Kolokwium zaliczeniowe ćwiczeń z WKR – I termin

Imie	i	nazwisko:	 Grupa:	Nr albumu:	 .

Zadanie 1

Niech $x \in \mathbb{Z}_{31}$ odpowiada wartości liczbowej tekstu jawnego i niech $y \in \mathbb{Z}_{31}$ odpowiada wartości liczbowej szyfrogramu. Znajdź wartość liczbową tekstu jawnego wiedząc, że y = 20, a do szyfrowania użyto szyfru afinicznego z kluczem k = (a, b) = (11, 8).

Zadanie 2.

Alicja i Bob uzgodnili między sobą grupę multiplikatywną Z_{113}^* oraz jej generator $\alpha = 3$. Wyznacz wartość klucza k uzgodnionego przez Alicję i Boba za pomocą protokołu Diffie-Hellmana wiedząc, że ich wartości prywatne wynoszą odpowiednio a = 20 oraz b = 24.

Zadanie 3.

Wykorzystując kryptosystem RSA oraz mając dane:

Alicji: dwie liczby pierwsze p = 19 i q = 11 oraz liczbę losową e = 101,

Boba: dwie liczby pierwsze p = 17 i q = 13 oraz liczbę losową e = 61:

- a) Alicja przesłała do Boba szyfrogram y = 65. Wyznacz wartość liczbową tekstu jawnego x.
- b) Alicja przesłała do Boba wiadomość, której skrót wynosi h=35 wraz z podpisem cyfrowym s=140. Zweryfikować poprawność tego podpisu cyfrowego.

Zadanie 4

Wykorzystując kryptosystem ElGamala oraz mając dane:

Alicji: grupę multiplikatywną Z_{109}^* oraz jej generator α =6, liczbę losową będącą elementem klucza prywatnego t=30,

Boba: grupę multiplikatywną Z_{101}^* oraz jej generator α =3, liczbę losową będącą elementem klucza prywatnego t=50,

- a) Alicja chce wysłać Bobowi wiadomość x=40 w postaci zaszyfrowanej. Wyznacz wartość liczbową tego szyfrogramu, wiedząc, że do szyfrowania wykorzystano randomizer r = 25;
- b) Alicja chce podpisać wiadomość, której skrót wynosi h=60. Wyznacz wartość tego podpisu cyfrowego, wiedząc, że do jego wygenerowania wykorzystany został randomizer r=19.

Zadanie 5

Sprawdź, czy $\alpha=3$ jest generatorem grupy multiplikatywnej Z_{107}^* oraz oblicz liczbę generatorów w Z_{107}^* .

Uwaga: Wszystkie obliczenia wykonać przy użyciu poznanych algorytmów.