bayes18-1 2/78

Introduction to Bayesian Statistics with R

• Dr. Oliver Lindemann

► Email: lindemann@essb.eur.nl

• Website: http://bit.ly/bayes2018

Key readings

Kruschke, John K.(2015) Doing Bayesian Data Analysis (2nd Edition), Academic Press, Amsterdam.

see http://bit.ly/2D6vGPR

Further literature will be provide during the course

Doing Bayesian Data Analysis

Introduction to Bayesian Statistics with R Day 1

> Oliver Lindemann Erasmus University Rotterdam, NL

> > Overview

Day 1 Basics

► Motivation, Probabilites, Distributions, Bayes Theorem

Day 2 Bayesian Hypothesis Test, the Easy Way

▶ Bayes factor, JASP, BayesFactor R package

Day 3 Under the Hood

► Estimating posterior distribution, MCMC Sampling, JAGS

Day 4 Bayesian Modelling

► Modeling with JAGS, Multidimensional space, Hierarchical models

Day 5 Applications

▶ Hypothesis testing, Parameter Estimation, Linear Regressions, Model Comparisons

bayes18-1 4/78

Technical Requirements

- preferable: own laptop
- Only free software
- Bayesian Modelling
 - ► R 3.1
 - ► RStudio OpenSource Edition
 - ► JAGS 3.4
- "SPSS"-like statistical software package
 - ► Jasp

R http://mirrors.softliste.de/cran/

RStudio http://www.rstudio.com/products/rstudio/download/

JAGS http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x

Jasp https://jasp-stats.org/

(AP)

bayes18-1 3/78

Introduction

Why Inferential Statistics?

Procedure

 $\mathsf{Theory} \to \mathbf{Hypothesis} \to \mathsf{Experiment} \to \underline{\mathbf{Data}} \to \mathsf{Statistics}$

Classical statistics

- Ronald Fischer:
 - ► terms "null-hypothesis" & "significant"
 - ▶ urged the distinction between sample and population
 - ► degrees of freedom
 - ► suggested p < .05
 - ► random assignment of conditions, random sampling
- Neyman and Pearson:
 - ► Power and Type II error
 - ► effect size
 - ► Formal decision rule
 - ► following this rule, in the long run, we will not be often wrong
 - lacktriangle error rate (α) of the decision process

Interpreting Frequentist Inferential Statistics

What does the p-value tell us?

 $p(Data|H_0)$

And what do we what to know from the data?

 $p(H_1|Data)$

But

$$p(H_1|\mathsf{Data}) \neq p(\mathsf{Data}|H_0)$$

Thus, p does NOT tell us anything about the likelihood of the hypothesis, neither H_1 nor H_0 !

Misconceptions for Frequentist Statistics

- p < .05 means that H_0 is unlikely to be true, and can be rejected.
- p > .10 means that H_0 is likely to be true.
- For a given parameter μ , a 95% confidence interval from, say, a to b means that there is a 95% chance that μ lies in between a and b.

p-values and strength of evidence

Neyman-Pearson approach: p-values as only interpretable as binary decision rule (effect or not)

ullet Why can't we use p-values as measure of evidence? Why is a small p-value not more evidence for H_1 ?

If H_0 then NOT R \Rightarrow Not H_0

If H_0 then probably NOT R \Rightarrow Probably not H_0

(valid)

(invalid!)

bayes18-1 11/78

bayes18-1 7/78

Example: Probabilistic logic

If H_0 then probably NOT R

 \Rightarrow Probably not H_0

If a person is German, she is probably not member of the Bundestag The person a member of the Bundestag

⇒ Person is probably not German

In Bayesian inference

- Uncertainty or degree of belief (in a hypothesis) is quantified by probability.
- Prior beliefs are updated by means of the data to yield posterior beliefs.

bayes18-1 13/78

Thomas Bayes (1701 1761)

Bayes Theorem

$$p(H|D) = \frac{p(D|H) \ p(H)}{p(D)}$$

bayes18-1 14/78

Aims of this Course

- Recent developments in behavioral statistics
 - ► critical view on frequentist interference (i.e., classical statistics)
- Basic principles of Bayes statistics
 - ▶ understanding the some mathematical principles
 - ► Markov-chain-Monte-Carlo (MCMC) sampling

• Hands on experiences in conducting Bayesian analyses

► Using R and the sampling software JAGS (later more)

bayes18-1 15/78

Probabilities

Random Events

Single dice

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $p(S) = \frac{1}{6}$

Two dices

$$S = \{2, \dots, 12\}$$

$$0.16$$

$$0.14$$

$$0.12$$

$$0.10$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

${\sf Probabilities}$

Probabilities assign numbers to possibilities

A probability $p(x_i)$ have to satisfy three properties:

$$< p(x_i) < 1$$

$$p(x_i) = 1 \tag{2}$$

$$p(A \text{ or } B) = p(A) + p(B); \quad A \neq B$$
(3)

Example dice:

$$p(x \in \{5,6\}) = p(x = 5) + p(x = 6)$$
$$= \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

(1)

- 1. Fairness, objective property of the coin
 - $\theta = p(H)$: probability of head
 - e.g., fair coin: $\theta = 0.5$
- 2. Degree of subjective belief about the fairness of a particular coin
 - $p(\theta)$: Probability about a particular θ
 - e.g. $p(\theta = 0.5) = 0.95$

Note

The probability of an event, θ , is a <u>state of the world</u>. The probability of a coin bias, $p(\theta)$, is merely "<u>inside our heads</u>"

Intro Probabilities Reliefs Distributions Cond Prob. Rayes Theorem Parameter Estimation Example

bayes18-1 19/78

Probability in Statistics

Frequentist approach Objective Probability

- fact about the property in the world
- independently of our beliefs
- can be observed
- reference class or collective
- e.g. mean frequency of head in 10 coin flips

Bayesian approach Subjective Probability

- degree of conviction in a belief
- state of knowledge
- "in the mind"
- single event
- e.g. Probability that it snows today?

ntro Probabilities Reliefs Distributions Cond Prob. Rayes Theorem Parameter Estimation Example

bayes18-1 20/78

States of the World

How to determine the probability of an event?

- 1. deriving mathematically
 - Example of the dice
 - ► not always possible
- 2. Simulation long-run relative frequencies
 - ► Example N coin flips
 - count head H $\hat{\theta} = \theta = H/N$

Running Proportion of Heads

Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Paramatin ** Estamation**

ion Example

atro Probabilities Reliefs Distributions Cond Prob. Bayes Theorem Para

bayes18-1 22/78

Core of Bayesian Statistics

Updating Beliefs

Bavesian Statistics

Distributions Distributions Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example bayes18-1 31/78

Probability Distributions

Discrete Distributions

Probability mass function (PMF)

Wahrscheinlichkeitsfunktion $\sum_{i} p(x_i) = 1$ Continuous Distributions

Probability density functions (PDF)

Wahrscheinlichkeitsdichtefunktion $\int_{i} p(x_i) = 1$

bayes18-1 32/78

Properties of Probability Mass Functions Example two dices Mean $E[x] = \sum_{x} p(x)x$ $\begin{bmatrix} 0.14 & 0.15 & 0.16 & 0.$

Properties of Probability Density Functions $E[x] = \int_{x} p(x)x$ Standard deviation $var_{x} = \int_{x} p(x)(x - E[x])$

Example Mean of Continuous Distribution $E(x) = \int_0^1 dx \ p(x)x$ $= \int_0^1 dx \ 6x(1-x)x$ $= 6 \int_0^1 dx \ (x^2 - x^3)$ $= 6 \left[\frac{1}{3}x^3 - \frac{1}{4}x^4 \right]_0^1$ $= 6 \left[\left(\frac{1}{3}1^3 - \frac{1}{4}1^4 \right) - \left(\frac{1}{3}0^3 - \frac{1}{4}0^4 \right) \right]$ = 0.5Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example bayes 18-140/78

Conditional Probabilities

Hair Color Eye Color ${\sf Black}$ Brunette ${\sf Blond}$ Red Blue .03 .03 .16 .36 .14 Brown .12 .20 .01 .04 .37 Green .03 .14 .04 .05 .48 .18

Proportion of sample of University of Delaware students 1974, N=592.

tion Example

ro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

Conjoint, Marginal & Conditional Probability

bayes18-1 42/78

	Hair Color						
Eve Color	Black	Black Brunette Blond Red					
,		Diunette					
Blue	.03	.14	.16	.03	.36		
Brown	.12	.20	.01	.04	.37		
Green	.03	.14	.04	.05	.27		
	.18	.48	.21	.12			

Conjoint probabilities: p(E, H)

For example, p(E = blue, H = black) = .03

Intro Probabilities Reliefs Distributions Cond Prob Rayes Theorem Parameter Estimation Example

bayes18-1 43/78

Marginal Probabilities: p(E)

Eye Color	Black	Brunette	Blond	Red	
Blue	.03	.14	.16	.03	.36
Brown	.12	.20	.01	.04	.37
Green	.03	.14	.04	.05	.27
	.18	.48	.21	.12	

For example
$$p(E = \text{blue}) = \sum_{H} p(E = \text{blue}, H) = .36$$

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 44/78

Marginal Probabilities: p(H)

	Hair Color				
Eye Color	Black	Brunette	Blond	Red	
Blue	.03	.14	.16	.03	.36
Brown	.12	.20	.01	.04	.37
Green	.03	.14	.04	.05	.27
	.18	.48	.21	.12	

For example $p(H = \mathsf{black}) = \sum_{H} p(E, H = \mathsf{black}) = .18 \quad p(H) \text{ without information about } E$

Conjoint, Marginal & Conditional Probability

Marginal probability

$$p(A) = \sum_{i} p(A, B_i)$$

Conditional probability

$$p(A|B) := \frac{p(A,B)}{p(B)}$$

Intro Probabilities Beliefs Distributions Cond Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 46/78

Conditional Probabilities: p(H|E = blue)

		Hair Color				
Eye Color	Black	Brunette	Blond	Red		
Blue	.03	.14	.16	.03	.36	
Brown	.12	.20	.01	.04	.37	
Green	.03	.14	.04	.05	.27	
	18	48	21	12		

 $p(H|E= {\sf blue})$ is p(H) with information that $E= {\sf blue}$

ntro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 47/78

Conditional Probabilities: p(H|E = blue)

Eye Color	Black	Brunette	Blond	Red	
Blue	.03	.14	.16	.03	.36
Brown	.12	.20	.01	.04	.37
Green	.03	.14	.04	.05	.27
	.18	.48	.21	.12	

$$p(H|E = blue) = \frac{p(H, E = blue)}{p(E = blue)}$$

	Black	Brunette	Blond	Red	
Blue	.03/.36 =	.14/.36 =	.16/.36 =	.03/.36 =	.36/.36 =
	.08	.39	.45	.08	1

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 48/

atistics Bayesian

bayes18-1 50/78

Bayes Theorem Interrelation of conditional probabilities

Conditional Probabilities: p(H|E = blue)

Eye Color	Black	Brunette	Blond	Red	
Blue	.03	.14	.16	.03	.36
Brown	.12	.20	.01	.04	.37
Green	.03	.14	.04	.05	.27
	.18	.48	.21	.12	

$$p(H|E = brown) = \frac{p(H, E = brown)}{p(E = brown)}$$

	Black	Brunette	Blond	Red	
Brown	.12/.37 =	.20/.37 =	.01/.37 =	.04/.37 =	.37/.37 =
	.32	.54	.03	.11	1

Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 49/78

Bayes Rule: Card Example

 $p(B|A) = \frac{p(A|B) p(B)}{p(A)}$

Let's check:

- $p(\diamondsuit) = 1/8$, p(A) = 4/32
- $p(\diamondsuit|A) = 1/4$
- $p(A|\diamondsuit) = 1/8$?

$$p(A|\diamondsuit) = \frac{p(\diamondsuit|A) p(A)}{p(\diamondsuit)} = \frac{1/4 \cdot 4/32}{1/4} = \frac{1}{8}$$

Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Ex

Bayes Theorem Derivation

$$p(A|B) = \frac{p(A,B)}{p(B)}$$

$$p(A,B) = p(A|B) \cdot p(B) = p(B|A) \cdot p(A)$$

$$p(B|A) = \frac{p(A|B) \cdot p(B)}{p(A)}$$

bayes18-1 51/78

Applying Bayes Rule

Example

The probability of breast cancer is 1% for a woman at age 40 who participates in routine screening. If a woman has breast cancer, the probability is 80% that she will have a positive test. If a woman does not have breast cancer, the probability is 9.6% that she will also have a positive test.

A woman in this age group had a positive test in a routine screening. What is the probability that she actually has breast cancer?

$$\begin{array}{ll} p(H^+) = .01 & \text{probability of BC (Hypothesis)} \\ p(D|H^+) = .80 & \text{probability of positive test (data) if BC} \end{array}$$

 $p(D|H^-) = .096$ probability of positive test if no BC (False Positive)

Applying Bayes Rule

Example:
$$p(H^+) = .01$$
, $p(D|H^+) = .80$, $p(D|H^-) = .096$

$$p(H^+|D) = \frac{p(D|H^+) p(H^+)}{p(D)}$$

$$p(D) = \sum_{i} p(D|H^{i}) p(H^{i}) = p(D|H^{+}) p(H^{+}) + p(D|H^{-}) p(H^{-})$$

$$= 0.80 \cdot 0.01 + 0.96 \cdot (1 - 0.01) = 0.008 + 0.095$$

$$= 0.103$$

$$p(H^+|D) = \frac{0.01 \cdot 0.80}{0.103} = 0.078$$

Correct: 7.8%

Excursus: Psychology of the Communication of Bayesian Information

Gigerenzer & Hoffrage (1999) presented this problem to subjects:

- \bullet Only 18% of the subjects sovled it correctly
- Subjects are poor in dealing with probability information
- and ignore prior probability estimate for a hypothesis, $p(H^+)$

How to communicate Bayesian information to laypersons?

 \bullet 46% subjects solved the task when presenting natural frequencies

Natural frequencies version

Out of every 1000 women at age 40 who participate in routine screening 10 have breast cancer. Of these 10 women with breast cancer, 8 will have a positive test. Of the remaining 990 women without breast cancer, 95 will still have a positive test.

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 55/78

Bayes Rule: Hypothesis/Beliefs & Data

$$p(H|D) = \frac{p(D|H) \cdot p(H)}{p(D)}$$

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \cdot \mathsf{Prior}$

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 56/78

Bayes Rule and Parameter Estimation

Usual scenario

We have collected data, D, in order to get information about our (psychological) model or theory, \mathcal{M} , with the not directly observable parameter. θ .

known: $p(D|\theta)$

unknow: $p(\theta|D)$

$$\underbrace{p(\theta|D)}_{\text{Posterior}} = \underbrace{p(D|\theta)}_{\text{Likelihood}} \underbrace{p(\theta)}_{\text{Prior}} / \underbrace{p(D)}_{\text{Evidence}}$$

Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 57/78

$\mathsf{Likelihood} \neq \mathsf{probability} \; \mathsf{function}$

Why is $p(D|\theta)$ called *likelihood* function and not *probability* function?

- 1. $p(D|\theta)$ as "probability function of D" with fixed θ

 - ► $\sum_{D} p(D|\theta) = 1$ (discrete values) ► $\int dD p(D|\theta) = 1$ (continuous values)
- **2.** $p(D|\theta)$ as "likelihood function of θ " with fixed y

 - $\sum_{\theta} p(D|\theta) \neq 1$ $\int d\theta \ p(D|\theta) \neq 1$

In Bayesian statistics, we usually have fixed (observed) data, D, and the variable θ . We therefore call $p(D|\theta)$ likelihood function.

o Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

Parameter Estimation

Three Goals of Interference

1. Estimating parameter values

 $p(\theta|D)$

2. Prediction of data values

e.g.:
$$p(y=1) = \sum_{\theta} p(y=1|\theta) \ p(\theta)$$

3. Model Comparison

$$rac{p(D|\mathcal{M}_1)}{p(D|\mathcal{M}_2)}=\mathsf{Bayes}$$
 factor

bayes18-1 59/78

Bayes Rule and Parameter Estimation

We actually talk about the probability of a particular model, $\ensuremath{\mathcal{M}},$ and should write:

$$p(\theta, \mathcal{M}|D) = p(D|\theta, \mathcal{M}) p(\theta, \mathcal{M}) / p(D)$$

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 61/78

Reformulating Denominator p(D) in Bayes' rule

1. Marginal probability

$$p(A) = \sum_{i} p(A, B_i)$$

2. Conditional probability

$$p(A|B) = \frac{p(A,B)}{p(B)}$$
$$p(A,B) = p(A|B) \cdot p(B)$$

Marginal probability as function of conditional probabilities

$$p(D) = \sum_{\theta} p(D|\theta) p(\theta)$$
 (2.4)

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 62/78

Bayes theorem for Discrete & Continuous Parameter

Bayes Rule (discrete values)

$$p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{\sum_{\theta} p(D|\theta) p(\theta)}$$
(2.5)

Bayes Rule (continuous values)

$$p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{\int d\theta \ p(D|\theta) \ p(\theta)}$$
(2.6)

ro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

es18-1 6

Example

Intro Probabilities Reliefs Distributions Cond Prob. Bayes Theorem Parameter Estimation Fxample

bayes18-1 64/7

Coin Flip

Posterior Likelihood Prior Evidence

"Coin flip model" \mathcal{M} :

•
$$p(y=1|\theta)=\theta$$

•
$$p(y=0|\theta)=1-\theta$$

ro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Examp

res18-1 65/

Bayesian Statistics

Example: Data

 $p(\theta|D) = p(D|\theta) p(\theta) / p(D)$

We flip 12 times and observe 3 heads and 9 tails

- $y_i = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0]$
 - ▶ 1 for head
 - ▶ 0 for tail
- z = 3, N = 12

What is the likelihood to observe this data under our three priors?

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

neter Estimation Example bayes18-1 67/78

Bernoulli Distribution

$$p(y| heta) = egin{cases} heta, & ext{if } y = 1 ext{ (head)} \ 1 - heta, & ext{if } y = 0 ext{ (tail)} \end{cases}$$

Bernoulli likelihood function (single coin flip)

$$p(y|\theta) = \theta^{y} (1 - \theta)^{(1-y)}$$

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 68/78

Bernoulli Distribution (multiple coin flips)

$$p(\{y_1,\ldots,y_N\}|\theta) = \prod_i p(y_i|\theta)$$
$$= \prod_i \theta^{y_i} (1-\theta)^{(1-y_i)}$$

Bernoulli likelihood for multiple coin flips

• number of 'heads': $z = \sum_{i}^{N} y_{i}$

$$p(z, N|\theta) = \theta^z (1-\theta)^{N-z}$$

ntro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 69/78

Example: Likelihood $p(D|\theta)$

 $p(D) = \underbrace{p(D|\theta)}_{\text{Dr}} \underbrace{p(\theta)}_{\text{Dr}} / \underbrace{p(D)}_{\text{Evidenc}}$

• z = 3, N = 12

What is the **likelihood**, $p(D|\theta)$, of the data?

$$p(D|\theta) = \theta^{z} (1 - \theta)^{N-z}$$
$$= \theta^{3} (1 - \theta)^{9}$$

iyesian Sians

Example: Evidence p(D)

 $\underbrace{\rho(\theta|D)}_{\text{Posterior}} = \underbrace{\rho(D|\theta)}_{\text{Likelihood}} \underbrace{\rho(\theta)}_{\text{Prior}} / \underbrace{\rho(D)}_{\text{Evidence}}$

Actually, evidence for the model $\mathcal{M}\colon p(D|\mathcal{M})$

- overall probability
- $\bullet\,$ averaging across all parameter weighted by our belief in them
- normalizer for the posterior distribution

$$\rho(D) = \sum_{\theta} p(D|\theta) p(\theta)$$
$$= 0.000415$$

tro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

bayes18-1 71/78

Example: posterior $p(\theta|D)$

just applying Bayes' rule:

tro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example

1 . . . 10 1 70 /7


```
# Data
Data = c(1,1,1,0,0,0,0,0,0,0,0) # order doesn't matter
z = sum( Data )

# Prior
Theta = c(.25, .5, .75)
prior = c(.25, .5, .25)

# Likelihood
N = length( Data )
likelihood = Theta'z * (1-Theta)'(N-z) # Bernoulli likelihood

# Posterior
evidence = sum( likelihood * prior )
posterior = likelihood * prior / evidence # Bayes' rule!

print(posterior)

Intro Probabilities Beliefs Distributions Cond. Prob. Bayes Theorem Parameter Estimation Example bayes18-175/78
```

```
# plot prior
plot(Theta , prior,
    type="h" , lwd=10 , main="Prior",
    xlim=c(0,1) , xlab=bquote(theta),
    ylim=c(0,1) , xlab=bquote(theta),
    ylab=bquote(p(theta)),
    col="skyblue")

# plot Likelihood
plot( Theta , likelihood ,
    type="h" , lwd=10 , main="Likelihood",
    xlim=c(0,1) , xlab=bquote(theta),
    ylim=c(0,1,1*max(likelihood)),
    ylab=bquote(paste("p(D|",theta,")")),
    col="skyblue")
```

Thank you