INFO2222

Security Mindset, Terminology, Threat Models

Presented byLuke Anderson

Overview

Today's agenda

- Defining security
 - High level
 - Achieving a security mindset
 - Mapping the security space
 - Systems people and technology
- Critical terminology and security goals
- Threat modelling
 - Context is always key
 - Focusing limited resources

Defining Security

High level

- We want to build and maintain systems that remain safe to use and dependable in the face of malice, error, and mischance.
- Security is often described using military or game-playing terms.
 - Arms race between attacker and defender
 - Resource game raising the bar high can deflect or deter attacks
 - Attack/offence vs. defence

– Nuance:

- (Software) Engineering: "making things happen"
- Security Engineering: "making sure certain things do not happen"

Mindset for achieving security

- Understand the big picture, but...
 - Also understand specifics in complex systems.
 - Know that "the devil is in the detail"
- Requires you to
 - Think like an attacker.
 - What would you attack? How? Why?
 - What is the end game? Money? Infamy?
 - Think like a user.
 - Want to get a job done without computer system being in the way
 - Poor usability stands in the way leads to things such as users clicking through complex warnings...

- Security by design, not bolted on afterwards

Thinking about security (cf. R. Anderson)

- Good security engineering requires four key areas:
 - Policy What you are supposed to achieve.
 - Mechanisms How you implement policy
 - Technical controls, cryptography, operational security, etc.
 - Assurance Amount of reliance you place on a control.
 - Incentive How to motivate those following policy.

Systems

- The day-to-day operations of society depend on systems where **people** use **technology** to perform activities.
 - Businesses, non-profits, governments, individuals, ...
- Definition of system: many things. Need to define precisely before discussing what is to be achieved!
 - Product or component can be software or hardware
 - Collection of the above, plus operating system, communication, anything that belongs to an organization's infrastructure
 - The above, plus applications (browsers, accounting software, etc...)
 - Any, or all, of the above plus IT staff
 - Any, or all, of the above plus internal users and management
 - Any, or all, of the above plus external users and customers...

Security of Systems

- Security is about keeping systems working as intended.
 - Failure could endanger lives: planes, power plants, etc.
 - Failure could erode societal stability: banking, insurances, ...
 - Failure could destroy a life: identify theft, etc.

Technology in a system

- Hardware
 - Processing
 - Storage
 - Peripherals
- Software
 - Operating systems
 - Files and databases
 - Middleware
 - Applications
- Networks
 - The interconnection of computer systems

People in a system

- Security depends on people and their behaviours, maybe even more than on technology.
- Designers and developers.
 - Internal and external
 - Vendors of software and hardware.
- Operators and administrators.
- Users
 - Inside the organisation
 - Outsiders (clients, suppliers, partners)
- Other stakeholders
 - People about whom data is kept and society more broadly

Forgetting people is a recipe for failure

- People are not machines.
 - Intrinsic and extrinsic goals: get job done, be liked, self-interested
 - Venue for Social Engineering!
- People don't always do what they are told.
 - Forgetful "what did you eat 8 days ago?"
 - Instructions may not align with their motivations and goals
 - Intentional maliciousness insiders can be most damaging, they have the keys.
- We all differ in many ways:

- Aptitudes - Training

- Attitudes - Priorities

- Engagement

Risk Management

- Security can be viewed through the lense of risk management
 - understanding the assets and risks to the assets.
- Pragmatic, approximate approach:
 - Multiply the quantifiable amount of the potential loss by the probability that the loss will occur.
 - Compare against the costs of security measures to protect against the risk.
- This is called risk analysis, which can be applied at the level of the individual, the enterprise, the nation...
- Often highly problematic:
 - What is the probability that a loss will occur? How was this computed?
 - Always ask such questions hard data is better than gut feeling because human psychology is very bad at estimating risk
 - FUD: Fear, Uncertainty, Doubt clouds thinking

Common adages

- Security through obscurity does not equal security.
 - Hiding something does not make it safe only harder to find
 - Always assume attacker can find it, never ever rely on it as a defence.
 - Intention behind hiding is to cause the attacker some frustration; maybe they will go away before trying anything else. But who knows?
- Security is a trade-off. Nothing is 100% secure.
 - Only ever raising the bar of cost, time, money for attacker.
 - New discoveries every day, tomorrow may bring down your wall.
- Defence in depth:
 - Avoid the eggshell model one hard layer, gooey insides.
 - Layer controls such that failure of a single control is **not** a full collapse of a system.

Critical Terminology and Security Goals

Key Terms

Vulnerability

Flaw

Threat

Attack

Control

Trusted

Trustworthy

Key Goals

Confidentiality

Integrity

Availability

Auditability

Anonymity/Pseudonymity

Non-Repudiation

The University of Sydney

Page 15

Vulnerability

- Weakness in system at implementation level.
 - Hardware, software, data, people, ...
 - Often due to coding, procedures, or to people's practices.
- Vulnerabilities may be known or unknown.
 - Vendors may be able to address them in patches need to keep systems updated
 - Patches can also break interoperability careful checks needed!
 - Industry has disclosure processes responsible disclosure
 - Zero Days: 0 time between disclosure and use in the wild
- Classic example: buffer overflow
- War Stories: Heartbleed and Shellshock

Heartbleed

- Vulnerability in the OpenSSL implementation of TLS.
 - Transport Layer security is responsible for the padlock icon in the browser – ensures that communication between the computer and server is encrypted.
 - Bug introduced into the code in 2012, disclosed in 2014.
 - Due to the lack of a bounds check:
 - Allowed an attacker to receive data from memory they were not supposed to see.
 - "Read" beyond what they were supposed to.
 - This could mean any secret information of the server.
 - Keys? ✓
 - Passwords? ✓
 - User data? ✓
 - 🐉 ✓

Shellshock

- A vulnerability in the implementation of Bash.
 - Bash: Unix shell on most linux distributions, macOS and today, Windows 10 \odot
 - Allowed remote code execution:
 - This means an external attacker can run any code they wish on the machine.

Flaws

Weakness in the system at a design level.

- Hardware, software, data, people, ...
- Due to design decisions
- These cannot always be addressed after shipping the product
- Examples:

Spectre & Meltdown

- Fundamental **design** issues with nearly every computer chip (CPU) produced in the last 20 years and found in 2017.
- Both flaws allow a malicious program to gain access to data it shouldn't be able to see by two methods:

Speculative Execution

- Modern processors would compute both the "if" and "else" result of a statement before knowing the outcome/path.
- May speculatively "choose" path based on previous executions.
- Reverts the unchosen part later.

Caching

- To speed up access data to in memory, we use a cache.
- 'Protected memory' accessed may be put in the cache before the privilege check is done i.e. the "if".
- Get protected data from cache before it is reverted.

Meltdown

- Meltdown is the variant of this concept that:
 - "melts" the normal security boundaries between programs running.
 - Allows access to other programs memory and special data.
 - Only works on specific Intel Chips.
 - Example:
 - An attacker runs JavaScript in your Chrome browser that reads data from you logging into Spotify.

Spectre

- Spectre is more universal:
 - Allows reading privileged data in the same program.
 - Works on nearly all chips available at the time of discovery.
 - Called Spectre for:
 - "speculative execution"
 - "it will haunt us for some time"
 - It is not a simple fix.

Your PC ran into a problem that it couldn't handle, and now it needs to restart.

You can search for the error online: HAL INITIALIZATION FAILED

Meltdown & Spectre Patch = BSOD

- Microsoft released a patch for Meltdown and Spectre...
 - Saw many systems blue screening.
 - Realised many AV vendors were using syscalls that were not officially supported.
 - This caused the system to crash.
 - Customers would not receive the MS patch UNTIL the anti-virus
 company supported it.
 - An example of the complex ecosystem. Hundreds of AV, customers not knowing how to manual 'set the registry key' to get the update.
 - Public Google Doc collating which AV supported it:

				Last update: 5th January 2018 @09:54am GMT
Vendor	Product	Sets registry key	Supported	Comment
AVAST		Υ	Υ	Fixed.
Avira		Υ	Υ	Fixed.
BitDefender		N	N	Fix this evening or tomorrow
Carbon Black		N	N	Assessing impact
Cisco	AMP	N	N	In testing
CrowdStrike	Falcon	N	Υ	Registry key change scheduled for Monday
Cylance	PROTECT	N	Υ	Manual registry key setting
Cyren	F-PROT	N	N	Working on a fix, cannot set registry key thru usual update

Threat

- Term has different meanings, depending on context
 - Historical reasons you need to know both
- Threat Modelling
 - Important activity to understand & defend against weaknesses
 - Applied at the design and development stages
 - Could reasonably be called "attack modelling" because it focuses on what attackers could do, and how you would defend against that
- Further common meaning: the sum of more high-level environmental factors to which a system is exposed
 - E.g. banking systems are exposed to both organised crime as well as state-level attacks in case of war
 - Thinking about threats in this way is useful to estimate likelihood of certain attacks, and attacker's capabilities

Attack

- Activity that intends to cause harm to the system
 - Example: installing a "key logger" on a machine that records everything the user types
 - Example: sending many requests at once to keep a system so busy that it can't offer service to real users (Denial-of-Service)
- An attack can occur even if there isn't a vulnerability
 - Example: attempt to login by sending a guess as the password.

Controls

- A measure to defend the system by avoiding risk or attack, detecting it, or mitigating it
 - Preventive e.g. authentication of users
 - Detective e.g. Intrusion Detection Systems (IDS)
 - Corrective e.g. Denial-of-Service protections
- Can be technical, but do not have to be:
 - Physical security
 - Operational security
 - Regulatory/governance

Trust/trusted/trustworthy

- Trust in a system is the expectation that the system will operate as intended.
- The terms trusted and trustworthy have a particular meaning in the context of computer security.
 - The definitions come from the point of view of system analysis
- A system component is called **trusted** if its failure would compromise the system's security
 - l.e. as in "we put out trust in it not failing and if we are not sure, then it's our job to make it trusted"
- A trustworthy component if we can indeed safely assume that it is not going to fail

Check: trusted or trustworthy

 Taking the previous two definitions and applying them to warnings to users - should we say:

"Do not click on links to untrusted websites!"

or

"Do not click on links to untrustworthy websites!"

Check: trusted or trustworthy

What is a double-agent of the NSA?

Security goals

- A security policy describes the security goals that a system is meant to achieve. Typical goals are:
 - Confidentiality (but see next slide)
 - Integrity
 - Authorization
 - Authenticity
 - Non-repudiation
 - Accountability
 - Auditability
 - Anonymity/Pseudonymity
 - Availability
- Typically, a system aims at meeting a well-chosen subset of these goals.

Secrecy/confidentiality/privacy

- These terms relate to information that should not be accessible except by those who are supposed to know it. We use them in the following way:
- Secrecy is a technical term the effect of mechanisms to limit accessibility of information to the intended group
- Confidentiality involves the obligation to protect secrecy it is a possible security goal for a system
- Privacy is the capability to protect personal information and prevent invasion of personal space
 - System may achieve privacy by meeting certain security goals

Integrity

 Security goal: must be able to verify that information has not been altered (or altered in a non-permissible way)

– Examples:

- Protect integrity of database entries
- Protect integrity of information during online banking customer and bank must be able to detect malicious attempts to change information
- Note careful wording: key is detecting illegitimate alterations
 - An attacker in the network can always alter the data in global networks such as the Internet, this is hard to prevent
 - The important thing is that sender and/or receiver can reliably detect it and react to it

Authenticity, Authorisation, Accountability

Authentication and Authentication

- Authenticity means that the origin of a message can be determined and verified.
- Authentication means that the parties in a communication can be determined to be who they claim to be

– Authorisation:

- An entity is assigned a privilege (to carry out an action, access data, etc.), and this authorization can be verified
- Access Control carries out the authorization check
- Question: Does Access Control need Authentication?

Non-repudiation and Accountability

- Users often desire a way to make sure that they can convince others about what happened.
 - Can be very hard to achieve in practice, especially over computer networks
 - An attack could involve doing something and denying it was done, leading to confusion about the correct state.
 - Example: you send a message to transfer money to someone, then say you didn't and demand the money be repaid to you by the bank

Accountability

- Means that it is possible to map the outcome of an action or state change to the entity that caused it
- E.g. change in database can be correctly traced to the user who caused it

Auditability

- Organisations often need to find out what happened.
 - Who sent which messages
 - Who accessed what data
 - How data got into the current state data provenance
- Legal requirements (forensics) may exist
 - Example: Enron, tax affairs, identifying the criminal
- Audit information is also very useful after a security failure has occurred.
 - Learn how it happened
 - So controls can be introduced in future

War Story - CBA Fraud

In 2017, the Commonwealth Bank became embroiled in a fraud scandal – primarily facilitating fraud.

- May 21 2015: two were raided and arrested and \$3 million in banking receipts were found, many for CBA accounts.
- Managed to launder over 1.7 million over 7.5 months.
- How did they evade detection?
 - Used multiple branches depositing less than the \$10,000 threshold each time i.e. 9900.
 - This is a legal threshold: deposits over 10k are logged and reported to the government.
 - Meant CBA were in hot water as they weren't meeting regulatory requirements due to a system technicality.

Availability

- The system should provide service for the intended users.
 - Requests are a) processed and b) this happens within an acceptable time
- If the system isn't available, damage to the organisation comes from lack of normal functioning.
- Opponents may attack availability for many reasons.
 - Malice e.g. attack against competition
 - Blackmail e.g. extortion of money
 - Warfare take out the opponent's infrastructure
 - Accidental side-effect e.g. application is sensitive to malformed input and gets hit by an (otherwise harmless) Internet scan

War Story - Dyn & Mirai Botnet

Dyn, a major DNS (Domain Name System) infrastructure provider was offline for most of October 21.

- DNS: Translates your human readable URL (<u>www.google.com</u>) to an IP address so you can talk to the web server.
- Brought down access to sites like Twitter, Reddit, Netflix etc.
- Attacked by the Mirai Botnet
 - Made up of IoT devices i.e. DVR players, cameras.
 - Traffic flow of 1.2 Tbps
 - 100,000+ malicious endpoints/bots.
 - Most powerful at the time

Anonymity

- Human desire to be able to do things without being identified.
 - E.g. accessing websites with sensitive topics like to stay unknown
 - Keep knowledge from other groups business, family, government...
 - The user's goal for anonymity may conflict with other goals, such as auditability.
- Different forms of anonymity:
 - Network anonymity: no-one can identify the user in the network
 - Data anonymity: no-one can re-identify a person in an "anonymized" data set
- Perfect anonymity is impossible to achieve in practice
 - Near-global observation of network traffic breaks anonymity
 - No such thing as "anonymized data set" that is simultaneously useful!

Achieving the goals

- To achieve security goals in spite of opponents, systems have controls.
- Perfect security does not exist in practice
 - Every system still has vulnerabilities
 - Learn from security in banks, airlines, etc.
 - Get the design stage (as) right (as you possibly can) it's a good investment
- Every control has drawbacks: cost, inconvenience, usability!
 - A decision is needed about which control to follow.
 - Someone must compare the drawbacks and the benefits

Trade-offs

- Every control has costs as well as benefits.
- There are financial costs
 - pay for security products, pay for security advice, pay operators for time doing security rather than other services...
- Security controls make it harder for attackers.
 - Some things can't be done, or can't be done easily
 - So they also make it harder for normal users to do their normal work.
 - This reduces the value of the IT systems for their owners.

Also costs against ease of use in many cases.

Threat Modelling

Context matters

- Security is ultimately contextual.
 - What are you trying to protect?
 - What are you trying to protect from?
 - For how long?
 - Example: how would you store secrets long-term 100s of years?
- Threat modelling is a structured way to think about and communicate the actual threats, concrete attacks, kind of attackers and incentives they have.
- Never exhaustive, the application provides an understanding of the context.

Context matters

- Example: The lock on your house's door (a control) is not to prevent against a robber, it is to prevent a normal person just walking in.
 - If you have an actual threat of a general robber you install window bars as well.
 - Still doesn't help if the attacker has a bulldozer but those guys are rares
- Example: Face ID is a control to prevent your friends and family from accessing your phone.
 - If you are held at a border, you are still going to unlock your phone
- It all depends on what you need to protect, how valuable it is to you and to others, what capabilities the attacker may reasonably have

Types of attackers

Wide range of motivations:

- Amateur enthusiasts demonstrating their skills script kiddies were famous in the early 2000s
- Blackhats: attackers with malicious intent
- Whitehats: attackers who are paid to test a system for vulnerabilities
- Sometimes money is a motivation, sometimes a political statement
- Governments engage in certain activities for espionage or warfare.

Not attackers:

- People making mistakes lack of intention! May be mistaken for attackers, of course.
- Hackers per se "to hack" originally meant to get a system to do things it was not designed for
- Read up on the word the negative connotation today is a recent thing!

Levels of organization

- Some attackers are computing experts
 - Often considerable knowledge about hardware, software, networks
 - Much can be legitimately learned:
 - Ethical Hacking
 - Capture The Flag competitions
- Organized crime is a reality:
 - Tool sets written for attacking systems
 - Experts advertising their services in underground forums
 - Sale of illegally obtained data etc.
- Dual-use tool sets: what is a tool to repair, debug & test systems in one set of hands is a tool set in malicious hands
 - Law in most countries recognizes that and requires malicious intent, not just ownership and use of such tools

Types of attacks

These violate a key security goal. Can you tell which one?

- Unauthorised intrusion into a system
- Intercepting messages on the wire
- Flooding a server with requests
- Unauthorised modification of data
- Falsification

Types of attacks

These violate a key security goal. Can you tell which one?

- Unauthorised intrusion into a system (Authorization, possibly Confidentiality, Integrity, and more)
- Intercepting messages on the wire (Confidentiality)
- Flooding a server with requests (Availability)
- Unauthorised modification of data (Integrity)
- Falsification (Integrity, Authenticity)

Incentives For Attacks

What are we actually trying to protect?

- Monetary values
- Reputation
- Machines botnet usage, framing users etc.
- Information
 - Business secrets
 - Personally identifiable information (PII)
- Access and authority

Social Engineering

One typical method of attacking a system is performing social engineering to gain knowledge or access.

- Exploits the human as opposed to the machine
 - Psychology our willingness to help
 - Relationships
 - Common beliefs, expectations or social norms
- Example:
 - Walking up to a card access door once someone opens it, hoping they hold the door for you expecting you also have access.
 - Bonus: Pretending to be on the phone so they can't ask.
 - Bonus: Pulling out your wallet/a card to make it seem like you have a valid card.
 - Bonus: Be carrying things that would make it hard for you people want to help.

Page 51

War Story - Frank Abagnale

One of the most well known impostors for his actions between the age of 15 and 21. Assumed no fewer than eight identities:

- Airline Pilot: acquired a uniform by calling and claiming he was a pilot who lost it. Estimated to have flown for free as a passenger on more then 250 flights. Controlled the plane on some occasions.
- Physician: Supervised resident interns at a hospital and did not do any actual doctor's work.
- Attorney— Forged a law transcript, passed the bar exam (a US exam required to practice law).
- Later, Frank worked for the security industry and the FBI
- Film: Catch me if you can (sorry, not during lecture hours)

Summary

- Systems involve hardware and software components, and also people. The latter are as important as the tech.
- Security tries to protect assets.
- There are many different security goals for different stakeholders.
- Security involves tradeoffs, and decisions must be made.
 - These should be informed decisions and to prevent against your threat model.

— Know the terminology we will use in this unit!