Acturdad 1.1

if Jubonala (int 1) 5 if (n==0) and 1 hefunno; rete else of (n==1) (orde return li neta else return de Monach (n-1) + de bonnach (n-2) T(n) = (1 + 1) = 1 + 1 = 2tT(n) = (1 + 1) = 1 + 1 = 2t (1 + 1) = 1 + 1 = 3t (1 + 1) = 1 + 1 = 3t (1 + 1) = 1 + 1 = 3tT(n) = 3 + + T(n-1), + , t(n-2), = 3 t + [3t + T(n-2) + T(n-3)] + (3t + T(n-3) + T(n-4)]  $= 9 \pm 4 + (n-2) + 2 + (n-3) + (n-4)$ = 9 f + (3 t + T(n-4) + 2 ) + 2 [3 t + T(n-4) + T(n-5)] + (3 t + T(n-5) + T(n-6)) = 24 ibt T(n-3) + 3T(n-4) + 3T(n-5) + T(n-6) No hay putnin T(n-1) > T(n-2) -> 3.67 T(n-1) + T(n-1) > 3.67 T(n-2) Kentre WO TCa) = 3 t + T (n-1) + T (n-1) = 3 t + 2 T (n-1) = 3 t + 2 [3 t + 2 T (NU)] = (1+2) 3 t + 2 T (n-2)  $=(1-2)36+2^{2}(3t+27(n-3))=(1+2+3)3t+2^{3}7(n-3)$ 2(1+2+3)3t+23(3++27(n-4))

20(2<sup>nt</sup>) - Constitutes O(t(n)) 20(M = 24 ont forbonaclus (mt n) { 3 mt fib (mtn, mt de) Nf (n=20) of condi returno heti else of (1==1) of conde 1120 asry neturn 1; het Felsed mt nz o Asvyz neturn nem net T(ww) + T(reh) = t + t= 25 T(n) of n=212 T(andi) + T(asy) + T(asy) + T(retz)=4t n=1. T(andi) + T(conde) + T(asy) + Ta-11 + T(retz) = 4. t + T(n-1)

6 Aparsun T(n) = 4 t + T(n1) =4t+(4t+T(n-21)=2(4t)+T(n-2) 24ttC4tf(n-3)]=(3)(46)+T(n-3) = 3(4t) + (4t + T(n-4)) = (4) 4t + t(n-4) K-ESME Expensión T(n) = (K) 4 t t (n-k) T(0)=2t -) n-K=0-) n=K -> Tenzn4t+ Tlo)= 4nt+ Tlo)= Unt+ Lit -> [(n) = Un + 2 () (Tay) = 0 (4n2) = n //





## Estructuras de Datos

ANÁLISIS DE ALGORITMOS A-1.1 Función de Fibonacci

> René Ornelis Vacaciones de junio de 2024

## Optimización de función de Fibonacci

## Objetivos

Los objetivos de esta actividad son que el estudiante sea capaz de:

- 1. Determinar y comprobar el orden de un algoritmo (función O(n))
- 2. Optimizar un algoritmo para lograr un mejor rendimiento

## Problema

Consideremos el algoritmo de la función de Fibonacci:

```
int fibonacci(int n) {
    if (n <=0)
        return 0;
    else if (n ==1)
        return 1;
    else
        return fibonacci(n-1) + fibonacci(n-2);
}</pre>
```

Este algoritmo tiene un orden  $O(n) = n^2$ , por lo que se requiere que cree una función recursiva equivalente (que dé el mismo resultado), pero que sea O(n)=n. No debe utilizar ninguna estructura de datos adicional.

Deberá entregar:

- 1. Demostración de que el algoritmo original es  $O(n) = n^{2}$ .
- 2. Algoritmo recursivo equivalente en C++.
- 3. Demostración que el algoritmo equivalente es O(n)=n.

1. Demostración de que el algoritmo original es  $O(n) = n^2$ 

$$T(n) = \begin{cases} T(cond0) + T(ret0) = t + t = 2t & si \quad n \leq 0 \\ T(cond0) + T(cond1) + T(return1) = t + t + t = 3t \quad si \quad n = 1 \\ T(cond0) + T(cond1) + T(ret2) + T(n-1) + T(n-2) = 3t + T(n-1) + T(n-2) \quad si \quad n > 1 \end{cases}$$

$$T(n) = 3t + T(n-1) + T(n-2)$$

$$= 3t + [3t + T(n-2) + T(n-3)] + [3t + T(n-3) + T(n-4)] = (3*3)t + T(n-2) + 2T(n-3) + T(n-4)$$

$$= (3*3)t + [3t + T(n-3) + T(n-4)] + 2[3t + T(n-4) + T(n-5)] + [3t + T(n-5) + T(n-6)]$$

$$= (7*3)t + T(n-3) + 3T(n-4) + 3T(n-5) + T(n-5)$$

$$= (7*3)t + [3t + T(n-4) + T(n-5)] + 3[3t + T(n-5) + T(n-6)] + 3[3t + T(n-6) + T(n-7)] + [3t + T(n-6) + T(n-7)]$$

$$= (15*3)t + T(n-4) + 4T(n-5) + 6T(n-6) + 4T(n-7) + T(n-8)$$

Sin Patrón aparente

Por aproximación

$$T(n-1) > T(n-2)$$

$$3t + T(n-1) + T(n-2) < 3t + T(n-1) + T(n-1)$$

$$3t + T(n-1) + T(n-2) < 3t + 2T(n-1)$$

$$T(n) = 3t + 2T(n-1)$$

$$= 3t + 2[3t + 2T(n-2)] = (3+3)t + 4T(n-2)$$

$$= (3+3)t + 4[3t + 2T(n-3)] = (6+6)t + 8T(n-3)$$

$$= (12)t + 8[3t + 2T(n-4)] = (12+12)t + 16T(n-4)$$

$$T(n) = (3x2^{k-1})t + 2^kT(n-k)$$

$$Si T(0) = 2t$$

$$n - k = 0 \to k = n$$

$$T(n) = (3x2^{n-1})t + 2^nT(0) \to (3x2^{n-1})t + 2^n(2t) \to t(3x2^{n-1} + 2^n)$$

$$O(T(n)) = O(3x2^{n-1} + 2^n) = \max(O(3x2^{n-1}), O(2^n)) = O(2^n) = 2^n$$

2.

```
int fibonacci(int n, int a = 0, int b = 1) {
    if (n == 0) {
        return a;
    } else {
        return fibonacci(n - 1, b, a + b);
    }
}
```

3.

$$T(n) = \begin{cases} T(cond0) + T(ret0) = t + t = 2t \ 2t & \text{si } n \le 0 \\ T(cond0) + T(ret1) + T(n-1) = 2t + T(n-1) & n > 0 \end{cases}$$

$$T(n) = 2t + T(n-1)$$

$$= 2t + [2t + T(n-2)] = (4)t + T(n-2)$$

$$= 4t + [2t + T(n-3)] = T(n) = 6t + [T(n-3)]$$

$$= 6t + [2t + T(n-4)] = 8t + [T(n-4)]$$

$$T(n) = 2kt + T(n-k)$$

$$n - k = 0 \to k = n$$

$$T(n) = 2kt + T(n-k)$$

$$= nt + T(0) \to nt + 2t \to t(n+2)$$

$$O(T(n)) = O(n+2) = \max(O(n), O(2)) = O(n) = n$$

$$O(T(n)) = O(n)$$