Contents

1 Classes				2
	1.1	ration	al - 整数と有理数	2
		1.1.1	Integer – <mark>整数</mark>	3
			1.1.1.1 getRing – ring オブジェクトを所得	4
			1.1.1.2 actAdditive – 2 進の加法連鎖の加法	4
			1.1.1.3 actMultiplicative – 2 進の加法連鎖の乗法	4
		1.1.2	IntegerRing – 整数環	5
			1.1.2.1 createElement – Integer オブジェクトを作成	6
			1.1.2.2 gcd – 最大公約数	6
			1.1.2.3 extgcd – 拡張 GCD	6
			1.1.2.4 lcm – 最小公倍数	6
			1.1.2.5 getQuotientField – 有理数体オブジェクトを 所得	6
			1.1.2.6 issubring – 部分環か判定	6
			1.1.2.7 issuperring – スーパー環か判定	7
		1.1.3	Rational – 有理数	8
			1.1.3.1 getRing – ring オブジェクトを所得	9
			1.1.3.2 decimalString – 小数を表す	9
			1.1.3.3 expand – 連分数表現	9
		1.1.4	RationalField – 有理数体	10
			1.1.4.1 createElement – Rational オブジェクトを返す	11
			1.1.4.2 classNumber – 類数を所得	11
			1.1.4.3 getQuotientField – 有理数体オブジェクトを返す	11
			1.1.4.4 issubring – <mark>部分環か判定</mark>	11
			1.1.4.5 issuperring – スーパー環か判定	11

Chapter 1

Classes

1.1 rational – 整数と有理数

rational モジュールはクラス Rational, Integer, RationalField, そして IntegerRing として整数と有理数を提供する.

- Classes
 - Integer
 - IntegerRing
 - Rational
 - RationalField

このモジュールはまた以下のコンテンツを提供する:

theIntegerRing:

theIntegerRing は有理整数環を表す. An instance of IntegerRing.

${\bf the Rational Field} \ :$

theRationalField は有理整数体を表す. RationalField のインスタンスです.

1.1.1 Integer – 整数

Integer は整数のクラス. 'int' と 'long' は除算において有理数を返さないので,新しいクラスを作成する必要があった.

このクラスは Commutative Ring Element と long のサブクラスです.

Initialize (Constructor)

Integer(integer: integer)
ightarrow Integer

Integer オブジェクトを構成する. もし独立変数が省略されたら, 値は 0 となる.

1.1.1.1 getRing - ring オブジェクトを所得

 $\mathtt{getRing}(\mathtt{self}) o \mathit{IntegerRing}$

IntegerRing オブジェクトを返す.

1.1.1.2 act Additive - 2 進の加法連鎖の加法

 $actAdditive(self, other: integer) \rightarrow Integer$

他の加法に作用する、 すなわち、 n は other の n 回の加算にに拡大される. 素朴に、 それは:

return sum([+other for _ in range(self)]) しかし, ここで 2 進の加法連鎖を使う.

1.1.1.3 actMultiplicative – 2 進の加法連鎖の乗法

actMultiplicative(self, other: integer)
ightarrow Integer

他の乗法に作用する, すなわち, n は other の n 回の乗算に拡大される. 素族に, それは:

return reduce(lambda x,y: x*y, [+other for _ in range(self)]) しかし、ここで2進の加法連鎖を使う.

1.1.2 IntegerRing - 整数環

有理整数の環のためのクラスです.

このクラスは Commutative Ring のサブクラスです.

Initialize (Constructor)

IntegerRing()
ightarrow IntegerRing

IntegerRing のインスタンスを作成する. すでに theIntegerRing があるので、あなたはインスタンスを作成したくないだろう.

Attributes

zero:

加法の単位元 0 を表す. (読み専用)

one

乗法の単位元1を表す (読み専用)

Operations

operator	explanation
x in Z	要素がどうか返す
repr(Z)	文字列表現を返す
str(Z)	文字列を返す.

1.1.2.1 createElement – Integer オブジェクトを作成

 $createElement(self, seed: integer) \rightarrow Integer$

seed を持つ Integer オブジェクトを作成する. seed は int 型, long 型 または rational.Integer でなければならない.

1.1.2.2 gcd - 最大公約数

 $\gcd(\texttt{self}, \, \texttt{n:} \, integer, \, \texttt{m:} \, integer)
ightarrow Integer)$

与えられた 2 つの整数の最大公約数を返す.

1.1.2.3 extgcd - 拡張 GCD

 $\operatorname{extgcd}(\operatorname{self}, \operatorname{n:} \operatorname{integer}, \operatorname{m:} \operatorname{integer}) \to \operatorname{Integer}$

タプル (u, v, d) を返す; これらは与えられた 2 つの整数 n と m の最大公約数 d と, d = nu + mv となる u, v です.

1.1.2.4 lcm - 最小公倍数

 $lcm(self, n: integer, m: integer) \rightarrow Integer$

与えられた 2 つの整数の最小公倍数を返す. もし両方とも 0 なら, エラーが起こる.

1.1.2.5 getQuotientField – 有理数体オブジェクトを所得

 $\mathtt{getQuotientField}(\mathtt{self}) o extit{RationalField}$

有理数体 (RationalField) を返す.

1.1.2.6 issubring – 部分環か判定

 $issubring(self, other: Ring) \rightarrow bool$

もう一方の環が部分環として整数環を含んでいるか報告する。

もし other もまた整数環なら、出力は True. その他の場合もう一方の整数環の issuperring メソッドのおける実装に依存する.

1.1.2.7 issuperring – スーパー環か判定

 $issuperring(self, other: Ring) \rightarrow bool$

もう一方の環が部分環として整数環を含んでいるか報告する. もし other もまた整数環なら、出力は True. その他の場合もう一方の整数環の issubring メソッドのおける実装に依存する.

1.1.3 Rational - 有理数

有理数のクラスです.

Initialize (Constructor)

 $\begin{aligned} \textbf{Rational} (\texttt{numerator: } numbers, \texttt{ denominator: } numbers {=} 1) \\ &\rightarrow \textit{Integer} \end{aligned}$

有理数は以下から構成:

- integers,
- float, or
- Rational.

もし toRational メソッドがあれば、他のオブジェクトは変換され得る. さもなくば TypeError が起こる.

1.1.3.1 getRing - ring オブジェクトを所得

 $\mathtt{getRing}(\mathtt{self}) o extit{RationalField}$

RationalField オブジェクトを返す.

1.1.3.2 decimalString – 小数を表す

 $ext{decimalString(self, N: } integer)
ightarrow string$

小数第 N 番目の数の文字列を返す.

1.1.3.3 expand – 連分数表現

 $ext{expand}(ext{self}, ext{base: } integer, ext{limit: } integer)
ightarrow string$

分母が base の累乗で、もし base が自然数なら多くても limit である最も近い 有理数を返す.

さもなくば、すなわち、base=0、分母が多くても limit である最も近い有理数を返す.

base は負の整数であってはならない.

1.1.4 RationalField – 有理数体

RationalField は有理数体のクラスです。このクラスは theRationalField という唯一のインスタンスを持つ。

このクラスは Quotient Field のサブクラスです.

Initialize (Constructor)

RationalField() ightarrow RationalField

RationalField のインスタンスを作成する. すでに theRationalField があるので、インスタンスを作りたくはないだろう.

Attributes

zero:

加法の単位元 0 を表す, すなわち Rational(0, 1). (読み専用)

one:

乗法の単位元 1 を表す, すなわち Rational(1, 1). (読み専用)

Operations

operator	explanation
x in Q	要素かどうか返す
str(Q)	文字列を返す

1.1.4.1 createElement – Rational オブジェクトを返す

 $\begin{array}{l} \textbf{createElement}(\textbf{self}, \ \textbf{numerator:} \ \textit{integer} \ \textit{or} \ \textbf{Rational}, \ \textbf{denominator:} \ \textit{integer} = 1 \end{array})$

ightarrow Rational

Rational オブジェクトを作成する.

1.1.4.2 classNumber – 類数を所得

 ${
m classNumber(self)}
ightarrow integer$

有理数体の類数は1なので、1を返す.

1.1.4.3 getQuotientField – 有理数体オブジェクトを返す

 $\mathtt{getQuotientField}(\mathtt{self}) o extit{RationalField}$

有理数体自身を返す

1.1.4.4 issubring – 部分環か判定

 $issubring(self, other: Ring) \rightarrow bool$

もう一方の環が部分環として有理数体を含んでいるか報告する。

もし other もまた有理数体なら, 出力は True. 他の場合もう一方の issuperring メソッドにおける実装に依存する.

1.1.4.5 issuperring – スーパー環か判定

issuperring(self, other: Ring) $\rightarrow bool$

もう一方の環が部分環として有理数体を含んでいるか報告する。

もし other もまた有理数体なら、出力は True. 他の場合もう一方の issubring メソッドにおける実装に依存する.