Learning Near-Optimal Intrusion Responses Against Dynamic Attackers Supplementary Material

IEEE Transactions on Network and Service Management

Attacker Action Commands

-Action	Command		
TCP SYN scan	nmap -sS -pmin-rate 100000 -max-retries 1 -T5 -n		
UDP port scan	nmap -sU -pmin-rate 100000 -max-retries 1 -T5 -n		
TCP null scan	nmap -sN -pmin-rate 100000 -max-retries 1 -T5 -n		
TCP xmas scan	nmap -sX -pmin-rate 100000 -max-retries 1 -T5 -n		
TCP FIN scan	nmap -sF -pmin-rate 100000 -max-retries 1 -T5 -n		
Ping scan	nmap -sP -min-rate 100000 -max-retries 1 -T5 -n		
TCP connection scan	nmap -sT -pmin-rate 100000 -max-retries 1 -T5 -n		
Vulscan	nmap -sV -script=vulscan/vulscan.nse -max-retries 1 -T5 -n		
Telnet-brute force	nmap -p 23 -script telnet-brute		
SSH brute-force	nmap -p 22 -script ssh-brute		
FTP brute-force	nmap -p 21 -script ftp-brute		
Cassandra brute-force	nmap -p 9160 -script cassandra-brute		
IRC brute-force	nmap -p 6667 -script irc-brute		
MongoDB brute-force	nmap -p 27017 -script mongo-brute		
MySQL brute-force	nmap -p 27017 -script mysql-brute		
SMTP brute-force	SMTP brute-force, nmap -p 25 -script smtp-brute		
Postgres brute-force	nmap -p 5432 -script pgsql-brute		
CVE-2017-7494	<pre>python samba_exploit.py</pre>		
CVE-2015-3306	<pre>python /cve_2015_3306_exploit.py</pre>		
CVE-2010-0426	/cve_2010_0426_exploit.sh		
CVE-2015-5602	/cve_2015_5602_exploit.sh		
CVE-2014-6271	/cve_2014_6271_exploit.sh		
CVE-2016-10033	/cve_2016_10033_exploit.sh		
CVE-2015-1427	/cve_2015_1427_exploit.sh		
CWE-89	/sql_injection_exploit.sh		

Table 1: Attacker commands executed on the emulation system; exploits are identified according to their corresponding vulnerability and its identifier in the Common Vulnerabilities and Exposures (CVE) database [1] and in the Common Weakness Enumeration (CWE) list [2]; the auxillary Bash and Python scripts are available at [4].

Defender Action Commands

Stop index	Action	Command
1	Revoke user certificates	openssl ca -revoke <certificate></certificate>
2	Blacklist IPs	iptables -A INPUT -s <ip> -j DROP</ip>
3	Drop traffic that generates IDPS alerts of priority 1	<pre>pulledpork.pl -c /pulledpork/etc/1.conf -l -P -E -H SIGHUP</pre>
4	Drop traffic that generates IDPS alerts of priority 2	<pre>pulledpork.pl -c /pulledpork/etc/2.conf -l -P -E -H SIGHUP</pre>
5	Drop traffic that generates IDPS alerts of priority 3	<pre>pulledpork.pl -c /pulledpork/etc/3.conf -l -P -E -H SIGHUP</pre>
6	Drop traffic that generates IDPS alerts of priority 4	<pre>pulledpork.pl -c /pulledpork/etc/4.conf -l -P -E -H SIGHUP</pre>
7	Block gateway	iptables -A INPUT -i ethO -j DROP

Table 2: Defender commands executed on the emulation system; "Pulledpork" is a software framework for rule management in Snort, for more information see [3].

Client Population Commands

Functions	Application servers	Commands
HTTP	N_2, N_3, N_{10}, N_{12}	curl <url></url>
SSH	N_2, N_3, N_{10}, N_{12}	sshpass -p <pw> ssh -oStrictHostKeyChecking=no <hostname></hostname></pw>
SNMP	$N_2, N_3, N_{10}, N_{12}, N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$	snmpwalk -v2c <hostname></hostname>
ICMP	N_2, N_3, N_{10}, N_{12}	ping <hostname></hostname>
IRC	$N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$./irc_login_test.sh
Postgres	$N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$	psql -h <hostname></hostname>
FTP	N_{10}, N_{22}, N_4	ftp <hostname></hostname>
DNS	N_{10}, N_{22}, N_4	nslookup <hostname></hostname>
Telnet	N_{10}, N_{22}, N_4	telnet <hostname></hostname>

Table 3: Emulated client population; each client invokes functions on application servers; the auxiliary Bash scripts are available at [4].

References

- [1] The MITRE Corporation. Cve database, 2022. https://cve.mitre.org/.
- [2] The MITRE Corporation. Cwe list, 2023. https://cwe.mitre.org/index.html.
- [3] JJ Cummings and Michael Shirk. Pulledpork, 2023. https://github.com/shirkdog/pulledpork.
- [4] Kim Hammar and Rolf Stadler. Supplementary material learning near-optimal intrusion responses against dynamic attackers, 2023. https://github.com/Limmen/TNSM_Learning_IRS_Supplementary.