CV 2 exercise 1

Summer Semester 2019 Gruop 8

CV2 exercise 1 | Group 8 Moritz Fuchs Diedon Xhiha

7

Problem 1 Probabilities and Statistics (13 Points)

1. 1 Point

x	У	example x	example y
discrete	discrete	exam grade	exam duration
continuous	discrete	location	number of bathtubducks in sight
continuous	continuous	velocity while driving	acceleration while driving

2. 2 Points

with the chainrule we can extend as follows:

$$p(v, w, x, y, z) = p(w, x, y, z)p(v|w, x, y, z)$$

$$p(v, w, x, y, z) = p(x, y, z)p(w|x, y, z)p(v|w, x, y, z)$$

3. 3 Points

$$p(w,x) = \int \int p(w,x,y,z)dydz$$

$$= \int \int p(w)p(y|z)p(z|x,w)p(x)dydz$$

$$= p(x)p(w) \int \int \frac{p(y,z)}{p(z)} \frac{p(z,x,w)}{p(x,w)}dydz$$

$$= p(x)p(w) \int (\int \frac{p(y,z)}{p(z)}dy) \frac{p(z,x,w)}{p(x,w)}dz$$

$$= p(x)p(w) \int \frac{p(z)}{p(z)} \frac{p(z,x,w)}{p(x,w)}dz$$

$$= p(x)p(w) \int \frac{p(z,x,w)}{p(x,w)}dz$$

$$= p(x)p(w) \frac{p(z,x,w)}{p(x,w)}$$

$$= p(x)p(w) \frac{p(x,w)}{p(x,w)}$$

$$= p(x)p(w)$$

4. 3 Points

$$\begin{split} E[(x-\mu)^2] &= E[x^2 - 2x\mu + \mu^2] \\ &= E[x^2] + E[-2x\mu] + E[\mu^2] \\ &= E[x^2] - 2\mu E[x] + \mu \mu \\ &= E[x^2] - 2E[x]E[x] + E[x]E[x] \\ &= E[x^2] - E[x]E[x] \end{split}$$

5. 4 Points

CV2 exercise 1 Group 8
Moritz Fuchs Diedon Xhiha
${f z}$
Problem 2 Modeling (5 Points)
1. 1 Point
2. 1 Point
3. 2 Points
4. 1 Point
5. 1 Point

 $\begin{array}{ccc} {\rm CV2~exercise~1} \mid {\rm Group~8} \\ {\rm Moritz~Fuchs} & {\rm Diedon~Xhiha} \end{array}$

2

Problem 4 Stereo Likelihood (10 Points)

1. 1