Interpretability of classification models Trabajo fin de grado en Matemáticas

Gregorio Blázquez Martínez

Tutor: Patrizio Guagliardo Co-Tutor: Damián Álvarez Piqueras

Tutora Académica: Ana María Vargas Rey

Universidad Autónoma de Madrid

Junio 2024

Índice

- Introducción
- 2 Modelos Interpretables
 - Regresión Lineal
 - Regresión Logística
- Métodos Interpretabilidad
 - LIME
 - Shapley Values
 - SHAP
- Implementación Práctica
 - Implementación
 - Conclusiones
- 6 Anexos

Introducción

- Introducción
- 2 Modelos Interpretables
 - Regresión Lineal
 - Regresión Logística
- Métodos Interpretabilidad
 - LIME
 - Shapley Values
 - SHAP
- 4 Implementación Práctica
 - Implementación
 - Conclusiones
- 5 Anexo

Contexto y Objetivos

Contexto

- Los modelos de clasificación son esenciales en diversos campos como la economía y la salud.
- La precisión de los modelos ha mejorado gracias a los avances en aprendizaje automático.
- La interpretabilidad es crucial para la confianza y la adopción de estos modelos.

Contexto y Objetivos

Contexto

- Los modelos de clasificación son esenciales en diversos campos como la economía y la salud.
- La precisión de los modelos ha mejorado gracias a los avances en aprendizaje automático.
- La interpretabilidad es crucial para la confianza y la adopción de estos modelos.

Objetivos

- Proveer una base formal para la interpretabilidad de modelos de clasificación.
- Enfocarse en el método SHAP para explicar decisiones del modelo.
- Demostrar la aplicabilidad de SHAP en un caso real.

Modelo e Interpretabilidad

Modelo:

Sea $X = \{X_1, X_2, ..., X_n\}$ un conjunto de variables independientes (predictoras) y Y una variable dependiente (predicción) que se pretende explicar. Denominamos modelo a la función $f: \mathbb{R}^n \to \mathbb{R}$ que mapea un vector de características $\mathbf{x} = (x_1, x_2, ..., x_n)$ a un valor y que representa la variable dependiente. Lo formalizamos como:

$$Y = f(X_1, X_2, ..., X_n) + \epsilon$$

donde ϵ es un término de error que captura la variabilidad no explicada por el modelo.

Interpretabilidad: Aceptamos el uso extendido de este concepto como la capacidad de entender la predicción de un modelo en función de las variables independientes.

Modelos Interpretables

- Modelos Interpretables
 - Regresión Lineal
 - Regresión Logística
- - IIME
 - Shapley Values
 - SHAP
- - Implementación
 - Conclusiones

Junio 2024

Regresión Lineal

Modelo.

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \epsilon$$

 $\mathbf{Y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{\epsilon}$

• Ajuste por mínimos cuadrados.

$$\hat{\boldsymbol{\beta}} = \arg\min_{\beta_0, \dots, \beta_n} \sum_{i=1}^k \left(y^{(i)} - \left(\beta_0 + \sum_{j=1}^n \beta_j x_j^{(i)} \right) \right)^2$$

La regresión lineal es altamente interpretable:

- Los coeficientes β_j representan el cambio en la variable dependiente al cambiar en una unidad la variable independiente x_j .
- Un β_j positivo indica una relación directa, mientras que un β_j negativo indica una relación inversa.
- La magnitud de β_i indica la fuerza de la relación.

Regresión Logística

Modelo:

$$\mathbb{P}(y=1|\mathbf{x}) = \frac{1}{1 + \exp\left(-(\beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n)\right)}$$

Notación vectorial:

$$\mathbb{P}(y=1|\mathbf{x}) = \frac{1}{1+\exp\left(-oldsymbol{eta}^{\intercal}\mathbf{x}
ight)}$$

Función logística

Ejemplo de regresión logística

Ejemplo probabilidades

La regresión logística es más compleja de interpretar que la regresión lineal:

• Los coeficientes β_i afectan las probabilidades de manera exponencial.

La regresión logística es más compleja de interpretar que la regresión lineal:

- Los coeficientes β_i afectan las probabilidades de manera exponencial.
- Utilizando el término odds:

odds =
$$\frac{\mathbb{P}(y=1)}{1-\mathbb{P}(y=1)} = \exp(\beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n)$$

La regresión logística es más compleja de interpretar que la regresión lineal:

- Los coeficientes β_j afectan las probabilidades de manera exponencial.
- Utilizando el término odds:

odds =
$$\frac{\mathbb{P}(y=1)}{1-\mathbb{P}(y=1)} = \exp(\beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n)$$

• Logaritmo de odds:

$$\log(\text{odds}) = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n$$

La regresión logística es más compleja de interpretar que la regresión lineal:

- ullet Los coeficientes eta_j afectan las probabilidades de manera exponencial.
- Utilizando el término odds:

odds =
$$\frac{\mathbb{P}(y=1)}{1-\mathbb{P}(y=1)} = \exp(\beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n)$$

• Logaritmo de odds:

$$\log(\text{odds}) = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n$$

• Incremento en una unidad de x_j :

$$\mathsf{odds}_{x_j+1} = \mathsf{exp}\,\beta_j \mathsf{odds}_{x_j}$$

Métodos Interpretabilidad

- Introducción
- 2 Modelos Interpretables
 - Regresión Lineal
 - Regresión Logística
- Métodos Interpretabilidad
 - LIME
 - Shapley Values
 - SHAP
- 4 Implementación Práctica
 - Implementación
 - Conclusiones
- 5 Anexos

LIME (Local Interpretable Model-Agnostic Explanations)

 Why Should I Trust You?: Explaining the Predictions of Any Classifier.

Marco Ribeiro

Sameer Singh

Carlos Guestrin

(3.1)

 $\min_{m{g}} \mathit{L}(f, m{g}, \pi_{m{x}}) + \Omega(m{g})$ Ejemplo de LIME en Jupyter-Notebook

Introducción a los Valores de Shapley

Lloyd Shapley

Juego coalicional:

Se tiene un conjunto N de n jugadores y una función superaditiva v que asigna subconjuntos de jugadores a números reales: $v:U=2^N\to\mathbb{R}$, donde $v(\emptyset)=0$. La función v se llama función característica.

Introducción a los Valores de Shapley

Lloyd Shapley

Juego coalicional:

Se tiene un conjunto N de n jugadores y una función superaditiva v que asigna subconjuntos de jugadores a números reales: $v:U=2^N\to\mathbb{R}$, donde $v(\emptyset)=0$. La función v se llama función característica.

Función valor:

Por la función valor $\phi[v]$ del juego v entendemos una función que asocia a cada jugador i un número real $\phi_i[v]$.

Introducción a los Valores de Shapley

Lloyd Shapley

Axiomas de reparto justo:

• Simetría: $\phi_{\pi i}[\pi v] = \phi_i[v]$

• Eficiencia: $\sum_{i \in N} \phi_i[v] = v(N)$

• Aditividad: $\phi[v+w] = \phi[v] + \phi[w]$

Juego coalicional:

Se tiene un conjunto N de n jugadores y una función superaditiva v que asigna subconjuntos de jugadores a números reales: $v:U=2^N\to\mathbb{R}$, donde $v(\emptyset)=0$. La función v se llama función característica.

Función valor:

Por la función valor $\phi[v]$ del juego v entendemos una función que asocia a cada jugador i un número real $\phi_i[v]$.

Teorema de Shapley

Teorema de Shapley:

Para un juego coalicional dado v con un carrier finito N existe una única función valor que satisface los tres axiomas anteriores y viene dada por:

$$\phi_i[v] = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n-s-1)!}{n!} [v(S \cup \{i\}) - v(S)]$$

Los ϕ_i se denominan valores de Shapley o Shapley Values.

Interpretación

La contribución marginal de i a cada coalición, promediada sobre todas las permutaciones posibles en las que se puede formar la coalición.

Ejemplo:

- Dos concursantes (A y B) con premios 10000€, 7500€, 5000€y 0€
- A y B juntos: 10000€
- A solo: 7500€, B solo: 5000€
- Si ninguno se presenta: 0€
- Contribuciones marginales (aportaciones) de A: 7500€y 5000€
- Promedio: $\frac{7500+5000}{2} = 6250$ €

SHAP (SHapley Additive exPlanations)

A Unified Approach to Interpreting Model Predictions

Su-In Lee

Scott Lundberg

SHAP (SHapley Additive exPlanations)

A Unified Approach to Interpreting Model Predictions

Scott Lundberg

Su-In Lee

Definición 3.12:

Denominamos *método de atribución de características aditivas* a aquellos métodos con un modelo de explicación que es una función lineal de variables binarias, definido como:

$$g(\mathbf{z}') = \phi_0 + \sum_{i=1}^{M} \phi_i z_i'$$

donde \mathbf{z}' es un vector binario de tamaño M y ϕ_i es un valor en \mathbb{R} .

Existencia única bajo propiedades

- **1** Precisión Local: $\hat{f}(x) = g(x') = \phi_0 + \sum_{j=1}^n \phi_j x_j'$
- **2** Ausencia: $x'_j = 0 \Rightarrow \phi_j = 0$
- **3** Consistencia: $\phi_j(\hat{f}',x) \ge \phi_j(\hat{f},x)$

Teorema 3.13:

Solo hay un modelo de explicación posible g que sigue la Definición 3.12 y satisface las Propiedades 1, 2 y 3:

$$\phi_i(f;x) = \sum_{z' \subset x'} \frac{|z'|!(M-|z'|-1)!}{M!} [f(h_x(z')) - f(h_x(z' \setminus i))] \qquad (2)$$

donde |z'| es el número de entradas no nulas en z', y $z' \subseteq x'$ representa todos los vectores z' donde las entradas no nulas son un subconjunto de las entradas no nulas en x'.

KernelSHAP y LIME

Teorema 3.14:

Bajo la definición de LIME como en la definición 3.12, las formas específicas de π_x , L y Ω que hacen que las soluciones de la Ecuación 3.1 sean consistentes con las Propiedades 1 a 3 son:

$$\Omega(g) = 0; \quad \pi_{x'}(z') = \frac{(M-1)}{\binom{M}{|z'|}|z'|(M-|z'|)}$$

$$L(f;g;\phi_{x_0}) = \sum_{z' \in Z} \left(f(h_{x'}^{-1}(z')) - g(z') \right)^2 \pi_{x'}(z')$$

donde |z'| es el número de elementos no nulos en z'.

KernelSHAP y LIME

Teorema 3.14:

Bajo la definición de LIME como en la definición 3.12, las formas específicas de π_{\times} , L y Ω que hacen que las soluciones de la Ecuación 3.1 sean consistentes con las Propiedades 1 a 3 son:

$$\Omega(g) = 0; \quad \pi_{x'}(z') = \frac{(M-1)}{\binom{M}{|z'|}|z'|(M-|z'|)}$$

$$L(f;g;\phi_{x_0}) = \sum_{z' \in Z} \left(f(h_{x'}^{-1}(z')) - g(z') \right)^2 \pi_{x'}(z')$$

donde |z'| es el número de elementos no nulos en z'.

Estimación con KernelSHAP

Implementación Práctica

- Introducción
- 2 Modelos Interpretables
 - Regresión Lineal
 - Regresión Logística
- Métodos Interpretabilidad
 - LIME
 - Shapley Values
 - SHAP
- Implementación Práctica
 - Implementación
 - Conclusiones
- 5 Anexos

Implementación

- Ejemplo de aplicabilidad de los conceptos estudiados.
- Modelo de clasificación y técnicas de interpretabilidad aplicadas a un conjunto de datos real.
- Implementación detallada en un Jupyter Notebook.

Previo a SHAP

- Problema de regresión complejo.
- Dificultad para interpretar relaciones entre variables y target.
- Visualización inicial de los datos:

Previsualización de los datos.

Importancia de Características

- Modelos entrenados con Feature Importance (FI) y Permutation Feature Importance (PFI).
- Identificación de variables más importantes.

(b) Permutation Feature Importance.

Resultados importancia de características previo a SHAP.

SHAP: Force Plots Locales

Force Plot para una predicción alta.

Force Plot para una predicción baja.

Force Plot para una predicción cercana a la predicción base.

SHAP: Explicaciones Globales

• Bar Plot: Importancia de las características con SHAP.

Importancia de las características con SHAP.

SHAP: Explicaciones Globales

• Summary Plot: Distribución de los SHAP values.

Summary Plot SHAP.

SHAP: Explicaciones Globales

• **Dependence Plots**: Distribución y relaciones entre características.

(a) Dependencia de entradas dinero.

(b) Dependencia de edad.

Dependence Plots específicos.

Conclusiones

• Importancia de la Interpretabilidad:

- Precisión en modelos de clasificación.
- Necesidad de comprender y confiar en las decisiones del modelo.
- Contribución a una toma de decisiones más informada.

Conclusiones

• Importancia de la Interpretabilidad:

- Precisión en modelos de clasificación.
- Necesidad de comprender y confiar en las decisiones del modelo.
- Contribución a una toma de decisiones más informada.

SHAP y Explicaciones de Predicciones:

- Locales y globales.
- Agnósticas al modelo.

Conclusiones

• Importancia de la Interpretabilidad:

- Precisión en modelos de clasificación.
- Necesidad de comprender y confiar en las decisiones del modelo.
- Contribución a una toma de decisiones más informada.

SHAP y Explicaciones de Predicciones:

- Locales y globales.
- Agnósticas al modelo.

Resumen:

- SHAP como herramienta poderosa y versátil.
- Mejora en la interpretabilidad y confianza en predicciones.
- Crucial en campos como la economía y la salud.
- Base matemática sólida y accesible para profesionales.

Anexos

Enlaces Complementarios

• Ejemplo de LIME en Jupyter-Notebook:

Notebook que implementa de mamnera muy simplificada y breve el funcionamiento de LIME.

Desarrollo en Jupyter-Notebook:

Notebook con la implementación práctica y referenciada en este TFG. Permite ejemplificar la aplicabilidad de SHAP en un caso real.

Teorema de Gauss-Markov Regresión Lineal

Estimador obtenido:

$$\boldsymbol{\hat{eta}} = (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal \mathbf{Y}$$

Teorema de Gauss-Markov

Bajo las condiciones de $E[\epsilon] = \mathbf{0}$ y $Var[\epsilon] = \sigma^2 \mathbf{I}$, el estimador de mínimos cuadrados es el mejor estimador lineal insesgado.

Es decir, tiene la menor varianza entre todos los estimadores lineales insesgados.

Obtención de los Pesos Regresión Logística

Queremos maximizar la función de verosimilitud:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{k} (\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(\mathbf{i})})^{y^{(i)}} * (1 - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(\mathbf{i})})^{1 - y^{(i)}}$$

Maximizando la log-verosimilitud:

$$I(\boldsymbol{\beta}) = \sum_{i=1}^{k} y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)} - \log (1 + \exp (\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}))$$

• Método Newton-Rapshon:

$$\boldsymbol{\beta^{(s+1)}} = \boldsymbol{\beta^{(s)}} - [H_{l}(\boldsymbol{\beta^{(s)}})]^{-1} \nabla l(\boldsymbol{\beta^{(s)}})$$

Tras los cálculos:

$$\boldsymbol{\beta^{(s+1)}} = \boldsymbol{\beta^{(s)}} - [\mathbf{X}\mathbf{W}^{(s)}\mathbf{X}^{\intercal}]^{-1}\mathbf{X}(\mathbf{Y} - \mathbf{\hat{Y}}^{(s)})$$

Shapley Values en Modelos de Clasificación

Función Característica:

$$v_{x}(S) = \int \hat{f}(x_{1}, \dots, x_{n}) d\mathbb{P}_{x \notin S} - E_{X}(\hat{f}(X))$$

Shapley Values en Modelos de Clasificación

Función Característica:

$$v_{x}(S) = \int \hat{f}(x_{1}, \ldots, x_{n}) d\mathbb{P}_{x \notin S} - E_{X}(\hat{f}(X))$$

Valores de Shapley:

$$\phi_j(v) = \sum_{S \subseteq \{x_1, \dots, x_n\} \setminus \{x_j\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{x_j\}) - v(S))$$

Shapley Values en Modelos de Clasificación

Función Característica:

$$v_{x}(S) = \int \hat{f}(x_{1}, \ldots, x_{n}) d\mathbb{P}_{x \notin S} - E_{X}(\hat{f}(X))$$

Valores de Shapley:

$$\phi_j(v) = \sum_{S \subseteq \{x_1, \dots, x_n\} \setminus \{x_j\}} \frac{|S|!(n-|S|-1)!}{n!} \left(v(S \cup \{x_j\}) - v(S) \right)$$

Propiedades:

- Eficiencia: $\sum_{j=1}^{n} \phi_j = \hat{f}(x) E_X(\hat{f}(X))$
- Simetría: Si $v(S \cup \{x_j\}) = v(S \cup \{x_k\})$, entonces $\phi_j = \phi_k$
- **Jugador Nulo:** Si $v(S \cup \{x_i\}) = v(S)$, entonces $\phi_i = 0$
- Aditividad: $\phi[v+w] = \phi[v] + \phi[w]$

Junio 2024

Futuros Trabajos

Ampliación de Técnicas de Interpretabilidad:

- Explorar otras técnicas emergentes complementarias a LIME y SHAP.
- Integración y comparación de estas técnicas para un panorama más completo.

Aplicaciones en Diferentes Sectores:

 Investigar la aplicabilidad en marketing, seguridad informática, energía y ciencias ambientales.

Automatización y Herramientas de Interpretabilidad:

- Desarrollo de herramientas para automatizar el proceso de interpretabilidad.
- Generación de reportes automatizados claros y comprensibles.

Validación y Robustez de Interpretaciones:

- Desarrollar métodos para validar y evaluar la calidad de las interpretaciones.
- Crear métricas para medir fidelidad y coherencia de las explicaciones.

Consideraciones Éticas y de Sesgo:

• Identificar y mitigar sesgos en los modelos de clasificación.

Desarrollar metodologías para asegurar equidad y transparencia.

