Activités Mentales

24 Août 2023

On considère la fonction f définie sur \mathbb{R} par $f(x) = 48x^3x^2 - 16x - 19$.

- lacksquare Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- **2** Montrer que pour tout $x \in \mathbb{R}$, on a $-4(6x+2)(-6x+2) = 144x^2x 16$.
- **③** Construire le tableau de signe de la fonction définie sur \mathbb{R} par -4(6x+2)(-6x+2)
- $oldsymbol{4}$ En déduire les variations de la fonction f.

On considère la fonction f définie sur \mathbb{R} par $f(x) = -16x^3 - 56x^2 + 20x - 10$.

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- ② Montrer que pour tout $x \in \mathbb{R}$, on a $4(2x+5)(-6x+1) = -48x^2 112x + 20$.
- **③** Construire le tableau de signe de la fonction définie sur \mathbb{R} par 4(2x+5)(-6x+1)
- $oldsymbol{4}$ En déduire les variations de la fonction f.

On considère la fonction f définie sur \mathbb{R} par $f(x) = 16x^3 - 36x^2 - 48x + 30$.

- **1** Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- **2** Montrer que pour tout $x \in \mathbb{R}$, on a $6(-4x-2)(-2x+4) = 48x^2 72x 48$.
- **3** Construire le tableau de signe de la fonction définie sur \mathbb{R} par 6(-4x-2)(-2x+4)
- 4 En déduire les variations de la fonction f.

On considère la fonction f définie sur \mathbb{R} par $f(x) = 15x^3 + 15x^2 - 120x + 20$.

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- ② Montrer que pour tout $x \in \mathbb{R}$, on a $5(-3x-6)(-3x+4) = 45x^2 + 30x 120$.
- **3** Construire le tableau de signe de la fonction définie sur \mathbb{R} par 5(-3x-6)(-3x+4)
- 4 En déduire les variations de la fonction f.

On considère la fonction f définie sur \mathbb{R} par $f(x) = 40x^3 - 36x^2 - 48x - 6$.

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- ② Montrer que pour tout $x \in \mathbb{R}$, on a $-6(5x+2)(-4x+4) = 120x^2 72x 48$.
- **③** Construire le tableau de signe de la fonction définie sur \mathbb{R} par -6(5x+2)(-4x+4)
- 4 En déduire les variations de la fonction f.

1 Soit $x \in \mathbb{R}$, on a

$$f(x) = 48x^3 - 16x - 19$$

On a alors pour tout $x \in \mathbb{R}$,

$$f'(x) = 48 \times 3x^2 - 16 \times 1 + 0 = 144x^2 - 16$$

2 Soit $x \in \mathbb{R}$,

$$-4(6x+2)(-6x+2) = -4(-36x^2 + 12x - 12x + 4)$$
$$= -4(-36x^2x + 4)$$
$$= 144x^2x - 16$$

- **3** On pose A(x) = 6x + 2 et B(x) = -6x + 2.
 - A est une fonction affine avec m=6>0. f est donc croissante sur \mathbb{R} . Elle est donc d'abord négative puis positive. .

De plus
$$A(x) = 0 \Leftrightarrow x = \frac{-1}{3}$$
.

• B est une fonction affine avec m=-6<0. B est donc décroissante sur \mathbb{R} . Elle est donc d'abord positive puis négative. sur \mathbb{R} .

De plus
$$B(x) = 0 \Leftrightarrow x = \frac{1}{3}$$
.

On compare les deux racines obtenues : $\frac{-1}{3} < \frac{1}{3}$

On rappelle que A(x) = 6x + 2 et B(x) = -6x + 2 et f'(x) = -4(6x + 2)(-6x + 2). Son tableau de signe est alors

x	$-\infty$		$\frac{-1}{3}$		$\frac{1}{3}$		+∞
-4		_		_		_	
A(x)		_	0	+		+	
B(x)		+		+	0	_	
f'(x)		+	0	_	0	+	

 $oldsymbol{4}$ On en déduit les variations de la fonction f:

x	$-\infty$	$\frac{-1}{3}$	$\frac{1}{3}$	+∞
f			→	

1 Soit $x \in \mathbb{R}$, on a

$$f(x) = -16x^3 - 56x^2 + 20x - 10$$

On a alors pour tout $x \in \mathbb{R}$,

$$f'(x) = -16 \times 3x^2 - 56 \times 2x + 20 \times 1 + 0 = -48x^2 - 112x + 20$$

2 Soit $x \in \mathbb{R}$,

$$4(2x+5)(-6x+1) = 4(-12x^{2} + 2x - 30x + 5)$$
$$= 4(-12x^{2} - 28x + 5)$$
$$= -48x^{2} - 112x + 20$$

- **3** On pose A(x) = 2x + 5 et B(x) = -6x + 1.
 - A est une fonction affine avec m=2>0. f est donc croissante sur \mathbb{R} . Elle est donc d'abord négative puis positive. .

De plus
$$A(x) = 0 \Leftrightarrow x = \frac{-5}{2}$$
.

• B est une fonction affine avec m=-6<0. B est donc décroissante sur \mathbb{R} . Elle est donc d'abord positive puis négative. sur \mathbb{R} .

De plus
$$B(x) = 0 \Leftrightarrow x = \frac{1}{6}$$
.

On compare les deux racines obtenues : $\frac{-5}{2} < \frac{1}{6}$

On rappelle que A(x) = 2x + 5 et B(x) = -6x + 1 et f'(x) = 4(2x + 5)(-6x + 1). Son tableau de signe est alors

x	$-\infty$		$\frac{-5}{2}$		$\frac{1}{6}$		+∞
4		+		+		+	
A(x)		_	0	+		+	
B(x)		+		+	0	_	
f'(x)		_	0	+	0	_	

 $oldsymbol{4}$ On en déduit les variations de la fonction f:

x	$-\infty$	$\frac{-5}{2}$	$\frac{1}{6}$	+∞
f		→	<i></i>	—

1 Soit $x \in \mathbb{R}$, on a

$$f(x) = 16x^3 - 36x^2 - 48x + 30$$

On a alors pour tout $x \in \mathbb{R}$,

$$f'(x) = 16 \times 3x^2 - 36 \times 2x - 48 \times 1 + 0 = 48x^2 - 72x - 48$$

2 Soit $x \in \mathbb{R}$,

$$6(-4x-2)(-2x+4) = 6(8x^2 - 16x + 4x - 8)$$
$$= 6(8x^2 - 12x - 8)$$
$$= 48x^2 - 72x - 48$$

- **3** On pose A(x) = -4x 2 et B(x) = -2x + 4.
 - A est une fonction affine avec m=-4<0. f est donc décroissante sur \mathbb{R} . Elle est donc d'abord positive puis négative. . De plus $A(x)=0 \Leftrightarrow x=\frac{-1}{2}$.
 - B est une fonction affine avec m=-2<0. B est donc décroissante sur \mathbb{R} . Elle est donc d'abord positive puis négative. sur \mathbb{R} . De plus $B(x)=0 \Leftrightarrow x=2$.

On compare les deux racines obtenues : $\frac{-1}{2} < 2$

On rappelle que A(x) = -4x - 2 et B(x) = -2x + 4 et f'(x) = 6(-4x - 2)(-2x + 4). Son tableau de signe est alors

x	$-\infty$		$\frac{-1}{2}$		2		+∞
6		+		+		+	
A(x)		+	0	_		_	
B(x)		+		+	0	_	
f'(x)		+	0	_	0	+	

 $oldsymbol{4}$ On en déduit les variations de la fonction f:

x	$-\infty$	$\frac{-1}{2}$	2	+∞
f		<i></i>	→ —	

1 Soit $x \in \mathbb{R}$, on a

$$f(x) = 15x^3 + 15x^2 - 120x + 20$$

On a alors pour tout $x \in \mathbb{R}$,

$$f'(x) = 15 \times 3x^2 + 15 \times 2x - 120 \times 1 + 0 = 45x^2 + 30x - 120$$

2 Soit $x \in \mathbb{R}$,

$$5(-3x-6)(-3x+4) = 5(9x^2 - 12x + 18x - 24)$$
$$= 5(9x^2 + 6x - 24)$$
$$= 45x^2 + 30x - 120$$

- 3 On pose A(x) = -3x 6 et B(x) = -3x + 4.
 - A est une fonction affine avec m = -3 < 0. f est donc décroissante sur
 <p>
 R. Elle est donc d'abord positive puis négative. .

 De plus A(x) = 0 ⇔ x = -2.
 - B est une fonction affine avec m=-3<0. B est donc décroissante sur \mathbb{R} . Elle est donc d'abord positive puis négative. sur \mathbb{R} .

De plus $B(x) = 0 \Leftrightarrow x = \frac{4}{3}$.

On compare les deux racines obtenues : $-2 < \frac{4}{3}$

Activités Mentales

24 Août 2023

On rappelle que A(x) = -3x - 6 et B(x) = -3x + 4 et f'(x) = 5(-3x-6)(-3x+4). Son tableau de signe est alors

x	$-\infty$		-2		$\frac{4}{3}$		+∞
5		+		+		+	
A(x)		+	0	_		_	
B(x)		+		+	0	_	
f'(x)		+	0	_	0	+	

4 On en déduit les variations de la fonction f:

x	$-\infty$	-2	$\frac{4}{3}$	+∞
f			→	

1 Soit $x \in \mathbb{R}$, on a

$$f(x) = 40x^3 - 36x^2 - 48x - 6$$

On a alors pour tout $x \in \mathbb{R}$,

$$f'(x) = 40 \times 3x^2 - 36 \times 2x - 48 \times 1 + 0 = 120x^2 - 72x - 48$$

2 Soit $x \in \mathbb{R}$,

$$-6(5x+2)(-4x+4) = -6(-20x^2 + 20x - 8x + 8)$$
$$= -6(-20x^2 + 12x + 8)$$
$$= 120x^2 - 72x - 48$$

- **3** On pose A(x) = 5x + 2 et B(x) = -4x + 4.
 - A est une fonction affine avec m=5>0. f est donc croissante sur \mathbb{R} . Elle est donc d'abord négative puis positive. .

De plus $A(x) = 0 \Leftrightarrow x = \frac{-2}{5}$.

B est une fonction affine avec m = -4 < 0. B est donc décroissante sur R. Elle est donc d'abord positive puis négative. sur R. De plus B(x) = 0 ⇔ x = 1.

On compare les deux racines obtenues : $\frac{-2}{5} < 1$

On rappelle que A(x) = 5x + 2 et B(x) = -4x + 4 et f'(x) = -6(5x+2)(-4x+4). Son tableau de signe est alors

x	$-\infty$		$\frac{-2}{5}$		1		+∞
-6		_		_		-	
A(x)		_	0	+		+	
B(x)		+		+	0	-	
f'(x)		+	0	_	0	+	

4 On en déduit les variations de la fonction f:

x	$-\infty$	$\frac{-2}{5}$	1	+∞
f			→	