Processamento de Sinais em Tempo Discreto

Prof. Dr. Samuel Lourenço Nogueira

- Aulas passadas (Análise e testes com FIR)
 - · Análise do espectro do filtro FIR
 - Resposta de filtro FIR em função da ordem
 - Teste prático

Conteúdo Programático

• Filtro IIR (Impulse Infinite Response)

FIR vs IIR

	FIR	IIR	2055 Lime
Nome	Finite Impulse Response	Infinite Impulse Response	
Quantidade de Coeficientes (kernel length)	Grande	Pequeno	" Galar mars"
Velocidade (custo computacional)	Lento (alto custo)	Rápido (baixo busto)) Onlim?
Estabilidade	Alta	Dependente da base de dados	DADOS ORDEM CESIC
Operações Realizadas	<u>Dados</u> com <u>Coeficientes</u>	<u>Dados</u> com <u>Coeficientes + Dados</u>	(ORDWI CE WO

"Grammeri"

• **Relembrando:** Quando filtro FIR é sujeito ao impulso, a sua resposta tende a zero, após a ocorrência do mesmo. Uma vez que o sinal está sujeito somente a alimentação direta.

 O filtro de resposta infinita ao impulso, do inglês Infinite Impulse Response (IIR), apresenta além da alimentação direta (idem FIR) também uma realimentação da saída. Assim, a resposta do filtro ao impulso não seria necessariamente finita, como o nome IIR sugere.

Caso 2, temos:

0.6			
$0.8 \\ 0.8$		fiche &	~
0.8.	1	Nabu	ES+6,151
		9.8	

Caso 3. temos:

input	output	
0	0	
1	0.6	\
0	0.86	- \
0	0.946	_ \
0	1.0406	
0	1.14466	
0	1.259126.	1

Saion ->+00

Estabilidade dos filtros:

- Caso 1 (resposta ao impulso tendendo a zero) : IIR estável
- Caso 2 (resposta ao impulso oscila à uma taxa constante): IRR condicionalmente estável
- Caso 3 (resposta ao impulso tende ao infinito + ou -): IRR instável

Exemplo: Projeto do Filtro IRR

>> Topico9Exemplo1.m % Parte 1 - Projeto Filtro IIR Passa-Faixa com Butter

Necessário utilizar a função impulso unitário, uma vez que os coeficientes "a" são realimentações.

Exemplo: Projeto do Filtro IRR

>> Topico9Exemplo1.m % Parte 2 -

% Parte 2 - effects of order parameter

Ordem 2:

Exemplo: Projeto do Filtro IRR

>> Topico9Exemplo1.m % Parte 2 - effects of order parameter

