

ASSIGNMENT

COURSE TITLE : Object Oriented Programming

COURSE CODE : CSE 111

ASSIGNMENT NO. : 01 **SUBMISSION DATE** : N/A

SUBMITTED TO

NAME : N/A

DEPT. OF : N/A

Bangladesh University of Business &

Technology (BUBT)

SUBMITTED BY

NAME : Shadman Shahriar

ID NO. : 20245103408

INTAKE : 53

SECTION: 9

PROGRAM: B.Sc. Engg. in CSE

Object Oriented Programming Assignment 1

1. A Box class

- Implement a class Box with attributes length, width, and height.
- Write a function combineBoxes() that accepts two Box objects, combines their dimensions by adding corresponding sides, and returns the resulting Box object.
- Demonstrate the combination of two boxes using object passing and returning.

Ans. Here is the C++ program of a class named Box that satisfies the conditions above:

```
#include <iostream>
using namespace std;

class Box
{
   int length, width, height;

public:
   void setDimensions(int l, int w, int h)
   {
      length = l;
      width = w;
      height = h;
   }
}
```

```
int getLength()
    {
        return length;
    }
    int getWidth()
    {
        return width;
    }
    int getHeight()
    {
        return height;
    }
};
Box combineBoxes(Box b1, Box b2)
{
    int length = b1.getLength() + b2.getLength();
    int width = b1.getWidth() + b2.getWidth();
    int height = b1.getHeight() + b2.getHeight();
    Box b3;
    b3.setDimensions(length, width, height);
    return b3;
}
int main()
{
    Box b1, b2;
    b1.setDimensions(36, 12, 48);
    b2.setDimensions(128, 67, 13);
    Box b3 = combineBoxes(b1, b2);
    cout << "Combined Length: " << b3.getLength() << "</pre>
units" << endl;</pre>
    cout << "Combined Width : " << b3.getWidth() << "</pre>
```

```
units" << endl;
   cout << "Combined Height: " << b3.getHeight() << "
units" << endl;
   return 0;
}</pre>
```

Output: The code yields the following output in the terminal:

```
Combined Length: 164 units
Combined Width: 79 units
Combined Height: 61 units
```

2. A Temperature class

- Design a class Temperature with attributes celsius and fahrenheit .
- Create a constructor that initializes the temperature in Celsius and an inline function to convert it to Fahrenheit using an object.

Display the temperature in both Celsius and Fahrenheit using an object.

Note: There is a slight ambiguity in the last point. Since <u>class methods are</u> <u>implicitly inlined</u>, the inline function will be considered a global function in this answer.

Ans. Here is the C++ program of a class Temperature that satisfies the conditions above:

```
#include <iostream>
using namespace std;

class Temperature
{
    float celsius, fahrenheit;

public:
    Temperature(float C) : celsius(C)
    {
    }

    void setTempF(float F)
    {
        fahrenheit = F;
    }

    float getTempC()
    {
}
```

```
return celsius;
    }
    float getTempF()
    {
        return fahrenheit;
    }
};
inline float convertToFahrenheit(float C)
{
    return (C * 9 / 5) + 32;
}
int main()
{
    Temperature t1(37);
    float celsius = t1.getTempC();
    float fahrenheit = convertToFahrenheit(celsius);
    t1.setTempF(fahrenheit);
    cout << "Celsius : " << celsius << "°C" << endl;
    cout << "Fahrenheit: " << t1.getTempF() << "°F" <<</pre>
endl;
    return 0;
}
```

Output: The code yields the following output in the terminal:

```
Celsius : 37°C
Fahrenheit: 98.6°F
```

3. A Student class

- There is class **Student** that illustrates some students where each student has a name, an id number, and marks.
- Implement a function to set the students' name, id number, and marks.

Now consider the above scenario and demonstrate a C++ program to set and show the average marks of 20 students using array of objects.

Ans. Here is the C++ program of a class Student that satisfies the conditions above:

```
#include <iostream>
#define count 20
using namespace std;
class Student
{
    string name;
    int id;
    int marks;
public:
    Student(string s, int i, int m)
    {
        name = s;
        id = i;
        marks = m;
    }
    void setData(string s, int i, int m)
    {
        name = s;
        id = i;
        marks = m;
```

```
}
    int qetMarks()
    {
        return marks;
    }
};
int main()
{
    float avq;
    Student students[count] = {
        Student("Afsara", 421, 89),
        Student("Surayea", 422, 89),
        Student("Maria", 402, 91),
        Student("Shumi", 404, 90),
        Student("Tamanna", 406, 97),
        Student("Nusrat", 111, 81),
        Student("Fatema", 107, 80),
        Student("Khadiza", 119, 83),
        Student("Risa", 438, 95),
        Student("Redowan", 338, 94),
        Student("Manzirul", 358, 92),
        Student("Arefin", 347, 97),
        Student("Hakim", 360, 98),
        Student("Rahul", 340, 82),
        Student("Shawon", 357, 82),
        Student("Saif", 361, 84),
        Student("Khairul", 344, 81),
        Student("Mahir", 323, 80),
        Student("John", 331, 87),
        Student("Fikrat", 328, 88)};
    for (int i = 0; i < count; i++)
        avg += (float)students[i].getMarks();
    avq \not= count;
    cout << "Average marks of " << count << " students: "</pre>
```

```
<< avg << endl;
    return 0;
}</pre>
```

Output: The code yields the following output in the terminal:

```
Average marks of 20 students: 88
```

Code

You can find all the code snippets here.