ANTEPROYECTO HYDROPONIC

MACC

David Santiago Florez Juan Camilo Ruiz Ortiz Esteban Hernandez Estefania Laverde

CONTENIDO

01. DEFINICIÓN DEL PROBLEMA

04. ALCANCE

06.

02. REQUISITOS FUNCIONALES Y NO FUNCIONALES

05. TECNOLOGÍAS DISPONIBLES

03. REFERENCIAS DE SOLUCIONES

SOLUCIONES POSIBLES

0 0 0

DEFINICIÓN DEL PROBLEMA

EL PROBLEMA

Crear una aplicación que sirva para <u>monitorear y</u> <u>controlar el estado de un pequeño cultivo hidropónico</u> <u>casero</u>.

REQUISITOS FUNCIONALES Y NO FUNCIONALES

REQUISITOS FUNCIONALES

REQUISITOS NO FUNCIONALES

- Una interfaz de usuario simple e intuitiva.
- Disponible todo el tiempo.
- Multiplataforma (Android, ios).
- Usar herramientas open source.

000

INTER FACE

Barra principal de tareas

TRIAL TRACKER

• VISUALIZACIÓN DE DATOS CAPTURADOS

CONTROLAR DE ACTUADORES DESDE LA APP

• NAVEGACIÓN FÁCIL E INTUITIVA

TECNOLOGÍAS DISPONIBLES

0

MQTT

Protocolo de comunicación M2M

FLUTTER

Framework de desarrollo

APLICACIÓN MÓVIL HÍBRIDA

Principalmente para la plataforma de Android.

FIREBASE

Base de datos con posibilidad de monitoreo a tiempo real.

TECNOLOGÍAS DISPONIBLES

0

MICROPROCESADORES

Arduino y Raspberry Pi

DATOS EXTRAIDOS PREVIAMENTE

THON

Principalmente para la plataforma de Android.

///

Aplicación informativa

del cultivo

 Aplicación que cumple todos los requerimientos funcionales, y es desarrollada en nativo (Android).

Aplicación que cumple

 Aplicación que cumple todos los requerimientos funcionales, y es desarrollada como multiplataforma.

BIBLIOGRAFÍA

- [1] GL Barbosa y col. "Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods." En: International Journal of Environmental Research and Public Health 12 (2015). ISSN: 6879-6891. DOI: 10.3390/ijerph120606879. URL: https://www.mdpi.com/journal/ijerph.
- [2] Kyle Gabriel. AUTOMATED HYDROPONIC SYSTEM BUILD. https://github.com/kizniche/Mycodo. 2020. URL: https://kylegabriel.com/projects/2020/06/automated-hydroponic-system-build.html.
- [3] The Yosh. Terrarium PI 3.10.0. https://github.com/theyosh/Terrarium PI. 2021. URL: https://terrarium.theyosh.nl/index.html.
- [4] Janeen Wright. The Greenhouse Grower List Of 15 Apps For 2015. 2014. URL: https://www.greenhousegrower.com/management/the-greenhouse-grower-list-of-15-apps-for-2015-slideshow/#slide=64654-64656-19.
- [5] X Zhang y col. "Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory." En: International Journal of Agricultural and Biological Engineering 11 (2018), págs. 33-40. ISSN: 6879-6891. DOI: 10.25165/j.ijabe. 20181102.3420. URL: https://www.mdpi.com/journal/ijerph.