EE605 Simulation Laboratory

Laboratory Report Submitted in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Technology

in

Electrical and Electronic Engineering

Submitted by

Raj Naik Dhulapkar (20EEE1023)

Under the Supervision of Dr. C.Vyjayanthi Associate Professor

Department of Electrical and Electronics Engineering
National Institute of Technology Goa

January-May, 2023

National Institute of Technology Goa

Farmagudi, Ponda, Goa 403401

Department of Electrical and Electronics Engineering

CERTIFICATE

This is to certify that Mr. RAJ P. NAIK DHULAPKAR bearing Roll. No. 20EEE1023, has submitted the Laboratory Report as a part of the Laboratory Course, "Basic Electrical Science Lab (EE152)" in the academic year 2020-2021 at the Institution of National Institute of Technology Goa.

(Course Instructor)

Department of EEE NIT Goa

MARKSHEET

Sl.	Name of the Experiment	Page	Date of	Date of	Marks
No	Tvanic of the Experiment	No.	Experiment	submission	Warks
1	Verification of ohm's Law	2 - 3	4-05-2021	05-05-2021	
2	Verification of Kirchhoff's Law	2 - 3	4-05-2021	05-05-2021	
3	Verification of Network Theorems	2 - 3	4-05-2021	05-05-2021	
4	DC Transient Analaysis	23-28	20-06-2021	25-07-2021	
5	Power Calculation in AC Circuit	29-32	20-6-2021	25-06-2021	
6	Study of Diode Rectifier Circuits	33-36	12-07-2021	25-07-2021	
7	Clamping and Voltage Doubler Circuit with Diodes	37-39	12-07-2021	25-06-2021	
8	Digital Combinational Logic gates	40-45	12-07-2021	25-06-2021	

Contents

1	Hali	Wave Rectifier	1
	1.1	Aim	1
	1.2	Software Used	1
	1.3	Theory	1
	1.4	Theoretical Calculations	1
	1.5	Single Phase Half Wave Uncontrolled Rectifier with R load	2
		1.5.1 Circuit used for simulation	2
		1.5.2 Components Required	2
		1.5.3 Observations	2
		1.5.4 Resultant Waveforms	3
	1.6	Single Phase Half Wave Uncontrolled Rectifier with RL load	4
		1.6.1 Circuit used for simulation	4
		1.6.2 Components Required	4
		1.6.3 Observations	4
		1.6.4 Resultant Waveforms	5
	1.7	Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
		1.7.1 Circuit used for simulation	6
		1.7.2 Components Required	6
		1.7.3 Observations	6
		1.7.4 Resultant Waveforms	7
	1.8	Single Phase Half Wave Uncontrolled Rectifier with RLE load	8
		1.8.1 Circuit used for simulation	8
		1.8.2 Components Required	8
		1.8.3 Observations	8
		1.8.4 Resultant Waveforms	9
	1.9	Single Phase Half Wave Controlled Rectifier with R load	10
		1.9.1 Circuit used for simulation	10
		1.9.2 Components Required	10
		1.9.3 Observations	10
		1.9.4 Resultant Waveforms	11
	1.10	Single Phase Half Wave Controlled Rectifier with RL load	12
			12
		1.10.2 Components Required	12
		1.10.3 Observations	12
		1.10.4 Resultant Waveforms	13
	1.11	Single Phase Half Wave Controlled Rectifier with RLE load	14
		1.11.1 Circuit used for simulation	14
		1.11.2 Components Required	14
		1.11.3 Observations	14
			15
	1.12		16
			16
			16
	1 13		16

List of Figures

1.1	Circuit used for simulation	2
1.2	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with R load waveforms	3
1.3	Circuit used for simulation	4
1.4	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load	5
1.5	Circuit used for simulation	6
1.6	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling	
	Diode	7
1.7	Circuit used for simulation	8
1.8	Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RLE load waveforms \dots .	9
1.9	Circuit used for simulation	10
1.10	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with R load	11
1.11	Circuit used for simulation	12
1.12	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RL load	13
1.13	Circuit used for simulation	14
1.14	Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RLE load	15

List of Tables

1.1	Components for Single Phase Half Wave Uncontrolled Rectifier with R load	2
1.2	Observations for Single Phase Half Wave Uncontrolled Rectifier with R load	2
1.3	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load	4
1.4	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load	4
1.5	Components for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
1.6	Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode	6
1.7	Components for Single Phase Half Wave Uncontrolled Rectifier with RLE load load	8
1.8	Observations for Single Phase Half Wave Uncontrolled Rectifier with R load	8
1.9	Components for Single Phase Half Wave Controlled Rectifier with R load load $\ldots \ldots \ldots$	10
1.10	Observations for Single Phase Half Wave Controlled Rectifier with R load $\ldots \ldots \ldots \ldots$	10
1.11	Components for Single Phase Half Wave Controlled Rectifier with RL load load	12
1.12	Observations for Single Phase Half Wave Controlled Rectifier with RL load	12
1.13	Components for Single Phase Half Wave Controlled Rectifier with RLE load load	14
1.14	Observations for Single Phase Half Wave Controlled Rectifier with RLE load	14
1.15	Observations for Single Phase Half Wave Controlled Rectifier with RLE load	16

Experiment 1

Half Wave Rectifier

1.1 Aim

Single Phase Half Wave Uncontrolled and Controlled Rectifier

1.2 Software Used

MATLAB R2020a

1.3 Theory

A rectifier is a device that converts alternating current (AC) to direct current (DC). It is done by using a diode or a group of diodes. A half wave rectifier is defined as a type of rectifier that only allows one half-cycle of an AC voltage waveform to pass, blocking the other half-cycle. Half-wave rectifiers are used to convert AC voltage to DC voltage, and only require a single diode to construct.

Single Phase Half Wave Uncontrolled Rectifier: This rectifier comprises of an AC source, a diode and a load. The diode gets forward biased during the positive half cycle of the AC source, and the circuit conducts. During the negative half cycle, the diode becomes reverse biased and blocks current.

Single Phase Half Wave Controlled Rectifier: This rectifier comprises of an AC source, a Thyristor/SCR and a load. The key difference here, is the presence of the thyristor/SCR, which conducts only when gate pulses at a firing angle α are applied to it. The SCR automatically turns off when its voltage is reverse biased for a period longer than the SCR turn off time and its current falls below holding current.

1.4 Theoretical Calculations

For an R load, average output voltage and current for a controlled half wave rectifier are given by:

$$V_{o,avg} = V_{phase} \sqrt{2(1+cos\alpha)2\pi} = V_m (1+cos\alpha)2\pi$$

$$I_{o,avg} = V_o R$$

Where α is the firing angle of the thyristor. For uncontrolled recti- fiers, the thyristor is replaced by a diode, and $\alpha = 0$.

For a single phase half wave uncontrolled rectifier

1.5 Single Phase Half Wave Uncontrolled Rectifier with R load

1.5.1 Circuit used for simulation

Single Phase Half Wave Uncontrolled Rectifier with R load

Figure 1.1: Circuit used for simulation

1.5.2 Components Required

Table 1.1: Components for Single Phase Half Wave Uncontrolled Rectifier with R load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V (V_{rms})$	1
2	Resistor	10Ω	1
3	Diode	-	1
4	Voltmeter	-	2
5	Ammeter	-	1

1.5.3 Observations

Table 1.2: Observations for Single Phase Half Wave Uncontrolled Rectifier with R load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	103.5V
Output Average Current $(I_{o,avg})$	10.35A	10.35A

1.5.4 Resultant Waveforms

 $Figure \ 1.2: \ Scope \ Waveforms \ for \ Single \ Phase \ Half \ Wave \ Uncontrolled \ Rectifier \ with \ R \ load \ waveforms$

1.6 Single Phase Half Wave Uncontrolled Rectifier with RL load

1.6.1 Circuit used for simulation

Single Phase Half Wave Uncontrolled Rectifier with RL load

Figure 1.3: Circuit used for simulation

1.6.2 Components Required

Table 1.3: Components for Single Phase Half Wave Uncontrolled Rectifier with RL load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

1.6.3 Observations

Table 1.4: Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.6.4 Resultant Waveforms

Figure 1.4: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load

1.7 Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.7.1 Circuit used for simulation

Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

Figure 1.5: Circuit used for simulation

1.7.2 Components Required

Table 1.5: Components for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

1.7.3 Observations

Table 1.6: Observations for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.7.4 Resultant Waveforms

Figure 1.6: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RL load and Freewheeling Diode

1.8 Single Phase Half Wave Uncontrolled Rectifier with RLE load

1.8.1 Circuit used for simulation

Single Phase Half Wave Uncontrolled Rectifier with RLE load

Figure 1.7: Circuit used for simulation

1.8.2 Components Required

Table 1.7: Components for Single Phase Half Wave Uncontrolled Rectifier with RLE load load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	10mH	1
4	Diode	-	1
5	DC Source	100V	1
6	Voltmeter	-	2
7	Ammeter	-	1

1.8.3 Observations

Table 1.8: Observations for Single Phase Half Wave Uncontrolled Rectifier with R load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.8.4 Resultant Waveforms

Figure 1.8: Scope Waveforms for Single Phase Half Wave Uncontrolled Rectifier with RLE load waveforms

1.9 Single Phase Half Wave Controlled Rectifier with R load

1.9.1 Circuit used for simulation

Single Phase Half Wave Controlled Rectifier with R load

Figure 1.9: Circuit used for simulation

1.9.2 Components Required

Table 1.9: Components for Single Phase Half Wave Controlled Rectifier with R load load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

1.9.3 Observations

Table 1.10: Observations for Single Phase Half Wave Controlled Rectifier with R load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.9.4 Resultant Waveforms

Figure 1.10: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with R load

1.10 Single Phase Half Wave Controlled Rectifier with RL load

1.10.1 Circuit used for simulation

Single Phase Half Wave Controlled Rectifier with RL load

Figure 1.11: Circuit used for simulation

1.10.2 Components Required

Table 1.11: Components for Single Phase Half Wave Controlled Rectifier with RL load load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	$10 \mathrm{mH}$	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

1.10.3 Observations

Table 1.12: Observations for Single Phase Half Wave Controlled Rectifier with RL load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.10.4 Resultant Waveforms

Figure 1.12: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RL load

1.11 Single Phase Half Wave Controlled Rectifier with RLE load

1.11.1 Circuit used for simulation

Single Phase Half Wave Controlled Rectifier with RLE load

Figure 1.13: Circuit used for simulation

1.11.2 Components Required

Table 1.13: Components for Single Phase Half Wave Controlled Rectifier with RLE load load

Sr. No	Parameters	Ratings	Quantity
1	AC Single Phase Voltage Source	$230V\ (V_{rms})$	1
2	Resistor	10Ω	1
3	Inductor	10mH	1
4	Diode	-	1
5	Voltmeter	-	2
6	Ammeter	-	1

1.11.3 Observations

Table 1.14: Observations for Single Phase Half Wave Controlled Rectifier with RLE load

Parameters	Theoretical Values	Simulation Values
AC Input Voltage $(V_{in,rms})$	230V	230V
Output Average Voltage $(V_{o,avg})$	103.53V	101.1V
Output Average Current $(I_{o,avg})$	10.35A	10.11A

1.11.4 Resultant Waveforms

Figure 1.14: Scope Waveforms for Single Phase Half Wave Controlled Rectifier with RLE load

1.12 Results

1.12.1 Theoretical Calculation

The resistance \mathbf{R} in the circuit shown in Fig. 2.2 is considered as 20 Ω , and the voltage (which is effectively the voltage across \mathbf{R}) is considered as 50 V, 100 V, 150 V and 200 V in four steps as mentioned in the second column of Table-??. As per **Ohm's Law**, the current corresponding to all the four voltages are,

$$I = \frac{V}{R} = \frac{50}{20} = 2.5 \ A \ (for \ V = 50V); \quad = 5 \ A \ (for \ V = 100V); \quad = 7.5 \ A \ (for \ V = 150V); \quad = 10 \ A \ (for \ V = 200V); \quad = 10$$

1.12.2 Simulation Results

The simulink file is run for 10 sec considering V=50 V, and and corresponding current seen in the display is noted in the fourth column of second row of Table-??. Similarly, all other three rows are filled. Further, constantly varying ramp voltage is applied and the corresponding v-i graph is plotted in Fig. ??.

Sl No	Applied Voltage (V) in Volts	Current (I) through R in Amps		
		Theoretical	Simulated	
1	50	5	2.5	
2	100	10	5	
3	150	15	7.5	
4	200	20	10	

Table 1.15: Observations for Single Phase Half Wave Controlled Rectifier with RLE load

1.13 Conclusion

The design of single phase half wave rectifiers, both controlled and uncontrolled, with R, RL, RL with freewheeling diode, and RLE loads were implemented successfully in MATLAB using Simulink. The output waveforms for voltage and current were obtained in each case, and a comparison between theoretically calculated and simulated output parameter values was also performed.