IP Camera Security (Amcrest/Dahua)

Team 1
Abdulaziz AlMailam, Kwadwo Osafo, Karin Luna

The Problem

- IP Cameras widely popular, riddled with security issues
- Public access to private cameras notoriously common (Shodan search for "Dahua" reveals 1.2M results)
- Monopoly of camera industry (Dahua, Hikvision)
 - Vulnerabilities in one camera likely exist in various other cameras

Our goal is to raise awareness around the common cybersecurity issues within these cameras.

Our Plan

- Evaluate common vulnerabilities in a generic IP camera
 - In our example, we are using the Amcrest IP8M-2796EW-AI
- Attempt to recreate common attacks and known exploits
 - Brute force login attempt
 - DDOS attacks
 - Kaminsky DNS poisoning

Background Info - Device Factory-Default Settings

```
Max Concurrent Connections: 10
- TCP Port: 37777
 UDP Port: 37778
- HTTP Port: 80
- RTSP Port: 554
 HTTPS: Off (user must upload a certificate to enable)
 Logging: Off
  Users (both have full administrative privileges):
      admin
      888888
```

Background Info - Device Factory-Default Settings

```
Max Concurrent Connections: 10
- TCP Port: 37777
 UDP Port: 37778
- HTTP Port: 80
- RTSP Port: 554
  HTTPS: Off (user must upload a certificate to enable)
 Logging: Off
  Users (both have full administrative privileges):
      admin
      888888
```

Background Info - Device Factory-Default Settings

- Logging: Off
 - No evidence of an attack as no logs exist
 - Even if enabled, the logging system is often broken and can't properly open a file to write to (most cameras don't have local storage)
- TCP Port: 37777 Not rate-limited! More in a bit...
- Users (both have full administrative privileges):
 - admin default user, username/password can be changed
 - 888888 hidden user intended for mouse-keyboard interaction, but actually also available remote login, only the password can be changed

Our Process - TCP Port (background)

- Authentication requests (and all other requests) to this port NOT rate limited
- Notable vulnerabilities:
 - CVE-2013-6117: authentication can be outright bypassed
 - **CVE-2017-6432:** Dahua DVR protocol is an unencrypted, binary protocol and is vulnerable to Man-in-Middle attacks
- TCP Port (37777) is a common target for many attacks
 - Dahua has since patched the known vulnerabilities, but more are being uncovered and they all tie back to port 37777

Our Process - TCP Port

- Authentication requests (and all other requests) to this port NOT rate limited
- Still vulnerable to a brute force attack
- Would be much harder if you also had to guess the username (we known that admin can be renamed)

User 888888 already exists, just guess the password!

Our Process - TCP Port (cont.)

- CVE-2020-5736 Null pointer reference:
 - Create a special packet with a null/zero byte in a specific location and send the packet over to TCP port 37777
 - Leads to a null pointer exception, causing the device to crash

 Camera expects the input credentials to authenticate to be valid, but they're actually NULL and it crashes application due to the NullPointerException

Our Process - TCP Port (cont.)

- CVE-2020-5735 Stack-based buffer overflow:
 - Create a special packet with a very large value in the Protocol field
 - Invoke the device's DDNS testing logic using command 0x62 and subcommand 0x04
 - Send the packet over to TCP port 37777
 - On the camera, memcpy() will write beyond the bounds of a stack buffer, causing the device to crash
- Can also be used to run shellcode but much harder since the payloads must be very, very small

Our Process - Javascript Web Authentication

- Javascript authentication script (/RPC2)
 - Gets user input, sanitizes it <u>locally</u>, then creates an MD5 hash and submits the login request
 - If valid, server creates a new session ID and returns it
- Just like with the TCP port attacks, you can try to guess Session IDs on until you succeed
 - If the camera is connected to a Digital Video Recorder (DVR), you are guaranteed that one user is always logged in
 - The default HTTP (80) rate limit is also fairly generous
- Because of limited server-side sanitization (mostly local), also vulnerable to injection attacks

Our Process - Timestamp Modification

- CVE-2022-30564 Timestamp modification:
 - Create a special HTTP request to update the device time
 - API handling time updates doesn't perform any authentication/verification and simply processes the request
- Can lead cameras to overwrite previous recordings
- Can mess up stored feeds due to a mismatch between recording times and actual timestamps viewable on recordings

Our Results / Interesting Insights

- Manufacturer's of these cameras have caught up and now:
 - Use MD5 hashes of passwords
 - Allow per-user access control permissions
 - Allow firewall access control policies
 - Configurable port rate-limits (port 37777 is still NOT rate limited)
 - Flag usage of invalid credentials and inputs like session IDs (available only on specific products)

What We Learned From Our Results

- IP cameras are notoriously insecure
- Widespread nature of cameras makes it hard to update,
 hence vulnerabilities persist even after exposure
- Found vulnerabilities are fixed once reported
- Importance of cybersecurity awareness when using products
 - Rate-limiting
 - Sanitize all requests server-side before processing them
 - Authenticating all requests (re. timestamp modification)
 - Make all users subject to modification (888888)

Questions?