PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA

Primer semestre de 2019

Ayudante: Hernán Robledo (harobledo@uc.cl)

Inferencia Estadística / Métodos Estadísticos - EYP2114/EYP2405 Ayudantía 2

- 1. Sea $X_1, ..., X_n$ una muestra de una distribución $U(\theta, \theta + 1)$. Determine:
 - a) Un estadístico suficiente para θ .
 - b) Según el estadístico determinado en a), determine si es mínimo suficiente para θ
 - c) Determine si el estadístico es completo.
- 2. Sea $X_1, ..., X_n$ una muestra que distribuye según la siguiente función de densidad:

$$f(x|\mu) = \frac{3^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{x-\mu}\right)^{\alpha+1} \exp\left(\frac{-3}{x-\mu}\right)$$

donde $x \geqslant \mu$, y α es conocido pero μ es desconocido. Determine un estadístico ancilar para μ .

3. Sea $X_1, ..., X_n$ una muestra que distribuye según la siguiente función de densidad:

$$f(x|\sigma) = \frac{1}{\sigma} \exp\left(\frac{-x}{\sigma}\right)$$

 $x > 0, \sigma > 0$. Determine un estadístico ancilar para σ .

4. Para cada una de las distribuciones, sea $X_1, ..., X_n$ una muestra. Encuentre, si existe, un estadístico mínimo, y determine si pertenece a una familia completa o no.

a)
$$f(x|\theta) = \frac{(\log \theta)\theta^x}{\theta - 1}$$
 $0 < x < 1, \theta > 1$

b)
$$f(x|\theta) = \frac{2x}{\theta^2}$$
 $0 < x < \theta, \theta > 0$.

c)
$$f(x|\theta) = \frac{1}{\pi[1 + (x - \theta)^2]} - \infty < x < \infty, -\infty < \theta < \infty$$