	19.08.05
Prob. Space: tripple (S2, 7, P)	
- 1 " emple spa	ce', we-12
Int. space. I sample spa	
" sample point.	
f: collection of subsets	of 52 called
"event points"	
(i) \$, DE f	
(ii) closed under co	inflementation &
countrable renion	el indensection.
Azf DA Ef.	
	YEEUA: MAIET
	年至 0 约
P: f -> [0,1]	
Probability Measure	
II.	
12 - (A) 1 P(B) - 1	
(i) P(\$) = 0, P(-12) = 1	
(ii) P(AC)=1-P(A)	
(111) (A:> disjoint => P()	1A:) = Z.P(A:)
Countable as	
	0

Additional properties of P: (i) A CB => P(A) < P(B) (ii) P(UA) E E P(A) (ii) P(AUB) = P(A) + P(B) -P(ADB) Shevill of probability theoretic formulation P(A) # Where do you get ?? (3) revelly execipies for an algebra for and extended to o(to) (5) = smallest o- field contains B= intensection of 5-fields containing (ii) (a) principle of insufficient reason Barrein-Fauler (b) worst-care Ep. 69 4: (sec) 133 Mathematical foundation of Ep: HI = C information theory E 7: =1 1:20

(applie dus tra) P: = e-ph: = e-phg Coursian is actually the word case. - (p(x) logp(x) dx) x p(x) dx = 02. Sxp(x)dx=0, p(·)≥0, ∫p(x)dx=1 # # (c) physical reasoning (d) subjective probability. Aumaina Agra/ disagree * (f) mersurement

(IZ, f, P) -X = (E, E). $X^{T}(A) \triangleq \langle \omega : X(\omega) \in A_{3}^{2},$ $X^{T}(A) \triangleq \langle \omega : X(\omega) \in A_{3}^{2},$ $A \in \mathbb{F}$ (collection of subsets of g des 5 in 00- algebra Need: X (A) &f for A & E. J. Hus holds, X is said to be an E-valued random variable. Usually & 'obvious'. Borel! < z: d(y,z) < r}, 'completed'

Borel! < z: d(y,z) < r}, 'Completed'

or - algebra on open & closed circles are same

sefine prob. measure µ on (E, =) by:

M(A) = P(< w: X(w) EA)).

we st

(i)
$$M(A) = 0$$
, $M(E) = 1$.
(ii) $\mu(A^c) = 1 - \mu(A)$.
 $\mu(A^c) = P(\langle w : X(w) \in A \rangle^c)$.
 $= P(\langle w : X(w) \in A \rangle^c)$.
 $= 1 - \mu(A)$.
(iii) $A_1, A_2 - disjoint in (a)$.
 $= 1 - \mu(A)$.
(iii) $A_1, A_2 - disjoint in (a)$.
 $= \mu(U, A_i) = \sum_{i} \mu(A_i)$.
 $= \sum_{i} \mu(U, A_i) = P(\langle w : X(w) \in A \rangle^c)$.
 $= \sum_{i} p(\langle w : X(w) \in A \rangle^c)$.
 $= \sum_{i} p(\langle w : X(w) \in A \rangle^c)$.
 $= \sum_{i} p(\langle w : X(w) \in A \rangle^c)$.

E = R define
$$F(x) = \mu((-\infty, x))$$
, $x \in R$.

 $F(.)$ carries complete imformation about μ .

 $F(.)$ carries complete imformation about μ .

Claim: $\lim_{x \to -\infty} F(x) = 0$,

 $\lim_{x \to +\infty} F(x) = 1$

Countable additivity \Rightarrow
 $P(UA:) = \lim_{x \to +\infty} P(UA:)$
 $P(IA:) = \lim_{x \to +\infty} P(UA:)$
 $P(IA:) = \lim_{x \to +\infty} P(IA:)$
 $P(IA:) = \lim_{x \to +\infty} P(IA:)$

= lim P(UA:) lim F(x) = lim M((-0, 2]) = 2im u (n) = h(U(-00, A])=h 3. lim F(x) =1. lim F(x) = lim [x, 0) = lim [x, 0] = lim [x, 0] = lim [x, 0] lim F(y) = F(x). (because) $=\mu((-\infty,z))=P(z)$ ·) increasing (A & B =) M(A) SM(B) / ((00, x]) 21

and is < F(x) 5. lim F(y) exists and is (: F(.) nondecreasing and bounded above by 1). Xnt. X = = lub (xn) Xm -> XN im F(y) = rim p(ED, Y.]) = m((-0,x)) < n(E0,x) = F(x) if lim F(y) < F(x). m((x)) = m((-0,x)) - 2im m ((-0,y)) = F(x) - lim F(y). 6. F(.) has countably many jumps.

:. UZn is countable E=Rd. F(x18--0xd) = M((-0, X1) x(-0, X2)x (- (- m, x d]) $= \lim_{X \to 1^{-\infty}} F(x_1 - x_d) = 0.$ $\lim_{X \to 1^{+\infty}} F(x_1 - x_d) = 1.$ $\lim_{X \to 1^{+\infty}} F(x_1 - x_d) = 1.$ Lane & Distribution are Equivalent. $\lambda(.)$ is a positive measure (1,1,f) $\mu(\cdot)$ a signed measure on (12, 4). l (-) Lepesque measure on Rd, u is above Suppose l(A)=0=) r(A)=0. mis said to be absolutely continuous

There exists p(.): R = [0,00) W. r. t. l Sheorem s.t. p(A)= Sp(2) dx p(.) is called the density of u (Heros F(x)= Sp(y) dy) uis called the law of X sefine 8 x. (A) =1 if x. EA = 0 if 20 \$ A (Dyrac function) Devil's Continuon only absolutely continuous functions satisfy the laws of & Almost everywhen calenters: for is integral of its 3 derivative where & derivative form canter set

o(Xa, x & I) = U o(Xa, x & I)

JCI odda [only th,

J countable that [only those thing that are countable? Proton Measurement in continuons space Real Analysi X: Q P -> E (IZ, P) -> (E, E)