2020

ROTACIONES, PROYECCIONES, REFLECCIONES Y TRASLACIONES

En este apunte presentamos las matrices que representan transformaciones geométricas en el plano como transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 . Recordemos que la matriz $n \times n$ que representa una transformación lineal T de \mathbb{R}^n en \mathbb{R}^n (en las bases canónicas) tiene en su columna *i*-ésima la representación de de Te^i .

Ya fueron presentadas en las slides las matrices que representan ciertas transformaciones lineales en el plano, como:

■ $R_{90^{\circ}}$ = Rotación de 90° en \mathbb{R}^2 (en sentido antihorario) Observar que $R(e^1) = R((1,0)) = (0,1)$ y $R(e^2) = R((0,1)) = (-1,0)$. Por lo tanto, la matriz Q que representa a R es:

$$Q = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

Proyección sobre el eje x en \mathbb{R}^2 Observar que la proyección de $e^1 = (1,0)$ sobre el eje x es él mismo y la de $e^2 = (0,1)$ es (0,0). Así:

$$P = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

Reflexión a través de la recta y=x en \mathbb{R}^2 (recta a 45°) Con un análisis similar a los anteriores obtenemos la matriz:

$$H = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Las rotaciones en otros ángulos, las proyecciones sobre otras rectas y las reflexiones en otros espejos, también son transformaciones lineales.

Para conocer estas matrices, de acuerdo a lo observado anteriormente, precisamos conocer su efecto sobre la base canónica de \mathbb{R}^2 .

ROTACIONES

En la siguiente figura mostramos la rotación de un ángulo θ , en particular, la transformación de los dos elementos de la base canónica de \mathbb{R}^2 . Si llamamos $c=\cos\theta$ y $s=\sin\theta$ podemos observar que el vector (c,s) es obtenido luego de rotar en un ángulo θ al primer vector de la base, claramente la longitud de ambos es 1. Cuando el segundo vector de la base rota en un ángulo θ obtenemos el vector (-s,c).

Ahora bien, nuestro objetivo es describir la matriz asociada a la transformación lineal (rotación).

Consideramos el espacio vectorial \mathbb{R}^2 y la base canónica en \mathbb{R}^2 . Siendo T la transformación lineal correspondiente a la rotación de un ángulo θ , teniendo en cuenta lo que recordamos al comienzo del apunte, sabemos que la j-ésimo columna de la matriz Q_{θ} que representa dicha transformación, se obtiene aplicando la transformación al j-ésimo vector de la base. Luego,

- $T(e_1) = c \cdot e_1 + s \cdot e_2,$
- $T(e_2) = -s \cdot e_1 + c \cdot e_2.$

Así obtenemos:

$$Q_{\theta} = \left[\begin{array}{cc} c & -s \\ s & c \end{array} \right].$$

Observaciones:

• La *inversa* de Q_{θ} es igual a $Q_{-\theta}$ (rotación en sentido horario del ángulo θ).

$$Q_{\theta} \cdot Q_{-\theta} = \left[\begin{array}{cc} c & -s \\ s & c \end{array} \right] \cdot \left[\begin{array}{cc} c & s \\ -s & c \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

• El *cuadrado* de Q_{θ} es igual a $Q_{2\theta}$ (rotación del ángulo doble 2θ).

$$Q_{\theta} \cdot Q_{\theta} = \left[\begin{array}{cc} c & -s \\ s & c \end{array} \right] \cdot \left[\begin{array}{cc} c & -s \\ s & c \end{array} \right] = \left[\begin{array}{cc} c^2 - s^2 & -2cs \\ 2cs & c^2 - s^2 \end{array} \right] = \left[\begin{array}{cc} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{array} \right] = Q_{2\theta}.$$

■ El producto de Q_{θ} y Q_{φ} es igual a $Q_{\theta+\varphi}$ (rotación del ángulo θ y luego del ángulo φ).

$$\begin{aligned} Q_{\theta} \cdot Q_{\varphi} &= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} = \\ &= \begin{bmatrix} \cos \theta \cos \varphi - \sin \theta \sin \varphi & -(\cos \theta \sin \varphi + \sin \theta \cos \varphi) \\ \sin \theta \cos \varphi + \cos \theta \sin \varphi & \cos \theta \cos \varphi - \sin \theta \sin \varphi \end{bmatrix} = \\ &= \begin{bmatrix} \cos (\theta + \varphi) & -\sin (\theta + \varphi) \\ \sin (\theta + \varphi) & \cos (\theta + \varphi) \end{bmatrix} = Q_{\theta + \varphi}. \end{aligned}$$

El último caso contiene a los dos primeros. La inversa aparece cuando φ es $-\theta$ y el cuadrado cuando φ es θ . Es importante destacar que la multiplicación de matrices se define de modo tal que **el producto de las matrices se**

corresponde con el producto de las transformaciones lineales.

¿Qué significa producto de transformaciones lineales?

En realidad, no es más que la composición de transformaciones.

Supongamos que T y S son transformaciones lineales de V en W y de U en V respecivamente. Su "producto" TS comienza con un vector $u \in U$, va a $Su \in V$ y termina con $TSu \in W$. Esta COMPOSICION TS resulta una transformación lineal de U en W y su matriz es el producto de las matrices que representan a T y S.

PROYECCIONES

En la figura dada a continuación mostramos la proyección de vectores sobre la recta θ , en particular, la transformación de los dos elementos de la base canónica de \mathbb{R}^2 . Llamamos nuevamente $c=\cos\theta$ y $s=\sin\theta$. En este caso podemos observar que el primer vector de la base canónica (1,0) se transforma mediante la proyección sobre la recta θ en (c^2,cs) y el segundo vector de la base canónica, al proyectarlo sobre la misma recta se transforma en el vector (cs,s^2) , ya que:

■ La proyección del vector (1,0) sobre la recta θ es el vector (x,y). Ahora bien, mirando los triángulos celestes de la figura tenemos:

$$x = \cos \theta \cdot c \Rightarrow x = c^2$$

$$y = \sin \theta \cdot c \Rightarrow y = sc.$$

• La proyección del vector (0,1) sobre la recta θ es el vector (x',y'). Si miramos ahora los triángulos violetas resulta:

$$x' = \cos \theta \cdot s \implies x' = cs$$

$$y' = \sin \theta \cdot s \implies y' = s^2.$$

Como nuestro objetivo es describir la matriz asociada a la transformación lineal (proyección), utilizando una idea similar a lo hecho para la rotación, vamos a considerar el espacio vectorial \mathbb{R}^2 y la base canónica en \mathbb{R}^2 . Siendo T la transformación lineal correspondiente a la proyección sobre la recta θ , sabemos que la j-ésima columna de la matriz P_{θ} que representa dicha transformación, se obtiene aplicando la transformación al j-ésimo vector de la base. Luego,

- $T(e_1) = c^2 \cdot e_1 + cs \cdot e_2,$
- $T(e_2) = cs \cdot e_1 + s^2 \cdot e_2.$

Así obtenemos:

$$P_{\theta} = \left[\begin{array}{cc} c^2 & cs \\ cs & s^2 \end{array} \right].$$

Observaciones:

- Esta matriz no tiene inversa ya que la transformación no tiene inversa. Los puntos proyectados sobre una recta perpendicular son proyectados sobre el origen y esa recta es el espacio nulo de P.
- Los puntos proyectados sobre la recta θ son proyectados sobre sí mismos. Proyectar dos veces es lo mismo que proyectar una vez, así $P^2 = P$.

$$P_{\theta}^2 = P_{\theta} \cdot P_{\theta} = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix} \cdot \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix} = \begin{bmatrix} c^2(c^2 + s^2) & cs(c^2 + s^2) \\ cs(c^2 + s^2) & s^2(c^2 + s^2) \end{bmatrix} = P.$$

Sabemos que $c^2 + s^2 = \cos^2 \theta + \sin^2 \theta = 1$.

Una matriz proyección es igual a su propio cuadrado.

REFLEXIONES

En la siguiente figura mostramos la reflexión de los vectores de la base canónica de \mathbb{R}^2 en la recta θ . Llamamos nuevamente $c=\cos\theta$ y $s=\sin\theta$. En el caso de la reflexión en la recta θ podemos observar que el primer vector de la base canónica (1,0) se transforma en $(2c^2-1,2cs)$ y el segundo vector de la base canónica en el vector $(2cs,2s^2-1)$, ambos de longitud 1, ya que:

• La reflexión del vector (1,0) sobre la recta θ es el vector (x,y). Ahora bien, mirando el triángulo color naranja tenemos:

$$x = \cos 2\theta \Rightarrow x = \cos^2 \theta - \sin^2 \theta \Rightarrow x = 2\cos^2 - 1 \Rightarrow x = 2c^2 - 1,$$

 $y = \sin 2\theta \implies y = 2\cos \theta \sin \theta \implies y = 2cs.$

■ La reflexión del vector (0,1) sobre la recta θ es el vector (x',y'). Si miramos ahora el triángulo azul resulta:

$$x' = \sin 2\theta \implies x' = 2\cos \theta \sin \theta \implies x' = 2cs$$

$$-y' = \cos 2\theta \Rightarrow y' = \sin^2 \theta - \cos^2 \theta \Rightarrow y' = 2\sin^2 - 1 \Rightarrow y' = 2s^2 - 1.$$

Pensando en que nuestro objetivo es describir la matriz asociada a la transformación lineal (reflexión), utilizando una idea similar a lo hecho para la rotación y proyección, vamos a considerar el espacio vectorial \mathbb{R}^2 y la base canónica en \mathbb{R}^2 . Siendo T la transformación lineal correspondiente a la reflexión sobre la recta θ , sabemos que la j-ésima columna de la matriz H_{θ} que representa dicha transformación, se obtiene aplicando la transformación al j-ésimo vector de la base. Luego,

- $T(e_1) = 2c^2 1 \cdot e_1 + 2cs \cdot e_2,$
- $T(e_2) = 2cs \cdot e_1 + 2s^2 1 \cdot e_2.$

Así obtenemos:

$$H_{\theta} = \left[\begin{array}{cc} 2c^2 - 1 & 2cs \\ 2cs & 2s^2 - 1 \end{array} \right].$$

Observaciones:

- La longitud de los vectores obtenido después de la reflexión es igual a la longitud de los vectores originales, como lo era después de la rotación, sin embargo, en este caso la recta θ permanece fija.
- La recta perpendicular invierte la dirección, todos los puntos pasan directamente a través del espejo.
- Si $H_{\theta}(x)$ es la imagen de x a través de la reflexión H_{θ} , entonces $H_{\theta}(x) + x = 2P_{\theta}(x)$. Donde $P_{\theta}(x)$ es la imagen de x luego de aplicar la transformación proyección.
- La matriz H_{θ} posee la propiedad $H^2 = I$. Si aplicamos dos veces la misma reflaxión a un vector, obtenemos el vector original. Una reflexión, es su propia inversa $H = H^{-1}$. Lo enunciado se puede probar utilizando la relación que existe entre la reflexión y la proyección.

TRANSFORMACIONES DEL ESPACIO EN SÍ MISMO

En forma similar a lo visto para transformaciones del plano, podemos representar transformaciones espaciales como transformaciones lineales de \mathbb{R}^3 en sí mismo. Veamos algunos ejemplos:

¿Cuáles son las matrices 3×3 que representan las siguientes transformaciones?

- a) Proyectan cada vector de \mathbb{R}^3 sobre el plano xy.
- b) Reflejan cada vector de \mathbb{R}^3 a través del plano xy.
- c) Rotan el plano xy en un ángulo de 90° dejando fijo el eje z.

- d) Rotan en un ángulo de 90° el plano xy, luego el plano xz y luego el plano yz.
- e) Realizan las mismos rotaciones que en el apartado anterior pero cada una de ellas en un ángulo de 180°.

Por simplicidad, consideramos solo bases canónicas y notamos a todas las transformaciones con T.

- a) Evaluamos la transformación en la base:
 - $T(e_1) \stackrel{(*)}{=} e_1 = 1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$
 - $T(e_2) \stackrel{(*)}{=} e_2 = 0 \cdot e_1 + 1 \cdot e_2 + 0 \cdot e_3$
 - $T(e_3) \stackrel{(**)}{=} \mathbf{0} = 0 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$

Luego, la matriz asociada a T es:

$$T = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

- (*) Pertenecen al conjunto sobre el cual proyectamos.
- (**) La proyección de x sobre un subespacio S es, por definición, "aquel punto $y \in S$ tal que la distancia entre x e y es mínima". Usando la desigualdad triangular, es claro que $\mathbf{0}$ es el punto a distancia mínima de e_3 en S.
- b) Evaluamos la transformación en la base:
 - $T(e_1) \stackrel{(*)}{=} e_1 = \mathbf{1} \cdot e_1 + \mathbf{0} \cdot e_2 + \mathbf{0} \cdot e_3$
 - $T(e_2) \stackrel{(*)}{=} e_2 = 0 \cdot e_1 + 1 \cdot e_2 + 0 \cdot e_3$
 - $T(e_3) \stackrel{(**)}{=} -e_3 = 0 \cdot e_1 + 0 \cdot e_2 + -1 \cdot e_3$

Luego, la matriz asociada a T es:

$$T = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right].$$

- (*) Pertenecen al conjunto sobre el cual proyectamos.
- (**) La reflexión de x respecto a un subespacio propio S es, por definición, "aquel punto $y \neq x$ cuya proyección sobre S coincide con la de x y cuya distancia a la proyección es igual a la de x". Usando el apartado anterior, y viendo que $-e_3$ verifica la definición anterior, se deduce la igualdad.
- c) Observamos que T es una rotación respecto al eje z.

Evaluamos la transformación en la base:

- $T(e_1) \stackrel{(1)}{=} e_2 = 0 \cdot e_1 + 1 \cdot e_2 + 0 \cdot e_3$
- $T(e_2) \stackrel{(1)}{=} -e_1 = -1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$
- $T(e_3) \stackrel{(2)}{=} e_3 = 0 \cdot e_1 + 0 \cdot e_2 + 1 \cdot e_3$

Luego, la matriz asociada a T es:

$$T = \left[\begin{array}{ccc} \mathbf{0} & -\mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 \\ \mathbf{0} & 0 & 1 \end{array} \right].$$

(1) Dado que es difícil generalizar la rotación con los conceptos actuales, la definimos para este ejercicio en particular (usando la geometría euclídea): "y es la rotación de ángulo θ alrededor de una recta r del punto x si y solo si y es la rotación en el plano perpendicular a r que pasa por x, respecto al punto de intersección del plano con r y de ángulo θ ".

Con esta definición, rotar 90° a los vectores e_1 y e_2 respecto al eje z es lo mismo que rotarlos en el plano 90° respecto al origen (ver más arriba cómo queda la transformación para el caso $\theta = 90$).

(2) Con nuestra definición de rotación es inmediato que un punto de la recta es su propia imagen, puesto que termina siendo el centro de rotación en el plano que induce.

■ Las matrices asociadas a cada transformación de la composición son:

$$xy \longrightarrow \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$xz \longrightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$yz \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Dado que las matrices están construidas sobre las mismas bases, la matriz asociada a T respecto al par de bases canónicas es el producto:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Nota: este ejercicio se puede resolver como los anteriores, viendo a dónde va a parar cada vector de la base.

- Consideramos T_{xy}, T_{xz}, T_{yz} las transformaciones respectivas del ítem.
 - Evaluamos la transformación en la base:
 - $T(e_1) = T_{yz}(T_{xz}(T_{xy}(e_1))) = T_{yz}(T_{xz}(-e_1)) = T_{yz}(e_1) = e_1$
 - $T(e_2) = T_{yz}(T_{xz}(T_{xy}(e_2))) = T_{yz}(T_{xz}(-e_2)) = T_{yz}(-e_2) = e_2$
 - $T(e_3) = T_{yz}(T_{xz}(T_{xy}(e_3))) = T_{yz}(T_{xz}(e_3)) = T_{yz}(-e_3) = e_3$

Luego, la matriz asociada a T es I.

TRASLACIONES

La translación es también una tranformación del plano (o del espacio) en sí mismo. Sin embargo no puede expresarse como una transformación lineal de \mathbb{R}^2 en \mathbb{R}^2 (o de \mathbb{R}^3 en \mathbb{R}^3). Analizamos la traslación en el plano.

En efecto, dado $v \in \mathbb{R}^2$, $v \neq 0$, trasladar en v a los puntos de \mathbb{R}^2 puede ser pensado como una transformación T_v de \mathbb{R}^2 en \mathbb{R}^2 tal que, a cada punto p del plano lo lleva a p+v. Así, si v=(2,0), por la acción de T_v , todo punto del plano se mueve dos unidades a la derecha. Sin embargo, T_v no es una transformación lineal. Es sencillo ver, por ejemplo, que si $\alpha \in \mathbb{R}$ y $\alpha \neq 1$, $T_v(\alpha p) \neq \alpha T_v(p)$.

Sin embargo, en muchas aplicaciones como en diseño gráfico, necesitamos *trasladar* puntos del plano y muchas veces, componer esta translación con otras transformaciones en el plano. Y para ello sería muy útil poder expresar a la traslación como una transformación lineal y por ende, como el producto entre una matriz y un vector.

Generalmente se usan coordenadas homogéneas para representar la traslación mediante una matriz y poder así expresarla como una transformación lineal sobre un espacio de dimensión superior. Si seguimos con el ejemplo de \mathbb{R}^2 , un vector 2-dimensional $v=(v_1,v_2)$ puede ser reescrito utilizando 3 coordenadas, fijando una variable, como $v=(v_1,v_2,1)$. Entonces, dado $v=(v_1,v_2)\in\mathbb{R}^2$, pensemos en la transformación lineal definida por la siguiente matriz:

$$A_v = \left[\begin{array}{ccc} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ 0 & 0 & 1 \end{array} \right].$$

Sea ahora $p=(p_1,p_2)\in\mathbb{R}^2$. Queremos obtener p+v a partir de una transformación lineal. Pensamos en la transformación definida por A_v y se la aplicamos a $\tilde{p}=(p_1,p_2,1)\in\mathbb{R}^3$.

Observemos que

$$A_v \tilde{p} = \begin{bmatrix} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ 1 \end{bmatrix} = \begin{bmatrix} p_1 + v_1 \\ p_2 + v_2 \\ 1 \end{bmatrix}$$

Leemos la información de las primeras 2 coordenadas y recuperamos el vector p + v, el transladado de p en v.

Observaciones:

■ La inversa de una matriz de traslación puede obtenerse cambiando el signo de la dirección del vector desplazamiento, así

$$A_v^{-1} = A_{-v}$$
.

■ El producto de dos matrices de traslación está dado por:

$$A_u A_v = A_{u+v}$$
.

Debido a que la suma de vectores es conmutativa, la multiplicación de matrices de traslación es también conmutativa, a diferencia de lo que sucede con matrices arbitrarias, que no necesariamente representan traslaciones.

Si queremos representar a través de transformaciones lineales (matrices) la composición de una translación con otra operación (por ejemplo una rotación en 90°), deberemos también representar a la rotación de un punto del plano como una matriz 3×3 . Recordemos que la matriz 2×2 que representa la rotación en 90° es:

$$Q = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

Para ello, utilizamos el mismo recurso de representar cada punto $p=(p_1,p_2)\in\mathbb{R}^2$ como el punto $\tilde{p}=(p_1,p_2,1)\in\mathbb{R}^3$. Ahora, si

$$Q = \left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

hacer la cuenta con \tilde{p} y mostrar como se recupera recordando que el rotado de p es $(-p_2, p_1)$. En forma similar podremos respresentar a la traslación en \mathbb{R}^3 (o \mathbb{R}^n).

EJERCICIOS

Dada A una matriz de tamaño 2×2 , notamos con \tilde{A} a la matriz de tamaño 3×3 que tiene a A en su equina superior derecha y a e^3 como tercer columna y tercer fila:

$$\tilde{A} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}$$

En forma similar, dado $p \in \mathbb{R}^2$ notamos con \tilde{p} al vector $(p,1) \in \mathbb{R}^3$, es decir, si $p = (p_1, p_2)$ entonces $\tilde{p} = (p_1, p_2, 1)$.

1. Probar el siguiente Lema.

Lema: Sea \tilde{A} una matriz de tamaño 2×2 y $p = (p_1, p_2) \in \mathbb{R}^2$. Entonces $\tilde{A}\tilde{p}$ es el vector cuyas dos primeras componentes coinciden con Ap y su tercer componente es 1. Es decir, $\tilde{A}p = \tilde{A}\tilde{p}$ (la primer tilde está sobre Ap).

Este resultado nos permite trabajar con cualquier transformación lineal del plano como una transformación lineal del espacio. Además es compatible con inversas y composiciones.

- 2. Demostrar las siguientes igualdades:
 - a) $\tilde{A}^{-1} = \tilde{A^{-1}}$ (la primera tilde está sobre A y la seguda sobre A^{-1}).
 - b) $\tilde{AB} = \tilde{A}\tilde{B}$ (la primera tilde está sobre AB).

APLICACIÓN

Comentamos ya que estas transformaciones del plano o el espacio son muy utilizadas en diseño gráfico. En el archivo *Transformaciones lineales* (Autor: Daniel Severín) en Comunidades, presentamos un código sencillo (en Math Lab) que permite construir *arbolitos fractales* a partir de un segmento inicial. Lo desarrollado allí forma parte de los contenidos a evaluar por la Cátedra. Esperamos que se animen a probar el código y generen distintos *arbolitos* partiendo de distintos segmentos iniciales.

Para los más curiosos, pueden también bajarse la App llamada *Britney Fractales Iterativos*, desarrollada por Ariel Lombardi (actual director del Departamento de Matemática de Escuela de Cs. Exactas y Naturales de nuestra Facultad) la cual usa las mismas herramientas y permite obtener lindísimos diseños en forma muy sencilla.