Friday, March 31, 2023 3:33 PM

Friday, March 31, 2023 3:33 PM
两个质量均m质点、M1, M2, 由一定为1,的刚性杆相连, 其质量忽略。
运动的打中点速度必须治杆向,建立系统运动数等模型。
解: R=3, 广义坐标 Xc, Yc, A, 而坐标 (X, X) (X, X)
为 约束:
$\frac{(x_1,y_1)}{y_2}$ $\frac{1}{y_2}$ $\frac{1}{y_2}$ $\frac{1}{y_2}$ $\frac{1}{y_2}$ $\frac{1}{y_2}$ $\frac{1}{y_2}$
7
育: (火ナ火) - (×x+×1) (火-火) = 0 ()
将约翰得回回进有改写,变分形式为:
気が対 2(ソューソハ) Sソュー 2(ソューソハ) Sソュー 2(メュース、) S×ュー2(メュース、) S×ュー2(メュース、) S×ュー2(メュース、) S×ュー2(メュース、) S×ュー2(メュース、) S×ュース、
(x2-x1)(Sx3-Sx1) + (ソューソ、)(Sx-Sy1)=0 の(実施収集)
以及: $(\delta x_1 + \delta y_1)(x_2 - x_1) - (\delta x_2 + \delta x_1)(y_2 - y_1) = 0$ ② (非完整效序)
此时有:由第一类 Lagrange 方程.
朱将上式什为: 35
$\sum (x_1-x_2) \partial x_1 + (x_2-x_1) \partial x_2 + (y_1-y_2) \partial y_1 + (y_2-y_1) \partial y_2 = 0$
$a_{11} \rightarrow (y_{1}-y_{2}) \delta x_{1} + (y_{1}-y_{2}) \delta x_{2} + (x_{2}-x_{1}) \delta y_{1} + (x_{2}-x_{1}) \delta y_{2} = 0$
故; 唐: d (o) - of z Qi + x Aray + x 从ofs
$= m(\dot{x}_c^2 + \dot{y}_c^2) + \frac{1}{2} \left(m(\dot{z})^2 + m(\dot{z})^2 \right) \cdot \dot{\theta}^2$
$\int m_1 \dot{\chi}_1 = \lambda_1 (\lambda_1 - \lambda_2) + \mu_1 (x_1 - x_2) = \frac{1}{2}$
$M_2\dot{X}_2 = \lambda_1(y_1-y_2) - M_1(x_1-x_2)$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
mij, = 一入(X1-X2)+从(y,-y2)-mg? 1515高 此六式为描述系统运

1'242 = 1, VITJEJ "IL M /E) + NE/
$m_{2}\dot{y}_{z} = -\lambda_{1}(x_{1}-x_{2}) + \mu_{1}(y_{1}-y_{2}) - m_{2}g$ $m_{2}\dot{y}_{z} = -\lambda_{1}(x_{1}-x_{2}) - \mu_{1}(y_{1}-y_{2}) - m_{2}g$ $m_{2}\dot{y}_{z} = -\lambda_{1}(x_{1}-x_{2}) - \mu_{1}(y_{1}-y_{2}) - m_{2}g$ 幼的数学模型
$m_2 \dot{y}_2 = -\lambda_1 (x_1 - x_2) - M_1 (y_1 - y_2) - m_2 q$ 动的数学模型
(X1-X2)2+(Y1-Y2)2= (2 方性 (X1+X2)(Y-Y2)= (y1+y2)(X1-X2)
方子 (X1+X2)(ソーソ、)= (ゾッチゾ、)(X1-X2)
, , , , , , , , , , , , , , , , , , ,