Computación Numérica

Primer Parcial A - Febrero 2015

- 1. Representamos un entero utilizando 11 bits:
 - (a) ¿Cuál es el máximo entero no negativo que puede representar?
 - (b) Y si fueran enteros con signo y usáramos la representación sesgada ¿cuál sería el mayor positivo?
 - (a) Con m bits representamos enteros en $[0,(2^m-1)_{10}]$. Por lo tanto

$$[0, (2^m - 1)_{10}] = [0, (2^{11} - 1)_{10}] = [0, 2047],$$

Solución:

2047

(b) El enteros con signo que podemos representar con m bits serían los mismos que en el caso anterior menos el $sesgo=2^{m-1}=2^{10}=1024$, es decir

$$[0 - 1024, 2047 - 1024] = [-1024, 1023]$$

y por lo tanto el valor máximo es

Solución:

1023

- 2. Sea el conjunto de números en punto flotante en base 2, con precisión 4 y $e_{max}=7$ y que sigue normas análogas a la IEEE 754 pero con distinto número de bits para el exponente y la mantisa. Calcular:
 - (a) Número de bits del exponente y la mantisa.
 - (b) El valor mínimo y máximo normalizados en binario y en decimal.
 - (c) El valor mínimo y máximo desnormalizados en binario y en decimal.
 - (a) Como seguimos la norma IEEE 754, tenemos

$$sesgo = 2^{m-1} - 1 = 7 \Rightarrow 2^{m-1} = 8 \Rightarrow m - 1 = 3 \Rightarrow m = 4.$$

Y si tenemos en cuenta que la precisión es 4 y uno de los bits es el bit escondido la representación sería:

signo	exponente	mantisa
s	$e_{1}e_{2}e_{3}e_{4}$	$m_1m_2m_3$

Solución:

bits exponente
$$= 4$$
, bits mantisa $= 3$

(b) La representación binaria del número más grande normalizado es

signo	exponente	mantisa
0	1110	111

que tendría el exponente máximo

$$(1.111) \times 2^7 = (1 + 2^{-1} + 2^{-2} + 2^{-3}) 2^7 = 240.$$

La representación binaria del número más pequeño normalizado es

signo	exponente	mantisa
0	0001	000

que sería tendría el exponente mínimo que es 1-sesgo=1-7=-6y por lo tanto

$$(1.000) \times 2^{-6} = 2^{-6} = 0.015625$$

Solución:

$$Max = 240, \, min = 0.015625$$

(c) Si el número es desnormalizado el exponente es e=0000 pero se le atribuye el valor del menor exponente posible, es decir, -6. Además, el bit escondido es cero. La representación binaria del número más grande normalizado es

signo	exponente	mantisa
0	0000	111

que sería tendría el exponente máximo

$$(0.111) \times 2^{-6} = (2^{-1} + 2^{-2} + 2^{-3}) 2^{-6} = 0.013671875.$$

La representación binaria del número más pequeño normalizado es

signo	exponente	mantisa
0	0000	001

por lo tanto

$$(0.001) \times 2^{-6} = 2^{-3} \times 2^{-6} = 2^{-9} = 0.001953125$$

Solución:

$$Max = 0.013671875, min = 0.001953125$$

3. Demostrar que en la representación binaria de precisión simple de la norma IEEE 754 el número de dígitos decimales significativos es aproximadamente 7.

Podemos escribir cualquier número binario, con $b_0 = 1$,

$$x = \pm (1.b_1b_2...b_{23}b_{24}b_{25}...) \times 2^e.$$

Si lo redondeamos hacia cero,

$$x^* = \pm (1.b_1 b_2 \dots b_{23}) \times 2^e,$$

y el error relativo

$$\frac{|x-x^*|}{|x|} = \frac{\left(0.00...0b_{24}b_{25}...\right) \times 2^e}{\left(1.b_1b_2...b_{23}b_{24}b_{25}...\right) \times 2^e} \le \frac{0.00...0b_{24}b_{25}...}{1.b_1b_2...b_{23}b_{24}b_{25}...} \le$$

$$\leq \frac{0.\widetilde{00\ldots 0}\,b_{24}b_{25}\ldots}{1} \leq \frac{0.\widetilde{00\ldots 0}\,11\ldots}{1} \leq 0.\widetilde{00\ldots 1} = 2^{-23} \approx 1.1921\times 10^{-7}$$

Por lo tanto

Solución

$$\frac{|x - x^*|}{|x|} \le 5 \times 10^{-7}$$

4. Redondear al par más cercano, si la precisión es 4, los siguientes números en base 2: $n_1 = 1,111111, n_2 = 1,111001, n_3 = 1,010100, n_4 = 1,010101, n_5 = 1,010001.$

3

5. El error relativo aproximado al final de una iteración para calcular la raíz de una ecuación es 0.07%. ¿Cuál es el mayor número de cifras significativas que podemos dar por buenas en la solución?

Se tiene

$$\frac{|x - x^*|}{|x|} = \frac{0.07}{100} = 7 \times 10^{-4} > 5 \times 10^{-4},$$

pero

$$\frac{|x - x^*|}{|x|} = \frac{0.07}{100} = 7 \times 10^{-4} < 5 \times 10^{-3},$$

y por lo tanto

Solución:

Tres dígitos significativos

Computación Numérica

Primer Parcial A - Febrero 2015

1. Si el número

 $\begin{array}{cccc} signo & 1 \, bit & 1 \\ exponente & 5 \, bits & 10001 \\ mantisa & 10 \, bits & 0110100000 \end{array}$

sigue la norma IEEE 754 para representación en punto flotante con 16 bits llamado de media precisión, calcular su representación en base 10.

El signo es -1. Como el número de bits es m=5, el sesgo es $2^{m-1}-1=2^4-1=15$. El exponente es E=e-sesgo=e-15. Como

$$e = (10001)_2 = 2^4 + 2^0 = 17,$$

tenemos E=17-15=2. Para calcular la mantisa hemos de tener en cuenta el bit escondido

$$1.01101 \times 2^2 = (1 + 2^{-2} + 2^{-3} + 2^{-5}) \times 2^2 = 5.625.$$

Solución:

-5.625

- 2. Una máquina almacena números en punto flotante en media precisión de la norma IEEE 754:
 - (a) ¿Cual sería el ϵ de máquina expresado en base 10?
 - (b) ¿Cuál es el mayor entero que se puede almacenar de forma exacta? Escribirlo en decimal y en binario.
 - (c) ¿Cuál sería la representación de $0, +\infty, -\infty$?
 - (d) Da un ejemplo de representación de NaN.
 - (a) El número de dígitos de la mantisa es 10. El número 1 se representa

$$1 = 1.0000000000 \times 2^{0}$$

y el siguiente número representable es

$$1 + \epsilon = 1.000000001 \times 2^0$$

Por lo que

$$\epsilon = 0.000000001 \times 2^0 = 2^{-10}$$

Y en base 10,

Solución:

$$9.77 \times 10^{-4}$$

(b) El entero más grande es 2^p , donde la precisión es, teniendo en cuenta el bit escondido, p=10+1. Thus

Solución:

$$2^{11} = (2048)_{10} = (100000000000)_2$$

(c) y (d)

	signo	exponente	mantisa
cero	0	00000	000000000

	signo	exponente	mantisa
$+\infty$	0	11111	000000000

	signo	exponente	mantisa
$-\infty$	1	11111	000000000

	signo	exponente	mantisa
NaN	0	11111	0001000000

3. Representar 0.2 en media precisión. Dar el error absoluto en base 10.

Convertimos a binario:

Parte Fraccionaria 0.2 0.4 0.8 0.6 0.2
$$\cdots$$

Parte Entera 0 0 1 1 0 \cdots

Y tenemos que $(0.2)_{10} = (0.001100110011...)_2$, es decir

$$(0.2)_{10} = 1.100110011001100... \times 2^{-3}$$

que redondeado al para más cercano es

$$(0.2)_{10} \approx 1.1001100110... \times 2^{-3}$$

El sesgo es 15, y e=-3+sesgo=-3+15=12. Pasándolo a binario

Y el exponente es, $(e)_2 = 1100$. Y teniendo en cuenta el bit escondido

signo	exponente	mantisa
0	01100	1001100110

El número redondeado, x^* , es

$$(1+2^{-1}+2^{-4}+2^{-5}+2^{-8}+2^{-9}) \times 2^{-3} \approx 0.1999951$$

Solución:

Solución:
$$|0.2 - x^*| = 4.88 \times 10^{-5}$$

4. ¿Con cuantos dígitos significativos aproxima $x_1^*=0.27351$ a $x_1=0.2736$? ¿Y $x_2^*=1$ a $x_2=0.9999$? Entonces, ¿cómo deberíamos escribir x_2^* ?

$$\frac{0.2736 - 0.27351}{0.2736} \approx 3.3 \times 10^{-4} \le 5. \times 10^{-4},$$

Solución:

Cuatro dígitos significativos

$$\frac{0.9999 - 1}{0.9999} = 1. \times 10^{-4} \le 5. \times 10^{-4},$$

Solución:

Cuatro dígitos significativos

Deberíamos escribir

Solución:

$$x_2^* = 1.000$$

Computación Numérica

Primer Parcial A - Febrero 2015

1. Si el número

 $\begin{array}{cccc} signo & 1 \, bit & 1 \\ exponente & 5 \, bits & 10001 \\ mantisa & 10 \, bits & 0110100000 \end{array}$

sigue la norma IEEE 754 para representación en punto flotante con 16 bits llamado de media precisión, calcular su representación en base 10.

El signo es -1. Como el número de bits es m=5, el sesgo es $2^{m-1}-1=2^4-1=15$. El exponente es E=e-sesgo=e-15. Como

$$e = (10001)_2 = 2^4 + 2^0 = 17,$$

tenemos E=17-15=2. Para calcular la mantisa hemos de tener en cuenta el bit escondido

$$1.01101 \times 2^2 = (1 + 2^{-2} + 2^{-3} + 2^{-5}) \times 2^2 = 5.625.$$

Solución:

-5.625

- 2. Una máquina almacena números en punto flotante en media precisión de la norma IEEE 754:
 - (a) ¿Cual sería el ϵ de máquina expresado en base 10?
 - (b) ¿Cuál es el mayor entero que se puede almacenar de forma exacta? Escribirlo en decimal y en binario.
 - (c) ¿Cuál sería la representación de $0, +\infty, -\infty$?
 - (d) Da un ejemplo de representación de NaN.
 - (a) El número de dígitos de la mantisa es 10. El número 1 se representa

$$1 = 1.0000000000 \times 2^{0}$$

y el siguiente número representable es

$$1 + \epsilon = 1.000000001 \times 2^0$$

Por lo que

$$\epsilon = 0.000000001 \times 2^0 = 2^{-10}$$

Y en base 10,

Solución:

$$9.77 \times 10^{-4}$$

(b) El entero más grande es 2^p , donde la precisión es, teniendo en cuenta el bit escondido, p=10+1. Thus

Solución:

$$2^{11} = (2048)_{10} = (100000000000)_2$$

(c) y (d)

	signo	exponente	mantisa
cero	0	00000	000000000

	signo	exponente	mantisa
$+\infty$	0	11111	000000000

	signo	exponente	mantisa
$-\infty$	1	11111	000000000

	signo	exponente	mantisa
NaN	0	11111	0001000000

3. Representar 0.2 en media precisión. Dar el error absoluto en base 10.

Convertimos a binario:

Parte Fraccionaria 0.2 0.4 0.8 0.6 0.2
$$\cdots$$

Parte Entera 0 0 1 1 0 \cdots

Y tenemos que $(0.2)_{10} = (0.001100110011...)_2$, es decir

$$(0.2)_{10} = 1.100110011001100... \times 2^{-3}$$

que redondeado al para más cercano es

$$(0.2)_{10} \approx 1.1001100110... \times 2^{-3}$$

El sesgo es 15, y e=-3+sesgo=-3+15=12. Pasándolo a binario

Y el exponente es, $(e)_2 = 1100$. Y teniendo en cuenta el bit escondido

signo	exponente	mantisa
0	01100	1001100110

El número redondeado, x^* , es

$$(1+2^{-1}+2^{-4}+2^{-5}+2^{-8}+2^{-9}) \times 2^{-3} \approx 0.1999951$$

Solución:

Solución:
$$|0.2 - x^*| = 4.88 \times 10^{-5}$$

4. ¿Con cuantos dígitos significativos aproxima $x_1^*=0.27351$ a $x_1=0.2736$? ¿Y $x_2^*=1$ a $x_2=0.9999$? Entonces, ¿cómo deberíamos escribir x_2^* ?

$$\frac{0.2736 - 0.27351}{0.2736} \approx 3.3 \times 10^{-4} \le 5. \times 10^{-4},$$

Solución:

Cuatro dígitos significativos

$$\frac{0.9999 - 1}{0.9999} = 1. \times 10^{-4} \le 5. \times 10^{-4},$$

Solución:

Cuatro dígitos significativos

Deberíamos escribir

Solución:

$$x_2^* = 1.000$$