Algebra 1 Exercise sheet 9

Solutions by: Eric Rudolph and David Čadež

10. Juni 2023

Exercise 1. First we translate the case of finding $x, y, z \in \mathbb{Z}$ to finding rational points on $x^2 - dy^2 = 1$.

We do exactly like in the lectures, we consider the line L_q that goes through (-1,0) and (0,q). It intersects the hyperbola at exactly one point. We may assume $x \geq 0$, $y \geq 0$ and $q \geq 0$, since everything is symmetric.

We calculate and see that the line L_q will intersect the hyperbola at the points $\left(\frac{1+dq^2}{1-dq^2}, \frac{2q}{1-dq^2}\right)$ and (-1,0). Also, if we take a rational point (x,y) on the curve, the line through it and (-1,0) will have rational slope, namely q with $q=\frac{y}{x+1}$. That way we have a map from rational points on the curve to \mathbb{Q} . These two maps are each others' inverse.

For every $q \in \mathbb{Q}$ we get the solution

$$(x, y, z) = (1 + dq^2, 2q, 1 - dq^2).$$