09/21/23

Project Overview:

The goal of my project is to design and implement a system which is able to monitor vital signs of a human body. There are 4 vital signs that I am going to target.

- 1. Temperature
- 2. ECG
- 3. Body Impedance
- 4. Pulse rate

The design comprises two separate devices connected to each other via Bluetooth Low Energy. The hardware board developed consisting of all the sensors will measure the vital signs while the application hosted on a mobile phone or PC will collect information and show it to the user. The main user group that we target are doctors or trained professionals.

Product Features:

- The mobile or PC application will show the vital sign measurements and save those values according to patient name
- The product implement load power management and harvests energy using solar power
- The product will use a high precision infrared temperature sensor
- The product monitors body impedance using a medical standard BIA IC
- The product measures ECG with the help of high precision medical IC.
- The product delivers pulse rate computed from ECG signal measurements.
- GPIO buttons to turn on and off the system and select functionalities.

Function Block Diagram:

Component Selection:

Processor - EFR32BG13P732F512GM48-D seems to be the best option so far.

Sensor/Actuator Selection

ECG Sensor:

1. Analog Devices:

https://www.analog.com/en/applications/markets/healthcare-pavilion-home/vital-signs-me asurement/electrocardiogram-ecg-measurement.html

2. Maxim Integrated:

https://www.maximintegrated.com/en/products/analog/data-converters/analog-front-end-ics/MAX30003.html

- 3. Texas Instruments: https://www.ti.com/product/AFE4960P
- 4. Texas Instruments: https://www.ti.com/product/AFE4960

Temperature:

1. Melexis Technologies:

https://www.digikey.com/en/products/detail/melexis-technologies-nv/mlx90614esf-bch-000 -tu/5168323

2. Maxim Integrated:

https://www.maximintegrated.com/en/products/sensors/temperature-sensor-ics.html/tab1 ?fam=temp_sens&node=39783&metaTitle=Local%20Temperature%20Sensors&723=OR%7C Clinical%20Grade

3. Mikroe Elektronika:

https://www.digikey.com/en/products/detail/mikroelektronika/mikroe-1362/4495441

4. Melexis Technologies:

ttps://www.digikey.com/en/products/detail/melexis-technologies-nv/MLX90614ESF-AAA-00 0-TU/1647940

Body Impedance:

1. Maxim Integrated:

https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30002.htm

2. Analog Devices:

https://www.analog.com/en/applications/markets/healthcare-pavilion-home/disease-mana gement-and-wellness/body-comp-hydration-bio-impedance-analysis.html

3. Texas Instruments:

https://www.ti.com/lit/ds/symlink/afe4500.pdf?ts=1662242890035&ref_url=https%253A%252F%252Fwww.google.com%252F

09/24/23

Part selection:

Part Number		Manufacturer	Features	
Microcontroller	EFR32BG13P732F5 12 GM48-D	Silicon labs	 Arm Cortex M-4 In-built FPU 512 kB Flash 64 Kb RAM Support BLE,Bluetooth and Bluetooth-5 	
ECG sensor	AD8232	Analog Devices	 Low supply current Specially designed for ECG Shutdown pin available. Lead-off detection 	
Temperature sensor	MLX90614ESF-AAA	Melexis Technologies	Infrared sensingCompatible power requirements.	

			Through-hole component.Very small form factor.
BioImpedance sensor	AD5941BCPZ	Analog Devices	 16-Bit ADC in-built. Voltage/Current/ Impedance measurement capability. On -Chip peripherals.

State Definitions:

The goal of the device is to be used per patient and not continuous. Here are the associated states based on 1 minute reference per state.

S-1 : Deep Sleep S-2 : Startup S-3 : Sensing S-4 : Transmit

Energy Storage element selection

Lifergy Storage element selection							
Part	Current	Voltage	Power	S-1	S-2	S-3	S-4
ECG	230 μΑ	3.3 V	759 μW			*	
AD8232							
Tempera ture	1300 µA	5 V				*	
MLX9061 4ESF							

Vital Sign monitor

Shravan Janga

Microco ntroller				*	*	*	*
EFR32B G13P732 F512 GM48-D							
Bioimpe dance sensor	106 μΑ	3.3 V	349.8 μW			*	
AD5941B CPZ							
BLE transmit							
Total							

Flow diagram

My system will be designed in such a way that it can take all the necessary readings in one go.