last time V, W fin. dim. vector spaces over F

given {v_1, ..., v_n} a basis for V, {w_1, ..., w_m} a basis for W

any linear map T : V to W rep by m × n matrix M:

in "column" notation, entry M_{j, i} in the jth row and ith col is def by

$$Tv_i = sum_j M_{j, i}w_j$$

so ith col of M describes coeffs of Tv_i wrt (w_j)_j [draw]

Ex suppose 1st and 2nd cols of M match what sort of lin map does M represent?

 $Tv_1 = Tv_2$ because same w_j expansion so M represents T s.t. $v_1 - v_2$ in ker(T)

suppose M is a single row
[same question]

means m = 1, i.e., W is 1-dimensional fixing $\{w_1\}$ equiv to fixing a linear iso $W \simeq F$ [it sends aw_1 to a]

so M represents a linear map V to F

also known as linear functionals [when inj? surj?]

U another vector space over F, T': W to U,

define N so that $\omega_j = \text{sum}_i \ N_{j, i}w_i$:

can always form T' ○ T : V [to W] to U

T rep by N • M_ω wrt (v_i) , $(w_j)_j$

so $M = N \cdot M_{\omega}$

so T' \circ T rep by M' \bullet N \bullet M_ ω wrt (v_i)_i, (u_k)_k

given {u_1, ..., u_\ell\} a basis for U

Properties of Compositions

if T rep by M wrt (v_i)_i, (w_j)_j, T' rep by M' wrt (w_j)_j, (u_k)_k,

how does $\ker(T)$ compare to $\ker(T' \circ T)$? $\operatorname{im}(T')$ $\operatorname{im}(T' \circ T)$?

then $T' \circ T$ rep by $M' \cdot M$

Ex if W = F, then $T' \circ T$ "bottlenecked" by F:

Q suppose instead of M: only know T rep by $M_ω$ wrt $(v_i)_i$, $(ω_j)_j$

so dim im(T' \circ T) \leq 1, dim ker(T' \circ T) \geq n - 1 [using the dim formula to get dim ker]

how to represent $T' \circ T$ in terms of M_{ω} , M'?

<u>Prop</u>	 ker(T) sub ker(T' ○ T) im(T) supset im(T' ○ T) 	<u>Pri</u>
<u>Pf</u>	if $Tv = 0_W$ then $(T' \circ T)v = T'(0_W) = 0_U$	<u>Ex</u>
	if $u = (T' \circ T)v$ then $u = T'(Tv)$	col
<u>Cor</u>	 if T' ∘ T is inj, then T is inj [why?] if T' ∘ T is surj, then T' is surj [why?] 	<u>col</u> iso
Rem	if T' ○ T is bij, then T, T' need <u>not</u> be bij [example?]	
	$V = F, W = F^2, U = F,$ T(1) = (1, 0), T'(x, y) = x	res
		so

rinciple "coordinate free" define stuff without matrices or bases for any $m \times n$ matrix M, x 1 span(cols of M) is a lin. sub. of F^m ol rank of M is def by dim span(cols of M) o F^m to W : jth std basis vec to w_j ith col of M to Tv i

 $[= sum_M_{i, i}w_i]$

restricted iso: span(cols of M) to im(T)
so col rank of M = dim im(T) [RHS basis-indep]

<u>Rem</u>	can also define row rank
	turns out that col rank = row rank
	[but tricky; we will defer for now]

define the hom space from V to W to be

forms a [basis-indep] vector space under: (T + T')v = Tv + T'v,

$$(a \cdot T)v = a \cdot Tv$$

$$Hom(V, W)$$
 to $Mat_{m \times n}(F)$

Pf send T to its matrix wrt
$$(v_i)_i$$
, $(w_j)_j$ compare previous formulas with $(M + M')v = Mv + M'v$, $(aM)v = a \cdot Mv$

[example of how coord-free ideas can be easier]

henceforth suppose that
$$V = W = F^n$$

what is the matrix of

$$T(v) = v?$$
 identity $I = I_n$
 $T(v) = \mathbf{0}_{v}?$ zero 0_n
 $T(a_1, a_2 ...)$ nilpotent [draw]
 $= (a_2, a_3, ...)?$

$$\underline{Ex}$$
 $P = 1$ 0 is a proj on the x-axis 0 0

$$Q = 0$$
 0 is a proj on the y-axis 0 1

note that
$$I = P + Q$$

$$aP + bQ$$
 s.t. $a \neq 0$ and $b \neq 0$

<u>Df</u> a matrix is <u>invertible</u> iff it reps a lin iso

Ex a 0 is invertible: [what inverse?] 0 b

inverse 1/a 0 0 1/b

[other invertible maps?]

1 1 with inverse 1 -1

0 1 0

any a b s.t. ad $-bc \neq 0$

c d [what inverse?]