In recent years, the number of complaints about building vibrations has been increasing. This increasing number of complaints is associated in part with the more flexible structures that result from modern construction practice. Traditional static deflection checks are not sufficient to ensure that annoying vibrations of building floor systems or buildings as a whole will not occur (Ad Hoc Committee on Serviceability Research 1986). Whereas control of stiffness is one aspect of serviceability, mass distribution and damping are also important in controlling vibrations. The use of new materials and building systems may require that the dynamic response of the system be considered explicitly. Simple dynamic models often are sufficient to determine whether there is a potential problem and to suggest possible remedial measurements (Bachmann and Ammann 1987 and Ellingwood 1989).

Excessive structural motion is mitigated by measures that limit building or floor accelerations to levels that are not disturbing to the occupants or do not damage service equipment. Perception and tolerance of individuals to vibration is dependent on their expectation of building performance (related to building occupancy) and to their level of activity at the time the vibration occurs (ANSI 1983). Individuals find continuous vibrations more objectionable than transient vibrations. Continuous vibrations (over a period of minutes) with acceleration on the order of 0.005 g to 0.01 g are annoying to most people engaged in quiet activities, whereas those engaged in physical activities or spectator events may tolerate steady-state accelerations on the order of 0.02 g to 0.05 g. Thresholds of annoyance for transient vibrations (lasting only a few seconds) are considerably higher and depend on the amount of structural damping present (Murray 1991). For a finished floor with (typically) 5 percent damping or more, peak transient accelerations of 0.05 g to 0.1 g may be tolerated.

Many common human activities impart dynamic forces to a floor at frequencies (or harmonics) in the range of 2 to 6 Hz (Allen and Rainer 1976, Allen et al. 1985, and Allen 1990a and 1990b). If the fundamental frequency of vibration of the floor system is in this range and if the activity is rhythmic in nature (e.g., dancing, aerobic exercise, or cheering at spectator events), resonant amplification may occur. To prevent resonance from rhythmic activities, the floor system should be tuned so that its natural frequency is well removed from the harmonics of the excitation frequency. As a general rule, the natural frequency of structural elements and assemblies

should be greater than 2.0 times the frequency of any steady-state excitation to which they are exposed unless vibration isolation is provided. Damping is also an effective way of controlling annoying vibration from transient events because studies have shown that individuals are more tolerant of vibrations that damp out quickly than those that persist (Murray 1991).

Several studies have shown that a simple and relatively effective way to minimize objectionable vibrations to walking and other common human activities is to control the floor stiffness, as measured by the maximum deflection independent of span. Justification for limiting the deflection to an absolute value rather than to some fraction of span can be obtained by considering the dynamic characteristics of a floor system modeled as a uniformly loaded simple span. The fundamental frequency of vibration, f_o , of this system is given by

$$f_o = \frac{\pi}{2l^2} \sqrt{\frac{EI}{\rho}}$$
 (CC-4)

in which EI = flexural rigidity of the floor, l = span, and $\rho = w/g$ = mass per unit length; g = acceleration due to gravity (9.81 m/s²), and w = dead load plus participating live load. The maximum deflection due to w is

$$\delta = (5/384)(wl^4/EI)$$
 (CC-5)

Substituting *EI* from this equation into Eq. CC-3, we obtain

$$f_o \approx 18/\sqrt{\delta} \ (\delta \ in \ mm)$$
 (CC-6)

This frequency can be compared to minimum natural frequencies for mitigating walking vibrations in various occupancies (Allen and Murray 1993). For example, Eq. CC-6 indicates that the static deflection due to uniform load, w, must be limited to about 5 mm, independent of span, if the fundamental frequency of vibration of the floor system is to be kept above about 8 Hz. Many floors not meeting this guideline are perfectly serviceable; however, this guideline provides a simple means for identifying potentially troublesome situations where additional consideration in design may be warranted.

CC.2 DESIGN FOR LONG-TERM DEFLECTION

Under sustained loading, structural members may exhibit additional time-dependent deformations due to