

Filesystems and Storage on CU Research Computing Resources

Be Boulder.

Formalities

- Andrew Monaghan (Slides developed by Mea Trahan)
- Email: <u>Andrew.Monaghan@Colorado.edu</u>
- RC Homepage: https://www.colorado.edu/rc
- RC Email: <u>rc-help@colorado.edu</u>

- Slides available for download at:
- https://github.com/ResearchComputing/Filesystems_And_Storage_Fall_2022

Outline

- Common Terms
- Overview of CURC computing resources
- Overview of CURC storage
- Alpine architecture and filesystems
- Petalibrary
- Data transfers and tools

Common Terms

Term	Meaning		
HPC	"High Performance Computing" – infrastructure that can solve complex problems quickly.		
Core	A single processing unit on a CPU that can execute one task at-a-time.		
CPU	"Central Processing Unit": Component of a computer that carries out tasks (data I/O, arithmetic, interpreting instructions); Usually has multiple cores .		
Memory	"RAM": Short-term memory on a computer, where data is stored while being processed by CPU (s).		
Node	A single computer within a cluster that has its own memory and CPU(s).		
Fabric	High-speed networking cable that connects nodes on a cluster.		
Filesystem	A framework that defines how files are named, stored and accessed from storage.		
Storage	Device that stores files persistently. Filesystems manage storage operations.		
Cluster (Supercomputer)	A specific HPC platform such as CURC's Alpine or Summit. Typical features of a <i>cluster</i> : lots of nodes with multiple CPUs , many cores , and substantial memory, connected by performant fabric and common filesystems and storage .		

Overview of CURC computing resources

System	Description	In service	Types of resources	#CPU cores
Alpine	CURC's primary supercomputing	2022-	CPU, GPU, high- mem	15,184 +
Summit	Supercomputer; predecessor to Alpine	2017- 2022	CPU, GPU, high- mem, KNL	17,200
Blanca	"Condo" cluster; groups buy dedicated nodes	2015-	CPU, GPU, high- mem	8,952
Viz	Gpu-accelerated cluster for data visualization	2019-	CPU, GPU	192
CUmulus	Cloud-cluster for databases, web apps, workflow mgt.	2020-	CPU	244

Overview of your CURC directories

3 major user directories

- Home Used for reusable job scripts, setting files, and other important small files.
- Projects Used for application and small datasets.
- Scratch Work directory. Used with jobs for highspeed access to data or output.

Table:

	Directory	Capacity	Snapshots	Purge
Home	/home/\$USER	2 GB	2 hours for 7 days	Never
Projects	/projects/\$USER	250 GB	6 hours for 7 days	Never
Scratch*	/scratch/alpine/\$USER	10 TB	(none)	90 days

* "scratch" storage is system-specific – example above is for Alpine

RC's HPC network

UNIVERSITY OF COLORADO BOULDER

RC's filesystems

- To reduce the amount of complexity for an end users, CURC uses a shared file server – "core storage" -- to manage user related storage.
 - Contains /home, /projects
 - Contains all shared software and the module stack (/curc).
 - Every node or login VM is connected to this resource allow user to easily manage their files.
 - Non-Parallel IO not designed for performant read/write access

RC's HPC network (incl. core storage)

JNIVERSITY OF COLORADO BOULDER

Problems with I/O and threads

- Suppose someone is computing with 120 threads and needs to write their data to a file system...
- Single File:
 - Many threads means that applications may idle waiting for free resources.
 - Nonlocking I/O may cause corruption of data.
- Many Files:
 - Separate file writes may lead to issues with the filesystem's metadata service.
- So what do we do?

CURC's Parallel filesystems

There is an additional parallel file system available on Blanca, Summit and Alpine!:

- "Scratch" filesystem. Typical setup:
 - Spinning disk platters rated at 12 Gb/s
 - GPFS File System for parallel I/O w/ 32 Clients and 4 Servers
 - Distributed metadata to avoid bottlenecking
 - Consistent chunking allows for parallel I/O
 - Locally mounted to each node on a specific cluster
- Default is 10 TB of scratch storage/user; can be expanded upon with request.
 - Files purged 90 days from creation date.
 - Technically shared among all users

Parallel Filesystem

- Normal application I/O is usually lacking the ability to leverage a parallel file system for performance
 - On Alpine you will naturally get an I/O performance boost when using scratch.
- Need to utilize specialized software libraries
- MPIIO
 - Middle wear, requires modification of code for efficient usage.
- HDF5
 - High level, use a HDF5 dataset
- NETCDF
 - High level use a Netcdf dataset

RC's HPC network (incl. parallel f.s.)

JNIVERSITY OF COLORADO BOULDER

Other fast storage: Local Node SSDs

- Alpine/Summit/Blanca nodes also have 100-800 GB of local node SSD storage.
- These SSDs are not shared among nodes so must move files over within job.
- No Cooperative Parallel I/O, but fast because solid state
- Located on each node at /scratch/local
- Can point I/O to \$SLURM SCRATCH (/scratch/local/<jobid>) during job (directory purged at end of job)

Permanent large-scale storage: Petalibrary

- Research Computing offers a subsidized but paid, long-term storage solution closely coupled with RC resources.
- Petalibrary
 - Large-scale subsidized storage solution
 - Enterprise Grade
 - RC Staff supported with assistance on transfer strategies
 - Available in several flavors:
 - Active Disk
 - Archival Tape
 - Active Storage with Archive copy

Hardware Specifications

Active Storage

- Spinning disk platters for frequent reads and writes
- ZFS filesystem
- RAID-6 file protection
- Allocations located at: /pl/active/
- Mounted on all clusters + login nodes + data transfer nodes (DTNs)

Archive Storage

- Presently tape storage for infrequent reads and writes
- Currently being replaced with more cost-effective spinning disk storage
- Allocations located at: /pl/archive/
- Mounted on login nodes + data transfer nodes (DTNs)

Checking your storage limits:

- curc-quota Research computing tool to monitor disk usage.
 - Provides detailed summary of your core storage
 - Provides detailed summary of scratch space on compile and compute nodes
 - Also lists current capacity of all Petalibrary allocations you have access to

```
[userXXXX@login12 ~]$ module load curc-quota
[userXXXX@login12 ~]$ curc-quota
```

Data Transfers

- Data transfers are usually handled by one of 2 methods:
- Globus
 - By far the most stable and recommended way for data transfers
 - Fast transfers
 - Transfers continue if a user disconnects
 - Web GUI option or Globus Connect Personal

SCP/SFTP/RSYNC

- Secure Copy and Secure File Transfer Protocol
- Straightforward method of transferring data
- Can transfer through login nodes _or_ through data transfer nodes (recommended)
- https://curc.readthedocs.io/en/latest/compute/data-transfer.html

Data Transfers (2)

- Less common methods of transferring data...
- sshfs and SMB
 - Mounting the RC filesystem to your drive remotely!
 - Single sign in for multiple data transfers
 - Great when needing to repeatedly access files on RC Resources
 - Less Performant
- rclone
 - Useful for file transfers across very heterogenious systems (e.g., Google Drive to CURC)

Questions?

Thank you!

Please fill out the survey: http://tinyurl.com/curc-survey18

Contact information: <u>rc-help@Colorado.edu</u>

Slides:

https://github.com/ResearchComputing/Filesystems_And_Storage_Fall_2022

