許 公 報(B2) $\Psi 4 - 37094$ ⑫特

®Int. Cl. 5

識別記号

庁内整理番号

2000公告 平成 4 年(1992) 6 月18日

C 08 J // C 08 J 3/26 CEQ

7258-4F 7918-4F

発明の数 1 (全4頁)

含フツ素エラストマー成形品の表面改質方法

20特 顧 昭62-125030

開 昭63-291930 63公

22出 顧 昭62(1987)5月23日 @昭63(1988)11月29日

⑫発 明 者 栗 原 正 和

神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株

式会社内

頭 人 创出 旭化成工業株式会社 大阪府大阪市北区堂島浜1丁目2番6号

いの点で実用的でない。

個代 理 人

弁理士 阿形 明

直 杳 官 中 審 \mathbf{B} 久

1

釣特許請求の範囲

1 含フツ素エラストマーの加硫成形品の表面に ポリヒドロキシ化合物を含浸させ、再度加硫する ことを特徴とする含フツ素エラストマー成形品の 表面改質方法。

2 含フツ素エラストマーが、フツ素含量63~71 重量%、極限粘度80~500元/4及び分子量5万 以下のポリマー成分含量15重量%以下のものであ る特許請求の範囲第1項記載の方法。

発明の詳細な説明

産業上の利用分野

本発明は含フツ素エラストマー成形品の新規な 表面改質方法に関するものである。さらに詳しく いえば、本発明は、含フツ素エラストマー成形品 めの表面改質方法に関するものである。

従来の技術

従来、フツ素ゴムは耐熱性、耐油性、耐溶剤性 などのパランスに優れることから、例えば自動 幅広く用いられている。このフツ素ゴムにおいて は、特に自動車の吸排気系統、燃料系統の制御バ ルブなどに用いられる場合、その表面が非粘着性。 であることが要求される。

め、一般的に表面改質が困難であるが、これまで に例えばフツ素ガスや第二級アミンを用いる方 2

法、あるいは液体アンモニア中において金属ナト リウムで処理することにより表面を非粘着性及び 低摩擦性にする方法がしられている(特開昭61-247744号公報)。

- しかしながら、前者の方法においては、形成品 の表面が硬化して、ゴムとしての性質がそこなわ れることが多いし、また、後者の方法において は、危険性が高い液体アンモニアと金属ナトリウ ムを使用する上に、-70~-35℃という超低温雰 10 囲気で作業する必要があるために、装置及び取扱
- 一方、物理的表面処理方法として、例えばフツ 素樹脂コーテイング方法、高エネルギーによるエ ツチング方法、デポジット方法などが知られてい の表面に、非粘着性及び低摩擦性を付与させるた 15 る。しかしながら、これらの方法においては、い ずれも表面の非粘着化や低摩擦化については十分 に満足しうるものではなく、その上処理コストの 上昇を免れない。さらに、フツ素ゴム中の含まれ る低分子量成分や低揮発成分などをトルエンのよ 車、工業機械、化学プラントなどの分野において 20 うな溶媒で抽出する方法も知られているが、この ような方法では、表面の非粘着化や低摩擦化は十 分に達成されない。

発明が解決しようとする問題点

本発明は、このような従来のフツ素ゴムの表面 ところで、フツ素ゴムは化学的に安定であるた 25 処理方法が有する欠点を克服し、極めて簡単な操 作により、含フツ素エラストマー加硫成形品の表 面に、エラストマーとしての物性をなんらそこな

うことなく、非粘着性及び低摩擦性を付与するた の工業的な表面改質方法を提供することを目的と してなされたものである。

問題点を解決するための手段

表面改質を行いうる方法を開発するために鋭意研 究を重ねた結果、ポリヒドロキシ化合物を含フツ 素エラストマー加硫成形品の表面に含浸させ、再 度加硫することにより、その目的を達成しうるこ するに至つた。

すなわち、本発明は、含フツ素エラストマーの 加硫成形品の表面に、ポリヒドロキシ化合物を含 浸させ、再度加硫することを特徴とする含フツ素 のである。

以下、本発明を詳細に説明する。

本発明方法が適用される含フツ素エラストマー の加硫成形品は、例えばフッ化ピニリデン一六フ ツ化プロピレン共重合体、フツ化ビニリデン一六 20 フツ化プロピレンー四フツ化エチレン三元共重合 体及びこれらの臭素又はヨウ素含有共重合体、あ るいはフツ素系エーテル共重合体などのポリヒド ロキシ加硫可能な含フツ素エラストマーから成る 加硫成形品である。

前記含フツ素エラストマーの中で、特にフツ素 含量が63~71重量%、極限粘度が80~500元/ダ、 分子量5万以下のポリマー成分含量が15重量%以 下のものが好適である。

マーに、例えば酸化マグネシウムなどの二価の金 属水酸化物、水酸化カルシウムなどの二価の金属 水酸化物,カーボンブラック、さらには加硫剤や 加硫促進剤などを配合して、加硫成形したもので ある。

本発明方法においては、加硫剤としてポリヒド ロキシ化合物が用いられる。このポリヒドロキシ 化合物としては、例えばピスフエノールA、ハイ ドロキノン、ピスフエノールAFなどが挙げられ るが、これらの中で特にピスフエノールAFが好 40 抑えることができる。 ましい。

本発明方法においては、これらのポリヒドロキ シ化合物を適当な有機溶媒に溶解して表面処理液 を調製し、この溶液を、含フツ素エラストマー加

硫成形品の表面に含浸させ、再度加硫することに よつて該表面を改質する。該有機溶媒については 特に制限はないが、含フツ素エラストマーを膨潤 させるもの、例えばアセトン、メチルエチルケン 本発明者は簡単な手段で含フツ素エラストマー 5 ト、アセトンーメタノール混合系などが好適であ

本発明方法においては、前記のポリヒドロキシ 化合物を含有する表面処理液に、所望に応じ非粘 着性をさらに向上させるための加硫促進剤を溶解 とを見い出し、この知見に基づいて本発明を完成 10 させてもよい。この加硫促進剤としては、例えば オルガノ四級アンモニウムハライド、オルガノホ スホニウムハライド、ピス〔オルガノホスフイ ン】イミニウムハライドなどが用いられる。それ ぞれの代表的なものとしては、8-ベンジルー エラストマー成形品の表面改質方法を提供するも 15 1,8-ジアザービシクロ(5,4,0)-7-ウンデセニウムクロリド、ベンジルトリフエニル ホスホニウムクロリド、ピス〔ベンジルジフエニ ルホスフイン〕イミニウムクロリドが挙げられ る。

> このほか、加硫促進剤の効果をよりいつそう高 めるための加硫促進活性剤として、ジメチルスル ホン、p, p'ージクロロジフエニルスルホンのよ うなスルホン類や、ジメチルスルホキシド、ジェ チルスルホキシドのようなスルホキシド類を加え **25** ることもできる。

本発明方法においては、含フツ素エラストマー の加硫成形品の表面に、前記の表面処理液を含浸 させるには、通常浸せき法が用いられる。表面処 理液の濃度や、浸せきの温度、時間につては特に また、該加硫成形品は、前記含フツ素エラスト 30 制限はないが、該表面における処理液の含浸量が 多すぎると、成形品の硬度が大幅に上昇し、ゴム 弾性が低下するので、高濃度の表面処理液に短時 間浸せきして、該処理液を膨潤含浸させ、再度加 硫することにより、表面のみの架橋密度を大きく 35 することが望ましい。この方法によつて、該含フ ツ素エラストマーの加硫成形品は、硬度の上昇が 小さくてゴム弾性がそこなわれることなく、表面 に非粘着性と低摩擦性が付与される上に、引張時 のクラックの発生もなく、かつ破断伸度の低下も

> また、溶媒の膨潤性の程度によつて、適正な表 面処理濃度、浸せき温度、浸せき時間は左右され るが、通常表面処理液中の加硫剤の含有量は1~ 50重量%、加硫促進剤の含有量は0.3~20重量%

6

の範囲で選ばれる。処理温度は0~100℃の範囲 が好ましく、処理時間は2~120分間程度が好適 である。

このようにして、含フツ素エラストマーの加硫 後、再度加硫処理を行う。この際の温度、時間に ついては加硫が達成される限り特に制限はない が、通常は最初の加硫の場合よりも高温でかつ長 時間行われる。この加硫温度としては180~270℃ の範囲が好適である。

発明の効果

本発明方法によつて、含フツ素エラストマーの 加硫成形品の表面に、エラストマーとしての物性 をそこなうことなく、非粘着性及び低摩擦性を付 与することができる。このようにして表面が改質 15 された含フツ素エラストマーの加硫成形品は、例 えば非粘着性や低摩擦性が要求される制御パル **ブ、オイルシール、ダイヤフラム、Oーリングな** どに好適に用いられる。

実施例

次に実施例により本発明をさらに詳細に説明す るが、本発明はこれらの例によつてなんら限定さ れるものではない。

なお、粘着力は次の方法に従つて測定した。

すなわち、ゴムシート (35×35×2 mm) を平滑 25 な台の上に低熱性の両性テープで貼り、その上に 鍾り受け部及び吊り具を備えた半鋼(JIS Sー 45C) 製の平面リングをゴムシートと接触するよ うに置く(なお、リングのサイズは外径25mm、内 径19㎜であり、ゴムシートと接触する面は井1000 30 比較例 1、2 研摩紙で研摩してある)。次いで、リングの鍾り 受け部にゴムシートへの全荷重が609g/cdにな るように鍾りを乗せる。その全体を120℃のオー ブン中に入れて20時間放置後、取り出して約4時 りをはずし、ゴムシートにリングが粘着状態で上 記吊り具を利用したロードセルを含む引張試験機 に取付け、50mm/minの引張り速度で引張り粘着

力を測定する。

実施例 1~5

各成分を別表に示す配合割合で用いて、6イン チロールで混練したのち、熱プレスを用いて、 成形品の表面に処理液を含浸させたのち、乾燥 5 177°C、10分間一次加硫を行い、90×160×2 xxxの シートを作成した。

> 一方、ピスフエノールAF又はこれと加硫促進 剤とを含有するアセトン溶液から成る表面処理液 を調整し、この液中に前記の加硫シートを該表に 10 示す条件で浸せきしたのち、一夜風乾し、さらに 120℃で30分間乾燥した。

次に、このものをオーブン中において、232℃ で24時間保持して二次加硫を行い、粘着力を求め た。その結果を該表に示す。

なお、ポリマーAにおける分子量5万以下のポ リマー成分含量Msは、次に示す条件に従って分 子量分布を測定して求めた。

液体クロマトグラフ:LC-3A型 (島津製作所 (株)數

20 カラム:KF-80M(2本)+KF-800F(プレカ ラム) (昭和電工(株)製)

検出器: ERC-7510S(エルマ光学(粉製) インテグレーター:700A(システムインスツル メンツ製)

展開溶媒:テトラヒドロフラン

濃度:0.1重量%

温度:35℃

分子量検量線用標準ポリマー: 単分散ポリスチ レン各種(東洋曹達㈱製)(M/M~1.2(max))

別表に示す配合組成を用い、かつ表面処理しな いこと以外は、実施例1~5と同様な操作を行つ た。その結果を該表に示す。

実施例と比較例の結果から、本発明の方法によ 間放冷する。23℃まで温度が下がつたところで鍾 35 る非粘着性、低摩擦性の付与は単なる硬度上昇に よるものでないことが明らかであり、その効果は 著しい。

			実 施 例					比較例	
			1	2	3	4	5	1	2
配合組	ポリマーA ¹⁾		100	100	100	100	_	100	_
成	vitonE-602	•	_	_	_	_	100	_	100
(重量部)	MTカーボンフ	ブラツク	30	30	30	30	30	30	30
	Ca(OH) ₂		6	6	6	6	6	6	6
	MgO(高活性)		3	3	3	3	3	3	3
	ピスフエノー	-JVAF	2	2	2	2	2	2	2
	BDP1C ₃	٠.	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	ジメチルサル	レフオン	2	2	2	2	2	2	2
最初の加硫177℃ (分)			10	10	10	10	10	10	10
表面処 理条件	ピスフエノー	-ルAF (wt%)	33	10	10	10	10	/	/
·	BDPIC3,	(wt%)	_	2	2	_	2		/
	BIPPC4)	(wt%)	_	· <u>-</u>	_	2	_	/.	/
	溶媒		アセトン	アセトン	アセトン	アセトン	アセトン	/	. / .
	浸せき温度	(℃)	20	20	20	20	20		/
-	浸せき時間	(分)	240	15`	120	15	15	/	/
再度加硫232℃ (時間)			24	24	24	24	24	24	24
再度加硫後のHs (JIS A)			87	82	87	81	81	77	78
粘着力 (kgf)			1.3	0.5	0	0.5	1.5	23	35

- 組成フツ化ビニリデン/六フツ化プロピレン/四フツ化エチレン=69/13/18mo1%
 Ms =1.5%(分子量5万以下のポリマー量の全体量に対する割合)
 極限粘度数200ml/g(溶媒メチルエチルケトン、温度35℃)
- 2) デユポン社製フツ素ゴム
- 3) ピス(ペンジル・ジフエニルホスフイン)イミニウムクロライド
- 4) ベンジル・トリフエニルホスホニウムクロライド