DiffBIR: Toward Blind Image Restoration with Generative Diffusion Prior

Xinqi Lin^{1,2,*}, Jingwen He^{3,4,*}, Ziyan Chen^{1,2,3}, Zhaoyang Lyu³, Bo Dai³, Fanghua Yu¹, Yu Qiao³, Wanli Ouyang^{3,4}, and Chao Dong^{1,3,5,†}

¹Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

³Shanghai AI Laboratory

⁴The Chinese University of Hong Kong

⁵Shenzhen University of Advanced Technology

Abstract. We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks in a unified framework. DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content. Each stage is developed independently but they work seamlessly in a cascaded manner. In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results. For the second stage, we propose IR-ControlNet that leverages the generative ability of latent diffusion models to generate realistic details. Specifically, IRControlNet is trained based on specially produced condition images without distracting noisy content for stable generation performance. Moreover, we design a region-adaptive restoration guidance that can modify the denoising process during inference without model re-training, allowing users to balance quality and fidelity through a tunable guidance scale. Extensive experiments have demonstrated DiffBIR's superiority over state-of-the-art approaches for blind image super-resolution, blind face restoration and blind image denoising tasks on both synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR.

1 Introduction

Image restoration aims at reconstructing a high-quality image from its low-quality observation. Typical image restoration problems, such as image denoising, deblurring and super-resolution, are usually defined under a constrained setting, where the degradation process is simple and known (e.g., bicubic down-sampling). They have successfully promoted a vast number of excellent restoration algorithms [6,8,12,30,54,65,69], but are born to have limited generalization ability. To deal with real-world degraded images, blind image restoration (BIR) comes into view and becomes a promising direction. The ultimate goal of BIR is to realize realistic image reconstruction on general images with general degradations. BIR does not only extend the boundary of classic image restoration tasks, but also has a wide practical application field (e.g., old photo/film restoration).

^{*} Equal contribution † Corresponding author

Typical BIR problems are blind image super-resolution (BSR), blind image denoising (BID), blind face restoration (BFR), etc. BSR is initially proposed to solve real-world super-resolution problems, where the low-resolution image contains unknown degradations. The most popular solutions may be BSR-GAN [68] and Real-ESRGAN [51]. They formulate BSR as a supervised largescale degradation overfitting problem. To simulate real-world degradations, a degradation shuffle strategy and high-order degradation modeling are proposed separately. Then the adversarial loss [15, 27, 36, 43, 52] and reconstruction loss are incorporated to learn the reconstruction process in an end-to-end manner. They have demonstrated their great robustness in degradation removal for realworld super-resolution, but usually fail in generating realistic details due to the limited generative ability. BID aims to achieve blind denoising [17, 67] for realworld noisy photographs, which usually contain various noises (e.q., dark current noise, short noise, and thermal noise) due to the processing in real camera system. SCUNet [67] is the state-of-the-art method, which designs a practical noise degradation model to synthesize the noisy images, and adopts L1 loss as well as optional adversarial loss for training a deep denoiser model. Its solution is similar as BSR methods and thus has the same weakness. BFR only focuses on blind restoration for face images. Due to a smaller image space, BFR methods (e.g., CodeFormer [72], GFPGAN [50]) could incorporate powerful generative facial priors (e.g., VQGAN [13], StyleGAN [21]) to generate faithful and highquality facial details. They have achieved remarkable success in both academia and industry in recent years. Nevertheless, BFR assumes a fixed input size and restricted face image space, and thus cannot be applied to general images.

Recently, denoising diffusion probabilistic models (DDPMs [20]) have shown outstanding performance in image generation. DDRM [22], DDNM [53], and GDP [14] incorporate the powerful diffusion model as the additional prior, thus having greater generative ability than GAN-based methods. With a proper degradation assumption, they can achieve impressive zero-shot restoration on classic IR tasks. However, the problem setting of zero-shot image restoration (ZIR) is not in accordance with BIR. Their methods can only deal with clearly defined degradations (linear or non-linear), but cannot generalize well to unknown degradations. In other words, they can achieve realistic reconstruction on general images, but not on general degradations.

In this work, we aim to solve different BIR tasks in a unified framework. According to the review and analyses on recent progress in BIR tasks, we decouple the BIR problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content. Considering that each BIR task corresponds to different degradation process and image dataset, we utilize different restoration modules to achieve degradation removal for each BIR task respectively. For the second stage, we utilize one generation module that leverages pre-trained text-to-image latent diffusion models [41] for generating faithful and visual-pleasing image content. By treating stage II as a conditional image generation problem, we have made some important observations that indicate bad conditions, the original LQ images with

distracting noises/artifacts, will disturb the generation process, causing unpleasant artifacts. Thus, we additionally train a MSE-based restoration module using simple degradation model with wide degradation ranges to produce reliable and diversified conditions. Furthermore, we propose IRControlNet to control the generative diffusion prior based on our produced conditions. Specifically, we use the pre-trained VAE encoder for condition encoding and follows ControlNet [70] to adopt an auxiliary and copied encoder for efficient add-on controlling. Our trained generation module remains effective and stable when combined with different restoration modules for different BIR tasks. Moreover, a training-free controllable module is provided to trade-off between fidelity and quality. Specifically, we introduce a training-free region-adaptive restoration guidance, which minimizes our designed region-adaptive MSE loss between the generated result and the high-fidelity guidance image at each sampling step through gradient-descent algorithm. During guidance, the detected low-frequency regions are influenced more by the high-fidelity guidance image, while the high-frequency regions maintain more generative ability. Besides, a guidance scale can be tuned to achieve a smooth transition between two effects regarding fidelity and quality.

To sum up, the main contributions of this work are:

- DiffBIR decouples BIR problem into two stages: restoration module for degradation removal, and generation module for lost information regeneration. Each stage is developed independently. With the two-stage design, DiffBIR is able to achieve the state-of-the-art performance for BSR, BFR, and BID tasks in a unified framework for the first time.
- We propose IRControlNet that leverages text-to-image diffusion prior for realistic image reconstruction. Comprehensive exploration on main components for generation module has been conducted, and IRControlNet proves to be a solid backbone for generation module in BIR tasks.
- We introduce a training-free controllable module region-adaptive restoration guidance that performs in sampling process, for achieving flexible tradeoff between quality and fidelity for various user preferences.

2 Related Work

Blind Image Super-Resolution. Latest advances [31] on BSR have explored more complex degradation models to approximate real-world degradations. In particular, BSRGAN [68] aims to synthesize more practical degradations based on a random shuffling strategy, and RealESRGAN [51] exploits "high-order" degradation modeling. SwinIR-GAN [30] uses the prevailing backbone Swin Transformer [32] to achieve better image restoration performance. FeMaSR [5] formulates SR as a feature-matching problem based on pre-trained VQ-GAN [13]. Recently, the powerful Stable Diffusion has been leveraged for image restoration tasks. StableSR [49] designs a time-aware encoder to control the Stable Diffusion. PASD [62] has proposed a PACA module, which could effectively inject the pixel-level condition information into diffusion prior and achieve higher fidelity.

Blind Face Restoration. As a specific sub-domain of general images, the face image typically carries more structural information. Recent BFR approaches mainly incorporate powerful generative priors to reconstruct faces with great realness. Representative GAN-prior-based methods [4, 18, 50, 61] have demonstrated their capability in achieving both high-quality and high-fidelity face reconstruction. State-of-the-art works [16, 56, 72] introduce the HQ codebook to generate surprisingly realistic face details by exploiting Vector-Quantized (VQ) dictionary learning [13, 47]. Latest advances [55, 59, 63] leverage the powerful generative capability of diffusion prior and achieve high-quality and robust face restoration.

Blind Image Denoising. Blind image denoising (BID) aims to handle unknown noise levels/types. Several attempts have been made to solve the BID problem. Among them, DnCNN [69], as an end-to-end deep CNN, is proposed to handle Gaussian denoising with multiple noise levels. GCBD [7] leverages generative adversarial networks (GAN) for noise modeling. CBDNet [17] uses a more realistic noise model to synthesize low-quality data and incorporates real-world noisy-clean image pairs. VDNet [64] proposes to implement noise estimation and denoising simultaneously based on the variational denoising network.

Zero-shot Image Restoration. ZIR aims to achieve image restoration by leveraging a pre-trained prior network in an unsupervised manner. Earlier works [2,9,35,38] mainly concentrate on searching a latent code within a pre-trained GAN's latent space. Recent advancements in this field embrace the utilization of DDPMs [20,39,41,42,45,46]. DDRM [22] introduces an SVD-based approach to handle linear image restoration tasks efficiently. Meanwhile, DDNM [53] analyzes the range-null space decomposition of a vector theoretically and then designs a sampling schedule based on the null space. Inspired by classifier guidance [11], GDP [14] introduces a more convenient and effective guidance approach, in which the degradation model can be estimated during inference.

3 Method

3.1 Motivation and Framework

In this work, we aim to exploit a powerful generative prior to solve BIR problem. Generative diffusion prior has demonstrated its effectiveness in conditional image generation [70] through enabling condition inputs, such as edge and segmentation maps. This provides a potential solution for BIR problem, that is to regard it as conditional image generation and directly utilize the LQ images as condition inputs. However, low-quality image domain is vast and complex, thus the corresponding condition information is extremely diversified. More importantly, as the degradation and content information of LQ images are entangled, directly treating them as control signals will cause instability and induce artifacts. As presented in Fig. 1, the LQ images are degraded with different types of noises based on the same HQ image. We train a generation module with synthesized LQ images as the conditions, and obtain the corresponding results. It is observed that the degradation indeed has an effect on the produced results: different unpleasant

artifacts are generated due to the degradation difference. Since the training is not explicitly guided to distinguish the content information from the degraded image, the generation process is disturbed by the unreliable condition information.

According to our observations and analyses, we adopt a general two-stage pipeline for BIR tasks, which contains restoration modules for removing image-independent degradation, and one generation module that only focuses on image content regeneration. These two stages are decoupled and optimized independently. In this way, we can use any off-the-shelf/selftrained restoration module to address the challenging degradation removal for different BIR tasks. More importantly, the generation is only conditioned on the image content of LQ input, thus it will not be disturbed by degradation. This two-stage pipeline provides a flexible, stable, and unified solution to BIR problem. Besides, a training-free controllable module is

Fig. 1: The effects of condition information on generated results. The 2nd row shows that directly using LQ images as conditions causes unpleasant artifacts induced by different degradations (Gaussian, speckle, Poisson, and JPEG compression noises). While our DiffBIR's two-stage pipeline is more stable (see 3rd-row).

introduced to achieve fidelity-quality trade-off by region-adaptive restoration guidance in the sampling process. The whole pipeline is illustrated in Fig. 2.

Fig. 2: The two-stage pipeline of DiffBIR. 1) Restoration Module (RM) for degradation removal; 2) Generation Module (GM) for realistic image reconstruction with optional region-adaptive restoration guidance for a trade-off between *quality* and *fidelity*.

3.2 Restoration Module

In the first stage, we aim to remove distracting degradations of low-quality images without generating any new content for different BIR tasks. Note that each BIR task has its own characteristics in terms of degradation process and image dataset. For instance, BID methods should especially consider processed camera

sensor noises, while BFR methods only focus on restoring low-quality face images. Therefore, we use separate restoration modules instead of a general one for different BIR tasks to maintain their expertise. In this work, we directly adopt the off-the-shelf BIR models trained with MSE loss as the restoration modules.

As mentioned in Section 3.1, training a stable generation module requires reliable conditions. To this end, we additionally train a restoration module (RM) to produce appropriate condition images for training generation module. Specifically, this RM is trained with classic degradation model and MSE loss:

$$I_{RM} = \text{RM}(I_{lq}), \ \mathcal{L}_{RM} = ||I_{RM} - I_{hq}||_2^2,$$
 (1)

where I_{hq} , I_{lq} , and I_{RM} denote the high-quality image, the synthesized low-quality counterpart, and the restored image, respectively. Note that the degradation range is set to large since we desire to generate sufficiently diversified condition images. This will improve the overall generative capacity of the generation module (see Section 4.3). Please refer to supp. for implementation details. This naively trained RM performs as a condition preprocessing for the generation module, and it will be discarded during inference as it cannot handle complex degradations in real-world scenarios.

3.3 Generation Module

Preliminary: Stable Diffusion. We implement our method based on Stable Diffusion [41]. It pretrains an autoencoder [25] that converts an image x into a latent z with encoder \mathcal{E} and reconstructs it with decoder \mathcal{D} . Both diffusion and denoising processes are performed in the latent space. In diffusion process, Gaussian noise is added to the encoded latent $z = \mathcal{E}(x)$ to produce the noisy latent:

$$z_t = \sqrt{\bar{\alpha}_t}z + \sqrt{1 - \bar{\alpha}_t}\epsilon, \qquad (2)$$

A network ϵ_{θ} is learned by predicting the noise ϵ conditioned on c (*i.e.*, text prompts) at a randomly picked time-step t. The optimization of Stable Diffusion is defined as follows:

$$\mathcal{L}_{ldm} = \mathbb{E}_{z,c,t,\epsilon}[||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t}z + \sqrt{1 - \bar{\alpha}_t}\epsilon, c, t)||_2^2], \tag{3}$$

where x, c are sampled from the dataset and $z = \mathcal{E}(x)$, t is uniformly sampled and ϵ is sampled from the standard Gaussian distribution.

IRControlNet. Given the reliable condition image I_{RM} , we then leverage the pre-trained Stable Diffusion for our generation module (GM). To conclude, it mainly involves three aspects: 1)condition encoding; 2)condition network; 3)feature modulation. Our IRControlNet has explored in-depth and provided effective modules for addressing each of them. The architecture is illustrated in Fig. 3.

1) condition encoding. In IRControlNet, we utilize the pretrained and fixed VAE encoder \mathcal{E} to encode the condition image I_{RM} into the latent space for condition encoding: $c_{RM} = \mathcal{E}(I_{RM})$, where c_{RM} is obtained condition latent. Since the VAE is trained on large-scale datasets, the obtained c_{RM} is capable of preserving sufficient image information.

2) condition network. As for condition network, we follow ControlNet [70] and make a trainable copy of the pre-trained UNet encoder and middle block (denoted as \mathbf{F}_{cond}), which receives condition information and then outputs control signals. This copy strategy provides a good weight initialization for condition network. Then, we use the concatenation of the condition c_{RM} and the noisy latent z_t at time t as input of \mathbf{F}_{cond} , which is denoted as $z_t' = cat(z_t, c_{RM})$. As the concatenation operator $cat(\cdot)$ will increase the channel number, we introduce a few parameters to the first layer of \mathbf{F}_{cond} and initialize them to zero. This zero initialization functions similarly to zero convolution in ControlNet, which is to avoid random noise as gradients in the early stage of training.

3) feature modulation. The previous condition network outputs multi-scale features, which will be used to modulate the intermediate features of the frozen UNet denoiser. Following Control-Net, we only modulate the middle block features and the skipped features through addition operation. Besides, zero convolutions are employed to

Fig. 3: Architectures of our IRControlNet and four model variants.

connect the condition network with the fixed UNet denoiser for improving stability of model training.

During training, only the parameters of condition network and feature modulation will be updated. Specifically, we aim to minimize the following latent diffusion objective:

$$\mathcal{L}_{GM} = \mathbb{E}_{z_t, c, t, \epsilon, c_{RM}} [||\epsilon - \epsilon_{\theta}(z_t, c, t, c_{RM})||_2^2], \tag{4}$$

where the obtained result in this stage is denoted as I_{GM} .

Discussion. In this part, we aim to validate IRControlNet to be a solid backbone as a generation module in BIR tasks. Specifically, we construct four model variants (see Fig. 3) to obtain a comprehensive empirical analysis of the crucial components in IRControlNet.

Variant 1. Regarding condition encoding, we replace IRControlNet's condition encoder \mathcal{E} by a tiny trained-from-scratch network, consisting of several stacked convolution layers and one zero convolution at the end. The encoded condition is added to the output features from the first layer of condition network. This model variant is identical to ControlNet.

Variant 2. Regarding condition network, we remove noisy z_t and only use the condition latent c_{RM} as the condition network input.

Variant 3. Regarding condition network, we do not copy the original weights from UNet denoiser but train the condition network from random initialization.

Variant 4. Regarding feature modulation, we control the middle block features and decoder features instead of skipped ones.

The comparison of Variant 1 (or ControlNet) and IRControlNet is in Fig. 9(right) and Table 7. We observe that Variant 1 cannot maintain the original color of input LQ images, and the quantitative results are significantly worse than IRControlNet in PSNR (3dB \downarrow on average). This observation reveals that condition encoding plays a vital role in controlling latent diffusion prior for IR tasks. The explanation might be that the image generation process is performed in the latent space, thus the condition should be projected to the same space. IRControlNet identifies it and cleverly uses the pretrained VAE encoder \mathcal{E} for effective encoding and has achieved prominent improvement over ControlNet.

Next, we compare our IRControl-Net with Variant 2,3,4 in both training and testing aspects. In Fig. 4, we observe that IRControlNet achieves the fastest model convergence among all model variants, showing its superiority of architecture design. For Variant 2 (w/o z_t), its training losses are consistently higher than those of IR-ControlNet in all epochs. This indicates that z_t could facilitate convergence, as it makes the condition network aware of randomness at each timestep, thus improving the accuracy of model predictions. From the quantitative comparison in Table 1, Variant 2 achieves the best performance in metrics that measure fidelity, but its IQA score is worse than IRControlNet. From qualitative results in supp., we find that Variant 2 usually produces smooth results without suffi-

Fig. 4: The training loss curves of IRControlNet and Variant 2,3,4 on ImageNet1k dataset under the same training setting.

Variants	PSNR↑ SSIM	↑ MANIQA1
	22.9865 0.5200	
$2) \text{ w/o } z_t$	23.1461 0.5398	8 0.2611
w/o copied initialization	22.8818 0.5192	0.2384
4) w/ control decoder features	22.9721 0.5203	0.2686

Table 1: Quantitative comparisons of IRControlNet, Variant 2, 3 and 4 on ImageNet1k-Val with Real-ESRGAN [51] degradation.

cient texture details. To conclude, z_t in condition network can boost convergence and helps generate high-quality results, so it is important in generation module and should be incorporated. As shown in Fig. 4, Variant 3 struggles in training loss convergence. Besides, it achieves the worst performance in all metrics. Therefore, a good weight initialization for condition network is crucial in the generation module. As for Variant 4, it achieves comparable convergence speed and quantitative results to IRControlNet, thus applying control to skipped features or decoder features has similar effects. However, the channel numbers of some decoder features are about twice the ones of corresponding skipped features, which will introduce more parameters and computation for feature modulation. Therefore, IRControlNet's feature modulation on skipped features is fairly enough.

In conclusion, IRControlNet proves to be a solid backbone for generative module in BIR tasks, as its main components are crucial for either model convergence or performance. We have compared more model variants in supp. and our conclusion still stands.

3.4 Restoration Guidance

Here we design a controllable module to achieve trade-off between quality and fidelity. Note that users usually expect more generated details in high-frequency regions (e.g., textures, edges) but less generated content in flat regions (e.g., sky, wall). To this end, we present a region-adaptive restoration guidance, which guides the denoising process towards the restored result in stage I under a tunable guidance scale controlled by users. This restoration guidance is training-free and applied for every sampling step. The whole pipeline is in Fig. 5.

Fig. 5: Region-adaptive restoration guidance. Given the high-fidelity guidance image I_{RM} , it aims to minimize the region-adaptive MSE loss between clean latent \tilde{z}_0 and I_{RM} at each timestep through gradient-descent algorithm.

At time t, the UNet denoiser first predicts the noise ϵ_t of the noisy latent z_t . Then the predicted noise ϵ_t is removed from z_t to get the clean latent \tilde{z}_0 :

$$\epsilon_t = \epsilon_{\theta}(z_t, c, t, c_{RM}), \tilde{z}_0 = \frac{z_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_t}{\sqrt{\bar{\alpha}_t}}.$$
 (5)

In this stage, we aim to guide $\mathcal{D}(\tilde{z}_0)$ towards the high-fidelity condition I_{RM} . Thus, we propose a region-adaptive MSE loss function that applies between them in pixel space and update the clean latent \tilde{z}_0 with gradient descent algorithm. First, we compute the gradient magnitude by applying sobel operators. As pixels with strong gradient signals are very rare in an image, we then divide I_{RM} into multiple non-overlapping patches and calculate patch-level gradient magnitude $\mathcal{G}(I_{RM})$ for better estimating the gradient density. More details can be found in supp.. Finally, we calculate a weight map by $\mathcal{W} = 1 - \mathcal{G}(I_{RM})$. And the MSE loss is adjusted by the weight map \mathcal{W} , and is defined as follows:

$$\mathcal{L}(\tilde{z}_0) = \frac{1}{HWC} || \mathcal{W} \odot (\mathcal{D}(\tilde{z}_0) - I_{RM}) ||_2^2, \tag{6}$$

where H, W, C denotes the spatial size of I_{RM} . In this way, regions with weak gradients are assigned with larger weights, and vice versa. This indicates that low-frequency regions induce higher loss, thus they are influenced more by the high-fidelity condition I_{RM} . On the contrary, high-frequency regions are less affected and could maintain more generated content during sampling process. This analysis corresponds well to the illustration in Fig. 5, in which the noisy content in flat regions is largely eliminated while the generated textures for glass are maintained well after restoration guidance.

The gradient descent algorithm is applied for optimizing the region-adaptive MSE loss at each sampling step t by the following equation:

$$\tilde{z}_0' = \tilde{z}_0 - s \nabla_{\tilde{z}_0} \mathcal{L}(\tilde{z}_0), \tag{7}$$

where s denotes the guidance scale, which can be used to control how much information is maintained from the guidance image I_{RM} . For instance, larger guidance scale pushes $\mathcal{D}(\tilde{z}_0)$ closer to I_{RM} , indicating a higher fidelity. The whole algorithm of our restoration guidance is presented in supp.

4 Experiments

4.1 Datasets, Implementation, Metrics

Datasets. We train DiffBIR on our filtered laion2b-en [44] dataset that contains around 15M high-quality images. All images are randomly cropped to 512×512 during training. We evaluate our method for 1) BSR task on three synthetic datasets: DIV2K-Val [1], DRealSR [58], RealSR [3], and two real-world datasets: RealSRSet [68] and our collected real47, 2) BFR task on the real-world datasets LFW-Test [50] and WIDER-Test [72], and 3) BID task on a mixed real-world dataset, which contains images from real3 [67], real9 [67], and RNI15 [26].

Implementation. We train the restoration module for 150k iterations (batch size=96). Then, we adopt Stable Diffusion 2.1-base¹ as the generative prior, and finetune the proposed IRControlNet for 80k iterations (batch size=256). Adam [24] is used as the optimizer. The learning rate is set to 10^{-4} for the first 30k iterations and then decreased to 10^{-5} for the following 50k iterations. During inference, we replace our trained restoration module with off-the-shelf task-specific restoration models: BSRNet [68]² for BSR, SwinIR [30]³ used in DifFace [63] for BFR, and SCUNet-PSNR [67]⁴ for BID. The positive prompt is set to empty and we use texts like "low quality", "blurry" as our negative prompt. We set the restoration guidance scale to 0, 0.5, and 1 for comparisons. To accelerate the sampling process, we adopt a spaced DDPM sampling schedule [37] which requires 50 sampling steps.

¹ Stable Diffusion v2.1: https://github.com/Stability-AI/stablediffusion

https://github.com/cszn/BSRGAN

³ https://github.com/zsyOAOA/DifFace

⁴ https://github.com/cszn/SCUNet

Metrics. For synthesized data, we adopt the traditional metrics: PSNR, SSIM, and LPIPS [71]. To better evaluate the *quality*, we include several no-reference image quality assessment (IQA) metrics: MANIQA [60], MUSIQ [23] and CLIP-IQA [48]. For BFR, we employ the widely used perceptual metric FID [19].

4.2 Comparisons with State-of-the-Art Methods

DiffBIR is compared with state-of-the-art 1) BSR methods: FeMaSR [5], DASR [29], Real-ESRGAN+ [51], BSRGAN [68], SwinIR-GAN [30], StableSR [49] and PASD [62], 2) BFR methods: CodeFormer [72], DifFace [63], DMDNet [28], DR2 [55], GCFSR [18], GFP-GAN [50], GPEN [61], RestoreFormer++ [57], VQFR [16] and PGDiff [59], 3) BID methods: CBDNet [17], DeamNet [40], Restormer [65], SwinIR [30] and SCUNet-GAN [67].

BSR on synthetic datasets. Table 2 presents quantitative comparisons on DIV2K-Val [1] dataset. The LQ images are synthesized using the degradation model adopted in Real-ESRGAN [51]. It is observed that our DiffBIR (s=0)significantly outperforms all the baseline methods in terms of IQA metrics: MUSIQ, MANIQA, and CLIP-IQA. Moreover, our DiffBIR is able to obtain the best PSNR and SSIM when the restoration guidance scale is set to 1, where the IQA metrics (MANIQA, CLIP-IQA) still rank top-3. Users are recommended to control the restoration guidance scale to achieve a better balance between quality and fidelity (e.g., setting s = 0.5). (Quantitative comparisons on DRealSR/RealSR and visual comparisons on DIV2K-Val are presented in supp.) BSR on real-world datasets. We also provide the quantitative comparison on real-world datasets in Table 3. It is observed that our DiffBIR (s=0) obtains the best scores across all metrics on both the widely used RealSRSet [68] and our collected Real47. This demonstrates DiffBIR's superiority in handling challenging real-world scenarios compared to the baseline methods. As for visual comparison shown in Fig. 6, DiffBIR is capable of producing sharper results than GAN-based methods, whose outputs tend to be over-smoothed. In contrast to diffusion-based methods, DiffBIR's restoration results are more realistic, such as the restored whiskers and lips, the pistil of flowers, texts, etc. More visual results can be found in the supplementary file.

Metrics	FeMaSR	DASR	Real-ESRGAN $+$	BSRGAN	SwinIR-GAN	StableSR	PASD	DiffBIR	DiffBIR	DiffBIR
Metrics	[5]	[29]	[51]	[68]	[30]	[49]	[62]		(s=0.5)	
PSNR↑	20.1303	21.2141	21.0348	21.4531	20.7488	21.2392	20.7838	20.5824	21.5808	21.9154
SSIM↑	0.4451	0.4773	0.4899	0.4814	0.4844	0.4790	0.4727	0.4277	0.4794	0.4986
LPIPS↓	0.3971	0.4479	0.3921	0.4095	0.3907	0.3993	0.4353	0.3939	0.3935	0.4263
MUSIQ↑	62.7855	58.1591	64.6389	62.9271	65.4945	57.8069	63.8094	73.1019	68.6657	61.1476
MANIQA↑	0.1443	0.1531	0.2238	0.1833	0.2061	0.1648	0.2354	0.3836	0.3146	0.2466
CLIP-IQA↑	0.5674	0.5571	0.5905	0.5195	0.5779	0.5541	0.6125	0.7656	0.7158	0.6347

Table 2: Quantitative comparisons on synthetic dataset (DIV2K-Val) for BSR task. **Red** and blue indicate the best and second best. The top 3 results are marked as gray .

BFR on real-world datasets. We show the quantitative comparison on real-world datasets in Table 4. DiffBIR has achieved the highest FID score on both the

Datasets	Metrics	FeMaSR	DASR	Real-ESRGAN $+$	BSRGAN	SwinIR-GAN	StableSR	PASD	DiffBIR
Datasets	Metrics	[5]	[29]	[51]	[68]	[30]	[49]	[62]	(s=0)
RealSRSet	MUSIQ↑	64.6735	59.2695	63.2675	67.6705	64.2512	64.8372	67.4052	69.4208
[68]	MANIQA↑	0.2142	0.1595	0.1963	0.2240	0.2054	0.2083	0.2370	0.3211
[UO]	CLIP-IQA↑	0.6879	0.5236	0.5772	0.6456	0.6008	0.6418	0.6761	0.7637
	MUSIQ↑	68.9384	62.2026	68.1098	69.4741	68.8467	68.3422	70.9712	73.1397
real47	MANIQA↑	0.2347	0.1454	0.2055	0.2063	0.2217	0.2264	0.2607	0.3682
	CLIP-IQA↑	0.6911	0.5445	0.6382	0.6111	0.6246	0.6574	0.6913	0.7781

Table 3: Quantitative comparisons on real-world datasets for BSR task. **Red** and blue indicate the best and second best performance. The top 3 results are marked as gray .

Datasets	Metrics	CodeFor-	DifFace	DMDNet	DR2	GCFSR	GFP-GAN	GPEN	RestoreFor-	VQFR	PGDiff	DiffBIR
Datasets		mer [72]	[63]	[28]	[55]	[18]	[50]	[61]	mer++[57]	[16]	[59]	(s=0)
	MUSIQ↑	75.4830	70.4957	73.4027	67.5357	71.3789	76.3779	76.6210	72.2492	74.3847	72.2175	76.4206
LFW-	MANIQA↑	0.3188	0.2692	0.2973	0.2830	0.2790	0.3688	0.3616	0.3179	0.3280	0.2927	0.4499
Test [50]	CLIP-IQA↑	0.6890	0.5945	0.6467	0.5728	0.6143	0.7196	0.7181	0.7025	0.7099	0.6133	0.7948
	FID (ref. FFHQ)↓	52.8765	44.9201	43.5403	45.9420	52.6972	47.4717	51.9862	50.7309	50.1300	41.5814	40.9065
	MUSIQ↑	73.4081	65.2397	69.4709	67.3163	69.9634	74.8308	75.6160	71.5155	71.4163	66.0014	75.3213
Wider-	MANIQA↑	0.2971	0.2403	0.2613	0.2795	0.2803	0.3508	0.3472	0.2905	0.3060	0.2406	0.4443
Test [72]	CLIP-IQA↑	0.6984	0.5639	0.6335	0.5821	0.6266	0.7147	0.7039	0.7171	0.7069	0.5685	0.8085
	FID (ref. FFHQ)↓	39.2517	37.8440	38.9580	40.1202	41.1986	41.3247	46.4419	45.4686	38.1675	40.2700	35.8094

Table 4: Quantitative comparisons for BFR on real-world datasets. **Red** and blue indicate the best and second best performance. The top 3 results are marked as gray .

 $\textbf{Fig. 6:} \ \ \text{Visual comparison of BSR methods on real-world datasets}.$

Fig. 7: Visual comparison of BFR methods on real-world datasets.

LFW-Test and Wider-Test datasets, demonstrating its ability to generate more realistic faces. Regarding IQA metrics, DiffBIR also obtains the highest scores in CLIP-IQA and MANIQA, while the MUSIQ scores are close to the highest ones.

Although the IRControlNet is not finetuned on face dataset (e.g., FFHQ), it outperforms all other baseline methods, indicating the excellent generalization ability of our proposed restoration pipeline. The visual comparisons are shown in Fig. 7. From the left example, it can be seen that only DiffBIR could restore the hand correctly, while other methods are influenced by facial priors thus distorting the hand area. In the right example, only DiffBIR successfully restores the side face, while other methods fail in restoring areas such as teeth, nose, and chin. Both two cases have demonstrated the superiority of using generative priors for general images rather than just face images. More visual results can be found in the supplementary file.

Methods	MUSIQ↑	MANIQA↑	CLIP-IQA↑
CBDNet [17]	48.1149	0.1103	0.4709
DeamNet [40]	45.9942	0.0949	0.4391
Restormer [65]	47.4605	0.0927	0.3857
SwinIR [30]	55.0493	0.1595	0.4130
SCUNet-GAN [67]	58.2170	0.1822	0.5045
DiffBIR (s=0)	69.7278	0.3404	0.7420

Table 5: Quantitative comparisons on real-world datasets for BID task. **Red** and blue indicate the best and second best. The top 3 results are marked as gray.

Fig. 8: Visual comparisons for BID on real-world datasets.

BID on real-world datasets. The quantitative comparisons are shown in Table 5. We can see that DiffBIR significantly outperforms the baseline methods across all metrics. This remarkable difference can be attributed to DiffBIR's introduction of powerful generative diffusion prior, which allows for effective high-quality image restoration. Fig. 8 illustrates visual comparisons between DiffBIR and baseline methods. It is observed that only DiffBIR can remove noise as well as generate realistic textures. Although SwinIR and SCUNet-GAN could successfully remove the noises, they produce smoothed results without vivid texture details. More visual results can be found in the supplementary file.

4.3 Ablation Studies

The Importance of Restoration Module. In this part, we investigate

the significance of our proposed two-stage pipeline. Here, we remove the Restoration Module (RM) and directly finetune the diffusion model with synthesized training pairs. From Table 6, the removal of the restoration module leads to a noticeable performance drop in all IQA and reference-based metrics on real-world and synthetic datasets. The visual comparison is presented in Fig.9(left). From the first example, the one-stage model (w/o

Datasets		w/o RM w/ RM
RealSRSet	MANIQA↑	0.2386 0.2477
[68]	MUSIQ↑	62.5683 64.7319
[00]	CLIP-IQA↑	0.6818 0.7075
ImageNet-Val-1k	PSNR↑	22.8481 23.0078
[10]	SSIM↑	0.5039 0.5198
[10]	LPIPS↓	0.4076 0.4026

Table 6: Ablation study on RM. The best results are denoted as Red.

RM) causes severe distortion in facial generation. While the two-stage model could generate correct facial content. The second example shows that the one-stage model interprets the degradation as semantic information and produces a colorful background and unusual eye shapes. In contrast, the two-stage model produces more realistic results, demonstrating its superiority.

Fig. 9: Visual comparison of ablation studies. (Left) DiffBIR w/o RM regards degradations as image content and performs poorly in fidelity maintaining; (Right) Control-Net [70] has a color shift problem which can be addressed by our IRControlNet.

	C-414	DCD100	100	ImageNet
			_	_
	[66]	[33]	[34]	-Val-1k [10]
w/ ControlNet	20.9435	22.4923	20.2692	22.2874
w / IRControlNet	23 5193	23 8778	23 2439	24 2534

Table 7: Comparison of ControlNet and ours in PSNR. Red denotes the best results.

Degradation	MANIQA	↑MUSIQ↑	CLIP-IQA↑
RealESRGAN [51]	0.2351	64.1718	0.6936
Ours	0.2504	64.7319	0.7075

Table 8: Ablation study on degradation model evaluated on RealSRSet [68]. Red denotes the best results.

The Effectiveness of IRControlNet. We compare our proposed IRControlNet with ControlNet [70]. As shown in Fig. 9(right), ControlNet tends to output results with color shifts, as there is no explicit regularization of color consistency during training. The quantitative results presented in Table 7 also show that our IRControlNet achieves higher PSNR scores than ControlNet.

The Effectiveness of Wide Degradation Range In this work, we employ a classic degradation model with a wide degradation range to obtain conditions for training generation module, aiming to improve the overall generative capability. One commonly used degradation model for BSR is proposed by RealESR-GAN [51]. It adopts a very complex degradation process but uses much smaller degradation ranges. Here we compare these two degradation models and present the quantitative comparison in Table 8. It is observed that using our degradation model leads to better utilization of generative capabilities, thus enhancing the quality of the restored results.

5 Conclusion and Limitations

We propose a unified framework for blind image restoration, named DiffBIR, which could achieve realistic restoration results by leveraging the prior knowledge of pre-trained Stable Diffusion. Extensive experiments have validated the superiority of DiffBIR over existing state-of-the-art methods for BSR, BFR, and BID tasks. Although our proposed DiffBIR has shown promising results, it requires 50 sampling steps to restore one low-quality image, which is computationally expensive. The efficiency comparison is provided in the supplementary file. Besides, our two-stage restoration pipeline might be feasible for other BIR tasks, so more exploration can be conducted.

Acknowledgments This work was supported by National Natural Science Foundation of China (Grant No.62276251, 62272450), the Joint Lab of CAS-HK, and the JC STEM Lab of AI for Science and Engineering funded by The Hong Kong Jockey Club Charities Trust.

References

- Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 126–135 (2017)
- Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: International Conference on Machine Learning. pp. 537–546. PMLR (2017)
- Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: A new benchmark and a new model. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3086–3095 (2019)
- Chan, K.C., Wang, X., Xu, X., Gu, J., Loy, C.C.: Glean: Generative latent bank for large-factor image super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 14245–14254 (2021)
- Chen, C., Shi, X., Qin, Y., Li, X., Han, X., Yang, T., Guo, S.: Real-world blind super-resolution via feature matching with implicit high-resolution priors. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 1329–1338 (2022)
- Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., Gao, W.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12299–12310 (2021)
- Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3155–3164 (2018)
- 8. Chen, X., Wang, X., Zhou, J., Qiao, Y., Dong, C.: Activating more pixels in image super-resolution transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 22367–22377 (2023)
- Daras, G., Dean, J., Jalal, A., Dimakis, A.G.: Intermediate layer optimization for inverse problems using deep generative models. arXiv preprint arXiv:2102.07364 (2021)
- 10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee (2009)
- Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems 34, 8780–8794 (2021)
- Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. pp. 184–199. Springer (2014)
- 13. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12873–12883 (2021)
- 14. Fei, B., Lyu, Z., Pan, L., Zhang, J., Yang, W., Luo, T., Zhang, B., Dai, B.: Generative diffusion prior for unified image restoration and enhancement. arXiv preprint arXiv:2304.01247 (2023)

- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11), 139–144 (2020)
- Gu, Y., Wang, X., Xie, L., Dong, C., Li, G., Shan, Y., Cheng, M.M.: Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVIII. pp. 126–143. Springer (2022)
- 17. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 1712–1722 (2019)
- He, J., Shi, W., Chen, K., Fu, L., Dong, C.: Gcfsr: a generative and controllable face super resolution method without facial and gan priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1889– 1898 (2022)
- 19. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems **30** (2017)
- 20. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33, 6840–6851 (2020)
- Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8110–8119 (2020)
- Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models. arXiv preprint arXiv:2201.11793 (2022)
- 23. Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: Musiq: Multi-scale image quality transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5148–5157 (2021)
- 24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
- 25. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
- 26. Lebrun, M., Colom, M., Morel, J.M.: The noise clinic: a blind image denoising algorithm. Image Processing On Line 5, 1–54 (2015)
- 27. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4681–4690 (2017)
- 28. Li, X., Zhang, S., Zhou, S., Zhang, L., Zuo, W.: Learning dual memory dictionaries for blind face restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
- 29. Liang, J., Zeng, H., Zhang, L.: Efficient and degradation-adaptive network for real-world image super-resolution. In: European Conference on Computer Vision. pp. 574–591. Springer (2022)
- 30. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1833–1844 (2021)
- 31. Liu, A., Liu, Y., Gu, J., Qiao, Y., Dong, C.: Blind image super-resolution: A survey and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

- 32. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10012–10022 (2021)
- 33. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. vol. 2, pp. 416–423. IEEE (2001)
- Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T., Yamasaki, T., Aizawa, K.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications 76, 21811–21838 (2017)
- 35. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the ieee/cvf conference on computer vision and pattern recognition. pp. 2437–2445 (2020)
- Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)
- Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171. PMLR (2021)
- 38. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(11), 7474–7489 (2021)
- 39. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)
- Ren, C., He, X., Wang, C., Zhao, Z.: Adaptive consistency prior based deep network for image denoising. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8596–8606 (2021)
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
- 42. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Advances in Neural Information Processing Systems 35, 36479–36494 (2022)
- 43. Schonfeld, E., Schiele, B., Khoreva, A.: A u-net based discriminator for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8207–8216 (2020)
- 44. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in Neural Information Processing Systems 35, 25278–25294 (2022)
- 45. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
- Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 (2020)

- 47. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. Advances in neural information processing systems **30** (2017)
- Wang, J., Chan, K.C., Loy, C.C.: Exploring clip for assessing the look and feel of images. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 2555–2563 (2023)
- 49. Wang, J., Yue, Z., Zhou, S., Chan, K.C., Loy, C.C.: Exploiting diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015 (2023)
- Wang, X., Li, Y., Zhang, H., Shan, Y.: Towards real-world blind face restoration with generative facial prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9168–9178 (2021)
- 51. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1905–1914 (2021)
- 52. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Esrgan: Enhanced super-resolution generative adversarial networks. In: Proceedings of the European conference on computer vision (ECCV) workshops. pp. 0–0 (2018)
- 53. Wang, Y., Yu, J., Zhang, J.: Zero-shot image restoration using denoising diffusion null-space model. arXiv preprint arXiv:2212.00490 (2022)
- 54. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17683–17693 (2022)
- Wang, Z., Zhang, Z., Zhang, X., Zheng, H., Zhou, M., Zhang, Y., Wang, Y.: Dr2: Diffusion-based robust degradation remover for blind face restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1704–1713 (2023)
- Wang, Z., Zhang, J., Chen, R., Wang, W., Luo, P.: Restoreformer: High-quality blind face restoration from undegraded key-value pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17512– 17521 (2022)
- 57. Wang, Z., Zhang, J., Chen, T., Wang, W., Luo, P.: Restoreformer++: Towards real-world blind face restoration from undegraded key-value pairs. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)
- Wei, P., Xie, Z., Lu, H., Zhan, Z., Ye, Q., Zuo, W., Lin, L.: Component divide-and-conquer for real-world image super-resolution. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16. pp. 101–117. Springer (2020)
- 59. Yang, P., Zhou, S., Tao, Q., Loy, C.C.: Pgdiff: Guiding diffusion models for versatile face restoration via partial guidance. arXiv preprint arXiv:2309.10810 (2023)
- 60. Yang, S., Wu, T., Shi, S., Lao, S., Gong, Y., Cao, M., Wang, J., Yang, Y.: Maniqa: Multi-dimension attention network for no-reference image quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1191–1200 (2022)
- 61. Yang, T., Ren, P., Xie, X., Zhang, L.: Gan prior embedded network for blind face restoration in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 672–681 (2021)
- Yang, T., Ren, P., Xie, X., Zhang, L.: Pixel-aware stable diffusion for realistic image super-resolution and personalized stylization. arXiv preprint arXiv:2308.14469 (2023)
- 63. Yue, Z., Loy, C.C.: Difface: Blind face restoration with diffused error contraction. arXiv preprint arXiv:2212.06512 (2022)

- 64. Yue, Z., Yong, H., Zhao, Q., Meng, D., Zhang, L.: Variational denoising network: Toward blind noise modeling and removal. Advances in neural information processing systems **32** (2019)
- Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: Efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5728– 5739 (2022)
- 66. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7. pp. 711–730. Springer (2012)
- 67. Zhang, K., Li, Y., Liang, J., Cao, J., Zhang, Y., Tang, H., Fan, D.P., Timofte, R., Gool, L.V.: Practical blind image denoising via swin-conv-unet and data synthesis. Machine Intelligence Research pp. 1–14 (2023)
- 68. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4791–4800 (2021)
- 69. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing **26**(7), 3142–3155 (2017)
- Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023)
- 71. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 586–595 (2018)
- 72. Zhou, S., Chan, K., Li, C., Loy, C.C.: Towards robust blind face restoration with codebook lookup transformer. Advances in Neural Information Processing Systems **35**, 30599–30611 (2022)