Recursive Problem Solving

Elyse Cornwall

July 12th, 2023

Announcements

- HW1 IGs this week
- Midterm exam next Monday
 - Find all logistics and practice material <u>here</u>
 - Today is the last lecture covered on the midterm
 - Thursday and Friday optional review
 - No class on Monday
- First part of Assignment 3 released Friday (helpful recursion practice)
 - Rest of assignment comes out after the midterm

Roadmap

Wow, we've made lots of progress!

(Sidibou discovers fractals)

Fractals Recap

Fractal

- Any repeated, graphical pattern
- Composed of repeated instances of the same shape or pattern, arranged in a structured way

What differentiates the smaller tree from the bigger one?

- 1. It's at a different **position**
- 2. It has a different size
- 3. It has a different **orientation**
- 4. It has a different order

Fractals and self-similar structures are often defined in terms of some parameter called the order, which indicates the complexity of the overall structure.

Iteration + Recursion

- It's completely reasonable to mix iteration and recursion in the same function.
- Recursion doesn't mean "the absence of iteration." It just means "solving a problem by solving smaller copies of that same problem."
- Iteration and recursion can be very powerful in combination!

Why do we use recursion?

Why do we use recursion?

- Elegant
 - Some problems have beautiful, concise recursive solutions
- Efficient
 - Recursive solutions can have faster runtimes
- Dynamic
 - We'll explore recursive backtracking next week :)

An *elegant* solution: Tower of Hanoi

Tower of Hanoi

- Try playing online!
 - https://www.mathsisfun.com/games/towerofhanoi.html
- What strategies do you use? Try getting to 5 disks.

Eventually, we need to get this bottom disk over here.

We'll need to get the smaller 3 disks out of the way,

Move the bottom piece over...

Then stack the 3 smaller disks on top.

- 1. Move tower of 3 disks onto middle peg
- 2. Move 4th disk over
- 3. Move tower of 3 disks onto end peg

- 1. Move tower of 3 disks onto middle peg
- 2. Move 4th disk over
- 3. Move tower of 3 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 3 disks.

- 1. Move tower of 4 disks onto middle peg
- 2. Move 5th disk over
- 3. Move tower of 4 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 4 disks.

- 1. Move tower of N-1 disks onto middle peg
- 2. Move Nth disk over
- 3. Move tower of N-1 disks onto end peg

Tower of Hanoi as a Recursive Process

To **solve** Tower of Hanoi for N disks:

Solve for N-1 disks (but place on the middle peg)

Move Nth disk over to the end peg

Solve for N-1 disks (but move from middle peg to end peg)

Tower of Hanoi as a Recursive Process

To **solve** Tower of Hanoi for N disks:

Solve for N-1 disks (but place on the middle peg)

Move Nth disk over to the end peg

Solve for N-1 disks (but move from middle peg to end peg)

Is that really it? Let's code it up!

Solution

```
void solveTowers(int n, char start, char end, char aux) {
    if (n == 0) {
        return;
    solveTowers(n-1, start, aux, end);
    moveSingleDisk(start, end);
    solveTowers(n-1, aux, end, start);
```

An *efficient* solution: Binary Search

- What's your algorithm for finding a word in a dictionary?
 - Where do you start?
 - If the first page you look at doesn't have the word, how do you proceed?

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 500

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 500

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 500

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: **750**

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 750

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 750

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000

Current page: 875

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 875

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 875

- Open the dictionary to somewhere in the middle
- If the word isn't on this page, look left or right
 - Repeat step 2 until the word is found a.

Total pages: 1000 Current page: 812

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 812

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: 812

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000 Current page: **844**

- 1. Open the dictionary to somewhere in the middle
- 2. If the word isn't on this page, look left or right
 - a. Repeat step 2 until the word is found

Total pages: 1000

Current page: 844

- How many pages did we have to read to find the answer?
- How many pages would we have to read if we did a linear search (scanning from beginning to end)?

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

Let's try to find the number 6 in our Vector

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

Too big, look left

Let's try to find the number 6

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

When there are two middles, we'll just choose the first one

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

Too small, look right

Too small, look right

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

- Let's say we have a sorted Vector of integers
- Can we use the same algorithm as before to look up a number?

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

- Choose element in the middle of the range
- If this element is our target, success!
- 3. If element is less than our target, do binary search to the right
- 4. If element is greater than our target, do binary search to the left

DEMO: Binary Search

Solution

```
int binarySearchHelper(Vector<int>& v, int target, int start, int end) {
    if (start > end) {
        return -1;
    int mid = (start + end) / 2;
    int elem = v[mid];
    if (elem == target) {
        return mid;
    } else if (elem < target) {</pre>
        return binarySearchHelper(v, target, mid + 1, end);
    } else {
        return binarySearchHelper(v, target, start, mid - 1);
```


Was This Efficient?

- How many elements did we have to check to find the answer?
- How many elements would we have to look at if we did a linear search (scanning from beginning to end)?

-1	2	6	12	37	41	72	88	90
0	1	2	3	4	5	6	7	8

Was This Efficient?

- How many elements did we have to check to find the answer?
- How many elements would we have to look at if we did a linear search (scanning from beginning to end)?

So, is binary search more efficient than linear search?

- Must be faster than O(n), since it's faster than a linear search
- Must be slower than O(1), since it takes longer for larger input sizes

Constant	Logarithmic	Linear	n log n	Quadratic	Polynomial	Exponential
0(1)	O(log n)	0(n)	O(n log n)	0(n ²)	0(n ^k) k ≥ 1	0(a ⁿ) a > 1

- Must be faster than O(n), since it's faster than a linear search
- Must be slower than O(1), since it takes longer for larger input sizes

Constant	Logarithmic	Linear	n log n	Quadratic	Polynomial	Exponential
0(1)	O(log n)	0(n)	O(n log n)	0(n²)	0(n ^k) k ≥ 1	0(a ⁿ) a > 1

What does a logarithmic runtime look like?

- We're searching through N elements and eliminating half until only one element remains:
 - 1000 pages \rightarrow 500 pages \rightarrow 250 pages $\rightarrow \dots \rightarrow$ 1 page
 - $N \rightarrow N/2 \rightarrow N/4 \rightarrow ... \rightarrow 2 \rightarrow 1$

- We're searching through N elements and eliminating half until only one element remains:
 - 1000 pages \rightarrow 500 pages \rightarrow 250 pages $\rightarrow \dots \rightarrow$ 1 page
 - $N \rightarrow N/2 \rightarrow N/4 \rightarrow ... \rightarrow 2 \rightarrow 1$
- How many steps does it take to get from N down to 1?
 - Let's think of it this way: $1 \rightarrow 2 \rightarrow ... \rightarrow N/4 \rightarrow N/2 \rightarrow N$
 - Number of times we multiply by 2 to get to N

We're searching through N elements and eliminating half until only

If x is the number of times we multiply by 2 to get N... $2^{x} = N$ $x = log_{2}N$

- Let's think of it this way: $1 \rightarrow 2 \rightarrow ... \rightarrow N/4 \rightarrow N/2 \rightarrow N$
- Number of times we multiply by 2 to get to N

- Binary search has runtime O(log n)
 - Common runtime for algorithms that halve search space at every step

Binary search is more efficient than linear search, in terms of its Big-O runtime.

DEMO: Binary Search Time Trials

Big-O of ADT Operations

Vectors .size() - 0(1) .add() - 0(1) v[i] - 0(1) .insert() - 0(n) • .remove() - O(n) .sublist() - 0(n) traversal - O(n)

Grids

 \cdot numRows() - 0(1) .numCols() - O(1)grid[i][j] - 0(1) .inBounds() -0(1)traversal - O(n²)

Queues

- .size() 0(1)
- .peek() 0(1)
- .enqueue() 0(1) .add() ???
- .dequeue() 0(1) .remove() ???
- .isEmpty() 0(1) .contains() ???
- traversal O(n)

Stacks

- .size() 0(1)
- .peek() 0(1)
- .push() O(1)
- .pop() O(1)
- .isEmpty() 0(1) traversal 0(n)
- traversal O(n)

Sets

- .size() 0(1)
- .isEmpty() O(1)

- traversal O(n)

Maps

- .size() 0(1)
- .isEmpty() O(1)
- m[key] ???
- .contains() ???

Big-O of ADT Operations

Vectors .size() - 0(1) .add() - 0(1) v[i] - 0(1) .insert() - 0(n) • .remove() - O(n) .sublist() - 0(n) traversal - O(n) Grids \cdot numRows() - 0(1) .numCols() - O(1)grid[i][j] - 0(1) .inBounds() -0(1)

traversal - $O(n^2)$

```
Queues
• .size() - 0(1)
• .peek() - 0(1)
• .enqueue() - 0(1)
 • .dequeue() - 0(1)
 .isEmpty() - O(1)
 traversal - O(n)
Stacks
• .size() - 0(1)
 • .peek() - 0(1)
 • .push() - 0(1)
 • .pop() - O(1)
• .isEmpty() - 0(1) • traversal - 0(n)
   traversal - O(n)
```

Sets • .size() - 0(1) .isEmpty() - 0(1) .add() - O(log n) remove() - O(log n) • .contains() - O(log n) • traversal - O(n) Maps • .size() - 0(1) .isEmpty() - O(1) • m[key] - O(log n)

• .contains() - 0(log n)

Big-O of ADT Operations

Sets

• .size() - 0(1) .isEmpty() - 0(1) \cdot add() - O(log n) .remove() - O(log n)• .contains() - O(log n) traversal - O(n)

Maps

- .size() 0(1)
- .isEmpty() O(1)
- m[key] O(log n)
- .contains() O(log n)
- traversal O(n)

Big-O of Recursive Functions

Big-O of Recursive Functions

Depends on:

- Big-O of each execution of the function
- Number of recursive calls

Recap

- Tower of Hanoi: Elegant
 - Recursive approach is much cleaner than the iterative one
- Binary search: Efficient
 - Allows us to find elements from a sorted collection in O(log n) time
- Calculating Big-O of recursive functions
 - Think about the function's runtime and the number of recursive calls

See you tomorrow (optionally)!

