Trabalho elaborado pela Diretoria de Educação e Tecnologia do Departamento Regional do SENAI - PR, através do LABTEC - Laboratório de Tecnologia Educacional.

> Coordenação geral Elaboração técnica

Marco Antonio Areias Secco Edson Roberto F. Bueno

Francisco Ollé

Equipe de editoração

Coordenação Diagramação Revisão técnica Capa Lucio Suckow Maria Angela Moscato Francisco Ollé

Ricardo Mueller de Oliveira

Referência Bibliográfica. NIT - Núcleo de Informação Tecnológica CFP de Curitiba - SENAI — DR/PR

S474a SENAI - Departamento Regional do Paraná Utilidades e instrumentação básica DET, 2000. 141p.

CDU - 681.2

Direitos reservados ao

SENAI — Serviço Nacional de Aprendizagem Industrial Departamento Regional do Paraná Avenida Cândido de Abreu, 200 - Centro Cívico

Telefax: (41) 350-7000 Telefax: (41) 350-7101

E-mail: senaidr@ctb.pr.senai.br CEP 80530-902 — Curitiba - PR

UTILIDADES E INSTRUMENTAÇÃO BÁSICA

Sistemas metricos, unid. fundamentais e derivadas	/
Medidas de área, capacidade e volumes	13
Força, pressão, energia	19
Massa específica, peso específico e densidade	33
Viscosidade, viscosímetros	39
Mudanças de estado físico	45
Tipos de bombas, perda de carga	87
Água industrial	99
Ar comprimido, medidores de pressão (manômetros)	115
Características da água e do vapor	123
Transmissão de calor	131
Bibliografia	141

Sistemas Métricos, Unid. Fundamentais e Derivadas

SISTEMAS MÉTRICOS, UNIDADES FUNDAMENTAIS E DERIVADAS	
UNIDADES FUNDAMIENTAIS E DERIVADAS	
Sistemas métricos	
Desde a época dos primeiros cientistas	
experimentais, vários sistemas de medidas foram	
utilizados, sendo no entanto o "sistema métrico" o que	
melhor se adapta à medidas modernas.	
Num sistema de medidas, as unidades são baseadas	
em certas grandezas físicas fundamentais, derivando-se	
destas todas as outras unidades.	
Em Física, ordinariamente as grandezas	
consideradas como fundamentais são o comprimento, a	
massa e o tempo. Usualmente as grandezas consideradas	
derivadas são a velocidade, a aceleração e o volume.	
Uma maneira de estabelecer as unidades	
fundamentais é atribuir valores arbitrários as certas	
quantidades físicas e derivar desses valores outras	
unidades, considerando, por exemplo, certa quantidade	
de matéria como unidade de massa. Toda a unidade	
estabelecida desse modo é dita unidade padrão.	
'	
Todas as quantidades físicas das Mecânica podem	
ser expressas em função das seguintes grandezas físicas	
fundamentais: comprimento, massa e tempo. Com o	
objetivo de padronizar os nomes e símbolos das unidades	
rísicas foram organizadas comissões internacionais e em	
1960 foi adotado o Sistema Internacional de Unidades (SI),	
também chamado sistema MKS pois três de suas unidades	
·	
fundamentais são o metro (m), o quilograma (kg) e o	
segundo (s).	

Grandeza física São propriedades dos corpos. É tudo aquilo que se consegue medir. Unidade de Comprimento No SI a unidade fundamental do comprimento é o metro (m) assim definido: "é o comprimento igual a 1 650 763, 73 comprimentos de onda, no vácuo, da radiação laranja avermelhada do isótopo criptônio-86". $1 \text{ m} = 1 650 763,73 (Kr^{86})$ O metro admite múltiplos como o quilômetro (Km) e submúltiplos como o decímetro (dm), o centímetro (cm) e o milímetro (mm). $1 \text{ km} = 10^3 \text{ m}$ $1 dm = 10^{-1} m$ $1 \text{ cm} = 10^{-2} \text{ m}$ $1 \text{ mm} = 10^{-3} \text{ m}$ Unidade de massa No SI a unidade de massa é o quilograma (kg) assim definido: " é a massa de um cilindro de platina e irídio (quilograma padrão) guardado no instituto de Pesos e Medidas". Nota: A massa de 1 kg é muito próxima da de 1000 cm³ de água pura à temperatura de 4°C. O quilograma admite múltiplos como a tonelada (t) e submúltiplos como a grama (g). $1 t = 10^3 kg$ $1 g = 10^{-3} kg$ Unidade de tempo No SI a unidade de tempo é o segundo (s) assim definido : "é a fração correspondente a 1/31.556.925,9747 do ano trópico de 1 de janeiro de 1900" ou: "é a duração de 9.192.631.770 períodos da radiação correspondente à transição entre dois níveis do átomo de Césio 133".

O segundo admite múltiplos como o minuto (min) e a hora (h).	
1 min = 60 s	
1 h = 60 min = 3600 s	
Erros em medidas	
Ao efetuarmos a medida de uma grandeza, o valor	
encontrado não coincide com o valor real da mesma, devido a	
uma série de erros, taís como impressão do instrumento utilizado,	
paralaxe, etc.	
O valor mais provável da medida da grandeza é obtido	
quando se efetuam várias medições da mesma, determinando-	
se sua aritmética. A essa medida chamados valor médio.	
A diferença, em valor absoluto, do valor médio da medida	
e o valor de cada medida, é chamada desvio. A média	
aritmética dos desvios encontrados, chamamos desvio médio	
e representa a imprecisão da medida efetuada. Dessa forma,	
chamada V_m o valor médio e d m o desvio médio, exprimimos o	
valor real da medida por:	
$V_m \pm d_m$	
Por exemplo: deseja-se conhecer o comprimento de uma	
haste. Efetuando-se para isso, cinco medidas obtêm-se os	
seguintes valores:	
V1 = 15,00 cm	
V2 = 15,08 cm	
V3 = 15,07 cm	
V4 = 15,00 cm	
V5 = 14,95 cm	

MEDIDAS DE ÁREA, CAPACIDADE E VOLUMES

Área das figuras planas

S1 = área lateral V = volume

Superfície e volume dos sólidos

S = área total

SOLUCIONANDO PROBLEMAS

Procure avaliar o que você aprendeu até agora, fazendo os exercícios, a seguir.

1.	Transforme:	
A)	4,31 m para cm:	
B)	216, 34 mm para m:	
C)	800.000 km para m:	
D)	21,36 L para cm³:	
E)	2000 mm³ para I:	
F)	400 g para kg:	
G)	24 h para s:	
H)	43.200 s para h:	
I)	4 m³ para ml:	
2. A)	Responda: Qual o volume de uma caixa cuja as dimensões	
	são 1,2 x 1,2 x 1,4 m?	
D)	Ouente de l'auide é necesérie pare encharume	
B)	·	2
	proveta de diâmetro interno 10 cm e altura 150 cm ²	·
C)	Quantas caixas de 10 cm³ podem ser colocadas	
	numa outra caixa de 1m³?	

FORÇA, PRESSÃO, ENERGIA	
Medida de uma força	
Considere a figura:	
Se uma força Fatuando sobre a mola produz uma	
deformação \times e outra força $\overline{F'}$, atuando sobre duas molas	
idênticas à primeira, produzir a mesma deformação, dizemos	
que a intensidade de F' é o dobro da intensidade de F' e	
escrevemos:	
F' = 2 F	
Desse modo, medimos sempre uma força comparando-a	
com outra arbitrariamente tomada como unidade.	
Nota: os aparelhos destinados à medição das forças são	
chamados dinamômetros.	
Unidades de força	
·	
No SI a unidade de força é o Newton (N) assim definido:	
"é a força que atuando sobre a massa de 1 g lhe imprime	
uma aceleração de 1 m/s² na direção da força".	
,	

Vimos que F = ma	
Se:	
m = 1 kg	
a = 1 m/s², então:	
$F = 1kg \cdot 1 \text{ m/s}^2 = 1N$	
No sistema (CGS) a unidade de força é o dine assim	
definido: "é a força que atuando sobre a massa de 1g lhe imprime	
uma aceleração de 1 cm/s² na direção da força", isto é:	
$1 \text{ dine} = 1g \cdot 1 \text{ cm/s}^2$	
Nota: no sistema (CGS) temos:	
C = comprimentos são expressos	
G = massas: são expressas em grama	
S = tempos: são expressos em segundos	
No sistema gravitacional (M Kgf S) a unidade de força é	
o quilograma força (Kgf) assim definido: "é o peso de um corpo	
de um quilograma de massa".	
Nota: no sistema gravitacional a massa é expressa em	
(u.t.m.) unidade técnica de massa.	
1 u.t.m = 9,81 kg	
Relações entre o Newton, o dine e o quilograma força.	
$1 \text{ N} = 10^5 \text{ dinas}$	
1 kgf = 9,81 N	
Princípio de proporcionalidade da ação das forças	
ou 2º Lei de Newton do movimento	
"Se a resultante de um sistema de forças que atua num	
ponto material é diferente de zero, o ponto material adquire	
uma aceleração proporcional ao módulo da resultante, e na	
mesma direção orientada".	

Seja uma partícula (ponto material) de massa m sob a	
ação de uma força $\overline{F_1}$, que produz uma aceleração $\overline{a_1}$.	
Idem para as forças $\overline{F_2}$, $\overline{F_3}$, etc.	
Portanto: $F_1/a_1 = F_2/a_2 = F_3/a_3 = = m$ (constante)	
A constante m, característica do ponto material	
considerado, é chamada massa inercial do corpo.	
Genericamente a 2º Lei de Newton é expressa por:	
F = m a	
A representação gráfica da intensidade da força aplicada	
à partícula em função da aceleração adquirida é uma reta que	
passa pela origem.	

Peso de um corpo Seja um corpo de massa m próximo da superfície terrestre, como ilustra a figura: Vimos que a força gravitacional é o peso do corpo. Portanto substituindo na 2ª Lei de Newton F = ma, a por g e F por P temos: Princípio da Independência da ação das forças Seja um ponto material A colocado, sucessivamente, em presença d outros pontos materiais B,C,D.....Sejam F₁, F₂, F₃, ... as forças que atuam sobre A em virtude da presença de cada uma das demais partículas. As acelerações adquiridas por P, se colocado em presença apenas de cada uma das demais partículas, seriam: $a_1 = F_1/m$; $a_2 = F_2/m$; $a_3 = F_3/m$ Vamos admitir que estando P sob à ação simultânea das forças F₁, F₂, F₃..., a sua aceleração será a soma das acelerações a₁, a₂, a₃..., isto é: $\overrightarrow{a} = \overrightarrow{a}_1 + \overrightarrow{a}_2 + \overrightarrow{a}_3 + \dots$

Massa e peso	
A massa é uma propriedade inerente a todos os corpos e	
pode ser compreendida como a "quantidade de matéria" contida	
num determinado corpo. A massa de um corpo (na Mecânica	
Clássica) é uma constante, isto é, não varia com a temperatura,	
com a pressão ou a sua localização no espaço. Um corpo de	
massa igual a 1 kg terá sempre essa massa em quaisquer	
condições de pressão e temperatura, seja em São Paulo, em	
Santos, ou em qualquer lugar da Terra, de Vênus ou de Marte.	
Outra importante propriedade da matéria que devemos	
conhecer é a sua "resistência a forças". Sabemos que toda a	
criança aprende a puxar ou empurrar os seus brinquedos. Tal	
procedimento evidencia a noção de "força".	
Por enquanto entendemos "força" como um "puxão" ou	
"um empurrão".	
Muitas vezes acreditamos que você tenha confundido	
peso com massa, e no entanto, são duas coisas diferentes.	
Quando você abandona uma pedra a uma certa altura do	
solo, ela cai, isto é, ela é atraída pela Terra. A "força" com que	
a Terra "puxa" a pedra é o que entendemos por peso da pedra.	
Portanto concluí-se que peso é uma "força". Com essa "força"	
é variável de local para local da Terra, o peso da pedra também	
sofrerá variação se repetirmos a experiência em locais diferentes.	
O mesmo ocorrerá se levarmos a pedra para Vênus ou Marte.	
Em cada um desses planetas, na dependência do local,	
a pedra será atraída por forças diferentes, possuindo portanto	
pesos diferentes.	
Condições de matéria	
Algumas das propriedades da matéria variam com as	
condições do ambiente. Esse ambiente é conhecido como as	
"condições de matéria". Nisto está incluída a pressão, a	
temperatura, a concentração (soluções), etc.	

Em virtude do que afirmamos acima, cada substância tem	
um ponto de fusão (funde-se) a uma determinada pressão e	
temperatura, ocorrendo o mesmo para o seu ponto de ebulição.	
No caso da água, ela "passa a gelo" a uma determinada	
pressão e temperatura e também "passa a vapor" em	
determinada condições de pressão e temperatura. Portanto nos	
dois casos as propriedades físicas da água foram as alteradas.	
Conceito de energia	
O que será que os físicos querem dizer quando falam	
em energia?	
Podemos afirmar que na maioria das vezes pensam em	
corpos móveis.	
O ar em movimento, ou um vento muito forte, pode levantar	
objetos pesados e carregá-los a grandes distâncias do ponto	
inicial onde se encontravam.	
Uma corrente de água em movimento pode carregar	
grandes quantidades de terra, ou ainda fazer girar a roda ou a	
turbina de um gerador elétrico. Estas "capacidades do ar e da	
água realizarem tarefas como as acima mencionadas são	
exemplos do que os físicos entendem por energia".	
Apesar da energia não poder ser definida com facilidade,	
muitas "formas" de energia são percebidas pelos nossos órgãos	
sensoriais.	
Assim, o calor, que é uma forma de energia, pode ser	
detectado pelo tato, que nos dá uma sensação de quente e frio.	
Outras formas de energia são o som e a luz. Os nossos	
ouvidos detectam a energia sonora e os nossos olhos, a	
luminosa.	
O estudo da energia é importantíssimo na Física, e, mais	
importante ainda é acompanhar e medir a passagem de uma	
forma de energia para outra, o que freqüentemente ocorre.	

Falamos em medir porque a energia só pode ser medida quando	
em transformação. Como exemplos podemos citar: uma lâmpada	
transforma energia elétrica em energia térmica e luminosa. Um	
aparelho de rádio, energia elétrica em sonora, etc.	
Relação entre matéria e energia	
Discutimos até aqui matéria e energia como "entidades"	
completamente distintas no universo. Entretanto estão	
intimamente relacionadas. Quem desenvolveu essas relações	
entre matéria e energia foi "Albert Einstein", um dos maiores	
físicos teóricos de nossos tempos.	
Essa teoria foi desenvolvida em 1905 e recebeu o nome	
de "Teoria Especial da Relatividade".	
Einstein afirmava que a toda matéria estava associada	
uma quantidade de energia e a idéia de energia não possui	
sentido algum se não for associada a um determinado tipo de	
matéria.	
A partir de condições teóricas Einstein apresentou a	
famosa fórmula que relacionava matéria e energia:	
$E = m \cdot C^2$	
Onde:	
E = energia	
m = massa	
c = velocidade da luz no vácuo, que é aproximadamente	
300.000 Km/s	
Pressão	
Consideramos uma força F aplicada perpendicularmente	
a uma superfície com área A. Definimos a pressão (p) aplicada	
pela força sobre a área pela Segunda relação.	
p = F	
A	

No SI, a unidade de pressão é o pascal (Pa) que	
corresponde a Nm². A seguir apresenta outras unidades de	
pressão e suas relações com a unidade do SI:	
•	
1 dyn/cm² (bária) = 0,1 Pa	
1 kgf/cm² = 1 Pa	
1 atm = 1,1013 x 10⁵ Pa	
1 lb/pol ² = 6,9 x 10 ³ Pa	
O conceito de pressão nos permite entender muitos dos	
fenômenos físicos que nos rodeiam. Por exemplo, para cortar	
um pedaço de pão, utilizamos o lado afiado da faca (menor	
área), pois, para uma mesma força, quanto menor a área, maior	
a pressão produzida.	
Exemplo	
Compare a pressão exercida, sobre o solo, por uma pessoa	
com massa de 80 kg, apoiada na ponta de um único pé, com a	
pressão produzida por um elefante, de 2000 kg massa, apoiado	
nas quatro patas. Considere de 10 cm² a área de contato da ponta	
do pé da pessoa, e de 400 cm² a área de contato de cada pata do	
elefante. Considere também g = 10m/s².	
Resolução	
A pressão exercida pela pessoa no solo é dada pelo seu	
peso, dividido pela área da ponta do pé:	
$P_{pessoa} = mg/A = 80.10/10.10^{-4} = 8.10^5 N/m^2$	
A pressão exercida pelo elefante é dado por:	
$P_{elefante} = mg/4A = 2000.10/4.100.10^{-4} = 1,25.10^5 N/m^2$	
Comparando as duas pressões, temos que a pressão	
exercida pela pessoa é 6,4 vezes a pressão exercida pelo elefante.	

PROBLEMAS PROBLEMAS

- 1. Aplica-se uma força de intensidade 10 N perpendicularmente sobre uma superfície quadrada de área 0,5 m². qual deveria ser a pressão exercida sobre a superfície?
- (A) 5 N.m²
- (B) 5 N/m²
- (C) 20 N/m²
- (D) 10 N/m²
- (E) n.d.a.
- 2. Um tijolo de peso 32 N tem dimensões 16 cm x 8,0 cm x 4,0 cm. Quando apoiado em sua face de menor área, a pressão que ele exerce na superfície de 16 cm apoio é, em N/cm².
- (A) 4,0
- (B) 2,5
- (C) 2,0
- (D) 1,0
- (E) 0,50
- 3. Uma caixa Uma caixa de 500 N tem faces retangulares e suas arestas medem 1,0 m, 2,0 m e 3,0 m. qual a pressão que a caixa exerce quando apoiada com sua face menor sobre uma superfície horizontal?
- (A) 100 N/m²
- (B) 125 N/m²
- (C) 167 N/m²
- (D) 250 N/m²
- (E) 500 N/m²

PROBLEMAS

4.	O salto de um sapato masculino em área de 64 cm².
	Supondo-se que a pessoa que calce tenha peso igual
	a 512 N e que esse peso esteja distribuído apenas
	no salto, então a pressão média então a pressão
	média exercida no piso vale:

- (A) 120 KN/m²
- (B) 80 KN/m²
- (C) 60 KN/m²
- (D) 40 KN/m²
- (E) 20 KN/m²
- 5. Uma pessoa com peso de 600 N e que calça um par de sapatos que cobre uma área de 0,05 m² não consegue atravessar uma região nevada sem se afundar, porque essa região não suporta uma pressão superior a 10.000 Nm². Responda:
- a) Qual a pressão exercida por essa pessoa sobre a neve?
- b) Qual deve ser a área mínima de cada pé de um esqui que essa pessoa deveria usar para não afundar?

PROBLEMAS PROBLEMAS

6. A caixa da figura abaixo tem peso 400 N e dimensões a = 10 cm, b = 20 cm e c = 5 cm e apoia-se em uma superfície plana horizontal. Qual a pressão em N/cm², que a caixa exerce no apoio, através de sua base, em cada uma das situações propostas?

Fatores de conversão d	le unidades de pressão	
1atm = 1,0333kgf/cm ²	1bar = 0,9867atm	
1atm = 1,0134bar	1bar = 1,0196kgf/cm ²	
1atm = 14,697 PSI (1bf/po l²)	1bar = 14,503 PSI (1bf/po l²)	
1atm = 760mnhg	1bar = 750mnHg	
1kgf/cm ² = 0,9677 atm	1 PSI = 0,0680atm	
1kgf/cm ² = 0,9807bar	1 PSI = 0,0703kgf/cm ²	
1kgf/cm ² = 14,223 PSI (1bf/po l ²)	1 PSI = 0,0689bar	
1kgf/cm ² = 736mnHg	1 PSI = 51,719mnHg	
<u> </u>	J 2 7 2 3	
Hidrostática		
rnarostatica		
Chama-se "Hidrostática" a	a parte da Mecânica que estuda	
os líquidos em repouso. Limitar		
"líquidos perfeitos" (ou ideais) ist	•	
seguintes propriedades:	o o, aquoloo quo aprocomam ao	
a) são incompressívei	s·	
,	ito entre as moléculas;	
	to independe da direção;	
d) não há atração entr		
a) Hao na anagao ona	o do moloculdo.	
Consideremos um líquido id	deal no interior de um recipiente e	
seja V o volume de uma porção qua	•	
. , .	o elemento de superfície ΔS que	
	ntoma V, atuam forças ∆F, exercidas	
	o líquido exterior ao volume V.	
•	ssas condições, para qualquer ∆S,	
	é sempre normal a esse elemento	
de superfície. Pelo princípio da açã	·	
reage a cada força ∆F com uma fo		
suas moléculas deslizarem umas so		
	•	
$\Delta \sigma = \Delta F \cdot \Delta S \cdot \cos 90^{\circ}$		

MASSA ESPECÍFICA, PESO ESPECÍFICO E DENSIDADE Densidade absoluta ou massa específica Sabemos que corpos de mesmo volume, mas constituídos de substâncias diferentes, não apresentam sempre a mesma massa (ou o mesmo peso). Para exprimir com precisão essas diferenças, temos necessidade de uma nova grandeza chamada densidade absoluta ou massa específica, a qual representa a massa de diferentes substâncias em unidade de volume. Dado um corpo de massa m e volume V, sua densidade é expressa pela razão entre a sua massa e o seu volume, a saber: Unidades de densidade No SI a densidade é expressa em kg/m³. No sistema (CGS) a densidade é expressa em g/cm³. Notas: a densidade da água pura (a 4°C) é, no SI, 1000 a) kg/m³ ou no sistema (CGS), 1 g/cm³ ou ainda 1 kg/1; b) a densidade do ar, nas condições normais de temperatura e pressão (CNTP) é, no SI, 1,293 kg/m³. Densidade relativa Chama-se densidade relativa de uma substância ao número ρ, que se obtém quando se divide a massa específica dessa substância pela massa específica de outra substância tomada para comparação. Por exemplo: $\rho_{H\alpha} = 13.6 \text{ g/cm}^3 \text{ e } \rho_{\acute{a}\alpha\mu} = 1 \text{ g/cm}^3$ $\rho_r = \rho_{Hg} = 13.6 = \rho_{Hg} = 13.6 \rho_{agua}$

..........

	Densidades de alguns sólidos, líquidos e gases	
(em	g/cm³)	
	Peso específico	
	Seja um corpo de peso P e volume V como ilustra a figura:	
	Chama-se peso específico do corpo ao quociente entre o	
seu p	peso P e o seu volume ∀, isto é:	
	$\gamma = \underline{P}$	
	V	
	Como P = mg, temos:	
	$\gamma = \underline{mg}$	
	V	
	$\gamma = \underline{\mathbf{m}} \cdot \mathbf{g} = \rho \mathbf{g}$	

PROBLEMAS PROBLEMAS

 Que volume de platina corresponde à massa de 43 kg? Que volume ocuparia uma massa idêntica de chumbo?

Solução:

$$\rho_{Pt} = \underline{m} = 21,20 = 43000$$
 V_{Pt}

$$V_{Pt} = 43000 \cong 2028,30 \text{ cm}^3$$

21,20

$$\rho_{Pt} = \underline{m} = > 11,20 = \underline{43000}$$
 V_{Pt}

$$V_{Pt} = 43000 \cong 3839,29 \text{ cm}^3$$
11,20

2. Um bloco de gelo de 20 kg que volume ocupa? Depois de fundido, que volume ocupará a água dele resultante? Dados ρ_{qelo} = 0,92 g/cm³, $\rho_{\text{áqua}}$ = 1 g/cm³.

PROBLEMAS

 Os raios de duas esferas medem 2 cm e 4 cm respectivamente e suas massas são respectivamente 200 g e 300 g. Determine a relação entre suas massas específicas.

4. Um tubo cilíndrico de 1 m de comprimento e 1 m de comprimento e 1 cm de diâmetro interno tem massa igual a 100 g vazio e igual a 210 g quando cheio com líquido. Determine a massa específica do líquido.

viscosidade em SSU.

Viscosidade gera calor	
Um líquido de alta viscosidade, ou seja, de 500 SSU,	
apresentando maior resistência ao fluxo, gera mais calor no sistema	
do que um líquido de baixa viscosidade, digamos, de 100 SSU.	
Em muitas aplicações industriais, a viscosidade do óleo	
deve ser de 150 SSU a 38°C.	
A viscosidade é determinada em aparelhos denominados	
viscosímetros. Existem diversos tipos desses aparelhos sendo	
que cada qual tem unidade própria, o que implica na existência	
de diferentes escalas de viscosidade. Os viscosímetros mais	
usados são os seguintes:	
 Saybolt (América do Norte) 	
 Redwood (Inglaterra e Reino Unido) 	
 Engler (Europa Continental) 	
Cinemático	
Os três primeiros têm construção semelhante. Compõe-se de	
um dispositivo, para o óleo com controle de temperatura. Na parte	
nferior do depósito há um orifício calibrado para o escoamento do	
óleo. A diferença entre eles reside no diâmetro do orifício de	
escoamento, temperatura do óleo em teste e volume tomado como	
referência. O viscosímetro cinemático constitui-se de um tubo capilar	
de vidro que regula o escoamento do fluído. O tempo gasto para o	
fluído passar por dois traços de referência e a constante K do diâmetro	
do tubo determinam a viscosidade do fluído. A unidade é o centistoke	
(cs). Por ser um aparelho simples e que oferece maior rapidez e	

precisão, seu uso tende a universalizar-se.

Tabela comparativa de viscosidade à mesma	
temperatura.	

MUDANÇAS DE ESTADO FÍSICO Introdução As substâncias podem apresentar-se em três estados de agregação: sólido, líquido e gasoso. Os sólidos são formados por partículas (moléculas, átomos ou íons) interligadas por grandes forças de atração (coesão), permanecendo, portanto, muito próximas entre si. Embora tais partículas permaneçam em posições (você pode compara-las com vários corpos interligados por molas) e, em geral, estão geometricamente bem ordenadas, constituindo a chamada estrutura cristalina. Exemplos: No açúcar comum (sacarose), as partículas que formam a rede cristalina são as moléculas. Os líquidos, em condições ambientes, são também formados, geralmente, por moléculas que se movem com facilidade umas em relações às outras, permitindo que o líquido ocupe a forma do recipiente que os contenha. As substâncias no estado gasoso são igualmente formadas por moléculas (H₂, O₂, N₂, ...), em geral. Estas moléculas movem-se muito mais livre e desordenadamente que as moléculas dos líquidos, permitindo, pois, que as substâncias gasosas ocupem toda a extensão do recipiente que as contenha. Se aquecermos um pedaço de gelo, ele se transforma em líquido que, por sua vez, pode ser transformado em vapor. Retirando-se gradativamente o calor, podemos obter o líquido e o gelo novamente.

Através deste exemplo, não é difícil verificar que a passagem sólido -> líquido -> gasoso se processa com absorção de calor pela substância, enquanto que a passagem gasoso -> líquido -> sólido se processa com libertação de calor.

As mudanças de um estado para outro recebem denominações conforme o esquema: Observação: A transição vapor -> líquido denomina-se também condensação. A transição vapor -> sólido denomina-se também cristalização. Fusão e solidificação O que acontece a um pedaço de gelo quando ele recebe calor? Se o gelo estiver abaixo de 0°C e à pressão normal (1 atmosfera), observa-se o seguinte: 1º) A temperatura do gelo sobe até 0°C. 2º) A 0°C o gelo começa a fundir (derreter) 3º) Durante a fusão, a temperatura mantêm-se constante em 0°C. 4º) Após a fusão, a temperatura da água começa a subir. Graficamente, teremos o seguinte:

PROBLEMAS PROBLEMAS

Analisando o gráfico da página anterior, responda:

De A para B, o gelo está recebendo calor? Neste trecho, a temperatura está aumentando, diminuindo ou está constante?
Em que ponto do gráfico se inicia a fusão? Qual é a temperatura neste ponto?
Em que ponto do gráfico termina a fusão? Qual é a temperatura neste ponto?
De C para D, o que está acontecendo com a temperatura da água?
Quando a água líquida é esfriada até –10°C, o gráfico da temperatura em função da quantidade de calor cedida será:
Em que trecho do gráfico a água está se solidificando? Qual é a temperatura de solidificação?

Influência da pressão	
A temperatura em que ocorre a fusão (ou a solidificação)	
varia com a pressão. Veja, por exemplo, o enxofre:	
Os pontos sobre o gráfico (curva de fusão) representam	
as pressões e temperaturas de fusão do enxofre.	
Os pontos à esquerda da curva representam as pressões	
e temperaturas do enxofre no estado sólido.	
On months and district the same and an arrange of the same and arrange of the same arrange of the	
Os pontos à direita da curva representam as pressões e	
temperaturas do enxofre no estado líquido.	
De acordo com o gráfico, a passagem de sólido para	
líquido, ou vice-versa, pode ser feita variando-se só a pressão,	
ou só a temperatura, ou ambos, simultaneamente.	

6.	Conforme a tabela da página anterior:
a)	sob pressão de 1 atm, o enxofre se funde a°C.
b)	sob pressão de 519 atm, o enxofre se funde a°C.
c)	sob a pressão de 792 atm, o enxofre se funde a°C.
d)	a 107°C e sob pressão maior que 1 atm, o enxofre
	está no estado
e)	a 135°C e sob pressão menor que 519 atm, o enxofre
	está no estado
7.	Para o enxofre, a temperatura de fusão aumenta com o aumento da pressão.
()	Certo
()	Errado
Pai	se fundir, o volume da maioria das substâncias aumenta. ra estas substâncias, pode-se dizer que a temperatura fusão aumenta com o aumento da pressão.

Muitos dos materiais do interior da Terra conseguem permanecer no estado sólido devido a grandes pressões ali reinantes. Durante a erupção de um vulcão, a redução de pressão provoca a fusão desses materiais, formando-

se as lavas.

A tabela a seguir representa as pressões e as correspondentes temperaturas de fusão (ou solidificação) para a água. Nos pontos à direita da curva a água é líquida e nos pontos à esquerda da curva a água é sólida. Os pontos sobre a curva representam as pressões e temperaturas de fusão (ou solidificação) da água. 8. Conforme a tabela, sob pressão de: a) 1 atm, o gelo se funde a ____°C b) 1850 atm, o gelo se funde a ____°C c) _____ atm, o gelo se funde a – 45°C 9. Sob pressão de 1850 atm a - 30°C, a água está no estado sólido ou líquido? 10. Sob pressão de 1850 atm e a – 10°C, a água está no estado _____. 11. Para o gelo (água sólida), a temperatura de fusão

aumenta ou diminui com o aumento da pressão?

Em algumas substâncias, como a água, o bismuto, a prata e o antimônio, os átomos estão mais próximos no		
	quido que no sólido, portanto, o volume dessas	
	cias diminui quando se fundem. Para estas	
	ias, pode-se dizer que a temperatura de fusão	
diminui com o aumento de pressão.		
Leis	s da fusão e da solidificação	
1 ^a)	A temperatura em que se dá a fusão e a	
	solidificação depende da pressão e da	
	substância.	
2 ^a)	Para uma mesma substância, as temperaturas	
	de fusão e de solidificação são iguais quando	
	estão submetidas às mesmas pressões.	
3 ^a)	Sob pressão constante, durante a fusão e a	
	solidificação, a temperatura da substância	
	mantém-se constante.	

PROBLEMAS

12. A temperatura de fusão e solidificação depende da pressão?
13. Para uma mesma substância, sob pressões iguais, as temperaturas de fusão e solidificação são:
() iguais () diferentes
14. Sob pressão constante, durante a fusão e a solidificação, a temperatura da substância:() varia() não varia

Calor latente de fusão e solidificação	
Enquanto um sólido não mudar de estado, o calor absorvid	o
é utilizado no aumento da intensidade de vibração de seus átomos	S,
acarretando a elevação de sua temperatura. A partir do instant	e
em que se inicia a fusão, o calor absorvido não aumenta	a
temperatura: ele é utilizado para destruir a estrutura cristalina (vej	a
na introdução) do sólido, transformando-a em estrutura de líquido	O
No estado líquido, o calor absorvido novamente vai serv	ir
para aumentar a intensidade de movimento de moléculas	5,
acarretando elevação de temperatura.	
A quantidade de calor que massas iguais de uma mesm	a
substância absorvem durante a fusão é igual à que elas libertar	n
durante a solidificação. Esta quantidade de calor dividida pel	a
massa da substância denomina-se calor latente de fusão	0
(símbolo L_f) e calor latente de solidificação (símbolo L_s).	
$L_f = \underline{Q}$ e $L_s = \underline{Q}$	
No capítulo anterior vimos que:	
Q (absorvido) > 0 porque Δt > 0	
Q (cedido) < 0 porque Δt < 0	
Durante a fusão, a substância absorve calor e, n	a
solidificação, cede calor; logo:	
,	
$L_f > 0$ e $L_s < 0$	
r s s	
Para cada substância: L _f = L _s	
Por exemplo, para a água:	
L_{f} (gelo) = 80 cal/g e L_{s} (água) = -80 cal/g	

15.	Qual é o	significado	físico de	e L _a (ág	ua) = -80	cal/g?

- 16. Qual é o significado físico de L_s (água) = -80 cal/g?
- 17. Quantas calorias são necessárias para fundir 5g de gelo?
- 18. Se 100g de uma substância absorvem 500 cal durante a fusão, calcule o seu calor latente de fusão e solidificação.
- 19. Qual é a quantidade de calor que devemos fornecer a 6g de gelo a 0°C para transformá-lo em água a 20°C? Dado: L_f (gelo) = 80 cal/g

20. Para esfriar um corpo, você usaria gelo a 0°C ou água a 0°C? Explique:

O que é regelo?	
No subitem "influência da pressão" foi visto que a	
pressão de:	
a) 1 atm o gelo se funde a 0°C.	
b) 1 850 atm o gelo se funde a – 20°C.	
c) 6 000 atm o gelo se funde a – 45°C.	
Isto é, o gelo pode ser fundido, mesmo que ele esteja em	
temperaturas abaixo de 0°C, bastando, para isso, submetê-lo a	
pressões elevadas.	
Exercendo pressão sobre o gelo fundido novamente	
se solidifica.	
Exemplo: Exercendo pressão de 1850 atm num bloco	
de gelo a – 20°C, podemos fundi-lo. Aliviando-lhe a pressão, o	
gelo fundido se solidifica.	
golo ramarao oo oonamear	
Denomina-se regelo a ressolidificação da água devido	
à diminuição da pressão, sem o	
abaixamento de sua temperatura.	
abaixamento de sua temperatura.	

PROBLEMAS

21. Você pode "soldar" dois pedaços de gelo a – 10°C, comprimindo-os um contra o outro?

22. O que acontece com o gelo quando um esquiador passa sobre ele?

O que é subrefusão ou superfusão?	
Quanda um líquida á cafriada, mantanda ao am completo	
Quando um líquido é esfriado, mantendo-se em completo	
repouso e livre de quaisquer impurezas, mesmo de fragmentos	
sólidos da mesma substância do líquido, pode ocorrer atraso	
na solidificação, isto é, a substância pode permanecer líquida	
em temperaturas inferiores à de solidificação, sob pressão	
constante. Este fenômeno denomina-se sobrefusão ou	
superfusão.	
Sob pressão constante de 1 atm, a água se solidifica a	
0°C, mas, sob condições especiais, nesta mesma pressão,	
consegue- se água líquida abaixo de 0°C.	
Vaporização e liquefação (condensação)	
A vaporização de um líquido pode ocorrer de duas	
maneiras: por evaporação e por ebulição.	
Evaporação	
Você já deve ter verificado que o volume de álcool,	
gasolina, ou um outro líquido, deixado num recipiente aberto,	
diminui com o transcorrer do tempo. A água dos lagos e oceanos	
evapora-se. A roupa estendida no varal seca por evaporação.	
Estes exemplos permitem-nos dizer que a evaporação é	
um processo lento, espontâneo e imperceptível de vaporização.	
A evaporação é tanto mais facilitada quanto maior a área da	
superfície livre do líquido, maior a temperatura do líquido e menor	
a pressão exercida sobre o mesmo. De fato:	
a pressae exercida sobre e mesmo. De late.	

Se a temperatura do ambiente aumenta, a) aumentando por conseguinte a do líquido, as suas moléculas agitam-se mais porque adquiriram mais energia e, em conseqüência, podem escapar mais facilmente da superfície do líquido. O conjunto de moléculas que assim escapam forma o vapor. Se a pressão sobre o líquido diminui, as moléculas b) também escapam com mais facilidade da superfície do líquido. A temperatura de um líquido é determinada pelo grau de agitação de suas moléculas. Durante a evaporação, as moléculas que se agitam mais, ou seja, aquelas que possuem mais energia, escapam mais facilmente da massa líquida, deixando-as menos energéticas. Como estas moléculas com menor energia se agitam menos, a temperatura do líquido diminui. A evaporação esfria o líquido. Quando suamos, perdemos calor devido à evaporação do suor. Nos dias de verão, quando o clima é úmido, sentimos mais calor porque a evaporação do suor se processa mais lentamente. O resfriamento do interior das geladeiras é feito através da evaporação de líquidos voláteis como o amoníaco e o freon. Nota: A passagem das substâncias do estado sólido para o gasoso (e vice-versa) denominando-se sublimação. Entretanto, na linguagem comum, usa-se o termo "evaporação" para a passagem espontânea do sólido vapor. Isto ocorre, por exemplo, com a naftalina, o iodo, a cânfora, o gelo seco (CO2 sólido).

23. Diminuindo-se a pressão dificulta-se ou facilita-se a evaporação?
24. A evaporação no vácuo é demorada.
() certo
() errado
25. Onde a evaporação é mais rápida: no alto da serra ou no litoral, à mesma temperatura? Justifique:
26. A evaporação esfria o líquido?
27. Embora as temperaturas sejam iguais, sente-se mais calor em regiões de clima úmido do que em regiões
de clima seco.
() certo
() errado

Ebulição	
Tome um vaso transparente com água e coloque-0 sobre	
uma chama. Após certo tempo você vai observar que começam a	
se formar bolhas no interior do líquido, e a vaporização processa-	
se de maneira rápida e turbulenta. A esse tipo de vaporização	
que se processa de uma maneira rápida e turbulenta, como	
formação de bolhas no interior do líquido, denominamos ebulição.	
Ao contrário da evaporação, a ebulição ocorre sob condições	
determinadas de pressão e temperatura, isto é, a temperatura de	
ebulição depende da pressão exercida sobre o líquido. A tabela abaixo	
representa a temperatura de ebulição da água em diferentes pressões.	
A diminuição da pressão sobre o líquido, através de uma bomba	
de vácuo, facilita a formação de bolhas, fazendo com que o líquido	
entre em ebulição em temperaturas abaixo de 100°C. Dizemos, então,	
que o líquido ferve a 10°C, 20°C, 30°C	
O aumento da pressão sobre o líquido, como nas panelas de	
pressão e caldeiras, dificulta a formação de bolhas uma vez que estas	
vão sendo esmagadas pela elevada pressão. Conseqüentemente, a	
ebulição só ocorre em temperaturas mais altas. Sob pressão de 218	
atm, a água pode ser mantida líquida até a temperatura de 374°C,	

28. A água ferve somente a 100°C?
29. Pode-se ter água líquida acima de 100°C?
30. Aumentando a pressão sobre o líquido, a temperatura de ebulição:
() aumenta () diminui
31. Diminuindo a pressão sobre o líquido, a temperatura de ebulição aumenta ou diminui?

PROBLEMAS

32. Um líquido contido numa panela sem tampa ferve mais rápido no litoral ou no alto da serra? Explique.

33. Por que a panela de pressão cozinha mais rápido alimentos do que as panelas comuns?

34.Uma panela aberta cozinha alimentos mais rapidamente no literal ou no alto da serra? Explique:

Leis c	la ebulição e liquefação	
(1a)	A temperatura em que se dá a ebulição e a liquefação depende da pressão e da substância.	
	ilique idagae depende da pressuo e da substancia.	
2 ^a)	Para uma mesma substância, as temperaturas	
	de ebulição e de liquefação são iguais quando	
	estão submetidas às mesmas pressões.	
3 ^a)	Sob pressão constante, durante a pressão	
	constante, durante a ebulição e a liquefação, a	
	temperatura da substância mantém-se	
	constante.	
\/o.o.â		
	notou que estas leis são semelhantes às leis	
	solidificação? Só houve troca de palavras:	
rusao e sor	idificação por ebulição e liquefação.	

35.	As temperaturas de e	bulição e	liquefaç	ão depe	ndem
	da pressão?				

- 36. Para uma mesma substância, sob pressões iguais, as temperaturas de ebulição e de liquefação são:
- () iguais
-) diferentes
- 37. Sob pressão de 15,3 atm a água ferve a 200°C; então, sob mesma pressão o vapor se condensa a ____°C.
- 38. Sob pressão constante, durante a ebulição e a liquefação, a temperatura da substância:
- () varia
-) não varia

Calor latente de vaporização e liquefação	
A quantidade de calor que massas iguais de uma mesma	
substância absorvem durante a ebulição é igual à que elas	
libertam durante a liquefação. Esta quantidade de calor dividida	
pela massa de substância denomina-se calor latente de	
vaporização (símbolo L _v) e calor latente de liquefação	
(símbolo L_1).	
$L_v = \underline{Q}$ e $L_t = \underline{Q}$	
$\begin{pmatrix} z_v - \underline{\omega} \\ m \end{pmatrix}$	
No capítulo anterior vimos que:	
·	
Q (absorvido) > 0 porque Δt > 0	
Q (cedido) < 0 porque $\Delta t < 0$	
Donasta a como de a contratê a de a contratê	•••••
Durante a vaporização, a substância absorve calor e, na	
liquefação, cede calor; logo:	
$\left(L_{v}>0\right)$ e $\left(L_{1}<0\right)$	
Para cada substância: $ L_{y} = L_{ } $	
Por exemplo, para a água a 1 atm:	
L_v (água) = 539 cal/g e L_1 (vapor) = 539 cal/g	
O calor de vaporização e de liquefação varia com a	
temperatura de ebulição. Por exemplo, o calor latente de	
vaporização da água é igual a:	
a) 534 cal/g quando t = 100°C (1 atm).	
b) 311 cal/g quando t = 310°C (95 atm).	
c) 0 quando t = 374°C (218 atm).	

PROBLEMAS

39. Qual é o significado físico de L, (água) = 539 cal/g?

40. Quantas calorias são necessárias para vaporizar 100g de água?

41. Se 200 g de uma substância absorvem 5 000 cal, durante a ebulição, calcule o seu calor latente de vaporização e de liquefação:

	Temperatura		
		mesmo corpo material pode se encontrar em diferentes	
estados térmicos, como: gelado, frio, morno e quente. Exemplos			
disso	são:		
	a)	O estado térmico da água contida num vaso sobre	
		o fogo, que varia, continuamente, do frio para o	
		quente;	
	b)	O estado térmico da Terra, que vária conforme as	
		épocas do ano;	
	c)	O estado térmico de um corpo, que pode sofrer	
		variação enquanto o mantemos em nossas mãos.	
	A no	ção de temperatura é primitiva; nasce das sensações	
de qu	ente	e frio apresentadas por corpos em diferentes estados	
térmi	cos.	Dizemos que a temperatura de um corpo está	
aume	enta	ndo ou diminuindo conforme ele esteja,	
respe	ctiva	mente, esquentando ou esfriando.	
	As p	partículas (átomos e moléculas) constituintes da	
maté	ria e	estão em incessante estado de agitação, cuja	
intens	idad	e varia com a modificação do estado térmico do corpo.	
Te	mpe	ratura é uma grandeza que mede o estado (ou	
 grai	u) de	agitação das partículas de um corpo, podendo-	
se ta	ambe	ém dizer que a temperatura é uma grandeza que	
		aracteriza o estado térmico de um corpo.	
	Norr	nalmente, se através do contato com a nossa pele os	
		os apresentam as mesmas sensações térmicas,	
-		ue as suas temperaturas são iguais ou que eles estão	
		brio térmico; caso contrário, dizemos que suas	

temperaturas são diferentes.

A noção de equilíbrio térmico permite-nos enunciar o	
principio conhecido como Principio Número Zero da Termodinâmica	
ou Princípio Fundamental da Termodinâmica:	
Afirmar que as temperaturas dos corpos são iguais ou	
diferentes baseando-se apenas nas sensações obtidas pelo	
contato com a nossa pele pode muitas vezes trazer enganos.	
Por exemplo, se você mergulhar uma das mãos na água fria e,	
após certo intervalo de tempo, mergulhar ambas as mãos na	
água morna, provavelmente você irá dizer que a temperatura	
da água morna é diferente para cada mão, embora na realidade	
a água apresente uma única temperatura.	
Medida da temperatura	
A temperatura de um corpo não pode ser medida	
baseando-se no nosso sentido de tato, porque ele traz enganos,	
como no exemplo citado.	
No item anterior vimos que a temperatura mede o	
estado (ou grau) de agitação das partículas do corpo. Mas	
a agitação dessas partículas não pode ser medida	
diretamente, como se medem as áreas e volume de um	
corpo, então, a temperatura de um corpo é obtida	
indiretamente, medindo-se os efeitos produzidos por essa	
agitações. São exemplos desses tipos de efeitos a	
dilatação térmica e a resistência elétrica.	

Os	instrumentos que medem a temperatura são	
denomina	dos termômetros. Os termômetros de líquidos como o	
mercúrio e	e o álcool (com corante) são baseados na dilatação	
térmica de	esses líquidos. Nesses termômetros, a temperatura t	
de um cor	po é medida em função da altura h dos líquidos no	
tubo capila	ar.	
As g	randezas físicas que variam com a temperatura são	
denomina	adas grandezas termométricas.	
Exer	mplos:	
a)	Comprimento de uma barra (termômetros metálicos);	
b)	Altura e volume dos líquidos (termômetros de	
	mercúrio e de álcool);	
c)	Pressão dos gases (termômetros de gás);	
d)	Resistência elétrica (termômetros de resistência).	

1. Um corpo pode, ao mesmo tempo, parecer quente para a mão que estava segurando um pedaço de gelo e frio para a mão que estava próximo de uma chama. Está afirmação está certa ou errada?

2. Quando estamos descalços sobre assoalho de madeira e em seguida andamos sobre assoalho de cerâmica sentimos mais frio sobre este último. O que se pode afirmar a respeito da temperatura desses assoalhos?

 Cite algumas propriedades físicas utilizadas na determinação de temperaturas:

Esca	las termométricas	
A esc	cala termométrica mais utilizada é a escala Celsius,	
construída	pelo astrônomo sueco Anderes Celsius (1701 -	
1744). Nest	ta escala, atribuí-se o número 0 (zero) à temperatura	
de fusão do	gelo sob pressão normal (ponto do gelo) e o número	
100 à temp	peratura de ebulição da água sob pressão normal	
(ponto de v	vapor). O intervalo entre 0 e 100 é dividido em 100	
partes igua	ais denominadas graus celsius. Entendendo-se a	
escala aba	aixo de 0 e acima de 100, pode-se determinar	
temperatur	as fora desse intervalo.	
Obse	ervações:	
•	essão normal = 1 atmosfera = 760 mm de Hg = 760 torr.	
•	n Outubro de 1948, a 9ª Conferência de Pesos e	
	edidas mudou o nome da escala centígrada para	
C€	elsius.	
Nisa		
	países de língua inglesa utiliza-se a escala	
•	proposta pelo físico Gabriel Fahrenheit (1686-1736).	
	la, atribuí-se o número 32 ao ponto do gelo e 212 ao	
•	apor. O intervalo entre 32 e 212 é dividido em 180	
(212 – 32 =	180) partes iguais, denominadas graus fahrenheit.	
Moto		
Nota		
a)	Segundo a História, inicialmente, Fahrenheit atribuiu	
	0°F é temperatura mais fria do ano de 1727 na	
b)	Islândia e 100°F à temperatura de sua esposa.	
b)	0°F é a temperatura de uma mistura em partes iguais	
	de cloreto de sódio (NaC1), cloreto de amônia	
	(NH ₄ C1) e gelo fundente.	

SOLUCIONANDO PROBLEMAS

4. O que ponto do gelo e ponto do vapor?

5. Quais são os valores dos pontos do gelo e vapor nas escalas Celsius e Fahrenheit?

6. A variação de 100°C na escala Celsius corresponde à variação de _____°F na escala Fahrenheit.

Relação entre as escalas C e F..... As leituras t_c e t_F, correspondentes a um mesmo estado térmico e fornecidas pelos termômetros nas escalas C e F, podem ser relacionadas, estabelecendo-se uma proporção entre os números de divisões das escalas (Teorema de Tales), conforme vemos a seguir: De acordo com a figura, temos: $\frac{t_c - 0}{100 - 0} = \frac{t_F - 32}{212 - 32}$ ou Multiplicando ambos os membros por 20, temos:

PROBLEMAS

- 7. Num certo dia de primavera, em Londres, a rádio BBC local anuncia a temperatura de 68°F. Expresse essa temperatura em °C:
- 8. Dois termômetros C e F estão no mesmo ambiente. Se a escala C registrou 35°C, quanto marca a escala F?
- 9. Complete o quadro abaixo:

SOLUCIONANDO PROBLEMAS

- 10. (U.E. RJ) uma temperatura na escala F é indicada por um número duplo daquele em que é representada na escala C. está temperatura é:
- a) 120 °C
- b) 148 °C
- c) 140 °C
- d) 160 °C
- e) 130 °C
- 11. (F. Itajubá-MG) Mediu-se a temperatura de um corpo utiluizando-se dois termômetros, um calibrado na escala Celsius e outro calibrado ca escala Farenheint. Para surpresa nossa, verificou-se que os dois termômetros indicavam a temperatura do corpo com números iguais. Os termômetros marcava:
- a) 40°C e 40°F
- b) $-40^{\circ}\text{C e} 40^{\circ}\text{F}$
- c) 32°C e 32°F
- d) -32 °C e -32°F
- 12. A variação de 1°C corresponde à variação de _____ °F.

Escala Kelvin Com base na teoria dos gases, o físico inglês Lord Kelvin (William Thomson, 1824 – 1907) estabeleceu a escala absoluta, conhecida também por escala Kelvin ou termodinâmica. Nesta escala, o número 273 corresponde ao ponto do gelo e 373 ao ponto do vapor. Observações: Em 1967, pela 13^a Conferência de pesos e medidas, a unidade de temperatura graus Kelvin (°K) passou a ser designada simplesmente Kelvin (K). Kelvin atribuiu o número 0 à temperatura de – 273,15°C b) (para simplificação, desprezamos a fração 0,15) e dividiu a escala de tal modo que a variação de 1 K correspondesse à variação de 1°C, donde 0°C e 100°C correspondem, respectivamente, a 273,15 K e 373,15K. A temperatura de – 273m15°C é, na prática, inatingível; foi obtida teoricamente com base na Teoria dos Gases e na 2ª Lei da Termodinâmica. As leituras $t_{_{\!\!C}}$ e $t_{_{\!\!K}}$, correspondentes a um mesmo estado térmico e fornecidas pelos termômetros nas escalas C e K, podem ser relacionadas, estabelecendo-se uma proporção entre os números de divisões das escalas (Teorema de Tales), conforme vemos a seguir: De acordo com o esquema, vem: $t_{c} - 0 = t_{\kappa} - 273$ 373 - 273

$$\frac{t_{\rm C}}{100} = \frac{t_{\rm K} - 273}{100}$$

$$t_{c} = t_{k} - 273$$
 ou $t_{k} = t_{c} + 273$

.....

SOLUCIONANDO PROBLEMAS

13. Transforme 400 K em °C:

14. Converta 23°C em K:

15. As escalas C e K podem indicar temperaturas numericamente iguais?

16. A variação de 100°C corresponde à variação de quantos Kelvin?

17. Mostre que as temperaturas nas escalas Kelvin e Fahrenheit podem ser relacionadas pela expressão:

$$\frac{t_{K} - 273}{5} = \frac{t_{F} - 32}{9}$$

18. Transforme 120°F e – 76°F em K:

Equação term	ométrica	
•	atemática que relaciona a temperatura com	
a grandeza termométr	rica denomina-se equação termométrica.	
Exemplos:		
1º) Em um terr	nômetro de mercúrio, as temperaturas e	
as alturas d	la coluna estão relacionadas pela tabela:	
Pela tabela veri	ifica-se que t é sempre o dobro de h, logo	
a equação termométr	ica será:	
	t = 2 h	
2º) Em um terr	mômetro de álcool, as temperaturas em	
graus F e a	as alturas da coluna deste líquido estão	
relacionada	as conforme a tabela:	
Verifica-se, pela	a tabela, que enquanto h varia de 2 em 2 a	
temperatura varia de	8 em 8, isto é, a variação da temperatura	
é proporcional à varia	ação da altura.	
A equação tern	nométrica pode ser estabelecida através	
de uma proporção, co	•	
2 - 0 = 11 - 3		
h-0 t-3		
2 = 8		
$\frac{2}{h} - \frac{3}{t-3}$		
(1-+11+3) L		

Tipos de termômetros	
Termômetros de líquidos	
Os termômetros de líquidos baseiam-se na propriedade	
que têm os líquidos de dilatarem-se muito mais que os sólidos.	
O termômetro mais utilizado é o de mercúrio, que é	
encerrado num bulbo de vidro ligado a um tubo capilar.	
Como o mercúrio, normalmente, se solidifica a – 39°C e	
se vaporiza a 359°C, os termômetros de mercúrio podem ser	
utilizados nessa faixa de temperaturas. Entretanto, preenchendo	
o espaço acima do mercúrio com um gás que retarde sua	
vaporização, pode-se efetuar medições até cerca de 700°C.	
Empregam-se ainda termômetros de álcool (-110°C a	
78°C) e termômetros de toluol (-100°C a 110°C).	
Termômetro líquido	
Este termômetro é utilizado para medir a temperatura do	
corpo humano.	
Um pouco acima do bulbo, o capilar apresenta um	
estrangulamento; quando a temperatura aumenta, o mercúrio,	
forçado a dilatar-se, passa pelo estrangulamento; quando a	
temperatura diminui, o mercúrio se contrai, mas produz-se	
no estrangulamento uma ruptura na coluna de mercúrio, que	
fica impedido de descer, permitindo que se leia a temperatura	
máxima atingida mesmo que tenha decorrido algum tempo	
após a medida.	

Para se efetuar uma nova medição, deve	e-se fazer um
movimento brusco no termômetro, de modo a faz	zer com que o
mercúrio do capilar passe para o bulbo.	
A graduação dos termômetros clínicos vai de	e 35°C a 42°C
Termômetro de máxima e mínima	
As temperaturas máxima e mínima, em un	m intervalo de
tempo, podem ser lidas num termômetro de "máxir	ma e mínima",
cujos elementos constituintes estão indicados na	figura abaixo.
Os índices de ferro são deslocados pelo n	nercúrio, mas
são simplesmente banhados pelo álcool, que não	modifica suas
posições.	
Quando a temperatura se eleva, todo o líqu	
diminuindo o volume do vapor de álcool; o mercúrio	
se para o lado direito, empurra o índice I ₂ para cir	ma

Quando a temperatura diminui, o álcool e o mercúrio se	
contraem; a coluna de mercúrio se desloca para o lado	
esquerdo, empurrando o índice I_1 ; o índice I_2 , por sua vez,	
permanece na posição anteriormente atingida.	
Desse modo, pode-se ler as temperaturas máxima e	
mínima atingidas num certo intervalo de tempo.	
Para efetuar novas observações, os índices I ₁ e I ₂ são	
aproximados dos extremos da coluna de mercúrio com auxílio	
de um ímã.	
Termômetros de gás	
Este termômetro é chamado de termômetro "normal" ou	
"legal", uma vez que serve como padrão de aferição para outros	
termômetros	
Em geral, utiliza-se hidrôgenio ou hélio, cujo volume é	
mantido constante através do deslocamento vertical do	
reservatório de mercúrio.	
A temperatura é medida em função do desnível H da	
coluna de mercúrio nos tubos.	
Termômetro bimetálico	
Quando ocorre uma variação de temperatura no conjunto	
formado por lâminas de metal com coeficientes de dilatação	
diferentes e soldados entre si, conforme a figura, ele se encurva.	

Adaptando-se um ponteiro a um dos extremos do conjunto,	
pode-se ler a temperatura numa escala graduada, obtendo-se,	
desta forma, o chamado "termômetro bimetálico".	
desta forma, o chamado termometro bimetaneo .	
Termômetro de resistência	
Este termômetro baseia-se no fato de que a resistência	
elétrica de um fio metálico varia conforme a variação da	
temperatura. Essa dependência da resistência com a temperatura	
·	
pode ser utilizada para indicar mudanças de temperatura.	
Tarmaslamanta	
Termoelemento	
O termoelemento utiliza a seguinte propriedade: quando dois	
fios metálicos diferentes são ligados pelas extremidades e submetidos	
a diferentes temperaturas nas junções, são percorridos por uma	
corrente elétrica que é proporcional à diferença de temperaturas.	
Pirômetro	
A radiação emitida por um corpo incandescente depende	
da temperatura do mesmo. A temperatura de um corpo	
incandescente pode ser determinada através da medida da	
radiação emitida é fraca a baixas temperaturas, o pirômetro se	
presta a medições de temperaturas acima de 600°C.	
Lápis de cores (térmicas)	
Alguns materiais mudam de cor quando atingem	
determinadas temperaturas. Através da utilização de diversas	
cores, que se modificam a diferentes temperaturas, pode-se	
acompanhar o aquecimento de corpos de prova, os quais são	
marcados com as diversas cores.	
A seguir, apresentamos um quadro sobre as faixas de	
utilização de diferentes termômetros.	
	

19. Durante uma experiência, verificou-se que a temperatura de um líquido era 38°C. Expresse esta temperatura em Kelvin e Fahrenheit:

20. O oxigênio entra em ebulição à temperatura de 90 K. Qual será a leitura nas escalas Celsius e Fahrenheit?

21. O gás hélio torna-se líquido à temperatura de – 269°C. Qual será a leitura nas escalas Kelvin e Fahrenheit?

22. Três termômetros nas escalas C, K e F são colocados no mesmo ambiente. Se ocorre uma variação de temperatura igual a 1 grau na escala C, qual será a variação nas demais escalas?

TIPOS DE BOMBAS, PERDA DE CARGA Bombas Máquinas mistas São dispositivos ou aparelhos hidráulicos que modificam o estado de energia que o líquido possoi, isto é: transformam a energia hidráulica sob uma forma na outra. Pertencem a esta classe os ejetores ou edutores, os pulsômetros, os carneiros hidráulicos, as chamadas bombas de emulsão de ar, etc. Estes dispositivos funcionam como transformadores hidráulicos. Alguns autores incluem, nesta classe, as transmissões hidrostáticas e as transmissões hidrodinâmicas (acoplamentos, conversores de conjugado, variadores hidrodinâmicos de velocidade). Estudaremos as máquinas geratrizes e faremos algumas referências às máquinas mistas. Classificação das máquinas geratrizes ou bombas Definição Bombas são máquinas geratrizes cuja finalidade é realizar o deslocamento de um líquido por escoamento. Sendo uma máquina geratriz, ela transforma o trabalho mecânico que recebe para seu funcionamento em energia, que é comunicada ao líquido sob as formas de energia de pressão e cinética. Alguns autores chamam-nas de máquinas operatrizes hidráulicas, porque realizam um trabalho útil específico ao deslocarem um líquido. O modo pelo qual é feita a transformação do trabalho em energia hidráulica e o recurso para cedê-la ao líquido aumentando sua pressão e/ou sua velocidade permitem classificar as bombas em: bombas de deslocamento positivo ou volumógenas; turbobombas chamadas também hidrodinâmicas ou rotodinâmicas ou simplesmente dinâmicas; · bombas especiais (bomba com ejetor; pulsômetros; bomba de emulsão de ar).

Bombas de deslocamento positivo

Possuem uma ou mais câmaras, em cujo interior o movimento de um órgão propulsor comunica energia de pressão ao líquido, provocando o seu escoamento. Proporciona então as condições para que se realize o escoamento na tubulação de aspiração até a bomba e na tubulação de recalque até o ponto de utilização.

A característica principal desta classe de bombas é que uma partícula líquida em contato com o órgão que comunica a energia tem aproximadamente a mesma trajetória que a do ponto do órgão com o qual está em contato.

Assim, por exemplo, na bomba de êmbolo aspirante-premente, representada pela figura à esquerda, a partícula líquida a tem a mesma trajetória retilínea do ponto b do pistão, exceto nos trechos de concordância inicial e final 0-c e c-1. Na bomba de engrenagem, representada na figura à direita, a partícula líquida a tem aproximadamente a mesma trajetória circular que a do ponto b do dente da engrenagem, exceto nos trechos de concordância na entrada e na saída do corpo da bomba.

Nas bombas volumógenas existe uma relação constante entre a descarga e a velocidade do órgão propulsor da bomba. Nas bombas alternativas, o líquido recebe a ação das forças diretamente de um pistão ou êmbolo (pistão alongado) ou de uma membrana flexível (diagrama).

As bombas de deslocamento positivo podem ser:

Turbobombas	
Órgãos essencias	
As turbobombas, também chamadas bombas rotodinâmicas e	
kinetic pumps pelo Hydraulic Institute, são caracterizadas por possuírem	
um órgão rotatório dotado de pás, chamado rotor, que exerce sobre o	
líquido forças que resultam da aceleração que lhe imprime. Essa	
aceleração, ao contrário do que se verifica nas bombas de	
deslocamento positivo, não possui a mesma direção e o mesmo sentido	
do movimento do líquido em contato com as pás. As forças geradas	
são as de inércia e do tipo μν, já vistas. A descarga gerada depende	
das características da bomba, do número de rotações e das	
características do sistema de encanamentos ao qual estiver ligada.	
A finalidade do rotor, também chamado "impulsor" ou	
"impelidor", é comunicar à massa líquida aceleração, para que	
adquira energia cinética e se realize assim a transformação da	
energia mecânica de que está dotado. É, em essência, um disco	
ou uma peça de formato cônico dotada de pás. O rotor pode ser:	
 Fechado quando, além do disco onde se fixam as 	
pás, existe uma coroa circular também presa às pás. Pela abertura	
dessa coroa, o líquido penetra no rotor. Usa-se para líquidos sem	
substâncias em suspensão e nas condições que veremos adiante.	
 Aberto quando n\u00e3o existe essa coroa circular 	
anterior. Usa-se para líquidos contendo pastas, lamas, areia,	
esgotos sanitári <u>os e para outras condições qu</u> e estudaremos.	

As turbobombas necessitam de um outro órgão, o difusor, também chamado recuperador, onde é feita a transformação da maior parte da elevada energia cinética com que o líquido sai do rotor, em energia de pressão. Desse modo, ao atingir a boca de saída da bomba, o líquido é capaz de escoar com velocidade razoável, equilibrando a pressão que se opõe ao seu escoamento. Esta transformação é operada de acordo com o teorema de Bernoulli, pois o difusor sendo, em geral, de seção gradativamente crescente, realiza uma contínua e progressiva diminuição da velocidade do líquido que por ele escoa, com o simultâneo aumento da pressão, de modo a que esta tenha valor elevado e a velocidade seja reduzida na ligação da bomba ao encanamento de recalque. Ainda assim, coloca-se uma peça troncônica na saída da bomba, para reduzir ainda mais a velocidade na tubulação de recalque, quando isso for necessário. Bombas e instalações de bombeamento Dependendo do tipo de turbobomba, o difusor por ser: De tubo reto troncônico, nas bombas axiais. De caixa em forma de caracol ou voluta, nos demais tipos de bomba, chamado neste caso simplesmente

de coletor ou caracol.

.....

Entre a saída do rotor e o caracol, em certas bombas, colocam-se palhetas devidamente orientadas, as "pás guias" para que o líquido que sai do rotor seja conduzido ao coletor com velocidade, direção e sentido tais que a transformação da energia cinética em energia potencial de pressão se processe com um mínimo de perdas por atrito ou turbulências. Muitos fabricantes europeus usam o difusor de pás, enquanto os americanos, em geral, preferem o difusor-coletor em caracol, sem pás. Nas bombas de múltiplos estádios, "as pás guias ou diretrizes" são necessárias.

Perda de carga

A grandeza H, quando representa energia cedida pelo líquido em escoamento devido ao atrito interno, atrito contra as paredes e pertubações no escoamento, chama-se perda de carga ou energia perdida, e se representa por J. Essa energia por unidade de peso de líquido, em última análise, se dissipa sob a forma de calor. Na figura a seguir vemos representadas a veia líquida, as linhas piezométrica, energética, as parcelas da energia nas seções 0 e 1, e a perda de carga H entre as referidas seções, que também representaremos por J_0^{-1} .

A determinação da perda de carga J pode ser realiza	ıda
medindo-se o desnível piezométrico entre os pontos nos qu	ais
se deseja conhecer a perda.	
$\int_{0}^{1} = \underline{\rho_{0} - \rho_{1}}$	
γ	
A figura acima indica como variam a linha energética e a lir	nha
piezométrica numa tubulação ligando dois reservatórios e possuir	ndo
três trechos com diferentes diâmetros	

Perda por atrito e pressão	
Ao observarmos as leis referentes aos fluidos em movimento,	
vimos que as camadas dos fluidos podem deslocar-se umas contra	
as outras ou contra um corpo, sem que ocorra atrito.	
A energia hidráulica, no entanto, não passa através de	
uma tubulação sem apresentar perdas. Nas próprias paredes	
do tubo e no fluido em si, ocorre atrito o qual gera calor. Então	
a energia hidráulica é transformada em calor. A perda ocorrida	
de energia hidráulica significa para as instalações hidráulicas	
uma perda de pressão.	
A perda de pressão ou diferença de pressão - vem	
indicado por Δp (figura abaixo). Quanto maior se torna o atrito	
das camadas de fluido umas contra as outras (atrito interno)	
tanto maior se torna a viscosidade (tenacidade) do fluído.	
A extensão das perdas por atrito depende	
predominantemente de:	
 Comprimento da tubulação, 	
 Secção das tubulações, 	
- Rugosidade da parede do tubo,	
 Número das curvas do tubo, 	
- Velocidade de vazão e	
- Viscosidade do fluido.	

ÁGUA INDUSTRIAL Tratamento de água industrial Introdução Há muito tempo que o condicionamento da água para uso urbano é prática comum e essencial nas cidades. Na atualidade, sabe-se da importância dessa preparação para a atividade industrial, em virtude no grande rol de processos existentes e da diversidade de necessidade de qualidade das águas para o seu uso. A quantidade e a natureza dos constituintes presentes nas águas variam, principalmente em função do tipo de solo de onde são originárias, das condições climáticas e do grau de poluição que lhes é conferido, especialmente pelos despejos industrias e municipais. Devido a todos esses motivos, é imprescindível que se tenha à disposição águas com as características necessárias a cada processo industrial. Isso é o objeto principal deste curso. Águas de uso industrial Podemos subdividir as águas industriais em seis classes, a saber: Água bruta; Água industrial; Água abrandada; Água desmineralizada; Água de retorno (de processo e condensado); Água potável. Água bruta É toda água que possa ser utilizada industrialmente sem sofrer tratamento algum, à exceção de gradeamento, e

......

monitoramento microbiano.

Algumas centrais termoelétricas utilizam sistemas de geração	
do tipo extração-condensação, ou apenas condensação. Para esse	
uso, a quantidade de água necessária para se seguir a eficiência	
necessária é demasiado grande, e não justifica a utilização de	
água industrial tratada em virtude do custo adicional. Daí se	
emprega água bruta sem tratamento para esse fim. Algum	
monitoramento microbiológico é feito em virtude da possibilidade	
de aparecimento de corrosão microbiana.	
Outras indústrias podem utilizar água sem tratamento para	
lavagem de matéria-prima, por exemplo na indústria de celulose, onde	
a madeira a ser transformada é lavada com esse tipo de água.	
Água industrial	
É toda água utilizada na indústria que sofreu tratamento	
primário (gradeamento, clarificação e filtração).	
Às vezes, antes da clarificação, a água pode passar por	
uma pré-cloração, dependendo da quantidade de matéria	
orgânica existente.	
A água industrial já foi objeto de estudo deste curso, onde	
suas propriedades e seu tratamento forma esmiuçados.	
Água abrandada	
O abrandamento de uma água consiste na remoção total	
ou parcial de ions Ca e Mg nela presentes, quase sempre na	
forma de bicarbonatos, sulfatos e cloretos.	
O abrandamento de uma água que se destina a produção	
de vapor deve reduzir Ca** e Mg** a valores muito baixos ou	
mesmo a zero, dados os perigos que os sais desses metais	
representam quando introduzidos em uma caldeira, tais como	
incrustações com provável ruptura de tubos ou restrições de	
seus diâmetros.	
Basicamente existem três processos de abrandamento	
de água, o processo da Cal Sodada a Frio e Quente, o processo	
de Cal Sodada a Quente com Fosfato Trissódico, Disódico ou	
Monossódico e o processo de Troca de Cátions por Resinas.	

Água desmineralizada	
A desmineralização é o processo de remoção praticamente	
total dos ions presentes em uma água, através de resinas	
catiônicas e aniônicas.	
Água de retorno	
São todas as águas que já foram utilizadas no processo	
industrial e são novamente coletadas para reuso. Podem ser águas	
de retorno de processo ou de retorno de condensado. Dependendo	
se for uma ou outra o tratamento que se dá é distinto.	
Se for água do processo, ela poderá ser incorporada em	
determinada fase do tratamento primário, ou ainda, ser utilizada	
do jeito que está dependendo do próprio processo.	
Se for condensado de retorno, ele normalmente terá que	
passar por um polimento com a finalidade da remoção de íons	
Fe ⁺⁺ , sendo daí incorporado novamente ao fluxo de água de	
alimentação das caldeiras.	
Água potável	
Toda água de consumo humano na indústria, caso não	
tenha acesso à água de rede da concessionária estadual.	
Pode também ser a água de determinados processos	
industriais, normalmente os do ramo alimentício e correlatos.	
Das águas de uso industrial, tomaremos como objeto de nosso	
estudo as águas de alimentação de Caldeiras e águas de Refrigeração,	
englobadas nas classes de águas abrandadas, desmineralizadas, de	
retorno de condensado e algumas águas brutas.	
Tratamento de Água de Caldeira	
Histórico	
Até o início deste século, praticamente não havia preocupação	
com respeito ao tratamento de águas para caldeiras, em virtude do	
pequeno tamanho e pressões de trabalho das mesmas. Mesmo assim	
aconteciam imprevistos que provocavam paradas inesperadas e	
acidentes muitas vezes fatais	

Com uma melhoria tecnológica ocorrida durante os anos das décadas de 1910 e 1920, passou-se a considerar que grande parte dos imprevistos ocorridos eram devidos a qualidade inadequada da água utilizada. Outro fator determinante no advento do tratamento da água de caldeiras como etapa industrial fundamental , foi a necessidade da utilização de caldeiras com pressões de trabalho cada vez maiores, que levavam a um acréscimo considerável dos acidentes por problemas relacionadas à qualidade da água. Todos estes imprevistos, de uma forma ou de outra, provocavam paradas que se tornavam dispendiosas.

A partir de 1920, começaram a desenvolver algumas técnicas de tratamento de água, juntamente com análises químicas e físicas que determinavam os parâmetros ideais de qualidade da água a ser tratada.

Durante toda essa fase de desenvolvimento, alguns fatos tinham sido observados e estudados, entre os quais o aparecimento de incrustações nas tubulações de água a vapor, e corrosão típica da presença de oxigênio dissolvido.

Uma análise mais detalhada destas incrustações levou a conclusão que a presença de ions Ca⁺⁺ e Mg⁺⁺ na água de alimentação era extremamente prejudicial a normal operação da caldeira, podendo provocar obstrução parcial e até mesmo total dos tubos de água, com consegüente superaquecimento e rompimento.

Incrustrações e erosões encontradas em tubulações de vapor superaquecido e em turbinas a vapor pelo foram analisadas e concluiu-se que silicatos eram os constituintes principais desses depósitos.

Nesta mesma época, começou- se a pré aquecer às águas de alimentação das caldeiras, para a eliminação do oxigênio nelas dissolvido. Aí entraram em operação os primeiros desaeradores que se tem notícia.

Também descobriu-se que com alcalinidade mais elevada,	
as borras formadas nos balões de água a vapor eram mais	
facilmente removidas (constituídas de Ca e Mg). Passou-se	
então a utilizar o carbonato de sódio para elevação de pH. Um	
inconveniente apareceu com o seu uso. A liberação de gás	
carbônico em temperaturas mais elevadas, o que ocasionava	
corrosão em turbinas e sistemas de água de alimentação.	
Para a substituição do carbonato de sódio foram utilizados	
os fosfatos, que se apresentaram muito mais eficientes na	
formação das borras de Ca e Mg, e a utilização de hidróxido de	
sódio para manutenção da elevada alcalinidade, uma vez que	
a fornecida pelos fosfatos não era suficiente.	
Estava "criado" então, o Tratamento Convencional de água	
para Caldeiras, utilizando-se o fosfato trissódico e soda cáustica.	
Com o advento do uso das caldeiras de alta pressão, o	
uso de concentrações elevadas de soda cáustica passou a ser	
problema em virtude do acúmulo de soda sob depósitos, e	
consequente corrosão pela soda. Como eram necessários	
quantidades cada vez maiores de soda e fosfato para	
satisfazerem as necessidades de qualidade das águas para	
produção de vapor de alta pressão, começou-se então, a	
utilização de técnicas de desmineralização das águas das	
caldeiras, permitindo, assim, um uso praticamente mínimo	
desses produtos químicos , além de menor formação de borra	
nos balões de água das caldeiras.	
•	
Classificação das caldeiras	
3	
Podemos classificar as caldeiras de acordo com a sua	
pressão de trabalho como vemos no quadro abaixo.	
1	

Caldeiras de baixa pressão	
Águas de alimentação ideais para caldeiras desse tipo	
devem apresentar dureza zero. Ocorre, porém, que muitos	
sistemas de águas de alimentação de caldeiras de baixa pressão	
não efetuam o abrandamento de água a contento, de sorte que	
as águas muitas vezes apresentam dureza que varia de 15 a	
50 ppm. Algumas indústrias, onde a água bruta disponível	
apresenta dureza superior superior a 30 ppm, adotam o	
processo de abrandamento parcial.	
Não se justifica a instalação de uma estação desmineralizadora	
para tratamento de água para caldeiras de baixa pressão, a menos	
que se tenha uma lata taxa de recuperação de condensado, e	
conseqüentemente baixa taxa de "make-up".	
Abaixo segue uma relação de parâmetros limites da	
qualidade de água para caldeiras de baixa pressão.	
Caldeiras de média pressão	
Este tipo de caldeira deve apresentar dureza zero em	
sua água de alimentação, preferivelmente. Para isso, a água	
de alimentação deve ser pelo menos abrandada, podendo ser	
desmineralizada.	
_	
É claro que há um limite onde o total de sólidos de	
dissolvidos na água de alimentação começa a se tornar	
inconveniente para a geração de vapor, em virtude da	
concentração dos mesmos no interior da caldeira. Isso acarreta	
um número ou taxa maior de descargas para a manutenção de	
um determinado teor de sólidos dissolvidos na água de alimentação.	

A determinação da taxa de descarga em relação à	
quantidade de vapor produzidos pode ser feita pela	
fórmula abaixo:	
$A = 100 \times C / (M - C)$	
Onde:	
A = % de água a ser purgada;	
C = total de sólidos dissolvidos na água de alimentação,	
em ppm;	
M = total de sólidos dissolvidos admissíveis na água de	
caldeira, em ppm.	
A determinação dos sólidos totais dissolvidos na água de	
alimentação de uma caldeira pode ser acompanhada mais	
diretamente a concentração dos sólidos com a condutividade	
da água, de acordo com a seguinte expressão:	
$S.D. = 0.68 \times C.D.$	
Onde:	
S.D. = sólidos totais dissolvidos, em ppm;	
C.D. = condutividade a 25°C, em Mho/cm.	
Abaixo segue uma relação de parâmetros limites da	
qualidade de água para caldeiras de média pressão:	

Caldeiras de alta pressão Não é tarefa muito fácil o estudo do tratamento de água para caldeiras de alta pressão, pois esse assunto envolve uma série de fenômenos que não encontram justificativas em bases científicas perfeitamente definidas.	
As condições drásticas a que estão sujeitos os compostos que entram numa caldeira para o tratamento de sua água impedem que se façam pesquisas em bases econômicas justificáveis para explicar como ocorrem certos fenômenos que a prática revela. A drasticidade dessas condições se complica com a evolução da técnica de construção de caldeiras que tendem a trabalhar com pressões e temperaturas cada vez mais altas.	
É opinião geral que determinadas pesquisas que explicassem cientificamente certos fenômenos, constituiriam mera curiosidade acadêmica e não trariam benefícios práticos. Por isso a tecnologia busca pura e simplesmente os resultados práticos, não se preocupando com especulações. O seu objetivo principal é desenvolver e aperfeiçoar práticas preventivas para evitar corrosão e incrustações em caldeiras e tubulações de sistemas de água de alimentação, bem como obter água de alta pureza para lamentar o ciclo de uma usina de vapor. Abaixo segue uma relação de parâmetros limites de qualidade de água para caldeiras de alta pressão:	

Para caldeiras que operam, com pressões de vapor com	
valores acima de 200 kgf/cm², esses parâmetros assim ficariam.	
Abaixo segue uma relação de parâmetro limites da	
qualidade de água para caldeiras de altíssima pressão:	
Abrandamento de águas	
A técnica mais apropriada para abrandar águas é a que	
emprega resinas trocadoras de cátions, especificamente as que	
trocam Na+ por Ca++ e Mg++.	
A conveniência ou não da instalação de uma estação de	
abrandamento de água por troca de íons, em uma indústria	
depende principalmente da qualidade de água por ela requerida.	
Quando se necessita, por exemplo, de uma água de dureza	
praticamente zero deve-se instalar uma estação de	
abrandamento por troca iônica, principalmente se a água bruta	
ou clarificada apresentar uma dureza inferior a 100 ppm. Enfim,	
o projeto de um sistema de abrandamento de água deve incluir,	
entre outros fatores, os estudos sobre a qualidade da água	
bruta, a qualidade desejada, o tipo e as necessidades da	
indústria que vai utilizar a água, e um balanço econômico geral	
da situação que envolve esse projeto.	
Por meio deste tipo de abrandamento pode-se remover,	
além da dureza, Fe, Mn e Al na forma de tais solúveis. A presença	
de grande quantidade de cátions monovalentes na água reduzirá	
a capacidade de resina.	

Quando houver interesse em se remover a dureza e	
alcalinidade devido ao bicarbonato de sódio, adota-se o	
uso de resinas catiônicas fracamente ácidas que atuam	
na forma hidrogeniônica.	
Regeneração	
Todo sistema de abrandamento de águas por troca	
iônica tem uma determinada capacidade que corresponde	
ao total de Na ⁺ presente na resina quando ela estiver na	
forma R-Na e que corresponde ao total de H ⁺ presente	
na resina quando ela estiver na forma R-H.	
Os projetos de abrandadores apresentam a	
capacidade de troca das resinas em termos de quantidade	
total de dureza, com CaCO ₃ , que elas são capazes de	
remover.	
Quando a água a ser amolecida apresenta dureza	
mais ou menos constante, costuma-se na prática, usar	
integradores de volumes de água, como alarme, para	
indicar o final do ciclo da resina, ou ainda, o uso de	
condutivímetros, relacionando a condutividade provocada	
pela presença de cátions na água de saída com a	
diminuição da capacidade de resinas.	
No caso de resinas na forma R-Na, a operação de	
regeneração consiste em se passar uma solução de NaCl	
a 10% numa relação de 1,2 kg de NaCl para cada kg de	
dureza (como CaCO ₃) removida. No caso de resinas na	
forma de R-H, a solução regenerante é ácida,	
normalmente ácido sulfúrico ou clorídrico.	
Após a regeneração, deve-se proceder as operações	
de lavagem para remoção do cloreto de sódio	
remanescente. Após a relavagem coloca-se o sistema em	
funcionamento e faz-se o controle de cloreto e dureza	
total, para verificar a eficiência das operações efetuadas.	

Na figura a seguir mostra-se um fluxograma resumido	
de um processo de abrandamento juntamente com as	
reações envolvidas.	
	— ······
Desmineralização de águas	
Consegue-se a desmineralização de uma água ao passá-la	
por colunas de resinas catiônicas na forma H ⁺ e aniônicas na	
forma OH ⁻ , separadamente, ou em uma só coluna que contenha	
esses dois tipos de resinas (leito misto). No primeiro caso deve-se	
passar a água primeiramente pelas resinas catiônicas, pois essas	
são mais resistentes que as aniônicas tanto química quanto	
fisicamente. Deste modo as resinas catiônicas podem proteger as	

aniônicas, funcionando como um filtro.

A figura abaixo mostra um fluxograma resumido de ur	n
sistema de desmineralização, incluindo as reações de troc	a
iônica que ocorrem.	
Damananaãa	
Regeneração	
Todo sistema de desmineralização de águas po	
intermédio de resinas trocadoras de cátions e ânions, têm	
inconveniente de saturação a partir de um certo instante. Ess	
instante é variável e depende do tipo de resina utilizada e d	
quantidade da água a ser desmineralizada. Evidentemente, o	
procedimentos de regeneração dessas resinas é distinto par	
resinas de características diferentes: as resinas catiônicas sã	
regeneradas utilizando-se soluções alcalinas. O tipo de solução	
ácida (H ₂ SO ₄ ou HCI) ou básica (NaOH) empregada n	
regeneração normalmente é especificada pelo fabricante d	
resina, dependendo justamente do tipo de cátion ou ânion	
ser removido e da resistência química da própria resina.	
No caso de unidades desmineralizadoras com Leito Misto),
os cuidados na regeneração devem ser redobrados uma ve	
que as soluções de regeneração para as resinas catiônica	
são extremamente nocivas às aniônicas e vice versa. Devido	
esse fato, a primeira etapa da regeneração de resinas em Leit	
Misto deve ser a separação das resinas. Isso é conseguid	
através das diferenças de densidade entre as duas resinas.	

Após a separação, durante o processo de	
regeneração, o cuidado com a selagem entre as resinas	
aniônicas e catiônicas deve ser muito grande, evitando o	
contato de solução regeneradora de uma resina com a	
outra.	
Na figura abaixo, mostramos algumas combinações	
de sistemas de resinas catiônicas, aniônicas e de leito	
misto usados para estações de desmineralização de	
águas:	
Vida das resinas aniônicas e catiônicas	
A vida útil das resinas catiônicas poderá ser de até 15	
anos quando estas funcionam em condições adequadas	
(afluente bem clarificado), livre de ferro, cloro e matéria	
orgânica, fluxos de regeneração, serviço e relavagem de	
acordo com as recomendações de projeto, e boa qualidade	
de solução regenerante. Em condições adversas não se	
poderá prever o tempo de vida dessas resinas	

As resinas aniônicas são mais suscetíveis à deteriorização que as catiônicas. Os mesmos fatores que exercem influência na vida das resinas catiônicas o fazem nas aniônicas. As resinas aniônicas, quando funcionando em condições ideais podem durar até 5 anos, quando não, duram apenas alguns meses.

A seguir apresentamos um quadro que procura resumir as principais dificuldades de operação de um sistema de desmineralização ou mesmo de de um sistema de abrandamento.

AR COMPRIMIDO, MEDIDORES DE PRESSÃO (MANÔMETROS) O ar comprimido é, provavelmente, uma das mais antigas formas de transmissão de energia que o homem conhece, empregada e aproveitada para ampliar sua capacidade física. O reconhecimento da existência física do ar., bem como sua utilização mais ou menos consciente para o trabalho, são comprovados há milhares de anos. O primeiro homem que, com certeza, sabemos ter se interessado pela pneumática, isto é, o emprego do ar comprimido como meio auxiliar de trabalho, foi o grego Ktesibios, há mais de 2000 anos, ele construiu uma catapulta a ar comprimido. Um dos primeiros livros sobre o emprego do ar comprimido como transmissão de energia, data do século I D.C. e descreve equipamentos que foram acionados com ar aquecido. Dos antigos gregos provem a expressão "PNEUMA" que significa fôlego, vento e, filosoficamente, alma. Derivado da palavra "pneuma", surgiu, entre outros, o conceito de "pneumática": a "matéria" dos movimentos dos gases e fenômenos dos gases. Embora, a base da pneumática seja um dos mais velhos conhecimentos da humanidade, foi preciso aguardar o século XIX para que o estudo de seu comportamento e de suas características se tornasse sistemático. Porém, pode-se dizer que somente após o ano de 1950 é que ela foi realmente introduzida na produção industrial na produção industrial. Antes, porém, já estiam alguns campos de aplicação e aproveitamento da pneumática, como, por exemplo, a indústria

mineira, a construção civil e a indústria ferroviária (freios a ar

comprimido).

......

A introdução, de forma mais generalizada, da pneumática	
na indústria, começou com a necessidade, cada vez maior, de	
automatização e racionalização dos processos de trabalho.	
Apesar de sua rejeição inicial, quase sempre proveniente	
da falta de conhecimento e instrução, ela foi aceita e o número	
de campos de aplicação tornou-se cada vez maior.	
Hoje o ar comprimido tornou-se indispensável, e nos	
mais diferentes ramos industriais instalam-se aparelhos	
pneumáticos. É admirável como a pneumática tem conseguido	
expandir-se e se impor em tão pouco tempo.	
Entre outras características, as principais são as	
seguintes: nenhum outro elemento auxiliar pode ser empregado	
tão simples e rentavelmente para solucionar muitos problemas	
de automatização.	
Quais, portanto, são as características que fizeram o ar	
comprimido tão conhecido?	
Quantidade	
O ar a ser comprimido se encontra em quantidades	
limitadas, praticamente em todos os luigares.	
Transporte	
O ar comprimido é facilmente transportável por	
tubulações, mesmo para distâncias consideravelmente grandes.	
Não há necessidade de se preocupar com o retorno do ar.	
Armazenável	
No estabelecimento não é necessário que o compressor	
esteja em funcionamento contínuo. O ar pode ser sempre	
armazenado em um reservatório e, posteriormente, tirado de lá.	
Além disso é possível o transporte em reservatórios (botijão).	
Temperatura	
O trabalho realizado com ar comprimido é insensível às	
oscilações de temperatura. Isto garante, também em situações	
térmicas extremas, um funcionamento seguro.	

Segurança	
Não existe o perigo de explosão ou do incêndio. Portanto	
não são necessárias custosas proteções contra explosões.	
Limpeza	
O ar comprimido é limpo. O ar, que eventualmente escapa	
das tubulações ou outros elementos inadequadamente vedados,	
não polui o ambiente. Esta limpeza é uma exigência, por exemplo	
nas indústrias alimentícias, madeireiras, têxteis e curtumes.	
Construção	
Os elementos de trabalho são de construção simples e	
portanto de custo vantajoso.	
Velocidade	
O ar comprimento é um meio de trabalho muito veloz, e	
permite alcançar altas velocidades de trabalho (a velocidade	
de trabalho dos cilindros pneumáticos oscila entre 1-2 metros	
por segundo).	
Regulagem	
As velocidades e forças dos elementos a ar comprimido	
são reguláveis sem escala.	
Seguro contra sobrecarga	
Elementos e ferramentas a ar comprimido são carregáveis	
atá a parada final e, portanto, seguros contra sobrecarga.	
Para poder limitar corretamente os campos de emprego	
da pneumática, é necessário também conhecer as características	
negativas da mesma.	
Preparação	
O ar comprimido requer uma boa preparação. Impureza e	
umidade devem ser evitadas, pois provocam desgaste nos	
elementos pneumáticos.	
Compressibilidade	
Não é possível manter uniformes e constantes as	
velocidades dos pistões, mediante o ar comprimido.	

Forças	
O ar comprimido é econômico somente até uma certa	
força. O limite fixado em 20000 -30000 newtons (2000 – 3000	
kp em aplicação direta dos cilindros) à pressão normal de	
trabalho de 7 bar (pressão absoluta), dependendo também do	
curos e da velocidade dos elementos de trabalho.	
Escape de ar	
O escape de ar é ruidoso, mas, com o desenvolvimento	
de silenciadores, este problema está atualmente solucionado.	
Custos	
O ar comprimido é uma fonte de energia muito custosa.	
Porém, o alto custo de energia será, em grande parte,	
compensado pelos elementos de preço vantajoso e pela grande	
rentabilidade do ciclo de trabalho.	
Em consequência da automatização e racionalização, a	
energia humana foi substituída por outras formas energéticas.	
Trabalhos antigamente feitos pelo homem, agora estão sendo	
realizados mediante o emprego do ar comprimido.	
Exemplos: deslocamento de volumes pesados,	
acionamento de alavancas, contagem de peças, etc.	
O ar comprimido, embora muito vantajoso, é, porém, sem	
dúvida, um elemento energético relativamente caro. A produção	
e armazenagem, bem como a distribuição do ar comprimido às	
máquinas e dispositivos, requer um alto custo. Esta realidade	
cria, em geral, a opinião de que o emprego de equipamentos a	
ar comprimido é relacionado com custos elevadíssimos. Está	
opinião é errônea, pois para um cálculo de rentabilidade real,	
não devem ser considerados somente o custo da energia	
empregada, mas sim os custos gerais acumulados.	
Considerando iste mais realisticamente, verifica-se, na	
Considerando isto mais realisticamente, verifica-se, na maioria dos casos, os custos da energia empregada são	
muito insignificantes para poderem desempenhar um papel	
determinante em relação aos salários, custos de investimento	
actoriminanto om rolação aos salanos, custos de investillento	

e manutenção.

Manômetros de pressão	
Os manômetros de pressão são necessários para se	
ajustarem as válvulas controladoras de pressão e para se	
determinarem as forças que um cilindro desenvolve, ou medir o	
torque de um. Os dois tipos principais de manômetros de	
pressão são: o tubo de Bourdon e o Scharader.	
No manômetro do tipo Bourdon, visto na figura abaixo, um	
tubo selado tem a forma de um arco. Quando se aplica pressão	
na abertura da entrada, o tubo tende a endireitar-se, atuando no	
acoplamento que gira uma engrenagem. Um indicador ligado à	
engrenagem registra a pressão num mostrador.	
No manômetro do tipo Schrader, ilustrado abaixo, aplica-se	
pressão num pistão, o qual comprime uma mola. Ao ser comprimida,	
a mola aciona um ponteiro através de uma articulação.	
OPERAÇÃO DE UM MANÔMETRO DO TIPO SCHRADER	l

A maioria dos manômetros registra zero à pressão atmosférica e é calibrada em quilos por centímetro	
quadrado ou em libras por polegada quadrada, ignorando	
a pressão atmosférica.	
As pressões da sucção de uma bomba são freqüentemente	
inferiores à pressão atmosférica e devem ser medidas como	
pressão absoluta, pressão essa calibrada, na maioria das vezes,	
em polegadas de mercúrio.	
Consideram-se 30 polegadas de mercúrio como	
vácuo perfeito.	
A figura abaixo mostra um vacuômetro com escala de	
polegadas de mercúrio.	

CARACTERÍSTICAS DA ÁGUA E DO VAPOR	
As curvas de aquecimento da água e do vapor se	
comportam como mostrado abaixo:	
A partir desta curva, podemos definir os seguintes	
conceitos:	
Entalpia de líquido saturado (h _L)	
Como vimos, ao atingir-se a temperatura de	
vaporização inicia-se a formação de vapor. A água,	
portanto, necessitou de uma quantidade de calor para	
início da ebulição (vaporização), a esta quantidade de	
calor chamamos entalpia do líquido saturado (h_L), tendo	
a seguinte unidade kcal/kg.	
Entalpia de vapor saturado (h _v)	
Defini-se como sendo a quantidade de calor	
necessária para que ocorra a passagem da água do	
estado líquido para o estado de vapor, na temperatura de	
vaporização. Unidade: kcal/kg.	
Calor latente de vaporização (h _{Lv})	
Defini-se como sendo a diferença entre a entalpia	
do vapor saturado (h_v) e a entalpia do líquido saturado	
(h _L). Unidade: kcal/kg.	
$h_{LV} = h_{LV} - h_{L}$	

Temperatura de vaporização (t _{vap})	
Considere o aquecimento de um determinado volume de	
água fria (figura anterior). Após alguns minutos de aquecimento,	
ao atingir uma determinada temperatura, a água ferverá (entrará	
em ebulição): a esta temperatura dá-se o nome de temperatura	
de vaporização (temperatura de vaporização depende	
diretamente da pressão).	
anotamonto da procedo).	
Volume específico (V _{esp})	
Após atingirmos a temperatura de vaporização d'água,	
começará a formação do vapor d'água.	
começara a formação do vapor a agua.	
A água no estado líquido aprosenta um noso (kg) definido:	
A água no estado líquido apresenta um peso (kg) definido;	
portanto o vapor também terá um peso definido. Mas o vapor	
ocupa também um volume (m³). Ao volume, em m³ (metros	
cúbicos) ocupado para cada quilograma (kg) de vapor, define-	
se como sendo o volume específico (V _e V _{esp}) do vapor	
saturado (m³/kg).	
Vapor superaquecido	
Define-se vapor superaquecido como sendo todo vapor	
que esteja a uma temperatura superior a sua temperatura de	
vaporização.	
Tabela de vapor saturado	
A tabela de vapor saturado que apresentamos a seguir é	
constituída das seguintes colunas:	
P _{man} = pressão manométrica (kgf/cm²)	
P _{abs} = pressão absoluta (kgf/cm²)	
t _{vap} = temperatura do vapor (°C)	
V _{esp} = volume específico (m³/kg)	
Também são apresentadas nas três últimas colunas as entalpias	
do líquido e vapor saturado e o calor latente de vaporização.	
Repare que quanto maior a pressão do vapor a temperatura	
do vapor aumenta e o seu volume específico diminui.	

- Se você quiser saber a temperatura e o volume específico do vapor na caldeira que você está operando, basta fazer o seguinte: Leia no manômetro da caldeira a pressão que está indicada (não esqueça que você estará lendo a pressão manométrica); - Suponhamos: 7,0 kgf/cm² (aprox. 99,4 psig). Procure em seguida na primeira coluna da tabela o valor da pressão, lido anteriormente; Encontrado o valor, basta ler os valores da respectiva linha, portanto: $t_{vap} = 169.6$ °C e $V_{esp} = 0.24$ m³/kg Medidores de vazão Rotâmetros Os rotâmetros são unidades medidoras de fluxo. Normalmente, são incorporadas nas bancadas de teste, porém também são disponíveis em unidades portáteis. Alguns incorporam, além do rotâmetro, um manômetro e um termômetro, coma unidade da figura abaixo. Raramente são conectadas de modo permanente nos circuitos hidráulicos. Entretanto, acoplar uma dessas unidades na tubulação hidráulica é de grande utilidade para se verificar a eficiência volumétrica de uma bomba bem como se determinarem fugas internas num circuito.

.....

Como usar a tabela de vapor saturado

A figura seguinte mostra um rotâmetro típico.	
Consiste de um peso instalado num tubo cônico. O	
·	
tubo é graduado na posição vertical. O óleo bombeado	
entra por baixo do tubo e sai por cima, levantando o peso	
a uma altura proporcional ao fluxo.	
Para uma medida mais precisa, um motor hidráulico com	
deslocamento conhecido pode ser usado para girar um	
tacômetro. O fluxo, em litros por minuto, será:	
Fluxo (1/min) = rpm x deslocamento (cm³/rotação)	
1000	
Naturalmente, o tacômetro pode ser calibrado tanto	
diretamente em 1/min quanto em rpm.	
Outro tipo de medidor de fluxo incorpora um disco	
que, quando acionado pelo fluido que passa através de	
uma membrana, desenvolve um movimento rotativo que é	
transmitido, através de pequenas engrenagens, a um	
indicador. Observe a próxima figura.	

TRANSMISSÃO DE CALOR O conhecimento das formas pelas quais o calor se transmite é da mais alta importância, porque é através delas que os focos de incêndio se propagam ou iniciam. A transmissão do calor ocorre pelas seguintes formas: Condução O calor se propaga de um corpo para outro por contato direto ou através de um meio condutor do calor intermediário. Convecção O calor se propaga através de um meio circulante, líquido ou gasoso, a partir da fonte. Radiação O calor se propaga por meio de ondas caloríficas irradiadas por um corpo em combustão. Isolamento térmico Generalidades Dentro da campanha nacional de racionalização do uso de combustíveis industriais e instalação eficiente o isolamento térmico pode e deve assumir um papel preponderante. A redução das perdas de calor pelo isolamento é uma maneira prática de se conseguir substâncias, economias de energia utilizando-se somente materiais disponíveis no mercado. Além disso sua aplicação é muito fácil e pode ser feita, na maioria dos casos sem que haja interrupção nos processos de fabricação. É importante que os grandes benefícios financeiros advindos da prevenção de perdas de calor pelo isolamento térmico sejam reconhecidas e e entendidas, e que sejam tomadas todas as atitudes adequadas e necessárias para que esses benefícios sejam conseguidos.

	O is	olamento térmico é fornecido em diversas formas	
deve	endo p	preencher as necessidades da maioria das condições	
	-	nde deverão ser instalados. Este capítulo no entanto	
irá a	ter-se	ao isolamento térmico das redes e equipamentos a	
vapo	or a ág	gua quente.	
	Cor	nceituação, finalidade e materiais isolantes	
	A co	onceituação de isolação térmica, de acordo com as	
defii	niçõe	s aceitas, está fundamentalmente apoiada na	
aplic	abilid	ade e economicidade dos materiais envolvidos. O	
isola	ment	o térmico é composto por 3 elementos distintos:	
	1)	O isolante térmico.	
	2)	O sistema de fixação e sustentação mecânica.	
	3)	A proteção exterior.	
	Esta	abelecemos a seguir as definições e terminologias	
esse	enciais	s, que são as seguintes:	
	Isol	ação térmica	
	Situ	ação em que se encontra um sistema físico que foi	
subr	netido	ao processo de isolamento térmico.	
	Isol	amento térmico	
	Pro	cesso através do qual se obtém a isolação térmica	
de u	m sis	tema físico pela aplicação adequada de material	
isola	inte té	érmico.	
	Mat	erial isolante térmico	
	Mat	erial capaz de diminuir de modo satisfatório e	
conv	enien	te a transmissão do calor entre dois sistemas físicos.	
	Mat	erial de fixação	
	Mate	erial (ou materiais) usado para manter o isolante e o	
reve	stime	nto em suas posições convenientes.	
	Mat	erial de revestimento	
		erial (ou materiais) usado para proteger e dar bom	
aspe	ecto a	o isolante.	

Faz-	se necessário pois, que estes componentes sejam	
aplicáveis	entre si e com o sistema a isolar, para que sejam	
eficientes e	e econômicos.	
A fin	alidade precípua de isolação térmica é dificultar,	
reduzir e m	ninimizar a transferência de calor entre dois sistemas	
físicos que	se encontram em níveis diferentes de temperatura.	
Poré	m, para efeito de classificação normativa, de projeto	
e comerc	ial, considerar-se-á isolação térmica aplicável	
objetivand	o principalmente as seguintes finalidades:	
1)	Economia de energia.	
2)	Estabilidade operacional.	
3)	Conforto térmico.	
4)	Proteção do pessoal.	
5)	Evitar condensação.	
6)	Proteção de estruturas.	
Pode	e-se, num só processo de isolamento térmico, atingir	
mais de un	n desses objetivos, tendo-se em consideração que a	
análise da	fonte do calor e da sua forma de transmissão é que	
determina	a escolha dos materiais e a técnica de sua aplicação.	
A téo	cnica da isolação térmica consiste na utilização de	
materiais o	u de sistemas que imponham resistência às maneiras	
do calor se	propagar, reduzindo essa velocidade de transmissão	
e portanto	a quantidade transmitida por unidade de tempo.	
A es	scolha do material isolante ou do meio isolante,	
admitindo	os demais componentes como de importância	
secundária	a, deverá ser coerente com a transmissão de calor.	
São	muitos os materiais isolantes que podem ser utilizados	
com êxito r	no isolamento térmico, não sendo considerada básica	
esta circur	stância para a seleção do mesmo.	
Deve	em ser conhecidas todas as propriedades mecânicas	
e térmicas	do material, para projetar de forma adequada o	
sistema de	montagem, a espessura de isolamento necessária,	
a nelícula l	nidrófuga com a gual, deve ser protegido, etc	

	Entr	e outros podem ser citados como elementos de boa	
qual	idade e	comercialmente usados no isolamento térmico para calor:	
	1)	Fibra cerâmica.	
	2)	Lã de rocha.	
	3)	Lã de vidro.	
	4)	Lãs isolantes refratárias.	
	5)	Sílica diatomácea.	
	6)	Silicado de cálcio.	
	7)	Vermiculita expandida.	
	Nar	ealidade, o produto isolante ideal não existe. Analisando	
as c	aracte	rísiticas básicas de cada um e promovendo um estudo	
com	parativ	o entre todos eles, é justo reconhecer que a decisão	
sem	pre es	tará motivada pelo gosto particular do usuário.	
	•	, ,	
	Asp	rincipais perguntas normalmente formuladas pelos próprios	
oroi	•	e engenheiros ligados à indústria são: qual isolante a ser	
		ue espessura deve ser usada e quais as precauções	
	•	s quando da montagem do material selecionado.	
	, , , , , , , , , , , , , , , , , , ,	o quartas samonagom as matematos solo istrador	
	Esta	resposta não pode ser dada de forma genérica, sendo	
indi		ável o estudo em particular, de cada tipo de instalação	
		utada.	
u 00	1 0,000	diddd.	
	Δná	lise das características do isolante térmico	
	Alia	iise das caracteristicas do isolarite termico	
	Onr	ojeto correto de sistemas de aquecimento, ar condicionado	
o rot	•	•	
	•	ão, como de outras aplicações industriais, necessitam de	
		mento amplo sobre isolamento térmico e do comportamento	
		estruturas em questão. Este item tratará dos fundamentos	
e pro	prieda	des dos materiais de isolação térmica.	
	۸		
		ropriedades ideias que um material deve possuir para	
ser		erado um bom isolante térmico são as seguintes:	
	1)	Baixo coeficiente de condutividade térmica (k até	
		0,030 kcal/m°C h).	
	2)	Boa resistência mecânica.	
	3)	Baixa massa específica.	
	4)	Incombustibilidade ou auto-extingüibilidade.	
	5)	Estabilidade química e física.	
	6)	Inércia química.	

-	7)	Resistência específica ao ambiente da utilização.	
8	8)	Facilidade de aplicação.	
(9)	Resistência ao ataque de roedores, insetos e fungos.	
•	10)	Baixa higroscospicidade.	
	11)	Ausência de odor.	
	12)	Economicidade.	
I	Éóbν	rio que não se consegue um material que possua	
todas	estas	qualidades; procura-se sempre um que satisfaça	
ao má	ximo	a cada uma delas. Nisto reside a escolha de um	
bom is	olant	e térmico.	
I	Propi	riedades térmicas	
,	A capa	acidade de um material para retardar o fluxo de calor está	
expres	sa po	r sua condutividade térmica ou calor de condutância.	
-			
ı	Uma k	paixa condutividade térmica ou calor de condutância (ou	
alta res	sistivio	dade témica ou valor de resistência) por conseguinte,	
		m isolante térmico, exceção feita aos isolantes refletivos.	
		,	
(Os is	olantes refletivos, como o alumínio, dependem da	
		correspondente dos espaços de ar e da baixa	
		de térmica das suas superfícies para uma baixa	
		a térmica.	
ı	Para	ser realmente efetiva em retardar o fluxo de calor	
		o, a superfície refletiva deverá apresentar sua fase	
•	_	paço vazio.	
ao ai c	ou co _l	ouyo vazio.	
ı	Na tal	bela a seguir, apresentamos, extraídas da ASHRAE,	
		densadas referentes a valores e condutividade térmica,	
		a e resistência para isolantes térmicos, somente para	
		arativo. Estes valores tem sido apontados como típicos	
	•	·	
c นรนส	us em	pautas de engenharia.	
	Doro	valores mais presines e isolamentes consetti	
		valores mais precisos e isolamentos específicos,	
		consultado o fabricante. Outras propriedades térmicas	
		ser importantes são: calor específico, difusividade	
térmica	a, coe	ficiente de dilatação térmica e resistência.	

		Máxima				. co	NDUT	BILID	ADE T	PICA I	(a TEN	/PERA	TURA	MÉDLA	٩°F		
FORMA	(Composição)	Temp. de uso admitida*	Densidade típica (lb/pé3)	-100	-75	-50	-25	0	25	50	75	100	200	300	500	700	900
	Fibra mineral	1200	6-12									0,26	0,32	0,39	0,54		
Q ₁	(Rocha, escória ou vidro) Mantas com reforço metálico	1000	2.5-6		2					7		0,24	0,31	0,40	0,61		
e Feltro	Fibra mineral	350	0,65				0,25	0,26	0,27	0,28	0,30	0,32	0,42	0,58			
SE	mantas de vidro,		0,75				0,25	0,26	0,27	0,28	0,29	0,30	0,40	0,57			
Mantas	flexível, fibra orgânica fina		1,0				0,23	0,24	0,25	0,26	0,27	0,28	0,36	0,51			
	aglutinada		1,5				0,22	0,23	0,24	0,24	0,25	0,26	0,32	0,44			
			3,0				0,20	0,21	0,22	0,22	0,23	0,24	0,29	0,39			
	Manta, flexível, fibra têxtil orgânica	350	0,65				0,27	0,28	0,29	0,30	0,31	0,32	0,50	0,68			
			0,75	7			0,26	0,27	0,28	0,29	0,31	0,32	0,48	0,66			L
			1,0				0,24	0,25	0,25	0,27	0,29	0,31	0,45	0,60			
	aglutinada		1,5				0,22	0,23	0,24	0,25	0,27	0,29	0,39	0,51			
			3,0				0,20	0,21	0,22	0,23	0,24	0,25	0,32	0,41			
	Feltro semi-	400	3-8						0,24	0,25	0,26	0,27	0,35	0,44			
	rígido orgânico	850	3	0,16	0,17	0,18	0,19	0,20	0,21	0,22	0,23	0,24	0,35	0,55			
	aglutinado	1200	7,5					1						0,35	0,45	0,60	
5	Laminado fechado Sem matéria fibrosa de ligação Fibras vegetais e animais Feltro de cabelo ou feltro de cabelo mais junta	180	10				13	W.	0,26	0,28	0,29	0,30	e e	2			9

		Máxima				CON	DUTI	BILIDA	DE TÍ	PICA K	a TEN	IPERA	TURA	MÉDI	A°F		
FORMA	MATERIAL (Composição)	Temp de uso admitida*	Dendidad e típica (lb/pé3)	-100	-75	-50	-25	0	25	50	75	100	200	300	500	700	900
	Asbestos (Amianto) papel de amianto laminado Corrugado e papel de alumínio, laminado	700	30									0,40	0,45	0,50	0,60		
	4 dobras	300	11-3								0,74	0,57	0,68				
	6 dobras	300	15-17								0,49	0,51	0,59			3	
Blocos,	8 dobras	300	18-20								0,47	0,49	0,57			. 1	25 000
pranchas	Silicato de cálcio	1200	11-13									0,32	0,37	0,42	0,52	0,62	0,49
e isola- mentos	Vidro celular	800	9			0,32	0,33	0,35	0,36	0,40	0,42	0,48	0,48	0,55			
рага	Sílica diatomácea	1600	21-22			-									0,64	0,08	0,72
tubu-		1900	23-25												0,70	0,75	0,80
lações	Fibra mineral	400	3-10	0,16	0,17	0,18	0,19	0,20	0,22	0,24	0,25	0,26	0,33	0,40			
	(rocha, escória ou vidro)	350	3-4					0,20	0,21	0,22	0,23	0,24	0,29				
	Aglutinado orgânico, bloco isolamento de tubulações	500	3-10			1		0,20	0,22	0,24	0,25	0,26	0,33	0,40			
	Aglutinados	1000	10-15		19	V 4						0,33	0,38	0,45	0,55		
	inorgânicos - blocos	1800	15-24				11.					0,32	0,37	0,42	0,52	0,62	0,74
	Isolamento de tubulações	1000	10-15			e e te						0,33	0,38	0,45	0,55		
								2.7									

		Máxima				CONI	DUTTB	ILIDA	DE TÍ	PICA I	K a TE	MPER	ATUR	A MÉI	OIA °F		
FORMA	MATERIAL (Composição)	Temp de uso admitida*	Dendidad e típica (lb/pé3)	-100	-75	-50	-25	0	25	50	75	100	200	300	500	700	900
	Cortça (sem elemento coesor)	200	6,5-8					0,24	0,25	0,26	0,27	0,28					
Blocos.	Cortiça (sem elemento coesor) Isolamento de tubulações	200	7-10		ås c			0,25	0,26	0,27	0,28	0,29					
pranchas e isolamen-	Poliuretano rígido - Extrudado	170 *	2	0,17	0,18	0,19	0,21	0,22	0,23	0,25	0,26	N				1000	
tos para tubu-	- Moldado	170	1	0,18	0,20	0,21	0,23	0,24	0,25	0,27	0,28						
lações	Poliuretano ** R-11 Exp.	210	1,5-2,5	0,14	0,15	0,16	0,17	0,17	0,17	0,16	0,17	0,18	0,21				
	Borracha (espuma rígida)							1	0,20	0,21	0,22	0,23				28	8
	Fibras vegetais e animais (filtros de lã) (isolamento de tubulação)	180	20	e e					0,28	0,30	0,31	0,33			*	2	
Cimentos isolantes	Fibra mineral (rocha, escória ou vi-dro) c/ elem. coesor de argila coloidal	1800	24-30	1	e e e e e e e e e e e e e e e e e e e	5 V	W W	d g	27			0,49	0,55	0,61	0,73	0,85	

- (a) Valores representativos de materiais secos. Entende-se como valores de projeto de especificação. Valores por materiais de construção em uso normal.
- * Estas temperaturas são geralmente aceitas como máximas. Quando estas temperaturas aproximamse do valor máximo deverão ser observadas especificações ou recomendações do fabricante.
- ** Estes são valores para estoques de material descansado.

Fatores que afetam a condutividade térmica

A condutiviidade térmica é uma propriedade dos materiais homogêneos e materiais de construção tais como madeira, tijolo e pedra.

A maior parte dos materiais isolantes, exceção feita aos refletivos, são de natureza porosa consistindo de combinações de matéria sólida com pequenos vazios.

A condutividade térmica do isolante varia com a forma e estrutura física da isolação, com o ambiente e as condições de aplicação.

A forma e estrutura física variam com o material de base	
e com os processos de fabricação.	
As variações incluem: densidade, medida do espaço celular,	
diâmetro e disposição das fibras ou partículas, transparência à	
radiação térmica, quantidade e extensão dos materiais de ligação,	
e do tipo e pressão do gás no interior da isolação.	
As condições ambientais e de aplicação, condições que	
podem afetar a condutividade térmica incluem: temperatura, teor	
de umidade, orientação da isolação e direção do fluxo de calor.	
Os valores de condutividade térmica para isolantes são	
geralmente fornecidos para amostras de uma determinada	
densidade obtidos em forno seco, método ASTMC-177, a uma	
temperatura média especificada.	
tomporatara media espesificada.	
Propriedades mecânicas	
Alguns isolantes térmicos possuem suficiente resistência	
· · · · · · · · · · · · · · · · · · ·	
estrutural para serem usados como materiais de apoio de cargas.	
Electronic de la constant de la cons	
Eles podem, em determinadas ocasiões, ser usados em	
pisos projetados para suportes de carga.	
Para estas aplicações, uma ou mais das várias	
propriedades mecânicas de um isolante térmico incluindo	
resistência à compressão, cisalhamento, tensão, tração, impacto	
e flexão, podem ser realmente importantes.	
As propriedades mecânicas de um isolamento variam com a	
composição básica, densidade, diâmetro da fibra e orientação, tipo e	
quantidade de material fibroso que aumenta o poder de coesão (se	
resistir), e com a temperatura à qual é realizada a avaliação.	
Propriedade relativas à umidade	
A presença de água ou gelo no isolamento térmico pode	
diminuir ou destruir o valor isolante, pode causar deterioração	
da isolação, como danos estruturais por putrefação ou	
decomposição, corrosão, ou pela ação expansiva da água	
congelada.	

A umidade acumulada no interior de um isolamento térmico	
depende das temperaturas de operação e condições ambientais,	
e da efetividade das barreiras de vapor de água em relação a	
outras resistências de vapor no interior da estrutura composta.	
Alguns isolantes são higroscópicos e absorverão ou perderão	
umidade proporcionalmente à umidade relativa do ar em contato	
com o isolante.	
Isolantes fibrosos ou granulados permitem a transmissão	
de vapor de água para o lado frio da estrutura. Uma barreira de	
vapor efetiva, portanto, deverá ser usada quanto da utilização	
deste tipo de materiais, onde a transmissão de umidade é um	
fator a ser considerado.	
Determinados isolantes térmicos possuem uma estrutura	
celular fechada, sendo realitivamente impermeáveis à água e	
vapor de água.	
As várias propriedades que expressam a influência da	
umidade incluem: absorção (capilaridade); adsorção	
(higroscopicidade) e taxa de transmissão de vapor de água.	
Saúde e segurança	
As várias propriedades dos isolantes térmicos relativas à	
saúde e segurança incluem: incapacidade para suportar vermes	
e insetos; imunidade aos perigos de incêndio; imune às pessoas	
quanto as partículas que possam causar irritações da pele;	
imune quanto a vapores ou pó que possam afetar as pessoas;	
imunidade quanto à putrefação, odores e envelhecimento.	
Outras propriedades	
Outras propriedades que podem ser de importância	
dependendo de cada aplicação particular são as seguintes:	
densidade, elasticidade, resistência à sedimentação; facilidade	
de manuseio; uniformidade e elasticidade dimensional;	
resistência à mudança química; facilidade na fabricação,	
aplicação e acabamento; espessura e medidas fáceis de serem	
obtidas; absorção de ruídos e permeabilidade do ar.	

BIBLIOGRAFIA

- BUCCO, L.H., LIMA, A. R. Sistemas de Qualidade -Apostila do Curso Técnico em Processos Industriais. SENAI - CIC/CETSAM, 1999.
- 2. CHAVES, J. B. P., TEIXEIRA, M. A. Gerência da Qualidade na Indústria de Alimentos. Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, 1990.
- CNI-SENAI/DN. Guia para Elaboração do Plano APPCC- Frutas Hortaliças e Derivados. Série Qualidade e Segurança Alimentar, 1999.
- CNI-SENAI/DN. Guia para Elaboração do Plano APPCC- Laticínios e Sorvetes. Série Qualidade e Segurança Alimentar, 1999.
- CNI-SENAI/DN. Guia para Elaboração do Plano APPCC- Pescados e Derivados. Série Qualidade e Segurança Alimentar, 1999.
- **6.** MACINTYRE, Archibald Joseph. Bombas e Instalações de Bombeamento. Guanabara, 1987.