

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

OPTIMAL SENSOR/ACTUATOR

PLACEMENT ON A LARGE

SPACE STRUCTURE

THESIS

AFIT/GA/AA/82D-6

Robert R. Luter

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

84 08 20 093

OPTIMAL SENSOR/ACTUATOR

PLACEMENT ON A LARGE

SPACE STRUCTURE

THESIS

AFIT/GA/AA/82D-6 Robert R. Luter lst Lt USAF

This document has been approved for public release and sale; its distribution is unlimited.

OPTIMAL SENSOR/ACTUATOR PLACEMENT ON A LARGE SPACE STRUCTURE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by

Robert R. Luter, Jr., B. S.

lst Lt

USAF

Graduate Astronautical Engineering

March 1984

Approved for public release; distribution unlimited

PREFACE

I would like to thank my thesis advisors, Major M. Wallace and Dr. R. Calico. Without their help and guidance the completion of this thesis would not have been possible.

Robert R. Luter, Jr.

Contents

Preface.	• •	• • •	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
List of E	Figur	es	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
List of T	rable:	s	•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	V
List of S	Symbo:	ls	•	• •			• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
Abstract			•	• •	, ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠,	,iii
I. Int	trodu	ction	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
F	Pinit	· · · · e Elen r/Actu	nen	t M	loc	le:	l.																		4
F P I	Equat: Modal Locat: Orien	ions (Couplion .	of I ling	Mot	ic	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14 16 17 22
(rodes Compu	ter P	rog:	ran	ns	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25 27
5	Senso	gation r/Act Model	uat	or	Mo	ođe	el.	•			•	•			•	•		•		•			•	•	29
5	Senso	r/Act Model	uato	or	Mo	ode	el.	•	•	•	•	•	•	•	•		•	•				•			39
VI. Cor	nclus	ions a	and	Re	ec(neı	nđ	at	ic	ns	в.	•	•	•	•	•	•	•	•	•	•	•	•	53
Bibliogra	aphy	• • •	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	55
Appendix	A: 1	NASTR	AN 1	Dat	:a	D	eci	k	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
Appendix	B: 8	SELEC	r.	• •	. ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	67
Appendix	C:	angle	•	•	• (•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	69
APPENDIX	D: (ORI EN	r.	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	75
17TM3																									01

List of Figures

<u> Pigure</u>	<u>Page</u>
1	CSDL Model II 5
2	Location of Modes
3	Orientation Angles 23

List of Tables

<u>Table</u> I	Page Node Location and Lumped Mass7-9
II	Sensor/Actuator Nodes and Orientation 12
III	Mode-Eigenvector Correspondence 26
IV	Angle Matrix With Original Sensor/Actuator Model
v	Modal Groupings
VI	Original Sensor/Actuator Model Orientation Changes
VII	Mass Changes
VIII	Angle Matrix With Modes 11 & 12 Coupled 42
IX	Angle Matrix for New Grouping (11 & 12 Coupled)
x	Angle Matrix for New Grouping (11 & 12 Decoupled)
XI	Results from Original Orientation Changes 46
XII	Angle Matrix with 2% Mass Change 48
XIII	Angle Matrix with 10% Mass Change 49
VIX	Angle Matrix with 20% Mass Change 50
xv	Angle Matrix with Mass Proportion Change 51
XVI	Angle Matrix with Equal Mass Corners 52

List of Symbols

Symbol

A = Plant Coefficient Matrix

B = Control System Matrix

 $\vec{B} \cdot \vec{B} = \text{Dot Product}$

 $\|\vec{B}\| = (\vec{B} \cdot \vec{B})^{1/2}$ - Norm or Magnitude

 $B^2 = (\vec{B} \cdot \vec{B}) - Norm Squared$

 $B_x = New Element of <math>\vec{B}$

C = Output System Matrix

C_n = Direction Cosine Matrix

D = Direction Cosine Matrix

E = Damping Matrix

g = Generalized Coordinates

G = Control Feedback Gain Matrix

K = Stiffness Matrix, or Observer Gain Matrix

M = Mass Matrix

 n_a = Number of Actuators

 n_C = Number of Controlled Eigenvectors

 n_g = Number of Sensors

 \vec{Q} = Input Forces

 \vec{u} = Actuator Force Inputs

x = State Vector

 \vec{y} = Output Vector

= Angle Between Vector and Positive x Axis

Angle Between Vector and Positive y Axis

X = Angle Between Vector and Positive z Axis

- 7 = Damping Ratio
- ? = Modal Coordinates
- ø = Modal Matrix
- ω = Natural Frequency

ABSTRACT

The method of eliminating observation and control spillover by making groups of reduced order controlled modes orthogonal to each other is investigated. The orthogonality of these groups of modes is manipulated by changing the sensor/actuator model used on the structure. A sensor/actuator with variable location and orientation is added to the original model to implement a search for a systematic method of forcing modes into groups.

Perturbations in the structural model are also observed to see how model deficiencies affect the stability of coupling between modes. Mass changes did not affect the coupling significantly. NASTRAN is used to determine the eigenvectors, which are needed to make the orthogonality calculations.

The program ANGLE is developed to calculate the angles between the modes, given a sensor/actuator model and the critical modes taken from NASTRAN. Groups of modes for the decentralized controllers are identified and studied for possible improvements that can be achieved using sensor/actuator model changes.

After identifying likely improvable angles, the program ORIENT searches for sensor/actuator models that will indeed improve the desired angles. The ability to change one angle without significantly changing any others was found to be very difficult. The best method for improving the coupling characteristics is an iteration procedure: improve one angle at a time, then identify the next best way to improve the groupings, and repeat.

I Introduction

The ability of a large space structure to function as desired is dependent on the ability to control the structure. The controllability of the structure, however, is hindered by the capability of computer control systems. A solution to the problem is to use reduced order controllers.

Reducing the number of modes that are controlled introduces another problem. The uncontrolled modes will contaminate sensor data. This contamination by the uncontrolled modes produces observation and control spillover. Janiszewski (Ref 1) shows that the suppression of observation spillover allows the controller to be stable. Spillover is eliminated by forcing the off-diagonal terms of the control matrix to equal zero. Spillover terms can also be forced to zero by making groups of modes orthogonal to each other. This method of elimination was proposed by Miller (Ref 2).

The modes of the system matrices can be made orthogonal by the selected placement of actuators and sensors. Both the orientation and location of the actuators and sensors effect the orthogonality of the modes. Model groupings are made of modes that are coupled to each other, but decoupled from the other groups of modes. Miller suggests that the coupling characteristics be determined by calculating the angle between the modes using a dot product formula. This approach gives a clear method of measuring the coupling between modes. Therefore, we have a method for determining the modal groupings by calculating the coupling characteristics due to the sensor/actuator location and orientation model.

This investigation studied the effect on the coupling of the modes by the changing of the sensor/actuator model. The model has two parameters that are changed: the orientation and the location of the sensor/actuator pair. The first method that changes the model is implemented by adding a new sensor/actuator pair. This method allows a new and better sensor/actuator model to be chosen by adding one sensor/actuator pair at a time to the model in a systematic manner. This new sensor/actuator can be located at any node of the structure. Once a location is chosen, the possible orientation angles can be studied. After choosing a particular orientation (that gives favorable results), this sensor/actuator becomes part of the old model, and a new sensor/actuator is then studied. The primary investigation is to choose a sensor/actuator model that will achieve an acceptable modal grouping.

The second method changes the sensor/actuator orientations of the original model. The determination of the new orientations require close observation of the system matrices. The objective of this investigation is to choose the orientations so that the existing modal grouping is improved.

The last area of investigation is the effect the structural modeling has on the coupling characteristics and modal groupings. The structure is modeled with finite elements. These elements represent the actual structure. Thus, a structural change requires a change in the finite element model of the structure.

Changing the structural model can vary the only other parameter used in this study: the eigenvectors. Since structural modeling is not precise, the eigenvectors do not accurately represent the structure. The question is how much effect does this

inaccuracy have on the control of the structure? The structural analysis program NASTRAN is used to calculate the eigenvectors using the given finite element model. By changing this finite element model, inaccuracies of the structural model can be tested for their effect on the coupling angles between modes. This is done by calculating the coupling angles, using the new eigenvectors provided by the changed finite element model.

Throughout this study, a system model was used with a given set of sensor/actuator pairs. Position sensors and force actuators are used. Thus, only translational degrees of freedom are considered throughout this work. The sensors and actuators are collocated so the modal coupling characteristics will be the same for both observation and control spillover terms.

II Model

The large space structure model used in this study is the Charles Stark Draper Laboratory Model II (CSDL-II), Revision 3. The structure contains three mirrors, a focal plane, and the support trusses for the mirrors. It also has an equipment section and two solar panels. The model is shown in Fig 1.

Finite Element Model

Cook (Ref 3) defines finite element analysis as a numerical procedure for solving a continuum mechanics problem. Structures are approximated by elements that are connected by nodes. The CSDL-II structure consists of beams that form support trusses. These beams are modeled by three-dimensional frame elements, which allow bending, and axial stiffness. All of the elements in this model are frame elements.

The elements in the model represent hollow graphite epoxy tubes. The wall thicknesses of the tubes range from 0.03cm to 0.067cm. The radius ranges from 3.6cm to 8.1cm. Each element is designed so that it is only strong enough to meet local buckling and member natural frequency constraints. The natural frequency of each element has to be greater than 10hz so that local vibrations will not interact with system vibrations. For those interested, the buckling and natural frequency constraints, and the sizes and section properties of each element are given by Henderson (Ref 4:3-6); however, these properties were not used in this investigation.

FIGURE 1 - CSDL Model II

Each element is connected to another by a single node. The structure has a total of 59 nodes with 23 lumped-mass nodes. These nodes, along with their masses, are cataloged in Table I. The locations of the nodes are shown in Fig 2.

The mass model is a revision of the previous model used for CSDL-II. In this revision, the mirror masses of the model are changed so that details of the support truss of the rigid mirrors can be modeled (Ref 4). The total mirror mass of the previous model is kept the same. However, the total mass of each mirror is now divided into two parts, the mirror mass and the optical support structure mass. Thus, nodes 1001, 1002, and 1003, the nodes at the center of each mirror, contain the lumped mirror masses. The nodes surrounding the mirrors have the lumped masses due to the optical support structure mass. Both the primary and tertiary mirrors already have a massive support truss at one end. Thus, this support mass has already been partially accounted for. Therefore, the mass of the support element is subtracted from the lumped optical support mass. This leads to large lumped masses (due to the optical support mass) at two corners and smaller masses (due to the optical mass minus the support truss mass) at the other two corners of each mirror, since that is where the massive support truss is located.

The finite element analysis is accomplished through the structural analysis program NASTRAN. Each element has stiffness properties, and some nodes have lumped-mass properties. Mass and stiffness matrices for the system are calculated by NASTRAN. These matrices allow NASTRAN to complete an eigenvector analysis. These eigenvectors are then used to calculate the coupling characteristics of the structure.

Table I

Node Location and Lumped Mass

NODE	<u>X_(M)</u>	<u>Y (M)</u>	<u>z (m)</u>	LUMPED MASS (KG)
1	-7.0	0.0	0.0	0.0
2	-4.0	5.0	0.0	0.0
3	-4.0	-5.0	0.0	0.0
4	0.0	5.0	0.0	0.0
5	4.0	5.0	0.0	0.0
6	4.0	-5.0	0.0	0.0
7	7.0	0.0	0.0	0.0
8	-7.0	0.0	2.0	0.0
9	-4.0	5.0	2.0	67.4
10	-4.0	-5.0	2.0	67.4
11	4.0	5.0	2.0	67.4
12	4.0	-5.0	2.0	67.4
13	7.0	0.0	2.0	0.0
14	-6.0	0.0	12.0	0.0
15	-4.0	4.0	12.0	0.0
16	-4.0	-4.0	12.0	0.0
17	4.0	4.0	12.0	0.0
18	4.0	-4.0	12.0	0.0
19	6.0	0.0	12.0	0.0
26	-5.0	0.0	22.0	0.0
27	-4.0	3.0	22.0	69.5
28	-4.0	-3.0	22.0	6.74
29	4.0	3.0	22.0	69.5

Table I

Node Location and Lumped Mass

(Continued)

NODE	<u>X (M)</u>	Y (M)	Z (M)	LUMPED MASS (KG)
30	4.0	-3.0	22.0	6.74
31	5.0	0.0	22.0	0.0
32	-4.0	10.0	22.0	6.74
33	4.0	10.0	22.0	6.74
34	-4.0	-10.0	22.0	69.5
35	4.0	-10.0	22.0	69.5
36	-4.0	3.0	24.0	0.0
37	-4.0	-3.0	24.0	0.0
38	4.0	3.0	24.0	0.0
39	4.0	-3.0	24.0	0.0
40	0.0	2.5	2.0	0.0
42	0.0	5.0	-0.3	0.0
43	-2.0	0.0	-1.3	0.0
44	0.0	-1.667	-1.3	3500.0
45	2.0	0.0	-1.3	0.0
46	-4.0	-5.0	-0.3	0.0
47	4.0	-5.0	-0.3	0.0
48	-26.0	0.0	-1.3	81.91
49	-21.0	0.0	-1.3	0.0
50	-16.0	0.0	-1.3	163.82
51	-11.0	0.0	-1.3	0.0
52	-6.0	0.0	-1.3	73.82
53	6.0	0.0	-1.3	73.82

Table I
Continued

NODE	<u>X_(M)</u>	<u>Y (M)</u>	<u>Z (M)</u>	LUMPED MASS (KG)
54	11.0	0.0	-1.3	0.0
55	16.0	0.0	-1.3	163.82
56	21.0	0.0	-1.3	0.0
57	26.0	0.0	-1.3	81.91
100	0.0	0.0	0.0	0.0
910	-4.0	-2.5	2,0	0.0
1001	0.0	-6.5	22.0	1000.0
1002	0.0	0.0	2.0	800.0
1003	0.0	6.5	22.0	1200.0
1004	0.0	4.0	2.0	600.0
1112	4.0	-2.5	2.0	0.0
2830	0.0	-3.0	22.0	0.0
3233	0.0	10.0	22.0	0.0

FIGURE 2 - Location of Nodes

The NASTRAN bulk data deck is listed in Appendix A. The bulk data deck produces a listing of the eigenvalues and eigenvectors for the finite element model. To change the modeling of the structure, the data deck is modified. New eigenvalues and eigenvectors will be produced with each change in the data deck.

The mass model of CSDL-II is modified by changing the lumped mass values in the data deck. This is accomplished through the CONM-2 statements. There is one CONM-2 line for each node that has a lumped mass (Appendix A). Each line contains the node number of the lumped mass and the value of the mass.

Sensor/Actuator Model

The sensor/actuator pairs' location and orientation are given in Table II. This model was suggested by CSDL (Ref 4). The suggestion is based on the line-of-sight (LOS) error. The LOS error is derived from the mathematical model given by CSDL (Ref 5). The error is a function of 21 coordinate variables. These 21 variables are the coordinates of 12 nodes that control the geometry of the optical path. Thus, to control the LOS error, these 21 coordinates were chosen for the sensor/actuator pairs locations.

Table II
Sensor/Actuator Nodes and Orientation

	ند سند د			
Number	NODE	ALPHA	BETA	GAMMA
1	9	90.00	0.00	90.00
2	9	90.00	90.00	0.00
3	10	90.00	90.00	0.00
4	11	0.00	90.00	90.00
5	11	90.00	0.00	90.00
6	11	90.00	90.00	0.00
7	12	90.00	90.00	0.00
8	27	0.00	90.00	90.00
9	27	90.00	0.00	90.00
10	27	90.00	90.00	0.00
11	28	90.00	90.00	0.00
12	29	90.00	0.00	90.00
13	29	90.00	90.00	0.00
14	30	90.00	90.00	0.00
15	32	90.00	90.00	0.00
16	33	90.00	90.00	0.00
17	34	0.00	90.00	90.00
18	34	90.00	0.00	90.00
19	34	90.00	90.00	0.00
20	35	90.00	0.00	90.00
21	35	90.00	90.00	0.00

Note that all of the sensor/actuator pairs are oriented along an axis direction as specified by the LOS equation. This restriction is not followed with sensor/actuator pairs that are added throughout the study.

III Theory

Equations of Motion

A vibrating structure has equations of motion

$$M \ddot{\vec{g}} + E \dot{\vec{g}} + K \vec{g} = \vec{Q}$$
 (1)

where \vec{g} is a n-vector of generalized coordinates, M a n x n symmetric mass matrix, K a n x n symmetric stiffness matrix, E a n x n symmetric damping matrix, and \vec{Q} a n-vector of input forces. This equation is also valid for large space structures such as the CSDL-II model.

The input force vector can be separated into two parts

$$\vec{Q} = D \vec{u}$$
 (2)

where D is a n x m matrix of direction cosines, and \vec{u} is a m-vector of actuator force inputs. The direction cosine matrix, D, is block diagonal when there is only one actuator per node. The matrix columns contain the three direction cosines of the corresponding actuator force inputs. Equation 1 is simplified by using modal coordinates, 7. Janiszewski shows that the equations can be expressed in state variable form

$$\dot{\vec{x}} = A \vec{x} + B \vec{u} \tag{3}$$

where

$$\vec{x} = \{ ?, ? \}^{T}$$

$$A = \begin{bmatrix} 0 & | I \\ -\omega^{I} & -2 ? \omega \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & | I \\ -2 ? \omega \end{bmatrix}$$

the general output equation is

$$\vec{y} = C \vec{x} \tag{4}$$

where

$$c = [c_p , c_v]$$

The modal matrix, \rlap/p , is a matrix containing the eigenvectors of the structure by column. It is a matrix which is n x n_C where n is the number of degrees of freedom and n_C the number of controlled eigenvectors.

Since we only have point sensors and force actuators that are collocated, half of each matrix is filled with zeros. If the zero halves of these matrices are neglected, we may define

$$B^{\mathbf{T}} = C \tag{5}$$

OI

$$D^{T} = C_{D}$$

where C_p is a n_s x n matrix of direction cosines corresponding to the sensors. The system matrices, B and C, are of order n_c x n_a

and $n_s \times n_c$ respectively, where n_a is the number of actuators and n_s is the number of sensors.

Modal Coupling

In a complex structure where there are a large number of modes, a reduced order model is used. Janiszewski shows that only a subset of the total number of structural modes need to be controlled. If this subset of modes is still large, then multiple controllers are used.

Each controller is designed to operate on only a small number of the modeled modes, which are a subset of the structural modes. However, spillover terms occur because the controller actually operates on all the modes. Thus, these spillover terms need to be eliminated.

$$B_{i}G_{j} = 0$$

$$i \neq j \qquad (6)$$

 $K_i C_j = 0$

where G is the control feedback gain matrix, and K is the observer gain matrix. The subscripts on the matrices correspond to groups of modes.

Miller shows that equations 6 are satisfied if the system matrices, B and C of each controller, can be made orthogonal to the remaining controllers. Therefore, the spillover terms are eliminated if groups of modes are found with the following property: All modes in a group are coupled, and each group is decoupled from the other groups.

The modes that have been referred to are actually the rows of B and the columns of C. Therefore, it is the rows of B (columns of C) that must be separated into modal groups. These rows (columns) are the eigenvectors multiplied by the direction cosine matrix.

The degree of coupling is measured by the angle between the modal vectors. For B, the angles between the rows are

$$\Theta = \cos^{-1} \left| \begin{array}{c|c} \vec{\mathbf{g}}_{i} & \cdot & \vec{\mathbf{g}}_{j} \\ \hline \|\vec{\mathbf{g}}_{i}\| & \|\vec{\mathbf{g}}_{j}\| \end{array} \right| \tag{7}$$

where \vec{B}_i and \vec{B}_j are rows i and j respectively of B and $\|\vec{B}_i\|$ is the norm of the ith row vector of B. These angles can be made into a symmetric $n_c \times n_c$ matrix of angles.

For C, the angle is taken between the columns. With the collocation of sensors and actuators, the angle matrix produced from B and C are identical.

Location

The elements of B and C are functions of the location of the actuators and sensors. An element is determined from three values of an eigenvector from the modal matrix ϕ which are multiplied by the direction cosines of an actuator or sensor. Therefore, an element of B is

$$B_{ij} = \phi_{6 \cdot \text{node}(j) - 5 \ i} \cos \alpha_{j} + \phi_{6 \cdot \text{node}(j) - 4 \ i} \cos \beta_{j}$$

$$+ \phi_{6 \cdot \text{node}(j) - 3 \ i} \cos \beta_{j}$$
(8a)

where node (j) is the node of the j'th actuator. If k = 6x node(j)-5, then the number, ϕ_{ki} is the k'th row element of the i'th eigenvector, ϕ_i in the modal matrix, ϕ . These matrices can also be determined as follows:

$$B = \left[\left\{ \phi_1 \right\} \left\{ \phi_2 \right\} - - - \left\{ \phi_{n_c} \right\} \right]^T \left[D \right]$$

where k = 1, 13, 7 for the first three actuators in this example. In this case, the three actuators are at nodes 1, 3, and 2, respectively. Thus, k for actuator 2 is calculated by 6x(3)-5. Similarly, an element of C is given by

$$c_{ij} = \phi_{6 \cdot \text{node}(i)-5 \ j} \cos \alpha_i + \phi_{6 \cdot \text{node}(i)-4 \ j} \cos \beta_i + \phi_{6 \cdot \text{node}(i)-3 \ j} \cos \delta_i$$

$$(9)$$

Note that by adding an actuator, a column is added to B. With a new sensor, a row is added to C. Also, if an extra eigenvector is added to the modal matrix ϕ , then a row is added to B and a column to C.

The magnitude of the elements of B and C is dependent on the magnitude of the eigenvectors with respect to the norm. If the eigenvectors have small values with respect to the norm at the location of the j'th actuator and i'th sensor, then the elements of B and C corresponding to the actuator and sensor will be small. So an element of the system matrices, B and C, can be made small if the actuator/sensor location is chosen so that the eigenvector value is small with respect to its norm. Likewise, if the value of the eigenvector is large with respect to its norm at a particular location, then the system matrix element will be large.

The angle between modes is dependent on the elements of the system matrices. Therefore, the angle is also a function of the location of the sensor/actuator pairs. Desired angles can be achieved by the judicious placement of sensor/actuator pairs. The addition of a sensor/actuator pair will allow the angles between modes to be varied, since a new and different element is added to each mode of the system matrices. Thus, the angle between modes is dependent on the system matrix which includes the new elements which are dependent on the new sensor actuator pair.

Adding an element to each mode of the system matrices will yield the following equation for the angles between two modes (using equation 7 with \overrightarrow{A} and \overrightarrow{B} the two modes):

$$\Theta = \cos^{-1} \left[\frac{A_1 B_1 + A_2 B_2 + \dots + A_k B_k}{(A_1^2 + A_2^2 + \dots + A_k^2)^{1/2} (B_1^2 + B_2^2 + \dots + B_k^2)^{1/2}} \right]$$
(10)

where $\mathbf{A}_{\mathbf{X}}$ and $\mathbf{B}_{\mathbf{X}}$ are the new elements of each mode.

This equation can be simplified

$$\Theta = \cos^{-1} \left[\frac{\vec{A} \cdot \vec{B} + A_x B_x}{(A^2 + A_x^2)^{1/2} (B^2 + B_x^2)^{1/2}} \right]$$
where
$$A^2 = \sum_{i=1}^n A_i^2 \qquad B^2 = \sum_{i=1}^n B_i^2$$
(11)

the dot product, $\vec{A} \cdot \vec{B}$ is taken without the new elements.

Equation (11) can be reduced if one of the new elements is equal to zero. Letting $\mathbf{B}_{\mathbf{x}}$ equal zero, we have

$$\Theta = \cos^{-1} \left[\frac{\vec{A} \cdot \vec{B}}{(A^2 + A_x^2)^{1/2} \parallel \vec{B} \parallel} \right]$$
(12)

If A_X is also equal to zero, the angle does not change. However, the angle will change if A_X is not zero. No matter what value A_X is (the larger the better), the denominator of equation (12) must increase. Thus, this leads to the angle going to 90° . Therefore, to decouple two coupled modes, find a location where one mode has large (relative to norm) values and the other small values.

The change in the cosine of the angle can be determined by setting the previous cosine equal to the new cosine of the angle (equation 12).

$$\cos\Theta = \begin{bmatrix} \vec{A} \cdot \vec{B} \\ \|\vec{A}\| \|\vec{B}\| \end{bmatrix} = \begin{bmatrix} \vec{A} \cdot \vec{B} \\ (A^2 + A_x^2)^{\frac{1}{2}} \|\vec{B}\| \end{bmatrix}$$

Thus, the cosine of the angle will change by the factor

$$\frac{\|\vec{A}\|}{(A^{2} + A_{x}^{2})^{1/2}} = \frac{(A^{2})^{1/2}}{(A^{2} + A_{x}^{2})^{1/2}} = \frac{A}{(A^{2} + A_{x}^{2})^{1/2}} = \frac{1}{[1 + (\frac{A_{x}}{A})^{2}]^{1/2}}$$
(13)

If A_{x} is small compared to the norm (taken without A_{x}), the cosine of the angle will not change.

A second case occurs if the new element product dominates the previous dot product. This case can occur when the original modes are decoupled, since the dot product is zero. The angle now reduces to

$$\Theta = \cos^{-1} \left[\frac{A_x B_x}{(A^2 + A_x^2)^{1/2} (B^2 + B_x^2)^{1/2}} \right]$$

$$= \cos^{-1} \left[\frac{1}{\left[1 + \left(\frac{A}{A_x}\right)^2\right]^{1/2} \left[1 + \left(\frac{B}{B_x}\right)^2\right]^{1/2}} \right]$$
(14)

The new angle approaches zero if the new elements are large compared to the previous norms. Thus, two modes can be coupled if a location for the sensor/actuator pair can be found, such that the new elements are large with regard to the norm. Therefore, one way of coupling two modes is to put a sensor/actuator pair at

a node where the eigenvector ϕ_i is large. Also, if the elements produced for the other modes are small, then only the modes for which the elements are large will have a significant change in their coupling characteristics.

There are two disadvantages to this method. First, even though the angles between two modes with two new small elements remain the same, the angle between modes with new small elements and modes with new large elements drastically change (they decouple as shown in equation (12)). Secondly, there is no guarantee that a node location and orientation will be found that will satisfy these angle conditions. This is because the location and orientation simply determine which values within the eigenvector are used. If the eigenvectors do not contain precisely the right values, it is impossible to pick a location and orientation.

Orientation

The location of the sensor/actuator pair determines which elements (determined by k) of the eigenvector are used in the element equation (8). The three elements chosen by the node location of the sensor/actuator are taken from each eigenvector and multiplied to the direction cosines of the sensor/actuator. After this calculation the elements of B then become only a function of the orientation (through matrix D). Thus, the set of orientation angles must be known so the element can be determined.

The orientation angles, \propto , β , and δ are related. If any two and the octant of the sensor/actuator are known, then the third can be determined. If \propto and β are known, δ is then determined as shown in Fig 3.

Œ

FIGURE 3 - Orientation Angles

$$\cos \alpha = \vec{O} \vec{A} / \vec{r} = x$$

$$\cos \beta = \vec{O} \vec{B} / \vec{r} = y$$

$$\cos \zeta = \vec{O} \vec{C} / \vec{r} = z$$
(15)

Since $\overrightarrow{\Gamma}$ is a unit vector, the direction cosines are equal to the components of the vector along the axes.

The magnitude of
$$\overrightarrow{r}$$
 is:
$$||\overrightarrow{r}|| = \sqrt{x^2 + y^2 + z^2} = 1$$
(16)

Substituting equations (15) into equation (16)

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta = 1 \tag{17}$$

Solving for δ , we have

$$\delta = \cos^{-1} \sqrt{1 - \left[\cos^2 \alpha + \cos^2 \beta\right]} \tag{18}$$

where α and β are varied from 0° to 180° .

All possible orientation angles can be tried, or specific orientations can be selected, so that existing elements of the B and C matrices are changed. The challenge in this procedure is to decide what the elements of these matrices should become in order for the modal angles to be acceptable. Then specific orientations are chosen so that the desired elements of the system matrices are produced.

Decoupled modes have a dot product equal to zero (relative to their norms). Thus, every large element of one mode will have a corresponding term in the other mode that is small (relative to norms). This correspondence between the modes causes the dot product to go to zero, which leads to decoupled modes. Another possibility is that large products have negative products that cancel them.

Coupled modes have the opposite condition: large elements correspond to each other, and small elements correspond to each other. Thus, the dot product equals the product of the norms.

By changing the sensor/actuator orientation, these conditions can be switched. The mode elements for the decoupled modes need to cause the dot product to increase in magnitude or the norms to decrease. This is accomplished by causing an element pair (one corresponding large and small element) to become both small or both large.

The coupled modes are decoupled by decreasing the dot product or increasing the norms. Again, this is accomplished by causing an element pair, that has either both large or both small elements to readjust, so that the element pair has one large element and one small element. Note again, all magnitudes above are relative to the norms.

Modes

į

Twelve eigenvectors were suggested by LMSC (Ref 6) to be the critical modes. These modes are listed in Table III. The modes were selected according to three criteria: modal cost, controllability, and observability. Ten modes were selected that had the highest controllability/observability product. Also, two modes were selected with the highest modal cost. These modes were used throughout this study as the critical modes.

These modes can change when the eigenvectors themselves change. With each perturbation of the finite element model, the eigenvectors (ϕ matrix) may change. This change obviously changes the modes (B and C matrices). This was the only change to the modes that was studied.

Table III

Mode-Eigenvector Correspondence

Mode	Eigenvector
1	4
2	5
3	6
4	7
5	12
6	13
7	17
8	21
9	22
10	24
11	28
12	30

Computer Programs

The computer programs used in this study are: NASTRAN, SELECT, ANGLE, and two versions of ORIENT. As stated previously, NASTRAN is used to perform a finite element analysis of CSDL-II. The program outputs the eigenvectors and eigenvalues into a permanent file. This file of eigenvectors is the basis for the other programs.

SELECT is listed in Appendix B. The purpose of this program is to pick off the eigenvectors output by NASTRAN. Any combination of eigenvectors in any order can be selected. The eigenvectors' numbers are first read by the program. The file of eigenvectors is stored in a three-dimensional matrix. Then, the selected eigenvectors are put into an output permanent file.

ANGLE is listed in Appendix C. ANGLE inputs the modal vector (from SELECT), and a sensor/actuator model that has been chosen. It then calculates the B, C, and angle matrices. The B and C matrices are calculated from the element equations (8-9). The angle matrix is determined by using the cosine equation (7). The angle matrix is then used to determine modal groupings.

ORIENT is the program that determines the orientation for each node location that will meet the desired requirements. Two diverse versions of ORIENT are used to determine the acceptable orientations. Both work by eliminating those orientations that do not meet the criteria (below). Version two is listed in Appendix D.

The first version of ORIENT tries to find the orientations that will cause large (relative to the norms) elemental values in two modes, but small elemental values in all other modes. It does this by checking the values of each new element. If the two modes in question were previously coupled, they would then be decoupled.

The second version simply prints all orientations that have the modes in a given set of modal groupings. The criteria used, if the modes are to be coupled, is that the angle must be less than 82° or greater than 103°. If the modes are to be decoupled, then the angle must be between 86° and 97°. Obviously it is desired to have coupled angles at 0° or 180°, and decoupled angles at 90°, but it is not possible to move all the modal angles to these desired angles. These specific angles were chosen so that already acceptable modal angles would fall within their limits and not have to change. Yet the worst angles would have to change. Note that this program is very versatile because conditions can be changed so that almost any objective can be investigated. If the modal groupings need to be changed, all that has to be changed is the input mode numbers. Similarly, the bounds for coupling and decoupling can be easily changed.

IV Investigation

Sensor/Actuator Model

The thrust of the investigation is to observe the coupling characteristics of the B and C matrices due to changes in the sensor/actuator model. Thus, determining matrices B and C is the first objective. Using the given sensor/actuator model, the matrices are calculated.

These matrices are found through the ANGLE program. The program was run originally with 17 modes; however, five eigenvectors were dropped: 11, 14, 16, 26, 29 (modes 13, 14, 15, 16, 17). This was done to simplify the problem (fewer modal angles). The five modes dropped had the lowest modal cost and controllability/observability product of the 17 eigenvectors. Thus, the 12 modes left were used as critical modes throughout the rest of the investigation.

Next, the angle between the modes was calculated using ANGLE. The results are in the form of a symmetric matrix where the rows and columns correspond to the mode numbers. Therefore, a 12×12 angle matrix is determined (see Table IV).

The purpose of calculating the angles between the modes is to determine modal groupings. These groupings are then used by the different controllers. The original sensor/actuator model produced three groups of modes that are in general orthogonal to each other or coupled within; however, the angles do not necessarily do both. Since modes 11 and 12 are decoupled, a second modal grouping is also possible. These two possible groupings are shown in Table V.

Both groupings have problems. The problem angles of the first group are circled in Table IV, while the second group's problem angles are boxed. These angles are a problem because they are not as nicely coupled or decoupled as the other angles. The first grouping has decoupled modes 11 and 12 in group II, where they should be coupled. The angles between modes 2-5, 2-9, 4-5, 4-9, and 8-10 indicate coupling, but these modes are in different groups (so, should be decoupled). The second grouping puts mode 12 into group III. While this separates modes 11 and 12, mode 12 is still coupled to modes 1, 6 and 7 in group II.

Table IV

Angle Matrix with Original Sensor/Actuator Model

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	89.9876	89.9991	90.9987	90.0884	123.2047
2	89.9876	0.0000	67.4653	175.3876	116.8521	90.0533
3	89.9991	67.4653	0.0000	115.3141	104.0098	89.9855
4	90.0087	175.3876	115.3141	0.000	60.6688	89.9526
5	90.0884	116.8521	104.0098	60.6688	0.0000	89.6936
6	123.2047	90.0533	89.9855	89.9526	89.6936	0.0000
7	107.4792	89.9662	90.0376	90.0220	90.0156	61.2182
8	90.0478	106.5687	116.9917	73.1913	102.7661	90.0720
9	90.0128	116.2323	91.5675	66.4898	68.5695	89.8722
10	90.0066	90.1561	80.1261	90.6814	111.8732	90.1536
11	39.1619	87.8879	89.4097	92.4490	96.6087	104.9007
12	81.1169	87.9411	89.2693	92.3517	95.6278	73.2904
	2	<u>8</u>	<u>9</u>	10	11	12
1	7 107.4792	<u>8</u> 90.0478	90.0128	<u>10</u> 90.0066	11 39.1649	12 81.1169
1 2						
	107.4792	90.0478	90.0128	90.0066	39.1649	81.1169
2	107.4792 89.9662	90.0478 106.5687	90.0128	90.0066 90.1561	39.1649 87.8879	81.1169
2	107.4792 89.9662 90.0376	90.0478 106.5687 116.9917	90.0128 116.2323 91.5675	90.0066 90.1561 80.1261	39.1649 87.8879 89.4097	81.1169 87.9411 89.2693
2 3 4	107.4792 89.9662 90.0376 90.0220	90.0478 106.5687 116.9917 73.1913	90.0128 116.2323 91.5675 66.4898	90.0066 90.1561 80.1261 90.6814	39.1649 87.8879 89.4097 92.4490	81.1169 87.9411 89.2693 92.3517
2 3 4 5	107.4792 89.9662 90.0376 90.0220 90.0156	90.0478 106.5687 116.9917 73.1913 102.7661	90.0128 116.2323 91.5675 66.4898 68.5695	90.0066 90.1561 80.1261 90.6814 111.8732	39.1649 87.8879 89.4097 92.4490 96.6087	81.1169 87.9411 89.2693 92.3517 95.6278
2 3 4 5 6	107.4792 89.9662 90.0376 90.0220 90.0156 61.2182	90.0478 106.5687 116.9917 73.1913 102.7661 90.0720	90.0128 116.2323 91.5675 66.4898 68.5695 89.8722	90.0066 90.1561 80.1261 90.6814 111.8732 90.1536	39.1649 87.8879 89.4097 92.4490 96.6087 104.9007	81.1169 87.9411 89.2693 92.3517 95.6278 73.2804
2 3 4 5 6 7	107.4792 89.9662 90.0376 90.0220 90.0156 61.2182 0.0000	90.0478 106.5687 116.9917 73.1913 102.7661 90.0720 89.9103	90.0128 116.2323 91.5675 66.4898 68.5695 89.8722 90.1494	90.0066 90.1561 80.1261 90.6814 111.8732 90.1536 89.9571	39.1649 87.8879 89.4097 92.4490 96.6087 104.9007 80.5616	81.1169 87.9411 89.2693 92.3517 95.6278 73.2804
2 3 4 5 6 7 8	107.4792 89.9662 90.0376 90.0220 90.0156 61.2182 0.0000 89.9103	90.0478 106.5687 116.9917 73.1913 102.7661 90.0720 89.9103 0.0000	90.0128 116.2323 91.5675 66.4898 68.5695 89.8722 90.1494 93.8830	90.0066 90.1561 80.1261 90.6814 111.8732 90.1536 89.9571 38.0463	39.1649 87.8879 89.4097 92.4490 96.6087 104.9007 80.5616 93.4985	81.1169 87.9411 89.2693 92.3517 95.6278 73.2804 127.8041 93.1822
2 3 4 5 6 7 8	107.4792 89.9662 90.0376 90.0220 90.0156 61.2182 0.0000 89.9103 90.1494	90.0478 106.5687 116.9917 73.1913 102.7661 90.0720 89.9103 0.0000 93.8830	90.0128 116.2323 91.5675 66.4898 68.5695 89.8722 90.1494 93.8830 0.0000	90.0066 90.1561 80.1261 90.6814 111.8732 90.1536 89.9571 38.0463 103.2217	39.1649 87.8879 89.4097 92.4490 96.6087 104.9007 80.5616 93.4985 90.5112	81.1169 87.9411 89.2693 92.3517 95.6278 73.2804 127.8041 93.1822 90.7436

Table V

Modal Groupings

	I	II	III
CASE I	2	1	5
	3	6	9
	4	7	10
	8	11	
		12	
CASE II	2	1	5
	3	6	9
	4	7	10

The two groupings represent two approaches to the problem of modes 11 and 12. The first grouping is an attempt to couple the two modes together. The second grouping places mode 12 into group III. This grouping tries to decouple mode 12 from the other modes in group II. This first approach is the simpler of the two. It is easier to couple modes together, since all that is needed is a change of about 10° off 90°. Although this is not much of a change, it is probably good enough for the controller to work.

To couple the modes together, the sensor/actuator model is changed. The original model stayed constant, but a new sensor/actuator pair was added. This pair could be placed at any location and at any orientation. The decision on where to place the sensor/actuator and at what orientation is complicated. This complication arises because every location and orientation chosen will change every angle between the modes.

To combat this problem, the two versions of ORIENT pick out the orientations that will couple modes 11 and 12, but leave the others in the same modal groupings.

Both versions try every node point location. This is because there is no way of knowing which node point is the best. Attempts to rank the nodes were not precise enough to eliminate the other nodes from consideration. Therefore, it was better to look at every node than to discard any of the nodes.

After the program picks a node, ORIENT checks all possible orientations which will satisfy the coupling conditions. ORIENT checks the orientations by calculating the modal angles until one is rejected. If an angle is rejected, the next orientation is

tried; if all angles are accepted, the angle matrix is then printed. Most of the orientations are discarded, but the output still has many orientations that will satisfy minimum conditions. The output orientations from ORIENT were then checked by hand to determine the best orientation that gives acceptable groupings. The determination of the best orientation necessarily chooses the best node location.

The next consideration of sensor/actuator model changes is that of changing the grouping. The first grouping was chosen because it was an acceptable grouping of the original sensor/actuator model. This grouping and the second one described above are not the only acceptable groupings. It does not matter which modes are in a given group, as long as they are coupled to each other, and decoupled from all other modes. This leads to an investigation of what other modal groupings are possible with a sensor/actuator model change.

Again, modes 11 and 12 were considered. ORIENT was run with two cases. Case one is that modes 11 and 12 be decoupled. Case two is that modes 11 and 12 be coupled. No other restrictions are made. This gives an output of all possible modal grouping where 11 and 12 are either coupled or decoupled.

The last type of model change investigated was changing the original sensor/actuator orientations. This modal change was investigated to see if the original orientations are indeed the best. Two extremes were studied. First, change the orientation so that decoupled modes are coupled. Second, decouple the coupled modes. The hope was that only the angles of the modes in question would be radically changed. The modal angles (old), the coupling

objectives, and the new sensor/ actuator orientations are listed in Table VI. In each run of the ANGLE program, only one sensor/ actuator orientation was changed. Again, this was done to keep other angles from changing too much.

TABLE VI
Original Sensor/Actuator Model Orientation Changes

MODES	OLD ANGLE	OBJECT	ACTUATOR	ORIENT ALPHA	ATION BETA	CHANGES GAMMA
11-12	89.8 ⁰	Couple	2	0°	90°	90 ⁰
11-12	89.8°	Couple	13	90 ⁰	45 ⁰	45 ⁰
11-12	89.8 ⁰	Couple	10	90 ⁰	45 ⁰	45 ⁰
8-10	38 ⁰	Decouple	5	45 ⁰	45 ⁰	90°
8-10	38 ⁰	Decouple	10	45 ⁰	90 ⁰	45 ⁰
8-10	38 ⁰	Decouple	12	90 ⁰	45 ⁰	45 ⁰
8-9	93.8°	Couple	21	45 ⁰	90°	45 ⁰
7-10	89.4 ⁰	Couple	4	45 ⁰	45 ⁰	90 ⁰
7-10	89.4 ⁰	Couple	3	90 ⁰	00	90 ⁰

Mass Model Changes

Determining the sensor/actuator pairs' location and orientation that produce a good grouping of modes is only valid for the structural model that has those eigenvectors used in the determination. If the structural model is in error, then the eigenvectors are in error. This error in the eigenvectors may change the coupling angles between the modes. If the coupling characteristics are drastically changed, the modal grouping could be different. This change in the grouping is unacceptable.

This problem led to finite element model changes being studied. Five different model changes were made. These are shown in Table VII. The first three are error percentage changes in the total mass of the tertiary mirror. A percentage of the total mass is added in proportion to each node. The fourth model keeps the same total mass but changes the proportion of mass at each node. The fifth model adds mass to the nodes with smaller mass amounts. The mass amount added equalizes the mass at each corner node.

All five mass changes were on the tertiary mirror. This mirror was chosen so that the structural model could be tested without symmetry effects. Since only this mirror would receive mass changes, no symmetry sensitive eigenvectors would go unaffected by the changes. Also, the three different types of mass changes further decreased this possibility.

NASTRAN was then run with each of the new models. This produced new eigenvectors for each model. After picking off the critical eigenvectors, ANGLE was run to determine the coupling angles between the modes. The sensitivity of the modal groupings to the mass modeling changes made to the tertiary mirror was then observed.

TABLE VII

Mass (kg) Changes

NODE	ORIGINAL	2% ADDED	10% ADDED	20% ADDED	PROPORTION CHANGE	EQUAL CORNERS
27	69.5	70.89	76.45	83.40	121.70	69.5
29	69.5	70.89	76.45	83.40	121.70	69.5
32	6.74	6.87	7.414	8.088	13.52	69.5
33	6.74	6.87	7.414	8.088	13.52	69.5
1003	1200	1224	1320	1440	1082	1200

(

V Results

The results of this investigation come from two sources. First, the sensor/actuator model is manipulated with the objective of obtain an acceptable grouping of modes. Further, the model is changed again to improve the selected groupings. Also, changes of the original orientations are studied. Second, the finite element model is perturbed so mass modeling errors can be observed. Specifically, the lumped masses at the nodes are changed.

Sensor/Actuator Model

The original sensor/actuator model is listed in Table II. The ANGLE program was run using this data. The angles between the modes are given in Table IV. By observing these coupling angles, modal groupings were picked out. The two groupings chosen are listed in Table V.

The results of ORIENT runs are mixed. When requirements of acceptance (see Appendix D) were too strict, no sensor/actuator models were found. This predicament was caused by some modal coupling angles being too far off the desired angles. In other words, the angles were required to be so close to either coupled (0° or 180°) or decoupled (90°) that some bad angles could not move inside the limits. These are the problem angles listed in the investigation section. Thus, these particular problem angles were then excluded from the acceptance requirements of ORIENT. The only exception is the angle between modes 11 and 12. Since this angle was one of the worst, it was singled out to continue to try to meet the acceptance limits. The results from ORIENT with

these new requirements of acceptance (most problem angles excluded) give node 42 as the best location. There were fifteen orientation that were acceptable at this location. The orientation that appears to be the best is:

$$\alpha = 90. \beta = 90. \delta = 0.$$

This angle matrix is listed in Table VIII. Note that modes 11 and 12 have completely coupled. Also, while angles 1-6 and 1-11 have become worse, in general, the coupling characteristics have improve. Specifically, observe the marked improvement between modes 6-11, 6-12, 7-11 and 7-12. The decoupling has also improved throughout. The above noted improved angles are circled; the worse angles are boxed.

The ORIENT run for the second grouping produced no orientations. More exclusions from the requirements for acceptance need to be made before orientations are found. The new sensor/actuator pair picked for the previous grouping is not acceptable for this grouping. This is seen from the fact that coupling between mode 12 and group II increases instead of decreasing.

The next objective in changing the sensor/actuator model was to create new groupings. When modes 11 and 12 were decoupled, they determined two of the three groups. When the modes were coupled, only one group was determined. Two of the possibilities for groupings that were found (one for 11 and 12 coupled, one for them decoupled) are shown in Table IX and Table X. The mode groups for the coupled case are:

II: 2, 3, 4, 5

The mode groups for the decoupled case are:

I: 6, 7, 12

II: 1, 5, 10, 11

III: 2, 3, 4, 8, 9

The two cases studied should have produced most of the possible mode grouping combinations; however, no radical improvements were noted with any sensor/actuator model.

TABLE VIII

Angle Matrix with Modes 11 & 12 Coupled

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.000	89.9870	89.9990	90.0098	90.0541	106.5464
2	89.9870	0.0000	67.4653	175.3876	116.8520	90.0434
3	89.9990	67.4653	0.0000	115.3141	104.0988	89.9875
4	90.0098	175.3876	115.3141	0.0000	60.6688	89.9621
5	90.0541	116.8520	104.0098	60.6688	0.0000	89.6876
6	106.5464	90.0434	89.9875	89.9621	89.6876	0.0000
7	79.1801	89.9845	90.0128	90.0123	89.9137	50.7986
8	90.0119	106.5687	116.9916	73.1913	102.7659	90.0044
9	90.0215	116.2323	91.5675	66.4898	68.5696	89.9067
10	89.9951	90.1561	80.1261	90.6814	111.8731	90.1120
11	107.6054	89.9918	89.9969	90.0092	90.1359	121.5170
12	107.7985	89.9893	89.9951	90.0118	90.1379	121.3143
	I	<u>8</u>	2	<u>10</u>	11	12
1	7 79.1801	<u>8</u> 90.0119	90.0215	<u>10</u> 89.9951	11 107.6054	12 107.7885
1 2						
	79.1801	90.0119	90.0215	89.9951	107.6054	107.7885
2	79.1801 89.9845	90.0119	90.0215	89.9951 90.1561	107.605 4 89.9918	107.7885 89.9893
2	79.1801 89.9845 90.0128	90.0119 106.5687 116.9916	90.0215 116.2323 91.3675	89.9951 90.1561 80.1281	107.6054 89.9918 89.9969	107.7885 89.9893 89.9851
2 3 4	79.1801 89.9845 90.0128 90.0123	90.0119 106.5687 116.9916 73.1913	90.0215 116.2323 91.3675 66.4898	89.9951 90.1561 80.1281 90.6814	107.6054 89.9918 89.9969 90.0092	107.7885 89.9893 89.9851 90.8110
2 3 4 5	79.1801 89.9845 90.0128 90.0123 89.9137	90.0119 106.5687 116.9916 73.1913 102.7659	90.0215 116.2323 91.3675 66.4898 68.5696	89.9951 90.1561 80.1281 90.6814 111.8731	107.6054 89.9918 89.9969 90.0092 90.1359	107.7885 89.9893 89.9851 90.8110 90.1379
2 3 4 5 6	79.1801 89.9845 90.0128 90.0123 89.9137 50.7986	90.0119 106.5687 116.9916 73.1913 102.7659 90.0044	90.0215 116.2323 91.3675 66.4898 68.5696 89.9067	89.9951 90.1561 80.1281 90.6814 111.8731 90.1120	107.6054 89.9918 89.9969 90.0092 90.1359	107.7885 89.9893 89.9851 90.8110 90.1379
2 3 4 5 6 7	79.1801 89.9845 90.0128 90.0123 89.9137 50.7986 0.0000	90.0119 106.5687 116.9916 73.1913 102.7659 90.0044 89.8663	90.0215 116.2323 91.3675 66.4898 68.5696 89.9067 90.0804	89.9951 90.1561 80.1281 90.6814 111.8731 90.1120 89.9508	107.6054 89.9918 89.9969 90.0092 90.1359 121.5170 159.5259	107.7885 89.9893 89.9851 90.8110 90.1379 121.3143 159.8303
2 3 4 5 6 7 8	79.1801 89.9845 90.0128 90.0123 89.9137 50.7986 0.0000 89.8663	90.0119 106.5687 116.9916 73.1913 102.7659 90.0044 89.8663 0.0000	90.0215 116.2323 91.3675 66.4898 68.5696 89.9067 90.0804 93.8831	89.9951 90.1561 80.1281 90.6814 111.8731 90.1120 89.9508 38.0463	107.6054 89.9918 89.9969 90.0092 90.1359 121.5170 159.5259 90.1295	107.7885 89.9893 89.9851 90.8110 90.1379 121.3143 159.8303 80.1314
2 3 4 5 6 7 8	79.1801 89.9845 90.0128 90.0123 89.9137 50.7986 0.0000 89.8663 90.0804	90.0119 106.5687 116.9916 73.1913 102.7659 90.0044 89.8663 0.0000 93.8831	90.0215 116.2323 91.3675 66.4898 68.5696 89.9067 90.0804 93.8831 0.0000	89.9951 90.1561 80.1281 90.6814 111.8731 90.1120 89.9508 38.0463 103.2217	107.6054 89.9918 89.9969 90.0092 90.1359 121.5170 159.5259 90.1295 89.9727	107.7885 89.9893 89.9851 90.8110 90.1379 121.3143 159.8303 80.1314 89.7518

TABLE IX

Angle Matrix for New Grouping (11 & 12 Coupled)

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	91.3907	91.7781	88.1414	81.4930	123.5268
2	91.3907	0.0000	65.1063	173.7748	112.3636	88.8425
3	91.7789	65.1063	0.0000	118.3582	99.4407	88.4525
4	88.1414	173.7748	118.3582	0.0000	66.9967	91.5642
5	91.4930	112.3436	99.4407	66.9967	0.0000	88.4894
6	123.5268	88.8425	88.4525	91.5642	88.4894	0.0000
7	109.2235	87.8575	87.3593	92.8293	87.8982	60.7614
8	95.9688	83.5529	83.4629	100.4695	82.2686	84.8955
9	93.3296	104.5331	82.8228	80.2084	65.1712	87.0308
10	89.4517	91.2650	81.9931	89.1670	112.4157	90.6307
11	83.3505	102.7891	106.3187	72.8646	102.8915	95.5664
12	83.5714	102.7831	106.3152	72.8712	102.9008	95.3021
	I	<u>8</u>	2	<u>10</u>	11	12
1	7 108.2235	<u>8</u> 95.9688	93.3296			12 83.5714
1 2						
	108.2235	95.9688	93.3296	89,4517	nn .3505	83.5714
2	108.2235 87.8575	95.9688 83.5529	93.3296 104.5331	89.4517 91.2650	3505 102.7891	83.5714 102.7831
2	108.2235 87.8575 87.3593	95.9688 83.5529 83.4629	93.3296 104.5331 82.8228	89.4517 91.2650 81.9931	3505 102.7891 106.3187	83.5714 102.7831 106.3152
2 3 4	108.2235 87.8575 87.3593 92.8263	95.9688 83.5529 83.4629 100.4695	93.3296 104.5331 82.8228 80.2084	89.4517 91.2650 81.9931 89.1678	102.7891 106.3187 72.8646	83.5714 102.7831 106.3152 72.9712
2 3 4 5	108.2235 87.8575 87.3593 92.8263 87.8982	95.9688 83.5529 83.4629 100.4695 82.2686	93.3296 104.5331 82.8228 80.2084 65.1712	89.4517 91.2650 81.9931 89.1678 112.4157	3505 102.7891 106.3187 72.8646 102.8915	83.5714 102.7831 106.3152 72.9712 102.9009
2 3 4 5 6	108.2235 87.8575 87.3593 92.8263 87.8982 60.7614	95.9688 83.5529 83.4629 100.4695 82.2686 84.8955	93.3296 104.5331 82.8228 80.2084 65.1712 87.0308	89.4517 91.2650 81.9931 89.1678 112.4157 90.6307	102.7891 106.3187 72.8646 102.8915 95.5664	83.5714 102.7831 106.3152 72.9712 102.9009 95.3021
2 3 4 5 6 7	108.2235 87.8575 87.3593 92.8263 87.8982 60.7614 0.0000	95.9688 83.5529 83.4629 100.4695 82.2686 84.8955 80.9959	93.3296 104.5331 82.8228 80.2084 65.1712 87.0308 85.1309	89.4517 91.2650 81.9931 89.1678 112.4157 90.6307 90.7925	3505 102.7891 106.3187 72.8646 102.8915 95.5664 99.4980	83.5714 102.7831 106.3152 72.9712 102.9009 95.3021 99.3388
2 3 4 5 6 7 8	108.2235 87.8575 87.3593 92.8263 87.8982 60.7614 0.0000 80.9959	95.9688 83.5529 83.4629 100.4695 82.2686 84.8955 80.9959 0.0000	93.3296 104.5331 82.8228 80.2084 65.1712 87.0308 85.1309 61.8256	89.4517 91.2650 81.9931 89.1678 112.4157 90.6307 90.7925 79.1714	102.7891 106.3187 72.8646 102.8915 95.5664 99.4980 159.8746	83.5714 102.7831 106.3152 72.9712 102.9009 95.3021 99.3388 159.8771
2 3 4 5 6 7 8	108.2235 87.8575 87.3593 92.8263 87.8982 60.7614 0.0000 80.9959 85.1309	95.9688 83.5529 83.4629 100.4695 82.2686 84.8955 80.9959 0.0000 61.8256	93.3296 104.5331 82.8228 80.2084 65.1712 87.0308 85.1309 61.8256 0.0000	89.4517 91.2650 81.9931 89.1678 112.4157 90.6307 90.7925 79.1714 103.8861	102.7891 106.3187 72.8646 102.8915 95.5664 99.4980 159.8746 121.6093	83.5714 102.7831 106.3152 72.9712 102.9009 95.3021 99.3388 159.8771 121.6123

TABLE X

Angle Matrix for New Grouping (11 & 12 Decoupled)

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	90.8174	90.7932	88.9493	86.7474	122.0821
2	90.8174	0.0000	66.7463	174.9228	116.6676	86.3539
3	90.7932	66.7483	0.0000	116.1557	105.8840	86.4521
4	88.9493	174.9228	116.1557	0.0000	60.1485	94.6762
5	86.7474	116.6676	105.8840	60.0485	0.0000	104.7235
6	122.0821	86.3539	86.4521	94.6762	104.7235	0.0000
7	108.3965	87.8155	87.9756	92.7696	98.6674	57.6279
8	90.3337	105.9797	116.2828	74.0025	102.1147	88.7901
9	89.8009	116.2560	91.8262	66.5076	71.1859	90.8291
10	90.4521	89.5529	79.6591	91.4364	110.4766	88.1533
11	39.4739	87.9660	89.4698	92.3365	95.2409	103.3852
12	82.9303	86.0350	87.3952	94.7842	102.5730	68.8043
	1	<u>8</u>	2	10	11	12
1	7 108.3965	<u>8</u> 90.3337	9 89.8009	<u>10</u> 90.4521		
1 2						82.8303
	108.3965	90.3337	89.8009	90.4521	39.4739 87.9660	82.8303 86.0350
2	108.3965 87.8155	90.3337 105.9797	89.8009 116.2560	90.4521 89.5529	39.4739 87.9660	82.8303 86.0350
2	108.3965 87.8155 87.9759	90.3337 105.9797 116.2828	89.8009 116.2560 91.8262	90.4521 89.5529 79.6591	39.4739 87.9660 89.4698	82.8303 86.0350 87.3952
2 3 4	108.3965 87.8155 87.9759 92.7696	90.3337 105.9797 116.2828 74.0028	89.8009 116.2560 91.8262 66.5076	90.4521 89.5529 79.6591 91.4364	39.4739 87.9660 89.4698 92.3365	82.8303 86.0350 87.3952 94.7842
2 3 4 5	108.3965 87.8155 87.9759 92.7696 98.6674	90.3337 105.9797 116.2828 74.0028 102.1147	89.8009 116.2560 91.8262 66.5076 71.1859	90.4521 89.5529 79.6591 91.4364 110.4766 88.1533	39.4739 87.9660 89.4698 92.3365 95.2409	82.8303 86.0350 87.3952 94.7842 102.5780
2 3 4 5 6	108.3965 87.8155 87.9759 92.7696 98.6674 57.6279	90.3337 105.9797 116.2828 74.0028 102.1147 88.7901	89.8009 116.2560 91.8262 66.5076 71.1859 90.8291	90.4521 89.5529 79.6591 91.4364 110.4766 88.1533	39.4739 87.9660 89.4698 92.3365 95.2409 103.3852	82.8303 86.0350 87.3952 94.7842 102.5780 68.8043
2 3 4 5 6 7	108.3965 87.8155 87.9759 92.7696 98.6674 57.6279 0.0000	90.3337 105.9797 116.2828 74.0028 102.1147 88.7901 89.1711	89.8009 116.2560 91.8262 66.5076 71.1859 90.8291 90.6934	90.4521 89.5529 79.6591 91.4364 110.4766 88.1533 88.8029	39.4739 87.9660 89.4698 92.3365 95.2409 103.3852 81.0230	82.8303 86.0350 87.3952 94.7842 102.5780 68.8043 120.3491
2 3 4 5 6 7 8	108.3965 87.8155 87.9759 92.7696 98.6674 57.6279 0.0000 89.1711	90.3337 105.9797 116.2828 74.0028 102.1147 88.7901 89.1711 0.0000	89.8009 116.2560 91.8262 66.5076 71.1859 90.8291 90.6934 93.9749	90.4521 89.5529 79.6591 91.4364 110.4766 88.1533 88.8029 38.0012	39.4739 87.9660 89.4698 92.3365 95.2409 103.3852 81.0230 93.5142	82.8303 86.0350 87.3952 94.7842 102.5780 68.8043 120.3491 92.3150
2 3 4 5 6 7 8	108.3965 87.8155 87.9759 92.7696 98.6674 57.6279 0.0000 89.1711 90.6934	90.3337 105.9797 116.2828 74.0028 102.1147 88.7901 89.1711 0.0000 93.9749	89.8009 116.2560 91.8262 66.5076 71.1859 90.8291 90.6934 93.9749 0.0000	90.4521 89.5529 79.6591 91.4364 110.4766 88.1533 88.8029 38.0012 103.3329	39.4739 87.9660 89.4698 92.3365 95.2409 103.3852 81.0230 93.5142 90.4969	82.8303 86.0350 87.3952 94.7842 102.5780 68.8043 120.3491 92.3150 91.2274

The results produced by changing the original model orientations are listed in Table XI. The table lists the new angles produced and the delta change from the old angles. The plus and minus signs indicate favorable or unfavorable changes respectively (i.e., minus sign if new angle is now more coupled, but the desire was to be more decoupled). The results show six of nine favorable changes overall; however, there are five of six favorable changes when the desire was to couple (first three and last three). It seems to be easier (I don't know why) to couple the angles than to decouple the angles.

The magnitude of the changes are small especially for the three cases where decoupling was the object. Yet, the largest changes (8.5° and 8.1°) are significant angle movements when it is remembered that only one sensor/actuator orientation was changed for each case. Note that when the angle changes are unfavorable, the magnitude of the changes are small (0.3 is the largest).

TABLE XI
Results From Original Orientations Changes

MODES 11-12	ACTUATOR 2	ORIENT ALPHA 0	<u>BETA</u> 90 ⁰	CHANGES GAMMA 90 ⁰	NEW ANGLE 81.7°	DELTA CHANGE +8.1
11-12	13	90°	45 ⁰	45 ⁰	91.8°	+1.6°
11-12	10	90°	45 ⁰	45 ⁰	92.6°	+2.4°
8-10	5	45 ⁰	45 ⁰	90 ⁰	37.9°	-0.1°
8-10	10	45 ⁰	90°	45 ⁰	38.3°	+0.3°
8-10	12	90°	45 ⁰	45 ⁰	37.7°	-0.3°
8-9	21	45 ⁰	90 ⁰	45 ⁰	99.3°	+5.5°
7-10	4	45 ⁰	45 ⁰	90 ⁰	89.6°	-0.2°
7-10	3	90°	00	90°	99.1°	+8.5°

Mass Model

The angle matrices produced from the mass model changes are cataloged in Table XII through Table XVI. Note that while some changes in angles did occur, the original groupings stayed the same. This can be seen by comparing Tables IV with these new tables.

The greatest angle changes were found in Table XVI (angles are circled). A 10° change occurred between modes 9-10. Modes 2-10 and 4-10 had 6° changes. All other angles in the model changes had angle changes of less than 3°. These results indicate that mode 10 is more sensitive than the other modes to the tertiary mirror mass model changes that caused Table XVI. That model change was the one with equal masses at the corners of the tertiary mirror. However, in general, the structural model is insensitive with respect to modal angles to the tertiary mirror lumped mass model changes tried.

TABLE XII

Angle Matrix with 2% Mass Change

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	89.9877	89.9990	90.0086	90.0890	56.7100
2	89.9877	0.0000	67.2166	175.3286	116.8176	89.9474
3	89.9990	67.2166	0.0000	115.6233	104.0412	90.0152
4	90.0086	175.3289	115.6233	0.0000	60.6811	90.0465
5	90.0880	116.8176	104.0412	60.6811	0.0000	90.3062
6	55.7100	89.9474	90.0142	90.0465	90.3062	0.0000
7	72.4413	90.0340	89.9624	89.9781	89.9860	61.0909
8	90.0469	106.7655	116.8679	73.0010	102.7656	89.9273
9	90.0131	116.3286	91.6029	66.4258	68.6255	90.1274
10	90.0053	90.0124	80.1219	90.8335	112.0084	89.8454
11	39.3911	87.8653	89.4109	92.4748	96.6414	75.1253
12	81.3855	87.9198	89.2806	92.3748	95.6397	107.0160
	Z	8	9	10	11	12
1	72.4413	<u>8</u> 90.0469	90.0131	<u>10</u> 90.0053	11 39.3911	12 81.3855
1 2						
	72.4413	90.0469	90.0131	90.0053	39.3911	81.3855
2	72.4413 90.0340	90.0469 106.7655	90.0131 116.3296	90.0053 90.0124	39.3911 87.8653	81.3855 87.9198
2	72.4413 90.0340 89.9624	90.0469 106.7655 116.8679	90.0131 116.3296 91.6029	90.0053 90.0124 80.1219	39.3911 87.8653 89.4109	81.3855 87.9198 89.2806
2 3 4	72.4413 90.0340 89.9624 89.9781	90.0469 106.7655 116.8679 73.0010	90.0131 116.3296 91.6029 66.4258	90.0053 90.0124 80.1219 90.8335	39.3911 87.8653 89.4109 92.4749	81.3855 87.9198 89.2806 92.3748
2 3 4 5	72.4413 90.0340 89.9624 89.9781 89.9860	90.0469 106.7655 116.8679 73.0010 102.7656	90.0131 116.3296 91.6029 66.4258 68.6255 90.1274	90.0053 90.0124 80.1219 90.8335 112.0084 89.8454	39.3911 87.8653 89.4109 92.4749 96.6414 75.1253	81.3855 87.9198 89.2806 92.3748 95.6397 107.0160
2 3 4 5 6	72.4413 90.0340 89.9624 89.9781 89.9860 61.0909	90.0469 106.7655 116.8679 73.0010 102.7656 89.9273	90.0131 116.3296 91.6029 66.4258 68.6255 90.1274	90.0053 90.0124 80.1219 90.8335 112.0084 89.8454 90.0423	39.3911 87.8653 89.4109 92.4749 96.6414 75.1253 99.278	81.3855 87.9198 89.2806 92.3748 95.6397 107.0160 52.6260
2 3 4 5 6 7	72.4413 90.0340 89.9624 89.9781 89.9860 61.0909 0.0000	90.0469 106.7655 116.8679 73.0010 102.7656 89.9273 90.0882	90.0131 116.3296 91.6029 66.4258 68.6255 90.1274 89.8507	90.0053 90.0124 80.1219 90.8335 112.0084 89.8454 90.0423	39.3911 87.8653 89.4109 92.4749 96.6414 75.1253 99.278	81.3855 87.9198 89.2806 92.3748 95.6397 107.0160 52.6260
2 3 4 5 6 7 8	72.4413 90.0340 89.9624 89.9781 89.9860 61.0909 0.0000 90.0882	90.0469 106.7655 116.8679 73.0010 102.7656 89.9273 90.0882 0.0000	90.0131 116.3296 91.6029 66.4258 68.6255 90.1274 89.8507 93.6552	90.0053 90.0124 80.1219 90.8335 112.0084 89.8454 90.0423 38.0181	39.3911 87.8653 89.4109 92.4749 96.6414 75.1253 99.278 93.5231	81.3855 87.9198 89.2806 92.3748 95.6397 107.0160 52.6260 93.1494 90.7426
2 3 4 5 6 7 8 9	72.4413 90.0340 89.9624 89.9781 89.9860 61.0909 0.0000 90.0882 89.8507	90.0469 106.7655 116.8679 73.0010 102.7656 89.9273 90.0882 0.0000 93.6552	90.0131 116.3296 91.6029 66.4258 68.6255 90.1274 89.8507 93.6552 0.0000	90.0053 90.0124 80.1219 90.8335 112.0084 89.8454 90.0423 38.0181 103.4248	39.3911 87.8653 89.4109 92.4749 96.6414 75.1253 99.278 93.5231 90.5090 94.1647	81.3855 87.9198 89.2806 92.3748 95.6397 107.0160 52.6260 93.1494 90.7426

TABLE XIII

Angle Matrix with 10% Mass Change

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	89.9880	89.9989	90.0081	90.0912	123.6228
2	89.9880	0.0000	66.2873	175.1010	116.7026	90.0511
3	89.9989	66.2873	0.0000	116.7874	104.1296	89.9839
4	90.0081	175.1010	116.7874	0.0000	60.7141	89.9552
5	90.0912	116.7026	104.1296	60.7141	0.0000	89.6929
6	123.6228	90.0511	89.9839	89.9552	89.6929	0.0000
7	72.1172	90.0348	89.9626	89.9777	89.9922	119.4366
8	90.0438	107.4692	116.4368	72.3223	102.7904	90.0741
9	90.0143	116.6894	91.7448	66.1947	68.8212	89.8733
10	90.0006	89.5301	80.1183	91.3542	112.4773	90.1582
11	40.2559	87.7743	89.4148	92.5773	96.7645	104.7872
12	82.4133	87.8332	89.2694	92.4708	95.7364	71.8194
	2	<u>8</u>	2	10	11	12
1	72.1172	90.0438	90.0143	90.0006	40.2559	82.4133
2	90.0348	107.4692	116.6894	89.5301	87.7743	87.8332
3	89.9626	116.4368	91.7448	80.1183	89.4148	89.2694
4	89.9777	72.3223	66.1947	91.3542	92.5773	92.4708
5	89.9922	102.7904	68.8212	112.4773	96.7645	95.7364
6	119.4366	90.0741	89.8733	90.1582	104.7872	71.8194
7	0.0000	90.0825	89.8513	90.0394	99.8400	54.3089
8	90.0825	0.0000	92.8640	37.9341	93.6165	93,2392
9	89.8513	92.8640	0.0000	104.0881	90.5053	90.7533
10	90.0394	37.9341	104.0881	0.0000	94.2277	93.5884
11	99.8400	93.6165	90.5053	94.2277	0.0000	90.4336
	33.04UU	33.0103	30.5055	J4 . 4.4.1 1	0.0000	30.4330

TABLE XIV

Angle Matrix with 20% Mass Change

	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>
1	0.0000	89.9883	89.9986	90.0076	90.8951	124.0894
2	89.9863	0.0000	65.2012	174.8062	116.6249	90.0492
3	89.9988	65.2012	0.0000	118.1720	104.2001	89.5824
4	90.0076	174.8065	118.1720	0.0000	60.6928	89.9576
5	90.0951	116.6249	104.2001	60.6928	0.0000	89.6903
6	124.0894	90.0492	89.9824	89.9576	89.6903	0.0000
7	71.6635	90.0359	89.9628	89.9772	90.0010	120.1351
8	90.0400	108.2412	115.9570	71.5885	102.8423	90.0760
9	90.0156	117.1463	91.9086	65.9119	69.0926	89.8745
10	89.9948	88.8619	80.1204	92.8619	113.0416	90.1624
11	139.6665	92.3373	90.5802	87.2966	83.0830	75.3050
12	83.6862	87.7259	89.2556	92.5902	95.8572	70.4391
	2	<u>8</u>	2	10	11	12
1	71.6635	<u>8</u> 90.0400	<u>9</u> 90.0156		11 139.6665	
1 2				10		12
	71.6635	90.0400	90.0156	<u>10</u> 89.9949	139.6665	12 83.6862
2	71.6635 90.0365	90.0400 108.2412	90.0156 117.1463	10 89.9949 88.8619	139.6665 92.3373 90.5802	12 83.6862 87.7259
2	71.6635 90.0365 89.9628	90.0400 108.2412 115.9570	90.0156 117.1463 91.9096	10 89.9949 88.8619 80.1204	139.6665 92.3373 90.5802	12 83.6862 87.7259 89.2556
2 3 4	71.6635 90.0365 89.9628 89.9772	90.0400 108.2412 115.9570 71.5885	90.0156 117.1463 91.9096 65.9119	10 89.9949 88.8619 80.1204 92.0619	139.6665 92.3373 90.5802 87.2966	12 83.6862 87.7259 89.2556 92.5902
2 3 4 5	71.6635 90.0365 89.9628 89.9772 90.0010	90.0400 108.2412 115.9570 71.5885 102.8423	90.0156 117.1463 91.9096 65.9119 69.0926 89.8745	10 89.9949 88.8619 80.1204 92.0619 113.0416 90.1624	139.6665 92.3373 90.5802 87.2966 83.0830 75.3050	12 83.6862 87.7259 89.2556 92.5902 95.8572 70.4391
2 3 4 5 6	71.6635 90.0365 89.9628 89.9772 90.0010 120.1351	90.0400 108.2412 115.9570 71.5885 102.8423 90.0760 90.0755	90.0156 117.1463 91.9096 65.9119 69.0926 89.8745 89.8518	10 89.9949 88.8619 80.1204 92.0619 113.0416 90.1624	139.6665 92.3373 90.5802 87.2966 83.0830 75.3050 79.8297	12 83.6862 87.7259 89.2556 92.5902 95.8572 70.4391 56.4074
2 3 4 5 6 7	71.6635 90.0365 89.9628 89.9772 90.0010 120.1351 0.0000	90.0400 108.2412 115.9570 71.5885 102.8423 90.0760 90.0755	90.0156 117.1463 91.9096 65.9119 69.0926 89.8745 89.8518	10 89.9949 88.8619 80.1204 92.0619 113.0416 90.1624 90.0362	139.6665 92.3373 90.5802 87.2966 83.0830 75.3050 79.8297 86.2731	12 83.6862 87.7259 89.2556 92.5902 95.8572 70.4391 56.4074 93.3463
2 3 4 5 6 7 8	71.6635 90.0365 89.9628 89.9772 90.0010 120.1351 0.0000 90.0755	90.0400 108.2412 115.9570 71.5885 102.8423 90.0760 90.0755 0.0000	90.0156 117.1463 91.9096 65.9119 69.0926 89.8745 89.8518 91.8593	10 89.9949 88.8619 80.1204 92.0619 113.0416 90.1624 90.0362 37.9764 104.9249	139.6665 92.3373 90.5802 87.2966 83.0830 75.3050 79.8297 86.2731 89.5103	12 83.6862 87.7259 89.2556 92.5902 95.8572 70.4391 56.4074 93.3463 90.7575
2 3 4 5 6 7 8 9	71.6635 90.0365 89.9628 89.9772 90.0010 120.1351 0.0000 90.0755 89.8518	90.0400 108.2412 115.9570 71.5885 102.8423 90.0760 90.0755 0.0000 91.8593	90.0156 117.1463 91.9096 65.9119 69.0926 89.8745 89.8518 91.8593 0.0000	10 89.9949 88.8619 80.1204 92.0619 113.0416 90.1624 90.0362 37.9764 104.9249 0.0000	139.6665 92.3373 90.5802 87.2966 83.0830 75.3050 79.8297 86.2731 89.5103 85.6344	12 83.6862 87.7259 89.2556 92.5902 95.8572 70.4391 56.4074 93.3463 90.7575 93.6457

TABLE XV

Angle Matrix with Mass Proportion Change

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	89.9876	89.9991	90.0088	90.0885	56.6687
2	89.9876	0.0000	67.9385	175.4363	116.9616	89.9447
3	89.9991	67.9385	0.0000	114.7622	103.8782	90.0138
4	90.0088	175.4363	114.7622	0.0000	60.5714	90.0495
5	90.0885	116.9616	103.8782	60.5714	0.0000	90.3092
6	56.6687	99.9447	90.1328	90.0495	90.3092	0.0000
7	72.3954	90.0351	89.9620	89.9773	89.9845	61.1721
8	90.1492	106.3473	116.6995	73.4728	102.7894	89.9300
9	90.0129	116.3590	91.3043	66.3991	69.1853	90.1267
10	90.0061	88.2308	79.9539	92.3968	112.6655	89.8403
11	140.9311	91.9666	90.5957	87.6792	83.4320	104.8729
12	80.6971	88.0763	89.2928	92.2303	95.5756	105.9443
	2	<u>8</u>	2	10	11	12
1	72.3954	90.0492	90.0129	90.0061	140.9311	80.6971
2	90.0351	106.3473	116.3590	88.2308	91.9666	88.0763
3	89.9620	116.6995	91.3043	79.9539	90.5957	89.2928
4	89.9773	73.4728	66.3990	92.3958	87.6792	92.2303
5	89.9845	102.7894	69.1853	112.6655	83.4320	95.5756
6	61.1721	89.9300	90.1267	89.8403	104.8729	105.9443
7	0.0000	90.0886	89.8484	90.0523	80.7988	51.4492
8	90.0886	0.0000	92.3421	39.1026	86.5713	93.0572
9	89.8484	92.3421	0.0000	105.7099	89.7266	90.5322
10	90.0523	39.1026	105.7099	0.0000	85.9199	93.4492
11						
	80.7988	86.5713	89.7266	85.9199	0.0000	90.4827

TABLE XVI

Angle Matrix with Equal Mass Corners

	1	2	3	4	<u>5</u>	<u>6</u>
1	0.0000	89.9880	89.9988	90.0081	90.0946	123.2426
2	89.9880	0.0000	65.7677	175.0560	116.6448	90.0466
3	69.9988	65.7677	0.0000	117.3911	104.4288	89.9820
4	90.0081	175.0560	117.3911	0.0000	60.7695	89.9596
5	90.0946	116.6448	104.4288	60.7695	0.0000	89.6890
6	123.2426	90.0466	89.9820	89.9596	89.6890	0.0000
7	72.3479	90.0355	89.9619	89.9762	89.9951	119.5189
8	90.0471	108.2480	114.3825	71.7586	102.6075	90.0740
9	90.0147	116.6529	91.6308	66.2921	69.4423	89.8772
10	89.9984	84.3437	79.9181	96.0198	114.6969	90.1752
11	40.4695	88.0756	89.3477	92.3070	96.6715	104.6088
12	83.0063	88.0505	88.2420	92.2379	95.6539	70.8076
	1	<u>8</u>	9	10	11	12
1	72.3479	<u>8</u> 90.0471	<u>9</u> 90.8147	10 89.9984	11 40.4695	12 83.0063
1 2						
	72.3479	90.0471	90.8147	89.9984	40.4695	83.0063
2	72.3479 90.0355	90.0471 108.2480	90.8147 116.6529	89.9984	40.4695 88.0756	83.0063 88.8905
2	72.3479 90.0355 89.9619	90.0471 108.2480 114.3825	90.8147 116.6529 91.6308	89.9984 84.3437 79.6181	40.4695 88.0756 89.3477	83.0063 88.8905 89.2420
2 3 4	72.3479 90.0355 89.9619 89.9762	90.0471 108.2480 114.3825 71.7586	90.8147 116.6529 91.6308 66.2921	89.9984 84.3437 79.6181 96.0198	40.4695 88.0756 89.3477 92.3070	83.0063 88.8905 89.2420 92.2379
2 3 4 5	72.3479 90.0355 89.9619 89.9762 89.9951	90.0471 108.2480 114.3825 71.7586 102.6075	90.8147 116.6529 91.6308 66.2921 69.4423	89.9984 84.3437 79.6181 96.0198 114.6969	40.4695 88.0756 89.3477 92.3070 96.6715	83.0063 88.8905 89.2420 92.2379 95.6539
2 3 4 5 6	72.3479 90.0355 89.9619 89.9762 89.9951 119.5189	90.0471 108.2480 114.3825 71.7586 102.6075 90.0740	90.8147 116.6529 91.6308 66.2921 69.4423 89.8772	89.9984 84.3437 79.6181 96.0198 114.6969 90.1752	40.4695 88.0756 89.3477 92.3070 96.6715 104.6089	83.0063 88.8905 89.2420 92.2379 95.6539 70.8976
2 3 4 5 6 7	72.3479 90.0355 89.9619 89.9762 89.9951 119.5189 0.0000	90.0471 108.2480 114.3825 71.7586 102.6075 90.0740 90.0737	90.8147 116.6529 91.6308 66.2921 69.4423 89.8772 89.8516	89.9984 84.3437 79.6181 96.0198 114.6969 90.1752 90.0595	40.4695 88.0756 89.3477 92.3070 96.6715 104.6089 100.1910	83.0063 88.8905 89.2420 92.2379 95.6539 70.8976 55.3692
2 3 4 5 6 7 8	72.3479 90.0355 89.9619 89.9762 89.9951 119.5189 0.0000 90.0737	90.0471 108.2480 114.3825 71.7586 102.6075 90.0740 90.0737 0.0000	90.8147 116.6529 91.6308 66.2921 69.4423 89.8772 89.8516 89.5405	89.9984 84.3437 79.6181 96.0198 114.6969 90.1752 90.0595 41.7858	40.4695 88.0756 89.3477 92.3070 96.6715 104.6089 100.1910 93.5619	83.0063 88.8905 89.2420 92.2379 95.6539 70.8976 55.3692 93.1830
2 3 4 5 6 7 8 9	72.3479 90.0355 89.9619 89.9762 89.9951 119.5189 0.0000 90.0737 89.8516	90.0471 108.2480 114.3825 71.7586 102.6075 90.0740 90.0737 0.0000 89.5405	90.8147 116.6529 91.6308 66.2921 69.4423 89.8772 89.8516 89.5405 0.0000	89.9984 84.3437 79.6181 96.0198 114.6969 90.1752 90.0595 41.7858 113.1043	40.4695 88.0756 89.3477 92.3070 96.6715 104.6089 100.1910 93.5619 90.0662	83.0063 88.8905 89.2420 92.2379 95.6539 70.8976 55.3692 93.1830 90.3736

VI Conclusions and Recommendations

By separating the system matrix modes into orthogonal groups, the system will be inherently decoupled. It is apparent that the judicious choice of sensor/actuator location and orientation can achieve acceptable orthogonal groups. It is also obvious that a single misplaced sensor/actuator pair can destroy a previous modal grouping set. The practical result is that modal groups can only be partially decoupled because of the difficulty in finding the ideal sensor/actuator model.

The attempts to decouple modes 11 and 12 show the ease with which a single coupling angle can be changed. However, the difficulties in finding an orientation that will change only one angle and leave the others unchanged was also demonstrated. The problem of trying to improve all coupling characteristics can only be solved by concentrating on improving one angle at a time. By this method, a systematic study should produce the desired sensor/actuator model.

The studies of the mass model changes showed little effect on the modal angles.

The next step in the study of sensor/actuator placement should be that of more modes. In this study, twelve modes are separated into groups. The methods of this study can be applied to a larger number of modes. However, a more rigorous method of determining the modal groupings needs to be made.

A possible method is a variation of the method that ORIENT uses (requirements of acceptance). The angle matrix could be inputed into a program that would output possible groupings based on

some given criteria. This criteria would be similar to that used in ORIENT; all angles coupled within some limit would be in the same group and those angles decoupled would be in different groups. The angles that don't fit the criteria would be listed as problem angles for each grouping. These angles would then be subject to correction using ORIENT.

I feel that the conditions of changing one angle without changing any other angle needs to be studied. If it can be determined when this condition is applicable, it will be a powerful tool. This method could be applied to every angle until all groups were perfect. Implementation of this method would be in ORIENT's requirements of acceptance.

One other step needs to be taken: experimental evaluation. The case in controlling a structure, when an added sensor/actuator improves the modal groups' coupling, can be studied experimentally. Thus, once a sensor/actuator model is found to be acceptable, it can be tested to see if it is experimentally acceptable.

Bibliography

- 1. "ACOSS FIVE (Active Control of Space Structures) Phase IA,"
 LMSC Final Technical Report, RADC-TR-82-21, March 1982.
- Calico, R. A., Jr., and Janiszewski, A. M., "Control of a Flexible Satellite Via Elimination of Control Spillover," Proceeds Third VPI/AIAA Symposium on Large Space Structures, Blacksburg, Virginia, June 1981.
- Calico, R. A., Jr., and Miller, W. T., "<u>Decentralized Control of Large Space Structures</u>." Air Force Institute of Technology, Dayton, Ohio, December 1981.
- 4. Cook, R. D., "Concepts and Applications of Finite Element Analysis," Second Edition, New York: John Wiley & Sons, 1981.
- 5. Henderson, T., "VCOSS Design Model and Disturbances." Charles Stark Draper Laboratory, Cambridge, Massachusetts, November 1981.
- 6. Henderson, T., "Active Control of Space Structures (ACOSS)
 Model 2." Charles Stark Draper Laboratory Report C-5437,
 September 1981.

Appendix A

NASTRAN Data Deck

The listing below is the NASTRAN Data Deck for the CSDL II, Revision 3 large space structure. Cards of interest are: EIGR, GRID, CBAR, CONM2 and PBAR.

The input data card EIGR stands for Real Eigenvalue Extraction Data. The method used is the inverse power (INV) method with symmetric matrices. The frequency range of the eigenvalues is given with the next two numbers, 0-14hz. The estimate of the number of eigenvalues in the frequency range is given next, while the following number asks that all the eigenvalues be given.

GRID is the input card which defines the location of all the nodes of the model. This card is very useful in determining differences between similar models.

The CBAR card is Simple Beam Element Connection. This card identifies each bar element, and gives the nodes that are connected to its ends.

CONM2 is the card that was varied in this investigation. It stands for Concentrated Mass Element Connection. This card allows lumped masses to be put at the nodes. The mass to be changed is the third number on the card. On some of the cards, the moments of inertia are also given following the lumped mass.

Simple Beam Properties are listed in PBAR. The properties listed are: area, moments of inertia, and the torsional constant. This card could have been used to alter any of the properties of the mirror support trusses.

```
ID DRAPER. MODELS
 APP DISP
SCL 3
TIPE 63
CEND
TITLE = ACOSS MODEL #2 - REVISION 3
SUBTITLE = VCOSS DESIGN MODEL
LAHEL = 156 MODES AND FREQUENCIES
MFC = 100
METHOD = 600
DISP(PRINT.PUNCH) = ALL
SESE = ALL
BEGIN RULK
PARAM
         6 PDPN"
EIGR
         633
                  INV
                                                     43
                           0.0
                                    10.0
                                             40
                                                                       1.0 F-03+10
+13
         MASS
$
       KINEHATIC MOUNT:
                           TERTIARY MIRROR
                  27
CPIG03 1013
                           123
                                            23
                                                     3233
                                                              3
                                                                                +÷831
+RA31
         MSFT
                  1003
                           123456
$
      KINEMATIC MOUNT:
                           PRIMARY MIRFOR
CFI603 1001
                           123
                                    35
                                            23
                                                     2630
                                                               3
                                                                                +2911
+R911
         MSET
                  1001
                           123456
      KINEMATIC MOUNT:
                          FOCAL PLATE
$
CP:603 1004
                           123
                                            23
                                                     40
                                                              3
                                                                                +=R41
                  1004
         MSE"
                           123456
      KINEMATIC MOUNTS
                          SECUNDARY PIRROR
CRIGD3 1002
                          123
                  910
                                   1112
                                            23
                                                     40
                                                                                +º 821
+RB21
                          123456
         IGIO EQUIPMENT SECTION
Cc 1601 141
                 44
                          42
                                   43
                                            45
                                                     46
                                                              47
    WODE POINT LOCATIONS
      " 'DE#
                                  Y (M)
                                           2 (4)
GRID
                                            0.0
SP:D
                          -4.7
                                            C...
        2
                                   5.0
GRID
                          -4.0
         3
                                   -5.1
GRID
                          0.3
                                   5.0
                                            0.0
GRID
                          4 .3
                                   5.0
                                            0.0
GPIO
                          4.3
                                   -5.î
                                            0.0
                                   :..
GRID
                          7.0
                                            9.0
                          -7.
GPID
                                            2.0
GR I D
                          -4.[
        9
GRID
        1004
                          0.0
                                   4.C
                                            2.0
6º10
                          -4.0
                                   -5.0
        10
                                            2.0
GRID
                          4.0
                                   5.0
        11
                                            2.0
GRID
                                   -5.0
        12
                          4 . G
                                            2.6
GPI D
        910
                          -4.0
                                   -2.5
GAID
        1112
                          4.0
                                   -2.5
                                            2.0
GRID
                          7.0
        13
                                   0.0
                                            2.6
                                   0.0
GRID
        1 4
                          -6.0
                                            12.
GRID
        15
                          -4.2
                                   4.C
                                            12.
GRID
                          -4.0
        16
                                   -4.0
                                            12.
GRID
        17
                          4.0
                                   4.0
                                            12.
```

(

```
12.
                            4.0
                                     -4.0
        13
GRID
                            6.0
-5.0
                                               12.0
                                     3.0
         19
GRID
                                     0.0
                                               22.0
GRID
         26
                            -4.5
                                     3.0
                                               22.0
         27
GRID
                                               22.0
                            -4.0
                                     -3.0
         28
GRID
                                               22.3
                                     -3.2
                            0.0
         2830
GRID
                                               22.0
                            0.5
                                     -6.5
         1001
GRID
                            4 . C
                                     3.0
                                               22.Û
GPID
         29
                            4.5
5.5
                                               22.0
                                      -3.0
GPID
         30
                                     0.0
                                               22.0
         31
GRID
                                     10.0
                                               22.0
                            -4 . .
GRID
         32
                            0.0
                                               22.0
         3233
                                     10.1
GRID
                                               22.0
                                      6.5
         1003
GRID
                            4.0
                                     10.0
                                               22.0
GRID
         33
                            -4.0
                                      -13.0
                                               22.0
GPID
         34
                                      -10.0
                                               22.5
                            4.5
GRID
         35
                                      3.0
                                               24.0
                            -4.3
GPID
         36
                                               24.0
                                     -3.2
                            -4-5
GRID
         37
                            4.0
                                      3.0
GRID
         35
                                      -3.3
                                               24.0
         39
                             4.0
GRID
                                      2.5
                                               2.0
                            0.0
GRID
         40
                                      0.0
                                               2.0
                            2.0
GPID
         1002
                                      5.0
                                               -0.3
                            0.0
GRID
         42
                                      € • č
                                               -1.3
         43
                             ~2 • t
GRID
                                               -1.3
                             :.:
                                      -1.667
GRID
         44
                                      0.0
                             2.0
                                               -1.3
         45
GRID
                                      -5.0
                             -4.:
                                               -0.3
         46
GRID
                             4.0
                                      -5.0
                                               -0.3
GRID
         47
                             -25.0
                                      5.3
                                               -1.3
GRID
         48
                                                -1.3
                                      0.0
                             -21.90
SRID
         49
                                                -1.3
         50
                             -16.0
                                      6.0
GRID
                                                -1-3
                                      6.0
GRID
                             -11.0
         51
                                                -1.3
                                      5.3
                             -6 · i
GRID
         52
                             6.0
                                                -1.3
GRID
         53
                             11.
                                      0.0
                                                -1.3
GRID
         54
                             16.0
                                      0.0
                                                -1.3
GRID
         55
                                      0.0
                                                -1.3
                             21.00
GPID
         56
                                                -1.3
                                      0.0
GRID
         57
                             26 • i
                                                                   45-
                                                0.0
         100
                             0.0
                                      0.0
GRID
$
      ELEMENT CONNECTION DATA
$
                                                LOCAL AXIS CRIENTATION VECTOR
                                    1. DE
                          v ^DE
                 PECPM
       ELEMA
$
                                      8
3
                             A
3
                                                                            1
                                                         3.3
                                                                   8.3
                                                1.0
BA2 62
                   1 2
 CBAP
          1
                             1
 CBAR
          2
                             2
 CBAR
          3
                   3
                                                                   3.0
                                                                            1
                                                         1.3
                                                0.0
 CBAS
 CBAR
                             3
                                                                   0.0
                                                                            1
                                                0.0
                                                         1.3
                                      5
CRAT
          6
                             ٠
CBAR
                                                                            1
                                                5.0
                                                         1.5
          8
 CBAP
                                      6
 CBA?
                                       7
                             5
                   10
 CBAS
          10
                                       7
                             6
 CBÁR
          11
                                      ä
                             1
 CBAR
          12
                                       9
          13
                    13
 CBAR
                                      10
          14
                    14
 CBAP
                    15
                                      11
          15
 CBAR
                                       12
                    1€
 CBAR
          15
                                       13
 CBAR
          17
                    17
                                       5
          18
                    16
                             3
 CBAR
                                       è
          19
                    19
                             2
 CBAR
          21
```

CBAR

CBAR	22	22	•	11				
CBAR	24	2 4	5	13				
CBAR	25	25	6	13				
CBAR	26	26	1112	3				
	27	27	6	ic				
CBAR								
CBAR	30	3 C	5	è				
CBAR	31	31	8	10				
CBAR	32	32	9	910				
CBAR	232	232	910	10				
	33	33	ġ.	40				
CBAP								
CBAR	34	34	910	40				
CBAR	35	35	11	40				
CBAR	36	36	1112	40				
CBAR	37	37	÷	11	0.0	1.C	0.0	1
CBAR	38	36	10	12	0.0	1.0	0 •C	1
					•••			-
CBAR	39	39	11	1112				
CBAR	230	239	1112	12				_
CBAR	201	261	910	1112	0.0	1.0	0 -0	1
CBAR	202	202	2	910				
CBAR	203	203	3	910				
CBAP	204	264	5	1112				
CBAP	205	205	6	1112				
CBAR	207	207	12	910				
CBAR	40	4 D	11	13				
CBAR	41	41	12	13				
CBAR	42	42	14	15				
CBAR	43	43	14	16				
CBAR	44	44	16	15				
CBA°	45	45	17	19				
CBAD	46	46	17	19				
CBAD	47	47	19	19				
CBAR	54	54	26	27				
CBAP	55	55	26	2-				
CBAG	56	56	27	26				
						-		
CBAS	57	57	25	30				
CBAR	58	56	29	31				
CBAP	59	5°	30	31				
CBAR	60	60	27	29	0.0	1.0	0.0	1
CBAR	61	61	27	30				
CBAR	62	62	28	2830	0.0	1.0	8.5	1
CBAF	194	184	2-30	30	8.0	1.0	0.6	ī
							0.00	•
CBAR	63	63	27	36				
CBAR	64	64	28	37				
CBAP	65	65	30	39				
CBA=	66	66	25	38				
CBAR	67	67	29	36				
CBAP	68	68	27	37				
CBAP	69	69	23	39				
CRAR	70	70	30	3 5				
CBAR	71	71	36	37				
CBAR	72	72	37	39	0.0	1.5	0.3	1
CBAR	73	73	39	3.4				
CBAP	74	7.4	36	3ć	0.0	1.3	0 - 3	1
CBAP	75	75	37	38		•		-
CBAR	127	127	26	37				
CBAR	126	128	26	36				
CBAR	1 29	129	31	3=				
CBAR	130	1 30	31	38				
CBAR	76	76	ē	14	•			
CBAR	77	77	10	14				•
		78		16				
CBAP	78		13	7.0				
CBAR	79	79	16					
CBAR	80	80	9	15				
CBAR	181	181	9	15				
CBAR	182	162	5	40				
CBAR	183	163	2	40				
			-	_				

CBAP	186	186	3	40				
	187	167	5	•c				
CSAP								
CBAR	81	81	11	17				
CBAR	92	82	11	18				
CBAP	93	83	12	18				
CBAR	84	54	12	19				
CBAP	95	85	13	19				
CBAR	86 '	96	13	17				
CBAP	87	67	14	26				
CBAR	88	88	14	28				
CBAP	85	8¢	16	28				
CBAR	90	90	16	27				
	91	51	15	27				
CBAR								
CBAR	92	92	15	26				
CBAR	93	93	17	54				
CBAR	94	54	18	25				
CBAP	95	95	16	30				
CBAR	96	96	15	3 C				
CBAP	97	97	19	31				
CBAF	98	98	17	31				
CBAR	99	99	15	32				
CBAR	100	100	16	34				
CBAR	101	161	17	33				
CBAR	102	162	16	35				
CBAP	111	111	26	32				
CBAP	112	112	27	32				
CBAP	113	113	27	33				
CBAF	114	114	23	33				
	115	115	31	33				
CBAR				3233	C.C	1.0	0.0	1
CBAR	116	116	32		0.6	1.0		1
CBAP	165	125	3233	33	U • U	1.0	ũ•C	•
CBAP	117	117	26	34				
CBAR	118	116	2€	34				
CBAR	119	119	30	34				
CBAR	120	126	30	35				
CBAR	121	121	31	35				
CBAP	122	122	34	35	0 - C	. 1.0	6.3	1
CBAP	123	123	32	36				
CBAR	1 24	124	33	38				
CBAP	125	125	34	37				
CBAR	126	126	35	39				
CBAR	131	131	48	49	0.€	1.5	C +0	1
CBAP	132	132	49	50	5.0	1.0	3.0	1
CBAR	133	133	58	51	0.0	1.0	0.0	1
CBAR	134	134	51	52	0.0	1.0	0.0	1
CBAP	135	135	52	43	0.0	1.0	3.3	1
CRAR	136	136	45	53	0.5	1.0	2.0	1
CBAR	137	137	53	54	0.0	1.0	0.0	ì
CBAF	135	138	54	55	0.0	1.0	0.0	1
	139	139	55	56	0.6	1.0	0.3	ī
CBAP CBAP			56	57	0.0	1.0	C • C	ī
	146	140	36	.,,	000		0.00	•
•	- 31 47.03	SERINGS						
_	3 JER- UK	~~K1482						
\$	F1 F =			DOF	NODE	DOF		
\$	ELE##	K	.CDE					
\$		(N/M)	A	A	В	. B		
\$				•				
CEL AS 2		5.7°E3	•	1	42	1		
CELAS 2		5.7563	•	2	42	2		
CELAS 2		5.79E3	•	3	42	3		
CELAS2	145	5.74E3	3	1	46	1		
CEL AS 2	146	5.79E3	3	2	46	2		
CELAS 2	147	5.7°E3	3	3	46	3		
CELAS2	148	5.7983	6	1	47	1		
CELAS2	149	5.79E3	6	2	47	2		
CELAS 2		5.7983	6	3	47	3		
		·-						

```
MATERIAL PROPERTY DATA
                                             FHC
                    Ε
                                    'nυ
         102
                  1.245+11
                                             1723.
MAT1
                  1 .2 4E +1 1
                                    3.3
                                             1720.
MAT 1
         200
                                             2579.70
                  1.24E+11
YAT1
         300
      LUMPED MASS DATA
SCONM2 ELEMB
                                    MASS
                                                                                + X X X
                 PODE#
                                                       127
                            IYY
S+XXXX
           IXX
        2 FG CP IF
                 1001
CONM2
         1001
                                                                                +107
                                    13.1.
         40-3-33
                           5333.33
                                                      F416.57
+1001
                                    -3¢.
                                                                                +404
                  1002
         1002
CCMM2
+4040
         1556-57
                           4265.67
                                                      5933.33
CONN2
         1003
                  1003
                                    1200.
                                                                                +100
         4900.
                           6400.
                                                     11300.
+1003
         1004
                  1094
                                    500.
                                                                                +13^
CONM2
                           400-
                                                     1000.
+1004
         200.
        EQUIPMENT SECTION
CONM2
         544
                                    350...
                                                     28777.
+544
         20-11.
                           10500.
     SOLAR PANELS
C CNM2
         54:
                  46
                                    51. 1
+543
         270.0
                  50
                                    163.32
                                                                                +550
CON42
         350
+55€
         540.0
CONM2
         552
                  52
                                    73.-2
                                                                                +552
+552
         270.5
                                                                                +553
         553
                  53
                                    73.-2
CCVM2
+553
         273.3
                                                                                +557
                  57
                                    21.91
CONM2
         557
+555
         540.0
CONME
         555
                                    163.52
                                                                                +555
+557
         270.0
        ADDITIONAL NON-STHUCTURAL MASS AT MIRROR SUPPORTS
                                    60.5
CCN42
                  27
CON42
         502
                  23
                                    6.74
CCNM2
         503
                  25
                                    50.5
                  30
                                    6.74
         534
                  32
CCNM2
         50 à
CONM2
         500
                  33
CICNM2
         507
                  34
COMM2
                  35
         309
         539
                                    67.4
CCNM2
                 10
CC:.M2
         510
                                    67.4
CONM2
         511
                                    67.4
CONM2
                                    67.4
        BEAM SECTION PROPERTIES
                     PROPE MATE
                                                    AREA
                                                                       111
                                                                                • XXX
SPBAR
$ - X XX XX XX
                   122
                              100
                                                 0.6735935-04
                                                                   0.439721E-07+
PBAR.
                          1
```

•	1	0.4397216-	07	C.579442E-37		
PBAP.	_		ż	105	C.678583E-04	C.4397215-07+
•	2	9.439721E-	97	9-673442E-07		
PBAR.			3	100	C.2:5075E-03	G.621422E-06*
•	3	0.621422F-	3.6	0-1242-45-05		
PBAS.			4	100	0.6795435+64	C.439721E-07+
•	4	0.4357215-	07	0.6754438-07		
PRAC.			ė	133	C.343532E-03	C • 1 1 2 6 = 5 E - C 5 •
•	5	0.1126-25-	û 5	0-2253415-05		
PBAR.			4	100	0.4795635-24	C.439721E-07+
•	6	0.437721E-	37	0-74443E-27		0 110/255 05:
PBAS+	_			100	0.343532E-03	C-1126-5E-C5+
•	7	0.1126558-	3-	0.225 3 15- 05	2 1041625-03	0.1035878-06+
PRAP+		3 137F:7F-	٠,	100	0.104152E-03	0.1033416-66-
00424	4	0.1035-76-	75	G-277174E-36	0.255098E-03	0.621422E-06*
PBA?	4	0.6014226-	3 -	0-1042-46-35	0.2.10-65-65	700214221 01-
PBA?+	•		13	100	0.67:583E-04	0.4397215-07+
	1 0	D.439721E-		0.579442E-07		
PBA2+	. •		11	130	0-679593E-04	C-439721E-07*
•	11	0.4397215-		C 79442E-07		•
PBA:+	• -		12	100	0-6755935-04	J.439721E-07·
•	! 2	0.439721E-	0.7	C.S79443E-07		
PBA			13	109	0.673533E-04	0.439721E-07•
•	13	3.4397215-	J 7	C->7-443E-07		
PBAC.			14	100	0.6785835-04	0.4397218-07*
•	1 4	0.439721E-		0 . 6 7 4 4 3 E - 0 7		
PBA=+			15	107	0.6795°3E-34	0.439721E-07*
•	15	0.439721E-		3-#75443E-07		A 4107315 174
PB47•			1 =	100	0.6755938-04	C.439721E-CT+
PBA=+	15	7.4397216-	17	0-473443E-37 103	C.678593E+34	0.439721E-07+
PDA	17	0.439721E-	-	C-57=442E-C7	(*6132:35-34	0.4377216-6
PBA=+	* '		1	100	8.67F593E-14	3.439721E-07·
PDA-V	1	0.4397215-	-	0.E79442E-J7	000. 3332 34	
PBA9+	•		17	100	0.678583E-04	J.439721E-07*
•	19	U.439721E-		3-679442E-87		
PBA=+			21	100	G.6795#3E-J4	0.439721E-C7+
•	21	9.439721E-	9.7	0.679443E-07		
PBA .			22	100	0.6735-3E-04	C.439721E-C74
•	22	J-439721E-		2-579443E-07		
PBA H.			2 4	165	0.67353 3E- 14	0.439721E-07*
•	2.4	0.4397215-		079442E-37		
PBAR.			23	100	0.5735-3E-04	J.439721E-07*
	25	3 - 4 39 7215 -		U-279442E-07	5 1454345-61	0.1-3450E-C6+
PBA?*	٠.	0-1664575-0	25 r4	109 0.376974E+06	C-140494E-03	0-1-04705-654
DDA SA	26		27	100	C-140494E-03	0.1284905-06*
PBA3+	27	0.1-34-55-	_	0.37597 E-05	A 4 4 4 4 17 - 17 12	2-7 24 1T-064
PBAF.	• •		3	100	0.679543E-04	C.439721E-07+
•	30	0.4397218-	-	0.875442E-07		
PBA=+			31	100	3-67:53 36-04	0.4397218-074
•	31	3.435 721E-	3 7	0-579442E-07		
PBAP.				0 4 7 7 7 7 7 2 6 7 0 7		
•		;	32	190	0.314533E-34	0.6181778-07.
PBA?	32	0-6181775-0	32 07	100 0-123635E-06		
		0.6181775-	32 07 33	100 0.123635E-06 100	0.824583E-04 0.678583E-04	0.618177E-07. 0.439721E-07.
•	32 33	0.6181775-	32 07 3 <i>3</i> 0 <i>1</i>	100 0.123635E-06 100 075443E-07	0.6785838-04	0.439721E-07.
PBA	3 3	0.6181775-	32 07 33 01 34	100 0.123635E-06 100 075443E-07 100		
PBAS.		0.618177E- 0.439721E- 0.435721E-	32 07 33 07 34 07	100 0-123635E-06 100 079443E-07 100 0-679443E-07	0.678583E-04	0.439721E-07.
PBAPe	33	0.618177E-0 0.439721E-0 0.435721E-0	32 07 33 07 34 07 35	100 0-123635E-06 100 079443E-07 100 0-679443E-07	0.6785838-04	0.439721E-07.
PBAPe PBAPe	3 3	0.618177E- 0.439721E- 0.435721E- 0.439721E-	32 07 33 07 34 07 35 37	100 0.123635E-06 100 075443E-07 100 0.673443E-07 100 073443E-07	0.677553E-24 0.678583E-04 0.677553E-04	0.439721E-C7. 0.439721E-G7. 0.439721E-C7.
PBAPe PBAPe PBARe	3 3 3 4 3 5	0.439721E- 0.439721E- 0.439721E-	32 07 33 07 34 07 35 37	100 0.123635E-06 100 079443E-07 100 0.679443E-07 100 0.679443E-07	0.678583E-04	0.439721E-07.
PBAP+ PBAR+	33	0.439721E- 0.439721E- 0.439721E- 0.439721E-	32 07 33 07 34 07 35 37 36	100 0.123635E-06 100 0.179443E-07 100 0.179443E-07 100 0.179443E-07	0.673593E-04 0.673583E-04 0.673583E-04	0.439721E-C7. 0.439721E-G7. 0.439721E-C7.
PBAPe PBAPe PBARe	3 3 3 4 3 5	0.439721E- 0.439721E- 0.439721E- 0.439721E-	32 07 33 07 34 07 35 37 36 07	100 0.123635E-06 100 079443E-07 100 0.679443E-07 100 0.679443E-07	0.677553E-24 0.678583E-04 0.677553E-04	0.439721E-C70 0.439721E-C70 0.439721E-C70 0.439721E-C70

•	3 9	G.103587E-06	0.2:7174E-J6	D.894593E-04	3.6181778-67.
PBAP.	3 7	3° 3.618177E-07	100 0.123635E-06	9 45940336-04	3.6161//1-1/4
PBAD.	_	4.5	100	0.6795935-04	0.439721E-07·
PBAR+	4 3	3.439721E-37 41	0.879442E-07 100	0.679543E-04	0.439721E-07.
•	41	0.439721E-07	C. 279442E-07	*	A 4797315-87-
PBAF.	+ 2	42 2.439721E-67	109 0.679443E=07	0.6795435-04	0.4397215-674
PBAP .	_	4 3	100	0.678583E-04	J.439721E-07*
PRA?+	43	0.439721E-07	9-:79443E=07 100	0.134152E-03	0.103597E-06+
•	4.4	0.1035978-06	0-2-71745-06		A 4075395 A4.
PBAF+	4.5	45 0.103567E-36	100 3.247174E-06	J.154152E-03	0+1035A7E-06+
PBA=+	••	4 ±	100	C.673593E-04	0.439721E-07•
PBAR+	46	C.439721E-07	0.679443E-07 100	3.6795-3E-04	C.439721E-07+
•	4.7	3-4397216-37	0.079443E-07		
PBA=+	54	54 0.439721E=07	100 0.679442E-07	0.6735932-34	0.439721E-07*
PRARE	34	5.5	100	G.672553E-04	0-4397215-07-
PBAC.	55	C.439721E-07	0.277442E-07 160	0.6795935-34	0.439721E-07+
•	56	3.439721E-07	0-679442E-07		
PBA:	57	57 0.439721E-07	100 0.674442E-07	C.679543E-04	0.439721E-07+
PRATE	J •	5	100	0.679583E-04	0.439721E-07.
PRA: •	58	C.439721E-07	0.679442E-07 100	0.679593E-04	C.439721E-07=
•	55	S.439721E-07	0-879442E-07		
PBA: •	50	60 0-103567E-06	160 C-207174E-06	0.104152E-03	0.1035A7E-06+
PBA=+	76	41	100	G.255078E-03	0.621422E-06*
PBA: •	61	0-621422E-06 62	0-124264E-05 3 00	0.0060521	0.0015205 •
•	ś 2	C.0015205	0.0030410		
PRACe	5 3	53 0.4397215-07	100 0.879443E-07	0.6795835-04	5.43°721E-07°
PBA=+		5♠ -	100	0.678583E-04	0.439721E-07·
PBA: •	54	3.439721F-07 65	0-879443E-07 100	0.679543E-04	0.439721E-07+
•	55	0.4397215-07	0-E79443E-C7	_	
PSA=+	5.5	64 2.439721E-07	100 0.579443E-07	C-674563E-04	J-439721E-67+
PBA=+	-	67	100	C-117649E-03	0.1321548-06.
PBA:-	67	0.132154E-06	C • 26430 - E-06	0.6785635-04	C.439721E-074
•	é =	0-439721E-07	G. 67442E-67		
PBA=+	5 ?	69 0-1321545-05	100 0.24430-E-06	C-11764CE-03	C-1:2154E-06+
PBAF.		7:	100	0.6795538-04	C.439721E-07+
PRASE	73	7.439721E+07	0.679442E-07 100	0.6705838-04	C-439721E-C7+
•	71	0.4397216-37	0.0794428-07		
PRAF+	12	7: 3-103567E-06	100 0.267174E-06	0.1041525-03	0.103587E-06+
PBAF.	_	73	10C	0.6795936-04	0.439721E-07+
PBAP.	73	0.439721E-07	0+:794425-07 100	0.1041525-03	0.1035875-26.
•	7.4	C-103567E-06	0.207174E-06	0.0550305.03	0 / 214225-24-
PBAR.	73	75 0.621422E-06	100 0.1242-4E-05	0.2550766-03	0.621422E-06+
PBAR-		76	100	C.259503E-03	0.643065E+96+
• PBAR•	76	0.643065E-06 77	0.128613E-05 100	0.474114E-03	0-171755E-05+

PBAR.	77	3-171765	E-35 78	0.343531E-05 100	0.259503E-03	C.643065E-06*
•	7 5	C.6430658	-96	0.1266136-05		
PBA9.	7 +	0.6640558	75 -05	100 0.132911E-04	0.8339C4E-03	0-664055E-05*
PBAR.	• •	00000000	60	100	0.259503E-03	3.6430656-06*
PBAS.	- 3	3.643065	91	C-12#613E-05	G-259503E-03	0.6430658-064
•	31	0.643065	-05	0-1286135-05		
PBAR-	12	0.6640556	보고 F=85	100 C-132811E-64	0.833904E-03	0.6640550-05
PBAP+			8.3	100	0.259503E-03	0.643065E-36*
• PBA֥	13	3.6430650	-96 -4	0.12+613E-05 100	C.424114E-03	J.171765E-05*
•	a 4	0.1717655		0.3435316-05	A 0535335-B3	0 (430/55-054
PBAF+	, 5	3.6430658	35 -36	100 0.12c613E-05	0.257503E-03	0-643065E-06*
PBAR.		0 1513/3/	3.6	100	G.395135E-03	0.151367E-05+
PBAF.	16	0.1513676		0.302735E-05	0.257503E-03	0.643065E-G6*
PBA -	3 7	0.6430656	-) 5 6 €	0.126613E-05	C.325124E-03	0.108942E-054
	a "	0-1009428	_	1.2018: 3E-05		
PBAR+	43	9.6430656	92 -16	100 0-128613E-05	0.259503E-03	0.643065E-C6*
PBA .	-		ت ر	100	0.566323E-93	0.3062578-05.
PBA≥.	3 C	0.3062676	91	C.612533E-05	0.257503E-03	0.643065E-06*
•	- 1	0.6430656		0.128613E-05		C.116072E-05*
PBAH+	3 2	0.1166726	92 -35	100 0.232143E-05	C.348640E-03	6.1160155-024
PBAR.			93	130 0.128613E-05	0.257503E-03	0.643065E-06*
PBAR.	93	3.6430656	94	100	0.566323E-03	0.3062675-05.
+ PBAF+	÷ 4	0.3062676	-05 35	0.612533E-05 100	C.259503E-03	0.643365E-06*
	75	0.0430656		0-128613E-05		
PBAF.) 6	5-1009428	96 5-85	100 0.201863E-05	0.3251245-03	0-100942E-C5+
PBAR.			97	100	0.259503E-03	C-643065E-06*
• PBA □•	5 7	J.643C658	9 5	0.128613E-05 100	0.349640E-03	C.116072E-05.
•	a R	0.1160726	-05 94	0.232143E-05	0.4705596-03	C.211446E-05*
PRA=+ •	àè	0.2114469	-	C.422852E-05		
PRAF+	30	0.2114468	10.	100 0.402652E-05	0.470559E-03	C-211446E-05+
PBA=+			131	160	0.4705598-03	0.211446E-054
PBAr.	51	3-211446E	192	0.422892E-05	0.4705598-03	0.2114465-05+
	0 2	0.2114468		0.4228926-05	0.259503E-03	0.6430658-06*
PBAF+	11	0.6430656	111 -95	100 0.128613E-05	0.2373036-63	
PBACA	• •	0.4397218	112	107 C-879443E-07	0.678583E-04	0.4397215-67
PBACe	12	344321576	113	100	0.3251246-03	0.1003428-054
PBAP.	1 3	0.1009426	-65 114	0.201653E-05 100	0.6785838-04	C.439721E-C7•
• 1	1 4	0.439721E	-07	0.e79443E-07		
PBAR*	15	2.6430658	115 -06	100 0.128613E-05	0.259503E-03	0.643065E-064
PBA .			116	300	0.0060921	0.0015205 •
PBAR*	16	0-0015205	117	0.0036410	C.2575G3E-03	0.643065E-064
• 1	1 7	0-6430656		C+125613E-05	0.673593E-04	0.4397215-070
PBAP.			110	100	0 - 0 f 3 J # J L T J T	0 0 4 0 2 1 0 A 0 - 0 1 4

Œ

• 115	3.439721E-07	C.875443E-07	0.325124E-03	C.1C0942E-C5*
PRAF.	11° 0.100942E-05	100 0.211863E-05	0.0571545-00	001507422 (5-
PBAP	120	100	0.678583E-04	0.4397215-67+
• 123	3.439721E-07 121	C.F79443E-07	C.259503E-03	0-643065E-C6*
PBAR* • 121	0.6430655-36	C-128613E-05		A 4/75/75-564
PBA=+	122 0.1035e7E-04	100 C.207174E-06	G.104152E-C3	0.1635678-06.
* 122 PBAP*	123	160	0.7169C6E-04	0.490653E-07*
• 123	0.40653E-37	5.4 A13; FE-67	C.716806E-04	C.490653E-07+
PBA=+ + 124	124 0.490653E-07	160 0.9:1305E-07		
PBA=+	125	107	3.716806E-04	0.490653E-07*
• 125 PBA=•	3.490653E-07 126	C.9-1305E-07	0.716906E-C4	C.490653E-07+
• 126	0.490653E-07	0.9a1305E-07	C.6755°3E-C4	0.439721E-07*
PBA=+	127 3.439721E-07	100 0-875443E-07	0.6127-75-14	
PBA P.	12:	160	0.67953E-C4	0.439721E-07=
• 128 PBAP•	0.439721F-07 129	2.879443E-07 100	6.6785F 3E-J4	0-4397218-07*
• 129	0.439721E-G7	0.079443E-27		0 4207015-074
PRAFE	130 2.439721E-07	100 0.675443E-07	0-67=55 3E-04	0.4397218-07*
+ 13C PBA=+	131	100	6.107256E-04	3.561752E-06·
• 131	3.5617525-06 132	7.1235C4E-06 100	6.197256E-04	3-561752E-06+
PBA:• • 132	3.5617525-06	7.1235C4E-06		
PBAF .	133	100 7-123504E+06	6.1072565-04	3.561752E-06.
# 133 PBA= #	3.561752E-96 134	100	6.107256E-04	3.561752E-06.
• 134	3.5617525-00	7.123504E-06	6.107256E-04	3.561752E-06*
PBA:*	135 3.561752E-36	7-123504E-06		
PRA=+	13-	100 7.123504E-36	6-1072565-34	3.5617528-06*
• 136 PBAP•	3.561752E-36 137	100	6.107256E-04	3.561752E-06*
• 137	3.561752E-06	7-123504E-G6 100	6.107256E-64	3.561752E-06+
PRA=+ • 13 h	13 3.561752E-06	7-123504E-06	0010.2350 0	
PBA= .	139	100	6.177256E-G4	3.5617528-06*
• 139 PBA:•	3.561752E-06 14	7-123504E-06 100	6.107256E-04	3.5617526-06*
• 140	3.561752E-06	7.123504E-06	0.399135E-03	0.151367E-05*
PRA÷ • 191	181 3.151367E-05	100 0.302735E-05	0.3 31075-03	
PSA=+	1° 2	100	0.343532E-03	0.112695E-05*
# 1+2 PBA=+	0.112695E-05 163	0.225351E-25	0.3435326-03	0.112695E-05.
+ 133	0.1126-55-05	C-2253-1E-C5	0 0050231	C.0015205 ·
PRAF+	134 0.00152C5	306 G.UC 30410	0.0060-21	
PBAP+	195	300	C.0060º21	0.0015205 •
• 135 PBAR•	0.00152C5 186	0.0030*10 100	0.3435326-03	0.1126958-05*
• 136	0.112695E-05	0.2253918-05		0 110/055-050
PBA®*	1 - 7 0 - 1 12695E - 0 5	100 C.225391E+05	0.3435325-03	0.1126°5E-05*
• 157 PBAP•	231	100	0.10462GE-03	0.104520F-06*
• 201	0.104520E-06 202	0.20904CE-06 100	0.923628E-04	0.314640E-07*
PBAP+ • 202	0.81464FE-07	C-162928E-06		
PBAR*	203	105 C-879442E-07	0.6795535-04	0.439721E-07•
• 233 PBAR•	0.439721E-07 204	100	0.923628E-04	0.914643E-07.

```
0.014640E-07
                                0.16292 nE-C6
      234
                                                   0.678583E-94
                                                                      C.4397215-670
                                                                                         201
                        205
                               100
                4397218-07
                                0-879442E-07
                                                   3.140494E-03
                                                                                         237
                        237
                                                                      C-166430E-064
                    4505-06
                                C.37657 E-06
                                                   0.673553E-J4
                                                                                         230
                        232
                               160
                                 1.- 794425-17
      232
                439721E-C7
                                                                      0-4397215-074
                                                   0.6755435-04
                                                                                         237
PBAR.
                        23 100
      23 =
                                0-579442E-97
        MULTI-POINT CONSTRAINT EQUATION FOR X-AXIS LCS ERROR (NODE 100 DOF 1)
                                                                               -1.0-1000003
                                           100
MPC .
         100
                                                                                    ·1000001
-1633006
                         3 •
                                             2
                                                 -0-01:55287570
-1000001
                                            34
                                                                    J.14285714236+1009637
-1000C02
                         35
                                                                                    -1000003
                                                                   -P-14285714286+1000004
+100000 3
                                            35
                                                                                    -1000005
-1000C04
                       2630
                                             3
                                                  6_28571429572
                                                                                    +1000004
•10000) E
                                            30
-1000006
                                                                                    ·1030C07
                                                                    C.35489000795+100000
-10000037
                                                                                    -1000009
                                                  0.08065681999
•100000×
                         2 7
                                                                   -0.35429000795 •1000010
·1000009
                                                  9-70578001590
                                                                                   +1000011
+1069610
                       3233
                                             3
-10 CO 01 I
                                            33
                                                                                   +1000012
                                                                                    -1000013
+1000012
                       1002
                                                                    · 0.06213354425•1090014
•1000C13
                                            11
                                                 -0.06210354425
+1000G1 +
        MULTI-POINT CONSTRAINT EQUATION FOR Y-AXIS LOS EPROP (NODE 100 DCF 2)
                                                                               -1.5 •200CCO
MPC .
                                           130
+20 03 C3 n
                                                 -0.03710575139
                                                                                   ·2000001
                         34
                                                                   -0.24636219924 -2050603
-26 GC G1 1
                                            34
                                                               - 2
-20 90 99 2
                         34
                                             1
                                                 -0.250303333
                                                                                   *2008033
-2009035
                                                                    C.3463P218924+28JG334
                                                                                   ·2030005
-2300004
                                                                    0.16131363995+2000004
-2013C35
                                            27
                                                                                    - 2000007
. 2000006
                         27
                                                                      .62105751391-200000
-2000007
                                            27
                                                                                   •2000C3=
· 20 00 06 3
                         2
-20 00 00 G
                                                                      .62105751391 +2000013
                                                                                   .2050011
-2000010
                       1002
                                                                   -9-12420758655 +2000012
+2300011
                                            11
                                                                                   +2000013
                         1:
-2000012
                                                                    0-07762953037+2000014
· 27 00 01 3
                                                               2
+2200014
        MULTI-POINT CONSTRAINT EQUATION FOR DEFCCUS (NODE 100 DOF 3)
$
                                                                               -1.0 -3000007
MPC+
                                           100
• 30 00 00 E
                         34
                                             3
                                                 -0.01912393776
                                                                                   ·3000001
• 30 00 00 1
                                            35
                                                                      .01312353776+207000?
- 30 00 CJ 2
                       2630
                                                  C-12749291836
                                                                                   .3000003
                                                                                   -3000604
+ 30 00 00 3
                                            30
                                                                                   ·3000005
                                                  0.77903217347
• 30 00 C2 4
                         2.7
                                             3
· 30 00 01 5
                                            27
                                                                    0.77863217347.3000606
. 30 00 02 6
                                                                                   · 30 0 0 0 0 7
                       3233
                                                                    - G - 1 7E 49C 0A 571 - 30 00CO 3
- 30 00 03 7
                                          1002
                                                                                   · 3000009
- 30 00 00 9
                          7
                                                                    0.50006000000 -3000013
- 30 00 00 9
                                            11
                                                 -2-966000003300
- 30 00 01 0
                         40
        RIGID BODY SUPPOPT
SUPCRT 44
                  123456
```

Appendix B

SELECT

This program was used to pick off the critical modes from the eigenvectors obtained from NASTRAN. The input is read from TAPE 5, and the output (critical eigenvectors) is listed on TAPE 6.

The input file contains three pieces of information. First, the number of critical modes (N). Second, the list of eigenvector numbers (ID), and lastly, the 38 eigenvalues and eigenvectors. The output from NASTRAN needs to be modified so that only the eigenvectors and eigenvalues are present.

The eigenvectors are placed into a three dimensional array, MAT (59, 6, 38). The desired eigenvectors are then written into TAPE 6 using the ID vector to identify the critical ones.

Following is a description of the variables used in SELECT:

ID (I) = The eigenvector numbers of the critical modes.

M = Index, set equal to ID for each mode.

MAT(I,J,K) = Three dimensional array of eigenvectors.

MODE (K) = List of eigenvector numbers.

N = Number of critical modes.

```
PROGRAM SELECT (INPUT, SUTPUT, TAPES, TAPES)
    DIMENCION MAT (59,6,3/), MCOE (3-), ID (3/)
    READ(5,*)!
    READ(5++)(ID(1),1=1,N)
    Do 1 K=1.38
    READ(5,100)MODE(K)
    READ(5,200)((MAT(1,J.K),J=1,6), =1,59)
  1 CONTINUE
    00 2 K=1.
    M=ID(K)
    WRITF(6.300)((MA^*(I.J.M).J=1.6).T=1.59)
    PRINT** "MODES READ ARE : " (M DE(1) , 1=1+36)
    PRINT** "MODES FILED ARE : " (ID(I) . 1=1.4)
100 FORMAT(I3)
200 FORMAF(1P3E15.6)
300 FURMAT(1X.1P3E15.6)
```

Appendix C

ANGLE

This program uses the sensor/actuator model and the critical modes to calculate the system matrices (B and C), and the coupling angles between the system modes.

The program first reads the sensor/actuator model. The number of critical modes (N), actuators (NA), and sensors (NS) are read as integers. Next the orientation angles of the actuators ALPHA, BETA, and GAMMA are read. The identities of the nodes where the actuators are placed are listed in NODE. Note that this array allows multiple actuators at one node. The sensors are similarly read.

The critical modes are read next into PHI. To find the value corresponding to a particular node's degree of freedom, the ID vector is used. This vector orders the nodes of the structure:

ID
$$(1-19)=1-19$$
 ID $(52)=910$ ID $(56)=1004$ ID $(20-34)=26-40$ ID $(53)=1001$ ID $(57)=1112$ ID $(35-50)=42-57$ ID $(54)=1002$ ID $(58)=2830$ ID $(51)=100$ ID $(55)=1003$ ID $(59)=3233$

The calculation of the system matrices uses the formulas given in the text for elements of B and C. The only complication involves picking out the proper element of the eigenvector. This is accomplished using NODE and ID. NODE identifies the node in question, while ID translates this identification to determine which of the 59 nodes it is. This determination allows the proper PHI value to be picked out.

After the system matrices are calculated, it is a simple matter to determine the angles between the modes. The dot product formula given in the text is used to make the calculations. The norms squared of the rows (B) and columns (C) are given by BSQ and CSQ respectively. Dot products are CB and CC. The angles are put into matrices ANGB and ANGC.

Following is a description of the variables used in ANGLE:

- ALPHA (I) = \propto , the angle between +x axis and the actuator.
- ALPHS (I) = ∞ , the angle between +x axis and the sensor.
- ANGB (I,J) = The output matrix of angles between the rows of B.
- ANGC (I,J) = The output matrix of angles between the columns of C.
- B (I,J) = System matrix which is the matrix times the direction cosine matrix of the actuators.
- BETA (I) = β , the angle between +y axis and the actuator.
- BETS (I) = β , the angle between +y axis and the sensor.
- BSQ (I) = The sum of the squares of each element in a row of B.
- C (I,J) = System matrix which is the direction cosine matrix of the sensors times the pmatrix
- CB = The dot product of two rows of B.
- CC = The dot product of two columns of C.
- CON = Conversion factor, $\pi/180$
- CSQ (I) = The sum of the squares of each element in a column of C.
- GAMMA (I) = 0, the angle between +z axis and the actuator.
- GAMMS (I) = 8, the angle bestween +z axis and the sensor.

ID (I) = The node that corresponds to the rank number.

N = The number of critical modes.

NA = The number of actuators.

NODE (I) = The list of actuator nodes.

NODS (I) = The list of sensor nodes.

NS = The number of sensors

PHI (I J) = Input matrix of critical modes.

PI = **↑**↑

```
PROGRAM ANGLE (INPUT, SUTPUT, TAPES, TAPES)
   DIMERSION PHIC354,38), ALPHAC5 ), BETAC59), GAMMAC59)
   DIMENSION ALPHS(E ),BUTS(D3),GAMMS(5%),NODE(5%),FODE(5%),TD(5%)
   DIMENSION ANGR(3: .70),AMGC(30,33),88Q(59).CSQ(58)
   DIMENSION B(30.53).C(59.33)
   ~ EAD (5,*) N, NA, NO
  PRINT 200
   PRINTAR NUMBER OF CHITICAL MODEL = """
  DRING ** * *
  PRINT*** NUMBER OF ACTUATOR = ".NA
  DSIN_#*H H
   PRINTAGE NUMBER OF SENSORT = Make
   READ(5++)(ALPHA(I)+I=1+NA)
   READ(5,*)(BETA(I),I=1,NA)
   PEAD(5,*)(GAMMA(I),I=1,NA)
   PEAD(5,*)(NCDE(I),I=1,NA)
   path"***
  PRINTA . .
   PRINT***
                         GRIENTATION OF ACTUATOR" .
   DEINIA. .
   PRINT*.
                         1.CDE
                                  ALPHA
                                              RETA
                                                       GAWYA "
               Ħ
   00 1 I=1. A
   PRINT*** *
1 PRINT 300 +I +NCDE(I) +ALPHA(I) +BETA(I) +GAMMA(I)
   →EAD(5,*)(ALPHS(I),I=1,M))
   @ EAD(5,*) (BETS(I),I=1,NJ)
   PEAD(5,*)(GAMMS(I),I=1,NE)
   READ(5,*)(NODS(I),I=1,NI)
   PRIN *** * *
   PHINTA, W W
   PRINTA, W
                          ORIENTATION OF SENSORS *
   PRINTA, # #
                                  ALPHA
                                              BETA
                                                       GAMMA "
   PRIN **
                         :.∪0€
   00 2 I=1.45
   DRIN *** #
 2 PRINT 300 .I.NCOS(I).ALPH (I).HETS(I).GAMM"(I)
   PEAD(5,400)((FHI(1,J),I=1,354),J=1,N)
   PEAD(5,*)(ID(1), =1,59)
   PI=3.14155 2655 C
   CON=91/116.0
   00 30 J=1+1A
   ALPHA(J)=ALPHA(J) *C To
   BETA(J)=BETA(J)+C N
   GAMMA(J)=GAMMA(J) +CCN
   0: 10 K=1.55
10 IF(ID(K).EQ.MODE(J))60 TO 20
DO CONTINUE
   K=6+K-5
   DO 30 I=1 .N
   B(I,J)=PHI(K,I)*C:S(ALPHA(J))+PHI(K+1,I)*C:?(BETA(J))
  1 +PHI(K+2 +1) +CCC(GAMMA(J))
30 CONTINUE
```

```
DO 60 I=1.NS
    ALPHS(I)=ALPHS(I) *CON
    BETS(I)=BETS(I)+CON
    GAMME (I) = GAMME (I) + CON
    D? 40 K=1.59
 40 IF(ID(K).EQ.NCDS(I))G0 TO 50
 50 CONTINUE
    K=6+K-5
    00 60 J=1.1
    C(I,J)=PHI(K,J)*CCS(ALPH3(I))+PHI(K+1,J)*C1S(BETS(I))
   1 +PHI(K+2,J)+COS(GAPM: (I))
 40 CONTINUE
    90 70 I=1.
    8 (Q(I)=0.0
    DO 70 K=1,NA
    BSQ(I)=B(I,K)++2.0+BSQ(I)
 78 CONTINUE
    00 90 I=1.N
    DO 90 J=1,1
    CB=0.0
    D0 80 K=1.1 A
 96 CB=B(I,K)+B(J,K)+CB
    ANGB(I,J)=ACGS(CB/SQRT(BSQ(I))/SQRT(BIQ(J)))
    ANGB(I, J) = ANGB(I, J)/C N
 90 CONTINUE
    00 100 I=1.N
    C = Q(I)=0.0
    DC 100 K=1.NS
    CSQ(I)=C(K+I)++2.0+CSQ(I)
100 CONTINUE
    DO 123 I=1.
    DO 120 J=1.5
    C C=0.3
    D0 110 K=1.N0
110 CC=C(K,I)+C(K,J)+CC
    ANGC(I.J) =ACCS(CC/SQRT(CSQ(I))/SQRT(CSQ(J)))
    ANGC(I+J)=ANGC(I+J)/CoN
120 CONTINUE
    PRINE 200
    PRINT 203
    PRINT 210 ( I . T = 1 . ' A)
    DO 500 [=1.*
500 PRINT 220,I,(R(I,J),J=1, A)
    PRINT 200
    PRINT 234
    PRINT 210 ([ | I = 1 + .)
    D3 600 I=1.68
600 PFINT 220 .I. (C(I.J).J=1.)
    PRIN' 200
    PPINT 201
    PRINT 210 ((1.1=1.)
    UC 130 I=1.t
130 PRINT 220,1, (ANGB(I,J),J=1,4.)
```

```
PRINT 200
PRINT 202
PRINT 210,(I,I=1,')
D0 140 I=1,N
140 PRINT 220,I,(ANGC(I,J),J=1,*!)
200 FORMAT(1H1)
210 FORMAT(1X,5X,IT,11110,/)
220 FORMAT(1X,/,I5,12F10.4,/,SX,12F10.4)
201 FORMAT(1X,20X,24HANGLES BETWEEN ROWS OF B)
202 FORMAT(1X,20X,27HANGLES BETWEEN COLUMY,S CF C)
203 FORMAT(1X,20X,4HB MATRIX)
204 FORMAT(1X,20X,4HC MATRIX)
300 FORMAT(1X,15,111,F11.2,2F10.2)
400 FORMAT(1F3E15.6)
END
```

Appendix D

ORIENT

ORIENT is a modified ANGLE program used to calculate the angle matrix for many different actuator models. Two major differences between ANGLE and ORIENT exist. ORIENT has an added actuator that varies its location and orientation. It also has requirements of acceptance that give a measure of improvement.

ORIENT first calculates the B matrix without the added actuator. This part of the B matrix remains constant. Only a new column needs to be added with the new actuator. This new column is calculated for every node point and every possible orientation (step at 5° increments).

After the new column is calculated, ANGB is determined as in ANGLE. However, after the angle is calculated for each mode pair, it is then tested. If any angle does not meet the requirements of acceptance, the program immediately steps to the next possible orientation for the actuator. If every angle meets the requirements, ANGB is printed out for the particular orientation and location of the actuator at that time.

This version of ORIENT establishes the requirements of acceptance by observing the coupling characteristics between the modes of different groups. The requirements differ depending on what groups the modes are in. If the modes are in the same group, they are required to be coupled. If they are in different groups, the angle has to indicate decoupling. This facet of the program is implemented by reading each mode number into a group (N1, N2, or N3) at the beginning of ORIENT.

This mode group identification allows great flexibility. First, a mode grouping can be tried by just assigning the modes to different groups. Second, the threshold for coupling and decoupling can be reassigned to any desired level. This is the method with which problem angles are dealt.

Following is a description of the variables used in ORIENT:

A	=	Possible & orientation, calculated at
		5° increments.

- ALPHA (I) = α , the angle between +x axis and the actuator.
- ANGB (I,J) = The output matrix of angles between the rows of B.
- ARG = The cosine of the angle between the rows of B, argument of arc cosine equation.
- B (I,J) = System matrix which is the ϕ matrix times the direction cosine matrix of the actuators.
- BE = Possible β orientation, calculated at 5° increments.
- BETA (I) = β , the angle between +y axis and the actuator.
- BSQ (I) = The sum of the squares of each element in a row of B.
- CB = The dot product of two rows of B.
- CON = Conversion factor, 17/180.
- G = Possible orientation, calculated from A and BE.
- $G2 = 180^{\circ} G$
- GAMMA (I) = 8, the angle between +z axis and the actuator.
- Il = Index of modes in group 1.
- = Index of modes in group 2.
- = Index of modes in group 3.

ID (I) = The node that corresponds to the rank number.

N = The number of critical modes.

N1 (I) = First group of modes.

N2 (I) = Second group of modes.

N3 (I) = Third group of modes.

NA = The number of actuators.

NAA = NA + 1.

ND = Index, set equal to ID for each node.

NODE (I) = The list of actuator nodes.

PHI (I,J) = Input matrix of critical modes.

PI = **↑**

```
PROGRAM GRIENT(IMPUT.OUTPUT.TAPES.TAPE6)
   DIMENSION PHI (354,30), ALPHA (59), BETA (59), GAMMA (59)
   DIMENSICA N.DE(59), (D(59), N1(5), N2(5), N3(5)
   DIMENSION ANGB(30.30).BSQ(59).B(30.59)
   READ(S++)N+NA
   ~EAD(5**)(ht(I)*I=1*4)
   NEAD(5**)(例2(Y)*1=1*5)
    EAD(5,*)(A3(I),I=1,3)
   PRIN 200
   PRINTA ..
             NUMBER OF CRITICAL MODES = ".N
             NUMBER OF ACTUATORS = ".NA
   DRINIA . .
   SEAD(5•*)(ALPHA(I)•1=1•NA)
   FEAD(5,*)(BETA(I),I=1,NA)
    EAD(5.+)(GAMMA(I).I=1.NA)
   (AM, I=1, (I)385A) (*, 7) BAB
   PRINT★→# #
   PRINT+ . #
   PRIN **
                          ORIENTATION OF ACTUATORS .
   PRINTA, ** *
   PRINTA .
                          NODE
                                    ALPHA
                                               BETA
   00 1 I=1 . A
   PRIN *** *
 1 PRINT 300,1,00DE(I),ALPHA(I),BETA(I),GAMMA(I)
   TEAD(5,488)((PHI(I,J),I=1,354),J=1,N)
    EAD(5 * *)(ID(I) * I = 1 * 59)
   11=3.1415926580
   CON=01/190.8
   ', AA=', A+1
   DO 30 J=1.0.A
   ALPHA(J) = ALPHA(J) +CCN
   BETA(J)=BETA(J) * CON
   GAMMA(J) = GAMMA(J) + CON
   D" 13 K=1.54
10 IF (ID(K).FQ. MODE(J))GC TO 20
20 CONTINUE
   ドニらまドーち
   00 3: I=1.6
   H(I,J)=FHI(K,I)+CGS(ALPHA(J))+PHI(K+1,I)+CGS(BETA(J))
  1 +PHI(K+1,I) +CCT(GAMMA(J))
30 CONTINUE
   00 969 KK=1.39
   DD=1D(KK)
   D: 949 IA=1.37
   TAA=S+TA-5
   A=IAA+C A
   D 5-3 18=1.37
   188=5+18-5
   RE=IRB*C A
   IF(IAA+IBB.//E. 40) GC TO 31
   9=90.6*C.N
   60 TU 32
31 CUNTINUE
   CISARCON (A)
    F(C SA-LT-C-) CCSA=-CARA
   IFC IN(BE).LT.COSA) GC TC SEC
```

```
G=ACTS(GIN(BE) *CGS(ASIN(CGSA/TIN(BE))))
    62=150 +C N-6
 32 CONTINUE
    0: 998 IG=1.2
    IF(IC.EQ.1) 60 10 33
    IF(IAA+188.EQ.90) GO TO 998
    G=G2
 33 CONTINUE
    K=KK +6-5
    DC 5 I=1 . .
    B(I, '.AA) = PHI(K, I) + CCJ(A) + PHI(K+1, I) + CCS(B)
   1 +PHI(K+2,I) + CCS(6)
  6 CUNTINUE
    DO 70 I=1.6
    B0Q(I)=0.0
    DO 70 K=1.NAA
    B3Q(I)=B(I,K)++2.0+B3Q(I)
 70 CONTINUE
    00 90 I=1.6
    00 95 J=1.N
    CB=0.0
    DO 30 K=1+1AA
 80 CB=B(I,K)+B(J,K)+CB
    ARG=CH/SQRT(BSQ(I))/SQRT(BSQ(J))
    IF(AnG.LE.1.DECO) GO TO RI
    AMGB(I.J)=0.
    60 70 82
 MI CONTINUE
    AGGB(I,J) = ACES(CB/SQRT(BSQ(I))/SQRT(BSQ(J)))
F2 CONTINUE
    AMGB(I.J)=AMGB(I.J)/CON
    D. 101 11=1.4
101 (F(I.E0.N1(I1)) GC TO 104
    D: 102 12=1.5
102 IF(I.EQ. 82(I2)) GC TO 105
    0 103 *3=1.3
103 IF(I.EQ.W3(I3)) GO 70 106
104 D: 114 I1=1.4
114 IF(J.EQ.51(I1)) GO TO 110
    60 74 111
135 0 115 12=1.5
115 IF(J.E0.42(12)) GO TO 110
    60 111
10F D 116 13=1.3
    CF(J.Eq. 53(13)) GC 10 119
    GO Y : 111
11: JF(A'GB(1.J).L7.42.8.07.ANGB(1.J).GT.163.0) GO TO 90
    60 11 99 4
111 TF(A/GR([,J).GT./6.0.AND.ANGB(I,J).LT.97.0) GO TO 99
    BC 1 - 904
 9. CUNTINUE
    PRINT SHU, A/CHN, BE/CON, G/CON, ND
    PHINT 201
    FRINT 210 ((1.I=1.N)
    00 130 1=1.4
130 PPINT 220 (T. (ANGR(I.J).J=1.N)
```

```
200 FURMAT(1H1)
210 FURMAT(1X,5X,17,11110,/)
220 FURMAT(1X,7,15,12F10,4,7,5X,12F10,4)
201 FURMAT(1X,30X,24HANGLES BETWEEN ROWS OF B)
400 FURMAT(1X,15,111,F11,2,2F10,2)
400 FURMAT(1X,15,111,F11,2,2F10,2)
400 FURMAT(1X,20X,6HALPHA=,F4,0,6H BETA=,F4,0,7H GAMMA=,F4,0,
1 FH AT MODE:,15,//)
400 CONTINUE
400 CONTINUE
400 CONTINUE
```

Vita

Robert Raymond Luter, Jr. was born on 24 March 1959 in Corpus Christi, Texas. He graduated from high school in Austin, Texas in 1977 and attended the University of Texas at Austin, from which he received the degree of Bachelor of Science in Aerospace Engineering in May 1981. Upon graduation, he received a commission in the United States Air Force through the ROTC program. He was then assigned to the School of Engineering, Air Force Institute of Technology, in June 1981.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE									
1a REPOR	TSECURITY	CLASSIFIC	ATION		1b. RESTRICTIVE MARKINGS				
Unclassified				<u> </u>					
20. SECURI	TY CLASSIFI	CATION AL	THORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
2.220.4		12.0001.000			Approved for public release; distribution				
26. DECLAS	SSIFICATION	/DOWNGRA	IDING SCHEL	DOCE	unlimited.				
4. PERFOR	MING ORGAN	NIZATION F	REPORT NUM	BEA(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)				
	/GA/AA/8				<u> </u>				
	F PERFORM			8b. OFFICE SYMBOL (If applicable)	7a. NAME OF MON	ITORING ORGAN	IZATION		
	rce Inst	itute o	I.	AFIT-EN	· ·				
Techno	SS (City, State	4 71D Co		AFII-EN	2	S. 4	4-1		
	ss <i>(City, Stote</i> :-Patters			5433	7b. ADDRESS (City	, State and ZIP Co	ae)		
WI I BILL	-146555	· · · · · · · · · · · · · · · · · · ·	0.1120	, , , ,	ł				
					1				
So. NAME C	F FUNDING/	SPONSORI	VG	86. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION	NUMBER	
ORGAN	IZATION			(If applicable)					
				<u> L</u>	<u> </u>				
Sc. ADDRES	SS (City, State	and ZIP Co	de)	•	10. SOURCE OF FU				
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
							1		
11. TITLE	Include Securi	ty Classificat	ion) Optin	nal Sensor/	1	•	ł	}	
			•	Space Structure		<u> </u>	1		
	IAL AUTHOR								
	R. LUTE	R. JR.			r				
	OF REPORT		13b. TIME C		14. DATE OF REPORT (Yr., Mo., Day)				
MS The	SÍS MENTARY NO	OTATION	PROM	то	84 March	Replaced by you	700 TOLOGOGY, LAW.	APR 198.0	
						ETHE E. WOLAV			
						Air Porce Institute	and Professional	Development FV	
17.	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if n	ecesally alleran	MAD Pilostania d	er)	
FIELD	GROUP	SUE	3. GR.	Sensor/Actuato	r Placement	Control Sp			
		 -		Large Space St	ructure	Decentrali	zed Control	ller	
40 40000	Observation Spillover								
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The method of eliminating observation and control spillover is studied by making									
-> Th	ne method	of ell	minating	observation and lled modes ortho	control spr	h other T	hese modes	are the	
groups	or reduc	ea orae	r contro.	matrices which	are calculate	ed from the	direction	cosine	
rows and columns of the system matrices which are calculated from the direction cosine matrix and the eigenvector matrix. The direction cosine matrix is determined from the									
locations and orientations of the sensors/actuators. The eigenvector matrix is determined									
from the NASTRAN finite element model of the large space structure. The decentralized									
control	controller can be made stable if the placement of the sensors/actuators cause the spill-								
over to be eliminated.									
The program ANGLE is developed to calculate the angles between modes. After selec-									
ting a possible grouping of modes, problem angles are identified for improvement. These									
angles are then improved using the ORIENT program by manipulating the sensor/actuator placement model. Finally, the finite element model is changed to see its effect on the									
angles between the modes.									
20. DISTRIBUTION/AVAILABILITY OF ASSTRACT 21. ABSTRACT SECURITY CLASSIFICATION									
' \								Ī	
UNCLASSIF	UNCLASSIFIED/UNLIMITED T SAME AS RPT. TO DTIC USERS TO Unclassified								
	222. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL							MBOL	
Maj M	lartin W	lallace	:	İ	(Include Area Co 513-255-29	• •	AFIT/E	NY I	
i						<i>-</i>	1 22.77/5		

FILMED

DTIC