# Crosstalk on Signal-Return Loops

#### Shrinithi Venkatesan

February 29, 2024





# **Agenda**

- What is Crosstalk?
- Different Return Path Geometries
- Varying No. of Aggressors
- Best Design Practices





### Crosstalk

- Changing current in the aggressor loops creates changing magnetic field.
- Changing Magnetic field in Aggressor Loop induces voltage in the victim line.

$$V_{\text{victim}} = M \times n \times \frac{dI_{\text{aggressor}}}{dt}$$



M = mutual loop inductance between Aggressor & victim loops<math>n = Number of simultaneously switching aggressors $<math>dI_{aggressor} = current change in each aggressor$ <math>dt = rise or fall time of the aggressor





# **Shared & Separate Return Traces**



#### **Separate Return Trace Equivalent circuit**



**Equivalent circuit** 

- √ Use a 10x probe
- ✓ Use spring tips







# **Crosstalk with Common & Separate Return Traces**



| Return Path<br>Geometry | Crosstalk<br>(in mV) |
|-------------------------|----------------------|
| Common Trace            | 870                  |
| Separate Traces         | 180                  |

- Crosstalk on victim line reduces using separate return trace.
- More crosstalk observed on the falling edge as compared to the rising edge.



#### **Continuous Return Plane**







#### **Crosstalk with Continuous Return Plane**



| Return Path<br>Geometry    | Crosstalk<br>(in mV) |  |
|----------------------------|----------------------|--|
| Common Trace               | 870                  |  |
| Separate Traces            | 180                  |  |
| Continuous<br>Return Plane | 18                   |  |

- Continuous return plane shows least crosstalk on the victim line.
- Best design practice to have continuous return plane in PCB.





# No. of Simultaneously Switching Aggressors





**Common Return Trace** 

**Separate Return Traces** 





# No. of Simultaneously Switching Aggressors



**Continuous Return Plane** 

| Return Path<br>Geometry    | Crosstalk<br>(in mV) | Crosstalk<br>(in mV) |
|----------------------------|----------------------|----------------------|
| Common Trace               | 870                  | 1600                 |
| Separate Traces            | 180                  | 350                  |
| Continuous<br>Return Plane | 18                   | 163                  |

$$V_{\text{victim}} = M \times n \times \frac{dI_{\text{aggressor}}}{dt}$$

- Crosstalk increases with increase in the number of aggressors.
- Continuous return plane shows least crosstalk on the victim line.





# **Best Design Practices to Reduce Crosstalk:**

- Do not share return paths between the signal-return loops of the aggressor and victim. Use a separate return conductor.
- Reduce the loop mutual inductance between aggressor and victim signal-return paths by keeping the loops far apart.
- Reduce the number of simultaneously switching signals which have mutual inductance to the victim loop.
- Use a Continuous Return Plane on a PCB to reduce the self-inductance in the signal-return path and mutual loop inductance between aggressor and victim traces.



# Questions?

