The group G is isomorphic to the group labelled by [12, 2] in the Small Groups library. Ordinary character table of $G\cong C12$:

	1a	4a	2a	4b	3a	12a	6a	12b	3b	12c	6b	12d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	1	1	1	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_4	1	-1	1	-1	E(3)	-E(3)	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$
χ_5	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)
χ_6	1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^{2}$	E(3)	-E(3)	E(3)	-E(3)
χ_7	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_8	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_9	1	E(4)	-1	-E(4)	E(3)	$E(12)^{7}$	-E(3)	$-E(12)^7$	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^{2}$	$-E(12)^{11}$
χ_{10}	1	-E(4)	-1	E(4)	E(3)	$-E(12)^7$	-E(3)	$E(12)^{7}$	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$
χ_{11}	1	E(4)	-1	-E(4)	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^2$	$-E(12)^{11}$	E(3)	$E(12)^{7}$	-E(3)	$-E(12)^7$
χ_{12}	1	-E(4)	-1	E(4)	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$	E(3)	$-E(12)^7$	-E(3)	$E(12)^7$

Trivial source character table of $G \cong C12$ at p = 3:

Normalisers N_i	N_1				N_2			
p-subgroups of G up to conjugacy in G	P_1				P_2			
Representatives $n_j \in N_i$	1a	4a	2a	4b	1a	4a	2a	4b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3	3	3	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-3	3	-3	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3 * E(4)	-3	-3 * E(4)	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	3	-3 * E(4)	-3	3 * E(4)	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	-1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(1, 2, 3)]) \cong C3$$

$$N_1 = Group([(1,2,3),(4,5,6,7)]) \cong C12$$

 $N_2 = Group([(1,2,3),(4,5,6,7)]) \cong C12$