

JRW
PATENT
2224-0228P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: Masaki HAYASHI et al. Conf.:
Appl. No.: 10/800,866 Group: Unassigned
Filed: March 16, 2004 Examiner: UNASSIGNED
For: MICROCAPSULES AND PROCESSES FOR
PRODUCING THE SAME

L E T T E R

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

May 27, 2004

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicants hereby claim the right of priority based on the following applications:

<u>Country</u>	<u>Application No.</u>	<u>Filed</u>
JAPAN	2003-086233	March 26, 2003
JAPAN	2003-412685	December 11, 2003

A certified copy of the above-noted applications is attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By

Raymond C. Stewart, #21,066

P.O. Box 747
Falls Church, VA 22040-0747
(703) 205-8000

RCS/bsh
2224-0228P

Attachments

(Rev. 02/12/2004)

Masaki HAYASHI et al.
2024-0228P
101800,866
Filed March 16, 2004
BIRCH, STEWART, KOLASCH
& BIRCH, LLP
(703) 205-8000

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 3月26日
Date of Application:

出願番号 特願2003-086233
Application Number:
[ST. 10/C] : [JP2003-086233]

出願人 ダイセル化学工業株式会社
Applicant(s):

今井 康夫
Koji Nogi
Commissioner
Japan Patent Office

2004年 3月23日

今井 康夫
Koji Nogi

【書類名】 特許願

【整理番号】 P030025

【提出日】 平成15年 3月26日

【あて先】 特許庁長官殿

【国際特許分類】 B01J 13/02

B01J 13/20

G02F 1/19

G09F 9/37

【発明者】

【住所又は居所】 岡山県岡山市京山2丁目1-15 プリムローズ101
号

【氏名】 林 正樹

【発明者】

【住所又は居所】 兵庫県加古川市平岡町新在家1817-2

【氏名】 風呂本 満

【特許出願人】

【識別番号】 000002901

【氏名又は名称】 ダイセル化学工業株式会社

【代理人】

【識別番号】 100090686

【弁理士】

【氏名又は名称】 鍋田 充生

【電話番号】 06-6361-6937

【手数料の表示】

【予納台帳番号】 009829

【納付金額】 21,000円

【その他】 国等の委託研究の成果に係る特許出願（平成14年度、
経済産業省、重点分野研究開発費（ナノテクノロジープ
ログラム「ナノ機能粒子のカプセル成形技術の開発事業

」)に関する委託研究、産業活力再生特別措置法第30条の適用を受けるもの)

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9704595

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 マイクロカプセル及びその製造方法

【特許請求の範囲】

【請求項 1】 油相に着色粒子が分散した分散系と、この分散系を内包する壁膜とで構成されたマイクロカプセルであって、前記壁膜が酸基又はその塩を有する樹脂で形成されているマイクロカプセル。

【請求項 2】 樹脂が、遊離の形態で、酸価 20 ~ 120 mg KOH/g を有する重合体で構成されている請求項 1 記載のマイクロカプセル。

【請求項 3】 壁膜を構成する樹脂が架橋又は硬化している請求項 1 記載のマイクロカプセル。

【請求項 4】 壁膜を構成する樹脂が、自己架橋性基、樹脂の反応性基又は架橋剤に対する架橋性基を有している請求項 1 記載のマイクロカプセル。

【請求項 5】 分散系が、電気絶縁性を有する誘電性液体と、この誘電性液体中に分散した单一又は複数種の着色粒子とで構成されている請求項 1 記載のマイクロカプセル。

【請求項 6】 油相中で着色粒子が帶電し、かつ電位差によりマイクロカプセル内で電気泳動可能である請求項 1 記載のマイクロカプセル。

【請求項 7】 着色粒子の平均粒子径が 10 ~ 500 nm であり、マイクロカプセルの平均粒子径が 1 ~ 1000 μm である請求項 1 記載のマイクロカプセル。

【請求項 8】 一対の電極間に介在させ、着色粒子の電気泳動により画像を表示するための請求項 1 記載のマイクロカプセル。

【請求項 9】 酸基を中和した樹脂と着色粒子と有機溶媒とを含む有機分散液を調製する工程と、この有機分散液を転相乳化し、前記着色粒子が有機溶媒中に分散した分散系と、この分散系を内包する壁膜とで構成されたカプセル粒子を水性媒体中に生成させる工程と、このカプセル粒子を水性媒体から分離して乾燥し、前記分散系を内包するマイクロカプセルを製造する方法。

【請求項 10】 壁膜を構成する樹脂を架橋又は硬化させる請求項 9 記載の製造方法。

【請求項 11】 有機溶媒中、樹脂の酸基を中和する中和工程と、この中和工程で生成した樹脂溶液と着色剤とを混合して有機分散液を調製する工程と、この有機分散液に水性媒体を添加して転相乳化し、カプセル粒子を含む水性分散液を生成させる工程と、水性媒体中でカプセル粒子の壁膜を架橋又は硬化させる工程と、カプセル粒子を水性媒体から分離して乾燥させる工程とで構成されている請求項 9 記載の製造方法。

【請求項 12】 カプセル粒子を含む水性分散液を生成させた後、架橋剤を添加し、カプセル粒子の壁膜を架橋又は硬化させる請求項 9 記載の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、電気泳動式画像表示装置で好適に使用できるマイクロカプセル（カプセル型インク）とその製造方法に関する。

【0002】

【従来の技術】

マイクロカプセル化技術は、染料、香料、液晶、酵素、触媒、接着剤などの種々の物質（芯物質）を封入する1つの手段として幅広く応用されており、これらの芯物質の取扱い性を改善するとともに、芯物質の機能を長期間保持できる利点がある。

【0003】

一方、表示技術は、画像や文字情報などを表示する方式から、液晶（Liquid Crystal）方式、プラズマ発光方式、EL（エレクトロルミネセンス）方式などを利用して可視化する方式に至るまで多岐にわたる。近年、半導体技術の急速な進歩による各種電子装置の小型化に伴い、ディスプレイデバイスに対しても、小型化、軽量化、低駆動電圧化、低消費電力化、薄型フラットパネル化などが求められている。この要求に対応する新たな表示方法として、分散媒中に電気泳動粒子が分散した分散系（芯物質）をマイクロカプセル内に封入し、これらのマイクロカプセルを電極板間に介在させ、電界の印加により電極間でマイクロカプセル内で泳動粒子を移動させることにより、表示面への画像の書き込みが可能な電気泳

動式画像表示装置が提案されている。

【0004】

特開平11-119264号公報には、分散媒中に帶電粒子が分散した分散系を封入した多数のマイクロカプセルと、これらのマイクロカプセルを挟んで配設された一組の対向電極とを備え、制御電圧の作用により前記帶電粒子の分布状態を変えることにより、光学的反射特性に変化を与えて所定の表示動作を行うための表示装置において、前記帶電粒子の粒子径が、前記マイクロカプセルの粒子径に対して約1／1000～1／5であり、前記帶電粒子の粒度分布の分散度（体積平均粒子径／個数平均粒子径）が1～2である表示装置が開示されている。特開平11-202372号公報には、前記分散系がマイクロカプセルに内包された少なくとも2種類の帶電粒子と、界面活性剤を含む分散媒とで構成されており、前記帶電粒子が、酸化チタン及びカーボンブラックのうち少なくとも一方を含む表示装置が開示されている。

【0005】

特許第2551783号明細書には、前記電極間に配設するマイクロカプセルとして、着色した分散媒中に、この分散媒と光学的特性の異なる少なくとも一種類の電気泳動粒子を分散させた分散系を封入したマイクロカプセルを用いた電気泳動表示装置が開示されている。さらに、特表2001-53873号公報には、配列した複数の微細な容器（又はマイクロカプセル）と、この配列の両側に配置して配列を覆い、かつ少なくとも一方が実質的に視覚的に透明である第1及び第2の電極と、これら2つの電極間に電位差を生成する手段と、前記容器の内部に配設され、かつ誘電性液体と、この誘電性液体内で表面電荷を呈する粒子からなる懸濁物質とを備えており、前記誘電性液体と前記粒子とが視覚的に対照的なものであり、電位差により前記粒子が前記電極の一方に向かって移動する起電表示装置が開示されている。

【0006】

このようなマイクロカプセルにおいて、芯物質として液体を内包するためには、マイクロカプセルの壁膜は緻密でなくてはならない。マイクロカプセルの製造方法には、物理化学的方法および化学的方法が知られており、これらの方法はマ

イクロカプセルの用途に応じて適宜選択して利用されている。物理化学的方法としては、ゼラチンを使用したコアセルベーション法がよく知られており、近藤保らによる著書、三共出版「新版マイクロカプセル（1987年）」に詳しい。この方法は、広い分野で応用されているものの、天然物のゼラチンを使用するため、膜材としての品質が変動したり、カプセルの耐水性が低く、用途が制限される。また、芯物質（油分散型着色剤など）を内包しないコアセルベート粒子／滴の生成や、複数の芯物質を内包したカプセルの発生を防止することも不可能である。さらには、コアセルベーション法そのものはカプセル壁を作成する方法であり、粒径をコントロールできず、粒子の粒度分布は芯物質の分散状態に依存する。そのため、コアセルベーション法では、粒径及び粒度分布をコントロールしつつ、油相に着色剤が分散した分散系を内包するマイクロカプセルを高い収率で得ることが困難である。

【0007】

化学的方法としては、連続相の水相から反応が進行し、芯物質の周囲にアミノ樹脂などの壁膜を形成させるin-situ重合法（相分離法）の他、水相と油相との双方に反応成分を存在させ、界面において重合又は縮合反応を行ない、ポリマーのマイクロカプセル壁膜を形成させる界面重合法が知られている。油相に着色剤が分散した分散系を内包するカプセル型インクの製法には、特に、アミノ樹脂を用いたin-situ重合法（例えば、特公平5-27452号公報、特公平5-51339号、特公平5-53538号公報、特公平5-53539号公報）が利用されている。しかし、カプセル成形に伴って着色剤を含まない多数のカプセル粒子が副生するため、乳化分散剤のみならず副生粒子を除去する工程が不可欠である。さらに、コアセルベーション法と同様に、粒度分布は芯物質の分散状態に依存する。また、界面重合法では、連続相である水相に存在する多価アルコールと、芯物質の油相に存在するイソシアネートモノマーを界面において重合反応させることによってカプセル壁膜を形成する方法（例えば、特開平6-000632号公報、特開平6-343852公報、特公昭61-37975公報、特許第2797960号公報、特許第3035726号公報）が知られている。この方法では、芯物質を含有しない粒子の生成を抑制できる利点がある。しかし、前記方法では、油相と水相とに未反応のモノマーが残留し、電気泳動式表示材料

用のカプセル型インクとして用いると、油相中に残存する極性の高いイソシアネートモノマーが着色微粒子の電気泳動特性を損なう。さらにコアセルベーション法やin-situ重合法によるカプセル化法と同様に、粒度分布は芯物質の分散状態に依存する。

【0008】

そのため、電気泳動用マイクロカプセル型インクとして、着色剤を含まないマイクロカプセル粒子の生成を抑制するとともに、粒径のコントロールが可能な新たなマイクロカプセル化技術が要望されていた。

【0009】

なお、特開平5-66600号公報には、静電潜像を可視像とするための粉体トナーとして、着色剤がアニオン型自己水分散性樹脂に内包されたカプセル型トナーが開示されている。この文献には、アニオン型自己分散性樹脂として、樹脂固体分100g当たり、カルボキシル基などの酸基20～500mg当量を有する共重合体が記載されている。また、アニオン型自己水分散性樹脂と着色剤とを含有する混合組成物を分散させ、この混合組成物を転相乳化して水媒体中にカプセル化された粒子を生成させ、生成したカプセル粒子を水媒体から分離して乾燥させる方法、前記転相乳化後に中和された酸基を逆中和して遊離の酸基を生成させる方法によりトナーを製造することが記載されている。生成したカプセル型トナーでは、転相に利用された有機溶媒及び水が乾燥により除去されるとともに、このトナーは加熱溶融して被転写体に定着する。そのため、上記カプセル型トナーは、カプセル内で着色剤を泳動できない。また、樹脂を架橋すると、トナーの定着性が損なわれる。

【0010】

【発明が解決しようとする課題】

従って、本発明の目的は、着色粒子が油相に分散した分散系を内包し、かつ制御された粒径を有するマイクロカプセルとその製造方法を提供することにある。

【0011】

本発明の他の目的は、電気泳動可能な着色粒子を油相に含み、かつ芯物質の分散状態に依存することなく、シャープで均一な粒度のマイクロカプセルとその製

造方法を提供することにある。

【0012】

本発明のさらに他の目的は、電気泳動可能な着色粒子を含む油相を内包しても安定性および耐久性の高いマイクロカプセルとその製造方法を提供することにある。

【0013】

本発明の別の目的は、乳化分散剤を用いることなく、非カプセル粒子の生成を抑制し、確実にマイクロカプセルを簡便かつ効率よく製造できる方法を提供することにある。

【0014】

【課題を解決するための手段】

本発明者らは、前記課題を達成するため鋭意検討した結果、酸基が塩基で中和された樹脂を水系に転相乳化すると、分散安定剤を用いることなく、粒径をコントロールしつつ、油相に着色剤粒子が分散した分散系（芯物質）を内包したマイクロカプセル（又はカプセル型インク）を確実かつ極めて簡便なプロセスで調製できることを見いだし、本発明を完成した。

【0015】

すなわち、本発明のマイクロカプセルは、油相（又は疎水性液体や有機溶媒）に着色粒子が分散した分散系と、この分散系を内包する壁膜とで構成されたマイクロカプセルであって、前記壁膜が酸基又はその塩を有する樹脂（以下、単にアニオン型樹脂又はアニオン型水分散性樹脂という場合がある）で形成されている。このアニオン型樹脂は、適当な酸価を有する重合体、例えば、遊離の形態で、酸価20～120mg KOH/gを有する重合体（又は共重合体）で構成できる。前記カプセルの壁膜を構成するアニオン型樹脂は、架橋又は硬化していてよい。例えば、壁膜を構成する樹脂は、自己架橋性基、樹脂の反応性基又は架橋剤に対する架橋性基（又は架橋性官能基）を有していてよい。前記分散系は、種々の油相（例えば、電気絶縁性を有する誘電性液体）と、この油相中に分散した单一又は複数種の着色粒子とで構成してもよい。油相中に分散した着色粒子は、通常、帯電しており、電位差によりマイクロカプセル内で電気泳動可能である。

着色粒子の平均粒子径は、10～500nm程度であってもよく、マイクロカプセルの平均粒子径は、1～1000μm程度であってもよい。このようなマイクロカプセルは、電気泳動を利用した電気泳動式画像表示装置用マイクロカプセルとして有用である。すなわち、一対の電極間に介在させ、着色粒子の電気泳動により画像を表示するためのマイクロカプセル（画像表示素子）として有用である。

【0016】

前記分散系を内包するマイクロカプセルは、例えば、酸基を中和したアニオン型樹脂と着色粒子と有機溶媒とを含む混合液を調製する工程と、この混合液を転相乳化し、前記着色粒子が有機溶媒中に分散した分散系と、この分散系を内包する壁膜とで構成されたカプセル粒子を水性媒体中に生成させる工程と、このカプセル粒子を水性媒体から分離して乾燥することにより製造できる。この方法において、壁膜を構成するアニオン型樹脂は、適当な段階で、架橋又は硬化させてもよい。例えば、マイクロカプセルの製造方法は、有機溶媒中、アニオン型樹脂の酸基を中和する中和工程（例えば、前記樹脂を水分散性とするに足る量の中和剤で酸基を中和する工程）と、この中和工程で生成した樹脂含有有機溶媒溶液と着色剤とを混合して有機分散液を調製する工程と、この有機分散液に水性媒体（例えば、水）を添加して転相乳化し、カプセル粒子（例えば、油中に分散した着色剤がアニオン型樹脂によりカプセル化（内包）されたカプセル粒子）を含む水性分散液を生成させる工程と、水性媒体中でカプセル粒子の壁膜を架橋又は硬化させる工程と、カプセル粒子を水性媒体から分離して乾燥させる工程とで構成してもよい。また、カプセル粒子を含む水性分散液を生成させた後、架橋剤を添加し、カプセル粒子の壁膜を架橋又は硬化させてもよい。

【0017】

本発明では、酸基又はその塩を有するアニオン型樹脂（例えば、水性媒体中で自己分散能を有するアニオン型水分散性樹脂）を用いて転相乳化によりマイクロカプセルを形成するため、水性媒体中への微粒子化とカプセル壁の形成とを実質的に同時にを行うことができる。そのため、特別の装置を必要とせず、分散安定剤を用いることなく、マイクロカプセルを簡便かつ効率よく生成できる。また、ア

ニオン型樹脂の特性（例えば、アニオン型水分散性樹脂の自己分散能）を調整することにより、マイクロカプセルの粒子径などを精度よくコントロールできる。

【0018】

なお、本願明細書において、「アニオン型樹脂」「アニオン型水分散性樹脂」とは、酸性基又はその塩を有する樹脂を意味し、この樹脂は、遊離の形態では、非水溶性（又は不溶性）であってもよく、少なくとも一部の酸基を塩基で中和することにより水に対して水溶性又は水分散性（換言すれば、少なくとも水分散性）である。すなわち、「アニオン型樹脂」「アニオン型水分散性樹脂」は、少なくとも一部の酸基を塩基で中和し、かつ有機相（又は有機溶媒相）に含有されることにより、有機連続相が水性媒体の連続相（又は水連続相）と相転換が可能である。また、「酸基」を「酸性基」と同義に用いる場合がある。さらに、「着色粒子」を「着色剤」と同義に用いる場合がある。さらに、アクリル系単量体とメタクリル系単量体とを（メタ）アクリル系単量体と総称する場合がある。

【0019】

【発明の実施の形態】

【マイクロカプセル】

本発明のマイクロカプセルは、油相中に着色粒子が分散した分散系（又は油相分散系）と、この分散系を内包し、かつ酸基又はその塩を有する樹脂（アニオン型樹脂）で形成された壁膜とで構成されている。アニオン型樹脂（又は自己水分散性樹脂）は、親水性を付与するため、酸基を有している。この酸基が塩基により中和されると、水媒体中でアニオンを生成し、親水性を呈する。代表的な酸基としては、例えば、カルボキシル基、酸無水物基、磷酸基、スルホン酸基、硫酸基などが例示できる。これらの酸基は単独で又は二以上組み合わせて樹脂に導入してもよい。酸基は、通常、カルボキシル基又は酸無水物基、スルホン酸基である場合が多い。

【0020】

前記アニオン型樹脂は、酸基を有し、かつ中和処理により生成した樹脂を含む有機連続相が水性媒体（水など）との混合により、相転換（又は転相乳化）し、有機相が水性連続相に分散して不連続相（又は有機液滴相）を形成可能であれば

よい。このような樹脂は、酸基（カルボキシル基及び／又スルホン酸基など）を所定の濃度で含む縮合系樹脂（例えば、ポリエステル系樹脂（脂肪族ポリエステル系樹脂、芳香族ポリエステル系樹脂、ポリエステル系エラストマーなど）、ポリアミド系樹脂、ポリウレタン系樹脂など）であってもよく、重合系樹脂（オレフィン系樹脂、スチレン系樹脂、（メタ）アクリル系樹脂など）であってもよい。

【0021】

代表的な酸基を有する樹脂は、少なくとも酸基を有する重合性单量体類（又は酸性重合性单量体類）の重合により得ることができ、通常、酸性重合性单量体類と、この酸性重合性单量体類に対して共重合可能な重合性单量体類（酸基を含有しない重合性单量体類）とを共重合させることにより得ることができる。さらに、必要に応じて、酸基以外の架橋性官能基を含有する单量体を共重合させてもよい。

【0022】

代表的な酸基含有重合性单量体類としては、例えば、重合性カルボン酸類〔（メタ）アクリル酸、クロトン酸などの重合性モノカルボン酸類、イタコン酸モノC₁₋₁₀アルキルエステル（イタコン酸モノブチルなど）、マレイン酸モノC₁₋₁₀アルキルエステル（マレイン酸モノブチルなど）などの重合性多価カルボン酸の部分エステル類、イタコン酸、マレイン酸、フマル酸などの重合性多価カルボン酸類、無水マレイン酸などの重合性多価カルボン酸類に対応する酸無水物など〕、燐酸基含有单量体又はアシッドホスホオキシアルキル（メタ）アクリレート類〔2-ホスホオキシエチル（メタ）アクリレート、4-ホスホオキシブチル（メタ）アクリレートなどのホスホオキシC₂₋₆アルキル（メタ）アクリレート、ホスホオキシアシッドホスホオキシエチル（メタ）アクリレート、アシッドホスホオキシプロピル（メタ）アクリレートなどのアシッドホスホオキシC₂₋₆アルキル（メタ）アクリレートなど〕、スルホン酸基含有重合性单量体〔3-クロロー-2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸など〕、スルホアルキル（メタ）アクリレート〔2-スルホエチル（メタ）アクリレートなどのスルホC₂₋₆アルキル（メタ）アクリレートなど〕などが例示できる

。これらの酸基含有重合性单量体は単独で又は二種以上組み合わせて使用できる。好ましい重合性单量体は、カルボキシリ基又は酸無水物基やスルホン酸基を有する重合性单量体である。酸基含有重合性单量体としては、(メタ)アクリル酸を用いる場合が多い。

【0023】

酸基含有重合性单量体の使用量は、転相乳化により水性連続相中に樹脂含有有機相が分散して液滴を形成可能な範囲、例えば、後述する所定の酸価を樹脂に与える範囲で選択できる。酸基含有重合性单量体の使用量は、通常、单量体全体に対して3～20モル%、好ましくは4～15モル%（例えば、5～15モル%）、さらに好ましくは5～12モル%（例えば、5～10モル%）程度であってもよい。

【0024】

共重合可能な重合性单量体類としては、例えば、スチレン系单量体（又は芳香族ビニル单量体）類〔スチレン、ビニルトルエン、ビニルキシレン、2-メチルスチレン、t-ブチルスチレン、クロロスチレンなど〕、(メタ)アクリル酸アルキルエステル類〔(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシリ、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシリ、(メタ)アクリル酸2-エチルヘキシリ、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシルなどの直鎖状又は分岐鎖状アルキル基を有する(メタ)アクリル酸C₁₋₁₈アルキルエステル類〕、ビニルエステル類又は有機酸ビニルエステル類〔酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルなどの直鎖状又は分岐鎖状C₂₋₂₀脂肪族カルボン酸ビニルエステル、安息香酸ビニルなどの芳香族カルボン酸ビニルエステルなど〕、重合性ニトリル類又はシアノ化ビニル類〔(メタ)アクリロニトリルなど〕、オレフィン類〔エチレン、プロピレン、ブテンなどのα-C₂₋₁₀オレフィンなど〕、ハロゲン含有单量体類〔塩素含有单量体類（塩化ビニル、塩化ビニリデンなど）、フッ素原子を有

するビニル单量体類（フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、含フッ素アルキル基を有する（メタ）アクリル酸エステル類など）など】、紫外線吸収性や酸化防止性を有する单量体類〔2-（2'-ヒドロキシ-5-（メタ）アクリロイルオキシエチルフェニル）-2H-ベンゾトリアゾールなどのベンゾトリアゾール環を有する重合性单量体、2-ヒドロキシ-4-（2-（メタ）アクリロイルオキシエトキシ）ベンゾフェノンなどのベンゾフェノン骨格を有する重合性单量体、1, 2, 2, 6, 6-ペンタメチル-4-ピペリジル（メタ）アクリレートなどの2, 2, 6, 6-テトラメチルピペリジル基を有する重合性单量体など〕、窒素含有单量体類〔N-ビニルピロリドン、ジアセトンアクリルアミドなど〕、分子片末端に1つの重合性不飽和基を有するマクロモノマー類などが挙げられる。これらの共重合性单量体は単独で又は二種以上組み合わせて使用できる。

【0025】

これらの共重合性单量体のうち、通常、スチレン系单量体（特に、スチレン）、（メタ）アクリル酸アルキルエステル〔特に、アクリル酸C₁₋₁₂アルキルエステル、メタクリル酸C₁₋₄アルキルエステル（メタクリル酸メチルなど）〕が使用され、共重合体は、例えば、スチレン-（メタ）アクリル酸エステル-（メタ）アクリル酸系共重合体であってもよい。

【0026】

好ましいアニオン型樹脂は、通常、架橋又は硬化に関与する官能基（自己架橋性基、樹脂の反応性基又は架橋剤に対する架橋性官能基）を有している。自己架橋性基を有する重合性单量体としては、メチロール基やN-アルコキシメチル基を有する重合性单量体〔N-メチロール（メタ）アクリルアミド、N-ブトキシメチル（メタ）アクリルアミドなどのN-アルコキシメチル（メタ）アクリルアミド類など〕、シリル基又はアルコキシシリル基を有する重合性单量体〔ジメトキシメチルビニルシラン、トリメトキシビニルシランなどのC₁₋₂アルコキビニルシラン類、2-（メタ）アクリロイルオキシエチルジメトキシメチルシラン、2-（メタ）アクリロイルオキシプロピルジメトキシメチルシラン、2-（メタ）アクリロイルオキシエチルトリメトキシシラン、2-（メタ）アクリロイル

オキシプロピルトリメトキシシランなどの（メタ）アクリロイルオキシアルキル
C₁₋₂アルコキシシラン類など】などが例示できる。

【0027】

架橋性官能基は、樹脂に導入された官能基及び／又は架橋剤の種類に応じて、架橋系を形成可能な官能基を有する重合性单量体を共重合することにより樹脂に導入できる。このような架橋系を構成する官能基としては、カルボキシル基又は酸無水物基に対する反応性基（例えば、エポキシ基又はグリシジル基、メチロール基やN-アルコキシメチル基）、ヒドロキシル基に対する反応性基（例えば、イソシアネート基、メチロール基やN-アルコキシメチル基、シリル基又はアルコキシシリル基）などが例示できる。架橋性官能基は、カルボキシル基、酸無水物基、ヒドロキシル基、グリシジル基で構成する場合が多い。

【0028】

架橋系を形成可能な单量体に関し、カルボキシル基又は酸無水物基を有する重合性单量体、メチロール基、N-アルコキシメチル基、シリル基又はアルコキシシリル基を有する重合性单量体は前記の通りである。エポキシ基又はグリシジル基含有重合性单量体としては、グリシジル（メタ）アクリレート、アリルグリシジルエーテルなどが例示できる。ヒドロキシル基を有する重合性单量体としては、アルキレングリコールモノ（メタ）アクリレート（2-ヒドロキシエチル（メタ）アクリレート、2-ヒドロキシプロピル（メタ）アクリレート、4-ヒドロキシブチル（メタ）アクリレート、ヘキサンジオールモノ（メタ）アクリレートなど）、ラクトン類を付加した（メタ）アクリル系单量体（ダイセル化学工業（株）製「プラクセル FM-2」「プラクセルFA-2」など）、（ポリ）オキシアルキレングリコールモノ（メタ）アクリレート（ジエチレングリコールモノ（メタ）アクリレート、ポリエチレングリコールモノ（メタ）アクリレート、ポリプロピレングリコールモノ（メタ）アクリレートなど）などのヒドロキシル基含有（メタ）アクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテルなどが例示できる。イソシアネート基を有する重合性单量体としては、例えば、ビニルフェニルイソシアネートなどが例示できる。

【0029】

自己架橋性基や架橋性官能基を有する重合性单量体の使用量は、樹脂の特性に応じて選択でき、例えば、单量体全体に対して、1～30モル%（例えば、3～30モル%）、好ましく4～25モル%、さらに好ましくは5～20モル%程度であってもよい。

【0030】

重合性单量体の重合は、慣用の方法、例えば、熱重合法、溶液重合法、懸濁重合法などが利用でき、通常、反応溶媒（有機溶媒）中で重合する溶液重合法を利用する場合が多い。反応溶剤としては、不活性溶媒、例えば、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、シクロヘキサンなどの脂環族炭化水素類、ヘキサンなどの脂肪族炭化水素類、メタノール、エタノール、（イソ）プロパノール、ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、セロソルブ、カルビトールなどのエーテルアルコール類、ブチルセロソルブアセテートなどのエーテルエステル類などが例示できる。これらの溶媒は単独で又は混合溶媒として使用できる。好ましい形態では、脱溶剤が容易な溶媒、例えば、（イソ）プロパノール、アセトン、メチルエチルケトン、酢酸エチルなどの低沸点溶媒（例えば、沸点70～120℃程度の溶媒）が使用される。

【0031】

重合性单量体の重合は、重合開始剤の存在下で行うことができる。重合開始剤としては、過酸化物（例えば、過酸化ベンゾイル、過酸化ラウロイルなどの過酸化ジアシル類、ジ-*t*-ブチルペルオキシド、ジクミルペルオキシドなどの過酸化ジアルキル類、*t*-ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのアルキルヒドロペルオキシド類、メチルエチルケトンパーオキサイド、*t*-ブチルペルオキシ2-エチルヘキサノエートなど）やアゾ系化合物（アゾビスイソブチロニトリル、アゾビスイソバレロニトリルなど）、過硫酸塩、過酸化水素などが例示できる。なお、重合は、通常、50～150℃程度の温度で、不活性雰囲気中で行うことができる。

【0032】

前記アニオン型樹脂の分子量は、カプセル壁としての機械的特性などを損なわ

ない範囲から選択でき、通常、数平均分子量 $0.3 \times 10^4 \sim 10 \times 10^4$ 、好ましくは $0.5 \times 10^4 \sim 7 \times 10^4$ （例えば、 $1 \times 10^4 \sim 5 \times 10^4$ ）程度の範囲から選択できる。分子量が小さいと、カプセル壁としての特性（例えば、機械強度など）が低下しやすく、大き過ぎると、粘度が高く、転相乳化性が低下したり、粒径のコントロール、粒径分布（粒度分布）のシャープネスを低下させる。

【0033】

なお、前記水分散性樹脂の分子量は、重合開始剤の種類とその量、重合温度、使用する有機溶媒の種類とその量などで調整できる。また、多官能性ラジカル重合性単量体（ジビニルベンゼンやエチレングリコールジ（メタ）アクリレートなど）、多官能性重合開始剤類（複数のパーオキシ基や複数のアゾ基を有する重合開始剤）、連鎖移動剤類などの使用によっても分子量を調整できる。

【0034】

乾燥過程での融着防止や高温環境下でのブロッキング防止、さらには電気泳動式表示材料としての観点から、樹脂は、マイクロカプセルが使用される環境温度、例えば、 50°C 以下の温度（例えば、温度 $10 \sim 30^\circ\text{C}$ 程度の室温など）で固体であり、かつ透明性が高いのが望ましい。

【0035】

前記水分散性樹脂の酸基の濃度は、酸基の少なくとも一部（一部又は全部）を塩基で中和して、転相乳化し、安定なカプセル粒子を形成できる範囲から選択でき、樹脂の酸価は、酸基が遊離の形態で、例えば、 $20 \sim 120 \text{ mg KOH/g}$ 、好ましくは $20 \sim 100 \text{ mg KOH/g}$ （例えば、 $30 \sim 100 \text{ mg KOH/g}$ ）、さらに好ましくは $20 \sim 70 \text{ mg KOH/g}$ 程度である。酸価とは、樹脂固体分 1 g を中和するのに必要な KOH の mg 量である。酸価が小さすぎると、酸基の 100 モル\% 以上を塩基で中和しても、転相乳化およびカプセル粒子の形成が困難である。一方、酸価が高すぎると、水性媒体中での粒子形成が不安定となる。

【0036】

アニオン型樹脂は、内包する芯物質の油相（有機相又は有機溶媒相）の揮散や漏出を抑制するため、芯物質の油相に対してバリア性を有する樹脂（例えば、油

相に対して不溶性又は非浸食性樹脂）であるのが好ましい。このような点から、壁膜を構成するアニオン型樹脂は、架橋又は硬化しているのが好ましい。

【0037】

アニオン型樹脂のガラス転移温度は、マイクロカプセルの環境温度に応じて、例えば、-25℃～150℃、好ましくは0℃～120℃（例えば、25℃～120℃）程度の範囲から選択できる。アニオン型樹脂のガラス転移温度は、50～120℃（例えば、70～100℃）程度であってもよい。

【0038】

本発明のマイクロカプセルに内包された分散系（芯物質）は、油相（有機溶媒相又は分散媒）と、この油相に分散した着色粒子とで構成されている。油相中の着色粒子は、通常、帯電しており、電位差によりマイクロカプセル内で電気泳動可能である。油相は、マイクロカプセルが使用される環境温度（例えば、10～30℃程度の室温など）で液体であり、通常、疎水性液体（疎水性有機溶媒）、特に電気絶縁性を有する誘電性液体（例えば、体積抵抗が $10^{10}\Omega\text{ cm}$ 以上、誘電率が2.5以上の溶媒）で構成できる。

【0039】

芯物質の分散媒（又は有機溶媒相）は、電気抵抗の高い電気絶縁性溶媒、例えば、炭化水素類〔ベンゼン、トルエン、ナフテン系炭化水素などの芳香族炭化水素類、シクロヘキサンなどの脂環族炭化水素類、ヘキサン、ケロセン、直鎖又は分岐鎖状パラフィン系炭化水素、商品名「アイソパー」（シェル社製）などの脂肪族炭化水素類、アルキルナフタレン類など〕、ジフェニルージフェニルエーテル混合物、ハロゲン系溶媒〔ハロゲン化炭化水素類（四塩化炭化水素など）、フッ素系溶媒（CHFC-123, HCFC-141bなどのフロン類、フルオロアルコール、フルオロエーテルなどの含フッ素エーテル、フルオロエステルなどの含フッ素エステル、フルオロケトン類など）〕、シリコーンオイル〔ジメチルポリシロキサンなどのシリコーンオイル〕が例示できる。これらの溶媒は単独又は混合して使用できる。

【0040】

芯物質の有機分散媒は、転相乳化に供する樹脂溶液の有機溶媒（例えば、重合

性单量体の重合に用いる反応溶媒) よりも沸点が高く、脱溶剤処理後も着色剤の分散媒として残留可能な高沸点の有機溶媒から選択するのが有用である。

【0041】

分散系の着色粒子（着色剤又は着色泳動粒子）としては、分散媒と光学的特性の異なる粒子、電気泳動により、視覚的にコントラストを生じさせる粒子、直接的又は間接的に可視光域で視認可能なパターンを形成可能な粒子などの種々の着色粒子（無彩色又は有彩色粒子）が利用でき、例えば、無機顔料（カーボンブラックなどの黒色顔料、二酸化チタン、酸化亜鉛、硫化亜鉛などの白色顔料、酸化鉄などの赤色顔料、黄色酸化鉄、カドミウムイエローなどの黄色顔料、紺青、群青などの青色顔料など）、有機顔料（ピグメントイエロー、ダイアリーライドイエローなどの黄色顔料、ピグメントオレンジなどの橙色系顔料、ピグメントレッド、レーキレッド、ピグメントバイオレットなどの赤色顔料、フタロシアニンブルー、ピグメントブルーなどの青色顔料、フタロシアニングリーンなどの緑色顔料など）、着色剤（染料、顔料など）で着色した樹脂粒子などが例示できる。着色粒子は単独で使用してもよく又は二種以上組み合わせて使用してもよい。すなわち、分散媒中には、单一（又は同種若しくは同系統色）の着色粒子が分散していてもよく、複数種（又は異なる色）の着色粒子が分散していてもよい。

【0042】

着色粒子（着色剤）の平均粒子径又は粒径は、 $0.01 \sim 1 \mu\text{m}$ 程度の範囲から選択でき、ナノメータサイズの平均粒子径（例えば、 $10 \sim 500 \text{ nm}$ 、好ましくは $20 \sim 300 \text{ nm}$ （例えば、 $20 \sim 200 \text{ nm}$ ）、さらに好ましくは $20 \sim 150 \text{ nm}$ ）程度であってもよい。着色粒子（着色剤）は、可視光線に対して透明なナノメータオーダーの粒子径（例えば、 $20 \sim 100 \text{ nm}$ 程度）を有していてもよい。着色粒子（着色剤）の粒度分布は特に制限されないが、粒度分布幅の狭い着色粒子（例えば、単分散粒子）が好ましい。

【0043】

芯物質中の着色粒子の含有量は、電気泳動性を損なわない範囲であればよく、例えば、 $1 \sim 20$ 重量%、好ましくは $1 \sim 15$ 重量%、さらに好ましくは $1 \sim 10$ 重量%（例えば、 $1 \sim 5$ 重量%）程度であってもよい。

【0044】

なお、分散媒は、着色粒子とコントラストを生じさせる限り、種々の染料（アントラキノン類やアゾ化合物類などの油溶性染料など）などで着色していてもよい。例えば、分散媒は、着色粒子と異なる色に着色していてもよい。

【0045】

着色粒子（泳動粒子）の凝集を防止し分散安定性を改善するため、前記分散系は、粘性調整剤の他、着色粒子の極性や表面電荷量を制御するための種々の成分、例えば、着色粒子の表面を被覆又は表面に付着又は結合した表面処理剤（極性基などを有する樹脂など）、分散剤（例えば、分散安定剤、界面活性剤など）、電荷制御剤などを含んでいてもよい。

【0046】

マイクロカプセルは、通常、球状（真球状を含む）であり、マイクロカプセルの平均粒子径は、 $1 \sim 1000 \mu\text{m}$ 程度の範囲から選択でき、通常、 $1 \sim 200 \mu\text{m}$ 、好ましくは $1 \sim 100 \mu\text{m}$ 、さらに好ましくは $1 \sim 60 \mu\text{m}$ （例えば、 $1 \sim 50 \mu\text{m}$ ）程度であり、 $5 \sim 50 \mu\text{m}$ 程度であってもよい。マイクロカプセルの粒度分布は特に制限されないが、通常、正規分布しており、粒度分布幅の狭いカプセル（例えば、単分散カプセル）であるのが好ましい。なお、マイクロカプセルは、通常、光透過率が高く、例えば、可視光線透過率80%以上であってもよい。

【0047】

このようなマイクロカプセルは、表示装置を構成する一対の電極間（例えば、少なくとも表示側の電極が透明電極で構成された一対の電極間）に介在させ、電極間に電圧を印加して着色粒子を電気泳動させ、文字、パターンなどの画像を表示するために有用である。画像表示において、着色粒子の泳動方向を制御するため、一対の電極の極性を変えてもよい。

【0048】

例えば、分散媒が着色し、かつ分散媒とコントラストを生じさせる着色粒子（分散媒と光学的特性の異なる粒子や分散媒の色と異なる着色粒子など）が分散した分散系（芯物質）を内包するマイクロカプセルを用いると、常態では分散媒の

色を呈し、電場の作用により着色粒子を表示面側に電気泳動させることにより、着色粒子によるパターンを表示できる。例えば、分散媒を黒色染料で着色し、白色粒子をさせた分散系では、白色粒子の電気泳動に伴って白色パターンを表示でき、分散媒を黄色染料で着色し、青色粒子を分散させた分散系では、青色粒子の電気泳動に伴って青色パターンを表示できる。

【0049】

また、単一の着色粒子（例えば、白色粒子、黒色粒子など）が分散した分散系（芯物質）を内包するマイクロカプセルを利用すると、着色粒子の電気泳動により表示面に画像パターンを表示できる。また、必要によりカラーフィルタと組み合わせることにより、カラーパターンを表示できる。

【0050】

さらに、黄色粒子（特に、ナノメータサイズの粒子）が分散した分散系（芯物質）を内包するマイクロカプセル（黄色用マイクロカプセル）と、赤色粒子（特に、ナノメータサイズの粒子）が分散した分散系（芯物質）を内包するマイクロカプセル（赤色用マイクロカプセル）と、青色粒子（特に、ナノメータサイズの粒子）が分散した分散系（芯物質）を内包するマイクロカプセル（青色用マイクロカプセル）と、必要により黒色粒子（特に、ナノメータサイズの粒子）が分散した分散系を内包するマイクロカプセル（黒色用マイクロカプセル）とを、それぞれ各一对の電極間に介在させて層状に積層すると、各電極への電圧印加や極性の制御により、減色混合を利用して、フルカラーパターンを表示できる。なお、必要により各層間にはカラーフィルタを介在させてもよい。

【0051】

さらには、1画素を、黄色用マイクロカプセルで構成された黄色画素と、赤色用マイクロカプセルで構成された赤色画素と、青色用マイクロカプセルで構成された青色画素とで構成し、これらの画素に電場を作用させることにより、フルカラー画像を表示できる。なお、必要であれば、黒色用マイクロカプセルで構成された黒色画素や白色用マイクロカプセルで構成された白色画素を電極間に形成してもよい。

【0052】

また、分散媒中で互いに異なる電荷 (+, -) に帯電した複数の着色粒子（又は分散系）を利用すると、分散対向電極間での印加により複数の着色粒子を互いに逆方向に泳動でき、印加電圧の極性の切り換え（又は制御）により、複数の着色粒子の泳動方向を制御できる。例えば、マイナス（-）に帯電した酸化チタンと、プラス（+）に帯電したカーボンブラックとを分散媒中に分散させたマイクロカプセルを利用すると、表示面側の電極の極性をプラスとすることにより、酸化チタンにより明色画像（消色パターン）を形成できるとともに、表示面側の電極の極性をマイナスとすることにより、カーボンブラックにより黒色画像とを形成できる。

【0053】

[マイクロカプセルの製造方法]

本発明では、酸基を中和したアニオン型樹脂と着色粒子と有機溶媒とを含む混合液を調製する工程（又は有機分散液調製工程）と、この混合液を転相乳化し、前記着色粒子が有機溶媒中に分散した分散系（芯物質）と、この分散系を内包する壁膜とで構成されたカプセル粒子を水性媒体中に生成させる工程（カプセル生成工程又は転相乳化工程）と、このカプセル粒子を水性媒体から分離して乾燥する工程（乾燥工程）とを経ることにより、前記分散系を内包するマイクロカプセルを製造する。

【0054】

また、カプセル粒子が生成した後、壁膜を構成するアニオン型樹脂を架橋又は硬化させる工程（架橋・硬化工程）を適当な段階（例えば、乾燥工程など）で採用してもよい。架橋・硬化工程は、通常、カプセル生成工程（転相乳化工程）の後、前記カプセル粒子が水性媒体に分散した分散液の状態で行う場合が多い。

【0055】

前記有機分散液調製工程は、混合液が酸基を中和したアニオン型樹脂と着色粒子と有機溶媒とを含む限り種々の方法で行うことができ、例えば、（1）酸基を中和したアニオン型樹脂の有機溶媒溶液と着色粒子とを混合分散し、着色粒子の分散液を調製する方法、（2）アニオン型樹脂と着色粒子と有機溶媒とを含む混合液を混合分散処理し、前記樹脂の酸基を中和する方法、（3）有機溶媒中に着

色粒子を分散した分散液（又は油相分散型着色剤）と、酸基を中和したアニオン型樹脂又はその有機溶媒溶液とを混合する方法などが採用できる。なお、前記方法（1）は、有機溶媒中、アニオン型樹脂の酸基を中和する中和工程【例えば、アニオン型樹脂を有機溶媒の存在下で調製し、この混合液中の樹脂の酸基を中和する中和工程】と、この中和工程で生成した樹脂含有有機溶媒溶液と着色剤とを混合分散する工程（分散工程）とを経て、着色粒子の分散液を調製するのが工程的には有利である。

【0056】

前記有機分散液調製工程において、水分散性樹脂は前記の方法、特に溶液重合法で調製できる。樹脂と有機溶媒とを含む樹脂溶液（溶液重合法などにより得られる樹脂溶液など）の固体分濃度は、例えば、20～80重量%（例えば、30～70重量%）程度であってもよい。

【0057】

水分散性樹脂を中和する中和工程では、種々の塩基、例えば、無機塩基【アンモニア、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物など】、有機塩基【トリメチルアミン、トリエチルアミン、トリブチルアミンなどのアルキルアミン類（特にトリアルキルアミン類）、ジメチルエタノールアミン、エタノールアミン、ジエタノールアミンなどのアルカノールアミン類、モルホリンなどの複素環式アミン類など】が挙げられる。これらの塩基は単独で又は二種以上組み合わせて使用できる。

【0058】

樹脂の酸基の中和度は、前記樹脂を少なくとも水分散性とし、転相乳化によりカプセル粒子を生成可能な範囲、例えば、10～100モル%（特に10～75モル%）程度の広い範囲から選択できる。中和度は、通常、10～60モル%、好ましくは10～50モル%（例えば、10～40モル%）程度である。なお、中和処理により樹脂を水溶性にしてもよい。樹脂に導入された酸基の量及び／又は樹脂の酸基の中和度を調整することにより、カプセル粒子の粒子径をコントロールできるとともに、粒度が正規分布したカプセル粒子を得ることができる。

【0059】

また、前記方法において、着色粒子（又は着色剤）は、適当な分散剤（低分子又は高分子分散剤、界面活性剤など）で予め分散した分散液の形態で用いてよい。例えば、酸基が中和されていてもよい前記アニオン型樹脂と着色剤とを、疎水性有機溶媒（前記重合反応での反応溶媒など）の存在下で分散処理し、生成した着色剤の分散液の形態で着色粒子を使用してもよい。着色剤の使用量は、樹脂の固体分100重量部に対して、2～100重量部、好ましくは5～75重量部、さらに好ましくは5～50重量部程度であってもよい。

【0060】

また、着色粒子（着色剤）の分散処理は、疎水性分散媒（油相）に着色粒子が分散可能である限り、種々の分散手段、例えば、超音波処理装置、ボールミルなどの分散装置などが利用できる。

【0061】

より具体的には、有機分散液調製工程は、例えば、次のようにして行うことができる。カルボキシル基に基づく適当な酸価（例えば、酸価20～120mgKOH/g）と、架橋性基を有する樹脂（例えば、スチレン-（メタ）アクリル酸エステル-（メタ）アクリル酸系共重合体などで構成された共重合体、数平均分子量 $5 \times 10^3 \sim 5 \times 10^4$ 程度の共重合体）を含む有機溶媒溶液を調製し、塩基を用いて前記樹脂の酸基を適当な中和度（例えば、10～40モル%程度の中和度）に中和処理し、樹脂溶液を調製する。一方、着色剤（有機顔料や無機顔料）を上記樹脂（中和処理されていてもよい樹脂）とともに、疎水性溶媒の存在下、分散処理し、着色剤を含む分散液を調製する。そして、前記樹脂溶液と着色剤を含む分散液とを混合することにより、着色剤が分散した有機分散液を調製できる。

【0062】

カプセル生成工程（転相乳化工程）では、着色粒子が油相中に分散した有機分散液（油相分散型着色剤）に水性媒体（特に水）を添加して転相乳化させ、芯物質がアニオン型樹脂によりカプセル化（内包）されたカプセル粒子を含む分散液を生成させる。この転相乳化は、通常、着色剤含有有機分散液と水性媒体（特に水）とを含む混合系に剪断力を作用させながら行われ、前記剪断力は、攪拌な

どの剪断力、超音波などの振動剪断力であってもよく、通常、攪拌下で行う場合が多い。転相乳化工程において、酸基が中和された樹脂と有機溶媒とを含む有機連続相（O相）に、水性媒体相（W相）の水性媒体を添加すると、有機連続相（O相）から水連続相又は水性媒体相（W相）への連続相の転換とともに、有機相が乳化されて不連続相化（すなわち転相乳化）し、前記樹脂が有機相の周囲に局在化して、有機相を内包するカプセル粒子が水媒体中に安定に分散した水分散液が得られる。より具体的には、中和された酸基を有する樹脂溶液と着色剤の分散液を混合し、この混合液に、攪拌下、水を添加することにより転相乳化させ、カプセル粒子を生成できる。攪拌においては、水性媒体相と有機相とを均一に混合可能な適度のシェア（剪断力）を混合液に作用させればよく、特段の手段を講じることなく、カプセル粒子の水分散液を得ることができる。

【0063】

有機連続相（O相）又は有機分散液と水性媒体相（W相）の水性溶媒との割合は、カプセル粒子が生成可能な範囲、例えば、前者／後者 = 10 / 90 ~ 50 / 50（重量比）、好ましくは 20 / 80 ~ 50 / 50（重量比）、さらに好ましくは 25 / 75 ~ 50 / 50（重量比）程度であってもよい。

【0064】

転相乳化は適当な温度（例えば、5 ~ 40℃、好ましくは 15 ~ 30℃程度、特に室温）で行うことができ、必要であれば冷却又は加温して転相乳化してもよい。また、転相乳化において着色剤含有油性分散液（有機分散液）と水性媒体との温度差は小さい方が好ましく、両者の温度差は、通常、0 ~ 15℃（好ましくは 0 ~ 10℃、特に 0 ~ 5℃）程度であってもよい。なお、転相過程において、攪拌による剪断力が小さすぎると、ブロードな粒度分布を有するカプセル粒子が生成しやすく、剪断力が過度に強すぎると、生成したカプセル粒子が破壊され、凝集物や極めて微細な粒子が生じ、ひいては粒度分布が大きくなる可能性がある。

【0065】

なお、転相乳化により生成した乳化混合物は、分散系を内包するマイクロカプセル粒子と、このマイクロカプセル粒子が分散した分散媒（溶媒相）とで構成さ

れるが、溶媒相は、水および有機溶媒（カプセル粒子内に内包され、かつ分散系を構成する着色剤の疎水性分散媒以外の有機溶媒）を含む。そのため、通常、転相乳化により生成した乳化混合物は、脱有機溶媒処理に供され、マイクロカプセル粒子が水性媒体中に分散した水性分散液が得られる。この有機溶媒は、慣用の方法、例えば、蒸留、特に減圧蒸留により除去できる。前記のように、有機溶剤は、留去性の観点から、低沸点であるのが好ましい。また、生成した水性分散液には、濃度などを調整するため、必要に応じて水媒体を追加・補充してもよい。

【0066】

架橋・硬化工程は、カプセル粒子を構成する樹脂を自己架橋又は架橋剤により架橋又は硬化することにより行われる。架橋剤は、樹脂の架橋性官能基の種類に応じて選択でき、例えば、次のような組み合わせが採用できる。

【0067】

1) 架橋性官能基がカルボキシル基である場合、架橋剤としては、例えば、アミノプラスチ樹脂（メチロール基やアルコキシメチル基を有する樹脂、例えば、尿素樹脂、グアナミン樹脂、メラミン樹脂など）、グリシジル基を有する化合物（又はポリエポキシ化合物又はエポキシ樹脂）、カルボジイミド基を有する化合物（ポリカルボジイミド化合物）、オキサゾリン基を有する化合物（ポリオキサゾリン化合物）、金属キレート化合物などが挙げられる。

【0068】

2) 架橋性官能基がヒドロキシル基である場合、架橋剤としては、例えば、アミノプラスチ樹脂、ブロック化されていてもよいポリイソシアネート化合物、アルコキシシラン化合物などが挙げられる。

【0069】

3) 架橋性官能基がグリシジル基である場合、架橋剤としては、例えば、カルボキシル基含有化合物（多価カルボン酸又はその酸無水物）、ポリアミン化合物、ポリメルカプト化合物などが挙げられる。

【0070】

架橋剤は単独で又は二種以上組み合わせて使用できる。なお、架橋剤は、通常、一分子中に複数の反応性基を有している。好ましい組合せは、中和により樹脂

に親水性を付与できるとともに、架橋性官能基としても機能するカルボキシル基と、カルボジイミド基を有する化合物（ポリカルボジイミド化合物）との組合せを含む。カルボジイミド基を有する化合物としては、ジアルキルカルボジイミド（ジエチルカルボジイミド、ジプロピルカルボジイミド、ジヘキシルカルボジイミドなどのジC₁₋₁₀アルキルカルボジイミド）；ジシクロアルキルカルボジイミド（ジシクロヘキシルカルボジイミドなどのジC₃₋₁₀シクロアルキルカルボジイミドなど）；アリールカルボジイミド（ジ-p-トルイルカルボジイミド、トリイソプロピルベンゼンポリカルボジイミドなどのアリールポリカルボジイミドなど）などが挙げられる。これらのカルボジイミドは単独で又は二種以上組み合わせて使用できる。

【0071】

架橋剤（カルボジイミド化合物など）は、油相又は水相のいずれかに溶解する化合物であるのが好ましく、親水性が付与された架橋剤（親水性又は水溶性架橋剤）も好ましい。カルボジイミド化合物について説明すると、このような化合物は、カルボジライト（日清紡（株）製、「V-02」，「V-02-L2」，「V-07」）などとして入手できる。

【0072】

架橋性官能基を有する樹脂と架橋剤との割合は、特に制限されず、例えば、架橋性官能基（カルボキシル基など）1当量に対して、架橋剤の反応性基（カルボジイミド基など）0.1～2当量程度の範囲から選択でき、通常、0.1～1当量（例えば、0.1～0.8当量）、好ましくは0.2～0.7当量、さらに好ましくは0.3～0.7当量程度の範囲から選択できる。なお、必要に応じて、複数の架橋剤（例えば、カルボジイミド化合物と他の架橋剤）を併用することも有効である。

【0073】

架橋剤は、有機分散液調製工程で生成した油性混合液（有機分散液）、転相乳化工程や転相乳化により生成した乳化分散液（又は溶媒相からの有機溶媒除去後の水性分散液）に添加してもよい。疎水性又は油溶性架橋剤を用いる場合は、有機分散液調製過程又は生成した有機分散液に添加するのが有利であり、親水性又

は水溶性架橋剤を用いる場合、転相乳化工程や転相乳化により生成した分散液（特に溶媒相の有機溶媒を除去した水性分散液）に添加するのが有利である。好ましい態様では、カプセル粒子を含む水性分散液を生成させた後、架橋剤（親水性又は水溶性架橋剤）を添加し、水性媒体中でカプセル粒子の壁膜を架橋又は硬化させることができる。なお、必要に応じて、疎水性又は油溶性架橋剤と、親水性又は水溶性架橋剤とを適当な段階で添加して、樹脂成分中の架橋官能基と架橋剤とを反応させてもよい。さらに、必要であれば、架橋反応を促進するため、架橋剤は、触媒（酸触媒、塩基触媒など）と組み合わせて用いてもよい。

【0074】

樹脂の架橋・硬化は、適当な温度で行うことができ、通常、攪拌しながら、加熱して行うことができる。なお、架橋・硬化は、水性溶媒又は疎水性溶媒の存在下で行う場合が多い。そのため、架橋・硬化は、分散液を攪拌しながら、溶媒（好ましくは水性媒体、特に水）の沸点以下の温度（例えば、50～100℃、好ましくは50～90℃、さらに好ましくは50～80℃程度の温度）で架橋・硬化させる場合が多い。なお、架橋・硬化反応は、例えば、10分～12時間（例えば、1～5時間）程度で終了できる。さらに、マイクロカプセル粒子の融着を抑制するため、壁膜（又は樹脂）のガラス転移温度未満の温度で行ってもよい。

【0075】

乾燥工程では、カプセル粒子を水性媒体から分離して乾燥させ、前記分散系（油相分散系又は芯物質）を内包する粉末状のマイクロカプセル（カプセル型表示素子又はインク）を得ることができる。乾燥は、カプセル粒子を含む水性分散液を噴霧乾燥、凍結乾燥などの慣用の乾燥手段に供して行ってもよく、濾過、遠心分離などの分離方法により、カプセル粒子を濾別分離してカプセル粒子のウェットケーキを生成させ、噴霧乾燥、凍結乾燥などの慣用の方法を利用して行ってもよい。

【0076】

なお、カプセル粒子は、樹脂の中和された酸基を遊離化するため、酸による逆中和処理に供してもよい。酸としては、酸基を遊離化可能であれば、有機酸及び無機酸のいずれも使用でき、例えば、有機カルボン酸（ギ酸、酢酸、トリクロロ

酢酸、トリフルオロ酢酸など)、有機スルホン酸(メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸など)などの有機酸、塩酸、リン酸などの鉱酸又は無機酸が利用できる。酸は、通常、酸水溶液の形態で使用できる。逆中和処理は、水性媒体から分離したカプセル粒子や乾燥したカプセル粒子に対して行ってもよいが、通常、カプセル粒子を含む水性分散液に酸を添加し、必要により加温することにより行うことができる。

【0077】

本発明では、分散安定剤を実質的に含まず、着色剤が油相に分散した油相分散系を内包するマイクロカプセルを、転相乳化を利用した簡単なプロセスで得ることができる。しかも、芯物質を内包しない粒子が生成せず、確実にマイクロカプセルを生成できる。そのため、非マイクロカプセル状の新粒子の除去工程を省略できる。また、マイクロカプセルの粒径を容易にコントロールできるとともに、正規分布に従った粒度分布を有し、シャープな粒度分布のマイクロカプセルも得ることができる。

【0078】

本発明は、電極間での電圧印加による着色粒子の電気泳動を利用して画像を形成するための画像表示素子として有用である。

【0079】

【発明の効果】

本発明では、特定の樹脂を利用するため、着色粒子が油相に分散した分散系を内包し、かつ制御された粒径を有するマイクロカプセルを得ることができる。また、電気泳動可能な着色粒子を油相に含み、かつ芯物質の分散状態に依存することなく、シャープで均一な粒度のマイクロカプセルを得ることができる。さらに、マイクロカプセルは、芯物質を内包していても安定性および耐久性が高い。さらには、本発明では、乳化分散剤を用いることなく、前記特性を有するマイクロカプセルを簡便かつ効率よく製造できる。特に、非カプセル粒子の生成を抑制しつつ、前記分散系を内包するマイクロカプセルを確実に生成できる。

【0080】

【実施例】

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例において、「部」および「%」は重量基準である。

【0081】

実施例1

[アニオン型樹脂の調製]

反応器に2-プロパノール110部と重合開始剤AIBN(2, 2'-アゾビスイソブチロニトリル)1部とを入れて混合し、この混合液に、窒素雰囲気下、80℃で、メタクリル酸メチル78部、アクリル酸ブチル14部及びメタクリル酸8部の単量体混合物を3時間に亘って滴下した。滴下終了後、2-プロパノール11部とAIBN0.2部との混合液を反応混合液に添加し、80℃で4時間保持し、固体分(加熱残分)45%の樹脂溶液を得た。

【0082】

[カプセル型インクの調製例]

上記樹脂溶液11部に2-プロパノール88部を添加し、40℃にてDMAE(ジメチルアミノエタノール)の10%水溶液1.5部を添加して中和処理(中和度約35モル%)した。

【0083】

ジイソプロピルナフタレン(呉羽化学工業(株)製、「KMC-113」)100部とオイルブルー1部との混合液を攪拌しながら加熱し、90℃にて完全に溶解させ、20分間保持した後、室温まで冷却した。この着色溶液100部に対して、酸化チタン(石原産業(株)製、「A100」)10部を分散させ着色剤分散液を調製した。

【0084】

上記着色剤分散液100部と上記樹脂溶液とを40℃で混合し、攪拌しながら脱イオン水200部を滴下して転相乳化を行った。この転相乳化混合液を次のような後処理工程に供し、粉末状マイクロカプセルを得た。すなわち、減圧蒸留により、生成した乳化混合液から2-プロパノールを除去するとともに、生成した水性分散液に脱イオン水100部を加え、ポリカルボジイミド系架橋剤(日清紡(

株) 製、カルボジライトV-02-L2) 0.5部を添加し、60℃で2時間架橋反応を行った。架橋処理の後、水性分散液を濾過し、ケーキに脱イオン水300部を加え、攪拌しながら酢酸にてpH2~3に調整し、スプレードライヤーで乾燥し、カプセル粉末を得た。得られたカプセルの平均粒径は12μmであった。また、壁膜のガラス転移温度Tgは120℃であった。

【0085】

実施例2

[アニオン型樹脂の調製]

上記実施例1と同様の方法でアニオン型樹脂(樹脂溶液)を調製した。

【0086】

[カプセル型インクの調製例]

上記樹脂溶液11部に2-プロパノール88部を添加し、40℃にてDMAE(ジメチルアミノエタノール)の10%水溶液1.5部を添加して中和処理(中和度約35モル%)した。ジイソプロピルナフタレン(呉羽化学工業(株)製)100部にオイルブルー1部を混合し、攪拌しながら加熱し、90℃にて完全に溶解させ、20分間保持した後、室温まで冷却した。この着色溶液(ジイソプロピルナフタレンのオイルブルー溶解液)100部に対して、酸化チタン(石原産業(株)製、「A100」)10部を分散させ着色剤分散液を得た。

【0087】

上記着色剤分散液100部と上記樹脂溶液とポリカルボジイミド系架橋剤(日清紡(株)製、「カルボジライトV-07」)0.5部とを40℃にて混合し、攪拌しながら脱イオン水200部を滴下して転相乳化を行った。この転相乳化混合液を次のような後処理工程に供し、粉末状マイクロカプセルを得た。すなわち、減圧蒸留により、生成した乳化混合液から2-プロパノールを除去し、生成した水性分散液に脱イオン水100部を加え、60℃で2時間架橋反応を行った。架橋処理した後、水性分散液を濾過し、ケーキに脱イオン水300部を加え、攪拌しながら酢酸でpHを2~3に調整し、スプレードライヤーで乾燥し、カプセル粉末を得た。得られたカプセルの平均粒径は14μmであった。また、壁膜のガラス転移温度Tgは133℃であった。

【0088】

実施例3

[アニオン型樹脂の調製]

反応器にメチルエチルケトン110部と重合開始剤AIBN 1部を入れて混合し、この混合液に、窒素雰囲気下、80℃で、スチレン50部、メタクリル酸メチル28部、メタクリル酸2-ヒドロキシエチル4部、アクリル酸ブチル10部及びメタクリル酸9部の单量体混合物を3時間に亘って滴下した。滴下終了後、メチルエチルケトン11部とAIBN 0.2部との混合液を反応混合液に添加し、80℃にて4時間保持し、加熱残分46%の樹脂溶液を得た。

【0089】

[カプセル型インクの調製例]

上記樹脂溶液11部にメチルエチルケトン88部を添加し、DMAE（ジメチルアミノエタノール）の10%水溶液を1.5部添加して中和処理（中和度約30モル%）した。

【0090】

ジイソプロピルナフタレン100部に酸化チタン（石原産業（株）製、「A100」）10部とカーボンブラック（三菱化学（株）製、「MA-100」）1部とを、顔料分散安定剤（アビシア（株）製 ソルスパース17000）を用いて分散させ着色剤分散液を得た。

【0091】

上記着色剤分散液100部と上記樹脂溶液とを40℃で混合し、攪拌しながら脱イオン水200部を滴下して転相乳化を行った。この転相乳化混合液を次のような後処理工程に供し、粉末状マイクロカプセルを得た。すなわち、減圧蒸留により、生成した乳化混合液からメチルエチルケトンを除去し、生成した水性分散液に脱イオン水100部を加え、ポリカルボジイミド系架橋剤（日清紡（株）製、「カルボジライトV-02-L2」）0.5部を添加し、60℃で2時間架橋反応を行った。架橋処理の後、水性分散液を濾過し、ケーキに脱イオン水300部を加え、攪拌しながら酢酸にてpH2～3に調整し、凍結乾燥法で乾燥し、カプセル粉末（収率80%）を得た。得られたカプセルの平均粒径は20μmである。

った。また、壁膜のガラス転移温度T_gは112℃であった。

【0092】

実施例4

[アニオン型樹脂の調製]

上記実施例1と同様の方法でアニオン型樹脂（樹脂溶液）を調製した。

【0093】

[カプセル型インクの調製例]

上記樹脂溶液11部にメチルエチルケトン88部を添加し、DMAE（ジメチルアミノエタノール）の10%水溶液を1.5部添加して中和処理（中和度約30モル%）した。

【0094】

シリコンオイル（信越化学（株）製）100部に酸化チタン（石原産業（株）製、「A100」）10部とカーボンブラック（三菱化学（株）製、「MA-100」）1部とを、顔料分散安定剤（アビシア（株）製、「ソルスパース1700」）を用いて分散させ着色剤分散液を得た。

【0095】

上記着色剤分散液100部と上記樹脂溶液とポリカルボジイミド系架橋剤（日清紡（株）製、「カルボジライトV-07」）0.5部とを40℃で混合し、攪拌しながら脱イオン水200部を滴下して転相乳化を行った。この転相乳化混合液を次のような後処理工程に供し、粉末状マイクロカプセルを得た。すなわち、減圧蒸留により、生成した乳化混合液からメチルエチルケトンを除去し、脱イオン水100部を加え、60℃で2時間架橋反応を行った。架橋処理の後、水性分散液を濾過し、ケーキに脱イオン水300部を加え、攪拌しながら酢酸にてpH2～3に調整し、凍結乾燥法で乾燥し、カプセル粉末（収率80%）を得た。得られたカプセルの平均粒径は25μmであった。また、壁膜のガラス転移温度T_gは121℃であった。

【0096】

比較例1

スチレン50部、メタクリル酸メチル37部、メタクリル酸2-ヒドロキシエ

チル4部、アクリル酸ブチル10部の単量体混合物を用いる以外、実施例3と同様にして樹脂溶液（加熱残分46%）を調製した。なお、酸基含有単量体（メタクリル酸など）は使用しなかった。前記樹脂溶液を用いる以外、実施例3と同様にして着色剤混合液と樹脂溶液との混合液に脱イオン水を添加して転相乳化を試みたが、樹脂が析出し転相乳化ができなかった。このことは、上記樹脂に酸基が含まれていないために、転相乳化性を有していなかったことに起因している。

【0097】

なお、マイクロカプセルの特性は次のようにして評価した。

【0098】

[粒度分布]

生成したマイクロカプセル含有分散液をスライドガラス上に一滴滴下し、カバーガラスを乗せて光学顕微鏡で観察し、観察像データを光学顕微鏡に繋いだCCDカメラシステムに取り込んだ。取り込まれた画像データを画像解析ソフト（三谷商事（株）製、「WinROOF」）を用いてコンピュータで解析し、粒度分布を測定した。なお、乾燥した微粒子（カプセル粒子、及び非カプセル微粒子を含む粉体）を走査型電子顕微鏡により観察し、観察画像データを取り込み、上記と同様にして粒度分布を測定できる。

【0099】

[ガラス転移温度]

乾燥したカプセルを乳鉢で磨り潰し、破碎物をアセトンに浸漬して攪拌し、カプセルに内包された着色剤分散液をアセトン中に溶出させた。生成物を遠心分離器にかけて上澄みを除去し、さらにアセトンを加えて沈殿物を洗浄した。この操作を更に2回繰り返し、最終的に沈殿物を真空オーブンにて常温で乾燥させた。この乾燥物のガラス転移温度を、ダイナミカル・スキヤニング・カロリメトリー（セイコーインスツルメント（株）製DSC）を用いて測定した。

【0100】

[カプセル分散液の状態]

生成したカプセル分散液をスライドガラス上に一滴滴下し、カバーガラスを乗せて光学顕微鏡観察を行うとともに、乾燥した微粒子（カプセル粒子、及び非カ

プセル微粒子を含む粉体) を走査型電子顕微鏡により観察することにより確認した。

【0101】

[電気泳動性]

実施例1及び実施例2で作製したカプセル粒子(酸化チタンとオイルブルーを内包)を一方の電極上に敷き詰め、更に一枚の透明電極で覆い、プレートを作製した。上下の電極間に電圧を印加し、電極の極性(プラス/マイナス)を切り替える毎に、プレートの色が白から青、または青から白へと変化した。

【0102】

実施例3及び実施例4で作製したカプセル粒子(カーボンブラックと酸化チタンを内包)を電極上に敷き詰め、更に一枚の透明電極で覆い、プレートを作製した。上下の電極間に電圧を印加し、電極の極性(プラス/マイナス)を切り替える毎に、プレートの色が白から黒、または黒から白へと変化した。この色変化は、カーボンブラックがマイナス電荷に帶電し、酸化チタンがプラス電荷に帶電しているため、電気泳動現象によってプレート表面側(透明電極側)に一方の粒子が移動することに起因している。

【0103】

結果を表に示す。

【0104】

【表1】

表1

	粒度分布	ガラス転移温度(°C)	カプセル分散液の状態	電気泳動性
実施例1	12±6μm	120	良好なカプセルが生成	良好(青↔白)
実施例2	14±8μm	133	良好なカプセルが生成	良好(青↔白)
実施例3	20±9μm	112	良好なカプセルが生成	良好(青↔白)
実施例4	25±10μm	121	良好なカプセルが生成	良好(黒↔白)
比較例1	0.05~10μm	—	転相乳化せず	—

【書類名】 要約書

【要約】

【課題】 乳化分散剤を用いることなく、着色粒子が油相に分散した芯物質を内包し、かつ均一な粒度のマイクロカプセルを得る。

【解決手段】 有機溶媒中、架橋性官能基を有するアニオン型樹脂（酸価20～120mgKOH/g）の酸基を中和し、生成した樹脂溶液と着色剤とを混合し、有機分散液を調製する。この分散液に水を添加して転相乳化し、着色粒子が有機溶媒中に分散した分散系と、この分散系を内包する壁膜とで構成されたカプセル粒子を水性媒体中に生成させる。水性分散液に架橋剤を添加して壁膜を架橋又は硬化させ、カプセル粒子を水性媒体から分離して乾燥し、マイクロカプセルを得る。マイクロカプセルは電位差により油相中で着色粒子が電気泳動可能な画像表示素子として利用できる。

【選択図】 なし

特願 2003-086233

出願人履歴情報

識別番号 [000002901]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府堺市鉄砲町1番地
氏 名 ダイセル化学工業株式会社