INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002)

Assignment – 1 (Spring)

Group: _____ *Marks:* 30

Answer ALL the questions using xournal or similar software to edit the PDF

Q1: Given that $(16)_{10} = (100)_b$, determine the value of b.

4

$$16 = 0 * b^0 + 0 * b^1 + 1 * b^2$$

$$16 = b^2 \implies b = 4$$

.

For unsigned real number the minimum value is 0, when all bits are turned off. The maximum value occurs when all bits are turned on, i.e.,

$$X = 2^{n-f-1} + \dots + 2^{1} + 2^{0} + 2^{-1} + \dots + 2^{-f}$$

$$X = \frac{2^{n-f-1}(1 - (\frac{1}{2})^{n})}{1 - \frac{1}{2}}$$

$$X = \frac{2^{n} - 1}{2^{f}}$$

Therefore, we have,

$$0 \le X \le \frac{2^n - 1}{2^f}$$

	7	3	2	-1
0	0	0	0	0
1	0	0	1	1
2	0	0	1	0
3	0	1	0	0
4	0	1	1	1
5	0	1	1	0
6	1	0	0	1
7	1	0	0	0
8	1	0	1	1
9	1	1	0	1

Q4:	Design a circuit which converts a four bit input binary number to a five bit output representing the radix-12
	representation of the input number and a carry-out bit. You may use a 4-bit binary adder block and basic
	logic gates.

8

Q5:	Prove that the Hamming distance satisfies the triangle inequality. That is, show that $HD(x,y)+HD(y,z)\geq 0$
	H(x,z).

8