Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 6

Cardinality

6.1 Functions

Definition 6.1 (Injectivity).

We say that a function $f: X \to Y$ is an *injection* : \Leftrightarrow either of the following two statements holds:

I.
$$(\forall x_1 \in X)(\forall x_2 \in X)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

II.
$$(\forall x_1 \in X)(\forall x_2 \in X)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Notice that these two statements are equivalent since the leading quantifiers are identical and the unquantified implications are contrapositives of each other, and we know from the propositional logic that $(p \to q) \Leftrightarrow (\neg q \to \neg p)$.

Definition 6.2 (Surjectivity).

We say that a function $f: X \to Y$ is a surjection $\Leftrightarrow (\forall y \in Y)(\exists x \in X)(f(x) = y)$.

Definition 6.3 (Bijectivity).

We say that a function $f: X \to Y$ is a bijection $\Leftrightarrow f$ is both injective and surjective.

Example 6.1.

Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ given by f(z) = z - 1. This function is a bijection.

Proof (injectivity). Let $x_1, x_2 \in \mathbb{Z}$ and suppose $f(x_1) = f(x_2)$. Then, we can observe

$$f(x_1) = f(x_2) \implies x_1 - 1 = x_2 - 1$$
 by definition
 $\Rightarrow x_1 = x_2$ by basic algebra

Therefore, f is an injection.

 $\mathrm{Q.E.D.}$

Proof (surjectivity). Let $y \in \mathbb{Z}$ and note $y + 1 \in \mathbb{Z}$. Since f(y + 1) = (y + 1) - 1 = y by definition, f is surjective. Q.E.D.