

MATERI

- Definisi Vektor
- Penyajian Vektor
- Operasi Vektor
- Sifat-sifat Operasi

TUJUAN

Mahasiswa dapat memahami dan mengenali definisi, penyajian, operasi serta sifatsifat operasi vektor.

OBYEK

- Definisi: adalah suatu yang menjadi pokok pembicaraan, bisa benda mati (misalnya mobil atau buku) atau benda hidup (misalnya hewan atau manusia)
- Contoh: Obyek Mobil
 Memiliki: berat, kecepatan, kelistrikan, warna, harga beli, nama pemilik dan lainlain
- Berat → ton atau kg,
 Kecepatan → km/jam, dll.

- Definisi: salah satu ciri, atribut atau jatidiri obyek yang dapat diukur
- Contoh: Besaran untuk Obyek Mobil,
 volume, berat, kecepatan, muatan listrik, bahan,
 dan warna mobil merupakan contoh dari
 besaran-besaran yang ada pada mobil
 tersebut

- Definisi: sesuatu yang diberikan oleh seseorang untuk menggambarkan tingkatan, intensitas atau besarnya besaran tersebut
- Contoh:

Nilai untuk besaran Kecepatan → 10 km/jam Nilai untuk Besaran Berat → 1 ton

- Definisi : ukuran dari suatu besaran
- Contoh :

Meter untuk panjang

Gram untuk massa

Detik untuk waktu

PENDAHULUAN

- Vektor adalah obyek geometri yang memiliki besaran (nilai) dan arah.
- Jika obyek geometri hanya memiliki besaran (nilai) saja, maka disebut Skalar.
- Vektor disajikan dalam bentuk ruas garis berarah (anak panah).
- Besaran (nilai) vektor menunjukkan panjang vektor (panjang garis) atau magnitude.
- Arah vektor menunjukkan sudut (θ) yang dibentuk dengan sumbu X positif.

PENDAHULUAN

Vektor Skalar

Memiliki nilai (besaran) dan arah

Tergantung sistem koordinat

Contoh:

Kecepatan, Percepatan, Gaya, dll

Point B

Hanya memiliki nilai (besaran)

Tidak tergantung sistem koordinat

Contoh:

Waktu, Berat, Volume, dll

PENDAHULUAN

- Vektor secara grafis disajikan dalam bentuk garis berarah.
- Besaran vektor ditunjukkan oleh panjang garis.
- Arah vektor ditunjukkan oleh anak panah.
- Garis berarah memiliki titik pangkal dan ujung.

Titik P Titik Q

Tanda panah

Panjang PQ = |PQ|

: Titik pangkal vektor

: Ujung vektor: Arah vektor

Besarnya (panjang) vektor

(menggunakan tanda mutlak)

: sudut vektor terhadap sumbu X

i,j vektor basis : vektor satuan yang searah sumbu X dan Y

NOTASI DAN CARA PENULISAN

- Menuliskan titik-titik pangkal dan ujung dengan tanda panah (biasanya menggunakan huruf besar).
- Menuliskan nama/label
 vektor (biasanya menggunakan huruf kecil).

Pada mata kuliah ini, nama/label vektor menggunakan huruf kecil.

Contoh penulisan vektor:

Dalam bentuk vektor kolom:

$$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}; \quad u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Dalam bentuk vektor baris:

$$\overrightarrow{AB} = (3,4); \quad v=(2,-1,2)$$

Dalam bentuk kombinasi vektor basis:

$$\underline{\mathbf{a}} = 3\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}; \ \underline{\mathbf{v}} = 2\mathbf{i} + 3\mathbf{j}$$

$$\underline{a} = x\mathbf{i} + y\mathbf{j}$$

$$\underline{a} = (x,y)$$

$$a = \begin{pmatrix} x \\ \end{pmatrix}$$

KESAMAAN DUA BUAH VEKTOR

"Dua buah vektor dikatakan sama, jika panjang dan arahnya sama".

Arah sama artinya mempunyai garis pembawa yang berimpit atau sejajar dengan arah panah sama.

Misalkan u = (a,b) dan v = (c,d). Jika u = v, maka |u| = |v| dan arah u = arah v. Kondisi tersebut akan terpenuhi jika a=c dan b=d.

Contoh:

Diketahui vektor: u=(2,b) dan v=(a,6). Tentukan a dan b jika u=v.

Karena u=v maka (2,b)=(a,6). Sehingga a=2 dan b=6.

Diketahui vektor: a = i + xj - 3k dan b = (x - y)i - 2j - 3k. Jika a = b, maka x + y = ...

$$a = i + xj - 3k = 1i + xj - 3k$$

$$b = (x - y)i - 2j - 3k$$

Karena a=b, maka:

- 1=x-y
- X=-2

1=(-2)-y atau y=-2-1; y=-3 dan x=-2.

Maka x+y = -2+(-3) = -5

KESAMAAN DUA BUAH VEKTOR

a. Dua vektor sama jika arah dan besarnya sama

A = B

- b. Dua vektor dikatakan tidak sama jika:
 - 1. Besar sama, arah berbeda

 $A \neq B$

2. Besar tidak sama, arah sama

 $A \neq B$

3. Besar dan arahnya berbeda

. В

 $A \neq B$

OPERASI-OPERASI PADA VEKTOR

Penjumlahan dan Pengurangan

- Hasil penjumlahan/pengurangan vektor disebut dengan vektor resultan (R)
- Resultan menghubungkan titik awal (head) dengan titik akhir (tail) dari penjumlahan/pengurangan.
- Resultan tidak menunjukkan total panjang lintasan seluruh vektor, tapi hanya menunjukkan panjang lintasan dari titik awal (vektor pertama) ke ujung vektor (vektor terakhir)

Contoh: Viktor melakukan jogging sejauh 6 km ke utara (N), lalu belok kanan sejauh 6 km ke timur (E). Setelah itu belok kiri sejauh 2 km ke utara (N) dan berhenti. Gambarkan resultan dari jogging Viktor, dan hitung berapa panjangnya.

Panjang resultan R dapat dihitung menggunakan rumus segitiga Pythagoras:

$$R^{2}=X^{2}+Y^{2}$$

$$=6^{2}+8^{2}$$

$$=36+64$$

$$=100$$

$$R = \sqrt{100} = 10$$

Perhatikan:
Total lintasan jogging
Viktor=14 km
Resultan jogging
Viktor=10 km

OPERASI-OPERASI PADA VEKTOR

Penjumlahan dan Pengurangan

Metode Grafik

a. Metode Jajaran Genjang

$$\frac{a}{}$$
 + $>$ = $\frac{b}{\sqrt{z}} = \frac{a+b}{\sqrt{z}}$

$$\frac{a}{-b} - 0 = -b$$

b. Metode Segitiga

$$a + b = a^{+b}$$

$$\frac{a}{}$$
 - $\sqrt{}$ = $\frac{a}{}$ -b

Catatan: a-b=a+(-b)

Perkalian Vektor dengan Skalar

Metode Grafik

KOMPONEN VEKTOR

Vektor di R²

y u (x,y) j

$$u = (x, y)$$
 atau $v = \begin{pmatrix} x \\ y \end{pmatrix}$

u=xi+yj i, j vektor basis i=(1,0) j=(0,1)

Panjang vektor

$$|\mathbf{u}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

Vektor di R³

$$u = (x, y, z)$$
 atau $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

u=xi+yj+zk
i, j, k vektor basis
i=(1,0,0)
j=(0,1,0)
k=(0,0,1)
Panjang vektor

$$|\mathbf{u}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}$$

Vektor dapat dinyatakan sebagai pasangan bilangan koordinat posisi vektor.

Vektor **u** yang dibentuk dari titik $A(x_1,y_1)$ menuju $B(x_2,y_2)$:

KOMPONEN VEKTOR

Contoh. Tentukan vektor komponen (<u>u</u>) untuk masing-masing grafik di No. 1 dan No. 2, serta panjang nya.

Jawab.

1a.
$$u=(4,1)-(1,5)=(3,-4)$$
; $|u|=5$

b.
$$u=(0,0,4)-(2,3,0)=(-2,-3,4)$$
; $|u|=\sqrt{29}$

2a.
$$u=(-3,3)-(2,3)=(-5,0)$$
; $|u|=5$

b.
$$u=(0,4,4)-(3,0,4)=(-3,4,0)$$
; $|u|=5$

KOMPONEN VEKTOR

Contoh. Diberikan titik-titik P_1 dan P_2 . Untuk No. 3 dan 4 berikut, tentukan vektor komponennya.

3. (a)
$$P_1(3,5)$$
, $P_2(2,8)$

(b)
$$P_1(5, -2, 1), P_2(2, 4, 2)$$

4. (a)
$$P_1(-6, 2)$$
, $P_2(-4, -1)$ (b) $P_1(0, 0, 0)$, $P_2(-1, 6, 1)$

(b)
$$P_1(0,0,0), P_2(-1,6,1)$$

Jawab.

3a.
$$u=(2,8)-(3,5)=(-1,3)$$

3a.
$$u=(2,8)-(3,5)=(-1,3)$$
 b. $u=(2,4,2)-(5,-2,1)=(-3,6,1)$
4a. $u=(-4,-1)-(-6,2)=(2,3)$ b. $u=(-1,6,1)-(0,0,0)=(-1,6,1)$

b.
$$u=(-1,6,1)-(0,0,0)=(-1,6,1)$$

Contoh. Tentukan titik akhir dari vektor u = (1, 2) dengan titik awal di titik A(1,1).

Jawab.

Misal titik akhir dari vektor u adalah titik B(x,y), maka vektor u dapat ditulis:

$$u = \overrightarrow{AB}$$

$$(1,2) = (x,y) - (1,1)$$

$$(1,2) = (x-1,y-1)$$

Sehingga x-1=1 atau x=2 dan y-1=2 atau y=3.

Jadi B(2,3) atau titik akhir vektor u adalah di titik B(2,3).

Contoh. Tentukan titik awal dari vektor u = (1, 2) dengan titik akhir di titik B(2,0). Jawab.

Misal titik awal dari vektor u adalah titik A(x,y), maka vektor u dapat ditulis:

$$u = \overrightarrow{AB}$$

$$(1,2) = (2,0) - (x,y)$$

$$(1,2) = (2-x,-y)$$

Sehingga 2 - x = 1 atau x = 1 dan -y = 2 atau y = -2.

Jadi A(1,-2) atau titik awal vektor u adalah di titik A(1,-2).

JENIS-JENIS VEKTOR

Vektor-vektor Khusus:

1. Vektor Nol (0); Vektor yang semua nilai komponen-nya nol. Panjang vektor nol = 0. Disebut juga elemen identitas.

$$0 = (0,0)$$
 atau $0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbb{R}^2$ $0 = (0,0,0)$ atau $0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^3$

- 2. Vektor Satuan; Vektor yang panjangnya satu. Contoh: u=(0,1); v=(0.6, 0.8); w=(0,1,0), dst.
- 3. Vektor Basis; Vektor satuan yang saling tegak lurus (menempel di sumbu koordinat).

 Contoh: i=(1,0) dan j=(0,1) di R²

 i=(1,0,0), j=(0,1,0), dan k=(0,0,1) di R³

4. Vektor Posisi; Vektor yang titik awalnya di O(0,0) dan titik ujungnya berada di titik tertentu.

 $a = \overrightarrow{OA}$ atau a = (4,1) adalah vektor posisi dari titik A(4,1)

 $b = \overrightarrow{OB}$ atau b = (2,4) adalah vektor posisi dari titik B(2,4)

 $c = \overline{AB}$ vektor yang bentuk dari titik A(4,1) ke titik B(2,4)

$$c = \overrightarrow{AB} = b - a$$

$$(2) (4) (-2)$$

$$= \begin{pmatrix} 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

OPERASI DENGAN KOMPONEN VEKTOR

Jika diketahui vektor-vektor $u,v \in \mathbb{R}^n$ dimana $u=(u_1,u_2,...,u_n), v=(v_1,v_2,...,v_n)$ serta k adalah skalar (bilangan riil), maka:

1.
$$u+v=(u_1,u_2,...,u_n)+(v_1,v_2,...,v_n)$$

= $(u_1+v_1,u_2+v_2,...,u_n+v_n)$

2.
$$u-v = (u_1, u_2, ..., u_n) - (v_1, v_2, ..., v_n)$$

= $(u_1-v_1, u_2-v_2, ..., u_n-v_n)$

3.
$$k(u)=k(u_1,u_2,...,u_n)$$

= $(ku_1,ku_2,...,ku_n)$

SIFAT-SIFAT

Jika diketahui vektor-vektor $u,v,w \in \mathbb{R}^n$ dimana $u=(u_1,u_2,...,u_n), v=(v_1,v_2,...,v_n), w=(w_1,w_2,...,w_n),$ serta k dan m adalah skalar (bilangan riil), maka:

- 1. $u \pm v = v \pm u$
- 2. $u \pm (v \pm w) = (u \pm v) \pm w$
- 3. $k(u \pm v) = ku \pm kv$
- 4. $(k \pm m) u = ku \pm mu$
- 5. (km) u = k(mu) = m(ku) = (mk) u
- 6. $u \pm 0 = u$; u + (-u) = 0; 0 = vektor nol
- 7. m | u | = | mu |
- 8. $|u+v| \le |u| + |v|$

OPERASI DENGAN KOMPONEN VEKTOR

Contoh. Jika u = (4,-1), v = (0, 5), dan w = (-3,-3).

Tentukan komponen vektor dari:

$$(a) u + w$$

(b)
$$v - 3u$$

(c)
$$2(u - 5w)$$

(d)
$$3v - 2(u + 2w)$$

Jawab.

(a)
$$u+w=(4,-1)+(-3,-3)=(1,-4)$$

(b)
$$v-3u=(0,5)-3(4,-1)=(0,5)-(12,-3)=(-12,8)$$

(c)
$$2(u-5w)=2u-10w=2(4,-1)-10(-3,-3)$$

= $(8,-2)-(-30,-30)=(38,28)$

(d)
$$3v-2(u+2w)=3v-2u-4w$$

=3(0,5)-2(4,-1)-4(-3,-3)=(4,29)

Jika u = (-3, 1, 2), v = (4, 0, -8), dan w = (6, -1, -4). Tentukan komponen vektor dari:

(a) v - w

- (b) 6u + 2v
- (c) -3(v 2w)
- (d) (2u w) (v + 2u)

Jawab.

- (a) v-w=(4, 0, -8)-(6, -1, -4)=(-2, 1, -4)
- (b) 6u+2v=6(-3, 1, 2)+2(4,0,-8) = (-18,6,12)+(8,0,-16)=(-10,6,-4)
- (c) -3(v-8w)=-3((4,0,-8)-2(6,-1,-4))=-3 ((4,0,-8)-(12,-2,-8))=-3(-8,2,0) = (24,-6,0)
- (d) 2u-w=2(-3,1,2)-(6,-1,-4)=(-6,2,4)-(6,-1,-4)=(-12,3,8); v+2u=(4,0,-8)+2(-3,1,2)=(4,0,-8)+(-6,2,4)=(-2,2,-4);(2u-w)-(v+2u)=(-12,3,8)-(-2,2,-4)=(-10,1,12)