	班号	学号	姓名	
题号		11	三	总分
得分				

本题分	30	
得	分	

选择题(每题3分,将选项填入下表)

1	2	3	4	5	6	7	8	9	10

- 1. 质点沿直线运动,运动方程 $x = 2 + 4t 2t^2$ (m), 在最初 3s 内,质点走过的路程为
 - (A) 4m
- (B) 6m
- (C) 8m
- (D) 10m
- 2、在斜抛运动中忽略阻力,则哪一点切向加速度和曲率半径最大?(抛出和落地在同一水平面上)
- (A) 最高点:
- (B) 抛出点和落地点:
- (C) 不确定.
- (D) 最大高度一半处
- 3. 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体。物体所受重力为 P,滑轮的角加速度为 α 。若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度 α
- 将
- (A) 不变
- (B) 变小
- (C) 变大
- (D) 如何变化无法判断
- 4. 质点沿半径为 R 的圆周运动,其路程 S 随时间的变化规律为: $S = v_0 t b t^2$,而其中 v_0, b 均 为常数,则t时刻质点的切向加速度 a_{τ} 与法向加速度 a_{n} 分别为:

(A)
$$a_{\tau} = -2b$$
, $a_{n} = \frac{(\upsilon_{0} - 2bt)^{2}}{R}$; (B) $a_{\tau} = -b$, $a_{n} = \frac{(\upsilon_{0} - bt)^{2}}{R}$;

(B)
$$a_{\tau} = -b$$
, $a_{n} = \frac{(v_{0} - bt)^{2}}{p}$

(C)
$$a_{\tau} = 2b$$
, $a_{n} = \frac{(v_{0} - bt)^{2}}{R}$; (D) $a_{\tau} = -b$, $a_{n} = \frac{v_{0}^{2}}{R}$

(D)
$$a_{\tau} = -b$$
, $a_{n} = \frac{{v_{0}}^{2}}{R}$

(共7页)

- 5. 一个质点同时在几个力作用下的位移为: $\Delta \vec{r} = 4\vec{i} 5\vec{j} + 6\vec{k}$ (SI) 其中一个力为恒力 $\vec{F}=-3\vec{i}-5\vec{j}+9\vec{k}$ (SI),则此力在该位移过程中所作的功为
 - (A) -67 J.
 - (B) 17 J.
- (C) 67 J.
- (D) 91 J.
- 6. 一质量为 m 的人站在质量为 M 的小车上,开始时,人和小车一起以速度 \bar{v} 沿着光滑的水平轨 道运动,人在某时刻突然在车上以相对于车的速度 \bar{u} 跑动,这时车的速度变为 \bar{v}' ,有几个同学根 据水平方向动量守恒,得到:
- (A) $M\vec{v} = m\vec{u}$

(B) $M\vec{v} = M\vec{v}' + m\vec{u}$;

- (C) $(M+m)\vec{v} = M\vec{v}' + m(\vec{u} + \vec{v});$ (D) $(M+m)\vec{v} = M\vec{v}' + m(\vec{u} + \vec{v}').$

试问哪个式子是正确的?

7、一质量为m,长为l的均匀细棒,在光滑水平面上 以v匀速运动. 如图所示, O为地面上一固定点, 当 细棒运动到虚线位置,其左端与O点重合时,则该时 刻细棒对O点的角动量为:

$$(\mathbf{C})\frac{1}{2}mlv$$
;

(D)
$$\frac{1}{3}mlv$$

8、一均匀细杆可绕垂直它而离其一端l/4 (l 为杆长)的水平固定轴 O 在竖直平面内转 动. 杆的质量为m,当杆自由悬挂时,给它一个起始角速度 ω_0 ,如杆能持续转动而不 作往复摆动(一切摩擦不计)则需要

- (A) $\omega_0 \geqslant 4\sqrt{3g/7l}$. (B) $\omega_0 \geqslant 4\sqrt{g/l}$.
- (C) $\omega_0 \ge (4/3)\sqrt{g/l}$. (D) $\omega_0 \ge \sqrt{12g/l}$.
- 9. 在某地发生两件事,静止位于该地的甲测得时间间隔为 4 s,若相对于甲作匀速直线运动的乙 测得时间间隔为 5 s,则乙相对于甲的运动速度是(c 表示真空中光速)
- (A) (4/5) c. (B) (3/5) c. (C) (2/5) c. (D) (1/5) c.

- 10. 固有长度为 l_0 的爱因斯坦列车相对地面以高速v沿x正方向行驶,列车的中央有一闪光灯 突然闪亮,列车上的观察者观察到列车前壁 A、列车后壁 B 同时照亮,而地面上的观测者认

为:

(共7页)

(A) A比B先照亮,时间差 $\Delta t = \frac{l_0}{2c\sqrt{1-\frac{v^2}{c^2}}}$

(B) A比B先照亮,但时间差
$$\Delta t \neq \frac{l_0}{2c\sqrt{1-\frac{v^2}{c^2}}}$$

(C) B 比 A 先照亮,时间差
$$\Delta t = \frac{l_0}{2c\sqrt{1-\frac{v^2}{c^2}}}$$

(D)B比A先照亮,但时间差 Δt ≠	l_0
(2)2 76 11 76 11 76 11 77 21 7	$2c\sqrt{1-\frac{v^2}{c^2}}$
	$2c\sqrt{1-\frac{c^2}{c^2}}$

本题分数		30
得	分	

二、填空题(每空 3 分)

11. 灯距地面高度为 h_1 ,一个人身高为 h_2 ,在灯下以匀速率 v沿水平

直线行走,如图所示,他的头顶在地上的影子 M 点沿地面移动的速度 $V_M =$ _____。

12. 如图所示,在水平面上作匀加速 前

进的车厢内有一观测者,测得车厢内 质

量分别为 3m 和 m 的两物块相对于车厢

内装置的光滑水平面和垂直面的加速

度大小为 $a' = \frac{g}{10}$, g为重力加速度,

(滑轮质量及摩擦忽略不计),可以推断车厢在水平面上加速度 a_0 为_____。

13. 质点做圆周运动,用角量描述,初始时刻的角位置 $heta_0=0$,角速度为 $heta_0$ ($heta_0>2$ rad/s),

已知角加速度随着角位置 θ 变化的函数为: $\alpha = -\sin \theta$.

则质点在任意角位置 θ 时的角速度大小为 $_{----}$ 。

14. 图示圆锥摆,质量为 m 的小球在水平面内以角速度 ω 匀速转动。在小球 $$
转动一周的过程中,小球所受绳子拉力的冲量大小等于。
15. 将一质量为 m 的小球, 系于轻绳的一端, 绳的另一端穿过光滑水平桌面
上的小孔用手拉住。先使小球以角速度 ω 在桌面上做半径为 r_1 的圆周运动,然后缓慢将绳下
拉,使半径缩小为 r ₂ ,在此过程中小球的动能增量是。
16. 已知地球质量为 M ,半径为 R 。质量为 m 的火箭从地面上升到距地面高度为 $2R$ 处。在此过
程中,地球引力对火箭作的功为。
17. 有一半径为 R 的匀质圆形水平转台,可绕通过盘心 O 且垂直于盘面的 O O O O
竖直固定轴 OO' 转动,转动惯量为 J ,台上有一人,质量为 m ,当他站在
离转轴 r 处时(r < R),转台和人一起以 ω_1 的角速度转动,如图。若转轴 O'
处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度 $\omega_2=$ 。
18. 一艘飞船和一颗彗星相对地面分别以 $0.60c$ 和 $0.80c$ 的速度相向而行,在飞船上测得彗星的
速率是。
19. 牛郎星距离地球约 16 光年,宇宙飞船若以
 行,将用2年时间(宇宙飞船上的钟指示的时间)抵达牛郎星。
20. 一长直隧道全长为 L ,设想一列车以极高的恒定速度 v 沿隧道长度方向通过隧道,设列车的固
有长度为10,若从列车上观测,它全部通过隧道的时间为。

本题	40	
得	分	

三、计算题

21. (本题 12 分) 一个质量为 m 的质点,在力 $F_x = F_0(1 - \frac{t}{T})$ 的作用下由静止开始运动,求: 质点在运动过程中沿 x 正方向能到达的最大速度为多少? 质点经多长时间 t ,速度又为零了? 在时间 $0 \sim 2T$ 过程中质点的位移为多少? (式中 F_0 和 T 均为大于 0 的常数。)

本资源免费共享 收集网站 nuaa.store

22.(本题 8 分) 火箭以第二宇宙速度 $v_2 = \sqrt{2Rg}$ 沿地球表面切向飞出, R、g 为地球半径和重力加速度。如图所示,在飞离地球过程中,火箭发动机停止工作,不计空气阻力,求火箭在距地心 4R 的 A 处的速度大小,以及速度与 A 点到地心连线之间的夹角 θ 。(速度大小用已知量 R、g表示)

- 23. (本题 12 分) 水平面内有静止的长为 l,质量为 m 的细棒,可绕通过棒一端点的铅直轴旋转,轴无阻尼。今有一质量为 m/2、速率为 v 的子弹在水平面内沿棒的垂直方向射击棒的中点,子弹穿出时速率减为 v/2,子弹穿过时间很小。当棒转动后,设棒上各处单位长度受到的阻力正比于该处的速率(比例系数为 k,且大于零)。试求:
- (1) 子弹穿过瞬时,棒的角速度 ω 。为多少?
- (2) 当棒以角速度 ω 转动时, 受到的阻力矩M为多少?
- (3) 棒的角速度从 ω_0 变为 $\omega_0/2$ 时,经历的时间为多少?

本资源免费共享 收集网站 nuaa.store

24. (本题 8 分)两个粒子 A 和 B,静止质量均为 m_0 。在地面参照系中,粒子 A 静止,粒子 B 的动能为 $6m_0c^2$,c 为真空中光速。设 A、 B 两粒子相撞并结合成为一个复合粒子。 求复合粒子相对地面的运动速度以及复合粒子的静止质量。

(共7页	页)		