KNN Workbook for CS145 Homework 3

PRINT YOUR NAME AND UID HERE!

NAME: Wu, Michael UID: 404751542

Please follow the notebook linearly to implement k-nearest neighbors.

Please print out the workbook entirely when completed.

The goal of this workbook is to give you experience with the data, training and evaluating a simple classifier, k-fold cross validation, and as a Python refresher.

Import the appropriate libraries

```
In [1]: import numpy as np # for doing most of our calculations
import matplotlib.pyplot as plt# for plotting
from cs145.data_utils import load_CIFAR10 # function to load the CIFAR-10 data
set.

# Load matplotlib images inline
%matplotlib inline

# These are important for reloading any code you write in external .py files.
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipyt
hon
%load_ext autoreload
%autoreload 2
```

```
In [2]: # Set the path to the CIFAR-10 data
    cifar10_dir = './cs145/datasets/cifar-10-batches-py'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
    print('Training data shape: ', X_train.shape)
    print('Training labels shape: ', y_train.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
Training data shape: (50000, 32, 32, 3)
```

Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)

I like CS 145.

```
y = \sigma(X) + 1
```

```
In [3]: # Visualize some examples from the dataset.
        # We show a few examples of training images from each class.
        classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'shi
        p', 'truck']
        num_classes = len(classes)
        samples_per_class = 7
        for y, cls in enumerate(classes):
            idxs = np.flatnonzero(y_train == y)
            idxs = np.random.choice(idxs, samples_per_class, replace=False)
            for i, idx in enumerate(idxs):
                plt_idx = i * num_classes + y + 1
                plt.subplot(samples_per_class, num_classes, plt_idx)
                 plt.imshow(X_train[idx].astype('uint8'))
                plt.axis('off')
                if i == 0:
                     plt.title(cls)
        plt.show()
```



```
In [4]: # Subsample the data for more efficient code execution in this exercise
    num_training = 5000
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]

    num_test = 500
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]

# Reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    print(X_train.shape, X_test.shape)

(5000, 3072) (500, 3072)
```

K-nearest neighbors

In the following cells, you will build a KNN classifier and choose hyperparameters via k-fold cross-validation.

```
In [5]: # Import the KNN class
    from lib import KNN

In [6]: # Declare an instance of the knn class.
    knn = KNN()

# Train the classifier.
    # We have implemented the training of the KNN classifier.
    # Look at the train function in the KNN class to see what this does.
    knn.train(X=X_train, y=y_train)
```

Questions

- (1) Describe what is going on in the function knn.train().
- (2) What are the pros and cons of this training step of KNN?

Answers

- (1) The classifier simply stores the training data.
- (2) This is O(1) time so it is very fast. Unfortunately, a con is that the calculations take place during prediction, so prediction is slow. This is in comparison to something such as a linear classifier that trains slower but predicts very fast.

KNN prediction

In the following sections, you will implement the functions to calculate the distances of test points to training points, and from this information, predict the class of the KNN.

```
In [7]: # Implement the function compute_distances() in the KNN class.
# Do not worry about the input 'norm' for now; use the default definition of t
he norm
# in the code, which is the 2-norm.
# You should only have to fill out the clearly marked sections.

import time
time_start =time.time()

dists_L2 = knn.compute_distances(X=X_test)

print('Time to run code: {}'.format(time.time()-time_start))
print('Frobenius norm of L2 distances: {}'.format(np.linalg.norm(dists_L2, 'fro')))
```

Time to run code: 35.53952741622925

Frobenius norm of L2 distances: 7906696.077040902

Really slow code

Note: This probably took a while. This is because we use two for loops. We could increase the speed via vectorization, removing the for loops. Normally it may takes 20-40 seconds.

If you implemented this correctly, evaluating np.linalg.norm(dists_L2, 'fro') should return: ~7906696

KNN vectorization

The above code took far too long to run. If we wanted to optimize hyperparameters, it would be time-expensive. Thus, we will speed up the code by vectorizing it, removing the for loops.

```
In [8]: # Implement the function compute_L2_distances_vectorized() in the KNN class.
# In this function, you ought to achieve the same L2 distance but WITHOUT any
for loops.
# Note, this is SPECIFIC for the L2 norm.

time_start =time.time()
dists_L2_vectorized = knn.compute_L2_distances_vectorized(X=X_test)
print('Time to run code: {}'.format(time.time()-time_start))
print('Difference in L2 distances between your KNN implementations (should be
0): {}'.format(np.linalg.norm(dists_L2 - dists_L2_vectorized, 'fro')))

Time to run code: 0.3987753391265869
Difference in L2 distances between your KNN implementations (should be 0): 0.
0
```

Speedup

Depending on your computer speed, you should see a 20-100x speed up from vectorization and no difference in L2 distances between two implementations.

On our computer, the vectorized form took 0.20 seconds while the naive implementation took 26.88 seconds.

Implementing the prediction

Now that we have functions to calculate the distances from a test point to given training points, we now implement the function that will predict the test point labels.

```
In [9]: # Implement the function predict_labels in the KNN class.
# Calculate the training error (num_incorrect / total_samples)
# from running knn.predict_labels with k=1

error = 0
y_pred = knn.predict_labels(dists_L2)
for i in range(y_pred.size):
    error += (y_pred[i]!=y_test[i])
error /= y_pred.size

print(error)

0.726
```

If you implemented this correctly, the error should be: 0.726. This means that the k-nearest neighbors classifier is right 27.4% of the time, which is not great.

Questions:

What could you do to improve the accuracy of the k-nearest neighbor classifier you just implemented? Write down your answer in less than 20 words.

Answers:

Increase the number of nearest neighbors to look at. This is a tuning parameter and needs to be tested.

The End of KNN Workbook

Please export this workbook as PDF file (see instructions) after completion.