

Oct 06, 2022

S HMW DNA extraction for Long Read Sequencing using CTAB

Benoît Vacherie¹, Karine Labadie¹, Cyril Falentin²

¹Genoscope, Institut de Biologie François Jacob, Commissariat à l'énergie atomique (CEA) Universi té de Paris-Saclay Evry 91057 France.;

²IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France.

2 Works for me Share

dx.doi.org/10.17504/protocols.io.bp2l694yzlqe/v1

HPM/Genoscope

Benoît Vacherie Genoscope/CEA

ABSTRACT

High Molecular Weight DNA extraction protocol for Long Read sequencing.

Extraction is performed from flash frozen leaves stored at -80°C.

The protocol is adapted for an extraction of 1g of leaves.

This protocol is based on the protocol provided by Oxford Nanopore Technologies, Oxford, UK (ONT), "High molecular weight gDNA extraction from plant leaves" provided by the ONT community in March 2019, with slighly modifications.

This protocol involves a conventional CTAB extraction followed by purification using commercial Qiagen Genomic tips (QIAGEN, MD, USA). DNA fragment size selection is performed using Short Read Eliminator (Circulomics, MD, USA).

This protocol is particularly adapted for plant leaves, but also works with many other organisms (microalgae, insects...).

DOI

dx.doi.org/10.17504/protocols.io.bp2l694yzlqe/v1

PROTOCOL CITATION

Benoît Vacherie, Karine Labadie, Cyril Falentin 2022. HMW DNA extraction for Long Read Sequencing using CTAB. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bp2l694yzlqe/v1

•

KEYWORDS

extraction, high molecular weight, plant, leaves, DNA, Long read sequencing

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited CREATED

Sep 15, 2022

LAST MODIFIED

Oct 06, 2022

PROTOCOL INTEGER ID

70072

GUIDELINES

Use only wide bore tips.

Work in a chemical hood when using 2-mercaptoethanol.

Allow the DNA to resuspend for at least of 24 hours before proceeding with QC.

MATERIALS TEXT

Reagents:

⊗ Tris HCl **P212121**

⊗ EDTA (0.5 M), pH 8.0 **Life**

Technologies Catalog #AM9260G

Biotech Catalog #CB0108-100g

Sodium chloride **P212121**

■ PEG-

8000 Promega Catalog #V30111

2-mercaptoethanol Sigma

Aldrich Catalog #M6250 Step 2

X RNase

A Qiagen Catalog #19101 Step 6

Chloroform Contributed by users Step 9

- Separation | Step 19 | Step 17 | Step 17 | Step 17 | Step 19 | Step 23 | Step 23 | Step 23 | Step 24 | Step 25 | Step 26 | Step 27 | Step 28 | Step 29 | St
- Consumables:
- **⊠** MBP[™] Wide Bore Pipette Tips **Thermo**

Fisher Catalog #02707600

Scientific Catalog #14-959-49A

Equipment:

⊠ Porcelain Mortar, 145mL Thermo

Fisher Catalog #CP1782004

S Eppendorf ThermoMixer

C pipette.com Catalog #2231000667 Step 7

⊠ Vortex Mixer **Contributed by users**

preparation of reagents

1 Extraction Buffer: Prepare 20 mL of extraction buffer (per 1g of leaves) in a 50 mL tube

Reagents	Final concentration	
Tris-HCl ph8	100 mM	
EDTA	20 mM	
СТАВ	2%	
NaCl	1.4. M	
PEG 8000	1 %	
H20	QSP 20 ml	

DNA Extraction 3h

2 Add 50 μl of **2-Mercaptoethanol** to 20 ml of **extraction buffer** and preheat to 65 °C (approx. 15 min).

■20 mL Extraction buffer

■50 µL Aldrich Catalog #M6250

8 65 °C

3 Put a mortar in ice.

Cool the mortar and pestle with **liquid nitrogen** until the bubbling stops.

⊠Liquid nitrogen **Contributed by users**

4 **Grind 1g of frozen sample** to a fine powder (approx. 2 min), without adding liquid nitrogen.

After grinding

4

Citation: Benoît Vacherie, Karine Labadie, Cyril Falentin HMW DNA extraction for Long Read Sequencing using CTAB https://dx.doi.org/10.17504/protocols.io.bp2l694yzlge/v1

5 Transfer the powder to the pre-warmed extraction buffer

6 Add 40 μI of RNase A (100mg/ml) and vortex the tube 5 sec.

5s

1h

⊠RNase

■40 µL A Qiagen Catalog #19101

© 00:00:05 Vortex

7 **Incubate 1h at 65°C** with intermittent agitation (300 rpm every 10 min)

© 01:00:00 65°C

⊠ Eppendorf ThermoMixer

C pipette.com Catalog #2231000667

8 Let the tube cool for 5 min at RT

© 00:05:00 RT

5m

10m

9 Add 1 volume (20ml) of chloroform and vortex 2x5sec.

■20 mL ⊗ Chloroform Contributed by users

10 Centrifuge with low acceleration and deceleration

\$\text{c}\$5500 x g, 4°C, 00:10:00 , Acc/Dec : 6/3

Before centrifugation

After centrifugation

- 11 Gently **transfer the aqueous phase** to a new 50 ml tube.

13 Put the tube at -80°C for 15 minutes.

© 00:15:00 -80°C

14 \wedge

If a DNA medusa appears after this step, recover the medusa using a Pasteur pipette (without breaking the tip of the pipette).

Wash the medusa in 3 successive baths of 70% ethanol then resuspend the medusa in 100µl of 1X TE.

Incubate for 1 hour at 55°C then store the tube at 4°C before quality control. Continue the protocol with the rest of the tube (without the medusa). If no DNA medusa is visible continue the protocol.

15 **Centrifuge** the tube with low acceleration and deceleration

\$\pi5500 x g, 4°C, 00:30:00 , Acc/Dec : 6/3

16 Carrefully **remove the supernatant** without resuspending the pellet.

Remove the remaining liquid by turning the tube upside down on a paper towel (make sure the pellet does not come off).

17 Gently resuspend with the pipette the DNA pellet with 9.5 ml of G2 buffer (QIAGEN Genomic-tip 100/G).

⊠ Buffer

G2 Qiagen Catalog #1014636

18 Incubate 15 min at 50°C. The sample can be stored overnight at 4°C at this stage.

15m

15m

30m

protocols.io

36	Quantify your sample with a Qubit DNA HS assay .	
Sample	e quality control	
35	Store the DNA at 4°C.	
34	Allow the DNA to resuspend for 2 hours at 55°C or ON at RT. © 02:00:00 55°C or © Overnight RT	2h
33	Resuspend the pellet with 50-100 µl of 1X TE buffer. Buffer TE 1x Contributed by users	
32	Carefully discard the supernatant. Air dry the pellet at RT for about 10 minutes. © 00:10:00 RT	10m
31	Centrifuge with low acceleration and deceleration \$\mathref{5000 x g, 4°C, 00:10:00 , Acc/Dec : 6/3}\$	10m
	⊗DNA LoBind Tube 1.5ml Eppendorf Catalog #022431021	
30	Transfer the resuspended DNA to a 1.5 ml DNA LoBind tube.	
29	Carefully discard the supernatant, gently resuspend the pellet with 1 ml of cold 70% ethat 870% Ethanol Contributed by users	nol.
28	Centrifuge with low acceleration and deceleration \$\mathref{\$\mathref{9}}\$5500 x g, 4°C, 00:30:00 , Acc/Dec : 6/3	30m
27	Incubate 15 minutes at RT. © 00:15:00 RT	15m
27	Incubate 15 minutes at RT	

This is an open access protocol distributed under the terms of the **Creative Commons Attribution License** (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

 $\textbf{Citation:} \ \ \textbf{Beno} \tilde{\textbf{A}} \\ \textbf{@t Vacherie, Karine Labadie, Cyril Falentin HMW DNA extraction for Long Read Sequencing using CTAB \\ \underline{\textbf{https://dx.doi.org/10.17504/protocols.io.bp2l694yzlqe/v1}}$

Check the purity of the sample with a **Nanodrop** (measurements of 260/280 and 260/230 absorbance ratios).

Estimate the molecular weight of the sample with a **Tapestation** and/or a **Femto pulse** and/or a **Pippin Pulse**.

Depending on the DNA concentrations and DNA length profiles, deplete short DNA molecules using **SRE size selection kits** (SRE XS, SRE or SRE XL kits).

Results

38 QC results obtained on different species.

	DNA quantity (µg)	Extraction yield (µg DNA / g organism)	Nanodrop 260/280 260/		DNA lenght (kb		
species					Tapestation	Femto pulse	Nanopore N50 reads
Arabidopsis thaliana	14,8	24,7	1,97	1,73	> 60 kb	72 kb	30 kb
Lactuca sativa	38,5	38,5	1,96	2,30	> 60 kb	149 kb	43 kb
Brassica napus	169	181	1,88	1,92	> 60 kb		45 kb
Fagus sylvatica	33,8	254	1,84	2,07	> 60 kb	100 kb	30 kb
Quercus robur	98	183	1,98	1,64	> 60 kb		48 kb
Ectocarpus sp.	3,2	70	1,88	1,81	> 60 kb		22 kb
Tenebrio molitor	22,4	370	1,88	2,17	> 60 kb		35 kb