Problem 1—UND

Professor Plum likes it when MICS is hosted by the University of North Dakota since they hosted the first Symposium in 1967. He wants you to write a program to generate ASCII art printing "UND" vertically for a sign to hang on his door. Since he is unsure of the door's dimensions, he wants your program to take as input a positive integer scaling factor. The first several scaling factors with corresponding letter dimensions (height x width) are specified by the following table:

Scaling	U and N Letter	D Letter Dimension	Line Width of	Blank Lines	Blank Lines
Factor	Dimension	(# characters × #	Letters	Between Letters	Between Letters
	(# chars × # chars)	characters)	(# characters)	U and N	N and D
1	3×5	4 × 5	1	1	0
2	5 × 10	6 × 10	2	2	1
3	7 × 15	8 × 15	3	3	2
4	9 × 20	10×20	4	4	3
5	11 × 25	12 × 25	5	5	4

\	
A scaling factor of 2 would produce	ce:
\\	
\\ 	

A scaling factor of 1 would produce:

Input Format

The input contains a single line with a positive integer scaling factor for the sign.

Output Format

The output should contain the ASCII art for the sign corresponding to the scaling factor specified by the input.

Input Sample

Δ

Output Sample

- ← NOTICE THE DOTS (' · ') REPRESENT BLANK SPACES
- ← AND <EOLN> REPRESENTS END-OF-LINE.
- ← THERE SHOULD BE NO DOTS AND "<EOLN>" STRINGS IN
- **←** YOUR ACTUAL OUTPUT