(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-239607

(43)公開日 平成4年(1992)8月27日

(51) Int.Cl.5		識別記号	庁内整理番号	FI	技術表示箇所
B 2 9 B	9/02	DACO-THE - 3	7722-4F		スカラスペー国ババ
C08G (•	NLT	7211-4 J		
C08J	•		7258-4F		
// B29K	•	-	1200		

審査請求 未請求 請求項の数3(全 5 頁)

(21)出願番号	特願平3-6614	(71)出顧人	000005887
			三井石油化学工業株式会社
(22)出顧日	平成3年(1991)1月23日		東京都千代田区霞が関3丁目2番5号
		(72)発明者	山 本 一 人
			山口県玖珂郡和木町和木六丁目1番2号
			三井石油化学工業株式会社内
		(72)発明者	新 美 宏 二
			山口県玖珂郡和木町和木六丁目1番2号
			三井石油化学工業株式会社内
		(72)発明者	富田 久仁男
			山口県玖珂郡和木町和木六丁目1番2号
			三井石油化学工業株式会社内
		(74)代理人	弁理士 鈴木 俊一郎 (外1名)

(54) 【発明の名称】 ポリエチレンナフタレートの製造方法

(57) 【要約】

【目的】 本発明は、耐ブロッキング性を向上させるともに、成形原料として安定して供給しうるようにしたポリエチレンナフタレートの製造方法を提供することを目的としている。

【構成】 2,6-ナフタレンジカルボン酸を含むジカルボン酸と、エチレングリコールを含むヒドロキシ化合物とを、液相において重縮合させて、ポリエチレンナフタレートを製造し、次いで、該ポリエチレンナフタレートをチップに成形した後、該チップに剪断処理を施すことによってチップ表面を粗面化するポリエチレンナフタレートの製造方法。

1

【特許請求の範囲】

【請求項1】2,6-ナフタレンジカルボン酸を含むジカルボン酸と、エチレングリコールを含むヒドロキシ化合物とを、液相において重縮合させて、ポリエチレンナフタレートを製造し、次いで、該液相重縮合によって得られたポリエチレンナフタレートをチップに成形した後、該ポリエチレンナフタレートからなるチップに、剪断処理を施すことによってチップ表面を粗面化することを特徴とするポリエチレンナフタレートの製造方法。

【請求項2】 重縮合させて得られるポリエチレンナフタ 10 レートの極限粘度 [n] が0.30~0.80dl/gであることを特徴とする請求項1に記載のポリエチレンナフタレートの製造方法。

【請求項3】前記剪断処理を施す前のチップの表面粗度を $Ra\mu$ mとし、剪断処理を施した後のチップの表面粗度を $Ra'\mu$ mとするとき、 $Ra'-Raが0.2\mu$ m以上となるようにチップ表面を粗面化することを特徴とする請求項1または請求項2に記載のポリエチレンナフタレートの製造方法。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、ポリエチレンナフタレートの製造方法に関し、さらに詳しくは、液相重縮合によって得られるポリエチレンナフタレートのチップに、剪断処理を施してチップ表面を粗面化して、チップの耐プロッキング性を向上させるとともに、成形原料として安定して供給しうるようにしたポリエチレンナフタレートの製造方法に関する。

[0002]

【発明の技術的背景】ポリエチレンナフタレートは、透 30 明性に優れ、ガスパリヤ性に優れるとともに、機械強度にも優れるため、ポトル材料などとして広く利用されている。

【0003】ところで、このようなポリエチレンナフタレートは、通常、成形時にチップとして供給するが、液相重縮合によって得られるポリエチレンナフタレートでは、結晶化度が低いためなどの理由よってチップ同士がくっついたりしてプロッキングしやすい。このため、原料チップの供給安定性が低下して食い込み不良を起こしたり、気泡を巻き込んだりして成形が困難であった。

【0004】このような問題点を解消するため、従来、 被相重縮合によって得られた原料ポリエチレンナフタレートは、加熱冷却して予備結晶化した後に、さらに固相 重縮合を行ない、ポリエチレンナフタレートの結晶化度 を上げることによって、プロッキングしにくいチップを 製造して用いていた。

【0005】しかしながら、上記のような方法では、予備結晶化工程と固相重縮合工程とを含み、該固相重縮合工程は長時間を有するため製造コストが高くなる傾向にある。

【0006】また、これとは別にたとえば、流動滑剤を添加したり、押出機供給口に原料供給を安定させるためのフィーダーを付けるなどの手段によって対処する場合もある。しかしながら、このような手段では、前者にお

いては、流動滑剤の添加により成形品の透明性が低下したり、また、後者においては、装置が大きくなってしまい、工業生産上好ましくない。

[0007]

(2)

【発明の目的】本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、成形時に原料チップとして安定して供給しうるポリエチレンナフタレートを、低コストで製造しうるポリエチレンナフタレートの製造方法を提供することを目的としている。

[0008]

【発明の概要】本発明に係るポリエチレンナフタレートの製造方法は、2,6-ナフタレンジカルボン酸を含むジカルボン酸と、エチレングリコールを含むヒドロキシ化合物とを、液相において重縮合させて、通常極限粘度 [n]が0.30~0.80dl/gであるポリエチレンカフタレートを製造し、次いで、該液相重縮合工程で得られたポリエチレンナフタレートをチップに成形した後、該ポリエチレンナフタレートからなるチップに、剪断処理を施すことによってチップ表面を粗面化することを特徴としている。

[0009]

【発明の具体的説明】以下、本発明に係るポリエチレン ナフタレートの製造方法について具体的に説明する。

【0010】本発明においては、まず、2,6-ナフタレンジカルボン酸を含むジカルボン酸と、エチレングリコールを含むヒドロキシ化合物とを、液相において重縮合させることによってポリエチレンナフタレートを製造する。重縮合に際しては、得られるポリエチレンナフタレートにおいて、エチレン-2,6-ナフタレートからなる構成単位が、60モル%以上、好ましくは80モル%、さらに好ましくは90モル%の量で含有されるように、2,6-ナフタレンジカルボン酸とエチレングリコールとを用いることが望ましい。

【0011】本発明では、2,6-ナフタレンジカルボン酸 以外のジカルボン酸および/またはエチレングリコール 40 以外のヒドロキシ化合物を、40モル米未満の量で用い てもよい。

【0012】このような2,6-ナフタレンジカルボン酸以外のジカルボン酸としては、テレフタル酸、イソフタル酸、2,7-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、ジフェニル-4,4'-ジカルボン酸、4,4'-ジフェニルスルホンジカルボン酸、4,4'-ジフェニルスルホンジカルボン酸、4,4'-ジフェノキシエタンジカルボン酸、ジプロムテレフタル酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカル ボン酸などの脂肪族ジカルボン酸、1,4-シクロヘキサン

3

ジカルボン酸、シクロプロバンジカルボン酸、ヘキサヒドロテレフタル酸などの脂類族ジカルボン酸、グリコール酸、p-ヒドロキシ安息香酸、p-ヒドロキシエトキシ安息香酸などのヒドロキシカルボン酸などを用いることができる。

【0013】エチレングリコール以外のヒドロキシ化合物としては、プロピレングリコール、トリメチレングリコール、スキサングリコール、マトラメチレングリコール、ベンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、ネオペンチレングリコール、アカメチレングリコール、1,4-シクロヘキサンジメタノール、ピスフェノールA、p,p-ジフェノキシスルホン、1,4-ピス(β-ヒドロキシエトキシ)ベンゼン、2,2-ピス(p-β-ヒドロキシエトキシフェノール)プロパン、ポリアルキレングリコール、p-フェニレンピス(ジメチルシロキサン)、グリセリンなどを用いることができる。

【0014】また、ヒドロキシ化合物として、トリメシン酸、トリメチロールエタン、トリメチロールプロパン、トリメチロールメタン、ベンタエリスリトールなど 20 の多官能化合物を少量、たとえば2モル%以下の量で用いてもよい。

【0015】さらに、ベンゾイル安息香酸、ジフェニルスルホンモノカルボン酸、ステアリン酸、メトキシボリエチレングリコール、フェノキシボリエチレングリコールなどの単官能化合物を、少量たとえば2モル%以下の量で用いてもよい。

【0016】本発明において、このような液相重縮合工程は、具体的には、エステル化反応工程と重縮合反応工程とからなり、たとえば、上記のような2,6-ナフタレン 30 ジカルボン酸を含むジカルボン酸と、エチレングリコールを含むヒドロキシ化合物とを用いて、具体的には、以下のようにして行われる。

【0017】重縮合反応は、触媒の存在下に実施される。このような触媒としては、二酸化ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラープトキシドなどのゲルマニウム化合物、三酸化アンチモニウムなどのアンチモン触媒およびチタニウムテトラプトキシドなどのチタン触媒を用いることができる。

【0018】これらの触媒の中では、二酸化ゲルマニウ 40 ム化合物が好ましく用いられる。また反応は、安定剤の 共存下に行ってもよい。このような安定剤としては、ト リメチルホスフェート、トリエチルホスフェート、トリ ロープチルホスフェート、トリオクチルホスフェート、ト リフェニルホスフェート、トリクレジルホスフェートな どのリン酸エステル類、トリフェニルホスファイド、ト リスドデシルホスファイド、トリスノニルフェニルホス ファイドなどの亜リン酸エステル類、メチルアッシドホ スフェート、イソプロピルアッシドホスフェート、プチ ルアッシドホスフェート、ジプチルホスフェート、モノ 50 プチルホスフェート、ジオクチルホスフェートなどの酸 性リン酸エステルおよびリン酸、ポリリン酸などのリン 化合物が用いられる。

【0019】 これらの触媒および安定剤は、エステル化 反応工程において用いてもよいし、液相重縮合工程にお ける第1段目の重縮合反応器に供給してもよい。

【0020】ジカルポン酸と、ジカルポン酸1モルに対 して1.02~1.4モル好ましくは1.03~1.3モル のヒドロキシ化合物とからなる混合物からジカルポン酸 のヒドロキシ化合物スラリーを形成させる。酸スラリー は、エステル化反応工程に連続的に供給される。エステ ル化反応は、少なくとも2個のエステル化反応器を直列 に連結した装置を用いてヒドロキシ化合物が還流する条 件下で、反応によって生成した水を精留塔で系外に除去 しながら実施される。エステル化反応を行う際の反応条 件は、第1段目のエステル化反応の温度が通常210~ 250℃好ましくは210~250℃であり、圧力が通 常0.2~3 Kg/cm² G好ましくは、0.5~2 Kg/cm² G であり、また最終段目のエステル化反応の温度が通常2 20~260℃好ましくは240~260℃であり、圧 力が通常0~1.5 kg/cm² G好ましくは、0~1.3 kg /cm² Gである。したがって、エステル化反応を2段階 で実施する場合には、第1段目および第2段目のエステ ル化反応条件がそれぞれ上記の範囲であり、3段階以上 で実施する場合には、第2段目から最終段の1段前まで のエステル化反応の反応条件は、上記第1段目の反応条 件と最終段目の反応条件の間の条件である。たとえば、 エステル化反応が3段階で実施される場合には、第2段 目のエステル化反応の温度は通常215~255℃好ま しくは235~255℃であり、圧力は通常0~2Kg/ cm² G好ましくは0.2~1.5 kg/cm² Gである。これら のエステル化反応の反応率は、それぞれの段階において は、とくに制限はないが、各段階におけるエステル化反 応率の上昇の度合が滑らかに分配されることが好まし く、さらに最終段目のエステル化反応生成物においては 通常は90%以上、好ましくは93%以上に達すること が望ましい。これらのエステル化工程により低次縮合物 が得られ、該低次縮合物の数平均分子量は、通常、50 0~5000である。

【0021】このようにして得られた低次縮合物は、次の液相重縮合工程の重縮合反応器に連続的に供給される。重縮合反応の反応条件は、第1段目の重縮合の反応温度が、通常、240~290℃好ましくは240~270℃さらに好ましくは250~270℃であり、圧力が通常500~20Torr好ましくは200~30Torrであり、また最終段目の重縮合反応の温度が通常250~300℃好ましくは260~290℃であり、圧力が通常、10~0.1Torr好ましくは、5~0.5Torrである。

【0022】重縮合反応を2段階で実施する場合には、

5

第1段目および第2段目の重縮合反応条件はそれぞれ上記の範囲であり、3段階以上で実施する場合には、第2段目から最終段の1段前までの重縮合反応の反応条件は上記第1段目の反応条件と最終段目の反応条件の間の条件である。たとえば、重縮合反応が3段階で実施される場合には、第2段目の重縮合反応の反応温度は通常250~290℃好ましくは250~280℃さらに好ましくは260~280℃であり、圧力は通常、50~2Torr好ましくは40~5Torrである。

【0023】これらの各重縮合反応工程において到達さ 10 れる極限粘度 [n] はとくに制限はないが、各段階における極限粘度の上昇の度合いが滑らかに分配されることが好ましい。

【0024】上記のような液相重縮合工程において、前 記エステル化反応は、以下のような塩基性化合物の共存 下に行うことができる。このような塩基性化合物として は、トリメチルアミン、トリロープチルアミン、ペンジ ルジメチルアミンなどの第3級アミン、水酸化テトラエ チルアンモニウム、水酸化テトラロープチルアンモニウム、水酸化トリメチルペンジルアンモニウムなどの第420 級アンモニウム、炭酸リチウム、炭酸ナトリウム、炭酸 カリウム、酢酸ナトリウムなどが挙げられる。

【0025】これらの塩基性化合物を添加する方法は、 とくに限定されず、エステル化反応器のすべてに添加し てもよいし、第1段目あるいは第2段目以降の特定の反 応器に添加してもよい。

【0026】上記のような塩基性化合物を用いると、得られるポリエチレンテレフタレートを形成する主鎖中において、ジオキシエチレンテレフタレート成分単位の存在量を比較的低水準に保持できる。

【0027】上記のようなポリエチレンナフタレートの 液相重縮合において、最終段目の重縮合反応器から得ら れるポリエチレンナフタレートの極限粘度 [n] は、通常0. $2\sim0$. 8 dl/g好ましくは0. $3\sim0$. 7 dl/gである。

【0028】なお、上記の極限粘度 [n] は、以下のようにして求める。ポリエチレンナフタレートを、0-クロロフェノールに、1g/100mlの濃度で溶解し、25℃でウベローデ型毛細管粘度計を用いて溶液粘度の測定を行い、その後、0-クロロフェノールを徐々に添加し 40て、低濃度側の溶液粘度を測定し、0%濃度に外捜して極限粘度 [n] を求める。

【0029】また、ガラス転移温度は通常80~130 ℃、好ましくは100~120℃であることが望ましい。上記のような液相重縮合によって得られたポリエチ レンナフタレートを、冷却してチップを作製する。

【0030】本発明では、上記のようにして得られるポリエチレンテレフタレートからなるチップに、剪断処理を施すことによってチップ表面を粗面化する。このような剪断処理は、たとえば上記チップ表面に剪断応力を加 50

えることによって行うことができる。チップ表面に剪断 応力を加えるには、たとえば複数のチップが互いにこす れ合うようにしてチップを攪拌すればよい。

【0031】このような目的で用いられる攪拌装置は、チップに剪断応力を与え得るものであれば、特に限定されるものではなく、たとえば、ヘンシェルミキサー、Vプレンダー、リボンブレンダー、タンプラーブレンダーなどが挙げられる。

【0032】剪断処理時間は、通常、3~20分である。上記のように剪断処理されたポリエチレンナフタレートチップは、チップ表面が粗面化されている。粗面化の度合は、JIS B 0601-1982に準じて測定した表面粗度Raを指標とする。

【0033】具体的には、以下のとおりにして表面粗度 Raを求める。実施例1に記載した方法に従って、チップに所定時間にわたって剪断を付加した後、表面粗度を JIS B 0601-1982に記載されている方法 に準拠して求めた。測定には、ミットヨ製サーフテスト 401表面粗度計を用い、23℃、50%の恒温恒温室 内で測定し、レンジを25μm、入cを0.25mmと し、測定値は、3回の測定値の平均値でもって示した。

【0034】剪断処理は、剪断処理を施す前のチップの表面粗度を $Ra\mu$ mとし、剪断処理を施した後のチップの表面粗度を $Ra'\mu$ mとするとき、Ra'-Raが0.2 μ m以上となるように施すことが好ましい。

【0035】本発明では、上記のようにチップを粗面化することによって、剪断処理後に行うチップの乾燥工程などにおいて、チップ同士が互にくっつきにくくなり、プロッキングを起こしにくくなる。

30 【0036】上記のように、チップに剪断処理を施すことによって、チップ表面が粗面化されるとともに、チップ表面は結晶化されるという効果も有する。本発明では、上記のように表面が粗面化されたチップを、減圧下に150℃以上の温度で乾燥することが好ましい。

【0037】上記のようにして得られるポリエチレンナフタレートチップは、耐ブロッキング性に優れている。 【0038】

【発明の効果】本発明に係る製造方法によって得られる ポリエチレンナフタレートは、原料としてチップで供給 する際に、チップ同士がくっついたりすることがなく、 安定して成形機などに供給することができる。

【0039】本発明の製造方法では、従来のような予備結晶化工程により、結晶化度を上げる工程を含まないにも拘らず、チップにしたときにブロッキングを起こしにくいポリエチレンナフタレートが得られる。このため、成形材料として供給する際、気泡が入りにくく、供給安定性に優れ、食い込みがよい。また、固相重縮合をさせなくとも、上記のような成形特性が得られるので、経済性にも優れている。

【0040】以下、本発明を実施例により説明するが、

本発明はこの実施例に限定されるものではない。

【実施例1】2.6-ナフタレンジカルボン酸とエチレング リコールとからエステル化工程、重縮合反応を経て下記 の物性を持つポリエチレンナフタレート樹脂を15kg得 た。ガラス転移点 (Tg) は118℃、融点 (Tm) は 267℃、昇温結晶化温度 (Tc) は215℃であっ た。

【0042】上記のようにして得られたポリエチレンナ フタレートは、極限粘度 [n] が [n] が [n] の [n] が [n] の [n] が [n] が [n] の [n] が [n] の [n] が [n] の [n] が [n] の た。このポリエチレンナフタレートをチップにして、該 チップ5 Kgずつを、ヘンシェルタイプミキサー(容量9 リットル、三井三池製作所(株)製;型式FM10B) に入れ、標準タイプの羽根を用いて、回転数1480 r pmで、10分間、攪拌して剪断処理を施した。この時 のチップのRa'-Ra=0.34 μ mであった。Ra=

0. 14 μmであった。

【0043】処理後のチップを、真空下で150℃で乾 燥し、サンプルとした。サンプルを名機製作所(株) 製、名機M-70Bに供給し、中心部の厚さが5mmの 1. 5リットル炭酸ボトル用プリフォームを樹脂温度3 00~310℃で成形し、プリフォーム中に気泡を含ん だ成形品の発生率を調べた。

8

【0044】プリフォームは連続して成形し、合計30 0本作ったが、気泡を含んだプリフォームは合計4本で

[0045]

【比較例1】剪断処理を施さない以外は、実施例1と同 様にしてチップを得た。このチップを150℃の真空下 に於いて乾燥し、300本中の気泡の発生したプリフォ ームの数を調べた。気泡の発生したプリフォームは、合 計91本で発生率は30%であった。