Assignment -2

Python Programming Data Visualization and Pre-processing

Assignment Date	27 September 2022
Student Name	R.Valliyappan
Student Roll Number	912419104036
Project	AI BASED DISCOURSEFOR BANKING INDUSTRY
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Solution:

Churn_Modelling.csv

Question-2:

Load the dataset.

Solution:

from google.colab import drive drive.mount('/content/drive').

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import pandas as pd
import numpy as np
dataset = pd.read_csv("/content/drive/MyDrive/Churn_Modelling.csv")
dataset.head()

```
import pandas as pd
 import numpy as np
dataset = pd.read_csv("/content/drive/MyDrive/Churn_Modelling.csv")
dataset.head()
  RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
0
          1 15634602 Hargrave
                                      619
                                             France Female 42
                                                                          0.00
                                                                                                                          101348.88
1
             15647311
                           Hill
                                      608
                                                                   1 83807.86
                                                                                          1
                                                                                                   0
                                                                                                                 1
                                                                                                                          112542.58
                                                                                                                                       0
                                              Spain Female
              15619304
                          Onio
                                      502
                                                          42
                                                                   8 159660.80
                                                                                                                          113931.57
                                             France Female
              15701354
                                                                                          2
                                                                                                                 0
                          Boni
                                      699
                                             France Female
                                                                   1
                                                                          0.00
                                                                                                                           93826.63
                                                                                                                                       0
                                                                2 125510.82
              15737888 Mitchell
                                      850
                                             Spain Female 43
                                                                                                                           79084.10
```

dataset.shape

```
dataset.shape #size of dataset (10000, 14)
```

Question-3:

Perform Below Visualizations.

- Univariate Analysis
- Bi Variate Analysis
- Multi Variate Analysis

Solution:

import matplotlib.pyplot as plt import seaborn as sns

```
import matplotlib.pyplot as plt
import seaborn as sns
```

• Univariate Analysis

sns.histplot(dataset["EstimatedSalary"],color='lightblue')

sns.histplot(dataset["EstimatedSalary"],color='lightblue')

<matplotlib.axes. subplots.AxesSubplot at 0x7f0b83b82490>

sns.displot(dataset['Surname'], kde=True)

sns.displot(dataset['Surname'], kde=True)

<seaborn.axisgrid.FacetGrid at 0x7f0b80893050>

• Bi - Variate Analysis

sns.barplot(data=dataset.head(50), x="Surname", y="Age")

sns.barplot(data=dataset.head(50), x="Surname", y="Age")

<matplotlib.axes. subplots.AxesSubplot at 0x7f0b7f3ab2d0>

sns.catplot(x='Gender', y='CreditScore', hue='NumOfProducts', data=datase)

sns.catplot(x='Gender', y='CreditScore', hue='NumOfProducts', data=dataset)

<seaborn.axisgrid.FacetGrid at 0x7f0b7cace850>

• Multi - Variate Analysis

sns.jointplot(x='CreditScore',y='Age',data=dataset.head(100), palette='bright',hue='Geography');

sns.jointplot(x='CreditScore',y='Age',data=dataset.head(100),palette='bright',hue='Geography');

sns.pairplot(dataset,hue="Age")

Question-4:

Perform descriptive statistics on the dataset.

Solution:

dataset.describe()

dataset.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

dataset.mean()

dataset.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduction """Entry point for launching an IPython kernel.

RowNumber 5.000500e+03
CustomerId 1.569094e+07
CreditScore 6.505288e+02
Age 3.892180e+01
Tenure 5.012800e+00
Balance 7.648589e+04
NumOfProducts 1.530200e+00
HasCrCard 7.055000e-01
IsActiveMember 5.151000e-01
EstimatedSalary 1.000902e+05
Exited 2.037000e-01

dtype: float64

dataset.median()

dataset.median()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in """Entry point for launching an IPython kernel.

dtype: float64

Question-5:

Handle the Missing values.

Solution:

dataset.isnull()

dataset.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9995	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False	False	False	False	False

10000 rows × 14 columns

dataset.isnull().sum()

```
dataset.isnull().sum()
RowNumber
CustomerId
                    Θ
Surname
                    0
CreditScore
                    Θ
Geography
                    Θ
Gender
                    Θ
                    0
Age
                    Θ
Tenure
Balance
                    Θ
NumOfProducts
HasCrCard
IsActiveMember
                    Θ
EstimatedSalary
                    Θ
Exited
                    Θ
dtype: int64
```

Question- 6

Find the outliers and replace the outliers.

Solution:

sns.boxplot(dataset['Age'])

```
sns.boxplot(dataset['Age'])
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:
    FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f8e9eb10b10>
```



```
Q1=dataset.Age.quantile(0.25)
Q3=dataset.Age.quantile(0.75)
Q1,Q3
  Q1=dataset.Age.quantile(0.25)
 Q3=dataset.Age.quantile(0.75)
  Q1,Q3
 (32.0, 44.0)
IQR=Q3-Q1
IQR
  IQR=Q3-Q1
  IQR
  12.0
lower_limit=Q1-1.5*IQR
upper_limit=Q3+1.5*IQR
lower_limit,upper_limit
  lower limit=Q1-1.5*IQR
  upper limit=Q3+1.5*IQR
  lower limit, upper limit
  (14.0, 62.0)
new_dataset=dataset[(dataset.Age>lower_limit)&(dataset.Age<upper_limit-3)]
new_dataset.head()
new dataset=dataset[(dataset.Age>lower limit)&(dataset.Age<upper limit-3)]</pre>
 new dataset.head()
    RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
  0
              15634602 Hargrave
                                  619
                                        France Female
                                                    42
                                                                 0.00
                                                                                                          101348.88
              15647311
                                                                                      0
  1
          2
                                                              83807.86
                                                                              1
                                                                                                  1
                                                                                                          112542.58
                        Hill
                                  608
                                                    41
                                                           1
                                         Spain Female
          3
              15619304
                        Onio
                                  502
                                        France Female
                                                    42
                                                           8 159660.80
                                                                                                          113931.57
  3
          4
              15701354
                        Boni
                                  699
                                             Female
                                                    39
                                                                 0.00
                                                                              2
                                                                                      0
                                                                                                  0
                                                                                                          93826.63
```

2 125510.82

5

15737888

Mitchell

850

Spain Female

43

0

0

0

79084.10

Question-7

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing import LabelEncoder

```
le = LabelEncoder()
dataset['Geography'] = le.fit_transform(dataset['Geography'])
dataset['Gender'] = le.fit_transform(dataset['Gender'])
```

dataset.head(10)

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
dataset['Geography'] = le.fit_transform(dataset['Geography'])
dataset['Gender'] = le.fit_transform(dataset['Gender'])

dataset.head(10)
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	228	0	0	42	2	0	1	1	1	101348.88	1
1	2	15647311	Hill	217	2	0	41	1	743	1	0	1	112542.58	0
2	3	15619304	Onio	111	0	0	42	8	5793	3	1	0	113931.57	1
3	4	15701354	Boni	308	0	0	39	1	0	2	0	0	93826.63	0
4	5	15737888	Mitchell	459	2	0	43	2	3696	1	1	1	79084.10	0
5	6	15574012	Chu	254	2	1	44	8	2674	2	1	0	149756.71	1
6	7	15592531	Bartlett	431	0	1	50	7	0	2	1	1	10062.80	0
7	8	15656148	Obinna	8	1	0	29	4	2781	4	1	0	119346.88	1
8	9	15792365	He	110	0	1	44	4	4962	2	0	1	74940.50	0
9	10	15592389	H?	293	0	1	27	2	4450	1	1	1	71725.73	0

Question-8

Split the data into dependent and independent variables.

Solution:

```
y = dataset['CreditScore'] #dependent
x = dataset.drop(columns = ['CreditScore'],axis = 1) #independent
x.head()
```

```
y = dataset['CreditScore'] #dependent
x = dataset.drop(columns = ['CreditScore'],axis = 1) #independent
x.head()
```

	RowNumber	CustomerId	Surname	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	0	0	42	2	0	1	1	1	101348.88	1
1	2	15647311	Hill	2	0	41	1	743	1	0	1	112542.58	0
2	3	15619304	Onio	0	0	42	8	5793	3	1	0	113931.57	1
3	4	15701354	Boni	0	0	39	1	0	2	0	0	93826.63	0
4	5	15737888	Mitchell	2	0	43	2	3696	1	1	1	79084.10	0

Question-9

Scale the independent variables

Solution:

```
names = ['RowNumber', 'CustomerId', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited']
```

```
names = ['RowNumber','CustomerId','Geography','Gender','Age','Tenure','Balance',
'NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','Exited']
```

from sklearn.preprocessing import scale

```
x = scale(x[names])
```

```
0.02188649, 1.97716468],
[-1.7315312, -0.60653412, 1.51506738, ..., 0.97024255,
0.21653375, -0.50577476],
[-1.73118479, -0.99588476, -0.90188624, ..., -1.03067011,
0.2406869, 1.97716468],
...,
[1.73118479, -1.47928179, -0.90188624, ..., 0.97024255,
-1.00864308, 1.97716468],
[1.7315312, -0.11935577, 0.30659057, ..., -1.03067011,
-0.12523071, 1.97716468],
[1.73187761, -0.87055909, -0.90188624, ..., -1.03067011,
-1.07636976, -0.50577476]])
```

x = pd.DataFrame(x,columns = names) x.head()

```
x = pd.DataFrame(x,columns = names)
x.head()
```

	RowNumber	CustomerId	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	-1.731878	-0.783213	-0.901886	-1.095988	0.293517	-1.041760	-1.225848	-0.911583	0.646092	0.970243	0.021886	1.977165
1	-1.731531	-0.606534	1.515067	-1.095988	0.198164	-1.387538	0.117350	-0.911583	-1.547768	0.970243	0.216534	-0.505775
2	-1.731185	-0.995885	-0.901886	-1.095988	0.293517	1.032908	1.333053	2.527057	0.646092	-1.030670	0.240687	1.977165
3	-1.730838	0.144767	-0.901886	-1.095988	0.007457	-1.387538	-1.225848	0.807737	-1.547768	-1.030670	-0.108918	-0.505775
4	-1.730492	0.652659	1.515067	-1.095988	0.388871	-1.041760	0.785728	-0.911583	0.646092	0.970243	-0.365276	-0.505775

Question-10

Split the data into training and testing

Solution:

from sklearn.model_selection import train_test_split x_{train} , x_{test} , y_{train} , y_{test} = train_test_split(x, y, test_size = 0.3, random_state = 0) x_{train}

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0)
```

x_train

	RowNumber	CustomerId	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
7681	0.928899	-0.797032	-0.901886	0.912419	-0.564665	-1.041760	1.117213	0.807737	0.646092	0.970243	-0.770218	1.977165
9031	1.396553	0.714314	-0.901886	0.912419	0.007457	0.687130	-1.225848	0.807737	0.646092	-1.030670	-1.395767	-0.505775
3691	-0.453278	0.963450	-0.901886	-1.095988	3.535540	-0.004426	1.354191	-0.911583	-1.547768	0.970243	-1.499656	-0.505775
202	-1.661903	-1.250707	1.515067	0.912419	1.056346	-0.004426	-1.225848	-0.911583	-1.547768	0.970243	0.800862	1.977165
5625	0.216680	-0.385174	-0.901886	-1.095988	2.009882	0.687130	1.070229	-0.911583	0.646092	0.970243	0.512497	-0.505775
9225	1.463756	-1.473777	0.306591	-1.095988	-0.660018	-0.350204	0.698607	0.807737	0.646092	0.970243	1.093273	-0.505775
4859	-0.048671	-0.609314	1.515067	-1.095988	-1.613554	-0.350204	0.608299	-0.911583	0.646092	0.970243	0.133249	-0.505775
3264	-0.601195	-1.620525	-0.901886	0.912419	-0.373958	-0.004426	1.358909	0.807737	0.646092	-1.030670	1.414415	-0.505775
9845	1.678530	-0.374039	1.515067	-1.095988	-0.087897	1.378686	-1.225848	0.807737	0.646092	0.970243	0.846147	-0.505775
2732	-0.785485	-1.364118	0.306591	-1.095988	0.865639	-1.387538	0.506303	-0.911583	0.646092	-1.030670	0.326305	1.977165

7000 rows × 12 columns

x_test

	S	

	RowNumber	CustomerId	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9394	1.522299	-1.045250	0.306591	-1.095988	-0.373958	1.032908	0.875323	-0.911583	0.646092	0.970243	1.613046	-0.505775
898	-1.420801	-0.503813	-0.901886	-1.095988	0.102810	-1.041760	0.424422	-0.911583	0.646092	-1.030670	0.497532	1.977165
2398	-0.901186	-0.793292	1.515067	-1.095988	0.293517	1.032908	0.302927	-0.911583	0.646092	0.970243	-0.423561	-0.505775
5906	0.314021	0.760190	-0.901886	0.912419	-0.660018	-0.350204	0.570464	-0.911583	-1.547768	-1.030670	-0.186439	-0.505775
2343	-0.920239	1.042107	0.306591	0.912419	-0.087897	-0.004426	1.387129	0.807737	0.646092	0.970243	0.618560	-0.505775
4004	-0.344851	0.661806	1.515067	-1.095988	0.198164	-0.350204	-1.225848	0.807737	-1.547768	0.970243	0.826264	-0.505775
7375	0.822897	-0.723866	-0.901886	0.912419	3.630893	0.341352	0.071162	0.807737	0.646092	0.970243	-0.769654	-0.505775
9307	1.492162	-0.146464	-0.901886	0.912419	0.102810	-1.041760	1.466728	0.807737	0.646092	0.970243	1.170455	-0.505775
8394	1.175889	-1.292287	-0.901886	0.912419	2.868064	1.724464	1.257616	-0.911583	0.646092	0.970243	-0.508468	-0.505775
5233	0.080887	-1.385388	0.306591	-1.095988	0.960993	-0.350204	0.197777	-0.911583	0.646092	0.970243	-1.153427	1.977165

3000 rows × 12 columns

x_test.shape

```
x_test.shape
```

(3000, 12)

y_train

```
y_train

7681 641
9031 541
3691 590
202 516
5625 508
...

9225 594
4859 794
3264 738
9845 590
2732 623
Name: CreditScore, Length: 7000, dtype: int64
```

y_test

```
y_test
9394
        597
        523
706
898
2398
5906
        788
2343
        706
       ...
530
4004
7375
        639
9307
        685
8394
        692
5233
        731
Name: CreditScore, Length: 3000, dtype: int64
```

y_test.shape

```
y_test.shape
```

(3000,)