Assinale inequivocamente apenas a opção que considerar mais correta em cada pergunta.

- 1. Sejam dadas duas funções, $t(n) \in g(n)$, uma constante positiva c e um inteiro não-negativo n0.
 - a) Se $t(n) \le cg(n)$, para todo n > n0, então t(n) é da ordem de $\Omega(g(n))$, i.e., t(n) pertence a $\Omega(g(n))$.
 - b) Se $t(n) \ge cg(n)$, para todo n > n0, então t(n) é da ordem de O(g(n)), i.e., t(n) pertence a O(g(n)).
 - c) Ambas estão corretas.

(Se e0 escão tracelos)

- d) Nenhuma está correta.
- 2. Considere (muitas) instâncias distintas de um mesmo problema, todas da mesma dimensão, e que foram resolvidas usando um mesmo algoritmo.
 - a)Se o esforço computacional necessário para resolver cada uma dessas instâncias depende da configuração de cada instância, a análise da eficiência computacional do algoritmo implicará resultados distintos para o pior caso e para o caso médio.
 - b) Se o esforço computacional necessário para resolver cada uma dessas instâncias foi idêntico, a análise da eficiência computacional do algoritmo implicará resultados distintos para o pior caso e para o caso médio.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 3. A tabela abaixo apresenta o número de operações básicas efetuadas, por um determinado algoritmo, para sucessivos valores de n.

N											1024
M(n)	3	4	5	6	7	8	9	10	11	12	13

Trata-se de um algoritmo com ordem de complexidade:

- a) quadrática.
- b) linear.
- (c) logarítmica.
- d) Nenhuma está correta.
- 4. A tabela abaixo apresenta o número de operações básicas efetuadas, por um determinado algoritmo, para sucessivos valores de n.

N	1	2	4	8	16	32	64	128	256
M(n)	4	12	40	144	544	2112	8320	33024	1315584

Trata-se de um algoritmo com ordem de complexidade:

- a) quadrática.
- b) linear.
- c) logarítmica.
- (d) Nenhuma está correta.

5. A tabela abaixo apresenta o número de operações básicas efetuadas, por um determinado algoritmo, para sucessivos valores de n.

N	1	2	3	4	5	6	7	8	9	10
M(n)	1	2	5	3	8	13	21	34	55	89

- a) Da tabela, obtém-se a seguinte relação recorrente para o número de operações, quando n > 2: M(n) = M(n 1) + M(n 2).
- b) Trata-se de um algoritmo com ordem de complexidade exponencial.
- c) Ambas estão corretas.
- d) Nenhuma está correta.
- 6. Considere o seguinte array de 6 elementos, que se pretende ordenar usando o algoritmo "Bubblesort"

"Bubblesort". (
$$t_{n(x)} = Cennfanogaes$$
)
$$0 1 2 3 4 5$$

$$6 5 4 3 2 1$$

- a) São efetuadas 5 trocas entre elementos do array, para que seja ordenado por ordem crescente.
- b) São efetuadas 15 trocas entre elementos do array, para que seja ordenado por ordem crescente.
- c) São efetuadas 21 comparações entre elementos do array, para que seja ordenado por ordem crescente.
- d) Nenhuma está correta.
- 7. Considere o seguinte array de 6 elementos, que se pretende ordenar usando a versão do algoritmo "Selectionsort" em que se começa por colocar o menor elemento na primeira posição.

$$\frac{m-1}{2}$$
 $\frac{2mo(as)}{(ompragas)}$ $0 1 2 3 4 5$ $6 5 4 3 2 1$

- a) São efetuadas 3 trocas entre elementos do array, para que seja ordenado por ordem crescente.
- b) São efetuadas 15 comparações entre elementos do array, para que seja ordenado por ordem crescente.
- c) Ambas estão corretas.
- d) Nenhuma está correta.
- 8. Pretende-se ordenar um dado array de n elementos, todos distintos, e que se encontram armazenados de modo aleatório. A ordem de complexidade dessa tarefa depende do algoritmo escolhido, e será
 - a) O(n²), se for usado o algoritmo Bubblesort.
 - b) O(n²), se for usado o algoritmo de ordenação por seleção (Selectionsort).
 - c) O(n log n), se for usado o algoritmo Heapsort.
 - d) Todas estão corretas.
- 9. Pretende-se resolver o Problema das Torres de Hanói, para n discos.
 - a) Para n = 2 é necessário efetuar 4 movimentos de discos.
 - b) Para n = 3 é necessário efetuar 8 movimentos de discos.

- (c) O número de movimentos de discos efetuados é da ordem de O(2^n).
- d) Todas estão corretas.
- 10. Seja dada uma escada com n degraus, que podem ser subidos um a um, dois a dois, ou três a três, ou numa qualquer combinação dos movimentos anteriores (ex., numa escada com três degraus, pode subir-se um só degrau e depois dois de uma só vez).
 - (a) Para n = 3, é possível subir a escada apenas de 4 maneiras diferentes.
 - b) Para n = 4, é possível subir a escada apenas de 6 maneiras diferentes.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 11. Seja dada uma árvore binária total, i.e., em que todos os níveis da árvore estão completamente preenchidos, com n nós.
 - (a) O número de níveis da árvore é dado por [log₂(n+1)].
 - b) O número de nós que são folhas da árvore é dado por [n div 2], em que div é o operador que determina o quociente da divisão inteira.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 12. Seja dada uma árvore binária de altura equilibrada que armazena, de modo ordenado, n números inteiros.
 - a) No pior caso, concluir que um dado número não pertence à árvore é uma operação de complexidade O(log n).
 - b) No pior caso, determinar o valor do menor elemento armazenado na árvore é uma operação de complexidade O(log n).
 - (c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 13. O "array" abaixo armazena, por níveis, os elementos de uma árvore ternária.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10	6	9	2	5	7	8	0	1	3	1	-	-	_	-

- a) O elemento de valor 6 é filho do elemento de valor 9.
- (b) A árvore tem 7 folhas.
- c) Ambas estão corretas.
- d) Nenhuma está correta.
- 14. O array abaixo armazena, por níveis, os elementos de uma árvore binária de procura ("Binary Search Tree"). Atenção à ordem associada aos elementos da árvore:

		2				
8	4	12	2	6	10	14

- a) se forem sucessivamente procurados cada um dos elementos do conjunto {2, 4, 6, 8, 10, 12, 14}, é efetuado um total de 17 consultas a elementos da árvore.
- b) para procurar na árvore qualquer um dos elementos do conjunto {1, 3, 5, 7, 9, 11, 13}, são sempre consultados 3 elementos, concluindo-se depois que o valor procurado não pertence à árvore.

- (c) Ambas estão corretas.
- d) Nenhuma está correta.
- 15. Considere um grafo orientado G(V,E), representado usando a lista ordenada dos seus nós e, para cada nó, a sua lista ordenada de adjacências.
 - a) No pior caso, adicionar uma nova aresta ao grafo orientado é uma operação de complexidade O(n).
 - b) No pior caso, verificar se um nó é isolado é uma operação de complexidade O(E).
 - c) Ambas estão corretas.
 - d)Nenhuma está correta.
- 16. A Teoria da Complexidade Computacional classifica diferentes problemas em classes de complexidade.
 - (a) A classe P contém todos os problemas de decisão que podem ser resolvidos, em tempo polinomial, por um algoritmo determinista.
 - b) A classe NP contém todos os problemas de decisão cuja solução não pode ser verificada, em tempo polinomial, por um algoritmo determinista.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 17. Em C++, a keyword auto permite:
 - a) inicializar, de modo automático, um variável com o seu default value.
 - (b) deduzir, de modo automático, o tipo de uma variável em tempo de compilação.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.
- 18. Qual das seguintes estruturas de dados (C++ containers) fornece operações eficientes isto é, com ordem de complexidade O(1) para a inserção e remoção de elementos nas suas duas extremidades?
 - a) std::vector.
 - b) std::queue.
 - c) std::deque.
 - d) Nenhuma das anteriores.
- 19. Qual é a principal característica da estrutura de dados (C++ container) std::set?
 - a) Permite armazenar elementos duplicados.
 - (b) Mantém os seus elementos ordenados.
 - c) Permite o acesso aleatório aos elementos armazenados.
 - d) Nenhuma está correta.
- 20. Em C++, o algoritmo std::count_if permite:
 - a) contar os elementos únicos de uma estrutura de dados (container).
 - b) contar o número de ocorrências de um elemento específico de uma estrutura de dados (container).
 - c) contar quantos elementos de uma estrutura de dados (container) satisfazem uma dada condição.
 - d) Nenhuma está correta.

Indique inequivocamente se cada uma das seguintes afirmações é Verdadeira ou Falsa.

- 1. Um algoritmo é definido por uma sequência de instruções possivelmente ambíguas, que permite resolver instâncias de um problema com tamanho finito em tempo finito.
- ✓ 2. Ao efetuar, usando o algoritmo clássico, o produto de matrizes A×B=C, em que a matriz A tem 10 linhas e 20 colunas e a matriz B tem 20 linhas e 10 colunas, são efetuadas 2000 multiplicações.
- r 3. Um algoritmo que gera todas as permutações de um conjunto de n elementos é um algoritmo de ordem de complexidade exponencial, i.e., pertence a O(2ⁿ). r ($^{O(n!)}$)
- \digamma 4. Uma função f(n) será de ordem de θ (g(n)), i.e., f(n) pertence a θ (g(n)), se existirem duas constantes positivas c e n₀ tais que c·g(n)≥f(n), para todo (n > n₀).
- ∨5. No caso médio, a versão iterativa do algoritmo de Pesquisa Binária num array ordenado tem ordem de complexidade O(log n).
- F 6. Quando se usa a técnica da Programação Dinâmica, é necessário resolver repetidas vezes os mesmos sub-problemas. Verdadeiro ou Falso.

$$\sqrt{7}$$
. 1 + 2 + 4 + 8 + ... + 2ⁿ - 1 = 2ⁿ - 1

$$\sqrt{8}$$
. 0 + 3 + 6 + 9 +...+3(n - 1) + 3n = 3 (n²+n)/2

- F 9. Quando se ordena um dado array de n elementos usando o algoritmo Heapsort, o primeiro passo é, habitualmente, transformar o array dado numa MIN-HEAP
- √10. Pretende-se ordenar um dado array de n elementos, todos distintos, e que se encontram armazenados de modo aleatório. Se for usado o algoritmos Heapsort, a ordem de complexidade dessa tarefa será O(n log n).
- $\sqrt{11}$. Numa árvore binária, o número máximo de nós do nível i é 2ⁱ, considerando que a raiz da árvore pertence ao nível zero (i = 0).
- ہـ12. Na travessia em Pós-Ordem de uma árvore binária, todos os elementos da subárvore direita da raiz são visitados primeiro que os elementos da subárvore esquerda da raiz. المعالية عامية على المعالية المعالي
- √13. Numa Árvore Binária de Procura ("Binary Search Tree"), a subárvore esquerda de um nó não pode conter elementos de valor superior a esse mesmo nó.
- √14. Uma árvore AVL é uma árvore binária equilibrada em altura em que, para cada nó, as alturas das suas duas subárvores diferem, sempre, de uma unidade.
- \vee 15. Um grafo (não-orientado) completo, com n vértices, tem (n² n) / 2 arestas.
- \checkmark 16. Se um grafo orientado é fortemente conexo, não tem qualquer vértice isolado.
- \lceil 17. A travessia por níveis ("Breadth-First Traversal") de um grafo orientado é habitualmente realizada usando uma gilha ("Stack").
- 18. Considere um grafo orientado G(V,E), representado usando uma lista de vértices e, para cada vértice, a sua lista de adjacências. Se o grafo for completo, existem V listas de adjacências e o número total de nós definido às várias listas de adjacências é $V \times (V-1)$.

- √19. Dado um grafo, um circuito Hamiltoniano é um caminho que partindo de um qualquer nó atravessa, uma única vez, cada um dos outros nós do grafo e regressa ao nó inicial.
- √20. Instâncias de grande dimensão do Problema do Caixeiro Viajante ("The Traveling Salesperson Problem") não são habitualmente resolúveis em tempo útil.

Cotação:

Escolha múltipla: resposta certa 0,3 valores; resposta errada –0,1 valores.

Verdadeiro / Falso: resposta certa 0,2 valores; resposta errada –0,1 valores.