High-level signatures and initial semantics

Ambroise Lafont

joint work with Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Overview

Topic: specification and construction of untyped syntaxes with variables and a well-behaved substitution (e.g. lambda calculus).

Our work:

- 1. general notion of *signature* based on *monads* and *modules*.
 - Caveat: Not all of them do generate a syntax
 - special case: classical binding signatures
- our main result: any quotient of algebraic signatures generates a syntax.

This talk: explain the words in bold

Operations covered by our result

Some examples:

- Symmetric operations
- Explicit substitution
- Coherent fixed point operation
- Syntactic closure operator

What is a syntax?

generates a syntax = existence of the initial model

Table of contents

1. Binding signatures and their models

- Categorical formulation of term languages
- Initial semantics for binding signatures
- Categorical formulation of substitution
- 2. Signatures and models based on monads and modules
- 3. Our main result

Categorical formulation of a term language

Example: syntax with a binary operation, a constant, and variables

$$egin{array}{ll} ext{expr} ::= x & ext{(variable)} \ & |t_1 \bigstar t_2 & ext{(binary operation)} \ & |0 & ext{(constant)} \end{array}$$

The syntax can be considered as the endofunctor B (on Set):

$$B: X \mapsto \{\text{expressions over } X\}$$

For example:

$$B(\emptyset) = \{0, 0 \star 0, \dots\}$$

$$B(\{x, y\}) = \{0, 0 \star 0, \dots, x, y, x \star y, \dots\}$$

Categorical formulation of a term language

The binary operation \star induces a natural transformation:

$$B \times B \rightarrow B$$

The constant 0 induces a natural transformation:

$$1 \rightarrow B$$

Variables induce a natural transformation:

$$\operatorname{Id}_{\operatorname{Set}} o B$$

They gather into a single natural transformation:

$$B \times B + 1 + \operatorname{Id}_{\operatorname{Set}} \to B$$

i.e. B is an algebra for the endofunctor $F\mapsto F imes F+1+\mathrm{Id}_{\mathrm{Set}}$ on the category $\mathrm{End}_{\mathrm{Set}}$.

Actually, B can be **defined** to be the initial algebra.

Binding Signatures

Definition

Binding signature = a family of lists of natural numbers.

Each list specifies one operation in the syntax:

- length of the list = number of arguments of the operation
- natural number in the list = number of bound variables in the corresponding argument

Syntax with 0, ★:

Lambda calculus:

$$((0,0),(1))$$

$$app \qquad abs$$

Initial semantics for binding signatures

In the same spirit as in the first example $(0, \star)$, any binding signature gives rise to an endofunctor Σ on the category $\operatorname{End}_{\operatorname{Set}}$.

A notion of model: $\Sigma + Id_{Set}$ -algebra

The initial Σ + $\mathrm{Id}_{\mathrm{Set}}$ -algebra of a binding signature Σ always exists.

Does this initial algebra come with a well-behaved substitution?

Classical results on initial semantics

The endofunctor Σ induced by a binding signature comes with a strength which allows [FPT] to refine the notion of model:

Σ -monoid:

 $\Sigma + \mathrm{Id}_{\mathrm{Set}}$ -algebra equipped with a well-behaved substitution.

Σ -monoid morphisms:

algebra morphisms commuting with substitution.

Theorem [FPT]:

The initial $\Sigma + \mathrm{Id}_{\mathrm{Set}}$ -algebra of a binding signature comes with a well-behaved substitution that makes it initial in the category of Σ -monoids.

This suggests defining signatures to be endofunctors on $\mathrm{End}_{\mathrm{Set}}$ with strength (as in [Matthes-Uustalu 2004]).

Table of contents

1. Binding signatures and their models

2. Signatures and models based on monads and modules

- Our categorical formulation of substitution
- Our take on signatures, models and syntax
- Our take on binding signatures
- 3. Our main result

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

$$R \mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

$$\begin{matrix} & \\ & \\ R \mapsto \Sigma(R) \end{matrix}$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

$$\begin{array}{c} \operatorname{monad} & \operatorname{module} \operatorname{over} R \\ R \mapsto \Sigma(R) \end{array}$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

$$\begin{array}{c} \operatorname{monad} & \operatorname{module} \operatorname{over} R \\ R \mapsto \Sigma(R) \end{array}$$

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

A **signature** Σ is a functorial assignment:

$$\begin{array}{c} \operatorname{monad} & \operatorname{module} \operatorname{over} R \\ R \mapsto \Sigma(R) \end{array}$$

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad module morphism

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Substitution and monads

Reminder:

- B(X) = expressions built out of 0, \star and variables taken in X
- Variables induce a natural transformation $\eta: \mathrm{Id}_{\mathrm{Set}} o B$

substitution bind : $B(X) \rightarrow (X \rightarrow B(Y)) \rightarrow B(Y)$ subject to satisfy some equations.

A triple (B, η , bind) is called a **monad**.

A **monad morphism** between two monads R and S is a family of maps $(f_X: R(X) \to S(X))_X$ preserving variables and substitution.

Preview: Operations are module morphisms

★ commutes with substitution

$$(t \star u)[x \mapsto v_x] = t[x \mapsto v_x] \star u[x \mapsto v_x]$$

In the right hand side, substitution acts on a pair of expressions.

Categorical formulation

$$B \times B$$
 supports B -substitution $\bigcirc B \times B$ is a **module over** B

$$\star$$
 commutes with substitution \frown $\star: B \times B \to B$ is a **module morphism**

Building blocks for binding signatures

Essential constructions of **modules over a monad** R:

- R itself
- $M \times N$ for any modules M and N (in particular, $R \times R$)
- The **derivative of a module** M is the module M' defined by $M'(X) = M(X + \{\bullet\}).$

The derivative is used to model an operation binding a variable (Cf next slide).

Syntactic operations are module morphisms

A **module morphism** between two modules M and N on the same monad R is a family of maps $(f_X:M(X)\to N(X))_X$ commuting with substitution.

$$id_M: M \to M$$

the family of identity maps $(id_{M(X)}:M(X) \to M(X))_X$ for any module M

$$\star : B \times B \rightarrow B$$

$$app: L \times L \to L$$

the application operation of the lambda calculus monad L.

$$abs: L' \rightarrow L$$

Indeed, in $\lambda x.t$, the term t depends on an additional free variable x:

If
$$t \in L(Y + \{x\}) = L'(Y)$$
, then $abs(t) = \lambda x.t \in L(Y)$

The Big Picture again

A **signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad
$$\operatorname{module\ morphism}$$

A **model morphism** $m:(R,\rho)\to (S,\sigma)$ is a monad morphism commuting with the module morphism: $\sum_{(R)} \frac{\rho}{\rho}$

$$\begin{array}{c|c}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & \downarrow & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

Syntax

Definition

Given a signature Σ , its **syntax** is an initial object in its category of models.

Question: Does the syntax exist for every signature?

Answer: No.

Counter-example: the signature $R \mapsto \mathscr{P} \circ R$

powerset endofunctor on Set

Examples of signatures generating syntax

$$-R \mapsto 1 + R \times R$$

Model: (R equipped with module morphisms $1 \rightarrow R$ and $R \times R \rightarrow R$.

The syntax is our previous $(0, \star)$ language.

$$-R \mapsto R \times R + R'$$

Models are monads R equipped with two modules morphisms:

$$R \times R \rightarrow R$$
 and $R' \rightarrow R$.

The syntax is lambda calculus.

Algebraic signatures

More generally, the syntax exists for any signature induced by a disjoint sum of products of finite derivatives of the monad $(R \mapsto R' \times R'' \times R''' \times R'' \times R''' \times R'' \times R'''$

We call such a signature an **algebraic signature**. They correspond to binding signatures through the inclusion:

Binding signatures \hookrightarrow Endofunctors with strength \hookrightarrow Our signatures

Our main result: Quotients of algebraic signatures generate a syntax.

Table of contents

- 1. Binding signatures and their models
- 2. Signatures and models based on monads and modules

3. Our main result

- Definition of presentable signatures
- Generated syntax for presentable signatures
- Examples of presentable signatures

Quotient of a signature

Quotient of a set:

A quotient of a set X is a set Y together with a surjection $p: X \to Y$.

$$x \sim x' \qquad \iff p(x) = p(x')$$

Quotient of a signature:

A quotient of a signature Σ consists of:

- a signature Ψ
- a (natural) family of surjective module morphisms $(f_R: \Sigma(R) \to \Psi(R))_R$

Syntax for presentable signatures

Definition

A presentable signature is a quotient of an algebraic signature.

Theorem

Any presentable signature generates a syntax.

Question: Are there interesting examples of presentable signatures?

Answer:

- Symmetric operations
- Explicit substitution
- Coherent fixed point operation

- ..

Example 1: Symmetric operations

Binary commutative operation +:

$$t + u = u + t$$

As a quotient of an algebraic signature:

This generalizes to **n-ary permutation invariant operations**.

Example 2: Explicit substitution

An operation $(x_i \mapsto t_i)$ satisfying coherence equations:

- invariance under **permutation**

$$F(x,y)\langle x\mapsto t,y\mapsto u\rangle = F(y,x)\langle x\mapsto u,y\mapsto t\rangle$$

- invariance under weakening

$$F(x)\langle x\mapsto t, y\mapsto u\rangle = F(x)\langle x\mapsto u\rangle$$

- invariance under contraction

$$F(x,y)\langle x,y\mapsto t\rangle = F(x,x)\langle x\mapsto t\rangle$$

Example 2: Explicit substitution

Signature of explicit substitution as a quotient of the algebraic signature Σ :

$$t\langle x\mapsto u,y\mapsto v
angle hickspace t[x
ightleftharpoonup y]\langle x\mapsto v,y\mapsto u
angle$$

$$t\langle x\mapsto u
angle \sim t\langle x\mapsto u,y\mapsto v
angle$$

$$t\langle x\mapsto u$$
 , $y\mapsto u
angle hickspace t[y:=x]\langle x\mapsto u
angle$

Conclusion

Summary of the talk:

- presented a notion of signature and models
- identified a class of signatures that generate a syntax
 - encompasses the classical binding signatures
 - encompasses operations satisfying some equations

Future work:

- add equations (e.g. lambda calculus modulo beta/eta equivalence);
- extend our framework to simply typed syntaxes.

Conclusion

Summary of the talk:

- presented a notion of signature and models
- identified a class of signatures that generate a syntax
 - encompasses the classical binding signatures
 - encompasses operations satisfying some equations

Future work:

- add equations (e.g. lambda calculus modulo beta/eta equivalence);
- extend our framework to simply typed syntaxes.

Thank you!