Задачи со звёздочкой

1. Решите уравнение

$$y^2(x-1)\mathrm{d}x = x(xy+x-2y)\mathrm{d}y$$

2. Решите уравнение

$$(x+y)(1-xy)dx + (x+2y)dy = 0$$

3. Решите уравнение

$$(x^2 - 1)dx + (x^2y^2 + x^3 + x)dy = 0$$

4. Решите уравнение

$$(y - yx^2 - 2x)dx + x(x^2 + 1)dy = 0$$

- 5. Дать пример, показывающий, что решение уравнения $F(t, x, \dot{x}) = 0$, удовлетворяющее условию $\frac{\partial F}{\partial \dot{x}} = 0$, не обязательно особое (через точки не проходят другие решения уравнения с той же касательной).
- 6. Рассмотрим уравнение Клеро $x = t\dot{x} \psi(\dot{x})$. Предположим, что функция ψ выпуклая. Пусть g особое решение этого уравнения. Показать, что особое решение уравнения Клеро $y = t\dot{y} g(\dot{y})$ совпадает с ψ .
- 7. Решить уравнение:

$$\dot{y}^3 + 3\dot{y}^2 + y^4 - 4 = 0.$$

8. Показать, что решения задачи Коши $x(t_0) = x_0$ для уравнения

$$\dot{x} = t^3 - x^3$$

существуют на луче $[x_0, +\infty)$.

9. Исследуйте характер решений при $t \to \pm \infty$ для уравнения $\dot{x} = t^2 - e^x$. Нужно выяснить интервал $(a,b)~(-\infty \le a < b \le +\infty)$ существования для каждого решения и найти асимптотики решений при $x \downarrow a,~x \uparrow b$. Построить схематически интегральные кривые.