

JINJA JOINT EXAMINATIONS BOARD

MOCK EXAMINATIONS 2023

MATHEMATICS - 456/2

MARKING GUIDE

NO.	SOLUTION	MARK	COMMENT
1.	2		
	$x = \frac{\pi}{3} \text{ or } x = -4$		
	$x-\frac{2}{3}=0, x+4=0$	MI	
	3x - 2 = 0, x + 4 = 0		
	(3x - 2)(x + 4) = 0	MI	For expanding and
	3x(x+4) - 2(x+4) = 0	MI	simplifying
	$3x^2 + 12x - 2x - 8 = 0$	Al	3,111,111,111,111
	$3x^2 + 10x - 8 = 0$	5.5.5	
2.	n(E)=70		
	n(B)=34 $n(L)=38$		
		Bi	For correct
	34-x (x)	DI	information in the
1	38-x) 38-x		venn diagram
	2		1 1 5 7 7 8 1
	34 + 38 - x + 2 = 70		
1 -1	74 - x = 70	MI	
	-x = 70 - 74		
	-x = -4	Al	
	x = 4	Al	
	$\therefore n(B \cap L) = 4 \text{ farmers}$	-	
3.	$\binom{2}{3}m + \binom{3}{4}n = \binom{19}{27}$		
	2m + 3n = 19		
	3m + 4n = 27		
	312m + 3n = 19	MI	
	2 3m + 4n = 27 6m + 9n = 57	174.4	
11	-6m + 9n = 57 -6m + 8n = 54		
	n=3		
100	3m + 4(3) = 27	Al	
	3m = 27 - 12	MI	P 11 7 11 22 1
	3m _ 15		
	3 = 3		- 1
	m=5	Al	Di Escher St
	$\therefore m = 5, n = 3$		
4.	VSF = volume of supper		
217.0	$VSF = \frac{volume of supper}{volume of min}$		
	volume of min 1800	B1	
	= 1200 1200 VSE - 15	200	
25.5	VSF = 1.5		
5.50	$VSF = (LSF)^3$		
	$\sqrt[3]{1.5} = \sqrt[3]{(LSF)^3}$	B1	
	lane 1 of 9		

-	1.1447 = LSF		
	$LSF = \frac{Height \ of \ supper}{Height \ of \ supper}$		
	neight of min	MI	
	$1.1447 = \frac{H_S}{25}$	IMI	
	$H_{\rm d} = 1.1447 \times 25$	Al	
	= 28.6175	100000	
	$\approx 28.6 (3.sf)$		
-			
5.	f(x) = x + 7, g(x) = 3x - 5 gf(x) = 3(x + 7) - 5		
	= 3x + 21 - 5	MI	
	gf(x) = 3x + 16	Al	
	3x + 16 = x + 7	MI	
1 10	3x - x = 7 - 16 $2x - 9$		
	$\frac{2}{2} = \frac{2}{2}$		
	x = -4.5	Al	
6.	X		
Hara W			
	1 34		
	A () B		
	32 cm		
	Y		
14 - 1			
	34cm		
1 3			
H I			
	о 1 в		7
	12 . 422 . 042		
	$h^2 + 16^2 = 34^2$ $h^2 = 34^2 - 16^2$		
	$\sqrt{h^2} = \sqrt{1156 - 256}$	MI	
	$h = \sqrt{900}$		
	h = 30 cm	A1	
	$V = \frac{1}{3}\pi r^2 h$		
	1 22	M1	
	$=\frac{1}{3} \times \frac{22}{7} \times 16^2 \times 30$		
	$ \begin{array}{l} 3 & 7 \\ $	A1	
7.	$Gradient = \frac{y_2 - y_1}{2}$		
	-84 $x_2 - x_1$		
	$={42}$		
	=-4		
	6 -2	20.0	
	= -	B1	For correct gradient
	$m \times m_1 = -1$		
	$m \times m_1 = -1$ $\frac{-2}{3} \times m_1 = -1$		
	3		

		The state of the s
3	B1	For correct gradient
$m_1 = \frac{1}{2}$		
Mid point $AB = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	-	
$=\left(\frac{-2+4}{2}, \frac{-4-8}{2}\right)$	B1	For correct mid point
=(1,-6)		
y = mx + c		
$-6 = - \times 1 + c$		
2 3		
$-6 - \frac{7}{2} = c$		
-15		
$-6 = \frac{3}{2} \times 1 + c$ $-6 - \frac{3}{2} = c$ $c = \frac{-15}{2}$		
$c = -7\frac{1}{2}$ $\therefore y = \frac{3}{2}x - 7\frac{1}{2}$		
3 ² 1		
$\therefore y = \frac{1}{2}x - 7\frac{1}{2}$	Bl	For correct equations
8. $Area = L \times W$		
$=(\sqrt{2}+\sqrt{3})(\sqrt{2}-2\sqrt{3})$	20000	
$=\sqrt{2}(\sqrt{2}-2\sqrt{3})+\sqrt{3}(\sqrt{2}-2\sqrt{3})$	MI	For expanding
$= 2 - 2\sqrt{6} + \sqrt{6} - 2 \times 3$	MIMI	For simplifying
$=(-4-\sqrt{6})cm^2$	Al	Tor simping ing
$\therefore Area = (-4 - \sqrt{6})cm^2.$		
9. Hire purchase = Deposit + monthly installments		
$= \frac{60}{100} \times 270,000 + 4 \times 50,000$	MI	
	M1M1	
= 162,000 + 200,000 Hire purchase price = shs 362,000	Al	
10. $A \propto BC^2$	74.1	
$A = kBC^2$	MI	For correct
$80 = k \times 5 \times 2^2$		substitution
$\frac{80}{20k} = \frac{20k}{20k}$		
20 20	A1	
$k = 4$ $A = kBC^{2}$		- 1
$=4\times7\times1^2$	MI	
= 28	1776	
$\therefore A = 28 \text{ when } B = 7 \text{ and } C = 1$	A1	
11.(a) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$		
$=\binom{5}{2}-\binom{2}{-3}$		
	В1	
$=\binom{3}{5}$	100	
$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$		
$=\binom{7}{5}-\binom{5}{2}$		
	12472	
$=\binom{2}{3}$	Bl	2 - 5.7 1
$\overline{CD} = \overline{OD} - \overline{OC}$		스 프랑네 네트를
$=\binom{-4}{1}-\binom{7}{5}$		
$=\begin{pmatrix} 1/1 \\ -11 \end{pmatrix}$	1 216	
	200200	Figure 1
$\overrightarrow{DA} = \overrightarrow{OA} - \overrightarrow{OD}$	B1	
$=$ $\begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$		
$=\begin{pmatrix} 6 \\ 1 \end{pmatrix}$		
	B1	
$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = 0$	I STATE OF	

				3
	$ \binom{3}{5} + \binom{2}{3} + \binom{-11}{-4} + \binom{6}{-4} $ $ \binom{3+2-11+6}{5+3-4-4} = \binom{0}{0} $ $ = 0 $	MI		3
	Hence proved	AI		
	2/ \			0
(i)	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= {15 \choose 20} - {9 \choose 12}$ $= {6 \choose 8}$			
	$\overrightarrow{OL} = \overrightarrow{OP} + \overrightarrow{PI}$	В1		
(ii)	$= {9 \choose 12} + \frac{1}{2} {6 \choose 8}$ $= {9 \choose 12} + {3 \choose 4}$ $\overrightarrow{OL} = {12 \choose 16}$ $\overrightarrow{KL} = \overrightarrow{KP} + \overrightarrow{PL}$			
	$ \overline{OL} = \begin{pmatrix} 12\\16 \end{pmatrix} \\ \overline{KL} = \overline{KP} + \overline{PL} \\ 2 \begin{pmatrix} 9 \\ 1 \end{pmatrix} (3) $	Al		
	$= \frac{2}{3} {9 \choose 12} + {3 \choose 4}$ $= {2 \choose 3} \times 9 \choose 1 + {3 \choose 4}$			
	$= \begin{pmatrix} \frac{2}{3} \times 9 \\ \frac{2}{3} \times 12 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $= \begin{pmatrix} 6 \\ 8 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $= \begin{pmatrix} 9 \\ 12 \end{pmatrix}$ $ \overline{KL} = \sqrt{9^2 + 12^2}$	MI		
		Al	*	
	$= \sqrt{61 + 144}$ $= \sqrt{225}$ $= 15$ $\therefore \overrightarrow{KL} = 15 \text{ units}$			
		Bl		
12.	40 cm			
	30cm			
	30			
	30			

Page 4 of 9

_			
	h+30_30		
	$\frac{h}{h} = \frac{1}{20}$	MI	
	20(h+30) = 30h		
	20h + 600 = 30h		
	600 10h		
1 7	10 = 10		
	60 = h	Al	
	Volume of original cone = $\frac{1}{3} \times \frac{22}{7} \times 30^2 \times 90$	MI	
	$= 84857.14 cm^3$		
	Volume of cut off cone	A1	
	$V = \frac{1}{3} \times \frac{22}{7} \times 20^2 \times 60$	M1	
	$= 25142.86 \text{ cm}^3$	A1	
		MI	
	Volume of the bucket = 84857.14 - 25142.86		
	$= 59714.28 cm^3$	A1	
	Volume of the hemisphere = $\frac{2}{3}\pi r^3$		
	2 22		
1	$=\frac{2}{3}\times\frac{22}{7}\times30^3$	M1	
100	$= 56571.43 cm^3$	AI	
	Volume of the whole solid = 59714.28 + 56571.43	M1	
	$= 116285.71 cm^3$	Al	
13.(a)			
2557755	$(8x^{\circ})^{3} \times (16x^{\circ})^{4}$		
	$= \left(\left(\frac{1}{2x^2} \right)^3 \right)^{\frac{3}{3}} \times \left(\left(\frac{1}{2x} \right)^4 \right)^{\frac{1}{4}}$ $= \frac{1}{2x^2} \times \frac{1}{2x}$ $= \frac{1}{4x^3}$	MI	
	$=\left(\begin{pmatrix} 1\\ -\end{pmatrix} \right)^{2} \times \left(\begin{pmatrix} 1\\ -\end{pmatrix} \right)^{2}$	IVII	
	$(2x^2)$ $(2x)$		
	1 1	M1	
	$=\frac{1}{2x^2} \times \frac{1}{2x}$	IVII	
	$=\frac{4x^3}{4}$		
26.5		A1	
(b)	1cm = 2500 cm		
	$1cm^2 = (2500)^2 cm^2$		
	$20cm^2 = (20 \times 2500^2)cm^2$	MI	
	20 × 2500 × 2500		
1	Actual area =	M1	1 To 2 2 2 1 To 1
	$= 20 \times 0.25^{2}$ $= 20 \times 0.25^{2}$	MI	
			THE VIEW
	$=1.25km^2$	A1	-3-5-1-1
	∴ Actual area of the school is 1.25km²		THE RESERVE
(c)	$h \propto d$		
	h = kd	MI	
	150 20k	Al	
	$\frac{1}{20} = \frac{1}{20}$	AL	
	7.5 = k	Dr.	
111	$h = (3.6 \times 100)$	BI	97 - F-F-1
Ha F	= 360 cm		
	h = kd		S CHARLES IN SEC.
	360 7.5d	MI	
	7.5 = 7.5	Al	
	48 cm = d		
	: Diameter of the foot prints will be 48 cm when the h		
	= 360 cm		DÉ RIE LE LE LE

[4.(a)			
	n(XI) = 26 $24x$ x x x x x x x x x	В2	For all correct entries in the venn diagram
	n(I)=31		0
	n(M)only = 26 - (11 - x + x + 13 - x) $= 26 - 24 + x$ $= 2 + x$ $n(R)only = 28 - (13 - x + x + 15 - x)$ $= 28 - (28 - x)$	В1	
	= 28 - 28 + x $= x$ $n(I)only = 31 - (11 - x + x + 15 - x)$ $= 31 - (26 - x)$ $= 31 - 26 + x$	В1	
	= 5 + x $26 + x + 15 - x + 5 + x = 52$ $46 + x = 52$ $x = 52 - 46$ $x = 6$	B1 M1	
b(i)	6 students ate all the 3types of foods.	B1	
(ii)	Atleast 2types = 5 + 7 + 6 + 9 = 27 students	MI Al	
(c)	Atmost one type of $foods = 8 + 6 + 11$ = 25 students	Ml	
	$Probability = \frac{25}{52}$	A1	*
15.(a) (i)	$f(x) \text{ not defined} x^2 + x - 6 = 0 x^2 - 2x + 3x - 6 = 0 x(x - 2) + 3(x - 2) = 0 (x - 2)(x + 3) = 0 x - 2 = 0, x + 3 = 0 x = 2, x = -3 \therefore f(x) \text{ is not defined when } x = 2 \text{ or } x = -3$	M1 A1A1	
	$ \frac{2}{x-2} - \frac{10}{x^2 + x - 6} $ $ \frac{2(x+3) - 10}{(x+3)(x-2)} $ $ \frac{2x+6-10}{(x+3)(x-2)} $ $ = \frac{2x-4}{(x+3)(x-2)} $ $ = \frac{2(x-2)}{(x+3)(x-2)} $ $ = \frac{2}{x+3} $	MI AI	
b(i)		MI	

	$g(0) = \frac{10}{0^2 + 0 - 6}$		
	$0^{2} + 0 - 6$		
	10-10		
	6	Al	
	, 2	(0.)	
(ii)	$=-1\frac{1}{3}$		
	F(-) 2		
	$f(x) = \frac{1}{x-2}$	0	0
	$f(x) = \frac{2}{x-2}$ $y = \frac{2}{x-2}$ $x = \frac{2}{y-2}$		
	$y = \frac{1}{x-2}$		
	2		
	$x = \frac{1}{v-2}$	MI	
	2 = xy - 2x		
	2x + 2 xy		
	= = = =		
	$y - 2$ $2 = xy - 2x$ $\frac{2x + 2}{x} = \frac{xy}{x}$ $y = \frac{2x + 2}{x}$ $f^{-1}(x) = \frac{2x + 2}{x}$ $f^{-1}(2) = \frac{2 \times 2 + 2}{2}$ $= \frac{6}{2}$ $= 3$		
	$y = \frac{1}{2}$	Al	
	2r+2		
	$: f^{-1}(x) = \frac{1}{x}$	MI	
	$2 \times \overset{\chi}{2} + 2$		
	$f^{-1}(2) = \frac{1}{2}$		
	6		
	$=\frac{1}{2}$	A1	
	= 3		
	$f^{-1}(2) = 3$		
16.	Taxi from town M		
	T(hrs) 7.20 9.00 9.20 0.20		
	D(km) 0 50 50 1.30	B2	
	130 210 201 370 350		
	Remaining distance = 400km		
	$T = \frac{400}{80}$		
	= 5hrs		
	Subaru from town N T(hrs) 8:00 9:00 9:30 10:30 11:30 12:30 1:00		
	Dat 12.30 12.30 13.00		
The second	D(km) 0 100 100 200 300 400 450	B2	
	Cellianning dictages 250km		100
	$T = \frac{350}{100}$		- 1
1 7 - 7	100		
	= 3.5 hrs		
	D = (225 + 2.5) = 227.5 km from M		
		BI	
	D = (450 - 227.5)km		
	= 222.5 km		
	≈ 223km from town N .		1. 1 . 32 .
	$Time = 10:30 \ am + 12 \ min$		
U TE	= 10:42am	B1	
	∴ They met at 10:42am after travelling 222.5 km from N	21	
	Tweeting 222.5 km from N		

	- North	August Marie		A HAR		
70	413 50	40	10 Marie 144 W			
	33			/		
	90	+		X III		
			*			
	NA-	*				
			以实现 / / / / / / / / / / / / / / / / / / /			
				i i		
	- 8					
	8 11		LI V			
	100	K-L				
					10) 2	
		549-				
		68. T				
		100 620	50c his 17so 4.5	0 110 450		
	T _{GMOT} N	130 635				
			Time (045) 12			
Lunch		720,000	35,	,000	MI	
Transp		12	60,		MH	
Mariag			25,	000		
Housin	g = 3	$\frac{1}{0}$ × 720,000	36,0	000		
Childre	n (6yrs	and 10 yrs) (2x5000) 10,0	000		
	14 y	rs	3,0	00	A1	
		ices = shs197				
		man Canada in	come - Allowances			
= 720	000 - 1	197,000			M1	
= 720 = shs	000 – 1 23,000	197,000		Dit	M1 A1	
= 720 = shs	000 - 1 23,000 Rate	Amount to	Tax	Balance to		
= 720 = shs! Slabs	000 - 1 23,000 Rate (%)	Amount to tax	Tax	be taxed		
= 720 = shs	000 - 1 23,000 Rate	Amount to	Tax		A1	
= 720 = shs! Slabs	000 - 1 23,000 Rate (%)	Amount to tax	$\frac{5}{100} \times 120,000$	be taxed		
= 720 = shs! Slabs	000 - 1 523,000 Rate (%) 5	Amount to tax 120,000	$\frac{5}{100} \times 120,000$ = $shs6000$	be taxed 403,000	A1	
= 720 = shs! Slabs	000 - 1 23,000 Rate (%)	Amount to tax	$\frac{5}{100} \times 120,000$ = $shs6000$	be taxed	A1 B1	
= 720 = shs! Slabs	000 - 1 523,000 Rate (%) 5	Amount to tax 120,000		be taxed 403,000	A1	
= 720 = shs! Slabs	000 – 1 623,000 Rate (%) 5	Amount to tax 120,000		be taxed 403,000 283,000	A1 B1	
= 720 = shs! Slabs	000 - 1 523,000 Rate (%) 5	Amount to tax 120,000		be taxed 403,000	B1	
= 720 = shs! Slabs	000 – 1 623,000 Rate (%) 5	Amount to tax 120,000	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$	be taxed 403,000 283,000	A1 B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	Amount to tax 120,000 120,000 160,000	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$	be taxed 403,000 283,000	B1	
= 720 = shs! Slabs	000 – 1 623,000 Rate (%) 5	Amount to tax 120,000	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$	be taxed 403,000 283,000	B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	Amount to tax 120,000 120,000 160,000	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$	be taxed 403,000 283,000	B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$	be taxed 403,000 283,000	B1 B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000 Total	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$ $Total tax$	be taxed 403,000 283,000	B1 B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000 Total taxable	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$	be taxed 403,000 283,000	B1 B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000 Total taxable income	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$ $Total tax$	be taxed 403,000 283,000	B1 B1	
= 720 = shs! Slabs 1st 2nd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000 Total taxable	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$ $Total tax$	be taxed 403,000 283,000	B1 B1 B1	
= 720 = shs: Slabs 1st 2nd 3rd	000 - 1 623,000 Rate (%) 5	197,000 Amount to tax 120,000 120,000 160,000 Total taxable income	Tax $\frac{5}{100} \times 120,000$ $= shs6000$ $\frac{10}{100} \times 120,000$ $= shs12,000$ $\frac{12}{100} \times 160,000$ $shs19,200$ $\frac{15}{100} \times 123,000$ $shs18450$ $Total tax$ $= shs55,650$	be taxed 403,000 283,000	B1 B1	

	= 720,000 - 55650 = shs664,350	MI
(c)	$\frac{664350}{720,000} \times 100 = 92.27\%$	A) B)
	END	