

ROYAUME DU MAROC

مكتب التكوين المهنئ وإنعساش الششغل

RESUME THEORIQUE

MODULE N°:15 | METHODES ET OUTILS DE DIAGNOSTIC : FICHES DE TRAVAIL

SECTEUR: REPARATION DES ENGINS A

MOTEUR

SPECIALITE: REPARATION DES ENGINS A MOTEUR

OPTION: AUTOMOBILE

NIVEAU: TECHNICIEN

Raison d'être : Empirisme, Expérience, Diagnostic...

Face à un système inconnu en dysfonctionnement, comparatif de 3 méthodes

	1 Diagnostic Méthode, organisation, réflexion	2 Empirique Echange systématique de composants	3 Expérience Recherche de solutions toutes prêtes
Présentation	Méthode organisée et réfléchie permettant d'éliminer des hypothèses par des mesures et des essais afin d'identifier le ou les dysfonctionnements	Méthode systématique de remplacement de tous les composants du système en dysfonctionnement jusqu'à sa remise en conformité.	Méthode consistant à faire appel à son vécu ou à celui d'un collaborateur utilisant l'historique de la fiabilité des composants pour ne procéder qu'à l'échange de l'élément réputé peu fiable.
Matériel	Doc technique / stylo / multimètres / appareils de diagnostic appropriés	Composants <u>identique</u> Système en dysfonctionnement	Composant <u>identique</u> à celui susceptible d'être en dysfonctionnement et réputé peu fiable
Risques	Aucun	Destruction du 2ème élément	Destruction de l' élément
Avantages	Système connu pour la prochaine fois :le diagnostic sera encore plus court L'état du système complet est vérifié, seule la pièce défectueuse est commandée	Le temps passé peut être très court Aucune connaissance nécessaire	Aucune connaissance nécessaire Le temps passé peut être très court Meilleur rendement car l'utilisation de la fiabilité des composants
Inconvénients	Le temps passé peut être long Facturation des heures ?	Aucune évolution des connaissances Le temps passé peut être très long	Aucune évolution des connaissances Reprise d'une méthode du début si problème non résolu

Conclusion:

2. Synoptique de la méthode de diagnostic :

Objectif final à atteindre voir fiche diag (entourer les zones correspondantes)

3. Classification des dysfonctionnements

Quelque soit le défaut, on doit pouvoir le classer dans ce tableau : Exercice : classer les dysfonctionnements proposés dans ce tableau

Défaut Conception	Défaut Utilisation	Défaut Maintenance	Défaut Usure

4. Recueillir des informations : attention aux règles de politesses

- Il faut identifier le client et le véhicule (voir fiche diag rep 1)
- Il faut lui demander pour quel dysfonctionnement il fait appel à nous (voir fiche diag rep 2)
- Il faut (si possible) reproduire le défaut et reformuler « la plainte du client » (voir fiche diag rep 2)
- Il faut connaître les circonstances d'apparitions de la panne et donc demander
 - o Depuis quand et à quelle fréquence
 - Dans quelles conditions de :

T° moteur, extérieure
De charge
De circulation, de vitesse (voir fiche diag rep 3)

D'utilisation

- Qui assure la maintenance et est elle effectuée
- Quels sont les utilisateurs
- Autres anomalies constatées (finir obligatoirement par cette question : vendre un service)

5. Les contrôles préliminaires

Définitions : Ils sont choisis car : Ils sont très rapides à effectuer (voir fiche diag rep 4)

Ils correspondent à des hypothèses de pannes très fréquentes

Ils ne nécessitent pas l'utilisation d'appareils de mesures

Ils vont cibler des hypothèses de pannes

Exemple : niveaux, fusibles, lecture de la mémoire défaut, présence d'étincelle...

Ces contrôles préliminaires font appel à l'expérience de chacun

Exercice : Pour chaque cas donner 2 ou 3 contrôles préliminaires en respectant la définition

Le véhicule surchauffe	Le véhicule à carburateur ne démarre pas	Le véhicule à injection électronique consomme	La lunette dégivrante ne fonctionne plus	témoin ABS 190E éclairé

6. Emettre des hypothèses et classer par ordre chronologique (voir fiche diag rep 5)

		Classement de	es hypothèses	
Hypothèses de dysfonctionnement	Rapidité du test		Fréquence d'apparition	
	Rapide	Long	Très fréquent	peu fréquent
Où se trouvent les hypothèses de pannes? > Dans la mémoire du technicien expérimenté > Dans la RT : chapitre « Caractéristiques détaillées » et description fonctionnelle du système > Sur un schéma électrique du système > Dans un tableau constructeur de recherche de pannes > Autour d'un actigramme > Sur un schéma synoptique	Accessi l'organe	ils de mesure ibilité de és de réalisation	> Bon ser > Expérie personne	nce

6.1. Le vocabulaire technique est important : Le manque de précision cache le manque de connaissances

Exercice : modifier ces hypothèses avec un langage de technicien.

Moteur explosion mort, lessivé

Electrovanne foutue

Moteur électrique mort, brûlé

Capteur grillé

6.2. Généralisation : Bibliothèque de vocabulaire technique

Mécanique	Electrique	Pneumatique et hydraulique

7. Définition des tests

Il est nécessaire de rechercher une valeur constructeur lorsque l'on mesure :

une résistance d'un capteur, d'une bobine...

Une tension de sortie d'un capteur...

En revanche quelque soit le véhicule ou le système, les valeurs attendues sont les mêmes pour :

Une continuité : Un isolement : Une alimentation : Résistance de fils Haute-Tension

8. Essais et mesures

Face à une valeur relevée différente de la valeur constructeur, 3 réflexes :

- 1) La valeur constructeur n'est pas la bonne, mauvaise identification du véhicule, du composant...
- 2) Les conditions de mesures ne sont pas respectées : contact mis ou coupé, calculateur débranché...
- 3) L'appareil de mesure n'est pas fiable : résistance des fils, piles usagées, calibrage...

Si on peut répondre non à ces 3 propositions, alors on est face à un défaut

9. Validation du dysfonctionnement diagnostiqué

Ne pas pouvoir classer le défaut diagnostiqué signifie que l'on est pas remonté à l'origine de la panne !

Exemple : le moteur ne démarre pas ⇒diag injection ⇒ Circuit puissance du relais pompe à essence non passant (contacts brûlés)...

Fiche de diagnostic							Le /	/200
Client				Véhicule :			_	_
Nom		2 :		^e mise en c	circulation	1	Type mine	Kms
	2 :							
Rappel plainte clie	ent							
Questions client :	Gu	idées par la c	lassificati	on des défa	auts (ch. 3) et	nar s	ouci de recue	illir des
>		os permettant						
>								
>								
Contrôles prélimir	naires	Ce sont des	tests que	e l'on va eff	ectuer avant	de lan	cer la procédi	ıre de
		diagnostic.						
Légende :								
Legende .								
			Cond	itions de	Valeurs o	u	Valeurs ou	Carrature!
Hypothèses		Tests		esure	constats		constats	Conclusions Actions
	<u> </u>				attendus	5	relevés	
Hypothèses								
classées et								
ordonnées		Exemples :	1					
Voir ch6		Tests électriques						
All di			CM 4 . CI	<u> </u>			Essais et m	
Alimentation moteur	V entr	Vantro 6 ot 1		CM+CD+ SH 8 et //			l'atel	ier
				<i>. m</i>			\dagger	
Continuité du fil	Ω enti	re 1 et 2	CD		$R \leq 1\Omega$	⊢		
Isolement du fil	Oonti	Ω entre 3 et \mathscr{L}			D 00		Ne jamais changer	
130icinent da III	32 6110		CD		$R = \infty$		un boîti	er ou
Résistance bobine	Ω enti	re 15 et 1			Voir RTA		organ	
							comman	
Fonctionnement pompe essence	ΔΠΩΙΤΙΤ		Demari	reur	Pompe tourne	rne	avoir v	
							l'actua	
							correspo	ndant
						L		
Composants en dysfonctionneme	nt	Suite au	ıx compa	raisons ent	re valeurs atte	endue	s et valeurs re	elevées
	Origine du défaut Autres composants responsables du dysfonctionnement ci dessus							
Origine du défaut	Auti	es composan	is respon	รลมเ ป ร นัน (aysioniclionne	HILETIC		ramme ch 7
Voir organigramme ch.7 Qu'est ce qu'a pu entraîner ce dysfonctionnement								
Conséquences possibles Qu'est ce qu'à pu entramer ce dysionictionnement								
Proposition de rer	nise en	conformité	Messag	e clair à l'at	tention du cli	ent dé	houchant	
	Proposition de remise en conformité Message clair à l'attention du client débouchant sur un devis et/ou sur une remise en conformité							
sur un devis evou sur une remise en comonnite								

		Fiche de diagnos	tic	Le /	/200		
	Client	Véhicule :					
Nom	2 :	1 ^{ère} mise en c	irculation	Type mine	Kms		
Rappel plainte cli	ent						
Questions client :							
<u> </u>							
Contrâles publimi	!						
>							
Légende :							
Hypothèses	Tests	Conditions de mesure	Valeurs ou constats attendus	Valeurs ou constats relevés	Conclusions Actions		
Composants en dysfonctionnement							
Origine du défaut							
Conséquences possibles							
Proposition de re	Proposition de remise en conformité						

RESSOURCE

Interprétation d'un "message de défaut" signalé par un appareil de diagnostic

Lorsque les appareils de diagnostic signalent un défaut sur un capteur ou un actionneur, ils indiquent la plupart du temps que <u>la fonction correspondante</u> (à ce capteur ou cet actionneur) n'est pas <u>remplie.</u>

Exemple : Le message "Défaut capteur régime moteur" ne signifie pas nécessairement que le capteur régime est défectueux. L'appareil de diagnostic indique, par ce message, que l'information "régime moteur" n'est pas reçue ou traitée correctement par le calculateur

Le technicien doit alors émettre les hypothèses suivantes

Hypothèses	Conséquences
Mauvaise condition de mesure	Absence (ou incohérence) du
Exemple : Mesure effectuée moteur à l'arrêt alors que la procédure prévoyait une mesure moteur tournant	paramètre à mesurer
Mauvais positionnement du capteur Exemple : L'entrefer (la distance) entre le capteur et la cible tournante est trop grand. Capteur défectueux.	Paramètre à mesurer non traduit en signal électrique "utilisable" par le calculateur
Liaison capteur /calculateur défectueuse : Défaut de connectiques ou fil coupé	Signal électrique non transmis au calculateur
Calculateur défectueux	Mauvais traitement du signal reçu.

Puis le technicien doit d'abord vérifier toutes les hypothèses "externes" au calculateur.

Si toutes les hypothèses "externes" sont hors de causes (le "bon signal" est bien reçu par le calculateur), il faudra changer le calculateur.

Travaux Pratiques:

Définir et contrôler les paramètres du circuit d'admission d'air du système d'injection essence

-			-		•
7	h	\sim	^+	-	•
u	LJ		ct		
_	╼.	_	••		_

□Être capable d'identifier et d'appréhender le fonctionnement des éléments mesurant la quantité d'air
admise par le moteur.
□Être capable de contrôler le capteur de pression collecteur par la réalisation de sa courbe de
fonctionnement.

MATÉRIELS. CONSOMMABLES ET DOCUMENTS NÉCESSAIRES

□La revue technique du véhicule	
□Une fiche de relevé des contrôles	
□L'outillage courant	
□Un véhicule à injection essence multipo	int
□Un manomètre de pression-dépression	
□Un outil de diagnostic	
□Un multimètre	

ORGANISER SON POSTE DE TRAVAIL

On vous demande de :

- Identifier les éléments qui composent le circuit d'air du système d'injection essence du véhicule.
- Répondre aux questions de la fiche compte rendu.
- Mettre en place l'outil de diagnostic en « mesures paramètres ».
- Mettre en oeuvre le matériel pour relever le signal du capteur de pression d'air.
- Représenter le signal.

La courbe doit être claire et propre. Les axes doivent être référencés et légendés.

1- Relever les informations concernant le véhicule, le moteur et le système d'injection.

RÉALISER L'INTERVENTION

Désignation commerciale :	
Répartiteur (ou collecte	eur) d'admission d'air

- 3- Identifier et colorier en bleu sur les trois schémas électriques de la gestion moteur du véhicule les éléments présents sur le circuit d'admission d'air.
- 4- Observer sur le moteur (à l'arrêt, contact mis), et à l'aide de l'outil de diagnostic, les éléments dont le paramètre de fonctionnement varie par l'action du conducteur sur la pédale d'accélérateur.

Paramètres visualisés sur l'outil de diagnostic		Valeur relevée au régime de ralenti		Valeur relevée au régime de 2 000 tr/min		Éléments permettant de fournir l'information au calculateur			
d'admission, à l ». Compléter le	'aide de	l'outil de di	agnostic ou	(paramètre et sig d'une pompe ma ire en donnant ora	nuélle à	pressio	n-dépre	ession e	t d'un «
Affectation de Numéro du (c				ons entrée ou sor ur (alimentation,	ie		ectation du calci	des voi	es
Voies du capteur	Numé	ro des fils nnecteur		ignal, etc.)	et	mbre de couleur connec	voie	Voies calcul	
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	s accélérer lenten r ou du capteur de pression en fonction	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)
ndiquer la voie Pointe rouge : . Pointe noire :	et le co	nnecteur du	ı calculateur	r ou du capteur de	s pointe	s de me	esure 		J = f(P)

CONTROLER UN CIRCUIT D'ALIMENTATION DIESEL HAUTE PRESSION

Ob	ojectifs:
	Être capable d'identifier les composants du système.
	Être capable de contrôler les composants du système.
M	ATÉRIELS, CONSOMMABLES ET DOCUMENTS NÉCESSAIRES
	La revue technique du véhicule
	Une fiche de relevé des contrôles
	L'outillage courant
	Un véhicule à injection Diesel Haute pression
	Un outil de diagnostic
	Un multimètre

ORGANISER SON POSTE DE TRAVAIL

On vous demande de :

- D'identifier et de repérer les composants du système
- De citer les précautions liées à l'intervention
- D'effectuer les mesures de pression et de débit
- D'interpréter les résultats des mesures
- De réaliser une lecture de paramètre moteur
- De citer les causes d'un éventuel dysfonctionnement

RÉALISER L'INTERVENTION

Consignes de sécurités

Le système d'injection haute pression utilise des composants hydrauliques de grande précision. Les conditions de fonctionnement extrêmes, telles que la pression (supérieure à 1200 bars), la température du carburant (plus de 100°C) et des durées d'injection très courtes, font que « l'équilibre » du système est lié à la qualité du montage de l'ensemble. C'est pourquoi, il est impératif de prendre certaines précautions

a) Précautions individuelles

Parmi les règles de bases, citons :

- arrêter impérativement le moteur avant toute intervention sur le système d'injection
- ne pas fumer
- juste après l'arrêt du moteur attendre au minimum 30s que la pression hydraulique chute dans le circuit,
- travailler seul dans le proche périmètre du véhicule
- éviter de se pencher au-dessus du moteur en fonctionnement : risques de fuites ou même de projections de gazole en cas de fissure sur les tubes HP de la rampe ou des injecteurs (raccord desserrés). Les projections entraînent des brûlures ou des injections sous cutanées qui peuvent provoquer un empoisonnement.

Dans ce cas, il est impératif de consulter un service d'urgence approprié.

b) Les dangers électriques

Lors des interventions, le courant mis en oeuvre peut atteindre une tension de 80 volts et une intensité de 22 à 25 Ampères en courant continu ; or le domaine de la très basse tension en courant continu est compris entre 0 et 140 volts. Il n'y a donc pas de risque d'électrocution.

c) Précautions en regard de l'équipement

Comme il a été précisé ci-dessus, ce type d'équipement est fabriqué avec le plus grand soin. Le même soin doit être appliqué lors d'une intervention en après-vente :

- Un environnement proche du véhicule à l'abri notamment de la poussière
- Les opérations de dépose / repose sont effectuées conformément au prescriptions du constructeur (consigne de remontage, couple de serrage à respecter...) sans oublier le bouchonnage
- Retarder au maximum l'ouverture des emballages et la dépose des différents éléments
- Ne pas nettoyer avec de l'eau ou de l'air sous pression mais avec du solvant et une aspiration.
- Utiliser des chiffons non pelucheux et qui ne se désagrègent pas.

Procédure de contrôle des pressions du circuit Basse Pression Installation des manomètres de pression :

1 : pression d'alimentation ; 2 : retour de basse pression

Interprétation des résultats :

Conditions de mesures :

→ Moteur tournant

 \rightarrow Arrivée : 2,6 ± 0,4 bars \rightarrow Retour : 0,8 ± 0,2 bars

Pression d'arrivée	Pression de retour	Contrôle
Supérieur à 3 bars	Inférieur à 0,6 bars	Vérifier l'état du filtre à gazole. (filtre colmaté)
Supérieur à 3 bars	Supérieur à 1 bar	Vérifier le régulateur BP intégré au filtre (bloqué fermé) : échange du bloc.
Supérieur à 3 bars	Inférieur à 0,6 bars	Vérifier le circuit de retour de carburant (pincement).
Inférieur à 2,2 bars	Inférieur à 0,6 bars	Vérifier le circuit d'arrivée de carburant : alimentation électrique, pompe de gavage, canalisation.

[⇒] Sur le schéma ci-dessous, identifier tous les éléments du circuit d'alimentation diesel haute pression.

I : réservoir	8:
<u> </u>	9 : canalisation haute pression
3 :	10 :
1 : réchauffeur combustible	11 :
5:	12 :
6 : poulie pompe haute pression	13 : canalisation retour réservoir
7 ·	14 · refroidisseur air/comhustible

- ⇒ Sur le véhicule, identifier tous les éléments du circuit d'alimentation diesel haute pression.
- ⇒ Sur le véhicule, identifier les tuyaux BP du bloc filtre à gasoil et préparer les raccords nécessaire à l'installation des manomètres de pression.
- ⇒ Citer les précautions à prendre lors d'une intervention sur un élément du système d'alimentation diesel haute pression.

.....

- ⇒ Sur le schéma électrique page 10/10, entourer la pompe à carburant et les injecteurs.
- ⇒ Sur le schéma électrique page 10/10, surligner en couleur, l'alimentation de la pompe à carburant.
- ⇒ Raccorder les manomètres de pression au véhicule.

Effectuer les mesures et reporter vos résultats dans le tableau ci-dessous :

Contrôle	Valeur constructeur	Valeur relevée	Conclusion
Pression : Arrivée Basse pression			
Pression : Retour réservoir			
Débit pompe à carburant			

- ⇒ Ranger les manomètres et reposer les raccords basses pressions du bloc filtre à gasoil.
- ⇒ Raccorder l'appareil de diagnostic au véhicule.
- ⇒ A l'aide de la fonction « lecture paramètres » de l'appareil de diagnostic, compléter le tableau cidessous : (précisez le **unités)**

Paramètres / Régime moteur	Régime ralenti ≈ 800 tr/min	Régime moyen ≈ 3000 tr/min
Haute pression carburant		
Tension injecteur		
Débit (quantité injectée)		
Durée pré-injection		
Désactivation 3° piston (oui ou non)		

- ⇒ Ranger le matériel et préparer le véhicule à la livraison
- ⇒ A partir du tableau ci-dessous, proposer des hypothèses de pannes :

Mesures effectuées au régime ralenti :

Contrôle	Valeur constructeur	Valeur relevée	
Arrivée basse pression	2,6 ± 0,4 bars	1,5 bars	
Retour réservoir	0,8 ± 0,2 bars	0,4 bars	

Hypoth	nèses de pannes :
•	
•	
•	
•	

Nomenclature du schéma électrique page 10/10 :

ÉLÉMENTS	
BB00. Batterie.	
BB12. Borne + de liaison dans le compartiment moteur.	
BCP3. Boîtier de commande de réchauffeur du circuit de refroidissement.	
BH28. Boite à fusibles habitacle (platine à 28 fusibles).	
BM34. Boite à fusibles compartiment moteur (platine à 34 fusibles).	
BS11. Boitier de servitude intelligent.	
C001. Connecteur de diagnostic.	
CA00. Contacteur à clé.	
0004. Combiné d'instruments.	
1010. Démarreur.	
1115. Capteur de position d'arbre à cames.	
1150. Boîtier de pré/postchauffage.	
1160. Bougies de préchauffage.	
1190. Bougies de réchauffage,	
1203. Contacteur à inertie.	
1208. Désactivateur du 3e piston de la pompe HP.	
1211. Ensemble pompe d'alimentation/jauge à combustible.	
1220. Sonde de température de liquide de refroidissement.	
1221. Sonde de température de combustible.	
1253. Électrovanne EGR.	
1261. Capteur de position d'accélérateur.	

- 1320. Calculateur de gestion moteur.
- 1321. Capteur haute pression de combustible.
- 1322. Régulateur haute pression de combustible.
- 1331. Injecteur cyl. n°1.
- 1332. Injecteur cyl. n°2. 1333. Injecteur cyl. n°3.
- 1334. Injecteur cyl. Nº4.
- 15-. Vers circuit de refroidissement.
- 1506. Résistance de motoventilateur de refroidissement (0,8 ohm).
- 1508. Relais 1re vitesse de motoventilateur de refroidissement.
- 1509. Relais de 2e vitesse de motoventilateur de refroidissement.
- 1510. Motoventilateur de refroidissement.
- 1514. Relais inverseur.
- 1519. Résistance de motoventilateur de refroidissement (0,54 ohm).
- 1620. Capteur de vitesse véhicule.
- 2100. Contacteur de feux de stop.
- 2300. Interrupteur des feux de détresse (avec témoin d'antidémarrage).
- 7025. Calculateur ABS.
- 7045. Contacteur d'embrayage.
- 80--. Vers circuit de climatisation.
- 8007. Pressostat de climatisation.
- 8220. Boîtier transpondeur d'antidémarrage.

MASSES

M000. Masse de batterie sur caisse. MM01. Masse sur boîte de vitesses.

Schéma électrique Peugeot 306 HDI

1263. Électrovanne de boîtier doseur.

1313. Capteur de régime et de position vilebrequin.

1276. Réchauffeur de combustible. 1304. Relais double de gestion moteur.

1310. Débitmètre d'air.

Contrôle des émissions polluantes à l'échappement et intervention sur le système d'allumage. ☐ Effectuer l'analyse des gaz d'échappement. □Vérifier l'état des bougies d'allumage. □ Vérifier l'état d'un dispositif antipollution. □ Contrôler les émissions des gaz d'échappement MATÉRIELS, CONSOMMABLES ET DOCUMENTS NÉCESSAIRES □La revue technique du véhicule □Une fiche de relevé des contrôles □□L'outillage courant □ Véhicule léger essence après 1996. ☐ Analyseur de gaz avec rapport lambda. Outil de diagnostic généraliste ou de marque. (Pour relever de la tension moyenne de la sonde lambda). **ORGANISER SON POSTE DE TRAVAIL** On vous demande de : Question: En fonction du type de montage de système d'injection dont votre véhicule est équipé, inspecter toutes les zones susceptibles d'occasionner une prise d'air à l'admission. Montrer précisément à votre professeur ces zones. (Voir doc ressource) Types de montage cocher A débitmètre A capteur de pression. Question: Noter la date de validité de l'analyseur de gaz. (Etiquette de contrôle verte) Date de validité..... expire le : Question: Après préchauffage de l'analyseur de gaz, indiquez le pourcentage d'oxygène présent dans l'air ambiant. (Sonde de mesure en dehors du pot d'échappement) Pourcentage d'oxygène dans l'air ambiant. Question:

Question:

- Relevez les valeurs des émissions polluantes lues sur l'analyseur de gaz, au ralenti et à charge partielle. Indiquer le cas échéant les valeurs hors norme, en les entourant.

Quelles conditions de mesure de régime moteur, devez-vous observer pour contrôler les

émissions polluantes à l'analyseur de gaz.

Valeurs lues sur l'analyseur de gaz au ralenti .						
%CO	%CO2	HCppm	%O2	Valeur LAMBDA		

Question:

Quel conseil vous donnez à votre client si la valeur CO% se trouve supérieur à
 0.3% et quel élément principal pourrait être mis en cause.

Elément(s) principal(aux) pouvant être mis en cause.	
Conseil(s) à donner au client.	

Question:

- Quelle valeur de tension émise par la sonde O₂, correspond à une richesse de mélange (ou valeur lambda) égale à 1.

Question:

- Relevez la valeur de tension au régime de ralenti, émise par la sonde lambda. (Sonde amont si 2 sondes O₂)

à l'aide de l'outil d'aide au diagnostic.

Uminilamda =.	U _{maxilamda =} .	Umoyenlamda =.	
Uminilamda =.	U _{maxilamda =} .	Umoyenlamda =.	

Question:

 Que pensez-vous de du type de combustion du moteur, (cocher le type de dosage correspondant).

Dosage stœchiométrique.	
Dosage pauvre.	
Dosage riche.	

DOCUMENT RESSOURCE (contrôle des émissions polluantes à l'échappement et intervention sur le système d'allumage).

Contrôles préliminaires avant analyse des gaz d'échappement :

- Allumage en bon état et bien réglé,
- Vidange dans la première moitié de l'espacement de vidange
- Filtre à air propre.
- Moteur en état et réglage du jeu aux soupapes ajusté.
- Système d'admission, d'injection en parfait état.
- Echappement en bon état et étanche
- Appareil de contrôle chaud (le brancher à l'avance pour ne pas perdre de temps)
- Pour les véhicules équipés de deux sorties d'échappement relier les deux par un collecteur externe dans lequel on introduira la sonde
- ♣ Appareil en bon état de fonctionnement (tuyauterie, filtres...)
- Système d'aspiration des gaz de carter non obturé

Réglage: Moteur chaud

Système de départ à froid hors service (Automatique ou manuel)

Température d'huile à 60° minimum.

Régime de ralenti préconisé par le constructeur,

Boite de vitesses automatique sur position « parking » P.

Moto ventilateur non enclenché lors de la lecture des valeurs.

Contrôler les valeurs de CO ; CO2 ; O2 ; HC et valeur lambda, puis les comparer avec les valeurs préconisées par le constructeur.

Si besoin, ajuster la valeur de CO par la vis de richesse puis ajuster de nouveau le régime de ralenti.

Vérifier et recommencer l'opération si besoin.

Terminologie:

Coefficient d'air lambda ou valeur lambda (u sur l'analyseur : pourcentage d'O2 contenu dans les gaz d'échappement définissant la richesse de la combustion.

Sonde lambda ou sonde O₂: capteur permettant de transformer le coefficient d'O₂ contenu dans l'échappement, en signal électrique.

Tension émise par la sonde lambda	Type de combustion associé.
800 mV	Combustion pauvre.
450 mV	Combustion stœchiométrique.
150 mV	Combustion riche.

Canister :_Dispositif permettant de recycler les gaz de carter au lieu de les rejeter dans l'atmosphère.

Ressource sur les normes d'émissions en polluant des gaz d'échappement.

Appellation

ancienne appellation	nouvelle appellation
Depuis 1/01/1996 jusqu'à 1/01/2000 EURO 96	EURO 2
De 1/01/2000 Au 1/01/2005 EURO 2000	EURO 3 (Apparition de l'EOBD)
Depuis 2005 EURO 2005	EURO 4

Normes de contrôle

véhicules non catalysés à injection ou carburateur.			
1ère mise en circulation	avant le 1/10/1972	du 1/10/72 au 30/9/86	à partir du 1/10/86
CO contrôle technique	non soumis à contre-visite	4.5 % maxi	3.5 % maxi

véhicules catalysés				
	au ralenti	au ralenti accéléré		
СО	0.3 % maxi	0.5 % maxi		
Valeur Lambda ou coefficient d'air.	-	0.97 à 1.03		

Nota : Depuis la norme EURO 3, les véhicules essences possèdent 2 sondes lambda.

SONDE LAMBDA AVAL.

L'ajout d'une sonde Lambda en aval du pot catalytique permet de surveiller l'efficacité de ce dernier, d'améliorer la précision de la régulation de richesse, et aussi de contrôler l'état de la sonde amont.

DETECTION DE L'ETAT DU POT CATALYTIQUE.

Au moyen des deux sondes à oxygène amont et aval, on est en mesure d'identifier, en analysant leurs signaux respectifs, un catalyseur en bon état d'un catalyseur inefficace, voire détruit.

Ressource maintenance des bougies d'allumage.

Description de l'état des électrodes.

1) Fonctionnement normal:

Bec de l'isolant gris clair.

2) Dépôts de cendres importants :

Lubrifiant non adapté ou quantité trop importante en haut de cylindre.

3) Encrassement par la calamine :

Mélange carburé trop riche, degré thermique trop faible.

4) Encrassement par huile:

Remontée d'huile par des éléments moteurs usés (segments, guides de soupapes ou cylindre endommagés).

5) Surchauffe:

Excès d'avance à l'allumage, utilisation d'un carburant à indice d'octane trop bas, mélange carburé trop pauvre.

6) Vitrification du bec de l'isolant :

Mauvaise carburation, avance à l'allumage non conforme, additifs contenus dans les carburants.

7) Préallumage:

Même éléments qu'en cas de surchauffe, mais aggravés.

8) Isolant fendu ou cassé:

Cliquetis, moteur mal refroidi, excès d'avance, m »lange trop pauvre, indice d'octane du carburant mal adapté.

Ressource vérification de la tension moyenne délivré par la sonde lambda.

EVOLUTION DE LA TENSION DE LA SONDE O2 EN FONCTION DU COEFFICIENT D'AIR.

Signal de la sonde Lambda

Vérification du système d'admission d'air.

Est considéré comme « prise d'air » tout orifice anormalement crée sur le conduit d'admission autorisant la pénétration d'air n'étant pas mesuré par le système de carburation.

L'effet est un appauvrissement très important, causant un régime de ralenti très bas et très irrégulier, une mauvaise combustion, une perte de puissance et une surconsommation également très importante.

De plus cette quantité n'est pas filtrée et des impuretés peuvent être aspirées par le moteur. Elle ne peut avoir lieu qu'entre le système de mesure de la masse d'air et la soupape d'admission :

Ex: système à débitmètre volumique ou massique

<u>Ex :</u> système à mesure indirecte à capteur de pression admission. (Pression/vitesse)

Vérification du fonctionnement du voyant de surveillance EOBD.

L' EOBD (European On Board Diagnosis) est un règlement européen accompagnant la norme **EURO 3**.

L' EOBD vise à signaler au conducteur par l'intermédiaire du voyant de diagnostic moteur tout défaut affectant la dépollution par dépassement d'un seuil .

- L' EOBD est un logiciel de surveillance intégré au calculateur de contrôle moteur, il a deux fonctions principales :
- détecter les défaillances de l'équipement antipollution du véhicule
- signaler au conducteur les défaillances qui entraînent un dépassement d'un seuil d'émission, afin qu'il puisse faire réparer le véhicule

EOBD					
nouveaux types tous types					
essence * 01/01/2000 01/01/2001					
Diesel * 01/01/2003 01/01/2004					
(*) sauf véhicules dont la masse est supérieure à 2500 kg					

Les fonctions surveillées par le système EOBD sur les véhicules essence sont :

- Ratés d'allumage.
- Efficacité du catalyseur (surveillance des HC).
- Etat des sondes à oxygène. Amont et aval.
- ♣ Tous composants dont la défaillance peut entraîner un dépassement des valeurs limites d'émissions tolérées (injection d'air, EGR).
- 4 Continuité du circuit de l'électrovanne de purge du canister.

Contrôler les éléments constitutifs d'un système d'allumage

Objectifs:	0	b	ie	ct	if	s:
------------	---	---	----	----	----	----

 Contrôler les éléments d'un système d'allumag 	е
□ldentifier les éléments sur un schéma électrique	€.

MATÉRIELS, CONSOMMABLES ET DOCUMENTS NÉCESSAIRES

□La	revue	technic	iue du	véhicule

- □Une fiche de relevé des contrôles
- □L'outillage courant
- □bobine et moteur au banc ou véhicule
- □Un multimètre

ORGANISER SON POSTE DE TRAVAIL

- les éléments du système sont identifiés sur le schéma électrique
- les fils sont correctement repérés sur le schéma électrique
- les éléments du système sont identifiés
- les informations nécessaires sont collectées
- le compte rendu de l'intervention est le plus juste possible
- les mesures et contrôles sont réalisés
- le travail réalisé est évalué en présence du professeur (oralement)
- les situations dangereuses sont identifiées

RÉALISER L'INTERVENTION

Tous les résultats indiqués sans unités seront considérés comme faux.

A l'aide du dossier ressource, on vous demande de compléter le tableau ci-dessous en effectuant les contrôles demandés.

⇒ Contrôle d'une bobine d'allumage :

7 Controle a arte	poblite d'allufflage .			
Eléments	Résistance primaire constructeur	Résistance primaire mesurée	Résistance secondaire constructeur	Résistance secondaire mesurée
Bobine n°1	0.7 à 1Ω		5.5 à 7.5KΩ	
Bobine n°2	0.7 à 1Ω		9 à 12KΩ	
Bobine n°3	26 à 30Ω		Non contrôlable	

Outre les contrôles de résistance, lorsque l'on intervient sur un véhicule, on doit naturellement contrôler l'alimentation de la bobine.

⇒ Contrôle d'un capteur de position et de régime moteur (capteur de PMH)

Elément	Type de contrôle	Valeur constructeur	Valeur trouvée
Capteur de PMH		60 à 100Ω	

Vous allez maintenant contrôler un système complet d'allumage.

Identification du véhicule :

Marque :	Appellation commerciale :
Type mine :	Type moteur :

Identification du système d'allumage :

⇒ Le système d'allumage et le système d'injection sont-ils gérés par le même calculateur

Oui	Non	
-----	-----	--

⇒ Marque et type du système d'allumage:.....

⇒ Ce système est de type :

Allumage distribué	Allumage simultané (jumostatique)	Allumage statique direct. (une bobine par cylindre)
--------------------	--------------------------------------	--

Sur le schéma électrique du système :

- ⇒ Identifier en les entourant, la ou les bobines d'allumage et le capteur de PMH.
- ⇒ Surligner en couleur le fil d'alimentation +12V de la bobine.

Contrôle du système d'allumage :

Contrôles à effectuer	Valeur constructeur	Valeur trouvée	Matériel utilisé	Valeur correcte : oui ou non
Référence des bougies				
Ecartement des électrodes				
Alimentation de la bobine. (bobine débranchée et contact mis)				
Résistance primaire				
Résistance secondaire				
Résistance du capteur de régime et position				
Entrefer du capteur de régime et position				
Contrôle antipollution.				

[⇒] Compléter les tableaux suivants en fonction du véhicule et du moteur.

2- ⇒ Compte rendu de l'intervention :		
Après contrôle du circuit d'allumage sur le véh	icule, j'ai pu constater que…	
⇒ Dans le tableau ci-dessous identifier les risc		
SITUATIONS DE TRAVAIL		
Liste des opérations successives	Phénomènes à risques observables	
Entourer le phénomène à risque le plus im Effets sur l'individu :	portant	
1		