MINI PROJECT

On

BOSTON HOUSING DATA

(Using R)

Prepared By:

Wyendrila Roy

http://in.linkedin.com/pub/wyendrila-roy/5/3a/876

Understanding the Data

Variable Name	Definition		
MEDV	median value in \$1000		
DIS	distance to employment centers		
CRIM	per capita crime rate		
RAD	accessibility to radial highways		
ZN	% land zoned for lots		
INDUS	% nonretail business		
TAX	property tax/\$10,000		
CHAS	1 on Charles River, 0 else		
PT	pupil/teacher ratio		
NOX	nitrogen oxide conc. (p.p.109)		
Black	(% black - 63)2/10		
RM	average number of rooms		
LSTAT	% lower-status pop.		
AGE	% built before 1940		

Structure of the Data

> data(Boston, package="MASS") (This function reads the Boston dataset from the MASS Package in R)

> names(Boston) (This function gives the variable names in the Boston dataset, the definition has been provided at the beginning for reference)

```
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age" [8] "dis" "rad" "tax" "ptratio" "black" "Istat" "medv"
```

> str(Boston) (This function gives the structure of the data, the total number of variables and observations in the data and the datatype of each variable)

```
'data.frame': 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
```

\$ ptratio: num 15.3 17.8 17.8 18.7 18.7 15.2 15.2 15.2 15.2 ...

\$ black: num 397 397 393 395 397 ... **\$ lstat**: num 4.98 9.14 4.03 2.94 5.33 ...

6 28.7

\$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

> head(Boston) (To view the first few rows in the data in order to check the data as a sample)

crim zn indus chas nox rm age dis rad tax ptratio black Istat 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 394.12 5.21 medv 1 24.0 2 21.6 3 34.7 4 33.4 5 36.2

> summary(Boston) (To understand the basic statistics of each individual variable)

crim	zn	indus	chas	
Min.: 0.00632 1st Qu.: 0.08204 Median: 0.2565 Mean: 3.61352 3rd Qu.: 3.67708 Max.: 88.97620	1 N 1 N 2 N 3 3	Min.: 0.00 1st Qu.: 0.00 Median: 0.00 Mean: 11.36 3rd Qu.: 12.50 Max.: 100.00	1st Qu.: 5.19 Median : 9.69 Mean :11.14	Min. :0.00000 1st Qu.:0.00000 Median :0.00000 Mean :0.06917 3rd Qu.:0.00000 Max. :1.00000
nox	r	rm	age	dis
Min. :0.3850 1st Qu.:0.4490 Median :0.5380 Mean :0.5547 3rd Qu.:0.6240 Max. :0.8710	1 N N 3	Min. :3.561 1st Qu.:5.886 Median :6.208 Mean :6.285 3rd Qu.:6.623 Max. :8.780	Median: 77.50 Mean: 68.57	Min.: 1.130 1st Qu.: 2.100 Median: 3.207 Mean: 3.795 3rd Qu.: 5.188 Max.: 12.127
rad	t	tax	ptratio	black
Min.: 1.000 1st Qu.: 4.000 Median: 5.000 Mean: 9.549 3rd Qu.:24.000 Max: :24.000	1 N N 3	Min. :187.0 1st Qu.:279.0 Median :330.0 Mean :408.2 3rd Qu.:666.0 Max. :711.0 medv	Median :19.05 M Mean :18.46	Mean :356.67

Min.: 1.73Min.: 5.001st Qu.: 6.951st Qu.:17.02Median: 11.36Median: 21.20Mean: 12.65Mean: 22.533rd Qu.: 16.953rd Qu.: 25.00Max.: 37.97Max.: 50.00

Viewing the median value of owner occupied homes in \$1000 by using histogram and normal Q-Q Plot

attach(Boston) hist(medv) qqnorm(medv) qqline(medv)

> cor(Boston) (To understand the correlation between each individual variable)

	crim	zn	indus	chas	nox	
crim	1.00000000	-0.20046922	0.40658341	-0.055891582	0.42097171	
zn	-0.20046922	1.00000000	-0.53382819	-0.042696719	-0.51660371	
indus	0.40658341	-0.53382819	1.00000000	0.062938027	0.76365145	
chas	-0.05589158	-0.04269672	0.06293803	1.000000000	0.09120281	
nox	0.42097171	-0.51660371	0.76365145	0.091202807	1.00000000	
	-0.21924670	0.31199059	-0.39167585	0.091251225	-0.30218819	
age	0.35273425	-0.56953734	0.64477851	0.086517774	0.73147010	
dis	-0.37967009	0.66440822	-0.70802699	-0.099175780	-0.76923011	
rad	0.62550515	-0.31194783	0.59512927	-0.007368241	0.61144056	
tax	0.58276431	-0.31456332	0.72076018	-0.035586518	0.66802320	
ptratio	0.28994558	-0.39167855	0.38324756	-0.121515174	0.18893268	
black	-0.38506394	0.17552032	-0.35697654	0.048788485	-0.38005064	
Istat	0.45562148	-0.41299457	0.60379972	-0.053929298	0.59087892	
	-0.38830461	0.36044534	-0.48372516	0.175260177	-0.42732077	
	rm	age	dis	rad	tax	ptratio
au!	0.21024670	0.2522425	0.27067000	0.6255054.45	0 50276424	0.3900457
crim	-0.21924670	0.35273425	-0.37967009	0.625505145	0.58276431	0.2899456
zn	0.31199059	-0.56953734	0.66440822	-0.311947826	-0.31456332	-0.3916785
indus	-0.39167585	0.64477851 0.08651777	-0.70802699 -0.09917578	0.595129275	0.72076018	0.3832476 -0.1215152
chas	0.09125123 -0.30218819			-0.007368241 0.611440563	-0.03558652	
nox	1.00000000	0.73147010 -0.24026493	-0.76923011 0.20524621	-0.209846668	0.66802320 -0.29204783	0.1889327 -0.3555015
rm	-0.24026493	1.00000000	-0.74788054	0.456022452	0.50645559	0.2615150
age dis	0.20524621	-0.74788054	1.00000000	-0.494587930	-0.53443158	-0.2324705
rad	-0.20984667	0.45602245	-0.49458793	1.000000000	0.91022819	0.4647412
tax	-0.29204783	0.50645559	-0.53443158	0.910228189	1.00000000	0.4608530
ptratio	-0.35550149	0.26151501	-0.23247054	0.464741179	0.46085304	1.0000000
black	0.12806864	-0.27353398	0.29151167	-0.444412816	-0.44180801	-0.1773833
Istat	-0.61380827	0.60233853	-0.49699583	0.488676335	0.54399341	0.3740443
medv	0.69535995	-0.37695457	0.24992873	-0.381626231	-0.46853593	-0.5077867
incav	0.0555555	0.57055457	0.24332073	0.301020231	0.40033333	0.3077007
	black	Istat	medv			
crim	-0.38506394	0.4556215	-0.3883046			
zn	0.17552032	-0.4129946	0.3604453			
indus	-0.35697654	0.6037997	-0.4837252			
chas	0.04878848	-0.0539293	0.1752602			
nox	-0.38005064	0.5908789	-0.4273208			
rm	0.12806864	-0.6138083	0. <mark>6953599</mark>			
age	-0.27353398	0.6023385	-0.3769546			
dis	0.29151167	-0.4969958	0.2499287			
rad	-0.44441282	0.4886763	-0.3816262			
tax	-0.44180801	0.5439934	-0.4685359			
ptratio	-0.17738330	0.3740443	-0. <mark>5077867</mark>			
black	1.00000000	-0.3660869	0.3334608			
Istat	-0.36608690	1.0000000	-0. <mark>7376627</mark>			
medv	0.33346082	-0.7376627	1.0000000			

If we look at the median value of owner occupied homes in \$1000 (medv) and try to understand its correlation between other variables then we can see that the average number of rooms (rm) has the highest positive correlation with medv and pupil/teacher ratio (ptratio) and % lower-status pop. (Istat) has high negative correlation with medv.

Regression Model

```
> RegModel.2 <- Im(medv~black+chas+crim+dis+lstat+nox+ptratio+rad+rm+zn,
+ data=Boston)
> summary(RegModel.2)
Call:
Im(formula = medv ~ black + chas + crim + dis + lstat + nox +
  ptratio + rad + rm + zn, data = Boston)
Residuals:
  Min
         1Q Median
                       3Q Max
-16.2609 -2.9888 -0.5083 1.8041 26.2482 (The Residuals are quite high ranges from -16.26 to 26.24, we will
have to bring this down)
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.712342 5.102742 6.803 2.97e-11 ***
black
        0.009700 0.002701 3.591 0.000363 ***
chas
        2.967868  0.860830  3.448  0.000614 ***
dis
       -0.528147  0.047930 -11.019 < 2e-16 ***
Istat
       -20.314416 3.472292 -5.850 8.92e-09 ***
ptratio -1.014914 0.129006 -7.867 2.30e-14 ***
       0.128761 0.040788 3.157 0.001692 **
rad
        3.977104  0.407731  9.754 < 2e-16 ***
       0.036634  0.013412  2.731  0.006532 **
Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.79 on 495 degrees of freedom
Multiple R-squared: 0.7342,
                              Adjusted R-squared: 0.7288
F-statistic: 136.7 on 10 and 495 DF, p-value: < 2.2e-16
> vif(RegModel.2)
 black chas crim dis Istat nox ptratio
1.338982\ 1.052428\ 1.787963\ 3.410587\ 2.579040\ 3.564036\ 1.717222\ 2.776775
  rm
        7n
1.806735 2.154054
```

The Variance Inflation Factors are fine because all the variables are below 4.

> outlierTest(RegModel.2)

There are 3 outliers we will now remove these outliers from the data and re-run the model

```
> Boston <- Boston[-c(369,372,373),]
> RegModel.2 <- lm(medv~black+chas+crim+dis+lstat+nox+ptratio+rad+rm+zn,
+ data=Boston)
> summary(RegModel.2)
Call:
Im(formula = medv ~ black + chas + crim + dis + lstat + nox +
  ptratio + rad + rm + zn, data = Boston)
Residuals:
  Min
                       3Q Max
         1Q Median
-15.6641 -2.8410 -0.3751 1.8066 19.2247 (The range of the Residuals have come down considerably)
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.640030 4.680205 6.119 1.92e-09 ***
        0.009106 0.002454 3.711 0.00023 ***
chas
        2.405876 0.792192 3.037 0.00252 **
crim
       -0.095376  0.030100 -3.169  0.00163 **
dis
      Istat
       nox
       -19.218002 3.154500 -6.092 2.25e-09 ***
ptratio -1.025144 0.117171 -8.749 < 2e-16 ***
        0.073739  0.037418  1.971  0.04932 *
rad
        4.668916  0.377795  12.358  < 2e-16 ***
rm
zn
        0.030425 0.012193 2.495 0.01291 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.349 on 492 degrees of freedom
Multiple R-squared: 0.7699,
                               Adjusted R-squared: 0.7653
F-statistic: 164.6 on 10 and 492 DF, p-value: < 2.2e-16
We will create another model eliminating the insignificant variables such as zn and rad
> RegModel.3 <- Im(medv~black+chas+crim+dis+lstat+nox+ptratio+rm, data=Boston)
> summary(RegModel.3)
Im(formula = medv ~ black + chas + crim + dis + lstat + nox +
  ptratio + rm, data = Boston)
Residuals:
         1Q Median
                       3Q Max
-15.4796 -2.6529 -0.6067 1.6867 20.2662 (The range of the Residuals have slightly increased but still acceptable)
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.706692 4.450328 5.776 1.35e-08 ***
black 0.008151 0.002442 3.338 0.000907 ***
chas
     2.382992 0.799459 2.981 0.003017 **
crim -0.059040 0.027282 -2.164 0.030936 *
dis
      lstat -0.425606 0.044940 -9.470 < 2e-16 ***
      -16.937158 2.937265 -5.766 1.43e-08 ***
nox
ptratio -1.014710 0.101895 -9.958 < 2e-16 ***
        4.943351  0.372196  13.282  < 2e-16 ***
rm
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.39 on 494 degrees of freedom
Multiple R-squared: 0.7646,
                             Adjusted R-squared: 0.7608
F-statistic: 200.5 on 8 and 494 DF, p-value: < 2.2e-16
> vif(RegModel.3)
 black chas crim dis Istat nox ptratio
1.302030\ 1.051365\ 1.440841\ 2.569929\ 2.686973\ 3.024642\ 1.270217\ 1.778336
```

The Variance Inflation Factors are fine because all the variables are below 4.

Residual Analysis

Residual analysis is usually done graphically using:

- Quantile plots: to assess normality
- Histograms and boxplots
- Scatterplots: to assess model assumptions, such as constant variance and linearity, and to identify potential outliers

```
> mean(RegModel.3$residuals)
[1] 2.127881e-17
hist(RegModel.3$residuals, xlab="residuals", main="Histogram of residuals")
qqnorm(RegModel.3$residuals, main="Normal Probability Plot", pch=19)
qqline(RegModel.3$residuals)
```


Normal Probability Plot

Checking for linear relationship amongst the important variables, error should have a constant variance and error terms should not be independent

Plotting residuals against key predictor variables, Istat, ptratio and rm

plot(lstat, RegModel.3\$residuals, main="Residuals vs. Predictor", xlab="% in Lower Status", ylab="Residuals", pch=19)
abline(h=0)

plot(rm, RegModel.3\$residuals, main="Residuals vs. Predictor", xlab="Average No of Rooms", ylab="Residuals", pch=19)

abline(h=0)

plot(ptratio, RegModel.3\$residuals, main="Residuals vs. Predictor", xlab="Pupil/Teacher Ratio", ylab="Residuals", pch=19) abline(h=0)

Plotting residuals against fitted values

plot(RegModel.3\$fitted.values, RegModel.3\$residuals, main="Residuals vs. Fitted", xlab="Fitted values", ylab="Residuals", pch=19) abline(h=0)

> anova(RegModel.2,RegModel.3)

Analysis of Variance Table

```
Model 1: medv ~ black + chas + crim + dis + lstat + nox + ptratio + rad + rm + zn

Model 2: medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm

Res.Df RSS Df Sum of Sq F Pr(>F)

1 492 9303.9

2 494 9520.3 -2 -216.4 5.7216 0.003496 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```