Tabla comparativa de métodos de predicción de movimiento humano

Conjunto de datos utilizados	Método de predicción	Dimens iones	Medición de exactitud	Tipo de predicción	Referencia s
PoseTrack	GCNs con DCT.	2D	SoMoF benchmark	Corto y largo plazo	[1]
3DPW	GCNs con DCT.	3D	SoMoF benchmark,errores de angulo	Corto y largo plazo	[1]
Halpe pretrained model in AlphaPose tracking	Para comparación con GCNs con DCT.	2D	Se usa para comparar la respuesta de predicción	Corto y largo plazo	[1]
Información de la trayectoria.	NEKF	2D	Desviación estándar de la trayectoria predicha con la verdadera.	Corto plazo	[2]
Human 3.6M	Pose Transformers ,ESMDA,GIMO, RNN,VTLN-RNN, Convolutional Sequence to Sequence, GCNs con DCT. GIMO.	3D	Predicción del error de ángulo, qualitative visualization por cada frame, la distancia euclidiana entre en el espacio angular para horizontes temporales crecientes. MSE and NPSS.	Corto y largo plazo	[1],[3],[4], [5],[6],[7], [8],[9],[10]
CMU-Mocap	GCNs con DCT.	3D	Mean Per Joint Position Error, error de traslación y orientación por articulación	Corto y largo plazo	[1]
AMASS	GIMO	3D	error de traslación y orientación y error medio de posición por articulación	Corto plazo	[11]
PROX,GTA-1M	GIMO,.Goal NET (Transformer)	3D & 2D	Mean Per Joint Position Error, error de traslación y	Corto y largo plazo	[11],[12]

			orientación por articulación		
EgoPose, Kinpoly. HPS,You2Me,Eg oBody	GIMO	3D	Error de traslación y orientación y error medio de posición por articulación	Corto plazo	[11]
Secuencia de video de 30fps	RNN-LTSM	2D	1,8% de la diagonal de los píxeles del cuadro	Corto plazo	[13]
COCO2017	Pose Regression with Transformers	2D	Average Precision según GFLOPS	Corto plazo	[14]

Referencias:

- [1] C. Wang, Y. Wang, Z. Huang, and Z. Chen, "Simple baseline for single human motion forecasting," 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2260–2265, 2021.
- [2] S. Stubberud and K. Kramer, "A 2-d intercept problem using the neural extended kalman filter for tracking and linear predictions," in Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05., 2005, pp. 367–372.
- [3] J. Martinez, M. J. Black, and J. Romero, "On human motion prediction using recurrent neural networks," CoRR, vol. abs/1705.02445, 2017. [Online]. Available: http://arxiv.org/abs/1705.02445
- [4] C. Li, Z. Zhang, W. Sun Lee, and G. Hee Lee, "Convolutional sequence to sequence model for human dynamics," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
- [6] A. Gopalakrishnan, A. A. Mali, D. Kifer, C. L. Giles, and A. Ororbia, "A neural temporal model for human motion prediction," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12 108–12 117, 2019.
- [7] J. Martinez, M. J. Black, and J. Romero, "On human motion prediction using recurrent neural networks," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4674–4683.
- [8] L.-Y. Gui, Y.-X. Wang, X. Liang, and J. M. F. Moura, "Adversarial geometry-aware human motion prediction," in Proceedings of the European Conference on Computer Vision (ECCV), September 2018.

- [9] D. Pavllo, C. Feichtenhofer, M. Auli, and D. Grangier, "Modeling human motion with quaternion-based neural networks," Int. J. Comput. Vision, vol. 128, no. 4, p. 855–872, apr 2020. [Online]. Available: https://doi.org/10.1007/s11263-019-01245-6
- [10] M. Wei, L. Miaomiao, S. Mathieu, and L. Hongdong, "Learning trajectory dependencies for human motion prediction," in ICCV, 2019.
- [11] Y. Zheng, Y. Yang, K. Mo, J. Li, T. Yu, Y. Liu, K. Liu, and L. J. Guibas, "Gimo: Gaze-informed human motion prediction in context," arXiv preprint arXiv:2204.09443, 2022.
- [12] Z. Cao, H. Gao, K. Mangalam, Q.-Z. Cai, M. Vo, and J. Malik, "Long-term human motion prediction with scene context," ArXiv, vol. abs/2007.03672, 2020.
- [13] A. P. Yunus, N. C. Shirai, K. Morita, and T. Wakabayashi, "Human motion prediction by 2d human pose estimation using openpose," 2020.
- [14] A. Martinez-Gonzalez, M. Villamizar, and J. Odobez, "Pose transformers (potr): Human motion prediction with non-autoregressive transformers," in IEEE/CVF International Conference on Computer Vision Workshops (ICCV), 2021.