

Contrasts & Statistical Inference

Christophe Phillips Slides: Guillaume Flandin

GIGA – Cyclotron Research Centre *in vivo* imaging University of Liège

*SPM

A mass-univariate approach

*SPM

Estimation of the parameters

i.i.d. assumptions: $\varepsilon \sim N(0, \sigma^2 I)$

OLS estimates: $\hat{\beta} = (X^T X)^{-1} X^T y$

$$\hat{\beta}_8 = 131.0040$$

$$\hat{\epsilon} = 1$$

$$\hat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1})$$

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{N - p}$$

Contrasts

- ☐ A contrast selects a specific effect of interest.
 - \Rightarrow A contrast c is a vector of length p.
 - $\Rightarrow c^T \beta$ is a linear combination of regression coefficients β .

$$c = [1 \ 0 \ 0 \ 0 \ ...]^T$$

$$c^{T}\beta = \mathbf{1} \times \beta_{1} + \mathbf{0} \times \beta_{2} + \mathbf{0} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$$
$$= \beta_{1}$$

$$c = [0 \ 1 \ -1 \ 0 \ ...]^T$$

$$c^{T}\beta = \mathbf{0} \times \beta_{1} + \mathbf{1} \times \beta_{2} + -\mathbf{1} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$$
$$= \beta_{2} - \beta_{3}$$

$$c^T\hat{\beta} \sim N(c^T\beta, \sigma^2c^T(X^TX)^{-1}c)$$

Hypothesis Testing

To test a hypothesis, we construct "test statistics".

■ Null Hypothesis H₀

Typically what we want to disprove (no effect).

 \Rightarrow The Alternative Hypothesis H_A expresses outcome of interest.

■ Test Statistic T

The test statistic summarises evidence about H_0 .

Typically, test statistic is small in magnitude when the hypothesis H₀ is true and large when false.

⇒ We need to know the distribution of T under the null hypothesis.

Null Distribution of T

Hypothesis Testing

Significance level α:

Acceptable false positive rate α .

 \Rightarrow threshold u_a

Threshold u_{α} controls the false positive rate

$$\alpha = p(T > u_{\alpha} \mid H_0)$$

We reject the null hypothesis in favour of the alternative hypothesis if $t > u_{\alpha}$

p-value:

A *p-value* summarises evidence against H_0 . This is the chance of observing value more extreme than t under the null hypothesis.

$$p(T > t|H_0)$$

Null Distribution of T

Null Distribution of T

T-test - one dimensional contrasts – SPM{t}

$$c^T = 10000000$$

box-car amplitude > 0?

$$\beta_1 = c^{\mathsf{T}} \beta > 0 ?$$

Null hypothesis:

$$H_0$$
: $c^T\beta = 0$

contrast of estimated parameters

Test statistic:

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}} \sim t_{N-p}$$

T-contrast in SPM

☐ For a given contrast *c*:

beta_???? images

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

ResMS image

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{N - p}$$

con_???? image

$$c^T \hat{eta}$$

spmT_???? image

SPM{*t*}

T-test: a simple example

■ Passive word listening versus rest

 $c^T = [10000000]$

Q: activation during listening?

SPMresults: Height threshold T = 3.2057 {p<0.001}

12.04 Inf 0.000 -48 -33 12 11.82 Inf 0.000 -66 -21 6 13.72 Inf 0.000 57 -21 12 12.29 Inf 0.000 63 -12 -3 9.89 7.83 0.000 57 -39 6 7.39 6.36 0.000 36 -30 -15 6.84 5.99 0.000 51 0 48 6.36 5.65 0.000 -63 -54 -3 6.19 5.53 0.000 -30 -33 -18 5.96 5.36 0.000 36 -27 9 5.84 5.27 0.000 -45 42 9 5.44 4.97 0.000 48 27 24	voxel-le	mm	mm mm mm			
12.04 Inf 0.000 -48 -33 12 11.82 Inf 0.000 -66 -21 6 13.72 Inf 0.000 57 -21 12 12.29 Inf 0.000 63 -12 -3 9.89 7.83 0.000 57 -39 6 7.39 6.36 0.000 36 -30 -15 6.84 5.99 0.000 51 0 48 6.36 5.65 0.000 -63 -54 -3 6.19 5.53 0.000 -30 -33 -18 5.96 5.36 0.000 36 -27 9 5.84 5.27 0.000 -45 42 9 5.44 4.97 0.000 48 27 24	T	(Z _)	$p_{ m uncorrected}$	111111	1 1111111 11	
3.32 1.3. 3.300 30 2, 12	12.04 11.82 13.72 12.29 9.89 7.39 6.84 6.36 6.19 5.96 5.84	Inf Inf Inf 7.83 6.36 5.99 5.65 5.53 5.27	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-48 -666 57 63 57 36 51 - 63 - 30 - 45	-33 -21 -21 -12 -39 -30 0 -54 -33 -27 42	15 12 6 12 -3 6 -15 48 -3 -18 9 24 42

T-test: summary

☐ T-test is a signal-to-noise measure (ratio of estimate to standard deviation of estimate).

■ Alternative hypothesis:

$$H_0$$
: $c^T \beta = 0$ vs H_A : $c^T \beta > 0$

☐ T-contrasts are simple combinations of the betas; the T-statistic does not depend on the scaling of the regressors or the scaling of the contrast.

[≜] SPM

Scaling issue

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma} c^T (X^T X)^{-1} c}}$$

- ☐ The *T*-statistic does not depend on the scaling of the regressors.
- ☐ The *T*-statistic does not depend on the scaling of the contrast.
- lacksquare Contrast $c^T \hat{eta}$ depends on scaling.
- Be careful of the interpretation of the contrasts $c^T \hat{\beta}$ themselves (eg, for a second level analysis):

sum ≠ average

F-test - the extra-sum-of-squares principle

Model comparison:

Null Hypothesis H₀: True model is X_0 (reduced model)

*SPM

F-test - multidimensional contrasts – SPM{*F*}

Tests multiple linear hypotheses:

$$\mathbf{H_0}$$
: True model is X_0

H₀: True model is
$$X_0 \mid \mathbf{H_0}: \beta_4 = \beta_5 = ... = \beta_9 = 0 \mid \textbf{test } \mathbf{H_0}: c^T \beta = 0$$
?

 $SPM{F_{6.322}}$

*SPM

F-contrast in SPM

beta_???? images

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

ResMS image

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{N - p}$$

ess_???? images

$$(RSS_0 - RSS)$$

spmF_???? images

SPM{F}

F-test example: movement related effects

F-test: summary

- □ F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (*nested*) model ⇒ *model comparison*.
- \Box F tests a weighted **sum of squares** of one or several combinations of the regression coefficients β .
- In practice, we don't have to explicitly separate X into [X₁X₂] thanks to multidimensional contrasts.
- Hypotheses:

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Null Hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ Alternative Hypothesis $H_A:$ at least one $\beta_k \neq 0$

In testing uni-dimensional contrast with an F-test, for example $\beta_1 - \beta_2$, the result will be the same as testing $\beta_2 - \beta_1$. It will be exactly the square of the t-test, testing for both positive and negative effects.

Orthogonal regressors

Design orthogonality

- □ For each pair of columns of the design matrix, the orthogonality matrix depicts the magnitude of the cosine of the angle between them, with the range 0 to 1 mapped from white to black.
- ☐ If both vectors have **zero mean** then the cosine of the angle between the vectors is the same as the **correlation** between the two variates.

Measure: abs. value of cosine of angle between columns of design matrix

Scale: black - colinear (cos=+1/-1)
white - orthogonal (cos=0)
gray - not orthogonal or colinear

Correlated regressors: summary

■ We implicitly test for an **additional** effect only. When testing for the first regressor, we are effectively removing the part of the signal that can be accounted for by the second regressor:

⇒ implicit orthogonalisation.

- Orthogonalisation = decorrelation. Parameters and test on the non modified regressor change.
 - Rarely solves the problem as it requires assumptions about which regressor to uniquely attribute the common variance.
 - ⇒ change regressors (i.e. design) instead, e.g. factorial designs.
 - ⇒ use F-tests to assess overall significance.
- Original regressors may not matter: it's the contrast you are testing which should be as decorrelated as possible from the rest of the design matrix

Bibliography:

□ Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.

- Plane Answers to Complex Questions: The Theory of Linear Models. R. Christensen, Springer, 1996.
- Statistical parametric maps in functional imaging: a general linear approach.
 K.J. Friston et al, Human Brain Mapping, 1995.
- ☐ Ambiguous results in functional neuroimaging data analysis due to covariate correlation. A. Andrade et al., NeuroImage, 1999.
- Estimating efficiency a priori: a comparison of blocked and randomized designs. A. Mechelli et al., Neurolmage, 2003.