Inteligentne systemy sensoryczne

Tematy projektów

1. Rezystancyjny układ pomiaru ułożenia palców dłoni operatora oraz transmisji danych pomiarowych.

Materialy:

- [1] H. Liu et al., "A glove-based system for studying hand-object manipulation via joint pose and force sensing," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 6617-6624, doi: 10.1109/IROS.2017.8206575.
- [2] https://www.researchgate.net/publication/319260102_A_Glove-based_System_for_ Studying_ Hand-Object_Manipulation_via_Joint_Pose_and_Force_Sensing
- [3] https://www.reddit.com/r/oculus/comments/2dkrzc/what_if_there_is_another_way_dexmo_a_mechanical/
- 2. Układ pomiarowo wykonawczy pracy włókna wykonanego z materiału Flexinol w celu wyznaczenia charakterystyki zależności długości włókna w funkcji jego rezystancji.

Materialy:

- [1] https://www.dynalloy.com/pdfs/TCF1140.pdf
- [2] Dovica, M., Kelemenová, T., Kelemen, M. (2011). Measurement of the SMA Actuator Properties. In: Jabloński, R., Březina, T. (eds) Mechatronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23244-2_22
- [3] Dominik, I. (2011). Advanced Controlling of the Prototype of SMA Linear Actuator. In Solid State Phenomena (Vol. 177, pp. 93–101). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/ssp.177.93.
- 3. Optyczny pomiar przemieszczenia prowadnicy stosowanej w bronchoskopii z wykorzystaniem analizy obrazu z kamery:
 - a. Zastosowanie układu Nvidia Jetson;
 - b. Zastosowanie układu Google Coral.

Materialy:

- [1] https://github.com/dusty-nv/jetson-inferencehttps://www.pytorchlightning.ai/
- [2] https://coral.ai/docs/dev-board/camera/#connect-a-usb-camera
- [3] https://github.com/google-coral/examples-camera
- [4] https://coral.ai/examples/

- 4. System pomiaru parametrów życiowych pacjenta, takich jak temperatura, impedancja skóry, itp.
 - a. Realizacja z wykorzystaniem Arduino
 - b. Realizacja z wykorzystaniem STM32

Materialy:

- [1] https://blog.arduino.cc/2021/08/24/vital-care-is-an-arduino-based-device-for-the-continuous-monitoring-of-vital-signs/
- [2] https://www.researchgate.net/publication/355464794_GSM_and_Arduino_Based_ Vital Sign Monitoring System#fullTextFileContent
- [3] Wulandari, B., & Jati, M. P. (2021). Design and Implementation of Real-Time Health Vital Sign Monitoring Device with Wireless Sensor-based on Arduino Mega. *Elinvo (Electronics, Informatics, and Vocational Education)*, 6(1), 61-70.
- [4] Ma, Z.Q. and Zhi, Y. (2020) Design and Research of Health Tester System Based on STM32. Open Access Library Journal, 7: e6931. https://doi.org/10.4236/oalib.1106931
- 5. System nadzorowania aktywności człowieka na podstawie wskazań czujnika IMU oraz enkodera (ang. Inertial Measurement Unit).
 - a. Zastosowanie układu STM32
 - b. Zastosowanie układu Raspberry Pi IV (Uczenie głębokie)

Materialy:

- [1] Jaramillo, I.E.; Jeong, J.G.; Lopez, P.R.; Lee, C.-H.; Kang, D.-Y.; Ha, T.-J.; Oh, J.-H.; Jung, H.; Lee, J.H.; Lee, W.H.; et al. Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks. Sensors 2022, 22, 9690. https://doi.org/10.3390/s22249690
- [2] https://www.researchgate.net/publication/365281720_Human_Activity_Recognition_ System_For_Moderate_Performance_Microcontroller_Using_Accelerometer_Data_And_ Random_Forest_Algorithm
- [3] https://ieeexplore.ieee.org/document/9846990
- 6. System pomiarowy tętna (ew. natlenienia krwi) z wykorzystaniem spektroskopii absorpcyjnej IR.

Materialy:

- [1] GUO, D. X., et al. Noninvasive blood glucose measurement based on NIR spectrums and double ANN analysis. Journal of Biosciences and Medicines, 2015, 3.06: 42.
- [2] Javid B, Fotouhi-Ghazvini F, Zakeri FS. Noninvasive Optical Diagnostic Techniques for Mobile Blood Glucose and Bilirubin Monitoring. J Med Signals Sens. 2018 Jul-Sep;8(3):125-139. doi: 10.4103/jmss.JMSS_8_18. PMID: 30181961; PMCID: PMC6116315.
- [3] https://www.instructables.com/Arduino-Based-Pulse-Oximeter-Health-Monitoring/
- [4] https://github.com/eepj/MAX30102_for_STM32_HAL

7.	Lokalizacja w pomieszczeniu zamkniętym na podstawie pomiaru chwilowej wartości pola magnetycznego: a. IMU (ang. Inertial Measurement Unit); b. Urządzenie mobilne wyposażone w magnetometr/kompas (np. telefon komórkowy).
	Materiały: [1] https://ieeexplore.ieee.org/document/6418880 [2] https://ieeexplore.ieee.org/abstract/document/7782316 [3] hhttps://ieeexplore.ieee.org/abstract/document/7042271
8.	Badanie aktywności fazy snu na podstawie tętna oraz aktywności ruchowej.
	Materiały: [1] Artykuły nt. fazy snu i ruchliwości
9.	Tłumacz języka migowego w trybie rozpoznawania gestów określających litery.
	Materiały: [1]
10.	Inteligentny system monitorowania warunków uprawy roślin z wykorzystaniem uczenia maszynowego.
	Materiały: [1]
11.	Inteligentna stacja pogodowa z funkcją interpretacji stanu pogody z wykorzystaniem uczenia maszynowego.
	Materiały: [1]
12.	System wykrywania i identyfikacji zwierząt na podstawie obrazu z kamery monitoringu.
	Materiały: [1]
13.	System korekcji projekcji rzutnika względem pozycji obserwatora.
	Materiały: [1]
14.	System monitorowania parametrów wody użytkowej. Materiały:

[1]

15.	System nadzoru wizualnego i analizy używania parkingu.
	Materiały: [1]
16.	System rozpoznający zwycięzcę gry w papier kamień i nożyce, poprzez rozpoznawanie gestów.
	Materiały: [1]
17.	System rozpoznawania twarzy.
	Materiały: [1]
18.	System pomiaru i analizy sygnału EKG oraz wykrywanie arytmii i innych chorób serca.
	Materialy: [1]
19.	Inteligentny system dostępu za pomocą skanowania rejestracji pojazdów.
	Materiały: [1]
20.	System do wykrywania krwotoku śródtkankowego za pomocą przesunięcia fazowego indukcji magnetycznej (MIPS – ang. Magnetic-Induction Phase Shift).
	Materiały: [1] He Z., Chen J., Chen M., Jin G., Zhuang W., Sun J., Zhao S., Li H., Yang W., Zhou L., Qin M. (2023). A novel sensor system to detect cerebral hemorrhage in rabbits through MIPS. Med Phys. 2023 Apr;50(4):2565-2576. doi: 10.1002/mp.16111. Epub 2022 Dec 3. PMID: 36433681.