

主要内容

- ■物理层的定义和功能
- ■物理层的特性
- ■典型的物理层标准接口
- 传输介质
- 网络传输技术

物理层的定义和功能

- ■物理层的定义
 - ISO/OSI 关于物理层的定义:物理层提供机械的、电气的、功能的和规程的特性,目的是启动、维护和关闭数据链路实体之间进行比特传输的物理连接。这种连接可能通过中继系统,在中继系统内的传输也是在物理层
- 物理层的功能
 - 在两个网络设备之间提供透明的比特流传输
- 研究内容
 - 物理连接的启动和关闭,正常数据的传输,以及维护管理

9理层的定义和功能 (续)

- 物理层有关的传输方式
 - 连接方式(点到点,点到多点)
 - 通信方式(单工,半双工,全双工)
 - 位传输方式 (串行,并行)
- ■物理层的四个重要特性
 - 机械特性 (mechanical characteristics)
 - 电气特性 (electrical characteristics)
 - 功能特性 (functional characteristics)
 - 规程特性 (procedural characteristics)

物理层的特性

■机械特性

- 主要定义物理连接的边界点,即接插装置。规定物理连接时所采用的规格、引脚的数量和排列情况
- 标准接口举例
 - ISO 2110, 25芯连接器, EIA RS-232-C, EIA RS-366-A
 - ISO 2593, 34芯连接器, V.35宽带MODEM
 - ISO 4902, 37芯和9芯连接器, EIA RS-449
 - ISO 4903, 15芯连接器, X.20、X.21、X.22

物理层的特性 (续)

■ 电气特性

- 规定传输二进制位时,线路上信号的电压高低、阻抗匹配、传输速率和距离限制
- 早期的标准是在边界点定义电气特性,例如EIA RS-232-C、V.28;最近的标准则说明了发送器和接收器的 电气特性,而且给出了有关对连接电缆的控制
- CCITT 制订的电气特性标准
 - CCITT V.10/X.26: 新的非平衡型电气特性, EIA RS-423-A
 - CCITT V.11/X.27: 新的平衡型电气特性, EIA RS-422-A
 - CCITT V.28: 非平衡型电气特性, EIA RS-232-C
 - CCITT X.21/EIA RS-449

物理层的特性(续)

- ■功能特性
 - 主要定义各条物理线路的功能
 - 线路的功能分为四大类
 - ■数据
 - 控制
 - 定时
 - 地
- 规程特性
 - 主要定义各条物理线路的工作规程和时序关系

EIA RS-232-C

- 1960年美国电子工业协会EIA提出RS-232, 1963年提出RS-232-A, 1965年提出RS-232-B, 1969年提出RS-232-C。用于DTE/DCE之间的接口
- 机械特性
 - 25芯连接器,DTE为插头,DCE为插座
- 电气特性
 - 采用非平衡型电气特性,低于-3V为 "1",高于+4V为 "0",最大 20Kbps,最长15m
 - 非平衡传输(unbalanced transmission):所有电路共享一个公用的地线
 - 平衡传输(balanced transmission):每个主要电路需要两根线, 没有公用的地线

EIA RS-232-C (续)

- 功能特性
 - 定义了21条线,许多子集,基本与CCITT V.24兼容
- 规程特性
 - 对不同的功能子集,有不同的规程
 - RS-232-C 有14中不同的接口类型,适合于单工,半双工,全双工,同步,异步
- RS-232-C的不足与改进
 - 不足
 - 传输性能低,距离短,速率低
 - 改进
 - 重新设计, X.21
 - 以RS-232-C为基础改进,1977年提出RS-449

Fig. 2-21. Some of the principal RS-232-C circuits. The pin numbers are given in parentheses.

RS232接头

EIA RS-449/422-A/423-A

- EIA RS-449 是为替代RS-232-C而提出的物理层标准接口。实际上是一体化的三个标准
- 主要改进
 - 改善了性能,加长了接口电缆距离,加大了数据传输率
 - 增加了新的接口功能,例如,回送检查
 - 解决了机械接口问题
- ■机械特性
 - 37芯或9芯连接器

EIARS-449/422-A/423-A(续)

- 电气特性
 - 与RS-232-C相连,采用非平衡型电气特性 RS-423-A, 20Kbps以下
 - 其他情况,采用平衡型电气特性 RS-422-A, 20Kbps ~ 2Mbps
- ■功能特性
 - 定义了30条功能线
- 规程特性
 - 基本上以RS-232-C为基础

传输介质

■ 双绞线

- 既可用于模拟传输,也可用于数据传输
- 带宽依赖于线的类型和传输距离
- 3类线,5类线,增强型5类线、6类线、7类线
- 非屏蔽双绞线UTP (Unshielded Twisted Pair) , 屏蔽双绞线STP (Shielded Twisted Pair)

带有RJ-45接头的双绞线

具有以太网卡的计算机背面

一个10/100M双绞线以太网接口,指示灯的 状态显示接口连接在一个10M以太网上

传输介质(续)

- ■基带同轴电缆
 - 50欧姆,用于数据传输
- 宽带同轴电缆
 - 75欧姆,用于模拟传输
 - Cable TV技术, 300MHz或450MHz

Fig. 2-3. A coaxial cable.

传输介质 (续)

光纤

- 目前,在试验室中光纤带宽超过70Tbps; 8 × 2.5
 Gbps, 8 × 10 Gbps, 32 × 10 Gbps, 32 × 40
 Gbps的光纤传输系统已经实用
- 光纤分类: 单模光纤和多模光纤
 - 光源发出的光进入光纤后,入射角度小的光被反射,并沿着光纤 传播,其他光被周围介质吸收,能够反射的角度有多个,这种形 式的传播称为多模。多模光纤适于短距离传输
 - 当光纤半径减小到波长的数量级时,只有一个角度(或者一个模式)的光线可以进入,这种形式的传播称为单模。单模光纤适于长距离传输
 - 单模和多模都支持同时传输几个不同波长的光线,支持波分复用

传输介质 (续)

- 常用的三个波长窗口(光纤波段)
 - 850 nm: 衰减 (attenuation)大,传输速率和距离受限制, 但价格便宜
 - 1310 nm:衰减小,无色散(dispersion)补偿、功率放大情 况下,最大传40km(最坏情况)
 - 1550 nm: 衰减小,无色散补偿、功率放大情况下,最大传80km (最坏情况)

Fig. 2-6. Attenuation of light through fiber in the infrared region.

光纤和光缆

Fig. 2-7. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

传输介质 (续)

- 光网络

- 组网方式
 - 点到点: 四根线 (两根用于保护倒换)
 - 环: 两根线(一根用于保护倒换)
- ■中继器: 光一电一光,全光
- 全光网,光因特网论坛 OIF

Fig. 2-9. A fiber optic ring with active repeaters.

Caption: Optical fiber cables connected to an ATM switch.

4SINGHUS

接入ATM网络接口的光纤

光纤和连接器,黑色套子在连接器不用的时候保护连接器

网络传输技术

- 光纤传输
- 移动电话网络
- 无线传输
- ■通信卫星
- 公共交换电话网络
- 有线电视网络

SONET/SDH

- 标准
 - 1985年, Bellcore提出SONET (Synchronous Optical NETwork) 标准
 - 1989年, CCITT提出SDH (Synchronous Digital Hierarchy) 标准,与 SONET 有微小差别
 - SONET主要用于北美和日本, SDH主要用于欧洲和中国
- SONET/SDH,采用TDM技术,是同步系统,由主时钟控制,时钟精度10⁻⁹秒
- SONET路径
 - 路径 (path) ,线路 (line) ,段 (section)

SONET/SDH结构

Fig. 2-29. A SONET path.

SONET/SDH帧

- 基本SONET帧
 - 810 字节/125us,所以传输速率为 810 × 8 / (125 × 10⁻⁶) = 51.84 Mbps
 - 基本SONET信道称为STS-1 (Synchronous Transport Signal-1)
 - SONET帧格式

SONET/SDH帧(续)

Fig. 2-30. Two back-to-back SONET frames.

SONET/SDH复用

复用

- 复用是基于字节的
- OC-3 与 OC-3c的区别
 - c(concatenated)表示级联,非复用
 - OC-3 表示一个155.52 Mbps的载波是由三个单独的OC-1载 波复用构成的
 - OC-3c 表示一个单独的155.52 Mbps的载波
- SONET/SDH复用速率

SONET/SDH复用(续)

Fig. 2-31. Multiplexing in SONET.

SONET/SDH复用(续)

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728

Fig. 2-32. SONET and SDH multiplex rates.

移动电话网络

- 单方向的寻呼系统
 - 寻呼过程
 - 打电话给寻呼公司,输入寻呼机号码
 - 寻呼公司的计算机收到请求,通过线路传到高处(山顶)的天线
 - 天线直接广播信号(本地寻呼),或传递给卫星(异地寻呼), 卫星再广播
 - 单向系统
 - 需要很小的带宽

Fig. 2-53. (a) Paging systems are one way. (b) Mobile telephones are two way.

移动电话网络(续)

- ■蜂窝电话
 - 第一代: 模拟蜂窝电话, 只能传送话音
 - 第二代: 数字蜂窝电话,主要传送话音,GSM,CDMA
 - 3G / 4G: 可以传送话音和数据
- 模拟蜂窝电话
 - 早期用于军事通信, push-to-talk system, 一个信道, 半双工
 - 60年代, IMTS (Improved Mobile Telephone System), 双频,全双工

移动电话网络(续)

- 1982年, AMPS (Advanced Mobile Phone System)
 - 使用小的蜂窝 (cell)
 - 在附近(不相邻)的蜂窝中重用传输频率
 - 发射功率小,设备小而便宜
 - 当某个蜂窝内的用户超过系统容量时,将蜂窝划分成几个更小的 蜂窝,以便重用频率,并将发射功率减弱
 - 在蜂窝中心,有一个基站(base station),基站包括一个计算机和与天线相连的收发器
 - 所有的基站通过包交换网络与MTSO (Mobile Telephone Switching Office) 或MSC (Mobile Switching Center) 相 连, MTSO与电话系统相连
 - 安全问题: 窃听、盗用

Fig. 2-54. (a) Frequencies are not reused in adjacent cells. (b) To add more users, smaller cells can be used.

总结

- ■物理层的定义
 - 物理层提供机械的、电气的、功能的和规程的特性,目的是启动、维护和关闭数据链路实体之间进行比特传输的物理连接。
- ■物理层的特性
 - 机械特性,电气特性,功能特性 ,规程特性
- 传输介质
 - 双绞线,同轴电缆,光纤
- 网络传输技术
 - 光纤传输,移动电话网络