Series 12

Sylvain Julmy

1

(a)

The formula

$$\phi = (\forall x. (P(x) \land (\exists y. (\forall z. (Q(y,z)))))) \rightarrow (\forall x. (P(x) \lor (\exists y. (\forall z. (Q(y,z)))))))$$

is a special case of the formula $(q \land p) \to (q \lor p)$, so if $(q \land p) \to (q \lor p)$ is valid in our proof system, then ϕ is valid too.

So we have to prove $\vdash (q \land p) \to (q \lor p)$, by deduction lemma, we are going to prove $q \land p \vdash q \lor p$.

	۱
Proor	

(1)	$q \wedge q$	9	$_{ m oremise}$
(-	/ 1''I	,	91011100

(2)
$$(q \land p) \rightarrow q$$
 Axiom 3a

(4)
$$q \to (q \lor p)$$
 Axiom 5b

(5)
$$q \lor p$$
 Modus Ponens of 3 and 4

(b)

The formula

$$\phi = Q(x,y) \to (\forall z.(P(z)) \to (Q(x,y) \to \forall z.(P(z))))$$

is a special case of the formula $p \to (q \to (p \land q))$ and $p \to (q \to (p \land q))$ is an axiom in our proof system, then ϕ is a valid formula.

2

(a)

$$\phi = (\forall x. (\exists y. (P(x,y)))) \lor (\forall x. (\exists y. (\neg P(x,y))))$$

$$P(x,y) = \{(x,y)|x = y\}$$

$$U = \{0,1\}$$

In order to falsify ϕ , we have to falsify both side of the \vee connective.

To falsify $\forall x.(\exists y.(P(x,y)))$, for any x, we can found an y that is not equal to x, and then falsify the formula. For x = 1, we pick y = 0 and for x = 0 we pick y = 1.

To falsify $\forall x.(\exists y.(\neg P(x,y)))$, for any x, we can found an y that is equal to x, and then falsify the formula. For x=1, we pick y=1 and for x=0, we pick y=0.

We can't make U smaller because :

- |U| = 0 is not possible, because $U \neq \emptyset$
- |U| = 1 is not possible, because the predicate have to "return" false or true, and it is not possible to construct a predicate that is non-deterministic. For example, P(1,1) can't "return" true one time and false on another time.

(b)

$$\phi = \forall x.(\exists y.(P(x,y))) \rightarrow \exists x.(\forall y.(P(x,y)))$$

$$P(x,y) = \{(x,y)|x = y\}$$

$$U = \{0,1\}$$

In order to falsify ϕ , we have to satisfy the left hand side and falsify the right hand side of the \rightarrow connective.

To satisfy $\forall x.(\exists y.(P(x,y)))$, we have to find, for any x, and y which ois equal to x. For x=1, we pick y=1 and for x=0, we pick y=0.

To falsify $\exists x.(\forall y.(P(x,y)))$, we have to find an x, that for all y, x is not always equal to y. We pick x = 1, then if y = 1, the formula is satisfy, but for y = 0, the formula is not.

We can't make U smaller because :

- |U| = 0 is not possible, because $U \neq \emptyset$
- |U|=1 is not possible, we use the same argument as before. The predicate P(x,y) is deterministic. So if we have only one choice to fill P, with only one single value, then $P(\lambda,\lambda)$ would always "return" the same value, either true or false. Then both left and right hand side of the \to connective have the same value and $true \to true$ and $false \to false$ are valid.

3

(a)

We will prove $\vdash \neg \forall x. (\neg \phi) \rightarrow \exists x. (\phi)$, by proving the contrapositive : $\vdash \neg \exists x. (\phi) \rightarrow \forall x. (\neg \phi)$ and by deduction lemma, $\neg \exists x. (\phi) \vdash \forall x. (\neg \phi)$.

Proof

(1)	$\neg \exists x. (\phi)$	Premise
(2)	$\phi \to \exists x.(\phi)$	Axiom 11
(3)	$\neg \exists x. (\phi) \to (\phi \to \neg \exists x. (\phi))$	Axiom 1
(4)	$\phi \to \neg \exists x. (\phi)$	Modus Ponens of 1 and 3

(5)	$(\phi \to \exists x.(\phi)) \to ((\phi \to \neg \exists x.(\phi)) \to \neg \phi)$	Axiom 8
(6)	$(\phi \to \neg \exists x. (\phi)) \to \neg \phi$	Modus Ponens of 2 and 5 $$
(7)	$ eg \phi$	Modus Ponens of 5 and 6 $$
(8)	$\neg \phi \to \forall x. (\neg \phi)$	Generalisation rule

Modus Ponens of 7 and 8 $\,$

(b)

We will prove $\vdash \neg \exists x. (\neg \phi) \rightarrow \forall x. (\phi)$, and by deduction lemma, we prove $\neg \exists x. (\neg \phi) \vdash \forall x. (\phi)$

Proof

(9) $\forall x.(\neg \phi)$

(1)	$\neg \exists x. (\neg \phi)$	Premise
(2)	$\neg \phi \to \exists x. (\neg \phi)$	Axiom 11
(3)	$\neg \exists x. (\neg \phi) \to (\neg \phi \to \neg \exists x. (\neg \phi))$	Axiom 1
(4)	$\neg \phi \to \neg \exists x. (\neg \phi)$	Modus Ponens of 1 and 3 $$
(5)	$\neg \phi \to \exists x. (\neg \phi) \to ((\neg \phi \to \neg \exists x. (\neg \phi)) \to \neg \neg \phi)$	Axiom 8
(6)	$(\neg \phi \to \neg \exists x. (\neg \phi)) \to \neg \neg \phi$	Modus Ponens of 2 and 5 $$
(7)	$\neg \neg \phi$	Modus Ponens of 4 and 5 $$
(8)	ϕ	Double negation elimination
(9)	$\phi \to \forall x.(\phi)$	Generalisation rule
(10)	$\forall x.(\phi)$	Modus Ponens of 8 and 9

4, 5

Due to exam preparation, I didn't have that much time to do the rest. Thanks anyway for correcting exerices 1,2 and 3!