

BlackBox NLP:

What are we looking for, and where do we stand?

Sarah Wiegreffe USC ISI NLP Seminar January 30, 2020

Background

Background

Overview

- 1. A Foray into Explainability
- 2. How do we define explanation?
- 3. Is attention explanation?
- 4. How do we guarantee faithfulness?
- 5. How do we test plausibility?
- 6. Future Directions

- 1. A Foray into Explainability
- 2. How do we define explanation?
- 3. Is attention explanation?
- 4. How do we guarantee faithfulness?
- 5. How do we test plausibility?
- 6. Future Directions

A Foray into Explainability

Mullenbach, Wiegreffe, Duke, Sun, Eisenstein. Explainable Prediction of Clinical Codes from Clinical Text.

Classification Models

Neural Classification Models

Neural Classification Models with Attention

Neural Classification Models with Attention

Free-text Clinical Notes Structured Data Codes for Billing & Insurance (ICD9, RXNORM, etc.)


```
Admission Date: [**2118-6-2**] Discharge Date: [**2118-6-14**] 519.1: 'Other disease...'

491.21: 'Obstructive ...'
518.81: 'Acute respir...'
486: 'Pneumonia, orga...'
486: 'Pneumonia, orga...'
486: 'Pneumonia, orga...'
487-6-12: 'Hyposmolality...'
488-6-13: 'Hyposmolality...'
488-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
491-21: 'Obstructive ...'
491-21: 'Obstructive ...'
489-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
491-21: 'Obstructive ...'
489-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
489-7-6-13: 'Hyposmolality...'
```

Motivation

E849.0: Home accidents

801.26: ...subdural,
and extradural
hemorrhage...

...who sustained a fall at home she was found to have a large acute on chronic subdural hematoma with extensive midline shift...

The CAML Model

- Convolution + Attention for Multi-Label classification
- Key Idea: per-label attention mechanism
- Achieved state-of-the-art on the ICD-9 clinical coding task

Physician Evaluation

E849.0: Home accidents

801.26: ...subdural,
and extradural
hemorrhage...

...who sustained a fall at home she was found to have a large acute on chronic subdural hematoma with extensive midline shift...

Physician Evaluation

- Contextualization

- Contextualization
 - Model variance

- Contextualization
 - Model variance
 - Exclusivity

An explanation is exclusive

Attention is not Explanation

Sarthak Jain

Byron C. Wallace

An explanation is exclusive

Sarthak Jain

An explanation is robust

Attention is not Explanation

Byron C. Wallace

Is Attention Interpretable?

Sofia Serrano* Noah A. Smith*†

An explanation is exclusive

An explanation is robust

Attention is not Explanation

Sarthak Jain Byron C. Wallace

Is Attention Interpretable?

Sofia Serrano* Noah A. Smith*†

The movie was good

- A Foray into Explainability
- How do we define explanation?
- Is attention explanation?
- How do we guarantee faithfulness?
- How do we test plausibility?
- **Future Directions**

Defining Explanation

Plausible Explainability

Faithful Explainability

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

A faithful explanation is exclusive

A faithful explanation is robust

Attention is not Explanation

Sarthak Jain Byron C. Wallace

Is Attention Interpretable?

Sofia Serrano* Noah A. Smith*†

The movie was good

- 1. A Foray into Explainability
- 2. How do we define explanation?
- 3. Is attention explanation?
- 4. How do we guarantee faithfulness?
- 5. How do we test plausibility?
- 6. Future Directions

Is Attention (Faithful) Explanation?

If Attention is Faithful Explanation:

Attention should be a **necessary component** for good performance

Necessary

 If trained models can vary in attention distributions while giving similar predictions, they might be bad for explanation

Hard to manipulate

Attention weights should work well in uncontextualized settings

Work out of context

Selecting Meaningful Tasks

Necessary

Attention should be a **necessary component** for good performance

Selecting Meaningful Tasks

Necessary

Selecting Meaningful Tasks

Necessary

Selecting Meaningful Tasks

Necessary

Selecting Meaningful Tasks

Necessary

Searching for Adversarial Models

Hard to manipulate

- Attention should be a **necessary component** for good performance
- If trained models can vary in attention distributions while giving similar predictions, they might be bad for explanation

Hard to manipulate

Measures

Total Variation Distance: for comparing class predictions between 2 models

$$ext{TVD}(\hat{y}_1, \hat{y}_2) = rac{1}{2} \sum_{i=1}^{|\mathcal{Y}|} |\hat{y}_{1i} - \hat{y}_{2i}|$$

Measures

• Jensen-Shannon Divergence: for comparing 2 distributions

$$\mathtt{JSD}(lpha_1,lpha_2) = rac{1}{2}\,\mathtt{KL}[lpha_1\parallel ar{lpha}] + rac{1}{2}\,\mathtt{KL}[lpha_2\parallel ar{lpha}],$$

where
$$\bar{\alpha} = \frac{\alpha_1 + \alpha_2}{2}$$
.

Hard to manipulate

Adversarial Training

- 1. Train a base model (M_p)
- 2. Train an adversary (M_a) that **minimizes change in prediction scores** from the base model, while *maximizing changes in the learned attention distributions*.

$$\mathcal{L}(\mathcal{M}_a, \mathcal{M}_b)^{(i)} = \text{TVD}(\hat{y}_a^{(i)}, \hat{y}_b^{(i)}) - \lambda \text{ KL}(\boldsymbol{\alpha}_a^{(i)} \parallel \boldsymbol{\alpha}_b^{(i)})$$

Hard to manipulate

Adversarial Training

- 1. Train a base model (M_b)
- 2. Train an adversary (M_a) that **minimizes change in prediction scores** from the base model, while *maximizing changes in the learned attention distributions*.

$$\mathcal{L}(\mathcal{M}_a, \mathcal{M}_b)^{(i)} = \text{TVD}(\hat{y}_a^{(i)}, \hat{y}_b^{(i)}) - \lambda \text{KL}(\boldsymbol{\alpha}_a^{(i)} \parallel \boldsymbol{\alpha}_b^{(i)})$$

Hard to manipulate

Attention divergence

- Fast increase in prediction difference = attention scores not easily manipulable
 - Supports use of attention weights for faithful explanation

Hard to manipulate

Attention divergence

- Slow increase in prediction difference
 - Does not support use of attention weights for faithful explanation

Hard to manipulate

- Slow increase in prediction difference
 - Does not support use of attention weights for faithful explanation

Hard to manipulate

Random seed
J&W untrained tweaking
Trained divergence (lambdas)

Probing Attention

- Attention should be a **necessary component** for good performance
- If trained models can vary in attention
 distributions while giving similar predictions,
 they might be bad for explanation
- Attention weights should work well in uncontextualized settings

Probing Attention

 Treat the learned attention weights as a **guide** in a non-contextualized, bag-of-word-vectors model

Probing Attention

- Treat the learned attention weights as a **guide** in a non-contextualized, bag-of-word-vectors model
- High performance →
 attention scores capture
 relationship between inputs
 and output

Results

 LSTM's attention weights outperform the trained MLP, which in turn outperforms the uniform baseline

F1 scores

Results

F1 scores

Conclusion - Is Attention Explanation?

• 3 desiderata of attention for "faithful" explanation

Necessary

Hard to manipulate

Work out of context

Conclusion- is Attention Explanation?

- 3 desiderata of attention for "faithful" explanation
- 3 methods to measure the utility of attention distributions for faithful explanation

Necessary

Select Meaningful Tasks

Hard to manipulate

Search for Adversaries

Work out of context

Use Attention as Guides

Conclusion - Is Attention Explanation?

- 3 desiderata of attention for "faithful" explanation
- 3 methods to measure the utility of attention distributions for faithful explanation
- Results showing performance is highly task-dependent

Necessary

Select Meaningful Tasks

Hard to manipulate

Search for Adversaries

Work out of context

Use Attention as Guides

- A Foray into Explainability
- How do we define explanation?
- Is attention explanation?
- How do we guarantee faithfulness?
- How do we test plausibility?
- **Future Directions**

Guaranteeing Faithfulness by Construction

Explanation as an (extractive) subset-selection problem

- Explanation as an (extractive) subset-selection problem
- Lei et al.* propose to jointly train rationale generation and task prediction modules

- Explanation as an (extractive) subset-selection problem
- Lei et al.* propose to jointly train rationale generation and task prediction modules
 - Discrete nature of method necessitates training via REINFORCE
 - High variance, necessitates careful hyperparameter tuning
 - Difficult to adopt in practice

- Explanation as an (extractive) subset-selection problem
- Lei et al.* propose to jointly train rationale generation and task prediction modules
 - Discrete nature of method necessitates training via REINFORCE
 - High variance, necessitates careful hyperparameter tuning
 - Difficult to adopt in practice
- Constrained prediction guarantees faithfulness

Lei et al. Model

Lei et al. Model

Tao Lei, Regina Barzilay, and Tommi Jaakkola. *Rationalizing Neural Predictions.* EMNLP 2016.

Lei et al. Model

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing Neural Predictions. EMNLP 2016.

Support Model

Extractor Model

Classifier Model

Extractor Model

Classifier Model

Classifier Model

Results

- FRESH outperforms prior models, recovering most of the performance of the original black box.
- FRESH achieves better average performance than the end-to-end method.

Results

Proportion of Document used for rationale

- 1. A Foray into Explainability
- 2. How do we define explanation?
- 3. Is attention explanation?
- 4. How do we guarantee faithfulness?
- 5. How do we test plausibility?
- 6. Future Directions

Testing Plausibility with Human Evaluations

Human Evaluations

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

Human Evaluations

Plausible Explainability

- Rationale generation (Ehsan et al. 2019, Riedl 2019)

Faithful Explainability

- Understanding correlation between inputs and output (Lipton 2016, Rudin 2018)
- Models' explanations are exclusive

Rationale Plausibility

Sufficiency

- Can a human predict the correct label given only the rationale? (Kim et al. 2016)
- In our model: can a human perform the task of the Classifier module?

Rationale Plausibility

Sufficiency

- Can a human predict the correct label given only the rationale? (Kim et al. 2016)
- In our model: can a human perform the task of the Classifier module?

Coherence

- How *readable* and *understandable* are the rationales? (Ehsan et al. 2019, Lei et al. 2016)
- Reflects user preferences

Experiments

- Ask user to perform binary prediction task
 - Movie Reviews: select the sentiment
 - User must perform task given only the rationale.
- Ask user to rate their confidence (1-4)
- Ask user to rate the readability (1-5)

FRESH Model

Results

Movies Human Evaluation: Sufficiency

Results

Movies Human Evaluation: Readability

1. Terminology matters- it's important to define what you are looking for.

- Terminology matters- it's important to define what you are looking for.
 - a. Faithful explainability == model understanding.

- 1. Terminology matters- it's important to define what you are looking for.
 - a. Faithful explainability == model understanding.
- 2. No one-size-fits-all answer to "Is Attention (Faithful) Explanation?" debate.

- Terminology matters- it's important to define what you are looking for.
 - Faithful explainability == model understanding.
- 2. No one-size-fits-all answer to "Is Attention (Faithful) Explanation?" debate.
 - a. Model components must be tested on a task-specific basis.

- 1. Terminology matters- it's important to define what you are looking for.
 - a. Faithful explainability == model understanding.
- 2. No one-size-fits-all answer to "Is Attention (Faithful) Explanation?" debate.
 - a. Model components must be tested on a task-specific basis.

- Terminology matters- it's important to define what you are looking for.
 - a. Faithful explainability == model understanding.
- 2. No one-size-fits-all answer to "Is Attention (Faithful) Explanation?" debate.
 - a. Model components must be tested on a task-specific basis.
- 3. Pipeline approach is one way to guarantee faithfulness (for subset-selection explanations).

- Terminology matters- it's important to define what you are looking for.
 - a. Faithful explainability == model understanding.
- 2. No one-size-fits-all answer to "Is Attention (Faithful) Explanation?" debate.
 - a. Model components must be tested on a task-specific basis.
- 3. Pipeline approach is one way to guarantee faithfulness (for subset-selection explanations).
- 4. Faithfulness and Plausibility are not mutually exclusive criteria.

- 1. A Foray into Attention Explainability
- 2. Defining Explanation
- 3. Is attention explanation?
- 4. How do we guarantee faithfulness?
- 5. How do we test plausibility?
- 6. Future Directions

What's Next?

Future Directions

- Model stability & robustness
 - What does variance tell us?
- Better & more consistent human evaluations
- Machine learning approaches to plausibility
 - Leveraging commonsense knowledge/reasoning
- Reinforcement Learning

Thank you!

Collaborators:

Follow me on Twitter:

<u>@sarahwiegreffe</u>

Email: saw@gatech.edu

Code: github.com/sarahwie