Question	Scheme	Marks
10(a)	When $y = 0$, $x = 2$ or $(2, 0)$	B1
(i)		B1
(ii)	When $x = 0$, $y = -\frac{6}{4}$ oe or $\left(0, -\frac{6}{4}\right)$ oe	[2]
	If not labelled part (i) and (ii), do not award marks unless the candidate has presented in the correct order or has made it clear which coordinate or pair of values is P and which is Q	
(b)	(i) $x = 4$ (ii) $y = -3$	B1 B1
	If not labelled part (i) and (ii), do not award marks unless the candidate has presented in the correct order or has identification of horizontal (or parallel to x-axis) and vertical (or parallel to y-axis) is clear.	[2]
(c)		
	x = 4	B1 B1 ft B1 ft
	$\left(0, -\frac{6}{4}\right) Q \qquad (2, 0) P$	[3]
	10	
	y = -3	
(d)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) \frac{-3(x-4) - (6-3x) \times 1}{(x-4)^2} = \left[\frac{6}{(x-4)^2}\right] \text{ oe}$ where $x = 2$	M1A1A1
	$\frac{dy}{dx} = \frac{6}{(2-4)^2} = \frac{6}{4} \Rightarrow \text{Gradient of normal} = -\frac{4}{6} \text{ oe}$	M1
	Equation of normal: $v = 0 = \frac{4}{r}(r-2) \rightarrow [3v = -2r + 4]$ os	dM1A1
	Equation of normal: $y-0="-\frac{4}{6}"(x-2) \Rightarrow [3y=-2x+4]$ oe	[6]
(e)	$\frac{6-3x}{x-4} = \frac{-2x+4}{3} \Rightarrow 2x^2 - 21x + 34 = 0$	M1
	$x-4 \qquad 3$ $\Rightarrow (2x-17)(x-2) = 0$ At $R \Rightarrow x = \frac{17}{2}$, (2)	M1
	At $R \Rightarrow x = \frac{17}{12}$, (2)	A1
	L	[3]
	Tota	al 16 marks

Part	Mark	Notes
(a) (i)	B1	Must state $y = 0$, $x = 2$ or $(2, 0)$ or clearly stating $x = 2$
(ii)	B1	Must state $y = 0$, $x = 2$ or $(2, 0)$ or clearly stating $x = 2$ Must state $x = 0$, $y = -\frac{6}{4}$ oe or $\left(0, -\frac{6}{4}\right)$ oe or clearly stating $y = -\frac{6}{4}$
(b)(i)	B1	For $x = 4$
(ii)	B1	For $y = -3$
(c)	B1	For a negative reciprocal curve drawn anywhere in the grid – there must be two branches present, they must not cross any asymptotes drawn and must not obviously 'bend back' on themselves. Mark intention.
	B1ft	For the asymptotes drawn, follow through their (b)(i) and (ii). There must be at least one branch of a negative reciprocal curve present in the correct place for their work in (a) and (b), which must not cross or obviously bend back from the asymptotes. The asymptotes must be labelled with their equation or shown as passing through 4 on the <i>x</i> -axis and – 3 on the <i>y</i> -axis, both clearly labelled.
	B1ft	For at least one branch of a negative reciprocal curve in the correct place for their work in (a) and (b), passing through their intercepts on the axes. The intercepts should be correctly labelled with the coordinates or the axes labelled correctly with $-\frac{6}{4}$ (oe) and 2 (or their ft values) but condone labelling to be P and Q .
(d)	M1	For an expression of the form. $\frac{-a(x-4)-(6-3x)\times b}{(x-4)^2}$ oe
	A1	For an expression of the form. $\frac{-3(x-4)-(6-3x)\times b}{(x-4)^2} \text{or} \frac{-a(x-4)-(6-3x)\times 1}{(x-4)^2}.\text{oe}$
	A1	Fully correct – need not be simplified.
	M1	For substituting $x = 2$ into their $\frac{dy}{dx}$ and finding the gradient of the normal. This is not a dependent method mark, but the substitution must be into a changed function. If their expression does not allow substitution of $x = 2$, this mark cannot be awarded.
	dM1	For a complete and correct method to find the equation of the normal using their (changed gradient), $y = 0$ and $x = 2$. Dependent on the previous mark. If $y = mx + c$ is used they must find a value for c .
(-)	A1	For any correct equation. This can be in any form and may be left unsimplified.
(e)	M1	For equating their equation of the normal to <i>C</i> and attempting to form a 3TQ. The attempt must involve correctly removing both denominators of the equation as a minimum and any attempt to collect terms.
	M1	For a minimally acceptable (see general guidance) and complete attempt to solve their quadratic equation, leading to a value of x .
	A1	For the x coordinate of point R $x = \frac{17}{2}$

Question	Scheme	Marks
11 (a)(i)	$(\alpha - \beta = 2\sqrt{6} \Rightarrow (\alpha - \beta)^2 = 24) \Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 24$ oe (1)	M1
	$\alpha^2 + \beta^2 = 30 \Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 30$ oe (2)	M1
		dM1A1*
	$(2) - (1) \qquad 6 = 2\alpha\beta \Rightarrow \alpha\beta = 3 \operatorname{cso}$	[4]
ALT1	$\left(\left(\alpha-\beta\right)^2 = \alpha^2 + \beta^2 - 2\alpha\beta \Rightarrow\right) 2\alpha\beta = \alpha^2 + \beta^2 - \left(\alpha-\beta\right)^2 \text{oe}$	M1
	$30 - \left(2\sqrt{6}\right)^2 = 6$	M1
	$2\alpha\beta = 6 \Rightarrow \alpha\beta = 3$	dM1A1
(ii)	$a_{1} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{5$	[4] M1A1*
	$30 = (\alpha + \beta)^2 - 2 \times 3 \Rightarrow (\alpha + \beta)^2 = 36 \Rightarrow \alpha + \beta = 6 [\alpha > \beta > 0] \text{ cso}$	[2]
ALT2 (i)	$\alpha - \beta = 2\sqrt{6} \to \alpha = 2\sqrt{6} + \beta$	
	$\alpha^2 + \beta^2 = 30 \rightarrow \left(2\sqrt{6} + \beta\right)^2 + \beta^2 = 30$	M1
	$2\beta^2 + 4\sqrt{6}\beta - 6 = 0$ oe eg $\beta^2 + 2\sqrt{6}\beta - 3 = 0$	M1
	$(\beta =)$ $\frac{-2\sqrt{6} \pm \sqrt{(2\sqrt{6})^2 - 4(1)(-3)}}{2}$ oe $\rightarrow \beta (= 3 - \sqrt{6})$	
	$(\beta =) \xrightarrow{\qquad \qquad } 6 = 3 - \sqrt{6}$	dM1
	$\alpha = 3 + \sqrt{6}$	
	$\alpha\beta = (3 + \sqrt{6})(3 - \sqrt{6}) = 9 + 6\sqrt{3} - 6\sqrt{3} - 6 = 3$	A1*
(ii)	$\alpha + \beta = 3 + \sqrt{6} + 3 - \sqrt{6} = 6$	[4] M1A1
` ,		[2]
(b)(i)	$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = 30^2 - 2 \times 3^2 = 882$	M1A1 [2]
(b) ii)	$\alpha^4 - \beta^4 = (\alpha^2 + \beta^2)(\alpha^2 - \beta^2) = (\alpha^2 + \beta^2)(\alpha - \beta)(\alpha + \beta)$	M1
	$\alpha^4 - \beta^4 = 30 \times 6 \times 2\sqrt{6} = 360\sqrt{6}$	A1
		[2]
(c)	$(\alpha^4 + \beta^4) + (\alpha^4 - \beta^4) = 2\alpha^4 = 882 + 360\sqrt{6} \Rightarrow \alpha^4 = 441 + 180\sqrt{6}$	M1A1 [2]
ALT1	$\alpha - \beta = 2\sqrt{6}, \alpha + \beta = 6 \Rightarrow \alpha = 3 + \sqrt{6}$	
	$\alpha^4 = \left(3 + \sqrt{6}\right)^4$	M1
	$\alpha^4 = 441 + 180\sqrt{6}$	A1 [2]
ALT2	$\alpha - \beta = 2\sqrt{6}, \alpha + \beta = 6 \Rightarrow \beta = 3 - \sqrt{6}$	
	$\alpha^4 = \beta^4 + 360\sqrt{6} = (3 - \sqrt{6})^4 + 360\sqrt{6}$	M1
	$\alpha^4 = 441 + 180\sqrt{6}$	A1
	•	[2] l 12 marks

Part	Mark	Notes	
(a) (i)	M1	For forming an equation of the form $(\alpha + \beta)^2 \pm p\alpha\beta = 24$ oe or $(\alpha + \beta)^2 \pm t\alpha\beta = 30$	
		oe	
	M1	For this equation being fully correct. Both marks may be implied by early substitution	
-	dM1	of values. For correctly solving their simultaneous equations in $\alpha + \beta$ and $\alpha\beta$ to find a value for	
	ulvii	$\alpha\beta$, dependent on 1 st method mark.	
	A1*cso	For the correct value of $\alpha\beta$	
ALT1	M1	For forming an equation of the form $q\alpha\beta = \alpha^2 + \beta^2 - (\alpha - \beta)^2$ oe	
-	M1	For this equation being fully correct. Both marks may be implied by early substitution	
	IVII	of values.	
	dM1 For correct substitution into their equation, dependent on 1 st method mark.		
	A1*cso	For the correct value of $\alpha\beta$	
(a) (ii)	M1	Correctly uses either of their equations (must be of the required form) to substitute the given value of $\alpha\beta$ and obtains a value for $\alpha + \beta$	
	A1*cso	For the correct value of $\alpha + \beta$	
ALT2	M1	For an attempt to eliminate α or β and arrive at an unsimplified quadratic equation in	
(i)	3.71	one variable. Allow one error	
	M1 dM1	For the correct quadratic equation For a fully correct method to solve their quadratic equation in α or β , dependent on	
	ulvii	the 1 st method mark	
	A1*cso	For correctly finding α and β and showing the minimum steps shown to find $\alpha\beta$	
	M1	For finding $\alpha + \beta$ with their values	
	A1*cso	For finding $\alpha + \beta$ with the correct values, minimum steps as shown.	
(b) (i)	M1	For the correct algebra $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$, if they use more complex	
		algebra, it must be correct and fully ready for substitution of given values.	
		Do not allow $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$ unless recovered	
-	A1	For substituting the given values to find the correct value for $\alpha^4 + \beta^4$	
(b)	M1	For the correct algebra to write $\alpha^4 - \beta^4$ in terms of $(\alpha^2 + \beta^2)$, $(\alpha - \beta)$ and $(\alpha + \beta)$	
(ii)	A1		
()		For the correct value of $\alpha^4 - \beta^4$	
(c)	M1	For adding together $\alpha^4 + \beta^4$ and $\alpha^4 - \beta^4$ to eliminate β^4 and reach α^4 either as an expression or implied by adding their values together and dividing by 2. If students subtract $\alpha^4 + \beta^4$ and $\alpha^4 - \beta^4$ to eliminate α^4 and reach β^4 , they must then reach α^4 as an expression or implied by subtracting their values, using one of the expressions from part b and dividing by 2.	
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$	
ALT1	M1	For $\alpha^4 = \left(3 + \sqrt{6}\right)^4$	
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$	
ALT2	M1	For $\alpha^4 = \beta^4 + 360\sqrt{6} = (3 - \sqrt{6})^4 + 360\sqrt{6}$	
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom