数学分析习题课讲义上册习题

weiyuan

2022年5月31日

mynotes

$$I = \int_{\frac{\pi}{4}}^{\pi} \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr d\theta$$

$$= \left[\int_{0}^{\sqrt{2}} \int_{\frac{\pi}{4}}^{\pi - \arcsin\frac{r}{2}} + \int_{\sqrt{2}}^{2} \int_{\arcsin\frac{r}{2}}^{\pi - \arcsin\frac{r}{2}} \right] f(r\cos\theta, r\sin\theta) r dr d\theta$$
(1)

$$\lim_{n \to +\infty} \left(1 - \frac{1}{1+2}\right) \left(1 - \frac{1}{1+2}\right) \left(1 - \frac{1}{1+2+3}\right) \dots \left(1 - \frac{1}{1+2+\dots+n}\right) = ? \tag{2}$$

$$1 - \frac{1}{\frac{n(n+1)}{2}} = 1 - \frac{2}{n(n+1)}$$

$$= \frac{n^2 + n - 2}{n(n+1)}$$

$$= \frac{(n+2)(n-1)}{n(n+1)}$$
(3)

$$I = \lim_{n \to +\infty} \frac{1 \times 4}{2 \times 3} \frac{2 \times 5}{3 \times 4} \dots \frac{(n-2)(n+1)}{(n-1)n} \frac{(n-1)(n+2)}{n(n+1)}$$

$$= \lim_{n \to +\infty} \frac{1}{3} \frac{4}{2} \frac{2}{3} \frac{5}{3} \frac{6}{4} \dots \frac{n+2}{n}$$

$$= \lim_{n \to +\infty} \frac{1}{3} \frac{n+2}{n}$$

$$= \frac{1}{3} \lim_{n \to +\infty} \frac{n+2}{n}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$
(4)

意 n 个非负实数 a_1, a_2, \ldots, a_n

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \tag{5}$$

其中等号成立 \iff $a_1 = a_2 = \cdots = a_n$

Proof 数学归纳法

n=1 时结论平凡

$$n = 2 \qquad \frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}$$

$$(a_1 - a_2)^2 = a_1^2 - 2a_1a_2 + a_2^2 \ge 0$$
$$a_1^2 + 2a_1a_2 + a_2^2 \ge 4a_1a_2$$
$$(a_1 + a_2)^2 \ge 4a_1a_2$$
$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1a_2}$$

n=k 时,假设 $\frac{a_1+\cdots+a_k}{k} \geq \sqrt[k]{a_1\ldots a_k}$ 成立

n = k + 1

$$\frac{a_1 + \dots + a_k + a_{k+1}}{k+1} - \frac{a_1 + \dots + a_k}{k}
= \frac{k(a_1 + \dots + a_{k+1}) - (k+1)(a_1 + \dots + a_k)}{k(k+1)}
= \frac{ka_{k+1} - (a_1 + \dots + a_k)}{k(k+1)}$$
(6)

we found

$$\frac{a_1 + \dots + a_k + a_{k+1}}{k+1} = \frac{a_1 + \dots + a_k}{k} + \frac{ka_{k+1} - (a_1 + \dots + a_k)}{k(k+1)}$$

note

$$A := \frac{a_1 + \dots + a_k}{k}, \qquad B := \frac{ka_{k+1} - (a_1 + \dots + a_k)}{k(k+1)}$$

$$\left(\frac{a_1 + \dots + a_k + a_{k+1}}{k+1}\right)^{k+1} = (A+B)^{k+1} \ge A^{k+1} + (k+1)A^kB \tag{7}$$

使用二项式展开需要对 a_i 从小到大重排,而使用 Bernoulli 不等式则只需要 $A \ge 0$, $(A + B) \ge 0$ 即可

$$A^{k+1} + (k+1)A^k B = A^k (A + (k+1)B)$$
(8)

$$A^{k} = \left(\frac{a_{1} + \dots + a_{k} + a_{k+1}}{k+1}\right)^{k+1} \ge a_{1} \dots a_{k} \quad \text{assume at}(n = k)$$

$$A + (k+1)B = \frac{a_{1} + \dots + a_{k}}{k} + \frac{ka_{k+1} - (a_{1} + \dots + a_{k})}{k} = a_{k+1}$$

$$\therefore (A+B)^{k+1} \ge A^{k}(A + (k+1)B) \ge a_{1} \dots a_{k}a_{k+1}$$

$$\therefore \frac{a_{1} + \dots + a_{k} + a_{k+1}}{k+1} \ge {}^{k+1}\sqrt{a_{1} \dots a_{k}a_{k+1}}$$
(9)

使用二项式展开定理的条件:

在归纳法第二步对 $a_1 \dots a_{k+1}$ 重编号,使 a_{k+1} 为其中最大的数(之一)这使得分解式右边第二项 $\frac{ka_{k+1}-(a_1+\dots+a_k)}{k(k+1)}$ 一定是非负数

Proof Forward and backward (Cauchy, 1897)

Forward Part:

n = 2

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \tag{10}$$

n = 4

$$\frac{a_1 + a_2 + a_3 + a_4}{4} \ge \sqrt{\frac{a_1 + a_2}{2} \frac{a_3 + a_4}{2}}$$

$$\ge \sqrt{\sqrt{a_1 a_2} \sqrt{a_3 a_4}}$$

$$\ge \sqrt[4]{a_1 a_2 a_3 a_4}$$
(11)

 $n=2^k$ 假设不等式 $\frac{a_1+\cdots+a_{2^k}}{2^k} \geq \sqrt[2^k]{a_1\dots a_{2^k}}$ 成立 $n=2^{k+1}$

$$\frac{a_1 + \dots + a_{2^k} + \dots + a_{2^{k+1}}}{2^{k+1}} \ge \sqrt{\frac{a_1 + \dots + a_{2^k}}{2^k} \frac{a_{2^k + 1} + \dots + a_{2^{k+1}}}{2^k}} \\
\ge \sqrt{\frac{2^k \sqrt{a_1 \dots a_{2^k}}}{2^k \sqrt{a_{2^k + 1} \dots a_{2^{k+1}}}}} \\
\ge \frac{2^{k+1} \sqrt{a_1 \dots a_{2^{k+1}}}}{2^k} \tag{12}$$

Backward Part: A-G 不等式对某个 $n \ge 2$ 成立,则它对 n-1 也成立

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i = \frac{1}{n} \left(\frac{n}{n-1}\right) \sum_{i=1}^{n-1} a_i$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n-1} a_i + \frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right) \tag{13}$$

将 $\frac{1}{n-1} \sum_{i=1}^{n-1} a_i$ 看作 a_n

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n]{\left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)}$$
(14)

$$\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right)^n \ge \prod_{i=1}^{n-1}a_i\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right) \tag{15}$$

$$\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right)^{n-1} \ge \prod_{i=1}^{n-1}a_i \tag{16}$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \prod_{i=1}^{n-1} a_i \tag{17}$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n]{\left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)}$$
(18)

$$\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right)^n \ge \prod_{i=1}^{n-1}a_i\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right) \tag{19}$$

$$\left(\frac{1}{n-1}\sum_{i=1}^{n-1}a_i\right)^{n-1} \ge \prod_{i=1}^{n-1}a_i \tag{20}$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \prod_{i=1}^{n-1} a_i \tag{21}$$

Theorem 0.2. 柯西-施瓦茨不等式 a_1, \ldots, a_n 和 $b_1, \ldots, b_n \in \mathbb{R}$,成立

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
 (22)

Proof

$$\sum_{i=1}^{n} (a_i - \lambda b_i)^2 = \sum_{i=1}^{n} a_i^2 - 2\lambda \sum_{i=1}^{n} a_i b_i + \lambda^2 \sum_{i=1}^{n} b_i^2 \ge 0$$

由韦达定理(视 λ 为未知数),原方程无解或只有唯一解

$$\Delta = b^{2} - 4ac \le 0$$

$$(-2\sum_{i=1}^{n} a_{i}b_{i})^{2} - 4\sum_{i=1}^{n} a_{i}^{2}\sum_{i=1}^{n} b_{i}^{2} \le 0$$

$$(\sum_{i=1}^{n} a_{i}b_{i})^{2} \le \sum_{i=1}^{n} a_{i}^{2}\sum_{i=1}^{n} b_{i}^{2}$$

$$\sum_{i=1}^{n} a_{i}b_{i} \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}$$

$$(23)$$

Theorem 0.3. 定积分第一中值定理

函数 $f(x),g(x)\in\mathbb{C}[a,b]$. 且在 [a,b] 上不变号,则存在 $\zeta\in[a,b]$,使得 $\int_a^bf(x)g(x)=$ $f(\zeta) \int_a^b g(x) dx$

Proof suppose that $g(x) \geq 0$. f(x) continuous on close set, so we can get the maximum and minimum value of f. We note that m is the minimum value of $f(x), x \in [a, b]$, and M is the maximum value of f(x), then we have:

$$mg(x)\leqslant f(x)g(x)\leqslant Mg(x)$$

$$m\int_a^b g(x)\mathrm{d}x\leqslant \int_a^b f(x)g(x)\mathrm{d}x\leqslant M\int_a^b g(x)\mathrm{d}x$$

note that we don't know $\int_a^b g(x) dx \neq 0$

When $\int_a^b g(x) dx = 0$, then $g(x) \equiv 0$, So $\forall \zeta \in [a, b]$, the theorem works. When $\int_a^b g(x) dx = 0$, then $m \leqslant \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx} \leq M$

From the Intermediate Value Theorem, $f(x) \in \mathbb{C}[a,b]$ $m \leq f(x) \leq M$

$$\exists \zeta \in [a, b] \quad f(\zeta) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b f(x)dx}$$
$$\int_a^b f(x)g(x)dx = f(\zeta)\int_a^b g(x)dx$$

设 g(x) 在 [a,b] 上连续可积, f(x) 在 [a,b] 上连续单调递增,且 $f'(x) \geq 0$,并对 $\forall x \in [a,b]$ 有 $f(x) \ge 0$ 。则存在 $\zeta \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(b) \int_{\zeta}^{b} g(x)dx$$

Proof $set G(x) = \int_x^b g(t) dt, g(x) 在[a, b]$ 上可积

则 $G(x), x \in [a, b]$ 存在最值,设最小值和最大值分别为 m, M

$$G(x) = -\int_{b}^{x} g(t)dt, \quad G'(x) = -g(x)$$

$$\int_{a}^{b} f(x)g(x)dx = -\int_{a}^{b} f(x)dG(x)$$

$$= -(f(b)G(b) - f(a)G(a)) - \int_{a}^{b} G(x)f'(x)dx$$

$$= f(a)G(a) + \int_{a}^{b} G(x)f'(x)dx$$
(24)

$$m \int_{a}^{b} f'(x) dx \leqslant \int_{a}^{b} G(x) f'(x) dx \leqslant M \int_{a}^{b} f'(x) dx$$
$$m[f(b - f(a))] \leqslant \int_{a}^{b} G(x) f'(x) dx \leqslant M[f(b - f(a))]$$

$$mf(a) \leqslant f(a)G(a) \leqslant Mf(a)$$

 $mf(b) \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant Mf(b)$

From the Intermediate Value Theorem, $\exists \zeta \in [a,b] s.t. G(\zeta) = \frac{\int_a^b f(x)g(x)dx}{f(b)}$ then we have

$$\int_{a}^{b} f(x)g(x)dx = f(b)G(\zeta) = f(b)\int_{\zeta}^{b} g(x)dx$$

1.3.2 练习题

1. 关于 Bernoulli 不等式的推广:

(1) 证明: $3 - 2 \ge h \ge -1$ 时 Bernoulli 不等式 $(1 + h)^n \ge 1 + nh$ 仍成立;

(2) 证明: 当 $h \ge 0$ 时成立不等式

$$(1+h)^n \ge \frac{n(n-1)h^2}{2} \tag{25}$$

(3) 证明: 若 $a_i > -1$ (i = 1, 2, ..., n) 且同号,则成立不等式 solve:

(1)

$$-2 \le h \le -1$$

$$-1 \le 1 + h \le 0$$

$$-1 \le (1+h)^n \le 0$$

$$-2n \le nh \le -n$$

$$1 - 2n \le 1 + nh \le 1 - n$$

$$n=0$$
 $(1+h)^0=1=1+0*h$ 结果是平凡的

 $n \ge 2$ 此时 $1-n \le -2$

$$0 \ge (1+h)^n \ge -1 \ge -2 \ge 1 - n \ge 1 - nh \ge 1 - 2n$$
$$(1+h)^n \ge 1 + nh$$

(2)
$$h \ge 0 \qquad (1+h)^n \ge \frac{n(n-1)h^2}{2}$$

$$(1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \dots \ge \frac{n(n-1)}{2}h^2$$

推广:

$$(1+h)^n > C_n^3 h^3, C_n^4 h^4, \dots, C_n^k h^k, \qquad 0 < k < n$$

(3)

$$\prod_{i=1}^{n} (1+a_i) \ge 1 + \sum_{i=1}^{n} a_i$$

 $(a)a_i \geq 0$, 且同号。

$$\prod_{i=1}^{n} (1+a_i) = 1 + \sum_{i=1}^{n} a_i + \sum_{i=1, i \neq j}^{n} \sum_{j=1}^{n} a_i a_j + \sum_{i=1, i \neq j, k}^{n} \sum_{j=1, j \neq k}^{n} \sum_{k=1}^{n} a_i a_j a_k + \dots$$

$$\prod_{i=1}^{n} (1+a_i) \ge \frac{\prod_{i=1}^{n} (1+a_i)}{1+a_k} \quad \forall k \in 1, 2, \dots, n, \quad 1+a_k \ge 1$$

(b) $0 > a_i > -1$ 此时 $1 > 1 + a_i > 0$

别人的方法: n=1 时不等式变成等式,显然成立

设 n = k 时不等式也成立

$$\prod_{i=1}^{k} (1 + a_i) \ge 1 + \sum_{i=1}^{k} a_i$$

则 n = k + 1 时,有

$$\prod_{i=1}^{k+1} (1+a_i) = \prod_{i=1}^k a_i (1+a_{k+1}) \ge (1+\sum_{i=1}^k a_i)(1+a_{k+1})$$

$$(1+\sum_{i=1}^k a_i)(1+a_{k+1}) = 1+\sum_{i=1}^k a_i + a_{k+1} + \sum_{i=1}^k a_i \cdot a_{k+1} \ge 1+\sum_{i=1}^{k+1} a_i$$

$$\therefore \prod_{i=1}^{k+1} (1+a_i) \ge 1+\sum_{i=1}^{k+1} a_i$$

2. 利用 A-G 不等式求解下列有关阶乘 n! 的不等式

(1) 证明: 当 n > 1 时成立

$$n! < (\frac{n+1}{2})^n \tag{26}$$

(2) 利用 $(n!)^2 = (n \cdot 1)((n-1) \cdot 2) \dots (1 \cdot n)$ 证明: 当 n > 1 时成立

$$n! < \left(\frac{n+2}{\sqrt{6}}\right)^n \tag{27}$$

- (3) 比较 (1)(2) 两个不等式的优劣,并说明原因;
- (4) 证明:对任意实数 r 成立

$$\left(\sum_{k=1}^{n} k^{r}\right)^{n} \ge n^{n} (n!)^{r} \tag{28}$$

solve:

(1) when n > 1

$$n! = 1 \times 2 \times \dots \times n < (\frac{1+2+\dots+n}{n})^n$$

 $(\frac{1+2+\dots+n}{n})^n = (\frac{n(n+1)}{2n})^n = (\frac{n+1}{2})^n$

(2) when n > 1

$$(n!)^2 = (n \cdot 1)((n-1) \cdot 2) \dots (1 \cdot n) < (\frac{n \cdot 1 + (n-1) \cdot 2 + \dots + 1 \cdot n}{n})^n$$

$$n \cdot 1 + (n-1) \cdot 2 + \dots + 1 \cdot n = \sum_{k=1}^{n} (n-k+1)k$$

$$\sum_{k=1}^{n} (n-k+1)k = (n+1) \sum_{k=1}^{n} k - \sum_{k=1}^{n} k^{2}$$

$$= (n+1) \frac{n(n+1)}{2} - \frac{n(2n+1)(n+1)}{6}$$

$$= \frac{n(n+1)}{6} (3(n+1) - (2n+1))$$

$$= \frac{n(n+1)(n+2)}{6}$$
(29)

$$(n!)^{2} = (n \cdot 1)((n-1) \cdot 2) \dots (1 \cdot n)$$

$$< \left(\frac{n \cdot 1 + (n-1) \cdot 2 + \dots + 1 \cdot n}{n}\right)^{n}$$

$$= \left(\frac{1}{n} \frac{n(n+1)(n+2)}{6}\right)^{n}$$

$$= \left(\frac{(n+1)(n+2)}{6}\right)^{n}$$

$$< \left(\frac{n+2}{6}\right)^{2n}$$
(30)

$$\therefore \qquad n! < (\frac{n+2}{\sqrt{6}})^n \tag{31}$$

(3)
$$\frac{n+1}{2} = \frac{n+2}{\sqrt{6}} \tag{32}$$

解得 $n = 1 + \sqrt{6} > 3$, n > 3 时 (2) 式更精确, 结果比 (1) 式更好。

(4) $\forall r \in \mathbb{R}$ $(n!)^r \leqslant \frac{1}{n^n} (\sum_{k=1}^n k^r)^n$ 由 A-G 不等式

$$\frac{1}{n} \sum_{k=1}^{n} k^r \ge \sqrt[n]{\prod_{k=1}^{n} k^r} \tag{33}$$

$$(n!)^r = \prod_{k=1}^n k^r \leqslant (\frac{1}{n} \sum_{k=1}^n k^r)^n = \frac{1}{n^n} (\sum_{k=1}^n k^r)^n$$
(34)

2.(4)

$$\forall r \in \mathbb{R} \qquad (\sum_{i=1}^{n} k^{r})^{n} \geq n^{n} (n!)^{r}$$

$$(n!)^{r} = \prod_{k=1}^{n} k^{r} \leqslant (\frac{1^{r} + 2^{r} + \dots + n^{r}}{n})^{n} = \frac{1}{n^{n}} (\sum_{k=1}^{n} k^{r})^{n} \quad \text{A-G inequality}$$

$$\therefore (\sum_{k=1}^{n} k^{r})^{n} \geq n^{n} (n!)^{r}$$

$$(35)$$

3. $a_k > 0$, $k = 1, 2, \dots, n$ 证明几何-调和平均值不等式

$$\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} \ge \frac{n}{\sum_{k=1}^{n} \frac{1}{a_{k}}} \tag{36}$$

Proof from A-G inequality

$$\frac{\sum_{k=1}^{n} \frac{1}{a_k}}{n} \ge \sqrt[n]{\prod_{k=1}^{n} \frac{1}{a_k}}$$

$$= \frac{1}{\sqrt[n]{\prod_{k=1}^{n} a_k}}$$

$$\therefore a_k > 0, \qquad \sqrt[n]{\prod_{k=1}^{n} a_k} \ge \frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}}$$
(37)

4. $a, b, c \ge 0$, proof that

$$\sqrt[3]{abc} \leqslant \sqrt{\frac{ab+bc+ca}{3}} \le \frac{a+b+c}{3} \tag{38}$$

并推广到 n 个非负数的情况

Proof left:

$$\sqrt[3]{abc} = \sqrt{\sqrt[3]{ab \cdot bc \cdot ca}}$$

$$\leq \sqrt{\frac{ab + bc + ca}{3}}$$
(39)

right:

$$\sqrt{\frac{ab+bc+ca}{3}} \leq \sqrt{\frac{(\frac{a+b}{2})^2 + (\frac{b+c}{2})^2 + (\frac{c+a}{2})^2}{3}}$$

$$= \sqrt{\frac{2(a^2+b^2+c^2) + 2(ab+bc+ca)}{12}}$$

$$= \sqrt{\frac{a^2+b^2+c^2+ab+bc+ca}{6}}$$
(40)

$$\therefore a, b, c \ge 0 \qquad \frac{ab + bc + ca}{3} \le \frac{a^2 + b^2 + c^2 + ab + bc + ca}{6}$$
 (41)

需要证明 $\sqrt{\frac{ab+bc+ca}{3}} \le \frac{a+b+c}{3}$

对该式两边平方

$$\frac{ab+bc+ca}{3} \le \frac{(a+b+c)^2}{9} = \frac{a^2+b^2+c^2+2ab+2bc+2ca}{9}$$
 (42)

$$\frac{ab + bc + ca}{3} \leqslant \frac{a^2 + b^2 + c^2}{6} + \frac{ab + bc + ca}{6}$$

$$\leqslant \frac{a^2 + b^2 + c^2}{6} + \frac{ab + bc + ca}{3}$$

$$= (\frac{a + b + c}{3})^2$$

$$\therefore \sqrt{\frac{ab + bc + ca}{3}} \leqslant \frac{a + b + c}{3}$$
(43)

Proof 推广至 n 个

$$[l]n = 2 \sqrt{ab} \leq \frac{a+b}{2}$$

$$n = 3 \sqrt[3]{abc} \leq \sqrt{\frac{ab+bc+ca}{3}} \leq \frac{a+b+c}{3}$$

$$n = k \sqrt[k]{\prod_{i=1}^{k} a_i} \leq \sqrt{\frac{\sum_{i=1}^{k} -1a_i a_{i+1} + a_k a_1}{k}} \leq \frac{\sum_{i=1}^{k} a_i}{k}$$

$$(44)$$

1
$$\sqrt[k]{a_1 a_2 \dots a_k} = \sqrt{\sqrt[k]{a_1^2 a_2^2 \dots a_k^2}} \le \sqrt{\frac{a_1 a_2 + a_2 a_3 + \dots a_k a_1}{k}}$$
 (45)

$$2 \qquad \sqrt{\frac{a_1 a_2 + a_2 a_3 + \dots a_k a_1}{k}} \leqslant \frac{a_1 + \dots + a_k}{k} \tag{46}$$

$$\frac{a_1 a_2 + a_2 a_3 + \dots a_k a_1}{k} \leqslant \frac{a_1^2 + \dots a_k^2}{2k}
2 \frac{a_1 a_2 + a_2 a_3 + \dots a_k a_1}{k} \leqslant \frac{(a_1 + \dots a_k)^2}{2k}
\sqrt{\frac{a_1 \dots a_k}{k}} \leqslant \frac{a_1 + \dots + a_k}{\sqrt{4k}} \quad \text{wrong!}$$
(47)

Chapter 1 第一章

1.1 引论

1.1.1 关于习题课教案的组织

1.1.2 书中常用记号

- 1. N_+ : 所有正整数组成的集合.
- 2. \mathbf{R} : 所有实数组成的集合 (同时也用于表示无限区间 $(-\infty,\infty)$).
- 3. Q: 所有有理数组成的集合.
- 4. C: 所有复数组成的集合.
- 5. \iff 是等价关系的记号. $A \iff B$ 表示 A 和 B 等价. 例如,A 代表 x > 3,B 代表 x 3 > 0,则 $x > 3 \iff x 3 > 0$.
- 6. [x] 是实数 x 的整数部分,即不超过 x 的最大整数. 例如, $[\sqrt{2}] = 1, [-\sqrt{2}] = -2$. 关于 [x] 的基本不等式是: $[x] \le x < [x] + 1$,或 $x 1 < [x] \le x$
- 7. □ 表示一个证明或解的结束.
- 8. $\binom{n}{k} = C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$.
- 9. 记号 \approx 表示近似值. 例如 $\sqrt{2} \approx 1.4$.
- 10. 复合函数 f(g(x)) 也写成 $(f \circ g)(x)$ 或 $f \circ g$.
- 11. 若 A 和 B 为两个集合,则用记号 A B 或 $A \setminus B$ 表示 A 与 B 的差集,也就是集合 $\{x | x \in A \boxtimes x \notin B\}$.
- 12. 用 $O_{\delta}(a)$ 表示以 a 为中心,以 $\delta > 0$ 为半径的邻域. 它就是开区间 $(a \delta, a + \delta)$ (也可以用 $U_{\delta}(a)$ 等记号). 如不必指出半径,则可简记为 O(a) (或 U(a)).

1.1.3 几个常用的初等不等式

1.1.3.1 几个初等不等式的证明

Theorem 1.1. 1. AG 不等式

个非负实数 a_1, a_2, \cdots, a_n

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdots a_n} \tag{1.1}$$

 \geq in inequation became $=\iff a_1=a_2=\cdots=a_n$

Proof

method 1. induction method

$$k = 1 a_1 = a_1$$

$$k = 2 \frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}$$

$$k = n \text{suppose} \frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n}$$

$$k = n + 1$$

$$\frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} - \frac{a_1 + a_2 + \dots + a_n}{n}$$

$$= \frac{n(a_1 + a_2 + \dots + a_{n+1}) - (n+1)(a_1 + a_2 + \dots + a_n)}{n(n+1)}$$

$$= \frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n(n+1)}$$

Set
$$A = \frac{a_1 + a_2 + \dots + a_n}{n}$$
, $B = \frac{na_{n+1} - (a_1 + a_2 \dots + a_n)}{n(n+1)}$

$$\left(\frac{a_1 + a_2 + \dots + a_{n+1}}{n+1}\right)^{n+1} = (A+B)^{n+1}$$

$$A > 0, B \ge 0$$

$$(A+B)^{n+1} \ge A^{n+1} + (n+1)A^nB$$

$$A^{n+1} + (n+1)A^nB = A^n(A + (n+1)B)$$

$$A^n = \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^n \ge a_1a_2 \dots a_n$$

$$A + (n+1)B = \frac{a_1 + a_2 + \dots + a_n}{n} + \frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n} = a_{n+1}$$

$$\therefore (A+B)^{n+1} \ge A^n(A + (n+1)B) \ge a_1a_2 \dots a_n \cdot a_{n+1}$$

$$\therefore \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} \ge \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1}$$

使用二项式展开定理的条件

在归纳法第二步,将 a_1, a_2, \dots, a_{n+1} 重编号,使得 n+1 为其中最大的数 (之一),这使得分解式右边第二项 $(na_{n+1} - (a_1 + a_2 + \dots + a_n))/n(n+1)$ 一定是非负数。

method 2. Forward and Backward (Cauchy, 1897)

Forward part

$$k = 2 \cdot \frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}.$$

$$k = 4 \cdot \frac{a_1 + a_2 + a_3 + a_4}{4} \ge \sqrt{\left(\frac{a_1 + a_2}{2}\right) \cdot \left(\frac{a_3 + a_4}{2}\right)}.$$

$$\ge \sqrt{\sqrt{a_1 a_2} \sqrt{a_3 a_4}} = \sqrt[4]{a_1 a_2 a_3 a_4}.$$

$$k = 2^n \cdot \text{Suppose} \quad \frac{a_1 + a_2 + \dots + a_{2^n}}{2^n} \ge \sqrt[2^n]{a_1 a_2 \dots a_{2^n}}$$

$$k = 2^{n+1}.$$

$$\frac{a_1 + a_2 + \dots + a_{2^n} + \dots + a_{2^{n+1}}}{2^{n+1}} \ge \sqrt{\left(\frac{a_1 + a_2 + \dots + a_2^n}{2^n}\right) \cdot \left(\frac{a_{2^n + 1} + a_{2^n + 2} + \dots + a_2^{n+1}}{2^n}\right)}$$

$$I \ge \sqrt{\sqrt[2^n]{a_1 a_2 \dots a_{2^n}} \sqrt[2^n]{a_{2^n + 1} a_{2^n + 2} \dots a_{2^{n+1}}}} = \sqrt[2^{n+1}]{a_1 a_2 \dots a_{2^{n+1}}}$$

Backward part suppose A.G inequality is valid when k = n, Consider k = n - 1.

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i = \frac{1}{n} \left(\frac{n}{n-1}\right) \sum_{i=1}^{n-1} a_i$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i = \frac{1}{n} \left(\sum_{i=1}^{n-1} a_i + \frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n]{\left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)}$$

$$\left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)^n \ge \left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)$$

$$\left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)^{n-1} \ge \left(\prod_{i=1}^{n-1} a_i\right)$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n-1]{\prod_{i=1}^{n-1} a_i}$$

Proposition 1.1. 1.3.5 柯西-施瓦茨不等式

$$a_1, a_2, \cdots, a_n$$
 和 b_1, b_2, \cdots, b_n ,成立

$$\left|\sum_{i=1}^{n} a_i b_i \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}\right|$$

Proof

$$0 \leqslant \sum_{i=1}^{n} (a_i - \lambda b_i)^2 = \sum_{i=1}^{n} a_i^2 - 2\lambda \sum_{i=1}^{n} a_i b_i + \lambda^2 \sum_{i=1}^{n} b_i^2$$

由韦达定理 (视 λ 为未知数). 原方程无解或只有唯一解。

$$\Delta = b^2 - 4ac \le 0$$

$$(-2\sum_{i=1}^n a_i b_i)^2 - 4\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2 \le 0$$

$$(\sum_{i=1}^n a_i b_i)^2 \le \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2$$

$$\sum_{i=1}^n a_i b_i \le \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}$$

1.1.3.2 练习题

Example 1.1 关于 Bernoulli 不等式的推广:

- (1) 证明: 当 $-2 \le h \le -1$ 时 Bernoulli 不等式 $(1+h)^n \ge 1 + nh$ 仍成立;
- (2) 证明: 当 $h \ge 0$ 时成立不等式 $(1+h)^n \ge \frac{n(n-1)h^2}{2}$, 并推广之;
- (3) 证明: 若 $a_i > -1 (i = 1, 2, ..., n)$ 且同号, 则成立不等式

$$\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i$$

$$-2 \le h \le -1$$

$$-1 \le 1 + h \le 0$$

$$-2n \le nh \le -n$$

$$1 - 2n \le 1 + nh \le 1 - n$$

$$1 - 2n \le 1 + nh \le 1 - n$$

$$n = 0.$$

$$(1+h)^0 = 1 = 1 + 0 \times h$$

$$1 + h = 1 + h$$

$$1 - n \le -2$$

$$0 \ge (1+h)^n \ge -1 \ge -2 \ge 1 - n \ge 1 + nh \ge 1 - 2n$$

$$(1+h)^n \ge 1 + nh$$

(2)

$$h \ge 0$$

 $(1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \dots \ge \frac{n(n-1)}{2}h^2$

推广:

$$(1+h)^n \ge \binom{n}{3}h^3, \binom{n}{4}h^4, \dots, \binom{n}{k}h^k, 0 \leqslant k \leqslant n$$

(3) k=1 时显然成立. 使用归纳法证明. 假设 k=n 时不等式 $\prod_{i=1}^n (1+a_i) \geq 1+\sum_{i=1}^n a_i$ 成立, 证明 k=n+1 时 $\prod_{i=1}^{n+1} (1+a_i) \geq 1+\sum_{i=1}^{n+1} a_i$ 成立.

$$k = n + 1 \qquad \prod_{i=1}^{n+1} (1 + a_i) = \prod_{i=1}^{n} (1 + a_i)(1 + a_{n+1})$$

$$\therefore \prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i$$

$$\prod_{i=1}^{n} (1 + a_i)(1 + a_{n+1}) \ge (1 + \sum_{i=1}^{n} a_i)(1 + a_{n+1})$$

$$(1 + \sum_{i=1}^{n} a_i)(1 + a_{n+1}) = 1 + \sum_{i=1}^{n} a_i + a_{n+1} + a_{n+1} \sum_{i=1}^{n} a_i$$

$$= 1 + \sum_{i=1}^{n+1} a_i + a_{n+1} \sum_{i=1}^{n} a_i$$

$$\ge 1 + \sum_{i=1}^{n+1} a_i$$

Example 1.2 利用 A.G. 不等式求解:

- (1). $n! \leq (\frac{n+1}{2})^n$, while n > 1
- (2). $(n!)^2 = (n \cdot 1)[(n-1) \cdot 2] \dots (1 \cdots n)$. 证明: 当 n > 1 时成立

$$n! < (\frac{n+2}{6})^n$$

- (3). 比较上述两个不等式的优劣
- (4). 证明: 对任意实数 r 成立:

$$(n!)^r \leqslant \frac{1}{n^n} (\sum_{k=1}^n k^r)^n$$
 (1.2)

Proof (1).

$$n > 1$$
 $n! = 1 \times 2 \times \dots \times n < (\frac{1+2+\dots+n}{n})^n = (\frac{(1+n)n}{2n})^n = (\frac{n+1}{2})^n$

 $:: 1 \neq 2 \neq \cdots n$, 所以不会有等号出现的情况

(2). n > 1

$$(n!)^2 = (n \cdot 1)[(n-1) \cdot 2] \dots (1 \cdots n)$$

 $< (\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{n})^n$

Consider this equation

$$\left(\frac{n\times 1 + (n-1)\times 2 + \dots + 1\times n}{n}\right)^n\tag{1.3}$$

$$\sum_{k=1}^{n} (n-k+1)k = (n+1)\sum_{k=1}^{n} k - \sum_{k=1}^{n} k^{2}$$

$$= (n+1)\frac{(n+1)n}{2} - \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)}{6}(3(n+1) - (2n+1))$$

$$= \frac{n(n+1)(n+2)}{6}$$

$$(n!)^{2} < (\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{6})^{n}$$

$$(n!)^{2} < \left(\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{n}\right)^{n}$$
$$= \left(\frac{(n+1)(n+2)}{6}\right)^{n}$$

- (4). $\forall r \in \mathbb{R}$, prove formula 1.2

$$\frac{1}{n} \sum_{k=1}^{n} k^{r} \ge \sqrt[n]{\prod_{k=1}^{n} k^{r}}$$
$$(n!)^{r} = \prod_{k=1}^{n} k^{r} \le (\frac{1}{n} \sum_{k=1}^{n} k^{r})^{n} = \frac{1}{n^{n}} (\sum_{k=1}^{n} k^{r})^{n}$$

my answer

$$\forall r \in \mathbb{R}, \qquad (\sum_{k=1}^{n} k^{r})^{n} \ge n^{n} (n!)^{r}$$

$$(n!)^{r} = \sum_{k=1}^{n} k^{r} \le (\frac{1^{r} + 2^{r} + \dots + n^{r}}{n})^{n} = \frac{1}{n^{n}} (\sum_{k=1}^{n} k^{r})^{n}$$

$$\therefore \quad (\sum_{k=1}^{n} k^{r})^{n} \ge n^{n} (n!)^{r}$$

Example 1.3 $a_k > 0, k = 1, 2, \dots, n$ 证明几何-调和平均值不等式

$$(\prod_{k=1}^{n} a_k)^{\frac{1}{n}} \ge \frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}}$$

Proof from A.G inequality

$$\frac{\sum_{k=1}^{n} \frac{1}{a_k}}{n} \ge \sqrt[n]{\prod_{k=1}^{n} \frac{1}{a_k}} = \frac{1}{\sqrt[n]{\prod_{k=1}^{n} a_k}}$$

$$a_k > 0, \quad \sqrt[n]{\prod_{k=1}^n a_k} \ge \frac{n}{\sum_{k=1}^n \frac{1}{a_k}}$$

Example 1.4 $a,b,c \geq 0$. prove $\sqrt[3]{abc} \leq \sqrt{\frac{ab+bc+ca}{3}} \leqslant \frac{a+b+c}{3}$. 并推广到 n 个非负数的情况 Proof 1. $\sqrt[3]{abc} = \sqrt{\sqrt[3]{ab \cdot bc \cdot ca}} \leqslant \sqrt{\frac{ab+bc+ca}{3}}$.

2.

$$\begin{split} \sqrt{\frac{ab+bc+ca}{3}} \leqslant & \sqrt{\frac{(\frac{a+b}{2})^2+(\frac{b+c}{2})^2+(\frac{c+a}{2})^2}{3}} \\ & = \sqrt{\frac{2(a^2+b^2+c^2)+2(ab+bc+ca)}{12}} \\ & = \sqrt{\frac{a^2+b^2+c^2+ab+bc+ca}{6}} \end{split}$$

 $a,b,c \geq 0$,希望证明

$$\sqrt{\frac{ab+bc+ca}{3}} \leqslant \frac{a+b+c}{3}$$

$$\frac{ab+bc+ca}{3} \leqslant \frac{a^2+b^2+c^2}{6} + \frac{ab+bc+ca}{6}$$

$$\frac{ab+bc+ca}{2} \leqslant \frac{a^2+b^2+c^2}{6} + 2\frac{ab+bc+ca}{6} \qquad (add \frac{ab+bc+ca}{6})$$

$$\frac{2}{ab+bc+ca} \leqslant \frac{ab+bc+ca}{6} + 2\frac{ab+bc+ca}{6}$$

$$\frac{ab+bc+ca}{3} \leqslant \frac{ab+bc+ca}{2} \leqslant (\frac{a+b+c}{3})^2$$

$$\sqrt{\frac{ab+bc+ca}{3}} \leqslant \frac{a+b+c}{3}$$

推广至n个

$$[l]n = 2 \qquad \sqrt{ab} \le \frac{a+b}{2}$$

$$n = 3 \qquad \sqrt[3]{abc} \leqslant \sqrt{\frac{ab+bc+ca}{3}} \leqslant \frac{a+b+c}{3}$$

$$n = 4 \qquad \sqrt[4]{abcd} \leqslant \sqrt[3]{\frac{abc+bcd+cda+dab}{4}} \leqslant \sqrt{\frac{a+b+c}{3}} \le \frac{a+b+c+d}{4}$$

$$k = n \qquad \sqrt[n]{a_1a_2 \dots a_n} \leqslant \sqrt{\frac{a_1+a_2+\dots+a_n}{n}} \le \frac{a_1+a_2+\dots+a_n}{n}$$

This is

$$\sqrt[n]{\sum_{k=1}^{n} a_k} \leqslant \sqrt{\frac{\sum_{k=1}^{n} a_k}{k}} \le \frac{\sum_{k=1}^{n} a_k}{k}$$

1.
$$\sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[n]{a_1^2 a_2^2 \dots a_n^2} \leqslant \sqrt[n]{\frac{a_1 a_2 + a_2 a_3 + \dots + a_n a_1}{n}}$$
2. $\sqrt[n]{\frac{a_1 a_2 + a_2 a_3 + \dots + a_n a_1}{n}} \leqslant \sqrt[n]{\frac{a_1 + a_2 + \dots + a_n}{n}}$?

Example 1.5 (1) $|\alpha + \beta| \leq |\alpha| + |\beta|$

Proof let $\alpha = a - b, \beta = b$, the identity became $|(a - b) + b| \leq |a - b| + |b|$. This is $|a - b| \geq |a| - |b|$.

$$||a| - |b|| = \begin{cases} |a| - |b|, & a \ge b \\ |b| - |a|, & a < b \end{cases}$$

When $a \ge b$, ||a| - |b|| = |a| - |b|. There is $|a - b| \ge |a| - |b| = ||a| - |b||$ When a < b, $|a - b| = |b - a| \ge |b| - |a| = ||a| - |b||$. \therefore , We have $|a - b| \ge ||a| - |b||$

$$(2) \sum |a_k| \ge |\sum a_k|$$

Proof We can prove this statement by induction.

$$k = 2, |a_1| + |a_2| \ge |a_1 + a_2|$$

$$k = 3, |a_1| + |a_2| + |a_3| \ge |a_1 + a_2 + a_3|$$
Suppose $k = n$,
$$\sum_{k=1}^{n} |a_k| \ge |\sum_{k=1}^{n} a_k|$$

$$k = n+1, \text{prove } \sum_{k=1}^{n+1} |a_k| \ge |\sum_{k=1}^{n+1} a_k|$$

$$\sum_{k=1}^{n+1} |a_k| = \sum_{k=1}^{n} |a_k| + |a_{n+1}|$$

$$\ge |\sum_{k=1}^{n} a_k| + |a_{n+1}|$$

$$\ge |\sum_{k=1}^{n+1} a_k|$$

$$k = 2, |a_1| - |a_2| \le |a_1 - a_2|$$
Suppose $k = n$,
$$|a_1| - \sum_{k=1}^{n} |a_k| \le |\sum_{k=1}^{n} a_k|$$

$$k = n + 1, \quad \text{prove} |a_1| - \sum_{k=2}^{n+1} |a_k| \leqslant |\sum_{k=1}^{n+1} a_k|$$

$$|a_1| - \sum_{k=2}^{n+1} |a_k| = |a_1| - \sum_{k=2}^{n} |a_k| - |a_{n+1}|$$

$$\leqslant |\sum_{k=1}^{n} a_k| - |a_{n+1}|$$

$$\leqslant |\sum_{k=1}^{n+1} a_k|$$

Can left side became $||a_1| - \sum_{k=2}^{n} |a_k||$?

$$\left| |a_1| - \sum_{k=2}^n |a_k| \right| = |a_1| - \sum_{k=2}^n |a_k| \qquad |a_1| \ge \sum_{k=2}^n a_k$$
 (1.4)

$$\left| |a_1| - \sum_{k=2}^n |a_k| \right| = \sum_{k=2}^n |a_k| - |a_1| \qquad |a_1| \ge \sum_{k=2}^n a_k$$
 (1.5)

in eq1.4, the inequality is still vaild. However in eq1.5, $\sum_{k=2}^{n}|a_k|-|a_1|$ and $|a_1|$ (3). $\frac{|a+b|}{1+|a+b|}\leqslant \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|}$

(3).
$$\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

(1.6)

Proof

Therefore $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$ Example 1.6 (4). $|(a+b)^n - a^n| \le (|a|+|b|)^n - |a|^n$

$$(a+b)^{n} - a^{n} = \binom{n}{1} a^{n-1} b^{1} + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{n} a^{0} b^{n}$$

$$(|a|+|b|)^{n} - |a|^{n} = \binom{n}{1} |a|^{n-1} |b|^{1} + \binom{n}{2} |a|^{n-2} |b|^{2} + \dots + \binom{n}{n} |a|^{0} |b|^{n}$$

$$\therefore |a|^{j} |b|^{k} \ge a^{j} b^{k}$$

$$\therefore \sum |a|^{j} |b|^{k} \ge |\sum a^{j} b^{k}|$$

$$|(a+b)^{n} - a^{n}| = \begin{cases} (a+b)^{n} - a^{n}, & a+b \ge a; b \ge 0 \\ a^{n} - (a+b)^{n}, & a+b < a; b < 0 \end{cases}$$

$$|(a+b)^{n} - a^{n}| \le (|a|+|b|)^{n} - |a|^{n}.$$

or a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n . $a_i, b_i \in \mathbb{R}$, There is

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
 (1.7)

Proof Let's prove eq1.7

First way on book:

Use variable λ , change the inequality into nonnegative binomial.

$$0 \le \sum_{i=1}^{n} (a_i - \lambda b_i)^2$$

$$= \sum_{i=1}^{n} a_i^2 - 2\lambda \sum_{i=1}^{n} a_i b_i + \lambda^2 \sum_{i=1}^{n} \Delta a_i^2 + \lambda^2 \sum_{i=1}^{n} a_i b_i^2 + \lambda^2 \sum_{i=1}^{n} a_i^2 + \lambda^2 \sum_{i=1}^$$

$$(\sum_{i=1}^{n} a_i b_i)^2 \leqslant (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)$$

sqrt on both side of the inequality above, we can get

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

6. Cauchy 不等式的不同证明

(1.8)

(1). 数学归纳法.

$$k = 1, \quad |ab| = \sqrt{a^2} \sqrt{b^2}$$

$$k = 1, \quad |a_1b_1 + a_2b_2| = \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_1^2}$$
Suppose $k = n$,
$$|\sum_{i=1}^n a_i b_i| = \sqrt{\sum_{i=1}^n a_i} \sqrt{\sum_{i=1}^n b_i}$$

$$k = n + 1, \quad |\sum_{i=1}^{n+1} a_i b_i| = |\sum_{i=1}^n a_i b_i + a_{n+1} b_{n+1}|$$

$$|\sum_{i=1}^{n+1} a_i b_i| = |\sum_{i=1}^n a_i b_i + a_{n+1} b_{n+1}|$$

$$\leq |\sqrt{\sum_{i=1}^n a_i} \sqrt{\sum_{i=1}^n b_i + a_{n+1} b_{n+1}}|$$

Note that
$$A = \sqrt{\sum_{i=1}^n a_i}$$
, $B = \sqrt{\sum_{i=1}^n b_i}$

$$|\sum_{i=1}^{n+1} a_i b_i| \le |AB + a_{n+1} b_{n+1}|$$

$$\le \sqrt{A^2 + a_{n+1}^2} \sqrt{B^2 + b_{n+1}^2}$$

$$= \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}$$

(2) Lagrange 恒等式

$$\sum_{i=1}^{n} a_k^2 \sum_{i=1}^{n} b_k^2 - (\sum_{i=1}^{n} |a_k b_k|) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} (|a_k| |b_i| - |a_i| |b_k|)^2$$

$$(|a_k| |b_i| - |a_i| |b_k|)^2 = |a_k|^2 |b_i|^2 - 2|a_i| |a_k| |b_i| |b_k| + |b_k|^2 |a_i|^2$$

$$= a_k^2 b_i^2 + b_k^2 a_i^2 - 2|a_i a_k b_i b_k|$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} (|a_k| |b_i| - |a_i| |b_k|)^2 = 2 \sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} b_k^2 - 2 \sum_{i=1}^{n} \sum_{k=1}^{n} |a_i a_k b_i b_k|$$

$$\sum_{i=1}^{n} a_k^2 \sum_{i=1}^{n} b_k^2 - (\sum_{i=1}^{n} |a_k b_k|) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} (|a_k| |b_i| - |a_i| |b_k|)^2 \ge 0$$

$$\therefore (\sum_{i=1}^{n} |a_i b_i|)^2 \leqslant \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$

$$\therefore (|\sum_{i=1}^{n} a_i b_i|)^2 \leqslant (\sum_{i=1}^{n} |a_i b_i|)^2$$

$$\therefore (|\sum_{i=1}^{n} a_i b_i|)^2 \leqslant \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$

$$\therefore (|\sum_{i=1}^{n} a_i b_i|)^2 \leqslant \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$

$$\therefore (|\sum_{i=1}^{n} a_i b_i|)^2 \leqslant \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$

不等式两边开平方,得到:

$$|\sum_{i=1}^{n} a_i b_i| \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

(3). 用不等式
$$|AB| \leqslant \frac{A^2 + B^2}{2}$$

$$|a_{i}b_{i}| \leqslant \frac{a_{i}^{2} + b_{i}^{2}}{2}$$

$$|\sum_{i=1}^{n} a_{i}b_{i}| \leqslant \sum_{i=1}^{n} |a_{i}b_{i}| \qquad \leqslant \frac{\sum_{i=1}^{n} a_{i}^{2} + \sum_{i=1}^{n} b_{i}^{2}}{2}$$

$$\frac{\sum_{i=1}^{n} a_{i}^{2} + \sum_{i=1}^{n} b_{i}^{2}}{2} \ge \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}} \qquad ??$$

如何用均值不等式证明 Cauchy 不等式?

由切比雪夫不等式,有

$$\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n} \leqslant (\frac{a_1 + a_2 + \dots + a_n}{n})(\frac{b_1 + b_2 + \dots + b_n}{n}) \tag{1.9}$$

由均值不等式,有

$$\frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$$

$$\frac{b_1 + b_2 + \dots + b_n}{n} \leqslant \sqrt{\frac{b_1^2 + b_2^2 + \dots + b_n^2}{n}}$$

$$\therefore \frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n} \leqslant (\frac{a_1 + a_2 + \dots + a_n}{n})(\frac{b_1 + b_2 + \dots + b_n}{n})$$

$$\leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \sqrt{\frac{b_1^2 + b_2^2 + \dots + b_n^2}{n}}$$

$$= \frac{1}{n} \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

This is

$$\sum_{i=1}^{n} a_i b_i \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

Square on both side of the inequality, The calculate square root. We can get eq1.9:

(4). 构造复的辅助数列

$$c_k = a_k^2 - b_k^2 + 2i|a_k b_k|, \qquad k = 1, 2, \dots, n$$

Then we use

$$\left|\sum_{k=1}^{n} c_k\right| \leqslant \sum_{k=1}^{n} |c_k|$$

Solve 1

$$\begin{split} c_k &= (|a_k| + i|b_k|)^2 = a_k^2 + b_k^2 + 2i|a_k b_k| \\ \sum_{k=1}^n c_k &= \sum_{k=1}^n a_k^2 + \sum_{k=1}^n b_k^2 + 2i \sum_{k=1}^n |a_k b_k| \\ |c_k| &= \sqrt{\Re^2 c_k + \Im^2 c_k} = \sqrt{(a_k^2 - b_k^2)^2 + (2a_k b_k)^2} = a_k^2 + b_k^2 \end{split}$$

$$\begin{split} & \therefore \left| \sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} b_{k}^{2} + 2i \sum_{k=1}^{n} |a_{k}b_{k}| \right| = \sqrt{\Re^{2} \sum_{k=1}^{n} c_{k} + \Im^{2} \sum_{k=1}^{n} c_{k}} \\ & = \sqrt{(\sum_{k=1}^{n} (a_{k}^{2} - b_{k}^{2}))^{2} + \sum_{k=1}^{n} (2a_{k}b_{k})^{2}} \\ & = \sqrt{(\sum_{k=1}^{n} a_{k}^{2})^{2} + (\sum_{k=1}^{n} a_{k}^{2})^{2} - 2(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} a_{k}^{2}) + 4 \sum_{k=1}^{n} (a_{k}b_{k})^{2}} \\ & \therefore \left| \sum_{k=1}^{n} c_{k} \right| \leqslant \sum |c_{k}| \\ & \therefore (\sum_{k=1}^{n} a_{k}^{2})^{2} + (\sum_{k=1}^{n} a_{k}^{2})^{2} - 2(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} a_{k}^{2}) + 4 \sum_{k=1}^{n} (a_{k}b_{k})^{2} \leqslant (\sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} b_{k}^{2})^{2} \\ & \therefore 4(\sum_{k=1}^{n} a_{k}b_{k})^{2} \leqslant 4(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} b_{k}^{2}) \\ & \text{extracting both side: } \left| \sum_{k=1}^{n} a_{k}b_{k} \right| \leqslant \sqrt{\sum_{k=1}^{n} a_{k}^{2}} \sqrt{\sum_{k=1}^{n} b_{k}^{2}} \end{aligned}$$

Example 1.7 7. Suppose $0 < x_i \le \frac{1}{2}, i = 1, 2, ..., n$, then

$$\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^n} \le \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^n}$$
(1.10)

Proof Let's prove eq1.10 by induction method.

$$n = 2, \qquad \frac{x_1 x_2}{(x_1 + x_2)^2} \leqslant \frac{(1 - x_1)(1 - x_2)}{((1 - x_1) + (1 - x_2))^2}$$

$$\frac{(x_1 x_2)}{(x_1^2 + 2x_1 x_2 + x_2^2)} \leqslant \frac{1 - x_1 - x_2 + x_1 x_2}{(1 - x_1)^2 + 2(1 - x_1)(1 - x_2) + (1 - x_2)^2}$$

$$\frac{(x_1 + x_2)^2}{(x_1 x_2)} \geq \frac{((1 - x_1)(1 - x_2))^2}{1 - x_1 - x_2 + x_1 x_2}$$

$$\frac{x_1}{x_2} + 2 + \frac{x_2}{x_1} \geq \frac{1 - x_1}{1 - x_2} + 2\frac{1 - x_2}{1 - x_1}$$

$$\frac{x_1}{x_2} - \frac{1 - x_1}{1 - x_2} \geq \frac{1 - x_2}{1 - x_1} - \frac{x_2}{x_1}$$

$$\frac{x_1(1 - x_2) - x_2(1 - x_1)}{x_2(1 - x_2)} \geq \frac{x_1(1 - x_2) - x_2(1 - x_1)}{x_1(1 - x_1)}$$

$$\frac{x_1 - x_2}{x_2(1 - x_2)} \geq \frac{x_1 - x_2}{x_1(1 - x_1)}$$

$$f(x) = x - x^2, f'(x) = 1 - 2x > 0, \text{ while } x \in (0, \frac{1}{2})$$
When $x_1 > x_2, 0 < x_2 < x_1 \leqslant \frac{1}{2}, x_1 - x_1^2 \leqslant x_2 - x_2^2, x_1 - x_2 < 0$
When $x_1 < x_2, 0 < x_1 < x_2 \leqslant \frac{1}{2}, x_1 - x_1^2 \leqslant x_2 - x_2^2, x_1 - x_2 < 0$

$$\frac{x_1 - x_2}{x_2(1 - x_2)} \ge \frac{x_1 - x_2}{x_1(1 - x_1)}$$

$$k = 2, \frac{x_1 x_2}{(x_1 + x_2)^2} \leqslant \frac{(1 - x_1)(1 - x_2)}{((1 - x_1) + (1 - x_2))^2}$$

$$k = 4, \frac{x_1 x_2 x_3 x_4}{(x_1 + x_2 + x_3 + x_4)^2} \leqslant \frac{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)}{((1 - x_1) + (1 - x_2) + (1 - x_3) + (1 - x_4))^2}$$

Use Cauchy's forward and backward method, We can prove this equation

Suppose
$$k = n$$
, $\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^2} \leqslant \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^2}$
 $k = n - 1$, prove $\frac{\prod_{i=1}^{n-1} x_i}{(\sum_{i=1}^{n-1} x_i)^2} \leqslant \frac{\prod_{i=1}^{n-1} (1 - x_i)}{(\sum_{i=1}^{n-1} (1 - x_i))^2}$

We already know that

$$\frac{\sum_{i=1}^{n-1} x_i}{n-1} = \frac{1}{n} \left(\sum_{i=1}^{n-1} x_i + \frac{1}{n-1} \sum_{i=1}^{n-1} x_i \right)$$

This trick always use in (n-1) terms transfer to (n) terms

When the inequality holds for n > 2, for k = n, we have:

$$\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^n} \leqslant \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^n}$$
$$\frac{(\sum_{i=1}^{n} (1 - x_i))^n}{(\sum_{i=1}^{n} x_i)^n} \leqslant \frac{\prod_{i=1}^{n} (1 - x_i)}{\prod_{i=1}^{n} x_i}$$
$$\left(\frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} (1 - x_i)}\right)^n \ge \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)}$$

for k = n - 1, Let $M = x_n = \frac{\sum_{i=1}^{n-1} x_i}{n-1}$. The inequality 1.10 left side:

$$\left(\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (1 - x_{i})}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n}}{(1 - x_{1}) + \dots + (1 - x_{n})}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n-1} + M}{(1 - x_{1}) + \dots + (1 - x_{n-1}) + (1 - M)}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n-1} + \frac{\sum_{i=1}^{n-1} x_{i}}{n-1}}{(1 - x_{1}) + \dots + (1 - x_{n-1}) + (1 - \frac{\sum_{i=1}^{n-1} x_{i}}{n-1})}\right)^{n}$$

$$= \left(\frac{\frac{n}{n-1}(x_{1} + \dots + x_{n-1})}{\frac{n}{n-1}((1 - x_{1}) + \dots + (1 - x_{n-1}))}\right)^{n}$$

$$= \left(\frac{M}{1 - M}\right)^{n}$$

while the right side become

$$\begin{split} &\frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)} \\ &= \frac{\prod_{i=1}^{n-1} x_i \cdot M}{\prod_{i=1}^{n-1} (1 - x_i) \cdot (1 - M)} \\ &= \frac{\prod_{i=1}^{n-1} x_i}{\prod_{i=1}^{n-1} (1 - x_i)} \frac{M}{1 - M} \end{split}$$

$$\left(\frac{M}{1-M}\right)^n \ge \frac{\prod_{i=1}^{n-1} x_i}{\prod_{i=1}^{n-1} (1-x_i)} \frac{M}{1-M}$$
$$\left(\frac{M}{1-M}\right)^{n-1} \ge \frac{\prod_{i=1}^{n-1} x_i}{\prod_{i=1}^{n-1} (1-x_i)}$$

Proposition 1.3. 1.3.1 Bernoulli inequality

uppose that $h > -1, n \in \mathbb{N}$, Then:

$$(1+h)^n \ge 1 + nh \tag{1.11}$$

When n > 1, the inequality became equation iff h = 0.

Proof When n = 1, 1 + h = 1 + h

$$h = 0, 1^n = 1$$

Let's consider the condition $n > 1, h \neq 0$.

i).
$$h > 0$$
, $(1+h)^n = \binom{n}{0}h^0 + \binom{n}{1}h^1 + \binom{n}{2}h^2 + \dots + \binom{n}{n}h^n$.

$$(n)^{n} h^{2} + \dots + (n)^{n} h^{n} > 0, \dots (1+h)^{n} > 1 + nh$$

ii). -1 < h < 0, 0 < 1 + h < 1.

$$(1+h)^n - 1 = (1+h-1)\left(1+(1+h)+(1+h)^2+\dots+(1+h)^{n-1}\right)$$
$$= h\left(1+(1+h)+(1+h)^2+\dots+(1+h)^{n-1}\right)$$

$$1 + (1+h) + (1+h)^2 + \dots + (1+h)^{n-1} < n \text{ when } h < 0$$

$$\therefore (1+h)^n > 1 + nh$$

Two variable extension of the Bernoulli inequality, Suppose $h = \frac{B}{A}, A > 0, A + B > 0$, Then 1 + h > 0 is established.

Proposition 1.4. 1.3.2

uppose $A > 0, A + B > 0, n \in \mathbb{N}$, Then the inequality is true:

$$(A+B)^n \ge A^n + nA^{n-1}B \tag{1.12}$$

The inequalty became equation iff B = 0.

Proof divide A^n on both side of the inequality 1.12. Set $h = \frac{B}{A}(A > 0)$, Then the inequality became Eq 1.11. So we can prove Eq 1.12 by prove Eq 1.11. Eq 1.11 is true when h > -1. $\therefore 1 + h > 0, 1 + \frac{B}{A} > 0, \therefore A > 0, \therefore A + B > 0$. And when n > 1 the equation is true iff $h = 0.\frac{B}{A} = 0, \therefore B = 0$.

Example 1.8 Ex 1.3.2 exercise 8

 $a, c, t, g \ge 0, a + c + t + g = 1$. Prove that $a^2 + c^2 + t^2 + g^2 \ge \frac{1}{4}$.

The inequality became equatio iff $a = c = t = g = \frac{1}{4}$.

Proof from A.G inequality,

$$\frac{a+c+t+g}{4} \ge \sqrt[4]{actg}, \quad a+c+t+g=1 \tag{1.13}$$

 $\therefore \sqrt[4]{actg} \leqslant \frac{1}{4}$

$$a + c + t + g = 1, (a + c + t + g)^2 = 1$$

$$(a+c+t+g)^2 = a^2 + c^2 + t^2 + g^2 + 2ac + 2at + 2ag + 2ct + 2cg + 2tg = 1$$
(1.14)

$$a^2 + c^2 \ge 2acc^2 + t^2 \ge 2ct \tag{1.15}$$

$$a^2 + t^2 > 2atc^2 + q^2 > 2cq (1.16)$$

$$a^2 + g^2 \ge 2agt^2 + g^2 \ge 2tg \tag{1.17}$$

substitude $2ac, 2ag, \ldots$ in equation 1.14, we can get

$$4(a^2 + c^2 + t^2 + g^2) \ge a^2 + c^2 + t^2 + g^2 + 2ac + 2at + 2ag + 2ct + 2cg + 2tg$$

Then we get the inequality 1.13.

1.2 1.4 逻辑符号与对偶法则

The law of duality: $\forall(\exists) \to \exists(\forall)$ with negative statement

Inverse proposition?

1. A have upper limit, $\exists M > 0. \forall x \in A, x \leq M$.

It's negative statement is 'A don't have upper limit'. $\forall M > 0, \exists x \in A, x > M$.

2. the minum item in A is b, $b \in A, \forall x \in A, x \geq b$.

It's negative statement is 'b is not the minum item in A'. $b \in A, \exists x \in A, x < b$.

3. $f \in (a, b)$ is a monotonic augmentation function, $\forall x, y \in (a, b), x < y, f(x) \leq f(y)$.(or f(x) < f(y), depends on monotonic function's definition)

It's negative statement is ' $f \in (a, b)$ isn't a monotonic augmentation function'. $\exists x, y \in (a, b), x < y, f(x) > f(y)$ (or $f(x) \ge f(y)$).

 $4. \ f \in (a,b) \ \text{is a monotonic function}, \ \forall x,y,z \in (a,b), x < y < z, (f(x)-f(y))(f(y)-f(z)) \geq 0.$

It's negative statement is ' $f \in (a,b)$ isn't a monotonic function'. $\exists x,y,z \in (a,b), x < y < z, (f(x)-f(y))(f(y)-f(z)) < 0.$

(Another way $\forall x, y \in (a, b), x < y, f(x) - f(y) \ge 0$ or $f(x) - f(y) \le 0$.)

5. $A \subset B, \forall x \in A, x \in B$.

It's negative statement is $A \subsetneq B$, $\exists x \in A, x \notin B$.

6.
$$A - B \neq \emptyset$$
, $\exists x \in A, x \in B$.

It's negative statement is $A - B = \emptyset$, $\forall x \in A, x \notin B$.

7. x_n is an infinitesimal amounts, $\forall \epsilon > 0, \exists N \in \mathbb{N}^+, \forall n > N, |x_n| < \epsilon$.

It's negative statement is ' x_n is not an infinitesimal amounts', $\exists \epsilon > 0, \forall N \in \mathbb{N}^+, \exists n > N, |x_n| \geq \epsilon$.

8. x_n is infinitely large, $\forall M > 0, \exists N \in \mathbb{N}^+, \forall n > N, x_n > M$.

It's negative statement is ' x_n is not infinitely large', $\exists M > 0, \forall N \in \mathbb{N}^+, \exists n > N, x_n \leqslant M$.

Chapter 2 第二章数列极限

2.1 数列极限的基本概念

2.1.1 2.1.5 练习题

Question 1 1. prove by Limit definition:

- (1). $\lim_{n\to\infty} \frac{3n^2}{n^2-4} = 3$.
- (2). $\lim_{n\to\infty} \frac{\sin n}{n} = 0.$
- (3). $\lim_{n\to\infty} (1+n)^{\frac{1}{n}} = 0.$
- (4). $\lim_{n\to\infty} \frac{a^n}{n!} = 0, (a>0).$

Question 2 2. Suppose $a_n, n \in \mathbb{N}_+$. sequence a_n converge to a.

Prove $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.

Proof $n \to \infty a_n \to a$.

 $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}^+, \forall n > N(\epsilon), |a_n - a| < \epsilon.$

$$\left|\sqrt{a_n} - \sqrt{a}\right| = \left|\frac{a_n - a}{\sqrt{a_n} + \sqrt{a}}\right| < \frac{\epsilon}{\sqrt{a_n} + \sqrt{a}}$$

 $\therefore \lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}.$ \square (check, not consider the condition a=0) add $a=0, \forall \epsilon \in (0,1), \exists N(\epsilon) \in$ $\mathbb{N}^+, \forall n > N(\epsilon), |a_n - a| < \epsilon. \text{ s.t } a_n < \epsilon^2 < \epsilon, \sqrt{a_n} < \epsilon.$

Question 3 3. If $\lim_{n\to\infty} a_n = a$.

Prove $\lim_{n\to\infty} |a_n| = |a|$. Vice versa?

Proof $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}^+, \forall n > N(\epsilon), |a_n - a| < \epsilon.$

$$||a_n| - |a|| \le |a_n - a| < \epsilon$$

 $\therefore \lim_{n\to\infty} |a_n| = |a|$

If We know $\lim_{n\to\infty} |a_n| = |a|$.

 $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}^+, \forall n > N(\epsilon), \big| |a_n| - |a| \big| < \epsilon.$ We can't get $\lim_{n \to \infty} a_n = a$. For example: $a_n = \frac{1}{n} + 1, a = -1, \lim_{n \to \infty} |a_n| = |a| \text{ is } \lim_{n \to \infty} |\frac{1}{n} + 1| = |-1|, \text{ but } \lim_{n \to \infty} \frac{1}{n} + 1 \neq -1$

Question 4 (1). Suppose p(x) is a polynomial of x, if $\lim_{n\to\infty} a_n = a$, Prove $\lim_{n\to\infty} p(a_n) = a$ p(a).

- (2). Suppose b > 0, $\lim a_n = a$. Prove $b^{a_n} = b^a$.
- (3). Suppose b > 0, $\{a_n\}$, $a_n > 0$, $\forall n \in \mathbb{N}$. $\lim_{n \to \infty} a_n = a.a > 0$. Prove $\lim_{n \to \infty} \log_b a_n = \log_b a$. (4) Suppose $b \in \mathbb{R}$, $\{a_n\}$, $a_n > 0$ when $n \in \mathbb{N}$. $\lim_{n \to \infty} a_n = a$. Prove $\lim_{n \to \infty} a_n^b = a^b$.
- (5) Suppose $\lim_{n\to\infty} a_n = a$. Prove $\lim_{n\to\infty} \sin a_n = \sin a$.

Proof 4.(1)

 $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}^+, \forall n \geqslant N(\epsilon), |a_n - a| < \epsilon.$

$$p(a) = k_m a^m + k_{m-1} a^{m-1} + \dots + k_0 a^0.$$

$$\therefore p(a_n) - p(a) = k_m (a_n^m - a^m) + k_{m-1} (a_n^{m-1} - a^{m-1}) + \dots + k_0 (a_n^0 - a^0).$$

$$|a_n^m - a^m| = |a_n - a| \cdot |a_n^{m-1} + a_n^{m-2} a + \dots + a^{m-1}|$$

$$< \epsilon \cdot |a_n^{m-1} + a_n^{m-2} a + \dots + a^{m-1}|$$

$$< \epsilon \cdot |a_n^{m-1} + a_n^{m-2} a + \dots + a^{m-1}|$$

$$< \epsilon (m-1) \cdot \dots (a+\delta)^{m-1}$$

$$\therefore \lim_{n \to \infty} p(a_n) = p(a). \qquad \square$$

$$\text{Proof } 4.(2)$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^+ . \forall n \geqslant N, |a_n - a| < \epsilon.$$
If $b = 1, 1^{a_n} = 1^a = 1$.
If $b > 1, b^{a_n} - b^a = b^a (b^{a_n - a} - 1) < b^a (b^c - 1) \ 0 < |b^{a_n} - b^a| < b^a \cdot (b^c - 1) \ \because b > 0, \epsilon \to 0,$

$$\therefore b^c - 1 \to 0. \quad \therefore \lim_{n \to \infty} b_n^a = b^a.$$
If $b < 1, b^{a_n} = \frac{1}{(\frac{1}{2})^{a_n}}$, we can prove this condition by considering $\frac{1}{b} > 1$.
$$\text{Proof } 4.(3)$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^+ . \forall n \geqslant N, |a_n - a| < \epsilon.$$

$$\log_b a_n - \log_b a = \log_b \frac{a_n}{a}$$

$$= \log_b (\frac{a_n - a}{a} + 1) < \log_b (\frac{\epsilon}{a} + 1)$$

$$0 < \log_b a_n - \log_b a | < \log_b (1 + \frac{\epsilon}{a}) \cdot \because b > 0, a \neq 0, a_n > 0 \text{ when } \epsilon \to 0. \quad \therefore \log_b (1 + \frac{\epsilon}{a}) \to 0.$$

$$\therefore \lim_{n \to \infty} \log_b a_n = \log_b a$$

$$\text{Proof } 4.(4)$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^+ . \forall n \geqslant N, |a_n - a| < \epsilon.$$

$$e^{b \ln a_n} - e^{b \ln a} = e^{b \ln a} (e^{b \ln a_n - b \ln a} - 1)$$

$$= e^{b \ln a} (e^{b \ln \frac{a_n}{a}} - 1)$$

$$0 < |a_n^b - a^b| < e^{b \ln a} (\epsilon^{b \ln (1 + \frac{\epsilon}{a})} - 1)$$

$$\therefore \lim_{n \to \infty} a_n^b = a^b$$

$$\text{Proof } 4.(5)$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^+ . \forall n \geqslant N, |a_n - a| < \epsilon.$$

$$\sin(A + B) - \sin(A - B) = \sin A \cos B + \cos A \sin B$$

$$- (\sin A \cos B - \cos A \sin B)$$

$$= 2 \cos A \sin B$$

$$\sin a_n - \sin a = 2 \cos \frac{a_n + a}{2} \sin \frac{a_n - a}{2}$$

 $|\sin a_n - \sin a| = |2\cos \frac{a_n + a}{2}\sin \frac{a_n - a}{2}| < |2\sin \frac{a_n - a}{2}|$ $\left|2\sin\frac{a_n-a}{2}\right| < \left|2\frac{a_n-a}{2}\right| = \epsilon$ $|\sin a_n - \sin a| < \epsilon$, : $\lim_{n \to \infty} \sin a_n = \sin a$

Question 5 assume a > 1. Prove $\lim_{n \to \infty} \frac{\log_a n}{n} = 0$

Proof $\frac{1}{n}\log_a n = \log_a \sqrt[n]{n}$. We already know that $\lim_{n \to \infty} \sqrt[n]{n} = 1$, $\log_a 1 = 0$. $\forall \epsilon > 0, \exists N \in \mathbb{N}^+, N = \max\{2, \left[\frac{4}{\epsilon^2}\right]\} . \forall n \geqslant N, |\sqrt[n]{n} - 1| < \epsilon.$

a>1, and $\lim_{n\to\infty} \sqrt[n]{n}=1$. \therefore when $n\to\infty$, $\sqrt[n]{n}< a^{\epsilon}$, take logarithm on base of a, we can get

 $\frac{1}{n}\log_a n < \epsilon$

$$\therefore \lim_{n \to \infty} \frac{\log_a n}{n} = 0$$

2.2 收敛数列的基本性质

收敛数列的性质

- 1. 收敛数列的极限是唯一的
- 2. 收敛数列一定有界
- 3. 收敛数列的比较定理,包括保号性定理
- 4. 收敛数列满足一定的四则运算规则
- 5. 收敛数列的每一个子列一定收敛于同一极限

2.2.1 思考题

Question 6 1. $\{a_n\}$ 收敛, $\{b_n\}$ 发散, $\{a_n+b_n\}$ 发散, $\{a_n\cdot b_n\}$ 可能收敛, 可能发散.

- 2. $\{a_n\}, \{b_n\}$ 都发散, $\{a_n + b_n\}$ 可能收敛, 可能发散 (ex: n + -n, n + -2n), $\{a_n \cdot b_n\}$ 发散 (?).
- 3. $a_n \leqslant b_n \leqslant c_n, n \in \mathbb{N}_+$. 已知 $\lim_{n \to \infty} (c_n a_n) = 0$. 问数列 $\{b_n\}$ 是否收敛?
- 4. $\lim_{n \to \infty} \left(\frac{1}{n+1} + \cdots + \frac{1}{2n} \right)$
- 5. $a_n \to a(n \to 0)$. $\forall n, b < a_n < c$. 是否成立 b < a < c?
- 6. $a_n \to a (n \to 0)$. and $b \leqslant a \leqslant c$, 是否存在 $N \in \mathbb{N}_+$, s.t. 当 n > N 时,成立 $b \leqslant a_n \leqslant c$
- 7. 已知 $\lim_{n\to\infty} a_n = 0$, 问: 是否有 $\lim_{n\to\infty} (a_1 a_2 \dots a_n) = 0$. 反之如何?

Proof 5.4

$$\frac{n}{2n} \leqslant \frac{1}{n+1} + \dots + \frac{1}{2n} \leqslant \frac{n}{n+1}$$

$$\therefore \lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \lim_{n \to \infty} \frac{n}{n+1} = 1, \therefore \lim_{n \to \infty} (\frac{1}{n+1} + \dots + \frac{1}{2n}) \text{ If } x$$

$$\frac{1}{n+1} + \dots + \frac{1}{2n} = \frac{1}{n} (\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \dots + \frac{1}{1+\frac{n}{n}})$$

$$= \int_0^1 \frac{1}{1+x} dx$$

$$= \ln(1+x)|_0^1 = \ln 2$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \dots + \frac{1}{2n}\right) = \ln 2$$
Proof 5.5

不成立, 应当为小于等于号。 b=0, c=2, $a_n = \frac{1}{n}$, $\lim_{n\to\infty} a_n = 0 = c$.

Proof 5.6

不成立。
$$a = 0, b = 0, c = 2, a_n = (-1)^n \frac{1}{n}.$$

 $b \leqslant a \leqslant c$, but $(-1)^{2n+1} \frac{1}{2n+1} < 0 = b.$

Proof
$$\lim_{n \to \infty} a_n = 0, a_n = \frac{1}{n}.a_1 a_2 \dots a_n = \frac{1}{n!}, \lim_{n \to \infty} \frac{1}{n!} = 0.$$

$$\lim_{n \to \infty} a_n = 0 \to \lim_{n \to \infty} (a_1 a_2 \dots a_n) = 0 \qquad \checkmark$$

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n) = 0 \to \lim_{n \to \infty} a_n = 0 \qquad \times$$

$$\lim_{n \to \infty} a_n = 0 \to \lim_{n \to \infty} (a_1 a_2 \dots a_n) = 0 \qquad \checkmark$$

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n) = 0 \to \lim_{n \to \infty} a_n = 0 \qquad \times$$

$$|a_n| < \epsilon, |a_{N+1} \dots a_n| < \epsilon^{n \to \infty} < \epsilon, a_n < \sqrt[n]{\epsilon}.$$

for example, $a_n = \frac{n}{n+1}, a_1 = \frac{1}{2}, a_2 = \frac{2}{3}, \dots, a_n = \frac{n}{n+1}$.

$$a_1 a_2 \dots a_n = \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n}{n+1} = \frac{1}{n+1}.$$

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n) = \lim_{n \to \infty} \frac{1}{n} = 0$$

but $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0$ 研究数列收敛方面的两个基本工具:

- 1. 夹逼定理.
- 2. 单调有界数列的收敛定理

Example 2.1 2.2.2 $\lim_{n\to\infty} \frac{x_n-1}{x_n+a} = 0$, prove $\lim_{n\to\infty} x_n = a$ Proof $\forall \epsilon > 0, \exists N \in \mathbb{N}^+. \forall n \geqslant N, |\frac{x_n-1}{x_n+a} - 0| < \epsilon$.

Proof
$$\forall \epsilon > 0, \exists N \in \mathbb{N}^+. \forall n \geqslant N, \left| \frac{x_n - 1}{x_n + a} - 0 \right| < \epsilon.$$

$$|x_n-1|<\epsilon|x_n+a|<4a\cdot\epsilon.$$
(这个 4 是怎么取得的?)

$$|x_n - a| < \epsilon |x_n + a| = \epsilon |(x_n - a) + 2a| \leqslant \epsilon (|x_n - a| + 2a).$$

限制
$$\epsilon < 1$$
, $|x_n - a| < 2\epsilon |a|/(1 - \epsilon)$.

限制
$$\epsilon < \frac{1}{2}$$
, $|x_n - a| < 2\epsilon |a|/(1 - \epsilon) < 4|a|\epsilon$.

Let
$$\epsilon' = 4a\epsilon$$
, $|x_n - 1| < \epsilon'$. $\therefore \lim_{n \to \infty} x_n = a$.

Example 2.2 2.2.3 a > 0, b > 0, if $[a_n + b_n]^{\frac{1}{n}}$.

Proof Suppose $a \leq b$.

$$b = (b^b)^{\frac{1}{n}} < (a^n + b^n)^{\frac{1}{n}} \leqslant (2b^n)^{\frac{1}{n}}.$$

$$b < (a^n + b^n)^{\frac{1}{n}} \leqslant \sqrt[n]{2}b$$
, $\lim_{n \to \infty} = 1$. 夹逼定理

$$\lim_{n \to \infty} (a^n + b^n)^{\frac{1}{n}} = \max\{a, b\}.$$

两数 n 次方之和再开 n 次根号的结果由较大的值决定, a,b 中较大的值为这个数的主要部分.

Example 2.3 2.2.4
$$a_n = \frac{1!+2!+\cdots+n!}{n!}, n \in \mathbb{N}^+$$

$$\lim_{n \to \infty} a_n = 1$$

Example 2.4
$$\lim_{n \to \infty} \frac{n^3 + n - 7}{n + 3} = +\infty$$

Example 2.5
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

调和级数 H_n 发散.

2.2.2 练习 2.2.4

Proof 1.

 $\{a_n\}$ 收敛于 $a, \to 两个子列 \{a_{2n}\}, \{a_{2n+1}\}$ 均收敛于 a. 两个子列 $\{a_{2n}\},\{a_{2n+1}\}$ 均收敛于 $a, \to \{a_n\}$ 收敛于 a.

2. 应用夹逼定理

(1). 给定
$$p$$
 个正数 a_1, a_2, \ldots, a_p . 求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \ldots a_p^n}$. Let $a_s = \max_{1 \le i \le p} \{a_1, a_2, \ldots, a_p\}$.

Solve 2 (1).

$$a_s = (a_s^n)^{\frac{1}{n}} < (a_1^n + a_2^n + \dots + a_p^n)^{\frac{1}{n}} \leqslant (pa_s^n)^{\frac{1}{n}} = p^{\frac{1}{n}}a_s$$

$$n \to \infty, p^{\frac{1}{n}} \to 1. \lim_{n \to \infty} (a_1^n + a_2^n + \dots a_p^n)^{\frac{1}{n}} = a_s$$

(2).
$$x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}, n \in \mathbb{N}_+. \ \ \ \ \ \ \ \ \lim_{n \to \infty} x_n$$

Solve 3 (2).

$$\frac{2n+1}{(n+1)} \leqslant x_n \leqslant \frac{2n+1}{\sqrt{n^2+1}}$$

$$\lim_{n \to \infty} \frac{2n+1}{n+1} = 2, \ \lim_{n \to \infty} \frac{2n+1}{\sqrt{n^2+1}} = 2. \ \therefore \lim_{n \to \infty} x_n = 2$$

(3).
$$a_n = (1 + \frac{1}{2} + \dots + \frac{1}{n})^{\frac{1}{n}}, n \in \mathbb{N}_+$$
. $\Re \lim_{n \to \infty} a_n$

Solve 4 (3).

$$1 = (\frac{n}{n})^{\frac{1}{n}} < a_n \leqslant (1 \cdot n)^{\frac{1}{n}} = \sqrt[n]{n}$$

$$\lim_{n\to\infty} \sqrt[n]{n} = 1, :: \lim_{n\to\infty} a_n = 1$$

(4).
$$a_n > 0$$
. $\lim_{n \to \infty} a_n = a$, $a > 0$. 证明 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$ Proof $\lim_{n \to \infty} a_n = a$

Proof
$$\lim_{n \to \infty} a_n = a$$

 $\forall \epsilon > 0, \exists N \in \mathbb{N}^+. \forall n \geqslant N, |a_n - a| < \epsilon.$

$$0 < a - \epsilon < a_n < a + \epsilon$$

$$\therefore \sqrt[n]{a-\epsilon} < \sqrt[n]{a_n} < \sqrt[n]{a+\epsilon}.$$

$$\lim_{n \to \infty} \sqrt[n]{a - \epsilon} = 1, \lim_{n \to \infty} \sqrt[n]{a + \epsilon} = 1. \therefore \lim_{n \to \infty} \sqrt[n]{a_n} = 1.$$

$$\lim_{n \to \infty} \sqrt[n]{a - \epsilon} = 1, \lim_{n \to \infty} \sqrt[n]{a + \epsilon} = 1. : \lim_{n \to \infty} \sqrt[n]{a_n} = 1.$$
3. (1).
$$\lim_{n \to \infty} (1 + x)(1 + x^2) \dots (1 + x^{2^n}) = \lim_{n \to \infty} \prod_{i=1}^{2^n} (1 + x^i), |x| < 1.$$

Solve $5 \ 3.(1)$.

$$|x| < 1, \quad 1 > x^2 > x^4 > \dots > x^{2^n} > 0$$

$$x \in (0,1)$$
 $1 < (1+x)(1+x^2)\dots(1+x^{2^n}) < (1+x)^{n+1}$

$$\lim_{n \to \infty} (1+x)^{n+1} = 1$$

$$x \in (-1,0)$$
 $0 < (1+x)(1+x^2)\dots(1+x^{2^n}) < (1+x)(1+x^2)^n$ $\lim_{n \to \infty} (1+x)(1+x^2)^n = 1$

$$\lim_{n \to \infty} (1+x)(1+x^2)^n = 1$$

Solve 6 3.(1). another way

$$\lim_{n \to \infty} (1+x)(1+x^2) \dots (1+x^n)$$

$$= \lim_{n \to \infty} \frac{(1-x)(1+x)(1+x^2) \dots (1+x^n)}{1-x}$$

$$= \lim_{n \to \infty} \frac{(1-x^{2^{n+1}})}{1-x}$$

$$= \frac{1}{1-x}$$

Solve 7 3. (2).

$$\lim_{n \to \infty} (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (1 - \frac{1}{n^2})$$

$$= \lim_{n \to \infty} \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdot \frac{5}{4} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \dots \frac{n-1}{n} \cdot \frac{n+1}{n}$$

$$= \lim_{n \to \infty} \frac{1}{2} \frac{n+1}{n}$$

$$= \lim_{n \to \infty} \frac{1}{2}$$

Solve 8 3. (3).

$$\lim_{n \to \infty} \left(1 - \frac{1}{1+2}\right) \left(1 - \frac{1}{1+2+3}\right) \dots \left(1 - \frac{1}{1+2+\dots + n}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{2}{3 \times 2}\right) \left(1 - \frac{2}{4 \times 3}\right) \dots \left(1 - \frac{2}{(n+1) \times n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{3 \times 2 - 2}{3 \times 2}\right) \left(\frac{4 \times 3 - 2}{4 \times 3}\right) \dots \left(\frac{(n+1) \times n - 2}{(n+1) \times n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{4}{3 \times 2}\right) \left(\frac{10}{4 \times 3}\right) \dots \left(\frac{n^2 + n - 2}{(n+1) \times n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{1 \times 4}{3 \times 2}\right) \left(\frac{2 \times 5}{4 \times 3}\right) \dots \left(\frac{(n-2) \times (n+1)}{n \times (n-1)}\right) \left(\frac{(n-1) \times (n+2)}{(n+1) \times n}\right)$$

$$= \lim_{n \to \infty} \frac{1}{3} \times \frac{n+2}{n}$$

$$= \frac{1}{3}$$

$$\lim_{n \to \infty} \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} \right]$$

$$= \lim_{n \to \infty} \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \frac{1}{1} - \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \frac{n}{n+1}$$

$$= 1$$

Solve $9 \ 3.(4)$.

$$\lim_{n \to \infty} \left[\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1) \cdot (n+2)} \right]$$

$$= \lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right) + \frac{1}{2} \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} \right) + \dots + \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right)$$

$$= \lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{1 \cdot 2} - \frac{1}{(n+1)(n+2)} \right)$$

$$= \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{4}$$

Solve $10\ 3.(5)$.

$$\begin{split} &\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k(k+1)\dots(k+\gamma)}, \qquad \mbox{其中}\gamma为重整数\\ &=\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\gamma}\Big[\frac{1}{k(k+1)\dots(k+\gamma-1)}-\frac{1}{(k+1)(k+2)\dots(k+\gamma)}\Big]\\ &=\lim_{n\to\infty}\frac{1}{\gamma}\Big[\sum_{k=1}^n\frac{1}{k(k+1)\dots(k+\gamma-1)}-\sum_{k=1}^n\frac{1}{(k+1)(k+2)\dots(k+\gamma)}\Big]\\ &=\lim_{n\to\infty}\frac{1}{\gamma}\Big[\frac{1}{\gamma^2}-\frac{1}{(n+\gamma)^2}\Big]\\ &=\lim_{n\to\infty}\frac{1}{\gamma}\Big[\frac{1}{\gamma!}-\frac{1}{(n+\gamma)^2}\Big]\\ &=\frac{1}{\gamma}\cdot\frac{1}{\gamma!} \end{split}$$

其中 $x^{\underline{n}} = x(x-1)(x-2)\dots(x-n+1)$, 称为下阶乘. 而 $x^{\overline{n}} = x(x+1)(x+2)\dots(x+n-1)$, 称为上阶乘.

Solve 11

$$S_n - aS_n = a + 3a^2 + \dots + (2n - 1)a^n$$

$$- a^2 - \dots + (2n - 3)a^n - (2n - 1)a^n + 1$$

$$= a + 2a^2 + \dots + 2aa^n - (2n - 1)a^{n+1}$$

$$= 2(a + a^2 + \dots + a^n) - a - (2n - 1)a^{n+1}$$

$$= 2 \cdot a \frac{1 - a^{n+1}}{1 - a} - a - (2n - 1)a^{n+1}$$

|a| < 1, $\lim_{n \to \infty} a_n = 0$

 $\lim_{n \to \infty} (S_n - aS_n) = (1 - a) \lim_{n \to \infty} S_n$

$$\lim_{n \to \infty} (S_n - aS_n) = \lim_{n \to \infty} 2a \cdot \frac{1 - a^{n+1}}{1 - a} - a - (2n - 1)a^{n+1}$$

$$= 2a \cdot \frac{1}{1 - a} - a$$

$$= a\left(\frac{2}{1 - a} - a\right)$$

$$= a\frac{1 + a}{1 - a}$$

 $\therefore \lim_{n \to \infty} S_n = \frac{a(a+1)}{(1-a)^2}$

Solve 12 2.2.4-5 设 $\lim_{n\to\infty} x_n = A > 0$. 取 $\epsilon = \frac{A}{2}$, 则 $\exists N \in \mathbb{N}_+$. $\forall n > N$. 成立 $|x_n - A| < \frac{A}{2}$

$$A - \frac{A}{2} < x_n < A + \frac{A}{2}, \frac{A}{2} < x_n < \frac{3A}{2}$$

 $\mathbb{P} x_n > \frac{A}{2}$.

令 $m = \min\{x_1, x_2, \dots, x_N, \frac{A}{2}\} > 0$. 则 m 为 $\{x_n\}$ 的正下界.

不一定有最小数的例子 $x_n = 1 + \frac{1}{n}$. $\lim_{n \to \infty} x_n = 1$, 下界 $m = \frac{1}{2}$. 但 $\{x_n\}$ 取不到下界.

Proof 2.2.4-6: $\lim_{n \to \infty} a_n = +\infty$. $\forall M > 0, \exists N \in \mathbb{N}_+, \forall n > N, a_n > M$.

 $m = \min\{a_1, a_2, \dots, a_N, M\}$, 但 M 在数列 $\{a_n\}$ 中不一定取的到!

 $M = a_1 + 1, \exists N_1 \in \mathbb{N}_+, \forall n > N_1, a_n > M > a_1$

则 $m = \min\{a_1, a_2, \dots, a_{N_1}\}$ 为数列的最小数.

Proof 2.2.4-7 构造数列

不妨设无界数列 $\{a_n\}$ 无上界.

 $\forall M \in \mathbb{R}, \exists N \in \mathbb{N}_+, \forall n_k > N, a_{n_k} > M.$

取 $M_1 = 1$, 则 $\exists n_1 \in \mathbb{N}_+ \text{ s.t. } a_{n_1} > M_1$.

 $\mathfrak{R} M_2 = \max\{a_n, 2\}, \exists n_2 \in \mathbb{N}_+ \text{ s.t. } a_{n_2} > M_2.$

以此类推,构造数列 $\{a_{n_k}\}$. s.t. $a_{n_k} > k$. 即 a_{n_k} 为无穷大量.

Proof 2.2.4-8 证明 $\{a_n\}, a_n = \tan n$ 发散.

构造 a_n 的发散子列即可. 已知 $\tan \frac{\pi}{2} = \infty$, π 是一个无理数, 因此存在数列 $\{b_n\}$, $\lim_{n \to \infty} b_n = \frac{\pi}{2}$.

Proof 2.2.4-8 证明 $\{a_n\}, a_n = \tan n$ 发散. 参考别人的答案

由于 $\{\sin 2n\}$ 极限不存在,又

$$\sin 2n = 2\sin n \cos n = \frac{2\sin n \cos n}{\sin^2 n + \cos^2 n}$$
$$= \frac{2\tan n}{\tan^2 n + 1}$$

若 $\{\tan n\}$ 极限存在 $\rightarrow \{\sin 2n\}$ 极限存在, 矛盾.

故 $\{\tan n\}$ 极限不存在.

Question 8 2.2.4-9 $S_n = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p}$, $n \in \mathbb{N}_+$. S_n 在 1. $p \leq 0$, 2. 0 情况下均发

Proof 1. $p \le 0$. $\lim_{n \to \infty} n^{-p} = \infty$, S_n 发散. 2. $0 . <math>\frac{1}{n^p} > \frac{1}{n}$. $H_n = \sum_{k=1}^n \frac{1}{k}$ (调和级数) 发散, $S_n > H_n$, S_n

 $\exp 2.3.5 \ 0 < b < a \ \diamondsuit \ a_0 = a, b_0 = b$ 递推公式

$$a_n = \frac{a_{n-1} + b_{n-1}}{2}, b_n = \sqrt{a_{n-1}b_{n-1}}, \quad n \in \mathbb{N}_+$$
 (2.1)

定义数列 a_n,b_n . 证明这两个数列收敛于同一个极限 AG(a,b).

由 AG 不等式 $a>\frac{a+b}{2}>\sqrt{ab}>b>0$,利用单调有界数列收敛原则可以证明上述结论.

$$AG(a,b) = \frac{\pi}{2G} \tag{2.2}$$

如果令 $a_1 = \frac{a+b}{2}, b_1 = \sqrt{ab}$. 则

$$G = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\phi}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}} = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\theta}{\sqrt{a_1^2 \cos^2 \theta + b_1^2 \sin^2 \theta}}$$
(2.3)

上面这个公式是怎么得到的:

参考菲赫金哥尔茨 - 微积分学教程. 第二卷 315 小节的高斯公式, 蓝登变换.

$$G = \int_0^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}} \qquad (a > b > 0)$$
 (2.4)

这里令

$$\sin \phi = \frac{2a\sin\theta}{(a+b) + (a-b)\sin^2\theta} \tag{2.5}$$

 $\theta \in [0, \frac{\pi}{2}] \rightarrow \phi \in [0, \frac{\pi}{2}]$, 取微分

$$\cos \phi d\phi = 2a \frac{(a+b) - (a-b)\sin^2 \theta}{[(a+b) + (a-b)\sin^2 \theta]^2} \cos \theta d\theta$$
 (2.6)

但是

$$\cos \phi = \frac{\sqrt{(a+b)^2 - (a-b)^2 \sin^2 \theta}}{(a+b) + (a-b)\sin^2 \theta} \cos \theta.$$
 (2.7)

(2.6) / (2.7), 两式相除, 得到

$$d\phi = 2a \frac{(a+b) - (a-b)\sin^2\theta}{(a+b) + (a-b)\sin^2\theta} \frac{d\theta}{\sqrt{(a+b)^2 - (a-b)^2\sin^2\theta}}$$
(2.8)

另一方面

$$\sqrt{a^2 \cos \phi + b^2 \sin^2 \phi} = a \frac{(a+b) - (a-b)\sin^2 \theta}{(a+b) + (a-b)\sin^2 \theta}$$
 (2.9)

因而

$$\frac{\mathrm{d}\phi}{\sqrt{a^2\cos\phi + b^2\sin^2\phi}} = \frac{\mathrm{d}\theta}{\sqrt{(\frac{a+b}{2})^2\cos^2\theta + ab\sin^2\theta}}.$$
 (2.10)

如果令 $a_1 = \frac{a+b}{2}, b_1 = \sqrt{ab},$ 则

$$G = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\phi}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}} = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\theta}{\sqrt{a_1^2 \cos^2 \theta + b_1^2 \sin^2 \theta}}$$
(2.11)

反复应用该公式,得到

$$G = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\phi}{\sqrt{a_n^2 \cos^2 \phi + b_n^2 \sin^2 \phi}}, \qquad (n = 1, 2, 3, \dots)$$
 (2.12)

$$\frac{\pi}{2a_n} < G < \frac{\pi}{2b_n} \tag{2.13}$$

积分 G 可以归结到第一类全椭圆积分 $K(k)=(1+k_1)K(k_1)=\frac{\pi}{2}(1+k_1)(1+k_2)\dots(1+k_n)$

$$\int_0^{\frac{p_i}{2}} \frac{\mathrm{d}\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = (1 + k_1) \int_0^{\frac{p_i}{2}} \frac{\mathrm{d}\theta}{\sqrt{1 - k_1^2 \sin^2 \theta}}$$
 (2.14)

其中

$$a_1 = \frac{1+\sqrt{1-k^2}}{2} = \frac{1+k'}{2}, b_1 = \sqrt{k'}$$

$$k_1 = \frac{\sqrt{a_1^2 - b_1^2}}{a_1} = \frac{1-k'}{1+k'}, \frac{1}{a_1} = 1 + k_1$$

2.3 2.3 单调数列

Example 2.6 2.3.6

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1!+2!+\dots+(n+1)!}{(n+1)!}}{\frac{1!+2!+\dots+n!}{n!}}$$

$$= \frac{1}{n+1} \frac{1!+2!+\dots+(n+1)!}{1!+2!+\dots+n!}$$

$$= \frac{3+3!+\dots+(n+1)!}{(n+1)1!+(n+1)2!+\dots+(n+1)!}$$

Solve 13 n > 2 时, 分母每一项大于等于分子对应项.. n > 2 后 a_n 单调减少. 由于 0 是下界, 因此 a_n 单调有界, 数列收敛.

$$a_{n+1} = \frac{1! + 2! + \dots + (n+1)!}{(n+1)!}$$

$$= \frac{1! + 2! + \dots + n!}{n!} \frac{1}{n+1} + 1$$

$$= 1 + \frac{a_n}{n+1}$$

设 $n \to \infty$ 时, $a_n \to a$

$$a = 1 + \left(\frac{1}{n+1} \to 0\right) = 1 + 0, \quad \therefore a = 1$$

$$\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{n!} = 1$$

2.3.1 2.3.2 练习题

Proof 分类讨论, 不妨设 $x_1 \ge 0$

- 1. x_n 单调递增, $|x_n|$ 从第一项开始单调.
- 2. x_n 单调递减, 且 $|x_n| \ge 0$. $|x_n|$ 从第一项开始单调.
- 3. x_n 单调递减, 且 $\exists N$ s.t. $x_n < 0$ (第一个负数项). 则 $|x_n|$ 从第 N 项 (x_N) 开始单调. 反之该结论不成立.

反例: $x_n = \frac{(-1)^n}{n}$, $|x_n|$ 单调递减. 但 $x_{2k} = \frac{1}{2k} > 0 > x_{2k-1} = \frac{-1}{2k-1}$

Question 10 设 a_n 单调增m, b_n 单调减少, 且有 $\lim_{n\to\infty} (a_n - b_n) = 0$. 证明: 数列 a_n 和 b_n 都收敛, 且极限相等.

Proof $\lim_{n \to \infty} (a_n - b_n) = 0, \forall \epsilon > 0, \exists N \in \mathbb{N}_+, \text{s.t.} \forall n > N, |a_n - b_n - 0| < \epsilon.$

 $b_n - \epsilon < a_n < b_n + \epsilon$, 同时有 $a_n - \epsilon < b_n < a_n + \epsilon$.

 b_n 单调减少, $\therefore \exists N_2, \forall m < N_2, b_m > b_n + \epsilon$.

使用反证法证明 b_m 是 a_n 的上界.

假设 b_m 不是 a_n 的上界,则存在 $a_n > b_m > b_n + \epsilon$,这与 $|a_n - b_n| < \epsilon$ 矛盾.

 $\therefore b_m$ 是 a_n 的上界,根据单调有界收敛准则, a_n 收敛.同理可证 b_n 收敛. $\lim_{n\to\infty}(a_n-b_n)=0$. $\therefore \lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

Question 11 按照极限定义证明:

- 1. 单调增加有上界的数列的极限不小于数列中的任何一项.
- 2. 单调减少有下界的数列的极限不大于数列中的任何一项.

Question 12 设 $x_n = \frac{2}{3} \cdot \frac{3}{5} \cdots \frac{n+1}{2n+1}, n \in \mathbb{N}_+,$ 求数列 x_n 的极限.

Solve 14

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)+1}{2(n+1)+1} = \frac{n+2}{2n+3} < 1. \qquad (n>0)$$
 (2.15)

 x_n 单调递减. $x_n > 0$, $x_n = x_n = x_n$ 收敛.

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{n+2}{2n+3} = \frac{1}{2}$$

$$\left(\frac{1}{2}\right)^n < x_n < \left(\frac{2}{3}\right)^n$$
,由夹道定理, $\lim_{n \to \infty} x_n = 0$

Question 13 6. 在例题 2.2.6 的基础上证明: 当 p>1 时,数列 S_n 收敛.其中

$$S_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p}, \quad n \in \mathbb{N}_+$$

 $(S_n$ 就是 p 级数, 当 p=1 时为调和级数.)

Proof S_n 单调递增,记 $\frac{1}{2p-1} = r$,则 0 < r < 1.

$$\frac{1}{2^p} + \frac{1}{3^p} < \frac{1}{2^p} + \frac{1}{2^p} = \frac{1}{2^{p-1}} = r$$

$$\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p} < \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} = r$$

$$= \frac{1}{4^{p-1}} = r^2$$

$$\frac{1}{(2^k)^p} + \dots + \frac{1}{(2^{k+1} - 1)^p} < \frac{1}{(2^k)^p} + \frac{1}{(2^k)^p} + \dots + \frac{1}{(2^k)^p} = r^k$$