

planetmath.org

Math for the people, by the people.

some facts about injective and surjective linear maps

 ${\bf Canonical\ name} \quad {\bf Some Facts About Injective And Surjective Linear Maps}$

Date of creation 2013-03-22 18:32:22 Last modified on 2013-03-22 18:32:22

Owner joking (16130) Last modified by joking (16130)

Numerical id 6

Author joking (16130) Entry type Derivation Classification msc 15A04 Let k be a field and V, W be vector spaces over k.

Proposition. Let $f: V \to W$ be an injective linear map. Then there exists a (surjective) linear map $g: W \to V$ such that $g \circ f = \mathrm{id}_V$.

Proof. Of course $\operatorname{Im}(f)$ is a subspace of W so $f:V\to\operatorname{Im}(f)$ is a linear isomorphism. Let $(e_i)_{i\in I}$ be a basis of $\operatorname{Im}(f)$ and $(e_j)_{j\in J}$ be its completion to the basis of W, i.e. $(e_i)_{i\in I\cup J}$ is a basis of W. Define $g:W\to V$ on the basis as follows:

$$g(e_i) = f^{-1}(e_i), \text{ if } i \in I;$$

 $g(e_i) = 0, \text{ if } j \in J.$

We will show that $g \circ f = id_V$.

Let $v \in V$. Then

$$f(v) = \sum_{i \in I} \alpha_i e_i,$$

where $\alpha_i \in k$ (note that the indexing set is I). Thus we have

$$(g \circ f)(v) = g(\sum_{i \in I} \alpha_i e_i) = \sum_{i \in I} \alpha_i g(e_i) = \sum_{i \in I} \alpha_i f^{-1}(e_i) =$$
$$= f^{-1}(\sum_{i \in I} \alpha_i e_i) = f^{-1}(f(v)) = v.$$

It is clear that the equality $g \circ f = \mathrm{id}_V$ implies that g is surjective. \square

Proposition. Let $g: W \to V$ be a surjective linear map. Then there exists a (injective) linear map $f: V \to W$ such that $g \circ f = \mathrm{id}_V$.

Proof. Let $(e_i)_{i\in I}$ be a basis of V. Since g is onto, then for any $i\in I$ there exist $w_i\in W$ such that $g(w_i)=e_i$. Now define $f:V\to W$ by the formula

$$f(e_i) = w_i$$
.

It is clear that $g \circ f = \mathrm{id}_V$, which implies that f is injective. \square

If we combine these two propositions, we have the following corollary:

Corollary. There exists an injective linear map $f: V \to W$ if and only if there exists a surjective linear map $g: W \to V$.