

Designing single cell experiments

Carla Jones
cjb@sanger.ac.uk
@carlajonesBio

- 1- Single cell approaches
- 2- Sample preparation
- 3- Cell coverage
- 4- Deep atlasing and rare populations
- 5 Multiplexing and proteomics

1- Single cell approaches

2- Sample preparation

3-Cell coverage

4- Deep atlasing and rare populations

5 - Multiplexing and proteomics

Parse Evercode™ Split Pool Combinatorial Barcoding

Superior molecular efficiency of Parse v2 compared to 10x Genomics v3.1

Downsampled Parse v2 data to same reads per cell as 10x Genomics v3.1

- E.g 10x Genomics 207M total reads / 16,181 cells = 12,817 reads per cell
- · Accounts for effect of doublet rate and ambient RNA

Metric	Parse v2	10x Genomics v3.1
Cells	3,683 (1/3 10k kit)	16,181 (1 capture)
Doublet rate (Heterotypic)	0.73%	7%
Reads per cell	16,587	12,817
Sequencing saturation	5.5%	54.3%
Reads in cells	84.2%	50.8%
Transcriptome mapping	72.8%	47.3%
Exonic mapping	22.4%	26.3%
Intronic mapping	?	47%

Combinatorial Indexing

Fixed cells or nuclei

Distribute

First barcode

Pool

Distribute

Second barcode

1- Single cell approaches

2- Sample preparation

3-Cell coverage

4- Deep atlasing and rare populations

5 - Multiplexing and proteomics

6- Batch controls

Impact of freezing and resting on PBMC transcriptome

Frozen PBMCs upregulate stress response genes after thawing

Frozen PBMCs upregulate stress response genes after thawing

Would resting cells avoid cryopreservation stress response?

mitochondrial reads per cell (%)

₽ 25

percentage

Are there higher levels of mitochondrial reads detected in cells at early time points?

No difference in % of cells expressing high mito reads across timepoints

UMAP 1

High expression of stress response genes in multiple cell types at early time points

CAUTION: stress genes are not the only genes being modulated after resting. The choice of resting or not resting is experiment -dependent

- 1- Single cell approaches
- 2- Sample preparation
- 3- Cell coverage
- 4- Deep atlasing and rare populations
- 5 Multiplexing and proteomics

How many cells do I need per sample

a minimum of ~ 100 cells are required for statistical analysis

Tissue heterogeneity
Distribution of populations of interest

- 1- Single cell approaches
- 2- Sample preparation
- 3- Cell coverage
- 4- Deep atlasing and rare populations
- 5 Multiplexing and proteomics
- 6- Batch controls

Oh no! I am investigating rare populations!!!

Enriching rare cell populations for sc-RNA-seq analysis

Enriching rare cell populations for sc-RNA-seq analysis

Tarran Rupall

Enriching rare cell populations for sc-RNA-seq analysis

- 1- Single cell approaches
- 2- Sample preparation
- 3- Cell coverage
- 4- Deep atlasing and rare populations
- 5 Multiplexing and proteomics

What about protein analysis?

What about protein analysis?

Optimising CITEseq staining

Optimising CITEseq staining

Optimisation for CITEseq experiments should start with FACS using PE Followed by single cell sequencing

Article Open access | Published: 02 December 2022

Titration of 124 antibodies using CITE-Seq on human PBMCs

Felix Sebastian Nettersheim, Sujit Silas Armstrong, Christopher Durant, Rafael Blanco-Dominguez, Payel Roy, Marco Orecchioni, Vasantika Suryawanshi & Klaus Ley 🖾

Scientific Reports 12, Article number: 20817 (2022) | Cite this article

Multiplexing Samples

nature reviews genetics

Explore content > About the journal > Publish with us >

nature > nature reviews genetics > expert recommendation > article

Expert Recommendation | Published: 31 March 2023

Best practices for single-cell analysis across modalities

<u>Lukas Heumos, Anna C. Schaar, Christopher Lance, Anastasia Litinetskaya, Felix Drost, Luke Zappia,</u>

<u>Malte D. Lücken, Daniel C. Strobl, Juan Henao, Fabiola Curion, Single-cell Best Practices Consortium,</u>

<u>Herbert B. Schiller</u> & <u>Fabian J. Theis</u> □

Nature Reviews Genetics 24, 550-572 (2023) | Cite this article

57k Accesses | 2 Citations | 275 Altmetric | Metrics

Scan me!

Questions

cjb@sanger.ac.uk @carlajonesBio

