1a 2a 3	8a 4a 6a	7a	7b	7c	12a	12b	13a	13b	14a	14b	14c	26a	26b
1 1 1	1 1 1	1	1	1	1	1	1	1	1	1	1	1	1
6 -6 (0 0 0	-1	-1	-1	0	0	$E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^1$	$E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^10 + E(13)^12$	1	1	1	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$
6 -6	0 0 0	-1	-1	-1	0	0	$E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^10 + E(13)^12$	$E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^1$	1	1	1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$
7 7 1	1 -1 1	0	0	0	-1	-1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	0	0	0	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^11$
7 7 1	1 -1 1	0	0	0	-1	-1	$-E(13)^2 2 - E(13)^3 5 - E(13)^3 6 - E(13)^3 7 - E(13)^3 8 - E(13)^3 11$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	0	0	0	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	
12 -12 0	0 0 0	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	0	0	-1	-1	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^3 + E(7)^4$	1	1
12 12 (0 0 0	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	$1 - E(7) - E(7)^{} 6$	0	0	-1	-1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	-1	-1
12 12 (0 0 0	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	1 0	0	-1	-1	$-E(7) - E(7)^{} 6$	$-E(7)^{}3 - E(7)^{}4$	$-E(7)^2 - E(7)^5$	-1	-1
1		. ,		$-E(7)^3 - E(7)^4$		0	-1	-1			$E(7)^{} 2 + E(7)^{} 5$		1
				$-E(7)^{} 2 - E(7)^{} 5$		0	-1	-1		$E(7)^{} 2 + E(7)^{} 5$		1	1
				$-E(7)^{} 2 - E(7)^{} 5$		0	-1	-1			$-E(7) - E(7)^{} 6$	-1	-1
13 13 1		-1	-1	-1	1	1	0	0	-1	-1	-1	0	0
14 -14 2		0	0	0	0	0	1	1	0	0	0	-1	-1
14 14 -	-1 -2 -1	0	0	0	1	1	1	1	0	0	0	1	1
14 14 -		0	0	0	-1	-1	1	1	0	0	0	1	1
14 -14 -		0	0	0	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	1	1	0	0	0	-1	-1
$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$ 14 -14 -		0	0	0	` /	$E(12)^{}7 - E(12)^{}11$	1	1	0	0	0	-1	-1

Trivial source character table of $G \cong SL(2,13)$ at $p=2$													
$Normalisers N_i$					N_1						N_2		N_3 N_4
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$					P_1						P_2		P_3 P_4
Representatives $n_j \in N_i$	1a $3a$	7a	7b	7c	13a	13b	1a $3a$	7a	7b	7c	13a	13b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	7 56 8	0	0	0	4	4	0 0	0	0	0	0	0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 40 4	-2	-2	-2	$-2*E(13)^2 - 2*E(13)^5 - 2*E(13)^6 - 2*E(13)^7 - 2*E(13)^8 - 2*E(13)^1$	$-2*E(13) - 2*E(13)^3 - 2*E(13)^4 - 2*E(13)^9 - 2*E(13)^10 - 2*E(13)^12$	0 0	0	0	0	0	0	$\left egin{array}{c cccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right $
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 40 4	-2	-2	-2	$-2*E(13) - 2*E(13)^3 - 2*E(13)^4 - 2*E(13)^9 - 2*E(13)^10 - 2*E(13)^12$	$-2*E(13)^2 - 2*E(13)^5 - 2*E(13)^6 - 2*E(13)^7 - 2*E(13)^8 - 2*E(13)^1$	0 0	0	0	0	0	0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	$_{7}$ 24 0	$-2*E(7) - 2*E(7)^6$	$-2*E(7)^2 - 2*E(7)^5$	$-2*E(7)^3 - 2*E(7)^4$	-2	-2	0 0	0	0	0	0	0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $					-2	-2	0 0	0	0	0	0	0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	$_{7}$ 24 0	$-2*E(7)^3 - 2*E(7)^4$	$-2*E(7) - 2*E(7)^6$	$-2*E(7)^2 - 2*E(7)^5$	-2	-2	0 0	0	0	0	0	0	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} \end{vmatrix} $	$_{7} \mid 56 -4$	0	0	0	4	4	0 0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	7 28 4	0	0	0	2	2	28 4	0	0	0	2	2	0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 20 2	-1	-1	-1	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	20 2	-1	-1	-1	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1 - E(13)^3$	$-E(13)^4 - E(13)^9 - E(13)^10$	$A - E(13)^{} 12 \mid 0 0 \mid 0 0$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 20 2	-1	-1	-1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12$	$-E(13)^2 - E(13)^5 - E(13)^6 - E(13)^7 - E(13)^8 - E(13)^1$	20 2	-1	-1	-1	$-E(13) - E(13)^3 - E(13)^4 - E(13)^9 - E(13)^10 - E(13)^12 - E(13)^2 - E(13)^2$	$y - E(13)^6 - E(13)^7 - E(13)^6$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 12 0	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	-1	-1	12 0 -	$E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^2$	`5 —1	-1	$\left egin{array}{c cccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 12 0	$-E(7) - E(7)^{} 6$	$-E(7)^2 - E(7)^5$	$-E(7)^{} 3 - E(7)^{} 4$	-1	-1	12 0 -	$-E(7) - E(7)^{}6$ -	$-E(7)^2 - E(7)^5 -$	$-E(7)^3 - E(7)^3$	`4 —1	-1	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	$_{7}$ 12 0	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	-1	-1	12 0 -	$E(7)^2 - E(7)^5 -$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^{} 6$	· 1	-1	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	$_{7}$ 28 -2	0	0	0	2	2	28 -2	0	0	0	2	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	7 14 2	0	0	0	1	1	14 2	0	0	0	1	1	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	$_{7}$ 14 -1	0	0	0	1	1	14 -1	0	0	0	1	1	$\begin{vmatrix} 2 & -1 & 0 & 0 & 0 \end{vmatrix}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17}$	7 1 1	1	1	1	1	1	1 1	1	1	1	1	1	1 1 1 1 1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 13 1	-1	-1	-1	0	0	13 1	-1	-1	-1	0	0	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} \end{vmatrix} $	7 13 1	-1	-1	-1	0	0	13 1	-1	-1	-1	0	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $P_2 = Group([(1,3)(2,5)(4,8)(6,11)(7,12)(9,16)(10,17)(13,22)(14,23)(15,24)(18,29)(19,30)(20,31)(21,32)(25,26)(27,36)(28,37)(33,41)(34,42)(35,43)(38,47)(39,48)(40,49)(44,46)(45,54)(50,53)(51,52)(55,56)]) \cong \mathbf{C2}$

 $P_3 = Group([(1,22,3,13)(2,15,5,24)(4,53,8,50)(6,38,11,47)(7,29,12,18)(9,51,16,52)(10,54,17,45)(14,49,23,40)(19,55,30,56)(20,39,31,48)(21,36,32,27)(25,35,26,43)(28,34,37,42)(33,44,41,46),(1,3)(2,5)(4,8)(6,11)(7,12)(9,16)(10,17)(13,22)(14,23)(15,24)(18,29)(19,30)(20,31)(21,32)(25,26)(27,36)(28,37,42)(33,44,41,46),(1,3)(2,5)(4,8)(6,11)(7,12)(9,16)(10,17)(13,22)(14,23)(15,24)(18,29)(19,30)(20,31)(21,32)(25,26)(27,36)(28,37)(33,41)(34,42)(35,43)(38,47)(39,48)(40,49)(44,46)(45,54)(50,53)(51,52)(55,56)]) \\ \cong C4$

 $P_4 = Group([(1,7,3,12)(2,14,5,23)(4,21,8,32)(6,26,11,25)(9,34,16,42)(10,20,17,31)(13,29,22,18)(15,40,24,49)(19,33,30,41)(27,50,36,53)(28,52,37,51)(35,47,43,38)(39,54,48,45)(44,55,46,56), (1,29,3,18)(2,49,5,40)(4,36,8,27)(6,43,11,35)(7,13,12,22)(9,37,16,28)(10,39,17,48)(14,24,23,15)(19,44,30,46)(20,45,31,54)(21,50,32,53)(25,38,26,47)(33,56,41,55)(34,52,42,51)]) \cong Q8$

 $N_1 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,27,34)(22,29,25)(28,35,40)(30,36,42)(37,43,49)(38,44,50)(39,45,52)(46,53,47)(48,54,51),(1,2,3,5)(4,6,8,11)(7,10,12,17)(9,13,16,22)(14,19,23,30)(15,20,24,31)(18,25,29,26)(21,28,32,37)(27,33,36,41)(34,38,42,47)(35,39,43,48)(40,46,49,44)(45,51,54,52)(50,55,53,56)]) \cong SL(2,13) \\ N_2 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,27,34)(22,29,25)(28,35,40)(30,36,42)(37,43,49)(38,44,50)(39,45,52)(46,53,47)(48,54,51),(1,2,3,5)(4,6,8,11)(7,10,12,17)(9,13,16,22)(14,19,23,30)(15,20,24,31)(18,25,29,26)(21,28,32,37)(27,33,36,41)(34,38,42,47)(35,39,43,48)(40,46,49,44)(45,51,54,52)(50,55,53,56)]) \cong SL(2,13) \\ N_2 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,27,34)(22,29,25)(28,35,40)(30,36,42)(37,43,49)(38,44,50)(39,45,52)(46,53,47)(48,54,51),(1,2,3,5)(46,8,11)(7,10,12,17)(9,13,16,22)(14,19,23,30)(15,20,24,31)(18,25,29,26)(21,28,32,37)(27,33,36,41)(34,38,42,47)(35,39,43,48)(40,46,49,44)(45,51,54,52)(50,55,53,56)]) \cong SL(2,13) \\ N_3 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,27,34)(22,29,25)(28,35,40)(30,36,42)(37,43,49)(38,44,50)(39,45,52)(46,53,47)(48,54,51),(1,2,3,5)(46,8,11)(7,10,12,17)(9,13,16,22)(14,19,23,30)(15,20,24,31)(18,25,29,26)(21,28,32,37)(27,33,36,41)(34,38,42,47)(35,39,43,48)(40,46,49,44)(45,51,54,52)(50,55,53,56)]) \cong SL(2,13) \\ N_4 = Group([(2,4,7)(5,8,12)(6,9,14)(10,15,21)(11,16,23)(13,18,26)(17,24,32)(19,24$

 $N_3 = Group([(1,22,3,13)(2,15,5,24)(4,53,8,50)(6,38,11,47)(7,29,12,10)(9,44,16,46)(13,53,22,50)(15,49,24,40)(18,45,29,54)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,52,41,51), (1,31,3,20)(2,14,5,23)(4,17,45)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,52,41,51), (1,31,3,20)(2,14,5,23)(4,17,45)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,52,41,51), (1,31,3,20)(2,14,5,23)(4,17,45)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,52,41,51), (1,31,3,20)(2,14,5,23)(4,17,45)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,52,41,51), (1,31,3,20)(2,14,52,31)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,47,41,38)(34,42)(35,43)(34,41,46)(19,43,30,35)(20,32,31,21)(25,55,26,56)(27,39,36,48)(28,47,37,38)(33,47,41,38)(34,42)(35,43)(34,$ $N_4 = Group([(1,7,3,12)(2,14,5,23)(4,21,8,32)(6,26,11,25)(9,34,16,42)(10,20,17,31)(13,29,22,18)(15,40,24,49)(19,33,30,41)(27,50,36,53)(28,52,37,51)(35,47,43,38)(29,54,48,45)(44,55,46,56), (1,29,3,18)(2,49,5,40)(4,36,8,27)(6,43,11,35)(7,13,12,22)(9,37,16,28)(10,39,17,48)(14,24,23,15)(19,44,30,46)(20,45,31,54)(21,50,32,53)(25,38,26,47)(33,56,41,55)(34,52,42,51), (2,53,55)(4,46,40)(5,50,56)(7,18,13)(8,44,49)(9,34,51)(10,45,39)(12,29,22)(14,32,19)(15,36,33)(16,42,52)(17,54,48)(21,30,23)(24,27,41)(25,43,38)(26,35,47)(33,56,41,55)(34,52,42,51), (2,53,55)(4,46,40)(5,50,56)(7,18,13)(8,44,49)(9,34,51)(10,45,39)(12,29,22)(14,32,19)(15,36,33)(16,42,52)(17,54,48)(17,54,38)(17,5$