Multigrid Methods — An Overview

Lecture 4: Theory

Luke Olson Nelder Fellow Department of Mathematics Imperial College

home:

Department of Computer Science University of Illinois at Urbana-Champaign

• Consider a matrix problem (s.p.d.) of the form

$$Au = f$$

 $A \in \mathbb{R}^{n \times n}$

ullet Suppose we have a multilevel iteration process ${\cal M}$

$$I - \mathcal{M}A = (I - M^{T}A)^{\nu_{\text{pre}}} (I - P(P^{T}AP)^{-1}P^{T}A)(I - MA)^{\nu_{\text{post}}}$$

so that

$$e \leftarrow (I - \mathcal{M}A)e$$

Convergence

The iteration converges for any ${\it b}$ and ${\it u}_0$ iff $\rho(I-{\cal M}A)<1.$

• Generally we'll want to work with a (matrix) norm $\|\cdot\|$:

$$\rho(I - \mathcal{M}A) \le \|I - \mathcal{M}A\|$$

If we consider the error at each step as

$$\boldsymbol{e}_k = (I - \mathcal{M}A)^k \boldsymbol{e}_0$$

then then we term $\frac{e_k}{e_{k-1}}$ the convergence factor from step k-1 to step k, and

$$\rho = \lim_{k \to \infty} \left(\max_{e_0} \frac{\|e_k\|}{\|e_0\|} \right)^{1/k} = \lim_{k \to \infty} \left(\max_{e_0} \frac{\|G^k e_k\|}{\|e_0\|} \right)^{1/k}$$
$$= \lim_{k \to \infty} \left(\|G^k\| \right)^{1/k} = \rho(G)$$

the convergence factor.

(for initial guess u_0 with an error in the principal subspace)

If we return to our multilevel method

$$I-\mathcal{M}A$$

we are seeking a method that yields a bound on the error reduction in each iteration that is independent of n.

That is, a fixed number of iterations is needed to a tolerance for any problem size.

- If the *computational complexity* is bounded at $\mathcal{O}(n)$ operator, Then we say the method scales **optimally**.
- ... a fixed number of operations, $\mathcal{O}(n)$, to reach a tolerance.

- Bounding the convergence can take many forms in many norms.
- Ideally, bounds
 - Predictive; sharp bounds on factors observed in practice
 - Strong dependence on parameters in the method
 - Computable
- Geometric methods have an advantage . . .
 - Fourier analysis for components
 - Reliance on a finite element framework for precise construction of approximation bounds
 - Clear smoothing property focuses error analysis on coarse grid accuracy
- Algebraic methods . . .
 - Components often designed from the theory
 - Example from last time: Construct interpolation schemes so that P matches $P_{ideal} = \begin{bmatrix} -A_{FF}^{-1}A_{FC} & I \end{bmatrix}$, say spectrally, but is computationally efficient.
 - Can be difficult to compute; can be be unsharp (Today!)

Objectives

- Outline the basic components of algebraic theory.
- Distinguish between sharp bounds and computable bounds.
- Observe this effect in practice.
- Note how this theory is influencing multigrid design and development.

Approach

disclaimer

This is one slice of algebraic theory.

There are many approaches to multigrid theory. Note just a few here:

- Subspace correction approaches of Xu, et al.
- Extending from two-level to multilevel. Notay et al.
- Multiblock form Vassilevski et al.
- Generalized AMG theory. Falgout, Vassilevski, et al.

Approach

- Sharpness and computability are two competing aspects
- Initial efforts: sharp
- More recent efforts: focus on constructing methods

Setup

- Fine grid $\Omega = \{1, \dots, n\} = C \cup F$ and coarse grid $\Omega_c = C$.
- Interpolation / restriction:

$$P:\Omega_c \to \Omega$$
 and $R:\Omega \to \Omega_c$

• A is s.p.d., D = diag(A) — defining an inner product:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_A = \langle A \boldsymbol{u}, \boldsymbol{v} \rangle$$
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_D = \langle D \boldsymbol{u}, \boldsymbol{v} \rangle,$$
$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_{AD^{-1}A} = \langle D^{-1}A \boldsymbol{u}, A \boldsymbol{v} \rangle$$

• Define G as **post-relaxation** (and G as the affine version $u \leftarrow G(u, f)$):

$$\boldsymbol{u} \leftarrow G\boldsymbol{u} + (I - G)A^{-1}\boldsymbol{f}$$
 or $\boldsymbol{e} \leftarrow G\boldsymbol{e}$

Setup

Algorithm: AMG Solution Phase

$\overline{oldsymbol{u} \leftarrow \hat{\mathcal{G}}(oldsymbol{u}, oldsymbol{f})}$	Pre-relax
$oldsymbol{r}_c \leftarrow Roldsymbol{r}$	Restrict the residual
$oldsymbol{e}_c \leftarrow A_c^{-1} oldsymbol{r}_c$	Coarse grid solve
$\hat{m{e}} \leftarrow Pm{e}_c$	Interpolate the error approximation
$oldsymbol{u} \leftarrow oldsymbol{u} + \hat{oldsymbol{e}}$	Correct the fine-grid solution
$\boldsymbol{u} \leftarrow \mathcal{G}(\boldsymbol{\mathit{u}}, \boldsymbol{\mathit{f}})$	Post-relax

Some operators

• In general, consider relaxation as

$$G = I - MA$$

• **Assumption:** *M* is norm convergent (in *A*):

$$||G||_A < 1$$

- **Assumption:** *P* is full rank
- **Assumption:** *A* is s.p.d.

A-orthogonality

Let the coarse grid correction step be

$$T = I - P(P^T A P)^{-1} P^T A$$

CGC

T is an A-orthogonal projection onto the range of P

• After coarse grid correction, the error is minimized in the energy norm over $\mathcal{R}(P)$.

Focus on V(0,1)

• The A-adjoint of GT is

$$TG^+ \qquad G^+ = I - M^T A$$

• The symmetric V(1,1) cycle is

$$(I - MA)(I - P(P^{T}AP)^{-1}P^{T}A)(I - M^{T}A) = GTG^{+}$$

= $GTTG^{+}$

Since $||GT||_A = ||TG^+||_A$ (A-adjoints) we ahve

$$||GTG^+||_A = ||GT||_A^2$$

• Ok, so we can focus focus on the V(0,1) cycle, the other cycles follow.

What we are measuring

• Since $T = I - P(P^TAP)^{-1}P^TA$ and due to our assumptions on G, we will **measure convergence or reduction in** $||e||_A$. Note:

$$\|e\|_A^2 = \|(I-T)e\|_A^2 + \|Te\|_A^2$$

• For a V(0,1) cycle, the reduction in e is

$$||GTe||_A^2 \le (1 - \delta^*)||e||_A^2$$

• we seek a **sharp** bound in that¹

$$||GT||_A^2 := \sup_{e \neq 0} \frac{||GTe||_A^2}{||e||_A^2} = 1 - \delta^*$$

 $^{^{1}\}sup = \max$

Sufficient conditions

What should we assume on relaxation and interpolation?

- One idea: assuming relaxation is effective on the range of interpolation.
- There exists $\delta > 0$ such that

$$||GTe||_A^2 \le (1-\delta)||Te||_A^2$$
 for all **e**.

Then, since T is an A-orthogonal projector,

$$||GTe||_A^2 \leq (1-\delta)||e||_A^2$$
 for all e

Similarly (norm convergent)

$$\|G\mathbf{v}\|_A^2 \le \|\mathbf{v}\|_A^2$$
 for all $\mathbf{v} \perp \mathcal{R}(T)$,

• As a result we can combine these into an assumption:

Assumption

Assume there exists $\delta > 0$ such that

$$||Gv||_A^2 \le ||v||_A^2 - \delta ||Tv||_A^2$$
 for all v .

Assumption

Assume there exists $\delta > 0$ such that

$$||Gv||_A^2 \le ||v||_A^2 - \delta ||Tv||_A^2$$
 for all v .

 This assumes that relaxation is effective in reducing the error that remains after coarse grid correction.

Theorem

If there exists $\delta > 0$ so that

$$||Ge||_A^2 \le ||e||_A^2 - \delta ||Te||_A^2$$
 for all e ,

then

$$||GT||_A^2 \le 1 - \delta.$$

Sharpness?

Theorem

If there exists $\delta > 0$ so that

$$||Ge||_A^2 \le ||e||_A^2 - \delta ||Te||_A^2$$
 for all e ,

then

$$||GT||_A^2 \le 1 - \delta.$$

- Is this a **sharp** estimate of the convergence?
- To be sharp, the largest δ , say $\hat{\delta}$

$$\hat{\delta} = \inf_{e: Te \neq \mathbf{0}} \frac{\|e\|_A^2 - \|Ge\|_A^2}{\|Te\|_A^2},$$

should be δ^* .

(Proof)

• Since Te = 0 gives $||GTe||_A = 0$:

$$||GT||_A^2 = \sup_{e: Te \neq \mathbf{0}} \frac{||GTe||_A^2}{||e||_A^2} = \sup_{e: Te \neq \mathbf{0}} \frac{||GTe||_A^2}{||Te||_A^2 + ||(I - T)e||_A^2}.$$

- Let \hat{e} be the argsup
- Then $T\hat{e}$ is also at the supremum.
- Thus we have an error at the supremum with $(I T)\hat{ve} = 0$

$$\|GT\|_A^2 = \sup_{e: Te \neq \mathbf{0}} \frac{\|GTe\|_A^2}{\|e\|_A^2} = \sup_{e: Te \neq \mathbf{0}} \frac{\|G(Te + (I - T)e)\|_A^2}{\|Te\|_A^2} = \sup_{e: Te \neq \mathbf{0}} \frac{\|Ge\|_A^2}{\|Te\|_A^2},$$

And

$$1 - \|GT\|_A^2 = \inf_{e: Te \neq \mathbf{0}} \frac{\|Te\|_A^2 - \|Ge\|_A^2}{\|Te\|_A^2} = \inf_{e: Te \neq \mathbf{0}} \frac{\|e\|_A^2 - \|Ge\|_A^2}{\|Te\|_A^2} = \hat{\delta}.$$

Where are we at

• The worst δ is sharp (we'll do an example at the end)

$$\hat{\delta} = \inf_{e: Te \neq \mathbf{0}} \frac{\|e\|_A^2 - \|Ge\|_A^2}{\|Te\|_A^2},$$

- But this is difficult to compute!
- As a result, the early theory split:

For some g(e) define δ , α_g , and β_g as in

$$\delta(oldsymbol{e}) = \underbrace{rac{\|oldsymbol{e}\|_A^2 - \|Goldsymbol{e}\|_A^2}{g(oldsymbol{e})}}_{lpha_g(oldsymbol{e})} \underbrace{rac{g(oldsymbol{e})}{\|Toldsymbol{e}\|_A^2}}_{1/eta_q(oldsymbol{e})}$$

• Consider the smallest α_g and the largest β_g :

$$\hat{\alpha}_g = \inf_{\boldsymbol{e}: g(\boldsymbol{e}) \neq \boldsymbol{0}} \alpha_g(\boldsymbol{e}) \quad \hat{\beta}_g = \sup_{\boldsymbol{e}: g(\boldsymbol{e}) \neq \boldsymbol{0}} \beta_g(\boldsymbol{e})$$

A less sharp bound

$$\delta(oldsymbol{e}) = \underbrace{\frac{\|oldsymbol{e}\|_A^2 - \|Goldsymbol{e}\|_A^2}{g(oldsymbol{e})}}_{lpha_g(oldsymbol{e})} \underbrace{\frac{g(oldsymbol{e})}{\|Toldsymbol{e}\|_A^2}}_{1/eta_q(oldsymbol{e})}$$

• For e such that $q(Te) \neq 0$,

$$||GTe||_{A}^{2} \leq ||Te||_{A}^{2} - \hat{\alpha}_{g}g(Te) \leq ||Te||_{A}^{2} - \frac{\hat{\alpha}_{g}}{\hat{\beta}_{g}}||Te||_{A}^{2} = \left(1 - \frac{\hat{\alpha}_{g}}{\hat{\beta}_{g}}\right)||Te||_{A}^{2}$$
(1)
$$\leq \left(1 - \frac{\hat{\alpha}_{g}}{\hat{\beta}_{g}}\right)||e||_{A}^{2}$$
(2)

• Ok, so this is generally worse than the sharp bound

$$\|GT\|_A = \sqrt{1 - \hat{\delta}} \le \sqrt{1 - \frac{\hat{\alpha}_g}{\hat{\beta}_g}}$$

 $(\alpha_g \text{ and } \beta_g \text{ are not generally simultaneously satisfied})$

What about this $g(\cdot)$ thing?

$$\delta(\boldsymbol{e}) = \underbrace{\frac{\|\boldsymbol{e}\|_A^2 - \|G\boldsymbol{e}\|_A^2}{g(\boldsymbol{e})}}_{\alpha_g(\boldsymbol{e})} \underbrace{\frac{g(\boldsymbol{e})}{\|T\boldsymbol{e}\|_A^2}}_{1/\beta_g(\boldsymbol{e})}$$

- ullet Early works, e.g. Ruge-Stüben 1987, use $g({m e}) = \|{m e}\|_{AD^{-1}A}^2$
- ullet Or the weaker form $g({m e}) = \| T {m e} \|_{AD^{-1}A}^2$
- Generally offers control of the sharpness
- Choosing $g(e) = ||Te||_A^2$ naturally leads to $\hat{\beta}_g = 1$ and $\hat{\alpha}_g = \hat{\delta}$ (sharp)

smoothing and approximation assumptions

• Assuming relaxation satisfies a **smoothing assumption**:

$$\|Ge\|_A^2 \le \|e\|_A^2 - \bar{\alpha}_g g(e)$$
 for all e

for some $\bar{\alpha}_g$ (with $\bar{\alpha}_g < \hat{\alpha}_g$) (as early as Hackbush 1979)

- Practical, but loss of sharpness
- Similarly, can assume (a strong type, for V-cycle convergence)

$$||Te||_A^2 \leq \bar{\beta}_g g(e)$$
 for all e .

• Since the bound only depends on g(Te) in (1) we assume interpolation satisfies the (weak) **approximation assumption**:

$$||Te||_A^2 \le \bar{\beta}_g g(Te)$$
 for all e .

ullet Stronger assumptions lead to say L^2 boundedness of coarse grid correction

Split Theory

Theorem

if there exists $\bar{\alpha}_g > 0$ such that

$$\|Ge\|_A^2 \le \|e\|_A^2 - \bar{\alpha}_g g(e)$$
 for all e (smoothing)

and there exists $\bar{\beta}_g > 0$ such that

$$||Te||_A^2 \le \bar{\beta}_g g(Te)$$
 for all e (approximation),

then
$$||GT||_A \leq \sqrt{1 - \bar{\alpha}_g/\bar{\beta}_g}$$
.

Strong and Weak Approximations

- Select $g(\mathbf{e}) = \|\mathbf{e}\|_{AD^{-1}A}^2$
- ullet Since T is an A-orthogonal projection we have

$$||Te||_A = \inf_{e_c} ||e - Pe_c||_A$$

• (strong approximation) Assume there is a $\bar{\beta}_s$ such that

$$\inf_{\boldsymbol{e}_c} \|\boldsymbol{e} - P\boldsymbol{e}_c\|_A^2 \leq \bar{\beta}_s \|\boldsymbol{e}\|_{AD^{-1}A}^2 \quad \text{for all } \boldsymbol{e}.$$

Strong and Weak Approximations

• The weaker version looks like (for some $\hat{\beta}$)

$$||Te||_A^2 \le \bar{\beta} ||Te||_{AD^{-1}A}$$
 for all e .

Weaker, means weaker norm. And we can make this a bit more practical.
 The range of T is A-orthogonal to the range of P, so

$$||Te||_A^2 = \langle ATe, Te \rangle = \langle ATe, Te - Pe_c \rangle$$

$$\leq ||Te||_{AD^{-1}A} ||Te - Pe_c||_D.$$

(weak approximation) Assume that

$$\inf_{\boldsymbol{e}_{c}} \|\boldsymbol{e} - P\boldsymbol{e}_{c}\|_{D}^{2} \leq \bar{\beta}_{w} \|\boldsymbol{e}\|_{A}^{2} \quad \text{for all } \boldsymbol{e}, \tag{3}$$

This implies the bound at the top.

Bounds and bounds and bounds

- In McCormick–Ruge–1982, (Strang earlier, in FE) analyze interpolation in terms of the eigenvectors of A
- Set $V_{\lambda}(A)$ to be the eigenvectors with eigenvalues less than λ and unit A-norm. Choose P such that (for any λ):

$$\sup_{\boldsymbol{e}\in V_{\lambda}(A)}\inf_{\boldsymbol{e}_c}\|\boldsymbol{e}-P\boldsymbol{e}_c\|_A^2\leq c\lambda^ah^s.$$

(h is a discretization size)

• Example: Consider a FD scheme A and $e \in V_{\lambda}(A)$ Then

$$\|e\|_{AD^{-1}A}^2 \le \|D^{-1}\| \|Ae\|^2 \le Ch^2\lambda$$

Here Ch^2 is from the $1/(Ch^2)$ diagonal entries in A

Another form

Hackbush et al use

$$||A^{-1} - P(P^T A P)^{-1} P^T|| \le ch^s;$$

• Why is this useful? The strong approximation property from before is

$$\sup_{e \neq \mathbf{0}} \inf_{\mathbf{e}_c} \frac{\|\mathbf{e} - P\mathbf{e}_c\|_A^2}{\|\mathbf{e}\|_{AD^{-1}A}^2} \leq \bar{\beta}_s$$

This leads to

$$\sup_{e \neq \mathbf{0}} \inf_{e_c} \frac{\|e - Pe_c\|_A^2}{\|e\|_{AD^{-1}A}^2} \le \|A^{1/2}\|^2 \|A^{-1} - P(P^TAP)^{-1}P^T\|^2 \|D^{1/2}\|^2.$$

• Can be related to the strong approximation depending on s. Can be generalized in a different directions.

Opportunity

- What if we expand our notion of the approximation property with g(e)?
- Consider a more general form, such as

$$g(\boldsymbol{e}) = \|\boldsymbol{e}\|_{AB^{-1}A}^2$$

for some s.p.d. B.

• Then the **same** weak approximation assumption follows, but in a different norm!

$$\inf_{\boldsymbol{e}_c} \|\boldsymbol{e} - P\boldsymbol{e}_c\|_B^2 \le \bar{\beta}_{w,B} \|\boldsymbol{e}\|_A^2 \quad \text{for all } \boldsymbol{e}$$
 (4)

and similar with the strong approximation

$$\inf_{\boldsymbol{e}_{s}} \|\boldsymbol{e} - P\boldsymbol{e}_{c}\|_{A}^{2} \leq \bar{\beta}_{s,B} \|\boldsymbol{e}\|_{AB^{-1}A}^{2} \quad \text{for all } \boldsymbol{e}$$

- Gist: vector e must be approximated (in some way) by the range of interpolation, with accuracy proportional to $||e||_A^2$.
- This is for every eigenvector in the BM Principle.

Outlook

- One special case is B=A. Then both strong and weak approximations have A-norms.
- $\beta=1$ automatically satisfies approximation property, but the smoothing property becomes

$$||Ge||_A^2 \le ||e||_A^2 - \bar{\alpha}||e||_A^2$$
 for all e ,

• Instead, look for approximations of *B* to *A*.

Back to the basics

The separated bounds

$$\delta(\boldsymbol{e}) = \underbrace{\frac{\|\boldsymbol{e}\|_A^2 - \|G\boldsymbol{e}\|_A^2}{g(\boldsymbol{e})}}_{\alpha_g(\boldsymbol{e})} \underbrace{\frac{g(\boldsymbol{e})}{\|T\boldsymbol{e}\|_A^2}}_{1/\beta_g(\boldsymbol{e})},$$

implicitly assume that error that is slow to reduce (algebraically smooth error) yields small residuals.

The approximation assumption, for example,

$$\inf_{\boldsymbol{e}_s} \|\boldsymbol{e} - P\boldsymbol{e}_c\|_A^2 \leq \bar{\beta}_s \|\boldsymbol{e}\|_{AD^{-1}A}^2 \quad \text{for all } \boldsymbol{e}.$$

then is responsible for reducing these error adequately during coarse grid correction

- Not all schemes exhibit the smoothing property. For example, there are relaxation schemes that target large error with small residuals — e.g. in problems like Maxwell's equation.
- In general, purely algebraic solvers will use standard relaxation schemes that do not assume any (physical) information about the problem.

On measures

Let's go back to the approximation assumptions. Let the best constants be

$$\hat{\beta}_w = \sup_{e \neq \mathbf{0}} \inf_{e_c} \frac{\|e - Pe_c\|_D^2}{\|e\|_A^2} \qquad \hat{\beta}_s = \sup_{e \neq \mathbf{0}} \inf_{e_c} \frac{\|e - Pe_c\|_A^2}{\|e\|_{AD^{-1}A}^2}$$

- Element-based AMG (AMGe, and variants) attempts to build the AMG levels based on local components that are optimized.
- Two measures are central to AMGe:

$$M_1(Q, e) = \frac{\|(I - Q)e\|_D^2}{\|e\|_A^2}$$
 and $M_2(Q, e) = \frac{\|(I - Q)e\|_A^2}{\|e\|_{AD^{-1}A}^2}$,

- Here, Q is **any** projection onto $\mathcal{R}(P)$ where Q = PR and for R such that RP = I.
- If we pick

$$R = (P^T D P)^{-1} P^T D$$
 or $R = (P^T A P)^{-1} P^T A$

then the bounds bounds (constants) at the top are recovered.

On measures

With

$$M_1(Q, e) = \frac{\|(I - Q)e\|_D^2}{\|e\|_A^2}$$
 and $M_2(Q, e) = \frac{\|(I - Q)e\|_A^2}{\|e\|_{AD^{-1}A}^2}$,

the minimization over the coarse space is dropped, and replaced by the direct action of R.

- In a sense, the variation principle is replaced with a direction projection.
- For any e we have

$$\inf_{e_c} \frac{\|e - Pe_c\|_D^2}{\|e\|_A^2} \le M_1(Q, e)$$
 (5)

and

$$\inf_{\mathbf{e}_c} \frac{\|\mathbf{e} - P\mathbf{e}_c\|_A^2}{\|\mathbf{e}\|_{AD^{-1}A}^2} \le M_2(Q, \mathbf{e}). \tag{6}$$

ullet Bounds (sup) over all e guarantee two level and multilevel convergence

On Measures

- Where is this going?
- AMGe uses a localized version of these measures for the element stiffness matrices
- This leads to (optimal) forms for interpolation based on the element matrices
- Assembling into global forms puts a bound on these measures
- Great methods based on theory. There is a lack of sharpness in these measures.

On Measures

Take the specific case of a C/F splitting:

$$A = \left[\begin{array}{cc} A_{FF} & -A_{FC} \\ -A_{FC}^T & A_{CC} \end{array} \right],$$

with the error split at $oldsymbol{e} = egin{bmatrix} oldsymbol{e}_F \ oldsymbol{e}_C \end{bmatrix}$.

• Consider interpolation of the form $P = \begin{bmatrix} W \\ I \end{bmatrix}$. If $R = \begin{bmatrix} 0 & I \end{bmatrix}$ Then $Qe = Pe_C$, resulting in

$$\hat{\tau}_w = \sup_{\boldsymbol{e} \neq \boldsymbol{0}} \frac{\|\boldsymbol{e} - P\boldsymbol{e}_c\|_D^2}{\|\boldsymbol{e}\|_A^2}$$

- $\hat{\tau}_w$ is an upper bound to the weak constant $\hat{\beta}_w$.
- Upper bounds on $\hat{\tau}_w$ may result in a large difference between the optimal choice of v_C and e_C .

- Consider a graph Laplacian. A dense one.
- $A = (n+1)I \mathbf{1}\mathbf{1}^T$

$$A = \begin{bmatrix} n & -1 & -1 & \cdots & -1 \\ -1 & n & -1 & \cdots & -1 \\ -1 & -1 & n & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & -1 \\ -1 & -1 & \cdots & -1 & n \end{bmatrix}$$

• Eigenvec/value 1. Eigenspace $\{v \perp 1\}$ with dimension n-1 and eigenvalue n+1

- Coarse grid correction, for vector of 1
- Richardson relaxation

$$G = I - \frac{1}{2n}A = \frac{n-1}{2n}I + \frac{1}{2n}\mathbf{1}\mathbf{1}^{T}$$

• Interpolation of P = 1 leads to

$$T = I - P(P^{T}AP)^{-1}P^{T}A = I - \frac{1}{n}\mathbf{1}\mathbf{1}^{T}$$

• Then G has eigenvectors/eigenvalues:

$$egin{array}{ccc} oldsymbol{1} & 1-rac{1}{2n} \ \{oldsymbol{v}oldsymbol{\perp}oldsymbol{1}\} & rac{n-1}{2n} \end{array}$$

And T has eigenvectors/eigenvalues:

$$egin{array}{ccc} oldsymbol{1} & oldsymbol{0} \ \{oldsymbol{v}oldsymbol{\perp}oldsymbol{1}\} & n-1 \end{array}$$

• Then GT has

$$egin{array}{ccc} oldsymbol{1} & 0 \ \{oldsymbol{v}\perpoldsymbol{1}\} & rac{n-1}{2n} \end{array}$$

• Thus (since the spectra is the same as *A*):

$$\left\| \mathit{GT} \right\|_A = \frac{n-1}{2n} < \frac{1}{2} \Rightarrow \delta^* = 1 - \left(\frac{n-1}{2n} \right)^2$$

• Can show similar bounds for the split bounds:

$$\hat{\beta}_w = \hat{\beta}_s = \frac{n}{n+1}$$

$$\hat{\alpha}_w = \hat{\beta}_s = \frac{n}{n+1}\hat{\delta}$$

So both the weak and strong split bounds are **sharp** in this case.

 Highlights bounds that explicitly account for the variational coarse grid correction process, can be sharp

• Alternatively, we can show

$$\hat{\tau}_w = \frac{n^2}{n+1}$$

Thus $\hat{\tau}_w$ is larger than $\hat{\beta}_w$ by a factor of n.

• Similarly, the strong form is much sharper:

$$\hat{\tau}_s = \sup_{e \neq 0} \frac{\|e - Pe_c\|_A^2}{\|e\|_{AD^{-1}A}^2} = \frac{2n^2}{(n+1)^2}$$

 Consider an anisotropic diffusion problem

$$-\nabla \cdot \kappa \nabla u = f \quad \text{in } \Omega = [0, 1]^2,$$

- $egin{aligned} \bullet & \kappa = \Theta K \Theta^T, ext{ where } K = egin{bmatrix} 1 & 0 \ 0 & arepsilon \end{bmatrix} \ & ext{and } \Theta = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} \end{aligned}$
- Vary ε

- Consider an higher-order finite elements
- Unstructured mesh. Vary polynomial order from p = 1,..., 4.
- AMG convergence known to deteriorate at p = 3 or p = 4.

Many more things we could do here

- We could attempt to place bounds on the measures (and $\hat{\tau}_w$)
- We could introduce

$$X = \left(M + M^T - M^T A M\right)^{-1}$$

the inverse of the symmetric smoother, and use this for *B*. This results in some relationships to sharpness in the generalized theory.

- We could apply this strategy to the bounds given in Compatible Relaxation.
- More for another day!

Concluding Remarks

- Approximation properties and smoothing properties govern multigrid performance
- Measuring these properties can be a challenge due to sharpness
- Developing methods based on key theoretical properties is important as long as we understand the limitations of the theory.

An incomplete list of some great articles

- McCormick, Ruge, Multigrid Methods for Variational Problems, SINUM, 1982.
- McCormick, Multigrid Methods for Variational Problems: general theory for the *V-cycle*, SINUM, 1985.
- Stüben, Trottenberg, Multigrid methods: fundamental algorithms, model problem analysis and applications, in Multigrid Methods, Springer, 1982.
- Falgout, Vassilevski, *On Generalizing the Algebraic Multigrid Framework*, SINUM, 2004.
- Vassilevski, Multilevel Block Factorization Preconditioners, Springer, 2008.
- Napov, Notay, When does two-grid optimality carry over to the V-cycle, NLAA, 2010.
- Napov, Notay, Comparison of bounds for V-cycle multigrid, NLAA, 2010.
- Ruge, Stüben, Algebraic Multigrid, in Multigrid Methods, SIAM, 1987.

Special Thanks

- Colin Cotter Imperial College
- David Ham Imperial College

More information

lukeo@illinois.edu

http://lukeo.cs.illinois.edu

https://github.com/lukeolson/imperial-multigrid

• this work MacLachlan, Olson, *Theoretical Bounds for Algebraic Multigrid Performance: review and analysis*, NLAA, 2014.