864	29.2232784	9.4875182	•00117096
855	731025	625026375	29.2403830	9.4912200	-00116959
856	732736	627222016	29.2574777	9.4949188	•00116822
857	734449	629422793	29.2745623	9.4986147	•00116686
858	736164	631628712	29.2916370	9.5023078	•00116550
859	737881	633839779	29.3087018	9.5059980	00116414
860	739600	636056000	29.3257566	9.5096854	00116279
861	741321	638277381	29.3428015	9.5133699	•001161440 •00116009
862	743044 744769	640503928 642735647	29·3598365 29·3768616	9·517051 <b>5</b> 9·5207303	-00115874
863 864	746496	644972544	29 3938769	9.5244063	•00115740
865	748225	647214625	29.4108823	9.5280794	•00115740 •00115606
86 <b>6</b>	749956	64946189 <b>6</b>	29.4278779	9.5317497	00115473
867	751689	651714363	29.4448637	9.5354172	-00115340
868	753424	653972032	29.4618397	9.5390818	•00115207
869	755161	656234909	29.4788059	9.5427437	•001150748
870	756900	658503000	29.4957624	9.5464027	•00114942
871	758641	660776311	29.5127091	9.5500589	-001148106
872	760384	663054848	29.5296461	9·553712 <b>3</b>	•001146789
873	762129	665338617	29.5465734	9.5573630	•001145475
874	763876	667627624	29.5634910	9.5610108	•001144165
875	765625	669921875	29.5803989	9.5646559	•001142857
876	767376	672221376	29.5972972	9.5682982	•001141553
877	769129	674526133	29.6141858	9.5719377	•001140251
878	770884	676836152	29.6310648	9.5755745	-001138952

No.	Square	Cube	Square Root	Cube Root	Reciprocal
879	772641	679151439	<b>29·64</b> 79342	9.5792085	·001137656
880	774400	681472000	29.6647989	9.5828397	.001186364
881	776161	683797841	29.6816442	9.5864682	*001135074
882	777924	686128968	29.6984848	9-5900939	-001138787
883	779689	<b>688465387</b>	29.7153159	9.5937169	•001132503
884	781456	690807104	29.7321375	9.5973373	-001181222
885	783225	693154125	29.7489496	9.6009548	·001129944
886	784996	695506456	29.7657521	9.6045696	·001128668
887	786769	697864103	29.7825452	9.6081817	·001127396
888	788544	700227072	29.7993282	9.6117911	·001126126
889	790321	702595369	29.8161030	9.6153977	·001124859
890	792100	704969000	29.8328678	9.6190017	·001123596
891	793881	707347971	29.8496231	9.6226030	·001122334
892	795664	709732288	29.8663690	9.6262016	001121076
893	797449	712121957	29.8831056	9.6297975	•001119821
894	799236	714516984	29.8998328	9.6333907	•001118568
895	801025	716917375	29.9165506	9.6369812	001117318
896	802816	719323136	29.9332591	9.6405690	001116071
897	804609	721734273	29.9499583	9.6441542	001114827
898 899	806404	724150792 726572699	29·9666481 29·9833287	9.6477367	001113586
900	808201	729000000	30.0000000	9.6515166	001112347
901	810000 811801	731432701	30.0166620	9·6548938 9·6584684	•001111111
902	813604	733870808	80.0333148	9.6620403	*001109878
903	815409	736314327	30.0499584	9.6656096	*001108647 *001107420
904	817216	738763264	80.0665928	9.6691762	001107420
905	819025	741217625	30.0832179	9.6727403	001104972
906	820836	743677416	80.0998339	9.6763017	•001103753
907	822649	746142643	30.1164407	9.6798604	·001102536
908	824464	748613312	30.1330383	9.6834166	001101322
909	826281	751089429	30.1496269	9.6869701	-001100110
910	828100	753571000	30.1662063	9.6905211	•001098901
911	829921	756058031	30.1827765	9.6940694	-001097695
912	831744	758550528	30.1993377	9.6976151	•001096491
913	833569	761048497	30.2158899	9.7011583	•001095290
914	835396	763551944	30.2324329	9.7046989	•001094092
915	837225	<b>76606</b> 087 <b>5</b>	30.2489669	9.7082369	•001092896
916	839056	768575296	30.2654919	9.7117723	•001091703
917	840889	<b>77</b> 109521 <b>3</b>	30.2820079	9.7153051	•001090513
918	842724	773620632	30.2985148	9.7188354	·001089325
919	844561	776151559	30.3150128	9.7223631	·001088139
920	846400	778688000	30.3315018	9.7258883	.001086957
921	848241	781229961	30.3479818	9.7294109	·00108577 <b>6</b>
922	850084	783777448	30.3644529	9.7329309	•001084599
923	851929	786330467	80.3809151	9.7364484	·001083424
924	853776	788889024	30.3973683	9.7399634	•001082251
925 926	855625	791458125	30.4138127	9.7434758	•001081081
927	857476	794022776	30.4302481	9.7469857	•001079914
841	859329	796597983	30.4466747	9.7504930	·0010787 <b>49</b>

No.	Square	Cube	Square Root	Cube Root	Reciprocal
928	861184	799178752	30-4630924	9-7539979	-001077586
929	863041	801765089	80.4795013	9.7575002	001076426
930	864900	804357000	30.4959014	9.7610001	•001075269
931	866761	806954491	30.5122926	9.7644974	-001074114
932	868624	809557568	30.5286750	9.7679922	-001072961
933	870489	812166237	30.5450487	9.7714845	-001071811
934	872356	814780504	30.5614136	9.7749743	•001070664
935	874225	817400375	30·57776 <del>0</del> 7	9.7784616	-001069519
936	876096	82002585 <b>6</b>	30.5941171	9.7819466	-001068376
937	877969	822656953	30.6104557	9.7854288	•001067236
938	879844	825293672	30-6267857	9.7889087	•001066098
939	881721	827936019	30.6431069	9.7923861	•001064963
940	883600	830584000	30.6594194	9.7958611	•001063830
941	885481	833237621	30.6757233	9.7993336	•001062699
942	887364	835896888	30.6920185	9.8028036	•001061571
943	889249	838561807	30.7083051	9.8062711	•001060445
944	891136	841232384	30.7245830	9.8097362	•001059322
945	893025	843908625	30.7408523	9.8131989	·001058201
946	894916	846590536	30.7571130	9.8166591	-001057082
947	896809	849278123	30.7733651	9.8201169	-001055966
948	898704	851971392	30.7896086	9.8235723	-001054852
949	900601	854670349	30.8058436	9.8270252	.001053741
950	902500	857375000	30.8220700	9.8304757	001052632
951	904401	860085351	30.8382879	9.8339238	-001051525
952	906304	862801408	30.8544972	9.8373695	-001050420
953	908209	865523177	30.8706981	9.8408127	·001049318
954	910116	868250664	30.8868904	9.8442536	•001048218
955	912025	870983875	30.9030743	9.8476920	.001047120
956	913936	873722816	30.9192497	9.8511280	.001046025
957	915849	876467493	30.9354166	9.8545617	•001044932
958	917764	879217912	30.9515751	9.8579929	.001043841
959	919681	881974079	30.9677251	9.8614218	.001042753
960	921600	884736000	30.9838668	9.8648483	•001041667
961	923521	887503681	31.0000000	9.8682724	· •001040583
962	925444	890277128	31.0161248	9.8716941	•001039501
963	927369	893056347	31.0322413	9.8751135	•001038422
964	929296	895841344	31.0483494	9.8785305	•001037344
965	931225	898632125	31.0644491	9.8819451	•001036269
966	933156	901428696	31.0805405	9.8853574	.001035197
967	935089	904231063	31.0966236	9.8887673	.001034126
968	937024	907039232	31.1126984	9.8921749	-001033058
969	938961	909853209	31.1287648	9.8955801	•001031992
970	940900	912673000	31.1448230	9.8989830	•001030928
971	942841	915498611	31.1608729	9.9023835	•001029866
972	944784	918330048	31 1769145	9.9057817	·001028807
973	946729	921167317	31.1929479	9.9091776	001027749
974	948676	924010424	31.2089731	9.9125712	•001026694
975	950625	926859375	31 2249900	9.9159624	.001025641
976	952576	929714176	31.2409987	9.9193513	·001024590

No.	Square	Cube	Square Root	Cube Root	Reciprocal
977	954529	932574833	81 • 2569992	9-9227879	·001023541
978	956484	935441352	31 2729915	9.9251222	001023021
979	958441	938313739	31-2889757	9.9295042	001021460
980	960400	941192000	31.3049517	9-9328839	001020408
981	962361	944076141	31.3209195	9.9362613	•001019368
982	964824	946966168	31.8368792	9-9396863	•001018830
983	966289	949862087	31.3528308	9.9480092	•001017294
984	968256	952763904	31.3687743	9-9463797	001016260
985	970225	955671625	31.3847097	9.9497479	·001015228
986	972196	958585256	31 4006369	9.9531138	•001014199
987	974169	961504803	31.4165561	9.9564775	•001013171
988	976144	964430272	31.4324673	9.9598389	·001012146
989	978121	967361669	31.4483704	9-9631981	•001011122
990	980100	970299000	31.4642654	9.9665549	<b>•0</b> 01010101
991	982081	973242271	31 • 4801525	9.9699095	·001009082
992	984064	976191488	31.4960315	9.9732619	·001008065
993	986049	979146657	81.5119025	9.9766120	•001007049
994	988036	982107784	31.5277655	9.9799599	•001006036
995	990025	985074875	31.5436206	9.9833055	·001005025
996	992016	988047936	31.5594677	9.9866488	·001004016
997	994009	991026973	<b>31</b> ·5753068	9.9899900	•001003009
998	996004	994011992	31.5911380	9.9933289	·001002004
999	998001	997002999	31.6069613	9.9966656	•001001001
1000	1000000	1000000000	31.6227766	10.0000000	0010000000
1001	1002001	1003003001	31.6385840	10.0033322	•0009990010
1002	1004004	1006012008	31.6543836	10.0066622	•0009980040
1003	1006009	1009027027	31.6701752	10.0099899	•0009970090
1004	1008016	1012048064	31.6859590	10.0133155	-0009960159
1005 1006	1010025	1015075125	31.7017349	10.0166389	•0009950249
1000	1012036	1018108216	31.7175030	10.0199601	0009940358
1007	1014049	1021147343	31.7332633	10.0232791	•0009930487
1009	1016064	1024192512	81.7490157	10.0265958	0009920635
1010	1018081	1027243729	31.7647603	10.0299104	•0009910803
1010	1020100	1030301000	31.7804972	10.0332228	-0009900990
1012	1022121	1033364331	31.7962262	10.0365330	0009891197
1012	1024144 1026169	1036433728	31.8119474	10.0398410	·0009881428
1013	1020109	1039509197 1042590744	31.8276609	10.0431469 10.0464506	·0009871668 ·0009861933
1015	1020190		31.8433666	10.0404500	0009852217
1016	1030225	1045678375	31.8590646		·0009852217 ·0009842520
1017	1034289	1048772096 1051871913	31.8747549	10.0530514 10.0563485	·0009842520 ·0009832842
1018	1036324		31.8904374	10.0503485	·0009832842 ·0009823188
1019	1038361	1054977832 1058089859	31·9061123 31·9217794	10.0590435	0009813543
1020	1040400	1061208000	31.9374388	10.0629864	0009803922
1021	1042441	1061208000	31.9530906	10.0692271	·0009794319
1022	1044484	1067462648	31.9687347	10.0728020	0009784736
1023	1046529	1070599167	31.9843712	10.0760868	•0009775171
1024	1048576	1070399107	32.0000000	10.0793684	0009765625
1025	1050625	1076890625	32.0156212	10.0826484	0009756098
			22 0100212		2000,0000
		·			

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1026	1052676	1080045576	32-0312348	10.0859262	-0009746589
1027	1054729	1083206683	32.0468407	10.0892019	-0009737098
1028	1056784	1086373952	32.0624391	10.0924755	-0009727626
1029	1058841	1089547389	32.0780298	10.0957469	•0009718173
1030	1060900	1092727000	32.0936131	10.0990163	•0009708738
1031	1062961	1095912791	32.1091887	10.1022835	•0009699321
1032	1065024	1099104768	32.1247568	10.1055487	•0009689922
1033	1067089	1102302937	32.1403173	10.1088117	•0009680542
1034	1069156	1105507304	32.1558704	10.1120726	•0009671180
1035	1071225	1108717875	32.1714159	10.1158314	-0009661836
1036	1073296	1111934656	32.1869539	10.1185882	-0009652510
1037	1075369	1115157653	32.2024844	10.1218428	•0009643202
1038	1077444	1118386872	32.2180074	10.1250953	•0009633911
1039	1079521	1121622319	32.2335229	10.1283457	·0009624639
1040	1081600	1124864000	82.2490310	10.1315941	•0009615385
1041	1083681 1085764	1128111921 1131366088	32-2645316	10.1848403	•0009606148
1042 1043	1087849		32.2800248	10.1380845	•0009596929
1043	1089936	1134626507 1137893184	32.2955105	10.1413266	•0009587728
1045	1092025	1141166125	32·3109888 32·3264598	10.1445667	•0009578544 •0000560878
1046	1092025	1141100125	32.3419233	10·1478047 10·1510406	-0009569378 -0009560229
1047	1096209	1147730823	32.3573794	10 1510400	-0009551098
1048	1098304	1151022592	32.3728281	10 1542744	•0009541985
1049	1100401	1154320649	32.3882695	10 1575002	-0009532888
1050	1102500	1157625000	32.4037035	10 1639636	-0009523810
1051	1104601	1160935651	32.4191301	10.1671893	-0009514748
1052	1106704	1164252608	32.4345495	10.1704129	-0009505703
1053	1108809	1167575877	32.4499615	10.1736344	-0009496676
1054	1110916	1170905464	32.4653662	10.1768539	•0009487666
1055	1113025	1174241375	32.4807635	10.1800714	-0009478673
1056	1115136	1177583616	32.4961536	10.1832868	•0009469697
1057	1117249	1180932193	32.5115364	10.1865002	•0009460738
1058	1119364	1184287112	32.5269119	10.1897116	•0009451796
1059	1121481	1187648379	32.5422802	10.1929209	-0009442871
1060	1123600	1191016000	32.5576412	10.1961283	-0009433962
1061	1125721	1194389981	32.5729949	10.1993336	0009425071
1062	1127844	1197770328	32.5883415	10.2025369	•0009416196
1063	1129969	1201157047	32.6036807	10.2057382	0009407338
1064	1132096	1204550144	32.6190129	10.2089375	•0009398496
1065	1134225	1207949625	32.6343377	10.2121347	-0009389671
1066	1136356	1211355496	32.6496554	10.2153300	•0009380863
1067	1138489	1214767763	32.6649659	10.2185233	·0009372071
1068	1140624	1218186432	32.6802693	10.2217146	•0009363296
1069	1142761	1221611509	32.6955654	10.2249039	•0009354537
1070	1144900	1225043000	32.7108544	10.2280912	0009345794
1071 1072	1147041	1228480911	32.7261363	10.2312766	-0009337068
1072	1149184 1151329	1231925248	32.7414111	10-2344599	•0000328358 •0009319664
1074	1151329	1235376017 1238833224	32.7566787	10.2376413	000931997
I ****	1100110	1200000224	32.7719392	10.2408207	.00000010001

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1075	1155625	1242296875	32.7871926	10-2439981	-0009302826
1076	1157776	12457 <b>66</b> 976	32.8024389	10.2471735	·0009298680
1077	1159929	1249243533	32.8176782	10.2503470	0009285051
1078	1162084	1252726552	32.8329103	10-2585186	·0009276438
1079	1164241	1256216039	32.8481354	10.2566881	.0009267841
1080	1166400	1259712000	32.8633535	10.2598557	-0009259259
1081	1168561	1263214441	82.8785644	10.2630213	•0009250694
1082	1170724	1266723368	32.8937684	10-2661850	•0009242144
1083	1172889	1270238787	32.9089653	10.2693467	·0009233610
1084	1175056	1273760704	82.9241558	10.2725065	-0009225092
1085	1177225	1277289125	32.9393382	10.2756644	•0009216590
1086	1179396	1280824056	82.9545141	10.2788203	·000920810 <b>3</b>
1087	1181569	1284365503	32·9696830	10.2819743	·0009199632
1088	1183744	1287913472	32·9848450 33·0000000	10·2851264 10·2882765	0009191176
1089	1185921	1291467969 1295029000	33.0151480	10.2882766	·0009182786 ·0009174812
1090 1091	1188100 1190281	1298596571	33.0302891	10.2914247	0009174312
1091	1190201	1302170688	33·0454233	10.2977158	·0009100903
1092	1194649	1305751357	83.0605505	10.3008577	0009149131
1093	1194049	1309338584	33.0756708	10.3039982	0009149131
1095	1199025	1312932375	33.0907842	10.3071368	0009132420
1096	1201216	1316532736	33.1058907	10.3102735	0009132420
1097	1203409	1320139673	83.1209903	10.3134083	·0009115770
1098	1205604	1323753192	33.1360830	10.3165411	0009107468
1099	1207801	1327373299	33.1511689	10.3196721	0009099181
1100	1210000	1331000000	33.1662479	10.3228012	.0009090909
1101	1212201	1334633301	33.1813200	10.3259284	0009082652
1102	1214404	1338273208	33.1963853	10.3290537	0009074410
1103	1216609	1341919727	33:2114438	10.3321770	0009066183
1104	1218816	1345572864	33 2264955	10.3352985	·0009057971
1105	1221025	1349232625	33.2415403	10.3384181	-0009049774
1106	1223236	1352899016	33.2565783	10.3415358	•0009041591
1107	1225449	1356572043	33 2716095	10.3446517	·0009033424
1108	1227664	1360251712	33.2866339	10.3477657	·0009025271
1109	1229881	1363938029	33.3016516	10:3508778	·000901 <b>7133</b>
1110	1232100	1367631000	33.3166625	10 3539880	·0009009009
1111	1234321	1371330631	33.3316666	10.3570964	·0009000 <b>900</b>
1112	1236544	1375036928	33.3466640	10.3602029	0008992806
1113	1238769	1378749897	38.3616546	10.3633076	·000898472 <b>6</b>
1114	1240996	1382469544	83 · 3766385	10.3664103	.0008976661
1115	1243225	1386195875	33.3916157	10.3695113	.0008968610
1116	1245456	1389928896	33.4065862	10.3726103	0008960578
1117	1247689	1393668613	33.4215499	10.3757076	.0008952551
1118	1249924	1397415032	33.4365070	10.3788030	*0008944544
1119	1252161	1401168159	33.4514573	10.3818965	·0008936550
1120	1254400	1404928000	33.4664011	10.3849882	*0008928571
1121	1256641	1408694561	33.4813381	10.3880781	*0008920607
1122 1123	1258884	1412467848	33.4962684	10.3911661	*0008912656
1123	1261129	1416247867	83.5111921	10.3942523	<b>*00</b> 08 <b>9</b> 04720
	1	l			

LES, CUBES, ROOTS, AND RECIPROCALS.

Cube	Square Root	Cube Root	Reciprocal
1420084624	83-5261092	10.8978866	-0008896797
1423828125	33.5410196	10.4004192	-0008888889
1427628376	83.5559234	10.4034999	-0008880995
1431435383	83 5708206	10-4065787	•0008873114
1435249152	83.5857112	10.4096557	0008865248
1439069689	83.6005952	10.4127810.	-0008857396
1442897000	83.6154726	10.4158044	·0008849558
1446731091	83.6303434	10.4188760	0008841733
1450571968	83.6452077	10.4219458	0008833922
1454419637	33.6600653	10.4250138	·000882 <b>612</b> 5
1458274104	83.6749165	10.4280800	0008818342
1462135375	33.6897610	10.4311443	·000881 <b>057</b> 3
1466003456	33.7045991	10.4342069	·00088 <b>02817</b>
1469878353	33.7194306	10.4372677	0008795075
1473760072	33.7342556	10.4403267	0008787346
1477648619	33.7490741	10.4433839	·0008779631
1481544000	33.7638860	10.4464393	-0008771930
1485446221	33.7786915	10.4494929	·0008764242
1489355288	83.7934905	10.4525448	-0008756567
1493271207	33.8082830	10.4555948	*0008748906
1497193984	33.8230691	10.4586431	0008741259
1501123625	33.8378486	10.4616896	0008733624
150506013 <b>6</b>	33.8526218	10.4647343	·0008726003
1509003523	33.8673884	10.4677773	·0008718396
1512953792	33.8821487	10.4708185	·0008710 <b>80</b> 1
1516910949	83.8969025	10.4738579	·0008703220
1520875000	33.9116499	10.4768955	·0008695652
152484 <b>59</b> 51	33.9263909	10 4799314	·0008688 <b>097</b>
1528823808	33.9411255	10.4829656	·0008680556
1532808577	33.9558537	10.4859980	·0008 <b>673027</b>
1536800264	33.9705755	10.4890286	·0008665511
1540798875	83.9852910	10.4920575	·00086580 <b>09</b>
1544804416	34.00000000	10.4950847	0008650519
<b>1548816893</b>	34.0147027	10.4981101	·000864 <b>3042</b>
1552836312	34.0293990	10.5011337	·00086355 <b>79</b>
1556862679	34.0440890	10.5041556	·0008628128
1560896000	34.0587727	10.5071757	·0008 <b>620690</b>
1564936281	34.0734501	10.5101942	0008613264
1568983528	84-0881211	10.5132109	0008605852
1573037747	34 1027858	10.5162259	0008598452
1577098944	34.1174442	10.5192391	0008591065
1581167125	84.1320963	10.5222506	0008583691
1585242296	34.1467422	10.5252604	0008576329
1589324463	34.1613817	10.5282685	.0008568980
1593413632	84.1760150	10.5312749	0008561644
1597509809	34.1906420	10.5342795	0008554320
1601613000	34.2052627	10.5372825	0008547009
1605723211	34.2198773	10.5402837	0008539710
1609840448	34.2344855	10.5432832	·0008532423

		mas, codas,	BOOIS, AND	RECIPEUCA	LB, OF
No.	Square	Cube	Square Root	Cube Root	Reciprocal
1173	1375929	1613964717	84-2490875	10.5462810	.0008525149
1174	1378276	1618096024	34.2636834	10.5492771	0008517888
1175	1380625	1622234375	34 2782730	10.5522715	0008510638
1176	1382976	1626379776	34.2928564	10.5552642	0008503401
1177	1385329	1630532233	84 3074836	10.5582552	0008496177
1178	1387684	1634691752	34 3220046	10.5612445	0008488964
1179	1390041	1638858339	<b>34·33</b> 65694	10.5642322	0008481764
1180	1392400	1643032000	<b>34</b> ·3511281	10.5672181	·0008474576
1181	1394761	1647212741	34.3656805	10.5702024	·0008467401
1182	1397124	1651400568	34 3802268	10.5731849	0008460237
1183	1399489	1655595487	34.3947670	10.5761658	·0008453085
1184	1401856	1659797504	34.4093011	10.5791449	·0008445946
1185	1404225	1664006625	34-4238289	10.5821225	·0008438819
1186	1406596	1668222856	34.4383507	10.5850983	•0008431703
1187	1408969	1672446203	34.4528663	10.5880725	•0008424600
1188	1411344	1676676672	34.4673759	10.5910450	·0008417508
1189	1413721	1680914269	34.4818793	10.5940158	.0008410429
1190	1416100	1685159000	34.4963766	10.5969850	·0008403361
1191	1418481	1689410871	34.5108678	10.5999525	·0008396306
1192	1420864	1693669888	84.5253530	10.6029184	•0008389262
1193	1423249	1697936057	34 5398321	10.6058826	0008382230
1194	1425636	1702209384	34.5543051	10.6088451	0008375209
1195 1196	1428025	1706489875	34.5687720	10.6118060	•0008368201
1197	1430416	1710777536	34.5832329	10.6147652	0008361204
1198	1432809	1715072373	34.5976879	10.6177228	0008354219
1199	1435204 1437601	1719374392	34.6121366	10.6206788	0008347245
1200	1440000	1723683599 1728000000	34·6265794 34·6410162	10.6236331 10.6265857	·0008340284 ·0008333333
1201	1442401	1732323601	34.6554469	10.6295367	0008326395
1202	1444804	1736654408	34.6698716	10.6324860	0008319468
1203	1447209	1740992427	34.6842904	10.6354338	0008312552
1204	1449616	1745337664	34.6987031	10.6383799	0008305648
1205	1452025	1749690125	34.7131099	10.6413244	0008298755
1206	1454436	1754049816	34.7275107	10.6442672	0008291874
1207	1456849	1758416743	34.7419055	10.6472085	0008285004
1208	1459264	1762790912	34.7562944	10.6501480	0008278146
1209	1461681	1767172329	34.7706773	10.6530860	0008271299
1210	1464100	1771561000	34.7850543	10.6560223	.0008264463
1211	1466521	1775956931	34.7994253	10.6589570	.0008257638
1212	1468944	1780360128	34.8137904	10.6618902	·0008250825
1213	1471369	1784770597	34.8281495	10.6648217	.0008244023
1214	1473796	1789188344	34.8425028	10.6677516	•0008237232
1215	1476225	1793613375	34.8568501	10.6706799	-0008230453
1216	1478656	1798045696	34.8711915	10.6736066	·0008223684
1217	1481089	1802485313	34.8855271	10.6765317	-0008216927
1218	1483524	1806932232	34 8998567	10.6794552	·0008210181
1219	1485961	1811386459	34.9141805	10.6823771	·0008203445
1220	1488400	1815848000	34.9284984	10.6852973	·0008196721
1221	1490841	1820316861	<b>34·9428</b> 104	10.6882160	*0008190008
	J				1

No.	Square	Cube	Square Root	Cube Root	Reciprocal
			·		
1222	1498284	1824793048	34.9571166	10.6911331	·0008183306
1223	1495729	1829276567	34.9714169	10.6940486	• <b>0008176</b> 615
1224	1498176	1833767424	84.9857114	10.6969625	<b>-00081699</b> 35
1225	1500625	1838265625	35.0000000	10.6998748	·0008163265
1226	1508076	1842771176	35.0142828	10.7027855	·0008156607
1227	1505529	1847234083	35·0285598	10.7056947	<b>-00081499</b> 59
1228	1507984	1851804352	<b>35·0428309</b>	10.7086023	0008143322
1229	1510441	1856331989	35 0570963	10.7115083	·0008136696
1230	1512900	1860867000	<b>35</b> ·0713558	10.7144127	·0008130081
1231	1515361	1865409391	35-0856096	10.7173155	·0008123477
1232	1517824	1869959168	35.0998575	10.7202168	-0008116883
1233	1520289	1874516337	35.1140997	10.7231165	·0008110300
1234	1522756	1879080904	35.1283361	10.7260146	-0008103728
1235	1525225	1883652875	35.1425668	10.7289112	·0008097166
1236	1527696	1888232256	35.1567917	10.7318062	·0008090615
1237	1530169	1892819053	35.1710108	10.7346997	-0008084074
1238	1532644	1897413272	35.1852242	10.7375916	0008077544
1239	1535121	1902014919	35.1994318	10.7404819	•0008071025
1240	1537600	1906624000	35.2136337	10.7433707	·0008064516
1241	1540081	1911240521	35-2278299	10.7462579	-0008058018
1242	1542564	1915864488	35.2420204	10.7491486	-0008051530
1243	1545049	1920495907	35.2562051	10.7520277	*0008045052 *0008038585
1244 1245	1547536 1550025	1925134784 1929781125	35·2703842 35·2845575	10·8549103 10·7577913	0008032129
1245 1246	1552516	1934434936	35·2987252	10.7606708	0008025682
1240	1555009	1939096223	35·3128872	10.7635488	0008019246
1248	1557504	1943764992	35.3270435	10.7664252	·0008012821
1249	1560001	1948441249	35.3411941	10.7693001	•0008012321 •0008006405
1250	1562500	1953125000	35.3553891	10.7721785	-0008000000
1251	1565001	1957816251	35.3694784	10.7750453	-0007993605
1252	1567504	1962515008	35.3836120	10.7779156	-0007987220
1253	1570009	1967221277	35.3977400	10.7807843	-0007980846
1254	1572516	1971935064	35.4118624	10.7836516	-0007974482
1255	1575025	1976656375	35.4259792	10.7865173	-0007968127
1256	1577536	1981385216	35.4400903	10.7893815	·0007961783
1257	1580049	1986121593	35.4541958	10.7922441	•0007955449
1258	1582564	1990865512	35.4682957	10.7951053	-0007949126
1259	1585081	1995616979	35 4823900	10.7979649	•0007942812
1260	1587600	2000376000	35.4964787	10.8008230	•0007936508
1261	1590121	2005142581	35.5105618	10.8036797	-0007930214
1262	1592644	2009916728	35.5246393	10.8065348	-0007923930
1263	1595169	2014698447	35.5387113	10.8093884	-0007917656
1264	1597696	2019487744	35.5527777	10.8122404	0007911392
1265	1600225	2024284625	35.5668385	10.8150909	0007905138
1266	1602756	2029089096	35.5808937	10.8179400	-0007898894
1267	1605289	2033901163	85.5949434	10.8207876	•0007892660
1268 1269	1607824 1610361	2038720832 2043548109	35.6089876	10.8236336	•0007886435
1270	1612900	20488883000	35·6230262 35·6370593	10.8264782 10.8293213	*0007880221 *0007874016
12.0	1012000	202000000	90.0910089	10.0289219	-0001014010
					, ,

ib.	Square	Cube	Square Root	Cube Root	Reciprocal
71	1615441	2058225511	85-6510869	10.8321629	000786782
72	1617984	2058075648	35.6651090	10.8350030	000786163
73	1620529	2062933417	35.6791255	10.8378416	•000785546
74	1623076	2067798824	35.6931366	10.8406788	.000784923
75	1625625	2072671875	35.7071421	10.8435144	•000784313
76 77	1628176	2077552576	85.7211422	10.8463485	000783699
78	1630729	2082440933	35.7351367	10.8491812	000783085
79	1633284 1635841	2087336952	35·7491258	10.8520125	*000782472
80	1638400	2092240639 2097152000	85·7681095 85·7770876	10·8548422 10·8576704	*000781860 *000781250
81	1640961	2102071041	85.7910603	10.8604972	•000780640
82	1643524	2106997768	35.8050276	10.8633225	•000780031
33	1646089	2111932187	35.8189894	10.8661464	•000779423
84	1648656	2116874304	35.8329457	10.8689687	-000778816
35	1651225	2121824125	35.8468966	10.8717897	-000778210
36	1653796	2126781656	35.8608421	10.8746091	000777605
37	1656369	2131746903	35.8747822	10.8774271	000777000
38 I	1658944	2136719872	35.8887169	10.8802436	•000776397
39	1661521	2141700569	35 9026461	10.8830587	-000775795
0	1664100	2146689000	35.9165699	10.8858723	•000775193
1	1666681	2151685171	35.9304884	10.8886845	000774593
2	1669264	2156689088	35.9444015	10.8914952	•000773993
3	1671849	2161700757	35.9583092	10.8943044	·000773395
4	1674436	2166720184	33.9722115	10.8971123	•000772797
5	1677025	2171747375	35.9861084	10.8999186	·000772200
6	1679616	2176782336	36.0000000	10.9027235	.000771604
7	1682209	2181825073	36.0138862	10.9055269	·000771010
8	1684804	2186875592	36.0277671	10.9083290	·000770416
9	1687401	2191933899	36.0416426	10.9111296	000769822
0	1690000	2197000000	36.0555128	10.9139287	000769230
1	1692601	2202073901	36.0693776	10.9167265	000768639
2	1695204 1697809	2207155608	36.0832371	10.9195228	000768049
4	1700416	2212245127	36·0970913 36·1109402	10.9223177 10.9251111	*000767459 *000766871
5	1703025	2217342464 2222447625	36·1247837	10.9279031	000766283
ĕ	1705636	2227560616	36.1386220	10.9306937	•000765696
7	1708249	2232681443	36.1524550	10.9334829	-000765110
8	1710864	2237810112	36.1662826	10.9362706	•000764526
ĕ۱	1713481	2242946629	36.1801050	10.9390569	•000763941
ŏΙ	1716100	2248091000	36.1939221	10.9418418	000763358
ĭ l	1718721	2253243231	36.2077340	10.9446253	-000762776
2	1721344	2258403328	36-2215406	10.9474074	000762195
3	1723969	2263571297	36.2353419	10.9501880	•000761614
4	1726596	2268747144	36.2491379	10.9529673	-000761035
5	1729225	2273930875	36-2629287	10.9557451	•000760456
6	1731856	2279122496	36.2767143	10.9585215	•000759878
7	1734489	2284322013	36 2904946	10.9612965	•000759301
8	1737124	2289529432	36.3042697	10.9640701	•00075872
9	1739761	2294744759	36.3180396	10.9668423	•000758150

	<b></b>	A O P C	MES, CUBES,	BOOIS, AMD	MECH BOOK	
	No.	Square	Cube	Square Root	Cube Root	Reciprocal
1	1320	1742400	2299968000	86-3318042	10-9696131	<b>•0007575758</b>
	1321	1745041	2305199161	36.3455637	10.9723825	-0007570028
1	1322	1747684	2310438248	36.3593179	10-9751505	•0007564297
-	1323	1750329	2315685267	86-3730670	10.9779171	<b>•000755</b> 8579
1	1324	1752976	2320940224	36.3868108	10.9806823	<b>•00075528</b> 70
1	1325	1755625	2326203125	36.4005494	10.9834462	<b>•0007547</b> 170
1	1326	1758276	2331473976	36.4142829	10.9862086	<b>•000754</b> 1478
1	1327	1760929	2336752783	36.4280112	10-9889696	• <b>0007535</b> 795
1	1328	1763584	2342039552	36.4417343	10.9917293	• <b>000753</b> 0120
1	1329	1766241	2347334289	36.4554523	10.9944876	·0007524454
	1330	1768900	2352637000	36.4691650	10.9972445	•0007518797
- 1	1331	1771561	2357947691	36.4828727	11.0000000	·0007513148
-	1332	1774224	2363266368	36.4965752	11.0027541	•0007507508
1	1333	1776889	2368593037	36.5102725	11.0055069	• <b>000750</b> 1875
1	1334	1779556	2373927704	36.5239647	11.0082583	·0007496252
ı	1335	1782225	2379270375	36.5376518	11.0110082	·0007490637
	1336	1784896	2384621056	36.5513338	11:0137569	·0007485030
	1337	1787569	2389979753	36.5650106	11.0165041	·0007479432
	1338	1790244	2395346472	36.5786823	11.0192500	-0007473842
1	1339	1792921	2400721219	36.5923489	11.0219945	<b>•000746826</b> 0
1	1340	1795600	2406104000	36.6060104	11.0247377	<b>-00074626</b> 87
	1341	1798281	2411494821	36.6196668	11.0274795	-0007457122
	1342	1800964	2416893688	36.6333181	11 0302199	•0007451565
- 1	1343	1803649	2422300607	36.6469644	11.0329590	•0 <b>007446</b> 016
ł	1344	1806336	2427715584	36.6606056	11.0356967	<b>•000744</b> 0476
1	1345	1809025	2433138625	36.6742416	11.0384330	0007434944
1	1346	1811716	2438569736	36.6878726	11.0411680	•0007429421
1	1347	1814409	2444008923	36.7014986	11.0439017	-0007423905
1	1348	1817104	2449456192	36.7151195	11 0466339	-0007418398
	1349	1819801	2454911549	36.7287353	11.0493649	·0007412898
- 1	1350	1822500	2460375000	36.7423461	11.0520945	-0007407407
1	1351	1825201	2465846551	36.7559519	11.0548227	-0007401924
- 1	1352	1827904	2471326208	36.7695526	11.0575497	<b>•0007396</b> 450
1	1353	1830609	2476813977	36.7831483	11.0602752	·0007390983
- 1	1354	1833316	2482309864	36.7967390	11.0629994	•0007385524
	1355	1836025	2487813875	36.8103246	11.0657222	-0007380074
- 1	1356	1838736	2493326016	36.8239053	11.0684437	-0007374631
-	1357	1841449	2498846293	36.8374809	11.0711639	-0007369197
- 1	1358	1844164	2504374712	36.8510515	11.0738828	•0007363770
1	1359	1846881	2509911279	36.8646172	11.0766003	·0007358352
1	1360	1849600	2515456000	36.8781778	11.0793165	•0007352941
1	1361	1852321	2521008881	36.8917335	11.0820314	-0007347539
- 1	1362	1855044	2526569928	36.9052842	11.0847449	•0007342144
1	1363	1857769	2532139147	36.9188299	11.0874571	-0007336757
	1364	1860496	2537716544	36.9323706	11.0901679	-0007331378
1	1365	1863225	2543302125	36.9459064	11.0928775	-0007326007
- 1	1366	1865956	2548895896	36.9594372	11.0955857	•0007320644
	1367	1868689	2554497863	36.9729631	11.0982926	-0007315289
1	1368	1871424	2560108032	36.9864840	11.1009982	•0007309942
- 1				,		

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1369	1874161	2565726409	37.0000000	11.1037025	-0007804602
1370	1876900	2571353000	37.0135110	11.1064054	0007299270
1371	1879641	2576987811	37.0270172	11.1001034	·0007293946
1372	1882384	2582630848	37·0405184	11.1118073	0007288630
1373	1885129	2588282117	37 ·0540146	11.1145064	0007283321
1374	1887876	2593941624	87.0675060	11.1172041	0007278020
1375	1890625	2599609375	37-0809924	11.1199004	0007272727
1376	1893376	2605285376	87.0944740	11.1225955	0007267442
1377	1896129	2610969633	37.1079506	11.1252893	0007262164
1378	1898884	2616662152	37·1214224	11.1279817	·0007256894
1379	1901641	2622362939	37 1214224	11.1306729	·0007251632
1380	1904400	2628072000	37.1483512	11.1333628	·0007246377
1381	1907161	2633789341	37 1618084	11.1360514	·0007241130
1382	1909924	2639514968	37.1752606	11.1387386	·0007235890
1383	1912689	2645248887	37.1887079	11.1414246	0007230658
1384	1915456	2650991104	37.2021505	11.1441093	0007225434
1385	1918225	2656741625	37.2155881	11.1467926	0007220217
1386	1920996	2662500456	37.2290209	11.1494747	•0007215007
1387	1923769	2668267603	<b>37 ·2424489</b>	11.1521555	•0007209805
1388	1926544	2674043072	37.2558720	11.1548350	.0007204611
1389	1929321	2679826869	37.2692903	11.1575133	0007199424
1390	1932100	2685619000	37.2827037	11.1601903	•0007194245
1391	1934881	2691419471	37.2961124	11.1628659	•0007189073
1392	1937664	2697228288	37.3095162	11.1655403	0007183908
1393	1940449	2703045457	87.3229152	11.1682134	.0007178751
1394	1943236	2708870984	37.3363094	11.1708852	-0007173601
1395	1946025	2714704875	37.3496988	11.1735558	•0007168459
1396	1948816	2720547136	37.3630834	11.1762250	0007163324
1397	1951609	2726397773	37.3764632	11.1788930	-0007158196
1398	1954404	2732256792	37.3898382	11.1815598	-0007153076
1399	1957201	2738124199	87.4032084	11.1842252	•0007147963
1400	1960000	2744000000	37.4165738	11.1868894	•0007142857
1401	1962801	2749884201	37.4299345	11.1895523	.0007137759
1402	1965604	2755776808	37 · 4432904	11 1922139	•0007132668
1403	1968409	2761677827	37.4566416	11.1948743	0007127584
1404	1971216	2767587264	37.4699880	11 1975334	•0007122507
1405	1974025	2773505125	37.4833296	11.2001913	•0007117438
1406	1976836	2779431416	37.4966665	11.2028479	•0007112376
1407	1979649	2785366143	37 5099987	11 2055032	·0007107321
1408	1982464	2791309312	37 5233261	11.2081573	·0007102273
1409	1985281	2797260929	37 5366487	11-2108101	-0007097232
1410	1988100	2803221000	37.5499667	11:2134617	·0007092199
1411	1990921	2809189531	37.5632799	11.2161120	·0007087172
1412	1993744	2815166528	37.5765885	11.2187611	·0007082153
1413	1996569	2821151997	37 5898922	11 2214089	0007077141
1414	1999396	2827145944	37.6031913	11.2240554	0007072136
1415	2002225	2833148375	37.6164857	11.2267007	·0007067138
1416	2005056	2839159296	37.6297754	11.2293448	.0007062147
1417	2007889	2845178713	37.6430604	11.2319876	•0007057163

•	40Z	p402	mas, Cobas,	ACCID, AND	RECIENCE	us.
	No.	Square	Cube	Square Root	Cube Root	Reciprocal
	1418	2010724	2851206632	37.6563407	11 2346292	0007052186
-	1419	2013561	2857243059	37.6696164	11 2372696	·0007047216
-	1420	2016400	2863288000	37-6828874	11.2399087	·0007042254
1	1421	2019241	2869341461	37.6961536	11.2425465	·0007037298
	1422	2022084	2875403448	37.7094153	11.2451831	0007032349
	1423	2024929	2881478967	37.7226722	11.2478185	.0007027407
	1424	2027776	2887553024	37.7359245	11.2504527	0007022472
	1425	2030625	2893640625	37.7491722	11.2530856	0007017544
	1426	2033476	2899736776	37.7624152	11.2557173	0007012623
	1427	2036329	2905841483	87.7756535	11.2583478	•0007007708
	1428	2039184	2911954752	37.7888873	11.2609770	0007002801
1	1429	2042041	2918076589	37.8021163	11 2636050	·0006997901
1	1430	2044900	2924207000	37.8153408	11.2662318	·0006993007
-	1431	2047761	2930345991	37.8285606	11.2688573	·0006988120
1	1432	2050624	2936493568	37.8417759	11.2714816	0006983240
1	1433	2053489	2942649737	37.8549864	11.2741047	0006978367
1	1434	2056356	2948814504	37.8681924	11.2767266	0006973501
	1435	2059225	2954987875	37.8813938	11.2793472	0006968641
	1436	2062096	2961169856	37.8945906	11.2819666	0006963788
	1437	2064969	2967360453	37.9077828	11.2845849	0006958942
	1438	2067844	2973559672	37.9209704	11.2872019	0006954103
	1439	2070721	2979767519	37.9341535	11.2898177	•0006949270
İ	1440	2073600	2985984000	37.9473319	11.2924323	*0006944444
	1441	2076481	2992209121	37.9605058	11.2950457	•0006939625
1	1442	2079364	2998442888	37.9736751	11.2976579	*0006934813
	1443	2082249	3004685307	37.9868398	11.3002688	*0006930007
	1444	2085136	3010936384	38.0000000	11:3028786	*0006925208
	1445	2088025	3017196125	38.0131556	11.3054871	*0006920415 *0006915629
- 1	1446	2090916 2093809	3023464536 3029741623	38·0263067 38·0394532	11·3080945 11·3107006	•0006915629 •0006910850
	1447				11.8133056	0006906078
	1448	2096704	3036027392 3042321849	38.0525952	11.3159094	0006901312
1	1449	2099601 2102500	3042321849	38·0657326 38·0788655	11.3185119	0006896552
	1450 1451	2102500	3054936851	38.0919939	11.3211132	0006891799
i	1451	2103401	3061257408	38.1051178	11.3237134	0006887052
		2111209		38·1182371	11.3263124	0006882312
	1453 1454	2114116	3067586677 3073924664	38.1313519	11.3289102	0000882312
1	1455	2117025	3080271375	38.1444622	11.3315067	0006872852
		2117025	3086626816	38.1575681	11.3341022	0006868132
	1456 1457	2119950	3092990993	38 1706693	11.3366964	·0006863418
	1458	2125764	3099363912	38.1837662	11.3392894	0006858711
	1459	2128681	3105745579	38.1968585	11.8418813	0006854010
	1460	2131600	3112136000	38.2099463	11.3444719	0006849315
	1461	2134521	3118535181	38 2230297	11.3470614	·0006844627
	1462	2137444	3124943128	38.2361085	11.3496497	0006839945
	1463	2140369	3131359847	38-2491829	11.3522368	0006835270
	1464	2143296	3137785344	38.2622529	11.3548227	·0006830601
	1465	2146225	3144219625	38.2753184	11.3574075	·0006825939
	1466	2149156	3150662696	38.2883794	11.3599911	:0006821282
			<u> </u>			•

	<del></del>				
No.	Square	Cube	Square Root	Cube Root	Reciprosal
1467	2152089	8157114563	88-3014360	11:3625785	•0006816633
1468	2155024	3163575232	38.3144881	11.3651547	•0006811989
1469	2157961	3170044709	88 3275358	11.8677347	•0006807352
1470	2160900	3176523000	38.3405790	11.3703136	.0006802721
1471	2163841	3183010111	38.3536178	11.3728914	·0006798097
1472	2166784	8189506048	38.3666522	11.3754679	·0006793478
1473	2169729	8169010817	38:3796821	11.3780433	·0006788866
1474	2172676	3202524424	38-3927076	11.3806175	0006784261
1475	2175625	3209046875	38.4057287	11.3831906	0006779661
1476	2178576	3215578176	38.4187454	11.3857625	·0006775068
1477	2181529	3222118333	38.4317577	11.3883332	·0006770481
1478	2184484	3228667352	38.4447656	11.3909028	·0006765900
1479	2187441	3235225239	38.4577691	11.3934712	·0006761325
1480	2190400	3241792000	38-4707681	11.3960384	•0006756757
1481	2193361	3248367641	38.4837627	11.3986045	•0006752194
1482	2196324	3254952168	38.4967530	11.4011695	·0006747638
1483 1484	2199289 2202256	3261545587	38.5097330	11:4037332	0006743088
1485	2205225	3268147904	38.5227206	11:4062959	*0006738544
1486	2208196	3274759125 3281379256	38.5356977	11:4088574	0006734007
1487	2200190	3288008303	38.5486705	11:4114177	0006729475
1488	2214144	3294646272	38·5616389 38·5746030	11·4139769 11·4165349	0006724950
1489	2217121	3301293169	38.5875627	11.4190918	·0006720430
1490	2220100	8307949000	38.6005181	11.4216476	·0006715917 ·0006711409
1491	2223081	3314613771	38.6134691	11.4242022	0006706908
1492	2226064	3321287488	38.6264158	11.4267556	0006700908
1493	2229049	3327970157	38-6393582	11.4293079	0006697924
1494	2232036	3334661784	38.6522962	11.4318591	0006693440
1495	2235025	3341362375	38.6652299	11.4344092	·0006688963
1496	2238016	3348071986	38.6781593	11.4369581	0006684492
1497	2241009	8354790473	38-6910843	11.4395059	·0006680027
1498	2244004	3361517992	88.7040050	11.4420525	0006675567
1499	2247001	3368254499	38.7169214	11.4445980	0006671114
1500	2250000	3375000000	38.7298335	11.4471424	-0006666667
1501	2253001	3381754501	38.7427412	11.4496857	0006662225
1502	2256004	3388518008	38.7556447	11.4522278	-0006657790
1503	2259009	3395290527	38.7685439	11.4547688	0006643360
1504	2262016	3402072064	38.7814389	11.4573087	0006648936
1505	2265025	3408862625	38.7943294	11.4598474	0006644518
1506	2268036	8415662216	38.8072158	11.4623850	.0006640106
1507	2271049	3422470843	38.8200978	11.4649215	·0006635700
1508	2274064	3429288512	38 8329757	11.4674568	-0006631300
1509	2277081	8436115229	38.8458491	11.4699911	•0006626905
1510	2280100	3442951000	38 8587184	11.4725242	·0006622517
1511	2283121	8449795831	38.8715834	11.4750562	·0006618134
1512	2286144	8456649728	38.8844442	11.4775871	·0006613757
1518	2289169	3463512697	38.8973006	11.4801169	•0006609385
1514	2292196	8470384744	38.9101529	11.4826455	0006605020
1515	2295225	8477265875	38-9230009	11.4851731	•0006600660
1	1		I	Į į	

		5401	mas, cobas,	20010, 2212	212011110011	
	No.	Square	Cube	Square Root	Cube Root	Reciprocal
ſ	1516	2298256	3484156096	38-9358447	11.4876995	-0006596306
1	1517	2301289	3491055413	38.9486841	11.4902249	• <b>0006</b> 591958
1	1518	2304324	3497963832	38-9615194	11.4927491	<b>•00065876</b> 15
1	1519	2307361	3504881359	38-9743505	11.4952722	-0006583278
ı	1520	2310400	3511808000	38-9871774	11.4977942	·0006578947
ı	1521	2313441	3518743761	39-0000000	11.5003151	•0006574622
1	1522	2316484	3525688648	<b>39</b> ·0128184	11.5028348	0006570302
ł	1523	2319529	3532642667	39.0256326	11.5053535	0006565988
1	1524	2322576	3539605824	39.0384426	11.5078711	·0006561680
1	1525	2325625	3546578125	39.0512483	11.5103876	·0006557377
ł	1526	2328676	3553559576	39.0640499	11.5129030	0006553080
	1527	2331729	3560550183	39.0768473	11.5154173	·0006548788
1	1528	2334784	3567549952	39.0896406	11.5179305	-0006544508
1	1529	2337841	3574558889	39.1024296	11.5204425	0006540222
1	1530	2340900	3581577000	39.1152144	11.5229535	0006535948
1	1531	2343961	3588604291	39.1279951	11.5254634	·0006531679
ı	1532	2347024	3595640768	39.1407716	11.5279722	·0006527415
1	1533	2350089	3602686437	39.1535439	11.5304799	·0006523157
1	1534	2353156	3609741304	89.1663120	11.5329865	·0006518905
1	1535	2356225	3616805375	39.1790760	11.5354920	•0006514658
1	1536	2359296	3623878656	39.1918359	11.5379965	·0006510417
1	1537	2362369	3630961153	39.2045915	11.5404998	0006506181
1	1538	2365444	3638052872	39.2173431	11.5430021	•0006501951
1	1539	2368521	3645153819	39:2300905	11.5455033	•0006497726 •0006493506
ı	1540	2371600	3652264000	39.2428337	11.5480034	·0006489293
1	1541	2374681	3659383421	39.2555728	11·5505025 11·5530004	·0006485084
ı	1542	2377764	3666512088 3673650007	39·2683078 39·2810387	11.5554973	•0006480881
ı	1543	2380849	3680797184	39.2937654	11.5579931	•0006476684
ı	1544 1545	2383936 2387025	3687953625	39.3064880	11.5604878	•0006472492
1	1546	2390116	3695119336	39.3192065	11.5629815	-0006468305
ı	1547	2393209	870229432 <b>3</b>	39.3319208	11.5654740	·0006464124
ı	1548	2396304	3709478592	39.3446311	11.5679655	-0006459948
ı	1549	2399401	3716672149	39.3573373	11.5704559	-0006455778
1	1550	2402500	3723875000	39.3700394	11.5729453	•0006451618
1	1551	2405601	3731087151	39.3827373	11.5754336	•0006447453
ı	1552	2408704	3738308608	39.3954312	11.5779208	•0006443299
1	1553	2411809	3745539377	39.4081210	11.5804069	•0006439150
1	1554	2414916	3752779464	39.4208067	11.5828919	•0006435006
1	1555	2418025	3760028875	39.4334883	11.5853759	•0006430868
1	1556	2421136	3767287616	39.4461658	11.5878588	0006426735
ı	1557	2424249	3774555693	39.4588393	11.5903407	. •0006422608
ı	1558	2427364	3781833112	39.4715087	11.5928215	·0006418485
١	1559	2430481	3789119879	39.4841740	11.5953013	-0006414368
١	1560	2433600	3796416000	39.4968353	11.5977799	-0006410256
1	1561	2436721	3803721481	39.5094925	11 6002576	•0006406150
ı	1562	2439844	3811036328	39.5221457	11 6027342	·0006402049
1	1563	2442969	3818360547	39.5347948	11.6052097	•0006397953
١	1564	2446096	3825694144	39.5474399	11.6076841	-0006393862
-1		1	j l	ŀ		J. J

		MES, CODES,			
No.	Square	Cube	Square Root	Cube Root	Reciprocal
1565	2449225	3833037125	39.5600809	11.6101575	·0006389776
1566	2452856	3840389496	39.5727179	11.6126299	·0006385696
1567	2455489	3847751263	39.5853508	11.6151012	-0006381621
1568	2458624	3855122432	39.5979797	11.6175715	•0006377551
1569	2461761	3862503009	39.6106046	11.6200407	·0006373486
1570	2464900	3869893000	39.6232255	11.6225088	·0006369427
1571	2468041	3877292411	39.6358424	11.6249759	·0006365372
1572	2471184	3884701248	39.6484552	11.6274420	•0006361323
1573	2474329	3892119517	39.6610640	11.6299070	•0006357279
1574	2477476	3899547224	39 6736688	11 6323710	•0006353240
1575	2480625	3906984375	39.6862696	11.6348339	•0006349026
1576	2483776	3914430976	39.6988665	11.6372957	0006345178
1577	2486929	3921887033	39.7114593	11.6397566	•0006341154
1578	2490084	3929352552	39.7240481	11.6422164	0006337136
1579	2498241	3936827539	39.7366329	11.6446751	0006333122
1580	2496400	3944312000	39.7492138	11.6471329	0006329114
1581	2499561	3951805941	39.7617907	11.6495895	*0006325111 *0006321113
1582	2502724	3959309368	39.7743636	11.6520452 11.6544998	0006317119
1583	2505889	3966822287	39.7869325	11.6569534	•0006343131
1584	2509056	3974344704	39·7994975 39·8120585	11.6594059	0006309148
1585	2512225	3981876625	39.8246155	11.6618574	0006305170
1586	2515396	3989418056	39.8371686	11.6643079	0006301197
1587	2518569	3996969003	39.8497177	11.6667574	0006297229
1588	2521744 2524921	4004529472 4012099469	39.8622628	11.6692058	0006293266
1589	2524921	4019679000	39.8748040	11:6716532	0006289308
1590 1591	2531281	4027268071	39.8873413	11.6740996	0006285355
1592	2534464	4034866688	39.8998747	11.6765449	0006281407
1592	2537649	4042474857	39.9124041	11-6789892	.0006277464
1594	2540836	4050092584	39.9249295	11.6814325	.0006273526
1595	2544025	4057719875	39.9374511	11.6838748	.0006269592
1596	2547216	4065356736	39-9499687	11.6863161	-0006265664
1597	2550409	4073003173	39.9624824	11.6887563	-0006261741
1598	2553604	4080659192	39.9749922	11.6911955	.0006257822
1599	2556801	4088324799	39.9874980	11.6936337	•0006253909
1600	2560000	4096000000	40.0000000	11.6960709	•0006250000
1601	2563201	4103684801	40.0124980	11.6985071	·0006246096
1602	2566404	4111379208	40.0249922	11.7009422	0006242197
1603	2569609	4119083227	40.0374824	11.7033764	·0006238303
1604	2572816	4126796864	40.0499688	11.7058095	·0006234414
1605	2576025	4134520125	40.0624512	11.7082417	.0006230530
1606	2579236	4142253016	40.0749298	11.7106728	0006226650
1607	2582449	<b>4</b> 149995543	40.0874045	11.7131029	·0006222775
1608	2585664	4157747712	40.0998753	11.7155320	·0006218905
1609	2588881	4165509529	40.1123423	11.7179601	•0006215040
1610	2592100	4173281000	40.1248053	11.7203872	0006211180
1611	2595321	4181062131	40.1372645	11.7228133	0006207325
1612	2598544	4188852928	40.1497198	11.7252384	0006203474
1613	2601769	4196653397	40.1621713	11.7276625	·0006199628
	l				

		,			
No.	Square	Cube	Square Root	Cube Root	Reciprocal
1614	2604996	4204463544	40-1746188	11.7300855	0006195787
1615	2608225	4212283375	40.1870626	11.7825076	0006191950
1616	2611456	4220112896	40.1995025	11.7349286	•0006188119
1617	2614689	4227952118	40.2119385	11.7373487	0006184292
1618	2617924	4235801032	40.2243707	11.7397677	·0006180470
1619	2621161	4243659659	40-2367990	11.7421858	·0006176652
1620	2624400	4251528000	40.2492286	11.7446029	0006172840
1621	2627641	4259406061	40.2616443	11.7470190	·0006169031
1622	2630884	4267293848	40.2740611	11.7494341	·0006165228
1623	2634129	4275191367	40 2864742	11.7518482	0006161429
1624	2637376	4283098624	40.2988834	11.7542613	·0006157635
1625	2640625	4291015625	40.3112888	11.7566734	·0006153846
1626	2643876	4298942376	40.3236903	11.7590846	<b>•0006</b> 150062
1627	2647129	4306878888	40.3360881	11.7614947	<b>-00061462</b> 82
1628	2650384	4314825152	40.3484820	11.7639039	<b>•00061425</b> 06
1629	2653641	4322781189	40.3608721	11.7663121	·0006138735
1630	<b>2656900</b>	4330747000	40.3732585	11.7687193	·0006134969
1631	<b>2660161</b>	4338722591	40.3856410	11.7711255	0006131208
1632	2663424	4346707968	40.3980198	11.7735306	·0006127451
1633	2666689	<b>4</b> 35470313 <b>7</b>	40.4103947	11.7759349	<b>-0006123699</b>
1634	2669956	4362708104	40.4227658	11.7783381	<b>•00061</b> 19951
1635	2673225	4370722875	40.4351332	11.7807404	·0006116208
1636	2676496	4378747456	40.4474968	11.7831417	•0006112469
1637	2679769	4386781853	40.4598566	11.7855420	0006108735
1638	2683044	4394826072	40.4722127	11.7879414	•0006105006
1639	2686321	4402880119	40.4845649	11.7903397	•0006101281
1640	2689600	4410944000	40.4969135	11.7927371	-0006097561
1641	2692881	4419017721	40.5092582	11.7951335	•0006093845
1642	2696164	4427101288	40.5215992	11.7975289	•0006090134
1643	2699449	4435194707	40.5339364	11.7999234	0006086427
1644	2702736	4443297984	40.5462699	11.8023169	•0006082725
1645	2706025	4451411125	40.5585996	11.8047094	•0006079027
1646	2709316	4459534136	40.5709255	11.8071010 11.8094916	•0006075334
1647 1648	2712609 2715904	4467667023 4475809792	40·5832477 40·5955663	11.8118812	*0006071645 *0006067961
1649	2719201	4483962449	40.6078810	11.8142698	•0006064281
1650	2722500	4492125000	40.6201920	11.8166576	•0006060606
1651	2725801	4500297451	40.6324993	11.8190443	•0006056935
1652	2729104	4508479808	40.6448029	11.8214301	•0006053269
1653	2732409	4516672077	40.6571027	11.8238149	0006049607
1654	2735716	4524874264	40.6693988	11.8261987	·0006045949
1655	2739025	4533086375	40.6816912	11.8285816	•0006042296
1656	2742336	4541308416	40.6939799	11.8309634	·0006038647
1657	2745649	4549540393	40.7062648	11.8333444	•0006035003
1658	2748964	4557782312	40.7185461	11.8357244	•0006031363
1659	2752281	4566034179	40.7308237	11.8381034	-0006027728
1660	2755600	4574296000	40.7430976	11.8404815	•0006024096
1661	2758921	4582567781	40.7553677	11.8428586	<b>-000602</b> 0470
1662	2762244	4590849528	40.7676342	11.8452348	•0006016847
		1	-		-

	SQUA	RES, CUBES,	BOOTS, AND	RECIPROCAI	8. 407
No.	Square	Cube	Square Root	Cube Root	Reciprocal
1663	2765569	4599141247	40.7798970	11.8476100	-0006018229
1664	2768896	4607442994	40.7921561	11.8499843	·0006009615
1665	2772225	4615754625	40.8044115	11.8523576	0006006006
1666	2775556	4624076296	40.8166633	11.8547299	0006002401
1667	2778889	4632407963	40.8289113	11.8571014	-0005998800
1668	2782224	4640749632	40-8411557	11.8594719	0005995204
1669	2785561	4649101309	40.8533964	11.8618414	0005991612
1670	2788900	4657463000	40.8656335	11.8642100	0005988024
1671	2792241	4665834711	40.8778669	11.8665776	·0005984440
1672	2795584	4674216448	40-8900966	11.8689443 11.8713100	·0005980861 ·0005977286
1673 1674	2798929	4682608217	40.9023227	11.8736748	·0005973716
1675	2802276 2805625	4691010024	40.9145451 40.9267638	11 8760387	0005970149
1676	2808976	4699421875 4707843776	40.9389790	11.8784016	0005966587
1677	2812329	4716275733	40.9511905	11.8807636	0005963029
1678	2815684	4724717752	40.9633983	11.8831246	0005959476
1679	2819041	4733169839	40.9756025	11.8854847	0005955926
1680	2822400	4741632000	40.9878031	11.8878439	0005952381
1681	2825761	4750104241	41.0000000	11.8902022	-0005948840
1682	2829124	4758586568	41.0121933	11.8925595	.0005945303
1683	2832489	4767078987	41.0243830	11.8949159	0005941771
1684	2835856	4775581504	41.0365691	11.8972713	0005938242
1685	2839225	4784094125	41.0487515	11.8996258	.0005934718
1686	2842596	4792616856	41.0609303	11.9019793	.0005931198
1687	2845969	4801149703	41.0731055	11.9043319	.0005927682
1688	2849344	4809692672	41.0852772	11.9066836	0005924171
1689	2852721	4818245769	41.0974452	11.9090344	·0005920663
1690	2856100	4826809000	41.1096096	11.9113843	·0005917160
1691	2359481	4835382371	41.1217704	11.9137332	·0005913 <b>661</b>
1692	2862864	4843965888	41.1339276	11.9160812	·0005910165
1693	2866249	4852559557	41.1460812	11.9184283	·0005906675
1694	2869636	4861163384	41.1582313	11.9207744	0005903188
1695	2873025	4869777375	41.1703777	11.9231196	0005899705
1696	2876416	4878401536	41.1825206	11.9254639	·0005896226
1697	2879809	4887035873	41.1946599	11.9278073	0005892752
1698	2883204	4895680392	41 2067956	11.9301497	0005889282
1699	2886601	4904335099	41 2189277	11.9324913	0005885815
1700	2890000	4913000000	41.2310563	11.9348319	0005882353
1701	2893401	4921675101	41.2431812	11.9371716	0005878895
1702	2896804	4930360408	41.2553027	11.9395104	0005875441
1703	2900209	4939055927	41 2674205	11.9418482	0005871991
1704	2903616	4947761664	41.2795349	11 9441852 11 9465213	·0005868545 ·0005865103
1705	2907025	4956477625	41 2916456 41 3037529	11.9488564	0005861665
1706	2910436	4965203816 4973940243	41.8158565	11.9511906	0005858231
1707	2913849 2917264	49/3940243	41.3279566	11.9535239	0005854801
1708 1709	2917204	4902000912	41.3400532	11.9558563	0005851375
	2920081	5000211000	41 3521463	11.9581878	0005847953
1710 1711	2927521	5000211000	41.3642358	11.9605184	0005844535
1111	2021021	000000301	11 0012000	11 0000101	2300031000

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1712	2930944	5017776128	41.3763217	11.9628481	-0005841121
1718	2934369	5026574097	41.3884042	11.9651768	-0005837712
1714	2937796	5035382344	41.4004831	11.9675047	0005834306
1715	2941225	5044200875	41.4125585	11.9698317	*0005830904
1716	2944656	5053029696	41.4246304	11.9721577	•0005827506
1717	2948089	5061868813	41.4366987	11.9744829	·0005824112
1718	2951524	5070718232	41.4487636	11.9768071	*0005820722
1719	2954961	5079577959	41.4608249	11.9791304	0005817336
1720	2958400	5088448000	41.4728827	11.9814528	•0005813953
1721	2961841	5097328361	41.4849370	11.9837744	·0005810575
1722	2965284	5106219048	41-4969878	11-9860950	0005807201
1723	2968729	5115120067	41.5090351	11.9884148	*0005803831
1724	2972176	5124031424	41.5210790	11.9907336	*0005800464
1725	2975625	5132953125	41.5331193	11.9930516	.0005797101
1726	2979076	5141885176	41.5451561	11.9953686	0005793743
1727	2982529	5150827583	41.5571895	11.9976848	0005790388
1728	2985984	5159780352	41.5692194	12.0000000	0005787037
1729	2989441	5168743489	41.5812457	12.0023144	0005783690
1730	2992900	5177717000	41.5932686	12.0046278	0005780347
1731	2996361	5186700891	41.6052881	12.0069404	0005777008
1732	2999824	5195695168	41-6173041	12.0092521	0005773672
1733	3003289	5204699837	41.6293166	12.0115629	0005770340
1734	3006756	5213714904	41.6413256	12.0138728	0005767013
1735	3010225	5222740375	41.6533312	12.0161818	0005763689
1736	3013696	5231776256	41.6653333	12.0184900	0005760369
1737	3017169	5240822553	41.6773319	12.0207973	0005757052
1738	3020644	5249379272	41.6893271	12.0231037	0005757052
1739	3024121	5258946419	41.7013189	12.0254092	0005750431
1740	3027600	5268024000	41.7133072	12.0234092	0005747126
1741	3031081	5277112021	41 7252921	12.0300175	0005747126
1742	3034564	5286210488	41.7372735	12.0323204	0005740528
1743	3038049	5295319407	41.7492515	12.0346223	
1744	3041536				10005737235
1745		5304438784	41.7612260	12-0369233	10005733945
1745	3045025 3048516	5313568625 5322708936	41·7731971 41·7851648	12.0392235	·0005730659
1747	3052009			12.0415229 12.0438213	*0005727377
1748	8055504	5331859723 5341020992	41·7971291 41·8090899	12.0458213	0005724098
1748	3059001				0005720824
1750	30625001	5350192749	41.8210473	12.0484156	*0005717553
1751		5359375000	41.8330013	12.0507114	*0005714286
1751	3066001	5368567751	41.8449519	12.0530063	0005711022
	8069504	5377771008	41.8568991	12.0553003	*0005707763
1758	3073009	5386984777	41.8688428	12.0575935	*0005704507
1754 1755	3076516 3080025	5396209064	41.8807832	12.0598859	*0005701254
1756	3083536	5405443875 5414689216	41.8927201	12.0621778	*0005698006
1757	3087049	5423945093	41.0165037	12.0644679	0005694761
1758	3090564	5433211512	41.0095106	12.0667576	*0005691520
1759	8094081	5442488479	41.9285106 41.9404339	12·0690464 12·0713344	*0005688282
1760	3097600	5451776000	41.9404339		*0005685048
		0201110000	#1.807909A	12.0736215	·0005681818
				l	

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1761	3101121	5461074081	41.9642705	12.0759077	·000£678592
1762	8104644	5470382728	41 9761837	12.0781930	0005675369
1763	3108169	<b>547970</b> 1947	41.9880935	12.0804775	0005672150
1764	3111696	5489031744	42.0000000	12 0827612	·00056689 <b>34</b>
1765	3115225	5498372125	42.0119031	12-0850439	·0005665722
1766	3118756	5507728096	42.0238028	12.0873258	0005662514
1767	3122289	5517084663	42.0356991	12.0896069	•0005659310
1768	3125824	5526456832	42.0475921	12-0918870	.0005656109
1769	3129361	5535839609	42.0594817	12.0941664	0005652911
1770	3132900	5545233000	42.0713679	12.0964449	0005649718
1771	3136441	5554637011	42.0832508	12:0987226	0005646527
1772	8139984	5564051648	42.0951304	12.1009993	0005643341
1773	3143529	5573476917	42.1070065	12.1032753	0005640158
1774	8147076 8150625	5582912824 5592359375	42·1188794 42·1307488	12.1055503	0005636979
1775 1776	3154176		42.1426150	12.1078245	0005633803
	3157729	5601816576 5611284433	42.1544778	12·1100979 12·1123704	*0005630631 *0005627462
1777 1778	3161284	5620762952	12.1663373	12.1125/04	0005624297
1779	3164841	5630252139	42.1781934	12.1140420	0005621135
1780	3168400	5639752000	42.1900462	12.1109120	0005617978
1781	3171961	5649262541	42 2018957	12.1214518	0005614828
1782	3175524	5658783768	42.2137418	12.1237200	0005611672
1783	3179089	5668315687	42.2255846	12.1257200	0005608525
1784	<b>3</b> 182656	5677858304	42.2374242	12.1282539	·0005605381
1785	3186225	5687411625	42.2492603	12.1305197	0005602241
1786	3189796	5696975656	42.2610932	12.1327845	0005599104
1787	3193369	5706550403	42.2729227	12.1350485	0005595971
1788	8196944	5716135872	42.2847490	12.1373117	0005592841
1789	3200521	5725732069	42.2965719	12.1395740	0005589715
1790	3204100	5735339000	42.3083916	12.1418355	0005586592
1791	3207681	5744956671	42.3202079	12.1440961	-0005583478
1792	3211264	5754585088	42.3320210	12.1463559	·0005580357
1793	3214849	5764224257	42.3438307	12.1486148	0005577245
1794	3218436	5773874184	42.3556371	12.1508729	.0005574136
1795	3222025	5783534875	42.3674403	12.1531302	0005571031
1796	3225616	5793206336	42.3792402	12.1553866	0005567929
1797	3229209	5802888573	<b>42·3910368</b>	12.1576422	·000556483 <b>0</b>
1798	3232804	5812581592	42.4028301	12.1598970	·000556173 <b>5</b>
1799	3236401	5822285399	42.4146201	12.1621509	·0005558644
1800	3240000	5832000000	42.4264069	12.1644040	·000555 <b>5556</b>
1801	8243601	5841725401	42.4381903	12.1666562	·0005552471
1802	3247204	5851461608	42.4499705	12.1689076	·00055493 <b>9</b> 0
1803	3250809	5861208627	42.4617475	12.1711582	0005546312
1804	8254416	5870966464	42.4735212	12.1734079	·0005543237
1805	3258025	5880735125	42.4852916	12.1756569	0005540166
1806	3261636	5890514616	42.4970587	12.1779050	0005537099
1807	3265249	5900304943	42.5088226	12.1801522	0005534034
1808	3268864	5910106112	42.5205833	12.1823987	0005530978
1809	3272481	5919918129	42.5323406	12.1846443	-0005527916
	<u> </u>				

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1810	3276100	5929741000	42.5440948	12-1868891	·0005524862
1811	3279721	5939574731	42.5558456	12.1891331	0005521811
1812	3283344	5949419328	42.5675933	12.1913762	.0005518764
1813	<b>32</b> 86969	5959274797	42.5793377	12.1936185	0005515720
1814	3290596	5969141144	42.5910789	12.1958599	·0005512679
1815	3294225	5979018375	42.6028168	12.1981006	0005509642
1816	3297856	5988906496	42.6145515	12.2003404	·0005506608
1817	3301489	5998805513	42.6262829	12-2025794	0005503577
1818	3305124	6008715432	42.6380112	12.2048176	0005500550
1819	3308761	6018636259	42.6497362	12.2070549	·0005497526
1820	3312400	6028568000	42.6614580	12.2092915	·00054945 <b>05</b>
1821	3316041	6038510661	42.6731766	12.2115272	·0005491488
1822	3319684	6048464248	42.6848919	12-2137621	·0005488474
1823	3323329	6058428767	<b>42</b> ·6966040	12.2159962	·0005485464
1824	3326976	6068404224	42.7083130	12.2182295	.0005482456
1825	3330625	6078390625	42.7200187	12.2204620	0005479452
1826	3334276	6088387976	42.7317212	12.2226936	0005476451
1827	3337929	6098396283	42.7434206	12.2249244	0005473454
1828	3341584	6108415552	42.7551167	12.2271544	0005470460
1829	3345241	6118445789	42.7668095	12.2293836	0005467469
1830	3348900	6128487000	42.7784992	12.2316120	0005464481
1831	3352561	6138539191	42.7901858	12.2338396	.0005461496
1832	3356224	6148602368	42.8018691	12.2360663	.0005458515
1833	3359889	6158676537	42.8135492	12.2382923	0005455537
1834	3363556	6168761704	42.8252262	12-2405174	0005452563
1835	3367225	6178857875	42.8368999	12.2427418	0005449591
1836	3370896	6188965056	42.8485706	12.2449653	0005446623
1837 1838	3374569	6199083253	42.8602380	12 2471880	0005443658
1839	3378244 3381921	6209212472	42.8719022	12:2494099	0005440696
1840	3385600	6219352719 6229504000	42.8835633	12.2516310	0005437738
1841	3389281	6239666321	42·8952212 42·9068759	12·2538513 12·2560708	0005434783
1842	3392964	6249839688	42.9185275	12.2582895	*0005431831
1843	3396649	6260024107	42.9301759	12.2605074	0005428882
1844	3400336	6270219584	42.9418211	12-2627245	*0005425936
1845	3404025	6280426125	42.9534632	12-2649408	0005422993
1846	3407716	6290643736	42.9651021	12.2671563	*0005420054 *0005417118
1847	3411409	6300872423	42.9767379	12.2693710	0005417118
1848	3415104	6311112192	42.9883705	12.2715849	0005414165
1849	3418801	6321363049	43.0000000	12.2737980	0005411255
1850	8422500	6331625000	43.0116263	12.2760103	0005405405
1851	3426201	6341898051	43.0232495	12.2782218	0005405405
1852	8429904	6352182208	43.0348696	12.2804325	0005399568
1853	3433609	6362477477	43.0464865	12.2826424	0005396654
1854	3437316	6372783864	43.0581003	12.2848515	0005393743
1855	3441025	6383101375	43.0697109	12.2870598	0005325745
1856	3444736	6393430016	43.0813185	12.2892673	0005387931
1857	3448449	6403769793	43 0929228	12.2914740	0005385030
1858	3452164	6414120712	43.1045241	12.2936800	0005382131
	J				

No.	Square	Cube	Square Root	Cube Root	Reciprocal
1859	3455881	6424482779	43.1161223	12-2958851	•0005379236
1860	3459600	6434856000	43.1277178	12-2980895	0005876844
1861	8463321	6445240381	43.1393092	12.3002930	0005378455
1862	8467044	6455635928	43.1508980	12:3024958	*0005370569
1863	8470769	6466042647	43.1624837	12.3046978	•0005367687
1864	8474496	6476460544	43.1740663	12:3068990	•0005364807
1865	3478225	6486889625	43.1856458	12.3090994	·00053619 <b>30</b>
1866	3481956	6497329896	43.1972221	12.3112991	<b>•</b> 000535 <b>9057</b>
1867	3485689	6507781363	43:2087954	12.3134979	·0005356186
1868	3489424	6518244032	43-2203656	12.3156959	·00053 <b>53319</b>
1869	3493161	6528717909	43.2319326	12.3178932	*000535 <b>0455</b>
1870	8496900	6539203000	43-2434966	12.3200897	•0005347594
1871	3500641	6549699311	43-2550575	12.3222854	·00053447 <b>85</b>
1872	3504384	6560206848	43.2666153	12.3244803	•0005341880
1873	3508129	6570725617	43.2781700	12.3266744	*0005339028
1874	3511876	6581255624	43.2897216	12.3288678	•0005336179
1875	3515625	6591796875	43.3012702	12.3310604	•0005333333
1876	3519376	6602349376	43.3128157	12.3332522	·0005330490
1877	3523129 3526884	6612913133	43.3243580	12.3354432	0005327651
1878	8530641	6623488152	43.3358973	12:3376334	0005324814
1879 1880	3534400	6634074439 6644672000	43.3474336	12.3398229	*0005321980
1881	3538161		43.3589668	12:3420116	*0005319149
1882	3541924	6655280841 6665900968	43·3704969 43·3820239	12·3441995 12·3463866	·0005316321
1883	3545689	6676532387	43.3935479	12.3485730	*0005313496 *0005310674
1884	3549456	6687175104	43.4050688	12.3507586	0005307856
1885	3553225	6697829125	43.4165867	12.3529434	0005305040
1886	3556996	6708494456	43.4281015	12:3551274	0005303040
1887	3560769	6719171108	43.4396132	12.3573107	0005299417
1888	8564544	6729859072	43.4511220	12.3594932	0005296610
1889	3568321	6740558369	43.4626276	12.3616749	-0005293806
1890	3572100	6751269000	43.4741302	12.3638559	·0005291005
1891	3575881	6761990971	43.4856298	12.3660361	0005288207
1892	3579664	6772724288	43.4971263	12.3682155	0005285412
1893	3583449	6783468957	43.5086198	12.3703941	·0005282620
1894	3587236	6794224984	43.5201103	12:3725721	•0005279831
1895	3591025	6804992375	43.5315977	12.3747492	•00052 <b>77045</b>
1896	3594816	6815771136	43.5430821	12.3769255	·0005274262
1897	3598609	6826561273	43.5545635	12.3791011	0005271481
1898	3602404	6837362792	43·5660418	12.3812759	•0005268 <b>704</b>
1899	3606201	6848175699	43.5775171	12.3834500	·0005265929
1900	3610000	6859000000	43 5889894	12.3856233	0005268158
1901	3613801	6869835701	43 6004587	12.3877959	•0005260389
1902	3617604	6880682808	43.6119249	12.3899676	•0005257624
1903	3621409	6891541327	43.6233882	12.3921386	·00052548 <b>61</b>
1904	3625216	6902411264	43.6348485	12:3943089	•0005252101
1905	3629025	6913292625	43.6463057	12.3964784	*0005249344
1906	3632836	6924185416	43 6577599	12:3986471	·0005246590
1907	3636649	6935089643	48.6692111	12.4008151	·0005243838
				li	

No.   Square   Cube   Square Root   Cube Root   Reciprocal						
1909	No.	Square	Cube	Square Root	Cube Root	Reciprocal
1909   3844281   0956982429   48-6921045   12-4051488   0005288345   1910   3648100   6967871000   48-7085467   12-407145   0005225682   1911   365961921   6978821031   48-7149860   12-4094794   00052252682   1912   3655744   6989782528   48-7264222   12-4116436   0-0052205262   1913   3659669   700175497   48-7492857   12-4156907   0-005227392   1914   3663996   7011739944   48-7492857   12-4156907   0-005224660   1915   3667225   7022785875   48-7607129   12-4181316   0-005221932   1916   3671056   7033743296   48-7721373   12-4202928   0-005219327   1917   3674889   7044762213   48-7835585   12-4224633   0-005213764   1919   3682561   7066834559   48-8063922   12-4267719   0-005213764   1919   3682561   7066834559   48-8063922   12-4267719   0-005213764   1920   3686400   7077888000   48-8178046   12-438040   0-005203833   1921   3690241   7088952961   48-8023921   12-4354001   0-005202018   1922   3694084   7100029448   48-860204   12-4382441   0-005202018   1924   3701776   7122217024   48-6834244   12-4876552   0-005202028   1924   3701776   7122217024   48-6834244   12-4876552   0-005202028   1928   3709476   7144450776   48-882166   12-4418634   0-0065197606   1926   3709476   7144450776   48-8862165   12-4416865   0-0065189416   1928   3717184   7166780752   48-908968   12-4461865   0-0065189414   1928   3717184   7166780752   48-908968   12-4461865   0-0065189418   1932   3724900   7189057000   48-9187652   12-44569061   0-0065173061   1938   3748966   7226833827   48-908968   12-4461865   0-006517806   1938   3758741   72283848504   48-9072726   12-44590661   0-0065173061   1938   375844   72783848504   48-9072726   12-4465049   0-0065165289   1938   375844   7278825672   44-0207214   12-4676497   0-0065165289   1938   375844   7278825672   44-0207214   12-4676497   0-0065165289   1938   375844   7278825672   44-0207214   12-4676497   0-0065165289   1944   3779136   736680621   44-030077   12-4697937   0-006514933   1941   3767481   7312680621   44-0306777   12-4697937   0-006514933   1944   377913	1908	3640464	6946005812	43.6806598	12:4029823	-0005241090
1910					12.4051488	·0005238345
1911   3651921   6978821031   48-7149860   12-4094794   -0005232862   1913   3659569   7000755497   48-7364222   12-4116436   -0005227632   1914   3668396   7011739944   48-7492857   12-418907   -00052276392   1915   3667225   7022735875   43-767129   12-4181316   -0005221932   1916   3671056   7038748296   48-7721373   12-4202928   -0005219307   1917   3674839   7044762213   48-7845656   12-4224639   -0005219307   1918   3678724   7056792632   48-7949768   12-4246129   -0005213764   1919   3682561   7066834659   48-8068922   12-4267719   -0005211047   1920   368400   7077888000   48-8178046   12-4289300   -0005203333   1921   3690241   7088952961   43-8292140   12-4310875   -0005202914   1923   3697929   7111117467   48-8520239   12-435401   -0005202914   1923   3697929   7111117467   48-8520239   12-435401   -0005202081   1924   3701776   7122217024   43-8634244   12-4375552   -0005197505   1926   3709476   7144450776   48-884244   12-4375552   -0005194805   1928   3717184   7166730752   48-908968   12-4440163   -000619408   1928   3717184   7166730752   48-908968   12-4461636   -0006186722   1929   3721041   7177888089   48-9203725   12-4486300   -0006184033   1930   3724900   7189057000   48-9317652   12-4569184   -0006178864   1932   3782624   7211429568   48-9658959   12-4569184   -0006178648   1938   3768489   7222633237   48-9658959   12-4569184   -0006178648   1938   3768484   7278826672   44-0207214   12-4697937   -0006167959   1934   376481   7318680621   44-0567815   12-4760499   -00051639859   1944   3767481   7318680621   44-0567815   12-4762214   -0005163874   1942   3771364   732898888   44-0681291   12-4762214   -00051638746   1942   3771364   732898888   44-0681291   12-4890571   -0005138746   1948   3794704   7382383885   44-0681291   12-4890571   -0005138746   1948   3794704   7382383885   44-0681291   12-4890571   -0005138746   1948   3794704   7382383885   44-0681291   12-4890571   -0005138746   1948   3794704   738238392   44-0681291   12-4897599   -0005138740   1948   3794704   7382383				43.7085467	12.4073145	·0005235602
1913			6978821031	43.7149860	12.4094794	·0005232862
1914   3663896   7011789944   48-7492857   12-4169697   -0005224660   1915   3667225   7022738875   48-767129   12-4181316   -0006221932   1916   3671056   7038743296   48-7721373   12-4202928   -0005219307   1917   3674889   7044762213   43-7835585   12-4224533   -0005219307   1918   3678724   7055792632   48-7949768   12-4246129   -0005213764   1919   3682561   7066834559   48-8068922   12-4267719   -0005211047   1920   3686400   7077888000   43-8178046   12-4289300   -000520333   1921   3690241   7088952961   48-8292140   12-4310875   -00062025622   1922   3694084   7100029448   43-8406204   12-4382441   -0005200291   1923   3697929   7111117467   43-8520239   12-4354001   -0006200208   1924   3701776   7122217024   48-8634244   12-4375552   -0005197505   1925   3705625   7133328125   43-8748219   12-4397097   -0005194805   1924   3701776   7122217024   48-8634244   12-4375552   -0005197505   1926   3709476   7144450776   48-8634244   12-4375552   -0005194805   1927   3713329   7155584983   48-8976081   12-441863   -0005189414   1928   3717184   7166730752   43-9089968   12-4461885   -0005189414   1928   3717184   7166730752   43-9089968   12-4461885   -0005184033   1930   3724900   7189057000   43-9317652   12-4567699   -0005178864   1932   3782624   7211429568   48-9645220   12-4567699   -0005175806   1933   3786489   7222633237   43-9658959   12-4569184   -0005175806   1938   3748086   7256313856   44-000000   12-4633594   -0005175298   1938   3755249   7383680807   44-0340777   12-4697937   -0005167298   1940   3763600   7301384000   44-0454311   12-4719370   -0005167289   1940   3763600   7301384000   44-0454311   12-4719370   -0005165289   1941   3767481   7312680621   44-0567815   12-4760294   -00051634639   1941   3767481   7312680621   44-0567815   12-4760294   -00051634639   1941   3767481   7312680621   44-0567815   12-4762294   -00051634639   1943   3775249   73836838807   44-021541   12-47096   -00051634639   1943   3779136   7346803884   44-0801291   12-4762214   -000513486   1944   3779136	1912		6989782528			
1915						
1916						
1917   3674889   7044762213   43-7835585   12-4224538   -0005216484   1918   3678724   7055792632   43-7949768   12-4246129   -0005213764   1919   3682561   7066834559   43-8068922   12-4267719   -0005211047   1920   3686400   7077888000   43-8178046   12-4289300   -00052011047   1921   3690241   7088952961   43-8292140   12-4310875   -00052056522   1922   3694084   7100029448   43-8406204   12-4382441   -000520914   1923   3697929   7111117467   43-8520239   12-4354001   -000520914   1924   3701776   7122217024   43-6848244   12-4375552   -0005197505   1925   3705625   7133328125   43-8748219   12-4397097   -0005194806   1926   3709476   7144450776   43-8862165   12-4418634   -0005192108   1927   3713329   7155584983   43-8976081   12-441063   -0005189218   1928   3717184   7166730752   43-9089968   12-4461685   -0005189414   1928   3717184   7166730752   43-9089968   12-4461685   -000518403   1930   3724900   7189057000   43-9317652   12-4567699   -0005184033   1930   3728900   7189057000   43-9317652   12-4567699   -00051875983   1933   3736489   7222633237   43-968969   12-4567989   -0005175983   1934   3740866   7238348504   43-9772668   12-4567699   -0005175983   1934   3740866   7238348504   43-9772668   12-4567699   -0005176983   1938   3755244   7278825672   44-0207214   12-4676497   -0005167959   1938   3759891   7267568953   44-0118622   12-4676497   -0005167959   1938   375984   7278825672   44-0267815   12-47096   -0005167989   1941   3767481   731268061   44-0567815   12-47096   -0005169959   1944   3779136   73468038867   44-0567815   12-4762214   -000514033   1943   376549   738580807   44-0567815   12-4762214   -0005169859   1944   3779136   7346803888   44-0681291   12-4762214   -0005169859   -0005169859   -0005169839   -0005169838   1944   376980   738076123   44-0567815   12-4762214   -0005169836   -0005169839   -0005169838   -0005129951   -0005130386   -00051106864   -0005129551   -0005130386   -00051106864   -0005117077   -0005130386   -00051106864   -0005117077   -0005110608   -00051106						
1918   3678724   7055792632   48-7949768   12-4246129   -0005213764   1919   36824561   7068834559   48-8068922   12-4267719   -0005211047   1920   3688400   7077888000   48-8178046   12-4289300   -0005205823   1921   3690241   7088952961   43-8292140   12-4310875   -0005205622   1922   3694084   7100029448   48-8406204   12-4310875   -0005205622   1923   3694084   7100029448   48-8620239   12-4354001   -0005202081   1924   3701776   7122217024   43-8634244   12-4375552   -0005197505   1925   3705625   7138328125   48-8748219   12-4397097   -0005197505   1925   3705625   7138328125   48-8748219   12-4397097   -0005197505   1926   3709476   7144450776   48-882165   12-4418634   -0005192108   1927   3713329   7155584983   43-8976081   12-4440163   -0005189414   1928   3717184   7166730752   43-9089968   12-4461685   -0005189414   1928   3717184   7166730752   43-9089968   12-4461685   -0005184033   1930   3724900   7189057000   43-9317652   12-4504707   -0005181347   1931   3728761   7200237491   43-9431451   12-452206   -0005175864   1932   3732624   7211429568   43-9545220   12-4547699   -0005175864   1932   3738489   7222633237   43-9658959   12-4569184   -0005175806   1938   3748968   7223633237   43-9868349   12-4612131   -00051670831   1935   3744225   7245075375   43-9886349   12-4612131   -00051670831   1938   3755844   7278825672   44-0207214   12-467497   -0005162823   1938   3755844   7278825672   44-0207214   12-467937   -0005162823   1944   3767481   7312868621   44-0567815   12-4740796   -0005159559   1940   3763600   7301384000   44-0454311   12-4719370   -0005162823   1943   3775249   7335308807   44-0340777   12-4897937   -0005154689   1944   3767481   7312868621   44-0567815   12-4740796   -0005159559   1940   376860   73688089   44-0340777   12-4897997   -0005154689   1944   3769481   7389888388   44-081291   12-4798241   -0005149831   1943   3775249   7335308807   44-027214   12-4897997   -0005153468   1947   3790809   7380705123   44-0267815   12-4890691   -0005130328   1949   3798601   740						
1919						
1920						
1921   3890241   7088952961   48-8292140   12-4810875   -0005205622   1922   3694084   7100029448   48-8406204   12-4832441   -0005202918   1923   3697929   7111117467   48-8620239   12-4854001   -000520202918   1924   3701776   7122217024   43-8684244   12-4876552   -0005197505   1925   3705625   7138328125   48-8748219   12-4897097   -0005197505   1925   3705625   7138328125   48-8748219   12-4897097   -0005197505   1926   3709476   7144450776   48-8862165   12-4418634   -0005189414   1928   3717184   7166730752   48-9089968   12-4440163   -0005189414   1928   3717184   7166730752   48-9089968   12-4461685   -0005189418   1929   3721041   717788098   48-9203725   12-488200   -0006184033   1930   3724900   7189057000   43-9317652   12-4504707   -0005184033   1931   3728761   7200237491   48-94311451   12-4520206   -0005173836   1932   3738648   7222633237   48-9658959   12-4569184   -0005175883   1938   3740856   7233848504   48-9772668   12-456998   -0005175836   1934   3740856   7233848504   48-9772668   12-4569084   -0005176331   1935   3744225   7245075375   43-9886349   12-4612131   -0005167959   1938   3758489   7267563953   44-000000   12-4633594   -0005162529   1937   3751969   7267563953   44-000000   12-4633594   -0005162529   1938   3755844   7278825672   44-0207214   12-467497   -0005162529   1940   3768600   7301384000   44-0454311   12-4719370   -0005167298   1941   3767481   7312808621   44-0567815   12-4740796   -0005162893   1941   3767481   7312808621   44-0567815   12-4740796   -0005163623   1943   3775249   7335308807   44-0794737   12-48949737   -0005163639   1944   3779136   7346840384   44-0908154   12-4805029   -0005146880   1944   379136   7346840384   44-0908154   12-4805029   -0005146880   1944   379136   7346840384   44-0908154   12-4805029   -0005146880   1944   379136   7346840384   44-0908154   12-4805029   -000513836   1945   378601   7349383888   44-0121541   12-480629   -000513836   1949   3798601   740873349   44-184829   12-4808997   -0005130386   1949   3798601   74087334						
1922   3694084   7100029448   43:8406204   12:4382441   00005202014   1923   3687929   7111117467   43:8520239   12:4354001   00065202014   1924   3701776   7122217024   43:8684244   12:4375552   00065197505   1925   3705625   7133282125   43:8748219   12:4397097   00065197805   1926   3709476   7144450776   43:8862165   12:4418634   00065192108   1927   3713329   7155584983   43:8976081   12:4440163   00065189414   1928   3717184   7166730752   43:9089968   12:4461685   00065189414   1928   3721041   7177888089   43:9208725   12:448200   00065189414   1931   3728761   7200237491   43:9431451   12:4526206   00065184033   1933   3782602   7211429568   43:9454520   12:45467699   0005178664   1932   3782624   7211429568   43:9458242   12:4526206   0005176864   1932   3782624   7211429568   43:9458242   12:4590661   0005176864   1932   3782624   7211429568   43:9458242   12:4590661   0005176864   1932   3782624   7211429568   43:9458242   12:4590661   0005176864   1932   3784906   72268318356   44:000000   12:4635694   00051606289   1937   3751969   7267563953   44:0118622   12:4655049   000516283   1938   3755844   7278826672   44:0227214   12:46576497   000516283   1940   3763600   7301384000   44:0454311   12:4719370   000516283   1941   3767481   7312868621   44:0567815   12:4740796   0005152988   1942   3771364   7382988888   44:081291   12:476224   000516283   1943   3775249   7385308807   44:0794737   12:4783625   0005164680   1944   37791366   7368938536   44:1018612   12:4805029   0005164680   1944   3789067   7386938536   44:1018613   12:4805029   0005138746   1948   3798601   740843339   44:1361530   12:4805029   0005138746   1948   3798601   740843339   44:1361530   12:4805771   000513876   1948   3798601   740843339   44:1361530   12:4805771   000513876   1948   3798601   740843339   44:1361530   12:4987333   0005132958   1951   3806401   7426288351   44:101256   12:4973935   0005132958   1951   3806401   7426288351   44:101256   12:4973935   0005132958   1953   3814209   7449150177   44:1027696   12						
1928   3897029   711117467   43-8520239   12-4854001   -0005200208   1924   3701776   7122217024   43-8634244   12-4875552   -0005197505   1926   3709476   7144450776   43-8854265   12-4418634   -000519405   1927   3713329   7155584983   43-8976081   12-444163   -0005192108   1928   3717184   7166730752   43-9089068   12-444163   -0005189414   1928   3717184   7166730752   43-9089068   12-4488200   -000518403   1930   3724900   7189057000   43-9317652   12-4504707   -000518403   1931   3728761   7200237491   43-9431451   12-4526206   -0005178664   1932   3782624   7211429568   43-94568959   12-4547699   -0005175983   1933   3784689   7222633237   43-9658959   12-4567699   -0005175983   1934   3740856   7233848504   43-977266   12-450661   -0005176931   1936   3748096   7256313856   44-000000   12-4633594   -0005167959   1936   3748096   7256313856   44-000000   12-4633594   -0005167959   1938   3755844   7278825672   44-0227214   12-4676497   -0005165289   1937   3751969   7267563953   44-0118622   12-465049   -0005165289   1939   3759721   7290099019   44-0340777   12-4697937   -0005165289   1941   3767481   7312880621   44-0567815   12-4740796   -0005165959   1941   3767481   7312880621   44-0567815   12-4740796   -0005163939   1941   3767481   7312880621   44-0567815   12-4762214   -0005149331   1943   3775249   7335308807   44-0794737   12-4782214   -0005149331   1943   3775249   7335308807   44-0794737   12-4782214   -0005149331   1944   3789080   7380765123   44-0567815   12-4762214   -0005149331   1943   3775249   7335308807   44-0794737   12-4864269   -0005144033   1946   3788916   738938625   44-1021541   12-4826426   -0005144033   1946   3788916   738938358   44-1134900   12-4846751   -0005138746   -000512951   1949   3798601   7408473349   44-14681380   12-4997833   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951   -0005122951						
1924   3701776   7122217024   43.8684244   12.4875552   0.0065197505   1925   3705625   7138328125   43.8748219   12.4897097   0.0065194805   1927   3713329   7155584983   43.8976081   12.4440163   0.0065189414   1928   3717184   7166730752   43.9089968   12.4461685   0.0065189414   1928   3717184   7166730752   43.9089968   12.4461685   0.0065189414   1928   3721041   717788089   43.9208725   12.4488200   0.0065184033   1930   3724900   7189057000   43.9317652   12.4504707   0.0065184033   1931   3728761   7200237491   43.9481451   12.452206   0.0065175884   1932   3728624   7211429568   43.9645220   12.4547699   0.0065175884   1932   37386489   7222633237   43.98658959   12.4569184   0.00651758306   1935   3744925   7245075375   43.9886349   12.4612131   0.0065170631   1935   3744225   7245075375   43.9886349   12.4612131   0.0065167959   1936   3748096   7256313856   44.000000   12.4633594   0.0065167289   1938   3755844   7278825672   44.0227214   12.4676497   0.005165289   1938   3755844   7278825672   44.0227214   12.4676497   0.005165289   1941   3767481   7312680621   44.0567815   12.4740796   0.005165289   1941   3767481   7312680621   44.0567815   12.4740796   0.005165289   1943   3775249   7385308807   44.0794737   12.4783625   0.005146880   1944   3779136   7346840384   44.0981291   12.4762214   0.005149831   1943   3775249   7385308807   44.0794737   12.488625   0.005144033   1943   3788060   738938858   44.012541   12.4862629   0.005144033   1943   378601   738938858   44.012541   12.4862629   0.005146880   1944   379136   7346840384   44.0908154   12.4805029   0.005136107   1949   3798601   7408473349   44.184829   12.4869197   0.00513036   1949   3798601   7408473349   44.184441   12.4975995   0.00513036   1953   3806401   7426288351   44.1701256   12.495695   0.005122951   1953   3810804   7449058664   44.2040722   12.5018664   0.00511707   0.0051120951   1953   3818116   746059864   44.2040722   12.5018664   0.00511707   0.005110609   0.00511707   0.0051120325   0.005110609   0.0051120325						
1925						
1926						
1927   3713829   7155584983   48-8976081   12-4440168   -0005189414   1928   3717184   7166730752   43-9089968   12-4461685   -0005186722   1929   3721041   717788089   48-9208725   12-4489200   -0005184033   1930   3724900   7189057000   43-9317652   12-4504707   -0005181347   1931   3728761   7200237491   43-9431451   12-452206   -0005178864   1932   3782624   7211429568   43-9658959   12-4569184   -0005175806   1933   3786489   7222633237   43-9658959   12-4569184   -0005175806   1934   3740365   7238348504   43-9772668   12-4569184   -0005175806   1935   3744925   7245075375   43-9868349   12-4612131   -0005167959   1936   3748968   7256313856   44-000000   12-4633594   -0005167959   1938   3755844   72778825672   44-0227214   12-4676497   -0005165289   1938   3755844   72778825672   44-0227214   12-467497   -0005165289   1941   3767481   7312680621   44-0567815   12-4740796   -0005157298   1942   3771364   7322988888   44-081291   12-4762214   -0005146839   1943   3775249   7335808807   44-0794737   12-4786224   -00051449331   1943   3775249   7335808807   44-0794737   12-4786224   -0005144033   1944   3779136   7346840384   44-0981291   12-4762214   -0005144033   1946   3786916   7369383636   44-1021541   12-4826269   -0005144383   1946   3786916   7369383636   44-1021541   12-4826269   -0005143838   1946   3786916   7369383636   44-1134900   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-4869197   -000513036   1949   3798601   7403473349   44-1361530   12-4997833   -0005120325   1953   3810304   7427713408   44-1814441   12-4975995   -0005122951   1953   3810304   7437713408   44-1215819   12-5013664   -0005120325   1953   3810304   7437713408   44-1215819   12-5013664   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -0005112032						
1929		3713329	7155584983	43.8976081	12.4440163	0005189414
1980   3724900   7189057000   43-9817652   12-4504707   -0005181847   1931   3728761   7200237491   43-9431451   12-4526206   -0005173864   1932   3736489   7222633237   43-9658959   12-4569184   -0005175806   1934   3740865   7238348504   43-9772668   12-4569184   -0005173806   1935   3744925   7245075375   43-9868349   12-4612181   -0005167959   1936   3748966   7256313856   44-000000   12-4633594   -0005167959   1937   3751969   7267563953   44-0113622   12-465049   -0005167959   1938   3755844   72778825672   44-0227214   12-4676497   -0005165289   1939   37659721   7290099019   44-0340777   12-4797937   -0005165289   1941   3767481   7312680621   44-0567815   12-470796   -0005151984   1942   3771364   7322988888   44-081291   12-4762214   -0005146389   1948   3775249   7335808807   44-0794737   12-4786255   -0005146880   1944   3779136   7346840384   44-0981291   12-4782214   -0005146880   1944   3779136   7346840384   44-0981291   12-4826426   -0005143831   1946   3786916   736938856   44-1021541   12-4826426   -0005143881   1946   3786916   736938856   44-1021541   12-4826426   -000514388   1946   3786916   736938356   44-1134900   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-4869197   -0005130361   1949   3798601   7403473349   44-1348150   12-4911938   -000513036   1950   3806401   7426288351   44-1701256   12-4954651   -0005122557   1952   3810804   7437713408   44-1814441   12-4975995   -0005122951   1953   3818106   746059864   44-2040722   12-5013664   -0005117076   1965   3822025   7472058875   44-2158819   12-5039988   -0005110509   -0005117067   -0005117067   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120626   -00051120	1928	3717184	7166730752			<b>•000518672</b> 2
1981   3728761   7200237491   48-9481451   12-4526206   -0005178664   1932   3782624   7211429568   48-9545220   12-4547689   -0005175868   1933   37836489   7222633237   48-9658959   12-4569164   -0005176316   1934   3740856   7233848504   43-9772668   12-4590661   -0005170631   1935   3744225   7245075375   48-9886349   12-4612131   -0005167959   1936   3748096   7267563958   44-000000   12-46355049   -0005165289   1937   3751969   7267563958   44-0118622   12-4655049   -0005165289   1938   3755844   7278825672   44-0227214   12-4674979   -0005162623   1938   375844   7278825672   44-0227214   12-4674937   -0005162623   1940   3763600   7301384000   44-0454311   12-4719370   -0005157298   1941   3767481   7312860621   44-0567815   12-4740796   -0005154639   1941   3771364   732988888   44-081291   12-4762214   -0005146893   1943   3771364   7328988888   44-0861291   12-4762214   -0005146880   1944   3779136   7346640384   44-0908154   12-4805029   -0005146680   1944   3779136   7346640384   44-0908154   12-4805029   -0005146080   1945   3788025   7357988625   44-1021541   12-4864265   -0005144033   1945   3786916   7369383856   44-1134900   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-48649197   -0005130876   1948   3794704   7392083392   44-1861530   12-4890197   -0005130836   1951   3806401   7426288851   44-1701256   12-4954651   -0005122951   1953   3814209   7449150177   44-1027596   12-4997333   -0005120325   1953   3818116   746059864   44-2040722   12-5013664   -0005117076   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -00051120325   -0005112032						
1982   3782624   7211429568   43.9545220   12.4547699   -0005175983   1934   3740856   7223638237   43.9658959   12.4569184   -0005176931   1935   3744225   7245075375   43.9886349   12.4612131   -0005167959   1936   3748096   7256313856   44.000000   12.4633594   -0005167289   1937   3751969   7267563953   44.0118622   12.4655049   -0005165289   1938   3759721   7290099019   44.0340777   12.4667937   -000515959   1940   3763600   7301384000   44.0454311   12.4719370   -0005157298   1941   3767481   7312680621   44.0567815   12.4740796   -0005151984   1942   3771364   7323988888   44.0681291   12.4762214   -0005149331   1943   3775249   7385808807   44.0794737   12.485625   -0005149331   1943   3775249   7385808807   44.0794737   12.4783625   -0005149331   1943   3779136   7346640384   44.0908154   12.4805029   -0005141388   1946   3788916   7369383636   44.1134900   12.4847815   -000513470   1947   3790809   7380705123   44.1248229   12.4869197   -0005138746   1947   3790809   7380705123   44.1248229   12.4890197   -00051383470   1948   3794704   7392083392   44.1361530   12.4890571   -0005133470   1949   3798601   7408473349   44.1474801   12.4911938   -0005130836   1950   3806401   7426288351   44.1701256   12.4954651   -0005122951   1952   3810304   7437713408   44.1814441   12.4975995   -0005122951   1953   3818116   7460598664   44.2040722   12.5013664   -00051120325   1956   381209   7449150177   44.1027596   12.493733   -0005120325   1956   3818116   7460598664   44.2040722   12.5013664   -00051120325   1956   3812009   7449150177   44.1027596   12.493733   -0005120325   1956   3818116   7460598664   44.2040722   12.5013664   -00051120325   1956   3822025   7472058875   44.2158819   12.5039988   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -0005110000   -00051100000   -00051100000   -00051100000   -00051100000000000000000000000000000000						
1983   3786489   7222683237   48-9668959   12-4569184   -0005173806   1934   3740866   723848504   43-9772668   12-4590661   -0005170631   1936   3748096   7256313856   44-000000   12-4633594   -0005167959   1937   3751969   7267563953   44-0118622   12-4655049   -0005165289   1938   3755844   7278825672   44-0227214   12-4674979   -0005159959   1939   3759721   7290099019   44-0340777   12-4697937   -0005159959   1941   3767481   7312680621   44-0567815   12-4719370   -0005157298   1942   3771364   7323988888   44-081291   12-4762214   -0005149831   1943   3775249   7335308807   44-0794737   12-4786225   -0005146680   1944   3779136   7346640384   44-0981291   12-4782214   -0005149831   1943   3775249   7335308807   44-0794737   12-4805029   -0005146680   1944   3779136   7346640384   44-098124   12-4805029   -0005144033   1945   3788025   7357988625   44-1021541   12-4826426   -0005144033   1946   3786916   7369838536   44-1134900   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-4869197   -0005138746   1947   3798601   7408473349   44-1845130   12-4991938   -0005130836   1950   3802500   7414875000   44-1588043   12-4898571   -0005132957   1952   3810804   7426288351   44-1701256   12-4954651   -0005122951   1953   3814209   7449150177   44-1027596   12-4957833   -0005122951   1953   3818116   746059864   44-2040722   12-5018664   -000511707   1965   3822025   7472058875   44-2158819   12-5039988   -0005117070   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -0005117000   -00051						
1984   3740856   7233848504   43-9772668   12-4509661   -0005170831   1935   3744225   7245075375   43-9886349   12-4612131   -0005167959   1937   3751969   7267563953   44-000000   12-4635594   -0005165289   1937   3751969   7267563953   44-0118622   12-4655049   -0005165283   1938   3755844   7278825672   44-0227214   12-4676397   -0005165298   1940   3763600   7301384000   44-0454311   12-4719370   -0005157298   1940   3763600   7301384000   44-0454311   12-4719370   -0005157298   1941   3767481   7312860621   44-0567815   12-4740796   -0005154639   1941   3771364   7325988888   44-0861291   12-4762214   -00051469831   1943   3775249   7335308807   44-0794737   12-4783625   -00051469831   1943   3779136   7346640384   44-0908154   12-4805029   -0005144033   1945   3788025   7357988625   44-1021541   12-4864262   -0005141388   1946   3786916   7369383536   44-1134900   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-48649197   -0005130836   1949   3798601   7408473349   44-14861530   12-4905471   -0005130836   1951   3802500   7414875000   44-1588043   12-49383298   -0005122605   1951   3806401   7426288351   44-1701256   12-4954561   -0005122951   1953   3814209   7449150177   44-1027596   12-495733   -0005122305   1953   3814209   7449150177   44-1027596   12-495733   -0005122505   1953   3814209   7449150177   44-1027596   12-495733   -0005122505   1953   3814209   7449150177   44-1027596   12-495733   -0005122505   1953   3818116   746059864   44-2040722   12-5018664   -000511707   1965   3822025   7472058875   44-2158819   12-5039988   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328   -00051120328						
1985						
1936						
1987   3751969   7267568958   44·0118622   12·4665049   -0005162828   1988   3755844   7278825672   44·0227214   12·4676497   -0005159959   1989   3769721   7290099019   44·0340777   12·4697997   -0005157298   1940   3763600   7301384000   44·0454311   12·4719370   -0005154639   1941   3767481   7312860621   44·0567815   12·4740796   -0005151984   1942   3771364   7323988888   44·0881291   12·4762214   -0005146880   1943   3775249   7335308807   44·0794737   12·4783625   -00051469831   1943   3779136   734640384   44·0908154   12·4805029   -0005144033   1945   3788025   7357988625   44·1021541   12·4804262   -0005144038   1946   3786916   7369383536   44·1134900   12·4847815   -0005184746   1947   3790809   7380705123   44·1248229   12·4804917   -0005138470   1948   3794704   7392083392   44·1861530   12·4890571   -0005130367   1949   3798601   7408473349   44·1474801   12·4911938   -0005130836   1951   3802500   7414875000   44·1588043   12·4933298   -0005122951   1952   3810804   7426288351   44·1701256   12·4954551   -0005122951   1953   3814209   7449150177   44·1027596   12·4997333   -0005120325   1954   3818116   746059864   44·2040722   12·5018664   -0005117707   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -0005110009   -00051100009						
1938   3755844   7278825672   44 \cdot \cdot \cdot 227214   12 \cdot \cdot \cdot 4676497   \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdo \cdot \cdot \cdot \cdo \cdot \cdot \cdot \cdot \cdo \cdot \cdot \cdot \cdot \cdot \cdot						
1989						
1940						
1941   3767481   7312680621   44-0567815   12-4740796   -0005151984   1942   3771364   7323988888   44-0681291   12-4762214   -0005149331   1943   3775249   7385808807   44-0794737   12-4783625   -0005146680   1944   3779136   7346640384   44-0908154   12-4805029   -0005144033   1945   3788025   7357983625   44-1021541   12-4826426   -0005144033   1946   3786916   7369338536   44-113490   12-4847815   -0005138746   1947   3790809   7380705123   44-1248229   12-4869197   -0005136107   1948   3794704   7392083392   44-1361530   12-4890571   -0005133470   1949   3798601   7403473349   44-1474801   12-4911938   -0005130836   1950   3802500   7414875000   44-1588043   12-4933298   -00051232577   1952   3810304   7437713408   44-184441   12-4975995   -0005120325   1953   3814209   7449150177   44-1027596   12-4997833   -0005120325   1953   3818116   7460598664   44-2040722   12-5018664   -0005117707   1956   3822025   7472058875   44-2153819   12-5039988   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -						
1942   3771364   7323988888   44.0881291   12.4762214   -0005149831   1943   3775249   7385808807   44.0794737   12.4783625   -0005146680   1944   3779136   7346640384   44.0908154   12.483625   -0005144033   1945   3783025   7357988625   44.1021541   12.4826426   -0005144033   1946   3786916   736938536   44.1134900   12.4847815   -0005138746   1947   3790809   7380705123   44.1248229   12.4869197   -0005138746   1948   3794704   7392083392   44.1361530   12.4890571   -0005133470   1949   3798601   7408473349   44.1474801   12.4911938   -0005130836   1950   3802500   7414875000   44.1588043   12.4933298   -0005123577   1952   3810304   743713408   44.1814441   12.4975995   -0005122951   1953   3814209   7449150177   44.1027596   12.4975393   -0005120325   1956   3822025   7472058875   44.2040722   12.5018664   -0005117707   1956   3822025   7472058875   44.2158819   12.5039888   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115090   -0005115000   -00						
1948   3775249   7835808807   44·0794737   12·4783625   -00051446380   1944   3779136   7346640384   44·0908154   12·4805029   -0005144033   1945   3788025   7357983625   44·1021541   12·4826426   -0005141388   1946   3786916   7369385636   44·1134900   12·4847815   -0005138746   1947   3790809   7880705123   44·1248229   12·4869197   -0005138140   1948   3794704   7392083392   44·1861530   12·4890571   -0005130836   1950   3802500   7414875000   44·188043   12·4890571   -0005130836   1950   3806401   7426288351   44·1701256   12·4991838   -0005122905   1951   3806401   7426288351   44·1701256   12·4954561   -0005122507   1952   3810304   7437713408   44·1814441   12·4975995   -0005120325   1953   3814209   7449150177   44·1027596   12·497333   -0005120325   1953   3818116   746059864   44·2040722   12·5018664   -0005117707   1955   3822025   7472058875   44·2158819   12·5039988   -0005110509					12.4762214	
1944   3779136   7346640384   44·0908154   12·4805029   ·0005144033   1945   3783025   7357983625   44·1021541   12·4826426   ·0005141388   1946   3786916   736938536   44·1134900   12·4847815   ·000518746   1947   3790809   7380705123   44·1248229   12·4869197   ·0005136107   1948   3794704   7392083392   44·1361530   12·4890571   ·0005133470   1949   3798601   7403473349   44·1474801   12·4911938   ·0005130836   1950   3802500   7414875000   44·1688043   12·493298   ·0005129205   1951   3806401   7426283351   44·1701256   12·4954651   ·0005125577   1952   3810304   7437713408   44·1814441   12·4975995   ·0005120325   1953   3814209   7449150177   44·1027596   12·497333   ·0005120325   1953   3814209   7449150177   44·1027596   12·497733   ·0005120325   1954   3818116   7460598664   44·204722   12·5018664   ·0005117707   1956   3822025   7472058875   44·2153819   12·5039988   ·0005115090						
1946         3786916         7369838536         44·1134900         12·4847815         -0005138746           1947         3790809         7380705123         44·1248229         12·4869197         -0005136107           1948         3794704         7392083392         44·1361530         12·4890571         -0005138470           1949         3798601         7403473349         44·1474801         12·4911938         -0005130836           1950         3802500         7414875000         44·1588043         12·49383298         -0005120325           1951         3806401         7426288351         44·1701256         12·4954651         -0005122557           1952         3810304         7437713408         44·1814441         12·4975995         -0005120325           1953         3814209         7449150177         44·1027596         12·4997333         -0005120325           1954         3818116         746059864         44·2040722         12·5013664         -0005117707           1955         3822025         7472058875         44·2158819         12·5039988         -00051116090	1944	3779136	7346640384	44.0908154	12.4805029	·000 <b>514403</b> 3
1947         3790809         7380705123         44·1248229         12·4869197         -0005136107           1948         3794704         7392083392         44·1361530         12·4890571         -0005133470           1949         3798601         7408473349         44·1474801         12·4911938         -0005130836           1950         3802500         7414875000         44·1588043         12·4932298         -0005122205           1951         3806401         7426288351         44·1701256         12·4954651         -0005122557           1952         3810304         7437718408         44·1814441         12·4975995         -0005122951           1953         3814209         7449150177         44·1027596         12·4997333         -0005120951           1954         3818116         7460598664         44·2040722         12·5018664         -000511707           1955         3822025         7472058875         44·2153819         12·5039988         -0005115090	1945	3783025	7357983625	44.1021541	12.4826426	<b>-000514138</b> 8
1948         3794704         7392083392         44·1361530         12·4890571         -0005133470           1949         3798601         7408473349         44·1474801         12·4911938         -0005130836           1950         3802500         7414875000         44·1588043         12·493298         -0005128205           1951         3806401         7426288351         44·1701256         12·4954651         -0005122577           1952         3810804         7437713408         44·1814441         12·4975995         -0005122951           1953         3814209         7449150177         44·1027596         12·4997333         -0005120326           1954         3818116         7460598664         44·2040722         12·5018664         -0005117707           1955         3822025         7472058875         44·2153819         12·5039988         -0005115090						
1949         3798601         7403473349         44·1474801         12·4911938         0005130836           1950         3802500         7414875000         44·1588043         12·4933298         0005128205           1951         3806401         7426288351         44·1701256         12·4954651         0005123577           1952         3810304         7437713408         44·1814441         12·4975995         0005122951           1953         3814209         7449150177         44·1027596         12·4997333         0005120325           1954         3818116         7460593664         44·2040722         12·5018664         0005117707           1955         3822025         7472058875         44·2158819         12·5039988         000511709						
1950         3802500         7414875000         44·1588043         12·4933298         -0005128205           1951         3806401         7426288351         44·1701256         12·4954651         -0005128205           1952         3810804         7437713408         44·1814441         12·4975995         -0005122951           1953         3814209         7449150177         44·1027596         12·4997333         -0005120326           1954         3818116         7460598664         44·2040722         12·5018664         -0005117707           1955         3822025         7472058875         44·2153819         12·5039988         -0005115090						
1951         3806401         7426288351         44·1701256         12·4954651         -0005125577           1952         3810804         7437713408         44·1814441         12·4975995         -0005122951           1953         3814209         7449150177         44·1027596         12·4997833         -0005120326           1954         3818116         7460598664         44·2040722         12·5018664         -0005117707           1955         3822025         7472058875         44·2153819         12·5039988         -0005115090						
1952         3810304         7437713408         44·1814441         12·4975995         -0005122951           1953         3814209         7449150177         44·1027596         12·4997333         -0005120325           1954         3818116         7460598664         44·2040722         12·5018664         -0005117707           1955         3822025         7472058875         44·2153819         12·5039988         -0005115090						
1953     3814209     7449150177     44·1027596     12·4997833     -0005120328       1954     3818116     7460598664     44·2040722     12·5018664     -0005117707       1955     3822025     7472058875     44·2153819     12·5039988     -0005115090						
1954         3818116         7460598664         44*2040722         12*5018664         *0005117707           1985         3822025         7472058875         44*2153819         12*5039988         *0005115090						
1955   3822025   7472058875   44-2153819   12-5039988   -0005115090						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		L				

			,		
No.	Square	Cube	Square Root	Cube Root	Reciprocal
1957	8829849	7495014493	44-2379927	12.5082612	-0005109862
1958	3833764	7506509912	44.2492938	12.5103914	0005107252
1959	3837681	7518017079	44.2605919	12.5125208	0005104645
1960	3841600	7529536000	44.2718872	12-5146495	.0005102041
1961	8845521	7541066681	44.2831797	12-5167775	.0005099439
1962	3849444	7552609128	44.2944692	12-5189047	.0005096840
1963	3853369	7564163347	44.3057558	12.5210313	.0005094244
1964	3857296	7575729344	44.3170396	12.5231571	·0005091650
1965	8861225	7587307125	44.3283205	12.5252822	·0005089059
1966	3865156	7598896696	44.3395985	12.5274065	·0005086470
1967	3869089	7610498063	44.3508737	12.5295302	·0005083884
1968	3873024	7622111232	44.3621460	12.5316531	·0005081301
1969	3876961	7633736209	44.3734155	12.5337753	·0005078720
1970	3880900	7645373000	44 3846820	12.5358968	.0005076142
1971	3884841	7657021611	44.3959457	12.5380176	0005073567
1972	8888784	7668682048	44.4072066	12.5401377	·0005070994
1973	3892729	7680354317	44.4184646	12.5422570	.0005068424
1974	3896676	7692038424	44.4297198	12.5443757	0005065856
1975	3900625	7703734375	44.4409720	12.5464936	0005063291
1976	3904576 3908529	7715442176 7727161833	44.4522215	12·5486107 12·5507272	*0005060729 *0005058169
1977	8912484	7738893352	44·4634681 44·4747119	12.5528430	*0005055612
1978 1979	3916441	7750636739	44.4859528	12.5549580	·0005053012
1979	3920400	7762392000	44.4971909	12.5570723	00050505057
1981	3924361	7774159141	44.5084262	12.5591860	·0005047956
1982	3928324	7785938168	44.5196586	12.5612989	·0005045409
1983	3932289	7797729087	44.5308881	12.5634111	.0005042864
1984	3936256	7809531904	44.5421149	12.5655226	.0005040323
1985	8940225	7821346625	44.5533388	12.5676334	•0005037783
1986	3944196	7833173256	44.5645599	12.5697435	.0005035247
1987	3948169	7845011803	44.5757781	12.5718529	•0005032713
1988	8952144	7856862272	44.5869936	12.5739615	-0005030181
1989	3956121	7868724669	44.5982062	12.5760695	•00050 <b>276</b> 52
1990	3960100	7880599000	44.6094160	12.5781767	•0005025126
1991	3964081	7892485271	44.6206230	12.5802832	•0005022602
1992	3968064	7904383488	44.6318272	12.5823891	•0005020080
1993	3972049	7916293657	44.6430286	12.5844942	•0005017561
1994	3976036	7928215784	44.6542271	12.5865987	·0005015045
1995	3980025	7940149875	44.6654228	12.5887024	•0005012531
1996	3984016	7952095936	44.6766158	12.5908054	•0005010020
1997	3988009	7964053973	44.6878059	12.5929078	-0005007511
1998	3992004	7976023992	44.6989933	12.5950094	10005005005
1999	3996001	7988005999	44.7101778	12.5971103	•0005002501 •0005000000
2000 2001	4000000 4004001	8000000000 8012006001	44·7213596 44·7325385	12.5992105 12.6013101	*0005000000 *0004997501
2001	4004001	8012000001	44·7437146	12.6034089	•0004997501 •0004995005
2002	4012009	8036054027	44.7548880	12.6055070	0004992511
2003	4016016	8048096064	44.7660586	12.6076044	0004990020
2005	4020025	8060150125	44.7772264	12.6097011	·0004987531
-000	3020020	0000100120	11122US	00010II	2003001901

No.	Square	Cube	Square Root	Cube Root	Reciprocal
2006	4024036	8072216216	44.7883913	12:6117971.	0004985045
2007	4028049	8084294343	44.7995535	12.6138924	·0004982561
2008	4032064	8096384512	44.8107130	12.6159870	·0004980080
2009	4036081	8108486729	44.8218697	12.6180810	·0004977601
2010	4040100	8120601000	44 8330235	12.6201743	0004975124
2011	4044121	8132727331	44.8441746	12.6222669	·0004972650
2012	4048144	8144865728	44.8553230	12.6243587	·0004970179
2013	4052169	8157016197	44 8664685	12.6264499	0004967710
2014	4056196	8169178744	44.8776113	12.6285404	·0004965248
2015	4060225	8181353375	44.8887514	12.6306301	•0004962779
2016	4064256	8193540096	44.8998886	12.6327192	0004060317
2017	4068289	8205738913	44.9110231	12.6348076	0004957858
2018	4072324	8217949832	44.9221549	12.6368953	·0004955401
2019	4076361	8230172859	44 9332839	12.6389823	0004952947
2020	4080400	8242408000	44.9444101	12.6410687	0004950495
2021	4084441	8254655261	44.9555336	12.6431543	·0004948046
2022	4088484	8266914648	44.9666543	12.6452393	0004945598
2023	4092529	8279186167	44.9777723	12.6473235	0004943154
2024	4096576	8291469824	44.9888875	12.6494071	·0004940711
2025	4100625	8303765625	45.0000000	12.6514900	·0004938272
2026	4104676	8316073576	45-0111097	12.6535722	<b>*000493</b> 5834
2027	4108729	8328393683	45 0222167	12.6556538	·0004933399
2028	4112784	8340725952	45.0333210	12.6577346	·0004930966
029	4116841	8353070389	45.0444225	12.6598148	·0004928536
2030	4120900	8365427000	45.0555213	12.6618943	<b>0004926108</b>
2031	4124961	8377795791	45.0666173	12-6639731	·0004923683
2032	4129024	8390176768	45.0777107	12-6660512	·0004921260
2033	4133089	8402569937	45.0888013	12.6681286	·0004918839
2034	4137156	8414975304	45-0998891	12.6702053	0004916421
2035	4141225	8427392875	45.1109743	12.6722814	·0004914005
2036	4145296	8439822656	45.1220567	12.6743567	·0004911591
2037 2038	4149369	8452264653	45.1331364	12.6764314	·0004909180
	4153444	8464718872	45·1442134 45·1552876	12.6785054 12.6805788	·0004906771 ·0004904365
2039 2040	4157521 4161600	8477185319 8489664000	45.1663592	12.6826514	0004904363
2040	4165681	8502154921	45.1774280	12.6847284	0004899559
2041	4169764	8514658088	45.1884941	12.6867947	0004897160
2042	4173849	8527173507	45.1995575	12.6888654	0004894762
2043	4177936	8539701184	45.2106182	12.6909354	·0004892368
2045	4182025	8552241125	45.2216762	12:6930047	·0004889976
2046	4186116	8564793336	45.2327315	12:6950733	0004887586
2040	4190209	8577357828	45.2437841	12:6971412	0004885198
2048	4194304	8589934592	45.2548340	12.6992084	·0004882813
2049	4198401	8602523649	45.2658812	12.7012750	0004880429
2050	4202500	8615125000	45.2769257	12.7033409	*0004878C49
2051	4206601	8627738651	45.2879675	12.7054061	0004875670
2052	4210704	8640364608	45 2990066	12.7074707	0004873294
2053	4214809	8653002877	45.3100430	12.7095346	0004870921
2054	4218916	8665653464	45.3210768	12.7115978	0004868549
			1		300200000

No.	Square	Cube	Square Root	Cube Root	Reciprocal
2055	4000005	Damoni appr	45.0001050	70.5704400	0004000000
2055 2056	4223025	8678316375	45.8321078	12.7186603	0004866180
	4227136	8690991616	45.3431362	12.7157222	•0004863813
2057	4231249	8703679193	45 3541619	12:7177835	0004861449
2058 2059	4235364	8716379112	45.3651849	12:7198441	0004859086
2060	4239481 4243600	8729091379 8741816000	45·3762052 45·3872229	12·7219040 12·7239632	•0004856727 •0004854369
2061 2062	<b>424</b> 7721 <b>425</b> 1844	8754552981 8767302328	45·3982378 45·4092501	12·7260218 12·7280797	·0004852014 ·0004849661
2063	4255969	8780064047	45-4202598	12.7301370	0004847310
2064	4260096	8792838144	45.4312668	12.7321935	·0004844961
2065	4264225	8805624625	45.4422711	12.7842494	•0004842615
2066	4268356	8818423496	45.4532727	12.7363046	0004840271
2067	4272489	8831234763	45.4642717	12.7383592	·0004837929
2068	4276624	8844058432	45.4752680	12.7404131	0004835590
2069	4280761	8856894509	45.4862616	12.7424664	·0004833253
2070	4284900	8869743000	45.4972526	12.7445189	0004830918
2071	4239041	8882603911	45·5082410	12.7465709	•0004828585
2072	4293184	8895477248	45.5192267	12.7486222	0004826255
2073	4297329	8908363017	45.5302097	12.7506728	0004823927
2074	4301476	8921261224	45.5411901	12.7527227	·0004821601
2075	4305625	8934171875	45.5521679	12.7547721	0004819277
2076	4309776	8947094976	45.5631430	12.7568207	0004816956
2077	4313929	8960030533	45.5741155	12.7588687	•0004814636
2078	4318084	8972978552	45.5850853	12.7609160	0004812320
2079	4322241	8985939039	45.5960525	12.7629627	0004812025
2080	4326400	8998912000	45.6070170	12.7650087	0004807692
2081	4330561	9011897441	45.6179789	12.7670540	·0004805382
2082	4334724	9024895368	45.6289382	12.7690987	.0004803074
2083	4338889	9037905787	45.6398948	12.7711427	•0004800768
2084	4343056	9050928704	45.6508488	12.7731861	0004798464
2085	4347225	9063964125	45.6618002	12.7752288	0004796163
2086	4351396	9077012056	45 6727490	12.7772709	•0004793864
2087	4355569	9090072503	45.6836951	12.7793123	•0004791567
2088	4359744	9103145472	45.6946386	12.7813531	·0004789272
2089	4363921	9116230969	45.7055795	12.7833932	·0004786979
2090	4368100	9129329000	45.7165178	12.7854326	0004784689
2091	4372281	9142439571	45.7274534	12.7874714	0004782401
2092	4376464	9155562688	45.7383865	12.7895096	•0004780115
2093	4380649	9168698357	45.7493169	12.7915471	-0004777831
2094	4384836	9181846584	45.7602447	12.7935840	•0004775549
2095	4389025	9195007375	45.7711699	12:7956202	0004773270
2096	4393216	9208180736	45.7820926	12.7976558	•0004770992
2097	4397409	9221366673	45.7930126	12.7996907	•0004768717
2098	4401604	9234565192	45.8039299	12.8017250	.0004766444
2099	4405801	9247776299	45 8148447	12.8037586	0004764173
2100	4410000	9261000000	45.8257569	12.8057916	0004761905
2101	4414201	9274236301	45 8366665	12.8078239	0004759638
2102	4418404	9287485208	45.8475735	12.8098556	·0004757874
2103	4422609	9800746727	45.8584779	12.8118866	·0004755112
	<u> </u>	l	<u> </u>		

			, , ,	HOOIS, AND	RECIFECTA	
	No.	Square	Cube	Square Root	Cube Root	Reciprocal
	2104	4426816	9314020864	45.8693798	12:8139170	·0004752852
1	2105	4431025	9327307625	45.8802790	12.8159468	·0004750594
	2106	4435236	9340607016	45.8911756	12.8179759	0004748338
-	2107	4439449	9353919043	45 9020696	12.8200044	0004746084
1	2108	4443664	9367243712	45.9129611	12.8220323	.0004743833
1	2109	4447881	9380581029	45.9238500	12.8240595	0004741584
1	2110	4452100	9393931000	45.9347363	12.8260861	.0004739336
1	2111	4456321	9407293631	45 9456200	12.8281120	.0004737091
4	2112	4460544	9420668928	45.9565012	12.8301373	.0004734848
]	2113	4464769	9434056897	45.9673798	12.8321620	-0004732608
1	2114	4468996	9447457544	45.9782557	12.8341860	.0004730369
1	2115	4473225	9460870875	45.9891291	12.8362094	·0004728132
	2116	4477456	9474296896	46.0000000	12.8382321	·0004725898
1	2117	4481689	9487735613	46.0108683	12.8402542	.0004723666
1	2118	4485924	9501187032	46.0217340	12.8422756	·0004721435
1	2119	4490161	9514651159	46.0325971	12.8442964	0004719207
	2120	4494400	9528128000	46.0434577	12.8463166	·0004716981
-	2121	4498641	9541617561	46.0543158	12.8483361	·0004714757
1	2122	4502884	9555119848	46.0651712	12.8503551	•0004712535
1	2123	4507129	9568634867	46.0760241	12.8523733	·0004710316
	2124	4511376	9582162624	46.0868745	12.8543910	·0004708098
1	2125 2126	4515625	9595703125	46.0977223	12.8564080	-0004705882
-	2120	4519876	9609256376	46 1085675	12.8584243	0004703669
4	2128	4524129 4528384	9622822383	46 1194102	12.8604401	·0004701457
1	2129	4532641	9636401152 9649992689	46.1302504	12.8624552	•0004699248
1	2130	4536900	9663597000	46.1410880	12.8644697	•0004697041
1	2131	4541161	9677214091	46.1519230	12.8664835	*0004694836
1	2132	4545424	9690843968	46·1627555 46·1735855	12.8684967	•0004692633
1	2133	4549689	9704486637	46 1844130	12·8705093 12·8725213	·0004690432 ·0004688233
1	2134	4553956	9718142104	46.1952378	12.8745326	-0004686036
1	2135	4558225	9731810375	46.2060602	12.8765433	•0004683841
	2136	4562496	9745491456	46.2168800	12.8785534	·0004681648
-	2137	4566769	9759185353	46.2276973	12.8805628	<b>•00046794</b> 57
1	2138	4571044	9772892072	46.2385121	12.8825717	.0004677268
1	2139	4575321	9786611619	46.2493243	12.8845199	0004675082
- 1	2140	4579600	9800344000	46.2601340	12.8865874	•0004672897
-	2141	4583881	9814089221	46.2709412	12.8885944	-0004670715
	2142	4588164	9827847288	46.2817459	12.8906007	0004668534
1	2143	4592449	9841618207	46.2925480	12.8926064	.0004666356
1	2144	4596736	9855401984	46.3033476	12.8946115	·0004664179
1	2145	4601025	9869198625	46.3141447	12.8966159	-0004662005
ł	2146	4605316	9883008136	46.3249393	12.8986197	·0004659832
1	2147	4609609	9896830523	46.3357314	12.9006229	·0004657662
1	2148	4613904	9910665792	46.3465209	12.9026255	·0004655493
1	2149	4618201	9924513949	46.3573079	12.9046275	·0004653327
ł	2150	4622500	9938375000	46.3680924	12.9066288	• <b>000465</b> 1163
-	2151	4626801	9952248951	46.3788745	12.9086295	•0004649000
- 1	2152	4631104	9966135808	46.3896540	12-9106296	·0004646840
- 1					l	Ī

No.	Square	Cube	Square Root	Cube Root	Reciprocal
2153	4635409	9980035577	46:4004310	12-9126291	0004644682
2154	4639716	9993948264	46.4112055	12.9146279	0004642526
2155	4644025	10007873875	46.4219775	12.9166262	0004640371
2156	4648336	10021812416	46.4327471	12.9186238	0004638219
2157	4652649	10035763893	46.4435141	12-9206208	0004636069
2158	4656964	10049728312	46.4542786	12.9226172	.0004633920
2159	4661281	10063705679	46.4650406	12.9246129	.0004631774
2160	4665600	10077696000	46.4758002	12.9266081	0004629630
2161	4669921	10091699281	46.4865572	12.9286027	0004627487
2162	4674244	10105715528	46.4973118	12.9305966	0004625347
2163	4678569	10119744747	46.5080638	12.9325899	0004623209
2164	4682896	10133786944	46.5188134	12.9345827	0004621072
2165	4687225	10147842125	46.5295605	12.9365747	0004618938
2166	4691556	10161910296	46 5403051	12.9385662	0004616805
2167	4695889	10175991468	46.5510472	12:9405570	0004614675
2168	4700224	10190085632	46.5617869	12.9425472	0004612546
2169	4704561	10204192809	46.5725241	12:9445369	0004610420
2170	4708900	10218313000	46.5832588	12.9465259	0004608295
2171	4713241	10232446211	46.5939910	12.9485143	0001606172
2172	4717584	10246592448	46.6047208	12.9505021	0004604052
2173	4721929	10260751717	46.6154481	12.9524893	0004601933
2174	4726276	10274924024	46.6261729	12.9544759	0004599816
2175	4730625	10289109375	46.6368953	12.9564618	0004597701
2176	4734976	10303307776	46.6476152	12.9584472	0004595588
2177	4739329	10317519233	46.6583326	12.9604319	0004593477
2178	4743684	10331743752	46.6690476	12.9624161	0004591368
2179	4748041	10345981339	46-6797601	12.9643996	0004589261
2180	4752400	10360232000	46-6904701	12.9663826	0004587156
2181	4756761	10374495741	46.7011777	12.9683649	0004585053
2182	4761124	10388772568	46.7118829	12.9703466	0004582951
2183	4765489	10403062487	46.7225855	12.9723277	0004580852
2184	4769856	10417365504	46.7332858	12.9743082	·0004578755
2185	4774225	10431681625	46.7439836	12.9762881	0004576659
2186	4778596	10446010856	46.7546789	12.9782674	·0004574565
2187	4782969	10460353203	46.7653718	12:9802461	0004572474
2188	4787344	10474708672	46.7760623	12.9822242	-0004570384
2189	4791721	10489077269	46.7867503	12.9842017	0004568296
2190	4796100	10503459000	46.7974358	12.9861786	0004566210
2191	4800481	10517853871	46 8081189	12.9881549	0004564126
2192	4804864	10532261888	46.8187996	12.9901306	0004562044
2193	4809249	10546683057	46.8294779	12.9921057	0004559964
2194	4813636	10561117384	46.8401537	12.9940802	0004557885
2195	4818025	10575564875	46.8508271	12.9960540	0004557809
2196	4822416	10575504675	46.8614981	12 9980273	0004553734
2197	4826809	10604499373	46.8721666	13.0000000	0004551661
2198	4831204	10618986392	46.8828327	13.0019721	0004531001
2199	4835601	10633486599	46.8934963	13.0039436	0004547522
2200	4840000	10648000000	46.9041576	13.0059145	0004545455
2201	4844401	10662526601	46.9148164	13.0078848	0004543389
	-011101	10002020001	40 6140104	10 0010040	

Table CXXVII.—Fourth Powers of Numbers.

No.	4th Power.	No.	4th Power.	No.	4th Power.	No.	4th Power.
1	1	26	456,976	51	6,765,201	76	33, 362, 17
2	16	27	531,441	52	7,311,616	77	35, 153, 04
3	81	28	614,656	53	7,890,481	78	37,015,05
4	256	29	707,281	54	8,503,056	79	38,950,08
5	625	30	810,000	55	9,150,625	80	40,960,00
6	1,296	31	923,521	56	9,834,496	81	43,046,72
7	2,401	32	1,048,576	57	10,556,001	82	45, 212, 17
8	4,096	33	1,185,921	58	11,316,496	83	47,458,32
9	6,561	34	1,336,336	59	12,117,361	84	49,787,13
10	10,000	35	1,500,625	60	12,960,000	85	52, 200, 62
11	14,641	36	1,679,616	61	13,845,841	86	54,708,01
12	20,736	37	1,874,161	62	14,776,336	87	57,289,76
13	28,561	38	2,085,136	63	15,752,961	88	59,969,53
14	38,416	39	2,313,441	64	16,777,216	89	62,742,24
15	50,625	40	2,560,000	65	17,850,625	90	65,610,00
16	65,536	41	2,825,761	66	18,974,736	91	68, 574, 96
17	83,521	42	3,111,696	67	20,151,121	92	71,639,29
18	104,976	43	3,418,801	68	21,381,376	93	74,805,20
19	130,321	44	3,748,096	69	22,667,121	94	78,074,89
20	160,000	45	4,100,625	70	24,010,000	95	81,450,62
21	194,481	46	4,477,456	71	25,411,681	96	84,934,65
22	234,256	47	4,879,681	72	26,873,856	97	88,529,28
23	279,841	48	5,308,416	73	28,398,241	98	92,236,81
24	331,776	49	5,764,801	74	29,986,576	99	96,059,60
25	390,625	50	6,250,000	75	31,640,625	100	100,000,000

A i	PAGR
PAGE	Block Co-efficients, 24
Admiralty Co-efficients, Tables of, 15,16	Blow-off Valves, 191, 258
11 Speed and Power For-	Board of Trade Rules, Various
mulæ, 13	additional 278
Air Cocks on Boilers, 259	Boilers, Board of Trade General
Air Pipes on Hot Wells, 134	Rules for 243
Air Pressures in Stoke-holes (how	Comparative Weights of
measured) 214	Various Types, 227
Air-Pump Barrels,	Dimensions and Weights
Connecting Rods, 132	of Actual,
, Rods,	Flat Surfaces of, Board of
Suction and Discharge	Trade Rules for, 233
Pipes, 133	Flat Surfaces of, Lloyd's
Air-Pumps, Size or Capacity of, . 130	Rules for, 235, 236
Angles of Entrance, Table of, . 18	Lloyd's General Rules for, 244
Annealing of Boiler Steel, . 248, 245	Water-tube, Performances
Areas of Circles,	of, 218, 219
of Safety Valves,	Boiler Mountings,
of Screws at bottom of Thread, 75	Board of Trade
of Segments of Circles, . 355	Rules for, 259
and Circumferences of Small	" Lloyd's Rules for, 267
Circles 372	Boiler Seatings,
Arrangements of Cylinders of Triple	Boiler Shells, Board of Trade Rules
Engines, 37	for, 280
Atmospheric Air, Composition of . 208	Lloyd's Rules for 232
Attachments of Piston Rods, 85	Boiler Stays, Admiralty Rules for, . 239
Augmented Surface, 19	Board of Trade Rules
Auxiliary (Starting) Valves, 65	for, 289
2	" Lloyd's Rules for, 239
•	Boiler Steel, Admiralty Tests of, . 229
• в	Board of Trade Tests of, 229
•	Lloyd's Tests of, 230
Barrels of Cylinders, 51	, Annealing of . 248, 244
Beams of Uniform Strength, 304	Makers of 243
Bedplates	Welding of, 243
Bending Strains, Graphic represen-	Boiler Tracings for Board of Trade, 244
tation of	Boiler Tubes, Diameter of, 221
Bilge Injection Valve	" Pitch of
Bilge Pumps,	Boiler tube-plates, Board of Trade
Bilge Suction Pipes, Sizes of, by	Rules for, 288
Lloyd's Rules,	" Lloyd's Rules
Birmingham Wire Gauge, 195	for, 288

2.42	
PAGE	PAG
Boiler Work, Supervision of, Ad-	Co-efficients of Performance, Curve
miralty Instructions for, 250	of,
Boiling Points of Sea Water, 324	Coffin averaging Instrument.
Bolt Heads, Sizes of,	Column Feet and Bolts,
Bolts, Area of, at Bottom of Thread, 75	Columns,
Diameter of, in Joints, 62	Combustion,
Pitch of, in Jointe, 62	Rate of, 211, 21
Strength of,	Combustion Chamber Top Girders,
ıı in Column feet, 67	Board of Trade Rules for, 23
of Connecting Rods, 92	Combustion Chamber Top Girders,
of Main Bearings, 120	Lloyd's Rules for 23
Brake Horse-power, 10	Comparatire Weights of Boilers of
Brasses in Piston-rod Heads 89	Different Types
of Connecting Rods, 92	Comparison of Thermometers, 32
" of Main Bearings, 121	Compound <i>versus</i> Triple Engines, . 3
British Thermal Unit, 208	Compressive Strength of Cast-iron, 29
Built Crankshafts 104	Condensers,
Bulk of Coal, 308	Condenser tubes
of Water at various Tempera-	4 3 - 4 3
tures,	tube plates, 12
Bunker Capacities, 308	Connecting Rod Brasses, 9
Hatches, Lloyd's Rules for, 275	Caps and Bolts, . 9
Bushes of Stern-tubes	Double-eyes, 9
	" Gudgeons, 9
	Connecting Rods,
	Constant Multipliers for I.H.P.,
^	Constant Muliphers for I.H.F.,
c	Contraction of Gun-metal Castings, 29
	II Iron Castings, . 28
Capacity of Receivers, 66	Steel Castings, . 29
Cap Bolts of Thrust Blocks,	Cooling Surface,
Caps and Bolts of Main Bearings, . 120	Cooling Water, Quantity of, 12
Cast-iron, Composition, Qualities,	Copper, Strength, Qualities, and
	Weight of
and Strength of,	
Cast-Steel, Qualities and Strength of, 291	Copper Pipes, Flanges of, 20
Cement, Lloyd's Rules regarding, . 275	Thickness of, 19
Centre of Gravity of Machinery, . 322	" " by Board
Centrifugal Circulating Pumps, . 137	of Trade Rule, . 199
Chains, 283	Corresponding Speeds, 2
Check Nuts,	Cotters for Piston-Rods 86
Check Valves,	
Chemical Composition of Fuels, 208, 210	Covers and Ends (Cast-iron) of
Chevaux, Continental, 6	Cylinders,
Chimney, 211 Church's Relief Frame for Slide-	Covers and Ends (Cast-steel) of
Church's Relief Frame for Slide-	Cylinders 60
Valves, 149	Covers (Cast-iron) of Cylinder Valve-
Circulating Apparatus in Boilers, . 259	Boxes, 6
	(0-4-4-1)
" Suction and De-	Cranks, Overhung, of Paddle Engines, 100
livery Pipes, 136	Crank-arms of Solid Shafts, 103
Pumps, Size of, 135	Crank-pins, Length of, 103
Circulation in Boilers, 221	Surfaces of 100
Circumferences of Circles, . 365	Crankshafts, Built,
Circumferences and Areas of Small	of Paddle Engines, 97, 10
Circles	of Screw Engines, 97, 101
	Channel (Constraint Dade 112
Clearances (in Cylinders), 69	Crossed (Eccentric) Rods, 157
Coal, Chemical Composition of, 207, 210	Crossheads, Piston-Rod, 8
11 Stowage of, 308	,, Pump, 148
Coal Consumption per Foot of Grate,	Cubes and Cube Roots, 373
216, 218, 219	Cubic Metre, Equivalent of 524
per I.H.P., . 216	Curve of Co-efficients of Performance, 23
Co-efficients, Admiralty, Tables of, 15, 16	of I.H.P.,
or rineness, 24	n of Revolutions, 22

PAGE	PAGE
Curve of Slip,	Estimated Horse-power, 1
Cylinder Barrels, 51	Evaporation (in general)
Covers (Cast-steel), 60	from and at 212° F., . 222
" Drain Cocks or Valves, . 64	Rate of 215, 218, 222
Drain Pipes, 65	Evaporators, Board of Trade Rules
Ends and Covers (Cast-iron), 55	for,
, Liners, 54	Expansion of Metals by Heat, . 306
Ports, Pipes, and Passages, 49	11 Steam, 41
Relief Valves, 63	
Reversing Engine, Size of, 174	
" Turning Engine, Size of, . 176	F
Valve-boxes, 58	•
Cylinders, Design of, 67	False Faces of Cylinders, 59
Size of, for given I.H.P., 2,48	Feed Check Valves 257
N.H.P., 3, 47	Feed Heaters,
Cylindrical Boiler Shells, Board of	Feed Pipes, Internal, 258
Trade Rules for,	u Sizes of 141
Cylindrical Boiler Shells, Lloyd's	Feed Pump Plungers, 142
Rules for,	Valves and Valve-Boxes, 141
	Feed Pumps, 139
•	Feed Reserve Tanks, 143
D	Feed Tanks 142
	Feed Water, Quantity of, 140
Decimal Equivalents of Fractions of	Ferrules for Condenser Tubes, . 128
an inch, 348	Fire Bars,
Design of Cylinders, 67	Flanges for Copper Pipes, 200
Diagrams, Indicator, to calculate, . 5	Flat Surfaces, General Rule for, . 59
Diagrams of Slide-Valve Motions, . 154	of Boilers, Board of
Diameter of Cylinder for given	Trade Rules for, 233-285
power, To calculate, 47	of Boilers, Lloyd's
Discharge Valves,	Rules for, . 235-237
Distilling Apparatus, Board of Trade Rules regarding. 281	(Area that one Stay
	will support), . 240 Forced Drought 214
Distribution Boxes (Bilge Pump), . 145	Forced Drought,
Donkey Boilers, Board of Trade Rules for. 244	Fractions of an Inch, Decimal
Rules for,	Equivalents of 348
&c., 64	Fractions of an Inch, Metrical
Drain Pipes from Cylinders (where	Equivalents of,
to be led to), 65	Framings of Engines, 122
20 20 102 20),	Friction of Engines 11
	Fuels,
***	" Composition of, 208, 210
E	" Total Heat of Combustion
Eccentric Gear, Single, 169	of, 208, 210
Eccentric Rods,	Funnels 211
Crossed and Open, . 157	Furnaces, Board of Trade Rules for, 241
Obliquity of, 157	" Lloyd's Rules for, 242
Eccentrics, 165	Number of, 223
Effective Pressures on Pistons 8	Furnace, Size of,
Efficiency, as affected by Jacketing, 12	11 Bridges, 268
Mechanical, of Engines, 10	" Fittings, 267
Ends and Covers (Cast-iron) of	Fronts and Doors, 267
Cylinders, 55	
Engine Framings, 122	
Engine Seatings, 270	G
English and Metric Measures,	
824, 340-354	Gas Threads (Whitworth), 315
Equivalent Mean Pressures, 41	Gauge Glasses, Boiler, 258
Equivalent Twisting Moments, 98	Girders of Combustion Chamber
Escape Valves, Cylinder, 63	Tops, Board of Trade Rules for, . 239

obtain, Jacket D Grate Surface,	. Ј
Girth, Mean Immersed, How to obtain, 20 Scrate Surface, 223 Gratings, Ladders, &c., 269 Jet Cond	
Grate Surface,	g, Effects of, on efficiency, 1
Gratings, Ladders, &c., 269 Jet Cond	rains (where to be led to),
	ipes and Valves, 6
	ensers,
	lve-Gear
Guides and Guide Blocks, Piston-Rod, 86   Junk-Rin	g Bolts, 8
Gunmetal, Composition, Qualities,	
and Strengths of,	7
Gunmetal Pipes and T Pieces, 201, 202	K
Keys of (	Cranks and Levers, 10
_ n I	Propellera, 10
	mes and Pounds, 35
Handrails, &c.,	er Sq. Centimetre and
	per Sq. Inch 35
	es, Miles, Knots, Feet per
Heat, Mechanical Equivalent of, . 208   min. as	nd Feet per sec., . 340–34
Heating Surface (in general), . 220, 223   Kirk's Ar	
per Foot of Grate, Knots, M 216, 218, 219	iles, Kilometres, &c., 340–34
per I.H.P., 216, 218	
Holding Down Bolts of Engines, 272	L
" Thrust-Blocks, 115	
	and Platforms, 26
	Boilers, Board of Trade
	indard Wire Gauge, 19
	, , and
" Normal Indicated, '. 2 Equiva	lents in Millimetres, 19
	r Reversing Gear, 17
Trade and Lloyd's Rules regarding,	working Pumps, 14 r Cylinders, 5
	up, Effects of,
Links or	Quadrants, Reversing, . 16
	Slings for Pump Gear, . 14
I Litre, En	glish Equivalent of
I Litre, En Lloyd's S	gush Equivalent of,
I Litre, En Lloyd's S Inches and Millimetres, 348	
I Litre, En Lloyd's S Indicated Horse-Power,	
I Litre, En Lloyd's S Inches and Millimetres,	urveys, Particulars of, 27
I Litre, En Lloyd's S Inches and Millimetres,	urveys, Particulars of, . 27  M  y of Torpedo Boats, . 218, 21
I Litre, En Lloyd's S Inches and Millimetres,	M  y of Torpedo Boats, . 218, 21 ring Brasses, 12
I Litre, En Lloyd's S Indicated Horse-Power, 4  Constant Multipliers for, 7 Curve of, 22 per Foot of Grate, 216-218 per 100 Feet  Litre, En Lloyd's S  Machiner Main Bea	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 Frames, 12
I Litre, En Lloyd's S Indicated Horse-Power,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 Frames, 12 rings. 11
I Litre, En Lloyd's S Indicated Horse-Power,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 Frames, 12 rings, 11 Surfaces of, 10
I Litre, En Lloyd's S Indicated Horse-Power,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 Frames, 11 surfaces of, 10 se Bronze, Strength, Quali-
I Litre, En Lloyd's S Indicated Horse-Power,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 rings, 12 rings, 11 see Bronze, Strength, Qualid Weight of, 29
I Litre, En Lloyd's S Inches and Millimetres,	M y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 Frames, 12 rings, 11 se Bronze, Strength, Qualid Weight of, 29 nmersed Girth, How to
Inches and Millimetres,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 rings, 11 Surfaces of, 11 Surfaces of, 29 omersed Girth, How to ssures, How to Calculate,
I Litre, En Lloyd's S Indicated Horse-Power,	M  y of Torpedo Boats, . 218, 21 ring Brasses,
Inches and Millimetres,	M  y of Torpedo Boats,
Inches and Millimetres,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 rings, 11 Surfaces of, 11 Surfaces of, 12 se Bronze, Strength, Qualidweight of, 12 sures, How to Calculate, from Diagrams, How to Determine, from Initial Pres-
Inches and Millimetres,	M  y of Torpedo Boats, 218, 21 ring Brasses, 12 Caps and Bolts, 12 rings, 13 Surfaces of, 11 Surfaces of, 12 se Bronze, Strength, Qualid Weight of, 12 sures, How to Calculate, from Diagrams, How to Determine, from Initial Pres-

PAGE

	208	Pipes, Copper, Thicknesses of, by
	807	Board of Trade Rule, . 198
Metallic Packing, Stuffing Boxes for,	72	"Gunmetal, and T Pieces, 201, 202
	306	" Wrought-Iron, Thicknesses
" Melting Points of,	307	of, by Board of Trade Rule, 199
Strength of, as affected by		Piston Clearances, 69
	806	Piston-Rod Brasses, 89
Metric and English Measures, 324, 840–	354	11 Cotters, 86
Metric Equivalents of Fractions of		" Crossheads, 88
	<b>348</b>	Guides and Guide Blocks, 86
	840	Piston-Rods, 84
	843	Piston Speeds, Usua', 45
	289	, Springs, 81
Model Experiments,	23	11 Valves, 150
	802	Pistons, Cast-Iron, 80
Moment of Inertia of Sections,	802	" Cast-Steel, 76
Mud Boxes (Bilge Pump),	144	Pitch of Boiler Tubes,
Multipliers, Constant, for Indicated		Condenser Tubes, 128
Horse-Power,	7	Propeller, 178
Muntz Metal, Strength, Qualities,	- 1	" Studs and Bolts, 62
and Weight of,	296	Planimeter, 5
		Platforms and Ladders, 269
		Ports, pipes, and Passage of
N		Cylinders, 49
14		Pounds and Kilogrammes, 351
Naval Brass, Strength, Qualities,		Pounds per Sq. Inch and Kilos. per
and Weight of,	296	Sq. Centimetre, 858
Nominal Horse-Power,	i	Power and Speed Curves 21
Normal Indicated Horse-Power,	2	Formulæ, Admiralty, 18
Nuts, Sizes of,	75	" " Kirk's, . 17
nute, biace of,	1	Mr Mansel's, 20
	- 1	, Rankine's, 19
		Powers of Speeds, 26
0		Pressures, Éffective, on Pistons, . 8
		on Thrust Rings, 112
	157	of Water due to various
	157	Heads, 325
Openings in Decks, Lloyd's Rules		Prismatic Co-efficient, 25
regarding, Oscillating Cylinders,	274	
Oscillating Cylinders		Propeller, Screw
Operminant Chiminote'	68	
u Engine, Diagram for		Blade Studs of Screw, . 188
Slide-Valves of,	159	Blade Studs of Screw, 188 Boss of Screw, 184
Slide-Valves of, .  Overflow Valve of Jet Condenser, .	159 126	Blade Studs of Screw, . 183   Boss of Screw, 184   Keys of Screw, 109
U. Engine, Diagram for Slide-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines,	159 126 106	Blade Studs of Screw, 188   Boss of Screw, 184   Keys of Screw, 109   Pitch of Screw, 178
U. Engine, Diagram for Slide-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines,	159 126	Blade Studs of Screw, 183
U. Engine, Diagram for Slide-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines,	159 126 106	Blade Studs of Screw, 188
U. Engine, Diagram for Slide-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines,	159 126 106	Blade Studs of Screw, 183   Boss of Screw, 184   Keys of Screw, 109   Pitch of Screw, 178   Slip of Screw, 178   Surface of Screw, 180   Thickness of Blades of
U. Engine, Diagram for Slide-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines,	159 126 106	Blade Studs of Screw, 188
U Engine, Diagram for Silde-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links,	159 126 106	Blade Studs of Screw,
u Engine, Diagram for Silde-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links,	159 126 106 157	Blade Studs of Screw, 188
u Engine, Diagram for Silde-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links,	159 126 106 157	Blade Studs of Screw,
u Engine, Diagram for Silde-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links,  P Packing Rings, Piston, Depth of, Paddle Shafts.	159 126 106 157 80 106	Blade Studs of Screw,
u Engine, Diagram for Silde-Valves of, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links, P Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial,	159 126 106 157 80 106 184	Blade Studs of Screw, 188
o Engine, Diagram for Silde-Valves of, . Overflow Valve of Jet Condenser, . Overhung Cranks of Paddle Engines, . Reversing Links, .  P Packing Rings, Piston, Depth of, . Paddle Shafts, . Paddle Wheels, Radial, Peathering, .	159 126 106 157 80 106 184 185	Blade Studs of Screw,
Overflow Valve of Jet Condenser, Overflow Valve of Jet Condenser, Overhung Cranks of Paddle Engines, Reversing Links,  P P Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Feathering, Diam of,	159 126 106 157 80 106 184 185 187	Blade Studs of Screw, 188
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Shafts, Paddle Wheels, Radial, Pathering, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Depth of, Paddle Shafts, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston, Diam. of, Piston,	159 126 106 157 80 106 184 185 187 187	Blade Studs of Screw,
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Shafts, Paddle Wheels, Radial, Pathon of, Piston of, Pi	159 126 106 157 80 106 184 185 187 187	Blade Studs of Screw, 188
Packing Rings, Piston, Depth of, Paddle Shafts, Wheels, Realial, Paddle Shafts, Paddle Shafts, Paddle Wheels, Radial, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Piston, Depth of, Paddle Shafts, Paddle Treams of, Pass Valves,	159 126 106 157 80 106 184 185 187 187	Blade Studs of Screw, 188
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Peathering, Pass Valves, Pass Valves, Phosphor Brouze, Strength, Quali-	159 126 106 157 80 106 184 185 187 187 188 65	Blade Studs of Screw, 188
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Shafts, Paddle Shafts, Paddle Shafts, Paddle Wheels, Radial, Piparam of, Piparam of, Pass Valves, Phosphor Brouze, Strength, Qualities, and Weight of,	159 126 106 157 80 106 184 185 187 187 188 65	Blade Studs of Screw,
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pathering, Pather	159 126 106 157 80 106 184 185 187 187 188 65 295	Blade Studs of Screw,
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Pathering, Pass Valves, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feather	159 126 106 157 80 106 184 185 187 187 188 65 295 204 8	Blade Studs of Screw,
Packing Rings, Piston, Depth of, Paddle Shafts, Paddle Wheels, Radial, Pathering, Pass Valves, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feathering, Feather	159 126 106 157 80 106 184 185 187 187 188 65 295	Blade Studs of Screw,

PAGE	PAGE
R	Shafting, 95
	11 Hollow, 95, 97
Ratio of Actual Mean Pressure to	Stiffness of,
Theoretical,	Shells of Cylindrical Boilers, Board
n of Heating Surface to Grate	of Trade Rules for,
Surface, 216, 218, 219	Shells of Cylindrical Boilers, Lloyd's Rules for. 232
Ratios of Cylinders,	
Receivers, Capacity of,	Ships, Resistance of,
Reciprocals of Numbers, 373	Size of Cylinders for given Indicated
Relation between Stroke and Re-	Horse-power,
volutions, 47	Size of Cylinders for given Nominal
Relief Rings for Slide-valves, 151	Horse-power,
Relief Valves, Cylinder, 68	Slide-rod Guides 161
Reserve Feed-water Tanks, 148	Slide-rods, 160
Resistance of Ships, 12	Slide-valves, 148
Resistances of Wetted Surfaces, . 25	Area of Passages in, 150
Reversing Engine Cylinders, Sizes	Diagrams for, 154
of,	Lap of,
Reversing Gear,	Lead of, 151
17 Levers, 176	Port openings of, 151 Relief Rings for, 149, 151
Weight-shafts, . 174 Worm Wheels and	
Worms, 175	Thursday 150
Reversing Links or Quadrants, . 162	Slip, Curve of,
Revolutions, Curve of,	of Paddle Wheels, 184, 185
Usual Numbers of, . 46	of Screw Propeller, 178
and Stroke, Relation	Snifting Valve of Jet Condenser, . 126
between, 47	Soleplates,
Riveted Joints, Board of Trade	Spanners, Proportions of,
Rules for,	Spare Gear, Board of Trade Rules
Ropes, Hemp,	relating to, 280
" Steel Wire, 286	" Lloyd's Rules relating
•	to,
•	Specific Heat,
S	Speed, True Mean,
Color Walne Arres	Speedand Power Formulæ, Amiralty, 13
Safety Valve Areas,	35 35 31 90
Safety Valves,	
Board of Trade Rules	Curves, 21
for, 260	Speeds, Corresponding, 21
Lloyd's Rules for, . 267	and Times,
Receiver, 64	Spiral Springs,
Screw Glands for Condenser Tubes, 127	Split Pins, Suitable Sizes of, 75
Screw Propellers,	Springs for Pistons, 81
Screw Propeller, Blade Studs of, 183	Square Feet and Square Metres, . 349
11 BOSS OI, 184	
Diameter of, . 179	Metres and Square Feet, . 350
	Metres and Square Feet, 350 Squares and Square Roots, 373
" Slip of, 178	Metres and Square Feet, 350 Squares and Square Roots, 373 Starting Valves, 65
Surface of, 180	" Metres and Square Feet, 350 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272
Surface of, 180 Thickness of Blades	"Metres and Square Feet, 350 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boiler, Admiralty Rules for, 239
Surface of, 180 Thickness of Blades of, 180	Metres and Square Feet, 330 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boller, Admiralty Rules for, 239 "Board of Trade Rules
Surface of,	Metres and Square Feet, 350 Squares and Square Roots, 373 Starting Valves, 65 Starying of Engines, 272 Stays, Boiler, Admiralty Rules for, 239 Board of Trade Rules for, 239
Surface of, 180   Thickness of Blades of, 180   Of, 180   Screw Threads (Whitworth), 74   Scum Valves, 253	Metres and Square Feet, 330 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 972 Stays, Boller, Admiratly Rules for, 239 Board of Trade Rules for, 239 Lloyd's Rules for, 239
Surface of, 180   Thickness of Blades of, 180   Screw Threads (Whitworth), 74   Scum Valves, 255   Seatings, Engine and Boller, 270	Squares and Square Feet, 339 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boller, Admiralty Rules for, Board of Trade Rules for, Lloyd's Rules for, 239 Lloyd's Rules for, 239 (Surfaces they will
Surface of, 180   Thickness of Blades of, 180   Of, 180   Screw Threads (Whitworth), 74   Scum Valves, 253	Squares and Square Feet, 330 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boller, Admiralty Rules for, 289 For, 100 Lloyd's Rules for, 239 (Surfaces they will support), 240
Surface of, 180   Thickness of Blades of, 180   Thickness of Blades of, 180   Screw Threads (Whitworth), 74   Scum Valves, 253   Seatings, Engine and Boller, 270   of Thrust Blocks, 272   dc., Lloyds Rules concerning, 273	Metres and Square Feet, 339 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boiler, Admiralty Rules for, Board of Trade Rules for, 1 Lloyd's Rules for, 239 (Surfaces they will support), 5 Steam, Table of Properties of
Surface of,   180	Squares and Square Feet, 330 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boller, Admiralty Rules for, 239 Board of Trade Rules for, 239 Lloyd's Rules for, 239 (Surfaces they will support), 940 Steam, Table of Properties of Saturated, 333
Surface of, 180   Thickness of Blades   180   Thickness of Blades   180   Screw Threads (Whitworth), 74   Scum Valves, 255   Seatings, Engine and Boller, 270   of Thrust Blocks, 272   c. Lloyds Rules   273   Cerning, 273   Sea Valves, 190   Segments of Circles, Areas of, 355   Segments of Circles, Areas	Metres and Square Feet, 330 Squares and Square Roots, 373 Starting Valves, 65 Staying of Engines, 272 Stays, Boiler, Admiralty Rules for, Board of Trade Rules for, 289 I Lloyd's Rules for, 239 I Lloyd's Rules for, 239 I Steam, Table of Properties of Saturated, 333 Weight of, accounted for by Indicator Diagram, 9
Surface of,   180	Surfaces they will support).  Steam, Table of Properties of Saturated, Weight of, accounted for weight of the Saturated, weight of the Saturated, weight of, accounted for support of Saturated, weight of, accounted for support of Saturated, weight of, accounted for surfaces they will support).

Steel for Boilers, Admiralty Tests	Thrust Blocks or Bearings, 111
	Thrust Collars on Shafts
" Board of Trade	Times and Speeds,
Tests of, 229	Torpedo Boat Machinery, 218, 219
" Lloyd's Tests of, 230	Torpedo Boats,
Steel Bars and Plates, Strengths,	Travel of Slide-Valve, 150
Qualities, and Weights of, 293	Trick Valve, 149
" Forgings, Strength, Quality,	Triple versus Compound Engines, . 38
and Weight of, 294	True Mean Speed,
Stern-tube Bushes,	Tubes, Boiler, Pitch of, 226
stuffing-boxes, 117	" Condenser,
Stern-tubes,	" Surface of 323
City to the Theorem	Tube plates Dollar Streeges on
	Tube-plates, Boiler, Stresses on, Board of Trade Rule for, 238
	Make alake Pellan Character 288
Strainer Boxes, Bilge Pump, 144	Tube-plates, Boiler, Stresses on,
Strength of Cast-iron in Compression, 290	Lloyd's Rule for, . 238
, Materials, 288	Condenser, 127
" General Table	Turning Engine Cylinders, Sizes of, 176
of, 297	Turning Gears, 176
" Metals as affected by	Turning Wheels and Worms, 177
Heat, 306	Twisting Moments, Curve of, 99
Stroke and Revolutions, Relation	Equivalent, 98
	Two-thirds Powers of Numbers, . 30
	I WO-MILLOS I OWELS OF LAMBERS, . SO
Stroke of Piston, Usual, 47	
Studs, Area of, at bottom of Thread, 75	
Diameter of, in Joints, 62	***
Pitch of, in Joints, 62	Ū
Strength of	
Stuffing-boxes, Proportions of, . 70	Underwater Valves, 190
Suction Valves,	
Supervision of Boiler Work,	
Admiralty instructions regarding, 250	
	$\mathbf{v}$
Friction (of Vessels), 25	Valve-boxes, Cylinder, 58
Surfaces of Crank-pins, 100	Valve-box Covers, Cast-iron, 61
of Main Bearings, 100	Cast-steel 82
,, of Pins in Pump Gear, . 148	Valve Diagrams, 154
Surface of Tubes,	" Faces, Cylinder, 59
Surface that may be Supported by	Valve Gear,
one Boiler Stay, 240	Joy's,
0.00 - 0.000, 7	Valve Links or Quadrants 162
T	Valve Rods, 160
<u> </u>	Valve Rod Guides, 161
T-13 (3) -64 - 6 (3 Th-mb-s 100	Valves, Blow-off, 191
Tail Shafts of Screw Engines, . 108	11 Discharge, 191
Testing of Boilers by Water Pres-	ıı Stop, 206
sure, Board of Trade and Lloyd's	Suction or Inlet 190
Rules for, 243, 244	Volume of Water at Different
Thermal Unit, British, 208	Temperatures,
Thermometers, Comparison of, . 326	Tomperatures,
Thickness of Copper Pipes, 197	
y by Board	
of Trade Rule, . 198	w
	**
wrought-iron Pipes	Water Proch and Calt Waterst and
by Board of Trade	Water, Fresh and Salt, Weight and
Rule, 199	Bulk of, 323
Threads of Screws (Whitworth Gas), 315	" Pressure of, Due to Various
" (Whitworth Or-	Heads, 325
dinary), 74	" Sea, Boiling Points of, . 324
Thrust, Indicated, 11, 112	" Volume of, at Different
Mean Normal, 112	Temperatures, 259
Thrust Block Seatings, 272	Water Gauges, 214, 258
<b>5</b> ,	. ,

PAGE	PAGE
Water Spaces in Boilers, 226	Weights of Round and Square Steel, 310
Water-tube Boilers, Performances	of Seamless Copper Tubes, 319
of,	of Sheet Metals. 320
Weigh-shaft Levers 176	of Steel Angle-bars. 314
Weigh-shafts, Reversing Gear, . 174	
Weight, Comparative, of Different	Welding of Boiler Steel, Board of
Types of Boiler, 227, 228	
of Steam Accounted for by	Wetted Surface, I.H.P. per 100 feet
Indicator Diagram, . 9	
Weights of Actual Boilers, 224	
of Brass Condenser Tubes, 315	
of Copper Pipes, 319	
of Engines and Boilers of	Wire Gauge, Legal Standard, and
Various Types, 321	Equivalents in Millimetres. 196
of Flat Steel Bars 312	Wire Gauges and Equivalents in
of Flat Wrought iron	Inches
Bars, 311	
of Iron Angle-bars, 313	
of Lead Pipes, 820	
of Materials Community	0
" OI Materials, General	
Table of,	
of Round and Square Iron, 309	and Weight of, 290

Jas produers will ensume from

fire to setten formeds of eval

m a square pool of now one

per hour, depending on the

funitity of ash. About 80% or tetter, can be realized in the gas as ful. Berthon paint.

m

. 48

1









This book should be returned to the Library on or before the last date stamped below. A fine of five cents a day is incurred by retaining it beyond the specified time. Please return promptly.

Eng 348.94.2
A pocket book of marine engineering Cabot Science 006572466