Painel / Meus cursos / SC26EL / 8-Representação de Sistemas em Espaço de Estados

/ Questionário sobre Representação de Sistemas em Espaço de Estados

Iniciado em domingo, 11 abr 2021, 16:53

Estado Finalizada

Concluída em domingo, 11 abr 2021, 19:06

Tempo 2 horas 13 minutos

empregado

Notas 28,0/28,0

Avaliar 10,0 de um máximo de 10,0(100%)

Questão **1**

Correto

Atingiu 10,0 de 10,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Obtenha uma representação em espaço de estados para o sistema onde $x_1(t)=i_L(t)=y(t)$ e $x_2(t)=v_C(t)$. Considere 3 algarismos significativos nas respostas.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$
 \checkmark , $a_{12} = 1000$ \checkmark , $a_{21} = -10000$ \checkmark e $a_{22} = -10000$

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = \boxed{0}$$
 \checkmark e $b_{21} = \boxed{10000}$ \checkmark .

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

$$c_{11} = \boxed{1}$$
 \checkmark e $c_{12} = \boxed{0}$ \checkmark .

Os polos do sistema, em ordem decrescente, são: $p_1 = \begin{bmatrix} -1127 \\ \checkmark \end{bmatrix}$ e $p_2 = \begin{bmatrix} -8873 \\ \checkmark \end{bmatrix}$

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Considere 3 algarismos significativos nas respostas.

A função de transferência desses sistema é $G(s) = \frac{Num(s)}{Den(s)}$.

O polinômio do numerador de G(s) é $Num(s) = \begin{bmatrix} 0 \\ \end{bmatrix}$ $s^2 + \begin{bmatrix} 0 \\ \end{bmatrix}$ $s + \begin{bmatrix} 10000000 \\ \end{bmatrix}$

O polinômio do denomidador de G(s) é $Den(s) = \begin{bmatrix} 1 \\ \end{bmatrix} \checkmark s^2 + \begin{bmatrix} 10000 \\ \end{bmatrix} \checkmark s + \begin{bmatrix} 10000000 \\ \end{bmatrix} \checkmark$.

A partir da função de transferência, os polos do sistema, em ordem decrescente, são: $p_1 = -1127$

-8873 ✔ .

A partir da função de transferência G(s), considerando $x_1(t) = y(t)$ pode-se obter uma representação para o sistema em espaço de estados, isto é,

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$
 \checkmark , $a_{12} = 1$ \checkmark , $a_{21} = -10000000$ \checkmark e $a_{22} = -10000$

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \\ b_{21} \end{array}
ight]$ são:

Os elementos c_{ij} da matriz $C = [\ c_{11} \ \ c_{12} \]$ são:

$$c_{11} = \boxed{1}$$
 \checkmark e $c_{12} = \boxed{0}$ \checkmark .

A partir da representação do sistema em espaço de estados, os polos do sistema, em ordem decrescente, são: $p_1 = -1127$

■ Script Python

Seguir para...