Irracionales

Hay numero que no son racionales, numero que tiene expresión decimal infinita que no son periódicos puros ni periódicos mixtos, no son racionales \mathbb{Q} , son Irracionales \mathbb{I} .

$$\mathbb{Q}\cap\mathbb{I}=\emptyset$$

El conjunto de los números racionales es denso "Entre dos números racionales existe un numero racional"

Las macices cuadradas de los números primos son irracionales

Ejemplos

• Ejemplo: $\pm\sqrt{2}$, $\pm\sqrt{3}$, ..., $\pm e$, $\pm\pi$

• Ejemplo: Demostrar que $\sqrt{2}$ es un numero irracional

Demostración:

Supongamos que $\sqrt{2}$ es racional, luego $\sqrt{2}=\frac{a}{b}$ con a,b co-primos. Ahora:

$$\left(\sqrt{2}\right)^2 = \left(\frac{a}{b}\right)^2; \quad 2 = \frac{a^2}{b^2}; \quad 2b^2 = a^2$$

Por lo tanto a^2 es par, entonces a también es par, siendo a=2k con $k\in\mathbb{Z}$. Remplazando:

$$2b^2 = (2k)^2; \quad 2b^2 = 4k^2; \quad b^2 = 2k^2$$

Por lo tanto b^2 es par, entonces b también es par, lo que contradice que a,b son co-primos $\because \sqrt{2} \in \mathbb{I}$

Ejercicios Demostrar que $\sqrt{3}, \sqrt{5}, \sqrt{6}$ son irracionales