数学分析 (甲) II (H) 2022 春夏期末

21 级图灵回忆卷

2022年6月15日

一、(10 分) 叙述定义在区间 I 上的函数列 $\{f_n\}$ 在 I 上一致收敛于 f(x) 的定义。并利用定义证明 $\left\{\frac{\sin(nx)}{n^2}\right\}$ 在 \mathbb{R} 上一致收敛.

二、(10 分) 定义函数
$$f(x,y) = \begin{cases} \frac{\sin(xy)}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 证明 $f(x,y)$ 在 $(0,0)$ 处连续且有偏导数,但在 $(0,0)$ 处不可微.

三、(10 分) 利用依据说明 $e^{x+y+1}-x^2y=e$ 可以确定唯一的隐函数 y=y(x),并求 $\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{x=0}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\bigg|_{x=0}$.

四、(32分) 计算

$$\mathbf{2.}\oint_L(z-y)\mathrm{d}x+(x-z)\mathrm{d}y+(x-y)\mathrm{d}z,\ \ 其中 \ L\ \ 为曲线 \begin{cases} x^2+y^2=1\\x-y+z=2\end{cases}$$
,方向为 z 轴正方向看为逆时针.

3. $\int_L e^x (1-\cos y) dx - e^x (1-\sin y) dy$, 其中 L 为 $y = \sin x$ 从 (0,0) 到 $(\pi,0)$ 的一段曲线.

$$\mathbf{4.}\iint_{\Sigma}2xy\mathrm{d}y\mathrm{d}z+2yz\mathrm{d}x\mathrm{d}z+(z-2yz-z^2+1)\mathrm{d}x\mathrm{d}y\,,$$
其中 Σ 为上半球面 $x^2+y^2+z^2=1,z\geq0$,上侧为正侧.

五、(10 分) 求函数 f(x,y) = xy + x - y 在 $x^2 + y^2 \le 5$ 上的最大值和最小值.

六、(10 分) 求函数项级数 $\sum_{n=0}^{\infty} \frac{x^n}{3^n(n+1)}$ 的收敛半径、收敛域以及和函数.

七、(10 分) 设 f(x) 为周期为 2π 的周期函数,且 $f(x) = \frac{1}{4}x(2\pi - x), 0 \le x \le 2\pi$,将其展开为 Fourier 级数,并证明 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

八、(8 分) 设 f(x) 在 \mathbb{R} 上连续,定义函数列 $f_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right)$,证明 $f_n(x)$ 在 \mathbb{R} 上内闭一致收敛.