The role of line arrangements in some open problems in algebraic geometry

Brian Harbourne

Department of Mathematics University of Nebraska-Lincoln

MFO mini-workshop on Seshadri constants

Organizers: Th. Bauer, Ł. Farnik, K. Hanumanthu and J. Huizenga Slides available at: http://www.math.unl.edu/~bharbourne1/MF02019Slides.pdf

November 14, 2019

Problem 1: Computability/rationality of multipoint Seshadri Constants

- $Z \subset \mathbb{P}^2$ finite set of points
- $\pi_Z: X_Z \to \mathbb{P}^2$ blow up of Z, E_Z the exceptional locus
- ullet $L'=\pi_Z^*L$ for general line $L\subset \mathbb{P}^2$
- $\varepsilon(Z) = \sup\{t : L' tE_Z \text{ is nef}\}$

Question: Let $C \subset \mathbb{P}^2$ be reduced curve, $Z = Z_C = \operatorname{Sing}(C)$, $D_C \subset X$ the proper transform of C:

If $D_C^2 < -1$, must $\varepsilon(Z)$ be rational? Can we compute it?

Test case: take ${\it C}$ to be a supersolvable (to be defined below) line arrangement.

Problem 2: Same problem for Waldschmidt constants $\widehat{\alpha}$

Recall: $\widehat{\alpha}(Z) = \inf\{t/m : tL' - mE_Z \text{ is effective}\}\$

Note: $\widehat{\alpha}(Z) \geq |Z| \varepsilon(Z)$.

Test case: take *C* to be a line arrangement.

Sample open case: take C to be Klein's arrangement of 21 lines.

See: Negative curves on symmetric blowups of the projective plane, resurgences and Waldschmidt constants (IMRN, 2018)

Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Jack Huizenga, Alexandra Seceleanu, Tomasz Szemberg.

Problem 3: Bounded Negativity

Let C be a reduced singular plane curve.

• How negative can $H(C) = D_C^2/|Z_C|$ be?

Facts:

- (a) $\inf_C H(C) \le -2$ (inf taken over reduced, irreducible C, arbitrary char)
- (b) $\inf_C H(C) = -3$ (inf taken over real line arrangements C)
- (c) $\inf_C H(C) \ge -4$ (inf taken over complex line arrangements C)

See: Bounded Negativity and Arrangements of Lines (IMRN, 2015)

Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Jack Huizenga, Anders Lundman, Piotr Pokora, Tomasz Szemberg.

Problem 3: Bounded Negativity Open Questions

• If C is irreducible (arbitrary char) must we have H(C) > -2?

Taking C to be a general image of \mathbb{P}^1 in \mathbb{P}^2 of degree d gives

$$H(C) = -2 + \frac{6d - 4}{(d - 1)(d - 2)}.$$

• If C is a complex line arrangement must we have $H(C) \ge H(C_W) = -\frac{225}{67} \approx -3.36$, where C_W is Wiman's arrangement of 45 lines?

 C_W has 120 triple, 45 quadruple and 36 quintuple points.

• What is $\inf_C H(C)$ for rational line arrangements C?

There is a rational C with $H(C) = \frac{-503}{181} \approx -2.779$.

The most negative known rational line arrangement

d=37 lines, 72 double points, 72 triple points, 24 quadruple points, 10 sextuple points, 3 octuple points and $H=\frac{-503}{181}\approx -2.779$:

Problem 4: The Containment Problem (simplest version)

Let $Z \subset \mathbb{P}^2$ be a finite set.

$$I_Z^{(m)} = \cap_{p \in Z} I_p^m$$
.

• Classify Z with $I_Z^{(3)} \nsubseteq I_Z^2$.

Note: All known complex examples have been found by taking $Z \subset \operatorname{Sing}(C)$ for certain line arrangements C.

First known case: *C* is Dual Hesse (Marcin Dumnicki, Tomasz Szemberg, Halszka Tutaj-Gasińska (2013)).

Problem 5: Unexpected curves

Let $Z \subset \mathbb{P}^2$ be a finite set, $p \in \mathbb{P}^2$ a general point, $Z' = Z \cup \{p\}$.

• Classify all (Z, m) with

$$h^{0}(X_{Z'},(m+1)L'-mE_{p}-E_{Z})>$$
 $\max\Big(0,h^{0}(X_{Z'},(m+1)L'-E_{Z})-\binom{m+1}{2}\Big).$

Note: The main technique currently uses properties of the line arrangement dual to Z.

Example: The least m for which there is a Z is m+1=4, and this Z is unique (up to projective equivalence), coming from the B_3 line arrangement.

See: On the unique unexpected quartic in \mathbb{P}^2 (to appear) Łucja Farnik, Francesco Galuppi, Luca Sodomaco, William Trok

B_3

The B_3 arrangement of 9 lines (the line at infinity is not shown):

(The nine lines of \mathcal{L}_{B_3} are dual to the roots of the B_3 root system.)

The unique unexpected quartic:

A Theorem of Di Marca, Malara and Oneto (DMO)

Note: A *modular* point of a line arrangement is a singular point which can see all other singular points by looking down lines of the arrangement. A *supersolvable* (ss) line arrangement is a line arrangement with at least one modular point.

Example: The B_3 arrangement is ss; it has 3 modular points.

Theorem (DMO: J. Alg. Comb., 2019) Let $\mathcal{L} = \{L_1, \ldots, L_r\}$ be supersolvable, $m_{\mathcal{L}}$ the maximum multiplicity among the singular points, and $d_{\mathcal{L}} = r$ the number of lines. Let Let $\mathcal{P}_{\mathcal{L}}$ be the points dual to the lines of \mathcal{L} . The following are equivalent:

- (a) $\mathcal{P}_{\mathcal{L}}$ has an unexpected curve of degree d=m+1 for some m;
- (b) $\mathcal{P}_{\mathcal{L}}$ has an unexpected curve of degree d for $d=m_{\mathcal{L}}$; and
- (c) $2m_{\mathcal{L}} < d_{\mathcal{L}}$.

Question: Which supersolvable \mathcal{L} have $2m_{\mathcal{L}} < d_{\mathcal{L}}$?

Question: Can we classify supersolvable \mathcal{L} ?

Partial classification of complex supersolvable $\mathcal L$

Joint work with Krishna Hanumanthu (HH) arXiv:1907.07712 .

Let \mathcal{L} be supersolvable (ss).

Definition: \mathcal{L} is homogeneous (homog) if every modular point has the same multiplicity.

Theorem (HH): Let \mathcal{L} be ss, non-homog. Then \mathcal{L} looks like the following:

What you are seeing: there is a unique singular point (here it's A) of maximum multiplicity $m_{\mathcal{L}}$, there is at most one other point (here it's B) of multiplicity more than 2, and all other singular points have multiplicity 2.

Proof: The key fact is a point of multiplicity $m_{\mathcal{L}}$ must be modular.

Homog ss \mathcal{L}

Theorem (HH): Let \mathcal{L} be ss, homog. Then there are at most 4 modular points.

Proof: The key fact is no three modular points are collinear.

Theorem (HH): There is a unique homog \mathcal{L} with 4 modular points; it has $m_{\mathcal{L}} = 3$:

When are there 3 modular points?

Theorem (HH): If \mathcal{L} has exactly 3 modular points, then $m_{\mathcal{L}} > 3$ and (up to choice of coordinates) the lines come from the linear factors of

$$xyz(x^{m-2}-y^{m-2})(x^{m-2}-z^{m-2})(y^{m-2}-z^{m-2}),$$

where $m=m_{\mathcal{L}}$. (Here the three modular points are the coordinate vertices.)

Notes:

- (a) If m = 3 this gives the case of 4 modular points.
- (b) The case m = 4 gives the B_3 arrangement.
- (c) A lattice theoretic classification has now been given by Dimca for 2 modular points.
- (d) The case of 1 modular point is open.

Thanks...

Thank you ...

... from all of us ...

... to all of you!

