1 Методы северо-западного угла и минимальных элементов поиска начального опорного решения Т3

1.1 Метод северо-западного угла

1) В верхнюю левую клетку (северо-западный угол) таблицы записываем наименьшее из чисел b_1 и a_1 , пересчитываем запасы и потребности, и столбец с исчерпанным запасом или строку с удовлетворённой потребностью исключаем из дальнейшего расчёта.

В оставшейся части таблицы снова находим северо-западный угол, заполняем эту клетку, вычёркиваем строку или столбец и опять обращаемся к северо-западному углу и т.д.

Важнейшим условием построения опорного плана является назначение в выбранной клетке наибольшей возможной перевозки.

1.2 Пример метода северо-западного угла

r 1	L		, ,	•
	1	2	3	Запасы
1	2	8	9	60
2	3	5	8	70
3	4	1	4	120
4	2	4	7	130
5	4	1	2	100
Спрос	140	180	160	480

Проверим, является ли задача закрытой.

1.3 Пример заполнения таблицы методом северо-западного угла

	1	2	3	Запасы
1	2^{60}	8	9	60
2	3^{70}	5	8	70
3	4^{10}	1^{10}	4	120
4	2	4^{70}	7^{60}	130
5	4	1	2^{100}	100
Спрос	140	180	160	480

F = 1380

1.4 Метод минимальных элементов

2) Клетки ТЗ заполняются по такому же принципу, как в методе северо-западного угла, но в первую очередь заполняются клетки с минималь-

ной стоимостью поставки.

1.5 Теоремы о транспортной задаче

Теорема 1. Число положительных компонентов в опорном плане (число заполненных клеток в таблице) меньше или равно m+n-1.

Доказательство. В процессе построения опорного плана на каждом шаге заполняли одну клетку таблицы. При этом либо потребности, либо запасы в соответствующей строке или столбце становятся равными нулю (либо оба вместе). При заполнении последней клетки одновременно удовлетворялись спрос потребителя и исчерпывались запасы поставщика \Rightarrow число заполненных клеток максимум m+n-1.

Если в процессе построения плана встретится клетка (кроме последней), после заполнения которой запасы и потребности столбца и строки становятся равными нулю, то число неизвестных будет меньше m+n-1.

Теорема 2. Если для транспортной задачи выполнены условия $a_i \in \mathbb{N}_0$, $b_j \in \mathbb{N}_0$, $\mathbb{N}_0 = \{0, 1, ...\}$, то в любом её допустимом базисном решении базисные переменные принимают значения из \mathbb{N}_0 .