Pure Diffusion | Formulation

$$\begin{cases} -\psi'' = s & \text{in } \Omega =]x_{\text{lf}}, x_{\text{rg}} + \epsilon[\\ \psi = \psi_{\text{lf},0} & \text{on } x = x_{\text{lf}} \\ -\psi' = \psi_{\text{rg},1} & \text{on } x = x_{\text{rg}} + \epsilon \end{cases}$$

Mesh

- C_i cell i
- I number of cells
- $x_{i-\frac{1}{2}}$, $x_{i+\frac{1}{2}}$ boundary points of cell i
- h_i length of cell i
- m_i centroid of cell i

2/15

Polynomial Reconstructions | Inner Vertices

$$\psi_{i+\frac{1}{2},d}(x) = \sum_{\alpha=0}^{d} \mathcal{R}_{i+\frac{1}{2},\alpha}(x-x_{i+\frac{1}{2}})^{\alpha}$$

$$\min_{\mathcal{R}_{i+\frac{1}{2},0},...,\mathcal{R}_{i+\frac{1}{2},d}} \sum_{j \in \widehat{\mathcal{S}}_{i+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{i+\frac{1}{2},d}(x) dx - \psi_{j} \right]^{2}$$

This will be needed to approximate $\mathbf{F}_{i+\frac{1}{2}} pprox \mathcal{F}_{i+\frac{1}{2}} = \widetilde{\psi}'_{i+\frac{1}{2}}(x_{i+\frac{1}{2}})$

Polynomial Reconstructions | Left Boundary

$$\psi_{\frac{1}{2},d}(x) = \sum_{\alpha=0}^d \mathcal{R}_{\frac{1}{2},\alpha}(x-x_{\mathsf{lf}})^{\alpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{\frac{1}{2},0},\dots,\mathcal{R}_{\frac{1}{2},d}} \quad & \sum_{j \in \widehat{S}_{\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{c_j} \psi_{\frac{1}{2},d}(x) \mathrm{d}x - \psi_j \right]^2 \\ \text{s.t.} \quad & \psi_{\frac{1}{2},d}(x_{\mathsf{lf}}) = \psi_{\mathsf{lf},0} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{rac{1}{2}} pprox \mathcal{F}_{rac{1}{2}} = \psi'_{rac{1}{2}}(x_{ ext{lf}})$

Polynomial Reconstructions | Right Boundary

$$\psi_{I+rac{1}{2},\mathsf{d}}(x) = \sum_{lpha=0}^{\mathsf{d}} \mathcal{R}_{I+rac{1}{2},lpha}(x-x_{\mathsf{rg}})^{lpha}$$

$$\begin{aligned} \min_{\mathcal{R}_{I+\frac{1}{2},0},\dots,\mathcal{R}_{I+\frac{1}{2},\mathsf{d}}} \quad & \sum_{j \in \widehat{\mathcal{S}}_{I+\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{I+\frac{1}{2},\mathsf{d}}(x) \mathrm{d}x - \psi_{j} \right]^{2} \\ \mathrm{s.t.} \quad & -\psi'_{I+\frac{1}{2},\mathsf{d}}(x_{\mathsf{rg}} + \epsilon) = \psi_{\mathsf{rg},1} \end{aligned}$$

This will be needed to approximate $\mathbf{F}_{I+\frac{1}{2}} pprox \mathcal{F}_{I+\frac{1}{2}} = \widehat{\psi}'_{I+\frac{1}{2}}(x_{rg})$

Tests

In this test we will consider:

•
$$\overline{\Omega} = [0, 1 + \epsilon]$$

•
$$\psi(x) = \exp(x)$$

•
$$\psi(0) = 1$$

$$\bullet \ \varphi_{\text{n2}} = -\exp(1+\epsilon)$$

Tests | $\epsilon = 0$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	1.09E-02	_
\mathbb{P}_1	20	2.68E-03	2.02
IF 1	30	1.19E-03	2.01
	40	6.67E-04	2.01
	10	4.93E-03	_
\mathbb{P}_2	20	1.38E-03	1.83
ш 2	30	8.01E-04	1.35
	40	3.88E-04	2.52
	10	2.99E-05	_
\mathbb{P}_3	20	1.93E-06	3.95
ш3	30	3.86E-07	3.97
	40	1.23E-07	3.98
	10	1.15E-05	_
\mathbb{P}_{4}	20	1.20E-06	3.26
ш 4	30	2.00E-07	4.42
	40	6.69E-08	3.80
	10	9.53E-08	_
\mathbb{P}_{5}	20	2.00E-09	5.58
≖5	30	1.91E-10	5.79
	40	3.53E-11	5.86

Tests | $\epsilon = h$

_	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	-	-, (,	-0,1 (· w)
	10	2.61E-01	_
\mathbb{P}_1	20	1.33E-01	0.97
1	30	8.94E-02	0.98
	40	6.73E-02	0.99
	10	9.72E-03	_
\mathbb{P}_2	20	1.38E-03	2.81
ш 2	30	5.72E-04	2.17
	40	2.01E-04	3.64
	10	1.78E-04	_
TID	20	1.30E-05	3.78
\mathbb{P}_3	30	2.70E-06	3.87
	40	8.78E-07	3.91
	10	1.90E-05	_
\mathbb{P}_{4}	20	1.03E-06	4.20
IF4	30	1.05E-07	5.62
	40	2.63E-08	4.82
\mathbb{P}_5	10	4.00E-07	_
	20	7.42E-09	5.75
	30	6.91E-10	5.86
	40	1.27E-10	5.90

Tests | $\epsilon = h \mid d+1$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	8.99E-03	_
\mathbb{P}_1	20	2.27E-03	1.98
ш 1	30	1.01E-03	1.99
	40	5.71E-04	2.00
	10	2.42E-03	_
\mathbb{P}_2	20	4.02E-04	2.59
ш 2	30	2.55E-04	1.13
	40	6.98E-05	4.50
	10	1.90E-05	_
\mathbb{P}_3	20	1.13E-06	4.07
п 3	30	2.21E-07	4.04
	40	6.93E-08	4.02
	10	5.93E-06	_
\mathbb{P}_{4}	20	5.85E-07	3.34
F4	30	3.34E-08	7.06
	40	7.62E-09	5.13
\mathbb{P}_5	10	1.62E-07	
	20	2.96E-09	5.78
	30	2.75E-10	5.86
	40	5.03E-11	5.90

Tests | $\epsilon = 2h$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	5.61E-01	_
\mathbb{P}_1	20	2.76E-01	1.02
IF 1	30	1.83E-01	1.01
	40	1.37E-01	1.01
	10	1.68E-02	
\mathbb{P}_2	20	2.23E-03	2.91
IF 2	30	7.88E-04	2.57
	40	3.04E-04	3.31
	10	2.66E-04	_
\mathbb{P}_3	20	1.82E-05	3.87
ш3	30	3.74E-06	3.90
	40	1.21E-06	3.93
	10	2.45E-05	_
\mathbb{P}_4	20	1.22E-06	4.33
ш 4	30	1.32E-07	5.48
	40	3.30E-08	4.82
	10	5.28E-07	_
TD>_	20	9.72E-09	5.76
\mathbb{P}_5	30	9.01E-10	5.86
	40	1.65E-10	5.90

Tests | $\epsilon = 2h | d + 1$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	8.89E-03	_
\mathbb{P}_1	20	2.27E-03	1.97
ш 1	30	1.01E-03	1.99
	40	5.71E-04	1.99
	10	2.47E-03	_
\mathbb{P}_2	20	4.11E-04	2.59
IF 2	30	2.62E-04	1.11
	40	7.24E-05	4.47
	10	1.88E-05	_
\mathbb{P}_3	20	1.13E-06	4.06
п.3	30	2.20E-07	4.03
	40	6.93E-08	4.02
	10	6.21E-06	_
\mathbb{P}_{4}	20	5.76E-07	3.43
IF4	30	3.39E-08	6.99
	40	7.81E-09	5.11
	10	1.75E-07	_
TID	20	3.19E-09	5.78
\mathbb{P}_5	30	2.96E-10	5.87
	40	5.41E-11	5.90

Tests | $\epsilon = 3h$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	8.93E-01	_
\mathbb{P}_1	20	4.26E-01	1.07
F1	30	2.80E-01	1.04
	40	2.08E-01	1.03
	10	2.33E-02	_
TID	20	3.01E-03	2.95
\mathbb{P}_2	30	9.98E-04	2.72
	40	3.98E-04	3.19
	10	3.55E-04	_
\mathbb{P}_3	20	2.33E-05	3.93
ш3	30	4.77E-06	3.91
	40	1.53E-06	3.94
	10	3.15E-05	_
\mathbb{P}_{4}	20	1.42E-06	4.48
ш 4	30	1.60E-07	5.38
	40	4.00E-08	4.81
	10	6.51E-07	_
\mathbb{P}_5	20	1.19E-08	5.77
≖5	30	1.10E-09	5.87
	40	2.01E-10	5.91

Tests | $\epsilon = 3h | d + 1$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	8.81E-03	_
\mathbb{P}_1	20	2.26E-03	1.96
IF 1	30	1.01E-03	1.99
	40	5.70E-04	1.99
	10	2.49E-03	_
\mathbb{P}_2	20	4.15E-04	2.59
IF 2	30	2.65E-04	1.10
	40	7.35E-05	4.46
	10	1.88E-05	_
\mathbb{P}_3	20	1.13E-06	4.05
п 3	30	2.23E-07	3.99
	40	7.25E-08	3.91
	10	6.44E-06	_
\mathbb{P}_{4}	20	5.74E-07	3.49
IF 4	30	3.45E-08	6.93
	40	7.97E-09	5.09
\mathbb{P}_5	10	1.83E-07	_
	20	3.32E-09	5.78
	30	3.07E-10	5.87
	40	5.62E-11	5.91

Tests | $\epsilon = h^2$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	1.51E-02	_
\mathbb{P}_1	20	3.95E-03	1.93
IF 1	30	1.78E-03	1.96
	40	1.01E-03	1.97
	10	2.56E-03	_
\mathbb{P}_2	20	9.50E-04	1.43
IF 2	30	6.20E-04	1.05
	40	2.93E-04	2.60
	10	6.39E-05	_
\mathbb{P}_3	20	4.51E-06	3.82
п.3	30	9.26E-07	3.91
	40	2.99E-07	3.93
	10	1.34E-05	_
\mathbb{P}_{4}	20	9.97E-07	3.75
IF4	30	1.29E-07	5.05
	40	3.95E-08	4.11
	10	2.40E-07	_
TID	20	4.23E-09	5.83
\mathbb{P}_5	30	3.86E-10	5.90
	40	7.02E-11	5.93

Tests | $\epsilon = h^2 | d + 1$

	I	$E_{0,I}(E_\infty)$	$E_{0,I}(O_\infty)$
	10	9.29E-03	_
TID	20	2.31E-03	2.01
\mathbb{P}_1	30	1.02E-03	2.01
	40	5.75E-04	2.00
	10	2.89E-03	_
TID	20	7.20E-04	2.00
\mathbb{P}_2	30	4.91E-04	0.95
	40	1.97E-04	3.17
	10	1.94E-05	_
\mathbb{P}_3	20	1.15E-06	4.08
п.3	30	2.22E-07	4.04
	40	6.98E-08	4.03
	10	6.57E-06	_
\mathbb{P}_{4}	20	7.40E-07	3.15
F4	30	6.79E-08	5.89
	40	2.03E-08	4.20
\mathbb{P}_5	10	1.27E-07	_
	20	2.18E-09	5.86
	30	1.98E-10	5.92
	40	3.57E-11	5.94