Linear Regression Summary Sheet

What is Linear Regression?

Linear regression models the relationship between a dependent variable y and one or more independent variables X using a linear approach.

Simple Linear Regression Equation

$$y = \beta_0 + \beta_1 x + \epsilon$$

- \bullet y: dependent variable
- \bullet x: independent variable
- β_0 : intercept
- β_1 : slope
- ϵ : error term

Deriving Parameters in Simple Linear Regression

We want to find the values of β_0 and β_1 that minimize the sum of squared errors:

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

This is a convex optimization problem. We solve it by taking partial derivatives with respect to β_0 and β_1 , and setting them to zero:

Step 1: Partial Derivatives

$$\frac{\partial SSE}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial SSE}{\partial \beta_1} = -2\sum_{i=1}^n x_i(y_i - \beta_0 - \beta_1 x_i) = 0$$

Step 2: Solve the System

From the first equation:

$$\sum y_i = n\beta_0 + \beta_1 \sum x_i$$

From the second equation:

$$\sum x_i y_i = \beta_0 \sum x_i + \beta_1 \sum x_i^2$$

Solving for β_1 :

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Then:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Deriving Parameters in Multiple Linear Regression (Matrix Form)

In matrix form, the model is:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Where:

- y: $n \times 1$ vector of responses
- X: $n \times p$ matrix of features (with a column of 1's for the intercept)
- β : $p \times 1$ vector of coefficients
- ϵ : $n \times 1$ vector of residuals

The loss function is the sum of squared errors:

$$L(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Taking the Gradient

We take the derivative with respect to β :

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Set this equal to 0:

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}$$

Solving for β

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

This is known as the Normal Equation. It gives the best linear unbiased estimate under the Gauss-Markov assumptions.

Error Metrics and Decomposition

Total Sum of Squares (TSS)

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Explained Sum of Squares (ESS)

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Residual Sum of Squares (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

R-Squared

$$R^2 = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$$

Confidence Intervals for Predictions

Point Prediction

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

Confidence Interval for Mean Prediction

$$\hat{y}_0 \pm t^* \cdot SE(\hat{y}_0)$$

Prediction Interval (New Observation)

$$\hat{y}_0 \pm t^* \cdot \sqrt{SE(\hat{y}_0)^2 + \sigma^2}$$

3

Standard Error of the Fit

$$SE(\hat{y}_0) = \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}\right)}$$
 where $s^2 = \frac{RSS}{n - 2}$

Confidence Intervals for Coefficients

$$\hat{\beta}_j \pm t^* \cdot SE(\hat{\beta}_j)$$
 with $SE(\hat{\beta}_j)$ from diag of $\sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$

t-Tests for Coefficients

$$t_j = \frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}$$
 used to test $H_0: \beta_j = 0$

Assumptions of Linear Regression

- 1. Linearity
- 2. Independence of errors
- 3. Homoscedasticity (constant variance of errors)
- 4. Normality of residuals
- 5. No multicollinearity (for multiple regression)

Model Selection

- Stepwise selection (forward/backward)
- Cross-validation
- Information criteria: AIC, BIC

Regularization

Regularization techniques help combat overfitting by penalizing large coefficients in linear regression models.

4

Ridge Regression

$$\hat{\boldsymbol{\beta}}^{ridge} = \arg\min_{\beta} \left\{ \sum (y_i - \hat{y}_i)^2 + \lambda \sum \beta_j^2 \right\}$$

Ridge Regression (L2 penalty):

Adds a penalty proportional to the square of the coefficients. It shrinks all coefficients but never reduces them exactly to zero. Ideal when all predictors are believed to contribute to the response, even if weakly.

Lasso Regression

$$\hat{\boldsymbol{\beta}}^{lasso} = \arg\min_{\beta} \left\{ \sum (y_i - \hat{y}_i)^2 + \lambda \sum |\beta_j| \right\}$$

Lasso Regression (L1 penalty):

Adds a penalty proportional to the absolute value of the coefficients. It can force some coefficients to be exactly zero, effectively performing feature selection. Great when you suspect many predictors are irrelevant.

Elastic Net:

A combination of Ridge and Lasso. Useful when you have high-dimensional data (many predictors, possibly correlated) and want both shrinkage and sparsity.

Interaction Terms in Regression

Purpose: Interaction terms allow the *effect of one variable to depend on the level or value of another*. They test whether the relationship between a predictor and the response changes under different conditions.

Basic Form

For two predictors X_1 and X_2 , the interaction model is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2) + \varepsilon$$

- β_3 captures the interaction effect.
- Interpretation of β_1 and β_2 now depends on the value of the other variable.

Types of Interactions

1. Continuous \times Continuous

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2)$$

• β_1 : Effect of X_1 when $X_2 = 0$

- β_2 : Effect of X_2 when $X_1 = 0$
- β_3 : For each unit increase in X_2 , the effect of X_1 on Y changes by β_3 (and vice versa)

Tip: Mean-center X_1 and X_2 for easier interpretation of main effects.

2. Continuous \times Dummy (0/1)

$$Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 (X \cdot D)$$

- D: Binary variable (e.g., Male = 0, Female = 1)
- β_1 : Effect of X when D=0
- β_3 : Difference in slope between groups
- Full effect of X when D = 1 is $\beta_1 + \beta_3$

3. Dummy \times Dummy

$$Y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 (D_1 \cdot D_2)$$

- β_0 : Mean of reference group (D1 = 0, D2 = 0)
- β_1 : Effect of D1 alone
- β_2 : Effect of D2 alone
- β_3 : Extra effect when both D1 and D2 are 1 (i.e., the interaction isn't purely additive)

How to Interpret in Practice

- 1. Fix one interacting variable at a specific value (e.g., 0 or mean)
- 2. Interpret the marginal effect of the other variable
- 3. Repeat for other values to see how the effect changes

Use marginal effects plots to visualize how relationships vary across the interacting variable.

Summary Table

Interaction Type	Example	Meaning of Interaction
Continuous \times Continuous	$Income \times Age$	Effect of income depends on age
Continuous × Dummy	$Income \times Female$	Income slope differs by gender
Dummy × Dummy	$Race \times Gender$	Joint group effect differs from additive parts

Conclusion

Linear regression is your modeling "starter car" — simple, classic, and eventually something you trade in for better tools. Learn the math, the limits, and when to move on.