21-120: Differential and Integral Calculus Lecture #11 Outline

Read: Section 3.6 of the textbook

Objectives and Concepts:

• The derivative of the composite function f(g(x)) is $f'(g(x)) \cdot g'(x)$. In Leibniz notation, if y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$.

Suggested Textbook Exercises:

• 3.6: 215-251 odd.

The Chain Rule

So far we know how to compute derivatives of most functions by themselves, for example, if $f(x) = \sqrt{x}$ and $g(x) = 2x^2 - 1$, it's easy to compute f'(x) and g'(x). But what about the derivative of the composite function $f(g(x)) = \sqrt{2x^2 - 1}$?

The Chain Rule: If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and y is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$
derivative outer function evaluated at inner function function function
$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$

For the function $F(x) = \sqrt{2x^2 - 1}$, we can find functions f and g such that F(x) = f(g(x)). For example, if $f(x) = \sqrt{x}$ and $g(x) = 2x^2 - 1$, then $F(x) = f(g(x)) = f(2x^2 - 1) = \sqrt{2x^2 - 1}$. Now $f'(x) = \frac{1}{2\sqrt{x}}$ and g'(x) = 4x, so this means that

$$F'(x) = f'(g(x)) \cdot g'(x) = f'(2x^2 - 1) \cdot (4x) = \frac{1}{2\sqrt{2x^2 - 1}} \cdot (4x) = \frac{2x}{\sqrt{2x^2 - 1}}.$$

The Power Rule Combined with the Chain Rule:: If n is any real number and u = g(x) is differentiable, then

$$\frac{d}{dx} [g(x)]^n = n [g(x)]^{n-1} \cdot g'(x)$$

Example 1: Differentiate the following functions.

(a)
$$y = \sqrt[3]{x^3 - 1}$$

(b)
$$g(x) = \sec(x^3 - 3x)$$

(c)
$$f(x) = \frac{2x\cos(5x)}{\sqrt{x}+1}$$

(d)
$$y = \sin(\cos(3x + 2))$$

(e)
$$f(t) = (4\cos(2x) - 3\csc(5x^3))^{-3}$$

Example 2: Find the equation of the line tangent to the curve $y = 2 \tan \left(\frac{\pi x}{4}\right)$ when x = 1.

Example 3: Find all locations where the function $f(x) = 2\sqrt{x^2 + 1}$ has a horizontal tangent line.

Example 4: Find f''(x) if $f(x) = 2\sqrt{x^2 + 1}$.

Example 5: Find $f^{(7)}(x)$ if $f(x) = \cos(2x + 1)$.

Example 6: Suppose that p(x) = f(x)g(x) and F(x) = f(g(x)). Also,

$$f(2) = 3$$
 $g(2) = 5$ $g'(2) = 4$ $f'(2) = -2$ $f'(5) = 11$.

Find:

(a)
$$p'(2)$$

(b)
$$F'(2)$$

Example 7: The graphs of two functions f(x) and g(x) are shown below.

Let F(x) = f(g(x)), G(x) = g(f(x)), and H(x) = f(f(x)). Find each derivative, if it exists. If it does not exist, explain why.

- (a) F'(1)
- (b) G'(2)
- (c) H'(5)