第四章 8088的总线操作和时序

- 一、IBM PC/XT机主板结构
- 二、IBM PC/XT控制核心
- 三、8088/8086的操作
- 四、8086/8088的总线周期
- 五、8088/8086总线形成
- 六、总线周期的概念
- 七、最大组态下的8088时序
- 八、系统总线上的信号时序
- 九、IBM PC/XT的CPU系统

一、IBM PC/XT机主板结构

二、IBM PC/XT的控制核心

三、8088/8086的操作

- 一个微型机在运行过程中,需要CPU进行许多操作。8088的主要操作有:
- 1. 系统的复位和启动操作;
- 2. 暂停操作;
- 3. 总线操作;
- 4. 中断操作;
- 5. 最小组态下的总线保持;
- 6. 最大组态下的总线请求/允许。

四、8086/8088的总线周期

IBM PC/XT 共有七种总线周期:

- 1. 存储器读总线周期
- 2. 存储器写总线周期
- 3. I/O读总线周期
- 4. I/O写总线周期
- 5. 中断响应周期
- 6. 存储器读和 I/O 写总线周期
- 7. 存储器写和 I/O 读总线周期

8088/8086启动的总线周期

DMA(直接存储器存取) 启动的总线周期

五、8088/8086总线形成

当8088CPU与存储器和外设构成一个计算机系统时,根据所连接的存储器和外设的规模,8088可以有两种不同的组态。

1. 最小组态

当所连的存储器容量不大, I/O端口不多时。

系统的地址总线——CPU的AD₀~AD₇, A₈~A₁₅, A₁₅~A₁₉ 通过地址锁存器8282 构成。

系统的数据总线——直接由ADo~ADz提供,或通过数据收发器8286供给。

系统的控制总线——直接由CPU的控制线供给。

2. 最大组态

当要构成的系统较大,要求较强的驱动能力时。

系统的地址总线—— $CPU的AD_0\sim AD_7$, $A_8\sim A_{15}$, $A_{15}\sim A_{19}$ 通过地址锁存器8282 构成。

系统的数据总线——或通过数据收发器8286供给。

系统的控制总线——通过总线控制器8288供给。

两种组态通过8088引脚信号MN/MX决定。

最大模式总线形成

六、总线周期的概念

七、最大组态下的8088时序 —— 1.存储器读周期

2. 存储器写周期

3. I/O读周期

4. I/O写周期

九、IBM PC/XT的CPU系统

IPM PX/XT的控制核心

8086/8088引脚信号

GAD ———	1		40	vcc	
AD ₁₄ ———	2		39	AD ₁₅	
AD ₁₃ ———	3		38		
AD ₁₂ ———	4		37		
AD ₁₁ ———	5		36		
AD ₁₀ ———	6		35	AD ₁₉ / S ₆	
AD ₉ ———	7	8086	34	SS ₀	(HIGH)
AD ₈ ———	8		33	MN / MX	
AD ₇	9		32	——RD	
AD ₆	10		31	HOLD	(RQ / GT)
AD ₅ ———	11		30	———HLDA	(RQ/GT)
AD ₄ ———	12		29	WR	(LOCK)
AD ₃ ———	13		28	M / IO	(S_3)
AD ₂ ———	14		27	DT / R	(S ₃
AD ₁ ———	15		26	DEN	(S ₃
$\mathbf{AD_0}$	16		25	ALE	
NMI	17		24	INTA	
INTR	18		23	TEST	
CLK	19		22	READY	
GAD	20		21	RESET	

2. 总线控制器 8288

	S_0 S_1 S_2	8088的状态信号
输入	CLK	时钟信号
信	AEN	地址输入允许信号
号	CEN	命令允许输出信号
	IOB	I/O总线方式控制信号

$S_0 S_1 S_2$	8088 的总线周期	8288 的命令输出
0 0 0	中断响应	INTA
001	读 I / O 口	IORC
010	写 I / O 口	IOWC, AIOWC
011	暂停	
100	取指令代码	MRDC
101	读存储器	MRDC
110	写存储器	MWTC, AMWC
111	过渡状态	_

8288的控制输出			
ALE	地址锁存允许信号		
DT/R	数据发送/接受信号		
DEN	数据输出允许信号		
MCE/PDEN	双功能引脚		

8288引脚信号

IOB	1 2 3	$rac{\mathbf{V_{CC}}}{\mathbf{S_0}}$
DT / R ALE	4 8288 5	MCE / PDEN DEN
AEN MRDC	6 7	CEN INTA
AMWC MWTC	8	IORC
GND	10	AIOWC IOWC

3.8284时钟信号发生器

8284的结构框图:

8284的输出信号:

RESET—— 复位信号

READY——准备好信号

CLK——8088系统时钟,将晶振体三分频,产生4.77MHz的频率。

PCLK——外围设备用时钟信号,将CLK二分频,频率为 2.387MHz。

OSC——14.318MHz的频率。

8284的输入信号:

RES ____ 外部复位输入;

 X_1, X_2 ——外接晶振体输入;

F/ C—— 输入控制信号, F/ C=0时, 由X₁,X₂外接晶振体形成8088时钟;

F/ C=1时,由EFI输入外部方波信号形成8088时钟;

OSYNC——同步工作控制信号, 当多个8284同时工作时使用;

ASYNC——准备好信号的同步控制信号;

RDY1——总线准备好信号:

AEN1——地址允许信号;

RDY2——总线准备好信号;

AEN2——地址允许信号;

8284A在IBM PC /XT中的应用——见IBM PC/XT控制核心

8284时序

8284引脚信号

CSYNC	1	18	3	VCC
PCLK	2	17	7	$\overline{\mathbf{X}}_{1}$
$\overline{\text{AEN}_1}$	3	16	5	$\mathbf{X_2}$
RDY_1	4	8284 15	5	ASYNC
READY	5	14	1	EFI
RDY_2	6	13	3	$\mathbf{F}/\overline{\mathbf{C}}$
AEN ₂	7	12	2	OSC
CLK	8	11	l	RES
GND	9	10)	RESET

4. IBM PC/XT 的控制核心

 U_5 、 U_6 、 U_7 的允许端受AENBRD的控制 在DMA操作期间,地址只能锁存,不能送 至总线。

5. 等待电路

IBM PC/XT规定存储器访问周期不插入等待状态;而在 I/O 访问周期需插入一个等待状态。DMA操作(非动态RAM刷新)时需插入一个等待状态。

I/O CH RDY信号,送至 U_{70} 的直流置位端,当其为0时, U_{70} 输出保持为0,产生连续请求插入等待状态的控制信号。该信号用于I/O设备在插入一个 T_{W} 仍不能完成传输的情况,传输完成后,由I/O设备使其复位。

