Today's agenda
Today's agenda Les Dungeon Poincess
b Buy and sell stock 1
br Buy and Bell Stock 2
b Buy and sell stock 3
v
inserview Prep - 28 b 20 dl
by youtube. Com -> TB SP -> CP UBsoblem enist

Q) Dungeon Princess 4 Given mot [n] [m] where each cell indicates - Find our min health required at (0,0) so that we can seach [N-1, M-1]. Note: 1) movements: sight or bottom.

(1) if health reaches o, at any place you are dead.
(11) we are starting at (0,0).

4 5 6,7

If find mix cox Path??

0	1	2	3	minH(0,0 -> 3,3) -> minH seg to
-3	2	4	-٦	minH(0,0 \rightarrow 3,3) \rightarrow minH seq to Start at (0,0)
-6	5	-4	6	sight
-15	-8	3	-4	2
7	4	-2	-7	minH(0,1-3,3) $minH(1,0-3,3)$
	-3 -6 -15	-3 2 -6 5 -15 -8 7 4	-6 5 -4 -15 -8 3	-6 S -4 6 -15 -8 3 -4

de [i][j] ---- de (in) (j) and de (i)(jt1)

minH (i, g) = min (minH (i, j+1), minH(i+1, j)) - $arg(i)L_{j}$

11Psuedo	code
	int de[n][m]: (-1];
	int minH (int mathilm), int i, int j) {
	if (i>= ~ //j>= m) fockm INT. MAX; 3
	if (i== N-1 &1 j== m-1) (vetum ma(1, 1- mat [][])}
	if (i== N-1 21 j==m-1) { octum m(1, 1-matlifj)}} if (deli)[j]:=-1) {octum deli][j];}
	int a = minH (mat, i+1, j);
	int b = min H (mad, i, jt1);
	appillile man(1, min (a, b) - mat filly);
	applissis marce, min (a,b) - mat listis); seturn marce, min (a,b) - mat listis);
	3

1-68)=9

Buy and Sell Stocks I

li given an array Poices where Poices [i] is the Poice

of a given block on the it day. Return the manimum Poofit

by doing a single transaction. -> Buy - Sell

En: Poices [6] = (7 (1) 5 3 (6) 43 - ars= 5

Prices [iJ = (715364]T.C: $0(M^2)$ S.C: 0(1)

11 optimal

Poices [i] = (7 1 5 3 6 4)

- (-6 4 2 5 3)

Selling

1 selling

Buy at min

Poice

11Psuedo code

Ill's wedo	Code
	int Buy and sell (int Poices [4]) {
	int ars=0;
	int minud: Prices [0];
	,
T.C: 0(N)	
S.C! 0(4)	for (int i=1; i=N; i+1)
	int Poolit = Poices [i] - minyal
	ans = man (ans, Profit);
	min val: min (minval, Prices [i]);
	not con . Think to police 211)
	setim are;
	3
	minval= 7/1 are = 84
	minval= π 1 Prices π 3 = π 7 1 5 3 6 43
	Popit 5-1-4
	<u> </u>

a) Buy and Sell Stocks 2 Ir same as Psevious Problem but we can do as many toansactions as you wand. Note: you can't buy again until you lell the Previous Stock. -> B-S-B-S- B-S En: Poices [6] = 17 15 3 6 43 - 2 and: 7 11 Psuedo code int ars=0; for (ind i=1; i<N; i++) (

i) (arr (i) > arr (i-1)) (

and = and + (arr (i) - arr (i-1)); T. C: O(N) S.c. 0(1) oltron ars;

Q) Buy and Sell Stocks 3

4 Same Poolem Statement, atmost 2 toursactions

allowed. -> B-S-B-S

Mostimal idea

in splir

in Prof;t = (leftProfit siJ+rightProfit sith)

Is

and = man (any profit);

ls	you	didn't	Fore	this	far	only	10	Come	.this
	•			ar.		•			