

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) is a popular commercial algorithm, designed by the Software Company Northpointe Inc, used by judges and parole officers for scoring criminal defendant's likelihood of reoffending (recidivism).

With technological developments in recent years, people have started to use Al algorithms, past statistics, and data science to reduce crime in this world.

The formula was particularly likely to falsely flag black defendants as future criminals, wrongly labeling them this way at almost **twice** the rate as white defendants. White defendants were also mislabeled as low risk more often than black defendants. The algorithm essentially segregates based on race and fails to serve equal justice.

(Prorepublica, 2016)

	Ethnic_Code_Text	count
0	African-American	27069
1	Arabic	75
2	Asian	324
3	Caucasian	21783
4	Hispanic	8742
5	Native American	219
6	Oriental	39
7	Other	2592

RecSupervisionLevelText Low Medium Lu exploratory data

Ethnic Code Text

Ethnic_Code_lext				
African-American	12831	5976	5232	3030
Arabic	51	15	6	3
Asian	288	18	9	9
Caucasian	16155	3075	1881	672
Hispanic	6903	1026	537	276
Native American	108	51	42	18
Oriental	36	0	0	3
Other	2100	315	120	57

Using some basic EDAs, we compare the risk of **violence**, **recidivism**, and risk of **failure to appear**. With this result, we can provide a similar output to Prorepublica's analysis.

The table above represents the **assessment** risk by each ethnicity, while the graph below represents the **recidivism** risks by each ethnicity, starting from African-American, Arabic, Asian, Caucasian, Hispanic, Native American, Oriental, and Other.

	RecSupervisionLevelText		Low	Medium	Medium with Override Consideration	High
	Ethnic_Code_Text					
	African-American		12831	5976	5232	3030
	4	Arabic	51	15	6	3
	on	Asian	288	18	9	9
Assess	Cau	ıcasian	16155	3075	1881	672
488,00	H	ispanic	6903	1026	537	276
	Native An	nerican	108	51	42	18
	c	Oriental	36	0	0	3
		Other	2100	315	120	57

Ethnic_Code_Text count 0 African-American 27069 1 Arabic 75 2 Asian 324 3 Caucasian 21783 4 Hispanic 8742 5 Native American 219 6 Oriental 39 7 Other 2592

	MaritalStatus	count
0	Divorced	3879
1	Married	8172
2	Separated	1803
3	Significant Other	1260
4	Single	45126
5	Unknown	213
6	Widowed	390

EDA

I also provide more exploratory data analysis (EDA) on the compas dataset. The EDA mainly discuss about the count difference between **race**, **marital status**, and **age**. We can clearly see that African-American race has the most number of count, comparing to the other race.

While on the marital status graph, single status has the most count, followed by married, divorced, and seperated.

Last, there's a graph that shows the frequency between age, starting from age 0 to 100. Besides that, there's a number count of **age group** of 25 to 45, then greather than 45, and less than 25.

OUTPUT

Based on my predictive model code, the **output** of the program are the number in nearest neighbors, linear support vector machine (SVM), Radial Basis Function SVM, Decision Tree, Random Forest, Neural Network, Adaboost, Naive Bayes, QDA, and Logistic Regression.

Nearest Neighbors 0.6123110151187905 Linear SVM 0.652267818574514 RBF SVM 0.6641468682505399 Decision Tree 0.6760259179265659 Random Forest 0.6711663066954644 Neural Net 0.673866090712743 AdaBoost 0.66792656587473 Naive Bayes 0.6241900647948164 QDA 0.6452483801295896 LogisticRegression 0.6652267818574514

Best Score:

0.719840807891299

Best Estimator:

Best Param:

```
{'criterion': 'entropy',
  'max_depth': 3,
  'max_features': 8,
  'min_samples_leaf': 4}
```

From the code, we can obtain the best score, best estimator, and best parameter.

The best estimator is Decision Tree Classifier, and the DT's parameter which consists of the criterion, max_depth, max_features and min_sample_leaf, also become this predictive model's best parameter.

support	f1-score	recall	precision	
1020	0.73	0.78	0.68	0
832	0.60	0.54	0.67	1
1852	0.67			accuracy
1852	0.66	0.66	0.67	macro avg
1852	0.67	0.67	0.67	weighted avg

F predictive model RT

On this final report, we can obtain a table that consists of precision, recall, f1-score, and support. While on the left side, there are accuracy elements, such as macro average, and weighted average. Each of the elements have different value that represents the predictive model that was built.

With the EDA and predictive model I built, the COMPAS model really has a bias in terms of race and tends to incorrectly predicts the recidivism risk of **African-American race**. I think COMPAS dataset needs to be rechecked, because it seems to also affect the algorithm judgement on some specific race. Besides that, I do believe that COMPAS will become the future of crime prevention if the algorithm is becoming better and better everyday.

Most importantly, we should **remember** that there must be a justice and equity in terms of on each race's crime prediction.

SOURCES

https://www.kaggle.com/danofer/compass

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

