Abstract hw 7-1 Feb 23, 2017 Parker Whaley

Exercise 6.12: Find two groups G and H such that $G \not\approx H$, but $\operatorname{Aut}(G) \approx \operatorname{Aut}(H)$. Let $G = Z_4$ and $H = Z_6$. Note that they have different numbers of elements thus $G \not\approx H$. Note that they each have two auto-morphisms, the identity and the exchange of generators, and all groups with two elements are isomorphic, thus $\operatorname{Aut}(G) \approx \operatorname{Aut}(H)$.

Exercise 6.14: Find $Aut(Z_6)$.

As descused in the previous question there are two elements to this group,

The identity
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$
The exchange of generators $\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$

Exercise 6.20: Show that Z has infinitely many subgroups isomorphic to Z.

Choose $n \in \mathbb{N}$. Define $H \subseteq Z$ as $H = \{k \in Z : n \mid k\}$.

Choose $a, b \in H$. Note that a = nc and b = nd for some integers c, d. Note that $ab^{-1} = nc - nd = n(c - d) \in H$. Thus H is a group, and so H is a subgroup of Z.

Define $\phi(x) = nx$. Note that $\phi: Z \to H$ bijectively. Note that $\phi(ab) = \phi(a+b) = n(a+b) = na + nb = \phi(a) + \phi(b) = \phi(a)\phi(b)$, thus $H \approx Z$.

Since H is unique depending on our choice of n and there are a infinite number of possible n's we can say that Z has infinitely many subgroups isomorphic to Z.

Exercise 6.23: Give an example of a cyclic group of smallest order that contains a subgroup isomorphic to Z_{12} and a subgroup isomorphic to Z_{20} . No need to prove anything, but explain your reasoning.

Essentially we are looking for a Z_n witch contains a element of order 12 and a element of order 20. This must mean 12 | n and 20 | n, the smallest n with this property is 60. Note that in Z_{60} , |<5>|=12 and |<3>|=20, thus, do to all cyclic groups of the same order being isomorphic, $<5>\approx Z_{12}$ and $<3>\approx Z_{20}$. I have demonstrated that Z_{60} is the smallest that could have this property and that it does have this property.

Exercise 6.24: Suppose that $\phi: Z_{20} \to Z_{20}$ is an automorphism and $\phi(5) = 5$. What are the possibilities for $\phi(x)$?

To require that ϕ is a automorphism is exactly to require that it map at least one generator to another generator. Note that $5 = \phi(5) = \phi(1^5) = \phi(1)^5$, noting that $\phi(1)$ is a generator it is only left to check witch generators have this property.

Abstract hw 7-1 Feb 23, 2017 Parker Whaley

```
a = [1, 3, 7, 9, 11, 13, 17, 19];
_{2} >> [a; mod(a*5,20)]
  ans =
            3
                  7
      1
                        9
                             11
                                   13
                                         17
       5
           15
                                    5
                                          5
                                               15
                 15
                        5
                             15
8 >> diary off
```

We now see that the automorphisms that work are $\phi(1) = 1$, $\phi(1) = 9$, $\phi(1) = 13$, $\phi(1) = 17$. Note that defining where the generator goes defines a entire automorphism and thus what I have given are the complete descriptions of the 4 automorphisms with the property $\phi(5) = 5$.

Exercise 6.26: Prove that the mapping from U(16) to itself given by $x \to x^3$ is an automorphism. What about $x \to x^5$ and $x \to x^7$? Generalize.

Take $\phi_n : x \to x^n$. Note that U(16) is a abelian group thus $\phi_n(ab) = (ab)^n = a^n b^n = \phi_n(a)\phi_n(b)$. Now all we need to show isomorphism is bijectivity. Since this is a finite group it is sufficient to show that ϕ_n is onto.

```
x = [1, 3, 5, 7, 9, 11, 13, 15];
2 >> mod(x.^3, 16)
  ans =
                        7
                              9
                                    3
                                          5
                                              15
       1
           11
                 13
  >> mod(x.^5, 16)
  ans =
                        7
             3
                   5
                              9
                                   11
                                         13
                                               15
10
       1
11
12 >> mod(x.^7, 16)
13
  ans =
                        7
                              9
                                               15
       1
            11
                 13
                                    3
                                          5
15
17 >> mod(x.^2, 16)
 ans =
19
           9
               9
                    1
                        1
                             9
                                      1
      1
22 >> diary off
```

As demonstrated above ϕ_3 , ϕ_5 , ϕ_7 work, however note that ϕ_2 will not work as a automorphism.