

CASE STUDIES IN STATISTICAL THINKING

Activity of zebrafish and melatonin

Justin Bois Lecturer, Caltech

Caltech

Case studies in statistical thinking

- Hone and extend your statistical thinking skills
- Work with real data sets
- Review of Statistical Thinking I and II

Warming up with zebrafish

Movie courtesy of David Prober, Caltech

Nomenclature

• Mutant: Has the mutation on both chromosomes

• Wild type: Does not have the mutation

Activity of fish, day and night

Data courtesy of Avni Gandhi, Grigorios Oikonomou, and David Prober, Caltech

Active bouts: a metric for wakefulness

• Active bout: A period of time where a fish is consistently active

• Active bout length: Number of consecutive minutes with activity

Probability distributions and stories

• Probability distribution: A mathematical description of outcomes

A probability distribution has a story

Distributions from Statistical Thinking I

- Uniform
- Binomial
- Poisson
- Normal
- Exponential

The Exponential distribution

• **Poisson process**: The timing of the next event is completely independent of when the previous event happened

• Story of the Exponential distribution: The waiting time between arrivals of a Poisson process is Exponentially distributed

The Exponential CDF

```
In [1]: x, y = ecdf(nuclear_incident_times)
In [2]: _ = plt.plot(x, y, marker='.', linestyle='none')
```


Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

The Exponential CDF

```
In [1]: x, y = ecdf(nuclear_incident_times)
In [2]: _ = plt.plot(x, y, marker='.', linestyle='none')
```


Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

The dc_stat_think module

```
In [1]: import dc stat think as dcst
In [2]: dcst.pearson r?
Signature: dcst.pearson_r(data_1, data_2)
Docstring:
Compute the Pearson correlation coefficient between two samples.
Parameters
data 1 : array_like
    One-dimensional array of data.
data 2 : array like
    One-dimensional array of data.
Returns
output : float
    The Pearson correlation coefficient between `data 1`
    and `data 2`.
File:
           usr/local/lib/python3.5/site-packages/
           dc stat think-0.1.4-py3.6.egg/dc stat think/dc stat think.py
           function
Type:
```


Using the dc_stat_think module

```
x, y = dcst.ecdf(nuclear_incident_times)
```

```
% pip install dc_stat_think
```


CASE STUDIES IN STATISTICAL THINKING

Let's practice!

CASE STUDIES IN STATISTICAL THINKING

Bootstrap confidence intervals

Justin Bois Lecturer, Caltech

EDA is the first step

"Exploratory data analysis can never be the whole story, but nothing else can serve as a foundation stone—as the first step."

—John Tukey

Active bout length ECDFs

Data courtesy of Avni Gandhi, Grigorios Oikonomou, and David Prober, Caltech

Optimal parameter value

• Optimal parameter value: The value of the parameter of a probability distribution that best describes the data

• Optimal parameter for the Exponential distribution: Computed from the mean of the data

Optimal parameter estimation

In [1]: np.mean(nuclear_incident_times)
Out[1]: 87.140350877192986

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

Bootstrap sample

A resampled array of the data

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

Bootstrap replicate: A statistic computed from a bootstrap sample

dcst.draw_bs_reps()

Function to draw bootstrap replicates from a data set

The bootstrap confidence interval

Data source: Wheatley, Sovacool, Sornette, Nuclear Events Database

The bootstrap confidence interval

If we repeated measurements over and over again, p% of the observed values would lie within the p% confidence interval

The bootstrap confidence interval

```
In [1]: np.percentile(bs_reps, [2.5, 97.5])
Out[1]: array([ 73.31505848, 102.39181287])
```


CASE STUDIES IN STATISTICAL THINKING

Let's practice!

CASE STUDIES IN STATISTICAL THINKING

Hypothesis tests

Justin Bois Lecturer, Caltech

Effects of mutation on activity

Data courtesy of Avni Gandhi, Grigorios Oikonomou, and David Prober, Caltech

Genotype definitions

• Wild type: No mutations

• Heterozygote: Mutation on one of two chromosomes

• Mutant: Mutation on both chromosomes

Effects of mutation on activity

Data courtesy of Avni Gandhi, Grigorios Oikonomou, and David Prober, Caltech

Effects of mutation on activity

Data courtesy of Avni Gandhi, Grigorios Oikonomou, and David Prober, Caltech

Hypothesis test

Assessment of how reasonable the observed data are assuming a hypothesis is true

p-value

The probability of obtaining a value of your **test statistic** that is **at least as extreme as** what was observed, under the assumption the **null hypothesis** is true

Test statistic

• A single number that can be computed from observed data and from data you simulate under the null hypothesis

Serves as a basis of comparison

p-value

The probability of obtaining a value of your **test statistic** that is **at least as extreme as** what was observed, under the assumption the **null hypothesis** is true

Requires clear specification of:

- Null hypothesis that can be simulated
- **Test statistic** that can be calculated from observed and simulated data
- Definition of at least as extreme as

Pipeline for hypothesis testing

- Clearly state the null hypothesis
- Define your test statistic
- Generate many sets of simulated data assuming the null hypothesis is true
- Compute the test statistic for each simulated data set
- The p-value is the fraction of your simulated data sets for which the test statistic is at least as extreme as for the real data

Specifying the test

• **Null hypothesis**: the active bout lengths of wild type and heterozygotic fish are identically distributed

• **Test statistic**: Difference in mean active bout length between heterozygotes and wild type

• At least as extreme as: Test statistic is greater than or equal to what was observed

Permutation test

- For each replicate:
 - Scramble labels of data points
 - Compute test statistic

 p-value is fraction of replicates at least as extreme as what was observed

```
In [2]: p_val = np.sum(perm_reps >= diff_means_obs) / len(perm_reps)
```


CASE STUDIES IN STATISTICAL THINKING

Let's practice!

CASE STUDIES IN STATISTICAL THINKING

Linear regressions and pairs bootstrap

Justin Bois Lecturer, Caltech

Bacterial growth

Images courtesy of Jin Park and Michael Elowitz, Caltech

Bacterial growth

Bacterial growth

```
_ = plt.semilogy(t, bac_area, marker='.', linestyle='none')
_ = plt.xlabel('time (hr)')
_ = plt.ylabel('area (sq. μm)')
plt.show()
```


Linear regression with np.polyfit()

```
slope, intercept = np.polyfit(t, bac_area, 1)
```

```
t_theor = np.array([0, 14])
bac_area_theor = slope * t_theor + intercept
```

```
_ = plt.plot(t, bac_area, marker='.', linestyle='none')
_ = plt.plot(t_theor, bac_area_theor)
_ = plt.xlabel('time (hr)')
_ = plt.ylabel('area (sq. μm)')
plt.show()
```


Regression of bacterial growth

Semilog-linear regression with np.polyfit()

```
slope, intercept = np.polyfit(t, np.log(bac_area), 1)
```

```
t_theor = np.array([0, 14])
bac_area_theor = np.exp(slope * t_theor + intercept)
```

```
_ = plt.semilogy(t, bac_area, marker='.', linestyle='none')
_ = plt.semilogy(t_theor, bac_area_theor)
_ = plt.xlabel('time (hr)')
_ = plt.ylabel('area (sq. μm)')
plt.show()
```


Regression of bacterial growth

Pairs bootstrap

- Resample data in pairs
- Compute slope and intercept from resampled data
- Each slope and intercept is a bootstrap replicate
- Compute confidence intervals from percentiles of bootstrap replicates

Pairs bootstrap

CASE STUDIES IN STATISTICAL THINKING

Let's practice!