Name: - Shikha Singh

Section: - CST

class Roll no: - 18

University Roll no: - 2017554

Session: - 2022 - 24

Subject: - DAA (Assignment)

```
Tutorial-3
          Int Isneay-search (Int a[], Int n, Int key)
01.
       if (abs (a[o] - Key) > abs (a[n-1]-Key))
            for (?= n-1°, 3>0°, 3--)
                if (a[i] == Key)
      else &
        for (?=0; i<n; ?++)
             ?f ( a[i] == key)
                  yeturn i;
83.
       Hurative:
       Incertion sort (int a [], int n)
       for( ?=1°, ? < n°, ?++)
                * = Q[1];
                  η= (-1; -
        musie ( 43 = 6 ft a (4) 2 K)
              ( (m) p = ( m) p
```

```
Q[7+1]= K°;
Recurive:
     Insurtion soot ("int all, int n)
      3+ ( n < = 1)
     Insurion sort (a, n-1);
     9nt x = a[n-1];
  int j= n-2;

welle ( j > = 0 + 4 a[j] > x) }

a ( j+1] = a[j];
     a [ ]+1] = x;
 Insention sort 73 called online sorting because
it considers only one input per iteration
and produces à partiel solution without
considering ferture elements uneveras other
sorting algorithm process the whole problem
dater altogethur ferom the beginning and is
enquired to output on anwer which some
the problem at hand.
```

-GE Date	
A	
Page	

93. complexit	y of all th	e sorting	algorathuns-
		Avenage	worst
Sorting	Best	worst	Average
U			V
Bubble sort	12 (n2)	0 (n2)	0 (n ²)
Selection sort	12 (n2)	0 (n2)	0 (n2)
Inscution sort	sh (n2)	0 (n ²)	(na)
Quick sort	I (nlagn)	0 (n2)	0 (nlogn
Meuge sort	I (nlagn)	0 (nlagn)	O (nlogn)
count sort	$\Omega(n+m)$	0 (n+m)	0 (n+m)
thap sort	12 (nlagn)	0 (ningn)	O (nlagn)
uen	me m= ra	nge.	
		0	

N	Ч	۸
a		•

Sorting	Inplace	Stable	ouline	
Bubble sørt			X	
Selection sort		×	X	
Insurtion sort				
awa sort		×	×	
merge sort	X		X	
count sort	X		X	
Heap sort		X	V	

	Page;
GS.	Remerive
=	
	int binauy search (int 91), int e, int r, int x)
	S U
	int mid;
	mhile (2 = 8) }
	m3a=(12+8)/2°;
	3f(x>a[midJ)
	yetven binany search (9, midtl; 8, x);
	else if (a(mid) > x)
	getvon binaugseauch (a, l, mid-1, x)?
	else
	geturn mid.
	3 3
	Ituative
	gut binauy search (int a [], int n, int x)
	gut binary search (ma als, mains a
	γ int $d \geq 0$, $r = n-1$, mid ;
	muliele (1 < =8)
	5
	mid= (1+8) 12;
	37 (x c a (mid J)
	v = mid - 1
	else if [acmid] < x)
	1= mid +1;
	else susturn mid, j
	Time complexity = 0(n)
	13 Mean blowsty = D(1)
	search space complexity

	Fage:
	If prot is at extueme position and
	array is surveuse sorted,
	Time complexity: O(n2).
611.	awwe sort.
	Best: T(n) = 2T (n/a) + n
	morsts $T(n) = T(n-1) + n$.
	Mengesort
	Menge sort $T(n) = 2 T(n a) + n$
*	
	In murge sort, the away is divided into two equal halves I times.
	o. T.C = O(nlagn).
*	In qu'illusort, the away 'is divided into
	any eratio depending on the position of
	pivat element.
	s. Time comp. ranger from O(n2) to
	O(nlagn).
√ . •	the min ^m valu
₩1d.	In selection sort, normally we swap with
	the first value, which makes is unstable
	to marce it stable, the cade 750- well be 3
	for (int ?=0°, ? < n-1; ; ++)
	7
	9 nt min = ?;
	for(9nt 3=1+1; 3/2n; 3/++)
	2 Ll 0 Fuelo 7 : a = 221
	Pf(a[min]>a(ij)) $min=ij$;
	J

int key = a [men]; welle (min > ?) [min] = Q[min - "x]; a(i) = key; 613. Void bubble-sort (int af7, int n) for (3=0 to n) } flag = 0; for (= 0 to n-1-1) 3 (a[4]) P < [4]D) swap (d[3], a[3+1]); flag = 1°, (flag == 8) break . 1914that lase, external sorting algorithm such as K-way merge soot 38 used that lan handle large data amount and sout it. which can't fit into main memory. A part of array respons in RAM deving the execution whereas in Inturnal Soutine process takes place entirely within the main memory. Ex-Bubble, selection, insention, etc.