Algèbre 2

Anneaux factoriels

Question 1/16

$$c\left(\frac{P}{d}\right)$$

Réponse 1/16

Si
$$d \mid c(P), c\left(\frac{P}{d}\right) \cong \frac{c(P)}{d}$$

Question 2/16

Anneau factoriel

Réponse 2/16

A est factoriel si pour tout $a \in A$, il existe $s \in \mathbb{N}$ et $(p_1, \dots, p_s) \in A^s$ avec les p_i irréductibles tels que $a = p_1 \dots p_s$

Question 3/16

Propriété de A[X] pour A factoriel

Réponse 3/16

A[X] est factoriel

Question 4/16

$$\left(\prod_{p\in\mathcal{P}}\left(p^{\alpha_p}\right)\right)\wedge\left(\prod_{p\in\mathcal{P}}\left(p^{\beta_p}\right)\right)$$

Réponse 4/16

$$\prod_{p \in \mathcal{P}} \left(p^{\min\left(\alpha_p, \beta_p\right)} \right)$$

Question 5/16

Lien entre premier et irréductible dans A factoriel

Réponse 5/16

Tout élement irréductible est premier

Question 6/16

Contenu

Réponse 6/16

$$c\left(\sum_{i=0}^{n} (a_i X^i)\right) = \bigwedge_{i=0}^{n} a_i \text{ (défini modulo } A^{\times})$$

Question 7/16

Propriété sur P et Q si $AP \in A[X]$ et A est factoriel

Réponse 7/16

Si P et Q sont unitaires alors $(P,Q) \in A[X]^2$

Question 8/16

Critère d'irréductibilité en lien avec les idéaux premiers

Réponse 8/16

Si $I \triangleleft A$ est premier et $P = a_0 + \dots + a_n X^n$ est tel que $\frac{a_n}{c(P)} \notin I$ (i.e., $\deg(P) = \deg(\overline{P})$), et si $\overline{P} \in A/I[X]$ est irréductible alors P est irréductible dans $\mathbb{K}[X]$

Question 9/16

Lien entre anneau factoriel et principal

Réponse 9/16

Tout anneau principal est factoriel

Question 10/16

Polynôme primitif

Réponse 10/16

$$c(P) \cong 1$$

Tout P se décompose $c(P)P_1$ avec $P_1 \in A[X]$ primitif et cette décomposition est unique à inversible près

Question 11/16

Critère d'Eisenstein

Réponse 11/16

Si A est factoriel, $\mathbb{K} = \operatorname{frac} A$ et $P = a_0 + \cdots + a_{n-1}X^{n-1} + X^n$ est tel qu'il existe p premier dans A tel que $p \mid a_k$ pour k < n et $p^2 \nmid a_0$ alors P est irréductible dans A[X] et dans $\mathbb{K}[X]$

Question 12/16

c(aP)

Réponse 12/16

$$a \cdot c(P)$$

Question 13/16

Lemme de Gauss

Réponse 13/16

Si
$$(P,Q) \in \mathbb{K}[X]^2$$
 et A est factoriel alors $c(PQ) \cong c(P)c(Q)$ et $(PQ)_1 = P_1Q_1$

Question 14/16

Décomposition en facteurs premiers

Réponse 14/16

Étant donné un système \mathcal{P} de représentants des nombres premiers, on a $a = u \prod_{p \in \mathcal{P}} (p^{\alpha_p})$ avec

 $u \in A^{\times} \text{ et } \alpha_i \in \mathbb{N}$ Seul un nombre fini de α_i sont non nuls

Question 15/16

Irréductibilité dans A[X] pour A factoriel $\mathbb{K} = \operatorname{frac} A$

Réponse 15/16

P est irréductible dans A[X] si et seulement s'il l'est dans $\mathbb{K}[X]$ et c(P) = 1Si P = QS avec $(Q, S) \in \mathbb{K}[X] \setminus \mathbb{K}$ alors $P = (c(P)Q_1)S_1$

En particulier, si A est factoriel alors A[X] et $A[X_1, \dots, X_n]$ sont factoriels

Question 16/16

$$\left(\prod_{p\in\mathcal{P}}(p^{\alpha_p})\right)\vee\left(\prod_{p\in\mathcal{P}}\left(p^{\beta_p}\right)\right)$$

Réponse 16/16

$$\prod_{p \in \mathcal{P}} \left(p^{\max(\alpha_p, \beta_p)} \right)$$