Procesos Poisson

Catherine Rojas

2024-10-15

Los clientes

En un almacén particular los clientes llegan al mostrador de una caja con un promedio de 7 por hora.

a) En la hora, ¿Cuál es la probabilidad de que lleguen más de 5 clientes?

- X: No. del cliente
- T: tiempo P(X>5)
- Dado que la media de llegadas es $\lambda = 7$ por hora, utilizamos la distribución Poisson:

$$P(X > 5) = 1 - P(X \le 5)$$

```
# Parámetro Lambda (media de Llegadas por hora)
lambda <- 7

# Probabilidad de que Lleguen más de 5 clientes
probabilidad_a <- 1 - ppois(5, lambda)
probabilidad_a

## [1] 0.6992917</pre>
```

b) ¿Cuál es la probabilidad de que una persona espere más de 30 minutos para ser atendida?

- P(T>30) <- un solo cliente
- La distribución del tiempo entre llegadas sigue una distribución exponencial con media $1/\lambda$. La probabilidad de esperar más de 30 minutos (0.5 horas) es:

$$P(T > 0.5) = e^{-\lambda \cdot t}$$

```
# Tiempo en horas
t <- 0.5

# Probabilidad de esperar más de 30 minutos
probabilidad_b <- exp(-lambda * t)
probabilidad_b
## [1] 0.03019738</pre>
```

c) ¿Cuál es la probabilidad de que llegue un cliente en sus dos horas de comida?

- P(X=1) en 2h
- En dos horas, la nueva media de llegadas será $\lambda' = 7 \times 2 = 14$. La probabilidad de que llegue al menos un cliente es:

$$P(X \ge 1) = 1 - P(X = 0)$$

```
# Nueva Lambda para dos horas
lambda_2h <- 7 * 2

# Probabilidad de que llegue al menos un cliente en dos horas
probabilidad_c <- 1 - dpois(0, lambda_2h)
probabilidad_c
## [1] 0.9999992</pre>
```

DRIVE THRU

El tiempo de llegada a una ventanilla de toma de órdenes desde un automóvil de un cierto comercio de hamburguesas sigue un proceso de Poisson con un promedio de 12 llegadas por hora.

a) ¿Cuál será la probabilidad de que el tiempo de espera de tres personas sea a lo más de 20 minutos?

Si tenemos una distribución exponencial para el tiempo entre llegadas, el tiempo total para tres personas sigue una distribución gamma con forma k=3 y tasa $\lambda_{\min}=0.2$.

$$P(T \le 20) = pgamma(20,shape = 3,rate = 0.2)$$

```
# Parámetros de la distribución gamma
shape <- 3  # Tres personas
rate <- 0.2  # Llegadas por minuto

# Probabilidad de que el tiempo total sea menor o igual a 20 minutos
probabilidad_a <- pgamma(20, shape = shape, rate = rate)
probabilidad_a

## [1] 0.7618967</pre>
```

b) ¿Cuál es la probabilidad de que el tiempo de espera de una persona esté entre 5 y 10 segundos?

Primero, convertimos segundos a minutos:

$$5 \text{ segundos} = \frac{5}{60} \text{ minutos}$$

$$10 \, segundos = \frac{10}{60} \, minutos$$

Usamos la distribución exponencial para obtener la probabilidad:

$$P(5 \le T \le 10) = P(T \le 10) - P(T \le 5)$$

```
# Tiempos en minutos
t1 <- 5 / 60
t2 <- 10 / 60

# Probabilidades acumuladas
P_t2 <- pexp(t2, rate = 0.2)
P_t1 <- pexp(t1, rate = 0.2)

# Probabilidad de estar entre 5 y 10 segundos
probabilidad_b <- P_t2 - P_t1
probabilidad_b
## [1] 0.01625535</pre>
```

c) ¿Cuál será la probabilidad de que en 15 minutos lleguen a lo más tres personas?

En 15 minutos, la tasa promedio será:

$$\lambda_{15\,\mathrm{min}} = 0.2 \times 15 = 3$$

Ahora usamos la distribución Poisson para calcular:

$$P(X \le 3) = \operatorname{ppois}(3, \lambda_{15 \min})$$

```
# Lambda para 15 minutos
lambda_15min <- 3

# Probabilidad de que Lleguen a Lo más 3 personas
probabilidad_c <- ppois(3, lambda_15min)
probabilidad_c

## [1] 0.6472319</pre>
```

DRIVE THRU 2

El tiempo de llegada a una ventanilla de toma de órdenes desde un automóvil de un cierto comercio de hamburguesas sigue un proceso de Poisson con un promedio de 12 llegadas por hora.

d) ¿Cuál es la probabilidad de que el tiempo de espera de tres personas esté entre 5 y 10 segundos?

El tiempo total para tres personas sigue una distribución gamma con parámetros k=3 (número de personas) y $\lambda=\frac{12}{3600}$ (tasa por segundo, dado que 12 llegadas por hora equivalen a $\frac{12}{3600}$ llegadas por segundo).

Cálculo:

$$P(5 \le T \le 10) = P(T \le 10) - P(T \le 5)$$

```
# Parámetros de la distribución gamma
shape <- 3  # Tres personas
rate <- 12 / 3600  # Tasa por segundo

# Probabilidades acumuladas
P_10 <- pgamma(10, shape = shape, rate = rate)
P_5 <- pgamma(5, shape = shape, rate = rate)

# Probabilidad de que el tiempo esté entre 5 y 10 segundos
probabilidad_d <- P_10 - P_5
probabilidad_d
## [1] 5.258533e-06</pre>
```

e) Determine la media y varianza del tiempo de espera de tres personas.

Para una distribución gamma, la media es:

$$Media = \frac{k}{\lambda}$$

Y la varianza es:

$$Varianza = \frac{k}{\lambda^2}$$

```
# Parámetros
k <- 3  # Tres personas
lambda <- 12

# Cálculo de media y varianza
media_e <- k / lambda
varianza_e <- k / (lambda^2)
# Cálculo de desviación estándar
desviacion_estandar <- sqrt(varianza_e)

# Mostrar resultados
cat("Media:", media_e, "\n")</pre>
```

```
## Media: 0.25
cat("Varianza:", varianza_e, "\n")
## Varianza: 0.02083333
cat("Desviación estándar:", desviacion_estandar, "\n")
## Desviación estándar: 0.1443376
```

f) ¿Cuál será la probabilidad de que el tiempo de espera de tres personas exceda una desviación estándar arriba de la media?

Queremos calcular la probabilidad de:

$$P(T > \text{Media} + \sigma)$$

Donde:

$$\sigma = Varianza$$

```
# Desviación estándar
sigma <- sqrt(varianza_e)

# Tiempo Límite (media + desviación estándar)
limite <- media_e + sigma

# Probabilidad de exceder el Límite
probabilidad_f <- 1 - pgamma(limite, shape = k, rate = lambda)
probabilidad_f

## [1] 0.1491102</pre>
```

Entre partículas

Una masa radioactiva emite partículas de acuerdo con un proceso de Poisson con una razón promedio de 15 partículas por minuto. En algún punto inicia el reloj.

a) ¿Cuál es la probabilidad de que en los siguientes 3 minutos la masa radioactiva emita 30 partículas?

En 3 minutos, el parámetro de Poisson es:

$$\lambda_{3 \min} = 15 \times 3 = 45$$

Queremos calcular la probabilidad de exactamente 30 partículas:

$$P(X = 30) = dpois(30, \lambda = 45)$$

```
# Parámetros
lambda_3min <- 15 * 3</pre>
```

```
# Probabilidad de exactamente 30 partículas
probabilidad_a <- dpois(30, lambda = lambda_3min)
probabilidad_a
## [1] 0.00426053</pre>
```

b) ¿Cuál es la probabilidad de que transcurran cinco segundos a lo más antes de la siguiente emisión?

La espera entre emisiones sigue una distribución exponencial con:

$$\lambda = \frac{15}{60}$$
 (llegadas por segundo)

Queremos calcular la probabilidad de que $T \le 5$:

$$P(T \le 5) = \operatorname{pexp}\left(5, \operatorname{rate} = \frac{15}{60}\right)$$

```
# Parametros
lambda_segundos <- 15 / 60

# Probabilidad de que T <= 5 segundos
probabilidad_b <- pexp(5, rate = lambda_segundos)
probabilidad_b

## [1] 0.7134952</pre>
```

c) ¿Cuánto es la mediana del tiempo de espera de la siguiente emisión?

La mediana de una distribución exponencial es:

$$Mediana = \frac{\ln(2)}{\lambda}$$

```
lambda <- 15
# Cálculo de La mediana
mediana_c <- log(2) / lambda
mediana_c
## [1] 0.04620981</pre>
```

d) ¿Cuál es la probabilidad de que transcurran a lo más cinco segundos antes de la segunda emisión?

La espera para la segunda emisión sigue una distribución gamma con:

$$k = 2, \quad \lambda = \frac{15}{60}$$

Queremos calcular la probabilidad de que $T \le 5$:

$$P(T \le 5) = \text{pgamma}\left(5,\text{shape} = 2,\text{rate} = \frac{15}{60}\right)$$

```
# Probabilidad para la segunda emisión
probabilidad_d <- pgamma(5, shape = 2, rate = lambda_segundos)
probabilidad_d
## [1] 0.3553642</pre>
```

e) ¿En que rango se encuentra el 50% del tiempo central que transcurre antes de la segunda emisión?

Buscamos el percentil 25% y 75% de una distribución gamma con:

$$k = 2$$
, $\lambda = 15$

Los percentiles se calculan usando la función de cuantiles de la distribución gamma:

Percentil 25%:

$$Q(0.25) = \text{qgamma}(0.25,\text{shape} = 2,\text{rate} = 15$$

• Percentil 75%:

$$Q(0.75) = \text{qgamma}(0.75,\text{shape} = 2,\text{rate} = 15$$

```
# Cálculo de los percentiles 25% y 75%
percentil_25 <- qgamma(0.25, shape = 2, rate = lambda)
percentil_75 <- qgamma(0.75, shape = 2, rate = lambda)

# Mostrar el rango
cat("Rango central del 50%:", percentil_25, "-", percentil_75, "\n")
## Rango central del 50%: 0.06408525 - 0.179509</pre>
```