Appendix A – Logs and Antilogs for Galois Field 256

In GF(256), each number can be represented by $\alpha^n (0 \le n \le 255)$. Ex:

$$1 = \alpha^{0}$$

$$2 = \alpha^{1}$$

$$4 = \alpha^{2}$$

$$8 = \alpha^{3}$$

$$16 = \alpha^{4}$$

$$32 = \alpha^{5}$$

$$64 = \alpha^{6}$$

$$128 = \alpha^{7}$$

The above part is the same as the polynomial representation mentioned in Section III. E (1). As the power goes larger, we need to apply multiplication rule to calculate the number:

$$\alpha^8 = \alpha^8 \mod P(\alpha)$$

Remember that the number representation of α^8 is 256 (9'b100000000), and $P(\alpha) = \alpha^8 + \alpha^4 + \alpha^3 + \alpha^2 + 1$ is 285 (9'b100011101), the modulo operation can be achieved by XOR logic (Since the subtraction is same as XOR in GF(256)):

$$\alpha^8 = \alpha^8 \mod P(\alpha) = 256 \text{ XOR } 285 = 29$$

Fig. A.1 This figure shows why a modulo operation is equal to the XOR logic.

We can find the number with higher power by the similar method:

$$\alpha^{9} = \alpha^{8} \times \alpha = 29 \times 2 = 58$$

$$\alpha^{10} = \alpha^{9} \times \alpha = 58 \times 2 = 116$$

$$\alpha^{11} = \alpha^{10} \times \alpha = 116 \times 2 = 232$$

$$\alpha^{12} = \alpha^{11} \times \alpha = 232 \times 2 = 464 \, XOR \, 285 = 205$$

The full table of GF (256) from α^0 to α^{255} can be found in the attached excel file "log_antilog.xlsx".

Appendix B – The Error Correction Steps for Rank B Test Pattern 00

The codewords of Rank B test pattern 00 are:

[64,247,116,7,114,230,230,70,71,82,230,86,71,82,231,71,112,236,17,236,17,236,17,236,17,236,17,236,17,236,17,236,229,84,149,108,126,123,9,11,50,193,94,112,219,217,206,109]

If you decode directly without error correction, the decoded text will be "w@w.nddu.edu.tw". The true text should be "www.nthu.edu.tw", with the codewords below:

[64,247,119,119,114,230,231,70,135,82,230,86,71,82,231,71,112,236,17,236,17,236,17,236,17,236,17,236,17,236,17,236,17,236,229,84,149,108,126,123,9,11,50,193,94,112,219,217,206,109]

Let us run the error correction steps to get the correct codewords.

First, convert the error codewords to α^n notation:

$$\begin{array}{l} [\alpha^{6},\alpha^{232},\alpha^{10},\alpha^{198},\alpha^{155},\alpha^{160},\alpha^{160},\alpha^{48},\alpha^{253},\alpha^{148},\alpha^{160},\alpha^{219},\alpha^{253},\alpha^{148},\alpha^{81},\alpha^{253},\alpha^{202},\alpha^{122},\alpha^{100},\alpha^{122},\alpha^{100},\alpha^{122},\alpha^{100},\alpha^{122},\alpha^{100},\alpha^{122},\alpha^{100},\alpha^{122},\alpha^{169},\alpha^{143},\alpha^{184},\alpha^{250},\alpha^{167},\alpha^{172},\alpha^{223},\alpha^{238},\alpha^{194},\alpha^{45},\alpha^{70},\alpha^{202},\alpha^{177},\alpha^{96},\alpha^{111},\alpha^{133}] \end{array}$$

Next, calculate the syndrome:

$$S_{0} = R(1) = \alpha^{6} XOR \alpha^{232} XOR \alpha^{10} XOR \dots XOR \alpha^{111} XOR \alpha^{133} = \alpha^{211}$$

$$S_{1} = R(\alpha) = (\alpha^{6} \times \alpha^{43}) XOR(\alpha^{230} \times \alpha^{42}) XOR \dots XOR \alpha^{133} = \alpha^{244}$$

$$S_{2} = R(\alpha^{2}) = (\alpha^{6} \times \alpha^{86}) XOR(\alpha^{230} \times \alpha^{84}) XOR \dots XOR \alpha^{133} = \alpha^{246}$$

$$S_{3} = R(\alpha^{3}) = (\alpha^{6} \times \alpha^{129}) XOR(\alpha^{230} \times \alpha^{126}) XOR \dots XOR \alpha^{133} = \alpha^{100}$$

$$S_{4} = R(\alpha^{4}) = (\alpha^{6} \times \alpha^{172}) XOR(\alpha^{230} \times \alpha^{168}) XOR \dots XOR \alpha^{133} = \alpha^{62}$$

$$S_{5} = R(\alpha^{5}) = (\alpha^{6} \times \alpha^{215}) XOR(\alpha^{230} \times \alpha^{210}) XOR \dots XOR \alpha^{133} = \alpha^{60}$$

$$S_{6} = R(\alpha^{6}) = (\alpha^{6} \times \alpha^{3}) XOR(\alpha^{230} \times \alpha^{252}) XOR \dots XOR \alpha^{133} = \alpha^{139}$$

$$S_{7} = R(\alpha^{7}) = (\alpha^{6} \times \alpha^{46}) XOR(\alpha^{230} \times \alpha^{39}) XOR \dots XOR \alpha^{133} = \alpha^{136}$$

Then, solve σ_4 , σ_3 , σ_2 , σ_1 for:

$$\begin{array}{lll} \alpha^{211}\sigma_{4} - \alpha^{244}\sigma_{3} + \alpha^{246}\sigma_{2} - \alpha^{100}\sigma_{1} + \alpha^{62} &= 0 & \cdots \cdots (Eq1) \\ \alpha^{244}\sigma_{4} - \alpha^{246}\sigma_{3} + \alpha^{100}\sigma_{2} - \alpha^{62}\sigma_{1} &+ \alpha^{60} &= 0 & \cdots \cdots (Eq2) \\ \alpha^{246}\sigma_{4} - \alpha^{100}\sigma_{3} + \alpha^{62}\sigma_{2} &- \alpha^{60}\sigma_{1} &+ \alpha^{139} &= 0 & \cdots \cdots (Eq3) \\ \alpha^{100}\sigma_{4} - \alpha^{62}\sigma_{3} &+ \alpha^{60}\sigma_{2} &- \alpha^{139}\sigma_{1} + \alpha^{136} &= 0 & \cdots \cdots (Eq4) \end{array}$$

By elimination method, we can choose any two of the four equations above to eliminate σ_4 . Repeat this step three times, we can get Eq5, Eq6, and Eq7 with just three unknown variables (σ_3 , σ_2 , σ_1). Then, again, we can choose any two of the three equations (Eq5, Eq6, Eq7) to eliminate σ_3 . Repeat two times, we can get Eq8 and Eq9 with just two unknown variables (σ_2 , σ_1).

For example, multiply α^{33} to Eq1 and then add Eq1 and Eq.2 together, we can get Eq.5:

$$(\alpha^{244} XOR \ \alpha^{244})\sigma_4 - (\alpha^{22} XOR \ \alpha^{246})\sigma_3 + (\alpha^{24} XOR \ \alpha^{100})\sigma_2 - (\alpha^{133} XOR \ \alpha^{62})\sigma_1 + (\alpha^{95} XOR \ \alpha^{60}) = 0$$

Which means:

$$-\alpha^{36}\sigma_3 + \alpha^{137}\sigma_2 - \alpha^{171}\sigma_1 + \alpha^{92} = 0 \cdots (Eq5)$$

With same approach, we can get Eq6 from Eq2 and Eq3, and Eq7 from Eq3 and Eq4:

$$-\alpha^{51}\sigma_3 + \alpha^{146}\sigma_2 - \alpha^{160}\sigma_1 + \alpha^{35} = 0 \quad \cdots \quad (Eq6)$$
$$-\alpha^6\sigma_3 + \alpha^{197}\sigma_2 - \alpha^{96}\sigma_1 + \alpha^{34} = 0 \quad \cdots \quad (Eq7)$$

After getting Eq5, Eq6, and Eq7, we can then get Eq8 from Eq5 and Eq6, and Eq9 from Eq6 and Eq7:

$$\alpha^{82}\sigma_2 - \alpha^{103}\sigma_1 + \alpha^{230} = 0 \quad \dots \quad (Eq8)$$

$$\alpha^{142}\sigma_2 - \alpha^{233}\sigma_1 + \alpha^{250} = 0 \quad \dots \quad (Eq9)$$

With Eq8 and Eq9, we can start calculating σ_1 by multiplying α^{60} to Eq8, and then add Eq8 and Eq9 together:

$$(\alpha^{142} XOR \alpha^{142})\sigma_2 - (\alpha^{163} XOR \alpha^{233})\sigma_1 + (\alpha^{35} XOR \alpha^{250}) = 0$$

Which means:

$$-\alpha^{227}\sigma_1+\alpha^{79}=0$$

Then:

$$\sigma_1 = \alpha^{107}$$

Substitute σ_1 into Eq8, and we can get:

$$\alpha^{82}\sigma_2 - \alpha^{103+107} + \alpha^{230} = 0$$
, then $\sigma_2 = \alpha^{170}$

With σ_1 and σ_2 , we can substitute them into Eq5. to get σ_3 :

$$-\alpha^{36}\sigma_3 + \alpha^{137+170} - \alpha^{171+107} + \alpha^{92} = 0$$
, then $\sigma_3 = \alpha^{63}$

With σ_1 , σ_2 and σ_3 , we can substitute them into Eq1. to get σ_4 :

$$\alpha^{211}\sigma_4 - \alpha^{244+63} + \alpha^{246+170} - \alpha^{100+107} + \alpha^{62} = 0$$
, then $\sigma_4 = \alpha^{153}$

After getting σ_4 , σ_3 , σ_2 , σ_1 , we can calculate the error location by finding the solution i such that:

$$\sigma(\alpha^{i}) = \alpha^{153} + \alpha^{63}\alpha^{i} + \alpha^{170}\alpha^{2i} + \alpha^{107}\alpha^{3i} + \alpha^{4i} = 0$$

In this example, i has four solutions: [35, 37, 40, 41].

As mentioned earlier, the solution i = [35, 37, 40, 41] means the error occurred at codeword 8, 6, 3 and 2, which is the same as the red marked codewords in page 2.

Finally, we are calculating the offset of error by solving Y_1 , Y_2 , Y_3 , Y_4 for:

$$Y_{1}(\alpha^{35})^{1} + Y_{2}(\alpha^{37})^{1} + Y_{3}(\alpha^{40})^{1} + Y_{4}(\alpha^{41})^{1} = \alpha^{211}$$

$$Y_{1}(\alpha^{35})^{2} + Y_{2}(\alpha^{37})^{2} + Y_{3}(\alpha^{40})^{2} + Y_{4}(\alpha^{41})^{2} = \alpha^{244}$$

$$Y_{1}(\alpha^{35})^{3} + Y_{2}(\alpha^{37})^{3} + Y_{3}(\alpha^{40})^{3} + Y_{4}(\alpha^{41})^{3} = \alpha^{246}$$

$$Y_{1}(\alpha^{35})^{4} + Y_{2}(\alpha^{37})^{4} + Y_{3}(\alpha^{40})^{4} + Y_{4}(\alpha^{41})^{4} = \alpha^{100}$$

Using the same method to solve the four-unknown equations, we can get:

$$Y_1 = \alpha^{251}, Y_2 = \alpha^{218}, Y_3 = \alpha^{162}, Y_4 = \alpha^{239}$$

And the error offsets are:

$$Y_{1}\alpha^{i_{1}} = \alpha^{251} \times \alpha^{35} = \alpha^{31} = 192$$

$$Y_{2}\alpha^{i_{2}} = \alpha^{218} \times \alpha^{37} = \alpha^{255} = 1$$

$$Y_{3}\alpha^{i_{3}} = \alpha^{162} \times \alpha^{40} = \alpha^{202} = 112$$

$$Y_{4}\alpha^{i_{4}} = \alpha^{239} \times \alpha^{41} = \alpha^{25} = 3$$

The final step is to correct the error by the position and offset we've calculated: Correct position 35 (codeword 8):

$$135 \text{ XOR } 192 = 71$$

Correct position 37 (codeword 6):

$$231 \text{ XOR } 1 = 230$$

Correct position 40 (codeword 3):

$$119 \text{ XOR } 112 = 7$$

Correct position 41 (codeword 2):

$$119 \text{ XOR } 3 = 116$$

And we can get the corrected codewords to decode the correct text.

Appendix C – JIS8 code table [1]

Char.	Hex	Char.	Hex	Char.	Hex										
NUL	00	SP	20	@	40	`	60		80		A0	タ	C0		E0
SOH	01	!	21	A	41	a	61		81	۰	A1	ヂ	C1		E1
STX	02	"	22	В	42	b	62		82	Γ	A2	ツ	C2		E2
ETX	03	#	23	C	43	c	63		83	J	A3	テ	C3		E3
EOT	04	\$	24	D	44	d	64		84	`	A4	ኑ	C4		E4
ENQ	05	%	25	E	45	e	65		85	٠	A5	ナ	C5		E5
ACK	06	&	26	F	46	f	66		86	萝	A6	=	C6		E6
BEL	07	•	27	G	47	g	67		87	ア	A7	ヌ	C7		E7
BS	08	(28	Н	48	h	68		88	イ	A8	ネ	C8		E8
HT	09)	29	I	49	I	69		89	ゥ	A9	ノ	C9		E9
LF	0A	*	2A	J	4A	j	6A		8A	土	AA	21	CA		EA
VT	0B	+	2B	K	4B	k	6B		8B	オ	AB	ヒ	CB		EB
FF	0C	,	2C	L	4C	1	6C		8C	77	AC	フ	CC		EC
CR	0D	-	2D	M	4D	m	6D		8D	≠	AD	~	CD		ED
SO	0E		2E	N	4E	n	6E		8E	∄	AE	ホ	CE		EE
SI	0F	/	2F	О	4F	o	6F		8F	ッ	AF	₹	CF		EF
DLE	10	0	30	P	50	p	70		90		B0	3	D0		F0
DC1	11	1	31	Q	51	q	71		91	ア	В1	L_{λ}	D1		F1
DC2	12	2	32	R	52	r	72		92	イ	B2	メ	D2		F2
DC3	13	3	33	S	53	s	73		93	ゥ	В3	ŧ	D3		F3
DC4	14	4	34	T	54	t	74		94	工	B4	77	D4		F4
NAK	15	5	35	U	55	u	75		95	才	В5	ユ	D5		F5
SYN	16	6	36	V	56	v	76		96	カ	B6	∄	D6		F6
ETB	17	7	37	W	57	W	77		97	井	В7	ラ	D7		F7
CAN	18	8	38	X	58	X	78		98	ク	B8	IJ	D8		F8
EM	19	9	39	Y	59	у	79		99	ケ	B9	ル	D9		F9
SUB	1A	:	3A	Z	5A	z	7A		9A	コ	BA	レ	DA		FA
ESC	1B	;	3B	[5B	{	7B		9B	サ	BB	ㅁ	DB		FB
FS	1C	<	3C	¥	5C		7C		9C	シ	BC	ワ	DC		FC
GS	1D	=	3D]	5D	}	7D		9D	ス	BD	ン	DD		FD
RS	1E	>	3E	^	5E	_	7E		9E	セ	BE	٠	DE		FE
US	1F	?	3F	_	5F	DEL	7F		9F	ソ	BF	٠	DF		FF

Note that the codes 8'h00-8'h7f are the same as those in the ASCII code.

Appendix D – Test pattern list

Pat no	Orientation	Top-left corner location	Mask	Text length	Text	Error text	
00	0	(36, 0)	6	15	www.nthu.edu.tw	w@w.nddu.edu.tw	
01	0	(39, 17)	1	17	www.wikipedia.org	wwG.wiklpodia#org	
02	0	(16, 18)	2	17	www.google.com.tw	www.geegle.com.tn	
03	0	(31, 36)	3	13	goo.gl/rYWrb4	goo.gl?rZWrd5	
04	0	(38, 21)	0	13	goo.gl/w8z8rb	goo.gl/w <mark>7zi</mark> rb	
05	0	(6, 25)	4	24	Galois Field is amazing!	Galoes field is amazing?	
06	0	(24, 10)	5	23	2'b11 XOR 2'b10 = 2'b01	2'b11 NOR 3'b10 = 2'b11	
07	0	(0, 22)	3	24	assign enable=(Z>B)?1:0;	bssign enable!(X>B)?1:0;	
08	0	(27, 8)	7	25	ICLab homework 4 is easy!	ICLab homework 4 is hard?	
09	0	(11, 35)	2	22	neverilog -f gatesim.f	neverylon -v gatesim.v	
10	90	(7, 8)	6	15	www.nthu.edu.tw	w@w.nddu.edu.tw	
11	90	(12, 1)	1	17	www.wikipedia.org	wwG.wiklpodia#org	
12	90	(36, 15)	2	17	www.google.com.tw	www.geegle.com.tn	
13	90	(0, 18)	3	13	goo.gl/rYWrb4	goo.gl?rZWrd5	
14	90	(28, 33)	0	13	goo.gl/w8z8rb	goo.gl/w <mark>7zi</mark> rb	
15	90	(39, 2)	4	24	Galois Field is amazing!	Galoes field is amazing?	
16	90	(15, 23)	5	23	2'b11 XOR 2'b10 = 2'b01	2'b11 NOR 3'b10 = 2'b11	
17	90	(26, 39)	3	24	assign enable=(Z>B)?1:0;	bssign enable!(X>B)?1:0;	
18	90	(19, 30)	7	25	ICLab homework 4 is easy!	ICLab homework 4 is hard?	
19	90	(35, 29)	2	22	ncverilog -f gatesim.f	neverylon -v gatesim.v	
20	180	(34, 32)	6	15	www.nthu.edu.tw	w@w.nddu.edu.tw	
21	180	(31, 16)	1	17	www.wikipedia.org	wwG.wiklpodia#org	
22	180	(27, 22)	2	17	www.google.com.tw	www.geegle.com.tn	
23	180	(2, 5)	3	13	goo.gl/rYWrb4	goo.gl?rZWrd5	
24	180	(15, 8)	0	13	goo.gl/w8z8rb	goo.gl/w7zirb	
25	180	(11, 39)	4	24	Galois Field is amazing!	Galoes field is amazing?	
26	180	(35, 21)	5	23	2'b11 XOR 2'b10 = 2'b01	2'b11 NOR 3'b10 = 2'b11	
27	180	(0, 9)	3	24	assign enable=(Z>B)?1:0;	bssign enable!(X>B)?1:0;	
28	180	(20, 10)	7	25	ICLab homework 4 is easy!	ICLab homework 4 is hard?	
29	180	(0, 39)	2	22	ncverilog -f gatesim.f	ncverylon -v gatesim.v	
30	270	(39, 6)	6	15	www.nthu.edu.tw	w@w.nddu.edu.tw	
31	270	(4, 24)	1	17	www.wikipedia.org	wwG.wiklpodia#org	
32	270	(26, 12)	2	17	www.google.com.tw	www.geegle.com.tn	

Homework#4 EE429200 IC Design Laboratory

33	270	(37, 33)	3	13	goo.gl/rYWrb4	goo.gl?rZWrd5	
34	270	(11, 27)	0	13	goo.gl/w8z8rb	goo.gl/w <mark>7zir</mark> b	
35	270	(15, 16)	4	24	Galois Field is amazing!	Galoes field is amazing?	
36	270	(25, 31)	5	23	2'b11 XOR 2'b10 = 2'b01	2'b11 NOR 3'b10 = 2'b11	
37	270	(17, 5)	3	24	assign enable=(Z>B)?1:0;	bssign enable!(X>B)?1:0;	
38	270	(7, 39)	7	25	ICLab homework 4 is easy!	ICLab homework 4 is hard?	
39	270	(29, 38)	2	22	neverilog -f gatesim.f	ncverylon -v gatesim.v	