Hausaufgabe 1

Aufgabe 4

a)

Da U_1 und U_2 beides Vektorräume sind, folgt sofort $0 \in U_1 \cap U_2$. Seien nun $u, v \in U_1 \cap U_2$ gegeben. Wieder durch die VR-Eigenschaften von U_1, U_2 folgt:

$$u, v \in U_1 \cap U_2 \implies u, v \in U_1 \wedge u, v \in U_2 \implies u + v \in U_1 \wedge u + v \in U_2 \implies u + v \in U_1 \cap U_2$$

Sei nun $a \in K, u \in U_1 \cap U_2$. Analog folgt

$$u \in U_1 \cap U_2 \implies u \in U_1 \wedge u \in U_2 \implies au \in U_1 \wedge ua \in U_2 \implies au \in U_1 \cap U_2$$

Insgesamt erfüllt $U_1 \cap U_2$ die UVR-Kriterien.

b)

Gegenbeispiel. Sei $K = \mathbb{R}, V = R^2, U_1 = \langle (1,0) \rangle, U_2 = \langle (0,1) \rangle$. Dann gilt $(1,0), (0,1) \in U_1 \cup U_2$, jedoch $(1,0) + (0,1) = (1,1) \notin U_1 \cup U_2$. Damit kann $U_1 \cup U_2$ kein UVR von V sein.

c)

Gegenbeispiel. Seien K, V, U_1, U_2 wie in b). Dann gilt $0 \in U_1$ und $0 \in U_2$, da beides VR sind. Jedoch gilt dann $0 \notin U_1 \setminus U_2$. Damit kann $U_1 \setminus U_2$ kein UVR von V sein.

d)

Gegenbeispiel. Seien K, V, U_1, U_2 wie in b). Dann gilt $0_{U_1 \times U_2} = (0_{U_1}, 0_{U_2}) = ((0, 0), (0, 0)) \neq (0, 0) = 0_V$. Damit kann $U_1 \times U_2$ kein UVR von V sein.

e)

Da U_1 und U_2 beides VR sind, folgt sofort $0+0=0\in U_1+U_2$. Seien nun $u,v\in U_1+U_2$ gegeben. Dann ist $u=u_1+u_2,v=v_1+v_2$ mit $u_1,v_1\in U_1,\ u_2,v_2\in U_2$. Es folgt durch die UVR-Eigenschaften von U_1,U_2 :

$$u + v = (u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in U_1 + U_2$$

Sei nun $a \in K, u \in U_1 + U_2$ sodass $u = u_1 + u_2$ für $u_1 \in U_1, u_2 \in U_2$. Analog folgt:

$$au = a(u_1 + u_2) = au_1 + au_2 \in U_1 + U_2$$

Insgesamt erfüllt $U_1 + U_2$ die UVR-Kriterien.

Aufgabe 5

 $\mathbf{a})$

Es ist $0_{\text{Map}(M,K)}: M \to K, m \mapsto 0_K \in \text{Map}(M,K)$. Denn es gilt:

$$\forall f \in \operatorname{Map}(M, K) : \forall m \in M : f(m) + 0(m) = f(m) + 0 = f(m)$$

und damit f + 0 = f für alle $f \in \text{Map}(M, K)$. Also haben wir schonmal eine 0 für Map(M, K).

Seien nun $f, g \in \text{Map}(M, K), m \in M$. Dann ist offensichtlich $f(m), g(m) \in K$ also auch $f(m) + g(m) \in K$. Es folgt, da m beliebig:

ziativität, Kommutativität und Distributivität für diese dank der Körpereigenschaften.

$$(f+g)(m) \in K \implies (f+g) \in \operatorname{Map}(M,K)$$

Analog sei weiter $a \in K$, dann ist stets $(af)(m) = a \cdot f(m) \in K$ für $m \in M$. Somit sind Addition und Skalierung wohldefiniert. Da diese beiden Verknüpfungen über die Bilder der Elemente von M, sprich, Elemente von K definiert sind, gelten automatisch Asso-

Weiter definieren wir auf natürliche Weise negative: Sei $f \in \text{Map}(M, K)$. Definieren $-f \in \text{Map}(M, K)$ durch die Skalierung $(-1) \cdot f$. Es folgt:

$$\forall f \in \text{Map}(M, K) \forall m \in M : f(m) + (-f)(m) = f(m) + (-1) \cdot f(m) = f(m) - f(m) = 0$$

Also insgesamt f + (-f) = 0.

Ebenso folgt wider mit der 1 aus K, da $f(m) \in K \forall m \in M$ gilt, dass:

$$\forall m \in M : (1 \cdot f)(m) = 1 \cdot f(m) = f(m)$$

Damit haben wir alle Eigenschaften durch zurückführen auf Eigenschaften von K gezeigt.

b)

Offensichtlich ist $0 \in \operatorname{Map^{fin}}(M, K)$. Seien nun $f, g \in \operatorname{Map^{fin}}(M, K)$. Seien Ferner $F := \{m \in M \mid f(m) \neq 0\}, G := \{m \in M \mid g(m) \neq 0\}$. Ferner gilt:

$$X := \{m \in M \mid (f+g)(m) \neq 0\} = (F \cup G) \setminus \{m \in M \mid f(m) = -g(m)\} \subseteq F \cup G$$

Da F,G endlich, also $F\cup G$ endlich ist auch $X\subseteq F\cup G$ endlich und damit auch $(f+g)\in \operatorname{Map}^{\operatorname{fin}}(M,K).$

Ferner haben wir dass natürlich

$$a \cdot 0 = 0 \implies (af)(M \setminus F) = \{a \cdot f(m) \mid m \in M \setminus F\} = \{0\}$$

Insbesondere gilt also stets $\{m \in M \mid (af)(m) \neq 0\} \subseteq F$, d.h. es kann durch skalare Multiplikation niemals ein $m \in M$, welches vorher auf 0 abgebildet wurde, auf ein $0 \neq k \in K$ abgebildet werden. Wie gerade folgt dann $(af) \in \operatorname{Map}^{fin}(M, K)$.