

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

ENTHUSIAST COURSE

PHASE: MEA,B,C,D,F,G,H,L,M,N,O,P,Q,R,S,U & V

TARGET: PRE-MEDICAL-2025

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 11-01-2025

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	4	4	2	2	2	4	2	2	4	1	4	3	3	3	2	4	4	2	1	4	2	4	1	3	2	2	1	4	3	4
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	2	2	1	2	4	2	1	1	4	1	2	2	4	4	4	3	4	2	1	3	4	4	2	3	3	2	4	1	2	3
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	1	4	2	1	2	1	1	4	3	4	1	3	2	3	2	3	3	3	2	2	1	4	2	4	3	1	4	4	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	2	2	1	2	4	1	3	2	4	3	2	1	2	4	4	3	1	1	1	4	1	2	4	3	4	3	3	1	3
Q.	121																													
		122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	3	122 2	123 4	124 1	125 1	126 2	127 2	128 4	129 4	130 4	131 1	132 1	133 3	134 2	135 2	136 3	137 3	138 1	139 3	140 2	141 3	142 4	143 3	144 4	145 4	146 2	147 4	148 3	149 2	150 1
A. Q.		2		1	1	2	2		4	4	1	1	3	2	2	3	3	1	3	2	3	4	3	4	4	2	4		2	150 1 180
	3	2	4	1	1	2	2	4	4	4	1	1	3	2	2	3	3	1	3	2	3	4	3	4	4	2	4	3	2	1
Q.	3 151 1	2 152 2	4 153	1 154 1	1 155 4	2 156 4	2 157 2	4 158	4 159 3	4 160 1	1 161 4	1 162 3	3 163	2 164 2	2 165 1	3 166 3	3 167 2	1 168 1	3 169 2	2 170 2	3 171	4 172	3 173	4	4 175	2	4 177	3	2 179	1 180

HINT - SHEET

SUBJECT: CHEMISTRY

SECTION-A

- Ans (2) NCERT-XI, Pg. # 284 (part - IInd)
- 15. Ans (2) cis isomer do not have plane of symmetry and will show optical isomerism.
- 16. Ans (4) NCERT XII Pg. # 238 (Part-I)
- 26. Ans (2) $r = k[A]^{\alpha} [B]^{\beta}$ $\frac{1.6}{3.2} = \left(\frac{0.5}{1}\right)^{\beta}$ $r = k[A]^{1}[B]^{1}$ 1001CMD303029240062

27. Ans (1)

> Intermolecular H-bonding occurs between phenolic proton and nitrogen of aniline.

Ans (4)

$$Fe_2(SO_4)_3 \rightarrow 2Fe^{+3} + 3 SO_4^{2-}$$

$$n$$
-factor = 6

$$\Lambda_{\rm eq} = \frac{\Lambda_{\rm m}}{6}$$

29. Ans (3)

From slow step.

$$r = K[P][Q_2]$$
(I)

from reversible step

$$K_c = \frac{[P]^2}{[P_2]}$$

$$[P] = [P_2]^{1/2} K_c^{1/2} ...(II)$$

From (I) & (II)

$$\begin{split} r &= K[P_2]^{1/2} \left[Q_2\right] K_c^{1/2} \\ r &= K \left[P_2\right]^{1/2} \left[Q_2\right]^1 \end{split}$$

$$r = K [P_2]^{1/2} [Q_2]^1$$

order
$$=1 + 1/2 = 1.5$$

30. Ans (4)

For non-ideal solution $\Delta S_{mix} > 0$

31. Ans (2)

$$0.1 \text{ m K}_2 \text{SO}_4 = 3 \times 0.1 = 0.3$$

$$= 3 \times 0.1 = 0.3$$

$$0.1 \text{ m NaCl} = 2 \times 0.1 = 0.2$$

$$0.01 \text{ m K}_4[\text{Fe}(\text{CN})_6] = 5 \times 0.01 = 0.05$$

32. Ans (2)

HCl and KOH both are strong acid and strong base.

$$W = \frac{Mit}{F n} = \frac{63.5 \times 1.5 \times 10 \times 60}{96500 \times 2}$$

$$W = 0.29 g$$

34. Ans (2)

Given temperature coefficient is 2 & increased temp is 50°C.

$$K_{80} = K_{30} (2)^5 = 32 (K_{30})$$

35. Ans (4)

Number of steps = number of peak in graph, step having maximum Ea is RDS.

SECTION-B

41. Ans (2)

[Ni(dmg)₂] having 4 rings

42. Ans (2)

[Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₅Cl]Cl₂.H₂O is hydrateisomerism

Ans (3) 46.

NCERT (OLD) Pg#103,104

47. Ans (4)

$$M^{+2} + 2e^- \rightarrow M$$

$$E^{0} = -1.18 \text{ V}$$

$$\Rightarrow$$
 M \rightarrow M²⁺ + 2e⁻ E^o = 1.18 V

$$E_{O.P} = E_{O.P}^{o} - \frac{0.059}{2} \log [Mn^{+2}]$$

= 1.18 - $\frac{0.059}{2} \log \frac{0.1}{1}$

$$= 1.18 + 0.03 = 1.21 \text{ V}$$

48. Ans (2)

$$\pi_1 = \pi_2$$

$$C_1 RT = C_2 RT$$

$$\left(\frac{5}{342}\right) \times \frac{1000}{100} = \left(\frac{1}{M_{\rm w}}\right) \times \frac{1000}{100}$$

$$M_w = \frac{342}{5} = 68.4$$

49. Ans (1)

Since blood is isotonic with approx 0.16 M NaCl.

50. Ans (3)

$$r_i = k[A][B]^{1/3}$$

$$r_f = k \times \frac{[A]}{2} \times (8[B])^{1/3}$$

= k[A][B]^{1/3}

$$r_f = r_i$$

SUBJECT: BOTANY

SECTION-A

51. Ans (4)

NCERT-XI, Pg. # 73, 76

52. Ans (4)

NCERT-XI, Pg. #74

53. Ans (2)

NCERT-XI, Pg. # 73, 75

54. Ans (3)

NCERT-XI, Pg. # 62 to 64

55. Ans (3)

NCERT-XI, Pg. #63

56. Ans (2)

NCERT-XI, Pg. 66

57. Ans (4)

NCERT-XII, Pg. # 14

58. Ans (1)

NCERT-XII, Pg. #5

59. Ans (2)

NCERT-XII, Pg. #4, 5

60. Ans (3)

NCERT-XII, Pg. #13

ALLEN®

- 61. Ans (1) NCERT-XII, Pg # 70(E)/78(H)
- **62. Ans (1)** NCERT-XII, Pg # 63(E)/70(H)
- 63. Ans (4) NCERT-XII, Pg # 61,62,69
- **64. Ans (2)** NCERT-XII, Pg. # 64
- 65. Ans (1) NCERT-XII, Pg. # 55, 56
- 66. Ans (2) NCERT-XII, Pg. # 74, 73
- 67. Ans (1) NCERT-XII, Pg. # 69 and 74
- **68. Ans (1)** NCERT-XII, Pg. # 102, 103, 105
- **69. Ans (4)** NCERT-XII, Pg. # 84, 85, 96
- **70. Ans (3)** NCERT-XII, Pg. # 90
- 71. **Ans (4)**NCERT-XII, Pg. # 94, 95
- **72. Ans (1)** NCERT-XII, Pg. # 94-95
- 73. Ans (3) NCERT-XII, Pg. #81
- **74. Ans (2)** NCERT-XII, Pg. No. 103
- **75. Ans (3)** NCERT-XII, Pg. # 207
- **76. Ans (2)** NCERT-XII, Pg. # 214
- 77. Ans (3) NCERT-XII, Pg. # 213
- 78. Ans (3) NCERT-XII, Pg. # 212, 213

- **79. Ans (3)** NCERT-XII, Pg # 209-210
- 80. Ans (2) NCERT-XII, Pg. # 200
- 81. Ans (2) NCERT-XII, Pg. # 198
- **82. Ans (1)** NCERT-XII, Pg. # 201
- **83. Ans (4)** NCERT-XII, Pg. # 223, 224, 225
- **84. Ans (2)** NCERT-XII, Pg. # 225
- **85. Ans (4)** NCERT-XII, Pg. # 217-21

SECTION-B

- **86. Ans (3)** NCERT-XI, Pg. # 74, 75
- **87. Ans (1)** NCERT-XI, Pg. # 72
- 88. Ans (4) NCERT-XI, Pg. # 64
- **89. Ans (4)** NCERT-XI, Pg. #63, 64, 65, 66
- **90. Ans (2)** NCERT-XII, Pg. # 11
- 91. Ans (3) NCERT-XII, Pg. # 61
- 92. Ans (2) NCERT-XII, Pg. # 67, 73, 74
- 93. Ans (2) NCERT-XII, Pg. # 69 and 74, 75
- 95. Ans (2) NCERT-XII, Pg # 96,101,102,93(E) / 102,106,112,113(H)
- **96. Ans (4)** NCERT-XII, Pg. # 99
- **97. Ans (1)** NCERT-XII, Pg # 20, 30, 192, 202

ALLEN®

98. Ans (3)

NCERT-XII, Pg. # 197

99. Ans (2)

NCERT-XII, Pg. # 225

100. Ans (4)

NCERT-XII, Pg. #218

SUBJECT: ZOOLOGY

SECTION-A

101. Ans (3)

NCERT XII Pg. # 35, 36, 37

103. Ans (1)

NCERT-XII Pg. # 50-51

104. Ans (2)

NCERT XII Pg # 44

106. Ans (4)

NCERT XII Pg # 31,32

107. Ans (3)

A = Umbilical cord,

B = Placental villi,

C = Cavity of uterus,

D = Yolk Sac.

E = Embryo

108. Ans (1)

NCERT XII Pg # 26,27,28,29

109. Ans (1)

NCERT Pg # 46

111. Ans (4)

NCERT (XIIth) Pg. # 64

117. Ans (3)

NCERT XII Pg # 153, para 8.2.5 & 8.2.6, Pg 158 para 8.4, Pg 159 para 8.5

118. Ans (3)

NCERT (XIIth) Pg. # 162

121. Ans (3)

NCERT XIIth Pg.#138

122. Ans (2)

NCERT Pg. # 140 Para 7.9

123. Ans (4)

NCERT-XII, Pg. # 151, 153, 158

128. Ans (4)

NCERT, Pg # 171(E)/188(H)

133. Ans (3)

NCERT Pg. # 178,179,180,181

SECTION-B

138. Ans (1)

NCERT Pg # 35-36

139. Ans (3)

NCERT (XII) Pg. # 54

144. Ans (4)

NCERT Pg # 151

148. Ans (3)

NCERT Pg. # 181, 188

SUBJECT: PHYSICS

SECTION-A

151. Ans (1)

The electric potential at any point on the perpendicular bisector of two equal and opposite charges is zero. Therefore, the potential at A and B is zero. Work done in transferring the charge from A to B is given by $W=q\times \Delta V.$ But $\Delta V=0.$ Therefore, W=0

Aliter: V is a function of only X. Hence, the potential gradient which is the electric field is also along X-axis. Since equipotential surfaces are always perpendicular to \vec{E} , the yz planes are equipotential surfaces.

153. Ans (2)

$$\varphi = \frac{Q_{enclosed}}{\epsilon_0} = \frac{2q}{\epsilon_0}$$

156. Ans (4)

In non uniform electric field

Torque and force both may be non-zero

158. Ans (2)

Since both resistance of 4Ω then current in other 4Ω would be 2A.

160. Ans (1)

$$V = I_g \times (100 + 4900)$$

$$I_g = \frac{5}{5000} = \frac{1}{1000}A$$

Now

$$2V = I_g(100 + 4900 + R)$$

$$R = \frac{2 \times 5}{I_g} - 5000$$

$$= 10 \times 1000 - 5000$$

 $=5000 \Omega$

161. Ans (4)

At steady state

$$I = \frac{10}{(4+1)}A = 2A$$

$$V_{AB} = I(4) = 2 \times 4 = 8V$$

potential across each capacitor = 4V

Now,
$$Q = CV = 3\mu \times 4 = 12\mu C$$

162. Ans (3)

163. Ans (3)

Since aluminium is a metal, therefore field inside this will be zero. Hence it would not affect the field in between the two plates, so capacity = $\frac{q}{V} = \frac{q}{Ed}$ remains unchanged.

$$r = \frac{mv}{qB}$$
, $r_A > r_B$

165. Ans (1)

for
$$B_0 = 0$$

 $|B_{wire}| = |B_{arc}|$ and in opposite direction

$$\frac{\mu_0 i}{4\pi R} + \frac{\mu_0 i}{4\pi R} = \frac{\mu_0 i}{4\pi R} \theta$$

$$\Rightarrow \frac{\mu_0 i}{4\pi R} = \frac{\mu_0 i}{4\pi R} \theta$$

$$\Rightarrow \theta = 2 \text{ radian}$$

169. Ans (2)

170. Ans (2)

By Biot-Savart law

171. Ans (4)

$$B = \mu_0 nI$$

$$20 \times 10^{-3} = 4\pi \times 10^{-7} \times 2000 \times I$$

$$\Rightarrow$$
 I = 7.957 A

$$I \simeq 8A$$

173. Ans (3)

Power output of the secondary, $P_S = V_S I_S$

$$\Rightarrow I_{S} = \frac{P_{S}}{V_{S}} = \frac{12 \times 10^{3}}{1000} = 12A$$
But $\frac{I_{P}}{I_{S}} = \frac{N_{S}}{N_{P}} \Rightarrow I_{P} = I_{S} \times \frac{N_{S}}{N_{P}} = \frac{12 \times 2000}{400} = 60 \text{ A}$

175. Ans (3)

 $i = 10 \sin 2\omega t$

$$i_{rms} = \frac{10}{\sqrt{2}} \approx 7 A \ \ and \ i_{avg} = 0$$

AC meter measure rms value while DC meter measure average value.

176. Ans (1)

$$\frac{1}{f} = \left(\frac{\mu_L}{\mu_m} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{f} = \left(\frac{1.5}{1.75} - 1\right) \left(\frac{-1}{R} - \frac{1}{R}\right)$$

 \Rightarrow f = 3.5 R (convergent lens)

177. Ans (2)

$$8 = i + e - A$$

$$30 = 15 + 60 - A$$

$$\Rightarrow A = 75 - 30$$
$$= 45^{\circ}$$

180. Ans (3)

upward shift produce by slab

$$\Delta x = t \left(1 - \frac{1}{\mu} \right)$$

$$= 3 \left(1 - \frac{1}{\left(\frac{3}{2} \right)} \right) cm$$

$$= 3 \left(1 - \frac{2}{3} \right) cm$$

$$= 3 \times \frac{1}{3} cm$$

$$= 1 cm upward$$

181. Ans (3)

For path difference λ , phase difference = 2π rad For path difference $\frac{\lambda}{4}$, phase difference = $\frac{\pi}{2}$ rad As K = $4I_0$. so, intensity at given point where path difference is $\frac{\lambda}{4}$

$$K' = \frac{K}{4} + \frac{K}{4} + 2\sqrt{\frac{K}{4} \frac{K}{4}} \cos \frac{\pi}{2} = \frac{K}{2}$$

182. Ans (1)

183. Ans (1)

The given relation is satisfied if A = 0 and B = 0

184. Ans (3)

Wave length of green light is threshold wavelength. Hence for emission of electron, wavelength of incident light < wavelength of green light.

185. Ans (2)

$$\lambda \propto \frac{1}{\sqrt{E_K}} \Rightarrow E_K \propto \frac{1}{\lambda^2}$$
As $E_x \to 16 E_K$

$$\therefore \quad \lambda \to \frac{\lambda}{4}$$

$$\frac{\Delta \lambda}{\lambda} \times 100 = -75\%$$

SECTION-B

186. Ans (3)

$$E_{1} = \frac{kQ}{R^{2}}$$

$$E_{2} = \frac{k(2Q)}{R^{2}} \Rightarrow E_{2} = \frac{2kQ}{R^{2}}$$

$$E_{3} = \frac{k(4Q)R}{(2R)^{3}} \Rightarrow E_{3} = \frac{kQ}{2R^{2}}$$

$$E_{3} < E_{1} < E_{2}$$

ALLEN®

ENTHUSIAST COURSE/PHASE-MEA,B,C,D,F,G,H,L,M,N,O,P,Q,R,S,U & V/11-01-2025

$$\Rightarrow G = \frac{S_I}{S_V} = \frac{10}{2} = 5\Omega$$

$$\Rightarrow I_g = \frac{\text{Total No. of division}}{S_I} = \frac{150}{10} \text{mA}$$

$$= 15 \text{ mA}$$

$$\Rightarrow V = 150 \text{ volt}$$

$$As V = Ig(R + G)$$

$$150 = 15 \times 10^{-3} (R + 5)$$

$$\Rightarrow R = 9995 \Omega$$

189. Ans (2)

$$\begin{split} \frac{E_1}{r_1} &= \frac{E_2}{r_2} = ---- = \frac{E_n}{r_n} = k \\ i &= \frac{E_1 + E_2 + --- + E_n}{r_1 + r_2 + --- + r_n} \\ &= \frac{k (r_1 + r_2 + --- + r_n)}{r_1 + r_2 + --- + r_n} = K \end{split}$$

190. Ans (1)

Resistance of 1 bundle = $\frac{R}{2}$ Resistance of 2 bundle = $\frac{R}{2n^2}$ $\therefore \text{Req} = \frac{R}{2} + \frac{R}{2n^2}$ = $\frac{R}{2} \left[1 + \frac{1}{n^2} \right]$

192. Ans (2)

$$\begin{split} B_0 &= \frac{\mu_0 i}{4a} - \frac{\mu_0 i}{4(2a)} + \frac{\mu_0 i}{4(4a)} - \frac{\mu_0 i}{4(8a)} + \dots \infty \\ B_0 &= \left(\frac{\mu_0 i}{4a} + \frac{\mu_0 i}{4(4a)} + \dots \right) - \left(\frac{\mu_0 i}{4(2a)} + \frac{\mu_0 i}{4(8a)} + \dots \infty\right) \\ &= \frac{\mu_0 i}{4a} \left(1 + \frac{1}{4} + \frac{1}{16} + \dots \right) - \left(\frac{\mu_0 i}{4a} \left(\frac{1}{2} + \frac{1}{8} + \dots \infty\right)\right) \\ &= \frac{\mu_0 i}{4a} \left(\frac{1}{1 - \frac{1}{4}}\right) - \frac{\mu_0 i}{4a} \left(\frac{\frac{1}{2}}{1 - \frac{1}{4}}\right) \\ &= \frac{\mu_0 i}{4a} \left(\frac{4}{3} - \frac{2}{3}\right) = \frac{\mu_0 i}{6a} \end{split}$$

193. Ans (1)

By KVL in loop ABCDA

$$100 - V_L - I(4000) = 0$$

$$\Rightarrow$$
 V_L = 100 - (15 × 10⁻³ × 4000)

$$\Rightarrow$$
 V_L = (100 - 60)V = 40 V

194. Ans (1)

$$\Delta v = \overrightarrow{\ell} \cdot (\overrightarrow{v} \times \overrightarrow{B}) = 2 \text{ Volts.}$$

196. Ans (4)

$$\frac{f_0}{f_e} = 20, \ f_0 + f_e = 2.1$$
 $f_0 = 200 \text{cm}, \ f_e = 10 \text{cm},$
final magnification = $f_0 \left[\frac{1}{D} + \frac{1}{f_e} \right] = 28$

197. Ans (2)

$$\sin \theta = \frac{2\lambda}{a}$$

198. Ans (1)

199. Ans (4)

Energy released in the fission of one nucleus = 200 MeV = $200 \times 10^6 \times 1.6 \times 10^{-19} \text{ J} = 3.2 \times 10^{-11} \text{ J}$

$$P = 16KW = 16 \times 10^3 Watt$$

Now, number of nuclei required per second

$$n = \frac{P}{E} = \frac{16 \times 10^3}{3.2 \times 10^{-11}} = 5 \times 10^{14}$$
.

200. Ans (1)

$$\frac{1}{\lambda_1} = R\left(\frac{1}{4} - \frac{1}{9}\right) \Rightarrow \lambda_1 = \frac{4 \times 9}{5R}$$
Similarly

$$\frac{1}{\lambda_2} = R\left(\frac{1}{4} - \frac{1}{4^2}\right)$$

$$\Rightarrow \lambda_2 = \frac{16}{3R} = \frac{16}{3} \times \frac{5\lambda}{4 \times 9} = \frac{20}{27}\lambda$$