

HOW TO REPRESENT GRAPHS

(Symmetric) Adjacency Matrix

	а	b	С	d	e
Hæl	po	1	0	1	0
b	1	0	1	1	1
С	0	1	0	1	1
d	1	1	1	0	0
е	0	1	1	0	0

- Space required? $n \times n = O(n^2)$
- Checking if an edge (u, v) exists? O(1)
- Finding all neighbors of a node u? O(n)

HOW TO REPRESENT GRAPHS

- Space required? O(n+m)
- Checking if an edge (u,v) exists? $O(\deg(u))$
- Finding all neighbors of a node u? $O(\deg(u))$

GRAPH INTERFACE

- Create a graph by specifying list of vertices and adding edges sequentially
 - O(n+m) for adjacency list representation
 - $O(n^2)$ for adjacency matsing present to Project Exam Help
- Visit all neighbors of a given node v https://tutorcs.com $O(\deg(v))$ for adjacency list representation
 - O(n) for adjacency matrix representations: cstutores
- Test if some pair (u, v) is adjacent (rarely used)
 - $O(\deg(v))$ for adjacency list representation
 - O(1) for adjacency matrix representation
- Other operations
 - Sort edges by weight, find edge of minimum weight in a set
 - can be built up from primitive operations above

DIRECTED GRAPHS

Edges are directed

This graph contains cycles

Thought of as ordered pairs

• $(a,b) \neq (b,a)$ Assignment Project Exam

Directed Acyclic Graph (DAG)

Does not have to be a tree

DIRECTED GRAPH FACTS

- Paths and cycles must respect edge directions.
- It's possible that vertex $oldsymbol{u}$ can reach $oldsymbol{v}$ but not vice versa.
- Define symmetric "can reach" signment Preject Exam Help v can reach u.
- *R* is an equivalence relation! https://tutorcs.com
- Equivalence classes of R are called strongly connected components (SCC) $\overline{\text{WeChat: cstutorcs}}$
- In DAGs, every vertex is in an SCC by itself.
- The interface for directed graphs is similar to the interface for undirected graphs.