The practical complexity of arbitrary-precision functions

Fredrik Johansson *

* Inria Bordeaux

Fundamental Algorithms and Algorithmic Complexity RTCA 2023

> Institut Henri Poincaré September 28, 2023

Introduction

Question

How quickly can we compute functions like exp(x) to n digits?

(Bit) complexity bounds quasilinear in *n* are classical.¹ But what happens in practice?

Much more generally, how should we analyze algorithms which use n-digit numbers? Estimates like

k arithmetic operations $\rightarrow k \, n^{l+o(1)}$ bit operations hide a lot of details!

¹e.g. Brent, 1970s. With certain refinements in recent years.

An important unit of measurement

M(n) = the time to multiply two n-digit integers.

Notable algorithms:

- ▶ Basecase: $M(n) = O(n^2)$
- ► Toom-Cook: $M(n) = O(n^c)$ for 1 < c < 2
- $\blacktriangleright \mathsf{FFT} : \mathcal{M}(n) = \mathcal{O}(n \log n \ldots)$
 - Schönhage-Strassen (used in GMP)
 - Complex floating-point FFT
 - Number-theoretic transform (NTT) ($\mathbb{Z}/p\mathbb{Z}$, word-size p)
- ▶ Harvey van der Hoeven: $M(n) = O(n \log n)$, not yet used

Remarks:

- In typical implementations, "digit" = "64-bit word".
- ▶ Some bounds stated in this talk make assumptions about M(n).

Timings 2 for n-word integer arithmetic

²AMD Ryzen 7 PRO 5850U, GMP 6.2, FLINT 3.0.

Things we might be able to do in the span of M(n)

- ▶ 3 FFTs + pointwise multiplications
- ▶ 1.5 to 2 squarings
- ▶ 1 to 2 short products (top or bottom half of the full 2*n* words)
- ▶ 2 to 4 half-length multiplications with cost M(n/2)
- $ightharpoonup min(n^2, 100n)$ single-word operations
- ightharpoonup min(n, 100) scalar operations ($x + y \cdot c$ with single-word c)
- ► Table lookups
- **.**..

Mantra

Reduce everything to multiplication. But if possible, reduce further!

Arithmetic operations and Newton iteration

Newton iteration allows approximating x/y or \sqrt{x} to n digits in time

$$O(M(n) + M(n/2) + M(n/4) + ...) = O(M(n)).$$

Some theoretical complexity bounds in the FFT model are:³

- ► Reciprocal : $\sim 1.444...M(n)$
- ▶ Division: $\sim 1.666...M(n)$
- Square root: $\sim 1.333...M(n)$

These bounds rely on FFT tricks which so far are not widely used. In practice one may see $\approx \mathcal{M}(n)$ near the basecase range and $\approx 2\mathcal{M}(n)$ to $3\mathcal{M}(n)$ in the FFT range.

³Table 4.1 in Brent and Zimmermann, Modern Computer Arithmetic.

Timings for division and square root

Binary splitting

Important tool used to compute, for example:

- Products of small integers like N!
- ► Hypergeometric series like $\sum_{k=0}^{N} x^k / k!$

Example

The cost to compute the NB-digit product of B-digit integers c_1, c_2, \ldots, c_N is bounded by

$$M(NB/2) + 2M(NB/4) + 4M(NB/8) + \ldots \approx \frac{1}{2}M(NB)\log_2 N.$$

In practice, binary splitting often beats such estimates. Why?

- ▶ The nonlinearity of M(n) (in reality, $2^k M(n/2^k) < M(n)$)
- ▶ Possibility of truncation when we want n < NB digits
- Additional structure that can be exploited

Pi and the AGM

Most world records for π in the last 30 years (currently 10^{14} decimal digits) have used the Chudnovsky series

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 \cdot 640320^{3k+3/2}}$$

which costs $O(M(n) \log^2 n)$ using binary splitting.

Why not use the arithmetic-geometric mean (AGM) method

$$\pi = \lim_{k \to \infty} \frac{(a_k + b_k)^2}{1 - \sum_{j=0}^k 2^j (a_j - b_j)^2},$$

$$a_0 = 1$$
, $b_k = \frac{1}{\sqrt{2}}$, $a_{k+1} = \frac{a_k + b_k}{2}$, $b_{k+1} = \sqrt{a_k b_k}$.

which achieves $O(M(n) \log n)$?

Time to compute π

Remark: Paul Zimmermann made a similar comparison in a 2006 talk. He observed a $5\times$ difference between the algorithms.

Elementary functions

The elementary functions have mostly analogous direct methods:

	exp	sin, cos	log	atan
Taylor series, $x \in \overline{\mathbb{Q}}$	$O(M(n) \log n)$		$O(M(n)\log^2 n)$	
Taylor series, $x^N = \varepsilon$	$O(\sqrt{N}M(n) + N^{1+o(1)}n)$			
Bit-burst	$O(M(n)\log^2 n)$		$O(M(n)\log^3 n)$	
AGM			$O(M(n)\log n)$	

Constant-factor conversions:

- C = 1 + o(1) for $f \rightarrow f^{-1}$ via Newton iteration
- $ightharpoonup C pprox 2-4 ext{ for } \mathbb{R}
 ightarrow \mathbb{C}$

The AGM for elementary functions

The logarithm can be computed as

$$\log(x) \approx \frac{\pi}{2 \operatorname{agm}(1, 4/s)} - m \log(2), \quad s = x \cdot 2^m > 2^{\operatorname{bits}/2},$$

$$\operatorname{agm}(x_0, y_0) = \lim_{n \to \infty} x_n, \quad x_{n+1} = (x_n + y_n)/2, \ y_{n+1} = \sqrt{x_n y_n}$$

$$\operatorname{agm}(x_0, y_0) = \lim_{n \to \infty} x_n, \quad x_{n+1} = (x_n + y_n)/2, \ y_{n+1} = \sqrt{x_n y_n}$$

where π and $\log(2)$ are precomputed.

- ▶ The number of AGM iterations is $\sim 2 \log_2(n)$.
- \blacktriangleright We can save O(1) iterations using series expansions.
- ▶ In the FFT model, an upper bound for the complexity is $\sim 4 \log_2(n) M(n)$ with real arithmetic (computing exp, log).
- We need complex arithmetic for trigonometric functions.

The bit-burst algorithm

Write $\exp(x) = \exp(x_1) \cdot \exp(x_2) \cdot \cdot \cdot$ where x_j extracts 2^j bits in the binary expansion of x. Use binary splitting to evaluate

$$\exp(x_j) \approx \sum_{k=0}^{N_j} \frac{x_j^k}{k!}.$$

Important optimization 1: do an initial argument reduction

$$\exp(x) \rightarrow \exp(x/2^r)^{2^r}, \quad r = o(\log^2(n)).$$

This trades the first and most expensive Taylor series for cheaper squarings. In practice, $r \approx 10-100$ varying with n.

Important optimization 2: for smallish n, just use one Taylor series, with rectangular splitting $(O(\sqrt{N}M(n) + N^{1+o(1)}n))$ for N terms). One can make $N \to N/2$ using $\exp(t) = s + \sqrt{s^2 + 1}$, $s = \sinh(t)$.

AGM vs bit-burst vs theory

Argument reduction using precomputation

There are faster ways to reduce r by a factor 2^r if we allow precomputations. Different tradeoffs are possible. For simplicity, we limit the reduction time to O(M(n)). Two example designs:

Method A: $O(n2^r)$ table size, any r

Precompute $\{\exp(i/2^r)\}_{i=0}^{r-1}$. Use $\exp(x) = \exp(i/2^r) \exp(x - i/2^r)$.

Method B:⁴ O(nr) table size, $r = O(\log n)$

Pick rationals $|q_i - \exp(2^{-i})| < 2^{-r}/r$. Precompute $\{\log(q_i)\}_{i=1}^r$.

$$\exp(x) = \underbrace{(q_1^{b_1} \cdots q_r^{b_r})}_{\text{Binary splitting}} \exp(x - \underbrace{(b_1 \log(q_1) + \cdots + b_r \log(q_r))}_{\text{Scalar operations}})$$

Reduction costs $O(M(r^2) \log r + nr)$, so we can have $r = O(\log n)$. In practice, the optimal r initially grows more like \sqrt{n} .

⁴Thanks to Joris van der Hoeven for suggesting this version.

Time to compute $\exp(x)$, with table reduction to 2^{-r}

Avoiding large tables: Schönhage's method

Method C: O(n) table size, $r = O(\log n)$

Precompute $\log(2)$ and $\log(3)$. Given x, compute r-bit integers c, d such that $2^c 3^d \approx \exp(x)$ within 2^{-r} .

$$\exp(x) = 2^{c}3^{d} \exp(x - c \log(2) - d \log(3))$$

Example:
$$x = \log(\pi)$$

$$2^8 \cdot 3^{-4} = 3.16...$$

 $2^{1931643} \cdot 3^{-1218730} = 3.141592601...$
 $2^{-3824416943916269} \cdot 3^{2412938439979599} = 3.141592653589793360...$

- ▶ If $r \le \log_2(n)$, computing 3^d costs $O(M(2^r)) = O(M(n))$.
- ▶ If $r > \log_2(n)$, continued powering degenerates to full *n*-digit powering; we don't save anything over simply doing $x \to x/2^r$.
- For trigonometric functions, use two Gaussian primes.

Multi-prime method⁵

Method C with ℓ primes: $O(\ell n)$ table size

Precompute $\log(2), \ldots, \log(p_{\ell})$. Given x, compute integers c_1, \ldots, c_{ℓ} such that $2^{c_1} \cdots p_{\ell}^{c_{\ell}} \approx \exp(x)$ within 2^{-r} .

$$\exp(x) = 2^{c_1} \cdots p_\ell^{c_\ell} \, \exp(x - (c_1 \log(2) + \ldots + c_\ell \log(p_\ell)))$$

Example: $\ell = 5$ and $x = \log(\pi)$

$$2^{6} \cdot 3^{4} \cdot 5^{-10} \cdot 7^{2} \cdot 11^{2} = 3.1473...$$

 $2^{-31} \cdot 3^{-57} \cdot 5^{136} \cdot 7^{41} \cdot 11^{-89} = 3.141592609...$
 $2^{-583} \cdot 3^{3227} \cdot 5^{7718} \cdot 7^{-8681} \cdot 11^{555} = 3.14159265358979346...$

Heuristically, the exponents now only have around r/ℓ bits and computing the power product costs $O(M(2^{r/\ell} \cdot \ell^{O(1)}))$.

Heuristically, we can choose $r \propto \ell^2$ with $\ell \propto \log(n)$.

⁵J. Computing elementary functions using multi-prime argument reduction, 2022

Computing smooth rational approximations

To quickly solve the inhomogeneous integer relation problem

$$\mathbf{x} \approx \mathbf{c}_1 \alpha_1 + \dots \mathbf{c}_{\ell} \alpha_{\ell},$$

precompute (using LLL, say) solutions $\varepsilon_1 > \varepsilon_2 > \dots$ to the homogeneous problem $0 \approx d_1 \alpha_1 + \dots d_\ell \alpha_\ell$:

$$\begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ 0 & -1 & -2 & 1 & 1 \\ 1 & 2 & -3 & 1 & 0 \\ -3 & 4 & -2 & -2 & 2 \\ -2 & 2 & 2 & -7 & 4 \\ -18 & -3 & 22 & 1 & -9 \\ 19 & -23 & -22 & 1 & 19 \\ 23 & -12 & 47 & 9 & -40 \end{pmatrix} \begin{pmatrix} \log(2) \\ \log(3) \\ \log(5) \\ \log(7) \\ \log(11) \end{pmatrix} = \begin{pmatrix} 0.182 \\ 0.0263 \\ 0.00797 \\ 0.000102 \\ 1.61 \cdot 10^{-5} \\ 6.51 \cdot 10^{-7} \\ 4.99 \cdot 10^{-8} \\ 2.83 \cdot 10^{-9} \end{pmatrix}$$

We can then build c_1, \ldots, c_n by removing $\varepsilon_1, \varepsilon_2, \ldots$ in turn from x.

Time to compute $\exp(x)$, different number of primes ℓ

Simultaneous logarithm precomputations

We can compute $\{\log(p_1), \ldots, \log(p_\ell)\}$ simultaneously using ℓ -term Machin-like formulas.⁶ Example for $\ell=2$:

$$\begin{pmatrix} \log(2) \\ \log(3) \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} \mathsf{acoth}(7) \\ \mathsf{acoth}(17) \end{pmatrix}$$

where we use binary splitting to compute

$$acoth(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)} \frac{1}{x^{2k+1}}.$$

For each ℓ , all such formulas can be found using a method of Gauss.

The (conjecturally) best ℓ -term formulas up to $\ell=25$ (and $\ell=22$ for Gaussian primes) are tabulated in (J. 2022).

⁶So named after Machin's formula $\pi/4 = 4 \operatorname{acot}(5) - \operatorname{acot}(239)$.

Best ℓ -term formulas for the first ℓ primes

ℓ	p_1,\ldots,p_ℓ	X	$\mu(X)$
1	2	3	2.09590
2	2, 3	7, 17	1.99601
3	2, 3, 5	31, 49, 161	1.71531
4	2, , 7	251, 449, 4801, 8749	1.31908
5	2, , 11	351, 1079, 4801, 8749, 19601	1.48088
6	2,, 13	1574, 4801, 8749, 13311, 21295, 246401	1.49710
7	2, , 17	8749, 21295, 24751, 28799, 74359, 388961, 672281	1.49235
8	2,, 19	57799, 74359, 87361, 388961, 672281, 1419263, 11819521, 23718421	1.40768
13	2, , 41	51744295, 170918749, 265326335, 287080366, 362074049, 587270881,	1.42585
		831409151, 2470954914, 3222617399, 6926399999, 9447152318, 90211378321,	
		127855050751	
25	2, , 97	373632043520429, 386624124661501, 473599589105798, 478877529936961,	1.60385
		523367485875499, 543267330048757, 666173153712219, 1433006524150291,	
		1447605165402271, 1744315135589377, 1796745215731101, 1814660314218751,	
		2236100361188849, 2767427997467797, 2838712971108351,	
		3729784979457601, 4573663454608289, 9747977591754401,	
		11305332448031249, 17431549081705001, 21866103101518721,	
		34903240221563713, 99913980938200001, 332110803172167361,	
		19182937474703818751	

The Lehmer measure $\mu(X) = \sum_{x \in X} \frac{1}{\log_{10}(|x|)}$ is an estimate of efficiency of a Machin-like formula (lower is better).

Precomputation time, different number of primes ℓ

Assorted transcendental functions

Functions	Restriction	O(M(n)) complexity	Notes
Elementary		log n	
Holonomic	$\nu \in \mathbb{C}$	$n^{0.5+o(1)}$	
(e.g. $erf(z)$, $J_{\nu}(z)$)	$\nu \in \overline{\mathbb{Q}}$	log ^c n	7
$\Gamma(z)$, $\psi(z)$	$z\in\mathbb{C}$	$n^{0.5+o(1)}$	8
	$z\in\overline{\mathbb{Q}}$	log ^c n	
$\zeta(s)$, $L(s,\chi)$	$s\in\mathbb{C}$	$n^{1+o(1)}$	
	$s\in\overline{\mathbb{Q}}$	$n^{0.5+o(1)}$	9
	$s\in\mathbb{Z}$	log ^c n	
$\theta(z \mid T)$		log n	10

Fun fact: all results rely on holonomic functions or the AGM.

⁷Chudnovsky²; van der Hoeven; Mezzarobba

⁸See survey: J., Arbitrary-precision computation of the gamma function, 2023

⁹J., Rapid computation of special values of Dirichlet L-functions, 2022

¹⁰Dupont; Labrande & Thomé; Kieffer; Kieffer & Elkies (unpublished)

Time to compute $\Gamma(x)$

Time to compute $\zeta(s)$

Special points

Principle: transcendental functions can often be evaluated faster at "special" points than at "generic" points.

- ▶ Points in \mathbb{Z} , $\mathbb{Z}[\frac{1}{2}]$, \mathbb{Q} , or even $\overline{\mathbb{Q}}$ (with bit size \ll precision)
 - We may have special formulas, e.g. $\zeta(2) = \pi^2/6$
 - Binary splitting, scalar arithmetic, . . .
- Points close to singularities and special points
 - Series expansions converge faster

Question

We have already seen how special points are useful in argument reduction for elementary functions. In what other situtations can we exploit special points?

Example: polynomial interpolation

Let's compute 1000 digits of

$$\int_0^1 \Gamma(1+x) dx \approx \sum_{k=1}^N w_k \Gamma(1+x_k)$$

using polynomial (Lagrange) interpolation. How should we choose the N sample points to minimize the Γ -function evaluation time?

Newton-Cotes

 $x_k = k/N$ N = 16672500 digits

working precision

Time: 3.02 s

Gauss-Legendre

 $x_{\nu} = \text{root of } P_{N}$ N = 654

Time: 0.14 s

Time: 0.075 s

Perturbed Gauss

 $x_k = \text{root of } P_N$ rounded to 53 bits N = 1294

Thank you!