Corrigé 7

Exercice 1. Montrer que la série $\sum_{k\in\mathbb{Z}} \frac{1}{|k|!} z^k$ a pour anneau de convergence $A(0,\infty) = \mathbb{C}^*$.

Démonstration. La partie régulière de la série est

$$\sum_{k>0} \frac{z^k}{k!},$$

qui a pour rayon de convergence ∞. La partie singulière est donnée par

$$\sum_{k>1} \frac{w^k}{k!},$$

où on a posé w=1/z. Son rayon de convergence est ∞ également, et on en déduit que l'anneau de convergence de $\sum_{k\in\mathbb{Z}}\frac{1}{|k|!}z^k$ est $A(0,0,\infty)$, comme annoncé.

Exercice 2. On considère la fonction

$$f(z) = \frac{1}{(z-1)(z-2)} \ .$$

Trouver son développement en série de Laurent en 0 :

- dans le disque |z| < 1;
- dans la couronne 1 < |z| < 2;
- dans la couronne |z| > 2.

Démonstration.

— pour tout $z \in D(0,1)$, on a

$$\frac{1}{(z-1)(z-2)} = \left(\sum_{k=0}^{\infty} z^k\right) \left(\frac{1}{2}\sum_{k=0}^{\infty} \left(\frac{z}{2}\right)^k\right) = \sum_{k=0}^{\infty} z^k \left(\sum_{m=0}^k \frac{1}{2} \left(\frac{1}{2}\right)^m\right) = \sum_{k=0}^{\infty} z^k \left(1 - \frac{1}{2^{k+1}}\right).$$

— pour $R \in (1,2)$, les coefficients a_k prennent la forme suivante (Théorème 201 dans le cours puis théorème des résidus)

$$a_k = \frac{1}{2\pi i} \oint_{\partial D(0,R)} \frac{1}{z^{k+1}} \frac{1}{(z-1)(z-2)} dz = \operatorname{Res}\left(\frac{z^{-(k+1)}}{(z-1)(z-2)}, 0\right) + \operatorname{Res}\left(\frac{z^{-(k+1)}}{(z-1)(z-2)}, 1\right).$$

Par définition, le résidu en 0 est le coefficient d'indice -1 dans la série de Laurent de $\frac{z^{-(k+1)}}{(z-1)(z-2)}$ en 0, que l'on peut déduire de la question précédente. On a alors $\operatorname{Res}\left(\frac{z^{-(k+1)}}{(z-1)(z-2)},0\right)=1-\frac{1}{2^{k+1}}$ si $k\geq 0$ et 0 si k<0. Pour le résidu en 1, on a un pôle simple qu'on peut calculer facilement avec le lemme 242 du cours : $\operatorname{Res}\left(\frac{z^{-(k+1)}}{(z-1)(z-2)},1\right)=\lim_{z\to 1}\frac{z^{-(k+1)}}{(z-2)}=-1$ pour tout k. On a donc

$$a_k = \begin{cases} -2^{-(k+1)} & k \ge 0, \\ -1 & k < 0. \end{cases}$$
 (1)

— pour R > 2, le même raisonnement nous donne

$$a_k = \frac{1}{2\pi i} \oint_{\partial D(0,R)} \frac{1}{z^{k+1}} \frac{1}{(z-1)(z-2)} dz = \sum_{\zeta \in \{0,1,2\}} \text{Res}\left(\frac{z^{-(k+1)}}{(z-1)(z-2)}, \zeta\right).$$

Le lemme 242 du cours donne Res $\left(\frac{z^{-(k+1)}}{(z-1)(z-2)}, 2\right) = 2^{-(k+1)}$. Donc

$$a_k = \begin{cases} 0 & k \ge 0, \\ -1 + 2^{-(k+1)} & k < 0. \end{cases}$$
 (2)

Exercice 3. Trouver le développement en série de Laurent en 0 de la fonction

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)} .$$

Démonstration. On a

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z - i)(z + i)} = \frac{z}{(z - i)(z + i)} + \frac{5}{(z - 2)(z - i)(z + i)}.$$

Le premier terme a deux pôles simples en -i et i tandis que le deuxième terme a trois pôles simples en -i, i et 2. On doit donc trouver séparément la série de Laurent en 0 sur A(0,0,1), A(0,1,2) et $A(0,2,\infty)$.

Sur A(0,0,1), on fait apparaître le produit de deux séries géométriques dans le premier terme pour obtenir

$$\frac{z}{(z-i)(z+i)} = z \left(-\frac{1}{i} \sum_{k=0}^{\infty} (-iz)^k \right) \left(\frac{1}{i} \sum_{k=0}^{\infty} (iz)^k \right)$$

$$= z \sum_{k=0}^{\infty} z^k \sum_{m=0}^k (-i)^m i^{k-m}$$

$$= \sum_{k=0}^{\infty} i^k \frac{1 - (-1)^{k+1}}{2} z^{k+1}$$

$$= \sum_{k=0}^{\infty} (-1)^k z^{2k+1} = \sum_{k=0}^{\infty} \sin\left(\frac{\pi k}{2}\right) z^k.$$

Similairement pour le deuxième terme,

$$\frac{5}{(z-2)(z-i)(z+i)} = \frac{5}{2} \left(-\sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k \right) \left(\sum_{k=0}^{\infty} (-1)^k z^{2k} \right)$$

$$= -\frac{5}{2} \sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k \sum_{m=0}^{\lfloor \frac{k}{2} \rfloor} (-4)^m$$

$$= -\frac{5}{2} \sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k \frac{1 - (-4)^{\lfloor \frac{k}{2} \rfloor + 1}}{5}$$

$$= -\sum_{k=0}^{\infty} z^k \frac{1 - (-4)^{\lfloor \frac{k}{2} \rfloor + 1}}{2^{k+1}}.$$

et donc pour $z \in A(0,0,1)$, on a $f(z) = \sum_{k=0}^{\infty} a_k z^k$ avec $a_k = \sin(\frac{\pi k}{2}) - \frac{1 - (-4)^{\lfloor \frac{k}{2} \rfloor + 1}}{2^{k+1}}$. Pour A(0,1,2), on pose 1 < R < 2 et on obtient les coefficients b_k grâce au théorème 201 puis au théorème des résidus :

$$b_k = \oint_{\partial D(0,R)} \frac{f(z)}{z^{k+1}} \frac{dz}{2\pi i} = \sum_{\zeta \in \{0,i,-i\}} \operatorname{Res}\left(\frac{f(z)}{z^{k+1}},\zeta\right).$$

On a alors grâce au lemme 242 que $\operatorname{Res}\left(\frac{f(z)}{z^{k+1}},i\right)=-(-i)^{k+2}$ and $\operatorname{Res}\left(\frac{f(z)}{z^{k+1}},-i\right)=-i^{k+2}$ et donc $b_k=0$ $a_k - (-i)^{k+2} - i^{k+2} = a_k + 2\cos\left(\frac{\pi k}{2}\right).$

Similairement pour $A(0,2,\infty)$, on pose R>2 et on a

$$c_k = \oint_{\partial D(0,R)} \frac{f(z)}{z^{k+1}} \frac{dz}{2\pi i} = b_k + \operatorname{Res}\left(\frac{f(z)}{z^{k+1}}, 2\right)$$

avec Res $\left(\frac{f(z)}{z^{k+1}}, 2\right) = \frac{1}{2^{k+1}}$ pour tout k.

Exercice 4. Soit $a \in \mathbb{R}$. Calculer

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2}.$$

Démonstration. On a

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2} = \int_0^{2\pi} \frac{dt}{(e^{it} - a)(e^{-it} - a)} = \frac{1}{i} \oint \frac{dz}{(z - a)(1 - az)}.$$

Si |a| < 1 c'est la formule de Cauchy pour la fonction $\frac{2\pi}{1-az}$ en a et l'intégrale est donc $\frac{2\pi}{1-a^2}$. Si |a| > 1 c'est la formule de Cauchy pour la fonction $-\frac{2\pi}{a(z-a)}$ en $\frac{1}{a}$ et l'intégrale est donc encore $\frac{2\pi}{a^2-1}$.

Donc, pour tout $a \neq \pm 1$,

$$\int_0^{2\pi} \frac{dt}{1 - 2a\cos t + a^2} = \frac{2\pi}{|a^2 - 1|}.$$

Puisque pour tout $t \in [0, 2\pi]$ on a

$$0 \le 1 - \cos t \le \frac{1}{2}t^2,$$

l'intégrale diverge quand a = 1 car

$$\frac{1}{2}\int_0^{2\pi}\frac{dt}{1-\cos t}\geq \int_0^{2\pi}\frac{dt}{t^2}=\infty.$$

Similarly, since $0 \le 1 + \cos t = 1 - \cos(t - \pi) \le \frac{1}{2}(t - \pi)^2$, we have a non-intagrable singularity at $t = \pi$ when a = -1.

Exercice 5. Prouver que une fonction holomorphe $f:U\setminus\{z_*\}\to\mathbb{C}$ a un pôle d'ordre N>0 en $z_*\in U$ si et seulement si N est le plus petit entier tel que $z\mapsto |z-z_*|^N\,|f(z)|$ soit bornée au voisinage de z_* .

Démonstration. On suppose $z^*=0$. Supposons qu'il existe r>0, un entier naturel N et un réel M>0 tels que $|z|^N|f(z)|\leq M$ pour tout $z\in D(0,r)$. Par le Théorème 201, on a alors pour tout $0<\epsilon< r$ et pour tout k<-N

$$|a_k| = \frac{1}{2\pi} \left| \oint_{\partial D(0,\epsilon)} \frac{f(z)}{z^{k+1}} dz \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(\epsilon e^{it})|}{\epsilon^{k+1}} \epsilon dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{M}{\epsilon^{N+k}} dt = \frac{M}{\epsilon^{N+k}}.$$

Puisque k + N < 0 et la borne est valide pour tous $0 < \epsilon < r$, on a que $a_k = 0$ et donc 0 est un pôle au plus d'ordre N. Since N is the minimal one such that $|z|^N |f(z)|$ is bounded near zero, zero is a pole of order exactly N.

Let us now prove the reciprocal statement : let f have a pole of order N at zero. Consider its Laurent series at A(0,0,R), where R is small enough so that the annulus is fully contained inside $U: f(z) = \sum_{k=-N}^{\infty} a_k z^k$. Obviously, $|z|^N |f(z)|$ is bounded near zero, while $|z|^{N-1} |f(z)| \ge |a_{-N}| |z|^{-1} - \sum_{k=0}^{\infty} |a_{k-N+1}| |z|^k$ goes to infinity when |z| goes to zero as long as $a_{-N} \ne 0$.

Exercice 6. Soit U un domaine contenant z_* et $f:U\setminus\{z_*\}$ holomorphe. Montrer que si pour tout $N\geq 1$, la fonction $z\mapsto |z-z_*|^N\,|f(z)|$ n'est pas bornée au voisinage de z_* , alors f a une singularité essentielle en z_* .

 $D\acute{e}monstration$. A nouveau, on suppose $z^*=0$. Supposons maintenant que 0 est un pôle d'ordre fini N. Il existe donc un r>0 t.q. pour tout $z\in D(0,r)$

$$f(z) = \sum_{k=-N}^{\infty} a_k z^k,$$

et la fonction $z^N f(z) = \sum_{k=0}^{\infty} a_{k-N} z^k$ peut être completée en 0 en choisissant $z^N f(z)|_{z=0} = a_{-N}$. En particulier, elle est holomorphe et donc bornée dans un voisinage de 0, ce qui contredit l'hypothèse. Ainsi f ne peut avoir de pôle ni de singularité effaçable en 0 et doit donc y avoir une singularité essentielle, ce qui conclut la preuve.

Alternativement, on peut justifier qu'une fonction holomorphe avec une singularité en z_* a un développement en série de Laurent qui converge autour de z_* (voir remarque 205), et donc, par l'exercice prédédent, puisque f n'a ni une singularité effaçable, ni une singularité polaire, elle a forcément une singularité essentielle.

Exercice 7. Montrer que si une fonction $f:U\to\mathbb{C}$ a un pôle d'ordre N en z_* , alors

$$|f(z)||z-z_*|^{N-1} \underset{z \to z_*}{\longrightarrow} +\infty$$
.

Démonstration. Dans un voisinage de $z^* = 0$, on a

$$z^{N-1}f(z) = \sum_{k=-1}^{\infty} a_{k-N+1}z^k.$$

Comme la fonction entière $z^{N-1}f(z)-\frac{a_{-N}}{z}=\sum_{k=0}^\infty a_{k-N+1}z^k$ converge dans le même voisinage, elle converge aussi en 0. Elle est donc bornée dans le voisinage choisi et on a donc

$$|z^{N-1}||f(z)| \ge \frac{|a_{-N}|}{|z|} - \left|\sum_{k=0} a_{k-N+1} z^k\right| \ge \frac{|a_{-N}|}{|z|} - M,$$

qui tend vers ∞ quand $z \to -0$, car $a_{-N} \neq 0$.

Exercice 8. Soit U un domaine et soit $z_* \in U$. Démontrer le théorème suivant (Casorati-Weierstrass) : Si une fonction holomorphe $f: U \setminus \{z_*\} \to \mathbb{C}$ a une singularité essentielle en z_* , alors pour tout $w \in \mathbb{C}$, il existe une suite $(z_n)_n$ avec $z_n \xrightarrow[n \to \infty]{} z_*$ telle que

$$f(z_n) \underset{n \to \infty}{\longrightarrow} w$$
.

Démonstration. Supposons qu'il existe r>0 et $w\in\mathbb{C}$ t.q. $|f(z)-w|\geq r$ pour tous z dans un voisinage de z^* . On considère donc la fonction $g(z)=\frac{1}{f(z)-w}$ qui est bornée dans ce voisinage de z^* et donc admet un prolongement en z^* . Comme f est non-bornée dans un voisinage de z^* , on a forcément $g(z^*)=0$. La fonction g ayant donc un zéro d'ordre fini en z^* , on en déduit que $f(z)=\frac{1}{g(z)}+w$ a un pôle de même ordre en z^* , ce qui contredit l'hypothèse que la singularité est essentielle.