Algotrading

Aula 04

Raul Ikeda 2º semestre de 2025

Insper

Esta Aula

• Simulação de Estratégia (Aldridge, I. Cap 4)

Relembrando nosso arcabouço

Aonde queremos chegar?

Requisitos

- Dados
- Regras de Alocação/Desalocação
- Ambiente de Simulação
- Avaliação de Desempenho

Dados (Aula Retrasada)

- Preços Agregados
 - Historical (daily, weekly, monthly, etc)
 - Intraday (1 minute, 5 minutes, 1 hour, etc)
- Raw trading data
 - TRADE (todos os negócios)
 - LOB (limit order book)
- Ainda:
 - Features extraction
 - Dados fundamentalistas
 - Reports/Eventos/Notícias
 - Dados não estruturados diversos
 - etc

Regras de Alocação/Desalocação

- AKA modelo/estratégia (direcional, arbitragem, carteira, etc)
- Tipos:
 - Modelagem Matemática/Machine Learning
 - o Baseado em regras
 - Feature picking
 - o NLP/LLM
 - etc

Ambiente de simulação

- Match Engine (onde as ordens fazem match)
- Considerar os custos:
 - ∘ Operacionais/Impostos (TCA)
 - ∘ Spread de Alocação (*slippage*)
 - o Carrego e margem

Avaliação de Desempenho

- Estipular uma estratégia de benchmark!
 - Testar a hipótese da diferença entre a estratégia e o benchmark
- Avaliação de Desempenho:
 - Profitability Metrics
 - Risk Metrics
 - Performance Metrics
 - Trading & Execution Quality
 - Robustness Frameworks

Benchmark

Ideias de Benchmark:

- Buy & Hold: sempre comprado (long). Significa como seria se comprasse e não agisse mais.
- Risk-free: deixa o dinheiro disponível em caixa rendendo algum ativo seguro (treasury, CDI, etc).
- Naive Strategy: alguma estratégia muito simples, por exemplo: se hoje subiu, compra, senão vende. Precisa considerar os custos.
- etc

Profitability Metrics - PV/PL

PV (Portfolio Value) ou PL (patrimônio líquido) é a soma de todos instrumentos no portfolio marcados a mercado (MTM), ou seja, no preço atual.

Um detalhe importante: dinheiro em caixa (ou dinheiro não utilizado mas no saldo da conta) também é contabilizado como patrimônio líquido.

$$PV_t = \sum_i q_t^i * p_t^i + K_t$$

Onde:

- q_i : quantidade no instante t do instrumento i em carteira
- p_i : preço no instante t do instrumento i
- *K*: dinheiro em caixa no instante t

NAV (Net Asset Value): equivalente em inglês, muito usado em papers e relatórios de fundos. **AUM (Assets Under Management)** costuma designar o total de recursos sob gestão de um fundo/gestora (pode incluir vários portfólios).

Profitability Metrics - PnL

- PnL (Profit and Loss):
 - o resultado em \$ apurado em um determinado período
 - o normalmente diário via MTM (marcação a mercado)
 - o pode-se calcular também o PnL Acumulado.

PnL diário/realtime:

$$Pnl_t = PV_t - PV_{t-1}$$

PnL acumulado:

$$Pnl_t^{acc} = PV_t - PV_0$$

Profitability Metrics - Return

Return (retorno) é o próprio resultado, mas em variação percentual. Também é normalmente calculado de forma diária (em relação ao dia anterior) ou acumulada (em releação ao início do período)

$$ret_t = Pnl_t/PV_{t-1}$$

Retorno acumulado:

$$ret_t^{acc} = Pnl_t^{acc}/PV_0$$

Profitability Metrics - log-return

Pode também calcular o log-retorno, conhecido como retorno contínuo:

$$ret_t^{log} = \ln \left(PV_t / PV_{t-1}
ight)$$

Vantagens:

- Aditividade no tempo
- Simetria e estabilidade matemática
- Compatibilidade com modelos contínuos no tempo

Desvantagens:

- Mais contraintuitivo que o discreto
- Possui distorção para valores elevados

Profitability Metrics - CAGR

CAGR (Compound Annual Growth Rate): retorno médio anualizado da estratégia. É muito útil para comparar com benchmarks

$$CAGR = (K_t/K_0)^{dt/d} - 1$$

Onde:

- K_t : dinheiro em caixa no instante t
- K_0 : dinheiro em caixa no início do período
- *d*: número de dias (no Brasil usa-se dias úteis)
- dt: número de dias base em 1 ano (Brasil: 252, EUA: 360)

Profitability Metrics - Number of Trades

Número de trades (NT) é a quantidade de **posições abertas e encerradas** em um determinado período.

- Um **novo trade** inicia-se quando a posição em um instrumento passa de **0 para não-0**.
- Alterações de quantidade (aumento ou redução de posição) **não contam** como novos trades.
- Um **trade se encerra** apenas quando a posição retorna a **zero**.

O trade se encerra apenas quando a quantidade é zerada.

$$NT = \sum_i \; \mid \{ t \mid q^i_{t-1} = 0 \; \; \wedge \; \; q^i_t
eq 0 \} \mid \; \;$$

NT não é a quantidade de ordens enviadas e nem a quantidade de preenchimento de ordens. Significa um ciclo completo de alocação e desalocação.

Profitability Metrics - Accuracy

Accuracy (acurácia), também conhecida com Hitting Ratio, é a taxa de acerto do modelo, ou seja, a quantidade de trades bem sucedidos (lucrativos) em relação ao total de trades.

$$HR_t = NT_t^+/NT_t$$

Onde NT^+ é o número de trades bem sucedidos.

Essa métrica também é conhecida como win rate.

Profitability Metrics - Average Return

Average Return per Trade é o retorno médio por trade realizado. É útil para avaliar a eficiência de cada operação individual.

$$AvgRet = rac{1}{NT} \sum_{i=1}^{NT} ret_i$$

Onde ret_i é o retorno do trade i e NT é o número total de trades.

Variações:

- Average Winning Return: retorno médio apenas dos trades vencedores
- Average Losing Return: retorno médio apenas dos trades perdedores

$$AvgWin = rac{1}{NT^+} \sum_{i \in Wins} ret_i$$

$$AvgLoss = rac{1}{NT^-} \sum_{i \in Losses} ret_i$$

Profitability Metrics - Win/Loss Ratio

Win/Loss Ratio compara o retorno médio dos trades vencedores com o retorno médio dos trades perdedores.

$$WL = rac{AvgWin}{|AvgLoss|}$$

Interpretação:

- WL > 1: trades vencedores rendem mais (em média) que trades perdedores perdem
- **WL** < **1**: trades perdedores perdem mais que trades vencedores ganham
- **WL** = **1**: ganhos e perdas médias são equilibrados

Relaciona-se com a **Accuracy**: estratégias com baixa acurácia podem ser lucrativas se WL for alto (poucos trades vencedores, mas muito lucrativos).

Risk Metrics - Max Drawdown

Maximum Drawdown (MDD) é a maior perda percentual observada entre um pico e o vale subsequente durante o período analisado.

$$MDD = \max_{t \in [0,T]} \left(rac{Peak_t - PV_t}{Peak_t}
ight)$$

Onde $Peak_t = \max_{s \leq t} PV_s$ é o maior valor do portfolio até o momento t.

Características:

- Sempre negativo ou zero
- Mede o **pior cenário** de perda consecutiva
- Importante para dimensionamento de risco e gestão de capital
- Indicador de **stress test** da estratégia

Drawdown Duration: tempo necessário para recuperar do drawdown máximo.

Risk Metrics - Average Recovery

Average Recovery Time é o tempo médio necessário para a estratégia se recuperar de drawdowns e atingir novos máximos históricos.

$$AvgRecovery = rac{1}{N_{peaks}} \sum_{i=1}^{N_{peaks}} (t_{peak_i} - t_{valley_i})$$

Onde:

- t_{peak_i} : momento do i-ésimo novo máximo histórico
- ullet t_{valley_i} : momento do vale que antecede este pico
- N_{peaks} : número de novos máximos históricos

Interpretação:

- **Menor tempo**: estratégia se recupera rapidamente de perdas
- Maior tempo: estratégia demora para voltar aos patamares anteriores
- Relaciona-se com a **resiliência** e **consistência** da estratégia

Risk Metrics - Volatility

Volatilidade mede a dispersão dos retornos da estratégia, indicando o grau de incerteza/risco associado.

Volatilidade dos retornos (desvio padrão):

$$\sigma = \sqrt{rac{1}{n-1} \sum_{i=1}^n (ret_i - \overline{ret})^2}$$

Onde \overline{ret} é a média dos retornos e n é o número de observações.

Volatilidade Anualizada:

$$\sigma_{anual} = \sigma_{dilphario} imes \sqrt{252}$$

Tipos relacionados:

- **Upside/Downside Volatility**: volatilidade apenas dos retornos positivos/negativos
- Rolling Volatility: volatilidade calculada em janelas móveis

Performance Metrics - Sharpe Ratio

Sharpe Ratio mede o retorno em excesso por unidade de risco (volatilidade). É uma das métricas mais utilizadas para avaliar estratégias de investimento.

$$Sharpe = rac{\overline{ret} - rf}{\sigma}$$

Onde:

- \overline{ret} : retorno médio da estratégia
- *rf*: taxa livre de risco (CDI, Selic, etc)
- σ : volatilidade dos retornos

Interpretação:

- **Sharpe** > **1**: considerado bom
- **Sharpe** > **2**: considerado muito bom
- **Sharpe** < **0**: estratégia perde para o ativo livre de risco

Limitation: assume distribuição normal dos retornos e penaliza igualmente volatilidade positiva e negativa.

Performance Metrics - Sortino Ratio

Sortino Ratio é uma variação do Sharpe Ratio que considera apenas a **volatilidade dos retornos negativos** (downside risk), sendo mais apropriada para estratégias com retornos assimétricos.

$$Sortino = rac{\overline{ret} - rf}{\sigma_{downside}}$$

Onde $\sigma_{downside}$ é o desvio padrão apenas dos retornos abaixo da taxa livre de risco:

$$\sigma_{downside} = \sqrt{rac{1}{n} \sum_{ret_i < rf} (ret_i - rf)^2}$$

Vantagens sobre Sharpe:

- **Não penaliza** volatilidade positiva (upside)
- Mais adequada para estratégias com retornos assimétricos
- Foca no **risco de perda** real

Performance Metrics - Calmar Ratio

Calmar Ratio relaciona o retorno anualizado com o máximo drawdown, oferecendo uma perspectiva de **retorno por unidade de pior cenário**.

$$Calmar = rac{CAGR}{|MDD|}$$

Onde:

- *CAGR*: Compound Annual Growth Rate (retorno anualizado)
- *MDD*: Maximum Drawdown (máximo drawdown)

Características:

- Foca no **pior cenário** de perda ao invés da volatilidade geral
- Especialmente útil para estratégias com **tail risk** (risco de cauda)
- **Calmar** > **1**: significa que o retorno anual supera o pior drawdown
- Complementa Sharpe e Sortino ao considerar **perdas máximas consecutivas**

Trading & Execution Quality

Custos:

- **Custo por ordem enviada:** taxa de corretora por envio de ordem (mesmo que não seja executada)
- **Custo por execução (fill):** taxa por cada ordem parcialmente ou totalmente executada
- Custo de manutenção: custos recorrentes de manter posições (ex.: aluguel de ações, financiamento, funding em futuros)
- **Impostos:** tributação sobre ganhos ou movimentações (ex.: IR, IOF, etc)
- Margem: capital imobilizado para garantir posições alavancadas

Trading & Execution Quality

Slippage

- Diferença entre o **preço teórico esperado** e o **preço efetivamente executado**
- Pode vir de:
 - **Spread bid-ask:** custo mínimo de transacionar
 - **Market impact:** piora do preço devido ao próprio tamanho da ordem
- Mede quão eficiente é a execução no mercado

Trading & Execution Quality

Capacity

- Refere-se ao tamanho máximo de capital que pode ser alocado sem comprometer a estratégia
- Limitações típicas:
 - **Liquidez:** maior volume, mais impacto nos preços
 - o Market depth: falta de ordens suficientes no book para absorver execução
- Estratégias podem ser lucrativa em pequena escala, mas inviável em grande escala

Trading & Execution Quality - Capacity?

I found a way to make 60% return on investment

Just here to brag

I found a cheat code in savings accounts.

I put 0.2 USD in a 5% savings account. That's 1 cent a year, just a fraction of a cent each month. But the system has to pay every month, and it can't handle fractions, so it gifts you a whole cent. Every month.

I put in 20 cents and I make 12 cents a year. That's 60% annually.

While other investors struggle with a 4% savings rate or a 10% return from an index fund, I get 60%.

So I don't save. I multiply. One account, 0.2 USD. Then another. Then another. A hundred tiny accounts, each drip-feeding me a cent a month.

Thanks to the banks' broken math, they are a tool for me to get to the tippity top.

I probably made 20 USD over the last 3 years in passive income.

OOS – Out of Sample (Walk-Forward Analysis)

- Separação de dados em **in-sample** (treino/otimização) e **out-of-sample** (validação).
- Reotimização periódica e validação em blocos fora da amostra.
- Evita overfitting e verifica consistência no tempo.

Monte Carlo Simulation

- Testa a **robustez estatística** da estratégia.
- Técnicas comuns:
 - Randomização da ordem das operações (shuffling de trades)
 - o Bootstrap de retornos
 - Simulação de preços/volatilidade
- Avalia dispersão de métricas como CAGR, Sharpe e Max Drawdown sob cenários alternativos.

Testes de Hipóteses

- Verificam se o desempenho é **estatisticamente significativo** frente a um benchmark.
- Exemplo: **Diebold–Mariano (DM test)** para comparar acurácia de previsões entre estratégias.
- Outros: t-test, p-values, bootstrap de significância.

Análise de Regimes de Mercado (Regimes Stability)

- Testa a estratégia em **diferentes regimes**:
 - Bull markets (alta)
 - Bear markets (queda)
 - Sideways/flat (lateralidade)
- Permite avaliar se a estratégia é **dependente de cenário** ou resiliente a mudanças de regime.

Material

Jupyter Notebook no Blackboard

Não se esqueça de fazer o *download* dos arquivos de dados também

Próxima aula

Continuação...