머신러닝

#### 목차

- 1. AI, 머신러닝, 딥러닝
- 2. 지도학습, 비지도학습, 강화학습
- 3. 지도학습 선형 회귀(Linear Regression)
- 4. 지도학습 의사결정 트리(Decision Tree)
- 5. 지도학습 K-nearest neighbor classifier(k-최근접 이웃 분류기)
- 6. 비지도학습 K-means Clustering(평균 군집)



#### AI, 머신러닝, 딥러닝

Artificial Intelligence

# 인공지능

사고나 학습등 인간이 가진 지적 능력을 컴퓨터를 통해 구현하는 기술



Machine Learning

# 머신러닝

컴퓨터가 스스로 학습하여 인공지능의 성능을 향상 시키는 기술 방법



Deep Learning

# 딥러닝

인간의 뉴런과 비슷한 인공신경망 방식으로 정보를 처리



#### 지도학습, 비지도학습, 강화학습



#### 지도학습, 비지도학습, 강화학습



# 지도학습



### 비지도학습



## 지도학습(예측) – 선형 회귀(Linear Regression)

주어진 데이터를 이용해 일차방정식을 수정해 나가는 것

- 학습을 거쳐서 가장 합리적인 선을 찾아내는 것
- 학습을 많이 해도 '완벽한' 식을 찾아 내지 못할 수 있다.
- 가장 근사치의 값을 찾는 것

# 지도학습 – 선형 회귀(Linear Regression)



# (Linear) Hypothesis



# Which hypothesis is better?



#### 비용 함수(Cost Function)

- → (예측값-실제값)2 의 평균
  - How fit the line to our (training) data

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$



# Cost function

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$
$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

# Goal: Minimize cost

$$\underset{W,b}{\text{minimize}} \cos t(W, b)$$

# Simplified hypothesis

$$H(x) = Wx$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

# What cost(W) looks like?

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

| × | Y |
|---|---|
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |

W=1, cost(W)=0

$$\frac{1}{3}((1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2)$$

• W=0, cost(W)=4.67  

$$\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2)$$

## 경사하강법(Gradient descent algorithm)

# What cost(W) looks like?

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$





## 지도학습(분류) – 의사결정 트리(Decision Tree)



# 지도학습(분류) - K-nearest neighbor classifier(k-최근접 이웃 분류기)



# 지도학습(분류) - K-nearest neighbor classifier(k-최근접 이웃 분류기)



## 비지도학습(군집) - K-means Clustering(평균 군집)

KMeans 클러스터링 알고리즘은 n개의 중심점을 찍은 후에, 이 중심점에서 각 점간의 거리의 합이 가장 최소화가 되는 중심점 n의 위치를 찾고, 이 중심점에서 가까운 점들을 중심점을 기준으로 묶는 클러스터링 알고리즘이다.



