1º EE – ES238 – Eletrônica 1

- 1) Considere o circuito amplificador abaixo que emprega dois transistores Q_1 (com \mathfrak{B}_1) e Q_2 (com \mathfrak{B}_2) em cascata para alimentar uma carga $R_L = R_c$ (ou seja, R_c é R_L). A entrada no circuito é feita aplicando uma tensão alternada (V_{in}) no emissor de Q_1 e a saída (V_o) é retirada no coletor de Q_2 . Responda em função dos parâmetros do circuito (V_{cc} , R_1 , R_2 , R_1 , R_2 , R_2 , R_1 , R_2 , R_2 , R_3 , R_4 , R_5 , R_6 , R_6 , R_6 , R_6 , R_6 , R_8 , R
 - (a) (1 ponto) Classifique a configuração (EC, BC, CC) em cada transistor (explique)?
 - (b) (0,5 ponto) Determine o ganho exato total de corrente no circuito $\mathfrak{B}_T = i_{cQ2}/i_{eQ1}$;
 - (c) (1,5 ponto) Na análise DC: obtenha r_{e1} ' = 25mV/I_{EQ1} , r_{e2} ' = 25mV/I_{EQ2} , e V_{CEQ2} ;
 - (d) (2 pontos) Na análise AC: obtenha o circuito AC equivalente. Calcule $Av=V_o/V_{in}$, Z_{in} , Z_{out} incluindo a carga R_c e considerando $r_o >> R_c$ (Aqui nessa parte do item use \mathfrak{B}_T , r_{e1} ', r_{e2} ', desde que você tenha mostrado seus cálculos para eles nos itens anteriores, de forma a simplificar a escrita dos seus resultados).

- 2) Considere o regulador de tensão abaixo empregando um par de transistores Q_1 e Q_2 . Sabendo que a tensão não-regulada oriunda do retificador é V^+ , que nos transistores tem-se que $\beta_1 = \beta_2$ e $V_{BE1} = V_{BE2} = V_{BE}$, que o zener tem tensão de *breakdown* V_Z e corrente mínima I_{zmin} , e que a carga máxima na saída é I_{Lmax} , responda:
 - (a) (0,5 ponto) Análogo ao que foi feito em aula, mostre como a lógica do circuito mantém a tensão na saída V_o constante caso haja uma tendência de variação nessa tensão de saída;
 - (b) (0,5 ponto) Calcule o valor de V_o;
 - (c) (1,0 ponto) Calcule o valor de R_{Smax} para que o circuito mantenha-se funcionando corretamente sob carga máxima na saída.

OBS: Procure ser claro nas suas respostas. Use letra legível, bom português e seja organizado. Boa Sorte!!!

Universidade Federal de Pernambuco Centro de Informática Prof. Renato Mariz de Moraes

- 3) No circuito amplificador *push-pull* modificado da figura abaixo os transistores e os diodos são "casados", e além de outras consequências, isso implica que Q_1 , Q_2 e Q_3 apresentam o mesmo \mathfrak{B} e V_{BE} . Responda:
 - (a) (1,0 ponto) Faça a análise DC calculando I_D e mostre que r_e' é o mesmo para os diodos e transistores;
 - (b) (0,5 ponto) Calcule Z_{in} e Z_{out} .
 - (c) (1,5 ponto) Obtenha o circuito AC equivalente. Depois, considerando r_e ' muito menor que qualquer outra resistência (ou impedância) no circuito, calcule $Av = V_{out}/V_{in}$. Em seguida, no final do seu cálculo, tomando que $(\mathfrak{B}+1)R_L>>R_3$, mostre que $Av\cong R_3/R_4$.

