PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-003478

(43)Date of publication of application: 09.01.2002

(51)Int.CI.

C07D233/60 C09K 3/00 C12N 9/04 H01B 1/06 H01M 10/40

(21)Application number : 2000-184298

184298 (71)App

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

CORP

(22)Date of filing:

20.06.2000

(72)Inventor: KIMIZUKA NOBUO

NAKAJIMA TAKUYA

(54) N-ALKOXYALKYL İMIDAZOLIUM SALT AND IONIC LIQUID AND IONIC GEL COMPOSED OF THE IMIDAZOLIUM SALT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an imidazolium salt compound giving a new ionic liquid capable of solubilizing more synthetic polymers, biopolymers, molecular aggregates etc. while keeping the characteristics of the polymer.

SOLUTION: The N-alkyl-N'-alkoxyalkyl imidazolium salt is expressed by general formula 1 ((n) is 1-6; R1 is a 1-4C alkyl or H; R2 is a 1-12C alkyl; and A is an anion).

LEGAL STATUS

[Date of request for examination]

07.08.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-3478 (P2002-3478A)

(43)公開日 平成14年1月9日(2002.1.9)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
C 0 7 D 233/60	103	C 0 7 D 233/60	103 4B050
C 0 9 K 3/00		C 0 9 K 3/00	Z 5G301
	103		103M 5H029
C 1 2 N 9/04		C 1 2 N 9/04	D
H01B 1/06		H 0 1 B 1/06	Α
		審査請求 未請求 請求項の数9	OL (全 9 頁) 最終頁に続く

(21)出願番号 特願2000-184298(P2000-184298)

(22)出願日 平成12年6月20日(2000.6.20)

特許法第30条第1項適用申請有り 平成12年3月15日 社団法人日本化学会発行の「日本化学会第78春季年会 (2000) 講演予稿集▲ I ▼」に発表 (71)出願人 396020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 君塚 信夫

福岡県福岡市東区香椎浜4丁目1-11-

701

(72)発明者 中嶋 琢也

福岡県福岡市東区箱崎 4-13-11-502

(74)代理人 100110168

弁理士 宮本 晴視

Fターム(参考) 4B050 CC07 CC10 FF02C KK14

5G301 CD01

5H029 AJ01 AM07 AM16 EJ12 HJ02

(54) 【発明の名称】 N-アルコキシアルキルイミダゾリウム塩、該イミダゾリウム塩からなるイオン性液体ならびに イオン性ゲル

(57)【要約】

【課題】 より多くの合成高分子、生体高分子、分子集合体等を、その特性を維持して可溶化できる新規なイオン性液体を提供できるイミダゾリュウム塩化合物の提供【解決手段】 一般式1で表されるNーアルキルーN'ーアルコキシアルキルイミダゾリウム塩化合物。

【化1】

(一般式 1 中、n は $1 \sim 6$ 、 R^1 は炭素数 $1 \sim 4$ のアルキル基もしくは水素、 R^2 は炭素数 $1 \sim 1$ 2 のアルキル基であり、A はアニオンである。)

【特許請求の範囲】

【請求項1】 一般式1で表されるN-アルキル-N'-アルコキシアルキルイミダゾリウム塩。

【化1】

(一般式 1 中、n は 1 ~ 6、 R^1 は炭素数 1 ~ 4のアルキル基もしくは水素、 R^2 は炭素数 1 ~ 12のアルキル基、A は陰イオンである。)

【請求項2】 前記一般式1で表されるN-アルキル-N'-アルコキシアルキルイミダゾリウムカチオンと対アニオンとから誘導されるイミダゾリウム塩からなるイオン性液体。

【請求項3】。一般式1において、nは1 \sim 2、R¹はメチル基、R²はメチル基であることを特徴とする請求項2に記載のイオン性液体。

【請求項4】 イオン性液体のオニウム塩を構成する陰イオンが、ビス(トリフロロメチルスルホニル)イミド酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリス(トリフロロメチルスルホニル)炭素酸、トリフロロメタンスルホン酸、トリフロロ酢酸又は有機カルボン酸またはハロゲンイオンより選ばれた少なくとも1種である、請求項2、3または4に記載イオン性液体。

【請求項5】 前記一般式1で表されるイミダゾリウム 塩からなるイオン生溶液に合成高分子、蛋白質、多糖、 糖誘導体、分子集合体を溶解して得られるイオン性液体 ならびにイオン性ゲル。

【請求項6】 合成高分子が、ペンタエリスリトール、 β -D-グルコース、 α -シクロデキストリン、ポリビニルアルコール、水酸基を有する中性高分子、ポリビニル系高分子、ポリエーテル系高分子、ポリアミド系高分子、ポリエステル系高分子、ポリカーボネート系高分子およびイオネン系高分子より選ばれた少くとも1種以上のものであることを特徴とする請求項5記載のイオン性液体ならびにイオン性ゲル。

【請求項7】 蛋白質がグルコースオキシダーゼであることを特徴とする請求項5に記載のイオン性液体。

【請求項8】 分子集合体がC8AzoC10N+Br-またはジアルキルアンモニウム塩からなる二分子膜であることを特徴とする請求項5に記載のイオン性液体ならびにイオン性ゲル。

【請求項9】 請求項5、6,7または8からなる固体 電解質、生体高分子可溶化・固定化担体用のイオン性ゲ ル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、合成高分子、生体高分子、分子集合体等を可溶化できるイオン性液体を製造するのに有用な前記一般式1で表されるイミダゾリウム塩、該イミダゾリウム塩からなるイオン性液体および該イオン性液体に合成高分子、蛋白質、多糖、糖誘導体、分子集合体を溶解して得られるイオン性液体、ならびにイオン性ゲルに関するものである。

[0002]

【従来の技術】イオン性液体とは、室温から比較的高温 (~300℃)まで液体状態にある溶融塩である。その 特性は、非プロトン性のイオン構造に基づく高い極性を 示し、低分子量の有機化合物ならびに無機化合物に対し て優れた溶解力を示す。また、イオン性液体の多くは蒸 気圧が極めて小さく、不揮発性であることから、クリー ンな反応環境を提供するし、真空中で使用できるので色 々な反応条件を提供しうる。更に、幾つかの有機溶媒や 水と混合しない性質を有することから、二相反応の環境 を提供できる。特に空気や湿度に対して安定なイオン性 液体の開発により、新たな活気をイオン性液体の分野に もたらしている。従って、これらの性質及びイオン性液 体の反応選択性などを利用する、種々の合成化学分野に おいて注目されてきている。また、イオン性を持ち電荷 の移動特性を持つことから、リチウム二次電池用の電解 液として、またゲル化することにより固体電解質として の利用も期待されている。

【0003】従来、これらイオン性液体は有機のカチオンと無機アニオンから得られてきた。カチオン種としては、アルキルアンモニウム $\{NRXH4-X\}^+$ 、アルキルフォスフォニウム $\{PRXH4-X\}^+$ 、N、N'ージアルキルイミダゾリウム、Nーアルキルピリジニウムなどが用いられる。またアニオン種としては、アルミニウムの塩素化物($A1C14^-$ 、 $A12C17^-$)や、テトラフルオロホウ酸アニオン $(BF4^-)$ 、ヘキサフルオロホスフェート $(PF6^-)$ などを代表的なものとして挙げることができる。

【0004】イミダゾリウム塩からなる室温溶融塩を合成する手法としては、1、3ージアルキルイミダゾリウムハライドに、酸アニオンを含む銀塩を反応させるアニオン交換法が知られている。該塩への変換は、1、3ージアルキルイミダゾリウムハライドは融点が高く、室温溶融塩とならないので、その融点を低下せしめるための手段である。この方法は、副生成物であるハロゲン化銀が溶媒に難溶性であるため、精製し易いという利点があるが、使用しうる銀塩の種類に制約がある。また、アニオン交換過程を含むために、その調製に手間がかかる欠点を有する。

【0005】また、上記のイオン性液体のうち、アルミニウムの塩化物を対アニオンとして含むイオン性液体は、わずかな水分の混入により分解し、塩酸を発生するという欠点があった。これに対し、テトラフルオロホウ酸アニオン(BF4⁻)、ヘキサフルオロホスフェート(PF

6⁻)を含むN、N'ージアルキルイミダゾリウム塩 I (MeImC4と記す)については、水に安定なイオン性液体 が得られるために、様々な応用がされつつある。

【0006】イオン性液の他の利用としては、例えば、Diels-Alder 反応の溶媒として知られている水に代替する利用の例がある。すなわち、シクロペンタジェンとメチルアクリレート及びメチルビニルケトンとの〔EtNH3〕 [NO3〕溶媒中での反応である。これらの反応は、エキソ型とエンド型の混合物が生成する反応のあるが、前記溶媒はエキソ型/エンド型の選択性に関与することが知られている。すなわち、該溶媒の効果は、活性化プロセスにおける試薬の会合を促進する内圧を発生させる疎溶媒相互作用に寄与する。前記イオン性溶媒を用いる反応は非極性溶媒を用いる場合に比べて、エンド型化合物の生成に極めて有利であるが、水に比べると、反応性および選択性に対する溶媒の寄与はそう大きくはないが、湿分感受性の試薬を用いる反応の溶媒としてはイオン溶液は有利である。

【OOO7】また、 β ーナフトキシドNa塩のC対Oのア ルキル化反応において、従来からの有機溶媒を用いた場 合と、単に溶融したホスホニウムとハロゲン化アンモニ ウム(これらは、110℃で溶融する。)を溶媒とする 場合の特性を対比している。前記反応における位置選択 性(regioselectivity)は、2ーナフトール塩のカウン ターイオンの性質及び溶媒に依存する。双極性の非プロ トン溶媒中ではオルトアルキル化(o-alkylation)が 優位である。n-Bu4PBr、n-Bu4NBr、 [emim] Br及 ぴn-Bu4PCIを溶媒として用いると、全ての場合におい て高い位置選択性(93~97%)によりオルトアルキ ル化が起こった。これはイオン溶媒の極性に依存する。 また、芳香族炭化水素をイオン性液体の存在下にオレフ ィンと反応させる芳香族炭化水素のアルキル化法も公知 であり(特表平8-508754号公報参照)、ここで も、イオン性液体を利用した反応では、反応生成物を容 易に分離することができること、およびアルキル化生成 物に対する選択性を向上させることが報告されている。 更に、二重結合の水素化反応やヒドロホルミル化反応、 パラジウム触媒によるC-Cカップリング反応 (Heck反 応)、Friedel-Crafts反応の媒体としてイオン性液体を 使用した場合、触媒の活性化、生成物の収量の増加など をもたらすことが報告されている。このように、イオン 性液体は種々の反応において、反応の選択性、反応の活 性化、及び収量の増大などの作用・効果がもたらされる 点で、化学反応に大きく貢献する。

【0008】更には、水に不溶性のイオン性溶媒により二相反応の反応系が提供され、これを利用することにより、反応原料と反応生成物の分離の容易化、界面反応による反応制御などがもたらされるといった利点がある。 【0009】ところで、特開平5-258607号公報、特開平2000-3620号公報(公報A)、及び 特開2000-11753号公報(公報B)などには、イオン伝導性高分子化合物、イミダゾリウム構造を有する高分子化合物を用いた高分子電解質が記載されている。該発明は、先行技術である1、3-ジアルキルイミダゾリウムから誘導されるイオン性液体はその製造がある1、3-ジアルキルイミダゾリウムハライドの合成があり、前記各公報に記載の高分子イミダゾリウム塩に種々のアニオンを導入した化合物は比較的簡便に合成であり、前記各公報に記載の高分子イミダゾリウム塩に種々のアニオンを導入した化合物は比較的簡便に合成でき、多様な物性を備えた室温で高いイオン伝導性を示し、且つ温度安定性に優れた電解質を提供できることが説明されている。

【0010】具体的には、公報Aには、N-エチルイミ ダゾールとビニルスルホン酸から成る溶融塩を重合させ て得た、ポリビニルスルホン酸N-エチルイミダゾリウ ム塩が、また公報Bには、N-ビニルイミダゾールと酸 を反応させて得られるNーアルキルイミダゾリウム塩の 重合によるNービニルイミダゾリウム溶融塩ポリマーが 開示されているが、いずれも室温で固体である。一方、 1-エチル 3-メチルイミダゾリウム トリフルオロメ チル硫酸塩にポリ(ビニリデンフルオライド)-ヘキサ フルオロプロピレン共重合体を溶解することにより、イ オン性液体のゲル化が報告されているが、生体高分子の 可溶化ならびに生体高分子を含むイオン性ゲルの形成に ついて言及する文献は存在しない。また、合成高分子や 生体高分子、分子集合体に対する可溶化能を示す、低粘 性のイオン性液体は今までのところ見あたらない。ま た、従来のイオン性液体I(Nーメチル、N'ーnーブ チルイミダゾリウムヘキサフルオロリン酸塩:MeImC4) は粘性が高く、溶質の拡散が起こりにくい問題があっ た。さらにまた、従来のイオン性液体はポリビニルアル コールなどの合成高分子や、蛋白質、多糖、核酸などの 生体高分子を可溶化できず、ミセル、二分子膜などの分 「子集合体を可溶化することも不可能である。これらの結 果、イオン性液体の用途は低分子化合物の合成媒体とし ての利用や、固体電解質の出発原料に限られており、イ オン性液体中における合成高分子、生体高分子や分子集 合体の機能発現、さらに高分子や分子集合体を溶解させ ることによってイオン性液体をゲル化させ、イオン性ゲ ルを作製する手法は開発されていない。

[0011]

【発明が解決しようとする課題】本発明の課題は、従来のイオン性液体の上記不都合を解消し、特に生体高分子ならびに分子集合体に対して高い溶解力を示す低粘性イオン性液体を得ることができるカチオン形成化合物の分子設計、該化合物から誘導されるイオン溶液、該溶液に高分子を溶解したイオン性ゲル、ならびに前記カチオン形成化合物の合成手法などを提供することである。また、対アニオンが合成原料であるアルキルハライド由来

のハロゲンアニオンのままで、換言すればアニオン交換を要しないで室温でイオン性液体を与えるカチオン形成化合物を開発し、さらに、生体高分子を溶解しうるイオン性液体を提供すると共に新規なイオン性ゲルを提供すること課題とする。

【0012】本発明者らは、上記課題を解決すべく鋭意 研究を行った。従来イオン性液体として知られているN ーメチル、N'-n-ブチルイミダゾリウム ヘキサフ ルオロリン酸塩I (MeImC4) は、アルキル基として飽和 炭化水素鎖(アルキル基としては少なくとも一方は炭素 数12、好ましくは炭素数6以下とすることができ る。)を含む。このアルキル鎖に柔軟、かつ溶質と親和 性を有する結合官能基を導入すれば、目的の低粘性イオ ン性液体が得られるものと期待された。そこで溶質と水 素結合を形成しうるエーテル結合を、N, N'ージアル キルイミダゾリウム塩のアルキル基部分に導入したイオ ン性液体II(N-メチルN'-(2-メトキシエチル) イミダゾリウムブロマイド:MeImC2OC1と記す)、III (N-メチルN'-(2-メトキメチル) イミダゾリウ ムブロミド: Me ImC10C1と記す) を開発した。その結 果、このイオン性液体が従来のイオン性液体に比べて低 粘性であること、またポリビニルアルコールなどの合成 高分子、蛋白質や多糖などの生体高分子ならびに分子集 合体を可溶化できることを見いだし、本発明を完成する に至った。

[0013]

【課題を解決するための手段】本発明の第1は、一般式 1で表されるNーアルキルN'ーアルコキシアルキルー イミダゾール化合物である。

[0014]

【化2】

【0015】 (-般式1中、 $nは1\sim6$ 、 R^1 は炭素数 $1\sim4$ のアルキル基もしくは水素、 R^2 は炭素数 $1\sim1$ 2のアルキル基、Aはアニオンである。)

【0016】本発明の第2は、前記一般式1で表されるN-アルキルN'ーアルコキシアルキルーイミダゾール化合物からのカチオンとアニオンとから誘導されるイミダゾリウム塩からなるイオン性液体である。好ましくは、前記一般式1においてnが1~2、R¹がメチル基、R²がメチル基であることを特徴とする前記イオン性液体であり、より好ましくは、イオン性液体のオニウム塩を構成する陰イオンが、ビス(トリフロロメチルスルホニル)イミド酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリス(トリフロロメチルスルホニル)炭素酸、トリフロロメタンスルホン酸、ト

リフロロ酢酸又は有機カルボン酸またはハロゲンイオン (クロリドイオン、ブロミドイオン)より選ばれた少な くとも1種である前記イオン性液体である。

【0017】本発明の第3は、前記一般式1で表されるイミダゾール化合物から誘導されるイミダゾリウム塩からなるイオン溶液に合成高分子、蛋白質、多糖、糖誘導体、分子集合体を溶解し、凝固させて得られるイオン性ゲルである。好ましくは、高分子化合物が、ペンタエリスリトール、 β -D-グルコース、 α -シクロデキストリン、ポリビニルアルコール、水酸基を有する中性高分子、ポリビニル系高分子、ポリエーテル系高分子、ポリカーボネート系高分子およびイオネン系高分子、ポリカーボネート系高分子およびイオネン系高分子、蛋白質、多糖類より選ばれた少くとも1種以上のものであることを特徴とする前記イオン性ゲルである。

【 O O 1 8 】本発明の第3は、前記ゲルからなる固体電解質、ならびに生体高分子(蛋白質、多糖、糖誘導体、核酸)可溶化ならびに固定化担体用のイオン性ゲルである。

[0019]

【発明の実施の態様】本発明の一般式1で表される化合物の調製

1-アルキルイミダゾール(アルキル基としては、炭素 数1~4の低級アルキル基)、例えば1ーメチルイミダ ゾール、と $X-(CH_2)_{n}-O-R^2$ 〔式中Xはハロゲ ン原子、nは1~6、R²は炭素数1~12のアルキル 基〕、例えば2-ブロモエチルメチルエーテルとを反応 さることによってえられる。反応は、イミダゾール化合 物に、末端ハロゲン化エーテル化合物を滴下後、反応系 を60℃~100℃以下で加熱し、1時間~50時間撹 拌する。反応溶媒は必ずしも必要としないが、クロロホ ルム、アルコールなどの溶媒を利用できる。原料の1-ブロモジメチルエーテルは蒸留により精製したものを用 いた。これらの試験におけるN-アルキルイミダゾール のアルキルハライドによる四級化反応の進行は、1H-NMR 測定および元素分析によって確認した。得られたイミダ ゾール塩は、アセトン、酢酸エチルなどによる洗浄、ク ロロホルム溶液として活性アルミナ(中性)のカラムに より精製される。得られたイオン性液体の粘度は、東京 計器産業(株)製E型粘度計を用いて測定した。

[0020]

【実施例】実施例 1

1ーメチルイミダゾール10.6gに2ーブロモエチルメチルエーテル17.9gを滴下漏斗を用いてゆっくりと滴下した。滴下後、攪拌しながら60℃まで加熱し、褐色の粘性溶液を得た。これを分液漏斗を用いてアセトン100ml、さらに酢酸エチル100mlで洗浄した。反応物に含まれるアセトン、酢酸エチルを減圧下で留去した後、得られた液体をクロロホルムに溶解し、活性アルミナ(中性)のカラムを通して精製した。クロロホルムを減圧留去し

て、黄色の粘性液体としてN-メチルN'-メトキシエチルイミダゾリウムブロミド($MeImC_2OC_1$)17.5g(収率=61%)を得た。本品の 1 H-NMR測定および元素分析を行った結果は表 1 、表 2 に示したとおりであり、 1 位の 1

ーメチルプロトンの化学シフトが反応後4ppm付近に観測されることから、反応の進行が確認された。

[0021]

【表1】

MeImC2OC1の 1H·NMR スペクトル帰属

δ 値(ppm)	理論積分值	実測値	分裂	帰属
3.2-3.3	3H	3.0H	S	g
3.5~3.6	2H	2.0H	t	f
4.0~4.1	3H	2.9H	s	а
4.5~4.6	2H	1.9H	t	e
7.5~7.6	2H	1.9H	d	b,c
10.2~10.3	1H	1.0H°	. 8	d

[0022]

【表2】

MeImC₂OC₁の元素分析結果

-		C.	Н	. N	C/N
Ì	計算值(%)	38.03	5.93	12.67	3.00
	実測値(%)	37.47	5.98	12.58	2.98

【0023】実施例2

1ーメチルイミダゾール14.2gを油浴で約60℃まで加熱した。これを攪拌しながらブロモメチルメチルエーテル22.5gをゆっくり滴下したところ、淡黄色の粘性液体となった。2日間室温で攪拌した後、得られた液体を分液漏斗を用いて酢酸エチル100mlで3回洗浄した。生成物中の酢酸エチルを減圧により留去し、さらにデシケータ中で乾燥させてNーメチルN'ーメトキシメチルイミ

ダゾリウムブロミド ($MeImC_1OC_1$) 31. 7g (収率=90%) を得た。本品の 1H -NMR測定および元素分析を行った結果は表3、表4に示したとおりであり、1位のN-メチルプロトンの化学シフトが反応後4ppm付近に観測されることから、反応の進行が確認された。

[0024]

【表3】

MeImCiOCiの IH·NMR スペクトル帰属

δ値(ppm)	理論積分值	実測値	分裂	掃厲,
3.3~3.4	ЭН	2.7H	8	f
3.9~4.0	3H	3.1H	9	a
5.5~5.6	2H	1.9H	6	е
7.6~7.8	1H+1H	2.1H	d+d	c+d
9.1-9.2	1H	1.0H*	8	ь

[0025]

【表 4】 MeImCiOCiの元素分析結果

	., c	Н	N
計算値(%)	34.80	5.35	13.53
李剛値(%)	34.61	5.20	12.77

液体であり、対アニオンが臭素アニオンであるにも拘わらずイオン性液体となることが確認された。またこれらの粘度ならびに密度は表5に示したとおりであった。従来のイオン性液体I(MeImC4)に比べ、エーテル基を導入した新規イオン性液体II(MeImC20C1). III(MeImC1

 $0C_1$)はより低い粘度を与え、特にIII($MeImC_10C_1$)の 粘度はI($MeImC_4$)の半分以下であり、エーテル結合の 導入によって低粘性のイオン性液体が得られた。

[0027]

【表5】

イオン性液体の密度ならびに粘度 (20 ℃)

イオン性液体	I	П	Ш
	(MeImC₄)	(MeImC2OC1)	(MeImCiOCi)
密度(g・cm ⁻⁵)	1.39	1.42	1.47
粘度(cP)	162	120	78

【0028】実施例3

実施例 1. 2において得られたイオン性液体 II (MeImC2 $0C_1$)、III (MeImC1 $0C_1$) 中における種々の溶質の可溶化特性を、既知のイオン性液体 I (MeImC4) と比較検討した。イオン性液体 $0.5\sim1$ ImIに、以下に示す種々の物質($2\sim10$ mg)を加えて加熱し、溶解性を評価した結果は表6に示したとおりであった。溶質となる分子としては、公知のものが制限なく採用されるが、水酸基を有する中性の分子が特に良好に溶解する。尿素、カテコール等の低分子化合物は用いたイオン性流体 I (MeImC4),II (MeImC2 $0C_1$),III (MeImC1 $0C_1$) のいずれにも溶解した。

【0029】一方、ペンタエリスリトール、 β -D-グルコース、 α -シクロデキストリン、ポリビニルアルコールはイオン性液体! (MeImC4) には不溶であるが、エーテル結合を含むイオン性流体!! (MeImC20C1) . III (MeImC10C1) には溶解した。 これらの高分子を溶解する場合の濃度は5重量%以下、好適には1重量%~3重量%である。

【0030】一方、ポリ-L-グルタミン酸ナトリウム、ポリスチレンスルホン酸ナトリウムなどのアニオン性高分子、ポリスチレン、ポリ塩化ビニルなどの非極性高分

子、ポリアリルアミン塩酸塩などのカチオン性髙分子、 さらにチトクロムc、ペルオキシダーゼなどの蛋白質に ついては、いずれのイオン性流体にも溶解しなかった。 【〇〇31】一方、蛋白質であるグルコースオキシダー ゼはI (MeImC4) に不溶であるが、エーテル結合を含む イオン性流体II (MeImC20C1), III (MeImC10C1) には 溶解した。以上のように、イオン性流体II (MeImC20) C1), III (Me Im C1 O C1) は水酸基を有する中性高分子、 多糖や糖誘導体を良好に溶解する。このように、本発明 のイオン性液体は前記種々の高分子を溶解することがで きるから、その有機化学的修飾反応、酵素を用いた生化 学物質の変換反応(蛋白質、糖の化学修飾)のような研 究などに利用できる。特に、水に対して不安定な修飾試 薬である酸ハライドや酸無水物、活性エステル等を用い て蛋白質、糖、多糖などの生体高分子を修飾できる特徴 を有する。また、保護基を使用せずとも糖、多糖を可溶 化できることから、これらの迅速、簡便かつ安価な化学 修飾法を提供する。さらに、これらのイオン性媒体中に おいて適切な反応試薬・条件を用いれば、複数ある官能 基を位置選択的に修飾することも可能と考えられる。

[0032]

【表6】

イオン性液体	I	п	Ш
溶質 (分子量)	(MeImC4)	(MeImC2OC1)	(MeImCiOCi)
尿業 (60)	溶解	溶解	溶解
カテコール (110)	溶解	溶解	容解
ペンタエリスリトール (136)	不容	容解	溶解
β·D·グルコース (180)	不溶	溶解	溶解
α・シクロデキストリン	不溶	溶解	溶解
(973)	· · · · ·	, , , , , ,	10.77
ポリビニルアルコール	不溶	溶解	溶解
(PVA. Mw:2000)			.=,
アガロース	不溶	溶解	溶解
·		(30 mg/ml でゲル化)	(粘性溶液)
ポリ·L·グルタミン酸	不溶	不溶	不溶
ナトリウム			
ポリスチレンスルホン酸	不溶	不溶	不溶
ナトリウム (70,000)			
ポリスチレン	不容	不容	不溶
ポリ塩化ビニル	不溶	不溶	不容
ポリアリルアミン塩酸塩	不溶	不溶	不容
(99,300)			
ペルオキシダーゼ	不溶	難溶	難溶
(40,200)			
チトクロム C (12,400)	不容	不溶	不容
グルコースオキシダーゼ	不容	溶解	容解
(186,000)			
2C ₁₂ N+Br	溶解 (10 mM)	溶解 (10 mM)	溶解 (10 mM)
(463/一分子)	(分子分散)	(二分子膜形成)	(二分子膜形成)
2C ₁₄ N+Br	不容	溶解 (10 mM)	溶解(10 mM)
(519/一分子)		(二分子膜形成)	(二分子膜形成)
C ₈ AzoC ₁₀ N+Br ⁻	溶解		溶解
(615/一分子)	(分子分散)		(二分子膜形成)

【0033】実施例5

水中に分散すると自発的に二分子膜を形成するジアルキルアンモニウム塩($2C_{12}N^+Br^-$ 、 $2C_{14}N^+Br^-$)の各イオン性液体への溶解性ならびに、示差走査熱量分析(DSC)による二分子膜形成の評価を行った。これらの各イオン性液体への溶解は、超音波照射により行い、その結果を表。6に示した。 $2C_{12}N^+Br^-$ はイオン性液体I(MeImC4)、II(MeImC20C1)、III(MeImC10C1)の全てに溶解した。DSC測定結果を表っに示した。イオン性液体I(MeImC4)中において $2C_{12}N^+Br^-$ は二分子膜状態に特有のゲルー液晶相転移に基づく吸熱ピークを与えず、分子分散していることが判った。前記合成二分子膜は、安定な界面活性剤として、表面・界面改質剤、コロイド安定化剤、化粧品、洗剤、潤滑剤、電解質などの分野で利用され、また蛋白質や遺伝子、薬物を細胞内へ輸送する機能を有することが知られている。

【OO34】一方イオン性液体II (MeImC20C1) 、III

(MeImC10C1) 中においては、それぞれ52.4°C、50.7°Cにゲルー液晶相転移温度を与えることから、二分子膜が形成されていることが判った。 $2C_14N+Br-O$ 場合、イオン性液体I (MeImC4) 中には溶解しないが、II (MeImC20C1)、III (MeImC10C1) には溶解し、それぞれ64.8°C、67.7°Cにゲルー液晶相転移温度を与えた。このように、イオン性液体II (MeImC20C1)、III (MeImC10C1) 中において、分子集合体である二分子膜の形成が確認された。二分子膜やミセルなどの分子集合体形成は、イオン性液体に界面活性を付与するばかりでなく、非極性の化学反応場や、液晶としての性質を与える。さらに、蛋白質・触媒等の溶解性を高める手段として利用できる。また、その応用としては、表面・界面改質利、電解質材料、液晶表示材料、化粧品、イオン伝導体材料や生体触媒材料の応用が考えられる。

[0035]

【化3】

2C12N+Br-

CH₃(CH₂)₁₁ N+CH₃ Br

2C14N+Br

CH₃(CH₂)₁₃ N+CH₃ Br

[0036]

【表7】

ジアルキルアン	モニウム塩のゲルー液晶相転移温度と	相転移パラメータ
	2C ₁₂ N+Br	2C ₁₄ N*Br
I (MeImC ₄)	溶解するが観測されない	不熔
II (MeImC2OC1)	52.4 ℃	64.8 ℃
	⟨ ∆ H=19.2 kJ/mol,	(4H=34.8 kJ/mol.
	△S=59 J/(mol·K))	4S=103 J/(mol·K))
III (MeImC ₁ OC ₁)	50.7 ℃	67.7 ℃
	(4H=9.3 kJ/mol,	$(\Delta H=19.2 \text{ kJ/mol},$
	4 S=28 J/(mol·K))	△S=56.4 J/(mol·K))

【0037】実施例6

アゾベンゼン発色団を有する両親媒性化合物C8AzoC10N+Br-は水中において二分子膜を形成すると300nmに吸収極大波長を与えるが、エタノール中に分散した場合、分子分散状態となり360nm付近に吸収極大波長を与える。そこで、C8AzoC10N+Br-をイオン性液体中に溶解し、紫外ー可視吸収スペクトルからイオン性液体中における二分子膜形成について評価した。イオン性液体 (MeImC4)中においては、C8AzoC10N+Br-の吸収極大波長は360nm付

近に観測されることから (20°)、C8AzoC10N+Br-は 二分子膜を形成せず、分子分散していること (即ち二分 子膜会合体が形成されないこと)が判った。

【 O O 3 8 】次に、III (Me ImC₁0C₁) に化合物 3 [C₈Az oC₁₀N+B-] を分散したときの紫外 - 可視吸収スペクトルを図 1 に示した。

[0039]

【化4】

$$H_3C-(CH_2)_7-O$$
 $N=N$
 $N=N$
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

【○○40】20℃においてCgAzoC10N+Br-の吸収極大 は300nm付近に観察され、水中と同様に二分子膜として 分散していることが判明した。一方、この溶液を90℃ に加熱すると、360nm付近の吸収が現れた。このスペク トル変化は、20℃で形成された二分子膜が、高温で液 晶状態に転移し、分子分散種もしくはミセルとして分散 していることを示す。一方、この溶液を20℃まで冷却 すると、360nmの吸収は消失し、再び300nmに吸収が現れ た。このスペクトル変化は可逆的に観測されることか ら、イオン性液体III (MeImC1OC1) 中においてCgAzoC10 N+Br-が二分子膜を形成することは明かである。このよ うに、エーテル結合を導入したイオン性液体中において は、両親媒性化合物が分子集合体として可溶化されるこ とが示された。このように、エーテル結合を含むイオン 性液体II (MeImC2OC1)、III (MeImC1OC1)中におい て、はじめて二分子膜、ミセルなどの分子集合体が形成 される。このことは、イオン性液体の物性(イオン伝導 性、反応溶媒特性、抽出特性、触媒の可溶化特性、液晶 性)を分子集合体形成やその相転移現象によって制御す る、新規かつ有用な方法論を与える。また、不揮発性の 媒体中に分子集合体を可溶化することから、環境調和型

材料としての応用も可能となる。

[0041]

【発明の効果】以上のように、本発明よれば、従来のイ オン性液体にはない、多くの合成高分子、生体高分子、 分子集合体に対し高い可溶化能力を有するイオン性液体 を提供でき。且つ、従来のイオン性液体にに対して、ア ニオン交換をすることなく常温で液体のイオン性液体が 得られる等、製造面でも改善され、更に、粘性が低いこ とから、反応物質の拡散が容易になり、反応媒体として も優れた特性を有する。従って、これまでイオン性液体 と相溶しなかった高分子、生体高分子ならびに分子集合 体を溶解させることができるので、それらの可溶化担体 や反応溶媒、合成反応における抽出溶媒あるいは有機電 解質等の機能性物質としての利用性が向上し、実用的な 利用性が期待できる。また生体高分子を溶解したイオン 性ゲルは、環境にやさしい生体材料を利用できるのみな らず、生体高分子の持つ特異な分子認識・触媒機能を備 えた機能性ゲルの開発、イオン電導性を有するゲルの製 造、利用の面で適しており、固体電解質材料や電気化学 材料、生体触媒材料など広範な利用が期待できる。

【図面の簡単な説明】

【図1】 C8AzoC10N+Br-のイオン性流体III (MeImC10C 性 1) 中における紫外ー可視吸収スペクトル及び温度依存

【図1】

CaAzoCtoN*Brのイオン性液体皿 (MeImCtOCt) 中における紫外-可視 吸収スペクトル、湿度体存性 [CaAzoCtoN*Br] =0.5 mM

フロントページの続き

(51) Int. CI. 7 H O 1 M 10/40

識別記号

F I H O 1 M 10/40

テーマコード(参考)

,