Basics on High-Frequency Mixers

Outline

- Introduction
- Theory of frequency conversion
- Characteristic performances of mixers
- Active mixers
 - → Single Ended (SEM) → Gate Mixer / Drain Mixer
 - → Gilbert Cell → DBDM Double Balanced Differential Mixer
- Passive Mixers
 - → Diodes → SEM / SBM / DBM
 - → Cold FETs → SEM / SBM
- **♦ IRM: Image Reject Mixers**

Introduction

A mixer is a 3-port nonlinear circuit which performs the frequency translation required by any communication system.

Problem of IMAGE FREQUENCY

The image frequency is the symmetric of the RF frequency with respect to the LO frequency

$$\omega_{LO}$$

$$\omega_{RF}$$

$$\omega_{IM}$$

$$\omega_{IM}$$

$$\omega_{IF}$$

$$\omega_{IM}$$

$$\omega_{IM}$$

$$\omega_{IF}$$

$$\omega_{IM}$$

$$\omega_{IM}$$

$$\omega_{IF}$$

$$\omega_{IM}$$

$$\omega$$

$$\omega_{\text{IM}} = 2 \cdot \omega_{\text{LO}} - \omega_{\text{RF}}$$

Principle of frequency conversion

Mixing Function modelled by an ideal multiplier

Ideal mixing because the only unwanted frequency is largely outside the useful bandwidth

Example of Active Multiplier

◆ Principle: Voltage Multiplication of Input Voltages

$$V_{out}(t) = V_{i1}(t) \times V_{i2}(t)$$

♦ Gilbert Cell

Mixing Function performed by a nonlinear device

 2^{nd} Order Nonlinearity \rightarrow useful signal @ $\pm(\omega_{LO}$ - ω_{RF}) but the nonlinearity gives a lot of parasitic frequencies (spurs)

Nonlinear devices used in High-Frequency Mixers: Diodes and Transistors

Mixing by LO switching: Frequency generation of a square signal « Sign Function»

Switches controlled by the LO signal along the signal path RF→IF (Gilbert Cell)

$$\begin{split} V_{OUT}(t) &= V_{IN}(t) \text{ . sign } (V_{LO}(t)) \rightarrow \text{only odd mixing products } (2k+1)\omega_{LO} \pm \omega_{RF} \\ &\rightarrow \text{less spurs} \end{split}$$

Characteristic Performances of Mixers

Conversion Gain (example of Receiver RF → IF)

Voltage Conversion Gain

$$G_V = 20 log \left(\frac{Vout_{lF}}{Vin_{RF}} \right)$$

and

Power Conversion Gain

$$G_P = 10 \log \left(\frac{Pout_{IF}}{Pin_{RF}} \right)$$

Conversion Gain = $F(P_{LO})$

LO-RF Isolation

ISOLATION = power level coupled from one port to another one within the mixer

- Cannot be improved by filtering because RF and LO frequencies are too close
- Can be improved by Balanced Architectures

ISO_{LO-RF (dB)} = LO leakage to the RF port (LNA, antenna)

LO-IF and RF-IF Isolations

• LO-IF Isolation:

ISO_{LO-IF (dB)} = LO leakage to the IF port (saturation of following stages due to large signal)

• RF-IF and IF-RF Isolations :

ISO_{RF-IF (dB)}=
$$P_{dBm}(\omega_{RF})_{RF port}$$
 - $P_{dBm}(\omega_{RF})_{IF port}$
ISO_{IF-RF (dB)}= $P_{dBm}(\omega_{IF})_{IF port}$ - $P_{dBm}(\omega_{IF})_{RF port}$

Less critical isolations because they can be improved by filtering

Isolations

•Two critical isolations due to the very large amplitude of the LO signal:

LO- IF Isolation (less critical because filtering is easy $\omega_{LO} >> \omega_{IF}$)

and LO-RF Isolation (the most critical isolation because of impossible filtering $\omega_{LO} \approx \omega_{RF}$)

Isolations =
$$F(P_{LO}, P_{IN})$$

Linearity (ex : Single carrier amplifier)

Nonlinearity $y(t) = \alpha_1 \cdot x(t) + \alpha_2 \cdot x(t)^2 - \alpha_3 \cdot x(t)^3$

$$x(t) = A.\cos(\omega t) \rightarrow y(t) = \left(\frac{\alpha_2 A^2}{2}\right) + \left(\alpha_1 A - \frac{3\alpha_3 A^3}{4}\right) \cos(\omega t) + \left(\frac{\alpha_2 A^2}{2}\right) \cos(2\omega t) - \left(\frac{\alpha_3 A^3}{4}\right) \cos(3\omega t)$$

$$\rightarrow$$
 G_{lin}= α_1 A

Gain compression of Active Mixers

•1dB compression point at a given LO power

Simplified Output Spectrum

At a given level of P_{LO} , if P_{IN} increases \rightarrow Mixer saturation

$$\rightarrow$$
 n $\omega_{LO} \pm m \omega_{RF}$

Gain Conversion as a function of P_{LO}

If P_{LO} is high at its optimum value $f \to Gc$ is optimal and remains constant with P_{LO}

Outline

- Introduction
- Theory of frequency conversion
- **♦** Characteristic performances of mixers
- Active mixers
 - → Single Ended (SEM) → Gate Mixer / Drain Mixer
 - → Gilbert Cell → DBDM Double Balanced Differential Mixer
- Passive Mixers
 - → Diodes → SEM / SBM / DBM
 - → Cold FETs → SEM / SBM
- IRM: Image Reject Mixers

Active Mixers

Active Mixers = Gain Modulation

The basic architecture of an active mixer is similar to that of an amplifier except that the biasing conditions of the nonlinear device are chosen to get a 2nd order quadratic response

$$S_{OUT}(t) = \alpha_1.S_{IN}(t) + \alpha_2.S_{IN}(t)^2 + \alpha_3.S_{IN}(t)^3 + ...$$

- → Active mixers can give high conversion gains
- → Active mixers require lower levels of LO power compared to passive mixers

However:

- → Active mixers saturate at very low powers
- → Active mixers require DC consumption
- → Active mixers are not well suited to IRM architectures

At high frequencies:

 \rightarrow Performances of active mixers do not reach the required level \rightarrow Passive mixers are preferred @ HF

♦ Active Mixers : Single Ended Mixers

FET-based SEMs

FET-based SEM (Gate Mixer)

Biasing conditions → High nonlinearity of the transconductance gm

$$gm(t) = gm_0 + gm_1.cos(\omega_{LO}t) + gm_2.cos(2\omega_{LO}t) + ...$$

FET-based SEM (Drain Mixer)

Biasing conditions → Nonlinearities of gm and gd)

$$gm(t) = gm_0 + gm_1.cos(\omega_{LO}.t) + gm_2.cos(2\omega_{LO}.t) + ...$$

$$Gd(t) = Gd_0 + Gd_1.cos(\omega_{LO}.t) + Gd_2.cos(2\omega_{LO}.t) + ...$$

Lower Conversion Gain compared to the Gate Mixer

Active Balanced Mixers

Reminder: Coupler

Coupler

90° Coupler

BALUN

BALanced to UNbalanced

Phase relationships of frequency products

$$2 \times \cos(\omega_{LO}t + \emptyset_{LO}) \times \cos(\omega_{RF}t + \emptyset_{RF}) = \cos[(\omega_{LO} + \omega_{RF})t + (\emptyset_{LO} + \emptyset_{RF})] + \cos[(\omega_{LO} - \omega_{RF})t + (\emptyset_{LO} - \emptyset_{RF})]$$

$$LO + RF$$

$$LO - RF$$

$$(\omega_{LO} + \omega_{RF}) \rightarrow (\varnothing_{LO} + \varnothing_{RF})$$

$$(\omega_{LO} - \omega_{RF}) \rightarrow (\emptyset_{LO} - \emptyset_{RF})$$

If
$$\omega_{IF} = \omega_{LO} - \omega_{RF} \rightarrow \emptyset_{IF} = (\emptyset_{LO} - \emptyset_{RF})$$

SBM Active Mixers

$$\omega_{\mathsf{IF}} = \omega_{\mathsf{LO}} - \omega_{\mathsf{RF}} \rightarrow \mathsf{Phase}(\mathsf{IF}) = \mathsf{Phase}(\mathsf{OL}) - \mathsf{Phase}(\mathsf{RF})$$

• SBM with 180° Couplers

Notations

EH = Even Harmonic

OH = Odd Harmonic

Mix [EH(LO), OH(RF)]= $\pm 2m \omega_{LO} \pm 2(n+1) \omega_{RF}$ with (m,n) integers

- Good LO-RF isolation ⇔ Good Input Coupler isolation
- In all cases, mix [EH(LO), OH(RF)] are rejected at the output
- LO at Δ port (the illustrated case in this slide)

$$\rightarrow$$
 mix [EH(LO), *] are rejected

• LO at Σ port

→ mix [* , OH (RF)] are rejected

Example of Gilbert Cell Mixers

Single Balanced Gilbert Cell Mixer

Double Balanced Gilbert Cell Mixer

Double Balanced Gilbert Cell Mixer

Switch controlled by the LO signal Square Signal (50% duty cycle)

The linear signal path RF→IF is open and closed by a switch controlled at the LO rate

- → The output signal results from the multiplication of the RF signal by the square LO signal
- → Unfortunately, the output signal includes a parasitic RF component due to the DC component of the LO signal

Switch controlled by the LO signal with the suppression of its DC component

The sign of the RF signal is periodically changed at the LO rate instead of being cut

- → There is no DC component and the RF signal is fully rejected at the output
- → The RF signal is fully transposed at the IF frequency

Double Balanced Active Gilbert Cell Mixer

- The differential RF pair gives gain and the RF-IF path must be as linear as possible
- The 2 LO pairs work as switches to perform the frequency conversion

Differential RF pair: Voltage-Current conversion

The differential RF pair gives the conversion gain through the drain current Id (Vgs)

• Id₁ and Id₂ currents of the RF pair are flowing towards the two LO pairs controlled by the outphased LO signals

• The 2 LO pairs operate as switches ⇔ Requirement of a large LO power to allow an efficient ON/OFF operation

LO pair : Switching 1st Positive Alternation $[0 - T_{LO}/2]$

 $\overline{}$ Transistors T_2 and T_3 are OFF

Transistors T₁ and T₄ are ON

LO pair : Switching 2^{nd} Negative Alternation $[T_{LO}/2 - T_{LO}]$

Transistors T_1 and T_4 are OFF

Transistors T_2 and T_3 are ON

Operating mode of the Gilbert DBM

LO switching

• No generation of even LO Harmonics

$$sign[V_{LO}(t)] = \frac{4}{\pi} \left[\cos(\omega_{LO}.t) - \frac{1}{3}\cos(3\omega_{LO}.t) + \frac{1}{5}\cos(5\omega_{LO}.t) - \dots \right]$$

Example of two DBM (Active and Passive): Active DBM mixer (Gilbert Cell) / Passive DBM mixer (Ring mixer of cold FETs)

Double Balanced Mixer « Gilbert Cell»

« Passive ring mixer »

