

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2023

Práctica 5: Integrales impropias.

- 1. Para a>0, determine el caracter de la integral impropia $\int_a^\infty x^r\ dx$, para los diferentes valores reales del parámetro r. Además, halle el valor de las que resulten convergentes.
- 2. Demuestre que las siguientes integrales impropias son convergentes:

$$a) \int_0^\infty \frac{1}{1+x^2} \ dx$$

b)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx.$$

- 3. Suponga que f es una función continua en \mathbb{R} tal que existe $\int_0^\infty f(x)dx = I$. ¿Qué puede decirse de $\int_0^\infty f(x)dx$ si f es par? ¿Y si f es impar?
- 4. Pruebe que si existe $\lim_{x\to\infty} f(x)$ y la integral impropia $\int_a^\infty f(x)$ es convergente, entonces $\lim_{x\to\infty} f(x) = 0$.
- 5. Si f y g son dos funciones reales no negativas definidas en $[a, \infty)$, entonces valen las siguientes afirmaciones.
 - a) La integral impropia $\int_a^\infty f(x)\ dx$ converge si y sólo si existe una constante M>0 tal que, $\int_a^b f(x)dx \le \int_a^b f(x)dx$ M para todo b > a.
 - b) Suponga que se verifica la desigualdad $g(x) \leq f(x)$ para todo $x \geq a$. Entonces,
 - I) si la integral impropia $\int_a^\infty f(x)dx$ converge, entonces también es convergente la integral impropia $\int_{a}^{\infty} g(x)dx,$
 - II) por otro lado, si la integral impropia $\int_a^\infty g(x)dx$ es divergente, entonces también lo es la integral impropia $\int_{a}^{\infty} f(x)dx$.
 - c) Más aún, muestre que si existe c > 0, tal que $g(x) \le c$ f(x) para todo $x \ge a$, también valen los enunciados

1

- d) Si g > 0 y existe $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \ell > 0$, entonces $\int_a^\infty f(x) \ dx$ y $\int_a^\infty g(x) dx$ comparten carácter.
- 6. Decida si son convergentes las siguientes integrales impropias:

$$a) \int_0^\infty \frac{1}{\sqrt{1+x^3}} dx$$

a)
$$\int_0^\infty \frac{1}{\sqrt{1+x^3}} dx$$
 b) $\int_0^\infty \frac{x}{1+x^{3/2}} dx$ c) $\int_0^\infty e^{-x^2} dx$ d) $\int_0^\infty x e^{-x} dx$

$$c) \int_0^\infty e^{-x^2} dx$$

$$d) \int_0^\infty x e^{-x} dx$$

7. Pruebe que para cada $n \in \mathbb{N}$, $\int_{0}^{\infty} x^{n} e^{-x} dx = n!$.

- 8. Para a > 0, determine el caracter de las integrales impropias $\int_0^a \frac{1}{x^r} dx$ para los diferentes adecuados valores de r > 0, y halle el valor de las convergentes.
- 9. a) Halle $\int_a^0 |x|^r dx$ para a < 0 y -1 < r < 0.
 - b) Demuestre que $\int_0^\infty x^r \ dx$ nunca tiene sentido. Distinga los casos $r > 0, \, -1 < r < 0$ y r < -1.