LOIS DISCRÈTES

Résumé

Ce chapitre présente des lois de probabilité usuelles discrètes : les lois uniformes, de Bernoulli et binomiales.

1 Loi uniforme discrète

Définition

Soient a < b deux entiers relatifs.

Une variable aléatoire réelle X suit la **loi uniforme** sur [a;b] si :

$$\forall k \in [a; b], \qquad \mathbb{P}(X = k) = \frac{1}{b - a + 1}.$$

On notera $X \sim \mathcal{U}([a;b])$.

Exemple On peut représenter la distribution des probabilités de cette loi via un diagramme en bâtons.

Distribution d'une loi uniforme discrète $\mathscr{U}(\llbracket 0; 5 \rrbracket)$

Propriété | Espérance

Soit $X \sim \mathcal{U}([a;b])$.

$$\mathbb{E}[X] = \frac{a+b}{2}$$

Exemple Considérons une urne remplie de 54 boules numérotée de 3 à 56.

On tire une boule au hasard et on observe son numéro.

Notons X, le résultat, variable aléatoire réelle qui suit la loi uniforme sur [3;56].

Chaque boule a une probabilité de $\frac{1}{54}$ d'être tirée et on peut espérer en moyenne tirer

le numéro $\mathbb{E}[X] = \frac{3+56}{2} = 29,5.$

2 Loi de Bernoulli

Définition

Soit 0 un réel.

Une variable aléatoire réelle X suit la **loi de Bernoulli** de paramètre p si :

$$\mathbb{P}(X=1) = p \qquad \text{ et } \qquad \mathbb{P}(X=0) = 1 - p.$$

L'événement $\{X=1\}$ est usuellement appelé un **succès** et l'événement $\{X=0\}$ est un **échec**.

On notera $X \sim \mathcal{B}(p)$.

Exemple On peut aussi représenter la distribution des probabilités de cette loi.

Propriétés | Espérance et écart-type

Soit $X \sim \mathcal{B}(p)$.

- $ightharpoonup \mathbb{E}[X] = p$
- ightharpoonup Var(X) = p(1-p)

Démonstration. On a le tableau de loi suivant.

x_i	0	1	
$\mathbb{P}(X=x_i)$	1-p	p	

On calcule les indicateurs via la pondération donnée par les probabilités.

Exemple Toute expérience aléatoire à deux issues est une épreuve de Bernoulli.

3 Loi binomiale

Définition | Loi binomiale

L'enchaînement de n épreuves de Bernoulli de paramètre p, identiques et indépendantes, est un **schéma de Bernoulli** de paramètres n et p.

Si on note X la variable aléatoire réelle qui compte le nombre de succès, X suit une **loi binomiale** de paramètres n et p.

On notera $X \sim \mathcal{B}(n; p)$.

Exemple On propose une carte de fidélité à tous les clients qui passent à la caisse d'un magasin.

On suppose que chaque client a une probabilité égale à 0,23 d'accepter la carte de fidélité et que les clients ne s'influencent pas entre eux.

Si 150 clients passent à la caisse un jour, le nombre X de cartes distribuées à la fin de la journée suit une loi binomiale de paramètres 150 et 0,23

Propriété | Espérance

Soit $X \sim \mathcal{B}(n, p)$.

$$\mathbb{E}[X] = np$$

Exemple Dans l'exemple précédent, X a pour espérance $150 \times 0.23 = 34.5$. C'est-à-dire qu'on peut espérer avoir distribué environ 34 cartes de fidélité dans la journée.

Définitions

► Soit $n \in \mathbb{N}^*$.

On appelle **factorielle** n le nombre $n! = 1 \times 2 \times \cdots \times n$.

Par convention, 0! = 1.

Le nombre de combinaisons de k éléments parmi n éléments, noté $\binom{n}{k}$ et lu « k parmi n » est :

$$\frac{n!}{k!(n-k)!}.$$

Propriétés

 $\blacktriangleright \binom{n}{0} = \binom{n}{n} = 1$

 $\blacktriangleright \binom{n}{1} = \binom{n}{n-1} = n$

 $\blacktriangleright \binom{n}{k} = \binom{n}{n-k}$

Théorème | Formule de Pascal

Soit $1 \le k \le n$.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Remarque Avec les résultats précédents, nous pouvons calculer tous les coefficients binomiaux de proche en proche.

Nous allons le faire grâce au célèbre **triangle de Pascal** qui représente les coefficients binomiaux $\binom{n}{k}$.

n^{k}	0	1	2	3	4	5	• • •
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
:	:						٠.

La construction se fait ligne par ligne et on obtient les coefficients du dessous par addition des deux supérieurs comme indiqués sur le tableau précédent.

Théorème | Probabilités des issues

Soit $X \sim \mathcal{B}(n; p)$.

$$\forall k \in [0; n], \qquad \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Exemple Voici la distribution d'une binomiale.

Exercice

Un dresseur de pokémons s'entraîne à capturer un type particulier de pokémon rare.

Il sait que, lors de chaque tentative de capture, il a 30% de chances de réussir. Supposons qu'il effectue 10 tentatives de capture.

- 1. Montrer que la variable aléatoire X, représentant le nombre de captures réussies, suit une loi binomiale $\mathcal{B}(10;0,3)$.
- **2.** Quelle est la probabilité qu'il réussisse exactement *k* captures?
- **3.** Calculer la probabilité qu'il réussisse au moins 7 captures.
- 4. Combien de captures peut-il espérer réussir?

4 Échantillonnage

4.1 Intervalle de fluctuation

On souhaite déterminer si la proportion d'apparition d'un caractère est égale à p.

Définition

Soient $X \sim \mathcal{B}(n; p)$ et $F = \frac{X}{n}$, la fréquence d'apparition du caractère.

Un **intervalle de fluctuation** au seuil $1 - \alpha$ (pour $0 \le \alpha \le 1$) de F est :

$$I = \left[\frac{k_1}{n}; \frac{k_2}{n}\right];$$

pour k_1 et k_2 les plus petits entiers tels que :

$$\mathbb{P}(X \leqslant k_1) > \frac{\alpha}{2} \text{ et } \mathbb{P}(X \leqslant k_2) \geqslant 1 - \frac{\alpha}{2}.$$

🌣 Méthode | Règle de décision

Pour un échantillon de taille n donné de l'apparition d'un caractère, la somme des résultats suit une loi binomiale $\mathcal{B}(n;p)$.

► Si la fréquence observée appartient à *I*, on ne rejette pas l'hypothèse.

- \blacktriangleright Sinon, la fréquence n'appartient pas à I et on rejette l'hypothèse avec une probabilité d'erreur de α .
 - 4.2 Intervalle de confiance

Cette fois-ci, on ne connait pas p mais on souhaite l'estimer via un échantillon.

Propriété

Soient $X \sim \mathcal{B}(n;p)$ et $F = \frac{X}{n}$ la fréquence associée. Pour n suffisamment grand, $p \in \left[F - \frac{1}{\sqrt{n}}; F + \frac{1}{\sqrt{n}}\right]$ avec une probabilité supérieure ou égale à 0,95.