Total No. of Questions : 8]	SEAT No. :
P274	[Total No. of Pages •

[6003] 352

T.E. (Computer Engineering) DISTRIBUTED SYSTEMS

(2019 Pattern) (Semester - I) (Elective - I) (310245 C)

Time : 2	½ Hours] [Me	ax. Marks : 70
Instruct	ions to the candidates:	
1)	Answer $Q1$ or $Q2$, $Q3$ or $Q4$, $Q5$ or $Q6$, and $Q7$ or $Q8$.	
2)	Neat diagrams must be drawn whenever necessary.	
3)	Assume suitable data, if necessary.	
Q1) a)	What is clock synchronization? Explain in brief clock sync	chronization
L - / /	algorithms.	[6]
b)	What is mutual exclusion? Compare centralized and de-	ecentralized
Ź	mutual exclusion algorithms.	[6]
c)	Explain how logical positioning of nodes is done in Gps loca	tion system.
,		[6]
	OR	
Q2) a)	Explain in detail lamport's logical clock.	[6]
b)	Explain with suitable example how butly election algorithm v	works. [6]
c)	Explain gossip-based overlay construction of gossip-based o	contribution.
,		بى [6]
(12) a)	Evaluin the following naming systems of £12 systems	70.
Q3) a)		[6]
	i) flat naming.ii) structured naming.	S'
1. \		[7]
b)		[6]
c)	Explain with suitable example, Andrew file system.	[5]
	OR	
Q4) a)	What is attributed based naming? Explain.	[6]
b)	What are identifiers? Explain.	[6]
c)	Explain with suitable example, Suns network file system.	[5]

P.T.O.

Q5)	a)	Differentiate between data - centric and client - centric consistent models.	су [6]
	b)	Describe architecture of replicated data management.	[6]
	c)	Explain following terms w.r.t. replica management.	[6]
		i) Content replication.	
		ii) Content distribution.	
		OR OR	
Q6)	a)	What is replication? Enlist reasons for replication.	[6]
	b)	Explain eventual consistency model.	[6]
	c)	Explain how replicated objects are managed by replica management.	[6]
Q7)	a)	What is fault to lerance? Explain in short failure models.	[6]
	b)	Explain failure masking in distributed system.	[6]
	c)	Describe check pointing for recovery.	[5]
		OR 6	
Q8)	a)	Describe RPC semantics in presence of failures.	[6]
	b)	Explain failure models în distributed system.	[6]
	c)	Describe atomic multicast for reliable group communication.	[5]
			×
		* * *	
		O'.	
		Describe atomic multicast for reliable group communication.	