Dekanski ispitni rok iz predmeta "**Elektronika 2**" 19. 9. 2018.

Zadatak 1 – 10 bodova

Za diferencijsko pojačalo sa slike zadano je $U_{CC} = U_{EE} = 10 \text{ V}$, $R_g = 1 \text{ k}\Omega$, $R_C = 1.5 \text{ k}\Omega$, $R_E = 4.5 \text{ k}\Omega$ i $R_T = 500 \Omega$. Tranzistori T_1 i T_2 imaju jednake parametre $\beta \approx h_{fe} = 100$ i $U_{\gamma} = 0.7 \text{ V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

c) Izračunati izlaznu struju i_{iz} ako je struja $i_{g} = 40 \sin \omega t \, \mu A \, (2 \text{ boda}).$

Zadatak 2 – 10 bodova

Za pojačalo na slici zadano je: U_{CC} = 12 V, R_g = 500 Ω, C_B = 500 nF, R_1 = 300 kΩ, R_2 = 200 kΩ, R_E = 2 kΩ, C_E = 5 μF i R_T = 200 Ω. Parametri tranzistora su $\beta \approx h_{fe}$ = 100 i U_γ = 0,7 V. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature U_T = 25 mV.

- a) Izračunati struju I_{CQ} i napon U_{CEQ} tranzistora u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Vg} (4 boda).

Zadatak 3 – 10 bodova

području zasićenja.

Za pojačalo na slici zadano je:

Za pojacaio na siici zadano je:
$$U_{DD} = 12 \text{ V}, R_g = 5 \text{ k}\Omega,$$

$$R_1 = 4 \text{ M}\Omega, R_2 = 2 \text{ M}\Omega,$$

$$R_T = 1.5 \text{ k}\Omega, C_G = 200 \text{ nF},$$

$$C_S = 15 \text{ \muF i } C_T = 4 \text{ pF. Parametri}$$

$$\text{FET-a su } K = 1.5 \text{ mA/V}^2,$$

$$U_{GS0} = 0.5 \text{ V}, C_{gs} = 2 \text{ pF i}$$

$$C_{gd} = 1 \text{ pF. Zanemariti porast}$$
struje odvoda s naponom u_{DS} u

- a) Odrediti otpor R_S s kojim će se postići struja $I_{DO} = 3$ mA, te izračunati napon U_{DSQ} (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{V_{\sigma}} = U_{iz}/U_{\sigma}$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vg} (4 boda).

Zadatak 4 – 12 bodova

Za pojačalo na slici zadano je $U_{CC} = 12 \text{ V}$, $R_{C1} = 5 \text{ k}\Omega$, $R_{B1} = 200 \text{ k}\Omega$ i $R_{E2} = 3 \text{ k}\Omega$. Parametri tranzistora su $\beta \approx h_{fe} = 100 \text{ i}$ $U_{\nu} = 0.7 \text{ V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \,\mathrm{mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal (2 boda).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (2 boda).
- e) Odrediti pojačanja $A_{Vf} = u_{iz}/u_{ul}$ i $A_{If} = i_{iz}/i_{ul}$ (2 boda).

Zadatak 5 – 8 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^6\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^5\right)} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4} .$$

Grafičkim postupkom crtanjem aproksimativnog Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s amplitudnim osiguranjem A.O. = -13 dB. Koliko je pri tome fazno osiguranje F.O.?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β – 2 boda, F.O. – 2 boda)

Popis složenijih formula:

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2 (1 + \lambda u_{DS})$$