МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.В. КОСТАНОВСКИЙ, М.Г. ЗЕОДИНОВ

ОПРЕДЕЛЕНИЕ ТЕПЛОВЫХ СВОЙСТВ МАТЕРИАЛОВ МЕТОДОМ РЕГУЛЯРНОГО РЕЖИМА

Лабораторная работа № 36

Методическое пособие

Москва Издательство МЭИ 2016

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.В. КОСТАНОВСКИЙ, М.Г. ЗЕОДИНОВ

ОПРЕДЕЛЕНИЕ ТЕПЛОВЫХ СВОЙСТВ МАТЕРИАЛОВ МЕТОДОМ РЕГУЛЯРНОГО РЕЖИМА

Лабораторная работа № 36

Методическое пособие по курсам Тепломассообмен Тепломассообмен Тепломассообмен в энергетическом оборудовании АЭС Теоретические основы теплотехники для студентов, обучающихся по направлениям «Теплоэнергетика и теплотехника», «Энергетическое машиностроение».

Москва Издательство МЭИ 2016

УДК 536 К 72

УДК: 536.2.022.023 (076.5)

Утверждено учебным управлением МЭИ

Подготовлено на кафедре Теоретических основ теплотехники им. Профессора М.П. Вукаловича

Рецензент: к.т.н., проф. В.И.Величко.

А.В. Костановский, М.Г. Зеодинов. Определение тепловых свойств материалов методом регулярного режима – М.: Издательство МЭИ, 2016. – 16с. Методическое пособие по курсам «Тепломассообмен», «Тепломассообмен в энергетическом оборудовании АЭС», «Теоретические основы теплотехники» для студентов, обучающихся по направлениям «Теплоэнергетика и теплотехника», «Энергетическое машиностроение».

Методическое пособие содержит основы метода регулярного теплового режима и описание экспериментальной установки для определения тепловых (температуропроводности, теплопроводности) свойств материалов в области комнатных температур. Исследуемый цилиндрический образец — теплоизолятор, заключенный в металлическую оболочку. Приводятся рекомендации по проведению эксперимента, анализу и обработке результатов измерений, оценке их точности и сравнению полученных экспериментальных данных со справочными.

Лабораторная работа предназначена для студентов, обучающихся по направлениям «Теплоэнергетика и теплотехника», «Энергетическое машиностроение».

© Московский энергетический институт, 2016 г.

1. Назначение работы

Назначением работы является:

- 1. Углубление знаний о процессе нестационарной теплопроводности в твердых телах. Изучение влияния начального теплового состояния и условий теплообмена тела с окружающей средой. на вид распределения температуры в теле,
- 2. Ознакомление с нестационарными методами экспериментального определения теплофизических свойств материалов.
- Освоение метода регулярного теплового режима, его при определении коэффициентов экспериментальной реализации температуропроводности, теплопроводности материалов (теплоизолятор) и В условиях нагревания (охлаждения) тела. полученных результатов и их сравнение с литературными данными.

2. Домашняя подготовка к лабораторной работе

- 1. Тепловые свойства веществ: коэффициенты температуропроводности и теплопроводности материалов теплоизоляторов и металлов (см. [1 3], лекции).
- 2. Регулярный тепловой режим определение. Темп охлаждения (нагревания) и его свойства (см.[1-2,5], лекции).
- 3. Экспериментальные методы определения тепловых свойств материалов на основе регулярного теплового режима (см. [1 5], лекции).

3. Основы метода регулярного теплового режима.

Нестационарное температурное поле любого тела определяется воздействием окружающей среды, физическими свойствами тела, геометрической формой и размерами, а также его начальным тепловым состоянием.

Влияние среды и свойств тела можно характеризовать числом Био, $Bi = \frac{\propto R}{\lambda}$, которое определяет отношение внутреннего и внешнего тепловых сопротивлений

При анализе начальных условий выделяют две стадии процесса охлаждения (нагревания). В первой, начальной, стадии неупорядоченного (иррегулярного) режима температурное поле в значительной степени определяется особенностями начального распределения температуры. Во второй стадии, которая наступает при числе Фурье $Fo = \frac{a\tau}{R^2} \ge 0, 3$, начальное распределение уже не влияет на характер изменения температурного поля и распределение температуры во времени для всех

точек тела изменяется по экспоненциальному закону. Эта стадия называется регулярным (упорядоченным) тепловым режимом и при постоянных физических свойствах, в условиях $\alpha = \text{const}$, $t_{m} = \text{const}$ описывается простым уравнением:

$$t - t_{\mathsf{x}} = \vartheta = AUe^{-m\tau},\tag{1}$$

где, α - средний по поверхности коэффициент теплоотдачи, $\mathrm{Br/m^2K}$; t_{m} - температура среды; $^{\mathrm{o}}\mathrm{C}$, t - температура любой точки тела (переменная), $^{\mathrm{o}}\mathrm{C}$; $\mathcal{G} = (t - t_{m})$ - разность температур какой либо точки тела и среды; A - постоянный множитель, определяемый из начальных условий; U - функция, определяющая зависимость \mathcal{G} от координат (x, y, z); m - темп регулярного охлаждения или нагревания тела, $1/\mathrm{cek}$.; τ - время, с. Темп охлаждения m характеризует относительную скорость изменения избыточной температуры тела \mathcal{G} , т.е. $m = -1/\mathcal{G}(\partial \mathcal{G}/\partial \tau)$.

Из уравнения [1] вытекают важные для практики следствия.

1. Прологарифмировав его, получаем:

$$\ln|\vartheta| = -m\tau + G(x, y, z) \tag{2}$$

где G(x, y, z) – функция координат точки, следовательно,

$$-\frac{\partial(\ln|\vartheta|)}{\partial\tau} = m \tag{3}$$

Таким образом, по истечении определенного времени после начала охлаждения (нагревания) тела наступает регулярный тепловой режим, отличительной особенностью которого является то, что логарифм разности между температурой t в любой точке тела и температурой окружающей среды $t_{\mathcal{H}}$ изменяется с течением времени τ по линейному закону. При этом скорость изменения избыточной температуры остается одинаковой для всех точек тела.

Связь темпа охлаждения m с характеристиками тела и условиями теплообмена на поверхности, при конечном значении коэффициента теплоотдачи (α = const), определяется зависимостью вида (первая теорема Кондратьева):

$$m = \psi \frac{\alpha F}{C} \tag{4}$$

где ψ - коэффициент неравномерности температурного поля; F - поверхность тела, M^2 ; C - полная теплоемкость тела, Дж/К.

При $\alpha \to \infty$ темп регулярного охлаждения (нагревания) $m_{\infty} = m_{\alpha \to \infty}$ и температуропроводность материала тела прямо пропорциональны (вторая теорема Кондратьева):

$$a = Km_{\infty} \tag{5}$$

где коэффициент пропорциональности K, M^2 – геометрическая величина, зависящая от размеров и формы тела.

Рассмотренные свойства регулярного теплового режима широко используют для экспериментального определения коэффициента

температуропроводности - a, теплопроводности - λ , удельной теплоемкости материалов -c.

Примечание: основной величиной, которую определяют эксперимента, является темп охлаждения.

Формула (5) позволяет непосредственно рассчитать –а материала по результатам опыта при $Bi \to \infty$ (практически $Bi \ge 100$). Темп охлаждения m_{∞} определяют из эксперимента, коэффициент формы K является известным.

Полную теплоемкость -C материала определяют в соответствии с формулой (4). Исследования проводят в условиях $Bi \to 0$ на двух идентичных по форме и размерам образцах, один из которых является исследуемым, другой эталонным. Из эксперимента определяют темпы охлаждения исследуемого m_u и эталонного m_2 образцов. Эталонный образец выполняют из высокотеплопроводного металла, свойства которого известны. Так как температурное поле в эталонном образце равномерное, т.е. коэффициент неравномерности распределения температуры $\psi_3 \approx 1$ по формуле (4) можно рассчитать коэффициент теплоотдачи - α_3 . Идентичные условия теплообмена исследуемого и эталонного образцов со средой (α_u = α_{3}) позволяют определять полную теплоемкость в случае с исследуемым однородным высокотеплопроводным материалом простым сравнением темпов охлаждения. Для составного (исследуемое тело находится в металлической оболочке) образца при определении теплоемкости - $oldsymbol{C}$ необходимо дополнительно учитывать коэффициент неравномерности распределения температуры ψ в нем. Для составного тела (исследуемое тело и оболочка) темп охлаждения определяется по формуле: $m = \psi \frac{\alpha F_{\text{нар.об}}}{C_{\text{H}} + \psi C_{\text{o6}}} \tag{6}$

$$m = \psi \frac{\alpha F_{\text{нар.06}}}{C_{\nu} + \psi C_{06}} \tag{6}$$

Найденные значения -m, -a, -C и - α могут быть использованы при определении других тепловых характеристик материала, например, - λ и -c.

4. Описание установки

Лабораторная установка (рис. 1) состоит из следующих основных калориметров, термостата, измерительной Устройство калориметров показано на рис. 2. В таблице 1 приведены калориметрам. Все характеристики ПО необходимые выполнены в форме цилиндра. Калориметры № 1 и 2 имеют одинаковую конструкцию - металлическая оболочка с исследуемым материалом. Ядро калориметров выполнено из одного и того же теплоизоляционного материала. Калориметр № 1 (больших размеров) предназначен для опытов при $Bi \to \infty$. Он нагревается в водяной камере термостата. Калориметры № 2 и 3 используются в опытах при $Bi \to 0$. Они нагреваются в воздушной камере термостата. Калориметр, № 3 является эталоном при определении коэффициента теплоотдачи. Он выполнен из меди, свойства которой хорошо изучены. Форма и внешние размеры калориметров № 2 и 3 одинаковы.

Рис. 1. Схема установки: А - термостат; Б – многоканальный измеритель УКТ-38. **Термостат:** 1 - нагреватель; 2 - калориметр № 1; 3 - спаи термопар; 4 - калориметр № 2; 5 - калориметр № 3; 6 - воздушная камера; 7 - мешалка; 8 - корпус термостата с жидкостью; 9 - электродвигатель мешалки и насоса.

Каждый калориметр имеет в среднем сечении две термопары. Горячий спай одной термопары заложен на оси \mathbf{R}_o , другой - в точке с координатой $\mathbf{R}_r = 0.707\mathbf{R}$, где \mathbf{R} - радиус калориметра. Для измерения разности температур все термопары выполнены по дифференциальной схеме (возможен вариант раздельного подключения термопар). Вторые спаи термопар находятся в термостате (на измерителе УКТ38).

Термостат служит для нагревания калориметров в заданных условиях. Условие $t_{\infty} = \text{const}$ обеспечивается за счет интенсивной циркуляции термостатирующей жидкости и работы блока автоматики.

Измерительная схема состоит из 8-ми термопар (6 термопар в калориметрах и две термопары в термостате), автоматического восьмиканального цифрового измерителя, типа УКТ-38 и воздушного термометра.

На лицевой панели УКТ-38 расположены два четырехразрядных цифровых индикатора, которые показывают температуру в калориметрах и термостате в $^{\circ}$ С

Рис. 2. Устройство калориметров: 1 - исследуемый материал; 2 - тонкостенная металлическая оболочка; 3 — спаи термопар

	1
Габлица	
таолица	1.

Масса медного (эталонного) калориметра,	$M_{M} = 0.230 \text{ K}\Gamma.$
Удельная теплоемкость меди,	$c_{M} = 390 \; \text{Дж} \; / \; (\text{кг K}).$
Масса медной оболочки калориметра № 2,	$M_{oo} = 0.073$ кг.
Диаметр калориметра № 1,	$\mathbf{D_1} = 0.040 \text{ M}.$
Высота калориметра № 1,	$\mathbf{Z}_1 = 0.060 \text{ M}.$
Диаметр калориметра № 2,	$\mathbf{D_2} = 0.0294 \text{ M}.$
Высота калориметра № 2,	$\mathbf{Z}_2 = 0.054 \text{ M}.$
Внутренние размеры калориметра № 2:	
Диаметр	$D_{2, BH} = 0.0286 \text{ M}.$
Высота	$Z_{2, BH} = 0.0532 \text{ M}.$
Диаметр калориметра № 3,	$\mathbf{D_1} = 0.0294 \text{ M}.$
Высота калориметра № 3,	$\mathbf{Z}_1 = 0.054 \text{ M}.$

5. Порядок проведения эксперимента

При проведении эксперимента осуществляется нагрев калориметров в термостате. Изменение температуры в калориметрах № 1, 2, 3, в водяной и воздушной камерах термостата фиксируется с помощью измерителя УКТ38. Воздушный термометр используется для измерения температуры окружающего воздуха.

Последовательность операций при проведении эксперимента:

- 1. Измерить температуру окружающего воздуха. Воздушный термометр находится на стенде.
- 2. Включить измеритель УКТ38 в режим «РАБОТА»:
- а) проверить идентичность (см. верхнее индикаторное табло на измерителе) исходных показания всех термопар с температурой окружающего воздуха. Прибор периодически опрашивает 8 датчиков температуры

- 3. Контролировать показания датчиков температуры. Готовность установки к проведению эксперимента термопары показывают равные значения температуры.
- 4. Включить термостат:
- а) установить на контактном термометре температуру, заданную преподавателем;
- б) включить нагреватель термостата, при этом должна загореться сигнальная лампочка;
- в) включить двигатель насоса.
- 5. По достижении в термостате (в водяной и воздушной камерах) заданной температуры перенести калориметры в термостат в следующей последовательности:
- калориметр № 2 в воздушную камеру;
- калориметр № 3 в воздушную камеру.
- калориметр № 1 в водяную камеру;
- 7. Зафиксировать по секундомеру начало отсчета времени. Показания измерителя УКТ38 (см., верхнее индикаторное табло) записывать через 1 минуту.

Внимание — измеритель УКТ38 проводит автоматический опрос термопар последовательно (каждый на время 4 сек): каналы 1 и 2 от термопар калориметра № 1; каналы 3 и 4 от калориметра № 2; каналы 5 и 6 от калориметра № 3; каналы 7 и 8, соответственно от термопар в водяной и воздушной камер термостата. Полное время опроса составляет 32 сек. Прибор показывает температуру в $^{\circ}$ С.

- 7. После записи 30 35 показаний для каждого калориметра эксперимент можно прекратить.
- 8. Запись показаний вести по форме (см. таблица 2).

Таблица 2.

N/ 0	Время опыта,		21, C	Nº 0	оиметр 22, <i>С</i>	0	23, C	Водяная камера, ^о С	Воздушная камера, ^о С
	Мин.	tI	t2	t3	t4	<i>t</i> 5	t6	<i>t</i> 7	t8
1									
2									

6. Обработка результатов измерений

1. В соответствии с формулой (3) по опытным данным, приведенными в таблице 2 для всех калориметров построить графики функций $\boldsymbol{ln}(\boldsymbol{\vartheta} = \boldsymbol{t}_{\scriptscriptstyle \text{ж}} - \boldsymbol{t}) = \boldsymbol{f}(\boldsymbol{\tau})$

- а) Нанести экспериментальные точки на график в координатах ($\ln \vartheta$, τ). На каждом графике выявить линейные участки, соответствующие регулярному режиму.
- б) Вычислить темп нагрева калориметров m_1 , m_2 , m_3 для этих участков по формуле:

$$m = \frac{ln\vartheta_1 - ln\vartheta_2}{\tau_2 - \tau_1}$$

Индексы 1 и 2 соответствуют точкам, выбранным на линейном участке графика.

в) Коэффициент формы калориметров №1 (цилиндр конечных размеров) K_1 и №2 (цилиндр конечных размеров без оболочки) K_2 определить по формулам:

$$K_1 = (\frac{5.783}{R_1^2} + \frac{9.87}{Z_1^2})^{-1}$$
 , $K_2 = (\frac{5.783}{R_{2,BH}^2} + \frac{9.87}{Z_{2,BH}^2})^{-1}$

 R_{1} , Z_{1} , $R_{2, 6H}$, $Z_{2, 6H}$ – данные из таблицы 1.

г) Определить для калориметра №1 коэффициент температуропроводности исследуемого материала, используя темп нагрева $(m_{\infty}=m_1)$, и число Фурье (при $\tau=\tau_2$): $a=K_1m_{\infty}$, $Fo=\frac{a\tau}{R_2^2}$.

 $(m_{\infty}=m_1)$, и число Фурье (при $\tau=\tau_2$): $a=K_1m_{\infty}$, $Fo=\frac{a\tau}{R_1^2}$. По таблице 2, где приведена взаимосвязь между $M=\frac{m_{2(\alpha\approx const)}}{m_{2(\alpha\to\infty)}}=\frac{m_2K_2}{a}$ и ψ , выбрать значение коэффициента неравномерности температурного распределения калориметра $N_2 - \psi_2$.

д) Полная теплоемкость калориметра №2 равна сумме теплоемкостей исследуемого материала и оболочки калориметра с учетом коэффициента неравномерности температурного поля, т.е. $C_2 = C_{2,u} + \psi_2 C_{2,o\delta}$, при этом площади внешних поверхностей калориметров №2 и №3 и коэффициенты теплоотдачи с наружных поверхностей равны. Отсюда, применяя формулы (4) и (6), $C_{2,u}$ рассчитываем по формуле:

$$C_{2,H} = (c_{M}M_{M}\frac{m_{3}}{m_{2}} - c_{M}M_{2,o\delta})\psi_{2}$$

е) Рассчитать коэффициент теплопроводности

$$\lambda = ac_{2,{\scriptscriptstyle \mathrm{H}}}
ho_{2,{\scriptscriptstyle \mathrm{H}}} = ac_{2,{\scriptscriptstyle \mathrm{H}}}
ho_{2,{\scriptscriptstyle \mathrm{H}}}rac{V_{2,{\scriptscriptstyle \mathrm{H}}}}{V_{2,{\scriptscriptstyle \mathrm{H}}}} = rac{ac_{2,{\scriptscriptstyle \mathrm{H}}}M_{2,{\scriptscriptstyle \mathrm{H}}}}{V_{2,{\scriptscriptstyle \mathrm{H}}}} = rac{ac_{2,{\scriptscriptstyle \mathrm{H}}}}{V_{2,{\scriptscriptstyle \mathrm{H}}}}$$

- где **a** коэффициент температуропроводности исследуемого материала, определенный в эксперименте с калориметром №1; $\rho_{2,u}$ плотность исследуемого материала, кг/м³, $V_{2,u}$ объем исследуемого материала, определяемый по внутренним размерам калориметра №2. Сравнить значения теплопроводности исследуемого материала, полученные с учетом оболочки и без ее учета.
- ж) Проверить выполнение условия $Bi \to \infty$ для калориметра №1. Для этого необходимо для точки, расположенной в центре (r=0), решить уравнение относительно μ_1 :

$$heta = rac{t_{\text{xx}} - t_{r=0}}{t_{\text{xx}} - t_0} = rac{2J_1(\mu_1)}{\mu_1[J_0^2(\mu_1) + J_1^2(\mu_1)]} e^{-\mu_1^2 F o}$$

где J_0 — функция Бесселя первого рода нулевого порядка, J_1 — функция Бесселя первого рода первого порядка. Решить уравнение с помощью Mathcad или в среде Excel (процедура подбора параметра). По таблице 4 определить значение Bi.

2. Рассчитать температуру отнесения для -a и $-\lambda$ по формуле:

$$t_{\text{oth}} = (t_{\kappa,2} + t_{\varkappa}) / 2$$
,

где t_{∞} — температура среды в термостате; $t_{\kappa,2}$ - температура калориметра N_{2} в начале эксперимента.

- 3. Для трех моментов времени на стадии регулярного режима построить распределение температуры по сечению калориметра № 1. Температуру поверхности можно принять равной температуре окружающей среды, так как эксперимент проводился при $Bi \to \infty$.
- 4. Определение погрешности измерения тепловых свойств материала и сравнение с литературными данными (см. Таблица 3).
- а) относительную погрешность определения коэффициента температуропроводности вычислить по формуле:

$$\Delta a / a = \Delta m_1 / m_1$$

- где **△** абсолютные погрешности определения отдельных величин. Статистическая обработка результатов экспериментальных измерений проводится в соответствии с п. 2.1 из [3], используя современный пакет программ EXCEL, MATHCAD и др.
- б) погрешность определения коэффициента теплопроводности - λ оценить путем сравнения с литературными данными.

7. Отчет о работе

Отчет должен содержать:

- 1. Цель работы.
- 2. Краткое описание схемы установки и основы методики эксперимента.
- 3. Протокол наблюдений.
- 4. Результаты обработки экспериментальных данных.
- 5. Графики изменения избыточной температуры калориметров во времени
- 6. Расчет погрешности.
- 7. Краткий сравнительный анализ экспериментальных и литературных данных.

8. Темы вопросов к защите лабораторной работы

- 1. Факторы, влияющие на теплопроводность при нестационарном режиме.
- 2. Регулярная стадия нагревания (охлаждения) тел. Признаки регулярного режима.
- 3. Методы определения тепловых свойств материалов: удельной теплоемкости, температуропроводности и теплопроводности.
 - 4. Темп охлаждения и его свойства.
 - 5. Числа Био и Фурье.
- 6. Условия эксперимента, в которых могут быть обеспечены малые и большие числа Био.
- 7. Распределение температуры в телах простой формы (пластина, цилиндр) при различных числах Био. Направляющие точки. Коэффициент неравномерности

9. Справочные данные.

Таблица 3. Связь между относительным темпом охлаждения M и коэффициентом неравномерности распределения температуры ψ .

M	0,110	0,123	0,143	0,158	0,174	0,188	0,203	0,216	0,230	0,243
Ψ	0,918	0,905	0,892	0,880	0,868	0,856	0,844	0,833	0,822	0,811

Таблица 4. Средние значения тепловых характеристик исследуемых материалов (фторпласт, эбонит) при температуре 20⁰ С.

Свойства	Фторпласт	Эбонит
Температуропроводность, a , m^2/c	0.8×10^{-7}	0.83×10^{-8}
Плотность, ρ , кг/м 3	$2,2 \times 10^3$	1.2×10^3
Теплопроводность, λ , Вт/м К	0,18	0,16
Удельная теплоемкость, C_p , Дж/кг*К	10^{3}	1.6×10^3

Таблица 5. Связь между числом Био и первым корнем характеристического уравнения

Bi	20	30	40	50	60	70	80	90	100	8
μ1	2,289	2,326	2,346	2,357	2,365	2,372	2,375	2,379	2,381	2,405

10. Литература

- 1. Исаченко В. П., Осипова В. А., Сукомел А.С. Теплопередача.—М. Энергоиздат, 1981. 416 с.
- 2. Ф.Ф. Цветков, Б.А. Григорьев Тепломассообмен, М.: МЭИ. 2001. 548c.
- 3. Практикум по теплопередаче. Учебное пособие для вузов / А.П. Солодов, Ф.Ф. Цветков, А.В. Елисеев, В.А. Осипова. Под ред. А.П. Солодова. М. Энергоатомиздат. 1986. 296с.
- 4. Ф.Ф. Цветков, Р.В. Керимов, В.И. Величко. Задачник по тепломассообмену. М. Изд-во МЭИ 1997. 137с.
- 5. А.В. Костановский. Регулярный тепловой режим и его приложение для измерения тепловых свойств твердых тел. М., Издательский дом МЭИ, 2006. 32c.

Методическое пособие

Костановский Александр Викторович, Зеодинов Марат Гарифович

Определение тепловых свойств материалов методом регулярного режима

Лабораторная работа № 36

Методическое пособие по курсам «Тепломассообмен», «Тепломассообмен в энергетическом оборудовании АЭС», «Теоретические основы теплотехники» для студентов, обучающихся по направлениям «Теплоэнергетика и теплотехника», «Энергетическое машиностроение».

Редактор издательства ЛР № от	
Темплан издания МЭИ 2016 г. (II). Формат 60Х84/16 Печать офсетная Физ. Заказ	• •
Издательство МЭИ, 111250, Москва, Крас Типография ИНИИ «Электроника» 11741	1

© Московский энергетический институт