

KECERDASAN BUATAN

SISTEM PAKAR

Prof. Dr. Admi Syarif, Ph.D. Rahman Taufik, S.Pd., M.Kom.

KONTEN

- Sistem Pakar
- Komponen
- Teknik
- Studi Kasus

APLIKASI - EXPERT SYSTEMS

CONTOH BEBERAPA APLIKASI POPULER

- Information management
- Hospitals and medical facilities
- Help desks management
- Employee performance evaluation
- Loan analysis
- Virus detection
- Useful for repair and maintenance projects
- Warehouse optimization
- Planning and scheduling
- The configuration of manufactured objects
- Financial decision making Knowledge publishing
- Process monitoring and control
- Supervise the operation of the plant and controller
- Stock market trading
- Airline scheduling & cargo schedules
- Etc.

SISTEM PAKAR

- Sistem Pakar adalah kumpulan pengetahuan (basis pengetahuan) dari berbagai sumber yang digunakan untuk menyelesaikan suatu masalah
- Pengetahuan pada sistem pakar diperoleh dari seorang ahli (seseorang yang memiliki pemahaman dan kompetensi yang luas dan mendalam dalam hal pengetahuan)
- Tujuan dari sistem pakar adalah untuk menyelesaikan isu-isu paling kompleks dalam suatu domain tertentu.

KOMPONEN SISTEM PAKAR

KNOWLEDGE BASE

- Sistem pakar mengandung pengetahuan yang khusus untuk suatu domain tertentu
- Data, fakta, informasi, dan pengalaman masa lalu yang digabungkan bersama-sama disebut sebagai basis pengetahuan.
- Komponen dari basis pengetahuan.
 - Pengetahuan Faktual: informasi yang secara luas dimiliki oleh para ahli dalam domain tertentu.
 - Pengetahuan Heuristik: ini berkaitan dengan praktik, penilaian akurat, kemampuan evaluasi, dan peramalan.
- Perolehan pengetahuan dibentuk melalui pencatatan, wawancara, dan pengamatan dari ahli

INFERENCE ENGINE

- Mesin Inferensi memperoleh pengetahuan dari basis pengetahuan untuk mencapai solusi tertentu.
- Untuk merekomendasikan solusi, Mesin Inferensi menggunakan beberapa strategi, contohnya:
 - Forward Chaining
 - Apa yang bisa terjadi selanjutnya?
 - Contohnya, prediksi status pasar saham sebagai dampak perubahan tingkat suku bunga.
 - Backward Chaining
 - Mengapa ini terjadi?
 - Contohnya, diagnosis kanker darah pada manusia.

INFERENCE ENGINE

USER INTERFACE

- Antarmuka pengguna menyediakan interaksi antara pengguna dan sistem pakar.
- Persyaratan antarmuka pengguna sistem pakar yang efisien:
 - Membantu pengguna mencapai tujuan mereka dengan cara yang paling efektif dan efisien
 - Harus dirancang untuk bekerja sesuai dengan praktik kerja pengguna yang sudah ada atau sesuai
 - Teknologinya harus dapat disesuaikan dengan kebutuhan pengguna; bukan sebaliknya

TEKNIK

- Naive Bayes: menggunakan probabilitas untuk klasifikasi data dalam sistem pakar
- **Decision Tree**: mengambil keputusan dengan memetakan serangkaian keputusan dan konsekuensi yang mungkin terjadi
- Fuzzy Logic: menangani ketidakpastian dan ambiguitas dalam data dengan pendekatan logika
- Artificial Neural Network: membuat prediksi atau rekomendasi berdasarkan pola-pola kompleks
- etc.

- Studi Kasus: Diagnosa Penyakit Berdasarkan Gejala dengan Metode Naive Bayes
- Kita akan membuat sebuah sistem pakar sederhana untuk mendiagnosa penyakit flu berdasarkan gejala yang dialami pasien. Terdapat dua gejala yang akan kita pertimbangkan: demam dan pilek.
- Gejala:
 - \circ Gejala 1: Demam (D) = $\{1/0\}$
 - Gejala 2: Pilek (P) = {1/0}
- Data Latih: Kita memiliki data latih berikut ini:
 - 10 pasien dengan demam dan pilek (D=1, P=1)
 - 5 pasien dengan demam tanpa pilek (D=1, P=0)
 - 3 pasien tanpa demam dan pilek (D=0, P=0)
- Perhitungan Probabilitas:
 - Hitung Probabilitas Prior (P(D) dan P(P))
 - Hitung Probabilitas Likelihood (P(D|P) dan P(P|D))
- Prediksi: Misal, diberikan seorang pasien dengan demam dan pilek, kita akan memprediksi apakah dia menderita flu atau tidak.
 - O Hitung Probabilitas Posterior:
 - P(D=1|P=1) * P(P=1) = 1 * 10/18 = 10/18
 - P(D=0|P=1) * P(P=1) = 0 * 10/18 = 0
 - Normalisasi Probabilitas:
 - $\blacksquare P(D=1|P=1) = (10/18) / [(10/18) + 0] = 1$
 - P(D=0|P=1) = (0/18) / [(0/18) + 0] = 0
 - \circ Kesimpulan: Karena P(D=1|P=1) > P(D=0|P=1), kita akan memprediksi bahwa pasien tersebut menderita flu.

TUGAS

- Buat contoh studi kasus sistem pakar lainnya menggunakan metode naive bayes
- Buat juga simulasi perhitungannya menggunakan metode naive bayes

TERIMA KASIH!

