SCTLR_EL2, System Control Register (EL2)

The SCTLR EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, these controls apply also to execution at ELO.

Configuration

AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSCTLR[31:0].

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SCTLR_EL2 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
TIDCP	SPINTMASK	NMI	EnTP2	TCSO	TCSO0	EPAN	EnALS	EnAS0	EnASR	TME	TME0	TMT	TMT0	_
EnIA	EnIB	LSMAOE	nTLSMD	EnDA	UCI	EE	E0E	SPAN	EIS	IESB	TSCXT	WXN	nTWE	RES0 _r
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17

TIDCP, bit [63] When FEAT_TIDCP1 is implemented and HCR_EL2.E2H == 1:

Trap implementation defined functionality. Traps EL0 accesses to the encodings reserved for implementation defined functionality to EL2.

TIDCP	Meaning
000	No instructions accessing the System register or System instruction spaces are trapped by this mechanism.

- If HCR_EL2.TGE==0, no instructions accessing the System register or System instruction spaces are trapped by this mechanism.

 If HCR_EL2.TGE==1, instructions accessing the following System register or System instruction spaces are trapped to EL2 by this mechanism:
 - In AArch64 state, EL0 access to the encodings in the following reserved encoding spaces are trapped and reported using EC syndrome 0x18:
 - implementation defined System instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
 - implementation defined System registers, which are accessed using MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register name.
 - In AArch32 state, EL0 MCR and MRC access to the following encodings are trapped and reported using EC syndrome 0x03:
 - o All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
 - o All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
 - o All coproc==p15, CRn==c11,
 opc1=={0-7}, CRm == {c0-c8,
 c15}, opc2 == {0-7}.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SPINTMASK, bit [62] When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL2.

SPINTMASK	Meaning
0d0	Does not cause PSTATE.SP to mask interrupts. PSTATE.ALLINT is set to 1 on taking an exception to EL2.
0b1	When PSTATE.SP is 1 and execution is at EL2, an IRQ or FIQ interrupt that is targeted to EL2 is masked regardless of any denotion of Superpriority. PSTATE.ALLINT is set to 0 on taking an exception to EL2.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NMI, bit [61] When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI	Meaning	
0d0	This control does not affect interrupt masking behavior.	
0b1	This control enables all of the following:	
	 The use of the PSTATE.ALLINT interrupt mask. IRQ and FIQ interrupts to have Superpriority as an additional attribute. PSTATE.SP to be used as an interrupt mask. 	

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, res0.

EnTP2, bit [60] When FEAT SME is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Traps instructions executed at EL0 that access <u>TPIDR2_EL0</u> to EL2 when EL2 is implemented and enabled for the current Security state. The exception is reported using ESR ELx.EC value 0x18.

EnTP2	Meaning
0b0	This control causes execution of
	these instructions at ELO to be
	trapped.
0b1	This control does not cause
	execution of any instructions to
	be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

TCSO, bit [59] When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

TCSO	Meaning
0b0	This field has no effect on Tag
	checking.
0b1	Load instructions executed in
	EL2 are Tag Unchecked.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCSO0, bit [58] When FEAT_MTE_STORE_ONLY is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Tag Checking Store Only in EL0.

TCS00	Meaning
0b0	This field has no effect on Tag
	checking.
0b1	Load instructions executed in
	EL0 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EPAN, bit [57] When FEAT PAN3 is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page with EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never mechanism.

EPAN	Meaning
0b0	No additional Permission faults
	are generated by this
	mechanism.

0b1	An EL2 data access to a page with stage 1 EL0 data access permission or stage 1 EL0
	instruction access permission
	•
	generates a Permission fault.
	Any speculative data accesses
	that would generate a
	Permission fault as a result of
	PSTATE.PAN = 1 if the accesses
	were not speculative, will not
	cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

EnALS, bit [56]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS	Meaning
0b0	Execution of an LD64B or
	ST64B instruction at EL0 is
	trapped to EL2.
0b1	This control does not cause any
	instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR ELx.EC value of 0x0A, with an ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

EnASO, bit [55] When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV0 instruction at EL0 to EL2.

EnAS0	Meaning
0b0	Execution of an ST64BV0
	instruction at ELO is trapped to
	EL2.
0b1	This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

EnASR, bit [54]

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR	Meaning
0b0	Execution of an ST64BV instruction at EL0 is trapped to EL2.

0b1	This control does not cause any
	instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT LS64 V is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

TME, bit [53] When FEAT TME is implemented:

Enables the Transactional Memory Extension at EL2.

Meaning	
Any attempt to execute a TSTART	
instruction at EL2 is trapped,	
unless <u>HCR_EL2</u> .TME or	
SCR_EL3.TME causes TSTART	
instructions to be undefined at	
EL2.	
This control does not cause any TSTART instruction to be trapped.	

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TME0, bit [52]

When FEAT TME is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Enables the Transactional Memory Extension at ELO.

TME0	Meaning	
------	---------	--

0d0	Any attempt to execute a TSTART instruction at EL0 is trapped to EL2, unless
	HCR EL2.TME or
	SCR_EL3.TME causes TSTART
	instructions to be undefined at EL0.
0b1	This control does not cause any TSTART instruction to be
	trapped.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

TMT, bit [51] When FEAT TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT	Meaning
0b0	This control does not cause any
	TSTART instruction to fail.
0b1	When the TSTART instruction is
	executed at EL2, the transaction
	fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

TMT0, bit [50] When FEAT_TME is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Forces a trivial implementation of the Transactional Memory Extension at ELO.

TMT0	Meaning
0b0	This control does not cause any
	TSTART instruction to fail.
0b1	When the TSTART instruction is
	executed at EL0, the transaction
	fails with a TRIVIAL failure
	cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0: IGNORED.

Otherwise:

Reserved, res0.

TWEDEL, bits [49:46] When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE caused by SCTLR_EL2.nTWE as 2^(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0: IGNORED.

Otherwise:

TWEDEn, bit [45] When FEAT TWED is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR EL2.nTWE.

TWEDEn	Meaning
0b0	The delay for taking a WFE
	trap is implementation
	defined.
0b1	The delay for taking a WFE
	trap is at least the number of
	cycles defined in
	SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

DSSBS, bit [44] When FEAT SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS	Meaning
0b0	PSTATE.SSBS is set to 0 on an
	exception to EL2.
0b1	PSTATE.SSBS is set to 1 on an
	exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an implementation defined value.

Otherwise:

ATA, bit [43] When FEAT MTE2 is implemented:

Allocation Tag Access in EL2.

When <u>SCR_EL3</u>.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL2.

ATA	Meaning
0b0	Access to Allocation Tags is
	prevented at EL2.
	Memory accesses at EL2 are not
	subject to a Tag Check operation.
0b1	This control does not prevent access to Allocation Tags at EL2.
	Tag Checked memory accesses at
	EL2 are subject to a Tag Check
	operation.
	The Tag Check operation depends on
	the type of tag at the memory being
	accessed:
	 For Allocation Tagged memory, an Allocation Tag Check
	operation.
	• If
	FEAT MTE CANONICAL TAGS
	is implemented, for
	Canonically Tagged memory, a
	Canonical Tag Check
	operation.
	-

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ATA0, bit [42]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Allocation Tag Access in EL0.

When <u>SCR_EL3</u>.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL0.

0d0	Access to Allocation Tags is
	prevented at ELO.
	Memory accesses at EL0 are not
	subject to a Tag Check operation.
0b1	This control does not prevent access
	to Allocation Tags at EL0.
	Tag Checked memory accesses at
	EL0 are subject to a Tag Check
	operation.
	The Tag Check operation depends on
	the type of tag at the memory being
	accessed:

- For Allocation Tagged memory, an Allocation Tag Check operation.
- If
 FEAT_MTE_CANONICAL_TAGS
 is implemented, for
 Canonically Tagged memory, a
 Canonical Tag Check
 operation.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT MTE2 is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

TCF, bits [41:40] When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF	Meaning	Applies when
0b00	Tag Check Faults have no effect on	
	the PE.	
0b01	Tag Check Faults	
	cause a	
	synchronous	
	exception.	
0b10	Tag Check Faults	
	are	
	asynchronously	
	accumulated.	
0b11	Tag Check Faults	When
	cause a	FEAT_MTE3
	synchronous	is
	exception on	implemented
	reads, and are	
	asynchronously	
	accumulated on	
	writes.	

If FEAT_MTE3 is not implemented, the value <code>0b11</code> is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCF0, bits [39:38] When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0	Meaning	Applies when
0000	Tag Check Faults have no effect on the PE.	
0b01	Tag Check Faults cause a synchronous exception.	

0b10	Tag Check Faults are	
	asynchronously	
	accumulated.	
0b11	Tag Check	When
	Faults cause a	FEAT_MTE3
	synchronous	is
	exception on	implemented
	reads, and are	
	asynchronously	
	accumulated on	
	writes.	

If FEAT MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT MTE2 is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are reported asynchronously, are synchronized into TFSREO EL1, TFSR EL1 and TFSR EL2 registers.

ITFSB	Meaning
0b0	Tag Check Faults are not
	synchronized on entry to EL2.
0b1	Tag Check Faults are
	synchronized on entry to EL2.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BT, bit [36] When FEAT BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR EL2. $\{E2H, TGE\} == \{1, 1\}$, this bit is named BT1.

BT	Meaning
0b0	When the PE is executing at EL2, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
0b1	When the PE is executing at EL2, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BTO, bit [35] When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

PAC Branch Type compatibility at EL0.

BT0	Meaning
0b0	When the PE is executing at EL0, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
0b1	When the PE is executing at ELO, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT BTI is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

Bit [34]

Reserved, res0.

MSCEn, bit [33]

When FEAT MOPS is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set instructions at ELO.

MSCEn	Meaning
0b0	Execution of the Memory Copy
	and Memory Set instructions is
	undefined at EL0.
0b1	This control does not cause
	any instructions to be
	undefined.

When FEAT_MOPS is implemented and HCR_EL2. {E2H, TGE} is not {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT MOPS is implemented, HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

CMOW, bit [32] When FEAT CMOW is implemented and HCR EL2.E2H == 1:

Controls cache maintenance instruction permission for the following instructions executed at ELO.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW	Meaning
0b0	These instructions executed at
	EL0 with stage 1 read
	permission, but without stage 1
	write permission, do not
	generate a stage 1 permission
	fault.
0b1	If enabled as a result of
	$\underline{\text{SCTLR}}\underline{\text{EL2}}.\text{UCI}==1$, these
	instructions executed at EL0
	with stage 1 read permission,
	but without stage 1 write
	permission, generate a stage 1
	permission fault.

When HCR EL2.TGE is 0, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

- AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
- Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIA, bit [31] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA	Meaning
0b0	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is not enabled.
0b1	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIB, bit [30] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB	Meaning
0b0	Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.
0b1	Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode

functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

LSMAOE, bit [29] When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE	Meaning
0d0	For all memory accesses at
	EL0, A32 and T32 Load
	Multiple and Store Multiple
	can have an interrupt taken
	during the sequence memory
	accesses, and the memory
	accesses are not required to
	be ordered.
0b1	The ordering and interrupt
	behavior of A32 and T32
	Load Multiple and Store
	Multiple at ELO is as defined
	for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res1.

nTLSMD, bit [28] When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD	Meaning
0b0	All memory accesses by A32
	and T32 Load Multiple and
	Store Multiple at EL0 that
	are marked at stage 1 as
	Device-nGRE/Device-nGnRE/
	Device-nGnRnE memory are
	trapped and generate a stage
	1 Alignment fault.
0b1	All memory accesses by A32
	and T32 Load Multiple and
	Store Multiple at ELO that
	are marked at stage 1 as
	Device-nGRE/Device-nGnRE/
	Device-nGnRnE memory are
	not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

EnDA, bit [27] When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA	Meaning
0b0	Pointer authentication (using the
	APDAKey_EL1 key) of data
	addresses is not enabled.
0b1	Pointer authentication (using the
	APDAKey_EL1 key) of data
	addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

UCI, bit [26] When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to <u>DC CVAU</u>, <u>DC CIVAC</u>, <u>DC CVAP</u>, and <u>IC IVAU</u>.

If FEAT_DPB2 is implemented, this trap also applies to DC-CVADP.

If FEAT_MTE is implemented, this trap also applies to <u>DC CIGVAC</u>, <u>DC CIGDVAC</u>, <u>DC CGVAC</u>, <u>DC CGVAP</u>, and <u>DC CGDVAP</u>.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to <u>DC CGVADP</u> and <u>DC CGDVADP</u>.

UCI	Meaning
0b0	Any attempt to execute an
	instruction that this trap applies to
	at EL0 using AArch64 is trapped to
	EL2.
0b1	This control does not cause any
	instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is implementation defined whether the execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL1&0 translation regime.

EE	Meaning	
----	---------	--

0d0	Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and
	stage 2 translation table walks in the EL1&0 translation regime are
	little-endian.
0b1	Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL1&0 translation regime are
	big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than ELO, this bit is res0.

If an implementation does not provide Little-endian support at Exception levels higher than ELO, this bit is res1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an implementation defined value.

E0E, bit [24] When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Endianness of data accesses at ELO.

EOE	Meaning
0b0	Explicit data accesses at EL0 are
	little-endian.
0b1	Explicit data accesses at EL0 are
	big-endian.

If an implementation only supports Little-endian accesses at ELO, then this bit is res0. This option is not permitted when SCTLR EL1.EE is res1.

If an implementation only supports Big-endian accesses at EL0, then this bit is res1. This option is not permitted when SCTLR_EL1.EE is res0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

SPAN, bit [23] When HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Set Privileged Access Never, on taking an exception to EL2.

SPAN	Meaning
0b0	PSTATE.PAN is set to 1 on taking
	an exception to EL2.
0b1	The value of PSTATE.PAN is left
	unchanged on taking an
	exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res1.

EIS, bit [22] When FEAT ExS is implemented:

Exception entry is a context synchronization event.

EIS	Meaning
0b0	The taking of an exception to EL2
	is not a context synchronization
	event.
0b1	The taking of an exception to EL2
	is a context synchronization event.

If SCTLR EL2.EIS is set to 0b0:

- Indirect writes to <u>ESR_EL2</u>, <u>FAR_EL2</u>, <u>SPSR_EL2</u>, <u>ELR_EL2</u>, and <u>HPFAR_EL2</u> are synchronized on exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR EL2.EIS:

- Changes to the PSTATE information on entry to EL2.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and data processing instructions.
- Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

IESB, bit [21] When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB	Meaning
0b0	Disabled.
0b1	An implicit error synchronization event is added:
	 At each exception taken to EL2. Before the operational pseudocode of each ERET instruction executed at EL2.

When the PE is in Debug state, the effect of this field is constrained unpredictable, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an

implicit error synchronization event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TSCXT, bit [20]

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT	Meaning
0b0	EL0 access to SCXTNUM_EL0
	is not disabled by this
	mechanism.
0b1	EL0 access to <u>SCXTNUM_EL0</u>
	is disabled, causing an
	exception to EL2, and the
	SCXTNUM_ELO value is
	treated as $\overline{0}$.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, res1.

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable to be treated as XN.

WXN	Meaning
0b0	This control has no effect on
	memory access permissions.
0b1	Any region that is writable in the
	EL2 or EL2&0 translation regime
	is forced to XN for accesses from
	software executing at EL2.

This bit applies only when SCTLR EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

nTWE, bit [18] When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

nTWE	Meaning
0b0	Any attempt to execute a WFE
	instruction at EL0 is trapped to
	EL2, if the instruction would
	otherwise have caused the PE to
	enter a low-power state.
0b1	This control does not cause any
	instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time

in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res1.

Bit [17]

Reserved, res0.

nTWI, bit [16] When HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI	Meaning
0b0	Any attempt to execute a WFI
	instruction at EL0 is trapped
	EL2, if the instruction would
	otherwise have caused the PE to
	enter a low-power state.
0b1	This control does not cause any
	instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res1.

UCT, bit [15] When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps EL0 accesses to the CTR EL0 to EL2, from AArch64 state only.

UCT	Meaning
0d0	Accesses to the CTR_EL0 from
	EL0 using AArch64 are trapped to
	EL2.
0b1	This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

DZE, bit [14] When HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Traps execution of <u>DC ZVA</u> instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to <u>DC GVA</u> and <u>DC GZVA</u>.

DZE	Meaning			
0b0	Any attempt to execute an			
	instruction that this trap applies			
	to at EL0 using AArch64 is			
	trapped to EL2. Reading			
	<pre>DCZID_EL0.DZP from EL0 returns</pre>			
	1, indicating that the instructions			
	that this trap applies to are not			
	supported.			
0b1	This control does not cause any			
	instructions to be trapped.			

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When HCR EL2.E2H == 1 and HCR EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

EnDB, bit [13]

When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB	Meaning		
0b0	Pointer authentication (using the		
	APDBKey_EL1 key) of data		
	addresses is not enabled.		

Pointer authentication (using the
APDBKey EL1 key) of data
addresses is enabled.

Note

0b1

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and $\frac{HCR_EL2}{E2H,TGE} = \{1,1\}$, EL0.

Ι Meaning All instruction accesses to Normal 0b0 memory from EL2 are Noncacheable for all levels of instruction and unified cache. When EL2 is enabled in the current Security state and HCR EL2. {E2H, TGE == {1, 1}, all instruction accesses to Normal memory from EL0 are Non-cacheable for all levels of instruction and unified cache. If SCTLR EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Noncacheable memory.

This control has no effect on the Cacheability of instruction access to Normal memory from EL2 and, when EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, instruction access to Normal memory from EL0.

If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or $\underline{HCR_EL2}$. {E2H,TGE} != {1,1}, this bit has no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11] When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS	Meaning
0b0	An exception return from EL2 is
	not a context synchronization
	event.
0b1	An exception return from EL2 is a
	context synchronization event.

If SCTLR EL2.EOS is set to 0b0:

- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and EL2 on exception return is synchronized.

- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and data processing instructions.
- Exit from Debug state.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

EnRCTX, bit [10] When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enable EL0 access to the following System instructions:

- CFPRCTX, DVPRCTX and CPPRCTX instructions.
- If FEAT SPECRES2 is implemented, <u>COSPRCTX</u>.
- CFP RCTX, DVP RCTX and CPP RCTX instructions.
- If FEAT SPECRES2 is implemented, COSP RCTX.

EnRCTX	Meaning
0b0	EL0 access to these
	instructions is disabled, and
	these instructions are trapped
	to EL1.
0b1	EL0 access to these
	instructions is enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Bit [9]

Reserved, res0.

SED, bit [8]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED	Meaning
0b0 SETEND instruction execution i	
	enabled at EL0 using AArch32.
0b1	SETEND instructions are
	undefined at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is res1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When EL0 can only use AArch64, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Reserved, res1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

ITD, bit [7]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD	Meaning
0b0	All IT instruction functionality is
	enabled at EL0 using AArch32.

- Any attempt at EL0 using AArch32 to execute any of the following is undefined:
 - All encodings of the IT instruction with hw1[3:0]! =1000.
 - All encodings of the subsequent instruction with the following values for hw1:

 - 0b0100x1xxx1111xxx:
 ADD Rdn, PC; CMP Rn,
 PC; MOV Rd, PC; BX
 PC; BLX PC.
 - Ob010001xx1xxxx111:
 ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers unpredictable cases with BLX Rn.

These instructions are always undefined, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block.

It is implementation defined whether the IT instruction is treated as:

- A 16-bit instruction, that can only be followed by another 16-bit instruction.
- The first half of a 32-bit instruction.

This means that, for the situations that are undefined, either the second 16-bit instruction or the 32-bit instruction is undefined. An implementation might vary dynamically as to whether IT is

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is constrained unpredictable. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When an implementation does not implement ITD, access to this field is **RAZ/WI**.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, res1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res0.

nAA, bit [6] When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, when EL2 is enabled in the current Security state and $\frac{HCR\ EL2}{E2H}$, $\frac{E2H}{TGE} = \{1, 1\}$, EL0.

The following instructions generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH.
- STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH

If FEAT_LRCPC3 is implemented, the following instructions generate an Alignment fault if all bytes being accessed for a single register

are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.
- If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP), LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

nAA	Meaning
0d0	Unaligned accesses by the
	specified instructions generate an
	Alignment fault.
0b1	Unaligned accesses by the
	specified instructions do not
	generate an Alignment fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from ELO:

CP15BEN	Meaning
0b0	EL0 using AArch32: EL0
	execution of the <u>CP15DMB</u> ,
	<u>CP15DSB</u> , and <u>CP15ISB</u>
	instructions is undefined.
0b1	EL0 using AArch32: EL0
	execution of the CP15DMB ,
	CP15DSB, and CP15ISB
	instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the <u>SCTLR_EL1</u>, <u>HSCTLR</u>, and <u>SCTLR</u>.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

When ELO can only use AArch64, HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

Reserved, res0.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0:

IGNORED.

Otherwise:

Reserved, res1.

SAO, bit [4] When HCR EL2.E2H == 1 and HCR EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and HCR_EL2. {E2H, TGE} == {1, 1}, EL0

C Meaning

- The following are Non-cacheable for all levels of data and unified cache:
 - Data accesses to Normal memory from EL2.
 - When <u>HCR_EL2</u>.{E2H, TGE}
 != {1, 1}, Normal memory
 accesses to the EL2
 translation tables.
 - When EL2 is enabled in the current Security state and <u>HCR_EL2</u>.{E2H, TGE} == {1, 1}:
 - Data accesses to Normal memory from EL0.
 - Normal memory accesses to the EL2&0 translation tables.
- Ob1 This control has no effect on the Cacheability of:
 - Data access to Normal memory from EL2.
 - When <u>HCR_EL2</u>.{E2H, TGE}
 != {1, 1}, Normal memory accesses to the EL2 translation tables.
 - When EL2 is enabled in the current Security state and <u>HCR_EL2</u>.{E2H, TGE} == {1, 1}:
 - Data accesses to Normal memory from EL0.
 - Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or $\underline{HCR_EL2}$. {E2H, TGE} != {1, 1}, this bit has no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in the current Security state and $\frac{HCR\ EL2}{E2H}$, $\frac{E2H}{TGE} = \{1, 1\}$, EL0.

A	Meaning
0b0	Alignment fault checking disabled
	when executing at EL2.
	When EL2 is enabled in the current
	Security state and HCR EL2. {E2H,
	TGE == {1, 1}, alignment fault
	checking disabled when executing
	at ELO.
	Instructions that load or store one
	or more registers, other than load/
	store exclusive and load-acquire/
	store-release, do not check that the
	address being accessed is aligned
	to the size of the data element(s)
	being accessed.
0b1	Alignment fault checking enabled
	when executing at EL2.
	When EL2 is enabled in the current
	Security state and HCR EL2. {E2H,
	TGE == {1, 1}, alignment fault
	checking enabled when executing
	at ELO.
	All instructions that load or store
	one or more registers have an
	alignment check that the address
	being accessed is aligned to the
	size of the data element(s) being
	accessed. If this check fails it
	causes an Alignment fault, which is
	taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally unknown value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M	Meaning
0b0	When HCR EL2. {E2H, TGE} !=
	{1, 1}, EL2 stage 1 address
	translation disabled.
	When $\underline{HCR_EL2}$.{E2H, TGE} ==
	{1, 1}, EL2&0 stage 1 address
	translation disabled.
	See the SCTLR_EL2.I field for the
	behavior of instruction accesses to
	Normal memory.
0b1	When HCR EL2. {E2H, TGE} !=
	{1, 1}, EL2 stage 1 address
	translation enabled.
	When \underline{HCR} $\underline{EL2}$. $\{E2H, TGE\} ==$
	$\{1, 1\}$, EL2&0 stage 1 address
	translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
```

MSR SCTLR EL2, <Xt>

op()	op1	CRn	CRm	op2
0b1	1	0b100	0b0001	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    SCTLR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    SCTLR_EL2 = X[t, 64];
```

When FEAT_VHE is implemented MRS <Xt>, SCTLR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x110];
```

```
else
     X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
     X[t, 64] = SCTLR_EL2;
else
     X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = SCTLR_EL1;
```

When FEAT_VHE is implemented MSR SCTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x110] = X[t, 64];
    else
        SCTLR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SCTLR\_EL2 = X[t, 64];
    else
        SCTLR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    SCTLR\_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.