

MM54HC354/MM74HC354/ MM54HC356/MM74HC356 8-Channel TRI-STATE® Multiplexers with Latches

General Description

The MM54HC354/MM74HC354 and MM54HC356/ MM74HC356 utilize advanced silicon-gate CMOS technology. They exhibit the high noise immunity and low power dissipation of standard CMOS integrated circuits, along with the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the TRI-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

These data selectors/multiplexers contain full on-chip binary decoding to select one of eight data sources. The data select address is stored in transparent latches that are enabled by a low level address on pin 11, SC. Data on the 8 input lines is stored in a parallel input/output register which in the MM54HC354/MM74HC354 is composed of 8 transparent latches enabled by a low level on pin 9, DC, and in the MM54HC356/MM74HC356 is composed of 8 edge-triggered flip-flops, clocked by a low to high transition on pin 9, CLK. Both true (Y) and complementary (W) TRI-STATE outputs are available on both devices.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS-TTL logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Transparent latches on data select inputs
- Choice of data registers:

Transparent ('354)

- Edge-triggered ('356)
- TRI-STATE complementary outputs with fanout of 15 LS-TTL loads
- Typical propagation delay:

Data to output ('354): 32 ns Clock to output ('346): 35 ns

- Wide power supply range: 2V-6V
- Low quiescent supply current: 80 µA maximum
- Low input current: 1 µA maximum

Connection Diagram

Dual-In-Line Package

TI /F/5208-1

Top View

Order Number MM54HC354/356 or MM74HC354/356

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temp. (T_L)

(Soldering 10 seconds)

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum TRI-STATE Output Leakage Current	$V_{OUT} = V_{CC}$ or GND $\overline{G}1 = V_{IH}$	6.0V		±0.5	±5.0	± 10	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

260°C

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5V,\, T_A\!=\!25^{\circ}C,\, t_r\!=\!t_f\!=\!6\,ns$

MM54HC354/MM74HC354

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay D0-D7 to either Output	C _L =45 pF	32	46	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay DC to either Output	C _L =45 pF	38	53	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay S0-S2 to either Output	C _L =45 pF	40	56	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay SC to either Output	C _L =45 pF	42	58	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$ $C_L = 45 pF$	17	24	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	23	32	ns
ts	Minimum Setup Time D0-D7 to \overline{DC} , S0-S2 to \overline{SC}		3	10	ns
t _H	Minimum Hold Time D0-D7 to DC, S0-S2 to SC		0	5	ns
t _W	Minimum Pulse Width, SC or DC		10	15	ns

MM54HC356/MM74HC356

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay CLK to either Output	C _L =45 pF	35	50	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay S0-S2 to either Output	C _L =45 pF	40	56	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay SC to either Output	C _L =45 pF	42	58	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 45 \text{ pF}$	17	24	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	23	32	ns
t _S	Minimum Setup Time D0-D7 to CLK, S0-S2 to SC		3	10	ns
t _H	Minimum Hold Time D0-D7 to CLK, S0-S2 to SC		0	5	ns
t _W	Minimum Pulse Width, SC or CLK		10	15	ns

AC Electrical Characteristics $_{\rm MM54HC354/MM74HC354}$ (Continued) $_{\rm CC}=$ 2.0–6.0V, $_{\rm C_L}=$ 50 pF, $_{\rm t_f}=$ t_f=6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation Delay D0-D7 to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	90 100	235 275	294 344	352 412	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	35 40	47 55	59 68	70 83	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	26 32	40 46	50 58	60 69	ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay DC to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	115 125	270 310	337 387	405 465	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	40 46	54 62	68 78	82 93	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	32 38	46 52	58 66	69 78	ns ns
$t_{\text{PHL}}, t_{\text{PLH}}$	Maximum Propagation Delay S0-S2 to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	120 130	285 325	356 406	427 488	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	42 50	57 65	71 81	86 97	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	34 40	48 55	60 69	72 82	ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay SC to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	120 110	300 340	375 425	450 510	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	45 52	60 68	75 85	90 102	ns ns
		C _L = 50 pF C _L = 150 pF	6.0V 6.0V	36 42	51 58	64 72	77 87	ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	50 60	125 165	156 206	188 248	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	18 25	25 33	31 41	38 49	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	15 21	21 28	26 35	32 42	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	68 24 20	165 33 28	206 41 35	248 49 42	ns ns ns
ts	Minimum Setup Time D0-D7 to DC, S0-S2 to SC		2.0V 4.5V 6.0V	6 3 3	50 10 10	60 13 13	75 15 15	ns ns ns
t _H	Minimum Hold Time D0-D7 to \overline{DC} , S0-S2 to \overline{SC}		2.0V 4.5V 6.0V	0 0 0	5 5 5	5 5 5	5 5 5	ns ns ns
t _W	Minimum Pulse Width SC or DC		2.0V 4.5V 6.0V	30 10 10	80 16 15	100 20 18	120 24 20	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package) Active TRI-STATE		150 50				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

 $\textbf{Note 5:} C_{PD} \ \text{determines the no load dynamic power consumption,} \ P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ I_S = C_{PD} \ V_{CC} \ I_S = C_$

AC Electrical Characteristics $_{\rm MM54HC356/MM74HC356}$ (Continued) $_{\rm CC}=$ 2.0–6.0V, $_{\rm CL}=$ 50 pF, $_{\rm t_f}=$ t_f=6 ns (unless otherwise specified)

Symbol	Parameter	Parameter Conditions V _{CC} T _A =25°C		25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Тур		Guaranteed		
t _{PHL} , t _{PLH}	Maximum Propagation Delay CLK to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	100 110	225 295	318 369	338 442	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	36 42	51 59	63 73	76 90	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	28 34	43 50	53 63	64 75	ns ns
t_{PHL} , t_{PLH}	Maximum Propagation Delay S0-S2 to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	120 130	285 325	356 406	427 488	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	42 50	57 65	71 81	86 97	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	34 40	48 55	60 69	72 82	ns ns
t_{PHL} , t_{PLH}	Maximum Propagation Delay SC to either Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	120 110	300 340	375 425	450 510	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	45 52	60 68	75 85	90 102	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	36 42	51 58	64 72	77 87	ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	50 60	125 165	156 206	188 248	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	18 25	25 33	31 41	38 49	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	15 21	21 28	26 35	32 42	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	68 24 20	165 33 28	206 41 35	248 49 42	ns ns ns
ts	Minimum Setup Time D0-D7 to CLK, S0-S2 to SC		2.0V 4.5V 6.0V	6 3 3	50 10 10	60 13 13	75 15 15	ns ns ns
t _H	Minimum Hold Time D0-D7 to CLK, S0-S2 to SC		2.0V 4.5V 6.0V	0 0 0	5 5 5	5 5 5	5 5 5	ns ns ns
t _W	Minimum Pulse Width SC to CLK		2.0V 4.5V 6.0V	30 10 10	80 16 15	100 20 18	120 24 20	ns ns ns
t _r , t _f	Maximum Clock Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time	C _L = 50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package) Active TRI-STATE		150 50				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$

Function Table

	Inputs								
,	Select	†	Data Control 'HC354	Clock 'HC356		Output Out Enables		puts	
S1	S2	S0	DC	CLK	G ₁	G ₂	G3	w	Υ
Х	Х	Х	Х	Х	Н	Х	Х	Z	Z
X	X	Χ	Х	Х	X	Н	X	Z	Z
X	X	X	×	Х	X	X	L	Z	Z
L	L	L	L	1 ↑	L	L	Н	Ū0	D0
L	L	L	Н	H or L	L	L	Н	Ū0 _n	D0 _n
L	L	Н	L	1 ↑	L	L	Н	Ū1	D1
L	L	Н	Н	H or L	L	L	Н	⊡1 _n	D1 _n
L	Н	L	L	↑	L	L	Н	D2	D2
L	Н	L	Н	H or L	L	L	Н	$\overline{D}2_n$	D2 _n
L	Н	Н	L	1 ↑	L	L	Н	D 3	D3
L	Н	Н	Н	H or L	L	L	Н	Ū3 _n	D3 _n
Н	L	L	L	↑	L	L	Н	D̄4	D4
Н	L	L	Н	H or L	L	L	Н	Ū4 _n	D4 _n
Н	L	Н	L	1 ↑	L	L	Н	D̄5	D5
Н	L	Н	Н	H or L	L	L	Н	Ū5 _n	D5 _n
Н	Н	L	L	1 ↑	L	L	Н	D 6	D6
Н	Н	L	Н	H or L	L	L	Н	Ū6 _n	D6 _n
Н	Н	Н	L	1	L	L	Н	D7	D7
Н	Н	Н	Н	H or L	L	L	Н	Ū7 _n	D7 _n

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

Z = high-impedance state (off state)

↑ = transition from low to high level

D0 ... D7 = the level steady-state inputs at inputs D0 through D7, respectively, at the time of the low-to-high clock transition in the case of 'HC356

 $D_0 \dots D7_n =$ the level of steady state inputs at inputs D0 through D7, respectively, before the most recent low-to-high transition of data control or clock.

†This column shows the input address set-up with $\overline{\text{SC}}$ low.

Ceramic Dual-In-Line Package (J) Order Number MM54HC354J, MM54HC356J, MM74HC354J or MM74HC356J NS Package Number J20A

Molded Dual-In-Line Package (N) Order Number MM74HC354N or MM74HC356N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408