

Herons Formula Ex 12.2 Q1

Answer:

The quadrilateral ABCD having sides AB, BC, CD, DA and diagonal AC=5 cm is given, where AC divides quadrilateral ABCD into two triangles \triangle ABC and \triangle ADC. We will find the area of the two triangles separately and them to find the area of quadrilateral ABCD.

In triangle ΔABC, observe that,

$$3^2 + 4^2 = 5^2$$

$$9 + 16 = 25$$

$$25 = 25$$

So the triangle $\triangle ABC$ is right angled triangle.

Area of right angled triangle $\triangle ABC$, is given by

Area of
$$\triangle ABC = \frac{1}{2} (base \times height)$$

= $\frac{1}{2} \times AB \times BC$

$$= \frac{1}{2} \times 3 \times 4$$
$$= 6 \text{ cm}^2$$

In \triangle ACD all the sides are known, so just use Heron's formula to find out Area of triangle \triangle ACD, $s = \frac{AD + DC + AC}{2}$

$$=\frac{5+4+5}{2}$$

$$=7$$
 cm

The area of the \triangle ACD is:

Area of
$$\triangle ACD = \sqrt{s(s-AD)(s-DC)(s-CB)}$$

$$= \sqrt{7(7-5)(7-5)(7-4)}$$

$$= \sqrt{7(2)(2)(3)}$$

$$= \sqrt{84}$$

$$= 9.16 \text{ cm}^2$$

Area of quadrilateral ABCD will be,

Area = Area of triangle ABC + Area of triangle ADC

$$Area = 6 + 9.16$$

$$=15.16 \text{ cm}^2$$

$$Area = 15.16 \text{ cm}^2$$

Herons Formula Ex 12.2 Q2

Answer:

We assume quadrilateral ABCD be the quadrangular field having sides AB, BC, CD, DA and $\angle\text{CDA} = 90^{\rm o}$.

We take a diagonal AC, where AC divides quadrilateral ABCD into two triangles ΔABC and ΔADC

We will find the area of two triangles $\triangle ABC$ and $\triangle ADC$ separately and add them to find the area of the quadrangular ABCD.

In triangle $\triangle ADC$, we have

$$AD = 24 \text{ m}; DC = 7 \text{ m}$$

We use Pythagoras theorem to find side AC,

$$AC^2 = AD^2 + DC^2$$

$$AC^2 = (24)^2 + (7)^2$$

$$AC^2 = 576 + 49$$

$$AC = \sqrt{625}$$

$$AC = 25 \text{ m}$$

Area of right angled triangle $\triangle ADC$, say A_{1} is given by

$$A_1 = \frac{1}{2} (\text{Base} \times \text{Height})$$

Where, Base = DA = 24 m; Height = DC = 7 m

$$A_1 = \frac{1}{2} \left(24 \times 7 \right)$$

$$A_1 = 84 \text{ m}^2$$

Area of triangle \triangle ABC, say A_2 having sides a, b, c and s as semi-perimeter is given by

$$A_2 = \sqrt{s(s-a)(s-b)(s-c)}$$

Where, a = AC = 25 m; b = AB = 26 m; c = BC = 27 m

$$s = \frac{a+b+c}{2}$$

$$s = \frac{25 + 26 + 27}{2}$$

$$s = 39 \text{ m}$$

$$A_2 = \sqrt{39(39-25)(39-26)(39-27)}$$

$$A_2 = \sqrt{39(14)(13)(12)}$$

$$A_2 = \sqrt{85176}$$

$$A_2 = 291.84 \text{ m}^2$$

Area of quadrilateral ABCD, say A

A =Area of triangle \triangle ADC + Area of triangle \triangle ABC

$$A = A_1 + A_2$$

$$A = 84 + 291.84$$

$$A = 375.8 \text{ m}^2$$

******* END ******