

Let $f: \mathbb{R}^n \to \mathbb{C}$ be a continuous function. Then the support of f, denoted supp f, is the closure of the set on which $f(x) \neq 0$. That is,

$$\operatorname{supp} f = \overline{\{x \in \mathbb{R}^n \mid f(x) \neq 0\}}.$$

 $C^k(\Omega)$ is the set of k-times differentiable functions on Ω . Functions in $C^k(\Omega)$ for every k > 0 are said to be in $C^{\infty}(\Omega)$, that is, infinitely differentiable functions. $C_C^{\infty}(\Omega)$ is the set of infinitely differentiable functions on Ω which have support bounded and contained in Ω (compact when $\Omega = \mathbb{R}^n$). That is,

$$C^{k}(\Omega) = \left\{ f : \Omega \to B \mid \frac{\partial^{i} f}{\partial x^{i}} \text{ for } i = 0, \dots, k \in C(\Omega) \right\}$$

$$C^{\infty}(\Omega) = \{ f : \Omega \to B \mid f \in C^k(\Omega) \text{ for } k \in \mathbb{N} \}$$

$$C_C^\infty(\Omega) = \{f \in C^\infty(\Omega) \mid \operatorname{supp}\,(f) \text{ is compact}\}$$

Let $\Omega \subset \mathbb{R}^n$ be an open set and let $K \subset \Omega$ be compact. Then there exists a nonnegative function $\psi \in C_C^{\infty}$ with $\psi(x) = 1$ for $x \in K$.

Define σ -algebra
LIEB AND LOSS CHAPTER 1
LIED MAD BOSS CHAITER I

(i)	E be a collection of subsets of Ω. Then Σ is called a σ -algebra if If $A \in \Sigma$, then $A^C \in \Sigma$;	
(ii)	If A_1, A_2, \ldots is a countable family of sets in Σ , then $\bigcup_{n=1}^{\infty} A_i \in \Sigma$;	
(iii) and $\Omega \in \Sigma$. n English,		
		(i)
(ii)	Σ is closed under countable unions;	
(iii)	and Σ contains the entire set Ω .	