Appendix A Physical Properties of Fluids

Fig. A.1 Absolute viscosity of common fluids at 1 atm.

Fig. A.2 Kinematic viscosity of common fluids at 1 atm.

Table A.1 Viscosity and Density of Water at 1 atm

<i>T</i> , °C	ρ , kg/m ³	μ , N·s/m ²	ν , m ² /s	<i>T</i> , °F	ρ , slug/ft ³	μ , lb · s/ft ²	ν , ft ² /s
0	1000	1.788 E-3	1.788 E-6	32	1.940	3.73 E-5	1.925 E-5
10	1000	1.307 E-3	1.307 E-6	50	1.940	2.73 E-5	1.407 E-5
20	998	1.003 E-3	1.005 E-6	68	1.937	2.09 E-5	1.082 E-5
30	996	0.799 E-3	0.802 E-6	86	1.932	1.67 E-5	0.864 E-5
40	992	0.657 E-3	0.662 E-6	104	1.925	1.37 E-5	0.713 E-5
50	988	0.548 E-3	0.555 E-6	122	1.917	1.14 E-5	0.597 E-5
60	983	0.467 E-3	0.475 E-6	140	1.908	0.975 E-5	0.511 E-5
70	978	0.405 E-3	0.414 E-6	158	1.897	0.846 E-5	0.446 E-5
80	972	0.355 E-3	0.365 E-6	176	1.886	0.741 E-5	0.393 E-5
90	965	0.316 E-3	0.327 E-6	194	1.873	0.660 E-5	0.352 E-5
100	958	0.283 E-3	0.295 E-6	212	1.859	0.591 E-5	0.318 E-5

Suggested curve fits for water in the range $0 \le T \le 100^{\circ}$ C:

$$\rho(\text{kg/m}^3) \approx 1000 - 0.0178 \mid T^{\circ}\text{C} - 4^{\circ}\text{C} \mid^{1.7} \pm 0.2\%$$

$$\ln \frac{\mu}{\mu_0} \approx -1.704 - 5.306z + 7.003z^2$$

$$z = \frac{273 \text{ K}}{T \text{ K}} \qquad \mu_0 = 1.788 \text{ E-3 kg/(m \cdot s)}$$

Table A.2 Viscosity and Density of Air at 1 atm

T, °C	ρ , kg/m ³	μ , N·s/m ²	ν , m ² /s	<i>T</i> , °F	ρ , slug/ft ³	μ , lb · s/ft ²	ν , ft ² /s
-40	1.52	1.51 E-5	0.99 E-5	-40	2.94 E-3	3.16 E-7	1.07 E-4
0	1.29	1.71 E-5	1.33 E-5	32	2.51 E-3	3.58 E-7	1.43 E-4
20	1.20	1.80 E-5	1.50 E-5	68	2.34 E-3	3.76 E-7	1.61 E-4
50	1.09	1.95 E-5	1.79 E-5	122	2.12 E-3	4.08 E-7	1.93 E-4
100	0.946	2.17 E-5	2.30 E-5	212	1.84 E-3	4.54 E-7	2.47 E-4
150	0.835	2.38 E-5	2.85 E-5	302	1.62 E-3	4.97 E-7	3.07 E-4
200	0.746	2.57 E-5	3.45 E-5	392	1.45 E-3	5.37 E-7	3.71 E-4
250	0.675	2.75 E-5	4.08 E-5	482	1.31 E-3	5.75 E-7	4.39 E-4
300	0.616	2.93 E-5	4.75 E-5	572	1.20 E-3	6.11 E-7	5.12 E-4
400	0.525	3.25 E-5	6.20 E-5	752	1.02 E-3	6.79 E-7	6.67 E-4
500	0.457	3.55 E-5	7.77 E-5	932	0.89 E-3	7.41 E-7	8.37 E-4

Suggested curve fits for air:

$$\rho = \frac{p}{RT} \qquad R_{\rm air} \approx 287 \; {\rm J/(kg \cdot K)}$$
 Power law:
$$\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{0.7}$$
 Sutherland law:
$$\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{3/2} \!\! \left(\frac{T_0 + S}{T + S}\right) \qquad S_{\rm air} \approx 110.4 \; {\rm K}$$
 with $T_0 = 273 \; {\rm K}, \; \mu_0 = 1.71 \; {\rm E-5} \; {\rm kg/(m \cdot s)}, \; {\rm and} \; T \; {\rm in} \; {\rm kelvins}.$

Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)

Liquid	ρ , kg/m ³	μ , kg/(m · s)	Y, N/m*	<i>p</i> _υ , N/m ²	Bulk modulus, N/m ²	Viscosity parameter C^{\dagger}
Ammonia	608	2.20 E-4	2.13 E-2	9.10 E+5	_	1.05
Benzene	881	6.51 E-4	2.88 E-2	1.01 E+4	1.4 E+9	4.34
Carbon tetrachloride	1,590	9.67 E-4	2.70 E-2	1.20 E+4	9.65 E+8	4.45
Ethanol	789	1.20 E-3	2.28 E-2	5.7 E+3	9.0 E+8	5.72
Ethylene glycol	1,117	2.14 E-2	4.84 E-2	1.2 E+1	_	11.7
Freon 12	1,327	2.62 E-4	_	_	_	1.76
Gasoline	680	2.92 E-4	2.16 E-2	5.51 E+4	9.58 E+8	3.68
Glycerin	1,260	1.49	6.33 E-2	1.4 E-2	4.34 E+9	28.0
Kerosine	804	1.92 E-3	2.8 E-2	3.11 E+3	1.6 E+9	5.56
Mercury	13,550	1.56 E-3	4.84 E-1	1.1 E-3	2.55 E+10	1.07
Methanol	791	5.98 E-4	2.25 E-2	1.34 E+4	8.3 E+8	4.63
SAE 10W oil	870	1.04 E-1 [‡]	3.6 E-2	_	1.31 E+9	15.7
SAE 10W30 oil	876	1.7 E-1 [‡]	_	_	_	14.0
SAE 30W oil	891	2.9 E-1 [‡]	3.5 E-2	_	1.38 E+9	18.3
SAE 50W oil	902	8.6 E-1 [‡]	_	_	_	20.2
Water	998	1.00 E-3	7.28 E-2	2.34 E+3	2.19 E+9	Table A.1
Seawater (30%)	1,025	1.07 E-3	7.28 E-2	2.34 E+3	2.33 E+9	7.28

^{*}In contact with air.

$$\frac{\mu}{\mu_{20^{\circ}\mathrm{C}}} \approx \exp\left[C\left(\frac{293 \text{ K}}{T \text{ K}} - 1\right)\right]$$

with accuracy of ± 6 percent in the range $0 \le T \le 100$ °C.

Table A.4 Properties of Common Gases at 1 atm and 20°C (68°F)

Gas	Molecular weight	R , $m^2/(s^2 \cdot K)$	ρg , N/m ³	μ , N·s/m ²	Specific-heat ratio	Power-law exponent n^{\dagger}
H_2	2.016	4124	0.822	9.05 E-6	1.41	0.68
He	4.003	2077	1.63	1.97 E-5	1.66	0.67
H_2O	18.02	461	7.35	1.02 E-5	1.33	1.15
Ar	39.944	208	16.3	2.24 E-5	1.67	0.72
Dry air	28.96	287	11.8	1.80 E-5	1.40	0.67
CO_2	44.01	189	17.9	1.48 E-5	1.30	0.79
CO	28.01	297	11.4	1.82 E-5	1.40	0.71
N_2	28.02	297	11.4	1.76 E-5	1.40	0.67
O_2	32.00	260	13.1	2.00 E-5	1.40	0.69
NO	30.01	277	12.1	1.90 E-5	1.40	0.78
N_2O	44.02	189	17.9	1.45 E-5	1.31	0.89
Cl_2	70.91	117	28.9	1.03 E-5	1.34	1.00
CH_4	16.04	518	6.54	1.34 E-5	1.32	0.87

[†]The power-law curve fit, Eq. (1.27), $\mu/\mu_{293K} \approx (T/293)^n$, fits these gases to within ±4 percent in the range $250 \le T \le 1000$ K. The temperature must be in kelvins.

 $^{^{\}dagger}$ The viscosity-temperature variation of these liquids may be fitted to the empirical expression

^{*}Representative values. The SAE oil classifications allow a viscosity variation of up to ± 50 percent, especially at lower temperatures.

Table A.5 Surface Tension, Vapor Pressure, and Sound Speed of Water

T, °C	Y, N/m	p _v , kPa	<i>a</i> , m/s
0	0.0756	0.611	1402
10	0.0742	1.227	1447
20	0.0728	2.337	1482
30	0.0712	4.242	1509
40	0.0696	7.375	1529
50	0.0679	12.34	1542
60	0.0662	19.92	1551
70	0.0644	31.16	1553
80	0.0626	47.35	1554
90	0.0608	70.11	1550
100	0.0589	101.3	1543
120	0.0550	198.5	1518
140	0.0509	361.3	1483
160	0.0466	617.8	1440
180	0.0422	1,002	1389
200	0.0377	1,554	1334
220	0.0331	2,318	1268
240	0.0284	3,344	1192
260	0.0237	4,688	1110
280	0.0190	6,412	1022
300	0.0144	8,581	920
320	0.0099	11,274	800
340	0.0056	14,586	630
360	0.0019	18,651	370
374*	0.0*	22,090*	0*

^{*}Critical point.

Table A.6 Properties of the Standard Atmosphere

-500 291.41 107,508 1.2854 0 288.16 101,350 1.2255 500 284.91 95,480 1.1677 1,000 281.66 89,889 1.1120 1,500 278.41 84,565 1.0583 2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 239.41 38,233 0.5564 <th>342.2 340.3 338.4 336.5 332.6 332.6 322.6 322.6 322.6 318.5 316.5</th>	342.2 340.3 338.4 336.5 332.6 332.6 322.6 322.6 322.6 318.5 316.5
0 288.16 101,350 1.2255 500 284.91 95,480 1.1677 1,000 281.66 89,889 1.1120 1,500 278.41 84,565 1.0583 2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 <td>340.3 338.4 336.5 334.5 332.6 332.6 328.6 324.6 322.6 320.6 318.5</td>	340.3 338.4 336.5 334.5 332.6 332.6 328.6 324.6 322.6 320.6 318.5
500 284.91 95,480 1.1677 1,000 281.66 89,889 1.1120 1,500 278.41 84,565 1.0583 2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125	338.4 336.5 334.5 332.6 330.6 328.6 324.6 322.6 320.6 318.5
1,000 281.66 89,889 1.1120 1,500 278.41 84,565 1.0583 2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125	336.5 334.5 332.6 330.6 328.6 324.6 322.6 320.6 318.5
1,500 278.41 84,565 1.0583 2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637	334.5 332.6 330.6 328.6 326.6 324.6 322.6 320.6 318.5
2,000 275.16 79,500 1.0067 2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,500 216.66 22,612 0.3637	332.6 330.6 328.6 326.6 324.6 322.6 320.6 318.5
2,500 271.91 74,684 0.9570 3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3875 11,500 216.66 22,612 0.3637 12,000 216.66 17,847 0.2870 <td>330.6 328.6 326.6 324.6 322.6 320.6 318.5</td>	330.6 328.6 326.6 324.6 322.6 320.6 318.5
3,000 268.66 70,107 0.9092 3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,500 216.66 22,612 0.3637 12,000 216.66 19,312 0.3106 <td>328.6 326.6 324.6 322.6 320.6 318.5</td>	328.6 326.6 324.6 322.6 320.6 318.5
3,500 265.41 65,759 0.8633 4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,500 216.66 22,612 0.3637 12,000 216.66 19,312 0.3106 12,500 216.66 15,243 0.2451 <td>326.6 324.6 322.6 320.6 318.5</td>	326.6 324.6 322.6 320.6 318.5
4,000 262.16 61,633 0.8191 4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 </td <td>324.6 322.6 320.6 318.5</td>	324.6 322.6 320.6 318.5
4,500 258.91 57,718 0.7768 5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 14,087 0.2265<	322.6 320.6 318.5
5,000 255.66 54,008 0.7361 5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265	320.6 318.5
5,500 252.41 50,493 0.6970 6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.209	318.5
6,000 249.16 47,166 0.6596 6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 12,031 0.1935 15,500 216.66 12,031 0.19	
6,500 245.91 44,018 0.6237 7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 12,031 0.1935 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1	316.5
7,000 242.66 41,043 0.5893 7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,000 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.	
7,500 239.41 38,233 0.5564 8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,000 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	314.4
8,000 236.16 35,581 0.5250 8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,000 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	312.3
8,500 232.91 33,080 0.4949 9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3637 11,000 216.66 22,612 0.3637 11,500 216.66 19,312 0.3106 12,000 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	310.2
9,000 229.66 30,723 0.4661 9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3875 11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	308.1
9,500 226.41 28,504 0.4387 10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3875 11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	306.0
10,000 223.16 26,416 0.4125 10,500 219.91 24,455 0.3875 11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	303.8
10,500 219.91 24,455 0.3875 11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	301.7
10,500 219.91 24,455 0.3875 11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	299.5
11,000 216.66 22,612 0.3637 11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	297.3
11,500 216.66 20,897 0.3361 12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
12,000 216.66 19,312 0.3106 12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
12,500 216.66 17,847 0.2870 13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
13,000 216.66 16,494 0.2652 13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
13,500 216.66 15,243 0.2451 14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
14,000 216.66 14,087 0.2265 14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
14,500 216.66 13,018 0.2094 15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
15,000 216.66 12,031 0.1935 15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
15,500 216.66 11,118 0.1788 16,000 216.66 10,275 0.1652	295.1
16,000 216.66 10,275 0.1652	295.1
	295.1
	295.1
	295.1 295.1
	295.1
	293.1 295.1
-,	295.1
	295.1
	295.1
	295.1
	296.4
	297.8
	299.1
	300.4
	301.7
•	317.2
	329.9
	220 (
70,000 219.7 6 0.0001	320.6 297.2

Appendix B Compressible-Flow Tables

Table B.1 Isentropic Flow of a Perfect Gas, k = 1.4

Ma	p/p_0	$ ho/ ho_0$	T/T_0	A/A*
0.0	1.0	1.0	1.0	8
0.02	0.9997	0.9998	0.9999	28.9421
0.04	0.9989	0.9992	0.9997	14.4815
0.06	0.9975	0.9982	0.9993	9.6659
0.08	0.9955	0.9968	0.9987	7.2616
0.1	0.9930	0.9950	0.9980	5.8218
0.12	0.9900	0.9928	0.9971	4.8643
0.14	0.9864	0.9903	0.9961	4.1824
0.16	0.9823	0.9873	0.9949	3.6727
0.18	0.9776	0.9840	0.9936	3.2779
0.2	0.9725	0.9803	0.9921	2.9635
0.22	0.9668	0.9762	0.9904	2.7076
0.24	0.9607	0.9718	0.9886	2.4956
0.26	0.9541	0.9670	0.9867	2.3173
0.28	0.9470	0.9619	0.9846	2.1656
0.3	0.9395	0.9564	0.9823	2.0351
0.32	0.9315	0.9506	0.9799	1.9219
0.34	0.9231	0.9445	0.9774	1.8229
0.36	0.9143	0.9380	0.9747	1.7358
0.38	0.9052	0.9313	0.9719	1.6587
0.4	0.8956	0.9243	0.9690	1.5901
0.42	0.8857	0.9170	0.9659	1.5289
0.44	0.8755	0.9094	0.9627	1.4740
0.46	0.8650	0.9016	0.9594	1.4246
0.48	0.8541	0.8935	0.9559	1.3801
0.5	0.8430	0.8852	0.9524	1.3398
0.52	0.8317	0.8766	0.9487	1.3034
0.54	0.8201	0.8679	0.9449	1.2703
0.56	0.8082	0.8589	0.9410	1.2403
0.58	0.7962	0.8498	0.9370	1.2130
0.6	0.7840	0.8405	0.9328	1.1882
0.62	0.7716	0.8310	0.9286	1.1656
0.64	0.7591	0.8213	0.9243	1.1451
0.66	0.7465	0.8115	0.9199	1.1265
0.68	0.7338	0.8016	0.9153	1.1097
0.7	0.7209	0.7916	0.9107	1.0944
0.72	0.7080	0.7814	0.9061	1.0806

Table B.1 (Cont.) Isentropic Flow of a Perfect Gas, k = 1.4

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *	Ma	p/p_0	$ ho/ ho_0$	T/T_0	
1.48	0.2804	0.4032	0.6954	1.1629	2.56	0.0533	0.1232	0.4328	
1.5	0.2724	0.3950	0.6897	1.1762	2.58	0.0517	0.1205	0.4289	
1.52	0.2646	0.3869	0.6840	1.1899	2.6	0.0501	0.1179	0.4252	
1.54	0.2570	0.3789	0.6783	1.2042	2.62	0.0486	0.1153	0.4214	
1.56	0.2496	0.3710	0.6726	1.2190	2.64	0.0471	0.1128	0.4177	
1.58	0.2423	0.3633	0.6670	1.2344	2.66	0.0457	0.1103	0.4141	
1.6	0.2353	0.3557	0.6614	1.2502	2.68	0.0443	0.1079	0.4104	
1.62	0.2284	0.3483	0.6558	1.2666	2.7	0.0430	0.1056	0.4068	
1.64	0.2217	0.3409	0.6502	1.2836	2.72	0.0417	0.1033	0.4033	
1.66	0.2151	0.3337	0.6447	1.3010	2.74	0.0404	0.1033	0.3998	
1.68	0.2088	0.3337	0.6392	1.3190	2.76	0.0404	0.1010	0.3963	
	0.2088		0.6392	1.3190	2.78	0.0392	0.0989	0.3903	
1.7		0.3197							
1.72	0.1966	0.3129	0.6283	1.3567	2.8	0.0368	0.0946	0.3894	
.74	0.1907	0.3062	0.6229	1.3764	2.82	0.0357	0.0926	0.3860	
.76	0.1850	0.2996	0.6175	1.3967	2.84	0.0347	0.0906	0.3827	
.78	0.1794	0.2931	0.6121	1.4175	2.86	0.0336	0.0886	0.3794	
.8	0.1740	0.2868	0.6068	1.4390	2.88	0.0326	0.0867	0.3761	
1.82	0.1688	0.2806	0.6015	1.4610	2.9	0.0317	0.0849	0.3729	
.84	0.1637	0.2745	0.5963	1.4836	2.92	0.0307	0.0831	0.3696	
.86	0.1587	0.2686	0.5910	1.5069	2.94	0.0298	0.0813	0.3665	
.88	0.1539	0.2627	0.5859	1.5308	2.96	0.0289	0.0796	0.3633	
.9	0.1492	0.2570	0.5807	1.5553	2.98	0.0281	0.0779	0.3602	
.92	0.1447	0.2514	0.5756	1.5804	3.0	0.0272	0.0762	0.3571	
.94	0.1403	0.2459	0.5705	1.6062	3.02	0.0264	0.0746	0.3541	
.96	0.1360	0.2405	0.5655	1.6326	3.04	0.0256	0.0730	0.3511	
.98	0.1318	0.2352	0.5605	1.6597	3.06	0.0249	0.0715	0.3481	
2.0	0.1278	0.2300	0.5556	1.6875	3.08	0.0242	0.0700	0.3452	
2.02	0.1239	0.2250	0.5506	1.7160	3.1	0.0234	0.0685	0.3422	
2.04	0.1201	0.2200	0.5458	1.7451	3.12	0.0228	0.0671	0.3393	
.06	0.1164	0.2152	0.5409	1.7750	3.14	0.0221	0.0657	0.3365	
2.08	0.1128	0.2104	0.5361	1.8056	3.16	0.0215	0.0643	0.3337	
2.1	0.1094	0.2058	0.5313	1.8369	3.18	0.0213	0.0630	0.3309	
2.12	0.1060	0.2033	0.5266	1.8690	3.2	0.0203	0.0617	0.3281	
2.14	0.1007	0.1968	0.5219	1.9018	3.22		0.0604	0.3253	
2.16	0.1027	0.1908	0.5219	1.9354	3.24	0.0190	0.0591	0.3233	
2.18	0.0996	0.1923	0.5173	1.9554		0.0191	0.0579	0.3220	
					3.26				
2.2	0.0935	0.1841	0.5081	2.0050	3.28	0.0180	0.0567	0.3173	
2.22	0.0906	0.1800	0.5036	2.0409	3.3	0.0175	0.0555	0.3147	
2.24	0.0878	0.1760	0.4991	2.0777	3.32	0.0170	0.0544	0.3121	
2.26	0.0851	0.1721	0.4947	2.1153	3.34	0.0165	0.0533	0.3095	
2.28	0.0825	0.1683	0.4903	2.1538	3.36	0.0160	0.0522	0.3069	
2.3	0.0800	0.1646	0.4859	2.1931	3.38	0.0156	0.0511	0.3044	
2.32	0.0775	0.1609	0.4816	2.2333	3.4	0.0151	0.0501	0.3019	
2.34	0.0751	0.1574	0.4773	2.2744	3.42	0.0147	0.0491	0.2995	
2.36	0.0728	0.1539	0.4731	2.3164	3.44	0.0143	0.0481	0.2970	
2.38	0.0706	0.1505	0.4688	2.3593	3.46	0.0139	0.0471	0.2946	
2.4	0.0684	0.1472	0.4647	2.4031	3.48	0.0135	0.0462	0.2922	
2.42	0.0663	0.1439	0.4606	2.4479	3.5	0.0131	0.0452	0.2899	
2.44	0.0643	0.1408	0.4565	2.4936	3.52		0.0443	0.2875	
2.46	0.0623	0.1377	0.4524	2.5403	3.54	0.0124	0.0434	0.2852	
2.48	0.0604	0.1346	0.4484	2.5880	3.56		0.0426	0.2829	
2.5	0.0585	0.1317	0.4444	2.6367	3.58	0.0117	0.0417	0.2806	
2.52	0.0567	0.1288	0.4405	2.6865	3.6	0.0114	0.0409	0.2784	
2.54	0.0550	0.1260	0.4366	2.7372	3.62	0.0111	0.0401	0.2762	
r	0.0550	0.1200	0.1500	2.1312	3.02	0.0111	0.0701	0.2702	

Table B.1 (Cont.) Isentropic Flow of a Perfect Gas, k = 1.4

Ma	p/p_0	$ ho/ ho_0$	T/T_0	A/A*
3.64	0.0108	0.0393	0.2740	7.7305
3.66	0.0105	0.0385	0.2718	7.8742
3.68	0.0102	0.0378	0.2697	8.0204
3.7	0.0099	0.0370	0.2675	8.1691
3.72	0.0096	0.0363	0.2654	8.3202
3.74	0.0094	0.0356	0.2633	8.4739
3.76	0.0091	0.0349	0.2613	8.6302
3.78	0.0089	0.0342	0.2592	8.7891
3.8	0.0086	0.0335	0.2572	8.9506
3.82	0.0084	0.0329	0.2552	9.1148
3.84	0.0082	0.0323	0.2532	9.2817
3.86	0.0080	0.0316	0.2513	9.4513
3.88	0.0077	0.0310	0.2493	9.6237
3.9	0.0075	0.0304	0.2474	9.7990
3.92	0.0073	0.0299	0.2455	9.9771
3.94	0.0071	0.0293	0.2436	10.1581
3.96	0.0069	0.0287	0.2418	10.3420
3.98	0.0068	0.0282	0.2399	10.5289
4.0	0.0066	0.0277	0.2381	10.7188
4.02	0.0064	0.0271	0.2363	10.9117
4.04	0.0062	0.0266	0.2345	11.1077
4.06	0.0061	0.0261	0.2327	11.3068
4.08	0.0059	0.0256	0.2310	11.5091
4.1	0.0058	0.0252	0.2293	11.7147
4.12	0.0056	0.0247	0.2275	11.9234
4.14	0.0055	0.0242	0.2258	12.1354
4.16	0.0053	0.0238	0.2242	12.3508
4.18	0.0052	0.0234	0.2225	12.5695
4.2	0.0051	0.0229	0.2208	12.7916
4.22	0.0049	0.0225	0.2192	13.0172
4.24	0.0048	0.0221	0.2176	13.2463
4.26	0.0047	0.0217	0.2160	13.4789
4.28	0.0046	0.0213	0.2144	13.7151
4.3	0.0044	0.0209	0.2129	13.9549
4.32	0.0043	0.0205	0.2113	14.1984

 Table B.2
 Normal-Shock Relations
 for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A_{2}^{*}/A_{1}^{*}
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.02	0.9805	1.0471	1.0334	1.0132	1.0000	1.0000
1.04	0.9620	1.0952	1.0671	1.0263	0.9999	1.0001
1.06	0.9444	1.1442	1.1009	1.0393	0.9998	1.0002
1.08	0.9277	1.1941	1.1349	1.0522	0.9994	1.0006
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	1.0011
1.12	0.8966	1.2968	1.2034	1.0776	0.9982	1.0018
1.14	0.8820	1.3495	1.2378	1.0903	0.9973	1.0027
1.16	0.8682	1.4032	1.2723	1.1029	0.9961	1.0040
1.18	0.8549	1.4578	1.3069	1.1154	0.9946	1.0055
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	1.0073
1.22	0.8300	1.5698	1.3764	1.1405	0.9907	1.0094
1.24	0.8183	1.6272	1.4112	1.1531	0.9884	1.0118

Table B.2 (Cont.) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
1.26	0.8071	1.6855	1.4460	1.1657	0.9857	1.0145
1.28	0.7963	1.7448	1.4808	1.1783	0.9827	1.0176
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	1.0211
1.32	0.7760	1.8661	1.5505	1.2035	0.9758	1.0249
1.34	0.7664	1.9282	1.5854	1.2162	0.9718	1.0290
1.36	0.7572	1.9912	1.6202	1.2290	0.9676	1.0335
1.38	0.7483	2.0551	1.6549	1.2418	0.9630	1.0384
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	1.0436
1.42	0.7314	2.1858	1.7243	1.2676	0.9531	1.0492
1.44	0.7235	2.2525	1.7589	1.2807	0.9476	1.0552
1.46	0.7157	2.3202	1.7934	1.2938	0.9420	1.0616
1.48	0.7083	2.3888	1.8278	1.3069	0.9360	1.0684
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	1.0755
1.52	0.6941	2.5288	1.8963	1.3336	0.9233	1.0830
1.54	0.6874	2.6002	1.9303	1.3470	0.9166	1.0910
1.56	0.6809	2.6725	1.9643	1.3606	0.9097	1.0993
1.58	0.6746	2.7458	1.9981	1.3742	0.9026	1.1080
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	1.1171
1.62	0.6625	2.8951	2.0653	1.4018	0.8877	1.1266
1.64	0.6568	2.9712	2.0986	1.4158	0.8799	1.1365
1.66	0.6512	3.0482	2.1318	1.4299	0.8720	1.1468
1.68	0.6458	3.1261	2.1649	1.4440	0.8639	1.1575
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	1.1686
1.72	0.6355	3.2848	2.2304	1.4727	0.8337	
1.72	0.6305	3.3655	2.2629	1.4727	0.8389	1.1801 1.1921
1.74	0.6303	3.4472	2.2029		0.8302	1.1921
1.78	0.6237	3.5298	2.3273	1.5019 1.5167	0.8302	1.2043
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	1.2305
1.82	0.6121	3.6978	2.3909	1.5466	0.8038	1.2441
1.84	0.6078	3.7832	2.4224	1.5617	0.7948	1.2582
1.86	0.6036	3.8695	2.4537	1.5770	0.7857	1.2728
1.88	0.5996	3.9568	2.4848	1.5924	0.7765	1.2877
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	1.3032
1.92	0.5918	4.1341	2.5463	1.6236	0.7581	1.3191
1.94	0.5880	4.2242	2.5767	1.6394	0.7488	1.3354
1.96	0.5844	4.3152	2.6069	1.6553	0.7395	1.3522
1.98	0.5808	4.4071	2.6369	1.6713	0.7302	1.3695
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	1.3872
2.02	0.5740	4.5938	2.6962	1.7038	0.7115	1.4054
2.04	0.5707	4.6885	2.7255	1.7203	0.7022	1.4241
2.06	0.5675	4.7842	2.7545	1.7369	0.6928	1.4433
2.08	0.5643	4.8808	2.7833	1.7536	0.6835	1.4630
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	1.4832
2.12	0.5583	5.0768	2.8402	1.7875	0.6649	1.5039
2.14	0.5554	5.1762	2.8683	1.8046	0.6557	1.5252
2.16	0.5525	5.2765	2.8962	1.8219	0.6464	1.5469
2.18	0.5498	5.3778	2.9238	1.8393	0.6373	1.5692
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	1.5920
2.22	0.5444	5.5831	2.9784	1.8746	0.6191	1.6154
2.24	0.5418	5.6872	3.0053	1.8924	0.6100	1.6393
2.26	0.5393	5.7922	3.0319	1.9104	0.6011	1.6638
2.28	0.5368	5.8981	3.0584	1.9285	0.5921	1.6888
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	1.7144
2.32	0.5321	6.1128	3.1105	1.9652	0.5745	1.7406
2.32	0.3321	0.1120	5.1105	1.7032	0.5175	1.7700

Table B.2 (*Cont.*) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
2.34	0.5297	6.2215	3.1362	1.9838	0.5658	1.7674
2.36	0.5275	6.3312	3.1617	2.0025	0.5572	1.7948
2.38	0.5253	6.4418	3.1869	2.0213	0.5486	1.8228
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	1.8514
2.42	0.5210	6.6658	3.2367	2.0595	0.5317	1.8806
2.44	0.5189	6.7792	3.2612	2.0788	0.5234	1.9105
2.46	0.5169	6.8935	3.2855	2.0982	0.5152	1.9410
2.48	0.5149	7.0088	3.3095	2.1178	0.5071	1.9721
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	2.0039
2.52	0.5111	7.2421	3.3569	2.1574	0.4911	2.0364
2.54	0.5092	7.3602	3.3803	2.1774	0.4832	2.0696
2.56	0.5074	7.4792	3.4034	2.1976	0.4754	2.1035
2.58	0.5056	7.5991	3.4263	2.2179	0.4677	2.1381
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	2.1733
2.62	0.5022	7.8418	3.4714	2.2590	0.4526	2.2093
2.64	0.5005	7.9645	3.4937	2.2797	0.4452	2.2461
2.66	0.4988	8.0882	3.5157	2.3006	0.4379	2.2835
2.68	0.4972	8.2128	3.5374	2.3217	0.4307	2.3218
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	2.3608
2.72	0.4941	8.4648	3.5803	2.3642	0.4166	2.4005
2.74	0.4926	8.5922	3.6015	2.3858	0.4097	2.4411
2.76	0.4911	8.7205	3.6224	2.4074	0.4028	2.4825
2.78	0.4896	8.8498	3.6431	2.4292	0.3961	2.5246
2.8	0.4882	8.9800	2.6636	2.4512	0.3895	2.5676
2.82	0.4868	9.1111	3.6838	2.4733	0.3829	2.6115
2.84	0.4854	9.2432	3.7039	2.4955	0.3765	2.6561
2.86	0.4840	9.3762	3.7238	2.5179	0.3701	2.7017
2.88	0.4827	9.5101	3.7434	2.5405	0.3639	2.7481
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	2.7954
2.92	0.4801	9.7808	3.7821	2.5861	0.3517	2.8436
2.94	0.4788	9.9175	3.8012	2.6091	0.3457	2.8927
2.96	0.4776	10.0552	3.8200	2.6322	0.3398	2.9427
2.98	0.4764	10.1938	3.8387	2.6555	0.3340	2.9937
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	3.0456
3.02	0.4740	10.4738	3.8754	2.7026	0.3227	3.0985
3.04	0.4729	10.6152	3.8935	2.7264	0.3172	3.1523
3.06	0.4717	10.7575	3.9114	2.7503	0.3118	3.2072
3.08	0.4706	10.9008	3.9291	2.7744	0.3065	3.2630
3.1	0.4695	11.0450	3.9466	2.7986	0.3012	3.3199
3.12	0.4685	11.1901	3.9639	2.8230	0.2960	3.3778
3.14	0.4674	11.3362	3.9811	2.8475	0.2910	3.4368
3.16	0.4664	11.4832	3.9981	2.8722	0.2860	3.4969
3.18	0.4654	11.6311	4.0149	2.8970	0.2811	3.5580
3.2	0.4643	11.7800	4.0315	2.9220	0.2762	3.6202
3.22	0.4634	11.9298	4.0479	2.9471	0.2715	3.6835
3.24	0.4624	12.0805	4.0642	2.9724	0.2668	3.7480
3.26	0.4614	12.2322	4.0803	2.9979	0.2622	3.8136
3.28	0.4605	12.3848	4.0963	3.0234	0.2577	3.8803
3.3	0.4596	12.5383	4.1120	3.0492	0.2533	3.9483
3.32	0.4587	12.6928	4.1276	3.0751	0.2489	4.0174
3.34	0.4578	12.8482	4.1431	3.1011	0.2446	4.0877
3.36	0.4569	13.0045	4.1583	3.1273	0.2404	4.1593
3.38	0.4560	13.1618	4.1734	3.1537	0.2363	4.2321
3.4	0.4552	13.3200	4.1884	3.1802	0.2322	4.3062

Table B.2 (Cont.) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
3.42	0.4544	13.4791	4.2032	3.2069	0.2282	4.3815
3.44	0.4544	13.4791	4.2032	3.2337	0.2243	4.4581
3.44	0.4533		4.2323		0.2243	4.5361
	0.4527	13.8002 13.9621		3.2607 3.2878	0.2203	
3.48			4.2467			4.6154
3.5	0.4512	14.1250	4.2609	3.3151	0.2129	4.6960
3.52	0.4504	14.2888	4.2749	3.3425	0.2093	4.7780
3.54	0.4496	14.4535	4.2888	3.3701	0.2057	4.8614
3.56	0.4489	14.6192	4.3026	3.3978	0.2022	4.9461
3.58	0.4481	14.7858	4.3162	3.4257	0.1987	5.0324
3.6	0.4474	14.9533	4.3296	3.4537	0.1953	5.1200
3.62	0.4467	15.1218	4.3429	3.4819	0.1920	5.2091
3.64	0.4460	15.2912	4.3561	3.5103	0.1887	5.2997
3.66	0.4453	15.4615	4.3692	3.5388	0.1855	5.3918
3.68	0.4446	15.6328	4.3821	3.5674	0.1823	5.4854
3.7	0.4439	15.8050	4.3949	3.5962	0.1792	5.5806
3.72	0.4433	15.9781	4.4075	3.6252	0.1761	5.6773
3.74	0.4426	16.1522	4.4200	3.6543	0.1731	5.7756
3.76	0.4420	16.3272	4.4324	3.6836	0.1702	5.8755
3.78	0.4414	16.5031	4.4447	3.7130	0.1673	5.9770
3.8	0.4407	16.6800	4.4568	3.7426	0.1645	6.0801
3.82	0.4401	16.8578	4.4688	3.7723	0.1617	6.1849
3.84	0.4395	17.0365	4.4807	3.8022	0.1589	6.2915
3.86	0.4389	17.2162	4.4924	3.8323	0.1563	6.3997
3.88	0.4383	17.3968	4.5041	3.8625	0.1536	6.5096
3.9	0.4377	17.5783	4.4156	3.8928	0.1510	6.6213
3.92	0.4372	17.7608	4.5270	3.9233	0.1485	6.7348
3.94	0.4366	17.9442	4.5383	3.9540	0.1460	6.8501
3.96	0.4360	18.1285	4.5494	3.9848	0.1435	6.9672
3.98	0.4355	18.3138	4.5605	4.0158	0.1411	7.0861
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	7.2069
4.02	0.4344	18.6871	4.5823	4.0781	0.1364	7.3296
4.04	0.4339	18.8752	4.5930	4.1096	0.1342	7.4542
4.06	0.4334	19.0642	4.6036	4.1412	0.1319	7.5807
4.08	0.4329	19.2541	4.6141	4.1729	0.1297	7.7092
4.1	0.4324	19.4450	4.6245	4.2048	0.1276	7.8397
4.12	0.4319	19.6368	4.6348	4.2368	0.1254	7.9722
4.14	0.4314	19.8295	4.6450	4.2690	0.1234	8.1067
4.16	0.4309	20.0232	4.6550	4.3014	0.1213	8.2433
4.18	0.4304	20.2178	4.6650	4.3339	0.1193	8.3819
4.2	0.4299	20.4133	4.6749	4.3666	0.1173	8.5227
4.22	0.4295	20.6098	4.6847	4.3994	0.1173	8.6656
4.24	0.4290	20.8072	4.6944	4.4324	0.1134	8.8107
4.24	0.4286	21.0055	4.7040	4.4655	0.1133	8.9579
4.28	0.4281	21.2048	4.7135	4.4988	0.1110	9.1074
4.26	0.4277		4.7133			
		21.4050		4.5322	0.1080	9.2591
4.32	0.4272	21.6061	4.7322	4.5658	0.1062	9.4131
4.34	0.4268	21.8082	4.7414	4.5995	0.1045	9.5694
4.36	0.4264	22.0112	4.7505	4.6334	0.1028	9.7280
4.38	0.4260	22.2151	4.7595	4.6675	0.1011	9.8889
4.4	0.4255	22.4200	4.7685	4.7017	0.0995	10.0522
4.42	0.4251	22.6258	4.7773	4.7361	0.0979	10.2179
4.44	0.4247	22.8325	4.7861	4.7706	0.0963	10.3861
4.46	0.4243	23.0402	4.7948	4.8053	0.0947	10.5567
4.48	0.4239	23.2488	4.8034	4.8401	0.0932	10.7298

Table B.2 (Cont.) Normal-Shock Relations for a Perfect Gas, k = 1.4

Ma_{n1}	Ma_{n2}	<i>p</i> ₂ / <i>p</i> ₁	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
4.5	0.4236	23.4583	4.8119	4.8751	0.0917	10.9054
4.52	0.4232	23.6688	4.8203	4.9102	0.0902	11.0835
4.54	0.4228	23.8802	4.8287	4.9455	0.0888	11.2643
4.56	0.4224	24.0925	4.8369	4.9810	0.0874	11.4476
4.58	0.4220	24.3058	4.8451	5.0166	0.0860	11.6336
4.6	0.4217	24.5200	4.8532	5.0523	0.0846	11.8222
4.62	0.4213	24.7351	4.8612	5.0882	0.0832	12.0136
4.64	0.4210	24.9512	4.8692	5.1243	0.0819	12.2076
4.66	0.4206	25.1682	4.8771	5.1605	0.0806	12.4044
4.68	0.4203	25.3861	4.8849	5.1969	0.0793	12.6040
4.7	0.4199	25.6050	4.8926	5.2334	0.0781	12.8065
4.72	0.4196	25.8248	4.9002	5.2701	0.0769	13.0117
4.74	0.4192	26.0455	4.9078	5.3070	0.0756	13.2199
4.76	0.4189	26.2672	4.9153	5.3440	0.0745	13.4310
4.78	0.4186	26.4898	4.9227	5.3811	0.0733	13.6450
4.8	0.4183	26.7133	4.9301	5.4184	0.0721	13.8620
4.82	0.4179	26.9378	4.9374	5.4559	0.0710	14.0820
4.84	0.4176	27.1632	4.9446	5.4935	0.0699	14.3050
4.86	0.4173	27.3895	4.9518	5.5313	0.0688	14.5312
4.88	0.4170	27.6168	4.9589	5.5692	0.0677	14.7604
4.9	0.4167	27.8450	4.9659	5.6073	0.0667	14.9928
4.92	0.4164	28.0741	4.9728	5.6455	0.0657	15.2284
4.94	0.4161	28.3042	4.9797	5.6839	0.0647	15.4672
4.96	0.4158	28.5352	4.9865	5.7224	0.0637	15.7902
4.98	0.4155	28.7671	4.9933	5.7611	0.0627	15.9545
5.0	0.4152	29.0000	5.0000	5.8000	0.0617	16.2032

 Table B.3 Adiabatic Frictional
 Flow in a Constant-Area Duct for k = 1.4

Ma	$\overline{f}L*/D$	<i>p</i> / <i>p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
0.0	∞	∞	1.2000	0.0	∞
0.02	1778.4500	54.7701	1.1999	0.0219	28.9421
0.04	440.3520	27.3817	1.1996	0.0438	14.4815
0.06	193.0310	18.2508	1.1991	0.0657	9.6659
0.08	106.7180	13.6843	1.1985	0.0876	7.2616
0.1	66.9216	10.9435	1.1976	0.1094	5.8218
0.12	45.4080	9.1156	1.1966	0.1313	4.8643
0.14	32.5113	7.8093	1.1953	0.1531	4.1824
0.16	24.1978	6.8291	1.1939	0.1748	3.6727
0.18	18.5427	6.0662	1.1923	0.1965	3.2779
0.2	14.5333	5.4554	1.1905	0.2182	2.9635
0.22	11.5961	4.9554	1.1885	0.2398	2.7076
0.24	9.3865	4.5383	1.1863	0.2614	2.4956
0.26	7.6876	4.1851	1.1840	0.2829	2.3173
0.28	6.3572	3.8820	1.1815	0.3043	2.1656
0.3	5.2993	3.6191	1.1788	0.3257	2.0351
0.32	4.4467	3.3887	1.1759	0.3470	1.9219
0.34	3.7520	3.1853	1.1729	0.3682	1.8229
0.36	3.1801	3.0042	1.1697	0.3893	1.7358
0.38	2.7054	2.8420	1.1663	0.4104	1.6587
0.4	2.3085	2.6958	1.1628	0.4313	1.5901
0.42	1.9744	2.5634	1.1591	0.4522	1.5289

Table B.3 (Cont.) Adiabatic Frictional Flow in a Constant-Area Duct for k = 1.4

Ma	$\overline{f}L^*/D$	<i>p</i> / <i>p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
0.44	1.6915	2.4428	1.1553	0.4729	1.4740
0.46	1.4509	2.3326	1.1513	0.4936	1.4246
0.48	1.2453	2.2313	1.1471	0.5141	1.3801
0.5	1.0691	2.1381	1.1429	0.5345	1.3398
0.52	0.9174	2.0519	1.1384	0.5548	1.3034
0.54	0.7866	1.9719	1.1339	0.5750	1.2703
0.56	0.6736	1.8975	1.1292	0.5951	1.2403
0.58	0.5757	1.8282	1.1244	0.6150	1.2130
0.6	0.4908	1.7634	1.1194	0.6348	1.1882
0.62	0.4172	1.7026	1.1143	0.6545	1.1656
0.64	0.3533	1.6456	1.1091	0.6740	1.1451
0.66	0.2979	1.5919	1.1038	0.6934	1.1265
0.68	0.2498	1.5413	1.0984	0.7127	1.1097
0.7	0.2081	1.4935	1.0929	0.7318	1.0944
0.72	0.1721	1.4482	1.0873	0.7508	1.0806
0.74	0.1411	1.4054	1.0815	0.7696	1.0681
0.76	0.1145	1.3647	1.0757	0.7883	1.0570
0.78	0.0917	1.3261	1.0698	0.8068	1.0471
0.8	0.0723	1.2893	1.0638	0.8251	1.0382
0.82	0.0559	1.2542	1.0578	0.8433	1.0305
0.84	0.0423	1.2208	1.0516	0.8614	1.0237
0.86	0.0310	1.1889	1.0454	0.8793	1.0179
0.88	0.0218	1.1583	1.0391	0.8970	1.0129
0.9	0.0145	1.1291	1.0327	0.9146	1.0089
0.92	0.0089	1.1011	1.0263	0.9320	1.0056
0.94	0.0048	1.0743	1.0198	0.9493	1.0031
0.96	0.0021	1.0485	1.0132	0.9663	1.0014
0.98	0.0005	1.0238	1.0066	0.9833	1.0003
1.0	0.0000	1.0000	1.0000	1.0000	1.0000
1.02	0.0005	0.9771	0.9933	1.0166	1.0003
1.04	0.0018	0.9551	0.9866	1.0330	1.0013
1.06	0.0038	0.9338	0.9798	1.0492	1.0029
1.08	0.0066	0.9133	0.9730	1.0653	1.0051
1.1	0.0099	0.8936	0.9662	1.0812	1.0079
1.12	0.0138	0.8745	0.9593	1.0970	1.0113
1.14	0.0182	0.8561	0.9524	1.1126	1.0153
1.16 1.18	0.0230 0.0281	0.8383 0.8210	0.9455 0.9386	1.1280	1.0198 1.0248
				1.1432	
1.2 1.22	0.0336	0.8044	0.9317 0.9247	1.1583 1.1732	1.0304
1.24	0.0394 0.0455	0.7882 0.7726	0.9247	1.1732	1.0366 1.0432
1.24	0.0433	0.7726	0.9178		1.0432
1.28	0.0517		0.9108	1.2025 1.2169	1.0504
1.26	0.0382	0.7427 0.7285	0.8969	1.2311	1.0663
1.32	0.0716	0.7283	0.8899	1.2452	1.0003
1.34	0.0785	0.7147	0.8829	1.2591	1.0730
1.34	0.0785	0.6882	0.8760	1.2729	1.0940
1.38	0.0926	0.6755	0.8690	1.2729	1.1042
1.36	0.0926	0.6632	0.8621	1.2804	1.1042
1.42	0.1069	0.6512	0.8551	1.3131	1.1149
1.42	0.1009	0.6396	0.8482	1.3131	1.1202
1.44	0.1215	0.6282	0.8413	1.3202	1.15/9
1.40	0.1213	0.6282	0.8344	1.3520	1.1501
1.70	0.1266	0.6065	0.0344	1.3340	1.1029

 Table B.3 (Cont.)
 Adiabatic
 Frictional Flow in a Constant-Area Duct for k = 1.4

Ma	$ar{f}L^*/D$	<i>p</i> / <i>p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
1.52	0.1433	0.5960	0.8207	1.3770	1.1899
1.54	0.1506	0.5858	0.8139	1.3894	1.2042
1.56	0.1579	0.5759	0.8071	1.4015	1.2190
1.58	0.1651	0.5662	0.8004	1.4135	1.2344
1.6	0.1724	0.5568	0.7937	1.4254	1.2502
1.62	0.1795	0.5476	0.7869	1.4371	1.2666
1.64	0.1867	0.5386	0.7803	1.4487	1.2836
1.66	0.1938	0.5299	0.7736	1.4601	1.3010
1.68	0.2008	0.5213	0.7670	1.4713	1.3190
1.7	0.2078	0.5130	0.7605	1.4825	1.3376
1.72	0.2147	0.5048	0.7539	1.4935	1.3567
1.74	0.2216	0.4969	0.7474	1.5043	1.3764
1.76	0.2284	0.4891	0.7410	1.5150	1.3967
1.78	0.2352	0.4815	0.7345	1.5256	1.4175
1.8	0.2419	0.4741	0.7282	1.5360	1.4390
1.82	0.2485	0.4668	0.7218	1.5463	1.4610
1.84	0.2551	0.4597	0.7155	1.5564	1.4836
1.86	0.2616	0.4528	0.7093	1.5664	1.5069
1.88	0.2680	0.4328	0.7030	1.5763	1.5308
1.00	0.2743	0.4394	0.6969	1.5861	1.5553
1.92	0.2806	0.4329	0.6907	1.5957	1.5804
1.94	0.2868	0.4265	0.6847	1.6052	1.6062
1.96	0.2929	0.4203	0.6786	1.6146	1.6326
1.98	0.2990	0.4142	0.6726	1.6239	1.6597
2.0	0.3050	0.4082	0.6667	1.6330	1.6875
2.02	0.3109	0.4024	0.6608	1.6420	1.7160
2.04	0.3168	0.3967	0.6549	1.6509	1.7451
2.06	0.3225	0.3911	0.6491	1.6597	1.7750
2.08	0.3282	0.3856	0.6433	1.6683	1.8056
2.1	0.3339	0.3802	0.6376	1.6769	1.8369
2.12	0.3394	0.3750	0.6320	1.6853	1.8690
2.14	0.3449	0.3698	0.6263	1.6936	1.9018
2.16	0.3503	0.3648	0.6208	1.7018	1.9354
2.18	0.3556	0.3598	0.6152	1.7099	1.9698
2.2	0.3609	0.3549	0.6098	1.7179	2.0050
2.22	0.3661	0.3502	0.6043	1.7258	2.0409
2.24	0.3712	0.3455	0.5989	1.7336	2.0777
2.26	0.3763	0.3409	0.5936	1.7412	2.1153
2.28	0.3813	0.3364	0.5883	1.7488	2.1538
2.3	0.3862	0.3320	0.5831	1.7563	2.1931
2.32	0.3911	0.3277	0.5779	1.7637	2.2333
2.34	0.3959	0.3234	0.5728	1.7709	2.2744
2.36	0.4006	0.3193	0.5677	1.7781	2.3164
2.38	0.4053	0.3152	0.5626	1.7852	2.3593
2.4	0.4099	0.3111	0.5576	1.7922	2.4031
2.42	0.4144	0.3072	0.5527	1.7991	2.4479
2.44	0.4189	0.3033	0.5478	1.8059	2.4936
2.46	0.4233	0.2995	0.5429	1.8126	2.5403
2.48	0.4277	0.2958	0.5381	1.8192	2.5880
2.5	0.4320	0.2921	0.5333	1.8257	2.6367
2.52	0.4362	0.2885	0.5286	1.8322	2.6865
2.54	0.4404	0.2850	0.5239	1.8386	2.7372
2.56	0.4445	0.2815	0.5193	1.8448	2.7891
2.58	0.4486	0.2781	0.5147	1.8510	2.8420
2.30	0.7400	0.2/01	0.5147	1.0310	2.0420

 Table B.3 (Cont.)
 Adiabatic
 Frictional Flow in a Constant-Area Duct for k = 1.4

2.6 0.4526 0.2747 0.5102 1.8571 2.62 0.4565 0.2714 0.5057 1.8632 2.64 0.4604 0.2682 0.5013 1.8691 2.66 0.4643 0.2650 0.4969 1.8750 2.68 0.4681 0.2619 0.4925 1.8808 2.7 0.4718 0.2588 0.4882 1.8865 2.72 0.4755 0.2558 0.4839 1.8922 2.74 0.4791 0.2528 0.4797 1.8978 2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.92 0.5065 0.2307 0.4474 1.9398 <	2.8960 2.9511 3.0073 3.0647 3.1233 3.1830 3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058 3.7771
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0073 3.0647 3.1233 3.1830 3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0647 3.1233 3.1830 3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.68 0.4681 0.2619 0.4925 1.8808 2.7 0.4718 0.2588 0.4882 1.8865 2.72 0.4755 0.2558 0.4839 1.8922 2.74 0.4791 0.2528 0.4797 1.8978 2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.1233 3.1830 3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.7 0.4718 0.2588 0.4882 1.8865 2.72 0.4755 0.2558 0.4839 1.8922 2.74 0.4791 0.2528 0.4797 1.8978 2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.1830 3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.72 0.4755 0.2558 0.4839 1.8922 2.74 0.4791 0.2528 0.4797 1.8978 2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.2440 3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.74 0.4791 0.2528 0.4797 1.8978 2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.3061 3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.76 0.4827 0.2498 0.4755 1.9033 2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.3695 3.4342 3.5001 3.5674 3.6359 3.7058
2.78 0.4863 0.2470 0.4714 1.9087 2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.4342 3.5001 3.5674 3.6359 3.7058
2.8 0.4898 0.2441 0.4673 1.9140 2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.5001 3.5674 3.6359 3.7058
2.82 0.4932 0.2414 0.4632 1.9193 2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.5674 3.6359 3.7058
2.84 0.4966 0.2386 0.4592 1.9246 2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.6359 3.7058
2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.6359 3.7058
2.86 0.5000 0.2359 0.4552 1.9297 2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	
2.88 0.5033 0.2333 0.4513 1.9348 2.9 0.5065 0.2307 0.4474 1.9398 2.92 0.5097 0.2281 0.4436 1.9448	3.7771
2.92 0.5097 0.2281 0.4436 1.9448	
2.92 0.5097 0.2281 0.4436 1.9448	3.8498
	3.9238
2.94 0.5129 0.2256 0.4398 1.9497	3.9993
2.96 0.5160 0.2231 0.4360 1.9545	4.0763
2.98 0.5191 0.2206 0.4323 1.9593	4.1547
3.0 0.5222 0.2182 0.4286 1.9640	4.2346
3.02 0.5252 0.2158 0.4249 1.9686	4.3160
3.04 0.5281 0.2135 0.4213 1.9732	4.3989
3.06 0.5310 0.2112 0.4177 1.9777	4.4835
3.08 0.5339 0.2090 0.4142 1.9822	4.5696
3.1 0.5368 0.2067 0.4107 1.9866	4.6573
3.12 0.5396 0.2045 0.4072 1.9910	4.7467
3.14 0.5424 0.2024 0.4038 1.9953	4.8377
3.16 0.5451 0.2002 0.4004 1.9995	4.9304
3.18 0.5478 0.1981 0.3970 2.0037	5.0248
3.2 0.5504 0.1961 0.3937 2.0079	5.1210
3.22 0.5531 0.1940 0.3904 2.0120	5.2189
3.24 0.5557 0.1920 0.3872 2.0160	5.3186
3.26 0.5582 0.1901 0.3839 2.0200	5.4201
3.28 0.5607 0.1881 0.3807 2.0239	5.5234
3.3 0.5632 0.1862 0.3776 2.0278	5.6286
3.32 0.5657 0.1843 0.3745 2.0317	5.7358
3.34 0.5681 0.1825 0.3714 2.0355	5.8448
3.36 0.5705 0.1806 0.3683 2.0392	5.9558
3.38 0.5729 0.1788 0.3653 2.0429	6.0687
3.4 0.5752 0.1770 0.3623 2.0466	6.1837
3.42 0.5775 0.1753 0.3594 2.0502	6.3007
	6.4198
	6.5409
3.48	6.6642
3.5 0.5864 0.1685 0.3478 2.0642 3.52 0.5886 0.1660 0.3450 2.0676	6.7896
3.52	6.9172
3.54	7.0471
3.56	7.1791
3.58	7.3135
3.6 0.5970 0.1616 0.3341 2.0808	7.4501
3.62 0.5990 0.1590 0.3314 2.0840	7.5891
3.64 0.6010 0.1575 0.3288 2.0871	7.7305
3.66 0.6030 0.1560 0.3262 2.0903	7.8742

 Table B.3 (Cont.)
 Adiabatic
 Frictional Flow in a Constant-Area Duct for k = 1.4

Ma	$\bar{f}L^*/D$	<i>p</i> / <i>p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
3.68	0.6049	0.1546	0.3236	2.0933	8.0204
3.7	0.6068	0.1531	0.3210	2.0964	8.1691
3.72	0.6087	0.1517	0.3185	2.0994	8.3202
3.74	0.6106	0.1503	0.3160	2.1024	8.4739
3.76	0.6125	0.1489	0.3135	2.1053	8.6302
3.78	0.6143	0.1475	0.3111	2.1082	8.7891
3.8	0.6161	0.1462	0.3086	2.1111	8.9506
3.82	0.6179	0.1449	0.3062	2.1140	9.1148
3.84	0.6197	0.1436	0.3039	2.1168	9.2817
3.86	0.6214	0.1423	0.3015	2.1195	9.4513
3.88	0.6231	0.1410	0.2992	2.1223	9.6237
3.9	0.6248	0.1397	0.2969	2.1250	9.7990
3.92	0.6265	0.1385	0.2946	2.1277	9.9771
3.94	0.6282	0.1372	0.2923	2.1303	10.1581
3.96	0.6298	0.1360	0.2901	2.1329	10.3420
3.98	0.6315	0.1348	0.2879	2.1355	10.5289
4.0	0.6331	0.1336	0.2857	2.1381	10.7188

 Table B.4
 Frictionless Duct Flow
 with Heat Transfer for k = 1.4

Ma	T_0/T_0^*	<i>p/p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
0.0	0.0	2.4000	0.0	0.0	1.2679
0.02	0.0019	2.3987	0.0023	0.0010	1.2675
0.04	0.0076	2.3946	0.0092	0.0038	1.2665
0.06	0.0171	2.3800	0.0205	0.0086	1.2647
0.08	0.0302	2.3787	0.0362	0.0152	1.2623
0.1	0.0468	2.3669	0.0560	0.0237	1.2591
0.12	0.0666	2.3526	0.0797	0.0339	1.2554
0.14	0.0895	2.3359	0.1069	0.0458	1.2510
0.16	0.1151	2.3170	0.1374	0.0593	1.2461
0.18	0.1432	2.2959	0.1708	0.0744	1.2406
0.2	0.1736	2.2727	0.2066	0.0909	1.2346
0.22	0.2057	2.2477	0.2445	0.1088	1.2281
0.24	0.2395	2.2209	0.2841	0.1279	1.2213
0.26	0.2745	2.1925	0.3250	0.1482	1.2140
0.28	0.3104	2.1626	0.3667	0.1696	1.2064
0.3	0.3469	2.1314	0.4089	0.1918	1.1985
0.32	0.3837	2.0991	0.4512	0.2149	1.1904
0.34	0.4206	2.0657	0.4933	0.2388	1.1822
0.36	0.4572	2.0314	0.5348	0.2633	1.1737
0.38	0.4935	1.9964	0.5755	0.2883	1.1652
0.4	0.5290	1.9608	0.6151	0.3137	1.1566
0.42	0.5638	1.9247	0.6535	0.3395	1.1480
0.44	0.5975	1.8882	0.6903	0.3656	1.1394
0.46	0.6301	1.8515	0.7254	0.3918	1.1308
0.48	0.6614	1.8147	0.7587	0.4181	1.1224
0.5	0.6914	1.7778	0.7901	0.4444	1.1141
0.52	0.7199	1.7409	0.8196	0.4708	1.1059
0.54	0.7470	1.7043	0.8469	0.4970	1.0979
0.56	0.7725	1.6678	0.8723	0.5230	1.0901
0.58	0.7965	1.6316	0.8955	0.5489	1.0826
0.6	0.8189	1.5957	0.9167	0.5745	1.0753

 Table B.4 (Cont.)
 Frictionless
 Duct Flow with Heat Transfer for k = 1.4

Ma	T_0/T_0^*	<i>p/p</i> *	<i>T/T</i> *	$ ho^*/ ho = V/V^*$	p_0/p_0^*
0.62	0.8398	1.5603	0.9358	0.5998	1.0682
0.64	0.8592	1.5253	0.9530	0.6248	1.0615
0.66	0.8771	1.4908	0.9682	0.6494	1.0550
0.68	0.8935	1.4569	0.9814	0.6737	1.0489
0.7	0.9085	1.4235	0.9929	0.6975	1.0431
0.72	0.9221	1.3907	1.0026	0.7209	1.0376
0.74	0.9344	1.3585	1.0106	0.7439	1.0325
0.76	0.9455	1.3270	1.0171	0.7665	1.0278
0.78	0.9553	1.2961	1.0220	0.7885	1.0234
0.8	0.9639	1.2658	1.0255	0.8101	1.0193
0.82	0.9715	1.2362	1.0276	0.8313	1.0157
0.84	0.9781	1.2073	1.0285	0.8519	1.0124
0.86	0.9836	1.1791	1.0283	0.8721	1.0095
0.88	0.9883	1.1515	1.0269	0.8918	1.0070
0.9	0.9921	1.1246	1.0245	0.9110	1.0070
0.92	0.9951	1.0984	1.0243	0.9297	1.0049
0.92	0.9973	1.0728	1.0170	0.9480	1.0031
0.94	0.9973	1.0728	1.0170	0.9480	1.0017
				0.9831	
0.98	0.9997	1.0236	1.0064 1.0000	1.0000	1.0002
1.0	1.0000	1.0000			1.0000
1.02	0.9997	0.9770	0.9930	1.0164	1.0002
1.04	0.9989	0.9546	0.9855	1.0325	1.0008
1.06	0.9977	0.9327	0.9776	1.0480	1.0017
1.08	0.9960	0.9115	0.9691	1.0632	1.0031
1.1	0.9939	0.8909	0.9603	1.0780	1.0049
1.12	0.9915	0.8708	0.9512	1.0923	1.0070
1.14	0.9887	0.8512	0.9417	1.1063	1.0095
1.16	0.9856	0.8322	0.9320	1.1198	1.0124
1.18	0.9823	0.8137	0.9220	1.1330	1.0157
1.2	0.9787	0.7958	0.9118	1.1459	1.0194
1.22	0.9749	0.7783	0.9015	1.1584	1.0235
1.24	0.9709	0.7613	0.8911	1.1705	1.0279
1.26	0.9668	0.7447	0.8805	1.1823	1.0328
1.28	0.9624	0.7287	0.8699	1.1938	1.0380
1.3	0.9580	0.7130	0.8592	1.2050	1.0437
1.32	0.9534	0.6978	0.8484	1.2159	1.0497
1.34	0.9487	0.6830	0.8377	1.2264	1.0561
1.36	0.9440	0.6686	0.8269	1.2367	1.0629
1.38	0.9391	0.6546	0.8161	1.2467	1.0701
1.4	0.9343	0.6410	0.8054	1.2564	1.0777
1.42	0.9293	0.6278	0.7947	1.2659	1.0856
1.44	0.9243	0.6149	0.7840	1.2751	1.0940
1.46	0.9193	0.6024	0.7735	1.2840	1.1028
1.48	0.9143	0.5902	0.7629	1.2927	1.1120
1.5	0.9093	0.5783	0.7525	1.3012	1.1215
1.52	0.9042	0.5668	0.7422	1.3095	1.1315
1.54	0.8992	0.5555	0.7319	1.3175	1.1419
1.56	0.8942	0.5446	0.7217	1.3253	1.1527
1.58	0.8892	0.5339	0.7117	1.3329	1.1640
1.6	0.8842	0.5236	0.7017	1.3403	1.1756
1.62	0.8792	0.5135	0.6919	1.3475	1.1877
1.64	0.8743	0.5036	0.6822	1.3546	1.2002
1.66	0.8694	0.4940	0.6726	1.3614	1.2131
1.68	0.8645	0.4847	0.6631	1.3681	1.2264
1.00	0.0043	0.404/	0.0031	1.5001	1.2204

Ma	T_0/T_0^*	<i>p/p</i> *	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
1.7	0.8597	0.4756	0.6538	1.3746	1.2402
1.72	0.8549	0.4668	0.6445	1.3809	1.2545
1.74	0.8502	0.4581	0.6355	1.3870	1.2692
1.76	0.8455	0.4497	0.6265	1.3931	1.2843
1.78	0.8409	0.4415	0.6176	1.3989	1.2999
1.8	0.8363	0.4335	0.6089	1.4046	1.3159
1.82	0.8317	0.4257	0.6004	1.4102	1.3324
1.84	0.8273	0.4181	0.5919	1.4156	1.3494
1.86	0.8228	0.4107	0.5836	1.4209	1.3669
1.88	0.8185	0.4035	0.5754	1.4261	1.3849
1.9	0.8141	0.3964	0.5673	1.4311	1.4033
1.92	0.8099	0.3895	0.5594	1.4360	1.4222
1.94	0.8057	0.3828	0.5516	1.4408	1.4417
1.96	0.8015	0.3763	0.5439	1.4455	1.4616
1.98	0.7974	0.3699	0.5364	1.4501	1.4821
2.0	0.7934	0.3636	0.5289	1.4545	1.5031
2.02	0.7894	0.3575	0.5216	1.4589	1.5246
2.04	0.7855	0.3516	0.5144	1.4632	1.5467
2.06	0.7816	0.3458	0.5074	1.4673	1.5693
2.08	0.7778	0.3401	0.5004	1.4714	1.5924
2.1	0.7741	0.3345	0.4936	1.4753	1.6162
2.12	0.7704	0.3291	0.4868	1.4792	1.6404
2.14	0.7667	0.3238	0.4802	1.4830	1.6653
2.16	0.7631	0.3186	0.4737	1.4867	1.6908
2.18	0.7596	0.3136	0.4673	1.4903	1.7168
2.2	0.7561	0.3086	0.4611	1.4938	1.7434
2.22	0.7527	0.3038	0.4549	1.4973	1.7707
2.24	0.7493	0.2991	0.4488	1.5007	1.7986
2.26	0.7460	0.2945	0.4428	1.5040	1.8271
2.28	0.7428	0.2899	0.4370	1.5072	1.8562
2.3	0.7395	0.2855	0.4312	1.5104	1.8860
2.32	0.7364	0.2812	0.4256	1.5134	1.9165
2.34	0.7333	0.2769	0.4200	1.5165	1.9476
2.36	0.7302	0.2728	0.4145	1.5194	1.9794
2.38	0.7272	0.2688	0.4091	1.5223	2.0119
2.4	0.7242	0.2648	0.4038	1.5252	2.0451
2.42	0.7213	0.2609	0.3986	1.5279	2.0789
2.44	0.7184	0.2571	0.3935	1.5306	2.1136
2.46	0.7156	0.2534	0.3885	1.5333	2.1489
2.48	0.7128	0.2497	0.3836	1.5359	2.1850
2.5	0.7101	0.2462	0.3787	1.5385	2.2218
2.52	0.7074	0.2427	0.3739	1.5410	2.2594
2.54	0.7047	0.2392	0.3692	1.5434	2.2978
2.56	0.7021	0.2359	0.3646	1.5458	2.3370
2.58	0.6995	0.2326	0.3601	1.5482	2.3770
2.6	0.6970	0.2294	0.3556	1.5505	2.4177
2.62	0.6945	0.2262	0.3512	1.5527	2.4593
2.64	0.6921	0.2231	0.3469	1.5549	2.5018
2.66	0.6896	0.2201	0.3427	1.5571	2.5451
2.68	0.6873	0.2171	0.3385	1.5592	2.5892
2.7	0.6849	0.2142	0.3344	1.5613	2.6343
2.72	0.6826	0.2113	0.3304	1.5634	2.6802
2.74	0.6804	0.2085	0.3264	1.5654	2.7270
2.76	0.6781	0.2058	0.3225	1.5673	2.7748

 Table B.4 (Cont.) Frictionless
 Duct Flow with Heat Transfer for k = 1.4

Ma	T_0/T_0^*	<i>p/p*</i>	T/T*	$\rho^*/\rho = V/V^*$	p_0/p_0^*
2.78	0.6761	0.2030	0.3186	1.5693	2.8235
2.8	0.6738	0.2004	0.3149	1.5711	2.8731
2.82	0.6717	0.1978	0.3111	1.5730	2.9237
2.84	0.6696	0.1953	0.3075	1.5748	2.9752
2.86	0.6675	0.1927	0.3039	1.5766	3.0278
2.88	0.6655	0.1903	0.3004	1.5784	3.0813
2.9	0.6635	0.1879	0.2969	1.5801	3.1359
2.92	0.6615	0.1855	0.2934	1.5818	3.1914
2.94	0.6596	0.1832	0.2901	1.5834	3.2481
2.96	0.6577	0.1809	0.2868	1.5851	3.3058
2.98	0.6558	0.1787	0.2835	1.5867	3.3646
3.0	0.6540	0.1765	0.2803	1.5882	3.4245
3.02	0.6522	0.1743	0.2771	1.5898	3.4854
3.04	0.6504	0.1722	0.2740	1.5913	3.5476
3.06	0.6486	0.1701	0.2709	1.5928	3.6108
3.08	0.6469	0.1681	0.2679	1.5942	3.6752
3.1	0.6452	0.1660	0.2650	1.5957	3.7408
3.12	0.6435	0.1641	0.2620	1.5971	3.8076
3.14	0.6418	0.1621	0.2592	1.5985	3.8756
3.16	0.6402	0.1602	0.2563	1.5998	3.9449
3.18	0.6386	0.1583	0.2535	1.6012	4.0154
3.2	0.6370	0.1565	0.2508	1.6025	4.0871
3.22	0.6354	0.1547	0.2481	1.6038	4.1602
3.24	0.6339	0.1529	0.2454	1.6051	4.2345
3.26	0.6324	0.1511	0.2428	1.6063	4.3101
3.28	0.6309	0.1494	0.2402	1.6076	4.3871
3.3	0.6294	0.1477	0.2377	1.6088	4.4655
3.32	0.6280	0.1461	0.2352	1.6100	4.5452
3.34	0.6265	0.1444	0.2327	1.6111	4.6263
3.36 3.38	0.6251 0.6237	0.1428 0.1412	0.2303 0.2279	1.6123 1.6134	4.7089 4.7929
3.36	0.6224	0.1412	0.2279	1.6145	4.7929
3.42	0.6210	0.1397	0.2232	1.6156	4.9652
3.44	0.6197	0.1366	0.2232	1.6167	5.0536
3.46	0.6184	0.1351	0.2186	1.6178	5.1435
3.48	0.6171	0.1337	0.2164	1.6188	5.2350
3.5	0.6158	0.1322	0.2142	1.6198	5.3280
3.52	0.6145	0.1322	0.2142	1.6208	5.4226
3.54	0.6133	0.1294	0.2099	1.6218	5.5188
3.56	0.6121	0.1294	0.2078	1.6228	5.6167
3.58	0.6109	0.1267	0.2078	1.6238	5.7162
3.6	0.6097	0.1254	0.2037	1.6247	5.8173
3.62	0.6085	0.1241	0.2017	1.6257	5.9201
3.64	0.6074	0.1228	0.1997	1.6266	6.0247
3.66	0.6062	0.1215	0.1977	1.6275	6.1310
3.68	0.6051	0.1213	0.1977	1.6284	6.2390
3.7	0.6040	0.1202	0.1939	1.6293	6.3488
3.72	0.6029	0.1178	0.1920	1.6301	6.4605
3.74	0.6018	0.1176	0.1902	1.6310	6.5739
3.76	0.6008	0.1154	0.1884	1.6318	6.6893
3.78	0.5997	0.1143	0.1866	1.6327	6.8065
3.8	0.5987	0.1143	0.1848	1.6335	6.9256
3.82	0.5977	0.1131	0.1830	1.6343	7.0466
3.84	0.5967	0.1120	0.1813	1.6351	7.1696

 Table B.4 (Cont.) Frictionless
 Duct Flow with Heat Transfer for k = 1.4

Ma	T_0/T_0^*	<i>p/p*</i>	<i>T/T</i> *	$\rho^*/\rho = V/V^*$	p_0/p_0^*
3.86	0.5957	0.1098	0.1796	1.6359	7.2945
3.88	0.5947	0.1087	0.1779	1.6366	7.4215
3.9	0.5937	0.1077	0.1763	1.6374	7.5505
3.92	0.5928	0.1066	0.1746	1.6381	7.6816
3.94	0.5918	0.1056	0.1730	1.6389	7.8147
3.96	0.5909	0.1046	0.1714	1.6396	7.9499
3.98	0.5900	0.1036	0.1699	1.6403	8.0873
4.0	0.5891	0.1026	0.1683	1.6410	8.2269

 Table B.5
 Prandtl-Meyer
 Supersonic Expansion Function for k = 1.4

Ma	ω , deg	Ma	ω , deg	Ma	ω, deg	Ma	ω, deg
1.00	0.0						
1.05	0.49	3.05	50.71	5.05	77.38	7.05	91.23
1.10	1.34	3.10	51.65	5.10	77.84	7.10	91.49
1.15	2.38	3.15	52.57	5.15	78.29	7.15	91.75
1.20	3.56	3.20	53.47	5.20	78.73	7.20	92.00
1.25	4.83	3.25	54.35	5.25	79.17	7.25	92.24
1.30	6.17	3.30	55.22	5.30	79.60	7.30	92.49
1.35	7.56	3.35	56.07	5.35	80.02	7.35	92.73
1.40	8.99	3.40	56.91	5.40	80.43	7.40	92.97
1.45	10.44	3.45	57.73	5.45	80.84	7.45	93.21
1.50	11.91	3.50	58.53	5.50	81.24	7.50	93.44
1.55	13.38	3.55	59.32	5.55	81.64	7.55	93.67
1.60	14.86	3.60	60.09	5.60	82.03	7.60	93.90
1.65	16.34	3.65	60.85	5.65	82.42	7.65	94.12
1.70	17.81	3.70	61.60	5.70	82.80	7.70	94.34
1.75	19.27	3.75	62.33	5.75	83.17	7.75	94.56
1.80	20.73	3.80	63.04	5.80	83.54	7.80	94.78
1.85	22.16	3.85	63.75	5.85	83.90	7.85	95.00
1.90	23.59	3.90	64.44	5.90	84.26	7.90	95.21
1.95	24.99	3.95	65.12	5.95	84.61	7.95	95.42
2.00	26.38	4.00	65.78	6.00	84.96	8.00	95.62
2.05	27.75	4.05	66.44	6.05	85.30	8.05	95.83
2.10	29.10	4.10	67.08	6.10	85.63	8.10	96.03
2.15	30.43	4.15	67.71	6.15	85.97	8.15	96.23
2.20	31.73	4.20	68.33	6.20	86.29	8.20	96.43
2.25	33.02	4.25	68.94	6.25	86.62	8.25	96.63
2.30	34.28	4.30	69.54	6.30	86.94	8.30	96.82
2.35	35.53	4.35	70.13	6.35	87.25	8.35	97.01
2.40	36.75	4.40	70.71	6.40	87.56	8.40	97.20
2.45	37.95	4.45	71.27	6.45	87.87	8.45	97.39
2.50	39.12	4.50	71.83	6.50	88.17	8.50	97.57
2.55	40.28	4.55	72.38	6.55	88.47	8.55	97.76
2.60	41.41	4.60	72.92	6.60	88.76	8.60	97.94
2.65	42.53	4.65	73.45	6.65	89.05	8.65	98.12
2.70	43.62	4.70	73.97	6.70	89.33	8.70	98.29
2.75	44.69	4.75	74.48	6.75	89.62	8.75	98.47
2.80	45.75	4.80	74.99	6.80	89.90	8.80	98.64
2.85	46.78	4.85	75.48	6.85	90.17	8.85	98.81
2.90	47.79	4.90	75.97	6.90	90.44	8.90	98.98
2.95	48.78	4.95	76.45	6.95	90.71	8.95	99.15
3.00	49.76	5.00	76.92	7.00	90.97	9.00	99.32

Fig. B.1 Mach number downstream of an oblique shock for k = 1.4.

Fig. B.2 Pressure ratio downstream of an oblique shock for k = 1.4.

Appendix C Conversion Factors

During this period of transition there is a constant need for conversions between BG and SI units (see Table 1.2). Some additional conversions are given here. Conversion factors are given inside the front cover.

Length	Volume		
1 ft = 12 in = 0.3048 m 1 mi = 5280 ft = 1609.344 m 1 nautical mile (nmi) = 6076 ft = 1852 m 1 yd = 3 ft = 0.9144 m 1 angstrom (Å) = 1.0 E-10 m	1 ft ³ = 0.028317 m ³ 1 U.S. gal = 231 in ³ = 0.0037854 m ³ 1 L = 0.001 m ³ = 0.035315 ft ³ 1 U.S. fluid ounce = 2.9574 E-5 m ³ 1 U.S. quart (qt) = 9.4635 E-4 m ³		
Mass	Area		
1 slug = 32.174 lbm = 14.594 kg 1 lbm = 0.4536 kg 1 short ton = 2000 lbm = 907.185 kg 1 tonne = 1000 kg	1 ft ² = 0.092903 m ² 1 mi ² = 2.78784 E7 ft ² = 2.59 E6 m ² 1 acre = 43,560 ft ² = 4046.9 m ² 1 hectare (ha) = 10,000 m ²		
Velocity	Acceleration		
1 ft/s = 0.3048 m/s 1 mi/h = 1.466666 ft/s = 0.44704 m/s 1 kn = 1 nmi/h = 1.6878 ft/s = 0.5144 m/s	$1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2$		
Mass flow	Volume flow		
1 slug/s = 14.594 kg/s 1 lbm/s = 0.4536 kg/s	1 gal/min = 0.002228 ft ³ /s = 0.06309 L/s 1 × 10 ⁶ gal/day = 1.5472 ft ³ /s = 0.04381 m ³ /s		
Pressure	Force		
1 lbf/ft ² = 47.88 Pa 1 lbf/in ² = 144 lbf/ft ² = 6895 Pa 1 atm = 2116.2 lbf/ft ² = 14.696 lbf/in ² = 101,325 Pa 1 inHg (at 20°C) = 3375 Pa 1 bar = 1.0 E5 Pa	1 lbf = 4.448222 N = 16 oz 1 kgf = 2.2046 lbf = 9.80665 N 1 U.S. (short) ton = 2000 lbf 1 dyne = 1.0 E-5 N 1 ounce (avoirdupois) (oz) = 0.27801 N		

Energy	Power		
1 ft · lbf = 1.35582 J 1 Btu = 252 cal = 1055.056 J = 778.17 ft · lbf 1 kilowatt hour (kWh) = 3.6 E6 J	1 hp = 550 ft · lbf/s = 745.7 W 1 ft · lbf/s = 1.3558 W		
Specific weight	Density		
1 lbf/ft ³ = 157.09 N/m ³	1 slug/ft ³ = 515.38 kg/m ³ 1 lbm/ft ³ = 16.0185 kg/m ³ 1 g/cm ³ = 1000 kg/m ³		
Viscosity	Kinematic viscosity		
$1 \frac{1 \operatorname{slug}}{(\operatorname{ft} \cdot s)} = 47.88 \frac{\operatorname{kg}}{(m \cdot s)}$ 1 poise (P) = 1 \frac{g}{(cm \cdot s)} = 0.1 \frac{kg}{(m \cdot s)}	1 ft ² /h = 0.000025806 m ² /s 1 stokes (St) = 1 cm ² /s = 0.0001 m ² /s		

Temperature scale readings

 $T_{\rm K} = T_{\rm C} + 273.16$ $T_{\rm F} = \frac{9}{5}T_{\rm C} + 32$ $T_{\rm C} = \frac{5}{9}(T_{\rm F} - 32)$ $T_{\rm R} = T_{\rm F} + 459.69$ where subscripts F, C, R, and K refer to readings on the Fahrenheit, Celsius, Kelvin, and Rankine scales, respectively

Specific heat or gas constant*	Thermal conductivity*			
1 ft · lbf/(slug · °R) = 0.16723 N · m/(kg · K) 1 Btu/(lb · °R) = 4186.8 J/(kg · K)	$1 \text{ Btu/(h} \cdot \text{ft} \cdot {}^{\circ}\text{R}) = 1.7307 \text{ W/(m} \cdot \text{K})$			

^{*}Although the absolute (Kelvin) and Celsius temperature scales have different starting points, the intervals are the same size: 1 kelvin = 1 Celsius degree. The same holds true for the nonmetric absolute (Rankine) and Fahrenheit scales: 1 Rankine degree = 1 Fahrenheit degree. It is customary to express temperature differences in absolute-temperature units.

Appendix D

Equations of Motion in Cylindrical Coordinates

The equations of motion of an incompressible newtonian fluid with constant μ , k, and c_p are given here in cylindrical coordinates (r, θ, z) , which are related to cartesian coordinates (x, y, z) as in Fig. 4.2:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$ (D.1)

The velocity components are v_r , v_θ , and v_z . The equations are:

Continuity:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_\theta) + \frac{\partial}{\partial z}(v_z) = 0$$
 (D.2)

Convective time derivative:

$$\mathbf{V} \cdot \nabla = v_r \frac{\partial}{\partial r} + \frac{1}{r} v_\theta \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z}$$
 (D.3)

Laplacian operator:

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$
 (D.4)

The *r*-momentum equation:

$$\frac{\partial v_r}{\partial t} + (\mathbf{V} \cdot \nabla) v_r - \frac{1}{r} v_\theta^2 = -\frac{1}{\rho} \frac{\partial p}{\partial r} + g_r + \nu \left(\nabla^2 v_r - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right) \quad (D.5)$$

The θ -momentum equation:

$$\frac{\partial v_{\theta}}{\partial t} + (\mathbf{V} \cdot \nabla)v_{\theta} + \frac{1}{r}v_{r}v_{\theta} = -\frac{1}{\rho r}\frac{\partial p}{\partial \theta} + g_{\theta} + \nu \left(\nabla^{2}v_{\theta} - \frac{v_{\theta}}{r^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta}\right)$$
(D.6)

The *z*-momentum equation:

$$\frac{\partial v_z}{\partial t} + (\mathbf{V} \cdot \nabla)v_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z + \nu \nabla^2 v_z \tag{D.7}$$

The energy equation:

$$\rho c_p \left[\frac{\partial T}{\partial t} + (\mathbf{V} \cdot \nabla) T \right] = k \nabla^2 T + \mu [2(\epsilon_{rr}^2 + \epsilon_{\theta\theta}^2 + \epsilon_{zz}^2) + \epsilon_{\theta z}^2 + \epsilon_{rz}^2 + \epsilon_{r\theta}^2] \quad (D.8)$$

where

$$\epsilon_{rr} = \frac{\partial v_r}{\partial r} \qquad \epsilon_{\theta\theta} = \frac{1}{r} \left(\frac{\partial v_{\theta}}{\partial \theta} + v_r \right)$$

$$\epsilon_{zz} = \frac{\partial v_z}{\partial z} \qquad \epsilon_{\theta z} = \frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \qquad (D.9)$$

$$\epsilon_{rz} = \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \qquad \epsilon_{r\theta} = \frac{1}{r} \left(\frac{\partial v_r}{\partial \theta} - v_{\theta} \right) + \frac{\partial v_{\theta}}{\partial r}$$

Viscous stress components:

$$\tau_{rr} = 2\mu\epsilon_{rr}$$
 $\tau_{\theta\theta} = 2\mu\epsilon_{\theta\theta}$
 $\tau_{zz} = 2\mu\epsilon_{zz}$

$$\tau_{r\theta} = \mu\epsilon_{r\theta}$$
 $\tau_{\thetaz} = \mu\epsilon_{\thetaz}$
 $\tau_{rz} = \mu\epsilon_{rz}$
(D.10)

Angular-velocity components:

$$\omega_{r} = \frac{1}{r} \frac{\partial v_{z}}{\partial \theta} - \frac{\partial v_{\theta}}{\partial z}$$

$$\omega_{\theta} = \frac{\partial v_{r}}{\partial z} - \frac{\partial v_{z}}{\partial r}$$

$$\omega_{z} = \frac{1}{r} \frac{\partial}{\partial r} (rv_{\theta}) - \frac{1}{r} \frac{\partial v_{r}}{\partial \theta}$$
(D.11)

Appendix EIntroduction to EES

Overview

EES (pronounced "ease") is an acronym for Engineering Equation Solver. The basic function provided by EES is the numerical solution of nonlinear algebraic and differential equations. In addition, EES provides built-in thermodynamic and transport property functions for many fluids, including water, dry and moist air, refrigerants, and combustion gases. Additional property data can be added by the user. The combination of equation solving capability and engineering property data makes EES a very powerful tool.

A license for EES is provided to departments of educational institutions which adopt this text by WCB/McGraw-Hill. If you need more information, contact your local WCB/McGraw-Hill representative, call 1-800-338-3987, or visit our website at www.mhhe.com. A commercial version of EES can be obtained from:

F-Chart Software

4406 Fox Bluff Rd Middleton, WI 53562 Phone: (608)836-8531 Fax: (608)836-8536

Background Information

The EES program is probably installed on your departmental computer. In addition, the license agreement for EES allows students and faculty in a participating educational department to copy the program for educational use on their personal computer systems. Ask your instructor for details.

To start EES from the Windows File Manager or Explorer, double-click on the EES program icon or on any file created by EES. You can also start EES from the **Windows Run** command in the **Start** menu. EES begins by displaying a dialog window which shows registration information, the version number, and other information. Click the OK button to dismiss the dialog window.

Detailed help is available at any point in EES. Pressing the F1 key will bring up a Help window relating to the foremost window. (See Fig. E.1.) Clicking the Contents

Fig. E.1 EES Help index.

button will present the Help index shown below. Clicking on an underlined word (shown in green on color monitors) will provide help relating to that subject.

EES commands are distributed among nine pull-down menus as shown below. Many of the commands are accessible with the speed button palette that appears below the menu bar. A brief summary of their functions follows. (A tenth pull-down menu, which is made visible with the Load Textbook command described below, provides access to problems from this text.)

The **System** menu appears above the **File** menu. The **System** menu is not part of EES but rather is a feature of the Windows operating system. It holds commands which allow window moving, resizing, and switching to other applications.

The **File** menu provides commands for loading, merging, and saving work files; libraries; and printing. The **Load Textbook** command in this menu reads the problem disk developed for this text and creates a new menu to the right of the **Help** menu for easy access to EES problems accompanying this text.

The **Edit** menu provides the editing commands to cut, copy, and paste information.

The **Search** menu provides **Find** and **Replace** commands for use in the Equations window.

The **Options** menu provides commands for setting the guess values and bounds of variables, the unit system, default information, and program preferences. A command is also provided for displaying information on built-in and usersupplied functions.

The **Calculate** menu contains the commands to check, format, and solve the equation set.

The **Tables** menu contains commands to set up and alter the contents of the parametric and lookup tables and to do linear regression on the data in these tables. The parametric table, which is similar to a spreadsheet, allows the equation set to be solved repeatedly while varying the values of one or more variables. The lookup table holds user-supplied data which can be interpolated and used in the solution of the equation set.

The **Plot** menu provides commands to modify an existing plot or prepare a new plot of data in the parametric, lookup, or array tables. Curve-fitting capability is also provided.

The **Windows** menu provides a convenient method of bringing any of the EES windows to the front or to organize the windows.

The **Help** menu provides commands for accessing the on-line help documentation.

A basic capability provided by EES is the solution of a set of nonlinear algebraic equations. To demonstrate this capability, start EES and enter this simple example problem in the Equations window.

Text is entered in the same manner as for any word processor. Formatting rules are as follows:

- 1. Uppercase and lowercase letters are not distinguished. EES will (optionally) change the case of all variables to match the manner in which they first appear.
- 2. Blank lines and spaces may be entered as desired since they are ignored.

- 3. Comments must be enclosed within braces { } or within quotation marks " ". Comments may span as many lines as needed. Comments within braces may be nested, in which case only the outermost set of braces is recognized. Comments within quotes will also be displayed in the Formatted Equations window.
- 4. Variable names must start with a letter and consist of any keyboard characters except () ' $|*/+-^{}$ }: " or ;. Array variables are identified with square braces around the array index or indices, e.g., X[5,3]. The maximum variable length is 30 characters.
- 5. Multiple equations may be entered on one line if they are separated by a semicolon (;). The maximum line length is 255 characters.
- 6. The caret symbol (^) or ** is used to indicate raising to a power.
- 7. The order in which the equations are entered does not matter.
- 8. The position of knowns and unknowns in the equation does not matter.

If you wish, you may view the equations in mathematical notation by selecting the Formatted Equations command from the Windows menu.

Select the **Solve** command from the **Calculate** menu. A Dialog window will appear indicating the progress of the solution. When the calculations are completed, the button will change from Abort to Continue.

Click the Continue button. The solution to this equation set will then be displayed.

A Pipe Friction Example Problem

Let us now solve Prob. 6.55 from the text, for a cast-iron pipe, to illustrate the capabilities of the EES program. This problem, without EES, would require iteration for Reynolds number, velocity, and friction factor, a daunting task. State the problem:

6.55 Reservoirs 1 and 2 contain water at 20°C. The pipe is cast iron, with L = 4500 m and D = 4 cm. What will be the flow rate in m³/h if $\Delta z = 100$ m?

This is a representative problem in pipe flow (see Fig. E.2), and, being water in a reasonably large (noncapillary) pipe, it will probably be turbulent (Re > 4000). The steadyflow energy equation (3.71) may be written between the surfaces of reservoirs 1 and 2:

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_f$$
 where $h_f = f \frac{L}{D} \frac{V_{\text{pipe}}^2}{2g}$

Since $p_1 = p_2 = p_{\rm atm}$ and $V_1 \approx V_2 \approx 0$, this relation simplifies to

$$\Delta z = f \frac{L}{D} \frac{V^2}{2g} \tag{1}$$

where V = Q/A is the velocity in the pipe. The friction factor f is a function of Reynolds number and pipe roughness ratio, if the flow is turbulent, from Eq. (6.64):

$$\frac{1}{f^{1/2}} = -2.0 \log_{10} \left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re } f^{1/2}} \right) \quad \text{if Re} > 4000$$
 (2)

Finally, we need the definitions of Reynolds number and volume flow rate:

$$Re = \frac{\rho VD}{\mu}$$
 (3)

and

$$Q = V \frac{\pi}{4} D^2 \tag{4}$$

where ρ and μ are the fluid density and viscosity, respectively.

Fig. E.2 Sketch of the flow system.

There are a total of 11 variables involved in this problem: $(L, D, \Delta z, \epsilon, g, \mu, \rho, V, \text{Re}, f, Q)$. Of these, seven can be specified at the start $(L, D, \Delta z, \epsilon, g, \mu, \rho)$, while four (V, Re, f, Q) must be calculated from relations (1) to (4) above. These four equations in four unknowns are well posed and solvable but only by laborious iteration, exactly what EES is designed to do.

Start EES or select the **New** command from the **File** menu if you have already been using the program. A blank Equations window will appear. Our recommendation is to always set the unit system immediately: Select **Unit System** from the **Options** menu (Fig. E.3). We select *SI* and *Mass* units and trig *Degrees*, although we do not actually have trigonometric functions this time. We select *kPa* for pressure and *Celsius* for temperature, which will be handy for using the EES built-in physical properties of water.

Fig. E.3 Unit Selection dialog window.

Now, onto the blank screen, enter the equations for this problem (Fig. E.4), of which five are known input values, two are property evaluations, and four are the relations (1) to (4) from above.

```
Equations Window: D:\mcGraw\White\White_AppendixC.EES
 "Problem 6.55 from Fluid Mechanics, 4th ed., Frank M. White"
 L = 4500 "m"
 D = 4/100 - "m"
 DELTAZ = 100
 Eps = 0.26/1000
              "m/s^2"
 a = 9.807
 DELTAZ = f^*L/D^*V^2/2/a
 Mu = viscosity(water, T=20, P=101)
                                     "ka/m*s"
 Rho = density(water,T=20,P=101)
                                     "ka/m^3"
 Re = Rho*V*D/Mu
 1/\text{PO}.5 = -2.0 \text{log} 10 \text{(Eps/D/3.7+2.52/Re/PO.5)}
 Q = V*pi/4*D^2*3600
```

Fig. E.4 Equations window.

There are several things to notice in Fig. E.4. First, quantities in quotes, such as "m," are for the user's benefit and ignored by EES. Second, we changed Eps and D to meters right away, to keep the SI units consistent. Third, we called on EES to input the viscosity and density of water at 20°C and 1 atm, a procedure well explained in the Help menu. For example, viscosity (water, T=20, P=101) meets the EES requirement that temperature (T) and pressure (P) should be input in °C and kPa—EES will then evaluate μ in kg/(m·s). Finally, note that EES recognizes **pi** to be 3.141593.

In Fig. E.4 we used only one built-in function, **log10**. There are many such functions, found by scrolling down the **Function Information** command in the Options menu.

Having entered the equations, check the syntax by using the **Check/Format** command in the **Calculate** menu. If you did well, EES will report that the 11 equations in 11 unknowns look OK. If not, EES will guess at what might be wrong. If OK, why not go for it? Hit the **Solve** command in the **Options** menu. EES reports "logarithm of a negative number—try setting limits on the variables". We might have known. Go to the Vari**able Information** command in the **Options** menu. A box, listing the 11 variables, will appear (Fig. E.5). All default EES "guesses" are unity; all default limits are $-\infty$ to + ∞ , which is too broad a range. Enter (as already shown in Fig. E.5) guesses for f = 0.02 and Re = 10,000, while V = 1 and Q = 1 seem adequate, and other variables are fixed. Make sure that f, Re, V, and Q cannot be negative. The "display" columns normally say "A", automatic, satisfactory for most variables. We have changed "A" to "F" (fixed decimal) for Q and V to make sure they are displayed to four decimal places. The "units" column is normally blank—type in the correct units and they will be displayed in the solution.

Our guesses and limits are excellent, and the **Solve** command now iterates and reports success: "max residual = 2E-10", a negligible error. (The default runs for 100

Variable Information							
Variable	Guess	Lower	Upper	Displa	ay Units		
D	0.04	-infinity	infinity	A 3	N m		
DELTAZ	500	-infinity	infinity	A 3	N m		
Eps	0.00026	-infinity	infinity	A 3	N m		
f f	0.02	0.0000E+00	infinity	A 3	N		
g g	9.807	-infinity	infinity	A 3	N m/s^2		
L	4500	-infinity	infinity	A 3	N m		
Mu	0.001001	-infinity	infinity	A 3	N kg/m*s		
Q	1.0000	0.0000E+00	infinity	F 4	N m^3/h		
Re	10000	0.0000E+00	infinity	A 3	N		
Rho	999.6	-infinity	infinity	A 3	N kg/m^3		
V	1.0000	0.0000E+00	infinity	F 4	N m/s		
OK Print Update X Cancel							

Fig. E.5 Variable Information window with units and guess values entered.

iterations, which can be modified by the **Stop Criteria** command in the **Op**tions menu.) Hit Continue, and the complete solution is displayed for all variables (Fig. E.6).

Fig. E.6 The Solutions window for Prob. 6.55.

This is the correct solution to Prob. 6.55: this cast-iron pipe, when subjected to a 100-m elevation difference, will deliver $Q = 3.17 \text{ m}^3/\text{h}$ of water. EES did all the iteration.

Parametric Studies with Tabular Input

One of the most useful features of EES is its ability to provide parametric studies. For example, suppose we wished to know how varying Δz changed the flow rate Q. First comment out the equation that reads DELTAZ = 100 by enclosing it within braces. (If you select the equation and press the right mouse button, EES will automatically enter the braces.) Select the **New Parametric Table** command in the **Options** menu. A dialog will be displayed (Fig. E.7) listing all the variables in the problem. Highlight what you wish to vary: Δz . Also highlight variables to be calculated and tabulated: V, Q, Re, and f.

Fig. E.7 New Parametric Table window showing selected variables (V is not shown).

Click the **OK** button and the new table will be displays (Fig. E.8). Enter 10 values of Δz that cover the range of interest—we have selected the linear range $10 < \Delta z < 500$ m.

Parame	tric Table				_ 🗆 🗵
	1 V	2 ⊾ Re	3 Q <u></u> ✓	4 	5 ΔZ
	[m/s]		[m³/h]		[m]
Run 1					10
Run 2					64.44
Run 3					118.9
Run 4					173.3
Run 5					227.8
Run 6					282.2
Run 7					336.7
Run 8					391.1
Run 9					445.6
Run 10					500

Fig. E.8 Parametric Table window.

Clearly the parametric table operates much like a spreadsheet. Select **Solve Table** from the **Calculate** menu, and the Solve Table dialog window will appear (Fig. E.9). These are satisfactory default values; the author has changed nothing. Hit the **OK** button and the calculations will be made and the entire parametric table filled out, as in Fig. E.10.

✓ OK
X Cancel
Caricei

Fig. E.9 Solve Table Dialog.

The flow rates can be seen in Fig. E.10, but as always, in the author's experience, a plot is more illuminating. Select **New Plot window** from the **Plot** menu. The New Plot window dialog (Fig. E.11) will appear. Choose Δz as the x-axis and Q as the y-axis. We added grid lines. Click the OK button, and the desired plot will appear in the Plot window (Fig. E.12). We see a nonlinear relationship, roughly a square-root type, and learn that flow rate Q is not linearly proportional to head difference Δz .

The plot appearance in Fig. E.12 can be modified in several ways. Double-click the mouse in the plot rectangle to see some of these options.

Parametric Table						
	1	² Re	3 Q	4 f	5 ΔZ	
	[m/s]		[m ³ /h]		[m]	
Run 1	0.2076	8292	0.9391	0.04046	10	
Run 2	0.5573	22261	2.5209	0.03618	64.44	
Run 3	0.7655	30580	3,4631	0.03537	118.9	
Run 4	0.9296	37135	4.2054	0.03497	173.3	
Run 5	1.0695	42722	4.8382	0.03472	227.8	
Run 6	1.1935	47675	5.3991	0.03455	282.2	
Run 7	1.3060	52170	5.9081	0.03441	336.7	
Run 8	1.4098	56316	6.3776	0.03431	391.1	
Run 9	1.5065	60182	6.8154	0.03423	445.6	
Run 10	1.5976	63818	7.2272	0.03416	500	

Fig. E.10 Parametric Table window after calculations are completed.

Fig. E.11 New Plot Setup dialog window.

Fig. E.12 Plot window for flow rate versus elevation difference.

Loading a Textbook File

A problems disk developed for EES has been included with this textbook. Place the disk in the disk drive, and then select the **Load Textbook** command in the **File** menu. Use the Windows Open File command to open the textbook problem index file which, for this book, is named WHITE.TXB. A new menu called **Fluid** Mechanics will appear to the right of the Help menu. This menu will provide access to all the EES problem solutions developed for this book organized by chapter. As an example, select Chap. 6 from the **Fluid Mechanics** menu. A dialog window will appear listing the problems in Chap. 6. Select Problem 6.55—Flow Between Reservoirs. This problem is a modification (smooth instead of cast-iron pipe) of the problem you just entered. It provides a diagram window in which you can enter Δz . Enter other values, and then select the **Solve** command in the **Calculate** menu to see their effect on the flow rate.

At this point, you should explore. Try whatever you wish. You can't hurt anything. The on-line help (invoked by pressing F1) will provide details for the **EES** commands. EES is a powerful tool that you will find very useful in your studies.

— Answers to — Selected Problems

1.68 $h = (\Upsilon/\rho g)^{1/2} \cot \theta$ 1.70 $h = 2\Upsilon \cos \theta/(\rho g W)$

1.72 $z \approx 4800 \text{ m}$

```
Chapter 1
1.2
         1.3 E44 molecules
1.4
         1.63 slug/ft<sup>3</sup>, 839 kg/m<sup>3</sup>
        (a) \{L^2/T^2\}; (b) \{M/T\}
1.6
1.8
         \sigma \approx 1.00 My/I
1.10 Yes, all terms are \{ML/T^2\}
1.12 \{B\} = \{L^{-1}\}\
1.14 Q = \text{Const } B \ g^{1/2} H^{3/2}
1.16 All terms are \{ML^{-2}T^{-2}\}
1.18 \quad V = V_0 e^{-mt/K}
1.20 z_{\text{max}} = 64.2 \text{ m at } t = 3.36 \text{ s}
1.22 (a) -0.372U_{\infty}^2/R; (b) x = -1.291 R
1.24 e = 221,000 \text{ J/kg}
1.26 W_{\text{air}} = 0.71 \text{ lbf}
1.28 \rho_{\text{wet}} = 1.10 \text{ kg/m}^3, \, \rho_{\text{dry}} = 1.13 \text{ kg/m}^3
1.30 W_{1-2} = 21 \text{ ft} \cdot \text{lbf}
1.32 (a) 76 kN; (b) 501 kN
1.34 1300 atm
1.36 (a) B_{\text{N}_2\text{O}} = 1.33 \text{ E5 Pa}; (b) B_{\text{water}} = 2.13 \text{ E9 Pa}
1.38 \tau = 1380 \text{ Pa}, \text{Re}_L = 28
1.40 A = 0.0016 \text{ kg/(m} \cdot \text{s}), B = 1903 \text{ K}
1.42 \mu/\mu_{200\text{K}} \approx (T \text{ K}/200 \text{ K})^{0.68}
1.44 Data 50 percent higher; Andrade fit varies ±50 percent
1.46 V \approx 15 \text{ m/s}
1.48 F \approx (\mu_1/h_1 + \mu_2/h_2)AV
1.50 \mu \approx M(r_o - r_i)/(2\pi\Omega r_i^3 L)
1.52 P \approx 73 \text{ W}
1.54 M \approx \pi \mu \Omega R^4/h
1.56 \mu = 3M \sin \theta/(2\pi\Omega R^3)
1.58 \mu = 0.040 \text{ kg/(m} \cdot \text{s}), last 2 points are turbulent flow
1.60 \mu = 0.88 \pm 0.023 \text{ kg/(m} \cdot \text{s})
        28,500 Pa
1.64 (a) -0.023 m; (b) +0.069 m
1.66
        F = 0.014 \text{ N}
806
```

```
1.74 Cavitation occurs for both (a) and (b)
1.76 z \approx 7500 \text{ m}
1.78 (a) 25°C; (b) 4°C
1.80 x^2y - y^3/3 = \text{constant}
1.82 y = x \tan \theta + \text{constant}
1.84 x = x_0 \{ \ln (y/y_0) + \ln^2 (y/y_0) \}
Chapter 2
          \sigma_{xy} = -289 \text{ lb/ft}^2, \tau_{AA} = -577 \text{ lb/ft}^2

x = \text{Const } e^{-2Cz/B}
          (a) 30.3 ft; (b) 30.0 in; (c) 10.35 m; (d) 13,100 mm
2.6
          DALR = 9.77^{\circ}C/km
2.8
2.10
          10,500 Pa
2.12
          8.0 cm
2.14
          74,450 Pa with air; 75,420 Pa without air
          (a) 21,526 cm<sup>3</sup>; (b) 137 kPa
2.16
          1.56
2.18
2.20
          14 lbf
2.22
          0.94 cm
2.24
          p_{\text{sealevel}} \approx 117 \text{ kPa}, m_{\text{exact}} = 5.3 \text{ E18 kg}
2.26
          (a) 2580 m; (b) 5410 m
2.28
          4400 \pm 400 \text{ ft}
2.30
          101,100 Pa
2.32
          22.6 cm
          \Delta p = \Delta h [\gamma_{\text{water}} (1 + d^2/D^2) - \gamma_{\text{oil}} (1 - d^2/D^2)]
2.34
2.36
2.38
          (a) p_{1,\text{gage}} = (\rho_m - \rho_a)gh - (\rho_t - \rho_a)gH
2.40
          21.3 cm
2.42
          p_A - p_B = (\rho_2 - \rho_1)gh
          (a) 171 lb/ft<sup>2</sup>; (b) 392 lb/ft<sup>2</sup>; manometer reads friction
2.44
          loss
```

```
2.46
         1.45
                                                                                 2.142 (a) 16.3 cm; (b) 15.7 N
2.48
         F = 39700 \text{ N}
                                                                                 2.144 (a) a_x \approx 319 \text{ m/s}^2; (b) no effect, p_A = p_B
2.50
         (a) 524 kN; (b) 350 kN; (c) 100 kN
                                                                                 2.146 Leans to the right at \theta = 27^{\circ}
                                                                                 2.148 Leans to the left at \theta = 27^{\circ}
2.52
         0.96
2.54
         879 \text{ kg/m}^3
                                                                                 2.150 5.5 cm; linear scale OK
2.56
         16.08 ft
                                                                                 2.152 (a) 224 r/min; (b) 275 r/min
2.58
         0.40 m
                                                                                 2.154 (a) both are paraboloids; (b) p_B = 2550 Pa (gage)
         F_{\text{net}} = 23,940 \text{ N} \text{ at } 1.07 \text{ m} \text{ above } B
                                                                                 2.157 77 r/min, minimum pressure halfway between B and C
2.60
2.62
                                                                                 2.158 10.57 r/min
         10.6 ft
2.64
         1.35 m
                                                                                 Chapter 3
         F = 1.18 \text{ E9 N}, M_C = 3.13 \text{ E9 N} \cdot \text{m} \text{ counterclockwise},
2.66
                                                                                 3.2
                                                                                          \mathbf{r} = \text{position vector from point } O
         no tipping
                                                                                          Q = (2b/3)(2g)^{1/2}[(h+L)^{3/2} - (h-L)^{3/2}]
                                                                                 3.6
2.68
         18,040 N
                                                                                          Q = K per unit depth
                                                                                 3.8
2.70
         4490 lbf at 1.44 ft to right and 1.67 ft up from point B
                                                                                 3.10
                                                                                          (\pi/3)R^2\rho U_0c_nT_w
2.72
         33,500 N
                                                                                 3.12
                                                                                          (a) 44 \text{ m}^3/\text{h}; (b) 9.6 \text{ m/s}
2.74
         F = ba^{2}\rho_{0}\{(a^{2}/g)[\exp(gh/a^{2}) - 1] - h\}
                                                                                 3.14
                                                                                          dh/dt = (Q_1 + Q_2 - Q_3)/(\pi d^2/4)
2.76
         P = (\sqrt{24})h^2b(3 + \csc^2\theta)
                                                                                 3.16
                                                                                          Q_{\text{top}} = 3U_0 b \delta/8
2.78
         P = \pi \gamma R^3/4
                                                                                 3.18
                                                                                          (b) Q = 16bhu_{\text{max}}/9
2.80
         (a) 58,800 Pa; (b) 0.44 m
                                                                                          (a) 7.97 mL/s; (b) 1.27 cm/s
                                                                                 3.20
2.82
         F_H = 97.9 \text{ MN}, F_V = 153.8 \text{ MN}
                                                                                 3.22
                                                                                          (a) 0.06 kg/s; (b) 1060 m/s; (c) 3.4
         F_H = 4895 \text{ N}, F_V = 7343 \text{ N}
2.84
                                                                                          h = [3Kt^2d^2/(8 \tan^2 \theta)]^{1/3}
                                                                                 3.24
         F_H = 0, F_V = 6800 \text{ lbf}
                                                                                 3.26
                                                                                          Q = 2U_0bh/3
         F_H = 176 \text{ kN}, F_V = 31.9 \text{ kN}, \text{ yes}
2.88
                                                                                          t = \pi (1 - 1/\sqrt{3}) h_0^{1/2} / (2CA\sqrt{2g})
                                                                                 3.28
         467 lbf
2.90
                                                                                 3.30
                                                                                          (a) dh/dt = O/(2hb \cot 20^\circ)
         F_{\text{one bolt}} \approx 11,300 \text{ N}
2.92
                                                                                 3.32
                                                                                          V_{\text{hole}} = 6.1 \text{ m/s}
2.94
         C_x = 2996 \text{ lb}, C_z = 313 \text{ lbf}
                                                                                 3.34
                                                                                          V_2 = 4660 \text{ ft/s}
         (a) 940 kN; (b) 1074 kN; (c) 1427 kN
2.96
                                                                                 3.36
                                                                                          U_3 = 6.33 \text{ m/s}
         F_H = 7987 \text{ lbf}, F_V = 2280 \text{ lbf}
2.98
                                                                                 3.38
                                                                                          V = V_0 r/(2h)
2.100 F_H = 0, F_V = 297 \text{ kN}
                                                                                 3.40
                                                                                          500 N to the left
2.102 124 kN
                                                                                          F = (p_1 - p_a)A_1 - \rho_1 A_1 V_1^2 [(D_1/D_2)^2 - 1]
                                                                                 3.42
2.104 5.0 N
                                                                                 3.44
                                                                                          F = \rho U^2 Lb/3
2.106 4310 N/m<sup>3</sup>
                                                                                 3.46
                                                                                          \alpha = (1 + \cos \theta)/2
2.108 12.6 N
                                                                                 3.48
                                                                                          V_0 \approx 2.27 \text{ m/s}
2.110 h \approx (a) 7.05 mm; (b) 7.00 mm
                                                                                 3.50
                                                                                          102 kN
2.112 (a) 39 N; (b) 0.64
                                                                                          F = \rho WhV_1^2 [1/(1 - \sin \theta) - 1] to the left
                                                                                 3.52
2.114 0.636
                                                                                          163 N
                                                                                 3.54
2.116 19100 N/m<sup>3</sup>
                                                                                 3.56
                                                                                          2.45 N/m
2.118 (a) draft = 7.24 in; (b) 25 lbf
                                                                                 3.58
                                                                                          40 N
2.120 34.3°
                                                                                 3.60
                                                                                          2100 N
2.122 \quad a/b \approx 0.834
                                                                                 3.62
                                                                                          3100 N
2.124 6850 m
2.126 h/H = Z - (Z^2 - 1 + \beta)^{1/2}, \beta = d/H, Z = (2 + \lambda - \beta)/2,
                                                                                 3.64
                                                                                          980 N
                                                                                 3.66
                                                                                          8800 N
         \lambda = p_a/(\rho g H)
                                                                                 3.70
                                                                                          91 lbf
2.128 Yes, stable if S > 0.789
                                                                                 3.72
                                                                                          Drag \approx 4260 \text{ N}
2.130 Slightly unstable, MG = -0.007 \text{ m}
                                                                                 3.74
                                                                                          F_x = 0, F_y = -17 N, F_z = 126 N
2.132 Stable if R/h > 3.31
                                                                                 3.76
2.134 (a) unstable; (b) stable
                                                                                          F = (\rho/2)gb(h_1^2 - h_2^2) - \rho h_1 bV_1^2(h_1/h_2 - 1)
                                                                                 3.80
2.136 MG = L^2/(3\pi R) - 4R/(3\pi) > 0 if L > 2R
                                                                                          25 m/s
                                                                                 3.82
2.138 2.77 in deep; volume = 10.8 fluid ounces
2.140 a_r = (a) -1.96 \text{ m/s}^2 \text{ (deceleration)}; (b) -5.69 \text{ m/s}^2
                                                                                 3.84
                                                                                          23 N
                                                                                 3.86
                                                                                          274 kPa
         (deceleration)
```

 $V = \zeta + [\zeta^2 + 2V_i]^{1/2}, \ \zeta = \rho Q/2k$ 3.88 3.90 dV/dt = g3.92 dV/dt = gh/(L + h)h = 0 at $t \approx 70$ s 3.94 $d^2Z/dt^2 + 2gZ/L = 0$ 3.96 3.100 (a) 507 m/s and 1393 m; (b) 14.5 km 3.102 $h_2/h_1 = -\frac{1}{2} + \frac{1}{2} [1 + 8V_1^2/(gh_1)]^{1/2}$ 3.104 $\Omega = (-V_e/R) \ln (1 - \dot{m}t/M_0)$ 3.106 $\Omega_{\text{final}} = 75 \text{ rad/s}$ 3.108 (a) $V = V_0/(1 + CV_0t/M)$, $C = \rho bh(1 - \cos \theta)$ 3.110 (a) 0.113 ft · lbf; (b) 250 r/min 3.112 $T = \dot{m}R_0^2\Omega$ 3.114 (a) 414 r/min; (b) 317 r/min 3.116 $P = \rho Q r_2 \omega [r_2 \omega - Q \cot \theta_2 / (2\pi r_2 b_2)]$ 3.118 $P = \rho QuV_n(\cot \alpha_1 + \cot \alpha_2)$ 3.120 (a) 22 ft/s; (b) 110 ft/s; (c) 710 hp 3.122 $L = -h_1 (\cot \theta)/2$ 3.124 41 r/min 3.126 - 15.5 kW (work done on the fluid) 3.128 1.07 m³/s3.130 34 kW 3.134 4500 hp $3.136 \quad 5.6 \text{ m}^3/\text{h}$ 3.138 $\mu = \pi \rho g d^4 (H + \overline{L})/(128\overline{L}Q) - \alpha_2 \rho Q/(16\pi \overline{L})$ 3.140 1640 hp 3.142 (a) 1150 gal/min; (b) 67 hp 3.144 26 kW $3.146 \quad h = 3.6 \text{ ft}$ 3.148 $h_f = 0.21 \text{ m}$ 3.152 (a) 85.9° ; (b) 55.4° $3.154 \quad h = 0.133 \text{ m}$ 3.156 (a) 102 kPa; (b) 88 mi/h 3.158 (a) 169.4 kPa; (b) 209 m³/h 3.160 (a) $31 \text{ m}^3/\text{s}$; (b) 54 kW3.162 $Q = 166 \text{ ft}^3/\text{min}, \Delta p = 0.0204 \text{ lbf/in}^2$ 3.164 (a) 5.25 kg/s; (b) 2.9 cm 3.166 (a) 60 mi/h; (b) 1 atm $3.168 \quad h = 1.08 \text{ ft}$ $3.170 \quad h = 1.76 \text{ m}$ $3.172 \quad D = 0.132 \text{ ft}$ 3.174 (a) 5.61 ft/s; (b) further constriction reduces V_2 3.176 (a) 9.3 m/s; (b) 68 kN/m 3.178 $h_2 = 2.03$ ft (subcritical) or 0.74 ft (supercritical) 3.180 $V = V_f \tanh (V_f t/2L), V_f = (2gh)^{1/2}$ 3.182 $kp/[(k-1)\rho] + V^2/2 + gz = constant$

Chapter 4

- 4.2 (a) $du/dt = (2V_0^2/L)(1 + 2x/L)$
- 4.4 At (2, 1), dT/dt = 125 units
- 4.6 (a) $6V_0^2/L$; (b) L ln $3/(2V_0)$

- 4.8 (a) 0.0196 V^2/L ; (b) at t = 1.05 L/U
- 4.12 If $v_{\theta} = v_{\phi} = 0$, $v_r = r^{-2}$ fcn (θ, ϕ)
- 4.14 $v_{\theta} = \text{fcn}(r)$ only
- 4.16 $v = v^2 3x^2y + fcn(x, z)$
- 4.18 $\rho = \rho_0 L_0 / (L_0 Vt)$
- 4.20 $v = v_0 = \text{const}, \{K\} = \{L/T\}, \{a\} = \{L^{-1}\}$
- 4.22 $\rho_{x=L} = 1.82 \text{ kg/m}^3$
- 4.28 Exact solution for any a or b
- 4.30 $p = \text{const} (\rho K^2/2)(x^2 + y^2)$
- 4.32 $f_1 = C_1 r$; $f_2 = C_2 / r$
- 4.34 $p = p(0) 4\mu u_{\text{max}} z/R^2$
- 4.36 $C = \rho g \sin \theta / (2\mu)$
- 4.38 $C_z = \tau_{vx} \tau_{xv}$
- 4.42 $T_{\text{mean}} \approx (\int uT \, dy)/(\int u \, dy)$
- 4.48 $\psi = Kxy + \text{const}$
- 4.50 Inviscid flow around a 180° turn
- 4.52 $\psi = -4O\theta/(\pi b)$
- $4.54 \quad Q = ULb$
- 4.60 Irrotational, $z_0 = H \omega^2 R^2/(2g)$
- 4.62 $\psi = Vy^2/(2h) + \text{const}$
- 4.66 $\psi = -K \sin \theta / r$
- 4.68 $\psi = m \tan^{-1} \left[\frac{2xy}{x^2 y^2 + a^2} \right]$
- 4.70 $\phi = \lambda \cos \theta / r^2$, $\lambda = 2am$
- 4.72 (a) 8.8m; (b) 55 m
- $4.74 \quad \psi = Uy + K \ln r$
- 4.76 (a) 0.106 m from A; (b) 0.333 m above the wall
- 4.78 (a) $V_{\text{wall.max}} = m/L$; (b) p_{min} at x = L
- 4.80 (a) $w = (\rho g/2\mu)(2\delta x x^2)$
- 4.82 Obsessive result: $v_{\theta} = \Omega R^2/r$
- 4.84 $v_z = (\rho g b^2 / 2\mu) \ln (r/a) (\rho g / 4\mu)(r^2 a^2)$
- 4.86 $Q = 0.0031 \text{ m}^3/(\text{s} \cdot \text{m})$
- 4.88 $v_z = U \ln (r/b)/[\ln (a/b)]$
- 4.90 $F \approx 3.34 \text{ N}$

Chapter 5

- 5.2 1.21 m
- 5.4 V = 1.55 m/s, F = 1.3 N
- 5.6 $F \approx 450 \text{ N}$
- 5.10 (a) $\{ML^{-2}T^{-2}\}$; (b) $\{MLT^{-2}\}$
- 5.14 $\delta/x = fcn (\rho Ux/\mu)$
- 5.16 Stanton number = $h/(\rho V c_p)$
- 5.18 $Q\mu/[(\Delta p/L)b^4] = \text{const}$
- 5.20 $P/(\rho\Omega^3D^5) = \text{fcn}[Q/(\Omega D^3), \rho\Omega D^2/\mu]$
- 5.22 $\Omega D/V = \text{fcn}(N, H/L)$
- 5.24 $F/(\rho V^2 L^2) = \text{fcn}(\alpha, \rho V L/\mu, L/D, V/a)$
- 5.26 (a) indeterminate; (b) T = 2.75 s
- 5.28 $\delta/L = \text{fcn}[L/D, \rho VD/\mu, E/(\rho V^2)]$
- 5.30 $hL/k = \text{fcn}(\rho UL/\mu, \mu c_p/k)$
- 5.32 $Q/(bg^{1/2}H^{3/2}) = \text{const}$
- 5.34 $k_{\text{hydrogen}} \approx 0.182 \text{ W/(m} \cdot \text{K)}$

- 5.36 (a) $Q_{loss}R/(A\Delta T) = constant$
- 5.38 $d/D = \text{fcn}(\rho UD/\mu, \rho U^2D/Y)$
- 5.40 $h/L = \text{fcn}(\rho g L^2/Y, \alpha, \theta)$
- 5.44 (a) $\{\sigma\} = \{L^2\}$
- 5.48 $F \approx 0.17$ N; (doubling U quadruples F)
- 5.50 (a) $F/(\mu UL) = \text{constant}$
- 5.52 $U \approx 5$ ft/s, $F \approx 0.003$ lbf/ft
- 5.54 Power $\approx 7 \text{ hp}$
- 5.56 $V \approx 128 \text{ ft/s} = 87 \text{ mi/h}$
- 5.58 $V \approx 2.8 \text{ m/s}$
- 5.60 Prototype power $\approx 157 \text{ hp}$
- 5.62 $\Omega_{\text{max}} \approx 26.5 \text{ r/s}; \Delta p \approx 22,300 \text{ Pa}$
- 5.64 $\omega_{\text{aluminum}} = 0.77 \text{ Hz}$
- 5.66 (a) V = 27 m/s; (b) z = 27 m
- 5.68 (a) $F/(\mu U) = \text{constant}$; (b) No, not plausible
- 5.70 F = 87 lbf
- 5.72 V = 25 ft/s
- 5.74 Prototype moment = $88 \text{ kN} \cdot \text{m}$
- 5.76 Drag = 107,000 lbf
- 5.78 Weber no. $\approx 100 \text{ if } L_m/L_p = 0.0090$
- 5.80 (a) 1.86 m/s; (b) 42,900; (c) 254,000
- 5.82 Speeds: 19.6, 30.2, and 40.8 ft/s; Drags: 14,600; 31,800; and 54,600 lbf
- 5.84 $V_m = 39$ cm/s; $T_m = 3.1$ s; $H_m = 0.20$ m
- 5.88 At 340 W, D = 0.109 m
- 5.90 $\Delta pD/(\rho V^2 L) = 0.155(\rho VD/\mu)^{-1/4}$

Chapter 6

- 6.2 (a) x = 2.1 m; (b) x = 0.14 m
- (a) $39 \text{ m}^3/\text{h}$; (b) $1.3 \text{ m}^3/\text{h}$ 6.4
- (a) laminar; (b) laminar 6.6
- 6.8 (a) -3600 Pa/m; (b) -13,400 Pa/m
- 6.10 (a) from A to B; (b) $h_f = 7.8 \text{ m}$
- (a) 0.054 m³/s; (b) 8.5 m/s; (c) 122 Pa; (d) 542 kPa 6.18
- 6.20 (a) 0.204 m; (b) -19,800 Pa/m; (c) -9980 Pa/m
- 6.22 (a) 39 kg/s; (b) 1430
- 6.24 Head loss $\approx 25 \text{ m}$
- 6.26 4 mm
- $Q \approx 0.31 \text{ m}^3/\text{h}$ 6.28
- F = 4 N6.30
- 6.32 (a) 127 MPa; (b) 127 kW
- 6.34 $\mu = 0.000823 \text{ kg/(m} \cdot \text{s})$
- 6.36 $\Delta p \approx 65 \text{ Pa}$
- 6.38 (a) 19.3 m 3 /h; (b) flow is up
- 6.40 (a) flow is up; (b) $1.86 \text{ m}^3/\text{h}$
- $h_f \approx 10.5 \text{ m}, \Delta p \approx 1.4 \text{ MPa}$ 6.44
- Input power $\approx 11.2 \text{ MW}$ 6.46
- $r/R = 1 e^{-3/2}$ 6.48
- 6.50 (a) -4000 Pa/m; (b) 50 Pa; (c) 46 percent

- 6.52 $p_1 = 2.38 \text{ MPa}$
- 6.54 $D \approx 0.118 \text{ m}$
- (a) 188 km; (b) 27 MW 6.56
- 6.58 Power $\approx 870 \text{ kW}$
- $Q = 19.6 \text{ m}^3/\text{h} \text{ (laminar, Re} = 1450)$ 6.64
- 6.66 (a) 56 kPa; (b) 85 m³/h; (c) u = 3.3 m/s at r = 1 cm
- 6.68 Power = 204 hp
- 6.70 $Q = 2.21 \text{ ft}^3/\text{s}$
- 6.72 Optimum $\theta = 90^{\circ} (0.7 \text{ m rise})$
- 6.74 D = 0.52 in
- 6.76 $Q = 15 \text{ m}^3/\text{h}$
- 6.78 $Q = 25 \text{ m}^3/\text{h}$ (to the left)
- 6.80 $Q = 0.905 \text{ m}^3/\text{s}$
- 6.82 D = 0.394 m
- 6.84 $D \approx 0.104 \text{ m}$
- 6.86 (a) 3.0 m/s; (b) 0.325 m/m; (c) 2770 Pa/m
- 6.90 $Q = 19.6 \text{ ft}^3/\text{s}$
- 6.92 (a) 1530 m³/h; (b) 6.5 Pa (vacuum)
- 6.94 260 Pa/m
- 6.96 Cross section 0.106 m by 0.531 m
- 6.98 Approximately 128 squares
- 6.102 (a) 5.55 hp; (b) 5.31 hp with 6° cone
- 6.104 $\Delta p = 0.0305 \text{ lbf/in}^2$
- 6.106 $Q = 0.0296 \text{ ft}^3/\text{s}$
- 6.108 $Q = 0.22 \text{ ft}^3/\text{s}$
- 6.110 840 W
- 6.112 $Q = 0.0151 \text{ ft}^3/\text{s}$
- 6.114 (a) $Q_1 = 0.0167 \text{ m}^3/\text{s}$, $Q_2 = 0.0193 \text{ m}^3/\text{s}$, $\Delta p = 774 \text{ kPa}$
- 6.116 $Q = 0.027 \text{ m}^3/\text{s}$
- 6.118 $\Delta p = 131 \text{ lbf/in}^2$
- 6.120 $Q_1 = 0.0109 \text{ m}^3/\text{s}, Q_2 = 0.0264 \text{ m}^3/\text{s}, Q_3 = 0.0183$
- 6.122 Increased ϵ/d and L/d are the causes
- 6.124 $Q_1 = -2.09 \text{ ft}^3/\text{s}, Q_2 = 1.61 \text{ ft}^3/\text{s}, Q_3 = 0.49 \text{ ft}^3/\text{s}$
- 6.126 $\theta_{\text{opening}} = 35^{\circ}$
- 6.128 $Q_{AB} = 3.47, Q_{BC} = 2.90, Q_{BD} = 0.58, Q_{CD} = 5.28,$
 - $Q_{AC} = 2.38 \text{ ft}^3/\text{s (all)}$
- 6.130 $Q_{AB} = 0.95$, $Q_{BC} = 0.24$, $Q_{BD} = 0.19$, $Q_{CD} = 0.31$, $Q_{AC} = 1.05 \text{ ft}^3/\text{s (all)}$
- 6.132 $2\theta = 6^{\circ}$, $D_e = 2.0$ m, $p_e = 224$ kPa
- 6.134 $2\theta = 10^{\circ}$, $W_e = 8.4$ ft, $p_e = 2180$ lbf/ft²
- 6.136 (a) 25.5 m/s, (b) 0.109 m³/s, (c) 1.23 Pa
- 6.138 46.7 m/s
- 6.140 $\Delta p = 273 \text{ kPa}$
- 6.142 Q = 18.6 gal/min, $d_{\text{reducer}} = 0.84$ cm
- 6.144 $Q = 54 \text{ m}^3/\text{h}$
- 6.146 (a) 0.00653 m³/s; (b) 100 kPa
- 6.148 (a) 1.58 m; (b) 1.7 m
- 6.150 $\Delta p = 27 \text{ kPa}$
- $6.152 \quad D = 4.12 \text{ cm}$
- 6.154 h = 59 cm

7.100 (b) $D_{\text{max}} = 78 \ \mu\text{m}$ 7.106 (a) 300 m; (b) 380 m

6.156	$Q = 0.924 \text{ ft}^3/\text{s}$	7.108	$\Delta x_{\rm ball} \approx 13 \text{ m}$
	(a) 49 m ³ /h; (b) 6200 Pa	7.110	$\Delta v \approx 1.9 \text{ ft}$
	(4) 13 12 12, (4) 12 11 1	7.114	$V_{\text{final}} \approx 18.3 \text{ m/s} = 66 \text{ km/h}$
Chapte	er 7	7.116	(a) 87 mi/h; (b) 680 hp
7.2	$Re_c = 1.5 E7$	7.118	(a) 21 m/s; (b) 360 m
7.4	d = 8 mm lies in the transition region	7.120	$(L/D)_{\text{max}} = 21; \ \alpha = 4.8^{\circ}$
7.6	H = 2.5 (versus 2.59 for Blasius)	7.122	(a) 6.7 m/s; (b) 13.5 m/s = 26 kn
7.8	Approximately 0.08 N	7.124	$\Omega_{\rm crude\ theory} \approx 340\ {\rm r/s}$
7.12	Does not satisfy $\partial^2 u/\partial y^2 = 0$ at $y = 0$		clude fileoly
7.14	$C = \rho v_0 / \mu = \text{const} < 0 \text{ (wall suction)}$	Chapt	er 8
7.16	(a) $F = 181 \text{ N}$; (b) 256 N	8.2	$\Gamma = \pi \Omega (R_2^2 - R_1^2)$
7.18	$\theta \approx 0.16^{\circ}$; $F_{\text{drag}} \approx 0.024 \text{ N}$	8.4	No, $1/r$ is not a proper two-dimensional potential
7.20	$x \approx 0.91 \text{ m}$	8.6	$\psi = B(y^2 - x^2)$
7.22	$\psi = (\nu x U)^{1/2} f(\eta)$	8.8	$\Gamma = 4B$
7.24	$h_1 = 9.2 \text{ mm}; h_2 = 5.5 \text{ mm}$	8.12	$\Gamma = 0$
7.26	$F_a = 2.83 \ F_1, F_b = 2.0 \ F_1$	8.14	Irrotational outer, rotational inner; minimum
7.28	(a) $F_{\text{drag}} = 2.66 N^2 (\rho \mu L)^{1/2} U^{3/2} a$		$p = p_{\infty} - \rho \omega^2 R^2$ at $r = 0$
7.30	(a) $F = 72 \text{ N}$; (b) 79 N	8.18	From a far: a single source $4m$
7.32	$F = 0.0245 \ \rho \nu^{1/7} \ L^{6/7} \ U_0^{13/7} \ \delta$	8.20	Vortex near a wall (see Fig. 8.17b)
7.34	F = 725 N	8.22	Same as Fig. 8.6 except upside down
7.36	7.2 m/s = 14 kn	8.24	$C_p = -\{2(x/a)/[1 + (x/a)^2]\}^2$, $C_{p,\text{min}} = -1.0$ at $x = a$
7.38	(a) 7.6 m/s; (b) 6.2 m/s	8.26	$V_{\text{resultant}} = 9.4 \text{ m/s} \text{ at } \theta = 47^{\circ}$
7.40	L = 3.53 m, b = 1.13 m	8.28	Creates a source in a square corner
7.42	$P_{4 \text{ blades}} \approx 0.032 \mu^{1/7} (\rho \text{C})^{6/7} \Omega^{20/7} R^{27/7}$	8.34	Two stagnation points, at $x = \pm a/\sqrt{3}$
7.44	Accurate to about ±6 percent	8.36	$U_{\infty} = 12.9 \text{ m/s}, 2L = 53 \text{ cm}, V_{\text{max}} = 22.5 \text{ m/s}$
7.46	$\epsilon \approx 9$ mm, $U = 11.2$ m/s = 22 kn	8.42	$K/(U_{\infty}a) = 0.396, h/a = 1.124$
7.48	Separation at $x/L = 0.158$ (1 percent error)	8.44	$K = 4.6 \text{ m}^2/\text{s}$; (a) 218 kPa; (b) 214 kPa at upper
7.50	Separation at $x/R = 1.80 \text{ rad} = 103.1^{\circ}$		shoulder, -6 kPa at lower shoulder (cavitation)
7.52	$C_D (\text{Re}_{\overline{L}})^{1/2} \approx 2.67$ (by numerical integration)	8.46	$F_{1\text{-bolt}} = 5000 \text{ N}$
7.54	Moment $\approx 200,000 \text{ N} \cdot \text{m}$	8.50	$h = 3a/2, U_{\text{max}} = 5U/4$
7.56	(a) 10 N; (b) 80 N	8.52	$V_{\rm boat} = 10.2$ ft/s with wind at 44°
7.58	(a) 3200 N/m; (b) 2300 N/m	8.54	$F_{\text{parallel}} = 6700 \text{ lbf}, F_{\text{normal}} = 2700 \text{ lbf}, \text{ power} \approx 560 \text{ hp}$
7.60	Tow power = 140 hp		(very approximate)
7.62	Square side length $\approx 0.83 \text{ m}$	8.56	$C_D \approx 2.67$ (too high, incorrect p_{rear})
7.64	$\Delta t_{1000-2000m} = 202 \text{ s}$	8.60	This is Fig. 8.15a, flow in a 60° corner
7.68	(a) 34 m/s; (b) no, only 67 percent of terminal velocity	8.62	Stagnation flow near a "bump"
	at impact	8.64	All favorable gradients: no separation
7.70	(a) 642 ft; (b) 425 ft	8.66	$\lambda = 0.45m/(5m+1) \text{ if } U = Cx^m$
7.72	(a) $L = 6.3 \text{ m}$; (b) 120 m	8.68	Flow past a Rankine oval
7.78	$\Delta p = 100 \text{ Pa}$	8.70	Applied to wind-tunnel "blockage"
7.80	$\theta = 72^{\circ}$	8.72	Adverse gradient for $x > a$
7.82	$V_{\min} = 138 \text{ ft/s}; (b) V_{\max} = 377 \text{ ft/s}$	8.74	$V_{B,\text{total}} = (8K\mathbf{i} + 4K\mathbf{j})/(15a)$
7.84	V = 9 m/s	8.78	Need an infinite array of images
7.86	Approximately 3.05 m by 6.1 m	8.82	(a) 4.5 m/s; (b) 1.13; (c) 1.26 hp
7.88	(a) 62 hp; (b) 86 hp	8.84	(a) 0.21 ; (b) 1.9°
7.90	$V_{\text{overturn}} \approx 145 \text{ ft/s} = 99 \text{ mi/h}$	8.86	(a) 26 m; (b) 8.7; (c) 1600 N
7.94	Torque $\approx (C_D/4)\rho\Omega^2 DR^4$, $\Omega_{\text{max}} = 85 \text{ r/min}$	8.88	$Thrust_{1-engine} \approx 2900 lbf$
7.96	$\Omega_{\rm avg} \approx 0.21 \ U/D$	8.90	(a) 4.0; (b) 4.8°
7.98	$(b) h \approx 0.18 \text{ m}$	8.92	(a) 0.77 m; (b) $V = 4.5$ m/s at $(r, \theta) = (1.81, 51^{\circ})$ and
7 100	(b) $D_{} = 78 \ \mu \text{m}$		(1 11 88°)

(1.11, 88°) 8.94 Yes, they are orthogonal

- 8.98 Yes, a closed teardrop shape appears
- 8.100 $V = 14.1 \text{ m/s}, p_A = 115 \text{ kPa}$
- 8.102 (a) 1250 ft; (b) 1570 ft (crudely)

Chapter 9

- 9.2 (a) $V_2 = 450$ m/s, $\Delta s = 515$ J/(kg · K); (b) $V_2 = 453$ m/s, $\Delta s = 512 \text{ J/(kg} \cdot \text{K)}$
- 9.4 About 50 m/s
- 9.6 Exit at about $T_2 \approx 54^{\circ}\text{C}$ and $V_2 \approx 1445 \text{ m/s}$
- 9.8 410 K
- 9.10 Ma = 0.78
- 9.12 (a) 2.13 E9 Pa and 1460 m/s; (b) 2.91 E9 Pa and 1670 m/s; (c) 2645 m/s
- 9.18 (a) 930 ft/s; (b) 878 ft/s
- 9.20 (a) air: 144 kPa and 995 m/s; (b) helium: 128 kPa and 2230 m/s
- 9.22 (a) 267 m/s; (b) 286 m/s
- 9.24 (*b*) at Ma ≈ 0.576
- 9.28 (a) 0.17 kg/s; (b) 0.90
- 9.30 (a) 262 m/s; (b) 0.563; (c) 0.905 kg/m³
- 9.32 (a) 141 kPa; (b) 101 kPa; (c) 0.706
- 9.34 (a) 0.00424 slug/s; (b) 0.00427 slug/s
- 9.40 (a) 2.50; (b) 7.6 cm²; (c) 1.27 kg/s; (d) $Ma_2 = 1.50$
- 9.42 (a) Ma = 0.90, T = 260 K, V = 291 m/s
- 9.44 $V_e = 5680 \text{ ft/s}, p_e = 15.7 \text{ psia}, T_e = 1587^{\circ} \text{R}, \text{ thrust} =$ 4000 lbf
- 9.46 $R_x = -8 \text{ N}$ (to the left)
- 9.48 (a) 313 m/s; (b) 0.124 m/s; (c) 0.00331 kg/s
- 9.50 (a) $D_{\text{exit}} = 5.8 \text{ cm}$
- (a) 5.9 cm²; (b) 773 kPa 9.52
- 9.54 $Ma_2 = 0.648$, $V_2 = 279$ m/s, $T_2 = 461$ °K, $p_2 = 458$ kPa, $p_{02} = 607 \text{ kPa}$
- 9.56 At about $A_1 \approx 24.7 \text{ cm}^2$
- 9.58 (a) 306 m/s; (b) 599 kPa; (c) 498 kPa
- Upstream: Ma = 1.92, V = 585 m/s 9.60
- $C = 19,100 \text{ ft/s}, V_{\text{inside}} = 15,900 \text{ ft/s}$ 9.62
- 9.64 (a) 0.150 kg/s; (b, c) 0.157 kg/s
- 9.66 h = 1.09 m
- 9.68 $p_{\text{atm}} = 92.6 \text{ kPa}; \text{ max flow} = 0.140 \text{ kg/s}$
- 9.70 (a) 388 kPa; (b) 19 kPa
- 9.72 Mass flow = 0.5 kg/s, $p_e = 185$ kPa, $Ma_e = 0.407$
- 9.74 (a) 1.096 MPa; (b) 2.24 kg/s
- 9.76 $\Delta t_{\rm shocks} \approx 23 \text{ s}; \ \Delta t_{\rm choking-stops} \approx 39 \text{ s}$
- 9.78 Case A: 0.0071 kg/s; B: 0.0068 kg/s
- $A^* = 2.4 \text{ E-6 ft}^2 \text{ or } D_{\text{hole}} = 0.021 \text{ in}$ 9.80
- $V_e = 110 \text{ m/s}, \text{ Ma}_e = 0.67 \text{ (yes)}$ 9.82
- (a) 0.96 kg/s; (b) 0.27; (c) 435 kPa 9.84
- $V_2 = 107 \text{ m/s}, p_2 = 371 \text{ kPa}, T_2 = 330 \text{ K}, p_{02} = 394 \text{ kPa}$ 9.86
- L = 2 m, yes, a shock at Ma₂ = 2.14 9.88
- 9.90 (a) 0.764 kg/s; (b) 0.590 kg/s; (c) 0.314 kg/s
- 9.92 (a) 0.45; (b) 2.04 kg/s

- 9.98 (a) 430; (b) 0.12; (c) 0.00243 kg/h
- 9.100 $L_{pipe} = 69 \text{ m}$
- 9.102 Flow is choked at 0.69 kg/s
- 9.104 $p_{\text{tank}} = 99 \text{ kPa}$
- 9.106 (a) 0.031 m; (b) 0.53 m; (c) 26 m
- 9.108 Mass flow drops by about 32 percent
- 9.112 (a) 105 m/s; (b) 215 kPa
- 9.116 $V_{\text{plane}} \approx 2640 \text{ ft/s}$
- 9.118 V = 204 m/s, Ma = 0.6
- 9.120 *P* is 3 m ahead of the small circle, Ma = 2.0, T_{stag} =
- 9.122 $\beta = 23.13^{\circ}$, $Ma_2 = 2.75$, $p_2 = 145$ kPa
- 9.126 (a) 25.9°; (b) 26.1°
- 9.128 $\delta_{\text{wedge}} \approx 15.5^{\circ}$
- 9.130 (a) 57.87°; (b) 21.82°
- 9.132 (a) $p_A = 18.0$ psia; (b) $p_B = 121$ psia
- 9.134 Ma₃ = 1.02, p_3 = 727 kPa, ϕ = 42.8°
- 9.136 (a) h = 0.40 m; (b) $Ma_3 = 2.43$
- 9.138 $p_r = 21.7 \text{ kPa}$
- 9.140 Ma₂ = 2.75, p_2 = 145 kPa
- 9.142 (a) $Ma_2 = 2.641$, $p_2 = 60.3$ kPa; (b) $Ma_2 = 2.299$, $p_2 =$ 24.1 kPa
- 9.146 $\Delta \theta = 9.47^{\circ} \text{ (helium)}$
- 9.148 $C_L = 0.184$ (approximately linear), $C_D = 0.0193$ (approximately parabolic)
- 9.150 (a) $\alpha = 4.10^{\circ}$; (b) drag = 2150 N/m
- 9.152 Parabolic shape has 33 percent more drag

Chapter 10

- 10.2 (a) C = 3.31 m/s; (b) $\delta V = 0.030$ m/s
- 10.4 These are piezometer tubes (no flow)
- 10.6 (a) Fr = 3.8; (b) $V_{\text{current}} = 7.7 \text{ m/s}$
- 10.8 $\Delta t_{\rm travel} = 6.3 \text{ h}$
- $\lambda_{\rm crit} = 2\pi (\Upsilon/\rho g)^{1/2}$ 10.10
- 10.14 Flow must be fully rough turbulent (high Re) for Chézy
- 10.16 20 percent less flow, independent of n
- 10.18 $y_n = 0.993 \text{ m}$
- 10.20 $Q = 74 \text{ ft}^3/\text{s}$
- 10.22 $S_0 = 0.00038$ (or 0.38 m/km)
- 10.24 $y_n = 0.56 \text{ m}$
- 10.26 (a) $17.8 \text{ m}^3/\text{s}$; (b) 1.79 m
- 10.30 $\Delta t \approx 32 \text{ min}$
- 10.32 74,000 gal/min
- 10.34 If b = 4 ft, y = 9.31 ft, P = 22.62 ft; if b = 8 ft, y = 4.07 ft, P = 16.14 ft
- $y_2 = 3.6 \text{ m}$ 10.36
- 10.38 $D_{\text{semicircle}} = 2.67 \text{ m} (16 \text{ percent less perimeter})$
- 10.42 P = 41.3 ft (71 percent more than Prob. 10.39)
- 10.44 Hexagon side length b = 2.12 ft
- 10.46 Best $h_0/b = 0.53 \pm 0.03$

10.48 (a) 0.00634; (b) 0.00637 11.16 (a) 1450 W; (b) 1030 r/min 10.50 (a) 2.37; (b) 0.62 m; (c) 0.0026 11.18 $V_{\text{vame}} = (1/3V)_{\text{jet}}$ for max power 10.52 $W = 2.06 \text{ m}$ 11.20 (a) 2 roots; $Q = 7.5$ and 38.3 ft ³ /s; (b) 2 roots; $H = 10.54$ (a) 1.98 m; (b) 3.11 m/s; (c) 0.00405 11.22 (a) BEP = 92 percent at $Q \approx 0.22 \text{ m}^3/\text{s}$ 10.56 (a) 1.02 m ³ /s; (b) 0.0205 11.22 (a) BEP = 92 percent at $Q \approx 0.22 \text{ m}^3/\text{s}$ 10.58 Fr = 0.628 R^{16} , R in meters 11.26 Correlation is "fair," not geometrically similar 10.60 (a) 0.052 m ³ /(m · s); (b) 0.0765 m 11.28 BEP at about 6 ft ³ /s; $N_s \approx 1430$, $Q_{\text{max}} \approx 12 \text{ ft}^3/\text{s}$ 10.64 $h_{\text{max}} \approx 0.35 \text{ m}$ 11.30 (a) 1700 r/min; (b) 8.9 ft ³ /s; (c) 330 ft 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m ³ /(s · m) 11.34 (a) 11.5 m; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 D = 9.8 in, n = 2100 r/min 10.76 $H \approx 0.011 \text{ m}$ 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6 \text{ s}$ (crude analysis) 11.40 (a) $D_s \approx D(gH^s)^{1/4}/Q^{s+1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m ³ /(s · m) 11.42 NPSH_{proto} \approx 23 \text{ ft} 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $V_s = 0.82 \text{ ft}; v_s = 5.11 \text{ ft}; 47 \text{ percent} 11.52 (a) 7 m3/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, D \approx 7.2 \text{ ft} 10.99 0.0207 (or 1.19°) 11.56 (a) D = 1.76 \text{ ft}, n = 255 \text{ fr/min}, P = 740 \text{ hp} 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, \eta = 67 \text{ percent}, D = 0.32 \text{ ft} 10.010 (a) V_{crest} \approx 0.782 \text{ m}; (b) V(L) \approx 0.909 \text{ m} 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 \text{ ft} 10.106 (a) 0.90; (b) D = 1.76 \text{ ft}, n = 1770 \text{ r/min}, P = 740 \text{ hp} 10.110 (a) V_{crest} \approx 0.782 \text{ m}; (b) V(L) \approx 0.909 \text{ m} 11$
10.52 W = 2.06 m
10.54 (a) 1.98 m; (b) 3.11 m/s; (c) 0.00405 11.056 (a) 1.02 m ³ /s; (b) 0.0205 11.22 (a) BEP ≈ 92 percent at $Q \approx 0.22$ m ³ /s 10.58 Fr = 0.628R ^{1/6} , R in meters 11.26 Correlation is "fair," not geometrically similar 10.60 (a) 0.052 m ³ /(m · s); (b) 0.0765 m 11.28 BEP at about 6 ft ³ /s; N _s ≈ 1430, Q _{max} ≈ 12 ft ³ /s 10.64 h _{max} ≈ 0.35 m 11.30 (a) 1700 r/min; (b) 8.9 ft ³ /s; (c) 330 ft 10.66 (a) 1.47; (b) y ₂ = 1.19 m 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m ³ /(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 D = 9.8 in, n = 2100 r/min 10.76 H ≈ 0.011 m 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 Δt ≈ 8.6 s (crude analysis) 11.40 (a) D _s = D(gH ^s) ^{1/4} /Q ^{s+1/2} 10.80 (a) 3.83 m; (b) 4.83 m ³ /(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.84 y ₂ = 0.82 ft; y ₃ = 5.11 ft; 47 percent 10.85 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.40 No cavitation, required depth is only 5 ft 10.84 y ₂ = 0.82 ft; y ₃ = 5.11 ft; 47 percent 11.66 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.59 (centrifugal pumps, D ≈ 7.2 ft 10.90 0.0207 (or 1.19°) 10.90 (a) 3370 ft ³ /s; (b) 7000 hp (b) D = 1.76 ft, n = 255 r/min, P = 700 hp; (b) D = 1.76 ft, n = 1770 r/min, P = 740 hp 10.108 (a) b on turve greach y ≈ y _n ≈ 0.5 m at x = 250 m 10.110 (a) y _{crest} ≈ 0.782 m; (b) y(L) ≈ 0.909 m 11.68 Q _{new} ≈ 15.300 gal/min; (c) 1.77 ft 10.110 (a) y _{crest} ≈ 0.782 m; (b) y(L) ≈ 0.909 m 11.68 Q _{new} ≈ 15.300 gal/min 10.111 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.56 (a) 1.02 m³/s; (b) 0.0205 11.22 (a) BEP ≈ 92 percent at $Q \approx 0.22$ m³/s 10.58 Fr = 0.628R ^{1/6} , R in meters 11.26 Correlation is "fair," not geometrically similar 10.60 (a) 0.052 m³/(m · s); (b) 0.0765 m 11.28 BEP at about 6 ft³/s; N _s = 1430, $Q_{\text{max}} \approx 12$ ft³/s 10.64 $h_{\text{max}} \approx 0.35$ m 11.30 (a) 1700 r/min; (b) 8.9 ft³/s; (c) 330 ft 10.66 (a) 1.47; (b) y₂ = 1.19 m 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m³/(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8$ in, $n = 2100$ r/min 10.76 $H \approx 0.011$ m 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 Δt ≈ 8.6 s (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^*^{1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 11.52 (a) 37.97 m³/s; (b) 14.6 kW; (c) 28.3° 11.54 (a) 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; (b) $D = 1.76$ ft, $n = 1770$ r/min, $P = 740$ hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.10 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.110 (a) $V_{\text{crest}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.999$ m 11.66 $V_{\text{c}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.999$ m 11.67 $V_{\text{c}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.782$ m; (c) 1.77 ft 10.110 $V_{\text{c}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.782$ m; (c) 0.599 m 11.66 $V_{\text{c}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.782$ m; (c) 0.599 m 11.67 $V_{\text{c}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.782$ m; (c) 0.599 m 11.66 $V_{\text{c}} \approx 0.782$ m; (b) 0.50 gal/min; (c) 1.77 ft 10.1110 (a) $V_{\text{crest}} \approx 0.782$ m; (b) $V_{\text{c}} \approx 0.782$ m; (c) 0.599 m 11.66 $V_{\text{c}} \approx 0.782$ m; (b) 0.58 ft³/s 10.112 M-1 curve
10.58 Fr = 0.628 $R^{1/6}$, R in meters 10.60 (a) 0.052 m ³ /(m · s); (b) 0.0765 m 11.28 BEP at about 6 ft ³ /s; $N_s \approx 1430$, $Q_{max} \approx 12$ ft ³ /s 10.64 $N_{max} \approx 0.35$ m 11.30 (a) 1700 r/min; (b) 8.9 ft ³ /s; (c) 330 ft 10.66 (a) 1.47; (b) $y_2 = 1.19$ m 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m ³ /(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8$ in, $n = 2100$ r/min 10.76 $H \approx 0.011$ m 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 Δt ≈ 8.6 s (crude analysis) 11.40 (a) $D_s = D(gH^s)^{1/4}/Q^{s+1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m ³ /(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.52 (a) 7.97 m ³ /s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft ³ /s; (b) 7000 hp 11.58 Centrifugal pump, $p \approx 7.2$ ft 10.90 (a) steep S-3; (b) S-2; (c) S-1 10.106 No entry depth leads to critical flow 10.107 No entry depth leads to critical flow 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.65 (a) 10.16 (b) 13.3 in 10.112 V=0.64 m, $\alpha = 34^\circ$ 11.70 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.60 (a) 0.052 m³/(m · s); (b) 0.0765 m 11.28 BEP at about 6 ft³/s; $N_s \approx 1430$, $Q_{\text{max}} \approx 12$ ft³/s 10.64 $h_{\text{max}} \approx 0.35$ m 11.30 (a) 1700 r/min; (b) 8.9 ft³/s; (c) 330 ft 10.66 (a) 1.47; (b) $y_2 = 1.19$ m 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m³/(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6$ s (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^*^{1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.85 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.52 (a) 0.207 (or 1.19°) 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft³/s; (b) 7000 hp 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 10.106 No entry depth leads to critical flow 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 10.110 (a) $y_{\text{crest}} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.60 No entry depth leads to critical flow 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.60 $Q \approx 21.24$ ft; (b) 5.8 ft³/s 10.116 $Q \approx 9.51$ m³/s 10.116 $Q \approx 9.51$ m³/s 11.71 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min 10.112 $Y = 0.64$ m, $\alpha = 34^\circ$
10.64 $h_{\text{max}} \approx 0.35 \text{ m}$ 11.30 (a) 1700 r/min; (b) 8.9 ft³/s; (c) 330 ft 10.66 (a) 1.47; (b) $y_2 = 1.19 \text{ m}$ 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m³/(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8 \text{ in}, n = 2100 \text{ r/min}$ (d) 81 percent 10.78 $\Delta t \approx 8.6 \text{ s}$ (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^*^{1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82 \text{ ft}; y_3 = 5.11 \text{ ft}; 47 \text{ percent}$ 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7 \text{ percent}$ 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03 \text{ m/s}$ 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2 \text{ ft}$ 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67 \text{ ft}, n = 255 \text{ r/min}, P = 700 \text{ hp}; (b) D = 1.76 \text{ ft}, n = 1770 \text{ r/min}, P = 740 \text{ hp}$ 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67 \text{ percent}, D = 0.32 \text{ ft}$ 10.106 No entry depth leads to critical flow 11.62 $D = 18.7 \text{ ft}, \Delta p = 1160 \text{ Pa}$ 10.110 (a) $y_{\text{crest}} \approx 0.782 \text{ m}; (b) y(L) \approx 0.909 \text{ m}$ 11.64 No speed is able to get to BEP 10.110 (a) $y_{\text{crest}} \approx 0.782 \text{ m}; (b) y(L) \approx 0.909 \text{ m}$ 11.66 $Q \approx 1240 \text{ ft}^3/\text{min}$ 11.70 (a) 212 ft; (b) 5.8 ft³/s 11.71 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64 \text{ m}, \alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.66 (a) 1.47; (b) $y_2 = 1.19$ m 11.32 Correlation "fair," not geometrically similar 10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m³/(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8$ in, $n = 2100$ r/min 10.78 $\Delta t \approx 8.6$ s (crude analysis) 11.39 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6$ s (crude analysis) 11.40 (a) $D_s = D(gH^s)^{1/4}/Q^{s+1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.65 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.55 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.91 (a) 3370 ft³/s; (b) 7000 hp 11.58 Centrifugal pump, $T_s = 7700$ hp; 11.59 (a) $T_s = 7700$ hp; 11.50 (a) $T_s = 7700$ hp; 11.51 (b) $T_s = 7700$ hp; 11.52 (a) $T_s = 7700$ hp; 11.53 (a) $T_s = 7700$ hp; 11.54 (b) $T_s = 7700$ hp; 11.55 (c) $T_s = 7700$ hp; 11.56 (a) $T_s = 7700$ hp; 11.57 (b) $T_s = 7700$ hp; 11.58 (c) $T_s = 7700$ hp; 11.59 (a) $T_s = 7700$ hp; 11.50 (a) $T_s = 7700$ hp; 11.51 (b) $T_s = 7700$ hp; 11.52 (c) $T_s = 7700$ hp; 11.53 (c) $T_s = 7700$ hp; 11.54 (c) $T_s = 7700$ hp; 11.55 (c) $T_s = 7700$ hp; 11.56 (a) $T_s = 7700$ hp; 11.57 (b) $T_s = 7700$ hp; 11.58 (c) $T_s = 7700$ hp; 11.59 (a) $T_s = 7700$ hp; 11.50 (a) $T_s = 7700$ hp; 11.51 (b) $T_s = 7700$ hp; 11.52 (c) $T_s = 7700$ hp; 11.53 (c) $T_s = 7700$ hp; 11.54 (c) $T_s = 7700$ hp; 11.55 (c) $T_s = 7700$ hp; 11.56 (a) $T_s = 7700$ hp; 11.57 (b) $T_s = 7700$ hp; 11.58 (c) $T_s = 7700$ hp; 11.59 (c) $T_s = 7700$ hp; 11.50 (a) $T_s = 7700$ hp; 11.51 (b) $T_s = 7700$ hp; 11.52 (c) $T_s = 7700$ hp; 11.53 (c) $T_s = 7700$ hp; 11.54 (c) $T_s = 7700$ hp; 11.55 (c) $T_s = 7700$ hp; 11.56 (a) $T_s = 7700$ hp; 1
10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m³/(s · m) 11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent 10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8$ in, $n = 2100$ r/min 10.76 $H \approx 0.011$ m 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6$ s (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^*^{1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH $_{\rm proto} \approx 23$ ft No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft³/min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m³/s 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43 11.36 $D = 9.8$ in, $n = 2100$ r/min 10.76 $H \approx 0.011$ m 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6$ s (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^{*1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft³/s; (b) 7000 hp 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 11.60 (a) $D = 1.76$ ft, $D = 11.60$ Pa 11.60 (a) $D = 1.76$ ft, $D = 11.60$ Pa 11.60 Pa 11.61 (a) $D = 1.87$ ft, $D = 11.60$ Pa 11.62 $D = 18.7$ ft, $D = 11.60$ Pa 11.64 No speed is able to get to BEP 10.110 (a) $D = 1.76$ ft, $D = 1.76$ ft $D = 0.32$ ft 11.62 $D = 18.7$ ft, $D = 1.76$ ft $D = 0.32$ ft 11.63 $D = 1.76$ ft $D = 0.32$ ft 11.64 No speed is able to get to BEP 10.110 (a) $D = 1.76$ ft $D = 0.32$ ft 11.65 $D = 1.87$ ft, $D = 1.160$ Pa 11.66 $D = 1.87$ ft, $D = 1.160$ Pa 11.67 $D = 1.87$ ft, $D = 1.160$ Pa 11.68 $D = 1.87$ ft, $D = 1.160$ Pa 11.69 Pa
10.76 $H \approx 0.011 \text{ m}$ 11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent 10.78 $\Delta t \approx 8.6 \text{ s}$ (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^{*1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; (b) $D = 1.76$ ft, $n = 1770$ r/min, $P = 740$ hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m³/s 11.70 (a) 212 ft; (b) 5.8 ft³/s 10.116 $Q \approx 9.51$ m³/s 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.78 Δt ≈ 8.6 s (crude analysis) 11.40 (a) $D_s = D(gH^*)^{1/4}/Q^{*1/2}$ 10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft³/s; (b) 7000 hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $η = 67$ percent, $D = 0.32$ ft 10.106 No entry depth leads to critical flow 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.65 $Q \approx 1240$ ft³/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m³/s 11.70 (a) 212 ft; (b) 5.8 ft³/s 11.71 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.80 (a) 3.83 m; (b) 4.83 m³/(s · m) 11.42 NPSH _{proto} ≈ 23 ft 10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 11.44 No cavitation, required depth is only 5 ft 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 10.86 (a) 6.07 m/s; (b) ΔV = 2.03 m/s 11.52 (a) 7.97 m³/s; (b) 14.6 kW; (c) 28.3° 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft³/s; (b) 7000 hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $η = 67$ percent, $D = 0.32$ ft 10.106 No entry depth leads to critical flow 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft³/min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m³/s 11.70 (a) 212 ft; (b) 5.8 ft³/s 11.71 (a) 10.9; (b) 15.9; (c) 20.7 kgal/min
10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m 10.84 $y_2 = 0.82$ ft; $y_3 = 5.11$ ft; 47 percent 11.46 $D_s \approx C/N_s$, $C = 7800 \pm 7$ percent 11.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 11.87 (a) 0.0207 (or 1.19°) 11.89 (a) 3370 ft ³ /s; (b) 7000 hp 11.99 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.90 No entry depth leads to critical flow 11.90 No entry depth leads to critical flow 11.91 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.92 $V = 0.64$ m, $α = 34°$ 11.94 No cavitation, required depth is only 5 ft 11.44 No cavitation, required depth is only 5 ft 11.44 No cavitation, required depth is only 5 ft 11.44 No cavitation, required depth is only 5 ft 11.45 $V = 0.80 \pm 7$ percent 11.46 $V = 0.70 \pm 7$ percent 11.47 No cavitation, required depth is only 5 ft 11.49 No cavitation, required depth is only 5 ft 11.40 $V = 0.80 \pm 7$ percent 11.40 $V = 0.70 \pm 7$ m ³ /s; (b) 14.6 kW; (c) 28.3° 11.52 (a) 7.97 m ³ /s; (b) 14.6 kW; (c) 28.3° 11.54 Centrifugal pumps, $D \approx 7.2$ ft 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 11.57 (b) $D = 1.76$ ft, $n = 1770$ r/min, $P = 740$ hp 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 11.61 $V = 0.10$ m at
$\begin{array}{llllllllllllllllllllllllllllllllllll$
10.86 (a) 6.07 m/s; (b) $\Delta V = 2.03$ m/s 10.88 (a) downstream; (b) 5.7 percent 11.54 Centrifugal pumps, $D \approx 7.2$ ft 10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft ³ /s; (b) 7000 hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pumps, $D \approx 7.2$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 10.110 (a) $y_{\text{crest}} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.64 No speed is able to get to BEP 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{\text{new}} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34$ ° 11.54 Centrifugal pumps, $D \approx 7.2$ ft 11.54 Centrifugal pumps, $D \approx 7.2$ ft 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; (b) $D = 1.76$ ft, $n = 1770$ r/min, $P = 740$ hp 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 11.64 No speed is able to get to BEP 11.65 $Q \approx 1240$ ft ³ /min 11.66 $Q \approx 1240$ ft ³ /min 11.67 (a) 212 ft; (b) 5.8 ft ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 11.71 (a) 10 gal/min; (b) 1.3 in 11.72 (a) 10 gal/min; (b) 1.5.9; (c) 20.7 kgal/min
10.90 0.0207 (or 1.19°) 11.56 (a) $D = 5.67$ ft, $n = 255$ r/min, $P = 700$ hp; 10.92 (a) 3370 ft ³ /s; (b) 7000 hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{\text{crest}} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{\text{new}} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.92 (a) 3370 ft ³ /s; (b) 7000 hp 10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{\text{crest}} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{\text{new}} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m 11.58 Centrifugal pump, $\eta = 67$ percent, $D = 0.32$ ft 10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.98 (a) steep S-3; (b) S-2; (c) S-1 11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft 10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.106 No entry depth leads to critical flow 11.62 $D = 18.7$ ft, $\Delta p = 1160$ Pa 10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.108 (a, b) Both curves reach $y \approx y_n \approx 0.5$ m at $x = 250$ m 11.64 No speed is able to get to BEP 10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft ³ /min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m ³ /s 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51$ m ³ /s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.110 (a) $y_{crest} \approx 0.782$ m; (b) $y(L) \approx 0.909$ m 11.66 $Q \approx 1240$ ft³/min 10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{new} \approx 15,300$ gal/min 10.114 Vexing! Flow chokes at $Q \approx 17$ m³/s 11.70 (a) 212 ft; (b) 5.8 ft³/s 10.116 $Q \approx 9.51$ m³/s 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64$ m, $\alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.112 M-1 curve, with $y = 2$ m at $L \approx 214$ m 11.68 $Q_{\text{new}} \approx 15,300 \text{ gal/min}$ 10.114 Vexing! Flow chokes at $Q \approx 17 \text{ m}^3/\text{s}$ 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51 \text{ m}^3/\text{s}$ 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64 \text{ m}$, $\alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.114 Vexing! Flow chokes at $Q \approx 17 \text{ m}^3/\text{s}$ 11.70 (a) 212 ft; (b) 5.8 ft ³ /s 10.116 $Q \approx 9.51 \text{ m}^3/\text{s}$ 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64 \text{ m}$, $\alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.116 $Q \approx 9.51 \text{ m}^3/\text{s}$ 11.72 (a) 10 gal/min; (b) 1.3 in 10.120 $Y = 0.64 \text{ m}, \alpha = 34^\circ$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.120 $Y = 0.64 \text{ m}, \ \alpha = 34^{\circ}$ 11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
10.100 5500 1/1
10.122 5500 gal/min 11.76 $D_{\rm pipe} \approx 1.70 \text{ ft}$
10.124 M-1 curve, $y = 10$ ft at $x = -3040$ ft 11.78 $D_{\text{pipe}} \approx 1.67$ ft, $P \approx 2000$ hp
10.126 At $x = -100$ m, $y = 2.81$ m 11.80 $Q_{32} \approx 22,900$ gal/min; $Q_{28} \approx 8400$ gal/min, $H \approx 343$ ft
10.128 At 300 m upstream, $y = 2.37$ m for both
11.84 Two turbines: (a) $D \approx 9.6$ ft; (b) $D \approx 3.3$ ft
11.86 $N_{\rm sp} \approx 70$, hence Francis turbines
Chapter 11 11.88 $Q \approx 52 \text{ ft}^3/\text{s}, D \approx 10.5 \text{ ft}$
11.6 This is a diaphragm pump 11.90 $P \approx 800 \text{ kW}$
11.8 (a) $H = 112$ ft and $\Delta p = 49$ lb/in ² ; (b) $H = 112$ ft (of 11.92 Pelton and Francis wheels both OK
gasoline); $P = 15 \text{ hp}$ 11.94 (a) 71 percent; (b) $N_{\text{sp}} \approx 19$
11.10 (a) 1300 r/min; (b) 2080 lbf/in ² 11.96 (a) 1.68 ft; (b) 0.78 ft
11.12 (a) 11.3 m; (b) 1520 W 11.100 (a) 190 kW; (b) 24 r/min; (c) 9.3 ft/s
11.14 1870 W 11.102 $Q \approx 29$ gal/min

Index

Angular momentum theorem, 130, 158–159,

A Angular velocity of a fluid, 246-247 Acceleration of a particle, 15, 90, 216 Annulus centripetal, 90, 157 flow in, 362-364 convective, 216 laminar friction factors, 364 Coriolis, 157 Answers to selected problems, 806-812 local, 216 Archimedes' laws of buoyancy, 44, 84 Ackeret airfoil theory, 635-636 Area, body reference, 453 Acoustics, 573 Area change in a duct, 583-587 Actuator disk theory, 752–753 Aspect ratio Added mass, 539-540 of a diffuser, 384 Adiabatic flow, 578-579 of a wing, 472, 473, 530 atmospheric lapse rate, 102, 105 Atmosphere with friction, 604-606, 776-780 isothermal, 68 Adverse pressure gradient, 430, 445-448, U. S. standard, 69, 773 501 Automobile drag forces, 461–463 Aerodynamic forces and moments, 452-453 Average velocity, 143, 26 NACA designs, 471, 528-530, 565 in pipe flow, 144, 341, 344, 346 Air-cushion vehicle, 206 Avogadro's number, 46 Airfoil description, 468, 529 Axial-flow pumps, 730-734 Airfoil theory, 523–534 Axisymmetric potential flow, 534–540 finite-span, 530-534 supersonic flow, 632-637 thick-cambered, 528-530 B thin-plate, 524–528 Andrade's equation, 49 Anemometer Backwater curve, 693-695 cup, 387, 485 Barometer, 66-67 hot-wire and film, 387, 389 Basic equations (see Differential equations of Angle of attack flow) definition, 468 Basic laws of fluid motion, 35, 129-131 in inviscid flow, 499, 517 Bend losses, 371

Bernoulli, Daniel, 10, 174 Bump, channel flow over, 675-676 Bernoulli constant, 176, 248 Butterfly valve, 370 Bernoulli obstruction meters, 397-404 Buoyancy, 84-86 Bernoulli's equation, 10, 174-177, 230, Buoyant force, 85 248 - 249outside a boundary layer, 435 compared to the energy equation, 176, 580 C for irrotational flow, 230, 249, 496 for isentropic flow, 580-581 limitations and assumptions, 176, 177 Cambered airfoil, 468, 471, 528-530 in rotating coordinates, 717 Capillary effect, 31, 299-300 for unsteady flow, 175, 248, 249, 496 Cauchy-Riemann equations, 249 Betz number, 753 Cavitation, 32-33, 552 BG units, 8 of a pump, 720, 721 Bingham-plastic fluid, 28 of a turbine, 765 Blasius flat-plate solution, 437–439, 478 Cavitation erosion, 33 Blasius pipe friction formula, 345 Cavitation number, 32, 294, 297 Blowdown analysis, 598, 643 Center of buoyancy, 85, 88 Blower, 711 Center of mass, 80 Blunt-body flows, 429 Center of pressure, 75-76 Body forces, 61, 224 of an airfoil, 527, 636 Bore in a channel, 702 Centrifugal pump, 161-162, 200, 714-718 Boundary conditions, 34, 234-236 dimensionless coefficients, 724-726 for a boundary layer, 436 performance curves, 720-723, 758, free surface or interface, 234-236, 497 759 at an inlet or outlet, 234, 496 similarity rules, 727-729 for inviscid flow, 496, 497 Centripetal acceleration, 90, 157 kinematic, 235 Centroid, 75 of various cross-sections, 76 no-slip, 24, 34, 234 Boundary-element method, 546–548 Channel flow (see Open channel flow) Boundary layer, 23, 45, 250, 431, 496, 578 Chézy coefficient, 665 displacement thickness, 433, 438, 443 Chézy formulas, 664–666 equations of, 434-436 Choked flow, 586, 598, 740 on a flat plate, 153-155, 266 due to friction, 608-609 momentum thickness, 431, 438 due to heat transfer, 617 in an open channel, 676 with pressure gradient, 445–450 with rough walls, 443-444 Chord line, 452, 468 separation, 435, 447, 447-449 Circular section shape factor, 438, 443, 448 open channel, 668-669 thickness, 428, 442 pipe flow, 338-357 transition, 298, 432, 439 Circulation, 499 Bourdon tube gage, 99–100 at airfoil trailing edge, 524 on a cylinder, 509, 511 Brinkman number, 268 Broad-crested weir, 689, 690 Classification of flow, 36-37 Buckingham pi theorem, 280, 286–288 Colebrook pipe-friction formula, 348 Bulk modulus, 49, 102, 577 Complex-variable potential theory, of various liquids, 772 516-521

Del operator, 216, 219

Correlations, turbulent, 334

Density	Doublet
definition of, 6, 17	line, 270, 505–506
of various fluids, 771–772	point, 536
Detached shock wave, 624	Downwash on a wing, 531, 532
Diaphragm transducer, 101	Draft tube, 765
Differential equations of flow, 36, 215, 682,	Drag, 452-467
793	biological adaptation, 467–468
angular momentum, 230	induced, 472, 533
continuity or mass, 217–221	Drag coefficient, 195, 297, 453, 468, 632
cylindrical coordinates, 793–794	of airfoils, 457, 468, 471–473
energy, 231–233	of a cylinder, 298, 455, 457
incompressible, 220, 228, 236–237	rotating, 511–512
linear momentum, 62, 223–227	on a flat plate, 438, 442–443
Diffuser flows, 313, 381–385, 447	at high Mach numbers, 465–466
head loss, 373	of road vehicles, 461–463
performance maps, 385, 386	of a sphere, 298, 456, 457
separation and stall, 383, 447–448	spinning, 487, 488
stability map, 382	of surface ships, 464–465
subsonic versus supersonic, 584	of three-dimensional bodies, 457, 460
Digital computer (see Computational fluid	of two-dimensional bodies, 457-458
dynamics)	Drag reduction, 456, 462, 464
Dilatant fluid, 28	Drowned channel flow, 678, 701
Dimensional analysis, 7, 12, 277	Duct flow, 325, 603
of the basic equations, 292–294	compressible, with friction, 603-613, 780
of the boundary conditions, 293–294	with heat transfer, 613–618, 784
of pipe flow, 307–309	Dynamic similarity, 304-305
pitfalls of, 305-307	
of turbomachines, 724–726, 744	
Dimensional homogeneity, 11-12, 280	
nonhomogeneity, 285-286	E
Dimensional matrix, 313	L
Dimensionless groups, list of, 297	
Dimensions, 7–13, 278	Eckert number, 297
list of, 8–9, 287	Eddy viscosity, 406
Discharge coefficient, 12, 179, 181,	Effective duct diameter, 360
398	Efficiency, 47, 715
flow nozzle, 401	of an open channel, 669-671
orifice plate, 399-400	of a turbomachine, 715, 734
sluice gate, 677	volumetric, 716, 757
venturi, 401, 402	of wind turbines, 753
weir, 690-692	Elbows, losses in, 368, 369
Displacement thickness, 433	Elliptical wing, 533
for a flat plate, 433, 438, 443	Energy, 18, 131, 163
Dissipation function, 233	Energy equation, 163-165, 231-233
of a hydraulic jump, 680	steady flow, 167-168
Divergence of a vector, 220, 226	Energy flux, 165, 231
Dot product, 133	Energy grade line, 177-178, 339 672

Engineering Equation Solver (EES), 41	integral theory,
Enthalpy, 19, 165, 574	laminar, 432
Entrance length, 331	turbulent, 441–444
Entrance losses, 331, 371, 372	normal to the stream, 457–459, 519–521
Entrance region, 330–331	with rough walls, 443–444
Entropy, of an ideal gas, 574	Flettner rotorship, 511–512, 559
Entropy change, 574	Floating element shear measurement, 480
across a normal shock, 591	Flooding of channels, 698
across a weak oblique shock, 627	Flow between plates, 25–27, 258–260, 359–
Equations of motion (<i>see</i> Differential equa-	360
tions of flow)	Flow coefficient of a meter, 398
Equilibrium of forces, 61–62	Flow meters (see Fluid meters)
Equivalent length, minor losses, 367	Flow net, 497
Erosion of particles, 313, 698	Flow nozzle, 399, 400–401
Euler, Leonhard, 45, 174, 294	Flow straighteners, 479
Euler number, 294, 297	Flow visualization, 40, 426, 470, 515, 554
Euler turbine equations, 161–162, 717	Fluctuation, turbulent, 326, 333–334
Eulerian description, 14, 216	Fluid, definition of, 4
Euler's equation, 227, 237, 247	Fluid meters, 385–404
Exit pipe loss, 371, 372	Coriolis type, 395, 396
Expansion losses, 372–373	electromagnetic, 389
Explicit numerical model, 549	flow nozzle, 399, 400-401
External flow, 333, 427, 451–467	head losses, 402
	hot-wire, hot-film, 387, 389
	laminar-flow element, 396-397
F	laser-doppler, 387, 389-390
•	obstruction type, 397–404
	orifice plate, 398–400
Falling-body problem, 12	pitot-static tube, 387, 388-389
dimensional analysis of, 282-285,	rotameter, 395
289	Savonius rotor, 387, 486
Fanno line, 648	turbine type, 392–393
Favorable pressure gradient, 430, 445–447,	ultrasonic, 394–395
495, 502	venturi meter, 399, 401-402
Film of fluid draining	volume flow type, 391
down an inclined plane, 268	vortex type, 393-394
down a vertical cylinder, 272	Fluid properties, 769–773
down a vertical plate, 271	Force coefficient, 278, 310
Finite-difference method, 541–543	Forces
Finite-element method, 541	hydrostatic, 74–84
Finite-span wings, 472–473, 530–534	on a turning vane, 150–151
First law of thermodynamics, 131, 163	Fourier's law of conduction, 27, 231
Fittings, losses in, 368	Francis turbine, 742
Flap, airfoil, 471, 472, 474	Free-body concept, 77, 133
Flat-plate flow,153–155, 428,	Free overfall, 687, 688
431–433	Free-streamline theory, 520–521
Blasius solution, 437–439, 478	Free-surface flows, 4–5, 236, 326, 497, 659

Free vortex, 253	Gravity force on an element, 61, 224
Friction drag, 154, 453	Grid, numerical, 542, 549, 553, 564
Friction losses, 168	
Friction factor, 42, 340, 342, 604	
compressible flow, 606	
Friction factor— <i>Cont</i> .	H
laminar pipe-flow, 342	
noncircular ducts, 364, 365	
rocky channels, 665	Hagen, G. L. H., 329
turbulent pipe-flow, 345, 348	Hagen-Poiseuille flow, 341
Friction velocity, 336	Half-body, plane, 256-258, 501-502
Frictionless flow, 227, 495, 613	axisymmetric, 537-538
Frontal area, 453, 462	Halocline, 120
Froude, William, 45, 294	Hazen-Williams formula, 47, 285
Froude number, 294, 297, 465–466, 662,	Head loss, 168, 340, 661
679, 683	of a hydraulic jump, 680
Froude scaling laws, 303–304	minor, 367–375
Fully developed flow, 258, 330–331	in pipe flow, 340
Fully rough flow	Heat addition, flow with, 613–618, 784–788
in channels, 665	Heat conduction equation, 233
on a flat plate, 443–444	Heat flux through an element, 232
in pipes, 347, 348	Heat transfer coefficient, 312
Fundamentals of Engineering (FE)	Hele-Shaw flow, 513-514
Exam, 43	Herschel-type venturi, 401
Exam, 13	High-lift devices, 474
	History of fluid mechanics, 44-46, 280
G	Hodograph for an oblique shock, 623, 624
· ·	Homologous points, 302, 727
	Honeycomb flow straightener, 408
Gage pressure, 63, 77, 148	Horseshoe vortex, 555
Gages, pressure, 97–101	Hot-wire or hot-film anemometer, 387, 389
Gas constant, 19, 573	Hydraulic diameter, 358, 363, 661
of various gases, 772	Hydraulic efficiency, 716
Gas dynamics (see Compressible flow)	Hydraulic grade line, 177-178, 339, 659
Geometric similarity, 301–303	Hydraulic jump, 198-199, 664, 678-681,
violation of, 302, 303, 307	702
Glide angle, 489	classification, 679
Gradient operator, 61, 216, 219	sloping, 702
Gradual contraction loss, 374	Hydraulic model, 307
Gradual expansion loss, 373	Hydraulic radius, 13, 358, 661
Gradually varied flow, 662, 682-687	Hydraulically smooth wall, 347
classification, 683-685	Hydrodynamic mass, 539-540
effect of width changes, 704	Hydrogen bubble technique, 34
Grashof number, 297	Hydrometer, 118
Gravity	Hydrostatic condition, 4, 59, 62, 63
acceleration of, 9, 64	in gases, 67–69
variation with radius, 65	in liquids, 65–66

Jet-turning vane, 150-151

Joukowski transformation, 562

on curved surfaces, 75 05	Journal of Harriston and John St.
in layered fluids, 82-84	
laboratory apparatus, 127	
on plane surfaces, 74–79	T/
Hydrostatic pressure distribution, 63-65	K
Hypersonic flow, 572, 639	
I Icebergs, 89–90 Ideal gas (see Perfect-gas law) Images, 521–522 Implicit numerical model, 550 Impulse turbines, 745–749 Incompressible flow, 17, 142–143, 220, 236, 572	Kaplan turbine, 742, 746, 749 Kármán momentum-integral relation, 154, 431 Kármán vortex street, 295–296 Kelvin oval, 513–514 Kinematic properties, 15 Kinematic similarity, 303–304, 498 Kinematic viscosity, 24 of various fluids, 24, 770–772 Kinetic energy, 18, 164 correction factor, 170–171 Kline-Fogleman airfoil, 473, 474
Induced drag, 533	Kutta condition, 523–524
Inertial coordinate system, 156	Kutta-Joukowski lift theorem, 510-511
Initial conditions, 234	
Integral equations (<i>see</i> Control volume) Intensity of turbulence, 334, 405	
Interface, 29	L
Internal energy, 18, 574	
Internal flow, 330 Inviscid flow, 36, 496 Irrotational flow, 230, 247–249, 496 frictionless, 247, 579–582 Isentropic flow, 579–582, 529 with area change, 583–587, 774 compared to Bernoulli's equation, 580–581 tables, 774–776 Isentropic process, 574	Lagrangian description, 14 Laminar flow, 34, 326, 327, 551 in a concentric annulus, 346–364 between parallel plates, 25–27, 258–260, 359–360 in a pipe, 341–344 between rotating cylinders, 261–263 Laplace's equation, 239, 251, 496, 497, 516, 793
Isothermal duct flow, 610–611	numerical simulation, 541–543
Isovelocity contours, 660	in polar coordinates, 498, 564, 793
, ,	Lapse rate, 68
	Large-eddy simulation, 554
	Laser-Doppler anemometer, 387, 389
J	Law-of-the-wall, 336
	Lawn sprinkler analysis, 163
	Layered fluids, 70, 82–84

Lift

definition of, 452, 468

in flow past a cylinder, 510-511

Hydrostatic forces

on curved surfaces, 79-83

Jet exit pressure condition, 149

Jet pump, 189, 712

Jet flow, laminar and turbulent, 326-327

Lift coefficient Metacentric height, 87, 88 of airfoils, 470–474, 527, 529–530, 533 Meter (see Fluid meters) supersonic, 632-637 Minor losses in pipe flow, 367–375 definition, 297, 468, 632 Mixing-length theory, 406 maximum, 473, 528 Model-testing principles, 278, 301–307 of a rotating cylinder, 511–512 pitfalls and discrepancies, 296-297 of a rotating sphere, 488 Mohr's circle, 4-5, 59 Lift-drag polar plot, 472 Molecular weight, 19, 573 Lifting line theory, 532 of various gases, 772 Lifting vane, 150–151, 469 Moment of inertia, 76, 88, 131 for various areas, 76 Linear momentum, 130, 146–158, 223–227 Liquids versus gases, 4-6 Momentum Local acceleration, 216 angular, 130, 158, 230 Local mass-flow function, 586-587 linear, 130, 146-148, 223-227 Logarithmic velocity profile, 336, 344 Momentum flux, 147, 224 Loss correction factor, 155-156 minor, 367-375 Momentum integral theory, 155, 431–433, 448 in pumps, 723 Lubricating oil properties, 769, 770, 772 Momentum thickness, 431 Lubrication theory, 271 for a flat plate, 438, 442 Thwaites' parameter, 448 Moody chart, 349, 443, 606, 665 Moody pump-size formula, 728 Moving shock wave, 595–596 M Multiple-pipe systems, 375-381 Mach angle, 619 Mach cone, 619 Mach number, 35, 221, 295, 297, 306, 572, N 579, 592 effect on body drag, 467 Mach waves, 594, 618-621, 628 NACA airfoils, 470-471, 528, 567 analogy to water waves, 663, 673, 681 Nappe, 687, 689 Magnus effect, 510 Natural convection, 312, 315, 573 Manifold flow, 422-423 Navier-Stokes equations, 45, 228, 789 Manning, Robert, 13, 665 nonuniqueness of, 263 Manning roughness factor, 13, 285, 665 Net positive suction head, 721–722 for various channels, 667 Network, piping, 380-381 Manometer, 70-73, 97, 99 Neutral buoyancy, 86, 386 two-fluid differential, 72, 108 Newton, Sir Isaac, 23, 45, 577 Mass, units of, 8 Newtonian fluid, 23, 227-228 Mass flow, 133, 142, 586, 599, 611 Newton's second law, 8, 130, 146 in choked flow, 586 for a fluid element, 62, 216, 224 MATLAB contouring, 506 in noninertial coordinates, 156-158 Mean free path of a gas, 7, 46 No-slip condition, 24, 34, 234, 259, 262, 340 Meniscus, 74 No-temperature-jump condition, 34, 234

Noncircular duct flow, 357-366

Metacenter, 87

Potential lines, 248, 498

Potential vortex, 253, 498

Overlap layer, 335-336, 441

Overrelaxation, 543

Power coefficient, 724, 753, 761	Propeller turbine, 742, 746, 749
Power-law correlation, for pipe flow, 309, 345	Properties of fluids, 769–773
for velocity profile, 155, 439, 442, 479	Propulsion, rocket, 158
for viscosity, 27, 772	Prototype, 36, 278
Power product method, 286	Pseudoplastic fluid, 28
Power specific speed, 744	Pump-system matching, 735–740
Prandtl, Ludwig, 2, 45, 434, 629	Pump-turbine system, 203, 746
flat-plate formulas, 479	Pumps, 47, 711
lifting line theory, 532	axial-flow, 729–733
Prandtl-Meyer angle, 630, 788	centrifugal, 161-162, 714-718
Prandtl-Meyer expansion waves, 628–631, 788	dimensionless, 724
Prandtl number, 297, 579	effect of blade angle, 719
Prefixes for units, 13	effect of viscosity, 729, 730
Pressure, 17, 59–61	multistage, 740
absolute versus gage, 63	net positive-suction head, 721–722
at a point, 60	in parallel, 738–739
stagnation, 312, 580	performance curves, 204, 212, 714, 720-
vacuum, 63	722, 733–735, 758, 759
vapor, 31–32, 772, 773	positive-displacement, 711-714
Pressure coefficient, 297, 454, 526, 546	in series, 739–740
Pressure condition at a jet exit, 149	similarity rules, 727-728
Pressure distribution, 62, 89	size effects, 728
hydrostatic, 63-65	
in irrotational flow, 249	
in a nozzle, 599, 601	R
in rigid-body translation, 91-93	
in rotating rigid-body motion, 93-97	
Pressure drop in pipes, 339, 345	Radius of curvature, 29, 235
Pressure drag, 453	Rankine half-body, plane, 256–258, 501–502
Pressure force	axisymmetric, 537–538
on a control volume, 147-148	Rankine oval, plane, 507–508
on a curved surface, 79–82	axisymmetric, 563
on an element, 60-61	Rankine-Hugoniot relations, 590
on a plane surface, 74–79	Rapidly varied channel flow, 662, 687
Pressure gradient, 61, 96, 259, 341	Rarefaction shock, 593, 624
adverse and favorable, 430, 445-448, 501	Rayleigh line, 649
Pressure head, 65, 102, 168	Reaction turbines, 742
Pressure measurement, 97–101	Rectangular duct flow, 365, 366
Pressure recovery of a diffuser, 373, 382,	Relative roughness, 349
385, 386	Relative velocity, 137–138, 152
Pressure transducers, 99–101	Reversible adiabatic flow (see Isentropic flow)
Primary dimensions, 8, 278	Reynolds, Osborne, 45, 294, 330
Principle of corresponding sates, 24–25	Reynolds number, 24, 278, 294, 297, 325, 427
Principle of dimensional homogeneity,	for an airfoil, 469
10–11, 280	local, 429
Problem-solving techniques, 44	Reynolds pipe-flow experiment, 330
Product of inertia, 76	Reynolds time-averaging concept, 333–334

Reynolds transport theorem, 133–141	Shaft work, 164
Rheology, 5, 28	Shape factor, 438, 443, 448
Rheopectic fluid, 28	Sharp-crested weir, 689-690
Rigid-body fluid motion, plane, 89-97	Shear stresses, 4–5, 23, 225
Rocket motion, 158	turbulent, 334
Rolling moment, 452	Shear work, 164
Rotameter, 395	Shock-expansion theory, 632–637
Rotating cylinder, 512	Shock polar, 623, 624
sphere, 488	Shock-tube wind tunnel, 598
Rotationality, generation of, 249–250	Shock wave, 250, 591, 521
Rough-wall effects	detached, 624
on channels, 665–667	linearized, 626
on cylinder drag, 298	moving, 595–596
on a flat plate, 443–444	normal, 590–595, 776–780
on pipe flow, 346–348	oblique, 621–628, 789–790
on pumps, 726	rarefaction, 593, 624
sand-grain tests, 347	strong versus weak, 624–626
on sphere drag, 321, 456	Shut-off head of a pump. 719–720
Roughness	SI units, 7–8
of commercial pipes, 349	Silicon resonance transducer, 67, 101
of open channels, 667	Similarity, 279, 301
,	dynamic, 304–305
	geometric, 301–303
S	violations, 302, 303, 307
S .	kinematic, 303-304, 498
	for pumps, 727–728
Salinity, 22	Sink
Sandgrain roughness, 347	line, 253, 498, 563
Savonius rotor, 387, 486	point, 536
Saybolt viscosity, 286	Siphon, 208, 406
Scaling laws, 278–279, 304, 306	Skin friction coefficient, 432, 438, 441, 442,
Scaling parameters, 282	449
Schedule-40 pipe sizes, 357	Slip conditions in inviscid flow, 237
Seawater properties, 22, 772	Sluice gate, 664, 677–678
Second law of thermodynamics, 131, 233,	drowned, 678, 701
606, 624, 679, 680	Smoke-flow visualization, 40, 470
Secondary dimensions, 8–9	Soap bubble, 29
Secondary flow, 365–366	Sonic boom, 620, 621
Separated flow, 429, 455, 456, 502	Sonic point, 581, 605
Separation bubble, 469	Source
Separation point	line, 253, 498, 517
on an airfoil, 525	point, 536
on a cylinder, 455	Spar buoy, 119
definition of, 447	Specific diameter, 760–761
in a diffuser, 447	Specific energy, 671–672
in a laminar boundary layer, 449, 501-502	Specific gravity, 12, 18
on a sphere, 456	Specific heat, 19–20, 573

Specific-heat ratio, 19, 295, 297, 572	compressible flow, 243
of common gases, 21, 772	geometric interpretation, 240-241
Specific speed, 730-731, 734, 735	irrotational flow, 239, 497
Specific weight, 17	polar coordinates, 243
of common fluids, 65, 772	of Stokes, 269, 535
Speed of sound, 35, 221, 575-577	Streamline, 37-40, 240, 498
in the atmosphere, 773	Streamline coordinates, 267
of a perfect gas, 35, 577	Streamlining of bodies, 456
of various materials, 577	Streamtube, 38, 143, 174
of water, 577, 769	Stress gradients, 225
Sphere	Stress tensor, 225, 227, 794
inviscid flow, 265, 538-539	symmetry condition, 231
viscous flow, 298, 321, 456, 457, 483, 488	Strouhal number, 295, 296, 297
Spherical droplet, 29	Subcritical channel flow, 663, 672
Spherical polar coordinates, 265, 535–536	Subsonic flow, 572
Stability of floating bodies, 86–89	Substantial derivative, 216
Stability of a pump, 720, 763	Suction specific speed, 731
Stability map of a diffuser, 382	Sudden expansion or contraction, 192-193,
Stagnation density, 580	371–372
Stagnation enthalpy, 167, 578, 614	Supercritical channel flow, 663, 672-673
Stagnation point, 38, 249, 252, 256, 519	Superposition of potential flows, 254-257,
plane flow near, 39-40, 265	500-501
Stagnation pressure, 312, 580	Supersonic airfoil theory, 632-637
Stagnation properties, 578-580	Supersonic flow, 149, 572, 618
Stagnation speed of sound, 579	Surface forces, 61, 225
Stagnation temperature, 579	Surface tension, 29-31, 235, 693
Stall angle of attack, 528	of air-water, 30, 773
Stall speed, 473	of various interfaces, 29, 772
Stalled airfoil, 470	Sutherland-law viscosity formula, 27, 771
Standard atmosphere, 69, 773	Swallow float, 86
Stanton number, 312	System, 16, 130
Starting vortex, 469	System-matching of pumps, 735–740
State, equation of, 16, 18, 67, 131, 234, 573	Systems of units, 7
for gases, 18–20, 573–574	
for liquids, 21–22	
van der Waals, 642	T
Static-pressure measurement, 97	
Steady-flow energy equation, 167–168, 578,	
661	Tainter gate, 115
Stokes flow past a sphere, 47, 457, 483, 487	Takeoff analysis for aircraft, 475
Stokes' stream function, 269, 535	Taylor number, 262
Stopping vortex, 469	Taylor vortices, 263
Strain rate, 23, 247	Tee-junction losses, 368
Stratified flow, 221, 250	Temperature
Streakline, 37–38	definition, 17
Stream function, 238-244, 497	rise due to dissipation, 238
axisymmetric flow, 243-244, 535	Terminal velocity, 309, 483

Thermal conductivity, 27, 231 Thermodynamic properties, 16, 131, 771-772 Thickness drag, supersonic, 635 Thin-airfoil theory, 524-527, 635 Thixotropic fluid, 28 Three-dimensional flow, 535-540, 637 compressible, 637–640 Three-reservoir pipe junction, 376, 379 Throat in a duct, 585 Thwaites' integral method, 448-450 Time-averaging of turbulence, 333-334 Timeline, 37 Tornado flow model, 255, 501, 556 Torricelli's formula, 179 Total head, 168, 177 Trailing vortex, 469, 531-532 Transition to turbulence, 326–330 in a boundary layer, 299, 432, 439 on a flat plate, 405, 439 in a jet exit stream, 327 in pipe flow, 326, 328 in sphere flow, 310, 405 Transitional roughness, 347 Transonic flow, 572 Transport properties, 16 Trapezoidal channel, 668, 670-671 Triangular duct flow, 365, 366 Tri-diagonal matrix, 550 Trip wire, 405 Troposphere, 68 Tube bundle, 412 Turbines, 742–749 efficiency, 744, 748-749 impulse, 745-749 reaction, 742 windmills, 750-754 Turbomachine classification, 711–714 Turbulent flow, 3, 34, 376 on a flat plate, 441-444 fluctuations 326, 333-334 historical details, 328-330 intensity, 405 intermittency, 326 numerical models, 552-553 in a pipe, 328, 344-348 Turbulent puff, 328

Turbulent shear flow, 333-337 logarithmic overlap layer, 335–337 wall and outer layers, 335-336 Turbulent stresses, 334 Two-phase flow, 6, 219

IJ

Ultrasonic flowmeter, 394 Uncertainty of data, 42-43 Uncoupling of velocity and temperature, 236 - 237Uniform channel flow, 662, 664-667 Uniform stream, 252-253, 498, 517, 536 Unit normal vector, 132, 136 U. S. Standard Atmosphere, 69, 773 Units, 7–10 Universal gas constant, 19, 573 Unsteady Bernoulli equation, 175, 248, 249, 496 Unsteady flow, 36, 40, 549 Upwind differencing, 552

\mathbf{V}

V-notch weir, 692-693, 705 Vacuum pressure, 63 Valve flows, 12, 367-370 Van der Waals' equation, 642 Vane flow, 150–151 Vapor pressure, 31–32 of various fluids, 772 of water, 32, 773 Varied flow, 662, 682-687 Vector differentiation, 215–217 Velocity-defect law, 336 Velocity diagrams, 717, 732, 743 Velocity field, 14-15, 215 Velocity gradient, 23, 246 Velocity head, 168, 367 Velocity measurement, 385–390 Velocity of approach factor, 398 Velocity potential, 248, 496, 535

Velocity profile, 23, 34, 439, 449, 535	Waterline area, 88
for the Blasius solution, 437, 439	Wave drag
Vena contracta, 391, 392, 397, 398, 678	of ships, 464–466
VentureStar spacecraft, 639–640	of supersonic bodies, 635
Venturi flume, 704	Wave motion, 494, 576, 663–664, 672
Venturi meter, 180–181, 207, 399, 401–402	periodic, 696
Virtual mass, 539–540	Weber number, 294, 297, 693
Viscometer, 50, 51, 203	Weirs, 47, 687–693
Viscosity, 22–24	broad-crested, 689, 690
formula for liquids, 27	Crump type, 705
generalized chart, 25	drowned, 196, 705
Sutherland and power-law, 27, 772	inviscid flow model, 560
of various fluids, 24, 769, 771-772	sharp-crested, 689-690
Viscous dissipation, 233	Wetted area, 453, 465
Viscous flow analysis, 258-263	Wetted perimeter, 358, 661
Viscous force on an element, 226	Wind turbines, 750–754
Viscous stresses, 23, 225, 228	performance of, 753
symmetry condition, 231	typical designs, 751
Viscous sublayer, 337–347	world energy distribution, 754
Viscous work, 164	Wing theory, two-dimensional, 523-534
Visualization of flow, 40	finite span, 472, 530-534
Volume expansion rate, 15	Work, 164
Volume flow, 132, 142	due to viscous stresses, 232
measurement of, 391-404	
Von Kármán, Theodore, 45, 154, 406, 431,	
567	V
Vortex, line, 253-254, 498, 503, 518	\mathbf{X}
infinite row, 503-504	
potential, 253, 498	X-33 spacecraft, 639-640
starting and stopping, 469	X-33 spacecraft, 037–040
trailing, 531–532	
Vortex flowmeter, 393-394	
Vortex shedding, 295–296	\mathbf{Y}
Vortex sheet, 504–505	
for a thin airfoil, 524-527	
Vorticity, 247	Yawing moment, 452
·	Young's modulus, 577
W	
**	Z
Wake flow, 190, 195, 250, 426, 429, 455	Zero-lift airfoil angle, 530
Wall roughness, 339–340	

Wall shear stress, 341, 342, 438, 442

Zones of action and silence, 620, 672