3. Test de comparaison

Il s'agit de déterminer s'il y a une différence significative entre les caractéristiques de deux échantillons.

On peut faire un test bilatéral ou un test unilatéral.

a) Test de comparaison de deux moyennes

On dispose de deux « grands » échantillons :

• Un échantillon A de taille n_A , de moyenne m_A et d'écart type σ_A qu'on suppose extrait d'une population P de moyenne μ et d'écart type σ .

• Un échantillon B de taille n_B , de moyenne m_B et d'écart type σ_B qu'on suppose extrait d'une population P' de moyenne μ' et d'écart type σ' .

La variable aléatoire $\overline{X_A}$ qui, à tout échantillon de taille n_A associe sa moyenne suit approximativement la loi normale $\mathcal{N}\Big(m_A\,;\,\frac{\sigma}{n}\Big)$.

La variable aléatoire $\overline{X_B}$ qui, à tout échantillon de taille n_B associe sa moyenne suit approximativement la loi normale $\mathcal{N}\left(m_B; \frac{\sigma'}{n_B}\right)$.

On suppose que les variables aléatoires $\overline{X_{{\scriptscriptstyle A}}}\,$ et $\overline{X_{{\scriptscriptstyle R}}}\,$ sont indépendantes.

La variable aléatoire $D = \overline{X_A} - \overline{X_B}$ suit la loi normale $\mathcal{N}(m_A - m_B; \frac{\sigma^2}{n_A} + \frac{\sigma'^2}{n_B})$.

On construit le test :

•
$$H_0$$
: $\mu = \mu'$;

•
$$H_1$$
: par exemple $\mu \neq \mu'$.

Sous l'hypothèse H_0 , la variable aléatoire D suit la loi normale $\mathcal{N}\left(0; \frac{\sigma^2}{n_A} + \frac{\sigma^{2}}{n_B}\right)$.

La région d'acceptation du test au seuil de risque a est l'intervalle de fluctuation de D au seuil $1 - \alpha$ et la région critique la partie complémentaire.