

Computational Notebooks for Cheminformatics

ACS Fall 2019 CHED 285

Paul J Kowalczyk Senior Data Scientist

<u>paul.kowalczyk@solvay.com</u> www.linkedin.com/in/PaulJKowalczyk

R&I Centre Bristol

Machine Learning Workflow

CRoss-Industry Standard Process for Data Mining

Cross-industry standard process for data mining, known as CRISP-DM, is an open standard process model that describes common approaches used by data mining experts.

The dataframe

Activity	Fingerprints and/or Descriptors
Y	\longleftrightarrow \times \longrightarrow
	Activity

Supervised Learning Model

Representing molecules: vanillin

Vanillin

Canonocal SMILES: COC1=C(C=CC(=C1)C=O)O

InChI=1S/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-5,10H,1H3

InChI Key:

MWOOGOJBHIARFG-UHFFFAOYSA-N

Representing molecules: alanine.mol

```
In [37]: alanine = Chem.MolFromInchi('InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1')
In [39]: Draw.MolToImage(alanine)
Out[39]:
```

```
In [40]: Chem.MolToMolFile(m1, 'alanine.mol')
```

```
RDKit
                   2D
 0.0000
            0.0000
                       0.0000 C
            0.7500
 1.2990
                       0.0000 C
           -0.0000
 2.5981
                       0.0000 C
 1.2990
            2.2500
                       0.0000 N
           -1.5000
 2.5981
                       0.0000 0
            0.7500
  3.8971
                       0.0000 0
END
```

Representing molecules: alanine.mol

		RD	Kit				2D																
	6	5	0	0	0	0	0	0	0	0.9	999	V20	00										
		0.0	000		0.	.000	0	0	.00	00	С	0	0	0	0	0	0	0	0	0	0	0	0
		1.2	990		0.	750	0	0	.00	00	С	0	0	0	0	0	0	0	0	0	0	0	0
		2.5	981		-0.	.000	0	0	.00	00	С	0	0	0	0	0	0	0	0	0	0	0	0
		1.2	990		2.	.250	0	0	.00	00	N	0	0	0	0	0	0	0	0	0	0	0	0
		2.5	981		-1.	.500	0	0	.00	00	0	0	0	0	0	0	0	0	0	0	0	0	0
		3.8	971		0.	.750	0	0	.00	00	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	1	1	6																			
	2	3	1	0																			
	2	4	1	0																			
	3	5	2	0																			
	3	6	1	0																			
М	E	END																					

Prepare data for machine learning: Descriptors (features)

List of Available Descriptors

Descriptor/Descriptor Family	Notes
Gasteiger/Marsili Partial Charges	Tetrahedron 36 :3219-28 (1980)
Balabanj	Chem. Phys. Lett. 89:399-404 (1982)
BertzCT	J. Am. Chem. Soc. 103:3599-601 (1981)
lpc	J. Chem. Phys. 67:4517-33 (1977)
HallKierAlpha	Rev. Comput. Chem. 2:367-422 (1991)
Kappa1 - Kappa3	Rev. Comput. Chem. 2:367-422 (1991)
Chi0, Chi1	Rev. Comput. Chem. 2:367-422 (1991)
Chi0n - Chi4n	Rev. Comput. Chem. 2:367-422 (1991)
Chi0v - Chi4v	Rev. Comput. Chem. 2:367-422 (1991)
MolLogP	Wildman and Crippen JCICS 39:868-73 (1999)
MolMR	Wildman and Crippen JCICS 39:868-73 (1999)
MolWt	
ExactMolWt	
HeavyAtomCount	
HeavyAtomMolWt	
NHOHCount	
NOCount	
NumHAcceptors	
NumHDonors	
NumHeteroatoms	
NumRotatableBonds	
NumValenceElectrons	
NumAmideBonds	
Num{Aromatic,Saturated,Aliphatic}Rings	
Num{Aromatic,Saturated,Aliphatic}	
{Hetero,Carbo}cycles	
RingCount	
FractionCSP3	

NumSpiroAtoms	Number of spiro atoms
	(atoms shared between rings that share exactly one atom)
NumBridgeheadAtoms	Number of bridgehead atoms (atoms shared between rings that share at least two bonds)
TPSA	J. Med. Chem. 43:3714–7, (2000) See the section in the RDKit book describing differences to the original publication.
LabuteASA	J. Mol. Graph. Mod. 18:464-77 (2000)
PEOE_VSA1 - PEOE_VSA14	MOE–type descriptors using partial charges and surface area contributions
	http://www.chemcomp.com/journal/vsadesc.htm
SMR_VSA1 - SMR_VSA10	MOE-type descriptors using MR contributions and surface area contributions http://www.chemcomp.com/journal/vsadesc.htm
SlogP_VSA1 - SlogP_VSA12	MOE-type descriptors using LogP contributions and
	surface area contributions
	http://www.chemcomp.com/journal/vsadesc.htm
EState_VSA1 - EState_VSA11	MOE-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper)
VSA_EState1 - VSA_EState10	MOE-type descriptors using EState indices and surface area contributions (developed at RD, not described in the CCG paper)
MQNs	Nguyen et al. ChemMedChem 4:1803-5 (2009)
Topliss fragments	implemented using a set of SMARTS definitions in \$(RDBASE)/Data/FragmentDescriptors.csv
Autocorr2D	New in 2017.09 release. Todeschini and Consoni "Descriptors from Molecular Geometry" Handbook of Chemoinformatics http://dx.doi.org/10.1002/9783527618279.ch37

Prepare data for machine learning: Fingerprints

List of Available Fingerprints

	•
Fingerprint Type	Notes
RDKit	a Daylight-like fingerprint based on hashing molecular subgraphs
Atom Pairs	JCICS 25:64-73 (1985)
Topological Torsions	JCICS 27 :82-5 (1987)
MACCS keys	Using the 166 public keys implemented as SMARTS
Morgan/Circular	Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints <i>JCIM</i> 50 :742–54 (2010).
2D Pharmacophore	Uses topological distances between pharmacophoric points.
Pattern	a topological fingerprint optimized for substructure screening
Extended Reduced Graphs	Derived from the ErG fingerprint published by Stiefl et al. in <i>JCIM</i> 46 :208–20 (2006). NOTE: these functions return an array of floats, not the usual fingerprint types

Feature Definitions Used in the Morgan Fingerprints

These are adapted from the definitions in Gobbi, A. & Poppinger, D. "Genetic optimization of combinatorial libraries." *Biotechnology and Bioengineering* **61**, 47–54 (1998).

Feature	SMARTS
Donor	[\$([N;!H0;v3,v4&+1]),\$([0,S;H1;+0]),n&H1&+0]
Acceptor	[\$([0,S;H1;v2;!\$(*-*=[0,N,P,S])]),\$([0,S;H0;v2]),\$([0,S;-]),\$([N;v3;!\$(N-*=
	[0,N,P,S])]),n&H0&+0,\$([0,s;+0;!\$([0,s]:n);!\$([0,s]:c:n)])]
Aromatic	[a]
Halogen	[F,Cl,Br,I]
Basic	[#7;+,\$([N;H2&+0][\$([C,a]);!\$([C,a](=0))]),\$([N;H1&+0]([\$([C,a]);!\$([C,a](=0))])
	[\$([C,a]);!\$([C,a](=0))]),\$([N;H0&+0]([C;!\$(C(=0))])([C;!\$(C(=0))])[C;!\$(C(=0))])]
Acidic	[\$([C,S](=[0,S,P])-[0;H1,-1])]

Prepare data for machine learning:

Fingerprints

Evaluate results: Cohen's kappa

kappa takes into account the possibility of the agreement occurring by chance

	Reference						
Predicted	Event	No Event					
Event	A	В					
No Event	С	D					

A: true positive

B: false positive (Type I error)

C: false negative (Type II error)

D: true negative

$$\kappa = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}$$

$$Pr(a) = \frac{A+D}{A+B+C+D}$$

$$\mathsf{P}_{\mathsf{YES}} = \frac{A+B}{A+B+C+D} \, \mathsf{X} \, \frac{A+C}{A+B+C+D} \qquad \mathsf{P}_{\mathsf{NO}} = \frac{C+D}{A+B+C+D} \, \mathsf{X} \, \frac{B+D}{A+B+C+D}$$

$$P_{NO} = \frac{C+D}{A+B+C+D} \times \frac{B+D}{A+B+C+D}$$

$$Pr(e) = P_{YES} + P_{NO}$$

Evaluate results: Cohen's kappa

Карра	Agreement
< 0	Less than chance agreement
0.01 - 0.20	Slight agreement
0.21 - 0.40	Fair agreement
0.41 - 0.60	Moderate agreement
0.61 - 0.80	Substantial agreement
0.81 – 0.99	Almost perfect agreement

Retrieve / ingest data

Table 1 Endpoint datasets in the PHYSPROP database

Property abbreviation	Property
AOH	Atmospheric hydroxylation rate
BCF	Bioconcentration factor
BioHL	Biodegradability half-life
BP	Boiling point
HL	Henry's Law constant
KM	Fish biotransformation half-life
KOA	Octanol-air partition coefficient
KOC	Soil adsorption coefficient
logP	Octanol–water partition coefficient
MP	Melting point
RB	Readily biodegradable
VP	Vapor pressure
WS	Water solubility

Mansouri, K., Grulke, C. M., Judson, R. S., & Williams, A. J. (2018). OPERA models for predicting physicochemical properties and environmental fate endpoints. *Journal of cheminformatics*, *10*(1), 10.

OPEn structure-activity/property Relationship App

Ready Biodegradability

Ready Biodegradable (RB): 681 Not Ready Biodegradable (NRB): 1304

Explore / clean / modify data: structure curation

- Ingest the 3 biodegradability datasets
 - Cheng (JChemInfModel_52_655)
 - Mansouri (JCIM_53_867)
 - OPERA (OPERA)
- Sanitize molecules
- Identify replicates in the datasets
- Compare / contrast the datasets, e.g., compare molecular weight distributions, TPSA, logP, ...

Explore / clean / modify data: Murcko frameworks

Bemis, Guy W., and Mark A. Murcko. "The properties of known drugs. 1. Molecular frameworks." *Journal of medicinal chemistry* 39.15 (1996): 2887-2893.

Explore / clean / modify data: Murcko frameworks

Explore / clean / modify data

Model: recursive partitioning / random forests

Figure 2-24. Decision boundary of tree with depth 1 (left) and corresponding tree (right)

Figure 2-25. Decision boundary of tree with depth 2 (left) and corresponding decision tree (right)

Introduction to Machine Learning with Python

by Andreas C. Muller and Sarah Guido

978-1-449-36941-5

Model Performance ROC & AUC

Model Performance: Confusion Matrix

kappa = 0.61

[[239 22] [45 91]]

Model Performance: Confusion Matrix

notebook

Merci! Thank You! Dziękuję

<u>paul.kowalczyk@solvay.com</u> <u>www.linkedin.com/in/PaulJKowalczyk</u>

www.solvay.com

