

Revision Notes

Class 11 Mathematics

Chapter 2 - Relation & Function-I

1. INTRODUCTION:

- In this chapter, we'll learn how to link pairs of objects from two sets to form a relation between them.
- We'll see how a relation can be classified as a function.
- Finally, we'll look at several types of functions, as well as some standard functions.

2. RELATIONS:

2.1 Cartesian product of sets

Definition:

- Given two non-empty sets P and Q.
- The Cartesian product P×Q is the set of all ordered pairs of elements from P and Q that is
- $P \times Q = \{(p,q) ; p \in P ; q \in Q\}$

2.2 Relation:

2.2.1 **Definition:**

- Let A and B be two non-empty sets.
- Then any subset 'R' of A×B is a relation from A and B.
- If (a, b)∈R, then we can write it as a R b which is read as a is related to
 b 'by the relation R', 'b' is also called image of 'a' under R.

2.2.2 Domain and range of a relation:

- If R is a relation from A to B, then the set of first elements in R is known as **domain** & the set of second elements in R is called **range** of R symbolically.
- Domain of $R = \{ x:(x, y) \in R \}$

- Range of $R = \{ y:(x, y) \in R \}$
- The set B is considered as **co-domain of relation** R.
- Note that, range ⊂ co-domain

• Note:

Total number of relations that can be defined from a set A to a set B is the number of possible subsets of $A \times B$.

If
$$n(A) = p$$
 and $n(B) = q$, then
 $n(A \times B) = pq$ and total number of relations is 2^{pq} .

2.2.3 Inverse of a Relation:

- Let A, B be two sets and let R be a relation from a set A to set B. Then the inverse of R denoted as R^{-1} , is a relation from B to A and is defined by $R^{-1} = \{(b, a): (a, b) \in R\}$
- Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$
- Also, $Dom(R) = Range(R^{-1})$ and $Range(R) = Dom(R^{-1})$

3. FUNCTIONS:

3.1 **Definition:**

A relation 'f' from a set A to set B is said to be a function if every element of set A has one and only one image in set B.

Notations:

3.2 Domain, Co-domain and Range of a function:

Domain:

The domain is believed to be the biggest set of x - values for which the formula provides real y - values when y = f(x) is defined using a formula and the domain is not indicated explicitly.

The **domain** of y = f(x) is the set of all real x for which f(x) is defined (real).

Rules for finding Domain:

- 1. Even roots (square root, fourth root, etc.) should have non-negative expressions.
- 2. Denominator $\neq 0$
- 3. $\log_a x$ is defined when x > 0, a > 0 and $a \ne 1$
- 4. If domain y = f(x) and y = g(x) are D_1 and D_2 respectively then the domain of $f(x) \pm g(x)$ or f(x).g(x) is $D_1 \cap D_2$.

While domain of
$$\frac{f(x)}{g(x)}$$
 is $D_1 \cap D_2 - \{x : g(x) = 0\}$

Range:

The set of all f - **images of elements** of A is known as the range of f and can be denoted as f(A).

Range =
$$f(A) = \{f(x) : x \in A\}$$

 $f(A) \subseteq B \{Range \subseteq Co\text{-domain}\}$

Rule for finding range:

First of all find the domain of y = f(x)

i. If domain \in finite number of points \Rightarrow range \in set of corresponding f(x) values.

ii. If domain
$$\in \mathbb{R}$$
 or $\mathbb{R} - \{\text{Some finite points}\}\$
Put $y = f(x)$

Then express x in terms of y.From this find y for x to be defined. (i.e., find the values of y for which x exists).

iii. If domain ∈ a finite interval, find the least and greater value for range using monotonicity.

Note:

1. Question of format:

$$\left(y = \frac{Q}{Q}; y = \frac{L}{Q}; y = \frac{Q}{L}\right)$$

 $Q \rightarrow Quadratic$

$L \rightarrow Linear$

Range is found out by **cross-multiplying** & **creating a quadratic** in 'x' & making $D \ge 0$ (as $x \in R$)

2. Questions to determine the range of values in which the given expression y = f(x) can be converted into x (or some function of x = expression in 'y,

Do this & apply method (ii).

- 3. Two functions f & g are said to be equal if
- a. Domain of f = Domain of g
- b. Co-domain of f = Co-domain of g
- c. $f(x) = g(x) \forall x \in Domain$

3.3 Kinds of functions:

Note:

- Injective functions are called as one-to-one functions.
- **Surjective functions** are also known as **onto functions**.
- Bijective functions are also known as (one-to-one) and (onto) functions.

Relations which cannot be categorized as a function:

As not all elements of set A are associated with some elements of set B. (Violation of point (i) – definition 2.1)

An element of set A is not associated with a unique element of set B, (violation of point (ii) definition 2.1)

Methods to check one-one mapping:

1. Theoretically:

$$f(x_1) = f(x_2)$$
$$\Rightarrow x_1 = x_2$$

then f(x) is **one-one.**

2. Graphically:

A function is one-one, if no line parallel to x – axis meets the graph of function at more than one point.

3. **By Calculus:**

For checking whether f(x) is One-One, find whether function is only increasing or only decreasing in their domain. If yes, then function is one-one, that is if $f'(x) \ge 0$, $\forall x \in$ domain or, if $f'(x) \ge 0$, $\forall x \in$ domain, then function is one-one.

3.4 Some standard real functions & their graphs:

3.4.1 **Identity Function:**

The function $f: R \to R$ defined by $y = f(x) = x \forall x \in R$ is called **identity function.**

3.4.2 Constant function:

The function $f: R \rightarrow R$ defined by

$$y = f(x) = c, \forall x \in R$$

3.4.3 **Modulus function:**

The function $f: R \to R$ defined by

$$f(x) = \begin{cases} x; & x \ge 0 \\ -x; & x < 0 \end{cases}$$

is called modulus function. It is denoted by

$$y = f(x) = |x|$$

It is also known as "Absolute value function".

Properties of Modulus Function:

The modulus function has the following properties:

- 1. For any real number x, we have $\sqrt{x^2} = |x|$
- $2. \quad |\mathbf{x}\mathbf{y}| = |\mathbf{x}||\mathbf{y}|$

3.
$$|x+y| \le |x| + |y|$$
 Triangle inequality

4.
$$|x-y| \ge ||x|-|y||$$
 Triangle inequality

3.4.4 Signum Function:

The function $f: R \rightarrow R$ define by

$$f(x) = \begin{cases} 1: x > 0 \\ 0: x = 0 \text{ is called } signum \text{ function.} \\ -1: x < 0 \end{cases}$$

It is usually denoted as y = f(x) = sgn(x)

Note:

$$sgn(x) = \begin{cases} \frac{|x|}{x}; & x \neq 0 \\ 0; & x = 0 \end{cases}$$

3.4.5 Greatest Integer Function:

The function $f: R \to R$ defined as the greatest integer less than or equal to x. It is usually denoted as y = f(x) = [x].

Properties of Greatest Integer Function:

If n is an integer and x is any real number between n and n+1, then the greatest integer function has the following properties:

1.
$$[-n] = -[n]$$

$$2. \quad [x+n] = [x] + n$$

$$3. \quad [-x] = [x] - 1$$

3.
$$[-x] = [x] - 1$$

4. $[x] + [-x] = \begin{cases} -1, & \text{if } x \notin I \\ 0, & \text{if } x \in I \end{cases}$

Note:

Fractional part of x, denoted by $\{x\}$ is given by x - [x], Hence

$$\{x\} = x - [x] = \begin{cases} x - 1; & 1 \le x < 2 \\ x & 0 \le x \le 1 \\ x + 1 & -1 \le x < 0 \end{cases}$$

3.4.6 Exponential Function:

$$f(x) = a^{x},$$

$$a > 0, a \neq 1$$

Domain: $x \in R$

Range: $f(x) \in (0, \infty)$

3.4.7 Logarithm Function:

$$f(x) = \log_a x ,$$

$$a > 0, a \neq 1$$

Domain: $x \in (0, \infty)$

Range: $y \in R$

a) The Principal Properties of Logarithms:

Let M and N be the arbitrary positive numbers, a > 0, $a \ne 1$, b > 0, $b \ne 1$

1)
$$\log_b a = a$$
 $\Rightarrow a = b^c$

2)
$$\log_a(M.N) = \log_a M + \log_a N$$

3)
$$\log_a \left(\frac{M}{N}\right) = \log_a M - \log_a N$$

$$4) \qquad \log_{a} M^{N} = N \log_{a} M$$

5)
$$\log_b a = \frac{\log_c a}{\log_c b}, c > 0, c \neq 1$$

6)
$$a^{\log_c b} = b^{\log_c a}, a, b, c > 0, c \neq 1$$

Note:

•
$$\log_a a = 1$$

•
$$\log_b a \cdot \log_c b \cdot \log_a c = 1$$

•
$$\log_a 1 = 0$$

$$\bullet \qquad e^{x \ln a} = e^{x \ln a^x} = a^x$$

b) Properties of Monotonicity of Logarithm:

1) If
$$a > 1$$
, $log_a x < log_a y \implies 0 < x < y$

2) If
$$0 < a < 1$$
, $\log_a x < \log_a y \implies x > y > 0$

3) If
$$a > 1$$
 then $\log_a x$

- 4) If a > 1 then $\log_a x > p \implies x > a^p$
- 5) If 0 < a < 1 then $\log_a x a^p$
- 6) If 0 < a < 1 then $\log_a x > p \implies 0 < x < a^p$

Note:

- The logarithm is **positive** if the **exponent and base** are on the **same side of unity.**
- The logarithm is **negative** if the **exponent and base** are on **opposite sides of unity.**

4. ALGEBRA OF REAL FUNCTION:

We'll learn how to add two real functions, remove one from another, multiply a real function by a scalar (a scalar is a real integer), multiply two real functions, and divide one real function by another in this part.

4.1 Addition of two real functions:

Let $f: X \to R$ and $g: X \to R$ by any two real functions, where $x \subset R$. Then, we define $(f+g): X \to R$ by (f+g)(x) = f(x) + g(x) for all $x \in X$.

4.2 Subtraction of a real function from another:

Let $f: X \to R$ be any two any two real functions, where $x \subset R$.

Then, we define $(f-g): X \to R$ by

$$(f-g)(x)=f(x)-g(x)$$
 for all $x \in X$.

4.3 Multiplication by a scalar:

Let $f: X \to R$ be a real valued function and α be a scalar.

Here by scalar, we mean a real number.

Then the product αf is a function from X to R defined as $(\alpha f)(x) = \alpha f(x), x \in X$.

4.4 Multiplication of two real functions:

The product (or multiplication) of two real functions $f: X \to R$ and $g: X \to R$ is a function $fg: X \to R$ defined as

$$(fg)(x) = f(x)g(x)$$
 for all $x \in X$.

This is also known as **pointwise multiplication**.

4.5 Quotient of two real functions:

Let f and g be two real functions defined from $X \rightarrow R$ where $X \subset R$.

The quotient of f by g denoted by $\frac{f}{g}$ a is a function defined as $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Provided $g(x) \neq 0, x \in X$.

4.6 Even and Odd Functions

- Even function:
- o $f(-x) = f(x), \forall x \in Domain$
- O The graph of an even function y = f(x) is **symmetric** about the y axis, that is (x,y) lies on the graph $\Leftrightarrow (-x,y)$ lies on the graph.

• Odd Function:

- $\circ f(x) = -f(x), \forall x \in Domain$
- O The graph of an odd function y = f(x) is **symmetric about origin** that is if point (x, y) is on the graph of an odd function, then (-x, -y) will also lie on the graph.

5. PERIODIC FUNCTION

• Definition:

A function f(x) is said to be periodic function, if there exists a positive real number T, such that

$$f(x+T)=f(x), \forall x \in R$$

Then, f(x) is a periodic function where least positive value of T is called fundamental period.

• Graphically:

The function is said to be periodic if the graph repeats at a set interval, and its period is the width of that interval.

Some standard results on periodic functions:

	Functions	Periods
i	sin ⁿ x, cos ⁿ x, sec ⁿ x, cosec ⁿ x	π ; if n is even 2π ; (if n is odd or
		fraction)
ii	tan ⁿ x, cot ⁿ x	π ; n is even or odd
iii	sinx , cosx , tanx ,	π
1	cotx , secx , cosecx	
iv	x - [x],[.] represents greatest	1
	integer function	y A
V	Algebraic functions for example	Period does not exist
	\sqrt{x} , x^2 , x^3+5 , etc.	

Properties of Periodic Function:

i. If f(x) is periodic with period T, then

- a) c.f(x) is periodic with period T
- b) $f(x \pm c)$ is periodic with period T
- c) $f(x)\pm c$ is periodic with period T

Where c is any constant

i. If f(x) is periodic with period T, then

$$kf(cx+d)$$
 has period $\frac{T}{|c|}$

That is **Period** can be only affected by coefficient of x where k, c, $d \in$ constant. ii. If $f_1(x), f_2(x)$ are periodic functions with periods T_1, T_2 respectively, Then we have,

$$h(x) = af_1(x) \pm bf_2(x)$$
 has period as, LCM of $\{T_1, T_2\}$

Note:

a. LCM of
$$\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right) = \frac{LCM \text{ of } (a, c, e)}{HCF \text{ of } (b, d, f)}$$

b. LCM of rational and rational always exists. LCM of irrational and irrational sometime exists. But LCM of rational and irrational never exists. For example, LCM of $(2\pi, 1, 6\pi)$ is not possible because $2\pi, 6\pi \in$ irrational and $1 \in$ rational.