Arquitectura y Diseño de Software

Punto de Vista de Información

Departamento de Ingeniería de Sistemas y Computación

Agenda

Introducción

Principales Concerns

Principales Modelos

Ejemplo

Punto de Vista de Información

Su principal propósito es describir la forma en que la Arquitectura guarda, manipula, administra y distribuye información.

Punto de Vista de Información

Concerns

- Estructura y Contenido de la Información
- Flujo de Información
- Propietarios de la Información
- Referencias y Correspondencias de información
- Transacciones y Recuparaciones
- Calidad de los Datos
- Volumenes de Datos

Punto de Vista Funcional

Modelos Utilizados

- Modelo de estructura estática de datos
- Modelos de flujo de información
- Modelo de ciclo de vida de información
- Análisis de calidad de datos
- Modelos volumétricos

Punto de Vista de Información

Problemas durante su utilización

- Incompatibilidad de Datos
- Baja calidad en los datos
- Baja latencia de información

Punto de Vista de Información

- Stakeholders a los que esta dirigido
 - Usuarios
 - Desarrolladores
 - Administradores

Agenda

Introducción

Principales Concerns

Principales Modelos

Ejemplo

- Estructura y Contenido de la Información
 - Focalización en un pequeño número de entidades que sean importantes para los stakeholders
 - Dar prioridad a entidades ricas en datos
 - Inicialmente considere datos abstractos y mantenga los modelos simples

- Flujo de Información
 - Cómo se mueve la información dentro del sistema?
 - Cómo es usada y modificada la información por los elementos de la arquitectura ?
 - Dónde se crea y se destruye la información?
 - Dónde es almacenada y modificada la información?

- Propiedad de los Datos
 - Situaciones complejas
 - Integración de diferentes sistemas
 - Datos físicamente distribuidos
 - Preguntas a Resolver
 - Cúal es la copia maestra?
 - Cómo sincronizar diferentes copias?
 - Cuáles son las reglas de negocio a aplicar cuando se modifican los datos?
 - Cómo se manejarán los conflictos de replicación?

- Latencia y Edad de los Datos
 - Necesidad de información en tiempo real
 - Diferentes proveedores de información
 - Latencia: Lapso de tiempo transcurrido entre la actualización de un dato en su fuente y la disponibilidad de dicho cambio en las partes del sistema
 - Edad de los datos: Tiempo exacto en el que fue actualizado por última vez

- Referencias y Correspondencias
 - Objects Ids, Llaves primarias
- Manejo de transacciones
 - Transacciones Distribuidas
- Calidad de los Datos
 - Valores de los datos acorde a los valores en el mundo real

- Volúmenes de Datos
 - Cantidad de datos a manejar
 - Máxima capacidad manejada por el Sistema Operacional
 - Máxima capacidad soportada por los medios físicos
 - Tiempo requerido para la creación de copias de respaldo

Agenda

Introducción

Principales Concerns

Principales Modelos

Ejemplo

- Modelo de estructura estática de datos
- Modelo de flujo de información
- Modelo de ciclo de vida la información

- Modelo de Estructura Estática de Datos
 - Modelo entidad-relación
 - Entidades
 - Atributos
 - Cardinalidades
 - Modelo de clases
 - Clases
 - Atributos
 - Asociaciones

Tomado de [1] pag 253

- Modelo de flujo de información
 - Analiza el flujo de información entre elementos del sistema y el mundo externo
 - Se debe tener en cuenta
 - Dirección del flujo
 - Alcance de los datos transferidos
 - Información de Volumen
 - Medios de transferencia
 - Notación
 - Diagramas de flujo

Tomado de [1] pag 256

- Modelos de ciclo de vida de información
 - Sirven para representar las transiciones de los datos en respuesta a eventos externos
- Notación
 - Diagramas de Estados

Tomado de [1] pag 258

- Modelo de Propiedad de los Datos
 - Sirven para definir el dueño de cada dato dentro de la arquitectura
 - Quién puede crear el dato
 - Quién puede modificar el dato
 - Quién puede borrar el dato
 - Etc.

- Modelos Volumétricos
 - Sirven para analizar volúmenes actuales y presupuestados
 - Se pueden utilizar métodos estadísticos para generar estos modelos

Agenda

Introducción

Principales Concerns

Principales Modelos

Ejemplo

Data Architecture - OAGIS

- The Open Applications Group Integration Specification
 - Provee un lenguaje canónico para la integración de información
 - Usa XML como lenguaje para definición de mensajes, procesos de negocios y escenarios de negocios

- Todo está enmarcado en un proceso de negocio
- Provee la definición de mensajes de negocios como Business Object Documents (BODs)
- La especificación propone 61 procesos de negocio y 200 menajes de negocio
- Cuando se desea integrar negocios o aplicaciones se comienza con los escenarios de negocios

- El verbo identifica la acción que la aplicación fuente quiere que la aplicación destino efectue en el sustantivo (Noun)
- OAGIS define un conjunto estándar de verbos y sustantivos
- ApplicationArea y DataArea separan información común a los BODs de la información específica

- DataArea
 - Contiene la instancia de datos para la transacción de negocios
 - Contiene
 - un solo verbo
 - Cancel, Add, Process, Synchronize
 - uno o más sustantivos
 - Orden de Compra, Factura, etc.

Punto de Vista Funcional

- Material preparado por
 - Darío Correal
 - Nicolás López

Bibliografía

• [1] Rozanski N, Woods E. "Software Systems Architecture" Addison-Wesley. 2005