CM 224 : Computational Genetics Homework #2

Ronak Sumbaly UID - 604591897

Problem 1 - Association Study at a Single SNP

Part A - Non-Centrality Parameter

Non-Centrality Parameter =
$$\lambda_A \sqrt{N} = \frac{p_A^+ - p_A^-}{\sqrt{2p_{mean}(1-p_{mean})}} \sqrt{N}$$
 (1)

Given p_A and relative risk (γ) we can compute true case frequency (p_A^+) , true control frequency (p_A^-) and p_{mean} as follows,

$$p_A^+ = \frac{\gamma p_A}{(\gamma - 1)p_A + 1}$$
 $p_A^- = p_A$ $p_{mean} = \frac{p_A^+ + p_A^-}{2}$ (2)

R Code for calculating Non-Centrality Parameter

```
non_centrality <- function(gamma, pa, N){
  p_plus <- (gamma * pa)/((gamma - 1) * pa + 1)
  p_minus <- pa
  p_mean <- (p_plus + p_minus) / 2
  lambda <- (p_plus - p_minus) / (sqrt(2 * p_mean *(1 - p_mean)))
  non_centrality_parameter = lambda * sqrt(N)
  return(non_centrality_parameter)
}
non_centrality(1.5, 0.05, 500)
## [1] 1.52396</pre>
```

Non-Centrality Parameter Results

500 individuals

$\gamma \ / \ p_A$	0.05	0.2	0.4
1.5	1.52396	2.70666	3.178209
2.0	2.756259	4.767313	5.423261
30	4.697591	7.784989	8.451543

1000 individuals

	$\gamma \ / \ p_A$	0.05	0.2	0.4
	1.5	2.155205	3.827795	4.494666
,	2.0	3.897938	6.741999	7.66965
	3.0	6.643397	11.00964	11.95229

Part B - Power

Power Equation =
$$\Phi(\Phi^{-1}(\alpha/2) + \lambda_A \sqrt{N}) + 1 - \Phi(-\Phi^{-1}(\alpha/2) + \lambda_A \sqrt{N})$$
 $\alpha = 0.05$ (3) R Code for calculating Power

Power Results

500 individuals

S	$\gamma \ / \ p_A$	0.05	0.2	0.4
	1.5	0.331664	0.7723779	0.8884346
	2	0.7870708	0.9975024	0.9997332
	3	0.9969058	1	1

1000 individuals

$\gamma \ / \ p_A$	0.05	0.2	0.4
1.5	0.5774172	0.9691072	0.9943728
2	0.9736868	0.9999991	1
3	0.9999986	1	1

Part C - Number of Individuals

Loop through various N values and find power which is $\sim .80$

```
number_individuals <- function(gamma, pa){
  individuals <- seq(1:2000)
  ind <- numeric()
  close_to_80 <- numeric()
  for (i in individuals) {
    if (abs(power(gamma,pa,i) - .80) <= .005) {
       close_to_80 <- c(close_to_80, abs(power(gamma,pa,i) - .80))
       ind <- c(ind, i)
    }
}
return (ind[which.min(close_to_80)])

## [1] 1690</pre>
```

Number of Individuals Results

$\gamma \ / \ p_A$	0.05	0.2	0.4
1.5	1690	536	389
2	517	173	133
3	178	65	55

Problem 2 - Unbalanced Cases and Control

Part A

Given,

In a balanced study, NCP = $\lambda_A \sqrt{N}$

In an unbalanced study, $\mathtt{NCP} = \lambda_A \sqrt{\frac{2(N^+N^-)}{N^+ + N^-}}$

Assuming three times the number of cases as controls. Rewriting the above equations

$$N^{+} = 3N^{-}$$

 $N^{-} = (1/2)N'$
 $N^{+} = (3/2)N'$

Replacing N^+ and N^- in the NCP of unbalanced study and set it equal to NCP of balanced study,

$$\lambda_A \sqrt{N} = \lambda_A \sqrt{\frac{2(N^+N^-)}{N^+ + N^-}} = \lambda_A \sqrt{\frac{2((3/2)N'(1/2)N')}{2N'}}$$
$$\sqrt{N} = \sqrt{\frac{3N'}{4}}$$
$$N' = \frac{4N}{3}$$

Hence, the study must be of size $\frac{4N}{3}$ to achieve same power as balanced study with N individuals.

Part B

Given,

Number of cases $=N^+/2$

Number of controls $=\infty$

Similar to Part A, equate NCP of both balanced and unbalanced studies and substitute above values,

$$\lambda_A\sqrt{N}=\lambda_A\sqrt{\frac{2(N^+N^-)}{N^++N^-}}$$

$$\lambda_A\sqrt{N}=\lambda_A\sqrt{2N^+\lim_{N^-\to\infty}\frac{N^-}{(2N^+)+N^-}}$$

$$\lim_{N^-\to\infty}\frac{N^-}{(2N^+)+N^-}=\lim_{N^-\to\infty}\frac{N^-}{N^-(2N^+/N^-+1)}$$

$$=1 \qquad \text{law of infinity}$$

$$\sqrt{N}=\sqrt{2N^+}$$

$$N=2N^+$$

Part C

We know that both the cases and control follow the distribution,

$$\hat{p^{+}} \sim N\left(p_{A}^{+}, \frac{p_{A}^{+}(1 - p_{A}^{+})}{N^{+}}\right)$$

$$\hat{p^{-}} \sim N\left(p_{A}^{-}, \frac{p_{A}^{-}(1 - p_{A}^{-})}{N^{-}}\right)$$

Taking the difference between the observed frequency between cases and controls,

$$\hat{p^{+}} - \hat{p^{-}} \sim N \left(p_{A}^{+} - p_{A}^{-}, \frac{p_{A}^{+}(1 - p_{A}^{+})}{N^{+}} + \frac{p_{A}^{-}(1 - p_{A}^{-})}{N^{-}} \right)$$

$$\hat{p^{+}} - \hat{p^{-}} \sim N \left(p_{A}^{+} - p_{A}^{-}, \frac{N^{-}p_{A}^{+}(1 - p_{A}^{+}) + N^{+}p_{A}^{-}(1 - p_{A}^{-})}{N^{+}N^{-}} \right)$$

Following the approximation,

$$N^-p_A^+(1-p_A^+) + N^+p_A^-(1-p_A^-) \approx (N^- + N^+)(p_A(1-p_A))$$

Substituting we get,

$$\hat{p}^+ - \hat{p}^- \sim N\left(p_A^+ - p_A^-, \frac{(N^- + N^+)p_A(1 - p_A)}{N^+ N^-}\right) \qquad p_A = \frac{p_A^+ + p_A^-}{2}$$

Since we want the variance to be 1, divide the above equation by the standard deviation (square root of variation) (using rule of normal distribution),

$$\begin{split} S_A &= \frac{\hat{p^+} - \hat{p^-}}{\sqrt{\frac{(N^- + N^+)\hat{p_A}(1 - \hat{p_A})}{N^+ N^-}}} \sim N \bigg(\frac{p_A^+ - p_A^-}{\sqrt{\frac{(N^- + N^+)p_A(1 - p_A)}{N^+ N^-}}}, 1 \bigg) \\ S_A &= N \bigg(\frac{p_A^+ - p_A^-}{\sqrt{\frac{2(N^- + N^+)p_A(1 - p_A)}{2N^+ N^-}}}, 1 \bigg) \\ S_A &= N \bigg(\frac{p_A^+ - p_A^-}{\sqrt{2p_A(1 - p_A)}} \sqrt{\frac{2N^+ N^-}{N^- + N^+}}, 1 \bigg) \\ \lambda_A &= \frac{p_A^+ - p_A^-}{\sqrt{2p_A(1 - p_A)}} \end{split}$$

$$NCP = S_A = \lambda_A \sqrt{\frac{2N^+ N^-}{N^- + N^+}} \qquad (Answer)$$