

said adhesive covering at least a portion of said wearer facing surface;
said adhesive having an initial peel strength (P_I);
wherein said adhesive has a final peel strength (P_F) after exposure to water;
wherein the ratio of P_I to P_F is in the range of 2:1 to 2:4;
wherein said adhesive comprises at least one homogeneous phase, at least one of said phases having a thickness greater than 50 μm ;
wherein said adhesive has a water absorption capacity of at least 3% by weight of said adhesive; and,
wherein said adhesive comprises at least 3% water after one hour of equilibration at 50% relative humidity.

B2
5. (Amended) The adhesive of Claim 1, wherein:

said adhesive is provided as a layer having a thickness C, in millimeters;

wherein said adhesive has a viscous modulus at a temperature of 25°C ($G''_{25}(100 \text{ rad/sec})$); and,

wherein said viscous modulus ($G''_{25}(100 \text{ rad/sec})$) is defined by the equation:

$$G''_{25} \leq [(7.00 + C) \times 3000] \text{ Pa.}$$

B3
12. (Amended) The adhesive of Claim 1, wherein said adhesive comprises:

a polymer selected from the group consisting of polyacrylics, sulphonated polymers, polyvinyl alcohols, polyvinyl pyrrolidine, polyethylene oxide, and mixtures thereof; and, a plasticizer selected from the group consisting of polyhydric alcohols, polyethylene glycols, sorbitol, water, and mixtures thereof.

B4
21. (Amended) The adhesive of Claim 1, wherein said adhesive is formed by polymerizing a homogeneous aqueous reaction mixture comprising from 5% to 50% by weight of the reaction mixture of a hydrophilic monomer from 10% to 50% by weight of the reaction mixture of a plasticizer, and from 10% to 50% by weight of the reaction mixture of a non-ionic monomer, and from 3% to 40% by weight of the reaction mixture of water.