

TEORÍA DE LA INFORMACIÓN Fuentes de Información (4)

Fuentes Markovianas

primera transición y primera recurrencia

Probabilidad de Transición en *n* pasos (1º ecuación de Chapman-Kolmogorov)

$$p_{j/i}^{(n)} = \sum_{k} p_{k/i}^{(m)} . p_{j/k}^{(n-m)}$$
 para $m < n$

Probabilidad de **1º** Transición en *n* pasos (**2º ecuación de Chapman-Kolmogorov**)

$$f_{j/i}^{(n)} = p_{j/i}^{(n)} - \sum_{m=1}^{n-1} f_{j/i}^{(m)} \cdot p_{j/j}^{(n-m)}$$

Media de **1º** Transición (si $F_{j/i} = 1$) "tiempo medio de espera para pasar de i a j"

$$\mu_{j/i} = \sum_{n=1}^{\infty} n.f_{j/i}(n)$$

Si la transición es de s_i al mismo s_i :

Probabilidad de **1º** Recurrencia en *n* pasos

Media de **1º** Recurrencia (si
$$F_{i/i} = 1$$
) "tiempo medio de espera para retornar a s_i "

$$f_{i/i}^{(n)} = p_{i/i}^{(n)} - \sum_{m=1}^{n-1} f_{i/i}^{(m)} \cdot p_{i/i}^{(n-m)}$$

$$\mu_{i/i} = \sum_{n=1}^{\infty} n. f_{i/i}^{(n)}$$

por muestreo computacional

Probabilidad de volver a emitir <u>por primera vez</u> s_i en t+n, si se emitió s_i en t:

$$f_{i/i}^{(n)} = p_{i/i}^{(n)} - \sum_{m=1}^{n-1} f_{i/i}^{(m)} \cdot p_{i/i}^{(n-m)}$$

¿cómo obtenerla por muestreo computacional?

La simulación computacional no es "implementar la fórmula" usada para el cálculo analítico

Ejemplo: Obtener las distintas $f_{i/i}(n)$ para $s_i = 0$

$$n= 2: \mathbf{f_{0/0}}^{(2)} ?$$
 $n= 3: \mathbf{f_{0/0}}^{(3)} ?$

. . . .

por muestreo computacional

Generar una secuencia de símbolos (mensaje) emitidos por la fuente según sus probabilidades y detectar la cantidad de pasos n que transcurren entre retornos sucesivos a s_i

$$f_{i/i}(n)$$
 para $s_i = 0$ y $n = 1, 2, 3$

	#retornos a	a s_i en n pasos	total de retornos a) <i>S_i</i>		
t_actual	símbolos generados aleatoriamente	retornos t	total_retornos	f _{i/i}	ult_ret —	tiempo del último retorno a s,
		n= 1 2 3		n= 1 2 3		I
0	0\	[0, 0, 0,]	0	[0, 0, 0,]	0	
1 2	♣ \					
3	$\mathbf{O}_{\setminus}^{/}$	[0, 0, 1,]	1	[0, 0, 1,]	3	
4 5	1	[0, 1, 1,]	2	[0, ½, ½,	1 5	
					\rightarrow cont	inuar iterando hasta cia del vector fi/i (<i>acotado</i>)
	0 1 2 3 4 5	t_actual símbolos generados aleatoriamente $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_actual aleatoriamente retornos $n=1$ 2 3 0	t_actual símbolos generados aleatoriamente retornos total_retornos $n=1$ 2 3 0	t_actual símbolos generados aleatoriamente retornos total_retornos $\mathbf{f}_{\mathbf{i}/\mathbf{i}}$	t_actual simbolos generados aleatoriamente retornos total_retornos $\mathbf{f}_{\mathbf{i}/\mathbf{i}}$ ult_ret— $\mathbf{n=1} \ 2 \ 3 \dots$ $0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0$

por muestreo computacional

Cálculo para un símbolo en particular

```
Prob_primera_recurrencia (simbolo)
  retornos= [0, ..., 0] // #retornos a s<sub>i</sub> en n pasos
   fi/i= [0, ..., 0] //prob. primera recurrencia actual
   fi/i_ant= [-1, ..., -1] // prob. primera recurrencia anterior
   ult ret= 0 // t del último retorno a simbolo
   t_actual= 0; total_retornos= 0;
   s= simbolo //parámetro (no es necesario generar Primer_Simbolo)
  while not converge (fi/i, fi/i_ant) or (t_actual<T_MIN)
      s= Sig_dado_Ant (s)
      t actual++
      if ( s == simbolo ) // hay retorno
      { n= t actual - ult ret
          retornos[n] ++
          total retornos ++
          fi/i ant ← fi/i
          fi/i ← retornos/total_retornos
          ult_ret= t_actual
   return fi/i
```

```
Sig_dado_Ant (s_ant)
{ r=rand ()
  for(i=0 to #simbolos)
  if ( r < Macum[i, s_ant] )
    return i
}</pre>
```

```
converge (A[], B[])
{ for (i=0 to #simbolos)
      { if (abs(A[i] - B[i]) > ξ )
            return FALSE }
    return TRUE }
```

por muestreo computacional

Cómo plantearlo si se requiere calcular $f_{i/i}(n)$ para todos los s_i y n=1, 2, 3, ...?

Generar una secuencia de símbolos (mensaje) emitidos por la fuente según sus probabilidades y detectar la cantidad de pasos n que transcurren entre los retornos sucesivos <u>de cada s_i </u>

por muestreo computacional

Cómo plantearlo si se requiere calcular $f_{i/i}(n)$ para todos los s_i y n=1, 2, 3, ...?

Generar una secuencia de símbolos (mensaje) emitidos por la fuente según sus probabilidades y detectar la cantidad de pasos n que transcurren entre los retornos sucesivos <u>de cada s_i </u>

por muestreo computacional

Cómo plantearlo si se requiere calcular $f_{i/i}(n)$ para todos los s_i y n=1, 2, 3, ...?

Generar una secuencia de símbolos (mensaje) emitidos por la fuente según sus probabilidades y detectar la cantidad de pasos n que transcurren entre los retornos sucesivos <u>de cada s_i </u>

 \rightarrow Calcular $f_{i/i}^{(n)}$ = retornos(s_i , n) /total_retornos(s_i) y verificar si converge

Media de 1º Recurrencia

por muestreo computacional

$$\mu_{i/i} = \sum_{n=1}^{\infty} n.f_{i/i}(n)$$

tiempo medio de espera para retornar a s_i

Generar una secuencia de símbolos (mensaje) emitidos por la fuente según sus probabilidades y registrar el promedio de pasos entre retornos sucesivos a s_i

Ejemplo: Cálculo de μ_{0/0}

Media de 1º Recurrencia

por muestreo computacional

Cálculo para un símbolo en particular

```
Media_recurrencia (simbolo)
   retornos= 0
                // #retornos a s<sub>i</sub>
   media = 0 //media recurrencia actual
   media ant= -1 //media recurrencia anterior
   t actual = 0
   s= simbolo
                  //parámetro (no es necesario generar Primer_Simbolo)
  while not converge (media, media_ant) or (t_actual<T_MIN)
      s= Sig_dado_Ant(s)
      t actual++
      if (s == simbolo) // hay retorno
         retornos++
         media ant= media
         media = t-actual/retornos
   return media
```

```
Sig_dado_Ant (s_ant)
{    r=rand ()
    for(i=0 to #simbolos)
    if ( r < Macum[i, s_ant] )
        return i
}</pre>
```

```
converge (A[], B[])
{ for (i=0 to #simbolos)
      { if (abs(A[i] - B[i]) > ξ )
            return FALSE }
    return TRUE }
```


