Задачи по Эконометрике: Доверительные интервалы

Н.В. Артамонов (МГИМО МИД России)

Содержание

Построение доверительных интервалов	1
sleep equation	
output equation	2
cost equation	2
Доверительные интервалы и t-тест sleep equation cost equation	
Доверителные интервалы и сравнение моделей	7

Построение доверительных интервалов

sleep equation

Для набора данных sleep 75 рассмотрим линейную регрессию sleep $\tilde{\ }$ 1 + totwrk + age + south + male + smsa + yngkid + marr.

Постройте 90%-доверительные интервалы (неробастные и робастные) для каждого коэффициента. Ответ округлите до 2-х десятичных знаков.

Ответ (неробастные)

```
95\%
            5\%
(Intercept) 3317.954 3583.872
totwrk
            -0.199 -0.139
           0.269 	 5.109
age
           32.662 170.475
south
           29.851 \ 145.487
male
smsa
          -109.302 -0.193
yngkid
           -96.876 68.952
           -38.349 100.770
marr
```

Ответ (робастные)

	5%	95~%
(Intercept)	3301.820	3600.005
totwrk	-0.203	-0.136
age	0.318	5.061
south	31.548	171.588
male	28.619	146.719
smsa	-109.835	0.340
yngkid	-103.344	75.419
marr	-44.867	107.289

output equation

Для набора данных Labour рассмотрим линейную регрессию $\log(\text{output}) \sim 1 + \log(\text{capital}) + \log(\text{labour})$.

Постройте 95%-доверительные интервалы (неробастные и робастные) для каждого коэффициента. Ответ округлите до 2-х десятичных знаков.

Ответ (неробастные)

```
\begin{array}{cccc} 2.5 \% & 97.5 \% \\ \text{(Intercept)} & -1.901 & -1.522 \\ \log(\text{capital}) & 0.174 & 0.241 \\ \log(\text{labour}) & 0.669 & 0.760 \end{array}
```

Ответ (робастные)

```
2.5 % 97.5 %
(Intercept) -2.073 -1.350
log(capital) 0.146 0.270
log(labour) 0.629 0.801
```

cost equation

Для набора данных Electricity рассмотрим линейную регрессию $\log(\cos t)$ $^{\sim}1 + \log(q) + I(\log(q)^2) + \log(pl) + \log(pk) + \log(pf)$.

Постройте 99%-доверительные интервалы (неробастные и робастные) для каждого коэффициента. Ответ округлите до 2-х десятичных знаков.

Ответ (неробастные)

```
\begin{array}{c} 0.5 \% \ 99.5 \% \\ \text{(Intercept)} \ -8.581 \ -4.896 \\ \log(q) \quad 0.320 \quad 0.486 \\ I(\log(q)^2) \quad 0.025 \quad 0.036 \\ \log(\text{pl}) \quad -0.038 \quad 0.330 \\ \log(\text{pk}) \quad 0.007 \quad 0.308 \\ \log(\text{pf}) \quad 0.573 \quad 0.796 \end{array}
```

Ответ (робастные)

```
\begin{array}{c} 0.5 \% \ 99.5 \% \\ (Intercept) \ -8.949 \ -4.529 \\ log(q) \quad 0.230 \ 0.576 \\ I(log(q)^2) \quad 0.020 \ 0.041 \\ log(pl) \quad -0.077 \ 0.369 \\ log(pk) \quad -0.005 \ 0.320 \\ log(pf) \quad 0.549 \ 0.820 \end{array}
```

Доверительные интервалы и t-тест

sleep equation

Для набора данных sleep75 рассмотрим линейную регрессию sleep на totwrk, age, age^2, south, male, smsa, yngkid, marr, union.

Ниже приведены (неробастные) 90%-доверительные интервалы для коэффициентов.

```
totwrk
            -0.197 -0.137
          -26.347 \quad 11.084
age
I(age^2)
            -0.098 0.347
south
           31.483 \ 169.733
male
           28.681 144.571
          -108.584 0.775
smsa
yngkid
          -101.543 65.622
marr
           -34.936 104.904
           -49.590 \quad 76.328
union
```

Какие коэффициенты значимы при уровне значимости 10%? Ответ

Коэффициент Значимость

(Intercept) Значим totwrk Значим Незначим age I(age2) Незначим south Значим male Значим smsaНезначим yngkid Незначим Незначим marr union Незначим

Визуализация доверительных интервалов как есть (в одном масштабе)

Шкалированные доверительные интервалы

sleep

cost equation

Для набора данных Electricity рассмотрим линейную регрессию $\log(\cos t)$ на $\log(q)$, $\log^2(q)$, $\log(pl)$, $\log^2(pl)$, $\log(pk)$, $\log^2(pk)$, $\log(pf)$, $\log^2(pf)$

Ниже приведены (робастные) 99%-доверительные интервалы для коэффициентов.

 $\begin{array}{c} 0.5~\%~99.5~\%\\ (Intercept) & -129.940~41.133\\ log(q) & 0.223~0.570\\ I(log(q)^2) & 0.020~0.042\\ log(pl) & -11.254~27.921\\ I(log(pl)^2) & -1.544~0.633\\ log(pk) & -3.795~4.668\\ I(log(pk)^2) & -0.559~0.487\\ log(pf) & -3.909~5.707\\ I(log(pf)^2) & -0.734~0.673\\ \end{array}$

Какие коэффициенты значимы при уровне значимости 1%? Ответ

Коэффициент Значимость

(Intercept) Незначим log(q) Значим

I(log(q)2) Значим

 $\log(\mathrm{pl})$ Незначим $I(\log(\mathrm{pl})2)$ Незначим

 $\log(pk)$ Незначим $I(\log(pk)2)$ Незначим $\log(pf)$ Незначим $I(\log(pf)2)$ Незначим

Визуализация доверительных интервалов как есть (в одном масштабе)

Шкалированные доверительные интервалы

Доверителные интервалы и сравнение моделей

Dependent variable:

Результаты подгонки:

	sleep			
	Север	Юг	общая	
	(1)	(2)	(3)	
totwrk	-0.159**	* -0.074	-0.147***	
	(0.018)	(0.045)	(0.017)	
age	-5.507	-12.882	-8.675	
	(12.557)	(25.039)	(11.271)	
I(age2)	0.084	0.273	0.140	
	(0.150)	(0.299)	(0.135)	
smsa	-59.812*	16.055	-69.924**	
	(35.379)	(96.789)	(32.330)	
marr	28.034	152.296*	47.598	
	(46.960)	(86.153)	(41.450)	

Constant $3664.188^{***} 3435.410^{***} 3675.413^{***} (244.380) (494.979) (219.803)$

Observations	576	130	706
R2	0.129	0.140	0.118
Adjusted R2	0.122	0.106	0.112
Residual Std.	Error 421.07	78 393.30	0 418.809
F Statistic	16.928***	4.043***	18.768***

Note: p<0.1; **p<0.05; ***p<0.01

