

Sursa: doilan.pas, doilan.cpp, doilan.c

Problema 2 - doilan

100 de puncte

Autor: prof.Carmen Mincă Colegiul Național de Informatică "Tudor Vianu", București

Descrierea soluției

Demonstrăm existenta numărului X prin inductie matematică după n, (n număr natural nenul).

Fie M_n mulțimea numerelor de n cifre formate doar cu cifrele 1 și 2. card $(M_n)=2^n$. Fie propoziția P (n): "Pentru orice număr natural nenul n există un număr natural nenul X_n din M_n astfel încât $2^n \mid X_n$

Se observă că P(1) și P(2) sunt adevărate deoarece:

- $X_1=2 \text{ si } 2^1 \mid 2$
- $X_2=12$ și $2^2 \mid 12$

Presupunem P(k) adevărată, adică există un număr natural nenul X_k din M_k , astfel încât $2^k \mid X_k$. Atunci $X_k=2^k \cdot p$, unde p este un număr natural nenul.

Demostrăm că $P(k) \rightarrow P(k+1)$ este adevărată.

Construim numărul X_{k+1} cu ajutorul lui X_k în funcție de paritatea lui p astfel:

- dacă p este par, atunci:

$$- \mathbf{x_{k+1} = 2 \cdot 10^k + x_k} = 2 \cdot 10^k + 2^k \cdot p = 2 \cdot 10^k + 2^k \cdot 2 \cdot q = 2^{k+1} \cdot 5^k + 2^{k+1} \cdot q = 2^{k+1} (5^k + q) | 2^{k+1} \cdot q = 2^{k+1} \cdot 10^k + 2^k \cdot q = 2^{k+1} \cdot 10$$

- dacă p este impar, atunci:
 - $p=2 \cdot q + 1$
 - $\mathbf{x_{k+1}} = \mathbf{1} \cdot \mathbf{10^k} + \mathbf{x_k} = 10^k + 2^k \cdot (2 \cdot q + 1) = 2^k (5^k + 2 \cdot q + 1) | 2^{k+1} \text{ deoarece } (5^k + 2 \cdot q + 1) | 2$

Observăm că numărul X_{k+1} construit aparține mulțimii $M_{k+1} => P(n)$ este adevărată pentru orice $n \ge 1$.

În plus, există un singur număr X din M_n care să fie divizibil cu 2^n .

Vom arăta că numerele din M_n dau resturi distincte la împărțirea prin 2^n .

Pp că există două numere distincte $A_n = a_1 a_2 a_3 \dots a_{n-1} a_n$ și $B_n = b_1 b_2 b_3 \dots b_{n-1} b_n$ din M_n care dau același rest la împărțirea prin 2^n (a_i , $b_i \in \{1, 2\}$). Astfel aceste numere trebuie să aibă aceeași paritate (fie ambele sunt pare, fie ambele sunt impare) => $a_n = b_n = c$ $\dot{s}i$ 2ⁿ | $A_n - B_n$

Notând cu $A_{n-1}=a_1a_2a_3\ldots a_{n-1}$ și $B_{n-1}=b_1b_2b_3\ldots b_{n-1}$ obținem că:

$$A_n = 10 * A_{n-1} + c$$
 $\hat{s}i$ $B_n = 10 * B_{n-1} + c$ $A_n - B_n = 10 (A_{n-1} - B_{n-1})$ $2^n | 10 (A_{n-1} - B_{n-1})$

$$\rightarrow 2^{n-1} \mid A_{n-1} - B_{n-1} \rightarrow \text{numerele } A_{n-1}$$
 și B_{n-1} dau același rest la împărțirea prin 2^{n-1}

Din această relație, deducem ca mai sus că: $a_{n-1}=b_{n-1}$

Repetând raționamentul descris, obținem că cele două numele A_n și B_n sunt egale, $(a_i=b_i \text{ pt. } i=1,2,\ldots,n)$. Rezultă că presupunerea este falsă și că numerele distincte din M dau resturi diferite la împărtirea prin 2ⁿ. Cum mulțimea resturilor împărțirii prin 2^n este $R = \{0, 1, 2, 3, ..., 2^n - 1\}$ și $card(M) = card(R) = 2^n$ rezultă că există un singur număr X în mulțimea M divizibil cu 2ⁿ

Acest număr X (soluția problemei) este al n-lea termen al șirului X_n construit conform relațiilor de mai sus:

$$X_1=2^1 \cdot 1=2$$

 $X_2=2^2 \cdot 3=12$

$$\begin{array}{l} \dots \\ X_k = 2^k \cdot p \\ \\ X_{k+1} = \left\{ \begin{array}{l} 2 \cdot 10^k + X_k \ \text{dacă} \ p = 2 \cdot q \\ \\ 1 \cdot 10^k + X_k \ \text{dacă} \ p = 2 \cdot q \ + 1 \end{array} \right.$$