Funtores

1. Sean C y \mathcal{D} dos categorías. Probar que $P_1: C \times \mathcal{D} \to C$ tal que $P_1(C,D) = C$ y $P_2: C \times \mathcal{D} \to \mathcal{D}$ tal que $P_2(C,D) = D$ definen functores.

Solución Completamos las definiciones: $P_1(f,g) = f$ y $P_2(f,g) = g$.

- Sea $(C, D) \in ob \mathcal{C} \times \mathcal{D}$ sabemos que $id_{(C,D)} = (id_C, id_D)$, luego:
 - $P_1(id_{(C,D)}) = id_C = id_{P_1(C,D)}$.
 - $P_2(id_{(C,D)}) = id_D = id_{P_2(C,D)}$.
- Sean $(f,g):(C_1,C_2)\to (D_1,D_2)$ y $(p,q):(C_2,C_3)\to (D_2,D_3)$, luego:
 - $P_1((p,q)\circ(f,g)) = P_1(p\circ f, q\circ g) = p\circ f = P_1(p,q)\circ P_1(f,g).$
 - $P_2((p,q)\circ(f,g)) = P_2(p\circ f, q\circ g) = q\circ g = P_2(p,q)\circ P_2(f,g).$
- 2. Dado un conjunto X, definimos el conjunto List(X) de la listas finitas de elementos de X. Probar que $List: Set \to Set$ es un funtor. Considerando ahora List'(X) como un monoide, probar que $List': Set \to Mon$ es un funtor. Determinar si List' preserva productos. Ayuda: pensar en cual monoide es isomorfo a List'(X) cuando X es un conjunto con un solo elemento.

Solución

- Definimos $List(f: A \to B) = f': \langle A \rangle \to \langle B \rangle$ tal que $f' \langle \rangle_A = \langle \rangle_B$ y $f' \langle a_1, \ldots, a_n \rangle = \langle f(a_1), \ldots, f(a_n) \rangle$.
 - Sea $X \in ob Set$, luego:
 - $\circ List(id_X)\langle a_1,\ldots,a_n\rangle = \langle id_X(a_1),\ldots,id_X(a_n)\rangle = \langle a_1,\ldots,a_n\rangle = \\
 = id_{\langle X\rangle}\langle a_1,\ldots,a_n\rangle = id_{List(X)}\langle a_1,\ldots,a_n\rangle.$
 - $\circ \ List\left(id_X\right)\langle\rangle_X=\langle\rangle_X=id_{\langle X\rangle}\,\langle\rangle_X.$

Podemos ver entonces que $List(id_X) = id_{List(X)}$.

- Sean $f: A \to B \text{ y } g: B \to C$, luego:
 - $\circ List(g \circ f) \langle a_1, \dots, a_n \rangle = \langle g \circ f(a_1), \dots, g \circ f(a_n) \rangle =$ $= g' \langle f(a_1), \dots, f(a_n) \rangle = g' (f' \langle a_1, \dots, a_n \rangle) =$ $= (List(g) \circ List(f)) \langle a_1, \dots, a_n \rangle.$
 - $\begin{array}{l} \circ \ List \left(g \circ f\right) \left\langle \right\rangle_A = \left(g \circ f\right)' \left\langle \right\rangle_A = \left\langle \right\rangle_C = g' \left\langle \right\rangle_B = \\ = g' \left(f' \left\langle \right\rangle_A\right) = \left(g' \circ f'\right) \left\langle \right\rangle_A = \left(List \left(g\right) \circ List \left(f\right)\right) \left\langle \right\rangle_A. \end{array}$

Podemos ver entonces que $List(g \circ f) = List(g) \circ List(f)$.

- Definimos $List'(X) = (\langle X \rangle, \langle \rangle_X, \oplus_X)$. Veamos que $List'(f: A \to B)$ es un morfismo de monoide:
 - $List'(f)\langle\rangle_A = \langle\rangle_B$.
 - $List'(f)(\langle a_1, \ldots, a_n \rangle \oplus_A \langle a_{n+1}, \ldots, a_{n+m} \rangle) =$ = $List'(f)\langle a_1, \ldots, a_{n+m} \rangle = \langle f(a_1), \ldots, f(a_{n+m}) \rangle =$ = $\langle f(a_1), \ldots, f(a_n) \rangle \oplus_B \langle f(a_{n+1}), \ldots, f(a_{n+m}) \rangle =$ = $List'(f)\langle a_1, \ldots, a_n \rangle \oplus_B List'(f)\langle a_{n+1}, \ldots, a_{n+m} \rangle.$
- 3. Se ha visto que puede considerarse a un monoide como una categoría con un único objeto, ¿Qué es un funtor entre dos categorías de este tipo? ¿Y entre categorías formadas a partir de conjuntos ordenados?

Solución

- Sean (A, e_A, \oplus_A) y (B, e_B, \oplus_B) dos monoides; \mathcal{A} y \mathcal{B} las respectivas categorías asociadas y $F : \mathcal{A} \to \mathcal{B}$ un functor. Sabemos que $F(*_A) = *_B$ y que:
 - $F(id_{*_A}) = id_{F(A)}$, es decir $F(e_A) = e_B$.
 - $F(a \circ a') = F(a) \circ F(a')$, es decir $F(a \oplus_A a') = F(a) \oplus_B F(a')$.

Vemos entonces que ${\cal F}$ es un morfismo de monoides.

- Sean (P, \leq_P) y (Q, \leq_Q) dos posets; \mathcal{P} y \mathcal{Q} las respectivas categorías asociadas y $F: \mathcal{P} \to \mathcal{Q}$ un functor. Sabemos que:
 - $F(id_x) = id_{F(x)}$, es decir F(x,x) = (F(x), F(x)); lo que significa que si $x \leq_P x$ entonces $F(x) \leq_Q F(x)$.
 - $F((y,z) \circ (x,y)) = F(y,z) \circ F(x,y)$, lo que significa que si $x \leq_P z$ entonces $F(x) \leq_Q F(z)$.

Vemos entonces que F es un morfismo de posets.

4. Dados dos funtores $F: \mathcal{C} \to \mathcal{D}$ y $G: \mathcal{D} \to \mathcal{E}$, definir un funtor que componga ambos. ¿Es posible definir una categoría cuyos objetos sean las categorías y sus flechas sean los funtores entre estas?

Solución Definimos $G \circ F : \mathcal{C} \to \mathcal{E}$ donde $G \circ F(C) = G(F(C))$ y $G \circ F(f) = G(F(f))$. Veamos que efectivamente se trata de un functor:

 \bullet Sea $C\in ob\,\mathcal{C}$ tal que $F\left(C\right) =D$ y $G\left(D\right) =E,$ luego:

$$G \circ F\left(id_{C}\right) = G\left(F\left(id_{C}\right)\right) = G\left(id_{F(C)}\right) = G\left(id_{D}\right) = id_{G(D)} = id_{E} = id_{G \circ F(C)}$$

■ Sean $f: X \to Y$ y $g: Y \to Z$ morfismos de $\mathcal C$ tales que $F(f) = f': X' \to Y'$ y $F(g) = g': Y' \to Z'$, luego:

$$G \circ F (g \circ f) = G (F (g) \circ F (f)) = G (g' \circ f') =$$

$$= G (g') \circ G (f') = (G \circ F) (g) \circ (G \circ F) (f)$$

- 5. Sea \mathcal{C} una categoría con productos, coproductos y exponenciales; y $A \in ob \mathcal{C}$. Probar que las siguientes aplicaciones pueden extenderse con estructura funtorial:
 - a) $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ tal que $\Delta(B) = (B, B)$.
 - b) $\times A : \mathcal{C} \to \mathcal{C}$ tal que $(- \times A)(B) = B \times A$.
 - c) $-^A: \mathcal{C} \to \mathcal{C}$ tal que $\left(-^A\right)(B) = B^A$.
 - d) $-^A \times A : \mathcal{C} \to \mathcal{C}$ tal que $(-^A \times A)(B) = B^A \times A$.
 - e) $\Pi: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ tal que $\Pi(B, C) = B \times C$.
 - $f) \ \Sigma : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \ \text{tal que } \Sigma(B, C) = B + C.$
 - g) $A^-: \mathcal{C} \to \mathcal{C}$ tal que $(A^-)(B) = A^B$ y es contravariante en los morfismos.
 - $h) A^{A^{-}}: \mathcal{C} \to \mathcal{C} \text{ tal que } \left(A^{A^{-}}\right)(B) = A^{A^{B}}.$

Soluciones

- a) Definimos $\Delta(f) = (f, f)$. Veamos que Δ es un functor:

 - Sean $f: X \to Y$ y $g: Y \to Z$ luego $\Delta(g \circ f) = (g \circ f, g \circ f) = (g, g) \circ (f, f) = \Delta(g) \circ \Delta(f)$.
- b) Definimos $(-\times A)(f:X\to Y)=f\times id_A:X\times A\to Y\times A.$ Veamos que $-\times A$ es un functor:
 - $\bullet (-\times A)(id_X) = id_X \times id_A = id_{X\times A} = id_{(-\times A)(X)}.$
 - Sean $f: X \to Y$ y $g: Y \to Z$ luego $(-\times A)(g \circ f) = (g \circ f) \times id_A = (g \times id_A) \circ (f \times id_A) = (-\times A)(g) \circ (-\times A)(f)$.
- c) Sabemos que el morfismo $(-^A)$ $(f: X \to Y)$ debe tener tipo $X^A \to Y^A$, proponemos entonces $(-^A)$ $(f) = \overline{f \circ \varepsilon_{AX}}$:

$$X \qquad X^{A} \qquad X^{A} \times A$$

$$f \downarrow \qquad \exists! \downarrow \overline{f \circ \varepsilon_{AX}}$$

$$Y \qquad Y^{A} \qquad Y^{A} \times A$$

$$\varepsilon_{AY}$$

- $\bullet (-^{A})(id_{X}) = \overline{id_{X} \circ \varepsilon_{AX}} = \overline{\varepsilon_{AX}} = id_{X^{A}} = id_{\overline{\varepsilon_{AX}}} = id_{\overline{id_{X}} \circ \varepsilon_{AX}} = id_{(-^{A})(X)}.$
- \bullet Sean $f:X \to Y$ y $g:Y \to Z$ luego:

$$(-^{A}) (g \circ f) = \overline{(g \circ f) \circ \varepsilon_{AX}} = \overline{\varepsilon_{AZ} \circ (\overline{g \circ \varepsilon_{AY}} \times id_{A}) \circ (\overline{f \circ \varepsilon_{AX}} \times id_{A})} =$$

$$= \overline{\varepsilon_{AZ} \circ ((\overline{g \circ \varepsilon_{AY}} \circ \overline{f \circ \varepsilon_{AX}}) \times id_{A})} = (\overline{g \circ \varepsilon_{AY}} \circ \overline{f \circ \varepsilon_{AX}}) =$$

$$= (\overline{g \circ \varepsilon_{AY}} \times id_{A}) \circ (\overline{f \circ \varepsilon_{AX}} \times id_{A}) = (-^{A}) (g) \circ (-^{A}) (f)$$

- d) Observemos que $(-^A \times A) = (- \times A) \circ (-^A)$, luego también es funtor por ser composición de functores.
- e) Definimos $\Pi(a:A\to A',b:B\to B')=a\times b$:

$$\begin{array}{ccc}
A & \stackrel{\pi_A}{\longleftarrow} A \times B & \stackrel{\pi_B}{\longrightarrow} B \\
a \downarrow & a \times b & \downarrow b \\
A' & A' \times B' & B'
\end{array}$$

- Sean $f := (a : A \to A', b : B \to B')$ y $g := (a' : A' \to A'', b' : B' \to B'')$, luego:

$$\Pi\left(g \circ f\right) = \Pi\left(a' \circ a, b' \circ b\right) = (a' \circ a) \times (b' \circ b) =$$

$$= (a' \times b') \circ (a \times b) = \Pi\left(a', b'\right) \circ \Pi\left(a, b\right) = \Pi\left(q\right) \circ \Pi\left(f\right)$$

- f) COMPLETAR.
- g) COMPLETAR.
- h) COMPLETAR.
- 6. Sea \mathcal{C} una categoría localmente pequeña, para cada objeto X de \mathcal{C} definimos $HOM(X,-):\mathcal{C}\to Set$ donde HOM(X,-)(Y)=Hom(X,Y) y $HOM(X,-)(f)=Hom(X,f)=\lambda g.f\circ g.$ Probar que HOM(X,-) es efectivamente un funtor para cada X. Definir análogamente un funtor HOM'(-,X).

Solución Observemos que para un morfismo $f: Y \to Z$, el funtor nos devuelve en Set una función de alto orden que dada otra función de X en Y, nos devuelve una función de X en Z:

$$HOM(X, -)(f): Hom(X, Y) \rightarrow Hom(X, Z)$$

 $g: X \rightarrow Y \mapsto f \circ g: X \rightarrow Z$

- $HOM(X,-)(id_A) = \lambda(g:X \to A).id_A \circ g = \lambda(g:X \to A).g = id_{HOM(X,-)(A)}.$
- Sean $f: A \to B \text{ y } g: B \to C$ luego:

$$HOM(X, -) (g \circ f) = \lambda (a : X \to A) . g \circ f \circ a =$$

$$= (\lambda (b : X \to B) . g \circ b) \circ (\lambda (a : X \to A) . f \circ a) =$$

$$= HOM(X, -) (g) \circ HOM(X, -) (f)$$

7. Si $f: A \to B$ en Set, entonces definimos $f^{-1}(X) = \{a \in A : f(a) \in X\}$ donde $X \subseteq B$. Probar que $I: Set \to Set$ es un funtor contravariante, llevando: $I(A) = \mathcal{P}(A)$ y $I(f) = f^{-1}$.

Solución COMPLETAR.

8. Dado un semigurpo (S, \cdot) , podemos construir un monoide (S', \cdot') donde $S' = S \uplus \{e\}, (0, x) \cdot' (0, y) = (0, x \cdot y)$ y $(1, e) \cdot' x = x = x \cdot' (1, e)$. Utilizando esta construcción, definir un funtor $F : Sem \to Mon$ y probar que es un monomorfismo en Cat.

Solución COMPLETAR.

9. Probar o refutar: sea C una categoría con productos, y $F: \mathcal{C} \to \mathcal{C}$ un functor, entonces siempre existe un único morfismo $F(A \times B) \to FA \times FB$.

Solución COMPLETAR.

10. Sea $U:Mon \to Set$ el functor que olvida la estructura de monoide. Definimos además $U^2:Mon \to Set$ que en objetos actúa llevando $(X,\otimes,e)\mapsto X\times X$. Probar que a U^2 se lo puede dotar de estructura functorial.

Solución COMPLETAR.

Transformaciones naturales

11. Dada dos categorías C y \mathcal{D} , probar que todo funtor $F: C \to \mathcal{D}$ es naturalmente isomorfo a si mismo, es decir, existe un isomorfismo natural $id_F: F \xrightarrow{\cdot} F$.

Solución Sea $X \in ob \mathcal{C}$, definimos $id_{F_X} = id_{F(X)}$. Es fácil ver que el siguiente diagrama conmuta:

$$\begin{array}{ccc}
A & F(A) \xrightarrow{id_{F_A}} F(A) \\
f \downarrow & F(f) \downarrow & \downarrow F(f) \\
B & F(B) \xrightarrow{id_{F_B}} F(B)
\end{array}$$

12. Considere el funtor $List: Set \to Set$. Mostrar que puede construirse un isomorfismo natural $REV: List \xrightarrow{\cdot} List$ tal que REV_X es la función que invierte las palabras de List(X). ¿Se puede hacer lo mismo con el funtor $List': Set \to Mon$?

Solución Para ver que es transformación natural debemos ver si el siguiente diagrama conmuta:

$$\begin{array}{c|c} A & List(A) \xrightarrow{REV_A} List(A) \\ f \middle\downarrow & List(f) \middle\downarrow & & \downarrow List(f) \\ B & List(B) \xrightarrow{L} List(B) \\ REV_B \end{array}$$

- $\blacksquare (REV_B \circ List(f)) \langle a_1, \dots, a_n \rangle = REV_B \langle f(a_1), \dots, f(a_n) \rangle = \langle f(a_n), \dots, f(a_1) \rangle.$
- $(List(f) \circ REV_A) \langle a_1, \dots, a_n \rangle = List(f) \langle a_n, \dots, a_1 \rangle = \langle f(a_n), \dots, f(a_1) \rangle.$

Solo nos resta ver que es un isomorfismo:

$$REV_X \circ REV_X \langle x_1, \dots, x_n \rangle = \langle x_1, \dots, x_n \rangle \iff REV_X \circ REV_X = id_{List(X)}$$

13. Sea \mathcal{C} una categoría con productos y exponenciales; y A un objeto de la misma. Definir una transformación natural $\eta: (-^A \times A) \xrightarrow{\cdot} id_{\mathcal{C}}$.

Solución Sean $X, Y \in ob \mathcal{C}$ y $f: X \to Y$ un morfismo de la categoría, luego sabemos que $(-^A \times A)(X) = X^A \times A$ y $(-^A \times A)(f) = \overline{f \circ \varepsilon_{AX}} \times id_A$.

$$id_{\mathcal{C}}(X) = X \qquad X^{A} \qquad X^{A} \times A = (-^{A} \times A)(X)$$

$$f \downarrow \qquad \qquad \downarrow \overline{f \circ \varepsilon_{AX}} \times id_{A} = (-^{A} \times A)(f)$$

$$id_{\mathcal{C}}(Y) = Y \qquad Y^{A} \qquad Y^{A} \times A = (-^{A} \times A)(Y)$$

$$\varepsilon_{AY}$$

Del diagrama anterior podemos deducir que $\eta_X = \varepsilon_{AX}$.

- 14. Sea C una C.C.C. y A un objeto de la misma. Definir una transformación natural $\eta: Id \xrightarrow{\cdot} A^{A^-}$, y probar que efectivamente es una transformación natural. Ayuda: puede ser útil probar los siguientes lemas:
 - $curry(f) \circ g = curry(f \circ (g \times id)).$
 - $\bullet \ swap \circ (h \times i) = (i \times h) \circ swap.$

donde swap es el isomorfismo que conmuta los factores de un producto.

Solución COMPLETAR.

15. Probar o refutar: sea $U: Grp \to Set$ el funtor forgetful de grupos, entonces toda transformación natural $\eta: U \xrightarrow{\cdot} U$ es un isomorfismo natural.

Solución Para (G, \oplus, e_G) definimos $\eta_G : G \to G$ constante igual a e_G . Veamos que es una transformación natural:

Sea $f: G_1 \to G_2$, por ser morfismo de grupos sabemos que $f(e_{G_1}) = e_{G_2}$, luego $\eta_{G_2} \circ U(f)(x) = e_{G_2} = U(f)(e_{G_1}) = U(f) \circ \eta_{G_1}(x)$

$$G_{1} \qquad U\left(G_{1}\right) \stackrel{\eta_{G_{1}}}{\to} U\left(G_{1}\right)$$

$$f \downarrow \qquad U(f) \downarrow \qquad \qquad \downarrow U(f)$$

$$G_{2} \qquad U\left(G_{2}\right) \stackrel{\to}{\eta_{G_{2}}} U\left(G_{2}\right)$$

Observemos que en Set el único isomorfismo entre X y X es id_X , luego η no es isomorfismo natural.

16. Dadas dos categorías \mathcal{C} y \mathcal{D} , mostrar que los funtores de \mathcal{C} a \mathcal{D} forman una categoría con las transformaciones naturales como flechas. A esta categoría se la nota $\mathcal{D}^{\mathcal{C}}$.

Solución COMPLETAR.

17. Probar que Cat es una C.C.C.

Solución COMPLETAR.

18. Dada una categoría pequeña C, mostrar que las categorías C^2 y C^{\rightarrow} son isomorfas en Cat.

Solución COMPLETAR.

Adjunctiones

19. Definir una adjunción entre el functor $List': Set \to Mon$ y el functor olvido $U: Mon \to Set$. Dado un conjunto de símbolos Σ y la función constante $f: \Sigma \to U(\mathbb{N}_0)$ tal que f(x) = 1, explicar el morfismo de monoides asociado $\widetilde{f}: List(\Sigma) \to \mathbb{N}_0$.

Solución COMPLETAR.

20. Sea \mathcal{C} una categoría con productos. Dar una relación de adjunción entre Π y Δ . Dar un resultado analogo respecto al functor $\Sigma (X,Y) = X + Y$ cuando \mathcal{C} tiene coproductos.

Solución COMPLETAR.

21. Dada una categoría \mathcal{C} y un objeto A de \mathcal{C} , probar que $-\times A\dashv -^A$.

Solución COMPLETAR.

22. Construir la unidad de adjunción a partir de la counidad de adjunción.

Solución COMPLETAR.

- 23. COMPLETAR.
 - a) COMPLETAR.
 - b) COMPLETAR.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 24. Explicar qué es una adjunción en el caso de que las categorías en cuestión sean conjuntos ordenados vistos como categorías.

Solución COMPLETAR.

Monadas

25. COMPLETAR.

Solución COMPLETAR.

26. COMPLETAR.

Solución COMPLETAR.

27. COMPLETAR.

Solución COMPLETAR.

28. COMPLETAR.

Solución COMPLETAR.

29. COMPLETAR.

Solución COMPLETAR.

30. COMPLETAR.

Solución COMPLETAR.

31. COMPLETAR.

Solución COMPLETAR.

Lema de Yoneda

32. Enunciar y probar el lema de Yoneda para functores contravariantes.

Solución COMPLETAR.

Ejercicios adicionales

- 1. Definimos la asignación $Fr: Set \to Mon$ tal que $Fr(X) = X^{*-1}$ y $Fr(f)(x_1x_2\cdots x_n) = f(x_1)f(x_2)\cdots f(x_n)$. Usando el funtor $U: Mon \to Set$ que se olvida de la estructura de monoide, consideramos $i: X \to U(Fr(X))$ la función que lleva un elemento x de X a la palabra x.
 - a) Probar que Fr es un funtor.

 $^{^1}X^*$ es el monoide de las palabras sobre el alfabeto X con la concatenación como operación. Puede pensar en las palabras de X como las listas de elementos de X.

- b) Probar que dado $f: X \to U(M)$ en Set donde M es un monoide, puedo construir una única $\overline{f}: Fr(X) \to M$ en Mon tal que $U(\overline{f}) \circ i = f$ en Set^2 .
- c) ¿A cuál monoide es isomorfo Fr(X) donde X es un conjunto de un solo elemento?
- d) ¿Este funtor preserva productos?

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.

Cuando un monoide como Fr(X) satisface esta propiedad, decimos que es el monoide libre sobre X.