Klassifikation der Schwierigkeitsgrade von Sudokus mit Methoden des maschinellen Lernens Michael Bräunlein

mbraeunlein@gmail.com

Einleitung

- ► Sudokus finden sich überall
- Unterschiedliche Bewertungsskalen
- ► Unterschiedliche Einteilungsverfahren
- Bisher kein Verfahren zur Einteilung mit maschinellem Lernen
- ► Sudokus sind zur Bearbeitung mit Computern prädestiniert

Die Regeln

- ► Sudoku hat nur eine Regel
- In jeder Zeile, jeder Spalte und jedem Block muss jede Ziffer von 1 bis 9 genau einmal vorkommen
- Jedes Sudoku hat eine eindeutige Lösung
- Das Sudoku gilt dann als gelöst, wenn alle Felder ausgefüllt sind

Die Begriffe

Lösungmethoden

- Jeder Spieler benutzt Lösungsmethoden
- ► Lösungsmethoden sagen viel über den Schwierigkeitsgrad aus
- Kandidatenlisten erleichtern das Finden von Zahlenkonstellationen, die Voraussetzung für bestimmte Lösungsmethoden sind
- ► Es gibt viele verschiedene Lösungsmethoden, grob werden zwei Kategorien unterschieden

Full House

2 5 7 9	2 5 9	7 8	1	4	7	6	3	8 9
1 2 3	1 2	1 2	5	2 3	6	4	7	1 2 8 9
6	1 2	1 2 4 7 8	3	2 3 7	9	1 2	2	5
2 9	3	2	7	1	5	8	6	4
1 2	1 2	6	4	8	3	9	5	2 7
4	8	5	9	6	2	23	1	2 3
8	1 2 4 5	1 2	6	3 7 9	7	1 2 3 5 7	2 4 9	1 2 3 7 9
1 5	7	3	2	9	8	1 5	4 9	1 6 9
1 2	6	9	3	5	4	1 2 3	2	1 2 3

Pointing Pair / Triple

4	5	6		7			3			1			8			6	4		9		5	6 9		2	
	1			9			8			2		4 7		6	ŗ	5	4 7			7		6		3	
4	5	6	4	5	6		2		4		6	4 7		6	3	3	4 7	8	9	7	5 8	6		1	
4	5 8	6		3		4	5	6		8	6			6	,	7		1			2		4	5 8	9
	2 5 8			2 5 8			7			3			1		4	1		6	•		5 8	9		5 8	9
4	2	6		1			9			5			2	6	2	6	4 7	8			3		4	8	
4	2 5 8	6 9	4	2 5 8	6		1		4	8	6	4	5	6	2			3	}	7	8	6 9	7	8	6
	3			5	6		5	6		7			5	6	•			2			4			8	6
4	2	6	4	2	6	4		6	4	8	6		3		2	6		5	;		1		7	8	6

Two-String-Kite

3 4	2	6	7	1 5	8	1 4	9	1 3
1	9	5 8	4	2 5	3	2 7 8	2 5 6	2 5 6
3 4 8	3 5 8	7	1 5 6	9	2 6	1 2 4 8	1 2 4 5	2 3 5
3 6	1 3	9	2 6	8	5	1 2	1 2	4
5	4	2	3	7	1	6	8	9
7	1 6 8	1 8	9	4	2 6	3	1 2 5	1 2 5
9	7	3	1 2	6	4	5	1 2	8
2 6	1 5	1 5	8	3	9	4	4 6	7
2 6 8	6	4	1 2 5	1 2 5	7	9	3	1 2 6

XY-Wing

5	1 9		4	7	6	8	2	3
7 8	6	2	3 5 9	5 8 9	3	7 9	1	4
7 8	4	3	2 9	1	2 8 9	5	6	7 9
2	3	6	3 6 7 9	6 9	5	4	8	1
1	5	4 6	2 3 6 7	2 4 6 8	2 3 4 7 8	3 6 7	9	7
4 6	3	8	1	4 6 9	3 4 7 9	3 6 7	5	2
6 9	7	5	2 6 9	2 4 6 9	2 4 9	1	3	8
3	8	1	5 6 7 9	5 6 9	7 9	2	4	6
4 6 9	2	4 6	8	3	1	6	7	5

Was sind Featurevectoren

- Merkmalsvektor
- n-dimensionaler Vektor
- ▶ Repräsentation eines Objekts
- ► Ein Eintrag steht für eine Eigenschaft des beschriebenen Sudokus
- ► Featurevektoren sind die Eingabe des Klassifikationsalgorithmus

Wie werden Featurevectoren erzeugt

- Am Anfang bekannte Zahlen
- ► Einträge der Kandidatenlisten
- ► Hinzugefügte Zahlen
- ► Entfernte Zahlen
- Unterschiedliche Lösungswege für Sudokus möglich
- Einfachster Lösungsweg gesucht

Entkopplung von konkreten Zahlen

- ► Fast gleiche Sudokus mit vertauschten Zahlen
- Gleicher Schwierigkeitsgrad
- Unterschiedliche Featurevectoren bei gleichem Lösungsweg

Entkopplung von konkreten Zahlen

- ► Fast gleiche Sudokus mit vertauschten Zahlen
- Gleicher Schwierigkeitsgrad
- Unterschiedliche Featurevectoren bei gleichem Lösungsweg
- ► Lösung?

Entkopplung von konkreten Zahlen

- ► Fast gleiche Sudokus mit vertauschten Zahlen
- ► Gleicher Schwierigkeitsgrad
- Unterschiedliche Featurevectoren bei gleichem Lösungsweg
- Sortierung der Features nach Häufigkeit
- Kein relevanter Informationsverlust
- ▶ Gleicher Featurevector auch bei vertauschten Ziffern

Entkopplung von konkreten Zahlen (Beispiel)

- Beispiel des Featurevectors einer Methode (1, 0, 4, 15, 3, 0, 9, 2, 0)^T
- ► Vertauchte Ziffern 7 und 8 (1, 0, 4, 15, 3, 0, 2, 9, 0)^T
- ► Nach der Sortierung nach der Häufigkeit (15, 9, 4, 3, 2, 1, 0, 0, 0)^T

Software

- ► Fremdsoftware für Klassifizierer und Lösungsmethoden
- ▶ Für den Klassifizierer: Weka¹
- ► Für die Lösungsmethoden: Hodoku²
- Beide Projekte stehen unter der GPLv3 Lizenz
- Eigene Software in Java
- Extrahierung der Featurevectoren und Verbindung der Projekte

¹http://www.cs.waikato.ac.nz/ml/weka/

²http://hodoku.sourceforge.net/de/index.php