Matematyka

Michał Nycz

11.05.2024

Spis treści

1	Poc	dstawy logiki matematycznej	1
	1.1	Elementy logiki matematycznej	1
	1.2	Prawa logiczne	2
		1.2.1 Prawa De Morgana	2
		1.2.2 Prawo kontrapozycji	
2	Ele	menty kombinatoryki i teorii mnogości	3
	2.1	Działania na zbiorach	3
	2.2	Iloczyn kartezjański	4
	2.3	Kombinatoryka	4
		2.3.1 Silnia	
		2.3.2 Symbol Newtona	
	2.4	Symbol sumy	
	2.5	Symbol iloczynu	
	2.6	Trójkąt Pascala	
	2.7	Dwumian Newtona	
3	Rac	chunek różniczkowy	6
		Pochodne funkcji jednej zmiennej	6
		3.1.1 Wzgry na pochodno podstawowych funkcji	

1 Podstawy logiki matematycznej

1.1 Elementy logiki matematycznej

 $Negatyw\,\sim\,$

p	$\sim p$
1	0
0	1

Alternatywa \lor

p	p	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

Koniunkcja \wedge

p	p	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

Implikacja \Longrightarrow

p	p	$p \implies q$
1	1	1
1	0	0
0	1	1
0	0	1

Równoważność \iff

p	p	$p \iff q$
1	1	1
1	0	0
0	1	0
0	0	1

1.2 Prawa logiczne

Tautologia - Zdanie zawsze prawdziwe.

1.2.1 Prawa De Morgana

I prawo De Morgana

Prawo zaprzeczania koniunkcji: negacja koniunkcji jest równoważna alternatywie negacji

$$[\sim (p \land q)] \iff (\sim p \lor \sim q)$$

Tabela 1: Wartości logiczne I prawa De Morgana

p	q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p$	$\sim q$	$(\sim p) \vee (\sim q)$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

II prawo De Morgana

Prawo zaprzeczenia alternatywy: negacja alternatywy jest równoważna koniunkcji negacji

$$[\sim (p \lor q)] \iff (\sim p \land \sim q)$$

Tabela 2: Wartości logiczne II prawa De Morgana

p	q	$p \lor q$	$\sim (p \vee q)$	$\sim p$	$\sim q$	$(\sim p) \wedge (\sim q)$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

1.2.2 Prawo kontrapozycji

$$(p \implies q) \iff (\sim p \implies \sim q)$$

Tabela 3: Wartości logiczne prawa kontrapozycji

p	q	$p \implies q$	$\sim q$	$\sim p$	$(\sim q) \implies (\sim p)$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

2 Elementy kombinatoryki i teorii mnogości

2.1 Działania na zbiorach

Suma

 $C = A \cup B$

Iloczyn

 $D=A\cap B$

Różnica

 $E = A \setminus B$

Dopełnienie zbioru

 $A`=X\setminus A$

2.2 Iloczyn kartezjański

$$A \times B = \{(a, b) : a \in A \text{ i } b \in B\}$$

$$A = \{a, b, c\} \qquad B = \{1, 2\}$$

$$A \times B = \{(a, 1)(a, 2)(b, 1)(b, 2)(c, 1)(c, 2)\}$$

Oznaczenie: |X| - ilość elementów

Tw.
$$|A \times B| = |A| \cdot |B|$$

 \mathbb{R} - zbiór liczb rzeczywistych (prosta liczbowa)

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) : x \in \mathbb{R} \text{ i } y \in \mathbb{R} \}$$
 - płaszczyzna

 \mathbb{R}^n - przestrzeń n wymiarowa

2.3 Kombinatoryka

2.3.1 Silnia

n! - n silnia $n \in \mathbb{N}_0$

$$n! = \begin{cases} 1, & n = 0 \lor n = 1\\ 1 \cdot 2 \cdot \dots \cdot n, & n > 1 \end{cases}$$

$$n! = (n-1)! \cdot n, \quad n \in \mathbb{N}$$

Def. Permutacja skończonego zbirou A to ciąg wszystkich elementów zbioru A.

Tw. Ilość wszystkich permutacji zbioru n-elementowego wynosi n!.

2.3.2 Symbol Newtona

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad k, n \in \mathbb{N}_0 \\ \binom{n}{n-k} = \binom{n}{k} \qquad k, n \in \mathbb{N}_0 \\ k \leqslant n$$

$$\binom{n}{0} = 1 \quad \binom{n}{1} = n \quad \binom{n}{n-1} = n \quad \binom{n}{n} = 1$$

Tw. Ilość wszystkich k-elementowych podzbiorów zbioru n-elementowego wynosi $\binom{n}{k}$

Tw. Ilość wszystkich podzbiorów zbioru n-elementowego 2^n

Tw. Dla $k, n \in \mathbb{N}, k \leqslant n$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

2.4 Symbol sumy

 \sum - sigma, symbol sumy

$$\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 4 + 9 + 16 + 25 = 54$$

2.5 Symbol iloczynu

 \prod - pi, symbol iloczynu

$$\prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!$$

2.6 Trójkat Pascala

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 1 \end{pmatrix} & \begin{pmatrix} 5 \\ 2 \end{pmatrix} & \begin{pmatrix} 5 \\ 3 \end{pmatrix} & \begin{pmatrix} 5 \\ 4 \end{pmatrix} & \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} & \begin{pmatrix} 6 \\ 1 \end{pmatrix} & \begin{pmatrix} 6 \\ 2 \end{pmatrix} & \begin{pmatrix} 6 \\ 3 \end{pmatrix} & \begin{pmatrix} 6 \\ 4 \end{pmatrix} & \begin{pmatrix} 6 \\ 5 \end{pmatrix} & \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

2.7 Dwumian Newtona

Tw. Dwumian Newtona, dla $a,b\in\mathbb{R}$ i $n\in\mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

3 Rachunek różniczkowy

3.1 Pochodne funkcji jednej zmiennej

3.1.1 Wzory na pochodne podstawowych funkcji

Pochodna funckji stałej:

$$(c)' = 0$$
, gdzie $c \in \mathbb{R}$ jest stałą

Pochodna funckji potęgowej:

$$(x^a)' = ax^{a-1}$$
, gdzie $a \in \mathbb{R}$ jest stałą

Pochodna funckji wykładniczej i logarytmicznej:

$$(a^x)' = a^x \ln a$$
, gdzie $a \in (0,1) \cup (1,\infty)$ jest stałą
$$(\log_a x)' = \frac{1}{x \ln a}, \quad \text{gdzie } a \in (0,1) \cup (1,\infty) \text{ jest stałą}$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

Pochodna funckji trygonometrycznych:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(\tan x)' = \frac{1}{\cos^2 x}$$
$$(\cot x)' = -\frac{1}{\sin^2 x}$$

Pochodne funkcji łączonych:

$$(a \cdot f)' = a \cdot f', \quad \text{gdzie } a \in \mathbb{R} \text{ jest stałą}$$

$$(f \pm g)' = f' \pm g'$$
$$(f \cdot g)' = f'g + fg'$$
$$(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

Przydatne pochodne¹:

$$(x)' = 1$$
$$(ax)' = a$$
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

¹Przydatne pochodne wywodządze się z pochodnych funkcji podstawowych