Trobability And Statistics

ASSIGNMENT-4

Khushi[°] 4ITE123 03114813120

Our Detunine the estimated value of the parameter I in the poission distribution using the maximum likelihood estimation

Soln

$$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Now, the likelihood function,

$$L(\lambda; x_1, \dots, x_n) = \prod_{j=1}^{n} \frac{\lambda_{ie}^{x_j}}{x_j!}$$

Taking natural log

$$L(\lambda; x_1, ..., x_n) = \ln \left(\frac{\pi}{\lambda} \frac{\lambda^{x_i} e^{-\lambda}}{x_j!} \right)$$

$$= \underbrace{\underbrace{\mathbb{E}}}_{j=1} \ln \left(\frac{\lambda^{x_i}}{x_j!} \right)$$

$$= \underbrace{\underbrace{\mathbb{E}}}_{j=1} \left[\ln \left(\lambda^{x_i} \right) + \ln \left(e^{-\lambda} \right) - \ln \left(x_j! \right) \right]$$

$$= \underbrace{\mathbb{E}}_{j=1} \left[x_j \ln (\lambda) - \lambda - \ln \left(x_j! \right) \right]$$

$$= -\pi \lambda + \ln (\lambda) \underbrace{\mathbb{E}}_{j=1} x_j - \underbrace{\mathbb{E}}_{j=1} \ln \left(x_j! \right)$$

Calculating derivative wirt x),

$$\frac{\partial}{\partial \lambda} \lambda(\lambda; x_1 \dots x_n) = \frac{\partial}{\partial \lambda} \left(-n\lambda + \ln \lambda \sum_{j=1}^{n} x_j - \sum_{j=1}^{n} \ln(x_j!) \right)$$

$$= -n + \frac{1}{\lambda} \sum_{j=1}^{n} x_j$$

Putting it equal to 0.

$$-n + \frac{1}{\lambda} \leq x_{j} = 0$$

$$= \int_{\lambda} \frac{1}{\lambda} \left[\frac{1}{\lambda} \left[\frac{x_{j}}{\lambda} \right] \right] dx_{j}$$

This is equivalent to the sample mean of n observations in the sample.

Que What is p value in hypothesis testing? Explain with suitable Example.

The p-value is a number, calculated from a startical test, that describes how likely you are to have found a particular set of abservation if the null hypothesis were true p-values are used in hypothesis testing to help duide whether to reject

the will hypothesis. The smaller the pralue, the more likely you are to seject the will hypothesis.

Example

The average Weight at all residents in town XYZ is 168 lbs. A nutritionist believes the true mean to be different. She measured the weight of 36 individuals and found the mean to be 169.5 lbs with a standard deviation of 3.9.

At a 95% confidence level, is there enough evidence to discard the null

At a 95% confidence level, is there enough evidence to discard the null hypothems? (use pralue method)

$$Z_c = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

$$=\frac{1.5}{6.65}=2.31$$

Now

× 20.05

pralue < x

Hence, the null hypothesis is rejected