

DSC 10, Spring 2018 Lecture 22

Linear Regression

sites.google.com/eng.ucsd.edu/dsc-10-spring-2018

Credit: Anindita Adhikari and John DeNero

Last Time

Review discussion question

Given a table with 3 columns:

Week

Beer: number of bottles of beer consumed in San Diego that week

Weddings: the number of weddings in San Diego that week

Let r be the *correlation* between beer and weddings.

Which statement is True?

- A. If r = 1.5, this means that people consume an average of one and a half beers per wedding they attend.
- B. If r is between -0.05 and 0.05, there is little association between beer consumption and weddings.
- C. If r = 1, then an increase in weddings causes an increase in beer consumption.
- D. More than one of the above.

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - \circ *r* = -1: scatter is perfect straight line sloping down
- *r* = 0: No linear association; *uncorrelated*

Interpreting r

Watch out for:

- Jumping to conclusions about causality
- Non-linearity
- Outliers
 - r is affected by outliers
 - r is based on the mean and sd
 - outliers change the mean and sd

Discussion Question

What are the correlations for these scatter plots? Note one outlier on the right plot.

- A. r = 1, $r \sim 0.9$
- B. r = 1, $r \sim 0.5$
- C. r = 1, r = 0
- D. r = 0, $r \sim 0.5$
- E. None of the above

Linear Regression

Graph of Averages

A visualization of x and y pairs

- Group each x value with other nearby x values
- Average the corresponding y values for each group
- For each x value, produce one predicted y value

If the association between x and y is linear, then points on the graph of averages tend to fall on the regression line

Regression to the Mean

$$y_{\text{\tiny Correlation}} = r \times x_{\text{\tiny (Su)}}$$

- If r = 0.6, and the given x is 2 standard units, then:
 - The given x is 2 SDs above average
 - The prediction for y is 1.2 SDs above average

On average (though not for each individual),
 regression predicts y to be closer to the mean than x is

Discussion Question

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)

If the scatter diagram of midterm & final scores for students has a typical oval shape with **correlation 0.75**, then what is the average final exam score for students who scored **90 on the midterm**?

A. 76

B. 90

C. 68

D. 82

E. 67.5

Discussion Question: Solution

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)

If the scatter diagram of midterm & final scores for students has a typical oval shape with **correlation 0.75**, then what is the average final exam score for students who scored **90 on the midterm**?

- 1. (90 70)/10 = 2 standard units on midterm,
- 2. estimate 0.75 * 2 = 1.5 standard units on final
- 3. estimated final score = 1.5 * 12 + 50 = 68 points

Slope & Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$\left(\frac{\text{estimate of } y - \text{ average of } y}{\text{SD of } y}\right) = r \times \left(\frac{\text{the given } x - \text{ average of } x}{\text{SD of } x}\right)$$

$$\text{y in standard units}$$

$$\text{x in standard units}$$

Lines can be expressed by slope & intercept

$$y = \text{slope} \times x + \text{intercept}$$

Regression Line

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Least Squares

Error in Estimation

- error = actual value estimate= actual value predicted value
- Typically, some errors are positive and some negative
 - What does a positive error mean? negative?
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

Least Squares Line

- Minimizes the root mean squared error (rmse) among all lines
- Equivalently, minimizes the mean squared error (mse) among all lines
- Names:
 - "Best fit" line
 - Least squares line
 - Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization
- Idea: Given a function that returns a real number,
 - Search among all possible inputs to the function
 - Find the input to the function that results in the function returning the smallest possible real number
 - Approximate because we cannot search all possible inputs

Numerical Optimization of MSE

If the function mse(a, b) returns the mse of estimation using the line "estimate = ax + b",

- o then minimize (mse) returns array [ao, bo]
- a₀ is the slope and b₀ the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Discussion question

```
def my_func(c):
    if c < -2:
        return 4
    elif c > 2:
        return 4
    else:
        return abs(c)+2
```

Pick the option that best completes the sentence:

"The expression minimize(my_func) evaluates to..."

A: -3

B: 0

C: 1

D: 2

E: 4