Formal Languages Homework 8

Liam Dillingham

April 9, 2019

1 Problem 7.1.3

Repeat Exercise 7.1.2 for the following grammar:

$$\begin{array}{ccc|c} S & \rightarrow & 0A0 & 1B1 & BB \\ A & \rightarrow & C \\ B & \rightarrow & S & A \\ C & \rightarrow & S & \epsilon \end{array}$$

- 1.1 a). Eliminate ϵ -productions
- 1.2 b). Eliminate any unit productions in the resulting grammar
- 1.3 c). Eliminate any useless symbols in the resulting grammar
- 1.4 d). Put the resulting grammar into Chomsky Normal Form

2 Problem 7.2.1

Use the CFL pumping lemme to show each of these languages not to be *context-free*

- 2.1 a). $\{a^i b j c k \mid i < j < k\}$
- 2.2 b). $\{a^n b^n c^i \mid i \le n\}$

3 Problem 7.3.2

Consider the following two languages: ¡¡¡¡¡¡¡ HEAD

$$\begin{array}{l} L_1 = \{ a^n b^{2n} c^m \mid n, m \geq 0 \} \\ L_2 = \{ a^n b^m c^{2m} \mid n, m \geq 0 \} \end{array}$$

- $3.1\,$ a). Show that each of these languages is context-free by giving grammars for each
- 3.2 b). Is $L_1 \cap L_2$ a CFL? Justify your answer

======

3.3 c). 010.

4 Problem 6.2.1

Design a PDA to accept each of the following languages. You may accept either by final state or by empty stack, whichever is more convenient.

4.1 a).
$$\{0^n1^n \mid n \ge 1\}$$

Let the PDA $P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, \{q_2\})$. Then the rules for δ are:

- 1. $\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}$
- 2. $\delta(q_0, 0, X) = \{(q_0, XX)\}$
- 3. $\delta(q_0, 1, X) = \{(q_1, \epsilon)\}$
- 4. $\delta(q_1, 1, X) = \{(q_1, \epsilon)\}$
- 5. $\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$

4.2 b). The set of all strings of 0's and 1's such that no prefix has more 1's than 0's.

Let the PDA $P=(\{q_0,q_1\},\{0,1\},\{Z_0,X\},\delta,q_0,\{q_1\}).$ Then the rules for δ are:

- 1. $\delta(q_0, 1, Z_0) = \{(q_0, XZ_0)\}\$
- 2. $\delta(q_0, 1, X) = \{(q_0, XX)\}\$
- 3. $\delta(q_0, 0, X) = \{(q_0, \epsilon)\}$
- 4. $\delta(q_0, 0, Z_0) = \{(q_0, Z_0)\}$

4.3 c). The set of all strings of 0's and 1's with an equal number of 0's and 1's.

Let the PDA $P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, \{q_0, 1_1\}, \{q_2\})$. Then the rules for δ are:

- 1. $\delta(q_0, 1, Z_0) = \{(q_0, XZ_0)\}\$
- 2. $\delta(q_0, 1, X) = \{(q_0, XX)\}$
- 3. $\delta(q_0, 0, X) = \{(q_0, \epsilon)\}$
- 4. $\delta(q_0, \epsilon, Z_0) = \{(q_2, Z_0)\}$
- 5. $\delta(q_1, 0, Z_0) = \{(q_1, XZ_0)\}\$
- 6. $\delta(q_1, 0, X) = \{(q_1, XX)\}\$
- 7. $\delta(q_1, 1, X) = \{(q_1, \epsilon)\}$
- 8. $\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$

5 Problem 6.3.2

Convert the grammar to a PDA that accepts the same language by empty stack. The rules for the transition function δ are:

$$\begin{array}{ccc} S & \rightarrow & 0S1 \mid A \\ A & \rightarrow & 1A0 \mid S \mid \epsilon \end{array}$$

- 1. $\delta(q, \epsilon, S) = \{(q, A), (q, 0S1)\}$
- 2. $\delta(q, \epsilon, A) = \{(q, \epsilon), (q, 1A0), (q, S)\}$
- 3. $\delta(q, 0, 0) = \{(q, \epsilon)\}$
- 4. $\delta(q, 1, 1) = \{(q, \epsilon)\}$

6 Problem 6.4.1

For each of the following PDA's, tell whether or not it is deterministic. Either show that it meets the definition of a DPDA or find a rule or rules that violate it.

6.1 The PDA of Example 6.2

Because the PDA must choose when to move to the next state and process the other half of the string to verify a match, the PDA cannot be deterministic. If it were a DPDA, there would be no choice.

6.2 The PDA of Exercise 6.1.1

Did not have enough time to attempt

6.3 The PDA of Exercise 6.3.3

The PDA $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0)$, where δ is defined to be:

- 1. $\delta(q, 1, Z_0) = \{(q, XZ_0)\}.$
- 2. $\delta(q, 1, X) = \{(q, XX)\}.$
- 3. $\delta(q, 0, X) = \{(p, X)\}.$
- 4. $\delta(q, \epsilon, X) = \{(q, \epsilon)\}.$
- 5. $\delta(p, 1, X) = \{(p, \epsilon)\}.$
- 6. $\delta(p, 0, Z_0) = \{(q, Z_0)\}.$

7 Problem 6.4.2

Give deterministic pushdown automata to accept the following languages:

7.1 a).
$$\{0^n 1^m \mid n \leq m\}$$

 $P = (\{q_0, q_1, q_3, q_4\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, \{q_4\})$. In this problem, we consider q_3 as the dead state, that is, if the stack is empty before all of the 1's are processed, then we goto the dead state.

- 1. $\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}\$
- 2. $\delta(q_0, 0, X) = \{(q_0, XX)\}$
- 3. $\delta(q_0, 1, X) = \{(q_1, \epsilon)\}$
- 4. $\delta(q_1, 1, X) = \{(q_1, \epsilon)\}$
- 5. $\delta(q_1, \epsilon, Z_0) = \{(q_3, Z_0)\}$
- 6. $\delta(q_1, 1, Z_0) = \{(q_4, Z_0)\}\$
- 7. $\delta(q_4, 1, Z_0) = \{(q_4, Z_0)\}\$

7.2 b). $\{0^n 1^m \mid n \ge m\}$

$$P = (\{q_0, q_1, q_3\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, \{q_3\}).$$

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}\$$

2.
$$\delta(q_0, 0, X) = \{(q_0, XX)\}$$

3.
$$\delta(q_0, 1, X) = \{(q_1, \epsilon)\}$$

4.
$$\delta(q_1, 1, X) = \{(q_1, \epsilon)\}$$

5.
$$\delta(q_1, \epsilon, X) = \{(q_3, \epsilon)\}$$

6.
$$\delta(q_1, \epsilon, Z_0) = \{(q_3, Z_0)\}$$

7.3 c). $\{0^n 1^m 0^n \mid n \text{ and } m \text{ are arbitrary } \}$.

$$P = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, \{q_3\}).$$

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}\$$

2.
$$\delta(q_0, 0, X) = \{(q_0, XX)\}$$

3.
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

4.
$$\delta(q_0, \epsilon, X) = \{(q_1, X)\}$$

5.
$$\delta(q_1, 1, X) = \{(q_1, X)\}$$

6.
$$\delta(q_1, 0, X) = \{(q_2, \epsilon)\}$$

7.
$$\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$$

8.
$$\delta(q_2, 0, X) = \{(q_2, \epsilon)\}$$

9.
$$\delta(q_2, \epsilon, Z_0) = \{(q_3, Z_0)\}$$

 $\label{eq:condition} $$ \lambda \lambda \lambda \lambda \lambda = 1.0264 \, \text{b} \, 302 \, \text{c} \, 200 \, \text{ed} \, 600 \, \text{d} \, 681129 \, \text{ee} \, 10680 \, \text{d} \, 202 \, \text{c} \, \text{eec} \, \\$