Shiny and Interactive Graphs

Spring 2023

May 12 2023

Interactive leaflet map

Required packages

- leaflet is used to create interactive maps
- maps provides geographical data
- sp and maptools are used to manipulate and convert geographical data into formats suitable for leaflet

We need numeric data to project!

```
table_usafacts <- bow(url = "https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/state/minscrape() %>%
  html_elements(css = "table") %>%
  html_table()
covidMN <- table_usafacts[[2]]

# tidy it up
covidMN_final <- covidMN %>% janitor::clean_names() %>%
  mutate(cases = as.numeric(str_remove(cases, ","))) %>%
  mutate(county = str_remove(county, " County"))
glimpse(covidMN_final)
```

Merging Geographical and Covid-19 Data

```
map <- SpatialPolygonsDataFrame(MNmap, covidMN_final, match.ID = FALSE)</pre>
```

- Create a SpatialPolygonsDataFrame, which merges our geographical data (MNmap) with the Covid-19 case data (covidMN_final).
 - This new data frame, 'map', contains both the geographical boundaries of each county and the associated Covid-19 case data.

Defining Color Palettes

```
Viridis color palette with colorNumeric:
pal <- colorNumeric(palette = "viridis", domain = map$cases)</pre>
Other options: heat, Dark2, Spectral
RColorBrewer palette (Paired) with colorBin:
bins \leftarrow c(0, 1000, 5000, 10000, 100000, Inf)
pal <- colorBin(palette = "Paired", domain = map$cases, bins = bins)</pre>
Other options: Accent
RColorBrewer palette (Set1) with colorQuantile:
pal <- colorQuantile(palette = "Pastel1", domain = map$cases, n = 5)</pre>
Other options: Set1
```

Creating labels

```
labels <- sprintf("<strong> %s </strong> <br/> Observed: %s", map$county, map$cases) %>%
lapply(htmltools::HTML)
```

```
labels[1:5]
[[1]]
<strong> Aitkin </strong> <br/> Observed: 3184

[[2]]
<strong> Anoka </strong> <br/> Observed: 105106

[[3]]
<strong> Becker </strong> <br/> Observed: 9244

[[4]]
<strong> Beltrami </strong> <br/> Observed: 12551

[[5]]
<strong> Benton </strong> <br/> Observed: 14910
```

Initializing Leaflet Map

Leaflet is a JavaScript library for creating dynamic maps that support panning and zooming along with various annotations like markers, polygons, and popups.

```
l <- leaflet(map) %>% addTiles() %>% setView(lng = -93.1616, lat = 44.4583, zoom = 5)
l
```


Adding Polygons and Highlight Options

addPolygons adds geographical shapes to a map.

```
l <- l %>% addPolygons(
  color = "grey",
  weight = 1,
  fillColor = ~pal(cases),
  fillOpacity = 0.7,
  highlightOptions = highlightOptions(
  label = labels
)
```

- Styling arguments include color (for border color), weight (for border thickness), fillColor (for the color inside the polygons), and fillOpacity (for the transparency of the fill color).
- fillColor means that the fill color of the polygons is determined by the numerical quantity being projected, allowing for a visual representation of the data
- highlightOptions argument sets what happens when a user hovers over a polygon, and the label argument sets the label that is displayed when this happens.

Adding a Legend

addLegend adds a legend to the Leaflet map. It provides necessary context for the map's colors and markers, improving its interpretability.

```
l <- l %>% addLegend(
  pal = pal,
  values = ~cases,
  opacity = 0.5,
  title = "Observed Cases",
  position = "bottomright"
)
```

Color Palette: The pal argument is used to specify the color palette. This palette is used to color the items in the legend and, correspondingly, the polygons on the map.

Opacity: The opacity argument sets the level of transparency for the legend. Lower values make the legend more transparent, while higher values make it more opaque.

Title and Position: The title argument allows you to provide a title for the legend, giving context to the information displayed. The position argument controls where the legend is placed on the map, with options like "bottomright", "bottomleft", "topright", and "topleft".

Recap: thins we can do with leaflet

- Make the background map with leaflet(), addTiles() and setView()
- Use addPolygons() to add the shape of country/states/county
- Translate a numeric variable to a palette of color
 - Quantile with colorQuantile
 - Numeric with colorNumeric
 - Bin with colorBin

Objects needed for plotting

```
library(leaflet) # for leaflet maps
library(maps) # for map data
library(sp) # for spatial polygons
library(maptools) # for sp polygon data frame
MNcounty <- map("county", "Minnesota", plot=FALSE, fill=TRUE)
MNmap <- map2SpatialPolygons(MNcounty, IDs = MNcounty$names)</pre>
map <- SpatialPolygonsDataFrame(MNmap, covidMN final, match.ID = FALSE)</pre>
bins \leftarrow c(0, 1000, 5000, 100000, 100000, Inf)
pal <- colorBin("magma", pretty = TRUE, domain = map$cases, bins = bins)</pre>
labels <- sprintf("<strong> %s </strong> <br/> Observed: %s", map$county, map$cases) %>%
  lapplv(htmltools::HTML)
l <- leaflet(map) %>% addTiles() %>% setView(lng = -93.1616, lat = 44.4583, zoom = 5)
l %>% addPolygons(color = "grey", weight = 1,
                  fillColor = ~pal(cases), fillOpacity = 0.7.
                  highlightOptions = highlightOptions(weight = 5),
                  label = labels) %>%
  addLegend(pal = pal, values = ~cases, opacity = 0.5,
            title = "Observed Cases",
            position = "bottomright")
```

Objects needed for plotting

```
library(leaflet) # for leaflet maps
library(maps) # for map data
library(sp) # for spatial polygons
library(maptools) # for sp polygon data frame
MNcounty <- map("county", "Minnesota", plot=FALSE, fill=TRUE)
MNmap <- map2SpatialPolygons(MNcounty, IDs = MNcounty$names)</pre>
map <- SpatialPolygonsDataFrame(MNmap, covidMN final, match.ID = FALSE)</pre>
pal <- colorNumeric(palette = "viridis", alpha = TRUE, domain = map$cases)</pre>
bins \leftarrow c(0, 1000, 5000, 100000, 100000, Inf)
pal <- colorBin("viridis", domain = map$cases, bins = bins)</pre>
labels <- sprintf("<strong> %s </strong> <br/> Observed: %s", map$county, map$cases) %>%
  lapplv(htmltools::HTML)
l <- leaflet(map) %>% addTiles() %>% setView(lng = -93.1616, lat = 44.4583, zoom = 5)
l %>% addPolygons(color = "grey", weight = 1,
                  fillColor = ~pal(cases), fillOpacity = 0.7,
                  highlightOptions = highlightOptions(weight = 5),
                  label = labels) %>%
  addLegend(pal = pal, values = ~cases, opacity = 0.5,
            title = "Observed Cases",
            position = "bottomright")
```

Another example

```
# Scrape the data
covid final <- read html("https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesot</pre>
  html elements(css = "table") %>% html table() %>% .[[1]] %>%
  ianitor::clean names() %>%
  mutate at(2:4, parse number) %>% mutate(state = str to lower(state)) %>%
  filter(state %in% c("minnesota", "wisconsin", "iowa", "michigan", "illinois", "indiana"))
# Prepare the map
USA <- maps::map("state", regions = c("minnesota", "wisconsin", "iowa", "michigan", "illinois", "indiana")</pre>
  map2SpatialPolygons(IDs = str remove(.$names, "(?=:).+"))
# Merge the data and the map
map <- SpatialPolygonsDataFrame(USA, covid_final, match.ID = FALSE)</pre>
# Create bins and color palette
bins <- seq(min(map$percent_fully_vaccinated), max(map$percent_fully_vaccinated), length.out = 6)</pre>
pal <- colorBin("viridis", domain = map$percent_fully_vaccinated, bins = bins)</pre>
# Create labels
labels <- sprintf("<strong> %s </strong> <br/> Observed: %s", str_to_upper(map$state), map$percent_fully_
  lapply(htmltools::HTML)
# Plot the map
leaflet(map) %>%
  addTiles() %>%
  setView(lng = -93.1616, lat = 44.4583, zoom = 4) %>%
  addPolygons(
    color = "grey",
    weight = 1,
    fillColor = ~pal(percent_fully_vaccinated),
```

Interactive leaflet map 2

P GROUP ACTIVITY 1

- Let's go over to maize server/ local Rstudio and our class moodle
- Get the class activity 20.Rmd file
- Work on activity 1
- Ask me questions