

Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer, C. Thomas Gray, Brucek Khailany & Stephen W. Keckler

VAST WORLD OF AI INFERENCE

Creating A Massive Market Opportunity

MOBILE DEVICES

EMBEDDED COMPUTERS

DATACENTER COMPUTERS

SCALABLE INFERENCE ACCELERATORS

Challenges and Opportunities

Motivation

· Need for fast and efficient inference accelerators from mobile to datacenter.

Challenge

· High design cost of building unique hardware for each design target.

Opportunities

- · Deep learning inference is intrinsically scalable with abundant parallelism.
- Recent advances in package-level integration for multi-chip-module-based designs.

THE MULTI-CHIP-MODULE APPROACH

Challenges and Opportunities

Advantages:

Build systems larger than reticle limit Smaller chips are cheaper to design Smaller chips have higher yield Faster time-to-market

Challenges:

Area, energy, and latency for chip-to-chip communication

Ref: Zimmer et al., VLSI 2019

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

- Non-uniform work partitioning
- Communication-aware data placement
- Cross-layer pipelining

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

Simba Characterization:

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

- Non-uniform work partitioning
- Communication-aware data placement
- Cross-layer pipelining

SIMBA: SCALABLE MCM-BASED ARCHITECTURE

Simba Package and Chiplet

Package and chiplet spec

6mm² chiplet in TSMC 16nm 36 chiplets/package

Chip-to-chip interconnect

Ground-Referenced Signaling

Efficient compute tiles

128 TOPS0.11 pJ/Op8-bit integer datapath

SIMBA: NON-UNIFORM COMMUNICATION

Network-on-Chip (NoC) and Network-on-Package (NoP)

NETWORK-ON-CHIP (NoC)

4x5 mesh topology connects 16 PEs, one Global PE, and one RISC-V.

Cut-through routing with multicast support. 10ns per hop, 68GB/s/PE

NETWORK-ON-PACKAGE (NoP)

6x6 mesh topology connects 36 chiplets in package. A NoP router per chiplet.

Configurable routing to avoid bad links/chiplets. 20ns per hop, 100GB/s/chiplet

SIMBA: SCALABLE MCM-BASED ARCHITECTURE

Spatial Architecture with Distributed Memory

BASELINE: UNIFORM TILING ACROSS NOC/NOP

Exploiting Model and Data Parallelism

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

Simba Characterization:

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

Simba NoP-Aware Tiling:

- Non-uniform work partitioning
- Communication-aware data placement
- Cross-layer pipelining

≥ NVIDIA

SIMBA MEASUREMENT SETUP

Measurements begin after weights and activations are loaded from FPGA DRAM

Weights are loaded to PE memory Activations are loaded to Global PE

Operating points

Voltage: 0.72 V

Frequency: 1.03 GHz

GRS Bandwidth: 11 Gbps/pin

Networks

DriveNet, AlexNet, ResNet-50

INVIDIA.

Comparison with GPUs running ResNet-50

Layer Sensitivity

 Running three ResNet-50 layers across different number of chiplets.

 Increasing the number of active chiplets does not always translate to performance gains.

 The cost of communication hinders the ability to exploit parallelism.

NoP Bandwidth Sensitivity

- Running two ResNet-50 layers across
 32 chiplets with different NoP bandwidths by adjusting the ratio between NoP and PE frequencies.
- End-to-end performance is sensitive to NoP bandwidth, especially for applications with a significant amount of communication.

NoP Latency Sensitivity

- Mapping res4a_branch1 to four chiplets with different data placements (shown in the X-axis)
- Inter-chiplet traffic type:
 - Input activation multicast
 - Output activation writeback
- Communication latency plays a key role in achieving good performance/efficiency in a largescale system.

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

Simba Characterization:

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

- Non-uniform work partitioning
- Communication-aware data placement
- Cross-layer pipelining

SIMBA NOP-AWARE TILING

Communication-Aware Data Placement

- Communication latency is highly sensitive to the physical location of data, which is explicitly managed by programmers.
- We use an iterative algorithm to place the input and output activations to minimize the number of NoP hops.
- We keep the same tiling in the updated placements to reduce the number of variables.

SIMBA NOP-AWARE TILING

Communication-Aware Data Placement

- Communication latency is highly sensitive to the physical location of data, which is explicitly managed by programmers.
- We use an iterative algorithm to place the input and output activations to minimize the number of NoP hops.
- We keep the same tiling in the updated placements to reduce the number of variables.

Simba Testchip:

- Package and chiplet architecture
- Processing element design
- Baseline uniform tiling across chiplets and PEs

Simba Characterization:

- Comparison with GPUs
- NoP bandwidth sensitivity
- NoP latency sensitivity

- Non-uniform work partitioning
- Communication-aware data placement
- Cross-layer pipelining

