

Reciprocal and Symmetrical Network

Reciprocal Network

- The *principle of reciprocity*, states that the <u>ratio of response</u> transform to the <u>excitation</u> transform remains identical even if the position of the response and excitation in the network are interchanged.
- Networks for which this condition holds are said to be *reciprocal*.

Reciprocal Network

- Condition for reciprocal
 From the definition of z network
 - parameter:

$$V_1 = z_{11} I_1 + z_{12} I_2$$

 $V_2 = z_{21} I_1 + z_{22} I_2$

• Finding I_2/V_1 for $V_2=0$, the expression of V_2 now becomes:

$$V_{2} = \underbrace{z_{21}}_{21} I_{1} + \underbrace{z_{22}}_{12} I_{2}$$

$$0 = \underbrace{z_{21}}_{11} I_{1} + \underbrace{z_{22}}_{12} I_{2}$$

$$I_{1} = -\frac{z_{22}}{z_{21}} I_{2}$$

• Putting the value of I_1 in the expression of V_1 , we get:

$$V_{1} = z_{11} I_{1} + z_{12} I_{2} = z_{11} \left| \frac{z_{22}}{-z_{21}} I_{2} \right| + z_{12} I_{2}$$

Here,

$$V_{1} = \frac{-z_{11}}{z_{21}} = \frac{\Delta_{z}}{z_{21}} I_{2}$$

$$z_{11} z_{22} - z_{12} z_{21} = \Delta_{z}$$

$$V_{1} = -\frac{\Delta_{z}}{z_{21}} I_{2}$$

$$\therefore \frac{I_{2}}{V_{1}} = -\frac{Z_{21}}{\Delta_{z}} I_{2}$$

$$\therefore \frac{I_{2}}{V_{1}} = -\frac{Z_{21}}{\Delta_{z}} I_{2}$$

• Finding I_1/V_2 for $V_1=0$, the expression of V_1 now becomes:

$$\underbrace{V_{1} = z_{11} I_{1} + z_{12} I_{2}}_{0 = z_{11} I_{1} + z_{12} I_{2}} \qquad \qquad I_{2} = -\frac{z_{11}}{z_{12}} I_{1}$$

$$\underbrace{I_{2} = -\frac{z_{11}}{z_{12}} I_{1}}_{0 = z_{11} I_{1} + z_{12} I_{2}} \qquad \qquad I_{2} = -\frac{z_{11}}{z_{12}} I_{1}$$

• Putting the value of $\underline{I_2}$ in the expression of $\underline{V_2}$, we get:

$$\underbrace{V_2 = z_{21} I_1 + z_{22} I_2}_{} = \underbrace{z_{21} I_1 + z_{22}}_{} \left| \frac{z_{11}}{-z_{12}} I_1 \right|^2$$

$$\begin{cases} V_2 = \underbrace{z_{12} z_{21} - z_{11} z_{22}}_{Z_{12}} I_2 = \underbrace{z_{12} z_{21}}_{Z_{12}} I_1 \end{cases}$$

Here,
$$z_{11} z_{22} - z_{12} z_{21} = \Delta_{z_{12}}$$

$$\int V_2 = -\frac{\Delta_z}{Z_{12}} I_1$$
 $\therefore \left\{ \frac{I_1}{V_2} \right|_{V_1 = 0} = \left(-\frac{Z_{12}}{\Delta_z} \right)$

• Condition for reciprocal • In terms of z parameter, network

we have:

$$\frac{Z_{21}}{\Delta_z} = -\frac{Z_{12}}{\Delta_z}$$

$$z_{21} = z_{12}$$

$$z_{12} = z_{21}$$

$$z_{12} = z_{21}$$

∴ For a <u>network to</u> be reciprocal

- Condition for reciprocal
 From the definition of y network
 - parameter:

- Condition for reciprocal
 In terms of y parameter, network
 - we have:

$$y_{21} = y_{12}$$

... For a network to be reciprocal

$$y_{12} = y_{21}$$

Condition for **reciprocal** network (in terms of **transmission parameter**) (or, **T parameter**)

- Condition for reciprocal
 From the definition of T network
 - parameter:

$$\begin{cases} \widehat{V}_1 = A \ \underline{V}_2 - B \ \underline{I}_2 \\ \widehat{I}_1 = C \ \underline{V}_2 - D \ \underline{I}_2 \end{cases}$$

• Finding $\underline{I_2/V_1}$ for $\underline{V_2=0}$, the expression of $\underline{V_1}$ now becomes:

$$V_1 = A V_2 - B I_2$$

$$V_1 = -B I_2$$

$$\left| \frac{I_2}{V_1} \right|_{V_2 = 0} = -\frac{1}{B}$$

• Finding I_1/V_2 for $V_1=0$, the expression of V_1 now becomes:

$$\begin{array}{c}
V_{1} = A V_{2} - B I_{2} \\
0 = A V_{2} - B I_{2}
\end{array}$$

$$I_{2} = \frac{A}{B} V_{2}$$

• Putting the value of I_2 in the expression of I_1 , we get:

$$\left\langle \underbrace{I_1 = C \ V_2 - D \left(I_2\right)}_{2} = C \ V_2 - D \left(\frac{A}{B} \ V_2\right) \right\rangle$$

$$I_{1} = \frac{BC - AD}{B}V_{2} = -\frac{AD - BC}{B}V_{2}$$

$$\therefore \frac{I_{1}}{V_{2}}\Big|_{V_{1}=0} = -\frac{AD - BC}{B}$$

• Condition for reciprocal • In terms of T parameter, network

we have:

 \therefore For a network to be reciprocal AD - BC = 1

Condition for **reciprocal** network (in terms of **inverse transmission parameter** or, **T' parameter**)

• Condition for reciprocal network in terms of **T**' **parameters** is similar to the condition for reciprocal network in terms of **T parameters**.

So,

∴ For a network to be reciprocal

- Condition for reciprocal
 From the definition of h network
 - parameter:

• Finding I_2/V_1 for $V_2=0$, the expression of V_1 now becomes:

$$\begin{cases} V_1 = h_{11} I_1 + h_{12} V_2 \\ V_1 = h_{11} I_1 \end{cases} \qquad I_1 = \frac{1}{h_{11}} V_1$$

• Putting the value of I_1 in the expression of I_2 , we get:

$$\left\langle I_{2} = h_{21} \left(I_{1} \right) + h_{22} \left(V_{2} \right) = h_{21} \left| \frac{1}{h_{11}} V_{1} \right| = \frac{h_{21}}{h_{11}} V_{1}$$

$$I_{2} = \frac{h_{21}}{h_{11}} V_{1}$$

$$\therefore \underbrace{I_{2}}_{V_{1}} |_{V_{2} = 0} = \frac{h_{21}}{h_{11}}$$

• Finding (I_1/V_2) for $V_1=0$, the expression of V_1 now becomes:

Decomes.

$$V_1 = h_{11} I_1 + h_{12} V_2$$
 $I_1 = -\frac{h_{12}}{h_{11}} V_2$

$$\therefore V_2 = -\frac{h_{12}}{h_{11}} V_2$$

$$\therefore V_2 = -\frac{h_{12}}{h_{11}} V_2$$

- Condition for reciprocal In terms of h parameter, network
 - we have:

 \therefore For a network to be reciprocal $h_{12} = -h_{21}$

 Condition for reciprocal network in terms of g **parameters** is similar to the condition for reciprocal network in terms of **h parameters**.

 \therefore For a network to be reciprocal $(g_{12} = -g_{21})$

$$g_{12} = -g_{21}$$

Condition for **reciprocal** network (in summary)

Condition for **reciprocal** network

Parameter	Condition
$(\widehat{\mathbf{Z}})$	$Z_{12} = Z_{21}$
y	$y_{12} = y_{21}$
T	AD - BC = 1
T'	A'D' - B'C' = 1
h	$h_{12} = -h_{21}$
g	$g_{12} = -g_{21}$

Symmetrical Network

• A two port network is termed as symmetrical if the input and output ports can be exchanged without altering the port voltages and currents.

Symmetrical Network

• Condition for symmetrical network

• From the definition of z parameter:

$$\begin{cases} V_1 = z_{11} I_1 + z_{12} I_2 \\ V_2 = z_{21} I_1 + z_{22} I_2 \end{cases}$$

• Condition for symmetrical network

• In terms of z parameter, we have:

$$z_{11}=z_{22}$$

 $\stackrel{\smile}{:}$ For a network to be symmetrical $z_{11} = z_{22}$

 Condition for symmetrical network • From the definition of y parameter:

• Finding V_1/I_1 for I_2 =0, the expression of I_2 now becomes:

$$\begin{aligned}
SI_2 &= y_{21} V_1 + y_{22} V_2 \\
0 &= y_{21} V_1 + y_{22} V_2
\end{aligned}
\qquad V_2 = -\frac{y_{21}}{y_{22}} V_1$$

• Putting the value of V₂ in the expression of I₁, we get:

$$\underbrace{I_1 = y_{11} V_1 + y_{12} V_2}_{I_1} = y_{11} V_1 + y_{12} - \frac{y_{21}}{y_{22}} V_1$$

$$\begin{cases} I_{1} = y_{11} V_{1} + y_{12} \middle| -\frac{y_{21}}{y_{22}} V_{1} \middle| = \underbrace{\frac{y_{11} y_{22} - y_{12} y_{21}}{y_{22}}}_{y_{22}} V_{1} \end{cases}$$
Here,
$$\begin{cases} Y_{11} y_{22} - y_{12} y_{21} = \Delta_{y} \\ So, \end{cases}$$

$$\begin{cases} I_{1} = \frac{\Delta_{y}}{y_{22}} V_{1} \\ \vdots \\ I_{1} \middle|_{I_{2} = 0} \end{cases} = \underbrace{\frac{y_{22}}{\Delta_{y}}}_{I_{2}} \end{cases}$$

• Finding V_2/I_2 for I_1 =0, the expression of I_1 now becomes:

$$\begin{cases} I_{1} = y_{11} V_{1} + y_{12} V_{2} \\ 0 = y_{11} V_{1} + y_{12} V_{2} \end{cases} = -\frac{y_{12}}{y_{11}} V_{2}$$

• Putting the value of V_1 in the expression of I_2 , we get:

get:

$$I_2 = y_{21}V_1 + y_{22}V_2 = y_{21} - \frac{y_{12}}{y_{11}}V_2 + y_{22}V_2$$

$$\begin{cases} I_2 = y_{21} \left| -\frac{y_{12}}{y_{11}} V_2 \right| + y_{22} V_2 = \underbrace{y_{11} y_{22} - y_{12} y_{21}}_{y_{11}} V_2 \end{cases}$$

Here,

$$y_{11} \ y_{22} - y_{12} \ y_{21} = \Delta_y$$

So,
$$C I_{2} = \frac{\Delta_{y}}{y_{11}} V_{2}$$
 $\therefore \frac{V_{2}}{I_{2}} \Big|_{I_{1}=0} = \frac{y_{11}}{\Delta_{y}}$

 Condition for symmetrical network

• In terms of y parameter, we have:

$$\frac{y_{22}}{\Delta_y} = \frac{y_{11}}{\Delta_y}$$

$$y_{22} = y_{11}$$

$$\frac{y_{22}}{\Delta_y} = y_{11}$$

∴ For a network to be symmetrical

Condition for **symmetrical** network (in terms of **transmission parameter**) (or, **T parameter**)

• Condition for symmetrical network

• From the definition of T parameter:

$$V_1 = A V_2 - B I_2$$

 $I_1 = C V_2 - D I_2$

• Finding V₁/I₁ for I₂=0, the expression of V₁ now becomes:

$$V_{1} = A V_{2} - B I_{2}$$

$$V_{1} = A V_{2}$$

$$V_{2} = \frac{1}{A} V_{1}$$

• Putting the value of V₂ in the expression of I₁, we get:

$$I_1 = C(V_2 - D I_2) = C \left| \frac{1}{A} V_1 \right| = \frac{C}{A} V_1$$

$$I_1 = \frac{C}{A} V_1$$

$$\therefore \left| \frac{V_1}{I_1} \right|_{I_2 = 0} = \frac{A}{C}$$

• Finding V_2/I_2 for I_1 =0, the expression of I_1 now becomes:

$$I_1 = C V_2 - D I_2$$
 $C V_2 = D I_2$
 $C V_2 = D I_2$

$$\therefore \left| \frac{V_2}{I_2} \right|_{I_1 = 0} = \left| \frac{D}{C} \right|$$

• Condition for symmetrical network

• In terms of T parameter, we have:

$$\frac{A}{C} = \frac{D}{C}$$

$$A = D$$

 \therefore For a network to be symmetrical A = D

Condition for symmetrical network (in terms of inverse transmission parameter or, T' parameter)

 Condition for symmetrical network in terms of T' **parameters** is similar to the condition for symmetrical network in terms of **T parameters**.

So,

 \therefore For a network to be symmetrical A' = D'

$$A' = D$$

 Condition for symmetrical network • From the definition of h parameter:

• Finding V₁/I₁ for I₂=0, the expression of I₂ now becomes:

$$I_{2} = h_{21} I_{1} + h_{22} V_{2}$$

$$0 = h_{21} I_{1} + h_{22} V_{2}$$

$$V_{2} = -\frac{h_{21}}{h_{22}} I_{1}$$

• Putting the value of V₂ in the expression of V₁, we get:

$$V_1 = h_{11} I_1 + h_{12} V_2 = h_{11} I_1 + h_{12} - \frac{h_{21}}{h_{22}} I_1$$

• Finding V_2/I_2 for $I_1=0$, the expression of I_2 now becomes:

$$\begin{array}{c|c}
I_2 = h_{21} I_1 + h_{22} V_2 \\
I_2 = h_{22} V_2
\end{array}
\qquad \therefore \begin{array}{c|c}
V_2 \\
I_1 = 0
\end{array}
= \frac{1}{h_{22}}$$

• Condition for symmetrical network

$$\frac{\Delta_h}{h_{22}} = -\frac{1}{h_{22}}$$

$$\Delta_h = 1$$

 \therefore For a network to be reciprocal $\Delta_h = 1$

• Condition for symmetrical network in terms of **g parameters** is similar to the condition for symmetrical network in terms of **h parameters**.

 \therefore For a network to be reciprocal $(\Delta_g = 1)$

Here,
$$g_{11}$$
 g_{22} – g_{12} g_{21} = Δ_g

Condition for **symmetrical** network (in summary)

Condition for **symmetrical** network

Parameter	Condition
Z	$z_{11} = z_{22}$
y	$y_{11} = y_{22}$
ABCD	A = D
A'B'C'D'	A' = D'
h 3	$\Delta_h = 1$
g	$\Delta_g = 1$

a , tx(a)

Relationship and transformation between sets of parameters

Relationship and transformation between sets of parameters

- Once we know a set of parameters of a network, than based on our needs, we can find the remaining five sets of parameter in terms of the known parameter.
- It is a simple matter to find the relationships of the sets of parameters.

z-parameter in terms of y-parameter

 From the definition of y
 From the definition of z parameter:

$$\begin{cases} I_{1} = y_{11} V_{1} + y_{12} V_{2} \\ I_{2} = y_{21} V_{1} + y_{22} V_{2} \end{cases} \qquad \begin{cases} V_{1} = \underline{z}_{11} I_{1} + z_{12} I_{2} \\ V_{2} = z_{21} I_{1} + z_{22} I_{2} \end{cases}$$

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

parameter:

$$\begin{cases} V_{1} = \underline{z_{11}} \ I_{1} + z_{12} \ I_{2} \\ V_{2} = \underline{z_{21}} \ I_{1} + z_{22} \ I_{2} \end{cases}$$

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

z-parameter in terms of y-parameter

• From the definition of y parameter:

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

• From the definition of z parameter:

$$\begin{bmatrix} \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{z}_{11} & \boldsymbol{z}_{12} \\ \boldsymbol{z}_{21} & \boldsymbol{z}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_1 \\ \boldsymbol{I}_2 \end{bmatrix}$$

$$[I] = [y][V]$$

$$[V] = [y]^{-1}[I]$$

$$|V| = |z| |I|$$

$$\therefore [z] = [y]^{-1}$$

z-parameter in terms of **y-parameter**

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{bmatrix} y \end{bmatrix}^{-1}$$

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \frac{1}{\Delta_y} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix}$$

$$z_{11} = \frac{y_{22}}{\Delta_y} \quad z_{12} = -\frac{y_{12}}{\Delta_y} \quad z_{21} = -\frac{y_{21}}{\Delta_y} \quad z_{22} = \frac{y_{11}}{\Delta_y}$$

[y7 -] = - [J22 - J21]

Ay [-y12 - y11] - 1 | y22 - y12 | - y21 | y11 | 121 | y22 | - y12 | y11 | |

z-parameter in terms of T-parameter

- From the definition of T parameter:
- From the definition of z parameter:

$$\begin{cases} V_1 = A V_2 - B I_2 \\ I_1 = C V_2 - D I_2 \end{cases}$$

• Rewriting the expression of I₁ from the definition of T-parameter, we get:

$$I_1 = C V_2 - D I_2 \Rightarrow V_2 = \frac{1}{C} I_1 + \frac{D}{C} I_2$$

z-parameter in terms of T-parameter

$$V_2 = \frac{1}{C} I_1 + \frac{D}{C} I_2$$

• Putting the value of V₂ in the expression of V₁, we get:

$$V_1 = A(V_2) - B I_2 = A \left| \frac{1}{C} I_1 + \frac{D}{C} I_2 \right| - B I_2$$

$$\widehat{V}_{1} = \frac{A}{C} \widehat{I}_{1} + \frac{A}{C} \widehat{I}_{2} - B I_{2} = \underbrace{A}_{C} \widehat{I}_{1} + \underbrace{AD - BC}_{C} \widehat{I}_{2}$$

$$V_1 = \frac{A}{C} I_1 + \frac{A D - B C}{C} I_2 = \frac{A}{C} I_1 + \frac{\Delta_T}{C} I_2$$

Here,

$$AD - BC = \Delta_T$$

• From T parameter, we have

$$(V_1) = \frac{A}{C}(I_1) + \frac{\Delta_T}{C}(I_2) \text{ and } (V_2) = \frac{1}{C}(I_1) + \frac{D}{C}(I_2)$$

• From the definition of T parameter:

$$\begin{cases} V_1 = \frac{A}{C} I_1 + \frac{\Delta_T}{C} I_2 \\ V_2 = \frac{1}{C} I_1 + \frac{D}{C} I_2 \end{cases}$$

• From the definition of z parameter:

$$z_{11} = \frac{A}{C} \qquad z_{12} = \underbrace{\Delta_T}_{C} \qquad z_{21} = \underbrace{C}_{C} \qquad z_{22} = \underbrace{D}_{C}$$

- From the definition of h parameter:
- From the definition of z parameter:

$$\begin{cases} V_1 = h_{11} I_1 + h_{12} V_2 \\ I_2 = h_{21} I_1 + h_{22} V_2 \end{cases} \longrightarrow \begin{cases} V_1 = z_{11} I_1 + z_{12} I_2 \\ V_2 = z_{21} I_1 + z_{22} I_2 \end{cases}$$

• Rewriting the expression of I₂ from the definition of h-parameter, we get:

$$I_{2} = h_{21} I_{1} + h_{22} V_{2} \Rightarrow V_{2} = -\frac{h_{21}}{h_{22}} I_{1} + \frac{1}{h_{22}} I_{2}$$

$$V_2 = -\frac{h_{21}}{h_{22}} I_1 + \frac{1}{h_{22}} I_2$$

• Putting the value of V_2 in the expression of V_1 , we get:

$$\underbrace{V_{1}} = \underbrace{h_{11} I_{1} + h_{12} \underbrace{V_{2}}_{1} = h_{11} I_{1} + h_{12}}_{11} + \underbrace{\frac{h_{21}}{h_{22}} I_{1} + \frac{1}{h_{22}} I_{2}}_{12} + \underbrace{\frac{h_{11} h_{22} - h_{12} h_{21}}{h_{22}} I_{1}}_{1} + \underbrace{\frac{h_{12}}{h_{22}} I_{2}}_{12} + \underbrace{\frac{h_{12}}{h_{22}} I_{2}}_{12}$$

$$V_{1} = \frac{h_{11} h_{22} - h_{12} h_{21}}{h_{22}} I_{1} + \frac{h_{12}}{h_{22}} I_{2} = \underbrace{\frac{\Delta_{h}}{h_{22}} I_{1} + \frac{h_{12}}{h_{22}} I_{2}}_{\text{Here.}}$$

$$(h_{11} h_{22} - h_{12} h_{21} = \Delta_h)$$

• From h parameter, we have

$$V_1 = \frac{\Delta_h}{h_{22}} I_1 + \frac{h_{12}}{h_{22}} I_2$$
 and $V_2 = -\frac{h_{21}}{h_{22}} I_1 + \frac{1}{h_{22}} I_2$

• From the definition of h parameter:

• From the definition of z parameter:

$$\underbrace{V_{1}}_{1} = z_{11} \underbrace{I_{1}}_{1} + z_{12} \underbrace{I_{2}}_{2}
\underbrace{V_{2}}_{1} = z_{21} \underbrace{I_{1}}_{1} + z_{22} \underbrace{I_{2}}_{2}$$

$$z_{11} = \frac{\Delta_h}{h_{22}}$$

$$z_{12} = \frac{h_{12}}{h_{22}}$$

$$z_{21} = -\frac{h_{21}}{h_{22}}$$

$$z_{22} = \frac{1}{h_{22}}$$

$$y_{12}$$
 $-\frac{Z_{12}}{\Delta_z}$ $-\frac{\Delta_T}{B}$ y_{21} $-\frac{Z_{21}}{\Delta_z}$ $-\frac{1}{B}$ y_{22} $\frac{Z_{11}}{\Delta_z}$ $\frac{A}{B}$ Here, $\Delta_x = x_{11} \ x_{22} - x_{12} \ x_{21}$

 y_{11}

 h_{12} g_{12} g_{22} h_{21} g_{21} g_{22} g_{22}

$$h \quad \frac{z}{\Delta_{z}} \quad \frac{y}{1} \quad \frac{T}{B} \quad \frac{T'}{A'} \quad \frac{g}{\Delta_{g}}$$

$$h_{11} \quad \frac{\lambda_{z}}{z_{22}} \quad \frac{1}{y_{11}} \quad \frac{B}{D} \quad \frac{B'}{A'} \quad \frac{g_{22}}{\Delta_{g}}$$

$$h_{12} \quad \frac{z_{12}}{z_{22}} \quad -\frac{y_{12}}{y_{11}} \quad \frac{\Delta_{T}}{D} \quad \frac{1}{A'} \quad -\frac{g_{12}}{\Delta_{g}}$$

$$h_{21} \quad -\frac{z_{21}}{z_{22}} \quad \frac{y_{21}}{y_{11}} \quad -\frac{1}{D} \quad -\frac{\Delta_{T'}}{A'} \quad -\frac{g_{21}}{\Delta_{g}}$$

$$\sqrt{h_{22}} \quad \frac{1}{z_{22}} \quad \frac{\Delta_{y}}{y_{11}} \quad \frac{C}{D} \quad \frac{C'}{A'} \quad \frac{g_{11}}{\Delta_{g}}$$

$$g_{11} = \frac{z}{1} - \frac{y}{y_{22}} = \frac{T}{A} - \frac{T'}{D'} = \frac{h}{h_{22}}$$

$$g_{11} = \frac{1}{z_{11}} - \frac{\lambda_y}{y_{22}} - \frac{\Delta_T}{A} - \frac{1}{D'} - \frac{h_{12}}{\Delta_h}$$

$$g_{12} = \frac{z_{12}}{z_{11}} - \frac{y_{12}}{y_{22}} - \frac{1}{A} - \frac{1}{D'} - \frac{h_{12}}{\Delta_h}$$

$$g_{21} = \frac{z_{21}}{z_{11}} - \frac{y_{21}}{y_{22}} - \frac{1}{A} - \frac{\Delta_{T'}}{D'} - \frac{h_{21}}{\Delta_h}$$

$$g_{22} = \frac{\Delta_z}{z_{11}} - \frac{1}{y_{22}} - \frac{B}{A} - \frac{B'}{D'} - \frac{h_{11}}{\Delta_h}$$
Here, $\Delta_x = x_{11} x_{22} - x_{12} x_{21}$

d'ilde)2 multiply