Slide material – Section 4 – John Flynn

Firstly, hopefully someone else has this equation in their slides before mine!

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]. \tag{1}$$

Figure 1: Equation 1

And Algorithm 1 pseudo code description from page 4.

Global optimum for $p_g = p_{data}$

Prove: For G fixed the optimal discriminator D is $D^*_G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{cons}}(x)}$

For any non-zero $(a,b) \in R^2$, the function $y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$.

Demonstration: https://www.desmos.com/calculator/odj1obavmt

Theorem 1 summary: Global minimum achieved $\iff p_g = p_{data}$

- ▶ Since $\frac{a}{a+a} = 1/2$, if $p_g = p_{data}$ then $D^*_G(x) = 1/2$.
- ▶ Best value for $V(D^*_G(x)) = -\log 4$.
- ▶ View Kullback-Leibler divergences between p_g and p_{data} as Jenson-Shannon divergence.
- ▶ JSD zero only when equal, so remaining term must be $-\log 4$.
- ▶ If $p_g \neq p_{data}$, JSD will be non-zero positive, and will add to the $-\log 4$, i.e. **not the minimum**.

Convergence of algorithm

Proposition 2: If G and D have enough capacity, and at each step of Algorithm 1, D reaches optimum given G, and p_g is updated to improve the criterion then p_g converges to p_{data}

- Important assumption: G and D need enough capacity!
- Authors prove by showing:
- ▶ V(G, D) is **convex** as distribution p_g is varied.
 - ▶ Theorem 1 showed maximum value is unique, so all other values must be less i.e. V(G, D) is convex.
- If it's convex, a small enough learning rate will update pg allowing it to converge to pdata