Indian Institute of Technology Kharagpur Department of Mathematics MA41007 - Functional Analysis Test - 2, AUTUMN 2021

	MA41007 - Functional Analysis
	Test - 2, AUTUMN 2021
NAME:	

ROLL NO:

Instructions: Answers all the questions. No queries will be entertained during examination.

- 1. Let $X = C_{00}$ with norm $\|.\|_p$, $1 \le p \le \infty$ and let $f: X \to K$ be defined by $f(x) = \sum_{j=1}^{\infty} x(j), x = (x(1), x(2), \ldots) \in X$. Then f is continuous for p = -----.
- 2. Let $X=C^1[a,b]$ and Y=C[a,b] both with norm $\|.\|_{\infty}$ and $A:X\to Y$ be defined by $Ax=x',\ x\in X$. Then the null space N(A)=---- and dim N(A)=----, and A is ----- operator.
- 3. Let X a normed linear space and $f: X \to K$ be a linear functional. "Then the null space N(f) is a colosed subspace of X if and only if f is a continuous". Is this (true/false)=
- 4. Let X be a finite dimensional normed linear space and $\{A_n\}$ be a sequence of linear operators on X. If $\{A_nx\}$ converges for every $x \in X$, let $Ax = \lim_{n \to \infty} A_nx$, $x \in X$. Then $||A_n A|| \to 0$ as $n \to \infty$ (True/False): - - - - - - -
- 5. Let X and Y be Banach spaces and X_0 be a subspace of X and $A: X_0 \subset X \to Y$ be a injective closed operator. If $A^{-1}: R(A) \to X$ is continuous, then R(A) is -----
