Name: SOLUTIONS

Mathematics: Methods Unit 1

Test 3, 2015

Trigonometric Functions and Equations, Probability

CALCULATOR FREE

25 marks

25 minutes

No Calculators Allowed

SCSA Formula Sheet

Shade in the region described by the following:

a) $A \cap B$

b) $B \cup C'$

c) $(A \cup B) \cap C$

Question 2 [3 marks]

From the following Venn Diagram:

В

36

12

25

U=88

15

Find:

Leave your answer in **FRACTION** form

a)
$$P(A \cup B) = \frac{52}{88} = \frac{13}{22}$$

State the exact value of each of the following.

a)
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

b)
$$\sin^2 3 + \cos^2 3 = 1$$

c)
$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
 or $\frac{1}{\sqrt{2}}$

d)
$$\cos 150^\circ = -\frac{\sqrt{3}}{2}$$

e)
$$\sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$

f)
$$cos(n\pi)$$
 where *n* is an odd integer = -1

g)
$$\tan 210^{\circ} = \frac{1}{\sqrt{3}}$$

h)
$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

Question 4

[2, 3, 3 = 8 marks]

Solve the following trigonometric equations. Show working.

a)
$$\sin x = -\frac{\sqrt{3}}{2}$$

in the interval $0 \le x \le 2\pi$

$$x = \frac{4\pi}{3}, \frac{5\pi}{3}$$

b)
$$2\sin^2 x = \frac{1}{2}$$

in the interval $0^{\circ} \le x \le 360^{\circ}$

$$\sin^2 x = \frac{1}{4}$$

$$\sin x = \pm \frac{1}{2}$$

$$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$$

c)
$$\cos 2x = \frac{1}{2}$$

in the interval $0^{\circ} \le x \le 180^{\circ}$

$$2x = 60^{\circ}, 300^{\circ}$$

$$x = 30^{\circ}, 150^{\circ}$$

Question 5

[3 marks]

The graph below is of the general equation $y = \cos(a(x+b)) + c$. Determine the values of *a*, *b* and *c*.

$$C = 1 /$$

C = 1 / translation up 1

$$a = 3$$

a = 3 period is $\frac{1}{3}$ of $\frac{360}{}$

phase shift right 15°

$$a = 3$$

$$a=3$$
, $b=-15$, $c=1$

$$c = 1$$

Name: SOLUTIONS

Mathematics: Methods Unit 1

Test 3, 2015

Trigonometric Functions and Equations, Probability

CALCULATOR ASSUMED

30 marks

30 minutes

Approved Calculators Allowed

A4 Page of Notes

SCSA Formula Sheet

Amos asked Lara what she would like for lunch and offered her several choices:

In her sandwich she could have jam, peanut paste or chicken.

As a sweet she could have a Mars Bar or a jam donut.

For fruit she could have a banana, an apple or a pear

Lara never has two jam items on the same day, and if she has a Mars Bar she always selects an apple for fruit.

a) Draw a tree diagram showing all possible combinations of lunches for Lara if it is known that she took a sandwich, a sweet and a piece of fruit.

- b) Use the tree diagram to determine the following probabilities:
 - i. she chooses a jam sandwich

$$P(Jam sandwich) = \frac{1}{3} \times 1 \times 1 = \frac{1}{3}$$

ii. she has an apple and a Chicken sandwich

P (Apple
$$\cap$$
 Chicken sandwich) = $\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{18}$

iii. she chooses a jam donut or an apple

iv. she chose a chicken sandwich given that she chose an apple

$$P(Chicken sandwich | Apple) = \frac{P(Chk \cap Apple)}{P(Apple)} = \frac{\frac{2}{9}}{\frac{7}{9}} = \frac{2}{7}$$

Question 7

[2, 2 = 4 marks]

State the period and amplitude for each of the following.

a)

period = 180° / amplitude = 1.5 /

b)
$$y = -\tan\left(x + \frac{\pi}{4}\right)$$

Question 8

[1, 1, 1 = 3 marks]

Given the graph below of a sinusoidal or sine function, determine its:

$$\sim$$

$$y = 3 \sin(2x)$$

[2, 1, 2, 2 = 7 marks]

Question 9

A student travelling to school has to pass through two sets of traffic lights A and B that operate independently of each other. The probabilities that she will be stopped at these lights are $\frac{5}{8}$ and $\frac{7}{10}$ respectively, with corresponding delays of 2 minutes and 3 minutes. Without these delays her journey takes 20 minutes.

a) Complete the tree diagram, entering the appropriate probabilities in the given brackets.

- b) Determine the probability that
 - (i) The journey takes no more than 20 minutes.

$$P(\text{no stopping}) = \frac{3}{8} \times \frac{3}{10} = \frac{9}{80} \checkmark$$

(ii) The student encounters just one delay

$$P(\text{one delay}) = P(\text{Stopped at A only}) + P(\text{stopped at B only})$$

$$= \frac{5}{8} \times \frac{3}{10} + \frac{3}{8} \times \frac{7}{10}$$

$$= \frac{15}{80} + \frac{21}{80} = \frac{36}{80} \text{ or } \frac{9}{20} \checkmark$$

(iii) One morning the student has only 22 minutes to reach school on time. Determine the probability that she will be late.

$$P (late) = P(Stopped at B only) + P(Stopped at A and B)$$

$$= \frac{3}{8} \times \frac{7}{10} + \frac{5}{8} \times \frac{7}{10}$$

$$= \frac{21}{80} + \frac{35}{80} = \frac{56}{80} \text{ or } \frac{7}{10}$$

[1, 4 = 5 marks]**Question 10**

If $\sin A = \frac{4}{5}$ and $\cos B = -\frac{7}{25}$ where $0 \le A \le \frac{\pi}{2}$ and *B* is obtuse, determine exactly:

$$tan A = \frac{4}{3}$$

b) sin(A + B)

$$\cos A = \frac{3}{5}$$
 , $\sin B = \frac{24}{25}$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$= \left(\frac{4}{5}\right)\left(-\frac{7}{25}\right) + \left(\frac{3}{5}\right)\left(\frac{24}{25}\right)$$

$$= \frac{-28}{125} + \frac{72}{125} = \frac{44}{125}$$

[4 marks] **Question 11**

For two events A and B, P(A) = 0.3 and $P(A \cup B) = 0.6$

Determine P(B) if events A and B are independent.

$$P(A \cap B) = P(A) \times P(B) \quad \text{since } A \text{ and } B \text{ are independent}$$

$$= 0.3 P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad \text{addition principle}$$

$$0.6 = 0.3 + P(B) - 0.3 P(B)$$

$$0.6 - 0.3 = P(B) (1 - 0.3)$$

$$P(B) = \frac{0.3}{0.7}$$

$$P(B) = 0.4286$$