Universidad Tecnológica Nacional Facultad Regional del Neuquén

Examen 1 - Informática II - Ciclo 2024

Introducción

Una red de control de procesos industriales consiste en un conjunto interconectado de procesadores (CPUs) e instrumentos (sensores y actuadores). Los CPUs solo poseen tres puertos de conexión, uno para conectarse con el equipo de nivel superior y los otros dos para equipos del nivel inferior. Es por esto que se emplean *concentradores* para conectar varios instrumentos a un mismo CPU como se muestra en la *figura* 1.

Cada equipo agregado a la red (CPU, concentrador, sensor o actuador) genera un **registro** en el archivo que contiene toda la información estructural de la red. Este archivo se denomina **network_structure.dat** y tiene el formato indicado en la **figura 2**.

Cada registro tiene un encabezado (*Header*) seguido de *N campos* de 16 Bits que contienen el ID de cada equipo con que se conecta en el nivel inferior de la red. El valor *N* se extrae del campo *Header* cuyo formato/interpretación se muestra en la *figura 3*:

Figura 3

*NOTA: Los ID de los equipos son números de 16 Bits que van desde 0 en adelante hasta el máximo posible valor de 65535. Este valor, el 65535, se lo reserva para indicar ID invalido.

Ejemplo de *network_structure.dat*.

Bits

Bits

Campo

Campo

La red industrial de la izquierda, tendría asociado el archivo *network structure.dat* de la derecha:

	Header	ID		Lower Level Devices Count
Registro del		1		1
primer		Device Type	Info(ignorar)	Upper Level Device ID
equipo		xxxx xx00	xxxx xxxx	65535
(CPU_1)	Lower Level	2		
	Device ID 1			
		ID 2		Lower Level Devices Count
	Header			2
Registro del		Device Type	Info(ignorar)	Upper Level Device ID
segundo		xxxx xx00	XXXX XXXX	1
equipo	Lower Level	3		
(CPU_2)	Device ID 1			
	Lower Level	4		
	Device ID 2			
Registro del		ID		Lower Level Devices Count
tercer	tercer			0
equipo	Header	Device Type	Info	Upper Level Device ID
(Sensor		xxxx xx01	xx01 xxxx	2
Temp_1)				

Figura 5

Actividades

- 1. Desarrollar una o varias librerías que implementen las siguientes funciones/procedimientos:
 - a. showIDs(): muestra en consola los ID de todos los equipos de la red.
 - b. **countDevices():** retorna la cantidad de dispositivos de la red (*retorna en una variable, no muestra en consola*).
 - c. **getRegister(ID)**: dado como argumento el ID del equipo, esta función devuelve el registro completo de ese equipo en forma de una estructura.
- Usando lo desarrollado en el punto 1, crear un programa que permita al usuario seleccionar y ID
 para luego mostrar toda la secuencia de conexión desde el primer equipo hasta el seleccionado.
 Por ejemplo, siguiendo la *figura 5*, si el usuario pide el ID = 9, debería mostrarse en consola:

```
PS D:\UTN\Informatica II\2024\3 - Projects\5 - Test> ./prog.exe

ID 1 -> ID 2 -> ID 4 -> ID 6 -> ID 9
```

3. Documentar y usar git para generar al menos tres commits y realizar un push al repo online.