Ground Track Tool

Nicholas Delurgio

Code Architecture

groundTrack.m

- Function with 10-dimensional input vector
- Outputs are latitude, longitude, r_{IJK}, r_{ECEF}, Azimuth, Elevation
 groundTrackVizualize.m
- Script that initializes initial conditions for orbit
- Calls groundTrack.m to obtain solutions
- Generates plots to visualize the solutions

r_{ijk} & r_{ECEF} Trajectory

```
function nu2 = orbitPropogate(nu1,e,mu,a,TOF,k)
n = sqrt(mu/a^3);
E1 = 2*atan(sqrt((1-e)/(1+e))*tan(nu1/2));
M = n*TOF + E1 - e*sin(E1) + 2*pi*k;
E2 = kepler(M,e);
nu2 = 2*atan(sqrt((1+e)/(1-e))*tan(E2/2));
```

- **orbitPropogate.m**: function (developed in Mars project) that outputs true anomaly for a given time of flight.
 - Used in a for loop to create true anomaly values for each point in orbit
- Convert orbital elements & true anomaly values to state vector to get \mathbf{r}_{iik} trajectory
- Multiply \mathbf{r}_{iik} by an R3 rotation matrix to get \mathbf{r}_{ECEF} trajectory
 - Input to R3 is Greenwich Sidereal Time ($\omega t + \Theta_{g0}$), where ω is the rotation rate of the earth
 - Therefore, R3 input changes with each for loop iteration
- Each trajectory plotted with an Earth-sized sphere object at the origin

Ground Track

For each iteration, latitude and longitude obtained by the following trigonometric functions:

- Latitude = $\arcsin(\frac{r_{ECEFZ}}{|r_{ECEF}|})$
- Longitude = $arctan2(r_{ECEFv}, rE_{CEFx})$

Longitude & Latitude was plotted on a flat earth map, with Longitude on the x-axis and Latitude on the y-axis

Azimuth & Elevation

Converted $\mathbf{r}_{\mathsf{FCFF}}$ into Azimuth and Elevation by the following procedure:

- 1) Obtain r_{SEZ} by the following rotation matrix: inv(R3(-ObsLon)*R2(ObsLat-pi/2))
- 2) Subtract the radius of the earth to obtain $ho_{
 m SEZ}$
- 3) Calculate Azimuth by Az = arctan2(ρ_{SEZy} - ρ_{SEZx})
- 4) Calculate Elevation by El = $\arcsin(\frac{\rho_{\rm SEZZ}}{|\rho_{\rm SEZ}|})$

a) [a e i $\omega \Omega \nu$] = [7000 0.01 50 0 0 0]

- Low eccentricity means that ground track speed is fairly consistent, seen by nearequal spacing between dots
- Inclination gives spacecraft good coverage for most of the earth's population
 - Travels east on map because inclination is less than 90 degrees

b) [a e i $\omega \Omega \nu$] = [7000 0.01 110 0 0 0]

- Inclination greater than previous scenario, resulting in coverage of greater latitude ranges
 - Travels west on map since inclination is above 90 degrees
- Spacing between dots still relatively equal, and similar to the previous problem
 - Same altitude

c) [a e i $\omega \Omega \nu$] = [20000 0.6 50 0 0 0]

- High eccentricity, ground track speed varies greatly
 - Spacing between dots unequal
- Inclination is same as (a), meaning range of coverage is similar
 - Travels east
- Larger altitude means minimum spacing of dots is much smaller than previous problems
- Pattern close to repeating every three orbits

d) [a e i $\omega \Omega \nu$] = [20000 0.6 110 0 0 0]

- High eccentricity leads to large variation in dot spacings
- Inclination greater than (c), meaning the range of coverage is greater
 - Travels west on map
- Patter close to repeating every three orbits

e) [a e i $\omega \Omega \nu$] = [15000 0.5 50 0 0 0]

- High eccentricity seen by closely spaced dots at apogee and farther dots at perigee
- Inclination same as (a) and (c), provides similar coverage

f) [a e i $\omega \Omega \nu$] = [15000 0.5 50 90 0 0]

- LAN shifted by 90 degrees from (e)
 - Slow part of ground track rotated 90 degrees counter-clockwise, now in southern hemisphere
- 50-degree inclination provides similar latitude ranges to previous problems
- High eccentricity provides variation in ground track speed

g) [a e i $\omega \Omega \nu$] = [15000 0.5 50 180 0 0]

- LAN shifted by 90 degrees again
 - Results in 90-degree shift counterclockwise for ground track
 - Pattern is a reflection of (e)
- Latitude range, and ground track step variation similar to (e) and (f)

h) [a e i $\omega \Omega \nu$] = [15000 0.5 50 270 0 0]

- LAN shifted by 90 degrees again
 - Apogee now in the northern hemisphere
 - 90-degree rotation counter-clockwise
 - Reflection of (f)
 - Provides good coverage for population centers across globe
- Ground track step variation and Latitude ranges similar to previous scenarios

Repeat Ground Track Problem

To determine orbit, loop through M and N until semi-major axis is within the bounds specified [6678, 6683] km $a_{RGT} = \mu^{1/3} \left(\frac{M}{N\omega_n} \right)^{2/3}$

Semi-Major Axis: 6680.256342908875 km

Earth Revolutions (M): 7

Spacecraft Orbits (N): 111

Time of repeat period = N*Orbit Period = 111*5433.8 s = 6.981 days

Repeat Ground Track Problem

- This trajectory covers the surface of the earth well, due to its high inclination
 - Useful if the satellite requires global coverage to achieve its mission
- Orbits are equally spaced for this repeat ground track
 - Angle between orbits = 360/N = 3.2432 deg
- Required field of view = 3.2432/2
 - **= 1.6216 degrees**

