		CATEGORY	ALti	T	P	CREDITS
AIL202	DATABASE MANAGEMENT SYSTEMS LAB	PCC	0	0	3	2

Preamble: The Database Management Systems course is intended to impart the elementary concepts of a database management system to students and equip them to design and implement a database application based on those concepts. This course helps the learners to get practical exposure on database creation, SQL queries creation, transaction processing and NoSQL & MongoDB based operations. The course enables the students to create, manage and administer the databases, develop necessary tools for the design and development of the databases, and to understand emerging technologies to handle Big Data.

Prerequisite: A sound knowledge of the basics of relational DBMS.

Course Outcomes: After the completion of the course the student will be able to

CO#	СО					
CO1	modeling	tabase schema for a given real world problem-domain using standard design and approaches. ve Knowledge Level: Apply)				
CO2		queries using SQL for database creation, interaction, modification, and updation. e Knowledge Level: Apply)				
C03		d implement triggers and cursors. e Knowledge Level: Apply)				
C04	Implement procedures, functions, and control structures using PL/SQL. (Cognitive Knowledge Level: Apply)					
CO5		RUD operations in NoSQL Databases. e Knowledge Level: Apply)				
C06	_	atabase applications using front-end tools and back-end DBMS. e Knowledge Level: Create)				

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	9	0		0			0		0		0
CO2	0	0	0		0			0		0		0
CO3	0	0	0	0	0			0		9		0
CO4	0	0	0	0	0			0		9		0
CO5	0	9	0		0			0		9		0
CO6	0	0	0	0	0	0		0	0	0	0	0

	Abstract POs defined by National Board of Accreditation						
PO#	Broad PO	PO# Broad PO					
PO1	Engineering Knowledge	PO7	Environment and Sustainability				
PO2	Problem Analysis PC		Ethics				
PO3	Design/Development of solutions	PO9	Individual and team work				
PO4	Conduct investigations of complex	PO10	Communication				
	problems	-	TZATANA				
PO5	Modern tool usage		Project Management and Finance				
PO6	The Engineer and Society	PO12	Life long learning				

Assessment Pattern:

Bloom's Category	Continuous Assessment Test (Internal Exam)Percentage	End Semester Examination Percentage
Remember	20	20
Understand	20	20
Apply	60	60
Analyse		
Evaluate		
Create		

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	75	75	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 15 marks
Continuous Evaluation in Lab : 30 marks
Continuous Assessment Test : 15 marks
Viva-voce : 15 marks

Internal Examination Pattern: The marks will be distributed as Schema/Logic: 30 marks, Program/Queries: 20 marks, Output: 20 marks, and Viva: 30 marks. Total 100 marks which will be converted out of 15 while calculating Internal Evaluation marks.

End Semester Examination Pattern: The marks will be distributed as Schema/Logic: 30 marks, Program/Queries: 20 marks, Output: 20 marks, and Viva: 30 marks. Total 100 marks will be converted out of 75 for the End Semester Examination.

DBMS software: Oracle, MySQL, SQL Server, PostgreSQL, MongoDB. Artificial Intelligence)

Front end Tool: Java

Fair Lab Record:

All Students attending the DBMS Lab should have a Fair Record. The fair record should be produced in the University Lab Examination. Every experiment conducted in the lab should be noted in the fair record. For every experiment in the fair record, the right hand page should contain Experiment Heading, Experiment Number, Date of Experiment, Aim of Experiment, Schemas/Menu & Form Design, and Query questions. The left hand page should contain Queries and sample output(relations created, Form, and Menu Output) obtained for a set of input.

SYLLABUS

- 1. Design a database schema for an application with ER diagram from a problem description
 **
- 2. Creation, modification, configuration, and deletion of databases using UI and SQL Commands **.
- 3. Creation of database schema DDL (create tables, set constraints, enforce relationships, create indices, delete and modify tables). Export ER diagram from the database and verify relationships** (with the ER diagram designed in step 1).
- 4. Database initialization Data insert, Data import to a database (bulk import using UI and SQL Commands)**.
- 5. Practice SQL commands for DML (insertion, updating, altering, deletion of data, and viewing/querying records based on condition in databases)**.
- 6. Implementation of built-in functions in RDBMS**.
- 7. Implementation of various aggregate functions in SQL**.
- 8. Implementation of Order By, Group By & Having clause **.
- 9. Implementation of set operators nested queries, and join queries **.
- 10. Implementation of queries using temp tables.
- 11. Practice of SQL TCL commands like Rollback, Commit, Savepoint **.
- 12. Practice of SQL DCL commands for granting and revoking user privileges **.
- 13. Practice of SQL commands for creation of views and assertions **.
- 14. Implementation of various control structures like IF-THEN, IF-THEN-ELSE, IF-THEN-ELSIF, CASE, WHILE using PL/SQL **.
- 15. Creation of Procedures, Triggers and Functions**.
- 16. Creation of Packages **.
- 17. Creation of Cursors **.
- 18. Creation of PL/SQL blocks for exception handling **.
- 19. Database backup and restore using commands.
- 20. Query analysis using Query Plan/Show Plan.
- 21. Familiarization of NoSQL Databases and CRUD operations**.
- 22. Design a database application using any front end tool for any problem selected. The application constructed should have five or more tables**.

 ** mandatory

B.Tech Computer Science and Engineering (Artificial Intelligence)

- 1. Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education, 2013.
- 2. Sliberschatz A., H. F. Korth and S. Sudarshan, Database System Concepts, 6/e, McGraw Hill, 2011.

References

- 1. Adam Fowler, NoSQL for Dummies, John Wiley & Sons, 2015
- 2. NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data), Wiley, 2018

PRACTICE QUESTIONS

Design a normalised database schema for the following requirement.

The requirement: A library wants to maintain the record of books, members, book issue, book return, and fines collected for late returns, in a database. The database can be loaded with book information. Students can register with the library to be a member. Books can be issued to students with a valid library membership. A student can keep an issued book with him/her for a maximum period of two weeks from the date of issue, beyond which a fine will be charged. Fine is calculated based on the delay in days of return. For 0-7 days: Rs 10, For 7 - 30 days: Rs 100, and for days above 30 days: Rs 10 will be charged per day.

Sample Database Design

BOOK (**Book_Id**, Title, Language_Id, MRP, Publisher_Id, Published_Date, Volume, Status) // Language_Id, Publisher_Id are FK (Foreign Key)

AUTHOR(Author Id, Name, Email, Phone Number, Status)

BOOK_AUTHOR(**Book_Id**, **Author_Id**) // many-to-many relationship, both columns are **PK and** FK (Primary Key and Foreign Key)

PUBLISHER(Publisher id, Name, Address)

MEMBER(Member_Id, Name, Branch_Code, Roll_Number, Phone_Number, Email_Id, Date_of_Join, Status)

BOOK_ISSUE(**Issue_Id**, Date_Of_Issue, Book_Id, Member_Id, Expected_Date_Of_Return, Status) // Book+Id and Member_Id are FKs

BOOK RETURN(Issue Id, Actual Date Of Return, LateDays, LateFee) // Issue Id is PK and FK

LANGUAGE(Language id, Name) //Static Table for storing permanent data

LATE FEE RULE(FromDays, ToDays, Amount) // Composite Key

EXERCISES

B.Tech Computer Science and Engineering (Artificial Intelligence)

- 1. Create a normalized database design with proper tables, columns, column types, and constraints
- 2. Create an ER diagram for the above database design.
- 3. Write SQL commands to
 - a. Create a database by name *Library*. Drop the database and re-create it.
 - b. Create DDL statements and create the tables and constraints (from the design) in the database created in step-a (*Library*)
 - Notes: [Create a script file and execute it. Create the script file in such a way that,,if the table exists, drop the tables and recreate)]
 - c. Create and execute DROP TABLE command in tables with and without FOREIGN KEY constraints.
 - d. Create and execute ALTER TABLE command in tables with data and without data.
 - e. Create and execute SQL commands to build indices on Member_Id and Book_Id on table Book Issue.
 - f. Create and execute GRANT/REVOKE commands on tables.
 - g. Create and execute SQL commands to insert data into each of the tables designed
 - h. Learn and execute bulk import of data to tables from CSV files (insert 1000 records of books into the BOOK table from a CSV file).
 - Create and execute UPDATE/DELETE commands on tables. Try to update/delete rows with Primary and Foreign Keys. Try bulk updates or deletes using SQL UPDATE statement
- 4. Write SQLQuery to retrieve the following information
 - a. Get the number of books written by a given author
 - b. Get the list of publishers and the number of books published by each publisher
 - c. Get the names of authors who jointly wrote more than one book.
 - d. Get the list of books that are issued but not returned
 - e. Get the list of students who reads only 'Malayalam' books
 - f. Get the total fine collected for the current month and current quarter
 - g. Get the list of students who have overdue (not returned the books even on due date)
 - h. Calculate the fine (as of today) to be collected from each overdue book.
 - i. Members who joined after Jan 1 2021 but has not taken any books
- 5. Book return should insert an entry into the Book_Return table and also update the status in Book_Issue table as 'Returned'. Create a database *TRANSACTION* to do this operation (stored procedure).
- 6. Create a database view 'Available_Books', which will list out books that are currently available in the library
- 7. Create a database procedure to add, update and delete a book to the Library database (use parameters).
- 8. Use cursors and create a procedure to print Books Issue Register (page wise 20 rows in a page)
- 9. Create a history table (you may use the same structure without any keys) for the MEMBER table and copy the original values of the row being updated to the history table using a TRIGGER.
- 10. NoSQL Exercise
 - a. Practice Mongo DB CRUD operations. Refer: https://docs.mongodb.com/manual/crud/
 - b. You may use a MongoDB local installation or cloud MongoDB services like MongoDB Atlas for this exercise
 - c. For documentation: Refer: https://docs.mongodb.com/manual/introduction/

- 1) Inventory Control System.
- 2) Material Requirement Processing.
- 3) Hospital Management System.
- 4) Railway Reservation System.
- 5) Personal Information System.
- 6) Web Based User Identification System.
- 7) Timetable Management System.
- 8) Hotel Management System.

