Traffic Light Controller using K-Maps, Boolean Algebra, and SimUAid

By Vedant Chopra

Figure 1. Schematics of the traffic controller

Figure 2. Time diagram of the bit counter

Figure 3. Time diagram for traffic lights

Table 1. Bit Counter using JK flip-flop transition table

A	В	С	D	A+	B+	C+	D+	JA	KA	JB	KB	JC	KC	JD	KD
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
1	0	0	1	0	0	0	0	X	1	0	X	0	X	X	1

Equations of the JK Bit counter from karnaugh map:

$$J_{A} = A'BCD$$

$$K_{A} = AB'C'D$$

$$J_{B} = A'CD = K_{B}$$

$$J_{C} = A'D = K_{C}$$

$$J_{D} = A' + AB'C = K_{D}$$

Table 2. Output

A	В	С	D	RN	YN	GN	RW	YW	GW
0	0	0	0	0	0	1	1	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	0	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	0	0	1	0	1	0	0
0	1	0	1	1	0	0	0	0	1
0	1	1	0	1	0	0	1	0	1
0	1	1	1	1	0	0	0	1	1
1	0	0	0	1	0	0	1	0	1
1	0	0	1	1	0	0	0	1	0

Equations of traffic light output after karnaugh map:

$$R_{w} = A'B' + A'C'D'$$

$$Y_{w} = AB'C'D$$

$$G_{w} = A'BD + A'BC + AB'C'D'$$

$$R_{n} = AB'C' + A'BD + A'BC$$

$$Y_{n} = A'BC'D'$$

Figure 4. Schematics of the traffic controller

Figure 5. Traffic controller on a breadboard

Table 3. Bit Counter using JK flip-flop transition table

A	В	С	D	A+	B+	C+	D+	JA	KA	ЈВ	KB	JC	KC	JD	KD
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	Х
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	Х
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	х
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	х
1	0	0	1	0	0	0	0	X	1	0	X	0	X	X	1

Equations of the JK Bit counter from karnaugh map:

$$J_A = A'BCD$$

$$K_A = AB'C'D$$

$$J_B = A'CD = K_B$$

$$J_C = A'D = K_C$$

$$J_D = A' + AB'C = K_D$$