Machine Learning

Lecture 2 - Regularized non-linear regression and classification

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

Regularized regression

- Polynomial regression
- ► Spline regression
- ▶ L1 and L2 regularization
- Beyond L1 and L2

Regularized classification

- ► k-NN classification
- Classification trees
- ► Evaluating a classifier's performance

Polynomial regression

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + ... + \beta_k x_i^k, \quad \text{for } i = 1, ..., n.$$
$$y = X\beta + \varepsilon,$$

where ith row of X is

$$(1, x_i, x_i^2, ..., x_i^k).$$

■ Still linear in β . Least squares: $\hat{\beta} = (X^TX)^{-1}X^Ty$.

Polynomial regression is global

Global fitting method: changes in a data point affect fit elsewhere:

Spline regression

- Splines are local basis functions.
- **Truncated quadratic splines with knot locations** $\kappa_1, ..., \kappa_m$

$$b_j(x) = egin{cases} (x - \kappa_j)^2 & ext{if } x > \kappa_j \ 0 & ext{otherwise} \end{cases}$$
 $y = X\beta + arepsilon,$

where ith row of X is

Spline regression

■ See R notebook SplinesR.Rmd.

Natural cubic splines

- Twice differentiable at the knots.
- Linear fit beyond the boundary.

```
library(SemiPar) # for the lidar data
library(splines) # for natural cubic splines, ns(), and B-splines, bs().

# linear model
lm(logratio ~ range, data = lidar)

# 5th degree polynomial model
lm(logratio ~ poly(range, 5), data = lidar)

# Natural cubic spline with 10 knots
lm(logratio ~ ns(range, knots = seq(-1.5,1.5, length = 10)), data = lidar)
```


Additive models and interactions

Additive model has no interactions

$$y = f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p) + \varepsilon$$

where function $f_j(x_j)$ is a spline for covariate x_j .

Interactions in linear regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

General interactions

$$y = f(x_1, x_2, \ldots, x_p) + \varepsilon$$

e.g. thin plate splines with multi-dim knots $\kappa = (\kappa_1, \dots, \kappa_p)^ op$

$$f(x_1, x_2, ..., x_p) = \|\mathbf{x} - \boldsymbol{\kappa}\|_2^2 \log \|\mathbf{x} - \boldsymbol{\kappa}\|_2.$$

Partial interactions

$$y = f_1(x_1) + f_2(x_2) + f_{23}(x_2, x_3) + \varepsilon$$

R code (mgcv package for gam, sp package for meuse data)

Ridge regression - L2-regularization

- Many features $\Rightarrow \hat{\beta} = (X^T X)^{-1} X^T y$ has high variance.
- $\hat{y} = X\hat{\beta}$ can overfit the data. Poor prediction on test data.
- Regularization: "soft restrictions" on estimators.
- Ridge estimator minimizes L2-penalized sum of squares

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_2^2$$

where $\|\boldsymbol{\beta}\|_2^2 = \boldsymbol{\beta}^T \boldsymbol{\beta} = \sum_{j=1}^p \beta_j^2$ is L_2 -regularization.

- Hyperparameter $\lambda > 0$ determined by predictive performance.
- Ridge regression estimator

$$\hat{\boldsymbol{\beta}}_{\text{ridge}}(\lambda) = (\mathbf{X}^T \mathbf{X} + \lambda I_n)^{-1} \mathbf{X}^T \mathbf{y}.$$

- $\hat{oldsymbol{eta}}_{\mathrm{ridge}}(\lambda)$ shrinks $\hat{oldsymbol{eta}}$ toward zero as $\lambda o \infty$.
- Bias-variance trade-off

Polynomial regression without regularization

Polynomial regression, L₂-regularization, $\lambda = 1$

Polynomial regression, L₂-regularization, λ_{opt}

Lasso regression

Lasso estimator minimizes L1-penalized sum of squares

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_1$$

where $\|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$ is L_1 -regularization.

- Lasso can shrink weights exactly to zero ⇒ variable selection.
- No explicit formula for $\hat{m{eta}}_{\mathrm{lasso}}(\lambda)$.
- LARS is a super-fast algorithm for computing the entire Lasso path.

Lasso regression - bike sharing data

Polynomial regression, L_1 -regularization, λ large

Polynomial regression, L₁-regularization, λ_{opt}

Bayesian interpretation of regularization

Bayesian inference is based on the posterior distribution

$$p(\beta|y,X) = \frac{p(y|\beta,X)p(\beta)}{p(y,X)}$$

■ Interpret a regularization penalty as a log prior

$$\log p(\beta|\mathbf{y},\mathbf{X}) = \underbrace{\log p(\mathbf{y}|\beta,\mathbf{X})}_{\text{log-likelihood/sum of squares}} + \underbrace{\log p(\beta)}_{\text{penalty}} + \text{constant}$$

Ridge is equivalent to using a Normal prior

$$\beta_i | \sigma^2 \stackrel{\text{iid}}{\sim} \text{Normal} \left(0, \frac{\sigma^2}{\lambda} \right)$$

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{\text{iid}}{\sim} \text{Laplace} \left(0, \frac{\sigma^2}{\lambda} \right)$$

Mattias Villani

Machine Learning

Model complexity

Fitted values for linear models

$$\hat{\mathbf{y}} = \mathbf{X} \ \hat{\boldsymbol{\beta}} = \underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{H} \mathbf{y} = \mathbf{H}\mathbf{y}.$$

Hat matrix

$$\underset{n\times n}{\mathsf{H}} = \mathsf{X}(\mathsf{X}^{\mathsf{T}}\mathsf{X})^{-1}\mathsf{X}^{\mathsf{T}}.$$

- The *i*th row of H: how \hat{y}_i depends on the *n* data points.
- A linear smoother is any fitting method of the form

$$\hat{y} = Hy$$
.

- Ex: poly reg, splines, nearest neighbor, ridge regression ...
- Degrees of freedom, tr(H), measures complexity.
- Sanity check: linear regression with p covariates: tr(H) = p.

Beyond Ridge and Lasso

- Ideal shrinkage:
 - hard shrinkage of coefficients on unimportant features
 - no/small shrinkage of coefficients on important features
- Ridge: shrinks all coefficients similarly.
- Lasso: can allow some features to have larger coefficients.
- Elastic-net combines L1 and L2 penalties:

$$\lambda \left[(1 - \alpha) \|\boldsymbol{\beta}\|_{2}^{2} / 2 + \alpha \|\boldsymbol{\beta}\|_{1} \right]$$

- Ridge, Lasso and elastic net apply global shrinkage.
- Better variable selection with global-local shrinkages
 - ▶ Global shrinkage, λ , is baseline shrinkage for all features
 - **Local shrinkage**, τ_1, \ldots, τ_p , for each feature.
 - ▶ Total shrinkage on jth feature: $\lambda \tau_j$.
- Example: Horseshoe regularization.

Logistic regression

■ Binary logistic regression for $y \in \{0, 1\}$ or $y \in \{-1, +1\}$

$$\Pr(y = 1|x) = \frac{\exp(x^{\top}\beta)}{1 + \exp(x^{\top}\beta)}.$$

Log odds is linear in covariates

$$\log \frac{\Pr(y=1|\mathsf{x})}{\Pr(y=0|\mathsf{x})} = \mathsf{x}^{\top} \beta$$

Decision boundary for binary classification: the x that solve

$$\Pr(y = 1|x) = \Pr(y = 0|x)$$

Logistic regression is a linear classifier

$$\frac{\exp(\mathbf{x}^{\top}\boldsymbol{\beta})}{1 + \exp(\mathbf{x}^{\top}\boldsymbol{\beta})} = \frac{1}{1 + \exp(\mathbf{x}^{\top}\boldsymbol{\beta})} \Longleftrightarrow \exp(\mathbf{x}^{\top}\boldsymbol{\beta}) = 1 \Longleftrightarrow \mathbf{x}^{\top}\boldsymbol{\beta} = 0$$

Non-linear logistic regression

Linear logistic regression

$$\Pr(y = 1|\mathbf{x}) = \frac{\exp(\mathbf{x}^{\top}\boldsymbol{\beta})}{1 + \exp(\mathbf{x}^{\top}\boldsymbol{\beta})}.$$

■ Non-linear logistic regression

$$\Pr(Y_i = 1|x) = \frac{\exp(f(x_i))}{1 + \exp(f(x_i))}$$

where f(x) is some potentially non-linear function, e.g.

- Polynomials, Splines
- Deep neural nets
- Gaussian Processes

Predicting firm bankruptcy

- \blacksquare Data from pprox 250,000 Swedish corporations.
- Features: profits, liquidity, debt + macro variables.
- \blacksquare "Big data" \Rightarrow non-linearities are visible by the eye.
- Model: logistic regression with additive splines.
- Substantially improved predictive performance with splines.

Multi-class logistic regression

■ Multi-class logistic regression for $y \in \{1, 2, ..., C\}$

$$\Pr(y = c | \mathbf{x}) = \frac{\exp(\mathbf{x}^{\top} \boldsymbol{\beta}_c)}{\sum_{j=1}^{C} \exp(\mathbf{x}^{\top} \boldsymbol{\beta}_j)}.$$

- Non-identified: likelihood invariant to scaling $\beta_c \to k\beta_c$ for all $c=1,\ldots,C$ for scalar k.
 - \triangleright Statistics: set $\beta_1 = 0$. First class is the reference.
 - ▶ ML: no restrictions, use regularization to identify.

Classifying handwritten digits

Classifying handwritten digits

- Raw data: gray intensity (0-255) in the $28 \times 28 = 784$ pixels.
- Training data: 60000 images. Test data: 10000 images.
- **Simple features**: 784 pixel intensity covariates.
- Multi-class problem: predict class $c \in \{0, 1, ..., 9\}$.
- Multinomial regression

$$\Pr(y = c | \mathbf{x}) = \frac{\exp(\mathbf{x}^{\top} \boldsymbol{\beta}_c)}{\sum_{j=1}^{C} \exp(\mathbf{x}^{\top} \boldsymbol{\beta}_j)}.$$

Classifying handwritten digits

Handwritten digits 10000 training examples

		Truth									
		0	1	2	3	4	5	6	7	8	9
	0	958	0	8	3	1	7	10	0	7	9
	1	0	1116	3	1	1	5	3	23	9	9
Decision	2	1	2	920	21	5	5	9	22	7	2
	3	0	2	10	915	0	34	1	1	14	10
	4	1	0	16	0	908	9	10	12	11	46
	5	11	3	3	31	2	795	15	1	31	12
	6	6	4	20	2	11	16	909	0	13	1
	7	1	0	15	13	4	5	0	938	9	22
	8	2	8	34	16	2	12	1	5	859	5
	9	0	0	3	8	48	4	0	26	14	893

Mattias Villani

Machine Learning

Handwritten digits 60000 training examples

		Truth									
		0	1	2	3	4	5	6	7	8	9
	0	966	0	8	1	1	7	9	2	4	6
	1	0	1121	1	1	0	2	3	13	7	7
Decision	2	2	2	957	13	5	4	4	21	7	0
	3	0	2	9	947	0	29	1	3	12	10
	4	0	0	12	1	940	5	5	9	8	32
	5	6	1	3	19	1	816	9	1	24	9
	6	4	4	13	1	7	12	926	0	10	1
	7	1	0	9	10	2	2	0	954	5	13
	8	1	4	17	11	2	10	1	3	892	4
	9	0	1	3	6	24	5	0	22	5	927

Al is getting better over time - handwritten digits

Time:	1998			$ \longrightarrow$	Today
	Logistic	K-nearest	SVM	3-layer NN	ConvNet
Error rate:	12%	5%	1.4%	1.53%	0.4%

Detecting fraudulent banknotes

- Dataset with 1372 photographed banknotes. 610 fake.
- Raw data: 400 imes 400 = 160000 gray-scale pixels.
- The 160000 pixel variables are condensed to four features:
 - variance of Wavelet Transformed image
 - skewness of Wavelet Transformed image
 - kurtosis of Wavelet Transformed image
 - entropy of image
- Deep learning on raw images (more later!).

Detecting fraudulent banknotes

- 1000 images for training. Predictions on 372 test images.
- Logistic regression

$$\Pr(\text{Fraud} = \text{True}|\text{features}) = \frac{\exp(\mathbf{x}^{\top} \beta_c)}{\sum_{j=1}^{C} \exp(\mathbf{x}^{\top} \beta_j)}$$

- **Decision**: signal fraud if Pr(Fraud = True|Features) > 0.5.
- Confusion matrix

		Truth		
		No fraud Fraud		
Decision	No Fraud	208	1	
Decision	Fraud	3	160	

Classification trees

Multi-class classification trees. Probability of class c in rectangle R_{ℓ} with n_{ℓ} observations

$$\hat{p}_{\ell,c} = \frac{1}{n_{\ell}} \sum_{i:x_i \in R_{\ell}} \mathbb{I}(y_i = c), \quad c = 1, ..., C.$$

■ Predicted class for $x_* \in R_\ell$: majority vote

$$\hat{y}(x_{\star}) = \arg\max_{c} \hat{p}_{\ell,c}$$

Classification trees

Prune the tree by collapsing non-terminal nodes to minimize

$$\frac{1}{n}\sum_{i=1}^{n}L\left(\hat{y}(x_{i}),y_{i}\right)+\eta\left|T\right|$$

■ Mis-classification rate as loss function:

$$\frac{1}{n} \sum_{i=1}^{n} L\left(\hat{y}(x_{i}), y_{i}\right) = \frac{1}{n} \sum_{\ell=1}^{|T|} \sum_{i: x_{i} \in R_{\ell}} I\left(y_{i} \neq \hat{y}(x_{i})\right) = \frac{1}{n} \sum_{\ell=1}^{|T|} n_{\ell} \left(1 - \hat{p}_{\ell, \hat{y}(x_{i})}\right)$$

■ Negative Log-likelihood (cross-entropy) as loss function:

$$\sum_{i=1}^{n} L(\hat{y}(x_i), y_i) = \sum_{\ell=1}^{|T|} n_{\ell} \left(-\sum_{c=1}^{C} \hat{p}_{\ell, \hat{y}(x_i)} \log \hat{p}_{\ell, \hat{y}(x_i)} \right)$$

Pimp up your generalized linear model

Poisson regression for count data

$$y_i | x_i, \boldsymbol{\beta}_i \sim \text{Pois}(\lambda_i)$$

$$\lambda_i = \exp(x_i^{\top} \boldsymbol{\beta})$$

- lacksquare Learn $oldsymbol{eta}$ using the log-likelihood as the loss function.
- Generalizations:
 - \triangleright replace linear term $x_i^{\top} \beta$ with non-linear (splines, trees etc).
 - ▶ replace the (inverse) link function exp() with other function.
 - use other members of exponential family, e.g gamma distribution for positive continuous regression response.
 - truncated, censored, missing data etc.
- Machine learning is really just about flexible regularized models with a (probabilistic) prediction/decision focus.