Non-Context-Free Languages

COMPSCI 3331

Outline

- Non-context-free Languages.
- Pumping Lemma for CFLs.
- Heuristics for CFLs and non-CFLs.
- Closure Properties of CFLs.

Non-Context-free Languages

- Not every language is a CFL.
- ▶ In PDAs, the stack can only be used to remember the most recent thing.
 - e.g., $L = \{a^n b^m a^n b^m : n, m \ge 0\}.$
- Once stack contents are used, there is no way to 'remember' them again.
 - e.g., $L = \{a^n b^n c^n : n \ge 0\}.$
- Need a formal method for proving languages not to be CFLs.

Pumping Lemma for CFLs

- Pumping lemma for regular languages: used DFA.
- Can prove a pumping lemma for CFLs using PDAs.
- Using CFGs is easier.

Pumping Lemma for CFLs

Theorem. Let L be a CFL. Then there exists a constant $n \ge 0$ such that for all $z \in L$ with $|z| \ge n$, there exists $u, v, w, x, y \in \Sigma^*$ such that z = uvwxy with

- $|vwx| \leq n$;
- \triangleright $vx \neq \varepsilon$;
- ▶ for all $i \ge 0$, $uv^i wx^i y \in L$.

Pumping Lemma for CFLs

- Notice that vwx aren't at the start of the word anymore!
- Can only use the pumping lemma to prove that languages aren't CFLs

Let L be a language such that for all $n \ge 0$, there exists a $z \in L$ with $|z| \ge n$, such that for all ways of writing z = uvwxy such that

- $|vwx| \le n$;
- \triangleright $vx \neq \varepsilon$,

if there always exists an $i \ge 0$ such that $uv^iwx^iy \notin L$, then the language L is not a CFL.

Heuristics for Non-CFLs

- The stack can only recall the most recent thing it stored.
- Once something is removed from the stack, it cannot be recovered!

Typical non-context-free "forms"

- ► Multiple agreement: $L = \{a^n b^n c^n : n \ge 0\}$.
- ► Cross agreement: $L = \{a^n b^m a^n b^m : n, m \ge 0\}$.
- ► Repetition: $L = \{ww : w \in \Sigma^*\}$.

Do not confuse ..

- ► Multiple agreement ($\{a^nb^nc^n: n \ge 0\}$) with independent agreement ($\{a^nb^na^mb^m: n, m \ge 0\}$).
- Cross agreement $(\{a^nb^ma^nb^m: n, m \ge 0\})$ with nested agreement $(\{a^nb^mb^ma^n: n, m \ge 0\})$.
- Repetition ($\{ww : w \in \Sigma^*\}$) with reversed-repetition ($\{ww^R : w \in \Sigma^*\}$).

Closure Properties for CFLs

Theorem. Let $L_1, L_2 \subseteq \Sigma^*$ be CFLs. Then $L_1 \cup L_2$, $L_1 L_2$ and L_1^* are CFLs.

Proof Let $G_i = (V_i, \Sigma, P_i, S_i)$ be CFGs such that $L(G_i) = L_i$ for i = 1, 2.

- ► $G_{\text{union}} = (V_1 \cup V_2 \cup \{S\}, \Sigma, P, S)$ where $P = P_1 \cup P_2 \cup \{S \rightarrow S_1 | S_2\}.$
- $G_{\mathrm{cat}} = (V_1 \cup V_2 \cup \{S\}, \Sigma, P, S)$ where $P = P_1 \cup P_2 \cup \{S \to S_1 S_2\}.$
 - $G_{\text{star}} = (V_1 \cup \{S\}, \Sigma, P, S)$ where $P = P_1 \cup \{S \rightarrow \varepsilon | S_1 S\}$.

Corollary. Every regular language is also a CFL.

Non-closure Properties for CFLs

Theorem. The CFLs are not closed under intersection.

Proof. Consider the following languages:

$$L_1 = \{a^n b^n c^m : n, m \ge 0\}$$

 $L_2 = \{a^m b^n c^n : n, m \ge 0\}$

Then L_1, L_2 are CFLs (exercise). However,

$$L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\},\$$

which is not a CFL.

Non-closure Properties for CFLs

Corollary. The CFLs are not closed under complement.

Proof. By contradiction. Assume that for all CFLs L, \overline{L} is also a CFL. Consider that for all CFLs $L_1, L_2 \dots$

Closure properties using PDAs

Theorem. Let L be a CFL and R be a regular language. Then $R \cap L$ is a CFL.

Proof. Construction of a PDA.

$$\begin{array}{rcl}
(M_1) &=& (Q_1, \Sigma, \Gamma, \delta_1, q_1, Z_0, F_1) \\
(M_2) &=& (Q_2, \Sigma, \delta_2, q_2, F_2)
\end{array}$$

Assume M_1 accepts by final state. Then let

$$M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, [q_1, q_2], Z_0, F_1 \times F_2)$$

- ► This can be very helpful in showing non-closure of CFLs.
- ▶ Instead of showing L is not a CFL, pick R and show $L \cap R$ is not a CFL.

Conclusions

- Pumping lemma: showing that languages are not context-free.
- Closure properties: CFLs are closed under union, concatenation, Kleene closure.
- Non-closure properties: not closed under intersection, complement.
- Where to from here? Next step: Turing Machines.
- More powerful formalism than CFGs/PDAs.
- Next lecture: Determinism in PDAs.