Machine Learning Homework Sheet 03

Linear Regression

We changed the deadlines for submitting homework solutions to Sundays. Please upload the solution to Moodle by Sunday, 11.11.2018, 23:59 CET.

1 Least squares regression

Problem 1: Load the notebook 03_homework_linear_regression.ipynb from Piazza. Fill in the missing code and run the notebook. Convert the evaluated notebook to pdf and add it to the printout of your homework.

Note: We suggest that you use Anaconda for installing Python and Jupyter, as well as for managing packages. We recommend that you use Python 3.

For more information on Jupyter notebooks and how to convert them to other formats, consult the Jupyter documentation and nbconvert documentation.

Problem 2: Let's assume we have a dataset where each datapoint, (x_i, y_i) is weighted by a scalar factor which we will call t_i . We will assume that $t_i > 0$ for all i. This makes the sum of squares error function look like the following:

$$E_{ ext{weighted}}(oldsymbol{w}) = rac{1}{2} \sum_{i=1}^{N} t_i \left[oldsymbol{w}^T oldsymbol{\phi}(oldsymbol{x}_i) - y_i
ight]^2$$

Find the equation for the value of w that minimizes this error function.

Furthermore, explain how this weighting factor, t_i , can be interpreted in terms of

- 1) the variance of the noise on the data and
- 2) data points for which there are exact copies in the dataset.

2 Ridge regression

Problem 3: Show that the following holds: The ridge regression estimates can be obtained by ordinary least squares regression on an augmented dataset: Augment the design matrix $\Phi \in \mathbb{R}^{N \times M}$ with M additional rows $\sqrt{\lambda} I_{M \times M}$ and augment y with M zeros.

3 Bayesian linear regression

In the lecture we made the assumption that we already knew the precision (inverse variance) for our Gaussian distributions. What about when we don't know the precision and we need to put a prior on that as well as our Gaussian prior that we already have on the weights of the model?

Problem 4: It turns out that the conjugate prior for the situation when we have an unknown mean and unknown precision is a normal-gamma distribution (See section 2.3.6 in Bishop). This is also true when we have a conditional Gaussian distribution of the linear regression model. This means that if our likelihood is as follows:

$$p(\boldsymbol{y} \mid \boldsymbol{\Phi}, \boldsymbol{w}, \boldsymbol{\beta}) = \prod_{i=1}^{N} \mathcal{N}(y_i \mid \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i), \boldsymbol{\beta}^{-1})$$

Then the conjugate prior for both \boldsymbol{w} and β is

$$p(\boldsymbol{w}, \beta) = \mathcal{N}(\boldsymbol{w} \mid \boldsymbol{m}_0, \beta^{-1} \boldsymbol{S}_0) \operatorname{Gamma}(\beta \mid a_0, b_0)$$

Show that the posterior distribution takes the same form as the prior, i.e.

$$p(\boldsymbol{w}, \beta \mid \mathcal{D}) = \mathcal{N}(\boldsymbol{w} \mid \boldsymbol{m}_N, \beta^{-1} \boldsymbol{S}_N) \operatorname{Gamma}(\beta \mid a_N, b_N)$$

Also be sure to give the expressions for m_N , S_N , a_N , and b_N .