Digital Image Processing 4th Edition

Gonzalez and Woods Pearson/Prentice Hall © 2018

November 18, 2021

CORRECTIONS

Some of the corrections listed may already be incorporated in your printing of the book

Page	Reads	Should Read
55, six lines from bottom	W/2	1/2 <i>W</i>
67-121	The running heads in Section 2.6 starting in pg. 67 show as 2.5. They all should be 2.6.	
71, Fig. 2.29 caption.	28 light years	28 million light years
97, Ex. 2.12, replace last line:	This event set has 11 elements because A and B share element (1,2). Thus, $P(A \cup B) = 11/36 = 0.31$.	
186, 2nd line below Eq. (3-53)	a respectable 5.2.	a respectable 5.5.
258, 1st eq. in Ex 4.2	$dt = e^{-j2\pi\mu}$	$dt = e^{-j2\pi\mu 0} = e^0 = 1$
276, Eq. (4-52)	$\mathcal{S}(t,z) = \begin{cases} 1 & \text{if } t = z = 0\\ 0 & \text{otherwise} \end{cases}$	$\mathcal{S}(t,z) = \begin{cases} \infty & \text{if } t = z = 0\\ 0 & \text{otherwise} \end{cases}$
300, equation, middle of page.	$(f \star h)(x) = \sum_{m=0}^{300} f(x)h(x-m)$	$(f \star h)(x) = \sum_{m=0}^{300} f(m)h(x-m)$
301, labels in Figs. 4.27(e),(j).	$(f \star g)(x)$	$(f \star h)(x)$
317, Ex 4.15, 6th line	from Fig. 3.58(e)	from Fig. 3.56(e)
341, Eq. (4-147)	The equation should read: $H(u,v) = (\gamma_H - \gamma_L)[1 - e^{-cD^2(u,v)/D_0^2}] + \gamma_L$	
343, below Eq. (4-148)	I the text below Eq. (4-148), lines 3, 6, and 12: replace "bandpass" with "bandreject"	
352, first line	$W_M^{u+K} = W_K^u$	$W_K^{u+K} = W_K^u$
353, Eq. (4-172)	$\alpha(n) = M \log_2 M$	$\alpha(p) = M \log_2 M$
387, 2nd line above Ex 5.5	Problem 3.18	Problem 3.47
408, Eq. (5-84)	Upper limit in last summation reads $M-1$	Replace with $N-1$
446, 1st line of Proj. 5.2(a)	three levels	four levels
456, top side comment box	Change $s_{3,0}$ to $s_{0,3}$.	
456, Eq. (6-22)	The elements of the second <i>column</i> vector should be: $s_{0,u}, s_{1,u},, s_{N-1,u}$	
465, 3 rd line from top	x = 0, 1,, 7	x = 0, 1/8,, 7/8
478, Step 3 of Example 6.19	The components of the column vector h should be $1, e^{-j\pi/8}, e^{-j\pi/4}$, and $e^{-j3\pi/8}$	
489, last parag, penultimate line	Fig. 6.16(b)	Fig. 6.17(b)
506, Eq. (6-150)	$g_1(n) = (-1)^n h_0(n)$	$g_1(n) = (-1)^{n+1} h_0(n)$
563, Fig. 7.29 Caption	(d), (e)-(f) should read: (d) The required CMY mapping function. (e)-(f) The required CMYK mapping functions.	
598, Example 8.1	In the first eq. of the example, after the second term, insert the term "+ 0.25(3)"	
599, Table 8.1	Change the 2 rd , 3 rd , and 4 th entries in the Code 1 col to: 10000000, 11000100, and 11111111	
696, Fig. 9.3(c)	Elements (3,5), (3,11), (5,5), and (5,11) should be 0 (white in the figure)	
832, 7 lines from bottom	set, Q , of observations	set of Q vector observations
832, 2 lines from bottom	} be set of vector observations	\dots } be a set of vector observations
833, 3 lines above Eq. (10-85)	\dots partition the set Q of observations \dots	\dots partition the set of Q observations \dots
835, Fig. 10.50, caption line 1	600×480	600×800

844, 8 lines from bottom 908, 4th line from end of example	Eq. (10-4) 1+t	Eq. (10-97)	
973, 7th line of example	Figure 12.14(c)	Figure 12.14(d)	
1018, 2 nd parag. replace line 5		ite and pixels at or below the threshold as	
1018 lines 6 and 7	(all pixel values are at or above 0), with 0-valued pixels showing as black.		
1021 3 rd parag line 7	that do change	that do not change	
1121, 3 rd line from top	$\delta_{x,y}(+1)$	$\delta_{u,v}(+1)$	
1126, last line of last parag	99.9%	99.4%	
. · ·			
920, Fig. 11.20(e)	Figure 11.20(e) should look this:		
984, Eq. (12-23)	So that the eq will match Fig. 12.21, change it to: eccentricity = $\sqrt{\lambda_1^2 - \lambda_2^2}/\lambda_1 = \sqrt{1 - (\lambda_2/\lambda_1)^2}$ $\lambda_1 \ge \lambda_2$		
984, 1st line below Eq. (12-23)	For a line $\lambda_1 = 0$	For a line $\lambda_2 = 0$	
1007, Fig. 12.40	Figure 12.40 should look as follows. You can down http://www.imageprocessingplace.com/downloads	nload a corrected, high resolution copy from V3/public downloads/DIP4E Fig1240 Corrected.zip	

Page 3 of 4 18 November, 2021

Possible Missing References

Roberts, L. G. [1965]. "Machine Perception of Three-Dimensional Solids," in *Optical and Electro-Optical Information Processing*, Tippet, J. T. (ed.), MIT Press, Cambridge, MA.

Robertson, A. R. [1977]. "The CIE 1976 Color Difference Formulae," Color Res. Appl., vol. 2, pp. 7–11.

Rosenblatt, F. [1959]. "Two Theorems of Statistical Separability in the Perceptron," In *Mechanisation of Thought Processes: Proc. of Symposium No. 10*, held at the National Physical Laboratory, November 1958, H. M. Stationery Office, London, vol. 1, pp. 421–456.

Rosenblatt, F. [1962]. *Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms*, Spartan, Washington, D. C.

Rosenfeld, A. and Kak, A. C. [1982]. *Digital Picture Processing*, vols. 1 and 2, 2nd ed., Academic Press, NY.

Ross, J. C. [2011]. The Image Processing Handbook, 6th ed., CRC Press, Boca Raton, FL.

Ross, S. M. [2014]. A First Course in Probability, 9th ed., Pearson Prentice-Hall, Upper Saddle River, NJ.

Gonzalez/Woods *Digital Image Processing* Errata Sheet Page 4 of 4 18 November, 2021

Russo F. and Ramponi, G. [1994]. "Edge Extraction by FIRE Operators," *Fuzz-IEEE '94*, vol. 1, pp. 249–243, IEEE Press, New York.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. [1986]. "Learning Internal Representations by Error Propagation," In *Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1: Foundations*, Rumelhart, D. E., et al. (eds.), MIT Press, Cambridge, MA, pp. 318–362.