

Hested vadical/surd. ex 4/12 - W15 + V8 Precise def. K/F field ext. de K is a nested radical over Fifthere is a F=FoCFIC---CFn with & E Fn and Titl = Filail where some power à ai e Ti prime power.

"Fit=Film/bil, bieFi" , ECT is a nested radical over d2 a: Given f(x) E F[x] & a field Kin which f(x) splits are the nots nested ? A: Yes for f(x) of deg 2,3,4. (char 0). Mm. (Abel + Galois + Kummer + -.-) There exist f(x) & Q[x] of dg 5 (& above) whose complex nots

are not nested vadicals over Q2. Folklore: - There is no "formula" for the vots of a quintic. ingredients: +,-,x,;

Proof idea - Heart of Galvis theory. Principle. If di have specific alg. Structure then (often) there are unexpected alg. relations among them Impediments to permuting
The noots conevertly. is restricted Galgo C Sn

Want to show if mots are
expressible as nested radicals,
then we are in the first
Situation.
In contrast, there are
polys whose roots look like
Second Sp.
Let K/t be a held ext
in char O. Say dek is any
als element.
f(x) E F[x] min. Poly of &

Thm: Let G= Gal gp of f(x). If d is a nested radical then G is solvable. Conversely if G is solvable then a is a nested vadical-S₂, S₃, S₄ & all their subges are solvable. But S5 & A5 are not 1

	finite		there is	4
Chai	in ap	Suplies		
Such	that	G: (C G';+1	is noma
and	Giti	/Gi	is cyclic	ovder.
Eqv:		Cycli obeli	(91)	

18 is solvable Any abelian 5p is solvable $C_{18} \times C_{9}$

= Tower of cyclics
of prime order Solvable