

Parc mediambiental i casa domòtica sostenible

Objectiu

Construir un parc mediambiental educatiu on estiguin representats espais del nostre entorn on vivim, arbres, hort, riu... i una casa sostenible aplicant la domòtica, gestionant el medi ambient i mesurant paràmetres de la natura.

Dinàmica educativa

- Es pretén que sigui Obert, Didàctic, Evolutiu, Modulable, Flexible, i de baix cost.
- La construcció de la maqueta està preparada per ser impresa en una impressora 3D convencional, però, es pot fer amb fusta o cartró ploma, i al ser modular permet adaptar-la a les necessitats.
- Permet gestionar els llums a LED de colors, Sensors, Actuadors y altres elements electrònics per tal fer la part domòtica i gestió que es podrà controlar amb un Arduino, Microbit o Rasberry ...

Com es podrà veure en tota la descripció, es vol que es puguin explorar el màxim tipus d'elements i tecnologies

Descripció general

Generació d'Energia

La generació d'energia es un dels punts d'estudi i aplicació en la maqueta: Eòlica, Solar, Tèrmica, Geotèrmica, Hidràulica

Sensórica Externa

Mesurar paràmetres del nostre entorn ajudarà a gestionar-lo, com la Temperatura i Humitat ambient, Humitat del sòl, Pressió atmosfèrica, Llum, Color, Raigs ultraviolats, Qualitat del aire i aigua, Nivells d'aigua, Velocitat i direcció del vent, Partícules en el aire.

Casa Domòtica

Control del màxim d'elements fent servir tecnologies diverses com la Llum, Accés, Tendal, Ventilació, Calefacció, Motors, Vàlvules, Intrusió, Panells Fotovoltaics, Tèrmics, Acumuladors energia.

Es detectarà Gas, Foc, Llum, So, Humitat, Temperatura ambient, Temperatura del aigua, Presencia (PIR, IR), Alarma, Intrusió.

Comunicacions

Dintre d'un entorn sostenible les comunicacions son necessàries si es gestionen be com Bluetooth, Wifi, Ethernet, RFID

Realització del projecte

- Descripció de cada part de la maqueta.
- Selecció de materials i components.
- Desenvolupament de cada part.
- Construcció de la maqueta.
- Composició del control electrònic.
- Control global de la maqueta.

Maqueta

La maqueta es divideix en dues parts, una es la Casa pròpiament i l'altre el seu entorn que l'anomeno Parc, degut a les dimensions de la mateixa, uns 80x85cm cada part. Això comença a definir la modularitat d'aquest projecte. Seguidament es descriu cada una de les parts.

Parc mediambiental

Estació Meteorològica

- Peces fetes amb una impressora 3D ja dissenyades a Thingiverse, hi ha moltes possibilitats.
- No podrà tenir unes dimensions proporcionals a la maqueta de la casa per la pròpia física.
- Estarà situada en la part oposada a la casa per millorar la seva perspectiva.
- Comunicarà via radio (Wifi o Bluetooth) amb la central de control de la casa, on una pantalla mostrarà totes les dades.

(Estació metereológica)

Opció 1: Mòdul GY-39 Intensitat de llum MAX44009 + BMP280 Temperatura, Humitat, Pressió

Opció 2: GY-30 (Intensitat Ilum) o GY302 o GY-49 (Intensitat Ilum) MAX44009, BMP280 (Pressió, Temperatura), DHT11 (Humitat, Temperatura)

Mòdul Wifi ESP 32

Velocitat del vent (contactes reed + imant) Direcció del vent (reed + imants) Pluviòmetre (reed + imant)

Hort i Arbres

Un recipient ple de terra farà d'hort, es mesurarà la humitat de la terra i juntament a la temperatura i la llum es programarà el regadiu.

(Hort)

Generació d'energia

Panell Foto-voltaic amb seguidor solar per generar electricitat

- https://www.thingiverse.com/thing:4056888
- Cèl·lula Solar 5V
- Motors servo MG90.
- Cèl·lula LDR

Panell Tèrmic per escalfar aigua

- Tub en espiral formant un panell solar, anirà en el terreny del costat de la casa.
- L'aigua calenta entra en un dipòsit acumulador de la casa
- Sensor de temperatura

(Panell Tèrmic)

(Panell Solar)

Campo de captadores

Aprofitament Geotèrmic

- Tub en espiral sota terra amb una Peltier per simular el comportament subterrani
- Tub en espiral en el terra de la casa
- Sensor de temperatura

(Aprofitament Geotèrmic)

Generador Eòlic per generar electricitat

- https://www.thingiverse.com/thing:1767153
- Dinamo: motor dc 15.2 x 19.8 mm, rotor 2 mm.

(Generador Eòlic)

Generador Hidràulic per generar electricitat

- Un dipòsit superior configura un canal d'aigua fins un salt on fa moure les pales del generador, segueix l'aigua a un petit llac, que deriva a un canal més petit per regar el hort i arbres.
- https://www.thingiverse.com/thing:802284
- Salt d'aigua amb dinamo: motor dc 15.2 x 19.8 mm, rotor 2 mm.

(Turbina d'aigua)

Casa Sostenible i Domòtica

- Les noves cases han de ser sostenibles, aprofitant totes les energies renovables que estiguin a l'abast (eòlica, tèrmica, solar, hidràulica, geotèrmica).
- Recollida de l'aigua pluvial per reaprofitar-la.
- Aprofitament de la llum solar i el vent.
- Aïllament amb un sostre verd.
- Control de residus.
- Control domòtic.

Disseny de la maqueta de la casa

Per fer la maqueta vaig buscar idees i maquetes fetes amb impressió 3D. Només vaig trobar a Thingiverse aquesta https://www.thingiverse.com/thing:2364628 que em va semblar una bona forma d'assemblar les parets i les dimensions (escala 1:24), per poder incloure i manipular els actuadors, encara que l'he transformat i adaptat a les necessitats buscades.

(1)

La maqueta s'ha dissenyat per cobrir totes les necessitats per aplicar tecnologia. Primer dibuixant tota la casa , que al final te unes dimensions importants 850x800mm i desprès feta a trossos per poder-la imprimir en una impressora 3D convencional de 200x200mm i d'aquesta manera es pot tractar de forma modular i realitzar amb els mateixos mòduls altres tipus de configuració de la casa. També incorporen les fixacions dels actuadors a les portes, finestres, i allotjaments dels llums. La teulada es pot treure molt fàcilment per mirar i accedir a l'interior de la casa.

(2)

Identificació i unió de les peces de la maqueta

• Per fer la maqueta s'ha buscat un sistema d'identificació de cada peça, marcant amb una lletra cada paret o mur per un construcció guiada i més fàcil.

• La unió entre les peces s'han dissenyat per que no estigui que fer servir cap cola en la majoria de les peces. Aquesta unió està feta a base d'encaixos i un passador que les fixe.

Descripció de l'exterior Casa

- Casa de tipus unifamiliar que sigui accessible per manipular els diferents components.
- Porta per vehicles exterior motoritzada per anar al garatge. Accés via Bluetooth.
- Porta d'accés a la finca. Timbre, i Accés amb identificació RFID.
- Il·luminació autònoma a LED, amb detecció de presencia i de llum diürna.

Porta d'entrada de vehicles

Porta lliscant amb accés remot via Bluetooth per identificar i obrir.

• Mecanisme cremallera amb servo-motor de 360 graus MG995.

Identificació via Bluetooth HM10 o Wifi relé ESP8266

- Llum de senyalització de moviment de porta APA106 o WS2812.
 - o Verd detecció ID Bluetooth
 - o Ambre moviment porta
 - Vermell Identificació invàlida

Detecció d'obstacles de seguretat amb IR TCRT5000

o HCRS04.

Porta d'accés a la finca

Com qualsevol casa un polsador servirà de timbre, també un lector RFID identificarà i permetrà obrir la porta amb una targeta RFID vàlida.

Lector RFID RC522

Porta motoritzada amb Servomotor SG90

Il·luminació exterior de la casa

Llums LED de color WS2812 i un sensor de proximitat PIR HC-SR501 amb sensor de llum diürna per il·luminar la porta d'entrada o les permanents de nit des del control central.

Dipòsit d'aigua pluja

L'aigua de pluja es recull des de la teulada de la casa, s'emmagatzema en un dipòsit intern per fer servir per lavabos, dutxa, wc, rentadora.

- El sistema de control de bombeig.
- Control de nivell dipòsit d'aigua.

Descripció de l'interior de la Casa

- Control d'accés portes exteriors
- Sistema d'alarma
- Control de llum LED individualitzat amb intensitat i color
- Guia Ilum solar recolzada amb LED
- Control finestres batents motoritzades
- Control de portes motoritzades
- Control Ventilació, Calefacció, Refrigeració
- Ascensor
- Tendals motoritzats

Porta d'accés a la casa

Lector RFID RC522

Lector Empremta dactilar

Servo SG90

Llum interior de la Casa

El control de la llum tant es fa manualment, com automàtic mitjan sensors.

• LED + Detector IR per passadissos HC-SR501

LED + Interruptor sensitiu per saló TTP223

LED + Sensor de veu per la despensa

Led + Sensor de llum ambiental TEMT6000

o LDR

Guia llum solar

Cilindre de metacrilat guia la llum solar en el interior de la casa, per la nit un llum LED fa la funció solar

(6)

Control de tendal

(5)

Tendal o Persiana, Sostre motoritzat

Motor pas a pas K976

Aire Condicionat

Un sistema central d'aire condicionat format per una cèl·lula Peltier genera calor o fred per inversió de polaritat, i un ventilador mou l'aire per tota la casa

• Ventilador + Peltier (Refreda/Escalfa)

Sistema d'Alarma

Un sistema integrat d'alarma contra intrusió, foc, gas

Sensor de vibració SW-520D

Contactes amb imants a finestres

Sensor de gas MQ-2

Sensor flama

Brunzidor

Pantalles de control

- Pantalles Oled o LCD, on es distribuirà la informació per treballar per àrees. També es podrà tindre accés des de un telèfon o "tablet".
- Monitorització de dades de l'estació meteorològica.
- Monitorització del control d'accés a la casa, garatge, sistema de seguretat.
- Monitorització de la refrigeració, ventilació, calefacció
- Monitorització del ascensor.

Sistema central de control

El control també està pensat obert, si no ja no seria didàctic. Tots els actuadors i sensors poden estar adaptats a les plataformes més utilitzades com Arduino, ESP32, Microbit o Raspberry.

El software d'aquestes plataformes permeten utilitzar diferents llenguatges de programació, Scratch, C++ per Arduino, ArduinoBlocks, MakeCode, Python entre d'altres.

Arduino, ESP32: Scratch, Arduino Blocks, C++

Raspberry: Python, Java, Linux

Alimentació i bateries.

La maqueta al igual que moltes cases actuals que generen energia per el autoconsum, necessiten també d'energia elèctrica addicional. La maqueta tindrà generadors d'energia que carregaran unes petites bateries i també tindrà un font d'energia addicional.

Plantejament de la casa

Com que no soc arquitecte segur que no he fet una casa "bonica", ni arquitectònicament correcte, però tinc la sort de tenir amistats arquitectes que m'han ajudat a fer algunes correccions.

El que busco es aplicar diferents tecnologies per fer una casa sostenible, aprofitant les energies renovables i fer conscienciació dels nostres elements que ens envolten.

El garatge sota terra es justifica per poder tenir un ascensor amb el seu control. I a més poder tenir sota la casa el cablejat de control totalment manipulable, el dipòsit de recollida d'aigua de pluja i el dipòsit tractament d'aigües blaves.

L'accés als dispositius tant de la casa com a la resta del entorn es accessible, per poder veure o canviar els sensors, actuadors o sistema de control de qualsevol racó.

Plantejament del control

- El control es podrà fer a través de tasques individualitzades o agrupades junt amb la pantalla o pantalles per mostrar els seus funcionaments o/i amb un control central per recollir el funcionament global.
- Moltes tasques es faran simulades intentant reproduir al màxim el seu funcionament real.
- Els sensors bàsics utilitzats es podran canviar per altres més cars o sofisticats, està previst que el seu accés i cablejat ho permeti.
- Els actuadors seran alguns diferents per provar totes les tecnologies.

Aquest apartat es mostrarà al final de la construcció de la maqueta

Maqueta interior casa

(8)

Maqueta Casa, Garatge i Pati

El pati està a sobra del garatge i deixa un espai per el pas del ascensor.

Maqueta Garatge i Ascensor

Detall del mecanisme de la porta de garatge

(13)

Ascensor

(11)

L'ascensor te dues plantes. Permet accedir a la casa des del garatge.

- Un motor pas a pas en la part superior proporciona un desplaçament precís i lent. 28BYJ-48 DC 5V
- La cabina te dues guies, una llisa i una amb rosca M4

(14)

11

Finestres batents i Portes motoritzades

- Les finestres son batents amb moviment a través d'un servo-motor.
- Les portes també estan motoritzades a través d'un servo-motor.
- Totes les portes i finestres tenen els ancoratges en la paret per posar un servo-motor.

Aire Condicionat

- Una màquina en el saló distribueix l'aire, aire fred i aire calent.
- Un ventilador de 40x40x10 impulsa aire que passa per una cèl·lula Peltier. Canviant la polarització de la Peltier produeix fred o calor.
- Els tubs condueixen cap a totes les estàncies.

Teulada

La teulada està formada per tres parts, la frontal i els dos posteriors. Amb una base amb els canals de desguàs del l'aigua pluvial, i per la part de sota incorpora els espais on aniran instal·lades les llums externes a LED.

• Teulada Frontal

La teulada frontal serà transparent i amb una coberta interior tèxtil motoritzada per aïllament tèrmic.

Permet observar l'interior del menjador/sala i cuina

(17)

• Teulada Verda

La teulada verda dels dos laterals permeten drenar l'aigua i formar un aïllament tèrmic, així com un entorn visual millor.

Per sota hi ha els allotjaments dels llums d'habitacions i exteriors, i el canal dels fils, perquè es pugui treure la teulada de la maqueta per accedir a l'interior. El forat rodó permet instal·lar un guia llum.

La coberta de la teulada estarà coberta de verd, amb plantes i diferents capes de materials que permeten un aïllament de la casa i drenar l'aigua de pluja.

(18)

• Teulades a la maqueta

Voreres de la casa

- Les voreres simulen un empedrat.
- Totes les peces tenen un forats per ancorar les peces a la base de fusta de la casa.

Subjecció de la maqueta

Totes les parets tenen un forat en la base per ancorar-les a la base de fusta de la casa.

En la base de fusta contraxapat de 5mm primer s'acota tota la maqueta i es mecanitza.

(22)

Abans de fixar-la s'aprofita per emmoquetar el terra del interior i la gespa del exterior.

Seguidament ja es pot fixar la maqueta

Ara ja es pot continuar treballant amb la resta de la casa, posant els marcs de les portes, finestres,

El tauler base de la casa es pot muntar sobre un altre tauler de 10mm contraxapat, separat per columnes de 120mm d'alçada, que es la mida exacte del garatge. Aquest espai servirà per col·locar l'alimentació, bateries, electrònica, displays, lectors RFID i lector dactilar, etc ...

La teulada semi-transparent es pot fer amb full de plàstic a partir de 0,75mm de gruix per que tingui una mica de consistència. S'ha de tallar per la teulada frontal 176x132mm i la per la teulada del saló/menjador/cuina amb dos trossos de 176x290.

Muntatge electrònic

Per començar amb el sistema electrònic es pot fer el connexionat dels llums de LED multicolor WS2812B en la part posterior de les teulades. Fent servir tres fils (Positiu 5V, negatiu (gnd) i dades) amb tres color ben diferenciats per no fer cap errada, es poden fixar els fils trenant en forma d'espiral i subjectats amb tub termo-retràctil.

Les soldadures han d'estar ben fetes i que no puguin creuar les connexions, cal fer una revisió visual abans de col·locar-lo als encaixos de la teulada i una prova de funcionament.

Una vegada que es te el cablejat fet, es col·loca en la guia corresponent i es fixe amb una mica de cola termofusible.

Plantejament del control

Tal com està exposat al principi d'aquest document, el control es podrà fer a través de tasques individualitzades o agrupades per facilitar una programació primerament per parts i també per facilitar l'ús de un hardware senzill. D'aquesta manera es poden establir funcionalitats bàsiques fins les més complexes, i funcionalitats futures.

Tasques individualitzades

En aquest apartat es mostraran les tasques que es poden realitzar per treballar-les individualment i el seu hardware associat.

Control dels llums de la casa

Els llums de la casa son de LED del tipus RGB WS2812, que permeten encendre amb el color que es vulgui (per programa), així com amb la intensitat de llum desitjada. Això permet també fer escenaris diferents sobre tot amb la il·luminació exterior. I en el interior també poder fer servir per fer un ambient més càlid per les habitacions o més fred com potser la cuina. Aquets llums poden ser automàtics com el cas dels llums exteriors, amb un sensor de llum ambient, o a través de polsadors tàctils a cada habitació. També es podrà comandar algun llum amb sensor de presencia, com pot ser en el passadís de l'ascensor, ascensor i garatge. Per tant si es fa flexible la instal·lació d'elements de control donarà més marge d'usar més mitjans de control i de futures idees.

Primer de tot cal enumerar cada punt de llum de la casa.

Els cercles de color **verd** son els llums d'exterior de la casa, que normalment es faran encendre tots a la vegada i amb el mateix color tots, però es podran programar escenes amb diferents colors e intensitats de llum. En color **verd** també hi han els llums externs, però, de la terrassa interior, aquest agrupament es pot fer separadament dels altres amb un color fixe. Els cercles de color **groc** son part de la il·luminació interior, saló-menjador, cuina,

dormitoris banys i passadissos. Aquests llums tenen els punts d'encendre senyalitzats com a **G1**, grups de 3 polsadors que poden actuar com polsador o interruptor numerats com **G1_1**, **G1_2**, **G1-3**. També es faran servir aquests polsadors tàctils per obrir i tancar finestres com **W1** o portes com **D1**. Finalment també s'enumeren els espais com BR1, BR2, R1...

Tots aquests punts de llum a LED van connectats en sèrie en el ordre indicat de numeració, i s'utilitzen 3 fils (positiu, negatiu i dades), aquets fils aniran connectats a la placa de control que es posi (ja sigui Arduino, Microbit,...) i fa que només ocupi un pin de sortida.

Polsadors/Interruptors

En la maqueta hi ha punts de polsadors per activar llums, servos, aquests polsadors son tàctils utilitzant el TTP223, un circuit que permet diverses maneres de treballar, com un polsador, com un interruptor. Encara que te altres funcionalitats.

Les particularitats d'aquest circuit que es mostra en l'esquemàtic, es que pot alimentar entre 2,5 a 5Vdc i directament entrega un estat de sortida depenent de les connexions dels pins A i B, un LED indica l'estat de sortida.

Connexionat	Acció	
Sense B	Polsador	
Pont B	Interruptor	
Pont A	Nivell alt per defecte	

El connexionat del polsador tàctil tindrà una connexió del pont B, per tenir funcionalitat Polsador o Interruptor segons el vulgui programar. Estarà disponible en la part inferior de la casa un connector pont.

Així quedaria el connexionat amb la placa Arduino, però ja es veu que utilitza molts pins d'entrada.

Expansió d'entrades i sortides en un Arduino

Com que es necessiten moltes entrades de polsadors els llums i servos, cal plantejar utilitzar varies plaques Arduino, cosa que no es la solució més adequada. Es millor col·locar un expansor d'entrades que es pot fer amb un mòdul placa multiplexor analògic o amb un mòdul expansor I2C.

74HC4067 multiplexor de 16 canals, s'alimenta entre 2,5V a 6V, permet fins a 16 canals (CO a C15) d'entrada o sortida i es necessiten 3 senyals de control (S1 a S3), dos pins alimentació, un de Enable.

Però, no es la millor solució en quan a consum i número de fils cap al microcontrolador.

Una solució més avançada es utilitzar un circuit que es comunica amb el microcontrolador amb 2 fils, via I2C.

PCF8574 es un expansor de 8 canals digitals de entrada/sortida amb comunicació I2C cap el microcontrolador, per defecte al alimentar el circuit son entrades digitals (P0 a P7), funciona entre 2,5 i 6V, incorpora 3 pins (A0 a A2) per configurar l'adreça I2C (des de 0x20 a 0x27), te dos pins de comunicació típiques de I2C, SDA (dades), SCL (rellotge) i un pin INT (interrupció) que es posa a nivell 0 quan hi ha un canvi de flanc en algunes de les entrades/sortides del xip, això permet no tenir que rastrejar constantment els pins d'entrada per part del microcontrolador.

Es troben amb dos formats de placa, la de color blau permet expandir a més plaques PCF8574 per tenir encara més canals i la vermella no.

L'adreça I2C es selecciona amb els ponts/interruptors de la placa.

Llibreria Arduino per el PCF8574 https://www.arduino.cc/reference/en/libraries/pcf8574-library/

Per connectar diversos PCF8574 en la mateixa comunicació I2C es de la manera següent.

En cas de voler ampliar el nombre de canals I2C es pot fer servir el TCA9548 a 8 canals I2C.

Es pot observar que a través de la coberta de plàstic es pot veure la llum vermella de actuació del tàctil.

Control de 16 servomotors en un Arduino

Com que es necessiten moltes sortides per tots els servomotors de control de portes i finestres; Arduino només disposa de 6 sortides PWM, per el que cal utilitzar varies plaques, però, no es la solució més adequada. Es millor utilitzar una placa PCA9685 connectada via I2C amb el microcontrolador.

A més els servomotors tenen un consum elevat, sobre els 200mA multiplicat per 16 son 3,2A

PCA9685 suporta fins a 16 servomotors controlats via I2C, disposa del pins per connectar adequadament els servomotors, les adreces I2C van des de 0x40 fins a 0x7F soldant els ponts (A0...A5), entrega 16 sortides PWM de 12 bits, s'alimenta a 5V, i les línies SDA i SCL de I2C son compatibles 3V3 o 5V.

Servomotors SG90

Un servomotor o anomenat també servo, és un motor DC amb la capacitat posar el seu eix en una posició o angle determinat, internament té una caixa d'engranatges reductora que fa augmentar el parell motor i redueix la velocitat, un potenciòmetre està encarregat de sensar la posició de l'eix i junt amb una electrònica formen un control de llaç tancat.

Hi ha diferents tipus de servo-motors, el més utilitzat es el SG90 que es suficient per la majoria d'aplicacions. Funciona entre 3 i 7.2V, te un parell motor entre 1 i 1.6 kg/cm. Altres tenen parells motor més grans arribant fins a 15 kg/cm.

Base per programar els servomotors

https://www.luisllamas.es/controlar-16-servos-o-16-salidas-pwm-en-arduino-con-pca9685/

Informació per més coneixement sobre els Servomotors:

https://dronprofesional.com/blog/tutorial-teorico-practico-con-servos-y-arduino/

Esquemàtic de control de llums i servos

Muntatge del servo motor en un suport i la fixació a la paret d'una finestra i d'una porta.

Sensor de llum ambient

De sensors de llum hi ha diverses possibilitats: el TEMT6000 que només detecta la presència amalgamada de llum amb longituds d'ona en el rang de 390 a 700 nm. Es troba amb formats molt petits, com el Lilypad o format rectangular per poder-lo fixar.

El TSL2561 es un sensor de lluminositat que pot detectar tant la llum visible com la llum infraroja. El ISL29125 es un sensor de llum RGB que pot detectar llum específicament vermella, verda, blava o qualsevol combinació d'aquestes. El ML8511 es un sensor de llum U,V funciona de manera similar al TEMT6000, però respon a la llum ultraviolada en lloc de la llum visible. El LDR és una alternativa molt petita al TEMT6000, però és una fotoresistència (una resistència que canvia en funció de la presència de llum) en lloc d'un fototransistor.

Per això, el sensor de llum ambiental **TEMT6000** és el escollit. Es un sensor analògic, compatible amb microcontroladors que admeten l'entrada de dades analògiques. Si la llum és molt baixa, el pin SIG tindrà un valor molt baix, a mesura que augmenta la llum, el pin SIG també augmentarà de valor. A més és sensible a l'espectre visible i es fa servir en molts aparells com smartphones, "tablets", càmeres i està adaptat a la resposta de l'ull humà envers la llum. Te un angle de 60 graus i s'alimenta a 5V.

Com funciona la detecció de llum

Com s'ha esmentat anteriorment, el TEMT6000 mesura la il·luminació. Si no esteu familiaritzat amb la il·luminació, és una mesura de la quantitat total de llum visible emesa per una font (anomenada flux lluminós mesurada en lúmens (lm) dividida per una àrea en metres quadrats ($1 lx = 1 lm/m^2$).

Juntament amb aquestes, hi ha altres propietats de la llum que, malauradament, s'anomenen amb la mateixa arrel llatina per a la llum, de manera que pot ser difícil mantenir-les rectes. Aquí teniu un diagrama per dilucidar les diferències:

Per què el TEMT6000 mesura la il·luminació? En la majoria d'assajos, mesurar la intensitat de la llum sense tenir en compte la distància és molt difícil i va deixar perplex als primers astrònoms durant molt de temps. En resum, hi ha una magnitud aparent (com de brillant sembla una font de llum) i una magnitud absoluta (com de brillant és realment la font de llum). Dues fonts de magnituds absolutes diferents poden tenir la mateixa magnitud aparent segons la seva distància a l'observador.

Per exemple, si teniu una font de llum brillant lluny i una font de llum tènue molt a prop, pot semblar que tenen la mateixa brillantor perquè la llum de la font més brillant s'haurà de dissipar en un volum d'espai més gran. És per això que el sensor llegirà un valor més petit si s'allunya de la mateixa font de llum, augmentant essencialment la quantitat d'espai que la mateixa quantitat de llum ha d'omplir entre la font i el sensor (és a dir, reduint la il·luminació, a mesura que esteu dividint per una superfície més gran de l'esfera de llum generada per la font).

Aquí es mostra una gràfica, abstreta del TEMT600, entre el corrent (en μ A) i la il·luminació immediata percebuda pel sensor:

Figure 1. Collector Light Current vs. Illuminance

El TEMT6000 només reconeix la llum amb longituds d'ona en el rang de 390-700nm, que cobreix aproximadament tot l'espectre de la llum visible. En altres paraules, això no captarà infrarojos, ultraviolats o cap altra llum que no puguem veure directament.

Aquí hi ha una taula de la il·luminació típica de fonts comunes de llum visible:

Il·luminació	Superfícies il·luminades per	
0.0001 lux	Cel nocturn ennuvolat i sense lluna	
0.002 lux	Cel nocturn clar sense lluna amb resplendor del cel	
0.27-1.0 lux	Lluna plena en una nit clara	
3.4 lux	límit fosc del crepuscle sota un cel clar	
50 lux	llums de la sala d'estar familiar	
80 lux	Passadissos, lavabos	
100 lux	Dia molt fosc ennuvolat	
320-500 lux	Llum en una oficina	
400 lux	Sortida o posta de sol en dies clars	
1000 lux	Dia ennuvolat	
10000-25000 lux	Plena llum del dia (sol no directa)	
32000-100000 lux	Sol directe	

Article de la Viquipèdia de Lux / CC BY

Ara que entenem una mica millor el funcionament del TEMT6000, es pot utilitzar en alguna cosa més interessant, com el control de llum exterior de la casa per que s'encengui i s'apagui automàticament, segons la llum ambient.

El circuit següent mostrar el connexionat del sensor de llum ambiental TEMT6000 en el sistema central.

Control d'accés

Per accedir a la casa es faran servir diverses tecnologies RFID (identificació per radiofreqüència), empremta dactilar, BT, WiFi...

Control d'accés amb lector RFID

La identificació per radiofreqüència s'utilitza en sistemes de seguretat i de pagament, entre d'altres, per el que en serveix per utilitzar-lo en aquesta aplicació. Hi han diversos sistemes depenen de la freqüència que s'utilitzi, aquí es fa servir la d'alta freqüència a 13,5MHz, treballa en el entorn de pocs centímetres, gairebé tocant.

En la següent pàgina web es pot trobar una informació molt completa: https://programarfacil.com/blog/arduino-blog/lector-rfid-rc522-con-arduino/

Per una banda tenim un mòdul RFID de lectura/escriptura amb el xip RC522 que estarà a l'entrada de la casa i per altre banda hi ha una targeta, clauer, etiqueta adhesiva i d'altres formats (anomenats TAG) que inclouen un xip de RF amb la seva antena, un número d'identificació únic (gravat en el propi silici) i una memòria de 1kB dividida amb 16 sectors, i cada sector en 4 blocs, i cada bloc en 2 bytes de dades, aquests sectors es poden protegir i això permet, que mitjançant un protocol determinat (ISO), obtenir un nivell de seguretat molt alt. No necessita cap bateria per alimentar (per això es diu "passiu"), ja que s'alimenta de l'energia de la pròpia radio freqüència emesa per el mòdul lector RC522.

Aquí es mostra un circuit d'un TAG on es pot veure la complexitat integrada en el xip. Aquest TAG també s'anomena "Transponder".

Crypto Unit for (proprietary) Stream Cipher Encryption

El mòdul RC522 emet una freqüència (13,5MHz) que fa que aquesta energia alimenti el TAG i pugui intercanviar dades.

L'abast de la comunicació entre el lector i el TAG depèn de les dimensions de les antenes tan del lector com del TAG i també del entorn, per això quan es parla del abast, s'ha de parlar de gairebé tocant.

La comunicació entre el mòdul i el sistema de control es pot fer via UART, SPI, i I2C. Típicament es fa servir la comunicació SPI per la alta velocitat de transmissió de dades, però com es pot veure fa servir 5 fils (a part de alimentació).

fritzing - hamboelektronik.com

En aquest cas es farà servir el bus I2C per la facilitat de connectar amb dos fils i l'afegim en el sistema de control central.

El mòdul RC522 I2C te un format compacte per el seu ús

Control del ascensor

Es fa servir un motor pas a pas 28BYJ-48 que incorpora reductora i per la seva forma s'acobla be al muntatge, amb una unió es connecta a eix roscat de 4mm per on es desplaça la cabina del ascensor a més d'una guia llisa.

Dos finals de cursa, un a la part més baixa i l'altre a la part superior identificaran la posició, i amb dos polsadors tàctils TTP223 s'accionarà el funcionament. També es col·loca una llum a LED a la cabina

Seguidament es mostra el connexionat al sistema de control, el motor necessita un driver de motor ULN2003A.

Visualitzador Central

Aquesta solució shield de LCD més teclat, permetrà visualitzar l'estat dels llums, portes, finestres, sensors, etc... Aquesta Shield punxada sobre d'una placa ESP32 permetrà a més una comunicació Bluetooh/Wifi i el control sensor més.

Control d'accés amb lector empremta dactilar (sensor biomètric)

La identificació mitjançant la empremta dactilar es un altre sistema que utilitza alguns punts determinats de l'empremta del dit per identificar la persona. El mòdul FPM10A incorpora un sensor òptic i un processador digital de senyal (DSP) del alta velocitat capaç d'aplicar uns algoritmes per identificar i verificar les empremtes, que junt amb una memòria per emmagatzemar els usuaris (fins a 300). En menys d'un segon pot verificar l'empremta.

Es comunica via sèrie amb el sistema de control

Sensor de Temperatura i Humitat

El sensor d'humitat i temperatura molt utilitzat es el DHT11, que te una sortida analògica, que es connectarà a una entrada analògica del Arduino, o ESP32.

Es pot veure altre vegada que estem deixant la placa sense entrades/sortides. Es qüestió de buscar una solució, utilitzant un sensor d'humitat i temperatura amb comunicació bus I2C, el **SHT31**.

Brunzidor passiu

Es farà servir com a timbre de la casa i altres sons d'alarma o emergència.

Sensor de Gas

Depenent del tipus de gas que volem detectar, podem posar alguns dels sensors disponibles com el MQ2

Sensor de Flama

Aquest si que es pot utilitzar en cas d'incendi, encara que espero que no es cremi la maqueta, es pot col·locar en una zona externa per poder simular un foc amb un encenedor.

Així tindríem en aquests moment el connexionat

Sensor de pluja

La presencia de vapor d'aigua o pluja pot activar aquest sensor, que te una sortida analògica, que es connectarà a una entrada analògica del Arduino, o ESP32.

Programació de la casa

Com ja s'ha indicat aquest projecte es obert tant en la construcció i en la programació, sota una llicencia Creative Commons, on es poden aplicar diferents plaques i processadors amb moltes possibilitats. Però com sempre anirem pas a pas.

A més de preparar alguna exemple, aquesta maqueta precisament es per poder practicar programació i per tant qui vulgui "jugar" amb ella el millor es tenir la memòria buida i començar una programació des de cero, des de una part senzilla com encendre uns LED determinats, fer anar els servos per obrir o tancar una porta o finestra, o fer mesures amb els sensors. Però també depenent del nivell de la persona es pot fer un sistema complexa i global.

Se puede usar C para Arduino, Arduino Blocks o cualquier otro medio por bloques

Programació amb Arduino

La programació amb Arduino es pot fer utilitzant Arduino Blocs, Scratch per Arduino, Snap, ... però també es pot fer amb llenguatge C per Arduino. En qualsevol cas a l'hora de programar sempre s'ha de preparar l'estructura del programa per senzill que sigui.

Estructura de programació

Per estructurar la programació, cal mirar dels components que tenim i els recursos disponibles. Quan s'ha plantejat fer servir un component s'ha vist que per utilitzar menys pins de entrada/sortida es fan servir altres plaques per concentrar o canalitzar la informació, per exemple, com que hi ha molts polsadors, es concentren aquestes sortides de polsadors a un convertidor a I2C, llavors es pot començar a enumerar cada polsador a una adreça I2C, al mateix amb el concentrador de I2C a servomotor. Per el que cal definir tots els components. Desprès es fa un diagrama de flux per preparar les funcionalitats i finalment el programa.

Definició de components i funcionalitats

En aquest cas per definir cada component ens referim en el mapa de la casa on es descriu la situació de cada component..

Funcionalitat	Grup	Acció	Component	Adreça
del TTP223			Placa PCF8574	I2C
Interruptor	G1_1	Obre/tanca finestra Bany 1 BR1 W1	PCF1P0	0x20
Interruptor	G1_2	Encén/apaga llum LED39 i LED40	PCF1P1	0x20
Interruptor	G1_3	Encén/tanca llums exterior LED3	PCF1P2	0x20
Interruptor	G2_1	Obre/tanca finestra Bany 2 BR2 W2	PCF1P3	0x20
Interruptor	G2_2	Encén/apaga llum LED38 i LED41	PCF1P4	0x20
Interruptor	G2_3	Obre/tanca porta Bany 2 BR2 D2	PCF1P5	0x20
Interruptor	G3_1	Obre/tanca finestra Bany2	PCF1P6	0x20
Interruptor	G3_2		PCF1P7	0x21
Interruptor	G3_3			0x21
Interruptor	G4_1			0x21
Interruptor	G4_2			0x21
Interruptor	G4_3			0x21
Interruptor	Grup 5			0x21

Enllaços interesants

https://www.prometec.net/lcd-keypad-shield/

 $\frac{https://create.arduino.cc/projecthub/electropeak/using-1602-lcd-keypad-shield-w-arduino-w-examples-e02d95$

 $\frac{https://solectroshop.com/es/content/104-como-configurar-pantalla-lcd-16x2-y-lcd-keypad-shield-en-arduino}{arduino}$

https://www.elecrow.com/wiki/index.php?title=LCD_Keypad_Shield

https://www.makerelectronico.com/shield-lcd-keypad-arduino/

https://www.cohesivecomputing.co.uk/hackatronics/arduino-lcd-menu-library/

Resum de peces impreses

- Parets Casa 26
- Marcs i vidrieres finestres grans 8 + 8
- Marc i vidriera finestra mitjana 1 + 1
- Marcs i vidrieres finestres petites 9 + 9
- Servos finestres + portes 19
- Reixes mur 3
- Portes 10
- Aire condicionat 7
- Parets Garatge 6
- Columnes 2
- Porta i accessoris 6
- Servos 3
- Portes 2
- Ascensor 6 peces
- Murs Pati 7
- Reixes mur 11
- Peu carrer 5
- Teulada frontal 7 + 11
- Teulades posteriors 4 + 4
- Carrer (pendent)

Altres possibilitats de la maqueta

Al ser un sistema modular, la maqueta permet tenir diferents formes i dimensions segons les necessitats; aquí es poden veure alguns exemples.

La resta de sensor, actuadors i control central es poden aplicar en menys quantitat, però amb les mateixes funcionalitats.

En la documentació de Github es mostraran aquests exemples amb les seves corresponents peces.

Creative Commons Attribution-NoComercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Agraïments

- Més que mai a la Conchita, la meva esposa i companya, per la seva comprensió amb els embolics em que em poso.
- Als components de Mechatronic Study, en Ramon Mayné i en César de la Rosa que han col·laborat en idees i en la correcció dels texts.
- Als meus fills Isaac i Ferran Mayné, (Web, Github i altres punts)
- A les netes Júlia i Naia que m'han deixat els seus Playmobils per la casa.
- A l'arquitecte Carles Ferran, per els seus consells sobre la casa i la il·luminació.
- En Josep Ballarà per la fusteria.
- En Ricard Gómez i l'Oriol Oreo del Punt Multimèdia del Ajuntament de Barcelona, per deixar-me un espai en la Casa del Mig, per poder seguir muntant la maqueta quan a casa ja no hi cabia. A més, en Ricard ha realitzat l'estructura de programació en C per Arduino.
- En Pablo per que posi el codi QR per facilitar l'enllaç en la web de Github.
- En Toni Moreno i InnovaDidactic per la seva implicació en el projecte i la donació de material electrònic per la mateixa.
- A 3D Print BCN on he aprés molt.
- I també a una llarga llista de persones, que no les vull nombrar per no deixar-me cap, que m'han recolzat en el projecte.

