We must find $h_1, h_2 \in \mathbb{R}[x]$ such that $g_1h_1 + g_2h_2 = 1$. In general this is the hard part of the projection construction. But since we are only working with two relatively prime polynomials g_1, g_2 , we may apply the Euclidean algorithm to discover that

$$-\frac{x+1}{2}(x-1) + \frac{1}{2}(x^2+1) = 1,$$

where $h_1 = -\frac{x+1}{2}$ while $h_2 = \frac{1}{2}$. By definition

$$\pi_1 = g_1(f)h_1(f) = -\frac{1}{2}(X_f - id)(X_f + id) = -\frac{1}{2}(X_f^2 - id) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and

$$\pi_2 = g_2(f)h_2(f) = \frac{1}{2}(X_f^2 + id) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\mathbb{R}^3 = W_1 \oplus W_2$, where

$$W_{1} = \pi_{1}(\mathbb{R}^{3}) = \operatorname{Ker}(p_{1}(X_{f})) = \operatorname{Ker}(X_{f}^{2} + \operatorname{id}) = \operatorname{Ker}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \{(x, y, 0) \in \mathbb{R}^{3}\},$$

$$W_{2} = \pi_{2}(\mathbb{R}^{3}) = \operatorname{Ker}(p_{2}(X_{f})) = \operatorname{Ker}(X_{f} - \operatorname{id}) = \operatorname{Ker}\begin{pmatrix} -1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \{(0, 0, z) \in \mathbb{R}^{3}\}.$$

Example 31.3. For our second example of the primary decomposition theorem let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as f(x,y,z) = (y,-x+z,-y), with standard matrix representation $X_f = (y,-x+z,-y)$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
. A simple calculation shows that $m_f(x) = \chi_f(x) = x(x^2 + 2)$. Set

$$p_1 = x^2 + 2,$$
 $p_2 = x,$ $g_1 = \frac{m_f}{p_1} = x,$ $g_2 = \frac{m_f}{p_2} = x^2 + 2.$

Since $gcd(g_1, g_2) = 1$, we use the Euclidean algorithm to find

$$h_1 = -\frac{1}{2}x, \qquad h_2 = \frac{1}{2},$$

such that $g_1h_1 + g_2h_2 = 1$. Then

$$\pi_1 = g_1(f)h_1(f) = -\frac{1}{2}X_f^2 = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix},$$