Aaron Hampshire Homework #5 CS 311, Spring 2014

## 1. Show that the language $ALL_{TM}$ is undecidable

$$ALL_{TM} = \{\langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) = \Sigma^* \}$$

 $ALL_{TM}$  is undecidable by Rice's Theorem. It satisfies Rice's Theorem because:

- (a)  $ALL_{TM}$  is non-trivial because there is at least one TM that will accept all inputs, and at least one TM that rejects every input.
- (b) It depends only on the language. If two TM's recognize the same language, either they both are in  $ALL_{TM}$  or neither are. Explicitly, suppose we have two machines, R and S:

$$\langle R \rangle \in ALL_{TM} \iff L(R) = \Sigma^* = L(S) \iff \langle S \rangle \in ALL_{TM}$$

Therefore, Rice's theorem states that  $ALL_{TM}$  is undecidable.

2. A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing Machine has any useless states. Formulate this problem as a language and show that it is undecidable.

$$UL_{TM} = \{ \langle M, q \rangle \mid M \text{ is a TM and } q \text{ is a useless state in } M \}$$

## [Proof by Contradiction]

Let's assume that TM R decides  $UL_{TM}$ . We construct TM S to decide  $HALT_{TM}$ , with S operating as follows:

S = "On input  $\langle M, q \rangle$ :

- 1. Construct a new Turing Machine, T:
  - T = "On input string x:
  - 1. Run x on M.
  - 2. If M halts, T enters the state,  $q_{halt}$ .
- 2. Run R on  $\langle M, q_{halt} \rangle$
- 3. If R accepts, accept; if R rejects, reject.

Because S decides  $HALT_{TM}$  and  $HALT_{TM}$  is known to be undecidable, a contradiction is reached. Therefore,  $UL_{TM}$  is also undecidable.

3. If  $A \leq_m B$  and B is a regular language, does this imply that A is a regular language? Why or why not?

No. As a counterexample, let  $A = \{0^n 1^n \mid n \ge 0\}$  and let  $B = \{1 \mid n \ge 0\}$ . A is one of our context-free language archetypes and B is clearly regular. However,  $A \le_m B$  because we can define a function, f, that reduces A to B such that

$$w \in A \iff f(w) \in B$$

f would simply output 1 if w was in A, and f would output 0 if w was not in A.

## 4. Prove that $\leq_m$ is a transitive relation.

Let A, B, and C be languages such that  $A \leq_m B$  and  $B \leq_m C$ . For this to be true, there must be two functions,  $f_1$  and  $f_2$  to reduce A to B and B to C, respectively.

By definition of mapping reductions:

$$w \in A \iff f_1(w) \in B$$

$$z \in B \iff f_2(z) \in B$$

Pictorially, this looks like the following figure.



We can also create a composite function, g, such that  $g(w) = f_2(f_1(w))$ . This function first computes the output of  $f_1(w)$  on a TM and uses that output, z, as the input for  $f_2$ . Pictorially, g looks like the following figure.



Because g creates a reduction between A and C, we can conclude that  $A \leq_m C$ , proving that  $\leq_m$  is transitive.

## 5. Prove that if A is Turing-recognizable and $A \leq_m \overline{A}$ , then A is decidable.

If  $A \leq_m \overline{A}$ , there must be some function, f, for an input w, such that  $w \in A \iff f(w) \in \overline{A}$ . To define the function, let's assume the strings x and y, such that  $x \in A$  and  $y \notin A$ :

$$f(w) = \begin{cases} y & \text{if } w \in A \\ x & \text{if } w \notin A \end{cases}$$

Because of the nature of this function, the same function would also reduce  $\overline{A}$  to A,  $\overline{A} \leq_m A$ .

We know from Theorem 5.28:

If  $A \leq_m B$  and B is Turing-recognizable, then A is is Turing-recognizable.

Applying Theorem 5.28 to our problem, we can say that  $\overline{A}$  must also be Turing-recognizable because of the mapping reduction,  $\overline{A} \leq_m A$ .

Finally, Theorem 4.22 states:

A language is decidable exactly when both it and its complement are Turing-recognizable. Because both A and  $\overline{A}$  are recognizable, we can conclude that A must also be decidable.