CNN: Сверточные нейронные сети

Марина Горлова

Задачи, решаемые CNN

Основная модель для задач computer vision

- распознавание почтовых индексов
- самоуправляемые машины
- отпугивание соседских котов

Рекомендательные системы

NLP

Преимущества

Меньше параметров - меньше ресурсов

Устойчивость к сдвигам, поворотам

Помогает избежать попиксельного запоминания

Можно использовать как feature extractor

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input

Filter / Kernel

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Input x Filter

Feature Map

1x1	1x0	1x1	0	0
0 x 0	1x1	1x0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	0 1		0	0

4	

Примеры различных сверток

A B C
D E F

Figure 2.2: (a) Original image (b) Horizontal rank filter (c) Vertical rank filter (d)
Sobel edge detection (e) Horizontal edge detection (f) Vertical edge detection

Convolutional layer

Convolutional layer

Convolutional layer

$$conv(I, K)_{x,y} = \sigma(b + \sum_{i=1}^{h} \sum_{j=1}^{w} \sum_{k=1}^{d} K_{ijk} \times I_{x+i-1,y+j-1,k})$$

Параметры:

- глубина (depth) количество ядер
- высота (height) и ширина (width) каждого ядра
- шаг (stride)
- отступ (padding)

Используйте нелинейную активацию ReLU

Stride

размер - 1

Stride 1 Feature Map

Stride

размер - 2

Stride 2

Feature Map

Padding

Stride 1 with Padding

Feature Map

Pooling layer

Уменьшение размерности данных

Этот слой не обучается

Параметры:

- тип пулинга: max, average, globalMax, globalAverage
- размер окна
- stride

Pooling layer

1	1	2	4	may nool with 2v2		
5	6	7	8	max pool with 2x2 window and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

Pooling layer

Пример реализации (LeNet)

Проблема переобучения

L1-, L2- регуляризация

Dropout

Data Augmentation

Data Augmentation

