Análiside Datos con R y Python

Guía para el Análisis de Datos con R y Python

RICUIB

2025-02-01

Tabla de contenidos

Prefacio			
1	Intro	oducción	5
ı	Mie	crocredito I	6
2	Día	1	8
	2.1	¿Qué aprenderás?	8
	2.2	¿Qué es R?	8
	2.3	Paquetes en R	8
		2.3.1 Repositorios comunes	9
	2.4	Instalación de R \dots	9
		2.4.1 Windows	9
		2.4.2 Mac	9
		2.4.3 Linux (Ubuntu/Debian)	9
	2.5	¿Cómo usar R?	9
		2.5.1 Consola	9
		2.5.2 IDE: RStudio	10
		2.5.3 Acceso a RStudio vía servidor	10
	2.6	¿Qué es un proyecto?	10
	2.7	Crear un proyecto	11
	2.8	Crear un script	11
	2.9	Mover archivos si están en la ubicación incorrecta	11
	2.10	Lectura de bases de datos	11
		2.10.1 Ejemplo CSV	12
	2.11	Excel	12
	2.12	SPSS	12
	2.13	Almacenar datos en R	13
	2.14	Práctica 1	13
	2.15	¡Ya tenemos datos!	13
		2.15.1 Visualización básica	13
		2.15.2 Dimensiones y tipos	13
	2.16	Descripción básica	14
		2.16.1 Funciones de estadística descriptiva	14

	2.17	Operadores y funciones básicas	
	2.18	Consejos prácticos	
		Ejemplo completo: importar y explorar una tabla CSV	
3 Día 2			
	3.1	Práctica 2	
	3.2	Tipos de objetos en R $\dots \dots $	
		3.2.1 Vectores	
		3.2.2 Matrices y listas	
		3.2.3 Data Frames	
	3.3	Práctica 3	
	3.4	Manipulación de tablas con dplyr	
	3.5	Práctica 4	
	3.6	Ejemplo: Clasificar valores lógicos y tipos	
	3.7	Buenas prácticas	
	3.8	Ejemplo con dplyr	
4	Día	3	
	4.1	Manipulación avanzada de tablas	
		4.1.1 Funciones dplyr:	
		4.1.2 Ejemplo:	
	4.2	Clasificación de precipitaciones	
	4.3	Introducción a gráficos con ggplot2	
		4.3.1 Tipos de gráficos:	
		4.3.2 Estructura:	
	4.4	Práctica 5	
	4.5	Ejemplo visual completo	
	4.6	Consejo	
5	Día	4 22	
	5.1	Personalización de gráficos	
		5.1.1 Escalas:	
		5.1.2 Coordenadas y Zoom:	
		5.1.3 Facetas y temas:	
	5.2	Exportación	
	5.3	Introducción a la estadística	
	5.4	Quarto y RMarkdown	
		5.4.1 YAML de ejemplo:	
	5.5	Práctica 6 y 7	
	5.6	Ejemplo completo con escalas, etiquetas y exportación	
	5.7	Quarto y reproducibilidad	

Prefacio

Este documento es una versión de unas notas para Análisis de Datos con R

Ha sido elaborado con Quarto RStudio, PBC. (2022). Quarto (Version 1.0).

1 Introducción

Estas son unas notas para el análiside datos vcn R

Parte I Microcredito I

2 Día 1

2.1 ¿Qué aprenderás?

- Utilizar la interfaz RStudio
- Conocer los tipos de objetos en R
- Instalar y buscar paquetes
- Escribir tus propias funciones y scripts en R
- Realizar los gráficos más adecuados según el tipo de análisis
- Generar informes y garantizar la repetibilidad de los resultados

2.2 ¿Qué es R?

R es un software libre y un lenguaje de programación interpretado, enfocado en la estadística y el análisis de datos.

Características:

- Multiplataforma
- Proyecto abierto y colaborativo

2.3 Paquetes en R

Los paquetes son extensiones de R que contienen código, documentación y datos.

2.3.1 Repositorios comunes

• CRAN: Red oficial de distribución

```
install.packages("nombre_paquete")
```

• Bioconductor: Orientado a datos biológicos

```
BiocManager::install(c("GenomicFeatures", "AnnotationDbi"))
```

• GitHub: Repositorios sin control de calidad oficial

```
devtools::install_github("usuario/repositorio")
```

2.4 Instalación de R

2.4.1 Windows

Descargar R para Windows

2.4.2 Mac

Descargar R para Mac (ARM)

2.4.3 Linux (Ubuntu/Debian)

```
sudo apt update
sudo apt install r-base r-base-dev -y
```

2.5 ¿Cómo usar R?

2.5.1 Consola

Interfaz de línea de comandos sin entorno gráfico.

2.5.2 IDE: RStudio

Entorno integrado de desarrollo para R. Incluye:

- Editor de código
- Consola
- Historial de comandos
- Explorador de archivos
- Panel de gráficos
- Gestor de paquetes
- Ayuda contextual

2.5.3 Acceso a RStudio vía servidor

- URL: https://bioinformatica.idisba.es/rstudio/
- Usuario y contraseña: enviados por correo electrónico

2.6 ¿Qué es un proyecto?

Un proyecto en R agrupa scripts, datos y resultados:

- En Linux: ./tablas/nombre_archivo
- En Windows: . ablas ombre_archivo
- Guarda historial de comandos
- Almacena objetos en memoria
- Permite control de versiones (GitHub)
- Permite replicabilidad con renv

2.7 Crear un proyecto

Opciones:

- Clonar repositorio desde GitHub
- Usar renv para entornos reproducibles
- Crear carpetas como:
 - scripts/
 - practicas/

2.8 Crear un script

Un script es un conjunto de instrucciones en un archivo .R.

- Se escribe código que se ejecutará paso a paso
- Los comentarios comienzan con #
- Ejemplo:

```
# Cargar datos
datos <- read.csv("archivo.csv")</pre>
```

2.9 Mover archivos si están en la ubicación incorrecta

Puedes reorganizar manualmente los archivos desde el explorador de RStudio o el sistema operativo.

2.10 Lectura de bases de datos

Formato	Función	Paquete
$\overline{\mathrm{CSV}}$	read.csv()	utils
CSV	read_csv()	readr
Excel	read.xlsx()	xlsx

Formato	Función	Paquete
SPSS	read_sav()	haven

2.10.1 Ejemplo CSV

```
library(readr)
tabla <- read_csv("archivo.csv")

read.csv(file = "tabla.csv", sep = ",", dec = ".", header = TRUE)</pre>
```

Parámetros comunes:

- sep: Separador (, ;)
- dec: Separador decimal (. o ,)
- header: Indica si hay cabecera
- skip: Saltar filas
- check.names: Validar nombres de columnas
- comment.char: Define carácter de comentario (#)

2.11 Excel

```
read.xlsx(file = "archivo.xlsx", sheetIndex = 1, header = TRUE)
```

2.12 SPSS

```
library(haven)
datos <- read_sav("archivo.sav")</pre>
```

2.13 Almacenar datos en R

```
tabla <- read.csv("archivo.csv", sep = ",", dec = ".", header = TRUE)
```

También se puede usar = como operador de asignación.

2.14 Práctica 1

Carga las siguientes tablas y asígnales un nombre:

Archivo	Nombre en R
balears_aemet_1980_2023.csv Causa_muerte_baleares_1980_2023.xlsx	balears_aemet mort_balears
HealthData.sav antonia_font.txt	healthdata antonia_font
zoo.txt	Z00

```
padro_balears <- read.csv("./tablas/padro_balears_INE_1971_2020.csv", sep = ",", dec = ".", l</pre>
```

2.15 ¡Ya tenemos datos!

2.15.1 Visualización básica

```
head(tabla)
tibble::view(tabla)
colnames(tabla)
print(tabla)
cat("Mensaje")
```

2.15.2 Dimensiones y tipos

```
dim(tabla)
length(variable)
class(variable)
```

2.16 Descripción básica

```
str(tabla)  # estructura
summary(tabla) # resumen estadístico
```

Con el paquete Hmisc:

```
library(Hmisc)
describe(tabla)
```

2.16.1 Funciones de estadística descriptiva

Función	Descripción
mean()	Media
median()	Mediana
table()	Tabla de frecuencias
range()	Rango
<pre>var()</pre>	Varianza
sd()	Desviación estándar

2.17 Operadores y funciones básicas

Operador	Significado
+	Suma
_	Resta
*	Multiplicación
/	División
^	Potencia
==	Igual
<, <=	Menor, menor igual
<, <= >, >=	Mayor, mayor igual

Funciones comunes:

• min(), max()

- length()
- sum()
- sort()
- grep(), gsub(), strsplit()
- paste()
- print(), cat()

2.18 Consejos prácticos

- Siempre comenta tu código para entender qué hace cada bloque.
- Guarda tus scripts con nombres significativos: por ejemplo, importar_datos.R es mejor que script1.R.
- Usa View(nombre_tabla) en RStudio para explorar tablas interactivamente.

2.19 Ejemplo completo: importar y explorar una tabla CSV

```
# Instalar el paquete si no lo tienes
install.packages("readr")

# Cargar el paquete
library(readr)

# Leer una tabla CSV
datos <- read_csv("datos_salud.csv")

# Ver las primeras filas
head(datos)

# Obtener la estructura de la tabla
str(datos)</pre>
```

```
# Ver un resumen estadístico
summary(datos)

# Mostrar los nombres de columnas
colnames(datos)
```

Este flujo te permitirá empezar a trabajar con datos reales de forma sencilla y ordenada.

3 Día 2

3.1 Práctica 2

- 1. Tabla antonia_font:
 - Visualiza la canción número 15.
 - Usa grep para buscar la palabra "lluna" en la columna lletra. ¿Cuántas canciones la contienen?
- 2. Tabla healthdata:
 - Muestra los nombres de las columnas.
 - Usa class() para indicar el tipo de cada columna.
- 3. Tabla balears_aemet:
 - Visualiza las primeras 15 filas.
 - Usa summary() y describe() para describir los datos.
 - ¿Hay alguna variable mal introducida?

3.2 Tipos de objetos en R

3.2.1 Vectores

- numeric / double: valores numéricos decimales.
- integer: números enteros.
- character: cadenas de texto.
- logical: valores TRUE o FALSE.
- Date: fechas (usando as.Date()).

3.2.2 Matrices y listas

- Matrices: estructuras bidimensionales homogéneas (as.matrix()).
- Listas: estructuras que pueden contener tipos distintos (list()).

3.2.3 Data Frames

- Tablas bidimensionales.
- Cada columna puede tener un tipo distinto.

3.3 Práctica 3

- 1. Identifica el tipo de balears_aemet\$fecha y balears_aemet\$prec, y corrígelo.
- 2. Calcula el índice de masa corporal (IMC): Weight / Height^2.
- 3. Calcula la ráfaga mínima y máxima en "PALMA, PUERTO".

3.4 Manipulación de tablas con dplyr

```
library(dplyr)

data %>%
  mutate(nueva_variable = ...) %>%
  select(...) %>%
  filter(...) %>%
  summarize(...) %>%
  arrange(...)
```

3.5 Práctica 4

Crear la variable vent_tipus en balears_aemet: - fluix: <5.83 m/s - moderats: 5.83-11.38 m/s - forts: 11.39-19.71 m/s - molt_forts: 19.72-33.33 m/s - huracanats: >33.33 m/s

Contar cuántos días hay de cada tipo de viento por estación (Palma, Eivissa, Menorca).

3.6 Ejemplo: Clasificar valores lógicos y tipos

```
# Supongamos que 'antonia_font' tiene una columna 'lletra'

# Buscar canciones que mencionan "lluna"
grep("lluna", antonia_font$lletra, ignore.case = TRUE)

# Comprobar tipo de variable
class(healthdata$Age)
is.numeric(healthdata$Age)

# Convertir fecha
balears_aemet$fecha <- as.Date(balears_aemet$fecha, format = "%Y-%m-%d")</pre>
```

3.7 Buenas prácticas

- Revisa siempre los tipos de datos antes de analizarlos.
- Usa str() y summary() como herramientas diagnósticas.
- Cuando manipules datos meteorológicos o clínicos, asegúrate de trabajar con unidades homogéneas.

3.8 Ejemplo con dplyr

4 Día 3

4.1 Manipulación avanzada de tablas

4.1.1 Funciones dplyr:

- mutate(): añade variables nuevas.
- select(): selecciona columnas.
- distinct(): elimina duplicados.
- filter(): filtra filas.
- summarize(): resumen estadístico por grupo.

4.1.2 Ejemplo:

```
balears_aemet %>%
  group_by(nombre) %>%
  summarize(COR = cor(presMin, prec_num, use="complete.obs"))
```

4.2 Clasificación de precipitaciones

4.3 Introducción a gráficos con ggplot2

4.3.1 Tipos de gráficos:

• Univariantes: histogramas, boxplot

- Bivariantes: dispersión, líneas
- Categóricos: barras
- Combinados: boxplot por categoría, columnas

4.3.2 Estructura:

```
ggplot(data, aes(x, y)) + geom_point()
```

4.4 Práctica 5

- Representar Age (barras), Weight vs Waist (puntos), Age por género (boxplot), Weight (histograma).
- Para antoniafont: barras por disco, color y tema personalizado.

4.5 Ejemplo visual completo

4.6 Consejo

Cuando hagas gráficos: - Usa theme_minimal() o theme_classic() para una apariencia profesional. - Siempre nombra los ejes y agrega títulos claros. - Usa facet_wrap(~ variable) si necesitas comparar subgrupos.

5 Día 4

5.1 Personalización de gráficos

5.1.1 Escalas:

```
scale_x_continuous(name = "Eje X", limits = c(25,30))
scale_y_continuous(name = "Eje Y", breaks = c(15,20,25), labels = c("quince", "veinte", "veinte", "veinte", "blue"))
scale_fill_manual(values = c("blue", "red"))
```

5.1.2 Coordenadas y Zoom:

```
coord_cartesian(ylim = c(30, 35), xlim = c(2,4))
```

5.1.3 Facetas y temas:

- facet_wrap(), facet_grid()
- theme_classic(), theme_bw()...

5.2 Exportación

```
save(objeto, file="objeto.RData")
write.csv(tabla, "tabla.csv")
png("grafica.png")
# plot code
dev.off()
```

5.3 Introducción a la estadística

Uso del paquete compareGroups:

```
resultado <- compareGroups(var1 ~ var2, data = tabla)
createTable(resultado)</pre>
```

5.4 Quarto y RMarkdown

- Transparencia y reproducibilidad científica
- Integración con RStudio
- Múltiples formatos: HTML, PDF, Word
- Automatización de informes

5.4.1 YAML de ejemplo:

```
title: "Análisis de tabla"
author: "Tu nombre"
date: today
format:
   html:
    theme: cosmo
    toc: true
   echo: false
```

5.5 Práctica 6 y 7

- Crear documento Quarto con análisis compareGroups por Gender.
- Crear y guardar una gráfica.
- Insertar gráfica guardada.
- Práctica 7: Informe usando StatRadar.

5.6 Ejemplo completo con escalas, etiquetas y exportación

```
library(ggplot2)
grafica <- ggplot(healthdata, aes(x = Weight, y = Waist, color = Gender)) +
    geom_point() +
    scale_x_continuous(name = "Peso (kg)", limits = c(50, 100)) +
    scale_y_continuous(name = "Cintura (cm)", breaks = seq(60, 120, 10)) +
    labs(title = "Relación Peso-Cintura", subtitle = "Datos por género") +
    theme_classic()

# Guardar la gráfica
png("peso_cintura.png", width = 800, height = 600)
print(grafica)
dev.off()</pre>
```

5.7 Quarto y reproducibilidad

Recuerda que los archivos .qmd pueden contener texto + código + resultados. Esto hace que tu análisis sea transparente, reproducible y fácil de compartir.