

$\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SINK-6TES} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2018/11/07 at: 12:00:09 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
.	_ 3333-F	[kW]
P_{Q_1}	1 st condenser polynomial coefficient	8.3751e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	-7.1522e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	-1.0842e+03
P_{Q_4}	4 st condenser polynomial coefficient	7.9965e + 02
P_{Q_5}	5^{st} condenser polynomial coefficient	1.0799e + 02
P_{Q_6}	6 st condenser polynomial coefficient	$3.5558e{+03}$
P_{COP_1}	1 st COP polynomial coefficient	1.0381e+02
P_{COP_2}	2^{st} COP polynomial coefficient	-8.8267e + 01
P_{COP_3}	3 st COP polynomial coefficient	-1.3750e + 03
P_{COP_4}	4 st COP polynomial coefficient	7.7882e + 02
P_{COP_5}	5^{st} COP polynomial coefficient	6.2670e + 01
P_{COP_6}	6 st COP polynomial coefficient	4.4579e + 03
\dot{m}_{cond}	$700.00 \ [kg/h]$	
\dot{m}_{evap}	$700.00 \ [kg/h]$	
COP_{nom} (A0W35)	3.28	
$Q_{cond,nom}$ (A0W35)	4.88 [kW]	
$Q_{evap,nom}$ (A0W35)	3.39 [kW]	
$W_{comp,nom}$ (A0W35)	1.49 [kW]	
RMS_{COP}	3.49e - 02	
$RMS_{Q_{cond}}$	4.22e - 02	
$RMS_{W_{comp}}$	7.20e - 03	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.13	4.13	0.0	5.19	5.20	0.1	1.26	1.26	0.15
35.00	0.00	4.68	4.68	0.1	5.90	5.90	0.0	1.26	1.26	0.18
35.00	5.00	5.32	5.32	0.1	6.71	6.70	0.1	1.26	1.26	0.05
55.00	0.00	2.82	2.82	0.0	5.30	5.30	0.0	1.88	1.88	0.02
55.00	5.00	3.26	3.21	1.4	6.15	6.10	0.9	1.89	1.90	0.51
35.00	10.00	6.08	6.08	0.1	7.60	7.60	0.0	1.25	1.25	0.09
35.00	15.00	6.94	6.94	0.0	8.59	8.60	0.1	1.24	1.24	0.08
55.00	10.00	3.52	3.61	2.3	6.90	7.00	1.5	1.96	1.94	0.90
55.00	15.00	4.04	4.00	1.0	7.85	7.80	0.6	1.94	1.95	0.38
Sum				5.2			3.4			2.36
RMS_{COP}	3.49e - 02									
$RMS_{Q_{cond}}$	4.22e - 02									
$RMS_{W_{comp}}$	7.20e - 03									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data