

Technical University of Cluj-Napoca Computer Science Department

Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Lecture 12: Modern CPU Architectures

http://users.utcluj.ro/~negrum/

Intel Processor History – Single Cores

Intel Processor	Year	Data	Technology	Instruction Set	CPU Clock
8008	1972	8-bit	10 μm	8008	0.2 – 0.8 MHz
8080	1974	8-bit	6 μm	8080	2 MHz
8086	1976	16-bit	3.2 μm	x86-16	5 – 10 MHz
80186	1982	16-bit	3.2 μm	x86-16	6 – 25 MHz
80286	1982	16-bit	1.5 μm	x86-16	6 – 25 MHz
80386	1985	32-bit	1 – 1.5 μm	x86 (IA-32)	12 – 40 MHz
80486	1989	32-bit	0.6 – 1 μm	x86 (x87 – FP)	16 – 150 MHz
Pentium (P5)	1993	32-bit	0.8 μm	IA-32	60 – 100 MHz
Pentium Pro (P6)	1995	32-bit	0.35 μm	IA-32	150 – 200 MHz
Pentium MMX	1996	32-bit	0.18 – 0.35 μm	IA-32, MMX	120 – 233 MHz
Pentium II (P6)	1997	32-bit	0.35 μm	IA-32, MMX	233 – 450 MHz
Pentium III (P6)	1999	32-bit	0.13 – 0.25 μm	IA-32, MMX, SSE	450 MHz – 1.4 GHz
Pentium IV (Netburst)	2000	32-bit	0.18 μm	IA-32, MMX, SSE, SSE2,	1.3 – 3.8 GHz

Intel Pentium MicroArchitecture

Intel Pentium MMX MicroArchitecture

NetBurst MicroArchitecture

5

Pentium IV	Year	Data	Technology Instruction Set		CPU Clock	Cores
Willamette	2000	32-bit	180 nm	IA-32, MMX, SSE, SSE2	1.3 – 2 GHz	1
Northwood	2002	32-bit	130 nm	IA-32, MMX, SSE, SSE2	1.6 – 3.06 GHz	1
Prescott	2004	64-bit	130 nm	MMX,, SSE3, x86-64	2.66 – 3.8 GHz	1
	Hyper-Threading Technology – Virtual Cores					
Northwood	2003	32-bit	130 nm	IA-32, MMX, SSE, SSE2	3.06 GHz	1
Prescott	2005	64-bit	90 nm	MMX,, SSE3, x86-64	2.66 – 3.8 GHz	1
Cedar Mill	2006	64-bit	65 nm	MMX,, SSE3, x86-64	3 – 3.6 GHz	1

Major Issues:

Large number of pipeline stages: 20 - 31

The End of the Single Core Era

Pentium D	Year	Data	Technology Instruction Set		CPU Clock	Cores
Smithfield	2005	64-bit	90 nm	MMX,, SSE3, x86-64	2.66 – 3.73 GHz	2
Pressler	2006	64-bit	65 nm	MMX,, SSE3, x86-64	2.66 – 3.73 GHz	2

Intel Tick-Tock Era

- Tick Shrink
 - Shrinking in the process technology of the previous Intel MicroArchitecture
 - Can introduce new instructions
 - Can make the processor more efficient, more powerful
- Tock Innovate
 - a new MicroArchitecture
- Every 12 18 months → a new tick / tock
- MicroArchitectures:
 - Netburst, P6
 - Core
 - Nehalem
 - Sandy bridge
 - Haswell
 - Skylake

Intel Tick-Tock Era

Change	Technology	MicroArchitecture	Code Names	Year	Processors
Tick	65 nm	P6, Netburst	Pressler, Cedar Mill	2006	Core, Pentium 4, Pentium D, Pentium M, Pentium Dual-Core
Tock	65 nm	Core	Merom	2006	Core 2, Pentium Dual-
Tick	45 nm	Core	Penrym	2007	Core
Tock	45 nm	Nehalem	Nehalem	2008	Coro i2 i5 i7
Tick	32 nm	Nenalem	Westmere	2010	Core i3, i5, i7,
Tock	32 nm	Candy Dridge	Sandy Bridge	2011	Core i3, i5, i7 – 2 nd ,
Tick	22 nm	Sandy Bridge	Ivy Bridge	2012	Core i3, i5, i7 – 3 rd ,
Tock	22 nm	Hagwall	Haswell	2013	Core i3, i5, i7 – 4 th ,
Tick	14 nm	Haswell	Broadwell	2014	Core i3, i5, i7 – 5 th ,
Tock	14 nm		Skylake	2015	Core i3, i5, i7 – 6 th ,
Tock	14 nm	Skulako	Kaby lake	2017	Core i3, i5, i7 – 7 th ,
Tock	14 nm	Skylake	Coffee Lake	2018	Core i3, i5, i7 – 8 th ,
Tick	10 nm		Cannonlake	2019	??
Tock	10 nm	Ice Lake	Ice Lake	2019	??

Intel Core 2 MicroArchitecture

- Number of Cores
 - 1, 2, 4
- No Hyper-threading
- 14-stage pipeline
- 4 decoders 7 μOps
- Cache memory
 - L1: 32 KB data
 - L1: 32 KB instr.
 - L2: 256 KB
- Scheduler 32 entries

6 μOperations / cycle

retirement bandwidth 4 μOperations / cycle

Intel Core 2 Architecture

Nehalem MicroArchitecture

- Increased parallelism over Core MicroArchitecture
- Increased resources for higher performance
- Intel turbo Bust Technology increases frequency when possible
 - Higher performance on demand
- Intel Hyper-Threading Technology more threads than cores
- New Instructions SSE 4.2

Structure	Merom (Core)	Nehalem
Reservation Station	32	36
Load buffers	32	48
Store buffers	20	32
Cache Layers	2	3
L1 cache	32 KB instruction 32 KB data	32 KB instruction 32 KB data
L2 cache	256 KB instr+data	256 KB instr+data
L3 cache – shared	None	Up to 8 MB

Nehalem MicroArchitecture

Nehalem MicroArchitecture

Part of the NorthBridge → CPU QPI – Quick Path Interconnect

Nehalem's Core Architecture

GT/s: gigatransfers per second

Intel Sandy Bridge

Sandy Bridge Tock – 32 nm

Ivy Bridge Tick – 22 nm

Memory Controller and Graphics

inside CPU

System on Chip SoC

Intel Sandy Bridge

- Increased graphics performance
- Enhanced security capability
- New instructions Advanced Vector Extension (AVX)
- Intel Dynamic Execution for Core
 - In-order issue
 - Speculative, super-scalar, out-of-order execution
 - 14 stage pipeline

Feature	Nehalem	Sandy Bridge
Load Buffers	48	64
Store Buffers	32	36
Scheduler Entries	36	54
Integer Register File	N/A	160
Floating Point Register File	N/A	144
ROB Entries	128	168

Intel Haswell MicroArchitecture

4th Generation Intel® Core™ Processor Die Map 22nm Tri-Gate 3-D Transistors

Quad core die shown above

Transistor count: 1.4 Billion

Die size: 177mm²

** Cache is shared across all 4 cores and processor graphics

Intel Haswell MicroArchitecture

- More parallelism in every generation
- No pipeline growth still 14 stages
- "Stacked" System on a Chip (SoC)
- Active idle less power consumption, but instant resume
- New instructions Advanced Vector Extension 2 (AVX2)

Feature	Nehalem	Sandy Bridge	Haswell	
Out-of-Order window (ROB)	128	168	192	
Load Buffers	48	64	72	
Store Buffers	32	36	42	
Scheduler Entries	36	54	60	
Integer Register File	N/A	160	168	
Floating Point Register File	N/A	144	168	
Allocation Queue	28/thread	28/thread	56/thread	

Intel Haswell MicroArchitecture

Execution Engine – Nehalem

Intel Nehalem Execution Engine

Execution Engine – Sandy Bridge

Intel Sandy Bridge Execution Engine

Execution Engine – Haswell

Intel Haswell Execution Engine

Intel Skylake MicroArchitecture

- More parallelism in every generation
- No pipeline growth still 14 stages
- 4-way associative layer 2 cache!
- Improved Hyper-Threading performance
- Improved Branch Predictor higher capacity, AVX2

Feature	Nehalem	Sandy Bridge	Haswell	Skylake
Out-of-Order window (ROB)	128	168	192	224
Load Buffers	48	64	72	72
Store Buffers	32	36	42	56
Scheduler Entries	36	54	60	97
Integer Register File	N/A	160	168	180
Floating Point Register File	N/A	144	168	168
Allocation Queue	28/thread	28/thread	56/thread	64/thread

Other Architectures

- Micro-Controllers
- FPGAs
- SoC
- GPUs

•

ATMEL ATMega 64 Micro-Controller

Xilinx ZYNQ - SoC

Computer Architecture

LEARN FOR THE EXAM! IT'S NOT GOING TO BE EASY!

References

- 1. Intel presentations available on the web: http://www.intel.com/
- 2. http://en.wikipedia.org/wiki/List of Intel microprocessors
- 3. http://www.hardwaresecrets.com/article/Inside-Intel-Nehalem-Microarchitecture/535/1
- 4. http://www.slideshare.net/am_sharifian/nehalem-microarchitecture
- http://research.engineering.wustl.edu/~songtian/pdf/intelhaswell.pdf
- 6. http://www.hotchips.org/wp-content/uploads/hc archives/hc25/HC25.80-Processors2-epub/HC25.27.820-Haswell-Hammarlund-Intel.pdf
- 7. http://www.anandtech.com/