Московский Физико-Технический Институт

Кафедра общей физики Лабораторная работа №3.2.4

Свободные колебания в электиреском контуре

Студент: Павел СЕВЕРИЛОВ 671 группа

25 октября 2017 г.

1 Цель работы

Исследование свободных колебаний в колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф, универсальный мост.

2 Теоретическая часть

Импульсы от генератора поступают на колебательный контур через реле (диодный тиристор D и ограничительный резистор R_1). Импульсы заряжают конденсатор C. После каждого импульса генератор откючается от колебательного контура, и в контуре возникают свободные затухающие колебания, которые можно наблюдать на осциллографе.

Схема экспериментальной установки:

Здесь: L – постоянная индуктивность, C и R – переменные ёмкость и сопротивление соответственно.

3 Работа и измерения

- 1. Прокалибруем горизонтальную ось осциллографа по известному периоду повторения импульсов:
 - подберем частоту развертки осциллографа, при которой расстояние x_0 между импульсами, поступающими с генератора ($T_0=0.01\mathrm{c}$), занимает почти весь экран.
 - ullet измерим на экране расстояние x, которое занимают несколько полных периодов n.
 - период колебаний контура $T = T_0 \frac{x}{nx_0}$ эксперимент
 - T теоретический: $T=\frac{2\pi}{\omega_0}=2\pi\sqrt{LC},~L\simeq 135.4$ м Γ н

Результаты вносим в Таблицу 1.

C , MK Φ	x_0	x	n	$T_{exp}, 10^{-4} \text{ c}$	$T_{theor}, 10^{-4} \text{ c}$
0,02	5,7	8,6	5	3,270	3,018
0,15	5,7	9,2	2	8,954	8,070
0,25	5,8	8,8	1,5	11,560	10,115
0,35	5,7	7	1	13,678	12,281
0,45	5,7	7,8	1	15,509	13,684
0,55	5,7	8,7	1	17,146	15,263
0,65	5,7	9,3	1	18,640	16,316
0,75	5,7	10,3	1	20,023	18,070

Таблица 1: T_{exp} и T_{theor}

Построим график $T_{exp} = f(T_{theor})$:

- 2. Приняв L=200м Γ н, рассчитаем емкость C, при которой собственная частота колебаний контура $\nu_0=\frac{1}{2\pi\sqrt{LC}}$ равна 5к Γ ц: $C=\frac{1}{L(2\pi\nu_0)^2}=5.07$ н Φ Также рассчитаем критическое сопротивление контура для выбранных L и C: $R_{\rm kp}^{theor}=2\sqrt{\frac{L}{C}}=12561,5{\rm Om}$
- 3. Экспериментально найдем критическое сопротивление $R_{\rm kp}=9200{
 m Om}$; $R_{\rm koht}=R+R_L$, где $R_L=(14\pm1)$ Ом. Снимем зависимость логарифмического декремента затухания от сопротивления:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

. Результаты заносим в Таблицу 2.

R, Om	$R_{\text{конт}}, \text{ Om}$	U_k	U_{k+n}	n	Θ	$1/R_{\text{конт}}^2, 10^{-7} \text{ Om}^{-2}$	$1/\Theta^2$
1000	1135	3.4	0.2	4	0.71	9,73	1,98
1200	1335	2.9	0.1	4	0.84	6,79	1,42
1500	1635	2.25	0.1	3	1.04	4,36	0,92
1800	1935	2.0	0.2	2	1.15	3,04	0,76
2100	2235	4.1	0.2	2	1.51	2,24	0,44
2400	2535	3.2	0.1	2	1.73	1,72	0,33

Таблица 2: $1/R_{\text{конт}}^2$ и $1/\Theta^2$

Ошибки измерений:
$$\sigma_{1/R^2} = \frac{1}{R_{\text{конт}}^2} \frac{1}{14}; \ \sigma_{1/\Theta^2} = \frac{1}{\Theta^2} \sqrt{\left(\frac{\sigma_{U_k}}{U_k}\right)^2 + \left(\frac{\sigma_{U_{k+n}}}{U_k + n}\right)^2}$$
 Построим график $\frac{1}{\Theta^2} = f\left(\frac{1}{R_{\text{конт}}}\right)$

Определим угол наколна графика:

Приняв
$$Y=\frac{1}{\Theta^2};~X=\frac{1}{R_{\text{конт}}^2},$$
 получим $R_{\text{крит}}=2\pi\sqrt{\frac{\Delta Y}{\Delta X}}.$ В итоге получаем:

$$R_{
m kput}^{graph} = 9.32 \
m kOm$$

4. Рассчитаем добротность контура для максимального и минимального значений Θ :

$$Q=\frac{\pi}{\Theta}$$
 и сравним с расчетом Q через параметры контура R,L,C : $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$

•
$$\Theta_1 = 0.71$$
, $Q_{\Theta_1} = \frac{\pi}{\Theta_1} = 4.42$, $Q_{RLC_1} = \frac{1}{R_1} \sqrt{\frac{L}{C}} = 5.2$

•
$$\Theta_2 = 1.73$$
, $Q_{\Theta_2} = \frac{\pi}{\Theta_2} = 1.82$, $Q_{RLC_2} = \frac{1}{R_2} \sqrt{\frac{L}{C}} = 2.15$

5. Рассчитаем Θ по спирали

R, Om	r_{k+n}	r_k	n	Θ
900	0.2	2.7	4	0.65
1000	0.1	2.2	4	0.77
1500	0.2	4	3	1
2100	0.2	3.5	2	1.43
2300	0.2	3.6	2	1.45

Таблица 3: расчет по спирали

4 Вывод

В данной работе исследовали зависимость периода свободных колебаний контура от емкости, зависимость логарифмического декремента от сопротивления, а также определили критическое сопротивление разными способами и добротность контура. Все три значения критического сопротивления достаточно близки по значению за исключением рассчитанного теоретически. Данное значение достаточно сильно отклонилось от двух других вследствие того, что мы принимали L примерным, не рассчитывали его точно. В двух других измерениях: экспериментальном и по графику — никаких значений наугад не брали. Также расчет добротности и логарифмического декремента (расчеты прямые и по спирали) разными способами дали примерно одни и те же значения.