L-Sequence

[Time limit : 1s] [Memory limit : 32 MB]

เมื่อทีมงานต้องออกโจทย์เกี่ยวกับการเรียงข้อมูลที่เป็นเซตลำดับ พวกเขาจึง นิยามการ เปรียบเทียบของลำดับสองลำดับ ขึ้นว่าจะเปรียบเทียบโดยใช้หลักการของ Lexicographical Order (Dictionary order) กล่าวคือ เมื่อให้ A, B คือ เซตของลำดับใดๆ และ A_i , B_i คือ สมาชิกตำแหน่งที่ i ของ A และ B แล้วเราจะนิยามว่า "เมื่อ i เป็นตำแหน่งที่น้อยที่สุดที่ $A_i \neq B_i$ ถ้า $A_i < B_i$ แล้ว A < B" ทีมงานต้องการให้หาลำดับที่น้อยที่สุดเมื่อ ทำการตัด สมาชิกของลำดับใดๆออก K ตัว

- ตัวอย่างการเรียงลำดับแบบ Lexicographical Order จากน้อยไปมาก { 1 , 1 , 3 ,
 4 , 0 } , { 1 , 1 , 4 , 5 , 0 } , { 1 , 2 , 0 , 0 , 0 } , { 2 , 1 , 2 , -1 , 0 }
- เมื่อตัดสมาชิกตัวที่ i ของลำดับใดๆแล้ว สมาชิกตัวที่ ตัวที่ i+1 ถึง n จะถูกเลื่อนมา เป็นสมาชิกตัวที่ i ถึง n-1
- ตัวอย่างการตัดสมาชิกของลำดับใดๆ ให้ ลำดับ $A = \{ 2, 4, 6, 5, 8 \}$
 - 1.) เมื่อตัด A_2 จะได้ $A = \{ 2, 6, 5, 8 \}$
 - 2.) เมื่อตัด A_3 จะได้ $A = \{ 2, 6, 8 \}$
 - 3.) เมื่อตัด A_3 จะได้ $A = \{ 2, 6 \}$

Input:

บรรทัดแรกประกอบด้วย จำนวนเต็ม N และ K ($1 \le K < N \le 1000$) แสดงถึงจำนวน สมาชิกของลำดับ และ จำนวนตัวที่ต้องการตัดออก

บรรทัดที่สอง ระบุจำนวนเต็ม N จำนวน มีค่าตั้งแต่ -100,000 ถึง 100,000 แสดงถึง สมาชิกของลำดับ เรียงตามตำแหน่ง

Output:

ระบุจำนวนเต็ม N-K จำนวนแสดงถึง ลำดับที่น้อยที่สุดเมื่อ เอาสมาชิกออกไป K ตัว เรียง ตามตำแหน่ง

Input 1 :	Input 2:	Input 3:
5 1	3 2	4 2
-1 2 3 4 2	-1 3 2	- 1 10 5 2
Output 1 :	Output 2:	Output 3:
-1 2 3 2	-1	-1 2