PPJ 11

Zadanie 1.

Zdefiniuj w programie dwuwymiarową tablice intów, na przykład:

```
int[][] arr = { {1,3}, {3,4,5,8}, {6,8}, {1,9,6} };
```

a następnie utwórz tablice o wymiarze arr.length której elementy będą równe największym elementom poszczególnych "wierszy" tablicy arr (oczywiście, program powinien działać niezależnie od tego, jak te tablice zdefiniujemy).

Zadanie 2.

Napisz program, który definiuje dwie tablice intów, a następnie utworzy nową tablicę przechowującą sumy elementów na tych samych indeksach. W przypadku tablic o różnym rozmiarze należy przyjąć, że wartości elementów, które wychodzą poza zakres tablicy wynoszą 0.

```
Na przykład dla tablic

int[] arr = { 2, 3, 9 };

int[] brr = { 2, 3, 6, 5 };

byłaby to tablica 4 elementowa: { 4, 6, 15, 5 }
```

Zadanie 3.

Dana jest tablica kwadratowa o rozmiarze N x N na przykład: char[][] arr = {

przy pomocy 2 pętli for i jednego operatora ternarnego (trójargumentowego) wypisz jej elementy idąc zygzakiem góra-dół prawo dół-góra ..., w taki sposób aby dla przykładowej tablicy wynikiem było: a d g h e b c f i

Zadanie 4.

Napisz program, który wczyta od użytkownika 2 liczby N i M, a następnie utworzy tablicę charów o rozmiarze N i wypełni elementami podanymi również przez użytkownika. W taki sposób użytkownik będzie mógł wprowadzić dowolny wyraz N znakowy.

Wyraz ten zaszyfruj szyfrem cezara o przesunięciu M. Wypisz zakodowany wyraz.