Comcast Telecom Consumer Complaints

05/12/2020

Comcast is an American global telecommunication company. The firm has been providing terrible customer service. They continue to fall short despite repeated promises to improve. Only last month (October 2016) the authority fined them a \$2.3 million, after receiving over 1000 consumer complaints.

The existing database will serve as a repository of public customer complaints filed against Comcast. It will help to pin down what is wrong with Comcast's customer service.

Tasks to be performed:-

- Import data into R environment.
- Provide the trend chart for the number of complaints at monthly and daily granularity levels.
- Provide a table with the frequency of complaint types.
- Which complaint types are maximum i.e., around internet, network issues, or across any other domains.
- Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.
- Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:
- Which state has the maximum complaints
- Which state has the highest percentage of unresolved complaints
- Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls.

#Importing necessary packages

```
library (dplyr)
```

```
##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
```

```
library (ggplot2)
library (lubridate)
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
#Importing Comcast Dataset
comcast_data<- read.csv("Comcast Telecom Complaints data.csv", header = TRUE)</pre>
#Manipulating Field Names
names (comcast_data) <-gsub (pattern = ' \\.', replacement = "", x=names (comcast_data))</pre>
names (comcast_data)
   [1] "Ticket"
                                    "CustomerComplaint"
   [3] "Date"
                                    "Time"
##
   [5] "ReceivedVia"
                                    "City"
   [7] "State"
                                    "Zipcode"
   [9] "Status"
                                    "FilingonBehalfofSomeone"
View (comcast data)
```

From the dataset, we can see that the format of Date column is not same throughout, so we need to make it same for analysis.

```
#Processing Date
comcast_data$Date<- dmy(comcast_data$Date)
View(comcast_data)</pre>
```

• Now we need to get the complaints on a daily level basis and plot a trend chart for it.

Daily Ticket Count

• Now we need to get the complaints on a monthly level basis and plot a trend chart for it.

```
#Making month field
comcast_data$Month<-months(comcast_data$Date)
ans1<-comcast_data %>% group_by(Month =as.integer(month(Date))) %>% summarize(NumOfComplaints=n()) %>%

## 'summarise() ' ungrouping output (override with '.groups ' argument)

#Plotting for monthly granularity level
ggplot(data = ans1, aes(Month, NumOfComplaints, label = NumOfComplaints))+
    geom_line()+
    geom_point(size = 0.8)+
    geom_text()+
    scale_x_continuous(breaks = ans1$Month)+
    labs(title = "Monthly Ticket Count", x= "Months", y ="No. of Tickets")+
    theme(plot. title = element_text(hjust = 0.5))
```

Monthly Ticket Count

INSIGHTS:- From the above trend chart, we can clearly see that complaints for the month of June are maximum i.e.1046.

• Now we need to make a frequency table basis the complaint types.

```
# Complaint Type Processing
network_tickets<- contains(comcast_data$CustomerComplaint, match = ' network' , ignore.case = T)</pre>
internet_tickets<- contains(comcast_data$CustomerComplaint, match = ' internet' , ignore. case</pre>
billing\_tickets <- \verb|comcast\_data| & Customer Complaint|, match = 'bill' , ignore. case = T)
email tickets <- contains (comcast data Customer Complaint, match = 'email', ignore.case = T)
charges ticket<- contains(comcast data$CustomerComplaint, match = ' charge', ignore.case = T)</pre>
comcast data$ComplaintType[internet tickets]<- "Internet"
comcast data$ComplaintType[network tickets]<- "Network"</pre>
comcast data$ComplaintType[billing tickets]<- "Billing"</pre>
comcast data$ComplaintType[email tickets]<- "Email"</pre>
comcast data$ComplaintType[charges ticket]<- "Charges"</pre>
comcast data$ComplaintType[-c(internet tickets, network tickets,
                                billing tickets, charges ticket, email tickets)]<- "Others"
table (comcast data$ComplaintType)
##
    Billing
              Charges
                          Email Internet Network
                                                      0thers
        363
                  139
                             16
                                      472
                                                      1233
                                                  1
```

INSIGHTS:- From the above table we can see that the Internet type complaints are maximum.

• Now we need to make a new categorical variable for Complaint Status.

```
open_complaints<-(comcast_data$Status == 'Open' | comcast_data$Status == 'Pending')
closed_complaints<-(comcast_data$Status == 'Closed' | comcast_data$Status == 'Solved')
comcast_data$ComplaintStatus[open_complaints]<-'Open'
comcast_data$ComplaintStatus[closed_complaints]<-'Closed'</pre>
```

• Now we need to plot state wise status of complaints in a stacked bar chart.

```
stack<-table(comcast data$ComplaintStatus, comcast data$State)
stack
##
##
            Alabama Arizona Arkansas California Colorado Connecticut Delaware
##
                  17
                           14
                                               159
                                                          58
                                                                                 8
     Closed
                                     6
                            6
                                                          22
                                                                        3
##
                   9
                                                61
     0pen
##
##
            District of Columbia District Of Columbia Florida Georgia Illinois
##
     Closed
                                                      14
                                                              201
                                                                      208
##
                                 0
                                                       2
                                                               39
                                                                       80
                                                                                 29
     0pen
##
##
             Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massa husetts
##
                  50
     Closed
                                1
                                                   12
                                                           3
                                                                   63
                                                                                  50
                                         3
                                                           2
                   9
                                                    1
##
     0pen
                        0
                                1
                                                                   15
                                                                                  11
##
##
            Michigan Minnesota Mississippi Missouri Montana Nevada New Hampshire
##
                              29
                                          23
                                                     3
                   92
                                                                                    8
     Closed
                                                              0
                   23
                                           16
##
                                                     1
     0pen
##
##
            New Jersey New Mexico New York North Carolina Ohio Oregon Pennsylvania
##
                     56
                                 11
                                            6
                                                            3
                                                                 3
                                                                        36
                                                                                    110
     Closed
##
                     19
                                                                                     20
     0pen
##
##
            Rhode Island South Carolina Tennessee Texas Utah Vermont Virginia
##
     Closed
                                                              16
##
     0pen
                        0
                                        3
                                                         22
                                                               6
                                                                        1
                                                  47
                                                                                11
##
##
            Washington West Virginia
##
     Closed
                     75
                                     8
##
                     23
     0pen
comcast data<- group_by(comcast data, State, ComplaintStatus)</pre>
chart data <- summarise (comcast data, Count = n())
    'summarise() 'regrouping output by 'State' (override with '.groups 'argument)
```

```
title = element_text(size = 16, colour = "#0073C2FF"),
    plot.title = element_text(hjust = 0.5))+
labs(title = "Ticket Status Stacked Bar Chart ",
    x = "States", y = "No of Tickets",
    fill= "Status")
```


INSIGHTS:- From the above chart, we can clearly see that Georgia has maximum complaints.

• Now we need to see which state has maximum unresolved complaints

23

7 Washington

```
comcast_data %>% filter(ComplaintStatus==' Open') %>% group_by(State) %>% summarize(NumOfComplaints=n())
    'summarise() 'ungrouping output (override with '.groups 'argument)
## # A tibble: 34 x 2
##
      State
                   NumOfComplaints
##
      <chr>
                              <int>
##
    1 Georgia
                                 80
##
   2 California
                                 61
   3 Tennessee
                                 47
   4 Florida
                                 39
                                 29
##
    5 Illinois
                                 23
   6 Michigan
```

```
## 8 Colorado 22
## 9 Texas 22
## 10 Pennsylvania 20
## # ... with 24 more rows
```

INSIGHTS:- From the table generated above we can see that Georgia has maximum unresolved complaints i.e. 80.

• Now we want to see the percentage of resolved complaints.

INSIGHTS:- From the above pie chart we can clearly see that there are total 76.75% Complaints resolved.

```
int<-comcast_data %>% filter(ReceivedVia==' Internet', ComplaintStatus==' Closed') %>% group_by(ReceivedVia
## 'summarise() ' regrouping output by ' ReceivedVia' (override with '.groups ' argument)

ccc<-comcast_data %>% filter(ReceivedVia==' Customer Care Call', ComplaintStatus==' Closed') %>% group_by

## 'summarise() ' regrouping output by ' ReceivedVia' (override with '.groups ' argument)

#Percentage of resolved internet Complaints
intpct<-round(int$NumOfComplaints/sum(tot$NumOfComplaints)*100, 2)
intpct

## [1] 37.9

#Percentage of resolved Customer Care Call Complaints
cccpct<-round(ccc$NumOfComplaints/sum(tot$NumOfComplaints)*100, 2)
cccpct
## [1] 38.85</pre>
```

INSIGHTS:- From the above output we can see that of the 76.75% resolved Complaints, 37.9% complaints are Internet type while 38.85% are Customer Care Call type.