Suporte que no	že oviste grazão intov	na de color, delen	rdra uma expr	visão gara a cordut	ividade teri
K(x) para as x	quintes condições: Alm)= (1-n), T(x)=300	(1-2n-n3) e Q	= 6000 W, onle A	esta em m
	Kelvins, e x em netr				
Regime estari	mário; condução de	color unidimens	ional isem gons	ção de caller	
A(n)=(1-x)					
T(x) = 300	$(1-2n-x^3)$	To the same of the	1-1-10 m	Luc Second	
On = 6000	W				
É ELTIRA =	Езаг - д ентка = с	cai = - K. A(x).	17(m) ~> Good	=-K(1-n)[300(-	$3n^2 - 211$
	*		da		
		Lei de Fran	1.07)		

	calor por condução, em la conduitavidade tormica.	regime estacionario e rem geração interna de color, material e de 25 W/m.K., inquento a espessura da
parude e de 0,5 m.		
T. —	-7,	
н		gross - it survivores and in
L	на	harries and the same of the sa
Determine as grandezas descente l'emperatura, indicando a direção	hecidas para cada casa La du fluxa térmico.	mostrodo na tabela e esbore a distribuição de

Core	Tı	Tz	dT/dn(k/m)	q x (W/m²)	
1	400 K	300K	-200	5000	
2	100°C	-2590	-250	6250	
3	880	1800	+200	-5000	
4	30%	-5°C	H-160	4000	
5	30°C	90°C	+120	-3000	
Caro 1: K=			Farm KI	The gall-O) of gar	- <u>K(Ta-Ta)</u> L
GN	= - 25/200	- gna) = 50	00 W/23	17 - 9x - 5000	= -200 K/m
	0.9			dr 1 25	
Coro 2: 9x =	dn		- 6250 W/m2)-0,5+ (100+273) = 2	48K = -25°C	
	dn)	
	· 9x = 625	0W/m2;	T2 = -25°C}	(30-10-1)	
Caso 3: 9x=	dn	3574	A STATE OF THE STA		
T2=	dr(n). L + T	1 =(+200).0	(5 + (80+273) = 453	3 K = 180°C	
	9x = - 5000 K	1/m²; 72=1	186°C}		

Caro 4: d7(x) = gx = 4000 = - 160 1/1	by at all the contract of the state of
dn k -25	
the state of the s	
:. qx=-160 K/m	
	and a franchis sex and a
Caro 5: dT(n) = on = -3000 = 120 K/m	
In K -25	
16 - 100 m d d d d d d d d d d d d d d d d d d	T E SA
-3000. [du = -1/ (12 Ta) -3	7 Tx = 363 W = 90°C
10	74-30°C
40	-
1 17/1 - 12 - 1/1 7 - 200 7 - 0	3000
(dT(x) = 120 K/m; T1= 30°C; T2=	00
) dn	

3) Observa-re que a distribuição de temperatura, em estado estocionário, no enterior de uma parede unidimensió- mal com contribuidade térmica de 50 W/m K a espessara de 50 mm tem a forma T(C)= a + 5x², onde a = 200°C; b = -2000°C/m² e n está em metros. a) Qual a taxa de opração de calor q ma parede? b) Determine or fluxos de calor mas duas fores da parede.
a) Etado enteriorano; condução unidimensional
$\frac{d}{dx} = -K d \left[\frac{d}{dx} \right] = -K d \left[\frac{d}{dx} \left(\frac{200 - 2000 \times^2}{dx} \right) \right] = -K d \left(-4000 \times \right) = -K \left(-4000 \right)$
· 9 = -50.(4000) = 2.105 W/m²}
b) qx = -KdT(x) = -K (-4000x)
du
Face 1 (n=0) ~ qn=0 Face 2 (n=0,05) ~ q= 10000 W/m2
: qx = 0 e qn = 10000 W/m² = 10000 W/m²

4	Em um processo de fabricação, uma peliada transporente está sendo fixada sobre um substrato, conforme é
	montrado no desenha. Para curar a finação a uma temperatura To, uma fonte de energia radiante é usada
	para formerer fluxo de calor go (W/m²), que e totalmente absorbido ma superficie filme/substruto, le pare-
	de inferior de substrato e mantido a 71, esquante a superficie hivre da pelítula está exporta ao ar a
	uma temperatura Tos com um coeficiente de transfoêrica de calor por convecção to.
	K = Too,h
Li	Policila LF=0,25 mm
	Lyonio, To Kp=0,025 W/m2K
Ls	Dubrato N5-0,05 Wlnik
	T ₂
_	a) Desenhe o aranto termino que representa a transferência de calo em regime estaciona
	Mus.
	92 to Britingia formica por millegão
	a si condução es filme
_	(R'av) E 3 11 11 11 me reletate
-	90 000
	(CS) & To
=	₹ T1
-	
-	91
-	
-	b) de Tos= 20°C, h= 50 W/m² K e 71=30°C. Calcule o fluxo de radionnte q necessá-
-	rio para manter a tempera da seperficie filme/substrato em 70 = 60°C
-	Developed Constitution of A 20-10 10 A
-	Regime estacionário; Peop. constantes; dem genoció de calor; unidimensional
-	q" = q" 1 = q" 2 = To-To + To-t1; R"v=1/h; R"= LF; R"s= Ls
-	
	Substituinds, ditemes Q" = 2833 W/m²
	Charles and Charles do - 5055 Asiles

5) Uma placa de aço com 1 m de comprimento (k = 50 W/ m.K) tem os seus lados isolados termicamente, enquanto a superficie superior é mantida a 100°C e a superficie inferior é resfriada por convecção por um fluido que se encontra a 20°C. em condições de regime estacionário, sem geração de calor, um termopar, posicionado no ponto intermediário entre as duas superficies, revela uma temperatura de 85°C.

Qual o valor do coeficiente de transferência de calor por convecção na superficie inferior da placa? Resposta : 30 W/m².K

5)	7000	Sich reidier storal
	アーコのなり	Sugar stas
L= 1m, K	= 50 W/m.K	
Q= 71- (L-1	$T_2 = +1500 W/m^2$	
Q7074L=	T1-T00 = T1-T0 RTOTAL 1/n + 1/2/	$= 1500 \text{W/m}^2$
80°C	= 1500 — > h = 30	W/m² K

6) Uma parede composta separa gases de combustão a 2600 °C de um líquido refrigerante a 100°C, com coeficientes de transferência de calor por convecção no lado do gás e no líquido iguais a 50 e 1000 W/m².K, respectivamente. A parede é composta por uma camada de 10 mm de óxido de berílio no lado do gás e uma placa de 20 mm de aço inoxidável (AISI 304) no lado do líquido. A resistência de contato entre o óxido e o aço é de 0,05 m².K/W. Qual é a perda de calor por unidade de área de superficie da parede composta. Esboce a distribuição de temperatura entre o gás e o líquido. Resposta: 34600 W/m²

) Regime estacionario	La	Eignen	7g 25004.	ha- 50/1/1/2/K
dist unidimensional	Rc L2	Liquido	TL . 100°C	he = too w/m2 K
den gen, de energea				
Prop. ctes	Rc=	0,05 m K/m	Les to min ; L	2= 20 mm
		1000		
Koksoo = 245 W/mK	R+= R	c,11 Rópin	+ RONT + RC, 2+	Rogo
KAGO = 259 W/mK				7,225.10-2 m2 K
2.34		21,5		
Q= T1-72 = 34600 W	1-2			
R7 R7	7.00			The state of the s
NT III	1			
+) 7)-1/T. T.	1 00 7 4 = 1	1008 00
I) T to oxioo NA SUP. GA	5-6x100: 6)=h(TG-70	(1) ~ TOK,1=1	908°C
			1 M/m?	FE 1
I) T DO OXÍDO NA SUP. GA			1 M/m?	FE 1

III) Too AGO NA SUP. AGO-LIGO Q=h (TAGO, 1 = 134,6°C) (7)

IV) Too AGO NA SUP OXIDO-AGO: Q= KAGO (TAGO, 2 = TAGO, 1) -0 TAGO, 2 = 161,84°C)

L2

7) Seja a parede de um tubo com raios internos e externos iguais a ri e re, cujas temperaturas são mantidas a Ti e Te, respectivamente. A condutividade térmica do material do tubo é função da temperatura, podendo ser representada por uma expressão na forma k= ko.(1+aT), onde ko e a são constantes. Obtenha uma expressão para a taxa de transferência de calor por unidade de comprimento do tubo. Qual é a resistência térmica da parede do tubo?

7) Regione permanente Sixt. unidumen signal Sem gen de energia K varia com T
$Q_{cond} = -K.A.d7 = -K.2\pi RLd7 - Q=Q^*-PQ^*dr = -(Ko+KoaT)d7$ $dr $
$Q'' = -2\pi \text{ ko} \left[(Te-Ti) + a/2 \cdot (Te^2 - Ti^2) \right]$ $\lim_{n \to \infty} (re/ri)$ $\therefore Q'' = 2\pi \text{ ko} \left[(Te-Ti) + a/2 \cdot (Te^2 - Ti^2) \right]$ $\lim_{n \to \infty} (ri/re)$

8) Um aquecedor elétrico delgado é enrolado ao redor da superficie externa de um tubo cilíndrico longo cuja superficie interna é mantida a uma temperatura de 5°C. A parede do tubo possui raiso interno e externo iguais a 25 e 75 mm, respectivamente, e condutividade térmica de 10W/m.K. A resistência térmica de contato entre o aquecedor e a superficie externa do tubo (por unidade de comprimento do tubo) é de R'_{1c} = 0,01 m.K/W. A superficie externa do aquecedor está exposta a um fluido com T_∞ = -10°C e um coeficiente de convecção de h = 100 W/ m².K. Determine a potência do aquecedor, por unidade de comprimento do tubo, requerida para mantê-lo a T₀ = 25°C. Resposta: 2377W/m

a south o min o sain
13 To Ta
q=q+q= To-ta+ To-T3 = To-T1 + T6-T3 R1 R2+R3 1/π.Del-h R2+ lm/re/ri)
271 K3

9) Um revestimento de Bakelite é usado sobre um bastão condutor de 10 mm de diâmetro, cuja superficie é mantida a 200°C pela passagem de uma corrente elétrica. O bastão encoutra-se imerso em fluido a 25°C, onde o coeficiente de transferência de calor por convecção é de 140 W/m².K. Qual é o raio crítico associado ao revestimento nestas condições? Qual é a taxa de transferência de calor, por unidade de comprimento, estando o bastão sem revestimento e com um revestimento de Bakelite cuja esperssura corresponde ao raio crítico? Qual a quantidade de Bakelite que deve ser colocada sobre o bastão para reduzir em 25% a transferência de calor correspondente ao bastão sem qualquer revestimento.

Resposta: a) 0,01 m; b) 770 W/m; c) 55 mm

9)	Regime estacionario Prop. etes	a) $r = K = 1.4 = 0.01 \text{ m}$ h 140
	dem gen. de entreja	b) q'= h(TDil(71-700)= 140(T1.0,01)(200-25)=>
	c) r= 0,06 mm -> 3=0	106-0.005 = 155 mm

10) Uma esfera oca de alumínio, com um aquecedor elétrico no seu centro, é usada em testes para determinar a condutividade térmica de materiais isolantes. Os raios interno e externo da esfera possuem 0,15 e 0,18 m, respectivamente, e o teste é realizado em condições de regime estacionário com a superficie interna do alumínio mantida a 250°C. Para um teste em particular, uma casca esférica de isolamento térmico é fundida sobre a superfície externa da esfera até uma espessura de 0,12 m. O sistema encontra-se em uma sala na qual a temperatura do ar é de 20°C e o coeficiente de isolamento é de 30 W/m².K. Se 80W são dissipados pelo aquecedor em condições de regime estacionário, qual é a condutividade térmica do isolamento testado? Resposta: 0,062 W/m.K

10) Regime enfacements q 80 M/ Prop des Na 0,3250,33 0,30 m	
Side unidializational Q= 79-Ta Regard, as = Regard + Report + Riso	
Reave, Ri = 1 = 0.0118; ReaveRa = 1 = 8.1864.10-2 4TRi2h 4TRi2h	
ROW = R2-R1 = 0.0884 Riso = R7-Re = 5.83.10-3 47.R2.R1 K K ATRIKEL	
substituinde no equações, achomos K= 0,031 W/m K	
1: 2K = 0,062 W/m.K	