Advanced neural network

Simen Dymbe og Torstein Nordgård-Hansen

Outline

- Advanced neural networks
- Convolutional neural networks
- Transformer networks

Why advanced architectures

- Adding more neurons -> overfitting
- Training sets are usually finite
- Backpropagation will not fix architectures
- Previous states grows fast
- Today:
 - Convolutional
 - Transformer
- For you:
 - (old) cheat sheet: https://www.asimovinstitute.org/neural-network-zoo/

Convolutional neural networks

- Ideal for local features
- Primarily image and audio uses
- Integrated as layers in FFNNs
- Backpropagation finds kernel

Design choices and hyper parameters

- If combined with FFNNs, where and how?
- How wide and deep kernels?
- How many input nodes?

Cheatsheets

Transformers

Quick introduction

Transformers introduced in 2017

Cited 140 833 times

- Applications in:
 - Text processing
 - Speech processing
 - Image processing
 - etc

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Words (or other things) as vectors

Word example

Image example

way up here

mansion house domicile apartment

caravan

vehicle car bicycle

Transformers - Motivation

Reaction to the novel varied widely upon publication. Despite the number of copies

sold and its widespread use in education, literary analysis of it is sparse.

- From the Wikipedia on «To Kill a Mockingbird»

The architecture

- Transformer Blocks placed in series
 - GPT-3 has 96 blocks
 - GPT-4 has 120 blocks
 - Whisper (speech) has 64 blocks

Self-attention

k – Key vector $k^{(1)}$ v – Value vector $\omega_{2,1}$ $x^{(1)}$ $k^{(2)}$ $\alpha_{2,1}$ Current input ("query") $\omega_{2,2}$ where $z^{(2)} = \sum_{j=1}^{n} \alpha_{2,j} v^{(j)}$ $x^{(2)}$ $\alpha_{2,2}$ $\boldsymbol{k}^{(T)}$ $\alpha_{2,T}$ $\overline{\omega}_{2,T}$ $\boldsymbol{x}^{(T)}$ $\boldsymbol{k}^{(T)}$

q – Query vector

https://sebastianraschka.com/blog/2023/self-attention-fromscratch.html

Attention Visualizations

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word 'its' for attention heads 5 and 6. Note that the attentions are very sharp for this word.

Why Transformers and not CNN/RNN?

CNNs

- Great at local patterns, bad at long-range dependencies
- Easily parallelized

RNNs

- Limited handling of long-range dependencies (bottleneck problem)
 - LSTMs are better, but does not solve the problem entirely
- Hard to parallelize

Transformers

- Handles long-range dependencies
- Easily parallelized

Why not Transformers?

Computationally expensive

Large memory requirement

Summarize

Processes sequences of vectors

Works based on the self-attention mechanism

- Why use them
 - Scale well
 - Handles long-range dependencies
 - Great for text, speech, images, etc.