

UNISOC Android 9.0 Camera 3DNR Tuning Guide

修改历史

版本号	日期	注释
V1.0	2020/03/23	初稿

文档信息

适用产品信息	适用版本信息	关键字
UM312, UDS710_UDX710	Android 9.0	3DNR

- 1 原理介绍
- 2 调试流程
- 3 功能确认
- 4 调试案例
- 5 附: param list

原理介绍

3DNR 将多帧图像进行融合,实现去噪的功能。

在低亮情况下,噪声水平较高,空间域去噪难以区分噪声和细节,3DNR在这种情况下,会有更好的去噪表现。

以下为两帧融合的计算过程:

outputImage = ref_image \times weight + cur_image \times (1 - weight)

ref_image:参考帧图像

weight: 融合的权重,由不同的参数控制得出

cur_image: 当前帧需要融合的图像
Unisoc Confidential
Unisoc Confidential

原理介绍

3DNR 目前进行五帧融合,具体融合流程如下:

- 1、frame_0作为参考帧图像,frame_1作为当前帧进行融合,得到frame_1'。
- 2、frame_1'作为参考帧图像,frame_2作为当前帧进行融合,得到frame_2'。
- 3、frame_2'作为参考帧图像,frame_3作为当前帧进行融合,得到frame_3'。
- 4、frame_3'作为参考帧图像,frame_4作为当前帧进行融合,得到frame_4'。
- 5、frame_4'作为输出图像。

原理介绍—模块作用机制

		自动模式		超级夜景		
UMS512(T)	预览	拍	照	预览	拍照	
	少见	自动夜景增强ON	自动夜景增强OFF	少少	がある。	
3DNR	N/A	工作	N/A	工作	N/A	
SW3DNR	N/A	N/A	N/A	N/A	工作	

调试流程—新增模块

3DNR模块是NR模块的子模块,调试前需要添加NR模块。以下为新增NR模块方法。

- 1、点击打开参数按钮,打开tuning参数。
- 2、在相应的模块(common、cap_0 等)右击,选择Modify Mode。
- 3、在弹出的界面选择NR,勾选。
- 4、点击OK按钮。

调试流程—新增模块

完成以上操作后,可在config中配置相应的档位及gain值。

CONFI	G Bay	yer NR	RGB	DITHE	R BP	c G	RGB	CFA	RGB	AFM	CCEUV	/DIV 3	BDNR	PPE	EE	PE	ECDN	YNR	CD	N P	OSTCDN	I IIRO	CNR_
	D-	DIT	BBC	CD	CEAL	DC.	I.D.	20	DDE	ED	DD.	VAID	CDN	DO.	cc	NO	CND	11.4	C	В	VAI	CN	МЕ
	Ba	DIT		GR	CFAI	RG	UV			ED		YNR	CDN	P0		NO	CNR	IM	S	В		CN	MF
n	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10	1.0	1.0
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0
2	1.5 2.0	2.0 4.0	3.5 8.0	3.5 8.0	2.0 4.0		2.0	2.0 4.0	3.5 8.0	1.5 2.0	2.0 3.5	1.5 2.0	2.0 3.5	2.0 3.5	2.0 3.5	2.0 4.0	2.0	3.5 8.0	12.0			3.0 5.0	2.0 5.0
3	2.5	4.0	20.0	20.0	4.0		3.5 5.0	4.0	20.0	2.5	5.0	2.5	5.0	5.0	5.0	4.0	38.0	20.0	24.0 35.0			s.o 8.0	10.0
	3.5		20.0	20.0			8.0		20.0	3.5	8.0	3.5	8.0	8.0	8.0		30.0	20.0	33.0			10.0	20.0
i i	4.0						11.0			4.0	11.0	4.0	11.0	11.0	11.0							15.0	30.0
		iiar					20.0			5.0	20.0	5.0	20.0	20.0	20.0							20.0	30.0
HF	6.5	1100					38.0			6.5	38.0		-	38.0								30.0	
,	8.0						30.0			8.0	30.0	8.0	30.0	30.0	30.0							30.0	
0	9.0									9.0		9.0											
1	11.0									11.0		11.0											
2	15.0									15.0		15.0											
3	20.5									20.5		20.5											
4	28.0									28.0		28.0											
5	38.0									38.0		38.0											
	30.0									30.0		30.0											

Unisoc Confiden

调试流程—主要调试参数

建议调试参数为:

threshold0~8:值越大去噪效果越强。增大该值可能会带来鬼影。

其他参数建议使用默认值。

,	Gain			1		Сору	
Name	Value	Name	Value		cfg_y	cfg_u	cfg_v
bypass	0			src_weight0	128	128	128
filter_swt_en	1	fusion_mode	0	src_weight1	154	154	154
gradient_w0	127	gradient_w1	127	src_weight2	154	180	180
gradient_w2	127	gradient_w3	127	src_weight3	180	180	180
gradient_w4	127	gradient_w5	127	noise_thr	5	3	3
gradient_w6	127	gradient_w7	127	noise_w	255	255	255
gradient_w8	127	gradient_w9	127	threshold0	30	20	20
gradient_w10	127	radius_base	1024	threshold1	30	20	20
r_circle0	350	r_circle1	400	threshold2	30	20	20
 r_circle2	450	_		threshold3	30	20	20
_ u_range_min	0	u_range_max	255	threshold4	30	20	20
v_range_min	0	v_range_max	255	threshold5	30	20	20
u_thr_factor0	63	u_thr_factor1	63	threshold6	30	20	20
u_thr_factor2	63	u_thr_factor3	63	threshold7	30	20	20
v_thr_factor0	63	v_thr_factor1	63	threshold8	30	20	20
v_thr_factor2	63	v_thr_factor3	63	intens_gain0	63	63	63
u_div_factor0	1	u_div_factor1	1	intens_gain1	63	63	63
u_div_factor2	1	u_div_factor3	1	intens_gain2	63	63	63
v_div_factor0	1	v_div_factor1	1	intens_gain3	63	63	63
v_div_factor2	1	v_div_factor3	1	intens_gain4	63	63	63
fast_me_bypass	0	channel_sel	0	intens_gain5	63	63	63
iasc_iiic_bypass	U	channel_ser		intens_gain6	63	63	63
				intens_gain7	63	63	63
				intens_gain8	63	63	63

调试流程—主要调试参数

Y通道权重控制:

当两帧像素点差值小于noise_thr时,融合权重weight由noise_w和src_weight决定

当两帧像素点差值大于noise_thr时,融合权重weight 红色框中的参数一起计算得出。

Name	Value	Name	Value		cfg_y	cfg_u	cfg_v
bypass	0			src_weight0	128	128	128
filter_swt_en	1	fusion_mode	0	src_weight1	154	154	154
gradient_w0	127	gradient_w1	127	src_weight2	154	180	180
gradient_w2	127	gradient_w3	127	src_weight3	180	180	180
gradient_w4	127	gradient_w5	127	noise_thr	5	3	3
gradient_w6	127	gradient_w7	127	noise_w	255	255	255
gradient_w8	127	gradient_w9	127	threshold0	30	20	20
gradient_w10	127	radius base	1024	threshold1	30	20	20
r_circle0	350	r_circle1	400	threshold2	30	20	20
_ r_circle2	450	_		threshold3	30	20	20
 u_range_min	0	u_range_max	255	threshold4	30	20	20
v_range_min	0	v_range_max	255	threshold5	30	20	20
u_thr_factor0	63	u_thr_factor1	63	threshold6	30	20	20
u_thr_factor2	63	u_thr_factor3	63	threshold7	30	20	20
v_thr_factor0	63	v_thr_factor1	63	threshold8	30	20	20
v_thr_factor2	63	v_thr_factor3	63	intens_gain0	63	63	63
u_div_factor0	1	u_div_factor1	1	intens_gain1	63	63	63
u_div_factor2	1	u_div_factor3	1	intens_gain2	63	63	63
v_div_factor0	1	v_div_factor1	1	intens_gain3	63	63	63
v_div_factor2	1	v_div_factor3	1	intens_gain4	63	63	63
fast_me_bypass	0	channel_sel	0	intens_gain5	63	63	63
.с.с.,по_рурава	· ·	Sildillioi_Soi	Ü	intens_gain6	63	63	63
				intens_gain7	63	63	63
				intens_gain8	63	63	63

调试流程—主要调试参数

UV通道权重控制:

当两帧像素点差值小于noise_thr时,融合权重weight由noise_w和src_weight决定

当两帧像素点差值大于noise_thr时,融合权重weight 红色框中的参数一起计算得出。

evel number— 1	_	: 1.00				Сору	Paste
Name	Value	Name	Value	<u> </u>	cfg_y	cfq u	cfq v
bypass	0			src_weight0	128	128	128
filter_swt_en	1	fusion_mode	0	src_weight1	154	154	154
gradient_w0	127	gradient_w1	127	src_weight2	154	180	180
gradient_w2	127	gradient_w3	127	src_weight3	180	180	180
gradient_w4	127	gradient_w5	127	noise_thr	5	3	3
gradient_w6	127	gradient_w7	127	noise_w	255	255	255
gradient_w8	127	gradient_w9	127	threshold0	30	20	20
gradient_w10	127	radius_base	1024	threshold1	30	20	20
r_circle0	350	r_circle1	400	threshold2	30	20	20
r circle2	450	_		threshold3	30	20	20
u_range_min	0	u_range_max	255	threshold4	30	20	20
v_range_min	0	v_range_max	255	threshold5	30	20	20
u_thr_factor0	63	u_thr_factor1	63	threshold6	30	20	20
u_thr_factor2	63	u_thr_factor3	63	threshold7	30	20	20
v_thr_factor0	63	v_thr_factor1	63	threshold8	30	20	20
v_thr_factor2	63	v_thr_factor3	63	intens_gain0	63	bJ	bJ
u_div_factor0	1	u_div_factor1	1	intens_gain1	63	63	63
u_div_factor2	1	u_div_factor3	1	intens_gain2	63	63	63
v_div_factor0	1	v_div_factor1	1	intens_gain3	63	63	63
v_div_factor2	1	v_div_factor3	1	intens_gain4	63	63	63
fast_me_bypass	0	channel_sel	0	intens_gain5	63	63	63
idot_iiio_bypass	· ·	ondinioi_301		intens_gain6	63	63	63
				intens_gain7	63	63	63
				intens_gain8	63	63	63

调试流程—auto_3dnr设置

auto_3dnr可以根据BV值自动控制,是否开启3dnr

- 1、打开参数后,点击ISP选项。
- 2、点击AE。
- 3、点击auto_3dnr。
- 4、可以看到以下参数。

thrd_up: BV值上限

thrd_down: BV值下限

参数介绍:

- 1、当BV值大于thrd_up时,关闭3dnr。
- 2、当BV值小于thrd_down时,打开3dnr。
- 3、当BV值在thrd_up,thrd_down中间时:

根据BV值进入[thrd_up, thrd_down]区间前的状态分为以下两类。

- ① BV值之前的状态比thrd_up大:打开3dnr。
- ② BV值之前的状态比thrd_down小:关闭3dnr。

BLOCK ISP EX	IF			
NAME	ソ	Н	EX	DEC
+ alsc				
+ i AFT_V1				
Ē ♠ AE				
+ a s_data			<u>(</u> 2	1
-∭ iso100_gain		02	₆ 00 ∠	0
- <u>□</u> target_lum		0:	c40	64
- <u>□</u> target_zone	in	0:	c02	2
- <u>≡</u> target_zone	out	0:	c04	4
− cvg_speed		02	c00	0
- <u>□</u> iso_speci		0:	c01	1
-⊞ enter_skip_n	um	0:	c00	0
- <u>≡</u> meter_mode	•	0:	c00	0
- <u>≡</u> start_index		0>	D2	210
- <u>≡</u> sensor_ori_o		0:	c00	0
+ monitor_par				
+ in bhist_param	1			
+ a dc_fps				
+ a dv_fps				
+ in ctrl_setting			-(3	
+ in flash_cont			<u> </u>	
auto_3dnr	0.0	154	E00	
-≣ thrd_up -≣ thrd_down		1F4 1EA	500 490	

调试流程——手机相机设置

auto_3dnr参数设置完成之后,手机相机需要进行设置。

- 1、进去手机相机界面后,在屏幕上向左滑动。
- 2、进去相机设置界面,需要打开自动夜景增强按钮。

在手机相机设置中的自动夜景增强打开,才会根据设置好的参数值,自动开启3dnr功能。

功能确认

- 1、在同一场景拍两张图片,一张是3DNR效果较弱的图片,一张是3DNR效果较强的图
- 片,通过图像表现可以看出3DNR功能是否生效。

	cfg_y	cfg_u	cfg_v
src_weight0	128	128	128
src_weight1	154	154	154
src_weight2	154	180	180
src_weight3	180	180	180
noise_thr	5	3	3
noise_w	255	255	255
threshold0	30	20	20
threshold1	30	20	20
threshold2	30	20	20
threshold3	30	20	20
threshold4	30	20	20
threshold5	30	20	20
threshold6	30	20	20
threshold7	30	20	20
threshold8	30	20	20
intens_gain0	63	63	63
intens_gain1	63	63	63
intens_gain2	63	63	63
intens_gain3	63	63	63
intens_gain4	63	63	63
intens_gain5	63	63	63
intens_gain6	63	63	63
intens_gain7	63	63	63
intens_gain8	63	63	63

	cfg_y	cfg_u	cfg_v
c_weight0	128	128	128
c_weight1	154	154	154
c_weight2	154	180	180
c weight3	180	180	180
ise_thr	200	200	200
ise_w	255	255	255
reshold0	30	20	20
reshold1	30	20	20
reshold2	30	20	20
reshold3	30	20	20
reshold4	30	20	20
reshold5	30	20	20
reshold6	30	20	20
reshold7	30	20	20
reshold8	30	20	20
tens_gain0	63	63	63
tens_gain1	63	63	63
tens_gain2	63	63	63
tens_gain3	63	63	63
tens_gain4	63	63	63
tens_gain5	63	63	63
tens_gain6	63	63	63
tens_gain7	63	63	63
tens_gain8	63	63	63

弱参数效果

强参数效果

弱效果参数

强效果参数

去噪强

去噪弱

去噪强

去噪弱

noise_thr	15	9	9
noise_w	255	255	255

noise_thr	5	3	3
noise_w	255	255	255

去噪强参数

去噪弱参数

Parameters	Description	Range	Default
bypass	对应level下的功能开关	[0,1]	0
filter_swt_en	滤波器选择开关:1,使用滤波器;0,不适用滤波器	[0,1]	1
fusion_mode	图像融合模式:0,自适应权重;1,固定权重	[0,1]	0
gradient_w0~10	用于计算权重的基准阈值	[0, 127]	127
r1_value	第1圈的去噪半径	[0, w/2]	W*0.35
r2_value	第2圈的去噪半径	[0, w/2]	W*0.45
r3_value	第3圈的去噪半径	[0, w/2]	W*0.5
u_thr_min_ Unisoc Confidential For his u_thr_max	U通道径向阈值变化最小值	[0, 255]	0
u_thr_max	U通道径向阈值变化最大值	[0, 255]	255
v_thr_min	V通道径向阈值变化最小值	[0, 255]	0
v_thr_max	V通道径向阈值变化最大值	[0, 255]	255
u_thr_factor0	U通道阈值相乘的因子	[31, 127]	31
u_thr_factor1	U通道阈值相乘的因子	[31, 127]	37
u_thr_factor2	U通道阈值相乘的因子	[31, 127]	48

Parameters	Description	Range	Default
u_thr_factor3	U通道阈值相乘的因子	[31, 127]	63
v_thr_factor0	V通道阈值相乘的因子	[31, 127]	31
v_thr_factor1	V通道阈值相乘的因子	[31, 127]	37
v_thr_factor2	V通道阈值相乘的因子	[31, 127]	48
v_thr_factor3	V通道阈值相乘的因子	[31, 127]	63
u_div_factor0	U通道径向控制阈值	[1, 4]	1
u_div_factor1	U通道径向控制阈值	[1, 4]	2
u_div_factor2 _{fidential} For hi Unisoc Confidential For hi u_div_factor3	U通道径向控制阈值	[1, 4]	2
u_div_factor3	U通道径向控制阈值	[1, 4]	3
v_div_factor0	V通道径向控制阈值	[1, 4]	1
v_div_factor1	V通道径向控制阈值	[1, 4]	2
v_div_factor2	V通道径向控制阈值	[1, 4]	2
v_div_factor3	V通道径向控制阈值	[1, 4]	3
fast_me_bypass	建议使用固定值	[0, 1]	0

Parameters		Description	Range	Default
channel_set	建议使用固定值		[0, 1]	0
y_src_weight0	用于计算权重的基准阈值		[0, 255]	128
y_src_weight1	用于计算权重的基准阈值		[0, 255]	128
y_src_weight2	用于计算权重的基准阈值		[0, 255]	128
y_src_weight3	用于计算权重的基准阈值		[0, 255]	128
u_src_weight0	用于计算权重的基准阈值		[0, 255]	128
u_src_weight1	用于计算权重的基准阈值		[0, 255]	128
u_src_weight2dential For h	用于计算权重的基准阈值		[0, 255]	128
u_src_weight2dential For h Unisoc u_src_weight3	用于计算权重的基准阈值		[0, 255]	128
v_src_weight0	用于计算权重的基准阈值		[0, 255]	128
v_src_weight1	用于计算权重的基准阈值		[0, 255]	128
v_src_weight2	用于计算权重的基准阈值		[0, 255]	128
v_src_weight3	用于计算权重的基准阈值		[0, 255]	128
y_noise_thr	建议使用固定值		[0, 255]	5

Parameters	Description	Range	Default
u_noise_thr	建议使用固定值	[0, 255]	3
v_noise_thr	建议使用固定值	[0, 255]	3
y_noise_w	建议使用固定值	[0, 255]	255
u_noise_w	建议使用固定值	[0, 255]	255
v_noise_w	建议使用固定值	[0, 255]	255
y_threshold0	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold1	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold2 Unisoc Confidential For h Unisoc y_threshold3	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold3	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold4	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold5	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold6	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold7	Y通道用于计算权重的差值阈值	[0,255]	30
y_threshold8	Y通道用于计算权重的差值阈值	[0,255]	30

Parameters	Description	Range	Default
u_threshold0	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold1	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold2	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold3	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold4	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold5	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold6	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold7 _{fidential} For hiu_lisec Confidential For hiu_threshold8	U通道用于计算权重的差值阈值	[0,255]	30
u_threshold8	U通道用于计算权重的差值阈值	[0,255]	30
v_threshold0	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold1	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold2	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold3	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold4	V通道用于计算权重的差值阈值	[0,255]	30

Parameters	Description	Range	Default
v_threshold5	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold6	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold7	V通道用于计算权重的差值阈值	[0,255]	30
v_threshold8	V通道用于计算权重的差值阈值	[0,255]	30
y_intens_gain0	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain1	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain2	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain3dential For h	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain3_ential For nunisoc y_intens_gain4	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain5	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain6	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain7	Y通道用于计算权重的亮度阈值	[63,127]	63
y_intens_gain8	Y通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain0	U通道用于计算权重的亮度阈值	[63,127]	63

Parameters	Description	Range	Default
u_intens_gain1	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain2	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain3	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain4	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain5	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain6	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain7	U通道用于计算权重的亮度阈值	[63,127]	63
u_intens_gain8jential For hi	U通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain0	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain1	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain2	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain3	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain4	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain5	V通道用于计算权重的亮度阈值	[63,127]	63

Parameters	Description	Range	Default
v_intens_gain6	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain7	V通道用于计算权重的亮度阈值	[63,127]	63
v_intens_gain8	V通道用于计算权重的亮度阈值	[63,127]	63
radius_base	计算半径参数,固定1024	1024	1024

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技