98

(b) Calculate the drain current.

3-33. Given $V_{tp} = -0.6 \text{ V}$, $K_p = 50 \,\mu\text{A/V}^2$, W/L = 3, and $V_D = 0.8 \text{ V}$, if $V_o = 1.2 \text{ V}$, what are R and V_G ?

3-34. Given $V_{tp} = -0.6$ V, $K_p = 50 \,\mu\text{A/V}^2$, W/L = 3, and $V_D = 0.8$ V, if $V_o = 1.2$ V, what is R?

3-35. If $K_n = 90 \mu \text{A/V}^2$, $V_m = 0.5 \text{ V}$, and W/L = 10, calculate I_D and V_O .

Body Effect and Threshold Voltage

3-36. The *n*MOSFET has: $V_{tn0} = 0.5$ V, $K_n = 200$ μ A/V², $\phi_F = -0.35$ V, W/L = 3, and the body effect constant $\gamma = 0.1$ V^{1/2}. The bulk voltage is at -0.3 V with respect to the source. Calculate I_D .

- **3-37.** An *n*MOSFET threshold voltage is measured as 0.62 V when it should be 0.60 V. A parasitic source to substrate voltage is suspected of raising V_{tm} . If $\gamma = 0.4 \text{ V}^{1/2}$ and $\phi_F = 0.35 \text{ V}$, what would be the V_{BS} of this suspected mechanism?
- **3-38.** $V_{t0} = 0.6$ V, $\gamma = 0.25$ V^{1/2}, and $\phi_F = 0.35$ V. Calculate V_O .

