INTÉGRALE DE WIENER

Dans toute cette feuille, on considère un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ sur lequel est défini un $(\mathcal{F}_t)_{t\geq 0}$ -mouvement brownien $(B_t)_{t\geq 0}$.

Exercice 1 (Propriétés générales). Soit $f \in L^2_{loc}(\mathbb{R}_+)$. Pour $t \geq 0$ on pose

$$M_t := \int_0^t f(s) \, \mathrm{d}B_s.$$

- 1. Montrer que $(M_t)_{t\geq 0}$ est un processus gaussien à accroissements indépendants.
- 2. Montrer que $(M_t)_{t>0}$ est une martingale.
- 3. Construire une martingale à partir de $(M_t^2)_{t\geq 0}$.
- 4. Soit $\theta \in \mathbb{C}$. Construire une martingale à partir de $(e^{\theta M_t})_{t \geq 0}$.
- 5. Pour quels choix de f le processus $(M_t)_{t\geq 0}$ est-il un mouvement brownien?
- 6. Soit $g \in L^2_{loc}(\mathbb{R}_+)$ et $N_t := \int_0^t g(s) dB_s$. $(M_t)_{t \geq 0}$ et $(N_t)_{t \geq 0}$ sont-ils indépendants?

Exercice 2 (Exemple). Que dire du processus $(X_t)_{t\geq 0}$ défini par la formule suivante?

$$X_t := \int_0^{\sqrt{t}} \sqrt{2s} \, \mathrm{d}B_s.$$

Exercice 3 (Pont brownien). Soit $(a,b) \in \mathbb{R}^2$. On considère le processus $(Z_t)_{0 \le t < 1}$ défini par

$$Z_t := a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s \qquad (0 \le t < 1).$$

- 1. Montrer que $(Z_t)_{0 \le t < 1}$ est un processus gaussien dont on explicitera les paramètres.
- 2. Que dire de ce processus dans le cas a = b = 0?

- 3. Montrer que lorsque $t \to 1$, on a $Z_t \to b$ au sens de la convergence L^2 .
- 4. Montrer que la convergence a en fait lieu presque-sûrement.

Exercice 4 (Processus d'Ornstein-Uhlenbeck). Soit V_0 une variable aléatoire réelle indépendante de $(B_t)_{t\geq 0}$, et $b,\sigma>0$. On définit un processus $(V_t)_{t\geq 0}$ par

$$V_t := e^{-bt} \left(V_0 + \sigma \int_0^t e^{bs} \, \mathrm{d}B_s \right).$$

- 1. Montrer que V_t converge en loi lorsque $t \to \infty$, et déterminer la limite.
- 2. On suppose désormais que $V_0 \sim \mathcal{N}\left(0, \frac{\sigma^2}{2b}\right)$. Montrer que $(V_t)_{t\geq 0}$ est un processus gaussien stationnaire dont on précisera les paramètres.
- 3. Que dire du processus $(W_t)_{t\in\mathbb{R}}$ défini ci-dessous ?

$$W_t := \frac{\sigma}{\sqrt{2h}} e^{-bt} B_{e^{2bt}}.$$

Exercice 5 (Intégration par partie). Soit $f \in C^1(\mathbb{R}_+, \mathbb{R})$.

1. Établir que pour tout $t \ge 0$, on a presque-sûrement

$$\int_0^t f(s) dB_s + \int_0^t f'(s)B_s ds = f(t)B_t.$$

2. Sous les hypothèses supplémentaires $f(t) \xrightarrow[t \to \infty]{} 0$ et $\int_0^\infty |f'(t)| \sqrt{t} \ \mathrm{d}t < \infty$, en déduire

$$\int_{\mathbb{R}_+} f(s) dB_s = -\int_{\mathbb{R}_+} f'(s) B_s ds.$$

Exercice 6 (Espace gaussien). Soit H^B l'espace gaussien engendré par $(B_t)_{t\geq 0}$:

$$H^B := \overline{\operatorname{Vect}(B_t \colon t \geq 0)}^{L^2(\Omega, \mathcal{A}, \mathbb{P})}.$$

1. Établir l'égalité

$$H^B = \left\{ \int_{\mathbb{R}_+} f(s) dB_s \colon f \in L^2(\mathbb{R}_+) \right\}.$$

- 2. Soit $X \in H^B$ et $f \in L^2(\mathbb{R}_+)$. Montrer l'équivalence des deux conditions suivantes :
 - (a) $X = \int_{\mathbb{R}_+} f(s) dB_s$
 - (b) $\mathbb{E}[XB_t] = \int_0^t f(s) \, ds$ pour tout $t \in \mathbb{R}$.