This is a collection of old real analysis qualifier exam solutions.

August 2019

Problem 1

(a) Recall that the Cantor set \mathcal{C} is defined to consist of all $x \in [0,1]$ such that x only contains 0 and 2 in the ternary expansion of x. Writing $a \in [0,2]$ as

$$a = \sum_{k=0}^{\infty} \frac{a_k}{3^k},$$

where $a_k \in \{0,1,2\}$, we may then find a_k at each ternary expansion slot for k as follows:

- if $a_k = 0$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = c_k = 0$
- if $a_k = 2$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = 2$ and $c_k = 0$ or vice versa.
- if $a_k = 1$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_{k+1} = c_{k+1} = 2$.

Therefore, since every digit of every ternary expansion in [0,2] can be obtained from \mathbb{C} , we see that $\mathbb{C} + \mathbb{C} = [0,2]$.

(b) We may set B to be the union of all integer translates of \mathbb{C} , and set A = \mathbb{C} . This yields closed subsets of \mathbb{R} with Lebesgue measure zero that sum to \mathbb{R} .

Problem 2

Consider the sequence of functions

$$f_n(x) = n \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]},$$

defined on [0,1]. This sequence is pointwise convergent everywhere to zero, as $f_n(0) = 0$ and the Archimedean property give that for any $x \in (0,1]$, there is some n large enough that gives $\frac{1}{n} < x$. Furthermore, we see that

$$\int f_n d\mu = n \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
$$= \frac{1}{n+1}$$
$$\to 0.$$

Finally, we see that by taking suprema, we have the integral

$$\int \Phi d\mu = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

$$\to \infty.$$

Problem 4

Suppose toward contradiction that both f and 1/f are in $L_1(\mathbb{R})$. Then, from Hölder's Inequality, we have

$$\infty = \int 1 d\mu$$

$$\leq \left(\int f d\mu \right)^{1/2} \left(\int \frac{1}{f} d\mu \right)^{1/2}$$

$$\leq \infty.$$

which is a contradiction.

(a) Let $f \in L_2([-1,1])$. We may find $g \in C([-1,1])$ such that $\|f-g\|_{L_2} < \epsilon/2$. Similarly, we may find a polynomial p such that $\|g-p\|_{\mathfrak{U}} < \epsilon/4$, meaning that $|p(x)-g(x)| < \epsilon/4$ for all $x \in [-1,1]$. This yields

$$\|p - g\|_{L_2} = \left(\int_{-1}^{1} |p(x) - g(x)|^2 dx\right)^{1/2}$$

$$< \left(\int_{-1}^{1} \left(\frac{\varepsilon}{4}\right)^2 dx\right)^{1/2}$$

$$= \left(\frac{\varepsilon^2}{8}\right)^{1/2}$$

$$< \frac{\varepsilon}{2},$$

so $\|f - p\|_{L_2} < \varepsilon$, meaning that the closed linear span of the monomials is dense in L₂, and the Legendre polynomials form an orthonormal system.

(b) We see that at every step in evaluating the expression

$$L_n(x) = c_n \frac{d^n}{dx^n} \left(x^2 - 1\right)^n, \tag{*}$$

the degree of the polynomial increases by 1, so each $L_n(x)$ has degree n. To verify that the polynomials generated from (*) are orthogonal to each other, we let n>m without loss of generality, and use integration by parts to obtain

$$\begin{split} \langle L_n, L_m \rangle &= \int_{-1}^1 \left(\frac{d^n}{dx^n} \left(x^2 - 1 \right)^n \right) \left(\frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \right) dx \\ &= \frac{d^{n-1}}{dx^{n-1}} \left(x^2 - 1 \right)^n \frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \Big|_{-1}^1 - \int_{-1}^1 \frac{d^{n-1}}{dx^{n-1}} \left(x^2 - 1 \right)^n \frac{d^{m+1}}{dx^{m+1}} \left(x^2 - 1 \right)^m dx \\ &\vdots \\ &= (-1)^n \int_{-1}^1 \frac{d^{m+n}}{dx^{m+n}} \left(x^2 - 1 \right)^m dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} \left(\frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \right) dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} L_m(x) dx \\ &= 0, \end{split}$$

seeing as we are taking n derivatives of a degree m < n polynomial.

January 2020

Problem 1

(a) This is false. If $A \subseteq [0,1]$ is the "fat Cantor set" constructed similar to the traditional Cantor, but obtained by deleting the middle fourth of each subinterval rather than the middle third, then $\mu(A) = \frac{1}{2}$, but A is nowhere dense, meaning that if $U \subseteq A$ is open, then $U = \emptyset$.

To see that A is nowhere dense, we see that A is closed, so if $x \in A \subseteq [0,1]$, and $\varepsilon > 0$, we may show that the interval $(x - \varepsilon, x + \varepsilon)$ is not contained in A. In the recursive construction of A, we may see that there is some step \mathfrak{n}_1 such that $\frac{1}{4^{\mathfrak{n}_1}} < 2\varepsilon$, implying that $(x - \varepsilon, x + \varepsilon)$ is not contained in the recursive construction at \mathfrak{n}_1 . Therefore $A^{\circ} = \emptyset$.

(b) This is true. By the definition of the Lebesgue outer measure, for any $\epsilon > 0$, there are $\{(a_k, b_k)\}_{k=1}^{\infty}$ such that

$$\mu(A) + \varepsilon < \mu \left(\bigcup_{k=1}^{\infty} (a_k, b_k) \right),$$

so by setting

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k),$$

we have that U is open, meaning that by the definition of infimum, we get

$$\mu(A) = \inf\{U \mid A \subseteq U, U \text{ open}\}.$$

Remark: Part (a) can be solved by selecting $A = \mathbb{R} \setminus \mathbb{Q} \cap [0, 1]$.

Problem 3

- (a) Consider the algebra of polynomials on [0,1] without a constant term. Then, since linear combinations and multiplications still yield polynomials without constant term, and f(x) = x separates points in [0,1], this algebra satisfies the requirements of the question. Yet, since all elements of this algebra are equal to zero at x = 0, the uniform closure of the algebra yields all the continuous functions on [0,1] with f(0) = 0.
- (b) In order to satisfy the requirements of the Stone–Weierstrass theorem, we need the algebra $\mathcal A$ to include the constant functions.

Problem 4

We consider the signed measure on \mathcal{F} defined by

$$\nu(E) = \int_{E} f \, d\mu,$$

meaning that $\nu \ll \mu$, so the function $g \coloneqq \frac{d\nu}{d\mu}$, where $\frac{d\nu}{d\mu}$ denotes the Radon–Nikodym derivative of ν with respect to μ (where we restrict μ to $\mathcal F$), is $\mathcal F$ -measurable (by Radon–Nikodym) and in $L_1(\mathbb R,\mathcal F,\mu)$. This gives, for all $E \in \mathcal F$,

$$\int_{E} g \ d\mu = \int_{E} \frac{d\nu}{d\mu} \ d\mu$$
$$= \int_{E} d\nu$$
$$= \nu(E)$$
$$= \int_{E} f \ d\mu.$$

Let $M = \mu(X)$.

Let $(f_n)_n \to f$ in measure, and let $\varepsilon > 0$. If we let

A =
$$\{x \mid |f_n(x) - f(x)| > \varepsilon/2M\}$$

B = $\{x \mid |f_n(x) - f(x)| \le \varepsilon/2M\}$,

we have

$$\begin{split} \int_X min(1,|f_n-f|) \; d\mu &= \int_A min(1,|f_n-f|) \; d\mu + \int_B min(1,|f_n-f|) \; d\mu \\ &\leqslant \mu(A) + \epsilon/2 \\ &< \epsilon/2 + \epsilon/2 \\ &= \epsilon. \end{split}$$

Meanwhile, if

$$\int_X \min(1, |f_n - f|) \, \mathrm{d}\mu \to 0,$$

then by Chebyshev's Inequality, we have, for a fixed $0 < \varepsilon \le 1$,

$$\mu(\lbrace x \mid |f_n - f| \ge \varepsilon\rbrace) = \mu(\lbrace x \mid \min(1, |f_n - f|) \ge \varepsilon\rbrace)$$

$$\le \frac{1}{\varepsilon} \int_X \min(1, |f_n - f|) d\mu$$

$$\to 0,$$

so $(f_n)_n \to f$ in measure.

August 2020

Problem 1

This is false. To see this, let $\mathfrak{C}(x)$ denote the Cantor–Lebesgue function, and let

$$h(x) = \sum_{n = -\infty}^{\infty} \mathfrak{C}(x - n) + n.$$

Then, since $\mathfrak{C}(x)$ has derivative zero almost everywhere, the sum of a number of translates of $\mathfrak{C}(x)$ still has derivative zero almost everywhere. Then, setting

$$f(x) = h(x) + x,$$

we get that f(x) has derivative equal to 1 almost everywhere. However, at the same time, f(2) - f(1) = 2.

Problem 2

We show the inverse problem, which is that every closed set in \mathbb{R}^2 is G_δ . To do this, we let $A \subseteq \mathbb{R}^2$ be closed, nonempty, and proper (if $A = \emptyset$ or $A = \mathbb{R}^2$ the answer is trivial).

Then, there is some $x \in A^c$, and specifically there is $x \in A^c$ with rational coordinates (else, select $y \in \mathbb{Q}^2$ within the ball of radius ε that allows A^c to be open). Furthermore, since \mathbb{R}^2 is a metric space, \mathbb{R}^2 is regular, so there are open U_x and V_x such that $A \subseteq U_x$, $x \in V_x$, and $U_x \cap V_x = \emptyset$.

Therefore, we get

$$A = \bigcap \{ U_x \mid x \in \mathbb{Q}^2 \setminus A \},$$

meaning that A is G_{δ} . Taking complements, we thus get that every open set is F_{σ} .

Problem 3

(a) We see that

$$\begin{split} \left\langle \mathsf{Pf}_{\mathsf{i}}, \mathsf{f}_{\mathsf{j}} \right\rangle &= \delta_{\mathsf{i}+1,\mathsf{j}} \\ &= \delta_{\mathsf{i},\mathsf{j}-1} \\ &= \left\langle \mathsf{f}_{\mathsf{i}}, \mathsf{f}_{\mathsf{j}-1} \right\rangle \\ &= \left\langle \mathsf{f}_{\mathsf{i}}, \mathsf{P}^* \mathsf{f}_{\mathsf{j}} \right\rangle, \end{split}$$

so that $Pf_n = f_{n-1}$ if n > 1. Else, if n = 1, then $P^*f_n = 0$.

(b) We see that, acting on the orthonormal basis $(f_n)_n$, $P^*P(f_n) = f_n$, and

$$PP^*(f_n) = \begin{cases} 0 & n = 1\\ 1 & else, \end{cases}$$

so that $P^*P = I$ and PP^* is as above.

Problem 4

We see that

$$\mu(\{x \mid f_n(x) > t\}) = \mu(X) - \mu(\{x \mid f_n(x) \le t\}),$$

so by taking limits, we find that

$$\lim_{n\to\infty}\mu(\{x\mid f_n(x)>t\})=\begin{cases} 1 & t<0\\ 0 & t\geqslant 0 \end{cases}.$$

So, if $\varepsilon > 0$, then

$$\begin{split} \mu(\{x\mid |f_n(x)|>\epsilon\}) &= \mu(\{x\mid f_n(x)<-\epsilon\}) + \mu(\{x\mid f_n(x)>\epsilon\}) \\ &\leqslant \mu(\{x\mid f_n(x)\leqslant -\epsilon\}) + \mu(\{x\mid f_n(x)>\epsilon\}) \\ &\to 0. \end{split}$$

January 2021

Problem 1

This is not true. To see this, consider the family of functions defined by

$$f_1 = \mathbb{1}_{[0,1]}$$

$$f_2 = \mathbb{1}_{[0,1/2]}$$

$$f_3 = \mathbb{1}_{[1/2,1]}$$
:

where f_n is of width $\frac{1}{2^k}$ when $2^k \le n < 2^{k+1}$, moving along [0,1]. Then, since $\mu(\{x \mid |f_n(x)| > 0\}) = \frac{1}{2^k}$, we have that $(f_n)_n \to 0$ in measure. Yet, since for any $x \in [0,1]$ there are infinitely many such n such that $f_n(x) = 1$, the family $(f_n)_n$ does not converge to 0 pointwise anywhere on [0,1].

Note that the two-dimensional Lebesgue measure is the completion of $\mathfrak{m} \times \mathfrak{m}$, where $\mathfrak{m} \times \mathfrak{m}$ is the product measure on the product σ -algebra $\mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R})$. If $B \in \mathcal{L}(\mathbb{R}^2)$, then $B = C \cup N$, where N is a μ -null set and $C \in \mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R})$. Therefore, if we show that $(\mathfrak{m} \times \mathfrak{m})(C) = 0$, we then show that $\mu(B) = 0$.

To see that $(m \times m)(\mathbb{C}) = 0$, note that by our assumption, $B^x = \{y \in \mathbb{R} \mid (x,y) \in B\}$ is either finite or countable, so since $C^x \subseteq B^x$, we must have that C^x is either finite or countable. By Tonelli's Theorem, since $\mathbb{1}_C$ is positive, we have

$$\int_{\mathbb{R}^2} \mathbb{1}_C d(m \times m) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_{C^{\times}} dy dx$$
$$= \int_{\mathbb{R}} m(C^{\times}) dx$$
$$= 0,$$

so $(m \times m)(C^x) = 0$, meaning

$$\mu(B) = \mu(C) + \mu(N)$$

= $(m \times m)(C) + \mu(N)$
= 0.

Problem 3

Since $\mu \ll \nu$, and $\rho \ll \rho$, we have $\mu + \rho \ll \nu + \rho$, so by Radon–Nikodym, there is some measurable f such that

$$\mu(E) + \rho(E) = \int_{E} f d(\nu + \rho),$$

so

$$\mu(E) = \int_E f \, d\nu + \int_E (f-1) \, d\rho.$$

Problem 4

Since all of f, g, α , b, c, d are positive, we may show

$$ac + bd + \int_0^1 f(x)g(x) dx \le \left(a^3 + b^3 + \int_0^1 (f(x))^3 dx\right)^{1/3} \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} dx\right)^{2/3}.$$

To do this, we use Hölder's Inequality three times:

$$\begin{split} ac + bd + \int_0^1 f(x)g(x) \; dx & \leq \left(\alpha^3 + b^3\right)^{1/3} \left(c^{3/2} + d^{3/2}\right)^{2/3} + \int_0^1 f(x)g(x) \; dx \\ & \leq \left(\alpha^3 + b^3\right)^{1/3} \left(c^{3/2} + d^{3/2}\right)^{2/3} + \left(\int_0^1 (f(x))^3 \; dx\right)^{1/3} \left(\int_0^1 (g(x))^{3/2} \; dx\right)^{2/3} \\ & \leq \left(\alpha^3 + b^3 + \int_0^1 (f(x))^3 \; dx\right)^{1/3} \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} \; dx\right)^{2/3}. \end{split}$$

We note that for each n,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\mathrm{n}}\left(\mathrm{e}^{-\mathrm{x}^2}\right) = \mathrm{P}_{\mathrm{n}}(\mathrm{x})\mathrm{e}^{-\mathrm{x}^2}$$

where $P_n(x)$ is a degree n polynomial. To see this,

$$\frac{d}{dx} \left(e^{-x^2} \right) = -2xe^{-x^2}$$

$$\frac{d}{dx} \left(P_n(x)e^{-x^2} \right) = P'_n(x)e^{-x^2} - 2xP_n(x)e^{-x^2}$$

$$:= P_{n+1}(x)e^{-x^2}.$$

Therefore,

$$e^{x^2} \left(\frac{d}{dx}\right)^n \left(e^{-x^2}\right) = P_n(x).$$

Since each $P_n(x)$ is linearly independent (as they have different degrees of polynomials), the linear combinations of P_n form polynomials. By Stone–Weierstrass, there is some linear combination $\sum_{k=0}^n \alpha_k P_k(x)$ such that $\left|f(x) - \sum_{k=0}^n \alpha_k P_k(x)\right| < \varepsilon$ for all $x \in [0,1]$. Thus,

$$\left| f(x) - e^{x^2} \left(De^{-x^2} \right) \right| < \varepsilon$$

for the particular expression

$$D = \sum_{k=0}^{n} a_k \left(\frac{d}{dx}\right)^k.$$

August 2022

Problem 1

We note that

$$\left| \frac{n \sin(x/n)}{x(1+x^2)} \right| \le \left| \frac{n(x/n)}{x(1+x^2)} \right|$$
$$= \frac{1}{1+x^2},$$

and since $\frac{1}{1+x^2}$ is integrable, we may use Dominated Convergence to switch limit and integral, giving

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1+x^2)} dx = \int_0^\infty \lim_{n \to \infty} \frac{n \sin(x/n)}{x(1+x^2)} dx$$

$$= \int_0^\infty \lim_{n \to 0} \frac{\frac{1}{n} \sin(nx)}{x(1+x^2)} dx$$

$$= \int_0^\infty \frac{x}{x(1+x^2)} dx$$

$$= \frac{\pi}{2}.$$

(a) Let f be Lipschitz, and let M denote the Lipschitz constant — i.e., $|f(x) - f(y)| \le |x - y|$ for all $x, y \in [a, b]$. Set $\delta = \frac{\varepsilon}{M}$. Then, if $\{(a_j, b_j)\}_{j=1}^k$ is a partition such that $\sum_{j=1}^k |b_j - a_j| < \delta$, we have

$$\sum_{j=1}^{k} |f(b_j) - f(a_j)| \le M \sum_{j=1}^{k} |b_j - a_j|$$

$$< \varepsilon.$$

Thus, f is absolutely continuous. Now, if $x, x + h \in [a, b]$, we have that

$$\left|\frac{f(x+h)-f(x)}{h}\right|\leqslant M,$$

meaning that

$$|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right|$$

 $\leq M$,

and since f'(x) exists for a.e. $x \in [a,b]$, we have that $\operatorname{ess\,sup}_{x \in [a,b]} |f'(x)| \leq M$, so $f' \in L_{\infty}([a,b])$.

Let f be absolutely continuous with bounded derivative. Then, if M is the essential supremum of the f', the fundamental theorem of calculus gives

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t) dt \right|$$

$$\leq \int_{x}^{y} |f'(t)| dt$$

$$\leq \int_{x}^{y} M dx$$

$$= M|y - x|,$$

so f is Lipschitz.

(b) If f is such that f'(x) exists, then for $x, x + h \in [a, b]$, we have

$$\left| \frac{f(x+h) - f(x)}{h} \right| \le \|f\|_{\text{Lip}'}$$

so by taking limits, we have

$$|f'(x)| \leq ||f||_{Lip}$$
.

Thus, this ordering must respect essential suprema, meaning

$$\|f'\|_{L_{\infty}} \leqslant \|f\|_{Lip}.$$

Furthermore, if $\varepsilon > 0$, there are $x, y \in [a, b]$ with x < y such that

$$||f||_{Lip} - \varepsilon < \left| \frac{f(y) - f(x)}{y - x} \right|$$
$$= \frac{1}{|y - x|} \left| \int_{x}^{y} f'(t) dt \right|$$

$$\leq \frac{1}{|y-x|} \int_{x}^{y} |f'(t)| dt$$

$$\leq \frac{1}{|y-x|} \int_{x}^{y} |f'|_{L_{\infty}} dt$$

$$= ||f'||_{L_{\infty}'}$$

and since ε is arbitrary, we have $\|f\|_{Lip} \le \|f'\|_{L_{\infty}}$.

Problem 3

We start by showing that

$$|a-b| = \int_0^\infty \left| \mathbb{1}_{(t,\infty)}(a) - \mathbb{1}_{(t,\infty)}(b) \right| dt$$

for all $a, b \in [0, \infty)$. Without loss of generality, $a \le b$. To see this, note that there are three cases:

$$\left| \mathbf{1}_{(t,\infty)}(a) - \mathbf{1}_{(t,\infty)}(b) \right| = \begin{cases} 0 & t < a, b \\ 1 & a \le t < b, \\ 0 & a, b \le t \end{cases}$$

giving

$$\int_0^\infty \mathbb{1}_{[a,b)} dt = \mu([a,b))$$
$$= b - a$$
$$= |a - b|.$$

Now, we have

$$\|f - g\|_{L_1} = \int_X |f(x) - g(x)| d\mu(x)$$

$$= \int_X \int_0^\infty |\mathbb{1}_{(t,\infty)}(f(x)) - \mathbb{1}_{(t,\infty)}(g(x))| dt d\mu(x),$$

and by Tonelli's Theorem, we have

$$\begin{split} &= \int_0^\infty \int_X \left| \mathbb{1}_{f^{-1}((t,\infty))} - \mathbb{1}_{g^{-1}((t,\infty))} \right| \, d\mu(x) \, \, dt \\ &= \int_0^\infty \int_X \mathbb{1}_{f^{-1}((t,\infty)) \triangle g^{-1}((t,\infty))} \, \, d\mu(x) \, \, dt \\ &= \int_0^\infty \mu \Big(f^{-1}((t,\infty)) \triangle g^{-1}((t,\infty)) \Big) \, \, dt. \end{split}$$

Problem 4

(a) Since $|\mu| \perp |\nu|$, there are $U, V \subseteq X$ such that $|\mu|$ is concentrated on U and $|\nu|$ is concentrated on V, with $U \cap V = \emptyset$.

Note that by the Jordan decompositions, we have $|\mu| = \mu_1 + \mu_2 \geqslant \mu_{1,2}$ so $\mu_{1,2}$ are concentrated on U, and similarly $\nu_{1,2}$ are concentrated on V, so $\mu_i \perp \nu_j$.

(b) We show that the measures $\mu_1 + \nu_1$ and $\mu_2 + \nu_2$ are mutually singular. To see this, note the following:

- $\mu_1 = 0 \text{ on } N_{\mu} \cup V$;
- $v_1 = 0$ on $N_v \cup U$;
- $\mu_2 = 0 \text{ on } P_{\mu} \cup V;$
- $v_2 = 0$ on $P_v \cup U$,

so $\mu_1 + \nu_1 = 0$ on $A = (N_{\mu} \cup V) \cap (N_{\nu} \cup U)$, and $\mu_2 + \nu_2 = 0$ on $B = (P_{\mu} \cup V) \cap (P_{\nu} \cup U)$. Therefore, since

$$A \cup B = (N_{\mu} \cap N_{\nu}) \cup (N_{\mu} \cap U) \cup (N_{\nu} \cap V)$$
$$\cup (P_{\mu} \cap P_{\mu}) \cup (P_{\mu} \cap U) \cup (P_{\nu} \cap V)$$
$$= X$$

$$A \cap B = (N_{\mu} \cup V) \cap (N_{\nu} \cup U)$$
$$\cap (P_{\mu} \cup V) \cap (P_{\nu} \cup U)$$
$$= \emptyset,$$

the measures $\mu_1 + \nu_1$ and $\mu_2 + \nu_2$ are mutually singular, so $A \sqcup B$ forms a Hahn decomposition for $\mu + \nu$ with corresponding Jordan decomposition of $(\mu_1 + \nu_1) - (\mu_2 + \nu_2)$. Thus,

$$\begin{split} \|\mu + \nu\|_{TV} &= |\mu + \nu|(X) \\ &= (\mu_1 + \nu_1)(X) + (\mu_2 + \nu_2)(X) \\ &= (\mu_1 + \mu_2)(X) + (\nu_1 + \nu_2)(X) \\ &= |\mu|(X) + |\nu|(X) \\ &= \|\mu\|_{TV} + \|\nu\|_{TV}. \end{split}$$

Problem 5

- (a) The conclusion of the Lebesgue differentiation theorem states that $\mu([0,1] \setminus L_f) = 0$.
- (b) Let $x \in [0,1]$. We note that x must be in exactly one such interval $(j2^{-n}, (j+1)2^{-n}]$ since these intervals are disjoint. If we select r > 0 such that $\frac{1}{2^n} < r \le \frac{1}{2^{n-1}}$, then we note the following:
 - $I_{n,j} \subseteq U(x,r)$ for exactly one such j;
 - $\mathfrak{m}(U(x,r)) \leq 4\mu(I_{n,j}).$

If $x \in L_f$, then for any $\varepsilon > 0$, there is some $\delta > 0$ such that when $r < \delta$, then

$$\frac{1}{\mu(U(x,r))}\int_{U(x,r)}|f(t)-f(x)|\;dt<\epsilon,$$

by the Lebesgue Differentiation Theorem. If n is such that $\frac{1}{2^{n-1}} < \delta$, then when $\frac{1}{2^n} < r \leqslant \frac{1}{2^{n-1}}$, then for any $x \in L_f$, we have

$$\begin{split} |\mathsf{E}_{\mathsf{n}}\mathsf{f}(\mathsf{x}) - \mathsf{f}(\mathsf{x})| &= \left| \frac{1}{\mathsf{m}\big(\mathsf{I}_{\mathsf{n},\mathsf{j}}\big)} \int_{\mathsf{I}_{\mathsf{n},\mathsf{j}}} \mathsf{f}(\mathsf{t}) \, d\mathsf{t} - \mathsf{f}(\mathsf{x}) \right| \\ &\leqslant \frac{1}{\mathsf{m}\big(\mathsf{I}_{\mathsf{n},\mathsf{j}}\big)} \int_{\mathsf{I}_{\mathsf{n},\mathsf{j}}} |\mathsf{f}(\mathsf{t}) - \mathsf{f}(\mathsf{x})| \, d\mathsf{t} \\ &\leqslant \frac{1}{\mathsf{m}\big(\mathsf{I}_{\mathsf{n},\mathsf{j}}\big)} \int_{\mathsf{U}(\mathsf{x},\mathsf{r})} |\mathsf{f}(\mathsf{t}) - \mathsf{f}(\mathsf{x})| \, d\mathsf{t} \\ &\leqslant \frac{4}{\mathsf{U}(\mathsf{x},\mathsf{r})} \int_{\mathsf{U}(\mathsf{x},\mathsf{r})} |\mathsf{f}(\mathsf{t}) - \mathsf{f}(\mathsf{x})| \, d\mathsf{t} \\ &\leqslant 4\epsilon, \end{split}$$

so $\lim_{n\to\infty} E_n f(x) = f(x)$ for all $x \in L_f$, meaning that it holds for a.e. $x \in [0,1]$.

January 2023

Problem 1

By using Fatou's Lemma, and assuming WLOG that $(f_n)_n \to f$ pointwise everywhere, we get

$$\int_{X} |f|^{p} d\mu = \int_{X} \liminf_{n \to \infty} |f_{n}|^{p} d\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} |f_{n}|^{p} d\mu$$

$$\leq 1,$$

so $\|f\|_{L_p} \le 1$.

Problem 2

Let

$$f(t) = \mu(E \cap (-\infty, t)),$$

and for any sequence $(t_n)_n$, define

$$E_n = E \cap (-\infty, t_n).$$

We will show that f is left- and right-continuous, hence continuous. To start, if $(t_n)_n \setminus t$, then

$$\bigcap_{n\in\mathbb{N}} E_n = E \cap (-\infty, t],$$

so

$$f(t) = \mu \left(\bigcap_{n \in \mathbb{N}} E_n \setminus \{t\} \right)$$
$$= \mu \left(\bigcap_{n \in \mathbb{N}} E_n \right) - \mu(\{t\}).$$

Since μ is atomless, we see that $\mu(\{t\}) = 0$, so since $\mu(E) < \infty$,

$$f(t) = \mu \left(\bigcap_{n \in \mathbb{N}} E_n \right)$$
$$= \lim_{n \to \infty} \mu(E_n)$$
$$= \lim_{n \to \infty} f(t_n).$$

Thus, f is right-continuous. Similarly, if f is left-continuous, and $(t_n)_n \nearrow t$, then

$$\bigcup_{n\in\mathbb{N}}\mathsf{E}_n=\mathsf{E}\cap(-\infty,\mathsf{t}),$$

so by continuity from below,

$$f(t) = \mu \left(\bigcup_{n \in \mathbb{N}} E_n \right)$$
$$= \lim_{n \to \infty} \mu(E_n)$$

$$= \lim_{n \to \infty} f(t_n).$$

Therefore, f is continuous. Since

$$\lim_{t \to -\infty} f(t) = 0$$

$$\lim_{t \to \infty} f(t) = \mu(E)$$
> 0,

the intermediate value theorem gives some $t_0 \in \mathbb{R}$ such that

$$\begin{split} f(t_0) &= \mu(E \cap (-\infty, t_0)) \\ &= \frac{1}{2} \mu(E). \end{split}$$

Problem 4

We start by showing that $\|\cdot\|_{W_p}$ is indeed a norm. To see that $\|\cdot\|_{W_p}$ is positive definite, if

$$\|\mathbf{f}\|_{W_{\mathfrak{p}}}=0,$$

then |f(0)| = 0 and $||f'||_{L_p} = 0$. Since $||f'||_{L_p} = 0$, f' = 0 a.e. as L_p is a Banach space. Note that, by the fundamental theorem of calculus,

$$f(x) = f(0) + \int_0^x f'(t) dt,$$

so f(x) = 0 almost everywhere, hence f(x) = 0 in L_p .

Next, to see homogeneity, we have for all $\alpha \in \mathbb{C}$,

$$\begin{split} \|\alpha f\|_{W_{p}} &= |\alpha f(0)| + \left\| (\alpha f)' \right\|_{L_{p}} \\ &= |\alpha| \left(|\alpha| + \|f'\|_{L_{p}} \right) \\ &= |\alpha| \|f\|_{W_{p}}, \end{split}$$

as $\|\cdot\|_{L_p}$ is a norm. Finally, we have

$$\begin{split} \|f+g\|_{\mathcal{W}_{\mathfrak{p}}} &= |(f+g)(0)| + \left\|(f+g)'\right\|_{L_{\mathfrak{p}}} \\ &\leq |f(0)| + |g(0)| + \|f'\|_{L_{\mathfrak{p}}} + \|g'\|_{L_{\mathfrak{p}}} \\ &= \|f\|_{\mathcal{W}_{\mathfrak{p}}} + \|g\|_{\mathcal{W}_{\mathfrak{p}}}, \end{split}$$

as $\|\cdot\|_{L_p}$ is a norm, so the triangle inequality holds. Thus, $\|\cdot\|_{W_p}$ is a norm.

Let $(f_n)_n$ be Cauchy in $W_p([0,1])$. Then, for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$,

$$\|f_n - f_m\|_{W_p} = |f_n(0) - f_m(0)| + \|f'_n - f'_m\|_{L_p}$$

< ε ,

meaning that both

$$\begin{split} |f_n(0) - f_m(0)| &< \epsilon \\ \|f_n' - f_m'\|_{L_p} &< \epsilon. \end{split}$$

Since \mathbb{C} and $L_p([0,1])$ are complete, there is $c \in \mathbb{C}$ and $g \in L_p([0,1])$ such that

$$f_n(0) \to c$$

 $f'_n \to g$.

Define

$$f(x) = c + \int_0^x g(t) dt.$$

Then, we note that by the Fundamental Theorem of Calculus,

$$f'(x) = g(x)$$

$$\in L_{p}([0,1]),$$

so $f \in W_p([0,1])$. Finally, we see that

$$\begin{split} \|f_{n} - f\|_{W_{p}([0,1])} &= |f_{n}(0) - f(0)| + \|f'_{n} - f'\|_{L_{p}} \\ &= |f_{n}(0) - c| + \|f'_{n} - g\|_{L_{p}} \\ &\to 0, \end{split}$$

so $(f_n)_n \to f$ in W_p , meaning W_p is complete.

Problem 5

(i) Letting $f: \Omega \to \mathbb{R}$ be defined by $f(\mathbb{1}_E) = \mathfrak{m}(E \cap [a, b])$, we have

$$|m(E \cap [a, b]) - m(F \cap [a, b])| = \left| \int_{a}^{b} \mathbb{1}_{E} - \mathbb{1}_{F} dm \right|$$

$$\leq \int_{a}^{b} |\mathbb{1}_{E} - \mathbb{1}_{F}| dm$$

$$\leq \int_{R} |\mathbb{1}_{E} - \mathbb{1}_{F}| dm$$

$$= \|\mathbb{1}_{E} - \mathbb{1}_{F}\|_{L_{1}},$$

meaning that f is Lipschitz, hence continuous.

- (ii) Let $\mathbb{1}_F \in \Omega$. Then, $0 \le \mu(F \cap [a, b]) \le b a$. If these inequalities are strict, then $F \in U_{a,b}$. Else, we let $\varepsilon > 0$, and see two cases:
 - if $\mu(F \cap [a, b]) = b-a$, then we may set $E = F \setminus ([a, a + \varepsilon/) \cup (b \varepsilon/2, b])$, so that $0 < \mu(E \cap [a, b]) < b-a$, and $\|\mathbb{1}_E \mathbb{1}_F\|_{L_1} = \mu(E \triangle F) \le \varepsilon$;
 - if $\mu(F \cap [a, b]) = 0$, then we may set $E = F \cup ([a, a + \varepsilon/2) \cup [b \varepsilon/2, b))$, meaning that $0 < \mu(E \cap [a, b]) < b a$, and $\mu(E \triangle F) \le \varepsilon$.

Therefore, $U_{\alpha,b}$ is dense in Ω . To see that $U_{\alpha,b}$ is open, notice that for any $\mathbb{1}_E \in U_{\alpha,b}$, we may find $\epsilon > 0$ such that $0 < \mu(E \cap [\alpha,b]) - \epsilon < \mu(E \cap [\alpha,b]) < \mu(E \cap [\alpha,b]) + \epsilon < b - \alpha$, and for all F with $\|\mathbb{1}_F - \mathbb{1}_E\|_{L_1} < \epsilon$, we have

$$|\mu(\mathsf{F} \cap [a,b]) - \mu(\mathsf{E} \cap [a,b])| \le ||\mathbb{1}_{\mathsf{F}} - \mathbb{1}_{\mathsf{E}}||_{\mathsf{L}_1}$$
 $< \varepsilon$.

so $0 < \mu(F \cap [a, b]) < b - a$. Thus, $U_{a,b}$ is also open.

(iii) If $\{[a_k,b_k]\}$ is an enumeration of rational-endpoint intervals in \mathbb{R} , then for any interval I, there is some rational-endpoint interval $[a_k,b_k]\subseteq I$ by density and the characterization of an interval, meaning that U_{a_k,b_k} is such that for the given interval I, $0<\mu(E\cap I)<\mu(I)$ for all $E\in U_{a_k,b_k}$. Thus, taking the intersection of all such U_{a_k,b_k} , we have

$$\bigcap_{k=1}^{\infty} U_{a_k,b_k} \subseteq D.$$