ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

VİTMO

Лабораторная работа №2
по дисциплине
«Информатика»
Вариант №76

Выполнил студент группы Р3115 Горляков Даниил Петрович Преподаватель: Малышева Татьяна Алексеевна

Содержание

1	Текст задания	2
2	Основные шаги вычисления	3
3	Вывод	6
Cı	писок литературы	7

1 Текст задания

1	2	3	4	5	6	7
r_1	r_2	i_1	r_3	i_2	i_3	i_4
0	0	0	1	1	0	0

Таблица 1: Первый пример. №58

1	2	3	4	5	6	7
r_1	r_2	i_1	r_3	i_2	i_3	i_4
1	0	1	1	1	1	0

Таблица 2: Второй пример. №95

	1	2	3	4	5	6	7
	r_1	r_2	i_1	r_3	i_2	i_3	i_4
ĺ	0	1	1	0	0	0	1

Таблица 3: Третий пример. №20

	1	2	3	4	5	6	7
1	r_1	r_2	i_1	r_3	i_2	i_3	i_4
	1	0	1	0	0	0	0

Таблица 4: Четвертый пример. №10

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ĺ	r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i_9	i_{10}	i_{11}
Ì	0	0	1	1	1	0	0	1	0	1	1	0	1	0	0

Таблица 5: Пятый пример. №75

Рис. 1: Схема декодирования классического кода Хэмминга (7;4)

2 Основные шаги вычисления

1. Найдем контрольные суммы s_1, s_2, s_3 .

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0.$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1.$$

Чтобы найти, в каком бите ошибка, запишем контрольные суммы в обратном порядке. Получим 101, переведем в СС-10, значит, ошибка в 5-м бите, то есть в i_2 . Тогда истинное значение $i_2 := i_2 \oplus 1 = 0$.

Сообщение без ошибок: 0000.

2. Посчитаем s_1, s_2, s_3 .

$$s_1 = 1, s_2 = 0, s_3 = 1.$$

Ошибка в бите $101_2=5$, то есть в i_2 . Тогда корректное значение $i_2:=i_2\oplus 1=0$. Сообщение без ошибок: 1010.

3. Посчитаем s_1, s_2, s_3 .

$$s_1 = 0, s_2 = 1, s_3 = 1.$$

Ошибка в бите $110_2 = 6$, то есть в i_3 . Тогда корректное значение $i_3 := i_3 \oplus 1 = 1$. Сообщение без ошибок: 1011.

4. Посчитаем s_1, s_2, s_3 .

$$s_1 = 0, s_2 = 1, s_3 = 0.$$

Ошибка в бите $010_2 = 2$, то есть в r_2 . Итоговое сообщение не изменится, т.к. с ошибкой пришел бит четности. Сообщение: 1000.

Рис. 2: Схема декодирования классического кода Хэмминга (15;11)

5. Посчитаем s_1, s_2, s_3, s_4 .

```
s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4} \oplus i_{5} \oplus i_{7} \oplus i_{9} \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 0
s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4} \oplus i_{6} \oplus i_{7} \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1
s_{3} = r_{3} \oplus i_{2} \oplus i_{3} \oplus i_{4} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1
s_{4} = r_{4} \oplus i_{5} \oplus i_{6} \oplus i_{7} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0
```

Ошибка в бите $0110_2=6_{10}$, то есть в i_3 . Тогда корректное значение: $i_3:=i_3\oplus 1=1$. Сообщение без ошибок: 11100110100.

- 6. $i=(58+95+20+10+75)\cdot 4=1032.$ Нужно найти г удовлетворяющий: $2^r\geqslant r+i+1.$ Минимальный r=11. Тогда n=r+i=1043, а коэффициент избыточности $=\frac{11}{1043}=0.01$
- 7. Код программы на языке python, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

```
a = [int(x) for x in input()]

s1 = a[0] ^ a[2] ^ a[4] ^ a[6]
s2 = a[1] ^ a[2] ^ a[5] ^ a[6]
s3 = a[3] ^ a[4] ^ a[5] ^ a[6]

k = int(str(s3) + str(s2) + str(s1), 2)
a[k-1] = a[k-1] ^ 1

print("Correct answer: ", a[2], a[4], a[5], a[6])
print("Error in bit no.: ", k)
```

3 Вывод

Во время выполнения данной лабораторной работы я научился использовать классический код Хэннинга, проверять его на корректность.

Список литературы

- [1] Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. СПб.: Питер, 2011. 688 с.
- [2] Алексеев Е. Г., Богатырев С. Д. Информатика. Мультимедийный электронный учебник. Режим доступа: http://inf.e-alekseev.ru/text/toc.html