LEAFDETECTAI: EVALUATING ML AND DL PARADIGMS FOR SUPERIOR LEAF DISEASE IDENTIFICATION

VIDEO PRESENTATION MARCH 2024

WHY IS EARLY DETECTION IN PLANT HEALTH CRUCIAL?

Early Detection Saves
Crops

Secures Global Food Supply

AI Transforms Detection

CHALLENGES IDENTIFIED IN LITERATURE REVIEW

- **Symptom Similarity**: Difficult to differentiate.
- Data Diversity: Requires broader datasets.
- Hardware Limits: Constrains DL model training.
- Data Quality: Affects detection accuracy.
- **Diverse Symptoms**: Challenges robust modeling.
- Preprocessing Hurdles: Impacts image analysis.
- Advanced Methods: Need for novel algorithms

TACKLING PLANT DISEASE DETECTION CHALLENGES

Problem Statement:

- Inadequate Traditional Methods: Slow and error-prone.
- Delayed Diagnoses: Leads to yield reduction.
- Economic & Food Security Risks: From inaccurate detection.

Solution:

- Leveraging AI: Introducing ML and DL methodologies.
- Enhanced Accuracy & Speed: For real-time disease identification.
- **Sustainable Farming**: Contributing to global food security.

DATASET AND DISEASE FOCUS

- **Dataset:** PlantVillage
- Dataset Link: https://github.com/spMohanty/PlantVillage-Dataset
- **Diverse Species**: 14 plants, comprehensive coverage.
- Multiple Diseases: 17 fungal, 4 bacterial, 2 mold, 2 viral, 1 disease caused by mite.
- Apple Leaf Diseases: Focused on Black Rot, Cedar Apple Rust, and Apple Scab diseases.
- Balanced Data: Diseased vs. Healthy apple leaves.

EVALUATING CUTTING-EDGE MODELS IN AGRICULTURE

Machine Learning Models:

Logistic Regression (LR) Linear
Discriminant
Analysis (LDA)

K-Nearest Neighbors (KNN)

Classification and Regression Trees (CART)

Random Forest (RF)

Gaussian Naive Bayes (NB) Support Vector Machine (SVM)

Deep Learning CNN Models:

MobileNetV2

NASNetMobile

REFINING DATA FOR PRECISION AGRICULTURE

Data Labelling and Encoding: Label encoding for ML/DL compatibility.

Dataset Split: 70% Training and 30% Testing for model rigor.

Cross-validation for ML/DL Models: Stratified K-fold for unbiased evaluation.

FEATURE TRANSFORMATION & NORMALIZATION IN ML

Utilize Resize Convert **Apply** Extract Normalize Apply Utilize Hu Normalize via Extract crucial Resize images Convert to 500x500 colour spaces: segmentation shape, Moments, MinMaxScaler for uniformity Haralick, for feature RGB to BGR, for feature texture, **HSV** emphasis colour colour equity features histograms

BOOSTING DL MODELS: AUGMENTATION & TRANSFER LEARNING

Augment data: rotations, shifts, flips

Enhance volume and variability

Reduce overfitting, improve generalization

Use MobileNetV2, NASNetMobile architectures

Adopt ImageNet pretrained models

Stratified K-Fold Cross Validation

END-TO-END FLOW FOR ML AND DL MODEL EVALUATION

FOR MODEL PERFORMANCE

Precision: Positive predictive value

Recall: Sensitivity to condition

F1-Score: Harmonic mean of precision, recall

Accuracy: Correct predictions overall

ROC Curve: Trade-off between true positive, and false positive rates

AUC: Area under ROC, measures discriminability

Confusion Matrix: Visualizes model performance

DESIGN & PERFORMANCE ANALYSIS OF LOGISTIC REGRESSION MODEL

Design Highlights:

- Initialized with scikit-learn **LogisticRegression** class, ensuring robustness and reproducibility
- random_state set for consistent optimization outcomes

- **High Precision**: 91% for diseased class
- Balanced metrics: Precision, Recall, F1-score
- Accuracy: Strong at 90% overall
- Recall: 89% for diseased, 91% for healthy
- **F1-Score**: 90% for both classes
- Refinement needed for False Positives/Negatives
- Promising reliable classifier for future improvement

DESIGN & PERFORMANCE ANALYSIS OF LINEAR DISCRIMINANT ANALYSIS MODEL

Design Highlights:

- Employs scikit-learn LinearDiscriminantAnalysis for reliability
- Harnesses LDA's statistical efficiency in distinguishing classes
- Utilizes default settings to leverage inherent model strengths

- **High Precision:** 93% for diseased class detection
- Superior Recall: 93% for healthy classification
- Good Accuracy: Overall, 89.79% performance
- Balanced F1-Score: 89% diseased, 90% healthy
- Recall for Diseased: 86%, indicates improvement area
- FP and FN: 33 and 16 cases, need refinement
- LDA proves useful, requires further tuning

DESIGN & PERFORMANCE ANALYSIS OF K-NEAREST NEIGHBORS MODEL

Design Highlights:

- Implements K-Nearest Neighbors via scikit-learn KNeighborsClassifier
- Default settings used, including 5 neighbors and Euclidean distance

- **High Precision:** 92% for diseased leaves
- Strong Recall: 90% diseased, 93% healthy
- Impressive Accuracy: Overall, 91.46%
- F1-Score: 91% diseased, 92% healthy
- Low False Positives: Only 23 cases
- Few False Negatives: 18 missed instances
- KNN is reliable but needs further tuning

DESIGN & PERFORMANCE ANALYSIS OF CLASSIFICATION AND REGRESSION TREE MODEL

Design Highlights:

- Utilizes scikit-learn DecisionTreeClassifier for the CART model
- random_state set for consistent and reproducible results
- Deterministic behavior through controlled randomness in feature selection

- Balanced Classification: Precision at 90%
- **High Recall for Diseased:** 92% effectiveness
- Notable Accuracy: Overall, at 90.62%
- Equitable F1-Score: 91% for both classes
- Low Misclassification: 20 False Positives
- Reduced False Negatives: Only 25 cases
- Effective yet requires further optimization

DESIGN AND PERFORMANCE ANALYSIS OF RANDOM FOREST MODEL

Design:

- Adopts RF's ensemble learning for complex pattern recognition
- Utilizes GridSearchCV for optimal hyperparameter tuning

- **High Precision/Recall**: 95% & 96% respectively
- Exceptional Accuracy: Overall, at 95.21%
- **F1-Score**: Robust at 95% for both classes
- Very Low Misclassifications: FP=10, FN=13
- Reliable Class Discrimination: High consistency
- **RF Complexity**: Consider computational needs
- Interpretability: Less transparent decision process

DESIGN AND PERFORMANCE ANALYSIS OF GAUSSIAN NAÏVE BAYES MODEL

Design:

- Adopts scikit-learn GaussianNB for its simplicity and efficiency
- Default parameterization leverages data-driven parameter estimation
- The probabilistic approach suits biological data's inherent variability

- Strong Detection: High true positive rate
- **Effective Specificity:** Solid true negative count
- **Notable Accuracy:** 85.83% overall performance
- False Positives: Number at 62, indicates over-diagnosis
- **Precision/Recall Gap:** High precision, lower recall
- **F1-Score**: 84% diseased, 87% healthy
- Naive Bayes: Powerful, yet needs refinement

DESIGN AND PERFORMANCE ANALYSIS OF SUPPORT VECTOR MACHINE MODEL

Design:

- Employs scikit-learn SVC class, tailored for classification
- Probability estimation enabled for prediction confidence
- random_state ensures reproducible and consistent training

- **Precision**: 91% diseased, 89% healthy
- True Positives: 220, reliable disease detection
- Accuracy: Solid at 90.21%
- True Negatives: 213, accurate healthy classification
- Manageable False Positives/Negatives: 27/20
- **F1-Score**: Equally strong at 90%
- SVM: Robust yet requires careful tuning

COMPARATIVE ANALYSIS OF ML MODELS FOR APPLE LEAF DISEASE DETECTION

		Precision	Recall	
Model	Accuracy	(Diseased)	(Diseased)	Key Points
LR	90.00%	0.91	0.89	Reliable in positive identification, slight recall disparity
LDA	89.79%	0.93	0.86	High precision, improvement needed in diseased recall
KNN	91.46%	0.92	0.90	Effective identification with low false positives
CART	90.62%	0.90	0.92	Balanced classification, minor misclassification errors
RF	95.21%	0.95	0.96	Superior accuracy, excellent class differentiation
NB	85.83%	0.97	0.74	High true positive rate, high false positive rate
SVM	90.21%	0.91	0.89	Balanced classification, scope for misclassification reduction

MOBILENETV2 ARCHITECTURE FOR DISEASE DETECTION

- Built on efficient MobileNetV2 architecture
- Non-trainable base, fine-tuned for disease detection
- Global Average Pooling, Dense, and Dropout layers
- Optimized with Adam, EarlyStopping, ReduceLROnPlateau
- High validation accuracy, precision, recall
- Evaluated using precision-recall and ROC-AUC curves
- Ideal for real-time, resource-constrained environments

NASNETMOBILE ARCHITECTURE IN DISEASE DETECTION

- Utilizes advanced NASNetMobile architecture
- Integrates Global Pooling, Dense, Dropout layers
- Tailored and optimized for precise disease identification
- Employs Adam optimizer with adaptive learning
- Exhibits high validation accuracy and metrics
- Analyzed through precision-recall, ROC-AUC curves
- Suitable for real-time analysis in diverse conditions

COMPARATIVE PERFORMANCE OF DL MODELS FOR APPLE LEAF DISEASE DETECTION

Feature	NASNetMobile	MobileNetV2	Remarks
Design	Advanced CNN	Advanced CNN	Both models use sophisticated CNN designs for high-dimensional
			data processing.
Accuracy	Overall accuracy ranges from 92% to 94%	Often nearing or achieving 98%	MobileNetV2 demonstrates superior accuracy, making it more
			reliable in distinguishing healthy from diseased plants.
Precision	Up to 0.96	Consistently >= 0.98	MobileNetV2 shows higher precision, indicating fewer false
(Healthy)			positives in healthy plant detection.
Precision	Up to 0.92	Consistently >= 0.98	MobileNetV2's precision for diseased plants suggests high
(Diseased)			reliability in disease detection.
Recall	Up to 0.91	Consistently >= 0.98	MobileNetV2 has a higher recall for healthy plants, ensuring fewer
(Healthy)			false negatives.
Recall	Up to 0.96	Consistently >= 0.98	MobileNetV2 demonstrates higher recall for diseased plants,
(Diseased)			crucial for early disease detection.
Diagnostic	Confusion matrices, ROC-AUC, Precision-	Confusion matrices, ROC-AUC, Precision-	Both models utilize comprehensive diagnostic tools to assess
Tools	Recall curves	Recall curves	performance.
Preferred		MobileNetV2	MobileNetV2 is preferred for its consistently superior
Model			performance across key metrics.

BEST MODEL FOR APPLE LEAF DISEASE DETECTION

- **RF**: Top ML model, 95.21% accuracy
- MobileNetV2: Best DL model, ~98% metrics
- Precision & Recall: DL model surpasses ML
- RF vs. MobileNetV2: DL offers slight edge
- Deep architecture aids complex feature extraction
- MobileNetV2 balances efficiency, performance
- MobileNetV2 recommended for practical use

ADVANCING APPLE LEAF DISEASE DETECTION: LIMITATIONS AND FUTURE DIRECTIONS

Expand	Expand dataset diversity for model robustness		
Invest in Invest in high-quality data annotation			
Optimize	Optimize RF model through hyperparameter tuning		
Develop	Develop hybrid ML and DL models		
Improve	Improve computational efficiency for DL		
Pilot	Pilot real-world deployment and user-centric design		
Encourage	Encourage continuous learning and open-source collaboration		

