Cours de MOMI Licence I Math-Info

Chapitre VI: Arithmétique dans Z

1. Divisibilité.

On note $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$, de même $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$.

Définition 1.

Soient $a, b \in \mathbb{Z}$ avec $a \neq 0$. On dit que a divise b s'il existe $c \in \mathbb{Z}$ tel que: $b = a \times c$.

Autrement dit, la fraction rationnelle $\frac{b}{a}$ appartient à \mathbb{Z} .

Notation. Lorsque a divise b, on écrit $a \mid b$. Dans le cas contraire, on écrit $a \nmid b$

Langage. Lorsque *a* divise *b*, on dit aussi:

- a est un diviseur de b.
 - b est divisible par a.
 - b est un multiple de a.

Exemples. (1) 2 ne divise pas 1 car $\frac{1}{2} = 0, 5 \notin \mathbb{Z}$.

- (2) Tout entier a divise 0 (car $0 = a \times 0$).
- (3) Tout entier a non nul est divisible par -1, 1, -a, a.

Propriétés de la divisibilité. Soient $a, b, c \in \mathbb{Z}$ avec $a \neq 0$.

- $(1) \ a \mid b \Longrightarrow \forall \ u \in \mathbb{Z}, \ a \mid bu.$
- (2) $(a \mid b \text{ et } a \mid c) \Longrightarrow \forall u, v \in \mathbb{Z}, a \mid bu + cv.$
- (3) Si $b \neq 0$, $(a \mid b \text{ et } b \mid c) \Longrightarrow a \mid c$.
- (4) Si $a \mid 1$, alors $a = \pm 1$.
- (5) Si $b \neq 0$, alors $(a \mid b \text{ et } b \mid a) \Longrightarrow a = \pm b$.

Remarques. Soit $a \in \mathbb{Z}$.

- (1) Si $a \neq 0$, alors l'ensemble des diviseurs de a est fini. (0 est le seul entier qui a une infinité de diviseurs).
- (2) Si $a \neq 0$, alors l'ensemble $\{a \times c \mid c \in \mathbb{Z}\}$ des multiples de a est infini. (0 est le seul multiple de 0).

2. PGCD

<u>Définition 2.</u> Soient $a, b \in \mathbb{Z}$. On dit qu'un entier $c \in \mathbb{N}_0$ est le plus grand commun diviseur de a et b si:

- (i) $c \mid a$ et $c \mid b$
- (ii) $\forall x \in \mathbb{Z}_0$, $(x \mid a \text{ et } x \mid b) \Longrightarrow x \mid c$.

<u>Propriété.</u> Avec les mêmes notations que dans la définition précédente, l'entier c vérifiant les conditions (i) et (ii) est unique.

Preuve. Soit $c' \in \mathbb{N}_0$ un autre entier vérifiant les conditions (i) et (ii) de la définition. Montrons que c = c'.

- (c vérifie (i) et c' vérifie (ii)) $\Longrightarrow c \mid c'$.
- $(c' \text{ v\'erifie (i) et } c \text{ v\'erifie (ii)}) \Longrightarrow c' \mid c.$

Ainsi, $c=\pm c'$ par une propriété précédente. Comme c et c' sont positifs, on a c=c'.

Notation. On note le plus grand commun divisieur de a et b par $\operatorname{pgcd}(a, b)$.

<u>Remarques.</u> (1) Si $a \neq 0$ et $a \mid b$, alors $\operatorname{pgcd}(a, b) = |a|$. En particulier, $\operatorname{pgcd}(a, 0) = |a|$.

(2) pgcd(0,0) n'existe pas.

Pour la suite, on considère pgcd(a, b) pour $a \neq 0$ et $b \neq 0$.

Un résultat fondamental concernant le pgcd est le théorème suivant:

Théorème 1. Soient $a, b \in \mathbb{Z}_0$. Alors:

- Le pgcd(a, b) existe.
- Il existe $m, n \in \mathbb{Z}$ tels que: $am + bn = \operatorname{pgcd}(a, b)$.

Preuve. Soit l'ensemble $M = \{ax + by \mid x, y \in \mathbb{Z}\} \subset \mathbb{Z}$.

On a $M \cap \mathbb{N}_0 \neq \emptyset$, en effet:

Si a > 0, alors $a = a \times 1 + b \times 0 \in M \cap \mathbb{N}_0$.

Si
$$a < 0$$
, alors $-a = a \times (-1) + b \times 0 \in M \cap \mathbb{N}_0$.

Par l'axiome du plus petit élément, l'ensemble $M \cap \mathbb{N}_0$ admet un plus petit élément, qu'on note c.

Affirmation. pgcd(a, b) = c.

(1) $c \in M \cap \mathbb{N}_0 \Longrightarrow c \in M \Longrightarrow \exists m, n \in \mathbb{Z}$ tels que c = am + bn.

Montrons que c vérifie les deux conditions de la définition du pgcd :

- (2) (Pour la condition (ii)): Si $x \in \mathbb{Z}_0$ divise a et b, alors x divise am + bn = c.
- (3) (Pour la condition (i)): On va montrer que c divise a. La même preuve s'applique pour b.

Par la division Euclidienne de a par c, il existe $q, r \in \mathbb{Z}$ tels que: $a = c \times q + r$ et $0 \le r < c$. On va montrer que r = 0. En effet: $c \in M \Longrightarrow c \times q \in M \Longrightarrow a - c \times q \in M \Longrightarrow r \in M \Longrightarrow r \in M \cap \mathbb{N}$.

Si $r \neq 0$, alors on aurait $r \in M \cap \mathbb{N}_0$. Comme r < c, alors c ne serait pas le plus petit élément de $M \cap \mathbb{N}_0$, ce qui est absurde. D'où, r = 0, ce qui signifie que c divise a.

Remarques. (À faire en exercice) Soient $a, b \in \mathbb{Z}_0$.

- (1) Les diviseurs communs de a et b sont exactement les diviseurs de $\operatorname{pgcd}(a,b)$.
- (2) Le $\operatorname{pgcd}(a, b)$ est le plus grand élément de l'ensemble $\{d \in \mathbb{N}_0 \mid d \text{ divise } a \text{ et } b\}$ pour l'ordre habituel \leq .

Définition 3.

Soient $a, b \in \mathbb{Z}_0$. On dit que a et b sont premiers entre eux si $\operatorname{pgcd}(a, b) = 1$.

Corollaire 1. (Théorème de Bézout)

Soient $a, b \in \mathbb{Z}_0$ tels que $\operatorname{pgcd}(a, b) = 1$. Alors, il existe $m, n \in \mathbb{Z}$ tels que am + bn = 1.

Preuve. C'est une conséquence du théorème 1.

Réciproquement, on a:

Lemme 1. Soient $a, b \in \mathbb{Z}_0$. S'il existe $m, n \in \mathbb{Z}$ tel que am + bn = 1, alors $\operatorname{pgcd}(a, b) = 1$.

Preuve. Comme $\operatorname{pgcd}(a,b)$ divise a et b, alors $\operatorname{pgcd}(a,b)$ divise am+bn=1. Puisque $\operatorname{pgcd}(a,b)>0$, alors $\operatorname{pgcd}(a,b)=1$.

Corollaire 2. Soient $a, b \in \mathbb{Z}_0$. Si $\operatorname{pgcd}(a, b) = d$, alors $\operatorname{pgcd}(\frac{a}{d}, \frac{b}{d}) = 1$.

Preuve. Puisque $\operatorname{pgcd}(a,b)=d$, il existe $m,n\in\mathbb{Z}$ tel que am+bn=d (Théorème 1). Ainsi, $(\frac{a}{d})m+(\frac{b}{d})n=1$. Par le lemme précédent, on a $\operatorname{pgcd}(\frac{a}{d},\frac{b}{d})=1$.

Corollaire 3. (Théorème de Gauss) Soient $a, b, c \in \mathbb{Z}_0$ tels que $a \mid bc$ et $\operatorname{pgcd}(a, b) = 1$. Alors, $a \mid c$.

Preuve. Puisque $\operatorname{pgcd}(a,b)=1$, il existe $m,n\in\mathbb{Z}$ tels que am+bn=1 (Théorème de Bézout). Ainsi, acm+bcn=c. Comme $a\mid bc$, alors $a\mid bcn$. Par conséquent, $a\mid amc+bnc=c$.

3. Nombres premiers

Définition 4.

Soit $p \in \mathbb{N}$ avec $p \neq 0$ et $p \neq 1$. On dit que p est un nombre premier si ses seuls diviseurs sont -1, 1, -p et p. (c'est-à-dire, 1 et p sont les seuls diviseurs positifs de p.)

Exemple. (1) 2, 3, 5, 7 sont des nombres premiers.

(2) 4 n'est pas un nombre premier car ± 1 , ± 2 et ± 4 sont les diviseurs de 4.

Remarques.

(1) Soient p et q deux nombres premiers. Si p divise q, alors p=q. En effet, p divise q implique que $p\in\{\pm 1,\pm q\}$ car q est premier. Comme p>1, alors p=q.

(2) Soient $a \in \mathbb{Z}_0$ et p un nombre premier. Si p ne divise pas a, alors $\operatorname{pgcd}(a,p)=1$.

Posons $d = \operatorname{pgcd}(a, p)$. Puisque $d \mid p$ et d > 0, alors $d \in \{1, p\}$. Comme d divise a mais p ne divise pas a, alors d = 1.

(3) (Exo) Soit $p \in \mathbb{N}$ avec $p \neq 0$ et $p \neq 1$. On a les équivalences suivantes:

p n'est pas premier $\iff \exists \ u \in \mathbb{N} \ \ \mathrm{tel} \ \mathrm{que} \ \ 1 < u < p \ \ \mathrm{et} \ u \mid p$

Proposition 1. (Lemme d'Euclide)

Soient p un nombre premier et a, $b \in \mathbb{Z}$. Alors, $p \mid ab \implies (p \mid a \text{ ou } p \mid b)$.

Preuve. Supposons $p \mid ab$. Montrons $p \mid a$ ou $p \mid b$.

- Si p divise a, alors c'est bon.
- Si p ne divise pas a, alors $\operatorname{pgcd}(a,p)=1$ (par le remarque précédente). Puisque p divise ab, on déduit par le théorème de Gauss que p divise b.

<u>Crible d'Eratosthène.</u> Le crible d'Eratosthène consiste à déterminer les nombres premiers inférieurs à un entier donné *N*.

Le procédé est comme suit:

- (1) On écrit tous les entiers $1, 2, \dots, N$.
- (2) On barre 1.
- (3) On itère: "on entoure le suivant et on barre ses multiples", jusqu'à avoir barré ou entouré tous les entiers écrits.

Résultat: Les entiers $\leq N$ qui sont entourés sont des nombres premiers.

Exemple. Donner les nombres premiers ≤ 40 .

On écrit les entiers naturels $1, 2, 3, \cdots, 40$, puis on applique le procédé ci-dessus pour avoir:

1	2	3	A	5	6	7	_8_	-9	_10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	_3O
31)	,32	_33′	34	_35^	36	37	.38	-39	40

Conclusion. Les nombres premiers inférieurs à 40 sont: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

Théorème 2. (Théorème fondamental de l'arithmétique)

Soit $a \in \mathbb{N}$ avec $a \ge 2$. Alors:

(1) Il existe des nombres premiers $p_1 > \cdots > p_r$ et des entiers $m_1, \cdots, m_r \in \mathbb{N}_0$ tels que:

$$a=p_1^{m_1}\times\cdots\times p_r^{m_r}.$$

(2) La décomposition dans (1) est unique, c'est-à-dire, si on a une autre décomposition $a=q_1^{n_1}\times\cdots\times q_s^{n_s}$ où $q_1>\cdots>q_s$ sont des nombres premiers et $n_1,\cdots,n_s\in\mathbb{N}_0$, alors:

$$\begin{cases} r = s \\ p_1 = q_1, \cdots, p_r = q_r \\ m_1 = n_1, \cdots, m_r = n_r. \end{cases}$$

Preuve. On procède en deux étapes.

1. Existence de la décomposition. On va procéder par récurrence sur *a* en utilisant le deuxième principe.

Pour tout $a \ge 2$ un entier, soit P(a) la propriété: Il existe des nombres premiers p_1, \dots, p_r deux à deux distincts, et des entiers $m_1, \dots, m_r \in \mathbb{N}_0$ tels que: $a = p_1^{m_1} \times \dots \times p_r^{m_r}$.

- (i) Initialisation: P(2) est vraie car $2 = 2^1$ et 2 est premier (on prend $p_1 = 2$ et $n_1 = 1$).
- (ii) Hérédité: Supposons a > 2 et que P(u) soit vraie pour tout u vérifiant $2 \le u < a$. Montrons que P(a) est vraie.
- Si a est premier, alors P(a) est vraie car $a = a^1$ et a est premier (on prend $p_1 = a$ et $n_1 = 1$).
- Si a n'est pas premier, alors il existe deux entiers u et v tels que: $a = u \times v$, 1 < u < a et 1 < v < a. Puisque P(u) et P(v) sont vraies, on déduit que P(a) est vraie.

2. Unicité de la décomposition. On va procéder par récurrence sur *a* en utilisant le deuxième principe.

Pour tout entier $a \ge 2$, soit Q(a) la propriété: La décomposition de a en facteurs premiers est unique comme énoncé dans l'assertion (2) du théorème.

- (i) Initialisation: La décomposition $2 = 2^1$ est unique puisque tout premier divisant 2 est égal à 2. Ainsi, Q(2) est vraie.
- (ii) Hérédité: Supposons a > 2 et que Q(u) soit vraie pour tout entier u vérifiant $2 \le u < a$. Montrons que Q(a) est vraie. Supposons qu'on ait:

$$a = p_1^{m_1} \times \cdots \times p_r^{m_r} = q_1^{n_1} \times \cdots \times q_s^{n_s} \quad (*)$$

où $p_1 > \cdots > p_r$ et $q_1 > \cdots > q_s$ sont des nombres premiers, et $m_1, \cdots, m_r, n_1, \cdots, n_s \in \mathbb{N}_0$.

Notre but est de montrer que r = s, et $p_i = q_i$, $m_i = n_i$ pour tout $1 \le i \le r$.

On a

$$p_1 \mid a \implies p_1 \mid q_1^{n_1} \times \cdots \times q_s^{n_s}$$
 $\implies \exists 1 \leq i \leq s \text{ tel que } p_1 \mid q_i \text{ (Lemme d'Euclide)}$
 $\implies \exists 1 \leq i \leq s \text{ tel que } p_1 = q_i \text{ (car } p_1 \text{ et } q_i \text{ sont premiers)}$
 $\implies p_1 \leq q_1 \text{ (car } q_i \leq q_1).$

De même, puisque $q_1 \mid a$ on déduit que $q_1 \leq p_1$. Ainsi, $p_1 = q_1$. Par conséquent, l'égalité (*) ci-dessus implique

$$\frac{a}{p_1} = p_1^{m_1-1} \times p_2^{m_2} \times \cdots \times p_r^{m_r} = p_1^{n_1-1} \times q_2^{n_2} \times \cdots \times q_s^{n_s} \quad (**)$$

• Si $m_1=1$, alors nécessairement $n_1=1$. Comme $\frac{a}{p_1} < a$, on applique l'hypothèse de récurrence à (**) pour avoir:

$$\begin{cases} r-1=s-1 \implies r=s \\ p_2=q_2, \ m_2=n_2 \\ \vdots \\ p_r=q_r, \ m_r=n_r. \end{cases}$$

• Si $m_1 > 1$, alors nécessairement $n_1 > 1$. Comme $\frac{a}{p_1} < a$, on applique l'hypothèse de récurrence à (**) pour avoir:

$$\begin{cases} r = s \\ m_1 - 1 = n_1 - 1 \implies m_1 = n_1 \\ p_2 = q_2, m_2 = n_2 \\ \vdots \\ p_r = q_r, m_r = n_r. \end{cases}$$

Ainsi, le théorème est démontré.

Remarque. Lorsque $a \in \mathbb{Z}$ avec $a \leq -2$, alors il existe des nombres premiers $p_1 > \cdots > p_r$ et des entiers $m_1, \cdots, m_r \in \mathbb{N}_0$ uniques tels que:

$$a=-p_1^{m_1}\times\cdots\times p_r^{m_r}.$$

Corollaire 4.

Soit $a=p_1^{m_1}\times\cdots\times p_r^{m_r}$ avec p_1,\cdots,p_r des nombres premiers deux à deux distincts, et $m_1,\cdots,m_r\in\mathbb{N}_0$. Alors, le nombre de diviseurs positifs de a est

$$(m_1+1)\times\cdots\times(m_r+1).$$

Preuve. Soit $u \in \mathbb{N}_0$ un diviseur de a. Par l'unicité de la décomposition en facteurs premiers, on a $u = p_1^{n_1} \times \cdots \times p_r^{n_r}$ avec $0 \le n_i \le m_i$ pour tout $i = 1, \cdots, r$. Ainsi, il y a $(m_1 + 1) \times \cdots \times (m_r + 1)$ entiers naturels diviseurs de a.

Exemples. (1) Soient p un nombre premier et $n \in \mathbb{N}_0$. Les diviseurs positifs de p^n sont les entiers p^k avec $0 \le k \le n$:

$$1=p^0, p=p^1, \cdots, p^n$$

٠

- (2) Donner les diviseurs positifs de 60.
- On commence par décomposer 60 en facteurs premiers:

$$60 = 2 \times 30 = 2 \times 2 \times 15 = 2 \times 2 \times 3 \times 5 = 2^{2} \times 3^{1} \times 5^{1}$$
.

- Ensuite on introduit l'arbre des diviseurs:

On place les diviseurs de 2^2 dans une colonne, ensuite on ramifie dans une deuxième colonne chacun de ces diviseurs selon les diviseurs de 3^1 , et ainsi de suite.

On trouve les diviseurs de 60 en parcourant toutes les branches:

$$\begin{array}{c}
 1 \times 1 \times 1 = 1 \\
 1 \times 1 \times 5 = 5 \\
 1 \times 3 \times 1 = 3 \\
 \vdots \\
 4 \times 3 \times 5 = 60.
 \end{array}$$

Les diviseurs de 60 sont: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, qui sont en nombre de $(2+1) \times (1+1) \times (1+1) = 12$.

Proposition 2. Il y a une infinité de nombres premiers.

Preuve. Supposons que l'ensemble des nombres premiers soit fini dont les éléments sont p_1, \cdots, p_n . Soit $N = p_1 \times p_2 \times \cdots \times p_n + 1$. Puisque N > 1, il existe p un nombre premier qui divise N. Ainsi, $p = p_i$ pour un certain $1 \le i \le n$. Comme $p = p_i$ divise N - 1 et N, alors $p = p_i$ divise N - (N - 1) = 1, ce qui est absurde. \square

4. Procédés de calcul de pgcd

1. Méthode utilisant l'algorithme d'Euclide

La méthode est basée sur le lemme suivant:

Lemme 2. Soient $a, b \in \mathbb{Z}_0$ et $q, r \in \mathbb{Z}$ tels que: $a = b \times q + r$. On a:

- (1) Si r = 0, alors pgcd(a, b) = |b|.
- (2) Si $r \neq 0$, alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$.

(q et r ne sont pas nécessairement le quotient et le reste de la division Euclidienne de a par b.)

Preuve. Voir TD (Exercice 6.11).

Algorithme: Soient $a, b \in \mathbb{Z}_0$. Donner $\operatorname{pgcd}(a, b)$.

On va se servir du lemme précédent pour trouver le $\operatorname{pgcd}(a,b)$. Sans perdre de généralités, on peut supposer $a \ge b > 0$ (car $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(-a,b) = \operatorname{pgcd}(-a,-b)$.)

On effectue la D. E. de a par b:

$$a = bq_1 + r_1 \text{ avec } 0 \le r_1 < b.$$

- Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$ par le lemme précédent.
- Si $r_1 \neq 0$, alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r_1)$ (*).

On effectue la D. E. de b par r_1 :

$$b = r_1 q_2 + r_2 \text{ avec } 0 \le r_2 < r_1.$$

- Si $r_2 = 0$, alors $\operatorname{pgcd}(b, r_1) = r_1$. Ainsi, $\operatorname{pgcd}(a, b) = r_1$.
- Si $r_2 \neq 0$, alors $\operatorname{pgcd}(b, r_1) = \operatorname{pgcd}(r_1, r_2)$. Ainsi, par (\star) , $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_1, r_2)$.

On effectue la D. E. de r_1 par r_2 :

 $r_1 = r_2 q_3 + r_3$ avec $0 \le r_3 < r_2$. On discute suivant que r_3 est nul ou non.

Ainsi de suite, en continuant les divisions Euclidiennes successives, on construit une suite de restes vérifiant $0 \le \cdots r_3 < r_2 < r_1 < b$. On finira par avoir un reste nul. Soit r_n le plus petit reste non nul. On récapitule alors:

$$\begin{array}{lll} a = bq_1 + r_1 & pgcd(a,b) = pgcd(b,r_1) \\ b = r_1q_2 + r_2 & pgcd(b,r_1) = pgcd(r_1,r_2) \\ r_1 = r_2 q_3 + r_3 & pgcd(r_1,r_2) = pgcd(r_2,r_3) \\ \vdots & \vdots & \vdots \\ r_{n-2} = r_{n-1} q_n + r_n & pgcd(r_{n-2},r_{n-1}) = pgcd(r_{n-1},r_n) \\ \hline r_{n-1} = r_n q_{n+1} + 0 & pgcd(r_{n-1},r_n) = r_n \end{array}$$

En conclusion, lorsque $a \ge b > 0$ et b ne divise pas a, alors $\operatorname{pgcd}(a,b)$ est le dernier reste non nul des divisions Euclidiennes successives de l'algorithme ci-dessus.

Exercice. Soient a = 125 et b = 35.

- (1) Calculer le pgcd(a, b).
- (2) Trouver deux entiers $m, n \in \mathbb{Z}$ tels que:

$$125m + 35n = pgcd(125, 35).$$

(1) Puisque 35 ne divise pas 125, on effectue les divisions Euclidiennes successives jusqu'à avoir un reste nul:

(R1):
$$125 = 35 \times 3 + 20 \longrightarrow \operatorname{pgcd}(125, 35) = \operatorname{pgcd}(35, 20).$$

(R2):
$$35 = 20 \times 1 + 15 \longrightarrow \operatorname{pgcd}(35, 20) = \operatorname{pgcd}(20, 15).$$

(R3):
$$20 = 15 \times 1 + 5 \longrightarrow \operatorname{pgcd}(20, 15) = \operatorname{pgcd}(15, 5).$$

(R4):
$$15 = 5 \times 3 + 0 \longrightarrow \operatorname{pgcd}(15, 5) = 5.$$

Donc, par l'algorithme donné précédemment, pgcd(125, 35) = 5.

(2) Pour trouver deux entiers $m,n\in\mathbb{Z}$ tels que 125m+35n=5, on remonte les divisions précédentes de la ligne (R3) donnant le pgcd à la ligne (R1) comme suit:

$$5 = 20 - 15 \quad (d'après (R3))$$

$$= 20 - (35 - 20) \quad (d'après (R2))$$

$$= 20 \times 2 - 35$$

$$= (125 - 35 \times 3) \times 2 - 35 \quad (d'après (R1))$$

$$= 125 \times 2 + 35 \times (-7).$$

Donc, on peut prendre m = 2 et n = -7.

Le couple (2, -7) n'est pas unique. Par exmple, le couple (9, -32) convient aussi: $125 \times 9 + 35 \times (-32) = 5$.

2. Méthode utilisant les soustractions successives.

Lemme.

Soient $a, b \in \mathbb{N}_0$ avec $a \ge b$. Alors, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(a - b, b)$.

Preuve. À faire en exercice.

Exercice. Retrouver pgcd(125, 35) en utilisant cette méthode.

3. Méthode utilisant la décomposition en facteurs premiers

Cette méthode est basée sur la proposition suivante:

Proposition 3.

Soient $a, b \in \mathbb{N}_0$. Supposons que $a = p_1^{m_1} \times \cdots \times p_r^{m_r}$ et $b = p_1^{n_1} \times \cdots \times p_r^{n_r}$, où p_1, \cdots, p_r sont des nombres premiers deux à deux distincts, et $m_1, \cdots, m_r, n_1, \cdots, n_r \in \mathbb{N}$. Alors

$$\operatorname{pgcd}(a,b) = p_1^{\min(m_1,n_1)} \times \cdots \times p_r^{\min(m_r,n_r)}$$

où $\min(m_i, n_i)$ est le minimum des entiers m_i, n_i pour tout $1 \le i \le r$.

Preuve. À faire en exercice (utiliser l'unicité de la décomposition en facteurs premiers, et le fait que $p_i^{\min(m_i,n_i)}$ divise $p_i^{m_i}$ et $p_i^{n_i}$ pour tout 1 < i < r.

Exemple. Soient a = 125 et b = 35. Donner pgcd(125, 35).

On a $125 = 5^3$ et $35 = 5 \times 7$. Ce qu'on écrit

$$\begin{cases} 125 = 5^3 \times 7^0 \\ 35 = 5^1 \times 7^1. \end{cases}$$

Donc, on a

$$\begin{array}{rcl} \operatorname{pgcd}(125,35) & = & 5^{\min(3,1)} \times 7^{\min(0,1)} \\ & = & 5^1 \times 7^0 = 5. \end{array}$$

5. PPCM

Définition 5. Soient $a, b \in \mathbb{Z}_0$. On dit qu'un entier $c \in \mathbb{N}_0$ est le plus petit commun multiple de a et b si:

- (i) $a \mid c$ et $b \mid c$
- (ii) $\forall x \in \mathbb{Z}_0$, $(a \mid x \text{ et } b \mid x) \implies c \mid x$.

Propriété. L'entier c vérifiant les conditions (i) and (ii) de la définition précédente est unique. Pour cela, on procède comme pour l'unicité du pgcd.

Notation. On note le plus petit commun multiple de a et b par ppcm(a, b).

Remarque. Pour tout $a \in \mathbb{Z}$, le ppcm(a, 0) n'existe pas. Donc, on ne considère que le ppcm(a, b) avec $a \neq 0$ et $b \neq 0$.

Proposition 3. Soient $a, b \in \mathbb{Z}_0$. Le ppcm(a, b) existe et vérifie

$$\operatorname{ppcm}(a,b) = \frac{|a| \times |b|}{\operatorname{pgcd}(a,b)}.$$

Preuve. Posons $d = \operatorname{pgcd}(a, b)$. On peut supposer a > 0 et b > 0. On a $\operatorname{pgcd}(\frac{a}{d}, \frac{b}{d}) = 1$ (Corollaire 2).

But: Montrer que $\frac{a \times b}{d}$ vérifie les deux conditions du ppcm.

(i) Puisque $\frac{a \times b}{d} = \frac{a}{d} \times \frac{b}{d} = \frac{a}{d} \times b$, alors $\frac{a \times b}{d}$ est un multiple commun de a est b.

(ii) Soit $\alpha \in \mathbb{Z}$ multiple de a et b. Montrons que $\frac{a \times b}{d}$ divise α . Il existe $u, v \in \mathbb{Z}$ tels que:

$$\alpha = \mathbf{a} \times \mathbf{u} = \mathbf{b} \times \mathbf{v}.$$

Ainsi, $\frac{a}{d} \times u = \frac{b}{d} \times v$. Comme $\operatorname{pgcd}(\frac{a}{d}, \frac{b}{d}) = 1$, on obtient par le théorème de Gauss que $\frac{a}{d}$ divise v. Soit $\beta \in \mathbb{Z}$ tel que $v = \frac{a}{d} \times \beta$. Alors, on obtient

$$\alpha = \frac{\mathsf{a} \times \mathsf{b}}{\mathsf{d}} \times \beta.$$

D'où $\frac{a \times b}{d}$ divise α .

Remarque. *Soient* $a, b \in \mathbb{Z}_0$ *. Alors:*

- (1) Les multiples communs à a et b sont exactement les multiples de $\operatorname{ppcm}(a,b)$.
- (2) $\operatorname{ppcm}(a, b)$ est le plus petit entier de $\{x \in \mathbb{N}_0 \mid x \text{ multiple de a et } b\}$ au sens de l'ordre habituel \leq .

Le ppcm se calucle aussi en utilisant les décompositions en facteurs premiers:

Proposition 4.

Soient $a,b\in\mathbb{N}_0$. Supposons que $a=p_1^{m_1}\times\cdots\times p_r^{m_r}$ et $b=p_1^{n_1}\times\cdots\times p_r^{n_r}$, où p_1,\cdots,p_r sont des nombres premiers deux à deux distincts, et $m_1,\cdots,m_r,n_1,\cdots,n_r\in\mathbb{N}$. Alors

$$\operatorname{ppcm}(a,b) = p_1^{\max(m_1,n_1)} \times \cdots \times p_r^{\max(m_r,n_r)}$$

où $\max(m_i, n_i)$ est le maximum des entiers m_i, n_i pour tout $1 \le i \le r$.

Preuve. Pour tout $i \in \{1, \dots, r\}$, on a

$$m_i + n_i = \min(m_i, n_i) + \max(m_i, n_i).$$

Ainsi

$$\begin{array}{lll} a \times b & = & p_{1}^{m_{1}} \times \cdots \times p_{r}^{m_{r}} \times p_{1}^{n_{1}} \times \cdots \times p_{r}^{n_{r}} \\ & = & p_{1}^{m_{1}+n_{1}} \times \cdots \times p_{r}^{m_{r}+n_{r}} \\ & = & p_{1}^{\min(m_{1},n_{1})+\max(m_{1},n_{1})} \times \cdots \times p_{r}^{\min(m_{r},n_{r})+\max(m_{r},n_{r})} \\ & = & p_{1}^{\min(m_{1},n_{1})+\max(m_{1},n_{1})} \times \cdots \times p_{r}^{\min(m_{r},n_{r})+\max(m_{r},n_{r})} \\ & = & p_{1}^{\min(m_{1},n_{1})} \times \cdots \times p_{r}^{\min(m_{r},n_{r})} \times p_{1}^{\max(m_{1},n_{1})} \times \cdots \times p_{r}^{\max(m_{r},n_{r})} \\ & = & p_{1}^{\min(m_{1},n_{1})} \times p_{1}^{\max(m_{1},n_{1})} \times \cdots \times p_{r}^{\max(m_{r},n_{r})}. \end{array}$$

Puisque
$$\operatorname{ppcm}(a,b) = \frac{a \times b}{\operatorname{pgcd}(a,b)}$$
, on déduit que $\operatorname{ppcm}(a,b) = p_1^{\max(m_1,n_1)} \times \cdots \times p_r^{\max(m_r,n_r)}$.

Exemple. Soient a = 125 et b = 35.

(1) On a déjà vu que pgcd(a, b) = 5. Donc

$$ppcm(a,b) = \frac{125 \times 35}{5} = 875.$$

(2) Utilisation de la décomposition en facteurs premiers:

$$125 = 5^3$$
 et $35 = 5 \times 7$.

Donc

$$125 = 5^3 \times 7^0 \ \text{ et } \ 35 = 5^1 \times 7^1.$$

Ainsi,
$$ppcm(a, b) = 5^{max(3,1)} \times 7^{max(0,1)} = 5^3 \times 7^1 = 875$$
.