Lecture 3: Kalman filter

April 12, 2018

Directed random walk

$$x_{t+1} = x_t + \varepsilon_t$$

$$\varepsilon_t \sim Normal(\alpha, \sigma_x^2)$$

$$\log(y_t) \sim Normal(x_t, \sigma_y^2)$$

- Time-series follows a random-walk with a trend α

Data set

Questions

- Is there evidence of density dependence?
- If yes, what is the expected equilibrium?
- What is the stationary distribution?
 - Variance
- How "stable" is the model
 - Reactivitiy
 - Resilience
 - Resistence

Gompertz model

$$d_{t+1} = d_t \exp(\alpha - \beta \log(d_t) + \varepsilon_t)$$
$$\varepsilon_t \sim Normal(0, \sigma_d^2)$$
$$\log(b_t) \sim Normal(\log(d_t), \sigma_b^2)$$

Gompertz model

$$d_{t+1} = d_t \exp(\alpha - \beta \log(d_t) + \varepsilon_t)$$
$$\varepsilon_t \sim Normal(0, \sigma_d^2)$$
$$\log(b_t) \sim Normal(\log(d_t), \sigma_b^2)$$

- Fits to an index of abundance, b
- $-\beta$ is the strength of density dependence
 - Linear impact of $\log(d_t)$ on per-capita productivity
- $-\varepsilon_t$ is a lognormally distributed process error
- $-\sigma_{\varepsilon}^2$ is the variance of log-process errors
- $-\sigma_b^2$ is the variance of log-observation errors

$$\log(d_{t+1}) = \alpha + (1 - \beta) \log(d_t) + \varepsilon_t$$
$$\varepsilon_t \sim Normal(0, \sigma_{\varepsilon}^2)$$
$$\log(b_t) \sim Normal(d_t, \sigma_b^2)$$

- Log-density follows an autoregressive process over time
- $-\rho = 1 \beta$ is "density dependence"
 - ho=0 means each year fluctuates independently
 - ho=1 means the population follows a random-walk with no equilibrium

Gompertz model

Benefits

- Specifies an explicit model
 - Can select form of density dependence
- Can calculate stationary distribution

$$\lim_{t \to \infty} (\log(d_t)) = D$$

$$\mathbb{E}(D) = \frac{\alpha}{\beta}$$

$$\mathbb{V}(D) = \frac{\sigma_d^2}{\beta}$$

Map argument

[Look at map example in GitHub]

Try again with real data

Package FishLife

 Contains data for 100s of fish populations worldwide

Alaska pollock

Is this converged?

How to modify?

	Starting				Final	
Param	value	Lower	MLE	Upper	gradient	Std. Error
log_d0	0	-Inf	4.126071	Inf	3.75E-07	0.260514
log_sigmaP	1	-Inf	-1.3451	Inf	3.34E-06	0.117851
log_sigma M	1	-Inf	-11.029	Inf	7.42E-10	26029.84
alpha	0	-Inf	2.651077	Inf	-1.42E-06	0.665236
rho	0	-Inf	0.419967	Inf	-2.64E-06	0.145993

Add sampling variance

Suppose you have many measurements x_i , what is the mean and standard error?

$$\hat{\mu} = \frac{1}{n_i} \sum_{i=1}^{n_i} x_i$$

$$\hat{\sigma} = \sqrt{\frac{1}{n_i - 1} \sum_{i=1}^{n_i} (x_i - \hat{\mu})^2}$$

$$\widehat{SE}(\hat{\mu}) = \frac{\hat{\sigma}}{\sqrt{n_i}}$$

Add sampling variance

If measurements x_i follow a lognormal distribution with mean $\hat{\mu}$ and standard deviation $\widehat{SE}(\hat{\mu})$, what is the logstandard deviation $\sigma_{lognormal}$ of the lognormal distribution?

$$CV = \frac{\widehat{SE}(\widehat{\mu})}{\widehat{\mu}} = \sqrt{e^{\sigma_{lognormal}^2} - 1}$$

Therefore:

$$\sigma_{lognormal}^2 = \log(CV^2 + 1)$$

Lab exercise

[Add sampling variance and re-run]

Alaska pollock

Is this converged?

How to modify?

	Starting		N 41 E		Final	CL L E
Param	value	Lower	MLE	Upper	gradient	Std. Error
log_d0	0	-Inf	4.21494	Inf	2.35E-07	0.290923
log_sigmaP	1	-Inf	-1.54627	Inf	-1.26E-07	0.297971
log_sigma M	1	-Inf	-4.98037	Inf	-4.42E-09	13.00587
alpha	0	-Inf	2.071196	Inf	3.71E-06	1.02898
rho	0	-Inf	0.546332	Inf	1.67E-05	0.225704

Lab exercise

[Fix SigmaM at 0 and re-run]