Physics 137B Lecture 3

Keshav Balwant Deoskar

January 24, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	January 22 - More about symmetries	2
	1.1 Last time	2
2	Parity $\hat{\Pi}$	2
	2.1 Continuous Transformations	4
	2.2 Momentum conservation	ŗ
	2.3 Time Translation $(\hat{U}(\Delta))$	F

1 January 22 - More about symmetries

1.1 Last time

- Symmetries are transformations which leave a system invariant.
- Can be continuous or discrete.
- Active: $|\psi\rangle \to |\psi'\rangle = \hat{U}|\psi\rangle$ Passive: $\hat{\Theta} \to \hat{\theta'} = \hat{U}^{\dagger}\hat{\Theta}\hat{U}$
- Unitary operators preserve norm:

$$\begin{split} \langle \psi | \psi \rangle &= \langle \psi' | \psi' \rangle \\ \Longrightarrow \hat{U}^\dagger \hat{U} &= 1 = \hat{U} \hat{U}^\dagger \end{split}$$

• If \hat{U} transformations are a symmetry, $\langle \hat{U} \rangle$ is a conserved quantity since

$$\frac{d}{dt}\langle \hat{U} \rangle = \frac{i}{\hbar} \langle \underbrace{ \left[\hat{U}, \hat{H} \right]}_{=0, \text{symmetry}} \rangle + \langle \underbrace{\frac{\partial \hat{U}}{\partial t}}_{} \rangle^{0} \text{ Ehrenfest's Theorem}$$

$$\Longrightarrow \boxed{\frac{d}{dt}\langle U\rangle = 0}$$

2 Parity $\hat{\Pi}$

This operator "flips" the coordinate system i.e.

$$\hat{\Pi} \underbrace{|\vec{r}\rangle}_{|x\rangle\otimes|y\rangle\otimes|z\rangle} = |-\vec{r}\rangle = |-x\rangle\otimes|-y\rangle\otimes|-z\rangle$$

Note that

$$\hat{\Pi}^2 | \vec{r} \rangle = \hat{\Pi} | -\vec{r} \rangle = | \vec{r} \rangle$$

Thus, $\hat{\Pi}^2 = \mathbf{1} \implies \hat{\Pi}^{-1} = \hat{\Pi}$ This tells us that the **eigenvalues of** $|\hat{p}i|$ are $\lambda_{\pm} = \pm 1$

Proof: Suppose

$$\hat{\Pi}|n\rangle = \lambda_n|n\rangle$$

Then

$$\begin{split} \hat{\Pi}^2|n\rangle &= \lambda_n \hat{\Pi}|n\rangle - \lambda_n^2|n\rangle \\ \Longrightarrow \lambda_n^2 &= 1 \\ \Longrightarrow \lambda_n &= \pm 1 \end{split}$$

2

Parity states can only have positive or negative parity.

Claim: $\hat{\Pi}$ is Hermitian. i.e. $\hat{\Pi}^{\dagger} = \hat{\Pi}$.

Proof: Consider some arbitrary position states $|f\rangle, |g\rangle$ and

$$\begin{split} \langle f|\hat{\Pi}|g\rangle &= \int d\vec{r} \langle f|\hat{\Pi}|\vec{r}\rangle \langle \vec{r}|g\rangle \\ &= \int d\vec{r} \langle f||-\vec{r}\rangle g(\vec{r}) \\ &= \int_{\infty}^{\infty} d\vec{r} f^*(-\vec{r'})g(\vec{r'}) \\ &= -\int_{\infty}^{-\infty} d\vec{r'} f^*(\vec{r'})g(-\vec{r'}) \ \ \text{(Change of variables } \vec{r'} = -\vec{r}) \\ &= \int_{-\infty}^{\infty} d\vec{r'} f^*(\vec{r'})g(-\vec{r'}) \ \ \text{(Change of variables } \vec{r'} = -\vec{r}) \\ &= \int d\vec{r'} \langle f|\vec{r'}\rangle \langle -\vec{r'}|g\rangle \\ &= \int d\vec{r'} \langle f|\vec{r'}\rangle \langle \vec{r'}|\hat{\Pi}^{\dagger}|g\rangle \\ &= \langle f|\hat{\Pi}^{\dagger}|g\rangle \end{split}$$

So, we have

$$\hat{\Pi} = \hat{\Pi}^{\dagger}$$

Symmetries make our calculations very simple.

Example: Let $\hat{\Theta}$ be odd under parity i.e.

$$\hat{\Pi}\hat{\Theta} = -\hat{\Theta}$$

Then, $\langle n|\hat{\Theta}|n\rangle = 0$.

Proof:

$$\begin{split} \langle n|\hat{\Theta}|n\rangle &= \langle n|\hat{\Pi}^{\dagger}\hat{\Theta}\hat{\Pi}|n\rangle \\ &= \left(\langle n|\hat{\Pi}\right)\left(\hat{\Pi}\hat{\Theta}\hat{\Pi}\right)\left(\hat{\Pi}|n\rangle\right) \\ &= -\lambda_n^2\langle n|\hat{\Theta}|n\rangle \\ &= \langle n|\hat{\Theta}|n\rangle \\ &= 0 \end{split}$$

Vectors like Position and Momentum have odd parity, while pseudoscalars like the dot product and pseudovectors like angular momentum have positive parity.

- $\bullet \hat{\Pi}\vec{r}\hat{\Pi} = -\vec{r}$
- $\bullet \ \hat{\Pi}\vec{p}\hat{\Pi} = -\vec{p}$
- $\hat{\Pi}\vec{r}\cdot\vec{r}\hat{\Pi}=|\vec{r}|^2$

$$\begin{split} \hat{\Pi} \vec{L} \hat{\Pi} &= \hat{\Pi} \vec{r} \times \vec{p} \hat{\Pi} \\ &= (-1)^2 \vec{r} \times \vec{p} \\ &= \vec{L} \end{split}$$

$$\bullet \ \hat{\Pi} \vec{S} \hat{\Pi} = \vec{S}$$

2.1 Continuous Transformations

One Example of a continuous transformations is **translation in 1D** whose operator is denoted as $\hat{\mathcal{T}}$.

[Insert Figure]

The Translation operator is defined by the action

$$\hat{T}(a)\psi(x) = \psi'(x) = \psi(x - a)$$

Taylor expanding the last expression, we have

$$\hat{T}(a)\psi(x) = \psi(x-a)$$

$$= \psi(x) - a\frac{d}{dx}\psi(x) + \cdots$$

We can relate this to the momentum operator since

$$\hat{P} = -i\hbar \frac{d}{dx} \iff \frac{d}{dx} = \frac{i}{\hbar} \hat{P}$$

Which gives us

$$\hat{T}(a)\psi(x) \approx \left(\mathbf{1} - \frac{ia\hat{P}}{\hbar} + \cdots\right)\psi(x)$$

$$\implies \hat{T}(a) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{-ia\hat{P}}{\hbar}^{2}\right)$$

$$= \exp\left(\frac{-ia\hat{P}}{\hbar}\right)$$

One thing we can deduce from this is that the **Translation operator is Unitary**.

$$\begin{split} (\hat{T}(a))^{\dagger}(\hat{T}(a)) &= \exp\left(\frac{+ia\hat{P}}{\hbar}\right) \exp\left(\frac{-ia\hat{P}}{\hbar}\right) \\ &= \exp\left(\frac{iaP - P}{\hbar}\right) \quad \text{(This is valid because } \hat{P} \text{ commutes with itself)} \\ &= \mathbf{1} \end{split}$$

2.2 Momentum conservation

If $\hat{T}(a)$ is a symmetry of the system we have

$$[\underbrace{\hat{T}(a)}_{e^{\frac{-ia\hat{P}}{\hbar}}}, \hat{H}] = 0$$

$$\implies \left[\exp\left(-\frac{ia\hat{P}}{\hbar} \right), \hat{H} \right] = 0$$
$$\implies \left[\hat{P}, \hat{H} \right] = 0$$

But then, Ehrenfest's Theorem tells us that $\langle \hat{P} \rangle = 0$ as

$$\frac{d}{dt}\langle \hat{P}\rangle = \frac{i}{\hbar}\langle \left[\hat{P}, \hat{H}\right]\rangle 0$$

So, the value of momentum measured is conserved.

Momentum conservation is the result of Translation Symmetry.

2.3 Time Translation $(\hat{U}(\Delta))$

$$\hat{U}(\Delta)\psi(t) = \psi(t - \Delta)$$

$$= \left(1 - \Delta \frac{d}{dt} + \cdots\right)\psi(t)$$

$$= \left(1 + \frac{i\Delta \cdot \hat{H}}{\hbar} \cdots\right)\psi(t)$$

$$= \exp\left(\frac{i\Delta \cdot \hat{H}}{\hbar}\right)\psi(t)$$

where in the third equality, we used that

$$\hat{H} = i\hbar \frac{d}{dt} \implies \frac{d}{dt} = -i\frac{\hat{H}}{\hbar}$$

If Time Translation is a symmetry, then this is equivalent to saying that the energy of the system is conserved. So, Energy Conservation is a result of Time Translation.