Section 1

Decizie și Estimare în Prelucrarea Informației

Section 2

Chapter III. Elemente de Teoria Estimării

Subsection 1

II.1 Introducere

Ce înseamnă "estimare"?

- ▶ Un emițător transmite un semnal $s_{\Theta}(t)$ care depinde de parametru necunoscut Θ
- ► Semnalul este afectat de zgomot, se recepționează $r(t) = s_{\Theta}(t) + zgomot$
- ► Vrem să găsim valoarea parametrului
 - pe baza eșantioanelor din semnalul recepționat, sau a întregului semnal
 datele receptionate au zgomot => parametrul este "estimat"
- Valoarea găsită este Θ̂, estimatul lui Θ
 - lacktriangle există întotdeauna eroare de estimare $\epsilon = \hat{\Theta} \Theta$
- Exemple:
 - Amplitudinea unui semnal constant: r(t) = A + zgomot, trebuie estimat A
 - Faza unui semnal sinusoidal: $r(t) = \cos(2\pi f t + \phi) + zgomot$, de estimat ϕ
 - ► Semnal vocal înregistrat, de estimat/decis ce cuvânt este pronunțat

Estimare și Decizie

- Fie următoarea problemă de estimare: r(t) = A + zgomot, de estimat A
- La detecție se alege între **două valori cunoscute** ale *A*:
 - de ex. A poate fi 0 sau 5 (ipotezele H_0 și H_1)
- ▶ La estimare, A poate fi oricât => se alege între o infinitate de opțiuni ale A
 - ightharpoonup A poate fi orice valoare din \mathbb{R} , în general

Estimare și Detecție

- Detecție = Estimare restrânsă doar la un set discret de opțiuni
- Estimare = Detecție cu un număr infinit de opțiuni posibile
- Metodele statistice sunt similare
 - In practică, distincția între estimare și detecție nu este strictă
 - (de ex. când trebuie să alegem între 1000 de ipoteze, este "detecție" sau "estimare"?)

Semnalul recepționat

- ightharpoonup Semnalul recepționat este r(t)
 - lacktriangle este afectat de zgomot, și depinde de parametrul necunoscut Θ
- lacktriangle Considerăm **N** eșantioane din r(t), luate la momentele de timp t_i

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

- Fiecare eșantion r_i este o variabilă aleatoare ce depinde de Θ (și zgomot)
 - ightharpoonup Fiecare eșantion are o distribuție care depinde de Θ

$$w_i(r_i;\Theta)$$

- ightharpoonup Întregul vector de eșantioane $m {f r}$ este o variabilă aleatoare N-dimensională ce depinde de Θ (și de zgomot)
 - Are o distribuţie N-dimensională ce depinde de Θ
 - Egală cu produsul tuturor $w_i(r_i; \Theta)$

$$w(\mathbf{r};\Theta) = w_1(r_1;\Theta) \cdot w_2(r_2;\Theta) \cdot ... \cdot w_N(r_N;\Theta)$$

Tipuri de estimare

- Considerăm estimarea lui Θ în două cazuri:
- 1. Nu cunoaștem alte informații despre parametru, decât cel mult vreun domeniu de existență (de ex. $\Theta>0$)
 - Parametrul poate avea orice valoare din domeniul de existență, în mod echiprobabil
- 2. Se cunoaște o distribuție $w(\Theta)$ a lui Θ , care indică ce valori ale lui Θ sunt mai probabile / mai puțin probabile
 - este distribuția a priori ("cea cunoscută de dinainte")

Subsection 2

II.2 Estimarea de plauzibilitate maximă (Maximum Likelihood)

Estimarea tip Maximum Likelihood

- Dacă nu se cunoaște vreo distribuție a priori se folosește metoda estimării de plauzibilitate maximă ("Maximum Likelihood", ML)
- ▶ Distribuția vectorului recepționat, $w(\mathbf{r}; \Theta)$, reprezintă **funcția de plauzibilitate**
 - ▶ vectorul receptionat r este cunoscut, deci e o constantă
 - necunoscuta aici este Θ

$$L(\Theta) = w(\mathbf{r}; \Theta)$$

Estimarea tip Maximum Likelihood

Estimarea de plauzibilitate maximă (Maximum Likelihood, ML):

- ► Estimatul Ô este valoarea care maximizează plauzibilitatea semnalului recepționat
 - ightharpoonup i.e. valoarea Θ care maximizează $w(\mathbf{r};\Theta)$

$$\hat{\Theta} = \arg\max_{\Theta} L(\Theta) = \arg\max_{\Theta} w(\mathbf{r}; \Theta)$$

Dacă Θ aparține doar unui anumit domeniu, se face maximizarea doar asupra acelui domeniu.

Găsirea maximului

- Cum se rezolvă problema de maximizare?
 - ightharpoonup cum se găsește estimatul Θ care maximizează $L(\Theta)$
- Maximul se găsește prin derivare și egalare cu 0

$$\frac{dL(\Theta)}{d\Theta}=0$$

Se poate aplica **logaritmul natural** asupra funcției $L(\Theta)$ înainte de derivare ("log-likelihood function")

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

Procedura de găsire a estimatului

Procedura de găsire a estimatului ML:

1. Se găsește expresia funcției

$$L(\Theta) = w(\mathbf{r}; \Theta)$$

2. Se pune condiția ca derivata lui $L(\Theta)$ sau a lui $\ln((L(\Theta)))$ să fie 0

$$\frac{dL(\Theta)}{d\Theta} = 0$$
, or $\frac{d\ln(L(\Theta))}{d\Theta} = 0$

- 3. Se rezolvă ecuația, se găsește valoarea $\hat{\Theta}$
- 4. Se verifică că derivata a doua în punctul $\hat{\Theta}$ este negativă, pentru a verifica că este un punct de maxim
 - ▶ întrucât derivata = 0 și pentru maxime și pentru minime

Exemple

Semnal constant în zgomot gaussian:

- ▶ Găsiți estimatul Maximum Likelihood pentru constanta A din 5 măsurători afectate de zgomot $r_i = A + noise$, cu valori egale cu [5,7,8,6.1,5.3]. Zgomotul este AWGN $\mathcal{N}(\mu = 0,\sigma^2)$.
- ► Solutie: la tablă
- Estimatul \hat{A} este chiar valoarea medie a eșantioanelor (deloc surprinzător)

Aproximare a unei curbe

- Estimare = aproximare a unei curbe
- Din exemplul grafic anterior:
 - avem un set de date r
 - ▶ se cunoaște forma semnalului = o dreaptă orizontală (A constant)
 - se aproximează în mod optim linia prin setul de date

- Fie semnalul original "curat" $s_{\Theta}(t)$
- lacktriangle Zgomotul este AWGN $\mathcal{N}(\mu=0,\sigma^2)$
- Eșantioanele r_i sunt luate la momentele t_i
- lacktriangle Eșantioanele r_i au distribuție normală, cu media $s_{\Theta}(t_i)$ și varianța σ^2
- Funcția de plauzibilitate globală = produsul plauzibilității fiecărui eșantion r_i

$$L(\Theta) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} e^{-\frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$

Logaritmul plauzibilității ("log-likelihood") este

$$\ln(L(\Theta)) = \underbrace{N \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right)}_{constant} - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}$$

Maximul funcției = minimul exponentului

$$\hat{\Theta} = rg \max_{\Theta} w(r; \Theta) = rg \min_{\Phi} \sum (r_i - s_{\Theta}(t_i))^2$$

► Termenul $\sum (r_i - s_{\Theta}(t_i))^2$ este **distanța** $d(\mathbf{r}, s_{\Theta})$ **la pătrat**

$$d(\mathbf{r}, s_{\Theta}) = \sqrt{\sum (r_i - s_{\Theta}(t_i))^2}$$

$$(d(\mathbf{r}, s_{\Theta}))^2 = \sum (r_i - s_{\Theta}(t_i))^2$$

Estimarea ML se poate rescrie sub forma:

$$\hat{\Theta} = \arg\max_{\Theta} w(r; \Theta) = \arg\min d(\mathbf{r}, \mathbf{s}_{\Theta})^2$$

- Estimatul de plauzibilitate maximă (estimatul ML) $\hat{\Theta} = \text{valoarea}$ care face $s_{\Theta}(t_i)$ cel mai apropiat de vectorul recepționat r
 - ▶ mai aproape = mai probabil
 - cel mai aproape = cel mai probabil = plauzibilitate maximă
- ► Estimare ML = minimizarea distanței
- Relația e valabilă pentru orice fel de spații vectoriale
 - vectori cu N elemente, semnale continue, etc
 - doar se înlocuiește definiția distanței Euclidiene

Estimatul se găsește prin setarea derivatei la 0

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

înseamnă

$$\sum (r_i - s_{\Theta}(t_i)) \frac{ds_{\Theta}(t_i)}{d\Theta} = 0$$

Estimarea frecventei f a unui semnal sinusoidal

- ▶ Găsiți estimatul Maximum Likelihood pentru frecvența f a unui semnal cosinus, din 10 măsurători afectate de zgomot $r_i = cos(2\pi ft_i) + zgomot$ de valori [...]. Zgomotul este AWGN $\mathcal{N}(\mu=0,\sigma^2)$. Momentele de eșantionare sunt $t_i = [0,1,2,3,4,5,6,7,8,9]$
- Soluție: la tablă

Funcția de plauzibilitate este

Frecventa originala = 0.070000, estimatul = 0.071515

Estimare ML și Detecție ML

- ► La estimarea ML, estimatul Ĝ este valoarea care maximizează funcția de plauzibilitate
- ▶ La detecție ML, criteriul de decizie $\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\gtrless}} 1$ înseamnă "alege ipoteza pentru care funcția de plauzibilitate este mai mare"
- Același principiu, doar în contexte diferite:
 - la detecție, avem de ales doar între câteva opțiuni predefinite
 - ▶ la estimare nu mai avem constrângeri => se alege valoarea maximă a întregii funcții

Funcția de pierdere ("Loss function")

- Distanța d(r, s_⊙) se mai numește funcție de pierdere ("loss function") în domeniul Machine Learning
 Distanța Euglidiană funcția de pierdere țin "Mean Squared Error
 - distanța Euclidiană = funcția de pierdere tip "Mean Squared Error" (MSE)
- Pentru un **r** dat, valoarea de pierdere MSE = $\frac{1}{N}d(\mathbf{r}, \mathbf{s}_{\Theta})$
- Alte funcții de pierdere sunt folosite în diverse aplicații

Parametri multipli

- Dacă semnalul depinde de mai mulți parametri?
 - de ex. amplitudinea, frecvența și faza inițială a unui cosinus:

$$s_{\uparrow}(t) = A\cos(2\pi f t + \phi)$$

 \triangleright Se va considera Θ ca fiind un vector:

$$\boldsymbol{\Theta} = [\boldsymbol{\Theta}_1, \boldsymbol{\Theta}_2, ... \boldsymbol{\Theta}_M]$$

▶ e.g. $\Theta = [\Theta_1, \Theta_2, \Theta_3] = [A, f, \phi]$

Coborâre după gradient (Gradient Descent)

- ightharpoonup Cum se estimează parametrii Θ în cazuri complicate?
 - lacktriangle în aplicații reale, unde pot fi foarte mulți parametri (Θ este vector)
- De obicei nu se pot găsi valorile optime prin formule directe
- Se îmbunătățesc valorile în mod iterativ cu algoritmi tip coborâre după gradient

Coborâre după gradient (Gradient Descent)

- 1. Se inițializează parametrii cu valori aleatoare $\Theta^{(0)}$
- 2. Repetă la fiecare iterație k:
 - 2.1 Se calculează valoarea de pierdere $L(\Theta^{(k)})$
 - 2.2 Se calculează derivata $\frac{\partial L}{\partial \Theta^{(k)}}$ pentru toți Θ_i
 - 2.3 Se actualizează toate valorile Θ_i prin scăderea derivatei:

$$\Theta_i^{(k+1)} = \Theta_i^{(k)} - \mu \frac{\partial L}{\partial \Theta_i^{(k)}}$$

sau, sub formă vectorială:

$$\mathbf{\Theta}^{(k+1)} = \mathbf{\Theta}^k - \mu \frac{\partial L}{\partial \mathbf{\Theta}^{(k)}}$$

3. Până la îndeplinirea unui criteriu de terminare (de ex. parametrii nu se mai modifică mult)

Coborâre după gradient (Gradient Descent)

- Explicații la tablă
- Exemplu: regresia logistică cu valori 2D
 - exemplu la tablă

Rețele Neurale

- Cel mai proeminent exemplu: Rețele Neurale Artificiale (a.k.a.
 - "Rețele Neurale", "Deep Learning", etc.)
 - Pot fi văzute ca un exemplu de estimare ML
 - ▶ Utilizează o funcție de pierdere (de obicei nu funcția tip MSE)
 - ▶ Se utilizează algoritmul Gradient Descent pentru găsirea parametrilor
 - Aplicații de vârf: recunoașterea de imagini, automated driving etc.
- ▶ Mai multe informații despre rețele neurale / machine learning:
 - căutați cursuri sau cărți, eventual online (de ex. cartea dl.prof. Iulian Ciocoiu)
 - participați la IASI Al Meetup

Subsection 3

II.3 Estimare Bayesiană

Distribuția a priori

- Presupunem că se știe de dinainte o distribuție a lui Θ , $w(\Theta)$
 - > știm de dinainte care e probabilitatea de a fi a anume valoare sau alta
 - se numește distribuția a priori
- Estimarea trebuie să ia în calcul și distribuția a priori
 - estimatul va fi "tras" înspre valori mai probabile
- Cunoscută sub numele de "estimare Bayesiană"
 - ► Thomas Bayes = a descoperit regula lui Bayes
 - Chestiile bazate pe regula lui Bayes poartă deseori numele de "Bayesian"

Funcția de cost

Eroarea de estimare = diferența între estimatul $\hat{\Theta}$ și valoarea reală Θ

$$\epsilon = \hat{\Theta} - \Theta$$

- Funcția de cost $C(\epsilon)$ atribuie un cost pentru fiecare eroare de estimare posibilă
 - ▶ când $\epsilon = 0$, costul C(0) = 0
 - ightharpoonup erori ϵ mici au costuri mici
 - ightharpoonup erori ϵ mari au costuri mari
- Funcții de cost uzuale:
 - ▶ Pătratică: $C(\epsilon) = \epsilon^2 = (\hat{\Theta} \Theta)^2$
 - ► Uniformă: $C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} \Theta| \leq E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} \Theta| > E \end{cases}$
 - Liniară: $C(\epsilon) = |\epsilon| = |\hat{\Theta} \Theta|$
 - (desenate la tablă)

Riscul Bayesian

- Pentru fiecare pereche de valori \mathbf{r} și Θ , $w(\mathbf{r}; \Theta)$ indică cât de probabilă este acea pereche de valori
- lacktriangle Prin multiplicare cu $C(\epsilon$ se obține costul pentru fiecare pereche ${f r}$ și Θ

$$C(\epsilon)w(\mathbf{r};\Theta)$$

lacktriangle Integrând după Θ se obține costul total pentru un anume f r și toți Θ

$$\int_{-\infty}^{\infty} C(\epsilon) w(\mathbf{r};\Theta) d\Theta$$

▶ Integrând mai de parte și după ${\bf r}$ se obține costul global pentru toți ${\bf r}$ și toți Θ

$$R = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(\epsilon) w(\mathbf{r}; \Theta) d\Theta d\mathbf{r}$$

Minimizarea riscului

- Se dorește minimizarea riscului R (= a costului global)
- ▶ Regula lui Bayes: $w(\mathbf{r}; \Theta) = w(\Theta|\mathbf{r})w(\mathbf{r})$
- ▶ Înlocuind în R, se obține

$$R = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) w(\mathbf{r}) d\Theta d\mathbf{r}$$
$$= \int_{-\infty}^{\infty} w(\mathbf{r}) \left[\int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta \right] d\mathbf{r}$$

Cum $w(\mathbf{r}) \geq 0$, minimizarea integralei I din interior asigură minimul lui R

$$I = \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta$$

- lacktriangle Vom înlocui $C(\epsilon)$ cu definiția sa și derivăm după $\hat{\Theta}$
 - ► Atentie: derivăm după Θ̂, nu Θ!

Estimatorul EPMM (eroare pătratică medie minimă)

lacktriangle Când funcția de cost este pătratică $C(\epsilon) = \epsilon^2 = \left(\hat{\Theta} - \Theta\right)^2$

$$I = \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta)^2 w(\Theta | \mathbf{r}) d\Theta$$

► Vrem Ô care minimizează *I*, deci derivăm

$$\frac{dI}{d\hat{\Theta}} = 2 \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta) w(\Theta | \mathbf{r}) d\Theta = 0$$

Echivalent cu

$$\hat{\Theta}\underbrace{\int_{-\infty}^{\infty} w(\Theta|\mathbf{r})}_{1} d\Theta = \int_{-\infty}^{\infty} \Theta w(\Theta|\mathbf{r}) d\Theta$$

Estimatorul de eroare pătratică medie minimă (EPMM) ("Minimum Mean Squared Error, MMSE"):

$$\hat{\Theta} = \int_{-\infty}^{\infty} \Theta \cdot w(\Theta|\mathbf{r}) d\Theta$$

Interpretare

- \triangleright $w(\Theta|\mathbf{r})$ este distribuția **a posteriori** a lui Θ
 - ▶ este distribuția lui Θ după ce cunoaștem semnalul recepționat r
 - ightharpoonup distribuția a priori $w(\Theta)$ este cea de dinainte de a recepționa datele
- Estimatorul EPMM este valoarea medie a distribuției a posteriori

Estimatorul MAP

Dacă funcția de cost este uniformă

$$C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| \le E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| > E \end{cases}$$

- ightharpoonup Stim că $\Theta = \hat{\Theta} \epsilon$
- ► Se obtine

$$I = \int_{-\infty}^{\Theta - E} w(\Theta | \mathbf{r}) d\Theta + \int_{\hat{\Theta} + E}^{\infty} w(\Theta | \mathbf{r}) d\Theta$$
$$I = 1 - \int_{\hat{\Theta} - E}^{\hat{\Theta} + E} w(\Theta | \mathbf{r}) d\Theta$$

Estimatorul MAP

- Pentru minimizarea I, trebuie să maximizăm $\int_{\hat{\Theta}-E}^{\hat{\Theta}+E} w(\Theta|\mathbf{r})d\Theta$, integrala din jurul punctului $\hat{\Theta}$
- Pentru E foarte mic, funcția $w(\Theta|\mathbf{r})$ este aproximativ constantă, deci se va alege punctul unde funcția este maximă
- Estimatorul Maximum A Posteriori (MAP) este

$$\hat{\Theta} = \arg\max w(\Theta|\mathbf{r})$$

- arg max = "valoarea la care funcția este maximă"
 - $ightharpoonup \max f(x) = \text{valoarea maximă a unei funcții}$
 - ightharpoonup arg max f(x)= valoarea x pentru care funcția atinge valoarea maximă

Interpretare

- Estimatorul MAP: Θ̂ = valoarea care maximizează distribuția a posteriori
- Estimatorul EPMM: $\hat{\Theta} = \text{valoarea medie a distribuției } a posteriori$

Figure 1: Estimatorul MAP vs EPMM(MMSE)

Cum se găsește distribuția a posteriori

- ► Cum găsim distribuția a posteriori $w(\Theta|\mathbf{r})$?
- ► Regula lui Bayes

$$w(\Theta|\mathbf{r}) = \frac{w(\mathbf{r};\Theta)}{w(\mathbf{r})} = \frac{w(\mathbf{r}|\Theta) \cdot w(\Theta)}{w(\mathbf{r})}$$

ightharpoonup Cum $w(\mathbf{r})$ e constant pentru un \mathbf{r} dat, estimatorul MAP este

$$\hat{\Theta} = \operatorname{arg\,max} w(\Theta|\mathbf{r}) = \operatorname{arg\,max} w(\mathbf{r}|\Theta)w(\Theta)$$

- Estimatorul MAP este valoarea care maximizează plauzibilitatea datelor recepționate, dar **multiplicate** cu distribuția *a priori* $w(\Theta)$
- Estimatorul EPMM este valoarea medie a aceleiași funcții

Relația cu estimatorul ML

- ▶ Estimatorul ML este arg max $w(\mathbf{r}|\Theta)$
- Estimatorul MAP = similar cu cel ML dar multiplicând în prealabil funcția cu distribuția a priori $w(\Theta)$
- ▶ Dacă $w(\Theta)$ ar fi constant, estimatorul MAP se reduce la cel ML
 - $\mathbf{w}(\Theta) = \text{constant înseamnă că toate valorile } \Theta \text{ sunt la fel de posibile}$
 - adică nu avem nici o idee/preferință unde s-ar afla valoarea reală Θ

Relația cu detecția semnalelor

- ► Criteriul probabilității minime de eroare $\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{P(H_0)}{P(H_1)}$
- Se poate rescrie ca $w(r|H_1) \cdot P(H_1) \overset{H_1}{\underset{H_0}{\gtrless}} w(r|H_0)P(H_0)$
 - ▶ adică se alege ipoteza pentru care $w(r|H) \cdot P(H)$ este mai mare
 - $ightharpoonup w(r|H_1)$, $w(r|H_0)$ sunt plauzibilitățile semnalului recepționat
 - $ightharpoonup P(H_1)$, $P(H_0)$ sunt probabilitățile *a priori* (inițiale) ale ipotezelor
- Estimatorul MAP = valoarea pentru care $w(\mathbf{r}|\Theta)w(\Theta)$ e maxim
 - $\mathbf{w}(\mathbf{r}|\Theta)$ este plauzibilitatea semnalului recepționat
 - w(Θ) este distribuția a priori
- Același principiu, doar în contexte diferite:
 - la detecție, avem de ales doar între câteva opțiuni predefinite
 - la estimare, nu avem constrângeri => se alege valoarea care maximizează întreaga funcție

Exercițiu

Exercițiu: valoare constantă, 1 măsurătoare, zgomot Gaussian același σ

- Vrem să estimam temperatura de astăzi din Sahara
- ▶ Termometrul indică 40 grade, dar valoarea este afectată de zgomot Gaussian $\mathcal{N}(0, \sigma^2 = 2)$ (termometru ieftin)
- Se știe că de obicei în această perioadă a anului temperatura este în jur de 35 grade, cu o distribuție Gaussiană $\mathcal{N}(35, \sigma^2 = 2)$.
- Estimați valoarea reală a temperaturii folosind estimarea ML, MAP și EPMM(MMSE)

Exercițiu

Exercițiu: valoare constantă, 1 măsurătoare, zgomot Gaussian același σ

Dacă avem trei termometre, care indică 40, 38, 41 grade?

Exercițiu: valoare constantă, 1 măsurătoare, zgomot Gaussian σ diferit

- Dacă temperatura în această perioadă a anului are distribuție Gaussiană $\mathcal{N}(35, \sigma_2^2 = 3)$
 - ightharpoonup cu varianță diferită, $\sigma_2
 eq \sigma$

Semnal oarecare în zgomot Gaussian (AWGN)

- ▶ Fie semnalul original "curat" $s_{\Theta}(t)$
- **>** Zgomotul este Gaussian (AWGN) $\mathcal{N}(\mu=0,\sigma^2)$
- Ca în cazul estimării de plauzibilitate maximă, funcția de plauzibilitate este:

$$w(\mathbf{r}|\Theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\sum(r_i - s_\Theta(t_i))^2}{2\sigma^2}}$$

ightharpoonup Dar acum aceasta **se înmulțește cu** $w(\Theta)$

$$w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

Semnal oarecare în zgomot Gaussian (AWGN)

Estimatorul MAP estimator este cel care maximizează produsul

$$\hat{\Theta}_{MAP} = \operatorname{arg\,max} w(\mathbf{r}|\Theta)w(\Theta)$$

Logaritmând:

$$\hat{\Theta}_{MAP} = \operatorname{arg\ max} \ln \left(w(\mathbf{r}|\Theta) \right) + \ln \left(w(\Theta) \right)$$

$$= \operatorname{arg\ max} - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \ln \left(w(\Theta) \right)$$

Distribuție "a priori" Gaussiană

lacktriangle Dacă distribuția "a priori" este de asemenea Gaussiană $\mathcal{N}(\mu_{\Theta},\sigma_{\Theta}^2)$

$$\ln(w(\Theta)) = -\frac{\sum(\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

Estimatorul MAP devine

$$\hat{\Theta}_{MAP} = \arg\min \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \frac{\sum (\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

► Poate fi rescris

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\mathbf{r}} \cdot d(\Theta, \mu_{\Theta})^2$$

Interpretare

Estimatorul MAP în zgomot Gaussian și cu distribuție "a priori" Gaussiană

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\lambda} \cdot d(\Theta, \mu_{\Theta})^2$$

- $\hat{\Theta}_{MAP}$ este apropiat de valoarea medie μ_{Θ} și de asemenea face ca semnalul adevărat să fie apropiat de esantioanele receptionate r
 - Exemplu: "caut locuintă aproape de serviciu dar si aproape de Mall"
 - $ightharpoonup \lambda$ controlează importanța relativă a celor doi termeni
- Cazuri particulare
 - $m \sigma_\Theta$ foarte mic = distribuția "a priori" este foarte specifică (îngustă) = λ mare = termenul al doilea este dominant = $\hat{\Theta}_{MAP}$ foarte apropiat de μ_Θ
 - $m{\sigma}_{\Theta}$ foarte mare = distribuția "a priori" este foarte nespecifică = λ mic = primul termen este dominant = $\hat{\Theta}_{MAP}$ apropiat de estimatorul de plauzibilitate maximă

Aplicații

- În general, aplicațiile practice:
 - utilizează diverse tipuri de distribuții "a priori"
 - estimează mai mulți parametri (un vector de parametri)
- Aplicaţii
 - reducerea zgomotului din semnale
 - restaurarea semnalelor (parți lipsă din imagini, imagini *blurate* etc)
 - compresia semnalelor

Estimatori nedeplasați

- Cum caracterizăm calitatea unui estimator?
 - Există diverse abordări
- ▶ Un estimator Ô este o variabilă aleatoare
 - poate avea diverse valori, pentru că se calculează pe baza eșantioanelor recepționate, care depind de zgomot
 - exemplu: se repetă aceeași estimare pe calculatoare diferite => valori estimate usor diferite
- Fiind o variabilă aleatoare, se pot defini:
 - ightharpoonup valoarea medie a estimatorului: $E\left\{\hat{\Theta}\right\}$
 - ightharpoonup varianța estimatorului: $E\left\{(\hat{\Theta}-\Theta)^2\right\}$

Estimatori nedeplasați

ightharpoonup Estimator **nedeplasat** = valoarea medie a estimatorului este egală cu valoarea adevărată a parametrului Θ

$$E\left\{ \hat{\Theta}\right\} =\Theta$$

- ightharpoonup Estimator $\operatorname{deplasat} = \operatorname{valoarea}$ medie a estimatorului diferă de valoarea adevărată a parametrului Θ
 - lacktriangle diferența $E\left\{\hat{\Theta}
 ight\}-\Theta$ se numește **deplasarea** estimatorului

Estimatori nedeplasați

- Exemplu: semnal constant A, zgomot Gaussian (cu media), estimatorul de plauzibilitate maximă este $\hat{A}_{ML} = \frac{1}{N} \sum_{i} r_{i}$
- Atunci:

$$E\left\{\hat{A}_{ML}\right\} = \frac{1}{N}E\left\{\sum_{i} r_{i}\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}E\left\{r_{i}\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}E\left\{A + zgomot\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}A$$

$$= A$$

Acest estimator este nedeplasat

Varianța unui estimator

- Dacă un estimator are varianța mare, valoarea estimată poate fi departe de cea reală
 - indiferent dacă estimatorul este nedeplasat sau nu
- ▶ De obicei se preferă estimatori de varianță redusă, tolerându-se o eventuală mică deplasare