

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 04

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

BASICS OF PROBABILITY

Word or phrase Always
Certainly
Slam dunk
Almost certainly
Almost always
With high probability
Usually
Likely
Frequently
Probably
Often
Serious possibility
More often than not
Real possibility
With moderate probability
Maybe
Possibly
Might happen
Not often
Unlikely
With low probability
Rarely
Never

Probability

...assigning numbers to a set of possibilities

Properties (Kolmogorov, 1956)

- *p* ∈ [0,1]
- $\Sigma p = 1$

Probabilities are used to express uncertainty.

Probability Functions

cognitive model

statistics

computing

discrete events – we talk about mass

Run a test and record each student's correct responses

Probability Functions

cognitive model

statistics

computing

continuous events – we talk about density

probability density function (PDF)

cumulative distribution function (CDF)

Another example

Discrete

Continuous

 $1.75 \le X \le 1.85$

Playing with Probability Functions in R

cognitive model

statistics

computing

```
dnorm() - PDF
pnorm() - CDF
qnorm() - quantile, inverse cdf
rnorm() - random number generator
```

Example: Normal(0,1)

dnorm()

pnorm()

qnorm()

rnorm()

Joint, Marginal and Conditional Probability

Joint Probability

$$p(A, B) = p(B, A)$$

- e.g., p(rain, cold): p(rain) AND p(cold)

Marginal Probability

p(A) – 'p of A irrespective of B'

- e.g., p(rain): p(rain, cold) + p(rain, not cold)

Conditional Probability

p(A|B) - 'p of A given B' - event B is fixed, not uncertainty

$$p(A,B) = p(A|B)p(B)$$

-e.g., p(rain, cold) = p(rain|cold)p(cold)

Example I: discrete

Joint probability:

$$P(X=0,Y=1) =$$

$$\sum_{x,y} P(X=x,Y=y) = 1$$

rain

X

			2 4		
			1	0	
<u>60</u> 0	1	0.5	0.1		
	ĭ	0	0.1	0.3	

Marginal probability:

$$P(Y = 1) =$$

$$P(X = 0) =$$

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Conditional probability:

$$P(X=1|Y=1) =$$

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
$$= \frac{P(X = x, Y = y)}{\sum_{x} P(X = x, Y = y)}$$

cognitive model

statistics

computing

joint distribution

The "co-distribution" of x and y.

conditional distribution

The probability distribution of x, given that we know the value of y.

The density of x- (or y-) values, without knowing the other's value.

Bayes' theorem

cognitive model

statistics

computing

$$p(A,B) = p(B,A)$$

$$p(A,B) = p(A|B)p(B)$$

$$p(B,A) = p(B|A)p(A)$$

$$p(A|B)p(B) = p(B|A)p(A)$$

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Bayesian warm-up?

computing

		Column		
Row	•••	С	•••	Marginal
:		:		
r		p(r,c) = p(r c) p(c)		$p(r) = \sum_{c^*} p(r c^*) p(c^*)$
÷		:		
Marginal		<i>p</i> (<i>c</i>)		

Second Example

cognitive model

statistics

computing

	Hair color				
Eye color	Black	Brunette	Red	Blond	Marginal (Eye color)
Brown	0.11	0.20	0.04	0.01	0.37
Blue	0.03	0.14	0.03	0.16	0.36
Hazel	0.03	0.09	0.02	0.02	0.16
Green	0.01	0.05	0.02	0.03	0.11
Marginal (hair color)	0.18	0.48	0.12	0.21	1.0

$$p(A | B) = \frac{p(B | A)p(A)}{\sum_{A^*} p(B | A^*)p(A^*)}$$

computing

Suppose that in the general population, the probability of having a rare disease is I/1000. We denote the true presence or absence of the disease as the value of a parameter, ϑ , that can have the value $\vartheta = \odot$ if disease is present in a person, or the value $\vartheta = \odot$ if the disease is absent. The base rate of the disease is therefore denoted $p(\vartheta = \odot) = 0.001$.

Suppose(1): a test for the disease that has a 99% hit rate: $p(T = + | \vartheta = \Theta) = 0.99$

Suppose(2): the test has a false alarm rate of 5%: $p(T = + | \vartheta = \odot) = 0.05$

Q: Suppose we sample a person at random from the population, administer the test, and it comes up positive. What is the posterior probability that the person has the disease?

Exercise VI

statistics

computing

Q: What is the posterior probability that the person has the disease?

$$\rightarrow p(\vartheta = \otimes \mid T = +)$$

statistics

computing

Exercise VI

	ı		
Test result	$\theta = \ddot{-}$ (present)	$\theta = \ddot{\ }$ (absent)	Marginal (test result)
T = +	$p(+ \ddot{-}) p(\ddot{-})$ = 0.99 · 0.001	$p(+ \ddot{c}) p(\ddot{c})$ = 0.05 · (1 - 0.001)	$\sum_{\theta} p(+ \theta) p(\theta)$
T = -	$p(- \ddot{-}) p(\ddot{-})$ = $(1 - 0.99) \cdot 0.001$	$p(- \ddot{-}) p(\ddot{-})$ = $(1 - 0.05) \cdot (1 - 0.001)$	$\sum_{\theta} p(- \theta) p(\theta)$
Marginal (disease)	$p(\ddot{c}) = 0.001$	$p(\ddot{c}) = 1 - 0.001$	1.0

$$p(\theta = \ddot{\neg} | T = +) = \frac{p(T = + | \theta = \ddot{\neg}) p(\theta = \ddot{\neg})}{\sum_{\theta} p(T = + | \theta) p(\theta)}$$
$$= \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.05 \cdot (1 - 0.001)}$$
$$= 0.019$$

AN JEST ON

Happy Computing!