DEVOIR SURVEILLÉ N°04: CORRIGÉ

SOLUTION 1.

- **1.** $F_0 = 1 \geqslant 0$ et $F_1 = 1 \geqslant 0$. Supposons $F_n \geqslant 0$ et $F_{n+1} \geqslant 0$ pour un certain $n \in \mathbb{N}$. Alors $F_{n+2} = F_n + F_{n+1} \geqslant 0$. Par récurrence double, $F_n \geqslant 0$ pour tout $n \in \mathbb{N}$. La suite (F_n) est donc positive.
- 2. Pour tout $n \in \mathbb{N}^*$, $F_{n+1} F_n = F_{n-1} \geqslant 0$ et $F_1 F_0 = 0 \geqslant 0$. Finalement, $F_{n+1} F_n \geqslant 0$ pour tout $n \in \mathbb{N}$, ce qui prouve la croissance de la suite (F_n) .
- 3. Puisque $F_2 = F_0 + F_1 = 2$, $F_0F_2 = 2 = F_1^2 + (-1)^0$. Supposons que $F_nF_{n+2} = F_{n+1}^2 + (-1)^n$ pour un certain $n \in \mathbb{N}$. Alors

$$\begin{split} F_{n+1}F_{n+3} &= F_{n+1}(F_{n+1} + F_{n+2}) \\ &= F_{n+1}^2 + F_{n+1}F_{n+2} \\ &= F_nF_{n+2} - (-1)^n + F_{n+1}F_{n+2} \\ &= F_{n+2}(F_n + F_{n+1}) + (-1)^{n+1} \\ &= F_{n+2}^2 + (-1)^{n+1} \end{split}$$

Par récurrence, $F_nF_{n+2}=F_{n+1}^2+(-1)^n$ pour tout $n\in\mathbb{N}.$

4. Soit $n \in \mathbb{N}$.

$$\begin{split} F_{2n+1}(F_{2n+2}+F_{2n+3}) &= F_{2n+1}F_{2n+2}+F_{2n+1}F_{2n+3} \\ &= F_{2n+1}F_{2n+2}+F_{2n+2}^2+(-1)^{2n+1} \\ &= F_{2n+2}(F_{2n+1}+F_{2n+2})-1 \\ &= F_{2n+2}F_{2n+3}-1 \end{split} \qquad \text{d'après la question3}$$

On en déduit que $F_{2n+1} = \frac{F_{2n+2}F_{2n+3} - 1}{F_{2n+2} + F_{2n+3}}$

5. Soit $n \in \mathbb{N}$. Tout d'abord, $G_{2n+1} = \arctan\left(\frac{1}{F_{2n+1}}\right) \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. La suite (F_n) étant croissante, $F_{2n+2} \geqslant F_2 = 2 > 1$ et $F_{2n+3} \geqslant F_2 = 2 > 1$ donc $0 \leqslant \frac{1}{F_{2n+2}} < 1$ et $0 \leqslant \frac{1}{F_{2n+3}} < 1$. Par stricte croissance de arctan, $0 \leqslant G_{2n+2} < \frac{\pi}{4}$ et $0 \leqslant G_{2n+3} < \frac{\pi}{4}$ et a fortiori, $G_{2n+2} + G_{2n+3} \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. Par ailleurs, $\tan(G_{2n+1}) = \frac{1}{F_{2n+1}}$ et

$$\begin{split} \tan(G_{2n+2}+G_{2n+3}) &= \frac{\tan(G_{2n+2}) + \tan(G_{2n+3})}{1 - \tan(G_{2n+2}) \tan(G_{2n+3})} \\ &= \frac{\frac{1}{F_{2n+2}} + \frac{1}{F_{2n+3}}}{1 - \frac{1}{F_{2n+2}} \cdot \frac{1}{F_{2n+3}}} \\ &= \frac{F_{2n+2} + F_{2n+3}}{F_{2n+2} F_{2n+3} - 1} \\ &= \frac{1}{F_{2n+1}} \qquad \text{d'après la question précédente} \\ &= \tan(G_{2n+1}) \end{split}$$

Puisque la fonction tan est injective sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[,$ $G_{2n+1}=G_{2n+2}+G_{2n+3}.$

6. D'après la question 5 $G_{2n}=G_{2n-1}-G_{2n+1}$ pour tout $n\in\mathbb{N}^*.$ Soit $n\in\mathbb{N}^*.$

$$\begin{split} \sum_{k=1}^{n} G_{2k} &= \sum_{k=1}^{n} G_{2k-1} - G_{2k+1} \\ &= G_1 - G_{2n+1} \quad \text{par t\'elescopage} \\ &= \arctan(1) - G_{2n+1} \\ &= \frac{\pi}{4} - G_{2n+1} \end{split}$$

On en déduit le résultat demandé.

SOLUTION 2.

- **1.** La fonction sh est strictement croissante et continue sur \mathbb{R}_+ . De plus, $\mathrm{sh}(0) = 0$, $\lim_{\infty} \mathrm{sh} = +\infty$ et $1 \in [0, +\infty[$. D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique $\alpha \in \mathbb{R}_+$ tel que $\mathrm{sh}(\alpha) = 1$.
- **2.** Soit $n \in \mathbb{N}$. Par croissance de sh,

$$\forall t \in [0, \alpha], \ 0 \leq \operatorname{sh}(t) \leq \operatorname{sh}(\alpha) = 1$$

On en déduit donc que

$$\forall t \in [0, \alpha], sh^{n+1}(t) \leq sh^n(t)$$

Par croissance de l'intégrale, $I_{n+1} \leq I_n$. La suite (I_n) est donc décroissante.

- 3. Soit $n \in \mathbb{N}$. Pour tout $t \in [0, \alpha]$, $sh(t) \geqslant 0$ donc $sh^n(t) \geqslant 0$. Par croissance de l'intégrale, $I_n \geqslant 0$. La suite (I_n) est décroissante et minorée : elle converge.
- **4.** Soit $n \in \mathbb{N}$. Comme shⁿ⁺¹ et ch sont de classe \mathcal{C}^1 , on obtient à l'aide d'une intégration par parties

$$\begin{split} I_{n+2} &= \int_0^\alpha sh^{n+1}(t) \cdot sh(t) \ dt \\ &= \left[sh^{n+1}(t) \, ch(t) \right]_0^\alpha - (n+1) \int_0^\alpha sh^n(t) \, ch^2(t) \ dt \\ &= ch(\alpha) - (n+1) \int_0^\alpha sh^n(t) (1+sh^2(t)) \ dt \\ &= ch(\alpha) - (n+1) \int_0^\alpha sh^n(t) \ dt - (n+1) \int_0^\alpha sh^{n+2}(t) \ dt \\ &= ch(\alpha) - (n+1) I_n - (n+1) I_{n+2} \end{split}$$

Ainsi

$$(n+2)I_{n+2} = ch(\alpha) - (n+1)I_n$$

5. Notons ℓ la limite de (I_n) . Remarquons que pour tout $n \in \mathbb{N}$,

$$I_{n+2} = \frac{\operatorname{ch}(\alpha)}{n+2} - \frac{n+1}{n+2}I_n$$

D'une part, $\lim_{n\to+\infty}I_{n+2}=\ell$. D'autre part, $\lim_{n\to+\infty}\frac{\cosh(\alpha)}{n+2}=0$ et $\lim_{n\to+\infty}\frac{n+1}{n+2}=1$. Donc par opération sur les limites,

$$\lim_{n\to +\infty}\frac{\mathrm{ch}(\alpha)}{n+2}-\frac{n+1}{n+2}\mathrm{I}_n=-\ell$$

Finalement, $\ell = -\ell$ et donc $\ell = 0$.

SOLUTION 3.

1. A l'aide de la relation de Chasles,

$$\int_0^{2\pi} g(t) dt = \int_0^{\pi} g(t) dt + \int_{\pi}^{2\pi} g(t) dt$$

A l'aide du changement de variable $t\mapsto 2\pi-t$,

$$\begin{split} \int_{\pi}^{2\pi} g(t) \ dt &= -\int_{\pi}^{0} g(2\pi - t) \ dt \\ &= \int_{0}^{\pi} g(2\pi - t) \ dt \\ &= \int_{0}^{\pi} g(-t) \ dt \quad \text{car g est } 2\pi\text{-p\'eriodique} \\ &= \int_{0}^{\pi} g(t) \ dt \quad \text{car g est paire} \end{split}$$

2. Soient $r \in \mathbb{R} \setminus \{-1, 1\}$ et $\theta \in \mathbb{R}$. Remarquons que

$$\begin{split} f_r(\theta) &= (r - e^{i\theta})(r - e^{-i\theta}) \\ &= (r - e^{i\theta})(\overline{r - e^{i\theta}}) \qquad \text{car } r \in \mathbb{R} \\ &= |r - e^{i\theta}|^2 \geqslant 0 \end{split}$$

Supposons que $f_r(\theta)=0$, alors $r=e^{i\theta}$, puis $|r|=|e^{i\theta}|=1$ et donc, comme $r\in\mathbb{R}$, $r=\pm 1$, ce qui est exclu. Ainsi

$$\forall r \in \mathbb{R} \setminus \{-1, 1\}, \forall \theta \in \mathbb{R}, f_r(\theta) > 0$$

3. Soit $r \in \mathbb{R} \setminus \{-1, 1\}$. On effectue le changement de variable $\theta \mapsto \pi - \theta$. Ainsi

$$I(r) = -\int_{\pi}^{0} \ln \circ f_{r}(\pi - \theta) \ d\theta = \int_{0}^{\pi} \ln \circ f_{r}(\pi - \theta) \ d\theta = \int_{0}^{\pi} \ln \circ f_{-r}(\theta) \ d\theta = I(-r)$$

car pour tout $\theta \in \mathbb{R}$,

$$f_r(\pi - \theta) = r^2 - 2r\cos(\pi - \theta) + 1 = r^2 + 2r\cos\theta + 1 = f_{-r}(\theta)$$

4. Soit $r \in \mathbb{R} \setminus \{-1, 1\}$. Comme indiqué

$$\begin{split} 2I(r) &= I(r) + I(-r) \\ &= \int_0^{\pi} \ln \circ f_r(\theta) \ d\theta + \int_0^{\pi} \ln \circ f_{-r}(\theta) \ d\theta \\ &= \int_0^{\pi} \ln (f_r(\theta) f_{-r}(\theta)) \ d\theta \end{split}$$

Or, comme vu plus haut, pour tout $\theta \in \mathbb{R}$,

$$f_r(\theta) = |r - e^{i\theta}|^2 \qquad \text{et} \qquad f_{-r}(\theta) = |-r - e^{i\theta}|^2 = |r + e^{i\theta}|^2$$

de sorte que

$$f_{r}(\theta)f_{-r}(\theta) = \left|r - e^{i\theta}\right|^{2} \left|r + e^{i\theta}\right|^{2} = \left|(r - e^{i\theta})(r + e^{i\theta}\right|^{2} = \left|r^{2} - e^{2i\theta}\right|^{2} = f_{r^{2}}(2\theta)$$

Finalement

$$2I(r) = \int_0^{\pi} \ln \circ f_{r^2}(2\theta) \ d\theta$$

En effectuant le changement de variable $\theta \mapsto 2\theta$, on obtient

$$2I(r) = \frac{1}{2} \int_0^{2\pi} \ln \circ f_{r^2}(\theta) \ d\theta$$

Or $\ln \circ f_{r^2}$ est clairement 2π -périodique et paire donc, d'après la question 1,

$$2I(r) = \int_0^{\pi} \ln \circ f_{r^2}(\theta) \ d\theta = I(r^2)$$

5. On fixe $r \in \mathbb{R} \setminus \{-1, 1\}$ et on procède à une récurrence. Tout d'abord, $2^0 I(r) = I(r^1) = I(r^{2^0})$. Supposons alors qu'il existe $n \in \mathbb{N}$ tel que $2^n I(r) = I(r^{2^n})$. D'après la question 4,

$$2^{n+1}I(r) = 2I(r^{2^n}) = I((r^{2^n})^2) = I(r^{2^{n+1}})$$

Par récurrence,

$$\forall n \in \mathbb{N}, \ 2^n I(r) = I(r^{2^n})$$

6. Remarquons déjà que puisque I(r) = I(-r), I(r) = I(|r|). Pour tout $\theta \in \mathbb{R}$, $-1 \le \cos \theta \le 1$ donc

$$\forall \theta \in \mathbb{R}, \ |r|^2-2|r|+1 \leqslant |r|^2-2|r|\cos\theta+1 \leqslant |r|^2+2|r|+1$$

ou encore

$$\forall \theta \in \mathbb{R}, \ (1-|r|)^2 \leqslant f_{|r|}(\theta) \leqslant (1+|r|)^2$$

donc

$$\forall \theta \in \mathbb{R}, \; 2\ln(1-|r|) \leqslant \ln \circ f_{|r|}(\theta) \leqslant 2\ln(1+|r|)$$

puis, par croissance de l'intégrale,

$$2\pi \ln(1-|r|) \le I(|r|) \le 2\pi \ln(1+|r|)$$

Donc, d'après notre remarque initiale

$$2\pi \ln(1-|\mathbf{r}|) \leq I(\mathbf{r}) \leq 2\pi \ln(1+|\mathbf{r}|)$$

7. Soit $n \in \mathbb{N}$. Puisque |r| < 1, on a également $|r|^{2^n} < 1$: on peut donc appliquer la question 6 de sorte que

$$ln(1 - |r^{2^n}|) \leqslant I(r^{2^n}) \leqslant ln(1 + |r^{2^n}|)$$

ou encore

$$ln(1-|r|^{2^n}) \leq I(r^{2^n}) \leq ln(1+|r|^{2^n})$$

Finalement,

$$\frac{1}{2^n} \ln(1-|r|^{2^n}) \leqslant \frac{1}{2^n} I(r^{2^n}) \leqslant \frac{1}{2^n} \ln(1+|r|^{2^n})$$

D'après la question 5, on a donc

$$\frac{1}{2^n}\ln(1-|r|^{2^n})\leqslant I(r)\leqslant \frac{1}{2^n}\ln(1+|r|^{2^n})$$

Comme $|\mathbf{r}| < 1$, $\lim_{n \to +\infty} |\mathbf{r}|^{2^n} = 0$ et donc

$$\lim_{n \to +\infty} \ln(1 - |r|^{2^{n}}) = \lim_{n \to +\infty} \ln(1 + |r|^{2^{n}}) = 0$$

De plus, $\lim_{n\to+\infty} 2^n = +\infty$ donc

$$\lim_{n \to +\infty} \frac{1}{2^n} \ln(1 - |r|^{2^n}) = \lim_{n \to +\infty} \frac{1}{2^n} \ln(1 + |r|^{2^n}) = 0$$

En passant à la limite l'encadrement précédent lorsque n tend vers $+\infty$, on obtient I(r)=0.

8. Soit $r \in \mathbb{R} \setminus \{-1, 1\}$. Pour tout $\theta \in \mathbb{R}$,

$$f_{1/r}(\theta) = \frac{1}{r^2} - \frac{2}{r}\cos\theta + 1 = \frac{1}{r^2}(1 - 2r\cos\theta + r^2) = \frac{1}{r^2}f_r(\theta)$$

Ainsi

$$I\left(\frac{1}{r}\right) = \int_0^\pi \ln \circ f_{1/r}(\theta) \ d\theta = \int_0^\pi \ln \left(\frac{1}{r^2} f_r(\theta)\right) \ d\theta = \int_0^\pi \left(\ln \circ f_r(\theta) - 2\ln(|r|)\right) \ d\theta = I(r) - 2\pi \ln(|r|)$$

9. Soit $r \in \mathbb{R}$ tel que |r| > 1. Alors $\left| \frac{1}{r} \right| < 1$. D'après la question 7, I $\left(\frac{1}{r} \right) = 0$. Ainsi

$$I(r) = I\left(\frac{1}{r}\right) + 2\pi \ln(|r|) = 2\pi \ln(|r|)$$

SOLUTION 4.

Remarquons déjà que f est 2π -périodique et paire. On peut donc se contenter de l'étudier sur $[0,\pi]$. De plus,

$$\forall x \in [0, \pi], \ f(x) = \arcsin \circ \cos(x) = \pi/2 - \arccos \circ \cos(x) = \pi/2 - x$$

On en déduit le graphe suivant.

Par ailleurs,

$$\begin{split} \forall x \in \mathbb{R}, \ g(x) &= \arccos \circ \sin(x) \\ &= \pi/2 - \arcsin \circ \sin(x) \\ &= \pi/2 + \arcsin(-\sin x) \\ &= \pi/2 + \arcsin \circ \cos(x + \pi/2) = \pi/2 + f(x + \pi/2) \end{split}$$

Ainsi le graphe de g est obtenu à partir de celui de f par une translation de vecteur $\frac{\pi}{2}(\vec{\jmath}-\vec{\imath})$ si $(\vec{\imath},\vec{\jmath})$ désigne une base du repère dans lequel sont tracés les graphes de f et g.

