

University of Colombo, Sri Lanka

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2020— 2nd Year Examination — Semester 4

IT4405 — Computer Networks

Part 2 - Structured Question Paper (ONE HOUR)

To be completed by the candidate									
Index Number									

Important Instructions

- The duration of the paper is **ONE HOUR**.
- The medium of instructions and questions is English.
- This paper has 3 questions and 8 pages.
- Answer all 3 questions. All questions do not carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book (or any part of this book), used or unused, be removed from the Examination Hall by a candidate.
- Questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- Any electronic device capable of storing and retrieving text, including electronic dictionaries and mobile phones, are **not allowed**.
- Calculators are **not** allowed.
- All rights reserved.

To be completed by the examiners

1	
2	
3	
Total	

Index Number		
--------------	--	--

1.

Consider the network depicted in the diagram above. R has two interfaces, R1 and R2. It is configured to forward packets between R1 and R2. The interface R1 of R is configured with the IP address 192.168.1.62/27. R1 has the MAC address 08:00:27:84:64:E0. R2 has the MAC address 08:00:27:84:64:F0. A and B have only a single network interface. A's interface has the MAC address 08:00:27:84:64:E1. B's network interface is configured with the IP address 192.168.2.254/24 and it has the MAC address 08:00:27:84:64:F1.

An IP packet, P, is sent from machine A to machine B.

(a). What is a suitable IP address for the network interface of A? Justify your answer.

[8 marks]

Any address in the range 192.168.1.33 - 192.168.1.61. The addresses assigned to the network interface of A and R1 should be in the same subnet. Since R1 is in the 192.168.1.32/27 network, A's interface should be assigned an IP address from this network, excluding the IP assigned to R1.

	Index Number							
--	--------------	--	--	--	--	--	--	--

1	h)	. What is a suitab	ale IP address	for the interface	P R 2 of R 2 Justif	y vour answer
l	υ	. Wiiai is a suitat	ne ir audiess	s for the interface	t KZ OI K! Justii	y your answer.

[8 marks]

Any address in the range 192.168.2.1 - 192.168.2.253.

B and R2 should be in the same subnet.

Since B is in the 192.168.2.0/24 network, R2 should be assigned an IP address from this network, excluding the IP assigned to B.

(c). Assume that the network address assignment is to be fixed for a long time into the forceable future. However, the number of machines connected to the LAN consisting of Switch 1 may change from time to time. You are required to purchase a Switch for this LAN and you are under a very tight budget. How many ports should be in the Switch that you propose to purchase?

[10 marks]

This LAN can accommodate at most 30 machines since it is a /27 network. Therefore, we should plan to accommodate at most 30 machines. Since there are budgetary restrictions we should not go for a larger switch.

Index Number			
(d). What is the utility, which uses the the connectivity between A and B	=	that can be use	
ping			[4 marks]
(e). What is the destination MAC add leaves A? Justify your answer.	dress on the link	layer frame that	carries packet P when it
			[10 marks]
P has to be forwarded to R the MAC of the interface 1 08:00:27:84:64:E0		destination	MAC should be
(f). What is the source MAC address of B? Justify your answer.	on the link layer f	rame that carries	packet P when it reaches
			[10 marks]

The packet is forwarded to B by R. It is sent over the interface R2 of R. Therefore, the source MAC address on the link layer frame is the MAC address of R2.

08:00:27:84:64:F0

	Index Number							
--	--------------	--	--	--	--	--	--	--

	[5 marks]
ref: Figure 1-21 in the textbo Tannenbaum, 5th edition).	ok (Computer Networks by Andrew
b). What is the main functionality of the Tr	ransport layer of the TCP/IP model? [5 marks]
hosts to carry on a conversati	ntities on the source and destination on." Computer Networks by Andrew Tan-

	Index Number								
(c).	According to the TCP/IP referent protocol. However, this is mislead Therefore, if network addresses of giving a suitable example.	ding.	Netv	vork	addr	esses	are i	not tr	ansparent to applications.
	nere are application lay turn an IP address to the	-							•
th pr	e format and the size of et them. If the address forms have to be changed	the	net nat	wo or l	rk a eng	ddi th i	ess s cl	es t nanş	o store and interged then applica-

An answer that demonstrates that there are general protocols or

APIs that expose the IP address to applications is acceptable.

	Index Number
3.	(a). Draw a diagram depicting message exchange in the three-way handshake used in TCP to establish a connection.
	[5 marks
	ref: Figure 6-37 in the textbook (Computer Networks by Andrew Tannenbaum, 5th edition).
	(b). Describe the SYN flood attack on TCP.
	[10 marks

"a malicious sender can tie up resources on a host by sending a stream of SYN segments and never following through to complete the connection."

ref: page 561 in the textbook (*Computer Networks by Andrew Tannenbaum*, 5th edition).

Index Number										
(c). Draw a graph of Congestion-Window-Size Vs Time to depict how the approximate size of the congestion window changes with time (RTT). There is no need to give exact values. [10 marks]										
								[10 marks]		
ref: Figure 6-46 in the textbook (Computer Networks by Andrew Tannenbaum, 5th edition).										
It is sufficient to just show	v th	e sa	awt	ootl	n pa	ıtteı	rn.			