Integrable Systems

Ikhan Choi Lectured by Ralph Willox University of Tokyo, Autumn 2023

February 1, 2024

1 Symmetric polynomials

Let $x = (x_i)_{i=1}^n$ be some auxiliary variables for some n. The *power sum symmetric polynomial* is defined by

$$p_k(x) := \sum_i x_i^k.$$

We define flow variables

$$t = (t_1, t_2, \cdots), \qquad t_k := k^{-1} p_k$$

The complete homogeneous symmetric polynomial is

$$h_k(x) := \sum_{1 \le i_1 \le \dots \le i_k \le n} x_{i_1} \cdots x_{i_k}.$$

For Schur polynomial s_{λ} , there are various definitions, where λ is a Young diagram for partition of m. Since every symmetric function is generated by power sum symmetric functions p_k , we can represent h_k and s_{λ} in terms of t. Furthermore, h_k has generating function representation

$$\sum_{k=0}^{\infty} h_k(t) z^k = \exp \sum_{k=1}^{\infty} t_k z^k.$$

For example,

$$h_1(t) = t_1,$$
 $h_2(t) = t_2 + \frac{1}{2}t_1,$ $h_3(t) = t_3 + t_1t_2 + \frac{1}{6}t_1^3$
 $s_{(1,1)}(t) = \frac{1}{2}t_1^2 - t_2,$ $s_{(2)}(t) = t_2 + \frac{1}{2}t_1^2.$

From now on, we will forget any of information for the variables x_i , and t_k will be the most fundamental variables.

Let V be a vector space over $\mathbb C$ with a fixed basis $\{e_i\}$. A basis of $\wedge^m V$ can be indexed by subset of $\{e_i\}$ of cardinality m. For such a subset l, we will write $l=(l_1,\cdots,l_m)$ with $l_1\leq\cdots\leq l_m$. This kind of m-tuple is a Maya diagram. For a Maya diagram l, we can associate a Young diagram $\lambda=(\lambda_1,\cdots,\lambda_m)$ such that $l_j=\lambda_{m-j+1}+j-1$. Zeros in the Young diagram will be omitted. For each Young diagram λ , we will use the notation

$$e_{\lambda} := e_{l_1} \wedge \cdots \wedge e_{l_m},$$

where (l_1, \dots, l_m) is the corresponding Maya digram of the Young diagram λ . Then, $\{e_{\lambda}\}$ forms a basis of $\wedge^m V$.

2 Plücker coordinates

For a positive integer m, the *Grassmann variety* $Gr_m(V)$ is the algebraic variety of m-dimensional subspaces of V. The *Plücker embedding*

$$\psi: \operatorname{Gr}_m(V) \to \mathbb{P}(\Lambda^m V): w = \operatorname{span}\{w_j\}_{j=1}^m \mapsto \Lambda^m w = \operatorname{span}\{\Lambda_{j=1}^m w_j\}$$

shows that the Grassmann variety is projective.

The *tautological vector bundle T* over the grassmann variety $Gr_m(V)$ is defined as a subbundle of the trivial bundle $Gr_m(V) \times V \to Gr_m(V)$ such that

$$T := \{(w, v) \in \operatorname{Gr}_m(V) \times V : v \in w\}.$$

The rank of the tautological bundle T is m. The determinant line bundle Det over the grasmann variety $Gr_m(V)$ is the top exterior power of the tautological vector bundle

Det :=
$$\wedge^m T$$
.

The tautological line bundle of the projective space $\mathbb{P}(\wedge^m V)$ is identified with $\mathcal{O}_{\mathbb{P}(\wedge^V)}(-1)$. The identity

$$\mathrm{Det}_w = \wedge^m w = \psi(w) = \mathcal{O}_{\mathbb{P}(\wedge^V)}(-1)_{\psi(w)}$$

on each fiber at w and $\psi(w)$ defines a bundle isomorphism Det $\to \mathcal{O}_{\mathbb{P}(\wedge^m V)}(-1)$, so we have the isomorphic line bundles

Det
$$\cong \psi^* \mathcal{O}_{\mathbb{P}(\wedge^m V)}(-1)$$
.

Taking the inverses, we have

$$\operatorname{Det}^* \cong \psi^* \mathcal{O}_{\mathbb{P}(\wedge^m V)}(1).$$

The line bundle $\mathcal{O}_{\mathbb{P}(\wedge^m V)}(1)$ admits global sections spanned by the homogeneous polynomial of degree one, which are identified to the coordinate functions $e^*_{\lambda}: \wedge^m V \to \mathbb{C}$ defined such that $e^*_{\lambda}(e_{\lambda'}) = \delta_{\lambda,\lambda'}$, where λ and λ' are Young diagrams. For each Young diagram λ , define the *Plücker coordinate* $\pi_{\lambda}:=\psi^*e^*_{\lambda}$ as a global section of the dual determinant line bundle Det*.

Since $\operatorname{Gr}_m(V)$ is projective via the Plücker embedding ψ , there is a homogeneous ideal I such that the image of ψ has the homogeneous coordinate ring $\mathbb{C}[e_\lambda^*]_\lambda/I$. The *Plücker relations* are special generators of I, which are quadratic homogeneous polynomials.

3 Tau functions

Suppose $V = \mathbb{C}^{\infty}$. Consider an abelian group action γ of \mathbb{C}^{∞} on the Grassmann variety $\mathrm{Gr}_m(V)$ defined such that

$$\gamma(t) := \exp \sum_{k=1}^{\infty} t_k \Lambda^k, \qquad t = (t_1, t_2, \dots) \in \mathbb{C}^{\infty},$$

where $\Lambda: V \to V$ is a linear map satisfying $\Lambda e_i := e_{i+1}$, which is called the *shift matrix*.

Fix $w \in Gr_m(V)$. The τ -function associated with the abelian group action and the initial point w is the function $\tau : \mathbb{C}^{\infty} \to \mathbb{C}$ defined by the first Plücker coordinate of the curve $\gamma(t)w$, i.e.

$$\tau(t) := \pi_{(0)}(\gamma(t)w).$$

We can also define

$$\tau_{\lambda}(t) := \pi_{\lambda}(\gamma(t)w).$$

(This is the τ -function given in the problem.) Then, we have the Schur function expansion

$$\tau(t) = \sum_{\lambda} \pi_{\lambda}(w) s_{\lambda}(t),$$

and

$$\tau_{\lambda}(t) = s_{\lambda}(\widetilde{\partial}_{t})\tau(t), \qquad \widetilde{\partial}_{t} = (k^{-1}\partial_{t_{k}})_{k=1}^{\infty}.$$

4 KP equation

Let $x = t_1$, $y = t_2$, and $t = t_3$. The equation

$$\tau_{(0)}\tau_{(2,2)} - \tau_{(1)}\tau_{(2,1)} + \tau_{(2)}\tau_{(1,1)} = 0$$

is deduced from a Plücker relation

$$(e_0^* \wedge e_1^*)(e_2^* \wedge e_3^*) - (e_0^* \wedge e_2^*)(e_1^* \wedge e_3^*) + (e_0^* \wedge e_3^*)(e_1^* \wedge e_2^*) = 0.$$

Since

$$\begin{split} &\tau_{(0)} = \tau \\ &\tau_{(1)} = \tau_x \\ &\tau_{(1,1)} = \frac{\tau_{2x} - \tau_y}{2} \\ &\tau_{(2)} = \frac{\tau_{2x} + \tau_y}{2} \\ &\tau_{(2,1)} = \frac{\tau_{3x} - \tau_{xy}}{2} \\ &\tau_{(2,2)} = \frac{\tau_{2x,y} + \tau_{2y} - 2\tau_{tx}}{2}, \end{split}$$

Let

$$u := \partial_x^2 \log \tau, \qquad v := \partial_x \partial_y \log \tau.$$