Paso de un AFND a un AFD

cerr-ε(q) = $\{f(q, \varepsilon^n)\}\cup\{q\}$. Es decir el conjunto de estados a los que puedo llegar a partir del estado q mediante transiciones ε (sin consumir entrada) cerr-ε(T)= $\bigcup_{q\in T}$ cerr-ε(q)

Algoritmo: Construcción de subconjuntos

estaD \leftarrow *cerr*- $\varepsilon(\{q_0\});$

while haya un estado T sin marcar en estaD do

marcar T;

for cada símbolo de entrada $a \in \Sigma$ **do**

 $U \leftarrow cerr$ - $\varepsilon(mueve(T, a));$

if $U \notin estaD$ then añadir U sin marcar a estaD

 $tranD[T, a] \leftarrow U$

AFND($\Sigma, Q, f, q_0, \mathcal{F}$) \rightarrow AFD($\Sigma, estaD, tranD, cerr-<math>\varepsilon(q_0), \mathbf{F}$) $\mathbf{F} = \{U \in estaD: U \cap \mathcal{F} \neq \emptyset\}$

Ahora comenzamos a determinar los estados del AFD y la función de transición.

Lo primero es determinar el estado inicial del AFD calculando la cerradura épsilon (c- ε) del estado inicial del AFND.

Lo primero es determinar el estado inicial del AFD calculando la cerradura épsilon (c- ϵ) del estado inicial del AFND.

Lo primero es determinar el estado inicial del AFD calculando la cerradura épsilon (c- ε) del estado inicial del AFND.

Al conjunto de estados del AFND obtenido, le damos un nombre (A) y constituirá el primer estado del AFD.

Además, es conveniente registrar de qué c- E se obtiene cada conjunto de estados.

Ahora se comienzan a calcular las transiciones para cada uno de los símbolos del alfabeto de entrada Σ .

Lo primero es fijarse qué estados del AFND están representados por el estado del del AFD.

César García-Osorio. Universidad de Burgos.

 $c-\varepsilon(m(A, a)) =$

De entre esos estados, cuáles son el estado de origen de una transición etiquetada con el símbolo de Σ que se está procesando en estos momentos.

 $c-\varepsilon (m(A, a)) =$

 $C-\epsilon (m(A, a)) = C-\epsilon (\{3, 8\}) =$

Así podemos saber a qué estados se llega al procesar el símbolo de entrada.

$$c-\epsilon(m(A, a)) = c-\epsilon(\{3, 8\}) = c-\epsilon(3) \cup c-\epsilon(8) = \{1, 2, 3, 4, 6, 7, 8\} =$$

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

Si el nuevo conjunto de estados es nuevo, se le da un nombre y se completa la información correspondiente a la transición.

$$c-\epsilon(m(A, a)) = c-\epsilon(\{3, 8\}) = c-\epsilon(3) \cup c-\epsilon(8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon(m(A, b)) =$

Ahora se repite el proceso para el siguiente símbolo de Σ .

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) =$

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{$
5, } =

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{$
5, 6, }

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 5, 6, 7\} =$

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} =$

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C$

Como antes, si el conjunto de estados es nuevo, se le da nombre y se completa la información de transición.


```
c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B

c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C

c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) =
```

Una vez se haya hecho el proceso para todos los símbolos del alfabeto de entrada Σ , se pasa a procesar el siguiente estado del AFD.

$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C$
 $c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) = B$


```
c-\epsilon(m(A, a)) = c-\epsilon(\{3, 8\}) = c-\epsilon(3) \cup c-\epsilon(8) = \{1, 2, 3, 4, 6, 7, 8\} = B

c-\epsilon(m(A, b)) = c-\epsilon(5) = \{1, 2, 4, 5, 6, 7\} = C

c-\epsilon(m(B, a)) = c-\epsilon(\{3, 8\}) = B

c-\epsilon(m(B, b)) = c-\epsilon(\{5, 9\}) = c-\epsilon(5) \cup c-\epsilon(9) = \{1, 2, 4, 6, 7, 9\} = D
```



```
c-\epsilon(m(A, a)) = c-\epsilon(\{3, 8\}) = c-\epsilon(3) \cup c-\epsilon(8) = \{1, 2, 3, 4, 6, 7, 8\} = B

c-\epsilon(m(A, b)) = c-\epsilon(5) = \{1, 2, 4, 5, 6, 7\} = C

c-\epsilon(m(B, a)) = c-\epsilon(\{3, 8\}) = B

c-\epsilon(m(B, b)) = c-\epsilon(\{5, 9\}) = c-\epsilon(5) \cup c-\epsilon(9) = \{1, 2, 4, 6, 7, 9\} = D

c-\epsilon(m(C, a)) = c-\epsilon(\{3, 8\}) = B
```


$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$
 $c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C$
 $c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) = B$
 $c-\epsilon (m(B, b)) = c-\epsilon (\{5, 9\}) = c-\epsilon (5) \cup c-\epsilon (9) = \{1, 2, 4, 6, 7, 9\} = D$
 $c-\epsilon (m(C, a)) = c-\epsilon (\{3, 8\}) = B$
 $c-\epsilon (m(C, b)) = c-\epsilon (5) = C$

$$c-\epsilon(m(A, a)) = c-\epsilon(\{3, 8\}) = c-\epsilon(3) \cup c-\epsilon(8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$
 $c-\epsilon(m(A, b)) = c-\epsilon(5) = \{1, 2, 4, 5, 6, 7\} = C$
 $c-\epsilon(m(B, a)) = c-\epsilon(\{3, 8\}) = B$
 $c-\epsilon(m(B, b)) = c-\epsilon(\{5, 9\}) = c-\epsilon(5) \cup c-\epsilon(9) = \{1, 2, 4, 6, 7, 9\} = D$
 $c-\epsilon(m(C, a)) = c-\epsilon(\{3, 8\}) = B$
 $c-\epsilon(m(C, b)) = c-\epsilon(5) = C$
 $c-\epsilon(m(D, a)) = c-\epsilon(\{3, 8\}) = B$


```
 c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \ \ U \ \ c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B   c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C   c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(B, b)) = c-\epsilon (\{5, 9\}) = c-\epsilon (5) \ \ U \ \ c-\epsilon (9) = \{1, 2, 4, 6, 7, 9\} = D   c-\epsilon (m(C, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(C, b)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(D, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(D, b)) = c-\epsilon (\{5, 10\}) = c-\epsilon (5) \ \ U \ \ c-\epsilon (10) = \{1, 2, 4, 5, 6, 7, 10\} = E
```



```
 c-\epsilon (m(A, a)) = c-\epsilon (\{3,8\}) = c-\epsilon (3) \cup c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B 
 c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C 
 c-\epsilon (m(B, a)) = c-\epsilon (\{3,8\}) = B 
 c-\epsilon (m(B, b)) = c-\epsilon (\{5,9\}) = c-\epsilon (5) \cup c-\epsilon (9) = \{1, 2, 4, 6, 7, 9\} = D 
 c-\epsilon (m(C, a)) = c-\epsilon (\{3,8\}) = B 
 c-\epsilon (m(C, b)) = c-\epsilon (\{3,8\}) = B 
 c-\epsilon (m(D, a)) = c-\epsilon (\{3,8\}) = B 
 c-\epsilon (m(D, b)) = c-\epsilon (\{5,10\}) = c-\epsilon (5) \cup c-\epsilon (10) = \{1, 2, 4, 5, 6, 7, 10\} = E 
 c-\epsilon (m(E, a)) = c-\epsilon (\{3,8\}) = B
```


$$c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \ U \ c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B$$

$$c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C$$

$$c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) = B$$

$$c-\epsilon (m(B, b)) = c-\epsilon (\{5, 9\}) = c-\epsilon (5) \ U \ c-\epsilon (9) = \{1, 2, 4, 6, 7, 9\} = D$$

$$c-\epsilon (m(C, a)) = c-\epsilon (\{3, 8\}) = B$$

$$c-\epsilon (m(C, b)) = c-\epsilon (\{3, 8\}) = B$$

$$c-\epsilon (m(D, a)) = c-\epsilon (\{3, 8\}) = B$$

$$c-\epsilon (m(D, b)) = c-\epsilon (\{5, 10\}) = c-\epsilon (5) \ U \ c-\epsilon (10) = \{1, 2, 4, 5, 6, 7, 10\} = E$$

$$c-\epsilon (m(E, a)) = c-\epsilon (\{3, 8\}) = B$$

$$c-\epsilon (m(E, b)) = c-\epsilon (\{5, 10\}) = C$$


```
 c-\epsilon (m(A, a)) = c-\epsilon (\{3, 8\}) = c-\epsilon (3) \ U \ c-\epsilon (8) = \{1, 2, 3, 4, 6, 7, 8\} = B   c-\epsilon (m(A, b)) = c-\epsilon (5) = \{1, 2, 4, 5, 6, 7\} = C   c-\epsilon (m(B, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(B, b)) = c-\epsilon (\{5, 9\}) = c-\epsilon (5) \ U \ c-\epsilon (9) = \{1, 2, 4, 6, 7, 9\} = D   c-\epsilon (m(C, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(C, b)) = c-\epsilon (5) = C   c-\epsilon (m(D, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(D, b)) = c-\epsilon (\{5, 10\}) = c-\epsilon (5) \ U \ c-\epsilon (10) = \{1, 2, 4, 5, 6, 7, 10\} = E   c-\epsilon (m(E, a)) = c-\epsilon (\{3, 8\}) = B   c-\epsilon (m(E, a)) = c-\epsilon (\{5, 10\}) = C   El \ \text{ultimo paso es determinar cuáles }   serán \ los \ estados \ finales \ del \ AFD.
```


