Solar Vector Simulator (SVS)

SVS Design Requirements

Requirement ID	Requirement	Compliance
SVS_001	A Solar Simulator Panel shall be capable of illuminating an area of 211 cm²	Compliant
SVS_002	Irradiance Uniformity shall be more than 20% in ASTM standards	Compliant
SVS_003	Solar Simulator shall emit a spectral match less than 30% in ASTM standard	Compliant
SVS_004	Solar Vector Simulator shall change intensity simulating the change in distance from sun	Compliant
SVS_005	Solar Simulator shall emit a spectral range between 400-1100 nm	Compliant
SVS_006	Solar Simulator shall illuminate cubesat with incident rays less than 20 degrees	Not Compliant
SVS_007	Solar Vector Simulator shall interface with user to control solar environment	Compliant

Table 5: SVS Performance Requirements Rev 2.0 - 5/12/2020

Solar Simulator Panel Layout Reference

Figure 13: Power and LED Driver for Solar Simulator Unit Diagram Rev. 2 (6/1/20)

Solar Simulator Panel Circuit Schematic

Figure 14: Power and LED Driver for Solar Simulator Unit Diagram Rev. 2 (6/1/20)

LED Placement Change Due to Component Resizing

Figure 15: LED Position on Panel Plane Rev 2.0 - 6/3/2020

Rev 1.0 - 5/10/2020

Heatsink Carrier Mounted to Same LED

Developing Light Source Housing Model from LED Simulation Results

Figure 16: Back Side of Housing Rev 4.0 - 6/3/2020

Figure 17: Front Side of Housing (units are in mm) Rev 4.0 - 6/3/2020

ASTM Standard Review: Spectral Match is the Same

Wavelengths (nm)	Grade
400-500	А
200-600	A
000-200	А
700-800	А
800-900	А
900-1100	В

Table 6 Spectral Match Grade Rev 3.0 - 6/3/2020

Figure 18: Plot of spectral match groups at each wavelength based on 70mm panel Rev. 2 - 6/3/20

Recap of ASTM Uniformity and LED panel Scalability

Irradiance W/m²

255

250

265

245

240

0.05

Figure 20: Scaled Irradiance on 2.5mm² surface of 10 by 10 Grid Rev 1.0 - 6/3/2020

Non-Uniformity 7.5%

Figure 19: Irradiance on 2.5mm² surface of 10 by 10 Grid

Rev 1.0 - 5/10/2020

- Near same Non-Uniformity w/ larger panel
- Non-Uniformity 6.5%
 - Class C

ASTM Standard: Temporal Instability

- This grade determines how long the simulator irradiance can be sampled
- Finds the maximum and minimum irradiance within 2 seconds of steady state
 - There are two large causes for a high Temporal instability
- Voltage ripples in driver/power supply
- Dimming Features
- The radiant flux of the light nearly changes linearly with current but exponentially with voltage
- Dimming circuits turn the light sources on and off to appear less bright
- This does not provide a constant light source

Temporal instability (%) =
$$\left[\frac{\text{max irradiance - min irradiance}}{\text{max irradiance + min irradiance}} \right] \times 100\%$$

Maximum Voltage Ripple for ASTM Temporal Instability Grade

- The radiant flux for the simulated spectral match and irradiance uniformity had a set voltage and current
- To achieve an ASTM grade, the radiant flux cannot change by more than ±10%
- To find the minimum Voltage Ripple:
- Determine max radiant flux change
- a. In our case < 10%
- Determine the maximum LED current peak to peak variation Si
 - a. Use Luminous Flux vs Forward Current curve
- Determine dynamic resistance ω.
- a. Use current vs voltage curve
- Calculate Max voltage ripple 4.
- a. $V_{pp} = I_{pp} R_{
 m Dynamic}$ Determine required output capacitor <u>ں</u>

a.
$$C_{out}=rac{I_{pp}}{2\pi f V_{pp}}R_{Dynamic}$$

Useful for LED Driver <u>.</u>

lemporal Stability	ASTM	2%	2%	10%
lempora		٨	В	U

Temporal Stability Table 7: ASTM Rev. 2 (6/1/20) Grades

Maximum Voltage Ripple Calculation Results

Color	# in Series	Voltage Source (V)	# in Series Voltage Source (V) Max Voltage Ripple (mV)
White	6	26	200
Royal Blue	1	5	180
Deep Blue	1	5	180
Green	4	14	165
Red	3	10	213
ΛN	3	12	170
Violet	2	9	170
Cyan	е	10	180

Table 8: Voltage Ripple Calculation Results Rev. 2 (6/1/20)

Power Distribution Based on Minimum Voltage Ripple

- The power supply is an AC adapter that provides 75 W
- 5V 14A
- Chosen as it was already on hand and met desired specifications
- Due to the low voltage, boost converters are needed for the large strings
- Boost converter for design is the DC-DC XL6009 Step Up module
- Input Voltage: 3V-32V
- Output Voltage: 5V-35V
- Max input current: 4A
- Switching Frequency: 400KHz
- Max output ripple: 50mV

Figure 20:Boost Converter Circuit Rev 1.0 - 5/10/2020

Driver Based on Minimum Voltage Ripple

- To control the brightness, the light sources need to be current controlled
- Each light string is controlled with a current source using an opamp and a sense
- \circ The feedback from the resistor allows the current to be calculated as: $I_D =$
- Potentiometer controls each string uniquely to adjust for change in Irradiance Spectrum
- RC filter and buffer convert PWM (dimming) signal to DC equivalent voltage with 50mV ripple

Figure 21: Simplified Current Source Rev 1.0 - 5/10/2020

Solar Simulator Prototype

Recommended Future Work & Additions for SVS

- Electrical
- Design PCB panel to decrease size of board
- Include more efficient LED drivers
- Design photodiode array sensor for calibration
 - Optical
- Determine concentrator or lens to collimate rays
- Mechanical
- Design housing for LEDs that allows individual LEDs to be changes
- Design attachment mechanism to CubeSat prototype

Deliverables Checklist for SVS

Status	Completed	Completed	Completed	Completed	Not Completed	In progress
Deliverable	Simulated Spectral Match	Simulated Non-Uniformity in	Design Light Source Driver	Assemble Solar Simulator	Feedback Sensor for	Collimated Rays (<20
	ASTM Standard	ASTM Standard	Circuits	Unit Panel	Simulator Adjustment	degrees incident)

Figure 23: SVS Deliverables Status Rev. 16/3/2020