Day 2 Notes Monday Jan 27th 1.3 Graphs of Functions

1. Graphs of Functions: Introduction

The most important way to visualize a function is through its graph. In this section we investigate in more detail the concept of graphing functions.

To graph of a function f, we plot the points (x,y) in a coordinate plane where the x coordinate represents an input and the y coordinate is the corresponding output of the function, y = f(x).

Examples of some functions and their graphs.

Linear Functions

Power Functions - Positive Exponents

Power Functions - Negative Exponents

Root Functions

2. Graphing Piecewise defined functions

Graph the function

$$f(x) = \begin{cases} x^2 + 2x & x \le -1 \\ x & -1 < x \le 1 \\ -1 & 1 < x \end{cases}$$

Steps to graph a piecewise function:

- 1. Graph each piece on its given domain
- 2. Use solid dots (•) for included endpoints
- 3. Use open dots (o) for excluded endpoints
- 4. Check that the pieces connect as specified

3. Function or not a function?

Given a graph, one can decide if the graph represents a function if the graph passes the **vertical line test**: A curve in the xy-plane represents a function if and only if no vertical intersects the curve more than once.

Vertical Line Test

Given the equation of the relationship between x and y, one can decide if y represents a function of x by solving for y and seeing if each x value has exactly one y value assigned to it.

Examples: Does the equation define y as a function of x?

1.
$$y-x^2=2$$

2.
$$x^2 + y^2 = 4$$

Practice: Graph the following function by plotting points.

$$f(x) = \begin{cases} -x & x \le 0\\ 9 - x^2 & 0 < x \le 3\\ x - 3 & 3 < x \end{cases}$$

Practice: Find a formula for the function and state its domain and range.

Increasing/decreasing/constant function

Let *f* be a function.

- A function is **increasing** on an interval if as x increases, f(x) increases.
- A function is **decreasing** on an interval if as x increases, f(x) decreases.
- A function is **constant** on an interval if f(x) remains the same as x changes.

Example 1. Graph the function $f(x) = x^3 + 3x^2 - 1$. Then use the graph to describe the increasing and decreasing behavior of the function.

Relative (local) maxima/minima

For a function f:

- A point is a **local maximum** if f(x) is greater at that point than at nearby points.
- A point is a **local minimum** if f(x) is less at that point than at nearby points

Even/odd functions

• A function is **even** if its graph is symmetric about the y-axis

f(-x) = f(x) for all x in the domain

• A function is **odd** if its graph is symmetric about the origin

f(-x) = -f(x) for all x in the domain

Example 2. Determine whether the function is even, odd or neither.

- 1. $f(x) = x^3 + 4x$
- 2. $g(x) = 3x x^2$
- 3. $f(t) = 5t^{2/3}$

Function: $f_1(x) = x^2$

Function: $f_2(x) = \cos(x)$

Function: $f_3(x) = x^3$

$$f_4(x) = x^2 + x$$

Properties

- For even functions (f_1 and f_2), f(x) = f(-x) for all x in the domain
- For the odd function (f_3), f(-x) = -f(x) for all x in the domain
- For f_4 , neither property holds: $f_4(-x) \neq f_4(x)$ and $f_4(-x) \neq -f_4(x)$