| Please check the examination de       | etails below before enterir | ng your candidate information |
|---------------------------------------|-----------------------------|-------------------------------|
| Candidate surname                     | (                           | Other names                   |
| Pearson Edexcel<br>International GCSE | Centre Number               | Candidate Number              |
| <b>Thursday 18</b>                    | June 20                     | 20                            |
| Morning (Time: 2 hours)               | Paper Ref                   | erence <b>4PM1/02R</b>        |
| Further Pure N Paper 2R               | /lathemat                   | ics                           |
| Calculators may be used.              |                             | Total Marks                   |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You must NOT write anything on the formulae page.
   Anything you write on the formulae page will gain NO credit.

## Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶





## **International GCSE in Further Pure Mathematics Formulae sheet**

#### Mensuration

**Surface area of sphere** =  $4\pi r^2$ 

**Curved surface area of cone** =  $\pi r \times \text{slant height}$ 

Volume of sphere =  $\frac{4}{3}\pi r^3$ 

#### **Series**

### **Arithmetic series**

Sum to *n* terms,  $S_n = \frac{n}{2} [2a + (n-1)d]$ 

### Geometric series

Sum to *n* terms, 
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, 
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

#### **Binomial series**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for  $|x| < 1, n \in \mathbb{Q}$ 

#### **Calculus**

## **Quotient rule (differentiation)**

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

# **Trigonometry**

#### Cosine rule

In triangle ABC:  $a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

## Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$



# **Answer all TEN questions.**

# Write your answers in the spaces provided.

# You must write down all the stages in your working.

1 The *n*th term of an arithmetic series *A* is  $a_n$ The *n*th term of a geometric series *G* is  $t_n$ 

For these two series

$$a_1 = t_1$$
  $a_{10} = t_3 = 48$   $a_{10} = 4t_2$ 

Find

- (i) the common ratio of G,
- (ii) the common difference of A.



(Total for Question 1 is 6 marks)

**(6)** 

| 2 | $f(x) = x^3 + px + q$ where p and q are constants.         |     |
|---|------------------------------------------------------------|-----|
|   | The remainder when $f(x)$ is divided by $(x - 1)$ is $-12$ |     |
|   | The remainder when $f(x)$ is divided by $(x - 4)$ is 30    |     |
|   | (a) Find the value of $p$ and the value of $q$ .           | (6) |
|   | Using your values of $p$ and $q$                           |     |
|   | (b) show that $f(3) = 0$                                   |     |
|   |                                                            | (1) |
|   | (c) Express $f(x)$ as a product of linear factors.         | (3) |
|   | (d) Hence solve the equation $f(x) = 0$                    |     |
|   |                                                            | (1) |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |
|   |                                                            |     |

|                           | Question 2 continued               |
|---------------------------|------------------------------------|
| A                         |                                    |
| IIS AREA                  |                                    |
| EINTH                     |                                    |
| NOT WRITE                 |                                    |
| NOT                       |                                    |
| DQ                        |                                    |
|                           |                                    |
|                           |                                    |
| V.                        |                                    |
| HIS AREA                  |                                    |
|                           |                                    |
| WRITEIN                   |                                    |
| NOT                       |                                    |
| DQ                        |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
| ARE                       |                                    |
| THIS                      |                                    |
| RITE                      |                                    |
| DO NOT WRITE IN THIS AREA |                                    |
| DON                       |                                    |
|                           | (Total for Question 2 is 11 marks) |
|                           | (2000 IOI Question 2 is 11 marks)  |





Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the triangle ABC in which AB = 10 cm and AC = 12 cm. The point D lies on BC such that BD = 6 cm, DC = 2 cm and AD = x cm.

(a) Show that x = 11

(4)

(b) Find the area, in  $cm^2$  to 3 significant figures, of triangle *ADB*.

**(4)** 

| <br> | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |

| Question 3 continued |              |       |
|----------------------|--------------|-------|
|                      |              |       |
|                      |              |       |
|                      |              |       |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>  |
|                      | <br>         | <br>  |
|                      |              |       |
|                      |              |       |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>  |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>  |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>  |
|                      |              |       |
|                      |              | <br>  |
|                      | <br>         | <br>  |
|                      |              |       |
|                      |              |       |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>, |
|                      | <br>         | <br>  |
|                      |              |       |
|                      | <br>         | <br>  |
|                      |              |       |
|                      |              |       |
|                      | <br>         | <br>  |
|                      | <br>         | <br>  |
|                      |              |       |
|                      |              |       |
|                      |              |       |
|                      | (Total for Q |       |



4 (a) Complete the table of values for  $y = 2x + 1 + \frac{2}{x^2}$ 

Give your answers to 2 decimal places where appropriate.

| x | 0.5 | 1 | 1.5 | 2 | 2.5  | 3 | 3.5  |
|---|-----|---|-----|---|------|---|------|
| у |     | 5 |     |   | 6.32 |   | 8.16 |

(2)

(b) On the grid opposite, draw the graph of 
$$y = 2x + 1 + \frac{2}{x^2}$$
 for  $0.5 \le x \le 3.5$ 

(2)

(c) Use your graph to obtain estimates, to 1 decimal place, of the roots of the equation

$$2x + \frac{2}{x^2} = 7 \quad \text{in the interval } 0.5 \leqslant x \leqslant 3.5$$

(2)

(d) By drawing a suitable straight line on the grid, obtain estimates, to 1 decimal place, of the roots of the equation

$$\frac{3x}{2} + \frac{2}{x^2} = 5 \quad \text{in the interval } 0.5 \leqslant x \leqslant 3.5$$

(5)

| <br>       |                                         | <br> | <br> |
|------|------|------|------|------|------|------------|-----------------------------------------|------|------|
|      |      |      |      |      |      |            |                                         |      |      |
| <br>       |                                         | <br> | <br> |
|      |      |      |      |      |      |            |                                         |      |      |
| <br>       |                                         | <br> | <br> |
| <br>       |                                         | <br> | <br> |
|      |      |      |      |      |      |            |                                         |      |      |
| <br>       |                                         | <br> | <br> |
|      |      |      |      |      |      |            |                                         |      |      |
| <br> | <br> | <br> | <br> | <br> | <br> | <br>•••••• | • • • • • • • • • • • • • • • • • • • • | <br> | <br> |
| <br>       |                                         | <br> | <br> |
|      |      |      |      |      |      |            |                                         |      |      |
| <br>       |                                         | <br> | <br> |
| <br>       |                                         | <br> | <br> |
|      |      |      |      |      |      |            |                                         |      |      |
| <br>       |                                         | <br> | <br> |





| Question 4 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |





(Total for Question 4 is 11 marks)



Diagram **NOT** accurately drawn

Figure 2

In Figure 2, AB and AC are tangents to a circle with centre O and radius rcm.

The points *B* and *C* lie on the circle so that *OBC* is a sector of this circle and  $\angle BOC = \frac{2\pi}{3}$  radians.

Given that the area of the shaded region is 10 cm<sup>2</sup>,

find, to 3 significant figures, the value of r.

| ma, to 5 significant rigares, the value of 7. | (8) |
|-----------------------------------------------|-----|
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |
|                                               |     |

12





Figure 3

The curve C with equation  $y = x^2 - 5x + 4$  crosses the x-axis at the points A and B, as shown in Figure 3

(a) Find the coordinates of A and the coordinates of B.

(3)

The tangent to C at A meets the tangent to C at B at the point T.

(b) Find the coordinates of T.

**(6)** 

The normal to C at A meets the normal to C at B at the point N.

(c) Find the coordinates of N.

(3)

(d) Find the area of the quadrilateral ATBN.

(3)

| <br> | <br>• • • •   |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------|
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
| <br> | <br>• • • • • |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
| <br>          |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
| <br>          |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
| <br>          |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |

DO NOT WRITE IN THIS AREA

| Question 6 continued |      |      |
|----------------------|------|------|
|                      | <br> | <br> |
|                      | <br> | <br> |
|                      |      |      |
|                      |      |      |
|                      |      | <br> |
|                      | <br> | <br> |
|                      | <br> | <br> |
|                      | <br> | <br> |
|                      |      |      |
|                      | <br> | <br> |
|                      |      |      |
|                      | <br> | <br> |
|                      | <br> | <br> |
|                      |      |      |
|                      |      |      |
|                      | <br> | <br> |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      | <br> |      |
|                      |      |      |



| Question 6 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

|                           | Question 6 continued               |
|---------------------------|------------------------------------|
| 4                         |                                    |
| ARE                       |                                    |
| E E                       |                                    |
| Z<br>W                    |                                    |
| DO NOT WRITE IN THIS AREA |                                    |
|                           |                                    |
| 000                       |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
| W W                       |                                    |
| HS A                      |                                    |
| NOT WRITE IN THIS AREA    |                                    |
|                           |                                    |
| S S                       |                                    |
| 0                         |                                    |
| ٥                         |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
|                           |                                    |
| A                         |                                    |
| S                         |                                    |
|                           |                                    |
|                           |                                    |
| DO NOT WRITE IN THIS AREA |                                    |
| ONC                       |                                    |
| ۵                         |                                    |
|                           | (Total for Question 6 is 15 marks) |
|                           |                                    |



| 7 (a) Find the set of values of k for which the equation $kx^2 - 4x + 2k = 7$ has real roots   | (4) |
|------------------------------------------------------------------------------------------------|-----|
| Given that the roots of the equation $kx^2 - 4x + 2k = 7$ are $\alpha$ and $\beta$ ,           |     |
| (b) form a quadratic equation with roots $\frac{\alpha+1}{\alpha}$ and $\frac{\beta+1}{\beta}$ |     |
| Give each coefficient in terms of $k$ .                                                        | (9) |
|                                                                                                | (8) |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |
|                                                                                                |     |



| Question 7 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| 8 | Solve the equation $\log_3 x - 2\log_x 3 = 1$ | (7) |
|---|-----------------------------------------------|-----|
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |
|   |                                               |     |

| Questi | on 8 continued |           |                     |       |
|--------|----------------|-----------|---------------------|-------|
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                | <br>      |                     |       |
|        |                |           |                     |       |
|        |                | <br>      |                     |       |
|        |                | (Total fo | r Question 8 is 7 n | anka) |



| Λ | $\alpha$ . | 41 4 |
|---|------------|------|
| y | Given      | tnat |

$$x = e^{-t} \sin 2t$$

show that

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 0$$

| /  | _ |   |
|----|---|---|
| 1  | w |   |
| ı  | a |   |
| ٦. | _ | J |

|      | <br> |      |
|------|------|------|
|      |      |      |
|      |      |      |
| <br> | <br> |      |
| <br> | <br> | <br> |
| <br> | <br> | <br> |

|                           | Question 9 continued |
|---------------------------|----------------------|
| A                         |                      |
| AR                        |                      |
| S<br>E                    |                      |
| 2                         |                      |
|                           |                      |
| DO NOT WRITE IN THIS AREA |                      |
| Ö                         |                      |
| 00                        |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
| 4                         |                      |
| A A                       |                      |
| E S                       |                      |
|                           |                      |
|                           |                      |
| NOT WRITE IN THIS AREA    |                      |
| 5                         |                      |
| 000                       |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
| NOT WRITE IN THIS AREA    |                      |
| 25                        |                      |
| Ē                         |                      |
|                           |                      |
| 3                         |                      |
| Ď                         |                      |
| 00                        |                      |
|                           |                      |
|                           |                      |
|                           |                      |



| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

|                           | Question 9 continued              |
|---------------------------|-----------------------------------|
|                           |                                   |
| ARE/                      |                                   |
| THIS                      |                                   |
| E<br>N                    |                                   |
| WRIT                      |                                   |
| OO NOT WRITE IN THIS AREA |                                   |
| DO                        |                                   |
|                           |                                   |
|                           |                                   |
|                           |                                   |
| REA                       |                                   |
| HIS A                     |                                   |
| NOT WRITE IN THIS AREA    |                                   |
| WRITE                     |                                   |
| NOT                       |                                   |
| DO                        |                                   |
|                           |                                   |
|                           |                                   |
|                           |                                   |
| ¥                         |                                   |
| IS AR                     |                                   |
| <b>E</b> 7                |                                   |
| RITE                      |                                   |
| DO NOT WRITE IN THIS AREA |                                   |
| N OC                      |                                   |
|                           |                                   |
|                           | (Total for Question 9 is 8 marks) |



$$f(x) = 32x^3 - 33x + 1$$

(a) Show that f(1) = 0

(1)

(b) Hence using an algebraic method solve f(x) = 0

(4)



Figure 4

The region R, shown shaded in Figure 4, is bounded by the curve  $C_1$  with equation  $y = \sqrt{x}$ , by the curve  $C_2$  with equation  $y = \frac{1}{8x}$  and by the line with equation x = a

The curves  $C_1$  and  $C_2$  intersect at the point B, with x coordinate p, where p < a

(c) Find the value of p.

(2)

The region R is rotated through 360° about the x-axis to generate a solid with volume  $\frac{27\pi}{64}$ 

(d) Use algebraic integration to find the value of *a*.

(7)

| Question 10 continued |  |  |  |  |  |  |  |
|-----------------------|--|--|--|--|--|--|--|
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |



| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

| Question | 10 continued |      |      |  |  |
|----------|--------------|------|------|--|--|
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              | <br> | <br> |  |  |
|          |              | <br> | <br> |  |  |
|          |              |      |      |  |  |
|          |              |      |      |  |  |



| Question 10 continued |                                     |  |  |  |
|-----------------------|-------------------------------------|--|--|--|
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       |                                     |  |  |  |
|                       | (Total for Question 10 is 14 marks) |  |  |  |
|                       | TOTAL FOR PAPER IS 100 MARKS        |  |  |  |