

LA COUCHE TRANSPORT (ou LE NIVEAU MESSAGE)

M. Sibilla (sibilla@irit.fr)

Références bibliographiques

Guy Pujolle. Les Réseaux, Editions Eyrolles, 8^{ème} édition, 2014

Claude Servin. Réseaux et Telecoms. Edition Dunod. 2013

Douglas Comer. TCP/IP: Architecture, protocoles et applications. Edition Pearson Education

Pré-requis : Uyless Black. OSI : A model for computer

Communication Standards. Edition: Prentice-Hall

Plan du cours

- I. Introduction
- II. Le protocole UDP
- III. Le protocole TCP

IV. Interfaces avec les applications

INTRODUCTION à la couche TRANSPORT

- Rappel Du modèle OSI
- L'architecture TCP/IP
- Rappel de la PDU IP
- Limites d'IP
- Les propriétés communes de la couche Transport
- Les fonctionnalités de la couche Transport
- L'adressage des applications

RAPPEL DU MODELE OSI

 Le rôle de la couche Transport est de transporter un message d'un équipement émetteur/source vers un équipement récepteur/destinataire, et ce de manière fiable, efficace et économique.

Service avec ou sans connexion

L'ARCHITECTURE TCP/IP

L'architecture TCP/IP contient trois niveaux protocolaires:

Il est à noter que l'architecture TCP/IP s'appuie sur des niveaux trames quelconque.

L'ARCHITECTURE TCP/IP

L'architecture TCP/IP contient trois niveaux protocolaires:

Le niveau IP (Internet Protocol) qui est un niveau paquet.

Il est à noter que l'architecture TCP/IP s'appuie sur des niveaux trames quelconque.

L'ARCHITECTURE TCP/IP

L'architecture TCP/IP contient trois niveaux protocolaires:

Le niveau Transport qui regroupe les niveaux message et session.

Le niveau IP (Internet Protocol) qui est un niveau paquet.

Il est à noter que l'architecture TCP/IP s'appuie sur des niveaux trames quelconque.

L'ARCHITECTURE TCP/IP

L'architecture TCP/IP contient trois niveaux protocolaires:

Le niveau applicatif qui regroupe les niveaux présentation et application.

Le niveau Transport qui regroupe les niveaux message et session.

Le niveau IP (Internet Protocol) qui est un niveau paquet.

Il est à noter que l'architecture TCP/IP s'appuie sur des niveaux trames quelconque.

RAPPEL DE LA PDU IP

Quel(s) principe(s) mis en œuvre au niveau IP peut(vent) engendrer un(des) problème(s) au niveau de la couche Transport ?

0	4	8	16		24	31
Version	Lg_ent	Type de service		Long	gueur totale	
Identification			Flags Déplacement fragmen		gment	
Durée	Durée de vie Protocole Contrôle d'en-tête					
Adresse IP Source						
Adresse IP Destination						
	Options IP (éventuelles) Bourrage				ige	
Données protocole supérieur						

Faculté
des Sciences
et d'Ingénierie

RAPPEL DE LA PDU IP

Quel(s) principe(s) mis en œuvre au niveau IP peut(vent) engendrer un(des) problème(s) au niveau de la couche Transport ?

0	4	8	16		24	31
Version	Lg_ent	Type de service		Long	gueur totale	
Identification			Flags	Dé	placement fra	gment
Durée	de vie	Protocole	Contrôle d'en-tête			
Adresse IP Source						
Adresse IP Destination						
	Options IP (éventuelles) Bourrage					
Données protocole supérieur						

des Sciences et d'Ingénierie

RAPPEL DE LA PDU IP

Quel(s) principe(s) mis en œuvre au niveau IP peut(vent) engendrer un(des) problème(s) au niveau de la couche Transport ?

0	4	8	16		24	31
Version	Lg_ent	Type de service		Lon	gueur totale	
Identification			Flags Déplacement fragmen		gment	
Durée	de vie	Protocole	Contrôle d'en-tête			
Adresse IP Source						
Adresse IP Destination						
	Options IP (éventuelles) Bourrage				ge	
Données protocole supérieur						

RAPPEL DE LA PDU IP

Quel(s) principe(s) mis en œuvre au niveau IP peut(vent) engendrer un(des) problème(s) au niveau de la couche Transport ?

0	4	8	16		24	31
Version	Lg_ent	Type de service		Long	gueur totale	
Identification			Flags Déplacement fragme		gment	
Durée	de vie	Protocole	Contrôle d'en-tête			
Adresse IP Source						
	Adresse IP Destination					
	Options IP (éventuelles) Bourrage				ge	
Données protocole supérieur						

RAPPEL DE LA PDU IP

Quel(s) principe(s) mis en œuvre au niveau IP peut(vent) engendrer un(des) problème(s) au niveau de la couche Transport ?

0	4	8	16	24	31
Version	Lg_ent	Type de service		Longueur totale	
Identification			Flags Déplacement fragmen		nent
Durée de vie Protocole Contrôle d'en-tête					
Adresse IP Source					
Adresse IP Destination					
Options IP (éventuelles) Bourrage					
Données protocole supérieur					

LIMITATIONS D'IP

- livraison des datagrammes non garantie
- déséquencement possible des datagrammes
- erreurs possibles sur les données
- duplication possible des datagrammes!
- pas de contrôle de flux
- pas d'adressage des applications (client/serveur Web, client/serveur FTP, etc.)

LES PROPRIETES COMMUNES

du niveau Transport

- 1. Le Transport de bout en bout
- 2. Une garantie de QoS
- 3. La transparence des données échangées

LES PROPRIETES COMMUNES (1/3)

du niveau Transport

1. Le Transport de **bout en bout**

ABREVIATION:

PA: Processus d'Application

LES PROPRIETES COMMUNES (1/3)

du niveau Transport

1. Le Transport de **bout en bout**

ABREVIATION:

<u>PA</u>: Processus d'Application

LES PROPRIETES COMMUNES (1/3)

du niveau Transport

1. Le Transport de **bout en bout**

ABREVIATION:

PA: Processus d'Application

LES PROPRIETES COMMUNES (1/3)

du niveau Transport

1. Le Transport de **bout en bout**

ABREVIATION:

PA: Processus d'Application

LES PROPRIETES COMMUNES (2/3)

du niveau Transport

2. Garantie de QoS

ABREVIATION:

QoS: Quality of Service

cx : connexion

	·	
Temps d'établissement	Durée qui s'écoule entre l'émission d'une	
de connexion	demande de connexion par l'utilisateur et la	
	confirmation de sa demande	
Probabilité d'échec	Mesure le risque qu'une connexion ne puisse	
d'établissement	s'établir dans un délai maximum défini.	
Débit de la liaison	Donne le nb d'octets utiles qui peuvent être	
	transférés en une seconde.	
Temps de Transit	Temps écoulé entre le moment où l'utilisateur	
	du service de Transport envoie un message et	
	celui où l'entité de T réceptrice le reçoit	
	effectivement.	
Taux d'erreur résiduel	Taux des erreurs non corrigées qu'il est possible	
	de rencontrer sur une cx.	
Protection	Maintien d'une sécurité pour éviter les	
	manipulations non autorisées de données.	
Priorité	Permet de priviligier l'utilisation de différentes	
	cx par rapport à d'autres en cas de pb majeur	
	(ex. surcharge).	
Résiliation	Probabilité de déconnexion par la couche T suite	
	à un pb (ex. engorgement ou pb interne).	

LES PROPRIETES COMMUNES (3/3)

du niveau Transport

3. Transparence des données échangées

Les données sont échangées sur une connexion Transport, indépendamment de leur format, de leur codage et de leur signification, c'est :

le mode Transparent

LES FONCTIONNALITES

du niveau Transport

- 0. Transfert de données
- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage
- 4. Contrôle de flux, d'erreur et mémorisation

LES FONCTIONNALITES (1/4)

du niveau Transport

0. Transfert de données

LES FONCTIONNALITES (1/4)

du niveau Transport

1. Etablissement et libération de connexion

LES FONCTIONNALITES (1/4)

du niveau Transport

1. Etablissement et libération de connexion

LES FONCTIONNALITES (2/4)

du niveau Transport

1. Etablissement et libération de connexion

2. Multiplexage et éclatement

La couche Transport peut optimiser les ressources réseau (coût & perf) en fonction des besoins applicatifs.

Le multiplexage est le partage d'une cx Réseau par plusieurs cx Transport.

Ex de recours au Multiplexage : lorsque des cx de T de faible débit sont nécessaires en grand nombre.

LES FONCTIONNALITES (2/4)

du niveau Transport

1. Etablissement et libération de connexion

2. Multiplexage et éclatement

La couche Transport peut optimiser les ressources réseau (coût & perf) en fonction des besoins applicatifs.

Le multiplexage est le partage d'une cx Réseau par plusieurs cx Transport.

Ex de recours au Multiplexage : lorsque des cx de T de faible débit sont nécessaires en grand nombre.

L'<u>éclatement</u> est utilisation de plusieurs cx Réseau par une même cx Transport.

Ex de recours à l'Eclatement : pour maximiser le débit d'une cx T qui doit s'établir sur un réseau à faibles perfs.

LES FONCTIONNALITES (3/4)

du niveau Transport

- 1. Etablissement et libération de connexio
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

Pourquoi retrouve-t-on cette fonctionnalité au niveau Transport ?

LES FONCTIONNALITES (3/4)

du niveau Transport

- 1. Etablissement et libération de connexio
- 2. Multiplexage et éclatement

3. Fragmentation et Réassemblage

Pourquoi retrouve-t-on cette fonctionnalité au niveau Transport ?

Pourquoi IP fragmente-t-il?

LES FONCTIONNALITES (3/4)

du niveau Transport

- 1. Etablissement et libération de connexio
- 2. Multiplexage et éclatement

3. Fragmentation et Réassemblage

Pourquoi retrouve-t-on cette fonctionnalité au niveau Transport ?

Pourquoi IP fragmente-t-il?

MTU réseau sortant

31

LES FONCTIONNALITES (3/4)

du niveau Transport

- 1. Etablissement et libération de connexio
- 2. Multiplexage et éclatement

3. Fragmentation et Réassemblage

Pourquoi retrouve-t-on cette fonctionnalité au niveau Transport ?

Pourquoi IP fragmente-t-il?

LES FONCTIONNALITES (3/4)

du niveau Transport

- 1. Etablissement et libération de connexio
- 2. Multiplexage et éclatement

3. Fragmentation et Réassemblage

Pourquoi retrouve-t-on cette fonctionnalité au niveau Transport ?

Pourquoi IP fragmente-t-il?

LES FONCTIONNALITES (4/4)

du niveau Transport

- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

LES FONCTIONNALITES (4/4)

du niveau Transport

- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

LES FONCTIONNALITES (4/4)

du niveau Transport

- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

LES FONCTIONNALITES (4/4)

du niveau Transport

- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

LES FONCTIONNALITES (4/4)

du niveau Transport

- 1. Etablissement et libération de connexion
- 2. Multiplexage et éclatement
- 3. Fragmentation et Réassemblage

Plusieurs applications réseaux peuvent s'exécuter en parallèle sur un ordinateur.

Comment un émetteur peut-il préciser à quelle application est adressé un message ?

Plusieurs applications réseaux peuvent s'exécuter en parallèle sur un ordinateur.

Comment un émetteur peut-il préciser à quelle application est adressé un message ?

La solution retenue pour l'Internet est l'utilisation de destinations abstraites appelées :

les numéros de ports
entiers positifs sur 16 bits

(ne pas confondre avec les ports physiques des hubs/switchs)

(IP

TRANSMISSION

Plusieurs applications réseaux peuvent s'exécuter en parallèle sur un ordinateur.

Comment un émetteur peut-il préciser à quelle application est adressé un message ?

La solution retenue pour l'Internet est l'utilisation de destinations abstraites appelées :

les numéros de ports entiers positifs sur 16 bits

(ne pas confondre avec les ports physiques des hubs/switchs)

APPLICATION
TRANSPORT

IP
TRANSMISSION

UDP et TCP fournissent chacun un ensemble de ports indépendants :

- le port n de UDP est indépendant du port n de TCP
- le système permet aux applications de se voir affecter un port UDP et/ou TCP (choisi ou de manière arbitraire)
- certains numéros de port sont réservés et correspondent à des services particuliers

Plusieurs applications réseaux peuvent s'exécuter en parallèle sur un ordinateur.

Comment un émetteur peut-il préciser à quelle application est adressé un message ?

La solution retenue pour l'Internet est l'utilisation de destinations abstraites appelées :

les numéros de ports entiers positifs sur 16 bits

(ne pas confondre avec les ports physiques des hubs/switchs)

APPLICATION
TRANSPORT

IP
TRANSMISSION

UDP et TCP fournissent chacun un ensemble de ports indépendants :

- le port n de UDP est indépendant du port n de TCP
- le système permet aux applications de se voir affecter un port UDP et/ou TCP (choisi ou de manière arbitraire)
- certains numéros de port sont réservés et correspondent à des services particuliers

L'adresse d'une application Internet est le triplet : (adresse IP, protocole de transport, numéro de port)

Port TCP

Quelques ports réservés de TCP

Numéro de port	Service	Commentaire
1	tcpmux	Multiplexeur de service TCP
3	compressnet	Utilitaire de compression
7	echo	Fonction écho
9	discard	Fonction d'élimination
11	users	Utilisateurs
13	daytime	Jour et heure
15	netstat	État du réseau
20	ftp-data	Données du protocole FTP
21	ftp	Protocole FTP
23	telnet	Protocole Telnet
25	smtp	Protocole SMTP
37	heure	Serveur heure
42	name	Serveur nom d'hôte
43	whols	Nom NIC
53	domain	Serveur DNS
77	rje	Protocole RJE
79	finger	Finger
80	http	Service WWW
87	link	Liaison TTY
103	X400	Messagerie X.400
109	рор	Protocole POP
₁₄ M. Sibilla	news	Service News 43
158	tcprepo	Répertoire TCP

Quelques ports réservés d'UDP [0, 1023]

Port UDP

Num (décimal)	Application
7	Serveur echo
13	Serveur daytime
19	Serveur chargen
53	Serveur DNS
67	Serveur BOOTP/DHCP
68	Client BOOTP/DHCP
69	Serveur TFTP
123	Serveur NTP

[0, 1024]: ports connus (well-known) attribués par l'IANA(*) [1024, 49151]: ports enregistrés (registrered) mais peuvent être utilisés [49152, 65535]: ports dynamiques et/ou à usage privé (*) IANA: Internet Assigned Numbers Authority

EXEMPLE

EXEMPLE

EXEMPLE

