hw9 • Graded

Student

Giancarlos Marte

Total Points

28 / 42 pts

Question 1

countable or uncountable

9.5 / 12 pts

1.1 countable

5.5 / 6 pts

→ - 0.5 pts Not specific enough stating that for bijection, mapping must start with length 1 strings, then length 2,

1.2 uncountable

4 / 6 pts

- ✓ 1 pt Possibility for number to still end up in set
- ✓ 1 pt diagonalization not correct; cannot assume sets have an order
- If you're going to do something like this, watch out for corner cases, 2 is both even and prime, and there are multiple odd prime numbers. The point of this is to take a number not in that set without specifying an order to the set, which you do not do since you specify to take a certain number from a certain set.

Question 2

cs420 fall 2022 undecidable

7.5 / 10 pts

- 1 pt Did not construct/did not specify inner TM M1 (or equivalent) for accepting "CS420" and "Fall2022"
- ✓ 0.5 pts Incomplete termination argument
- ✓ 1 pt Issue with TM construction
- ▶ TM M1 should be checking for x equaling the strings, you shouldn't just assign x to be them or else you're negating all the other possibilities. Also, if R accepts, then that means the simulation with M on w already happened in M1 and M1 accepted.

Question 3

closed op for decidable langs

7 / 9 pts

- 1 pt decider input incorrect or didnt specify input; should just be a string w
- ✓ 1 pt termination argument for decider: missing or incorrect

Question 4

re-proving EQ_TM undecidable

3 / 10 pts

- ✓ 4 pts didnt construct decider for CS420_F22
- → 1 pt missing termination argument for decider
- ✓ 2 pts didnt construct TM that accepts "cs420" and "fall2022", to compare with input M

Question 5

readme 1 / 1 pt

✓ - 0 pts Correct

Question assigned to the following page: 1.1

1) Countable or Not Countable?

1a) Infinite Monkey Theorem

"a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, such as the complete works of William Shakespeare"

step	statement		justification
1	prove the set of possible monkey outputs is at least countable.		statement to prove
2	You may assume that a monkey output is a string drawn from the alphabet $\Sigma = \{a,, z, A,, Z, _\}$, where _ represents a space.		given
3	A set is countable if it is finite or there exists a bijection between the set and the set of natural numbers.		definition of countable from class
4	The monkey is hitting keys for an infinite amount of time.		given
5	Let $\beta = element \in \Sigma$ Let $\alpha(\beta) = natural number element is paired to$		alphabet is finite
	β	α(β)	
	a	1	
	b	2	
	Z		
	_	53	
	a to $z = 26$ A to Z and space = 27 total = 53		
6	Let f(x) be a function that maps all combinations of elements to their own unique natural numbers starting at 54.		computation
7	There is a bijection between the set of possible monkey outputs and the natural numbers		(5) and (6)

Question assigned to the following page: 1.1

8 The set of possible monkey outputs is at least countable. (3)

Question assigned to the following page: 1.2

1b)

step	staten	nent	justification
1	Now show that the set of all possible such sets, i.e., the set of all possible infinite subsets of the natural numbers, is not countable		statement to prove
2	proof	by contradiction	proof strategy
3	assume a bijection between the natural and the set of all possible infinite subsets of the natural numbers exists.		(2)
4			diagonalization
	n	f(n)	
	1	{even, odd, prime}	
	2	{odd, prime, even	
	This shows that some infinite subset of the natural number is not mapped to.		
		orime, odd, even,} set is not in the mapping	
5		t of all possible infinite subsets of the natural ers, is not countable	(4)

2) Trying to decide about CS420, Fall 2022

step	statement	justification
1	prove the following language is undecidable: $CS420_{F22} = \{ < M > M \text{ is a } TM \}$ where $CS420 \in L(M)$ and $Sample = L(M)$	statement to prove
2	proof by contradiction	method of proof
3	Assume $CS420_{F22}$ has a decider R; use it to create a decider for A_{TM}	assumption and (2)
4	Let x be a string from L(M), where x = CS420 = Fall2022 S = "On input <m>, an encoding of a TM M: 1. run TM R on input <m> 2. If R rejects, reject. 3. If R accepts, simulate M on x until it halts. 4. If M has accepted, accept; if M has rejected, reject."</m></m>	creating a decider
5	Step 1: R is a decider so it always halts Step 3: M always halts because R said it does.	termination argument
6	A_{TM} is undecidable, which means this decider does not exist.	using previous theorem
7	$CS420_{F22}$ is undecidable.	(6)

(Question assigned to the following page: <u>3</u>			

3) A closed operation for decidable languages

 $\mathrm{OV}(L_1,\ L_2)$ = The largest set of all strings X such that $\mathrm{X} \subseteq L_1$ and $\mathrm{X} \subseteq L_2$ prove OV is closed for decidable languages

3.1) If L_1 , L_2 and the resulting set of $OV(L_1, L_2)$ are decidable languages, then OV is closed for decidable languages.

3.2)

step	statement	justification
1	Let L_1 and L_2 be decidable languages, with A and B being their corresponding deciders.	given
2	Let $F = OV(L_1, L_2)$, where $F = \{ < A, X > A \text{ is a decider and } X \text{ is a string} \}$	renaming and given
3	 A_F has a decider R; use it to create a decider for A_{TM}: S = "On input <a, x="">, where A is a TM and X is a string:</a,> 1. run TM R on input <a, x=""></a,> 2. If R rejects, reject. 3. If R accepts, simulate A on x until it halts. 4. If A has accepted, accept; if A has rejected, reject." 	computation
4	If L_1 , L_2 and the resulting set of $\mathrm{OV}(L_1, L_2)$ are decidable languages, then OV is closed for decidable languages.	(3)

4) Re-proving that EQ_TM is undecidable

step	statement	justification
1	prove the following language is undecidable: EQ_TM	statement to prove
2	proof by contradiction	method of proof
3	EQ_TM has decider R; use it to create decider for $CS420_{F22}$	assumption
	S= "On input <m> where M is a TM: 1. Run R on input</m>	

Question assigned to the following page: 5					

README

other students: none

websites/books used: lecture slides

time spent: 1hr (did not have time to finish or do it correctly)