

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas autorisé

حة	الصف
	2
4	

0.5

0.5

RS 25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE1:(4 points)

Première partie: On munit ' de la loi de composition interne * définie par :

$$("(x,y)\dot{z}^{(1)})$$
 $x*y=x+y-e^{xy}+1$

- 0.25 | 1-a) Montrer que la loi * est commutative dans `
 - b) Montrer que la loi * admet un élément neutre que l'on déterminera.
 - 2- Sachant que l'équation : $3 + x e^{2x} = 0$ admet dans deux solutions distinctes a et b. Montrer que la loi * n'est pas associative dans deux solutions distinctes a et b.

<u>Deuxième partie</u> :On rappelle que $(M_2(`),+,')$ est un anneau unitaire non commutatif d'unité

$$I = \xi_0^1 \quad \frac{0}{1^{\frac{1}{2}}} \text{ et que } (M_2(`), +, ..) \text{ est un espace vectoriel réel et que } (\pounds^*, ') \text{ est un groupe}$$

commutatif.

Pour tout
$$x$$
 et y réels, on pose : $M(x,y) = \begin{cases} x & -2y_{\frac{1}{2}} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$ et soit $F = \{M(x,y)/(x,y) \neq 2\}$

- 1- Montrer que F est un sous-espace vectoriel de l'espace vectoriel réel $(\mathbf{M}_2(\cdot),+,.)$
- 0.5 2- Montrer que F est stable dans $(M_2(\cdot), \cdot)$
 - 3- On considère l'application j de \mathfrak{t}^* dans F qui associe à tout nombre complexe x + iy (où x et y sont deux réels) la matrice M(x,y).
- a) Montrer que j est un homomorphisme de $(\pounds^*, ')$ vers (F, ')
- 0.25 b) On pose : $F^* = F \{M(0,0)\}$. Montrer que $j(\pounds^*) = F^*$
- 0.25 c) Montrer que $(F^*,')$ est un groupe commutatif.
- 0.75 4- Montrer que (F, +, ') est un corps commutatif.

EXERCICE2: (3 points)

- 0.5 I-1- a étant un entier, montrer que si a et 13 sont premiers entre eux alors a^{2016} : 1 [13]
 - 2- On considère dans \square l'équation (E): x^{2015} ? [13]et soit x une solution de l'équation (E).
- a) Montrer que x et 13 sont premiers entre eux.
- 0.5 b) Montrer que : x : 7 [13]
- 0.5 3- Montrer que l'ensemble des solutions de l'équation (E) est $S = \{7 + 13k / k \in \square\}$

II-Une urne contient 50 boules portant les numéros de 1 à 50(les boules sont indiscernables au toucher)

0.5 1- On tire au hasard une boule de l'urne.

Quelle est la probabilité d'obtenir une boule portant un numéro qui est solution de l'équation (E)?

2- On tire au hasard une boule de l'urne, on note son numéro, puis on la remet dans l'urne. On répète l'expérience précédente 3 fois .Quelle est la probabilité d'obtenir exactement deux fois une boule portant un numéro qui est solution de l'équation (E) ?

0.5

0.5

1

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE3:(3 points)

On considère dans l'ensemble £ l'équation suivante: (E): z^2 - (1+i)z + 2 + 2i = 0

- 0.25 | 1-a) Vérifier que $(1 3i)^2$ est le discriminant de l'équation (E)
 - b) Déterminer z_1 et z_2 les deux solutions de l'équation (E) dans l'ensemble £ (on prendra z_1 imaginaire pur)
- 0.5 c) Montrer que: $\frac{z_1}{z_2} = \sqrt{2}e^{i\frac{3p}{4}}$
 - 2- Le plan complexe rapporté à un repère orthonormé direct. On considère le point A d'affixe z_1 et le point B d'affixe z_2
- 0.25 a)Déterminer le nombre complexe e affixe du point E milieu du segment [AB]
 - b) Soit r la rotation de centre A et d'angle $\frac{r}{2}$ et soit c l'affixe du point C image du point E
 - par la rotation r . Montrer que : $c = -\frac{3}{2} + \frac{3}{2}i$
 - c) On considère D le point d'affixe $d=1+\frac{3}{2}i$. Montrer que le nombre
 - $\underbrace{\frac{z_2 d}{c d}}_{c d} \stackrel{\dot{\underline{+}}}{\overset{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\dot{\underline{+}}}}{\overset{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\dot{\underline{+}}}}{\overset{\dot{\underline{+}}}{\overset{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\dot{\underline{+}}}}{\overset{\dot{\underline{+}}}{\overset{\underline{+}}}{\overset{\dot{\underline{+}}}{\overset{\underline{+}}}{\overset{\underline{+}}}}{\overset{\dot{\underline{+}}}{\overset{\underline{+}}}}{\overset{\underline{+}}}}}}}}}}}}}}}}est rest réel puis interpréter géométriquement le résultat obtenu.$

EXERCICE4:(6 points)

Soit *n* un entier naturel non nul.

On considère la fonction f_n à variable réelle x définie sur \Box par: $f_n(x) = \frac{1}{1 + e^{-\frac{3}{2}(x-n)}}$

 $\operatorname{Soit}(C_n)$ la courbe représentative de la fonction f_n dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$.

- 0.75 1-a) Calculer $\lim_{x \to \infty} f_n(x)$ et $\lim_{x \to \infty} f_n(x)$, puis interpréter graphiquement les résultats obtenus.
- b)Montrer que la fonction f_n est dérivable sur \square puis calculer $f_n(x)$ pour tout x de
- 0.25 c)Montrer que la fonction f_n est strictement croissante sur
- 0.5 2-a) Montrer que le point I_n n, $\frac{1}{2}$ est le centre de symétrie de la courbe (C_n)
- 0.5 b) Construire la courbe (C_1) .
- 0.75 c) Calculer l'aire de la surface plane limitée par la courbe et les droites d'équations: x = 0, x = 1 et y = 0
- 0.75 3-a)Pour tout n de Ψ^* , montrer que l'équation $f_n(x) = x$ admet une solution unique u_n dans

الصفحة 4 4	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)		
	l'intervalle $]0,n[$.		
0.5	b) Montrer que : $("n \dot{z} \overset{*}{\Psi}) ("x \dot{z} \cdot) f_{n+1}(x) < f_n(x)$		
0.75	Ionter que la suite $(u_n)_{n=1}$ est strictement décroissante et en déduire qu'elle est convergente.		
0.5	d) Calculer $\lim_{n \to \pm 1} u_n$		
	EXERCICE5:(4 points)		
	On considère la fonction g définie sur ' * par: $g(x) = \int_{-\infty}^{3x} \frac{\cos t}{t} dt$		
0.5	-Montrer que la fonction g est paire.		
0.75	-Montrer que la fonction g est dérivable sur $]0,+$ $\#$ [puis calculer $g'(x)$ pour $x>0$		
0.5	-a) En utilisant une intégration par parties, vérifier que:		
	$\int_{-\infty}^{3x} \frac{\cos t}{t} dt = \frac{\sin 3x - 3\sin x}{3x} + \int_{-\infty}^{3x} \frac{\sin t}{t^2} dt$		
0.75	b) Montrer que: $(\forall x > 0) g(x) $ £ $\frac{2}{x}$, puis en déduire $\lim_{x \to +\frac{\pi}{2}} g(x)$		
0.5	3x1-cost		

4-a) Montrer que: ("x > 0) $0 £ \int_{-\infty}^{3x} \frac{1-\cos t}{t} dt £ 2x$

(Remarquer que: ("t > 0) 1- $cost \pounds t$)

b) Vérifier que: ("x > 0) g(x)- $ln3 = \int_{-\infty}^{3x} \frac{\cos t - 1}{t} dt$

c) En déduire $\lim_{x \to 0^+} g(x)$

0.5

0.5

FIN