Graph Rewriting Systems and DGGs

What are they and how are they related?

Graph Rewriting Systems:

 A graph rewriting system is a formalism for transforming graphs by applying rules that modify their structure.

 The theory of graph grammars¹ provides a category theoretic framework for how dynamic graphs become rewriting systems.

1. (Rozen et al, 1997); 2. (Mjolsness, 2019)

Dynamical Graph Grammars:

- Dynamical Graph Grammars² (DGGs) are graph rewriting systems with a stochastic rewriting process, plus differential equations.
- DGGs map graphs to a master equation resulting from an operator algebra framework.

 DGGs provide a way to declare a set of deterministic and stochastic rules to model complex dynamics systems with graphs.

Graph Rewriting Systems and DGGs

What are they and how are they related?

Graph Rewriting Systems:

- A graph rewriting system is a formalism for transforming graphs by applying rules that modify their structure.
- The theory of graph grammars¹ provides a category theoretic framework for how dynamic graphs become rewriting systems.

Dynamical Graph Grammars:

- Dynamical Graph Grammars² (DGGs) are graph rewriting systems with a stochastic rewriting process, plus differential equations.
- DGGs map graphs to a master equation resulting from an operator algebra framework.
- DGGs provide a way to declare a set of deterministic and stochastic rules to model complex dynamics systems with graphs.

The Dynamical Graph Grammar Formalism

What are DGGs anyway?

- The DGG formalism is a declarative modeling language L:
 - 1. A compositional map $\Psi:L\longrightarrow S$ that maps all syntactically valid models $M\in L$ into some space S of dynamical systems.
 - 2. Conditionally valid or conditionally approximate valid families of Abstract Syntax Tree Transformations.

- Rules map to operators where $\Psi(M)=W(M)$
- The master equation, $\frac{d}{dt}P(t)=W\cdot P(t)$, represents the time evolution of a continuoustime Markov process with formal solution is $P(t)=e^{tW}\cdot P(0)$.
- Hard to solve analytically! So, we need help!