			COMPUTER	DEPARTMENT OF SCIENCE AND ENGINEERING			
		Date	June 2024	Maximum Marks	50		
	Cour	se Code	CY245AT	Duration	90 Min	utes	
		Sem	IV				
		COMPUTER SCIENCE AND ENGINEERING Date June 2024 Maximum Marks See Code CY245AT Duration	.				
Sl	. No.			PART-B	M	BT	CO
1	(a)	Answer 1. 2. 1 3. 4. 1	etho IP:192.168.0.100 P: 32:30:cd:0b:1c:2e A R1 etho IP:192.168.0.250 MAC: 09:05:d0:be:89:02 etho IP: 1 MAC the following When frame leaves A tow destination MAC of the frame in the frame received by Frame will R1 know the frame in the frame received by Frame will R1 know the frame in the frame received by Frame will R1 know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame received by Frame R1 does not know the frame R1 does not know	eth1 IP: 192.168.12.101 MAC: 32:30:cd:2e:0b:3c IP: 192.168.12.45 MAC: 3d:20:01:21:a3:0d P32.168.4.200 : 32:30:cd:0b:1c:b4 Pards destination B, what will be the rame? Per protocol at datalink and physical layer of its bit oriented framing protocol. Part MAC of R2 but knows only IP address, MAC of R2? Part from A has error introduced in the way, me is corrupted?	10	4	2
2	(a)	With a r	neat FSM explain Stop an	d Wait Protocol. List the disadvantage of this	10	3	1
3	(a)	Following sender a	ng data is to be sent using and explain the various tra	ansition phases in PPP.	10	4	5
4	(a)	_	•	A (Carrier Sense Multiple Access). Illustrate ram and its two major problems.	10	3	1

Academic year 2023-2024 (Even Sem)

5 (a)							6+2+	4	4
	Process-1 ROUTER-2 ROUTER-1 ROUTER-3	ROUT.	MH6	UTER-6	PC-2		2		
	Router-1's table initially	Router-3's	table	Router-5's	table				
	Destination Line	Destination	Line	Destination	Line				
	R-1	R-1	R-1	R-1	R-3				
	R-2 R-2	R-2	R-4	R-2	R-4				
	R-3 R-3	R-3	-	R-3	R-3				
	R-4 R-2	R-4	R-5	R-4	R-4				
	R-5 R-3	R-5	R-5	R-5					
	R-6 R-3	R-6	R-5	R-6	R-6				
	The initial network and routing table		1	ruo ale					
	1. Explain Store and Forward of	-				1			
	2. If router 2 fails or crashes, sl			-					
	changes. How is the next be								
	3. Does all datagrams in the ab	ove networ	k take	same path	? Justify	your /			
	answer.			-	-				

COURSE OUTCOMES:

CO1: Apply the algorithms/techniques of routing and congestion control to solve problems related to Computer Networks.

CO2: Analyse the services provided by various layers of TCP/IP model to build effective solutions

CO3: Design sustainable networking solutions with societal and environmental concerns by engaging in Lifelong learning for emerging technology.

CO4: Exhibit Demonstrate the solutions using various algorithms/protocols available to address networking issues

CO5: Using modern tools by exhibiting team work and effective communication network configuration, protocol usage and performance evaluation in networks.

COs/BTL	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4
Marks	20	10		10	10			20	30

Academic year 2023-2024 (EVEN Sem)

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Date	June 2024	Maximum Marks	50
Course Code	CY245AT	Duration	90 Min
Sem	IV Semester	CIE -1	
Comp	uter Networks (Common to	o CS, IS, CD, AI & CY)	

SCHEME

Sl.	Question	Mark	B	C
No		s	T	O
1.	eth1 IP:192.168.4.250 MAC: 09:05:a0:d0:b3:12 eth0 IP:192.168.0.250 MAC: 32:30:cd:0b:1c:2e eth0 IP:192.168.0.250 MAC: 32:30:cd:0b:1c:b4 1. 09:05:d0:b2:89:02 — 1 mark 2. HDLC, ethernet — 1 mark 3. ARP — Address resolution protocol — 1 mark 4. FCS — 1 mark 5. OSI layers - 6 marks 7 Layers of the OSI Model Application Presentation Presentation Session Session	10	4	2

Academic year 2023-2024 (EVEN Sem)

Course Outcomes: After completing the course, the students will be able to

Academic year 2023-2024 (EVEN Sem)

CO1:	Apply the algorithms/techniques of routing and congestion control to solve problems related to
	Computer Networks.
CO2:	Analyse the services provided by various layers of TCP/IP model to build effective solutions
CO3 :	Design sustainable networking solutions with societal and environmental concerns by engaging in Life long learning for emerging technology.
CO4 :	Exhibit network configuration, protocol usage and performance evaluation in networks.
CO5 :	Demonstrate the solutions using various algorithms/protocols available to address networking issues
	Using modern tools by exhibiting team work and effective communication

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partio	culars	CO1	CO2	CO3	CO4	CO5	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	20	10		10	10		20	30		

			DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING			
		Date	July 2024 Maximum Marks 60			
	Cour	se Code	CY245AT Duration 120 Minutes			
	Cour	Sem	IV Daration 120 Nameter			
			PEN BOOK- CIEII- Computer Networks (Common to CS, IS, CD, AI & CY)			
Sl.	No.		PART-A	M	В	C
			(QUIZ)	ar ks	Т	0
1	a	Write a s	ink tree for Node G in a given network below. Draw a sing tree for node 'J'. Assume that,	2	3	3
	b	Н	rash in sometime. Update the sink tree of J and draw its structure after the node I crashes. A B C Fig. 1(a) y 2 unique Spanning trees which includes Group1, 2 and 3 nodes for Multicasting.	2	3	2
		1, 2, 3 H	1, 2 3 B 1, 2 1, 2, 3 C 1, 2 1, 2, 3 F 1, 2, 3 Fig. 1(b)			
	С	•	the general major cause of congestion and solution to control over congestion in a when adequate resources are provided.	2	3	2
	d	packets f	ollowing network below, which type of routing scheme is best suitable to route the from R1 to R4? Justify your answer. R1 R2 R3 Fig. 1(d)	2	3	3
	e	Can HEI	LO packet is used for measuring delay? Justify your answer with reason.	2	3	2
			PART-B			
2	(a)	for Dista two diffe	Routing table for all the nodes of a network given below using Bellman Ford algorithm nee vector routing and show the routing table entries in every step. Assume the following tent scenarios and show the updated routing tables of all the nodes under each scenario: re is good news that, Link is established from F to C with distance value 1. There is a bad news where link between C to D of distance value 1 crashes.	10	4	2

Academic year 2023-2024 (Even Sem)

COURSE OUTCOMES:

- CO1: Apply the algorithms/techniques of routing and congestion control to solve problems related to Computer Networks.
- CO2: Analyse the services provided by various layers of TCP/IP model to build effective solutions
- CO3: Design sustainable networking solutions with societal and environmental concerns by engaging in Lifelong learning for emerging technology.
- $\textbf{CO4:} \ Exhibit \ Demonstrate \ the \ solutions \ using \ various \ algorithms/protocols \ available \ to \ address \ networking \ issues.$

CO5: Using modern tools by exhibiting team work and effective communication network configuration, protocol usage and performance evaluation in networks.

COs/BTL	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4
Marks	-	16	34	10	10	1	1	20	40

		DEPARTMENT OF				
		COMPUTER SCIENCE AND ENGINEERING				
C	Date	July 2024 Maximum Marks	60 Minorton			
Cour	se Code Sem	CY245AT Duration IV	120 Minutes			
		PEN BOOK- CIEII- Computer Networks (Common to CS, IS, CD,	AI & CY)			
Sl. No.		PART-A		M	В	C
		(QUIZ)		ar ks	T	0
	Node I c	sink tree for Node G in a given network below. Draw a sing tree for node 'J'. rrash in sometime. Update the sink tree of J and draw its structure after the no Fig. 1(a)		2	3	3
b	Draw an	y 2 unique Spanning trees which includes Group1, 2 and 3 nodes for Multica	sting.	2	3	2

			1		
		1, 2, 3 H 1, 2, 3 H 1, 2, 3 C 1, 2 D 1, 2 Fig. 1(b) Two unique trees2M			
		H A L A L A L A L A L A L A L A L A L A			
	С	Identify the general major cause of congestion and solution to control over congestion in a network when adequate resources are provided. Major cause: More load on the subnet which it cannot handle1M Solution: Reduce the load on network1M	2	3	2
	d	For the following network below, which type of routing scheme is best suitable to route the packets from R1 to R4? Justify your answer. R1 R2 R3 R4 Fig. 1(d)	2	3	3
		Path is stored and whenever router is booting, stored path is loaded1M			
	e	Can HELLO packet is used for measuring delay? Justify your answer with reason. No. It is used to only discover neighbor nodes/reachable nodes in a network2M	2	3	2
		PART-B			
2	(a)	Find the Routing table for all the nodes of a network given below using Bellman Ford algorithm for Distance vector routing and show the routing table entries in every step. Assume the following two different scenarios and show the updated routing tables of all the nodes under each scenario: i) There is good news that, Link is established from F to C with distance value 1. ii) There is a bad news where link between C to D of distance value 1 crashes.	10	4	2

Academic year 2023-2024 (Even Sem)

Fig. 2 (a)

Shortest distances and neighboring nodes at every step----4M

i)After Good news:-----4M

ii)After Bad news Count to infinity problem between nodes F and C

10

+91-080-68188100 | www.rvce.edu.in

Academic year 2023-2024 (Even Sem)

- (a)
 - i) Smrithi has to visit all the places identified as nodes in the network, find the best paths for Smrithi to visit all the places starting from her home.
 - ii) Find out that, from which place she can start with to cover all the places at best shortest distances to visit all the places and show the paths.

Fig. 3 (a)

Finding distances----5M i)

ii)Need to start from Museum----5M

Academic year 2023-2024 (Even Sem)

6 (a)	Build a tree for Reverse path Forwarding for node J for network diagram given in Fig. 1(a) and	6+	4	3
	compute the following:	2+		
	i) Mention the number of packets generated at every level of treeii) Mention total number of packets generated, total number of duplicate packets and total number	2		
	of packets as part of sink tree.			
	of packets as part of sink tree.			
	Reverse path tree6M			
	i)Count of packets ate every level2M			
	ii) packet counts2M			
	60) Something			
	6 6 11			
	Level >4			
	F E Levelz 7			
	H M			
	3 0 6 0			
	10 May 4			
	F & Seculty 3			
	1 3			
	RPF tou Total Packets = 19			
	Sink torre may be different. En Every tou the dealing, Calculate the problem count arked for.			
	Cigale tree may be different in 1th			
	Le Surry true telle dealign, Callette			
	Che added but asked for.			
	0702 100-			
	A TOB			
	H Sinke tree			
	in Delicate - 10			
	T Contract			
	D Pocific = 9			
	Total = 19			

COURSE OUTCOMES:

CO1: Apply the algorithms/techniques of routing and congestion control to solve problems related to Computer Networks.

CO2: Analyse the services provided by various layers of TCP/IP model to build effective solutions

CO3: Design sustainable networking solutions with societal and environmental concerns by engaging in Lifelong learning for emerging technology.

CO4: Exhibit Demonstrate the solutions using various algorithms/protocols available to address networking issues.

CO5: Using modern tools by exhibiting team work and effective communication network configuration, protocol usage and performance evaluation in networks.

COs/BTL	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4
Marks	-	16	34	10	10	-	-	20	40

Go, change the world

	Date	DEPARTMENT OF COMPUTER SCIENCE AND ENGI August 2024 Maximum Mar		10 + 50			
	Course Code	CY245AT Durati	on	120 Minute	es		
Mary And Delivers and Delivers the difference of	Sem	IV					
		COMPUTER NETWORKS					
		IMPROVEMENT CIE					
Sl. No.		PART-A			M	ВТ	CO
1	Convert the	following IPv4 addresses to IPv6.			2	L3	2
	i. 62.5	54.165.38					
		.154.76.90			1	L3	3
2		IDR representations, Find the range of IP Addresses			2	L3	3
	in the CIDR i. 20.1	10.30.35 / 27					
		.1.2.35 / 20					
3		onnected to local LAN needs to transmit a packet to the remote	e co	nnected	2	L4	3
		well needs to receive packets from outside world, in both then					
		stem would find the IP address and the Hardware address resp					
4		s an entry of IP address - 160.36.30.110, network			2	L4	4
		5.255.254.0, in its routing table. Derive the following:					
		adcast address for the network.					
5		work ID for the network.			2	L4	5
	i. A co	e of QoS scheme used in the following scenarios: orporate network is handling a mixture of traffic, including re	no1 +	ima vidaa	2	L4	3
	call	s, emails, file downloads, and web browsing. The company v	zai-i vant	s to ensure			
	that	critical applications (like video conferencing and VoIP) rece	ive	priority			
	over	r less critical applications (like bulk data transfers).					
	ii. A co	ompany is holding a real-time video conference that requires	a g	uarantee of			
	low	latency, high bandwidth, and minimal jitter to ensure smoot	h				
SI. No.	com	munication between participants in different locations.					
		PART-B			M	BT	C
	i. Classify th	ne following scenarios under congestion and flow control:			10	L4	3
	a. A data c	center is handling traffic from multiple clients.					
	b. A cloud	server is targeted by a Distributed Denial of Service (DDoS) at				
	small buffer	uter sends too many print jobs too quickly to a networked pr	inte	r with a			
		network with thousands of sensors floods a gateway with d					
	e. A micr	rocontroller sends data faster than a connected peripheral	ata,				
	f. A peer-te	o-peer file-sharing application leads to excessive traffic acro	see t	ha nativarle			
	via the local	ISP's links.					
	ii. Suppose y	you have a congested network. Consider the following scena	rios	s and provide			
	your answer.	8 50011		and provide			
	а						
		Is it always possible to provide OoS on a congested network	k?		1		
	b.	Is it always possible to provide QoS on a congested network! Is there a way to provide QoS on a congested network? If y	k? es o	r no, justify			
(a)	b.	Is it always possible to provide QoS on a congested network is there a way to provide QoS on a congested network? If y your answer.	es o				
(a)	A router can	Is it always possible to provide QoS on a congested network Is there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12	es o		10	L4	3
(a)	A router can packets/sec of	Is it always possible to provide QoS on a congested network Is there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average.	es o	lion	10	L4	3
(a)	A router can packets/sec of i.	Is it always possible to provide QoS on a congested network! If there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average. What is the average waiting time for each packet at a roll.	mil	lion		L4	3
(a)	A router can packets/sec of	Is it always possible to provide QoS on a congested network? If y there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average. What is the average waiting time for each packet at a roul of a route from source to destination contains 7 routers.	mil	lion		L4	3
(a)	A router can packets/sec o i. ii.	Is it always possible to provide QoS on a congested network? If y there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average. What is the average waiting time for each packet at a roll f a route from source to destination contains 7 routers, I spent being queued and serviced by the router?	mil uter	lion ? much time i		L4	3
(a)	A router can packets/sec (i. ii. Suppose ther	Is it always possible to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average. What is the average waiting time for each packet at a roll fa route from source to destination contains 7 routers, I spent being queued and serviced by the router? The area 4 flows at router waiting to go out on a link having be	mil uter	lion ? much time i		L4	3
(a)	A router can packets/sec of i. ii. Suppose ther 30Mbps. Rat	Is it always possible to provide QoS on a congested network? If y there a way to provide QoS on a congested network? If y your answer. process 15 million packets/sec. The load offered to it is 12 on average. What is the average waiting time for each packet at a roll f a route from source to destination contains 7 routers, I spent being queued and serviced by the router?	mil uter now	lion ? much time i		L4	3

3 (a) A university has class B address space of 182.17.X.X. It has 45 departments each having 700 hosts. You must design an appropriate subnetting scheme to support the needs of this university. Identify the number of bits for hosts and subnets. Find the subnet mask. Design the first five subnet id's and the range of host addresses on these subnets. How many total hosts can be supported in each subnet if the department grows in future? 4 (a) State the purpose of TTL field in an IPv4 packet and its operating principle. Consider the following subnet. i. If there is a packet originating at Router 1, what should be the minimum TTL value to reach Routers 2,6,8 respectively? ii. Packet originating at Router 1 destined to Router 7 has TTL=2. Identify the sequence of operations taking place? iii. What is the significance of header checksum field? iv. If most of the fields are intact in the IPv4 header, then why header checksum is computed at each router? (a) Tonsider sending a 2400-byte datagram that gets transmitted into a link that has an MTU of 700 bytes. Suppose the original datagram is stamped with the identification number 422. Determine the following i) How many fragments are generated? ii) List the various IP header fields related to fragmentation. iii) What are the values in the various fields in the IP datagram(s) generated related to fragmentation? iv) Illustrate how IPv6 handles the fragmentation entirely?						
the following subnet. i. If there is a packet originating at Router 1, what should be the minimum TTL value to reach Routers 2.6.8 respectively? ii. Packet originating at Router 1 destined to Router 7 has TTL=2. Identify the sequence of operations taking place? iii. What is the significance of header checksum field? iv. If most of the fields are intact in the IPv4 header, then why header checksum is computed at each router? 1 2 Consider sending a 2400-byte datagram that gets transmitted into a link that has an MTU of 700 bytes. Suppose the original datagram is stamped with the identification number 422. Determine the following i) How many fragments are generated? ii) List the various IP header fields related to fragmentation. iii) What are the values in the various fields in the IP datagram(s) generated related to fragmentation? iv) Illustrate how IPv6 handles the fragmentation entirely?			Identify the number of bits for hosts and subnets. Find the subnet mask. Design the first five subnet id's and the range of host addresses on these subnets. How many total hosts can be supported in each subnet if the department grows in future?	10	L3	2
of 700 bytes. Suppose the original datagram is stamped with the identification number 422. Determine the following i) How many fragments are generated? ii) List the various IP header fields related to fragmentation. iii) What are the values in the various fields in the IP datagram(s) generated related to fragmentation? iv) Illustrate how IPv6 handles the fragmentation entirely?		(a)	the following subnet. i. If there is a packet originating at Router 1, what should be the minimum TTL value to reach Routers 2,6,8 respectively? ii. Packet originating at Router 1 destined to Router 7 has TTL=2. Identify the sequence of operations taking place? iii. What is the significance of header checksum field? iv. If most of the fields are intact in the IPv4 header, then why header checksum is computed at each router?	10	L4	4
OURSE OUTCOMES:	5		422. Determine the following i) How many fragments are generated? ii) List the various IP header fields related to fragmentation. iii) What are the values in the various fields in the IP datagram(s) generated related to fragmentation? iv) Illustrate how IPv6 handles the fragmentation entirely?	10	L4	5
	CO	URSE	OUTCOMES:			

iv) Illustrate how IPv6 handles the fragmentation entirely?
COURSE OUTCOMES:
CO1 Apply the algorithms/techniques of routing and congestion control to solve problems related to
Computer Networks.
CO2 Analyse the services provided by various layers of TCP/IP model to build effective solutions.
CO3 Design sustainable networking solutions with societal and environmental concerns by engaging in
lifelonglearning for emerging technology.
CO4 Exhibit network configuration, protocol usage and performance evaluation in networks.
CO5 Demonstratethe solutions using various algorithms/protocols available to address networking issues
usingmodern tools by exhibiting team work and effective communication.
000 000 000

COs/BTL	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4
Marks		12	24	12	12		en en	14	46
IVIAIRS									

USN PV22CDO 69

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

IV Semester B. E. Examinations Sept/Oct – 2024

Common to CY/CSE/ISE/AIML/CD

COMPUTER NETWORKS

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

		PART-A	M	BT	СО
1	11	3 1 1 is size of the standard Ethernet Packet	01	1	
	1.2	What is the use of Choke Packet in routing?	01	1	2
	1.3	Differentiate between Unicasting and Broadcasting.		2	2
9	1.4	is the default port number used by the Telnet.	01	3	2
	1:6	List the personal list the remet.	01	1	2
	1.6	List the parameters used in the Admission Control.	02	1	2
		Differentiate Routing over Forwarding.	02	3	2
	17	List any two QoS requirements of an E-mail application	02	1	2
	1/8	What role does RSVP play in the Integrated Services (IntServ)			
		architecture?	02	1	2
	1.9	Differentiate Point to Point and Multi Point connection.	02	1	2
	1/10	Write any two functionalities of Network layer.	02	2	2
	121	List any two advantages of IPv6 over IPv4.	02	2	2
	1,10	Differentiate between CSMA and CSMA/CD.	02	3	2

PART-B

2 2	Write any four salient features of HDLC and PPP protocol. Draw the TCP/IP protocol suite. Describe the functionality of each	08	2	2
	layer in detail.	08	2	2
3 a	Differentiate Datagram Subnet and Virtual- Circuit Subnet. For the following network find the shortest path using Dijkstra algorithm. Consider the node 'A' as the source node and node 'G' as destination.	08	3	2
	OR			
4 a	What is routing Protocol? Discuss the following: (i) Properties of routing protocol.			
	Classification of routing protocol.	08	2	2
b	With the help of a neat diagram, illustrate the use of Multicast Routing.	08	3	1

5 a	Discuss			
b	Discuss packet scheduling algorithms in detail. Describe the QoS requirements of Telephone and Videoconferencing applications.	08	-2	2
		08	2	2
/	OR			
b a	Discuss Expedited Forwarding and Assured Forwarding in detail. Describe Explicit Congestion notification and Hop-by-Hop Backpressure.	08	2	2
		08	2	2
7 a	Summarize Address Resolution Protocol in detail.	0.0		
6	Discuss the IPv6 header format with a neat diagram.	08	2 2	2 2
	OR			
8 a	Identify and discuss the network management protocol used to dynamically assign an IP address to any device on a network allowing it to communicate using IP.			
Jr.	Draw the network model and describe the working of Exterior Gateway Routing Protocol.	08		2
		08	2	2
9 x	Discuss any six differences between UDP and TCP.	08	2	2
-6	With a neat diagram describe three-way handshake in detail.	08	2	2
	OR			
10 a	Draw the header format of TCP segment header and discuss each field in detail.	08	2	2
			1.	1