SATELLITE COMMUNICATIONS SYSTEMS

Systems, Techniques and Technology

Fifth Edition

Gérard Maral

Ecole Nationale Supérieure des Télécommunications, Site de Toulouse, France

Michel Bousquet

Ecole Nationale Supérieure de l'Aéronautique et de l'Espace (SUPAERO), Toulouse, France

Revisions to fifth edition by **Zhili Sun**University of Surrey, UK

with contributions from Isabelle Buret, Thales Alenia Space

SATELLITE COMMUNICATIONS SYSTEMS

Fifth Edition

SATELLITE COMMUNICATIONS SYSTEMS

Systems, Techniques and Technology

Fifth Edition

Gérard Maral

Ecole Nationale Supérieure des Télécommunications, Site de Toulouse, France

Michel Bousquet

Ecole Nationale Supérieure de l'Aéronautique et de l'Espace (SUPAERO), Toulouse, France

Revisions to fifth edition by **Zhili Sun**University of Surrey, UK

with contributions from Isabelle Buret, Thales Alenia Space

Copyright © 1986, 1993, 1998, 2002 This edition first published 2009 © 2009 John Wiley & Sons Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Maral, Gérard.

[Systémes de télécommunications par satellites. English]
Satellite communications systems / Gérard Maral, Michel Bousquet. — 5th ed. p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-71458-4 (cloth)

1. Artificial satellites in telecommunication. I. Bousquet, Michel. II. Title.

TK5104.M3513 2009 621.382'5—dc22

2009023579

A catalogue record for this book is available from the British Library.

ISBN 978-0-470-71458-4 (H/B)

Typeset in 9/11 pt Palatino by Thomson Digital, Noida, India. Printed in Singapore by Markono Print Media Pte Ltd.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Original translation into English by J.C.C. Nelson.

CONTENTS

ACKNOWLEDGEMENT			XV	
ACRONYMS				
NOTATION				
1	INTRO	DUC	TION	1
	1.1	Birth	of satellite communications	1
	1.2	Deve	elopment of satellite communications	1
			figuration of a satellite communications system	3
			Communications links	4
		1.3.2	The space segment	5
		1.3.3	The ground segment	8
	1.4	Туре	es of orbit	9
	1.5	Radi	o regulations	12
		1.5.1	The ITU organisation	12
		1.5.2	Space radiocommunications services	13
		1.5.3	Frequency allocation	13
	1.6	Tech	nology trends	14
	1.7	Servi	ices	15
	1.8	The	way forward	17
	Referen	ces		18
2	ORBIT	SAN	D RELATED ISSUES	19
	2.1	Kepl	erian orbits	19
		2.1.1	Kepler's laws	19
		2.1.2	Newton's law	19
		2.1.3	Relative movement of two point bodies	20
		2.1.4	Orbital parameters	23
		2.1.5	The earth's orbit	28
		2.1.6	Earth–satellite geometry	35
		2.1.7	Eclipses of the sun	41
		2.1.8	Sun-satellite conjunction	42
	2.2	Usef	ul orbits for satellite communication	43
		2.2.1	Elliptical orbits with non-zero inclination	43
		2.2.2	Geosynchronous elliptic orbits with zero inclination	54
		2.2.3	Geosynchronous circular orbits with non-zero inclination	56
		2.2.4	Sub-synchronous circular orbits with zero inclination	59
		2.2.5	Geostationary satellite orbits	59

vi Contents

	2.3	Perturbations of orbits	68
		2.3.1 The nature of the perturbations	69
		2.3.2 The effect of perturbations; orbit perturbation	71
		2.3.3 Perturbations of the orbit of geostationary satellites	73
		2.3.4 Orbit corrections: station keeping of geostationary satellites	81
	2.4	Conclusion	97
	Referen	ces	97
3	BASEB	AND SIGNALS AND QUALITY OF SERVICE	99
	3.1	Baseband signals	99
		3.1.1 Digital telephone signal	100
		3.1.2 Sound signals	103
		3.1.3 Television signals	104
		3.1.4 Data and multimedia signals	107
	3.2	Performance objectives	108
		3.2.1 Telephone	108
		3.2.2 Sound	108
		3.2.3 Television	108
		3.2.4 Data	108
	3.3	Availability objectives	109
	3.4	Delay	111
		3.4.1 Delay in terrestrial network	111
		3.4.2 Propagation delay over satellite links	111
		3.4.3 Baseband-signal processing time	112
		3.4.4 Protocol-induced delay	112
	3.5	Conclusion	112
	Referen	ces	113
4	DIGITA	AL COMMUNICATIONS TECHNIQUES	115
	4.1	Baseband formatting	115
		4.1.1 Encryption	115
		4.1.2 Scrambling	117
	4.2	Digital modulation	118
		4.2.1 Two-state modulation—BPSK and DE-BPSK	119
		4.2.2 Four-state modulation—QPSK	120
		4.2.3 Variants of QPSK	121
		4.2.4 Higher-order PSK and APSK	124
		4.2.5 Spectrum of unfiltered modulated carriers	125
		4.2.6 Demodulation	125
		4.2.7 Modulation spectral efficiency	130
	4.3	Channel coding	131
		4.3.1 Block encoding and convolutional encoding	132
		4.3.2 Channel decoding	132
		4.3.3 Concatenated encoding	133
		4.3.4 Interleaving	134
	4.4	Channel coding and the power-bandwidth trade-off	135
		4.4.1 Coding with variable bandwidth	135
		4.4.2 Coding with constant bandwidth	137
		4.4.3 Example: Downlink coding with on-board regeneration	139
		4.4.4. Conclusion	139

	Contents		vii
	4.5	Coded modulation	140
		4.5.1 Trellis coded modulation	141
		4.5.2 Block coded modulation	144
		4.5.3 Decoding coded modulation	145
		4.5.4 Multilevel trellis coded modulation	145
		4.5.5 TCM using a multidimensional signal set	146
		4.5.6 Performance of coded modulations	146
	4.6	End-to-end error control	146
	4.7	Digital video broadcasting via satellite (DVB-S)	148
		4.7.1 Transmission system	148
		4.7.2 Error performance requirements	152
	4.8	Second generation DVB-S	152
		4.8.1 New technology in DVB-S2	153
		4.8.2 Transmission system architecture	154
		4.8.3 Error performance	156
	4.9	Conclusion	157
		4.9.1 Digital transmission of telephony	157
		4.9.2 Digital broadcasting of television	159
	Reference		160
5		K, DOWNLINK AND OVERALL LINK PERFORMANCE;	
		SATELLITE LINKS	163
	5.1	Configuration of a link	163
	5.2	Antenna parameters	164
		5.2.1 Gain	164
		5.2.2 Radiation pattern and angular beamwidth	165
		5.2.3 Polarisation	168
	5.3	Radiated power	170
		5.3.1 Effective isotropic radiated power (EIRP)	170
		5.3.2 Power flux density	170
	5.4	Received signal power	171
		5.4.1 Power captured by the receiving antenna and free space loss	171
		5.4.2 Example 1: Uplink received power	172
		5.4.3 Example 2: Downlink received power	173
		5.4.4 Additional losses	174
		5.4.5 Conclusion	176
	5.5	Noise power spectral density at the receiver input	176
		5.5.1 The origins of noise	176
		5.5.2 Noise characterisation	177
		5.5.3 Noise temperature of an antenna	180
		5.5.4 System noise temperature	185
		5.5.5 System noise temperature: Example	186
		5.5.6 Conclusion	186
	5.6	Individual link performance	186
		5.6.1 Carrier power to noise power spectral density ratio at receiver input	187
		5.6.2 Clear sky uplink performance	187
		5.6.3 Clear sky downlink performance	189
	5.7	1	193
		5.7.1 Impairments caused by rain	193
		5.7.2 Other impairments	207
		5.7.3 Link impairments—relative importance	209

viii Contents

		5.7.4 Link performance under rain conditions	209
		5.7.5 Conclusion	210
	5.8	Mitigation of atmospheric impairments	210
		5.8.1 Depolarisation mitigation	210
		5.8.2 Attenuation mitigation	211
		5.8.3 Site diversity	211
		5.8.4 Adaptivity	212
		5.8.5 Cost-availability trade-off	212
	5.9		213
		5.9.1 Characteristics of the satellite channel	214
		5.9.2 Expression for $(C/N_0)_T$	218
		5.9.3 Overall link performance for a transparent satellite without interference	
		or intermodulation	221
	5.10	Overall link performance with regenerative satellite	225
		5.10.1 Linear satellite channel without interference	226
		5.10.2 Non-linear satellite channel without interference	227
		5.10.3 Non-linear satellite channel with interference	228
	5.11	Link performance with multibeam antenna coverage vs monobeam	
		coverage	230
		5.11.1 Advantages of multibeam coverage	231
		5.11.2 Disadvantages of multibeam coverage	234
		5.11.3 Conclusion	237
	5.12	Intersatellite link performance	237
		5.12.1 Frequency bands	238
		5.12.2 Radio-frequency links	238
		5.12.3 Optical links	239
		5.12.4 Conclusion	245
	Reference	res	246
6	MULTI	PLE ACCESS	247
	6.1	Layered data transmission	247
	6.2	Traffic parameters	248
		6.2.1 Traffic intensity	248
		6.2.2 Call blocking probability	248
		6.2.3 Burstiness	248
	6.3	Traffic routing	249
		6.3.1 One carrier per station-to-station link	250
		6.3.2 One carrier per transmitting station	251
		6.3.3 Comparison	251
	6.4	Access techniques	251
		6.4.1 Access to a particular satellite channel (or transponder)	251
		6.4.2 Multiple access to the satellite channel	252
		6.4.3 Performance evaluation—efficiency	253
	6.5	Frequency division multiple access (FDMA)	253
		6.5.1 TDM/PSK/FDMA	254
		6.5.2 SCPC/FDMA	254
		6.5.3 Adjacent channel interference	254
		6.5.4 Intermodulation	254
		6.5.5 FDMA efficiency	258
		6.5.6 Conclusion	260

ix

6.6	Time division multiple access (TDMA)	260
	6.6.1 Burst generation	260
	6.6.2 Frame structure	262
	6.6.3 Burst reception	264
	6.6.4 Synchronisation	265
	6.6.5 TDMA efficiency	270
	6.6.6 Conclusion	271
6.7	Code division multiple access (CDMA)	272
	6.7.1 Direct sequence (DS-CDMA)	273
	6.7.2 Frequency hopping CDMA (FH-CDMA)	276
	6.7.3 Code generation	277
	6.7.4 Synchronisation	278
	6.7.5 CDMA efficiency	280
	6.7.6 Conclusion	281
6.8	Fixed and on-demand assignment	283
	6.8.1 The principle	283
	6.8.2 Comparison between fixed and on-demand assignment	283
	6.8.3 Centralised or distributed management of on-demand assignment	284
	6.8.4 Conclusion	284
6.9	Random access	285
	6.9.1 Asynchronous protocols	286
	6.9.2 Protocols with synchronisation	289
	6.9.3 Protocols with assignment on demand	290
6.10	Conclusion	290
Referen	ces	291
SATFI	LITE NETWORKS	293
7.1	Network reference models and protocols	293
7.1		293
	7.1.1 Layering principle7.1.2 Open Systems Interconnection (OSI) reference model	294
	7.1.3 IP reference model	295
7.2	Reference architecture for satellite networks	
7.2		296
7.3		298
	7.3.1 Satellite network topology	298
	7.3.2 Types of link	300
7.4	7.3.3 Connectivity	300
7.4	Satellite on-board connectivity	302
	7.4.1 On-board connectivity with transponder hopping	302
	7.4.2 On-board connectivity with transparent processing	303
	7.4.3 On-board connectivity with regenerative processing	308
7.5	7.4.4 On-board connectivity with beam scanning	313
7.5	Connectivity through intersatellite links (ISL)	314
	7.5.1 Links between geostationary and low earth orbit satellites (GEO–LEO)	314
	7.5.2 Links between geostationary satellites (GEO-GEO)	314
	7.5.3 Links between low earth orbit satellites (LEO–LEO)	318
	7.5.4 Conclusion	319
7.6	Satellite broadcast networks	319
	7.6.1 Single uplink (one programme) per satellite channel	320
	7.6.2 Several programmes per satellite channel	321
	7.6.3 Single uplink with time division multiplex (TDM) of programmes	321
	7.6.4 Multiple uplinks with time division multiplex (TDM) of programmes on downlink	322

x Contents

	7.7	Broadband satellite networks	322
		7.7.1 Overview of DVB-RCS and DVB-S/S2 network	324
		7.7.2 Protocol stack architecture for broadband satellite networks	325
		7.7.3 Physical layer	326
		7.7.4 Satellite MAC layer	333
		7.7.5 Satellite link control layer	338
		7.7.6 Quality of service	340
		7.7.7 Network layer	343
		7.7.8 Regenerative satellite mesh network architecture	346
	7.8	Transmission control protocol	351
		7.8.1 TCP segment header format	351
		7.8.2 Connection set up and data transmission	352
		7.8.3 Congestion control and flow control	353
		7.8.4 Impact of satellite channel characteristics on TCP	354
		7.8.5 TCP performance enhancement	355
	7.9	IPv6 over satellite networks	356
		7.9.1 IPv6 basics	357
		7.9.2 IPv6 transitions	358
		7.9.3 IPv6 tunnelling through satellite networks	358
		7.9.4 6to4 translation via satellite networks	359
	7.10	Conclusion	359
	Referen	ces	360
8	FARTE	H STATIONS	363
0		Station organisation	363
		Radio-frequency characteristics	364
	0.2	8.2.1 Effective isotropic radiated power (EIRP)	364
		8.2.2 Figure of merit of the station	366
		8.2.3 Standards defined by international organisations and satellite operators	366
	8.3	The antenna subsystem	376
		8.3.1 Radiation characteristics (main lobe)	379
		8.3.2 Side-lobe radiation	379
		8.3.3 Antenna noise temperature	380
		8.3.4 Types of antenna	385
		8.3.5 Pointing angles of an earth station antenna	390
		8.3.6 Mountings to permit antenna pointing	393
		8.3.7 Tracking	399
	8.4	The radio-frequency subsystem	408
		8.4.1 Receiving equipment	408
		8.4.2 Transmission equipment	411
		8.4.3 Redundancy	417
	8.5	Communication subsystems	417
		8.5.1 Frequency translation	418
		8.5.2 Amplification, filtering and equalisation	420
		8.5.3 Modems	421
	8.6	The network interface subsystem	425
		8.6.1 Multiplexing and demultiplexing	425
		8.6.2 Digital speech interpolation (DSI)	426
		8.6.3 Digital circuit multiplication equipment (DCME)	427
		8.6.4 Echo suppression and cancellation	430
		8.6.5 Equipment specific to SCPC transmission	432

		Contents	xi
	8.7	Monitoring and control; auxiliary equipment	432
		8.7.1 Monitoring, alarms and control (MAC) equipment	432
		8.7.2 Electrical power	432
	8.8	Conclusion	433
	Reference	res	434
9	THE C		435
9		OMMUNICATION PAYLOAD Missian and sharestoristics of the payload	435
	9.1	Mission and characteristics of the payload	
		9.1.1 Functions of the payload	435
		9.1.2 Characterisation of the payload	436
	0.2	9.1.3 The relationship between the radio-frequency characteristics	437 437
	9.2	Transparent repeater	437
		9.2.1 Characterisation of non-linearities	436
		9.2.2 Repeater organisation	453
	9.3	9.2.3 Equipment characteristics Regenerative repeater	465
	9.5	9.3.1 Coherent demodulation	465
		9.3.2 Differential demodulation	466
		9.3.3 Multicarrier demodulation	466
	0.1	Multibeam antenna payload	467
	7. 4	9.4.1 Fixed interconnection	467
		9.4.2 Reconfigurable (semi-fixed) interconnection	468
		-	468
		9.4.4 On board frequency domain transported switching	471
		9.4.4 On-board frequency domain transparent switching	471
		9.4.5 Baseband regenerative switching 9.4.6 Optical switching	472
	9.5	Introduction to flexible payloads	475
	9.6	Solid state equipment technology	477
	9.0	9.6.1 The environment	477
			477
		9.6.2 Analogue microwave component technology9.6.3 Digital component technology	477
	9.7		479
	9.7	Antenna coverage 9.7.1 Service zone contour	479
		9.7.2 Geometrical contour	482
			482
		9.7.4 Reduced or cost coverage	484
		9.7.4 Reduced or spot coverage	486
		9.7.5 Evaluation of antenna pointing error 9.7.6 Conclusion	498
	9.8	Antenna characteristics	498
	7.0	9.8.1 Antenna functions	498
		9.8.2 The radio-frequency coverage	500
		9.8.3 Circular beams	501
		9.8.4 Elliptical beams	504
		9.8.5 The influence of depointing	505
		9.8.6 Shaped beams	507
		9.8.7 Multiple beams	510
		9.8.8 Types of antenna	510
		9.8.9 Antenna technologies	515
	9.9	Conclusion	524
	Reference		524

xii Contents

10	THE PL	ATFO	RM	527
	10.1	Subsy	rstems	528
	10.2	Attitu	ide control	529
		10.2.1	Attitude control functions	530
		10.2.2	Attitude sensors	531
		10.2.3	Attitude determination	532
		10.2.4	Actuators	534
		10.2.5	The principle of gyroscopic stabilisation	536
		10.2.6	Spin stabilisation	540
		10.2.7	'Three-axis' stabilisation	541
	10.3	The p	propulsion subsystem	547
		10.3.1	Characteristics of thrusters	547
		10.3.2	Chemical propulsion	549
		10.3.3	Electric propulsion	553
		10.3.4	Organisation of the propulsion subsystem	558
		10.3.5	Electric propulsion for station keeping and orbit transfer	561
	10.4	The e	lectric power supply	562
		10.4.1	Primary energy sources	562
		10.4.2	Secondary energy sources	567
		10.4.3	Conditioning and protection circuits	574
		10.4.4	Example calculations	578
	10.5	Telen	netry, tracking and command (TTC) and on-board data handling (OBDH)	580
		10.5.1	Frequencies used	581
		10.5.2	The telecommand links	581
		10.5.3	Telemetry links	582
		10.5.4	Telecommand (TC) and telemetry (TM) message format standards	583
		10.5.5	On-board data handling (OBDH)	588
		10.5.6	Tracking	593
	10.6	Thern	nal control and structure	596
		10.6.1	Thermal control specifications	597
		10.6.2	Passive control	598
		10.6.3	Active control	601
		10.6.4	Structure	601
			Conclusion	603
			opments and trends	604
	Referenc	es		606
11	SATELL	ITE IN	ISTALLATION AND LAUNCH VEHICLES	607
	11.1	Instal	lation in orbit	607
		11.1.1	Basic principles	607
		11.1.2	Calculation of the required velocity increments	609
		11.1.3	Inclination correction and circularisation	610
		11.1.4	The apogee (or perigee) motor	617
			Injection into orbit with a conventional launcher	622
		11.1.6	Injection into orbit from a quasi-circular low altitude orbit	626
			Operations during installation (station acquisition)	627
			Injection into orbits other than geostationary	630
			The launch window	631
	11.2		ch vehicles	631
		11.2.1	Brazil	632
		11.2.2	China	635

		Contents	xiii
	11.2	3 Commonwealth of Independent States (CIS)	636
		.4 Europe	641
		5 India	648
	11.2	6 Israel	648
	11.2	.7 Japan	649
	11.2	.8 South Korea	652
	11.2	.9 United States of America	652
	11.2.	10 Reusable launch vehicles	660
	11.2.	11 Cost of installation in orbit	661
Re	eferences		661
12 TH	JE SDACE	ENVIRONMENT	663
12 11	12.1 Vac		663
		.1 Characterisation	663
		.2 Effects	663
		mechanical environment	664
		.1 The gravitational field	664
		2 The earth's magnetic field	665
		3 Solar radiation pressure	666
		4 Meteorites and material particles	667
		.5 Torques of internal origin	667
	12.2	•	668
	12.2	.7 Conclusions	668
	12.3 Rad	liation	668
	12.3	.1 Solar radiation	669
	12.3	.2 Earth radiation	671
	12.3	.3 Thermal effects	671
	12.3	.4 Effects on materials	672
	12.4 Flux	x of high energy particles	672
	12.4	.1 Cosmic particles	672
	12.4	.2 Effects on materials	674
	12.5 The	environment during installation	675
	12.5	.1 The environment during launching	676
	12.5	.2 Environment in the transfer orbit	677
Refe	erences		677
13 RE	HARILIT	Y OF SATELLITE COMMUNICATIONS SYSTEMS	679
10 101		oduction of reliability	679
		1 Failure rate	679
		2 The probability of survival or reliability	680
		3 Failure probability or unreliability	680
		4 Mean time to failure (MTTF)	682
		5 Mean satellite lifetime	682
		6 Reliability during the wear-out period	682
		ellite system availability	683
		1 No back-up satellite in orbit	683
		2 Back-up satellite in orbit	684
		3 Conclusion	684
	13.3 Sub	system reliability	685
		1 Elements in series	685

xiv	Contents

	13.3.2	Elements in parallel (static redundancy)	685
	13.3.3	Dynamic redundancy (with switching)	687
	13.3.4	Equipment having several failure modes	690
13.4	Comp	oonent reliability	691
	13.4.1	Component reliability	691
	13.4.2	Component selection	692
	13.4.3	Manufacture	693
	13.4.4	Quality assurance	693
			697
	13.4	13.3.3 13.3.4 13.4 Comp 13.4.1 13.4.2 13.4.3	13.3.2 Elements in parallel (static redundancy) 13.3.3 Dynamic redundancy (with switching) 13.3.4 Equipment having several failure modes 13.4 Component reliability 13.4.1 Component reliability 13.4.2 Component selection 13.4.3 Manufacture 13.4.4 Quality assurance

ACKNOWLEDGEMENT

Reproduction of figures extracted from the 1990 Edition of CCIR Volumes (XVIIth Plenary Assembly, Düsseldorf, 1990), the *Handbook on Satellite Communications* (ITU Geneva, 1988) and the ITU-R Recommendations is made with the authorisation of the International Telecommunication Union (ITU) as copyright holder.

The choice of the excerpts reproduced remains the sole responsibility of the authors and does not involve in any way the ITU.

The complete ITU documentation can be obtained from:

International Telecommunication Union General Secretariat, Sales Section Place des Nations, 1211 GENEVA 20, Switzerland

ACRONYMS

AAL A/D	ATM Adaptation Layer Analog-to-Digital conversion	ARTES	Advanced Research in TElecommunications Systems
ABCS	Advanced Business Communications		(ESA programme)
	via Satellite	ASCII	American Standard Code for
ABM	Apogee Boost Motor		Information Interchange
ACD	Average Call Distance	ASIC	Application Specific Integrated
ACI	Adjacent Channel Interference		Circuit
ACK	ACKnowledgement	ASN	Acknowledgement Sequence
ACTS	Advanced Communications		Number
	Technology Satellite	ASN	Abstract Syntax Notation
ADC	Analog to Digital Converter	ASTE	Advanced Systems and
ADM	Adaptive Delta Modulation		Telecommunications Equipment
ADPCM	Adaptive Pulse Code Modulation		(ESA programme)
ADSL	Asymmetric Digital Subscriber Line	ASTP	Advanced Systems and Technology
AES	Audio Engineering Society		Programme (ESA programme)
AGCH	Access Granted CHannel	ASYNC	ASYNChronous data transfer
AKM	Apogee Kick Motor	ATA	Auto-Tracking Antenna
ALC	Automatic Level Control	ATC	Adaptive Transform Coding
ALG	Application Level Gateway	ATM	Asynchronous Transfer Mode
AM	Amplitude Modulation		•
AMAP	Adaptive Mobile Access Protocol	BAPTA	Bearing and Power Transfer
AMP	AMPlifier		Assembly
AMPS	Advanced Mobile Phone Service	BCH	Broadcast Channel
AMSC	American Mobile Satellite Corp.	BCR	Battery Charge Regulator
AMSS	Aeronautical Mobile Satellite Service	BDR	Battery Discharge Regulator
ANSI	American National Standards	BECN	Backward explicit congestion
	Institute		notification
AOCS	Attitude and Orbit Control System	BEP	Bit Error Probability
AOM	Administration, Operation and	BER	Bit Error Rate
	Maintenance	BFN	Beam Forming Network
AOR	Atlantic Ocean Region	BFSK	Binary Frequency Shift Keying
APC	Adaptive Predictive Coding	BGMP	Border Gateway Multicast
APD	Avalanche Photodetector		Protocol
API	Application Programming	BGP	Border Gateway Protocol
	Interface	BHCA	Busy Hour Call Attempts
AR	Axial Ratio	BHCR	Busy Hour Call Rate
ARQ	Automatic Repeat Request	BISDN	Broadband ISDN
ARQ-GB(N	1	BIS	Broadband Interactive System
ARQ-SR	Automatic repeat ReQuest-Selective	BITE	Built-In Test Equipment
	Repeat	BOL	Beginning of Life
ARCS	Astra Return Channel System	BPF	Band Pass Filter
ARQ-SW	Automatic repeat ReQuest-Stop and	BPSK	Binary Phase Shift Keying
	Wait	BS	Base Station

xviii Acronyms

BSC	Binary Synchronous	CNES	Centre National d'Etudes Spatiales
DSC	Communications (bisync)	CIVES	(French Space Agency)
BSN	Block Sequence Number	CODLS	Connection Oriented Data Link
BSS	Broadcasting Satellite Service	00220	Service Service
BT	Base Transceiver	COMETS	Communications and Broadcasting
BTS	Base Transceiver Station		Engineering Test Satellite
BW	BandWidth	CONUS	CONtinental US
		CoS	Class of Service
CAD	Computer Aided Design	COST	European COoperation in the field of
CAM	Computer Aided Manufacturing		Scientific and Technical research
CAMP	Channel AMPlifier	COTS	Commercial Off The Shelf
CATV	CAbleTeleVision	CPS	Chemical Propulsion System
CBDS	Connectionless broadband data	CRC	Communications Research Centre
СВО	service Continuous Bit Oriented	CS	(Canada) Cell Selection
CBR	Constant Bit Rate	CSMA	Carrier Sense Multiple Access
CCI	CoChannel Interference	CT	Cordless Telephone
CCIR	Comité Consultatif International	CTR	Common Technical Regulation
Com	des Radiocommunications	CTU	Central Terminal Unit
	(International Radio Consultative		
	Committee)	D-AMPS	Digital Advanced Mobile Phone
CCITT	Comité Consultatif International du		System
	Télégraphe et du Téléphone (The	D-M-PSK	Differential M-ary Phase Shift Keying
	International Telegraph and	D/C	Down-Converter
	Telephone Consultative Committee)	DA	Demand Assignment
CCSDS	Consultative Committee for Space	DAB	Digital Audio Broadcasting
	Data Systems	DAC	Digital to Analog Converter
CCU	Cluster Control Unit	DAMA	Demand Assignment Multiple Access
CDMA	Code Division Multiple Access	DARPA	Defense Advanced Research Project
CEC	Commission of the European	DASS	Demand Assignment Signalling and
CELP	Communities Code Excited Linear Prediction	dB	Switching deciBel
CENELEC	Comité Européen pour la	dBm	Unit for expression of power level in
CLIVELLE	Normalisation en ELECtrotechnique	аын	dB with reference to 1 mW
	(European Committee for Electro-	dBm	Unit for expression of power level in
	technical Standardisation)		dB with reference to 1 mW
CEPT	Conférence Européenne des Postes et	dBmO	Unit for expression of power level in
	Télécommunications (European		dBm at a point of zero relative level
	Conference of Post and		(a point of a telephone channel where
	Telecommunications)		the 800 Hz test signal has a power of
CFDMA	Combined Free/Demand		1 mW)
	Assignment Multiple Access	DBF	Digital Beam Forming
CFM	Companded Frequency Modulation	DBFN	Digital Beam Forming Network
CFRA	Combined Fixed/Reservation	DBS	Direct Broadcasting Satellite
CID	Assignment	DC	Direct Current
CIR CIRF	Committed Information Rate Co-channel Interference Reduction	DCCH DCE	Dedicated Control Channel
CIKI	Factor	DCFL	Data Circuit Terminating Equipment Direct Coupled Fet Logic
CIS	Commonwealth of Independent	DCME	Digital Circuit Multiplication
CIO	States	DCIVIE	Equipment
CLDLS	ConnectionLess Data Link Service	DCS	Digital Cellular System (GSM At 1800
CLEC	Competitive Local Exchange		MHz)
	Carrier	DCT	Discrete Cosine Transform
CLNP	ConnectionLess Network Protocol	DCU	Distribution Control Unit
CLTU	Command Link Transmission Unit	DDCMP	Digital Data Communications
CMOS	Complementary Metal Oxide		Message Protocol (a DEC Protocol)
	Semiconductor	DE	Differentially Encoded

Acronyms xix

DE-M-PSK	Differentially Encoded Mary	EUTELCAT	European Telecommunications
DE-IVI-F5K	Differentially Encoded M-ary Phase Shift Keying	EUTELSAT	European Telecommunications Satellite Organisation
DECT	Digital European Cordless		Satelific Organisation
2201	Telephone	FAC	Final Assembly Code
DEMOD	DEMODulator	FCC	Federal Communications
DEMUX	DEMUltipleXer		Commission
DES	Data Encryption Standard	FCS	Frame Check Sequence
DM	Delta Modulation	FDDI	Fibre Distributed Data Interface
DNS	Domain Name Service (host name	FDM	Frequency Division Multiplex
	resolution protocol)	FDMA	Frequency Division Multiple Access
DOD	Depth of Discharge	FEC	Forward Error Correction
DOF	Degree of Freedom	FES	Fixed Earth Station
DQDB	Distributed Queue Dual Bus	FET	Field Effect Transistor
DSCP	Differentiated Service Code Point	FETA	Field Effect Transistor Amplifier
DSI	Digital Speech Interpolation	FFT	Fast Fourier Transform
DSL	Digital Subscriber Loop	FGM	Fixed Gain Mode
DSP DTE	Digital Signal Processing	FIFO	First In First Out
DTH	Data Terminating Equipment Direct To Home	FM FMA	Frequency Modulation
DTTL	Data Transition Tracking Loop	FMS	Fixed-Mount Antenna Fleet Management Service
DUT	Device Under Test	FMT	9
DVB	Digital Video Broadcasting	FODA	Fade Mitigation Technique FIFO Ordered Demand Assignment
DWDM	Dense Wave Division Multiplexing	FPGA	Field Programmable Gate Array
DIIDIII	believ wave bivision watapiexing	FPLMTS	Future Public Land Mobile
EA	Early Assignment	11 211110	Telecommunications System
EBU	European Broadcasting Union	FS	Fixed Service
EC	European Community	FR	Frame Relay
ECL	Emitter Coupled Logic	FSK	Frequency Shift Keying
EFS	Error Free Seconds	FSS	Fixed Satellite Service
EIA	Electronic Industries Association	FTP	File Transfer Protocol
EIR	Equipment Identity Register		
EIRP	Effective Isotropic Radiated	GA	ETSI General Assembly
	Power (W)	GaAs	Gallium Arsenide
ELSR	Edge Label Switch Router	GBN	Go Back N
EMC	ElectroMagnetic Compatiblity	GC	Global Coverage
EMF	ElectroMagnetic Field	GCE	Ground Communication
EMI	ElectroMagnetic Interference		Equipment
EMS	European Mobile Satellite	GCS	Ground Control Station
ENR	Excess Noise Ratio	GDE	Group Delay Equalizer
EOL	End of Life	GEO	Geostationary Earth Orbit
EPC	Electric Power Conditioner	GMDSS	Global Maritime Distress and Safety
EPIRB	Emergency Position Indicating Radio	COS	System Grade Of Service
ERC	Beam Furance Padiocommunications	GOS GPRS	Grade Of Service
EKC	European Radiocommunications Committee	GPS	General Packet Radio Service Global Positioning System
ERL	Echo Return Loss	GRE	Generic Routing Encapsulation
ERO	European Radiocommunications	GSM	Global System for Mobile
LIKO	Office (of the ERC)	GSIVI	communications
ES	Earth Station	GSO	Geostationary Satellite Orbit
ESA	European Space Agency	GTO	Geostationary Transfer Orbit
ESTEC	European Space Research and		
	Technology Centre	HDB3	High Density Binary 3 code
ETR	ETSI Technical Report	HDLC	High Level Data Link Control
ETS	European Telecommunications	HDTV	High Definition TeleVision
	Standard, created within ETSI	HEMT	High Electron Mobility Transistor
ETSI	European Telecommunications	HEO	Highly Elliptical Orbit
	Standards Institute	HIO	Highly Inclined Orbit

xx Acronyms

LIDEDI ANI	Lijoh DEnformanga Dadia Lagal Arga	ICO	International Organization for
HIPERLAN	HIgh PErformance Radio Local Area Network	ISO	International Organisation for
HLR		ISS	Standardisation Inter-Satellite Service
HPA	Home Location Register	ISU	Iridium Subscriber Unit
HPB	High Power Amplifier Half Power Beamwidth	ITU	
		110	International Telecommunication
HPT	Hand Held Personal Telephone	ILIC	Union
HTML	Hyper Text Markup Language	IUS	Inertial Upper Stage
HTTP	Hyper Text Transfer Protocol	IVOD	Interactive Video On Demand
TATE	T 1 m:	IWU	InternetWorking Unit
IAT	Interarrival Time	IDDC	T D (1 C) ()
IAU	International Astronomical Unit	JDBC	Java Database Connectivity
IBA	Independent Broadcasting Authority	JPEG	Joint Photographic Expert Group
IBO	Input Back-off	Ŧ. A	T
IBS	International Business Service	LA	Location Area
ICMP	Internet Control Message Protocol	LAN	Local Area Network
ICI	Interface Control Information	LAPB	Link Access Protocol Balanced
ICO	Intermediate Circular Orbit	LDP	Label Distribution Protocol
IGMP	Internet Group Management Protocol	LEO	Low Earth Orbit
IDC	Intermediate rate Digital Carrier	LFSR	Linear Feedback Shift Register
IDR	Intermediate Data Rate	LHCP	Left Hand Circular Polarization
IDU	Interface Data Unit, also. InDoor Unit	LLC	Logical Link Control
IEEE	Institute of Electrical and Electronic	LLM	Lband Land Mobile
	Engineers	LMDS	Local Multipoint Distribution System
IETF	Internet Engineering Task Force	LMSS	Land Mobile Satellite Service
I-ETS	Interim ETS	LNA	Low Noise Amplifier
IF	Intermediate Frequency	LNB	Low Noise Block
IFRB	International Frequency Registration	LO	Local Oscillator
	Board	LOS	Line of Sight
IGMP	Internet Group Management Protocol	LPC	Linear Predictive Coding
ILS	International Launch Services	LPF	Low Pass Filter
IM	InterModulation	LR	Location Register
IMP	Interface Message Processor	LRE	Low Rate Encoding
IMP	InterModulation Product	LSP	Label Switched Path
IMSI	International Mobile Subscriber	LSR	Label Switching Router
	Identity	LU	Location Updating
IMUX	Input Multiplexer		• 0
IN	Intelligent Network	M-PSK	M-ary Phase Shift Keying
INIRIC	International Non-Ionising RadIation	MAC	Medium Access Control
	Committee	MAC	Multiplexed Analog Components
INMARSAT	International Maritime Satellite		(also Monitoring, Alarm and Control)
	Organisation	MACSAT	Multiple Access Satellite
INTELSAT	International Telecommunications	MAMA	Multiple ALOHA Multiple Access
	Satellite Consortium	MAN	Metropolitan Area Network
IOR	Indian Ocean Region	MCPC	Multiple Channels Per Carrier
IOT	In Orbit Test	MEB	Megabit Erlang Bit rate
IP	Internet Protocol (a network layer	MEO	Medium altitude Earth Orbit
	datagram protocol)	MES	Mobile Earth Station
IPA	Intermediate Power Amplifier	MESFET	Metal Semiconductor Field Effect
IPE	Initial Pointing Error	11120121	Transistor
IPsec	IP security policy	MF	Multifrequency
IRCD	Internet Relay Chat Program Server	MHT	Mean Holding Time
11.02	(a teleconferencing application)	MIC	Microwave Integrated Circuit
IRD	Internet Resources Database	MIDI	Musical Instrument Digital Interface
IRD	Integrated Receiver Decoder	MIFR	Master International Frequency
ISDN	Integrated Services Digital Network	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Register
ISC	International Switching Center	MMDS	Multipoint Multichannel Distribution
ISL	International Switching Center	141141170	System
101	Intersateinte Link		System

Acronyms xxi

MMIC	Monolithic Microwave Integrated	PB	Primary Body (orbits)
IVIIVIIC	Circuit	PBX	Private (automatic) Branch eXchange
MOD	MODulator	PC	Personal Computer
MODEM	Modulator/Demodulator	PCCH	Physical Control CHannel
MOS	Mean Opinion Score	PCH	Paging CHannel
MOS	Metal-Oxide Semiconductor	PCM	Pulse Code Modulation
MoU	Memorandum of Understanding	PCN	Personal Communications Network
MPEG	Motion Picture Expert Group	1 61 ((often refers to DCS 1800)
MPLS	Multi-Protocol Label Switching	PCS	Personal Communications System
MPSK	M-ary Phase Shift Keying	PDCH	Physical Data CHannel
MS	Mobile Station	PDF	Probability Density Function
MSC	Mobile Switching Center	PDH	Plesiochronous Digital Hierarchy
MSK	Minimum Shift Keying	PDU	Protocol Data Unit
MSS	Mobile Satellite Service	PFD	Power Flux Density
MTBF	Mean Time Between Failure	PHEMT	Pseudomorphic High Electron
MTP	Message Transfer Part	1112.711	Mobility Transistor
MTU	Maximum Transferable Unit	PHB	Per Hop Behaviour
MUX	MUltipleXer	PHP	Personal Handy Phone
MX	MiXer	PHS	Personal Handyphone System
11271	11111101	PICH	Pilot Channel
NACK	No ACKnowledgment	PILC	Performance Implication of Link
NASA	National Aeronautics And Space	1120	Characteristics
1111011	Administration (USA)	PIMP	Passive InterModulation Product
NASDA	National Aeronautics And Space	PKM	Perigee Kick Motor
1110211	Development Agency (Japan)	PLL	Phase Locked Loop
NAT	Network Address Translation	PLMN	Public Land Mobile Network
NGSO	Non-Geostationary Satellite Orbit	PM	Phase Modulation
NH	Northern Hemisphere	PMR	Private Mobile Radio
NIS	Network Information System	PN	Personal Number
NMT	Nordic Mobile Telephone	PODA	Priority Oriented Demand
NNTP	Network News Transfer Protocol	10211	Assignment
NOAA	National Oceanic and Atmospheric	POL	POLarisation
	Administration	POR	Pacific Ocean Region
NORM	Nack-Oriented Reliable Multicast	PP	Portable Part
NSO	National Standardisation	PPP	Point to Point Protocol
	Organisation	PRMA	Packet Reservation Multiple Access
NRZ	Non-Return to Zero	PSD	Power Spectral Density
NTP	Network Time Protocol	PSK	Phase Shift Keying
NVOD	Near Video On Demand	PSPDN	Packet Switched Public Data Network
		PSTN	Public Switched Telephone Network
OACSU	Off-Air Call Set-Up	PTA	Programme Tracking Antenna
OBC	On-Board Computer	PTN	Public Telecommunications Network
OBO	Output Back-Off	PTO	Public Telecommunications Operator
OBP	On-Board Processing	PVA	Perigee Velocity Augmentation
ODU	Outdoor Unit	PVC	Permanent Virtual Circuit
OICETS	Optical Inter-orbit Communications		
	Engineering Test Satellite	QoS	Quality of Service
OMUX	Output MUltipleXer	QPSK	Quaternary Phase Shift Keying
ONP	Open Network Provision	~	~
OSI	Open System Interconnection	RAAN	Right Ascension of the Ascending
OSPF	Open Shortest Path First		Node
	1	RACE	Research and development in
PABX	Private Automatic Branch eXchange		Advanced Communications
PACS	Personal Access Communications	RACH	Random Access Channel
	System	RADIUS	Remote Authentication Dial In User
PAD	Packet Assembler/Disassembler		Service
PAM	Payload Assist Module	RAM	Random Access Memory
	•		,

xxii Acronyms

RAN	Radio Area Network	SFH	Slow Frequency Hopping
RARC	Regional Administrative Radio	SH	Southern Hemisphere
	Conference	SHF	Super High Frequency (3 GHz to
RAS	Radio Astronomy Service		30 GHz)
RCVO	Receive Only	SIM	Subscriber Identity Module
RCVR	ReCeiVeR	S-ISUP	Satellite ISDN User Part
RDS	Radio Data System	SIT	Satellite Interactive Terminal
RDSS	Radio Determination Satellite Service	SKW	Satellite-Keeping Window
RE	Radio Exchange	SL	SatelLite
Rec	Recommendation	SLA	Service Level Agreement
Rep	Report	SLIC	Subscriber Line Interface Card
RES	Radio Equipment Systems,	SMATV	Satellite based Master Antenna for TV
	ETSI Technical Committee		distribution
RF	Radio Frequency	SME	Small and Medium Enterprise
RFHMA	Random Frequency Hopping	SMS	Satellite Multi-Services
Id Thviz i	Multiple Access	SMTP	Simple Mail Transfer Protocol
RFI	Radio Frequency Interference	SNA	Systems Network Architecture (IBM)
RGS	Route Guidance Service	SNDCP	SubNet Dependent Convergence
RHCP	Right-Hand Circular Polarization	SINDCI	Protocol
RIP	Routing Information Protocol	SNEK	
	Return Loss		Satellite NEtworK node computer
RL		SNG	Satellite News Gathering
RLAN	Radio Local Area Network	SNMP	Simple Network Management
RLL	Radio in the Local Loop	ON ID	Protocol
RLOGIN	Remote login application	SNR	Signal-to-Noise Ratio
RMA	Random Multiple Access	SOC	State of Charge
RMTP	Realisable Multicast Transport	SOHO	Small Office Home Office
	Protocol	SORA	Satellite Oriented Resource
RNCC	Regional Network Control Center		Allocation
RNR	Receiver Not Ready	SORF	Start of Receive Frame
RORA	Region Oriented Resource Allocation	SOTF	Start of Transmit Frame
RR	Radio Regulation	SPADE	Single-channel-per-carrier PCM
RS	Reed Solomon (coding)		multiple Access Demand assignment
RSVP	Resource reSerVation Protocol		Equipment
RTCP	Real Time transport Control Protocol	S-PCN	Satellite Personal Communications
RTP	Real Time transport Protocol		Network
RTU	Remote Terminal Unit	S/PDIF	Sony/Philips Digital Interface
RX	Receiver		Format
		SPDT	Single-Pole Double-Throw (switch)
S-ALOHA	Slotted ALOHA protocol	SPMT	Single-Pole Multiple-Throw (switch)
SAMA	Spread ALOHA Multiple Access	SPT	Stationary Plasma Thruster
SAP	Service Access Point	SPU	Satellite Position Uncertainty
SAW	Surface Acoustic Wave	SR	Selective Repeat
SB	Secondary Body (orbits)	SS	Satellite Switch
SBC	Sub-Band Coding	SSB	Single Side-Band
SC	Suppressed Carrier	SSMA	Spread Spectrum Multiple Access
S/C	SpaceCraft	SSO	Sun-Synchronous Orbit
SCADA	Supervisory Control and Data	SSOG	Satellite Systems Operations Guide
	Acquisition		(INTELSAT)
SCCP	Signalling Connection Control Part	SSP	Signalling Switching Point
SCH	Synchronization CHannel	SSPA	Solid State Power Amplifier
SCP	Service Control Point	SS-TDMA	Satellite Switched TDMA
SCPC	Single Channel Per Carrier	STC	ETSI Sub-Technical Committee
SDH	Synchronous Digital Hierarchy	STM	Synchronous Transport Module
SDLC	Synchronous Data Link Control	STS	Space Transportation System
SDU	Service Data Unit	SU	Subscriber Unit
SEP	Symbol Error Probability	SVC	Switched Virtual Circuit
SEU	Single Event Upset	SW	Switch
-20		2	

Acronyms xxiii

SW	Stop and Wait	UMTS	Universal Mobile
SWR	Standing Wave Ratio		Telecommunications System
SYNC	SYNChronisation	UPS	Uninterruptible Power Supply
		UPT	Universal Personal
TA	ETSI Technical Assembly		Telecommunications
TACS	Total Access Communication System	USAT	Ultra Small Aperture Terminal
TBC	To Be Confirmed	USB	Universal Serial Bus
TBD	To Be Defined	UW	Unique Word
TBR	Technical Basis Regulation		•
T/R	Transmit/Receive	VBR	Variable Bit Rate
TC	Telecommand	VC	Virtual Channel (or Container)
TCH	Traffic CHannel	VCI	Virtual Channel Identifier
TCP	Transmission Control Protocol	VDSL	Very high-speed Digital
TDM	Time Division Multiplex		Subscriber Line
TDMA	Time Division Multiple Access	VHDL	VHSIC Hardware Description
TDRS	Tracking and Data Relay Satellite		Language
TELNET	remote terminal application	VHSIC	Very High Speed Integrated
TEM	Transverse ElectroMagnetic		Circuit
TETRA	Trans European Trunk Radio	VHF	Very High Frequency (30 MHz to
TFTS	Terrestrial Flight Telephone System		300 MHz)
TIA	Telecommunications Industry	VLR	Visitor Location Register
	Association	VLSI	Very Large Scale Integration
TIE	Terrestrial Interface Equipment	VOW	Voice Order Wire
TM	Telemetry	VPA	Variable Power Attenuator
TM/TC	Telemetry/Telecommand	VPC	Virtual Path Connection
TP4	Transport Protocol Class 4	VPD	Variable Phase Divider
TPR	Transponder	VPS	Variable Phase Shifter
TRAC	Technical Recommendations	VPI	Virtual Path Identifier
	Application Committee	VPN	Virtual Private Network
TTC	Telemetry, Tracking and Command	VSAT	Very Small Aperture
TTCM	Telemetry, Tracking, Command and		Terminal
	Monitoring	VSELP	Vector Sum Excitation Linear
TTL	Transistor Transistor Logic		Prediction
TTL	Time To Live	VSWR	Voltage Standing Wave Ratio
TTY	TelegraphY		8
TV	TeleVision	WAN	Wide Area Network
TWT	Travelling WaveTube	WAP	Wireless Application Protocol
TWTA	Travelling WaveTube Amplifier	WARC	World Administrative Radio
Tx	Transmitter		Conference
		Web	Worldwide Web
U/C	Up-Converter		
UDLR	UniDirectional Link Routing	XPD	Cross Polarization
UDP	User Datagram Protocol		Discrimination
UHF	Ultra High Frequency (300 MHz to	XPI	Cross Polarisation Isolation
	3 GHz)	Xponder	Transponder

NOTATION

a	orbit semi-major axis	E	elevation angle (also energy and electric
Α	azimuth angle (also attenuation, area,	_	field strength)
	availability, traffic density and carrier	$E_{\rm b}$	energy per information bit
	amplitude)	$E_{\rm c}$	energy per channel bit
$A_{ m eff}$	effective aperture area of an antenna		(77.)
$A_{\rm AG}$	attenuation by atmospheric gases	f	frequency (Hz)
$A_{\rm RAIN}$	attenuation due to precipitation and	$F_{\rm c}$	nominal carrier frequency
	clouds	fa	antenna focal length
$A_{ m P}$	attenuation of radiowave by rain for	$f_{\mathbf{m}}$	frequency of a modulating sine wave
	percentage p of an average year	f _{max}	maximum frequency of the modulating
D	1 1 111		baseband signal spectrum
В	bandwidth	$f_{\rm D}$	downlink frequency
b	voice channel bandwidth (3100 Hz from	fu D	uplink frequency
_	300 to 3400 Hz)	F	noise figure
$B_{\mathbf{n}}$	noise measurement bandwidth at	$\Delta F_{\rm max}$	peak frequency deviation of a frequency
D.	baseband (receiver output)		modulated carrier
$B_{\mathbf{N}}$	equivalent noise bandwidth of	$f_{ m S}$	sampling frequency
_	receiver		
Ви	burstiness	8	peak factor
	1 1 1 1 1 2 108	G	power gain (also gravitational constant)
c	velocity of light = $3 \times 10^8 \text{m/s}$	$G_{\rm sat}$	gain at saturation
C	carrier power	$G_{\mathbb{R}}$	receiving antenna gain in direction of
C/N_0	carrier power-to-noise power spectral		transmitter
(-(-)	density ratio (W/Hz)	G_{T}	transmitting antenna gain in direction of
$(C/N_0)_{\mathrm{U}}$	uplink carrier power-to-noise power	-	receiver
(-(-)	spectral density ratio	G_{Rmax}	maximum receiving antenna gain
$(C/N_0)_{\mathrm{D}}$	downlink carrier power-to-noise power	G_{Tmax}	maximum transmitting antenna gain
(-(-)	spectral density ratio	G_{SR}	satellite repeater gain
$(C/N_0)_{\mathrm{IM}}$	carrier power-to-intermodulation noise	G_{SRsat}	saturation gain of satellite repeater
	power spectral density ratio	G/T	gain to system noise temperature ratio of
$(C/N_0)_{\rm I}$	carrier power-to-interference noise	_	a receiving equipment
(-(-)	power spectral density ratio	G_{CA}	channel amplifier
$(C/N_0)_{\mathrm{I},\mathrm{U}}$	uplink carrier power-to-interference	G_{FE}	front end gain from satellite receiver
	noise power spectral density ratio	_	input to satellite channel amplifier input
$(C/N_0)_{\mathrm{I,D}}$	downlink carrier power-to-interference	G_{ss}	small signal power gain
	noise power spectral density ratio		
$(C/N_0)_{\mathrm{T}}$	carrier power-to-noise power spectral	i	inclination of the orbital plane
	density ratio for total link		
		k	Boltzmann's constant =
D	diameter of a reflector antenna (also used		$1.379 \times 10^{-23} \text{W/KHz}$
	as a subscript for 'downlink')	k_{FM}	FM modulation frequency deviation
			constant (MHz/V)
е	orbit eccentricity	k_{PM}	PM phase deviation constant (rad/V)

xxvi Notation

K_{P}	AM/PM conversion coefficient	$P_{i n}$	input power in a multiple carrier
$K_{ m T}$	AM/PM transfer coefficient	Γ _i η	input power in a multiple carrier operation mode (<i>n</i> carriers)
1	earth station latitude	$P_{o n}$	output power in a multiple carrier
L	earth station-to-satellite relative	$P_{\text{IMX }n}$	operation mode (<i>n</i> carriers) power of intermodulation product of
L	longitude also loss in link budget	1 IMX n	order <i>X</i> at output of a non-linear device
	calculations, and loading factor of FDM/		in a multicarrier operation mode
	FM multiplex also message length (bits)		(<i>n</i> carriers)
$L_{\rm e}$	effective path length of radiowave		
	through rain (km)	Q	quality factor
L_{FRX}	receiver feeder loss		
L_{FTX}	transmitter feeder loss	r	distance between centre of mass (orbits)
$L_{\rm FS}$	free space loss	R	slant range from earth station to satellite
L_{POINT}	depointing loss	D	(km) (also symbol or bit rate)
L _{POL}	antenna polarisation mismatch loss	$R_{ m b} R_{ m c}$	information bit rate (s^{-1}) channel bit rate (s^{-1})
$L_{ m R}$ $L_{ m T}$	receiving antenna depointing loss transmitting antenna depointing loss	$R_{\rm call}$	mean number of calls per unit time
LT	transmitting antenna deponiting 1055	$R_{\rm call}$	earth radius = $6378 \mathrm{km}$
m	satellite mass	$R_{\rm o}$	geostationary satellite
тс	power reduction associated with		altitude = 35786 km
	multicarrier operation	$R_{\rm p}$	rainfall rate (mm/h) exceeded for time
M	mass of the earth (kg) (also number of	•	percentage p of a year
	possible states of a digital signal)	$R_{ m s}$	symbol (or signalling) rate (s^{-1})
		_	
N_0	noise power spectral density (W/Hz)	S	user signal power (W)
$(N_0)_{\mathrm{U}}$	uplink noise power spectral density (W/Hz)	S/N	signal-to-noise power ratio at user's end
$(N_0)_{\mathrm{D}}$	downlink noise power spectral density	T	period of revolution (orbits) (s)
	(W/Hz)		(also noise temperature (K))
$(N_0)_{\mathrm{T}}$	total link noise power spectral density	$T_{\mathbf{A}}$	antenna noise temperature (K)
(17.)	(W/Hz)	T_{AMB}	ambient temperature (K)
$(N_0)_{\rm I}$	interference power spectral density	$T_{\rm b}$	information bit duration (s)
N	(W/Hz)	$T_{ m B}$ $T_{ m c}$	burst duration (s)
IN	noise power (W) (also number of stations in a network)	$T_{\rm e}$	channel bit duration (s) effective input noise temperature of a
	ii u iictwork)	r e	four port element system (K)
p	pre-emphasis/companding	$T_{ m E}$	mean sidereal day = 86164.15
,	improvement factor (also rainfall	T_{eATT}	effective input noise temperature of an
	annual percentage)		attenuator (K)
p_{w}	rainfall worst month time percentage	$T_{ m eRx}$	effective input noise temperature of a
P	power (also number of bursts in a TDMA	-	receiver
D	frame)	$T_{ m F}$	frame duration (s) (also feeder
$P_{\rm b}$	information bit error rate	T	temperature) effective medium temperature (K)
$P_{\rm c}$ $P_{ m HPA}$	channel bit error rate rated power of high power amplifier (W)	$T_{\mathbf{m}}$ T_{0}	reference temperature (290 K)
P_{T}	power fed to the antenna (W)	$T_{\rm eRX}$	effective input noise temperature of a
P_{Tx}	transmitter power (W)	- ekx	receiver (K)
$P_{\mathbf{R}}$	received power (W)	$T_{\mathbf{S}}$	symbol duration (s)
P_{Rx}	power at receiver input (W)	$T_{\rm SKY}$	clear key contribution to antenna noise
P_{is}	input power in a single carrier operation		temperature (K)
	mode	T_{GROUND}	ground contribution to antenna noise
$P_{o\ 1}$	output power in a single carrier		temperature (K)
(D.)	operation mode	1.7	1
$(P_{i \ 1})_{sat}$	input power in a single carrier operation	U	subscript for 'uplink'
(D)	mode at saturation	v	true anomaly (orbits)
$(P_{o\ 1})_{sat}$	saturation output power in a single carrier operation mode	$V_{ m s}$	satellite velocity (m/s)
	currer operation mode	r s	cutchine velocity (iii/ 5)

Notation xxvii

$V_{\rm Lp/p}$	peak-to-peak luminance voltage (V)		$G = 6.67 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
$V_{\mathrm{Tp/p}}$	peak-to-peak total video signal voltage		$M = 5.974 \times 10^{24} \text{ kg};$
	(including synchronisation pulses)		$\mu = GM = 3.986 \times 10^{14} \mathrm{m}^3 \mathrm{s}^{-2}$
$V_{ m Nms}$	root-mean-square noise voltage (V)	ho	code rate
		σ	Stefan–Boltzmann constant =
w	psophometric weighting factor		$5.67 \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
		ϕ	satellite-earth station angle from the
X	intermodulation product order (IMX)		earth's centre
		Φ	power flux density (w/m²)
α	angle from boresight of antenna	$\Phi_{ ext{max}}$	max maximum power flux density at
γ	vernal point		transmit antenna boresight
Γ	spectral efficiency (bit/s Hz)	$\Phi_{ m nom}$	nom nominal power flux density
δ	declination angle (also delay)		at receive end required to build up
η	antenna aperture efficiency		a given power assuming maximum
λ	wavelength (= c/f) also longitude, also		receive gain (no depointing)
	message generation rate (s ⁻¹)	Φ_{sat}	power flux density required to operate
φ	latitude		receive amplifier at saturation
au	propagation time	ψ	polarisation angle
$\theta_{ m 3dB}$	half power beamwidth of an antenna	ω	argument of perigee
	wavelength = c/f	Ω	right ascension of the ascending
$\theta_{ m R}$	receiving antenna pointing error		node
$ heta_{ m T}$	transmit antenna pointing error	$\Omega_{ m E}$	angular velocity of rotation of the earth
μ	= GM (G = gravitational constant,		earth = 15.0469 deg/hr =
	M = mass of earth;		$4.17 \times 10^{-3} \text{deg/s} = 7.292 \times 10^{-5} \text{rad/s}$