Lecture 23: Bayesian global optimization

Professor Ilias Bilionis

Overview of the Bayesian global optimization algorithm

We have some data

We fit a statistical model

Lain this case: Gaussian Process Regression w/ zero measurement noise

Quantify the value of information via an acquisition function

Repeat (Iteration 2)

Lare-condition the model on this new observation (re-train, new posterior)

Repeat (Iteration 3)

Repeat (Iteration 4)

Exploitation vs. Exploration

Repeat (Iteration 5)

Repeat (Iteration 6)

values decrease as convergence is approached

0.10

8

0.08

0.06

Schematic Algorithm Framework

Bayesian global optimization

Example codes

- https://github.com/PredictiveScienceLab/py-bgo (features stochastic and multi-objective optimization)
- https://github.com/SheffieldML/GPyOpt (features parallel optimization)

• ...

