himpunan 8 A B AC B AVC ANB A В B В B v AVB AC BVC (CUA) OB в В A Ce UBAC BC ABBAC V B В B C BC U ACOB AAC A B B B B C AVB Ans BUNA (BUCI O A B C (BAC') V (AACAB') (AVC) +(AVB)+(BVC) - (AAB'AC') V(BAC) (ACUBU Ce)

| TYPE OF<br>ROTATION                                      | Matrix to be multiplied                                         |  |
|----------------------------------------------------------|-----------------------------------------------------------------|--|
| Rotation of 90°<br>(clock wise)                          | $   \begin{bmatrix}     0 & 1 \\     -1 & 0   \end{bmatrix} $   |  |
| Rotation of 90°<br>(counter clock wise)                  | $ \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \right] $             |  |
| Rotation of 180°<br>(clock wise &<br>counter clock wise) | $ \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] $ |  |
| Rotation of 270°<br>(clock wise)                         | $   \begin{bmatrix}     0 & -1 \\     1 & 0   \end{bmatrix} $   |  |
| Rotation of 270°<br>(counter clock wise)                 | $   \begin{bmatrix}     0 & 1 \\     -1 & 0   \end{bmatrix} $   |  |

# Calculus Symbols

| $\lim_{x\to 0} f(x)$                 | ε                          | y'                        | y''                        |
|--------------------------------------|----------------------------|---------------------------|----------------------------|
| limit                                | epsilon                    | derivative                | second<br>derivative       |
| $y^{\scriptscriptstyle(n)}$          | $\frac{dy}{dx}$            | $\frac{d^2y}{dx^2}$       | $\frac{d^n y}{dx^n}$       |
| n <sup>th</sup> derivative           | derivative                 | second<br>derivative      | n <sup>th</sup> derivative |
| $\dot{y}$                            | $\ddot{y}$                 | $D_x y$                   | $D_x^{\ 2}y$               |
| time derivative                      | time second<br>derivative  | derivative                | second<br>derivative       |
| $\frac{\partial f(x,y)}{\partial x}$ | $\int$                     | $\iint$                   |                            |
| partial<br>derivative                | integral                   | double<br>integral        | triple<br>integral         |
| ∮                                    | ∯                          | <i>∰</i>                  | i                          |
| closed line<br>integral              | closed surface<br>integral | closed volume<br>integral | imaginary unit             |
| $z^*$                                | $ar{z}$                    | $ec{x}$                   | $\hat{x}$                  |
| complex<br>conjugate                 | complex<br>conjugate       | vector                    | unit vector                |
| x*y                                  | L                          | ${\mathcal F}$            | 8                          |
| convolution                          | laplace<br>transform       | fourier<br>transform      | delta function             |

# LAWSOF

EXPONENTS

Law
Example

$$a^0 = 1$$
 $a^1 = a$ 
 $17^1 = 17$ 
 $\sqrt{a} = a^{\frac{1}{2}}$ 
 $\sqrt{4} = 4^{\frac{1}{2}}$ 

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[3]{27} = 27^{\frac{1}{3}}$$

$$a^{-m} = \frac{1}{a^m}$$

$$9^{-2} = \frac{1}{9^2}$$

$$a^{-m} = \frac{1}{a^m} \qquad 9^{-2} = \frac{1}{9^2}$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \qquad \left(\frac{5}{6}\right)^2 = \frac{5^2}{6^2}$$

$$a^m \times a^n = a^{m+n} 5^2 \times 5^4 = 5^{2+4}$$

$$\frac{a^m}{a^n} = a^{m-n} \qquad \frac{4^5}{4^3} = 4^{5-3}$$

$$(a^m)^n = a^{m \times n} \qquad (2^5)^3 = 2^{5 \times 3}$$

$$a^n \times b^n = (a \times b)^n$$
  $2^5 \times 3^5 = (2 \times 3)^5$ 

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$81^{\frac{3}{2}} = \sqrt[2]{81^3}$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

$$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2$$

$$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n} \qquad \frac{3^{-2}}{4^{-5}} = \frac{4^5}{3^2}$$

# Graph

### Area



Area of the curve bounded by x - axis

$$Area = \int_{b}^{a} f(x)dx$$



Area of the curve bounded by y - axis

$$Area = \int_{c}^{d} f(y)dy$$



Area between two curves

$$Area = \int_{b}^{a} (f(x) - g(x))dx$$



Volume of Revolution

Rotation about x - axis:

Area: 
$$\pi \int_{b}^{a} y^{2} dx$$



Volume of Revolution

Rotation about y - axis:

Area: 
$$\pi \int_{c}^{d} x^{2} dx$$

$$\log_{\bullet} = \bigoplus_{\bullet} \bigoplus_{\bullet} = \bigoplus_{\bullet} \bigoplus_{\bullet}$$

$$\log_{\bullet}(\sqrt{}) = \frac{\log_{\bullet}}{\log_{\bullet}}$$

$$= (\log_{\bullet})$$

#### **PHYSICS**

## STOKE'S LAW

$$V = \frac{2}{9} \frac{\left(\rho_p - \rho_f\right)}{\mu} g R^2$$

#### (i) mathsolverr

- g is the gravitational field strength (m/s²)
- R is the radius of the spherical particle (m)
- ρ<sub>p</sub> is the mass density of the particle (kg/m<sup>3</sup>)
- ρ<sub>f</sub> is the mass density of the fluid (kg/m<sup>3</sup>)
- μ is the dynamic viscosity (kg/(m\*s)).

$$F = 6\pi \eta r v$$

$$F$$
 = drag force

$$\pi = pi$$

r = sphere radius

 $\eta$  = fluid viscosity

v = velocity of the sphere







SAVE IT FOR LATER

#### MATH

# Euler's Formula

$$I = \int \frac{dx}{1 + x^2} = \tan^{-1}(x)$$
 1

$$I = \frac{1}{i} \int \frac{idx}{1 - (ix)^2} = \frac{1}{2i} \ln \left( \frac{1 + ix}{1 - ix} \right)$$

from 1 and 2

$$\therefore \tan^{-1}(x) = \frac{1}{2i} \ln \left( \frac{1+ix}{1-ix} \right)$$

$$\therefore 2i \tan^{-1}(x) = \ln\left(\frac{1+ix}{1-ix}\right)$$

Put  $x = \tan(\theta)$ 

$$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$e^{ix} = \cos x + i \sin x$$

$$\therefore 2i \tan^{-1}(\tan(\theta)) = \ln\left(\frac{1+i\tan(\theta)}{1-i\tan(\theta)} \times \frac{\cos\theta}{\cos\theta}\right)$$

$$\therefore 2i\theta = \ln\left(\frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}\right)$$

$$\therefore 2i\theta = \ln\left(\frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta} \times \frac{\cos\theta + i\sin\theta}{\cos\theta + i\sin\theta}\right)$$

$$2i\theta = \ln\left(\frac{(\cos\theta + i\sin\theta)^2}{\cos^2\theta + \sin^2\theta}\right) = \ln[(\cos\theta + i\sin\theta)^2]$$

 $\therefore 2i\theta = 2\ln(\cos\theta + i\sin\theta)$ 

$$\therefore i\theta = \ln(\cos\theta + i\sin\theta)$$

$$\therefore e^{i\theta} = \cos\theta + i\sin\theta$$



2.71828183

SAVE IT FOR LATER



### Coulomb's Law & Newton's Law

classes

#### Coulomb's Law

The Force between two point charges is directly proportional to the product of the CHARGES and inversely proportional to the square of their distance apart.

$$F \propto Q_1 Q_2 \qquad F \propto \frac{1}{r^2}$$

$$F = k \frac{Q_1 Q_2}{r^2}$$

 $k = 9 \times 10^9 \, \text{Nm}^2 \text{C}^{-2}$ 

#### Newton's Law

The Force between two point masses is directly proportional to the product of the MASSES and inversely proportional to the square of their distance apart.

$$F \propto m_1 m_2 \quad F \propto \frac{1}{r^2}$$

$$F = G \frac{m_1 m_2}{r^2}$$

G= 6.6742 x 10-11 m3kg-1s-2

### Gauss's Law

The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity.

$$\Delta \Phi = E \Delta A$$

perpendicular

$$\Phi_{electric} = \frac{Q}{\mathcal{E}_0}$$



The sum of the flux is proportional to the total charge enclosed.

$$\oint \vec{E} \cdot \vec{dA} = \frac{Q}{\varepsilon_0}$$

The area integral of the electric field over any closed surface is equal to the net charge enclosed in the surface divided by the permittivity of space.



# Ampere-Maxwell equation

#### **Differential Form**

@joshi\_physics\_classes



#### Integral Form







# Ohm's Law



$$V_{ab} = -\int_{b}^{a} \vec{E} \cdot d\vec{l} = \int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\vec{E}$  is constant and parallel to  $d\vec{l}$  along l



$$V_{ab} = E l_{ab} \to \mathbf{V} = \mathbf{E} \mathbf{l}$$
$$I = \iint_{S} \vec{J} \cdot d\vec{S}$$

 $\vec{J}$  is constant and parallel to  $d\vec{S}$  on S

$$I = JS$$

$$R = \frac{l}{\sigma S} \rightarrow R = \frac{V}{I} \frac{J}{\sigma E}$$

$$\vec{J} = \sigma \vec{E} \to \vec{J} = \sigma \vec{E}$$

$$R = \frac{VJ}{IJ} \to R = \frac{V}{I}$$

= RI

#### E: electric field





# Kirchhoff's Circuit Law

### Kirchhoff's Current Law

Currents Entering the Node Equals Currents Leaving the Node

$$I_1 + I_2 + I_3 + (-I_4 + -I_5) = 0$$
 Currents





Gustav Kirchhoff

Also Known for:

- Kirchhoff's law of thermal radiation
- Kirchhoff's laws of spectroscopy
- Kirchhoff's law of thermochemistry

### Kirchhoff's Voltage Law

The sum of all the Voltage Drops around the loop is equal to Zero

$$V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0$$



# Bernoulli's principle



Energy per unit volume before = Energy per unit volume after

$$P_1 + {}_2^1 \rho v_1^2 + \rho g h_1 = P_2 + {}_2^1 \rho v_2^2 + \rho g h_2$$

Pressure Energy Kinetic Energy per unit volume Potential Energy per unit volume





#### **AMPERE'S CIRCUITAL LAW**







The magnetic field created by an electric current is proportional to the size of that electric current with a constant of proportionality equal to the permeability of free space.

Pinterest: @Shadabalfaaz98

### LENZ'S LAW





$$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}$$

The direction of an electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field.

Pinterest: @Shadabalfaaz98

### KIRCHOFF'S LAW



The total current entering a junction or a node is equal to the charge leaving the node as no charge is lost.

The voltage around a loop equals the sum of every voltage drop in the same loop for any closed network and equals zero.

Pinterest: @Shadabalfaaz98

#### **FARADAY'S LAW OF EMI**



1st LAW

Whenever a conductor is placed in a varying magnetic field, an electromotive force is induced. If the conductor circuit is closed, a current is induced, which is called induced current.

2nd LAW

The induced emf in a coil is equal to the rate of change of flux linkage.

 $\mathcal{E}=-N\frac{\Delta\Phi}{\Delta t}$ 

#### ZEROTH LAW OF THERMODYNAMICS





ROLPH H FOWLER

If two thermodynamic systems are both in thermal equilibrium with a third system, then the two systems are in thermal equilibrium with each other.

Two systems are said to be in thermal equilibrium if they are linked by a wall permeable only to heat, and they do not change over time.

Pinterest: @Shadabalfaaz98

#### FIRST LAW OF THERMODYNAMICS





State 1

State 2

RUDOLPH CLAUSIUS

$$\Delta U = Q - W$$

 $\Delta U$  = change in internal energy

Q = heat added

W - work done by the system.

The change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system. It is based on Conservation of Energy.

#### SECOND LAW OF THERMODYNAMICS





WILLIAM THOMSON

Entropy of an isolated system will never decrease over time.

bodies at a single fixed temperature.

produces no other effect than the transfer of

heat from a cooler body to a hotter body.



complete cycle if it exchanges heat only with 2. The Clausius statement: It is impossible to construct a device that operates on a cycle and

 $\Delta S = Entropy = \frac{\Delta Q}{R}$ 

Reservoir Q, Reservoir

#### Pinterest: @Shadabalfaaz98

#### THIRD LAW OF THERMODYNAMICS



5>0 Entropy becomes zero at 0K



WALTHER NERST

$$\Delta S = \int_{T_1}^{T_2} \frac{C(T) \ \mathrm{d}T}{T}$$

The entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero.

#### **EINSTEIN THEORY OF RELATIVITY**



 $E = mc^2$ 

E = Energy in Joule

m = Mass of an object in Kg

c = Speed of light = 3,00,00,000 m/sec

- The laws of physics are the same for all observers in any inertial frame of reference relative to one another (principle of relativity).
- The speed of light in a vacuum is the same for all observers, regardless of their relative motion or of the motion of the light source.

Pinterest: @Shadabalfaaz98

#### **HUYGEN'S PRINCIPLE**

Every point on a wavefront is in itself the source of spherical wavelets which spread out in the forward direction at the speed of light. The sum of these spherical wavelets forms the wavefront.





#### Pinterest: @Shadabalfaaz98

#### **ARCHIMEDES PRINCIPLE**





$$F_b = -
ho g V$$

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces.

Pinterest: @Shadabalfaaz98

#### SNELL'S LAW





$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Snell's Law gives a relationship between the angles of incidence (Ø<sub>1</sub>) and refraction (Ø<sub>2</sub>) when a ray of light travels from a rarer medium of refractive index (n<sub>1</sub>) to a denser medium of refractive index (n<sub>2</sub>).

#### **NEWTON'S LAWS OF MOTION**





A body remains in the state of rest or uniform motion in a straight line unless and until an external force acts on it.



#### 2nd Law



The net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum changes with time.



#### 3rd Law

For every action, there is an equal and opposite reaction.



Pinterest: @Shadabalfaaz98

### HUBBLE'S LAW



= observed wavelength

The greater the distance of a galaxy, the faster it recedes. Hubble established the cosmological velocity-distance law:

$$v = H_0 D$$

v = recessional velocity

 $H_0$  = Hubble's constant = 71  $\frac{km/s}{}$  $=2.3x10^{-18}s^{-1}$ 

D = proper distance

#### KEPLER'S LAW OF PLANETARY MOTION





1st Law -> The orbit of a planet is an ellipse with the Sun at one of the two foci.

2nd Law -> A line segment joining a planet and the Sun sweeps out equal areas during equal intervals

3rd Law -> The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.



Pinterest: @Shadabalfaaz98

#### LAW OF CONSERVATION OF MASS



ANTOINE LAVOISIER

Matter can neither be created nor be destroyed in a chemical reaction. In other words, the mass of products in chemical reactions equals the mass of reactants.

#### **BOYLE'S LAW**





$$P_1V_1 = P_2V_2$$

The absolute pressure exerted by a given mass of an ideal gas is inversely proportional to the volume it occupies if the temperature and amount of gas remain unchanged within a closed system.

Pinterest: @Shadabalfaaz98

#### **CHARLES' LAW**







$$\frac{V_1}{T_1}=\frac{V_2}{T_2}$$

The volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.

Pinterest: @Shadabalfaaz98

#### **GAY LUSAAC'S LAW**





$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

The pressure exerted by a gas (of a given mass and kept at a constant volume) varies directly with the absolute temperature of the gas.

Pinterest: @Shadabalfaaz98

#### **GIBBS FREE ENERGY**





$$\Delta G = \Delta H - T \Delta S$$

 $\Delta G$  = change in Gibbs Free Energy

 $\Delta H$  = change in enthalpy

T - temperature in Kelvin

 $\Delta S$  = change in entropy



Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

#### **WIEN DISPLACEMENT LAW**





$$\lambda_{m} = \frac{b}{T}$$

b = Wein's Displacement Constant = 0.002898 m T = absolute Temperature in Kelvin

Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature.

Pinterest: @Shadabalfaaz98

#### HOOKE'S LAW



 $F_s$  = spring force

k = spring constant

x = spring stretch or compression

 $F_s = -kx$ 

Hooke's law states that the force required to extend or compress a spring by some distance is directly proportional to that distance.

Pinterest: @Shadabalfaaz98

### PLANCK'S LAW





$$B_{\lambda}(\lambda,T) = rac{2hc^2}{\lambda^5} rac{1}{e^{rac{hc}{\lambda k_{
m B}T}} - 1}.$$

B - spectral raciance of a body

\* frequency

T = absolute temperature

Re - Boltzmann constant

h = Planck constant

repeed of light in the medium

Electromagnetic radiation from heated bodies is not emitted as a continuous flow but is made up of discrete units or quanta of energy, the size of which involves a fundamental physical constant (Planck's constant).

Pinterest: @Shadabalfaaz98

#### MAXWELL'S LAW





| Commercial equations                                                                                      | Meaning                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $\nabla \cdot \mathbf{E} = \frac{\rho}{c_0}$                                                              | The electric battleaving a<br>volume a proportional is the<br>charge inside:                                                        |
| $\nabla \cdot \mathbf{B} = 0$                                                                             | There are no magnetic<br>manapoles. Be total magnetic<br>flar plenting in closed serface in<br>seria.                               |
| $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$                                      | The relage accumulated<br>around a risted crook is<br>proportional to the time rate of<br>change of the magnetic fluid<br>overses.  |
| $\times \mathbf{B} = \mu_0 \left( \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$ | Decinic carrents and changes in<br>electric fields are procedures to<br>the magnetic field consisting<br>about the same tray person |

#### ZEROTH LAW OF THERMODYNAMICS





ROLPH H FOWLER

If two thermodynamic systems are both in thermal equilibrium with a third system, then the two systems are in thermal equilibrium with each other.

Two systems are said to be in thermal equilibrium if they are linked by a wall permeable only to heat, and they do not change over time.

#### FIRST LAW OF THERMODYNAMICS





State 2

**RUDOLPH CLAUSIUS** 

$$\Delta U = Q - W$$

 $\Delta U$  = change in internal energy

= heat added

W = work done by the system

The change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system. It is based on Conservation of Energy.

Pinterest: @Shadabalfaaz98

#### Pinterest: @Shadabalfaaz98

#### SECOND LAW OF THERMODYNAMICS





WILLIAM THOMSON

 $\Delta S = Entropy = \frac{\Delta Q}{Q}$ 

#### THIRD LAW OF THERMODYNAMICS





WALTHER NERST

 $\Delta S = \int_{T_c}^{T_2} \frac{C(T) dT}{T}$ 

The entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero.

Entropy of an isolated system will never decrease over time.

1. Kelvin-Planck Statement- It is impossible for a heat engine to produce a net amount of work in a complete cycle if it exchanges heat only with bodies at a single fixed temperature.

2. The Clausius statement: It is impossible to construct a device that operates on a cycle and produces no other effect than the transfer of heat from a cooler body to a hotter body.



Pinterest: @Shadabalfaaz98

#### DOPPLER EFFECT



v : velocity of sound

The Doppler effect or the Doppler shift describes the changes in the frequency of any sound or light wave produced by a moving source with respect to an observer.





Pinterest: @Shadabalfaaz98

#### **SCHRODINGER EQUATION**

$$i\hbar \frac{1}{\xi(t)} \frac{\delta \xi(t)}{\delta t} = -\frac{1}{\phi(x)} \frac{\hbar^2}{2m} \frac{\delta^2}{\delta x^2} \phi(x) + \hat{V}$$

$$(t) = e^{-(iEt/\hbar)} \qquad -\frac{\hbar^2}{2m} \frac{\delta^2}{\delta x^2} \psi(x) + \hat{V} \psi(x) = E \psi(x)$$

$$\psi(x, t) = \phi(x) e^{-(iEt/\hbar)}$$

solving the time-independent Schrödinger equation is enough to know about the time-evolution of a particle



The Schrodinger wave equation is a mathematical expression describing the energy and position of the electron in space and time, taking into account the matter wave nature of the electron inside an atom.

#### Pinterest: @Shadabalfaaz98

#### HEISENBERG UNCERTAINTY PRINCIPLE



There is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. It is impossible to accurately measure the energy of a system in some finite amount of time.

Pinterest: @Shadabalfaaz98

#### RYDBERG EQUATION

Emission occurs when the electron falls from an excited (high energy) to the ground, or in general, a lower energy level.





Lower Energy level

Absorbing light with sufficient energy moves the electron in a higher energy level.

Rx = Rydberg constant = mg<sup>4</sup>/<sub>Sur-brie</sub> = 1.0973 x 10<sup>5</sup> m<sup>5</sup>

The Rydberg formula is the mathematical formula to determine the wavelength of light emitted by an electron moving between the energy levels of an atom.