

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS PLAN DE TRABAJO ESPACIO ACADÉMICO

FACULTAD: INGENIERÍA						
PROYECTO CURRICULAR: INGENIERÍA ELECTRÓNICA						
NOMBRE DEL DOCENTE:						
ÁREA DE FORMACIÓN: CIENC	IAS BÁSICAS					
ESPACIO ACADÉMICO: PROGR						
Asignatura (X), Grupo de Trak	CÓDIGO: 26					
Obligatorio (X) : Básico (X) C	CODIGO. 26					
Electivo () : Intrínsecas () Extrí						
NÚMERO DE ESTUDIANTES:	GRUPO:					
NÚMERO DE CRÉDITOS: 3						
TIPO DE CURSO: TEÓRICO () PRÁCTICO () TEO-PRAC (X)						
Alternativas metodológicas:						
Clase Magistral (X), Seminario (tutoriados (), Otro:), Seminario – Taller (), Talle	r (X), Prácticas (), Proyectos				
HORARIO: Total Horas Semanal	es Lectivas:					
DIA	HORA	SALON				
	,	ļ				
I. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO						
. •	nstrucción de aplicaciones en	dar a los estudiantes algunas software propias de la Ingeniería				

Conocimientos previos (requisitos):

- Programación Básica.
- Programación orientada a objetos.

II. PROGRAMACIÓN DEL CONTENIDO

OBJETIVO GENERAL

El objetivo principal de la asignatura es desarrollar capacidades en el estudiante para la creación de aplicaciones en software, de manera cooperativa, relacionadas con la Ingeniería electrónica.

OBJETIVOS ESPECÍFICOS

- 1. Conocer la sintaxis del lenguaje seleccionado por el profesor
- 2. Evaluar los recursos y retardos de una aplicación.
- 3. Determinar las pruebas que requiere un sistema para validar su funcionalidad.
- 4. Desarrollar herramientas aplicadas a los temas vistos en las otras asignaturas.
- 5. Colaborar en la creación de aplicaciones utilizando repositorios con Git

RESULTADOS DE APRENDIZAJE

- 1. Utiliza adecuadamente la sintaxis del lenguaje de programación usado.
- 2. Evalúa los recursos y retardos de una aplicación.
- 3. Determina las pruebas que requiere un sistema para validar su funcionalidad.
- 4. Desarrolla herramientas aplicadas a los temas vistos en las otras asignaturas.
- 5. Colabora en la creación de aplicaciones utilizando repositorios con Git

PROPÓSITOS DE FORMACIÓN

Competencias que compromete la asignatura:

BASICAS

- Habilidad comunicativa (interpretativa, comunicativa y propositiva).
- Comprensión de textos en una segunda lengua.
- Pensamiento crítico y analítico.
- Pensamiento lógico-espacial.
- Capacidad para modelar fenómenos y procesos

CONTEXTUALES

- Comprensión del contexto social, cultural y económico.
- Valoración del trabajo productivo.

LABORALES

- Capacidad para el trabajo en equipo.
- Resolución de problemas prácticos con criterios de ingeniería.
- Creatividad para el análisis, el diseño y desarrollo de sitios web.

UNIDADES TEMÁTICAS Y/O PROBLEMÁTICAS

- Unidad 1: Repaso sobre metodologías y modelado de software.
- Unidad 2: Sintaxis del lenguaje de programación usado (seleccionado por el profesor)
- Unidad 3: Tipos de pruebas
- Unidad 4: Git y trabajo colaborativo
- Unidad 5: Desarrollo de aplicaciones

III. ESTRATEGIAS

Metodología Pedagógica y Didáctica:

- 1. El facilitador solicita a los estudiantes lectura previa a cada clase del material de referencia.
- 2. Presentación de los temas de fundamentación por parte del facilitador utilizando recursos del aula, material impreso y electrónico y consultas en el World Wide Web (Internet).
- 3. Realización de talleres y laboratorios de análisis y diseños prácticos.
- 4. Desarrollo de talleres trabajo autónomo.
- 5. Promover el trabajo en equipo de aprendizaje
- 6. Promover y apoyo a la creatividad.

	Horas			Horas profesor/ semana	Horas Estudiante/ semana	Total Horas Estudiante/ semestre	Créditos
Tipo de Curso	TD	TC	ТА	(TD + TC)	(TD + TC +TA)	X 16 semanas	
Teórico- Práctico	4	2	3	6	9	144	3

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado _ *cooperativo (TC)*: Trabajo de tutoría del docente a pequeños grupos o de forma individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo del estudiante sin presencia del docente, que se puede realizar en distintas instancias: en grupos de trabajo o en forma individual, en casa o en biblioteca, laboratorio, etc.)

IV. RECURSOS

MEDIOS Y AYUDAS:

Tablero, página moodle, Video Beam y proyectos de acetatos, sala de informática.

BIBLIOGRAFÍA

TEXTOS BÁSICOS

- Manuales de las Herramientas de Desarrollo utilizadas ese semestre.
- Tutoriales del lenguaje utilizado ese semestre.
- Pro Git, Scott Chacon, Ben Straub, Version 2.1, 2022-10-03, Apress

- Patrone de Diseño, Gamma et al, Addison Wesley, Pearson Eductaion, Madrid 2003.
- Buddha in Testing: Finding Peace in Chaos, Pradeep Soundararajan, Notion Press, 1st edition, Enero de 2020,

TEXTOS COMPLEMENTARIOS

- Rational Software. Manuals y ayudas de Rational Rose 2002.
- El Lenguaje Unificado de Modelado. Grady Booch, James Rambaugh, Ivar Jacobson. Pearson Education. 2002.
- Manuales y ayudas de Racional Rose y Microsoft Visio 2003.
- Tutoriales de XML, HTML.

REVISTAS

Transactions on Education. IEEE Education Society. 1996 - presente.

DIRECCIONES DE INTERNET

- https://doc.rust-lang.org/book/
- https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
- https://git-scm.com/book/en/v2

V. ORGANIZACIÓN / TIEMPOS

Espacios, Tiempos, Agrupamientos:

Se recomienda trabajar una unidad cada cuatro semanas, trabajar en pequeños grupos de estudiantes, utilizar Internet para comunicarse con los estudiantes para revisiones de avances y solución de preguntas (esto considerarlo entre las horas de trabajo cooperativo)

VI. EVALUACIÓN

ASPECTOS A EVALUAR DEL CURSO:

- 1. Evaluación del desempeño docente.
- **2.** Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.

	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
PRIMERA NOTA	Primera evaluación parcial, talleres, laboratorios y quices acumulados al corte.	Semana 6	35%
SEGUNDA NOTA	Segunda evaluación parcial, talleres, laboratorios y quices acumulados al corte.	Semana 11	35%
EXAMEN FINAL	Prueba teórica practica y proyecto final de integración.	Semana 16	30%