STA 674

Regression Analysis And Design Of Experiments

Measuring Association between Two Variables – Lecture 4

STA 674, RADOE:

Measuring Association between Two Variables

- Interpretation of Correlation
 - Last time sign
 - This time magnitude

- The correlation, $R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i \bar{x})(y_i \bar{y})]}{(n-1)s_X s_Y}$, always lies between -1 and 1, inclusive.
- Suggested language:

	If $R_{X,Y}$ is between	then we may say* X and Y have			
	$0.5 \le R_{X,Y} \le 1$	a strong positive correlation			
	$0 < R_{X,Y} < 0.5$	a weak positive correlation			
	$-0.5 < R_{X,Y} < 0$	a weak negative correlation			
	$-1 \le R_{X,Y} \le -0.5$	a strong negative correlation			
Measuring Association between Two Variables					

• Example: Average January temperature in US cities

Previously, we found $R_{XY} = -0.94$ Average Jan. Temp. vs Latitude

City		Latitude	Average Jan Temp
Louisville,	KY	39	27
Key West,	FL	25	65
New Orleans,	LA	30.8	45
Atlanta,	GA	33.9	37
Charlotte,	NC	35.9	34
Harrisburg,	PA	40.9	24
Omaha,	NE	41.9	13
Detroit,	MI	43.1	21
Burlington,	VT	45	7
Spokane,	WA	48.1	19
Means		38.4	29.2
Standard devi	ations	7	16.9

Graph	A	В	С	D
\bar{x}	50	50	50	50
\bar{y}	54	54	58	27
Graph	Е	F	G	Н
\bar{x}	50	50	31	50
\bar{y}	44	54	31	58

Measuring Association between Two Variables

• True values:

Measuring Association between Two Variables

$$R_{X,Y} = -.23$$

$$R_{X,Y} = .96$$

$$R_{X,Y} = .89$$

$$R_{X,Y} = -.45$$

• Next time – *cautions* about interpretations of the correlation coefficient.