Computational Methods Summer 2021 **HOMEWORK 10**

Due Date: Wednesday, June 16

1. Consider the following system of equations.

$$f_1(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$$

$$f_2(x, y, z) = 2x^2 + y^2 - 2z = 0$$

$$f_3(x, y, z) = 3x^2 - 4y + z^2 = 0$$

This system can be concisely represented as $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, where $\mathbf{F}(\mathbf{x}) = (f_1, f_2, f_3)^T$, $\mathbf{x} = (x, y, z)^T$ and $\mathbf{0} = (0, 0, 0)^T$.

- (i) Find the Jacobian matrix $D\mathbf{F}(\mathbf{x})$.
- (ii) (MATLAB) Starting with the initial condition $\mathbf{x}_0 = (0.5, 0.5, 0.5)^T$, implement 5 steps of the multivariable Newton method to find the approximation \mathbf{x}_5 .
- (iii) Compute the absolute backward error of the approximate solution \mathbf{x}_5 in the 2-norm.
- 2. (Optional, not graded) Let $S_r(x,y,z)$ denote a sphere with center (x,y,z) and radius r>0. The spheres $S_{\sqrt{8}}(1,0,1)$, $S_{\sqrt{2}}(0,2,2)$, and $S_{\sqrt{2}}(0,3,3)$ intersect in a single point. Find this point.