- · an makes sense
- · a makes sense Y neZ.
- if ab = ba, $(ab)^n = A^n b^n$
- . Def: if SCG, (S) is the smallest go containing S.

Pap:
$$\langle S \rangle = \left\{ s_1^{\epsilon_1} \cdots s_m^{\epsilon_m} \mid m \in \mathbb{Z}_{>0}, s_i \in S, \epsilon_i = \pm 1 \right\}.$$

Pop try intimte cyclic gp is = Z.

If let $G = \langle a \rangle$. Let $\varphi: n \mapsto a^n$.

clearly Vis surjective & P(n+m) = P(n). Y(m).

also, Pis injective: suppose am = an.

Then $a^{n-m} = 1$. If $n-m \neq 0$, then

 $\langle \alpha \rangle = \{ \alpha^j : |j| \leq |n-m| \} \text{ and } |G| < \infty. 80 n = m. \square$

Prop any two finite cyclic groups of the Same order are isomorphic.

of let G = (a). Wr = min {k = 75: ak = 1}.

The set is not empty since $\psi: n \mapsto a^n$ is not injective $50 \exists n \forall m \forall a^n = a^m = 1$.

Clark: G = {1, a, a², ..., a^{r-1}}.

 $\forall m \in \mathbb{Z}$, by the division alg, m = qr + P for some $P \in \{0,1,...,r-1\}$.

 $a^{m} = a^{qr} a^{p} = (a^{r})^{q} a^{p} = a^{p}$.

So |G| = r. (there is no rep. 1) {1,a,a²,...,a²-1} since r was minual:

if $a^{k} = a^{m}$ w/ r > k > m > 0, then $a^{k} - m = 1$, contradiction).

If $\langle a \rangle$ and $\langle b \rangle$ are cyclic of the same order

then $a^{n} \mapsto b^{n}$ is an isomorphism.

The order of a is o(a) or lal.

if |a| = r and $a^{N} = 1$, r | N. $|a| = |\langle a \rangle|$ (finite or infinite)

Prop. Let G= <a>.

- (i) If $\langle a \rangle = \infty$, then $G = \langle a^n \rangle$ iff $n = \pm 1$.
- (ii) if $|a|=r < \infty$, then $G=\langle a^n \rangle$ iff (n,r)=1. The number of generators of G is $\varphi(r)$.

Proof of $\underline{(ii)}$: let d = (n,r). Then $|\alpha^n| = \frac{r}{d}$ so $|\alpha^n| = r$ iff d=1.

Proof of (ii): Let d = (n,r). Then $|\alpha^n| = \frac{r}{d}$ so $|\alpha^n| = r$ iff d = 1. $(a^n)^{\frac{r}{d}} = (a^r)^{\frac{n}{d}} = 1, \text{ and so } |a^n| |\frac{r}{d}.$ Conversely, if $l = |a^n|$ then $a^{nl} = 1$, so r | nl, $so |\frac{r}{d}| |l \cdot so |\frac{r}{d} = l \cdot .$