

Sequence Listing.ST25.txt SEQUENCE LISTING

University of Copenhagen Andreasson, Erik Brodersen, Peter Jenkins, Tom Mundy, John Petersen, Nikolaj Thorgrimsen, Stefan Rocher, Anne

- <120> PLANT DISEASE RESISTANCE AND SAR REGULATOR PROTEIN
- <130> 09663.0068USWO
- <140> 10/596,010
- <141> 2006-05-25
- <150> PCT/DK2004/000822
- <151> 2004-11-26
- <150> DK PA200301759
- <151> 2003-11-28
- <150> US 60/526,319
- <151> 2003-12-01
- <160> 28
- <170> PatentIn version 3.3
- <210> 1
- <211> 669
- <212> DNA
- <213> Arabidopsis sp.
- <400> 1

atggatccgt cggagtattt tgccggcggc aatccttccg atcaacagaa ccagaagcgg 60 cagcttcaga tctgtggtcc tcgtccttca cctcttagtg ttcacaaaga ctctcacaaa 120 atcaagaaac ctccaaaaca ccctgcgccg ccgccaaatc gtgaccaacc gccgccgtat 180 attcctagag agccggtggt tatctacgcc gtatccccca aggttgtaca cgcaaccgcg 240 tctgagttca tgaacgtagt ccagcgactc acagggatct cctctggtgt tttcctcgaa 300 360 tctggcggcg gtggagatgt ttcaccggcg gcgaggctag cgtccacgga aaatgctagt ccaagaggag gaaaagaacc ggctgcgaga gatgagacgg tggaaatcaa cacggctatg 420 gaagaagcag ctgaatttgg tggttatgct ccgggaatac tctcgccatc tccggccttg 480 ttgccaacag cttctaccgg gatattctct ccgatgtatc atcaaggtgg gatgttttcg 540 600 ccggctatac cactgggatt attctcgccg gcgggattta tgagcccgtt tcgaagtcct ggctttacta gtttggtagc ttcaccaact tttgctgatt tctttagtca tatttgggat 660

caagattag

669

<211> 222

<212> PRT

<213> Arabidopsis sp.

<400> 2

Met Asp Pro Ser Glu Tyr Phe Ala Gly Gly Asn Pro Ser Asp Gln Gln 1 5 10 15

Asn Gln Lys Arg Gln Leu Gln Ile Cys Gly Pro Arg Pro Ser Pro Leu 20 25 30

Ser Val His Lys Asp Ser His Lys Ile Lys Lys Pro Pro Lys His Pro 35 40 45

Ala Pro Pro Pro Asn Arg Asp Gln Pro Pro Pro Tyr Ile Pro Arg Glu 50 55 60

Pro Val Val Ile Tyr Ala Val Ser Pro Lys Val Val His Ala Thr Ala 65 70 75 80

Ser Glu Phe Met Asn Val Val Gln Arg Leu Thr Gly Ile Ser Ser Gly 85 90 95

Val Phe Leu Glu Ser Gly Gly Gly Asp Val Ser Pro Ala Ala Arg 100 105 110

Leu Ala Ser Thr Glu Asn Ala Ser Pro Arg Gly Gly Lys Glu Pro Ala 115 120 125

Ala Arg Asp Glu Thr Val Glu Ile Asn Thr Ala Met Glu Glu Ala Ala 130 135 140

Glu Phe Gly Gly Tyr Ala Pro Gly Ile Leu Ser Pro Ser Pro Ala Leu 145 150 155 160

Leu Pro Thr Ala Ser Thr Gly Ile Phe Ser Pro Met Tyr His Gln Gly 165 170 175

Gly Met Phe Ser Pro Ala Ile Pro Leu Gly Leu Phe Ser Pro Ala Gly 180 185 190

Phe Met Ser Pro Phe Arg Ser Pro Gly Phe Thr Ser Leu Val Ala Ser 195 200 205

Pro Thr Phe Ala Asp Phe Phe Ser His Ile Trp Asp Gln Asp 210 215 220

<210> 3

Sequence Listing.ST25.txt <211> 16 <212> DNA Arabidopsis sp. <400> 3 16 atggatccgt cggagt <210> 4 16 <211> <212> DNA Arabidopsis sp. <213> <400> 4 ctaatcttca tcccaa 16 <210> 5 <211> 720 <212> DNA <213> Arabidopsis sp. <400> 5 atggataata gatcgccaag atcaagagga atcttgggtc cgagaccaat accattgaaa 60 gtccgtggag attcgcacaa gatcatcaag aagccaccac tagcgccgcc acacccgcaa 120 180 ccacaaccac cacaaaccca tcagcaagaa ccgtcacaat cgcggccgcc acctggtccc 240 gtgattatat acacagtatc tcccaggatt atccatacac accctaataa cttcatgaca ttggtccaac gtctcacagg taaaacctcc acctccacaa catcctcctc ctattcttca 300 360 tctacgtcag caccaaaaga cgcgtcaaca atggttgata catctcatgg gttgatatct ccggcggctc ggtttgctgt tacagagaag gctaatatct caaacgaact agggacattt 420 480 gttggaggcg aagggactat ggatcaatat tatcattatc atcatcatca tcatcatcaa 540 gaacaacaac atcaaaatca agggttcgag cggccaagtt tccaccatgc tgggatttta 600 tcgccgggac ctaattctct gccgtcggta tcaccggact tcttttccac tattggacca accgatccac aaggtttttc gtcgttcttt aatgacttta actctatcct tcagagtagt 660 ccatcgaaga ttcagtctcc ttcttctatg gaccttttca acaatttctt tgattcttga 720 <210> 6 239 <212> PRT <213> Arabidopsis sp. <400> 6 Met Asp Asn Arg Ser Pro Arg Ser Arg Gly Ile Leu Gly Pro Arg Pro $1 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Pro Leu Lys Val Arg Gly Asp Ser His Lys Ile Ile Lys Lys Pro 20 25 30

Sequence Listing.ST25.txt
Pro Leu Ala Pro Pro His Pro Gln Pro Gln Pro Pro Gln Thr His Gln
35 40 45

Gln Glu Pro Ser Gln Ser Arg Pro Pro Pro Gly Pro Val Ile Ile Tyr 50 60

Thr Val Ser Pro Arg Ile Ile His Thr His Pro Asn Asn Phe Met Thr 65 70 75 80

Leu Val Gln Arg Leu Thr Gly Lys Thr Ser Thr Ser Thr Thr Ser Ser 90 95

Ser Tyr Ser Ser Ser Thr Ser Ala Pro Lys Asp Ala Ser Thr Met Val 100 105 110

Asp Thr Ser His Gly Leu Ile Ser Pro Ala Ala Arg Phe Ala Val Thr 115 120 125

Glu Lys Ala Asn Ile Ser Asn Glu Leu Gly Thr Phe Val Gly Glu 130 135 140

Gly Thr Met Asp Gln Tyr Tyr His Tyr His His His His His Gln 150 155 160

Glu Gln Gln His Gln Asn Gln Gly Phe Glu Arg Pro Ser Phe His His 165 170 175

Ala Gly Ile Leu Ser Pro Gly Pro Asn Ser Leu Pro Ser Val Ser Pro 180 185 190

Asp Phe Phe Ser Thr Ile Gly Pro Thr Asp Pro Gln Gly Phe Ser Ser 195 200 205

Phe Phe Asn Asp Phe Asn Ser Ile Leu Gln Ser Ser Pro Ser Lys Ile 210 220

Gln Ser Pro Ser Ser Met Asp Leu Phe Asn Asn Phe Phe Asp Ser 225 230 235

<400> 7

atggataata gatcgccaag

<210> 8 <211> 21

20

<210> 7

<211> 20

<212> DNA

<213> Arabidopsis sp.

	<212> DNA <213> Arabidopsis sp.	
	<400> 8 tcaagaatca aagaaattgt t	21
	<210> 9 <211> 791 <212> DNA <213> Brassica oleracea	
٠	<400> 9	
	taatttttcc cttttttttt tgtttataaa tgttttggtc aatactagct cgtcgtcgac	60
ř	aaagattcat ttcgattccc aaaccacaca agaagaacac aaattagctc gaaagaaaca	120
	aactcttttg agaaaataat ggatccgtcg gagtctttcg ccggcggcaa tccttccgac	180
	caacagaacc agaaacgtca gcttcagatc tgtggtcctc gtccctcacc tctcagcgtc	240
	aacaaagact ctcacaagat caagaaacct cctaaacacc ctgctcctcc gcctcagcat	300
	cgcgaccaag ctccgctcta cgctgctcga gagccggtgg tcatctacgc cgtctcgccg	360
	aaagtcgtcc acaccacagc ctcggatttc atgaacgtcg tccagcgtct caccggcatc	420
	tcatccgccg tcttcctcga atccggtaac ggcggagatg tatctccggc ggcgagactc	480
	gccgcgaccg agaatgcaag cccgagagga ggaaaagaac cggtgatggc ggctaaagat	540
	gagacggtgg aaatcgcgac ggctatggaa gaagcagccg agttgagcgg ctatgcgccg	600
	gggatactct ccccttctcc ggctatgtta ccgacagctt ctgccggaat attctcgcag	660
	atgactactc accaaggtgg gatgttctcg ccgggattgt tttcgccggc ggggttaatg	720
	agcccgtttg gttttgctag cttggttgct tctccaacgt ttgctgattt gttcagtcat	780
	atttggggat a	791
	<210> 10 <211> 217 <212> PRT <213> Brassica oleracea	
	<400> 10	
	Met Asp Pro Ser Glu Ser Phe Ala Gly Gly Asn Pro Ser Asp Gln Gln 1 10 15	
	Asn Gln Lys Arg Gln Leu Gln Ile Cys Gly Pro Arg Pro Ser Pro Leu 20 30	
	Ser Val Asn Lys Asp Ser His Lys Ile Lys Lys Pro Pro Lys His Pro 35 40 45	
	Ala Pro Pro Pro Gln His Arg Asp Gln Ala Pro Leu Tyr Ala Ala Arg 50 55 60 Page 5	

Glu Pro 65	val v	√al	Ile	туг 70	Ala	Val	Ser	Pro	Lys 75	۷al	val	His	Thr	Thr 80		
Ala Ser	Asp F	Phe	Met 85	Asn	٧a٦	val	Gln	Arg 90	Leu	Thr	Gly	Ile	Ser 95	Ser		
Ala Val	Phe L	Leu 100	Glu	Ser	Gly	Asn	Gly 105	Gly	Asp	٧a٦	Ser	Pro 110	Ala	Ala		
Arg Leu	Ala A 115	Ala	Thr	Glu	Asn	Ala 120	Ser	Pro	Arg	Gly	Gly 125	Lys	Glu	Pro		
Val Met 130	Ala A	Ala	Lys	Asp	Glu 135	Thr	٧a٦	Glu	Ile	Ala 140	Thr	Ala	Met	Glu		
Glu Ala 145	Ala (31u	Leu	Ser 150	Gly	туг	Ala	Pro	Gly 155	Ile	Leu	Ser	Pro	Ser 160		
Pro Ala	Met L	_eu	Pro 165	Thr	Ala	Ser	Ala	Gly 170	Ile	Phe	Ser	Gln	Met 175	Thr		
Thr His		31y 180	Gly	Met	Phe	Ser	Pro 185	Gly	Leu	Phe	Ser	Pro 190	Ala	Gly		
Leu Met	Ser F 195	Pro	Phe	Gly	Phe	Ala 200	Ser	Leu	∨al	Ala	Ser 205	Pro	Thr	Phe		
Ala Asp 210	Leu F	he	Ser	His	1]e 215	Тгр	Gly									
<211> 2 <212> 0	11 20 DNA Brassi	ica	oler	acea	ı											
<400> 3 atggatco	ll cgt cg	ggag	itctt	:t											2	0
<211> 2 <212> 0	12 20 DNA Brassi	ica	oler	acea	ı											
<400> 1	12 aaa ta	atga	ctga	ıa											2	0
<211> 8	13 378 DNA															

~ ~ ~	_	•	_	
ノノコマヘ	Pra	CCICS	\sim 1	AFRAGA
<213>	DIG	ssica	v	eracea

<400> 13						
	attttgaaag	tcaaactaat	cggtctcaga	aaacaaaaat	aactttgtgt	60
gttgatgttt	aggtcaatat	actcgtcgtc	aaaacatccc	ttcaatttct	cagaccaaac	120
acagagaaga	aacaagttgg	atccaaactc	tctacaacaa	aaagtagtga	acgagagaag	180
ctctccccaa	gcgtttaatg	gatccgtcgg	agcacttcgc	cggcggtaat	cctttcgatc	240
aacagactcc	aaaacgtcag	cttcagatct	gtggccctcg	tccttcacct	ctaagcgtca	300
acaaagactc	tcacaagatc	aagaaacctc	ccaggcaccc	tgctccacct	cctcagcatc	360
accgcgacca	agctccgctc	taccctcctc	gagagccggt	ggttatctac	gccgtctcgc	420
cgaaagtcgt	gcacaccaca	acctccgatt	tcatgaacgt	cgtccagcgt	ctcaccggga	480
tctcctccga	ggtcttcctc	gaatcaagaa	acgacggaga	tgtatcaccg	gcggcgagac	540
tcgccgcgac	ggagaatgct	agcccgagag	gaggaaagga	accggtggaa	agctcgacgg	600
ctatggaaga	agcagctgag	ttcggttgtt	atgtgccggg	aatactctcg	ccgtctccgg	660
ctatgttacc	gaccgttccc	gccggaattt	tctctccgat	gtttcaccta	ggtgggttgt	720
tttcgccggc	gttgccgccg	ggattatttt	cgccggcagg	attaatgagc	cctggttatg	780
ctagtttggc	gtcaccaaat	tttgctgatt	tcttcagtca	catttgggat	ccttagagaa	840
tagattatta	gttttttta	ttatttacat	tttatgta			878

<210> 14

<400> 14

Met Asp Pro Ser Glu His Phe Ala Gly Gly Asn Pro Phe Asp Gln Gln 10 15

Thr Pro Lys Arg Gln Leu Gln Ile Cys Gly Pro Arg Pro Ser Pro Leu 20 25 30

Ser Val Asn Lys Asp Ser His Lys Ile Lys Lys Pro Pro Arg His Pro 35 40 45

Ala Pro Pro Pro Gln His His Arg Asp Gln Ala Pro Leu Tyr Pro Pro 50 60

Arg Glu Pro Val Val Ile Tyr Ala Val Ser Pro Lys Val Val His Thr 65 70 75 80

Thr Thr Ser Asp Phe Met Asn Val Val Gln Arg Leu Thr Gly Ile Ser 85 90 95 Page 7

<211> 212

<212> PRT

<213> Brassica oleracea

Ser	Glu	val	Phe 100	Leu	Glu	Ser	Arg	Asn 105	Asp	Gly	Asp	val	Ser 110	Pro	Ala	
Ala	Arg	Leu 115	Ala	Ala	Thr	Glu	Asn 120	Ala	Ser	Pro	Arg	Gly 125	Gly	Lys	Glu	
Pro	∨a1 130	Glu	Ser	Ser	Thr	Ala 135	Met	Glu	Glu	Ala	Ala 140	Glu	Phe	Gly	Cys	
Tyr 145	val	Pro	Gly	Ile	Leu 150	Ser	Pro	Ser	Pro	Ala 155	Met	Leu	Pro	Thr	Val 160	
Pro	Ala	Gly	Ile	Phe 165	Ser	Pro	Met	Phe	ніs 170	Leu	Gly	Gly	Leu	Phe 175	Ser	
Pro	Ala	Leu	Pro 180	Pro	Gly	Leu	Phe	Ser 185	Pro	Ala	Gly	Leu	меt 190	Ser	Pro	
Gly	Tyr	Ala 195	Ser	Leu	Ala	Ser	Pro 200	Asn	Phe	Ala	Asp	Phe 205	Phe	Ser	His	
Ile	Trp 210	Asp	Pro													
<210 <211 <212 <213	l>	L5 393 DNA Glyci	ine n	nax												
<400		L5														60
				_				_			_				atcaag	
		-											-		ctata	
				-			_							_	acctc	
															acaat	
															cggcg	
										itgg	ggaa	ıaaaa	ica 1	gtto	ttctt	
CCda	igigi	Lyd a	acaat	alla	ıl da	ıgcga	ıtgtç	y yaa	ı							393
<210 <211 <212 <213	L> : !> F	L6 L31 PRT Glyci	ine n	nax												

Gln Leu Gln Gly Pro Arg Pro Thr Pro Leu Arg Ile Asn Lys Asp Ser Page 8

<400> 16

1				5			Se	quen	ce L 10	isti	ng.S	т25.	txt	15		
His	Lys	Ile	Lys 20	Lys	Pro	Pro	Leu	Ala 25	Pro	Gln	Pro	Ser	His 30	Pro	His	
Gln	Pro	Pro 35	Pro	Arg	Gln	Pro	Ile 40	Ile	Ile	Tyr	Thr	Va1 45	Ser	Pro	Lys	
val	Ile 50	Нis	Thr	Thr	Pro	Ser 55	Asp	Phe	Met	Asn	Leu 60	va1	Gln	Arg	Leu	
Thr 65	Gly	Ser	Ser	Ser	Ser 70	Ser	Ser	Ala	Glu	va1 75	val	Met	Ser	Asn	Asn 80	
Asn	Asn	Thr	Thr	His 85	val	Asp	Pro	Phe	Asn 90	Asn	Gly	Gly	Gly	G]y 95	Met	
Val	Ser	Pro	Ala 100	Ala	Arg	Tyr	Ala	Thr 105	Ile	Glu	Lys	Ala	Met 110	Ser	Pro	
Met	Gly	Lys 115	Lys	His	Val	Leu	Leu 120	Pro	Ser	٧a٦	Asn	Asn 125	Ile	Ile	Ser	
Asp	Asp Val Glu 130															
<210 <211 <212 <213	l> 1 ?> [l7 l9 DNA Glyci	ine n	nax												
<400 ccat	_	l7 gaa g	ggcca	atgto	2											19
<210 <211 <212 <213	> 2 > 0	L8 20 DNA Glyci	ine m	nax												
<400 tgaa		l8 :gt g	ggtgd	caac	:g											20
<210 <211 <212 <213	> 9 > 0	L9 927 DNA Dryza	a sp.													
<400 gtgg		.9 :gg a	atto	ccgt	c gt	cgac	gtcg	ccg	gtcgo	cgt	cgco	gtc	gtc o	gggc	agcat	60
cago	agca	igc d	gacg	gacgo	c go	ggcg	gcag	ctt				jccc	ccc g	gcggd	tcaac	120
									F	age	9					

gtgcggatgg	agtcgcacgc	catcaagaag		gggcggccgc	ggcggcggcg	180
gcggcgcagg	cgaggcggga	gcagcagcag	ccgccgccgc	gggcgccggt	gatcatctac	240
gacgcgtcgc	cgaagattat	ccacgccaag	cccaacgagt	tcatggcgct	cgtgcagcgg	300
ctcaccggcc	cggggtcggg	gccgccggcg	ccgccgcatc	aaggggaggc	ccaggcgcag	360
gactacccga	tgatggacga	ggccgccgcg	cagcagttct	tcccgccgga	gctgctgctc	420
tcgccgtcgg	ccgcgatgtc	cccggcggcg	aggctggcga	ccatcgagag	gtccgtccgc	480
ccgatgcccg	agccggcgcc	ggagtacgtg	gacatcacga	acggcggcgg	cggcggcggg	540
gtcgacgacg	gcggcctcgc	ggcgatcctc	ggctcgatcc	ggccaggcat	cctctccccg	600
ctccctcct	ccctcccgcc	cgccgccgtc	cccggccagt	tctcgccgct	cccgttcgac	660
gcgaggccgc	tcccgttcga	cgcgagctgc	atcagctggc	tcaacgagct	gagccccatc	720
ctccgggccg	cctccgccgg	cgcggcctcg	tccggcagcg	gcggcggcgg	cagcggtggc	780
aacaccagca	acggcggcgg	cgcccgcccg	ccgccgtcct	actacgccga	cccattcgtc	840
cccagcccac	gtcacctcct	cgccacgccc	accgtgccgt	cgccggcgac	ctgcgccgag	900
ctcttcagca	acctgccgga	tctctag				927

<210> 20

<211> 306 <212> PRT

<213> Oryza sp.

<400> 20

Met Glu Phe Pro Ser Ser Thr Ser Pro Ser Pro Ser Pro Ser Ser Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gln His Gln Gln Pro Thr Thr Pro Arg Arg Gln Leu Gln Gly Pro 20 25 30

Arg Pro Pro Arg Leu Asn Val Arg Met Glu Ser His Ala Ile Lys Lys 35 40 45

Pro Ser Ser Gly Ala Ala Ala Ala Ala Ala Ala Ala Gln Ala Arg Arg 50 55 60

Glu Gln Gln Pro Pro Pro Arg Ala Pro Val Ile Ile Tyr Asp Ala 65 70 75 80

Ser Pro Lys Ile Ile His Ala Lys Pro Asn Glu Phe Met Ala Leu Val 85 90 95

Gln Arg Leu Thr Gly Pro Gly Ser Gly Pro Pro Ala Pro Pro His Gln 100 105 110

Gly Glu Ala Gln Ala Gln Asp Tyr Pro Met Met Asp Glu Ala Ala Ala 115 120 125

Gln Gln Phe Phe Pro Pro Glu Leu Leu Ser Pro Ser Ala Ala Met 130 135 140

Ser Pro Ala Ala Arg Leu Ala Thr Ile Glu Arg Ser Val Arg Pro Met 145 150 155 160

Pro Glu Pro Ala Pro Glu Tyr Val Asp Ile Thr Asn Gly Gly Gly 165 170 175

Gly Gly Val Asp Asp Gly Gly Leu Ala Ala Ile Leu Gly Ser Ile Arg 180 185 190

Pro Gly Ile Leu Ser Pro Leu Pro Ser Ser Leu Pro Pro Ala Ala Val 195 200 205

Pro Gly Gln Phe Ser Pro Leu Pro Phe Asp Ala Arg Pro Leu Pro Phe 210 220

Asp Ala Ser Cys Ile Ser Trp Leu Asn Glu Leu Ser Pro Ile Leu Arg 225 230 235 240

Ala Ala Ser Ala Gly Ala Ala Ser Ser Gly Ser Gly Gly Gly Ser 245 250 255

Gly Gly Asn Thr Ser Asn Gly Gly Gly Ala Arg Pro Pro Pro Ser Tyr 260 265 270

Tyr Ala Asp Pro Phe Val Pro Ser Pro Arg His Leu Leu Ala Thr Pro 275 280 285

Thr Val Pro Ser Pro Ala Thr Cys Ala Glu Leu Phe Ser Asn Leu Pro 290 295 300

Asp Leu 305

<210> 21

<211> 16

<212> DNA

<213> Oryza sp.

<400> 21

atggaattcc cgtcgt

<210> 22

16

<211> <212> <213>	19 DNA Oryz	za sp.	364	uence craci	iig.3123. CXC		
<400> ctagaga	22 atcc	ggcaggttg					19
<210> <211> <212> <213>	23 781 DNA CaM\	/ 35s promot	er duplicat	ced			
<400> atggtgg	23 gagc	acgacactct	cgtctactcc	aagaatatca	aagatacagt	ctcagaagac	60
caaagg	gcta	ttgagacttt	tcaacaaagg	gtaatatcgg	gaaacctcct	cggattccat	120
tgccca	gcta	tctgtcactt	catcaaaagg	acagtagaaa	aggaaggtgg	cacctacaaa	180
tgccato	catt	gcgataaagg	aaaggctatc	gttcaagatg	cctctgccga	cagtggtccc	240
aaagat	ggac	ccccacccac	gaggagcatc	gtggaaaaag	aagacgttcc	aaccacgtct	300
tcaaag	caag	tggattgatg	tgataacatg	gtggagcacg	acactctcgt	ctactccaag	360
aatatca	aaag	atacagtctc	agaagaccaa	agggctattg	agacttttca	acaaagggta	420
atatcg	ggaa	acctcctcgg	attccattgc	ccagctatct	gtcacttcat	caaaaggaca	480
gtagaaa	aagg	aaggtggcac	ctacaaatgc	catcattgcg	ataaaggaaa	ggctatcgtt	540
caagat	gcct	ctgccgacag	tggtcccaaa	gatggacccc	cacccacgag	gagcatcgtg	600
gaaaaag	gaag	acgttccaac	cacgtcttca	aagcaagtgg	attgatgtga	tatctccact	660
gacgtaa	aggg	atgacgcaca	atcccactat	ccttcgcaag	accttcctct	atataaggaa	720
gttcatt	ttca	tttggagagg	acacgctgaa	atcaccagtc	tctctctaca	aatctatctc	780
t							781
<210> <211> <212> <213>	24 253 DNA Agro	obacterium M	NOS termina1	tor			
<400> cgttcaa	24 aaca	tttggcaata	aagtttctta	agattgaatc	ctgttgccgg	tcttgcgatg	60
attatca	atat	aatttctgtt	gaattacgtt	aagcatgtaa	taattaacat	gtaatgcatg	120
acgtta	ttta	tgagatgggt	ttttatgatt	agagtcccgc	aattatacat	ttaatacgcg	180
atagaaa	aaca	aaatatagcg	cgcaaactag	gataaattat	cgcgcgcggt	gtcatctatg	240
ttacta	gatc	999					253
<210> <211> <212>	25 189 DNA						

<213> Synthetic intron

<400> 25
gtaagtttct gcttctacct ttgatatata tataataatt atcattaatt agtagtaata 60
taatatttca aatattttt tcaaaataaa agaatgtagt atatagcaat tgctttctg 120
tagtttataa gtgtgtatat tttaatttat aacttttcta atatatgacc aaaatttgtt 180
gatgtgcag 189

<210> 26

<211> 207

<212> PRT

<213> Oryza sp.

<400> 26

Met Glu Gln Gln Leu Ser Ser Pro Ser Ala Ser Gln Arg Gly Gly 1 5 10 15

Arg Glu Leu Gln Gly Pro Arg Pro Ala Pro Leu Lys Val Arg Lys Glu 20 25 30

Ser His Lys Ile Arg Lys Gln Glu Pro Val Gln Gln Leu Arg Gln Pro 35 40 45

Val Ile Ile Tyr Thr Met Ser Pro Lys Val Val His Ala Asn Ala Ala 50 55 60

Asp Phe Met Ser Val Val Gln Arg Leu Thr Gly Ala Pro Pro Thr Ala 65 70 75 80

Pro Pro Gln Pro Gln Pro His His Pro Thr Leu Leu Ala Gln Met Pro 85 90 95

Pro Gln Pro Ser Phe Pro Phe His Leu Gln Gln Gln Asp Ala Trp Pro 100 105 110

Gln Gln Gln His Ser Pro Ala Ala Ile Glu Gln Ala Ala Ala Arg Ser 115 120 125

Ser Gly Ala Asp Leu Pro Pro Leu Pro Ser Ile Leu Ser Pro Val Pro 130 135 140

Gly Thr Val Leu Pro Ala Ile Pro Ala Ser Phe Phe Ser Pro Pro Ser 145 150 155 160

Leu Ile Ser Pro Val Pro Phe Leu Gly Ala Thr Thr Thr Ser Ser Ala 165 170 175 Sequence Listing.ST25.txt
Ala Pro Ser Thr Ser Pro Ser Pro Met Gly Gly Ser Ala Tyr Tyr Trp
180 185 190

Asp Leu Phe Asn Met Gln Gln Gln His Tyr His His Gln Asn 195 200 205

<210> 27

<400> 27

<211> 238

<212> PRT

<213> Zea mays

Met Asp Pro Pro Ser Ser Ser Gly Arg Pro Thr Thr Pro Arg Arg Gln 1 5 15

Leu Gln Gly Pro Arg Pro Pro Arg Leu Asn Val Arg Met Glu Ser His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Ile Lys Lys Pro Ser Ala Ser Gly Ala Pro Pro Ala Pro Gly Gln 35 40 45

Gly Arg Pro Arg Asp His His His His Pro Gln Pro Gly Arg Ala 50 60

Pro Val Ile Ile Tyr Asp Ala Ser Pro Lys Val Ile His Ala Lys Pro 65 70 75 80

Ser Glu Phe Met Ala Leu Val Gln Arg Leu Thr Gly Pro Gly Ala Gln 85 90 95

Ala Gln His Glu Arg His Val Ala Asp Asp Asp Ala Thr Ala Asn Gly
100 105 110

Gly Gly Val Leu Gly Gln Ala Phe Leu Pro Pro Glu Leu Leu Leu Ser 115 120 125

Pro Ser Ala Ala Met Ser Pro Ala Ala Arg Leu Ala Thr Ile Glu Arg 130 135 140

Ser Val Arg Pro Val Pro Ala Pro Ala Pro Ala Pro Asp Tyr Ala Ala 145 150 155 160

Asp Gly His Pro Arg Gly Gly Ala Arg Pro Arg Glu Ala Pro Arg His 165 170 175

Pro Val Pro Ala Ala Val Leu Ala Ala Ala Gly Arg Arg Val Gly Pro 180 185 190

Sequence Listing.ST25.txt

Val Leu Ala Ala Leu Arg Pro Gln Gln Arg Gln Leu Ala Gln Arg

195 200 205 Ala Gln Pro His Pro Pro Gly Ser Val His Gly Gln Arg Ser Ala Pro 210 215 220 Leu Ala His Ala His Gly Pro Thr Gly Gly Ser Arg Gln Pro 225 230 235 <210> <211> <212> 28 271 **PRT** Zea mays <400> 28 Gln Gly Pro Arg Pro Pro Arg Leu Ala Val Ser Lys Asp Ser His Lys
1 10 15 Val Arg Lys Pro Pro Val Ala Pro Gln Arg Gln Gln His Gln 20 25 30 Gln Pro Ala Ala Gln Leu Gln Gln Gln His Gln Tyr His Gln Gln
35 40 45 Gln Gln Gln Gly Arg Gln Pro Val Ile Ile Tyr Asp Ala Ser Pro 50 60 Lys Val Ile His Thr Lys Pro Gly Asp Phe Met Ala Leu Val Gln Arg 65 70 75 80 Leu Thr Gly Pro Gly Ser Thr Ser Gln Ala Gln Phe Asp Ala Ala Ala 85 90 95 Ala Ala Ala Gly Pro Ser His Pro Ala Ala Met Glu Phe Glu Pro Arg $100 \hspace{1cm} 105 \hspace{1cm} 110$ Glu Phe Leu Leu Ser Pro Thr Ala Ala Leu Ser Pro Ala Ala Arg Leu 115 120 125 Ala Ala Ile Glu Arg Ser Val Arg Pro Leu Pro Pro His His Ala Pro 130 140 Ala Ala Val Pro Pro Tyr Phe Gly Ala Thr Asn Asp Asp Gly Phe Phe 145 150 155 160

Leu Pro Gly Ser Ala Asp Met Asp Ser Leu Ser Ala Ala Leu Gly Pro 165 170 175

Page 15

Sequence Listing.ST25.txt
Pro Ala Gly Arg Pro Gly Ile Leu Ser Pro Ala Ala Leu Pro Pro Ala
180 185 190

Ala Ser Thr Gly Leu Phe Ser Pro Met Pro Phe Asp Pro Ser Cys Leu 195 200 205

Ser Trp Leu Ser Glu Leu Ser Pro Phe Leu Pro Ser Ala Gly Thr Arg 210 220

- . Ala Ala Ala Ala Gly Leu Leu Asp Gln Ala Pro Phe Ala Pro Ser Pro 225 230 235 240
- Arg Ser Ser Leu Leu Leu Ser Thr Pro Thr Met Pro Ser Pro Ala Thr 245 250 255

Phe Ser Val Leu Glu Phe Phe Ser Ser Pro Asn Phe Pro Asp Leu 260 265 270