Содержание

Ι	I Интеграл по мере			
1	Интеграл ступенчатой функции	4		
	1.1 Свойства	4		
2	Интеграл неотрицательной измеримой функции	5		
	2.1 Свойства	5		
3	Суммируемая функция	6		
	3.1 Свойство	6		
4	Интеграл суммируемой функции	7		
	4.1 Свойства	7		
5 Простейшие свойства интеграла Лебега				
	5.1 Доказательство	8		
	5.2 Доказательство	8		
	5.3 Доказательство	8		
	5.4 Доказательство	9		
	5.5 Доказательство	9		
	5.6 Лемма	9		
	5.6.1 Доказательство	9		
	5.7 Теорема	9		
	5.7.1 Доказательство	10		

	5.8	Следствие	10
	5.9	Следствие 2	10
II	Π_{i}	редельный переход под знаком интеграла	10
	5.10	Теорема	11
		5.10.1 Доказательство	11
	5.11	Теорема	11
		5.11.1 Доказательство	12
		5.11.2 Следствие	12
	5.12	Определение	12
	5.13	Теорема об интегрировании положительных рядов	13
		5.13.1 Доказательство	13
		5.13.2 Следствие	13

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int_{X} f d\mu = \int_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f=\sum lpha_j\chi_{F_j}=\sum_{k,\,j}\lambda_k\chi_{E_k\cap F_j},$$
 тогда $\int F=\sum \lambda_k\mu E_k=\sum_k\lambda_k\sum_j\mu(E_k\cap F_j)=\sum lpha_j\mu F_i=\int F;$

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g\text{ - cTyn.}\\0\leqslant g\leqslant f}} \left(\int\limits_X g d\mu\right).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_X g\leqslant \int\limits_X f.$

3 Суммируемая функция

f— измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f
eq \pm \infty$$
, то говорят, что $f c$ уммируемая, а также $\int |f|-$ конечен $(|f|=f_++f_-).$

3.1 Свойство

Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и интеграл измеримой неотрицательной функции.

4 Интеграл суммируемой функции

 $E\subset X$ — измеримо
е множество, f— измеримо на X,тогда интеграл
 f по множеству Eесть

$$\int\limits_E f d\mu := \int\limits_X f \chi_E d\mu.$$

f — суммируемая на E если $\int\limits_E f + -$ и $\int\limits_E f_-$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \chi_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

$$ullet$$
 $f\geqslant 0$ — измерима, тогда $\int\limits_E fd\mu=\sup_{\begin{subarray}{c} g\ < g< f \end{subarray}} \left(\int\limits_{0\leqslant g\leqslant f} gd\mu
ight).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int_{E} f \leqslant \int_{E} g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - ctyn.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int\limits_{X} \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - ctyn.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int\limits_{X} \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int_{E} 1 \cdot d\mu = \mu E, \int_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

5.3 Доказательство

- \bullet f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \geqslant 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f;$$

(b)
$$\forall c > 0 : \int cf = c \int f$$
.

5.4 Доказательство

•
$$(-f)_+ = f_- \text{ if } (-f)_= f_+ \text{ if } \int -f = f_- - f_+ = -\int f.$$

•
$$f\geqslant 0$$
 — очевидно, $\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant cf}}\left(\int g\right)=c\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant f}}\left(\int g\right).$

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int\limits_{E} |f| &\leqslant \int\limits_{E} f \leqslant \int\limits_{E} |f|. \end{aligned}$$

6. f — измерима на $E,\,\mu E<+\infty,\,\forall x\in E:a\leqslant f(x)\leqslant b.$ Тогда $a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$

5.6 Доказательство

$$\begin{split} &\int\limits_{E} a \leqslant \int\limits_{E} f \leqslant \int\limits_{E} b, \\ &a\mu E \leqslant \int\limits_{E} f \leqslant b\mu E. \end{split}$$

5.7 Лемма

 $A = \bigsqcup A_i, \, A, \, A_i$ — измеримы, $g \leqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_i} g d\mu.$$

5.7.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_A g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g.$$

5.8 Теорема

 $f:C\to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,$ все A_i — измеримы. Тогда

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

5.8.1 Доказательство

- $A = A_1 \sqcup A_2, \sum_{k} \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, g_2 \leqslant f \cdot \chi_{A_2} = \sum_{k} \lambda_k \chi_{E_k}, g_1 + g_2 \leqslant f \cdot \chi_{A_2}$ $\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A_2} g_1 + g_2.$

$$\int_{A_1} f + \int_{A_2} f \leqslant \int_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

5.9 Следствие

 $f\geqslant 0$ — измеримая, $u:\mathcal{A}
ightarrow\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда

 ν — мера.

5.10 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \ f$$
 — суммируема на A , тогда

$$\int_{A} f = \sum_{i} \int_{A_{i}} f.$$

Часть II

Предельный переход под знаком интеграла

5.11 Теорема

 $(X,\mathcal{A},\mu),\,f_n$ — измерима, $\forall n:0\leqslant f_n(x)\leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{X} \int_{X} f_n(x) d\mu = \int_{X} f d\mu.$$

5.11.1 Доказательство

f — измерима как предел, измерима.

- \leqslant $f_n(x)\leqslant f(x)$ почти везде, тогда $\forall n:\int\limits_V f_n(x)d\mu\leqslant\int\limits_V fd\mu$, откуда следует, что и предел не превосходит.
- >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{N\to\infty}\int_{N}f_{n}\geqslant\int_{N}g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g$.

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.е. c < 1, то cg(x) < f(x), $f_n(x) \to f(x) \Rightarrow f_n$ попадёт в с зазор cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

5.12 Теорема

Пусть $f,\,g$ — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

5.12.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n:0\leqslant f_n\leqslant f_{n+1}\leqslant\ldots\leqslant f$, и $g_n:0\leqslant g_n\leqslant g_{n+1}\leqslant\ldots\leqslant g$, и $f_n(x)\to f(x)$ и $g_n(x)\to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_f +\int\limits_E g$$

5.12.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

Доказательство

$$(f+g)_{\pm} \le |f+g| \le |f| + |g|.$$

$$h := f + g$$
,

$$h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-},$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$

$$\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-}, \text{ тогда}$$

$$\int h = \int f + \int g.$$

5.13 Определение

 $\mathcal{L}(X)$ — множество суммируемых функций. Это линейное пространство.

Интеграл: $\mathcal{L}(X) \to \mathbb{R}$ — это линейная функция, но красивее говорить линейный функционал.

$$f_1,\ldots,f_n\in\mathcal{L}(X),\ \alpha_1,\ldots,\alpha_n\in\mathbb{R},\$$
тогда $\alpha_1f_1+\ldots+\alpha_nf_n\in\mathcal{L}(x).$

$$\int_{X} f = I(f), \int_{X} \alpha_{1} f_{1} + \dots + \alpha_{n} f_{n} = \alpha_{1} \int_{X} f_{1} + \dots + \alpha_{n} \int_{X} f_{n}$$

$$I(\alpha_{1} f_{1} + \dots + \alpha_{n} f_{n}) = I(\alpha_{1} f_{1}) + \dots + I(\alpha_{n} f_{n}).$$

5.14 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{i \int =1}^{+\infty} \int_{E} u_n d\mu.$$

5.14.1 Доказательство

Очевидно по теореме Леви.

$$S(x)=\sum_{n=1}^{+\infty}u_n(x)$$
 и $p\leqslant S_N\leqslant S_{N+1}\leqslant\ldots$ и $S_N\to S(X).$

$$\lim_{n \to +\infty} \int_{E} S_{N} = \int_{E} S$$

$$\lim \sum_{k=1}^{n} \int_{\Sigma} u_k(x) = \int_{\Sigma} S(x) d\mu.$$

5.14.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_{E}|u_n|<+\infty.$ Тогда

 $\sum u_n$ — абсолютно сходится почти везде на E.

Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \ \text{значит } S(x) \ \text{конечна почти всюду}.$$

$$S(x)=+\infty$$
 при $x\in B,\, \mu B>0,\, S(x)\geqslant n\cdot \chi_{B}\int\limits_{E}S(x)\geqslant n\cdot \mu B.$