QUANTITATIVE ECONOMICS - FALL 2017 Answer any FIVE questions.

1. Answer the following questions.

- (a) Show that the regression R^2 in the regression of Y on X is the squared value of the sample correlation between X and Y. That is, show that $R^2 = r_{xy}^2$.
- (b) Show that the R^2 from the regression of Y on X is the same as the R^2 from the regression of X on Y.
- (c) Show that $\widehat{\beta}_1 = r_{XY}(s_Y/s_X)$, where r_{XY} is the sample correlation between X and Y, and s_Y are the sample standard deviations of X and Y.
- 2. (a) In the following regression model

$$wage = \beta_1 + \delta_1 female + u$$

where female is a dummy variable, taking value 1 for female and value 0 for a male. Prove that applying the OLS formulas for simple regression you obtain that

$$\begin{array}{lcl} \widehat{\boldsymbol{\beta}}_1 & = & \overline{wage}_M \\ \widehat{\boldsymbol{\delta}}_1 & = & \overline{wage}_F - \overline{wage}_M \end{array}$$

where \overline{wage}_{M} is the average wage for men and \overline{wage}_{F} is the average wage for women.

(b) Suppose that n = 100 i.i.d observations for (Y_i, X_i) yield the following results:

$$\hat{Y} = 32.1 + 66.8X, SER = 15.1, R^2 = 0.81$$
(15.1) (12.2)

Another researcher is interested in the same regression, but he makes an error when he enters the data into his regression program: He enters each observation twice, so he has 200 observations. Using these 200 observations, what results will be produced by his program? Write it in the following format:

$$\hat{Y} = \underline{\quad --+ \quad --X}, \ SER = \underline{\quad --}, R^2 = \underline{\quad --}$$

3. Consider the following data generating process

$$Y_t = c + \phi_3 Y_{t-3} + \varepsilon_t$$

where ε_t is a white noise process. Assuming $0 < \phi_3 < 1$, answer the following:

- (a) Derive the expected value of this process.
- (b) Derive the variance of this process.
- (c) Derive the covariance of this process for j = 1, 2, 3.
- (d) Derive the autocorrelation function of this process for j = 1, 2, 3.
- 4. Consider the following model

$$y_t = c + \phi y_{t-1} + \delta_1 D_{1t} + \delta_2 D_{2t} + \varepsilon_t, \quad t = 1901, 1902, ..., 2000.$$

where we have two breaks in the data.

$$D_{1t} = \left\{ \begin{array}{l} 1 \text{ if } t \le 1926 \\ 0 \text{ if } t > 1926 \end{array} \right\}$$

$$D_{2t} = \left\{ \begin{array}{l} 1 \text{ if } t \le 1975 \\ 0 \text{ if } t > 1975 \end{array} \right\}$$

Considering the Eviews output below, answer the following questions.

Dependent Variable: Y Method: Least Squares Date: 04/22/15 Time: 10:19 Sample (adjusted): 1902 2000

Included observations: 99 after adjustments Convergence achieved after 5 iterations

∨ariable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.768326	0.056518	13.59436	0.0000
D1	0.939438	0.096269	9.758448	0.0000
D2	0.820134	0.094323	8.694947	0.0000
AR(1)	0.278380	0.097454	2.856532	0.0053
R-squared	0.725224	Mean dependent var		1.219040
Adjusted R-squared	0.716546	S.D. dependent var		0.535710
S.E. of regression	0.285214	Akaike info criterion		0.368412
Sum squared resid	7.727972	Schwarz criterion		0.473265
Log likelihood	-14.23638	Hannan-Quinn criter.		0.410836
F-statistic	83.57856	Durbin-Watson stat		1.783056
Prob(F-statistic)	0.000000			
Inverted AR Roots	.28			

- (a) Explain why the sample in the regression table goes from 1902 to 2000.
- (b) In the regression table, what econometric approach is used to estimate this model? Write down the objective function for this estimation method.
- (c) If we know the true values of c, ϕ, δ_1 and δ_2 and know that $|\phi|$ is less than one, what is the expected value of the series from 1901 to 1926, from 1927 to 1974, from 1975 to 2000?
- (d) Using the estimates from the regression table, give the estimated mean of the series from 1901 to 1926, from 1927 to 1974, from 1975 to 2000?
- 5. (a) Suppose the true relationship between dependent and the independent variable is

$$Y = X\beta + Z\delta + u$$

but the researcher thinks the correct model is

$$Y = X\beta + u$$

What is the problem that the researcher would run into? Explain in detail.

(b) Suppose now the true relationship is

$$Y = X\beta + u$$

but the researcher estimates the following regression

$$Y = X\beta + Z\delta + u$$

What would be the effect on coefficient estimates?

6. You are given the regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

You want to test the null hypothesis

$$H_0 : \frac{\beta_1}{\beta_3} = \beta_2^2$$

$$H_A$$
 : $\frac{\beta_1}{\beta_2} \neq \beta_2^2$

Show how you would construct the test statistic.

- 7. In the least squares regression of \mathbf{y} on a constant and \mathbf{X} , to compute the regression coefficients on \mathbf{X} , we can first transform \mathbf{y} to deviations from the mean \overline{y} and, likewise, transform each column of \mathbf{X} to deviations from the respective column mean; second, regress the transformed \mathbf{y} on the transformed \mathbf{X} without a constant. Do we get the same result if we only transform \mathbf{y} ? What if we only transform \mathbf{X} ?
- 8. Consider observations (Y_{it}, X_{it}) from the linear panel data model

$$Y_{it} = \alpha_i + \beta_1 X_{it} + u_{it}, \qquad i = 1, \dots, N, t = 1, \dots, T.$$

where α_i is an unobserved individual-specific fixed effects, X_{it} is a vector of exogenous regressors and u_{it} are zero mean i.i.d innovations. Describe how you would estimate β_1 ?