Body Measurement using a 2D Camera for Home Fitness

21900610 Soonho Lim

Supervisor: Prof. Youngkeun Kim

Introduction

Problem Statement:

- 3D body measurement systems are costly and impractical for home use.
- Objective:
 - Develop affordable and accessible alternative to traditional 3D systems.
- Goal:
 - Design and prototype a 2D-based human body measurement system.

Fig 1. Aimed System Feature

Proposed system

- Interact with the user with smart mirror
- 16 body measurement estimation with single 2D image
- Visualization of results

Conv_BoDiEs: Train Dataset & Evaluation

Fig 2. Sample Dataset

Test Data
9.3
8.8
9.2
5.8
•
•
•
5.537[mm]

Table 1. Test Data Result

Model and Dataset

Conv_BoDiEs predicts 16 body measurements. 50,000 *SMPL captured images are used for train and test.

Evaluation

The model achieved a 5.537[mm] MAE.

Hardware Design

Hardware designed like a mirror for "Home Fitness".

Fig 3. Smart Mirror & LCD Display

Hardware Specification: Height: 175cm Width: 54cm LCD panel: 7inch (600x1024) Camera: 1090P web cam Film: half-mirror 35

Fig 4. Inner Part & Overall Layout

- Red Box:
- LCD pannel with 3D printed holder
- Orangd Box: Barttery with 3D printed holder

GUI & System Flow

System Test

Fig 5. Test participant's silhouette

- 10 male
 - Distance between camera and subject: 190[cm]
 - **Overall space layout:**

Test participants:

width -3.1[m]length - 2.2[m]height -2.5[m]

Fig 6. Test layout

Mean Relative Error by Body Part (%) leg length

Result

Mean Absolute Error by Body Part

Mean Absolute Error[cm]

Mean Relative Error[%]

Result:

Overall MAE: 2.3196[cm]

arm span, bicep circumference and leg length has the worst result

Future Work

- Visualize in 3D features
- Develop accuracy of the model

Reference

[1] Škorvánková, Dana, Adam Riečický, and Martin Madaras. "Automatic estimation of anthropometric human body measurements." arXiv preprint arXiv:2112.11992 (2021).