Homework 8

- **1**) Show that vertical lines x = a are geodesics (un-parameterised) on the Lobachevsky plane $^{1)}$.
- * Show that upper arcs of semicircles $(x-a)^2+y^2=R^2, y>0$ are (non-parametersied) geodesics.
- **2** Consider a vertical ray $C: x(t) = 1, y(t) = 1 + t, 0 \le t < \infty$ on the Lobachevsky plane.

Find the parallel transport $\mathbf{X}(t)$ of the vector $\mathbf{X}_0 = \partial_y$ attached at the initial point (1,1) along the ray C at an arbitrary point of the ray.

Find the parallel transport $\mathbf{Y}(t)$ of the vector $\mathbf{Y}_0 = \partial_x + \partial_y$ attached at the same initial point (1,1) along the ray C at an arbitrary point of the ray. (Exam question, 2013.)

- **3** Find a parameterisation of vertical lines in the Lobachevsky plane such that they become parameterised geodesics.
 - $\bf 4$ Consider the plane ${\bf R}^2$ with Cartesian coordinates and with Riemannian metric

$$G = \frac{4R^2(du^2 + dv^2)}{(R^2 + u^2 + v^2)^2}.$$

Show that all lines passing through the origin (u = v = 0) and only these lines are geodesics of the Levi-Civita connection of this metric.

Give examples of other geodesics.

[†] Find all geodesics of this metric.

(You may use the fact that this Rimeannian manifold is isometric to the sphere without North pole.)

 $\mathbf{5}^*$ Let $\mathbf{X}(t)$ be parallel transport of the vector \mathbf{X} along the curve on the surface M embedded in \mathbf{E}^3 , i.e. $\nabla_{\mathbf{v}}\mathbf{X}=0$, where \mathbf{v} is a velocity vector of the curve C and ∇ Levi-Civita connection of the metric induced on the surface. Compare the condition $\nabla_{\mathbf{v}}\mathbf{X}=0$ (this is condition of parallel transport for internal observer) with the condition that for the vector $\mathbf{X}(t)$, the derivative $\frac{d\mathbf{X}(t)}{dt}$ is orthogonal to the surface (this is condition of parallel transport for external observer)²⁾.

Do these two conditions coincide, i.e. do they imply the same parallel transport?

6 On the sphere $x^2 + y^2 + z^2 = R^2$ of radius R in \mathbf{E}^3 consider the following three closed curves.

1

As usual we consider here a realisation of the Lobachevsky plane (hyperbolic plane) as upper half of Euclidean plane $\{(x,y): y>0\}$ with the metric $G=\frac{dx^2+dy^2}{y^2}$. The line x=0 is called *absolute*.

²⁾ We defined parallel transport in Geometry course using this condition

- a) the triangle $\triangle ABC$ with vertices at the points $A=(0,0,1),\ B=(0,1,0)$ and C=(1,0,0). The edges of triangle are geodesics.
- b) the triangle $\triangle ABC$ with vertices at the points $A=(0,0,1),\ B=(0,\cos\varphi,\sin\varphi)$ and $C=(1,0,0),\ 0<\varphi<\frac{\pi}{2}$ The edges of triangle are geodesics.
 - c) the curve $\theta = \theta_0$ (line of constant latitude).

Consider the result of parallel transport of the vectors tangent to sphere over these closed curves.