Scilab Textbook Companion for Solid State Devices and Circuits by V. Chaudhary and H. K. Maity¹

Created by
Toyab
B.Tech
Electronics Engineering
Roorkee Institute of Technology
College Teacher
Mr. Ankit Jorawer
Cross-Checked by
KVP Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Devices and Circuits

Author: V. Chaudhary and H. K. Maity

Publisher: Umesh Publications, New Delhi

Edition: 2

Year: 2008

ISBN: 81-88114-39-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Bipolar Junction Transistors	5
3	Transistor Biasing And Thermal Stabilization	26
4	The Transistor At Low Frequency	44
5	BJT At High Frequency	52
6	The Field Effect Transistor And MOSFET	58
7	FET Biasing	64
8	Field Effect Transistor Amplifiers	79
9	Frequency Response	87
10	Feedback Amplifiers	90
11	Oscillators	99

List of Scilab Codes

Exa 2.1	Value of alphaDC and emitter current	1
Exa 2.2	Value of IC and IE	5
Exa 2.3	Base current	6
Exa 2.5	Emitter current	7
Exa 2.6	Region of operation	7
Exa 2.7	Value of IB IC and Vce	8
Exa 2.8	Value of VBB	Ĝ
Exa 2.9	RC and RE	10
Exa 2.10	Maximum value of bita	11
Exa 2.11	Minimum value of RC required	13
Exa 2.12	Value R1 and R3	14
Exa 2.13	Value of RE for which transistor just comes out of sat-	
	uration	15
Exa 2.14	Vo1 and Vo2 and new value of RC	16
Exa 2.15	IC and IB	18
Exa 2.16	Region of transistor and output voltage	20
Exa 2.17	Collector voltage and minimum value of hFE	22
Exa 2.18	Output voltage and minimum value of R1	24
Exa 3.1	DC load line	26
Exa 3.2	Q point	27
Exa 3.3	Q point values	27
Exa 3.4	IBQ ICQ VCEQ VB VC and VBC	28
Exa 3.5	Percent change the Q point value over temparature range	29
Exa 3.6	Stability factor	30
Exa 3.7	Collector current VCE and stability factor	31
Exa 3.8	Q point value	31
Exa 3.9	Collector to base bias circuit	32
Exa 3.10	Stability factor	33

Exa 3.11	Q point value
Exa 3.12	Quiescent current and collector emitter voltage 34
Exa 3.13	Q point value
Exa 3.14	DC bias voltage and current
Exa 3.15	RE and stability factor
Exa 3.17	Junction temperature
Exa 3.18	Thermal resistance and junction temperature 39
Exa 3.20	Biasing component for fixed bias
Exa 3.21	Value of ICQ
Exa 3.22	Value of R1 R2 and RE
Exa 4.1	Overall current gain
Exa 4.2	Overall current gain
Exa 4.3	Output impedance
Exa 4.4	Overall current gain
Exa 4.5	Power gain
Exa 4.6	ICQ VCEQ Ai Zi Av ZIS AVS AIS 50
Exa 5.1	Parameter of hybrid phi model
Exa 5.2	Parameter of hybrid phi model
Exa 5.3	Emitter diffusion capacitance
Exa 5.4	Bita cutoff frequency and gain bandwidth product 55
Exa 5.5	Base width of Si pnp transistor
Exa 5.6	Ce and fT
Exa 6.1	Transfer curve
Exa 6.2	Transfer curve
Exa 6.3	Value of ID
Exa 6.4	Minimum value of VDS 60
Exa 6.5	VGS and gm
Exa 6.6	Drain current 61
Exa 6.7	Drain to source resistance 62
Exa 6.8	Minimum VDS required 62
Exa 7.1	Different values of VGSQ IDQ and VDS 64
Exa 7.2	VGSQ IDQ and VDS 65
Exa 7.3	W by L ratio
Exa 7.5	IDQ and VDSQ
Exa 7.6	IDQ VGSQ and VDS 67
Exa 7.7	Value of RS
Exa 7.8	VG and VSS
Exa 7.9	IDQ VGSQ VD VS VDS and VDG
	5
	· ·

Exa 7.10	Value of Vo
Exa 7.11	Value of Vo
Exa 7.12	Quuiescent value of IDS VDS and VGS
Exa 7.13	Value of rDS
Exa 7.14	Value of RS
Exa 7.15	Designing of a circuit
Exa 7.16	Designing of a circuit
Exa 7.17	Designing of a circuit
Exa 8.1	Input impedance
Exa 8.2	Zi Zo and Av
Exa 8.3	Zi Zo Av
Exa 8.4	gm Zi Zo And Av
Exa 8.6	Input impedance output impedance and voltage gain .
Exa 8.7	gm rd Zi Zo and Av
Exa 8.8	Input impedance output impedance and voltage gain .
Exa 8.9	Input and output impedance and voltage gain
Exa 9.2	Overall voltage gain
Exa 9.3	Value of k
Exa 9.4	Value of Cs and gm
Exa 10.1	Change in overall gain of the feedback amplifier
Exa 10.2	Input impedance
Exa 10.3	Feedback factor and percentage change in overall gain
Exa 10.4	Gain of a negative feedback amplifier
Exa 10.5	Value of A and bita
Exa 10.6	Voltage gain
Exa 10.7	Small change in gain
Exa 10.8	New input voltage
Exa 10.9	Small change in gain
Exa 10.10	New value of input voltage
Exa 10.11	Percentage of feedback
Exa 10.12	Upper and lower cutoff frequency
Exa 10.13	Value of A B Rif Af and loop gain
Exa 10.14	Feedback gain and new band width
Exa 11.1	Oscillation frequency
Exa 11.2	A RC phase shift oscillators
Exa 11.3	Value of R and C
Exa 11.4	BJT RC phase shift oscillator
Exa 11.5	Transistor gain

Exa 11.7	Component values of wein bridge	103
Exa 11.8	Oscillation frequency	104
Exa 11.9	Q of the crystal	105
Exa 11.10	Parallel resonant frequency	105
Exa 11.12	Frequency of oscillation and minimum value of R	106

Chapter 2

Bipolar Junction Transistors

Scilab code Exa 2.1 Value of alphaDC and emitter current

```
1 // Exa 2.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_C = 15; // in mA
8 I_CbyI_E= 0.995;
10 I_B = 0.005 * I_E; // in mA
11 I_CBO = 3; // in A
12 I_CBO = I_CBO * 10^-3; // in mA
13 alpha_dc= I_C/I_E;
14 disp(alpha_dc, "The value of Alpha_dc is");
15 // I_C = Alpha_dc*I_E + I_CBO;
16 I_E = (I_C-I_CBO)/alpha_dc; // in mA
17 disp(I_E, "The value of I_E in mA is");
```

Scilab code Exa 2.2 Value of IC and IE

```
1 // Exa 2.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Alpha_dc} = 0.99;
8 I_CBO = 10; // in A
9 I_CBO = I_CBO * 10^-3; // in mA
10 I_E = 10; // in mA
11 // To calculate I_-C :
12 I_C = (Alpha_dc*I_E) + I_CBO; // in mA
13 disp(I_C, "The value of I_C in mA is");
14 // To calculate I_B :
15 I_B = I_E - I_C; // in mA
16 I_B = I_B * 10^3; // in
17 disp(I_B, "The value of I_B in A is");
```

Scilab code Exa 2.3 Base current

```
1 // Exa 2.3
2 clc;
3 clear;
4 close;
5 format('v',4)
6 // Given data
7 \text{ Alpha_dc} = 0.99;
8 I_C = 6; // in mA
9 I_CBO = 15; // in
                     A
10 I_CBO = I_CBO * 10^-3; // in mA
11 // I_C = Alpha_dc*I_E + I_CBO;
12 I_E = (I_C - I_CBO)/Alpha_dc; // in mA
13 I_B = I_E - I_C; // in mA
14 I_B = I_B * 10^3; // in A
15 disp(I_B, "The value of I_B in A is");
```

Scilab code Exa 2.5 Emitter current

```
1 // Exa 2.5
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Alpha_dc} = 0.98;
8 I_CBO = 12; // in A
9 I_CBO = I_CBO * 10^-6; // in A
10 I_B = 120; // in
                    Α
11 I_B = I_B * 10^-6; // in A
12 // Calculation of Beta_dc
13 Beta_dc = Alpha_dc/(1-Alpha_dc);
I_{E} = (1+Beta_dc)*I_B + (1+Beta_dc)*I_CBO; // in A
15 I_E = I_E * 10^3; // in mA
16 disp(I_E, "The value of I_E in mA is");
```

Scilab code Exa 2.6 Region of operation

```
1  // Exa 2.6
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_BEsat = 0.8; // in V
8  V_BEact = 0.7; // in V
9  V_CEsat = 0.2; // in V
10  V_CC = 10; // in V
```

```
11 Beta = 100;
12 V = 5; // in V
13 R_B = 50* 10^3; // in ohm
14 R_E = 2* 10^3; // in ohm
15 R_C = 3* 10^3; // in ohm
16 //Applying KVL to input loop, V = R_B*I_B + V_BEact
      + I_{-}C*R_{-}E \text{ and } I_{-}C = Beta*I_{-}B;
17 I_B = (V-V_BEact)/(R_B+R_E*Beta); // in A
  // Applying KVL to collector circuit, V_CC= I_C*R_C+
      V_CEsat+I_E*R_E and I_E=I_C+I_B
19 I_C = (V_CC - V_CEsat - I_B*R_E)/(R_C+R_E); // in A
20 I_Bmin = I_C/Beta; // in A
21 if I_B < I_Bmin then
22
       disp("Since the value of I_B ( "+string(I_B
          *10<sup>6</sup>)+ "A) is less than the value of
          I_Bmin ("+string(I_Bmin*10^6)+" A), ")
23
       disp("So the transistor is in the active region.
          ")
24 end
```

Scilab code Exa 2.7 Value of IB IC and Vce

```
1 // Exa 2.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Beta = 100;
8 V_BEsat = 0.8; // in V
9 V_BEact = 0.7; // in V
10 V_CC = 10; // in V
11 V = 5; // in V
12 R_B = 50* 10^3; // in ohm
13 R_E = 2* 10^3; // in ohm
```

Scilab code Exa 2.8 Value of VBB

```
1 // Exa 2.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_{CEsat} = 0.2; // in V
8 \text{ V\_BEsat} = 0.8; // \text{ in V}
9 \text{ Beta} = 100;
10 R_C = 0.5* 10^3; // in ohm
11 R_E = 1* 10^3; // in ohm
12 R_B = 44* 10^3; // in ohm
13 V1 = 15; // in V
14 V2 = 15; // in V
15 // Applying KVL to collector circuit, V1+V2 - I_Csat
      *R_C - V_CEsat - I_E*R_E = 0;
16 //but I_Csat = beta*I_Bmin and I_E = (1+Beta)*I_Bmin
      , So
```

```
I_Bmin= (V1+V2-V_CEsat)/(Beta*R_C+R_E*(1+Beta));//
    in A
I_Bmin= I_Bmin*10^3; // in mA
I_Bmin= I_Bmin*10^3; // in mA
I_Bmin= I_Bmin, "The value of I_Bmin in mA is : ")
I_Bmin= I_Bmin*10^-3; // in A
I_E = (1+Beta)*I_Bmin; // in A
I_E = (1+Beta)*I_Bmin; // in A
I_Bmin*R_B-V_BEsat-(I_E*R_E)-V1=0
I_Bmin*R_B-V_BEsat-(I_E*R_E)-V1=0
I_Bmin*R_B-V_BEsat + (I_E*R_E) - V1; // in V
I_BB = (I_Bmin*R_B) + V_BEsat + (I_E*R_E) - V1; // in V
I_BB = (I_Bmin*R_B) + V_BEsat + (I_E*R_E) - V1; // in V
```

Scilab code Exa 2.9 RC and RE

```
1 // Exa 2.9
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ bita} = 200;
8 \text{ V_CEQ} = 3; // \text{ in V}
9 \text{ V_CC} = 6; // \text{ in V}
10 V_BB = -6; // in V
11 V_BE = 0.7; // in V
12 Vo = 0; // in V
13 R1= 90*10^3; // in ohm
14 R2= 90*10^3; // in ohm
                                                                ( i
15 // V_{CC} - I_{CR_C} - V_{CEQ} - I_{ER_E} - V_{BB} = 0
16 // Vo = V_CEQ + I_E*R_E - V_CC or
17 I_ER_E = Vo + V_CC - V_CEQ; // in V
18 // From eq(i)
19 I_CR_C = V_CC - I_ER_E - V_CEQ - V_BB; // in V
```

```
20 // Applying KVL to the input side of circuit
21 /V_{CEQ} - [(R1 | R2) *I_{B}] - V_{BE} - I_{ER}E + V_{CC} = 0 or
22 I_B= (V_CEQ-V_BE-I_ER_E+V_CC)/((R1*R2)/(R1+R2));//
      in A
23 I_E = (1+bita)*I_B; //in A
24 R_E = I_ER_E/I_E; // in ohm
25 \text{ I_C= bita*I_B;// in A}
26 \text{ R}_C = I_CR_C/I_C; // \text{ in ohm}
27 disp("Part (a) : ")
28 disp(R_E, "The value of R_E in ohm is: ")
29 disp(R_C, "The value of R_C in ohm is:")
30 disp("Parb (b) :")
31 bita= 100;
32 I_E= (1+bita)*I_B; //in A
33 \text{ I_C= bita*I_B;// in A}
34 Vo_new= V_CEQ+I_E*R_E-V_CC;// in V
35 Change_in_Vo= Vo_new-Vo; // in V
36 disp(Change_in_Vo, "The change in Vo in volts is: ")
```

Scilab code Exa 2.10 Maximum value of bita

```
1 // Exa 2.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 bita = 75;
8 V_CC = 9; // in V
9 V_CEsat = 0.2; // in V
10 V_BEsat = 0.8; // in V
11 R_C = 2; // in k ohm
12 R_C = R_C * 10^3; // in ohm
13 R_E = 1; // in k ohm
14 R_E = R_E * 10^3; // in ohm
```

```
15 R_B = 50; // in k ohm
16 R_B = R_B * 10^3; // in ohm
17 I_Csat = poly(0, 'I_Cs')
18 // Part (i): To check the region of operation
19 // Applying KVL to collector circuit, we get: V_CC
     (i)
   I_E = I_Csat; // in A (approximate)
20
21 // From eq(i)
in A
23 I_Csat= roots(I_Csat);// in A
24 I_Bmin= I_Csat/bita; // in A
25 \quad I_Bmin = I_Bmin*10^6; // in A
26 disp("Part (i)")
27 disp(I_Bmin, "The minimum value of I_B in A is:"
I_B = poly(0, 'I_B')
29 I_E = (1+bita)*I_B; // in A
30 // Applying KVL to input circuit, we get
31 // V_{CC} = I_{B}*R_{B}+V_{B}Esat+I_{E}*R_{E} or
32 \quad I_B = I_B * R_B + V_B E sat + I_E * R_E - V_CC; // in A
33 I_B = roots(I_B); // in A
34 I_B = round(I_B*10^6); // in
35 disp(I_B, "The value of I_B in A is:")
36 if I_B>I_Bmin then
37
      disp("As the value of I_B is greater than the
         value of I_B min")
       disp("Hence the trasistor is definitely in the
38
         saturation region")
39 end
40 I_E = (1+bita)*I_Bmin; // in
41 V_C = V_CEsat + I_E * 10^-6 * R_E; // in V
42 disp(V_C, "Part (ii) : The value of V_C in volts is :
      ");
43 bita_min = I_Csat/(I_B*10^-6);
44 disp(bita_min,"Part (iii): The minimum value of
     bita that will change the state of transistor is
     : ")
```

Scilab code Exa 2.11 Minimum value of RC required

```
1 // Exa 2.11
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_{CEsat} = 0.2; // in V
8 \text{ V_CC} = 10; // \text{ in V}
9 V_BEsat = 0.8; // in V
10 // Part (i) To obtain minimum value of R_C
11 R_B = 220; // in k ohm
12 R_B = R_B * 10^3; // in ohm
13 Beta = 100;
14 // Applying KVL to collector circuit, we get
15 // V_{CC} = V_{CEsat} + I_{Esat*R_{C}}
                                                         ( i )
16 I_CsatR_C= V_CC-V_CEsat; // in V
17 // Applying KVL to input loop
18 // V_{CC} = V_{BEsat+I_B*R_B} or
                                                         (ii)
19 I_B = (V_CC - V_BEsat)/R_B; // in A
20 // Just at saturation I_B = I_C/Beta or
21 I_C = Beta*I_B; // in A
22 R_Cmin= I_CsatR_C/I_C; // in ohm
23 R_Cmin = R_Cmin *10^-3; // in k ohm
24 disp(R_Cmin,"The minimum value of R_C to produce
      saturation of Si transistor in k
                                             is : ")
25
26 // Part (ii) To obtain maximum value of R_B
27 \text{ R_C} = 1.2; // \text{ in k ohm}
28 R_C = R_C * 10^3; // in ohm
29 I_Csat = I_CsatR_C/R_C; // in A
30 // Just at saturation
31 I_B = I_Csat/Beta; // in A
```

Scilab code Exa 2.12 Value R1 and R3

```
1 // Exa 2.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CE} = 2.5; // \text{ in V}
8 \text{ Beta} = 100;
9 R2 = 10 * 10^3; // in ohm
10 R4 = 300; // in ohm
11 V_{CC} = 5; // in V
12 I_C = 1 * 10^-3; // in A
13 V_BE = 0.6; // in V
14 // Applying KVL to collector circuit, we get
                                                         ( i )
15 // V_{CC} = I_{C}*R3 + V_{CE} + I_{E}*R4
16
   I_B = I_C/Beta; // in A
17
    I_E = (I_C + I_B); // in A
    // On substituting the value of I_B and I_E in eq (
18
       i), we get
    R3= (V_CC-V_CE-I_E*R4)/I_C;// in ohm
19
20 V_B = I_E * R4 + V_BE; // in V
21 // But also V_B = R2/(R1+R3)*V_CC, so
22 R1= R2*V_CC/V_B-R2; // in ohm
23 R1= R1*10^-3; // in k ohm
24 R3= R3*10^-3; // in k ohm
25 disp(R1,"The value of R1 in k
                                     is : ")
```

Scilab code Exa 2.13 Value of RE for which transistor just comes out of saturation

```
1 // Exa 2.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_{CEsat} = 0.2; // in V
8 R_B = 100 * 10^3; // in ohm
9 R_C = 2 * 10^3; // in ohm
10 \text{ bita} = 100;
11 R_E = 1 * 10^3; // in ohm
12 V_{CC} = 10; //in V
13 V_BEsat = 0.8; // in V
14 V_BEactive = 0.7; // in V
15 V_BE = 0.7; // in V
16 V_BEcutin = 0.5; // in V
17 // Applying KVL to output circuit, we get
18 // V_{CC} = R_{C}*I_{C} + V_{CEsat} + R_{E}*I_{E}
                                                ( i )
19 I_Bmin = poly(0, 'I_Bm');
20 I_C= bita*I_Bmin; // in A
21 I_E = (1+bita)*I_Bmin; // in A
22 // From eq(i)
24 I_Bmin= roots(I_Bmin); // in A
25 \quad I_Bmin = I_Bmin*10^6; // in
26 // Applying KVL to input circuit, we get
27 / V_{CC} = R_B*I_B + V_BEsat + R_E*I_E
                                                (ii)
28 I_B = poly(0, 'I_B'); // in A
29 I_E= (1+bita)*I_B;// in A
30 // From eq(ii)
```

```
31 I_B = R_B * I_B + V_B = * * I_E + R_E * I_E - V_C ; // in A
32 \quad I_B = roots(I_B); // in A
33 I_B = I_B * 10^6; // in
34 if I_B>I_Bmin then
35
        disp("As the value of I_B ("+string(I_B)+" A)
           is greater than the value of I_Bmin ("+string
           (I_Bmin)+"
                         A )")
36
        disp("Hence the transistor is in saturation
           region")
37 end
38
39 // Part (b) : To obtain the value of R<sub>E</sub>
40 V_CE= 0.4; // in V (assumed)
41 // Rewrite eq(ii) as, V_{CC} = (R_{C*I_C}) + V_{CE} + (R_{E})
      *I_E) or
42 // I_B = (V_CC - V_CE) / (bita * R_C + (1 + bita) * R_E)
                   (as I_C = bita * I_B \text{ and } I_E = (1+bita) *
      (iii)
      I_B
  // Applying KVL to input circuit, V_CC= I_B*R_B+V_BE
      +(1+bita)*I_B*R_E
                                (iv)
44 // On substituting the I_B from eq (iii) in eq (iv)
45 R_E = [(V_CC - V_BE)*bita*R_C - (V_CC - V_CE)*R_B]/[(1+bita)*R_E
      )*(V_BE-V_CE)];// in ohm
46 \text{ R}_{E} = \text{R}_{E} * 10^{-3}; // \text{ in k ohm}
47 disp(R_E, "The value of R_E in k is:")
```

Scilab code Exa 2.14 Vol and Vo2 and new value of RC

```
8 R_C = 0.5*10^3; // in ohm
9 V_BB = 0; // in V
10 V_BE = 0.7; // in V
11 R_B = 44 * 10^3; // in k ohm
12 R_E = 1 * 10^3; // in ohm
13 V_{EE} = -15; // in V
14 V_{CC} = 15; // in V
15 // Applying KVL to base circuit
16 // V_{-}CC = R_{-}B*I_{-}B+V_{-}BE+(1+Beta_{-}dc)*R_{-}E*I_{-}B \text{ or }
17 I_B = (V_CC - V_BE)/(R_B + (1 + Beta_dc) * R_E); // in A
18 I_C = I_B * Beta_dc; // in A
19 I_E = (1 + Beta_dc) * I_B; // in A
20 // Applying KVL to collector circuit
21 // V_{CC} = R_{C}*I_{C} + V_{CE} + R_{E}*I_{E} + V_{EE} \text{ or}
22 \text{ V}_{\text{CE}} = \text{V}_{\text{CC}} - \text{V}_{\text{EE}} - \text{I}_{\text{C}} * \text{R}_{\text{C}} - \text{I}_{\text{E}} * \text{R}_{\text{E}}; // \text{ in } \text{V}
23 Vo2= I_E*R_E-V_CC; // in V
24 // But V_CE= V01-Vo2, so
Vol= V_CE+Vol; // in V
26 disp(Vo1, "The value of Vo1 in volts is:")
27 disp(Vo2, "The value of Vo2 in volts is:")
28 // Part (ii) New Value of R_C to make Vol= 0 V
29 \text{ Vol} = 0;
30 // V_{CC} = I_{C} * R_{C} + V_{0}1 - V_{0}2 + I_{E} * R_{E} - V_{EE}  or
31 R_C = (V_CC - V_EE - Vo1 + Vo2 - I_E * R_E) / (I_C); // in ohm
32 R_C = R_C * 10^- - 3; // in k ohm
33 disp(R_C, "The value of R_C in k
                                              is : ")
34 // Part (iii) New value of R_E to get Vo2= 0;
35 \text{ Vo2} = 0; // \text{ in V}
36 // Formula Vo2= I_E*R_E-V_CC, so
37 \text{ R}_E = (V \circ 2 + V_CC) / I_E; // in ohm
38 R_E = R_E * 10^- - 3; // in kohm
39 format('v',4)
40 disp(R_E, "The value of R_E in k is:")
41
42 // Note: The calculated value of R_C in the book is
        not correct
```

Scilab code Exa 2.15 IC and IB

```
1 // Exa 2.15
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ bita} = 50;
8 \text{ V_CC} = 25; // \text{ in V}
9 \text{ V\_BB} = 10; // \text{ in V}
10 R_C = 15 * 10^3; // in ohm
11 R_B = 40 * 10^3; // in ohm
12 R_E = 5 * 10^3; // in ohm
13 V_BE = 0.7; // in V
14 I_B = poly(0, 'I_B');
15 I_E = (1+bita)*I_B; // in A
16 // Applying KVL to Base-Emitter loop,
17 // V_BB = I_B*R_B + V_BE + I_E*R_E
18 I_B = I_B * R_B + V_B E + I_E * R_E - V_B B;
19 I_B= roots(I_B);// in A
20 I_E = (1+bita)*I_B; // in A
21 I_B = I_B * 10^6; // in A
22 disp("Part (a) : On assuming that the transistor is
      in the active region")
23 disp(I_B, "The value of I_B in A is:")
24 I_C= bita*I_B; // in A
25 I_C = I_C * 10^- - 3; // in mA
26 disp(I_C, "The value of I_C in mA is");
27 I_E = (1+bita)*I_B; // in
28 I_E = I_E * 10^-6; // in A
29 I_C = I_C *10^-3; // in A
30 I_B = I_B * 10^-6; // in A
31
```

```
32 // Part (b): To verify that the transistor is not in
       the active region
33 // Applying KVL to collector circuit, we get V_CC=
      I_C*R_C+V_CE+I_E*R_E or
V_{CE} = V_{CC} - I_{C*R} - I_{E*R} = ; // in V
35 if V_CE<0 then
       disp("Part (b)")
36
       disp("Since the value of V_CE ("+string(V_CE)+"
37
          V) is negative,")
38
       disp ("hence the transistor is not in active
          region")
39
  end
40
41 // Part (c)
42 V_BEsat= 0.8;// in V
43 V_{CEsat} = 0.2; // in V
44 // Applying KVL to base circuit, V_BB= I_B*R_B+
      V_BEsat+I_C*R_E+I_B*R_E, or
45 // I_B*(R_B+R_E)+I_C*R_E=V_BB-V_BEsat
      (i)
  // Applying KVL to collector circuit, V_CC= I_C*R_C+
      V_CEsat+(I_C+I_B)*R_E, or
  // I_B*R_E+I_C*(R_C+R_E) = V_CC-V_CEsat
      ii)
48 // Solving eq(i) and (ii) by matrix method
49 A = [(R_B + R_E) R_E; R_E (R_C + R_E)];
50 B= [V_BB-V_BEsat V_CC-V_CEsat];
51 R = B * A^-1;
52 I_B = R(1); // in A
I_B = I_B * 10^6; // in
54 I_C = R(2); // in A
55 I_C = I_C * 10^3; // in mA
56 disp("Part (c) : On assuming that the transistor is
      in saturation region")
57 disp(I_B,"The value of I_B in
                                    A is : ")
58 disp(I_C,"The value of I_C)
                                in mA is : ")
59 \text{ I\_Bmin= I\_C/bita;} // \text{ in mA}
60 I_Bmin= I_Bmin*10^3; // in
```

```
61 if I_B>I_Bmin then
                     disp("Part (d) :")
62
63
                     disp("Since the value of I_B ("+string(I_B)+"
                                 A) is greater than the value of LBmin ("+
                             string(I_Bmin)+" A)")
                     disp ("Hence the transistor is indeed in
64
                             saturation region")
65
        end
66
67 // Pard (e): R_E to bring the transistor out of
                 saturation
68 Vcut = 0.5; //cut in voltage in V
69 I_B = poly(0, 'I_B'); // in A
70 I_C= bita*I_B; // in A
71 I_E = (1+bita)*I_B; // in A
72 // Applying KVL to input loop, V_BB= I_B*R_B+V_BE+(
                 I_{-}C+I_{-}B) *R_E or
73 // I_B = (V_BB - V_BE) / (R_B + (1 + bita) * R_E)
                                                                                                            (iii)
74 // I_{C} = bita*I_{B} = (V_{BB}-V_{BE})/(R_{B}+(1+bita)*R_{E})*
                 bita
                                         (iv)
75 // V_B = V_B E + (1 + bita) * I_B * R_E = V_B E + (1 + bita) * (V_B B - bita) * (V_B B
                 V_BE) / (R_B+(1+bita)*R_E)*R_E
                                                                                                                           (\mathbf{v})
                                                                 (on substituting eq(iii))
76 // V_C = V_C - I_C * R_C = V_C - (V_B - V_B E) / (R_B + (1 + bit a))
                 *R_E)*bita*R_C
                 vi)
                                                                          (on substituting eq(iv))
77 // but V_B-V_C <= Vcut and substituting the value
                 from eq (v) and (vi), we get
78 R_E = [bita*R_C*(V_BB-V_BE)-R_B*(V_{cut}+V_CC-V_BE)]
                 ]/[(1+bita)*(-V_BB+Vcut+V_CC)];// in ohm
79 R_E= R_E*10^-3; // in k ohm
80 disp("Part (e) : The value of R_E > = "+string(R_E) + "
                     k ")
```

Scilab code Exa 2.16 Region of transistor and output voltage

```
1 // Exa 2.16
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ bita} = 100;
8 V_CEsat = 0.2; // in V
9 V_BEsat = 0.8; // in V
10 R_C = 3; // in k ohm
11 R_C = R_C * 10^3; // in k ohm
12 V_{CC} = 10; // in V
13 R_B = 7; // \text{ in k ohm}
14 R_B = R_B * 10^3; // in ohm
15 R_E = 500; // in ohm
16 V_BB = 3; // in V
17 V_BE = 0.7; // in V
18 // Part (a) :
19 // Applying KVL to input loop, V_BB = I_B*R_B+(I_B+
      I_C)*R_E+V_BEsat or I_B*(R_B+R_E)+I_C*R_E=V_BB-
      V_BEsat
                              (i)
20 // Applying KVL to output loop, V_CC=I_C*R_C+V_CEsat
      +(I_B+I_C)*R_E \text{ or } I_B*R_E+I_C*(R_C+R_E)=V_C-C
      V_CEsat
                               (ii)
21 // Solving eq(i) and (ii) by matrix method
22 A = [(R_B + R_E) R_E; R_E (R_C + R_E)];
23 B= [V_BB-V_BEsat V_CC-V_CEsat];
24 R = B * A^-1;
25 I_B = R(1); // in A
26 \text{ I}_{C} = R(2); // \text{ in } A
27 I_Bmin= I_C/bita; // in A
28 I_B = I_B * 10^3; // in mA
29 I_Bmin=I_Bmin*10^3; // in mA
30 if I_B>I_Bmin then
       disp("As the value of I_B ("+string(I_B)+" mA)
31
          is greater than the value of I_Bmin ("+string
```

```
(I_Bmin) + mA)")
                        disp("Hence the transistor is in saturation
32
                                 region")
33
         end
34
        // Pard (e) : R_E to bring the transistor out of
35
                   saturation
36 Vcut =0.5; //cut in voltage in V
37 I_B = poly(0, 'I_B'); // in A
38 \text{ I_C= bita*I_B;// in A}
39 I_E = (1+bita)*I_B; // in A
40 // Applying KVL to input loop, V_BB= I_B*R_B+V_BE+(
                   I_-C+I_-B) *R_E or
41 // I_B = (V_B B - V_B E) / (R_B + (1 + bita) * R_E)
                                                                                                                          (iii)
42 // I_{C} = bita*I_{B} = (V_{BB}-V_{BE})/(R_{B}+(1+bita)*R_{E})*
                                              (iv)
                   bita
43 // V_C = -V_C + I_C * R_C = -V_C + (V_B - V_B + I_C) / (R_B + I_C)
                   bita )*R_E)*bita*R_C
                                                                                                                                 (\mathbf{v})
                                                                       (on substituting eq(iv))
44 // V_B = V_B E - (1 + bita) * I_B * R_E = V_B E - (1 + bita) * (V_B B - bita) * (V_B B
                   V_BE) / (R_B+(1+bita)*R_E)*R_E
                                                                                                                              (vi)
                                                                          (on substituting eq(iii))
        // but V_C-V_B <= Vcut and substituting the value
                   from eq (v) and (vi), we get
46 \text{ R_E= [(V_BB-V_BE)*bita*R_C-(Vcut+V_CC+V_BE)*R_B]}
                   ]/[(1+bita)*(Vcut+V_CC-V_BB+2*V_BE)];// in ohm
        disp(R_E, "The value of R_E in ohm is : ")
```

Scilab code Exa 2.17 Collector voltage and minimum value of hFE

```
1 // Exa 2.17
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 9; // \text{ in V}
8 R_C = 2; // in k ohm
9 R_C = R_C * 10^3; // in ohm
10 R_B = 50; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 Beta = 70;
13 R_E = 1; // in k ohm
14 R_E = R_E * 10^3; // in ohm
15 V_BEsat = 0.8; // in V
16 V_{CEsat} = 0.2; // in V
17 // Applying KVL to input loop, V_CC= I_B*R_B+V_BEsat
     +I_-E*R_-E or
18 I_B = (V_CC - V_BEsat)/(R_B + (1 + Beta) * R_E); // in A
19 // Applying KVL to output loop, V_CC= I_C*R_C+
      V_CEsat+I_E*R_E or
20 \text{ I}_C = (V_CC - V_CEsat - I_B*R_E)/(R_C+R_E); // in A
21 I_Bmin = I_C/Beta; // in A
22 I_B = I_B * 10^6; // in A
23 I_Bmin = I_Bmin * 10^6; // in
24 if I_B>I_Bmin then
       disp("Part (i) :")
25
       disp("As the value of I_B ("+string(I_B)+" mA)
26
          is greater than the value of I_Bmin ("+string
          (I_Bmin) + mA)")
27
       disp ("Hence the transistor is in saturation
          region")
28 end
29 disp("Part (ii) : ")
30 V_C = V_C C - I_C * R_C; // in V
31 disp(V_C, "The collector voltage in volts is: ")
32 h_FE = I_C/(I_B*10^-6);
33 disp(h_FE,"The minimum value of h_FE that will
      change the state of the transistor is: ")
```

Scilab code Exa 2.18 Output voltage and minimum value of R1

```
1 // Exa 2.18
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 12; // \text{ in V}
8 bita_min= 30;
9 R1= 15; // in k ohm
10 R2= 100; // in k ohm
11 R_C= 2.2; // in kohm
12 V_BB = -12; // in V
13 V_BE = 0.7; // in V
14 // Part (i)
15 Vi= 12; // in V
16 V_BEsat = 0.8; // in V
17 V_{CEsat} = 0.2; // in V
18 // Applying KVL to B-E circuit, Vi= I1*R1+V_BEsat or
19 I1= (Vi-V_BEsat)/R1;// in mA
20 // Applying KVL to -12 V supply,
21 I2= (V_BEsat-V_BB)/R2; // in mA
22 // Applying KVL to input loop,
23 I_B = I1 - I2; // in mA
24 // Applying KVL to output loop, V_CC= I_C*R_C+
      V_CEsat or
25 \text{ I_C= (V_CC-V_CEsat)/R_C;// in mA}
26 I_Bmin= I_C/bita_min; // in mA
27 if I_B>I_Bmin then
       disp("Part (a) :")
28
       disp("As the value of I_B ("+string(I_B)+" mA)
29
          is greater than the value of I_Bmin ("+string
          (I_Bmin) + mA)")
```

```
disp ("Hence the transistor is in saturation
30
          region")
31 end
32 Vo= V_CC-I_C*R_C; // in V
33 disp(Vo, "The output voltage in volts is:")
34
35 // Part (b)
36 I2= (V_CC+V_BE)/R2; // in mA
37 // and I1= (V_CC-V_BE)/R1; // in mA
                                                  ( i )
38 I_B = I_B min; // in mA
39 I1= I2+I_Bmin; // in mA
40 // Now from eq(i)
41 R1= (V_CC - V_BE)/I1; // in k ohm
42 disp("Part (b)")
43 disp(R1, "The value of R1 in k ohm is: ")
44
45 // Part (c)
46 I_C = 0; // in mA
47 Vo = V_CC - I_C * R_C; // in V
48 disp("Part (c): Transistor is in cutoff")
49 disp(Vo, "The value of Vo in volts is: ")
50
51 // Note: There is some difference between coding
      output and answer of the book. This is why
      because in the book the calculate value of I_C is
       5.36 \text{ mA}/30 = 0.178 \text{ mA} while accurate value is
      0.179 \text{ mA}
```

Chapter 3

Transistor Biasing And Thermal Stabilization

Scilab code Exa 3.1 DC load line

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 15; // \text{ in V}
8 R_C = 4; // in k ohm
9 R_C = R_C * 10^3; // in ohm
10 I_C = 0; // in A
11 V_CE = V_CC - (I_C*R_C); // in V
12 V_CE = 0; // in V
13 // V_{CE} = V_{CC} - I_{C*R_C};
14 I_C = V_CC/R_C; // in A
15 I_C = I_C * 10^3; // in mA
16 plot([V_CC 0],[0 I_C])
17 xlabel("V_CE in volts")
18 ylabel("I_C in mA")
19 title("DC load line")
```

Scilab code Exa 3.2 Q point

```
1 // Exa 3.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R_C} = 5; // \text{ in k ohm}
8 \text{ V_CC} = 10; // \text{ in V}
9 I_C = 1; // in mA
10 V_CE = V_CC - (I_C*R_C); // in V
11 disp("Part (i) When Collector load = 5 kohm");
12 disp("Operating point is: "+string(V_CE)+" V, "+
      string(I_C)+" mA")
13 disp("The quiescent point 5V and 1mA");
14 R_C = 6; // in k ohm
15 V_CE = V_CC - (I_C*R_C); // in V
16 disp("Part (ii) When Collector load = 6 kohm");
17 disp("Operating point is: "+string(V_CE)+" V, "+
      string(I_C)+" mA")
```

Scilab code Exa 3.3 Q point values

```
1 // Exa 3.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Beta = 100;
```

```
8  V_CC = 10; // in V
9  V_BE = 0.7; // in V
10  R_B = 150; // in k ohm
11  // V_CC - I_B*R_B - V_BE = 0;
12  I_B = (V_CC-V_BE)/R_B; // in mA
13  // I_C = Beta*I_B + (1+Beta)*I_CO;
14  I_C = Beta * I_B; // in A
15  // V_CC - I_C*R_C - V_CE = 0;
16  R_C = 1; // in k ohm
17  V_CE = V_CC - (I_C*R_C); // in V
18  disp("The operating point is : "+string(V_CE)+" V, "+string(I_C)+" mA")
```

Scilab code Exa 3.4 IBQ ICQ VCEQ VB VC and VBC

```
1 // Exa 3.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 12; // \text{ in V}
8 R_C = 2.2; // in k ohm
9 R_C = R_C * 10^3; // in ohm
10 R_B = 240; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 V_BE = 0.7; // in V
13 // V_{CC} - I_{B}*R_{B} - V_{BE} = 0;
14 I_BQ = (V_CC - V_BE)/R_B; // in A
15 I_BQ = I_BQ * 10^6; // in A
16 disp(I_BQ, "The value of I_BQ in
                                        A is");
17 \text{ Beta} = 50;
18 // I_{CQ} = Beta*I_{BQ} + (1+BEta)*I_{CO};
19 I_CQ = Beta*I_BQ*10^-6; // in A
20 I_CQ = I_CQ * 10^3; // in mA
```

```
disp(I_CQ,"The value of I_CQ in mA is");
// V_CC - I_CQ*R_C - V_CEQ = 0;
V_CEQ = V_CC - I_CQ*10^-3*R_C;// in V
disp(V_CEQ,"The value of V_CEQ in V is");
V_B = V_BE;// in V
disp(V_B,"The value of V_B in V is");
V_C = V_CEQ;// in V
disp(V_C,"The value of V_C in V is");
// V_CE = V_CB + V_BE;
V_CB = V_CEQ - V_BE;// in V
disp(V_BC,"The value of V_BC in V is");
```

Scilab code Exa 3.5 Percent change the Q point value over temparature range

```
1 // Exa 3.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 12; // \text{ in V}
8 R_B = 100; // in k ohm
9 R_C = 500*10^-3; // in k ohm
10 \text{ Beta\_dc} = 100;
11 V_BE = 0.7; // in V
12 // V_{CC} - I_{BQ}*R_{B} - V_{BE} = 0;
13 I_BQ = (V_CC - V_BE)/R_B; // in mA
14 I_CQ = Beta_dc*I_BQ; // in mA
15 / V_{CC} - I_{CQ}*R_{C} - V_{CEQ} = 0;
16 V_CEQ = V_CC - (I_CQ*R_C); // in V
17 disp("The Q point at 30 is: "+string(V_CEQ)+" V,
      "+string(I_CQ)+" mA")
18 \text{ Beta\_dc} = 120;
```

Scilab code Exa 3.6 Stability factor

```
1 // Exa 3.36
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R_B = 100; // in k ohm
8 R_B = R_B * 10^3; // in ohm
9 R_C = 1; // in k ohm
10 R_C = R_C * 10^3; // in ohm
11 V_BE = 0.3; // in V
12 // S = 1 + Beta and Beta = I_C/I_B;
13 V_{CC} = 12; // in V
14 V_{CE} = 6; // in V
15 I_C = (V_CC - V_CE)/R_C; // in A
16 I_C = I_C * 10^3; // in mA
17 I_B = (V_CC - V_BE)/R_B; // in A
18 I_B = I_B * 10^6; // in A
19 Beta = (I_C*10^-3)/(I_B*10^-6);
20 S = 1 + Beta;
21 disp(S,"The stability factor is");
```

Scilab code Exa 3.7 Collector current VCE and stability factor

```
1 // Exa 3.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 25; // \text{ in V}
8 R_B = 180; // in k ohm
9 R_C = 820*10^-3; // in k ohm
10 R_E = 200*10^-3; // in k ohm
11 bita = 80;
12 V_BE = 0.7; // in V
13 // Applying KVL to B-E loop, V_CC-I_B*R_B-V_BE-I_E*
     R_E=0 or
14 I_C = (V_CC - V_BE)/((R_B + R_E)/bita - R_E); // in A
      putting I_B= I_C/bita and I_E= I_B+I_E)
15 disp(I_C, "The collector current in mA is");
16 V_{CE} = V_{CC} - (I_{C*R_C}); // in V
17 disp(V_CE, "The collector to emmiter voltage in V is"
      );
18 S = (1 + bita)/(1 + ((bita*R_E)/(R_B+R_E)));
19 disp(S, "Current stability factor is");
20 Sdas = -bita/(R_B + R_E*(1+bita));
21 disp(Sdas, "The voltage stability factor is");
```

Scilab code Exa 3.8 Q point value

```
1 // Exsa 3.8
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 V_BE= 0.7;// in V
9 R_C = 4.7; //in k ohm
10 \text{ bita} = 100;
11 R_B = 680; // in k ohm
12 I_C = poly(0, 'I_C'); // in mA
13 I_B = I_C/bita; // in mA
14 // Applying KVL to C-B circuit, V-CC - (I-C+I-B)*R-C
       - I_B * R_B - V_B = 0;
15 I_C = V_CC - (I_C + I_B) * R_C - I_B * R_B - V_BE;
16 I_C = roots(I_C); // in mA
17 I_B = I_C/bita; // in mA
18 V_CEQ = V_CC - (I_C+I_B)*R_C; // in V
19 disp("Q point : "+string(V_CEQ)+" volts, "+string(
      I_C) + mA
```

Scilab code Exa 3.9 Collector to base bias circuit

```
1  // Exa 3.9
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_CEQ = 5; // in V
8  I_CQ = 5; // in mA
9  V_CC = 12; // in V
10  bita = 120;
11  I_C = I_CQ; // in mA
12  V_BE = 0.7; // in V
13  I_B= I_C/bita; // in mA
14  // V_CC - (I_C+I_B)*R_C - V_CE = 0 or
```

Scilab code Exa 3.10 Stability factor

```
1 // Exa 3.10
2 clc;
3 clear;
4 close;
5 format('v',5);
6 // Given data
7 \text{ V_CC} = 10; // \text{ in V}
8 R_C = 1; // in k ohm
9 R_B = 100; //in k ohm
10 V_CE = 5; // in V
11 V_BE = 0.7; // in V
12 V_CB = V_CE - V_BE; // in V
13 I_B = V_CB/R_B; // in mA
14 // V_{CC} = (I_{C}+I_{B})*R_{C} + V_{CE} = I_{C}*R_{C} + I_{B}*R_{C} +
       V_CE;
15 I_C = (V_CC - V_CE - (I_B*R_C))/R_C; // in mA
16 bita= I_C/I_B;
17 S = (1 + bita)/(1 + bita*(R_C/(R_B+R_C)));
18 disp(S,"The value of stability factor is");
19 S_fixed_bias = 1+bita; // stability factor for fixed
      bias circuit
20 disp(S_fixed_bias," For the fixed bias circuit, the
      value of stability factor would have been")
21 disp ("Thus collector to base circuit has a low value
       of S and hence provides better Q point stability
      ")
```

Scilab code Exa 3.11 Q point value

```
1 // Exa 3.11
2 clc;
3 clear;
4 close;
5 format('v',5)
6 //Given data
7 \text{ Beta} = 100;
8 \text{ V_CC} = 10; // \text{ V}
9 R1 = 9.1; // in k ohm
10 R_C = 1; // in k ohm
11 R_E = 560*10^{-3}; // in
                             k ohm
12 R2 = 4.7; // in k ohm
13 V_BE = 0.7; // in V
14 V_{Th} = (V_{CC}/(R1+R2))*R2; // in V
15 R_B = (R1*R2)/(R1+R2); // in k ohm
16 // V_{Th} - I_{B}*R_{B} - V_{BE} - I_{E}*R_{E} = 0 \text{ or }
17 I_B = (V_Th - V_BE)/(R_B + ((1+Beta)*R_E)); // in mA
18 // I_C = Beta*I_B + (1+Beta)*I_CO;
19 I_C = Beta*I_B; // in mA (neglecting I_CO as it is
      very small)
20 // V_{CC} - (I_{C}*R_{C}) - V_{CE} - I_{E}*R_{E} = 0;
21 V_CE = V_CC - (I_C*R_C) - (I_C*R_E); // in V
22 disp("Q Point : "+string(V_CE)+" volts, "+string(I_C
      ) +" mA")
```

Scilab code Exa 3.12 Quiescent current and collector emitter voltage

```
1 // Exa 3.12
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 \text{ bita} = 50;
9 R_C = 2; // in k ohm
10 R_E = 0.1; // in k ohm
11 R1 = 100; // in k ohm
12 R2 = 5; // in k ohm
13 R_Th = (R1*R2)/(R1+R2); // in k ohm
14 R_B = R_Th; // in k ohm
15 V_BE = 0.7; // in V
16 V_Th = (V_CC*R2)/(R1+R2); // in V
17 // Applying KVL to the base circuit, V-Th - I-B*R-B
       - V_BE - I_E*R_E = 0 \text{ or}
18 I_B = (V_Th - V_BE)/(R_B + (R_E*(1+bita))); // in mA
          (on putting I_E = (1 + bita) * I_B)
19 I_C = bita*I_B; // in mA
20 I_E = (1+bita)*I_B; // in mA
21 V_CE = V_CC - (I_C*R_C) - (I_E*R_E); // in V
22 disp("Q Point : "+string(V_CE)+" volts, "+string(I_C
      ) +" mA")
```

Scilab code Exa 3.13 Q point value

```
1  // Exa 3.13
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  bita= 44;
8  V_BE = 0.2; // in V
9  V_CC = -4.5; // in V
```

```
10 R1 = 2.7; // in k ohm
11 R_C = 1.5; // in k ohm
12 R2 = 27; // in k ohm
13 R_E = 0.27; // in k ohm
14 R_Th = (R1*R2)/(R1+R2); // in k ohm
15 R_B = R_Th; // in k ohm
16 V_{Th} = (V_{CC}*R_B)/R2; // in V
17 I_B = poly(0, 'I_B'); // in mA
18 I_C= bita*I_B; // in mA
19 I_E = -(I_C + I_B); // in mA
20 // Applying KVL to base circuit , -V_-Th - I_-B*R_-B -
      V_BE + (I_E * R_E) = 0 (i)
21 I_B = (V_Th - I_B*R_B + V_BE + (I_E*R_E)); // in mA
22 I_B = roots(I_B); // in mA
23 I_C= bita*I_B; // in mA
24 I_E = -(I_C + I_B); // in mA
25 // Applying KVL to collector circuit, -V_{-}CC - I_{-}C*
      R_C - V_C + I_E * R_E = 0 or
26 \text{ V_CE} = \text{V_CC} - (\text{I_C*R_C}) + (\text{I_E*R_E}); // \text{ in } \text{V}
27 disp("Part (a) : ")
28 disp("Q Point : "+string(V_CE)+" volts, "+string(I_C
      ) +" mA")
  // Calculation of R'Th or R'B (Thevenin's Resistance
30 \text{ r_bb} = 0.69; // \text{ in k ohm}
31 R_deshB = ((R1*R2)/(R1+R2)) + r_bb; // in k ohm
32 // Calculation of Thevenin's voltage
33 \text{ I_B= (V_Th+V_BE)/(R_deshB+(1+bita)*R_E);// in mA}
34 \text{ I_C= bita*I_B;// in } \text{mA}
35 // Applying KVL to collector circuit , -V\_CC - (I\_C*
      R_{-}C) - V_{-}CE + I_{-}E * R_{-}E = 0 or
36 \text{ V_CE} = \text{V_CC} - (\text{I_C*R_C}) + (\text{I_E*R_E}); // \text{ in } \text{V}
37 disp("Part (b) : ")
38 disp("Q Point : "+string(V_CE)+" volts, "+string(I_C
      ) +" mA")
```

Scilab code Exa 3.14 DC bias voltage and current

```
1 // Exa 3.14
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ bita} = 140;
8 V_BE = 0.7; // in V
9 \ V_{CC} = 22; // in V
10 R1 = 39; // in k ohm
11 R_C = 10; // in k ohm
12 R2 = 3.9; // in k ohm
13 R_E = 1.5; // in k ohm
14 // Calculation of Thevenin's Resistance
15 R_Th = (R1*R2)/(R1+R2); // in k ohm
16 // Calculation of Thevenin's Voltage
17 V_{Th} = (V_{CC}*R2)/(R1+R2); // in V
18 I_B = poly(0, 'I_B'); // in mA
19 I_E = (1+bita)*I_B; // in mA
20 // Applying KVL to input side, V_Th - I_B*R_Th -
     V_BE - I_E*R_E=0 or
21 \quad I_B = V_Th - I_B*R_Th - V_BE - I_E*R_E;
22 I_B= roots(I_B); // in mA
23 I_C = bita*I_B; // in mA
24 I_E = (1+bita)*I_B; // in mA
  // Applying KVL to C-E circuit, V_CC - I_C*R_C -
     V_{CE} - I_{E} * R_{E} = 0 or
V_CE = V_CC - (I_C*R_C) - ((1+bita)*I_B*R_E); // in V
27 I_B = I_B * 10^3; // in A
28 disp(I_B,"The value of I_B in
                                    A is");
29 disp(I_C, "The value of I_C in mA is");
30 disp(V_CE, "The value of V_CE in V is");
```

Scilab code Exa 3.15 RE and stability factor

```
1 // Exa 3.15
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_CC} = 12; // \text{ in V}
8 R_C = 4.3; // in k ohm
9 \ V_CE = 4; // in V
10 V_BE = 0.7; // in V
11 V_{EE} = 6; // in V
12 \text{ bita} = 50;
13 // Applying KVL in base circuit, -V_BE - I_ER_E +
      V_{-}EE = 0 or
14 I_ER_E = V_EE - V_BE; // in V
15 // Applying KVL in C-E circuit, V_CC-I_C*R_C-V_CE-
      I_ER_E+V_EE=0 or
16 I_C = (V_CC - V_CE - I_ER_E + V_EE)/R_C; // in mA
17 I_B = I_C/bita; // in mA
18 I_E = I_C + I_B; // in mA
19 R_E = I_ER_E/I_E; // in k ohm
20 disp(R_E, "The value of R_E in k ohm is:")
21 del_IC= bita*(1+bita)*R_E;
22 del_ICO= bita*(1+bita)*R_E;
23 S= del_IC/del_ICO;
24 disp(S, "The value of stability factor, S is: ")
25 S_{desh} = bita/((1+bita)*R_E);
26 disp(S_desh,"The value of stability factor, S'' is:
       ")
```

Scilab code Exa 3.17 Junction temperature

```
1 // Exa 3.17
                         (Miss printed as example 3.14)
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 Tj = 150; // Junction temperature in degree C
8 \text{ P_Cmax} = 125; // \text{ in mW}
9 T = 25; // free-air temperature in degree C
10 T1 = 0;// in degree C
11 curve = (Tj-T)/(P_{max} - T1); // in degreeC/mW
12 T_A = 25; // Ambient temperature in degree C
13 P_D = 75; // Collector junction dissipation in mW
14 theta = 1; // in degree C/mW
15 // Tj-T_A = theta*P_D;
16 Tj = T_A + (theta*P_D); // in degree C
17 disp(Tj,"The junction temperature in C is");
```

Scilab code Exa 3.18 Thermal resistance and junction temperature

```
disp(theta, "The thermal resistance for a transistor
     in C/mW is");

// For theta= 1 C/mW

P_D = 75; // in mW

// Tj-T_A = theta*P_D;

Tj = (theta*P_D) + T_A; // in degree C

disp(Tj, "The junction temperature in C is");
```

Scilab code Exa 3.20 Biasing component for fixed bias

```
1 // Exa 3.20
                                  (Miss printed as example
       3.17)
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 V_E = 1; // in V
8 V_BE = 0.7; // in V
9 R_C = 1; // in k ohm
10 \text{ Beta} = 180;
11 V_{CC} = 12; // in V
12 \text{ V_CEQ} = 6; // \text{ in V}
13 // Applying KVL into collector circuit, V _CC - I_C*
      R_{-}C - V_{-}CEQ = 0 or
14 I_C = (V_CC - V_CEQ)/R_C; // in mA
15 I_B = I_C/Beta; // in mA
16 // Applying KVL into base circuit, V_CC - I_B*R_B -
      V_BE = 0 or
17 R_B = (V_CC - V_BE)/I_B; // in k ohm
18 disp(R_B, "The value of R_B in k ohm is");
19 // Applying KVL to collector circuit, V_CC - I_C*R_C
     - V_{CE} - V_{E} = 0 \text{ or}
20 I_C = (V_CC - V_CEQ - V_E)/R_C; // in mA
I_B = I_C/Beta; // in mA
```

```
22  I_E = I_C+I_B; // in mA
23  R_E = V_E/(I_E); // in k ohm
24  R_E= round(R_E*10^3); // in ohm
25  disp(R_E, "The value of R_E in ohm is");
26  I_R2 = 10*I_B; // in mA
27  V_BE= 0.6; // in V
28  //R2 =V_B/I_R2 = (V_E+V_BE)/I_R2;
29  R2 = (V_E+V_BE)/I_R2; // in k ohm
30  R2= R2*10^3; // in ohm
31  disp(R2, "The value of R2 in ohm is");
32  I_R1 = I_R2 + I_B; // in mA
33  //R1 = V_R1/I_R1 = (V_CC-V_B)/I_R1;
34  V_B = V_E+V_BE; // in V
35  R1 = (V_CC-V_B)/I_R1; // in k ohm
36  disp(R1, "The value of R1 in k ohm is");
```

Scilab code Exa 3.21 Value of ICQ

```
1 // Exa 3.21
                                      (Miss printed as example
        3.18)
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V}_BB= 6; // \text{ in } V
8 I_CBO = 0.5; // in
9 V_BE = 0.7; // in V
10 R_B= 50; // in k ohm
11 R_E= 1; // in k ohm
12 \text{ bita} = 75;
13 // V_BB - I_B * R_B - V_BE - I_E * R_E = 0 \text{ or}
I_{B} = (V_{BB} - V_{BE}) / (R_{B} + (1 + bita) * R_{E}); // in mA
                                                                (on
        putting I_-E = (1 + bita) * I_-B
                                                         ( i )
15 I_B = round(I_B*10^3); // in
```

```
16 I_C= bita*I_B; // in A
17 I_C = I_C * 10^- - 3; // in mA
18 I_CQ = I_C; // in mA
19 {\tt disp}({\tt I\_CQ}\,,{\tt "The}\ {\tt value}\ {\tt of}\ {\tt I\_CQ}\ {\tt at}\ {\tt room}\ {\tt temperature}\ {\tt in}\ {\tt mA}\ {\tt is}\ {\tt :}\ "\tt)
20 // Part (ii)
21 C= 2; // temperature coefficient in mV/ C
22 C = 2*10^-3; // in V/ C
23 T2= 20; // in C
24 \text{ T1= 0; // in}
25 \text{ I}_{CB02} = \text{I}_{CB0} * 2^{((T2-T1)/10)}; // \text{ in } A
26 V_BE2=V_BE-C*T2;// in V
27 // Now from eq(i), for the new value of I_B
28 I_B = (V_BB - V_BE2) / (R_B + (1 + bita) * R_E); // in mA
29 I_B = I_B * 10^3; // in A
30 I_C= bita*I_B+(1+bita)*I_CBO2; // in
31 I_C = I_C * 10^- - 3; // in mA
32 \quad I_CQ = I_C; // \text{ in mA}
33 disp(I_CQ,"The value of I_CQ when temperature
       increases by 20 C in mA is: ")
```

Scilab code Exa 3.22 Value of R1 R2 and RE

```
12 R_C = 2; // in k ohm
13 I_C = 4; // in mA
14 I_B = I_C/bita; // in mA
15 // Applying KVL to collector loop, V_{CC} - I_{C} * R_{C} -
      V_{CE} - I_{E} * R_{E} = 0 or
16 R_E = (V_CC - I_C*R_C - V_CE)/(I_C+I_B); // in k ohm
                   (on putting I_E = I_C + I_B)
17 R_E= round(R_E*10^3); // in ohm
18 disp(R_E, "The value of R_E in ohm is");
19 // Formula S = (1+bita)*((1 + (R_B/R_E))/((1+bita))
       + (R_{-}B/R_{-}E) ) or
20 R_B = (1+bita)*(1-S)*R_E/(S-1-bita); // in ohm
21 // But R_B = R1 \mid R2 = R1 * R2 / (R1 + R2) \Rightarrow R2 / (R1 + R2) =
      R_B/R1
                           ( i )
22 // Calculation of R1 and R2 :
23 V_BE = 0.2; // in V
24 // Applying KVL to input loop,
V_R2 = V_BE + (I_C + I_B) *10^-3 * R_E; // in V
26 // \text{ But } V_R2 = R2*V_CC/(R1+R2) \implies R2/(R1+R2) = V_R2/(R1+R2)
      V_CC
                       (ii)
27 // On comparing eq (i) and (ii)
28 R1 = R_B * V_CCC / V_R2; // in ohm
29 R2= R1*V_R2/(V_CC-V_R2); // in ohm
30 R1= R1*10^-3; // in k ohm
31 R2= R2*10^-3; // in k ohm
32 disp(R1, "The value of R1 in k ohm is:")
33 disp(R2, "The value of R2 in k ohm is : ")
34 // Effect of Reducing S or 3:
35 S = 3;
36 // Formula S = (1+bita)*((1 + (R_B/R_E))/((1+bita))
       + (R_B/R_E) ) ) or
37 \text{ R_B} = (1+\text{bita})*(1-\text{S})*\text{R_E}/(\text{S-1-bita}); // \text{ in ohm}
38 R_B= R_B*10^-3; // in k ohm
39 \operatorname{disp}(R_B, When S \le 3, \text{ the value of } R_B \text{ in } k \text{ ohm is } :
40 disp("Thus S is reduced below 3 at the cost of
      reduction of it ''s input impedance")
```

Chapter 4

The Transistor At Low Frequency

Scilab code Exa 4.1 Overall current gain

```
1 // Exa 4.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 100*10^3; // in ohm
8 R2 = 10*10^3; // in ohm
9 \text{ h_fe} = 50;
10 h_oe = 1/40; // in ohm
11 R_L = 5*10^3; // in ohm
12 R_S= 5*10^3; // in ohm
13 h_ie = 1.1*10^3; // in ohm
14 \text{ h_re} = 2.5*10^-4;
15 R_B = (R1*R2/(R1+R2)); // in ohm
16 A_I = (-h_fe)/(1 + h_oe*R_L);
17 disp(A_I, "The internal current gain is");
18 //Internal input impedance, Zi = Vbe/Ib or
19 Zi = (h_ie + h_re*A_I*R_L); // in ohm
```

```
20 Zi = Zi *10^-3; // in k ohm
21 disp(Zi, "The internal input impedance in k ohm is");
22 Zi= Zi*10^3; // in ohm
23 //Internal voltage gain, Av = Vce/Vbe or
24 \quad Av = (A_I*R_L)/Zi;
25 disp(Av, "The internal voltage gain is");
26 Ri = floor(R_B*Zi/(R_B+Zi)); // in ohm
27 \text{ Ri} = \text{Ri} * 10^{-3}; // \text{ in k ohm}
28 disp(Ri, "The overall input impedance in k ohm is");
29 Ri= Ri*10^3; // in ohm
30 // V_S = I_i * R_S + v_b e \text{ or }
31 \text{ VS_by_vbe= Ri/(Ri+R_S)};
32 \text{ Avs} = \text{Av} * \text{VS}_b \text{y}_v \text{be};
33 disp(Avs, "The overall voltage gain is: ")
34 / R_B*(I_i-I_b) = Zi*I_b \text{ or }
35 \quad I_bBYI_i = R_B/(R_B+Zi);
36 \quad A_{IS} = A_{I} * I_{bBYI_i};
37 disp(A_IS, "The overall current gain is:")
38 Rdesh_S = R_B*R_S/(R_B+R_S); // in ohm
39 \text{ Rdesh_S} = 3220
40 I_bByVce= -h_re/(h_ie+Rdesh_S);
41 Yo= h_oe-h_fe*h_re/(h_ie+Rdesh_S)*10^3;
42 Zo= 1/Yo;
43 disp(Zo, "The Output impedance in ohm is:")
```

Scilab code Exa 4.2 Overall current gain

```
1  // Exa 4.2
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_CC = 15; // in V
8  R_L = 10; // in k ohm
```

```
9 \text{ Rf} = 200; // \text{ in k ohm}
10 R_S = 5; // in k ohm
11 Rf2 = Rf; // in k ohm
12 h_fe = 50;
13 V_S = 10*10^-3; // in V
14 h_oe = 1/40; // in k ohm
15 R_L = (R_L*Rf2)/(R_L+Rf2); // in k ohm
16 Ai = -h_fe/(1+h_oe*R_L);
17 disp(Ai, "The internal current gain is");
18 / Zi = Vbe/Ib = h_ie +Ai*h_re*R_L;
19 h_ie = 1.1; // in k ohm
20 h_re = 2.5*10^-4;
21 Zi = h_{ie} + Ai * h_{re} * R_L; // in k ohm
22 disp(Zi,"The internal input impedance in k ohm is");
23 //A_V = Vce/Vbe = (Ai*R_L)/Zi;
24 \quad A_V = (Ai*R_L)/Zi;
25 disp(A_V, "The internal voltage gain is");
26 Rf1= Rf/(1-A_V)
27 // Rf1 = Rf/(1-A_V); // in k ohm
28 //Ri = Vi/Ii = Vbe/Ii = (Rf1*Zi)/(Rf1+Zi);
29 Ri = (Rf1*Zi)/(Rf1+Zi); // in k ohm
30 disp(Ri, "The overall input impedance in k ohm is");
31 //A_VS = Vo/V_S \text{ or }
32 \quad A_VS = A_V*(Ri/(R_S+Ri));
33 disp(A_VS, "The overall voltage gain is");
34 //A_IS = I_L/Ii or
35 \text{ A_IS} = (Rf2/(Rf2+R_L))*Ai*(Rf1/(Rf1+Zi));
36 disp(A_IS, "The overall current gain is");
37 Rdesh_S= Rf1*R_S/(Rf1+R_S); // in k ohm
38 Yo= h_oe-h_re*h_fe/(h_ie+Rdesh_S);// in mho
39 \text{ Zo} = 1/\text{Yo}; // \text{ in ohm}
40 disp(Zo, "The output impedance in ohm is:")
41 Zdesh_o = Rf2*Zo/(Rf2+Zo); // in ohm
42 disp(Zdesh_o,"The overall output impedance in ohm is
       : ");
43 Vo= V_S*abs(A_VS); // in V
44 Vo= Vo*10^3; // in mV
45 disp(Vo,"The magnitude of output voltage in mV is:
```

Scilab code Exa 4.3 Output impedance

```
1 // Exa 4.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ h_ic} = 2; // \text{ in k ohm}
8 \text{ h_fc} = -51;
9 \text{ h_oc} = 25*10^-6; // in ohm
10 h_rc = 1;
11 V_{CC} = 20; // in V
12 R1 = 10; // in k ohm
13 R2 = 10; // in k ohm
14 R_S = 1; // in k ohm
15 R_E = 5; // in k ohm
16 R_B= 5; // in k ohm
17 R_L= 5; // in k ohm
18 // (i) Current Gain
19 Ai = (-h_fc)/(1+h_oc*R_E*10^3);
20 disp(Ai, "The current gain is");
21 // (ii) Input impedance
22 \text{ Zi} = h_ic*10^3 + h_rc*Ai*R_E*10^3; // in ohm
23 Zi = Zi * 10^-3; // in k ohm
24 disp(Zi, "The input impedance in k ohm is");
25 // (iii) Voltage Gain
26 \text{ A_V} = (\text{Ai*R_L*10^3})/(\text{Zi*10^3});
27 \text{ A_V} = 1; // (approx)
28 disp(A_V, "The voltage gain is");
29 // (iv) Overall Input Impedance
30 Z_{IS} = (R_B*Z_i)/(R_B+Z_i); // in k ohm
31 disp(Z_IS, "The overall input impedance in k ohm is")
```

Scilab code Exa 4.4 Overall current gain

```
1 // Exa 4.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ h_ie} = 1.1; // \text{ in k ohm}
8 \text{ h_re} = 2.5*10^-4;
9 \text{ h_fe} = 50;
10 h_oe = 25*10^-6; // in A
11 V_{CC} = 15; // in V
12 R1 = 20; // in k ohm
13 R_C = 2; // in k ohm
14 R2 = 10; // in k ohm
15 R_S = 1; // in k ohm
16 R_E = 1; // in k ohm
17 // (i) Current Gain
18 Ai = -h_fe/(1 + h_oe*R_C*10^3);
19 disp(Ai, "The current gain is");
```

```
20 // (ii) Input impedance
21 \text{ Zi} = (h_ie*10^3) + (h_re*Ai*R_C*10^3); //in \text{ ohm}
22 Zi = Zi * 10^-3; // in k ohm
23 disp(Zi, "The input impedance in k ohm is");
24 // (iii) Voltage gain
25 \quad A_V = (Ai*R_C)/Zi;
26 disp(A_V, "The voltage gain is");
27 // (iv) Overall input impedance
28 R_B = (R1*R2)/(R1+R2); // in k ohm
29 \text{ Z_IS} = (Zi*R_B)/(Zi+R_B); // in k ohm
30 disp(Z_IS, "The overall input impedance in k ohm is")
31 // (v) Overall voltage gain
32 \text{ A_VS} = \text{A_V} * (Z_IS/(Z_IS+R_S));
33 disp(A_VS, "The overall voltage gain is");
34 // (vi) Overall current gain
35 A_{IS} = Ai*(R_B/(R_B+Zi));
36 disp(A_IS, "The overall current gain is");
```

Scilab code Exa 4.5 Power gain

```
1 // Exa 4.5
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 h_ie = 1.1; // in k ohm
8 h_oe = 25; // in A/V
9 h_oe = h_oe * 10^-6; // in A/V
10 h_fe = 50;
11 h_re = 2.5*10^-4;
12 R_L = 1.6; // in ohm
13 R_S = 1; // in k ohm
14 V_CC = 15; // in V
```

```
15  // (i) Current Gain
16  Ai = -h_fe/(1 + (h_oe*R_L));
17  disp(Ai, "The current gain is");
18  // (ii) Input impedance
19  Zi = (h_ie*10^3) + (h_re*Ai*R_L); // in ohm
20  Zi = Zi*10^-3; // in k ohm
21  disp(Zi, "The input impedance in k ohm is");
22  Zi = Zi*10^3; // in ohm
23  // (iii) Voltage gain
24  A_V = Ai*R_L/Zi;
25  disp(A_V, "The voltage gain is");
26  // (iv) Power gain
27  A_P = Ai*A_V;
28  disp(A_P, "The power gain is");
```

Scilab code Exa 4.6 ICQ VCEQ Ai Zi Av ZIS AVS AIS

```
1 // Exa 4.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ h_fe} = 150;
8 Beta_dc = h_fe;
9 \text{ h_ie} = 1*10^3; // \text{ in ohm}
10 h_re = 0;
11 h_{oe} = 0;
12 V_{CC} = 18; // in V
13 V_BE=0.7;//in\ V
14 R1 = 100*10^3; // in ohm
15 R2 = 50*10^3; // in ohm
16 \text{ R_C} = 1*10^3; // \text{ in ohm}
17 R_E = 0.5*10^3; // in ohm
18 V_{Th} = (V_{CC}/(R1+R2))*R2; // in V
```

```
19 R_Th = (R1*R2)/(R1+R2); // in ohm
20 / V_{Th} - I_{B}*R_{Th} - V_{BE} - (1+Beta)*-I_{B}*R_{E} = 0;
21 I_B = (V_Th - V_BE)/(R_Th + (1+Beta_dc)*R_E); // in A
22 //I_{-}C = I_{-}CQ = Beta*I_{-}B;
23 I_C = Beta_dc*I_B; // in A
24 \quad I_CQ = I_C; // in A
25 I_CQ = I_CQ * 10^3; // in mA
26 disp(I_CQ, "The value of I_CQ in mA is");
27 I_E = (1+Beta_dc)*I_B; // in mA
28 // V_{CC} - I_{C} * R_{C} - V_{CE} - I_{E} * R_{E} = 0;
29 V_CE = V_CC - (I_C*R_C) - (I_E*R_E); // in V
30 disp(V_CE, "The value of V_CE in V is");
31 R_L = R_C; // in ohm
32 Ai = -h_fe/(1+(h_oe*R_L));
33 disp(Ai, "The current gain is ");
34 Zi = h_ie + h_re*Ai*R_L; // in ohm
35 \text{ Zi} = \text{Zi} * 10^{-3}; // \text{ in k ohm}
36 disp(Zi, "The input impedance in k ohm is");
37 Zi= Zi*10^3; // in ohm
38 \quad A_V = Ai*(R_L/Zi);
39 disp(A_V, "The voltage gain is");
40 R_B= (R1*R2)/(R1+R2); // in ohm
41 Z_{IS} = (Z_{i*R_B})/(Z_{i+R_B}); // in ohm
42 \ Z_{IS} = Z_{IS}*10^{-3}; // in kohm
43 disp(Z_IS,"The overall input impedance in k ohm is")
44 Z_IS= Z_IS*10^3; // in ohm
45 \quad A_VS = A_V*(Z_IS/Z_IS);
46 disp(A_VS, "The overall voltage gain is");
47 \text{ A_IS} = \text{Ai} * (R_B/(R_B+Zi));
48 disp(A_IS, "The overall current gain is");
```

Chapter 5

BJT At High Frequency

Scilab code Exa 5.1 Parameter of hybrid phi model

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_C = 2; // in mA
8 I_C = I_C * 10^-3; // in A
9 \text{ V_CEQ} = 20; // \text{ in V}
10 h_fe = 100;
11 I_BQ = 20; // in A
12 I_BQ = I_BQ * 10^-6; // in A
13 \text{ Beta} = 100;
14 	ext{ f_T} = 50; // in MHz
15 	ext{ f_T} = 	ext{ f_T} * 10^6; // in Hz
16 Cob = 3; // \text{ in pF}
17 \text{ Cob} = \text{Cob} * 10^-12; // in F
18 h_ie = 1400; // in ohm
19 T = 300; // \text{ in } K
20 // (i) Transconductance
21 \text{ g_m} = 11600*(I_C/T); // in S
```

```
22 g_m=g_m*10^6; // in S
23 disp(g_m,"The transconductance in S is");
24 // (ii) Input resistance
25 g_m=g_m*10^-6; // in S
26 r_be = h_fe/g_m; // in ohm
27 disp(r_be,"The input resistance in ohm is");
28 // (iii) Capacitance
29 Cbc = Cob; // in F
30 Cbe = g_m/(2*%pi*f_T)-Cbc; // in F
31 Cbe= round(Cbe*10^12); // in pF
32 disp(Cbe,"The capacitance in pF is");
33 // (iv) Base Spreading Resistance
34 r_bb = round(h_ie - r_be); // in ohm
35 disp(r_bb,"The base spreading resistance in ohm is")
;
```

Scilab code Exa 5.2 Parameter of hybrid phi model

```
1 // Exa 5.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_C = 10; // in mA
8 I_C = I_C * 10^-3; // in A
9 \text{ V_CE} = 10; // \text{ in V}
10 V_T = 26*10^{-3}; // in V
11 h_ie = 500; // in ohm
12 h_oe = 4*10^-5; // in S
13 h_fe = 100;
14 \text{ g_be} = 1/260;
15 \text{ h_re} = 10^-4;
16 	 f_T = 50; // in MHz
17 	 f_T = f_T * 10^6; // in Hz
```

```
18 T = 300; // in K
19 Cob =3; // in pF
20 \text{ Cob} = \text{Cob} * 10^-12; // in F
21 // (i) Transconductance
22 g_m = I_C/V_T; // in A/V
23 g_m = round(g_m*10^3); // in mA/V
24 disp(g_m, "The Transconductance in mA/V is");
25 // (ii) Input resistance
26 \text{ g_m} = \text{g_m} * 10^-3; // \text{ in } A/V
27 \text{ r_be = } \frac{\text{round}(h_fe/g_m);}{\text{in ohm}}
28 disp(r_be, "The input resistance in ohm is");
29 // (iii) Base spreading resistance
30 \text{ r_bb} = \text{h_ie} - \text{r_be;}// \text{ in ohm}
31 disp(r_bb, "The base spreading resistance in ohm is")
32 // (iv) The feedback conductance
33 format('e',8)
34 \text{ g_bc} = h_re*g_be;
35 disp(g_bc,"The feedback conductance is");
36 // (v) The output conductance
37 \text{ g_ce} = h_oe - (1+h_fe)*g_bc
38 disp(g_ce,"The output conductance is: ")
39 // (vi) Capacitance
40 format ('v',6)
41 Cbe= g_m/(2*\%pi*f_T); // in F
42 Cbe= Cbe*10^12; // in pF
43 disp(Cbe,"The value of C_b''e in pF is : ")
44 Cc = Cob; // in F
45 Cc= Cc*10^12
46 disp(Cc, "The value of Cc in pF is: ")
```

Scilab code Exa 5.3 Emitter diffusion capacitance

```
1 // Exa 5.3 2 clc;
```

```
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 W = 10^-6; // in m
8 I_E = 2; // in mA
9 I_E = I_E * 10^-3; // in A
10 V_T = 26; // in mV
11 V_T = V_T * 10^-3; // in V
12 D_B = 47*10^-4;
13 //g_m = abs(I_C)/V_T = abs(I_E)/V_T;
14 // The emitter diffusion capacitance, Cbe = g_m*(W)
      ^2)/(2*D_B));
15 Cbe = I_E/V_T*W^2/(2*D_B); // F
16 Cbe= Cbe*10^12; // in pF
17 disp(Cbe,"The emitter diffusion capacitance in pF is
     ");
18 Cbe= Cbe*10^-12; // in F
19 g_m = abs(I_E)/V_T;
20 // The transition frequency
21 	ext{ f_T = g_m/(2*\%pi*Cbe);// in } Hz
22 	 f_T = f_T * 10^-6; // in MHz
23 disp(f_T, "The transition frequency in MHz is");
24
25 // Note: The answer in the book is not accurate.
```

Scilab code Exa 5.4 Bita cutoff frequency and gain bandwidth product

```
1  // Exa 5.4
2  clc;
3  clear;
4  close;
5  // Given data
6  I_CQ = 5; // in mA
7  I_CQ = I_CQ * 10^-3; // in A
```

```
8 \text{ V_VEQ} = 10; // \text{ in V}
9 \text{ h_ie} = 600; // \text{ in ohm}
10 h_fe = 100;
11 C_C = 3; // in pF
12 \ C_C = C_C * 10^-12; // in F
13 Ai = 10; // Ai(f)
14 f = 10; // in MHz
15 // Ai = h_fe/(sqrt(1 + ((f/f_Beta)^2)));
16 f_Beta = f/(sqrt((h_fe/Ai)^2) - 1)); // in MHz
17 disp(f_Beta, "The Beta cut off frequency in MHz is");
18 f_T = h_fe*f_Beta; // in MHz
19 disp(f_T, "The gain bandwidth product in MHz is");
20 \text{ g_m} = 0.1923;
21 Ce = g_m/(2*\%pi*f_T*10^6); // in F
22 disp(Ce, "The value of Ce in F is");
23 Cbe= Ce; // in F
24 disp(Cbe*10^12, "The value of C_b''e in pF is:")
25 \text{ r_be = h_fe/g_m; // in ohm}
26 disp(r_be, "The value of r_b''e in ohm is");
27 \text{ r_bb} = \text{h_ie} - \text{r_be;}// \text{ in ohm}
28 disp(r_bb, "The value of r_bb'' in ohm is");
```

Scilab code Exa 5.5 Base width of Si pnp transistor

```
11 W = W * 10^4; // in m
12 disp(W,"The base width of silicon transistor in m
    is");
```

Scilab code Exa 5.6 Ce and fT

```
1 // Exa 5.6
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 D_B = 47; // \text{ in cm}^2/\text{sec}
8 I_C = 2; // in mA
9 I_C = I_C * 10^-3; // in A
10 V_CEQ = 15; // in V
11 W = 1; // in m
12 W = W * 10^-4; // in cm
13 V_T = 0.026; // in V
14 g_m = I_C/(abs(V_T)); // in ohm
15 Ce = (g_m*(W^2))/(2*D_B); // in F
16 Ce = Ce * 10^12; // in pF
17 disp(Ce, "The value of Ce in pF is");
18 	ext{ f_T = g_m/(2*\%pi*Ce*10^-12);// in } Hz
19 f_T = f_T * 10^-6; // in MHz
20 disp(f_T, "The value of f_T in MHz is");
```

Chapter 6

The Field Effect Transistor And MOSFET

Scilab code Exa 6.1 Transfer curve

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 10; // in mA
7 V_P = -4; // in V
8 V_GS= V_P:0.1:0
9 I_D = I_DSS * ((1 - (V_GS/V_P))^2); // in A
10 plot(V_GS,I_D);
11 xlabel("V_GS in volts");
12 ylabel("I_D in mA")
13 title("Transfer curve")
14 disp("The transfer curve shown in the figure.")
```

Scilab code Exa 6.2 Transfer curve

```
1  // Exa 6.2
2  clc;
3  clear;
4  close;
5  // Given data
6  I_DSS = 4; // in mA
7  V_P = 3; // in V
8  V_GS= 0:0.1: V_P
9  I_D = I_DSS * ((1 - (V_GS/V_P))^2); // in A
10  plot(V_GS, I_D);
11  xlabel("V_GS in volts");
12  ylabel("I_D in mA")
13  title("Transfer curve")
14  disp("The transfer curve shown in the figure.")
```

Scilab code Exa 6.3 Value of ID

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 I_Don = 10; // in mA
8 I_Don = I_Don * 10^-3; // in A
9 \text{ V_GS} = -12; // \text{ in V}
10 V_GSt = -3; // in V
11 //From I_Don = Kn*((V_GS-V_GSt)^2);
12 Kn = I_Don/((V_GS-V_GSt)^2); // in A/V
13 Kn = Kn * 10^3; // in mA/V
14 V_{GS} = -6; // in V
15 I_D = Kn*((V_GS-V_GSt)^2); // in mA
16 disp(I_D, "The drain current in mA is");
```

Scilab code Exa 6.4 Minimum value of VDS

```
1  // Exa 6.4
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  I_DSS = 8; // in mA
8  I_DSS = I_DSS * 10^-3; // in A
9  V_P =-5; // in V
10  V_GS = -2; // in V
11  V_DSmin = V_GS - V_P; // in V
12  disp(V_DSmin, "The minimum value of V_DS in V is");
13  I_DS = I_DSS*((1 - (V_GS/V_P))^2); // in A
14  I_DS = I_DS * 10^3; // in mA
15  disp(I_DS, "The drain current in mA is");
```

Scilab code Exa 6.5 VGS and gm

```
1  // Exa 6.5
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  I_DSS = 1.65; // in mA
8  I_DSS = I_DSS * 10^-3; // in A
9  V_P = -2; // in V
10  I_D = 0.8; // in mA
11  I_D = I_D * 10^-3; // in A
12  V_DD = 24; // in V
```

```
13  V_GS = V_P * (1 - sqrt( I_D/I_DSS )); // in V
14  disp(V_GS, "The value of V_GS in V is");
15  g_mo = -2 * (I_DSS*10^3/V_P); // in ms
16  g_m = g_mo * (1 - V_GS/V_P); // in ms
17  disp(g_m, "The value of g_m in ms is");
```

Scilab code Exa 6.6 Drain current

```
1 // Exa 6.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vt = 2; // in V
8 unCox = 20; // in A /V^2
9 Kdasn = unCox; // in A /V^2
10 W = 100; // in m
11 L = 10; // in m
12 V_{GS} = 3; // in V
13 V_DS = 0.5; // in V
14 V_{GS} = 3; // in V
15 Vt = 2; // in V
16 \text{ del_V} = \text{V_GS-Vt;} // \text{ in V}
17 i_D = Kdasn*10^-6*(W/L)*(del_V*V_DS - 1/2*(V_DS^2))
      );// in A
18 i_D = i_D * 10^6; // in A
19 disp("Part (a) For V_D= 0.5 V, NOMS is operating in
      Triode region.")
20 disp(i_D,"The drain current in A is");
21 \ V_DS = 1; // in V
22 i_D = (1/2) * Kdasn * 10^-6 * (W/L) * (del_V^2); // in A
23 i_D = i_D * 10^6; // in A
24 disp("Part (b) For V_D= 1 V, NOMS is operating in
      saturation region.")
```

```
25 disp(i_D, "The drain current in A is");
26 V_DS = 5; // in V
27 i_D = (1/2) * Kdasn*10^-6*(W/L)*( del_V^2 ); // in A
28 i_D = i_D * 10^6; // in A
29 disp("Part (c) For V_D= 5 V, NOMS is operating in saturation region.")
30 disp(i_D, "The drain current in A is");
```

Scilab code Exa 6.7 Drain to source resistance

```
1 // Exa 6.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vt = 2; // in V
8 i_D = 1; // in mA
9 i_D = i_D * 10^-3; // in A
10 V_{GS} = 3; // in V
11 // From i_D = 1/2*KnwByL*(V_GS-Vt)^2
12 KnwByL = 2*i_D/(V_GS-Vt)^2;
13 V_GS=4;// in V
14 V_DS = 5; // in V
15 i_D= 1/2*KnwByL*(V_GS-Vt)^2; // in A
16 i_D= i_D*10^3; // in mA
17 disp(i_D, "The value of i_D in mA is : ")
18 r_DS = 1/(KnwByL*(V_GS-Vt)); // in ohm
19 disp(r_DS, "The value of drain to source resistance
     in ohm is : ")
```

Scilab code Exa 6.8 Minimum VDS required

```
1 // Exa 6.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vt = -2; // in V
8 KnwByL = 2*10^-3; // in A/V^2
9 V_GS = 1; // in V
10 V_DS = V_GS-Vt; // in V
11 disp(V_DS, "The minimum value of V_DS in V is");
12 i_D = 1/2*KnwByL*V_DS^2; // in A
13 i_D = i_D * 10^3; // in mA
14 disp(i_D, "The value of i_D in mA is");
```

Chapter 7

FET Biasing

Scilab code Exa 7.1 Different values of VGSQ IDQ and VDS

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ I_DSS} = 8; // \text{ in mA}
8 I_DSS = I_DSS * 10^-3; // in A
9 V_P = -8; // in V
10 V_DD = 16; // in V
11 R_D = 2; // in k ohm
12 R_D = R_D * 10^3; // in ohm
13 V_{GG} = 2; // in V
14 R_G = 1; // in Mohm
15 R_G = R_G * 10^6; // in ohm
16 I_G = 0;
17 // To calculate V_GS
18 V_GS = -V_GG; // in V
19 disp(V_GS, "The value of V_GS in V is");
20 // To calculate the drain current
21 I_DQ = I_DSS*((1 - (V_GS/V_P))^2); // in A
```

```
22  I_DQ = I_DQ * 10^3; // in mA
23  disp(I_DQ,"The value of I_DQ in mA is");
24  // To calculate V_DS
25  // V_DD = I_D*R_D + V_DS;
26  V_DS = V_DD - (I_DQ*10^-3*R_D); // in V
27  disp(V_DS,"The value of V_DS in V is");
```

Scilab code Exa 7.2 VGSQ IDQ and VDS

```
1 // Exa 7.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 10; // in mA
8 I_DSS = I_DSS * 10^-3; // in A
9 \ V_P = -4; // in V
10 V_DD= 20;// in V
11 R_S = 1; // in k ohm
12 R_S = R_S * 10^3; // in ohm
13 R_D = 2.7; // in k ohm
14 R_D = R_D * 10^3; // in ohm
15 I_DQ= poly(0, 'I_DQ');
16 V_{GS} = -I_DQ*R_S; // in V
17 I_DQ = I_DQ - I_DSS * (1 - V_GS / V_P)^2; // in A
18 I_DQ= roots(I_DQ);// in A
19 I_DQ = I_DQ(2); // in A
20 I_DQ = I_DQ * 10^3; // in mA
21 disp(I_DQ,"The value of I_DQ in mA is : ")
22 I_DQ = I_DQ *10^-3; // in A
V_{GSQ} = -I_DQ*R_S; // in V
24 disp(V_GSQ, "The value of V_GSQ in volts is:")
V_DS = V_DD - I_DQ * (R_D + R_S); // in V
26 disp(V_DS, "The value of V_DS in volts is:")
```

Scilab code Exa 7.3 W by L ratio

```
1 // Exa 7.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Kn = 20*10^{-3}; // in A/V<sup>2</sup>
8 \text{ Vt} = -1; // \text{ in } V
9 \text{ V}_DD = 5;// in V
10 I_D = 100; // in mA
11 I_D = I_D * 10^- - 3; // in A
12 V_GS = 0; // in V
13 // I_D = (1/2) * Kdasn * (W/L) * ((V_GS-Vt)^2);
14 WbyL = (I_D*2)/(Kn*((V_GS-Vt)^2));
15 disp(WbyL, "The (W/L) ratio is");
16 V_DS = V_GS - Vt; // in V
17 V_Dmin = V_DS; // in V
18 R_Dmax = (V_DD-V_Dmin)/I_D;//in ohm
19 disp("The range of R_D is : 0 to "+string(R_Dmax)+"
        ");
20
21 // Note: The unit of R_Dmax in the book is wrong.
```

Scilab code Exa 7.5 IDQ and VDSQ

```
1 // Exa 7.5
2 clc;
3 clear;
4 close;
```

```
5 format('e',8)
6 // Given data
7 	ext{ I_Don = 6; // in mA}
8 I_Don = I_Don * 10^-3; // in A
9 \text{ V_GSon} = 8; // \text{ in V}
10 Vt = 3; // in V
11 V_DD = 12; // in V
12 R_D= 2*10^3; // in ohm
13 // (i) To obtain the value of K
14 K = I_Don/( (V_GSon-Vt)^2); // in A/V<sup>2</sup>
15 \operatorname{disp}(K, "The value of K in A/V^2 is");
16 format('v',7)
17 // To obtain the value of LDQ
18 I_D = poly(0, 'I_D');
19 V_{GS} = V_{DD} - I_{D*R_D}; // in V
20 I_D = I_D - K*(V_GS - Vt)^2; // in A
21 I_D = roots(I_D); // inA
22 I_D = I_D(2); // in A
23 I_D = I_D * 10^3; // in mA
24 disp(I_D,"The value of I_D in mA is : ")
25 I_D = I_D * 10^- - 3; // in A
26 // (iii) To obtain the value of V_DSQ
27 \text{ V_DSQ= V_DD-I_D*R_D;}// \text{ in V}
28 disp(V_DSQ, "The value of V_DSQ in volts is:")
```

Scilab code Exa 7.6 IDQ VGSQ and VDS

```
1 // Exa 7.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_DD = 40;// in V
8 Vt = 5;// in V
```

```
9 R_D= 820; // in ohm
10 I_Don = 3; // in mA
11 I_Don = I_Don * 10^-3; // in A
12 V_{GSon} = 10; // in V
13 K = I_Don/( (V_GSon-Vt)^2); // in A/V<sup>2</sup>
14 R2 = 18; // in Mohm
15 R2 = R2 * 10^6; // in ohm
16 R1 = 22; // in Mohm
17 R1 = R1 * 10^6; // in ohm
18 R_S = 3*10^3; // in ohm
19 I_D = poly(0, 'I_D');
V_G = R2/(R1+R2)*V_DD;
21 V_GS = V_G - I_D * R_D; // in V
22 I_D = I_D - K*(V_GS - Vt)^2; // in A
23 I_D = roots(I_D); // inA
24 I_D = I_D(2); // in A
25 I_D = I_D * 10^3; // in mA
26 disp(I_D, "The value of I_D in mA is : ")
27 I_D = I_D * 10^- 3; // in A
V_{GSQ} = V_{G-I_D*R_D} / in V
29 disp(V_GSQ, "The value of V_GSQ in volts is: ")
30 V_DSQ = V_DD - I_D*(R_D+R_S); // in V
31 disp(V_DSQ, "The value of V_DSQ in volts is:")
```

Scilab code Exa 7.7 Value of RS

```
1  // Exa 7.7
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  V_D = 12; // in V
8  V_GSQ = -2; // in V
9  V_DD = 16; // in V
```

```
10 R1 = 47; // in k ohm

11 R1 = R1 * 10^3; // in ohm

12 R2 = 91; // in k ohm

13 R2 = R2 * 10^3; // in ohm

14 V_G = (R1*V_DD)/(R1+R2); // in V

15 R_D = 1.8; // in k ohm

16 R_D = R_D * 10^3; // in ohm

17 I_D = (V_DD-V_D)/R_D; // in A

18 I_D = I_D * 10^3; // in mA

19 // V_GS = V_G - (I_D*R_S);

20 R_S = (V_G-V_GSQ)/(I_D*10^-3); // in ohm

21 R_S = R_S * 10^-3; // in k ohm

22 disp(R_S, "The value of R_S in k ohm is");
```

Scilab code Exa 7.8 VG and VSS

```
1 // Exa 7.8
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 I_D = 12*10^-3; // in A
8 \text{ V_DS} = 6; // \text{ in V}
9 \ V_P = 3; // in V
10 R_SS= 1*10^3; // in ohm
11 I_DSS = 20*10^-3; // in A
12 V_{GS} = poly(0, V_{GS});
13 V_{GS} = I_{D} - I_{DSS} * (1 - V_{GS} / V_{P})^2;
14 V_{GS} = roots(V_{GS}); // in V
15 V_{GS} = V_{GS}(1); // in V
16 disp(V_GS, "The value of V_GS in volts is:")
17 // Applying KVL on it's input section, V_G = V_G + I_D
      *R_SS+V_SS or
18 // I_D*RSS+V_SS= V_G-V_GS
                                    (i)
```

Scilab code Exa 7.9 IDQ VGSQ VD VS VDS and VDG

```
1 // Exa 7.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 	ext{ I_DSS} = 8; // 	ext{ in } mA
8 I_DSS = I_DSS * 10^-3; // in A
9 \ V_P = -4; // in \ V
10 V_DD = 16; // in V
11 R2 = 270; // in k ohm
12 R2 = R2 * 10^3; // in ohm
13 R1 = 2.1; // in Mohm
14 R1 = R1 * 10^6; // in ohm
15 R_S = 1.5; // in k ohm
16 R_S = R_S * 10^3; // in ohm
17 R_D = 2.4; // in k ohm
18 R_D = R_D * 10^3; // in ohm
19 V_G = (R2*V_DD)/(R1+R2); // in V
20 //V_{GS} = V_{G} - (I_{D}*R_{S});
21 V_{GS} = V_{G}; // in V (at I_{D}=0 A)
22 I_D = V_G/R_S; // in A (at V_GS=0 V)
I_D = I_D * 10^3; // in mA
24 \text{ I}_DQ = 2.4; // \text{ in mA}
25 \text{ V}_{GSQ} = -1.8; // \text{ in V}
26 \text{ V}_D = \text{V}_DD - (I_DQ*10^-3*R_D); // in V
```

```
27  V_S = I_DQ*10^-3*R_S; // in V
28  V_DS = V_DD - (I_DQ*10^-3*(R_S+R_D)); // in V
29  V_DG = V_D-V_G; // in V
30  disp(I_DQ, "The value of I_DQ in mA is");
31  disp(V_GSQ, "The value of V_GSQ in V is");
32  disp(V_D, "The value of V_D in V is");
33  disp(V_S, "The value of V_S in V is");
34  disp(V_DS, "The value of V_DS in V is");
35  disp(V_DG, "The value of V_DG in V is");
```

Scilab code Exa 7.10 Value of Vo

```
1 // Exa 7.10
2 clc;
3 clear:
4 close;
5 format('v',5)
6 // Given data
7 I_DSS = 5.6; // in mA
8 I_DSS = I_DSS * 10^-3; // in A
9 \ V_P = 4; // in V
10 Vi = 0; // in V
11 V_{CC} = 12; // in V
12 R_D = 10; // in k ohm
13 R_D = R_D * 10^3; // in ohm
14 R_S= 10*10^3; // in ohm
15 I_D = poly(0, 'I_D');
16 V_GS = I_D*R_D-V_CC; // in V
17 I_D = I_D - I_DSS*(1 - V_GS/V_P)^2; // in A
18 I_D = roots(I_D); // in A
19 I_D = I_D(2); // in A
20 \text{ V}_{\text{GS}} = \text{I}_{\text{D}} * \text{R}_{\text{D}} - \text{V}_{\text{CC}}; // \text{ in } \text{V}
21 Vo = V_CC - I_D * R_S; // in V
22 I_D = I_D * 10^3; // in mA
23 disp(I_D, "The value of I_D in mA is : ")
```

Scilab code Exa 7.11 Value of Vo

```
1 // Exa 7.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ I_DSS} = 5.6; // \text{ in mA}
8 I_DSS = I_DSS * 10^-3; // in A
9 \ V_P = -4; // in V
10 R_S = 10; // in k ohm
11 R_S = R_S * 10^3; // in ohm
12 R_D = 4.7; // in k ohm
13 R_D = R_D * 10^3; // in ohm
14 V_{CC} = 12; // in V
15 V_DD = 22; // in V
16 // (a) Calculation to find the value of Vo at Vi = 0
17 Vi = 0; // in V
18 V_{GS} = poly(0, V_{GS});
19 I_D = (V_CC - V_GS)/R_S; // in A
V_{GS} = I_{D} - I_{DSS} * (1 - V_{GS} / V_{P})^2; // in A
21 V_GS= roots(V_GS)
22 V_{GS} = V_{GS}(2); // in V
23 I_D = (V_CC - V_GS)/R_S; // in A
24 Vo= Vi-V_GS; // in V
25 disp(Vo,"For Vi=0 V, The value of Vo in volts is ; "
      )
```

```
26
27 // (a) Calculation to find the value of Vo at Vi =
      10 V
28 Vi = 10; // in V
V_{GS} = poly(0, V_{GS});
30 I_D = (V_DD - V_GS)/R_S; // in A
31 V_{GS} = I_{D} - I_{DSS} * (1 - V_{GS} / V_{P})^2; // in A
32 V_GS= roots(V_GS)
33 V_{GS} = V_{GS}(2); // in V
34 I_D = (V_CC - V_GS)/R_S; // in A
35 Vo= Vi-V_GS; // in V
36 disp(Vo, "For Vi=10 V, The value of Vo in volts is;
37
  // (a) Calculation to find the value of Vi at Vo =
      10 V
39 Vo= 0; // in V
40 I_D= V_CC/R_S; // in A
41 V_{GS} = V_{P}*(1-sqrt(I_D/I_DSS)); // in V
42 Vi= V_{GS}+V_{O}; // in V
43 disp(Vi, "For Vo=0 V, The value of Vi in volts is;"
      )
```

Scilab code Exa 7.12 Quuiescent value of IDS VDS and VGS

```
1 // Exa 7.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 12; // in mA
8 V_P = 5; // in V
9 R_D = 3.3; // in k ohm
10 R_G = 1.5*10^3; // in k ohm
```

```
11 R_S = 1.2; // in k ohm
12 V_DD= 18; // in V
13 I_D= poly(0, 'I_D');
14 V_GS= I_D*R_S; // in V
15 I_D= I_D-I_DSS*(1-V_GS/V_P)^2;
16 I_D= roots(I_D);
17 I_D= I_D(2); // in mA
18 V_GS= I_D*R_S; // in V
19 V_DS= V_DD-I_D*(R_S+R_D); // in V
20 disp(I_D, "The value of I_D in mA is : ")
21 disp(V_GS, "The value of V_GS in volts is : ");
22 disp(V_DS, "The value of V_DS in volts is : ")
```

Scilab code Exa 7.13 Value of rDS

```
1 // Exa 7.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vt = -1; // \text{ in V}
8 KnWbyL = 1*10^-3; // in A/V<sup>2</sup>
9 \text{ V_DS} = 0.1; // \text{ in V}
10 V_{GS} = 0; // in V
11 I_D = ((V_GS - Vt) * V_DS - 1/2 * KnWbyL); // in mA
12 V = 9.9; // in V
13 R_D = V/I_D; // in k ohm
14 R_D= ceil(R_D); // in k ohm
15 disp(R_D, "The value of R_D in k ohm is:")
16 \ V_DS = 0.1; // in V
17 \text{ r_DS} = V_DS/(I_D*10^-3); // in ohm
18 r_DS = round(r_DS*10^-3); // in k ohm
19 disp(r_DS, "Effective resistance between source and
      drain in k ohm is");
```

Scilab code Exa 7.14 Value of RS

```
1 // Exa 7.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_DD = 5; // \text{ in } V
8 \text{ V_SS} = -5; // \text{ in V}
9 Vt = 2; // in V
10 I_D = 0.4; // in mA
11 I_D = I_D * 10^-3; // in A
12 miu_nCox = 20*10^-6; // in A/V<sup>2</sup>
13 W = 400; // in m
14 L = 10; // in
15 V_GS = poly(0, V_GS');
16 V_{GS}=I_D-(1/2)*miu_nCox*(W/L)*((V_{GS}-Vt)^2);
17 V_GS= roots(V_GS)
18 V_{GS} = V_{GS}(1); // in V
19 V_S = -V_GS; // in V
20 R_S = (V_S-V_SS)/I_D; // in ohm
21 R_S = R_S * 10^-3; // in k ohm
22 disp(R_S, "The value of R_S in k ohm is");
23 \ V_D = 1; // in \ V
24 R_D = (V_DD - V_D)/I_D; // in ohm
25 R_D = R_D * 10^-3; // in k ohm
26 disp(R_D, "The value of R_D in k ohm is");
```

Scilab code Exa 7.15 Designing of a circuit

```
1 // Exa 7.15
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_D = 0.4*10^-3; // in A
8 \text{ Vt} = 2; // \text{ in V}
9 miu_nCox = 20*10^-6; // in A/V<sup>2</sup>
10 L = 10; // in m
11 W = 100; // in m
12 V_{GS} = poly(0, 'V_{GS}');
13 V_{GS} = I_D - (1/2) * miu_nCox*(W/L)*((V_{GS}-Vt)^2);
14 V_GS= roots(V_GS)
15 V_{GS} = V_{GS}(1); // in V
16 \text{ V}_D = \text{V}_GS; // \text{ in } V
17 disp(V_D, "The DC voltage in V is");
18 V_DD = 10; // in v
19 R = (V_DD - V_D)/I_D; // in ohm
20 R = R * 10^-3; // in k ohm
21 disp(R, "The value R in k ohm is");
```

Scilab code Exa 7.16 Designing of a circuit

```
1 // Exa 7.16
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vt = 1; // in V
8 KnWbyL= 10*10^-3; // in A/V^2
9 V_DD = 5; // in V
10 V_D = 0.1; // in V
11 I_D = Vt*( (V_DD-Vt)*V_D - 1/2*KnWbyL ); // in mA
```

```
12  R_D = (V_DD-V_D)/(I_D*10^-3); // in ohm
13  R_D= R_D*10^-3; // in k ohm
14  disp(R_D, "The value of R_D in k ohm is : ")
15  V_DS = 0.1; // in V
16  r_DS = round(V_DS/(I_D*10^-3)); // in ohm
17  disp(r_DS, "Effective resistance between drain and the source in ohm is");
```

Scilab code Exa 7.17 Designing of a circuit

```
1 // Exa 7.17
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_D = 0.5; // in mA
8 V_D = 3; // in V
9 Vt = -1; // in v
10 KnWbyL = 1; // in mA/V<sup>2</sup>
11 V_DD = 5; // in V
12 \ V_D = 3; // in \ v
13 V_GS = poly(0, V_GS');
14 V_{GS} = I_D -1/2*KnWbyL*(V_{GS}-Vt)^2; // in V
15 V_{GS} = roots(V_{GS}) // in V
16 V_{GS} = V_{GS}(1); // in V
17 R_G1 = 2; // in Mohm
18 R_G1 = R_G1 * 10^6; // in ohm
19 R_G2 = 3; // in Mohm
20 R_G2 = R_G2 * 10^6; // in ohm
21 \ V_{GS} = -2; // in V
22 R_D = V_D/I_D; // in k ohm
23 V_Dmax = V_D+abs(Vt);//in V
24 R_D = V_Dmax/I_D; // in k ohm
25 disp(R_D, "The largest value of R_D in k ohm is");
```

Chapter 8

Field Effect Transistor Amplifiers

Scilab code Exa 8.1 Input impedance

```
1 // Exa 8.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_P = -4; // in V
8 \text{ r_d} = 40*10^3; // \text{ in ohm}
9 I_DSS = 10*10^-3; // in A
10 V_{GG} = 1; // in V
11 R_D = 1.8*10^3; // in ohm
12 R_G = 1*10^6; // in ohm
13 g_mo = 2*I_DSS/(abs(V_P)); // in S
14 V_{GSQ} = -1.5; // in V
15 \text{ g_m} = \text{g_mo*}(1-(V_GSQ/V_P)); // \text{ in } S
16 Zi = R_G; // in ohm
17 Zi = Zi *10^-6; // in M ohm
18 disp(Zi, "The input impedance in M ohm is");
19 Zo = (r_d*R_D)/(r_d+R_D); // in ohm
```

```
20  Zo = R_D; // in ohm (as r_d > 10*R_D)
21  Zo = Zo*10^-3; // in k ohm
22  disp(Zo, "The output impedance in k ohm is");
23  //Av = Vo/Vi = -g_m*R_D;
24  Av = -g_m*R_D;
25  disp(Av, "The voltage gain is");
```

Scilab code Exa 8.2 Zi Zo and Av

```
1 // Exa 8.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ I_DSS} = 6; // \text{ in mA}
8 I_DSS = I_DSS * 10^-3; // in A
9 V_P = -6; // in V
10 Y_DS = 40; // in
11 R_D = 3.3; // in k ohm
12 R_D = R_D * 10^3; // in ohm
13 R_S = 1.1; // in k ohm
14 R_S = R_S * 10^3; // in ohm
15 R_G = 10; // in Mohm
16 R_G = R_G * 10^6; // in ohm
17 g_mo = (2*I_DSS)/(abs(V_P)); // in S
18 I_D = poly(0, 'I_D');
19 V_{GS} = -I_D*R_S; // in V
20 I_D = I_D - I_DSS*((1 - (V_GS/V_P))^2);
21 I_D = roots(I_D)
22 I_D = I_D(2); // in A
V_{GSQ} = -I_D*R_S; // in V
24 \text{ g_m} = \text{g_mo*}(1-(V_GSQ/V_P)); // \text{ in } S
25 Zi = R_G;// in ohm
26 Zi= Zi*10^-6; // in M ohm
```

```
27 disp(Zi, "The value of Zi in M ohm is");
28 r_d = 40; // in k ohm assumed
29 r_d = r_d * 10^3; // in ohm
30 Zo = (r_d*R_D)/(r_d+R_D); // in ohm
31 Zo=R_D; // in ohm (as r_d > 10 *R_D)
32 Zo= Zo*10^-3; // in k ohm
33 disp(Zo, "The value of Zo in k ohm is");
34 Av = abs(-g_m*R_D);
35 disp(Av, "The value of Av is");
```

Scilab code Exa 8.3 Zi Zo Av

```
1 // Exa 8.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_DD = 20; // inV
8 \text{ I_DSS} = 8; // \text{ in mA}
9 I_DSS = I_DSS * 10^-3; // in mA
10 V_P = -6; // in V
11 R_G = 1; // in Mohm
12 R_G = R_G * 10^6; // in ohm
13 R_S = 1; // in k ohm
14 R_S = R_S * 10^3; // in ohm
15 \text{ r_d} = 50; // \text{ in k ohm}
16 \text{ r_d} = \text{r_d} * 10^3; // \text{ in ohm}
17 V_{GS} = -2.6; // in V
18 I_D = 2.6; // in mA
19 I_D = I_D * 10^-3; // in A
20 \text{ g_mo} = (2*I_DSS)/(abs(V_P)); // in S
21 \text{ g_m} = \text{g_mo*}(1 - (V_GS/V_P)); // \text{ in } S
22 Zi = R_G; // in ohm
23 Zi= Zi*10^-6; // in M ohm
```

```
24 disp(Zi, "The value of Zi in M ohm is");
25 Zo = R_S*1/g_m/(R_S+1/g_m);
26 disp(Zo, "The value of Zo is");
27 Av = g_m*R_S/(1 + (g_m*R_S));
28 disp(Av, "The value of Av is");
```

Scilab code Exa 8.4 gm Zi Zo And Av

```
1 // Exa 8.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_{GSQ} = -2.6; // \text{ in V}
8 I_DQ = 3.8*10^-3; // in A
9 \ V_DD = 12; // in V
10 R_D = 1.5*10^3; // in ohm
11 R_S = 680; // in ohm
12 I_DSS = 12*10^-3; // in A
13 \text{ r_d} = 20*10^3; // \text{ in ohm}
14 V_P = -6; // in V
15 // (a) Transconductance
16 \text{ g_mo} = (2*I_DSS)/(abs(V_P)); // in S
17 \text{ g_m} = \text{g_mo*}(1-(V_GSQ/V_P)); // \text{ in mS}
18 g_m = g_m * 10^3; // in mS
19 disp(g_m, "The value of g_m in mS is");
20 // (b) Input impedance
21 \text{ g_m} = \text{g_m} * 10^-3; // \text{ in } S
22 \text{ Zi=R_S*((r_d+R_D)/(1+g_m*r_d))/(R_S+((r_d+R_D)/(1+g_m*r_d)))}
      g_m*r_d)))
23 disp(Zi, "The value of Zi in ohm is");
24 // (c) Output impedance
25 Zo = (R_D*r_d)/(R_D+r_d); // in ohm
26 Zo = Zo *10^-3; // in k ohm
```

```
27 disp(Zo,"The value of Zo in k ohm is");
28 // Voltage gain
29 //Av = Vo/Vi = (R_D*(1 + (g_m*10^-3*r_d)))/(R_D+r_d);
30 Av = (R_D*(1 + (g_m*r_d)))/(R_D+r_d);
31 disp(Av,"The value of Av is");
```

Scilab code Exa 8.6 Input impedance output impedance and voltage gain

```
1 // Exa 8.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_DD} = 10; // in V
8 R_D = 5.1; // in k ohm
9 R_D = R_D * 10^3; // in ohm
10 g_m = 2*10^-3; // in S
11 r_d = 50; // in k ohm
12 \text{ r_d} = \text{r_d} * 10^3; // \text{ in ohm}
13 Vi = 0; // in V
14 R_G = 1; // in Mohm
15 R_G = R_G * 10^6; // in ohm
16 // (i) Input impedance
17 Zi = R_G; // in ohm
18 Zi = Zi * 10^- - 6; // in M ohm
19 disp(Zi, "The input impedance in Mohm is");
20 // (ii) Output impedance
21 Zo = (r_d*R_D)/(r_d+R_D); // in ohm
22 disp(Zo, "The output impedance in ohm is");
23 // (iii) Voltage gain
24 \text{ Av} = -g_m * Zo;
25 disp(Av, "The voltage gain is");
```

Scilab code Exa 8.7 gm rd Zi Zo and Av

```
1 // Exa 8.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_{\text{GSQ}} = -2; // \text{ in V}
8 \text{ I_DSS} = 8; // \text{ in mA}
9 I_DSS = I_DSS * 10^-3; // in A
10 V_P = -8; // in V
11 YoS = 20; // in
12 YoS = YoS * 10^-6; // in S
13 R_D = 5.1; // in k ohm
14 R_D = R_D * 10^3; // in ohm
15 R_G = 1; // in Mohm
16 R_G = R_G * 10^6; // in ohm
17 g_{mo} = (2*I_DSS)/(abs(V_P)); // in S
18 \text{ g_m} = \text{g_mo} * (1 - (V_GSQ/V_P)); // in S
19 g_m = g_m * 10^3; // in mS
20 disp(g_m, "The value of g_m in mS is");
21 \text{ g_m= g_m*10^-3; // in S}
22 \text{ r_d} = 1/\text{YoS}; // \text{ in ohm}
23 \text{ r_d= r_d*10^-3; // in k ohm}
24 disp(r_d, "The value of r_d in k ohm is");
25 \text{ r_d= r_d*10^3; // in ohm}
26 \text{ Zi} = R_G; // \text{ in ohm}
27 \text{ Zi} = \text{Zi} * 10^- - 6; // \text{ in M ohm}
28 disp(Zi, "The value of Zi in Mohm is");
29 \quad V_{GS} = 0; // in V
30 \text{ Zo} = (r_d*R_D)/(r_d+R_D); // \text{ in ohm}
31 disp(Zo, "The value of Zo in ohm is");
32 \text{ Av} = -g_m * Zo;
```

```
33 disp(Av, "The value of Av is");
```

Scilab code Exa 8.8 Input impedance output impedance and voltage gain

```
1 // Exa 8.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ gm} = 6000*10^-6; // in S
8 R1 = 2; // in M ohm
9 R1 = R1 * 10^6; // in ohm
10 R2 = 500; // in k ohm
11 R2 = R2 * 10^3; // in ohm
12 R_S= 4*10^3; // in ohm
13 R_L= 33*10^3; // in ohm
14 \text{ r_d} = 50*10^3; // \text{ in ohm}
15 Zi = (R1*R2)/(R1+R2); // in ohm
16 Zi = Zi * 10^{-3}; // in k ohm
17 disp(Zi, "The input impedance in k ohm is");
18 Zo = (1/gm*R_S)/(1/gm+R_S); // in ohm
19 disp(Zo, "The output impedance in ohm is");
20 // Let Req= r_d || R_S || R_L;// in ohm
21 Req= r_d*R_S*R_L/(r_d*R_S+R_S*R_L+R_L*r_d); // in ohm
22 \text{ Av=gm*(r_d*R_S*R_L/(r_d*R_S+R_S*R_L+r_d*R_L))/(1+gm)}
      *(r_d*R_S*R_L/(r_d*R_S+R_S*R_L+r_d*R_L)))
23 disp(Av, "The voltage gain is: ")
```

Scilab code Exa 8.9 Input and output impedance and voltage gain

```
1 // Exa 8.9
2 clc;
```

```
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 R1 = 3.3* 10^{-3}; // in ohm
8 R2 = 1.2* 10^6; // in ohm
9 R_D = 3.9* 10^3; // in ohm
10 R_S = 3.9 * 10^3; // in ohm
11 R_L = 82* 10^3; // in ohm
12 \text{ g_m} = 6000* 10^-6; // in S
13 \text{ r_d} = 70* 10^3; // in ohm
14 \text{ Zi} = (R_S*((r_d+R_D)/(1+(g_m*r_d))))/(R_S+((r_d+R_d)))
      R_D)/(1+(g_m*r_d)));// in ohm
15 disp(Zi, "The input impedance in ohm is");
16 Zo = (r_d*R_D)/(r_d+R_D); // in ohm
17 disp(Zo, "The output impedance in ohm is");
18 R = (R_D*R_L)/(R_D+R_L); // in ohm
19 Av = (R*(1+(g_m*r_d)))/(r_d+R);
20 disp(Av, "The voltage gain is");
```

Chapter 9

Frequency Response

Scilab code Exa 9.2 Overall voltage gain

```
1 // Exa 9.2
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 bita= 100;
8 V_B1 = 5; // in V
9 \text{ V_E1= } 4.3; // \text{ in V}
10 R_E1= 4.3*10^3; // in ohm
11 V_E2= 3.6; // in V
12 R_E2= 3.6*10^3; // in ohm
13 R_C=4*10^3; // in ohm
14 R_L= 4*10^3; // in ohm
15 R1= 100*10^3; // in ohm
16 R2= 100*10^3; // in ohm
17 gm= 40*10^-3; // in A/V
18 re= 25; // in W
19 r_pie= 2.5*10^3; // in W
20 \text{ f_r} = 400*10^6; // \text{ in Hz}
21 C_{miu} = 2*10^-12; // in F
```

```
22 omega_T= 2*%pi*f_r;// in radian
23 Rin= 38*10^3; // in ohm
24 R_S = 4*10^3; // in ohm
25 \text{ R_pie1} = 80; //in \text{ ohm}
26 Ve1ByVb1= 0.98; // in V/V
27 I_E1 = V_E1/R_E1; // in A
28 I_E2= V_E2/R_E2; // in A
29 // We know, C_pie + C_miu= gm/ometa_T or
30 C_Pie= gm/omega_T-C_miu; // in F
31 Vb1ByVs= Rin/(Rin+R_S); // in V/V
32 //Ve1ByVb1= R_E1*r_pie2/(R_E1*r_pie2)/(R_E1*r_pie2/(
     R_E1*r_pie2)+r_e1);
33 VeByVb1= R_E1*r_pie/(R_E1*r_pie)/(R_E1*r_pie/(R_E1*
     r_pie)+R_E1);// in V/V
34 // The gain of the common-emitter amplifier Q2
35 VoByVe1= -gm*R_C*R_L/(R_C+R_L); // in V/V
36 // The overall gain
37 VoByVs= Vb1ByVs*Ve1ByVb1*VoByVe1; // in V/V
38 RdeshS= R1*R2*R_S/(R1*R2+R2*R_S+R_S*R1);
39 RdeshE1= R_E1*r_pie/(R_E1+r_pie); // in k ohm
40 R_{miu1} = R_S * Rin/(R_S + Rin) * 10^-3; // in k ohm
41 R_pi1= (r_pie*(RdeshS+RdeshE1)/(1+gm*RdeshE1))/r_pie
     +(RdeshS+RdeshE1)/(1+gm*RdeshE1);
42 R_T=round( RdeshE1*(r_pie+RdeshS)/(bita+1)/(RdeshE1
     +(r_pie+RdeshS)/(bita+1)));// in ohm
43 disp(VoByVs, "The overall voltage gain in V/V is:")
44 disp(R_miu1, "The value of R_miu1 in ohm is: ")
45 disp(R_pie1, "The value of R_pie1 in ohm is: ")
46 disp(R_T, "The value of R_T in ohm is:")
```

Scilab code Exa 9.3 Value of k

```
1 // Exa 9.3
2 clc;
3 clear;
```

```
4 close;
5 format('v',5)
6 // Given data
7 wH= '0.9*wp1';
8 wp2='wp1*k';
9 //wH= 1/sqrt(1/wp1^1+1/(k*wp1)^2)
10 k= sqrt(0.9^2/(1-0.9^2));
11 disp(k,"The value of k is:")
```

Scilab code Exa 9.4 Value of Cs and gm

```
1 // Exa 9.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Rs} = 1; // \text{ in k ohm}
7 \text{ Rs} = \text{Rs} * 10^3; // \text{ in ohm}
8 \text{ omega_z} = 10; // \text{ in } rad/sec
9 omega_p = 100; // in rad/sec
10 //omega_z = 1/(Rs*Cs);
11 Cs = 1/(Rs*omega_z); // in F
12 disp(Cs*10^6, "The value of Cs in F is");
13 / \text{omega_p} = (g_m + (1/Rs))/Cs;
14 g_m = omega_p*Cs-1/Rs; // in A/V
15 g_m = g_m * 10^3; // in mA/V
16 disp(g_m, "The value of g_m in mA/V is")
17
18 // Note: The unit of g<sub>m</sub> in the book is wrong. It
       will be in mA/V not in nA/V.
```

Chapter 10

Feedback Amplifiers

Scilab code Exa 10.1 Change in overall gain of the feedback amplifier

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 60; // in dB
8 A= 10^(A/20)
9 Beta = 0.005;
10 dAbyA = -12/100;
11 // On putting the value of A, bita and dA/A
12 dAfbyAf = (1/(1+A*Beta))*(dAbyA);
13 disp(dAfbyAf, "The change in overall gain is");
```

Scilab code Exa 10.2 Input impedance

```
1 // Exa 10.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 1000;
8 Zi = 1; // in k ohm
9 Zi = Zi * 10^3; // in ohm
10 Beta = 0.01;
11 Zdesh_i = (1+A*Beta)*Zi; // in ohm
12 Zdesh_i = Zdesh_i *10^-3; // in k ohm
13 disp(Zdesh_i, "The input impedance of the feedback amplifier in k ohm is");
```

Scilab code Exa 10.3 Feedback factor and percentage change in overall gain

```
1 // Exa 10.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 60; // in dB
8 A = 10^{(A/20)};
9 \text{ Zo} = 12000; // \text{ in ohm}
10 \text{ Zdesh\_o} = 600; // \text{ in ohm}
11 // Z desh_o = Zo/(1+(A*Beta));
12 Beta = (((Zo/Zdesh_o)-1)/A)*100; // in \%
13 disp(Beta, "The feedback factor in % is");
14 Beta = Beta/100;
15 \quad DAbyA = 0.1;
16 dAfbyAf = (1/(1 + (A*Beta)))*DAbyA*100; // in \%
17 disp(dAfbyAf,"The percentage change in the overall
      gain in % is");
```

Scilab code Exa 10.4 Gain of a negative feedback amplifier

```
1 // Exa 10.4
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 A = 100;
8 Beta = 1/10;
9 Af = A/(1 + (A*Beta));
10 disp(Af, "The gain of negative feedback amplifier is");
```

Scilab code Exa 10.5 Value of A and bita

```
1 // Exa 10.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Af} = 100;
8 \text{ Vi = 0.6; // in V}
9 Vdesh_o = Af*Vi; // in V
10 Vi = 50; // \text{ in mV}
11 Vi = Vi * 10^-3; // in V
12 A = Vdesh_o/Vi;
13 disp(A, "The value of A is");
14 // Af = A/( 1 +(A*Beta) );
15 Beta = (((A/Af)-1)/A)*100; // in \%
16 Beta = (A-Af)/(Af*A/100);
```

```
17 Beta= Beta*100; // in %
18 disp(Beta, "The value of Beta in % is");
```

Scilab code Exa 10.6 Voltage gain

```
1 // Exa 10.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 1000;
8 \text{ Af} = A - (0.40*1000);
9 //Af = A/(1+(A*Beta));
10 Beta = ((A/Af)-1)/A;
11 A_desh = 800;
12 A_desh_f = A_desh/(1+(A_desh*Beta));
13 disp(A_desh_f, "The voltage gain with feedback is");
14 // percentage reduction without feedback
15 P = ((A-A_desh)/A)*100; //in \%
16 // percentage reduction with feedback
17 P1 = ((Af - A_desh_f)/Af)*100; // in \%
18 disp(P1," The percentage reduction with feedback in \%
       is");
```

Scilab code Exa 10.7 Small change in gain

```
1 // Exa 10.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
```

```
7 dAbyA = 10/100;
8 A = 200;
9 Beta = 0.25;
10 // Af = A/(1+(A*Beta)) (i)
11 // differentiating w.r.to A we get, dAf = dA/((1+(Beta*A))^2) (ii)
12 // From eq(i) and (ii)
13 dAfbyAf = 1/(1+A*Beta)*dAbyA
14 disp(dAfbyAf, "The small change in gain is");
```

Scilab code Exa 10.8 New input voltage

```
1 // Exa 10.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 100;
8 \text{ Beta} = 1/25;
9 Af = A/(1 + (A*Beta));
10 disp(Af, "The gain with feedback is");
11 disp((A*Beta), "The feed back factor is");
12 Vi = 50; // in mV
13 Vo = Af * Vi * 10^- - 3; // in V
14 disp(Vo, "The output voltage in V is");
15 V_feedback= (Beta*Vo); // feedback voltage in V
16 disp(V_feedback, "The feed back voltage in V is");
17 Vi = Vi*(1+(A*Beta)); // in mV
18 disp(Vi, "The new input voltage in mV is");
```

Scilab code Exa 10.9 Small change in gain

```
1 // Exa 10.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Beta = 0.25;
8 A = 100;
9 dA= 10;// in %
10 // Af = A/(1+(A*Beta)) (i)
11 //dAf = dA/((1+(Beta*A))^2) (ii)
12 // From eq (i) and (ii)
13 dAbyA = dA/A;
14 disp(dAbyA,"The small change in gain is");
```

Scilab code Exa 10.10 New value of input voltage

```
1 // Exa 10.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 200;
8 Beta = 5/100;
9 Af =A/(1 + (A*Beta));
10 disp(Af," The gain of the amplifier with negative
     feedback is: ")
11 Dn = 10; // in \%
12 Ddesh_n = Dn/(1+(A*Beta)); // in \%
13 disp(Ddesh_n,"The distortion with negative feedback
     in % is : ");
14
15 // Note: In the book, the calculation to find the
     gain of the amplifier with negative feedback i.e
```

Scilab code Exa 10.11 Percentage of feedback

```
1 // Exa 10.11
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
7 Af = 10;
8 A = 50;
9 // Af =A/(1 + (A*Beta));
10 Beta = ((A/Af)-1)/A*100; // in %
11 dAfByAf = 1/(1+100/4)*Af/100;
12 disp(dAfByAf, "The percentage of feedback is");
```

Scilab code Exa 10.12 Upper and lower cutoff frequency

```
1 // Exa 10.12
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 Ao = 100;
8 f_L = 20; // in Hz
9 f_H = 40; // in kHz
10 f_H = f_H*10^3; // in Hz
11 Beta = 0.1;
12 Af = Ao/(1 + (Beta*Ao));
13 disp(Af, "The overall gain at mid frequency is");
14 f_Hf = f_H*(1+(Ao*Beta)); // in Hz
```

```
15 f_Hf = f_Hf * 10^-3; // in kHz
16 disp(f_Hf, "The upper cutoff frequency with negative feedback in kHz is");
17 f_Lf = f_L/(1+(Ao*Beta)); // in Hz
18 disp(f_Lf, "The lower cutoff frequency with negative feedback in Hz is");
19
20 // Note: The calculated value of lower cutoff frequency with negative feedback i.e f_Lf is wrong. So the answer in the book is wrong.
```

Scilab code Exa 10.13 Value of A B Rif Af and loop gain

```
1 // Exa 10.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R1} = 20; // \text{ in k ohm}
8 R1 = R1 * 10^3; // in ohm
9 R2 = 20; // in k ohm
10 R2 = R2 * 10^3; // in ohm
11 h_ie = 2; // in k ohm
12 h_ie = h_ie * 10^3; // in ohm
13 R_L = 1; // in k ohm
14 R_L = R_L * 10^3; // in ohm
15 R_E = 100; // in ohm
16 h_fe = 80;
17 A = (-h_fe*R_L)/h_ie;
18 disp(A, "The value of A is");
19 Beta = R_E/R_L;
20 disp(Beta, "The value of Beta is");
21 Rif = h_{ie} + (1+h_{fe})*R_E; // in ohm
22 Rif = Rif * 10^-3; // in k ohm
```

```
disp(Rif, "The value of R_if in k ohm is");
4 Af = (-h_fe*R_L)/(Rif*10^3);
5 disp(Af, "The value of Af is");
6 AB = A*Beta;
7 AB= real(20*log10(AB));// in d
7 disp(AB, "The value of loopgain in d is");
```

Scilab code Exa 10.14 Feedback gain and new band width

```
1 // Exa 10.14
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 A = 200;
8 BW = 10; // in kHz
9 Beta = 10/100;
10 Af = A / (1 + (A * Beta));
11 disp(Af, "The gain with negative feedback is");
12 BWf = BW * (1 + (A * Beta)); // in kHz
13 disp(BWf, "The bandwidth with negative feedback in kHz is");
```

Chapter 11

Oscillators

Scilab code Exa 11.1 Oscillation frequency

```
1 // Exa 11.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 w=poly(0, 'w');
8 // For sustained oscillation,
9 w= 4*w*10^6-w^3;
10 w= roots(w);
11 w= w(1);// in rad/sec
12 f= round(w/(2*%pi));// in Hz
13 disp(f, "The frequency of oscillation in Hz is:")
14 disp("Hence the system will oscillate")
```

Scilab code Exa 11.2 A RC phase shift oscillators

```
1 // Exa 11.2
```

```
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ Av} = 29;
8 I_Bmax = 0.5*10^-6; // in A
9 I1 = 100 * I_Bmax
10 Vo_sat = 0.9; // in V
11 V_{CC} = 9.0; // in V
12 V_EE=-9;// in V
13 V1= 9/Av; // in V
14 R1= V1/I1; // in ohm
15 R1= 5.6*10^3; // in ohm (standard value)
16 Rf = Av*R1; // in ohm
17 Rf = 180*10^3; // in ohm
18 R3= Rf; // in ohm
19 R=R1; // in ohm
20 C= 1/(2*\%pi*R*sqrt(6)*1000); // in F
21 R= R*10^-3; // in k ohm
22 Rf = Rf *10^-3; // in k ohm
23 C = C*10^6; // in
                     \mathbf{F}
24 disp(R, "The value of R and R1 in k ohm is:")
25 disp(Rf, "The value of Rf and R3 in k ohm is:")
26 disp(C, "The value of C in F is: ")
27 disp(V_CC, "The value of V_CC in volts is: ")
28 disp(V_EE, "The value of V_EE in volts is:")
```

Scilab code Exa 11.3 Value of R and C

```
1 // Exa 11.3
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 // Given data
7 f = 5; // in kHz
8 f = f * 10^3; // in Hz
9 \text{ miu} = 55;
10 r_d = 5.5; // in k ohm
11 r_d = r_d * 10^3; // in ohm
12 \quad A = 29;
13 // abs(A) = g_m*R_L = (g_m*r_d*R_D)/(r_d+R_D) = (miu)
     *R_D)/(r_d+R_D);
14 // \min *R_D = abs(A) *(r_d+R_D);
15 R_D = (abs(A)*r_d)/(miu-A);// in ohm
16 R_D = R_D * 10^- 3; // in k ohm
17 disp(R_D, "Minimum value of R_D in k ohm is");
18 R_D= R_D*10^3; // in ohm
19 Alpha = sqrt(6);
20 // Alpha = 1/(2*\%pi*f*R_C);
21 RC = 1/(2*\%pi*f*Alpha); // in sec
22 RC= round(RC*10^6); // in sec
23 disp(RC, "The value of RC in sec is");
24 RC= RC*10^-6; // in sec
25 R_L = (r_d*R_D)/(r_d+R_D); // in ohm
26 R = 30*10^3; // in ohm
27 C = RC/R; // in F
28 C = C * 10^12; // in pF
29 R= R*10^-3; // in k ohm
30 disp(R,"The value of R in k ohm is");
31 disp(C, "The value of C in pF is");
```

Scilab code Exa 11.4 BJT RC phase shift oscillator

```
1 // Exa 11.4
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 // Given data
7 f = 100*10^3; // in Hz
8 h_fe = 100;
9 \text{ h_ie} = 1* 10^3; // in ohm
10 V_CE = 5; // in V
11 V_BE = 0.7; // in V
12 I_C = 1* 10^-3; // in A
13 I_B = 0.01*10^-3; // in A
14 \ V_{CC} = 20; // in V
15 R_E = 1* 10^3; // in ohm
16 I_E = I_C; // in A
17 R_C = (V_CC - V_CE - (I_E*R_E))/I_C; // in ohm
18 R = 10*10^3; // in k ohm
19 k = R_C/R;
20 h_fe=(23+29/k+4*k);
21 // Formula f = 1/(2*\%pi*R*C*sqrt(6+4*k))
22 C= 1/(2*\%pi*R*f*sqrt(6+4*k)); // in F
23 // R = R3 + R1 \mid | R2 + h_ie = R3 + h_ie  (approx)
24 R3= R-h_ie; // in ohm
V_B = V_BE + I_E * R_E; // in V
26 R2= 10*10^3; // in ohm (assumed value)
27 I_R2=V_B/R2;// current in R2 in A
28 V_R1 = V_CC - V_B; // drop across R1 in V
29 I_R1 = I_R2 + I_B; // in A
30 R1= V_R1/I_R1; // in ohm
31 R_E= R_E*10^-3; // in k ohm
32 R_C = R_C * 10^- - 3; // in k ohm
33 R= R*10^-3; // in k ohm
34 \text{ R1} = \text{R1} * 10^{-3}; // \text{ in k ohm}
35 R2= R2*10^-3; // in k ohm
36 \text{ R3} = \text{R3} * 10^{-3}; // \text{ in k ohm}
37 C = C * 10^12; // in pF
38 disp(R_E, "The value of R_E in k ohm is");
39 disp(R_C, "The value of R_C in k ohm is");
40 disp(R, "The value of R in k ohm is");
41 disp("The value of h_fe >= "+string(h_fe));
42 disp(C, "The value of C in pF is: ")
43 disp(R3, "The value of R3 in k ohm is:")
```

```
44 disp(R2, "The value of R2 in k ohm is: ")
45 disp(R1, "The value of R1 in k ohm is: ")
```

Scilab code Exa 11.5 Transistor gain

```
1 // Exa 11.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 f = 5; // in kHz
8 f = f * 10^3; // in Hz
9 R1 = 14; // in k ohm
10 R2 = 75; // in k ohm
11 R_C = 18; // in k ohm
12 R = 6; // in k ohm
13 h_ie = 2; // in k ohm
14 k = R_C/R; // in k ohm
15 // f = 1/( 2*\%pi*RC*sqrt(6+(4*k)) );
16 C = 1/(2*\%pi*R*10^3*f*sqrt(6+(4*k))); // in F
17 C = C * 10^9; // in nF
18 disp(C, "The value of capacitor in nF is");
19 h_fe= 23+(29/k)+(4*k);
20 disp("The value of h_fe >= "+string(h_fe))
21 disp("Thus the transistor used mush have a minimum
      current gain of 45")
```

Scilab code Exa 11.7 Component values of wein bridge

```
1 // Exa 11.7
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 f_max = 10; // in kHz
8 f_max = f_max * 10^3; // in Hz
9 R = 100*10^3; // in k ohm
10 C = 1/(2*%pi*f_max*R); // in F
11 C= C*10^9; // in nF
12 disp(C,"For maximum frequency, the value of C in nF is");
13 f_min = 100; // in Hz
14 C = 1/(2*%pi*f_min*R); // in F
15 C= C*10^9; // in nF
16 disp(C,"For minimum frequency, the value of C in nF is");
```

Scilab code Exa 11.8 Oscillation frequency

```
1 // Exa 11.8
2 clc;
3 clear;
4 close;
5 format('v',4)
6 // Given data
7 R4 = 220; // in k ohm
8 R4 = R4 * 10^3; // in ohm
9 R3 = R4;// in ohm
10 R = R4; // in ohm
11 C1 = 250* 10^-12; // in F
12 C2 = C1; // in F
13 C = C1; // in F
14 f = 1/(2*\%pi*R*C); // in Hz
15 f = f*10^-3; // in k Hz
16 disp(f, "The frequency of oscillation in kHz is");
```

Scilab code Exa 11.9 Q of the crystal

```
1 // Exa 11.9
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 L = 0.33;
8 \text{ Cs} = 0.65; // \text{ in pF}
9 \text{ Cs} = \text{Cs} * 10^-12; // \text{ in } \text{F}
10 C_M = 1; // in pF
11 C_M = C_M * 10^-12; // in F
12 R = 5.5; // in k ohm
13 R = R * 10^3; // in ohm
14 \text{ f_s} = 1/(2*\%pi*sqrt(L*Cs)); // in Hz
15 f_s = f_s * 10^-6; // in MHz
16 disp(f_s, "The series resonant frequency in MHz is");
17 f_s = f_s * 10^6; // in Hz
18 Ceq = (Cs*C_M)/(Cs+C_M); // in F
19 f_P = 1/(2*\%pi*sqrt(L*Ceq)); // in Hz
20 \text{ f_P= f_P*10^--6; // in MHz}
21 disp(f_P, "The parallel resonant frequency in MHz is
      : ")
22 \text{ f}_P = \text{f}_P * 10^6; // \text{ in Hz}
23 P = ((f_P-f_s)/f_s)*100; // in \%
24 disp("The parallel resonant frequency exceds series
      resonant frequency by "+string(P)+" % ");
25 Q = (sqrt(L/Cs))/R;
26 disp(Q, "The Q factor of the crystal is");
```

Scilab code Exa 11.10 Parallel resonant frequency

```
1 // Exa 11.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Cs = 0.04; // in pF
8 C_M = 2; // in pF
9 Per = (1/2)*(Cs/C_M)*100; // in %
10 disp("Parallel resonant frequency is greater than series resonant frequency by "+string(Per)+" %")
```

Scilab code Exa 11.12 Frequency of oscillation and minimum value of R

```
1 // Exa 11.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 C = 0.01; // in pF
8 C = C * 10^-12; // in F
9 L = 10; // in mH
10 L = L * 10^-3; // in H
11 f_o = 1/(2*\%pi*sqrt(L*C)); // in Hz
12 	ext{ f_o} = 	ext{f_o} * 10^-6; // in MHz
13 disp(f_o, "The oscillation frequency in MHz is");
14 R1 = 100; // in k ohm
15 R2 = 5; // in k ohm
16 A = 1 + (R1/R2);
17 // Beta = R/10;
18 // loopgain = A*Beta A*R/10 >=1
19 R= 10/A; // in k ohm
20 R=round(R*10^3); // in ohm
21 disp("The value of R is >= "+string(R)+" ohm")
```