주체105(2016)년 제62권 제6호

(NATURAL SCIENCE)

Vol. 62 No. 6 JUCHE105 (2016).

$\mathbf{V_2O_5}$ 의 류황환원에 의한 바나디움산화환원축전지 전해액의 제조

흥예혁. 리광혁

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《나라의 과학기술을 세계적수준에 올려세우자면 발전된 과학기술을 받아들이는것과 함께 새로운 과학기술분야를 개척하고 그 성과를 인민경제에 적극 받아들여야 합니다.》 (《김정일선집》 중보판 제11권 138~139폐지)

새로운 형태의 흐름식축전지인 바나디움산화환원축전지의 전해액제조방법에는 오산화 바나디움의 수소환원, 일산화탄소환원, 유기환원제에 의한 환원, 전해환원 등 여러가지가 있 지만 에네르기적으로나 제조원가의 견지에서 류황에 의한 환원이 많이 주목되고있다.[1] 지 금까지 오산화바나디움의 류황에 의한 환원반응물림새는 리론적으로 밝혀져있지만 생성물 의 조성에 미치는 인자들의 영향에 대한 연구결과[2, 3]는 적게 발표되였다.

우리는 바나디움산화환원축전지전해액을 제조하고 축전지전해액으로서의 리용가능성을 평가하였다.

실 험 방 법

시약으로는 오산화바나디움(V₂O₅, 99%), 류황(99%), 짙은류산(95%이상)을 리용하였다. V₂O₅과 류황, 짙은류산을 섞어 20∼30min동안 점도가 큰 연고처럼 되게 반죽하였다. 이 것을 200∼220℃에서 3h동안 환원소성한 다음 생성물을 류산에 풀어 려과하였다.

80~100℃에서 질량감소량이 40~60%정도로 될 때까지 3h동안 농축하였다.

바나디움류산염을 증류수나 류산용액에 풀어 필요한 바나디움농도와 류산농도를 조절하였다.

바나디움류산염결정수화물의 결정구조는 X선회절분석기(《Smart Lab》)로, V³⁺, V⁴⁺의 분 별정량은 과망간산칼리움에 의한 산화환원적정법으로, 류산이온농도는 무게분석법으로 결 정하였다.

실험결과 및 해석

반응온도의 영향 환원소성온도에 따르는 류산분해량 및 농축온도에 따르는 농축시간의 변화는 그림 1 과 같다.

그림 1. 환원소성온도(ㄱ)) 및 농축온도(ㄴ))의 영향

그림 1에서 보는바와 같이 환원소성온도 250℃이상에서는 류산의 분해량이 많아지며 180℃이하에서는 반응이 매우 느리게 진행된다.

또한 농축온도 100° C이상에서는 급격한 증발로 바나디움류산염결정수화물의 생성이 충분히 진행되지 못하며 60° C이하 표 1. V^{3+} , V^{4+} 의 함량과 물질량비변화

31

황록색 37.0

분히 진행되지 못하며 60°C이하 에서는 농축이 느리게 진행된다.

혼합비률의 영향 V_2O_5 과 류황, 짙은류산의 혼합비률에 따르는 환 원생성물에서의 V^{3+} , V^{4+} 의 함량 과 물질량비변화는 표 1과 같다.

생성물의 구조와 색변화 농축 고화된 생성물들의 X선회절분석 결과는 그림 2, 3과 같다.

반응물질량/g					환원생성물				
	V_2O_5	S	H ₂ SO ₄	색	질 량/g	V ₂ (SO ₄) ₃ 과 VOSO ₄ 의 물질량비			
	19.4	4.2	39	노란색	41.5	1:0			
	19.4	4.2	39	노란색	42.0	1:0			
	19.4	4.2	39	노란색	42.0	1:0			
	18.4	3.2	31	황록색	36.2	0.103:0.097			
	18.4	3.2	31	황록색	37.0	0.105: 0.095			

0.105 : 0.095

18.4 3.2

그림 2, 3에서 보는바와 같이 생성물은 바나디움류산염의 결정립자사이와 결정립자안에 과잉의 류산이온과 물분자가 포함된 바나디움류산염이라고 볼수 있다.

 V^{3+} 의 화합물로 이루어진 환원생성물은 푸른색, 록색을 거쳐 노란색을 띠였다가 록색의 바나디움류산염 $(V_2(SO_4)_3)$ 으로 된다. 푸른색은 환원과정의 4가류산염생성을, 록색은 3가류산염생성을 보여주며 노란색과 록색은 변형된 바나디움류산염의 형성을 보여준다.

한편 V^{3+} , V^{4+} 의 화합물로 이루어진 환원생성물은 푸른색, 록색, 황록색을 거쳐 청록색의 바나디움류산염($V_2(SO_4)_3+VOSO_4$)으로 된다. 푸른색은 환원과정의 4가류산염생성을, 록색은 3가류산염생성을 의미하며 황록색과 록색은 3가와 4가의 바나디움류산염의 혼합물생성을 보여준다.

생성물의 용해도 온도에 따르는 바나디움류산염의 용해시간은 표 2와 같다.

	농축첨가물/g H ₂ SO ₄ 물		トネ 0 ヒパロ	トネカカル	색	지라	용해온도/℃			
No.	H_2SO_4	물	농축온도/℃	궁국시간/N	~" 	질량/g -	25	40	50	60
1	10	60	100	3	록색	71.2	10	5	3	2
2	15	60	100	3	청록색	76.1	12	6	3	2

표 2. 용해온도에 따르는 바나디움류산염의 용해시간(min)

표 2에서 보는바와 같이 바나디움류산염들은 방온도에서도 물에 잘 풀리며 용해시간이 순수한 결정성VOSO4보다 짧다. 또한 순수한 결정성V₂(SO4)₃은 낮은 온도에서는 류산에잘 용해되지 않으며 100℃에서 끓이는 조건에서도 3h동안 용해되지만 우리가 얻은 3가바나디움류산염은 쉽게 용해된다.

바나디움산화환원축전지전해액의 제조 바나디움산화환원축전지전해액을 제조할 때 보통 양극과 음극의 초기전해액으로 3가와 4가의 물질량비가 같은 바나디움류산염용액을 리용한다. 오산화바나디움과 류황, 짙은 류산의 혼합비률을 조절하여 환원생성물에서 3가와 4가의 물질량비를 1:1로 할수 있지만 우리는 다음의 반응을 리용하여 보다 엄밀하게 조절하였다.

3가바나디움류산염을 V⁵⁺화합물과 60℃정도에서 반응시키면 VOSO₄용액이 얻어진다.

$$V_2(SO_4)_3+V_2O_5+H_2SO_4=4VOSO_4+H_2O$$

류황환원반응의 반응과정해석 V_2O_5 분말과 류황분말, 짙은류산에 의한 V의 환원반응은 반응온도에 따라 2단계로 진행된다. 반응온도가 $110\sim120^{\circ}$ C일 때 V^{5+} 의 V^{4+} 에로의 환원이 진행되며 이때 류황은 +6까지 산화된다.

$$3V_2O_5 + 5H_2SO_4 + S = 6VOSO_4 + 5H_2O$$

반응온도를 170°C이상으로 높이면 V⁴⁺의 V³⁺에로의 환원이 진행되며 이때 류황은 +4 까지 산화된다.

 $4VOSO_4+2H_2SO_4+S=2V_2(SO_4)_3+2H_2O+SO_2$

즉 초기반응온도가 170℃이상이면 다음과 같은 반응식으로 나타낼수 있다.

 $6V_2O_5+16H_2SO_4+5S=6V_2(SO_4)_3+16H_2O+3SO_2$

따라서 류황의 량과 반응온도를 조절하면 여러가지 비률을 가진 V^{4+} 및 V^{3+} 화합물을 얻을수 있다는것을 알수 있다.

맺 는 말

V₂O₅의 류황환원에 의한 바나디움산화환원축전지전해액의 제조에서 합리적인 반응온 도는 200~220℃이며 화원반응은 반응온도에 따라 2단계로 진행된다.

V₂O₅과 류황, 짙은류산의 합리적인 혼합비률은 1:0.375:1.55이다.

환원생성물에서 V^{3+} 과 V^{4+} 의 물질량비는 V_2O_5 을 첨가하여 조절할수 있다.

참 고 문 헌

- [1] Q. Xu et al.; Applied Energy, 105, 47, 2013.
- [2] Nobuyuki Tokuda et al.; Energy, 50, 1, 88, 2000.
- [3] C. Fabjan et al.; Electrochimica Acta, 47, 825, 2001.

주체105(2016)년 2월 5일 원고접수

Hong Ye Hyok, Ri Kwang Hyok

In the manufacture of vanadium redox battery electrolyte by sulphur reduction of V_2O_5 , the reasonable reaction temperature is $200\sim220\,^{\circ}\text{C}$, and the reduction reaction occurs by two steps according to the temperature.

The reasonable mixing ratio of V_2O_5 , sulphur and undiluted sulphuric acid is 1:0.375:1.55. The molar ratio of V^{3+} and V^{4+} in reductive production can be controlled by adding V_2O_5 .

Key words: vanadium redox battery, electrolyte, sulphur reduction