WHAT IS CLAIMED IS:

4	A 1	C	1 1		1			•	1 1		
1	A nozzie	tor	aei	liverino	; a measured	allantity	$\Omega \uparrow V$	V16CO116	hama	comprising	7
••	11 HOZZIC	LOI	u	ع الله ال	, a micasarca	quantity	OI.	V ISCOUS	uquiu	comprising	5

- a) an opening defined by a perimeter and a cylindrically-shaped barrel wall extending from said perimeter downward to a break point defined by a circle spaced-apart from said opening;
- b) means for connecting said barrel wall of said nozzle to a reservoir from which a viscous liquid is transferrable to said nozzle;
- c) a cone-shaped wall extending downward from said circular break point and then inward therefrom to a circular exit opening; and,
- d) a straight, small-diameter exit tube, of uniform diameter, extending from said circular exit opening to a circular exit aperture for dispensing the liquid from said nozzle;
- e) wherein there is a controlled ratio of the internal diameter of said exit tube and the wall thickness of said exit tube.
- 2. The nozzle for delivering a measured quantity of viscous liquid of Claim 1 wherein said cone-shaped wall extending downward from said circular break point and then inward therefrom to a circular exit opening has a wall convergence between about 5° and about 20°.
- 3. The nozzle for delivering a measured quantity of viscous liquid of Claim 1 wherein said cone-shaped wall extending downward from said circular break point and then inward therefrom to a circular exit opening has a wall convergence of about 10°.

//

27

28

- 4. The nozzle for delivering a measured quantity of viscous liquid of Claim 1 wherein the ratio of the internal diameter of said exit tube to the wall thickness of said 1 2 exit tube exceeds 7.5 3 5. The nozzle for delivering a measured quantity of viscous liquid of Claim 1 5 wherein said opening is circular and said horizontal perimeter is about 25 mm in 6 diameter. 7 8 6. A nozzle for delivering a measured quantity of viscous liquid comprising: 9 a) a flaired opening defined by a horizontal perimeter and a flare wall extending inward from said 10 11 perimeter; 12 b) a cylindrically-shaped barrel wall extending from 13 said flare wall downward to a break point defined by a 14 circle parallel to said flare opening and spaced-apart 15 therefrom; 16 c) a cone-shaped wall extending downward from 17 said circular break point and inward therefrom to a circular 18 exit opening; and, 19 d) a small-diameter exit tube extending from said 20 circular exit opening to a circular exit aperture. 21 22 7. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cone-shaped wall extending downward from said circular break point and 23 then inward therefrom to a circular exit opening has a wall convergence between about 24 5° and about 20°. 25 26
 - 8. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cone-shaped wall extending downward from said circular break point and

28

//

then inward therefrom to a circular exit opening has a wall convergence of about 10°. 1 2 3 4 exit tube exceeds 7.5 5 6 7 8 diameter. 9 10 11 12 13 14 15 about 30 mm. 16 17 18 19 at an angle of about 2° with the vertical. 20 21 22 23 40 mm. 24 25 26 27

9. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein the ratio of the internal diameter of said exit tube to the wall thickness of said 10. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said opening is circular and said horizontal perimeter is about 25 mm in 11. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said flare wall extends inward from said perimeter about 5 mm. 12. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cylindrically-shaped barrel wall extends downward from said flare wall 13. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cylindrically-shaped barrel wall extends downward from said flare wall 14. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cone-shaped wall extends downward from said circular break point about 15. The nozzle for delivering a measured quantity of viscous liquid of Claim 6 wherein said cone-shaped wall extends downward from said circular break point at an angle of about 15° with the vertical.

	16. The nozzle for delivering a measured quantity of viscous liquid of Claim 6
1	wherein said cone-shaped wall extends downward from said circular break point to a
2	circular exit opening having an opening of about 1.5 mm.
3	
4	17. A nozzle for delivering a measured quantity of viscous liquid comprising:
5	a) a small-diameter tube having at one first end
6	formed by a circular exit aperture, from which the viscous
7	liquid issues, said tube extending straight upward to a
8	second end defining a circular entrance;
9	b) a cone-shaped wall extending upward from said
10	second end defining a circular entrance and outward to a
11	planar circular surface break point;
12	c) a cylindrically-shaped barrel wall extending
13	upward from said planar circular surface break point and
14	slightly outward to a circle lying in a plane parallel to the
15	plane of said circular surface break point; and,
16	d) a flared opening defined by a horizontal
17	perimeter and a flare wall extending outward from said
18	circle.
19	
20	18. The nozzle for delivering a measured quantity of viscous liquid of Claim 17
21	wherein the diameter of said small-diameter tube is constant from said first end to said
22	second end.
23	
24	19. The nozzle for delivering a measured quantity of viscous liquid of Claim 17

g a measured quantity of viscous liquid of Claim 17 wherein said cone-shaped wall extends upward from said second end defining a circular entrance and outward at an angle of about 15° from the vertical to said vertical break point.

//

2

2

25

26

27

28

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
- 20. A method of making a nozzle for delivering a measured quantity of viscous liquid into minute spaces comprising the steps of:
 - a) placing a small circular tablet of a malleable metal, containing a majority of copper, on a circular die having a cylindrical extended inner wall;
 - b) advancing a conically-shaped mandrel against said tablet and forcing the metal to be drawn down into said die and along said cylindrical extended inner wall;
 - c) repeating steps a) and b) using progressively smaller-diameter, conically-shaped mandrels and progressively smaller diameter-circular dies having cylindrical extended inner walls until a nozzle is formed comprising:
 - d) a flared opening defined by a horizontal perimeter and a flare wall extending inward from said perimeter;
 - e) a cylindrically-shaped barrel wall extending from said flare wall downward to a break point defined by a circle parallel to said flare opening and spaced-apart therefrom;
 - f) a cone-shaped wall extending downward from said circular break point and inward therefrom to a circular exit opening; and,
 - g) a small-diameter exit tube extending from said circular exit opening to a circular exit aperture.