1 Popište možné tvary dynamických systémů pro modely: spojité-diskrétní, lineární-nelineární.

Lineární spojitý systém v časové oblasti

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

Lineární spojitý systém ve frekvenční oblasti

$$sx = Ax + Bu$$
$$y = Cx + Du$$

Po úpravě $\boldsymbol{x}(s\boldsymbol{I}-\boldsymbol{A})=\boldsymbol{B}\boldsymbol{u}$ můžeme dosadit

$$y = C(sI - A)^{-1}Bu + Du$$
 (1)

Dynamická poddajnost

$$G(x) = \frac{y}{u} = C(sI - A)^{-1}B + D$$
(2)

Lineární diskrétní systém

$$egin{aligned} oldsymbol{x}_{t+\Delta t} &= oldsymbol{M} oldsymbol{x}_t + oldsymbol{N} oldsymbol{u}_t \ oldsymbol{y}_t &= oldsymbol{O} oldsymbol{x}_t + oldsymbol{P} oldsymbol{u}_t \end{aligned}$$

diskrétní tvar lze získat z tvaru spojitého modelu v časové oblasti

$$M = e^{A\Delta t} \doteq I + A\Delta t, N = B, O = C, P = D$$

Nelineární systém

$$\dot{x} = f(x) + g(x)u \tag{3}$$

$$y = c(x) + d(x)u \tag{4}$$

2 Popište postup identifikace lineárního modelu SISO systému ve tvaru ARX a OE.

2.1 ARX

Lineární filtr používajíci minulé vstupy a výstupy systému

$$\hat{y}(t) + a_1 y(t - \Delta t) + \dots + a_n y(t - n\Delta t) = b_0 u(t) + \dots + b_n u(t - n\Delta t)$$

$$\tag{5}$$

Pro N kroků měření lze vypsat N-n rovnic

$$\hat{y}_n = -a_1 y_{n-1} - \dots - a_n y_0 + b_0 u_n + \dots + b_n u_0$$

$$\vdots$$

$$\hat{y}_N = -a_1 y_{N-1} - \dots - a_n y_{N-n} + b_0 u_N + \dots + b_n u_{N-n}$$

Ty lze zapsat ve tvaru

$$\hat{\boldsymbol{y}} = \boldsymbol{\Phi} \boldsymbol{p} \,, \tag{6}$$

kde

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_n & \dots & \hat{y}_N \end{bmatrix}^T$$

$$\mathbf{\Phi} = \begin{bmatrix} y_{n-1} & \dots & y_0 & u_n & \dots & u_0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ y_{N-1} & \dots & y_{N-n} & u_N & \dots & u_{N-n} \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} -a_1 & \dots & -a_n & b_0 & \dots & b_n \end{bmatrix}^T$$

2.2 EO

Lineární filtr používajíci minulé vstupy a výstupy modelu

$$\hat{y}(t) + a_1 \hat{y}(t - \Delta t) + \dots + a_n \hat{y}(t - n\Delta t) = b_0 u(t) + \dots + b_n u(t - n\Delta t)$$

$$(7)$$

zbytek obdobně jako pro ARX jen se změnou yna $\hat{y}.$

3 Popište postup identifikace lineárního modelu SISO systému ve tvaru FIR.

$$\hat{y}(t) = g_0 u(t) + g_1 u(t - \Delta t) + \dots + g_n u(t - n\Delta t)$$
(8)

$$\hat{y}_n = g_0 u_n + g_1 u_{n-1} + \dots + g_n u_0 \tag{9}$$

$$\vdots (10)$$

$$\hat{y}_N = g_0 u_N + g_1 u_{N-1} + \dots + g_n u_{N-n} \tag{11}$$

$$\hat{\boldsymbol{y}} = \boldsymbol{\Phi} \boldsymbol{p} \,, \tag{12}$$

kde

$$\hat{\boldsymbol{y}} = \begin{bmatrix} \hat{y}_n & \dots & \hat{y}_N \end{bmatrix}^T$$

$$\boldsymbol{\Phi} = \begin{bmatrix} u_n & \dots & u_0 \\ \vdots & \ddots & \vdots \\ u_N & \dots & u_{N-n} \end{bmatrix}$$

$$\boldsymbol{p} = \begin{bmatrix} g_0 & \dots & g_n \end{bmatrix}^T$$

4 Vysvětlete jak se sestavují Markovovy parametry a Hankelovy matice pro diskrétní stavový model.

$$\boldsymbol{x}_1 = \boldsymbol{B}\boldsymbol{u}_0 \tag{13}$$

$$x_2 = ABu_0 + Bu_1$$
 $y_1 = Cx_1 + Du_1$ (14)

$$\boldsymbol{x}_{k+1} = \sum_{i=0}^{k} \boldsymbol{A}^{k-i} \boldsymbol{B} \boldsymbol{u}_{i} \qquad \boldsymbol{y}_{k} = \sum_{i=1}^{k} \underbrace{\boldsymbol{C} \boldsymbol{A}^{k-i} \boldsymbol{B}}_{h_{i}} \boldsymbol{u}_{i} + \underbrace{\boldsymbol{D}}_{h_{0}} \boldsymbol{u}_{k}$$
(15)

$$Y = UH \tag{16}$$

kde Y je matice tvořena výstupy, U matice vstupů a matice H Markovovy parametry.

$$Y = \begin{bmatrix} y_0 & y_0 & \dots & y_q \end{bmatrix} \tag{17}$$

$$U = \begin{bmatrix} u_0 & u_1 & \dots & u_q \\ \mathbf{0} & u_0 & \dots & u_{q-1} \\ \vdots & & & \vdots \\ \mathbf{0} & \dots & & u_{q-p} \end{bmatrix}$$

$$(18)$$

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{h}_0 & \boldsymbol{h}_1 & \dots & \boldsymbol{h}_p \end{bmatrix} \tag{19}$$

4.1 Hankelovy matice

$$\boldsymbol{H}_{1} = \begin{bmatrix} h_{1} & h_{2} & \dots & h_{p} \\ h_{2} & h_{3} & \dots & h_{p+1} \\ \vdots & \vdots & & \vdots \\ h_{p} & h_{p+1} & \dots & h_{2p-1} \end{bmatrix}, \quad \boldsymbol{H}_{2} = \begin{bmatrix} h_{2} & h_{3} & \dots & h_{p+1} \\ h_{3} & h_{4} & \dots & h_{p+2} \\ \vdots & \vdots & & \vdots \\ h_{p+1} & h_{p+2} & \dots & h_{2p} \end{bmatrix}$$
(20)

- 5 Popište identifikaci diskrétního stavového modelu pomocí metody ERA při znalosti Hankelových matic a Markovových parametrů. Co je to balancovaný tvar modelu ?
- 6 Vysvětlete rozdíl mezi modelem MDOF tlumeného mechanického systému s viskózním a strukturním tlumením. V čem je model se strukturním tlumením problematický pro časovou simulaci?
- 6.1 Pohybové rovnice systému buzeného harmonickou funkcí
 - s viskózním tlumením

$$M\ddot{x} + B\dot{x} + Kx = F \tag{21}$$

• se strukturním tlumením

$$M\ddot{x} + (K + jH)x = F \tag{22}$$

Strukturní model tlumení se speciálně orientovaný na analýzu ve frekvenčí oblasti, jelikož v časové oblasti zanáší do simulace komplexní čísla.

Ve frekvenční oblasti $\boldsymbol{B}\omega = \boldsymbol{H}$

7 Popište modální transformaci mechanického systému, vysvětlete pojem proporcionálního tlumení.

Základem modální trasformace je nalezení řešení problému vlastních čísel

$$KV = \Omega^2 MV$$

kde ϕ_i jsou vlastní vektory a ω_i vlastní frekvence tvořící matice V a Ω

$$V = \begin{bmatrix} \phi_i & \dots & \phi_N \end{bmatrix}, \ \Omega^2 = \operatorname{diag}(\omega_i^2), \quad i \in \langle 1, N \rangle$$

Po té platí

$$oldsymbol{V}^T oldsymbol{M} oldsymbol{V} = oldsymbol{1} \ . \quad oldsymbol{V}^T oldsymbol{K} oldsymbol{V} = oldsymbol{\Omega}^2$$

Soustavu pohybovných rovnic systému s proporčním tlumením

$$M\ddot{x} + C\dot{x} + Kx = F$$

lze zavedením modální souřadnice q = Vx a vynásobením transponovanou maticí modální transformace V^T zleva, převést do tvaru

$$\ddot{\mathbf{q}} + \beta \dot{\mathbf{q}} + \Omega^2 \mathbf{q} = \mathbf{V}^T \mathbf{F}$$
, $\boldsymbol{\beta} = \operatorname{diag}(2 b_{r_i} \omega_i)$, $i \in \langle 1, N \rangle$

kde b_{r_i} jsou poměrné útlumy.

Soustava se pak rozpadá na rovnice ve tvaru

$$\ddot{q}_i + 2\omega_i \xi_i \dot{q} + \omega_i^2 q = f_i$$
, $f_i = \boldsymbol{\phi}_i \cdot \boldsymbol{F}$, $i \in \langle 1, N \rangle$

8 Napište a vysvětlete MAC kritérium pro porovnání vlastních tvarů modelu a vlastních tvarů naměřených.

Modal Assurance Criterion

$$M_{rq} = \frac{\phi_{A_r}^T \phi_{X_r}}{(\phi_{A_r}^T \phi_{A_r})(\phi_{X_r}^T \phi_{X_r})} , \quad r = 1, \dots, n, \ q = 1, \dots, m$$
 (23)

kde na mje počet módů, ϕ_{A_q} měřené vlastní vekotry a ϕ_{X_r} vlastní vektory modelu.

MAC kritérium se užívá pro zhodnocení shody vlastních vektorů modelu a měřeného systému. Při dokonalé shodě M=I.

- 9 Popište metodu SDOF identifikace mechanického systému z naměřených přenosových funkcí.
- 10 Popište princip LSCF metody MDOF identifikace mechanického systému z naměřených přenosových funkcí. K čemu slouží stabilizační diagram ?
- 11 Co je nelineární model Hammersteinova typu a nelineární model Wienerova typu.
- 12 Uveďte strukturu nelineární identifikace používající koncept LOLI-MOT.

Local Linear Models Tree

$$\hat{y} = \sum_{i=1}^{M} \hat{y}_i \phi_i(\mathbf{u}) \tag{24}$$

kde $\hat{y}_i = w_{i0} + w_{i1}u_1 + w_{i2}u_2 + \dots$ jsou lokální lineární modely a $\phi_i(u)$ jejich platnostní funkce. Ty splňují

$$\sum_{i=1}^{n} \phi_i(u) = 1 , \quad \phi_i(u) = \frac{\mu_i(u)}{\sum_{i=1}^{n} \mu_i(u)} , \quad \mu_i = \exp(-\frac{1}{2}(...))$$
 (25)

- 13 Uveďte postup identifikace nelineárního diskrétního dynamického modelu LOLIMOT typu NARX.
- 14 Vysvětlete pojmy testování a trénování identifikovaného modelu.
- 15 Vysvětlete rozdíl mezi simulačním a predikčním trénováním a použitím LOLIMOT modelu a souvislost těchto pojmů s NARX a NOE modely.
- 16 Uveď te příklad identifikace ad-hoc sestaveného dynamického modelu soustavy s pomocí obecných optimalizačních metod.
- 17 Uveďte základní postup identifikace fyzikálního modelu získaného např. z MKP po transformaci do redukovaného modálního tvaru. V čem tato redukce usnadní postup identifikace ?
- 18 Uveď te příklad využití fenomenologického identifikovaného modelu pro simulaci.
- 19 Popište použití identifikovaného modelu soustavy v regulátoru s prediktivním řízením. Jak souvisí s pojmy NARX a NOE modelů?