National University of Computer and Emerging Sciences

Quiz 1

for

Operating Systems Lab

(CL-220)

Course Instructor	Ms. Namra Absar
Lab Instructor (s)	Rasaal Ahmad
Section	В
Semester	Fall 2023

Department of Computer Science

FAST-NU, Lahore, Pakistan

Scenario: Secure Data Transformation

Imagine you are working as a security analyst in a high-stakes investigation firm. Your team has received a critical piece of evidence in the form of a text file containing sensitive information. However, the file is in a compromised state and needs to be securely transformed before it can be analyzed further. To ensure confidentiality and data integrity, you must develop a C/C++ program for secure data transformation with parent-child process interaction.

Here's the engaging scenario:

- **Background:** Your team has obtained a text file named "classified_data.txt" that contains sensitive information crucial to an ongoing investigation. The file is highly confidential and has been tampered with, making it unreadable in its current state.
- **File Transformation Options:** You are presented with two transformation options to prepare the data for analysis:
 - Option 1: Data Decryption This option will decrypt the contents of the file, provided you have a decryption key. The decryption process will be executed by a child process to maintain security. (Decryption Key: Shift 1 character backward (Caesar cipher))
 - Option 2: Data Redaction This option will redact sensitive information within the file, replacing it with placeholders like "[REDACTED]." This is useful when you cannot access the decryption key.
- **Secure Transformation:** The program you develop must ensure the highest level of security during the transformation process. The decrypted or redacted data should never be exposed to unauthorized access.
- User Interaction: At the start of the program, you should prompt the investigator (user) to provide the names of the input and output files. Ensure that the user provides valid file names; otherwise, display an error message and terminate the program.
- Transformation Choice: Once the file names are provided, the investigator will be asked to choose one of the two available transformation options: Data Decryption (Option 1) or Data Redaction (Option 2).
- **Transformation Execution:** After the choice is made, your program will create a child process to perform the selected transformation while maintaining the utmost security. If the decryption option is selected, ensure that the decryption key is requested securely.
- **Data Handling:** The child process will execute the transformation without exposing any sensitive data. Once complete, it will return the transformed data securely to the parent process.

- Report Generation: The parent process will receive the transformed data and append it to the specified output file. Additionally, it should generate a report summarizing the transformation process and any additional actions taken, such as decryption or redaction.
- Error Handling: Your program should handle any errors gracefully, including invalid file names, incorrect transformation choices, or decryption key-related issues. Provide informative error messages to guide the investigator.

Sample Input:

• Input File: "classified data.txt"

• Output File: "output.txt"

Transformation Options:

- Option 1: Decrypt Data This option will decrypt the contents of the file.
- Option 2: Redact Data This option will redact sensitive information within the file.

Scenario 1: Decrypt Data (Option 1)

Suppose you have the following encrypted data in "classified_data.txt":

```
Encrypted Data: "Uifsf jt b tfdsfu npofz"

Decryption Key: Shift 1 character backward (Caesar cipher)
```

Sample Output:

• Transformed Data: "There is a secret message" (appended to "output.txt")

Scenario 2: Redact Data (Option 2)

The program scans the text for SSNs (in the format "###-###") and securely redacts them, replacing them with "[REDACTED]."

Suppose you have sensitive data in "classified_data.txt" containing a social security number (SSN):

```
Original Data: "Please find enclosed the SSN: 123-45-6789."
```

Sample Output:

•	Transformed "output.txt")	Data:	"Please	find	enclosed	the	SSN:	[REDAC	ГЕD]."	(appende	ed to
	se scenarios, thaction) on the s										