Outline

- search engine basics
- bibliometric and related methods
- information extraction methods
- relevant WWW resources
- emerging issues

Bibliometric Methods

- the methods we have discussed so far do not take into consideration *relationships among documents*, such as:
 - citations in a bibliography
 - hyperlinks
- *bibliometric methods* exploit the structure of such links

Bibliometrics Illustrated

GoogleTM and the PageRankTM Algorithm

- the Google search engine uses
 - Boolean methods to determine relevant pages
 - * bibliometric methods to rank these relevant pages
- net result: top ranking pages tend to be authoritative sources
- http://www.google.com

The PageRank Idea

• the "weight" of a page is determined by the weights of pages that link to it

The PageRank Algorithm

• iteratively update weight W_j associated with each page

$$W_{j} = (1 - d) + d \sum_{i=1, i \neq j}^{N} l_{i,j} \frac{W_{i}}{n_{i}}$$

d fraction of weight that gets forwarded

 $l_{i,j}$ 1 if *i* links to *j*, 0 otherwise

 n_i number of links emanating from i

ARROWSMITH: Finding Complementary Literatures

- another sense in which documents can be linked: refer to the same terms/concepts
- ARROWSMITH aids in identifying relationships that are implicit, but not explicitly described, in the literature
- http://kiwi.uchicago.edu/
- Swanson & Smalheiser, *Artificial Intelligence* 91, 1997

The ARROWSMITH Method

- given: query concept C (e.g. *migraine*)
- do:
 - run MEDLINE search on C
 - derive a set of words (B) from titles of returned articles; retain words
 - run MEDLINE search on each B word to assemble list of A words
 - rank A-C linkages by number of different intermediate B terms

Restricting the Search in ARROWSMITH

- prune B list by
 - using a predefined stop-list ("clinical", "comparative", "drugs",...)
 - having a <u>human</u> expert filter terms
- prune A list using *category restrictions* (e.g. dietary factors, toxins, etc.)
- prune C-B, B-A linkages by requiring:

$$Pr(B \mid C) > Pr(B)$$

$$Pr(A \mid B) > Pr(A)$$

ARROWSMITH Case Studies

- indomethacin and Alzheimer's disease
- estrogen and Alzheimer's disease
- phospholipases and sleep
- etc.

Bibliometric Methods: Prospectus

- currently there are good bibliometric-related tools for
 - Web searching (Google)
 - MEDLINE discovery (ARROWSMITH)
- future methods will perhaps
 - integrate diverse sources (MEDLINE, Web pages, sequence databases, etc.)
 - try to characterize the relationships encoded by links

Outline

- search engine basics
- bibliometric and related methods
- information extraction methods
- relevant WWW resources
- emerging issues

Information Extraction

- *information extraction* involves automatically extracting key fragments from documents
- we'll consider three types of IE tasks
 - named entity recognition: identify instances of a specified set of classes
 - keyword extraction: extract a set of keywords that characterizes a given set of documents
 - relation extraction: extract instances of a specified set of relations

Named Entity Recognition

- in addition to controlled vocabularies (e.g. MeSH), it would be useful to have methods for recognizing general classes of terms
- protein names, for example, can be accurately recognized using *morphological*, *lexical*, and *syntactic* information
- Fukuda et al., *Pacific Symposium on Biocomputing*, 1998

Recognizing Protein Names

• morphological analysis is used to identify "core terms" (e.g. Src, SH3, p54, SAP) and "feature terms" (e.g. receptor, protein)

The focal adhesion kinase (FAK) is...

• lexical and syntactic analysis is used to extend terms into protein names

The focal adhesion kinase (FAK) is...

Recognizing Protein Names: Morphological Analysis

- make list of candidate terms: words that include upper-case letters, digits, and non-alphanumeric characters
- exclude words with length > 9 consisting of lower-case letters and -'s (e.g. full-length)
- exclude words that indicate units (e.g. aa, bp, nM)
- exclude words that are composed mostly of non-alphanumeric characters (e.g. +/-)

Recognizing Protein Names: Lexical/Syntactic Analysis

merge adjacent terms
 Src SH3 domain → Src SH3 domain

 merge non-adjacent terms separated only by nouns, adjectives and numerals

Ras guanine nucleotide exchange factor Sos

Ras guanine nucleotide exchange factor Sos

Recognizing Protein Names: Lexical/Syntactic Analysis

• extend term to include a succeeding uppercase letter or a Greek-letter word

```
p85 alpha → p85 alpha
```

Keyword Extraction

- example: given a protein family, extract keywords from associated abstracts that have a high degree of specificity to family
- can be thought of as statistical annotation
- Andrade & Valencia, *Bioinformatics* 14(7), 1998

Keyword Extraction: Annotating Protein Families

- to evaluate a candidate keyword for a query family, want to consider
 - how frequently word occurs in abstracts associated with family
 - how frequently word occurs in abstracts for other families on average
 - how much variance there is in word frequency for other families

Keyword Extraction: Calculating Word Frequencies

• for each word and each family, determine the frequency of the word in the family as:

:

Keyword Extraction: Word Frequency Statistics

• determine how frequently word *w* occurs in abstracts for families in background on average

$$-- \sum_{\iota=1}$$

Keyword Extraction: Word Frequency Statistics

 determine how much variance is there is in word frequency for families in background

$$\sigma^{w} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (F_{i}^{w} - \overline{F}^{w})^{2}}$$

Keyword Extraction: Ranking Keywords

• a word w that has a high z-score is a candidate keyword

Keyword Extraction: Example

• keywords have z-score > 0.1 and appear in abstracts for > 50% of proteins in family

family	SwissProt annotation	extracted keywords
lndk	diphosphate ndk ndp	awd nm23 ndp diphosphate nucleoside drosophila k kinase
	nucleoside atp kinase transferase	
lppn	proteinase thiol protease	papaya papain thiol proteinase cysteine

Relation Extraction

- given predefined relations of interest, extract *instances* of these relations
- example relations
 - subcellular localization of proteins[Craven & Kumlien, ISMB 1999]
 - chromosome locations of genes [Leek, M.S. thesis 1997]
 - protein-protein interactions[Blaschke et al., ISMB 1999;Thomas et al., PSB 2000]

Relation Extraction: Examples

... which plays a pivotal role in during the biosynthesis and secretion of collagen molecules in the endoplasmic reticulum.

...where they lead to the localized activation of a serine protease cascade required to produce the active spatzle ligand to activate the toll receptor.

Relation Extraction: Hand-Coded Extractors

- [Blaschke et al., ISMB 1999]
- extract protein-protein interactions by looking for sentence fragments that conform to pattern:

cprotein A> ... <action> ... protein B>

• where <action> is verb from specified list: acetylat-, activat-, associated with, bind-, destabilize-, inhibit-, interact-, is conjugated to, modulat-, phosphorylat-, regulat-, stabiliz-, suppress-, target

Relation Extraction: Learned Extractors

- [Craven & Kumlien, ISMB 1999]
- use machine-learning methods to induce regularities in sentences expressing a given relation
- approach:
 - parse sentences using a shallow parser
 - learn rules that can characterize positive examples in terms of (i) relationships among phrases (ii) word statistics in phrases

Relation Extraction: A Learned Rule (Simplified)

- look for sentences that match the pattern:
 - <P> <location NP >
- and <location NP> satisfies a naïve Bayes classifier that highly weights the words: *nucleu*, *nuclei*, *mitochondria*, *vacuol*, *plasma*, *insid*, *membran*, *in*, *to*, *with*,...

Relation Extraction: One Experiment

- *training data*: 336 protein-location pairs from Yeast Protein Database and associated abstracts from MEDLINE
- *test data*: 2,889 abstracts characterizing 6 proteins
- baseline for comparison: predicting a protein is found in a subcellular location if the protein/location are referenced in the same sentence

Relation Extraction

• suppose we have a hierarchy of relations

 even if we can't accurately do extraction for most specific relations, there is value in extracting more abstract relations (consider ARROWSMITH)

Relation Extraction

• Given a collection of extracted instances and some simple background rules, we can do automatic inference (e.g. *what indirectly regulates IL-6?*).

Relation Extraction: Prospectus

- current methods
 - require large amount of human effort to use
 - consider sentences in isolation
 - handle only simple sentences
- best future methods will probably
 - involve both hand-coding and learning
 - take better advantage of controlled vocabularies, ontologies, etc.