

juliaebert.comjulia@juliaebert.comgithub.com/jtebert

Education

Cambridge, MA

2016 – 2019

Harvard University

- > PhD Candidate in Computer Science
- > Master of Science in Computer Science

Advisor: Prof. Radhika Nagpal

London, UK

Imperial College London

2016

> Master of Research in Bioengineering, with Distinction

Marshall Scholar

Advisors: Prof. Etienne Burdet, Dr. Ildar Farkhatdinov

Thesis: Assisting Balance Recovery with a Lower Limb Exoskeleton

Boston, MA

2015

Northeastern University

> Bachelor of Science in Behavioral Neuroscience, Minor in Computer Science

GPA: 3.98 / 4.0, summa cum laude

Honors Thesis: Asymmetric Learning in an Asymmetric Bimanual Task

Peer-Reviewed Publications

J Ebert, M Gauci, F Mallmann-Trenn, and R Nagpal. 2020. Bayes Bots: Collective Bayesian Decision-Making in Decentralized Robot Swarms. In *2020 IEEE International Conference on Robotics and Automation (ICRA)*, 7186-7192. *⊗*

I Farkhatdinov, **J Ebert**, G van Oort, M Vlutters, E van Asseldonk, and E Burdet. 2019. Assisting Human Balance in Standing with a Robotic Exoskeleton. *IEEE Robotics and Automation Letters*, 4, 2, 414–421. *€*

J Ebert, M Gauci, and R Nagpal. 2018. Multi-feature collective decision making in robot swarms. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*, 1711–1719. Stockholm, Sweden. *⊗*

S Bazzi, **J Ebert**, N Hogan, and D Sternad. 2018. Stability and Predictability in Dynamically Complex Physical Interactions. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 5540–5545. *⊘*

S Bazzi, J Ebert, N Hogan, and D Sternad. 2018. Stability and predictability in human control of complex objects. Chaos, 28, 10. @

Department of Energy Computational Science Graduate Fellowship (DOF CSGF) @

Grants and Scholarships

2010 - 2020	Department of Energy Computational Science Graduate Fellowship (DOE CSG) / 0
2015 – 2016	Marshall Scholarship <i>❷</i>
2014	Northeastern Provost Undergraduate Advanced Research Award
2013 – 2015	Barry Goldwater Scholarship
2013	Northeastern Provost Undergraduate Research Award
2013	DAAD Undergraduate Scholarship
2013	Northeastern Presidential Global Scholarship ${\mathscr O}$
2010 – 2015	Northeastern National Merit Scholarship

Awards

2016 - 2020

2018	Certificate of Distinction in Teaching, Harvard University Bok Center ⊘
2016	Finalist, Hertz Fellowship <i>∂</i>
2016	Honorable Mention, National Science Foundation Graduate Research Fellowship Program (NSF GRFP) 🔗
2015	Northeastern Honors in Behavioral Neuroscience (for thesis) 🔗
2015	Northeastern University Honors Program Distinction (for coursework) <i>❷</i>

2015	Northeastern Alex Skavenski Award for Behavioral Neuroscience
2015	Northeastern Sears B. Condit Award for academic achievement
2010 – 2015	Northeastern Dean's List (6 semesters) <i>⊕</i>
2015	Finalist; Rhodes, Fulbright, and Mitchell Scholarships

Research

July - Dec. 2013

neseur ch	
Cambridge, MA	Harvard University Self-Organizing Systems Research Group
	Prof. Radhika Nagpal
2016 –	Multi-feature perception and decision making in robot collectives @ Developing Bayesian and bio-inspired algorithms for collective decision-making in Kilobot robots, in both simulation and physical robots, including developing a parallelized, high-throughput Kilobot simulator.
2017 –	> LARVAbot: Locomotion of autonomous robots via aggregation Designing and manufacturing a collective of 3D-printed robots to perform aggregate locomotion, inspired by the movement of sawfly larvae.
Livermore, CA	Lawrence Livermore National Laboratory
	Dr. Michael Schneider
2018 –	Collaborative Autonomy for Space Situational Awareness
	Developing a simulator for testing collective observation by low earth orbit satellite constellations.
London, UK	Imperial College Human Robotics Group
	Prof. Etienne Burdet and Dr. Ildar Farkhatdinov
2015 – 2016	> Co-control of balance recovery in a lower limb exoskeleton <i>❷</i>
	Developed algorithms for human-robot co-control of the LOPES exoskeleton in both standing a walking balance recovery, and tested with human participants.
Boston, MA	Northeastern University Action Lab
	Prof. Dagmar Sternad
2014 – 2015	$ ightarrow$ Prediction and stability in control of objects with complex dynamics ${\mathscr Q}$
	Programmed HapticMaster robot ($C++$) for human-subject experiments and conducted pilot experiments.
2012 – 2015	$ ightarrow$ Learning and long-term retention of an asymmetric bimanual task ${\mathscr Q}$
	Designed and programmed experiments to assess ability of humans to learn a motor task with rhythmic and discrete components. Conducted multi-month data collection (including with EEG) and analysed results (Matlab) for Honors thesis.
2011 – 2012	> Effects of central fatigue on cognitive and motor performance
	Analyzed data (Matlab) to assess the effect of a prolonged motor experiment on cognitive fatigue in human subjects.
Nahant, MA	Northeastern University Marine Science Center
	Prof. Joseph Ayers
May – Aug. 2015	Neuro-inspired rheotaxis and antenna design in a robotic lobster Contributed to development of flex-sensing antennae for lobster-inspired robot. Developed neuron-based biomimetic control (LabView) for using antennae to adjust robot control in response to water currents.
Watertown, MA	Interactive Motion Technologies
July – Sept. 2014	> Integrated stroke assessment software in rehabilitation robotics
	Developed a backend and interface (Python + Django) for integrating stroke assesment tools for clinicians into the rehabilitation robot.
Tübingen, DE	Max Planck Institute for Intelligent Systems

Conference Abstracts and Posters

and conducted pilot experiments.

J Ebert, M Gauci, and R Nagpal. 2019. Bayes Bots: Bayesian Decision-Making for Robot Swarms. Poster at *DOE CSGF Program Review* (14–18 July 2019). Washington, DC. *⊗*

> Learning and exploration in a novel dimensionality-reduction task

J Ebert, J Meyers, W Dawson, and M Schneider. 2018. Collaborative Autonomy for Space Situational Awareness. Poster at *Lawrence Livermore National Laboratory Summer Student Poster Symposium* (8 August 2018). Livermore, CA. *⊗*

Designed a learning task in which subjects learned to map high-dimensional hand joint movements to move a 2D cursor,

- **J Ebert**, M Gauci, and R Nagpal. 2018. Multi-Feature Collective Decision Making in Robot Swarms. Poster at *DOE CSGF Program Review* (15–19 July 2018). Washington, DC. *⊗*
- **J Ebert**, C Teeple, E Steinhardt, and S Ramanathan. 2017. Infotaxis in a Multi-agent Sensor Network. Poster at *DOE CSGF Program Review* (24–27 July 2017). Washington, DC. *⊗*
- I Farkhatdinov, **J Ebert**, G van Oort, E van Asseldonk, and E Burdet. 2017. Human Balance Augmentation with Lower Limb Exoskeleton Robot. Poster at *RehabWeek 2017 workshop: Towards a next generation of wearable robotic devices for human-oriented assistance and therapy* (17 July 2017). London, UK.
- **J Ebert**, I Farkhatdinov, G van Oort, E van Asseldonk, and E Burdet. 2016. Preliminary Study on Assisting Balance Recovery with Lower Limb Exoskeleton. Poster at *EuroHaptics 2016* (4–7 July 2016). London, UK. *⊗*
- D Sternad, A Mukovskiy, **J Ebert**, and T Dijkstra. 2016. Dynamic Stability in the Control of Complex Objects. Poster at *Biomechanics and Neural Control of Movement 2016* (12–17 June 2016). Mt. Sterling, OH.
- **J Ebert**, S Park, and D Sternad. 2015. Asymmetric Learning in an Asymmetric Bimanual Task. Poster at *Society for the Neural Control of Movement 25th Annual Meeting* (20–24 April 2015). Charleston, SC. *⊗*
- **J Ebert**, A Mukovskiy, T Dijkstra, and D Sternad. 2015. Why You Don't Spill Your Coffee. Poster at *Northeastern University Research, Innovation, and Scholarship Expo (RISE)* (9 April 2015). Boston, MA.
- **J Ebert**, S Kim, D Sternad, and S Schaal. 2014. Learning and exploration in a novel dimensionality-reduction task. Poster at *Society for the Neural Control of Movement 24th Annual Meeting* (20–25 April 2014). Amsterdam, NL. @
- **J Ebert**, S Park, and D Sternad. 2014. Asymmetric Learning in an Asymmetric Bimanual Task. Poster at *Northeastern University Research, Innovation, and Scholarship Expo (RISE)* (10 April 2014). Boston, MA. *⊗*
- **J Ebert**, S Park, and D Sternad. 2013. Asymmetric Learning in an Asymmetric Bimanual Task. Poster at *Northeast Undergraduate Research and Development Symposium* (2–3 March 2013). Biddeford, ME. *⊗*
- **J Ebert**, S Park, L Griffen, T O'Neil Pirozzi, and D Sternad. 2012. Central Fatigue in Cognitive and Motor Performance. Poster at *Northeastern University Research, Innovation, and Scholarship Expo (RISE)* (29 March 2012). Boston, MA. *⊗*

Teaching and Mentoring

Cambridge, MA

Summer 2019 Fall 2018, Fall 2019 Fall 2018, Fall 2019 Spring 2018

Harvard University

- > REU mentor for Kilobot research and outreach project
- > Teaching staff, How To Make (Almost) Anything, Harvard section
- > Guest lecture, CS 289: Biologically-inspired Multi-agent Systems
- > Teaching fellow, CS 189: Autonomous Robot Systems ∂

Boston, MA

2014 – 2015 2012 – 2014

2011 – 2013

Northeastern University

- > Teaching assistant, CS 2500: Fundamentals of Computer Science (2 semesters)
- > Tutor, CS 2500: Fundamentals of Computer Science (3 semesters)
- > Undergraduate mentor, Proactive Recruitment in Science and Mathematics (PRISM)

Outreach and Service

2017, 2018, 2020	Volunteer, Boston Public Schools Science Fair
2019	Marshall Scholarship Reading Committee
2018, 2019	Robot Design Judge, FIRST LEGO League
2018	Speaker, Science in the News fall lecture series: "Brains and Bodies: How to Make Smart Robots" $arrho$
2018	Guest, <i>Brains On!</i> science podcast live show <i>⊗</i>
2016	Volunteer, Euro Haptics 2016
2010 – 2015	Volunteer, Northeastern Civic Engagement Program
2014 – 2015	Student Ambassador, Northeastern College of Science
2014	Tutor team leader, TechBoston Academy
2014	Teacher, NEU Splash Program. Class: "This is your Brain"
2011 – 2013	Volunteer, Brigham and Women's Hospital

Skills

Programming	Python (including NumPy, Pandas, Django) \cdot MATLAB \cdot C/C++ (including OpenMP, AVR, Arduino) \cdot
	HTML/CSS · LaTeX · JavaScript (including Vue.js) · Java

Fabrication Laser cutting • 3D printing • Vinyl cutting • CNC milling • Electronics design (Eagle) and production • Soldering • Sewing • Molding and casting

Other Computer-aided design (OnShape) • Database design • Linux • 3D motion capture • Kinematic and EEG data collection in human subjects

Relevant Coursework

Computer	Biologically-inspired Multi-agent Systems · Distributed Systems · Machine Learning · Network Algorithms ·
Science	Computational Neurodynamics \cdot Artificial Intelligence \cdot Robotics

Science and Laboratory Electronics · How to Make (Almost) Anything · Biomimetics · Comparative Neurobiology · Human Neuroanatomy · Biochemistry · Genetics and Molecular Biology · Organic Chemistry

Mathematics Stochastic Methods for Data Analysis, Inference, and Optimization • Biological Signal Processing • Statistics and Data Analysis • Multivariable Calculus • Linear Algebra • Differential Equations

Activities and Interests

Sport		Harvard University curling team · Imperial College and Goodenough College fencing clubs · Cycling
Music		Northeastern University pep band, drumline, and wind ensemble \cdot Clarinet \cdot Saxophone \cdot Percussion
Other	İ	3D printing · Web design and development · Graphic design · Writing · Baking