# УНИВЕРСИТЕТ ИТМО

# Факультет программной инженерии и компьютерной техники Программная инженерия Дисциплина «Организация вычислительных систем» Лабораторная работа № 3

Выполнил

Зиновичев Е. С.

Группа

P4119

Преподаватель

Быковский С. В.

### Задачи

- Разработать архитектуру вычислителя, предназначенного для моделирования работы нейронной сети, полученной по итогам выполнения лабораторной работы №1. В качестве основы можно использовать структуру вычислителя, представленную на рисунке 1. Рассмотреть варианты распараллеливания и конвейеризации вычислений.
- 2. Разработать микроархитектуру функциональных узлов нейросетевого процессора.
- 3. Разработать формат описания сети и алгоритм конфигурирования/программирования процессора

### Структура выбранной нейронной сети для тестирования

По итогам лабораторной работы № 1 была выбрана следующая структура нейронной сети:

• Количество входов: 49

• Количество выходов: 3

• Количество слоев: 2

• Количество нейронов в скрытом слое: 5

Однако представленная архитектура поддерживает и другие структур нейронных сетей. Для тестирования будут использоваться все рассмотренные структуры нейронных сетей в лабораторной работе  $\mathbb{N}$  1 для оценки качества распределения ресурсов на нейросетевом процессоре.

Структура нейросетевого процессора



Неройсетевой процессор будет содержать:

- 5 вычислительных ядер. Было принято такое решение, опираясь на выбранную структуру нейронной сети из первой лабораторной работы, такая организация подойдет и для других вариантов структур
- Устройство для управления вычислительными блоками, взаимодействия с устройствами ввода-вывода, чтения/записи конфигурационных данных и данных для вычислений
- Общую память для хранения данных для проведения вычислений
- Шину данных для общения функциональных узлов

# Архитектура нейросетевого процессора



На блок-схеме представлена архитектура нейросетевого процессора, где показаны соединения шины данных, а также управляющих сигналов от устройства управления. В данном процессоре расчет выхода нейрона будет занимать один вычислительный блок.

### Организация общей памяти

Память разделена на следующие сегменты:

- 1. Сегмент входных данных, который содержит входные данные для расчета нейронной сети.
- 2. Сегмент, в котором хранится количество слоев
- 3. Сегмент, в котором хранится количество нейронов на каждом слое
- 4. Сегмент, в котором хранится количество вычисленных споев
- 5. Сегмент, в котором хранится количество вычисленных нейронов на слое
- 6. Сегмент, в котором хранятся активации нейронов

Память подключается к общей шине, каждое ядро может имеет чтения/записи памяти.

Первые 3 сегмента не изменяются в процессе вычисления выхода сети, коэффициенты активаций нейронов и веса изменяются вычисляются и подстраиваются.



### Организация локальной памяти

Локальная память необходима для хранения весов для вычисления выхода сети. Использование локальной памяти позволяет снизить нагрузку на общую шину данных и увеличить быстродействие за счет близкого расположения к вычислительному ядру.



Линии локальной памяти:



### Устройство управления

Устройство управления ответственно за следующее:

- 1. Загрузка конфигурационных данных, активаций и весов сети в общую и локальную память процессора через контроллер ввода-вывода.
- 2. Вывод результата работы нейросети через контроллер ввода-вывода.
- 3. Распределение нагрузки на вычислительные блоки процессора и передачи конфигурационных данных в данные блоки для загрузки коэффициентов активаций и весов.
- 4. Опрашивание вычислительных блоков на их занятость.
- 5. Подсчет номера вычисляемого слоя и нейрона.

Устройство управления отдельно связано сигнальными линиями с другими функциональными узлами, по которым передаются управляющие сигналы.

Также в нем будет содержаться память для прошивки, которая реализует логику управления.

Линии устройства управления:

| clk_i ioc_wr_o ioc_rd_o ioc_busy_i first_cpu_busy_i second_cpu_busy_i third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i ada_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o a size first_cpu_o |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ioc_rd_o ioc_busy_i first_cpu_busy_i second_cpu_busy_i third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i adata_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o fifth_cpu_start_o               | clk_i              |
| ioc_busy_i first_cpu_busy_i second_cpu_busy_i third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                         | ioc_wr_o           |
| first_cpu_busy_i second_cpu_busy_i third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                    | ioc_rd_o           |
| second_cpu_busy_i third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                     | ioc_busy_i         |
| third_cpu_busy_i fourth_cpu_busy_i fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                       | first_cpu_busy_i   |
| fourth_cpu_busy_i fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                        | second_cpu_busy_i  |
| fifth_cpu_busy_i data_bi addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fifth_cpu_start_o                                                                                                                             | third_cpu_busy_i   |
| data_bi  addr_bo  rd_bo  wr_bo  first_cpu_start_o  second_cpu_start_o  third_cpu_start_o  fourth_cpu_start_o  fifth_cpu_start_o                                                                                                                   | fourth_cpu_busy_i  |
| addr_bo rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                   | fifth_cpu_busy_i   |
| rd_bo wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                           | data_bi            |
| wr_bo first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                                 | addr_bo            |
| first_cpu_start_o second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                                       | rd_bo              |
| second_cpu_start_o third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                                                         | wr_bo              |
| third_cpu_start_o fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                                                                            | first_cpu_start_o  |
| fourth_cpu_start_o fifth_cpu_start_o                                                                                                                                                                                                              | second_cpu_start_o |
| fifth_cpu_start_o                                                                                                                                                                                                                                 | third_cpu_start_o  |
|                                                                                                                                                                                                                                                   | fourth_cpu_start_o |
| a size first cpu o                                                                                                                                                                                                                                | fifth_cpu_start_o  |
|                                                                                                                                                                                                                                                   | a_size_first_cpu_o |

| a_size_second_cpu_o      |
|--------------------------|
| a_size_third_cpu_o       |
| a_size_fourth_cpu_o      |
|                          |
| a_size_fifth_cpu_o       |
| curr_neuron_first_cpu_o  |
| curr_neuron_second_cpu_o |
| curr_neuron_third_cpu_o  |
| curr_neuron_fourth_cpu_o |
| curr_neuron_fifth_cpu_o  |
| w_offset_first_cpu_o     |
| w_offset_second_cpu_o    |
| w_offset_third_cpu_o     |
| w_offset_fourth_cpu_o    |
| w_offset_fifth_cpu_o     |
| a_offset_first_cpu_o     |
| a_offset_second_cpu_o    |
| a_offset_third_cpu_o     |
| a_offset_fourth_cpu_o    |
| a_offset_fifth_cpu_o     |
| n_offset_first_cpu_o     |
| n_offset_second_cpu_o    |
| n_offset_third_cpu_o     |
| n_offset_fourth_cpu_o    |
| n_offset_fifth_cpu_o     |
|                          |

### Контроллер ввода-вывода

Контроллер ввода-вывода по запросу от управляющего устройства осуществляет чтение данных из файла, вывод результата и загрузку данных в общую и локальную память по шине данных.

Линии контроллера ввода-вывода:

|               | clk_i   |
|---------------|---------|
|               | addr_bo |
|               | data_bi |
|               | data_bo |
| io controller | cu_wr_i |
|               | cu_rd_i |
|               | wr_bo   |
|               | rd_bo   |
|               | busy_o  |
|               |         |

### Вычислительный блок

Вычислительный блок осуществляет подсчет выхода одного нейрона. Для этого он загружает коэффициенты активаций и соответствующие веса. Они перемножаются между собой и аккумулируются, после этого к ним применяется функция активации. На выходе

результат будет записан в общую память в те секции, которые содержат старые коэффициенты активаций текущего слоя.

Ядро содержит следующие блоки:

- 1. Очереди активаций и весов необходимые для вычисления текущего нейрона.
- 2. 16 умножителей и 8 сумматоров
- 3. Блок вычисления функции активации



На рисунке представлена микроархитектура вычислительного ядра. На них изображены сигналы для общения по общей шине, управляющие и конфигурационные сигналы от устройства управления и линии для связи с локальной памятью.

Линии вычислительного блока:

| clk_i         |
|---------------|
| addr_bo       |
| data_bi       |
| start_i       |
| a_size_i      |
| curr_neuron_i |
| w_offset_i    |
| a_offset_i    |
| n_offset_i    |
| data_lmi      |
| busy_bi       |
| d_ready_i     |
| data_bo       |
| addr_lmo      |
| rd_lmo        |
| wr_o          |
| rd_o          |
| busy_o        |
|               |

### Общая шина

Через шину осуществляется общения всех функциональных узлов процессора. Сигналы представляют собой одноразрядное значение, данные кодируются 32-разрядными значениями, что позволяет использовать типы int и float. Она содержит следующие линии:

| clk_i             |
|-------------------|
| first_cpu_addr_i  |
| second_cpu_addr_i |
| third_cpu_addr_i  |
| fourth_cpu_addr_i |
| fifth_cpu_addr_i  |
| ioc_addr_i        |
| first_cpu_data_i  |
| second_cpu_data_i |
| third_cpu_data_i  |
| fourth_cpu_data_i |
| fifth_cpu_data_i  |
| ioc_data_i        |
| cu_addr_i         |
| first_cpu_wr_i    |
| second_cpu_wr_i   |
| third_cpu_wr_i    |
| fourth_cpu_wr_i   |
| fifth_cpu_wr_i    |
| ioc_wr_i          |
| first_cpu_rd_i    |

|    | second_cpu_rd_i                        |
|----|----------------------------------------|
| us | third_cpu_rd_i                         |
|    | fourth_cpu_rd_i                        |
|    | fifth_cpu_rd_i                         |
|    | ioc_rd_i                               |
|    | cu_rd_i                                |
|    | cu_wr_i                                |
| ŀ  | first_cpu_data_o                       |
|    | second_cpu_data_o                      |
|    | third_cpu_data_o                       |
|    | fourth_cpu_data_o                      |
|    | fifth_cpu_data_o                       |
| ŀ  | first_lmem_addr_o                      |
| ŀ  | first_lmem_data_o                      |
|    | second_lmem_addr_o                     |
|    | second_Imem_data_o                     |
|    | third_lmem_addr_o<br>third lmem data o |
|    |                                        |
|    | fourth_lmem_addr_o                     |
|    | fourth_lmem_data_o                     |
|    | fifth_lmem_addr_o<br>fifth_lmem_data_o |
|    | ioc_data_o                             |
|    | cu_data_o                              |
|    | busy_o                                 |
|    | first_cpu_busy_o                       |
|    | second_cpu_busy_o                      |
|    | third_cpu_busy_o                       |
|    | fourth_cpu_busy_o                      |
|    | fifth cpu busy o                       |
|    | first_cpu_d_ready_o                    |
|    | second_cpu_d_ready_o                   |
|    | third_cpu_d_ready_o                    |
|    | fourth_cpu_d_ready_o                   |
|    | fifth_cpu_d_ready_o                    |
|    | first_lmem_wr_o                        |
|    | first_lmem_rd_o                        |
|    | second_lmem_wr_o                       |
| ŀ  | second_lmem_rd_o                       |
| ŀ  | third_lmem_wr_o                        |
| ŀ  | third_lmem_rd_o                        |
| ŀ  | fourth_lmem_wr_o                       |
| ŀ  | fourth_lmem_rd_o                       |
| ŀ  | fifth_lmem_wr_o                        |
|    | fifth Imem rd o                        |

### Алгоритм расчета выхода сети на ресурсах процессора

- 1. Модуль управления подает сигнал контроллеру ввода-вывода для загрузки конфигурационной информации и коэффициентов активаций в общую память.
- 2. Модуль управления подает сигнал контроллеру ввода-вывода для загрузки весов сетей в локальную память.
- 3. Модуль управления проверяет наличие свободных ядер, если таковые есть, то он подает сигнал начала работы на данные ядра, передает данные свободному ядру для загрузки коэффициентов активаций из общей памяти и весов из локальной.
- 4. Свободное ядро выполняет загрузку коэффициентов активаций и весов в буферы, а также проводит расчет выхода нейрона.
- 5. Далее устройство управления ожидает свободного ядра, если все выходы нейронов текущего слоя посчитаны, то выполняется переход на пункт 6.
- 6. Иначе модуль управления подает сигнал начала работы свободного ядра, передает необходимые данные для загрузки весов, необходимых для расчета выхода следующего нейрона, в вычислительный блок из локальной памяти, далее выполняется пункт 4.
- 7. Если посчитанный слой последний, то устройство управления подает сигнал на контроллер ввода-вывода для осуществления вывода результата в консоль, иначе алгоритм повторяется с пункта 3.

## Оценка времени вычисления выхода сети на ресурсах процессора и загрузки вычислительных ядер

Для оценки данных характеристик была использована следующая структура нейронной сети:

• Количество входов: 49

• Количество выходов: 3

• Количество слоев: 2

• Количество нейронов в скрытом слое: 5

С учетом того, что процессор будет работать на частоте 100 МГц, мы получаем следующие характеристики:

Время вычисления выхода сети: 220 нс

Среднее время загрузки процессорного ядра: 23 нс

### Вывод

В данной лабораторной работе была разработана архитектура нейросетевого процессора, которая может поддерживать различные структуры нейронных сетей для вычисления. Наличие 5 вычислительных ядер обеспечивает параллелизм вычислений, однако узким местом в данной системе является общая шина данных, через которую общаются функциональные узлы, так как возникает необходимость ожидания готовности шины данных к работе для получения данных из памяти. После этапа проектирования

| SystemC. |  |  |
|----------|--|--|
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |