# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

## (19) Japanese Patent Office (JP)

## (12) Official Gazette for Unexamined Patents (A)

- (11) Kokai Patent No. 62(1987)-21323
- (43) Kokai Publication Date: January 29, 1987
- (51) Int. Cl.4:

Identification

Patent Office File Nos.:

Symbols:

H 03 K 19/08 G 11 C 11/34 H 03 K 17/60

A-8326-5J 7230-5B

Z - 7105 - 5J

Number of Inventions: 2

Request for Examination: Not Requested

(Total of 14 Pages)

## (54) Semiconductor Device

- (21) Patent Application No. 60(1985)-161,467
- (22) Filing Date: July 22, 1985
- (72) Inventors:

Takao Watanabe

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubutera-shi

Goro Kitsukawa

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubutera-shi

Takaichi Hori

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubudtera-shi

Sumio Ito

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubudtera-shi

(71) Applicant: Hitachi, Ltd.

6, Kanda Surugadai 4 chome, Chiyoda-ku, Tokyo-to

(74) Agent: Masayoshi Isomūra, Patent Attorney

## Specification

#### 1. Title of the Invention

#### Semiconductor Device

#### 2. Scope of Patent Claim

- (1) A semiconductor device, which is characterized in that it is made from a circuit, which is controlled by a pre-stage circuit and comprises at least one bipolar transistor and at least one insulated-gate field-effect transistor, and in that said circuit is actuated using as the reference at least one voltage, and at least one of the voltages of those voltages that are used as said reference is different from the reference voltage that actuates the pre-stage circuit that controls said circuit.
- (2) A semiconductor device, characterized in that it is controlled by a prestage circuit and in that it comprises a means for raising the output voltage that consists of an N channel field effect transistor and a P channel field-effect transistor, which are connected vertically, and a bipolar transistor, wherein the vertical connection is connected to the base, as well as a means for lowering the output voltage that consists of an N channel field effect transistor or a vertically connected field-effect transistor and a bipolar transistor wherein the vertical connection is connected to the base, or a parallel connection of these [transistors].

- (3) The semiconductor device according to claim 2, further characterized in that said means for raising the output voltage connects a reference voltage to the source of the P channel field-effect transistor and a voltage that is different than said reference voltage is connected to the collector of the bipolar transistor.
- (4) The semiconductor device according to claim 2, further characterized in that said means for raising the output voltage connects control signals from the pre-stage circuit to one gate of the field-effect transistors that have been connected vertically through the drain-source of the field-effect transistors, and to the other gate through the field-effect transistor circuit, as well as [through] the means for lowering the output.
- (5) The semiconductor device according to claim 4, further characterized in that said means for raising the output potential applies a reference voltage to one gate of the field-effect transistors that have been connected vertically, and applies voltage that is different from said reference voltage to the drain of said field-effect transistor and the collector of the bipolar transistor whose base has been connected to the vertical connection.

## 3. Detailed Description of the Invention

[Field of Application of the Invention]

The present invention pertains to a semiconductor device and in particular, to a circuit that uses a bipolar transistor and an insulated-gate field-effect transistor (MIS transistor hereafter), which is ideal for obtaining a strong drive performance and a large output amplitude.

#### [Prior Art]

The semiconductor device in Japanese Kokai Patent No. 59[1984]-25423 is a conventional circuit that uses bipolar transistors and MIS transistors.

Figure 17 is the structural diagram of the above-mentioned semiconductor device. Actuation and problem points of this circuit will be described with Figure 17. The combined circuit of a CMOS (complementary MOS) and a bipolar transistor 7 and the combined circuit of an MIS transistor 6 and a bipolar transistor 8 are connected vertically. In the description that follows, the voltage Vss of the negative power source is 0 V. When the potential of input terminal 1 is 0 V, the p channel MIS transistor 4 turns on, current flows to the base of bipolar transistor 7, and this bipolar transistor 7 turns on. On the other hand, the base potential is 0 V and therefore, bipolar transistor 8 does not turn on. As a result, current flows to output terminal 2 and the potential of this output terminal 2 rises. The potential of output terminal 2 is eventually brought to the value obtained by subtracting voltage V<sub>BE</sub> in the forward direction between the base and emitter of transistor 7 from voltage Vcc of a positive power source. Thus, by means of the conventional circuit in Figure 17, the potential of output terminal 2 cannot be raised to voltage  $V_{CC}$  of the positive power source.

Moreover, in addition to the above-mentioned circuit, the drive circuit in Japanese Patent No. 59[1984]-8431 is semiconductor device consisting of a combined circuit of an MIS transistor and bipolar transistor.

Figure 18 is a drawing showing the structure of the above-mentioned semiconductor device. By means of the circuit in Figure 18, an inverted

combined circuit of a CMOS circuit and a bipolar transistor is connected in parallel between input-output terminals. In contrast to the fact that inverted input signals are output by the above-mentioned circuit in Figure 17, positive signals of the same phase as the input are output by the circuit in Figure 18. That is, when input terminal 10 is brought to a high level, MIS transistor 13 turns on, current flows to the base of bipolar transistor 17, and this bipolar transistor 17 turns on. On the other hand, P channel MIS transistor 15 is OFF and N channel MIS transistor 16 turns on and therefore, the base potential of bipolar transistor 18 becomes 0 V and this bipolar transistor turns off. As a result, current flows to output terminal 11 and the potential of this output terminal 11 rises. In this case, the potential of this output terminal 11 rises to the value  $V_{cc}$  -  $V_T$  -  $V_{BE}$ , which is obtained by subtracting the threshold voltage V<sub>T</sub> of N channel MIS transistor 13 and the forward voltage V<sub>BE</sub> between the base and emitter of bipolar transistor 17 from the positive power source V<sub>CC</sub>. Thus, the output level of the circuit in Figure 18 is lower than the output level of Figure 17.

It is not possible to raise the output voltage sufficiently with the abovementioned type of conventional circuit. When the output voltage is low, the
actuation of the next stage of the circuit is delayed and when the LSI is viewed as
a whole, high-speed bipolar transistors cannot be utilized to their fullest extent.

This problem will become increasingly obvious in the future when device
refinement and reduced power source voltage become necessary. Consequently,
there is a need for a circuit that uses strong drive performance of bipolar
transistors and produces a sufficiently high output level.

#### [Object of the Invention]

The object of the present invention is to improve on these conventional problems and to present a semiconductor device that uses the strong drive performance of bipolar transistors and with which it is possible to obtain a sufficiently high output level.

## [Summary of the Invention]

In order to accomplish the above-mentioned object, the semiconductor device of the present invention is controlled by a pre-stage circuit and is made from a circuit comprising at least one bipolar transistor and at least one insulated-gate field-effect transistor. This circuit is actuated with at least one voltage as the reference, and at least one of the voltages that are used as the above-mentioned reference is different than the reference voltage that actuates the pre-stage circuit that controls the above-mentioned circuit. Thus, it is possible to obtain a strong drive performance and a large output amplitude.

#### [Examples of the Invention]

Examples of the present invention will now be described in detail by means of the drawings.

Figure 1 is an example that describes the concept behind the semiconductor device of the present invention. Figure 1 is an example of the case of a circuit with one input and one output. D in Figure 1 is a combined circuit comprising a bipolar transistor and an MIS transistor, C is the pre-stage circuit that controls circuit D, A is the terminal that applies the voltage that becomes the reference for the actuation of circuit C, and B<sub>1</sub> through B<sub>n</sub> are the terminals that

apply the voltage that becomes the reference for the actuation of circuit D.

Moreover, E is the input terminal of circuit C and G is the output terminal of circuit

D. Connection line F is the signal line for transmitting signals that control circuit

D from circuit C.

By means of the present invention, at least one of the voltages that are applied to  $B_1$  through  $B_n$  is made higher than the voltage that is applied to terminal A and as a result, the level of the signals that are output to terminal G is higher than the level of the signals that are output via signal line F to circuit D. Thus, it is possible to generate signals of a high level while still using the high speed of the bipolar transistor.

Here, the voltage that is applied to terminal A or to terminals B<sub>1</sub> through B<sub>n</sub> can be at a constant level or it can be a pulse voltage as needed, and depending on the case, multiple voltages can be supplied to circuit C as the reference [voltage]. Moreover, there can also be multiple signal lines F. The present invention is not limited to Figure 1 and can be used for circuits with many inputs and many outputs, but for simplification of the description, examples are given below that are based on the same structure as in Figure 1. Terminal A in Figure 2 is connected to the positive electrical source V<sub>A</sub>, but as previously mentioned, [the present invention] is not limited to this [example].

Figure 3 is a structural diagram showing a first example of the semiconductor device of the present invention. By means of this example, the pulse voltage that is the reference for the actuation of circuit D is applied to

terminal  $B_1$  and a level that is higher than the actuation reference voltage  $V_A$  of the pre-stage circuit is output to output terminal G.

The actuation depicted in Figure 3 will now be explained using the voltage waveform in Figure 4. When the input voltage E is 0 V, the potential of signal line F is brought to a high level by the pre-stage circuit C shown in Figure 2 and reaches the steady state at voltage V<sub>A</sub>. The potential of terminal B<sub>1</sub> at this time becomes VA in Figure 4. However, P channel MIS transistor 25 should be turned off by setting  $V_A + |V_{T26}|$  or less with the threshold voltage of P channel MIS transistor 25 being V<sub>T25</sub>. When the potential of signal line F reaches a high level, N channel MIS transistor 27 turns on and the base of bipolar transistor 26 becomes 0 V. Bipolar transistor 26 turns off and N channel MIS transistor 29 , turns on and therefore, the potential of output terminal G becomes 0 V. The potential of input terminal E rises to V<sub>A</sub> and the potential of signal line F rises (refer to Figure 2). The potential of terminal B<sub>1</sub> increases to V<sub>A</sub> or higher. At this time, P channel MIS transistor 25 is ON and N channel MIS transistor 27 is OFF. Base current flows to bipolar transistor 26, and N channel MIS transistor 29 turns off. Therefore, current flows to output terminal G and the potential of output terminal G rises. The potential of output terminal G reaches the potential that is obtained by subtracting forward voltage between base and emitter V<sub>BE</sub> from the potential of the base of bipolar transistor 26, and therefore, when the desired output level is  $V_A$  +  $V_\alpha$  ( $V_\alpha \ge 0$ ), the desired output level can be obtained at the output terminal G as long as the potential of terminal  $B_1$  is raised to  $V_A + V_\alpha + V_{BE}$ . When the potential of input terminal E changes to 0 V and the potential of terminal  $B_1$  returns to  $V_A$ , as previously described, the potential of signal line F rises to  $V_A$ , bipolar transistor 26 turns off, N channel MIS transistor 29 turns on, and the potential of output terminal G becomes 0 V. The potential of  $B_1$  at this time can be set at any value as long as it is  $V_A + |V_{T26}|$  or less, as previously described. For instance, it can be the same as  $V_A$ .

As previously mentioned, by means of the present invention it is possible to obtain high voltage output while still using the high speed of a bipolar transistor by setting the potential of  $B_1$  as needed when the signals that are input from signal line F are at a low voltage.

Furthermore, it is possible to construct N channel MIS transistor 29 for lowering the potential of output terminal G in Figure 3 as shown by 30 in Figure 5. That is, circuit D has a structure in which an inverted combination of a CMOS and a bipolar transistor is connected in parallel. In this case, the circuit that flows through N channel MIS transistor 40 is amplified by bipolar transistor 42 and therefore, the potential of the output terminal can be lowered at high speed. However, in this case, the potential of output terminal G is controlled by the forward voltage between the base and emitter of bipolar transistor 42 and therefore, it cannot be lowered all the way to 0 V. When it is necessary to lower the potential of output terminal G all the way to 0 V, 30 in Figure 5 should be in parallel to N channel MIS transistor 29 in Figure 3. Furthermore, P channel MIS transistor 41 in Figure 5 is applied to the base of bipolar transistor 42 to eliminate

the charge and reliably turn off this bipolar transistor 42 when signal line F becomes 0 V.

Figure 6 is a structural diagram showing a second example of the semiconductor device of the present invention.

The difference between this example and the example in Figure 3 is that in contrast to the fact that the collector of bipolar transistor 26 and the source of P channel MIS transistor 25 in Figure 3 are connected to terminal  $B_1$ , in Figure 6, only the source of P channel MIS transistor 51 is connected to terminal  $B_1$  and it is not connected to collector terminal  $B_2$  of bipolar transistor 52. In short, by means of the structure in Figure 6, only the base current of bipolar transistor 52 is supplied from terminal  $B_1$ . Consequently, when compared to the case in which both base and collector current of bipolar transistor 26 are supplied from both  $B_1$  as in Figure 3, the load on the circuit that drives terminal  $B_1$  is alleviated and high-speed actuation becomes possible. The rest of the actuation is as shown in Figure 3.

Furthermore, by means of Figure 6, the collector of bipolar transistor 52 is connected to terminal  $B_2$  and the potential can be set independent of terminal  $B_1$ , which supplies current to base 55. Consequently, it is possible to reliably prevent the saturation of bipolar transistor 52 by keeping the potential of this terminal  $B_2$  higher than the potential of base 55 of this bipolar transistor 52. In order to do this, a pulse voltage having the amplitude of the base voltage or higher can be applied to  $B_2$  in synchronization with changes in the potential of base 55. The potential of  $B_2$  can also be kept at a constant value that is higher than the upper

limit of the potential of base 55. In the latter case, when signal line F is brought to a high level and the potential of output terminal G changes to a low level, high voltage is applied between the collector and emitter of the bipolar transmitter, but in this case, base 55 is grounded by N channel MIS transistor 53 and therefore, the voltage resistance of bipolar transistor 52 is determined by BV<sub>CES</sub> (voltage resistance between the collector and emitter when the base is grounded). Thus, there is a problem in that the voltage resistance is high in comparison to the case where the base is in a floating state. Furthermore, if there is a chance that bipolar transistor 52 will be temporarily deeply saturated due to changes in the power source voltage in Figure 6, this deep saturation of bipolar transistor 52 can be prevented by inserting a diode DIO between terminal B<sub>1</sub> and B<sub>2</sub> as in the same figure and applying a current via the diode when the potential of terminal B<sub>1</sub> has become abnormally high. In addition, when necessary, circuit 30 that lowers the potential of output terminal G can be made only from MIS transistor 29 as shown in Figure 3, or it can be made from a bipolar transistor and an MIS transistor as shown in Figure 5, or the two can be used in parallel, as was previously described.

Figure 7 is a structural diagram of a third example of the semiconductor device of the present invention.

The main difference between Figure 7 and Figure 6 in terms of the circuit is that by means of Figure 6, circuit D outputs inverted signals from the signals that are input from signal line F. That is, in contrast to this inverter actuation, by

means of Figure 7, signals of the same phase as input F are output, or so-called non-inverted actuation is performed.

In Figure 7, bipolar transistor 83 is a transistor for supplying current to output terminal G in order to raise the potential of this terminal G, N channel MIS transistor 84 is a transistor for passing current out from output terminal G to V<sub>SS</sub> and the other MIS transistors are for controlling the ON and OFF states of abovementioned bipolar transistor 83 and MIS transistor 84.

The actuation of the example in Figure 7 will be explained using the voltage waveform in Figure 8.

In order to simplify the description, the potential of terminal B<sub>2</sub> is kept at a constant level that is higher than the upper limit of the potential of base 76 of bipolar transistor 83 in the figure. However, It is also possible to apply a pulse voltage synchronized with the changes in potential of base 76 to such an extent that bipolar transistor 83 does not become saturated. When the potential of input terminal E is V<sub>A</sub>, the potential of signal line F is brought to 0 V by circuit C and therefore, N channel MIS transistor 75 turns off, P channel MIS transistor 80 turns on, N channel MIS transistor 81 turns on, and the potential of 87 becomes V<sub>A</sub>. As a result, N channel MIS transistor 77 turns on, bipolar transistor 83 turns off, and N channel MIS transistor 84 turns on. Therefore, output terminal G becomes 0 V. Next, when input terminal E is lowered to 0 V, the potential of signal line F becomes V<sub>A</sub> and as a result, gate 88 of N channel MIS transistor 75 is charged to the voltage that is obtained by subtracting the threshold voltage of N channel MIS transistor 74 from V<sub>A</sub>. On the other hand, P channel MIS

transistor 80 turns off and N channel MIS transistor 81 turns on and therefore, the potential of 87 becomes 0 V and N channel MIS transistors 84 and 77 turn off.

When the potential of terminal B<sub>1</sub> rises to V<sub>A</sub> or higher in this state, gate 88 of MIS transistor 75 has already been charged to the voltage that is obtained by subtracting the threshold voltage of N channel MIS transistor 74 from V<sub>A</sub> and therefore, 88 is raised to a potential higher than B<sub>1</sub> by the self-capacitance between gate 88 of N channel MIS transistor 75 and B<sub>1</sub>. Therefore, current passes to base 76 of bipolar transistor 83 and the potential of this base 76 is raised to the potential of terminal B<sub>1</sub> without being limited to the threshold voltage of N channel MIS transistor 75. As a result, the potential of output terminal G is the value obtained by subtracting forward voltage V<sub>BE</sub> between the base and emitter of bipolar transistor 83 from the potential of B<sub>1</sub>. If the desired output level is  $V_A + V_\alpha$ , the potential of  $B_1$  should be  $V_A + V_\alpha + V_{BE}$ . Furthermore, the voltage of gate 73 is V<sub>A</sub> and therefore, N channel MIS transistor 74 plays a role in preventing a back flow of current from gate 88 to signal line F by turning off gate 88 when it rises to V<sub>A</sub> or higher. Next, when the potential of input terminal E rises and the potential of terminal B₁ drops, signal line F becomes 0 V and gate 87 becomes V<sub>A</sub>, bipolar transistor 83 remains OFF, and N channel MIS transistor. 84 turns off and output terminal G becomes 0 V. Base 76 of bipolar transistor 83 is grounded through N channel MIS transistor 77 at this time, and the voltage resistance of this bipolar transistor 83 increases. Moreover, even if the high voltage of B2 is applied, there is little chance that bipolar transistor 83 will be destroyed. This is the same as in Figure 6. By means of the present example, it

is possible to generate signals of an output level that is as high as the input level, as previously explained.

Furthermore, when necessary, the circuit shown in Figure 9 can be used for the circuit for lowering the potential of output terminal G, and the circuit in Figure 9 and N channel MIS transistor 84 can be used in parallel. Moreover, when there is a chance that bipolar transistor 83 will be temporarily deeply saturated by fluctuations in the power source voltage, an abnormal elevation of the potential of B<sub>1</sub> to B<sub>2</sub> should be prevented by connecting a diode between B<sub>1</sub> and B<sub>2</sub>, as shown in Figure 6.

Eigure 10 is a structural diagram of a fourth example of the semiconductor device of the present invention.

The main difference between Figure 7 and Figure 10 in terms of the circuit is that in contrast to the fact that in Figure 7, the collector and the base of bipolar transistor 83 are electrically separate, the base current and the collector current are supplied from B<sub>2</sub> in Figure 10 by inserting N channel MIS transistor 103 between the collector and the base of bipolar transistor 104.

The actuation of this example is explained below: Furthermore, the desired output level is  $V_A + V_\alpha$  and a voltage of  $V_A + V_\alpha + V_{BE}$  is applied to terminal  $B_2$ .  $V_{BE}$  here is the forward voltage between the base and emitter of bipolar transistor 104. When the potential of input terminal E drops from  $V_A$  to 0 V with terminal  $B_1$  at 0 V, as in the case in Figure 7, the gate of N channel MIS transistor 103 is charged up to the potential that is obtained by subtracting the threshold voltage for N channel MIS transistor 102 from  $V_A$ . At this time, N

channel MIS transistors 105 and 108 are OFF and therefore, current is passed to the base of bipolar transistor 104 from terminal B2 and bipolar transistor 104 is turned on, and current is passed to output terminal G and the potential of terminal G rises. The base potential of bipolar transistor 104 only rises up to V<sub>A</sub> - $V_{T102}$  -  $V_{T103}$  and the potential of output G drops further to  $V_{BE}$  when the threshold voltages of N channel MIS transistors 102 and 103 are  $V_{T102}$  and  $V_{T103}$ , respectively, and therefore, an output level of V<sub>A</sub> or higher cannot be obtained as is. Therefore, a pulse voltage is applied to terminal B<sub>1</sub> with gate 112 in a charged state and the potential of gate 112 is raised to  $V_A + V_\alpha + V_{BE} + V_{T103}$  or higher by capacitance 100.-As a result, the base potential of bipolar transistor 104 is raised to  $V_A$  +  $V_{\alpha}$  +  $V_{T103}$  and the potential of output terminal G reaches the desired output level of  $V_A + V_\alpha$ . By means of the present example, the base potential of bipolar transistor 104 only rises up to the same level as terminal B2 and even if the potential of terminal B<sub>2</sub> drops for some reason, bipolar transistor 104 will not become saturated. Next, when the potential of input terminal E is raised from 0 V to V<sub>A</sub>, signal line F becomes 0 V and N channel MIS transistors 103 and 107 turn off, P channel MIS transistor 106 turns on, and N channel MIS transistor 105 turns on. Therefore, bipolar transistor 104 turns off and N channel MIS transistor 103 turns on and the potential of output terminal G becomes 0 V. Furthermore, by means of the present example, circuit 113 for lowering the output of terminal G as needed can have the structure in Figure 11, and the circuit in Figure 11 can have N channel MIS transistor 108 in Figure 10 connected in parallel, as in the example in Figure 7. Moreover, the potential of

terminal  $B_2$  was held at a constant level of  $V_A + V_\alpha + V_{BE}$  in the above-mentioned description, but the pulse voltage that goes from 0 V to  $V_A + V_\alpha + V_{BE}$  can be applied to terminal  $B_2$  after charging gate 112. In this case, the potential of gate 112 is raised by self-capacitance between gate 112 of N channel MIS transistor 103 and terminal  $B_2$ , and therefore, capacitance 100 and terminal  $B_1$  are not always necessary.

Thus, by means of the present example, it is possible to use to the utmost the strong drive performance of a bipolar transistor, as well as to create a semiconductor device having an output amplitude that is higher than the reference voltage of the pre-stage circuit, by setting the voltage that serves as the reference for actuation of a circuit comprising a bipolar transistor and an MIS transistor so that it is different from the voltage that serves as the reference of the pre-stage circuit that controls this circuit.

However, it is necessary to apply a pulse voltage to terminal B<sub>1</sub> in the examples that have been described thus far. There are many types of circuits that generate a pulse voltage, and since their circuit structure is well known, they are not described. However, the circuit shown in Figure 7 of "256 K CMOS Dynamic RAM with Static Column Mode Having Cycle Time of 50 ns", Ishihara, Miyazawa, Sakai, *Nikkei Electronics*, February 11, 1985, pp. 243 to 263, is a circuit that generates a pulse voltage as shown by the voltage waveform in Figure 9\*. Moreover, by means of the examples thus far, the source of the P channel MIS transistor (for instance, 25 in Figure 3) is brought to a high potential,

sic; Figure 8?—Trans. Note.

but it goes without saying that it is necessary to keep the potential of the well of the P channel MIS transistor higher than the potential of the source to prevent the flow of excess forward current between the source and the well, or so-called latch-up. Furthermore, although high voltage is applied between the drain and source of the N channel MIS transistor (for instance, 29 in Figure 3), if there are problems in terms of voltage resistance, the voltage that is applied between the drain and the source of the N channel MIS transistor that is a problem in terms of the above-mentioned voltage resistance should be reduced by serially inserting an N channel MIS transistor whose gate potential has been brought to V<sub>A</sub> between the drain of this N channel MIS transistor and the terminal to which the drain has been connected.

Although various uses are envisioned for the present invention, it is particularly ideal for dynamic semiconductor memory devices. This is because in order to create high-speed semiconductor memory devices, it is necessary to drive the word line that has been selected at high speed and high amplitude, to increase the signal voltage, and as a result, to increase the S/N ratio, and further, to increase the storage voltage and to improve resistance to soft error. The details of the above-mentioned are described in Itoh, K. and Sunami, H. "High-density one-device dynamic MOS memory cells," IEEE PROC, Vol. 130, Part I., No. 3, JUNE 1983, pp. 127-135.

Next, an example of the case where the present invention was used for the word driver of a dynamic semiconductor memory device will be shown. Figure 12 is a block diagram of a semiconductor memory and shows the N-bit memory cell array and peripheral circuit group.

i Number of word lines WL and j number of data lines DL are set up intersecting one another in memory cell array MCA, and memory cells MC are placed at N number of the points of intersection between the word lines and the data lines. Each address input X<sub>0</sub> through X<sub>n</sub> and Y<sub>0</sub> through Y<sub>m</sub> is applied to address buffer circuits ABX and ABY, and this output is transmitted to decoder driver circuit XD and YD. Of these decoder driver circuits XD and YD, word lines are driven by circuit XD and write-read circuit RC is driven by circuit YD so that the writing of information on the memory cell MC that has been selected from memory cell array MCA, or the reading of information from this memory cell MC is performed. CC is the write-read control circuit, and this circuit CC controls the above-mentioned address buffer circuits ABX and ABY, decoder drive circuits XD and YD, write-read circuit RC, and output circuit OC by chip selector signals CS, write actuation control signals WE, and input signals DI. Output circuit OC is the circuit for externally outputting information that has been read by write-read By means of the above-mentioned structure, it is possible to drive the level of word line WL at high speed and high amplitude by using the circuit of the present example as decoder driver circuit XD, and a dynamic memory of high speed and high stability can be realized.

Furthermore, write-read circuit RC in Figure 12 is placed so that part is at the end of memory cell array MCA on the opposite side of decoder driver circuit – YD and control signals from decoder driver circuit YD can be used by being

passed over memory cell array MCA. Moreover, address input X<sub>0</sub> through Xn of the X system and address input Y<sub>0</sub> through Y<sub>m</sub> of the Y system are input from separate input terminals in Figure 12, but, for instance, it is also possible to use these input terminals together by a system of inputting with a time difference, or so-called "address multiplexing," as described in: 1977 ISSCC "Digest of Technical Papers," pp. 12-13.

In this case, the above-mentioned write-read control circuit can be driven using signals that control address uptake, so-called RAS and CAS, in place of chip select signal CS.

Figure 13 is a more specific example of Figure 12 and shows part of memory cell array MCA and decoder driver circuit XD in further detail.

DEC<sub>0</sub> and DEC<sub>1</sub> in Figure 13 are the decoders and WD<sub>0</sub> and WD<sub>1</sub> are the word drivers. WL<sub>0</sub> and WL<sub>1</sub> are the word lines, DL<sub>0</sub> and DL<sub>0</sub> are a pair of data lines and MC<sub>0</sub> and MC<sub>1</sub> are memory cells. Furthermore, EQ is the equalizer for equalizing data lines in terms of potential and SA is the sense amp.

The circuit structure of equalizer EQ and sense amp SA is discussed in detail in: 1984 ISSCC "Digest of Technical Papers," pp. 276-277, and therefore, it is omitted here. Moreover, decoders DEC<sub>0</sub> and DEC<sub>1</sub> are actuated with voltage  $V_A$  applied to the respective terminals 130 and 137 as the reference, and word drivers WD<sub>0</sub> and WD<sub>1</sub> that use the present invention are actuated using as the reference pulse voltage  $\phi_x$  applied to terminals 154 and 157, voltage  $V_H$  applied to terminals 155 and 158, and the pulse voltage  $\phi_L$  applied to terminals 156 and

159. It goes without saying that here, voltage V<sub>H</sub> is the potential at which bipolar transistor 150, etc., does not becomes saturated.

With the exception that N channel MIS transistors 152 and 166 are set up in parallel with N channel MIS transistors 151 and 165, the circuit structure of word driver WD<sub>0</sub> and WD<sub>1</sub> is the same as that of circuit D of Figure 7. Read actuation in Figure 13 will be described using the voltage waveform in Figure 14.

When read actuation is started, the pair of data lines DL<sub>0</sub> and DL<sub>0</sub> are brought to the same potential of approximately 1/2 V<sub>A</sub> by equalizer EQ and then brought to a floating state. On the other hand, the gates of N channel MIS transistors 148 and 164 are pre-charged to a voltage that is obtained by subtracting the threshold voltage of N channel MIS transistor 145 and 163 from  $V_A$  with pre-charge signal  $\phi_P$  being 0 V and all address buffer outputs  $A_{X0}$ , A<sub>X0</sub>.....A<sub>XR</sub> being 0 V. Two word line drivers are shown here, but pre-charging is actually carried out at the same time on all word drivers. Next, once pre-charge signal  $\phi_p$  has risen, either the positive or negative address buffer output is raised and in accordance with this, part of the N channel MIS transistor in decoder DEC turns on, and, of the gates of the above-mentioned MIS transistor that have been pre-charged, the gates of the unselected word drivers—drivers other than the word driver connected to the word line that is selected—are brought to 0 V. The case where word line L<sub>0</sub> is selected is shown here, and the gate of N channel MIS transistor 148 remains pre-charged. On the other hand, the gate of N channel MIS transistor 164 is not selected and therefore becomes 0 V. Moreover, the output of DEC<sub>1</sub> becomes 0 V and therefore, unselected word line WL<sub>1</sub> is kept

at 0 V by turning on N channel MIS transistor 165 of word driver WD<sub>1</sub>. Next, when word latch signal  $\phi_L$  is lowered and signal  $\phi_X$  is raised from 0 V to  $V_A + V_\alpha + V_BE$ , the gate of N channel MIS transistor 148 in WD<sub>0</sub> is boosted because it is pre-charged and the potential of word line WL<sub>0</sub> rises to  $V_A + V_\alpha$  as with the circuit actuation in Figure 7. On the other hand, the gate of N channel MIS transistor 164 in WD<sub>1</sub> is 0 V and does not rise. This N channel MIS transistor 164 turns off and the potential of word line WL<sub>1</sub> therefore remains at 0 V. When the potential of word line WL<sub>0</sub> that has been selected rises, N channel MIS transistor 160 of memory cell MC<sub>0</sub> turns on and signals are read out from memory cell MC<sub>0</sub> to data line DL<sub>0</sub>. A small potential difference is produced between the pair of data lines DL<sub>0</sub> and DL<sub>0</sub>.

The potential difference between the above-mentioned data lines is amplified by sense amp SA and information is re-written in the memory cell and transmitted to the post-stage circuit. Next, pulse signal  $\phi_x$  is lowered to 0 V, latch signal  $\phi_L$  is raised, and word line WL<sub>0</sub> is raised to 0 V. Then the pair of data lines are brought to the same potential of approximately 1/2 V<sub>A</sub> by equalizer EQ. On the other hand, all of the address buffer outputs are lowered and then pre-charge signal  $\phi_P$  is lowered to 0 V and pre-charging is performed in preparation for the following actuation. By means of the above-mentioned reading actuation, the circuit of the present invention is used for word drivers WD<sub>0</sub>, WD<sub>1</sub>,.... and therefore, the potential of the word line that has been selected can be raised at high speed and high amplitude. As a result, the signal voltage as well as the storage voltage of the memory cell can be increased, facilitating both high speed

and high reliability. Furthermore, the circuit described in *Nikkei Electronics* that was referred to can be used as the circuit that generates pulse signals  $\phi_x$  in Figure 13, and, for instance, the example in Figure 6 can be used to produce high speed. Moreover, a decoder is set up at each word driver in Figure 13 and the same pulse signals  $\phi_x$  are applied to each word driver. However, it is of course possible to make various modifications as necessary, such as using one decoder for multiple word lines and decoding and applying only one pulse signal from word drivers that share a common decoder.

Moreover, an example where the pre-charge voltage of the data lines is  $V_A/2$  is given here, but the present invention is not limited to this example and this voltage can be set at any voltage within a range of 0 to  $V_A$ .

Furthermore, by means of the above-mentioned read actuation, the base of the bipolar transistor of the unselected word drivers, for instance, 168 in WD<sub>1</sub>, is kept at 0 V by  $\phi_X$  when signal  $\phi_X$  is 0 V and by an MIS transistor inserted between the base of the above-mentioned bipolar transistor and V<sub>SS</sub>, for instance, 167 of WD<sub>1</sub>, when signal  $\phi_X$  is raised. Consequently, there is no problem with voltage resistance of the above-mentioned bipolar transistors, even if the collector is kept at a high voltage of V<sub>H</sub> because [this resistance] is determined by BV<sub>CES</sub>, as previously mentioned.

However, by means of the structure in Figure 13, two positive power sources, a power source that supplies voltage  $V_A$  and a power source that supplies voltage  $V_H$ , are necessary. These power sources can, of course, supply electricity separately from outside the chip, but it is also possible for only one to

supply electricity from outside the chip, while the other generates and supplies electricity inside the chip based on [this electricity from outside the chip] as the reference or for both to generate electricity inside the chip based on another power source as the reference. Consequently, it is also possible that, as in Figure 13 or the above-mentioned examples, when two positive power sources are necessary and one is an outside positive power source, for instance, the higher of two voltages is supplied directly from an outside power source, while the lower [voltage] is supplied by reducing the voltage of the outside positive power source further using a voltage limiter circuit, as shown in Patent Applications No. 56[1981]-168,698 and No. 57[1982]-220,083. Moreover, depending on the case, it is also possible to supply the lower voltage from two required power sources from an outside positive power source and to raise the voltage of the outside positive power source using a booster circuit and then to supply this higher voltage.

Figure 15 is an example of the booster circuit used in the present invention.

By means of this circuit, voltage V<sub>A</sub> is supplied from outside positive power source to generate high voltage V<sub>H</sub>. The circuit in Figure 15 is one in which so-called charge-pump booster circuits CP<sub>1</sub> and CP<sub>2</sub> have been arranged in parallel. The actuation theory of the charge-pump booster circuit is well-known and will not be described here. Here, Zener diode 192 is for the leaking of current when the voltage of terminal 194 becomes too much higher than the desired level V<sub>H</sub> and for preventing the potential from rising further. However, it can be omitted

when it is not necessary. Moreover, it is also possible to successively connect multiple MIS diode circuits, wherein the gate and drain of a conventional diode or MIS transistor have been connected, and use this in place of Zener diode 192. In addition, the example wherein diodes made from an MIS capacity and an MIS transistor have been connected in three steps is shown as  $CP_1$  and  $CP_2$ , but in general, when the number of steps is n, the threshold voltage of the MIS transistor is  $V_T$ , and the pulse amplitude of  $\phi_{S1}$  through  $\phi_{S3}$  and  $\phi_{T1}$  through  $\phi_{T3}$  is  $V_A$ , the voltage that is obtained is approximately  $(n + 1)(V_A - V_T)$  and n should be selected in accordance with the  $V_H$  that is needed.

When this circuit is used in Figure 13, the current, which must supplied from terminal 194 in Figure 15, increases when the word line is selected. Consequently, it is possible to actuate both CP<sub>1</sub> and CP<sub>2</sub> in order to obtain a large supply current during the active period of the semiconductor memory, and to actuate only CP<sub>1</sub> during the stand-by period. Thus, it is possible to obtain a high output current at low power consumption.

Figure 16 shows an example of the voltage waveform of the pulse applied to CP<sub>1</sub> and CP<sub>2</sub> in Figure 15.

In the figure, only CP<sub>2</sub> is actuated during t<sub>ST</sub>, that is, the stand-by period, while both CP<sub>1</sub> and CP<sub>2</sub> are actuated during "top", that is, the active period. In order to synchronize the start-up time of CP<sub>2</sub> with the time when the word line is selected, for instance, chip select CS signal and RAS signals are used.

Moreover, it is necessary to hold the potential of the word line that has been selected to a high potential for a long period of time for actuation so that the

information of the memory cell on the word lines is read continuously as one unit, as with the so-called page mode. In this case, once the word line potential has reached a high level, it is of course possible to activate CP<sub>2</sub> using CAS signals, etc.

Incidentally, this is an example in which two charge pump circuits are used, but it is of course possible to use one or to use many circuits as needed. Moreover, the potential of terminal 194 In Figure 15 will temporarily drop when the potential of the word line rises extremely rapidly. In this case, it is necessary to increase the capacity of terminal 194 and to decrease the reduction in potential in order to prevent the saturation of the bipolar transistor where terminal 194 is connected to the collector. Therefore, it is also possible to make the parasitic capacity of terminal 194 greater than the collector capacity of the bipolar transistor by connecting the collector of the bipolar transistor for supplying  $V_H$  to all of terminals 194. In addition,  $\phi_{S1}$  and  $\phi_{S3}$  as well as  $\phi_{T1}$  and  $\phi_{T3}$  are all different signals, but depending on the case, [the memory] can be driven by the same signal.

Furthermore, when there is a chance that the bipolar transistor will become temporarily saturated by fluctuations in the power source voltage, it is possible to prevent the saturation by connecting a diode between the output terminal of the circuit that generates pulse signals  $\phi_x$  and  $V_H$  terminal 194 of Figure 15, as previously described, so that this diode will turn on when the potential of  $\phi_x$  becomes high relative to  $V_H$ .

[Results of the Invention]

As previously mentioned, by means of the present invention, the voltage that serves as the reference for actuation of a circuit comprising a bipolar transistor and an MIS transistor is different from the voltage that is the reference for actuation of the pre-stage circuit that controls this circuit, and therefore, it is possible to use to its fullest extent the strong drive performance of the bipolar transistor and to obtain the desired high output level.

#### 4. Brief Description of the Drawings

Figure 1 is a schematic representation of a semiconductor device showing the basic structure of the present invention; Figure 2 is a figure showing a specific example of the pre-stage circuit in Figure 1; Figure 3 is a diagram showing the first example of the semiconductor device of the present invention; Figure 4 is a voltage waveform graph for Figure 3; Figure 5 is a diagram showing circuit 30 of Figure 3; Figure 6 is a diagram showing a second example of the semiconductor device of the present invention; Figure 8 shows the voltage waveform of Figure 7; Figure 9 is a figure showing circuit 86 of Figure 7; Figure 10 is a diagram of a fourth example of the semiconductor device of the present invention; Figure 11 is a diagram of circuit 113 in Figure 10; Figure 12 is a diagram of the dynamic semiconductor device that pertains to the present invention; Figure 13 is a figure showing the case in which the present invention is used for a word driver; Figure 14 is a diagram showing the voltage waveform of Figure 13; Figure 15 is a charge pump-type booster circuit used in the present invention; Figure 16 is a figure showing the voltage waveform of Figure 15;

Figure 17 is a first conventional example; and Figure 18 is a second conventional example.

A. Terminal that applies the voltage that serves as the reference for actuation of circuit C

 $B_1$  through  $B_n$ . Terminals that apply the voltage that serves as the reference for actuation of circuit D

- C. Circuit that controls circuit D
- D. Circuit that comprises an MIS transistor and a bipolar transistor
- E. Input terminal
- F. Signal line
- G. Output terminal

V<sub>A</sub>. Voltage that serves as the reference for actuation of circuit C

30, 86, 113. Circuit that lowers the potential of output terminal G

X<sub>0</sub> through X<sub>n</sub>. X address

Y<sub>0</sub> through Y<sub>m</sub>. Y address

MCA. Memory cell array

MC, MC<sub>0</sub>, MC<sub>.</sub> memory cells

DL, DL<sub>0</sub>, DL<sub>1</sub>. data lines

WL, WL<sub>0</sub>, WL<sub>1</sub>. word lines

ABX, ABY: address buffer circuit

XD, YD. decoder and driver circuit

- RC. write-read circuit

CC. write-read control circuit

OC. output circuit

DO. output

CS. chip select signal

WE. write actuation control signal

DI. input

 $A_{X0}$ ,  $A_{XR}$ ,  $A_{X0}$ . address buffer output

DEC<sub>0</sub>, DEC<sub>1</sub>. decoder

WD<sub>0</sub>, WD<sub>1</sub>. word driver

SA. sense amp

EQ. equalizer

φ<sub>P</sub>. pre-charge signal

 $\phi_L$ . latch signal

 $\phi_x$ . pulse signal

CP<sub>1</sub>, CP<sub>2</sub>. charge-pump circuit

192. Zener diode

 $\phi_{S1}$ ,  $\phi_{S2}$ ,  $\phi_{S3}$ .  $CP_1$  active pulse

 $\varphi_{T1,}$   $\varphi_{T2,}$   $\varphi_{T3}.$   $CP_2$  active pulse



Figure 1.

- A. Pre-stage circuit
- D. Combination of bipolar transistor and MIS transistor

Figure 3.

Pre-stage circuit



Figure 6.

Pre-stage circuit

Figure 7.

Pre-stage circuit





Trans. Note: Figure 18 is omitted in the Japanese text.

## ⑲ 日本国特許庁(JP)

⑩特許出願公開

## ⑩公開特許公報(A)

昭62-21323

@Int.Cl.4

識別記号

庁内整理番号

43公開 昭和62年(1987) 1月29日

H 03 K 19/08 G 11 C 11/34 H 03 K 17/60 A-8326-5J 7230-5B

z - 7105 - 5J

審査請求 未請求 発明の数 2 (全14頁)

**公発明の名称** 半導体装置

. ②特 願 昭60-161467

郎

隆

四出 願 昭60(1985)7月22日

⑩発 明 者 渡 部

国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中

央研究所内

@発明者 橘川 五

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑫発 明 者 堀

陵 一 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑩発明者 伊藤 清男

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑪出 願 人, 株式会社日立製作所

Γ1/1 #: #α

20代 理 人 弁理士 磯村 雅俊

東京都千代田区神田駿河台4丁目6番地

#### 明細音

1. 発明の名称-

半導体装置

#### 2.特許請求の範囲

(1)前段回路により制御され、かつ少なくとも1個のパイポーラトランジスタと、少なくとも1個の絶縁ゲード電界効果トランジスタを含む回路で構成され、該回路は少なくとも1つの電圧を基準として動作し、上記基準とする電圧のうち少なくとも1つが上記回路を制御する前段回路が基準として動作する電圧とは異なる電圧値を有することを特徴とする半導体装置。

(2)前段回路により制御され、かつ佐属接続されたNチヤネル電界効果トランジスタとPチヤネル電界効果トランジスタととのまたがベースに接続されたパイポーラトランジスタからなる出力電圧立ち上げ手段、ならびにNチヤネル電界効果トランジスタまたは佐属接続された電界効果トランジスタと接続点がベースに接続されたパイポーラトランジスタ、またはこれらの並列接続か

らなる出力電圧立ち下げ手段を備えることを特徴 とする半導体装置。

(3)上記出力電圧立ち上げ手段は、Pチャネル電 界効果トランジスタのソースに基準信圧 が接続さ れ、パイポーラトランジスタのコレクタには上記 基準電圧とは異なる電圧が接続されることを特徴 とする特許請求の範囲第2項記載の半導体装置。 (4)上記出力電圧立ち上げ手段は、前段回路から の側御借号が、従風接続された電界効果トランジ スタの一方のゲートに、電界効果トランジスタの ドレイン・ソースを介して接続されるとともに、 電界効果トランジスタ回路を介して他方 のゲート、 および出力立ち下げ手段に接続されることを特徴 とする特許請求の範囲第2項記載の半導体装置。 (5)上記出力電圧立ち上げ手段は、従属接続され た電界効果トランジスタの一方のゲートに基準電 圧を加え、かつ該電界効果トランジスタのドレイ ンと、従属接続点にベースが接続されたパイポー ラトランジスタのコレクタに上記基準電圧とは異 なる電圧を加えることを特徴とする特許請求の範

四第4項記載の半導体装置。

#### 3. 発明の詳細な説明

#### [弱明の利用分野]

本発明は半導体装置に係り、特に高い駆動能力と大きな出力扱力を得るのに好適な、バイポーラトランジスタと絶縁ゲート型電界効果トランジスタ(以下、MISトランジスタという。)を用いた回路に関する。

#### [発明の背景]

従来、バイポーラトランジスタとMISトランジスタを用いた回路として、特開昭59-254 23号公報に示された半導体装置がある。

第17図は、上記半導体装置の構成図である。第17図により、回路の動作ならびにその問題点を説明する。この半導体装置は、CMOS(相補型MOS)とバイポーラトランジスタ7の組合せ回路とMISトランジスタ6とバイポーラトランジスタ8の組合せ回路を並列に接続したものである。以下、負電波の電圧Vssを0∨として説明を行う。入力端子1の電位が0∨のとき、Pチャネ

対し、第18図の回路は入力と同相の肯定信号を 出力する。すなわち、入力増子10が高レベルに なるとMISトランジスタ13がオンし、バイポー ラトランジスタ17のベースに電流が流れてこの パイポーラトランジスタ17はオンする。一方、 PチャネルMISトランジスタ15がオフ、Nチャ ネルMISトランジスタ16がオンするため、バ、 イポーラトランジスタ18のペース健位は0Vと なり、このパイポーラトランジスタ18はオフす る。この結果、出力増チ11へ電流が流れて、は、 出力端子11の電位は上昇する。このとき、該出 カ始子 1 1 の電位は、正電源 V ccより、Nチャネ ルMISトランジスタ13のしきい電圧Vァと、 バイポーラトランジスタ 1 7 のペース・エミッタ 間瓜方向電圧VBBを差し引いた値Vcc-VT-VBEまで上昇する。このように、第18回の回 路の出力レベルは、第17囱の出力レベルより、\* さらに低くなってしまう。

以上のように、従来回路では、出力レベルを十 分高くすることができない。出力レベルが小さい ルMISトランジスタ4がオンし、バイポーラトランジスタ7のペースに電流が流れ、このバイポーラトランジスタ7はオンする。一方、バイポーラトランジスタ8は、ベースの電位が0Vであるためオンしない。この結果、出力増子2へ電流が流れ、その出力増子2の電位は、最終的には正電源の電圧Vcc から順くオポーラトランジスタ7のペース・エミッタ間限方向電圧VBEを差し引いた値になる。この場子2の電位は正電源の電圧Vcc まで上昇しない。

また、MISトランジスタとバイポーラトランジスタを組合せた回路からなる半導体装置として、 前途の回路の他には、特開昭 5 9 - 8 4 3 1 号公報に示された駆動回路がある。

第18回は、上記半導体装置の構成を示す図である。第18回の回路は、逆向きのCMOS回路とバイポーラトランジスタの組合せ回路を入出力 脳子間で並列に接続したものである。前述した第17回の回路では入力の反転信号を出力するのに

と次段回路の入力レベルが小さくなるために、次 段回路の動作がおそくなり、 LSI全体としてみ た場合・バイポーラトランジスタの高速性を十分 に発揮できない。また、この問題は、従来デバイ スが徴梱化され、電源電圧を低くする必要が生じ たときに顧著となる。従って、バイポーラトラン ジスタの高駆動能力を十分活した上で、十分に大 きな出力レベルを出せる回路が望まれる。

#### 〔発明の目的〕

本発明の目的は、このような従来の問題点を改 替し、パイポーラトランジスタの高駆動能力を活 かし、かつ十分大きな出力レベルを得ることが可 能な半導体装置を提供することにある。

#### 〔発明の極要〕

上記目的を達成するため、本発明の半導体 装置は、前段回路により例御され、かつ少なくとも 1 個のパイポーラトランジスタと、少なくとも 1 個の絶縁ゲート電界効果トランジスタを含む回路で構成され、該回路は少なくとも 1 つの電圧を基準として動作し、上記基準とする電圧のうち少なく

とも1つが上記回路を制御する前段回路が基準として動作する電圧とは異なる電圧値を有することにより、高い駆動能力と大きな出力振幅を得ることができるようにした。

#### [発明の実施例]

以下、本発明の実施例を、図面により詳細に説明する。

本発明においては、B<sub>1</sub> ~ B<sub>n</sub> に印加する電圧 のうち、少なくとも 1 個以上の電圧を始子 A に印

装置の構成図である。この実施例では、- 端子 B 1 に回路 D の動作の基準となるパルス電圧を印加し、出力端子 G に前段回路 C の動作基準電圧 V A より高いレベルを出力する。

以下、第4図の電圧波形を用いて、第3図の動 作を説明する。入力帽子Eを0 Vとすると、第2 図に示す前段回路Cにより、信号線Fの電位は高 レベルとなり、電圧VAで定常となる。このとき の端子B」の電位は第4図ではVAとなつている が、PチャネルMISトランジスタ25のしきい 電圧をVT 25 として、VA+ | VT 26 | 以下 に設定して P チャネルMISトランジスタ 2 5 が オフするようにすればよい。佰号線Fの電位が高 レベルになると、N チャネルMISトランジスタ 27がオンしてパイポーラトランジスタ26のベー スが0 7 となり、パイポーラトランジスタ 2 6 は オフし、NチャネルMISトランジスタ29がオ ンするので、出力端子Gの電位は O V となる。次 に、入力娘子Eの電位を、VAに立ち上げて、信 号線Fの電位を立ち上げ(第2図参照)、端子B1

加する電圧より高くすることにより、 嫡子Gに出 力される倡号のレベルを、信号線Fを介して回路 Dに入力される信号のレベルより高くする。これ により、バイポーラトランジスタの高速性を活か したままで、高レベルの信号を発生することが可 能になる。

第3回は、本発明の第1の実施例を示す半導体

入力増子Eの電位をOVに運移させ、増子B1の電位をVAにもどすと、前記したように信号線Fの電位がVAに上昇し、パイポーラトランジスタ26がオフ、NチャネルMISトランジスタ29がオンして出力増子Gの電位はOVになる。このときのB1の電位は、前にも述べたようにVA+ | VT28 | 以下であれば任意の値に設定でき、

何えば、VAと祭しくすることもできる。

以上述べたように、本実筋例によれば、信号線 Fより入力される信号が低電圧の時のB1の電位 を任意に設定することにより、パイポーラトラン ジスタの高速性を活したままで、高電圧の出力を 得ることができる。

電流を両方B1より供給する場合と比較して、 囃子B1を駆動する回路の負担が軽減されるため、 高速動作が可能となる。その他の動作については、 第3図と同じである。

なお、第6図において、パイポーラトランジス タ52のコレクタは端子B2に接続されており、 ベース55へ電流を供給する端子B」とは独立に 電位を設定できる。したがって、この端子B2の 電位をパイポーラトランジスタ52のペース55 の電位より高く保つことによって、該バイポーラ トランジスタ 5 2 が飽和することを確実に防止で きる。そのためには、ベース55の電位変動に同 期して、ペース電圧以上の振概を有するパルス電 圧をB2に与えてもよいし、B2の貸位をベース 55の電位の上限より高い一定値に保ってもよい。 後者の場合、信号線ドが高レベルとなって、出力 娘子 G の電位が低レベルへ遷移したときにパイポー ラトランジスタ52のコレクタ・エミッタ間に高 い電圧がかかるが、このときベース55は、Nチャ ネルMISトランジスタ53により接地されてい

ルMISトランジスタ 2 9 と並列に、 第 5 図の 3 0 を設置すればよい。 なお、 第 5 図におい て、 PチャネルMISトランジスタ 4 1 は、 信号 線 F が 0 Vとなったときに、 バイポーラトランジスタ 4 2 を確実にオフさせるためのものである。

第6回は本発明の第2の実施例を示す半導体装置の構成図である。

るため、パイポーラトランジスタ52の耐圧は、 ·BVcgs(ベース接地時のコレクタ・エミッタ 間耐圧)で決るので、ペースをフローティング状 態とした場合と比較して高くなるので問題はない。 なお、第6回において電源電圧の変動などによっ でパイポーラトランジスタ52が一時的に深く飽 ・和する恐れの生じる場合があるときには、 同図の ように始子B1 とB2 の間にダイオードDIOを 「挿入して、端子B」の電位が異常に高くなった場 ·合にダイオードを通じて電流を流してパイポーラ トランジスタ52が深く飽和するのを防止すれば よい。なお、第6図において、出力端子Gの電位 を立ち下げる回路30は、必要に応じ第3図のよ うにMISトランジスタ29のみで構成してもよ いし、第5回のようにパイポーラトランジスタと MISトランジスタで構成してもよいし、両者を 並列に用いてもよいことは前に述べたとうりであ

第7図は本発明の第3の实施例を示す半導体装置の構成図である。

第7回と第6回の回路上の大きな違いは、第6回では回路口は信号線ドより入力される信号の反転信号を出力する、いわゆるインバータ動作をするのに対して、第7回では入力ドと同相の信号を出力する、いわゆるノンインバータ動作をする点である。

第7回において、バイポーラトランジスタ83は出力端子Gへ電流を供給して該端子Gの電位を立ち上げるためのトランジスタ、NチャネルMISトランジスタ84は、出力端子GよりVssへ電流を流し出し、該端子Gの電位を立ち下げるためのトランジスタで、その他のMISトランジスタは、上記バイポーラトランジスタ83とMISトランジスタ84のオン、オフを削御するためのものである。

以下、第8図の電圧波形を用いて、第7図の実 施例の動作を説明する。

図では、説明を簡単にするため、 嬢子 B 2 の 駐位はバイポーラトランジスタ 8 3 のベース 7 6 の 電位の上限値より高い一定値に保たれているもの

この状態で端子B」の電位をVA以上に昇圧す ると、MISトランジスタ75のゲート88は、 あらかじめ、VょからNチャネルMISトランジ スタ74のしきい電圧を差し引いた電圧に充電さ れているため、-NチャネルMISトランジスタ7 5のゲート88とB1の間の自己容量によって8 8は日」より高電位に昇圧される。このため、バ イポーラトランジスタ83のペース76に電流が ランジスタ75のしきい電圧に制限されずに端子 B」の電位まで上昇する。その結果、出力端子G の電位は、B」の電位から、パイポーラトランジ スタ83のベース・エミッタ間順方向電圧VBE を差し引いた値まで上昇する。 所望の出力レベル をVA+Vaとすれば、B」の低位をVA+Va +VBEにすればよい。なおNチャネルMISト ランジスタ74は、そのゲート73の電圧をVA としているため、ゲート88がVA以上に昇圧さ れたときにオフしてゲート88より信号線Fへ電 流が逆流することを防止する役割を果す。次に、

とするが、パイポーラトランジスタ 8 3 を飽和さ せない範囲でペース76の電位変動に同期したパ ルス電圧を印加してもよい。入力帽子Eの電位を V A とすると、 回路 C によって 信号線 F の電位が O V となるので、 N チャネルMISトランジスタ 75がオフ、PチャネルMISトランジスタ80 がオン、NチャネルMISトランジスタ 81がオ フして、87の電位はVAとなる。その結果、N チャネルMISトランジスタファがオン してバイ ポーラトランジスタ83がオフし、NチャネルM ISトランジスタ84がオンするので、 出力箱子 Gは0Vとなる。次に、入力端子Eを0 Vに立ち 下げると、信号級Fの電位はVAとなり、その結 果NチャネルMISトランジスタ75の ゲート8 8 が、 V A より、 N チャネル M I S トラ ンジスタ 74のしきい電圧を差し引いた電圧に充電される。 一方、 P チャネルMISトランジスタ 8 0 がオフ、 NチャネルMISトランジスタ81 がオ ンするの で、87の電位が0Vとなり、NチャネルMIS トランジスタ84,77はオフする。

入力増子Eの電位をVAに立ち上げ、増子B1の電位を立ち下げると、信号線Fが0V、ゲート87がVAとなってバイポーラトランジスタ83がオフしたまま、NチャネルMISトランジスタ84がオフしたまま、NチャネルMISトランジスタ83のベース76は、地番イン・カーランジスタ83のベース76は地番がイポーラトランジスタ83が耐むったままの状態でもバイポーラトランジスタ83が破壊されるでもバイポーラトランジスタ83が破壊される恐れは少ないことは、第6回の場合と同様である・以上述べたように本実施例によれば、入力と同様の高出力レベルの信号を発生することが可能になる。

なお、出力増子Gの電位を引き下げるための回路 8 6 としては、必要に応じて第 9 図の回路を用いてもよく、第 9 図の回路と N チャネル M I S トランジスタ 8 4 とを並列に用いてもよい。 また、電源電圧の変動などによってバイポーラトランジスタ 8 3 が一時的に深く飽和する恐れのある場合

は、第6図で示したように、 B 1 と B 2 の間に、 ダイオードを接続して、 B 1 の電位が B 2 に対し て異常に上昇することを防止すればよい。

第10回は、本発明の第4の実施例を示す半導 体装置の構成図である。

第7図と第10図の回路上の最も大きな相違点は、第7図ではパイポーラトランジスタ83のコレクタとベースとが電気的に分離されているのに対し、第10図では、パイポーラトランジスタ104のコレクタとベースとの間にNチャネルMISトランジスタ103を挿入してB2よりベース電流とコレクタ電流を供給している点である。

以下、本实施例の動作を説明する。なお、所望の出力レベルをVA+Vaとし、蝎子B2には、VA+Va+VBEの電圧が与えられているものとする。ここでVBEは、バイポーラトランジスタ104のベース・エミッタ間順方向電圧とする。蝎子B1が0Vの状態で入力蝎子Eの電位をVAから0Vへ立ち下げると、第7図の場合と同様にして、NチャネルMISトランジスタ103のゲー

まで達する。本実施例では、バイポーラトランジ スタ104のペース電位は、帽子B2と等しいレ ベルまでしか上がらないので、始子B2の電位が、 何らかの原因で下がったとしてもパイポーラトラ ンジスタ104が飽和することはない。次に、入 力娘子Eの電位をOVからVAに立ち上げると、 借号線FがOVとなり、NチャネルMISトラン ジスタ103と、107がオフし、PチャネルM ISトランジスタ106がオン、NチャネルMI Sトランジスタ105がオンするため、バイポー ラトランジスタ104がオフ、NチャネルMIS トランジスタ108がオンして出力端子Gの電位 はOVとなる。なお、本実施例においても、必要 に応じて出力端子Gを立ち下げる回路 1 1 3 を、 第11回の構成としてもよく、また、第11回の 回路を、第10回のNチャネルMISトランジス タ108を並列に接続してもよいことは第7国の 実施例の場合と同じてある。また、上記の説明に おいては、端子B2の単位をVA+Vα+VBE の一定レベルとしたが、ゲート112が充電され

・トは、VaよりNチャネルMISトランジスタ1 02のしきい健圧を差し引いた電位まで充電され る。このとき、NチャネルMISトランジスター 05,108は、オフしているため、 蛸子 B2 よ りバイポーラトランジスタ104のベース に電流 が流れて、パイポーラトランジスタ104 がオン し、出力始子Gへ電流が流れて端子Gの電位は上 具する。バイポーラトランジスタ104の ベース 電位は、NチャネルMISトランジスタ1 02, 103のしきい電圧を、各々Vェ102, Vェ 102 とすると、VA-VT102-VT103 までしか上昇せず、出力Gの電位はさらに VBE 落ちるので、このままでは Ⅴ ▲ 以上の出力 レベル を得ることができない。そこで、ゲート112が 充電された状態で、端子B」にパルス電圧を印加 して、容量100によって、ゲート112の電位 をVΑ+Vα+Vョe+Vτιο 3以上に昇圧す る。その結果、バイポーラトランジスタ104の ベース電位は、VA+Vα+VBEまで上昇して、 出力増子Gの電位は所望の出力レベルVA+Va

た後に、 蛸子 B 2 に 0 V から V A + V α + V B E に速するパルス 健圧を与えてもよい。 この とき、ゲート 1 1 2 の 電位は N チャネル M I S ト ランジスタ 1 0 3 のゲート 1 1 2 と 蛸子 B 2 の 間 の 自己容量で昇圧されるため、容量 1 0 0 、 蛸子 B 1 は必ずしも必要としない。

このように、本実施例では、バイポーラトランジスタとMISトランジスタを含む回路において、動作の基準となる電圧を該回路を制御する前段回路が基準とする電圧とは異なる値に設定することによって、バイポーラトランジスタの高駆動能力を最大限に活した上で、前段回路の基準電圧以上の高い出力振幅を持つ半導体装置が実現できる。

コラム・モード付き256K CMOS ダイナミッ クRAM」、日経エレクトロニクス。1985年 2月11日号, PP243~263の図7に示さ れた回路がある。また、これまで示した実施例に おいて、PチャネルMISトランジスタ(例えば、 第3回の25)のソースが高電位となるものがあ るが、PチャネルMISトランジスタのウェルの 電位をソースの電位より高く保ち、 ソース・ウェ ル間に過大な順方向電流の流れ、いわゆるラッチ アップが起こることを防ぐ必要があることはいう までもない。さらに、以上の実施例においては、 NチャネルMISトランジスタのドレイン, ソー ス間に高い電圧のかかるもの(例えば、第3図の 29) があるが、耐圧の点から問題がある場合に は、 放 N チャネル M I S トランジスタのドレイン と、ドレインが接続されている蝎子の間に、ゲー トの電位をVAとしたNチャネルMISトランジ スタを直列に押入することにより上記した耐圧の 点で問題のあるNチャネルMISトランジスタの ドレイン・ソース間にかかる電圧を低減すればよ

次に、ダイナミック型半導体記憶装置のワードドライバに、本発明を応用した場合の一例を示す。 第12回はダイナミック型半導体メモリのブロック回であり、NビットのメモリセルアレーMCA と周辺回路群が示されている。

このメモリセルアレーMCAには、1本のワー ド線♥Lとう本のデータ線DLが交差配列され、 ワード線とデータ線の交点のうちN個にメモリセ ルMCが配置されている。アドレスパッファ回路 ABX, ABYには各々アドレス入力Xo~Xn, Ya~Ymが印加され、その出力が、デコーダ・ ドライパ回路XD、YDに伝達される。 これらの デコーダ・ドライバ回路 X D, Y Dのうち回路 X Dによりワード線が、回路YDにより書き込み・ 読み出し回路RCがそれぞれ駆動され、メモリセ ルアレーMCA内の選択されたメモリセルMCへ の情報の書き込み、あるいは該メモリセルMCか らの情報の読み出しを行う。CCは書き込み・読 み出し制御回路で、この回路CCは、チップセレ クト信号CS、書き込み動作制御信号WE、入力 借号DIによって前記アドレスパッファ回路AB X, ABY, デコーダ・ドライバ回路XD, YD. 掛き込み・読み出し回路RC、出力回路OCを制 御する。出力回路OCは、書き込み・読み出し回 路RCにより読み出された情報を外部へ出力する

ための回路である。

上記の構成において、本実施例の回路をデコーダ・ドライバ回路XDに適用することにより、ワード線WLのレベルを高速かつ高抵額に駆動させることが可能になり、高速で安定度の高いダイナミックメモリが実現できる。

できる.

その場合には、アドレスの取り込みを制御する信号、いわゆるRAS, CASをチップセレクト信号CSの代わりに用いて上記書き込み・読み出し制御回路を駆動すればよい。

第13回は、第12回をさらに具体化した実施 例図であり、メモリセルアレーMCAとデコーダ・ドライパ回路XDの一部をさらに詳しく示したも のである。

第13図においてDEC。, DEC 1 はデコーダ、WD。, WD 1 はワードドライバで、WL。, WL 1 はワード線、DL。, DL。は対をなすデータ線、MC。, MC 1 はメモリセルである。なお、EQはデータ線を電位的に平衡にするためのイコライザー、SAはセンスアンプである。

イコライザーE Q ならびにセンスアンプSAの回路構成については、1984 I S S C C 「ダイジエスト・オブ・テクニカル・ペーパーズ」 "Digest of Technical Papers", P.276~277などに詳しいので、ここでは省略する。なお、

でプリチャージ信号 IPをOVとしてNチャネル MISトランジスタ148,164のゲートを各々  $V_A$   $L_B$   $L_B$ 163のしきい電圧を差し引いた電圧にプリチャー ジする。ここでは、 2 つのワードドライバのみ示 したが、実際はすべてのワードドライバについて 同時にプリチャージを行う。次に、プリチャージ 借号々々を立ち上げた役、アドレスバッファ出力 の肯定,否定のいずれか一方が立ち上り、それに 応じてデコーダDEC中のNチャネルMISトラ ンジスタの一部がオンして上記プリチャージされ たMISトランジスタのゲートのうち選択するワー ド線に接続されたワードドライバ以外の非選択ワー ドドライバのゲートは 0 Vとなる。ここでは、ワー ド線W Loが選択される場合を示しており、Nチャ ネルMISトランジスタ148のゲートはプリチャ ードされたままである。一方、NチャネルMIS トランジスタ164のゲートは非選択であるから 0 Vになる。また、DEC1 の出力は 0 Vとなる ので、非遺択ワード線WL」は、ワードドライバ

ワードドライバW D o , W D 1 の回路構成は、N チャネルM I S トランジスタ 1 5 1 , 1 6 5 と並列にN チャネルM I S トランジスタ 1 5 2 , 1 6 6 を設置したことを除けば、第 7 図の回路 D と同じである。以下、第 1 4 図の電圧波形を用いて、第 1 3 図における読み出し動作を説明する。

読み出し動作を始めるにあたり、データ 線対 D Lo, D Loを、イコライザー E Q によって約 1 / 2 V A の等しい電位とした後、フローティング 状態とする。一方、全てのアドレスバッファ出力 A x o , A x o ・・・・ A x R を全て O V とした状態

W D 1 中の N チャネル M I S トランジスタ 1 6 5 がオンしてOVに固定される。次に、ワードラッ チ信号申しを立ち下げ、信号申xをOVからVA・ + V α + V B E へ立ち上げると、W D α 中の N チャ ネルMISトランジスタ148のゲートはプリチ ャージされているため昇圧され、第7図の回路動! 作と同様にしてワード線WL。の電位は、VA+← Vαに立ち上がる。一方、WD」中のNチャネル MISトランジスタ164のゲートは0Vである. ため昇圧されず、該NチャネルMISトランジスー タ164はオフしており、ワード線WL』の電位 は0 Vのままである。選択されたワード線 WLa の電位が立ち上がると。メモリセルMCc 中のN チャネルMISトランジスタ160がオンし、メ モリセルMCoよりデータ繰DLoへ佰号が読み 出され、データ練DLοと、対をなすデータ繰D Loとの間に微小な電位差を生する。

上記データ線対加の電位差は、センスアンプS Aにより増幅され、メモリセルに情報の再審き込みがなされるとともに後段回路へ伝達される。次

に、パルス信号dxをOVに立ち下げ、ラッチ信 母o,を立ち上げてワード線WLoをOVに立ち 下げてからイコライザーEQによりデータ線対を 約1/2VAの等電位にする一方、アドレスパッ ファ出力を全て立ち下げてからプリチャージ信号 øpをOVに立ち下げてプリチャージを行い、次 の動作に倒える。上記読み出し動作において、ワー ドドライバWDa,WD1,・・・・に、本実施 **餌の回路を適用しているため、選択されたワード** 線の間位を高速に、かつ高振幅に立ち上げること ができる。その結果、信号電圧ならびにメモリセ ルの数稜燈圧を大きくすることができ、高速性と 高値類性が両立できる。なお、第13図において、 パルス信号exを発生する回路としては、先に参 照した日経エレクトロニクス誌に掲載された回路 を用いてもよいし、さらに高速とするには、例え ば第6回の実施例を用いてもよい。また、第13 図では、ワードドライバ毎にデコーダを設け、パ ルス信号φxを全てのワードドライバに共通に印 加したが、必要に応じて複数のワードドライバに

共通に「つのデコーダを設け、デコーダを共有するワードドライバのうち「つだけのパルス信号をデコードして印加するなど、種々の変形が可能なことは勿論である。

また、ここではデータ線のプリチャージ電圧を $V_A/2$ とする例を示したが、これに限定されることなく、 $0 \sim V_A$ の範囲で任意に設定することが可能である。

なお、上記読み出し動作においては、非選択ワードドライバ中のバイポーラトランジスタ、例えば、 WD1中の168のペースは、個号 exが0Vの ときは exによって、また、個号 exが立ち上が るときには上記パイポーラトランジスタのペース とVasとの間に挿入されたMISトランジスタ、 例えばWD1の中の167によって0Vに保たれ る。したがって、上記パイポーラトランジスタの 耐圧は、前述したようにBVcgsで決まるため コレクタを高電圧VHのままとしても問題ない。

ところで、第13回の構成では、電圧VAを供給する電源と電圧VHを供給する電源の2つの正

電源を必要とする。これらの電源をチップ外部か ら別々に供給することは勿論可能であるが、いず れか一方のみを外部から供給し、他方はこれを基 準にしてチップ内部で発生して供給したり、ある いはいずれもチップ内部で、他の電源を基準にし て発生することも可能である。したがって、第1 3 図または前述の実施例のうち、2 つの正電源を 必要とするものを1つの外部正電源のもとで、例 えば2つの電圧のうち、高い方は外部正電源より 直接供給し、低い方は、外部正電源の電圧を特点 昭56-168698号、特顧昭57-2200 83号明細書などに示されているような電圧リミッ 夕回路により低くして供給することも可能である。 また、場合によっては、必要とする2電弧のうち、 低い方は外部正電源より供給して、高い方は、外 部正電源の電圧を昇圧する回路によって高くして 供給してもよい。

第15図は、本発明に用いる昇圧回路の一実施 例図である。

この回路では、電圧VAは外部正電源より供給

して、高電圧VHを発生させる。第15回の回路 は、基本的にはいわゆるチャージポンプ型の具圧 回路CP1とCP2とを並列に並べたものである。 チャージポンプ型の昇圧回路の動作原理は、よく 知られているのでここでは省略する。ここで、ツェ ナーダイオード192は、娘子194の電圧が所 望のレベルⅤμより上がり過ぎた場合に電流をリー クさせ、それ以上の質位上昇を防止するためのも のであるが、必要のない場合は除去してもよい。 また、ツェナーダイオード192の替りに、通常 のダイオードやMISトランジスタのゲートとド レインを接続したMISダイオード回路を順方向 に複数個接続したものを用いてもよい。また、C PI、CPzとして、MIS容量とMISトラン ジスタで構成したダイオードを3段接続した例を 示したが、一般的に段数をn、MISトランジス タのしきい電圧をVャ、タミュ~タミョ・タャン ~ f r 3 のパルス抵幅をVAとすると、得られる 電圧は約(n+1)(VA-VT)となり、必要とする VHの値に応じてnの値を選べばよい。

この回路を第13回に適用した場合、第15回の端子194より供給しなくてはならない電流は、ワード線が週択されるときに大きくなる。したがって、ダイナミック型半導体メモリのアクティブな期間には、大きな供給電流を得るためにCP1とCP2の両方を動作させ、スタンバイの期間には、CP1のみを動作させることも可能である。これによって、低い消費電力で大きな出力電流を得ることができる。

第16回は、第15回のCP1, CP2へ印加するパルスの電圧放形の一例図である。

図においては、tst, すなわちスタンバイの期間にはCP1のみが動作し、top, すなわちアクティブする期間にはCP1とCP2の両方が動作する例を示している。CP2の起動時刻をワード線を選択する時刻と同期させるには、例えば、チップセレクト信号CSやRAS信号を利用すればよい。また、いわゆるページモードのように、一本のワード線上のメモリセルの情報を連続して読み出すような動作をさせる場合には、選択したワー

で駆動することもできる。

なお、電源電圧の変動により一時的にバイポーラトランジスタが飽和する可能性のある場合には、パルス信号 exを発生する回路の出力端子と、第15図のVn端子194との間に、前にも述べたようにダイオードを接続してVnに対して exの電位が高いときにそのダイオードがオンするようにして飽和を防止すればよい。

#### [発明の効果]

以上説明したように、本発明によれば、バイポーラトランジスタとMISトランジスタを含む回路において、動作の基準となる配圧を、上記回路を制御する前段回路が基準として動作する配圧とは異なる値にするので、バイポーラトランジスタの高駆動能力を十分に活すとともに、所望の大きな出力レベルを得ることができる。

#### 4. 図面の簡単な説明

第1図は本発明の基本構成を示す半導体装置の 概略構成図、第2図は第1図の前段回路の具体例 を示す図、第3図は本発明の第1の実施例を示す ド線の電位を長時間高電位に保つ必要がある。この場合には、ワード線電位が高レベルに達した役も、CAS信号などを利用してCP2を活性化してもよいことは勿論である。

なお、ここではチャージポンプ回路を2つ用い た例を示したが、必要に応じて1個にしたり、あ るいはさらに多くの回路を用いてもよいことは勿 論である。また、ワード線の億位の立ち上げを非 常に高速に行うと、一時的に、第15回の場子1 94の電位が低下することがある。その場合には、 増子194がコレクタに接続されたパイポーラト ランジスタの飽和を防止するため、端子194の 容量を大きくして、電位の低下を小さくする必要 がある。そのためには、VHを供給するためのバ イポーラトランジスタのコレクタを、全て 端子し 94に接続することによって、パイポーラトラン ジスタのコレクタ容量により端子194の寄生容 量を増加させることもできる。また、ここでは、 **ゅち」とゅちるおよびゅっ」とゅっるはそれぞれ** 別信号として示したが、場合によっては同一信号

半導体装置の構成図、第4回は第3回の電圧波形 図、第5回は第3回の回路30の機成例図、第6 図は本発明の第2の実施例を示す半導体装置の標 成因、第7因は本発明の第2の実施例を示す半導 体装置の構成図、第8図は第7図の電圧波形を示 す図、第9図は第7図の回路86の構成例図、第 10回は本発明の第4の実施例を示す半導体装置 の構成図、第11図は第10図は回路113の構 成例図、第12図は本発明が適用されるダイナミッ ク型半導体装置の構成例図、第13回は本発明を ワードドライバに適用した場合の一榑成例図、第 14回は第13回の電圧波形を示す図、第15回 は本発明に用いるチャージポンプ型昇圧回路、第 16図は第15図の電圧波形を示す図、第17図 は第1の従来例図、第18図は第2の従来例図で ある。

タを含む回路、E:入力端子、F:信号線、G: 出力増子、VA:回路Cの動作の基準となる電圧、 30,86,113:出力端子Gの電位を立ち下 げる回路、 X o ~ X n : X アドレス、 Y o ~ Y m : Yアドレス、M C A : メモリセルアレー、M C, MCo, MCı: メモリセル、DL, DLo, D Lı:データ線、WL, WLo, WLı:ワード 線、ABX,ABY:アドレスパッファ回路、X D, YD: デコーダ, ドライバ回路、RC: 書き 込み・読み出し回路、CC:客き込み・読み出し 制御回路、OC:出力回路、DO:出力、CS: チップセレクト信号、WE: 書き込み動作制御信 号、DI:入力、Axo,AxR,Axo:アド レスパッファ出力、DECo, DEC1:デコー ダ、WDo, WD1:ワードドライバ、SA:セ ンスアンプ、EQ:イコライザー、 申p:プリチャ ージ信号、φι:ラッチ信号、φχ:パルス信号、 CP1, CP2:チャージポンプ回路、192: ツェナーダイオード、 0 51 , 0 52 , 0 53 : **CP1括性パルス、 φ T1 , ф T2 , ф T3 : C** 

P 2 活性パルス。

特許出願人 株式会社 日立 製作 所代 理 人 弁理士 破 村 雅 俊





第 2 図



第 3 図



## 特開昭 62-21323 (12)







第 7 図





図

## 特開昭 62-21323 (13)



第 16 区

部 15 図





