数理统计 25 期中

- 一. 填空选择题(每空两分)
- (1) 设 $X_1, X_2, ..., X_n, X_{n+1}$ 为来自同一正态总体的一组简单随机样本,且记 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 及 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$. 若统计量 $c_n(X_{n+1} \bar{X})/S$ 服从 t 分布,则常

数 $c_n = ____ t$ 分布的自由度为 $_____ 且与 \sum_{i=1}^{n+1} X_i$ 的相关系数为 $_____$

答案: $\sqrt{\frac{n}{n+1}}$; n-1 ; 0

- (2) 设统计量 $\hat{\boldsymbol{\theta}}$ 为总体参数 $\boldsymbol{\theta}$ 的一个点估计,下列说法一般不成立的是____
- (A) 若 $\hat{\theta}$ 为 θ 的矩估计, 则 $\hat{\theta}^2$ 为 θ^2 的矩估计
- (B) 若 $\hat{\theta}$ 为 θ 的最大似然估计,则 $\hat{\theta}^2$ 为 θ^2 的最大似然估计
- (C) 若 $\hat{\theta}$ 为 θ 的无偏估计,则 $\hat{\theta}^2$ 为 θ^2 的无偏估计
- (D) 若 $\hat{\theta}$ 为 θ 的相合估计,则 $\hat{\theta}^2$ 为 θ^2 的相合估计

答案: C

- (3) 如果极小充分统计量存在,那么充分完全统计量必是极小充分统计量,但是极小充分统计量不一定是完全的,这种说法
- (A) 正确
- (B) 错误

答案: A

- (4) 设 X_1, \dots, X_n 为来自于正态总体 $N(\mu, 1)$ 的简单随机样本,若要求参数 μ 的置信系数为 95% 的置信区间长度不超过 1 ,则至少需要抽取的样本量 n 为
- (A) 14
- (B) 16
- (C) 18
- (D) 20

答案: B

(5) 在给定一组样本值和先验下,采用后验期望作为感兴趣参数 θ 的估计,得到估计值

$\hat{\theta} = 5$. 下述说法正确的是

- (A) 在重复抽取样本意义下 θ 的无偏估计值为 1.5
- (B) $\hat{\boldsymbol{\theta}} = 1.5$ 是 $\boldsymbol{\theta}$ 的有效估计
- (C) 估计值 1.5 是最小后验均方误差估计
- (D) 估计值 1.5 是 θ 的相合估计

答案: C

- 二.(16 分)随机调查了某保险公司 n 个独立的车险索赔额 $X_1, ..., X_n$ (单位:千元),得到如下样本直方图和正态 Q-Q 图.据此回答
- (1) 该样本来自的总体分布有何特点?可以选择什么分布作为总体分布?给出理由.
- (2) 试选择合适的参数统计模型,并讨论参数的充分完全统计量.

三. (20 分)设 $X_1,...,X_n$ 为来自均匀总体 $U(\theta,\theta+1)$ 的简单样本,其中 $\theta\in R$ 为未知参数. 试

- (1) 证明 $T = (X_{(1)}, X_{(n)})$ 为 θ 的极小充分统计量但不是完全统计量.
- (2) 求 θ 的最大似然估计,并讨论其相合性.

四. (25 分) 某厂生产的产品分为三个质量等级 (X = 1,2,3) , 各等级产品的分布如下

X	1	2	3
P	θ	2θ	$1-3\theta$

其中 $\theta \in (0,1/3)$ 未知. 为了解该厂产品的质量分布情况,从该厂产品中随机有放回抽取 20 件产品检测后发现一等品有 5 件,二等品有 7 件,三等品有 8 件. 试

- (1) 求 θ 的矩估计和最大似然估计量,是否都为无偏估计?给出估计值.
- (2) 求 θ 的最小方差无偏估计量,其方差是否达到了 Cramér—Rao 下界?

五. (25 分)调查发现人们每天使用手机的时间(单位:分钟)服从正态分布 $N(\mu,\sigma^2)$,其中 $\mu \in R,\sigma^2 > 0$ 为未知参数. 现随机调查了 25 个人每天使用手机时间,得到样本均值 $\bar{x}=180$ 分钟,样本标准差 s=20 分钟. 若取先验分布为 $\pi(\mu,\sigma^2) \propto \sigma^{-2}$. 试

- (1) 求 σ^2 的边际后验分布,并给出 σ^2 的后验期望估计值.
- (2) 求一个人每天平均使用手机时长 μ 的 95% 置信区间和可信区间,两者的解释有何不同?

附表:上分位数 $u_{0.025}$ = 1.960, $u_{0.05}$ = 1.645, t_{24} (0.025) = 2.06, t_{24} (0.05) = 1.71 伽马分布,逆伽马分布与 t 分布概率密度函数:

$$Ga(\alpha,\beta): f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \alpha, \beta, x > 0.$$

Inv
$$Ga(\alpha, \beta)$$
: $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\frac{\beta}{x}}, \alpha, \beta, x > 0.$

$$t_n: f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}, \quad -\infty < x < \infty$$