

UNIVERSIDADE DO MINHO

DEPARTAMENTO DE INFORMÁTICA

Trabalho Prático 4 Redes de Computadores

Grupo 21

Ana Filipa Pereira (A89589) Carolina Santejo (A89500) Raquel Costa (A89464)

4 de janeiro de 2021

Conteúdo

1	Acesso Rádio	3
	1.1 1	3
	1.2 2	3
	1.3 3	3
2	Scanning Passivo e Scanning Ativo	3
	2.1 4	3
	2.2 5	3
	2.3 6	4
	2.4 7	4
	2.5 8	5
	2.6 9	5
	2.7 10	
	2.8 11	6
3	Processo de Associação	7
	3.1 12	7
	3.2 13	7
4	Transferência de Dados	8
	4.1 14	8
	4.2 15	8
	4.3 16	8
	4.4 17	9
	4.5 18	
5	Conclusão	11

1 Acesso Rádio

1.1 1. Identifique em que frequência do espectro está a operar a rede sem fios, e o canal que corresponde essa frequência.

Frequencia: 2467MHz Canal: 12

```
> Frame 1021: 205 bytes on wire (1640 bits), 205 bytes captured (1640 bits)
> Radiotap Header v0, Length 25
> 802.11 radio information
PHY type: 802.11g (ERP) (6)
Short preamble: False
Proprietary mode: None (0)
Data rate: 1,0 Mb/s
Channel: 12
Frequency: 2467MHz
Signal strength (dBm): -64dBm
Noise level (dBm): -87dBm
Signal/noise ratio (dB): 23dB
TSF timestamp: 59226027
> [Duration: 1632µs]
> IEEE 802.11 Beacon frame, Flags: ......C
```

Figura 1: Trama capturada no wireshark

1.2 2. Identifique a versão da norma IEEE 802.11 que está a ser usada.

A versão da norma é a 802.11g (PHY type).

1.3 3. Qual o débito a que foi enviada a trama escolhida? Será que esse débito corresponde ao débito máximo a que a interface WiFi pode operar? Justifique.

Débito (Data rate): 1,0Mb/s

O débito máximo permitido na norma 802.11g é 54Mb/s, logo não foi utilizado o débito máximo possível.

2 Scanning Passivo e Scanning Ativo

2.1 4. Selecione uma trama beacon (e.g., trama 10XX). Esta trama pertence a que tipo de tramas 802.11? Indique o valor dos seus identificadores de tipo e de subtipo. Em que parte concreta do cabeçalho da trama estão especificados (ver anexo)?

A trama pertence ao tipo Management.

Tipo: 00 (0) Subtipo: 1000 (8)

Os valores estão especificados no campo Frame Control Field.

2.2 5. Para a trama acima, identifique todos os endereços MAC em uso. Que conclui quanto à sua origem e destino?

Source address: bc:14:01:af:b1:99 BSS Id: bc:14:01:af:b1:99

Através da análise dos endereços identificados na trama podemos concluir que esta está a ser enviada por um AP uma vez que o endereço origem (source address) corresponde ao BSS Id. Por outro lado, o destino da trama corresponde ao endereço *broadcast*.

2.3 6. Uma trama beacon anuncia que o AP pode suportar vários débitos de base, assim como vários débitos adicionais (extended supported rates). Indique quais são esses débitos?

Os débitos de base e adicionais estão identificados na figura seguinte nos campos Supported Rates e Extended Supported Rates respetivamente.

```
Frame 1021: 205 bytes on wire (1640 bits), 205 bytes captured (1640 bits) Radiotap Header v0, Length 25 802.11 radio information
 IEEE 802.11 Beacon frame, Flags: ......C
IEEE 802.11 Wireless Management
    Fixed parameters (12 bytes)

    Tagged parameters (140 bytes)
    Tag: SSID parameter set: NOS_WIFI_Fon

     Y Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 9, 18, 36, 54, [Mbit/sec]
Tag Number: Supported Rates (1)
             Tag length: 8
             Supported Rates: 1(B) (0x82)
             Supported Rates: 2(B) (0x84)
Supported Rates: 5.5(B) (0x8b)
             Supported Rates: 11(B) (0x96)
             Supported Rates: 9 (0x12)
             Supported Rates: 18 (0x24)
Supported Rates: 36 (0x48)
         Supported Rates: 54 (0x6c)
Tag: DS Parameter set: Current Channel: 12
     Tag: Extended Supported Rates 6(B), 12(B), 24(B), 48, [Mbit/sec]
Tag Number: Extended Supported Rates (50)
             Tag length: 4
             Extended Supported Rates: 6(B) (0x8c)
            Extended Supported Rates: 12(B) (0x98)
Extended Supported Rates: 24(B) (0xb0)
     Extended Supported Rates: 48 (0x60)
> Tag: Traffic Indication Map (TIM): DTIM 0 of 0 bitmap
```

Figura 2: Trama capturada no wireshark

2.4 7. Qual o intervalo de tempo previsto entre tramas beacon consecutivas? (nota: este valor é anunciado na própria trama beacon). Na prática, a periodicidade de tramas beacon provenientes do mesmo AP é verificada? Tente explicar porquê.

Intervalo de tempo (beacon interval): 0.102400 segundos

Calculando o intervalo de tempo (timestamp) entre as tramas 1021 e 1022 temos que:

```
1149710131695-1149710031666 = 100029 \ \mu s = 0,100029 \ segundos.
```

Verificamos assim que, neste caso, o intervalo de tempo previsto não se verificou. Isto pode acontecer por diversas razões, entre elas a falta de precisão de um AP que pode acelerar ou atrasar o processo, a distância entre dispositivos ou o congestionamento da rede.

2.5 8. Identifique e liste os SSIDs dos APs que estão a operar na vizinhança da STA de captura? Explicite o modo como obteve essa informação (por exemplo, se usou algum filtro para o efeito).

Filtro usado: (wlan.fc.type == 0) && (wlan.fc.subtype == 8) Os SSIDs que estão a operar na rede são: NOS-WIFI-FON e FlyingNet.

wlan.fc.type == 0 && wlan.fc.subtype == 8									
No.	Time	Source	Destination	Protocol	Length Info				
	994 38.400261	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2833, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	995 38.401879	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2834, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	996 38.502650	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2835, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	997 38.504279	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2836, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1004 38.605063	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2837, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1005 38.606712	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2838, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1006 38.707457	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2839, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1007 38.709089	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2840, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1008 38.809879	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2841, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1009 38.811417	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2842, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1010 38.912150	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2843, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1011 38.913892	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2844, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1012 39.014662	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2845, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1013 39.016210	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2846, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1014 39.117068	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2847, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1015 39.118607	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2848, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1016 39.219474	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2849, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1017 39.221122	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2850, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1018 39.321892	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2851, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1019 39.323505	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2852, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1020 39.424257	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2853, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1021 39.425828	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2854, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1022 39.526595	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2855, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1023 39.528303	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2856, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1024 39.628949	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2857, FN=0, Flags=C, BI=100, SSID=FlyingNet				
	1025 39.630544	HitronTe_af:b1:99	Broadcast	802.11	205 Beacon frame, SN=2858, FN=0, Flags=C, BI=100, SSID=NOS_WIFI_Fon				
	1026 39.731474	HitronTe_af:b1:98	Broadcast	802.11	296 Beacon frame, SN=2859, FN=0, Flags=C, BI=100, SSID=FlyingNet				

Figura 3: Captura no wireshark

2.6 9. Verifique se está a ser usado o método de deteção de erros (CRC). Justifique. Que conclui? Justifique o porquê de usar deteção de erros em redes sem fios.

Não está a ser utilizado o método de deteção de erros pois ao aplicar o filtro não foram apresentadas quaisquer tramas. Além disso o campo FCS Status das tramas está *Unverified*.

A deteção de erros é muito importante nas redes sem fios dado que estas são mais suscetíveis a erros.

2.7 10. Estabeleça um filtro Wireshark apropriado que lhe permita visualizar todas as tramas probing request ou probing response, simultaneamente.

Filtro usado: (wlan.fc.type_subtype == 0x04) || (wlan.fc.type_subtype == 0x05)

2.8 11. Identifique um probing request para o qual tenha havido um probing response. Face ao endereçamento usado, indique a que sistemas são endereçadas estas tramas e explique qual o propósito das mesmas?

As tramas 2603 e 2606 correspondem a um probing request e probing reply respetivamente porque o endereço MAC source de 2603 é igual ao destino de 2606.

2603 72.179215	Apple_10:6a:f5	Broadcast	802.11	164 Probe Request	, SN=2563,	FN=0,	Flags=	C, SS	ID=Flying	Net	
2606 72.179924	HitronTe af:b1:98	Apple 10:6a:f5	802.11	411 Probe Response	e, SN=2346	5. FN=0.	. Flags=	C. B	I=100, SS	ID=Flving	Net

Figura 4: Captura no wireshark

3 Processo de Associação

3.1 12. Identifique uma sequência de tramas que corresponda a um processo de associação completo entre a STA e o AP, incluindo a fase de autenticação.

wlan.fc	.type_subtype ==	0 wlan.fc.type_subtype ==	= 1 wlan.fc.type_subtype =	= 11	
No.	Time	Source	Destination	Protocol	Length Info
2486	70.361782	Apple_10:6a:f5	HitronTe_af:b1:98	802.11	70 Authentication, SN=2542, FN=0, Flags=C
2488	3 70.381869	HitronTe_af:b1:98	Apple_10:6a:f5	802.11	59 Authentication, SN=2338, FN=0, Flags=C
2490	70.383512	Apple_10:6a:f5	HitronTe_af:b1:98	802.11	175 Association Request, SN=2543, FN=0, Flags=C, SSID=Fly
2492	2 70.389339	HitronTe_af:b1:98	Apple_10:6a:f5	802.11	225 Association Response, SN=2339, FN=0, Flags=C
4692	2 83.663250	7c:ea:6d:ff:a2:cc	HitronTe_af:b1:98	802.11	59 Authentication, SN=67, FN=0, Flags=C
4694	183.663681	HitronTe_af:b1:98	7c:ea:6d:ff:a2:cc	802.11	59 Authentication, SN=2439, FN=0, Flags=C
4696	83.665976	7c:ea:6d:ff:a2:cc	HitronTe_af:b1:98	802.11	153 Association Request, SN=68, FN=0, Flags=C, SSID=Flyin
4698	83.678873	HitronTe_af:b1:98	7c:ea:6d:ff:a2:cc	802.11	225 Association Response, SN=2440, FN=0, Flags=C
4699	83.680045	HitronTe_af:b1:98	7c:ea:6d:ff:a2:cc	802.11	225 Association Response, SN=2440, FN=0, Flags=RC
6915	99.967142	a8:05:ea:f5:cf:a8	e1:37:40:44:46:23	802.11	146 Authentication, SN=434, FN=1, Flags=op.P.MC
7043	3 100.196334	dd:88:93:0f:ec:e9	af:40:cd:40:5f:82	802.11	146 Authentication, SN=2467, FN=4, Flags=.p.P.MC
7065	100.208375	d7:19:51:08:62:f9	6d:1b:44:1a:cc:11	802.11	146 Association Request, SN=2586, FN=7, Flags=.pmPRM.TC
7163	3 100.403689	0a:57:13:28:40:84	79:5c:58:10:7a:cc	802.11	146 Association Response, SN=3497, FN=5, Flags=o.mPF.C[Malforme
13218	3 107.753005	20:b4:c4:ad:d7:19	d5:a5:29:9b:fe:00	802.11	1183 Authentication, SN=79, FN=13, Flags=oPR.F.C[Malformed Packe
16453	115.725544	fd:31:55:63:20:86	6a:8f:cd:88:f4:55	802.11	146 Authentication, SN=1054, FN=10, Flags=PC[Malformed Pac

Figura 5: Captura no wireshark

3.2 13. Efetue um diagrama que ilustre a sequência de todas as tramas trocadas no processo.

Figura 6: Diagrama da troca de tramas

4 Transferência de Dados

4.1 14. Considere a trama de dados nº455. Sabendo que o campo Frame Control contido no cabeçalho das tramas 802.11 permite especificar a direccionalidade das tramas, o que pode concluir face à direccionalidade dessa trama, será local à WLAN?

Tal como é possível ver na figura seguinte os campos que especificam a direcionalidade da trama , "To DS "e "From DS ", têm os valores de 0 e 1, respetivamente. Estes determinam se a frame está a sair ou a entrar num meio wireless. Sendo assim, através da observação do "DS status", podemos concluir que o frame está a entrar num meio wireless ("Frame from DS to STA via AP").

Figura 7: Captura no wireshark

4.2 15. Para a trama de dados nº455, transcreva os endereços MAC em uso, identificando qual o endereço MAC correspondente ao host sem fios (STA), ao AP e ao router de acesso ao sistema de distribuição?

```
Host sem fios (destination): d8:a2:5e:71:41:a1
AP (BSS Id): bc:14:01:af:b1:98
Sistema de distribuição (source): bc:14:01:af:b1:98
```

4.3 16. Como interpreta a trama nº457 face à sua direccionalidade e endereçamento MAC?

Através da análise das flags correspondentes ao campo *Frame Control*, podem verificar-se os seguintes valores:

```
To Ds: 1
From Ds: 0
```

Deste modo podemos concluir que a trama se dirige para um computador na rede do centro de distribuição (To DS) e a sua origem é uma *station*. Consequentemente, os endereços MAC na frame terão a seguinte correspondencia:

```
Address 1 = BSSID
Address 1 = Origem
Address 1 = Destino
```

Figura 8: Trama capturada no wireshark

4.4 17. Que subtipo de tramas de controlo são transmitidas ao longo da transferência de dados acima mencionada? Tente explicar porque razão têm de existir (contrariamente ao que acontece numa rede Ethernet.)

Os subtipos de tramas de controlo transmitidas são *Acknowlegement*, como se pode ver na figura abaixo.

```
455 18.536644 HitronTe_af:b1:98 Apple_71:41:a1 802.11 226 QoS Data, SN=276, FN=0, Flags=.p....F.C
456 18.536653 HitronTe_af:b1:98 (- 802.11 39 Acknowledgement, Flags=......C
457 18.539762 Apple_71:41:a1 HitronTe_af:b1:98 802.11 178 QoS Data, SN=1209, FN=0, Flags=.p....TC
458 18.540643 Apple_71:41:a1 (d8:... 802.11 39 Acknowledgement, Flags=......C
459 18.636990 HitronTe_af:b1:98 Broadcast 802.11 296 Beacon frame, SN=2447, FN=0, Flags=......C, BI=100, SSID=FlyingNet
```

Figura 9: Captura no wireshark

Ao contrário das redes ethernet, a rede Wi-Fi é muito mais suscetível a falhas e, por este motivo, são enviadas estas tramas de controlo para confirmar que as tramas de dados foram enviadas corretamente.

4.5 18. O uso de tramas Request To Send e Clear To Send, apesar de opcional, é comum para efetuar "pré-reserva"do acesso ao meio quando se pretende enviar tramas de dados, com o intuito de reduzir o número de colisões resultante maioritariamente de STAs escondidas. Para o exemplo acima, verifique se está a ser usada a opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN, identificando a direccionalidade das tramas e os sistemas envolvidos.

Para o exemplo acima, como se pode verificar na figura correspondente, não são utilizadas nenhumas destas tramas.

No entanto, no ficheiro de captura podem ser encontradas, por exemplo nas tramas 529 e 530 como se pode ver na figura seguinte.

Figura 10: Captura no wireshark

Conclusão

A realização deste trabalho prático não só nos permitiu consolidar o conhecimento obtido ao longo das aulas teóricas como também clarificou e aprofundou alguns conceitos, tais como: redes wireless, os tipos de tramas (gestão, controlo e dados) e seus subtipos.

Para além disso foram abordados conceitos como AP, STA e direcionalidade de tramas. Por último, foi necessário efetuar uma pesquisa de forma a compreender como filtrar informação no wireshark.