Multiple Comparison Procedures using R

AGH Practicals

P-value Adjustments

Garcia-Arenzana et al. (2014) tested associations of 25 dietary variables with mammographic density, an important risk factor for breast cancer, in Spanish women. They found the following results:

Dietary variable	P-value
Total calories	< 0.001
Olive oil	0.008
Whole milk	0.039
White meat	0.041
Proteins	0.042
Nuts	0.060
Cereals and pasta	0.074
White fish	0.205
Butter	0.212
Vegetables	0.216
Skimmed milk	0.222
Red meat	0.251
Fruit	0.269
Eggs	0.275
Blue fish	0.340
Legumes	0.341
Carbohydrates	0.384
Potatoes	0.569
Bread	0.594
Fats	0.696
Sweets	0.762
Dairy products	0.940
Semi-skimmed milk	0.942
Total meat	0.975
Processed meat	0.986

Based on these results, five of the variables show a significant (P < 0.05) P value. However, Garcia-Arenzana et al. (2014) tested a total of 25 dietary variables. Hence, we'd expect one or two variables to show a significant result purely by chance, even if diet had no real effect on mammographic density. Using the Bonferroni correction, a test would have to have P < 0.002 to be significant. Under that criterion, only the test for total calories is significant. We will consider other error rates as well.

```
Input = ("
        Food
                         Raw.p
        Blue_fish
                        .34
        Bread
                        .594
        Butter
                        .212
        Carbohydrates
                        .384
        Cereals_and_pasta .074
        Dairy_products
                        .275
        Eggs
        Fats
                        .696
        Fruit
                        .269
        Legumes
                        .341
                        .06
        Nuts
        Olive_oil
                        .008
        Potatoes
                       .569
        Processed_meat .986
                        .042
        Proteins
                        .251
        Red_meat
        Semi-skimmed_milk .942
        Skimmed_milk .222
                        .762
        Sweets
       Total_calories .001
        Total meat
                        .975
        Vegetables
                        .216
        White_fish
                         .205
        White meat
                        .041
        Whole milk
                         .039
        ")
Data = read.table(textConnection(Input), header=TRUE)
```

Order data by p-value

```
Data = Data[order(Data$Raw.p),]
```

Perform p-value adjustments and add to data frame

```
Data$Bonferroni <- p.adjust(Data$Raw.p, method = "bonferroni")

Data$BH <- p.adjust(Data$Raw.p, method = "BH")

Data$Holm <- p.adjust(Data$ Raw.p, method = "holm")

Data$Hochberg <- p.adjust(Data$ Raw.p, method = "hochberg")

Data$BY <- p.adjust(Data$ Raw.p, method = "BY")

Data

## Food Raw.p Bonferroni BH Holm Hochberg BY

## 20 Total_calories 0.001 0.025 0.0250000 0.025 0.025 0.09539895
```

```
## 11
                   Nuts 0.060
                                    1.000 0.2500000 1.000
                                                              0.986 0.95398954
## 5
      Cereals_and_pasta 0.074
                                    1.000 0.2642857 1.000
                                                              0.986 1.00000000
## 23
                                    1.000 0.4910714 1.000
             White fish 0.205
                                                              0.986 1.00000000
## 3
                 Butter 0.212
                                    1.000 0.4910714 1.000
                                                              0.986 1.00000000
## 22
             Vegetables 0.216
                                    1.000 0.4910714 1.000
                                                              0.986 1.00000000
           Skimmed milk 0.222
                                    1.000 0.4910714 1.000
                                                              0.986 1.00000000
## 18
               Red meat 0.251
                                    1.000 0.4910714 1.000
                                                              0.986 1.00000000
## 16
                                                              0.986 1.00000000
                                    1.000 0.4910714 1.000
## 9
                  Fruit 0.269
                                    1.000 0.4910714 1.000
## 7
                   Eggs 0.275
                                                              0.986 1.00000000
## 1
              Blue_fish 0.340
                                    1.000 0.5328125 1.000
                                                              0.986 1.00000000
## 10
                Legumes 0.341
                                    1.000 0.5328125 1.000
                                                              0.986 1.00000000
          Carbohydrates 0.384
                                    1.000 0.5647059 1.000
                                                              0.986 1.00000000
## 4
## 13
               Potatoes 0.569
                                    1.000 0.7815789 1.000
                                                              0.986 1.00000000
                                    1.000 0.7815789 1.000
## 2
                  Bread 0.594
                                                              0.986 1.00000000
## 8
                   Fats 0.696
                                    1.000 0.8700000 1.000
                                                              0.986 1.00000000
## 19
                 Sweets 0.762
                                    1.000 0.9071429 1.000
                                                              0.986 1.00000000
## 6
         Dairy_products 0.940
                                    1.000 0.9860000 1.000
                                                              0.986 1.00000000
## 17 Semi-skimmed milk 0.942
                                    1.000 0.9860000 1.000
                                                              0.986 1.00000000
## 21
             Total_meat 0.975
                                    1.000 0.9860000 1.000
                                                              0.986 1.00000000
## 14
         Processed meat 0.986
                                    1.000 0.9860000 1.000
                                                              0.986 1.00000000
```

Plot

Hypothetical Example

```
Input = ("
Factor Raw.p
A     .001
B     .01
C     .025
D     .05
E     .1
")
Data = read.table(textConnection(Input), header=TRUE)
```

Perform p-value adjustments and add to data frame

```
Data$Bonferroni <- p.adjust(Data$Raw.p, method = "bonferroni")</pre>
Data$BH <- signif(p.adjust(Data$Raw.p, method = "BH"), 4)</pre>
Data$Holm <- p.adjust(Data$ Raw.p, method = "holm")</pre>
Data$Hochberg <- p.adjust(Data$ Raw.p, method = "hochberg")</pre>
Data$BY <- signif(p.adjust(Data$ Raw.p, method = "BY"), 4)</pre>
Data
##
   Factor Raw.p Bonferroni
                                BH Holm Hochberg
## 1
          A 0.001 0.005 0.00500 0.005 0.005 0.01142
        B 0.010
## 2
                      0.050 0.02500 0.040 0.040 0.05708
        C 0.025
                      0.125 0.04167 0.075 0.075 0.09514
## 3
## 4 D 0.050 0.250 0.06250 0.100 0.100 0.14270 ## 5 E 0.100 0.500 0.10000 0.100 0.22830
```

Plot

Source Code

```
p.adjust.methods <- c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")</pre>
p.adjust \leftarrow function(p, method = p.adjust.methods, n = length(p))
    method <- match.arg(method)</pre>
    if(method == "fdr") method <- "BH"</pre>
    nm <- names(p)
    p <- as.numeric(p)</pre>
    p0 <- setNames(p, nm)
    if(all(nna <- !is.na(p))) nna <- TRUE</pre>
    p <- p[nna]</pre>
    lp <- length(p)</pre>
    stopifnot(n >= lp)
    if (n <= 1) return(p0)</pre>
    if (n == 2 && method == "hommel") method <- "hochberg"</pre>
    p0[nna] <- switch(method, bonferroni = pmin(1, n * p),</pre>
          holm = {
             i <- seq_len(lp)</pre>
             o <- order(p)
             ro <- order(o)</pre>
             pmin(1, cummax((n - i + 1L) * p[o]))[ro]
          },
          hommel = { \# needs n-1 >= 2 in for() below}
            if(n > lp) p \leftarrow c(p, rep.int(1, n-lp))
             i <- seq_len(n)
             o <- order(p)
```

```
p <- p[o]
              ro <- order(o)
              q \leftarrow pa \leftarrow rep.int(min(n*p/i), n)
             for (j in (n-1):2) {
              ij \leftarrow seq_len(n-j+1)
              i2 \leftarrow (n-j+2):n
              q1 <- min(j*p[i2]/(2:j))
              q[ij] <- pmin(j*p[ij], q1)</pre>
              q[i2] \leftarrow q[n-j+1]
             pa <- pmax(pa,q)</pre>
            pmax(pa,p)[if(lp < n) ro[1:lp] else ro]</pre>
            },
          hochberg = {
              i <- lp:1L
              o <- order(p, decreasing = TRUE)</pre>
              ro <- order(o)
              pmin(1, cummin((n - i + 1L) * p[o]))[ro]
          },
          BH = {
              i <- lp:1L
              o <- order(p, decreasing = TRUE)</pre>
             ro <- order(o)
              pmin(1, cummin( n / i * p[o] ))[ro]
          },
          BY = {
              i <- lp:1L
              o <- order(p, decreasing = TRUE)</pre>
             ro <- order(o)
              q <- sum(1L/(1L:n))</pre>
              pmin(1, cummin(q * n / i * p[o]))[ro]
           none = p)
    p0
}
bonf <- p.adjust(Data$Raw.p, method = "bonferroni")</pre>
bonf
```

[1] 0.005 0.050 0.125 0.250 0.500

References

Garcia-Arenzana, N., E.M. Navarrete-Munoz, V. Lope, P. Moreo, S. Laso-Pablos, N. Ascunce, F. Casanova-Gomez, C. Sanchez-Contador, C. Santamaria, N. Aragones, B.P. Gomez, J. Vioque, and M. Pollon. 2014. Calorie intake, olive oil consumption and mammographic density among Spanish women. International Journal of Cancer 134: 1916-1925.

McDonald, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore, Maryland