Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 18

Version 5

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 3 \\ -1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 6 \\ 5 \end{bmatrix}$$
 is linearly dependent or linearly independent.

Standard S3.
$$\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ Let \ W = \mathrm{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right). \text{ Find a basis of } W.$$

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix}2 & 0\\ -2 & 0\end{bmatrix}, \begin{bmatrix}3 & 1\\ 3 & 6\end{bmatrix}, \begin{bmatrix}0 & 0\\ 1 & 1\end{bmatrix}, \begin{bmatrix}1 & 2\\ 0 & 1\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Standard A1. Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Standard A2.

Mark:

Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

 ${\bf Additional\ Notes/Marks}$