Complejidad Computacional

Introducción al mundo de los algoritmos Oscar Burga

Propósito

- Introducción al mundo de la complejidad computacional, algoritmos y estructuras de datos.
- Ejemplos, temas relacionados y más.

Eficiencia y escalabilidad de un algoritmo

- ¿Cómo saber qué tan eficiente es mi algoritmo?
- ¿Cómo estimar los recursos computacionales necesarios para ejecutar mi algoritmo?
- ¿Cómo varía el rendimiento de mi algoritmo según los datos de entrada que recibe?

Análisis de algoritmos

Análisis de algoritmos

- Determinar la complejidad computacional de un algoritmo.
- Estimar los recursos computacionales que requiere la ejecución de un algoritmo, en términos de los datos de entrada que recibe.
- Recursos computacionales principales:
 - Tiempo (complejidad temporal)
 - Memoria (complejidad espacial)

Notación Big-O

- Formalmente, describe la cota superior asintótica de una función matemática.
- Estimar el rendimiento de un algoritmo en el peor caso posible.
- No es el único tipo de notación asintótica:
 - O Big- Ω : Mejor caso posible (cota inferior de una función).
 - O Big- θ : Ambos (cota inferior y superior de una función).

Análisis de algoritmos

- Consiste en medir un algoritmo según su eficiencia para manejar los datos de entrada que recibe
 - O Complejidad temporal: Cantidad de operaciones a realizar para procesar un conjunto de n datos
 - O Complejidad espacial: Cantidad de memoria a utilizar para procesar un conjunto de n datos
- Expresar esta medida como una función f(n).
- Nos importa el término de mayor orden de la función (crece más rápido). Las constantes no son importantes.

Análisis de algoritmos

n	$f(n)=n^3$	$f(n) = n^3 + n^2$	$f(n) = n^3 - 8n^2 + 20n$
1	1	2	13
10	1'000	1′100	400
1'000	1'000'000'000	1'001'000'000	992'020'000
1'000'000	1.0×10^{18}	1.000001×10^{18}	9.99992×10^{17}

Fuente: <u>Harvard University – CS50</u>

Ejemplo: Complejidad temporal

- Las 2 operaciones dentro del For Each se ejecutan *N* veces
- 1 operación extra fuera del For Each
- Total operaciones: f(N) = 2N + 1
- Término de mayor orden: 2N
- Término de mayor orden, sin constantes: *N*
- Complejidad temporal: O(N)

Ejemplo: Complejidad temporal

- Dentro del segundo For Each: 3 operaciones
- Segundo For Each se ejecuta M veces $\rightarrow 3M$ operaciones
- Primer For Each se ejecuta N veces $\rightarrow N \times 3M = 3NM$ operaciones
- Cantidad de operaciones: f(N, M) = 3NM + 1
- Término de mayor orden: $3NM \rightarrow NM$ sin constantes
- Complejidad temporal: O(NM)

Tabla de complejidades				
0(1)	Constante			
$O(\log N)$	Logarítmico			
O(N)	Lineal			
$O(N \log N)$	Tiempo logarítmico-lineal (log-linear, linearithmic)			
$O(N^2)$	Cuadrático			
$O(N^c)$	Polinomial			
$O(c^N)$	Exponencial			
O(N!)	Factorial			
<i>0</i> (∞)	Infinito			

Fuente: <u>Harvard University – CS50</u>

Ordenamientos

Ordenamientos y algoritmos de ordenamiento

- Ordenamiento: Problema absolutamente fundamental en el campo de los algoritmos.
 - Algoritmos importantes y complejos usan ordenamientos como subrutinas
 - Muchas aplicaciones del mundo real requieren tener datos ordenados
 - o Otros problemas pueden reducirse a problemas de ordenamiento
- Cota inferior para algoritmos de ordenamientos: $\Omega(N \log N)$

Ejemplo: Ordenamiento Burbuja

- Algoritmo de ordenamiento básico.
- Iterativamente revisa pares de elementos adyacentes y los intercambia si no están ordenados.

5 2 4 6 1 3

Fuente: <u>Xybernetics</u>

Fuente: Gfycat

Ejemplo: Ordenamiento Burbuja

```
void bubblesort(int a[], int n) {
   for (int i = 0; i < n; i++) { // N veces
       for (int j = 0; j+1 < n; j++) { // N-1 veces
           if (a[j] > a[j+1]) {
               int temp = a[j];
               a[j] = a[j+1];
               a[j+1] = temp;
```

Se realizan N iteraciones, y en cada iteración se intercambian elementos adyacentes que estén fuera de orden.

$$f(N) = N \times (N - 1) \times C$$

$$f(N) = CN^{2} - CN$$

Se eliminan las constantes y se toma el término de mayor orden $\rightarrow N^2$

Complejidad resultante: $O(N^2)$

Ejemplo: Merge Sort

- Concepto nuevo: Divide y Vencerás (Divide and Conquer)
- Dividir recursivamente el conjunto en mitades, ordenarlas independientemente, y luego mezclarlas.
- Mezclar 2 arreglos ordenados puede hacerse en tiempo lineal O(N)
- Algoritmo con complejidad temporal $O(N \log N)$ y complejidad espacial O(N)

Fuente: Programiz

Ejemplo: Merge Sort

```
0 void mergeSort(int a[], int l, int r) {
1    if (l >= r)
2        return;
3    int mid = (l+r) / 2;
4    mergeSort(a, l, mid);  // Ordenar la mitad izquierda
5    mergeSort(a, mid+1, r); // Ordenar la mitad derecha
6    // Mezclar los rangos a[l:mid] y a[mid+1:r]
7    // en tiempo y espacio lineal O(R-L+1)
8    merge(a, l, mid, r);
9 }
```


Algoritmos de búsqueda

Búsqueda lineal

- Método más simple de búsqueda en un conjunto de datos.
- Se recorren todos los elementos del conjunto hasta que se encuentre el que se busca (o se determine que no existe).
- En el peor caso se realizan O(N) comparaciones.

Búsqueda binaria

- Aplicación de divide y vencerás
- Idea principal: Partir sucesivamente el espacio de búsqueda a la mitad hasta encontrar el elemento que buscamos o agotar el espacio de búsqueda.
- Permite buscar elementos eficientemente dentro de conjuntos de datos ordenados (complejidad $O(\log N)$)
- Aplicaciones más avanzadas: Búsqueda de puntos de corte en funciones monótonas, búsqueda binaria en espacios continuos
 - O Ejemplo: Calcular la raíz cuadrada (no necesariamente entera) de un número.
 - O Otras aplicaciones avanzadas: Máxima circunferencia inscribible dentro de un polígono convexo.

Búsqueda binaria en arreglos ordenados

- Iniciamos con el rango completo de elementos del arreglo ordenado, y supongamos que buscamos el valor x
- En cada iteración, se toma el elemento del medio del rango actual y se compara con el valor que se está buscando
 - O Si el elemento del medio es menor a x, tomamos como nuevo rango a la mitad derecha.
 - O Si el elemento del medio es mayor a *x*, tomamos como nuevo rango a la mitad izquierda.
 - O Si el elemento es igual a x, finaliza el algoritmo.

Fuente: FullStack.Cafe

Búsqueda binaria en arreglos ordenados

Búsqueda binaria en arreglos ordenados

- En cada iteración de la búsqueda binaria se realiza una cantidad constante de operaciones (únicamente una comparación y actualizar los índices del nuevo rango).
- En cada iteración, el tamaño del rango por evaluar disminuye a la mitad.
- Sabemos que un número solo puede dividirse sucesivamente una cantidad logarítmica de veces.
- De igual manera, el rango solo puede dividir su tamaño una cantidad logarítmica de veces.
- Por lo tanto, la complejidad total es $O(\log N)$.

Búsqueda binaria en espacios continuos

- La búsqueda binaria también puede ser utilizada en espacios continuos para hallar puntos de corte de funciones monótonas.
- Ejemplo: Hallar la raíz cuadrada de un número real

Min	Мах	Mid	$(Mid)^2$	Objetivo
0.0000	5.0000	2.5000	6.2500	5
0.0000	2.5000	1.2500	1.5625	5
1.2500	2.5000	1.8750	3.5156	5
1.8750	2.5000	2.1875	4.7852	5
2.1875	2.5000	2.3437	5.4932	5
2.1875	2.3437	2.2656	5.1331	5
2.1875	2.2656	2.2266	4.9576	5

En rojo: $f(x) = \sqrt{x}$ En azul: $y = \sqrt{5}$

Búsqueda binaria en espacios continuos

¿Qué hay más allá?

¿Qué hay más allá?

- Complejidad computacional es un campo gigantesco, apenas hemos tocado la superficie.
- Teoría de la complejidad computacional (clases de complejidad, P = NP, etc.)
- Muchos más temas interesantes en el mundo de los algoritmos
 - o Grafos, búsquedas en grafos y otros algoritmos de grafos
 - o Programación dinámica
 - o Estructuras de datos
 - Algoritmos y estructuras de cadenas
 - Algoritmos numéricos
 - Geometría computacional
 - o ... y muchos más.

Material de consulta recomendado

- Libro: Introduction to Algorithms, 3rd. Edition (Cormen, Leiserson, Rivest, Stein)
- Libro: Algorithms in C (Robert Sedgewick)
- Página Web: CP-Algorithms (compilación de descripciones y tutoriales de algoritmos)
- Página Web: Codeforces-Edu (temas avanzados)
- Videos: Pavel Mavrin (Youtube, clases de algoritmos de la Universidad ITMO de Rusia)

Gracias por su atención