CSC 225 Practice Midterm Exam 1A

Name:	(please print clearly!)
UVic ID number:	
Signature:	
Exam duration: 50 minutes	
Instructor: Anthony Estey	

Students must check the number of pages in this examination paper before beginning to write, and report any discrepancy immediately.

- We will not answer questions during the exam. If you feel there is an error or ambiguity, write your assumption and answer the question based on that assumption.
- Answer all questions on this exam paper.
- The exam is closed book. No books or notes are permitted.

No electronic devices of any type are permitted.

- The marks assigned to each question and to each part of a question are printed within brackets. Partial marks are available.
- There are eight (8) pages in this document, including this cover page.
- Page 8 is left blank for scratch work. If you write an answer on that page, clearly indicate this for the grader under the corresponding question.
- Clearly indicate only one answer to be graded. Questions with more than one answer will be given a **zero grade**.
- It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.
- Please have your ID card available on the desk.

Part 1: Discrete Math (10 marks)

l)	can line	ays a bag of sour candies. When Ali pours all of the candies out, there are 3 red ies, 2 blue candies, and 4 orange candies. Ali decides to arrange the candies in a on the table (and is unable to differentiate between candies of the same colour).		
		iswer the following questions about the ways Ali can arrange the candies in a line on e table. You do not need to show work, but incorrect answers may receive part mark		
	a)	How many arrangements of the candies are there?		
	b)	How many arrangements are there with all of the red candies together?		
	c)	How many arrangements are there with no red candies beside one another?		
	d)	Ali now finds a way to differentiate between candies of the same colour. How many ways can Ali arrange the candies now?		

2) A standard deck of cards has 13 ranks (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K) in each of the 4 suits (clubs, spades, hearts, and diamonds), as shown below.

Ali draws one card at a time from a standard deck of 52 cards. How many cards will Ali need to draw before Ali is guaranteed to have a card from 3 different suits?

Part 2: Runtime Analysis (15 marks)

3) Order the following functions by order of growth from slowest to fastest.

 $\log n^4$,

 $3n^{2}$,

 2^{n} ,

 $2^{\log n}$,

n!

4) Which of the following for-loops will result in a $\Theta(\log n)$ runtime? (circle all that apply)

```
for (int i = 1; i <= n; i++)
```

for (int
$$i = 1$$
; $i \le n/2$; $i++$)

for (int
$$i = 1$$
; $i <= n$; $i+=2$)

for (int
$$i = 1$$
; $i <= n$; $i*=2$)

for (int
$$i = 1$$
; $i <= n$; $i*=i$)

for (int
$$i = n$$
; $i >= 1$; $i--$)

for (int
$$i = n/2$$
; $i >= 1$; $i--$)

for (int
$$i = n$$
; $i >= 1$; $i-=2$)

for (int
$$i = n$$
; $i >= 1$; $i-=i$)

for (int
$$i = n$$
; $i >= 1$; $i/=2$)

for (int
$$i = n; i >= 1; i/=i$$
)

5) Read through the pseudocode below:

```
\begin{array}{l} sum \leftarrow 0 \\ \textbf{for } i \leftarrow 1 \textbf{ to } n^3 \textbf{ do} \\ \textbf{ for } j \leftarrow 1 \textbf{ to } 4i \textbf{ do} \\ \textbf{ if } j < i \textbf{ then} \\ sum \leftarrow sum + j \\ \textbf{ end} \\ \textbf{ end} \\ \textbf{ end} \end{array}
```

a) Count the number of times the **condition** in the **if-statement** is executed. Express your answer similar to how we did during lecture this term (e.g. T(n) = ...)

b) What is the time complexity for the number of times the condition in the ifstatement is executed? Write your solution in big-Theta notation and provide constants c and n_0 .

Part 3: Proofs (9 marks)

6) In some sporting events, players enter the sporting area one-by-one before the game starts. Each player enters one at a time, and when each player enters, the player high fives all of the players who have entered before them.

The first player will not high-five anyone; the second player will high-five the first player (who had previously entered); the third player will high-five both players who previously entered (the first and second players), etc.

Prove by induction that for a team with n players, $\frac{n(n-1)}{2}$ high-fives occur.

- a) **Base case** (a team with only 1 player):
- b) Inductive Hypothesis:
- c) Write the **Inductive Step** and then complete the proof:

Part 4: Recurrence Relations (11 marks)

- 7) A recurrence relation can be written to express the number of circles in the illustration above. For example, we have C(1) = 1, C(2) = 7, C(3) = 19.
 - a) How many circles will there be when n = 7?

$$C(7) =$$

b) Fill in the blanks to complete the recurrence equation for the number of circles:

c) Solve the recurrence equation by repeated substitution.

... Left blank for scratch work...

END OF EXAM

Question	Value	Mark
Part 1	10	
Part 2	15	
Part 3	9	
Part 4	11	
Total	45	