

Что такое компьютерное зрение?

Зрение

Машинное обучение и традиционное программирование

Определение

- Компьютерное зрение это наука и технология, позволяющая заставить машины видеть.
- Она включает в себя разработку теоретических и алгоритмических методов получения, обработки, анализа и понимания визуальных данных, а также использования этой информации для создания значимых представлений, описаний и интерпретаций мира (Forsyth & Ponce, Computer Vision: A Modern Approach).

"Понимание" изображения

- Низкоуровневые процессы это примитивные операции над изображениями (например, повышение резкости изображения, изменение контраста). Входом и выходом являются изображения.
- Процессы среднего уровня включают сегментацию, описание объектов и классификацию объектов. Информацией является изображение, а результатом атрибуты, связанные с изображением. Это может быть сделано с помощью комбинации предварительной обработки изображений и алгоритмов ML.
- Процессы высокого уровня включают осмысление всего изображения, т. е. распознавание заданного объекта, реконструкцию сцены и преобразование изображения в текст. Эти задачи обычно ассоциируются с человеческим познанием.

Задачи компьютерного зрения

- Распознавание сцены
- Распознавание объектов
- Обнаружение объектов
- Сегментация (экземпляры, семантика)
- Отслеживание
- Динамическая адаптация к окружающей среде
- Планирование траектории

Приложения

- Автономный транспорт
- Розничная торговля и электронная коммерция
- Контроль качества на произвдстве

Медицинские приложения

Классификация


```
Sensitivity = True_Positive / (True_Positive + False_Negative)
Specificity = True_Negative / (True_Negative + False_Positive)
```

• Esteva A. et al. Deep learning-enabled medical computer vision //NPJ digital medicine. – 2021. – T. 4. – №. 1. – C. 5.

1. Ускорение обработки медицинских данных

Автоматизация анализа медицинских текстов и изображений.

Снижение временных затрат на рутинные задачи и бюрократию.

2. Ранняя диагностика заболеваний

Выявление заболеваний на ранних стадиях с помощью анализа медицинских изображений.

Обнаружение опухолей и других патологий с высокой точностью.

3. Автоматизация контроля в медицинских учреждениях

Мониторинг чистоты палат и выявление загрязнений.

Контроль соблюдения персоналом норм гигиены (использование защитной одежды, обработка рук).

4. Оптимизация диагностики и лечения

Сокращение времени диагностики за счет исключения ненужных тестов.

Повышение точности диагностики за счет минимизации человеческих ошибок.

Поддержка врачей в принятии решений на основе анализа данных.

5. Хирургическая поддержка и обучение

Предоперационное планирование с использованием 3D моделирования. Симуляция хирургических процедур для обучения и повышения квалификации.

Помощь в принятии решений во время сложных операций.

6. Удаленный мониторинг и домашняя диагностика

Дистанционное наблюдение за состоянием пациентов, особенно пожилых.

Возможность домашней диагностики и мониторинга для удобства пациентов.

7. Медицинские исследования и клинические испытания

Анализ больших объемов визуальных данных для разработки персонализированных методов лечения.

Ускорение клинических испытаний за счет автоматизированной обработки данных.

8. Мониторинг восстановления пациентов

Отслеживание состояния пациентов после выписки для корректировки лечения.

Анализ динамики восстановления с помощью визуальных данных.

Математическое моделирование

Уравнения гидродинамики + CV

Уравнения аналитической механики

+ анатомические модели

+ CV

nnU-Net

• Динамическая размерность и глубина сети, количества фильтров

• Автоматическая нормализация изображений и оптимизация лосс-функции

Isensee F. et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation //Nature methods. – 2021. – T. 18. – №. 2. – C. 203-211.

Segment Anything

Segment Anything Data Engine

- 1.1 миллиард масок
- 11 миллионов изображений

test SAM

Segment anything in medical images a Performance Distribution of Internal Validation Tasks b medical images Performance Correspondence of Internal

Ma J. et al. Segment anything in medical images //Nature Communications. – 2024. – T. 15. – №. 1. – С. 654.

(b)

21

Экспериментальная биомеханика

Экспериментальное исследование

и математическое моделирование механического поведения биоматериалов

Тест на раздувание биоматериалов

Карта перемещений при раздувании латексной мембраны до 10 кПа, полученная методом 3d цифровой корреляции изображений (3d DIC)

Профили образца в начале эксперимента (фиолетовый) и при давлении 10 кПа (желтый)

Контакты

@ditsdd

dits.dd@talantiuspeh.ru