Particle spectrograph

Wave operator and propagator

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

	$\sigma_{0^+}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	16			

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{ ext{#2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_1^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}$ α
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha \beta}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u>	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$\frac{2ikt_1 - 4ikt_3}{3t_1t_3 + 6k^2t_1t_3}$
$\tau_1^{\#1}_+ \alpha \beta$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{lphaeta} \qquad \sigma_{1}^{\#2}{}_{lphaeta}$			$\tau_{1}^{\#1} + \alpha \beta \left \begin{array}{c} -\frac{i \sqrt{2} k(t_{1} - 2t_{2})}{3(1 + k^{2})t_{1}t_{2}} \end{array} \right - \frac{i k(t_{1} + 4t_{2})}{3(1 + k^{2})^{2}t_{1}t_{2}}$	$\sigma_{1}^{\#1} + \alpha$ 0 0	$\sigma_{1}^{\#2} + \alpha$ 0 0	$t_1^{\#1} + \alpha$ 0 0	$t_1^{\#2} + \alpha$ 0 0

Massive and massless spectra

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$-\frac{t_2}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$