Final Project Submission

Please fill out:

Student name: Johnmark Kibui

· Student pace: Part time

- Scheduled project review date/time:
- · Instructor name:
- · Blog post URL:

Overview

Microsoft Movie Studio plans to produce films in genres that resonate with audiences, based on current box office trends. To inform decision-making, an analysis of the most recent movies will be done, focusing on the budget to produce the movies and the money they generate.

Understanding The Data

tn.movie_budgets

In [28]: Out[28]:	1						
out[20].		release_date	movie	production_budget	domestic_gross	worldwide_gross	
	id						
	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	
	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875	
	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	
	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	
	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747	

In [29]:	1	<pre>df.tail()</pre>				
Out[29]:		release_date	movie	production_budget	domestic_gross	worldwide_gross
	id					
	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041
In [30]:	1	<pre>df.info()</pre>				

<class 'pandas.core.frame.DataFrame'>

Index: 5782 entries, 1 to 82
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	release_date	5782 non-null	object
1	movie	5782 non-null	object
2	production_budget	5782 non-null	object
3	<pre>domestic_gross</pre>	5782 non-null	object
4	worldwide_gross	5782 non-null	object

dtypes: object(5)
memory usage: 271.0+ KB

Out[262]: release date

	release_date	movie	production_budget	domestic_gross	worldwide_gross
id					
95	2020-12-31	Moonfall	\$150,000,000	\$0	\$0
6	2020-12-31	Hannibal the Conqueror	\$50,000,000	\$0	\$0
36	2020-02-21	Call of the Wild	\$82,000,000	\$0	\$0
81	2019-12-31	Army of the Dead	\$90,000,000	\$0	\$0
16	2019-12-31	Eli	\$11,000,000	\$0	\$0
72	2019-12-31	355	\$75,000,000	\$0	\$0
44	2019-12-31	Down Under Cover	\$40,000,000	\$0	\$0
30	2019-12-31	Reagan	\$25,000,000	\$0	\$0
13	2019-12-31	Rogue City	\$13,000,000	\$0	\$0
8	2019-11-22	The Rhythm Section	\$50,000,000	\$0	\$0
53	2019-11-08	Midway	\$59,500,000	\$0	\$0
7	2019-11-08	Arctic Dogs	\$50,000,000	\$0	\$0
30	2019-09-30	Unhinged	\$29,000,000	\$0	\$0
9	2019-09-20	Ad Astra	\$49,800,000	\$0	\$0
43	2019-09-13	The Goldfinch	\$40,000,000	\$0	\$0
71	2019-08-30	PLAYMOBIL	\$75,000,000	\$0	\$0
64	2019-08-14	Blinded by the Light	\$15,000,000	\$0	\$0
16	2019-07-12	Crawl	\$17,000,000	\$0	\$0
39	2019-06-21	Kursk	\$40,000,000	\$0	\$4,212,799
48	2019-06-21	Burn Your Maps	\$8,000,000	\$0	\$0
42	2019-06-14	Men in Black: International	\$110,000,000	\$3,100,000	\$3,100,000
98	2019-06-14	Shaft	\$30,000,000	\$600,000	\$600,000
3	2019-06-07	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
35	2019-06-07	Late Night	\$4,000,000	\$246,305	\$246,305
81	2019-06-07	The Secret Life of Pets 2	\$80,000,000	\$63,795,655	\$113,351,496
71	2019-05-31	Rocketman	\$41,000,000	\$57,342,725	\$108,642,725
25	2019-05-31	Godzilla: King of the Monsters	\$170,000,000	\$85,576,941	\$299,276,941
66	2019-05-31	MA	\$5,000,000	\$36,049,540	\$44,300,625
13	2019-05-24	BrightBurn	\$7,000,000	\$16,794,432	\$27,989,498
81	2019-05-24	Aladdin	\$182,000,000	\$246,734,314	\$619,234,314
96	2019-05-17	The Sun is Also a Star	\$9,000,000	\$4,950,029	\$5,434,029
81	2019-05-17	John Wick: Chapter 3 â□□ Parabellum	\$40,000,000	\$141,744,320	\$256,498,033
26	2019-05-10	The Professor and the Madman	\$25,000,000	\$0	\$5,227,233

movie production budget domestic gross worldwide gross

	reiease_uate	IIIOVIC	production_budget	domestic_gross	worldwide_gross
id					
76	2019-05-10	Pokémon: Detective Pikachu	\$150,000,000	\$139,507,806	\$411,258,433
16	2019-05-03	El Chicano	\$8,000,000	\$700,261	\$700,261
75	2019-05-03	Long Shot	\$40,000,000	\$30,202,860	\$43,711,031
6	2019-05-03	UglyDolls	\$45,000,000	\$19,894,664	\$24,644,664
72	2019-05-03	The Intruder	\$8,000,000	\$35,095,904	\$36,005,871
38	2019-04-23	Living Dark: The Story of Ted the Caver	\$1,750,000	\$0	\$0
77	2019-04-12	Hellboy	\$50,000,000	\$21,903,748	\$40,725,492
61	2019-04-05	Pet Sematary	\$21,000,000	\$54,724,696	\$109,501,146
34	2019-04-05	The Best of Enemies	\$10,000,000	\$10,205,616	\$10,205,616
97	2019-04-05	Shazam!	\$85,000,000	\$139,606,856	\$362,899,733
22	2019-03-29	Dumbo	\$170,000,000	\$113,883,318	\$345,004,422
33	2019-03-29	Unplanned	\$6,000,000	\$18,107,621	\$18,107,621
88	2019-03-22	Us	\$20,000,000	\$175,006,930	\$254,210,310
94	2019-03-15	Wonder Park	\$100,000,000	\$45,216,793	\$115,149,422
97	2019-03-15	Captive State	\$25,000,000	\$5,958,315	\$8,993,300
91	2019-03-15	Five Feet Apart	\$7,000,000	\$45,729,221	\$80,504,421
96	2019-03-08	Captain Marvel	\$175,000,000	\$426,525,952	\$1,123,061,550

Observation

release date

Based on the 50 most recent movies; from 2020, more than 20 of them do not have a domestic_gross or worldwide gross. We can assume, either the movie was not released or the data was simply not filled. We will drop these rows.

• Most of the movies made a profit(ROI), so we can find out how much they made.

Cleaning & Organizing data.

```
In [32]:
         1 date_sorted.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 5782 entries, 95 to 78
         Data columns (total 5 columns):
          #
             Column
                                Non-Null Count Dtype
             release_date
          0
                                5782 non-null datetime64[ns]
                                5782 non-null object
          1
             movie
              production_budget 5782 non-null
          2
                                               object
             domestic_gross 5782 non-null
                                               object
          3
             worldwide_gross
                                5782 non-null
                                               object
         dtypes: datetime64[ns](1), object(4)
```

memory usage: 271.0+ KB

```
In [40]:
           1 # convert currency columns to int, removing $ and , on the figures.
           2 # domestic_gross
           3 | date_sorted['production_budget'] = date_sorted['production_budget'].str
           4 date_sorted['production_budget'] = date_sorted['production_budget'].str
           5 date sorted['production budget'] = date sorted['production budget'].ast
In [33]:
           1 # domestic_gross
           2 date sorted['domestic gross'] = date sorted['domestic gross'].str.repla
           3 date_sorted['domestic_gross'] = date_sorted['domestic_gross'].str.repla
In [34]:
           1 # worldwide_gross
           2 | date sorted['worldwide gross'] = date sorted['worldwide gross'].str.rep
           3 | date_sorted['worldwide_gross'] = date_sorted['worldwide_gross'].str.rep
In [41]:
           1 # convert the gross columns to int
           2 date_sorted['domestic_gross'] = date_sorted['domestic_gross'].astype('i
           3 | date_sorted['worldwide_gross'] = date_sorted['worldwide_gross'].astype(
           4 date_sorted.info()
          <class 'pandas.core.frame.DataFrame'>
          Index: 5234 entries, 42 to 78
          Data columns (total 5 columns):
               Column
                                 Non-Null Count Dtype
              -----
                                 -----
                                 5234 non-null datetime64[ns]
           0
               release date
           1
               movie
                                 5234 non-null object
               production_budget 5234 non-null int64
               domestic_gross
                                 5234 non-null
                                                 int64
           3
               worldwide_gross
                                 5234 non-null
                                               int64
           4
          dtypes: datetime64[ns](1), int64(3), object(1)
          memory usage: 245.3+ KB
In [278]:
           1 # drop rows with 0 as the domestic_gross and worldwide_gross
           2 date_sorted = date_sorted[date_sorted !=0].dropna()
```

Analysis

We use the 50 most recent movies for our analyis. We can see our data mainly has movies from early 2018 and mid 2019 movies. Our goal is to get the highest grossing movies

Out[51]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	
id						
42	2019-06-14	Men in Black: International	110000000	3100000	3100000	-103800
98	2019-06-14	Shaft	30000000	600000	600000	-28800
3	2019-06-07	Dark Phoenix	350000000	42762350	149762350	-157475
35	2019-06-07	Late Night	4000000	246305	246305	-3507
81	2019-06-07	The Secret Life of Pets 2	80000000	63795655	113351496	97147
71	2019-05-31	Rocketman	41000000	57342725	108642725	124985
25	2019-05-31	Godzilla: King of the Monsters	170000000	85576941	299276941	214853
66	2019-05-31	MA	5000000	36049540	44300625	75350
13	2019-05-24	BrightBurn	7000000	16794432	27989498	37783
81	2019-05-24	Aladdin	182000000	246734314	619234314	683968
96	2019-05-17	The Sun is Also a Star	9000000	4950029	5434029	1384
81	2019-05-17	John Wick: Chapter 3 â□□ Parabellum	40000000	141744320	256498033	358242
76	2019-05-10	Pokémon: Detective Pikachu	150000000	139507806	411258433	400766
16	2019-05-03	El Chicano	8000000	700261	700261	-6599
75	2019-05-03	Long Shot	40000000	30202860	43711031	33913
6	2019-05-03	UglyDolls	45000000	19894664	24644664	-460
72	2019-05-03	The Intruder	8000000	35095904	36005871	63101
77	2019-04-12	Hellboy	50000000	21903748	40725492	12629
61	2019-04-05	Pet Sematary	21000000	54724696	109501146	143225
34	2019-04-05	The Best of Enemies	10000000	10205616	10205616	10411
97	2019-04-05	Shazam!	85000000	139606856	362899733	417506
22	2019-03-29	Dumbo	170000000	113883318	345004422	288887
33	2019-03-29	Unplanned	6000000	18107621	18107621	30215
88	2019-03-22	Us	20000000	175006930	254210310	409217
94	2019-03-15	Wonder Park	100000000	45216793	115149422	60366
97	2019-03-15	Captive State	25000000	5958315	8993300	-10048
91	2019-03-15	Five Feet Apart	7000000	45729221	80504421	119233

	release_date	movie	production_budget	domestic_gross	worldwide_gross	
id						
96	2019-03-08	Captain Marvel	175000000	426525952	1123061550	1374587
56	2019-02-22	How to Train Your Dragon: The Hidden World	129000000	160791800	519258283	551050
86	2019-02-14	Fighting With My Family	11000000	22958583	39049922	51008
24	2019-02-14	Alita: Battle Angel	170000000	85710210	402976036	318686
78	2019-02-13	Happy Death Day 2U	9000000	28051045	64179495	83230
30	2019-02-13	Isnâ□□t it Romantic	31000000	48791187	48791187	66582
8	2019-02-08	The LEGO Movie 2: The Second Part	99000000	105806508	190325698	197132
21	2019-02-08	What Men Want	20000000	54611903	69911903	104523
23	2019-02-08	Cold Pursuit	60000000	32138862	62599159	34738
36	2019-02-08	The Prodigy	6000000	14856291	19789712	28646
81	2019-02-01	Miss Bala	15000000	14998027	15362298	15360
55	2019-01-25	The Kid Who Would Be King	59000000	16790790	28348446	-13860
93	2019-01-25	Serenity	25000000	8547045	11367029	-5085
100	2019-01-18	Glass	20000000	111035005	245303505	336338
36	2019-01-16	Dragon Ball Super: Broly	8500000	30376755	122747755	144624
85	2019-01-11	The Upside	37500000	108235497	119024536	189760
41	2019-01-11	A Dogâ□□s Way Home	61000000	41952715	81149689	62102
5	2018-12-25	Destroyer	9000000	1533324	3681096	-3785
100	2018-12-25	Vice	60000000	47836282	70883171	58719
81	2018-12-25	On the Basis of Sex	20000000	24622687	38073377	42696
58	2018-12-25	Holmes & Watson	42000000	30568743	41926605	30495
36	2018-12-21	Aquaman	160000000	335061807	1146894640	1321956
83	2018-12-21	Second Act	15700000	39282227	63288854	86871

```
# 'date_sorted' with only 50 most recent movies to work with.
 In [59]:
             2 date_sorted = date_sorted.iloc[:50, :]
                len(date_sorted)
 Out[59]: 50
In [271]:
                # sorted table by roi
             1
             2
                roi_sorted = date_sorted.sort_values(by=['roi'], ascending=False)
               roi_sorted.head()
Out[271]:
                release date
                               movie production budget domestic gross worldwide gross
                                                                                              roi
            id
                              Captain
                 2019-03-08
            96
                                             175000000
                                                            426525952
                                                                           1123061550 1374587502
                              Marvel
                 2018-12-21 Aquaman
            36
                                             160000000
                                                            335061807
                                                                           1146894640 1321956447
                                             182000000
            81
                 2019-05-24
                              Aladdin
                                                            246734314
                                                                            619234314
                                                                                       683968628
                              How to
                                Train
                                Your
            56
                 2019-02-22
                              Dragon:
                                             129000000
                                                            160791800
                                                                            519258283
                                                                                       551050083
                                 The
                              Hidden
                               World
            97
                 2019-04-05
                             Shazam!
                                              85000000
                                                            139606856
                                                                            362899733
                                                                                       417506589
 In [80]:
                # to confirm the top figure is correct
                print('Highest ROI is:', date_sorted['roi'].max())
```

Highest ROI is: 1374587502

We can see that some movies made a loss. This could be due to reasons like;

- · lack of proper marketing
- · audience not recieving the movie as expected.
- · not enough budget to produce a quality movie.

We focus on the highest grossing only. Those that had a high ROI maybe due to proper marketing or having well known actors/actresses as casts. We can have a bargraph represent all this data visually for 50 most recent movies.

```
In [78]:
             # bar graph roi vs movies
             # Take the first 50 rows of the DataFrame
           2
           3
             date_sorted = date_sorted[:50]
           5
             # Sort the DataFrame by date in descending order
           6
             date_sorted = date_sorted.sort_values(by=['release_date'], ascending=Tr
           7
             # Extract the ROI values from the DataFrame
           8
           9
             roi = date_sorted['roi'].to_numpy()
          10
             # Extract the movie titles from the DataFrame
          11
             movie_titles = date_sorted['movie'].to_numpy()
          12
          13
          14 # Create a horizontal bar graph
          15 | fig, ax = plt.subplots(figsize=(10, 12))
          16 plt.barh(movie_titles, roi, color='green')
          17
             ax.grid(axis='both', color='grey')
          18
          19 # Set the title and labels for the graph
             plt.title('ROI of Movies 50 (Most Recent)')
          20
          21 plt.xlabel('ROI (in Billions)')
          22 plt.ylabel('Movie Title')
          23
          24 # ax.set_xlim(0, 4)
          25 plt.show()
```


From the chart:

- 'Men in Black: International', which made a loss, is the most recent and 'Second Act' being the earliest.
- In this chart, those with roi above 1 Billion were mainly the superhero movies. We can

```
In [70]:
              # Scatterplot- roi vs production budget
             # Create a scatter plot
           2
           3
             import seaborn as sns
             sns.set_palette(sns.color_palette("Reds", 2))
             # Create a scatter plot
           6
           7
              plt.scatter(date_sorted['production_budget'], date_sorted['roi'])
           8
             plt.grid(which='both', color='Green')
           9
          10 # Label the axes
          11
             plt.xlabel('Production Budget (in Billions)')
          12
              plt.ylabel('ROI (in Billions)')
          13
          14
              # Title the chart
          15
             plt.title('ROI vs. Production Budget (50 Most Recent Movies)')
          16
          17 # Show the plot
          18 plt.show()
```


Conclusion

A quick view shows that the high production budget generally yielded the high ROI in the sample movies. A lot of movies with production budget below 1 billion yielded an ROI less than a billion, with exceptions. Not to ignore the movie that had about 3.5 billion production

Dataset - tmdb.movies.csv

```
In [81]:
               df2 = pd.read_csv("C:/Users/Hp/Phase1_Project/dsc-phase-1-project/DataS
               df2.head()
Out[81]:
              genre ids
                           id original language original title
                                                            popularity
                                                                      release date
                                                                                       title vote
                                                                                      Harry
                                                 Harry Potter
                                                                                     Potter
                                                    and the
                [12, 14,
                                                                                    and the
           n
                        12444
                                                    Deathly
                                                               33.533
                                                                        2010-11-19
                                            en
                 10751]
                                                                                    Deathly
                                                Hallows: Part
                                                                                   Hallows:
                                                                                     Part 1
                                                                                    How to
                                                How to Train
                [14, 12,
                                                                                      Train
                        10191
                                                               28.734
                                                                        2010-03-26
                                            en
              16, 10751]
                                                Your Dragon
                                                                                      Your
                                                                                    Dragon
                [12, 28,
                                                                                   Iron Man
           2
                        10138
                                                  Iron Man 2
                                                               28.515
                                                                        2010-05-07
                                            en
                   878]
                [16, 35,
                                                                                       Toy
           3
                          862
                                                   Toy Story
                                                               28.005
                                                                        1995-11-22
                                            en
                                                                                      Story
                 10751]
               [28, 878,
                        27205
                                                   Inception
                                                               27.920
                                                                        2010-07-16 Inception
                                            en
                    12]
In [82]:
               # To get years recorded
               df2['release_date'].unique()
Out[82]: array(['2010-11-19', '2010-03-26', '2010-05-07', ..., '2018-05-08',
                   '2018-08-02', '2018-05-26'], dtype=object)
In [83]:
               df2.info()
          <class 'pandas.core.frame.DataFrame'>
          Index: 26517 entries, 0 to 26516
          Data columns (total 9 columns):
                                     Non-Null Count
           #
                Column
                                                       Dtype
                -----
           0
                genre ids
                                      26517 non-null
                                                       object
           1
                id
                                      26517 non-null
                                                        int64
           2
                original_language
                                     26517 non-null
                                                       object
           3
                original_title
                                      26517 non-null
                                                       object
           4
                                                       float64
                popularity
                                      26517 non-null
           5
                release date
                                      26517 non-null
                                                       object
           6
                                                        object
                title
                                      26517 non-null
           7
                                     26517 non-null
                                                        float64
                vote_average
           8
                vote count
                                      26517 non-null
                                                        int64
          dtypes: float64(2), int64(2), object(5)
          memory usage: 2.0+ MB
```

Cleaning df2

To add a new column 'genres', representing the genre_ids

```
# convert 'release_date' to datetime
 In [84]:
             2 | df2['release_date'] = pd.to_datetime(df2['release_date'])
                df2['release_date'].info()
           <class 'pandas.core.series.Series'>
           Index: 26517 entries, 0 to 26516
           Series name: release_date
           Non-Null Count Dtype
             _____
           26517 non-null datetime64[ns]
           dtypes: datetime64[ns](1)
           memory usage: 414.3 KB
In [203]:
               df2.info()
           <class 'pandas.core.frame.DataFrame'>
           Index: 26517 entries, 0 to 26516
           Data columns (total 9 columns):
            #
                Column
                                      Non-Null Count
                                                       Dtype
                 genre_ids
            0
                                      26517 non-null
                                                       object
            1
                 id
                                      26517 non-null
                                                       int64
            2
                 original_language 26517 non-null object
            3
                original_title
                                      26517 non-null object
            4
                 popularity
                                      26517 non-null float64
            5
                                      26517 non-null datetime64[ns]
                release_date
            6
                title
                                      26517 non-null object
                                      26517 non-null float64
            7
                 vote_average
            8
                                      26517 non-null int64
                 vote_count
           dtypes: datetime64[ns](1), float64(2), int64(2), object(4)
           memory usage: 2.0+ MB
In [87]:
             1 df2.head()
 Out[87]:
                            id original_language original_title popularity release_date
               genre_ids
                                                                                      title vote_
                                                                                     Harry
                                                 Harry Potter
                                                                                     Potter
                                                    and the
                 [12, 14,
                                                                                   and the
            0
                         12444
                                            en
                                                    Deathly
                                                               33.533
                                                                        2010-11-19
                  10751]
                                                                                   Deathly
                                                Hallows: Part
                                                                                   Hallows:
                                                                                     Part 1
                                                                                    How to
                                                How to Train
                 [14, 12,
                                                                                     Train
                         10191
                                                               28.734
                                                                        2010-03-26
                                            en
               16, 10751]
                                                 Your Dragon
                                                                                      Your
                                                                                    Dragon
                                                                                   Iron Man
                 [12, 28,
                                                                        2010-05-07
            2
                         10138
                                            en
                                                  Iron Man 2
                                                               28.515
                   8781
                 [16, 35,
                                                                                       Toy
            3
                           862
                                                   Toy Story
                                                               28.005
                                                                        1995-11-22
                                            en
                  10751]
                                                                                     Story
                [28, 878,
                        27205
                                                   Inception
                                                                        2010-07-16 Inception
                                            en
                                                               27.920
                    12]
```

Since the columns have the right datatypes to work with, we can analyse.

Sorting

We can have a new dataframe, 'df2_year_sorted', that contains 50 most recent movies.

Out[269]:

title	release_date	popularity	original_title	original_language	id	genre_ids	
Murdery Christmas	2020-12-25	0.840	Murdery Christmas	en	570704	[27, 80, 80, 80, 80, 80, 80]	26057
Ophelia	2019-06-28	8.715	Ophelia	en	428836	[10749, 18]	24265
This Changes Everything	2019-06-28	3.955	This Changes Everything	en	541577	[99]	24892
Trial by Fire	2019-05-17	4.480	Trial by Fire	en	481880	[18]	24819
All Creatures Here Below	2019-05-17	8.316	All Creatures Here Below	en	415085	[18]	24297
•							4

We can have a new dataframe, 'df2_popularity_sorted', that contains the same movies, but sorted by popularity, from the 'df2_year_sorted'

Out[268]:

	genre_ids	id	original_language	original_title	popularity	release_date	title
23930	[80, 53, 35, 18, 9648]	396461	en	Under the Silver Lake	17.182	2019-04-19	Under the Silver Lake
23945	[18, 27]	507076	fr	Climax	16.574	2019-03-01	Climax
23947	[80, 28, 53]	438674	en	Dragged Across Concrete	16.389	2019-03-22	Dragged Across Concrete
24003	[18, 9648, 53]	411144	en	We Have Always Lived in the Castle	14.028	2019-05-17	We Have Always Lived in the Castle
24084	[53, 18]	500904	en	A Vigilante	11.743	2019-03-29	A Vigilante
4							+

Maximum popularity value: 17.182 Minimum popularity value: 0.6

Average popularity value: 5.946840000000001

The vote_average values do not necessarily mean the movie was well recieved. This could be influenced by factors like the few viewers who watched it and ended up loving the movies. A lot of these viewers may not have voted.

The popularity values could be more valuable in this case, as they may give a better impression of how the movies were recieved in terms of size of the traget audience.

```
In [217]:
              # plotting a graph showing popularity of the 50 movies
            2
            3 # Select the first 50 rows
            4 # Create the bar chart
            6 plt.figure(figsize=(8, 15))
            7
            8 faded_blue = (0.7, 0.7, 1.0)
            9 plt.grid(which='both', color=faded_blue)
           10 plt.barh(df2_popularity_sorted['title'], df2_popularity_sorted['popular
           11
           12 plt.xlim(0, 18)
           13 plt.xticks(range(0, 18, 1))
           14
           15
           16 plt.grid(which='both', color='silver')
           17
           18 # Set the labels and title
           19 plt.xlabel('Popularity')
           20 plt.ylabel('Movie Titles')
           21 plt.title('Top 50 Movies (By Popularity)')
           22
           23 # Show the plot
           24 plt.show()
```


Maximum popularity value: 17.182Minimum popularity value: 0.6

Average popularity value: 5.946840000000001

Almost half were above the 5.9 average popularity value. We can go ahead and get the movies with a popularity above the average mark, then get the most common genres in that group.

Getting the most common genres for movies above popularity-average

Having a dictionary of genres repsented by the genre id from; https://www.themoviedb.org/talk/5daf6eb0ae36680011d7e6ee (https://www.themoviedb.org/talk/5daf6eb0ae36680011d7e6ee)

```
In [299]:
            1 # movie id keys
            2 movie_genre
Out[299]: {28: 'Action',
           12: 'Adventure',
           16: 'Animation',
           35: 'Comedy',
           80: 'Crime',
           99: 'Documentary',
           18: 'Drama',
           10751: 'Family',
           14: 'Fantasy',
           36: 'History',
           27: 'Horror',
           10402: 'Music',
           9648: 'Mystery',
           10749: 'Romance',
           878: 'Science Fiction',
           10770: 'TV Movie',
           53: 'Thriller',
           10752: 'War',
           37: 'Western'}
In [220]:
            1 # Data frame representing the movies above average popularity value 'to
            2 top_popular = df2_popularity_sorted[df2_popularity_sorted['popularity']
            3 top_popular
            4 print(f'There are {len(top_popular)} movies above average population va
```

There are 21 movies above average population value

To now check the genres that these moves represent..

In [267]:	1 t	op_popular	head()				
Out[267]:		genre_ids	id	original_language	original_title	popularity	release_date	title
	23930	[80, 53, 35, 18, 9648]	396461	en	Under the Silver Lake	17.182	2019-04-19	Under the Silver Lake
	23945	[18, 27]	507076	fr	Climax	16.574	2019-03-01	Climax
	23947	[80, 28, 53]	438674	en	Dragged Across Concrete	16.389	2019-03-22	Dragged Across Concrete
	24003	[18, 9648, 53]	411144	en	We Have Always Lived in the Castle	14.028	2019-05-17	We Have Always Lived in the Castle
	24084	[53, 18]	500904	en	A Vigilante	11.743	2019-03-29	A Vigilante
	4							•

```
1 # List of genre_ids in the top_popular dataframe
In [266]:
             2 | genre_list = list(top_popular['genre_ids'])
             3 print(genre_list)
           ['[80, 53, 35, 18, 9648]', '[18, 27]', '[80, 28, 53]', '[18, 9648, 53]',
           '[53, 18]', '[18, 80, 35]', '[18, 10749, 10402]', '[18, 27, 53, 35]', '[10 749, 18]', '[18, 12, 35]', '[18]', '[18]', '[18]', '[53, 27]', '[27]', '[1
           8, 10749]', '[18, 80]', '[18, 10402]', '[27]', '[36, 18]', '[53, 18, 27]']
In [265]:
             1 # These are the genre id in the top popular movies.
             2 key list = []
             3 for i in genre_list:
                    key_list.append([int(x) for x in i[1:-1].split(',')])
             5
               print(key_list)
           [[80, 53, 35, 18, 9648], [18, 27], [80, 28, 53], [18, 9648, 53], [53, 18],
           [18, 80, 35], [18, 10749, 10402], [18, 27, 53, 35], [10749, 18], [18, 12,
           35], [18], [18], [18], [53, 27], [27], [18, 10749], [18, 80], [18, 10402],
           [27], [36, 18], [53, 18, 27]]
In [235]:
             1 # To create new list that has all key values.
             2 movie_keys = []
               for i in key_list:
             3
                    for j in i:
                        movie_keys.append(j)
             5
             6
             7
               print(movie keys)
             8 print()
               print(f'There are {len(movie_keys)} keys in total')
           [80, 53, 35, 18, 9648, 18, 27, 80, 28, 53, 18, 9648, 53, 53, 18, 18, 80, 3
           5, 18, 10749, 10402, 18, 27, 53, 35, 10749, 18, 18, 12, 35, 18, 18, 18, 5
```

3, 27, 27, 18, 10749, 18, 80, 18, 10402, 27, 36, 18, 53, 18, 27]

There are 48 keys in total

Having a dictionary of genres repsented by the genre id from; https://www.themoviedb.org/talk/5daf6eb0ae36680011d7e6ee

(https://www.themoviedb.org/talk/5daf6eb0ae36680011d7e6ee)

```
In [449]:
            1 movie_genre
Out[449]: {28: 'Action',
            12: 'Adventure',
            16: 'Animation',
            35: 'Comedy',
            80: 'Crime',
            99: 'Documentary',
            18: 'Drama',
            10751: 'Family',
            14: 'Fantasy',
            36: 'History',
            27: 'Horror',
            10402: 'Music'
            9648: 'Mystery',
            10749: 'Romance',
            878: 'Science Fiction',
            10770: 'TV Movie',
            53: 'Thriller',
            10752: 'War',
            37: 'Western'}
In [240]:
              # Create a new list to store the movie values
            1
            2
              movie_value = []
              # Iterate over list3 and assign the corresponding value from the diction
            5
              for element in movie_keys:
                   if element in movie_genre:
            6
            7
                       movie_value.append(movie_genre[element])
            8
                   else:
            9
                       movie_value.append(element)
           10
           11 # Print the new list
           12 print(movie_value)
           13 print()
           14 | print(f'There are {len(movie_value)} values in total')
```

['Crime', 'Thriller', 'Comedy', 'Drama', 'Mystery', 'Drama', 'Horror', 'Crime', 'Action', 'Thriller', 'Drama', 'Mystery', 'Thriller', 'Thriller', 'Drama', 'Drama', 'Crime', 'Comedy', 'Drama', 'Romance', 'Music', 'Drama', 'Horror', 'Thriller', 'Comedy', 'Romance', 'Drama', 'Drama', 'Adventure', 'Comedy', 'Drama', 'Drama', 'Thriller', 'Horror', 'Horror', 'Drama', 'Romance', 'Drama', 'Crime', 'Drama', 'Music', 'Horror', 'History', 'Drama', 'Thriller', 'Drama', 'Horror']

There are 48 values in total

We have the genres in the movies that are above the popularity average. We can go ahead and see the most common occuring genres

```
In [241]:
               # Create a dictionary to store the count of each element in the movie_v
            2
              movie_value_counts = {}
            3
              # Iterate over the movie_value list and increment the count for each el
              for element in movie_value:
            5
                   if element in movie_value_counts:
            6
            7
                       movie_value_counts[element] += 1
            8
                   else:
            9
                       movie_value_counts[element] = 1
           10
              # Print the count of each element in the dictionary
           11
              for element, count in movie_value_counts.items():
                   print(f'{element}: {count}')
           13
          Crime: 4
          Thriller: 7
          Comedy: 4
          Drama: 17
          Mystery: 2
          Horror: 6
          Action: 1
          Romance: 3
          Music: 2
          Adventure: 1
          History: 1
In [254]:
            1 movie_value_counts
Out[254]: {'Crime': 4,
            'Thriller': 7,
            'Comedy': 4,
            'Drama': 17,
            'Mystery': 2,
            'Horror': 6,
            'Action': 1,
            'Romance': 3,
            'Music': 2,
            'Adventure': 1,
            'History': 1}
```

The count shows the number of times the genre appeared in these 21 movies. In other words, the number of movies that had the genre as part of the style it incorporated.

```
In [264]:
              # plotting graph -- Genre vs counts
            2
              genres = list(movie_value_counts.keys())
            3
              counts = list(movie_value_counts.values())
              cyan = (0.4, 0.9, 1)
            5
            6 plt.barh(genres, counts, color=cyan)
            7
              plt.xlim(0, 18)
            8
              plt.xticks(range(0, 18, 1))
            9
           10
              plt.grid(which='both', color='silver')
           11
           12
              plt.xlabel('Number of movies genre appears')
           13
           14 plt.ylabel('Genre')
           15 plt.title('Number of Movies by Genre')
           16 plt.show()
           17 # We cannot sirt by counts, since we are using a dict.
```


Summary

Conclusion

Based on the grossing, most movies generally did not have a production budget higher than 1 billion, the ROI was also not more than that figure. A lot of them had a production budget of less than \$500,000,000, with the ROI being in the same ballpark. The top genre whose style is most commonly used in the most popular movies is Drama, followed by thriller and Horror.

Recommendations

These are the recommendations on what to focus on, especially for a start up studio.

- 1. Focus on the Drama and Thriller genres as they are the top genres consumed. This will heavily influence the popularity of the movie.
- 2. Focus on high production quality, which translates to having a sufficient budget, this is about \$500,000,000.
- 3. While making these movies, consider the international audience, as the make up for most of the ROI. English language movies are the most consumed movies. This is to be considered during cast selection.

A further analysis could give even more insights to improve movie production quality and increase in a positive reception by audience. Factors like;

- · cast members and directors
- · Marketing strategies

