

Nedbørfeltgrenser, feltparametere og vannføringsindekser er automatisk generert og kan inneholde feil. Resultatene må kvalitetssikres.

Lavvannskart

Vassdragsnr.: 006.G2C Kommune: Jevnaker			Feltparametere					
Fylke: Oppland			Areal (A)	7,8 km²				
Vassdrag: Spålselva			Effektiv sjø (S _{eff})	1,9 %				
vassaras. Spaiserva			Elvelengde (E _L)	5,2 km				
			Elvegradient (E _G)	19,1 m/km				
Vannføringsindeks, se merknader			Elvegradient ₁₀₈₅ (G ₁₀₈₅)	27,0 m/km				
			$Feltlengde(F_L)$	3,9 km				
Middelvannføring (61-90)		1/(s*km²)	$_{min}$	482 moh.				
Alminnelig lavvannføring		1/(s*km²)	H ₁₀	506 moh.				
5-persentil (hele året)		1/(s*km²)	H ₂₀	520 moh.				
5-persentil (1/5-30/9)		l/(s*km²)	H ₃₀	533 moh.				
5-persentil (1/10-30/4)		1/(s*km²)	H ₄₀	545 moh.				
Base flow	8,2	2 l/(s*km²)	H ₅₀	557 moh.				
3FI 0,4			H ₆₀	570 moh.				
Klima			H ₇₀	583 moh.				
Kiiiia			H 80	596 moh.				
Klimaregion		Ost	H ₉₀	614 moh.				
Årsnedbør	937	mm	H_{max}	660 moh.				
Sommernedbør	447	mm	Bre	0,0 %				
Vinternedbør	490	mm	Dyrket mark	0,0 %				
Årstemperatur	1,9	°C	Myr	2,7 %				
Sommertemperatur	10,1	°C	Sjø	4,2 %				
Vintertemperatur	-3,9	°C	Skog	93,0 %				
Temperatur Juli	12,8	°C	Snaufjell	0,0 %				
Temperatur August	12,0	°C	Urban	0,0 %				

1) Verdien er editert

Det er generelt stor usikkerhet i beregninger av lavvannsindekser. Resultatene bør verifiseres mot egne observasjoner eller sammenlignbare målestasjoner.

I nedbørfelt med høy breprosent eller stor innsjøprosent vil tørrværsavrenning (baseflow) ha store bidrag fra disse lagringsmagasinene.

Flomberegning

Vassdragsnr.: 006.G2C Kommune: Jevnaker Fylke: Oppland Vassdrag: Spålselva

Flomverdiene viser størrelsen på kulminasjonsflommer for ulike gjentaksintervall. De er beregnet ved bruk av et formelverk som er utarbeidet for nedbørfelt under ca 50 km2. Feltparametere som inngår i formelverket er areal, effektiv sjøprosent og normalavrenning (l/s*km²). For mer utdypende beskrivelse av formelverket henvises det til NVE –Rapport 7/2015 «Veileder for flomberegninger i små uregulerte felt». Det pågar fortsatt forskning for å Det pågar fortsatt forskning for å bestemme klimapåslag for momentanflommer i små nedbørfelt. Frem til resultatene fra disse prosjektene foreligger anbefales et klimapåslag på 1.2 for døgnmiddelflom og 1.4 for kulminasjonsflom i små nedbørfelt.

Spålselva	
Areal (km²)	7,84
Klimafaktor	1,4

	m3/s	Q ^M l/(s*km²)	Q5	Q 10	Q 20	Q 50	Q 100	Q 200
Flomfrekvensfaktorer	-	-	1,25	1,49	1,75	2,15	2,49	2,89
95% intervall øvre grense (m³/s)	4,8	616,3	6,2	7,5	9,1	11,4	13,6	15,8
Flomverdier (m³/s)	2,7	348	3,4	4,1	4,8	5,9	6,8	7,9
95% intervall nedre grense (m³/s)	1,5	197	1,9	2,2	2,5	3,0	3,4	3,9
Flommer med klimapåslag (m³/s)	3,8	487,5	3,4	5,7	6,7	8,2	9,5	11,0

Beregningene er automatisk generert og kan inneholde feil. Det er generelt stor usikkerhet i denne typen beregninger. Resultatene må verifiseres mot egne observasjoner eller sammenlignbare målestasjoner. Resultatene er ikke gyldig som grunnlag til flomberegninger for klassifiserte dammer.