特殊相対性理論 (Special Relativity) は次の2つの事柄を原理とする.

特殊相対性原理 -

あらゆる慣性系で同じ物理法則が成り立つ.

光速度不変の原理・

あらゆる慣性形で真空中の光の速さは同一である.

この原理の下で成り立つ座標変換の法則 (Lorentz 変換) を導く. まず,慣性系 X 系の原点 O とと X' 系の原点 O' が t=t'=0 で一致している. t=t'=0 で光が原点 (O=O') を通過したとする. X 系の空間座標を (x,y,z), X' 系の空間座標を (x',y',z') とすると,光速度不変の原理より,

$$\frac{\sqrt{x^2 + y^2 + z^2}}{t} = \frac{\sqrt{x'^2 + y'^2 + z'^2}}{t'} = c \tag{0.0.1}$$

が成り立つ. 上式から世界長さ (spacetime interval)

$$s^{2} = x^{2} + y^{2} + z^{2} - (ct)^{2}$$

$$(0.0.2)$$

が不変量であることが導かれる.

慣性系 X' が x 軸正の方向に速さ v で移動している.. このとき y=y',z=z' である. わかりやすいように T=it とおく. 光速不変より,

$$x^{2} - (ct)^{2} = x'^{2} - (ct')^{2}$$
(0.0.3)

$$x^{2} + (cT)^{2} = x'^{2} + (cT)^{2}$$
(0.0.4)

が成り立つ. これが回転座標変換と類似していることから,

$$\begin{pmatrix} cT' \\ x' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} cT \\ x \end{pmatrix} \tag{0.0.5}$$

と置く.表示をtに戻すと

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix} \tag{0.0.6}$$

である. さらに, $\theta = i\phi$ とすると

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \phi & -\sinh \phi \\ -\sinh \phi & \cosh \phi \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix} \tag{0.0.7}$$

となる. よって,

$$x' = (-\sinh\phi)ct + (\cosh\phi)x\tag{0.0.8}$$

を得る. X 系において時刻 t が経過したとする. X 系から見るお X' 系の原点の位置は x=vt である. 一方,X' 系から見ると x'=0 である. よって上式から

$$0 = (-\sinh\phi)ct + (\cosh\phi)vt \tag{0.0.9}$$

が成り立つ. よって、これを変形すると

$$\frac{v}{c} = \frac{\sinh \phi}{\cosh \phi} = \tanh \phi \tag{0.0.10}$$

である. 以上より,

$$\begin{cases} \sinh \phi = \frac{v/c}{\sqrt{1 - (v/c)^2}} \\ \cosh \phi = \frac{1}{\sqrt{1 - (v/c)^2}} \end{cases}$$
(0.0.11)

であることがわかる. したがって,

Lorentz 変換

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$
 (0.0.12)

を得る. Lorentz 変換

$$x' = \frac{x - vt}{\sqrt{1 - (v/c)^2}} \tag{0.0.13}$$

c

$$x' = x - vt \tag{0.0.14}$$

となる. これは Galilei 変換と一致している.

次に、相対論的効果を取り込んだ速度の合成則について示す.状況は、X 系は静止し、X' 系が速さ v で x 軸方向に移動しているとする.さらに X' 系では粒子が速さ u' で x' 軸方向に運動している.X 系から見た粒子の速度 V を求める.式 (0.0.12) において $v\to -v$ とすると

$$\begin{pmatrix} c \, \mathrm{d}t \\ \mathrm{d}x \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & v/c \\ v/c & 1 \end{pmatrix} \begin{pmatrix} c \, \mathrm{d}t' \\ \mathrm{d}x' \end{pmatrix} \tag{0.0.15}$$

となる. $V = \frac{\mathrm{d}x}{\mathrm{d}t}$ なので

$$V = \frac{dx}{dt} = \frac{v \, dt' + dx'}{dt' + (v/c^2) \, dx'}$$
(0.0.16)

$$= \frac{v + \frac{\mathrm{d}x'}{\mathrm{d}t'}}{1 + (v/c^2)\frac{\mathrm{d}x'}{\mathrm{d}t'}} \tag{0.0.17}$$

$$= \frac{v + u'}{1 + \frac{vu'}{c^2}} \tag{0.0.18}$$

を得る.

- 速度の合成

$$V = \frac{v + u'}{1 + \frac{vu'}{c^2}} \tag{0.0.19}$$

例として u' = v = c とすると

$$V = \frac{2c}{1 + c^2/c^2} = c \tag{0.0.20}$$

である. 速度が合成されても光速を超えることは決してないことがわかる.

Lorentz 収縮について説明する. 速さ v で運動している X' 系から, t'=0 において、静止している X 系の 2 点を見る. 1 点は原点 O:(x,t)=(0,0) もう 1 点は P:(x,t)=(L,t) とする. まず、原点 O は X' 系から見ると

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (0.0.21)

である. 点PをX'系から見ると、

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} ct \\ L \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} ct - \frac{v}{c}L \\ -vt + L \end{pmatrix}$$
 (0.0.22)

である. t'=0 で観測しているため, t'=0 を代入し

$$0 = ct - \frac{v}{c}L\tag{0.0.23}$$

$$t = \frac{v}{c^2}L\tag{0.0.24}$$

を得る. よって,

$$x' = \frac{1}{\sqrt{1 - (v/c)^2}} \left(-\left(\frac{v}{c}\right)^2 L + L\right) = \sqrt{1 - \left(\frac{v}{c}\right)^2} L \tag{0.0.25}$$

である. これは動いている慣性系から静止系での距離 (L) を測る (L') と縮んで見えることを意味している.

· Lorentz 収縮

$$L' = \sqrt{1 - \left(\frac{v}{c}\right)^2} L \tag{0.0.26}$$

また、その対象に対して静止している観測者が測った距離を**固有長さ** (proper length) という. 今回は L が固有長さである.

次に**時間の遅れ**について説明する.同様の X 系と X' 系を考える.時計が X' 系の原点 x'=0 に置かれており,観測者は X' 系においてこの時計を見ている.X' 系に置かれた時計の時刻が t' のときの時空点 P_1 , $t'+\Delta T_0$ の時空点を P_2 とする. P_1 は,

$$\begin{pmatrix} ct_1 \\ x_1 \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & v/c \\ v/c & 1 \end{pmatrix} \begin{pmatrix} ct' \\ 0 \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} ct' \\ vt' \end{pmatrix}$$
 (0.0.27)

 P_2 lt,

$$\begin{pmatrix} ct_1 \\ x_1 \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} 1 & v/c \\ v/c & 1 \end{pmatrix} \begin{pmatrix} c(t' + \Delta T_0) \\ 0 \end{pmatrix} = \frac{1}{\sqrt{1 - (v/c)^2}} \begin{pmatrix} c(t' + \Delta T_0) \\ v(t' + \Delta T_0) \end{pmatrix}$$
 (0.0.28)

である. よって、X系での時間経過 $\Delta T = t_2 - t_1$ は、

$$\Delta T = t_2 - t_1 = \frac{1}{\sqrt{1 - (v/c)^2}} \Delta T_0 \tag{0.0.29}$$

である. これは X' 系は X 系に比べて時間の流れが遅いことを示している.

時間の遅れ・

$$\Delta T = \frac{1}{\sqrt{1 - (v/c)^2}} \Delta \tau \tag{0.0.30}$$

観測者に対して 2 つの事象が同一の空間座標で起きたとき、その時間間隔 Δ_{τ} を**固有時間** (proper time) という.