PROJECT ONE: MILESTONE 3A – COVER PAGE

Team Number: Mon-31

Please list full names and MacID's of all *present* Team Members

Full Name:	MacID:
Avery Thurston	thurstoa
Kavi Gurunathan	gurunatk
Gurleen Dhillon	dhillg25
Olutayo Oluwasegun	olutayoo

MILESTONE 3A (STAGE 1) – MATERIAL SELECTION: PROBLEM DEFINITION

Team Number: Mon-31

1. Copy-and-paste the title of your assigned scenario in the space below.

EWB Humanitarian Aid Mission

2. MPI selection

- List one primary objective and one secondary objective in the table below
- For each objective, list the MPI
- Write a short justification for your selected objectives

	Objective	MPI-	MPI-	Justification for this objective
		stiffness	strength	
Primary	Minimize cost	E/ρC _m	σ _y /ρC _m	Minimize cost because it is for a local village who might not have enough money to produce expensive turbines.
Secondary	Minimize production energy	E/pH _m	$\sigma_{y}/\rho H_{m}$	Minimize production energy to make is easier for villagers to make more wind turbines.

MILESTONE 3A (STAGE 2) – MATERIAL SELECTION: MPI AND MATERIAL RANKING

Document the results of your materials selection and ranking on the following page.

→ Each team member is required to complete this on the *INDIVIDUAL* worksheet document, and then copy-and-paste to this document

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their summary of material property charts with the **Milestone Three-A Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into this Milestone Three-A Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing Stage 3 of the milestone

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Gurleen Dhillon	dhillg25

ASSI	gned MPI #1	Functional Constraint	Objective		
	$σ_y$ /ρ H_m	The deflection d must be less Minimize potential than some value d* (d <d*)< th=""></d*)<>			
sert a sci	reenshot of the material	l property chart with MPI guideline.	Please clearly label the top 5		
aterials v	with their name in the p	lot.			
Wood 100	GFRP, epoxy matrix (isotropic) Bambo	ow alloy steel			
10	Cork				

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Olutayo Oluwasegun	olutayoo

Assigned MPI #2	Functional Constraint	Objective
E/ρH _m	The deflection d must be less than some values d*(d <d*)< th=""></d*)<>	
aterials with their name in the pl	Medium carbon steel	Trease death, laber the top o
Wood, typical across grain	Copper alloys	

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Avery Thurston	thurstoa

Material Property Chart				
Assigned MPI #3	Functional Constraint	Objective		
σy/ρCm	The deflection d must be	Minimize Cost		
	less than some value d*			
	(d <d*)< td=""><td></td></d*)<>			

Insert a screenshot of the material property chart with MPI guideline. Please clearly label the top 5 materials with their name in the plot.

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Kavi Gurunathan	gurunatk

Assigned MPI #4		Function	al Con	Objective		
E/ρCm		The deflec	The deflection d must be		Minimize cost	
		less than s	ome va	lue d*		
		(d <d*)< td=""><td></td><td></td><td></td><td></td></d*)<>				
	-		with MP	guideline.	Please clearly label the	top.
naterials with t	heir name in the p	lot.				
1000	Aluminum alloys	High carbon steel				
100	Magnesium allo	ys	A			
	Bamboo —		0	0		
snInp		Wood, typ	ical along grain			
Xonnpow s, buno,						
Voun						
0.001	0	00-				
			1	1		

^{*}If you are in a team of 5, please copy and paste the above on a new page

MILESTONE 3A (STAGE 3) – MATERIAL SELECTION: MATERIAL ALTERNATIVES AND FINAL SELECTION

Team Number: Mon-31

Consolidation of Individual Material Rankings					
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
	Material	Material	Material	Material	Material
	Name	Name	Name	Name	Name
$\sigma_{y}/\rho H_{m}$	Wood, typical along grain	low alloy steel	cork	bamboo	GFRP, epoxy matrix (isotropic)
E/pCm	High carbon steel	Bamboo	Aluminum alloy	Wood, typical along grain	Magnesium alloy
σy/ρC _m	Low Alloy Steel	Wood, typical along grain	Bamboo	Aluminium Alloys	Magnesium Alloys
E/ρH _m	Wood, typical along grain	Low carbon steel	Bamboo	Zinc alloys	Copper alloys

Narrowing Material Candidate List to 3 Finalists		
Material Finalist 1: Wood, typical along grain		
Material Finalist 2: Bamboo		
Material Finalist 3: Low Alloy Steel		

Compare Material Alternatives and Make a Final Selection using a Decision Matrix

- → As a team, establish a weighting factor for each criterion:
 - Move row-by-row
 - If Criteria 1 is preferred over Criteria 2, assign a 1. Otherwise, assign
 - If Criteria 1 is preferred over Criteria 3, assign a 1. Otherwise, assign
 - Add additional rows/columns as needed

Criteria Ranking					
	Lightweight	Durable	Easy to	Accessibility	Weight factor
			repair		
Lightweight	1	0	0	0	1
Durable	1	1	1	1	4
Easy to	1	0	1	0	2
repair					
Accessibility	1	0	1	1	3

- → As a team, evaluate your materials against each criterion using your weighting
 - Add additional rows as needed

Decision	Decision Matrix						
	Weigh t factor	Wood, typical along grain		Bamboo		Low alloy steel	
		Ratin g	Weighted Rating	Rating	Weighted Rating	Rating	Weighted Rating
Lightweight	1	3	3	5	5	2	2
Durable	4	3	12	2	8	5	20
Easy to repair	2	2	4	2	4	4	8
Accessibility	3	5	15	4	12	2	6
TOTAL			34		29		36

→ List your chosen material and justify your selection

Justification	
List Chosen	Low alloy steel
Material:	

Discuss and justify your selection in the space below (based on the MPIs and any other relevant considerations).

This material is the most durable out of all the materials, and it is also easier to fix. This means the wind turbines can be used for a long time, reducing the long-term cost for the villagers. Bamboo and wood may be more accessible, but they are not good materials to use in the long run when compared to low alloy steel, because they are more likely to be damaged (I.e. by weather) thus leading to unavoidable expenses.

Summary of Chosen Material's Properties

Material Name:	Average value:		
Young's modulus E (GPa):	205		
Yield Strength σ_y (MPa):	1,034.5		
Tensile strength σ_{UTS} (MPa):	1,249.5		
Density ρ (kg/m ³):	7,800		
Embodiment Energy H_m (MJ/kg)	31.05		
Specific carbon footprint CO_2 (kg/kg)	2.49		