Topology

Lecture 9, Sunday June 18, 2022 Ari Feiglin

Proposition 9.0.1:

If $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is a product topology, and $f_{\lambda} : X_{\lambda} \longrightarrow Y_{\lambda}$ be functions, then let $Y = \prod_{\lambda \in \Lambda} Y_{\lambda}$ and

$$f: X \longrightarrow Y, \qquad (x_{\lambda})_{\Lambda} \mapsto (f_{\lambda}(x_{\lambda}))_{\Lambda}$$

then

- (1) f is continuous if and only if each f_{λ} is continuous.
- (2) If f is open then each f_{λ} is open.
- (3) If f_{λ} are all surjective, or Λ is finite, then f is open if and only if each f_{λ} is open.
- (4) f is a homeomorphism if and only if each f_{λ} is a homeomorphism.

Proof:

Suppose f_{λ} are continuous. Let $\mathcal{U} = \prod_{\lambda \in \Lambda} \mathcal{U}_{\lambda}$ be an element of the standard basis of the product topology Y, then

$$(x_{\lambda})_{\Lambda} \in f^{-1}(\mathcal{U}) \iff (f_{\lambda}(x_{\lambda}))_{\Lambda} \in \prod_{\lambda \in \Lambda} \mathcal{U}_{\lambda}$$

which is if and only if $f_{\lambda}(x_{\lambda}) \in \mathcal{U}_{\lambda}$ for each $\lambda \in \Lambda$, and so

$$f^{-1}(\mathcal{U}) = \prod_{\lambda \in \Lambda} f_{\lambda}^{-1}(\mathcal{U}_{\lambda})$$

and since $f_{\lambda}^{-1}(\mathcal{U}_{\lambda})$ is open in X and since all but a finite number of $\mathcal{U}_{\lambda} \neq Y_{\lambda}$, so all but a finite number of $f_{\lambda}^{-1}(\mathcal{U}_{\lambda}) \neq X_{\lambda}$, meaning $f^{-1}(\mathcal{U})$ is an element of the basis of the product topology X, so it is open as required.

Now suppose f is continuous, then let \mathcal{V}_{λ} be open in Y_{λ} , then we must show $f_{\lambda}^{-1}(\mathcal{V}_{\lambda})$ is open in X_{λ} . If we take the open set \mathcal{V} in Y which is the product of Y_{γ} with \mathcal{V}_{λ} in the λ th index then we get that $f^{-1}(\mathcal{V})$ is equal to the product of X_{γ} with $f_{\lambda}^{-1}(\mathcal{V}_{\lambda})$. Since $f^{-1}(\mathcal{V})$ is open, $\pi_{\lambda}(f^{-1}(\mathcal{V})) = f_{\lambda}^{-1}(\mathcal{V}_{\lambda})$ is open as required.

Now if f is open, let \mathcal{U}_{λ} be open in X_{λ} , and let \mathcal{U} be the product of X_{γ} with \mathcal{U}_{λ} then \mathcal{U} is open in X. So $f(\mathcal{U})$ is open and so $\pi_{\lambda}(f(\mathcal{U})) = f_{\lambda}(\mathcal{U}_{\lambda})$ is open, so f_{λ} is open.

And if f_{λ} are all open and surjective or Λ is finite, then let $\mathcal{U} = \prod_{\Lambda} \mathcal{U}_{\lambda}$ be open in X then

$$f(\mathcal{U}) = \prod_{\Lambda} f_{\lambda}(\mathcal{U}_{\lambda})$$

is open in Y (all but a finite number of $f_{\lambda}(\mathcal{U}_{\lambda}) \neq Y_{\lambda}$). So f is open.

Now suppose f is a homeomorphism, then f is necessarily bijective and so each f_{λ} must be bijective as well. If $f_{\lambda}(x_{\lambda}) = f_{\lambda}(y_{\lambda})$ then if we take a $x \in X$ and $y \in X$ which are equal except at the λ th coefficient, for which x's is x_{λ} and y's is y_{λ} , then we have by definition f(x) = f(y) so x = y meaning $x_{\lambda} = y_{\lambda}$. And if $y_{\lambda} \in Y_{\lambda}$, then the sequence y whose λ th coefficient is y_{λ} has an origin in X, and so if x_{λ} is the λ th coefficient in y's origin, then by definition $f_{\lambda}(x_{\lambda}) = y_{\lambda}$, so f_{λ} are all bijective. By above, f_{λ} are all continuous and open bijective mappings, meaning they are homeomorphisms.

And if f_{λ} are all homeomorphisms, then f is also bijective and open and continuous and is therefore also a homeomorphism.

Proposition 9.0.2:

Similarly if $f_{\lambda} : X \longrightarrow Y_{\lambda}$ is continuous, so is

$$f \colon X \longrightarrow \prod_{\Lambda} Y_{\lambda}, \qquad f(x) = (f_{\lambda}(x))_{\lambda \in \Lambda}$$

Proof:

This is because if $\prod_{\Lambda} \mathcal{U}_{\lambda}$ is in the basis of the product topology Y, then

$$x \in f^{-1}\left(\prod_{\Lambda} \mathcal{U}_{\lambda}\right) \iff (f_{\lambda}(x))_{\Lambda} \in \prod_{\Lambda} \mathcal{U}_{\lambda} \iff f_{\lambda}(x) \in \mathcal{U}_{\lambda} \iff x \in f^{-1}(\mathcal{U}_{\lambda})$$

for each $\lambda \in \Lambda$. So

$$f^{-1}\Big(\prod_{\Lambda} \mathcal{U}_{\lambda}\Big) = \bigcap_{\Lambda} \mathcal{U}_{\lambda}$$

Since all but a finite of λ satisfy $f^{-1}(\mathcal{U}_{\lambda}) = X_{\lambda}$, this is a finite intersection, so it is open.

Proposition 9.0.3:

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product topology, then if every X_{λ} is path connected then so is X.

Proof:

Let $(x_{\lambda})_{\Lambda}, (y_{\lambda})_{\Lambda} \in X$, then for every $\lambda \in \Lambda$ there exists a curve

$$\gamma_{\lambda} \colon [0,1] \longrightarrow X_{\lambda}, \quad \gamma_{\lambda}(0) = x_{\lambda}, \ \gamma_{\lambda}(1) = y_{\lambda}$$

Then let us define

$$\gamma \colon [0,1] \longrightarrow X, \qquad \gamma(t) = (\gamma_{\lambda}(t))_{\Lambda}$$

This is continuous since its components are. And it satisfies $\gamma(0) = (\gamma_{\lambda}(0)) = (x_{\lambda})_{\Lambda}$ and similarly $\gamma(1) = (y_{\lambda})_{\Lambda}$.

Proposition 9.0.4:

If X_{λ} are all connected, so is $X = \prod_{\Lambda} X_{\lambda}$.

Proof:

First we show this for the finite case, when $X = X_1 \times X_2$. Let $(a,b) \in X$ then $\{a\} \times Y \cong Y$ and $X \times \{b\} \cong X$ so these are both connected. And $(\{a\} \times Y) \cap (X \times \{b\}) = \{(a,b)\} \neq \emptyset$ and so $(\{a\} \times Y) \cup (X \times \{b\}) = X \times Y$ is connected as the non-disjoint union of two connected spaces. Therefore by induction $X_1 \times \cdots \times X_n$ is connected. Let $(q_{\lambda})_{\Lambda} \in X$ and let $F \subseteq \Lambda$ be finite, let

$$Q_F = \prod_{\Lambda} G_{\lambda}, \qquad G_{\lambda} = \begin{cases} X_{\lambda} & \lambda \in F \\ \{q_{\lambda}\} & \lambda \notin F \end{cases}$$

Then $Q_F \cong \prod_{f \in F} X_f$, so Q_F is connected. Let

$$Y = \bigcup_{F \subset I \text{ finite}} Q_F$$

and if $a, b \in Y$ then $a \in Q_{F_1}$ and $b \in Q_{F_2}$ so $a, b \in Q_{F_1 \cup F_2}$ and so every two points in Y are contained within a connected subspace, and therefore Y is connected.

We now claim that Y is dense in X. Suppose $\mathcal{U} = \prod_{\Lambda} \mathcal{U}_{\lambda}$ is in the basis of X, suppose $F = \{\lambda_1, \dots, \lambda_n\}$ is the set of indexes for which $\mathcal{U}_{\lambda_i} \neq X_{\lambda_i}$. Then we claim that $\mathcal{U} \cap Q_F \neq \emptyset$. This is equal to

$$\prod_{\Lambda} \mathcal{U}_{\lambda} \cap G_{\lambda}$$

So for $\lambda \in F$, $G_{\lambda} = X_{\lambda}$ otherwise $G_{\lambda} = \{q_{\lambda}\}$ and $\mathcal{U}_{\lambda} = X_{\lambda}$ so $\mathcal{U}_{\lambda} \cap G_{\lambda}$ is non-empty for every $\lambda \in \Lambda$ (either \mathcal{U}_{λ} or $\{q_{\lambda}\}$). And so $\mathcal{U} \cap Q_F \neq \emptyset$ as required.

9.1 Tychonoff's Theorem

Lemma 9.1.1 (Tube Lemma):

Suppose X and Y are topological spaces, Y is compact, and $a \in X$. Then for every neighborhood of $\{a\} \times Y \subseteq \mathcal{O}$, there exists an open set $\mathcal{U} \subseteq X$ such that

$$\{a\} \times Y \subseteq \mathcal{U} \times Y \subseteq \mathcal{O}$$

Proof:

Recall that the basis of $X \times Y$ is the set of rectangles $\mathcal{U} \times \mathcal{V}$ for \mathcal{U} and \mathcal{V} open in $X \times Y$. So \mathcal{O} is a union of sets of this form, and since for every $y \in Y$, $(a, y) \in \mathcal{O}$ and so there exists $a \in \mathcal{U}_y$ and $y \in \mathcal{V}_y$ open such that

$$(a,y) \in \mathcal{U}_y \times \mathcal{V}_y \subseteq \mathcal{O}$$

Then $\{\mathcal{V}_y\}_{y\in Y}$ is an open cover of Y and so there is a finite subcover $\{\mathcal{V}_{y_i}\}_{i=1}^n$, and so let us define

$$\mathcal{U} = \mathcal{U}_{u_1} \cap \cdots \cap \mathcal{U}_{u_n}$$

Then $a \in \mathcal{U}$ is an open neighborhood of a, and since

$$\mathcal{U} \times Y = \bigcup_{i=1}^{n} \mathcal{U} \times \mathcal{V}_{y_i}$$

and since $\mathcal{U} \times \mathcal{V}_{y_i} \subseteq \mathcal{U}_{y_i} \times \mathcal{V}_{y_i} \subseteq \mathcal{O}$ and so

$$\{a\} \times Y \subseteq \mathcal{U} \times Y \subseteq \mathcal{O}$$

as required.

Definition 9.1.2:

If X is a set and $B \subseteq \mathcal{P}(X)$, let τ_B be the smallest topology on X which contains B. This is well-defined since the arbitrary intersection of topologies is a topology, so we can take

$$\tau_B = \bigcap \{ \tau \mid B \subseteq \tau \text{ is a topology on } X \}$$

 τ_B is called the topology generated by B.

Notice that if $X \in B$ and B is closed under intersections then τ_B as defined previously is equal to the τ_B defined above (since τ_B is a topology and obviously any topology containing B must contain τ_B). If we define B^{\cap} to be the set of all finite unions of elements of B, then

$$\tau_B = \tau_{B \cap \cup \{X\}}$$

this is because obviously any topology which contains B must contain $B^{\cap} \cup \{X\}$ and vice versa, and so the topology generated by B is equal to the topology generated by $B^{\cap} \cup \{X\}$. Since $B^{\cap} \cup \{X\}$ contains X and is closed under intersections, τ_B is equal to the union of finite intersections of elements in B and X. Thus if B is a subbasis, $B^{\cap} \cup \{X\}$ is a basis of the topology.

Definition 9.1.3:

If (X, τ) is a topological space, then $B \subseteq \tau$ is a subasis of τ if the topology generated by B is τ , and X is the union of elements in B.

This is equivalent to saying that $\tau_{B^{\cap}} = \tau$ in the sense of the previous lecture (every element of τ can be written as the union of elements in B^{\cap}). Or equivalently, B^{\cap} is a basis of τ .

Note if B is a basis of τ , then $\tau_B = \tau$ and so B is a subasis.

Lemma 9.1.4 (Alexander Subbase Theorem):

If X is a topological space and B is a subasis, then X is compact if and only if for every open cover of X $\mathcal{C} = \{\mathcal{U}_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq B$, there exists a finite subcover.

Proof:

If X is compact, this is obvious. To show the converse, suppose X is not compact. Let S be the set of all open covers of X which have no finite subcover, and so by assumption $S \neq \emptyset$. So S is partially ordered by inclusion, we will use Zorn's Lemma to show that S contains a maximal element.

Let $\{\mathcal{C}^{\gamma}\}_{\gamma\in\Gamma}$ be a chain of covers in S, then we claim that $\mathcal{C}=\bigcup_{\gamma\in\Gamma}\mathcal{C}^{\gamma}$ is in S. \mathcal{C} obviously covers X (since it is a superset of an open cover). But if \mathcal{C} had a finite subcover, then since $\{\mathcal{C}^{\gamma}\}_{\gamma\in\Gamma}$ forms a chain, this finite subcover is contained entirely within some \mathcal{C}^{γ} and so \mathcal{C}^{γ} has a finite subcover, which contradicts it being in S. Thus every chain has an upper bound in S and therefore S has a maximal element.

Suppose $\mathcal{C} \in S$ is a maximal element. Since \mathcal{C} is maximal, if $\mathcal{U} \notin \mathcal{C}$ then $\mathcal{C} \cup \{\mathcal{U}\} \notin S$ and so $\mathcal{C} \cup \{\mathcal{U}\}$ has a finite subcover, which is of the form $\mathcal{C}_{\mathcal{U}} \cup \{\mathcal{U}\}$ for some finite subset $\mathcal{C}_{\mathcal{U}}$ of \mathcal{C} . But $\mathcal{C} \cap B$ cannot cover X as if it did, since $\mathcal{C} \cap B \subseteq B$, by our assumption in the lemma, $\mathcal{C} \cap B$ and in particular \mathcal{C} would have a finite subcover. Thus there exists a $x \in X$ which is not covered by $\mathcal{C} \cap B$, but there exists a $\mathcal{V} \in \mathcal{C}$ such that $x \in \mathcal{V}$, and s

Since B^{\cap} is a basis there exists a $\mathcal{O} \in B^{\cap}$ such that $x \in \mathcal{O} \subseteq \mathcal{V}$, and $\mathcal{O} = \mathcal{O}_1 \cap \cdots \mathcal{O}_n$ for $\mathcal{O}_i \in B$, so

$$x \in \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_n \subseteq \mathcal{V}$$

But $\mathcal{O}_i \notin \mathcal{C}$, since then \mathcal{C} would cover x, and so by above, there exist $\mathcal{C}_i = \mathcal{C}_{\mathcal{O}_i} \subset \mathcal{C}$ finite such that $\mathcal{C}_i \cup \{\mathcal{O}_i\}$ is a finite cover of X. Thus if we denote $\mathcal{U}_i = \bigcup \mathcal{C}_i$, then $\mathcal{U}_i \cup \mathcal{O}_i = X$ and so

$$X = \bigcap_{i=1}^{n} \mathcal{U}_{i} \cup \mathcal{O}_{i} \subseteq \bigcup_{i=1}^{n} \mathcal{U}_{i} \cup \bigcap_{i=1}^{n} \mathcal{O}_{i} \subseteq \bigcup_{i=1}^{n} \mathcal{U}_{i} \cup \mathcal{V}$$

But this means X is equal to a finite union of elements of \mathcal{C} (\mathcal{U}_i is the union of \mathcal{C}_i which is finite), in contradiction to \mathcal{C} not having a finite subcover.

Theorem 9.1.5 (Tychonoff Theorem):

If $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ is a family of compact topological spaces, then $X=\prod_{{\lambda}\in\Lambda}X_{\lambda}$ is compact if and only if every X_{λ} is compact.

Proof:

If X is compact, then since π_{λ} is continuous, $\pi_{\lambda}(X) = X_{\lambda}$ is compact as well. To show the converse, let

$$B = \left\{ \pi_{\lambda}^{-1}(\mathcal{U}_{\lambda}) \mid \mathcal{U}_{\lambda} \in \tau_{\lambda}, \, \lambda \in \Lambda \right\}$$

this is the standard subasis of the product topology (since B^{\cap} is the standard basis of the product topology). Let us assume that X is not compact, then there exists $\mathcal{C} \subseteq B$, an open cover of X without a finite subcover.

For $\lambda \in \Lambda$, let \mathcal{C}_{λ} be the set of all $\pi_{\lambda}^{-1}(\mathcal{U}_{\lambda}) \in \mathcal{C}$ (the set of all elementary prisms of the coefficient X_{λ} in \mathcal{C}). So $\mathcal{C} = \bigcup_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$. Then for every $\lambda \in \Lambda$, $\pi_{\lambda}(\mathcal{C}_{\lambda})$ contains no finite subcover of X_{λ} , since if $\{\mathcal{U}_n\}_{n=1}^N \subseteq \pi_{\lambda}(\mathcal{C}_{\lambda})$ is a finite subcover of X_{λ} then

$$\bigcup_{n=1}^{N} \pi_{\lambda}^{-1}(\mathcal{U}_n) = X$$

(since $\pi_{\lambda}^{-1}(\mathcal{U}_n)$ is the vector whose λ th coefficient is \mathcal{U}_n and all other are X_{γ}). And so $\mathcal{C}_{\lambda} \subseteq \mathcal{C}$ would have a finite subcover.

But since X_{λ} is compact, $\pi_{\lambda}(\mathcal{C}_{\lambda})$ cannot cover X, and so there exists a $x_{\lambda} \in X_{\lambda}$ not covered by $\pi_{\lambda}(\mathcal{C}_{\lambda})$. Then $x = (x_{\lambda})_{\lambda \in \Lambda} \in X$ is not covered by \mathcal{C} in contradiction.

Since

$$\prod_{\lambda \in \Lambda} X = X^{\Lambda}$$

we have that X^{Λ} is compact if and only if X is compact for any set Λ . For example $[0,1]^S$ are called *Tychonoff cubes*, and if $S = \mathbb{N}$ it is called a *Hilbert cube*.

9.2 Disjoint Unions

Definition 9.2.1:

Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of topological spaces, then we can ensure they are disjoint by replacing them with $X_{\lambda}\times\{\lambda\}$ which is homeomorphic with X_{λ} , then we define

$$\coprod_{\lambda \in \Lambda} X_{\lambda} = \bigcup_{\lambda \in \Lambda} X_{\lambda}$$

with the topology

$$au = \left\{ igcup_{\lambda \in \Lambda} \mathcal{U}_{\lambda} \;\middle|\; \mathcal{U}_{\lambda} \; ext{is open in } X_{\lambda}
ight\}$$

This is a topology since obviously \emptyset , $\coprod_{\Lambda} X_{\lambda} \in \tau$ and

$$\left(\bigcup \mathcal{U}_{\lambda}\right) \cap \left(\bigcup \mathcal{V}_{\lambda}\right) = \bigcup \mathcal{U}_{\lambda} \cap \mathcal{V}_{\lambda}$$

and

$$\bigcup_{\gamma \in \Gamma} \bigcup_{\lambda \in \Lambda} \mathcal{U}_{\lambda}^{\gamma} = \bigcup_{\lambda \in \Lambda} \bigcup_{\gamma \in \Gamma} \mathcal{U}_{\lambda}^{\gamma}$$

Since X_{λ} are all disjoint, X_{λ} 's topology is equal to its subspace topology as a subspace of $\coprod_{\lambda \in \Lambda} X_{\lambda}$. Notice that if we define ι_{λ} as the inclusion function from X_{λ} to $\coprod_{\Lambda} X_{\lambda}$ (which is continuous as the inclusion function from a subspace), then a function

$$f : \coprod_{\Lambda} X_{\lambda} \longrightarrow Y$$

is continuous if and only if $f \circ \iota_{\lambda} \colon X_{\lambda} \longrightarrow Y$ is continuous. If f is continuous, this is obvious. For the converse, this is because then f is continuous over every X_{λ} which form an open cover of the disjoint union.

9.3 Quotient Spaces

Definition 9.3.1:

If (X,τ) is a topological space and $q\colon X\longrightarrow Y$ is a surjective function, then σ is a quotient topology of Y if

- (1) $q: (X, \tau) \longrightarrow (Y, \sigma)$ is continuous
- (2) If $q:(X,\tau) \longrightarrow (Y,\gamma)$ is continuous then $\gamma \subseteq \sigma$ (σ is the finest topology which makes q surjective).

We call q the quotient mapping.

Proposition 9.3.2:

$$\sigma = \left\{ \mathcal{U} \subseteq Y \mid q^{-1}(\mathcal{U}) \in \tau \right\}$$

Proof:

Let $\sigma' = \{ \mathcal{U} \subseteq Y \mid q^{-1}(\mathcal{U}) \in \tau \}$. Obviously since σ makes q continuous, if \mathcal{U} is open then $q^{-1}(\mathcal{U}) \in \tau$ so $\sigma \subseteq \sigma'$. So now we show that σ' is a topology, and thus $\sigma' \subseteq \sigma$, meaning $\sigma = \sigma'$. Firstly, $q^{-1}(Y) = X$ and $q^{-1}(\varnothing) = \varnothing$ and so $Y, \varnothing \in \sigma'$. If $\mathcal{U}, \mathcal{V} \in \sigma'$ then

$$q^{-1}(\mathcal{U} \cap \mathcal{V}) = q^{-1}(\mathcal{U}) \cap q^{-1}(\mathcal{V}) \in \tau$$

so $\mathcal{U} \cap \mathcal{V} \in \sigma'$. And if $\{\mathcal{U}_{\lambda}\}_{\Lambda} \subseteq \sigma'$ then

$$q^{-1}\left(\bigcup_{\lambda\in\Lambda}\mathcal{U}_{\lambda}\right)=\bigcup_{\lambda\in\Lambda}q^{-1}(\mathcal{U}_{\lambda})\in\tau$$

so $\bigcup_{\Lambda} \mathcal{U}_{\lambda} \in \tau$, thus σ' is a topology as required.

Thus q is a quotient map if and only if q is surjective and for every $\mathcal{U} \subseteq Y$, \mathcal{U} is open if and only if $q^{-1}(\mathcal{U})$ is open in X.

Proposition 9.3.3:

Suppose $q \circ X \longrightarrow Y$ is a quotient map and $f: Y \longrightarrow Z$, then f is a quotient map if and only if $f \circ q$ is a quotient map.

Proof:

If f is a quotient map then $f \circ q$ is surjective as the composition of surjective functions. We must show that $\mathcal{U} \subseteq Y$ is open if and only if $(f \circ q)^{-1}(\mathcal{U})$ is open. \mathcal{U} is open if and only if $f^{-1}(\mathcal{U})$ is open, and since q is a quotient map this is if and only if $q^{-1}(f^{-1}(\mathcal{U})) = (f \circ q)^{-1}(\mathcal{U})$ is open as required.

And if $f \circ q$ is surjective, so is f. And so we must show that $\mathcal{U} \subseteq Y$ is open if and only if $f^{-1}(\mathcal{U})$ is. \mathcal{U} is open if and only if $(f \circ q)^{-1}(\mathcal{U}) = q^{-1}(f^{-1}(\mathcal{U}))$ is open and $q^{-1}(\mathcal{V})$ is open if and only if \mathcal{V} is open, so this is open if and only if $f^{-1}(\mathcal{U})$ is open.

Proposition 9.3.4:

Suppose $q \circ X \longrightarrow Y$ is a quotient map and $f: Y \longrightarrow Z$, then f is a continuous function if and only if $f \circ q$ is continuous.

Proof:

Obviously if f and q are continuous, so is $f \circ q$. To show the converse, let $\mathcal{U} \subseteq Z$ is open then we must show $f^{-1}(\mathcal{U})$ is open in Y, but this is equivalent to $q^{-1}(f^{-1}(\mathcal{U}))$ being open in X, and since

$$q^{-1}(f^{-1}(\mathcal{U})) = (q \circ f)^{-1}(\mathcal{U})$$

which is open, this is indeed true.

Proposition 9.3.5:

If $q: X \longrightarrow Y$ is surjective, continuous, and open (or closed) then it is a quotient map.

Proof:

We must show $\mathcal{U} \subseteq Y$ is open if and only if $q^{-1}(\mathcal{U})$ is open. If \mathcal{U} is open then since q is continuous, $q^{-1}(\mathcal{U})$ is open. And if $q^{-1}(\mathcal{U})$ is open then $q(q^{-1}(\mathcal{U})) = \mathcal{U}$ since q is surjective, and since q is open it is open as well.

Thus every projective function π_{λ} : $\prod_{\Lambda} X_{\lambda}$ is a quotient map.

Proposition 9.3.6:

If $f: X \longrightarrow Y$ is bijective and continuous, then f is a quotient map if and only if f is a homeomorphism.

Proof:

If f is a homeomorphism, then by above it is a quotient map. Otherwise, f is a quotient map, let us show that f is an open mapping. Suppose \mathcal{U} is open in X then $f(\mathcal{U})$ is an open in Y if and only if $f^{-1}(f(\mathcal{U})) = \mathcal{U}$ is open in X, which is true. So f is an open, continuous, bijective map and is therefore a homeomorphism.

Proposition 9.3.7:

If $q: X \longrightarrow Y$ is continuous and $A \subseteq X$ such that $q|_A: A \longrightarrow Y$ is a quotient map, then q is a quotient map.

Proof:

q is surjective since its restriction is. We must show that $\mathcal{U} \subseteq Y$ is open if and only if $q^{-1}(\mathcal{U})$ is. If \mathcal{U} is open, then

 $q^{-1}(\mathcal{U})$ is since it is continuous. If $q^{-1}(\mathcal{U})$ is open then $q\big|_A^{-1}(\mathcal{U}) = q^{-1}(\mathcal{U}) \cap A$ is open as well and so \mathcal{U} is open.

Definition 9.3.8:

Let X be a topological space and \sim an equivalence relation on X. Let us denote $\overline{X} = X/_{\sim}$ be the partition of X with respect to \sim , then let us define

$$\rho \colon X \longrightarrow \overline{X}, \qquad \rho(x) = [x]_{\sim}$$

and we define the quotient topology on \overline{X} by

$$\{\mathcal{U} \subseteq \overline{X} \mid \rho^{-1}(\mathcal{U}) \text{ is open in } X\}$$

This is indeed a topology, since final topologies are topologies. Thus ρ is a quotient map for \overline{X} .

Proposition 9.3.9:

Suppose $f: X \longrightarrow Y$ is continuous, then there exists a continuous function $\bar{f}: \overline{X} \longrightarrow Y$ such that $f = \bar{f} \circ \rho$ if and only if $a \sim b$ implies f(a) = f(b).

 \bar{f} is injective if and only if $a \sim b \iff f(a) = f(b)$.

Proof:

If $f = \bar{f} \circ \rho$ then if $a \sim b$ then $\rho(a) = \rho(b)$ and so $f(a) = \bar{f}(\rho(a)) = \bar{f}(\rho(b)) = f(b)$. And if the condition holds then let us define $\bar{f}(a) = f(a)$. This is well-defined since if $a \sim b$ then f(a) = f(b), and we showed that \bar{f} is continuous if and only if $\bar{f} \circ \rho = f$ is.

Now suppose \bar{f} is injective then we already know that $a \sim b$ implies f(a) = f(b) so it remains to be shown that f(a) = f(b) implies $a \sim b$. If f(a) = f(b) then $\bar{f}([a]) = \bar{f}([b])$ which means [a] = [b] so $a \sim b$ as required. To show the converse, suppose $\bar{f}([a]) = \bar{f}([b])$ then f(a) = f(b) which means $a \sim b$ so [a] = [b].

Definition 9.3.10:

A function $f: X \longrightarrow Y$ preserves \sim if $a \sim b \implies f(a) = f(b)$. And f strongly preserves \sim if $a \sim b \iff f(a) = f(b)$.

Thus we can rephrase the result above as there exists a continuous function \bar{f} such that $f = \bar{f} \circ \rho$ if and only if f preserves \sim , and \bar{f} is injective if and only if f strongly preserves \sim .

Proposition 9.3.11:

If $f: X \longrightarrow Y$ is a quotient map then f strongly preserves \sim if and only if \bar{f} is a homeomorphism.

Proof:

If f strongly preserves \sim then \bar{f} is injective, and since $f = \bar{f} \circ q$ and f and q are quotient maps, \bar{f} is a quotient map as well. So \bar{f} is an injective quotient map, and is therefore a homeomorphism.

And if \bar{f} is a homeomorphism, then since $f = \bar{f} \circ q$, f is a quotient map. And since \bar{f} is injective, f strongly preserves \sim .