Constrained optimization problem with inequality constraints. Let f and g_i : $\mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m be continuously differentiable functions. Consider the problem

minimize/maximize
$$f(\mathbf{x})$$
 (CI)
subject to $g_i(\mathbf{x}) \leq 0$ for $i = 1, 2, ..., m$.

The inequality constraints in (CI) can be transformed to equality constraints by adding nonnegative slack variables, y_i^2 , as

$$g_i(\mathbf{x}) + y_i^2 = 0 \text{ for } i = 1, 2, \dots, m.$$

Now the problem can be solved by the method of Lagrange's multipliers. We can solve the constrained optimization problems with inequality constraints using Kuhn-Tucker conditions under certain circumstances.

Convex/concave functions. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be convex if

$$f[\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}] \le \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y})$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\lambda \in (0, 1)$.

A function f is concave if and only if -f is convex.

Condition for convex/concave functions. Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable.

- If the Hessian matrix of f is positive semi-definite, then f is convex.
- If the Hessian matrix of f is negative semi-definite, then f is concave.

Condition for a matrix to be positive semi-definite or negative semi-definite. Let A be a symmetric matrix of order n, and A_1, A_2, \ldots, A_n be its leading principal minors.

- If $A_1 \ge 0$, $A_2 \ge 0, \ldots, A_n \ge 0$, then A is positive semi-definite.
- If $A_1 \leq 0, A_2 \geq 0, A_3 \leq 0, ...$, then A is negative semi-definite.
- \bullet If all eigenvalues of A are non-negative, then A is positive semi-definite.
- ullet If all eigenvalues of A are non-positive, then A is negative semi-definite.

Quadratic form. A function of the form $\sum_{i,j=1}^{n} a_{ij}x_ix_j$ is said to be in quadratic form in x_1, x_2, \ldots, x_n . For example, $x_1^2 + x_1x_2$, $x_1^2 + 2x_3^2 + 3x_2x_3$ are quadratic forms. If $A = (a_{ij})$ and $\mathbf{x} = (x_1, \ldots, x_n)^T$, then $\mathbf{x}^T A \mathbf{x} = \sum_{i,j=1}^{n} a_{ij}x_ix_j$. Matrices corresponding to $x_1^2 + x_1x_2$ and $x_1^2 + 2x_3^2 + 3x_2x_3$ are, respectively,

$$\begin{bmatrix} 1 & 1/2 \\ 1/2 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 3/2 \\ 0 & 3/2 & 2 \end{bmatrix}.$$

The order of the matrix A is the number of variables available in the concerned problem. If H is the Hessian matrix of $\sum_{i,j=1}^{n} a_{ij}x_ix_j$, then H = 2A.

Convex programming problem. There are four types of convex programming problems.

- (a) Minimize f(x) subject to $g_i(x) \leq 0$ (i = 1, 2, ..., m), where f and all g_i are convex.
- (b) Maximize f(x) subject to $g_i(x) \leq 0$ (i = 1, 2, ..., m), where f is concave and all g_i are convex.
- (c) Minimize f(x) subject to $g_i(x) \ge 0$ (i = 1, 2, ..., m), where f is convex and all g_i are concave.
- (d) Maximize f(x) subject to $g_i(x) \ge 0$ (i = 1, 2, ..., m), where f and all g_i are concave.

Kuhn-Tucker conditions. Let f and $g_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m be continuously differentiable functions.

Problem type	Necessary condition	Sufficient condition	Conclusion for
	for critical point	for optimal point	optimal point
minimize $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$	$\frac{\partial f}{\partial x_j} + \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0 (1 \le j \le n)$	f is convex	
Subject to $g_i(\mathbf{x}) \leq 0$	$\lambda_i g_i(\mathbf{x}) = 0 (1 \le i \le m)$	All g_i are convex	Global minimum
$(1 \le i \le m)$	$g_i(\mathbf{x}) \le 0 (1 \le i \le m)$		
	$\lambda_i \ge 0 (1 \le i \le m)$		
maximize $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$	$\frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0 (1 \le j \le n)$	f is concave	
Subject to $g_i(\mathbf{x}) \leq 0$	$\lambda_i g_i(\mathbf{x}) = 0 (1 \le i \le m)$	All g_i are convex	Global maximum
$(1 \le i \le m)$	$g_i(\mathbf{x}) \le 0 (1 \le i \le m)$		
	$\lambda_i \ge 0 (1 \le i \le m)$		
minimize $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$	$\frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0 (1 \le j \le n)$	f is convex	
Subject to $g_i(\mathbf{x}) \geq 0$	$\lambda_i g_i(\mathbf{x}) = 0 (1 \le i \le m)$	All g_i are concave	Global minimum
$(1 \le i \le m)$	$g_i(\mathbf{x}) \ge 0 (1 \le i \le m)$		
	$\lambda_i \ge 0 (1 \le i \le m)$		
maximize $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$	$\frac{\partial f}{\partial x_j} + \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0 (1 \le j \le n)$	f is concave	
Subject to $g_i(\mathbf{x}) \geq 0$	$\lambda_i g_i(\mathbf{x}) = 0 (1 \le i \le m)$	All g_i are concave	Global maximum
$(1 \le i \le m)$	$g_i(\mathbf{x}) \ge 0 (1 \le i \le m)$		
	$\lambda_i \ge 0 (1 \le i \le m)$		

Example. Solve the problem

maximize
$$12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$$

subject to $x_2 \le 8$,
 $x_1 + x_2 < 10$,

using Kuhn-Tucker conditions.

Solution. Let $f(x_1, x_2) = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$, and $g_1(x_1, x_2) = x_2 - 8$ and $g_2(x_1, x_2) = x_1 + x_2 - 10$.

Notice that $\frac{\partial f}{\partial x_1} = 12 + 2x_2 - 4x_1$, $\frac{\partial f}{\partial x_2} = 2 + 2x_1 - 4x_2$, $\frac{\partial^2 f}{\partial x_1^2} = -4$, $\frac{\partial^2 f}{\partial x_2^2} = -4$, $\frac{\partial^2 f}{\partial x_1 x_2} = 2$.

So the Hessian matrix is

$$\begin{bmatrix} -4 & 2 \\ 2 & -4 \end{bmatrix},$$

which is negative definite. Therefore f is strictly concave. Now Hessian matrices of g_1, g_2 are zero matrices, which are positive semi-definite. So g_1 and g_2 are convex functions. So the given problem is a convex programming problem for maximization, and it satisfies Kuhn-Tucker sufficient conditions.

The Kuhn-Tucker necessary conditions are

$$(a) \qquad \frac{\partial f}{\partial x_j} - \lambda_1 \frac{\partial g_1}{\partial x_j} - \lambda_2 \frac{\partial g_2}{\partial x_j} = 0 \quad (j = 1, 2) \qquad \Rightarrow \qquad 12 + 2x_2 - 4x_1 - \lambda_2 = 0,$$

$$21 + 2x_1 - 4x_2 - \lambda_1 - \lambda_2 = 0,$$

(b)
$$\lambda_i g_i(x_1, x_2) = 0 \quad (i = 1, 2) \quad \Rightarrow \quad \lambda_1(x_2 - 8) = 0,$$

$$\lambda_2(x_1 + x_2 - 10) = 0,$$

(c)
$$g_i(x_1, x_2) \le 0 \quad (i = 1, 2) \quad \Rightarrow \quad x_2 - 8 \le 0,$$

$$x_1 + x_2 - 10 \le 0,$$

(d)
$$\lambda_1 \geq 0, \quad \lambda_2 \geq 0.$$

- Case-1: $\lambda_1, \lambda_2 \neq 0$. Then $x_1 = 2$ and $x_2 = 8$ which imply from conditions (a) that $\lambda_1 = -27$ and $\lambda_2 = 20$. It does not satisfy (d).
- Case-2: $\lambda_1 \neq 0, \lambda_2 = 0$. Then $x_2 = 8$. Now first condition of (a) implies that $x_1 = 7$. It does not satisfy $x_1 + x_2 10 \leq 0$.
- Case-3: $\lambda_1 = \lambda_2 = 0$. Then from conditions (a), we have $4x_1 2x_2 12 = 0$ and $2x_1 4x_2 + 21 = 0$, that is, $x_1 = \frac{15}{2}$ and $x_2 = 9$. It does not satisfy (d).
- Case-4: $\lambda_1 = 0, \lambda_2 \neq 0$. Then $x_1 + x_2 = 10$, and conditions (a) imply that

$$12 + 2x_2 - 4x_1 - \lambda_2 = 0$$
, $21 + 2x_1 - 4x_2 - \lambda_2 = 0 \Rightarrow x_2 - x_1 = \frac{3}{2}$.

So we have $x_1 = \frac{17}{4}$, $x_2 = \frac{23}{4}$ and $\lambda_2 = \frac{13}{2}$. It does not violate any Kuhn-Ticker condition. So an optimal solution is given by $x_1 = \frac{17}{4}$, $x_2 = \frac{23}{4}$, $\lambda_1 = 0$ and $\lambda_2 = \frac{13}{2}$. Therefore the maximum value of the objective function is $f\left(\frac{17}{4}, \frac{23}{4}\right) = \frac{947}{8}$.

Note. Without convexity assumptions on f and g_i , the Kuhn-Tucker conditions are not sufficient for a point to be a local minimum or global minimum point. For example, consider the problem

minimize
$$-x_2$$

subject to $x_1^2 + x_2^2 \le 4$,
 $-x_1^2 + x_2 \le 0$.

Let $f(x_1, x_2) = -x_2$, and $g_1(x_1, x_2) = x_1^2 + x_2^2 - 4$ and $g_2(x_1, x_2) = -x_1^2 + x_2$. The Kuhn-Tucker necessary conditions are

(a)
$$\frac{\partial f}{\partial x_{j}} + \lambda_{1} \frac{\partial g_{1}}{\partial x_{j}} + \lambda_{2} \frac{\partial g_{2}}{\partial x_{j}} = 0 \quad (j = 1, 2) \qquad \Rightarrow \qquad 2\lambda_{1}x_{1} - 2\lambda_{2}x_{2} = 0,$$

$$-1 + 2\lambda_{1}x_{2} + \lambda_{2} = 0,$$
(b)
$$\lambda_{i}g_{i}(x_{1}, x_{2}) = 0 \quad (i = 1, 2) \qquad \Rightarrow \qquad \lambda_{1}(x_{1}^{2} + x_{2}^{2} - 4) = 0,$$

$$\lambda_{2}(-x_{1}^{2} + x_{2}) = 0,$$
(c)
$$g_{i}(x_{1}, x_{2}) \leq 0 \quad (i = 1, 2) \qquad \Rightarrow \qquad x_{1}^{2} + x_{2}^{2} - 4 \leq 0,$$

$$-x_{1}^{2} + x_{2} \leq 0,$$

The point (0,0) satisfies the Kuhn-Tucker necessary conditions with $\lambda_1 = 0$ and $\lambda_2 = 1$, but it is neither local minimum nor global minimum point. Here g_2 is concave.

Figure 3: $g_1(x_1, x_2) = x_1^2 + x_2^2 - 4$, and $g_2(x_1, x_2) = -x_1^2 + x_2$ (right side).

Exercises. Solve the following problems using Kuhn-Tucker conditions.

- 1. Minimize $2x_1 + x_2$ subject to $x_1^2 + x_2^2 \le 4$ and $x_1 \le x_2$.
- 2. Minimize $x_1^2 + x_2^2 2x_1$ subject to $x_1^2 + x_2 \le 1$.

 $\lambda_1 > 0, \quad \lambda_2 > 0.$

(d)

- 3. Minimize $(x_1 2)^2 + (x_2 1)^2$ subject to $x_1 + x_2 \le 2$ and $x_1^2 \le x_2$.
- 4. Minimize $(x_1 1)^2 + (x_2 5)^2$ subject to $x_2 \le 4 + x_1^2$ and $x_2 \le 3 + (x_1 2)^2$.