Лабораторная работа №5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

Рожков А. В.

6 октября 2025 г.

Цель работы: Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

В работе используются: сцинтиллятор NaI(Tl), ФЭУ, предусилитель импульсов, высоковольтный блок питания для ФЭУ, АЦП, компьютер, осциллограф.

1 Теоретическое введение

В работе используется сцинтилляционный метод исследования излучений. Основным элементом является сцинтиллятор - вещество, способное излучать видимое или ультрафиолетовое излучение под действием заряженных частиц. Внутри вещества наблюдаются следующие 3 явления:

1.1 Фотоэффект

Это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта.

Кинетическая энергия электрона равна

$$T_e = \mathrm{E}_{\gamma} - I_i$$

где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома.

1.2 Эффект Комптона

Это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гаммаквантов на 180° и равна

$$E_{\text{max}} = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}}$$

1.3 Процесс образования электрон-позитронных пар

При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар.

Пороговая энергия, необходимая для образования пары:

$$E_{\text{пор}} \approx 2mc^2 = 1,022 \text{ MэВ}$$

В нашем случае данным эффектом можно пренебречь, так как при характерных для данной работы энергиях γ -квантов вероятность этого процесса крайне мала.

1.4 Итого

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом.

Помимо этих процессов, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma}\gg mc^2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты и последующего фотоэффекта в сцинтилляторе. Положение пика обратного рассеяния определяется по формуле:

$$E_{\rm o6p} = \frac{E}{1 + 2E/mc^2}$$

где Е – энергия фотопика

2 Экспериментальная установка

Рис. 1: Принципиальная блок-схема спектрометра. $(1 - \text{сцинтиллятор}, 2 - \Phi \ni \mathsf{Y}, 3 - \text{предусилитель импульсов}, 4 - высоковольтный блок питания для <math>\Phi \ni \mathsf{Y}, 5 - \text{блок преобразования аналоговых импульсов с }\Phi \ni \mathsf{Y}$ в цифровой код $(\mathsf{A} \coprod \mathsf{\Pi}), 6 - \mathsf{компьютер}$ для сбора данных, их обработки и хранения).

Рис. 2: Пример схематического устройства сцинтилляционного детектора

Исследуемое излучение попадает на вещество-сцинтиллятор. Вещество представляет собой неорганический кристалл NaI(Tl). Для предотвращения сильного поглощения излучения в сцинтилляторе вводят небольшие добавки других атомов (в данном случае атомы Таллия). Свободные локальные уровни энергии электрона на примесных атомах таллия располагаются внутри запрещенной зоны кристалла NaI. В процессе релаксации возможны переходы электронов, возбужденных в зону проводимости, на эти уровни. Энергии излучаемых при таких переходах фотонов меньше ширины запрещенной зоны, и они могут поглощаться только атомами таллия. Но концентрация таллия мала (порядка 0,1%), поэтому мало поглощение указанных фотонов, и они имеют все шансы вылететь из сцинтиллятора. В этом случае прохождение ионизирующей частицы через вещество будет сопровождаться световой вспышкой, которая и может быть использована для регистрации частицы.

Испущенный сцинтиллятором свет попадает на фотокатод и выбивает из него электроны, которые далее умножаются при помощи ФЭУ. На каждом уровне динодов один электрон выбивает несколько новых, образуя лавину. В конечном итоге электроны попадают на анод. При помощи предусилителя импульсов и АЦП сигнал регистрируется компьютером.

2.1 Энергетическое разрешение спектрометра

Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

1) со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления, 2) с различной вероятностью доставки фотона к фотоприёмнику из разных точек сцинтиллятора, 3) с разбросом высвечиваемого числа фотонов.

В результате в экспериментальном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},$$

где ΔE_i – ширина пика полного поглощения, измеренная на половине высоты (в единицах энергии), E_i – энергия регистрируемых гамма-квантов. Значение E_i пропорционально среднему числу фотонов \bar{n}_i на входе $\Phi \ni Y$:

$$E \propto \bar{n}$$
.

Полуширина пика ΔE_i пропорциональна среднеквадратичной флуктуации $\bar{\Delta n_i}$. Так как n_i распределено по закону Пуассона, то $\bar{\Delta n_i} = \sqrt{\bar{n_i}}$ и поэтому

$$\Delta E_i \propto \sqrt{\bar{n}_i}$$
.

Из вышесказанного получаем:

$$R_i = \frac{\Delta E_i}{E_i} \propto \frac{1}{\sqrt{E_i}}. (1)$$

Таким образом, чем выше энергия гамма-кванта, тем меньше разрешение.

2.2 Форма импульсов

Схема ФЭУ представлена на рисунке 3

Рис. 3: Схема ФЭУ

Сигнал на выходе имеет вид:

$$U(t) \propto e^{-t/RC} (1 - e^{-t/\tau_0})$$

где τ_0 – время высвечивания сцинтиллятора, а RC – постоянная времени, определяемая анодной цепью $\Phi \Im V$.

Чтобы сигнал было удобно регистрировать, RC выбирают много больше, чем τ_0 .

2.3 Спектры Со, Сѕ и Nа

На рис. 4(a) изображён спектр излучения ^{60}Co . На нём наблюдаются 2 фотопика (1) и (2) с энергиями 1.173МэВ и 1.332МэВ. Также видим край комптоновского спектра (3), пик обратного рассеяния (4) и пик характеристического излучения свинца (5).

На рис. 4(b) (^{137}Cs) видим фотопик (1) с энергией 0.6617МэВ, край комптоновского спектра (2) и пик обратного рассеяния (3).

На рис. 5 (^{22}Na) наблюдается фотопик (1) с энергией 1.274МэВ, аннигиляционный пик (2) на 511кэВ, края комптоновских спектров (3) и (4), пик обратного рассеяния (5) и характеристическое излучение свинца (6).

Рис. 4: Спектры для Co и Cs

Рис. 5: Спектр для Na

3 Ход работы

Измерения для каждого источника проводились в течение 5 минут. Предварительно был измерен фон (рис. 6).

Рис. 6: Фоновый спектр

3.1 Калибровочный график

По пикам Со (рис. 11(a)), Сs (рис. 11(b)) и Na (рис. 12) проведём калибровочную прямую $N_i = kE_i + b$ для нахождения соответствия между энергиями и номерами каналов спектрометра. Полученная прямая на рис. 7. Значения k и b:

$$k = 1360 \pm 10$$
 $b = 74 \pm 10$

Рис. 7: Калибровочный график

Расчётные формулы:

$$E_{i} = \frac{N_{i} - b}{k}$$

$$\sigma_{E_{i}} = \sqrt{\left(\frac{-1}{k}\right)^{2} \sigma_{b}^{2} + \left(\frac{b - N_{i}}{k^{2}}\right)^{2} \sigma_{k}^{2}}$$

$$\Delta E_{i} = \frac{\Delta N_{i}}{k}$$

$$\sigma_{\Delta E_{i}} = \frac{\Delta N_{i}}{k^{2}} \sigma_{k}$$

$$R_{i} = \frac{\Delta E_{i}}{E_{i}}$$

$$\sigma_{R_{i}} = \sqrt{\left(\frac{1}{E_{i}}\right)^{2} \sigma_{\Delta E_{i}}^{2} + \left(\frac{-\Delta E_{i}}{E_{i}^{2}}\right)^{2} \sigma_{E_{i}}^{2}}$$

Результаты для кобальта, цезия и натрия в таблице 1.

Источник	N_i	ΔN_i	$E_{i_{ ext{ iny Ta6}}},$ кэ ${ m B}$	E_i , кэ ${ m B}$	ΔE_i , кэ ${ m B}$	R_i
Со	1675	76	1173	1180 ± 10	55.9 ± 0.8	0.0475 ± 0.0007
Со	1889	96	1332	1330 ± 10	70.6 ± 0.9	0.0529 ± 0.0007
Cs	975	60	661.7	663 ± 9	44.1 ± 0.8	0.0666 ± 0.0012
Na	767	54	511	510 ± 8	39.7 ± 0.8	0.078 ± 0.002
Na	1796	128	1274	1270 ± 10	94.14 ± 1.00	0.0743 ± 0.0008

Таблица 1: Таблица измерений для Co, Cs и Na

3.2 Результаты измерений для Ат и Еи

Измерения америция и европия на рис. 13.

Результаты в таблице 2. Для Европия отчётливо наблюдаются пики обратного рассеяния и пики, полученные в результате сложения нескольких γ -квантов (при попадании нескольких γ -квантов за время одного счёта детектора).

Источник	N_i	ΔN_i	E_i , кэ ${ m B}$	ΔE_i , кэ ${ m B}$	R_i
Am	99	11	18 ± 8	8.1 ± 0.7	0.44 ± 0.07
Am	150	16	56 ± 8	11.8 ± 0.7	0.21 ± 0.01
Eu	118	16	32 ± 8	11.8 ± 0.7	0.36 ± 0.03
Eu (+)	169	8	70 ± 8	5.9 ± 0.7	0.084 ± 0.011
Eu (r)	188	15	84 ± 8	11.0 ± 0.7	0.131 ± 0.009
Eu	236	17	119 ± 8	12.5 ± 0.7	0.105 ± 0.006
Eu (r)	298	20	165 ± 8	14.7 ± 0.7	0.089 ± 0.005
Eu (+)	401	30	241 ± 8	22.1 ± 0.8	0.092 ± 0.003
Eu	537	41	341 ± 8	30.2 ± 0.8	0.089 ± 0.002
Eu (+)	650	80	424 ± 8	58.8 ± 0.8	0.139 ± 0.002
Eu (+)	1135	72	780 ± 9	53.0 ± 0.8	0.0679 ± 0.0011
Eu (+)	1384	86	964 ± 10	63.3 ± 0.9	0.0656 ± 0.0009
Eu (+)	1582	91	1109 ± 11	66.9 ± 0.9	0.0603 ± 0.0008

Таблица 2: Результаты измерений для Америция и Европия. (r) - пик обратного рассеяния; (+) - пик, полученный в результате "почти одновременного" попадания γ -квантов более низких энергий в детектор (сложение)

3.3 Край комптоновского поглощения

Построим график, по одной оси которого измеренные значения края комптоновского поглощения, а по другой теоретические. Результаты в таблице 3 и на рис. 8. Расчётные формулы:

$$E_c = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}} \qquad \qquad \sigma_{E_c} = 4\hbar\omega \frac{mc^2 + \hbar\omega}{(mc^2 + 2\hbar\omega)^2} \sigma_{\hbar\omega}$$

Рис. 8: График зависимости теоретических значений энергий края комптоновского поглощения от экспериментальных

Источник	$E_{c_{\mathfrak{s}_{\mathrm{KCII}}}}$	$E_{c_{\text{reop}}}$
Со	_	1.12
Со	0.96 ± 0.02	0.963
Cs	0.47 ± 0.02	0.477
Na	1.03 ± 0.03	1.06
Na	0.32 ± 0.02	0.341

Таблица 3: Экспериментальные и теоретические значения энергий края комптоновского поглощения

3.4 Проверка зависимости (1)

Построим график $R_i^2 = f(1/E_i)$. Значения для америция, а также первый фотопик европия исключим из-за больших погрешностей. График на рисунке 10

Как видим, пронаблюдать подтверждение зависимости не удалось. Скорее всего, имеет место слишком неточное измерение ширины на полувысоте пиков.

3.5 Пики обратного рассеяния

Рассчитаем значения энергии пиков обратного рассеяния по формуле:

$$E_{\text{o6p}} = \frac{E}{1 + 2E/mc^2}$$
 $\sigma_{E_{\text{o6p}}} = \frac{(mc^2)^2}{mc^2 + 2E}\sigma_E$

Результаты в таблице 4 и на рисунке 10.

Рис. 9: График для проверки зависимости $R_i \propto \frac{1}{\sqrt{E_i}}$

Источник	E, МэВ	$E_{\text{обр}_{\text{теор}}}, \text{МэВ}$	$E_{\text{обрэксп}}, \text{МэВ}$
Со	1.178 ± 0.011	0.2099 ± 0.0004	_
Со	1.335 ± 0.012	0.2145 ± 0.0003	0.22 ± 0.02
Cs	0.663 ± 0.009	0.1844 ± 0.0007	0.18 ± 0.02
Na	0.510 ± 0.008	0.1702 ± 0.0009	0.17 ± 0.02
Na	1.267 ± 0.012	0.2126 ± 0.0003	_
Am	0.056 ± 0.008	0.046 ± 0.005	_
Eu	0.341 ± 0.008	0.146 ± 0.001	0.165 ± 0.008
Eu	0.119 ± 0.008	0.081 ± 0.004	0.084 ± 0.008
Eu	0.032 ± 0.008	0.029 ± 0.006	_

Таблица 4: Значения энергий пиков обратного рассеяния

Рис. 10: График для проверки зависимости энергии пиков обратного рассеяния от энергии фотопиков

3.6 Характеристическое излучение свинца

Заметим, что на графиках натрия, цезия и кобальта в левой части спектра наблюдается пик, соответствующий энергии порядка 90кэВ. Это соответствует характеристическому излучению из

свинца, служащего защитой спектрометра от внешнего излучения.

4 Вывод

В ходе работы исследовали явления фотоэффекта, комптоновского рассеяния, образования электрон-позитронных пар и обратного рассеяния.

5 Необработанные измерения

Рис. 11: Измерения для Co и Cs

Рис. 12: Измерения для Na

Рис. 13: Измерения для Am и Eu