

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2012

PRIMEIRA PROVA OFICIAL

ESCOLA	EACH TURI		and the second	Nota do aluno na PROVA			
Curso	Sistemas de Informação	2011204					
Disciplina	Sistemas Operacionais – ACH2044	Data da Prova	05/10/12				
Professor	Norton Trevisan Roman						
Aluno							
No. USP				113333			

QUESTÃO 01	Valor da Questão:	2,0			
Em uma aplicação de memória onde passos:	o concorrente que controla estão armazenados os sal	a saldo band ldos dos clie	cário em contas correntes, dois processos compartilham intes A e B. Os processos executam, concorrentemente o	uma região s seguintes	
	Processo 1 (Cliente A)		Processo 2 (Cliente B)		
/* saque em A */			/* saque em A */		
1a. x = saldo_do_cliente_A;			2a. y = saldo_do_cliente_A;		

1b. x = x - 180; 2b. y = y - 300;

1c. saldo_do_cliente_A = x; 2c. saldo_do_cliente_A = y;

/* deposito em B */ /* deposito em B */

1d. x = saldo_do_cliente_B; 2d. y = saldo_do_cliente_B;

1e. x = x + 210; 2e. y = y + 250; 1f. saldo_do_cliente_B = x; 2f. saldo_do_cliente_B = y;

Supondo que os valores dos saldos de A e B sejam, respectivamente, 300 e 500, antes de os processos executarem, pedese:

- a) Quais os valores corretos esperados para os saldos dos clientes A e B após o término da execução dos processos?
 b) Quais os valores finais dos saldos dos clientes se a seguência temporal de execução das operações for: 1a, 2a, 1b
 - b) Quais os valores finais dos saldos dos clientes se a sequência temporal de execução das operações for: 1a, 2a, 1b, 2b, 1c, 2c, 1d, 2d, 1e, 2e, 1f, 2f?
 - Utilizando dois semáforos (S1,S2), proponha uma solução que garanta a integridade dos saldos e permita o maior compartilhamento possível dos recursos entre os processos, não esquecendo a especificação da inicialização dos semáforos. (coloque os semáforos diretamente no código fornecido acima)

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2012

PRIMEIRA PROVA OFICIAL

QUESTÃO 02	Valor da Questão:	1,5		
	do com um escalonador e cado para rodar, incluindo			er finalizado. Quantas
36				
3 20				
		1		
QUESTÃO 03	Valor da Questão:	1,5		

Considere um sistema de troca de processos entre a memória e o disco no qual a memória é constituída dos seguintes tamanhos de lacunas em ordem na memória: 12 KB (A), 4 KB (B), 20 KB (C), 18 KB (D), 7 KB (E), 9 KB (F), 8 KB (G), e 10 KB (H). Qual lacuna é tomada pelas solicitações sucessivas do segmento de 14 KB, 10 KB e 7 KB, para o first fit, best fit e worst fit?

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2012

PRIMEIRA PROVA OFICIAL

QUESTÃO 04 Valor da Questão: 2

Um sistema de tempo real tem quatro eventos periódicos com períodos de 50, 100, 200 e 250 ms cada. Suponha que os quatro eventos requeiram 30, 20, 10 e 10 ms de tempo de CPU, respectivamente. Ilustre o escalonamento dos processos

segundo

40

b) (1,0) Earliest Deadline First

a) (1,0) Rate Monotonic Scheduling

QUESTÃO 05 Valor da Questão: 3

Cinco processos em batch, A a E, chegam em um centro de computação quase que ao mesmo tempo. Eles têm tempos de execução estimados de 12, 10, 4, 8 e 6. Suas prioridades, definidas externamente, são 2, 5, 1, 3 e 4, com 5 sendo a mais alta. Para cada um dos seguintes algoritmos, determine o tempo médio de execução completa (mean turnaround time) desses processos. Ignore o tempo gasto com a troca de processos.

- a) (0,75) Round Robin
- b) (0,75) Prioridade
- c) (0,75) First-come, First-served (na ordem 6, 12, 8, 4, 10)
- d) (0,75) Shortest Job First

Para (a), assuma que o sistema aceita multiprogramação, e que cada processo recebe um quantum de 2. Para (b) a (d) assuma que somente um processo pode rodar por vez, rodando até o fim. Todos os processos são CPU bound (sem E/S).