RISK DEFAULT MANAGEMENT IN ONLINE PEER TO PEER LENDING

การจัดการความเสี่ยงในการผิดนัดชำระหนี้ส่วนบุคคลแบบออนไลน์

อาจารย์ที่ปรึกษา ผศ.ดร.เอกรัฐ รัฐกาญจน์ อติวิชญ์ ชนินทร์โชดึก รหัสนักศึกษา 6220412019 (DS)

OUTLINE

- Introduction
 - Issue
 - Motivation
- Background
- Literature Review
- Problem Statement
- Methodology
- Experiment Result
- Conclusion
- Future Work
- Reference

1. Introduction

Currently, The personal loan in business online received Interest and continue to grow up because the borrower does not need to have assets or other persons to use as collateral for risks and the borrower is convenient to lend The money But the personal loan Online is a high risk that Borrower fails to pay on time make the bad debts in the future.

1. Introduction

ที่มา: https://www.lendacademy.com/lending-club-publishes-vintage-performance-data/

Issue

 The company cannot predict which borrowers are likely to default

Motivation

 Using machine learning techniques to determine the pattern and predict of which borrowers are likely to default

2. Background

3. Literature Review

Author	Topic	Dataset	#Data	#Attribute	Method
Zhiqiang Li et al. (2021)	Application of XGBoost in P2P Default Prediction	Lending club	2,260,699	40	1. Xgboost
Anahita Namvar et al. (2018)	Credit risk prediction in an imbalanced social lending environment	Lending club	66,376	43	 Logistic Regression Linear Discriminate Analysis, Random Forest (Best Result)
Kim and Cho (2017)	Dempster-Shafer Fusion of Semi-supervised Learning Methods for Predicting Defaults in Social Lending	Lending club	332,844	17	1. Decision Tree
Fu (2017)	Combination of Random Forests and Neural Networks in Social Lending	Lending club	1,320,000	13	Combination of random forest and neural network
Zhang et al. (2017)	Determinants of loan funded successful in online P2P Lending	Paipai	193,614	21	1. Logistic regression
Serrano-Cinca and Gutiérrez-Nieto (2016)	Determinants of Default in P2P Lending	Lending club	40,907	26	Linear regression (Best Result) decision tree

4. Problem Statement

Objective

- To create a predictive model to classify each borrower with a tendency to default
- To find the factor that influence the risk of borrowers defaulting

Dataset

LendingClub kaggle

Dataset Lending Club (2007-2020Q3)

Total: 2,925,493 borrower records and 141 Feature, Borrower: 123, Co-Borrower: 15, Investor: 3

Borrower

Information

- acc now deling
- annual_inc
- dti
- emp length
- fico_range_high
- fico range low
- grade
- initial list status
- loan_amnt
- mort_acc
- open_acc
- sub grade
- Etc.

Co-borrower

Information

- annual_inc_joint
- dti_joint
- revol_bal_joint
- sec app chargeoff within 12 mths
- sec_app_collections_12_mths_ex_med
- sec app earliest cr line
- sec app fico range high
- sec_app_fico_range_low
- sec app inq last 6mths
- sec_app_mort_acc
- sec app mths since last major derog
- sec_app_num_rev_accts
- Etc.

Investor

Information

- funded amnt inv
- total pymnt inv
- out prncp inv

5. Methodology

5. Methodology (2/10)

- Raw Data
 - 141 Columns
 - 2,925,493 Row
- Filtering 5 years recently
 - 2,038,052 Row

5. Methodology (3/10)

Description

Variable

annual_inc	Balance to credit limit on all trades
application_type	Indicates whether the loan is an individual application or a joint application with two co-borrowers
avg_cur_bal	Average current balance of all accounts
dti	A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower's self-reported monthly income.
Emp_length	Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.
Emp_title	The job title supplied by the Borrower when applying for the loan.
Fico_range_low	The lower boundary ranges the borrower's FICO at loan origination belongs to.
Grade	LC assigned loan grade
home_ownership	The home ownership status provided by the borrower during registration or obtained from the credit report. Our values are RENT, OWN, MORTGAGE, OTHER
installment	The monthly payment owed by the borrower if the loan originates.
Int_rate	Interest Rate on the loan.
loan_amnt	The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
Loan_status	Current status of the loan.
mort_acc	Number of mortgage accounts.
Pub_rec_bankruptcies	Number of public record bankruptcies
purpose	A category provided by the borrower for the loan request.
Revol_bal	Total credit revolving balance
revol_util	Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.
Sub_grade	LC assigned loan subgrade
term	The number of payments on the loan. Values are in months and can be either 36 or 60.
Verification_status	Indicates if income was verified by LC, not verified, or if the income source was verified
issue_d	The month which the loan was funded
last_pymnt_d	Last month payment was received
open_acc	Number of open trades at time of application for the secondary applicant
total_acc	The total number of credit lines currently in the borrower's credit file
annual_inc_joint	The combined self-reported annual income provided by the co-borrowers during registration
dti_joint	A ratio calculated using the co-borrowers' total monthly payments on the total debt obligations, excluding mortgages and the requested LC loan, divided by the co-borrowers' combined self-reported monthly income
revol_bal_joint	Sum of revolving credit balance of the co-borrowers, net of duplicate balances
sec_app_fico_range_low	FICO range (high) for the secondary applicant
sec_app_mort_acc	Number of mortgage accounts at time of application for the secondary applicant
sec_app_open_acc	Number of open trades at time of application for the secondary applicant

Borrower -

Co - Borrower -

5. Methodology (4/10)

Data Overview

Sum of null values in each	h feature:
annual_inc	0
application_type	0
avg_cur_bal	100
dti	3106
emp_length	160385
emp_title	212613
fico_range_low	0
grade	0
home_ownership	0
installment	0
int_rate	0
loan_amnt	0
loan_status	0
mort_acc	0
pub_rec_bankruptcies	0
purpose	0
revol_bal	0
revol_util	2158
sub_grade	0
term	0
verification_status	0
issue d	0
last_pymnt_d	4251
open_acc	0
total acc	0
annual inc joint	1828050
dti joint	1828052
revol bal joint	1840229
sec_app_fico_range_low	1840228
sec_app_mort_acc	1840228
sec_app_open_acc	1840228
dtype: int64	

annual_inc	float64
application_type	object
avg_cur_bal	float64
dti	float64
emp_length	object
emp_title	object
fico_range_low	float64
grade	object
home_ownership	object
installment	float64
int_rate	float64
loan_amnt	float64
loan_status	object
mort_acc	float64
<pre>pub_rec_bankruptcies</pre>	float64
purpose	object
revol_bal	float64
revol_util	float64
sub_grade	object
term	object
verification_status	object
issue_d	object
last_pymnt_d	object
open_acc	float64
total_acc	float64
annual_inc_joint	float64
dti_joint	float64
revol_bal_joint	float64
sec_app_fico_range_low	float64
sec_app_mort_acc	float64
sec_app_open_acc	float64
dtype: object	

2,038,052 rows 31 columns

5. Methodology (5/10)

Select target values

Positive examples = 788,161 Negative examples = 205,768 Proportion of pos to neg examples = 383.03%

993,929 rows 31 columns

- Fully paid: Loan has been fully repaid
- Default: Loan has not been current for 121 days or more
- Charged off: Loan for which there is no longer a reasonable expectation of further payments. Generally, Charge Off occurs no later than 30 days after the Default status is reached
- We have changed Fully paid as 0 and Charged Off as 1 where 1 indicates the borrower as a defaulter

5. Methodology - Feature Engineering

Calculate New Debt to incom Ratio

New DTI =
$$\frac{\text{New monthly repayment amount}}{\text{monthly income}}$$

New monthly repayment amount =
$$\left(\frac{installment}{Annual\ income} * Annual\ income\right) + installment$$

open acc	total acc	annual inc ioint	dti ioint	revol hal ioint	sec_app_fico_range_low	sec app mort acc	sec app open acc	new_dti
open_uce	cocur_ucc	uu	uci_joinc	rever_bur_joine	Scc_upp_11co_1ungc_1ow	scc_upp_more_ucc	scc_upp_open_ucc	
9.0	16.0	NaN	NaN	NaN	NaN	NaN	NaN	27.847394
7.0	10.0	NaN	NaN	NaN	NaN	NaN	NaN	18.859829
8.0	34.0	155000.0	18.73	28294.0	600.0	1.0	10.0	20.388134
10.0	23.0	NaN	NaN	NaN	NaN	NaN	NaN	22.687991
24.0	50.0	NaN	NaN	NaN	NaN	NaN	NaN	38.103979
25.0	68.0	NaN	NaN	NaN	NaN	NaN	NaN	14.418629
14.0	31.0	NaN	NaN	NaN	NaN	NaN	NaN	9.572040
7.0	16.0	50000.0	36.70	18909.0	655.0	1.0	7.0	42.239170

1. Annual Income

count	9.939290e+05
mean	7.954268e+04
std	1.494380e+05
min	0.000000e+00
25%	4.700000e+04
50%	6.600000e+04
75%	9.500000e+04
max	1.100000e+08

2. Application type

Individual 924879 Joint App 69050

3. Average current balance of all accounts

count	993896.000000
mean	13818.346037
std	16933.638951
min	0.000000
25%	3072.000000
50%	7440.000000
75%	19128.000000
max	752994.000000

4. Debt to income ratio

992823.000000 count 18.989967 mean 16.095942 std min -1.000000 25% 11.780000 50% 17.820000 75% 24.670000 999.000000 max

5. New Debt to income ratio

count	987972.000000
mean	18.529589
std	9.219309
min	-0.938436
25%	11.815078
50%	17.835926
75%	24.637410
max	1281.900000

16 of 33

New Debt-to-income Ratio

6. Employee Length

0 years	84953
1 year	67229
10+ years	327277
2 years	91444
3 years	80830
4 years	60860
5 years	61355
6 years	43257
7 years	34404
8 years	35765
9 years	33341
NaN	73214

7. Occupation

count 912962 unique 218590 top Teacher freq 17725

8. Purpose

debt_consolidation	551274
credit_card	212002
home improvement	73299
other	71621
major_purchase	24871
medical	14210
car	11529
small_business	10415
vacation	8645
moving	7879
house	7484
renewable energy	692
wedding	7
educational	1

9. Grade and Subgrade

10. Home ownership

MORTGAGE RENT OWN	485792 386631 120331	
ANY	1171	
NONE	4	
MORTGAGE	485792	
RENT	386631	•
OWN	120331	
OTHER	1175	

11. Installment

count	993929.000000
mean	443.638352
std	284.366689
min	7.610000
25%	234.230000
50%	366.040000
75%	597.780000
max	1719.830000

12. Interest rate

count	993929.000000
mean	13.125613
std	5.176469
min	5.310000
25%	9.440000
50%	12.400000
75%	15.990000
max	30.990000

13. Loan Amount

count	993929.000000
mean	14526.980675
std	9423.153348
min	1000.000000
25%	7200.000000
50%	12000.000000
75%	20000.000000
max	40000.000000

14. Mort account

15. Public record bankruptcies

0.0	859572
1.0	127695
2.0	5211
3.0	1025
4.0	284
5.0	96
6.0	34
7.0	7
8.0	4
9.0	1

16. FICO Score

count	993929.000000
mean	700.036471
std	34.316292
min	660.000000
25%	675.000000
50%	690.000000
75%	720.000000
max	845.000000

17. Total credit revolving balance

count	9.939290e+05
mean	1.587528e+04
std	2.285231e+04
min	0.000000e+00
25%	5.374000e+03
50%	1.043900e+04
75%	1.894100e+04
max	1.698749e+06

18. Revolving line utilization rate

count	992986.000000
mean	46.540928
std	24.945235
min	0.000000
25%	27.100000
50%	45.500000
75%	65.200000
max	173.200000

19. Term

term	loan_status	
36 months	Fully Paid	642877
	Charged Off	131691
60 months	Fully Paid	145284
	Charged Off	74077

20. Verification status

Source Verified 405190 Not Verified 336515 Verified 252224

21. Number of Open Credit

 count
 mean
 std
 min
 25%
 50%
 75%
 max

 loan_status

 Charged Off
 205768.0
 11.801981
 5.894573
 0.0
 8.0
 11.0
 15.0
 78.0

 Fully Paid
 788161.0
 11.634768
 5.778010
 0.0
 8.0
 11.0
 15.0
 88.0

22. Total number of Credit Lines

	count	mean	std	min	25%	50%	75%	max
loan_status								
Charged Off	205768.0	23.366631	12.189346	2.0	14.0	21.0	30.0	176.0
Fully Paid	788161.0	24.174228	12.190440	2.0	15.0	22.0	31.0	165.0

5. Methodology – Cleansing Data

- Remove columns missing values > 50%
- Remove rowswith null values
- Data remaining914173, 26

5. Methodology - Feature Transformation

- Convert Categorical data using Label Encoder application type, grade, home ownership, purpose, sub grade, term, verification status, issue d, last pymnt d
- Rescale numerical data using standardization avg_cur_bal, dti, fico_range_low, installment, int_rate, loan_amnt, revol_util, new_dti, log_annual_inc, log_avg_cur_bal, log revol bal

dti	emp_length	fico_range_low	grade	home_ownership	installment	int_rate	loan_amnt	loan_status	mort_acc
1.046168	10.0	0.448951	0.0	2.0	-0.256863	-0.991638	-0.288343	1.0	0.0
0.048078	3.0	-0.139589	1.0	0.0	-0.452421	-0.707229	-0.499786	1.0	2.0
0.223162	0.0	0.007546	2.0	0.0	-0.588013	0.565841	-0.711230	1.0	6.0
0.476309	5.0	-1.169533	2.0	3.0	-0.050025	0.095695	-0.203766	1.0	0.0
2.198153	4.0	-0.580994	2.0	0.0	0.211840	0.095695	0.028822	1.0	4.0

5. Methodology - Feature Selection

- GridSearchCV tuning parameters of LightGBM model to find feature importance
- Using RFECV (Recursive feature elimination) to select feature

Record: 914,173 Feature: 22

Optimal number of features: 20

5. Methodology - Imbalance Problem

Resampling Techical

6. Experiment Result

	Classifier	Accuracy	Precision	Recall	F1-score	AUC
	Logistic Regression	80.39	52.03	7.69	13.39	52.97
D	Decision Tree	80.38	52.40	5.83	10.49	52.26
Non sampling	Random Forest	80.44	56.60	3.47	6.54	51.41
sam	Xgboots	80.57	56.06	6.93	12.34	52.80
lon	Catboost	80.58	55.77	7.37	13.01	52.97
_	LightGBM	80.60	55.50	8.31	14.45	53.33
	ANN	80.47	52.43	10.61	17.65	54.12
	Logistic Regression	65.83	32.1	64.27	42.81	65.13
	Decision Tree	61.81	30.16	69.86	42.13	64.83
10	Random Forest	63.81	31.3	68.49	42.97	65.57
RUS	Xgboots	64.85	31.97	67.98	43.49	66.02
	Catboost	64.98	32.11	68.19	43.66	66.18
	LightGBM	65.06	32.11	67.84	43.59	66.1
	ANN	67.83	33.39	61.96	43.39	65.63
	Logistic Regression	40.48	23.97	(92.1)	38.04	59.9
	Decision Tree	43.78	24.64	89.08	38.6	60.82
	Random Forest	44.48	24.86	88.95	38.86	61.21
눌	Xgboots	42.18	24.36	90.91	38.42	60.52
	Catboost	41.63	24.24	91.4	38.32	60.35
	LightGBM	40.95	24.09	91.85	38.16	60.1
	ANN	38.73	23.57	(93.13)	37.62	59.2
	Logistic Regression	65.17	31.6	64.92	42.51	65.07
	Decision Tree	72.99	34.72	41.02	37.61	60.97
끧	Random Forest	69.47	33.56	55	41.69	64.03
SMOTE	Xgboots	79.65	46.54	17.24	25.16	56.17
S	Catboost	80.33	52.11	10.45	17.41	54.04
	LightGBM	80.35	52.35	10.82	17.93	54.19
	ANN	74.74	35.79	33.92	34.83	59.4
	Logistic Regression	63.89	30.98	66.78	42.32	64.98
	Decision Tree	73.6	34.16	35.61	34.87	59.31
Z	Random Forest	71.12	34.25	49.54	40.5	63
ADASYN	Xgboots	79.53	45.71	16.91	24.68	55.97
A	Catboost	80.37	52.81	9.78	16.51	53.81
	LightGBM	80.4	53.19	10.08	16.95	53.94
	ANN	74.01	35.58	38.22	36.85	60.55

Evaluation Approach

- For loan default prediction, the False Negatives Rate is metric to evaluate the model. Lower the number of false negatives, better the model is
- A false negative is when the model predicting "a borrower will not default a loan even though he will" Our model cannot afford having higher False Negative as it leads to negative impact on the investors and the credibility of the credibility of the company. So, we evaluated our models using the number of False negative and roc curve

$$Recall = \frac{TP}{TP + FN}$$

6. Experiment Result

6. Experiment Result

6. Experiment Result - Partial dependence

7. Discussion

Status by location

Top 5 of career

8. Conclusion

- The information of the lending club with the most effective method for finding potential defaulters
- Resampling techniques can increase the model's efficiency well. The best performance of model is combination between the IHT Under-Sampling Technique and Neural Network Model, Recall efficiency is 93.13% and AUC is 59.2%
- The Lending club can use this method to predict the tendency of the borrower's default and used it as a strategy for planning bad debt management in the future
- The technique can be applied to other loans

9. Future Work & Suggestion

- This research is an analysis of personal loans only. This can be used to analyze similar loans such as car loans, home loans, agricultural loans, and others.
- Using Concept Diff techniques with imbalance data to find patterns of defaulters
- Using Clustering techniques can be used to group borrowers.
- Using Social Networks to find the relationship between investors and borrowers. to be used to find interesting patterns such as investor behavior, borrower behavior

10. Reference

- นพมาศ อัครจันทโชติ และ นพมาศ อัครจันทโชติ (2019). การเปรียบเทียบวิธีการแก้ปัญหาข้อมูลไม่สมดุลสำหรับการจำแนกกลุ่มรายได้ของผู้ประกอบการร้านยาประเภท ข.ย.1. การประชุมเสนอผลงานวิจัย ระดับชาติ มหาวิทยาลัยสุโขทัยธรรมาธิราช ครั้งที่ 9
- พรชนก เทพขาม (2019). **เศรษฐกิจแบ่งปัน: บทเรียนการกู้ยืมผ่านช่องทางอิเล็กทรอนิกส์ (Peer-to-peer Lending)**. ธนาคารแห่งประเทศไทย
- อโนทัย พุทธารี จิตรภณ หรูเจริญพรพานิช เพ็ญสิริ บำรุงเชาว์เกษม และชินวัฒน์ เทพหัสดิน ณ อยุธยา. (2018). CREDIT **SCORING MODEL: เครื่องมือในการประเมินคุณภาพสินเชื่อ**. ธนาคารแห่งประเทศไทย
- 🗣 เปมิกา ฐิติเพิ่มพงศ์ (2020, 17 กุมภาพันธ์). **มาทำความรู้จักกับ Peer-to-Peer Lending กันเถอะ | ตอนที่ 3** สืบค้นจาก <u>https://www.nestifly.com/post/what-is-p2p-ep3</u>
- Aleum Kim and Sung-Bae Cho. (2017). Dempster-Shafer Fusion of Semi-supervised Learning Methods for University.

 Predicting Defaults in Social Lending. Seoul: Yonsei
- Anahita Namvar, Mohammad Siami, Fethi Rabhi and Mohsen Naderpour. (2018). Credit risk prediction in an imbalanced social lending environment. Sydney: University of New South Wales.
- Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. (2008) ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. 2008 International Joint Conference on Neural Networks
- Naufal Azmi Verdikha, Teguh Bharata Adji and Adhistya Erna Permanasari. (2018). Study of Undersampling Method: Instance Hardness Threshold with Various Estimators for Hate Speech Classification. IJITEE, Vol. 2, No. 2, June 2018
- Yijie Fu (2017). Combination of Random Forests and Neural Networks in Social Lending. Shanghai: Shanghai Foreign Language School.
- Yuejin Zhanga, Haifeng Lia, Mo Hai a, Jiaxuan Lia and Aihua Lib (2017). **Determinants of loan funded successful in online P2P Lending.** Beijing: Central University of Finance and Economics
- Zhiqiang Li, Shouyan Li, Zhilong Li, Yixiang Hu and Hanlin Gao. (2021). **Application of XGBoost in P2P Default Prediction**. College of Business Jiangxi University of Science and Technology Nanchang