

飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

Contents

- Introduction
- Static & Dynamics stability
- Moments and angle of attack
- Criteria for longitudinal static stability
- Equations for longitudinal static stability
- Concept of static longitudinal control

Road map for Stability and Control.

Review - stability

Criteria for longitudinal static stability

- 1) $C_{M,0}$ must be positive
- 2) $\partial C_{M,cg} / \partial \alpha_a$ must be negative

Questions

- How to arrange the wing and tail to obtain stability?
- Condition 1 is easy to check, what about condition 2?

- 1) $C_{M,0}$ must be positive
- 2) $\partial C_{M,cg} / \partial \alpha_a$ must be negative

Airfoil nomenclature

Figure 5.3 Airfoil nomenclature. The shape shown here is a NACA 4415 airfoil.

Some definitions

Mean camber line (中弧线): the locus of points halfway between the upper and lower surfaces, as measured perpendicular to the mean camber line itself.

Leading and trailing edges (前缘和尾缘): the most forward and rearward points of the mean camber line.

Chord line(弦线): the straight line connecting the leading and trailing edges.

Chord(弦长): the precise distance from the leading to the trailing edge measured along the chord line, given by the symbol c.

The aerodynamic moment

 $M_{ac,w}$: moment of wing about aerodynamic center

Figure 5.5 The physical origin of moments on an airfoil.

The aerodynamic moment

Figure 7.19 Airfoil nomenclature and geometry.

Summary of the moment and forces

- $M_{ac,w}$
- Lift force *L*
- Drag force *D*
- Weight W

Figure 7.19 Airfoil nomenclature and geometry.

The moments about the center of gravity

- $M_{ac,w}$
- $L_w \to L_w \cos \alpha_w (hc h_{ac,w}c) + L_w \sin \alpha_w zc$
- $D_w \to D_w \sin(hc h_{ac,w}c) D_w \cos \alpha_w zc$
- $W \rightarrow 0$

Figure 7.19 Airfoil nomenclature and geometry.

The moments about the center of gravity

$$M_{cg,w} = M_{ac,w} + L_w \cos \alpha_w (hc - h_{ac,w}c) +$$

$$D_w \sin(h - h_{ac,w}c) + L_w \sin \alpha_w zc - D_w \cos \alpha_w zc$$

Figure 7.19 Airfoil nomenclature and geometry.

Assumption 1: α_w is small

$$\Rightarrow \cos \alpha_w \approx 1, \sin \alpha_w \approx \alpha_w$$

$$\Rightarrow M_{cg,w} = M_{ac,w} + (L_w + D_w \alpha_w) (h - h_{ac,w}) c + (L_w \alpha_w - D_w) zc$$

Nondimensionalize by $q_{\infty}Sc$

$$M_{cg,w} = M_{ac,w} + (L_w + D_w \alpha_w) (h - h_{ac,w}) c + (L_w \alpha_w - D_w) zc$$

$$\Rightarrow C_{M,cgw} = C_{M,acw} + (C_{L,w} + C_{D,w}\alpha_w)(h - h_{ac,w}) + (C_{L,w}\alpha_w - C_{D,w})z$$

Assumption 2: $z \approx 0$

$$C_{M,cgw} = C_{M,acw} + (C_{L,w} + C_{D,w}\alpha_w)(h - h_{ac,w}) + (C_{L,w}\alpha_w - C_{D,w})z$$

$$\Rightarrow C_{M,cgw} = C_{M,acw} + (C_{L,w} + C_{D,w}\alpha_w)(h - h_{ac,w})$$

Since α_w : is small, the expression can be further simplified to

$$\Rightarrow C_{M,cgw} = C_{M,acw} + C_{L,w} (h - h_{ac,w})$$

Assume: $a_w = dC_{L,w}/d\alpha$

$$\Rightarrow C_{L,w} = \frac{dC_{L,w}}{d\alpha} \alpha_w = \alpha_w \alpha_w$$

$$\Rightarrow C_{M,cgw} = C_{M,acw} + a_w \alpha_w (h - h_{ac,w})$$

$$C_{M,cgw} = C_{M,acw} + C_{L,w} (h - h_{ac,w})$$

Take the fuselage into consideration

$$C_{M,cg-wb} = C_{M,ac-wb} + C_{L,wb} (h - h_{ac,wb})$$

$$C_{M,cg-wb} = C_{M,ac-wb} + a_{wb} \alpha_{wb} (h - h_{ac,wb})$$

Practice

Example 7.3

A wing-body model is tested in a subsonic wind tunnel. The lift is found to be zero at a geometric angle of attack $\alpha = -1.5^{\circ}$. At $\alpha = 5^{\circ}$ the lift coefficient is measured as 0.52. Also, at $\alpha = 1.0^{\circ}$ and 7.88°, the moment coefficients about the center of gravity are measured as -0.01 and 0.05, respectively. The center of gravity is located at 0.35c. Calculate the location of the aerodynamic center and the value of $C_{M, ac_{wb}}$.

Practice

Example 7.3

A wing-body model is tested in a subsonic wind tunnel. The lift is found to be zero at a geometric angle of attack $\alpha = -1.5^{\circ}$. At $\alpha = 5^{\circ}$ the lift coefficient is measured as 0.52. Also, at $\alpha = 1.0^{\circ}$ and 7.88°, the moment coefficients about the center of gravity are measured as -0.01 and 0.05, respectively. The center of gravity is located at 0.35c. Calculate the location of the aerodynamic center and the value of $C_{M, ac_{wb}}$.

$$C_{M,cg-wb} = C_{M,ac-wb} + a_{wb} \alpha_{wb} (h - h_{ac,wb})$$

$$C_{M,ac-wb} = -0.032$$

Problems...

- \times $C_{M,0}$ must be positive
- $\times \partial C_{M,0} / \partial \alpha_a$ must be negative

Unfortunately, wing alone is unstable.

Horizontal stabilizer

a) Conventional wing-tail combination

Horizontal stabilizer

b) Canard wing-tail combination.

Figure 5.44 Wing-tip vortices made visible by smoke ejected at the wing tips of a Boeing 727 test airplane. (Source: *NASA*.)

The effects of airflow downwash?

Figure 5.44 Wing-tip vortices made visible by smoke ejected at the wing tips of a Boeing 727 test airplane. (Source: *NASA*.)

The effects of downwash

Airflow direction: $\alpha \rightarrow \alpha - \varepsilon$

Airflow magnitude: $V \rightarrow V_{tail}$

The effects of downwash

Typical value for $d\varepsilon/d\alpha$ is 0.01 (depend on the tail configuration).

Typical tail configurations

Wing-tail combination

Figure 7.21 Geometry of wing-tail combination.

What is the total pitching moment about the center of gravity of the wing-tail combination?

The sum of tail moments

$$M_{cg_t} = -l_t [L_t \cos(\alpha_{wb} - \varepsilon) + D_t \sin(\alpha_{wb} - \varepsilon)] + z_t L_t \sin(\alpha_{wb} - \varepsilon) - z_t D_t \cos(\alpha_{wb} - \varepsilon) + M_{ac_t}$$
 (7.11)

The lift force is perpendicular to the airspeed direction (no relate to the i_t)

Approximations

- 1. $z_t \ll l_t$. Vertical distance to c.g. is far smaller than horizontal
- 2. $D_t \ll L_t$. Drag force is far smaller than lift force
- 3. The angle $\alpha_{wb} \varepsilon$ is small; hence $\sin(\alpha_{wb} \varepsilon) \approx 0$ and $\cos(\alpha_{wb} \varepsilon) \approx 1$.
- **4.** $M_{\rm ac}$, is small in magnitude.

$$M_{\text{cg}_t} = -l_t L_t$$

Define tail lift coefficient

$$C_{L,t} = \frac{L_t}{q_{\infty} S_t}$$

$$M_{cg_t} = -l_t q_{\infty} S_t C_{L,t}$$

$$\frac{M_{\text{cg}_t}}{q_{\infty}Sc} \equiv C_{M,\text{cg}_t} = -\frac{l_t S_t}{cS} C_{L,t}$$

Define tail lift coefficient

$$C_{L,t} = \frac{L_t}{q_{\infty} S_t}$$
 Tail planform area

$$M_{\mathrm{cg}_t} = -l_t q_{\infty} S_t C_{L,t}$$

$$M_{\mathrm{cg}_t} = C_{M,\mathrm{cg}_t} = -\frac{l_t S_t}{cS} C_{L,t}$$
Tail volume ratio V_H

$$\frac{M_{\text{cg}_t}}{q_{\infty}Sc} \equiv C_{M,\text{cg}_t} = -\frac{l_t S_t}{cS} C_{L,t}$$

$$C_{M,\,\mathrm{cg}_t} = -V_H C_{L,t}$$

 $\varepsilon = \varepsilon_0 + \frac{\partial \varepsilon}{\partial \alpha} \alpha_{\rm wb}$ The lift coefficient of tail $C_{L,t} = a_t \alpha_t = a_t (\alpha_{\rm wb} - i_t - \varepsilon)$ Obtained by the experiment

$$C_{L,t} = a_t \alpha_{\rm wb} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) - \frac{\partial C_{L,t}}{\partial \alpha_t} \text{ lift slope of the tail}$$

$$C_{M, cg_t} = -a_t V_H \alpha_{wb} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) + a_t V_H (\varepsilon_0 + i_t)$$

The total pitching moment

Define total pitching moment M_{ca}

$$C_{M, cg} = C_{M, cg_{wb}} + C_{M, cg_t}$$

$$C_{M, ac-wb} + C_{L,wb}(h - h_{ac,wb}) -V_H C_{L,t}$$

$$C_{M, cg} = C_{M, ac_{wb}} + a_{wb}\alpha_{wb} \left[h - h_{ac_{wb}} - V_H \frac{a_t}{a_{wb}} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right] + V_H a_t (i_t + \varepsilon_0)$$

Practice

Example 7.4

Consider the wing-body model in Example 7.3. The area and chord of the wing are 0.1 m² and 0.1 m, respectively. Now assume that a horizontal tail is added to this model. The distance from the airplane's center of gravity to the tail's aerodynamic center is 0.17 m; the tail area is 0.02 m²; the tail-setting angle is 2.7°; the tail lift slope is 0.1 per degree; and from experimental measurement, $\varepsilon_0 = 0$ and $\partial \varepsilon / \partial \alpha = 0.35$. If $\alpha = 7.88^\circ$, calculate $C_{M,cg}$ for the airplane model.

Longitudinal static stability

Criteria for static stability

$$C_{M,0} \equiv (C_{M,cg})_{L=0} = C_{M,ac_{wb}} + V_H a_t (i_t + \varepsilon_0)$$

1) $C_{M,0}$ must be positive

2) $\partial C_{M,0} / \partial \alpha_a$ must be negative

$$\frac{\partial C_{M, \text{cg}}}{\partial \alpha_a} = a \left[h - h_{\text{ac}_{\text{wb}}} - V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

Any conclusions?

Longitudinal static stability

Conclusions

- *i_t* should be a positive quantity
- A larger tail $(S_t \uparrow)$ will contribute to static stability
- A longer distance between tail and wing $(l_t \uparrow)$ will contribute to stability
- Center of gravity that is just after the wing or even before the wing contributes to stability $(h h_{ac,wb} \le 0$, i.e., forward cg \Rightarrow more stable)

$$C_{M,0} \equiv (C_{M,cg})_{L=0} = C_{M,ac_{wb}} + V_{H}a_{t}(i_{t} + \varepsilon_{0})$$

$$\frac{\partial C_{M,cg}}{\partial \alpha_{a}} = a \left[h - h_{ac_{wb}} - V_{H} \frac{a_{t}}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

$$\frac{l_{t}S_{t}}{cS}$$

Practice

Example 7.5

Consider the wing–body–tail wind tunnel model of Example 7.4 . Does this model have longitudinal static stability and balance?

$$\frac{\partial C_{M, \text{cg}}}{\partial \alpha_a} = a \left[h - h_{\text{ac}_{\text{wb}}} - V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

Definition

$$\frac{\partial C_{M, \text{cg}}}{\partial \alpha_a} = a \left[h - h_{\text{ac}_{\text{wb}}} - V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

Neutral point (中性点): the value of h when $\partial C_{M,cg}/\partial \alpha_a = 0$, denoted by h_n .

$$h_n = h_{\rm ac_{wb}} + V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right)$$

Figure 7.23 Effect of the location of the center of gravity, relative to the neutral point, on static stability.

Stability analysis

Estimate neutral point: more or less than 0.4?

Key positions for longitudinal stability

- Position of tail surface
- Position of center of gravity

For longitudinal static stability, the position of the center of gravity must always be forward of the neutral point.

How about a canard (鸭翼)?

How about a canard (鸭翼)

How about a canard (鸭翼)

比亚乔P180 (空中法拉利)

Static Margin

Definition

$$h_{n} = h_{\text{ac}_{\text{wb}}} + V_{H} \frac{a_{t}}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right)$$

$$\frac{\partial C_{M,\text{cg}}}{\partial \alpha_{a}} = a \left[h - h_{\text{ac}_{\text{wb}}} - V_{H} \frac{a_{t}}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

$$h_{\text{ac}_{\text{wb}}} = h_n - V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right)$$

$$\frac{\partial C_{M,cg}}{\partial \alpha_a} \approx a(h - h_n)$$

Static Margin

Definition

$$\frac{\partial C_{M,cg}}{\partial \alpha_a} \approx a(h - h_n) = -a(h_n - h)$$

Figure 7.24 Illustration of the static margin.

Summary

Stability

Static longitudinal control

Mechanical Flight Control System (FCS)

Static longitudinal control

Electrical FCS

Static longitudinal control

Fly by wire FCS

