	(0	Cognome))	(Nome)		(Co	rso di laurea)
Sercizio	1. Con	npletare la	a seguente tab	ella considerando il problema	di progra	mmazione line	eare:	
				$\begin{cases} \max 8 x_1 - 9 x_2 \\ -x_1 - 2 x_2 \le 4 \\ -6 x_1 - x_2 \le 2 \\ 4 x_1 + 3 x_2 \le 26 \\ -2 x_1 + 3 x_2 \le 14 \\ 6 x_1 - x_2 \le 28 \\ 5 x_1 + x_2 \le 27 \end{cases}$				
	Base	Soluzio	ne di base			Ammissibile (si/no)	Degenere (si/no)	
	$\{1, 2\}$	x =						
	$\{5, 6\}$	y =						
sercizio	2. Effe	ettuare du	e iterazioni de	ll'algoritmo del simplesso pri	male per il	problema del	l'esercizio 1.	
		Base	x	y	Indice uscente		apporti	Indie entra
1° iterazio	one	${3,4}$						
2° iterazio	one							

	scarpe	scarponi
costo produzione	18	22
prezzo vendita	40	46

L'azienda dispone di un budget mensile pari a 66.000 euro. La produzione di cento paia (scarpe o scarponi) richiede l'utilizzo dell'impianto per 10 ore. L'impianto è disponibile 12 ore la giorno. Stabilire la produzione mensile che massimizzi il profitto.

· moseumen i pronve.	
ariabili decisionali:	
odello:	
COMANDI DI MATLAB	

C=	COMANDI DI MATLAB	
A=	b=	
Aeq=	beq=	
lb=	ub=	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(1,4)$ $(3,6)$				
(4,5) (4,6)	(2,5)	x =		
(1,2) $(1,4)$ $(2,5)$				
(4,3) (5,6)	(4,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,5) (3,6) (4,3) (4,5)	
Archi di U	(2,4)	
x		
π		
Arco entrante		
0+ 0-		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases}
\max 5 x_1 + 14 x_2 \\
17 x_1 + 9 x_2 \le 49 \\
9 x_1 + 12 x_2 \le 64 \\
x_1 \ge 0 \\
x_2 \ge 0 \\
x_1, x_2 \in \mathbb{Z}
\end{cases}$$

 $N_t =$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{15} .

Esercizio 9. Studiare i punti stazionari della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0}.$$

Soluzioni del siste	Mass	simo	Mini	Minimo S			
x	λ	μ	globale	locale	globale	locale	
(0, -2)							
(0, -1)							
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
$\left(-\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
(0, 1)							
(0, 2)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 + 10 \ x_1 x_2 - 4 \ x_2^2 - 5 \ x_1 + 4 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,-2), (3,1), (-2,3) e (-3,-2). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{5}{3}, -2\right)$					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 8 x_1 - 9 x_2 \\ -x_1 - 2 x_2 \le 4 \\ -6 x_1 - x_2 \le 2 \\ 4 x_1 + 3 x_2 \le 26 \\ -2 x_1 + 3 x_2 \le 14 \\ 6 x_1 - x_2 \le 28 \\ 5 x_1 + x_2 \le 27 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (0, -2)	SI	NO
{5, 6}	$y = \left(0, \ 0, \ 0, \ 0, \ \frac{53}{11}, \ -\frac{46}{11}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
1° iterazione	{3, 4}	(2, 6)	$\left(0,\ 0,\ \frac{1}{3},\ -\frac{10}{3},\ 0,\ 0\right)$	4	$\frac{324}{5}$, 18, 18	5
2° iterazione	${3, 5}$	(5, 2)	$\left(0,\ 0,\ -\frac{23}{11},\ 0,\ \frac{30}{11},\ 0\right)$	3	$22, \frac{187}{3}$	1

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
(1,2) (1,4) (3,6) (4,5) (4,6)	(2,5)	x = (4, 0, 1, 0, 8, 7, 0, -2, 0, 0)	NO	SI
$ \begin{array}{c} (1,2) \ (1,4) \ (2,5) \\ (4,3) \ (5,6) \end{array} $	(4,5)	$\pi = (0, 8, 13, 6, 17, 22)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,5) (3,6) (4,3) (4,5)	(1,2) (1,3) (2,5) (3,6) (4,5)
Archi di U	(2,4)	(2,4)
x	(5, 0, 0, 7, 2, 7, 0, 4, 0, 0)	(5, 0, 0, 7, 2, 7, 0, 4, 0, 0)
π	(0, 8, 14, 7, 17, 19)	(0, 8, 9, 7, 17, 14)
Arco entrante	(1,3)	(1,4)
ϑ^+,ϑ^-	2,0	2, 2
Arco uscente	(4,3)	(2,5)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		, -	7	4	1	(3
nodo 2	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	$+\infty$	-1	$+\infty$	-1	19	2	19	2	19	2	19	2	19	2
nodo 5	$+\infty$	-1	21	3	10	2	10	2	10	2	10	2	10	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	35	7	31	4	31	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	16	5	16	5	16	5	16	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	4,	6	(5	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	8	(5, 8, 0, 5, 0, 8, 0, 0, 13, 0, 0)	13

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 5 \ x_1 + 14 \ x_2 \\ 17 \ x_1 + 9 \ x_2 \le 49 \\ 9 \ x_1 + 12 \ x_2 \le 64 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{16}{3}\right)$$
 $v_S(P) = 74$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,5)$$

c) Calcolare un taglio di Gomory.

$$r = 2 x_2 \le 5$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:
$$(1, 2) (1, 3) (2, 3) (3, 4) (3, 5)$$
 $v_I(P) = 102$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo:
$$5 - 3 - 4 - 2 - 1$$
 $v_S(P) = 180$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{15} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0\}.$$

Soluzioni del siste	Mass	$_{ m imo}$	Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0, -2)	(0, 16)		NO	NO	NO	SI	NO
(0, -1)	(-6,0)		NO	SI	NO	NO	NO
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{15}}{2},\ \frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
(0, 1)	(2,0)		NO	NO	NO	NO	SI
(0, 2)	(0,0)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ -2 \ x_1^2 + 10 \ x_1 x_2 - 4 \ x_2^2 - 5 \ x_1 + 4 \ x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (1,-2) , (3,1) , (-2,3) e (-3,-2). Fare una iterazione del metodo di Frank-Wolfe.

ſ	Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
		problema linearizzato	problema linearizzato			
	$\left(-\frac{5}{3}, -2\right)$	$-\frac{55}{3}x_1 + \frac{10}{3}x_2$	(3,1)	$\left(\frac{14}{3},3\right)$	$\frac{5}{8}$	$\left(\frac{5}{4}, -\frac{1}{8}\right)$