So in case
$$D$$
 $D_xF = 0$

in case D $D_yF = f(2)$ where

Reflection: in case D F is constant along each level set F
 Z

Reflection: in case ① Fis constant along each level set F-1(528).

in case ② Fis increasing along each (atitude.

2211

- Det A connection on vector bundle In is a map

$$\nabla$$
; $\Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

satisfying, for f, g ∈ Ca(M),

$$0 \quad \triangle^{tx+dk} s = t \triangle^{x} s + d \triangle^{k} s$$

e.g. $E = M \times IR^k$ then recall $S \in \Gamma(E)$ identifies with fors $M \longrightarrow IR^k$. Then define $\nabla_x S$ by $D_x S$. O. D are catisfied automatically. $\mathfrak{D}: \nabla_{\mathsf{x}}(\mathsf{f}\mathsf{s}) = \mathcal{D}_{\mathsf{x}}(\mathsf{f}\mathsf{s}) = (\mathcal{D}_{\mathsf{x}}\mathsf{f})\cdot\dot{\mathsf{s}} + \mathsf{f}(\mathcal{D}_{\mathsf{x}}\mathsf{s}) = \mathsf{x}(\mathsf{f})\cdot\mathsf{s} + \mathsf{f}\nabla_{\mathsf{x}}\mathsf{s}.$ Exe For any In where always exists a connection. eg. E=TM , then it might be the first time you see the following Structure: ∇° : $\Gamma(TM) \times \Gamma(TM) \longrightarrow \Gamma(TM)$ $(2,0) \rightarrow (1,0)$ two vector fields une vector field as inputs as output. By def, Tx means "directional derivative of & along x"

eq.
$$E=T^{*M}$$
, then $\nabla: \Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M})$ (1,1) \rightarrow (01)

M

X

A

eq. Fix ∇ , $\Gamma(T^{*M}) \times \Gamma(E)$
 $\Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M})$
 $\Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M})$
 $\Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M})$
 $\Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M})$
 $\Gamma(T^{*M}) \times \Gamma(T^{*M}) \rightarrow \Gamma(T^{*M}) \rightarrow$

Ruk Revall in calculus, 4 f: 1R" - 1R, one has the following identity $\frac{\partial f}{\partial x_i \partial x_i} = \frac{\partial f}{\partial x_i \partial x_i} + i.j$ This is explained by $X(x_1, -, x_n) = (0, \dots, 1, \dots, 0)$ (x1,..., xn) = (0,....,1,....) j-th position $\frac{\partial x_i \partial x^i}{\partial t} = D^{\lambda} \left(D^{\lambda} t \right) \qquad \frac{\partial x^i}{\partial t} = D^{\lambda} \left(D^{\lambda} t \right).$ For these two vector fields X, Y, Dr Dx = Dx Dr. ~ X, Y commute" Here is a beautiful bi-operator on $\Gamma(TM)$ that detects the "commutativity": X, & & [X, Y] & [X, Y] & [7(7M) S.t. $D_{(x,Y)}f = D_x D_Y f - D_Y D_x f$ for any $f: M \rightarrow \mathbb{R}$.

defined implicitly

Prof (Exe) Locally, if
$$X = (X', \dots, X'')$$
, $Y = (Y', \dots, Y'')$, then
$$[X,Y] = (D_XY' - D_YX', \dots, D_XY'' - D_YX'')$$

prop [-,-] satisfies Lie bracket properties on [7(7M).i.e,

- 1 bi-linear on inputs
- @ anti-symmetric [x, Y] = -[Y, X]
- (1) Jawbi identity [x,[Y,2]] + [Y,[Z,x]] + [Z,[x,Y]] = 0

expand out

Summary:

(Question (discussed later)

For any II and connection $\nabla: \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$, alves it always hold $\nabla_{[x,T]} = \nabla_x \nabla_{F} - \nabla_F \nabla_x$?

1 Tensor algebra (张龙代数)

Assume* everyone knows what "&" is.

Test: What is $\mathbb{Z}/p_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}/q_{\mathbb{Z}} = ?$ where p, q are coprime.

when egn relation \sim is defined by "linear at each input". Denote $v \otimes w := \Gamma(v, w)J$.

By def, $(\lambda v + v', w) \sim \lambda (v, w) + (v', w)$, so $(\lambda \vee + \vee') \otimes W = [(\lambda \vee + \vee', \vee)] = [(\lambda \vee + \vee', \vee)] = \lambda \vee \otimes W + \vee' \otimes W.$ =>- 8-15 a bilinear operator ordering? (V, ® V_) ® V_5 V_6 (V_8 V_5) Similarly, one defines $V_1 \otimes \cdots \otimes V_R$ and it is "multi-linear" Ruk V, 60 ... 0 Vx is the "largest" vector space that carries "multi-linear" structure - universal property (Optional Exe) given JVIX···×Vk FX malti-hnear map multi-linear map VIO WOVE e.g. V= span(e,..,en) => VOW = span(eioej | leien > W=span (ei,... em7

eg. $R \otimes R = R$ e e esse

e.g. $\dim(V \otimes W) = \dim(V) \times \dim(W)$

Ruk the egn relation ~ "to define & does not include "switch" In general VOW and WOV are different. ~ Otherice the dim will drop.

e.g. $V=IR^2=Span(e_1,e_2)$, then $e_1\otimes e_1+e_2\otimes e_2\in V\otimes V$ is not "cleamposable" in the Sense that $e_1\otimes e_1+e_2\otimes e_2=V_1\otimes V_2$.

eg $V_1 \otimes \cdots \otimes V_K$ is well-defined.

Linear maps

e.g. For a vector space V and its dual space V^* , there is a well-defined map $V \otimes V^* \longrightarrow IR$ $(v, f) \longmapsto f(v)$.

In this way, V, V* "caucel" each other.

- Consider vinder

$$T^{(K,L)}V := V \otimes ... \otimes V \otimes V^* \otimes ... \otimes V^*$$

tensor

 $K \text{ copies}$

Lupies

e.g.
$$V = IR^n$$
 and consisten det $\in T^{(0,n)} IR^n$ by det $(V_1, \dots, V_n) := \det \begin{pmatrix} 1 & 1 \\ V_1 & V_n \end{pmatrix}$

uxn matrix

Important obsenation on ordering; suitch v; v; det changer sign this property is called "afternating" or "antisymmetric". In when winds, some elements in T(0, R) v* are more special (elaborated next Lecture).