

Unit - II 2.4 Mesh Analysis Problems and Supermesh

Dr.Santhosh.T.K.

UNIT – II 14 Periods

DC Circuit Analysis: Voltage source and current sources, ideal and practical, Kirchhoff's laws and applications to network solutions using mesh analysis, - Simplifications of networks using series- parallel, Star/Delta transformation, DC circuits-Current-voltage relations of electric network by mathematical equations to analyse the network (Superposition theorem, Thevenin's theorem, Maximum Power Transfer theorem), Transient analysis of R-L, R-C and R-L-C Circuits.

AC Steady-state Analysis: AC waveform definitions - Form factor - Peak factor - study of R-L - R-C -RLC series circuit - R-L-C parallel circuit - phasor representation in polar and rectangular form - concept of impedance - admittance - active - reactive - apparent and complex power - power factor, Resonance in R-L-C circuits - 3 phase balanced AC Circuits

Steps of Mesh Analysis

- 1. Identify mesh (loops).
- 2. Assign a current to each mesh.
- 3. Apply KVL around each loop to get an equation in terms of the loop currents.
- 4. Solve the resulting system of linear equations for the mesh/loop currents.

3. KVL Around Mesh 1

3. KVL Around Mesh 2 V=I/2

V1= 7 V V2= 4 V

II & I2

4. Solving the Equations

Let: $V_1 = 7V$ and $V_2 = 4V$

Results:

Finally

$$I_1 = 3.33 \text{ mA}$$
 $I_2 = -0.33 \text{ mA}$

$$V_{out} = (I_1 - I_2) \text{ 1k}\Omega = 3.66\text{V}$$

Matrix Notation

The two equations can be combined into a single matrix/vector equation

Inspection Method

Practice Problem

Determine the power dissipation in the 4Ω resistor of the given network.

Problem

C. Laws

799MJ

Determine the power dissipation in the 4Ω resistor of the given network.

Dimen 500. Enter Values Det (MATA)

Cramer's rule

$$\Delta = |R|$$

$$\longrightarrow I_1 = \frac{AL_1}{\Delta}$$

I, = 8.36 A

J2= 2,31 A

I3 = -1.07 A

Problem

• Find the mesh current and determine the power supplied by each of the voltage source in the given circuit.

Problem

• Find the mesh current and determine the power supplied by each of the voltage source in the given circuit.

Exercise

• Find the mesh currents in the given network when the current through the

branch BD is zero.

• Find the mesh currents in the given network when the current through the branch BD is zero.

Cramer's Rule

$$60I_1 - 20I_2 = 120$$

$$-20I_1 + 80I_2 = -65$$

$$I_{1} = \frac{\begin{vmatrix} 120 & -20 \\ -65 & 80 \end{vmatrix}}{\begin{vmatrix} 60 & -20 \\ -20 & 80 \end{vmatrix}} = \frac{(120 \times 80) - (-65 \times -20)}{(60 \times 80) - (-20 \times -20)} = \frac{8300}{4400} = 1.886 \text{ A}$$

$$I_{2} = \frac{\begin{vmatrix} 60 & 120 \\ -20 & -65 \end{vmatrix}}{\text{Denominator}} = \frac{(60 \times -65) - (-20 \times 120)}{4400} = \frac{-1500}{4400} = -0.341 \text{ A}$$

Advantages of Loop Analysis

Solves directly for some currents

Voltage sources are easy

Current sources are either very easy or somewhat difficult

Works best for circuits with few loops

Disadvantages of Loop Analysis

Some currents must be computed from loop currents

Does not work with non-planar circuits

Choosing the supermesh may be difficult.

Summary