

Temperaturmessung mit verschiedenen Sensoren und Messverfahren

Versuchsbezeichnung: TEMP

Versuchsdatum: 24.01.2022
Abgabedatum: 07.02.2022
Beteiligte: Gruppe C7

Kelly Mbitketchie Koudjo 5136175 Kevin Pfeifer 5131378

Laborleitung / - Betreuung: Prof. Dr.-Ing. M. Mevenkamp

M.Sc. Phys. H. Sander

Messaufbau

Verwendet wurden folgende Geräte:

Jeweils ein Pt-100- und NTC-Sensor zur Temperaturmessung in einer mit Wäscheklammern fixierten thermischen Isolierung sowie einer Heizbox.

Abbildung 1: Heizbox

Abbildung 2: Thermische Isolierung mit Wäscheklammern fixiert

Ein Digitalmultimeter und eine BNC-Box für Widerstands- und Temperaturmessungen.

Abbildung 3: Digitalmultimeter

Abbildung 4: BNC-Box mit BNC-Kabeln

Die softwaregestützten Messungen beider Sensoren wurden an folgender Platine mit einer Stromversorgung durchgeführt. Die Platine wurde entsprechend der Beschriftung an der Platine sowie der Aufgabenstellung mit der BNC-Box verbunden.

Abbildung 5. Platine

Abbildung 6: Stromversorgung

Für die softwaregestützten Messungen wurden folgende LabVIEW-Ansichten eingerichtet. Zu Beginn wurde der DAQ-Assistent so eingestellt, dass der Widerstand beider Sensoren gemessen und an zwei Formel-Instrumente übergeben wird. Die Formel-Instrumente berechneten mit den vorbereiteten Formeln die Temperaturwerte.

Abbildung 7: Widerstandsmessung und anschließende Berechnung der Temperaturen

Abbildung 8: Export der Widerstands- und Temperaturwerte in eine Excel-Tabelle

5. Ausarbeitung

5.1. Pt-100 und NTC mit Multimeter

5.1.1 RTD-Messung

Für den Pt-100-Sensor wurde folgende Temperatur gemessen:

$$\vartheta = 20.1^{\circ}C$$

Durch die Messung mit dem Digitalmultimeter Zuzüglich die Fühlerabweichung des Sensors: ergibt sich folgende Messunsicherheit:

$$\Delta \theta_1 = \pm (0,3\% * MW + 10 * D)$$
 $\Delta \theta_2 = \pm (0,1 + 0.0017 * |t|)$
= $\pm (0,3\% * 20,1°C + 10 * 0,1°C)$ = $\pm (0,1 + 0.0017 * |20,1°C|)$
= $\pm (0,1 + 0.0017 * |20,1°C|)$
= $\pm (0,1 + 0.0017 * |20,1°C|)$

Daraus ergibt sich die Unsicherheit für obige Messung.

$$\Delta \vartheta_{ges} = \pm \sqrt{\Delta \vartheta_1^2 + \Delta \vartheta_2^2}$$

$$= \pm \sqrt{(1,0603^{\circ}C)^2 + (0,13417^{\circ}C)^2}$$

$$\approx \pm 1,07^{\circ}C$$

$$\vartheta = 20,1^{\circ}C + 1,07^{\circ}C$$

5.1.2 Pt-100, Widerstand und Temperatur

Für den Pt-100-Sensor wurde folgender Widerstandswert gemessen:

$$R_{Pt-100} = 108,23\Omega$$

Die Messunsicherheit liegt entsprechend des Datenblatts mit $D=10\mathrm{m}\Omega$ bei:

$$\Delta R_{Pt-100} = \pm (0.1\% * R + 5 * D)$$

= $\pm (0.1\% * 108.23\Omega + 5 * 10 \text{m}\Omega)$
 $\approx \pm 0.16\Omega$

$$R_{Pt-100} = 108,23\Omega \pm 0,16\Omega$$

Für die korrekte Bestimmung der Temperatur muss eine Korrektur am gemessenen Widerstand um eine systematische Abweichung vorgenommen werden.

$$R = R_{Pt-100} - R_i$$
= 108,23\$\Omega - 0,25\$\Omega\$
= 107,98\$\Omega\$
$$= \pm \sqrt{(0,16$\Omega)^2 + ΔR_i^2}$
$$= \pm \sqrt{(0,16$\Omega)^2 + (0,1$\Omega)^2}$
$$\pm \pm \pm 0,19$\Omega$$$$$$$

$$R = 107,98\Omega \pm 0,19\Omega$$

Nun ist die Bestimmung der Temperatur $\vartheta(R)$ möglich:

$$R_0 = 100\Omega, \qquad A = 3,9083 * 10^{-3} ° C^{-1}, \qquad B = -5,775 * 10^{-7} ° C^{-2}$$

$$\vartheta(R) = -\frac{A}{2B} - \sqrt{\left(\frac{A}{2B}\right)^2 + \frac{R - R_0}{BR_0}}$$

$$\vartheta(107,98\Omega) = -\frac{3,9083 * 10^{-3} ° C^{-1}}{2 * (-5,775 * 10^{-7} ° C^{-2})} - \sqrt{\left(\frac{3,9083 * 10^{-3} ° C^{-1}}{2 * (-5,775 * 10^{-7} ° C^{-2})}\right)^2 + \frac{107,98\Omega - 100\Omega}{(-5,775 * 10^{-7} ° C^{-2}) * 100\Omega}}$$

$$\approx 20.48° C$$

Die in den Vorbereitungen aufgestellte Formel zur Berechnung der Fehlerfortpflanzung kann nun verwendet werden.

$$\begin{split} \varDelta\vartheta_1 &= -\frac{\varDelta R}{2BR_0\sqrt{\left(\frac{A}{2B}\right)^2 + \frac{R-R_0}{BR_0}}} \\ &= -\frac{0,19\varOmega}{2(-5,775*10^{-7\circ}C^{-2})*100\varOmega*\sqrt{\left(\frac{3,9083*10^{-3\circ}C^{-1}}{2*(-5,775*10^{-7\circ}C^{-2})}\right)^2 + \frac{107,98\varOmega - 100\varOmega}{(-5,775*10^{-7\circ}C^{-2})*100\varOmega}} \\ &\approx \mp 0,48°C \end{split}$$

Für die Bestimmung der Unsicherheit muss ebenso die Toleranzklasse berücksichtigt werden.

$$\Delta\theta_2 = \pm (0.1 + 0.0017 * |t|)$$

= \pm (0.1 + 0.0017 * |20.48°C|)
\approx \pm 0.13°C

Somit lautet die vollständige Temperaturangabe:

$$\Delta \vartheta = \pm \sqrt{\Delta \vartheta_1^2 + \Delta \vartheta_2^2}$$

$$= \pm \sqrt{(0.48^{\circ}C)^2 + (0.13^{\circ}C)^2}$$

$$\approx \pm 0.5^{\circ}C$$

$$\vartheta = 20.48^{\circ}C \pm 0.5^{\circ}C$$

5.1.3 NTC-Temperatur

Für den NTC-Sensor wurde folgender Widerstandswert gemessen:

$$R_{NTC} = 12,4k\Omega$$

Die Unsicherheit des Widerstands liegt mit $D = 100 \text{m}\Omega$ bei:

$$\Delta R_{NTC} = \pm (0.1\% * R + 5 * D)$$

= $\pm (0.1\% * 12.4 k\Omega + 5 * 100 m\Omega)$
= $+12.9\Omega$

$$R_{NTC} = 12,4k\Omega \pm 12,9\Omega$$

Mit der Umkehrfunktion und den zusätzlichen Informationen aus den Datenblättern lässt sich aus dem gemessenen Widerstand die Temperatur berechnen:

$$B = 3950K \pm 3\%$$
, $T_R = 25^{\circ}C$, $R_0 = 10k\Omega \pm 5\%$
 $T_0 = T_R + 273.15K$
 $= 298.15K$

$$\vartheta_{NTC}(R) = \frac{T_0 B}{T_0 \ln\left(\frac{R}{R_0}\right) + B}$$

$$\vartheta_{NTC}(12,4k\Omega) = \frac{298.15K * 3950K}{298.15K * \ln\left(\frac{12,4k\Omega}{10k\Omega}\right) + 3950K}$$

$$\approx 293.39K$$

Die Temperaturunsicherheit ergibt sich aus der Fehlerfortpflanzung.

$$\Delta B = \pm 118,5K$$
, $\Delta R_0 = \pm 500\Omega$, $\Delta R_{NTC} = \pm 12,9\Omega$

$$\Delta \theta_{1} = \frac{\partial}{\partial B} \left[\frac{T_{0}B}{T_{0}\ln\left(\frac{R}{R_{0}}\right) + B} \right] * \Delta B$$

$$= \frac{T_{0}^{2}\ln\left(\frac{R}{R_{0}}\right)}{\left(T_{0}\ln\left(\frac{R}{R_{0}}\right) + B\right)^{2}} * \Delta B$$

$$= \frac{(298.15K)^{2}\ln\left(\frac{12,4k\Omega}{10k\Omega}\right)}{\left(298.15K * \ln\left(\frac{12,4k\Omega}{10k\Omega}\right) + 3950K\right)^{2}} * 118,5K$$

$$\approx \pm 0.1406K$$

$$\Delta \theta_{2} = \frac{\partial \theta_{K}(R)}{\partial R_{0}}$$

$$= \frac{T_{0}^{2}B}{R_{0} \left(T_{0} \ln \left(\frac{R}{R_{0}}\right) + B\right)^{2}} * \Delta R_{0}$$

$$= \frac{(298.15K)^{2} * 3950K}{10k\Omega * \left(298.15K * \ln \left(\frac{12,4k\Omega}{10k\Omega}\right) + 3950K\right)^{2}} * 500\Omega$$

$$\approx \pm 1.0896K$$

$$\begin{split} \varDelta \vartheta_{3} &= \frac{\partial \vartheta_{K}(R)}{\partial R} \\ &= -\frac{{T_{0}}^{2} \mathrm{B}}{R \left(T_{0} \ln \left(\frac{R}{R_{0}} \right) + B \right)^{2}} * \varDelta R \\ &= -\frac{(298.15K)^{2} * 3950K}{12,4 \mathrm{k} \varOmega * \left(298.15K * \ln \left(\frac{12,4 \mathrm{k} \varOmega}{10 k \varOmega} \right) + 3950K \right)^{2}} * 12,9 \varOmega \\ &\approx \mp 0.0227K \end{split}$$

$$\Delta \vartheta = \sqrt{\Delta \vartheta_1^2 + \Delta \vartheta_2^2 + \Delta \vartheta_3^2}$$

$$= \sqrt{(0.1406K)^2 + (1.0896K)^2 + (0.0227K)^2}$$

$$\approx 1.1K$$

Die vollständige Temperaturangabe des NTC-Sensors lautet:

$$\vartheta_{NTC} = 293.39K \pm 1.1K$$

5.2. Automatisierte Messung

5.2.1 Auswertung Pt-100

Folgende Messwerte des Pt-100-Sensors wurden von LabVIEW ausgegeben.

#	$R[\varOmega]$	ϑ [° <i>C</i>]
1	108,92	22,9
2	108,8	22,59
3	108,76	22,48
4	108,73	22,41
5	108,61	22,1

Bei einer Eingangsspannung von $U_0=1,13378V$ und einer Messpannung von $U_M=0,111V$ wurden dessen Unsicherheiten nach der Formel aus dem Datenblatt des NI-USB-6212 und den Hinweisen in der Aufgabenstellung bestimmt.

Nominal	Nominal	Residual	Residual	Offset	Random	Absolute	Sensitivity
Range	Range	Gain Error	Offset	Tempco	Noise	Accuracy	
Positive	Negative	(ppm of	Error	(ppm of		at Full	
Full Scale	Full Scale	Reading)	(ppm of	Range/C)		Scale	
			Range)				
5	-5	85	20	36	149	1,420	59,6
0,2	-0,2	135	40	116	13	89	5,2

$$Reading = U_0 = 1V, \qquad Range = 5V$$

$$AbsoluteAccuracy = Reading * (GainError) + Range * (OffsetError) + NoiseUncertainty$$

$$= Reading * (GainError) + Range * (OffsetError) + \frac{RandomNoise * 3}{\sqrt{100}}$$

$$\Delta U_0 = 1V * 85 * 10^{-6} + 5V * (20 + 76) * 10^{-6} + \frac{149 \mu V * 3}{\sqrt{100}}$$

$$\approx 609.7 \mu V$$

$$Reading = U_{M} = 0.111V, \qquad Range = 0.2V$$

$$AbsoluteAccuracy = Reading * (GainError) + Range * (OffsetError) + \frac{RandomNoise * 3}{\sqrt{100}}$$

$$\Delta U_{M} = 0.111V * 135 * 10^{-6} + 0.2V * (40 + 76) * 10^{-6} + \frac{13\mu V * 3}{\sqrt{100}}$$

$$\approx 42.085\mu V$$

Nun die Unsicherheit des Vorwiderstands, das zuvor mit dem Multimeter mit $D=100 {\rm m}\Omega$ gemessen wurde.

$$R_V = 998\Omega$$

 $\Delta R_V = \pm (0.1\% * R_v + 5 * D)$
 $= \pm (0.1\% * 998\Omega + 5 * 100 \text{m}\Omega)$
 $\approx \pm 1.5\Omega$
 $R_V = 998\Omega \pm 1.5\Omega$

Die Unsicherheit der Sensormessung wird nun durch die Fehlerfortpflanzung anhand des in der Vorbereitung bestimmten Spannungsteilers bestimmt.

$$\begin{split} \Delta R_{\vartheta 1} &= \frac{\partial}{\partial U_0} \Big[R_v \left(\frac{U_M}{U_0 - U_M} \right) \Big] * \Delta U_0 \\ &= -\frac{R_v U_M}{(U_0 - U_M)^2} * \Delta U_0 \\ &= -\frac{998 \Omega * 0,111 V}{(1 V - 0,111 V)^2} * 609,7 \mu V \\ &\approx \mp 85,46 m \Omega \end{split}$$

$$\Delta R_{\vartheta 2} &= \frac{\partial R_{\vartheta}}{\partial U_M} * \Delta U_M \\ &= \frac{R_V U_0}{(U_M - U_0)^2} * \Delta U_M \\ &= \frac{998 \Omega * 1 V}{(0,111 V - 1 V)^2} * 42,085 \mu V \\ &\approx \pm 53,144 m \Omega \end{split}$$

$$\Delta R_{\vartheta 3} &= \frac{\partial R_{\vartheta}}{\partial R_V} * \Delta R_V \\ &= \frac{U_M}{U_0 - U_M} * \Delta R_V \\ &= \frac{0,111 V}{1,13378 V - 0,111 V} * 1,5 \Omega \\ &\approx \pm 0,1628 \Omega \\ &\approx \pm 187,29 m \Omega \end{split}$$

$$\Delta R_{\vartheta} &= \sqrt{\Delta R_{\vartheta 1}^2 + \Delta R_{\vartheta 2}^2 + \Delta R_{\vartheta 3}^2} \\ &= \sqrt{(85,46 m \Omega)^2 + (53,144 m \Omega)^2 + (187,29 m \Omega)^2} \\ &\approx \pm 0,213 \Omega \end{split}$$

Für die Standardabweichung werden die fünf in der obigen Tabelle gemessenen Temperaturwerte herangezogen.

$$N = 5, \quad \vartheta = 22,496^{\circ}C$$

$$s_{\vartheta} = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N} (\vartheta_k - \bar{\vartheta})^2}$$

$$= \sqrt{\frac{1}{4} \sum_{k=1}^{5} (\vartheta_k - 22,496^{\circ}C)^2}$$

$$\approx 0,29^{\circ}C$$

Nun lässt sich die Teilunsicherheit $\Delta \vartheta_1$ berechnen. Die Unsicherheit wird verringert, da n=5 zusätzliche Messwerte vorhanden sind. Der Vertrauensfaktor $t_5=2,78$ wird verwendet.

$$\Delta \vartheta_1 = \frac{1}{\sqrt{n}} * t_n * s_{\vartheta}$$

$$= \frac{1}{\sqrt{5}} * 2,78 * 0,29 ° C$$

$$\approx 0,3605 ° C$$

Die Toleranzklasse muss ebenfalls berücksichtigt werden. Daraus ergibt sich die Unsicherheit $\Delta \vartheta_2$.

$$R_0 = 100\Omega$$
, $A = 3,9083 * 10^{-3} °C^{-1}$, $B = -5,775 * 10^{-7} °C^{-2}$

$$\begin{split} \varDelta \vartheta_2 &= -\frac{\varDelta R_\vartheta}{2BR_0\sqrt{\left(\frac{A}{2B}\right)^2 + \frac{R_\vartheta - R_0}{BR_0}}} \\ &= -\frac{0,213\varOmega}{2*(-5,775*10^{-7}°C^{-2})*100\varOmega\sqrt{\left(\frac{(3,9083*10^{-3}°C^{-1})}{2*(-5,775*10^{-7}°C^{-2})}\right)^2 + \frac{108,76\varOmega - 100\varOmega}{(-5,775*10^{-7}°C^{-2})*100\varOmega}} \\ &= \mp 0,5414°C \end{split}$$

$$\Delta \theta_3 = \pm (0.1 + 0.0017 * |t|)$$

= \pm (0.1 + 0.0017 * |22.496°C|)
\times \pm 0.138°C

Die Gesamtunsicherheit lässt sich aus den soeben berechneten Teilunsicherheiten berechnen.

$$\Delta \vartheta = \sqrt{\vartheta_1^2 + \vartheta_2^2 + \vartheta_3^2}$$

$$= \sqrt{(0.3605^{\circ}C)^2 + (0.5414^{\circ}C)^2 + (0.138^{\circ}C)^2}$$

$$\approx \pm 0.665^{\circ}C$$

Die gemessene Temperatur liegt mit ihrer Unsicherheit nun bei:

$$\vartheta = 22,496^{\circ}C \pm 0,665^{\circ}C$$

5.2.2 Auswertung NTC

Der Widerstand ergibt R NTC = 1002, 5Ω Die Unsicherheit des Vorwiderstands vR aus der Messung mit dem NTC = 1002, 5Ω Multimeter lässt sich durch die folgenden Angaben aus dem Datenblatt bestimmen:

$$\pm (0,2\% \cdot MW + 5D)$$

Die absolute Unsicherheit:

$$\Delta vR_{NTC} = \pm (0, 2\% \cdot 1002, 5\Omega + 5D) = 2,01\Omega$$

Die relative Unsicherheit:

$$\frac{\Delta vR_{NTC}}{vR_{NTC}} = \frac{2,01\Omega}{1002,5\Omega} \approx 0,0024 = 0,24\%$$

Dabei sollte noch U und als Ablesung eingesetzt werden. Auch hier wird 0 = 1V U M = 0, 9V einem Linearitätsfehler (INL) in Höhe von 76 ppm berücksichtigt. Die gemittelten Messwerte U und haben auch im Messbereich 0 = 1V U M = 0, 9V eine Toleranz, die aus "Gain Error", "Offset Error" (+INL) und "Noise" gerechnet werden kann:

$$\Delta \ U_0 = \frac{135.10^{-6} \cdot 1V + (40 + 76) \cdot 10^{-6} \cdot 0, 2V + 3 \cdot 13 \mu V}{10} \approx 19,72 \mu V$$

$$\Delta \ U_M = \frac{135.10^{-6} \cdot 0,9V + (40 + 76) \cdot 10^{-6} \cdot 0,2V + 3 \cdot 13 \mu V}{10} \approx 18,37 \mu V$$

Nach der dritten Frage der Vorbereitung gilt

$$R_{NTC} = \frac{vR_{NTC} \cdot U_M}{U_0 - U_M}$$

Die Unsicherheit ΔR mittels Fehlerfortpflanzung berechnen:

$$\begin{split} & \Delta \, R_{NTC}{}_{R_{VNTC}} = \left| \frac{\partial R_{NTC}}{\partial R_{VNTC}} \cdot \Delta \, R_{VNTC} \right| = \frac{U_M \cdot \left(\, U_0 - U_M \right)}{\left(\, U_0 - U_M \right)^2} \cdot \Delta \, R_{VNTC} \\ & \Delta \, R_{NTC}{}_{R_{VNTC}} = \frac{0.9V \cdot \left(\, 1V - 0.9V \right)}{\left(\, 1V - 0.9V \right)^2} \cdot 2.01 \Omega = 18.09 \Omega \end{split}$$

$$\begin{split} & \Delta \left. R_{NTC_{U_M}} = \left| \frac{\partial R_{NTC}}{\partial \left. U_M \right|} \cdot \Delta \left. U_M \right| = \frac{R_{NTC} \cdot \left(\left. U_0 - U_M \right) + R_{NTC} \cdot \left. U_M \right.}{\left(\left. U_0 - U_M \right)^2} \cdot \Delta \left. U_M \right. \right. \\ & \Delta \left. R_{NTC_{U_M}} = \frac{1002, 5\Omega \cdot \left(\left. 1V - 0, 9V \right) + 1002, 5\Omega \cdot 0, 9V}{\left(\left. 1V - 0, 9V \right)^2 \right.} \cdot 18,37 \mu V \approx 1,85 \Omega \end{split}$$

$$\begin{split} & \Delta R_{NTC_{U_0}} = \left| \frac{\partial R_{NTC}}{\partial U_0} \cdot \Delta U_0 \right| = -\frac{R_{VNTC} \cdot U_M}{\left(U_0 - U_M \right)^2} \cdot \Delta U_0 \\ & \Delta R_{NTC_{U_0}} = -\frac{1002, 5\Omega \cdot 0, 9V}{\left(1V - 0, 9V \right)^2} \cdot 19,72\mu V = -1,77\Omega \end{split}$$

$$\Delta R_{NTC} = \sqrt{\Delta R_{NTC}}_{R_{VNTC}}^2 + \Delta R_{NTC}_{UM}^2 + \Delta R_{NTC}_{U_0}^2$$

$$\Delta R_{NTC} = \sqrt{(18,09\Omega)^2 + (1,85\Omega)^2 + (-1,77\Omega)^2} = 18,29\Omega$$

Relative Unsicherheit:
$$\frac{\Delta R_{NTC}}{R_{NTC}} = \frac{18,29\Omega}{1002,5\Omega} \approx 0,0018 = 0,18\%$$

Aus der Fehlerfortpflanzung und aus $^{\Delta}R_{NTC}$, lässt sich die zugehörige Unsicherheit eines Einzelmesswertes der Temperatur (295,67K oder 22,52°C) wie folgt berechnen:

$$\Delta\,\vartheta_{NTC} = \, \frac{\partial\,\vartheta}{\partial\,R_{NTC}}\,\Delta\,R_{NTC}$$

$$\Delta\,\vartheta_{NTC} = \, -\, \frac{1}{2 \cdot R_0 \cdot B \cdot \sqrt{\left(\frac{A}{2B}\right)^2 - \frac{R_0 - R_{NTC}}{R_0 \cdot B}}} \cdot \Delta\,R_{NTC}$$

$$\Delta \vartheta_{NTC} = -\frac{1}{2 \cdot 100\Omega \cdot -5,775 \cdot 10^{-7^{\circ}} C^{-2} \sqrt{\left(\frac{3,9083 \cdot 10^{-3^{\circ}} C^{-1}}{2 \cdot 5,775 \cdot 10^{-7^{\circ}} C^{-2}}\right)^{2} - \frac{100\Omega - 1002,5\Omega}{100\Omega \cdot -5,775 \cdot 10^{-7^{\circ}} C^{-2}}} \cdot 18,29\Omega}$$

$$\Delta \vartheta_{NTC} \approx 12,15^{\circ} C$$

Aus den 5 Temperatur-Messwerten sollte hier die zufällige Messunsicherheit der Temperatur für ein Vertrauensniveau von 95% bestimmt werden:

#	$R_{NTC}[\Omega]$	$\vartheta_{NTC}(K)$
1	11252,2	295,69
2	11239,7	295,71
3	11230 /	205 71

3	11239,4	295,71
4	11245,8	295,7
5	11232,5	295,723

Um eine zufällige Messunsicherheit der Temperatur zu bestimmen, kann erst den statischen Mittelwert berechnet werden. Dies ergibt sich:

$$\overline{\vartheta}_{NTC_k} = \frac{1}{5} \sum_{n=1}^{5} \vartheta_n \approx 295,71 K \approx 22,56^{\circ} C$$

Die statistische Standardabweichung lässt ebenfalls wie folgt bestimmen:

$$s = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} \left(\vartheta_n - \overline{\vartheta}_{NTC_k} \right)^2} \approx 0,37^{\circ} C$$

ergibt sich dann hier $S = 0,37^{\circ}C$

Dies ist ein Maß für die Größe der zufälligen Messabweichungen einer Messung. Die Messunsicherheit bezieht sich auf das Vertrauensniveau ($\alpha-1$) von 95% und diese lässt sich aus der Standardabweichung ermitteln:

$$\Delta \vartheta_{NTC_k} = \frac{1}{\sqrt{n}} \cdot t_{n, 1-\alpha} \cdot s$$

Aus der Tabelle der Vertrauensfaktoren nach DIN 1319 wird den Vertrauensfaktor $t_{5,95}=2,78$ abgelesen.

Somit kann die Messunsicherheit aus der Messreihe wie folgt bestimmt werden:

$$\Delta \vartheta_{NTC_k} = \frac{1}{\sqrt{5}} \cdot 2,78 \cdot 0,37^{\circ} C = 0,46^{\circ} C$$

Das vollständige Messergebnis ergibt sich:

$$\widehat{\vartheta}_{NTC_k} = \overline{\vartheta}_{NTC_k} \pm \frac{1}{\sqrt{n}} \cdot t_{n,1-\alpha} \cdot s = 22,56^{\circ} C \pm 0,46^{\circ} C, (1-\alpha) = 95\%$$

Aus den Angaben und der Toleranzklasse des Pt-100 sollte nun die Gesamtunsicherheit berechnet werden und dies ergibt sich wie folgt:

$$\Delta \, \vartheta_{NTC \, ges} = \sqrt{\Delta \, \vartheta_{NTC}^2 + \Delta \, \vartheta_{NTC_k}^2} = \sqrt{12, 15^2 + 0, 46^2} \approx 12, 16^{\circ} \, C$$

In der obigen Abbildung werden die Temperaturverläufe der Sensoren Pt-100 und NTC dargestellt zum Zeitpunkt als sie in die Bohrungen der Heizbox gesteckt werden. Diese mit LabVIEW exportierten Verläufe wurden mit der Isqurvefit und einer geeigneten Funktion approximiert.

Die Zeitkonstanten der beiden approximierten Verläufe weisen folgenden Unterschied auf:

$$f = \frac{\tau_{Pt-100}}{\tau_{NTC}}$$
$$= \frac{20.4}{9.28}$$
$$\approx 2.198$$

Die Verläufe entsprechen nicht den Erwartungen. Unabhängig vom verwendeten Sensor sollte ein gleicher Temperaturverlauf zu erkennen sein. Dies ist hier nicht der Fall. Es wurde sichergestellt, dass die Sensoren sich korrekt und so tief wie möglich in den Bohrungen befinden, um den Einfluss der Außentemperatur zu minimieren. Dennoch ist in den Verläufen ein Unterschied von 9,94°C zu erkennen. Die Temperaturen der bisherigen Messungen mit LabVIEW und dem Multimeter zeigten jedoch stets vergleichbare Temperaturen an. Deshalb ist davon auszugehen, dass ein Schaden an der Heizbox vorliegt, der dafür sorgt, dass beide Bohrungen nicht gleichmäßig beheizt werden.

5.4. Parameter B des NTC

In diesem Teil muss zunächst zu 4.4 die Temperatur des Pt-100 und deren Unsicherheit bestimmt werden und dies mit Aufgabe 5.1.2 verglichen werden.

Der gemessene Widerstand des Pt-100 ist $R_{nt100} = 133,52\Omega$

Die Unsicherheit dieses Widerstands lässt sich durch die folgenden Angaben aus dem Datenblatt des Multimeters bestimmen: $\pm (0,2\% \cdot MW + 5D)$

Die absolute Unsicherheit $\Delta R_{pt100} = \pm (0,2\% \cdot 133,52\varOmega + 500m\varOmega) = 0,767\varOmega$

$$\frac{\Delta\,R_{pt100}}{R_{pt100}} = \frac{0,767\varOmega}{133,52\varOmega} \approx 0,0057 = 0,57\%$$
 Die relative Unsicherheit

Daraus kann die entstehende Temperatur mit den konstanten Bauteilwerten (

$$R_0 = 100 \,\Omega$$
, $A = 3,9083 \cdot 10 - 3^{\circ} C^{-1}$, $B = -5,775 \cdot 10 - 7^{\circ} C^{-2}$) errechnet werden

$$\begin{split} \vartheta_{pt100} &= -\frac{A}{2B} - \sqrt{\left(\frac{A}{2B}\right)^2 - \frac{R_0 - R_{pt100}}{R_0 \cdot B}} \\ \vartheta_{pt100} &= -\frac{3,9083 \cdot 10^{-3\circ} C^{-1}}{2 \cdot -5,775 \cdot 10^{-7\circ} C^{-2}} - \sqrt{\left(\frac{3,9083 \cdot 10^{-3\circ} C^{-1}}{2 \cdot -5,775 \cdot 10^{-7\circ} C^{-2}}\right)^2 - \frac{100 \, \varOmega - 133,52 \, \varOmega}{100 \, \varOmega \cdot -5,775 \cdot 10^{-7\circ} C^{-2}}} \\ \vartheta_{pt100} &\approx 81,57^{\circ} C \end{split}$$

Die Unsicherheit $\Delta \vartheta_{pt100}$ ergibt sich:

$$\begin{split} & \Delta \, \vartheta_{pt100} = \frac{\partial \vartheta}{\partial R_{pt100}} \, \Delta \, R_{pt100} \\ & \Delta \, \vartheta_{pt100} = -\frac{1}{2 \cdot R_0 \cdot B \cdot \sqrt{\left(\frac{A}{2B}\right)^2 - \frac{R_0 - R_{pt100}}{R_0 \cdot B}}} \cdot \Delta \, R_{pt100} \\ & \Delta \, \vartheta_{pt100} = -\frac{1}{2 \cdot 100 \Omega \cdot -5,775 \cdot 10^{-7^{\circ}} C^{-2} \sqrt{\left(\frac{3,9083 \cdot 10^{-3^{\circ}} C^{-1}}{2 \cdot -5,775 \cdot 10^{-7^{\circ}} C^{-2}}\right)^2 - \frac{100 \Omega - 132, 1 \Omega}{100 \Omega \cdot -5,775 \cdot 10^{-7^{\circ}} C^{-2}}}} \cdot 0,767 \Omega \\ & \Delta \, \vartheta_{pt100} \approx \, 2^{\circ} \, C \end{split}$$

Unsicherheit $\Delta R_{_{NTC}}$ bestimmen

Der Wert des Widerstands NTC ist $R_{NTC} = 1194\Omega$

Aus Datenblatt ist immer wieder folgendes entnommen:

$$\pm (0,2\% \cdot MW + 5D)$$

Die absolute Unsicherheit $\Delta R_{NTC} = \pm (0,2\% \cdot 1194 \Omega + 500 m \Omega) = 2,888 \Omega$

Die relative Unsicherheit
$$\frac{\Delta\,R_{NTC}}{R_{NTC}} = \frac{2,888\Omega}{1194\Omega} \approx 0,0025 = 0,25\%$$

Unter verwendung der Messwerte ϑ_{pt100} und ϑ_{NTC} aus den Messungen in 4.1.2 und 4.4 muss nun den Parameter B des NTC berechnet werden:

Anhang

MATLAB Skript zu 5.3 Zeitkonstanten, Least-Squares-Parameteridentifikation

```
%% Import data from spreadsheet
% Script for importing data from the following spreadsheet:
%
           Workbook: C:\Users\student\Documents\labor\Exports\TestMitBox.xlsx
%
          Worksheet: sheet1
% Auto-generated by MATLAB on 24-Jan-2022 11:45:46
% Edited by Kevin Pfeifer and Kelly Koudjo on 07-Feb-2022
% lsqcurvefit is used later on to an approximation
%% Set up the Import Options and import the data
opts = spreadsheetImportOptions("NumVariables", 4);
% Specify sheet and range
opts.Sheet = "sheet1";
opts.DataRange = "B2:E1495";
% Specify column names and types
opts.VariableNames = ["Rpt100", "Rntc", "Tpt100", "Tntc"];
opts.VariableTypes = ["double", "double", "double", "double"];
% Import the data
TestMitBox = readtable("TestMitBox.xlsx", opts, "UseExcel", false);
%% Clear temporary variables
clear opts
% Convert Kelvin to Celsius
for c = 1:size(TestMitBox.Tntc)
        TestMitBox.Tntc(c) = TestMitBox.Tntc(c) - 273.15;
end
t = ((1:length(TestMitBox.Rpt100)) / 5)';
% Parameter: Tstart, Tend, t0, teta
par = [21.7; 90; 38; 20];
tempfun = @(par, t) par(1)*(0 <= t & t < par(3)) + ((t >= par(3)).*(par(1) + (par(2) - t)) + ((t >= par(3)).*(par(2) + (par(2) - t)) + ((t >= par(3))).*(par(2) + (par(2) - t)) + ((t >= par(2))) + ((t >= par(2))) + ((t >= par(2))) + ((t >= par(2))) + ((t
par(1)*(1 - exp(-(t-par(3))/par(4)))));;
paroptpt100 = lsqcurvefit(tempfun, par, t, TestMitBox.Tpt100);
paroptntc = lsqcurvefit(tempfun, par, t, TestMitBox.Tntc);
plot(t, TestMitBox.Tpt100, ".", "Color", "black", "LineWidth", 0.5)
hold on;
plot(t, tempfun(paroptpt100, t), "Color", "blue", "LineWidth", 2)
plot(t, TestMitBox.Tntc, ".", "Color", "black", "LineWidth", 0.5)
plot(t, tempfun(paroptntc, t), "Color", "red", "LineWidth", 2)
hold off;
grid minor;
ylabel("Temperatur in °C")
xlabel("Zeit in s")
title("Temperaturverlauf in der Heizbox")
legend("Temperatur Pt-100", "Approximation Pt-100", ...
                "Temperatur NTC", "Approximation NTC", ...
                "Location", "northwest")
```

```
text(0.25,0.1,['Optimale Parameter Pt-100: Tstart = ' num2str(paroptpt100(1),'%6.2f')
...
    ', Tend = ' num2str(paroptpt100(2),'%6.2f') ', t0 = '
num2str(paroptpt100(3),'%6.2f') ', \tau = ' num2str(paroptpt100(4),'%6.2f')], ...
    'units', 'normalized','fontsize',12)

text(0.25,0.05,['Optimale Parameter NTC: Tstart = ' num2str(paroptntc(1),'%6.2f') ...
    ', Tend = ' num2str(paroptntc(2),'%6.2f') ', t0 = ' num2str(paroptntc(3),'%6.2f')
', \tau = ' num2str(paroptntc(4),'%6.2f')], ...
    'units', 'normalized','fontsize',12)
```

Versuchsvorbereitung

Kevin Pleter 5131378 TEMP-Vorbereitung 24.01.22 Kelly Nouclio 5136175 1) Unkernfunktion Q(R) (2(R) = - A - V(A)2 + R-Ro (2(100,12) = 0 mit Ro=10002; A=3,9083.10-39-1; B=5,775.10-79-2 2) Unsicherheit AU $\Delta D = -\frac{\Delta R}{2BR_0\sqrt{(\frac{A}{2B})^2+\frac{R-R_0}{BR_0}}}$ 3) Wellerstand Ru Re = Ru (Un) 4) Unkerfunction TCR) T(R) = TOB TOLA(RE) +B

Durchführungsprotokoll

Protokali-Ti	EMP 24.01.22
	Kevin Pfefer Velly Kovojo
9:05	Begin
	4.1.1
	Zero-Abgleich clurchgeführt, Temperaturmessung
	Pt-100: 0 = 20,1%
9:15	4.1.2
	Widestardshessung NTC: R= 12,34-2
	Pt-100: R = 168.23 12
9:25	4.2
	Vorwide-stänle genessen
	NTC: Ru = 1.0025kR
	Pt-100: Rv = 0,998 ks
	4.2.1
	Schaltung aufgebaut Labrier nach Aufgebenstellung eingerichtet
	Labrier nach Autgabenstellung engerichtet
	(1.22 1 # R (Ce)
	7 108,97 22,55
	1 108,97 22,9 2 403,8 22,55 3 408,76 22,48 4 108,73 22,41 5 108,61 72,1

4.2.3 MTC R _V = 1.0025KD Rw= M367752 100C = 273,15K R ₀ =10kQ T ₀ =25°C = 248,15K 298,15K B = 3950°C = -3676,85K 4773,15K T = 44,6724 255,67K T = 22,52°C 4.2.4 # REB T 1 M3522 295,69K 2 M233, 255,74K 3 1433,4255,74K 5 M232,5 255,725K 4.3 Tests duchgefüht und Meccreihen exportiont 4.3 Tests duchgefüht und Meccreihen exportiont A Rpmoo 2 Rmc 4.4 Rue = 153,521 Rmc Rec = 135,521	Protokoll-TEMP2	24.01.22
Rue = 173,752 O°C = 273,15K 1263,9.12 Ro = 10k.0 To = 25°C = 248,15K 298,15K B = 3950°C = -3676,85K 4773,15K T = 14,6724 295,67K T = 22,52°C 4.2.4 # REDIT 1 M2582 295,69K 2 1123,73 255,74K 3 1235,74K 4 11245,8 255,74K 5 1125,555,725K 4.3 Tests durchgefüht und Mecsreihen Exportiert 1 Roproo 2 Rome 4.4 Rue = 135,52.0	4.2.3 NTC	
M263,9.12 Ro=10kQ To=25°C = 248,15K - 298,15K B=3950°C = -3676,85K 4773,15K T=14,6724 295,67K T=22,52°C 4.2.4 # RERIT 1 M252, 295,69K 2 1123,7 25,74K 3 1139,4 295,74K 5 11232,5 255,723K 4.3 Tests durchgeführt und Mescreihen exportiert A Ropmo 2 Rome 4 12476 4.4 Roe = 133,52.12		
To =25°C = 248,15K 298,15K B = 3950°C = -3676,85K 4273,15K T = 14,6724 295,67K Tc = 22,52°C 4.2.4 # R[R] T 1 M2522 295,69K 2 11233,7 255,71K 3 1139,4 295,71K 4 11245,8 295,74K 5 11252,5 255,723K 4.3 Tests durchgefüht und Mescreihen exportient Smile Tilel A Reproco 2 Rive 4.4 Rie = 155,520	11263,912	0°C= 273,15K
T= A4,6724 295,67K Tc= 22,52°C 4.2.4 # R[R] T 1 Mrszz 295,69K 2 1/233,77K 3 1839,4255,71K 4 18245,8255,74K 5 11252,525,725K 4.3 Tests durchgeführt und Messreihen Exportiert Spalle T. lel A Rpmoo 2 Rmc 4.4 Rue = A33,52.0	To = 25°C =	The state of the s
Tc= 22,52°C # R[2] T 1 M252,2 295,69 K 2 1/23),7 295,71 K 3 1/39,4 295,71 K 5 1/245/8 295,74 K 5 1/232,5 255,725 K 4.3 Tests durchgeführt und Messreihen exportiert Spalle Titel 1 Rprino 2 Rmc 4.4 Re = 133,52 R	B = 3950°C = -	-3676,85K 4273,15K
# R[2] T 1 M252,2 235,69K 2 11233,7 255,74K 3 1539,4 295,74K 5 11252,5 255,74K 5 11252,5 255,723K 4.3 Tests durchgeführt und Mecsreihen exportient Spalle Titel 1 Reproc 2 Ring 4.4 Ree = 133,521	T = 14,6724 295,67K	
# R[R] T 1 M252,2 295,69 K 2 1/239,7 295,74 K 3 1/33,4 295,74 K 5 1/24518 295,74 K 5 1/252,5 255,723 K 4.3 Tests durchgeführt und Messreihen exportiert Spalle Tilel 1 R PPTOD 2 RMC 4.4 Rec = 135,52 R	Tc= 22,52°C	
1 M2522 295,69 K 2 11239,7 295,71K 3 1639,4 295,71K 4 1124518 295,71K 5 11252,5 255,723K 4.3 Tests durchgeführt und Messreihen exportient Spalle Titel A Reprino 2 Rivic 4.4 Res 4.4 Res 4.4 Res 4.4 Res 4.4 Res 4.4	4.2.4	
1 M2522 295,69K 2 11239,7 295,71K 3 1139,4 295,71K 5 11232,5 255,723K 4.3 Tests durchgeführt und Messreihen exportiert Spatte Titel 1 Rp1100 2 RMC 4.4 Res 4.4 Res 4.4 Res 4.4	# REAJ T	
Tests durchgeführt und Messreihen exportiert Spalle Titel Reprince 4.4 Rue = 133,52.0		
Tests durchgeführt und Messreihen exportiert Spalle Tilel Reprino 2 Rinc 4.4 Rue = 135,52.	3 14 39, 4 295, 71K 4 1/245,8 295, 7K 5 1/1 12 5 255, 725K	
Tests durchgeführt und Messreihen exportiert Spalle Titel 1 Rprnoo 2 Rnc 4 Gprnoo 4 Gprnoo Ree = 153,52.0		
4.4 PMC 3 10 PMC 4 10 PMC 10 P		1 Maccasiba
4.4 Re = 135,52. R	exportient Spall	e Titel
Re = 133,5212	.2	PNC (9-07/00)
WTC - 200 11/194KIC		
	WIC - SOF MINGHELL	

Protokoll TEMP 3 24.01.22 4.5 Plausibilität über MATLAB geprüft Rountemperatur stimut überein erhöhle Temperatur stimut nicht überein 10°C Unterschied

Geräteliste

Geräteliste zum Laborversuch TEMP

Datum:

lfd. Nr.	Hersteller	Bezeichnung, Typ	Einsatzzweck	Messbereich	Toleranz	Bemerkungen, ggf. Inv.Nr.
	Gossen Metrand	Metrahil Energy	Digitalnultimeter	GKIL GOKIL	+(0,1% MW+6D) D=100ml D=12	
	Heraeus	W-EYK 6 (Pt-100)	Temperatursenson		±(0,1+0,0017/t1)	
	EPCOS	(NTC) B57891	Tenportursexon			
		BNC-Kabel	Vebidung			3 _×
		Kebel n. + Klenner	Verbirdung			3×
	Ni	BNC-2120	Signalschnittskille			
	NI	UB-6212	Signalschnittskille Softwarenessung			

Beispiel:

4						
1	Gossen Metrawatt	METRAHIT X-TRA	Ohmmeter	1 kΩ	0,2% v. MW + 5D	"5D" ≜ 500 mΩ