浙江大学

电路与电子技术 实验报告

实验名称: 小车检测电路和电机驱动电路测试

实验人员: 潘谷雨、杨骐恺

报告撰写: 潘谷雨

学号: 3220102382

实验日期: 2023 年__10__月__23__日

地点: 东三 406

【实验目的】

- 1. 了解智能小车结构和工作原理
- 2. 掌握光电检测的原理和测量方法
- 3. 了解直流电机驱动电路工作原理和测试方法
- 4. 学会参照原理图测量和调试 PCB 板

【实验内容】(测试方案,含仿真与硬件测试两种类型)

- 一、红外光电检测电路测试
 - (1) 分析红外光电检测电路参数设计
- 1. 红外光电检测电路中,用万用表 $600\,\Omega$ 欧姆挡测量电阻 R1 阻值,用 $60k\,\Omega$ 欧姆挡测量 R2 阻值。
- 2. 分析电阻 R1 与比较器比较电压选取的合理性。

- (2) 缺省高度(2cm),白底/黑底/其它表面下,光电管反射电压测量比较
- 1. 控制小车缺省高度 2cm,以黑胶布为底,选取 3 组光电管,观察 LED 灯的发光情况,并用万用表 6V 直流电压测量比较器输入电位(图中 7 脚)。

- 2. 用白底、棕底、深蓝底分别重复上述实验,记录数据。
 - (3) 不同高度(2至6cm), 光电管反射电压测量比较
- 1. 保持反射面白底,控制小车高度 2cm,选定一只光电管,观察 LED 灯的发光情况,用万用表 6V 直流电压挡测量比较器输入电位(上图 7 脚)。
- 2. 逐渐升高小车高度,测量多组数据,至小车高度 6cm 停止。比较各组数据,总结光 电检测轨道对安装高度的要求。
 - (4) 确定区分黑白地面的比较电压值,总结光电检测轨道对地面的最低要求
- 1. 选定一个LM339集成比较器,分别选取8脚、6脚、10脚,用万用表6V直流电压挡测量比较器的比较电压。
- 2. 结合上述(2)(3)实验,总结光电检测轨道对地面的最低要求。
 - (5) 观察环境光亮对光电检测电路的影响
- 1. 控制小车高度不变,选取两光电管,在默认光强下(即无手电筒)观察 LED 灯的发光情况,用万用表 6V 直流电压挡测量比较器输入电位。
- 2. 调整手电筒位置,分别使两光电管置于弱、中、强光照中,重复上述实验。
- 二、测量直流电机正转和反转时的 VA 特性
- 1. 在小车上选取左轮电机,将电机导线并联在稳压直流源两端。
- 2. 控制稳压直流源输出电压,记下车轮旋转情况与电压源屏幕所示电流。
- 3. 使稳压直流源输出电压反向, 重复上述实验。

- 三、电机驱动模块功能验证
- 1. 在电源驱动模块,用导线将 ENA、IN1、IN2 接地,输出端 OUT1、OUT2 的电压(均用 万用表 60V 直流电压挡),并观察电机工作状态。
- 2. 改变 ENA、IN1、IN2 所接入电平,遍历所有可能输入,重复上述实验。

四、电机开环控制时小车运行状态观测

- 1. 在小车电源驱动模块上通 15V 总电压,调整 ENA、IN1、IN2、ENB、IN3、IN4 所接电位,控制左右电机均正转,观察小车运行状态。
- 2. 左电机正转时,右电机停止,观察小车运行状态。
- 3. 左电机正转时,右电机反转,观察小车运行状态。
- 4. 右电机正转时, 左电机停止, 观察小车运行状态。
- 5. 右电机正转时, 左电机反转, 观察小车运行状态。

【测试过程与结果】 (注明测试设备、原始数据)

- 一、红外光电检测电路测试(测试设备: UT890D+数字万用表)
- (1) 分析红外光电检测电路参数设计

 $R1 = 148.1 \Omega$, $R2 = 9.86k \Omega$.

(2) 缺省高度(2cm),白底/黑底/其它表面下,光电管反射电压测量比较

反射面	U1/V	U2/V	U3/V	LED 灯 发光情况
黑底	3.609	3.358	3. 361	暗
白底	0.184	0.192	0.189	亮
棕底	0.216	0. 223	0.217	亮
深蓝底	0.395	0.387	0.391	暗

(3) 不同高度(2至6cm),光电管反射电压测量比较

由于小车高度 2cm 时,LED 灯均不发光,因此从默认高度 1.25cm (此时 LED 灯亮) 开始测量,测至出现两组 LED 灯暗实验组为止。

距离 (cm)	灯状态	电压 (V)
1.25	亮	0.190
1.72	亮	0.250
1.95	暗	0.308
3. 24	暗	2.382

(4) 确定区分黑白地面的比较电压值,总结光电检测轨道对地面的最低要求

8 脚电压/V 0. 306 比较器 10 脚电压/V 0. 272 6 脚电压/V 0. 299

(5) 观察环境光亮对光电检测电路的影响

小车高度为 1.91cm。

手电筒位置	LED1 状态	U1/V	LED2 状态	U2/V
无 (默认环境)	暗	0.483	暗	0.427
高(光强弱)	暗	0.284	暗	0.318
中(光强中)	暗	0.272	暗	0.303
低(光强强)	亮	0.255	亮	0. 284

二、测量直流电机正转和反转时的 VA 特性(稳压源: GPD-4303S 直流电源)

电压 (V)	电流 (A)	正反转	电压 (V)	电流 (A)	正反转
11.995	0.051	正	11.995	0.049	反
10.995	0.045	正	11.994	0.048	反
9.995	0.038	正	10.995	0.043	反
9.495	0.037	正	9.996	0.042	反
8.995	0.035	正	8.995	0.041	反
8.496	0.034	正	7.996	0.04	反
7.996	0.036	正	6.996	0.037	反
7.496	0.037	正	5.996	0.036	反
6.997	0.036	正	4.996	0.033	反
6.496	0.034	正	3.997	0.033	反

5. 9	996	0.033	正	2. 998	0.031	反
4.9	996	0.031	正	1.997	0.029	反
3.4	497	0.025	正	0.998	0.025	反
2.9	998	0.028	正			
1.9	997	0.025	正			
0.9	998	0.023	正			
0.4	498	0.039	不转			
I						

三、电机驱动模块功能验证(测试设备: UT890D+数字万用表)

由于 ENA 逻辑为 0 时, IN1、IN2 接高电平、低电平或悬空, OUT1、OUT2 电压不发生变化, 因此表中 IN1、IN2 逻辑记为 X。

ENA 逻辑	IN1 逻辑	IN2 逻辑	OUT1 电压/V	OUT2 电压/V	电机状态
0	X	X	0.64	0.72	停止
1	0	0	0.14	0.14	停止
1	0	1	11.38	0.71	正转
1	1	0	0.72	11.36	反转
1	1	1	12.10	12.10	停止

四、电机开环控制时小车运行状态观测

	左	轮			右	轮		
ENA	IN1	IN2	电机 状态	ENB	IN3	IN4	电机 状态	小车轨迹
1	0	1	正转	1	0	1	正转	直行,稍有右偏
1	0	1	正转	1	0	0	停止	以右轮为轴顺时针原地旋转
1	0	1	正转	1	1	0	反转	以小车中心偏右为轴顺时针 旋转,半径逐渐增大
1	0	0	停止	1	0	1	正转	以左轮为轴逆时针原地旋转
1	1	0	反转	1	0	1	正转	以小车中心偏右为轴逆时针 旋转,半径逐渐增大

【结果分析】

- 一、红外光电检测电路测试
- (1) 分析红外光电检测电路参数设计

R1 = 148.1Ω, E1 = |R1 m-R1 k|/R1 k = 1.27%

R2 = 9.86k Ω, E1 = |R2 - R2| + |R2| = 1.40%

选取 $150\,\Omega$ 电阻 R1 的合理性: IR1 为 mA 数量级, 查 TCRT5000 参数表得当 IR1 = 60mA 时发光二极管正向电压约为 1.25V,由于二极管电压与电流呈正相关,假定其两端电压为 1.25V,R1 = $150\,\Omega$,则 IR1 = (5V-1.25V) / $150\,\Omega$ = 25mA,与 60mA 同一数量级且略小,较小的光强保证不会使接收端电流过大,进而导致比较器输入端很快变为低电平,使检测判断为暗底的区间过小。

Figure 6. Collector Current vs. Forward Current

比较器比较电压约为 0. 3V 的合理性: 查 TCRT 5000 参数表得 Ic 数量级约在 0. 1-10mA不等,10k Ω 的电阻 R2 能够引起较大幅度的压降变化,使得该电路对于光的变化更加敏感。实验测得的比较电压值约为 0. 3V,黑底测得 7 脚电压约 3. 5V,白底测得 7 脚电

压约 0.2V, 可见亮区区间偏小。

被判断为白底的区域较小,可能与相对较大的 R1 与相对较小的 R2 有关,但 0. 3V 依然符合低电平上限的标准。并且应按照实验光照需求调整比较器比较电压,实验过程中黑底白底的判断均在预期范围内,证明比较电压 0. 3V 是合理的。光敏二极管的短路电流/照度特性、Ic-IF 均较线性,U7 脚 = 5V-Ic*10k Ω 也是线性关系,要想线性增大亮区范围,只需要线性左移电位器 W1 即可。

(2) 缺省高度(2cm),白底/黑底/其它表面下,光电管反射电压测量比较

				LED 灯
反射面	U1/V	U2/V	U3/V	发 光 情
				况
黑底	3.609	3.358	3.361	暗
白底	0.184	0.192	0.189	亮
棕底	0.216	0. 223	0.217	亮
深蓝底	0.395	0.387	0.391	暗

棕底、白底均被判断为亮底,白底平均电压 0.188V,棕底平均电压 0.219V,均小于比较电压 0.3V,LED 均发光。

黑底、深蓝底均被判断为暗底,黑底平均电压 3.443V,深蓝底平均电压 0.391V,均大于比较电压 0.3V,LED 均不发光。

(3) 不同高度(2至6cm), 光电管反射电压测量比较

距离(cm)	灯状态	电压 (V)
1.25	亮	0.190
1.72	亮	0.250
1.95	暗	0.308
3. 24	暗	2.382

白底时,随着离地距离 d 增大,比较器输入端电压逐渐增大。d = 1.25cm 与 d =

1.72cm 时均亮灯, d = 1.95cm 时电压达到 0.308V, 接近但超过比较器比较电压, LED

不发光。说明光电检测轨道对地面的最低要求为低于 1.72cm。

(4) 确定区分黑白地面的比较电压值,总结光电检测轨道对地面的最低要求

8 脚电压/V 0.306 比较器 10 脚电压/V 0.272 6 脚电压/V 0.299

这三个光电检测电路的比较电压平均值为 0. 292V, 结合 (3) (5) 实验可知, 小车高度应低于 1. 72cm, 要是巡航路线采用铺设黑底的方式, 反射面需采取白底、棕底这样反光较强的材料, 使得小车能够判断铺设与否。

(5) 观察环境光亮对光电检测电路的影响

手电筒位置	LED1 状态	U1/V	LED2 状态	U2/V
无 (默认环境)	暗	0.483	暗	0.427
高(光强弱)	暗	0.284	暗	0.318
中(光强中)	暗	0.272	暗	0.303
低(光强强)	亮	0.255	亮	0.284

光照越强,比较器输入电压越小。默认环境光照最弱,电压最大,LED 不亮;光照较弱的两组实验 LED 状态不变;在光照最强的一组实验中,LED 发光。

二、测量直流电机正转和反转时的 VA 特性(稳压源: GPD-4303S 直流电源)

- ①总体上, 电机两端电压越大, 电流越大, 电机转速越快。
- ②正转电压为 0.498V 时, 电机停转, 电流比预期电机运转时更大。
- 三、电机驱动模块功能验证(测试设备: UT890D+数字万用表)

ENA 逻辑	IN1 逻辑	IN2 逻辑	OUT1 电压/V	OUT2 电压/V	电机状态
0	X	X	0.64	0.72	停止
1	0	0	0.14	0.14	停止
1	0	1	11.38	0.71	正转
1	1	0	0.72	11.36	反转
1	1	1	12.1	12. 1	停止

ENA、IN1、IN2、OUT1、OUT2 的逻辑符合下表所示:

序号	ENA 逻辑	IN1 逻辑	IN2 逻辑	OUT1 电压	OUT2 电压	电机状态
1	0	X	X	0V	0V	停止
2	1	0	0	0V	0V	停止
3	1	0	1	0V	+12V	正转
4	1	1	0	+12V	0V	反转
5	1	1	1	+12V	+12V	停止

四、电机开环控制时小车运行状态观测

左轮				右轮				
ENA	IN1	IN2	电机 状态	ENB	IN3	IN4	电机 状态	小车轨迹
1	0	1	正转	1	0	1	正转	直行,稍有右偏
1	0	1	正转	1	0	0	停止	以右轮为轴顺时针原地旋转
1	0	1	正转	1	1	0	反转	以小车中心偏右为轴顺时针 旋转,半径逐渐增大
1	0	0	停止	1	0	1	正转	以左轮为轴逆时针原地旋转
1	1	0	反转	1	0	1	正转	以小车中心偏右为轴逆时针 旋转,半径逐渐增大

①ENA、IN1、IN2、OUT1、OUT2与ENB、IN3、IN4、OUT3、OUT4均符合电机驱动模块逻辑与功能。

②小车能够正常运行, 左轮转速比右轮略快。

【探究性实验内容】			