Logical Inference for Question Answering

Gabor Angeli

Stanford University

April 14, 2015

Natural Logic Inference for **Common Sense Reasoning**

Kittens play with yarn

Kittens play with computers

Natural Logic Inference for **Common Sense Reasoning**

Kittens play with yarn

Kittens play with computers

April 14, 2015

The city refused the demonstrators a permit because they feared violence.

The city refused the demonstrators a permit because they feared violence.

a city fears violence

demonstrators fear violence

The city refused the demonstrators a permit because they feared violence.
a city fears violence
demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

The city refused the demonstrators a permit because they feared violence.
a city fears violence
demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

Put a sarcastic comment in your talk. That's a great idea.

Sarcasm in your talk is a great idea

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Baseball is played underwater

Baseball is played on grass

Prior Work on Common Sense Reasoning

Old School Al: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Prior Work on Common Sense Reasoning

Old School AI: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Information Extraction: Shallow inference, large data.

- OpenIE (Yates et al., 2007), NELL (Carlson et al., 2010).
- Extraction of facts from a large corpus; fuzzy lookup.

Start with a large knowledge base

Start with a large knowledge base

April 14, 2015

Infer new facts...on demand from a query...

...Using text as the meaning representation...

...Without aligning to any particular premise.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

Fast.

- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

Natural Logic

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) Some cat ate a rodent

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - Most cats eat rodents

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- .: Most cats eat rodents
- "All students who know a foreign language learned it at university."

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- ... Most cats eat **rodents**
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

April 14, 2015

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - ... Most cats eat **rodents**
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

Facts are text; inference is lexical mutation

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal

feline

cat

house cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal
feline

↑ cat
house cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

living thing

animal

cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

thing living thing

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

Natural Logic and Polarity

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

Natural Logic and Polarity

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal
feline

↓ cat
house cat

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Mutations must respect polarity.

Inference is reversible.

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!
- Still captures common inferences.
 - We make these types of inferences regularly and instantly.

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!
- Still captures common inferences.
 - We make these types of inferences regularly and instantly.
 - We expect readers to make these inferences instantly.

All cats have tails

All kittens are cute

 $\textbf{Nodes} \qquad \quad (\textit{ fact}, \textit{truth maintained} \in \{\textit{true}, \textit{false}\})$


```
Nodes ( fact, truth maintained \in \{true, false\})
```

Start Node (query fact, true)
End Nodes any known fact

Nodes (fact, truth maintained $\in \{true, false\}$)

Start Node (query fact, true)
End Nodes any known fact

Edges Mutations of the current fact

Nodes (fact, truth maintained $\in \{\text{true}, \text{false}\}\)$

Start Node (query fact, true) **End Nodes** any known fact

Edges Mutations of the current fact **Edge Costs** How "wrong" an inference step is (learned)

April 14, 2015

Search mutates opposite to polarity

Truth maintained:

Truth false

Truth false

Truth false

Truth false

Truth false

Truth false

Shorthand for a node:

No carnivores eat animals?

An Example Search (with edges)

Template Instance Edge

Operator Negate

An Example Search (with edges)

Template Instance Edge

Operator Negate $No \rightarrow The$

An Example Search (with edges)

TemplateInstanceEdgeOperator NegateNo \rightarrow TheNo carnivores eat animals \rightarrow The carnivores eat animals

Edge Templates

Template m

Instance

Hypernym Hyponym Antonym Synonym $animal \rightarrow cat$ $cat \rightarrow animal$ $good \rightarrow bad$ $cat \rightarrow true cat$

Add Word Delete Word $cat \rightarrow \cdot$ $\cdot \rightarrow cat$

Operator Weaken
Operator Strengthen
Operator Negate
Operator Synonym

 $some \rightarrow all$ $all \rightarrow some$ $all \rightarrow no$ $all \rightarrow every$

Nearest Neighbor

cat o dog

Want to make likely (but not certain) inferences.

• Same motivation as Markov Logic, Probabilistic Soft Logic, etc.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each *edge instance* has a distance *f*.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

```
Cost of an edge is \theta_i \cdot f_i.
Cost of a path is \theta \cdot \mathbf{f}.
```


Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot \mathbf{f}$. Can learn parameters θ .

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

• nocturnal $\xrightarrow{1}$ diurnal, $a \parallel \xrightarrow{\lambda}$ not all

 \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal $\xrightarrow{1}$ diurnal, $a \parallel l \xrightarrow{\lambda}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

\bowtie	\equiv	Ш	□	人	-)	#
	=			人	_)	#
			#	1	1	#	# #
		#	□ # □ ⇒	\cup	#)	#
人	人	\cup	1	=	\Box		#
1	1	#	1	□	#	□ □ #	#
	\smile	\cup	#		#		# # # # # #
#	#	#	#	#	#	#	#

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal $\xrightarrow{1}$ diurnal, $all \xrightarrow{\lambda}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

\bowtie	\equiv	Ш	□	人	-)	#
	=			人	_)	#
			#	1	1	#	# #
		#	□ # □ ⇒	\cup	#)	#
人	人	$\overline{}$	1	=	\Box		#
1	1	#	1	■ □ □ #	#	□ □ #	# # # # # #
	\smile	$\overline{}$	#	⊒	\Box		#
#	#	#	#	#	#	#	#

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

More complicated in (prior work on) Natural Logic:

- nocturnal $\xrightarrow{1}$ diurnal, $a \parallel l \xrightarrow{\lambda}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

\bowtie	=			人	1)	#
\equiv	=			人)	#
			#			#	# #
		#	# ⊒ 	Y /	#)	# #
人	人	\cup			⊒		#
	1	#		<u>(</u>	# # #	□ □ #	#
	\smile	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			⊒	#	#
#	#	#	#	#	#	#	#

Natural Logic Analog of Transitivity:

State Fact

Mutation

 \Rightarrow all bats are nocturnal,

Natural Logic Analog of Transitivity:

State Fact Mutation

 \Rightarrow all bats are nocturnal, (nocturnal $\stackrel{1}{ o}$ diurnal)

Natural Logic Analog of Transitivity:

State Fact

- ⇒ all bats are nocturnal,
- $\Rightarrow \neg$ all bats are diurnal,

Mutation

 $(nocturnal \xrightarrow{1} diurnal)$

Natural Logic Analog of Transitivity:

State Fact

- \Rightarrow all bats are nocturnal,
- $\Rightarrow \neg$ all bats are diurnal,

Mutation

(nocturnal $\xrightarrow{1}$ diurnal) (all $\xrightarrow{\lambda}$ not all)

Natural Logic Analog of Transitivity:

State Fact

- \Rightarrow all bats are nocturnal,
- $\Rightarrow \neg$ all bats are diurnal,
 - ⇒ not all bats are diurnal

Mutation

(nocturnal $\xrightarrow{1}$ diurnal) (all $\xrightarrow{\lambda}$ not all)

Natural Logic Analog of Transitivity:

State Fact \Rightarrow all bats are nocturnal. $\Rightarrow \neg$ all bats are diurnal. ⇒ not all bats are diurnal

Mutation

 $(nocturnal \xrightarrow{1} diurnal)$ $(all \xrightarrow{\lambda} not all)$

 Complex join table can be reduced to tracking a simple binary distinction.

Experiments

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 - P: At least three commissioners spend a lot of time at home.
 - H: At least three commissioners spend time at home.
 - P: At most ten commissioners spend a lot of time at home.
 - H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

Experiments

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 - P: At least three commissioners spend a lot of time at home.
 - H: At least three commissioners spend time at home.
 - P: At most ten commissioners spend a lot of time at home.
 - H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

Not a blind test set!

"Can we make deep inferences without knowing the premise a priori?"

FraCaS Results

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

• Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

FraCaS Results

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	80M	N
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87

FraCaS Results

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

• Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	80M	Ν
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87
Applicable (1,5,6)		76	90	89

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts.
 not all birds can fly
 noses are used to smell
 nobody wants to die
 music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts.
 not all birds can fly
 noses are used to smell
 nobody wants to die
 music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Our Knowledge Base:

270 million lemmatized Ollie extractions.

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

4x improvement in recall.

Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall \rightarrow 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base.

- 12% recall \rightarrow 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Complexity doesn't grow with knowledge base size.

Thanks!

