

ПП

Quasi Free Scattering with S444 Data (2020)

Supported by BMBF 05P15WOFNA and 05P19WOFN1.

The results presented here are based on the experiment s444/s473, which was performed at the beam line/infrastructure Cave C at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0.

GEFÖRDERT VON

Tobias Jenegger

Analysis WG Meeting 22.07.2021

12C(p,2p)11B reaction

12C(p,ppn/pd)10B reaction

SRC Analysis

Quasi Free Scattering Analysis with Experiment S444/467 (2020)

- 12C beam
 proton like target
- 2 protons
- ¹¹B fragment (spectator)

SETUP:

Beam energy: 400 AMeV

Beamtype: 12C

Target: CH₂

Fragment Particle Identification

Radius reconstruction:

$$R = \frac{L_{eff}}{2\sin\left(\frac{\theta_{in} + \theta_{out}}{2}\right)}$$

Z (charge)

12C(p,2p)11B reaction

Two Proton Identification:

 \rightarrow two hits with E_{hit} > 30 MeV

Polar Angular Distribution of protons for 12C(p,2p)11B

Theta1 vs Theta2 in CALIFA

Arzimuthal Distribution of protons for 12C(p,2p)11B

Gamma Spectrum of 11B

Doppler Correction:

$$E_{\gamma} = \gamma E_{lab} (1 - \beta \cos(\theta))$$

¹¹B rest frame

---6741.9 0.030 eV

Gamma Spectrum with Angular Cuts

CALIFA Gamma Energy Spectrum

Event selection criteria for CALIFA:

- → 11B fragment identification
- \rightarrow two hits (protons) with E_{hit} > 30 MeV
- $\rightarrow \theta 1 + \theta 2 < 90^{\circ}$
- $\rightarrow \Delta \phi = 180^{\circ} + -40^{\circ}$

40

20

200

Reconstruction of Inner Momenta

1000

p_missing [MeV/c]

Before Scattering:

400

After Scattering:

(Four-)Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

Momentum components of p_i

$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$

p, Momentum-Components (with angular cuts applied)

Mass reconstuction of p_i

Before Scattering:

After Scattering:

$$M_i = \sqrt{(p_1 + p_2 - p_{tg})^2}$$

Missing Energy Distribution

Definition of Missing Energy *:

$$E_{miss} = m_p - e_{miss} = E_{tgkin} - E_{p1kin} - E_{p2kin}$$
 (in 12C cms)

(where e_miss is the energy component of $\mathbf{p}_{\text{missing}}$)

$$\mathbf{E}_{\mathrm{miss}} = \mathbf{E}_{\mathrm{Sep}} + \overline{\mathbf{E}}_{\mathrm{Exc}}$$

Analysis Missing Energy Distribution

Explicit calculation of the Missing Energy (in the 12C frame):

$$E_{\text{miss}} = E_{\text{tgkin}} - E_{\text{p1kin}} - E_{\text{p2kin}}$$

E_missing and p_z_missing for different opening angles

For simplicity let's say $\theta_1 = \theta_2$ and $E_{kin1} = E_{kin2}$. That means for theta_sum = 44 ° $\rightarrow \theta_1 = \theta_2 = 22$ °

E_missing and p_z_missing for $\theta_1 = \theta_2 = 42^{\circ}$

Momentum components of p_{11B}

After Scattering:

p_{11B} Momentum-Components (with angular cuts applied)

Inner angular distributions

- p_i determined by angle and energy deposition of p1 and p2
- p_{11B} determined by ToF and tracking detectors (MWPCs)

(p11B_y was calculated by y-position in MW1 and MW2)

Not satisfactory....

See:

https://www.nature.com/articles/s41567-0

Angular Distribution in x-y plane

Spatial Correlation of the Reaction Products

Assuming no inner momenta of the 12C constituents $\mathbf{p_i}$ and $\mathbf{p_{11B}}$:

 $_{\rightarrow}$ scattering would take place in reaction plane defined by $\vec{p}_{_{12C}}$ and $\vec{p'}_{_{tg}}$

Spatial Correlation of the Reaction Products

Assuming no inner momenta of the 12C constituents \mathbf{p}_{i} and \mathbf{p}_{11B} :

 $_{\rightarrow}$ scattering would take place in reaction plane defined by $\vec{p}_{_{12C}}$ and $\vec{p}_{_{1/2}}$

BUT: $|\vec{p}_i| \approx |\vec{p_{11B}}| \neq 0$

 \rightarrow there are components perpendicular to the reaction plane!

Spatial Correlation of the Reaction Products

As measure of the overall perpendicular fraction to the reaction plane*:

$$Q_{tr12} = |\vec{p}_1| \frac{\vec{p}_1 * (\vec{p}_2 x \vec{p}_{12C})}{|\vec{p}_1| |\vec{p}_2 x \vec{p}_{12C}|}$$

$$Q_{tr21} = |\vec{p}_2| \frac{\vec{p}_2 * (\vec{p}_1 x \, \vec{p}_{12C})}{|\vec{p}_2| |\vec{p}_1 x \, \vec{p}_{12C}|} = -Q_{tr12}$$

Due to momentum conservation:

$$Q_{tr12} = -Q_{trFragment}$$

Q_{tr12} vs. $|\overrightarrow{p_y}_{11B}|$

Q_{tr12} vs. $|\overrightarrow{p_y}_{11B}|$

Q_{tr12} vs. $|\overrightarrow{p}_{x_{11B}}|$

Momentum p_i vs p_11B in 12C

Missing Mass Reconstruction

12C(p,ppn/pd)10B Reaction

27

- nucleon pairs with high relative and low c.m. momentum (compared to Fermi momentum k_F)

Tobias Jenegger

 θ_1 (proton 1) vs. θ_2 (proton2) without any angular restrictions:

 θ_1 (proton 1) vs θ_2 (proton2) without any angular restrictions:

 θ_1 (proton 1) vs θ_2 (proton2) without any angular restrictions:

 θ_1 (proton 1) vs θ_2 (proton2) without any angular restrictions:

 θ_1 (proton 1) vs θ_2 (proton2) with angular cut: $\Delta \phi > 100^\circ$

Reconstruction of inner momentum p_i

Angular Distribution for $|\overrightarrow{p}_i| < 250$

Angular Distribution for 250 MeV/c $< |\vec{p}_i| < 650$ MeV/c $|\vec{p}_i|$

Angular Distribution for $|\overrightarrow{p}_i| > 650 \text{ MeV/c}$

Neutron Mass Reconstruction

- → boosting effects
- → biased z-momenta
- → further checks needed

Angular Correlations for 12C(p,ppn/pd)10B in the x-y plane

Compare to:

https://www.nature.com/articles/s41567-021-01193-4.pdf

 $\begin{array}{c} \text{Stuno} \\ \text{5} \\ -1.0 \\ \text{cos}(\theta_{p_{\text{miss}}}, p_n) \end{array}$

Angular Correlations for 12C(p,ppn/pd)10B in the x-y plane

Compare to:

https://www.nature.com/articles/s41567-021-01193-4.pdf

Tobias Jenegger

Summary & Outlook

12C(p,2p)11B Quasi Free Scattering looks promising

- But: Momentum shift in z-direction has to be further analyzed
- For 12C(p,ppn/pd)10B already first results
- How to distinguish between the three reaction types? (Deuteron detection with N_f-N_s information from CALIFA? Reasonable cuts?)

Thank you!

Tobias Jenegger 41

Backup

Excitation Energy of 11B

$$E_{exc} = (P_{12C} + p_{tg} - p_1 - p_2).M - M_{11B}$$

Is this formula valid?

Excitation Energy vs. E_miss

