Projeto 1: Cálculo da capacidade de suporte K do Brasil

122830 Alcides Goldoni Junior

MS 680 - Modelos matemáticos aplicados a Biologia

3 de outubro de 2016

Resumo

1 Introdução

Capacidade de suporte (K) é o número máximo de indivíduos que o ambiente pode suportar. Esse conceito, importante em muitas áreas, é determinado levando em conta vários fatores como por exemplo: espaço, quantidade de alimento, luz, predação, entre muitos outros. Esses fatores fazem com que uma espécie cresça ou decresça em um determinado habitat até chegar a um ponto em que ela se estabiliza, variando dentro de um certo limite.

A capacidade de suporte (K) é constante quando as taxas de natalidade e de mortalidade se igualam. Quando uma é maior ou menor que a outra, a população cresce ou decresce.

Nesse projeto, iremos calcular a capacidade de suporte do Brasil de duas formas diferentes. A primeira, levando consideração apenas a área do território brasileiro e a segunda vamos utilizar os dados de crescimento populacional do IBGE (Instituto Brasileiro de Geografia e Estatística) junto com o modelo de crescimento populacional de Verhulst.

2 Modelo 1: Modelo de área

Para esse modelo, vamos levar em consideração apenas a área do território brasileiro que é de $8.515.767,049\ km^2$ publicado no Diário Oficial da União n^o 118 de 22/06/2016, conforme Resolução N^o 02, de 21 de junho de 2016. Supondo agora que cada brasileiro ocupe dez metros quadrados, teríamos uma capacidade de suporte de 8,51E+11 habitantes.

Claro que essa estimativa é absurda, mas nos serve como valor inicial. Agora, vamos levar em consideração a área florestal e a área de agricultura. O Brasil detém a segunda maior área florestal do planeta com 516 milhões de hectares $(5,16\mathrm{E}+12~m^2)$ aproximadamente 60% do território. Já as áreas de cultivo somam 65 milhões de hectares $(6,50\mathrm{E}+11~m^2)$ aproximadamente 31% do território. Dessa forma, temos agora, apenas 9% do território e, portanto, dividindo essa área pelo espaço que cada brasileiro ocupa, a capacidade de suporte é de 2,65 $\mathrm{E}+11$ habitantes.

Essa estimativa ainda é matematicamente possível mas não faz sentido na realidade.

Sabemos que pessoas não podem permanecer em rodovias, portanto, vamos descontar as estradas e rodovias do país. Essas, somam 1751868 quilômetros (1,75E+9 metros). Por padrão, para estradas com pista de duas faixas de tráfego, a largura da pista é de 7(sete) metros com 2 (dois) metros de acostamento (seria ótimo se as normas fossem seguidas). Dessa forma, podemos estimar que 2 metros de acostamento mais 7 metros de faixa vezes 1751868 quilômetros de estrada vezes 2 (faixa de ida e faixa de volta) dando um total de 3,15E+10 metros quadrados de estradas e rodovias. Refazendo os cálculos, a capacidade de suporte é de 2,62E+11 habitantes.

No começo dessas contas, fizemos a suposição de que cada brasileiro ocupava dez metros quadrados, sendo essa uma estivativa bem ruim. Utilizando dados da região sudeste, a mais populosa do país, temos que a densidade demográfica é de 160 habitantes por quilômetro quadrado (Censo 2010). Agora podemos ter uma aproximação um pouco melhor e encontrar uma capacidade de suporte de 420E+6 (420 milhões) de habitantes. Podemos melhorar essa estimativa ainda mais. Podemos ver a densidade demográfica no ano de 2010 na tabela 1.

Tabela 1: Densidade demográfica por estado (CENSO 2010)

Região	Estado	Densidade demográfica
Norte	Rondônia	6.58
Norte	Acre	4.47
Norte	Amazonas	2.23
Norte	Roraima	2.01
Norte	Pará	6.07
Norte	Amapá	4.69
Norte	Tocantins	4.98
Nordeste	Maranhão	19.81
Nordeste	Piau	12.40
Nordeste	Ceará	56.76
Nordeste	Rio Grande do Norte	59.99
Nordeste	Paraíba	66.70
Nordeste	Pernambuco	89.63
Nordeste	Alagoas	112.33
Nordeste	Sergipe	94.35
Nordeste	Bahia	24.82
Sudeste	Minas Gerais	33.41
Sudeste	Espírito Santo	76.25
Sudeste	Rio de Janeiro	365.23
Sudeste	São Paulo	166.25
Sul	Paraná	52.40
Sul	Santa Catarina	65.29
Sul	Rio Grande do Sul	39.79
Centro Oeste	Mato Grosso do Sul	6.86
Centro Oeste	Mato Grosso	3.36
Centro Oeste	Goiás	17.65
Centro Oeste	Distrito Federal	444.07

Com os dados da tabela 1, podemos fazer a média da densidade demográfica obtendo aproximadamente 33 habitantes por quilômetro quadrado. Dessa forma, encontramos a capacidade de suporte de 86,5E+6 (86,5 milhões) habitantes mas capacidade de suporte já foi superada, pois hoje temos mais de 200 milhões de habitantes e não podemos considerá-la correta.

Portanto, para o modelo de área, a capacidade de suporte encontrada é de 420 milhões de habitantes.

3 Modelo 2: Verhulst

Para esse modelo, vamos levar em consideração o crescimento populacional de acordo com os dados do IBGE e utilizando do modelo de Verhulst estimar a capacidade de suporte (K).

Pierre François Verhulst (1804 - 1849) foi um matemático belga doutor em teoria dos números. Seu modelo de crescimento populacional foi proposto em 1838, baseado na avaliação de estatísticas disponíveis e complementada a teoria do crescimento exponencial com termos representando os fatores de inibição de cresimento. A equação proposta por Verhulst é:

$$\frac{dP}{dt} = \lambda P(1 - \frac{P}{K})\tag{1}$$

Onde λ é a taxa de crescimento intrínseca, P a população no instante t e K é a capacidade de suporte do meio, no nosso caso, capacidade de suporte do Brasil.

Utilizando dados do IBGE montamos a tabela e o gráfico da figura 1 com o número de habitantes no Brasil a partir de 1872.

Figura 1: População residente no país

A figura 2 representa o crescimento da população no período de 1872 a 2016.

Figura 2: Taxa de crescimento da população

(a) Gráfico de crescimento da população

(b) Tabela crescimento da população

30									27,8			
								25,9	27,0			
<u>2</u> 25	-						23,1			23	21	
Taxa de crescimento (milhões)						18,1					21	
윤 20						10,1						15,
ë 15			13,2									
SCI				10,5	10,8							
는 10												н
e 5	4,4	3,1										
axe		-,-										
0												
	2990	000	1920	OAO.	2000	060	010	080	000	2000	0200	2016
3	1890	90	20	ONO.	1,5	960	200	3,5	2, 000	-08	2,5	50
10	30	4	1	4	150	-		~	3	v	v	
						Ar	105					

Ano	Crescimento da População(em milhões)	
1872-1890	4,4	
1890-1900	3,1	
1900 - 1920	13,2	
1920 - 1940	10,5	
1940 - 1950	10,8	
1950 - 1960	18,1	
1960 - 1970	23,1	
1970 - 1980	25,9	
1980 - 1990	27,8	
1990-2000	23,0	
2000-2010	21,0	
2010-2016	15,8	
	•	

Com esses dados e utilizando o modelo proposto por Verhulst, vamos calcular a capacidade de suporte utilizando as seguintes equações:

$$P_{n+1} - P_n = \lambda P_n \left(1 - \frac{P_n}{K}\right) \tag{2}$$

Podemos chamar $\Delta P = P_{n+1} - P_n$ e a equação fica:

$$\Delta P = \lambda P_n (1 - \frac{P_n}{K}) \tag{3}$$

$$P_{n+1} - P_n = \lambda \frac{\lambda}{K} P_n \tag{4}$$

Podemos chamar $\Delta \mathbf{P} = \mathbf{P}_{n+1} - P_n$ e a equação fica:

$$\Delta P = \lambda \frac{\lambda}{K} P_n \tag{5}$$

Com essas equações podemos plotar os gráficos de $\frac{\Delta P_n}{P_n}$ x P_n e ΔP x P_n

Pelo gráfico de aproximação linear, a equação que melhor representa o represente é:

$$y = -252,85x + 154,97\tag{6}$$

Assim, podemos ver que a capacidade de suporte é de aproximadamente $154\ \mathrm{milh\tilde{o}es}$ de habitantes.

Pelo gráfico de aproximação quadrática, a equação que melhor representa o represente é:

$$y = -0.0019x^2 + 0.4472x \tag{7}$$

Assim, podemos ver que a capacidade de suporte é de aproximadamente $235\ \mathrm{milh\tilde{o}es}$ de habitantes.

Figura 3: Gráficos linear e quadrático para determinar K

(b) Gráfico de aproximação Quadrático

4 Conclusão

Através dos modelos utilizados nesse projeto, encontramos três capacidades de suporte diferentes. Dos valores encontrados, aquele que mais se aproxima da realidade é o modelo de Verhulst com aproximação quadrática pois o modelo que leva em consideração apenas a área é muito simples e não inclui fatores como áreas de parques industriais, áreas fluviais e entre outros fatores que influenciam o tamanho da área "habitável". O modelo de Verhulst com aproximação linear também não tão bom pois a capacidade de suporte que ele nos deu já foi ultrapassada e a população continua crescendo e não oscila ao redor daquela capacidade de suporte.

Referências

- [1] http://www.ibge.gov.br/home/geociencias/cartografia/default_territ_area.shtm
- $[2] \ http://www.brasil.gov.br/meio-ambiente/2012/12/brasil-detemsegunda-maior-area-florestal-do-planeta$
- [3] https://pt.wikipedia.org/wiki/Agricultura_no_Brasil
- [4] https://pt.wikipedia.org/wiki/Transporte_rodoviario_no_Brasil
- [5] http://www.dnit.gov.br/download/rodovias/operacoes-rodoviarias/faixa-de-dominio/normas-projeto-estr-rod-reeditado-1973.pdf
- [6] http://www.censo2010.ibge.gov.br/sinopse/index.php?dados=10&uf=00
- $[7] \ http://www.suapesquisa.com/geografia/bacias_hidrograficas.htm$
- $[8] \ http://g1.globo.com/brasil/noticia/2011/04/ibge-atualiza-dados-docenso-e-diz-que-brasil-tem-190755799-habitantes.html$