MEGR 3090/7090/8090: Advanced Optimal Control

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\left\{\mathbf{u}_{n}, \mathbf{u}_{n+1}, \dots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right]$$

$$\begin{aligned} V_{n}\left(\mathbf{x}_{n}\right) &= \min_{\left[\mathbf{u}_{n}, \mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N}\right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n}\right) + \min_{\left[\mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N}\right] \right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n}\right) + V_{n+1} \left(\mathbf{x}_{n+1}\right)\right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n}\right) + V_{n+1}\left(\mathbf{x}_{n+1}\right) \right]$$

Lecture 9 September 19, 2017

Constrained Optimization with <u>Equality</u> Constraints - Reminder

Optimization problem:

Minimize $J(\mathbf{u})$

Subject to: $h(\mathbf{u}) = \mathbf{0}$

Note that $h(\mathbf{u}) \in \mathbb{R}^m$, where m is the number of equality constraints

Key point: The gradient of $J(\mathbf{u})$ must be a linear combination of the gradients of $h(\mathbf{u})$ at the optimum point (\mathbf{u}^*)

$$\Rightarrow \nabla J(\mathbf{u}^*) = -\boldsymbol{\lambda}^T \nabla h(\mathbf{u}^*) \text{ for some } \boldsymbol{\lambda} \in \mathbb{R}^m$$
$$\Rightarrow \nabla J(\mathbf{u}^*) + \boldsymbol{\lambda}^T \nabla h(\mathbf{u}^*) = 0$$

- $\nabla h(\mathbf{u}^*)$ is now an $m \times p$ matrix, where m is the number of constraints and p is the number of the design variables
- λ is now an m-element vector (one Lagrange multiplier for each constraint)

Constrained Optimization with *Inequality* **Constraints - Reminder**

Optimization problem: Minimize $I(\mathbf{u})$

Subject to: $g(\mathbf{u}) \leq \mathbf{0}$

Optimality requirements:
$$\nabla J(\mathbf{u}^*) + \boldsymbol{\mu}^T \nabla g(\mathbf{u}^*) = 0$$

Same condition as for equality constraints... The "patch" below addresses inactive constraints

$$\mu^T g(\mathbf{u}^*) = 0$$

$$\Rightarrow \mu_i g(u_i^*) = 0, \forall i$$

If a constraint is inactive, then $\mu_i = 0$, thereby "turning off" the consideration of the constraint in the above equation. This is called the *complementary* slackness constraint.

$$\mu_i \geq 0$$
, $\forall i$

Constrained Optimization with <u>Mixed</u> Constraints – The Karush-Kuhn-Tucker (KKT) Conditions

Optimization problem: Minimize $J(\mathbf{u})$

Subject to:
$$g(\mathbf{u}) \leq \mathbf{0}$$

 $h(\mathbf{u}) = \mathbf{0}$

Optimality requirements: $\nabla J(\mathbf{u}^*) + \boldsymbol{\mu}^T \nabla g(\mathbf{u}^*) + \boldsymbol{\lambda}^T \nabla h(\mathbf{u}^*) = 0$

Complementary slackness:
$$\mu_i g(u_i^*) = 0$$
, $\forall i$

Feasibility: $\mu_i \geq 0$, $\forall i$

Constraint satisfaction: $g(\mathbf{u}^*) \leq 0$ $h(\mathbf{u}^*) = \mathbf{0}$ Combines additional terms from inequality and equality constraints

Note: If \mathbf{u}^* is a minimizer, then the KKT conditions will be satisfied (i.e., they are necessary). In general, however, satisfaction of the KKT conditions does not guarantee that u^* is a unique global minimizer (or even a minimizer)!

KKT Conditions - Assessment

Notation: p = number of decision variables, q = number of inequality constraints, r = number of equality constraints

Optimality requirements – equalities that must be satisfied:

$$abla J(\mathbf{u}^*) + \boldsymbol{\mu}^T \nabla g(\mathbf{u}^*) + \boldsymbol{\lambda}^T \nabla h(\mathbf{u}^*) = \mathbf{0} - p \text{ equations}$$

$$\mu_i g(u_i^*) = 0, \forall i - q \text{ equations}$$

$$h(\mathbf{u}^*) = \mathbf{0} - r \text{ equations}$$

$$p + q + r \text{ unknowns}$$

$$p + q + r \text{ unknowns}$$

$$p + q + r$$
 equations $p + q + r$ unknowns

Optimality requirements – inequalities that must be satisfied:

$$g(\mathbf{u}^*) \leq \mathbf{0} - q$$
 inequalities $\mu_i \geq 0, \, \forall i - q$ more inequalities

2q inequalities, -p+q unknowns (same as earlier unknowns)

KKT Conditions - Sufficiency

In general, the KKT conditions are merely **necessary** for a minimizer but do not guarantee that a minimizer exists

There are a couple of <u>very important</u> exceptions...

Exception #1:

Define $L(\mathbf{u}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \triangleq J(\mathbf{u}) + \boldsymbol{\mu}g(\mathbf{u}) + \boldsymbol{\lambda}h(\mathbf{u})$...this is the **generalized Lagrangian** (accounting for inequality constraints)

Suppose that the hessian of the generalized Lagrangian is positive definite at \mathbf{u}^* (i.e., $H(L(\mathbf{u}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) > 0)$, where \mathbf{u}^* satisfies the KKT conditions. Then \mathbf{u}^* is a **local minimizer** (still no guarantees about globality)

Notes About the Lagrangian

Condition for optimality:

$$\nabla J(u^*) + \mu \nabla g(u^*) + \lambda^T h(u^*) = 0$$

From the notes: $L(u, \mu, \lambda) = J(u) + \mu \nabla g(u) + \lambda^T h(u)$

Minimizing $J(u)$ subj. to constraints $(g(u) = 0, h(u) = 0)$

is equivalent to minimizing $L(u, \mu, \lambda)$ subject to the same constraints.

KKT Conditions - Sufficiency

In general, the KKT conditions are merely necessary for a minimizer but do not guarantee that a minimizer exists

There are a couple of *very important* exceptions...

Exception #2:

Suppose that $J(\mathbf{u})$ is a (globally) convex **function**, $\{\mathbf{u}: g(\mathbf{u}) \leq 0\}$ and $\{\mathbf{u}: h(\mathbf{u}) = 0\}$ are both convex **sets**, and the KKT conditions are satisfied at \mathbf{u}^* . Then \mathbf{u}^* is a **unique global minimizer!!**

- This is why convexity is such a big deal in optimization and optimal control
- In order to make use of the above exception, we need to understand the notion of a convex set
- From time to time, you might hear people talk about convex optimization **problems** and wonder "how the hell is a "problem" defined mathematically?" An **optimization problem** is convex if both the objective function $(J(\mathbf{u}))$ and the constraint sets $(\{\mathbf{u}: g(\mathbf{u}) \leq 0\})$ and $\{\mathbf{u}: h(\mathbf{u}) = 0\}$ are convex

First off, a set is a collection of points in some space.

...Thus, the constraints $(g(\mathbf{u}) \le 0 \text{ and } h(\mathbf{u}) = 0)$ are **not sets**...however, constraint **sets** be written (as they were on the previous slides) as:

- $G = \{\mathbf{u}: g(\mathbf{u}) \le 0\}$ In words: "The set of all \mathbf{u} for which $g(\mathbf{u}) \le 0$ "
- $H = \{\mathbf{u}: h(\mathbf{u}) = 0\}$ In words: "The set of all \mathbf{u} for which $h(\mathbf{u}) = 0$ "

Thus, the optimization problem could be rewritten as: Minimize $J(\mathbf{u})$

Subject to: $g(\mathbf{u}) \in G$ $h(\mathbf{u}) \in H$

For the **problem** to be convex, $J(\mathbf{u})$, G, and H must be convex ...We know how to evaluate convexity of $J(\mathbf{u})$...now we will consider how to evaluate convexity of G and H

A set (in IR") is a collection of points (in IR"). Inequality constraint: g(u) = 0 1 = not a set The corresponding constraint set can be denoted as G={u:q(u) ≤0} ← a set Equality constraint: (h(u) = 0 to not a set Corresponding set! H= {u: h(u) = 0} (a set

Definition: A set G is convex if and only if $\alpha \mathbf{u}_a + (1 - \alpha)\mathbf{u}_b \in G$, $\forall \mathbf{u}_a, \mathbf{u}_b \in G$, as long as $0 \le \alpha \le 1$

Interpretation: For any two (arbitrary) points in G, the line segment connecting those points is contained entirely in G

Convex set (example):

u_2 u_1

Non-convex set (example):

A set G is convex if u, EG, u, EG= u, = xu, +(1-x)u, EG,
for all x E[0 1].

Convex Sets – Important Properties

Scaling: If G is a convex set, then αG is also a convex set, for any $\alpha \in \mathbb{R}$, $\alpha \geq 0$

Additivity: If G_1 and G_2 are convex sets, then $G_1 + G_2$ is also convex, where $G_1 + G_2 \triangleq \{\mathbf{y}: \mathbf{y} = \mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_1 \in G_1, \mathbf{u}_2 \in G_2\}$

Intersection (*very important*): If G_1 and G_2 are convex, then $G_1 \cap G_2$ is convex

 This is especially important since there are usually multiple constraints involved with an optimization problem...the overall constraint set is the intersection of the individual constraint sets.

Convex Sets – Important Properties

Optimization problem: Minimize: $J(\mathbf{u}) = k^T \mathbf{u}$

Subject to: $A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$

 $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

Prove that the optimization problem above is convex.

Fun fact: This optimization problem is known as a linear program.

Ex: Minimize
$$J(u) = \underline{k}^T u$$
, $\underline{u} \in \mathbb{R}^\ell$
Subject to: $A_{\underline{u}} - b_1 \leq 0$
 $A_{\underline{u}} - b_2 = \delta$
 $DJ = \underline{k}^T$ $U = \underline{x} \underline{u}_1 + (1-\underline{x})\underline{u}_2$
 $H = O_{pop}$ $J(\underline{x}\underline{u}_1 + (1-\underline{x})\underline{u}_2) = \underline{k}^T [\underline{x}\underline{u}_1 + (1-\underline{x})\underline{u}_2] = \underline{k}^T [\underline{x}\underline{u}_1 + (1-\underline{x})\underline{k}^T\underline{u}_2]$
 $= \underline{x} J(\underline{u}_1) + (1-\underline{x}) J(\underline{u}_2) = \underline{x}\underline{k}^T \underline{u}_1 + (1-\underline{x})\underline{k}^T\underline{u}_2$

$$g(\underline{u}) = A, \underline{u}. - b_1$$

 $g(\alpha \underline{u}, + (1-\alpha)\underline{u}_2) = A, (\alpha \underline{u}, + (1-\alpha)\underline{u}_2) - b_1$
 $= \alpha (A\underline{u}, -b_1) + (1-\alpha)(A\underline{u}_2 - b_1) \in G$
 ≤ 0

Optimization problem: Minimize: $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} + s$

Subject to: $A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$

 $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

Prove that the optimization problem above is convex for positive definite Q.

Fun fact: This optimization problem is known as a quadratic program.

Ex! Minimize
$$J(u) = u^{T}Qu + C^{T}u + S$$

Subj. to: $A_{1}u - b_{1} = 0$ } Same as before we are constraints are convex
 $A_{2}u - b_{2} = 0$

$$\nabla J = 2u^{\dagger}Q + C^{\dagger}$$

$$H = 2Q > 0$$

Objective function is convex

Question From Class

A question was asked: Does a constraint need to be linear for its corresponding constraint set to be convex?

Answer: NO! See the counter-example below (which is one of many)

$$G = \{u : ||u|| \le u_{max}\}$$

$$||u|| = (u_1^2 + u_2^2)^{1/2}$$

Convex Optimal Control Problem – Example – 5 Bonus Points on Exam 1

Optimal control problem:

Minimize:
$$J(\mathbf{u}, \mathbf{x}_0) = \sum_{i=0}^{N-1} (\mathbf{x}(i+1)^T Q \mathbf{x}(i+1) + Ru(i)^2)$$

Subject to:
$$M_1 \mathbf{u}(i) - \mathbf{b}_1 \le \mathbf{0}, i = 0 \dots N - 1$$

 $M_2 \mathbf{x}(i) - \mathbf{b}_2 \le \mathbf{0}, i = 1 \dots N$
 $\mathbf{x}(i+1) = A\mathbf{x}(i) + Bu(i)$

Prove that the optimization problem above is convex, assuming that Q is positive definite and R>0.

Fun fact: This optimization problem is known as a constrained *linear quadratic regulator*.

Preview of Upcoming Lectures

Next lecture – Using the KKT conditions to derive general solutions to "classic" convex optimization problems:

- Linear program
- Quadratic program
- Linear quadratic regulator

Dealing with more general (possibly non-convex) optimization problems:

- Constraint softening
- Sequential quadratic programming