Estructura de Computadores 2022 Primer Parcial Teoría

2022-10-15

- · Apellidos:
- · Nombre:
- Grupo:

1. Ejercicios de los Temas 1-6

- 1. Dado un computador con arquitectura Von Neumann, un bus de datos de 8 hilos y un bus de direcciones de 4 hilos.
 - a. Dibuja un esquema de la arquitectura del computador en el que aparezcan los principales elementos vistos en clase (0.5 pts)

- b. Define los bits que debe tener cada uno de los siguientes registros (0.4 pts):
 - i. $PC \rightarrow$
 - ii. $IR \rightarrow$
 - iii. $MAR \rightarrow$
 - iv. MBR \rightarrow
- c. Calcula la capacidad de almacenamiento de la memoria en Bytes (0.5 pts)

•

d. Extendiendo el bus de direcciones a 8 hilos y con la siguiente tabla de memoria:

Table 1. Memoria

0x0A	LOAD 0x27
0x26	0x16
0x27	0x4A
0x28	0xF3

 Empleando los registros de los apartados anteriore, más el bus del sistema y el acumulador, describe las fases del funcionamiento de un ciclo de instrucción en la máquina IAS con el PC=0x0A y el contenido de registros y buses. Para ello, rellena la siguiente tabla empleando tantas columnas como consideres necesarias.: (1'6 pts)

Table 2. Ciclo de Instrucción

	1	2	3	4
Descripción				
PC				
IR				
MAR				
MBR				
Bus Datos				
Bus Control				
Bus Direcc.				
Acumulador				

Table 3. Ciclo de Instrucción

	5	6	7	8
Descripción Fases				
PC				
IR				
MAR				
MBR				
Bus Datos				
Bus Control				
Bus Direcc.				
Acumulador				

2. Realiza la suma en hexadecimal con tres dígitos, mostrando las llevadas, de los siguientes enteros sin signo y muestra el resultado en hexadecimal y en binario: 0xF7+0x2A (0.5 pto)

Llevadas	5 ->
Sumando	->
Sumando	->
Suma	->

3. Realiza la siguiente resta de números sin signo 1010010 – 110110 (0.5 pto)

Minuendo ->
Sustraendo ->
Llevadas ->
Resta ->

- 4. Con el **mínimo** número de digitos para que el resultado matemático sea correcto realizar las operaciones siguienets dados los números: A: 0101011 y B: 11011
 - a. Siendo enteros sin signo: (1 pto)
 - i. Realiza la suma C = A + B

ii. Representa A, B y C en hexadecimal y decimal

- b. Siendo enteros en Complemento a 2 (1 pto)
 - i. Realiza la suma C = A + B

ii. Representa A, B y C en hexadecimal y decimal

	:					
	ii. Rep	oresenta A, B y C en hexadecimal y d	lecimal			
	•					
5.	Realiza la n	nultiplicación en binario de los númer	os naturales 0x26 y 0x	3C (0.4 pto)		
	•					
6.	Un computa	ador tiene los siguientes valores alma	acenados:			
		Tab	ole 4. Memoria			
	REGISTR	os	MEMORIA			
	Registro	Contenido	Dirección	Contenido		
	EAX	87	87	01		
	EBX	02	88	07		
	ECX	8C	89	03		
			8A	02		
			8B	08		
			8C	0F		
			8D	24		
			94	32		
			95	00		

c. Siendo enteros en Signo-Magnitud (1 pto)

i. Razona para obtener el resultado de la suma C = A + B

 Indica el modo de direccionamiento de cada instrucción y determina para una de ellas el valor del operando introducido en EDX con los siguientes modos de direccionamiento: (0.3 pts cada uno)

	Modo	Valor Operando
movb \$0x89, %edx		
movb %eax, %edx		
movb (%ecx,%ebx,4), %edx		
movb (%eax), %edx		
movb 0x88, %edx		
movb -3(%ecx), %edx		

- Si la última operación realizada en un computador intel de 8 bits es la suma de los siguientes números en complemento a 2: 10001011 y 10101101, razona cuál el valor de los siguientes banderines (0,2 pts cada una)
 - a. Overflow Flag:
 - b. Carry Flag:
 - c. Zero Flag:
 - d. Sign Flag:

2. Programación en Lenguaje Ensamblador

1. Desarrolla el programa **main** completo en el lenguaje ensamblador AT&T de la arquitectura intel x86 que sume 4 a una variable entera **n** (tamaño 2 bytes) inicialmente definida con valor n = 5 y almacene el resultado en otra variable **sum** (tamaño 4 bytes) y devuelva el resultado al sistema operativo. Añadir al programa 5 comentarios que consideres básicos.