CI-1237 — Matemática Discreta $_{\rm Notas\ de\ Aula}$

Renato Carmo

Calendário Suplementar de 2020 maio a agosto de 2021

Sumário

Apresentação							
Ι	Indução						
1	Pro	Proposições e Conectivos					
	1.1	Conec	etivos	. 3			
		1.1.1	Negação, Conjunção e Disjunção	. 3			
		1.1.2	Implicação	. 4			
		1.1.3	Dupla Implicação	. 4			
2	Pre	dicado	os e Quantificadores	5			
	2.1	Quant	tificadores	. 6			
3	Cor	njuntos	s, Inteiros, Somatórios e Produtórios	8			
	3.1	Conju	intos	. 8			
	3.2	Inteir	08	. 9			
	3.3	Somat	tórios e Produtórios	. 10			
4	Aproximação Assintótica						
5	6 Piso e Teto (1)						
6	Piso e Teto (2)						
7	O F	Princín	oio da Indução Finita	21			

	Demonstração por Indução (1)	22
9	Demonstração por Indução (2)	26
10	Exemplos de Prova por Indução (1)	32
11	Exemplos de Prova por Indução (2)	34
12	Exemplos de Prova por Indução (3)	39
13	Descrições Recursivas (1)	42
14	Descrições Recursivas (2)	45
15	Descrições Recursivas (3)	47
16	Funções Iteradas (1)	50
17	Funções Iteradas (2)	53
	Tungoos Itoradas (2)	00
II		5 7
п		
II 18	Recorrências	57
II 18 19	Recorrências Recorrências (1)	57 58
II 18 19 20	Recorrências Recorrências (1) Recorrências (2)	57 58 60
II 18 19 20 21	Recorrências Recorrências (1) Recorrências (2) Recorrências (3)	57 58 60 62
III 18 19 20 21 22	Recorrências Recorrências (1) Recorrências (2) Recorrências (3) Recorrências (4)	57 58 60 62 63
III 18 19 20 21 22 23	Recorrências Recorrências (1) Recorrências (2) Recorrências (3) Recorrências (4) Recorrências (5)	57 58 60 62 63 65

26	6 Recorrências (9)							
A	A Exercícios							
	A.1	Elementos de Lógica	76					
	A.2	Conjuntos e Inteiros	79					
	A.3	Aproximação Assintótica	81					
	A.4	Piso e Teto	84					
	A.5	Indução	89					
		A.5.1 Descrições Recursivas	96					
		A.5.2 Funções Iteradas	101					
	A.6	Recorrências	105					
		A.6.1 Recorrências Iteradas	105					

Apresentação

Estas notas de aula foram preparadas especialmente para a oferta da disciplina Matemática Discreta (Cl–1237) durante o Segundo Período Especial de Ensino Emergencial Remoto da Universidade Federal do Paraná, na contingência da pandemia de CoViD-19.

A modalidade remota da disciplina está organizada em torno deste texto. O texto, por sua vez, está dividido em Unidades. Cada unidade do texto é complementada por uma exposição em vídeo e por uma sessão de video-conferência semanal. Ao início de cada unidade estão indicados exercícios recomendados. A Lista de Exercícios é o Apêndice A destas Notas de Aula.

Na página da disciplina você encontra o cronograma que estabelece a distribuição das unidades ao longo do período letivo.

Na página você também encontra "links" para todo o material de apoio (vídeos expositivos, "slides", sala de vídeo-conferência etc). Para facilitar sua localização, os nomes dos arquivos dos vídeos e dos "slides" são iguais (a menos da extensão) e iniciam pelo número da unidade que complementam.

Este arquivo pdf é um hipertexto. Seus "links" são ativos permitindo navegação com um leitor apropriado.

Apesar do esforço para revisar o texto a fim de prepará-lo para uso dos alunos neste período, é praticamente inevitável que erros e imprecisões ainda restem. Caso detecte algum, por favor, comunique enviando mensagem a renato.carmo.rc@gmail.com para que possamos corrigir.

Os exercícios estão classificados de acordo com a seguinte legenda.

- -: exercícios de interesse marginal: complementam o assunto de alguma forma mas podem ser ignorados sem comprometer o entendimento.
- **@:** exercícios programados para discussão em aula: procure fazê-los antes de serem discutidos em aula.
- *: exercícios prioritários: na impossibilidade de fazer todos, dê prioridade a estes.

 $\#\text{:}\,$ exercícios mais difíceis e/ou trabalhosos: não comece por estes.

Bom estudo!

Parte I Indução

Proposições e Conectivos

Exercícios 1 a 5

Uma *proposição* é uma afirmação. Toda proposição é verdadeira ou é falsa.

O fato de que duas proposições A e B tem o mesmo valor será denotado por $A \equiv B$.

Denotamos por \underline{V} e \underline{F} , respectivamente, os valores de *verdadeiro* e *falso*.

1.1 Conectivos

1.1.1 Negação, Conjunção e Disjunção

Definição. Se A e B são proposições então

não A é uma proposição, chamada a negação de A.

A proposição não A é verdadeira quando a proposição A é falsa.

A **e** B é uma proposição, chamada a conjunção de A e B,

A proposição A e B é verdadeira quando A e B são ambas proposições verdadeiras.

A **ou** B é uma proposição, chamada a disjunção de A e B.

A proposição A ou B é verdadeira quando ao menos uma dentre as proposições A e B é verdadeira.

1.1.2 Implicação

Definição. Se A e B são proposições então $A \implies B$ é uma proposição chamada implicação de A para B.

 $L\hat{e}$ -se "se A então B" ou "A implica B".

A proposição A é chamada de antecedente da implicação e a proposição B é chamada de consequente da implicação.

A proposição $A \implies B$ é verdadeira quando A e B são ambas proposições verdadeiras ou quando A for uma proposição falsa, isto é,

$$A \implies B \equiv (A \ e \ B) \ ou \ (n \tilde{a} o \ A).$$

Teorema 1. A proposição $\underline{\mathsf{F}} \implies A$ é verdadeira qualquer que seja a proposição A.

Demonstração. Exercício 5.

1.1.3 Dupla Implicação

Definição. Se A e B são proposições então $A \iff B$ é uma proposição chamada dupla implicação entre A e B.

 $L\hat{e}$ -se "A se e somente se B".

A proposição $A \iff B$ é verdadeira se as implicações $(A \implies B)$ e $(B \implies A)$ forem ambas verdadeiras, ou seja,

$$A \iff B \equiv (A \implies B) \ e \ (B \implies A).$$

Predicados e Quantificadores

Exercícios 6 a 10

Um predicado é uma "proposição parametrizada". Por exemplo,

$$P(x)$$
: $x \le x^2$.

O símbolo x recebe o nome de $variável\ livre$ do predicado.

Predicados podem ter várias variáveis livres.

$$Q(x,y)$$
: $x \leq y^2$.

Predicados não são verdadeiros nem falsos.

Quando as variáveis livres de um predicado são "especificadas" ou "instanciadas", o resultado é uma proposição que, como tal, é verdadeira ou falsa.

2.1 Quantificadores

Definição. Se P(x) é um predicado e X é um conjunto, então

- P(x), para todo $x \in X$, e
- P(x), para algum $x \in X$,

são proposições.

- "P(x), para todo $x \in X$ " é uma proposição verdadeira se a proposição P(x) for verdadeira para todo elemento $x \in X$.
- "P(x), para algum $x \in X$ " é uma proposição verdadeira se a proposição P(x) for verdadeira para algum elemento $x \in X$.

Teorema 2. Se P(x) é um predicado, então

$$n\~ao\ (P(x),\ para\ todo\ x\in X)\equiv (\ n\~ao\ P(x)),\ para\ algum\ x\in X,$$

e

$$ilde{\mathsf{nao}}\ (P(x),\ \mathsf{para}\ \mathsf{algum}\ x\in X)\equiv (\ \mathsf{nao}\ P(x)),\ \mathsf{para}\ \mathsf{todo}\ x\in X.$$

Seja P(x) um predicado qualquer e seja $X = \emptyset$.

Observe que

$$P(x)$$
, para algum $x \in X$,

é uma proposição falsa, pois não existe $x \in X$ tal que a proposição P(x) seja verdadeira.

Do mesmo modo,

(não
$$P(x)$$
), para algum $x \in X$,

também é uma proposição falsa.

Consequentemente

não ((não
$$P(x)$$
), para algum $x \in X$),

é uma proposição verdadeira.

Como (Teorema 2)

não ((não
$$P(x)$$
), para algum $x \in X$) $\stackrel{\mathrm{T. 2}}{\equiv}$ (não (não $P(x)$), para todo $x \in X$) $\equiv P(x)$, para todo $x \in X$,

 $ent\tilde{a}o$

$$P(x)$$
, para todo $x \in X$,

é uma proposição verdadeira.

Corolário 3. Se $X=\emptyset$, então, para qualquer predicado P(x) temos

 $P(x), \ {\it para todo} \ x \in X \ {\it \'e uma proposiç\~ao} \ verdadeira,$

e

 $P(x), \ {\it para algum} \ x \in X \ {\it \'e} \ uma \ proposiç\~{\it \'ao} \ falsa.$

Conjuntos, Inteiros, Somatórios e Produtórios

Exercícios 11 a 14

3.1 Conjuntos

A, B: conjuntos

Notação. Ø denota o conjunto vazio.

```
a \in A := a \text{ \'e elemento do conjunto } A,
a \notin A := n\~ao (a \in A),
A \subseteq B := a \in B, \text{ para todo } a \in A,
A \not\subseteq B := n\~ao (A \subseteq B),
A = B := (A \subseteq B) \text{ e } (B \subseteq A),
A \cup B := \{x \mid x \in A \text{ ou } x \in B\},
A \cap B := \{x \mid x \in A \text{ e } x \in B\},
A \cap B := \{a \mid a \in A \text{ e } a \notin B\},
|A| := n\'umero de elementos do conjunto } A.
```

Exercício 11 Seja A um conjunto finito e seja $B \subseteq A$. Prove que

$$A = (A - B) \cup B,$$

Resposta:

Podemos reescrever $A = (A - B) \cup B$ como

$$A \subseteq (A - B) \cup B$$

e

$$(A - B) \cup B \subseteq A$$
.

Portanto, podemos dividir a prova de $A = (A - B) \cup B$ em duas partes:

1. Como $A \subseteq (A - B) \cup B$, tem-se que:

$$x \in A \implies x \in ((A - B) \cup B)$$

Seja $x \in A$, temos 2 casos:

(a)
$$x \in B \implies x \in (A - B) \cup B$$

(b)
$$x \notin B \implies x \in (A - B) \implies x \in (A - B) \cup B$$

2. Como $(A - B) \cup B \subseteq A$, tem-se que:

$$x \in (A - B) \cup B \implies x \in A$$

Seja $x \in (A - B) \cup B$, temos 2 casos:

(a)
$$x \in (A - B) \implies x \in A \cap x \notin B \implies x \in A$$

(b)
$$x \notin (A - B) \implies \neg(x \in (A - B)) \implies x \notin A \cup x \in B \implies x \in B \implies x \in A$$

3.2 Inteiros

Definição. Dados $z_1, z_2 \in \mathbb{Z}$, o intervalo inteiro de z_1 a z_2 é o conjunto dos inteiros entre z_1 e z_2 , ou seja

$$[z_1..z_2] := \{ z \in \mathbb{Z} \mid z_1 \le z \le z_2 \}.$$

Definição. Dado $A \subseteq \mathbb{R}$,

• o mínimo de A é um elemento m de A satisfazendo

$$m \leq a$$
, para todo $a \in A$.

• o máximo de A é um elemento m de A satisfazendo

$$m \geq a$$
, para todo $a \in A$.

O mínimo e o máximo de Asão denotados $\min A$ e $\max A,$ respectivamente.

Conjuntos podem não ter mínimo ou máximo. Por exemplo,

$$A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}.$$

Notação. $\lg x \ denota \log_2 x$.

3.3 Somatórios e Produtórios

Sejam $f: A \to \mathbb{C}$ e um conjunto finito $X \subseteq A$

A expressão

$$\sum_{x \in X} f(x)$$

denota a soma dos valores de f(x) para cada $x \in X$.

Se $X = \emptyset$, convencionamos

$$\sum_{x \in X} f(x) = 0.$$

Se $a, b \in A \subseteq \mathbb{Z}$, também convencionamos

$$\sum_{i=a}^{b} f(i) := \sum_{x \in [a,b]} f(x).$$

Teorema 4. Dados um conjunto finito $X e c \in \mathbb{C}$,

$$\sum_{x \in X} c = c|X|.$$

Demonstração. Exercício 60

Teorema 5. Dados $f, g: A \to \mathbb{C}$ $e X \subseteq A$ finito,

$$\sum_{x \in X} \left(f(x) + g(x) \right) = \sum_{x \in X} f(x) + \sum_{x \in X} g(x).$$

Demonstração. Exercício 61

Teorema 6. Dada $f: A \to \mathbb{C}$, $X \subseteq A$ finito $e \in \mathbb{C}$,

$$\sum_{x \in X} cf(x) = c \sum_{x \in X} f(x).$$

Demonstração. Exercício 62

Dados $f \colon A \to \mathbb{C}$ e um conjunto finito $X \subseteq A,$ a expressão

$$\prod_{x \in X} f(x)$$

denota o produto dos valores de f(x) para cada $x \in X$.

Se $X = \emptyset$, convencionamos

$$\prod_{x \in X} f(x) = 1.$$

Se $a,b\in A\subseteq \mathbb{Z}$, também convencionamos

$$\prod_{i=a}^{b} f(i) := \prod_{x \in [a..b]} f(x).$$

Aproximação Assintótica

Exercícios 17 a 25

Dadas $f,g\colon \mathbb{N} \to \mathbb{R}$ dizemos que f e g são aproximadamente iguais (cfr. Ex. 7) se

$$\lim \frac{f(n)}{g(n)} = 1.$$

Denotamos o fato de que f e g são aproximadamente iguais por

$$f(n) \approx g(n)$$
.

Teorema 7. As funções $f,g: \mathbb{N} \to \mathbb{R}$ são tais que $f(n) \approx g(n)$ se e somente se existe $\varepsilon: \mathbb{N} \to \mathbb{R}$ tal que

$$f(n) = g(n)(1 + \varepsilon(n)),$$

e

$$\lim \varepsilon(n) = 0.$$

Demonstração. Exercício 23

Piso e Teto (1)

Exercícios 26 a 40

Definição. Dado $x \in \mathbb{R}$,

o piso de x é o maior inteiro menor ou igual a x, ou seja,

$$|x| := \max \{ z \in \mathbb{Z} \mid z \le x \}.$$

o teto de x é o menor inteiro maior ou igual a x, ou seja,

$$\lceil x \rceil := \min \{ z \in \mathbb{Z} \mid z \ge x \}.$$

Teorema 8. Para todo $x \in \mathbb{R}$, |x| é o único inteiro que satisfaz

$$x - 1 < \lfloor x \rfloor \le x$$
.

Demonstração. Seja $x \in \mathbb{R}$. Vamos provar que $\lfloor x \rfloor$ é o único inteiro que satisfaz

$$x - 1 < \lfloor x \rfloor \le x$$
.

É imediato que existe um único inteiro z no conjunto

$$\{y \in \mathbb{R} \mid x - 1 < y \le x\}.$$

Consequentemente, todo inteiro maior que z será também maior que x.

Noutras palavras, z é o maior inteiro menor ou igual a x e, portanto, $z = \lfloor x \rfloor$.

Teorema 9. Para todo $x \in \mathbb{R}$, [x] é o único inteiro que satisfaz

$$x \leq \lceil x \rceil < x + 1.$$

Demonstração. Exercício 29

Corolário 10. Para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$ temos

$$\lfloor x \rfloor + z = \lfloor x + z \rfloor$$
.

Demonstração. Sejam $x \in \mathbb{R}$ e $z \in \mathbb{Z}$. Vamos provar que

$$\lfloor x \rfloor + z = \lfloor x + z \rfloor$$
.

Do Teorema 8 temos que

$$x-1 < |x| \le x$$

e, portanto, para todo $z \in \mathbb{Z}$,

$$(x-1) + z < \lfloor x \rfloor + z \le x + z,$$

e, portanto,

$$(x+z) - 1 < \lfloor x \rfloor + z \le x + z.$$

Como $\lfloor x \rfloor + z$ é inteiro, temos do Teorema 8 que

$$\lfloor x \rfloor + z = \lfloor x + z \rfloor$$
.

Teorema 11. Para todo $x \in \mathbb{R}$ temos

$$-\lceil x \rceil = |-x|$$
.

Demonstração. Seja $x \in \mathbb{R}$. Vamos provar que

$$-\lceil x \rceil = |-x|$$
.

Do Teorema 9 temos que

$$x \leq \lceil x \rceil < x + 1,$$

e, portanto,

$$-x \ge -\lceil x \rceil > -(x+1),$$

ou seja,

$$(-x) - 1 < -\lceil x \rceil \le -x,$$

e daí, do Teorema 8 temos que

$$-\lceil x \rceil = |-x|$$

Corolário 12. Para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$ temos

$$z - \lfloor x \rfloor = \lceil z - x \rceil$$
.

Demonstração. Sejam $x \in \mathbb{R}$ e $z \in \mathbb{Z}$. Vamos provar que

$$|z - |x| = \lceil z - x \rceil$$
.

Temos que

$$z - |x| = -(|x| - z).$$

Pelo Teorema 10 temos que

$$|x| - z = |x - z|$$

e, portanto,

$$z - \lfloor x \rfloor = - \lfloor x - z \rfloor,$$

e daí, pelo Teorema 11

$$-\lfloor x - z \rfloor = \lceil -(x - z) \rceil = \lceil z - x \rceil.$$

Teorema 13. Para todo $x \in \mathbb{R}$ temos

$$\min\left\{k \in \mathbb{Z} \mid k > x\right\} = |x| + 1$$

Demonstração. Seja $m:=\min\{k\in\mathbb{Z}\mid k>x\},\;\;$ para todo $x\in\mathbb{R}.$

Observe (Ex. 34) que m é o único inteiro tal que

$$x < m \le x + 1$$
,

isto é,

$$(x+1) - 1 < m \le (x+1),$$

e daí (T. 8)

$$m = |x+1| \stackrel{\text{T. } 10}{=} |x| + 1.$$

Teorema 14. Para todo $x \in \mathbb{R}$ temos

$$\max \{ k \in \mathbb{Z} \mid k < x \} = \lceil x - 1 \rceil,$$

Demonstração. A prova de que max $\{k \in \mathbb{Z} \mid k < x\} = \lceil x - 1 \rceil$, para todo $x \in \mathbb{R}$ segue um argumento análogo em tudo a do Teorema 13 (Exercício 35)

Piso e Teto (2)

Exercícios 38 a 44

 $f: D \subseteq \mathbb{R} \to \mathbb{R}$ é integralizada (cfr. Ex. 6) em D se

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in D$.

Teorema 15. Se $f: D \subseteq \mathbb{R} \to \mathbb{R}$ é uma função integralizada, contínua e crescente, em D então

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor, e$$

 $\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil,$

para todo $x \in D$.

Demonstração. Seja $f\colon D\subseteq\mathbb{R}\to\mathbb{R}$ uma função integralizada, contínua e crescente em De seja $x\in D.$ Vamos provar que

- 1. $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$, e que
- $2. \lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil.$
- 1. Vamos provar que

$$|f(|x|)| = |f(x)|$$
.

Se x é inteiro, então

$$|x| = x$$

e portanto,

$$f(\lfloor x \rfloor) = f(x).$$

e

$$|f(|x|)| = |f(x)|.$$

Se x não é inteiro, então

$$\lfloor x \rfloor < x$$
,

e como f é crescente, então

$$f(\lfloor x \rfloor) < f(x)$$
.

Além disso, não pode haver nenhum inteiro z tal que

$$f(|x|) < z < f(x),$$

pois como f é contínua, teríamos z = f(a) para algum a tal que

e como f(a) é inteiro e f é integralizada, então a seria um inteiro entre |x| e x, o que não é possível.

Como x não é inteiro e f é integralizada, então f(x) não pode ser inteiro e então

$$\lfloor f(x) \rfloor < f(x),$$

Como $\lfloor f(x) \rfloor$ é inteiro e $f(\lfloor x \rfloor)$ não é necessariamente inteiro, então

$$\lfloor f(x) \rfloor \le f(\lfloor x \rfloor) < f(x),$$

e portanto,

$$\lfloor f(\lfloor x \rfloor) \rfloor \le \lfloor f(x) \rfloor \le f(\lfloor x \rfloor) < f(x). \tag{6.1}$$

Finalmente, como $\lfloor f(x) \rfloor$ é um inteiro entre $f(\lfloor x \rfloor)$ e $\lfloor f(\lfloor x \rfloor) \rfloor$, temos necessariamente

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$$
.

2. A prova de que

$$\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil,$$

segue um argumento em tudo análogo (Exercício 38).

Corolário 16. Para todo $x \in \mathbb{R}$ e todo inteiro positivo k

$$\begin{bmatrix} \frac{\lfloor x \rfloor}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix},$$
$$\begin{bmatrix} \frac{\lceil x \rceil}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix}.$$

Demonstração. Seja kum inteiro positivo e seja $f\colon \mathbb{R} \to \mathbb{R}$ a função dada por

$$f(x) = \frac{x}{k}.$$

Basta provar (Exercício 39) que f é uma função crescente e integralizada, e daí (T. 15) temos

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor,
\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil.$$

ou seja

$$\begin{bmatrix} \frac{\lfloor x \rfloor}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix},$$
$$\begin{bmatrix} \frac{\lceil x \rceil}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix}.$$

O Princípio da Indução Finita

```
Definição. Se A \subseteq \mathbb{N} satisfaz
```

1. $0 \in A \ e$,

 $\textit{2.} \ [0..a] \subseteq A \implies a+1 \in A, \ \textit{para todo} \ a \in \mathbb{N},$

então $A = \mathbb{N}$.

Formalmente,

 $((0 \in A) \ e \ (([0..a] \subseteq A \implies a+1 \in A), \ para \ todo \ a \in \mathbb{N})) \implies (A = \mathbb{N})$

Demonstração por Indução (1)

Teorema 17.

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}, \text{ para todo } n \in \mathbb{N},$$

Demonstração. Vamos provar que

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \text{ para todo } n \in \mathbb{N},$$

ou seja,

vamos provar que

P(n), para todo $n \in \mathbb{N}$,

onde

$$P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Vamos, então, provar que

P(n), para todo $n \in \mathbb{N}$,

provando que

$$A = \mathbb{N}$$
,

onde

$$A = \{ n \in \mathbb{N} \mid P(n) \}.$$

Vamos provar que $A = \mathbb{N}$ provando que

1. $0 \in A$;

- $2. \ [0..a] \subseteq A \implies a+1 \in A, \ \mathsf{para} \ \mathsf{todo} \ a \in \mathbb{N}.$
- 1. Vamos provar que $0 \in A$,

ou seja,

vamos provar que a proposição P(0) é verdadeira,

isto é,

vamos provar que

$$\sum_{i=1}^{0} i = \frac{0(0+1)}{2}.$$

Por um lado, temos que

$$\sum_{i=1}^{0} i = 0.$$

Por outro lado,

$$\frac{0(0+1)}{2} = \frac{0}{2} = 0,$$

e, portanto, é verdade que

$$\sum_{i=1}^{0} i = \frac{0(0+1)}{2},$$

isto é,

a proposição P(0) é verdadeira,

ou seja,

$$0 \in A$$
.

2. Vamos provar que

$$[0..a]\subseteq A \implies a+1\in A, \text{ para todo } a\in \mathbb{N}.$$

Seja $a \in \mathbb{N}$ tal que $[0..a] \subseteq A$.

Vamos provar que

$$a+1 \in A$$
,

isto é,

vamos provar que

a proposição P(a+1) é verdadeira

ou seja,

vamos provar que

$$\sum_{i=1}^{a+1} i = \frac{(a+1)((a+1)+1)}{2}.$$

Por um lado, temos

$$\sum_{i=1}^{a+1} i = \left(\sum_{i=1}^{a} i\right) + (a+1).$$

Como $[0..a] \subseteq A$, então $a \in A$,

ou seja,

a proposição P(a) é verdadeira,

isto é,

$$\sum_{i=1}^{a} i = \frac{a(a+1)}{2}.$$

Como

$$\sum_{i=1}^{a+1} i = \left(\sum_{i=1}^{a} i\right) + (a+1)$$

$$= \left(\frac{a(a+1)}{2}\right) + (a+1)$$

$$= \frac{a(a+1) + 2(a+1)}{2}$$

$$= \frac{(a+2)(a+1)}{2}$$

$$= \frac{(a+1)((a+1)+1)}{2},$$

ou seja,

$$\sum_{i=1}^{a+1} i = \frac{(a+1)((a+1)+1)}{2},$$

então

a proposição P(a+1) é verdadeira, ou seja,

$$a+1 \in A$$
,

isto é

$$[0..a]\subseteq A \implies a+1\in A, \text{ para todo } a\in \mathbb{N}.$$

Então

$$A = \mathbb{N},$$

isto é,

$${n \in \mathbb{N} \mid P(n) \text{ \'e verdadeira}} = \mathbb{N},$$

e portanto

a proposição $P(n),\;$ para todo $n\in\mathbb{N}$ é verdadeira, ou seja,

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}, \text{ para todo } n \in \mathbb{N}.$$

Demonstração por Indução (2)

Exercícios 46 a 45

Esquematicamente temos um predicado P(n) e queremos uma prova da proposição

$$P(n)$$
, para todo $n \in \mathbb{N}$.

Demonstração. Vamos provar que

$$P(n)$$
, para todo $n \in \mathbb{N}$,

provando que

$$A = \mathbb{N}$$
,

onde

$$A = \{n \in \mathbb{N} \mid P(n) \text{ \'e verdadeiro}\}.$$

Vamos provar que $A = \mathbb{N}$ provando que,

- 1. $0 \in A$
- $2. \ [0..a] \subseteq A \implies a+1 \in A, \ \mathsf{para} \ \mathsf{todo} \ a \in A.$
- 1. Vamos provar que $0 \in A$.

. . .

Portanto, $0 \in A$.

2. Vamos provar que

$$[0..a] \subseteq A \implies a+1 \in A$$
, para todo $a \in \mathbb{N}$.

Seja $a \in \mathbb{N}$ tal que $[0..a] \subseteq A$.

Vamos provar que $a + 1 \in A$.

. . .

Como $[0..a] \subseteq A$, então,

. . .

Portanto, $a + 1 \in A$.

Portanto,

$$A = \mathbb{N}$$
.

Portanto,

$$P(n)$$
, para todo $n \in \mathbb{N}$.

Observe que o conjunto A é desnecessário, no sentido de que é possível reformular o raciocínio sem definí-lo explicitamente.

Demonstração. Vamos provar que

$$P(n)$$
, para todo $n \in \mathbb{N}$.

provando que

- 1. A proposição P(0) é verdadeira e,
- 2. A proposição $(P(k), \text{ para todo } k \in [0..a] \implies P(a+1)), \text{ para todo } a \in \mathbb{N}$ é verdadeira.
- 1. Vamos provar que a proposição P(0) é verdadeira.

. . .

Portanto a proposição P(0) é verdadeira.

2. Vamos provar que a proposição

 $P(k), \text{ para todo } k \in [0..a] \implies P(a+1), \text{ para todo } a \in \mathbb{N},$ é verdadeira.

Seja $a \in \mathbb{N}$ tal que

$$P(k)$$
, para todo $k \in [0..a]$.

Vamos provar que a proposição P(a+1) é verdadeira.

. . .

Como a proposição P(k) é verdadeira para todo $k \in [0..a]$, então,

. . .

Portanto, a proposição P(a+1) é verdadeira.

Portanto,

$$P(k)$$
, para todo $k \in [0..a] \implies P(a+1)$, para todo $a \in \mathbb{N}$.

Portanto,

$$P(n)$$
, para todo $n \in \mathbb{N}$.

O esquema usual é o seguinte.

Demonstração. Vamos provar que

$$P(n)$$
, para todo $n \in \mathbb{N}$,

por indução em n.

1. Vamos provar que P(0).

. . .

Portanto, P(0).

2. Seja $a \in \mathbb{N}$ tal que P(k), para todo $k \in [0..a]$.

Vamos provar que P(a+1).

. .

Como P(k), para todo $k \in [0..a]$ então . . .

. . .

Portanto, P(a+1).

Portanto,

P(n), para todo $n \in \mathbb{N}$.

Nesta disciplina, o esquema para uma prova de indução será o seguinte, para enfatizar o fato de que a Base da Indução só pode ser determinada depois que o Passo da Indução for estabelecido.

Demonstração. Vamos provar que

$$P(n)$$
, para todo $n \in \mathbb{N}$,

por indução em n.

Hipótese de Indução: Seja $a \in \mathbb{N}$ tal que

$$P(k)$$
, para todo $k \in [0..a]$.

Passo da Indução: Vamos provar que P(a + 1).

. . .

Da hipótese de indução temos que ...

. .

Portanto P(a+1).

Base da Indução: Vamos provar que P(k), para todo $k \in \mathbb{N}$ ao qual o argumento do Passo de Indução não se aplica.

. . .

Portanto P(k), para todo $k \in \mathbb{N}$ ao qual o argumento do Passo de Indução não se aplica.

Portanto,

$$P(n)$$
, para todo $n \in \mathbb{N}$.

Vamos reescrever a prova do Teorema 17 de acordo com este esquema.

Demonstração. Vamos provar que

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \text{ para todo } n \in \mathbb{N},$$

por indução em n.

Hipótese da Indução: Seja $a \in \mathbb{N}$ tal que

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$
, para todo $k \in [0..a]$.

Passo da Indução: Vamos provar que

$$\sum_{i=1}^{a+1} i = \frac{(a+1)((a+1)+1)}{2}.$$

Temos que

$$\sum_{i=1}^{a+1} i = \left(\sum_{i=1}^{a} i\right) + (a+1).$$

Pela Hipótese da Indução temos que

$$\sum_{i=1}^{a} i = \frac{a(a+1)}{2},$$

e daí,

$$\sum_{i=1}^{a+1} i = \left(\sum_{i=1}^{a} i\right) + (a+1)$$

$$= \left(\frac{a(a+1)}{2}\right) + (a+1)$$

$$= \frac{a(a+1) + 2(a+1)}{2}$$

$$= \frac{(a+2)(a+1)}{2}$$

$$= \frac{(a+1)((a+1)+1)}{2}.$$

Portanto,

$$\sum_{i=1}^{a+1} i = \frac{(a+1)((a+1)+1)}{2}.$$

Base da Indução: Vamos provar que

$$\sum_{i=1}^k i = \frac{k(k+1)}{2}, \text{ para todo } k \in \{0\}$$

Por um lado, temos que

$$\sum_{i=1}^{0} i = 0.$$

Por outro lado,

$$\frac{0(0+1)}{2} = \frac{0}{2} = 0.$$

Portanto,

$$\sum_{i=1}^k i = \frac{k(k+1)}{2}, \text{ para todo } k \in \{0\}.$$

Exemplos de Prova por Indução (1)

Exercícios 50 a 73

Exercício 50 Prove por indução em n que

$$2^n < n!$$
, para todo $n \ge 4$.

Resposta:

Vamos provar que

$$2^n < n!$$
, para todo $n \ge 4$,

por indução em n.

Hipótese de Indução: Seja $a \ge 4$ tal que

$$2^k < k!$$
, para todo $k \in [4..a]$.

Passo da Indução: Vamos provar que $2^{a+1} < (a+1)!$.

Temos que

$$2^{a+1} = 2 \times 2^a.$$

Como $a \in [4..a]$, temos da H.I. que

$$2^a < a!,$$

$$2^{a+1} = 2 \times 2^a < 2 \times a!.$$

Por outro lado,

$$(a+1)! = (a+1) \times a!$$

e como $a \ge 4$ temos que

$$(a+1)! \ge (4+1) \times a! = 5 \times a!,$$

ou seja,

$$2^{a+1} < 2 \times a! < 5 \times a! \le (a+1)!,$$

e portanto,

$$2^{a+1} < (a+1)!.$$

Base da Indução: Vamos provar que

$$2^4 < 4!$$
.

Por um lado,

$$2^4 = 16.$$

e por outro lado,

$$4! = 24,$$

e portanto,

$$2^4 < 4!$$
.

Exemplos de Prova por Indução (2)

Exercício 51 A sequência de Fibonacci é a função $F: \mathbb{N} \to \mathbb{N}$ dada por

$$F(n) = \begin{cases} n, & \text{se } n \le 1\\ F(n-1) + F(n-2), & \text{se } n > 1. \end{cases}$$

1. Prove por indução em n que

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \text{ para todo } n \in \mathbb{N}$$

2. Conclua que

$$F(n) \approx \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2}\right)^n$$

Resposta:

1. Vamos provar que

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right),$$

por indução em n.

HI: Seja $a \in \mathbb{N}$ tal que

$$F(k) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right), \text{ para todo } k \in [0..a],$$

Passo: Vamos provar que

$$F(a+1) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{a+1} \right).$$

Pela definição de F temos que para todo a > 1,

$$F(a+1) = F(a) + F(a-1).$$

Como $a \in [0..a]$, temos da HI que

$$F(a) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^a - \left(\frac{1 - \sqrt{5}}{2} \right)^a \right).$$

Como $a - 1 \in [0..a]$, temos da HI que

$$F(a-1) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \right).$$

Então

$$\begin{split} F(a+1) &= F(a) + F(a-1) \\ &= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^a - \left(\frac{1-\sqrt{5}}{2} \right)^a \right) + \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \right) \\ &= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^a - \left(\frac{1-\sqrt{5}}{2} \right)^a + \left(\frac{1+\sqrt{5}}{2} \right)^{a-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \right) \\ &= \frac{\sqrt{5}}{5} \left(\left(\left(\frac{1+\sqrt{5}}{2} \right)^a + \left(\frac{1+\sqrt{5}}{2} \right)^{a-1} \right) - \left(\left(\frac{1-\sqrt{5}}{2} \right)^a + \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \right) \right) \\ &= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a-1} \left(1 + \left(\frac{1+\sqrt{5}}{2} \right) \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \left(1 + \left(\frac{1-\sqrt{5}}{2} \right) \right) \right) \\ &= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{a-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right) \\ &= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{a-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{a+1} \right). \end{split}$$

Base: Vamos provar que

$$F(b) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^b - \left(\frac{1-\sqrt{5}}{2} \right)^b \right), \text{ para todo } b \in \{0,1\}$$

isto é, vamos provar que

$$F(0) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^0 - \left(\frac{1 - \sqrt{5}}{2} \right)^0 \right)$$

$$F(1) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^1 - \left(\frac{1 - \sqrt{5}}{2} \right)^1 \right).$$

Por um lado,

$$F(0) = 0,$$

$$F(1) = 1.$$

Por outro lado,

$$\frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^0 - \left(\frac{1-\sqrt{5}}{2} \right)^0 \right) = \frac{\sqrt{5}}{5} (1-1) = \frac{\sqrt{5}}{5} (0) = 0,$$

e

$$\frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right)$$

$$= \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right) \right)$$

$$= \frac{\sqrt{5}}{5} \left(\frac{2\sqrt{5}}{2} \right) = \frac{5}{5}$$

$$= 1.$$

Portanto,

$$F(0) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^0 - \left(\frac{1 - \sqrt{5}}{2} \right)^0 \right)$$

$$F(1) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^1 - \left(\frac{1 - \sqrt{5}}{2} \right)^1 \right),$$

Portanto,

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \text{ para todo } n \in \mathbb{N},$$

2. Como

$$\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \overset{\text{Ex. 19}}{\approx} \left(\frac{1+\sqrt{5}}{2}\right)^n,$$

então

$$F(n) = \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2} (1+\epsilon(n)) \right)^n,$$

para alguma função $\epsilon \colon \mathbb{N} \to \mathbb{R}$ tal que $\lim \epsilon(n) = 0$.

Então,

$$F(n) = \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n (1 + \epsilon(n))^n,$$

ou seja

$$\frac{F(n)}{\frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2}\right)^n} = \left(1+\epsilon(n)\right)^n.$$

Como

$$\lim \epsilon(n) = 0,$$

 $ent\tilde{a}o$

$$\lim(1 + \epsilon(n)) = 1,$$

e daí,

$$\lim(1 + \epsilon(n))^n = 1,$$

e, consequentemente,

$$F(n) \approx \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2}\right)^n.$$

Exemplos de Prova por Indução (3)

Exercício 57 Use o fato de que se A e B são conjuntos finitos e disjuntos entre si então

$$|A \cup B| = |A| + |B|,$$

para provar, por indução em n que, se A_1, \ldots, A_n são conjuntos finitos dois a dois disjuntos entre si, então,

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|$$

Resposta:

Vamos provar que

se A_1, \dots, A_n são conjuntos finitos dois a dois disjuntos entre si, então

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i|\,, \text{ para todo } n \in \mathbb{N}.$$

HI: Seja $a \in \mathbb{N}$ tal que,

se A_1, \ldots, A_k são conjuntos finitos dois a dois disjuntos entre si, então

$$\left|\bigcup_{i=1}^k A_i\right| = \sum_{i=1}^k |A_i|\,, \text{ para todo } k \in [0..a].$$

Passo: Vamos provar que

se A_1, \ldots, A_{a+1} são conjuntos finitos dois a dois disjuntos entre si, então

$$\left| \bigcup_{i=1}^{a+1} A_i \right| = \sum_{i=1}^{a+1} |A_i| \,.$$

Sejam A_1, \ldots, A_{a+1} , conjuntos finitos dois a dois disjuntos entre si. Como a+1>0, então

$$\bigcup_{i=1}^{a+1} A_i = \left(\bigcup_{i=1}^{a} A_i\right) \cup A_{a+1}.$$

Se $a \geq 2$, então $2 \in [0..a]$ e daí, pela HI,

$$\left| \bigcup_{i=1}^{a+1} A_i \right| = \left| \left(\bigcup_{i=1}^a A_i \right) \cup A_{a+1} \right| = \left| \bigcup_{i=1}^a A_i \right| + \left| A_{a+1} \right|.$$

Como $a \in [0..a]$, da HI temos também

$$\left| \bigcup_{i=1}^{a} A_i \right| = \sum_{i=1}^{a} |A_i|,$$

e daí,

$$\left| \bigcup_{i=1}^{a+1} A_i \right| = \left| \bigcup_{i=1}^a A_i \right| + |A_{a+1}| = \sum_{i=1}^a |A_i| + |A_{a+1}| = \sum_{i=1}^{a+1} |A_i|.$$

Base: Vamos provar que

$$\left|\bigcup_{i=1}^b A_i\right| = \sum_{i=1}^b \left|A_i\right|, \text{ para todo } b \in [0..2].$$

Se b = 0, temos

$$\left| \bigcup_{i=1}^{b} A_i \right| = 0,$$

e

$$\sum_{i=1}^{b} |A_i| = 0.$$

Se
$$b = 1$$
, temos

$$\left| \bigcup_{i=1}^{b} A_i \right| = \left| A_1 \right|,$$

e

$$\sum_{i=1}^{b} |A_i| = |A_1|.$$

Se b = 2, temos

$$\left| \bigcup_{i=1}^b A_i \right| = \left| A_1 \cup A_2 \right|,$$

e

$$\sum_{i=1}^{b} |A_i| = |A_1| + |A_2|,$$

como dado pelo enunciado.

Descrições Recursivas (1)

Exercícios 74 a 89

Seja $l: \mathbb{N} - \{0\} \to \mathbb{N}$ dada por

l(n): tamanho (número de dígitos) na representação binária de n.

Queremos uma expressão para l(n).

Idéia: descrever através de uma recorrência.

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n > 1. \end{cases}$$

Temos,

Será verdade que f(n) é o número de dígitos na representação binária de n, para todo n>0, isto é, será que

Teorema 18.

$$l(n) = f(n)$$
, para todo $n > 0$.

Demonstração. Exercício 74

Exercício 74 Sejam $l, f: \mathbb{N} - \{0\} \to \mathbb{N}$ dadas por

l(n): tamanho (número de dígitos) na representação binária de n,

e

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n > 1. \end{cases}$$

Prove que

$$l(n) = f(n)$$
, para todo $n > 0$.

Resposta:

Vamos provar que

$$l(n) = f(n)$$
, para todo $n > 0$,

por indução em n

H.I.: Seja $a \in \mathbb{N}$ tal que

$$l(k) = f(k)$$
 para todo $k \in [1..a]$.

Passo: Vamos provar que

$$l(a+1) = f(a+1)$$

Se a+1>1, da definição de f temos que

$$f(a+1) = f\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right) + 1,$$

e que

$$\left\lfloor \frac{a+1}{2} \right\rfloor \le a,$$

e daí, temos pela HI que

$$l\left(\left\lfloor \frac{a+1}{2}\right\rfloor\right) + 1 = f\left(\left\lfloor \frac{a+1}{2}\right\rfloor\right) + 1$$

Seja então

$$m = l\left(\left|\frac{a+1}{2}\right|\right),\,$$

e seja

$$d_0d_1\ldots d_{m-1}$$
,

a representação binária de $\lfloor \frac{a+1}{2} \rfloor$, isto é,

$$\left\lfloor \frac{a+1}{2} \right\rfloor = d_{m-1}2^0 + d_{m-2}2^1 + \dots + d_02^{m-1} = \sum_{i=0}^{m-1} d_i 2^{(m-1)-i}.$$

Se a + 1 é par, então

$$\left| \frac{a+1}{2} \right| = \frac{a+1}{2}$$

e, portanto,

$$\frac{a+1}{2} = \sum_{i=0}^{m-1} d_i 2^{(m-1)-i},$$

ou seja,

$$a+1 = \sum_{i=0}^{m-1} d_i 2^{m-i} = \sum_{i=0}^{m-1} d_i 2^{m-i} + 02^0 = \sum_{i=0}^{m} d_i 2^{m-i},$$

para $d_m = 0$.

Noutras palavras,

$$d_0d_1\ldots d_m,$$

a representação binária de a + 1, isto é,

$$l(a+1) = m+1 = f\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right) + 1 = f(a+1).$$

Por argumento análogo concluímos que, também quando a+1 é ímpar, l(a+1)=f(a+1).

Base: Vamos provar que

$$l(1) = f(1).$$

Por um lado, l(1) = 1 pois a representação binária de 1 tem 1 dígito.

Por outro lado, f(1) = 1.

Logo, é verdade l(1) = f(1).

Descrições Recursivas (2)

Exercícios 75 a 89

Teorema 19. Se $l: \mathbb{N} - \{0\} \to \mathbb{N}$ é a função dada por

$$l(n) = \begin{cases} 1, & \textit{se } n = 1, \\ l\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \textit{se } n > 1, \end{cases}$$

 $ent \tilde{a}o$

$$l(n) = \lfloor \lg n \rfloor + 1$$
, para todo $n > 0$.

Demonstração. Exercicio 75

Exercício 75 Seja $l: \mathbb{N} \to \mathbb{N}$ dada por

$$l(n) = \begin{cases} 1, & \text{se } n = 1, \\ l\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n > 1. \end{cases}$$

Prove por indução em n que

$$l(n) = \lfloor \lg n \rfloor + 1$$
, para todo $n > 0$.

Resposta:

Vamos provar que

$$l(n) = |\lg n| + 1$$
, para todo $n > 0$,

por indução em n.

HI: Seja $a \in \mathbb{N}$ tal que

$$l(k) = |\lg k| + 1$$
, para todo $k \in [1..a]$.

Passo: Vamos provar que

$$l(a+1) = |\lg(a+1)| + 1.$$

Se a + 1 > 1, então

$$l(a+1) = l\left(\left|\frac{a+1}{2}\right|\right) + 1,$$

e como $\left\lfloor \frac{a+1}{2} \right\rfloor \in [0..a],$ então pela H.I. temos

$$l\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right) = \left\lfloor \lg \left\lfloor \frac{a+1}{2} \right\rfloor \right\rfloor + 1$$

$$\stackrel{\mathsf{T}}{=} \left\lfloor \lg \frac{a+1}{2} \right\rfloor + 1 = \left\lfloor \lg(a+1) - 1 \right\rfloor + 1$$

$$\stackrel{\mathsf{T}}{=} \left\lfloor \lg(a+1) \right\rfloor - 1 + 1$$

$$= \left\lfloor \lg(a+1) \right\rfloor.$$

Base: Vamos provar que

$$l(1) = \lfloor \lg(1) \rfloor + 1.$$

Basta verificar que

$$l(1) = 1,$$

e que,

$$|\lg(1)| + 1 = 0 + 1 = 1.$$

Corolário 20. Para todo n > 0, a representação binária de n tem $\lfloor \lg n \rfloor + 1$ dígitos.

Descrições Recursivas (3)

Exercícios 76 a 89

Seja $b \colon \mathbb{N} \to \mathbb{N}$ dada por

b(n): número de dígitos 1 na representação binária de n.

Seja

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\frac{n}{2}\right) & \text{se } n \text{ \'e par,} \\ f\left(\frac{n-1}{2}\right) + 1 & \text{se } n \text{ \'e impar.} \end{cases}$$

ou, mais concisamente,

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \bmod 2), & \text{se } n > 0. \end{cases}$$

Teorema 21.

$$b(n) = f(n)$$
, para todo $n \in \mathbb{N}$.

Demonstração. Exercício 76

Exercício 76 Sejam

b(n): o número de dígitos 1 na representação binária de n.

e $f \colon \mathbb{N} \to \mathbb{N}$ a função dada por

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \mod 2), & \text{se } n > 0. \end{cases}$$

- 1. Prove que o número de dígitos 1 na representação binária de n é f(n), para todo $n \ge 0$.
- 2. Prove que

$$f(n) \le \lfloor \lg n \rfloor + 1$$
, para todo $n > 0$.

Resposta:

1. Vamos provar que

$$b(n) = f(n)$$
, para todo $n \in \mathbb{N}$,

por indução em n.

HI: Seja $a \in \mathbb{N}$ tal que

$$b(k) = f(k)$$
, para todo $k \in [0..a]$.

Passo: Vamos provar que

$$b(a+1) = f(a+1)$$

Para a+1>0, temos da definição de f que

$$f(a+1) = f\left(\left|\frac{a+1}{2}\right|\right) + ((a+1) \mod 2),$$

e como $\left\lfloor \frac{a+1}{2} \right\rfloor \in [0..a],$ pela H.I. temos

$$b\left(\left|\frac{a+1}{2}\right|\right) = f\left(\left|\frac{a+1}{2}\right|\right).$$

ou seja,

$$f(a+1) = b\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right) + ((a+1) \bmod 2).$$

Se a + 1 é par, sabemos que

$$b(a+1) = b\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right),\,$$

ou seja

$$b(a+1) = b\left(\left\lfloor \frac{a+1}{2} \right\rfloor\right) + ((a+1) \bmod 2)$$

e, portanto,

$$f(a+1) = b(a+1).$$

Se a+1 é ímpar, sabemos que

$$b(a+1) = b\left(\left|\frac{a+1}{2}\right|\right) + 1,$$

ou seja

$$b(a+1) = b\left(\left|\frac{a+1}{2}\right|\right) + ((a+1) \bmod 2)$$

e, portanto,

$$f(a+1) = b(a+1).$$

Base: Vamos provar que

$$b(0) = f(0).$$

Basta verificar que, pela definição de b,

$$b(0) = 0,$$

e que, pela definição de f,

$$f(0) = 0$$

2. Dos Exercícios 74 e 75 concluímos que o comprimento da representação binária de n é $\lfloor \lg n \rfloor + 1$, para todo n > 0.

Do item anterior concluímos que f(n) é o número de 1s na representação binária de n, para todo n > 0.

Segue imediatamente que

$$f(n) < |\lg n| + 1$$
, para todo $n > 0$.

Funções Iteradas (1)

Exercícios 91 a 98

Definição. Sejam A, B, C conjuntos e sejam $f: A \to B$ e $g: B \to C$. A composição de f com g é a função $f \circ g: A \to C$ dada por

$$f \circ g(x) := g(f(x)).$$

Definição. Seja A um conjunto e $f: A \to A$ uma função. Para todo $n \in \mathbb{N}$ definimos $f^n: A \to A$ como

$$f^n(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}.$$

Mais precisamente,

$$f^n := \begin{cases} I, & \text{se } n = 0, \\ f^{n-1} \circ f, & \text{se } n > 0, \end{cases}$$

onde $I: A \to A$ denota a função identidade, dada por

$$I(a) = a$$
 para todo $a \in A$.

Exercício 90 Para cada uma das funções f(x) abaixo, dê uma expressão para $f^n(x)$. Em cada caso, prove por indução em n que sua resposta está correta.

1.
$$f(x) = x + 1$$
.

2.
$$f(x) = x + 2$$
.

3.
$$f(x) = x + 3$$
.

4.
$$f(x) = x + s$$
.

5.
$$f(x) = 2x$$
.

6.
$$f(x) = 3x$$
.

7.
$$f(x) = mx$$
.

8.
$$f(x) = s + mx$$
.

Resposta:

1.
$$f(x) = x + 1$$
: $f^n(x) = x + n$

2.
$$f(x) = x + 2$$
: $f^n(x) = x + 2n$

3.
$$f(x) = x + 3$$
: $f^n(x) = x + 3n$

4.
$$f(x) = x + s$$
: $f^{n}(x) = x + ns$

5.
$$f(x) = 2x$$
: $f^n(x) = 2^n x$

6.
$$f(x) = 3x$$
: $f^n(x) = 3^n x$

7.
$$f(x) = mx$$
: $f^n(x) = m^n x$

8.

$$f^{n}(x) = m^{n}x + s \sum_{i=0}^{n-1} m^{i}.$$

Se m=1,

$$f^{n}(x) = 1^{n}x + s \sum_{i=0}^{n-1} 1^{i} = x + sn.$$

e, se $m \neq 1$ (Ex. 45),

$$\sum_{i=0}^{n-1} m^i = \frac{m^n - 1}{m - 1},$$

e, portanto,

$$f^{n}(x) = m^{n}x + s\frac{m^{n} - 1}{m - 1}.$$

Teorema 22. Sejam $f \colon \mathbb{R} \to \mathbb{R} \ e \ s, m \in \mathbb{R} \ tais \ que$

$$f(x) = s + mx$$
, para todo $x \in \mathbb{R}$,

então, para todo $x \in \mathbb{R}$ e todo $n \in \mathbb{N}$,

$$f^n(x) = \begin{cases} x + sn, & \text{se } m = 1, \\ m^n x + s \frac{m^n - 1}{m - 1}, & \text{se } m \neq 1. \end{cases}$$

Demonstração. Exercício 67

Funções Iteradas (2)

Exercícios 91 a 98

Teorema 23. Se $f: A \to B$ e $g: B \to C$ são funções contínuas, então $f \circ g: A \to C$ é uma função contínua.

Demonstração. Exercício 41 (Cálculo I).

Teorema 24. Sejam $A, B, C \subseteq \mathbb{R}$ e $f: A \to B$ e $g: B \to C$ funções crescentes. Então $f \circ g: A \to C$ é crescente.

Demonstração. Exercício 42

Teorema 25. Sejam $A, B, C \subseteq \mathbb{R}$ $e \ f \colon A \to B$ $e \ g \colon B \to C$ funções integralizadas, isto é, satisfazendo

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in A$, $g(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$, para todo $x \in B$.

 $Ent\~ao\ f\circ g\colon A\to C\ \'e\ uma\ funç\~ao\ integralizada.$

Demonstração. Exercício 44

Corolário 26. Sejam $A, B, C \subseteq \mathbb{R}$ e sejam $f: A \to B$ e $g: B \to C$ funções contínuas, crescentes e integralizadas. Então, para todo $x \in A$,

$$[f \circ g(\lfloor x \rfloor)] = [f \circ g(x)], e$$
$$[f \circ g(\lceil x \rceil)] = [f \circ g(x)],$$

Demonstração. Exercício 43.

Corolário 27. Seja $A \subseteq \mathbb{R}$ e seja $f: A \to A$ uma função contínua, crescente e integralizada. Então, para todo $x \in A$, e todo $n \in \mathbb{N}$,

$$\lfloor f^n(\lfloor x \rfloor) \rfloor = \lfloor f^n(x) \rfloor,
 \lceil f^n(\lceil x \rceil) \rceil = \lceil f^n(x) \rceil.$$

Demonstração. Seja $A \subseteq \mathbb{R}$ e seja $f: A \to A$ uma função contínua, crescente e integralizada.

Seja $x \in A$. Vamos provar por indução em n que

$$\lfloor f^n(\lfloor x \rfloor) \rfloor = \lfloor f^n(x) \rfloor,$$
$$\lceil f^n(\lceil x \rceil) \rceil = \lceil f^n(x) \rceil,$$

para todo $n \in \mathbb{N}$.

HI: Seja $a \in \mathbb{N}$ tal que

para todo $k \in [0..a]$.

Passo: Vamos provar que

- 1. $|f^{a+1}(|x|)| = |f^{a+1}(x)|$, e
- 2. $\lceil f^{a+1}(\lceil x \rceil) \rceil = \lceil f^{a+1}(x) \rceil$.
- 1. Vamos provar que

$$|f^{a+1}(\lfloor x\rfloor)| = |f^{a+1}(x)|.$$

Se a + 1 > 0, então

$$\left \lfloor f^{a+1}(\left \lfloor x \right \rfloor) \right \rfloor = \left \lfloor f^a \circ f(\left \lfloor x \right \rfloor) \right \rfloor = \left \lfloor f(f^a(\left \lfloor x \right \rfloor)) \right \rfloor,$$

e como $1 \in [0..a]$ pela HI temos que

$$\lfloor f^1(\lfloor x \rfloor) \rfloor = \lfloor f^1(x) \rfloor$$

isto é

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$$

então

$$\left\lfloor f^{a+1}(\lfloor x \rfloor) \right\rfloor = \left\lfloor f(f^a(\lfloor x \rfloor)) \right\rfloor
 = \left\lfloor f(\lfloor f^a(\lfloor x \rfloor) \right\rfloor) \right\rfloor.$$

Como $a \in [0..a]$, pela HI também temos que

$$|f^a(|x|)| = |f^a(x)|$$

e portanto,

Finalmente, do Corolário 26 temos que

$$\left\lfloor f^1(\left\lfloor f^a(x)\right\rfloor)\right\rfloor = \left\lfloor f^1(f^a(x))\right\rfloor = \left\lfloor f^{a+1}(x)\right\rfloor.$$

2. A prova de que

$$\left\lceil f^{a+1}(\lceil x \rceil) \right\rceil = \left\lceil f^{a+1}(x) \right\rceil,$$

segue um argumento em tudo análogo ao acima.

Base: Vamos provar que f^k satisfaz

$$\left\lfloor f^k(\lfloor x \rfloor) \right\rfloor \ = \ \left\lfloor f^k(x) \right\rfloor,$$

$$\left\lceil f^k(\lceil x \rceil) \right\rceil \ = \ \left\lceil f^k(x) \right\rceil,$$

para todo $k \leq 1$.

Para k = 0 temos

$$\lfloor f^0(\lfloor x \rfloor) \rfloor = \lfloor \lfloor x \rfloor \rfloor = \lfloor x \rfloor,$$

e

$$\left\lfloor f^0(x)\right\rfloor = \left\lfloor x\right\rfloor,\,$$

e portanto,

$$\lfloor f^0(\lfloor x \rfloor) \rfloor = \lfloor f^0(x) \rfloor.$$

Pelo mesmo argumento concluímos que

$$\left\lceil f^0(\lceil x \rceil) \right\rceil = \left\lceil f^0(x) \right\rceil$$

Para k=1 temos

$$\lfloor f^1(\lfloor x \rfloor) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor,$$

e como a função f é contínua, crescente e integralizada, temos do Teorema ${\color{blue}15}$ que

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$$
.

Como

$$\lfloor f^1(x) \rfloor = \lfloor f(x) \rfloor,$$

concluímos que

$$\lfloor f^1(\lfloor x \rfloor) \rfloor = \lfloor f^1(x) \rfloor.$$

Pelo mesmo argumento concluímos que

$$\left[f^1(\lceil x \rceil)\right] = \left[f^1(x)\right]$$

Corolário 28. Sejam $k \neq 0$ e $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(x) = \left\lfloor \frac{x}{k} \right\rfloor.$$

 $Ent \tilde{a}o$

$$f^n(x) = \left\lfloor \frac{x}{k^n} \right\rfloor, \ \textit{para todo} \ n \in \mathbb{N}.$$

Demonstração. Exercícios 92

Parte II Recorrências

Recorrências (1)

Uma relação de recorrência é uma descrição recursiva de uma função $\mathbb{N} \to \mathbb{C}$ como, por exemplo,

$$f(n) = f(n-1) + 1$$
, para todo $n \ge 1$.

Observe que uma relação de recorrência para uma função f não determina necessariamente a função. Por exemplo, existem várias funções $\mathbb{N} \to \mathbb{C}$ que satisfazem a relação de recorrência acima.

Por outro lado, neste mesmo exemplo, basta escolher o valor de f(k) para algum $k \in \mathbb{N}$ para determinar a função.

Resolver uma recorrência é obter uma expressão não recursiva para uma função a partir de uma relação de recorrência dada.

No exemplo acima, se $n \ge 1$, então

$$f(n) = f(n-1) + 1.$$

Se f(n-1) > 1, então

$$f(n) = f(n-1) + 1 = (f((n-1)-1) + 1) + 1 = f(n-2) + 2.$$

Se $f(n-2) \ge 1$, então

$$f(n) = f(n-2) + 2 = (f((n-2)-1) + 1) + 2 = f(n-3) + 3.$$

Considere a última vez que podemos aplicar a relação de recorrência e chamemos esta de a u-ésima aplicação. Neste caso teremos

$$f(n) = f(n - u) + u,$$

e, além disso, u será o menor inteiro tal que

$$n - u < 1$$
,

isto é,

$$u = \min \{ k \in \mathbb{N} \mid n - k < 1 \}.$$

Como

$$n-k < 1$$

se e somente se

$$n - k \le 0$$

se e somente se

$$k \ge n$$
,

então

$$u = \min \left\{ k \in \mathbb{N} \mid n - k \le 0 \right\} = \min \left\{ k \in \mathbb{N} \mid k \ge n \right\} = \lceil n \rceil = n,$$

e

$$f(n) = f(n-u) + u = f(n-n) + n = f(0) + n.$$

Em resumo, temos que se

$$f(n)=f(n-1)+1, \text{ para todo } n\geq 1,$$

então

$$f(n) = f(0) + n$$
, para todo $n \ge 1$,

que é a solução da recorrência do exemplo inicial.

Observando que

$$f(0) + 0 = f(0),$$

podemos escrever

$$f(n)=f(0)+n, \text{ para todo } n\in\mathbb{N}.$$

Recorrências (2)

Vamos aplicar a mesma ideia para resolver o Exercício 99.

$$f(n) = f(n-2) + 1$$
, para todo $n \ge 2$.

Para todo $n \ge 1$,

$$f(n) = f(n-2) + 1$$

$$= (f((n-2)-2) + 1) + 1 = f(n-4) + 2$$

$$= (f((n-4)-2) + 1) + 2 = f(n-6) + 3$$

$$= \dots$$

$$= f(n-2u) + u,$$

onde

$$u = \min \left\{ k \in \mathbb{N} \mid n - 2k < 2 \right\}.$$

Como

$$n-2k<2$$

se e somente se

$$2k > n - 2$$
,

ou seja,

$$k > \frac{n-2}{2},$$

então

$$u = \min\left\{k \in \mathbb{N} \mid n-2k < 2\right\} = \min\left\{k \in \mathbb{N} \mid k > \frac{n-2}{2}\right\} \stackrel{\mathrm{T}}{=} \frac{13}{2} \left\lfloor \frac{n-2}{2} \right\rfloor + 1 = \left\lfloor \frac{n}{2} \right\rfloor.$$

Então

$$f(n) = f(n-2u) + u = f\left(n-2\left(\left\lfloor \frac{n}{2}\right\rfloor\right)\right) + \left(\left\lfloor \frac{n}{2}\right\rfloor\right)$$

Para n par, temos

$$\left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2},$$

e daí

$$f\left(n-2\left|\frac{n}{2}\right|\right) + \left|\frac{n}{2}\right| = f\left(n-2\left(\frac{n}{2}\right)\right) + \frac{n}{2} = f(0) + \frac{n}{2}.$$

Para n ímpar, temos

$$\left|\frac{n}{2}\right| = \frac{n-1}{2},$$

e daí

$$f\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right) + \left\lfloor\frac{n}{2}\right\rfloor = f\left(n-2\left(\frac{n-1}{2}\right)\right) + \frac{n-1}{2} = f(1) + \frac{n-1}{2}.$$

Então, para todo $n \ge 2$,

$$f(n) = \begin{cases} f(0) + \frac{n}{2}, & \text{se } n \text{ \'e par,} \\ f(1) + \frac{n-1}{2}, & \text{se } n \text{ \'e impar,} \end{cases}$$

ou, equivalentemente,

$$f(n) = f(n \bmod 2) + \left\lfloor \frac{n}{2} \right\rfloor, \text{ para todo } n \in \mathbb{N}.$$

Recorrências (3)

Exercícios 102 a 107

Vamos generalizar a ideia vista nas unidades anteriores para recorrências do tipo

$$f(n) = f(h(n)) + s(n)$$
, para todo $n \ge n_0$.

onde $f, s: \mathbb{N} \to \mathbb{C}, h: \mathbb{N} \to \mathbb{N} \in n_0 \in \mathbb{N}$.

Então,

$$\begin{split} f(n) &= f(h(n)) + s(n) \\ &= f(h(h(n)) + s(h(n)) + s(n) \\ &= f(h^2(n)) + s(h(n)) + s(n) \\ &= f(h(h^2(n))) + s(h^2(n)) + s(h(n)) + s(n) \\ &= f(h^3(n)) + s(h^2(n)) + s(h(n)) + s(n) \\ &= \dots \\ &= f(h^u(n)) + s(h^{u-1}(n)) + \dots + s(h(n)) + s(h^0(n)) \\ &= f(h^u(n)) + s(h^{u-1}(n)) + \dots + s(h^1(n)) + s(h^0(n)) \\ &= f(h^u(n)) + \sum_{i=0}^{u-1} s(h^i(n)), \end{split}$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

Recorrências (4)

Exercício 100 Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n \geq 2. \end{cases}$$

Resposta:

Fazendo

$$f(n)=f(h(n))+1, \text{ para todo } n\geq n_0,$$

temos

$$h(n) = \left\lfloor \frac{n}{2} \right\rfloor,$$

$$h^{k}(n) = \left\lfloor \frac{n}{2^{k}} \right\rfloor,$$

$$s(n) = 1,$$

$$n_{0} = 2$$

Então

$$f(n) = f(h^u(n)) + u = f\left(\left\lfloor \frac{n}{2^u} \right\rfloor\right) + u.$$

onde

$$u = \min \Big\{ k \in \mathbb{N} \mid \left\lfloor \frac{n}{2^k} \right\rfloor < 2 \Big\}.$$

Como

$$\left\lfloor \frac{n}{2^k} \right\rfloor < 2,$$

se e somente se

$$\left\lfloor \frac{n}{2^k} \right\rfloor \le 1,$$

se e somente se

$$\frac{n}{2^k} < 2,$$

ou seja,

$$2^{k+1} > n,$$

e portanto,

$$k+1 > \lg n$$
,

isto é

$$k > \lg n - 1,$$

então

$$u = \min \left\{ k \in \mathbb{N} \mid \left\lfloor \frac{n}{2^k} \right\rfloor < 2 \right\}$$
$$= \min \left\{ k \in \mathbb{N} \mid k > \lg n - 1 \right\}$$
$$\stackrel{\text{T.13}}{=} \left\lfloor \lg n - 1 \right\rfloor + 1$$
$$= \left\lfloor \lg n \right\rfloor.$$

Então,

$$f(n) = f\left(\left\lfloor \frac{n}{2^u} \right\rfloor\right) + u = f\left(\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor}} \right\rfloor\right) + \lfloor \lg n \rfloor$$

Como (Ex. 37)

$$\left|\frac{n}{2^{\lfloor \lg n \rfloor}}\right| = 1$$
, para todo $n > 0$,

então

$$f(n) = f\left(\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor}} \right\rfloor\right) + \lfloor \lg n \rfloor = f(1) + \lfloor \lg n \rfloor = 1 + \lfloor \lg n \rfloor = \lfloor \lg n \rfloor + 1,$$

ou seja,

$$f(n) = \lfloor \lg n \rfloor + 1, \text{ para todo } n \geq 2.$$

Como

$$|\lg 1| + 1 = 0 + 1 = 1 = f(1),$$

então,

$$f(n) = \lfloor \lg n \rfloor + 1, \text{ para todo } n \geq 1.$$

Recorrências (5)

Exercício 101 Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \bmod 2) & \text{se } n \ge 1. \end{cases}$$

Resposta:

A solução é

$$f(n) = f(h^u(n)) + \sum_{i=0}^{u-1} s(h^i(n)),$$

onde

$$h(n) = \left\lfloor \frac{n}{2} \right\rfloor,$$

$$h^k(n) = \left\lfloor \frac{n}{2^k} \right\rfloor,$$

$$s(n) = n \mod 2,$$

$$n_0 = 1,$$

$$u = \min \left\{ k \in \mathbb{N} \mid h^k(n) < n_0 \right\}.$$

Então

$$f(n) = f(h^{u}(n)) + \sum_{i=0}^{u-1} s(h^{i}(n))$$
$$= f\left(\left\lfloor \frac{n}{2^{u}} \right\rfloor\right) + \sum_{i=0}^{u-1} \left(\left\lfloor \frac{n}{2^{i}} \right\rfloor \mod 2\right)$$

$$h^k(n) < n_0$$

se e somente se

$$\left|\frac{n}{2^k}\right| < 1,$$

ou seja,

$$\left|\frac{n}{2^k}\right| \le 0,$$

ou seja,

$$\frac{n}{2^k} < 1,$$

ou seja,

$$2^k > n$$
,

e portanto,

$$k > \lg n$$
,

então

$$u = \min \left\{ k \in \mathbb{N} \mid h^k(n) < n_0 \right\}$$

$$= \min \left\{ k \in \mathbb{N} \mid k > \lg n \right\}$$

$$\stackrel{\text{T. 13}}{=} \lfloor \lg n + 1 \rfloor$$

$$\stackrel{\text{T. 10}}{=} |\lg n| + 1,$$

e

$$f(n) = f\left(\left\lfloor \frac{n}{2^u} \right\rfloor\right) + \sum_{i=0}^{u-1} \left(\left\lfloor \frac{n}{2^i} \right\rfloor \mod 2\right)$$

$$= f\left(\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor + 1}} \right\rfloor\right) + \sum_{i=0}^{\lfloor \lg n \rfloor + 1 - 1} \left(\left\lfloor \frac{n}{2^i} \right\rfloor \mod 2\right)$$

$$= f(0) + \sum_{i=0}^{\lfloor \lg n \rfloor} \left(\left\lfloor \frac{n}{2^i} \right\rfloor \mod 2\right)$$

$$= \sum_{i=0}^{\lfloor \lg n \rfloor} \left(\left\lfloor \frac{n}{2^i} \right\rfloor \mod 2\right).$$

Então

$$f(n) = \sum_{i=0}^{\lfloor \lg n \rfloor} \left(\left\lfloor \frac{n}{2^i} \right\rfloor \bmod 2 \right), \text{ para todo } n \geq 1.$$

Recorrências (6)

Exercícios 110 a 112

Vamos generalizar a ideia vista nas unidades anteriores para recorrências do tipo

$$f(n) = m(n)f(h(n)), \text{ para todo } n \ge n_0.$$

onde $f, m \colon \mathbb{N} \to \mathbb{C}, h \colon \mathbb{N} \to \mathbb{N} \in n_0 \in \mathbb{N}.$

Então,

$$f(n) = m(n)f(h(n))$$

$$= m(n)m(h(n))f(h(h(n))$$

$$= m(n)m(h(n))f(h^{2}(n))$$

$$= m(n)m(h(n))m(h^{2}(n))f(h(h^{2}(n)))$$

$$= m(n)m(h(n))m(h^{2}(n))f(h^{3}(n))$$

$$= \dots$$

$$= m(n)m(h(n))\dots m(h^{u-1}(n))f(h^{u}(n))$$

$$= m(h^{0}(n))m(h^{1}(n))\dots m(h^{u-1}(n))f(h^{u}(n))$$

$$= f(h^{u}(n))\prod_{i=0}^{u-1} m(h^{i}(n)),$$

onde

$$u = \min \left\{ k \in \mathbb{N} \mid h^k(n) < n_0 \right\}.$$

Unidade 24

Recorrências (7)

Exercícios 110 a 110

Exercício 110 Dado $q \in \mathbb{C}$, uma progressão geométrica de razão q é uma função $f : \mathbb{N} \to \mathbb{C}$ satisfazendo

$$\frac{f(n+1)}{f(n)}=q, \text{ para todo } n\in\mathbb{N}.$$

- 1. Expresse a função f acima por meio de uma recorrência.
- 2. Resolva esta recorrência.

Resposta:

1.

$$f(n) = qf(n-1)$$
, para todo $n \ge 1$.

2.

$$f(n) = f(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)),$$

onde

$$h(n) = n - 1,$$

$$m(n) = q,$$

$$u = \min \{k \in \mathbb{N} \mid h^k(n) < n_0\},$$

$$n_0 = 1.$$

Então

$$h^k(n) = n - k,$$

е

$$h^k(n) < n_0$$

se e somente se

$$n-k < 1$$
,

ou seja,

$$k > n - 1$$

е

$$u = \min \{k \in \mathbb{N} \mid n - k \le n_0\}$$
$$= \min \{k \in \mathbb{N} \mid k > n - 1\}$$
$$= n,$$

е

$$h^{u}(n) = h^{n}(n) = n - n = 0,$$

е

$$f(n) = f(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)) = f(0) \prod_{i=0}^{n-1} q = f(0)q^n.$$

Unidade 25

Recorrências (8)

Exercícios 113 a 115

Vamos generalizar a ideia vista nas unidades anteriores para recorrências do tipo

$$f(n) = m(n)f(h(n)) + s(n)$$
, para todo $n \ge n_0$.

onde $f, s, m : \mathbb{N} \to \mathbb{C}, h : \mathbb{N} \to \mathbb{N} \in n_0 \in \mathbb{N}.$

Então,

$$\begin{split} f(n) &= m(n)f(h(n)) + s(n) \\ &= m(n)(m(h(n))f(h^2(n) + s(h(n))) + s(n) \\ &= m(n)m(h(n))f(h^2(n) + m(n)s(h(n)) + s(n) \\ &= m(n)m(h(n))(m(h^2(n))f(h^3(n)) + s(h^2(n))) + m(n)s(h(n)) + s(n) \\ &= m(n)m(h(n))m(h^2(n))f(h^3(n)) + m(n)m(h(n))s(h^2(n)) + m(n)s(h(n)) + s(n) \\ &= \dots \\ &= f(h^u(n))\prod_{i=0}^{u-1} m(h^i(n)) + \sum_{i=0}^{u-1} s(h^i(n))\prod_{j=0}^{i-1} m(h^j(n)), \end{split}$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

Teorema 29. Sejam $n_0 \in \mathbb{N}, h: \mathbb{N} \to \mathbb{N} \ e \ f, m, s: \mathbb{N} \to \mathbb{C} \ tais \ que$

$$f(n)=m(n)f(h(n))+s(n), \ \textit{para todo}\ n\geq n_0.$$

 $Ent\~ao$

$$f(n) = f(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)) + \sum_{i=0}^{u-1} s(h^i(n)) \prod_{j=0}^{i-1} m(h^j(n)), \ \textit{para todo} \ n \geq n_0,$$

onde

$$u = \min \left\{ k \in \mathbb{N} \mid h^k(n) < n_0 \right\}.$$

Demonstração. Exercício 98.

Unidade 26

Recorrências (9)

Exercício 114 O número de comparações no pior caso de uma execução do algoritmo MergeSort para um vetor de *n* elementos é dado pela recorrência

$$T(n) = \begin{cases} 0, & \text{se } n < 2, \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

Do Exercício 55 temos que $T^-(n) \le T(n) \le T^+(n)$, onde

$$T^-(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^-\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

e

$$T^{+}(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^{+}\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \ge 2. \end{cases}$$

- 1. Resolva as recorrências de $T^{-}(n)$ e $T^{+}(n)$.
- 2. Use as soluções obtidas e o Exercício 40 para concluir que $T(n) \approx n \lg n$.

Resposta:

1. Do Teorema 29, temos

$$T^-(n) = T^-(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)) + \sum_{i=0}^{u-1} s(h^i(n)) \prod_{j=0}^{i-1} m(h^j(n)), \text{ para todo } n \geq n_0,$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \},$$

 \mathbf{e}

$$h(n) = \left\lfloor \frac{n}{2} \right\rfloor,$$

$$m(n) = 2,$$

$$s(n) = n - 1,$$

$$n_0 = 2.$$

Então, dado $i \in \mathbb{N}$,

$$h^i(n) = \left| \frac{n}{2^i} \right|,$$

e

$$m(h^i(n)) = 2,$$

e

$$\prod_{i=0}^{u-1} m(h^j(n)) = \prod_{i=0}^{u-1} 2 = 2^u.$$

е

$$s(h^{i}(n)) = h^{i}(n) - 1 = \left\lfloor \frac{n}{2^{i}} \right\rfloor - 1$$

e

$$\prod_{j=0}^{i-1} m(h^j(n)) = \prod_{j=0}^{i-1} 2 = 2^i.$$

Então

$$T^{-}(n) = T^{-}\left(\left\lfloor \frac{n}{2^{u}}\right\rfloor\right) 2^{u} + \sum_{i=0}^{u-1} \left(\left\lfloor \frac{n}{2^{i}}\right\rfloor - 1\right) 2^{i}$$

$$= 2^{u}T\left(\left\lfloor \frac{n}{2^{u}}\right\rfloor\right) + \sum_{i=0}^{u-1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - \sum_{i=0}^{u-1} 2^{i}$$

$$= 2^{u}T\left(\left\lfloor \frac{n}{2^{u}}\right\rfloor\right) + \sum_{i=0}^{u-1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - \frac{2^{(u-1)+1} - 1}{2 - 1}$$

$$= 2^{u}T\left(\left\lfloor \frac{n}{2^{u}}\right\rfloor\right) + \sum_{i=0}^{u-1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - 2^{u} + 1,$$

onde

$$u = \min \Big\{ k \in \mathbb{N} \mid \left\lfloor \frac{n}{2^k} \right\rfloor < 2 \Big\}.$$

Como

$$\left| \frac{n}{2^k} \right| < 2,$$

$$\frac{n}{2^k} < 2,$$

ou seja,

$$n < 2^{k+1},$$

ou seja,

$$k+1 > \lg n$$
,

isto é,

$$k > \lg n - 1.$$

Então,

$$\begin{split} u &= \min \left\{ k \in \mathbb{N} \mid \left\lfloor \frac{n}{2^k} \right\rfloor < 2 \right\} \\ &= \min \left\{ k \in \mathbb{N} \mid k > \lg n - 1 \right\} \stackrel{\mathrm{T. 13}}{=} \left\lfloor \lg n - 1 + 1 \right\rfloor \\ &= \left\lfloor \lg n \right\rfloor. \end{split}$$

Então

$$T^{-}(n) = 2^{u}T\left(\left\lfloor \frac{n}{2^{u}}\right\rfloor\right) + \sum_{i=0}^{u-1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - 2^{u} + 1$$

$$= 2^{\lfloor \lg n \rfloor}T\left(\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor}}\right\rfloor\right) + \sum_{i=0}^{\lfloor \lg n \rfloor - 1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - 2^{\lfloor \lg n \rfloor} + 1$$

$$\stackrel{\text{Ex. 37}}{=} 2^{\lfloor \lg n \rfloor}T(1) + \sum_{i=0}^{\lfloor \lg n \rfloor - 1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - 2^{\lfloor \lg n \rfloor} + 1$$

$$= \sum_{i=0}^{\lfloor \lg n \rfloor - 1} 2^{i} \left\lfloor \frac{n}{2^{i}}\right\rfloor - 2^{\lfloor \lg n \rfloor} + 1$$

Por desenvolvimento análogo chegamos a

$$T^{+}(n) = \sum_{i=0}^{\lfloor \lg n \rfloor} 2^{i} \left\lceil \frac{n}{2^{i}} \right\rceil - 2^{\lfloor \lg n \rfloor + 1} + 1.$$

2. Do Exercício 55 temos

$$T^-(n) \le T(n) \le T^+(n)$$
, para todo $n \in \mathbb{N}$.

Do Exercício 40 temo que

$$T^{-}(n) \approx n \lg n,$$

 $T^{+}(n) \approx n \lg n.$

Consequentemente (Ex. 22)

$$T(n) \approx n \lg n.$$

Apêndice A

Exercícios

A.1 Elementos de Lógica

1[®]. Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) " $2 \le 3$ ".
- (b) "10 > 20".
- (c) " $x^2 \le x$ ".

 $2^{@}.~$ Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) (1 < 2) e $(2 < 3) \implies (1 < 3)$,
- (b) $(1 < 2) \implies (10 < 30)$,
- (c) $1 > 2 \implies 2 < 3$,
- (d) $1 > 2 \implies 2 > 3$.

 $3^{@}.~$ SejamPeQos seguintes predicados.

$$P(x) : x \le x^2,$$

$$Q(x,y) : x \le y^2.$$

Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) P(2).
- (b) P(1/2).

- (c) Q(1,1).
- (d) R(t) = Q(1, t).
- 4° . Seja P(x) o predicado " $x \leq x^2$ ".

Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) P(x), para todo $x \in \mathbb{R}$.
- (b) P(x), para algum $x \in \mathbb{R}$.
- (c) P(x), para todo $x \ge 1$.
- (d) P(x), para algum 0 < x < 1.
- 5^* . Prove que se A, B e C são proposições, então
 - (a) $F \implies A$, ou seja, a partir de uma proposição falsa pode-se concluir qualquer coisa.
 - (b) $A \implies B \equiv (\text{ não } A) \text{ ou } B$.
 - (c) $(A \Longrightarrow B) \equiv ((\text{ não } B) \Longrightarrow (\text{ não } A))$, também conhecida como contrapositiva da implicação. Uma "prova de $A \Longrightarrow B$ por contrapositiva" é uma prova de que $((\text{ não } B) \Longrightarrow (\text{ não } A))$.
 - (d) $(A \Longrightarrow F) \equiv$ não A, ou seja, uma implicação cujo consequente é falso só pode ser verdadeira se o antecedente é falso. Este é o princípio por baixo das "provas por contradição".
 - (e) $((A \Longrightarrow B) \text{ ou } (A \Longrightarrow C)) \equiv (A \Longrightarrow (B \text{ ou } C))$ (distributividade da disjunção pela implicação).
 - (f) $((A \Longrightarrow B) e (A \Longrightarrow C)) \equiv (A \Longrightarrow (B e C))$ (distributividade da conjunção pela implicação).
 - (g) $((B \implies A) \text{ ou } (C \implies A)) \equiv ((B \text{ e } C) \implies A)$ (outra distributividade).
 - (h) $((B \implies A) \in (C \implies A)) \equiv ((B \text{ ou } C) \implies A)$ (outra distributividade).
 - (i) $((A \Longrightarrow B) \in (A \Longrightarrow (\text{não } B))) \Longrightarrow (\text{não } A)$ (outra maneira de expressar o princípio por baixo de uma prova por contradição).

6*. Considere os seguintes predicados.

$$I(x) \equiv x \in \mathbb{Z},$$

 $P(f,x) \equiv I(x) \Longrightarrow I(f(x)),$
 $Q(f,x) \equiv I(f(x)) \Longrightarrow I(x).$

Dê um exemplo de função $g \colon \mathbb{R} \to \mathbb{R}$ que

- (a) não satisfaz o predicado P(g, x), para todo $x \in \mathbb{R}$.
- (b) satisfaz o predicado não $(P(g, x), \text{ para todo } x \in \mathbb{R}).$
- (c) satisfaz o predicado Q(g,x), para todo $x \in \mathbb{R}$.
- (d) não satisfaz o predicado Q(g,x), para todo $x \in \mathbb{R}$.

7[#]. Considere os seguintes predicados.

$$\begin{array}{rcl} L(f) & \equiv & \lim f(n) = 0, \\ P(n,f,g,h) & \equiv & f(n) = g(n)(1+h(n)), \\ B(f,g,h) & \equiv & L(h) \ \mathrm{e} \ (P(n,f,g,h), \ \mathrm{para} \ \mathrm{todo} \ n \in \mathbb{N}), \\ A(f,g) & \equiv & B(f,g,h), \ \mathrm{para} \ \mathrm{algum} \ h \colon \mathbb{N} \to \mathbb{R}. \end{array}$$

Dê um exemplo de funções $f, g: \mathbb{N} \to \mathbb{R}$ que

- (a) satisfazem A(f, g).
- (b) não satisfazem A(f, g).

8#. Seja O(f) o seguinte predicado (onde $f: \mathbb{N} \to \mathbb{R}$).

$$(((n \ge k \implies |f(n)| \le c), \text{ para algum } k > 0), \text{ para algum } c > 0), \text{ para todo } n \ge k.$$

Avalie as seguintes proposições justificando cada uma, isto é, apresentando uma prova de se são verdadeiras ou falsas.

- (a) O(n/(n-1)),
- (b) O(n),
- (c) O(10+1/n),
- (d) $O(\log n)$,
- (e) O(42).

9[#]. Considere os seguintes predicados.

$$\begin{array}{lcl} P_1(f,g,c,n) & \equiv & |f(n)| \leq c |g(n)|, \\ P_2(f,g,c,k) & \equiv & P_1(f,g,c,n), \text{ para todo } n \geq k, \\ P_3(f,g,c) & \equiv & P_2(f,g,c,k), \text{ para algum } k \in \mathbb{N}, \\ O(f,g) & \equiv & P_3(f,g,c), \text{ para algum } c \in \mathbb{R}. \end{array}$$

Para cada par de funções $f,g\colon \mathbb{N}\to \mathbb{R}$, classifique as proposições abaixo como verdadeiras ou falsas.

- (a) O(f, g), para $f(n) = n e g(n) = n^2$.
- (b) O(g, f), para $f(n) = n e g(n) = n^2$.
- (c) O(f, g), para f(n) = n/2 e g(n) = n.
- (d) O(g, f), para f(n) = n/2 e g(n) = n.

 $10^{\#}$. Sejam D(x, y, d) e M(x, y) os seguintes predicados, respectivamente.

$$D(x, y, d): |x - y| < d,$$

$$M(x,y)$$
: $x > y$.

Use os predicados D(x,y,d) e M(x,y) para expressar os seguintes predicados.

$$L_1(f, a, l)$$
: $\lim_{x \to a} f(x) = l$.

$$L_2(f,l)$$
: $\lim_{x\to\infty} f(x) = l$.

$$L_3(f,a)$$
: $\lim_{x\to a} f(x) = \infty$.

$$L_4(f)$$
: $\lim_{x \to \infty} f(x) = \infty$

A.2 Conjuntos e Inteiros

11[@]. Seja A um conjunto finito e seja $B \subseteq A$. Prove que

$$A = (A - B) \cup B,$$

 $12^{\#}$. Sejam A, B e C conjuntos finitos. Prove que

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C),$$

13#. Seja A um conjunto e seja $k \in \mathbb{N}$. Vamos denotar por $\binom{A}{k}$ o conjunto dos subconjuntos de k elementos de A, isto é,

$$\binom{A}{k} = \{ S \subseteq A \mid |S| = k \}.$$

Dado $a \in A$, sejam

$$A^{-} = {A - \{a\} \choose k},$$

$$A^{+} = {A - \{a\} \choose k - 1},$$

$$\overline{A} = \{S \cup \{a\} \mid S \in A^{+}\}.$$

Prove que

$$\binom{A}{k} = A^- \cup \overline{A},$$

14#. Dados $f,g\colon A\to \mathbb{C}$ e $X\subseteq A$ e $c\in \mathbb{C},$ é verdade que

(a)
$$\prod_{x \in X} c = c|X|?$$

(b)
$$\prod_{x \in X} (f(x) + g(x)) = \prod_{x \in X} f(x) + \prod_{x \in X} g(x)?$$

(c)
$$\sum_{x \in X} f(x)g(x) = \left(\sum_{x \in X} f(x)\right) \left(\sum_{x \in X} g(x)\right)?$$

Justifique.

A.3 Aproximação Assintótica

 $15^{@}.~~{\rm A}~S\'{e}rie~Harm\^onica$ é a série dada por

$$H(n) = \sum_{i=1}^{n} \frac{1}{i}.$$

A diferença $H(n) - \ln n$ converge e seu limite é conhecido como constante de Euler-Mascheroni, isto é,

 $\lim H(n) - \ln n = \gamma := 0.57721566490153286060651209008240243104215933593992...$

Prove que

$$H(n) \approx \ln n$$
.

16[®]. Prove que

(a) Prove que

$$\binom{n}{2} \approx \frac{n^2}{2}$$

(b)

$$\sum_{i=1}^{n} i \approx \frac{n^2}{2}$$

(c) A partir da aproximação de Stirling,

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

prove que

 $\log_b n! \approx n \log_b n$, para todo b > 1.

(d) Use o resultado do Exercício 16c para provar que

$$\sum_{i=1}^n \log_b i \approx n \log_b n, \text{ para todo } b > 1$$

(e)
$$\lg n \approx |\lg n| \approx \lceil \lg n \rceil$$

17⁻. A partir da aproximação de Taylor

$$\sum_{i=0}^{n} \frac{x^{i}}{i!} \approx e^{x}, \text{ para todo } x \in \mathbb{C},$$

conclua que

$$\sum_{i=0}^{n} (-1)^i \frac{1}{i!} \approx \frac{1}{e}.$$

18#. Seja $P \colon \mathbb{N} \to \mathbb{R}$ dado por

$$P(n) = a_0 n^0 + a_1 n^1 + a_2 n^2 + \ldots + a_k n^k.$$

com $a_k \neq 0$, um polinômio de grau k.

Prove que

$$P(n) \approx a_k n^k$$
.

19[#]. Prove que

$$\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \approx \left(\frac{1+\sqrt{5}}{2}\right)^n$$

20[#]. Prove que

$$\frac{5 - 3\sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2}\right)^n + \frac{5 + 3\sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2}\right)^n - 1 \approx \frac{5 + 3\sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2}\right)^n.$$

21*. Seja $c\in\mathbb{C}-\{0,1\}$ e seja

$$s(n) = \sum_{i=0}^{n} c^{i}.$$

Prove que

- (a) se c > 1, então $s(n) \approx \frac{c^{n+1}}{c-1}$,
- (b) se 0 < c < 1, então $s(n) \approx \frac{1}{1-c}$.

Sejam $F, f, g, h \colon \mathbb{N} \to \mathbb{R}$ e $n_0 \in \mathbb{N}$ tais que $F(n) \approx f(n), F(n) \approx h(n),$

$$f(n) \le g(n) \le h(n)$$
, para todo $n \ge n_0$,

Prove que, neste caso,

$$F \approx f \approx g \approx h$$
.

Sejam $f,g:\mathbb{N}\to\mathbb{R}$. Prove que $f(n)\approx g(n)$ se e somente se existe $\varepsilon \colon \mathbb{N} \to \mathbb{R}$ tal que

$$f(n) = g(n)(1 + \varepsilon(n)),$$

e

$$\lim \varepsilon(n) = 0.$$

- $24^{\#}.~$ Prove que \approx é uma relação de equivalência sobre o conjunto das funções $\mathbb{N} \to \mathbb{R}$.
- A partir da observação de que

$$\int_{1}^{n} \log_{b}(x) dx \le \sum_{i=1}^{n} \log_{b} i \le \int_{0}^{n} \log_{b}(x+1) dx.$$

prove que

$$\sum_{i=1}^{n} \log_b i \approx n \log_b n.$$

A.4 Piso e Teto

- 26⁻. É verdade que $\lfloor f(n) \rfloor \approx f(n)$ para toda $f: \mathbb{N} \to \mathbb{R}$? Justifique.
- 27". É verdade que $\sum_{i=1}^n \lfloor f(i) \rfloor \approx \sum_{i=1}^n f(i)$ para toda $f \colon \mathbb{N} \to \mathbb{R}$? Justifique.
- 28#. A soma

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor \tag{A.1}$$

aparece com certa frequência em aplicações ligadas à computação.

(a) Prove que, dado $k \in \mathbb{N}$, temos

$$\lfloor \lg i \rfloor = k$$
 para todo $i \in [2^k..2^{k+1} - 1].$

- (b) Use esta observação para agrupar convenientemente os termos em (A.1).
- (c) Prove que

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = n \lfloor \lg n \rfloor - \left(2^{\lfloor \lg n \rfloor + 1} - \lfloor \lg n \rfloor - 2 \right).$$

(d) Prove que

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor \approx \sum_{i=1}^{n} \lg i.$$

(e) Prove que²

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor \approx n \lg n.$$

(f) Prove que

$$\lg n! \approx n \lg n.$$

(g) As proposições acima podem ser generalizadas para logaritmos em outras bases além de 2? Como?

Sugestão: use o resultado do Exercício 37 e o fato de que $\sum_{i=0}^{n} i2^i = 2^{n+1}(n-1) + 2$.

²Sugestão: use o resultado do Exercício 37

 29^* . Prove que $\lceil x \rceil$ é o único inteiro que satisfaz

$$x \leq \lceil x \rceil < x + 1,$$

para todo $x \in \mathbb{R}$.

30[⋆]. Prove que

$$\lceil x \rceil + z = \lceil x + z \rceil$$
.

para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$.

31*. Prove que, para todo $n \in \mathbb{N}$,

$$\bullet \left| \frac{n+1}{2} \right| = \left\lceil \frac{n}{2} \right\rceil$$

$$\bullet \left\lceil \frac{n-1}{2} \right\rceil = \left\lfloor \frac{n}{2} \right\rfloor$$

 32^* . Sejam $n, m \colon \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ dadas por

$$n(a,b) = b - a + 1,$$

$$m(a,b) = \left| \frac{a+b}{2} \right|,$$

Prove que, para todo $a, b \in \mathbb{Z}$,

(a) a+b é par se e somente se n(a,b) é impar.

(b)
$$n(a, m(a, b)) = \left[\frac{n(a, b)}{2}\right].$$

(c)
$$n(m(a,b) + 1,b) = \left| \frac{n(a,b)}{2} \right|$$
.

(d)
$$n(a, m(a, b) - 1) = \left\lfloor \frac{n(a, b) - 1}{2} \right\rfloor$$
.

3

³Sugestão: Use o Exercício 31

- 33*. Prove que, para todo $x \in \mathbb{R}$,
 - (a) x |x| < 1.
 - (b) [x] x < 1.
 - (c) $\lfloor x \rfloor = \lceil x \rceil$ se e somente se $x \in \mathbb{Z}$
 - (d) $\lceil x \rceil |x| \in \{0, 1\}.$
- 34*. Prove que, para todo $x \in \mathbb{R}$, temos que min $\{k \in \mathbb{Z} \mid k > x\}$ é o único inteiro m satisfazendo $x < m \le x + 1$ e conclua daí que

$$\min\left\{k\in\mathbb{Z}\mid k>x\right\}=\lfloor x\rfloor+1.$$

35[⋆]. Prove que

$$\max \{ k \in \mathbb{Z} \mid k < x \} = \lceil x - 1 \rceil,$$

para todo $x \in \mathbb{R}$.

36[®]. Prove que

$$\frac{n}{2} < 2^{\lfloor \lg n \rfloor} \le n \le 2^{\lceil \lg n \rceil} < 2n,$$

para todo $n \in \mathbb{N}$

 37^* . Prove que, para todo n > 0,

$$\frac{1}{2} < \frac{n}{2^{\lceil \lg n \rceil}} \le 1 \le \frac{n}{2^{\lfloor \lg n \rfloor}} < 2.$$

$$\left\lfloor \frac{n}{2^{\lfloor \lg n \rfloor}} \right\rfloor = 1.$$

$$\left\lfloor \frac{n}{2^x} \right\rfloor = 0$$
 se e somente se $x > \lg n$.

- (d)
- $\lfloor \lg n \rfloor > \lfloor \lg (n-1) \rfloor$ se e somente se n é potência de 2.
- (e)
- $\lceil \lg n \rceil < \lceil \lg(n+1) \rceil$ se e somente se n é potência de 2.

(f)
$$\lceil \lg(n+1) \rceil = |\lg n| + 1.$$

38*. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função crescente e contínua satisfazendo

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in \mathbb{R}$.

Prove que

$$\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil$$
, para todo $x \in \mathbb{R}$.

39#. Seja k um inteiro positivo e seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por

$$f(x) = \frac{x}{k}.$$

Prove que

- (a) f uma função contínua.
- (b) f uma função crescente.
- (c) $f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$, para todo $x \in \mathbb{R}$.

 $40^{\#}$. Prove que

(a)
$$\sum_{i=0}^{\lfloor \lg n \rfloor - 1} 2^i \left\lfloor \frac{n}{2^i} \right\rfloor - 2^{\lfloor \lg n \rfloor} + 1 \approx n \lg n$$

(b)
$$\sum_{i=0}^{\lfloor \lg n \rfloor} 2^i \left\lceil \frac{n}{2^i} \right\rceil - 2^{\lfloor \lg n \rfloor + 1} + 1 \approx n \lg n$$

- 41°. Se $f\colon A\to B$ e $g\colon B\to C$ são funções contínuas, então $f\circ g\colon A\to C$ é uma função contínua.
- 42⁻. Sejam $A, B, C \subseteq \mathbb{R}$ e $f: A \to B$ e $g: B \to C$ funções crescentes. Prove que $f \circ g: A \to C$ é uma função crescente.

43⁻. Sejam $A,B,C\subseteq\mathbb{R}$ e sejam $f\colon A\to B$ e $g\colon B\to C$ funções contínuas e crescentes satisfazendo

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in A$, e $g(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$, para todo $x \in B$.

Prove que

para todo $x \in A$.

44⁻. Dizemos que uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é integralizada se

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in A$,

Sejam $A,B,C\subseteq\mathbb{R}$. Prove que se $f\colon A\to B$ e $g\colon B\to C$ são funções integralizadas, então $f\circ g\colon A\to C$ é uma função integralizada.

A.5 Indução

45[®]. Prove que

$$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1},$$

para todo $n \in \mathbb{N}$ e todo $c \in \mathbb{C} - \{0, 1\}$.

46*. Prove por indução que

$$\sum_{i=0}^{n} i2^{i} = 2^{n+1}(n-1) + 2,$$

para todo $n \in \mathbb{N}$.

47*. Dados $n,k\in\mathbb{N},$ o coeficiente binomial $\binom{n}{k}$ é definido da seguinte maneira

$$\binom{n}{k} := \begin{cases} 1, & \text{se } k = 0, \\ \binom{n-1}{k} + \binom{n-1}{k-1}, & \text{se } 1 \le k \le n, \\ 0, & \text{caso contrário.} \end{cases}$$

Prove, por indução em n que, se $0 \le k \le n$, então

$$\sum_{k=0}^n \binom{n}{k} = 2^n, \text{ para todo } n \in \mathbb{N}.$$

48*. Prove que (cfr. Exercício 47

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}, \text{ para todo } n, k \in \mathbb{N}.$$

49*. Prove por indução em n que, dados $x, y \in \mathbb{C}$,

$$\sum_{i=0}^{n} \binom{n}{i} x^i y^{n-i} = (x+y)^n,$$

para todo $n \in \mathbb{N}$ e n > 0 4.

 $^{^4\}mathbf{Sugest\tilde{a}o} \colon$ Use a definição de $\binom{n}{k}$ dada no Exercício 47

Conclua a partir daí que

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n,$$

para todo $n \in \mathbb{N}$ e n > 0.

 $50^{\text{@}}$. Prove por indução em n que

$$2^n < n!$$
, para todo $n \ge 4$.

51[®]. A sequência de Fibonacci é a função $F: \mathbb{N} \to \mathbb{N}$ dada por

$$F(n) = \begin{cases} n, & \text{se } n \le 1\\ F(n-1) + F(n-2), & \text{se } n > 1. \end{cases}$$

(a) Prove por indução em n que

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \text{ para todo } n \in \mathbb{N}$$

(b) Conclua que

$$F(n) pprox \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2} \right)^n$$

 52^{\star} . Prove, por indução em n, que

- (a) $\sum_{j=0}^{n} (F(j))^2 = F(n)F(n+1)$, para todo $n \in \mathbb{N}$
- (b) $\sum_{j=0}^n F(2j) = F(2n+1) 1$, para todo $n \in \mathbb{N}$
- (c) $\sum_{j=1}^{n} F(2j-1) = F(2n)$, para todo $n \in \mathbb{N}$
- (d) $F(n+1)F(n-1)-\left(F(n)\right)^2=(-1)^n$, para todo n>0

onde $F: \mathbb{N} \to \mathbb{N}$ é a sequência de Fibonacci⁵.

⁵Veja o Exercício 51

53[⋆]. Prove que

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^n = \left(\begin{array}{cc} F(n+1) & F(n) \\ F(n) & F(n-1) \end{array}\right), \text{ para todo } n>0,$$

onde F é a sequência de Fibonacci (cfr Exercício 51)⁶.

 54^- . Prove por indução em n que

$$(\sqrt{2})^n \le F(n+1) \le 2^n$$
 para todo $n \in \mathbb{N}$,

onde F(n) denota a sequência de Fibonacci (cfr Exercício 51).

 55^* . O número de comparações no pior caso de uma execução do algoritmo MergeSort para um vetor de n elementos é dado pela função

$$T(n) = \begin{cases} 0, & \text{se } n < 2, \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

Prove que $T^-(n) \leq T(n) \leq T^+(n)$ para todo $n \in \mathbb{N}$, onde T^+ e T^- são as seguintes funções.

$$T^-(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^-\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1, & \text{se } n \geq 2, \end{cases}$$

$$T^{+}(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^{+}\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \ge 2. \end{cases}$$

56⁻. Dados n_1, \ldots, n_k O coeficiente multinomial é definido por

$$\binom{n_1+\ldots+n_k}{n_1,\ldots,n_k} := \frac{(n_1+\ldots+n_k)!}{n_1!n_2!\ldots n_k!}.$$

Observe que o coeficiente multinomial é uma generalização do coeficiente binomial, pois

$$\binom{n}{n_1} = \binom{n}{n_1, n - n_1}.$$

⁶Este é um dos algoritmos mais eficientes para o cálculo da sequência de Fibonacci.

Prove por indução em k que

$$\binom{n_1+\ldots+n_k}{n_1,\ldots,n_k}=\binom{n_1+\ldots+n_{k-1}}{n_1,\ldots,n_{k-1}}\binom{n_1+\ldots+n_k}{n_k}, \text{ para todo } k\geq 2.$$

57*. Use o fato de que se A e B são conjuntos finitos e disjuntos entre si então

$$|A \cup B| = |A| + |B|,$$

para provar, por indução em n que, se A_1, \ldots, A_n são conjuntos finitos dois a dois disjuntos entre si, então,

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|$$

58[®]. Prove por indução em n que se A_1, \ldots, A_n e B são conjuntos, então

$$\left(\bigcup_{i=1}^{n} A_i\right) \cap B = \bigcup_{i=1}^{n} (A_i \cap B),$$

59*. Prove, por indução em |X| que, se X é um conjunto finito e $c\in\mathbb{C},$ então

$$\prod_{x \in X} c = c^{|X|}.$$

60*. Prove, por indução em |X| que, se X é um conjunto finito e $c\in\mathbb{C},$ então

$$\sum_{x \in X} c = c|X|.$$

61*. Prove, por indução em |X| que, que se $f,g\colon A\to\mathbb{C}$ e $X\subseteq A$ é um conjunto finito, então

$$\sum_{x \in X} \left(f(x) + g(x) \right) = \sum_{x \in X} f(x) + \sum_{x \in X} g(x).$$

62*. Prove, por indução em |X| que, que se $f\colon A\to\mathbb{C}$ e $X\subseteq A$ é um conjunto finito, e $c\in\mathbb{C}$, então

$$\sum_{x \in X} cf(x) = c \sum_{x \in X} f(x).$$

- 63*. Prove por indução que qualquer valor maior ou igual a 4 reais pode ser obtido somente com cédulas de 2 e 5 reais.
- 64*. Prove, por indução em n, que n^2-1 é divisível por 8 para todo $n\in\mathbb{N}$ ímpar.
- 65*. Considere o seguinte algoritmo, conhecido pelo nome de "busca binária".

```
\begin{aligned} \operatorname{Busca}(x,v,a,b) \\ \operatorname{Se} & a > b \\ \operatorname{Devolva} & a - 1 \end{aligned} m \leftarrow \left\lfloor \frac{a+b}{2} \right\rfloor \\ \operatorname{Se} & x = v[m] \\ \operatorname{Devolva} & m \\ \operatorname{Se} & x < v[m] \\ \operatorname{Devolva} & Busca(x,v,a,m-1) \\ \operatorname{Devolva} & Busca(x,v,m+1,b) \end{aligned}
```

Fazendo n=b-a+1, prove que o número de comparações com elementos de v na execução de $\mathsf{Busca}(x,v,a,b)$ é no máximo $2(\lfloor \lg n \rfloor + 1)$ para todo $n \geq 1$.

66*. Considere o seguinte algoritmo.

$$\begin{aligned} \operatorname{Busca}(x,v,a,b) \\ \operatorname{Se} & a > b \\ \operatorname{Devolva} & a-1 \end{aligned}$$

$$m \leftarrow \left\lfloor \frac{a+b}{2} \right\rfloor \\ \operatorname{Se} & x < v[m] \\ \operatorname{Devolva} & Busca(x,v,a,m-1) \\ \operatorname{Devolva} & Busca(x,v,m+1,b) \end{aligned}$$

Prove que $\mathsf{Busca}(x,v,a,b)$ é o único inteiro em [a-1..b] satisfazendo $x < v[i] \ \mathsf{para} \ \mathsf{todo} \ i \in [\mathsf{Busca}(x,v,a,b)+1..b]$

67*. Sejam $f \colon \mathbb{R} \to \mathbb{R}$ e $s, m \in \mathbb{R}$ tais que

$$f(x) = s + mx$$
, para todo $x \in \mathbb{R}$,

Prove que

$$f^{n}(x) = \begin{cases} x + sn, & \text{se } m = 1, \\ m^{n}x + s\frac{m^{n} - 1}{m - 1}, & \text{se } m \neq 1, \end{cases}$$

para todo $x \in \mathbb{R}$ e todo $n \in \mathbb{N}$.

68#. Seja $f: \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + 1$$
, para todo $n \ge 1$.

Prove, por indução em n, que

$$f(n) = f(0) + n$$
, para todo $n \ge 0$.

69#. Seja $a\in\mathbb{C}$ e seja $f\colon\mathbb{N}\to\mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + a$$
, para todo $n \ge 1$.

Prove⁷, por indução em n, que

$$f(n) = f(0) + na$$
, para todo $n \ge 0$.

70#. Sejam $f, s \colon \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + s(n)$$
, para todo $n \ge 1$.

 $Prove^8$, por indução em n que

$$f(n) = f(0) + \sum_{i=1}^{n} s(i), \text{ para todo } n \ge 0.$$

⁷Observe que este exercício generaliza o Exercício 68.

⁸Observe que este exercício generaliza o Exercício 69.

71#. Sejam $f: \mathbb{N} \to \mathbb{C}$ e $a \in \mathbb{C}$ tais que

$$f(n) = af(n-1)$$
, para todo $n \ge 1$.

Prove por indução em n que

$$f(n)=a^nf(0), \text{ para todo } n\geq 0.$$

72#. Sejam $f,m\colon \mathbb{N}\to \mathbb{C}$ tais que

$$f(n) = m(n)f(n-1)$$
, para todo $n \ge 1$.

Prove⁹, por indução em n, que

$$f(n)=f(0)\prod_{i=1}^n m(i), \text{ para todo } n\geq 0.$$

73#. Sejam $f, s, m : \mathbb{N} \to \mathbb{C}$ tais que

$$f(n) = m(n)f(n-1) + s(n)$$
, para todo $n \ge 1$.

Prove (por indução em n) que 10

$$f(n)=f(0)\prod_{i=1}^n m(i)+\sum_{j=1}^n \left(s(j)\prod_{i=j+1}^n m(i)\right), \text{ para todo } n\geq 0.$$

⁹Observe que este exercício generaliza o Exercício 71.

¹⁰Observe que este exercício generaliza o Exercício 72.

A.5.1 Descrições Recursivas

74[@]. Sejam $l, f : \mathbb{N} - \{0\} \to \mathbb{N}$ dadas por

l(n): tamanho (número de dígitos) na representação binária de n,

е

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n > 1. \end{cases}$$

Prove que

$$l(n) = f(n)$$
, para todo $n > 0$.

75[@]. Seja $l: \mathbb{N} \to \mathbb{N}$ dada por

$$l(n) = \begin{cases} 1, & \text{se } n = 1, \\ l\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n > 1. \end{cases}$$

Prove por indução em n que

$$l(n) = |\lg n| + 1$$
, para todo $n > 0$.

76[®]. Sejam

b(n): o número de dígitos 1 na representação binária de n.

e $f \colon \mathbb{N} \to \mathbb{N}$ a função dada por

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \bmod 2), & \text{se } n > 0. \end{cases}$$

- (a) Prove que o número de dígitos 1 na representação binária de n é f(n), para todo $n \ge 0$.
- (b) Prove que

$$f(n) \le \lfloor \lg n \rfloor + 1$$
, para todo $n > 0$.

77*. Seja $M(n): \mathbb{N} - \{0\} \to \mathbb{N}$ dada por

M(n) := a posição do bit mais significativo na representação binária de n, sendo que os bits são contados da direita para a esquerda a partir de 0. Por exemplo, M(1) = 0 e M(10) = 3.

- (a) Proponha uma expressão recursiva para M(n).
- (b) Prove que a expressão proposta está correta.

78*. Considere o Algoritmo Exp(x, n) dado por

$\begin{aligned} &\operatorname{Exp}(x,n) \\ &\operatorname{Se}\ n = 0 \\ &\operatorname{Devolva}\ 1 \\ &e \leftarrow \operatorname{Exp}(x, \lfloor n/2 \rfloor) \\ &e \leftarrow e \times e \\ &\operatorname{Se}\ n \ \acute{e}\ par \\ &\operatorname{Devolva}\ e \end{aligned}$

- (a) Execute $\mathsf{Exp}(2,n)$ para $n \in \{0,1,2,5,11,15,16,20\}$ e, para cada execução, mostre o resultado do algoritmo e o número de multiplicações efetuadas.
- (b) Prove por indução em n que $\mathsf{Exp}(x,n) = x^n$ para todo $x \neq 0$ e todo $n \in \mathbb{N}$.
- (c) Prove que a execução de $\operatorname{Exp}(x,n)$ efetua $\lfloor \lg(n) \rfloor + b(n) + 1$ multiplicações para todo $x \neq 0$ e todo $n \in \mathbb{N}$ e n > 0, onde b é a função definida no Exercício 76.
- (d) Prove que a execução de $\mathsf{Exp}(x,n)$ efetua no máximo $2(\lfloor \lg n \rfloor + 1)$ multiplicações para todo x > 0 e todo n > 0.

79[®]. Considere o Algoritmo Mínimo(v, a, b) dado por

$\begin{aligned} & \underline{\mathsf{Minimo}}(v,a,b) \\ & \mathsf{Se}\ a = b \\ & \mathsf{Devolva}\ a \\ & m \leftarrow \left\lfloor \frac{a+b}{2} \right\rfloor \\ & m_1 \leftarrow \mathsf{M\'{n}imo}(v,a,m) \\ & m_2 \leftarrow \mathsf{M\'{n}imo}(v,m+1,b) \\ & \mathsf{Se}\ v[m_1] \leq v[m_2] \\ & \mathsf{Devolva}\ m_1 \end{aligned}$

Prove por indução em n que, dado $a \in \mathbb{Z}$, a execução de Mínimo(v, a, a + n - 1) faz n - 1 comparações entre elementos de v, para todo $n \ge 1$.

80*. Prove, por indução em n, que o seguinte algoritmo devolve $\prod_{i=1}^n i,$ para todo $n\in\mathbb{N}$

$\begin{aligned} &\mathsf{Fatorial}(n) \\ &\mathsf{Se}\ n = 0 \\ &\mathsf{Devolva}\ 1 \\ &\mathsf{Devolva}\ n \times \mathit{Fatorial}(n-1) \end{aligned}$

81*. Prove, por indução em n, que o seguinte algoritmo devolve $3^n - 2^n$, para todo n natural.

82*. Considere o seguinte algoritmo

Devolva m_2

```
\begin{aligned} & \text{Multiplica}(x,n) \\ & \text{Se } n = 0 \\ & \text{Devolva } 0 \\ & \text{Se } n \ \acute{e} \ par \\ & \text{Devolva } \textit{Multiplica}(x+x,\frac{n}{2}) \\ & \text{Devolva } \textit{Multiplica}(x+x,\frac{n-1}{2}) + x \end{aligned}
```

- (a) Prove, por indução em n, que Multiplica(x, n) devolve o valor de nx para todo $x \in \mathbb{C}$ e todo $n \in \mathbb{N}$.
- (b) Enuncie e prove um teorema estabelecendo um limite superior (em função de n) para o número de somas efetuadas por Multiplica $(x, n)^{11}$.
- $83^{@}.~$ O seguinte algoritmo devolve o $n\text{-}\acute{\text{e}}\text{simo}$ termo da sequência de Fibonacci.

```
\begin{aligned} &\mathsf{F}(n) \\ &\mathsf{Se}\ n \leq 1 \\ &\mathsf{Devolva}\ n \\ &\mathsf{Devolva}\ F(n-1) + F(n-2) \end{aligned}
```

Prove que o número de somas na execução de F(n) é pelo menos F(n), para todo $n \ge 2$.

- 84*. (a) Combine as informações dos Exercícios 53, 76 e 78 para propor um algoritmo para o cálculo de F(n).
 - (b) Dê uma expressão para o número s(n) de somas efetuadas pelo seu algoritmo para calcular F(n).
 - (c) Compare o resultado obtido com o número de somas efetuadas pelo algoritmo do Exercício 83.
- 85*. Considere o seguinte algoritmo de ordenação, conhecido como "ordenação por inserção".

```
\begin{aligned} & \mathsf{Ordena}(v,a,b) \\ & \mathsf{Se}\ a \geq b \\ & \mathsf{Devolva}\ v \\ & \mathsf{Ordena}(v,a,b-1) \\ & \mathsf{Insere}(v,a,b) \\ & \mathsf{Devolva}\ v \end{aligned}
```

¹¹Sugestão: compare este exercício com o Exercício 78.

onde $\mathsf{Busca}(x,v,a,b)$ é o algoritmo do Exercício 66, e

```
\begin{aligned} &\operatorname{Insere}(v,a,b) \\ & p \leftarrow \operatorname{Busca}(v[b],v,a,b-1) \\ & i \leftarrow b \\ &\operatorname{Enquanto}\ i \geq p+1 \\ &\operatorname{Troca}(v,i,i-1) \\ & i \leftarrow i-1 \\ &\operatorname{Devolva}\ v \end{aligned}
```

e Troca(v, a, b) troca os valores de v[a] e v[b] entre si.

Use o resultado dos Exercícios 28 e 65 para estabelecer um limitante superior para o número de comparações na execução de Ordena(v, a, a + n - 1) em função do valor de n.

86#. Proponha uma expressão recursiva para a função $B\colon \mathbb{N}-\{0\}\times \mathbb{N}\to \mathbb{N}$ dada por

B(n,k) := k-ésimo bit na representação binária de n.

Prove que a expressão proposta está correta.

87#. Prove por indução em n que, se $0 \le k \le n$, então o seguinte algoritmo devolve $\frac{n!}{k!(n-k)!}$, para todo $n \in \mathbb{N}$.

```
\begin{aligned} &\mathsf{B}(n,k)\\ &\mathsf{Se}\ k=0\\ &\mathsf{Devolva}\ 1\\ &\mathsf{Devolva}\ \frac{nB(n-1,k-1)}{k} \end{aligned}
```

88. Uma certa aplicação financeira rende j por cento do capital aplicado por mês. O rendimento é creditado no próprio saldo da aplicação.

Proponha uma expressão recursiva para a função $C(n) \colon \mathbb{N} \to \mathbb{N}$ de tal forma que C(n) represente o saldo da aplicação após ao final de n meses, a partir de uma aplicação inicial de valor s.

89. Sejam $f^-, f, f^+ \colon \mathbb{N} \to \mathbb{R}$ funções não-decrescentes satisfazendo, para todo $n \geq 2$,

$$f^{-}(n) = f^{-}(n-2) + f^{-}(n-2),$$

$$f(n) = f(n-1) + f(n-2),$$

$$f^{+}(n) = f^{+}(n-1) + f^{+}(n-1),$$

e ainda

$$f^-(0) \le f(0) \le f^+(0)$$
, e
 $f^-(1) \le f(1) \le f^+(1)$.

Prove por indução em n que

$$f^-(n) \le f(n) \le f^+(n)$$
, para todo $n \in \mathbb{N}$.

A.5.2 Funções Iteradas

- 90[®]. Para cada uma das funções f(x) abaixo, dê uma expressão para $f^n(x)$. Em cada caso, prove por indução em n que sua resposta está correta.
 - (a) f(x) = x + 1.
 - (b) f(x) = x + 2.
 - (c) f(x) = x + 3.
 - (d) f(x) = x + s.
 - (e) f(x) = 2x.
 - $(f) \ f(x) = 3x.$
 - (g) f(x) = mx.
 - (h) f(x) = s + mx.
- 91*. Para cada função $h\colon \mathbb{R} \to \mathbb{R}$ abaixo, dê uma expressão para a função $h^n,$ onde $n\in \mathbb{N}.$
 - (a) h(x) = x 2,
 - (b) h(x) = x s, com $s \in \mathbb{R}$,
 - (c) h(x) = 3x

(d)
$$h(x) = mx$$
, com $m \in \mathbb{R}$,

(e)
$$h(x) = x/2$$
,

(f)
$$h(x) = \lceil x/k \rceil$$
, com $k \in \mathbb{Z}^+$,

(g)
$$h(x) = \lfloor \sqrt[k]{x} \rfloor$$
, com $k \in \mathbb{N}$,

92[⋆]. Prove que

$$f^n(x) = \left\lfloor \frac{x}{k^n} \right\rfloor, \text{ para todo } n > 0,$$

onde $k \neq 0$ e $f \colon \mathbb{R} \to \mathbb{R}$ é dada por

$$f(x) = \left\lfloor \frac{x}{k} \right\rfloor.$$

93[⋆]. Prove que

$$f^n(x) = \lfloor \sqrt[(k^n)]{x} \rfloor$$
, para todo $n \in \mathbb{N}$,

onde $k \in \mathbb{N}$ e $f \colon \mathbb{R} \to \mathbb{R}$ é dada por

$$f(x) = \left\lfloor \sqrt[k]{x} \right\rfloor.$$

94#. Seja $f\colon \mathbb{N} \to \mathbb{N}$ satisfazendo

$$f(n)=f(n-2)+1, \ \mathsf{para\ todo}\ n>1.$$

Prove, por indução em n, que

(a)
$$f(n) = f(n \mod 2) + \lfloor \frac{n}{2} \rfloor$$
, para todo $n \in \mathbb{N}$.

(b)
$$f(n) = (-1)^n c_{10} + c_{20} + c_{21}n$$
, para todo $n \in \mathbb{N}$, onde

$$c_{10} = \frac{f(0) - f(1)}{2} + \frac{1}{4},$$

$$c_{20} = \frac{f(0) + f(1)}{2} - \frac{1}{4},$$

$$c_{21} = \frac{1}{2}.$$

(c)
$$f(n) = f(4 + n \mod 2) + \left\lceil \frac{k - 5}{2} \right\rceil$$
, para $n \ge 5$.

95#. Sejam $n_0 \in \mathbb{N}, h \colon \mathbb{N} \to \mathbb{N} \text{ e } f \colon \mathbb{N} \to \mathbb{R} \text{ tais que}$

$$h(n) < n,$$

$$f(n) = f(h(n)) + 1,$$

para todo $n \ge n_0$,

Prove (por indução) que

$$f(n) = f(h^u(n)) + u$$
, para todo $n \ge n_0$,

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

96#. Sejam $n_0 \in \mathbb{N}, h: \mathbb{N} \to \mathbb{N} \text{ e } f, s: \mathbb{N} \to \mathbb{R}$ tais que

$$h(n) < n,$$

$$f(n) = f(h(n)) + s(n),$$

para todo $n \ge n_0$.

Prove (por indução) que

$$f(n) = f(h^u(n)) + \sum_{i=0}^{u-1} s(h^i(n)), \text{ para todo } n \ge n_0.$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

97#. Sejam $n_0 \in \mathbb{N}, h: \mathbb{N} \to \mathbb{N} \text{ e } f, m: \mathbb{N} \to \mathbb{R}$ tais que

$$h(n) < n,$$

$$f(n) = m(n) f(h(n)),$$

para todo $n \ge n_0$.

Prove (por indução em n) que, para todo $n \ge n_0$

$$f(n) = f(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)),$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

98#. Sejam $n_0 \in \mathbb{N}, h \colon \mathbb{N} \to \mathbb{N}$ e $f, m, s \colon \mathbb{N} \to \mathbb{R}$ tais que

$$h(n) < n,$$

$$f(n) = m(n)f(h(n)) + s(n),$$

para todo $n \ge n_0$.

Prove (por indução) que

$$f(n) = f(h^u(n)) \prod_{i=0}^{u-1} m(h^i(n)) + \sum_{i=0}^{u-1} s(h^i(n)) \prod_{j=0}^{i-1} m(h^j(n)), \text{ para todo } n \geq n_0,$$

onde

$$u = \min \{ k \in \mathbb{N} \mid h^k(n) < n_0 \}.$$

A.6 Recorrências

A.6.1 Recorrências Iteradas

99[®]. Resolva a seguinte recorrência.

$$f(n) = f(n-2) + 1$$
, para todo $n \ge 2$.

100[®]. Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n \ge 2. \end{cases}$$

101[®]. Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \bmod 2) & \text{se } n \ge 1. \end{cases}$$

102*. Resolva as seguintes recorrências.

(a)
$$f(n) = 2f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 6n - 1$$
, para todo $n > 1$,

(b)
$$f(n) = 2f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 3n + 2$$
, para todo $n > 1$,

(c)
$$f(n) = 6f\left(\left\lfloor \frac{n}{6} \right\rfloor\right) + 2n + 3$$
, para todo $n > 1$,

(d)
$$f(n) = 6f\left(\left\lfloor \frac{n}{6} \right\rfloor\right) + 3n - 1$$
, para todo $n > 1$,

(e)
$$f(n) = 4f\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + 2n - 1$$
, para todo $n > 1$,

(f)
$$f(n) = 4f\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + 3n - 5$$
, para todo $n > 1$,

(g)
$$f(n) = 3f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 - n$$
, para todo $n > 1$,

(h)
$$f(n) = 3f(\frac{n}{2}) + n^2 - 2n + 1$$
, para todo $n > 1$,

(i)
$$f(n) = 3f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 2$$
, para todo $n > 1$,

(j)
$$f(n) = 3f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 5n - 7$$
, para todo $n > 1$,

(k)
$$f(n) = 4f\left(\left|\frac{n}{3}\right|\right) + n^2$$
, para todo $n > 1$,

(1)
$$f(n) = 4f(\left|\frac{n}{3}\right|) + n^2 - 7n + 5$$
, para todo $n > 1$,

(m)
$$f(n) = 4f\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + \left\lfloor \sqrt{n} \right\rfloor + 1$$
, para todo $n > 3$,

(n)
$$f(n) = 4f\left(\left|\frac{n}{4}\right|\right) + n^2 - 3n + 2$$
, para todo $n > 1$,

(o)
$$f(n) = 2f\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + n - 3$$
, para todo $n > 1$,

(p)
$$f(n) = 6f(\frac{n}{4}) + n^2 - 2n + 1$$
, para todo $n > 1$,

(q)
$$f(n) = 2f\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + n - 1$$
, para todo $n > 1$,

(r)
$$f(n) = f\left(\left\lceil \frac{n}{2}\right\rceil\right) + 1$$
, para todo $n > 1$,

(s)
$$f(n) = 2f\left(\left\lceil \frac{n}{2}\right\rceil\right) + 1$$
, para todo $n > 1$,

(t)
$$f(n) = f\left(\left\lceil \frac{2n}{3}\right\rceil\right) + k$$
, para todo $n > 1$ e para todo $k \in \mathbb{N}$,

103[⋆]. Resolva as seguintes recorrências.

(a)
$$f(n) = f(n-1) + n$$
, para todo $n > 0$.

$$\text{(b)}\ \ f(n)=2f(n-1)+1,\ \text{para todo}\ n>0$$

(c)
$$f(n) = 2f(n-1) + n^2$$
, para todo $n \ge 1$

(d)
$$f(n) = 2f(n-1) + n$$
, para todo $n > 1$,

$$(\mathrm{e})\ f(n)=3f(n-1)+2,\ \mathrm{para\ todo}\ n>1,$$

(f)
$$f(n) = 3f(n-1) - 15$$
, para todo $n > 1$,

(g)
$$f(n) = f(n-1) + n - 1$$
, para todo $n > 1$,

(h)
$$f(n) = f(n-1) + 2n - 3$$
, para todo $n > 1$,

$${\rm (i)}\ \ f(n)=2f(n-1)+n-1,\ {\rm para\ todo}\ n>1,$$

$${\rm (j)}\ \, f(n)=2f(n-1)+3n+1,\,\,{\rm para}\,\,{\rm todo}\,\,n>1,$$

$$\mathrm{(k)}\ f(n)=2f(n-1)+n^2,\ \mathrm{para\ todo}\ n>1,$$

$${\rm (l)}\ \, f(n)=f(n-2)+3n+4, \,\, {\rm para}\,\, {\rm todo}\,\, n>1,$$

(m)
$$f(n) = f(n-2) + n$$
, para todo $n > 1$,

$$\mathrm{(n)}\ f(n)=f(n-3)+5n-9,\ \mathrm{para\ todo}\ n>3,$$

- (o) $f(n) = 2f(n-1) + n^2 2n + 1$, para todo n > 1,
- (p) f(n) = 3f(n-1) + n, para todo $n \ge 1$.
- (q) $f(n) = 3f(n-2) + n^2$, para todo $n \ge 2$.
- (r) f(n) = 2f(n-2) + 2n 2, para todo $n \ge 2$.
- (s) f(n) = 2f(n-3) + 3n 2, para todo $n \ge 3$.
- (t) f(n) = 3f(n-3) + 3n 3, para todo n > 3.
- 104^* . Seja f(n) o número de sequências binárias de comprimento n.
 - (a) Descreva f(n) como uma recorrência.
 - (b) Resolva esta recorrência.
- 105*. Uma função $f\colon \mathbb{N}\to \mathbb{C}$ é uma progressão aritmética se existe $r\in \mathbb{C}$ tal que

$$f(n+1) - f(n) = r$$
 para todo $n \in \mathbb{N}$.

- (a) Expresse a função f como acima por meio de uma recorrência.
- (b) Resolva esta recorrência, obtendo assim uma expressão para o termo geral da progressão aritmética.
- 106*. Seja m(n, k) o número de multiplicações/divisões efetuadas na execução de B(n, k), o algoritmo do Exercício 87.
 - (a) Formule uma recorrência para m(n,k) $(0 \le k \le n)$.
 - (b) Resolva esta recorrência.
- 107. Resolva a recorrência do Exercício 86.
- 108. O Algoritmo de Strassen é um algoritmo recursivo para multiplicação de matrizes quadradas que, para matrizes suficientemente grandes, faz menos operações aritméticas do que o algoritmo usual.

A função M(n), abaixo, estabelece um limitante superior para o número S(n) de operações aritméticas na execução do Algoritmo de Strassen

com duas matrizes quadradas de ordem n como entrada, isto é, $S(n) \leq M(n)$, para todo $n \in \mathbb{N}$.

$$M(n) = \begin{cases} 1, & \text{se } n = 1, \\ 7M\left(\left\lceil \frac{n}{2} \right\rceil\right) + 18\left\lceil \frac{n}{2} \right\rceil^2, & \text{se } n \ge 2. \end{cases}$$

Resolva esta recorrência.

109. O Algoritmo de Karatsuba é um algoritmo recursivo para multiplicação de inteiros que, para números suficientemente grandes, faz menos operações aritméticas do que o algoritmo usual.

A função A(n), abaixo, descreve o número de operações aritméticas na execução do Algoritmo de Karatsuba com dois inteiros de n dígitos em sua representação binária.

Resolva esta recorrência.

$$A(n) = \begin{cases} 1, & \text{se } n = 1, \\ 5, & \text{se } n = 2, \\ 3A\left(\left\lceil \frac{n+1}{2} \right\rceil\right) + 20\left\lceil \frac{n+1}{2} \right\rceil, & \text{se } n > 2. \end{cases}$$

110[®]. Dado $q \in \mathbb{C}$, uma progressão geométrica de razão q é uma função $f \colon \mathbb{N} \to \mathbb{C}$ satisfazendo

$$\frac{f(n+1)}{f(n)}=q, \text{ para todo } n\in\mathbb{N}.$$

- (a) Expresse a função f acima por meio de uma recorrência.
- (b) Resolva esta recorrência.
- 111[®]. Resolva as seguintes recorrências

(a)
$$f(n) = \begin{cases} n-1, & \text{se } 2 \le n \le 3, \\ 2f(n-1), & \text{se } n \ge 4. \end{cases}$$

(b)
$$f(n) = \begin{cases} n-1, & \text{se } 2 \le n \le 3, \\ 2f(n-2), & \text{se } n \ge 4. \end{cases}$$

112*. O seguinte algoritmo resolve o conhecido quebra-cabeça das Torres de Hanói. A execução de Hanoi(n,a,b,c) move n discos da torre a para a torre b usando a torre c como torre auxiliar, de acordo com as regras do jogo.

$\mathsf{Hanoi}(n,a,b,c)$

Se n=0

Termine

 $\mathsf{Hanoi}(n-1,a,c,b)$

mova o disco no topo da torre a para o topo da torre b

 $\mathsf{Hanoi}(n-1,c,b,a)$

Seja M(n) o número de movimentos (passagem de um disco de uma torre para outra) na execução de $\mathsf{Hanoi}(n,a,b,c)$.

- (a) Descreva M(n) por meio de uma recorrência.
- (b) Resolva esta recorrência.
- 113*. Resolva as seguintes recorrências.
 - (a) f(n) = nf(n-1) + n, para todo n > 1,
 - (b) $f(n) = f(\lfloor \sqrt{n} \rfloor) + n^2$, para todo n > 1,
 - (c) $f(n) = 2f(\lfloor \sqrt[3]{n} \rfloor) + n$, para todo n > 1.
- $114^@.~$ O número de comparações no pior caso de uma execução do algoritmo $\sf MergeSort$ para um vetor de n elementos é dado pela recorrência

$$T(n) = \begin{cases} 0, & \text{se } n < 2, \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

Do Exercício 55 temos que $T^-(n) \leq T(n) \leq T^+(n)$, onde

$$T^-(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^-\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

е

$$T^{+}(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^{+}\left(\left\lceil \frac{n}{2}\right\rceil\right) + n - 1, & \text{se } n \ge 2. \end{cases}$$

- (a) Resolva as recorrências de $T^{-}(n)$ e $T^{+}(n)$.
- (b) Use as soluções obtidas e o Exercício 40 para concluir que $T(n) \approx n \lg n$.
- 115[®]. O "Master Method" ou "Master Theorem" ¹² é um método para obtenção de soluções assintóticas para recorrências que surgem naturalmente na análise de "algoritmos de divisão e conquista".

Tais recorrências tem a forma geral

$$T(n) = aT(n/b) + f(n),$$

onde $a \ge 1$ e $b \ge 1$, a expressão n/b pode significar tanto $\lfloor n/b \rfloor$ como $\lceil n/b \rceil$ e f() é uma função genérica. A recorrência do Exercício 114 é um exemplo de caso particular desta recorrência.

Sejam $a, b \in f()$ como acima e sejam $n_0 \in \mathbb{N} \in T^+, T^- : \mathbb{N} \to \mathbb{R}$ tais que

$$T^{-}(n) = aT^{-}(\lfloor n/b \rfloor) + f(n),$$

 $T^{+}(n) = aT^{+}(\lceil n/b \rceil) + f(n),$

para todo $n \ge n_0$.

Resolva estas recorrências.

¹²Popularizado com este nome por ?.