Week 10 Statistical Data Mining

Theory and Practice

Ying Lin, Ph.D March 27, 2020

Overview of the Topics

- Linear regression
- Logistic regression and activation function
- Model coefficient estimation and interpretation
- · Loss function, gradient descent, optimization
- · R/Python demo

Regression Motivation

- · Linear Regression: model numerical outcome
 - Simple vs. multiple regression

$$f(x) = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_i \cdot x_i + \dots + \beta_n \cdot x_n$$
$$= \sum_{i=1}^n \beta_i x_i$$
$$= \beta^T x$$

- · Logistic regression: Generalized linear regression
 - Model binary variable with two possible outcomes
 - Model multinomial categorical variables
- Key: estimation of model parameters which are coefficients in the regression model
 - Interpretation of coefficients

Key Assumptions of Linear Regression

- Linear relationship between IVs and DVs
 - Checked by scatterplots for linear or curvlinear relationship
 - Tranformation techniques such as normalizing DV
- Homoscedasticity: similar variance of error terms across space of IVs
 - Checked by scatterplot of residuals vs. predicted values
- Multivariate normality: residues are normally distributed
- Residual/error terms should be independent: no multicollinearity
 - Tested with Variance Inflation Factor (VIF) values

R-Squared

· Percent of variance that could be explained by the model

$$TSS = \sum_{i} (y_i - \bar{y})^2$$

$$SSE = \sum_{i} (f(x_i) - y_i)^2$$

$$SSM = TSS - SSE$$

$$R^2 = \frac{SSM}{TSS}$$

Ordinary Least Square (OLS)

- Minimize sum of squared error between the data points and the regression line/model
- How to estimate regression coefficients
 - Solve the model parameters analytically (closed-form solution)
 - Use the iterative optimization algorithms (Gradient Descent, Stochastic Gradient Descent, Newton's method, etc.)

Ordinary Least Square (OLS)

 How to estimate the model coefficients (in specifications) that minimizes such squared difference between real value and predicted values

$$\frac{\partial S}{\partial a} = \frac{\partial \left(\sum (y - ax - b)^2\right)}{\partial a} = 2\sum \left((y - ax - b) \cdot (0 - x - 0)\right)$$

the parameters of regression model $\hat{y} = ax + b$ are $a = \frac{n\overline{x}\,\overline{y} - \sum xy}{\left(n\overline{x}^2 - \sum x^2\right)}$ and $b = \overline{y} - a\overline{x}$

Objective Function

- Objective function: machine learning algorithms rely on minimizing or maximizing objective functions
- Loss function: the group of objective functions that are minimized; a measure of how good a prediction model does in terms of predicting the expected outcome
 - Regression loss
 - Classification loss

Regression Loss Function

Mean squared error (quadratic loss, L2 loss)

$$MSE = \frac{\sum_{i=1}^{n} (y_i - y_i^p)^2}{n}$$

- Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{MSE}$$

Mean absolute error (L1 loss)

$$MAE = \frac{\sum_{i=1}^{n} |y_i - y_i^p|}{n}$$

Comparison between L1 and L2 Loss Function

- MSE/RMSE is more sensitive towards outliers than MAE
 - If outliers represent anomaly that are important, then use MSE/RMSE
 - If outliers are due to erroneous data, then use MAE
 - L2 loss function works well in most of situations and consider removing outliers first
- MAE has larger and constant gradients unlike the dynamic gradient of MSE/RMSE which adjusts accordingly to the size of error
 - MAE requires an adaptive learning rate to complement

Other Loss Functions

Huber loss (Smooth Mean Absolute Error)

$$L_{\delta}(y, f(x)) = \begin{cases} \frac{1}{2}(y - f(x)^{2}) for |y - f(x)| \le \delta \\ \delta |y - f(x)| - \frac{1}{2}\delta^{2} \text{ otherwise} \end{cases}$$

- Other considerations
 - Choice of hyperparameter δ determines outliers: residues larger than δ are minimized with L1; residues smaller than δ are minimized with L2
 - Huber loss curves around the minima which decreases the gradient; and it is more robust to outliers than MSE

Gradient Descent

- · Popular optimization algorithm to find the local minimum for a differentiable function, e.g. loss function
- An iterative process of minimizing a function by following the gradient (slope)
 of the cost function

$$m_{n+1} = m_n - \alpha \frac{\partial}{\partial m_n} L F_{m_n}$$

Regression Model

· Linear regression

- How is a logistic regression different?
 - Activation function
 - Loss function

Logistic/Sigmoid Function

Logistic function

$$f(x) = \frac{1}{1 + e^{-k(x - x_0)}}$$

• Sigmoid function: a special case of logistic function or standard logistic function where K=1 and $x_0=0$

$$S(x) = \frac{1}{1 + e^{-x}}$$

Logit function: inverse of sigmoid function

$$logit(p) = log(\frac{p}{1 - p})$$

$$odd = \frac{p}{1 - p}$$

Interpretation of Logistic Regression Coefficients

$$logit(p) = \sum_{i}^{n} \beta_{i} \cdot x_{i} + \beta_{0}$$

$$p = \frac{1}{1 + e^{-\sum_{i=1}^{n} \beta_i \cdot x_i + \beta_0}}$$

• How to interpret coefficient β_i ?

$$log(odd_1) = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_i \cdot x_i + \dots + \beta_n \cdot x_n$$

$$log(odd_2) = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_i \cdot (x_i + 1) + \dots + \beta_n \cdot x_n$$

$$log(odd_2) - log(odd_1) = log \frac{odd_2}{odd_1} = \beta_i$$

Sigmoid Function: S-Shape and its Properties

Classification Loss Function

- Cross entropy loss function: negative log likelihood
 - $CrossEntropyLoss(y_i, \mathring{y_i}) = -(y_i \log(\mathring{y_i}) + (1 y_i) \log(1 \mathring{y_i}))$
 - Increases as the predicted probability diverges from the actual label
 - Property: penalize heavily the predictions that are but
- Gradient of cross entropy loss (or log loss)
 - $\partial E/\partial p_i = -c_i/p_i + (1-c_i)/(1-p_i)$

Regression with Regularization: Lasso vs Ridge

- Intuition: add a penalty term to loss function that is based on magnitude of coefficients as a way to reduce model complexity and overfitting, i.e. regularization
 - $RLS = LS + \lambda \sum_{i=1}^{n} \beta_i^q$
- · Lasso regularization: L1 loss function (q = 1)
 - Dimension reduction and feature selection
- Ridge regularization: L2 loss function (q = 2)
 - Feature ranking and relative importance; but can't zero out coefficients like Lasso
- Shrinkage parameter: $\lambda \geq 0$
 - $\lambda = 0$: no regularization, just regular regression
 - As λ increases, the coefficients decrease

Estimation of Coefficients of Logistic Regression

- Statistical approach: Maximum Liklihood Estimation (MLE)
 - Estimate the distribution parameters (θ) that maximize the product of probabilities of observing all the data points
- Machine learning approach
 - Loss function: cross-entropy function
 - Optimization algorithm, e.g. stochastic gradient descent (SGD)
- Difference between two approaches

Demo Data: Boston Housing Price

```
library(caret)
library(mlbench)
data("BostonHousing")
str(BostonHousing)
   'data.frame':
                    506 obs. of 14 variables:
                  0.00632 0.02731 0.02729 0.03237 0.06905 ...
                   18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##
    $ zn
             : num
                   2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 ...
    $ indus : num
             : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
    $ chas
##
##
                   0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
    $ nox
    $ rm
                   6.58 6.42 7.18 7 7.15 ...
             : num
    $ age
                   65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##
             : num
    $ dis
                   4.09 4.97 4.97 6.06 6.06 ...
##
             : num
    $ rad
                   1 2 2 3 3 3 5 5 5 5 ...
##
             : num
##
                   296 242 242 222 222 222 311 311 311 311 ...
    $ tax
             : num
                   15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
    $ ptratio: num
                   397 397 393 395 397 ...
##
    $ b
             : num
    $ 1stat : num 4.98 9.14 4.03 2.94 5.33 ...
##
##
    $ medv
             : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
```

Train Linear Model

```
model lm <- train(medv ~ ., data = BostonHousing, method = "lm")</pre>
print(model lm)
## Linear Regression
##
## 506 samples
   13 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 506, 506, 506, 506, 506, 506, ...
## Resampling results:
##
##
               Rsquared
     RMSE
                          MAE
     4.731782 0.7207107 3.378688
##
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

Model Specification

model lm\$finalModel

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Coefficients:
## (Intercept)
                                            indus
                                                        chas1
                     crim
                                   zn
    3.646e+01
##
               -1.080e-01
                            4.642e-02 2.056e-02
                                                     2.687e+00
                                              dis
                                                          rad
          nox
                                  age
  -1.777e+01 3.810e+00
##
                            6.922e-04
                                       -1.476e+00
                                                    3.060e-01
##
          tax ptratio
                                            lstat
  -1.233e-02
               -9.527e-01
                            9.312e-03
                                      -5.248e-01
```

Examine the Linear Regression Model

```
names(summary(model lm))
                   "terms" "residuals" "coefficients"
  [1] "call"
  [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"
summary(model lm)
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
      Min
             10 Median
                           30
                                 Max
## -15.595 -2.730 -0.518 1.777 26.199
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
## crim
       -1.080e-01 3.286e-02 -3.287 0.001087 **
## zn
        4.642e-02 1.373e-02 3.382 0.000778 ***
## indus
        2.056e-02 6.150e-02 0.334 0.738288
```

Examine the Linear Regression Model (2)

```
coef <- summary(model_lm)$coefficients
coef <- coef[coef[, 4] < 0.05, ]
coef[order(coef[, 4]), ]</pre>
```

```
##
                  Estimate Std. Error
                                       t value
                                                 Pr(>|t|)
## lstat
               -0.524758378 0.050715278 -10.347146 7.776912e-23
## rm
              3.809865207 0.417925254
                                        9.116140 1.979441e-18
## dis
            -1.475566846 0.199454735 -7.398004 6.013491e-13
## ptratio
           -0.952747232 0.130826756 -7.282511 1.308835e-12
## (Intercept) 36.459488385 5.103458811
                                       7.144074 3.283438e-12
## nox
        -17.766611228 3.819743707
                                        -4.651257 4.245644e-06
## rad
                0.306049479 0.066346440
                                       4.612900 5.070529e-06
## b
                                       3.466793 5.728592e-04
                0.009311683 0.002685965
## zn
      0.046420458 0.013727462
                                        3.381576 7.781097e-04
            -0.108011358 0.032864994 -3.286517 1.086810e-03
## crim
## tax
               -0.012334594 0.003760536 -3.280009 1.111637e-03
## chas1
                2.686733819 0.861579756 3.118381 1.925030e-03
```

Information of the Attributes

- MEDV Median value of owner-occupied homes in \$1000's
- CRIM per capita crime rate by town
- · ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- · INDUS proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- · RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population

Model Details

```
summary(model lm)
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
      Min
               10 Median
##
                              30
                                     Max
## -15.595 -2.730 -0.518
                          1.777 26.199
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
              -1.080e-01 3.286e-02 -3.287 0.001087 **
## crim
## zn
             4.642e-02 1.373e-02 3.382 0.000778 ***
## indus
           2.056e-02 6.150e-02 0.334 0.738288
## chas1
          2.687e+00 8.616e-01 3.118 0.001925 **
## nox
              -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
## rm
               3.810e+00 4.179e-01 9.116 < 2e-16 ***
## age
             6.922e-04 1.321e-02 0.052 0.958229
## dis
              -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
## rad
              3.060e-01 6.635e-02 4.613 5.07e-06 ***
## tax
              -1.233e-02 3.760e-03 -3.280 0.001112 **
```

26/41

Model Residuals' Plot

plot(model lm\$finalModel)

Run LM Model with Standardized Data

```
model lm2 <- train(medv ~ ., data = BostonHousing, method = "lm", preProcess = c("center", "sca
print(model lm2)
## Linear Regression
##
## 506 samples
   13 predictor
##
## Pre-processing: centered (13), scaled (13)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 506, 506, 506, 506, 506, 506, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                          MAE
    4.913235 0.7197477 3.450471
##
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

Calculate R Square and Compare with Output (1)

Calculate R Square and Compare with Output (2)

```
SSE <- sum(real_predict$square_diff)
TSS <- var(BostonHousing$medv) * (length(BostonHousing$medv) + 1)
R_squared <- 1 - SSE/TSS
R_squared
## [1] 0.7416658

summary(model_lm)$r.squared
## [1] 0.7406427</pre>
```

Logistic Regression

```
library(arules)
BostonHousing2 <- BostonHousing
BostonHousing2$medv <- discretize(BostonHousing2$medv,
                                   method = "frequency",
                                   breaks = 2,
                                   labels = c("low", "high"))
table(BostonHousing2$medv)
##
##
    low high
##
   251 255
model glm <- train(medv ~ ., data = BostonHousing2,</pre>
                   method = "glm", family = "binomial")
print(model glm)
## Generalized Linear Model
##
## 506 samples
   13 predictor
     2 classes: 'low', 'high'
##
```

31/41

Logistic Regression Model Output

```
summary(model glm)
##
## Call:
## NULL
##
## Deviance Residuals:
##
      Min
                                  30
                     Median
                 10
                                          Max
## -2.0015 -0.3574
                     0.0085
                              0.2981
                                        3.3286
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 12.065836
                          4.007916
                                     3.011 0.00261 **
## crim
                                            0.27300
              -0.082159
                          0.074950 - 1.096
## zn
                                            0.36411
               0.012275
                        0.013525 0.908
## indus
               0.029454
                          0.043259 0.681 0.49594
                                            0.01252 *
## chas1
               1.659713
                          0.664634 2.497
## nox
                          2.733645 -2.664
                                            0.00771 **
              -7.283784
                                    3.673
## rm
               1.617226
                          0.440282
                                            0.00024 ***
## age
              -0.028603
                          0.010451 - 2.737
                                            0.00620 **
## dis
              -0.711035
                          0.168061 -4.231 2.33e-05 ***
## rad
                          0.060920 3.898 9.70e-05 ***
               0.237470
## tax
               -0.008461
                          0.002919 - 2.899
                                            0.00374 **
```

32/41

Relative Importance of Variables by Logistic Regression

```
varImp(model glm)
## glm variable importance
##
##
         Overall
## 1stat
         100.000
## ptratio 86.431
## dis
      68.821
      62.370
## rad
     58.010
## rm
      43.000
## tax
      39.859
## age
## nox
      38.455
## chas1 35.212
## b
        17.748
## crim 8.051
## zn
        4.394
## indus
           0.000
```

Import Python Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.pipeline import make pipeline
```

Data Loading and Preprocessing

```
boston = load boston()
boston data = pd.DataFrame(boston.data, columns = boston.feature names)
boston data['Price'] = boston.target
X = boston data.drop('Price', axis=1)
y = boston data['Price']
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=16)
boston data.info()
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 506 entries, 0 to 505
## Data columns (total 14 columns):
              506 non-null float64
## CRIM
              506 non-null float64
## ZN
              506 non-null float64
## INDUS
              506 non-null float.64
## CHAS
              506 non-null float64
## NOX
              506 non-null float64
## RM
              506 non-null float64
## AGE
## DIS
              506 non-null float.64
              506 non-null float64
## RAD
## TAX
              506 non-null float.64
              506 non-null float64
## PTRATIO
                                                                                       35/41
## B
              506 non-null float.64
```

Linear Regression Training and Testing

```
lr_pipe = LinearRegression()
lr_pipe.fit(X_train, y_train)

## LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

y_pred = lr_pipe.predict(X_test)
print(f"RMSE: {round(np.sqrt(metrics.mean_squared_error(y_test, y_pred)), 3)}")

## RMSE: 4.614
```

Visualize Regression Line

```
plt.figure(figsize=(4, 3))
plt.scatter(y_test, y_pred)
plt.plot([0, 50], [0, 50], '--k')
plt.axis('tight')

## (-2.500483870967742, 52.51016129032258, -10.282281648953647, 52.87058484042636)

plt.tight_layout()
plt.xlabel('True price ($1000s)')
plt.ylabel('Predicted price ($1000s)')
plt.show()
```


37/41

Linear Model Coefficient Estimation

```
for idx, col name in enumerate(X train.columns):
  print(f"The coefficient for {col name} is {lr pipe.coef [idx]}")
## The coefficient for CRIM is -0.135721389191917
## The coefficient for ZN is 0.03531958631459615
## The coefficient for INDUS is 0.0020350011834421146
## The coefficient for CHAS is 2.425658595197517
## The coefficient for NOX is -15.996609853279406
## The coefficient for RM is 3.997523842035774
## The coefficient for AGE is 0.022861021101290676
## The coefficient for DIS is -1.3542588201878618
## The coefficient for RAD is 0.346279075866271
## The coefficient for TAX is -0.011431344325432802
## The coefficient for PTRATIO is -1.0161040881448886
## The coefficient for B is 0.010906415198789543
## The coefficient for LSTAT is -0.6351622221570083
plt.scatter(lr pipe.predict(X train), lr pipe.predict(X train)-y train, c='b', s=40, alpha=0.5)
plt.hlines(y=0, xmin=0, xmax=50)
plt.xlabel("Fitted")
plt.ylabel("Residuals")
plt.title("Residals vs. fitted")
                                                                                      38/41
plt.show()
```

Evaluate Linear Regression Model

```
data tuples = list(zip(y test, y pred))
real predict = pd.DataFrame(data tuples, columns=['Real', 'Predict'])
real predict['squared dif'] = (real predict["Real"]-real predict["Predict"])**2
real predict.head(3)
            Predict squared dif
##
     Real
## 0 23.3 27.406211
                       16.860968
## 1 12.8 13.179976 0.144382
## 2 6.3 9.676904 11.403484
SSE = sum(real predict['squared dif'])
TSS = np.var(y test) * (len(y test)+1)
real predict.head(3)
##
     Real Predict squared dif
## 0 23.3 27.406211 16.860968
## 1 12.8 13.179976 0.144382
## 2 6.3 9.676904 11.403484
Rsquared = 1 - SSE/TSS
Rsquared
```

39/41

Prepare for Logistic Regressin Dataset

Logistic Regression Model Training and Testing

```
logr pipe = make pipeline(StandardScaler(), LogisticRegression(solver='lbfgs'))
logr pipe.fit(X train2, y train2)
## Pipeline(memory=None,
##
            steps=[('standardscaler',
##
                    StandardScaler(copy=True, with mean=True, with std=True)),
                   ('logisticregression',
##
##
                    LogisticRegression(C=1.0, class weight=None, dual=False,
##
                                       fit intercept=True, intercept scaling=1,
##
                                       11 ratio=None, max iter=100,
##
                                       multi class='warn', n jobs=None,
##
                                       penalty='12', random state=None,
##
                                       solver='lbfqs', tol=0.0001, verbose=0,
##
                                       warm start=False))],
            verbose=False)
##
y pred2 = logr pipe.predict(X test2)
y pred2
## array(['high', 'low', 'low', 'high', 'low', 'high', 'high', 'low', 'low',
          'high', 'low', 'low', 'high', 'low', 'high', 'low', 'high',
##
          'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low',
##
                                                                                      41/41
```