Introduction to Econometrics II: Recitation 7*

Seung-hun Lee[†]

March 4th, 2020

1 Topics in Dynamic Panel Data

1.1 Regressing with an 'Overall' Intercept

Consider the following model

$$y_{it} = \mu + \rho y_{it-1} + x'_{it}\beta + \alpha_i + u_{it}$$

where μ term represents an 'overall' constant - this term applies commonly to all i's and t's in the regression. When we estimated ρ and β before, we relied on first-differencing. The cost of doing this is the loss of time-invariant terms. This would now include μ . If we are desperate to know what μ is, how do we estimate for them?

There are two ways to do this. One is a two step approach in the sense that we estimate the other parameters first and the back out μ . The other is doing it simultaneously using additional moment conditions.

Before proceeding, it should be noted that $E(\alpha_i) = 0$ is implicitly assumed. If not, we can change the above equation in the following fashion:

$$y_{it} = \underbrace{\mu + E(\alpha_i)}_{\mu_0} + \rho y_{it-1} + x'_{it}\beta + \underbrace{\alpha_i - E(\alpha_i)}_{=\alpha_{0i}} + u_{it}$$

In this setup, $E(\alpha_{0i}) = 0$. and we estimate for μ_0 . After that, we can find μ .

^{*}This is based on the lecture notes of Professors Jushan Bai and Bernard Salanie. I was also greatly helped by previous recitation notes from Paul Sungwook Koh and Dong Woo Hahm. The remaining errors are mine.

[†]Contact me at sl4436@columbia.edu if you spot any errors or have suggestions on improving this note.

• **Two-step Approach**: We first obtain the estimate $\hat{\rho}$ and $\hat{\beta}$ using an Arellano-Bond estimator. Then, we can rearrange the equation into

$$y_{it} - \hat{\rho}y_{it-1} - x'_{it}\hat{\beta} = \mu + \alpha_i + u_{it}$$

Given that the mean of α_i and u_{it} is zero, we can use the sample mean of the left-hand-side to obtain the estimate for μ . Since μ applies to all i and t, we need to sum over all i's and t's. Therefore,

$$\hat{\mu} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \hat{\rho} y_{it-1} - x'_{it} \hat{\beta})$$

• **Simultaneous Approach**: Note that $\alpha_i + u_{it}$ has a zero mean. For a fixed i, we can define $\mathbf{y}_i, \mathbf{y}_{i,-1}$ and \mathbf{x}_i as stacked-up vector for individual i with T observations. We obtain

$$\mathbf{y}_{i} = 1_{T}\mu + \rho \mathbf{y}_{i,-1} + \mathbf{x}_{i}\beta + \underbrace{1_{T}\alpha_{i} + \mathbf{u}_{i}}_{=\mathbf{v}_{i}}$$
$$= 1_{T}\mu + \mathbf{w}_{i}\delta + \mathbf{v}_{i}$$

using the fact that $\alpha_i + u_{it}$ has a zero mean yields this moment condition

$$E[\mathbf{v}_i] = E[1_T \alpha_i + \mathbf{u}_i] = E[\mathbf{y}_i - \mathbf{w}_i \delta - 1_T \mu] = 0$$

Along with the $E[Z'_i \Delta \mathbf{u}_i] = 0$ condition, we can jointly write

$$\begin{bmatrix} E(\mathbf{v}_i) \\ E(Z_i'\Delta\mathbf{u}_i) \end{bmatrix} = E \begin{bmatrix} \begin{bmatrix} I_T & 0 \\ 0 & Z_i \end{bmatrix}' \begin{bmatrix} \mathbf{v}_i \\ \Delta\mathbf{u}_i \end{bmatrix} \end{bmatrix}$$

Define $\bar{Z}_i = \begin{bmatrix} I_T & 0 \\ 0 & Z_i \end{bmatrix}$, $\bar{W}_i = \begin{bmatrix} I_T & \mathbf{w}_i \\ 0 & \Delta \mathbf{w}_i \end{bmatrix}$, $\bar{Y}_i = \begin{bmatrix} \mathbf{y}_i \\ \Delta \mathbf{y}_i \end{bmatrix}$. Then $\begin{bmatrix} \mathbf{v}_i \\ \Delta \mathbf{u}_i \end{bmatrix} = \bar{Y}_i - \bar{W} \begin{bmatrix} \mu \\ \delta \end{bmatrix}$. The moment condition and the resulting estimator for $\begin{bmatrix} \mu \\ \delta \end{bmatrix}$ is (\bar{V}_n is the weighting matrix)

$$E\left[\bar{Z}_i'(\bar{Y}_i - \bar{W}_i) \begin{bmatrix} \mu \\ \delta \end{bmatrix}\right] = 0$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{\delta} \end{bmatrix} = \left[\sum_i (\bar{W}_i' \bar{Z}_i) \bar{V}_n \sum_i \bar{Z}_i' \bar{W}_i \right]^{-1} \sum_i (\bar{W}_i' \bar{Z}_i) \bar{V}_n \sum_i \bar{Z}_i' \bar{Y}_i$$

Note that in this manner, we can technically estimate for α_i . However, since T is small in usual datasets, we may not be able to guarantee the consistency of such estimator.

1.2 Subset of Regressors Uncorrelated with Fixed Effects

Return to the model where

$$y_{it} = \mu + \rho y_{it-1} + x'_{it}\beta + \alpha_i + u_{it}$$

The difference is now that a subset of x_{it} is exogenous with respect to α_i . Also assume that regressors are strictly exogenous. Denote such variable as $x_{it}^{(1)}$. Then the following holds

$$E[x_{is}^{(1)}\alpha_i] = 0 \implies E[x_{is}^{(1)}v_{it}] = 0 \implies E[x_{is}^{(1)}(y_{it} - w_{it}'\delta - \mu)] = 0 \ \forall s,t$$

For notational convenience, define $h_i = vec(x_i^{(1)}) = \begin{bmatrix} x_{i1}^{(1)} \\ ... \\ x_{iT}^{(1)} \end{bmatrix}$. Then the above moment condi-

tion is equivalent to

$$E[(I_T\otimes h_i)\mathbf{v}_i]=0$$

We can also make use of the fact that $E[\mathbf{v}_i] = 0$, which is $E[(I_T \otimes 1)\mathbf{v}_i]$. This would give us the required moment condition for equations in levels (to back out μ), expressed as

$$E\left[\left(I_T\otimes\begin{bmatrix}1\\h_i\end{bmatrix}\right)\mathbf{v}_i\right]=0$$

Another set of required moment condition comes from Z_i matrix defined for strictly exogenous case with \mathbf{x}'_{iT} replaced with $vec(x_i^{(2)})'$. This gives us $E[Z'_i\Delta\mathbf{u}_i]=0$. The GMM estimator has the same expression as in the previous case but with I_T in \bar{Z}_i replaced with $\left(I_T\otimes\begin{bmatrix}1\\h_i\end{bmatrix}\right)$.

1.3 Nonlinear Moments

Consider the model

$$y_{it} = \rho y_{it-1} + \underbrace{\alpha_i + u_{it}}_{=v_{it}}$$

The assumptions on our variables were

- $E(\alpha_i) = 0$, $E(u_{it}) = 0$, $E(\alpha_i u_{it}) = 0 \ \forall i$, t
- $E(u_{it}u_{is}) = 0 \ t \neq s$
- $E(y_{i0}u_{it}) = 0 \ \forall i \ \text{and} \ t = 1,..,T$

These three assumptions imply $E[\Delta v_{it-1}v_{it}] = 0$ t = 3,...,T. The rationale is as follows. Note that $\Delta v_{it-1} = u_{it-1} - u_{it-2} = \Delta u_{it-1}$. Also $v_{it} = \alpha_i + u_{it}$. Since fixed effects is not correlated with the error terms and there is no serial correlation, $E[\Delta v_{it-1}v_{it}] = 0$ holds. In other words,

$$E[(\Delta y_{it-1} - \rho \Delta y_{it-2})(y_{it} - \rho y_{it-1})] = 0$$

The sample analogue of this would be

$$\frac{1}{n} \sum_{i=1}^{n} (\Delta y_{it-1} y_{it} - \rho \Delta y_{it-1} y_{it-1} - \rho \Delta y_{it-2} y_{it} + \rho^2 \Delta y_{it-2} y_{it-1})$$

Notice the ρ^2 term here. Because of this, the moment condition becomes nonlinear (quadratic, to be exact). If GMM estimation is used, the objective function involves ρ^4 and FOC would involve ρ^3 . So it is tricky to work with.

In addition, assume that there is a time series homoskedasticity, or $E[u_{it}^2] = \sigma_u^2$. Then the following T-1 additional moments

$$E[v_{it}^2] - E[v_{it-1}^2] = 0, \ t = 2, ..., T$$

$$\iff E[(y_{it} - \rho y_{it-1})^2] - E[(y_{it-1} - \rho y_{it-2})^2] = 0$$

Similar to the previous case, the objective function involves ρ^4 and FOC has ρ^3 . This is again, tricky to work with. There is one way to 'linearize' the moment conditions. Which is...

1.4 Mean Stationarity

If a distribution of a certain variable y_t does not change over time, we call this a stationary distribution. Mean stationarity refers to the situation where the mean of a variable is time-invariant. One case where this can hold is as follows. Suppose

$$y_{i0} = \frac{\alpha_i}{1 - \rho} + e_{i0}$$

Then $E[y_{i0}|\alpha_i] = \frac{\alpha_i}{1-\rho}$. Under the data generating process

$$y_{it} = \rho y_{it-1} + \alpha_i + u_{it}$$

we can show that means stationarity holds ¹. Specifically

$$E[y_{i1}|\alpha_i] = E[\rho y_{i0} + \alpha_i + u_{i1}|\alpha_i]$$

$$= \rho E[y_{i0}|\alpha_i] + \alpha_i + E[u_{i1}|\alpha_i]$$

$$= \frac{\rho \alpha_i}{1 - \rho} + \alpha_i = \frac{\alpha_i}{1 - \rho}$$

We can reiterate and get the same result for $E[y_{it}|\alpha_i]$ for t = 1, ..., T. Therefore, mean stationarity holds.

So how do the nonlinear moments become linearized? Let's start with the first nonlinear moment $E[(\Delta y_{it-1} - \rho \Delta y_{it-2})(y_{it} - \rho y_{it-1})] = 0$. By mean stationarity, we get

$$E[y_{it} - y_{it-1} | \alpha_i] = E[\Delta y_{it} | \alpha_i] = 0 \implies E[\alpha_i \Delta y_{it}] = 0 \ \forall t$$

This result, along with $E[y_{i1}u_{is}]=0$ for $s\geq 2$ implies that $E[\Delta y_{i1}u_{is}]=0$ for $s\geq 2$. Thus, $E[\Delta y_{i1}v_{is}]=0$ ($s\geq 2$). So we have $E[\Delta y_{i1}v_{i2}]=0$. For $s\geq 3$, we can use the nonlinear moment condition $E[\Delta v_{is-1}v_{is}]=0$ to back out

$$E[\Delta v_{is-1}v_{is}] = 0 \implies E[(\Delta y_{is-1} - \rho \Delta y_{is-2})v_{is}] = 0$$

$$(s = 3) \implies E[(\Delta y_{i2} - \rho \Delta y_{i1})v_{i3}] = 0$$

$$= E[\Delta y_{i2}v_{i3}] = 0 \ (\because E[\Delta y_{i1}v_{is}] = 0 \ (s \ge 2)])$$

Repeat the similar process to ultimately get $E[\Delta y_{it-1}v_{it}] = 0$

So the lagged differences of the instruments qualify as instruments for equation in levels. This is a Blundell-Bond estimator, or what is known as a system GMM estimation. Combine the above moment condition with the usual $E[Z'_i\Delta\mathbf{u}_i]=0$ to get a joint moment condition

$$E\left[Z_i^{+'}\begin{pmatrix}\Delta\mathbf{u}_i\\\mathbf{v}_i\end{pmatrix}\right]=0$$

 $^{^{1}}$ This is what question 3 in 2019 Spring Midterm is about

with
$$Z_i^+ = \begin{bmatrix} Z_i & 0 & 0 & \dots & 0 \\ 0 & \Delta y_{i1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \Delta y_{iT-1} \end{bmatrix}$$
. Here, \mathbf{v}_i has $t = 2, \dots, T$.

As for the homoskedastic case, we can use the mean stationarity condition to obtain a linear moment condition

$$E[v_{it}^2] - E[v_{it-1}^2] = E[(y_{it} - \rho y_{it-1})v_{it} - (y_{it-1} - \rho y_{it-2})v_{it-1}]$$

= $E[y_{it}v_{it} - y_{it-1}v_{it-1}] = 0 \ (t = 2, ..., T)$

The remaining terms can be written as

$$E[-\rho y_{it-1}(\alpha_i + u_{it}) + \rho y_{it-2}(\alpha_i + u_{it-1})] = E[-\rho \Delta y_{it-1}\alpha_i + \rho y_{it-2}u_{it-1} - \rho y_{it-1}u_{it}]$$

= -0 + 0 - 0 = 0

The mean stationarity justifies the first zero. Therefore, we can use more instruments, namely

$$Z_{iH}^{+} = egin{bmatrix} Z_i & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \ 0 & 0 & 0 & \dots & 0 & y_{i1} & 0 & 0 & \dots & 0 \ 0 & \Delta y_{i1} & 0 & \dots & 0 & -y_{i2} & y_{i2} & 0 & \dots & 0 \ \dots & y_{T-1} \ 0 & 0 & 0 & \dots & \Delta y_{iT-1} & 0 & 0 & 0 & \dots & -y_T \end{bmatrix}$$

Therefore, using the combined moment condition

$$E\left[Z_{iH}^{+'}\begin{pmatrix}\Delta\mathbf{u}_i\\\mathbf{v}_i\end{pmatrix}\right]=0$$

we can obtain a GMM estimator of ρ . Here, \mathbf{v}_i starts from t = 1.

2 Factor Analysis and Interactive Fixed Effects

Consider the following model

$$y_{it} = \mu_i + x'_{it}\beta + \lambda'_i f_t + u_{it}$$

where λ_i is a vector of factor loadings and f_t is a vector of factors. Each can be written

$$\lambda_i = \begin{bmatrix} \lambda_{i1} \\ \dots \\ \lambda_{ir} \end{bmatrix}, f_t = \begin{bmatrix} f_{1t} \\ \dots \\ f_{rt} \end{bmatrix}$$

where r is usually a small number. We will assume that only y_{it} and x_{it} is observable.

In fact, we can see that this format is a generalized version of the additive fixed effect we have seen so far. For one thing, by writing

$$\lambda_i = \begin{bmatrix} lpha_i \\ 1 \end{bmatrix}$$
 , $f_t = \begin{bmatrix} 1 \\ \delta_t \end{bmatrix}$

we can back out the two-way fixed effects model of the following form

$$y_{it} = x'_{it}\beta + \alpha_i + \delta_t + u_{it}$$

Generally, we can capture unobserved individual traits that can vary with time. Or we can also capture entity-level responses to a common shock at certain time.

Estimating the above model with regressors can be done as follows. If it is the case that we know β , then we can write

$$y_{it} - x'_{it}\beta = \mu_i + \lambda'_i f_t + u_{it}$$

and estimate pure factor models. If we know what $\mu_i + \lambda_i' f_t$ is, we write

$$y_{it} - \mu_i - \lambda_i' f_t = x_{it}' \beta + u_{it}$$

which becomes a standard model. If we need to determine the parameters of interest all at once, we can do a LASSO-type regularized regression in the following sense.

$$\min \sum_{i} \sum_{t} (y_{it} - x'_{it}\beta - l_{it})^{2} + \tau ||L||_{*}$$

where l_{it} is the $\lambda'_i f_t$ and L is the matrix of l_{it} 's. Note that we are applying a nuclear norm here. In this context, what we are doing is to minimize the sum squared residuals but with the penalty that applies when the rank of L is large. Basically, we are treating β , λ_i , f_t as a parameter to be estimated, whereas for the static dynamic model, our interest was on β .

A more compact way to write this is to stack observations in the time series format. Define

$$\mathbf{y}_t = \begin{bmatrix} y_{1t} \\ ... \\ y_{nt} \end{bmatrix}$$
, $\mu = \begin{bmatrix} \mu_1 \\ ... \\ \mu_n \end{bmatrix}$, $\Lambda = \begin{bmatrix} \lambda'_1 \\ ... \\ \lambda'_n \end{bmatrix}$, $\mathbf{u}_t = \begin{bmatrix} u_{1t} \\ ... \\ u_{nt} \end{bmatrix}$

Then the pure factor model can be written as

$$\mathbf{y}_t = \mu + \Lambda f_t + \mathbf{u}_t$$

We impose these assumptions:

- $E(f_t) = 0$, $var(f_t) = \Sigma_f \in \mathbb{R}^{r \times r}$
- $E(\mathbf{u}_t) = 0$, $var(\mathbf{u}_t) = \Psi$, where Ψ is a diagonal matrix

This implies that $E[\mathbf{y}_t] = 0$ and $var[\mathbf{y}_t] = \Lambda \Sigma_f \Lambda' + \Psi$. Also, Ψ being diagonal implies that the error across entities are uncorrelated. The goal is to identify each parameters in the $var[\mathbf{y}_t]$ term. For this we need to put restrictions, r^2 of them. The reason is as follows.

Suppose that $\Lambda \Sigma_f \Lambda'$ is identifiable. So how do we determine individual parameters? This is tricky since for any matrix $A \in \mathbb{R}^{r \times r}$ s.t. $det(A) \neq 0$,

$$\Lambda \Sigma_f \Lambda' = \Lambda A A^{-1} \Sigma_f (A A^{-1})' \Lambda'
= \underbrace{\Lambda A}_{\Lambda^*} \underbrace{A^{-1} \Sigma_f A^{-1'}}_{\Sigma_f^*} \underbrace{A' \Lambda'}_{\Lambda^{*'}}
= \Lambda^* \Sigma_f^* \Lambda^{*'}$$

We can get many observationally equivalent models. This is known as a rotational indeterminancy. Restrictions are needed to prevent this problem

Typically, three sets of assumptions are imposed

• Classical: We impose $\Sigma_f = I_r$. That will take care of $\frac{r(r+1)}{2}$ restrictions (Σ_f is symmetric). To take care of the rest, we impose $\Lambda' \Psi^{-1} \Lambda$ is diagonal - i.e off diagonals are symmetric (diagonal elements are still free). This takes care of $\frac{(r-1)r}{2}$ restrictions. Thus,

$$var(\mathbf{y}_t) = \Lambda \Lambda' + \Psi$$

• Triangular: Split Λ into $\Lambda = \begin{bmatrix} \Lambda_1 \in \mathbb{R}^{r \times r} \\ \Lambda_2 \in \mathbb{R}^{(n-r) \times r} \end{bmatrix}$. Then we impose $\Sigma_f = I_r$ and Λ_1 be a lower triangular matrix. So the upper diagonal matrix of Λ_1 is restricted to 0. The sum of the number of both sets of restriction is r^2 . This implies that

$$y_{1t} = \lambda_{11}f_{1t} + u_{1t}$$

$$y_{2t} = \lambda_{21}f_{1t} + \lambda_{22}f_{2t} + u_{2t}$$

$$...$$

$$y_{rt} = \lambda_{r1}f_{1t} + + \lambda_{rr}f_{rt} + u_{rt}$$

and $var(\mathbf{y}_t) = \Lambda \Lambda' + \Psi$.

• Measurement error: This involves an unrestricted Σ_f and $\Lambda_1 = I_r$. Since Λ_1 is

$$\Lambda_1 = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1r} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2r} \\ \dots & \dots & \dots & \dots \\ \lambda_{r1} & \lambda_{r2} & \dots & \lambda_{rr} \end{bmatrix}$$

imposing $\Lambda_1 = I_r$ uses up all r^2 restrictions. Then we have

$$y_{1t} = f_{1t} + u_{1t}$$

$$y_{2t} = f_{2t} + u_{2t}$$

$$\vdots$$

$$y_{rt} = f_{rt} + u_{rt}$$

and hence the name measurement error restriction. Then

$$var(\mathbf{y}_t) = egin{bmatrix} \Sigma_f & \Sigma_f \Lambda_2' \\ \Lambda_2 \Sigma_f & \Lambda_2 \Sigma_f \Lambda_2' \end{bmatrix} + \Psi$$

These assumptions solve rotational indeterminancy. To fully identify all parameters, additional identification assumptions are required 2

²This is covered in detail by lecture notes from Prof. Bai. This part was not covered in class in full detail. Refer to the lecture note for explanations.