두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Robo:Loop	제출자 성명	홍송은		
참여 명단	전효재, 홍송은, 김사웅				
모임 일시	2025년 04월 29일 16시 40분 ~ 17시 40분				
장소	온라인 구글 미팅	출석 인원	3		
학습목표	• Fashion MNIST 데이터셋의 구조와 클래스 라벨을 이해하고 시각화한다.				
	• 이미지 특성에 맞춘 모델을 직접 설계하고, 다양한 구조(CNN 등)를 실험해본다.				
	• 성능 지표와 시각화 도구(confusion matrix 등)를 통해 모델의 학습 흐름과 오류를 해석한다.				
	서로 다른 접근법을 비교 분석하며, 성능 향상과 일반화 능력 강화를 위한 인사이트를 도출한다.				
학습내용	 Fashion MNIST 데이터셋 개요 총 70,000개 이미지 (훈련용 60,000개, 테스트용 10,000개) 흑백 이미지, 크기: 28x28 픽셀 클래스 수 10개 Fashion MNIST 데이터셋은 기존의 MNIST 숫자 데이터셋보다 실제 이미지 분류 문제에 더 가깝고 난이도도 약간 더 높다. Fashion MNIST 실습 				

홍송은

- MLP, CNN, Improved CNN, Enhanced CNN 총 4종류 모델
 구현 및 비교
 - MLP: FC(128→64), ReLU, Flatten → Accuracy 약 88%
 - CNN: Conv(1→32→64) + Pooling + FC → Accuracy 약 92.5%
 - Improved CNN: CNN 구조 + BatchNorm, Dropout 추가 → Accuracy 약 93%
 - Enhanced CNN: Conv37# + FC(256), Scheduler, Early
 Stopping → Accuracy 94%
 - => 구조 복잡도와 정규화 기법 적용에 따라 성능 점진적 향상되며 Dropout과 BatchNorm은 과적합 방지 및 학습 안정성에 효과적
- 각 모델별로 Epoch 단위의 Train/Test Loss, Accuracy 시각화
 - MLP는 오버피팅 경향, CNN 기반 모델은 일반화 성능 우수
 - Test Loss 증가 시작점 기준으로 Overfitting 여부 판단

• 전효재

- 。 CNN 사용
 - 컨볼루션 레이어 2층, 선형 레이어 2층으로 구성
 - 에포크 15로 설정
 - 결과

- 。 결과분석
 - 에포크가 약 7까지, 모델이 학습 7회까지는 성능 향상으로 보이지만 이후는 과적합에 가까움
- 정확도가 낮은 이유 분석
 - 라벨 예측 실패 이미지

Pred: Shirt True: Dress

Pred: Ankle boot True: Sneaker

- 1) 화질문제로 얕은 층의 모델과 적은 에포크에서도 과적합 발생
- 2) 좌측 이미지의 경우는 개선방안이 있을 수 있으나 우측사진과 같은 경우는 아래의 Ankle boot와 Sneaker와 비교했을 때 육안으로 Ankle boot에 가깝다고 볼 정도로 두 라벨의 구분이 어렵기 때문에 모델 변경으로 정확도를 향상시키는데에는 한계가 있을 것으로 예상됨

Pred: Sneaker Pred: Ankle boot True: Sneaker True: Ankle boot

• 김사웅

- SimpleCNN은 흑백 이미지를 처리하는 기본적인 CNN 모델임.
- 첫 번째 합성곱층은 Conv2d(1→32) 구조로, 특징을 추출한 뒤 ReLU와 MaxPooling을 적용함.
- 두 번째 합성곱층은 Conv2d(32→64)로, 동일하게 처리해 더 깊은 특징을 뽑아냄.
- Conv 결과는 (64×7×7) 크기로 펼쳐져 완전연결층에 전달됨.
- fc1에서 128차원으로 줄이고, fc2에서 10개 클래스에 대한 점수를 출력함.

		。 ReLU는 비선형성을 추가해 복잡한 패턴 학습이 가능하게	
		해줌.	
		MaxPooling은 특징을 요약하고 연산량을 줄이며 과적합 방지에 도움을 줌.	
		○ 필터는 학습을 통해 엣지, 텍스처 등 유용한 특징을 자동으로 감지하게 됨.	
		Conv 층은 지역 정보를 뽑고, FC 층은 이를 종합해 전역 의미로 바꿔 예측함.	
		○ 이 모델은 다중 분류 문제에 적합하며 CrossEntropyLoss와 함께 사용하면 됨.	
활동평가	전효재	얕은 구성의 모델과 적은 에포크로 우선 테스트 후 변화를 주며 정확도를 비교해보려고 했으나 테스트 단계에서 과적합을 보여서 어려움을 겪음. 모델의 변화로 성능 개선 보다는 모델의 문제를 찾기 위해 결과 이미지를 보고 분석해봤으며 과적합이 왜 일어났고 정확도가 낮은 이유를 알게 됨.	
	홍송은	다양한 구조를 직접 구현하고 실험해보며, 단순한 모델에 정규화와 과적합 방지 기법을 적용했을 때 성능 향상뿐만 아니라 학습 안정성까지 개선됨을 확인함. 특히 BatchNorm + Dropout + Scheduler + Early Stopping 조합이 성능 향상에 크게 기여함이라 더욱 인상 깊었음. 다만 아직은 오버피팅을 개선하는 것에 어려움을 느끼기에 Early Stopping이나 정규화 기법을 더 다양한 조건에서 실험해보며 감을 쌓는 것이 필요하다고 생각함.	
	김사웅	mnist fashion data 를 다뤄보고 한줄한줄 코드를 해석하면서 cnn의 합성곱이 행렬의 요소 곱으로 행렬을 생성하는것을 알게됨 패딩값을 0으로 주어 결과값을 그대로 가져가서 그것을 데이터에 그대로 반영함 그리고 크기를 행렬의 크기를 줄여 과적합을 방지함	

과제	 컴퓨터비전 1~3주차 강의 내용을 정리하고, 핵심 개념 및 중요 부분을 중심으로 학습 정리본: 5월 7일 수요일 23:59까지 Slack에 공유 		
향후 계획	 PyTorch로 이진 분류, 다중 분류, 다중 레이블, 회귀 문제를 각각 생각해본다. BCE, CrossEntropy, MSE 등의 손실 함수 동작 원리를 코드로 비교 분석한다. Sigmoid와 Softmax의 차이 및 위치(Sigmoid는 출력단, Softmax는 Loss 내부)를 명확히 이해한다. 실전 예제에 각 유형을 적용하며 오차 지표와 모델 동작을 직접확인한다. 		
첨부 자료	스타디호만 1 - 타디호만		
	스타디 화면 Ped State The Cold Th		
	결과물 Github 주소:		