CS & IT

ENGINEERING

Set Theory

DPP 10 Discussion

SATISH YADAV SIR

TOPICS TO BE COVERED

01 Question

02 Discussion

The set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

$$a * e = a$$

Let r be the set of all real numbers and * is a binary operation defined by

[MSQ]

$$a * b = a + b + ab$$
.

(0., C) Which of the following is TRUE?
$$4+e+a=4$$
.

The inverse of a is
$$-a/(a + 1)$$
.

$$OL \times e = a$$

 $Q+e+a\cdot e=a$
 $e+a\cdot e=0$

$$\alpha * \bar{\alpha} = e$$
.
 $\alpha + \bar{\alpha} + \alpha \cdot \bar{\alpha} = 0$

$$a' + a = -a$$

 $a' = -a$
 $a' = -a$

The set $G = \{0, 1, 2, 3, 4, 5\}$ is a group with respect to addition modulo 6.

[MCQ]

Which of the following is false?

- The inverse of 2 is $4\sqrt{2} = 4$
- The inverse of 3 is 3
- The inverse of 5 is 2
- The inverse of 1 is 5

 $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication. The order -i is

[NAT]

$$(-i)^{1} = -i^{\circ} \qquad (-i)^{2} = -1.$$

$$(-i)^{2} = -1.$$

$$(-i)^{3} = i^{\circ 2} \times -i^{\circ} = -1 \times -i = i^{\circ}$$

$$(-i)^{4} = -i^{\circ 2} \times -i^{\circ 2} = -1 \times -1 = 1.$$

Ans: 4

If G is a group of order p, where p is a prime number. Then the number of sub groups of G is___.

MCQ]

- A.
- 1
- В.
- 2 /
- C.
 - p-1
- D.
- p

