## **Introduction to Trees**



In nature, a **tree** is a plant with a single woody trunk, considerable height, and lateral branches suspended above the ground.

In math, a **tree** is an undirected graph in which any two vertices are connected by exactly one path.



#### **Fun Fact**

In chemistry, *alkanes* are trees of carbon and hydrogen atoms.

Can you draw methane, the alkane with 1 carbon atom?

|                                                      | Is it a tree? | # Vertices | # Edges | Degrees |
|------------------------------------------------------|---------------|------------|---------|---------|
|                                                      |               |            |         |         |
| 000                                                  |               |            |         |         |
| 0-0-00                                               |               |            |         |         |
| 7 9<br>1 3 4<br>5 8<br>(this one is <i>labeled</i> ) |               |            |         |         |

# **Counting Trees**

Two trees are **isomorphic** if one can be rearranged to match the other without cutting any lines.

Which of these trees are isomorphic?



| # Vertices | Drawings of Non-isomorphic Trees | # Non-isomorphic Trees |
|------------|----------------------------------|------------------------|
| 2          |                                  |                        |
| 3          |                                  |                        |
| 4          |                                  |                        |
| 5          |                                  |                        |
| 6          |                                  |                        |

# **Counting Labeled Trees**

Which of these labeled trees are isomorphic?









D

| # Vertices | Drawings of Non-isomorphic Labeled Trees | # Non-isomorphic<br>Labeled Trees |
|------------|------------------------------------------|-----------------------------------|
| 2          |                                          |                                   |
| 3          |                                          |                                   |
| 4          |                                          |                                   |
| 5          |                                          |                                   |
| 6          |                                          |                                   |

### **Tree Codes**

In math, a **code** is an efficient way to describe an object using symbols.

In programming, code is (hopefully) an efficient way to describe instructions for a computer processor.

## **Examples of Objects and Codes**



#### **Prüfer Codes**

To write down a Prüfer code for any labeled tree, do the following:

- write down the smallest leaf (vertex with only one edge), then cross out that leaf
- repeat

Write down the Prüfer codes for the following:



Can you think of a way to turn a Prüfer code into its graph?