Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: All Right

- Homework assignment published on Monday, 2018-03-05.
- Work on it and submit a first solution or questions by Sunday, 2018-03-11, 12:00 by email to me and the TAs.
- You will receive feedback by Wednesday, 2018-03-14.
- Submit your final solution by Sunday, 2018-03-18 to me and the TAs.

2 Partial Orderings

2.1 Equivalence Relations as a Partial Ordering

An equivalence relation $R \subseteq V \times V$ is basically the same as a partition of V. A partition of V is a set $\{V_1, \ldots, V_k\}$ where (1) $V_1 \cup \cdots \cup V_k = V$ and (2) the V_i are pairwise disjoint, i.e., $V_i \cap V_j = \emptyset$ for $1 \le i < j \le k$. For example, $\{\{1\}, \{2,3\}, \{4\}\}$ is a partition of $\{1,2,3,4\}$ but $\{\{1\}, \{2,3\}, \{1,4\}\}$ is not.

Exercise 2.1. Let E_4 be the set of all equivalence relations on $\{1, 2, 3, 4\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 \mid R_1 \subseteq R_2\})$$

is a partial ordering.

- 1. Draw the Hasse diagram of this partial ordering in a nice way.
- 2. What is the size of the largest chain?

4.

3. What is the size of the largest antichain?

7.

2.2 Chains and Antichains

Define the partially ordered set (\mathbb{N}_0^n, \leq) as follows: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$. For example, $(2, 5, 4) \leq (2, 6, 6)$ but $(2, 5, 4) \not\leq (3, 1, 1)$.

Exercise 2.2. Consider the infinite partially ordered set (\mathbb{N}_0^n, \leq) .

- 1. Which elements are minimal? Which are maximal?
- 2. Is there a minimum? A maximum?
- 3. Does it have an infinite chain?
- 4. Does it have arbitrarily large antichains? That is, can you find an antichain A of size |A| = k for every $k \in \mathbb{N}$?

*Exercise 2.3. Does every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain?

Exercise 2.4. Show that (\mathbb{N}_0^n, \leq) has no infinite antichain. **Hint.** Use the previous exercise.

Consider the induced ordering on $\{0,1\}^n$. That is, for $x,y \in \{0,1\}^n$ we have $x \leq y$ if $x_i \leq y_i$ for every coordinate $i \in [n]$.

Exercise 2.5. Draw the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n=2,3.

Exercise 2.6. Determine the maximum, minimum, maximal, and minimal elements of $\{0,1\}^n$.

Exercise 2.7. What is the longest chain of $\{0,1\}^n$?

**Exercise 2.8. What is the largest antichain of $\{0,1\}^n$?

2.3 Infinite Sets

In the lecture (and the lecture notes) we have showed that $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$, i.e., there is a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. From this, and by induction, it follows quite easily that $\mathbb{N}^k \cong \mathbb{N}$ for every k.

Exercise 2.9. Consider \mathbb{N}^* , the set of all finite sequences of natural numbers, that is, $\mathbb{N}^* = \{\epsilon\} \cup \mathbb{N} \cup \mathbb{N}^2 \cup \mathbb{N}^3 \dots$ Here, ϵ is the empty sequence. Show that $\mathbb{N} \cong \mathbb{N}^*$ by defining a bijection $\mathbb{N} \to \mathbb{N}^*$.

Proof. First we can proof $\{0,1\}^* \cong \mathbb{N}$: Formally, we can define a function:

$$f_1: \{0,1\}^* \to \mathbb{N}, \forall a = (a_1^{(n)}, a_2^{(n)}, a_3^{(n)}, \dots, a_n^{(n)}) \in \{0,1\}^*, a_i^{(n)} = 0 \text{ or } 1, i = 1, 2, \dots, n$$

$$\to 10^n + \sum_{i=1}^n 10^{i-1} a_i^{(n)}$$

For example: $f_1(001010) = 1001010_{10}$. Then we can define another function:

$$f_2: \mathbb{N} \to \{0,1\}^*, decimal \quad number \to binary$$

For example: $f_2(16) = 10000$. So we get the conclusion:

$$\{0,1\}^* \cong \mathbb{N} \tag{1}$$

Secondly, we can proof $\{0,1\}^* \cong \mathbb{N}^*$:

Define a function:

$$f_3: \{0,1\}^* \to \mathbb{N}^*, x \to x$$

Another function:

$$f_4: \mathbb{N}^* \to \{0, 1\}^*, \forall a = (a_1^{(n)}, a_2^{(n)}, a_3^{(n)}, \dots, a_n^{(n)}) \in \mathbb{N}^*, a_i^{(n)} \in \mathbb{N}, i = 1, 2, \dots, n$$

 $\to (a_1^{(n)}\%2, a_2^{(n)}\%2, a_3^{(n)}\%2, \dots, a_n^{(n)}\%2), i = 1, 2, \dots, n$

For example, $f_4((154, 3, 89, 23, 48)) = 01110$. So we get the conclusion:

$$\{0,1\}^* \cong \mathbb{N}^* \tag{2}$$

According (1) and (2), $\mathbb{N} \cong \mathbb{N}^*$ is obvious.

Exercise 2.10. Show that $R \cong R \times R$. **Hint:** Use the fact that $R \cong \{0,1\}^{\mathbb{N}}$ and thus show that $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Proof. Obvious, there exits a function:

$$f_1: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}, x \to (x,0000\ldots)$$

Then, we define a function:

$$f_2: \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}, (a_1a_2a_3\ldots,b_1b_2b_3\ldots) \to (a_1b_1a_2b_2a_3b_3\ldots)$$

Such as:

Therefore, we proof $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$, and then $R \cong R \times R$.

Exercise 2.11. Consider $R^{\mathbb{N}}$, the set of all infinite sequences (r_1, r_2, r_3, \ldots) of real numbers. Show that $R \cong R^{\mathbb{N}}$. **Hint:** Again, use the fact that $R \cong \{0,1\}^{\mathbb{N}}$.

Proof. We only need to proof that $(\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}}$. Firstly, we can know the following function easily:

$$f_1: \{0,1\}^{\mathbb{N}} \to (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}, x \to (x,00000\dots,00000\dots,00000\dots,\dots).$$
 (1)

Then, define a complexer function:

$$f_2: (\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}, (x_1^1 x_2^1 x_3^1 \dots, x_1^2 x_2^2 x_3^2 \dots, x_1^3 x_2^3 x_3^3 \dots, \dots) \to (x_1^1 x_1^2 x_2^2 x_1^2 x_1^3 x_2^3 \dots), x_i^j = 0 \text{ or } 1$$

$$(2)$$

Now, we can infer $(\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}}$ is true. Thus, $R \cong R^{\mathbb{N}}$.

Next, let us view $\{0,1\}^{\mathbb{N}}$ as a partial ordering: given two elements $\mathbf{a}, \mathbf{b} \in \{0,1\}^{\mathbb{N}}$, that is, sequences $\mathbf{a} = (a_1, a_2, \dots)$ and $\mathbf{b} = (b_1, b_2, \dots)$, we define $\mathbf{a} \leq \mathbf{b}$ if $a_i \leq b_i$ for all $i \in \mathbb{N}$. Clearly, $(0,0,\dots)$ is the minimum element in this ordering and $(1,1,\dots)$ the maximum.

Exercise 2.12. Give a countably infinite chain in $\{0,1\}^{\mathbb{N}}$. Remember that a set A is countably infinite if $A \cong \mathbb{N}$.

$$(0,0,0,\ldots)$$

 $(1,0,0,\ldots)$
 $(1,1,0,\ldots)$

Since there are countably infinite bits in every element, we can construct countably infinite chain in $\{0,1\}^{\mathbb{N}}$ as showed above.

Exercise 2.13. Find a countably infinite antichain in $\{0,1\}^{\mathbb{N}}$.

$$(1,0,0,\ldots)$$

 $(0,1,0,\ldots)$
 $(0,0,1,\ldots)$

Since there are countably infinite bits in every element, we can construct countably infinite chain in $\{0,1\}^{\mathbb{N}}$ as showed above.

Exercise 2.14. Find an uncountable antichain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.

Since $\{0,1\}^{\mathbb{N}} \cong \mathbb{R}$, there is a bijection: $x \leftrightarrow \mathbf{t}, x \in \mathbb{R}, \mathbf{t} \in \{0,1\}^{\mathbb{N}}$. Let's consider $\mathbf{t_i}$.

$$\mathbf{t_i} = (a_1, a_2, \dots), a_k \in \{0, 1\}, k \in \mathbb{N}$$

Define $\bar{\mathbf{t}}_{\mathbf{i}} = (1 - a_1, 1 - a_2, \dots)$. Then construct $\hat{\mathbf{t}}_{\mathbf{i}}$ as:

$$\hat{\mathbf{t}}_{\mathbf{i}} = (a_1, 1 - a_1, a_2, 1 - a_2, \dots)$$

Consider $\hat{\mathbf{t_i}}, \hat{\mathbf{t_j}}, \forall i, j \in \mathbb{N}, i \neq j$.

Case 1: If $\mathbf{t_i} \nleq \mathbf{t_j}$, obviously, $\hat{\mathbf{t_i}} \nleq \hat{\mathbf{t_j}}$.

Case 2: If $t_i \leq t_j$

$$\mathbf{t_i} = (a_1, a_2, \dots)$$
 $\bar{\mathbf{t_i}} = (1 - a_1, 1 - a_2, \dots)$
 $\mathbf{t_i} = (b_1, b_2, \dots)$ $\bar{\mathbf{t_i}} = (1 - b_1, 1 - b_2, \dots)$

According to the definition of $\mathbf{a} \leq \mathbf{b}$, we know that $a_k \leq b_k$. So, $\bar{\mathbf{t_i}} \geq \bar{\mathbf{t_j}}$. Compare every bit of $\hat{\mathbf{t}}$.

Since $a_k \le b_k$, $1 - a_k \ge 1 - b_k$.

And since $i \neq j$, $\mathbf{t_i}$, $\mathbf{t_j}$ are not the same \mathbf{t} , which means that $\exists \eta, a_{\eta} < b_{\eta}, 1 - a_{\eta} > 1 - b_{\eta}$. So, $\hat{\mathbf{t_i}} \nleq \hat{\mathbf{t_j}}$.

Therefore, $\hat{\mathbf{t_1}}$ $\hat{\mathbf{t_2}}$... is an uncountable antichain in $\{0,1\}^{\mathbb{N}}$.

**Exercise 2.15. Find an uncountable chain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.