

Diagramas de cajas (boxplots), de violín (Violin plots) y sinaplots

Visualización Científica
4 de octubre de 2016
Eduardo Castro-Nallar, PhD
Center for Bioinformatics and Integrative Biology
www.cbib.cl
www.castrolab.org

Boxplots o diagramas de caja

- Otra forma de visualizar una distribución
- Percentiles, quintiles, cuartiles, etc.

¿Qué es un percentil?

- El valor por debajo del cual un porcentaje de observaciones cae
- Percentil 20, es el valor donde el 20% de las observaciones están ubicadas

Table 1. Test Scores.

Number	Rank
3	1
5	2
7	3
8	4
9	5
11	6
13	7
15	8

¿Qué es un percentil?

- Ejemplo con percentil
 25
- $R = P/100 \times (N + 1)$
- $R = 25/100 \times (8 + 1) = 9/4 = 2.25$
- Entre 5 y 7
- 0.25*(7-5) + 5 = 5.5

Table 1. Test Scores.

Number	Rank
3	1
3 5 7	1 2 3 4 5 6 7
7	3
8	4
9	5
11	6
13	7
15	8

Boxplots o diagramas de caja

- Cuartil = 25avo de la distribución
- Quintil = un quinto de la distribución

Boxplots - parientes del histograma y del gráfico de densidad

https://sites.google.com/site/davidsstatistics/home/notched-box-plots

Boxplots

Gratuidad

 Los requisitos para poder acceder a este beneficio es ser estudiante que ingresa a primer año de Educación Superior y pertenecer al primer, segundo o tercer quintil de ingreso per cápita

¿Qué es un quintil?

Second

Middle

Fourth

Quintile

Bottom

Utilidad de los boxplots

- Valores atípicos probables - 1.5 IQR
- Valores atípicos 3 IQR

Boxplots sirven para comparar distribuciones y detectar valores atípicos

Boxplots sirven para comparar distribuciones y detectar valores atípicos

Buenas prácticas - mostrar los puntos del boxplot

Buenas prácticas - identificar outliers

Malas prácticas - ocultar la distribución de datos con un gráfico de barras

Malas prácticas - ocultar la distribución de datos al usar una escala inadecuada

Violin plot

- Análogo a histogramas y gráficos de densidad
- Es un boxplot con un gráfico de densidad a cada lado

Violin plot

 También puede mostrar el IQR y la mediana

 Muestra el número de puntos, la distribución, valores atípicos, y la dispersión de los datos

- probemos geom_boxplot()
- p <- ggplot(mpg, aes(class, hwy))
- p + geom_boxplot()

- Podemos decirle a ggplot que nos muestre los puntos
- p + geom_boxplot() + geom_jitter(width = 0.2)

- Podemos decirle a ggplot que queremos ver intervalos de confianza en nuestro boxplot
- p + geom_boxplot(notch = TRUE)

Agregar un "notch" o muesca

 Si las muescas no se superponen, hay evidencia fuerte de que las medianas son significativamente diferentes

- De manera similar podemos construir un violin plot
- p <- ggplot(mtcars, aes(factor(cyl), mpg))
- p + geom_violin()

Dejemos instalado el paquete sinaplot

- install.packages("sinaplot")
- library("sinaplot")
- x <- c(rnorm(200, 4, 1), rnorm(200, 5, 2), rnorm(200, 6, 1.5))
- groups <- c(rep("Cond1", 200), rep("Cond2", 200), rep("Cond3", 200))
- sinaplot(x, groups)

"They are different, but not different enough to matter [...]"

- Roald Hoffmann, Premio Nobel de Química 1981