Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Introdução à Aprendizagem Profunda

Tiago Maritan (tiago @ci.ufpb.br)

- Software consiste de um conjunto de instruções definidas explicitamente por um programador;
 - Geralmente escritos em LPs tradicionais (C, C++, Java, Python)
- Tem dificuldade para resolver alguns tipos de problemas:
 - Reconhecimento de padrões (objetos, pessoas, sons, etc)
 - Síntese de voz, imagens;
 - Processamento de Linguagem Natural (Tradução Automática)
 - Jogos

Ex: Como escrever um programa capaz de reconhecer automaticamente dígitos escritos à mão?

```
00000000000000
2224222222222222222
44444444444444444
66666666666666666
  フマスファフィフリファチノチン
88888888888888888888
```

Motivação

- Zero seria representado por um loop único e fechado?
 - Mas e se alguém escreve um zero que não foi perfeitamente fechado? Poderia ser confundido com um 6?

- Como distinguir o 3 do 5, o 4 do 9?
- Mesmo que conseguíssemos resolver, a solução seria complicada!

- Software é escrito de forma **mais abstrata**, em **linguagem não** humana (ex: conjunto de pesos de uma rede neural)
- A ideia é que o computador aprenda sem ser explicitamente programado:
 - Inspira-se na ideia de aprender a partir dos dados
 - Também chamado de Aprendizagem de Máquina;

Paolla Oliveira

Isis Valverde

Isis

Paolla Oliveira

-0.1999-4.3942-6.5929 6.6242 0.4556 2.0760 -7.4001 9.4620 -6.8377 -3.6502 2.3348 -0.4811 -6.8666 2.9819 0.2209 HL1

Aprendizagem de Máquina:

Estuda algoritmos que...

A partir de uma **Experiência E,**Melhoram a sua **Performance P,**Para uma dada **Tarefa T.**

Como funciona:

- Define-se um alvo (ex: classificar pessoas, reconhecer dígitos)
- Monta-se uma base de dados (ex: conjunto de imagens)
- Escreve-se um esqueleto de código
 - Ex: Arquitetura da rede neural
- Procura-se qual é a melhor combinação de pesos da rede neural que atinge o alvo usando os recursos computacionais

Paolla Oliveira

Isis Valverde

Paolla Oliveira

lsis Valverde

Motivação: Em grande parte dos problemas do mundo real é mais fácil coletar os dados do que explicitamente escrever o programa.

Ex: Desafio do ImageNet

Ok! E Deep Learning? Onde entra nessa história?

Relação entre IA, ML e DL

Machine Learning vs Deep Learning

Machine Learning

Deep Learning

Extração de características e classificação são feitas diretamente e automaticamente pela rede!!!

Deep Learning

- Subárea da Machine Learning que tenta aprender a partir dos dados EM MÚLTIPLOS NÍVEIS/CAMADAS.
- Funciona como uma hierarquia de camadas
 - Cada CAMADA transforma os dados de entrada em uma representação mais abstrata.
- Utiliza (é uma evolução das) Redes Neurais Artificiais

Exemplo - Deep Learning Model

Deep Learning - Breve Histórico

- DL surgiu na década de 1940
 - Modelo de Neurônio Artificial de McCulloch-Pitts

- Rede formada por neurônios (nós de processamento) que conectam-se entre si através de sinapses ("elos").
 - A força dessa ligação é representada por **pesos sinápticos**.

Compara (Saída obtida (Y2), Saída Desejada (Y))

Base de dados:

(X, Y)

(X, Y)

(X, Y)

Comparação gera uma representação de Erro

Base de dados:

(X, Y)

(X, Y)

(X, Y)

Ajustes dos pesos para reduzir o Erro (usando o gradiente descendente)

Base de dados:

(X, Y)

(X, Y)

(X, Y)

Repete processo até o que o erro entre saída obtida (Y2) e a saída desejada (Y) seja mínimo

Base de dados:

(X, Y)

(X, Y)

(X, Y)

Treinamento de uma RNA é um problema de otimização.

"Procure a combinação de pesos sinápticos que minimize o erro entre a saída real da rede (Y2) e a saída desejada (Y)".

Treinamento de Redes Neurais

Método de Descida do Gradiente (Repete até a convergência)

Treinamento de Redes Neurais

Problema: Qual é o valor ideal para o tamanho do passo de descida (taxa de aprendizagem)?

Deep Learning

- ► A ideia de **redes com múltiplas camadas não é recente**.
- ▶ Problemas complexos exigem redes mais profundas.
- Problemas no treinamento
 - Backpropagation Gradiente desaparece!
 - Treinamento demorado e os resultados não são bons.

O que mudou?

DL ganhou destaque devido aos avanços em 3 áreas:

1. Dados:

Big Data

2. Hardware:

GPUs, Lei de Moore

3. Progresso nos algoritmos

- Inicialização dos pesos (RBM);
- Funções de ativação (RELU);
- Representação hierárquica dos dados;
- Representações intermediárias mais ricas, etc;

Crescimento das Bases de Dados

Crescimento no Tamanho das RNs - Nº de neurônios

Crescimento Nº de Conexões P/ Neurônio

Aplicações de Deep Learning

Classificação e Detecção de Objetos (http://pjreddie.com/darknet/yolo)

- ImageNet Large Scale Visual Recognition Challenge
 - ► > 14 M de imagens, de > 20K categorias
 - Desde 2012, DL venceu todos os anos
 - Em 2015, superou o desempenho humano.

ILSVRC top-5 error on ImageNet

- ImageNet Large Scale Visual Recognition Challenge
 - ► Em 2017, 29 das 38 concorrentes tiveram precisão > **95**%
 - Em 2018, anunciaram um novo desafio com foco em classificação de objetos 3D;
 - Mais caro e mais difícil anotar os dados, as bases dados deveriam ser menores
 - Possíveis aplicações em robótica e VR

Legendagem/Descrição de Imagens e Vídeos

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Tradução Automática de Imagens (Google Translate)

Diagnóstico Médico

Análise de Raio-X

Tradução Automática

Tradução Automática de Textos (Google Translate)

Reconhecimento de Voz

Google Speech Recognition System utiliza DL

Speech Recognition

Word Error Rate

Arte - Composição Musical

Computador gerando improvisão de Jazz com DL: https://www.youtube.com/watch?v=Cbb08ifTzUk

Dueto musical com Humanos:

https://www.youtube.com/watch?v=0ZE1bfPtvZo

One of the more controversial applications of AI on the internet, deepfakes, is here to show you how to dance.

Animate Anyone

https://humanaigc.github.io/animate-anyone

Google VEO 3

https://veo3.io

Self-driving Cars

► Tesla Self-Driving (www.tesla.com/autopilot)

Games

Google AlphaGo venceu o campeão mundo de Go

Chatbots, lAs de Domínio Geral

E o que nós estamos fazendo nessa área?

VLibras

Tradução automática para línguas de sinais usando DL

VLibras-Widget

VLibras

Mais de 100 mil traduções realizadas todos os dias

120 mil+

Sites utilizam o VLibras 70 mil

Frases treinadas por inteligência artificial 21 mil+

Sinais cadastrados em nossa biblioteca

VLibras-Vídeo

WikiLibras

VLibras-Desktop

Windows

Linux

VLibras-Plugin

Chrome

Firefox

Safari

VLibras-Móvel

Android

iOS

VLIBRAS-VÍDEO WIKILIBRAS

VLibras — Utilização

- 3 Milhões de traduções p/ mês
- +120 mil websites com VLibras instalado
- Principais sites que utilizam:

VLibras

Experimentos sobre Qualidade da Tradução

Sentenças de governo (Fonte: gov.br)			
	Versão Atual	Nova Versão	
	(Produção)	(Homologação)	
BLEU	48,42	88,63	
METEOR	0,69	0,93	

Sentenças de domínio geral (Fonte: BrWac)				
	Versão Atual	Nova Versão		
	(Produção)	(Homologação)		
BLEU	53,79	71,92		
METEOR	0,77	0,87		

VLibras

Interpretação sobre o BLEU

Pontuação BLEU	Interpretação	
< 10	Praticamente inútil	
10 - 19	Difícil de compreender o sentido	
20 - 29	O sentido está claro, mas há erros gramaticais graves	
30 - 40	Pode ser entendido como boas traduções	
40 - 50	Traduções de alta qualidade	
50 - 60	Traduções de qualidade muito alta, adequadas e fluentes	
× 60	Em geral, qualidade superior à humana	

Fonte: https://cloud.google.com/translate/automl/docs/evaluate?hl=pt-br

Reconhecimento de Sinais em Libras

▶ 99.8% de acurácia numa base de 200 sinais de saúde;

TENHO CÁLCULO RENAL

CineAD

Audiodescrição Automática para Pessoas Cegas

CineAD

▶ Problemas:

"Uma TV está sentada na mesa".

"Uma mulher na praia segurando um frisbee"

Corning Inspection - IFPB e Corning

Inspeção Automatizada de Conectores 101

Auditor Robô - TCE/PB

• Exemplos:

 VALOR QUE SE EMPENHA PARA ATENDER AO RECOLHIMENTO DO GOVERNO MUNICIPAL EM FAVOR DO IPMD PARTE EMPRESA 12,22% DOS SERVIDORES DO MDE, RELATIVO AO MES DE NOVEMBRO/2015 13

```
correto: [0. 1.] predict = [0.43899912 0.5610009 ]
```

 EMPENHO REFERENTE AO PAGAMENTO DO FORNECIMENTO DE PECAS DE REPOSICAO PARA A CAMIONETE D-20 DE PLACA IDR 6102-PB 30

```
correto: [0. 1.] predict = [0.00211229 0.9978877 ]
```

Deep Learning - Mercado

Mercado - Projetos da Google envolvendo DL

Growing Use of Deep Learning at Google

Number of directories containing model description files

Across many products/areas

- Apps
- Maps
- Photos
- Gmail
- Speech
- Android
- YouTube
- Translation
- Robotics Research
- Image Understanding
- Natural Language Understanding
- Drug Discovery

Mercado

- Segundo a Grand View Research Inc.¹, o mercado de DL movimentou U\$ 36.7 bi em 2022
 - Previsão de **U\$ 419.9 bi** em 2030

Mercado

Deep Learning - Big Players

Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Introdução à Aprendizagem Profunda

Tiago Maritan (tiago oci.ufpb.br)