

REMARKS

The amendments being made to the specification and drawing FIGS. 3 and 4 are merely to correct typographical errors in the structures and contain no new matter within the meaning of 37 CFR 1.121(a)(6). Claims 1-10 have been canceled and claims 11-20 added in lieu thereof to correct typographical errors appearing in the canceled claims. No new matter has been introduced into the claims.

Attached hereto is a marked-up version of the changes made to the specification by the current amendment. The attached page is captioned "Version with markings to show changes made". Entry of replacement claims 11-20 and the amendments to the specification is respectfully requested.

Respectfully submitted,

Robin W. Edwards
Reg. No. 39,179

Enclosures

April 9, 2001

757-864-3230
or
757-864-3522

"Version with markings to show changes made"

In the Specification:

The paragraph beginning at page 3, line 22 has been amended as follows:

Bilow et al teach, in U.S Pat. No. 3,864,309, polyimide oligomers end-capped with terminal acetylene or cyano groups. Bilow et al's use of the term "oligomer" is inconsistent with our present use of the term "oligomer." Bilow et al teach [a] low molecular weight *pure* end-capped [poly]imides as opposed to low molecular weight polyimide oligomers; the Bilow et al patent teaches end-capped backbone structures of only one unit wherein an entire sample contains only molecules of the same length and molecular weight. Bilow et al teach the use of end-cap groups that will not survive melt condensation polymerization conditions. Finally, Bilow et al teach materials that are neither liquid crystalline nor have melt viscosities in the range of approximately 1 to approximately 250 poise at a shear rate of 100 radials/second.

The paragraph beginning at page 4, line 1 has been amended as follows:

Reinhardt et al teach, in U.S. Pat. No. 4,513,131, phenylacetylene end-capped low molecular weight pure [poly(aryl-ether)s] aryl-ethers as opposed to the polyester, poly(ester-amide), and poly(ester-imide) oligomers. Reinhardt et al teach materials that are not liquid crystals. Reinhardt et al teach pure low molecular weight polymer samples as opposed to the oligomeric mixtures.

The paragraph beginning at page 12, line 23 has been amended as follows:

Into a 250 mL two-neck round bottom flask equipped with a mechanical stirrer, condenser and a nitrogen gas inlet was placed 4-aminobenzoic acid (8.0 g, 58 mmol), 4-[phenylethynylphthalic- anhydride] phenylethynylphthalic-anhydride (14.5 g, 58 mmol) and 150 mL glacial acetic acid. This mixture was stirred at 25° C for 1 hour after which the temperature was raised to reflux for 12 hours. The reaction mixture was cooled to 25° C and the precipitated product was collected by filtration, washed twice with hot ethanol and dried under vacuum at 100° C for 8 hours.

Fig. 3

Fig. 4