Course Title: Linear Algebra
Semester: Spring 2023

Lecturer(s): Dr. Muhammad Saad

Pharos University

Faculty of Computer Science and Artificial Intelligence

Sheet #1

Lecture Problems:

- 1. If $\overline{A} = 3\underline{i} + 2j \underline{k}$ and $\overline{B} = 6\underline{i} + 3\underline{k}$. Find the vectors $4\overline{A}$ and $\overline{A} 2\overline{B}$ in \mathbb{R}^3 .
- 2. If $\overline{A} = 3\underline{i} + 2\underline{j} \underline{k}$, evaluate $\|\overline{A}\|$.
- 3. If $\overline{A} = \langle 2, -3, a, 4 \rangle$, $\overline{B} = \langle 1, b, 0, 5 \rangle$ and $\overline{C} = \langle c, 3, -1, d \rangle$. Find the value of a, b, c and d such that $2\overline{A} 3\overline{B} = \overline{C}$.
- 4. Find the unit vector of the resultant of two vectors $S = \langle 3, -5, 2 \rangle$ and $T = \langle 1, 2, 4 \rangle$.
- 5. Find the values of a and b which make the vectors $\begin{bmatrix} a \\ -2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \\ b \end{bmatrix}$ be parallelin \mathbb{R}^4 .
- 6. Find a vector **b** of magnitude 8 and parallel to the vector $\mathbf{a} = 3\underline{i} + 2j 6\underline{k}$ but in the opposite direction.
- 7. Find the vector **v** in \mathbb{R}^4 comes from the point (1, 2, -3, 4) going to (7, 2, 0, 4).
- 8. If $\overline{A} = 4\underline{i} + 2\underline{j} \underline{k}$ and $\overline{B} = 2\underline{i} 5\underline{j} + 3\underline{k}$, evaluate $\overline{A} \cdot \overline{B}$.
- 9. Find the value of c making the vectors $\mathbf{a}=(c,1,-3)$ and $\mathbf{b}=(c,-2c,1)$ orthogonal.
- 10. Find the acute angle between the two vectors $\overline{A} = 5\underline{i} + 2\underline{j} 2\underline{k}$ and $\overline{B} = 3\underline{i} 5\underline{j} + 6\underline{k}$.
- 11. Calculate the work done by the force $\overline{F} = 5\underline{i} + 2\underline{j} 2\underline{k}$ Newton to move a particle from the point to the point from (1, 2, -3) to (5, 0, 3) in meters.
- 12. If $\overline{A} = 4\underline{i} + 2\underline{j} \underline{k}$ and $\overline{B} = 2\overline{i} 5\overline{j} + 3\overline{k}$, find $\overline{A} \times \overline{B}$.
- 13. Find the vector \overline{Q} of length 8 which is perpendicular on both $\overline{A} = 4\underline{i} + 10\underline{j} \underline{k}$ and $\overline{B} = 7\underline{i} 5\underline{j} + 2\underline{k}$.
- 14. Find the area of the parallelogram determined by the vectors $\mathbf{a} = \langle 1, 3 \rangle$ and $\mathbf{b} = \langle 2, -4 \rangle$.
- 15. Find the area of triangle PQR of vertices P(1,2,3), Q(-1,1,3) and R(-3,6,5).
- 16. Find $\overline{A} \cdot (\overline{B} \times \overline{C})$ if $\overline{A} = 4\hat{i} + 10\hat{j} \hat{k}$, $\overline{B} = 7\hat{i} 5\hat{j} + 2\hat{k}$ and $\overline{C} = 6\hat{i} 6\hat{j} + 2\hat{k}$.
- 17. Find the volume of parallelepiped determined by the vectors $\overline{A} = 4\underline{i} + 11\underline{j} 2\underline{k}$, $\overline{B} = 3\underline{i} 5\underline{j} + 2\underline{k}$ and $\overline{C} = 6\underline{i} \underline{j} + 2\underline{k}$.
- 18. Prove that the vectors $\overline{A}=14\underline{i}+10\underline{j}-2\underline{k}$, $\overline{B}=3\underline{i}-5\underline{j}+2\underline{k}$ and $\overline{C}=8\underline{i}+20j-6\underline{k}$ are coplanar.

Classroom Problems:

- 1. State which of the following are scalars and which are vectors:
 - (a) specific heat;
- (c) distance;

(e) magnetic field intensity;

(b) momentum;

(d) speed;

(f) kinetic energy.

Course Title: Linear Algebra
Semester: Spring 2023

Lecturer(s): Dr. Muhammad Saad

Pharos University

Faculty of Computer Science and Artificial Intelligence

- 2. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements graphically and determine the resultant displacement: (a) graphically, (b) analytically.
- 3. Let A=(1,3,-2,6), B=(4,-3,3,1) and C=(2,1,5,0) be three vectors in \mathbb{R}^4 . Evaluate the following vectors:
 - (a) A + B;

(c) 7A - 2B - 3C;

(b) A + B - C;

- (d) 2A + B 3C.
- 4. Find a vector \overline{B} of length 8 which in the opposite direction of the vector $\overline{A} = \langle 3, 2, -6 \rangle$.
- 5. Find a unit vector **u** parallel to the resultant **R** of vectors $r_1 = 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k}$ and $\mathbf{r}_2 = -\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$.
- 6. Given the radius vectors $\mathbf{r}_1 = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{r}_2 = 3\mathbf{i} 4\mathbf{j} + 9\mathbf{k}$, and $\mathbf{r}_3 = -\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$. Find the magnitudes of: (a) \mathbf{r}_3 , (b) $\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3$, (c) $\mathbf{r}_1 \mathbf{r}_2 + 4\mathbf{r}_3$.
- 7. Find a unit vector **u** parallel to the resultant **R** of vectors $a = \langle 2, -4, 5 \rangle$ and $\mathbf{b} = \langle 1, 2, 3 \rangle$.
- 8. Find the value of $(A + B) \cdot (A B)$ if ||A|| = 3 and ||B|| = 4.
- 9. Find the angle between the vectors $\mathbf{a} = \langle 12, -5, 2, 3 \rangle$ and $\mathbf{b} = \langle 3, 4, 0, 5 \rangle$ in \mathbb{R}^4 .
- 10. Find the angle between the vector $\overline{A} = 3\underline{i} 5j + 2\underline{k}$ and the *y*-axis.
- 11. Find the value of c making the vectors $\mathbf{a} = (c, 1, -3, 5, 6)$ and $\mathbf{b} = (4, -2c, 1, 0, c)$ orthogonal in \mathbb{R}^4 .
- 12. Find the value of c which makes the vectors $2\underline{i} 2j \underline{k}$ and $-\underline{i} + j + c\underline{k}$ parallel.
- 13. Find the work done in moving an object along a straight line:
 - (a) from (3, 2, -1) to (2, -1, 4) in a force field given by F = (4, 3, -2).
 - (b) from (3, 4, 5) to (-1, 9, 9) in a force field given by $F = \langle -3, 5, -6 \rangle$.
- 14. Evaluate: (a) $2j \times 3\underline{k}$, (b) $2j \times -\underline{k}$, (c) $-3\underline{i} \times -2\underline{k}$, $2j \times (3\underline{i} \underline{k})$.
- 15. Suppose $\overline{A} = \hat{j} + 2\hat{k}$ and $\overline{B} = \hat{i} + 2\hat{j} + 3\hat{k}$. Find: (a) $A \times B$, (b) $B \times A$, (c) $(A + B) \times (A B)$.
- 16. Suppose $\overline{A} = -\hat{i} + \hat{j} + \hat{k}$, $\overline{B} = \hat{i} + \hat{j} \hat{k}$, and $\overline{C} = \hat{i} + \hat{j} \hat{k}$. Find (a) $(A \times B) \times C$, (b) $B \times (A \times C)$.
- 17. Find the area of the parallelogram determined by the vectors $\mathbf{a}=<1,3>$ and $\mathbf{b}=<2,-4>$ in $\mathbb{R}^2.$
- 18. Determine a unit vector perpendicular to the plane of $\overline{A} = 2\underline{i} + 6\underline{j} + 3\underline{k}$ and $\overline{B} = 4\underline{i} + 3\underline{j} + k$.

Homework Problems:

- 1. State which of the following are scalars and which are vectors:
 - (a) electric field intensity;
- (c) work;
- (e) temperature;
- (g) shearing stress;

- (b) entropy;
- (d) centrifugal force;
- (f) charge;
- (h) frequency.
- 2. Suppose $\overline{A} = \hat{i} + 3\hat{j} 2\hat{k}$ and $\overline{B} = 4\hat{i} 2\hat{j} 4\hat{k}$. Find: (a) $\overline{A} + \overline{B}$, (b) $-2\overline{A}$, (c) $3\overline{A} + 2\overline{B}$, (d) $3\overline{A} + 2\overline{B}$ } (e) $(2\overline{A} + \overline{B}) \cdot (\overline{A} + 3\overline{B})$.

Course Title: Linear Algebra Spring 2023 Semester:

Dr. Muhammad Saad Lecturer(s):

Pharos University

Faculty of Computer Science and Artificial Intelligence

3. Find the angle between $\overline{A} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and $\overline{B} = 7\mathbf{i} + 24\mathbf{k}$.

- 4. Determine the value of α so that $\mathbf{a} = \begin{bmatrix} 2 \\ \alpha \\ 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2\alpha \\ 4 \\ -5 \end{bmatrix}$ are perpendicular.
- 5. Prove that two vectors $\mathbf{a} = \mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$ are perpendicular.
- 6. Find the values of β for which vectors $\overline{A} = \langle \beta, -2, 1 \rangle$ and $\overline{B} = \langle 2\beta, \beta, -4 \rangle$ are perpendicular.
- 7. Determine a unit vector perpendicular to the plane of $\overline{A} = 2\underline{i} + 6j + 3\underline{k}$ and $\overline{B} = 4\underline{i} 3j + \underline{k}$, $(c)A \cdot (B \times C)$.
- 8. Find a unit vector perpendicular to both vector $\overline{A} = 4\underline{i} j + 3\underline{k}$ and $\overline{B} = -2\underline{i} + j + 2\underline{k}$.
- 9. Find the area of the parallelogram of the vector sides $\mathbf{a} = \langle 2, 3, , -1 \rangle$ and $\mathbf{b} = \langle 1, 1, 5 \rangle$.
- 10. Suppose $\overline{A} = \hat{i} 2\hat{j} 3\hat{k}$, $\overline{B} = 2\hat{i} + \hat{j} \hat{k}$, and $\overline{C} = \hat{i} + 3\hat{j} 2\hat{k}$. Find:

(a)
$$(\overline{A} \times \overline{B}) \times \overline{C}$$
;
(b) $\overline{A} \cdot (\overline{B} \times \overline{C})$;

(c)
$$(\overline{A} \times \overline{B}) \times (\overline{B} \times \overline{C})$$
; (e) $(\overline{A} \times \overline{B}) \cdot \overline{C}$;

(e)
$$(\overline{A} \times \overline{B}) \cdot \overline{C}$$
;

(b)
$$\overline{A} \cdot (\overline{B} \times \overline{C})$$
;

(d)
$$\overline{A} \times (\overline{B} \times \overline{C})$$
;

(f)
$$(\overline{A} \times \overline{B})(\overline{B} \cdot \overline{C})$$
.

Course Title: Linear Algebra
Semester: Spring 2023

Lecturer(s): Dr. Muhammad Saad

Pharos University

Faculty of Computer Science and Artificial Intelligence

Sheet #2

Lecture Problems:

- 1. Given $\mathbf{R} = 3\cos t\mathbf{i} + 3\sin t\mathbf{j} + 4t\mathbf{k}$. Find: (a) $\frac{d\mathbf{R}}{dt}$, (b) $\frac{d^2\mathbf{R}}{dt}$, (c) $\left\|\frac{d\mathbf{R}}{dt}\right\|$, (d) $\left\|\frac{d^2\mathbf{R}}{dt^2}\right\|$.
- 2. Find the velocity and acceleration vectors of a particle which moves along the curve $x=2\sin t^2$, $y=2\cos 3t$, z=8t at any time t>0. Hence, calculate the magnitude of the velocity and acceleration.
- 3. A particle moves with the position vector $\mathbf{r}(t) = \cos 5t\mathbf{i} + \sin 5t\mathbf{j}$. Show that:
 - (a) The velocity vector is normal to the position vector.
 - (b) The acceleration is directed toward the origin and has a magnitude proportional to the distance from the origin.
- 4. Suppose $\mathbf{A} = 5t^2\mathbf{i} + t\mathbf{j} t^3\mathbf{k}$ and $\mathbf{B} = \sin t\mathbf{i} \cos t\mathbf{j}$. Find: (a) $\frac{d}{dt}(\mathbf{A} \times \mathbf{B})$, (b) $\frac{d}{dt}\|A\|^2$.
- 5. Evaluate the gradient for $\phi(x, y, z) = x^2 + \sin z \ln y$ at the point $(2, 1, \frac{\pi}{2})$.
- 6. Let $\mathbf{B}(x, y, z) = (x^2y \sin z)\underline{i} + (xe^{y^2}\ln z + 5)j + 2x\tan z\underline{k}$. Find div \mathbf{B} at the point (1, 1, 1).
- 7. Let $\overline{F} = \langle 3x^2y z, xz^3 + y^4, -2x^3z^2 \rangle$. Find grad (div \overline{F}).
- 8. If $\phi = 3x^2z y^2z^3 + 4x^3y + 2x 3y 5$, evaluate $\nabla^2 \phi$ at the point (1, 2, 1).
- 9. If $\bar{A} = xz^2\underline{i} + 2z\sin yj 4yz^3\underline{k}$. Find:
 - (a) curl <u>A</u>;

(b) curl curl \bar{A} ;

- (c) div curl \bar{A}
- 10. Find the unit normal vector to the surface $x^2 + y^2 = 2\cos 2z$ at the point (1, -1, 0).
- 11. Find the directional derivative of $x^2yz + 4xz^2$ at the point (1, -1, 1) in the direction $2\underline{i} \underline{j} 2\underline{k}$.
- 12. In what direction from the point (1, 2, 3) is the directional derivative of $\phi = 2xz y^2$ maximum? and what is the magnitude of this maximum?

Classroom Problems:

- 1. A particle moves along the curve $x=2t^2$, $y=t^2-4t$, and z=3t-5, where t is the time. Find the components of its velocity and acceleration at time t=1 in the direction $\mathbf{i}-3j+2\underline{k}$.
- 2. A particle moves so that its position vector is given by $\mathbf{r} = \cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}$ where ω is a constant. Show that:
 - (a) the velocity \mathbf{v} of the particle is perpendicular to \mathbf{r} ,
 - (b) the acceleration a is directed toward the origin,
 - (c) $\mathbf{r} \times \mathbf{v}$ is a constant vector.
- 3. Consider the scalar field ϕ defined by $\phi(x, y, z) = 3x^2z^2 + xy^3 + 15$. Find ϕ at the points: (a) (0, 0, 0), (b) (1, -2, 2), (c) (-1, -2, -3).

Course Title: Linear Algebra
Semester: Spring 2023

Lecturer(s): Dr. Muhammad Saad

Pharos University

Faculty of Computer Science and Artificial Intelligence

- 4. Suppose $\phi(x, y, z) = 2xz^4 x^2y + \ln z$. Find $\nabla \phi(\operatorname{grad} \phi)$ and $\|\nabla \phi\|$ at the point (2, -2, -1).
- 5. Suppose $\mathbf{A} = x^2 z^2 \mathbf{i} 2y^2 z^2 \mathbf{j} + xy^2 z \mathbf{k}$. Find $\nabla \cdot \mathbf{A}$ (or div \mathbf{A}) and $\nabla \times \mathbf{A}$ (or curl \mathbf{A}) at the point P(1, -1, 1).
- 6. Suppose $\mathbf{A} = 2yz\mathbf{i} x^2y\mathbf{j} + xz^2\mathbf{k}$, $\mathbf{B} = x^2\mathbf{i} + yz\mathbf{j} xy\mathbf{k}$, and $\phi = 2x^2yz^3$. Find: (a) $\mathbf{A} \times \nabla \phi$, (b) $\mathbf{B} \cdot \nabla \phi$, (c) $\nabla^2 \phi$.
- 7. Find the unit normal vector to the surface $x^2 + y^2 2z = 16$ at the point (3, 3, 1).
- 8. Find the directional derivative of $\phi = 4e^{x-2y+3z}$ at the point (1, -2, 0) in the direction toward the point (3, 4, 3).
- 9. Find the directional derivative of the function $F(x, y, z) = 2z^3 3(x^2 + y^2)z$ at he point (1, 1, 1) along the *y*-axis and also long the vector $\mathbf{a} = \langle 1, 2, -2, \rangle$.
- 10. Find the directional derivative of the scalar function $f(x, y, z) = \ln\left(\frac{x^2y^3}{z}\right)$ at the point $\left(\frac{1}{2}, \frac{1}{6}, \frac{1}{3}\right)$ in the direction of the vector $\mathbf{a} = \langle 6, 2, -3 \rangle$.
- 11. Find the acute angle between the surfaces $xy^2z=3x+z^2$ and $3x^2-y^2+2z=1$ at the point (1,-2,1).

Homework Problems:

- 1. A particle moves along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$. Find the magnitude of velocity and acceleration at t = 0.
- 2. Given the scalar field defined by $f(x, y, z) = 4yx^3 + 3xyz z^2 2$. Find (a) f(1, -1, -2), (b) f(0, -3, 1).
- 3. Evaluate div $(2x^2z\underline{i} xy^2zj + 3yz^2\underline{k})$.
- 4. Let $f = 3x^2z y^2z^3 + 4x^3y + 2x 3y 5$. Find $\nabla^2 f$.
- 5. Let $U = 3x^2y$ and $V = xz^2 2y$. Evaluate grad [(grad U) · (grad V)].
- 6. Suppose $\mathbf{A} = 2x^2\underline{i} 3yzj + xz^2\underline{k}$ and $f = 2z x^3y$. Find $\mathbf{A} \cdot \nabla f$ and $\mathbf{A} \times \nabla f$ at the point (1, -1, 1).
- 7. Suppose $\phi = x2^z + e^{y/x}$ and $\psi = 2z^2y xy^2$. Find (a) $\nabla(\phi + \psi)$ and (b) $\nabla(\phi \cdot \nabla\psi)$ at the point (1,0,-2).
- 8. Let $\mathbf{A} = 2xz^2\mathbf{i} yz\mathbf{j} + 3xz^3\mathbf{k}$ and $\phi = x^2yz$. Find, at the point (1, 1, 1): (a) $\nabla \times \mathbf{A}$, (b) curl $(\phi \mathbf{A})$, (c) $\nabla \times (\nabla \times \mathbf{A})$, (d) $\nabla [\mathbf{A} \cdot \text{curl } \mathbf{A}]$, (e) curl grad $(\phi \mathbf{A})$.
- 9. Find the rate of change of the function $g(x, y, z) = x^2yz^3 + 4xz^3$ at the point (1, -2, -1) in the direction of the vector 2i j 2k.
- 10. Find the directional derivative of $\psi = xy^2z^3$ in the direction of normal vector of the surface $x^2 + xy^2 + yz^2 = 7$ at the point (1, 2, 1).
- 11. Find a unit vector that is perpendicular to the surface of the paraboloid of revolution $z = x^2 + y^2$ at the point (1, 2, 5).
- 12. Find the constants a and b so that the surface $ax^2 byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).