

Dokumen Pengembangan TRIAMIX (TRIso Analysis Code coupled with THERMIX capabilities)

LABORATORIUM KOMPUTASI PUSAT TEKNOLOGI DAN KESELAMATAN REAKTOR NUKLIR

*Disusun oleh:*Arya Adhyaksa Waskita

Supervisor: Dr. Eng. Topan Setiadipura

Daftar Isi

Da	aftar Gambar					
Da	aftar l	Program	iii			
1		dahuluan Latar Belakang	2 2.			
		Konsep Dasar				
2	Stru	ıktur Program	5			
	2.1	Diagram konteks	5			
	2.2	Kebutuhan fungsi	5			
	2.3	Diagram alir data level 1	7			
3	Ran	cangan Pengujian	14			

Daftar Gambar

1.1	Aspek keselamatan reaktor nuklir
1.2	Skema alur program THERMIX [1]
2.1	Konteks level 0 dari sistem Triamix
2.2	Fungsi/sub rutin MAITHX, terbesar dari yang didefinisikan di THERMIX 8
2.3	Sub rutin EINL1
2.4	Sub rutin SETE
2.5	Sub rutin SUCHET
2.6	Sub rutin KONST1
2.7	Sub rutin TFELD
2.8	Sub rutin ISOPLT 12
2.9	Sub rutin STEUER
2.10	Sub rutin VARSET
2.11	Diagram alir data level 1

Daftar Program

2.1	Deklarasi variabel berjenis COMMON di Fortran		 					11
2.2	Deklarasi variabel berjenis dictionary		 					11

BAB 1

Pendahuluan

1.1 Latar Belakang

Analisis keselamatan reaktor nuklir melibatkan sejumlah aspek seperti diperlihatkan pada Gambar 1.1. Setelah upaya melakukan rekayasa balik terhadap PANAMA [2, 3] untuk aspek kinerja bahan bakar [4], dipandang perlu untuk melanjutkan analisis keselamatan di aspek thermal hydraulics.

Gambar 1.1: Aspek keselamatan reaktor nuklir

Kode komputer THERMIX [1, 5] sebagai salah satu kode baku dalam analisis keselamatan reaktor di aspek termal yang turut menghantarkan Jerman sebagai *center of excellent* pada penelitian tersebut. Dari THERMIX, sejarah irradiasi dan kecelakaan yang dialamai partikel triso dapat disimulasikan.

Karenanya, perangkat lunak akan dikembangkan berdasarkan data referensi dan dokumentasi [1, 5]. Hasil rekayasa balik akan berupa prototipe kode komputer/perangkat lunak yang terintegrasi dengan modul analisis keselamatan bahan bakar berbasis partikel triso [4] dan analisis ketidakpastian [6].

1.2 Konsep Dasar

Skema alur program THERMIX dapat dijelaskan melalui Gambar 1.2. Skema alur tersebut didasarkan pada 3 konsep kekealan dalam fisika, masing-masing adalah kekekalan massa, momentum dan energi. Ketiga aspek kekekalan yang akan dibahas berikut ini juga berbasis pada [1]

Gambar 1.2: Skema alur program THERMIX [1]

Kekekalan massa gas pendingin dalam bentuk *quasi-static* menghasilkan vektor alir $G = \rho_G \vec{v}$ sepanjang *loop*. Kekekalan massa gas tersebut dinotasikan dalam persamaan (1.1). ρ_G adalah kerapatan gas pendingin $\left[\frac{kg}{m^3}\right]$. \vec{v} adalah kecepatan $\left[\frac{m}{s}\right]$. Sedangkan q adalah kerapatan laju massa sumber $\left[\frac{kg}{s.m^3}\right]$.

$$\nabla \rho_G \vec{\mathbf{v}} = q \tag{1.1}$$

Kekekalan momentum dalam bentuk *quasi static* menghasilkan medan tekanan p sepanjang *loop*, dengan p adalah tekanan statis, \vec{g} adalah gravitasi dan \vec{R} adalah gaya gesek.

$$\nabla p - \rho_G \vec{g} + \vec{R} = 0 \tag{1.2}$$

Persamaan (1.2) memberikan *gradient* kesetimbangan tekanan, gaya hidrostatik dari gravitasi serta gaya gesek per satuan volume. Percepatan spasial dan inersia diabaikan di sini. Selanjutnya, gaya gesek didefinisikan sebagai persamaan (1.3). Dengan ψ adalah koefisien penurunan tekanan untuk aliran melalui *pebble bed* sedangkan d adalah diameter *pebble*.

$$\vec{R} = \frac{\Psi}{d} \frac{1 - \varepsilon}{\varepsilon^3} \frac{|G|}{2\rho_G} \vec{G} \tag{1.3}$$

Evaluasi persamaan (1.2) dan (1.3), seperti pada Gambar 1.2, dilakukan dalam sub rutin STROEM dalam KONVEK2.FOR.

Sementara untuk kekekalan

BAB 2

Struktur Program

2.1 Diagram konteks

Sistem yang akan dikembangkan memiliki diagram konteks level 0 seperti pada Gambar 2.1. Triamix akan menerima masukan berupa distribusi rapat daya dan menghasilkan distribusi temperatur. Distribusi temperatur tersebut selanjutnya akan menjadi masukan bagi TRIAC-BATAN yang sebelumnya dikembangkan [4].

Gambar 2.1: Konteks level 0 dari sistem Triamix

2.2 Kebutuhan fungsi

Tahapan selanjutnya adalah membuka struktur program dan melihat keterkaitan antar fungsi yang terdapat di kode komputer THERMIX. Terdapat 4 program, masing-masing THERMIX1.FOR

- THERMIX4. FOR. Subrutin dan fungsi pada masing program tersebut disajikan pada Tabel 2.1
- Tabel 2.4. Deskripsi yang disajikan merupakan translasi bebas dari Bahasa Jerman menggunakan google translate.

Selain itu, terdapat juga fungsi/sub rutin yang didefinisikan pada program di luar THERMIX. Tabel 2.5 menyajikan fungsi-fungsi tersebut.

Keterkaitan antar fungsi/sub rutin ditampilkan secara grafis disajikan pada Gambar 2.2. Penyajian tersebut menggunakan konvensi:

- merah → terdefinisi di THERMIX1.FOR
- kuning → terdefinisi di THERMIX2.FOR
- hijau → terdefinisi di THERMIX3.FOR
- biru \rightarrow terdefinisi di THERMIX4.FOR

Tabel 2.1: Daftar fungsi dan subrutin dalam program THERMIX1.FOR

Fungsi / Subrutin	Deskripsi					
ABEND	Membuat penanganan kesalahan					
BILD	Lembar penciptaan buatan dan halaman akhir					
BUBIL	Perhitungan sumber panas konvektif saat ini dan kompensasi					
	komposisi ini. Hanya aktif jika sumber panas dibuat dengan $\alpha * f$					
	dan TFLU					
CALT	Hitung suhu pada kondisi tunak					
CALT1	Menghitung suhu suhu padat yang homogen					
CALT2	Menghitung suhu padat heterous (temperatur zona bola) so-					
	lusi TRISSIAG dari sistem persamaan penghapusan matriks					
	(GAUSS)					
CALT2H	Menghitung suhu padat heterous (temperatur zona bola) solusi					
	sistem persamaan TRIDIAG matriks penghapusan (GAUSS)					
CALTA	Menghitung temperatur padat heterous (stationary billing) solusi					
	sistem persamaan sebagai SR CALT2 (eliminasi matriks)					
CALTAH	Menghitung temperatur padat heterous (stationary billing) solusi					
	sistem persamaan sebagai SR CALT2 (eliminasi matriks)					
EXPLIZ	Perhitungan eksplisit ke fungsi panas					
MAITHX	Program utama THERMIX, 50x80 tingkat perubahan					
STEUER	Menetapkan suhu tengah, menciptakan plot waktu, temperatur					
	corr. rangkaian dalam arah y					
WTSTEU	Kendali penghapusan kinerja di pertukaran panas					

- biru muda \rightarrow terdifinisi di program selain THERMIX1.FOR s/d THERMIX4.FOR
- bayangan oranye → memiliki ketergantungan terhadap fungsi/sub rutin di bawahnya, fungsi/sub rutin tersebut dapat berada di THERMIX1.FOR s/d THERMIX4.FOR atau bahkan di luar keempat program tersebut.
- secara umum, panah menunjukkan ketergantungan yang setara antara fungsi/sub rutin di lapisan pertama dengan lapisan-lapisan di bawahnya. Seperti ditunjukkan pada Gambar 2.2, sub rutin MAITHX membawahi semua sub rutin di bawahnya secara langsung, kecuali SETBER, ABEND dan BILD.

Kemudian, sub rutin di bawah MAITHX yang membawahi sub rutin lain adalah:

- 1. EINL1 (Gambar 2.3),
- 2. SETE (Gambar 2.4),
- 3. SUCHET (Gambar 2.5),
- 4. KONST1 (Gambar 2.6),
- 5. TFELD (Gambar 2.7),

Tabel 2.2: Daftar fungsi dan subrutin dalam program THERMIX2.FOR

Fungsi / Subrutin	Deskripsi					
DDF1	Tidak tersedia penjelasan					
CALT3	Perhitungan suhu pada heterous (temperatur zona bola) solusi					
	sistem persamaan Gauss-Siedel. Hati-hati menggunakan \rightarrow					
	kapasitas panas*WK APH, tidak bekerja untuk flash ball					
EINL1	Program READOUT untuk bagian program HEATER					
GFIT	Perhitungan perubahan akurasi panas irradiasi					
GRPR	Penetapan GR*PR untuk cetakan konveksi bebas, P harus disedi-					
	akan					
INTEST	Aktif dalam IFTEST=1 $ ightarrow$ angka minimum untuk uji masukan					
IPLOG	Interpolasi logaritmik pada nilai konstan melampaui rentang de-					
	finisi					
ISOPLT	Plot iso-linear					
ITPL	Interpolasi linear					
KONST1	Perhitungan kemampuan pemanasan dan fungsi geometri untuk					
	shelves					
KOPFB	Program coupling untuk suhu dan umpan balik XENON					
KUEHLK	Tidak tersedia penjelasan					
MARK	Tanda batas komposisi dari luaran grid besar					
MIMAX	Menentukan minimum dan maksimum ruang grid terhubung					
ORDNE1	Tidak tersedia penjelasan					
ORDNE2	Pilih dari jumlah total 3 cm dukungan terbesar					
PDFELD	Masalah besar yang dilakukan di sini, konsentrasi VSOP untuk					
	release produk fisi					
PRAIZ	Tidak tersedia penjelasan					
PREIN	Pengendalian dan output sifat komposisi					
PRFELD	Edisi grid yang hebat					
PRINTT	Masalah grille kecil					
READRZ	Masukan grille aksial dan radial					

^{6.} ISOPLT (Gambar 2.8) dan

Untuk sub rutin SETSTR tidak ditampilkan karena hanya membawahi ABEND yang sudah ditampilkan di Gambar 2.2. sedangkan sub rutin SETT bersama sub rutin SETF1, SETF2, SETK1 ditampilkan pada Gambar 2.10. Sub rutin tersebut sama-sama membawahi sub rutin ABEND.

2.3 Diagram alir data level 1

Diagram yang disajikan pada Gambar 2.11 adalah penjabaran dari diagram konteks yang disajikan di Gambar 2.1. Triamix harus menyediakan sub rutin yang dapat menerima informasi rapat daya berikut informasi pendukung berupa dimensi reaktor pada arah radial dan axial, lengkap dengan jumlah *mesh* pada kedua arah tersebut. Untuk informasi rapat daya,

^{7.} STEUER (Gambar 2.9).

Tabel 2.3: Daftar fungsi dan subrutin dalam program THERMIX3.FOR

Fungsi / Subrutin	Deskripsi				
LAGRAS	Interpolasi lagrange				
POWTHX	Menerima layanan VSOP + EVTL konsentrasi terhadap grid ther-				
	mix				
PRTEIN	Tidak tersedia penjelasan				
REDUM	Perhitungan daya termal (lokasi, waktu)				
REDUN	Perhitungan kekuatan termal (lokasi, waktu) untuk OTTO				
REDUZ	Pengendalian perhitungan daya panas				
REFL	Mengatur Kondisi RIM adiabatis pada grid				
REIPO	Program interpolasi (ke transmisi grid)				
RUND	Tidak tersedia penjelasan				
SECURE	Membuat berkas untuk restart				
SETBER	Tidak tersedia penjelasan				
SETD	Set dosis cepat				
SETE	Set kinerja daya dan konsentrasi				
SETF1	Membaca grille thermix				
SETF2	Membaca ketebalan zona inti				
SETK1	Menempatkan grille thermix dengan komposisi				
SETSTR	Mengidentifikasi dan memeriksa kolom beam				
SETT	Konfigurasi suhu awal				
SETZT1	Mengalihkan suhu awal yang diambil dengan bantuan grille				
VOLMAT	Volume matriks VSOP-THERMIX*BIRGIT				

Gambar 2.2: Fungsi/sub rutin MAITHX, terbesar dari yang didefinisikan di THERMIX

Triamix dirancang untuk dapat membacanya dari berkas teks berisi matriks dua dimensi yang. Jumlah *mesh* di arah radial harus sama dengan jumlah kolom dalam informasi rapat daya. Demikian juga dengan jumlah *mesh* di arah axial, harus sama dengan jumlah baris

Tabel 2.4: Daftar fungsi dan subrutin dalam program THERMIX4.FOR

Fungsi / Subrutin	Deskripsi					
EINL2	Program sub <i>dummy</i> untuk masukan KINEX					
KINEX	Program sub <i>dummy</i> faktor tanpa KINEX (sub rutin kosong)					
KOPREG	Program sub dummy untuk akun tanpa pengendalian (sub rutin					
	kosong)					
SUCHET	Mendefinisikan lokasi tugas het-grid dan pengendalian IFBH					
SUCHMI	Menetapkan panel kendali IFBH campuran					
SYMBOL	Menetapkan IFBER					
TFELD	Kendali perhitungan iteratif suhu padat					
TNEU	Terkait relaksasi					
TPROZ	Membuat temperatur-volume analisis untuk teras dan menghitung					
	suhu bahan bakar mediumdan moderator (untuk daerah HET)					
VORKON	Unsur hitung quarter-flaechen					
WDUKON	Menghitung aksesibilitas panas					
WKAP	Menghitung kapasitas panas untuk setiap waktu, untuk zone mesh					
	dan bola					
WKN	Memperhitungkan unsur dengan sumber panas konvektif					
WKPT	Menghitung $\rho * C$ untuk meteri yang berbeda untuk Al_2O_3 dan tidak tergantung pada temperatur					
WPKON	Menghitung sumber panas konvektif, kerapatan sumber dan vol-					
	umen asosiasi					
XKORR	Tidak tersedia penjelasan					
XLAM	Menghitung aksesibilitas panas					
XLAM1	Menghitung aksesibilitas panas anisotropis					
XLAMT	Menghitung konduktivitas panas					
XLAMT1	Karakterisasi temperatur anisotropis dan termperatur resistan					
	pada arah-Y					
ZKUGL	Menghitung jumlah Be di mesin HET dan mesin campuran					

Gambar 2.3: Sub rutin EINL1

dalam informasi rapat daya. Sub rutin tersebut dalam Gambar 2.11 merupakan sub rutin 1.1, *Input Adapter*. Sedangkan diagram 1.3, *Output Adapter* merupakan sub rutin yang

Tabel 2.5: Daftar fungsi dan subrutin yang didefinisikan dalam program THERMIX4.FOR

Sub rutin	Dipanggil dari	Didefinisikan di	Keterangan				
EINL	THERMIX1.FOR	KONVEK1.FOR	didefinisikan menggunakan				
ED IGE			SUBROUTINE				
FRIST	THERMIX1.FOR	VSOP0.FOR	didefinisikan menggunakan SUBROUTINE				
KONVEK	THERMIX1.FOR	KONVEK1.FOR	didefinisikan menggunakan				
			SUBROUTINE				
WTSTE1	THERMIX1.FOR	THERMIX1.FOR	dipanggil dengan ENTRY,				
			tanpa definisi (kosong)				
NACHW	THERMIX1.FOR	DECHEAT.FOR	didefinisikan menggunakan				
			SUBROUTINE				
DDF	THERMIX1.FOR	THERMIX1.FOR	tidak ditemukan fungsi/sub				
		(dalam fungsi yang	rutin yang pernah menggu-				
		sama)	nakannya				
VOLMA1	THERMIX3.FOR	THERMIX3.FOR,	dipanggil dengan ENTRY				
		sub rutin VOLMAT					
VOLMA2	THERMIX3.FOR	THERMIX3.FOR,	dipanggil dengan ENTRY				
		sub rutin VOLMAT					
FRIST	THERMIX4.FOR	VSOP0.FOR	didefinisikan menggunakan				
			SUBROUTINE				

Gambar 2.4: Sub rutin SETE

memformat hasil perhitungan distribusi temperatur sesuai dengan karakterisktik masukan TRIAC-BATAN [4].

Sub rutin 1.1 (*Input Adapter*) juga melingkupi daftar variabel yan digunakan. Sampai saat dokumen ini disusun, belum ada informasi yang berarti tentang peran dari sangat banyaknya variabel yang digunakan dalam kode sumber Thermix yang dibangun menggunakan Fortran. Variabel-variabel tersebut bahkan banyak yang dideklarasikan berulang, yang tidak mungkin dijinkan dalam konsep bahasa pemrograman saat ini.

Variabel-variabel tersebut akan dideklarasikan dalam berkas yang diberi nama globalVar.py. Untuk variabel yang dideklarasikan dalam Thermix sebagai COMMON, variabel tersebut akan

Gambar 2.5: Sub rutin SUCHET

Gambar 2.6: Sub rutin KONST1

Gambar 2.7: Sub rutin TFELD

dideklarasikan dalam python sebagai dictionary. Elemen COMMON akan menjadi elemen dictionary. Sebagai contoh, variabel COMMON di Fortran (Listing 2.1) akan dideklarasikan sebagai dictionary di python (Listing 2.2).

Listing 2.1: Deklarasi variabel berjenis COMMON di Fortran COMMON/DRUKK/MZ(40,25), MR(40,25), P(40,25), XKR(40,25), XKZ(40,25)

Listing 2.2: Deklarasi variabel berjenis dictionary

```
1 drukk={}
2 drukk['mz']=[] """40x25 elements"""
```


Gambar 2.8: Sub rutin ISOPLT

Gambar 2.9: Sub rutin STEUER

Gambar 2.10: Sub rutin VARSET

```
drukk['mr']=[] """40x25 elements"""

drukk['p']=[] """40x25 elements"""

drukk['xkr']=[] """40x25 elements"""

drukk['xkz']=[] """40x25 elements"""
```

Sub rutin perhitungan distribusi temperatur akan dijalankan oleh sub rutin 1.2, THERMIX. Sub rutin tersebut adalah sub rutin MAITHX yang disajikan pada Gambar 2.2. Sub rutin MAITHX menerima empat argumen, masing-masing adalah

• N200

Gambar 2.11: Diagram alir data level 1

- NXS
- NDR
- KMAT: jumlah nuklida yang dipertimbangkan dalam simulasi

Selanjutnya, sub rutin STEUER menerima argumen IFKON, ITLAM, TDIFF, NLOOP, IFRED, IFZW, ITM3, CP0, IFTEST, NHET, ZEITH, XFR, IEXPR, N200, NDR, NXS, POV, ZF, NRY, QNW, DELDZ, QTHX, dan WTGINT. Sub rutin STEUER disajikan pada Gambar 2.9. Terakhir, sub rutin TFELD akan menerima argumen ITLAM, OVRM, IFKO1, IFWARN, CP0, IFZENT. Sub rutin TFELD disajikan pada Gambar 2.7.

BAB 3

Rancangan Pengujian

Pengujian yang akan dilakukan pada Triamix adalah white box testing [7, 8]. Pengujian secara white box meliputi:

- *Unit testing*: merupakan pengujian unit perangkat keras atau lunak, maupun kelompok unitnya. Dalam hal ini, pengujian hanya akan difokuskan pada pengujian setiap fungsi dan modul.
- *Integration testing*: merupakan pengujian terintegrasi antar fungsi dan modul. Validasinya dilakukan terhadap hasil dari berkas masukan yang sama seperti telah dijelaskan dalam dokumen kebutuhan.

Daftar Referensi

- [1] H. B. K. J. Rütten, K. A. Haas and W. Scherer, "V.s.o.p (99/05) computer code system for reactor physics and fuel cycle simulation," Forschungszentrum Jülich GmbH, Tech. Rep., 2005.
- [2] K. Verfondern and H. Nabielek, "The mathematical basis of the panama-i code for modelling pressure vessel failure of triso coated particles under accident conditions," Julich Research Center, Germany, Tech. Rep., 1990.
- [3] K. Verfondern, J. Cao, T. Liu, and H.-J. Allelein, "Conclusions from v&v studies on the german codes panama and fresco for htgr fuel performance and fission product release," *Nuclear Engineering and Design*, vol. 271, pp. 84 91, 2014, sI: HTR 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0029549313005992
- [4] A. A. Waskita and T. Setiadipura, "The development of TRIAC-BATAN: a triso fuel performance analysis code," vol. 1198, no. 2. IOP Publishing, apr 2019, p. 022035. [Online]. Available: https://doi.org/10.1088%2F1742-6596%2F1198%2F2%2F022035
- [5] K. A. H. K. J. Rütten and C. Pohl, "Computer code system v.s.o.p (99/11) update 2011 of v.s.o.p (99)-version 2009 code manual," Forschungszentrum Jülich GmbH, Tech. Rep., 2009.
- [6] A. A. Waskita, N. A. Wahanani, A. Purwaningsih, and T. Setiadipura, "Study on effect of latin hypercube sampling method in triso fuel performance analysis," in *Proceeding* of HTR 2018, 2018.
- [7] L. Williams, "White-box testing," http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf, accessed: 2016-03-15.
- [8] "Systems and software engineering vocabulary," *ISO/IEC/IEEE 24765:2010(E)*, pp. 1–418, Dec 2010.