1969 Preferred

Semiconductors and Components from Texas Instruments

a selection of popular, readily available discrete semiconductors and components for new and present circuit designs.

A TOTALLY NEW KIND OF CATALOG

Here's how to use it:

TI makes more than 14,800 different types of standard and special discrete semiconductors and passive electronic components. But this catalog includes detailed specifications on only 289.

Months of computer demand analysis reveal that these 289 types will meet the vast majority of your requirements. They are workhorse devices — customer preferred devices — all in wide use today, readily available from distributor or TI stocks, and in volume production that spells low prices. By specifying preferred TI products, you save design time, reduce purchasing costs, cut inventory requirements, and increase the certainty of on-time delivery. That makes this the most helpful semiconductor catalog you've ever used.

Preferred products are readily identifiable by their **bold numbers** at the top of the first page of each data sheet.

Holders of TI's 1967-68 Semiconductors and Components Catalog are urged to continue using their catalogs as a total index of specification data to the standard TI line. While improvement in ratings and characteristics of many devices are included in this catalog, most of the data sheets listed in the 1967-68 Semiconductors and Components Catalog are current.

A cross-reference guide between JEDEC or competitive type numbers and TI devices is presented on Pages 15-38.

Should you have interest in a device not listed as a preferred device, please check the Index to All Standard Discrete Semiconductors and Components shown on Pages 39-45. You may obtain specification data for any of these devices by writing to Inquiry Answering Service, Texas Instruments Incorporated, MS 980, P.O. Box 5621, Dallas, Texas 75222, specifying the device by type number.

Note that certain blocks of page numbers have intentionally been omitted to anticipate new products which may be added in future editions.

Preferred Semiconductors and Components from Texas Instruments

CONTENTS	
How to Use the Indexes	age 2
Listing of Preferred Semiconductors and Components by Device Classification	3
Application Guide to Preferred Semiconductors and Components	5
Selection Guide to Preferred Silicon Power Transistors	11
Cross-Reference Guide Between JEDEC or Competitive Type Numbers and TI Devices	15
Index to All Standard Discrete Semiconductors and Components Manufactured by TI	39
Listing of Military Devices Available from TI	46

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 7522

HOW TO USE THE INDEXES

- If you know only the category of device, look in the Listing of Preferred Semiconductors and Components, page 3.
- If you want a device for a particular application, look in the Application Guide to Preferred Semiconductors and Components, page 5, also see pages 11-14 for Silicon Power devices.
- If you are seeking the TI device nearest to a JEDEC or competitive type number, look in the Cross-Reference Guide Between JEDEC or Competitive Type Numbers and TI Devices, starting on page 15.
- If you know the Texas Instruments device number, look in the Index to All Standard Discrete Semiconductors and Components, page 39.

SPECIAL INFORMATION

TI Field Sales Office Addresses, page 1332

TI Microlibrary Information, page 1524

Standard Mounting Hardware for Silicon Thyristors, page 24001

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

LISTING OF PREFERRED SEMICONDUCTORS AND COMPONENTS BY DEVICE CLASSIFICATION

SILICON LOW- POWER N-P-N		2N3570 2N3866 2N4875	3401 3501 3701	GERMANIUM ME PLANAR SWITCH TRANSISTORS	SA AND ING	2N1539 2N1907 TI3027	17223 17231 17301
TIS56 TIS62 TIS63 TIS84	1021 1025 1025 1033	SILICON MULTIPE AND MULTI-ELEN TRANSISTORS		2N797 2N964 2N2635	12101 12105 12301	GENERAL PURP DIODES	OSE
TIS85	1033			050144111114	_,	1N456	18101
TIS86 TIS87	1041 1041	3N79 TIS92	4101 4105	GERMANIUM UH MICROWAVE	F/	1N457 1N458	18101 18101
TIS97	1047	TIS92M	4105	TRANSISTORS		1N482	18105
TIS98	1047	TIS93	4105			1N483	18105
TIS99	1047	TIS93M	4105	2N5043	14401	1N484	18105
2N697 2N718A	1201 1201	3N111 2N997	4109 4301	SILICON POWER		1N485 1N645	18105 18109
2N710A 2N720A	1201	2N2060	4401	TRANSISTORS		1N646	18109
2N930	1269	2N2223	4401	***************************************		1N647	18109
2N1613	1201	2N2639	4405	TIP29	16101	1N648	18109
2N1711 2N1893	1201 1209	2N2642 2N2643	4405 4405	TIP29A TIP30	16101	1N649	18109
2N2219	1305	2N3043	4501	TIP30A	16105 16105	SWITCHING DIO	DES
2N2222	1305	2N3045	4501	TIP31	16109	• • • • • • • • • • • • • • • • • • • •	
2N2243A	1301	2N3049	4503	TIP31A	16109	1N914	19201
2N2369A	1315	2N3051	4503	TIP32	16113	1N914B	19201
2N2432 2N2484	1325 1337	2N3350 2N3351	4507 4507	TIP32A TIP33	16113 16117	1N3064 1N3070	19301 19303
2N3010	1401	2N3680	4509	TIP33A	16117	1N4148	19401
2N3013	1405	2N3838	4517	TIP34	16121	1N4448	19401
2N3015	1409	2N4854	4701	TIP34A	16121	1N4454	19405
2N3707 2N3708	1431 1431	SILICON FIELD-		TIP35 TIP35A	16125	1N4531	19407
2N3708 2N3709	1431	EFFECT TRANSIS	TORS	TIP35A TIP36	16125 16129	MULTIPLE DIOD	ES
2N3710	1431			TIP36A	16129		
2N3711	1431	TIS69	6101	2N1724	16301	TID21	20005
2N3725 2N4104	1433 1501	TIS73 TIS88	6103 6111	2N2987	16401	TID22 TID23	20005 20005
2N4104 2N4252	1501	2N2386	6301	2N2988 2N2990	16401 16401	TID23	20005
2N4418	1519	2N2498	6303	2N2991	16401	TID25	20009
2N4420	1521	2N3330	6305	2N2992	16401	TID26	20009
2N4995	1441	2N3819	6401	2N2993	16401	TID29	20013
2N4996 2N5449	1511 1701	2N3820 2N3822	64 0 3 6405	2N2994 2N3055	16401 16409	TID30	20013
2N5450	1701	2N3823	6407	2N3418	16501	MICROWAVE DI	ODES
2N5451	1701	2N3909	6413	2N3419	16501		
011100111011		2N3993	6501	2N3420	16501	TIV306	21205
SILICON LOW- POWER P-N-P		2N4416 2N4857	6503 6511	2N3421	16501	TIV307 TIV308	21205 21205
TOWER PONCE		2N5045	6601	2N3551 2N3552	16507 16507	117300	21205
TIS37	2001			2N3713	16511	REGULATOR DI	ODES
TIS38	2001	SILICON UNIJUNG	CTION	2N3714	16511		
2N2605 2N2894	2119 2125	2N491A	7101	2N3715	16511	1N746	23109
2N2994 2N2905	2125	2N1671B	7109	2N3716 2N3996	16511 16601	1N746A 1N747	23109 23109
2N2907	2127	2N3980	7201	2N3997	16601	1N747A	23109
2N2945A	2131	2N4891	7301	2N3998	16601	1N748	23109
2N3250 2N3304	2209 2211	GERMANIUM LOV	8/.	2N3999	16601	1N748A	23109
2N3467	2203	POWER ALLOY-	-	2N4000 2N4001	16607 16607	1N749 1N749A	23109 23109
2N3486	2213	JUNCTION TRANS	SISTOR	S2N4002	16613	1N750	23109
2N3495	2215			2N4003	16613	1N750A	23109
2N3829 2N3964	2235 2241	2N398	9101	2N4300	16625	1N751	23109
2N4058	2301	2N404 2N1302	9105 9205	2N4301	16631	1N751A 1N752	23109 23109
2N4059	2301	2N1303	9205	2N5333 2N5384	16701 16707	1N752 1N752A	23109
2N4060	2301	2N1304	9205	2N5385	16707	1N753	23109
2N4061 2N4062	2301 2301	2N1305	9205	2N5386	16711	1N753A	23109
2N4423	2301	2N1306 2N1307	9205 9205	2N5387	16715	1N754 1N754A	23109 23109
2N5447	2305	2N1308	9205	2N5388 2N5389	16715 16715	1N754A 1N755	23109
2N5448	2305	2N1309	9205			1N755A	23109
SILICON UHF		2N1377 2N1997	9213	GERMANIUM POV	VER	1N756	23109
TRANSISTORS		2N1997 2N2000	9301 9307	TRANSISTORS		1N756A 1N757	23109 23109
			,	2N456A	17101	1N757A	23109
2N918	3201			2N1038	17201	1N758	23109

LISTING OF PREFERRED SEMICONDUCTORS AND COMPONENTS BY DEVICE CLASSIFICATION (Cont'd.)

REGULATOR DIC	DES	OPTOELECTRONIC DEVICES			
1N758A 1N759 1N759A 1N4370	23109 23109 23109 23601	LS400 LS600 1N2175	27401 27501 27801		
1N4370 1N4370A 1N4371 1N4371A	23601 23601 23601 23601	PRECISION FILM RESISTORS	I		
1N4372 1N4372A THYRISTORS AN	23601 23601	CG1/8 CG1/4 CG1/2	28201 28201 28201		
TRIGGER DIODE		MC55 MC55D MC60	28401 28401 28401		
TIC20 TIC21 TIC22	24101 24101 24101	MC60D MC65 MC65D	28401 28401 28401		
TIC23 TI42A TI43A	24101 24105 24105 24109	TEMPERATURE-S SILICON RESISTO	ENSING		
TIC44 TIC45 TIC46 TIC47	24109 24109 24109 24109	TG1/8 TM1/8	29001 29003		
2N3001 2N3002 2N3003	24401 24401 24401	TM1/4	29003		
2N3004 2N3005 2N3006	24401 24407 24407				
2N3007 2N3008 2N3555	24407 24407 24417	•			
2N3556 2N3557 2N3558	24417 24417 24417				
2N3559 2N3560 2N3561	24425 24425 24425				
2N3562 2N5273 2N5274	24425 24601 24601				
SILICON RECTIF	IERS				
1N4001 1N4002 1N4003	25401 25401 25401				
1N4004 1N4005 1N4006 1N4007	25401 25401 25401 25401				

†See page 24001 for standard mounting hardware.

	1		DEVICE	RECOM	MENDATION			
APPLICATION		BIP	OLAR			FE		
	N-P-N		P-N-P		N-CHAN	NEL	P-CHA	NNEL
	Type No. P	age No.	Type No. Pa	ige No.	Type No. F	Page No.	Туре No.	Page No.
Small-Signal Transistor	TIS92	4105	● TIS93	4105	TIS88	6111	2N2386	6301
Amplifier:	● TIS92M	4105	●TIS93M	4105	●2N3819	6401	●2N2498	6303
•	●TIS97	1047	2N404	9105	●2N3822	6405	●2N3330	6305
DC to 1 MHz	● TIS98	1047	2N1303	9205			2N3909	6413
	TIS99	1047	2N1305	9205			●2N3820	6403
	2N697	1201	2N1307	9205	ļ			
	2N718A	1201	2N1309	9205	1			
	2N930	1269	2N2000	9307	1			
	● 2N997	4301	2N2605	2119				
	● 2N1302	9205	•2N2905	2127				
	● 2N1304	9205	•2N2907	2127				
	● 2N1306	9205	•2N3486	2213				
	● 2N1308	9205	●2N3495	2215				
	2N1893	1209	●2N3964 ●2N4058-61	2241 2301	İ		l	
	● 2N2484	1337	●2N5447	2305	i			
	2N3707 2N3708	1431 1431	- V2N3447	2303	ŀ			
	2N3708 2N3709	1431	1				1	
	2N3710	1431	İ		1			
	2N3711	1431			1			
	● 2N4104	1501					ŀ	
	• 2N5449	1701						
1 MHz to 10 MHz	TIS63	1025	●TIS37	2001	TIS88	6111	2N2386	6301
1 111112 10 10 111112	2N697	1201	2N404	9105	●2N3819	6401	●2N2498	6303
	2N930	1269	2N1303	9205	●2N3822	6405	•2N3330	6305
	2N1302	9205	2N1305	9205	●2N3823	6407	2N3909	6413
	2N1304	9205	2N1307	9205	●2N4416	6503	●2N3820	6403
	2N1306	9205	2N1309	9205				
	2N1308	9205	2N1377	9213			i	
	2N1613	1201	2N1997	9301	1			
	2N1893	1209	2N2605	2119				
	●2N2484	1337	•2N2905	2127				
	●2N4104	1501	●2N3495	2215			1	
	● 2N4995 ● 2N4996	1441 1511						
40.441	ł		A T1027	2001	TICOD	6111	• 2N2498	6303
10 MHz to 50 MHz	TIS56	1021	●TIS37	2001	TIS88 •2N3819	6111 6401	• 2N3330	6305
	• TIS63	1025	● 2N3495 ● 2N5043	2215 14401	• 2N3822	6405	V 2143330	0000
	• TIS84	1033 1033	₹2N5045	14401	•2N3823	6407	}	
	• TIS85 • TIS86	1033			•2N4416	6503	ł	
	• TIS87	1041			02.000	0000	ì	
	2N918	3201					l	
	• 2N2219	1305					l	
	• 2N2222	1305						
	 2N2243A 	1301	•					
	2N4252	1503					ļ	
	● 2N4996	1511			l			
50 MHz to 100 MHz	• TIS63	1025	● 2N2905	2127	TIS88	6111	• 2N2498	6303
OU MITE TO THE WIFE	• TIS84	1025	• 2N2905 • 2N2907	2127	•2N3823	6407		6305
	• TIS85	1033	• 2N3486	2213	•2N4416	6503		
	• TIS86	1033	• 2N5043	14401			I	
	• TIS87	1041	1		1			
	2N918	3201	1					
	• 2N2219	1305					I	
	• 2N2222	1305	1					
	2N4252	1503	I					
	● 2N4875	3701	1		1			
	• 2N4996	1511						
100 MHz to 5 GHz	2N918	3201	• 2N5043	14401	TIS88	6111		
		3401	50.10		•2N3823	6407	1	
	10 2N3570							
	• 2N3570 2N4252	1503			•2N4416	6503		

Devices especially recommended for new design.

APPLICATION		_						
APPLICATION		OLAR		FE				
	N-P		P-N-F		N-CHAN		P-CHAI	
	Type No.	Page No.	Type No. P	age No.	Type No.	Page No.	Type No.	Page No.
Low-Noise Amplifier:	●TIS97	1047	• TIS37	2001	TIS88	6111	●2N2498	6303
	2N930	1269	2N2605	2119	•2N3822	6405	◆2N3330	6305
0 to 10 MHz	•2N2484	1337	● 2N4058-61	2301	●2N4416	6503		
	2N3707 •2N4104	1431 1501						
10 MHz to 50 MHz	-TICCO	1025	• TIS37	2001	TIS88	6111	ļ	
IO MINZ 10 SO MINZ	●TIS62 ●TIS84	1033	4 11337	2001	•2N3822	6405		
	•TIS86	1041	ł		•2N3823	6407		
	2N918	3201			•2N4416	6503	ļ	
	2N4252	1503			02.1147.10	0000		
	●2N4875	3701						
50 MHz to 100 MHz	●TIS62	1025	• 2N5043	14401	●TIS88	6111		
50 141112 10 100 141112	●TIS84	1033	- 2.1.00 1.0		•2N3823	6407	l	
	●TIS86	1041			•2N4416	6503	1	
	2N918	3201	l		1			
	•2N3570	3401	1		1		l	
	2N4252	1503						
	●2N4875	3701						
100 MHz to 1 GHz	●TIS86	1041	• 2N5043	14401	●TIS88	6111	1	
	2N918	3201	İ		●2N3823	6407		
	●2N3570	3401	ľ		●2N4416	6503	1	
	●2N4875	3701						
Mixer and Converter: 0 to 10 MHz	2N918 ●2N4995	3201 1441	● TIS37	2001	●2N3823 ●2N4416	6407 6503	●2N2498 ●2N3330	6303 6305
10 MHz to 50 MHz	TIS56 .	1021	• TIS37	2001	●TIS88	6111	●2N3820	6403
	●TIS63	1025			●2N3823	6407		
	●TIS85	1033			●2N4416	6503		
	●TIS86	1041						
	2N4252	1503						
	●2N4875 ●2N4995	3701 1441						
50 MH - 4- 400 MH -	1	1005	- ONE042	14401	TICOO	6111		
50 MHz to 100 MHz	●TIS63	1025 1033	• 2N5043	14401	●TIS88 ●2N3823	6111 · 6407	1	
	●TIS85 ●TIS86	1033			●2N3623 ●2N4416	6503		
	•2N3570	3401			42144410	0503		
	2N4252	1503	1		1		1	
	•2N4875	3701	1					
100 MHz to 5 GHz	●TIS86	1041	• 2N5043	14401	●TIS88	6111		
	2N918	3201	I		•2N3823	6407		
	•2N3570	3401	l		●2N4416	6503	1	
	2N4252	1503						
	●2N4875	3701]				1	
Oscillator:	PTIS98	1047	• TIS38	2001	•TIS88	6111	●2N2498	6703
0 an 10 MH-	2N697	1201	• 2N2905	2127	●2N3819	6401	•2N3330	6305
0 to 10 MHz	2N1613	1201 1337	• 2N3486	2213	●2N3822 ●2N3823	6405 6407		
	•2N2484 2N3711	1431	• 2N3495	2215	●2N3823 ●2N4416	6503	1	
	●2N5449	1701			-211-1-10	0000	1	
10 MHz to 50 MHz	●TIS63	1025	• TIS38	2001	●TIS88	6111		
	●TIS98	1047	● 2N2905	2127	●2N3822	6405	1	
	2N918	3201	● 2N2907	2127	●2N3823	6407	1	
	●2N2219	1305	● 2N3486	2213	●2N4416	6503	1	
	•2N2222	1305	● 2N5447	2305	1			
	●2N4875	3701	1		ł			
	●2N5449	1701	I		I		1	

Devices especially recommended for new design.

APPLICATION		BI	POLAR	FET			
APPLICATION	N-P-N	1	P-N-	p 1	N-CHANI	NEL	P-CHANNEL
	Type No. P.	age No.	Type No. F		Type No. P		Type No. Page No.
50 MHz to 100 MHz	●TIS63 ●TIS86 2N918 ●2N4875 ●2N5449	1025 1041 3201 3701 1701	• 2N5043 • 2N5447	14401 2305	TIS88 • 2N3823 • 2N4416	6111 6407 6503	
100 MHz to 5 GHz	●TIS63 ●TIS86 2N918 ●2N3570 ●2N4875	1025 1041 3201 3401 3701	● 2N5043	14401	TIS88 • 2N3823 • 2N4416	6111 6407 6503	
Power Oscillator:	●2N3866	3501					
Power Amplifier: Radio Frequency	●2N3866 ●2N4875	3501 3701					
Audio Frequency	•TIP29 •TIP29A •TIP31 •TIP31A •TIP33 •TIP33A •TIP35A •TIP35A 2N697 2N718A 2N1613 2N1711	16101 16109 16109 16109 16117 16117 16125 1201 1201 1201 1201	• TIP30 • TIP30A • TIP32A • TIP34A • TIP34A • TIP36A • TIP36A • ZN456A 2N1038 • 2N2905 • 2N2907 TI3027 • 2N3486 • 2N3486	16105 16105 16113 16113 16121 16129 16129 17101 17201 2127 2127 2127 2127 2213 2215	• 2N4857	6511	
	1	ВІРО	•			OTHER D	EVICES
	Type No.		P-N Type No.		Type No.	Page No.	Classification
Switching: Multivibrator, Pulse Generator, Schmitt Trigger	2N1302 2N1304 2N1306 2N1308 •2N2219 •2N2222 •2N2369A •2N3010 •2N3013 •2N3725 •2N4418 •2N4420	9205 9205 9205 9205 1305 1305 1315 1401 1403 1433 1519 1521	2N404 2N1303 2N1305 2N1307 2N1309 2N1997 2N2000 2N2635 • 2N2894 • 2N2905 • 2N2907 • 2N3829 • 2N4423	9105 9205 9205 9205 9205 9301 9307 12301 2125 2127 2127 2235 2303	• 2N3980 • 2N3993 • 2N4416 • 2N4857	7201 6501 6503 6511	UJT P-FET N-FET N-FET
Ring Counter/ Latching Amplifier	2N930 •2N2369A •2N3010 •2N3013 •2N4418 •2N4420 •2N5449	1269 1315 1401 1405 1519 1521 1701	 2N2894 2N2905 2N3250 2N3304 2N3829 2N4058-6 2N5447 	2125 2127 2209 2211 2235 31 2301 2305	• TIC20-3 • 2N3001-4 • 2N3555-8 • 2N3993 • 2N4416 • 2N4857 • 2N5273-4 • TIS73	6501 6503 6511	TRIAC SCR SCR P-FET N-FET TRIAC N-FET
Relaxation Oscillator					•TI42A •TI43A 2N1671B •2N3980	24105 24105 7109 7201	Trigger Diode Trigger Diode UJT UJT

Devices especially recommended for new design.

			DEV	ICE REC	OMMENDATI	ON	
APPLICATION	1	IPOLAR		THER D	EVICES		
	N-P-I		P-N-				
	Type No.	Page No.	Type No.	Page No.	Type No. I	Page No.	Classification
Pulse Amplifier	• 2N2243A • 2N2369A	1301 1315	2N1907 • 2N2894 • 2N2905 • 2N3304 • 2N3486 • 2N3829 • 2N5333 • 2N5384 • 2N5386	17231 2125 2127 2211 2213 2235 16701 16707 16711	• 2N3993 • 2N4857	6501 6511	P-FET N-FET
Chopper	• 3N79 • 2N2432 • TIP29 • TIP29A • TIP31 • TIP31A • TIP33 • TIP33A • TIP35 • TIP35A	4101 1325 16101 16101 16109 16109 16117 16117 16125 16125	• 3N111 • 2N2945A • 2N3467 • TIP30 • TIP30A • TIP32 • TIP32A • TIP34A • TIP34A • TIP36 • TIP36A	4109 2131 2203 16105 16105 16113 16113 16121 16121 16129 16129	● 2N3993 ● 2N4857	6501 6511	P-FET N-FET
Computer Memory Driver	• 2N3013 • 2N3015 • 2N3725	1405 1409 1433	● 2N3467	220 3	• 2N3993 • 2N4857 • TIS73	6501 6511 6103	P-FET N-FET N-FET
Power Control/ Regulator (See Selection Guide	• TIP29 • TIP29A • TIP31	16101 16101 16109	• TIP30 • TIP30A • TIP32	16105 16105 16113	• TIC20-3 • TIC44-7 • 2N3001-4	24101 24109 24401	TRIAC SCR SCR
on pages 11 — 14)	• 2N4000,1 • 2N4002,3 • 2N4300 • 2N4301 • 2N5387-9	16409 16501 16507 16511 16601 16607 16613 16625 16631 16715	• TIP32A • TIP34 • TIP34A • TIP36A • TIP36A • TIP36A 2N1539 2N1907 TI3027 • 2N5333 • 2N5384,5 • 2N5386	16113 16121 16121 16129 16129 17101 17223 17231 17301 16701 16707 16711	• 2N3005-08 • 2N3555-8 • 2N3559-62 • 2N5273-4	24407 24417 24425 24601	SCR SCR SCR TRIAC
omputer Logic Switch	2N797 2N1302 2N1304 2N1306 2N1308 • 2N2369A • 2N3010 • 2N3013 • 2N4418 • 2N4420	12101 9205 9205 9205 9205 1315 1401 1405 1519 1521	-2N404 2N964 2N1303 2N1305 2N1307 2N1309 2N1997 2N2635 • 2N2894 • 2N3250 • 2N3329 • 2N3423	9105 12105 9205 9205 9205 9205 9301 12301 2125 2209 2211 2235 2303	• 2N3993 • 2N4857 • TIS73	6501 6511 6103	P-FET N-FET N-FET

Devices especially recommended for new design

			DEVICE	HECOMM	IENDATION			
APPLICATION		BIPOL	.AR	ОТН	ER DEV	CES		
	N-P-N		P-N-	•				
	Type No. P	age No.	Type No. F	age No.	Type No. Pa	ge No.	Classification	
	• TIP29 • TIP29A	16101 16101	●TIP30 ●TIP30A	16105 16105	●2N3993 ●2N4857	6501 6511	P-FET N-FET	
	• TIP31	16109	●TIP32	16113				
	• TIP31A	16109	●TIP32A	16113		- 1		
	• TIP33	16117	●TIP34	16121		- 1		
	• TIP33A	16117	●TIP34A	16121		1		
	• TIP35	16125 16125	●TIP36 ●TIP36A	16129 16129	i	1		
	• TIP35A 2N1724	16301	2N456A	17101	l			
	• 2N2987-94		2N1038	17201	1			
!	2N3055	16409	2N1539	17223		1		
	• 2N3418-21		2N1907	17231		- 1		
	• 2N3551,2	16507	T13027	17301	1	1		
	• 2N3713-16		●2N5333 ●2N5384,5	16701 16707	l	- 1		
	• 2N3996-9 • 2N4000,1	16601 16607	• 2N5384,5 • 2N5386	16711		1		
	• 2N4000,1	16613	2.13000			1		
	• 2N4300	16625			l	l		
	• 2N4301	16631				1	-	
	• 2N5387-9	16715						
Lamp Driver	2N1893	1209	2N398	9101	● 2N4857	6511	N-FET	
(Nixie Driver)	• 2N2243A	1301	●2N3495	2215		l		
High Voltage	i		l		Ì			
Linear Application:	• 3N79	4101	2N1907	17231	● 2N4857	6511	N-FET	
Demodulator	• 2N2432	1325	● 2N2945A	2131	İ	1		
Differential	• 2N2060	4401	● 2N3049	4503	• TIS69	6101	N-FET	
Amplifier	● 2N2642	4405	●2N3350	4507	● 2N5045	6601	N-FET	
•	• 2N3043	4501	● 2N3351	4507	l	1		
	• 2N3045	4501 4509	ł		ł	l		
	• 2N3680 • 2N3838	4517			1			
O	• 2N2060	4401	• 2N3049	4503	• TIS69	6101	N-FET	
Operational Amplifier	• 2N2223	4401	• 2N3350	4507	• 2N4854	4701	NPN-PNP	
Ampinio	• 2N2642	4405	• 2N3351	4507	● 2N5045	6601	N-FET	
	• 2N3043	4501	l .					
	• 2N3045	4501 4509						
	• 2N3680	4509						
Servo Amplifier	• 2N2060	4401	2N1038	17201	● TIS69	6101	N-FET	
COLTO AMBRITA	• 2N2223	4401	2N1907	17231	• 2N5045	6601	N-FET	
	• 2N2642	4405	• 2N3350	4507	1			
	• 2N3680	4509	• 2N3351	4507	į			
Sense Amplifier/	• 2N2060	4401	• 2N3049	4503		6111	N-FET	
Comparator	• 2N2642	4405		4507		6503 6601	N-FET	
	• 2N3043	4501		4507	• 2N5045	1000	N-FET	
	• 2N3680 • 2N3838	4509 4517			1		1	
Waveform Generator	/ 2N930	1269		2305	TIS88	6111 6503		
Clipper/Compressor	2N3707 2N3708	1431 1431			•2N4857	6511		
	2N3709	1431					1	
	2N3711	1431	·					
	• 2N5449	1701						
					491450.0	10101		
Diodes:			1		1N456-8 1N482-5	18101 18105		
Mixer/Converter	1		1		1N914	19201		

Devices especially recommended for new design.

APPLICATION	BIPO	DEVICE RECOM LAR	OTHER DE	VICES	
	N-P-N	P-N-P			
	Type No. Page No.	Type No. Page No.	Type No. Page No.	Classification	
Detector			1N456-8 18101		
	i i		1N914 19201		
			● 1N4148 19401		
	1		• 1N4448 19401		
Switch			1N914 19201		
			●1N3064 19301		
	ļ .		●1N3070 19303	200 V	
			●1N4148 19401		
			●1N4448 19401		
			•1N4531 19407		
Tuning			●TIV306-08 21205	Voltage Variable	
Voltage Regulator			1N746-		
· · · · · · · · · · · · · · · · · · ·			1N759 23109		
			●1N746A-		
			1N759A 23109		
			1N4370 23601 •1N4370A 23601		
Rectifier			1N456- 1N458 18101		
			1N482-5 18105		
			●1N645-9 18109		
			●1N4001-7 25401		
Computer			•TID21-24 20005 •TID25-26 20009	8-Diode Array	
			•TID29-30 20013	16-Diode Array 20-Diode Array	
			1N914 19201	20 Diodo Airay	
Tanada Biada			•1N3064 19301		
Transistor Biasing			●1N746A- 1N759A 23109		
TV "Color Killer"			●1N3070 19303		
Power Supply			●1N645-9 18109		
Logarithmic			●1N645-9 18109		
			●1N746A- 1N759A 23109		
Light Sensor			●LS400 27401 ●LS600 27501		

Devices especially recommended for new design.

SELECTION GUIDE SILICON POWER TRANSISTORS

SELECTION GUIDE SILICON POWER TRANSISTORS

SELECTION GUIDE SILICON POWER TRANSISTORS

SELECTION GUIDE SILICON POWER TRANSISTORS

Nearest TI types were selected on the basis of the general similarity of electrical characteristics. Interchangeability in particular applications is not guaranteed. Before using a substitute type, the user should compare the detailed specifications of the substitute device with the detailed specifications of the original device with emphasis on those ratings and characteristics which are actually critical. Occasionally another device on the same data sheet as the stated "Nearest TI Type" may be found to be better suited for the particular application.

TI makes no warranty as to the information furnished and Buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

	Preferred .	Nearest	_	Preferred	Nearest
Туре	TI Type	TI Type	Type	Ti Type 1N4004	Ti Type 1N4004
1N38B 1N39B	1N484 1N645	1N458A 1N645	1N315 1N316	1N4004 1N645	1N483A
1N52A	1N483	1N457A	1N317	1N645	1N484A
1N60	1N456	1N456	1N318	1N645	1N485
1N67A	1N484 1N483	1N458A 1N457A	1N319	1N646 1N648	1N646 1N648
1N69A 1N70A	1N484	1N458A	1N320 1N323	1N645	1N645
1N81A	1N483	1N457A	1N324	1N645	1N645
1N90	1N483	1N457A	1N325	1N645	1N645
1N91 1N92	1N645 1N645	1N484A 1N645	1N326 1N327	1N646 1N648	1N646 1N648
1N93	1N646	1N646	1N330	1N456	1N456
1N96	1N483	1N457A	1N331	1N456	1N456
1N98 1N98A	1N484 1N484	1N458A 1N458A	1N332		1N332 1N333
1N98A 1N100A	1N484	1N458A	1N333 1N334		1N334
1N111	1N914B	1N663	1N335		1N335
1N112	1N914B 1N914B	1N663 1N663	1N336		1N336 1N337
1N113 1N114	1N914B	1N663	1N337 1N338		1N337 1N338
1N115	1N914B	1N663	1N339		1N339
1N118A	1N483 1N914B	1N457A 1N663	1N340		1N340
1N119 1N120	1N914B	1N663	1N341 1N342		1N341 1N342
1N126	1N483	1N547A	1N342		1N343
1N127	1N484 1N483	1N458A 1N457A	1N344		1N344
1N128 1N128A	1N483 1N457	1N457A 1N457	1N345 1N346		1N345 1N346
1N137B	1N483	1N457A	1N340 1N347		1N347
1N138B	1N483	1N457A	1N348		1N348
1N144 1N145	1N914B 1N914B	1N914B 1N658	1N349	1N457	1N349 1N457
1N145 1N191	1N3070	1N663	1N350 1N351	1N457 1N484	1N457 1N458A
1N193	1N914	1N251	1N352	1N485	1N485
1N194 1N194A	1N914 1N914	1N251 1N251	1N353	1N645 1N646	1N645 1N646
1N195	1N914	1N251	1N354 1N359	1N483	1N457A
1N196	1N914	1N251	1N360	1N484	1N484
1N198 1N198A	1N484 1N483	1N458A 1N457A	1N361	1N485 1N646	1N485 1N646
1N198B	1N483	1N457A	1N362 1N363	1N648	1N648
1N200		1N764	1N417	1N914B	1N663
1N201		1N765 1N766	1N418	1N914B	1N663
1N202 1N251	1N914	1N251	1N419 1N432	1N914B 1N482	1N663 1N457A
1N251 1N253	111317	1N253 1N254	1N432 1N432A	1N482	1N457A
1N254		1N254 1N256	1N433	1N485	1N458A
1N256 1N270		TID32	1N433A 1N434	1N485 1N485	1N458A 1N459A
1N273	1N914B	1N663	1N434A	1N485	1N459A
1N276	1N914B	1N915	1N440_	1N4002	1N2069
1N277 1N278	1N914B 1N914B	1N658 1N658	1N440B 1N441	1N4002 1N4003	1N440B 1N2069
1N279	1N914B	1N663	1N441B	1N4003	1N441B
1N281	1N914B	TID29	1N442	1N4004	1N2070
1N282 1N283	1N456	1N456 TID33	1N442B 1N443	1N4004 1N4004	1N442B 1N2070
1N294	1N457	1N457	1N443B	1N4004	1N443B
1N294A	1N483	1N483	1N444_	1N4005	1N2071
1N295 1N297	1N457 1N483	1N457 1N458A	1N444B 1N445	1N4005 1N4005	1N444B 1N2071
1N298	1N483	1N457A	1N445B	1N4005	1N445B
1N298A	1N483 1N482	1N457A	1N447	1N482 1N484	1N461A 1N458A
1N300 1N300A	1N482 1N482	1N456A 1N456A	1N448 1N449	1N484 1N482	1N450A 1N461A
1N301	1N483	1N457A	1N450	1N484	1N458A
1N301A 1N301B	1N483 1N483	1N457A 1N457A	1N451 1N452	1N484 1N482	1N458A 1N461A
1N301B 1N302A	1N465 1N645	1N457A 1N645	1N452 1N453	1N484	1N458A
*1N302B	1N645	1N645	1N454	1N482	1N461A
1N303 1N303B	1N484 1N484	1N484 1N484	1N455 1N456	1N482 1N456	1N461A 1N456
1N305	1N645	1N483A	1N456A	1N482	1N456A
1N306	1N645	1N482A	1N457	1N457	1N457 1N457A
1N307	1N484	1N458A	1N457A	1N483	TI45/H

^{*}Denotes 1N- or 2N- numbers not JEDEC registered through September 1968.

Tuna	Preferred	Nearest	T	Preferred	Nearest
Type 1N458	Ti Type 1N458	TI Type 1N458	Type 1N606	TI Type	Ti Type 1N606
1N458A	1N484	1N458A	1N606A	1N648	1N606A
1N459	1N485	1N459	1N607	1814001	1N607
1N459A 1N460	1N485 1N484	1N459A 1N458A	1N607A 1N608	1N4001	1N607A 1N608
1N460A	1N484	1N458A	1N608A	1N4002	1N608A
1N461	1N482	1N461	1N609	1114000	1N609
1N461A 1N462	1N482 1N483	1N461A 1N462	1N609A 1N610	1N4003	1N609A 1N610
1N462A	1N483	1N483	1N610A	1N4003	1N610A
1N463 1N463A	1N485 1N485	1N463 1N485	1N611 1N611A	1N4004	1N611 1N611A
1N464	1N484	1N464	1N612		1N612
1N464A 1N465A	1N484 1N4370A	1N484 1N702A	1N612A 1N613	1N4004	1N612A 1N613
1N466A	1N747A	650C0	1N613A	1N4005	1N613A
1N467A	1N749A	650	1N614	1114005	1N614
1N468A .1N469A	1N750A 1N752A	651 652	1N614A 1N615	1N4005 1N4004	1N614A 1N4004
1N470A	1N754A	653	1N619	1N914	1N625
1N471A 1N472A	1N747A 1N749A	650C0 650	1N622 1N625	1N3070 1N914	1N629 1N625
1N473A	1N750A	651	1N626	1N914	1N626
1N474A 1N475A	1N752A 1N754A	652 653	1N627	1N914	1N627 1N628
1N481	1N645	1N645	1N628 1N629	1N3070 1N3070	1N629
1N482	1N482	1N482	1N631	1N914B	1N915
1N482A 1N482B	1N482 1N482	1N482A 1N482B	1N632 1N633	1N914 1N3070	1N914 TID32
1N483	1N483	1N483	1N634	1N3070	1N3070
1N483A 1N483B	1N483 1N483	1N483A	1N635	1N3070	1N3070 1N916B
1N483B 1N484	1N483 1N484	1N483B 1N484	1N636 1N643	1N4448 1N3070	1N643
1N484A	1N484	1N484A	1N643A	1N3070	1N643
1N484B 1N485	1N484 1N485	1N484B 1N485	1N645 1N645A	1N645 1N645	1N645 1N645A
1N485A	1N485	1N485A	1N646	1N646	1N646
1N485B 1N486	1N485 1N645	1N485B 1N645	1N647 1N648	1N647 1N648	1N647 1N648
1N486A	1N645 1N645	1N645 1N645	1N648 1N649	1N649	1N649
1N486B	1N645	1N645	1N658	1110145	1N658
1N487 1N487A	1N646 1N646	1N646 1N646	1N658A 1N659	1N914B	1N658 1N659
1N487B	1N646	1N646	1N659A	1N914	1N659
1N488 1N488A	1N647 1N647	1N647 1N647	1N660 1N660A	1N914B	1N660 1N660
1N488B	1N647	1N647	1N661		1N661
1N490 1N497	1N914 1N914B	1N462	1N661A	1N3070 1N914	1N661 1N662
1N498	1N914B	TID17 TID17	1N662 1N663	1N914 1N914B	1N663
1N499	1N914B	TID31	1N664	1N756A	1N712 1N716
1N500 1N501	1N914B 1N914B	TID32 TID32	1N665 1N674	1N759 1N750A	1N705A
1N502	1N914B	1N658	1N675	1N753A	1N709A
1N530 1N532		1N530 1N532	1N676 1N677	1N645 1N645	1N484A 1N645
1N533		1N533	1N678	1N645	1N645
1N534 1N535		1N534 1N535	1N679 1N681	1N645 1N646	1N645 1N646
1N536	1N4001	1N536	1N682	1N646	1N646
1N537	1N4002	1N537	1N683	1N647	1N647
1N538 1N539	1N4003 1N4004	1N538 1N539	1N684 1N685	1N647 1N648	1N647 1N648
1N540	1N4004	1N540	1N686	1N648	1N648
1N547 1N548	1N4005 1N4007	1N547 1N4007	1N687 1N689	1N649 1N649	1N649 1N649
1N549	1N4007	1N4007	1N690	1N645	1N645
1N550 1N551		1N550 1N551	1N691 1N692	1N645 1N645	1N645 1N645
1N552		1N552	1N693	1N645_	1N645
1N553 1N554		1N553 1N554	1N695A 1N696	1N914B 1N914	1N663 1N914
1N555		1N555	1N699	1N914B	1N663
1N571 1N599	1N4001	TID31 1N599	1N701 1N702	1N758A	1N714A 1N702
1N599A	1N645	1N599 1N599A	1N702 1N702A	1N4370A	1N702A
1N600	111645	1N600	1N703	1N746A	1N703 1N703A
1N600A 1N601	1N645	1N600A 1N601	1N703A 1N704	114140W	1N703A 1N704
1N601A	1N645	1N601A	1N704A	1N749A	1N704A
1N602 1N602A	1N645	1N602 1N602A	1N705 1N705A	1N750A	1N705 1N705A
1N603		1N603	1N706		1N706
1N603A 1N604	1N646	1N603A 1N604	1N706A 1N707	1N752A	1N706A 1N707
1N604A	1N647	1N604 1N604A	1N707A	1N755A	1N707A
1N605 1N605A	1N648	1N605	1N708	1N752A	1N708 1N708A
114003W	111040	1N605A	1N708A	114752A	114700M

Туре	Preferred TI Type	Nearest TI Type	Туре	Preferred TI Type	Nearest TI Type
1N709 1N709A	1N753A	1N709 1N709A	1N818 1N890	1N914B 1N914	1N916B 1N4447
1N710	1N754A	1N710 1N710A	1N891 1N892	1N914B 1N3070	1N915 1N658
1N710A 1N711		1N711	1N897	1N4148 1N914B	1N660 1N4444
1N711A 1N712	1N755A	1N711A 1N712	1N898 1N899	1N914	1N662
1N712A 1N713	1N756A	1N712A 1N713	1N900 1N901	1N914B 1N914B	1N658 1N658
1N713A 1N714	1N757A	1N713A 1N714	1N902 1N903A	1N3070 1N914B	1N643 1N4446
1N714A	1N758A	1N714A	1N904A 1N905A	1N914B 1N914B	1N4446 1N4446
1N715 1N715A	1N758A	1N715 1N715A	1N906A 1N907A	1N914B 1N914B	1N4446 1N4446
1N716 1N716A	1N759A	1N716 1N716A	1N908A	1N914B	1N4446
1N746 1N746A	1N746 1N746A	1N746 1N746A	1N912 1N913	1N759A 1N759A	1N759 1N759
1N747 1N747A	1N747 1N747A	1N747 1N747A	1N914 1N914A	1N914 1N914B	1N914 1N914A
1N748	1N748	1N748 1N748A	1N914B 1N915	1N914B 1N914B	1N914B 1N915
1N748A 1N749	1N748A 1N749	1N749	1N916 1N916A	1N914 1N914B	1N916 1N916A
1N749A 1N750	1N749A 1N750	1N749A 1N750	1N916B	1N914B	1N916B
1N750A 1N751	1N750A 1N751	1N750A 1N751	1N917 1N919	1N914 1N3070	1N917 TID32
1N751A 1N752	1N751A 1N752	1N751A 1N752	1N920 1N921	1N645 1N645	1N645 1N645
1N752A	1N752A	1N752A 1N753	1N922 1N923	1N645 1N645	1N645 1N645
1N753 1N753A	1N753 1N753A	1N753A	1N925 1N926	1N914 1N914	1N251 1N251
1N754 1N754A	1N754 1N754A	1N754 1N754A	1N927	1N914 1N914 1N3070	1N916 1N643
1N755 1N755A	1N755 1N755A	1N755 1N755A	1N928 1N929	1N914B	1N4446
1N756	1N756 1N756A	1N756 1N756A	1N930 1N931	1N914B 1N914B	1N4446 TID40
1N756A 1N757 1N757A	1N757 1N757A	1N757 1N757A	1N932 1N934	1N914B 1N914B	TID40 1N916B
1N758	1N758	1N758	1N947 1N957	1N649	1N649 1N957
1N758A 1N759	1N758A 1N759	1N758A 1N759	1N957A		1N957A 1N957B
1N759A 1N761	1N759A 1N751	1N759A 1N761	1N957B 1N958		1N958
1N762 1N763	1N752 1N755	1N762 1N763	1N958A 1N958B		1N958A 1N958B
1N764 1N765	1N756 1N758	1N764 1N765	1N959 1N959A		1N959 1N959A
1N766 1N771	1N759 1N914B	1N766 TID37	1N959B 1N960		1N959B 1N960
1N771A	1N645 1N914B	TID31 TID37	1N960A 1N960B		1N960A 1N960B
1N771A 1N772 1N772A	1N645	TID31	1N961 1N961A		1N961 1N961A
1N773 1N773A	1N914B 1N645	TID37 TID31	1N961B	*****	1N961B
1N774 1N774A	1N914B 1N645	TID37 TID31	1N993 1N994	1N914 1N914	1N914 1N914
1N775 1N776	1N914B 1N645	TID37 1N915	1N995 1N996	1N914 1N914B	1N914 1N915
1N777 1N778	1N914B 1N914	TID37 1N643	1N997 1N999	1N914 1N914B	1N914 1N914B
1N779	1N3070 1N914	1N643 TI72	1N1095 1N1096	1N4005 1N4005	1N1095 1N1096
1N781 1N789	1N914	T172	1N1100 1N1101	1111000	1N1100 1N1101
1N790 1N791	1N914 1N914B	T172 T175	1N1102		1N1102
1N792 1N793	1N914B 1N914	TID29 1N662	1N1103 1N1104		1N1103 1N1104
1N794 1N795	1N914 1N914B	1N662 1N915	1N1105 1N1115		1N1105 1N1115
1N796 1N797	1N914B 1N3070	1N658 TID42	1N1116 1N1117		1N1116 1N1117
1N798	1N3070 1N3070	TID42 1N658	1N1118 1N1119		1N1118 1N1119
1N799 1N800	1N3070	1N658	1N1120		1N1120 1N1124A
1N801 1N802	1N3070 1N3070	TID42 1N3070	1N1124A 1N1125A		1N1125A
1N806 1N807	1N914 1N3070	1N628 1N643	1N1126A 1N1127A		1N1126A 1N1127A
1N808 1N810	1N3070 1N914	1N663 1N4151	1N1128A	1814004	1N1128A
1N811	1N914 1N914 1N914	1N251 1N251 1N251	1N1415 1N1440	1N4004 1N4003	1N4004 1N4003
1N812 1N813	1N914	1N251	1N1441 1N1442	1N4004 1N4004	1N4004 1N4004
1N814 1N815	1N914 1N914B	1N625 1N658	1N1487	1N4002	1N1487 1N1488
1N817	1N3070	1N643	1N1488	1N4003	111488

T	Preferred	Nearest	Tuna	Preferred	Nearest
Type 1N1489	TI Type 1N4004	TI Type 1N1489	Type 1N1831	Ті Туре	TI Type 1N1831
1N1490 1N1491	1N4004 1N4005	1N1490 1N1491	1N1831A 1N1831C		1N1831A 1N1831C
1N1492	1N4005	1N1492	1N1831CA		1N1831CA
1N1581 1N1582		1N1581 1N1582	1N1832 1N1832A		1N1832 1N1832A
1N1583 1N1584		1N1583 1N1584	1N1832C 1N1832CA		1N1832C 1N1832CA
1N1585		1N1585	1N1833		1N1833
1N1586 1N1587		1N1586 1N1587	1N1833A 1N1833C		1N1833A 1N1833C
1N1612 1N1613		1N1612 1N1613	1N1833CA 1N1834		1N1833CA 1N1834
1N1614		1N1614 1N1615	1N1834A 1N1834C		1N1834A 1N1834C
1N1615 1N1616		1N1616	1N1834CA		1N1834CA
1N1692 1N1693	1N4002 1N4003	1N1692 1N1693	1N1835 1N1835A		1N1835 1N1835A
1N1694 1N1695	1N4004 1N4004	1N1694 1N1695	1N1835C 1N1835CA		1N1835C 1N1835CA
1N1696	1114004	1N1696	1N1836		1N1836
1N1697 1N1701	1N4001	1N1697 1N4001	1N1836A 1N1836C		1N1836A 1N1836C
1N1702 1N1703	1N4002 1N4003	1N4002 1N4003	1N1836CA 1N2008		1N1836CA
1N1704	1N4004	1N4004	1N2008A		1N2008 1N2008A
1N1705 1N1706	1N4004 1N4005	1N4004 1N4005	1N2008C 1N2008CA		1N2008C 1N2008CA
1N1816 1N1816A		1N1816 1N1816A	1N2009 1N2009A		1N2009 1N2009A
1N1816C 1N1816CA		1N1816C 1N1816CA	1N2009C		1N2009C
1N1817		1N1817	1N2009CA 1N2010		1N2009CA 1N2010
1N1817A 1N1817C		1N1817A 1N1817C	1N2010A 1N2010C		1N2010A 1N2010C
1N1817CA 1N1818		1N1817CA 1N1818	1N2010CA		1N2010CA
1N1818A		1N1818A	1N2011 1N2011A		1N2011 1N2011A
1N1818C 1N1818CA		1N1818C 1N1818CA	1N2011C 1N2011CA		1N2011C 1N2011CA
1N1819 1N1819A		1N1819 1N1819A	1N2012 1N2012A		1N2012 1N2012A
1N1819C 1N1819CA		1N1819C 1N1819CA	1N2012C		1N2012C
1N1820		1N1820	1N2012CA 1N2069	1N4003	1N2012CA 1N2069
1N1820A 1N1820C		1N1820A 1N1820C	1N2069A 1N2070	1N4003 1N4004	1N2069A 1N2070
1N1820CA 1N1821		1N1820CA 1N1821	1N2070A 1N2071	1N4004 1N4005	1N2070A 1N2071
1N1821A 1N1821C		1N1821A 1N1821C	1N2071A	1N4005	1N2071A
1N1821CA		1N1821CA	1N2072 1N2073	1N4001 1N4002	1N4001 1N4002
1N1822 1N1822A		1N1822 1N1822A	1N2074 1N2075	1N4003 1N4003	1N4003 1N4003
1N1822C 1N1822CA		1N1822C 1N1822CA	1N2076 1N2077	1N4004 1N4004	1N4004 1N4004
1N1823 1N1823A		1N1823 1N1823A	1N2078	1N4004	1N4004
1N1823C		1N1823C	1N2079 1N2080	1N4005 1N4001	1N4005 1N4001
1N1823CA 1N1824		1N1823CA 1N1824	1N2081 1N2082	1N4002 1N4003	1N4002 1N4003
1N1824A 1N1824C		1N1824A 1N1824C	1N2083 1N2084	1N4004 1N4004	1N4004 1N4004
1N1824CA 1N1825		1N1824CA 1N1825	1N2085	1N4005	1N4005
1N1825A		1N1825A	1N2086 1N2088	1N4005 1N4005	1N4005 1N4005
1N1825C 1N1825CA		1N1825C 1N1825CA	1N2089 1N2116	1N4005 1N4004	1N4005 1N4004
1N1826 1N1826A		1N1826 1N1826A	1N2117 1N2175	1N4006 1N2175	1N4006 1N2175
1N1826C		1N1826C	1N2372	1N4007	1N4007
1N1826CA 1N1827		1N1826CA 1N1827	1N2482 1N2483	1N4003 1N4004	1N4003 1N4004
1N1827A 1N1827C		1N1827A 1N1827C	1N2484 1N2485	1N4005 1N4003	1N4005 1N4003
1N1827CA 1N1828		1N1827CA 1N1828	1N2486 1N2487	1N4004 1N4004	1N4004 1N4004
1N1828A		1N1828A	1N2488	1N4005	1N4005
1N1828C 1N1828CA		1N1828C 1N1828CA	1N2489 1N3062	1N4005 1N914B	1N4005 1N914B
1N1829 1N1829A		1N1829 1N1829A	1N3063 1N3064	1N3064 1N3064	1N3064 1N3064
1N1829C 1N1829CA		1N1829C 1N1829CA	1N3065 1N3066	1N914B 1N3064	1N914B 1N3064
1N1830 1N1830A		1N1830	1N3067	1N3064	1N3064
1N1830C		1N1830A 1N1830C	1N3068 1N3069	1N3064 1N914B	1N3064 1N914B
1N1830CA		1N1830CA	1N3070	1N3070	1N3070

Type		Preferred	Nearest	_	Preferred	Nearest
1831/46				Type	TI Type	TI Type
183179						
1892 1893			1N4003	1N4370A	1N4370A	
1						
1N3477				1N4372	1N4372	1N4372
1 1 1 1 1 1 1 1 1 1			1N702			
1843/26	1N3477A	1N4372A		1N4375	1N914 1N914B	
1N3480				1N4378	LS400	
18486	1N3480	1N649	1N649			
1N3507		1N30/0	1N643 1N3506	1N4447	1N4448	1N4447
1 1 1 1 1 1 1 1 1 1	1N3507		1N3507			
NAS510					1N914B	1N4444
1 1 1 1 1 1 1 1 1 1						
1	1N3511					
1	1N3512 1N3513			1N4523		
1	1N3514				1N4531 1N4531	
1 1 1 1 1 1 1 1 1 1			1N3515 1N3516	1N4533	1N4531	1N4533
1N3518			1N3517			
1.13520	1N3518		1N3518 1N3519		1N645	
1N3535			1N3520	1N4542	1N647	
1N3505	1N3535					
1 1 1 1 1 1 1 1 1 1	1N3536			1N4545	1N649	1N649
1N3993	1N3568	1N914B	1N4446		1N914B	
1N3596					1N4001	
1N3556	1N3596	1N3070	1N3070			
1N3601	1N3598	1N914	1N914 1N2070			
N3602						
1N35604	1N3602	1N3070				
1N3667						
1N36567	1N3607	1N914B	1N914B			
1N4005	1N3656			2N34	2N404	2N404
18358	1N3658	1N4005	1N4005			
1N649						
1N3731						
1N366	1N3731					
1						
1N3868				2N45		
1	1N3868	1N4005				
1						
1N3956				2N49	2N404	
1N4001						
1N4003						
1N4004				2N53	2N404	
1N4006	1N4004	1N4004				
1N4007						
1N4043 1N914B 1N914B 2N59 2N404 2N404 1N4087 1N914B 1N914B 2N60 2N404 2N404 1N4099 1N4099 2N61 2N404 2N404 1N4100 1N4100 2N62 2N404 2N404 1N4101 1N4101 2N63 2N404 2N404 1N4102 1N4102 2N64 2N404 2N404 1N4103 1N4103 2N65 2N404 2N404 1N4104 1N4104 2N66 T13027 T13027 1N4105 1N4105 2N68 T13027 T13027 1N4106 1N4106 2N71 2N404 2N404 1N4106 1N4106 2N71 2N404 2N404 1N4148 1N4148 2N73 2N404 2N404 1N4148 1N4148 2N74 2N404 2N404 1N4149 1N4148 1N4149 2N75 2N404 2N404 1N4150 1N914B 1N4444 <td></td> <td></td> <td></td> <td>2N57</td> <td>T13027</td> <td></td>				2N57	T13027	
1N4099	1N4043					
1N4100		1N914B				
1N4101 1N4101 2N63 2N404 2N404 1N4102 1N4102 2N64 2N404 2N404 1N4103 1N4103 2N65 2N404 2N404 1N4104 1N4103 2N65 2N404 2N404 1N4105 1N4106 2N66 Ti3027 Ti3027 1N4106 1N4106 2N71 2N404 2N404 1N4147 1N914B 1N914B 2N73 2N404 2N404 1N4148 1N414B 2N73 2N404 2N404 1N4149 1N414B 2N74 2N404 2N404 1N4150 1N914B 1N414B 2N75 2N404 2N404 1N4151 1N914B 1N444B 2N75 2N404 2N404 1N4151 1N444B 1N4151 2N77 2N404 2N404 1N4152 1N444B 1N4151 2N77 2N404 2N404 1N4153 1N444B 1N4152 2N78 2N1302 2N1302 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>2N404</td></t<>						2N404
1N4103	1N4101					
1N4104						
1N4105 1N4105 2N68 T13027 T13027 1N4106 1N4106 2N71 2N404 2N404 1N4147 1N914B 1N914B 2N73 2N404 2N404 1N4148 1N4148 1N4148 2N74 2N404 2N404 1N4149 1N4148 1N4149 2N75 2N404 2N404 1N4150 1N914B 1N4444 2N76 2N404 2N404 1N4151 1N4448 1N4151 2N77 2N404 2N404 1N4152 1N4448 1N4152 2N78 2N1302 2N1302 1N4153 1N4448 1N4153 2N78A 2N1302 2N1302 1N4154 1N448 1N4154 2N79 2N404 2N404 1N4244 1N914B 1N4466 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404						
1N4147			1N4105			
1N4148		1810140				
1N4149 1N4148 1N4149 2N75 2N404 2N404 1N4150 1N914B 1N4444 2N76 2N404 2N404 1N4151 1N4448 1N4151 2N77 2N404 2N404 1N4152 1N4448 1N4152 2N78 2N1302 2N1302 1N4153 1N4448 1N4153 2N78A 2N1302 2N1302 1N4154 1N448 1N4154 2N79 2N404 2N404 1N4244 1N914B 1N4446 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404						2N404
1N4151 1N4448 1N4151 2N77 2N404 2N404 1N4152 1N4448 1N4152 2N78 2N1302 2N1302 1N4153 1N4448 1N4153 2N78A 2N1302 2N1302 1N4154 1N4448 1N4154 2N79 2N404 2N404 1N4244 1N914B 1N4446 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404		1N4148	1N4149	2N75	2N404	
1N4151 1N4448 1N4152 2N78 2N1302 2N1302 1N4152 1N4448 1N4153 2N78A 2N1302 2N1302 1N4153 1N4448 1N4153 2N78A 2N1302 2N1302 1N4154 1N4448 1N4154 2N79 2N404 2N404 1N4244 1N914B 1N4446 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404						
1N4153 1N4448 1N4153 2N78A 2N1302 2N1302 1N4154 1N4448 1N4154 2N79 2N404 2N404 1N4244 1N914B 1N4446 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404						2N1302
1N4244 1N914B 1N4446 2N80 2N404 2N404 1N4305 1N4148 1N4305 2N81 2N404 2N404			1N4153	2N78A	2N1302	
1N4244 1N914B 1N4446 2N60 1N4305 1N4148 1N4305 2N81 2N404 2N404						
1117505 1117170 1117505 201404 201404						
					2N404	2N404

Туре	Preferred Ti Type	Nearest TI Type	Туре	Preferred	Nearest
2N94	2N1304	2N1304	*2N204	Ti Type 2N1377	TI Type 2N1373
2N96	2N404	2N404	*2N205 2N206	2N1377	2N1372
2N97 2N98	2N1302 2N1304	2N1302 2N1304	2N206 2N207	2N1377 2N1377	2N1372 2N1372
2N99	2N1306	2N1304 2N1306	2N211	2N1302	2N1302 2N1302 2N1302
2N100 2N101	2N1306 2N404	2N1306 2N404	2N212 2N213	2N1302 2N1304	2N1302 2N1304
2N102	2N1302	2N1302	2N214	2N1304	2N1304
2N103 2N104	2N1302 2N404	2N1302 2N404	2N215 2N216	2N404 2N1302	2N404 2N1302
2N105	2N404	2N404	2N217	2N1302 2N404	2N1302 2N404
2N106 2N107	2N404 2N404	2N404 2N404	2N218	2N404	2N404
2N108	2N404	2N404	2N219 2N220	2N404 2N404	2N404 2N404
2N109	2N404	2N404	2N223	2N404	2N404 2N404
2N111 2N112	2N404 2N404	2N404 2N404	2N224 2N225	2N404 2N404	2N404 2N404
2N115	2N404	2N404	2N226	2N404	2N404
2N116 2N117	2N404	2N404 2N117	2N227 2N228	2N404 2N1302	2N404 2N1302
2N118		2N118	l 2N229	2N1302	2N1302
2N118A 2N119		2N118A 2N119	2N231 2N232	2N404 2N404	2N404 2N404
2N120		2N120	l 2N233	2N1306	2N1306
2N122 2N123	2N1303	2N122 2N1303	2N234 2N234A	T13027	T13027
2N124	2N1303 2N1302	2N1303 2N1302	2N234A 2N235	TI3027 TI3027	T13027 T13027
2N125 2N126	2N1304 2N1304	2N1304 2N1304	2N235A	TI3027	T13027
2N127	2N1304	2N1304 2N1304	2N235B 2N236	TI3027 TI3027	TI3027 TI3027
2N128	2N404	2N404	2N236A	TI3027	T13028
2N129 2N130	2N404 2N404	2N404 2N404	2N236B 2N237	TI3027 2N404	T13028 2N404
2N131	2N404	2N404	2N238 2N240	2N404	2N404
2N132 2N133	2N404 2N404	2N404 2N404	2N240 2N241	2N404 2N404	2N404 2N404
2N135	2N404	2N404	2N242	T13027	T13029
2N136 2N137	2N404 2N404	2N404 2N404	2N243 2N244		2N243 2N244
2N138	2N404	2N404	2N247		2N2188
2N139 2N140	2N404 2N404	2N404 2N404	2N248 2N249	2N404	2N2188 2N404
2N141	2N1038	2N1038	2N250 2N250A	2N456A	2N250
2N143 2N145	2N1038 2N1302	2N1038 2N1302	2N250A 2N251	2N456A 2N456A	2N250A 2N251
2N146	2N1302	2N1302	2N251A	2N456A	2N251A
2N147 2N148	2N1302 2N1302	2N1302 2N1302	2N252 2N253	2N1302	2N2188 2N1302
2N149	2N1302	2N1302	2N254	2N1302	2N1302
2N150 2N155	2N1302 TI3027	2N1302 TI3027	2N255 2N255A	TI3027 TI3027	TI3027 TI3027
2N156	TI3027	TI156	2N256 2N256A	TI3027	TI3027
2N157	2N1038	2N1038	2N256A 2N257	TI3027 TI3027	T13027 T13027
2N158 2N158A	T13027 T13027	TI158 TI158A	*2N257B	TI3027	T13027
*2N164	2N1302	2N1302	2N263 2N264		2N263 2N264
*2N165 2N166	2N1302 2N1304	2N1302 2N1304	2N265	2N404	2N404
2N167	2N1306	2N1306	2N266 2N267	2N404	2N404 2N2188
2N168 2N169	2N1306 2N1308	2N1306 2N1308	2N268	TI3027	713027
2N170	2N1308	2N1308	2N268A	TI3027 2N1303	TI3030 2N1303
2N173 2N174	T13027 T13027	TI3027 TI3027	2N269 2N270	2N1303 2N404	2N1303 2N404
2N174A	TI3027	TI3027	2N271	2N404	2N404
2N175	2N404 TI3027	2N404 TI3027	2N272 2N273	2N404 2N404	2N404 2N404
2N176~ 2N178	TI3027	TI3027	2N274	001404	2N2188
2N179 2N180	TI3027 2N404	TI3027 2N404	2N279 2N280	2N404 2N404	2N404 2N404
2N180 2N181	2N404 2N404	2N404 2N404	2N281	2N404	2N404
2N182	2N1302	2N1302	2N282 2N283	2N404 2N404	2N404 2N404
2N183 2N184	2N1302 2N1306	2N1302 2N1306	2N284	2N404	2N404
2N185	2N404	2N404	2N285 2N285A	TI3027 TI3027	TI3027 TI3027
2N186	2N404	2N404	*2N285B	TI3027	T13027
2N186A 2N193	2N404 2N1302	2N404 2N1302	2N291 2N292	2N404 2N1302	2N404 2N1302
2N194	2N1302	2N1302	2N293	2N1304	2N1304

^{*}Denotes 1N- or 2N- numbers not JEDEC registered through September 1968.

Tuna	Preferred	Nearest	Туре	Preferred TI Type	Nearest TI Type
Type 2N296	TI Type 2N456A	TI Type 2N3146	2N388	2N1306	2N388
2N297 2N297A	T13027	T13028 T13028	2N388A 2N389	2N1306	2N388A 2N389
2N299		2N2188	2N389A	TI3027	2N389A TI3027
2N300 2N301	T13027	2N2188 TI3027	2N392 2N393		2N2189
2N301A 2N302	TI3027 2N1303	TI3028 2N1303	2N394 2N395	2N404 2N1308	2N404 2N395
2N303	2N1303	2N1303	2N396	2N1305	2N396
2N306 2N307	2N1302 TI3027	2N1302 TI3027	2N396A 2N397	2N1307 2N1307	2N397 2N397
2N307A 2N308	TI3027 2N1377	TI3027 2N1375	2N398 2N398A	2N398 2N398	2N398 2N398A
2N309	2N1377	2N1375	2N398B	2N398	2N398B
2N310 2N311	2N1377 2N404	2N1375 2N404	2N399 2N400	TI3027 TI3027	T13028 T13028
2N312 2N315	2N1304	2N1304 2N315A	2N401 2N402	TI3027 2N404	T13028 2N404
2N315A		2N315A	2N403	2N404	2N404
2N316 2N317	2N404	2N404 2N317A	2N404 2N404A	2N404 2N404	2N404 2N404A
2N317A 2N325	TI3027	2N317A TI3027	2N405 2N406	2N404 2N404	2N404 2N404
2N326	TI3027	TI3027	2N407	2N404	2N404
2N327A 2N328A 2N329A		2N327A 2N328A	2N408 2N409	2N404 2N404	2N404 2N404
2N329A 2N331	2N404	2N329A 2N404	2N410 2N411	2N404 2N404	2N404 2N404
2N332	2.1.101	2N332 2N332A	2N412	2N404	2N404
2N332A 2N333		2N333	2N413 2N414	2N404 2N404	2N404 2N404
2N333A 2N334		2N333A 2N334	2N415 2N416	2N404 2N404	2N404 2N404
2N334A		2N334A 2N335	2N417	2N404	2N404
2N335 2N335A		2N335A	2N418 2N419	2N456A TI3027	2N3146 TI3029
2N336 2N336A		2N336 2N336A	2N420 2N420A	T13027 2N456A	T13029 2N3146
2N337		2N337	2N424	2117307	2N424
2N338 2N339		2N338 2N339	2N424A 2N425	2N404	2N424A 2N404
2N340 2N341		2N340 2N341	2N426 2N427	2N404 2N404	2N426 2N427
2N342		2N342	2N428	2N404	2N428
2N342A 2N343		2N342A 2N343	2N428A 2N438	2N404 2N1304	2N428 2N438
2N344 2N345	2N404 2N404	2N404 2N404	2N438A 2N439	2N1304 2N1304	2N438A 2N439
2N346	2N404 TI3027	2N404 TI3028	2N439A	2N1304	2N439
2N350 2N350A	TI3027	TI3028	2N440 2N444	2N1304 2N1304	2N440 2N1304
2N351 2N351A	TI3027 TI3027	T13028 T13028	2N444A 2N445	2N1304 2N1304	2N1304 2N1304
2N352 2N353	T13027 T13027	T13027 T13027	2N445A	2N1304	2N1304
2N356	2N1302	2N1302	2N446A 2N447A	2N1304 2N1304	2N1304 2N1304
2N356A 2N357	2N1302 2N1302	2N1302 2N1302	2N448 2N449	2N1307 2N1306	2N1307 2N1306
2N357A 2N358	2N1302 2N1304	2N1302 2N1304	2N450 2N456	2N1302 2N456A	2N1302 2N456A
2N358A 2N359	2N1304 2N404	2N1304 2N404	2N456A	2N456A	2N456A
2N360	2N404	2N404	2N456B 2N457	2N456A 2N456A	2N456B 2N457A
2N361 2N362	2N404 2N404	2N404 2N404	2N457A 2N457B	2N456A 2N456A	2N457A 2N457B
2N363 2N364	2N404 2N1306	2N404 2N1306	2N458	2N456A	2N458A
2N365	2N1306	2N1306	2N458A 2N458B	2N456A 2N456A	2N458A 2N458B
2N366 2N367	2N1306 2N404	2N1306 2N404	2N459 2N459A	2N456A TI3027	2N3146 TI3031
2N370 2N371		2N2188 2N2188	2N462 2N464	2N404	2N1319 2N404
2N372		2N2188	2N465	2N404	2N404
2N373 2N374		2N2188 2N2188	2N466 2N467	2N404 2N404	2N404 2N404
2N375 2N376	TI3027 TI3027	TI3031 TI3028	2N470 2N471		2N470 2N471
2N377	2N1302 2N1302	2N377 2N377	2N472		2N472 2N473
2N377A 2N378	TI3027	T13027	2N473 2N474		2N474
2N379 2N380	TI3027 TI3027	TI3029 TI3030	2N475 2N476		2N475 2N476
2N384		2N2189	2N477		2N477
2N385 2N385A	2N1304 2N1304	2N1304 2N1304	2N478 2N479		2N478 2N479
2N386	TI3027	TI3027	2N480		2N480
2N387	TI3027	TI3027	2N481		2N2188

	Preferred	Nearest	ı	Preferred	Nearest
Type	Ti Type	TI Type	Type	TI Type	Ti Type
2N482 2N483		2N2189 2N2189	2N555 2N556	TI3027	TI3027
2N484		2N2189	2N557	2N1302 2N1304	2N1302 2N1304
2N485		2N2190	2N558	2N1306	2N1306
2N486 2N487		2N2191 2N2191	2N560 2N561	2N3015 2N456A	2N2537
2N489	2N491A	2N489	2N574	2N456A	2N3146 2N1022A
2N489A 2N489B	2N491A 2N491A	2N489A	2N574A 2N576	2N456A	2N3146
2N490	2N491A	2N489B 2N490	2N578	2N1304 2N404	2N1304 2N404
2N490A 2N490B	2N491A	2N490A	2N579	2N404	2N404
2N491	2N491A 2N491A	2N490B 2N491	2N580 2N581	2N404 2N404	2N404 2N581
2N491A 2N491B	2N491A	2N491A	2N582	2N404	2N582
2N491B 2N492	2N491A 2N491A	2N491B 2N492	2N583 2N584	2N404 2N404	2N404
2N492A	2N491A	2N492A	2N585	2N1304	2N404 2N1304
2N492B 2N492C	2N491A 2N491A	2N492B 2N492B	2N586 2N587	2N404	2N404
2N493	2N491A	2N4 9 3	2N588	2N1304	2N587 2N2189
2N493A 2N493B	2N491A 2N491A	2N493A 2N493B	2N591 2N594	2N404	2N404
2N494	2N491A	2N494	2N595		2N594 2N595
2N494A 2N494B	2N491A 2N491A	2N494A	2N596	0111007	2N596
2N494C	2N491A	2N494B 2N494C	2N597 2N598	2N1997 2N1997	2N1997 2N1998
2N495 2N496	2N2945A 2N2945A	2N2944	2N599	2N1997	2N1999
2N497	2N2945A	2N2944 2N497	2N600 2N601	2N1997 2N1997	2N1998
2N497A 2N498		2N497A	2N602	2N1997 2N2635	2N1999 2N2635
2N498A		2N498 2N498A	2N603 2N604	2N2635	2N2635
2N499		2N2188	2N605	2N2635 2N2635	2N2635 2N2635
2N500 2N501		2N2189 2N2189	2N606	2N2635	2N2635
2N502		2N2189 2N2189	2N607 2N608	2N2635 2N2635	2N2635 2N2635
2N503 2N504		2N2189	2N609	2N404	2N404
2N508		2N2189 2N508	2N610 2N611	2N404 2N404	2N404 2N404
2N511 2N511A	2N456A	2N511	2N612	2N404	2N404 2N404
2N511A 2N511B	2N456A 2N456A	2N511A 2N511B	2N613 2N614	2N404	2N404
2N512	2N456A	2N511B 2N512	2N614 2N615	2N404 2N404	2N404 2N404
2N512A 2N512B	2N456A 2N456A	2N512A	2N617	2N404	2N404
2N513	2N456A	2N512B 2N513	2N618 2N622	TI3027 2N2432	TI3030 2N2432
2N513A 2N513B	2N456A 2N456A	2N513A	2N624		2N2188
2N514	2N456A	2N513B 2N514	2N625 2N627	2N1308 TI3027	2N1308 TI3027
2N514A 2N514B	2N456A	2N514A	2N628	TI3027	TI3028
2N515	2N456A	2N514B 2N1304	2N629 2N630	T13027 T13027	TI3030 TI3031
2N516 2N517	2N1306	2N1304	2N631	2N404	2N404
2N518	2N404	2N1306 2N404	2N632 2N633	2N404 2N404	2N404 2N404
2N519 2N520	2N404 2N404	2N404	2N634	2N1304	2N634A
2N520A	2N404 2N404	2N520 2N520A	2N634A 2N635	2N1304 2N1304	2N634A 2N635A
2N521	2N1377	2N1377	2N635A	2N1304	2N635A
2N522 2N522A		2N522A 2N522A	2N636 2N636A	2N1304 2N1304	2N636A 2N636A
2N523	2N1377	2N1377	2N637	TI3027	TI3027
2N524 2N525		2N524 2N525	2N637A 2N637B	TI3027	TI3031
2N526		2N526	2N638	2N456A TI3027	2N3146 TI3027
2N527 2N534	2N404	2N527	2N638A 2N638B	TI3027	T13028
2N535	2N404	2N404 2N404	2N639	2N456A TI3027	2N3146 TI3028
2N536 2N538	2N404 TI3027	2N404	2N639A	2N456A	2N3146
2N538A	TI3027	TI3031 TI3031	2N639B 2N640	2N456A	2N3146 2N2188
2N539 2N539A	T13027 T13027	TI3031	2N641		2N2188
2N540	TI3027	TI3031 TI3031	2N642 2N643	2N2635	2N2188 2N2635
2N540A	T13027	Ti3031	2N644	2N2635	2N2635 2N2635
2N541 2N541A		2N541 2N541	2N645 2N647	2N2635 2N1306	2N2635
2N542		2N542	2N649	2N1308	2N1306 2N1308
2N542A 2N543		2N542	2N650 2N650A	2N1997	2N650A
2N543A		2N543 2N543	2N651	2N1997 2N1997	2N650A 2N651A
2N544		2N2188	2N651A	2N1997	2N651A
2N549 2N550	2N1893	2N1893	2N652 2N652A	2N1997 2N1997	2N652A 2N652A
2N551	2N1893 2N1893	2N1893 2N1893	2N653	2N1997	2N1997
2N552	2N1893	2N1893	2N654 2N655	2N1997 2N1997	2N1997 2N1997
2N554	TI3027	TI3027	2N656		2N656

Туре	Preferred TI Type	Nearest TI Type	Туре	Preferred Ti Type	Nearest TI Type
2N656A		2N656A	2N727		2N727
2N657 2N657A		2N657 2N657A	2N728 2N729	2N2219 2N2219	2N2217 2N2217
2N658 2N659	2N2000 2N2000	2N658 2N659	2N730 2N731	2N718A 2N718A	2N730 2N731
2N660	2N2000	2N660	2N734	2117 2071	2N734
2N661 2N662	2N2000 2N2000	2N661 2N662	2N735 2N735A		2N735 2N735
2N663 2N665	T13027 T13027	TI3027 TI3028	2N736 2N736A		2N736 2N736A
2N669	TI3027	T13027	2N736B		2N736A
2N670 2N671	2N1038 2N1038	2N1038 2N1038	2N738 2N739		2N738 2N739
2N672 2N673	2N1038 2N1038	2N1038 2N1038	2N739A 2N740		2N739 2N740
2N674	2N1038 2N456A	2N1038 2N456A	2N740A 2N741	2N5043	2N740 2N2996
2N677 2N677A	2N456A	2N456B	2N741A	2N5043	2N2997
2N677B 2N677C	2N456A 2N456A	2N3146 2N3146	2N742 2N742A	2N2219 2N2219	2N2217 2N2217
2N678 2N678A	2N456A 2N456A	2N513 2N513	2N743 2N743A		2N743 2N743
2N678B	2N456A 2N456A	2N513A 2N513B	2N744 2N744A		2N744 2N744
2N678C 2N679	2N456A 2N1304	2N313B 2N1304	2N745		2N337
2N680 2N681	2N404	2N404 2N681	2N746 2N747		2N338 2N337
2N681A		2N681A	2N748 2N749	2N697	2N337 2N696
2N682 2N682 A		2N682 2N682A	2N751	2N697	2N697
2N683 2N683A		2N683 2N683A	2N752 2N753		2N736 2N753
2N684		2N684 2N684A	2N754 2N755	2N1893 2N1893	2N1893 2N1893
2N684A 2N685		2N685	2N756	2.112030	2N734 2N734
2N685A 2N686		2N685A 2N686	2N757 2N757A		2N734
2N686A 2N687		2N686A 2N687	2N758 2N758A		2N734 2N734
2N687A		2N687A 2N688	2N758B		2N734 2N759
2N688 2N688A		2N688A	2N759 2N759A		2N759A
2N689 2N689A		2N689 2N689A	2N759B 2N760		2N759A 2N760
2N694 2N695	2N2635 2N2635	2N2635 2N2635	2N760A 2N760B		2N760A 2N760A
2N696	2N697	2N696	2N768	2N964 2N964	2N961 2N964
2N697 2N698	2N697 2N1893	2N697 2N698	2N769 2N773	211904	2N734
2N699 2N699A	2N1893 2N1893	2N699 2N699	2N774 2N775		2N734 2N735 2N734
2N699B	2N1893 2N5043	2N699 2N2415	2N776 2N777		2N734 2N734
2N700 2N700A	2N5043	2N2415	2N778	2N964	2N735 2N964
2N702 2N703		2N702 2N703	2N779 2N779A	2N964 2N964	2N964
2N705 2N705A	2N964 2N964	2N705 2N705	2N780 2N781	2N2635	2N780 2N2635
2N706 2N706A		2N706 2N706A	2N782 2N783	2N2635 2N3010	2N2635 2N3010
2N706B 2N706C		2N706B 2N706B	2N784 2N784A	2N3010 2N3010	2N3010 2N3010
2N707	2N2484	2N2483 2N2484	2N789	2143010	2N332 2N333
2N707A 2N708	2N2484	2N708	2N790 2N791		2N334
2N708A 2N709	2N3010	2N708 2N709	2N792 2N793		2N335 2N336
2N709A	2N3010 2N964	2N709	2N794 2N795	2N2635 2N2635	2N2635 2N2635
2N710 2N710A	2N964	2N710 2N710	2N796	2N2635	2N2635 2N797
2N711 2N711A	2N964 2N964	2N711 2N711A	2N797 2N799	2N797 2N1309	2N1309
2N711B 2N715	2N964 2N4875	2N711B 2N4875	2N800 2N801	2N404 2N404	2N404 2N404
2N716	2N4875 2N718A	2N4875 2N717	2N802 2N803	2N404 2N404	2N404 2N404
2N717 2N718	2N718A	2N718	2N804	2N404 2N404 2N404	2N404 2N404
2N718A 2N719	2N718A 2N720A	2N718A 2N719	2N805 2N806	2N404	2N404
2N719A 2N720	2N720A 2N720A	2N719A 2N720	2N807 2N808	2N404 2N404	2N404 2N404
2N720A 2N721	2N720A 2N2907	2N720A 2N721	2N809 2N810	2N404 2N404	2N404 2N404
2N721A	2N2907	2N721 2N721 2N722	2N812 2N813	2N404 2N404	2N404 2N404
2N722 2N722A	2N2907 2N2907	2N722	2N814	2N404 2N404 2N404	2N404 2N404 2N404
2N725 2N726	2N2635	2N2635 2N726	2N815 2N816	2N404 2N404	2N404 2N404

Туре	Preferred Ti Type	Nearest TI Type	Type	Preferred TI Type	Nearest TI Type
2N817	2N404	2N404	2N934	2N2635	2N2635
2N818 2N819	2N404 2N404	2N404 2N404	2N935 2N936	2N2945A 2N2945A	2N2944 2N2944
2N820	2N404	2N404	2N937	2N2945A	2N2944
2N821 2N822	2N404 2N404	2N404 2N404	2N938 2N939	2N2945A 2N2945A	2N2944 2N2944
2N823	2N404	2N404	2N940	2N2945A	2N2944
2N824 2N825	2N404 2N404	2N404 2N404	2N941 2N942	2N2945A 2N2945A	2N2944 2N2944
2N826	2N404	2N404	2N943	2N2945A	2N2944
2N834 2N834A		2N3014 2N3014	2N944	2N2945A	2N2944
2N835		2N3014	2N945 2N946	2N2945A 2N2945A	2N2944 2N2944
2N838	2N2635	2N2635 2N929	2N947 2N955	2N797	2N706 2N797
2N839 2N840	2N930 2N930	2N929	2N955A	2N797	2N797
2N841 2N842	2N930 2N4252	2N929 2N4253	2N956 2N957	2N718A 2N2484	2N956 2N2484
2N843	2N4252	2N4253	2N958	2112404	2N706
2N844 2N845	2N1893 2N1893	2N1893 2N1893	2N959 2N960	000064	2N706 2N960
2N846	2N964	2N964	2N961	2N964 2N964	2N961
2N846A	2N964 2N964	2N964 2N964	2N962 2N963	2N964 2N964	2N962 2N963
2N846B 2N849	211964	2N849	2N964	2N964 2N964	2N964
2N850 2N851		2N850 2N851	2N964A 2N965	2N964 2N964	2N964A 2N965
2N852		2N852	2N966	2N964	2N966
2N858 2N859	2N2945A 2N2945A	2N2945 2N2945	2N967 2N968	2N964 2N964	2N967 2N968
2N860	2N2945A	2N2945	2N969	2N964	2N969
2N861 2N862	2N2945A 2N2945A	2N2944 2N2944	2N970 2N971	2N964 2N964	2N970 2N971
2N863	2N2945A	2N2944	2N972	2N964	2N972
2N864 2N864A	2N2905 2N2905	2N2904 2N2904	2N973 2N974	2N964 2N964	2N973 2N974
2N865	2N2905	2N2904	2N975	2N964	2N975
2N865A 2N869	2N2905 2N2905	2N2904 2N2904	2N976 2N977	2N964 2N964	2N961 2N985
2N869A	2N2894	2N3576	2N978	2N2907	2N721
2N870 2N871	2N720A 2N720A	2N870 2N871	2N979 2N980	2N2635 2N2635	2N2635 2N2635
2N876	2117207	2N876	2N982	2N964	2N985
2N877 2N878		2N877 2N878	2N983 2N984	2N964 2N964	2N985 2N985
2N879		2N879	2N985	2N964	2N985
2N880 2N881	•	2N880 2N881	2N986 2N987	LS600 2N2635	LS600 2N2635
2N884		2N884	2N988 2N989		2N706
2N885 2N886		2N885 2N886	2N990	2N2635	2N706 2N2635
2N887		2N887	2N991	2N2635	2N2635
2N888 2N889		2N888 2N889	2N992 2N993	2N2635 2N2635	2N2635 2N2635
2N902		2N332 2N333	2N995 2N995A		2N995 2N995
2N903 2N904		2N334	2N996	2N2907	2N2906
2N905 2N906		2N335 2N336	2N997 2N998	2N997 2N997	2N997 2N997
2N907	2N3015	2N2537	2N999	2N997	2N997
2N908 2N909	2N3015 2N2243A	2N2537 2N2192	2N1000 2N1010	2N404 2N1302	2N404A 2N1302
2N910	2N720A	2N910	2N1011	T13027	T13028
2N911 2N912	2N720A 2N720A	2N911 2N912	2N1012 2N1014	2N1306 2N456A	2N388A 2N1021
2N914	2117200	2N914	2N1017	2N404	2N582
2N914A 2N915		2N914 2N915	2N1018 2N1021	2N404 2N456A	2N582 2N1021
2N915A		2N915	2N1021A	2N456A	2N1021A
2N916 2N916A		2N916 2N916	2N1022 2N1022A	2N456A 2N456A	2N1022 2N1022 A
2N916B	011010	2N916	2N1023	2N2635	2N2635 2N2944
2N917 2N917A	2N918 2N918	2N917 2N917	2N1024 2N1025	2N2945A 2N2945A	2N2944 2N2944
2N918	2N918	2N918	2N1026	2N2945A	2N2944
2N919 2N920		2N706 2N706	2N1027 2N1028	2N2945A 2N2945A	2N2944 2N2944
2N923 2N924	2N2605 2N2605	2N2604 2N2604	2N1029 2N1029A	TI3027 TI3027	T13027 T13027
2N925	2N2605	2N2604	2N1029B	TI3027	TI3031
2N926 2N927	2N2605 2N2605	2N2604 2N2604	2N1029C 2N1030	2N456A 2N456A	2N3146 2N514 A
2N928	2N2605	2N2604	2N1030A	2N456A	2N514B
2N929	2N930 2N930	2N929 2N929A	2N1031 2N1031A	TI3027 TI3027	TI3027 TI3027
2N929A 2N930	2N930	2N930	2N1031B	T13027	T13031
2N930A 2N930B	2N930 2N930	2N930A 2N930A	2N1031C 2N1032	2N456A 2N456A	2N3146 2N514 A
2113000	211330	21133071	2.12002	,	

Tuno	Preferred TI Type	Nearest TI Type	Туре	Preferred TI Type	Nearest TI Type
Type 2N1032A	2N456A	2N514B	2N1130	2N1377	2N1375
2N1034	2N2945A	2N2944	2N1131	2N2905	2N1131
2N1035	2N2945A	2N2944	2N1131A	2N2905	2N1131
2N1036	2N2945A	2N2944	2N1132	2N2905	2N1132
2N1037	2N2945A	2N2944	2N1132B	2N2905	2N1132
2N1038	2N1038	2N1038	2N1136	TI3027	TI3027
2N1038-1	2N1038	2N2552	2N1136A	TI3027	TI3028
2N1038-2	2N1038	2N2556	2N1136B	2N456A	2N3146
	2N1038	2N1039	2N1137	2N456A	2N456A
2N1039	2N1038	2N2553	2N1137A	2N456A	2N1022A
2N1039-1		2N2557	2N1137B	2N456A	2N3146
2N1039-2 2N1040	2N1038 2N1038	2N1040	2N1138	TI3027	T13029
2N1040-1	2N1038	2N2554	2N1138A	2N456A	2N3146
2N1040-2	2N1038	2N2558	2N1138B	2N456A	2N3146
2N1041	2N1038	2N1041	2N1141		2N1141
2N1041-1	2N1038	2N2555	2N1141A		2N1141A
2N1041-2	2N1038	2N2559	2N1142		2N1142
2N1042	2N1038	2N1042	2N1142A		2N1142A
2N1042-1	2N1038	2N2560 2N2564	2N1143 2N1143A		2N1143 2N1143A
2N1042-2 2N1043	2N1038 2N1038	2N1043	2N1144	2N1303	2N1303
2N1043-1	2N1038	2N2561	2N1145	2N1303	2N1303
2N1043-2	2N1038	2N2565	2N1146	2N456A	2N456A
2N1044	2N1038	2N1044	2N1146A	2N456A	2N456B
2N1044-1	2N1038	2N2562	2N1146B	2N456A	2N1021A
2N1044-2	2N1038	2N2566	2N1146C	2N456A	2N3146
2N1045	2N1038	2N1045	2N1147	2N456A	2N456A
2N1045-1	2N1038	2N2563 2N2567	2N1147A 2N1147B	2N456A 2N456A	2N456B 2N1021A
2N1045-2 2N1046	2N1038 2N1907	2N1046	2N1147C	2N456A	2N3146
2N1046A	2N1907	2N1046	2N1149		2N1149
2N1046B	2N1907	2N1046	2N1150		2N1150
2N1047 2N1047A		2N1047 2N1047A	2N1151 2N1152		2N1151 2N1152
2N1047B 2N1048		2N1047B 2N1048	2N1153 2N1154		2N1153 2N1154
2N1048A 2N1048B		2N1048A 2N1048B	2N1155 2N1156		2N1155 2N1156
2N1049		2N1049 2N1049A	2N1158	2N5043	2N2996
2N1049A 2N1049B		2N1049B	2N1159 2N1160	2N456A 2N456A	2N3146 2N3146
2N1050		2N1050	2N1162	2N456A	2N514A
2N1050A		2N1050A	2N1162A	2N456A	2N514A
2N1050B	2N2219	2N1050B	2N1163	2N456A	2N514A
2N1051		2N2217	2N1163A	2N456A	2N514A
2N1052 2N1054		2N5058 2N5059	2N1168 2N1169	TI3027	TI3027 2N1995
2N1058	2N404	2N404	2N1170	2N404	2N1996
2N1059	2N404	2N404	2N1171		2N404
2N1060	2N2219	2N2217 2N2188	2N1172 2N1173	TI3027 2N1304	TI3028 2N1605
2N1065		2N2189	2N1174	2N404	2N404A
2N1066		2N328A	2N1176	2N1038	2N1038
2N1074 2N1075		2N328A	*2N1176A	2N1038	2N1038
2N1076 2N1078	2N404	2N328A 2N404	*2N1176B 2N1177	2N1038	2N1041 2N2188
2N1081	2N3725	2N3724	2N1178		2N2188
2N1082	2N2219	2N2217	2N1179		2N2188
2N1086	2N1308	2N1308	2N1180	2N1038	2N2188
2N1086A	2N1308	2N1308	2N1183		2N1038
2N1087	2N1308	2N1308	2N1183A	2N1038	2N1038
2N1090	2N1304	2N1605	2N1183B	2N1038	2N1039
2N1090 2N1091 2N1093	2N1304 2N1304 2N1305	2N1605 2N1305	2N1184 2N1184A	2N1038 2N1038	2N2564 2N2564
2N1093 2N1094 2N1101	2N1308 2N1308 2N1302	2N1308	2N1184B 2N1185	2N1038 2N1377	2N2565 2N1375
2N1102	2N1302 2N1306	2N1302 2N1306	2N1186	2N1377	2N1375
2N1107		2N2188	2N1187	2N1377	2N1376
2N1108		2N2188	2N1188	2N1377	2N1376
2N1109		2N2188	2N1189	2N1377	2N1377
2N1110		2N2188	2N1190	2N1377	2N1377
2N1111		2N2188	2N1191	2N404	2N404
*2N1111A		2N2188	2N1192	2N404	2N404
*2N1111B	2N2243A	2N2188	2N1193	2N404	2N404
2N1116		2N2243	2N1194	2N404	2N404
2N1117	2N2243A	2N2193	2N1195	2N404	2N1195
2N1118	2N2605	2N2604	2N1198	2N1304	2N1304
2N1118A	2N2605	2N2604	2N1200	2N4252	2N4252
2N1119	2N2605	2N2604	2N1201	2N4252	2N4252
2N1120	TI3027	TI3031	2N1202	2N456A	2N3146
2N1121	2N1306	2N1306	2N1203	2N456A	2N3146
2N1122	2N964	2N964	2N1206		2N5059
2N1122A	2N964	2N964	2N1207	2N1724	2N5059
2N1123	2N1997	2N1997	2N1209		2N1724
2N1124	2N1377	2N1375	2N1210		2N1722
2N1125	2N2000	2N2000	2N1211		2N1722
2N1128	2N1377	2N1377	2N1212	2N1724	2N1724
2N1129	2N1377	2N1379	2N1217	2N1308	2N1308
	21113//	21413/3	,	2112000	2,11000

^{*}Denotes 1N- or 2N- numbers not JEDEC registered through September 1968.

Tune	Preferred	Nearest	7	Preferred	Nearest
Type 2N1220	TI Type 2N2905	TI Type 2N2904	Type 2N1356	Ti Type 2N404	TI Type 2N404
2N1221	2N2905	2N2904 2N2904	2N1357	2N404	2N404
2N1222 2N1223	2N2905 2N2905	2N2904 2N2904	2N1359 2N1360	T13027 T13027	TI3027 TI3027
2N1224 2N1225	2N2635	2N2635	2N1362	2N456A	2N3146
2N1226	2N2635 2N2635	2N2635 2N2635	2N1363 2N1364	2N456A 2N456A	2N3146 2N3146
2N1227 2N1235	T13027	T13027 2N1235	2N1365 2N1366	2N456A 2N1302	2N3146
2N1245	2N404	2N404	2N1367	2N1302 2N1304	2N1302 2N1304
2N1246 2N1249	2N404	2N404 2N1248	2N1370 2N1371	2N1377 2N1377	2N1370
2N1251	2N1304	2N1304	2N1372	2N1377	2N1371 2N1372
2N1252 2N1252A		2N1252 2N1252	2N1373 2N1374	2N1377 2N1377	2N1373 2N1374
2N1253 2N1253A		2N1253 2N1253	2N1375 2N1376	2N1377	2N1375
2N1254	2N2907	2N722	2N1377	2N1377 2N1377	2N1376 2N1377
2N1255 2N1256	2N2907 2N2907	2N722 2N722	2N1378 2N1379	2N1377 2N1377	2N1378
2N1257	2N2907	2N722	2N1380	2N1377	2N1379 2N1380
2N1258 2N1259	2N2907 2N2907	2N722 2N722	2N1381 2N1382	2N1377 2N1377	2N1381 2N1382
2N1260 2N1261	TI3027	2N1260 TI3030	2N1383	2N1377	2N1383
2N1262	TI3027	TI3030	2N1384 2N1385	2N2635	2N2635 2N1385
2N1263 2N1265	TI3027 2N404	TI3030 2N404	2N1391 2N1395	2N1302	2N1302 2N2188
2N1266	2N404	2N404	2N1396		2N2191
2N1267 2N1268	2N4252 2N4252	2N4253 2N4253	2N1397 2N1398		2N2191 2N2996
2N1269 2N1270	2N4252 2N4252	2N4253 2N4253	2N1399 2N1400		2N2996
2N1271	2N4252	2N4253	2N1401		2N2996 2N2996 2N2996
2N1272 2N1273	2N4252 2N404	2N4253 2N1273	2N1402 2N1403		2N2996
2N1274	2N404	2N1274	2N1404	2N1303	2N2996 2N1404
2N1275 2N1276	2N2945A	2N2944 2N1276	2N1404A 2N1405	2N1303	2N1404 2N2996
2N1277 2N1278		2N1277 2N1278	2N1406		2N2996
2N1279		2N1279	2N1407 2N1408	2N2000	2N2996 2N2000
2N1280 2N1281	2N1305 2N1305	2N1305 2N1305	2N1411 2N1413		2N2188 2N1413
2N1282	2N1305 2N1305	2N1305 2N1305	2N1414		2N1414
2N1284 2N1285	2N1305	2N1305 2N2188	2N1415 2N1416	2N404	2N1415 2N404
2N1287 2N1287A	2N1303 2N1305	2N1303 2N1305	2N1420 2N1420A	2N1893 2N1893	2N1420 2N1420
2N1291	TI3027	TI3027	2N1425	2141093	2N2188
2N1293 2N1295	T13027 2 N456A	TI3028 2N3146	2N1426 2N1427	2N2635	2N2188 2N2635
2N1297	2N456A	2N3146	2N1428 2N1429	2N2905 2N2905	2N1132
2N1298 2N1299	2N1302 2N1306	2N1302 2N1306	2N1431	2N1302	2N1132 2N1302
2N1300 2N1301	2N2635 2N2635	2N2635 2N2635	2N1432 2N1437	2N456A	2N2189 2N3146
2N1302	2N1302	2N1302	2N1438	2N456A	2N3146
2N1303 2N1304	2N1303 2N1304	2N1303 2N1304	2N1439 2N1440	2N2945A 2N2945A	2N2946 2N2946
2N1305	2N1305	2N1305	2N1441 2N1442	2N2945A	2N2946 2N2946
2N1306 2N1307	2N1306 2N1307	2N1306 2N1307	2N1443	2N2945A 2N2945A	2N2946
2N1308 2N1309	2N1308 2N1309	2N1308 2N1309	2N1444 2N1445		2N3252 2N1445
2N1314	TI3027	TI3027	2N1446	2N1377 2N1377	2N1373
2N1316 2N1317	2N1997 2N1997	2N1999 2N1999	2N1447 2N1448	2N1377 2N1377	2N1373 2N1373
2N1318 2N1319	2N1997	2N1998 2N1319	2N1449 2N1450	2N1377	2N1375 2N1143
2N1320	2N1038	2N1038	2N1451	2N1377	2N1375
2N1322 2N1324	2N1038 2N1038	2N1038 2N1038	2N1452 2N1465	2N1377 2N456A	2N1375 2N3146
2N1326 2N1328	2N1038 2N1038	2N1041 2N1038	2N1466 2N1469	2N456A 2N2945A	2N3146 2N2944
2N1343	2N404	2N404	2N1471	2N1309	2N1309
2N1344 2N1345	2N404 2N404	2N404 2N404	2N1472 2N1473	2N3015 2N2000	2N2537 2N2000
2N1346	2N404	2N404	2N1474 2N1474A	2N2945A 2N2945A	2N2944 2N2944
2N1347 *2N1348	2N404 2N404	2N404 2N404	2N1475	2N2945A	2N2944
*2N1349	2N404	2N404	2N1476 2N1477	2N2945A 2N2945A	2N2944 2N2944
*2N1350 *2N1351	2N404 2N404	2N404 2N404	2N1478	2N1997	2N1997 2N2987
2N1353	2N404	2N404	2N1479 2N1480	2N2987 2N2988	2N2988
2N1354 2N1355	2N404 2N404	2N404 2N404	2N1481 2N1482	2N2989 2N2990	2N2989 2N2990
***************************************					=: 1====

^{*}Denotes 1N- or 2N- numbers not JEDEC registered through September 1968.

- .	Preferred	Nearest		Preferred	Nearest TI Type
Type 2N1499	TI Type 2N964	TI Type 2N964	Type 2N1587	TI Type	2N1587
2N1499A	2N964	2N964	2N1588		2N1588
2N1499B 2N1500	2N964 2N964	2N964 2N964	2N1589 2N1590		2N1589 2N1590
2N1500 2N1501	TI3027	TI3028	2N1590 2N1591		2N1591
2N1502 2N1504	T13027 2N456A	TI3028 2N3146	2N1592 2N1593		2N1592 2N1593
2N1504 2N1505	2N430A 2N2219	2N2217	2N1594		2N1594
2N1506	2N2219	2N2217	2N1595		2N1595 2N1596
2N1507 *2N1515	2N1893	2N1507 2N2191	2N1596 2N1597		2N1597
2N1516		2N2189	2N1598		2N1598
*2N1517 2N1524	TIS37	2N2189 2N2188	2N1599 2N1600		2N1599 2N1600
2N1525	TIS37	2N2188	2N1601		2N1601
2N1526 2N1527	TIS37 TIS37	2N2189 2N2189	2N1602 2N1603		2N1602 2N1603
2N1529	11337	2N1529	2N1604		2N1604
2N1530		2N1530	2N1605 2N1605A	2N1304 2N1304	2N1605 2N1605
2N1531 2N1532		2N1531 2N1532	2N1613	2N1613	2N1613
2N1533		2N1533	2N1614	2N2000 2N1724	2N2001 2N1724
2N1534 2N1534 A		2N1534 2N1534	2N1616 2N1617	2N1724	2N1724
2N1535		2N1535	2N1618	2N1724	2N1724
2N1535A 2N1536		2N1535 2N1536	2N1620 2N1624	2N1724 2N1308	2N1724 2N1308
2N1536A		2N1536	2N1631	2N2635	2N2635
2N1537 2N1537A		2N1537	2N1632 2N1633	2N2635 2N2635	2N2635 2N2635
2N1537A 2N1538		2N1537 2N1538	2N1634	2N2635	2N2635
2N1539	2N1539	2N1539	2N1635	2N2635 2N2635	2N2635 2N2635
2N1540 2N1540A		2N1540 2N1540	2N1636 2N1637	2N2635	2N2635
2N1541		2N1541	2N1638	2N2635 2N2635	2N2635 2N2635
2N1541A 2N1542		2N1541 2N1542	2N1639 2N1640	2N2945A	2N2946
2N1542 2N1542A		2N1542	2N1641	2N2945A	2N2946 2N2946
2N1543 2N1544		2N1543 2N1544	2N1642 2N1643	2N2945A 2N2945A	2N2946 2N2944
2N1544A		2N1544	2N1644	2N1893	2N1893
2N1545 2N1545A		2N1545 2N1545	2N1647 2N1648		2N2150 2N2151
2N1546		2N1546	2N1649		2N2150
2N1546A 2N1547		2N1546 2N1547	2N1650 2N1654	2N2945A	2N2151 2N2944
2N1547A		2N1547	2N1655	2N2945A	2N2944
2N1548 2N1549	TI3027	2N1548 TI3027	2N1656 2N1660	2N2945A	2N2944 2N1722
2N1549A	TI3027	T13027	2N1661		2N1722
2N1550 2N1550A		T13028 T13028	2N1662 2N1663	2N2369A	2N1722 2N3011
2N1551		2N458B	l 2N1666	T13027	TI3027
2N1551A 2N1552		2N458B 2N1021A	2N1667 2N1668	TI3027 TI3027	TI3027 TI3027
2N1552A		2N1021A	2N1669	T13027	T13027
2N1553 2N1553A	TI3027 TI3027	TI3027 TI3027	2N1670 2N1671	2N398 2N1671B	2N398A 2N1671
2N1553A 2N1554	113027	TI3027	2N1671A	2N1671B	2N1671A
2N1554A		T13028	2N1671B 2N1671C	2N1671B 2N1671B	2N1671B 2N1671B
2N1555 2N1555A		2N458B 2N458B	2N1671C 2N1672	2N1302	2N1302
2N1556		2N1021A	2N1672A	2N1304	2N1304
2N1556A 2N1557	2N456A	2N1021A 2N514	2N1673 2N1676	2N404 2N2945A	2N404 2N2944
2N1557A	2N456A	2N514	2N1677	2N2945A	2N2944
2N1558 2N1558A		2N514A 2N514A	2N1678 2N1682	2N2219	2N2191 2N2217
2N1559		2N514B	2N1683	2N2635	2N2635
2N1559A		2N514B	2N1690 2N1691		2N1690 2N1691
2N1560 2N1560A		2N1021A 2N1021A	2N1694	2N1302	2N1302
2N1564		2N1564	2N1704 2N1708	2N1893	2N1893 2N743
2N1565		2N1565 2N1566	2N1708A		2N743
2N1566 2N1566A		2N1566A	2N1711 2N1711A	2N1711 2N1711	2N1711 2N1711
2N1572		2N1572	2N1711B	2N1711	2N1711
2N1573 2N1574		2N1573 2N1574	2N1714 2N1715		2N1714 2N1715
2N1574 2N1586		2N1574 2N1586	2N1716		2N1716

^{*}Denotes 1N- or 2N- numbers not JEDEC registered through September 1968.

_	Preferred	Nearest	-	Preferred	Nearest
Type 2N1717	TI Type	Ti Type 2N1717	Type 2N1876	Ti Type 2N3555	TI Type 2N3555
2N1717 2N1718		2N1717 2N1718	2N1877	2N3556	2N3556
2N1719 2N1720		2N1719 2N1720	2N1878 2N1879	2N3557 2N3558	2N3557 2N3558
2N1721		2N1721	2N1880	2N3558	2N3558
2N1722 2N1722A		2N1722 2N1722A	2N1886 2N1889	2N1893	2N2151 2N1889
2N1724	2N1724	2N1724	2N1890	2N1893	2N1890
2N1724A 2N1725		2N1724A 2N1725	2N1891 2N1892	2N1303	2N1891 2N1892
2N1726		2N2996 2N2996	2N1893	2N1893	2N1893
2N1727 2N1728		2N2996 2N2996	2N1899 2N1901	2N4002 2N4002	2N4002 2N4002
2N1729	2N1303	2N1729	2N1905		2N1046
2N1730 2N1731	2N1302 2N1303	2N1730 2N1731	2N1906 2N1907	2N1907 2N1907	2N1907 2N1907
2N1732	2N1302	2N1732	2N1907A	2N1907	2N1907
2N1742 2N1743		2N2996 2N2996	2N1908 2N1908A	2N1907 2N1907	2N1908 2N1908
2N1744		2N2996 2N2996 2N2996 2N2996	2N1917	2N2945A 2N2945A	2N2944
2N1745 2N1746		2N2996 I	2N1918 2N1919	2N2945A	2N2944 2N2944
2N1747 2N1748		2N2996 2N2996	2N1920 2N1921	2N2945A 2N2945A	2N2944 2N2944
2N1748A		2N2997	2N1922	2N2945A	2N2944
2N1749 2N1750		2N2996 2N2996	2N1924 2N1925		2N1924 2N1925
2N1752		2N2996	2N1926		2N1926
2N1754 2N1755	2N1038	2N2996 2N2552	2N1936 2N1937		2N3846 2N3846
2N1756	2N1038	2N2554	2N1940	T13027	TI3027
2N1757 2N1758	2N1038 2N1038	2N2555 2N2555	2N1943 2N1944	2N1893 2N1893	2N1893 2N1893
2N1759	2N1038	2N2555 2N2564 2N2566 2N25667 2N2567	2N1945	2N1893	2N1893
2N1760 2N1761	2N1038 2N1038	2N2567	2N1946 2N1954	2N1893 2N2000	2N1893 2N2000
2N1762	2N1038	ZN256/	2N1955	2N2000	2N2000
2N1763 2N1764	2N2369A	2N3014 2N3011	2N1956 2N1957	2N2000 2N2000	2N2000 2N2000
2N1768 2N1769		2N1050 2N1050	2N1960	2N964	2N964 2N964
2N1770		2N1770	2N1961 2N1962	2N964 2N2369 A	2N3011
2N1770A 2N1771		2N1770A 2N1771	2N1963 2N1964	2N2369A 2N3015	2N3011 2N2537
2N1771A		2N1771A	2N1965	2N3015	2N2537 2N2997
2N1772 2N1772A		2N1772 2N1772A 2N1773	2N1968 2N1969		2N2997 2N2996
2N1773 2N1773A		2N1773 2N1773A	2N1972	2N2243A	2N2192
2N1773A 2N1774		2N1773A 2N1774	2N1973 2N1974	2N1893 2N1893	2N1973 2N1974
2N1774A 2N1775		2N1774A 2N1775	2N1975	2N1893	2N1975
2N1775A		2N1775A	2N1986 2N1988	2N697 2N1893	2N696 2N1893
2N1776 2N1776A		2N1776 2N1776A	2N1989	2N1893 2N697	2N1893 2N696
2N1777		2N1777	2N1990 2N1991	2N2905	2N1131
2N1777A 2N1778		2N1777A 2N1778	2N1992 2N1993	2N2369A 2N1302	2N3011 2N1993
2N1785		2N2996	2N1994	2111002	2N1994
2N1786 2N1787		2N2996 2N2996	2N1995 2N1996		2N1995 2N1996
2N1788 2N1789		2N2996 2N2996	2N1997 2N1998	2N1997 2N1997	2N1997 2N1998
2N1790		2N2996	2N1999	2N1997	2N1999
2N1808 2N1842B	2N1302	2N1808 2N1842B	2N2000 2N2001	2N2000 2N2000	2N2000 2N2001
2N1843B		2N1843B	2N2002	2N2945A	2N2944
2N1844B 2N1845B		2N1844B 2N1845B	2N2003 2N2004	2N2945A 2N2945A	2N2944 2N2944
2N1846B		2N1846B 2N1847B	2N2005 2N2006	2N2945A 2N2945A	2N2944 2N2944
2N1847B 2N1848B		2N1848B	2N2007	2N2945A	2N2944
2N1849B 2N1850B		2N1849B 2N1850B	2N2008 2N2018	2N2990 2N3996	2N2990 2N3996
2N1853	2N2635	2N2635	2N2019	2N3996	2N3996 2N3420
2N1854 2N1864	2N2635	2N2635 2N2997	2N2033 2N2034	2N3420 2N3421	2N3421
2N1865 2N1866		2N2997 2N2997	2N2048 2N2049	2N2635 2N1711	2N2635 2N1711
2N1867		2N2997	2N2060	2N2060	2N2060 2N2060
2N1868 2N1869	2N3559	2N2997 2N3559	2N2060A 2N2060B	2N2060 2N2060	2N2060
2N1870	2N3559	2N3559	2N2061A 2N2062A	TI3027 TI3027	T13027 T13027
2N1871 2N1872	2N3560 2N3561	2N3560 2N3561	2N2063A	TI3027	T13027
2N1873 2N1874	2N3562 2N3562	2N3562 2N3562	2N2064A 2N2065A	T13027 T13027	T13027 T13030
2N1875	2N3555	2N3555	2N2066A	T13027	T13030

T	Preferred	Nearest	Tuno	Preferred TI Type	Nearest TI Type
Type 2N2067	TI Type 2N1038	TI Type 2N2553	Type 2N2193B	2N2243A	2N2193A
2N2068	2N1038	2N2555	2N2194	2N2243A	2N2194
2N2084		2N2189	2N2194A	2N2243A	2N2194A
2N2085	2N1304	2N1304	2N2194B	2N2243A	2N2194A
2N2086	2N2243A	2N2243	2N2195	2N2219	2N2217
2N2087	2N2243A	2N2243	2N2195A	2N2219	2N2218
2N2089		2N2188	2N2195B	2N2219	2N2218
2N2090		2N2188 2N2188	2N2197 2N2205	2N2989	2N2989 2N706
2N2091 2N2092		2N2189	2N2206	2N3015	2N2410
2N2095 2N2096		2N2999 2N2997	2N2214 2N2216	,	2N706 2N3114
2N2097		2N2997	2N2217	2N2219	2N2217
2N2098		2N2999	2N2218	2N2219	2N2218
2N2099 2N2100		2N2997 2N2997	2N2218A 2N2219	2N2219 2N2219	2N2218A
2N2102		2N2102 2N2102A	2N2219A 2N2220	2N2222	2N2219 2N2219A 2N2220
2N2102A 2N2104	2N2905	2N2904A	2N2221	2N2222	2N2221
2N2105	2N2905	2N2904A	2N2221A	2N2222	2N2221A
2N2106	2N2987	2N2987	2N2222	2N2222	2N2222
2N2107	2N2987	2N2987	2N2222A	2N2222	2N2222A
2N2108	2N2989	2N2989	2N2222B	2N2222	2N2222
2N2109	2.12505	2N3846	2N2223	2N2223	2N2223
2N2110		2N3846	2N2223A	2N2223	2N2223A
2N2111		2N3846 2N3846	2N2224 2N2225	2N2219	2N2218 2N1143
2N2112 2N2113		2N3846	2N2236	2N2243A 2N2243A	2N2193 2N2192
2N2114 2N2116		2N3846 2N3846	2N2237 2N2240	2N1893	2N699
2N2117		2N3846	2N2241	2N1893	2N1890
2N2118		2N3846	2N2242	2N2369A	2N2369
2N2119	2N4002	2N3846	2N2243	2N2243A	2N2243
2N2123		2N4002	2N2243A	2N2243A	2N2243A
2N2124	2N4002	2N4002	2N2244	2N930	2N929
2N2125		2N4002	2N2245	2N930	2N929
2N2126	2N4002 2N4002	2N4002	2N2246	2N930	2N929 2N929
2N2130	2N4002	2N4002	2N2247	2N930	2N929
2N2131	2N4002	2N4002	2N2248	2N930	
2N2132	2N4002	2N4002	2N2249	2N930	2N929
2N2133	2N4002	2N4002	2N2250	2N930	2N929
2N2137	2N1038	2N2552	2N2251	2N930	2N929
2N2138	2N1038	2N2552	2N2252	2N930	2N929
2N2138A	2N1038	2N2552	2N2253	2N930	2N929
2N2139	2N1038	2N2554	2N2254	2N930	2N929
2N2139A	2N1038	2N2554	2N2255	2N930	2N929
2N2140	2N1038	2N2555	2N2258	2N964	2N972
2N2140A	2N1038	2N2555	2N2259	2N964	2N972
2N2141	2N1038	2N2555	2N2270	2N2243A	2N2270
2N2141A	2N1038	2N2555	2N2271	2N404	2N404
2N2147	2N1907	2N1907	2N2272	2N2945A	2N914
2N2148	2N1907	2N1908	2N2274		2N2944
2N2150		2N2150	2N2288	2N1907	2N1046
2N2151		2N2151	2N2291	2N1907	2N1907
2N2160	2N1671B	2N2160	2N2294	2N1907	2N1907
2N2162	2N2945A	2N2946	2N2297	2N2243A	2N2243A
2N2163 2N2164	2N2945A 2N2945A	2N2944 2N2944	2N2303 2N2307		2N2243A 2N2303 2N1671
2N2165	2N2945A	2N2946 2N2944	2N2309 2N2310	2N697 2N1893	2N696 2N698
2N2166 2N2167	2N2945A 2N2945A	2N2944	2N2311	2N1893	2N698 2N699
2N2168 2N2169		2N2997 2N2996	2N2312 2N2313	2N1893 2N1893	2N1889
2N2170	2N1377	2N2996	2N2314	2N1893	2N698
2N2171		2N1376	2N2315	2N1893	2N699
2N2172 2N2173	2N1377	2N1376 2N2173	2N2315 2N2315 2N2316 2N2317 2N2318	2N1893 2N1613	2N1893 2N1613
2N2175	2N2945A	2N2944	2N2318		2N3014
2N2176	2N2945A	2N2944	2N2319		2N3014
2N2177	2N2945A	2N2944	2N2320		2N3014 2N2322
2N2178 2N2180	2N2945A 2N2635	2N2944 2N2635	2N2322 2N2323		2N2323
2N2181	2N2945A	2N2944	2N2324		2N2324
2N2182	3N111	3N108	2N2325		2N2325
2N2183	2N2945A	2N2944	2N2326	2N2432	2N2326
2N2184	3N111	3N108	2N2330		2N2432
2N2185	2N2945A	2N2944	2N2331	2N2432	2N2432
2N2186	3N111	3N108	2N2332	2N2945A	2N2944
2N2187 2N2188	3N111	3N108 3N108 2N2188	2N2333	2N2945A	2N2944 2N2944
2N2189		2N2189	2N2334 2N2335	2N2945A 2N2945A	2N2944 2N2944 2N2944
2N2190 2N2191		2N2190 2N2191	2N2336 2N2337	2N2945A 2N2945A	2N2944
2N2192	2N2243A	2N2192	2N2339		2N1049
2N2192A	2N2243A	2N2192A	2N2349		TI495
2N2192B	2N2243A	2N2192A	2N2350	2N2243A	2N2192
2N2193	2N2243A	2N2193	2N2350A	2N2243A	2N2192
2N2193A	2N2243A	2N2193A	2N2351	2N2243A	2N2193

202513.1	Tuno	Preferred Ti Type	Nearest TI Type	Type	Preferred Ti Type	Nearest
2H2255 2H2243A 2H2194 2H2245 1.5600	Type 2N2351A	2N2243A	2N2193A	Type 2N2451		TI Type 2N2635
2H22553			2N2194 2N2194A	2N2452 2N2453		
2	2N2353	2N2243A	2N2243	2N2453A	2N3680	2N3680
2 H2256A 3N79 3N74 2N256A 2N256A 2N256B 2N25	2N2354		2N1302	2N2472	2N2432	2N2432
2	2N2356 2N2356A	3N79 3N79				
2H22563	2N2360	55	2N2997	2N2475	2N3013	2N3013
2 202368	2N2363		2N2997	2N2477	2N3015	2N2537
2 202368	2N2364 2N2364A	2N2243A 2N2243A			2N3015	2N2537 2N3252
2N2369A	2N2368	2N2369A	2N2368	2N2480		2N2060
2N2371	2N2369A	2N2369A 2N2369A	2N2369A	2N2481		2N2481
2N23972 2N2395A 2N2945A 2N2944 2N2484 2N2484 2N2484 2N2485 2N2374 2N404 2N404 2N2487 2N2484 2N2484 2N2484 2N2484 2N2375 2N404 2N404 2N2487 2N2395 2N		2N2945A 2N2945A			2N797 2N2484	
2N2374	2N2372	2N2945A	2N2944	2N2484		2N2484
2N2376	2N2374	2N404	2N404	2N2487	2112404	2N2996
2N.2380	2N2376	2N404	2N404	2N2489		2N2996
2N.2380	2N2377 2N2378	2N2945A 2N2945A	2N2944 2N2944	2N2494 2N2495		2N2996 2N2996
2N2386 2N2386 2N2498 2N2500 2N2498 2N2500 2N2498 2N2500 2N2498 2N2500 2N2498 2N2500 2N2301 2N3014 2N2500 2N2301 2N301 2N301 2N301 2N301 2N301 2N2502 2N2900 2N2502 2N2900 2N2502 2N2930 2N2522 2N930 2N9292 2N2398 2N22997 2N2524 2N930 2N9292 2N2398 2N22997 2N2524 2N930 2N9292 2N2398 2N22997 2N2535 2N1038 2N2565 2N2400 2N964 2N7111 2N2535 2N1038 2N2565 2N2400 2N964 2N7111	2N2380	2N1893	2N1893	2N2496	2012/108	2N2996
2N2397	2N2386	2N2386	2N2386	2N2498	2N2498	2N2498
2N22388				2N2499 2N2500		2N2499 2N2500
2N2390	2N2388		2N2388	2N2501		2N3014
No.	2012200		2N2390	2N2510		2N930
No.	2N2393 2N2394		2N23 9 4	2N2520	2N930	2N2586 2N929
No.	2N2395		2N2395 2N2396	2N2521		2N929
No.	2N2397	2N2369A	2N3011	2N2523	2N930	2N929
2N2402 2N964 2N711B 2N2538 2N3015 2N2539 2N2410 2N3015 2N2410 2N2510 2N2410 2N3015 2N2539 2N2410 2N3015 2N2410 2N2540 2N3015 2N2539 2N2411 2N2411 2N2610 2N2541 2N038 2N1038 2N2412 2N2412 2N2552 2N1038 2N2552 2N2414 2N2060 2N2060 2N2555 2N1038 2N2553 2N2415 2N2415 2N2554 2N1038 2N2553 2N2415 2N2415 2N2555 2N1038 2N2553 2N2415 2N2416 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2418 2N3980 2N3980 2N2555 2N1038 2N2555 2N2418 2N3980 2N3980 2N2559 2N1038 2N2559 2N2418 2N3980 2N3980 2N2559 2N1038 2N2559 2N2418 2N3980 2N3980 2N2560 2N1038 2N2559 2N2419 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419 2N3980 2N3980 2N2562 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2421 2N3980 2N3980 2N2566 2N1038 2N2566 2N2421 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N2605 2N2606 2N2422 2N3980 2N3980 2N2566 2N2605 2N2606 2N2423 2N4524 2N2545 2N2529 2N2605 2N2606 2N2423 2N4524 2N2545 2N2599 2N2605 2N2606 2N2443 2N393 2N1893 2N2600 2N2605 2N2606 2N2444 2N2548 2N1309 2N309 2N2605 2N2605 2N2606 2N2444	2N2399		2N2997	2N2535	2N1038	2N2565
2N2402 2N964 2N711B 2N2538 2N3015 2N2539 2N2410 2N3015 2N2410 2N2510 2N2410 2N3015 2N2539 2N2410 2N3015 2N2410 2N2540 2N3015 2N2539 2N2411 2N2411 2N2610 2N2541 2N038 2N1038 2N2412 2N2412 2N2552 2N1038 2N2552 2N2414 2N2060 2N2060 2N2555 2N1038 2N2553 2N2415 2N2415 2N2554 2N1038 2N2553 2N2415 2N2415 2N2555 2N1038 2N2553 2N2415 2N2416 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2417 2N3980 2N3980 2N2555 2N1038 2N2555 2N2418 2N3980 2N3980 2N2555 2N1038 2N2555 2N2418 2N3980 2N3980 2N2559 2N1038 2N2559 2N2418 2N3980 2N3980 2N2559 2N1038 2N2559 2N2418 2N3980 2N3980 2N2560 2N1038 2N2559 2N2419 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419 2N3980 2N3980 2N2562 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2563 2N1038 2N2562 2N2419 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2420 2N3980 2N3980 2N2566 2N1038 2N2566 2N2421 2N3980 2N3980 2N2566 2N1038 2N2566 2N2421 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N1038 2N2566 2N2422 2N3980 2N3980 2N2566 2N2605 2N2606 2N2422 2N3980 2N3980 2N2566 2N2605 2N2606 2N2423 2N4524 2N2545 2N2529 2N2605 2N2606 2N2423 2N4524 2N2545 2N2599 2N2605 2N2606 2N2443 2N393 2N1893 2N2600 2N2605 2N2606 2N2444 2N2548 2N1309 2N309 2N2605 2N2605 2N2606 2N2444	2N2400 2N2401			2N2536 2N2537	2N1038 2N3015	2N2565 2N2537
2N2410	2N2402	2N964	2N711B	2N2538	2N3015	2N2538
2N2412	2N2410		2N2410	2N2540	2N3015	2N2540
2N2416	2N2411 2N2412		2N2412	2N2552	2N1038	2N1038 2N2552
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		2N2060		2N2553 2N2554		2N2553 2N2554
Name	2N2416		2N2416	2N2555	2N1038	2N2555
2N2418 2N3980 2N3980 2N2559 2N1038 2N2559 2N2418A 2N3980 2N3980 2N2560 2N1038 2N2561 2N2419 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419A 2N3980 2N3980 2N2563 2N1038 2N2563 2N2419B 2N3980 2N3980 2N2565 2N1038 2N2563 2N2419B 2N3980 2N3980 2N2565 2N1038 2N2564 2N2420B 2N3980 2N3980 2N25665 2N1038 2N25665 2N2420A 2N3980 2N3980 2N25667 2N1038 2N25666 2N2421B 2N3980 2N3980 2N2567 2N1038 2N25666 2N2421B 2N3980 2N3980 2N2569 2N2432 2N2432 2N2421B 2N3980 2N3980 2N2570 2N2432 2N2432 2N2421B 2N3980 2N3980 2N2582 2N3847 2N2422 2N3980 2N3980 2N25	2N2417A	2N3980	2N3980	2N2557	2N1038	2N2557
2N2418A 2N3980 2N3980 2N25601 2N1038 2N2561 2N2419A 2N3980 2N3980 2N2561 2N1038 2N2562 2N2419A 2N3980 2N3980 2N2562 2N1038 2N2562 2N2419B 2N3980 2N3980 2N2564 2N1038 2N2564 2N2420 2N3980 2N3980 2N2565 2N1038 2N2565 2N2420A 2N3980 2N3980 2N2566 2N1038 2N2565 2N2420B 2N3980 2N3980 2N2567 2N1038 2N2567 2N2421A 2N3980 2N3980 2N2569 2N2432 2N2432 2N2421B 2N3980 2N3980 2N2570 2N2432 2N2432 2N2422B 2N3980 2N3980 2N2581 2N3847 2N2422B 2N3980 2N2588 2N2484 2N2586 2N2422B 2N3980 2N2588 2N2484 2N2586 2N2422B 2N3980 2N2586 2N2484 2N2586	2N2417B 2N2418					2N2558 2N2559
2N2419A	2N2418A	2N3980	2N3980	2N2560 2N2561	2N1038 2N1038	2N2560
2N2419B 2N3980 2N3980 2N2565 2N1038 2N2565 2N2420A 2N3980 2N3980 2N25655 2N1038 2N2565 2N2420A 2N3980 2N3980 2N2566 2N1038 2N2566 2N2421B 2N3980 2N3980 2N2569 2N2432 2N2432 2N2421A 2N3980 2N3980 2N2569 2N2432 2N2432 2N2421B 2N3980 2N3980 2N2570 2N2432 2N2432 2N2421B 2N3980 2N3980 2N2581 2N3847 2N2422B 2N3980 2N3980 2N2582 2N3847 2N2422B 2N3980 2N3980 2N2586 2N2484 2N2586 2N2422B 2N3980 2N3980 2N2586 2N2484 2N2586 2N2422B 2N3980 2N3146 2N2588 2N1038 2N2188 2N2423 2N456A 2N2188 2N2605 2N2605 2N2604 2N2424 2N2945A 2N2944 2N2591 2N2605	2N2419	2N3980	2N3980	2N2562	2N1038	2N2562
2N2420A				2N2564	2N1038	2N2564
2N2420B				2N2566		
2N2421A	2N2420B	2N3980	2N3980	2N2567	2N1038	2N2567
2N2422 2N3980 2N3980 2N2582 2N3847 2N2422A 2N3980 2N3980 2N2583 2N3847 2N2422B 2N3980 2N3980 2N2586 2N2484 2N2586 2N2423 2N456A 2N3146 2N2588 2N1038 2N2188 2N2424 2N2945A 2N2944 2N2590 2N2605 2N2604 2N2425 2N2945A 2N2946 2N2591 2N2605 2N2604 2N2427 2N930 2N929 2N2592 2N2605 2N2604 2N2428 2N1377 2N1381 2N2593 2N2605 2N2604 2N2429 2N1377 2N1381 2N2593 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2595 2N2605 2N2604 2N2431 2N1377 2N1381 2N2597 2N736 2N2432 2N2432 2N2598 2N2605 2N2604 <td< td=""><td>2N2421A</td><td>2N3980</td><td>2N3980</td><td>2N2570</td><td></td><td>2N2432</td></td<>	2N2421A	2N3980	2N3980	2N2570		2N2432
2N2422A 2N3980 2N3980 2N2586 2N2484 2N2586 2N2422B 2N3980 2N3980 2N2586 2N2484 2N2586 2N2423 2N456A 2N3146 2N2588 2N1038 2N2188 2N2424 2N2945A 2N2944 2N2590 2N2605 2N2605 2N2427 2N930 2N9294 2N2591 2N2605 2N2604 2N2427 2N930 2N929 2N2592 2N2605 2N2604 2N2428 2N1377 2N1381 2N2593 2N2605 2N2604 2N2429 2N1377 2N1381 2N2595 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2597 2N736 2N2432 2N2432 2N2597 2N736 2N2432 2N2432 2N2598 2N2605 2N2604 2N2432 2N2432 2N2598 2N2605 2N2604 2N2437 2N	2N2421B 2N2422	2N3980 2N3980	2N3980 2N3980	2N2581 2N2582		
2N2423 2N456A 2N3146 2N2588 2N1038 2N2188 2N2424 2N2945A 2N2944 2N2590 2N2605 2N2604 2N2425 2N2945A 2N2946 2N2591 2N2605 2N2604 2N2427 2N930 2N929 2N2593 2N2605 2N2604 2N2428 2N1377 2N1381 2N2593 2N2605 2N2604 2N2429 2N1377 2N1381 2N2595 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2597 2N2605 2N2604 2N2432 2N2432 2N2597 2N736 2N2604 2N2432 2N2605 2N2604 2N2432 2N2432 2N2598 2N2605 2N2604 2N2604 2N2432 2N2432 2N2599 2N2605 2N2604 2N2433 2N1893 2N1893 2N2605 2N2604 2N2438 2N1893 2N1893	2N2422A	2N3980	2N3980		2N2484	2N3847
2N2425 2N2945A 2N2946 2N2591 2N2605 2N2604 2N2427 2N930 2N929 2N2592 2N2605 2N2604 2N2428 2N1377 2N1381 2N2593 2N2605 2N2604 2N2429 2N1377 2N1381 2N2595 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2597 2N736 2N2432 2N2432 2N2599 2N2605 2N2604 2N2432 2N2432 2N2599 2N2605 2N2604 2N2437 2N1893 2N1893 2N2599 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600 2N2605 2N2604 2N2443 2N1893 2N1893 2N2600 2N2605 2N2604	2N2423	2N456A	2N3146	2N2588	2N1038	2N2188
2N2428 2N1377 2N1381 2N2593 2N2605 2N2604 2N2429 2N1377 2N1381 2N2595 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2596 2N2605 2N2604 2N2432 2N2432 2N2598 2N2605 2N2604 2N2432A 2N2432A 2N2599 2N2605 2N2604 2N2437 2N1893 2N1893 2N2600 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1893 2N2600A 2N2605 2N2604 2N24443 2N1893 2N1893 2N2600A 2N2605 2N2604 2N24444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605		2N2945A 2N2945A	2N2946	2N2591	2N2605	2N2604
2N2429 2N1377 2N1381 2N2595 2N2605 2N2604 2N2430 2N1304 2N1605 2N2596 2N2605 2N2604 2N2431 2N1377 2N1381 2N2597 2N736 2N2432 2N2432 2N2598 2N2605 2N2604 2N2432A 2N2432A 2N2599 2N2605 2N2604 2N2437 2N1893 2N1893 2N2599A 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2605 2N2605 2N2604		2N930 2N1377	2N929 2N1381	2N2593	2N2605 2N2605	
2N2431 2N1377 2N1381 2N2597 2N736 2N2432 2N2432 2N2432 2N2598 2N2605 2N2604 2N2432A 2N2432A 2N2599 2N2605 2N2604 2N2437 2N1893 2N1893 2N2599A 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2605 2N2605 2N2604 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2429	2N1377	2N1381	2N2595 2N2596	2N2605	2N2604
2N2432A 2N2432A 2N2599 2N2605 2N2604 2N2437 2N1893 2N1893 2N2599A 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2604 2N2605 2N2604 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2431	2N1377	2N1381	2N2597		2N736
2N2437 2N1893 2N1893 2N2599A 2N2605 2N2604 2N2438 2N1893 2N1893 2N2600 2N2605 2N2604 2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2604 2N2605 2N2604 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605		2N2432	2N2432A	2N2599	2N2605	2N2604
2N2439 2N1893 2N1893 2N2600A 2N2605 2N2604 2N2443 2N1893 2N1890 2N2601 2N2605 2N2604 2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2604 2N2605 2N2604 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2437	2N1893				
2N2444 2N456A 2N3146 2N2602 2N2605 2N2604 2N2445 2N456A 2N3146 2N2603 2N2605 2N2604 2N2447 2N1309 2N1309 2N2604 2N2605 2N2605 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2439	2N1893	2N1893	2N2600A	2N2605	2N2604
2N2447 2N1309 2N1309 2N2604 2N2605 2N2605 2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2444	2N456A	2N3146	2N2602	2N2605	2N2604
2N2448 2N1309 2N1309 2N2605 2N2605 2N2605 2N2449 2N1307 2N1307 2N2605A 2N2605 2N2605	2N2447	2N1309	2N1309	2N2604	2N2605	2N2604
	2N2448	2N1309	2N1309 2N1307			2N2605 2N2605
					2N3330	2N3575

Туре	Preferred	Nearest TI Type	Туре	Preferred TI Type	Nearest TI Type
2N2607	TI Type 2N3330	2N3575	2N2819		2N3846
2N2608 2N2609	2N3330 2N3330	2N3575 2N3575	2N2820 2N2821		2N3846 2N3846
2N2610		2N1149	2N2822		2N3846
2N2612 2N2613	TI3027 2N404	TI3031 2N404	2N2823 2N2824		2N3846 2N3846
2N2614 2N2616	2N404 2N918	2N404 2N917	2N2825 2N2832	2N1907	2N3846 2N1908
2N2617	2N2945A	2N2944	2N2835	2N1038	2N2564
2N2632 2N2633	2N3421 2N3421	2N3421 2N3421	2N2836 2N2837	TI3027 2N2905	T13029 2N2904
2N2634	2N3421	2N3421	2N2838 2N2840	2N2905 2N491A	2N2904
2N2635 2N2639	2N2635 2N2639	2N2635 2N2639	2N2841	2N3330	2N489 2N3573
2N2640 2N2641	2N2639 2N2639	2N2640 2N2641	2N2842 2N2843	2N3330 2N3330	2N3574 2N3575
2N2642	2N2642	2N2642	2N2844	2N3330 2N3015	2N3575
2N2643 2N2644	2N2642 2N2643	2N2643 2N2644	2N2845 2N2846	2N3015	2N2537 2N2537
2N2645 2N2646	2N1711	2N1711 TIS43	2N2847 2N2848	2N3015 2N3015	2N2537 2N2537
2N2647	2N3980	2N3980	2N2850	2N3421 2N3421	2N3421
2N2648 2N2651	2N1377	2N1379 2N3554	2N2851 2N2852	2N3419	2N3421 2N3419
2N2652 2N2652A	2N2639 2N2639	2N2639 2N2639	2N2853 2N2855	2N3418 2N3420	2N3418 2N3420
2N2653	2.12003	2N2653	2N2856	2N3418	2N3418
2N2657 2N2658		2N2151 2N2151	2N2857 2N2860	2N918 2N964	2N918 2N964
2N2659 2N2660	2N1038 2N1038	2N2659 2N2660	2N2861 2N2862		2N2861 2N2862
2N2661	2N1038	2N2661	2N2863		2N2863
2N2662 2N2663	2N1038 2N1038	2N2662 2N2663	2N2864 2N2865		2N2864 2N2865
2N2664 2N2665	2N1038 2N1038	2N2664 2N2665	2N2868 2N2869	2N1893 TI3027	2N699 TI3030
2N2666	2N1038	2N2666	2N2870	TI3027	T13030
2N2667 2N2668	2N1038 2N1038	2N2667 2N2668	2N2873 2N2875	2N3418	2N2997 2N3418
2N2669 2N2670	2N1038 2N1038	2N2669 2N2670	2N2877 2N2878	2N3998 2N3998	2N3998 2N3998
2N2687	2.112000	2N2687	2N2879	2N3998	2N3998
2N2688 2N2689		2N2688 2N2689	2N2880 2N2881	2N3998 2N5333	2N3998 2N5333
2N2690 2N2692		2N2690 2N2692	2N2882 2N2883	2N5333	2N5333 2N2883
2N2693		2N2693	2N2884		2N2884
2N2694 2N2695	2N2907	2N2694 2N2695	2N2885 2N2886	2N697	2N849 2N696
2N2696 2N2697	2N2907 2N3998	2N2696 2N3998	2N2890 2N2891	2N3421 2N3421	2N3421 2N3421
2N2698 2N2699	2N3998	2N3998	2N2892	2N3998	2N3998
2N2706	2N964 2N404	2N964 2N404	2N2894 2N2901	2N2894 3N79	2N2894 3N74
2N2708 2N2709	2N918 2N2945A	2N918 2N2944	2N2902 2N2903	2N2639	2N2902 2N2640
2N2711 2N2712	TIS98	TIS98	l 2N2903A	2N2639 2N2905	2N2639 2N2904
2N2713	TIS98 TIS98	TIS98 TIS98	2N2904 2N2904A	2N2905	2N2904 2N2904A 2N2905
2N2714 2N2715	TIS98 TIS98	TIS98 TIS98	2N2905 2N2905A	2N2905 2N2905	2N2905 2N2905A
2N2717 2N2720	2N2635	2N2635	2N2906 2N2907	2N2907 2N2907	2N2906 2N2907
2N2721	2N2639 2N2639	2N2639 2N2640	2N2907A	2N2907	2N2907A
2N2722 2N2784	2N2639 2N3010	2N2639 2N3010	2N2909 2N2910	2N2243A 2N2639	2N2193A 2N2639
2N2795 2N2796	2N2635	2N2635	2N2911 2N2913	2N2643	2N3421 2N2913
2N2797	2N2635 2N2635	2N2635 2N2635	2N2914	2N2643	2N2914
2N2798 2N2799	2N2635 2N2635	2N2635 2N2635	2N2915 2N2915A	2N3680 2N3680	2N2915 2N2915
2N2800 2N2801	2N2905	2N2904 2N3244	2N2916 2N2916A	2N3680 2N3680	2N2916 2N2916
2N2802	2N3350	2N2802	2N2917	2N2642	2N2917
2N2803 2N2804	2N3351 2N3351	2N2803 2N2804	2N2918 2N2919	2N2642 2N3680	2N2918 2N2919
2N2805 2N2806	2N3351 2N3351	2N2805 2N2806	. 2N2919A 2N2920	2N3680 2N3680	2N2919 2N2920
2N2807	2N3351	2N2807	2N2920A 2N2921	2N3680	2N2920 TIS98
2N2811 2N2812	2N4301 2N4301	2N4301 2N4301	2N2922	TIS98 TIS98	TIS98
2N2813 2N2814	2N4301 2N4301	2N4301	2N2923 2N2924	TIS98 TIS98	TIS98 TIS98
2N2815	2N4301 2N4002	2N4301 2N4002	2N2925 2N2926	TIS98 TIS98	TIS98 TIS98
2N2816 2N2817		2N3846 2N3846	2N2929 2N2936		2N1141
2N2818		2N3846	2N2936 2N2937	2N2639 2N2639	2N2639 2N2639

Туре	Preferred TI Type	Nearest TI Type	Туре	Preferred TI Type	Nearest Ti Type
2N2942	2N2635	2N2635	2N3067	2N3822	2N3821
2N2943	2N2635	2N2635	2N3068	2N3822	2N3821
2N2944 2N2944A	2N2945A 2N2945A	2N2944 2N2944A	2N3069 2N3070	2N3822 2N3822	2N3821 2N3821
2N2945	2N2945A	2N2945	2N3071	2N3822	2N3821
2N2945A	2N2945A	2N2945A	2N3072 2N3073	2N2905 2N2907	2N2904 2N2906
2N2946 2N2946A	2N2945A 2N2945A	2N2946 2N2946A	2N3077	2N2484	2N2484
2N2953	2N404	2N404	2N3079		2N3846
2N2954 2N2955	2N918 2N2635	2N918 2N2635	2N3080 2N3082	3N79	2N3847 3N76
2N2956	2N2635	2N2635	2N3083	3N79	3N74
2N2957 2N2958	2N2635 2N2219	2N2635 2N2217	2N3084 2N3085	2N3822 2N3822	2N3821 2N3821
2N2959	2N697	2N697	2N3086	2N3822	2N3821
2N2966 2N2968	2N2945A	2N2997 2N2944	2N3087 2N3088	2N3822 2N3822	2N3821 2N3821
2N2969	2N2945A	2N2944	2N3088A	2N3822	2N3821
2N2970	2N2945A 2N2945A	2N2944	2N3089 2N3089A	2N3822 2N3822	2N3821 2N3821
2N2971 2N2987	2N2945A 2N2987 2N2988	2N2944 2N2987	2N3107	2N2243A	2N2243
2N2988	2N2988	2N2987 2N2988	2N3108	2N1613 2N697	2N1613
2N2989 2N2990	2N2989 2N2990	2N2989 2N2990	2N3109 2N3110	2N097 2N2243A	2N697 2N2243A
2N2991	2N2991	2N2991	2N3114		2N3114
2N2992 2N2993	2N2992 2N2993	2N2992 2N2993	2N3115 2N3116	2N2222 2N2222	2N2221 2N2221
2N2994	2N2994	2N2994	2N3117	2N2484	2N3117
2N2996 2N29 9 7		2N2996 2N2997	2N3121 2N3125	2N2907 2N456A	2N2906 2N3146
2N2998		2N2998	2N3126	2N456A	2N3146
2N2999 2N3001	2N3001	2N2999 2N3001	2N3132 2N3133	TI3027 2N2905	TI3031 2N2904
2N3002	2N3002	2N3001 2N3002	2N3134	2N2905	2N2905
2N3003	2N3003	2N3003	2N3137 2N3146	2N456A	2N3014 2N3146
2N3004 2N3005	2N3004 2N3005	2N3004 2N3005	2N3147	2N456A	2N3147
2N3006	2N3006	2N3006	2N3153 2N3202	2N2432 2N5333	2N2432 2N5333
2N3007 2N3008	2N3007 2N3008	2N3007 2N3008	2N3203	2N5333	2N5333
2N3009		2N3009	2N3204	2N5333	2N5333
2N3010 2N3011	2N3010 2N2369A	2N3010 2N3011	2N3205 2N3206	2N5333 2N5333	2N5333 2N5333
2N3012	2N2369A 2N2894	2N3012	2N3207	2N5333	2N5333
2N3013 2N3014	2N3013	2N3013 2N3014	2N3208 2N3209	2N5333 2N2894	2N5333 2N3576
2N3015	2N3015	2N3015	2N3217	2N2945A 2N2945A	2N2944 2N2944
2N3019 2N3020	2N2243A 2N1893	2N2243A 2N1893	2N3218 2N3219	2N2945A 2N2945A	2N2944 2N2944
2N3021	2N5384	2N5384	2N3224	2N2905	2N2904
2N3022 2N3023	2N5384 2N5384	2N5384 2N5384	2N3227 2N3242	2N2369A 2N718A	2N3011 2N730
2N3024	2N5384	2N5384	2N3242A	2N718A	2N730
2N3025 2N3026	2N5384 2N5384	2N5384 2N5384	2N3244 2N3245		2N3244 2N3245
2N3033	20000	2N3033	2N3246	2N2484	2N2484
2N3034 2N3035		2N3034 2N3035	2N3247 2N3248	2N2484 2N2894	2N2484 2N2894
2N3036	2N2243A	2N3036	2N3249	2N2894	2N2894
2N3037 2N3038		2N3037 2N3038	2N3250 2N3250A	2N3250	2N3250 2N3250A
2N3039		2N3039	2N3251	2N3250	2N3251
2N3040 2N3043	2N3043	2N3040 2N3043	2N3251A 2N3252		2N3251A 2N3252
2N3044	TN3043	2N3044	2N3253		2N3253
2N3045 2N3046	2N3045 2N3043	2N3045 2N3046	2N3263 2N3264	2N4002 2N4002	2N4002 2N4002
2N3047	2N3043	2N3047	2N3265	2N4002	2N4002
2N3048 2N3049	2N8045 2N3049	2N3048 2N3049	2N3266 2N3267	2N4002	2N4002 2N3267
2N3050	2N3049	2N3050	2N3268		2N337
2N3051 2N3052	2N3051	2N3051 2N3052	2N3277 2N3278	2N3330 2N3330	2N3328 2N3328
2N3053	2N2243A	2N3053	2N3279		2N2997
2N3055 2N3056	2N3055 2N2243A	2N3055 2N2243	2N3280 2N3281		2N2997 2N2996
2N3056A	2N2243A	2N2243A.	2N3282		2N2996
2N3057 2N3057A	2N2243A 2N2243A	2N2243 2N2243A	2N3283 2N3284		2N2996 2N2996
2N3058	2N2945A	2N2944	2N3285		2N2996
2N3059 2N3060	2N2945A 2N2945A	2N2944 2N2944	2N3286 2N3287	2N2945A	2N2996 2N2944
2N3061	2N2945A	2N2944	2N3288	2N2945A	2N2944
2N3062 2N3063	2N2945A 2N2945A	2N2944 2N2944	2N3289 2N3291	2N918 2N918	2N918 2N918
2N3064	2N2945A	2N2944	2N3292	2N918	2N918
2N3065 2N3066	2N2945A 2N3822	2N2944 2N3821	2N3293 2N3294	2N918 2N918	2N918 2N918
		2			

Туре	Preferred TI Type	Nearest TI Type	Туре	Preferred TI Type	Nearest TI Type
2N3295	2N2219	2N2217	2N3428	2N1377	2N1377
2N3299 2N3303	2N3015	2N2537 2N3303	2N3436 2N3437	2N3822 2N3822	2N3822 2N3821
2N3304	2N3304	2N3304	2N3438 2N3439	2N3822	2N3821 2N5058
2N3305 2N3306	2N2907 2N2907	2N2907 2N2907	2N3444		2N3444
2N3317 2N3318	2N2945A 2N2945A	2N2944 2N2944	2N3449 2N3452	2N3822	2N3449 2N3821
2N3319	2N2945A 2N964	2N2944 2N964	2N3453 2N3454	2N3822 2N3822	2N3821 2N3821
2N3320 2N3321	2N964 2N964	2N964	2N3455	2N3822	2N3821
2N3328 2N3329	2N3330	2N3328 2N3329	2N3456 2N3457	2N3822 2N3822	2N3821 2N3821
2N3330 2N3331	2N3330 2N3330	2N3330 2N3331	2N3458 2N3459	2N3822 2N3822	2N3822 2N3821
2N3332	2N3330	2N3332	2N3460	2N3822	2N3821
2N3333 2N3334		2N3333 2N3334	2N3465 2N3466	2N3822 2N3822	2N3822 2N3822
2N3335		2N3335 2N3336	2N3467 2N3468	2N3467 2N3467	2N3467 2N3468
2N3336 2N3337		2N2883	2N3469 2N3479	2N3420	2N3420
2N3338 2N3339		2N2883 2N2883	2N3480	2N491A 2N3980	2N489A 2N3980
2N3341	2N2605 2N2945A	2N2604 2N2944	2N3481 2N3482	2N3980 2N3980	2N3980 2N3980
2N3342 2N3343	2N2945A	2N2944	2N3483 2N3485	2N3980	2N3980
2N3344 2N3345	2N2945A 2N2945A	2N2944 2N2944	2N3485A	2N3486 2N3486	2N3485 2N3485A
2N3346	2N2945A	2N2944 2N3347	2N3486 2N3486A	2N3486 2N3486	2N3486 2N3486A
2N3347 2N3348	2N3350 2N3351	2N3348	2N3493 2N3494	2N4252 2N3495	2N4252 2N3494
2N3349 2N3350	2N3351 2N3350	2N3349 2N3350	2N3495	2N3495	2N3495
2N3351 2N3352	2N3351 2N3351	2N3351 2N3352	2N3496 2N3497	2N3495 2N3495	2N3496 2N3497
2N3365	2N3822	2N3821	2N3498 2N3499	2N697	2N698 2N5058
2N3366 2N3367	2N3822 2N3822	2N3821 2N3821	2N3500	2N2243A	2N2243
2N3368 2N3369	2N3822 2N3822	2N3821 2N3821	2N3501 2N3502	2N2243A 2N2905	2N2243 2N3502
2N3370	2N3822	2N3821	2N3503 2N3504	2N2905 2N5447	2N3503 2N5447
2N3371 2N3375		2N3371 2N3375	2N3504	2N2907	2N3504 2N3505
2N3376 2N3377	2N3330 2N3330	2N3329 2N3329	2N3505 2N3506	2N2907 2N2989	2N2989
2N3378	2N3330 2N3330 2N3330	2N3330 2N3330	2N3507 2N3512	2N2989 2N3015	2N2989 2N2537
2N3379 2N3380	2N3330	2N3331	2N3513 2N3516	2N2639 2N2639	2N2640 2N2639
2N3381 2N3382	2N3330 2N3993	2N3331 2N3994	2N3518	2N3043	2N3046
2N3383	2N3993 2N3993	2N3994 2N3994	2N3520 2N3521	2N3043 2N2643	2N3043 2N2643
2N3384 2N3385	2N3993	2N3994	2N3522 2N3524	2N2643 2N2639	2N2643 2N2640
2N3386 2N3387	2N3993 2N3993	2N3994 2N3994	2N3527	2N2945A 2N918	2N2944 2N918
2N3390	TIS98 TIS98	TIS98 TIS98	2N3544 2N3546	2N2894	2N3576
2N3391 2N3391A	TIS98	TIS98	2N3549 2N3550	2N2605 2N2945A	2N2604 2N2944
2N3392 2N3393	TIS98 TIS98	TIS98 TIS98	2N3551 2N3552	2N3551 2N3552	2N3551 2N3552
2N3394 2N3395	TIS98 TIS98	TIS98 TIS98	2N3554		2N3554
2N3396	TIS98 TIS98	TIS98 TIS98	2N3555 2N3556	2N3555 2N3556	2N3555 2N3556
2N3397 2N3398	TIS98	TIS98	2N3557 2N3558	2N3557 2N3558	2N3557 2N3558
2N3399 2N3401	2N2945A	2N2996 2N2944	2N3559	2N3559 2N3560	2N3559 2N3560
2N3402 2N3403	2N5449 2N5449	2N5449 2N5449	2N3560 2N3561	2N3561	2N3561
2N3404	2N5449	2N5449 2N5449	2N3562 2N3563	2N3562 TIS62	2N3562 TIS62
2N3405 2N3406	2N5449 2N1671B	2N1671	2N3565 2N3566	TIS98 2N5449	TIS98 2N5449
2N3409 2N3410	2N2639 2N2639	2N2639 2N2639	2N3570	2N3570	2N3570
2N3411	2N2639 2N5449	2N2639 2N5449	2N3571 2N3572	2N3570 2N3570	2N3571 2N3572
2N3414 2N3415	2N5449	2N5449	2N3573 2N3574		2N3573 2N3574
2N3416 2N3417	2N5449 2N5449	2N5449 2N5449	2N3575	2N2894	2N3575 2N3576
2N3418 2N3419	2N3418 2N3419	2N3418 2N3419	2N3576 2N3578	2N3330	2N3329
2N3420 2N3421	2N3420 2N3421	2N3420 2N3421	2N3579 2N3580	2N2605 2N2605	2N2604 2N2605
2N3423	2N2639	2N2639	2N3581 2N3582	2N2605 2N2605	2N2605 2N2605
2N3424 2N3425	2N2639	2N2639 2N3014	2N3597	2N4002	2N4002 2N4002
2N3426 2N3427	2N1377	2N3303 2N1377	2N3598 2N3599	2N4002 2N4002	2N4002 2N4002

Time	Preferred	Nearest	1	Preferred	Nearest
Type	Ti Type	Ti Type	Type 2N3802	Ti Type	TI Type
2N3600	2N918	2N918		2N3350	2N3347
2N3608		3N160	2N3803	2N3351	2N3351
2N3610		3N160	2N3804	2N3350	2N3350
2N3611	T13027	TI3027	2N3804A	2N3350	2N3350
2N3613	T13027	T13027	2N3805	2N3350	2N3350
2N3614	T13027	T13028	2N3805A	2N3350	2N3350
2N3615	T13027	T13031	2N3806	2N3351	2N3806
2N3616	2N456A	2N3146	2N3807	2N3351	2N3807
2N3617 2N3618	T13027 2N456A	Ti3030 2N3146	2N3808	2N3350	2N3808
2N3632		2N3632	2N3809 2N3810	2N3350 2N3350	2N3809 2N3810
2N3638	2N5447	2N5447	2N3810A	2N3350	2N3810
2N3638A	2N5447	2N5447	2N3811	2N3351	2N3811
2N3641 2N3642	2N5449 2N5449	2N5449 2N5449	2N3811A	2N3351	2N3811
2N3643	2N5449	2N5449	2N3819 2N3820	2N3819 2N3820	2N3819 2N3820
2N3644	2N5449	2N5449	2N3821	2N3822	2N3821
2N3647		2N3303	2N3822	2N3822	2N3822
2N3648		2N3303	2N3823	2N3823	2N3823
2N3659		2N5058	2N3824	2N3823	2N3824
2N3665	2N2432	2N2432	2N3826	2113023	2N3826
2N3666	2N2432	2N2432	2N3827		2N3827
2N3671	2N2905	2N2905	2N3828		2N3828
2N3672 2N3673	2N2905 2N2905 2N2905 2N2945A	2N2905 2N2905	2N3829 2N3830	2N3829	2N3829 2N3830
2N3677	2N2945A	2N2905 2N2944 2N3980	2N3831		2N3831
2N3679 2N3680	2N3980	2N3680	2N3832 2N3833		2N3832 2N3833
2N3681	2N3570	2N3570	2N3834		2N3834
2N3682	2N918	2N918	2N3835		2N3835
2N3683	2N3570	2N3570	2N3838	2N3838	2N3838
2N3684 2N3685	2N3822 2N3822	2N3822 2N3821	2N3839 2N3840	2N3570 2N2945A 2N2945A	2N3571 2N2946
2N3686	2N3822	2N3821	2N3841	2N2945A	2N2946
2N3687	2N3822	2N3821	2N3842	2N2945A	2N2946
2N3691	TIS98	TIS98	2N3846		2N3846
2N3692	TIS98	TIS98	2N3847		2N3847
2N3695	2N3330	2N3575	2N3850	2N3998	2N3998
2N3696	2N3330	2N3575	2N3851	2N3998	2N3998
2N3697	2N3330	2N3575	2N3852	2N3998	2N3998
2N3702	2N5447	2N3702	2N3853	2N3998	2N3998
2N3703	2N5448	2N3703	2N3857	2N2945A	2N2944
2N3704	2N5449	2N3704	2N3858	TIS98	TIS98
2N3705	2N5450	2N3705	2N3858A	TIS98	TIS98
2N3706	2N5451	2N3706	2N3859	TIS98	TIS98
2N3707	2N3707	2N3707	2N3860	TIS98	TIS98
2N3708	2N3708	2N3708	2N3866	2N3866	2N3866
2N3709	2N3709	2N3709	2N3867	2N5333	2N5333
	2N3710	2N3710	2N3868	2N5333	2N5333
2N3710 2N3711	2N3711	2N3711	2N3877	TIS98	TIS98
2N3712	2N3713	2N3712	2N3877A	TIS98	TIS98
2N3713		2N3713	2N3900	TIS98	TIS98
2N3714	2N3714	2N3714	2N3900A	TIS98	TIS98
2N3715	2N3715	2N3715	2N3909	2N3909	2N3909
2N3716	2N3716	2N3716	2N3909A		2N3909A
2N3719	2N5333	2N5333	2N3910	2N2945A	2N2944
2N3720	2N5333	2N5333	2N3911	2N2945A	2N2944
2N3722	2N3015	2N3015	2N3912	2N2945A	2N2944
2N3723	2N3015	2N3015	2N3913	2N2945A	2N2944
2N3724	2N3725	2N3724	2N3914 2N3915	2N2945A 2N2945A	2N2944
2N3724A 2N3725	2N3725 2N3725	2N3724A 2N3725	2N3921	2N5045	2N2944 TIS25
2N3725A	2N3725	2N3725A	2N3922	2N5045	TIS25
2N3733		2N3733	2N3930	2N3495	2N3497
2N3737	2N3725	2N3725A	2N3934	2N5045	TIS25
2N3742		2N5058	2N3935	2N5045	TIS25
2N3744	2N3996	2N3996 2N3996	2N3936	2113073	2N3936
2N3745 2N3746	2N3996 2N3996	2N3996	2N3937 2N3938		2N3937 2N3938
2N3747	2N3996	2N3996	2N3939		2N3939
2N3748	2N3996	2N3996	2N3940		2N3940
2N3749	2N3996	2N3996 2N3996	2N3941 2N3942		2N2920
2N3750 2N3751	2N3996 2N3996	2N3996	2N3943		2N2920 2N2920
2N3752 2N3762	2N3996	2N3996 2N3244	2N3944 2N3946	2N2219	2N2920 2N2217
2N3764	2N3486	2N3486	2N3947	2N2219	2N2217
2N3765	2N3486	2N3486A	2N3954	2N5045	TIS25
2N3771		2N3771	2N3955	2N5045	TIS25
2N3772		2N3772	2N3956	2N5045	TIS25
2N3783	2N5043	TIXM101	2N3957	2N5045	TIS25
2N3784	2N5043	TIXM101	2N3958	2N5045	TIS25
2N3796	2N3823	2N3823	2N3962	2N3964	2N3962
2N3797	2N3823	2N3823	2N3963	2N3964	2N3963
2N3798	2N2605	2N3798	2N3964	2N3964	2N3964
2N3799	2N2605	2N3799 2N3352	2N3965	2N3964	2N3965
2N3800	2N3351	2N3352	2N3966	2N3823	2N3824
2N3801	2N3351	2N3352	2N3967	2N3822	2N3822

Toma	Preferred	Nearest	Tomo	Preferred	Nearest
Type 2N3967A	Ti Type 2N3822	TI Type 2N3821	Type 2N4117	Ti Type 2N3822	Ti Type 2N3821
2N3968	2N3822	2N3821	2N4117A	2N3822	2N3821
2N3968A 2N3969	2N3822	2N3821 2N3821	2N4118 2N4118A	2N3822 2N3822	2N3821 2N3821
2N3969A	2N3822 2N3822	2N3821	2N4119	2N3822	2N3821
2N3970 2N3971	2N4857 2N4857	2N3970 2N3971	2N4119A 2N4120	2N3822	2N3821 3N160
2N3972	2N4857	2N3972	2N4121	2N4423	2N4423
2N3973	2N5449	2N5449 2N5449	2N4122 2N4123	2N4423 TIS99	2N4423 TIS99
2N3974 2N3975	2N5449 2N5449	2N5449	2N4123 2N4124	TIS98	TIS98
2N3976 2N3977	2N5449 2N2945A	2N5449 2N2944	2N4125 2N4126	2N5447 2N4061	2N5447 2N4061
2N3978	2N2945A	2N2944	2N4138	2N2432	2N4138
2N3979	2N2945A	2N2944	2N4139 2N4150	2N3823 2N3421	2N3823 2N3421
2N3980 2N3983	2N3980 TIS62	2N3980 TI407	2N4210	2N4002	2N4002
2N3984 2N3985	TIS63	T1408 T1409	2N4211 2N4220	2N4002 2N3822	2N4002 2N3821
2N3993	TIS63 2N3993	2N3993	2N4220A	2N3822	2N3821
2N3994 2N3995	2N3993	2N3994 2N3995	2N4221 2N4221A	2N3822 2N3822	2N3822 2N3822
2N3996	2N3996	2N3996	2N4222	2N3823	2N3821
2N3997 2N3998	2N3997 2N3998	2N3997 2N3998	2N4222A 2N4223	2N3823 2N3823	2N3821 2N3823
2N3999	2N3999	2N3999	2N4224	2N3819	2N3819
2N4000 2N4001	2N4000 2N4001	2N4000 2N4001	2N4235 2N4236	2N5333 2N5333	2N5333 2N5333
2N4002	2N4002	2N4002	2N4241	TI3027	TI3027
2N4003 2N4004	2N4003	2N4003 2N4004	2N4242 2N4243	TI3027 TI3027	T13028 T13028
2N4004 2N4005		2N4005	2N4244	TI3027	T13028
2N4008 2N4014	2N2945A	2N2944 2N2219A	2N4245 2N4246	TI3027 TI3027	T13028 T13028
2N4015	2N2219 2N3350	2N3350	2N4247	T13027	T13028
2N4016 2N4017	2N3350 2N3351	2N3350 2N3352	2N4248 2N4249	2N4058 2N4058	2N4058 2N4058
2N4018	2N3351 2N3351 2N3350	2N3352 2N3350	2N4250	2N4059	2N4059
2N4020 2N4021	2N3350 2N3350	2N3350 2N3350	2N4252 2N4253	2N4252 2N4252	2N4252 2N4253
2N4022	2N3350	2N3350	2N4254	2114232	2N4254
2N4023 2N4024	2N3350 2N3350	2N3350 2N3350	2N4255 2N4259	2N4252	2N4255 2N4252
2N4025	2N3350	2N3350	2N4267	2114232	3N160
2N4026 2N4027	2N2907 2N2907	2N2906A 2N2906A	2N4268 2N4269	2N2243A	3N160 2N2243 A
2N4028	2N2907	2N2907A	2N4274	2N4418	2N4419
2N4029 2N4030	2N2907	2N2907A 2N4030	2N4275 2N4284	2N4418 2N4060	2N4418 2N4060
2N4031		2N4031	2N4285	2N4060	2N4060
2N4032 2N4033		2N4032 2N4033	2N4286 2N4287	TIS98 TIS98	TIS98 TIS98
2N4034	2N3250	2N3250	2N4288	2N4062	2N4062
2N4035 2N4036	2N3250 2N2905	2N3250 2N2904	2N4289 2N4290	2N4062 2N5447	2N4062 2N3702
2N4037	2N2905	2N2904	2N4291	2N5447	2N3702
2N4040 2N4041		2N4040 2N4041	2N4292 2N4293	TIS62 TIS62	TIS62 TIS62
2N4042	2N3680	2N3680	2N4300	2N4300	2N4300
2N4043 2N4044	2N3680 2N3680	2N3680 2N3680	2N4301 2N4302	2N4301 TIS88	2N4301 2N5246
2N4045	2N3680	2N3680	2N4303	TIS88	2N5245
2N4046 2N4058	2N4058	2N3252 2N4058	2N4304 2N4313	2N3819 2N4423	2N3819 2N4423
2N4059	2N4059	2N4059	2N4338	2N3822	2N3821
2N4060 2N4061	2N4060 2N4061	2N4060 2N4061	2N4339 2N4340	2N3822 2N3822	2N3821 2N3821
2N4062 2N4065	2N4062	2N4062 3N160	2N4341 2N4342	2N3822 2N3820	2N3822 2N3820
2N4066		3N160	2N4342 2N4343	2N3820 2N3820	2N3820 2N3820
2N4072 2N4073		2N2863 2N2863	2N4357	2N3495	2N3494
2N4075	2N3996	2N3996	2N4358 2N4360	2N3495 2N3820	2N3494 2N3820
2N4076 2N4081	2N3996 2N4252	2N3996 2N4252	2N4381	2N3330 2N3330	2N3330
2N4082	2N5045	TIS25	2N4382 2N4390	2113330	2N3331 2N5058
2N4083 2N4084	2N5045 2N5045	TIS25 TIS25	2N4391	2N4857	2N4391
2N4085	2N5045	TIS25	2N4392 2N4393	2N4857 2N4857	2N4392 2N4393
2N4086 2N4087	TIS98 TIS97	TIS98 TIS97	2N4397	2N4252	2N4252
2N4091	2N4857	2N4091	2N4400 2N4401	2N5449 2N5449	2N5449 2N5449
2N4092 2N4093	2N4857 2N4857	2N4092 2N4093	2N4402	2N2905	2N2904
2N4099	2N3680	2N3680	2N4403 2N4416	2N2905 2N4416	2N2905 2N4416
2N4104 2N4115	2N4104 2N3996	2N4104 2N3996	2N4416A 2N4416A	2N4416 2N4416	2N4416A
2N4116	2N3996	2N3996	2N4418	2N4418	2N4418

T	Preferred	Nearest	T	Preferred	Nearest
Type 2N4419	TI Type 2N4418	Ti Type 2N4419	Type 2N5127	Ti Type TIS98	Ti Type TIS98
2N4420	2N4420	2N4420	2N5128	2N5451	2N5451
2N4421 2N4422	2N4420	2N4421 2N4422	2N5129 2N5130	2N5451 2N5450	2N5451 2N5450
2N4423	2N4423	2N4423	2N5131	2N5451	2N5451
2N4436 2N4437	2N5449 2N5449	2N5449 2N5449	2N5132 2N5133	2N5451 2N5449	2N5451 2N5449
2N4457 2N4854	2N4854	2N4854	2N5134	2N4420	2N4420
2N4855 2N4856	2N4857	2N4855 2N4856	2N5138	2N4061 2N3250	2N4061 2N3250
2N4856A	2N4857	2N4856A	2N5139 2N5140	2N3250 2N3250	2N3250 2N3250
2N4857	2N4857	2N4857 2N4857A	2N5141	2N3829 2N3829	2N3829 2N3829
2N4857A 2N4858	2N4857 2N4857	2N4858	2N5142 2N5143	2N3829	2N3829
2N4858A	2N4857 2N4857	2N4858A 2N4859	2N5196 2N5197	2N5045 2N5045	2N5545 2N5545
2N4859 2N4859A	2N4857	2N4859A	2N5197 2N5198	2N5045	2N5546
2N4860 2N4860A	2N4857 2N4857	2N4860 2N4860A	2N5199	2N5045	2N5547
2N4861	2N4857	2N4861	2N5245 2N5246	TIS88 TIS88	2N5245 2N5246
2N4861A 2N4867	2N4857 2N3622	2N4861A 2N3821	2N5247 2N5248	TIS88	2N5247
2N4867A	2N3822	2N3821	2N5246 2N5273	2N3819 2N5273	2N5248 2N5273
2N4868 2N4868A	2N3822 2N3822	2N3821 2N3821	2N5274	2N5274	2N5274
2N4869	2N3822	2N3821	2N5275 2N5312	2N5386	2N5275 2N5386
2N4869A 2N4874	2N3822 2N4875	2N3821 2N4874	2N5313	2N5386	2N5386
2N4875	2N4875	2N4875	2N5314 2N5316	2N5386 2N5384	2N5386 2N5384
2N4876 2N4891	2N4875 2N4891	2N4876 2N4891	2N5317	2N5384	2N5384
2N4892	2N4891	2N4892	2N5318 2N5332	2N5384	2N5384 2N5332
2N4893 2N4894	2N4891 2N4891	2N4893 2N4894	2N5333 2N5384	2N5333 2N5384	2N5333 2N5384
2N4913	2.11.002	2N4913 2N4914	2N5384 2N5385	2N5385	2N5385
2N4914 2N4915		2N4915	2N5386	2N5386	2N5386
2N4934	2N4252	2N4252 2N4252	2N5387 2N5388	2N5387 2N5388	2N5387 2N5388
2N4935 2N4936	2N4252 2N4252	2N4252	2N5389	2N5389	2N5389
2N4944	2N5449	2N5449 2N5449	2N5390 2N5399		2N5390 2N5399
2N4946 2N4947	2N5449 2N3980	2N4947	*2N5404 *2N5405	2N5384 2N5384	2N5384 2N5384
2N4948	2N3980 2N3980	2N4948 2N4949	*2N5406	2N5384	2N5384
2N4949 2N4951	2N5450	2N3705	*2N5407 2N5413	2N5384	2N5384 2N5413
2N4952 2N4954	2N5499 2N5449	2N3704 2N5449	2N5414		2N5414
2N4954 2N4964	2N4060	2N4060	2N5417 *2N5441	2N5273	2N5417 2N5273
2N4965 2N4966	2N4058 TIS99	2N4058 TIS99	l *2N5442	2N5274	2N5274
2N4967	TIS99	TIS99	*2N5444 *2N5445	2N5273 2N5274	2N5273 2N5274
2N4968 2N4976	TIS99 2N4875	T(S99 TIS39	2N5447 2N5448	2N5447	2N5447
2N4977	2N4857	2N4856A 2N4856A	2N5448 2N5449	2N5448 2N5449	2N5448 2N5449
2N4978 2N4979	2N4857 2N4857	2N4856A	2N5450 2N5451	2N5450 2N5451	2N5450 2N5451
2N4994	2N4995	2N4994 2N4995		2115451	
2N4995 2N4996	2N4996	2N4996	3N34 3N35		3N34 3N35
2N4997	2N2386	2N4997 2N2386A	3N62	3N79	3N79
2N5020 2N5021	2N2386	2N2386A	3N63	3N79	3N78 3N77
2N5022 2N5023	2N2386 2N2386	2N2386A 2N2386A	3N64 3N65	3N79 3N79	3N79
2N5023 2N5043	2N5043	2N5043	3N66	3N79	3N78
2N5044	2N5045	2N5044 2N5045	3N67 3N68	3N79 3N79	3N77 3N79
2N5045 2N5046	2N5045 2N5045	2N5046	3N68A	3N79	3N108
2N5047	2N5045	2N5047	3N69	3N79 3N79	3N78 3N77
2N5053 2N5054	2N918 2N918	2N918 2N918	3N70 3N71	3N79	3N77
2N5055	2N3829	2N3829	3N72	3N79	3N78
2N5056	2N3829	2N3829 2N3829	3N73 3N74	3N79 3N79	3N79 3N74
2N5057 2N5058	2N3829	2N5058	3N75	3N79	3N75
2N5059		2N5059	3N76	3N79 3N79	3N76 3N77
2N5066 2N5078	2N2432 2N4416	2N2432 2N4416	3N77 3N78	3N79 3N79	3N78
2N5078 2N5086	2N4410 2N4058	2N4058	3N79	3N79	3N79
2N5103	2N4416	2N4416 2N4416	3N87 3N88	3N79 3N79	3N77 3N78
2N5104 2N5105	2N4416 2N4416	2N4416 2N4416	3N90	3N111	3N110
2N5106	.,	2N5399	3N91	3N111 3N111	3N110 3N111
2N5107 2N5126	TIS98	2N5399 TIS98	3N92 3N93	3N111 3N111	3N108
			•		

Туре	Preferred TI Type	Nearest Ti Type	Туре	Preferred TI Type	Nearest Ti Type
3N94 3N95 3N100 3N101 3N102 3N103 3N104 3N105 3N105 3N106 3N107 3N1108 3N111 3N111 3N111 3N111 3N1113 3N114	Ti Type 3N111	TI Type 3N108 3N109 3N110 3N111 3N108 3N108 3N108	Type 3N117 3N118 3N119 3N120 3N121 3N123 3N124 3N125 3N126 3N127 3N129 3N130 3N131 3N132 3N132 3N133 3N133	3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111 3N111	
3N115 3N116	3N111 3N111	3N110 3N111	3N136	3N111	3N108

Туре	Manu- facturer	Preferred TI Type	Nearest TI Type	Туре	Manu- facturer	Preferred TI Type	Ti Type
3RC2	INR		2N1600	C5G	GE		2N2325
3RC5	INR		2N1600	C5U	ĠE GE	2N3561	2N2322 2N3561
3RC10	INR INR		2N1601 2N1602	C6A	GE	2N3562	2N3562
3RC15 3RC20	INR		2N1602	C6B C6F	GE	2N3562 2N3560	2N3560
3RC25	inr		2N1603	C6G	GE	2N3562	2N3562
3RC30	inr		2N1603	CGU	ĞĒ	2N3559	2N3559
3RC40	INR		2N1604	C7A	ĞĒ	2N3557	2N3557
5RC2	INR		2N1770	C7B	GE	2N3558	2N3558
5RC5	INR		2N1771	C7F	<u>GE</u>	2N3556	2N3556
5RC10	INR		2N1772	C7G	GE	2N3558	2N3558
5RC15	INR		2N1773	C7U	GE GE	2N3555	2N3555 2N1772 A
5RC20	INR INR		2N1774 2N1775	C10A C10B	GE		2N1774A
5RC25 5RC30	INR		2N1776	C10C	ĞĒ		2N1776A
5RC40	INR		2N1777	C10D	ĞĒ		2N1777A
5RC50	INR		2N1778	C10F	GE		2N1771A
5RCL2	INR		T140A0	C10G	GE		2N1773A
5RCL5	INR		T140A0	C10H	GE		2N1775A
5RCL10	INR		TI40A1	C10U	ĞE		2N1770A
5RCL15	INR		T140A2	C11A	GE GE		2N1772 2N1774
5RCL20	INR INR		T140A2 T140A3	C11B C11C	GE		2N1776
5RCL25 5RCL30	INR		T140A3	CIID	ĞĒ		2N1777
5RCL40	inr		T140A4	ČÍTÉ	ĞE		2N1778
10RC2	INR		2N1842B	C11F	GE		2N1771
10RC5	INR		2N1843B	Clig	GE		2N1773
10RC10	INR		2N1844B	C11H	GE		2N1775
10RC15	INR		2N1845B	C11U	GE GE		2N1770 2N3936
10RC20	INR		2N1846B 2N1847B	C12A C12B	GE		2N3937
10RC25 10RC30	INR		2N1848B	C12B	GE		2N3938
10RC40	INR		2N1849B	C12D	ĞĒ		2N3939
10RC50	inr		2N1850B	C12F	ĞĒ		2N3936
10RCL2	INR		2N1842B	C12G	ĞĒ		2N3937
10RCL5	INR		2N1843B	C12H	ĞĒ		2N3938
10RCL10	INR		2N1844B 2N1845B	C12U	GE		2N3936
10RCL15 10RCL20	INR INR		2N1846B	C15A	GE		TI40A1
10RCL20 10RCL30	INR		2N1848B	C15B	GE		T140A2
10RCL40	INR		2N1849B	C15C	GE		TI40A3
16RC2	INR		2N1842B	C15D	GE		T140A4
16RC5	INR		2N1843B	C15F	GE		T140A0
16RC10	INR		2N1844B	C15G	GE		T140A2
16RC15	INR		2N1845B	C15U	GE		T140A0
16RL20	INR		2N1846B	C20A	GE		T140A1
16RL25 16RL30	INR INR		2N1847B 2N1848B	C20B	GE		TI40A2
16RL40	INR		2N1849B	C20C	GE		TI40A3
16RL50	INR		2N1850B	C20D	GE		T140A4
40598	RCA		TIXL09	C20F	GE		T140A0
C5A	GE		2N2324	C20U	GE		TI40A0
C5B	GE		2N2326	C36A	GE GE		2N1844B 2N1846B
C5F	GE		2N2323	C36B	GE		2.141.040.0

KEY TO MANUFACTURERS

ECC — Electronic Control Corporation FSC — Fairchild Semiconductor Corporation GE — General Electric Company GSI — General Sensors, Incorporated HPA — Hewlett-Packard Associates HUDSON — Hudson Electronics

INR — International Rectifier Corporation
MOTA — Motorola Semiconductor Products, Incorporated
RAYN — Raytheon Semiconductor Division
RCA — Radio Corporation of America
SOD — Solitron Devices, Incorporated
TEC — Transitron Electronic Corporation

CROSS REFERENCE GUIDE BETWEEN COMPETITIVE DEVICES AND TI DEVICES (Cont'd.)

Туре	Manu- facturer	Preferred Ti Type	Nearest TI Type	Туре	Manu- facturer	Preferred Ti Type	Nearest TI Type
C36C	GE		2N1848B	MPS6542	MOTA	TIS62	TIS62
C36D	ĞĒ		2N1849B	MPS6543	MOTA	TIS86	TIS86
C36E	GE		2N1850B	I MPS6544	MOTA	TIS87	TIS87
C36F	GE		2N1843B	MPS6545 MPS6546	MOTA	TIS87	TIS87
C36F C36G C36H C36U	GE GE		2N1845B 2N1847B	MPS6547	MOTA MOTA	TIS86 TIS86	TIS86 TIS86
C36U	ĞĒ		2N1842B	MPS6552	MOTA	TIS98	TIS98
C37A C37B C37C	GE		2N1844B	I MPS6553	MOTA	TIS97	TIS97
C37B C37C	GE GE		2N1846B 2N1848B	I MPS6554	MOTA	TIS97	TIS97
C37D	GE		2N1849B	MPS6555 MPS6560	MOTA MOTA	TIS97 TIS92	TIS97 TIS92
C37D C37E	GE		2N1850B	MPS6560 MPS6561 MPS6562	MOTA	TIS92	TIS92
C37F C37U	GE		2N1843B	MPS6562	MOTA	TIS93	TIS93
ER900	GE TEC	TI43A	2N1842B TI43A	MPS6563 MPS6564	MOTA MOTA	TIS93	TIS93 2N4994
FK918	FSC	1143A	A3T918	MPS6565	MOTA	TIS99	TIS99
FK2484	FSC		A3T2484	MPS6566	MOTA	TIS98	TIS98
FLB100 FPD100	FSC	10000	TILO1	MPS6567 MPS6579	MOTA	TIS86	TIS86
FPM100	FSC FSC	LS600 LS600	LS600 LS600	MRD200	MOTA MOTA	TIS37 LS600	TIS37 LS600
FPM200	FSC	1N2175	1N2175	I MRD300	MOTA	LS600	LS600
FPT100	FSC	LS600	LS600	Q2040	ECC	2N5273 2N5274	2N5273 2N5274
FV918 FV2484	FSC FSC		A3T918	Q3040 Q4040	ECC ECC	2N5274 2N5274	2N52/4 2N5274
FV2404 FV2894	FSC		A3T2484 A3T2894	06040	ECC	2113274	2N5275
FW2484	FSC		A3T2484	Q6540	ECC		2N5275
GA1 GA2	RAYN RAYN		TIXL03 TIXL03	SDT6905-6908	SOD	2N3421	2N3421
GS600	GSI	LS600	LS600	SDT8105-8116 SDT8801-8805	SOD SOD		2N4004 2N3846
H16820	HUDSON		LS400	SDT9901-9904	SOD	2N4301	2N4301
HP4107	HPA		TIL01	SE1001	FSC		2N4994
HP4120 HP4205	HPA HPA		TIXL10	SE1002	FSC FSC	TICOG	2N4995
HP4220	HPA		LSX900 TIXL51-2 TIXL101 TIXL102-3	SE2001 SE2002	FSC	TIS98 2N5449	TIS98 2N5449
HP4309	HPA		TIXL101	SE3001 SE3002	FSC FSC	TIS62	T162
HP4310 MHM2001-2017	HPA SOD		TIXL102-3 2N5390			TIS62	TIS62 TIS97
MHM2101-2017	SOD		2N5390 2N5390	SE4001 SE4002	FSC FSC	TIS97 TIS97	TIS97
MHM2201-2217	SOD		2N5390	SE4010	FSC	TIS97	TIS97
MHT4551-4583 MHT5501-5508	SOD SOD	0814200	2N2151 2N4300	SE5020	FSC	TIS84	TIS84 TIS85
MHT6408-6416	SOD	2N4300 2N4301	2N4300 2N3996	SE5021 SE5022	FSC FSC	TIS85 TIS85	TIS85
MHT7011-7019	SOD	2N3996	2N4301	SE5023	FSC	TIS85	TIS85
MHT7401-7419 MHT7801-7809	SOD SOD	2N3421 2N5387	2N3421 2N5387	SE5024	FSC	TIS85	TIS85
MHT8002-8304	SOD	2N5387 2N4002	2N4002	SE7001 SE7002	FSC FSC		TIXS100 TIXS100
MHT9001-9012	SOD	2N4002	2N4002	ST2	GE	TI43A	TI43A
MPS918	MOTA	TIS62	TIS62	TA2314 TCR3	RCA		2N3847
MPS2923 MPS2924	MOTA MOTA	TIS99 TIS98	TIS99 TIS98	TCR3 TCR8	TEC TEC		2N1600 TI40A0
MPS2925	MOTA	TIS98	TIS98	TCR13	TEC		2N1601
MPS3563	MOTA	TIS62	TIS62	TCR18	TEC		TI40A1
MPS6506 MPS6507	MOTA MOTA	TIS86 TIS86	2N4996 2N4996	TCR23	TEC		2N1602
MPS6507 MPS6508	MOTA	TIS86	2N4996	TCR28 TCR33	TEC TEC		TI40A2 2N1603
MPS6509 MPS6510	MOTA MOTA	TIS84	TIS84 TIS84	TCR35C	TEC		TI145A0
MPS6511	MOTA	TIS84 TIS87	TIS87	TCR38	TEC	0110550	TI40A3
MPS6512	MOTA	TIS99	TIS99	TCR40C TCR41C	TEC TEC	2N3559 2N3559	2N3559 2N3559
MPS6513 MPS6514	MOTA	TIS99	TIS99	I TCR42C	ŤĔČ	2N3560	2N3560
MPS6514 MPS6515	MOTA MOTA	TIS98 TIS97	TIS98 TIS97	TCR43	TEC		2N1604
MPS6516	MOTA	2N5447	2N5447	TCR43C	TEC	2N3561	2N3561
MPS6517	MOTA	2N5447 2N5447	2N5447	TCR44C TCR45C	TEC TEC	2N3562 2N3562	2N3562 2N3562
MPS6518 MPS6519	MOTA MOTA	2N5447 2N5447	2N5447 2N5447	TCR48	TEC	2110002	TI40A4
MPS6520	MOTA	TIS98	TIS98	TCR65C	TEC		TI145A0
MPS6521	MOTA	TIS97	TIS97	TCR105C TCR205C	TEC TEC		TI145A1 TI145A2
MPS6522 MPS6523	MOTA MOTA	2N5447 2N5447	2N5447 2N5447	TCR305C	TEC		TI145A3
MPS6528	MOTA	2N5447 TIS84	2N5447 TIS84	TCR405C	TEC		TI145A4
MPS6529	MOTA	TIS85	TIS85	TCR730	TEC		T140A0
MPS6530 MPS6531	MOTA	TIS92 TIS92	TIS92 TIS92	TCR731 TCR732	TEC TEC		TI40A1 TI40A2
MPS6531 MPS6532	MOTA MOTA	TIS92	TIS92	TCR733	TEC		T140A3
MPS6533	MOTA	TIS93	TIS93	I TCR734	TEC	0110766	T140A4
MPS6534 MPS6535	MOTA MOTA	TIS93 TIS93	TIS93 TIS93	TT500 TT501	TEC TEC	2N3560 2N3561	2N3560 2N3561
MPS6541	MOTA	TIS86	2N4996	TT502	TEC	2N3562	2N3562

KEY TO MANUFACTURERS

ECC — Electronic Control Corporation FSC — Fairchild Semiconductor Corporation GE — General Electric Company GSI — General Sensors, Incorporated HPA — Hewlett-Packard Associates HUDSON — Hudson Electronics

INR — International Rectifier Corporation
MOTA — Motorola Semiconductor Products, Incorporated
RAYN — Raytheon Semiconductor Division
RCA — Radio Corporation of America
SOD — Solitron Devices, Incorporated
TEC — Transitron Electronic Corporation

INDEX TO ALL STANDARD DISCRETE SEMICONDUCTORS AND COMPONENTS MANUFACTURED BY TEXAS INSTRUMENTS

(Preferred Devices in Bold Type)

Devices shown below represent the entire line of TI standard discrete semiconductors arranged in strict numerical order disregarding prefix.

Example: LSX900

A905-A908 (A900) (parentheses indicate first device listed on data sheet)

2N910-2N912 1N914-1N917

DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
CD 1/8 R	SCC	TID31-TID37	scc
CG 1/8	28201	TIP31	16109
CR 1/8	SCC	TIP31A (TIP31)	16109
TC 1/8 (TM 1/8)	29003	TIP32	16113
TG 1/8	29001	TIP32A (TIP32)	16113
TM 1/8	29003	TIP33	16117
CD 1/4 R (CD 1/8 R)	SCC	TIP33A (TIP33)	16117
CG 1/4 (CG 1/8)	28201	TIXS33	NR
CR 1/4 (CR 1/8)	SCC	3N34	SCC
TM 1/4 (TM 1/8)	29003	TIP34	16121
CD 1/2 MR (CD 1/8 R)	SCC	TIP34A (TIP34)	16121
CD 1/2 PR (CD 1/8 R)	SCC	TIS34	SCC
CD 1/2 SR (CD 1/8 R)	SCC	3N35	SCC
CG 1/2 (CG 1/8)	28201	H35 (H11)	SCC
CR 1/2 (CR 1/8)	SCC	TIP35	16125
CD 1 R (CD 1/8 R)	SCC	TIP35A (TIP35)	16125
G01	CSO	TIXS35-TIXS36	SCC
TIL01	SCC	TIP36	16129
TIXV01-TIXV04	SCC	TIP36A (TIP36)	16129
CD 2 R (CD 1/8 R)	SCC	TIS37-TIS38	2001
G02	CSO	H38 (H11)	SCC
TIXL02	NR	TIS39 (Same as TIXS39)	SCC
TIXL03	SCC	TIXS39	SCC
TIS05	NR	TI40A0-TI40A4	SCC
TIXL05-TIXL06	SCC	TID40-TID44	SCC
TIXV05-TIXV07	SCC	T142A-T143A	24105
TIXL08	SCC	TIS42	SCC
TIXV08-TIXV19	SCC	TIS43	SCC
TIXL09	SCC	TIC44-TIC47	24109
TIXL10	SCC	TIS44(706)	SCC
H11	SCC	TIS45(708)	SCC
TIXM12	SCC	TIS46(914)	SCC
TIXS12-TIXS13	SCC	TIS47(2368)-TIS48(2369)	SCC
TIS14	SCC	TIS49(2369A)	SCC
TIXM14-TIXM17	SCC	TIS50(2894)	SCC
TID17-TID20	SCC	TI51-TI60	SCC
TIS18	SCC	TIS51(3011)	SCC
TIC20-TIC23	24101	TIXL51-TIXL53	SCC
TID21-TID24	20005	TIS52(3014)	SCC
TIS22-TIS24	SCC	TIS53(3639)-TIS54(3640)	SCC
TID25-TID26	20009	TIC54-TIC57 (TI42A)	24105
TIS25-TIS27	SCC	TIXL54	SCC
TID29-TID30	20013	MC55	28401
TIP29	16101	MC55D (MC55)	28401
TIP29A (TIP29)	16101	TIS55(3646)	SCC
TIP30	16105	TIXL55-TIXL56	SCC
TIP30A (TIP30)	16105	TIS56-TIS57	1021

Explanation of Page/Code column:

Page Number — Page number in this catalog of data sheet for device listed at left.

SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request.

CSO — Data sheet not presently available; contact TI sales office.

NR — Not recommended for new design; data sheet available on request.

R — Data sheet available on request.

DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
TIXL57	SCC	300	
TIS58-TIS59	SCC	TIXM301	SCC
H60-H62 (H11)	SCC	TIXV304	SCC
MC60 (MC55)	28401	TIV305	SCC
MC60D (MC55)	28401	TIV306-TIV308	21205
MM60	SCC	2N315A	CSO
TIS60-TIS61	SCC	2N317A	CSO
TIS60M-TIS61M (TIS60)	SCC	2N327A-2N329A	
TIS62, TIS63, TIS64	1025	1N332-1N349	SCC
			CSO
MC65 (MC55)	28401	2N332	SCC
MC65D (MC55)	28401	2N332A	CSO
MM65 (MM60)	SCC	2N333	SCC
TIXS67	SCC	2N333A	CSO
TIS68, TIS69 , TIS70	6101	2N334	SCC
MM70 (MM60)	SCC	2N334A	CSO
TI71-TI75	CSO	2N335	SCC
TIS71-TIS72	SCC	2N335A	CSO
TIS73-TIS75	6103	2N336	SCC
3N74-3N79	4101	2N336A	CSO
TIS78-TIS79	SCC	2N337	
TIXS80-TIXS81	SCC	2N338	SCC
			SCC
TIS82	SCC	2N339-2N343	SCC
TIS83	SCC	2N342A (2N339)	SCC
TIS84-TIS85	1033	TI363-TI364	NR
TIS86-TIS87	1041	TI365	CSO
TIS88	6111	2N377	CSO
TIS90, TIS91, TIS92, TIS93	4105	2N388	SCC
TIS90M, TIS91M, TIS92M,		2N388A (2N388)	SCC
TIS93M (TIS90)	4105	TI388-TI391	CSO
TIS94, TIS95, TIS96, TIS97,		2N389 •	SCC
TIS98, TIS99	1047	2N389A	CSO
100		2N395-2N397	
P100 Probe (TM 1/8)	29003	T1395	NR
TIXS100-TIXS101	CSO	TI397-TI398	CSO
TIXL101			CSO
TIXM101	SCC	2N398	9101
	SCC	2N398A (2N398)	9101
TIXL102-TIXL103	SCC	2N398B (2N398)	9101
TIXS102-TIXS103	CSO	T1399	CSO
TIXM103-TIXM104	SCC	400	
TIXL104-TIXL106	CSO	LS400	27401
TIXM105-TIXM106	SCC	T1400-T1403	SCC
TIXM107-TIXM108	SCC	2N404	9105
3N108-3N111	4109	2N404A (2N404)	9105
2N117	SCC	TI407-TI409	SCC
2N118	SCC	2N424 (2N389)	SCC
2N118A	SCC	2N424A	CSO
2N119	SCC	2N426-2N428	SCC
2N120	SCC	2N438	
2N122	SCC	2N438A	CSO
G129			CSO
G130	SCC	2N439-2N440	cso
	SCC	1N440B-1N445B	CSO
TI145A0-TI145A4	SCC	1N456, 1N457, 1N458, 1N459	18101
TI156	SCC	1N456A-1N459A	CSO
TI156L (TI156)	SCC	2N456A-2N458A	17101
TI158 (TI156)	SCC	2N456B-2N458B	SCC
TI158A (TI156)	SCC	1N461-1N464	SCC
TI158AL (TI156)	SCC	1N461A	CSO
TI158L (TI156)	SCC	2N470-2N480	CSO
T1159-T1162	SCC	TI480-TI481	SCC
200	- -	1N482-1N485	18105
2N243-2N244	SCC	1N482A-1N485A	
2N250	NR	1N482B-1N485B	CSO
2N250A-2N251A	SCC	T1482	CSO
1N251	SCC		SCC
2N251		T1483-T1484	SCC
	NR	T1485	CSO
1N253-1N256	CSO	TI486-TI487	SCC
2N263-2N264	CSO	2N489-2N494	7101

Page Number — Page number in this catalog of data sheet for device listed at left. SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request. CSO — Data sheet not presently available; contact TI sales office. NR — Not recommended for new design; data sheet available on request. R — Data sheet available on request.

DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
2N489A, 2N490A, 2N491A,		1N645A (1N645)	18109
2N492A, 2N493A,		2N650A-2N652A	NR
2N494A (2N489)	7101	650-653	SCC
2N489B-2N494B (2N489)	7101	650C0-650C7 (650)	SCC
T1492	SCC	651C0-651C9 (650)	SCC
T1493-T1495	SCC	652C0-652C9 (650)	SCC
2N494C	CSO	653C0-653C9 (650)	SCC
T1496	SCC	654C9 (650)	SCC
2N497-2N498	SCC	655C9 (650)	SCC
2N497A-2N498A	CSO	2N656-2N657 (2N497)	SCC
500		2N656A-2N657A	CSO
LS500	CSO	1N658	CSO
XD500-XD502	SCC	2N658-2N662	NR
2N508	CSO	1N659-1N661	SCC
2N511	SCC	1N662-1N663	SCC
2N511A (2N511)	SCC SCC	2N681-2N688	SCC
2N511B (2N511) 2N512	SCC	2N681A-2N689A	SCC
2N512 2N512A (2N512)	SCC	2N689	CSO
2N512A (2N512) 2N512B (2N512)	SCC	2N696- 2N697	1201
2N512B (2N512) 2N513	SCC	2N698-2N699 700	1209
2N513 2N513A (2N513)	SCC		000
2N513A (2N513)	SCC	1N702-1N707	SCC
2N513B (2N513)	SCC	1N702A 1N707A (1N702) 2N702	SCC
2N514A (2N514)	SCC	2N702 2N703	NR NR
2N514B (2N514)	SCC	2N705	NR
A516-A517	SCC	A706-A713	SCC
2N520	CSO	2N706	CSO
2N520A	CSO	2N706A	SCC
2N522A	CSO	2N706B	CSO
2N524-2N527	SCC	1N708-1N716	SCC
1N530-1N540	CSO	1N708A-1N716A (1N708)	SCC
TI539-TI540	NR	2N708	SCC
A543	CSO	2N709	SCC
2N541-2N543	CSO	2N710	CSO
1N547	CSO	2N711	NR
1N550-1N555	CSO	2N711A	SCC
T1550-T1551	SCC	2N711B (2N711A)	SCC
2N581-2N582	CSO	2N715-2N716	CSO
2N587	CSO	2N717-2N718 (2N696)	1201
2N594-2N596	NR	2N718A (2N696)	1201
1N599	CSO	2N719-2N720 (2N698)	1209
1N599A	CSO	2N719A- 2N720A (2N698)	1209
600	000	2N721-2N722	CSO
600C-601C	SCC	2N726-2N727	SCC
1N600-1N606 1N600A-1N606A	CSO CSO	2N730-2N731 (2N696)	1201
A600-A602	SCC	2N734	CSO
LS600	27501	2N735	SCC
604C (600C)	SCC	2N736	SCC
606C (600C)	SCC	2N736A 2N738	SCC NR
1N607-1N614	CSO	2N739	SCC
1N607A-1N614A	CSO	2N740	SCC
608C (600C)	SCC	2N743-2N744	SCC
610C (600C)	SCC	1N746-1N759	23109
A610-A612	SCC	1N746A-1N759A (1N746)	23109
612C (600C)	SCC	2N753 (2N706A)	SCC
614C (600C)	SCC	2N759	SCC
616C (600C)	SCC	2N759A (2N759)	SCC
618C (600C)	SCC	2N760	SCC
620C (600C)	SCC	2N760A (2N760)	SCC
622C (600C)	SCC	1N761-1N766	SCC
624C (600C)	SCC	2N780	SCC
1N625-1N629	SCC	2N797	12101
2N634A-2N636A	CSO	800	
1N643 1N645-1N649	SCC	2N849-2N850	SCC
114040-114042	18109	2N851-2N852	SCC

Page Number — Page number in this catalog of data sheet for device listed at left. SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request. CSO — Data sheet not presently available; contact TI sales office. NR — Not recommended for new design; data sheet available on request. R — Data sheet available on request.

DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
2N870-2N871 (2N698)	1209	1300	
2N876-2N881	SCC	2N 1302-2N 1309	9205
2N884-2N888	SCC	2N1319	CSO
2N889	CSO	2N1370-2N1371 (2N1273)	SCC
900		2N1372-2N1377	9213
A900-A903	SCC	2N1378-2N1381 (2N1372)	9213
LSX900	SCC	2N1382-2N1383	NR
A905-A908 (A900)	SCC	2N1385	CSO
2N910-2N912	SCC	1400	CSO
1N914-1N917	19201	2N1404	cso
2N914	SCC	2N1413-2N1415	SCC
1N914A (1N914)	19201	2N1420 (2N696)	1201
1N914B (1N914)	19201	2N1445	CSO
2N915	SCC	1N1487-1N1492	CSO
2N916	SCC	1500	CSO
1N916A (1N914)	19201	2N1507 (2N696)	1201
1N916B (1N914)	19201	2N1529-2N1538	
2N917	SCC	2N1539-2N1543	CSO
2N918	3201	2N1544-2N1548	17223
A3T918	CSO	2N1564 2N1564	CSO
2N929-2N930	1269	2N1565	NR
A3T929-A3T930	CSO		SCC
2N929A-2N930A	CSO	2N1566	SCC
2N956 (2N696)		2N1566A (2N736A)	SCC
1N957-1N961	1201 CSO	2N1572	NR
1N957A-1N961A	CSO	2N1573	SCC
1N957A-1N961A 1N957B-1N961B		2N1574	SCC
2N960-2N962	CSO	1N1581-1N1587	CSO
2N963	12105	2N1586-2N1594	CSO
	SCC	2N1595-2N1599	SCC
2N964-2N966 (2N960) 2N967 (2N963)	12105	1600	
	SCC	2N1600-2N1604	SCC
2N968-2N975	SCC	2N1605	SCC
2N985	SCC	1N1612-1N1616	CSO
2N995	SCC	2N1613 (2N696)	1201
2N997	4301	2N1671	7109
1000		2N1671A (2N1671)	7109
NP1000-NP1001 (Solar Cells)	SCC	2N1671B (2N1671)	7109
2N1021-2N1022 (2N456A)	17101	2N1690-2N1691	CSO
2N1021A-2N1022A (2N456B)	SCC	1N1692-1N1697	CSO
2N1038-2N1041 2N1042-2N1045	17201	1700	
	SCC	2N1711 (2N696)	1201
2N1046	SCC	2N1714-2N1721	SCC
2N1047-2N1050	SCC	2N1722	16301
2N1047A-2N1050A	CSO	2N1722A	SCC
2N1047B-2N1050B	SCC	2N1723	SCC
1N1095-1N1096	CSO	2N1724 (2N1722)	16301
1100		2N1724A (2N1722A)	SCC
1N1100-1N1105	CSO	2N1725 (2N1723)	SCC
1N1115-1N1120	CSO	2N1729-2N1732	CSO
TI1121-TI1126	SCC	2N1770-2N1778	SCC
1N1124A-1N1128A	CSO	2N1770A-2N1777A	SCC
2N1131-2N1132	SCC	1800	
TI1131-TI1136	SCC	2N1808 (2N1605)	SCC
2N1141-2N1143	SCC	1N1816-1N1836	CSO
2N1141A-2N1143A	CSO	1N1816A-1N1836A	CSO
TI1141-TI1146	SCC	1N1816C-1N1836C	CSO
2N1149-2N1153	SCC	1N1816CA-1N1836CA	CSO
TI1151-TI1156	SCC	2N1842B-2N1850B	SCC
2N1154-2N1156	SCC	2N1889-2N1890 (2N698)	1209
2N1195	CSO	2N1891-2N1892	CSO
1200		2N1893 (2N698)	1209
2N1235	CSO	1900	
2N1252	SCC	2N1907-2N1908	17231
2N1253	SCC	2N1924-2N1926	SCC
2N1260	CSO	2N1973-2N1975 (2N910)	SCC
2N1273-2N1274	SCC	2N1993	CSO
2N1276-2N1279	CSO	2N1994-2N1996	SCC

Page Number — Page number in this catalog of data sheet for device listed at left. SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request. CSO — Data sheet not presently available; contact T1 sales office. NR — Not recommended for new design; data sheet available on request. R — Data sheet available on request.

DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
2N1997-2N1999	9301	2N2653	R
2000		2N2659-2N2670	SCC
NP2000-NP2001 (Solar Cells)	SCC	2N2687-2N2690	SCC
2N2000-2N2001	9307	2N2692-2N2694	SCC
1N2008-1N2012	CSO	2N2695-2N2696	SCC
1N2008A-1N2012A	CSO	2800	
1N2008C-1N2012C	CSO	2N2802-2N2807	SCC
1N2008CA-1N2012CA	CSO	2N2861-2N2862	R
2N2060	4401	2N2863-2N2864	SCC
1N2069-1N2071	SCC	2N2865	SCC
1N2069A-1N2071A (1N2069)	SCC	2N2883-2N2884	SCC
2100		2N2894	2125
2N2102	CSO	A3T2894	CSO
2N2102A	CSO	2900	
2N2150-2N2151	SCC	2N2902	CSO
2N2160 (2N1671)	7109	2N2904, 2N2905, 2N2906,2N2907	
2N2173	CSO	2N2904A-2N2907A	SCC
1N2175	27801	A3T2906-A3T2907	CSO
2N2188-2N2191	SCC	A3T2906A-A3T2907A	CSO
2N2192-2N2194	1301	2N2913-2N2920	
2N2192A-2N2194A (2N2192)	1301		SCC
2200		2N2944-2N2946	2131
2N2217-2N2219	1305	2N2944A, 2N2945A,	
2N2218A-2N2219A	SCC	2N2946A (2N2944)	2131
2N2220-2N2222	1305	1N2970-1N3011	CSO
A3T2221-A3T2222	CSO	1N2970A-1N3011A	CSO
		1N2970B-1N3011B	CSO
2N2221A-2N2222A (2N2218A)	SCC	2N2987-2N2994	16401
A3T2221A-A3T2222A	CSO	2N2996	SCC
2N2223 (2N2060)	4401	2N2997	SCC
2N2223A (2N2060)	4401	2N2998	NR
2N2243 (2N2192)	1301	2N2999	NR
2N2243A (2N2192)	1301	3000	
2N2270	CSO	NP3000 (Solar Cells)	SCC
2300		2N3001-2N3004	24401
2N2303	SCC	2N3005-2N3008	24407
2N2322-2N2326	CSO	2N3009	NR
2N2368-2N2369	SCC	2N3010	1401
2N2369A	1315	2N3011	SCC
2N2386	6301	A3T3011	CSO
2N2386A	CSO	2N3012 (2N2894)	2125
2N2387-2N2388	SCC	2N3013	1405
2N2389-2N2390	SCC	2N3014	SCC
2N2393-2N2394	SCC	2N3015	1409
2N2395-2N2396	SCC	TI3027-TI3028	17301
2400		TI3029-TI3031	SCC
2N2410	SCC	2N3033-2N3035	SCC
2N2411-2N2412	SCC	2N3036	SCC
2N2413	CSO	2N3037-2N3038	SCC
2N2415-2N2416	SCC	2N3039-2N3040	SCC
2N2432	1325	2N3043-2N3044	4501
2N2432A (2N2432)	1325	2N3045-2N3048 (2N3043)	4501
2N2453	SCC	2N3049, 2N3050, 2N3051	4503
2N2481	SCC	2N3052	
2N2483- 2N2484	1337	2N3052 2N3053	SCC
A3T2484	CSO	2N3055	CSO
2N2497,2N2498, 2N2499	6303	1N3064	16409
2500	0000		19301
2N2500 (2N2497)	6303	1N3070	19303
2N2537-2N2540	SCC	3100 2N3114	
2N2557-2N2540 2N2552-2N2559 (2N1038)	17201	2N3114	SCC
2N2552-2N2559 (2N1058) 2N2560-2N2567 (2N1042)	SCC	2N3117	SCC
2N2586	SCC	2N3146-2N3147	SCC
2600	550	3200 3N3344 3N3345	0000
2N2604- 2N2605	2119	2N3244-2N3245	2203
2N2635	12301	2N3250-2N3251	2209
2N2639 2N2639-2N2641		2N3250A-2N3251A (2N3250)	2209
	4405	2N3252-2N3253	SCC
2N2642, 2N2643, 2N2644 (2N2639)	4405	2N3267	cso

Page Number — Page number in this catalog of data sheet for device listed at left. SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request. CSO — Data sheet not presently available; contact TI sales office. NR — Not recommended for new design; data sheet available on request. R — Data sheet available on request.

	24.05/2025	DELUGE TUDE	D4.07/00D7
DEVICE TYPE	PAGE/CODE	DEVICE TYPE	PAGE/CODE
3300		2N3980	7201
2N3303	SCC	2N3993-2N3994	6501
2N3304	2211	2N3995	SCC
2N3328	NR	2N3996-2N3999	16601
2N3329,2N3330, 2N3331, 2N3332	6305	4000	
2N3333-2N3336	SCC	2N4000-2N4001	16607
2N3347-2N3350	4507	1N4001-1N4007	25401
2N3351-2N3352 (2N3347)	4507	2N4002-2N4003	16613
2N3371	SCC	2N4004-2N4005	SCC
2N3375	SCC	2N4030-2N4033	CSO
3400		2N4040-2N4041	CSO
2N3418-2N3421	16501	2N4058-2N4060	2301
2N3444	SCC	2N4061-2N4062 (2N4058)	2301
2N3449	CSO	2N4091-2N4093	SCC
2N3467-2N3468 (2N3244)	2203	1N4099	SCC
2N3485-2N3486	2213	4100	
2N3485A-2N3486A (2N3485)	2213	1N4100-1N4106	SCC
2N3494, 2N3495 , 2N3496, 2N3497	2215	2N4104	1501
3500		2N4138 (2N2432)	1325
2N3502-2N3505	SCC	1N4148-1N4149	19401
1N3506-1N3520	CSO	1N4151-1N4154	SCC
2N3551-2N3552	16507	4200	
2N3553	CSO	2N4252-2N4253	1503
2N3554	SCC	2N4254-2N4255	1511
2N3555-2N3558	24417	4300	
2N3559-2N3562	24425	2N4300	16625
2N3570 -2N3572	3401	2N4301	16631
2N3573-2N3575	CSO	1N4305	19405
2N3576	SCC	1N4360	CSO
3600		1N4370-1N4372	23601
2N3632	SCC	1N4370A-1N4372A (1N4370)	23601
2N3680	4509	1N4373	CSO
3700		1N4378	CSO
2N3702-2N3703	SCC	2N4391-2N4393	SCC
2N3704-2N3706	SCC	4400	
2N3707-2N3711	1431	2N4416	6503
2N3712	NR	2N4416A (2N4416)	6503
2N3713-2N3716	16511	2N4418-2N4419	1519
2N3724-2N3725	1433	2N4420-2N4421	1521
2N3724A-2N3725A (2N3724)	1433	2N4422	SCC
2N3733	CSO	2N4423	2303
2N3771-2N3772 2N3798-2N3799	CSO	1N4444 (1N4305)	19405
3800	SCC	1N4446, 1N4447, 1N4448 ,	
	000	1N4449 (1N4148)	19401
2N3806-2N3811 2N3819	SCC	1N4454 (1N4305)	19405
2N3820	6401 6403	4500	
2N3821-2N3822	6405	1N4531-1N4534	19407
A3T3821-A3T3823		1N4536 (1N4531)	19407
2N3823	CSO 6407	4600	
2N3824	SCC	1N4606	SCC
2N3826-2N3827	1441	4700	
2N3828	NR	1N4727	SCC
2N3829	2235	4800	
2N3830-2N3831	SCC	2N4854-2N4855	4701
2N3832	SCC	2N4856-2N4857	6511
2N3833-2N3835	SCC	2N4858-2N4861 (2N4856)	6511
2N3838	4517	2N4856A-2N4861A	SCC
2N3846-2N3847	CSO	2N4874, 2N4875, 2N4876	3701
2N3866	3501	2N4891-2N4894 4900	7301
3900	0001		000
2N3909	6413	2N4913-2N4915 1N4938	CSO
2N3909A	CSO	2N4947-2N4949 (2N3980)	CSO 7201
2N3936-2N3940	SCC	2N4947-2N4949 (2N3980) 2N4994- 2N4995 (2N3826)	7201 1441
2N3962- 2N3964	2241	2N4994-2N4995 (2N3826) 2N4996-2N4997 (2N4254)	1511
2N3965 (2N3962)	2241	5000	1311
2N3970-2N3972	SCC	2N5043-2N5044	14401
			1-7-01

Page Number — Page number in this catalog of data sheet for device listed at left. SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request. CSO — Data sheet not presently available; contact T1 sales office. NR — Not recommended for new design; data sheet available on request. R — Data sheet available on request.

DEVICE TYPE	PAGE/CODE
2N5045-2N5047	6601
2N5058-2N5059	SCC
5200 2N5245-2N5247	CSO
2N5245-2N5247 2N5248	CSO
2N5273. 2N5274.2N5275	24601
5300	24001
2N5332	CSO
2N5333	16701
2N5384-2N5385	16707
2N5386	16711
2N5387-2N5389	16715
2N5390	SCC
2N5399	CSO
5400	
2N5413-2N5414	CSO
2N5417	CSO
2N5447-2N5448	2305
2N5449-2N5451	1701
MISC. ECM	SCC
N on P Silicon Solar Cells	SCC
SCM	
XMST	30201 SCC
VINIO	300

Page Number — Page number in this catalog of data sheet for device listed at left.

SCC — Data sheet in 1967-68 Semiconductors and Components Catalog — data sheet available on request.

CSO — Data sheet not presently available; contact TI sales office.

NR — Not recommended for new design; data sheet available on request.

R — Data sheet available on request.

MILITARY DEVICES AVAILABLE FROM TEXAS INSTRUMENTS

This table lists available TI device types manufactured and tested in accordance with appropriate military specification requirements. Note that, except for items with an asterisk, only the latest specification revision and type number prefix (as of July 1, 1968) are listed. In certain cases, however, previous prefix types meeting superseded issues of the specifications can be supplied if desired.

Copies of the current military specification issues may be ordered from: Commanding Officer, U. S. Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa., 19120.

DI	ODES	JAN 2N964	MIL-S-19500/258A (NAVY)
1411 411054	MIL C 10500/100A	JAN 2N1021A, 2N1022A	w/Amend3 MII -S-19500/217A
JAN 1N251 JAN 1N457, 1N458, 1N459	MIL-S-19500/188A MIL-S-19500/193A	JAN 2N1039	MIL-S-19500/217A MIL-S-19500/89C w/Amend1
JAN 1N483B	MIL-S-19500/118C	JAN 2N1041	MIL-S-19500/89C w/Amend1
JAN TX1N483B	MIL-S-19500/118C	JAN 2N1042 thru 2N1045	MIL-S-19500/137B
JAN 1N485B, 1N486B	MIL-S-19500/118C	JAN 2N1046	MIL-S-19500/88 (NAVY) w/Amend1
JAN TX1N485B, TX1N486B JAN 1N643	MIL-S-19500/188C	JAN 2N1049A, 2N1050A	MII -S-19500/1764 w/Amend -1
JAN 1N645	MIL-S-19500/256B MIL-S-19500/240B w/Amend1	JAN 2N1131, 2N1132	MIL-S-19500/177C MIL-S-19500/87A
JAN 1N645 JAN TX1N645	MIL-S-19500/240B w/Amend1	JAN 2N1142	MIL-S-19500/87A
JAN 1N662, 1N663 JAN 1N746A thru 1N759A	MIL-S-19500/256B	JAN 2N1302 thru 2N1309 JAN 2N1613	MIL-S-19500/126B MIL-S-19500/181C w/Amend1 MIL-S-19500/181C w/Amend1
JAN 111/46A tilru 111/59A	MIL-S-19500/127D (NAVY) w/Amend2	JAN TX2N1613	MIL-S-19500/181C W/Amend -1
JAN TX1N746A thru TX1N759A	MIL-S-19500/127D (NAVY)	JAN 2N1711	MIL-S-19500/225D
	w/Amend2	JAN TX2N1711	MIL-S-19500/225D
JAN 1N914 JAN TX1N914 JAN 1N3064	MIL-S-19500/116E MIL-S-19500/116E	JAN 2N1714 thru 2N1717	MIL-S-19500/263A (EL) w/Amend2
JAN 1N3064	MIL-S-19500/116E MIL-S-19500/144E	JAN 2N1722	MIL-S-19500/262F w/Amend -1
JAN TX1N3064	MIL-S-19500/144E	JAN TX2N1722	MIL-S-19500/262E w/Amend1 MIL-S-19500/262E w/Amend1
JAN 1N3070 JAN TX1N3070	MIL-S-19500/169E MIL-S-19500/169E	JAN 2N1724	MIL-S-19500/262E w/Amend1
JAN TX1N3070	MIL-S-19500/169E	JAN TX2N1724 JAN 2N1890	MIL-S-19500/262E w/Amend1
JAN 1N4148 JAN TX1N4148	MIL-S-19500/116E MIL-S-19500/116E	JAN TX2N1890	MIL-S-19500/225D MIL-S-19500/225D
JAN 1N4153	MIL-S-19500/337A (NAVY)	JAN 2N1893	MIL-S-19500/182C
JAN 1N4370A, 1N4371A,	MIL-S-19500/337A (NAVY) MIL-S-19500/127D (NAVY)	JAN TX2N1893	MIL-S-19500/182C
1N4372A	w/Amend2	JAN 2N2060	MIL-S-19500/270B (NAVY) w/Amend2
JAN TX1N4370A, TX1N4371A, TX1N4372A	MIL-S-19500/127D (NAVY) w/Amend2	JAN TX2N2060	MIL-S-19500/270B (NAVY)
JAN 1N4454	MIL-S-19500/144E		·w/Amend -2
JAN TX1N4454	MIL-S-19500/144E	JAN 2N2218, 2N2218A	MIL-S-19500/251E w/Amend1 MIL-S-19500/251E w/Amend1 MIL-S-19500/251E w/Amend1
JAN 1N4938	MIL-S-19500/169E	JAN TX2N2218, TX2N2218A JAN 2N2219, 2N2219A	MIL-S-19500/251E w/Amend1
JAN TX1N4938	MIL-S-19500/169E	JAN TX2N2219, TX2N2219A	MIL-S-19500/251E W/Amend -1
TRAI	NSISTORS	JAN 2N2221, 2N2221A	MIL-S-19500/251E w/Amend1 MIL-S-19500/255E w/Amend1 MIL-S-19500/255E w/Amend1
		JAN TX2N2221, TX2N2221A	MIL-S-19500/255E w/Amend1
JAN 2N117 JAN 2N118	MIL-S-19500/35B (NAVY) MIL-S-19500/2A	JAN 2N2222, 2N2222A JAN TX2N2222, TX2N2222A	MIL-S-19500/255E w/Amend1 MIL-S-19500/255E w/Amend1
JAN 2N118 JAN 2N119	MIL-S-19500/2A MIL-S-19500/35B (NAVY)	JAN 2N2369A	MIL-S-19500/255E W/AIII6Hd1
USN 2N332	*MIL_T_19500/374 (NAVV)	JAN TX2N2369A	MIL-S-19500/317D
JAN 2N333 USN 2N334	MIL-S-19500/37C w/Amend1 *MIL-T-19500/37A (NAVY) MIL-S-19500/37C w/Amend1	JAN 2N2432	MIL-S-19500/313A MIL-S-19500/313A
USN 2N334	*MIL-T-19500/37A (NAVY)	JAN TX2N2432 JAN 2N2481	MIL-S-19500/313A MIL-S-19500/268B (NAVY)
JAN 2N335, 2N336 JAN 2N337, 2N338	MIL-S-19500/37C W/Amend1	JAN 2142-101	w/Amend1
JAN 2N341	MII -S-19500/31B	JAN TX2N2481	MIL-S-19500/268B (NAVY)
JAN 2N342, 2N343	MIL-S-19500/16E MIL-S-19500/63C	LAN CNICEGO	w/Amend1
JAN 2N358A JAN2N388	MIL-S-19500/63C MIL-S-19500/65A	JAN 2N2553 JAN 2N2555	MIL-S-19500/89C w/Amend1
JAN 2N389	MIL-S-19500/05A MIL-S-19500/173A	JAN 2N2557	MIL-S-19500/89C w/Amend1 MIL-S-19500/89C w/Amend1
JAN 2N404	MIL-S-19500/20B w/Amend1	JAN 2N2559 JAN 2N2559 JAN 2N2904, 2N2904A JAN TX2N2904, TX2N2904A	MIL-S-19500/89C w/Amend1 MIL-S-19500/290B w/Amend1
JAN 2N404A	MIL-S-19500/20B w/Amend1	JAN 2N2904, 2N2904A	MIL-S-19500/290B w/Amend1
JAN 2N416	MIL-T-19500/56A (SigC) w/Amend1	JAN 2N2905, 2N2905A	MIL-S-19500/290B w/Amend1 MIL-S-19500/290B w/Amend1
JAN 2N417	MIL-T-19500/57A (SigC)	JAN TX2N2905, TX2N2905A	MIL-S-19500/290B w/Amend1
	w/Amend1	JAN TX2N2905, TX2N2905A JAN 2N2906, 2N2906A	MIL-S-19500/291B w/Amend1
JAN 2N424	MIL-S-19500/173A	JAN TX2N2906, TX2N2906A	MIL-S-19500/291B w/Amend1
JAN 2N427 JAN 2N428M	MIL-S-19500/41B (EL) w/Amend1 MIL-S-19500/44C w/Amend2	JAN 2N2907, 2N2907A JAN TX2N2907, TX2N2907A	MIL-S-19500/291B w/Amend1 MIL-S-19500/291B w/Amend1
JAN 2N456B, 2N457B, 2N458B	MIL-S-19500/217A	JAN 2N3013	MIL-S-19500/291B W/AIII8IIG1
JAN 2N489A thru 2N494A	MIL-S-19500/75B w/Amend1		w/Amend2
JAN TX2N489A thru TX2N494A	MIL-S-19500/75B w/Amend1	JAN 2N3251A	MIL-S-19500/323 (NAVY)
USAF 2N489 thru 2N494 JAN 2N497, 2N498	*MIL-T-19500/75 (USAF) MIL-S-19500/74E	JAN 2N3253	w/Amend1 MIL-S-19500/347 (NAVY)
JAN 2N502A, 2N502B	MIL-S-19500/112C (EL)	JAN 2N3449	MIL-S-19500/347 (NAV T)
JAN 2N502A, 2N502B JAN 2N656, 2N657 JAN 2N696, 2N697	MIL-S-19500/74E	JAN 2N3467	MIL-S-19500/338 (USAF) MIL-S-19500/348 (NAVY)
JAN 2N696, 2N697	MIL-S-19500/99E w/Amend1	JAN 2N3810	MIL-S-19500/336 (NAVY)
JAN 2N702, 2N703 JAN 2N705	MIL-S-19500/153B (EL) MIL-S-19500/86A w/Amend1	JAN 3N35	w/Amend2 MIL-S-19500/80D
JAN 2N706	MIL-S-19500/1208 w/Amend-1	JAN 3N108	MIL-S-19500/361 (NAVY)
JAN 2N718A	MIL-S-19500/181C w/Amend1 MIL-S-19500/181C w/Amend1	DEGLOTO	•
JAN TX2N718A JAN 2N720A	MIL-S-19500/181C w/Amend1	RESISTOR	rs .
JAN TX2N720A	MIL-S-19500/182C MIL-S-19500/182C	RN55 C.D.E.G	MIL-R-10509/7B
JAN 2N744	MIL-S-19500/2/3A (NAVY)	RN55 C,D,E,G RN60 C,D,E,G	MIL-R-10509/1E
JAN 2N759A 2N760A	MIL-S-19500/218A MIL-S-19500/283A (NAVY)	RN65 C,D,E,F,G	MIL-R-10509/2C
JAN 2N869A	MIL-S-19500/283A (NAVY) w/Amend2	RN70 C,D,E RN55 TX C.D.E.G	MIL-R-10509/3D MIL-R-10509/007D (USAF)
JAN 2N910, 2N911, 2N912	MIL-S-19500/274A (EL)	RN60 TX C,D,E,G	MIL-R-10509/001G (USAF)
JAN 2N916	MIL-S-19500/274A (EL) MIL-S-19500/271A (NAVY)	RN55 TX C,D,E,G RN60 TX C,D,E,G RN65 TX C,D,E,F,G	MIL-R-10509/001G (USAF) MIL-R-10509/002D (USAF)
IAN 2NO19	w/Amend2	RN70 TX C,D,E	MIL-R-10509/003E (USAF)
JAN 2N918 JAN TX2N918	MIL-S-19500/301A w/Amend1 MIL-S-19500/301A w/Amend1	CAPACITO	ORS
JAN 2N929, 2N930	MII -S-19500/253B		
JAN TX2N929, TX2N930	MIL-S-19500/253B MIL-S-19500/258A (NAVY)	CS 12 CS 13	*MIL-C-26655/2D
JAN 2N962	MIL-S-19500/258A (NAVY) w/Amend3	CS 13 CSR 13	*MIL-C-26655/2D MIL-C-39003/1A

ESPECIALLY DESIGNED FOR TELEVISION AND VHF COMMUNICATIONS APPLICATIONS REQUIRING HIGH GAIN AND FORWARD AGC

- Low Capacitance...0.32 pF Max
- AGC Operation Guaranteed at 45 Mc/s and 200 Mc/s

mechanical data

†TO-72 outline is same as TO-18 outline with the addition of a fourth lead.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																						30 V
Collector-Emitter Voltage (See	Note	1)																				20 V
Emitter-Base Voltage																						3 V
Continuous Collector Current																						30 mA
Continuous Device Dissipation of	at (oı	· be	low) 2	5°C	F	ree	-Aiı	r Te	emp	ero	utc	e i	(See	• N	lote	2)				20	00 mW
Storage Temperature Range .																		_	65°	C	to	200°C
Lead Temperature 1/4 Inch from	Case	fo.	r 10) S	eco	nds											_		_			300°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 175°C free-air temperature at the rate of 1.33 mW/deg.

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	30			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 2 \text{ mA}, I_B = 0, \text{See Note 3}$	20			٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \ \mu A, \ I_{C} = 0$	3			٧
ICBO	Collector-Cutoff Current	$V_{CB} = 10 \text{ V}, I_E = 0$			50	nA
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 4 mA	20			T
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 \text{ mA}, I_C = 10 \text{ mA}$		1	3	٠ ٧
IL I	Small-Signal Common-Emitter	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 100 \text{ Mc/s}$	5	9	14	
h _{fe}	Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ Mc/s}$		20		T
С _{сь}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, \qquad f = 1 \text{ Mc/s},$ See Note 4	0	0.2	0.32	pF
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ V}, I_E = -4 \text{ mA}, f = 79.8 \text{ Mc/s}$		6	12	ps

NOTES: 3. These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu s$, duty cycle $\leq 2\%$.

operating characteristics at 25°C free-air temperature

	DADAMETED	TECT COMPLETIONS		TIS56			TIS57		
	PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
NF	Spot Noise Figure	$V_{CE}=10$ V, $I_{C}=3$ mA, $R_{G}=50$ Ω , $f=200$ Mc/s		2.8	3.3				dB
N.	Spot Noise rigule	$V_{CE}=10~V,~~I_{C}=3~mA,~~R_{G}=50~\Omega,$ f = 45 Mc/s					3	6	dB
G _{pe}	Unneutralized Small- Signal Common-Emitter	$V_{CC}=$ 12 V, $I_{C}\approx$ 2.5 mA, $V_{BB}=$ 2.1 V, $R'_{G}=$ 150 $\Omega,R'_{L}=$ 1 k $\Omega,~f=$ 200 Mc/s, See Figure 2	12	16	18				dB
Upe	Insertion Power Gain	$\rm V_{CC}=12$ V, $\rm I_{C}\approx4.5$ mA, $\rm V_{BB}=3.1$ V, $\rm R'_{G}=500~\Omega, R'_{L}=250~\Omega,~f=45~Mc/s,$ See Figure 2				25	30	33	dB
V	Gain-Control	$\rm V_{CC}=12$ V, $\rm I_{C}\approx2.5$ mA, $\Delta G_{po}=-30$ dB, $\rm R'_{G}=150~\Omega, R'_{L}=1~k\Omega,~f=200~Mc/s,$ See Figure 2			4.6				٧
V _{BB(GC)}	Base-Supply Voltage	V $_{CC}=$ 12 V, I $_{C}\approx$ 4.5 mA, $\Delta G_{po}=-30$ dB, R' $_{G}=$ 500 Ω , R' $_{L}=$ 250 Ω , f $=$ 45 Mc/s, See Figure 2				3.7		4.6	٧

 $[\]dagger$ The fourth lead (case) is grounded for all measurements except C_{cb} .

^{4.} Collector-Base Capacitance is measured using three-terminal measurement techniques with the case and emitter guarded.

THERMAL INFORMATION

PARAMETER MEASUREMENT INFORMATION

COMPONENTS FOR f = 45 Mc/s

C₁: 36 pF

C₂: 47 pF

L₁: 8T #20 enameled copper wire, close-wound on ¼" diameter form

L₂: 10T #20 enameled copper wire, close-wound on ¼" diameter form

COMPONENTS FOR f = 200 Mc/s

C₁: 18 pF

C₂: 270 pF

L₁: 2T #20 enameled copper wire, ½" pitch, wound on ½2" diameter form

L₂: 2T #14 enameled copper wire, ½" pitch, wound on ½" diameter form

FIGURE 2 - POWER-GAIN AND GAIN-CONTROL-VOLTAGE TEST CIRCUIT

TYPICAL CHARACTERISTICS

TISS6 UNNEUTRALIZED SMALL-SIGNAL COMMON-EMITTER INSERTION POWER GAIN

FIGURE 3

TIS57
UNNEUTRALIZED SMALL-SIGNAL COMMON-EMITTER
INSERTION POWER GAIN

FIGURE 4

SILECT† TRANSISTORS

Electrical Equivalents of TI407, TI408, and TI409

Encapsulated in Plastic for Application in

AM-FM Receivers and General-Purpose High-Frequency Amplifiers

TIS62 Features:

- f....500 MHz min
- Low rb'C. 20 ps max
- NF...6 dB max at 100 MHz

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process[‡] developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage															. 30 V
Collector-Emitter Voltage (See Note	: 1) .														. 12 V
Emitter-Base Voltage															. 3 V
Continuous Collector Current															
Continuous Device Dissipation at (or	belov	w) .	25°C	Fre	e-Air	Ten	nperd	ature	(See	Note	2)			. :	250 mW
Storage Temperature Range												-65	°C	to	150°C
Lead Temperature 1/4 Inch from Case	for 1	10	Seco	nds .											260°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rate of 2 mW/deg.

†Trademark of Texas Instruments ‡Patent Pending

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	TIS	62	TIS	63	TIS	64	[]
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	30		30		30		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 4 \text{ mA}, I_B = 0$	12		12		12		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \ \mu A, \ I_C = 0$	3		3		3		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_E = 0$		100		100		100	nA
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 4 mA	30		20		20		
	0 1101 10 5 111	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 455 \text{ kHz}$			27				dB
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 4 mA, f = 10 MHz			27				ub
,	Totada Cotteni Hansier Rano	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 100 \text{ MHz}$	5	18	4	18	3	18	
۲.	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1 \text{ MHz},$	0.7	1.6	0.7	1.6	0.7	2.2	pF
Cob	conceror base capacitation	See Note 3	0./	1.0	U./	1.0	J 0./	2.2	μ,
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ V}, I_{E} = -4 \text{ mA}, f = 79.8 \text{ MHz}$		20		26		32	ps

NOTE 3: This parameter is measured using three-terminal measurement techniques with the emitter guarded.

operating characteristics at 25°C free-air temperature

١		PARAMETER	TECT CONDITIONS	T	S62	
ļ		- ARAMEIER	TEST CONDITIONS	TYP	MAX	UNIT
	NF	Spot Noise Figure	$ m V_{CE} = 10$ V, $ m I_{C} = 2$ mA, $ m R_{G} = 300~\Omega$, $ m f = 100~MHz$	4	6	dB

TYPICAL CHARACTERISTICS AT $T_A = 25^{\circ}C$

桕

COMMON-EMITTER EQUIVALENT CIRCUIT USING SHORT-CIRCUIT "y" PARAMETERS

$$\begin{aligned} I_b &= \left| y_{ie} \right| \bigvee_{be} + \left| y_{re} \right| \bigvee_{ce} \\ I_c &= \left| y_{fe} \right| \bigvee_{be} + \left| y_{oe} \right| \bigvee_{ce} \end{aligned}$$

$$\left| y_{ie} \right| = \frac{I_b}{V_{be}} \bigg|_{V_{ce} = 0} = \frac{1}{r_{iep}} + i\omega C_{iep} \qquad \left| y_{fe} \right| = \frac{I_c}{V_{be}} \bigg|_{V_{ce} = 0}$$

$$\left| y_{re} \right| = \frac{I_b}{V_{be}} \bigg|_{V_{be} = 0} \qquad \left| y_{oe} \right| = \frac{I_c}{V_{ce}} \bigg|_{V_{be} = 0} = \frac{1}{r_{oep}} + i\omega C_{oep}$$

TYPICAL CHARACTERISTICS AT 455 kHz, TA = 25°C

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER SHORT-CIRCUIT INPUT RESISTANCE

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

TYPICAL CHARACTERISTICS AT 10 MHz, $T_A = 25$ °C

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER SHORT-CIRCUIT INPUT RESISTANCE

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

L SHORT-CIRCUIT OUTPUT CAPACITANCE

SMALL-SIGNAL COMMON-EMITTER FORWARD TRANSFER ADMITTANCE

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

TYPICAL CHARACTERISTICS AT 100 MHz, $T_A = 25$ °C

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
,, SHORT-CIRCUIT INPUT CAPACITANCE

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

SMALL-SIGNAL COMMON-EMITTER
FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT

VCE = 10 V
f = 100 MHz

0.4 0.7 1 2 4 7 10
0.4 0.7 1 2 4 7 10
FIGURE 13

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER SHORT-CIRCUIT INPUT RESISTANCE

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER

TYPICAL APPLICATION DATA

SILECT† HIGH-FREQUENCY TRANSISTORS DESIGNED FOR TV TUNER AND IF APPLICATIONS

Featuring Low-Feedback Capacitance and Forward-AGC Characteristics

- TIS84 for Tuner RF Amplifiers
- TIS85 for IF Amplifiers

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatability with advanced high-frequency design.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																		40 V
Collector-Emitter Voltage (See Not	e 1)														:			30 V
Emitter-Base Voltage																		4 V
Continuous Collector Current .																	5	i0 mA
Continuous Device Dissipation at (a	r belo	ow)	25°C	Fre	e-Air	Te	mpe	eratu	re (S	ee	No	ote	2)				25	O mW
Storage Temperature Range														-6	5°(C t	o 1	50°C
Lead Temperature 1/4 Inch from Cas	e for	10 5	Secon	ds													2	:60°C

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITI	ONE		TIS84			TIS85		UNIT
	PARAMEIER	TEST CONDITI	ONS	MIN	TYP	MAX	MIN	TYP	MAX	ONL
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A$, $I_E = 0$		40			40			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 0,$	See Note 3	30			30			٧
	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_E = 0$				50			50	пA
Ісво	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_{E} = 0,$	T _A = 85°C			5			5	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4 \text{ V}, I_{C} = 0$				10			10	μA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}$		30			25			
V _{BE}	Base-Emitter Voltage	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}$				0.84			0.84	٧

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 150°C free-air temperature at the rate of 2 mW/deg.
- 3. This parameter must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

†Trademark of Texas Instruments

‡Patent pending

electrical characteristics at 25°C free-air temperature

	DADA METER	TECT COMPLETIONS		TIS84			TIS85	5	UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 100 \text{ MHz}$	3.5	6.5		3.5	6.5		
y _{fe}	Small-Signal Common-Emitter Forward Transfer Admittance	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ MHz}$	60	80		80	105		mmho
φ _{yfe}	Phase Angle of Small-Signal Common- Emitter Forward Transfer Admittance	$V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 45 \text{ MHz}$	-50°	-60°	_80°	-10°	_18°	° –25°	
C _{ies}	Parallel-Equivalent Common-Emitter Short-Circuit Input Capacitance†	$V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 45 \text{ MHz}$		11			18		pF
C _{res}	Common-Emitter Short-Circuit Reverse Transfer Capacitance†	$V_{CE} = 10 \text{ V, } I_{C} = 1 \text{ mA,}$ $f = 0.1 \text{ MHz to 1 MHz}$		0.32	0.4		0.32	0.4	pF
Coes	Parallel-Equivalent Common-Emitter Short-Circuit Output Capacitance†	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ MHz}$		1.1			1.1		pF
Re(h _{ie})	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 45 \text{ MHz}$		25	60		50	80	Ω
Re(y _{ie})	Real Part of Small-Signal Common-Emitter Input Admittance	$V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 45 \text{ MHz}$		14	40		3	6	mmho
Re(y _{oe})	Real Part of Small-Signal Common-Emitter Output Admittance	$V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 200 \text{ MHz}$ $V_{CE} = 10 \text{ V, } I_{C} = 4 \text{ mA, } f = 45 \text{ MHz}$		0.2	0.5		0.05	0.2	mmho

 $[\]dagger$ C_{ies}, C_{res}, and C_{oes} are defined as the imaginary parts of the small-signal, common-emitter, short-circuit admittances divided by $2\pi f$.

operating characteristics at 25°C free-air temperature

	0404447750		TEST CONDITIO	NIC		TIS84			TIS85		UNIT
	PARAMETER TEST CONDITIONS	N3	MIN	TYP	MAX	MIN	TYP	MAX	ONL		
ME	C M. L. Firms	V _{CE} = 10 V, f = 200 MHz	$I_C = 3 \text{ mA},$	$R_G=50~\Omega,$		2.8	3.3		_		dB
NF	Spot Noise Figure	V _{CE} = 10 V, f = 45 MHz	$I_C = 3 \text{ mA},$	$R_{ extsf{G}}=50~\Omega,$					3	6	dB
	Unneutralized Small-	$V_{CC}=12 V,$ $R_{G}'=150 \Omega,$ See Figure 1	$I_{\rm C} \approx$ 2.5 mÅ, $R_{\rm L}{}^{\prime} =$ 1 k Ω ,	$V_{BB} = 2.1 \text{ V},$ $f = 200 \text{ MHz},$	12 16	18			****	dB	
G _{pe}	Signal Common-Emitter Insertion Power Gain	$V_{CC}=12 V,$ $R_{\Theta}'=500 \Omega,$ See Figure 1	$I_{\rm C} \approx 4.5$ mA, $R_{\rm L}{}^{\prime} = 250~\Omega$,					25	30	33	dB
		V _{CC} = 12 V,	$R_{\rm G}'=150~\Omega,$	$R_L'=1~k\Omega$,	3.7	3.7 4.6				l v	
	Gain-Control	120pe 00 05T) . 200	See Figure 1								
V _{BB(GC)}	Base-Supply Voltage V _{CC} = 12	V _{CC} = 12 V,	$R_{G}' = 500 \Omega$,	$R_L'=250 \Omega$,				3.7		4.6	v
		$\Delta G_{pe} = -30 \text{ dB}\ddagger,$	f = 45 MHz,	See Figure 1							

 $\pm\Delta G_{pe}$ is defined as the change in G_{pe} from the value at $Y_{BB}=2.1$ V at 200 MHz or from the value at $Y_{BB}=3.1$ V at 45 MHz.

PARAMETER MEASUREMENT INFORMATION

COMPONENTS FOR f = 45 MHz

COMPONENTS FOR f = 200 MHz

C₁: 36 pF C₂: 47 pF C₁: 18 pF C₂: 270 pF

L₁: 8 T #20 enameled copper wire, close-wound on ¼" diameter form

L₁: 2 T#20 enameled copper wire, '" pitch, wound on "32" diameter form

L₂: 10 T #20 enameled copper wire, close-wound on ¼" diameter form L₂: 2 T#14 enameled copper wire, ½" pitch, wound on ½" diameter form

FIGURE 1 - POWER-GAIN AND GAIN-CONTROL-VOLTAGE TEST CIRCUIT

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

NOTE 3: This parameter must be measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle =10%.

TYPICAL CHARACTERISTICS

TIS84
SMALL-SIGNAL COMMON-EMITTER OUTPUT ADMITTANCE

TYPICAL CHARACTERISTICS

· TIS85
SMALL-SIGNAL COMMON-EMITTER OUTPUT ADMITTANCE

TYPICAL CHARACTERISTICS

FIGURE 10

 $\ddagger \Delta G_{pe}$ is defined as the change in G_{pe} from the value at $V_{BB}=2.1$ V at 200 MHz or from the value at $V_{BB}=3.1$ V at 45 MHz.

TYPICAL APPLICATION DATA

TYPIC	ICAL TV	VHF TU	TUNER PERF	PERFORM	MANCE	
CHANNEL	POWER GAIN	NOISE FIGURE	REJECT	Ţ	IMAGE Reject	UNIT
2	39	5.5	55		70	#
3	88	5.2	55		11	쁑
4	38	5.7	57		82	#
5	98	5.5	59		88	쁑
9	88	9.0	63		7.5	#
7	37	5.5	72		89	쁑
8	35	6.1	7		72	쁑
6	98	5.5	72		99	쁑
10	ਲ	5.5	8		78	쁑
11	35	6.2	7		79	쁑
12	35	6.2	76		79	쁑
13	35	6.1	9		2	쫑
	POWER	SUPPLY	INFORM/	ATION	z	
		MAXIMUM	I GAIN	E	MINIMUM GAIN	Z
Power S	Supply	12 V at 1	19.5 mA	12	V at 34	Αm
	Supply	1.8 V at	0.1 mA	8	8 V at 2.85 n	¥
TYPICAL	TUNER AND I	AND IF	IF AMPLIFIER PERFORMAN		(SEE FIG.	13)
	CHANNEL		Vin(rf)	£	(h,V)	
	2				3.5	
	က				3.5	
	4			6	3.5	
	5			4	4.5	
	9			<u>۳</u>	3.5	
	7			=	11.0	
	80			=	10.0	
:	6			6	9.0	
	2			≅	13.0	
	11			12	12.0	
	12			6	9.5	
	13			=	11.0	
Frequency	Rejection:		5			
	ę. 4	39./5 MHZ: 00 41.25 MHz: do	down 13.5 dB down 13.5 dB			
	41.	¥¥;	9			
	2 , 4	.75 MHz: do .25 MHz: do	down 6 dB down 46.5 dB			-
				١		1

!	CHALIDA	
C ₁ : 47 pF	C ₉ : 2-8 pF air trimmer	C ₁₇ : 1000 pF feed-thru
C ₂ : 47 pF	C ₁₀ : 39 pF feed-thru	C ₁₈ : 5.6 pF
C3: 8.2 pF	C ₁₁ : 2-8 pF air trimmer	C ₁₉ : 0.5-3 pF air trimmer
C4: 18 pF feed-thru	C ₁₂ : 30 pF feed-thru	C ₂₀ : 1000 pF feed-thru
C ₅ : 30 pF feed-thru	C ₁₃ : 1000 pF feed-thru	C21: 5.6 pF
C ₆ : 0.68 pF	C ₁₄ : 10 pF feed-thru	C ₂₂ : 2.5 pF feed-thru
C ₇ : 1000 pF feed-thru	C ₁₅ : 1000 pF feed-thru	C ₂₃ : 1000 pF feed-thru
C ₈ : 1000 pF feed-thru	C ₁₆ : 3.6 pF	C ₂₄ : 5.6 pF
ESISTORS (1/2 W, ten parcent)		æ
R ₁ : 1 kΩ R ₇ : 10 kΩ		L ₇ : neutralizing coil
R ₂ : 15 Ω R ₈ : 5.6 kΩ		L _s : RFC
		Ly: RFC
R4: 390 \Omega R10: 1 k\Omega		
ւ ₆ ։ 220 Ո	L ₆ : as required per channel	

FIGURE 12 - TYPICAL TV VHF TUNER

 T_1 : balun assembly, including IF traps T_2 : IF output transformer

TRANSFORMERS

TYPICAL APPLICATION DATA

D₁: 1N60

C₁₆: 0.002 µF C₁₇: 0.002 µF C₁₈: 18 pF C₁₉: 10 pF

CIRCUIT COMPONENT INFORMATION

10. 0.0
10. FO .
ng urr

L; adjacent sound, 10 T, #27 enameled, close-wound, 9/32" OD form, Amold Eng. core type "J" L; series inductor, 6 T, #27 enameled, close-wound, 9/32" OD form, Amold Eng. core type "J" L; filter inductor, 10 µA, Delevan RFC L₁: self sound, 14 T, #27 enameled, close-wound, 9/32" OD form, Arnold Eng. core type "J"

TRANSFORMERS

T; pri.: 6T, sec.: 2 T, #27 enameled, close-wound, bifilar, 9/32" OD form, Amold Eng. core type "J" Tz: pri.: 8T, sec.: 2 T, #27 enameled, close-wound, bifilar, 9/32" OD form, Amold Eng. core type "J" Ts: pri.: 9T, sec.: 8 T, #25 enameled, close-wound, pri. and sec. spacing: 0.18", 9/32" OD form, Amold Eng. core type "J"

POW	POWER SUPPLY INFORMATION	MATION
	MAXIMUM GAIN	MINIMUM GAIN
Downer Cumply	12 V at 9 mA	12 V at 20 mA
i ower soppiy	24 V at 10 mA	24 V at 10 mA
VAGC Supply	4 V at 0 mA	7.5 V at 0.5 mA

TYPICAL TV IF AMPLIFIER PERFORMANCE Sensitivity: V _{in(11)} = 100 μV for V _{OUTIOC)} = 1 V Frequency Rejection: 39.75 MHz: down 17 dB 41.25 MHz: down 20 dB 45.75 MHz: down 3 dB 47.25 MHz: down 18 dB	F AMPLIFIER PERFORMANCE $\eta=100~\mu V$ for $V_{\rm OUT[DC]}=1 V$	n: 39.75 MHz: down 17 dB 41.25 MHz: down 20 dB 45.75 MHz: down 3 dB 47.25 MHz: down 18 dB
--	--	---

FIGURE 13 - TYPICAL TV IF AMPLIFIER

SILECT† HIGH-FREQUENCY TRANSISTORS DESIGNED FOR TV MIXER AND NON-AGC IF STAGES

Featuring Low Feedback Capacitance and

Full Characterization to Simplify Circuit Design

- TIS86 for Mixer
- TIS87 for Non-AGC IF Amplifier

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process! developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

High thermal-conductivity leads allow operation at unusually high dissipation levels.

Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatibility with advanced high-frequency design.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		TISE	6 TIS87
Collector-Base Voltage		30	V 45 V
Collector-Emitter Voltage (See Note 1)			
Emitter-Base Voltage			
Continuous Collector Current			
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See 1	Note 2)	—	400 mW→
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Not			
Storage Temperature Range		–65	°C to 150°C
Lead Temperature 1/16 Inch from Case for 10 Seconds		—	260°C →

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 150°C free-air temperature at the rate of 3.2 mW/deg.
- 3. Derate linearly to 150°C lead temperature at the rate of 5.6 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.

†Trademark of Texas Instruments

‡Patent pending

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				TIS86	· – –		TIS87		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C}=10~\mu\text{A},I_{E}=0$	30			45			V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0,$ See Note 4	30			45			V
	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, I_E = 0$			100			100	nA
ICBO	Collector Colori Colleni	$V_{CB} = 15 \text{ V}, I_{E} = 0, T_{A} = 85^{\circ}\text{C}$			10			10	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4 V$, $I_C = 0$			10			10	μA
L	Static Forward Current	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}$	40		200				
hfE	Transfer Ratio	$V_{CE} = 12 \text{ V}, I_{C} = 12 \text{ mA}$				30		150	l
V _{BE}	Base-Emitter Voltage	$V_{CE} = 12 \text{ V}, I_{C} = 15 \text{ mA}$			0.87			0.87	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 1.5 \text{ mA}, I_C = 15 \text{ mA}$						0.5	٧
	Small-Signal Common-Emitter	V _{CE} = 10 V, I _C = 4 mA, f = 100 MHz	5						
h _{fe}	Forward Current Transfer Ratio	V _{CE} = 12 V, I _C = 12 mA, f = 100 MHz				5			
1. 1	Small-Signal Common-Emitter	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ MHz}$	90	115					mmho
y _{fe}	Forward Transfer Admittance	V _{CE} = 12 V, I _C = 12 mA, f = 45 MHz				130	200		IIIIIIIII
φ _{vfo}	Phase Angle of Small-Signal Common-Emitter Forward	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ MHz}$	-7°	–15 °	-20°				
Ψγιο	Transfer Admittance	$V_{CE} = 12 \text{ V}, I_{C} = 12 \text{ mA}, f = 45 \text{ MHz}$				-18°	_25°	_35°	
Cios	Parallel-Equivalent Common-Emitter	$V_{CE} = 10 \text{ V}, I_C = 4 \text{ mA}, f = 200 \text{ MHz}$		9					pF
Cios	Short-Circuit Input Capacitance†	$V_{CE} = 12 \text{ V}, I_{C} = 12 \text{ mA}, f = 45 \text{ MHz}$	1		_	<u> </u>	25		Ρ.
C _{res}	Common-Emitter Short-Circuit Reverse Transfer Capacitance†	$V_{CE} = 10 \text{ V}, I_{C} = 1 \text{ mA},$ $f = 0.1 \text{ MHz to 1 MHz}$		0.33	0.45		0.33	0.45	pF
	Parallel-Equivalent Common-Emitter	V _{CE} = 10 V, I _C = 4 mA, f = 45 MHz		1.1					
Coes	Short-Circuit Output Capacitance†	V _{CE} = 12 V, I _C = 12 mA, f = 45 MHz	1				1.1		pF
D. // \	Real Part of Small-Signal	V _{CE} = 10 V, I _C = 4 mA, f = 200 MHz		32	60				Ω
Re(h _{ie})	Common-Emitter Input Impedance	V _{CE} = 12 V, I _C = 12 mA, f = 45 MHz					55	100	32
Re(y _{ie})	Real Part of Small-Signal	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 200 \text{ MHz}$		8.5	30				mmho
uc()ie)	Common-Emitter Input Admittance	$V_{CE} = 12 \text{ V}, I_{C} = 12 \text{ mA}, f = 45 \text{ MHz}$					5	12	
Po/w)	Real Part of Small-Signal	$V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}, f = 45 \text{ MHz}$		0.02	0.15	L		,	mmho
Re(y∞)	Common-Emitter Output Admittance	$V_{CE} = 12 \text{ V}, I_{C} = 12 \text{ mA}, f = 45 \text{ MHz}$					0.07	0.2	111111110

NOTE 4: This parameter must be measured using pulse techniques. $t_{\rm p}=300~\mu \rm s$, duty cycle $\leq 2\%$.

operating characteristics at 25°C free-air temperature

1			TECT COMPLETONS	TIS	HANT	
ı		PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT
	NF	Spot Noise Figure	$V_{CE}=10~V,~I_{C}=4~mA,~R_{G}=50~\Omega,~f=200~MHz$	2.5	5	dB

 $[\]dagger c_{ies}$, c_{ros} , and c_{oes} are defined as the imaginary parts of the small-signal, common-emitter, short-circuit admittances divided by $2\pi f$.

TYPICAL CHARACTERISTICS

COMMON-EMITTER SHORT-CIRCUIT REVERSE TRANSFER CAPACITANCE

TYPICAL CHARACTERISTICS

FORWARD TRANSFER ADMITTANCE COLLECTOR CURRENT V_{CE} = 10 V__ Re(y_{fe}) -- Forward Transfer Admittance -- mmho I C -- Collector Current --- mA FIGURE 5

SMALL-SIGNAL COMMON-EMITTER

TYPES TIS86, TIS87 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

Figure F	TY.	TYPICAL TV	VHF TUNER	R PERFORM	RMAN	ANCE	
38 5.2 55 77 38 38 3.5 3.5 3.7 38 3.5 3.5 3.7 3.8 3.5	CHANNEL	POWER GAIN	NOISE FIGURE	REJECT	돌览	AGE Ject	UNIT
38 5.2 55 77 38 36 36 37 38 35 37 38 38 37 38 37 38 37 38 37 38 38	2	39	5.5	55		70	dB
38 5.7 57 82 36 5.5 59 88 37 5.5 72 68 37 5.5 72 68 38 5.5 72 68 39 5.5 72 66 31 5.5 72 79 32 6.1 71 77 35 6.2 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 6.1 79 79 35 70 79 37 70 70 38 70 70 39 70 70 30 70 70 31 70 70 32 70 70 33 75 70 34 35 75 35 35 36 70 70 37 70 70 38 70 70 39 70 70 30 70 70 30 70 70 30 70 70 31 70 70 32 70 70 33 70 70 34 35 70 35 70 70 36 70 70 37 70 70 38 70 70 39 70 70 30 70 70 4 7 70 70 4 7 70 70 5 7 70 7 7 70 8 7 70 9 7 70 10 7 70 11 7 70 12 7 70 13 70 70 14 70 70 15 70 70 16 70 70 17 70 70 18 70 70 19 70 70 10 70 70 10 70 70 11 70 70 12 70 70 13 70 70 14 70 70 15 70 70 16 70 70 17 70 70 18 70 70 19 70 70 10 70 70 70 70 70 70 70	က	38	5.2	55	. `	77	фB
36 5.5 5.9 88 38 6.0 6.3 75 37 5.5 72 6.8 38 5.1 71 72 36 5.5 72 6.6 37 6.2 79 79 35 6.1 79 79 35 6.2 76 79 35 6.1 6.5 79 35 6.1 6.5 79 35 6.1 6.5 79 35 6.1 6.5 79 35 6.1 6.5 79 36 70 79 37 80 1.8 V at 0.1 mA 8 V at 2.8 4 3.5 3.5 5 4 3.5 7 1.8 V at 0.1 mA 8 V at 2.8 4 3.5 3.5 5 4 3.5 7 1.0 8 1.0 9 1.0 10 1.0 11 1.0 12 3.5 13 1.0 14 2.5 1.0 15 3.5 16 4.5 17 1.0 18 4.1.2 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.5.15 MHz. down 6 dB 4.7.25 MHz. down 6 dB 5 5 5 5 5 5 5 5 6 7.5 6.5 7 7 7 7 7 7 8 7 7 7 9 7 7 9 7 7 9 8 7 9 9 9 9 9 9 9 9	4	38	5.7	23		82	æ
38 6.0 63 75 37 5.5 72 68 38 5.1 71 72 36 5.5 72 66 37 6.1 71 72 38 6.2 79 79 35 6.1 65 79 79 35 6.1 65 79 79 35 6.1 65 70 35 6.1 65 70 36 70 70 70 37 80 71 70 38 4 3.5 4 3.5 3.5 5 7 11.0 6 3.5 3.5 7 10 13.0 8 10.0 9 9 10.0 10 10 10.0 11 12 10.0 12 3.5 13 11.0 14 25 MHz. down 13.5 dB 41.25 MHz. down 6 dB 45.75 MHz. down 6 dB 45.75 MHz. down 6 dB 45.75 MHz. down 6 dB 47.25 MHz. down 6 dB 45.75 MHz. down 6 dB 47.25 MHz. down 6 dB 45.75 MHz. down 6 dB 47.25 MHz. down 46.5 dB	5	36	5.5	65		88	dB
37 5.5 72 68 38 5.5 72 66 38 5.5 72 66 39 5.5 72 66 31 5.5 84 78 32 6.1 65 79 79 35 6.1 65 70 79 35 6.1 65 70 79 35 6.1 65 70 79 36 6.1 65 70 79 37 1.8 \text{ of 0.1 mA } 12 \text{ of 0.1 mA } 4 1.8 \text{ of 0.1 mA } 12 \text{ of 0.1 mA } 4 3.5 3.5 5 4 3.5 5 7 11.0 6 3.5 3.5 7 10 1.0 8 10 1.0 9 9 9.0 10 11 1.0 11 1.0 12 9.5 13 1.1 \text{ own } 13.5 \text{ dB} 41.25 \text{ MHz. down } 6 \text{ dB} 42.5 \text{ dB} 42.5 \text{ MHz. down } 6 \text{ dB} 42.5 \text{ dB} 42.5 \text{ dB} 43.5 \text{ dB} 44.5 \text{ dB} 44.5 \text{ dB} 45.5 \text	9	38	0.9	63		75	dВ
35 6.1 71 72 36 5.5 72 66 34 5.5 84 78 35 6.2 79 79 35 6.2 76 79 35 6.2 76 79 35 6.1 65 70 70 70 70 70 70 70	7	37	5.5	72		88	æ
36 5.5 72 66 34 5.5 84 78 35 6.2 79 79 35 6.2 76 79 35 6.1 65 70 35 6.1 65 70 70 70 70 70 70 70	80	35	6.1	۲		72	#
34 5.5 84 78 38 38 38 38 38 38 38	6	36	5.5	72		99	쁑
35 6.2 79 79 39 35 6.2 76 76 79 35 6.1 65 70 70 70 35 6.1 65 70 70 70 70 70 70 70 7	10	34	5.5	84		78	æ
35 6.2 76 79 70 70 70 70 70 70 70	11	35	6.2	79	.`	79	8
10 65 70	12	32	6.2	9/	_	6	#
MAXIMUM GAIN MINIMUM MINIMUM GAIN 12 V at 19.5 mA 12 V at 2.8	13	35	6.1	- 65		70	8
MAXIMUM GAIN MINIMUM HIND MINIMUM MINIMUM MAXIMUM GAIN 12 V at 19.5 mA 12 V at 2.8		POWER		⋖	NO NO		
upply 12 V at 19.5 mA 12 V at 34 upply 1.8 V at 0.1 mA 8 V at 2.85 COMBINED PERFORMANCE CHANNEL V _{infrt1} (μV) 3 3.5 3.5 4 3.5 4.5 5 4.5 4.5 6 3.5 4.5 7 11.0 9.0 10 12.0 9.0 11 12.0 11.0 13 11.0 13.6 41.25 MHz. down 13.5 dB 41.25 MHz. down 13.5 dB 41.25 MHz. down 6 dB 45.15 MHz. down 6 dB 47.25 MHz. down 6 dS dB				GAIN	MINIM	JM GAIN	Z
TUNER AND IF AMPLIFIER (SEE FIG. COMBINED PERFORMANCE COMBINED PERFORMANCE CHANNEL 2 3 3 3 4 4 5 4 5 6 7 11.0 8 11.0 12 13 11.0 12 13 13.5 14 15.0 11 11 12.0 11 12.0 11 12.0 11 12.0 12 13 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5		upply	V at	S mA	>	1 34 mA	W
COMBINED PERFORMANCE COMBINED PERFORMANCE 2 3.5 3 3.5 4 3.5 4 3.5 5 4 3.5 6 8.3 7 11.0 8 10.0 9 9 9.0 10 13.0 11 12.0 12 9.5 13 13.0 13 11.0 14.125 MHz. down 13.5 dB 41.25 MHz. down 6 dB 45.75 MHz. down 6 dB		upply		W.	8 V at		μ
CHANNEL Vin(rr) 3.5 3 3.5 4 4.3 5 4.5 6 2.3 7 11.0 8 10.0 9 9 9.0 10 13.0 11 12.0 12 9.5 13 11.0 12 9.5 14.25 MHz. down 13.5 dB 47.25 MHz. down 6 dB 47.25 M	TYPICAL	i	= _	APLIFIER ORMAN			(2)
2 3.5 3 4 3.5 4 4 3.5 5 6 4.5 6 7 11.0 8 10.0 9 9 9.0 10 13.0 11 12.0 12 9.5 13 11.0 Rejection: Rejection: Rejection: Rejection 6 d8 47.25 MHz: down 6 d8 47		CHANNEL		Vinfr		3	Γ
3 6 6 6 6 6 6 8 6 7 8 9 9 9 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2			3.5		
4 5 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		က			3.5		
5 6 6 6 6 6 6 6 6 6		4			3.5		
6		S			4.5		
7 8 9 10 11 12 13 12 13 14.25 MHz. down 13.5 dB 41.25 MHz. down 6 dB 45.75 MHz. down 6 dB 45.75 MHz. down 6 dB		9			3.5		
8 9 10 11 12 13 13 Rejection: 93/5 MHz. down 13.5 dB 41.25 MHz. down 6 dB 45.75 MHz. down 6 dB 45.75 MHz. down 6 dB		7			11.0		
9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		&			10.0		
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6			9.0		
12 13 13 13 13.75 MHz: down 13.5 dB 41.25 MHz: down 6 dB 45.75 MHz: down 6 dB 47.25 MHz: down 6 dB		2			13.0		
12 13 Rejection: Rej. 25 MHz: down 13.5 dB 41.25 MHz: down 6 dB 45.75 MHz: down 6 dB 47.25 MHz: down 6 dB		11			12.0		
13 Rejection: 39.75 MHz. down 13.5 dB 41.25 MHz. down 13.5 dB 41.80 MHz. down 6 dB 45.75 MHz. down 6 dB 47.25 MHz. down 66.5 dB		12			9.5		
Rejection: 39.75 MHz. down 13.5 41.25 MHz. down 13.5 41.80 MHz. down 6 45.75 MHz. down 6 47.25 MHz. down 46.5					11.0		
MHz: down 46.5	Frequency	Rejectio	######################################	13.5			
		47.	MHz	46.5			

	C ₁₇ : 1000 pF feed-thru	C ₁₈ : 5.6 pF	C ₁₉ : 0.5-3 pF air trimmer	C ₂₀ : 1000 pF feed-thru	C ₂₁ : 5.6 pF	C ₂₂ : 2.5 pF feed-thru	C ₂₃ : 1000 pF feed-thru	C ₂₄ : 5.6 pF	ORS	L ₇ : neutralizing coil	L ₈ : RFC	L9: RFC			
CAFACIONS	C ₉ : 2-8 pF air trimmer	C ₁₀ : 39 pF feed-thru	C ₁₁ : 2-8 pF air trimmer	C ₁₂ : 30 pF feed-thru	C ₁₃ : 1000 pF feed-thru	C ₁₄ : 10 pF feed-thru	C ₁₅ : 1000 pF feed-thru	C ₁₆ : 3.6 pF		L ₁ : UHF matching coil					L ₆ : as required per channel
									, ten percent)	R ₇ : 10 kΩ	R ₈ : 5.6 kΩ	R ₂ : 10 kΩ	R ₂ : 390 Ω R ₁₀ : 1 kΩ	R_{11} : 10 k Ω	
	C ₁ : 47 pF	C ₂ : 47 pF	C ₃ : 8.2 pF	C4: 18 pF feet	Cs: 30 pF feet	C6: 0.68 pF	C ₇ : 1000 pF fe	C ₈ : 1000 pF feed-thru	RESISTORS (1/2 W.	R1: 1 KO	R2: 15 O	R3: 560 Ω	R4: 390 Ω	R ₅ : 1.2 kΩ	R ₆ : 220 Ω

FIGURE 12 - TYPICAL TV VHF TUNER

 $T_1\colon balun$ assembly, including IF traps $T_2\colon IF$ output transformer

TRANSFORMERS

TYPES TIS86, TIS87 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

DIODE D₁: 1N60

CIRCUIT COMPONENT INFORMATION

	C ₁₆ : 0.002 μ F	C ₁₇ : 0.002 μ F	C ₁₈ : 18 pF	C ₁₉ : 10 pF	
ACITORS	C11: 0.002 AF	C ₁₂ : 0.002 µF	C ₁₃ : 0.002 µF	C14: 0.002 JuF	Cis. 15 pf
CAP	C6: 15 pF	C_7 : 0.002 μF	C_8 : 0.002 μF	C ₂ : 0.002 μF	C ₁₀ : 10 pF
	C ₁ : 8.2 pF	C ₂ : 10 pF	<u>գ։ 18 թ</u> ք	C_4 : 0.002 μF	Ce: 0.002 AF
PERCENT)	R11: 4.7 kΩ	R_{12} : 510 Ω	R13: 56 \O	R₁4: 220 Ω	R15: 5.6 kΩ
RESISTORS (1/2 W, TEN PERCENT)	R ₆ : 680 Ω	R ₇ : 1 kΩ	R ₈ : 270 Ω	R ₉ : 15 kΩ	R.o. 20 \O
RE		R2: 470 Ω	R3: 1 kΩ	R4: 270 \O	R: 1 kΩ

Ls: adjacent sound, 10 T, #27 enameled, close-wound, 9/32" OD form, Amold Eng. core type "J". Ls: series inductor, 6 T, #27 enameled, close-wound, 9/32" OD form, Amold Eng. core type "J". Ls: filter inductor, 10 µH, Delevan RFC L_1 : self sound, 14 T, #27 enameled, close-wound, 9/32" 0D form, Arnold Eng. core type "J"

T₁: pri.: 6T, sec.: 2 T, #27 enameled, close-wound, bifilar, 9/32" OD form, Amold Eng. core type "J" T₂: pri.: 8T, sec.: 2 T, #27 enameled, close-wound, bifilar, 9/32" OD form, Amold Eng. core type "J" T₃: pri.: 9T, sec.: 8 T, #25 enameled, close-wound, pri. and sec. spacing: 0.18", 9/32" OD form, Amold Eng. core type "J" TRANSFORMERS

§ S	POWER SUPPLY INFORMATION	MATION
	MAXIMUM GAIN	MINIMUM GAIN
Doutor Cumpli	12 V at 9 mA	12 V at 20 mA
i onei suppiy	24 V at 10 mA	24 V at 10 mA
VAGC Supply	4 V at 0 mA	7.5 V at 0.5 mA

TYPICAL TV IF AMPLIFIER PERFORMANCE
Sensitivity: $V_{inlit} = 100 \mu V$ for $V_{outpc} = 1 V$
Frequency Rejection:
39.75 MHz: down 17 dB
41.25 MHz: down 20 dB
45.75 MHz: down 3 dB
47.25 MHz: down 18 dB

FIGURE 13 - TYPICAL TV IF AMPLIFIER

TYPES TIS94, TIS95, TIS96, TIS97, TIS98, TIS99 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

A COMPLETE FAMILY OF LOW-NOISE, LOW- TO MEDIUM-CURRENT SILECT† TRANSISTORS FOR USE IN HI-FI AUDIO AMPLIFIERS AND GENERAL PURPOSE LOW-FREQUENCY APPLICATIONS

- High V_{(BR)CEO} ... 65 V Min (TIS96 and TIS99)
- Excellent her Linearity to 100 mA

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	TIS94 TIS95 TIS96 TIS97 TIS98 TIS99
Collector-Base Voltage	60 V 80 V 80 V
Collector-Emitter Voltage (See Note 1)	
Emitter-Base Voltage	
Continuous Collector Current	<> 200 mA>
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature	
(See Note 2)	360 mW>
Continuous Device Dissipation at (or below) 25°C Lead Temperature	
(See Note 3)	<500 mW>
Storage Temperature Range	←—65°C to 150°C →
	,,

- NOTES: 1. These values apply between 0 and 10 mA collector current when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
 - Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.

†Trademark of Texas Instruments ‡Patent pending

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIO	NS ·		TIS94 TIS97	7		TIS95 TIS98			TIS96 TIS99		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V(BR)CEO	Collector-Emitter Breakdown Voltage	<u> </u>	See Note 4	40			60			65			٧
		$V_{CB} = 40 \text{ V, } I_{E} = 0$				10			10	<u> </u>		10	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 60 \text{ V}, I_E = 0$				10							μA
		$V_{CB} = 80 \text{ V}, I_E = 0$							10			10	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 6 \text{ V}, I_{C} = 0$		ļ		20			20			20	nA
		$V_{CE} = 5 V$, $I_{C} = 100 \mu A$		250	340	700							
h _{FE}	Static Forward	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$					100	200	300				
"Ht	Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA},$	See Note 4	ļ						60	125		
		$V_{CE}=5$ V, $I_{C}=100$ mA,	See Note 4							55	110	300	
		$V_{CE} = 5 V$, $I_{C} = 100 \mu A$		0.45		0.65				ļ			٧
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$					0.5		0.7				٧
		$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA},$	See Note 4				L			0.6		0.8	V
v	Collector-Emitter Voltage	$I_B = 0.1 \text{ mA}, I_C = 10 \text{ mA},$	See Note 4						ī				V
VCE	Conecior-Emilier Vollage	$I_{\mathrm{B}}=2~\mathrm{mA},~I_{\mathrm{C}}=100~\mathrm{mA},$	See Note 4									2	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 \text{ mA}, I_C = 100 \text{ mA},$	See Note 4						0.5			0.5	٧
		$V_{CE} = 5 V$, $I_{C} = 100 \mu A$	-		115				-				
h _{io}	Small-Signal Common-Emitter Input Impedance	V _{CE} = 5 V, I _C = 1 mA	f == 1 kHz					6.4					kΩ
	impor impedance	V _{CE} = 5 V, I _C = 10 mA									0.5		
	6 45 16 5	$V_{CE} = 5 \text{ V}, I_{C} = 100 \mu \text{A}$		250	440	800							
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$	f = 1 kHz				100	240	400				
	Forward Corrells statistes Karlo	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}$	1						_	60	130	500	1 .
		$V_{CE}=5$ V, $I_{C}=100~\mu A$			30x 10 ⁻⁴								
h _{re}	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$	f = 1 kHz		-			1.5x 10-4					
	•	V _{CE} = 5 V, I _C = 10 mA	1								0.9x 10-4		
		$V_{CE} = 5 \text{ V}, I_{C} = 100 \mu \text{A}$	-	 	11					 			
hoe	Small-Signal Common-Emitter	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$	f = 1 kHz	\vdash				6					μmho
"00	Output Admittance	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}$	1							<u> </u>	50		
		$V_{CE} = 5 \text{ V}, I_{C} = 100 \mu\text{A}$	 		3.8								
y _{fo}	Small-Signal Common-Emitter	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$	f = 1 kHz				30	38					mmho
. 10	Forward Transfer Admittance	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}$	1				H				260		
h _{fa}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA},$	f == 100 MHz	2			2			2			
Ccb	Collector-Base Capacitance	$V_{CB} = 5 \text{ V}, I_E = 0,$	f = 1 MHz, See Note 5	1		4	1		4	1		4	pF
Cep	Emitter-Base Capacitance	V _{EB} = 0.5 V, I _C = 0,	f == 1 MHz, See Note 5			16			16			16	pF

operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS		TIS94, TIS97 MAX	UNIT
NF	Spot Noise Figure	$V_{CE}=5$ V, $I_{C}=30$ μ A, $f=1$ kHz, Noise Bandwidth = 100 Hz	$R_G = 10 k\Omega$,		dB
NF	Average Noise Figure	$V_{CE}=5$ V, $I_{C}=100~\mu A$, Noise Bandwidth = 15.7 kHz,	$R_G=10~k\Omega$, See Note 6	3	dB

NOTES: 4. These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu s$, duty cycle $\leq 2\%$.

^{5.} C_{cb} and C_{eb} are measured using three-terminal measurement rechniques with the third electrode (emitter or collector respectively) guarded.

^{6.} Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.

PARAMETER COLOR-CODE INFORMATION

The TIS96 and TIS99 are furnished in three color-coded h_{FE} brackets, each having a 2-to-1 spread as shown in the table below. No h_{FE} -bracket distribution is implied by this coding system.

	h _{FE} BRACKET
COLOR CODE	$V_{CE} = 5 \text{ V, I}_{C} = 100 \text{ mA}$
red	55—110
orange	90—180
vellow	150-300

TABLE 1 - TIS96, TIS99 hFE BRACKETS

TYPICAL CHARACTERISTICS

NOTE 4: These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

BASE-EMITTER VOLTAGE

BASE-EMITTER VOLTAGE

BASE-EMITTER VOLTAGE

NOTE 4: These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NOTES: 4. These parameters must be measured using pulse techniques, $t_p=300~\mu s$, duty cycle $\leq 2\%$.
7. These parameters are measured with bias voltages applied for less than five seconds to avoid overheating the transistor.

NOTES: 5. C_{cb} and C_{ob} are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

6. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.

TYPICAL CHARACTERISTICS

TIS94, TIS97

TYPICAL APPLICATION DATA

CIRCUIT COMPONENT INFORMATION

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
R_{7} : 15 kΩ R_{16} : 0 - 100 kΩ R_{24} : 39 kΩ R_{24} : 39 kΩ R_{24} : 1200 pF R_{12} : 82 kΩ R_{26} : 4.7 kΩ R_{12} : 62 kΩ R_{26} : 4.7 kΩ R_{26} : 1 μF, 50 V, ele	V, electrolytic V, electrolytic C ₁₂ : 0.003 μF C ₁₃ : 5 μF, 6 V, electrolytic C ₁₄ : 1 μF, 25 V, electrolytic C ₁₅ : 20 μF, 6 V, electrolytic

All resistors 1/2 W, ten percent tolerance

		ICE AT RATED OUTPUT unless otherwise noted), T _A =25°C	
Sensitivity:		Overload Capability:	
Magnetic Cartridge Input	4 mV	Magnetic Cartridge Input	35 to 50 mV
Crystal Cartridge Input	220 mV	Crystal Cartridge Input	2 to 2.8 V
Tuner Input	100 mV	Tuner Input	0.9 to 1.3 V
Total Harmonic Distortion:		Input Impedance:	
Magnetic Cartridge Input	0.06%	Magnetic Cartridge Input	47 kS
Crystal and Tuner Inputs	0.14%	Crystal Cartridge Input	2.7 MS
Unweighted Noise Below 1 V rms	,	Tuner Input	1 M.C
With Grounded Input	72 dB	RIAA Compensation (Magnetic Input Only) Within ±1 dB of Ideal Curve from	
Frequency Response:		20 Hz to 20 kHz	
Crystal and Tuner Inputs		20 HZ 10 20 KHZ	
20 Hz to 20 kHz	±1 dB	†Value dependent on volume control setting	

FIGURE 20 - TYPICAL AUDIO PREAMPLIFIER

Highly Reliable, Versatile Devices Designed for **Amplifier, Switching and Oscillator Applications** from < 0.1 ma to > 150 ma, dc to 30 mc

- High Voltage
 Low Leakage
- Useful h_{FE} Over Wide Current Range

*mechanical data

Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N696 2N697	2N717 2N718	2N718A	2N730 2N731	2N956	2N1420 2N1507	2N1613	2N1711	UNIT
Collector-Base Voltage	60	60	75	60	75	60	75	75	V
Collector-Emitter Voltage (See Note 1)	40	40	50	40	50	30	50	50	v
Collector-Emitter Voltage (See Note 2)			32						٧
Emitter-Base Voltage	5	5	7	5	7	5	7	7	٧
Collector Current				1.0		1.0		1.0	a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note Indicated in Parentheses)	0.6 † (3)	0.4 †† (5)	0.5 (7)	0.5 †† (9)	0.5 (7)	0.6 † (3)	0.8	0.8 (10)	w
Total Device Dissipation at (or below) 25°C Case Temperature (See Note Indicated in Parentheses)	2.0 † (4)	1.5 †† (6)	1.8	1.5	1.8	2.0 † (4)	3.0	3.0	w
Total Device Dissipation at 100°C Case Temperature	1.0	0.75	1.0	0.75	1.0	1.0	1.7	1.7	w
Operating Collector Junction Temperature	175†	175††	200	175††	200	175†	200	200	°C
Storage Temperature Range				6	5°C to 20	0°C			

NOTES: 1. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 10 ohms.

- 2. This value applies when the base-emitter diode is open-circuited.
- 3. Derate linearly to 175°C free-air temperature at the rate of 4.0 mw/C°.
- 4. Derate linearly to 175°C case temperature at the rate of 13.3 mw/C°.
- 5. Derate linearly to 175°C free-air temperature at the rate of 2.67 mw/C°.
- 6. Derate linearly to 175°C case temperature at the rate of 10.0 mw/C°.
- 7. Derate linearly to 200°C free-air temperature at the rate of 2.86 mw/C°.
- 8. Derate linearly to 200°C case temperature at the rate of 10.3 mw/C°.
- 9. Derate linearly to 175°C free-air temperature at the rate of 3.33 mw/C°.
- 10. Derate linearly to 200°C free-air temperature at the rate of 4.56 mw/C°.
- 11. Derate linearly to 200°C case temperature at the rate of 17.2 mw/C°.

†Texas Instruments guarantees its types 2N696, 2N697, 2N1420, and 2N1507 to be capable of the same dissipation as registered and shown for types 2N1613 and 2N1711 with appropriate denating factors shown in Notes 10 and 11. See derating curves, page 8.

††Texas Instruments guarantees its types 2N717, 2N718, 2N730, and 2N731 to be capable of the same dissipation as registered and shown for types 2N718A and 2N956 with appropriate derating factors shown in Notes 7 and 8. See derating curves, page 8.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			TO-18→					2N7 2N7		2N7 2N7		
	PARAMETER	TEST CONDITIONS	TO-5 →		1696	2N				L		UNIT
					MAX		MAX		MAX	-	MAX	
BACBO	Collector-Base Breakdown Voltage	$I_C = 100 \mu a, I_E = 0$		60		60		60		60		٧
BVCEO	Collector-Emitter Breakdown Voltage	C	lote 12					L		ļ.,		v
BVCER	Collector-Emitter Breakdown Voltage	$I_{C}=100$ ma, $R_{BE}=10~\Omega$, See I	lote 12	40		40		40		40		٧
BV_{EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E}=100~\mu{\rm a},~I_{\rm C}=0$ Except 2N717,2N718: $I_{\rm E}=1~{\rm ma}$		5		5		5		5		٧
		V _{CB} = 30 v, I _E = 0			1.0		1.0		1.0		1.0	μα
	Callester Cotall Correct	V _{CB} = 30 v, I _E = 0, T _A =	= 150°C		100		100		100		100	μα
СВО	Collector Cutoff Current	V _{CB} = 60 v, I _E = 0										μα
		V _{CB} = 60 v, I _E = 0, T _A =	= 150°C									μα
ICER	Collector Cutoff Current	$V_{CE}=20$ v, $R_{BE}=100~k\Omega$										μο
IEBO	Emitter Cutoff Current	$V_{EB} = 5 \text{ v}, I_C = 0$	-									μα
		$V_{CE} = 10 \text{ v}, \ I_{C} = 10 \ \mu \text{a}$										
		$V_{CE} = 10 \text{ v}, \ I_{C} = 100 \ \mu \text{a}$										
		V _{CE} = 10 v, I _C = 10 ma, See I										
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE}=10 \text{ v, } I_{C}=10 \text{ ma, } I_{A}=10 \text{ See Note } 12$	= — 55°C									
		V _{CE} = 10 v, I _C = 150 ma, See N	ote 12	20	60	40	120	20	60	40	120	
		V _{CE} = 10 v, I _C = 500 ma, See N		•								
V _{BE}	Base-Emitter Voltage	I _B = 15 ma, I _C = 150 ma, See N			1.3		1.3		1.3		1.3	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 15 ma, I _C = 150 ma, See N	ote 12		1.5		1.5		1.5		1.5	٧
	Small-Signal Common-Base	V _{CB} = 5 v, I _C = 1 ma, f =	1 kc									ohm
h _{ib}	Input Impedance	V _{CB} = 10 v, I _C = 5 ma, f =	1 kc									ohm
	Small-Signal Common-Base	V _{CB} = 5 v, I _C = 1 ma, f =										
h _{rb}	Reverse Voltage Transfer Ratio	$V_{CB} = 10 \text{ v}, I_C = 5 \text{ ma}, f =$	1 kc									
	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f =$	1 kc									μmho
h _{ob}	Output Admittance	V _{CB} = 10 v, I _C = 5 ma, f =	1 kc									μmho
	Small-Signal Common-Emitter	$V_{CE} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f =$										
h _{fe}	Forward Current Transfer Ratio	V _{CE} = 10 v, I _C = 5 ma, f =	1 kc									
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ v}, \ I_{C} = 50 \text{ ma}, \ f =$	20 mc	2.0		2.5		2.0		2.5		
(_{ob}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ v}, I_E = 0, \qquad f =$	1 mc		35		35		35		35	pf
c _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 \text{ v}, I_{C} = 0, \qquad f =$	1 mc						80		80	pf

NOTE 12: These parameters must be measured using pulse techniques. PW \leq 300 μsec, Duty Cycle \leq 2%. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

^{*}Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			TO-18-	2N718A			2N956	
	PARAMETER	TEST CONDITIONS	TO-5-→	2N1613	2N1420	2N1507	2N1711	UNIT
				MIN MAX	MIN MAX	MIN MAX	MIN MAX	
BVCBO	Collector-Base Breakdown Voltage	$I_C = 100 \ \mu a, I_E = 0$		75	60	60	75	٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ ma}, I_B = 0,$ See N	ote 12			25		٧
BVCER	Collector-Emitter Breakdown Voltage	${ m I}_{ m C}=$ 100 ma, ${ m R}_{ m BE}=$ 10 Ω , See N	ote 12	50	30	30	50	٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E=100~\mu$ a, $I_C=0$		7			7	٧
		V _{CB} = 30 v, I _E = 0			1.0	1.0		μα
		$V_{CB} = 30 \text{ v}, I_E = 0, T_A = 0$	= 150°C		100	50		μα
СВО	Collector Cutoff Current	V _{CB} = 60 v, I _E = 0		0.010			0.010	μα
		$V_{CB} = 60 \text{ v}, I_E = 0, T_A = 0$	= 150°C	10			10	μα
ICER	Collector Cutoff Current	$ extsf{V}_{ extsf{CE}}= extsf{20}$ v, $ extsf{R}_{ extsf{BE}}= extsf{100}$ k Ω				10		μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 \text{ v}, I_{C} = 0$		0.01		100	0.005	μα
		$V_{CE} = 10 \text{ v}, I_{C} = 10 \mu \text{a}$					20	
		V _{CE} = 10 v, I _C = 100 μα		20			35	
		V _{CE} = 10 v, I _C = 10 ma, See I	lote 12	35			75	
h _{FE}	Static Forward Current Transfer Ratio	$ m V_{CE} = 10 \ v, \ I_{C} = 10 \ ma, \ T_{A} = 10 \ ma, \ T_{A} = 10 \ ma$	= — 55°C ,	20			35	
		$ m V_{CE} = 10$ v, $ m I_{C} = 150$ ma, See $ m I$	ote 12	40 120	100 300	100 300	100 300	
		V _{CE} = 10 v, I _C = 500 ma, See M		20			40	
V _{BE}	Base-Emitter Voltage	I _B = 15 ma, I _C = 150 ma, See 8	ote 12	1.3	1.3	1.3	1.3	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 15 ma, I _C = 150 ma, See I	lote 12	1.5	1.5	1.5	1.5	٧
	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f =$	1 kc	24 34			24 34	ohm
h _{ib}	Input Impedance	V _{CB} = 10 v, I _C = 5 ma, f =	1 kc	4 8			4 8	ohm
	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_C = 1 \text{ ma}, f =$	1 kc	3 x 10 ⁻⁴			5 x 10-4	
h _{rb}	Reverse Voltage Transfer Ratio	$V_{CB} = 10 \text{ v}, I_C = 5 \text{ ma}, f =$	1 kc	3 x 10 ⁻⁴			5 x 10 ⁻⁴	
	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_C = 1 \text{ ma}, f =$	1 kc	0.1 0.5			0.1 0.5	μmho
h _{ob}	Output Admittance	V _{CB} = 10 v, I _C = 5 ma, f =		0.1 1.0			0.1 1.0	μmho
	Small-Signal Common-Emitter	V _{CE} = 5 v, I _C = 1 ma, f =		30 100			50 200	
h _{fo}	Forward Current Transfer Ratio	$V_{CE} = 10 \text{ v}, I_{C} = 5 \text{ ma}, f =$	1 kc	35 150			70 300	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=10$ v, $I_{C}=50$ ma, $f=$		3.0	2.5	2.5	3.5	
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ v}, \ I_E = 0, \qquad f =$	1 mc	25	35	35	25	pf
C _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB}=0.5$ v, $I_{C}=0$, $f=$	1 mc	80			80	pf

See operating and switching characteristics for types 2N718A, 2N956, 2N1613, and 2N1711 on page 4.

NOTE 12: These parameters must be measured using pulse techniques. PW \leq 300 μ sec, Duty Cycle \leq 2%. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

^{*}Indicates JEDEC registered data

*operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	TO-18 → TO-5 →		956 711		718A 1613	UNIT
			TYP	MAX	TYP	MAX	1
NF Spot Noise Figure	$V_{CE}=10$ V, $I_{C}=300$ μa $R_{G}=510$ Ω , $f=1$ kc		5	8	6	12	db

* switching characteristics at 25°C free-air temperature

PARAMETER	PARAMETER TEST CONDITIONS			718A 1613	UNIT
			TYP	MAX	
t _T Total Switching Time	See Figure 1	_	20	30	nsec

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SWITCHING TIME MEASUREMENT CIRCUIT FOR 2N718A AND 2N1613

NOTES: 13. The input waveform is supplied by a mercury relay pulse generator with the following characteristics: $t_r \le 1$ nsec, $t_f \le 1$ nsec, PW = 15 nsec. Adjust R₁ and the input pulse amplitude to obtain the specified voltage levels at Point A.

14. Waveforms are monitored on a sampling oscilloscope ($t_{\rm r} \leq 0.4$ nsec) using a 2000 Ω probe.

^{*}Indicates JEDEC registered data (typical data excluded)

NOTE a: These parameters were measured using pulse techniques. PW = 300 μ sec, Duty Cycle < 2%.

TYPICAL CHARACTERISTICS

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

NOTE a: These parameters were measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

NOTE b: To obtain $f_{\uparrow f}$, the $|h_{fe}|$ response with frequency is extrapolated at the rate of -6 db per octave from f=20 mc to the frequency at which $|h_{fe}|=1$.

THERMAL CHARACTERISTICS

*Indicates JEDEC registered data

Highly Reliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from <0.1 ma to >150 ma, dc to 30 mc

- High Voltage Low Leakage
- Useful her Over Wide Current Range

*mechanical data

Device types 2N719, 2N719A, 2N720, 2N720A, 2N870 and 2N871 are in JEDEC TO-18 packages. Device types 2N698, 2N699, 2N1889, 2N1890, and 2N1893 are in JEDEC TO-5 packages.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N698	2N699	2N719 2N720	2N719A	2N720A	2N870 2N871	2N1889 2N1890	2N1893	UNIT
Collector-Base Voltage	120	120	120	120	120	100	100	120	٧
Collector-Emitter Voltage (See Note 1)	80	80	80	80	100	80	80	100	٧
Collector-Emitter Voltage (See Note 2)	60			60	80	60	60	80	٧
Emitter-Base Voltage	7	5	5	7	7	7	7	7	٧
Collector Current				1.0				0.5	a
Total Device Dissipation at (or below) 25°C Free-Air Temperature	0.8	0.6	0.4 ††	0.5	0.5	0.5	0.8	0.8	w
(See Note Indicated in Parentheses)	(3)	(5)	(7)	(9)	(9)	(9)	(3)	(3)	
Total Device Dissipation at (or below) 25°C Case Temperature (See Note Indicated in Parentheses)	3.0 (4)	2.0 † (6)	1.5 †† (8)	1.8	1.8	1.8 (10)	3.0 (4)	3.0 (4)	w
Total Device Dissipation at 100°C Case Temperature	1.7	1.0	0.75 ††	1.0	1.0	1.0	1.7	1.7	W
Operating Collector Junction Temperature	200	175†	175††		200	200	200	200	°C
Storage Temperature Range				—65°C 1	200°C				

- NOTES: 1. This values applies when the base-emitter resistance (R_{BE}) is equal to or less than 10 ohms.
 - 2. This values applies when the base-emitter diode is open-circuited.
 - 3. Derate linearly to 200°C free-air temperature at the rate of 4.56 mw/C°.
 - 4. Derate linearly to 200°C case temperature at the rate of 17.2 mw/C°.
 - 5. Derate linearly to 175°C free-air temperature at the rate of 4.0 mw/C°.
 - 6. Berate linearly to 175°C case temperature at the rate of 13.3 mw/C°.
 - 7. Derate linearly to 175°C free-air temperature at the rate of 2.67 mw/C°.

 8. Derate linearly to 175°C case temperature at the rate of 10.0 mw/C°.
 - 9. Derate linearly to 200°C free-air temperature at the rate of 2.86 mw/C°.
 - 10. Derate linearly to 200°C case temperature at the rate of 10.3 mw/C°.
- *Indicates JEDEC registered data.

†Texas Instruments guarantees its type 2N699 to be capable of the same dissipation as registered and shown for types 2N698, 2N1889, 2N1890, and 2N1893 with appropriate derating factors shown in Notes 3 and 4. See derating curves, page 6.

††Texas Instruments guarantees its types 2N719 and 2N720 to be capable of the same dissipation as registered and shown for types 2N719A, 2N720A, 2N870, and 2N871 with appropriate derating factors shown in Notes 9 and 10. See derating curves, page 6.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			TO-18-					2N:	719	2N7	19A	Γ
	PARAMETER	TEST CONDITIONS	TO-5 →	2N6	698	2N	599					TINU
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
вусво	Collector-Base Breakdown Voltage	$I_C=100~\mu a$, $I_E=0$		120				120		120		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C=30$ ma, $I_B=0$, See	Note 11	60						60		٧
BVCER	Collector-Emitter Breakdown Voltage	${ m I_C}=100~{ m ma},~{ m R_{BE}}=10~\Omega,~{ m See}$	Note 11	80		80		80		80		٧
BVEBO	Emitter-Base	$I_E = 100 \mu a, I_C = 0$		7						7		٧
EBO	Breakdown Voltage	$I_E = 1 \text{ ma}, I_C = 0$						5				٧
		V _{CB} = 60 v, I _E = 0					2		2			μα
		V _{CB} = 60 v, I _E = 0, T _A :	= 150°C						200			μα
		$V_{CB} = 75 \text{ v}, I_E = 0$			0.005						0.010	μα
СВО	Collector Cutoff Current	$V_{CB} = 75 \text{ v}, I_E = 0, T_A = 0$	= 150°C		15						15	μα
		V _{CB} = 90 v, I _E = 0										μα
			= 150°C									μα
I _{EBO}	Emitter Cutoff Current	$V_{EB}=2 v$, $I_{C}=0$		ļ			100					μα
		$V_{EB} = 5 \text{ v}, I_{C} = 0$			0.010						0.010	μα
		$V_{CE} = 10 \text{ v}, I_{C} = 100 \mu \text{a}$										
	Static Forward Current	$V_{CE} = 10 \text{ v}, I_{C} = 10 \text{ ma}, \text{ See}$								L		
h _{FE}	Transfer Ratio	$V_{CE} = 10 \text{ v}, I_{C} = 10 \text{ ma}, I_{A} = 10 $										
	<u></u>	$ m V_{CE} = 10 v$, $ m I_{C} = 150 ma$, See	Note 11	20	60	40	120	20	60	20	60	
V _{BE}	Base-Emitter Voltage	$I_B = 5 \text{ ma}, I_C = 50 \text{ ma}, \text{ See}$	Note 11		0.9						0.9	v
- BE		$I_B=15$ ma, $I_C=150$ ma, See			1.3		1.3		1.3		1.3	٧
V _{CE(sat)}	Collector-Emitter	$I_B = 5 \text{ ma}, I_C = 50 \text{ ma}, \text{ See}$			1.2						1.2	٧
CEISATI	Saturation Voltage	$I_B=15$ ma, $I_C=150$ ma, See	Note 11		5		5		5		5	٧
h _{ib}	Small-Signal Common-Base	V _{CB} = 5 v, I _C = 1 ma, f =		20	35	20	30	20	35	20	35	ohm
	Input Impedance	$V_{CB} = 10 \text{ v}, I_{C} = 5 \text{ ma}, f = $	1 kc		10		10		10		10	ohm
h .	Small-Signal Common-Base	$V_{CB} = 5 v$, $I_C = 1 ma$, $f =$	1 kc		2.5 x 10 ⁻⁴		2.5 x 10 ⁻⁴		2.5 x 10 ⁻⁴		2.5 x 10-4	
h _{rb}	Reverse Voltage Transfer Ratio	$V_{CB} = 10 \text{ v}, I_C = 5 \text{ ma}, f = 0$	1 kc		5 x 10-4		3 x 10-4		5 x 10-4		5 x 10-4	
h _{ob}	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_C = 1 \text{ ma, } f =$	1 kc		0.5	0.1	0.5	0.1	0.5	0.1	0.5	μmho
"ов	Output Admittance	$V_{CB}=10 \text{ v}, I_{C}=5 \text{ ma}, f=$	1 kc		1.0		1.0		1.0		1.0	μmho
h _{fe}	Small-Signal Common-Emitter	$V_{CE} = 5 v$, $I_C = 1 ma$, $f =$	1 kc	15		35	100	15		15		
10	Forward Current Transfer Ratio	$V_{CE} = 10 v$, $I_C = 5 ma$, $f =$	1 kc	25		45		25		25		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=10 \text{ v}, I_{C}=50 \text{ ma, f}=$	20 mc	2.0		2.5		2.0		2.0		
Cop	Common-Base Open-Circuit Output Capacitance		1 mc 140 kc		15		20		20		15	pf
c _{ib}	Common-Base Open-Circuit Input Capacitance		1 mc 140 kc		85				85		85	pf

NOTE 11: These parameters must be measured using pulse techniques. PW \leq 300 μ sec., Duty cycle \leq 2%. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

electrical characteristics		s at 25 C free-air temperato				20A	2N		211	871	
		TO-18-		720			-			1890	UNIT
	PARAMETER	TEST CONDITIONS TO-5 →	MIN	MAX	2N1	MAX	2N1 MIN	MAX	MIN	MAX	UNII
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \mu a, I_{E} = 0$	120	- INI-X	120		100		100		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_{C}=30$ ma, $I_{B}=0$, See Note 11			80		60		60		٧
BVCER	Collector-Emitter Breakdown Voltage	$I_{C}=100$ ma, $R_{BE}=10~\Omega$, See Note 11	80		100		80		80		٧
	Emitter-Base	$I_E = 100 \mu a, I_C = 0$			7		7		7		٧
BVEBO	Breakdown Voltage	I _E = 1 ma, I _C = 0	5								٧
		V _{CB} = 60 v, I _E = .0	<u> </u>	2	 						μα
		$V_{CB} = 60 \text{ v}, I_E = 0, T_A = 150 \text{ °C}$	-	200	<u> </u>		<u> </u>	0.010	ļ	0.010	μα
I _{СВО}	Collector Cutoff Current	$V_{CB} = 75 \text{ v}, I_E = 0$			├		-	0.010	-	15	μα
CBO		$V_{CB} = 75 \text{ v}, I_E = 0, T_A = 150 \text{ °C}$	+-		 	0.010		- 13			μα
		$V_{CB} = 90 \text{ v}, I_E = 0$	 		<u> </u>	15					μα
		$V_{CB} = 90 \text{ v}, I_{E} = 0, T_{A} = 150 ^{\circ}\text{C}$	+		\vdash		-				μο
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 2 \text{ v}, I_{C} = 0$ $V_{EB} = 5 \text{ v}, I_{C} = 0$	+			0.010	 	0.010		0.010	μα
		$V_{CE} = 10 \text{ v}, I_{C} = 100 \ \mu \text{a}$	+-		20		20		-		
		$V_{CE} = 10 \text{ v}, I_{C} = 10 \text{ ma}, \text{ See Note } 11$	+		35		35		t		
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 10 \text{ v}, I_{C} = 10 \text{ ma}, T_{A} = -55^{\circ}\text{C},$ See Note 11			20		20				
		$ m V_{CE} = 10 v$, $ m I_{C} = 150 ma$, See Note 11	40	120	40	120	40	120	100	300	
		I _B = 5 ma, I _C = 50 ma, See Note 11				0.9		0.9		0.9	٧
A ^{BE}	Base-Emitter Voltage	I _B = 15 ma, I _C = 150 ma, See Note 11		1.3		1.3		1.3	<u> </u>	1.3	٧
	Collector-Emitter	$I_B = 5$ ma, $I_C = 50$ ma, See Note 11			<u> </u>	1.2	<u> </u>	1.2	<u> </u>	1.2	٧
V _{CE(sat)}	Saturation Voltage	$I_B = 15$ ma, $I_C = 150$ ma, See Note 11	<u> </u>	5		- 5	<u> </u>	5		5	٧
h _{ib}	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	20	30	20	30	20	30	20	30	ohr
10	Input Impedance	$V_{CB} = 10 \text{ v}, I_{C} = 5 \text{ ma}, f = 1 \text{ kc}$	-	10	4	8	4	8	↓ •	1.5 x	0
	Small-Signal Common-Base	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f = 1 \text{ kc}$		2.5 x 10-4		1.25 x 10 ⁻⁴		1.25 x 10 ⁻⁴	ļ.,	10-4	lacksquare
р ^{LP}	Reverse Voltage Transfer Ratio	$V_{CB} = 10 \text{ v}, I_{C} = 5 \text{ ma}, f = 1 \text{ kc}$		3 x 10-4		1.5 x 10-4		1.5 x 10 ⁻⁴		1.5 x 10 ⁻⁴	<u> </u>
	Small-Signal Common-Base	$V_{CB} = 5 v$, $I_C = 1 ma$, $f = 1 kc$	0.1	0.5	_	0.5	-	0.5		0.3	μm
h _{ob}	Output Admittance	$V_{CB} = 10 \text{ v}, I_{C} = 5 \text{ ma}, f = 1 \text{ kc}$		1.0	_	0.5	_	0.5	ļ	0.3	μm
	Small-Signal Common-Emitter	$V_{CE} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f = 1 \text{ kc}$	35	100	30	100	30	100	50	200	-
h _{fe}	Forward Current Transfer Ratio	$V_{CE} = 10 \text{v}, I_{C} = 5 \text{ma}, f = 1 \text{kc}$	45		45		45	150	70	300	<u> </u>
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$ m V_{CE}=10 v, I_{C}=50 ma, f=20 mc$	2.5		2.5		2.5		3.0		
C ^{op}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ v}, I_E = 0, \qquad f = 1 \text{ mc}$ Except 2N720: $f = 140 \text{ kc}$		20		15		15		15	P
c _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 \text{ v}, I_{C} = 0, f = 1 \text{ mc}$ Except 2N720: $f = 140 \text{ kc}$		85		85		85		85	J P

NOTE 11: These parameters must be measured using pulse techniques. PW \leq 300 μ sec., Duty cycle \leq 2%. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

^{*}Indicates JEDEC registered data.

TYPICAL CHARACTERISTICS

NORMALIZED COLLECTOR-EMITTER BREAKDOWN VOLTAGE

SMALL-SIGNAL COMMON-BASE INPUT IMPEDANCE

SMALL-SIGNAL COMMON-BASE REVERSE VOLTAGE TRANSFER RATIO

NOTE a: These parameters were measured using pulse techniques. PW = 300 μsec , Duty Cycle \leq 2%.

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

SMALL-SIGNAL COMMON-BASE OUTPUT ADMITTANCE

NORMALIZED SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

TYPICAL CHARACTERISTICS

Reverse Bias Voltage - v

NOTE b: To obtain $f_{\uparrow f}$, the h_{fe} response with frequency is extrapolated at the rate of -6 db per octave from f=20 mc to the frequency at which $|h_{fe}|=1$.

THERMAL CHARACTERISTICS

*Indicates JEDEC registered data.

FOR EXTREMELY LOW-LEVEL, LOW-NOISE, HIGH-GAIN, SMALL-SIGNAL AMPLIFIER APPLICATIONS

- Guaranteed h_{FE} at 10 μ a, $T_A = -55$ °C and 25°C
- Guaranteed Low-Noise Characteristics at 10 µa
- Usable at Collector Currents as Low as 1 µa
- Very High Reliability
- 2N929 and 2N930 Also Are Available to MIL-S-19500/253 (Sig C)

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	•		•	45 V
Collector-Emitter Voltage (See Note 1)				45 v
Emitter-Base Voltage				5 v
Collector Current				30 ma
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)				300 mw
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 3)				
Operating Collector Junction Temperature			•	175°C
Storage Temperature Range	-	- 65°C	to	+ 200°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 2.0 mw/C°.
- 3. Derate linearly to 175°C case temperature at the rate of 4.0 mw/C°.

*Indicates JEDEC registered data

TYPES 2N929, 2N930 **N-P-N PLANAR SILICON TRANSISTOR**

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				2N	929	2N	1930	Ī
	PARAMETER	TEST CONDIT	IONS	MIN	MAX	MIN	MAX	UNIT
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ ma}, I_B = 0,$	(See Note 4)	45		45		٧
BVEBO	Emitter-Base Breakdown Voltage	I _E = 10 no I _C = 0		5		5		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 45 \text{ v}, I_E = 0$			10		10	na
1	Collector Cutoff Current (See Note 5)	$V_{CE}=45$ v, $V_{BE}=0$			10		10	na
CES	Collector Cotton Cotton (see Note 3)	$V_{CE}=45 \text{ v,} V_{BE}=0,$	T _A = 170°C		10		10	μα
ICEO	Collector Cutoff Current	$V_{CE} = 5 \text{ v,} I_{B} = 0$			2		2	na
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 \text{ v}, I_C = 0$			10		10	na
		$V_{CE}=5$ v, $I_{C}=10$ μc		40	120	100	300	
	Static Forward Current Transfer Ratio	$V_{CE} = 5 \text{ v}, I_C = 10 \ \mu c$	$T_{A} = -55^{\circ}C$	10		20		
h _{FE}	Signic Porward Corrent transfer Katto	$V_{CE} = 5 \text{ v}, I_{C} = 500 \ \mu$	ıa	60		150		
		$V_{CE} = 5 \text{ v}, I_{C} = 10 \text{ mg}$, (See Note 4)		350		600	
VBE	Base-Emitter Voltage	$I_B=0.5$ ma, $I_C=10$ ma	, (See Note 4)	0.6	1.0	0.6	1.0	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B=0.5$ ma, $I_C=10$ ma	, (See Note 4)		1.0		1.0	٧
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = 5 \text{ v}, I_E =1 \text{ m}$	a, f = 1 kc	25	32	25	32	ohm
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	$V_{CB} = 5 \text{ v}, I_E = -1 \text{ m}$	a, f = 1 kc	0	6.0 x 10 ⁻⁴	0	6.0 x 10 ⁻⁴	
h _{ob}	Small-Signal Common-Base Output Admittance	V _{CB} = 5 v, I _E = -1 m	a, f = 1 kc	0	1.0	0	1.0	μ mho
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ v}, I_{C} = 1 \text{ ma},$	f = 1 kc	60	350	150	600	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5$ V, $I_C = 500 \mu$	a, f = 30 mc	1.0		1.0		
C ^{op}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5$ v, $I_E = 0$,	f = 1 mc		8		8	pf

*operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	2N929 MAX	2N930 MAX	UNIT	
	$ m V_{GE} = 5$ v, $\rm I_{C} = 10~\mu a$, $\rm R_{G} = 10~k\Omega$ Noise Bandwidth 10 cps to 15.7 kc	4	3	db	

NOTES: 4. These parameters must be measured using pulse techniques. PW == 300 μ sec, Duty Cycle \leq 2%.

I. CES may be used in place of I_{CBO} for circuit stability calculations.

Indicates JEDEC registered data

TYPES 2N929, 2N930 N-P-N PLANAR SILICON TRANSISTORS

TYPES 2N929, 2N930 N-P-N PLANAR SILICON TRANSISTORS

TYPES 2N929, 2N930 N-P-N PLANAR SILICON TRANSISTORS

NOTE 6: These parameters were measured using pulse techniques. PW == 300 μsec , Duty Cycle \leq 2%.

TYPES 2N929, 2N930 N-P-N PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

2N929 COLLECTOR-EMITTER SATURATION VOLTAGE vs FREE-AIR TEMPERATURE

2N930

NOTE 6: These parameters were measured using pulse techniques. PW == 300 μ sec, Duty Cycle \leq 2%.

TYPES 2N2192THRU 2N2194, 2N2192ATHRU 2N2194A, 2N2243, 2N2243A BULLETIN NO. DI-S 683571, MARCH 1963 REVISED MAY 1968

TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2194A, 2N2243, 2N2243A N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

FOR MEDIUM-POWER, HIGH-SPEED SWITCHING AND AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very Low Saturation Voltage
- $h_{\rm ff}$ Guaranteed from 100 μ a to 1 amp

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N2192 2N2192A	2N2193 2N2193A	2N2194 2N2194A	2N2243 2N2243A	UNIT			
Collector-Base Voltage	60	80	60	120	٧			
Collector-Emitter Voltage (See Note 1)	40	50	40	80	٧			
Emitter-Base Voltage	5	8	5	7	٧			
Collector Current	1	1	1	1	α			
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	0.8	0.8	0.8	0.8	w			
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 3)	2.8	2.8	2.8	2.8	w			
Total Device Dissipation at 100°C Case Temperature	1.6	1.6	1.6	1.6	w			
Operating Collector Junction Temperature Range		-6	5°C to 200°	194A 2N2243A 60 120 v 40 80 v 5 7 v 1 1 a .8 0.8 w .8 2.8 w .6 1.6 w				
Storage Temperature Range		-6	5°C to 200°	1.6 1.6 w to 200°C to 200°C				
Lead Temperature 1/16 Inch from Case for 10 Seconds			300°C					

NOTES: 1. This value applies when the emitter-base diode is open-circuited.

^{2.} Derate linearly to 200°C free-air temperature at the rate of 4.6 mw/C°.

^{3.} Derate linearly to 200°C case temperature at the rate of 16 mw/C°.

^{*}Indicates JEDEC registered data

TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2194A, 2N2243, 2N2243A N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	CONDIT	IONS		192 192A	2N2 2N2	193 193A	2N21 2N21		UNIT
	IAMANETEN				MIN	MAX	MIN	MAX	MIN	MAX	
BVCBO	Collector-Base Breakdown Voltage	$I_{C}=100$ μ a, $I_{E}=$	0		60		80		60		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 25 \mathrm{ma}, \ I_B =$: 0,	See Note 4	40	-	50		40		٧
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E}=100\mu$ a, $I_{C}=$	= 0		5		8		5		٧
		$V_{CB}=30 v, \;\; I_E=$	0			10				10	na
١.	Collector Cutoff Current	V _{CB} = 30 v, I _E =	0,	T _A = 150°C		15				25	μ a
Ісво	Conector Curon Current	V _{CB} = 60 v, I _E =	0					10			na
		V _{CB} = 60 v, I _E =	0,	T _A = 150°C				25			μα
	F 6 . # 6	V _{EB} = 3 v, I _C =	= 0			50				50	na
IEBO	Emitter Cutoff Current	$V_{EB} = 5 v$, $I_{C} =$	= 0					50			na
		V _{CE} = 10 v, I _C =	= 100 μα	ı	15		15				
		V _{CE} = 10 v, I _C =	= 10 ma		75		30		1,5		
		V _{CE} = 10 v, I _C =	= 10 ma,	$T_A = -55$ °C	35		20				
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 10 v, I _C =	= 150 ma	, See Note 4	100	300	40	120	20	60	
		V _{CE} = 10 v, I _C =	500 ma	, See Note 4	35		20		12		
		V _{CE} = 10 v, I _C =	= 1 a,	See Note 4	15		15				
		V _{CE} = 1 v, I _C =	= 150 ma	, See Note 4	70		30		15		
V _{BE}	Base-Emitter Voltage	$I_B = 15 \text{ma}, I_C =$	= 150 ma	1		1.3		1.3		1.3	٧
,	C.H. J. P. in C. H. W. In	$I_B = 15 \text{ma}$	2N2	192- 2N2194		0.35		0.35		0.35	٧
VCE(sat)	Collector-Emitter Saturation Voltage	I _C = 150 ma	2N21	92A-2N2194A		0.25		0.25		0.25	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v, I _C =	50 ma,	f = 20 mc	2.5		2.5		2.5		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 v, \;\; I_E =$	0,	f = 1 mc		20		20		20	pf

*switching characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	2N2192 2N2192A 2N2193 2N2193A 2N2194 2N2194A MAX	UNIT
tr	Rise Time	See Figure 1	70	nsec
t,	Storage Time		150	nsec
t _f Fall Time	Fall Time		50	nsec

NOTE 4: These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data

TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2194A, 2N2243, 2N2243A N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER			2N2243		2N2243A		Ī
		TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_{C}=100~\mu$ a, $I_{E}=0$	120		120		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 25 \text{ ma}, I_B = 0, \qquad \text{See Note 4}$	80		80		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E=100~\mu a,~~I_C=0$	7		7		٧
	Collector Cutoff Current	$V_{CB}=60 \text{ v}, I_E=0$		10		10	na
I _{CBO}		$V_{CB} = 60 \text{ v}, I_E = 0, T_A = 150 ^{\circ}\text{C}$		15		15	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB}=5 v$, $I_C=0$		50		50	na
	Static Forward Current Transfer Ratio	$V_{CE}=10 extsf{v}, I_{C}=100\mu extsf{a}$	15		15		
		V _{CE} = 10 v, I _C = 10 ma	30		30		
		$V_{CE} = 10 \text{ v}, I_{C} = 10 \text{ ma}, \ T_{A} = -55^{\circ}\text{C}$	20		20		
h _{FE}		$V_{CE} = 10 \text{ v}, I_{C} = 150 \text{ ma}, \text{ See Note 4}$	40	120	40	120	
		$V_{CE}=10 \text{ v}, I_{C}=500 \text{ ma}, \text{ See Note 4}$	15		15		
		V _{CE} = 1 v, I _C = 150 ma, See Note 4	30		30		
V _{BE}	Base-Emitter Voltage	I _B = 15 ma, I _C = 150 ma		1.3		1.3	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 15 ma, I _C = 150 ma		0.35		0.25	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v, I _C = 50 ma, f = 20 mc	2.5		2.5		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB}=10 \text{ v}, I_E=0, \qquad f=1 \text{ mc}$		15		15	pf

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N2243 2N2243A	UNIT
1	PARAMETER	TEST CONDITIONS	MAX	O.G.
	$ au_{ m b}$ Stored-Charge Time Constant	See Figure 2	2.1	μ sec

NOTE 4: These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data

TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2194A, 2N2243, 2N2243A N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

	2N2192, 92A	2N2193, 93A 2N2194, 94A
VIN	7.5 v	15 v
V _{BB}	7.5 v	15 v

*FIGURE 1 -- SWITCHING TIMES -- t, t, t, ts

*FIGURE 2 — STORED-CHARGE TIME CONSTANT — $au_{
m b}$

NOTES: a. The input waveform in Figure 1 is supplied by a generator with the following characteristics: $t_r=20$ nsec, $t_f=20$ nsec, $t_{out}=50~\Omega$, PW = $10~\mu sec$, PRR = 5 kc.

b. Waveforms in Figure 1 and Figure 2 are monitored on an oscilloscope with the following characteristics: $t_r \le 14$ nsec, $R_{in} = 10$ M Ω , $C_{in} = 11.5$ pf.

c. The relay in Figure 2 is Clare HG 1005 (or equivalent).

^{*}Indicates JEDEC registered data

TYPES 2N2217, 2N2218, 2N2219, 2N2220, 2N2221, 2N2222 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- DC Beta Guaranteed from 100µa to 500 ma
- High f_T 250 mc min at 20v, 20 ma

environmental tests

To ensure maximum integrity, stability, and long life, all finished transistors are subjected to sustained acceleration at a minimum of 35,000 G and verification of hermetic seal by helium leak testing.

*mechanical data

Device types 2N2217, 2N2218, and 2N2219 are in JEDEC TO-5 packages. Device types 2N2220, 2N2221, and 2N2222 are in JEDEC TO-18 packages.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

2N2217 2N2218 2N2219	2N2220 2N2221 2N2222
Collector-Base Voltage	60 v
Collector-Emitter Voltage (See Note 1)	30 v
Emitter-Base Voltage	5 v
Collector Current	0.8 a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Notes 2 and 3) 0.8 w	0.5 w
Total Device Dissipation at (or below) 25°C Case Temperature (See Notes 4 and 5) 3 w	1.8 w
Operating Collector Junction Temperature Range	+ 175°C
Storage Temperature Range	+ 200°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate 2N2217, 2N2218, and 2N2219 linearly to 175°C free-air temperature at the rate of 5.33 mw/C°.
- 3. Derate 2N2220, 2N2221, and 2N2222 linearly to 175°C free-air temperature at the rate of 3.33 mw/C°.
- 4. Derate 2N2217, 2N2218, and 2N2219 linearly to 175°C case temperature at the rate of 20.0 mw/C°.
- 5. Derate 2H2220, 2H2221, and 2H2222 linearly to 175°C case temperature at the rate of 12.0 mw/C°.

^{*}Indicates JEDEC registered data

TYPES 2N2217, 2N2218, 2N2219, 2N2220, 2N2221, 2N2222 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			TO-5 →	2N2217			2N2218			2N2219			
PARAMETER		TEST CONDITIONS TO-18 →	2N2220		2N2221		2N2222			UNIT			
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
BVCBO	Collector-Base Breakdown Voltage	$I_C=10~\mu a,~I_E=0$		60			60			60			٧
BACEO	Collector-Emitter Breakdown Voltage	$I_C = 10$ ma, $I_B = 0$		30			30			30			٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E=10~\mu a,~I_C=0$		5			5			5			٧
	Collector Cutoff Current	V _{CB} = 50 v, I _E = 0				10			10			10	ng
CBO	Conector Colon Correll	$V_{CB} = 50 \text{ v}, I_E = 0, T$	A = 150°C			10			10			10	μα
I _{EBO}	Emitter Cutoff Current	V _{EB} = 3 v, I _C = 0				10			10			10	na
		$V_{CE}=10$ v, $I_{C}=100$ μ	9				20			35			
		$ m V_{CE} = 10$ V, $ m I_{C} = 1$ Ma		12			25			50			
h _{FE}		$V_{CE} = 10 \text{ v, } I_{C} = 10 \text{ mg}$		17			35			75			
		$V_{CE}=10$ v, $I_{C}=150$ m	a, (See Note 6)	20		60	40		120	100		300	
		V _{CE} = 10 v, I _C = 500 m	a, (See Note 6)				20			30			
		$V_{CE} = 1 \text{ v}, I_{C} = 150 \text{ m}$	a, (See Note 6)	10			20			50			
V _{BE}	Base-Emitter Voltage	$I_{B} = 15$ ma, $I_{C} = 150$ m	a,(See Note 6)		0.9	1.3		0.9	1.3		0.9	1.3	٧
*BE		$I_B = 50$ ma, $I_C = 500$ m	a, (See Note 6)		1.2			1.2	2.6		1.2	2.6	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 15$ ma, $I_C = 150$ m	a, (See Note 6)		0.2	0.4		0.2	0.4		0.2	0.4	٧
*CE(sat)		$I_B = 50$ ma, $I_C = 500$ m	a, (See Note 6)		0.5			0.4	1.6		0.4	1.6	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 20 v, I _C = 20 ma	, f = 100 mc	2.5	2.8		2.5	3.0		2.5	3.5		
f _T	Transition Frequency	$V_{CE}=20$ v, $I_{C}=20$ ma	, (See Note 7)	250	280		250	300		250	350		mc
C ^{op}	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 v, I _E = 0,	f = 1 mc		5	8		5	8		5	8	pf
c _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 \text{ v, } 1_{C} = 0,$	f = 1 mc		23			23			23		pf
Re(h _{ie})	Real Part of Small-Signal Common-Emitter Input Impedance	V _{CE} = 20 v, I _C = 20 ma	, f = 300 mc		15	60		15	60		15	60	ohm

NOTES: 6. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{7.} To obtain $\mathbf{f}_{\mathsf{T}_i}$ the $|\mathbf{h}_{\mathsf{f}_{\mathsf{G}}}|$ response with frequency is extrapolated at the rate of -64 ber octave from $\mathbf{f}=100$ mc to the frequency at which $|\mathbf{h}_{\mathsf{f}_{\mathsf{G}}}|=1$.

^{*}Indicates JEDEC registered data (typical data excluded)

TYPES 2N2217, 2N2218, 2N2219, 2N2220, 2N2221, 2N2222 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

switching characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS ††			2N2218		
	PARAMEIER	IEST CONDITIONS !!	TO-18→	2N2220	2N2221	2N2222	UNIT
				T	YPICA	L	
ton	Turn-On Time	$I_C = 150 \text{ ma}, I_{B(1)} = 15 \text{ ma}, I_{B(2)} = -15 \text{ ma}$		25	25	25	nsec
toff	Turn-Off Time	$V_{BE(off)} = -2.75$ v, $R_L = 40 \Omega$, (See Figure 1)		150	175	200	nsec
İτ	Total Switching Time	See Figure 2		9	9	9	nsec

TT Voltage and current values shown are nominal; exact values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SATURATED SWITCHING CIRCUIT FOR TURN-ON AND TURN-OFF TIMES

NOTES: a. The input waveforms in Figure 1 have the following characteristics: $t_r \le 1$ nsec, PW ≥ 300 nsec.

b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_r < 4$ nsec, $R_{\rm in} \ge 100$ K Ω , $C_{\rm in} \le 12$ pf.

TYPES 2N2217, 2N2218, 2N2219, 2N2220, 2N2221, 2N2222 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. NON-SATURATED SWITCHING TIME MEASUREMENT CIRCUIT

NOTES: c. The input waveform is supplied by a mercury relay pulse generator with the following characteristics: $t_r \le 1$ nsec, $t_f \le 1$ nsec, PW = 15 nsec. Adjust R1 and the input pulse amplitude to obtain the specified voltage levels at Point A.

d. Waveforms are monitored on a sampling oscilloscope (tr < 0.8 nsec) using a 2000 Ω probe.

TYPE 2N2369A N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR VERY-HIGH-SPEED SWITCHING APPLICATIONS

*mechanical data

*ahcolute maximum	ratings at 25°C	free-nir temperature	(unless otherwise noted)	

Collector-Base Voltage																	40 v
Collector-Emitter Voltage (See Note 1)																	40 v
Collector-Emitter Voltage (See Note 2)																	
Emitter-Base Voltage																	
Continuous Collector Current .																	
Peak Collector Current (See Note 3)																	
Continuous Device Dissipation at (or below	r) 25	5°C	Fre	e-Ai	r Te	mpe	erat	ure	(S	ee l	Note	: 4)					0.36 w
Continuous Device Dissipation at (or below	1) 25	5°C	Ca	se T	emp	erat	ure	(S	ee	Not	te 5)	١.					1.2 w
Continuous Device Dissipation at 100°C C																	
Operating Collector Junction Temperature														Ċ	Ċ		200°C
Operating Conceior Jonation Temperatore		•	•	•		•	•	•	•	•		•			<u></u>	•	
Storage Temperature Range													-	-65	٠C	to	200°C
Lead Temperature 1/6 Inch from Case for 6																	
Lead remperatore to men from Case for C	<i>-</i>	,	1143					•	•	•			•	•	•	•	

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIO	ONS	MIN	MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	$I_C = 10 \mu a$, I_E	= 0		40		٧
VIBRICEO	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ma}, I_B$	= 0,	See Note 6	15		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_C=10~\mu a,~V_B$	_{se} = 0		40		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu a$, I_C	= 0		4.5		٧
I _{CBO}	Collector Cutoff Current	V _{C8} = 20 v, I _E	= 0,	T _A = 150°C		30	μ a
ICES	Collector Cutoff Current	$V_{CE} = 20 \text{ v}, V_{B}$	_{se} = 0			0.4	μο
I _B	Base Current	V _{CE} = 20 v, V _B	_{se} = 0			-0.4	μο
		$V_{CE} = 0.35 \text{ v, } I_{C}$	= 10 ma,	See Note 6	40		
		V _{CE} = 1 v, I _C	= 10 ma,	See Note 6		120	
h _{FE}	Static Forward Current	V _{CE} = 0.4 v, I _C	= 30 ma,	See Note 6	30		
	Transfer Ratio	V _{CE} = 1 v, I _C	= 100 ma,	See Note 6	20		
		V _{CE} = 0.35 v, I _C	= 10 ma,	T _A = -55°C, See Note 6	20		
		$I_B = 1 \text{ ma}, I_C$	= 10 ma		0.7	0.85	٧
		$I_B = 3 \text{ ma}, I_C$	= 30 ma			1.15	٧
V _{BE}	Base-Emitter Voltage	$I_B = 10 \text{ ma}, I_C$	= 100 ma			1.6	٧
		$l_8 = 1 \text{ ma}, l_C$	= 10 ma,	T _A = 125°C	0.59		٧
		$I_B = 1 \text{ ma}, I_C$	= 10 ma,	T _A = -55°C		1.02	٧
		$I_B = 1 \text{ ma}, I_C$	= 10 ma,			0.2	٧
V _{CE(sat)}	Collector-Emitter	$I_B = 3 \text{ ma}, I_C$	= 30 ma,			0.25	٧
Celian	Saturation Voltage	$I_B = 10 \text{ ma}, I_C$	= 100 ma,			0.5	٧
		$l_B = 1 \text{ ma}, l_C$	= 10 ma,	T _A = 125°C		0.3	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v, I _C	= 20 ma,	f = 100 Mc	5		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 v$, I_{E}	= 0,	f = 140 kc		4	pf

- NOTES: 1. This value applies when the base-emitter diade is short-circuited.
 - This value applies between 10 μa and 10 ma collector current when the base-emitter diode is open-circuited.
- 3. This value applies for PW \leq 10 $\mu {\rm sec.}$ *Indicates JEDEC registered data

- 4. Derate linearly to 200°C free-air temperature at the rate of 2.06 mw/C°.
- 2. This value applies between 10 µa and 10 ma collector current when the base-emitter 5. Derate linearly to 200°C case temperature at the rate of 6.85 mw/C°.
 - 6. These parameters must be measured using pulse techniques. PW = 300 $\,\mu{\rm sec}$, Duty Cycle $\,\leq\,2\%$.

TYPE 2N2369A N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST	CONDITIONS†		MAX	UNIT
ton	Turn-On Time	I _C = 10 ma,	$I_{B(1)}=3$ ma,	$I_{8(2)} = -1.5 \text{ ma},$	12	nsec
toff	Turn-Off Time	$V_{BE(off)} = -1.5 v$,	$R_L=250~\Omega$,	See Figure 1	18	nsec
t,	Storage Time	$I_{C} = I_{B(1)} = 10 \text{ ma},$	I ₈₍₂₎ = -10 ma,	See Figure 2	13	nsec

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1- TURN-ON AND TURN-OFF TIMES

NOTES: a. The input waveforms are supplied by a pulse generator with the following characteristics: $I_{out} = 50 \ \Omega$, $I_r \le 1$ nsec, PW > 300 nsec, Duty Cycle $\le 2\%$. b. Output waveforms are monitored on an oscilloscope with the following characteristics: $I_r \le 1$ nsec, $I_{in} = 50 \ \Omega$.

^{*}Indicates JEDEC registered data

FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS IN INVERTED CONNECTION

- Low Offset Voltage...0.4 mV Max (2N2432A)
- Low I cs . . . 2 nA Max
- High Rated V_{ECO} for Inverted Connection

ALSO USEFUL FOR LOW-LEVEL AMPLIFIER APPLICATIONS

• h_{FE} ... 30 Min at 10 μ A

*mechanical data

†TI guaranteed minimum. The JEDEC registered minimum lead diameter for the T0-46 is 0.012.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N2432 2N2432A 2N4138
Collector-Base Voltage	. 30 V 45 V
Collector-Emitter Voltage (See Note 1)	. 30 V 45 V
Emitter-Collector Voltage (See Note 2)	. 15 V 18 V
Emitter-Base Voltage	
Continuous Collector Current	. ← 100 mA →
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3	300 mW →
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 4)	\leftarrow 600 mW \rightarrow
Storage Temperature Range	65°C to 200°C
Lead Temperature 1/4 Inch from Case for 10 Seconds	. ← 300°C →

NOTES: 1. This value applies between 0 and 10 mA collector current when the emitter-base diode is open-circuited.

- 2. This value applies between 0 and 100 μA emitter current when the collector-base diode is open-circuited.
- 3. Derate linearly to 175°C free-air temperature at the rate of 2 mW/deg.
- 4. Derate linearly to 175°C case temperature at the rate of 4 mW/deg.

*Indicates JEDEC registered data.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	2N2432 2N4138	2N2432A	UNIT
	1 Allameters			MIN MAX	MIN MAX	L
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A$, $I_E = 0$		30	45	V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 0,$	See Note 5	30	45	٧
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	$I_{E} = 100 \mu A, I_{B} = 0$		15	18	٧
	6 H . 6 . 46	$V_{CB} = 25 \text{ V}, I_E = 0$		10		nA_
I _{CBO}	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, I_E = 0$			10	nA
		$V_{CE} = 25 \text{ V}, V_{BE} = 0$		10		nA
		$V_{CE} = 25 \text{ V}, V_{BE} = 0,$	$T_A = 125$ °C	250		nA
ICES	Collector Cutoff Current	$V_{CE} = 40 \text{ V}, V_{BE} = 0$			10	nA
		$V_{CE} = 40 \text{ V}, V_{BE} = 0,$	$T_A = 125$ °C		250	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 15 \text{ V}, I_{C} = 0$		2	2	nA
		$V_{EC} = 15 \text{ V}, V_{BC} = 0$		2	2	nA
I _{ECS}	Emitter Cutoff Current	$V_{EC} = 15 \text{ V}, V_{BC} = 0,$	T _A = 125°C	200	200	nA
		$V_{CE} = 5 \text{ V}, I_{C} = 10 \ \mu$	A	30	30	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$		50	50	
h _{FE(inv)}	Static Forward Current Transfer Ratio (Inverted Connection)	$V_{EC}=5$ V, $I_{E}=0.2$ m	A	2	3	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 0.5 \text{ mA}, I_C = 10 \text{ m}$	A	0.15	0.15	٧
	A	$I_{B} = 200 \ \mu A, I_{E} = 0,$	See Figure 1	0.5	0.4	m۷
V _{EC(ofs)}	Offset Voltage (Inverted Connection)	$I_B = 1 \text{ mA}, I_E = 0,$	See Figure 1	1	0.7	m۷
r _{ec(on)}	Small-Signal Emitter-Collector On-State Resistance	$I_B=1$ mA, $I_E=0$, $f=1$ kHz,	I _e = 100 μA See Figure 2	20	15	Ω
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$, f = 20 MHz	1	1	
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB}=0, \qquad I_{E}=0,$		12	12	pF
Ccp	Collector-Base Capacitance	$V_{CB}=0, \qquad I_E=0,$	f = 1 MHz, See Note 6	12	12	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB}=0, \qquad I_{C}=0,$		12	12	pF
Cep	Emitter-Base Capacitance	$V_{EB}=0, I_{C}=0,$	f = 1 MHz, See Note 6	12	12	pF

NOTES: 5. This parameter must be measured using pulse techniques. I $_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

6. C_{cb} and C_{eb} are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

See Note o $I_e = 100 \mu A$ f = 1 kHz $r_{ec}(on) = \frac{Vec}{I_e}$

FIGURE 2

MEASUREMENT CIRCUIT FOR OFFSET VOLTAGE

MEASUREMENT CIRCUIT FOR EMITTER-COLLECTOR ON-STATE RESISTANCE

NOTE a: The voltmeter must have high enough impedance that halving the value of the voltmeter impedance does not change the measured value.

*Indicates JEDEC registered data.

TYPICAL CHARACTERISTICS

2N2432A

EMITTER-COLLECTOR VOLTAGE VS BASE CURRENT

NOTE 5: This parameter must be measured using pulse techniques, $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

2N2432A SMALL-SIGNAL EMITTER-COLLECTOR ON-STATE RESISTANCE

2N2432, 2N2432A, 2N4138 EMITTER-BASE CAPACITANCE

2N2432, 2N2432A, 2N4138 COLLECTOR BASE CAPACITANCE

NOTE 6: Cob and Cob are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

TI World-Wide Sales Offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 — P.O. Box 5012 Dallas, Texas 75222 214-238-4861 3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A.
Boite Postale 5
Villeneuve-Loubet (A.M.), France

11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato Buenos Aires. Argentina

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

FOR LOW-LEVEL, LOW-NOISE, HIGH-GAIN, AMPLIFIER APPLICATIONS

- Guaranteed Low-Noise Characteristics at 100 Hz, 1 kHz, and 10 kHz
- High V (BR)CEO ... 60 V Min
- D-C Beta Guaranteed at $I_c = 1 \mu A$ (2N2484)

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage					 	. 60 V
Collector-Emitter Voltage (See Note	1)				 	. 60 V
Emitter-Base Voltage					 	. 6V
Continuous Collector Current					 	50 mA
Continuous Device Dissipation at (or	below) 25°C Fr	ee-Air Temper	rature (See	Note 2)	 	0.36 W
Continuous Device Dissipation at (or	below) 25°C Co	ase Temperatu	re (See No	te 3) .	 	1.2 W
Continuous Device Dissipation at 100	°C Case Tempe	erature			 	0.68 W
Storage Temperature Range					 -65°C	to 200°C
Lead Temperature 1/4 Inch from Case	for 10 Seconds	s			 	300°C

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 200°C free-air temperature at the rate of 2.06 mW/deg.
 - 3. Derate linearly to 200°C case temperature at the rate of 6.85 mW/deg.

*Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

					2N:	2483	2N:	UNIT	
	PARAMETER	TE	ST CONDITIO	N5	MIN	MAX	MIN	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C}=10~\mu$ A,	$I_E = 0$		60		60		٧
	Collector-Emitter Breakdown Voltage	I _C = 10 mA,	$I_B = 0$,	See Note 4	60		60		V
	Emitter-Base Breakdown Voltage	$I_E=10~\mu$ A,	$I_{C}=0$		6		6		v
I _{CBO}	Collector Cutoff Current	$V_{CB} = 45 V$		7 15006		10	_	10	nA
		$V_{CB} = 45 V$		T _A = 150°C		10	<u>-</u>	10	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 V$				10	00	10	nA
		$V_{CE} = 5 V$	$I_C = I \mu A$		ļ. <u></u>	- 100	30		ļ
			$I_{\rm C} = 10 \mu\text{A}$		40	120	100	500	
	O	$V_{CE} = 5 V$,	$I_{C} = 10 \mu\text{A}$	T _A = -55°C	10		20		
h _{FE}	Static Forward Current Transfer Ratio		$I_{C} = 100 \mu A$		75		175		
	Transier Rano		$I_{\rm C}=500~\mu{\rm A}$		100		200		
		$V_{CE} = 5 V$	I _C = 1 mA		175		250		
			$I_{C} = 10 \text{ mA},$	See Note 4		500		800	
VBE	Base-Emitter Voltage	$V_{CE} = 5 V,$	$I_{\rm C} = 100 \mu \text{A}$		0.5	0.7	0.5	0.7	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 100 \mu A$	I _C = 1 mA			0.35		0.35	V
h _{io}	Small-Signal Common-Emitter Input Impedance				1.5	13	3.5	24	kΩ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 V,$			80	450	150	900	
h _{re}	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio		$I_C = 1 \text{ mA,}$			8x10-⁴		8x10 ⁻⁴	
hoe	Small-Signal Common-Emitter Output Admittance			f = 1.kHz		30		40	μ mho
In I	Small-Signal Common-Emitter		$I_{\rm C}=50~\mu{\rm A},$		2.4		3		
h _{fe}	Forward Current Transfer Ratio	$V_{CE} = 5 V$	$I_{\rm C}=500~\mu{\rm A}$	f = 30 MHz	2		2		
Cobo	Common-Base Open-Circuit Output Capacitance		I _E = 0,			6		6	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB}=0.5 V,$	I _C = 0,	f = 140 kHz		6		6	pF

*operating characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	2N2483	2N2484	UNIT
	PARAMETER	TEST CONDITIONS	MAX	MAX	DINI
NF	Average Noise Figure	$ m V_{CE}=5$ V, $ m I_{C}=10~\mu A$, $ m R_{G}=10~k \Omega$, Noise Bandwidth = 15.7 kHz, See Note 5	4	3	dB
		$V_{CE}=5$ V, $I_{C}=10~\mu$ A, $R_{G}=10~k\Omega$, $f=100$ Hz, Noise Bandwidth $=20$ Hz	15	10	dB
NF	Spot Noise Figure	$V_{CE}=5$ V, $I_{C}=10$ μ A, $R_{G}=10$ k Ω , $f=1$ kHz, Noise Bandwidth $=200$ Hz	4	3	dB
		$V_{CE}=5$ V, $I_{C}=10$ μ A, $R_{G}=10$ k Ω , $f=10$ kHz, Noise Bandwidth $=2$ kHz	3	2	dB

NOTES: 4. These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 1\%$.

^{5.} Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff at 6 dB/octave.

^{*}Indicates JEDEC registered data

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

2N2484

TYPICAL CHARACTERISTICS

2N2483, 2N2484

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE AND COLLECTOR-BASE CAPACITANCE

2N2483, 2N2484

COMMON-BASE OPEN-CIRCUIT INPUT CAPACITANCE
AND EMITTER-BASE CAPACITANCE

NOTE 6: Cob and Cob are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded. Cobo and Cibo are measured with the third terminal floating.

TYPICAL CHARACTERISTICS

NOTE 5: Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff at 6 dB/octave.

THERMAL INFORMATION

TYPE 2N3010 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR EXTREMELY HIGH-SPEED SWITCHING APPLICATIONS

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage													15 v
Collector-Emitter Voltage (See Note													
Collector-Emitter Voltage (See Note	2)												6 v
Emitter-Base Voltage													
Collector Current													
Total Device Dissipation at (or below													
Operating Collector Junction Tempe													
Storage Temperature Range									-65	°C	to	+	-200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_{C}=10\mu a$, $I_{E}=0$	15		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ ma}, I_B = 0.$ See Note 4	6		٧
BVCES	Collector-Emitter Breakdown Voltage	$I_C=10\mu a$, $V_{BE}=0$	11		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = 10 \mu a, \ I_C = 0$	4		٧
		$V_{CE} = 11 \text{ v}, \ V_{BE} = 0$		10	μα
ICES	Collector Cutoff Current	$V_{CE} = 5 \text{ v}, V_{BE} = 0$		100	na
		$V_{CE} = 5 \text{ v}, V_{BE} = 0, T_A = 85^{\circ}\text{C}$		5	μα
l _B	Base Current	$V_{CE} = 11 \text{ v}, V_{BE} = 0$		-10	μα
		$V_{CE} = 0.4 \text{ v}, I_{C} = 1 \text{ ma}, \text{ See Note 4}$	15		
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 0.4 \text{ v, } I_{C} = 10 \text{ ma, See Note 4}$	25	125	
		$V_{CE}=0.4 \mathrm{v, \ I_C}=30 \mathrm{ma}, \mathrm{See \ Note} 4$	15		
		$I_B = 0.1 \text{ ma}, I_C = 1 \text{ ma}, See Note 4$	0.68	0.85	٧
V _{BE}	Base-Emitter Voltage	$I_B = 1$ ma, $I_C = 10$ ma, See Note 4	0.75	0.95	٧
		$I_B = 3 \text{ ma}, I_C = 30 \text{ ma}, \text{ See Note 4}$		1.30	٧
		$I_B = 0.1 \mathrm{ma}$, $I_C = 1 \mathrm{ma}$, See Note 4		0.25	٧
V	Collector-Emitter Saturation Voltage	$I_B = 1 \text{ ma}, I_C = 10 \text{ ma}, \text{ See Note 4}$		0.25	٧
▼CE(sat)	Conecior-Emmer Surbranon Vollage	$I_B = 3 \mathrm{ma}$, $I_C = 30 \mathrm{ma}$, See Note 4		0.38	٧
		$I_B=1$ ma, $I_C=10$ ma, $T_A=85$ °C, See No	te 4	0.40	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=4 \mathrm{v}, I_{C}=10 \mathrm{ma}, \; \mathrm{f}=100 \mathrm{Mc}$	6.0		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 \text{ v}, I_E = 0, \qquad f = 140 \text{ kc}$		3.0	pf
CiP	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 \text{ v}, \ I_{C} = 0, \qquad f = 140 \text{ kc}$		2.0	pf

NOTES: 1. This value applies when the base-emitter diode is short-circuited.

- 2. This value applies between 10 μa and 10 ma collector current when the base-emitter diode is open-circuited.
- 3. Derate linearly to 200°C free-air temperature at the rate of 1.71 mw/C°.
- 4. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

*Indicates JEDEC registered data.

TYPE 2N3010 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
ton	Turn-on Time	$I_{\rm C}=$ 10 ma, $I_{\rm B[1]}=$ 2 ma, $V_{\rm BE[off]}=-$ 1 v, $R_{\rm L}=$ 84 Ω , See Figure 1	12	nsec
t _{off}	Turn-off Time	$I_C=10$ ma, $I_{8(1)}=1$ ma, $I_{8(2)}=-1$ ma, $I_L=84$ Ω , See Figure 1	12	nsec
t,	Storage Time	$I_C = 6 \text{ ma}, \ I_{B(1)} = 5 \text{ ma}, \ I_{B(2)} = -5 \text{ ma}, \text{ See Figure 2}$	6	nsec

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

FIGURE 2 - STORAGE TIMES

NOTES: a. The input waveforms are supplied by a pulse generator with the following characteristics: $t_{out} = 50~\Omega$, $t_r \leq 1~$ nsec, PW $\geq 100~$ nsec.

b. Output waveforms are monitored on an oscilloscope with the following characteristics: $t_{\rm r} \le$ 0.4 nsec, $I_{\rm in} =$ 50 Ω .

^{*}Indicates JEDEC registered data.

TYPE 2N3013 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR VERY-HIGH-SPEED, HIGH-CURRENT SWITCHING APPLICATIONS *mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage		-								. 40 v
Collector-Emitter Voltage (See Note 1)										
Collector-Emitter Voltage (See Note 2										
Emitter-Base Voltage	 		 							. 5 v
Collector Current, Continuous	 		 							200 ma
Collector Current, Peak (See Note 3)										
Total Device Dissipation at (or below):										
Total Device Dissipation at (or below)										
Total Device Dissipation at 100°C Cas										
Operating Collector Junction Tempera										
Storage Temperature Range			 	 			-6	5°C	to	+200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_{C} = 100 \mu a, \ I_{E} = 0$	40	٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ ma}, I_B = 0,$ See Note 6	15	٧
BVCES	Collector-Emitter Breakdown Voltage	$I_C=100~\mu$ a, $V_{BE}=0$	40	٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E=100~\mu a$, $I_C=0$	5	٧
ICES	Collector Cutoff Current	$V_{CE}=20 v, V_{BE}=0$	0.3	μα
·CES		$V_{CE} = 20 \text{ v}, V_{BE} = 0, \qquad T_A = 125 ^{\circ}\text{C}$	40	μα
I _B	Base Current	$V_{CE} = 20 \text{ v}, V_{BE} = 0$	-0.3	μα
		$V_{CE} = 0.4 \text{v}, I_{C} = 30 \text{ma}, \text{See Note 6}$	30 120	T
hee	Static Forward Current	$V_{CE} = 0.5 \text{v}, I_{C} = 100 \text{ma}, \text{ See Note 6}$	25	T
ntē.	Transfer Ratio	$V_{CE} = 1 \text{ v}, I_{C} = 300 \text{ ma}, \text{ See Note 6}$	15	
		$V_{CE}=0.4 \text{ v}, I_{C}=30 \text{ ma}, T_{A}=-55 ^{\circ}\text{C}, See Note 6$	12	
		$I_B = 3 \text{ ma}, I_C = 30 \text{ ma}, \text{See Note 6}$	0.75 0.95	٧
V _{BE}	Base-Emitter Voltage	$I_B = 10 \text{ma}, I_C = 100 \text{ma}, \text{ See Note 6}$	1.20	٧
		$I_B = 30 \mathrm{ma}, I_C = 300 \mathrm{ma}, \mathrm{See} \mathrm{Note} \mathrm{6}$	1.70	٧
		$I_B = 3 \text{ ma}, I_C = 30 \text{ ma}, \text{See Note 6}$	0.18	٧
V	Collector-Emitter	$I_B = 10 \mathrm{ma}, I_C = 100 \mathrm{ma}, \mathrm{See} \mathrm{Note} \mathrm{6}$	0.28	٧
V _{CE(sat)}	Saturation Voltage	$I_B = 30 \mathrm{ma}$, $I_C = 300 \mathrm{ma}$, See Note 6	0.50	٧
		$I_B = 3 \text{ ma}$, $I_C = 30 \text{ ma}$, $I_A = 125$ °C, See Note 6	0.25	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v, I _C = 30 ma, f = 100 Mc	3.5	
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 \text{ v}, I_E = 0. f = 140 \text{ kc}$	5.0	pf
C _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 v$, $I_C = 0$, $f = 140 kc$	8.0	pf

- NOTES: 1. This value applies when the base-emitter diode is short-circuited.
 - 2. This value applies between 10 μa and 10 ma collector current when the base-emitter diode is open-circuited.
 - 3. This value applies for PW \leq 10 μ sec.
- *Indicates JEDEC registered data.

- 4. Derate linearly to 200°C free-air temperature at the rate of 2.06 mw/C°.
- 5. Derate linearly to 200°C case temperature at the rate of 6.85 mw/C°.
- 6. These parameters must be measured using pulse techniques. PW = 300 $\mu{\rm sec}$, Duty Cycle \le 2%.

TYPE 2N3013 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
ton	Turn-on Time	$I_C = 300 \text{ ma}, I_{B(1)} = 30 \text{ ma}, I_{B(2)} = -35 \text{ ma}$	15	nsec
t _{off}	Turn-off Time	$V_{BE(off)}=-5$ v, $R_L=50~\Omega$, See Figure 1	25	nsec
ts	Storage Time	$I_{C} = I_{B(1)} = -I_{B(2)} = 10 \text{ ma}, \text{ See Figure 2}$	18	nsec

^{*}Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

NOTES: a. The input waveforms are supplied by a pulse generator with the following characteristics: $I_{out}=50~\Omega$, $I_r \leq 1~nsec$, $I_f \leq 1~nsec$, PW $\geq 300~nsec$, Duty Cycle $\leq 2\%$.

- b. Waveforms of figure 1 are monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ nsec, $R_{in} \geq 100$ k Ω .
- c. Output waveform of figure 2 is monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ nsec, $Z_{\rm in} = 50\Omega$.

^{*}Indicates JEDEC registered data.

TYPE 2N3015 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR HIGH-SPEED, HIGH-CURRENT SWITCHING APPLICATIONS

*mechani al data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage									•				60 v
Collector-Emitter Voltage (See Note 1)											•		30 v
Emitter-Base Voltage	, .												. 5 v
Total Device Dissipation at (or below) 25°C F	⁼ree-A	Air Tei	npera	ture (See	Note	2)						0.8 w
Total Device Dissipation at (or below) 25°C (Case T	Tempe	eratur	e (See	No.	te 3)							3.0 w
Operating Collector Junction Temperature .						٠. ٠							200°C
Storage Temperature Range									 -65	°C	to	+	200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS		MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_{C}=100~\mu a$	$I_E = 0$		60		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_{\rm C}=30$ ma,	$I_B=0$,	See Note 4	30		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = 100 \mu a$,	I _C = 0		5		٧
ICES	Collector Cutoff Current	$V_{CE} = 30 v$	$V_{BE} = 0$			0.2	μα
I _{CBO}	Collector Cutoff Current	$V_{CB} = 30 v$	$I_E = 0$,	T _A = 125°C		200	μa
l _B	Base Current	V _{CE} = 20 v,	$V_{BE} = 0$			-0.2	μα
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 10 v,	$I_{C} = 150 \mathrm{ma}$	See Note 4	30	120	
**FE	Static Forward Corrent Transfer Ratio	$V_{CE} = 0.7 v$	$I_{\rm C}=300$ ma,	See Note 4	10		
V _{RE}	Base-Emitter Voltage	$I_B = 15 \text{ma}$	$I_{C} = 150 \text{ma},$	See Note 4		1.2	٧
V BE	base-ciliner vollage	$I_B = 50 \text{ ma},$	$I_{\rm C}=500$ ma,	See Note 4		1.6	٧
٧	Collector-Emitter Saturation Voltage	$I_8 = 15 \text{ma},$	$I_{\rm C}=150$ ma,	See Note 4		0.4	٧
V _{CE(sat)}	consciot-cumies anotation solidas	$I_B = 50 \text{ ma},$	$I_{C} = 500 \text{ma},$	See Note 4		1.0	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v,	I _C = 50 ma,	f = 100 Mc	2.5		
Cop	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 v,	$I_E = 0$.	f = 140 kc		8.0	pf

NOTES: 1. This value applies between 1 ma and 30 ma collector current when the base-emitter diade is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 4.6 mw/C°.
- 3. Derate linearly to 200°C case temperature at the rate of 17.2 mw/C°.
- 4. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data.

TYPE 2N3015

N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
		$I_C=300$ ma, $I_{B(1)}=30$ ma, $V_{BE[off]}=0$, $R_L=80$ Ω , See Figure 1	40	nsec
t _{on}	Turn-on Time	$I_C=500$ ma, $I_{B[1]}=50$ ma, $V_{BE[off]}=0$, $R_L=48 \Omega$, See Figure 1	40	nsec
	· "·	$I_C=300$ ma, $I_{B(1)}=30$ ma, $I_{B(2)}=-35$ ma, $R_L=80$ Ω , See Figure 2	60	nsec
t _{off}	Turn-off Time	$I_C=500$ ma, $I_{B(1)}=50$ ma, $I_{B(2)}=-55$ ma, $R_L=48$ Ω , See Figure 2	60	nsec

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveforms are supplied by a pulse generator with the following characteristics: $I_{\text{out}}=50~\Omega,~t_r\leq 2~\text{nsec},~\text{PW}=200~\text{nsec}.$ b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r\leq 1~\text{nsec},~R_{\text{in}}\geq 100~\text{k}\Omega.$

^{*}Indicates JEDEC registered data.

REVISED JANUARY 1968

TYPES 2N3707, 2N3708, 2N3709, 2N3710, 2N3711 N-P-N PLANAR SILICON TRANSISTORS

SILECT† TRANSISTORS

- ENCAPSULATED IN PLASTIC
 - INSENSITIVE TO LIGHT
- HIGHLY MOISTURE RESISTANT

2N3707 (Formerly TI415)
2N3708 (Formerly TI416)
2N3709
2N3710 (Formerly TI417)
2N3711 (Formerly TI418)

For Low-Level, Low-Noise Applications

For General-Purpose, Low-Level, High-Gain Applications

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage									. 30 v
Collector-Emitter Voltage (See Note 1)									. 30 v
Emitter-Base Voltage									. 6 v
Collector Current									
Continuous Device Dissipation at (or below									
Storage Temperature Range									
Lead Temperature 1/6 Inch from Case for 10									

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mw/C°.

*Indicates JEDEC registered data (typical data excluded).

†Trademark of Texas Instruments Incorporated

‡Patent Pending

TYPES 2N3707, 2N3708, 2N3709, 2N3710, 2N3711 N-P-N PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

				2N3	3707	2N3	708	2N3	709	2N3	710	2N3	711	UNIT
	PARAMETER	TEST CO	NDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 1 ma,	$I_B = 0$	30		30		30		30		30		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 v$,	I _E = 0		100		100		100		100		100	na
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 6 v$,	$I_C = 0$		100		100		100		100		100	na
	Static Forward Current	$V_{CE} = 5 v$,	$I_C = 100 \mu a$	100	400									
h _{FE}	Transfer Ratio	$V_{CE} = 5 v$	$I_{C} = 1 \text{ ma}$			45	660	45	165	90	330	180	660	
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 v$,	I _C = 1 ma	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	٧
V _{CE(sat)}	Collector-Emitter . Saturation Voltage	$I_B = 0.5 \text{ma},$	•		1		1		1		1		1	٧
	Small-Signal Common-Emitter	V _{CE} = 5 v, f = 1 kc	$I_{C} = 100 \mu a$	100	550									
h _{fo}	Forward Current Transfer Ratio	$V_{CE} = 5 v$, $f = 1 kc$	$I_{C}=1$ ma,			45	800	45	250	90	450	180	800	

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N:	3707	UNIT
	PAKAMETEK	TEST CONDITIONS	TYP	MAX	J. C.
NF	Average Noise Figure	$V_{CE}=5$ v, $I_{C}=100~\mu a$, $R_{G}=5$ k Ω , Noise Bandwidth $=$ 15.7 kc, See Note 3	1.9	5	đb

NOTE 3: Average Noise Figure is measured in an amplifier with low-frequency response down 3 db at 10 cps.

PARAMETER DISTRIBUTION INFORMATION

The 2N3708 is furnished in seven color-coded h_{FE} brackets, each having less than 2-to-1 spread. In lots of 1000 (or more) pieces they are shipped in the percentages shown below.

	h _{FE} BRACKET	
COLOR CODE	$V_{CE} = 5 \text{ v, } I_{C} = 1 \text{ ma}$	CONTENT
brown	45-85	0-5%
red	65-110	5-15%
orange	90-165	25-35%
yellow	135-220	15-25%
green	180-330	15-25%
blue	270-440	0-10%
violet	360-660	0-5%

Table 1 - 2N3708 hFF DISTRIBUTION

^{*}Indicates JEDEC registered data (typical data excluded).

FAST, HIGH-VOLTAGE, HIGH-CURRENT CORE DRIVERS

- hee Guaranteed from 10 mA to 1.5 A
- Made with TRI-REL[†] Redundant Stabilization (Field-Relief Electrode[‡],
 Special Oxide Passivation, Annular Guard Ring[§])
- Guaranteed Switching Times at One Ampere (2N3724A, 2N3725A)

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3724	2N3724A	2N3725	2N3725A	UNIT
Collector-Base Voltage		50		30	٧
Collector-Emitter Voltage (See Note 1)		30		50	V
Emitter-Base Voltage		6		6	٧
Continuous Collector Current	0.5	1.2	0.5	1.2	A
Peak Collector Current (See Note 2)		1.75		1.75	A
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)	0.8	1	0.8	1	W
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 4)	3.5	5	3.5	5	W
Storage Temperature Range	65	to 200	-65 to 200		°C
Lead Temperature 1/4 Inch from Case for 60 Seconds	:	300	3	00	°C

- NOTES: 1. These values apply between 0.01 mA and 500 mA collector current when the base-emitter diade is open-circuited.
 - 2. This value applies for square-wave pulses. $t_{
 m p}=$ 300 μ s, duty cycle \leq 2%.
 - 3. For the 2N3724 and 2N3725 derate linearly to 200°C free-air temperature at the rate of 4.6 mW/deg.

 For the 2N3724A and 2N3725A derate linearly to 200°C free-air temperature at the rate of 5.71 mW/deg.
 - For the 2N3724 and 2N3725 derate linearly to 200°C case temperature at the rate of 20 mW/deg.
 For the 2N3724A and 2N3725A derate linearly to 200°C case temperature at the rate of 28.6 mW/deg.

†Trademark of Texas Instruments

‡Patent pending

SPatented by Texas Instruments

*Indicates JEDEÇ registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	15				724A		3725			דומט
	Collector-Base			MIN N	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V _{(BR)CBO}	Breakdown Voltage	$I_C = 10 \mu A$, $I_E = 0$		50		50		80		80		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 0,$	See Note 5	30		30		50		50		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_C=10~\mu\text{A},~V_{BE}=0$		50		50		80		80	-	¥
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E}=10~\mu\text{A},~I_{C}=0$		6		6		6		6		٧
		$V_{CB} = 40 \text{ V}, I_E = 0$			1.7		0.5					μΑ
			$T_A = 100$ °C		120		50					μΑ
ICBO	Collector Cutoff Current	$V_{CB} = 60 \text{ V}, I_E = 0$							1.7		0.5	μΑ
		$V_{CB} = 60 \text{ V}, I_E = 0,$	$T_A = 100$ °C						120		50	μΑ
,	Collector Cutoff Current	$V_{CE} = 50 \text{ V}, V_{BE} = 0$			10		10					μΑ
I _{CES}	Collector Colori Correin	$V_{CE}=80 \text{ V}, V_{BE}=0$							10		10	μΑ
1.	Base Current	$V_{CE} = 50 \text{ V}, V_{BE} = 0$		_	-10		-10					μ A
l _B	base correin	$V_{CE}=80 \text{ V}, V_{BE}=0$		1					-10		-10	μΑ
		$V_{CE} = 1 \text{ V}, I_{C} = 10 \text{ mA}$		30		30		30		30		
		$V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}$		60 1	150	60	150	60	150	60	150	
		$V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}, \\ T_{A} = -55^{\circ}\text{C}$,	30		30		30		30		
	Static Forward Current Transfer Ratio	$V_{CE} = 1 \text{ V}, I_{C} = 300 \text{ mA}$	See	40		40		40		40		
h _{FE}		$V_{CE} = 1 \text{ V}, I_{C} = 500 \text{ mA}$	Note	35		35		35		35		
	nunsier kund	$V_{CE} = 1 \text{ V}, I_{C} = 500 \text{ mA}, \\ T_{A} = -55 ^{\circ} \text{C}$, 5	20		20		20		20		
		V _{CE} = 2 V, I _C = 800 mA		25		30		20		25		
		$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ A}$		30		30		25		25		
		$V_{CE} = 5 \text{ V}, I_{C} = 1.5 \text{ A}$		1		25				20		
		$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		0	.76		0.76		0.76		0.76	٧
		$I_B = 10 \text{ mA}, I_C = 100 \text{ mA}$	1.	0	.86		0.86		0.86		0.86	٧
	D F 10 W 10	$I_B=30$ mA, $I_C=300$ mA	See		1.1		1.1		1.1		1.1	٧
V _{BE}	Base-Emitter Voltage	$I_B = 50 \text{ mA}, I_C = 500 \text{ mA}$	Note	0.9	1.2	0.9	1.2	0.9	1.2	0.9	1.2	٧
		$I_B=80$ mA, $I_C=800$ mA	5		1.5		1.3		1.5		1.3	٧
		$I_{B} = 100 \text{ mA}, I_{C} = 1 \text{ A}$	1		1.7	0.9	1.4		1.7	0.9	1.4	٧
		$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		0	.25		0.25		0.25		0.25	٧
		$I_B = 10 \text{ mA}, I_C = 100 \text{ mA}$	See		0.2		0.2		0.26		0.26	٧
	Collector-Emitter	$I_B = 30 \text{ mA}, I_C = 300 \text{ mA}$	Note	0	.32		0.32		0.4		0.4	٧
V _{CE(sat)}	Saturation Voltage	$I_B = 50$ mA, $I_C = 500$ mA	5	0	.42		0.42		0.52		0.52	٧
		$I_B=80$ mA, $I_C=800$ mA] '		.65		0.65		0.8		0.8	٧
		$I_{B} = 100 \text{ mA}, I_{C} = 1 \text{ A}$		0	.75		0.75		0.95	<u> </u>	0.9	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA},$	f = 100 MHz	3		3		3		3		
C _{obo}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$	f = 1 MHz		12		12		10		10	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$	f = 1 MHz		55		55		55		55	рF

NOTE 5: These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 1\%$.

^{*}Indicates JEDEC registered data

*switching characteristics at 25°C free-air temperature

PARAMETER				2N3724	2N3724A	2N3725	2N3725A	UNIT
		TEST CO	MAX	MAX	MAX	MAX	UNII	
t _d	Delay Time	$I_C = 500 \text{ mA},$		10	10	10	10	ns
t _r	Rise Time	$I_{B(1)} = 50 \text{ mA},$	$V_{BE(off)} = -3.8 \text{ V},$	30	30	30	30	ns
ton	Turn-On Time	$R_L = 58 \Omega$,	See Figure 1	35	35	35	35	ns
t _s	Storage Time	$I_C = 500 \text{ mA},$		50	50	50	50	ns
tr	Fall Time	$I_{B(1)} = 50 \text{ mA},$	$I_{B(2)} = -50 \text{ mA},$	25	25	30	30	ns
toff	Turn-Off Time	$R_L=58~\Omega,$	See Figure 1	60	60	60	60	ns
ton	Turn-On Time	$I_{C}=1~{\rm A}, \ I_{B(1)}=100~{\rm mA}, \ R_{L}=30~\Omega,$			30		30	ns
t _{off}	Turn-Off Time	$I_{C} = 1 \text{ A},$ $I_{B(1)} = 100 \text{ mA},$ $R_{L} = 30 \Omega,$	$I_{B(2)} = -100 \text{ mA},$ See Figure 3		50		50	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - 500-mA SWITCHING TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $t_{out}=50~\Omega,~t_{f}\leq1~\text{ns},~t_{f}\leq1~\text{ns},~t_{p}\approx1~\mu\text{s},~\text{duty cycle}\leq2\%$. b. The output waveforms are manifored an an oscilloscope with the following characteristics: $t_{r}\leq1~\text{ns},~t_{f}\geq100~\text{k}\Omega,~t_{fi}\leq7~\text{pF}.$

^{*}Indicates JEDEC registered data

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - 1-AMPERE TURN-ON TIME (2N3724A AND 2N3725A)

FIGURE 3 - 1-AMPERE TURN-OFF TIME (2N3724A AND 2N3725A)

NOTES: a. The input waveforms have the following characteristics:

For measuring turn-on time: $t_r \le 2$ ns, $t_p = 200$ ns, duty cycle $\le 2\%$. For measuring turn-off time: $t_f \le 3$ ns, $t_p = 200$ ns to 10 μ s, duty cycle = 2%.

b. The output waveforms are monitored on an oscilloscope with the following characteristics: $I_r \leq 1$ ns, $R_{in} \geq 100$ k Ω , $C_{in} \leq 7$ pF.

*Indicates JEDEC registered data

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE

TYPICAL CHARACTERISTICS

2N3724A 2N3725A

TYPICAL CHARACTERISTICS

THERMAL INFORMATION

TYPES 2N3826, 2N3827, 2N4994, AND 2N4995 N-P-N PLANAR SILICON TRANSISTORS

HIGH-FREQUENCY SILECT† TRANSISTORS

For Applications as

- AM-FM IF Amplifiers
- AM RF Amplifiers and Oscillators
- FM Oscillators and Mixers

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process; developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	Collector-Base Voltage																					60 V
	Collector-Emitter Voltage (See	Note	1)																			45 V
	Emitter-Base Voltage																					4 V
	Continuous Collector Current																					
•	Continuous Device Dissipation of	at (or	belo	ow)	25	°C I	Free-	Air	Те	mp	era	ture	: (S	ee	Νo	te :	2)				3	60 mW
	Storage Temperature Range																	-	55°	C	to	150°C
	Lead Temperature 1/4 Inch from																					

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

†Trademark of Texas Instruments

2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

‡Patent Pending

*Indicates JEDEC registered data (typical data excluded)

TYPES 2N3826, 2N3827, 2N4994, AND 2N4995 N-P-N PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	2N38	326, 2	N4994			N4995	UNIT	
	PARAMEIER	TEST CONDITION	MIN	MIN TYP MAX MIN		MIN	TYP	MAX	UNII	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$		60			60			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0,$	See Note 3	45		_	45			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$		4			4			V
		$V_{CB} = 30 \text{ V}, I_E = 0$				100			100	nA
ICBO	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, I_E = 0,$	$T_A = 85$ °C			5			5	μΑ
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA},$	See Note 3	40		160	100		400	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA},$	f = 455 kHz		42			45		dB
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA},$	f = 100 MHz	2	3	8	2	3	8	
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$	f=1 MHz		2.5	3.5		2.5	3.5	pF
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ V}, I_E = -10 \text{ mA}$, f=79.8 MHz		45	100		45	100	ps

NOTE 3: These parameters must be measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	TYP	UNIT
MAG Maximum Available Gain	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 10.7 \text{ MHz}, See Note 4$	34	dB

NOTE 4: Maximum Available Gain, MAG, at frequency f in the higher frequency portion of the spectrum, is calculated from the formula MAG $\approx 4~\alpha_o f_{\rm T} \times 10^4 \div f^2 r_b{}' c_e$ where f and $f_{\rm T}$ are in megahertz, $r_b{}' c_e$ is in picoseconds, and α_o is the low-frequency alpha, which for most practical design can be taken as unity. To obtain $f_{\rm T}$, the $|h_{\rm fe}|$ response with frequency is extrapolated at the rate of -6 dB/octave from f=100 MHz to the frequency at which $|h_{\rm fe}|=1$.

THERMAL CHARACTERISTICS

^{*}Indicates JEDEC registered data (typical data excluded)

DESIGNED FOR USE IN LOW-LEVEL, LOW-NOISE AMPLIFIERS

- Guaranteed Low-Noise Characteristics at 10 c/s, 100 c/s, 1 kc/s, and 10 kc/s
- Very High Guaranteed h_{FE} at $I_C = 10 \mu A : 400 Minimum$
- High Rated V_{EBO}: 10 V

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	60 V
Collector-Emitter Voltage (See Note 1)	60 V
Emitter-Base Voltage	10 V
Continuous Collector Current	50 mA
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	0.3 W
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)	1.2 W
Storage Temperature Range	200°C
Lead Temperature 1/6 Inch from Case for 10 Seconds	

NOTES: 1. This value applies between 0 and 10 mA when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 2 mW/deg.
- 3. Derate linearly to 175°C case temperature at the rate of 8 mW/deg.

^{*}Indicates JEDEC registered data.

TYPE 2N4104 N-P-N PLANAR SILICON TRANSISTOR

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \ \mu\text{A}, \ \ I_{E} = 0$	60		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0,$ See Note 4	60		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, I_C = 0$	10		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 45 \text{ V}, I_E = 0$		10	nA
CBO		$V_{CB} = 45 \text{ V}, I_{E} = 0, T_{A} = 150 ^{\circ}\text{C}$		10	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 V$, $I_C = 0$		10	nA
		$V_{CE} = 5 V$, $I_C = 1 \mu A$	150		
	Static Forward Current	$V_{CE} = 5 V$, $I_C = 10 \mu A$	400	800	
hÆ	Transfer Ratio	$V_{CE} = 5 V$, $I_{C} = 100 \mu A$	450		İ
		$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ mA}$	500		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 V$, $I_C = 100 \mu A$		0.7	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 0.1 \mathrm{mA}, \ I_C = 1 \mathrm{mA}$		0.3	V
h _{ie}	Small-Signal Common-Emitter Input Impedance	W — FW	12	42	kΩ
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 V,	500	1400	
h _{re}	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio	$I_{\rm C}=1{\rm mA},$		8 x 10 ⁻⁴	
h _{oe}	Small-Signal Common-Emitter Output Admittance	f = 1 kc/s	8	- 60	μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 0.5 \text{ mA}, \ f = 30 \text{ Mc/s}$	3	18	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 V$, $I_E = 0$, $f = 1 Mc/s$		4.5	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 V, I_C = 0, f = 1 Mc/s$		6	pF

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
		$V_{CE} = 5 \text{ V}, I_{C} = 30 \ \mu\text{A}, R_{G} = 10 \ \text{k}\Omega, \\ f = 10 \ \text{c/s}$		15	dB
NF	Coral Marian Filmona	$V_{CE} = 5 \text{ V}, I_{C} = 30 \ \mu\text{A}, R_{G} = 10 \ \text{k}\Omega,$ $f = 100 \text{ c/s}$		4	dB
NF	Spot Noise Figure	$V_{CE} = 5 \text{ V}, I_{C} = 5 \mu \text{A}, R_{G} = 50 \text{ k}\Omega,$ $f = 1 \text{ kc/s}$		1	dB
		$V_{CE}=5$ V, $I_{C}=5$ μA , $R_{G}=50$ k Ω , $f=10$ kc/s		1	dB

NOTE 4: This parameter must be measured using pulse techniques: $t_{\rm p}=$ 300 μ s, duty cycle \leq 2%.

^{*}Indicates JEDEC registered data.

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

HIGH-FREQUENCY TRANSISTORS FOR TUNER AND IF-AMPLIFIER STAGES IN FM AND AM/FM STEREO-MULTIPLEX RECEIVERS

*mechanical data

TTO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																					30 V
Collector-Emitter Voltage (See																					
Emitter-Base Voltage																					4 V
Continuous Collector Current .																					
Continuous Device Dissipation at	(or	bel	ow)	2:	5°C I	ree	-Air	Te	mp	ero	iture	e (See	No	ote	2)				20	0 mW
Storage Temperature Range																	-	55°	C t	to 2	200°C
Lead Temperature 1/4 Inch from (Case	for	- 10	Se	conc	k														•	300°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONE	2	N425	2	2	N425	3	UNIT
	FARMINETER	IESI CONDITI	OMP	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \mu A, I_{E} = 0$		30			30			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 2 \text{ mA}, I_{B} = 0,$	See Note 3	18			18			٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$		4			4			٧
1	Collector Cutoff Current	$V_{CB} = 15 V, I_{E} = 0$				50			50	nA
ICBO	Conector Colon Corrent	$V_{CB} = 15 \text{ V}, I_{E} = 0,$	T _A = 85°C			5			5	μΑ
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 2 \text{ mA}$		50			30		150	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=10 \text{ V}, \ I_{C}=2 \text{ mA},$	f = 100 MHz	6		14	6		14	
y _{fo}	Small-Signal Common-Emitter Forward Transfer Admittance	$V_{CE}=10~V,~I_{C}=2~mA,$	f = 10 MHz					70		mmho
Ccb	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$	f = 1 MHz, See Note 4	0.1		0.45	0.1		0.45	pF
r _{oep}	Parallel-Equivalent Common-Emitter Short-Circuit Output Resistance	$V_{CE}=10 \text{ V}, \ I_{C}=2 \text{ mA},$	f = 10 MHz				50			kΩ
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ V}, I_E = -2 \text{ mA},$	f = 79.8 MHz		8	12		8	12	ps

NOTES: 1. This value applies when base-emitter diode is open-circuited.

*Indicates JEDEC registered data (typical data excluded).

- 2. Derate linearly to 175°C free-air temperature at the rate of 1.33 mW/deg.
- 3. These parameters must be measured using pulse techniques. $t_{
 m p}=300~\mu {
 m s}$, duty cycle $\leq 2\%$.
- 4. Collector-Base Capacitance is measured using three-terminal measurement techniques with the case and emitter guarded.

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

operating characteristics at 25°C free-air temperature

1	PARAMETER	TEST CONDITIONS	2N4252 TYP	UNIT
	NF Spot Noise Figure	$V_{CE}=10~V,~I_{C}=2~mA,~R_{G}=100~\Omega,~f=100~MHz$	2.5	dB

TYPICAL CHARACTERISTICS

2N4253

STATIC FORWARD CURRENT TRANSFER RATIO

2N4252, 2N4253 COLLECTOR CUTOFF CURRENT VS FREE-AIR TEMPERATURE VCB = 15 V LE = 0 TA — Free-Air Temperature — °C FIGURE 3

NOTE 3: These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu {
m s}$, duty cycle $\leq 2\%$.

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT Ta = 25°C

NOTE 4: Collector-Base Capacitance is measured using three-terminal measurement techniques with the case and emitter guarded.

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT 455 kHz, TA = 25°C

2N4253

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT INPUT RESISTANCE

VS

COLUMN STATE OF SUPERIOR

PARALLEL-EQUIVALENT'SMALL-SIGNAL COMMON-EMITTER SHORT-CIRCUIT OUTPUT RESISTANCE COLLECTOR CURRENT 400 ş V_{CE} = 10 V = 455 kHz - Parallel-Equivalent Output Resistance 200 100 70 40 20 90 10 10 I_C - Collector Current - mA FIGURE 10

2N4253

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT 10 MHz, TA = 25°C

FIGURE 14

FIGURE 15

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT 100 MHz, TA = 25°C

2N4252

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER SHORT-CIRCUIT INPUT RESISTANCE

2N4252

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT OUTPUT RESISTANCE

COMMON-EMITTER EQUIVALENT CIRCUIT USING SHORT-CIRCUIT "y" PARAMETERS

$$\begin{aligned} & |_{b} = |\gamma_{ie}| \vee_{be} + |\gamma_{re}| \vee_{ce} \\ & |_{c} = |\gamma_{fe}| \vee_{be} + |\gamma_{ce}| \vee_{ce} \\ & |_{v_{e}}| = \frac{I_{b}}{V_{be}}| \vee_{ce} = 0 \end{aligned}$$

$$\begin{vmatrix} \gamma_{ie}| = \frac{I_{b}}{V_{be}}| \vee_{ce} = 0 = \frac{1}{r_{iep}} + j\omega C_{iep} \qquad \begin{vmatrix} \gamma_{fe}| = \frac{I_{c}}{V_{be}}| \vee_{ce} = 0 \\ & |\gamma_{fe}| = \frac{I_{c}}{V_{ce}}| \vee_{be} = 0 \end{vmatrix}$$

$$\begin{vmatrix} \gamma_{fe}| = \frac{I_{c}}{V_{ce}}| \vee_{be} = 0 \qquad |\gamma_{fe}| = \frac{I_{c}}{V_{ce}}| \vee_{be} = 0 = \frac{1}{r_{oep}} + j\omega C_{oep}$$
FIGURE 20

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

z
0
Ė
⋖
₹
类
2
Z
_
=
6
Z
0
≗
₹
ဂ္ဂ
•
느
≈
2
5
_

	TRANSFORMER	RE	ESISTORS	CAPACITORS	TORS	
Ë	TRW #21160-R1 (or equivalent)		R. 330 O	C; 10 pf		1.2 pF
•			R. 10 KΩ	- -		$0.001~\mu$ F
			R.s. 2.7 kΩ	C3: 3.3 pF		6.8 pF
	SIIO	R. 9.1 kΩ	R ₁₁ : 820 Ω	C4: 0.001 µF		4.7 pF
<u>:</u>	47 #18 his 1/." ID 1/." length.		R ₁₂ : 470 Ω	ւց. 10 թ		+
÷	Turns Ratio 2 7:1		R ₁₃ : 9.1 kΩ	-⊹ ث		뇹
	TOTAL MAIN TOTAL		R.4: 330 \O	C ₇ : 0.001 µF		0.001 µF
L ₂ :				Ca: 12 pF		0.01 WF
	Turns Ratio 2.7:1	All resistors 1/2	Il resistors $1/2$ W, ten percent tolerance	C ₉ : 240 pF Dura Mica		C ₁₈ : 0.01 µF
يّ	. 1 μH			† C, C, C, C, C, 1	≅	. 693,
ڐ	L ₄ : 3T #18 bus, ¾" ID, ¾" length			Model 57-3A, or equivalent	or equiva	lent

TYPES 2N4252 AND 2N4253 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

	TY	PICAL APPLICA	TION DAT	TΑ					
	e 300 kHz 26 dB 28 dB > 30 dB 175 mV 570 mV 700 kHz	ignal genera- id an 82 kΩ 10.6 kHz 18.6 kHz	350 mV utput 0.3 mV 42 dB						
TYPICAL FM PERFORMANCE	n base of transiston (measured on bas ir Stage imiting Level sry (Full Limiting) n of Ratio Detector	TYPICAL AM PERFORMANCE Data taken using Measurements Corporation signal genera- ror model 65-8 with a 0.05 μ s capacitor and an 82 kC) resistor in series with generator output. If frequency = 455 kHz 1. Overall 6-dB Bandwidth 10.6 kHz 2. Overall 20-dB Bandwidth 18.6 kHz	3. Maximum Audio Output (30% Modulation) 4. AM Sensitivity at Pin 3 of T ₅ for 20 mV Output (30% Modulation) 5. AGC Figure-of-Merit		•		Γις: 0.0015 μF Γιγ: 0.05 μF Γικ: 0.05 μF		
		TYPICAL AM Data taken using Measurem for model 6-5 B with a 0.0. resistor in series with gener lif frequency = 455 kHz 1. Overall 6-dB Bandwidth 2. Overall 20-dB Bandwidth	3. Maximum Audio Ou 4. AM Sensitivity at Pi (30% Madulation) 5. AGC Figure-of-Merit		CAPACITORS	֖֖֖֖֖֖֖֖֖֖֧֧֖֓֟֟֝֟֟ ֖֖֓	ٿ ٿ ٿ	ڭ ئىڭ ئ	2 µ ^F , 10 V, electrolytic C ₂₃ : 330 pF C ₂₃ : 0.01 µF G ₂₄ :
	R ₁₀ FROUTEUT	C ₂₄ C ₃₄ C ₃₄ C ₅₃ C ₅₄		NOI				0.05 μ F 330 pF 330 pF	
		——————————————————————————————————————		VFORMAT		ٿڻ ٽ	ڭ ق ق	ق ٿ ٿ	ڐٛڐ
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ONENT II	•	. 68 D . 7.5 kD . 330 D		30 KD 330 CD 33 KD	: 4.7 kΩ : 82 kΩ : 27 kΩ : 3.3 kΩ intolerance
				CIRCUIT COMPONENT INFORMATION	RESISTORS	R R 5.		R ₂₀ : R ₂₁ : R ₂₂ :	R ₂₃ : R ₂₄ : R ₂₅ : R ₂₆ : W, ten percen
				CIRCU					R ₁₀ : 1.5 kΩ R ₂₃ : 4.7 kΩ R ₁₁ : 1 kΩ R ₂₄ : 82 kΩ R ₁₂ : 8.2 kΩ R ₂₅ : 27 kΩ R ₁₃ : 8.2 kΩ R ₂₆ : 3.3 kΩ All resistors ½ W, ten percent tolerance
						7 2 2 1: 1: 2 2 1:		R 8 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					<u>د</u> ا	ler of FM Tune (or equivalent) (or equivalent)	(or equivalent) (or equivalent)	(or equivalent)	
		AM INPUT	<u></u>		TRANSFORMERS	Output Transform TRW #21161-R1 TRW #21162-R1 TPW #20061 P1	TRW #21205-R1 TRW #21204-R1	304-RT DIODES	D ₁ : 1N4531 D ₂ : 1N295
	Natural Natura Natu				,		، قــر غ ـر خ	<u>1</u> ;	.; o

TYPICAL AM/FM IF AMPLIFIER

SILECT† HIGH-FREQUENCY TRANSISTORS FOR TUNER AND IF-AMPLIFIER STAGES IN FM AND AM/FM STEREO-MULTIPLEX RECEIVERS

Rugged, One-Piece Construction with In-Line Lead Configuration (2N4254, 2N4255)
 or Standard TO-18 100-mil Pin-Circle Configuration (2N4996, 2N4997)

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																				30 V
Collector-Emitter Voltage (See Note	1)																			18 V
Emitter-Base Voltage																				
Continuous Collector Current																				50 mA
Continuous Device Dissipation at (or	be	ow	2 (5°C	: Fre	ee-A	۱ir	Ten	npe	ratu	re	(See	N	lote	2)				2	50 mW
Storage Temperature Range									٠.							_	65°	ď	to	150°C
Lead Temperature 1/6 Inch from Case	for	10	S	ecor	nds .															260°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rate of 2 mW/deg.

*Indicates JEDEC registered data

†Trademark of Texas Instruments

‡Patent Pending

568

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIE		2N42	54, 2N4996	2N4	255, 21	14997	
	TOROMETER	TEST CONDITION)N3	MIN	TYP MAX	MIN	TYP /	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A$, $I_E = 0$		30		30			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 2 \text{ mA}, I_B = 0,$	See Note 3	18		18			٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \mu A, I_{C} = 0$		4		4	-		V
1	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, I_E = 0$			100			100	nA
ICBO	Consciol Colon Colleni	$V_{CB} = 15 \text{ V}, I_{E} = 0,$	T _A = 85°C		10			10	μΑ
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 2 \text{ mA}$		50		30		150	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 2 \text{ mA},$	f = 100 MHz	6	14	6		14	
y _{fe}	Small-Signal Common-Emitter Forward Transfer Admittance	$V_{CE} = 10 \text{ V}, I_{C} = 2 \text{ mA},$	f = 10 MHz				70	-	mmho
(_{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0,$	f = 1 MHz, See Note 4	0.1	0.65	0.1		0.65	рF
r _{oep}	Parallel-Equivalent Common-Emitter Short-Circuit Output Resistance	$V_{CE} = 10 \text{ V}, \ I_{C} = 2 \text{ mA},$	f = 10 MHz			50			kΩ
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ V}, I_E = -2 \text{ mA},$	f = 79.8 MHz		14 20		14	20	ps

operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N4254, 2N4996 TYP	UNIT
i	NF Spot Noise Figure	$V_{CE}=10~V,~I_{C}=2~mA,~R_{G}=100~\Omega,~f=100~MHz$	2.5	dB

^{*}Indicates JEDEC registered data (typical data excluded)

TYPICAL CHARACTERISTICS

2N4255, 2N4997

STATIC FORWARD CURRENT TRANSFER RATIO

NOTES: 3. This parameter must be measured using pulse techniques. $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

4. Collector-Base Capacitance is measured using three-terminal measurement techniques with the emitter guarded.

TYPICAL CHARACTERISTICS AT TA = 25°C

NOTES: 3. These parameters must be measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

^{4.} Collector-Base Capacitance is measured using three-terminal measurement techniques with the case and emitter guarded.

TYPICAL CHARACTERISTICS AT 455 kHz, TA = 25°C

2N4255, 2N4997

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT INPUT RESISTANCE
vs

COLLECTOR CURRENT

TYPICAL CHARACTERISTICS AT 10 MHz, TA = 25°C

TYPICAL CHARACTERISTICS AT 100 MHz, TA = 25°C

2N4254, 2N4996

2N4254, 2N4996

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT INPUT RESISTANCE

2N4254, 2N4996

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT OUTPUT RESISTANCE

FIGURE 17

COMMON-EMITTER EQUIVALENT CIRCUIT USING SHORT-CIRCUIT "y" PARAMETERS

$$\begin{vmatrix} I_{b} = |\gamma_{ie}| \lor_{be} + |\gamma_{re}| \lor_{ce} \\ I_{c} = |\gamma_{fe}| \lor_{be} + |\gamma_{oe}| \lor_{ce} \end{vmatrix}$$

$$\begin{vmatrix} |\gamma_{ie}| = \frac{I_{b}}{V_{be}}| \lor_{ce} = 0 = \frac{1}{r_{iep}} + i\omega C_{iep} \qquad |\gamma_{fe}| = \frac{I_{c}}{V_{be}}| \lor_{ce} = 0$$

$$|\gamma_{re}| = \frac{I_{b}}{V_{ce}}| \lor_{be} = 0 \qquad |\gamma_{oe}| = \frac{I_{c}}{V_{ce}}| \lor_{be} = 0 = \frac{1}{r_{oep}} + i\omega C_{oep}$$
FIGURE 20

TYPICAL APPLICATION DATA

7
_
₽
F
⋖
_
2
ď.
o -
2
₹
=
NENT
Z
▥
Z
ĭ
=
~
\circ
×
₹ 00
_
=
=
∹
Ų
CIRCUIT
$\overline{}$
.,

	TRANSFORMER			RESISTORS		CAPACITI	SS	
<u>:</u>	T ₁ : TRW #21157-R1 (or equivalent)		ı kΩ	R _s : 330 Ω	ت	10 pF	ٿ	1.2 p
			4.7 kΩ	R. 10 kΩ	ؾ	·	<u>:</u> ت	0.0
			ı kΩ	R ₁₀ : 2.7 kΩ	ؾ	3.3 pF	<u>ئ</u> ت	6.8 pl
	COILS		9.1 kΩ	R ₁₁ : 820 Ω	ؾ	0.001 μ F	<u>:</u> ت	4.7 pl
ت	47 #18 bus, 1/," ID, 1/," length.		2.7 kΩ	R ₁₂ : 470 Ω	ؾ	10 pF	ڙ ٿ	+-
;	Turns Ratio 2.7:1	<u>ج</u>	1 KΩ	R ₁₃ : 9.1 kΩ	ؾ		ر ر	C ₁₅ : 10 pF
			330 N	R ₁₄ : 330 Ω	ؾ	$0.001~\mu$ F	<u>ۋ:</u> ت	<u>6</u>
	41 # 18 bus, 1/4 1D, 1/2 length,		/ racistant 1/	W to a second se	ؾ	12 pF	<u>ئ</u>	<u>.</u>
	Turns Ratio 2.7:1	₹	II resistors 7/2	il resistors ½ w, ten percent toterance	ق	240 pF Dura Mica	<u>ٿ</u> ٿ	<u>e</u>
يّ	L ₃ : 1 μ H					+ G, C, C, 18)0/# W	
Ϊ.	L4: 3T #18 bus, ¾" ID, ¾" length					Model 57-3A, or equivalent	equival	ent.

_ ###

TYPICAL APPLICATION DATA

	TYPICAL FM PERFURMANCE
	Data taken with input on base of transistor Q,
	IF frequency == 10.7 MHz
١٧٠	1. Overall 6-dB Bandwidth (measured on base
	of Q ₃) 300 kHz
	2. Average Power Gain per Stage
	3. FM 3-dB Limiting Level 350 μ V input
	4. AM Rejection at 3-dB Limiting Level > 30 dB
	5. Maximum Audio Recovery (Full Limiting)
	±22.5 kHz Deviation 175 mV
	6. Peak-to-Peak Separation of Ratio Detector 700 kHz
	TYPICAL AM PERFORMANCE
	Data taken using Measurements Corporation signal generator model 65-B with a 0.05- μ C capacitor and an 82-k Ω
	resistor in series with generator output.
	IF frequency = 455 kHz
	1. Overall 6-dB Bandwidth 10.6 kHz
	2. Overall 20-dB Bandwidth 18.6 kHz
	3. Maximum Audio Output (30% Modulation) 350 mV
	4. AM Sensitivity at Pin 3 of T _s for 20-mV Output
	(30% Modulation) 0.3 mV
	5. AGC Figure-of-Merit 42 dB

ORM.
COMPONENT
CIRCUIT

		כוצכסו	CIRCUIT COMPONENT INFORMATION	N C C W A I C	z	
	TRANSFORMERS		RESISTORS		CAPA	APACITORS
۳	: Output Transformer of FM Tuner			ن	102E	ن
7	TRW #21158-R1 (or equivalent)			<u>ن</u> ز		<u>ن</u> ژ
يّر	TRW #21159-R1 (or equivalent)			ن څ	101 1/5	ن ز
. ‡	TRW #20061-R1 (or equivalent)			ت ث	.001 ./F	<u>:</u> :
ᇎ	TRW #21205-R1 (or equivalent)			÷ Č	100:	<u>ن</u> <u>ه</u>
فئر	TRW #21204-R1 (or equivalent)			ن ژ	100 to	ن ﴿
۲,	TRW #18304-R1 (or equivalent)			ن ښ		ن څ
				ن خ	30 pF	<u>ئ</u> ز
	DIODES	-		ق ث	30 pF	ت څ
نے	1N4531	R ₁₀ : 1.5 kΩ	R ₂₃ : 4.7 kΩ	<u>ت</u> :	2 \(\mu \). electrolytic	ئ ا
<u>:</u>	1N205			ٿ:	30 pF	ئ ا
Ś				ن ا	01 "E	ن ا
				.715	i.	-74.
		All resistors 1/2 V	All resistors 1/2 W, ten percent tolerance			

5 μ F, 10 V, electrolytic

Culture Runner R		2 24 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	C ₁₃ R ₁₄ C ₁₃ OUPPUT
1 1 1 1 1 1 1 1 1 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	The live of the li	

TYPICAL AM/FM IF AMPLIFIER

TYPES 2N4418 AND 2N4419 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

REVISED MAY 1968

SILECT[†] TRANSISTORS FOR HIGH-SPEED SWITCHING APPLICATIONS

- 2N4418 Electrically Similar to the 2N2369
- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N4418	2N4419
Collector-Base Voltage	40 V	30 V
Collector-Emitter Voltage (See Note 1)	40 V	30 V
Collector-Emitter Voltage (See Note 2)	15 V	12 V
Emitter-Base Voltage	4.5 V	4.5 V
Continuous Collector Current	← 200	$mA \rightarrow$
Peak Collector Current (See Note 3)	← 500	$mA \rightarrow$
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4).	← 360	$mW \rightarrow$
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Note 5)	← 500	$mW \rightarrow$
Storage Temperature Range	-65°C to	150°C
Lead Temperature 1/6 Inch from Case for 10 Seconds	← 260	°C -→

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

chara	characteristics at 25°C tree-air temperature (unless otherwise noted)						
	PARAMETER	TEST CONDITIONS		MAX	2N4	419 MAX	UNIT
- u	C.H. I. D. D. I.I. W.H.			MMA		MAA	v
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_E = 0$	40		30		V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0,$ See Note 6	15		12		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_C=10~\mu$ A, $V_{BE}=0$	40		30		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	4.5		4.5		٧
1.	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		0.4		0.4	μA
ICBO	Conector Coton Corrent	$V_{CB} = 20 \text{ V}, I_{E} = 0, T_{A} = 70 ^{\circ}\text{C}$		3		3	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3 \text{ V}, I_{C} = 0$		20		25	nA
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 1 V, I _C = 10 mA, See Note 6	40	120	30		
IIFE	Static Forward Correlli Hallster Kullo	V _{CE} = 2 V, I _C = 100 mA, See Note 6	20				
V _{BE}	Base-Emitter Voltage	$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$	0.72	0.87	0.72	0.87	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		0.25		0.25	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 100 \text{ MHz}$	5		4		
Ccb	Collector-Base Capacitance	$V_{CB}=5$ V, $I_{E}=0$, $f=1$ MHz, See Note 7		4		4	pF

- NOTES: 1. This value applies when the base-emitter diode is short-circuited.
 - 2. These values apply between 0 and 200 mA collector current when the baseemitter diade is open-circuited. Maximum rated voltage and 200 mA collector current may be simultaneously applied provided the time of application is 10 μs or less and the duty cycle is 2% or less.
 - 3. This value applies for tp \leq 10 μs and duty cycle \leq 2%.
 - 4. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
- 5. Derate linearly to 150°C lead temperature at the rate of 4 mW/dea, Lead temperature is measured on the collector lead 1/16 inch from the case.
- 6. These parameters must be measured using pulse techniques. $t_{\rm p}=$ 300 $\mu {\rm s}$, duty cycle ≤ 2%.
- 7. C_{cb} is measured using three-terminal measurement techniques with the emitter guarded.

*Indicates JEDEC registered data †Trademark of Texas Instruments **‡Patent Pending**

TYPES 2N4418 AND 2N4419 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDIT	ions†	2N4418 MAX	2N4419 MAX	UNIT
td	Delay Time			· 10	10	ns
t _r	Rise Time	$I_{C} = 10 \text{ mA}, I_{B(1)} = 1 \text{ mA}, I_{L} = 280 \Omega,$	$V_{BE(off)} = 0,$	12	14	ns
ton	Turn-on Time	nL 200 12,	see rigure i	20	22	ns
ts	Storage Time			12	14	ns
tf	Fall Time	$I_{C} = 10 \text{ mA}, I_{B(1)} = 1 \text{ mA}, I_{L} = 280 \Omega,$	I _{B(2)} = —1 mA, See Figure 2	14	16	ns
toff	Turn-off Time	- KL - 200 32,	see rigure Z	22	28	ns
ts	Storage Time	$I_C = 10 \text{ mA}, I_{B(1)} = 10 \text{ mA},$	$I_{B(2)} = -10 \text{ mA},$ See Figure 3	18	20	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $I_{out}=50~\Omega,~t_{p}\leq1~\text{ns},~t_{p}\geq200~\text{ns},~\text{duty cycle}\leq2\%.$

*Indicates JEDEC registered data

b. Waveforms of figures 1 and 2 are monitored on an oscilloscope with the following characteristics: $t_r \le 1$ ns, $R_{in} \ge 100$ k Ω , $C_{in} \le 10$ pF.

c. Output waveform of figure 3 is monitored on an oscilloscope with the following characteristics: $t_{\rm r} \leq 1$ ns, $z_{\rm in} = 50$ Ω .

TYPES 2N4420, 2N4421 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

SILECT[†] TRANSISTORS FOR HIGH-SPEED SWITCHING APPLICATIONS

- 2N4420 Electrically Similar to the 2N3014
- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

·	2N4420	2N4421
Collector-Base Voltage	40 V	30 V
Collector-Emitter Voltage (See Note 1)	40 V	30 V
Collector-Emitter Voltage (See Note 2)	20 V	12 V
Emitter-Base Voltage	5 V	5 V
Continuous Collector Current	← 200 :	$mA \longrightarrow$
Peak Collector Current (See Note 3)	← 500	$mA \longrightarrow$
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)	360 ı	mW→
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Note 5)	← 500	mW ≻
Storage Temperature Range	-65°C to	150°C 1
Lead Temperature 1/4 Inch from Case for 10 Seconds	← 260	°c →

NOTES: 1. This value applies when the base-emitter diode is short-circuited.

- 2. This value applies between 0 and 200 mA collector current when the base-emitter diode is open-circuited. Maximum rated voltage and 200 mA collector current may be simultaneously applied provided the time of application is 10 µs or less and the duty cycle is 2% or less.
- 3. This value applies for $\rm t_p \, \leq \, 10 \, \, \mu s$ and duty cycle $\, \leq \, 2\%.$
- 4. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
- Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.

*Indicates JEDEC registered data †Trademark of Texas Instruments ‡Patent Pending

TYPES 2N4420, 2N4421 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

		7507	CONDITIONS		2N4	4420		1421	UNIT
	PARAMETER	TEST	CONDITIONS		MIN	MAX	MIN	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C}=100~\mu\text{A},$	$I_E = 0$		40		30		V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA},$	$l_B = 0$,	See Note 6	20		12		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C}=100~\mu{\rm A},$	$V_{BE} = 0$		40		30		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A$	$I_{C} = 0$		5		5		V
	Collector Cutoff Current	$V_{CE} = 20 V$,	$V_{BE} = 0$			0.5		0.5	μ A
ICES	Collector Cutoff Current	$V_{CE} = 20 V$	$V_{BE} = 0$,	$T_A = 70$ °C	l	4		4	μ A
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3 V$,	$I_{C} = 0$			20		100	nA
		$V_{CE} = 0.4 V$	$I_{\rm C}=10~{\rm mA}$	See	25				
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 0.4 V$	I _C = 30 mA	Note	30	120	25		
		V _{CE} = 1 V,	I _C = 100 m/	6	25				
		$I_B = 1 \text{ mA},$	$I_{\rm C}=10~{\rm mA}$	See	0.7	0.8			٧
V _{BE}	Base-Emitter Voltage	$I_B = 3 \text{ mA},$	I _C = 30 mA	Note	0.75	0.95	0.75	0.95	٧
		$I_B = 10 \text{ mA},$	I _C = 100 m/	6		1.2			٧
		$I_B = 1 \text{ mA},$	$I_C = 10 \text{ mA}$			0.2			٧
		$I_B = 3 \text{ mA},$	I _C = 30 mA	See		0.2		0.2	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 10 \text{ mA},$	$I_{\rm C}=100~{\rm m}$	Note		0.35			٧
		$I_B = 3 \text{ mA},$	$I_{C} = 30 \text{ mA},$	6		0.25			v
			$T_A = 70$ °C			0.23			
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 V,$	$I_{C} = 30 \text{ mA},$	f = 100 MH	3.5		3		
Ccp	Collector-Base Capacitance	$V_{CB} = 5 V,$	$I_{E} = 0$,	f = 1 MHz, See Note 7		5		5	pF
C _{eb}	Emitter-Base Capacitance	$V_{EB} = 0.5 V,$	I _C = 0,	f = 1 MHz, See Note 7		8		8	pF

NOTES: 6. These parameters must be measured using pulse techniques. $t_{_{
m D}}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

^{7.} Cob and Cob are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

^{*}Indicates JEDEC registered data

TYPES 2N4420, 2N4421 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*switching characteristics at 25°C free-air temperature

	PARAMETER		TEST CONDITION	IS+	2N4420	2N4421	UNIT
	· ANAMETER	1	1231 00115111011	.51	MAX	MAX	•
t _d	Delay Time				8	10	ns
tr	Rise Time	$I_{\rm C} = 30$ mA,	$I_{B(1)} = 3 \text{ mA},$ $R_1 = 93 \Omega.$	$V_{BE(off)} = 0$,	10	12	ns
ton	Turn-on Time		KL — 73 12,	See Figure 1	16	18	ns
t,	Storage Time				15	18	ns
tf	Fall Time	$ I_{C} = 30 \text{ mA},$	$I_{B(1)} = 3 \text{ mA},$ $R_1 = 93 \Omega.$	$I_{B(2)} = -3 \text{ mA},$	10	12	ns
t _{off}	Turn-off Time	7	$R_L = 93.1L$	See Figure 2	20	24	ns
ts	Storage Time	I _C = 10 mA,	$I_{B(1)} = 10 \text{ mA},$	$I_{B(2)} = -10 \text{ mA},$ See Figure 3	20		ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z_{out}} = 50~\Omega$, $\mathbf{t_r} \leq 1~\mathrm{ns}$, $\mathbf{t_p} \geq 200~\mathrm{ns}$, duty cycle $\leq 2\%$. b. Waveforms of figures 1 and 2 are monitored on an oscilloscope with the following characteristics: $\mathbf{t_r} \leq 1~\mathrm{ns}$, $\mathbf{R_{in}} \geq 100~\mathrm{k}\Omega$, $\mathbf{C_{in}} \leq 10~\mathrm{pF}$.

c. Output waveform of figure 3 is monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ ns, $Z_{in} = 50 \Omega$.

^{*}Indicates JEDEC registered data

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM

278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

TYPES 2N5449, 2N5450, 2N5451 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

SILECT† TRANSISTORS

Encapsulated in Plastic for Such Applications as Medium-Power Amplifiers, Class B Audio Outputs, and Hi-Fi Drivers

- Electrically Equivalent to 2N3704, 2N3705, and 2N3706
- For Complementary Use with 2N5447 and 2N5448
- Rugged, One-Piece Construction Features Standard 100-mil TO-18 Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process. developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

			2N5449 2N5450 2N5451
Collector-Base Voltage			50 V 40 V
Collector-Emitter Voltage (See Note 1)			30 V 20 V
Emitter-Base Voltage			5 V 5 V
Continuous Collector Current			← 800 mA →
Continuous Device Dissipation at (or below) 25°C	Free-Air Temperature	(See Note 2)	<360 mW→
Continuous Device Dissipation at (or below) 25°C	Lead Temperature (See	Note 3)	←-500 mW>
Storage Temperature Range			-65°C to 150°C
Lead Temperature $lambda_{6}$ Inch from Case for 10 Seco	nds		←—260°C—→

- NOTES: 1. These values apply when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
 - Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.

†Trademark of Texas Instruments

‡Patent pending

*Indicates JEDEC registered data

TYPES 2N5449, 2N5450, 2N5451 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

	PARAMETER		CONDITIO	NIC	2N	5449	2N	5450	2N:	5451	UNIT
<u> </u>	FARAMETER	IES	CONDITIO	/143	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C}=100\mu{\rm A}$	$J_{\rm E}=0$		50		50		40		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{mA},$	$I_B = 0$,	See Note 4	30		30		20		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu\text{A}$, I _C = 0		5		5		5		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 V$,	$I_E = 0$			100		100		100	πA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3 V$,	$I_{c} = 0$			100		100		100	nA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 2 V$,	$I_C = 50 \text{ mA},$	See Note 4	100	300	50	150	30	600	
V _{BE}	Base-Emitter Voltage	$V_{CE} = 2 V,$	I _C = 100 mA	,See Note 4	0.5	1	0.5	1	0.5	1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 \text{ mA},$	I _C = 100 mA	, See Note 4		0.6		8.0		1	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 2 V, f = 20 MHz	$I_{\rm C}=50$ mA,		5		5		5		
Ccp	Collector-Base Capacitance	V _{CB} = 10 V, f = 1 MHz,	I _E = 0,	See Note 5		12		12		12	pF

NOTES: 4. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$. 5. C_{cb} is measured using three-terminal measurement techniques with the emitter guarded.

*Indicates JEDEC registered data

TYPICAL CHARACTERISTICS

2N5450

STATIC FORWARD CURRENT TRANSFER RATIO

TYPES 2N5449, 2N5450, 2N5451 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

SILICON 15-WATT QUASI-COMPLEMENTARY POWER AMPLIFIER

Continuous Output Po	w	er														15	w	@	0.	159	% Т	Н
Power Bandwidth @ 7	.5	W															20	Н	z ·	-:	20	kΗ
Frequency Response	± o	.5	dΒ	1													10	Н	z ·	-!	50	kΗ
Total Harmonic Disto	rti	on	@	7.	5١	Ν															0,0	06%
Intermodulation Disto	orti	ion	@	7	.5	w															0.	15%
Sensitivity @ 15 W																				8	50	m ¹
Input Impedance .																	•				1	MS
Hum and Noise: "C"	We	igł	ıti	ng																		
Input Shorted																•				•	-95	d
Input Open																				•	-85	d
Damping Factor .																						4

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ALABAMA

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791 Birmingham, Alabama 35233 ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461

Huntsville, Alabama 35805

ARIZONA KIERULFF ELECTRONICS, INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix, Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015 R. V. WEATHERFORD COMPANY

1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624 TI SUPPLY COMPANY

7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. Indianapolis, Indiana 46219 RADIO DISTRIBUTING COMPANY 814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS

DEMAMBRO ELECTRONICS 1095 Commonwealth Ave. (617) 787-1200 Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109 ELECTRONIC COMPONENTS FOR INDUSTRY 2605 South Hanley Rd./(314) MI 7-5505 St. Louis, Missouri 63144

NEW JERSEY

600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY 301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC.
2524 Baylor Dr. S.E./(505) 247-1055
Albuquerque, New Mexico 87108
STANDARD SUPPLY COMPANY
225 E. Sixth South St./(801) EL 5-2971
Salt Lake City, Utah 84110

NEW YORK

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216 LAFAYETTE INDUSTRIAL ELECTRONICS

165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013 ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800

Rochester, New York 14614 TI SUPPLY COMPANY 4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA

ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

OHIO

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102 **NEWARK-HERRLINGER**

ELECTRONICS CORP. 112 E. Liberty St./(513) GA 1-5282 Cincinnati, Ohio 45210

W. M. PATTISON SUPPLY CO. 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park

Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235 5240 Elm Street/(713) MO 6-2175 Houston, Texas 77036 GENERAL RADIO SUPPLY COMPANY, INC. HARRISON EQUIPMENT COMPANY, INC. 1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001 MIDLAND SPECIALTY COMPANY 2235 Wyoning Ave./(915) KE 3-9555

El Paso, Texas 79903

IITAH

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS, INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario TI SUPPLY COMPANY Dorval, Quebec

WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR MELBOURNE, Australia RADIO PARTS PTY, LTD. PERTH, Australia PRECISION ELECTRONICS BRISBANE, Australia

DOUGLAS ELECTRONICS EUROPEAN TI DISTRIBUTORS BRUSSELS IV, Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V. Denmark TEXAS INSTRUMENTS A/S

> **HELSINKI**, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM, Sweden AB GOSTA BACKSTROM

ZURICH 32. Switzerland FABRIMEX AG ZURICH

> PARIS, FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

TYPES TIS37 AND TIS38 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

SILECT† TRANSISTORS RECOMMENDED AS DESIGN REPLACEMENTS FOR GERMANIUM DRIFT TRANSISTORS IN:

- AM Automobile Radio RF and IF Converter Applications
- Portable AM Radios

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

																	11537	11538
Collector-Base Voltage																	–35 V	–35 V
Collector-Emitter Voltage (See	Note	1)															–32 V	–32 V
Emitter-Base Voltage															•		–6 V	–4 V
Continuous Collector Current																	← -50	$mA \rightarrow$
Continuous Device Dissipation a	t (or	bel	ow)	25°	C F	ree-	Air	Те	mp	era	tur	e (See	N	lote	2)	← 360	mW→
Storage Temperature Range																	−65°C to	150°C
Lead Temperature 1/16 Inch from	Case	for	10	Sec	onds												← 260	°C→

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

†Trademark of Texas Instruments

‡Patent Pending

TYPES TIS37 AND TIS38 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	•	TIS37		ris38		
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	MIN	TYP	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = -100 \mu$ A, $I_E = 0$	-35		-35			٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -1 \text{ mA}, I_B = 0, \qquad \text{See Note 3}$	-32		-32			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -100 \ \mu A, I_{C} = 0$	6		-4			V
I _{CBO}	Collector Cutoff Current	$V_{CB} = -10 V, I_E = 0$		-100			-100	nΑ
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -9 \text{ V}, I_{C} = -1 \text{ mA}$	45		25			
h _{fe}	Small-Signal Common-Emitter	$V_{CE} = -9 \text{ V}, I_{C} = -1 \text{ mA, f} = 455 \text{ kHz}$	35	45	30		40	dB
IIfe	Forward Current Transfer Ratio	$V_{CE} = -9 \text{ V}, I_{C} = -1 \text{ mA, f} = 10 \text{ MHz}$	18	30	14		26	dB
y _{fe}	Small-Signal Common-Emitter Forward Transfer Admittance	$V_{CE} = -9 \text{ V}, I_{C} = -1 \text{ mA, f} = 455 \text{ kHz}$	32	35	32	35		mmho
f _T	Transition Frequency	$V_{CE} = -9 \text{ V}, I_{C} = -1 \text{ mA, See Note 4}$	80	320	50		200	MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = -9 \text{ V}, I_E = 0, \qquad f = 1 \text{ MHz}, $ See Note 5	0.5	1.1 1.7	0.5	1.1	1.7	pF
r₀'C₀	Collector-Base Time Constant	$V_{CB} = -9 \text{ V}, I_E = 1 \text{ mA}, f = 79.8 \text{ MHz}$		30 70		30	70	ps

operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	TIS37	UNIT
		140. 50.1-11.01.0	TYP	ONII
NF Spot Noise Figure		$V_{CE}=-9$ V, $I_{C}=-1$ mA, $R_{G}=75$ Ω , $f=1$ MHz	2.5	dB
	spot moise rigore	$V_{CE}=-9$ V, $I_{C}=-1$ mA, $R_{G}=1$ k Ω , $f=1$ MHz	1	dB

TYPICAL CHARACTERISTICS AT $T_A = 25^{\circ}C$

NOTES: 3. This parameter must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

- 4. To obtain f_T , the $|h_{fo}|$ response with frequency is extrapolated at the rate of -6 dB per octave from $f=10\,$ MHz to the frequency at which $|h_{fo}|=1$.
- 5. $C_{f cb}$ is measured using three-terminal measurement techniques with the emitter guarded.

TYPES TIS37 AND TIS38 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TIS37

TIS38

TYPICAL CHARACTERISTICS AT $T_A = 25$ °C

TIS38

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT INPUT RESISTANCE

TIS38

PARALLEL-EQUIVALENT SMALL-SIGNAL COMMON-EMITTER
SHORT-CIRCUIT OUTPUT RESISTANCE

TYPES TIS37 AND TIS38 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT $T_A = 25^{\circ}C$

NOTE 5: C_{cb} is measured using three-terminal measurement techniques with emitter guarded.

TYPES TIS37 AND TIS38 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

AM CONVERTER WITH TWO-STAGE IF AMPLIFIER

CIRCUIT COMPONENT INFORMATION

RESISTORS
R ₁ : 33 kΩ
R ₂ : 4.7 kΩ
R ₃ : 2.7 kΩ
R₄: 220 រា
R ₅ : 680 រេ
R ₆ ։ 1.2 kΩ
R_7 : 18 k Ω
R ₈ : 680 ಬ
R ₉ : 68 kΩ
R₁0: 6.8 kΩ
R ₁₁ : 1.5 kΩ

. .1.0 mV . . 250 µv/m . . .6.0 mV 170 mV/m 100 mV/m 14.0 dB 16.0 dB . 41 dB . 43 dB 7.2 KHz

Sensitivity for 10 dB (S+N)/N . . . Audio Output at 10 dB (S+N)/N level Audio Output at 20 dB (S+N)/N level

Sensitivity for 20 dB (S+N)/N . . RF Overload for 30% Modulation

Modulation Overload at 80% Modulation

-10 kHz Adjacent Channel Rejection +10 kHz Adjacent Channel Rejection

AGC Figure of Merit . . Image Rejection at 600 kHz 6-dB Bandwidth at 600 kHz

Oscillator: TRW #18908-R1 or equivalent Antenna: TRW #19029 or equivalent T₁: TRW #21484 or equivalent T₂: TRW #21485 or equivalent TRANSFORMERS

T₃: TRW #21486 or equivalent

TYPICAL PERFORMANCE CHARACTERISTICS (Output Terminated with 5 $k\Omega$)

TI World-Wide Sales Offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 — P.O. Box 5012 Dallas, Texas 75222 214-238-4861 3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan. Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva. Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato Buenos Aires, Argentina

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

- Recommended for Complementary Use With TI 2N929, 2N930, and 2N2586 N-P-N Transistors
- Guaranteed h_{FE} at $10\mu a$, $T_{\Delta} = -55^{\circ}C$ and $25^{\circ}C$
- Guaranteed Low-Noise Characteristics
- ullet Usable at Collector Currents as Low as 1 μ a

*mechanical data

FOR EXTREMELY LOW-LEVEL, LOW-NOISE, HIGH-GAIN, SMALL-SIGNAL AMPLIFIER APPLICATIONS

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

С	ollector-Base Voltage																					60 v
	ollector-Emitter Voltage (See																					
E	nitter-Base Voltage		•																			6 v
С	ollector Current																				3	30 ma
To	otal Device Dissipation at (or	belov	v) 25	5°C	Free	e-Ai	r To	emp	oero	atui	re (See	· N	ote	2)						40	0 mw
Si	orage Temperature Range																- 6	5°0	C to	ა -	⊦ 2	00°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			2N:	2604	2N	Ī	
l	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_{C} = -10 \mu a, I_{E} = 0$	- 60		- 60		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ ma}, I_B = 0,$ See Note 3	— 45		45		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = -10 \mu a, I_C = 0$	- 6		-6		٧
Ісво	Collector Cutoff Current	$V_{CB} = -45 \text{ v}, \ I_E = 0$		- 10		10	na
Γ.	Callanta Cutaff Commit	$V_{CE} = -45 \text{ v}, V_{BE} = 0$		— 10		— 10	na
CES	Collector Cutoff Current	$V_{CE} = -45 \text{ v}, V_{BE} = 0, T_A = 170 ^{\circ}\text{C}$		10		— 10	μα
IEBO	Emitter Cutoff Current	$V_{EB} = -5 \text{v}, I_{C} = 0$		– 2		– 2	na
		$V_{CE} = -5 \text{v}, I_{C} = -10 \mu \text{a}$	40	120	100	300	
١.	Static Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -10 \ \mu\text{a}, I_{A} = -55 \text{°C}$	10		20		
h _E	Sidiic Forward Corrent Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -500 \ \mu \text{a}$	60		150		Ī
		$\overline{V_{CE} = -5 \text{ v}}, I_{C} = -10 \text{ ma}$		350		600	
V _{BE}	Base-Emitter Voltage	$I_B = -0.5 \text{ ma}, I_C = -10 \text{ ma}$	0.7	- 0.9	- 0.7	- 0.9	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -0.5 \text{ma}, I_C = -10 \text{ma}$		- 0.5		- 0.5	٧
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = -5 v$, $I_E = 1 ma$, $f = 1 kc$	25	35	25	35	ohm
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	$V_{CB} = -5 \text{ v}, I_{E} = 1 \text{ ma}, f = 1 \text{ kc}$		10 x 10 ⁻⁴		10 x 10-4	
h _{ob}	Small-Signal Common-Base Output Admittance	$V_{CB} = -5 v$, $I_E = 1 ma$, $f = 1 kc$		1.0		1.0	μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CB} = -5 \text{ v}, I_E = 1 \text{ ma}, f = 1 \text{ kc}$	60	350	150	600	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -500 \ \mu\text{a}, f = 30 \ \text{Mc}$	1.0		1.0		
C ^{op}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -5 v$, $I_E = 0$ $f = 1 Mc$		6		6	pf
Re(h _{ie})	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{CE} = -5 v$, $I_{C} = -1 ma$, $f = 100 Mc$		200		200	ohm

NOTES: 1. This value applies between 0 and 10 ma collector current when the base-emitter diade is open-circuited.

2. Derate linearly to 200°C free-air temperature at the rate of 2.28 mw/C°.

3. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \approx 2%.

^{*}Indicates JEDEC registered data.

TYPES 2N2604, 2N2605 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N2604 MAX	2N2605 MAX	UNIT]
NI	F Average Noise Figure	$V_{CE}=-5$ v, $I_{C}=-10$ μ a, $R_{G}=10$ k Ω Noise Bandwidth $=15.7$ kc , (See Note 4)	4.0	3.0	db	

NOTE 4. Average Noise Figure is measured in an amplifier with low-frequency-response down 3 db at 10 cps.

PARAMETER MEASUREMENT INFORMATION

A PROCEDURE FOR MEASURING AVERAGE NOISE FIGURE OF 2N2604 AND 2N2605

- 1. Connect audio oscillator to true RMS vacuum-tube voltmeter and adjust V_S for 0.81 mv.
- 2. Connect equipment as shown in block diagram, Figure 1.
- 3. Adjust d-c biases.
- Adjust potentiometer for full scale deflection (10 db) on the voltmeter using the highest suitable range.
 The output is monitored on the oscilloscope to insure that clipping does not occur and that there is no
 extraneous pickup (e.g. 60 cps).
- 5. Remove Vs.
- For a noiseless transistor the output would drop 20 db when the signal is removed from the input.
 Anything less than a 20 db drop is the noise figure of the transistor (e.g. for a 17 db drop, NF = 3 db).

FIGURE 1 - BLOCK DIAGRAM

Note a: The amplifier has the following specifications: A_{ν} , 100 maximum; Frequency Response, down 3 db at 10 cps and 10 kc with a high-frequency roll-off of 6 db/octave; Equivalent Input Noise, 1.5 μ RMS maximum for 10 kc bandwidth and 4 $\mu\nu$ RMS maximum for 100 kc bandwidth between 10 cps and 1 mc; Z_{in} , 8 M Ω in parallel with 30 pf; Z_{out} , 600 Ω in series with 8 μ f.

FIGURE 2 - TEST AMPLIFIER

^{*}Indicates JEDEC registered data.

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

- Guaranteed $V_{\text{CE(sat)}}$ 0.5 v Max at 100 ma
 High f_{τ} 400 Mc Min
- Recommended for Complementary Use With 2N2368 and 2N3011

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	v
Collector-Emitter Voltage (See Note 1)	
Emitter-Base Voltage	٧
Collector Current	a
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2) 0.36°C	
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3) 1.2 v	~
Operating Collector Junction Temperature	С
Storage Temperature Range	С
Lead Temperature 1/4 Inch from Case For 60 Seconds	С

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	DADAMETER	-	FCT COMPLE	ONE	2N:	2894	2N3	3012	UNIT
	PARAMETER	'	EST CONDITI	ONS	MIN	MAX	MIN	MAX	UNII
BVCBO	Collector-Base Breakdown Voltage	I _C =-10 μα,	I _E =0		-12		-12		٧
BVCEO	Collector-Emitter Breakdown Voltage	I _C =-10 ma,	I _B =0,	See Note 4	-12		-12		٧
BVCES	Collector-Emitter Breakdown Voltage	$I_C = -10 \mu a$,	V _{BE} = 0		-12		-12		٧
BVEBO	Emitter-Base Breakdown Voltage	I _E ==-100 μα,	1 _C =0		-4		-4		٧
ГСВО	Collector Cutoff Current	V _{CB} =−6 v,	I _E == 0,	T _A =125°C		-10			μα
	Collector Cutoff Current	V _{CE} =-6 v,	V _{BE} =0			-80		-80	næ
CES	Collector Cutoff Current	V _{CE} =-6 v,	V _{BE} == 0,	T _A =85°C				5	μα
I _B	Base Current	V _{CE} =-6 v,	V _{BE} =0			80		30	na
	Static Forward Current Transfer Ratio	V _{CE} =-0.3 v,	I _C =-10 ma,	See Note 4	30		25		
		V _{CE} =-0.5 v,	I _C == -30 ma,	See Note 4	40	150	30	120	
h _{FE}		V _{CE} =-1 v,	I _C ==-100 ma,	See Note 4	25		20		
		V _{CE} =-0.5 v,	I _C =-30 ma,		17				
		$T_A = -55^{\circ}C$	See Note 4		17				
		I _B =−1 ma,	$J_C = -10$ ma,	See Note 4		-0.15		-0.15	٧
1		$I_8 = -3 \text{ ma},$	$I_C = -30 \text{ ma}$,	See Note 4		-0.20		-0.20	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -10 \text{ ma},$	I _C =-100 ma,	See Note 4		-0.50		-0.50	٧
		$I_B = -3 \text{ ma},$		•				-0.40	
<u> </u>		$T_A = 85^{\circ}C$						-0.40	,
			$I_C = -10 \text{ ma}$,	See Note 4	-0.78	-0.98	-0.78	-0.98	٧
V _{BE}	Base-Emitter Voltage	I _B ==−3 ma,	$I_C = -30$ ma,	See Note 4	-0.85	-1.2	-0.85	-1.2	٧
		$I_B = -10$ ma,	$I_C = -100 \text{ ma}$	See Note 4		-1.7		-1.7	٧

NOTES: 1. This value applies between 10 μa and 10 ma collector current when the base-emitter diode is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 2.06 mw/C°.
- 3. Derate linearly to 200°C case temperature at the rate of 6.85 mw/C°.
- 4. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle = 1%.

TYPES 2N2894, 2N3012 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

PARAMETER		TEST CONDI	TEST CONDITIONS			2N3012			
	FARAMETER	1E31 CONDI	MIN	MAX	MIN	MAX	UNIT		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} =-10 v, I _C =-30 ma,	f == 100 Mc	4		4			
Copo	Common-Base Open-Circuit Output Capacitance	V _{CB} =-5 v, I _E =0,	f == 140 kc		6		6	pf	
C _{ibo}	Common-Base Open-Circuit Input Capacitance	V _{EB} ==-0.5 v, 1 _C ==0,	f == 140 kc		6		6	pf	

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	2N2894 MAX	2N3012 MAX	UNIT
1 _{on}	Turn-On Time	$l_C = -30$ ma, $l_{B[1]} = -1.5$ ma, $V_{BE(off)} = 3$ v, $R_1 = 62$ Ω , See Figure 1	60	60	пѕес
toff	Turn-Off Time	$I_C = -30$ ma, $I_{B(1)} = -1.5$ ma, $I_{B(2)} = 1.5$ ma, $R_L = 62$ Ω , See Figure 1	90	75	nsec

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $I_{out} = 50 \ \Omega$, $t_r \le 1$ nsec, PW > 200 nsec.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ nsec, $R_{in} \geq 100$ k Ω .

TYPES 2N2904, 2N2905, 2N2906, 2N2907 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined With Very-Low Saturation Voltage
- DC Beta Guaranteed From 100 μ a to 500 ma

*mechanical data

Device types 2N2904 and 2N2905 are in JEDEC TO-5 packages. Device types 2N2906 and 2N2907 are in JEDEC TO-18 packages.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted	2N2904 2 2N2905	
Collector-Base Voltage	−60 v	−60 v
Collector-Emitter Voltage (See Note 1)	-40 v	–40 v
Emitter-Base Voltage	. −5 v	−5 v
Collector Current	_0.6 a -	-0.6 a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Notes 2 and 3)	0.6 w	0.4 w
Total Device Dissipation at (or below) 25°C Case Temperature (See Notes 4 and 5).	3 w	1.8 w
Storage Temperature Range	-65°C to +	- 200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				2N2 2N2	904 906	2N2905 2N2907		UNIT
	PARAMETER	TEST CONDITION	IS	MIN	MAX	MIN	MAX	
BVCBO	Collector-Base Breakdown Voltage	$I_C=-10~\mu a,~I_E=0$		60		-60		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_{C} = -10 \text{ ma}, I_{B} = 0,$	See Note 6	-40		-40		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = -10 \ \mu {\rm a}, \ \ I_{\rm C} = 0$		-5		-5		٧
	Collector Cutoff Current	$V_{CB} = -50 \text{ v}, \ I_{E} = 0$			-20		-20	na
Ісво	Conecion Colon Colleni	$V_{CB} = -50 \text{ v}, I_E = 0,$	$T_A = 150$ °C		-20		-20	μα
ICEX	Collector Cutoff Current	$V_{CE} = -30 \text{ v}, \ V_{BE} = 0.5 \text{ v}$			50		50	na
I _B	Base Current	$V_{CE} = -30 \text{ v}, \ V_{BE} = 0.5 \text{ v}$			50		50	na
		$V_{CE} = -10 \text{ v}, \ \ I_{C} = -100 \ \mu \text{a}$		20		35		
		$V_{CE} = -10 \text{v}, I_{C} = -1 \text{ma}$		25		50		
hee	Static Forward Current Transfer Ratio	$V_{CE} = -10 \text{ v}, I_{C} = -10 \text{ ma}$		35		75		
		$V_{CE} = -10 \text{ v}, \ \ I_{C} = -150 \text{ ma},$	See Note 6	40	120	100	300	
		$V_{CE} = -10 \text{ v}, \ \ I_{C} = -500 \text{ ma},$	See Note 6	20		30		
v	Dana Emisson Voltage	$I_B = -15 \text{ ma}, I_C = -150 \text{ ma},$	See Note 6		-1.3		-1.3	٧
V _{BE}	Base-Emitter Voltage	$I_B = -50 \text{ ma}, I_C = -500 \text{ ma},$	See Note 6		-2.6		-2.6	٧
v	Callector Emitter Seturation Voltage	$I_B = -15 \text{ ma}, I_C = -150 \text{ ma},$	See Note 6		-0.4		-0.4	٧
VCE(sat)	Collector-Emitter Saturation Voltage	$I_B = -50 \text{ ma}, I_C = -500 \text{ ma},$	See Note 6		-1.6		-1.6	٧

- NOTES: 1. This value applies between 0 and 100 ma collector current when the base-emitter diode is open-circuited.
 - Derate 2N2904 and 2N2905 linearly to 200°C free-air temperature at the rate of 3.43 mw/C°.
 Derate 2N2906 and 2N2907 linearly to 200°C free-air temperature at the rate of 2.28 mw/C°.
 - 4. Derate 2N2904 and 2N2905 linearly to 200°C case temperature at the rate of 17.3 mw/C

 - 5. Derior 202096 and 20207 linearly to 200°C case temperature at the rate of 10.3 mw/C°.

 6. These parameters must be measured using pulse techniques. PW \leq 300 μ sec, Duty Cycle \leq 2%.

TYPES 2N2904, 2N2905, 2N2906, 2N2907 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

PARAMETER							
Cop	Common-Base Open Circuit Output Capacitance	$V_{CB} = -10 v$	$I_E = 0$,	f = 100 kc	8.0	pf	
C _{ib}	Common-Base Open Circuit Input Capacitance	V _{EB} = -2 v,	I _C = 0,	f = 100 kc	30	pf	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$ m V_{CE}=-20~v,$	$I_{C}=-50$ ma,	f = 100 Mc	2.0		

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
ta	Delay Time	l — 150 — l — 15 — V — 0	10	nsec
tr	Rise Time	$I_C=-150$ ma, $I_{B(1)}=-15$ ma, $V_{BE(off)}=0$, $R_1=200~\Omega$, See Figure 1	40	nsec
ton	Turn-On Time	nt — 200 12, 300 rigoto 1	45	nsec
ts	Storage Time	1 - 150 - 1 - 12 - 1 - 17 - 1	80	пѕес
† _f	Fall Time	$I_C=-150$ ma, $I_{B(1)}=-13$ ma, $I_{B(2)}=17$ ma, $R_L=37~\Omega$. See Figure 2	30	nsec
t _{off}	Turn-Off Time	n_ 0, 22, 000 rigory 2	100	пѕес

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{out} = 50~\Omega$, $\mathbf{I}_r \leq 2$ nsec, $\mathbf{I}_f \leq 2$ nsec, PW = 200 nsec, PRR = 150 pps. b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathbf{I}_r \leq 5$ nsec, $\mathbf{R}_{in} = 10~M\Omega$.

^{*}Indicates JEDEC registered data.

TYPES 2N2944, 2N2945, 2N2946, 2N2944A, 2N2945A, 2N2946A P-N-P EPITAXIAL-BASE PLANAR SILICON TRANSISTORS

FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS IN INVERTED CONNECTION

- Low Guaranteed Offset Voltage
- High Emitter-Base Breakdown Voltage
- Greatly Improved $h_{\text{FE(inv)}}$...50 Min at I_{B} = 200 μ A (2N2944A)
- Extremely Low $r_{ec(an)} \dots 4 \Omega$ Max (2N2944A)
- Recommended For Complementary Use with 2N2432A

*mechanical data

[†]TI guaranteed minimum. The JEDEC registered minimum lead diameter for the TO-46 is 0.012.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N2944 2N2944A	2N2945 2N2945A	2N2946 2N2946A
Collector-Base Voltage, V_{CB}	−15 V	–25 V	-40 V
Emitter-Collector Voltage, V _{ECO} (See Note 1)	-10 V	–20 V	–35 V
Emitter-Base Voltage, V _{EB}	−15 V	–25 V	-40 V
Continuous Collector Current		-100 mA	\longrightarrow
Continuous Device Dissipation at (or below) 25°C			
Free-Air Temperature (See Note 2)	•	0.4 W	
Storage Temperature Range		55°C to 200	
Lead Temperature 1 6 Inch from Case for 10 Seconds	\leftarrow	240°C	\longrightarrow

NOTES: 1. This value applies when the collector-base diode is open-circuited.

2. Derate linearly to 200°C free-air temperature at the rate of 2.3 mW/deg.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	TEST CONDITIONS			2944 MAX		2N2945 MIN MAX		2946 MAX	UNIT
ICBO	Collector Cutoff Current	$V_{CB} = Rated V_{CB}$	1 _E = 0			-0.1*		-0.2*		-0.5*	nA
C80		$V_{CB} = Rated V_{CB}$	$I_E = 0$,	T _A = 100°C		-10		-20		-25	пA
IEBO	Emitter Cutoff Current	V _{EB} = Rated V _{EB} ,	$I_{\mathbf{C}} = 0$			− 0.1*		-0.2*		-0.5*	nA
		V _{EB} = Rated V _{EB} ,	$I_{C}=0$,	T _A = 100°C		-10		-15		-20	пА
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -0.5 V$,	I _C = -1 mA		80*		40*		30*		
h _{FE(inv)}	Static Forward Current Transfer Ratio (Inverted Connection)	V _{EC} = -0.5 V,	I _B = -200	μΑ	6		4		3		
		$I_B = -200 \ \mu A$,	I _E = 0	See		-0.3		-0.5		-0.8	mV
V _{EC(ofs)}	Emitter-Collector Offset Voltage	I _B = −1 mA,	I _E = 0	Figure		-0.6*		-1*		-2*	m₹
		I _B = -2 mA,	I _E = 0	1		-1		-1.6		-2.5	m٧
r _{ec(on)}	Small-Signal Emitter-Collector On-State Resistance	I _B = −1 mA,	I _E = 0, f = 1 kHz,	$I_e = 100 \mu A$, See Figure 2		20*		35*		45*	Ω
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -6 V,	I _C = -1 m/	A, f = 1 MHz	10*		5*		3*		
Copo	Common-Base Open-Circuit Output Capacitance	V _{CB} = -6 V,	I _E = 0,	f = 500 kHz		10*		10*		10*	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	V _{EB} = −6 V,	I _C = 0,	f = 500 kHz		6*		6*		6*	pF

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	DADA44FTFD				2N2	944A	2N2	945A	2N2946A		
	PARAMETER	TEST C	ONDITION	ıs	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
I _{CBO}	Collector Cutoff Current	${ m V_{CB}}={ m Rated}~{ m V_{CB}},$	I _E = 0			-0.1*		-0.2*		-0.5*	nA
-CBO		${ m V_{CB}}={ m Rated}~{ m V_{CB}},$	I _E = 0,	T _A = 100°C		-10*		-20*		-25*	nA
I _{EBO}	Emitter Cutoff Current	V _{EB} = Rated V _{EB} ,	$I_{\mathbf{C}} = 0$			-0.1*		−0.2 *		-0.5*	nA
FBO		$V_{EB}=$ Rated V_{EB} ,	$I_{C}=0$,	T _A = 100°C		-10*		-15*		-20*	пА
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -0.5 \text{ V},$	I _C = -1 m	1A	100*		70*		50*		
h _{FE(inv)}	Static Forward Current Transfer Ratio (Inverted Connection)	V _{EC} = -0.5 V,	I _B = -200	μΑ	50*		30*		20*		
		$I_B = -200 \ \mu A$,	I _E = 0	See		-0.3*		-0.5*		-0.8*	mV
V _{EC(ofs)}	Emitter-Collector Offset Voltage	$I_B = -1 \text{ mA},$	I _E = 0	Figure		-0.6*		-1*		-2*	mV
		I _B = −2 mA,	I _E = 0	1		-1*		-1.6*		-2.5*	mΨ
r _{ec(on)}	Small-Signal Emitter-Collector On-State Resistance	I _B = -1 mA,	$I_E = 0,$ $f = 1 \text{ kHz},$	$I_e = 100 \mu A$, See Figure 2		4*		6*		8*	Ω
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -6 V,	I _C = -1 m	A, f = 1 MHz	15*		10*		5*		
Copo	Common-Base Open-Circuit Output Capacitance	V _{CB} = -6 V,	I _E = 0, f = 0.1 MHz	z to 1 MHz		10*		10*		10*	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	V _{EB} = -6 V,	I _C = 0, f = 0.1 MHz	z to 1 MHz		6*		6*		6*	рF

PARAMETER MEASUREMENT INFORMATION

NOTE a: The voltmeter must have high enough impedance that halving the value of the voltmeter impedance does not change the measured value.

= 100 µA

TYPICAL CHARACTERISTICS

2N2944A

EMITTER-COLLECTOR VOLTAGE

vs BASE CURRENT

FIGURE 3

2N2945A

EMITTER-COLLECTOR VOLTAGE

BASE CURRENT

I_B — Base Current — mA FIGURE 4

2N2946A

EMITTER-COLLECTOR VOLTAGE

VS BASE CURRENT

I_B — Base Current — mA

TYPICAL CHARACTERISTICS

2N2944, 2N2944A EMITTER-COLLECTOR OFFSET VOLTAGE

EMITTER-COLLECTOR OFFSET VOLTAGE

FIGURE 7

2N2946, 2N2946A

EMITTER-COLLECTOR OFFSET VOLTAGE

TYPICAL CHARACTERISTICS

NOTE 3: These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu {\rm s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

2N2944A

STATIC FORWARD CURRENT TRANSFER RATIO (INVERTED CONNECTION)

FIGURE 13

2N2945A

2N2946A

STATIC FORWARD CURRENT TRANSFER RATIO

(INVERTED CONNECTION)

STATIC FORWARD CURRENT TRANSFER RATIO (INVERTED CONNECTION)

NOTE 3: These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NOTE 3: These parameters must be measured using pulse techniques. $t_p \approx$ 300 ms, duty cycle \leq 2%.

FIGURE 18

FIGURE 19

TYPICAL CHARACTERISTICS

2N2944A

SMALL-SIGNAL EMITTER-COLLECTOR ON-STATE RESISTANCE

ALL TYPES

COMMON-BASE OPEN-CIRCUIT INPUT CAPACITANCE

ALL TYPES

COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE

MADE WITH TRI-RELT REDUNDANT STABILIZATION

- Field-Relief Electrode#
- Special Oxide Passivation
- Annular Guard Ring‡

DESIGNED FOR HIGH-SPEED CORE-DRIVER APPLICATIONS

- High Dissipation Capability...10 Watts at 25°C Case Temperature
- High V_{(BR)CEO} ... 50 V Min (2N3245, 2N3468)
- High Speed...60 ns Max t_s at 500 mA (2N3467, 2N3468)
- High Collector Current Rating . . . 1 A

*mechanical data

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3244	2N3245	2N3467	2N3468	UNIT	
Collector-Base Voltage	40*	-50*	-40*	-50*	٧	
Collector-Emitter Voltage (See Note 1)	40*	-50*	-40*	-50*	٧	
Emitter-Base Voltage	-5*	-5*	-5*	-5*	V	
Continuous Collector Current	-1*	-1*	-1*	-1*	A	
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	1*	1*	1*	1*	w	
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)	10 ⁸ 5*	10 ⁸ 5*	10	10	w	
Storage Temperature Range		-65 t	0 200*		°C	
Lead Temperature 1/16 Inch from Case for 10 Seconds	230*				°C	
Lead Temperature $1/6$ Inch from Case for 60 Seconds	3	00*	300≒			

NOTES: 1. This value applies between 0 and 1 A collector current when the base-emitter diode is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 5.71 mW/deg.
- 3. Derate the 10-watt TI value linearly to 200°C case temperature at the rate of 57.1 mW/deg.

 Derate the 5-watt JEDEC value linearly to 200°C case temperature at the rate of 28.6 mW/deg.
- † Trademark of Texas Instruments
- ‡ Patented by Texas Instruments
- * Indicates JEDEC registered data
- \$ This value is guaranteed by Texas Instruments in addition to the JEDEC registered value which is also shown.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	c	2N3244	2N3245	2N3467	2N3468	UNIT
	PARAMEIER	TEST CONDITION	3	MIN MAX	MIN MAX	MINMAX	MIN MAX	וואט
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C}=-10~\mu\mathrm{A},~I_{E}=0$		-40	50	-40	-50	٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = -10 \text{ mA}, I_{B} = 0,$	See Note 4	-40	-50	-40	-50	٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \ \mu A, \ I_C = 0$		-5	– 5	– 5	-5	٧
		$V_{CB} = -30 \text{ V}, I_E = 0$		-50		-100	-100	nA
ICBO	Collector Cutoff Current	$V_{CB} = -30 \text{ V}, I_E = 0,$	T _A = 100°C			15	-15	μΑ
		$V_{CB} = -50 \text{ V}, I_E = 0$			-50			пA
I _{CEV}	Collector Cutoff Current	$V_{CE} = -30 \text{ V}, V_{BE} = 3 \text{ V}$		-50	-50	-100	-100	nA
IBEV	Base Cutoff Current	$V_{CE} = -30 \text{ V}, V_{BE} = 3 \text{ V}$		80	80	120	120	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -4 V$, $I_C = 0$		-30	-30			nA
		$V_{CE} = -1 \ V$, $I_{C} = -150 \ mA$		60	35	40	25	
	Static Forward Current Transfer Ratio	$V_{CE} = -1 \ V$, $I_{C} = -500 \ mA$	See Note	50 150	30 90	40 120	25 75	
h _{FE}		$V_{CE} = -5 \text{ V}, I_{C} = -750 \text{ mA}$	4	25				
		$V_{CE} = -5 \text{ V}, I_{C} = -1 \text{ A}$			20	40	20	
		$I_B = -15 \text{ mA}, I_C = -150 \text{ mA}$		-1.1	-1.1	-1	-1	٧
V _{BE}	Base-Emitter Voltage	$I_B = -50 \text{ mA}, I_C = -500 \text{ mA}$	See Note	-0.751.5	0.75 1.5	−0.8 −1.2	-0.8 -1.2	٧
▼ BE	buse-cillilei vollage	$I_B = -75 \text{ mA}, I_C = -750 \text{ mA}$	4	-2				٧
		$I_B = -100 \text{ mA}, I_C = -1 \text{ A}$	1		-2	-1.6	-1.6	٧
		$I_B = -15 \text{ mA}, I_C = -150 \text{ mA}$	See	-0.3	-0.35	-0.3	-0.35	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -50 \text{ mA}, I_C = -500 \text{ mA}$	Note	-0.5	0.6	-0.5	-0.6	٧
	taioranon ronago	$I_B = -100 \text{ mA}, I_C = -1 \text{ A}$	4	-1	-1.2	-1	-1.2	٧
f _T	Transition Frequency	$V_{CE} = -10 \text{ V}, I_{C} = -50 \text{ mA},$	See Note 5	175	150	175	150	MHz
C _{obo}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -10 \text{ V}, I_E = 0,$	f = 100 kHz	25	25	25	25	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -0.5 \text{ V}, I_{C} = 0,$	f = 100 kHz	100	100	100	100	pF

NOTES: 4. These parameters must be measured using pulse techniques. t $_{
m p}=$ 300 $\mu{
m s}$, duty cycle \leq 2%.

^{5.} To obtain f_T , the $|h_{fe}|$ response with frequency is extrapolated at the rate of -6 dB per octave from f=100 MHz to the frequency at which $|h_{fe}|=1$.

^{*}Indicates JEDEC registered data

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	2N3244 MAX	2N3245 MAX	2N3467 MAX	2N3468 MAX	UNIT
t _d	Delay Time	$I_{C} = -500 \text{ mA}, I_{B(1)} = -50 \text{ mA}, V_{BE(off)} = 2 \text{V},$	15	15	10	10	ns
tr	Rise Time	$R_L=$ 59 Ω , See Figure 1	35	40	30	30	ns
t,	Storage Time	$I_{\rm C} = -500$ mA, $I_{\rm B(1)} = -50$ mA, $I_{\rm B(2)} = 50$ mA,	140	120	60	60	ns
tf	Fall Time	$R_L=59~\Omega$, See Figure 2	45	45	30	30	ns
Q _T	Total Control Charge	$I_C = -500$ mA, $I_B = -50$ mA, See Figure 3	14	12	6	6	nC

†Voltages and current values shown are naminal, exact values vary slightly with transistor parameters. Naminal base current for delay and rise times is calculated using the minimum values of V_{BE}. Naminal base currents for storage and fall times are calculated using the maximum value of V_{BE}.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - DELAY AND RISE TIMES

FIGURE 2 - STORAGE AND FALL TIMES

NOTES: a. The input waveforms have the following characteristics:

For measuring delay and rise times: $\rm t_r \leq 2~ns,\, t_p = 200~ns,\,duty~cycle = 2\%.$

For measuring storage and fall times: $t_{\rm f} \leq$ 5 ns, $t_{\rm p} =$ 2 to 500 μ s, duty cycle = 2%.

For measuring Q_{T^1} $t_f \leq 10$ ns, $t_p = 10~\mu$ s, duty cycle = 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ ns, $R_{in} \geq 100$ k Ω , $C_{in} \leq 7$ pF.

TYPICAL CHARACTERISTICS

ALL TYPES

COLLECTOR CUTOFF CURRENT

VS

FREE-AIR TEMPERATURE

-100

I E = 0

I E = 0

VCB = -50 V (2N3245, 2N3468)

VCB = -40 V

VCB = -40 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB = -10 V

VCB

FIGURE 4

2N3468 STATIC FORWARD CURRENT TRANSFER RATIO

FIGURE 5 FIGURE 6

NOTE 4: These parameters must be measured using pulse techniques. $t_{
m p}=$ 300 $\mu{
m s}$, duty cycle \leq 2%.

TYPICAL CHARACTERISTICS

FIGURE 7

NOTE 4: These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

2N3467, 2N3468 SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

ALL TYPES COMMON-BASE OPEN-CIRCUIT INPUT CAPACITANCE AND EMITTER-BASE CAPACITANCE

EMITTER-BASE VOLTAGE 80 1_C = 0 f = 100 kHz to 1 MHz 70 T_A = 25°C See Note 6 60 Capacitance -05 20 10 -0.2 -0.4 -2 -0.1 V_{EB} — Emitter-Base Voltage – FIGURE 11

2N3467, 2N3468 COMMON-BASE OPEN-CIRCUIT OUTPUT CAPACITANCE AND COLLECTOR-BASE CAPACITANCE

NOTES: 4. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

C_{cb} and C_{ob} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge. C_{ob} and C_{ib} are measured with the third electrode floating.

TYPES 2N3250, 2N3250A, 2N3251, 2N3251A P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

DESIGNED FOR LOW-POWER SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS

- \bullet Low-Level h_{FE}: 80 Min at 100 μ A (2N3251 and 2N3251A)
- Made with TRI-REL[†] Redundant Stabilization (Field-Relief Electrode[‡],
 Special Oxide Passivation, Annular Guard Ring[§])

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3251	2N3251A
Collector-Base Voltage		60 V
Collector-Emitter Voltage (See Note 1)	−40 V	–60 V
Emitter-Base Voltage	–5 V	–5 V
Continuous Collector Current	← —−200	0 mA >
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)		6 W →
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3).	← 1.2	
Storage Temperature Range	–65°C 1	o 200°C
Lead Temperature 1/16 Inch from Case for 60 Seconds	← — 300	0°C →

*electrical characteristics at 25°C free-air temperature

				01104	250	2N32	FAAI	01120	253	01100		$\overline{}$
	PARAMETER	TEST CONDITIONS		2N32						2N32 MIN <i>N</i>	XAN	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = -10 \ \mu {\rm A}, \ I_{\rm E} = 0$		-50		-60		-50		-60		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ mA}, I_B = 0, See N$	ote 4	-40		-60		-40		-60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \ \mu A, \ I_C = 0$		-5		5		-5		5		٧
I _{CEV}	Collector Cutoff Current	$V_{CE} = -40 \text{ V}, V_{BE} = 3 \text{ V}$			-20		-20		-20		-20	nA
IBEV	Base Cutoff Current	$V_{CE} = -40 \text{ V}, \ V_{BE} = 3 \text{ V}$			50		50		50		50	nA
		$V_{CE} = -1 V$, $I_{C} = -0.1 \text{ mA}$	£	40		40		80		80		
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -1 V$, $I_{C} = -1 \text{ mA}$	See Note	45		45		90		90		
		$V_{CE} = -1 V$, $I_{C} = -10 \text{ mA}$	4	50	150		150		300	100	300	
		$V_{CE} = -1 V$, $I_C = -50 \text{ mA}$		15		15		30		30		
V _{RE}	Base-Emitter Voltage	$I_B = -1 \text{ mA}, I_C = -10 \text{ mA}$	See	-0.6	-0.9		-0.9					٧
▼ BE	Buse-Lilliller Vollage	$I_B = -5 \text{ mA}, I_C = -50 \text{ mA}$	Note		-1.2		<u>-1.2</u>		-1.2		-1.2	V
V	Collector-Emitter Saturation Voltage	$I_B = -1 \text{ mA}, I_C = -10 \text{ mA}$	4		-0.25		-0.25		-0.25		-0.25	٧
V _{CE(sat)}	Conecior-Eminier Survivion Voltage	$I_B = -5 \text{ mA}, I_C = -50 \text{ mA}$			0.5		-0.5		-0.5		-0.5	٧
h _{ie}	Small-Signal Common-Emitter Input Impedance			1	6	1	6	2	12	2	12	kΩ
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V},$ $I_{C} = -1 \text{ mA},$		50	200	50	200	100	400	100	400	
h _{ro}	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio	·	1 kHz		10x 10⁴		10 x 10⁴		20x 10⁻⁴		20x 10 ⁻⁴	
h _{oe}	Small-Signal Common-Emitter Output Admittance			4	40	4	40	10	60	10	60	μmho

- NOTES: 1. These values apply between 0 and 200 mA collector current when the base-emitter diade is open-circuited.
 - 2. Derate linearly to 200°C free-air temperature at the rate of 2.06 mW/deg.
 - 3. Derate linearly to 200°C case temperature at the rate of 6.9 mW/deg.
 - 4. These parameters must be measured using pulse techniques, $t_{p}=300~\mu s$, duty cycle $\leq 2\%$.
- † Trademark of Texas Instruments
- ‡Patent Pending
- § Patented by Texas Instruments
- *Indicates JEDEC registered data

TYPES 2N3250, 2N3250A, 2N3251, 2N3251A P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (continued)

PARAMETER		TEST CONDITIONS	2N3250 2N3250A	2N3251 2N3251A	UNIT
			MIN MAX	MIN MAX	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -20 \text{ V}, I_{C} = -10 \text{ mA}, f = 100 \text{ MHz}$	2.5	· 3	
f _T	Transition Frequency	$V_{CE} = -20 \text{ V}, I_{C} = -10 \text{ mA}, \text{ See Note 5}$	250	300	MHz
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -10 \text{ V}, I_E = 0, \qquad f = 100 \text{ kHz}$	6	6	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -1 \text{ V}, I_{C} = 0, \qquad f = 100 \text{ kHz}$	8	8	pF
r₀′C₀	Collector-Base Time Constant	$V_{CE} = -20 \text{ V}, I_{C} = -10 \text{ mA}, f = 31.8 \text{ MHz}$	250	250	ps

NOTE 5: To obtain f_T , the $|h_{fo}|$ response with frequency is extrapolated at the rate of -6 dB per octave from f=100 MHz to the frequency at which $|h_{fo}|=1$.

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N3250 2N3250A	2N3251 2N3251A	UNIT
			MAX	MAX	
N	NF Spot Noise Figure	$V_{CE} = -5 \text{ V}, I_{C} = -100 \mu\text{A}, R_{G} = 1 \text{k}\Omega, f = 100 \text{Hz}$	6	6	dB

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	2N3250 2N3250A MAX	2N3251 2N3251A MAX	UNIT
t _d	Delay Time	$I_{\rm C} = -10$ mA, $I_{\rm B(1)} = -1$ mA, $V_{\rm BE(off)} = 0.5$ V,	35	35	ns
t _r	Rise Time	$R_L=275~\Omega$, See Figure 1	35	35	ns
t _s	Storage Time	$I_C = -10 \text{ mA}, I_{B(1)} = -1 \text{ mA}, I_{B(2)} = 1 \text{ mA},$	175	200	ns
tf	Fall Time	$R_L = 275 \Omega$, See Figure 2	50	50	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for delay and rise times is calculated using the minimum value of V_{RE}. Nominal base currents for storage and fall times are calculated using the maximum value of V_{RE}.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 2 — STORAGE AND FALL TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{out} = 50 \ \Omega$, duty cycle = 2%.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ ns, $R_{\rm in} \geq 100$ k Ω .

P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

• High ft - 500 Mc Min

*mechanical data

*absolute maximum ratings at 25°C free-air	temperature (unless otherwise noted)
--	--------------------------------------

Collector-Base Voltage	•										. –6 v
Collector-Emitter Voltage (See Note 1)											
Emitter-Base Voltage											
Continuous Device Dissipation at (or below)											
Continuous Device Dissipation at (or below)											
Storage Temperature Range					•		•	-65	°C	to	200°C
Lead Temperature 1/4 Inch from Case for 60	Seco	onds									300°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	1	EST CONDIT	MIN	MAX	UNIT	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = -100 \mu a$	I _E =0		-6		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ ma},$	I _B =0,	See Note 4	-6		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -100 \ \mu a$	Λ ^{RE} =0		6		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -100 \mu a$,	I _c =0		-4		٧
	Collector Cutoff Current	V _{CE} =−3 v,				-10	na
ICES	Collector Colon Colleni	V _{CE} =−3 v,	$V_{BE}=0$,	T _A = 125°C		-10	μα
I _B	Base Current	V _{CE} =−3 v,				10	na
		$V_{CE}=-0.5 v$	$I_{C}=-1$ ma		15		
h _{FE}	Static Forward Current	V _{CE} =-0.3 v,			30	120	
	Transfer Ratio	V _{CE} =−0.3 v,	I _C =-10 ma,	T _A =-55°C	12		
		V _{CE} =−1 v,	I _C =-50 ma,	See Note 4	20		
		$I_B = -100 \mu a$,	$I_{c}=-1$ ma		-0.7	-0.8	٧
V _{BE}	Base-Emitter Voltage	I _B =-1 ma,	$I_{C}=-10$ ma		-0.8	-1	٧
		I _B =−5 ma,	I _C =-50 ma,	See Note 4		-1.5	٧
		$I_B = -100 \mu a$,	$I_{C}=-1$ ma			-0.15	٧
v	Collector-Emitter Saturation Voltage	I _B =-1 ma,	$I_C = -10 \text{ ma}$			-0.16	٧
V _{CE(sat)}	Conecior-Emilier Saloration Voltage	I _B =−1 ma,	I _C =-10 ma,	T _A = 125°C		-0.23	٧
		I _B =-5 ma,	I _C =-50 ma	, See Note 4		-0.5	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} =-5 v,	I _C =-10 ma,	f=100 Mc	5		
Copo	Common-Base Open-Circuit Output Capacitance	V _{CB} =-5 v,	l _E =0,	f=140 kc		3.5	pf
C _{ibo}	Common-Base Open-Circuit Input Capacitance	V _{EB} =-0.5 v,	I _C =0,	f=140 kc		3.5	pf

NOTES: 1. This value applies between 10 na and 10 ma collector current when the base-emitter diode is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 1.72 mw/C°.
- 3. Derate linearly to 200°C case temperature at the rate of 5 mw/C°.
- 4. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

*switching characteristics at 25°C free-air temperature

PA	RAMETER	TEST CONDITIONS†	MAX	UNIT
ton	Turn-On Time	$I_C = -10 \text{ ma}, I_{B(1)} = -0.5 \text{ ma}, I_{B(2)} = 0.5 \text{ ma}, V_{BE(off)} = 1.5 \text{ v},$	60	nsec
t _{off}	Turn-Off Time	$R_L = 130 \Omega$, See Figure 1	60	nsec
t _s	Storage Time	$I_C = -10 \text{ ma}, I_{B(1)} = -10 \text{ ma}, I_{B(2)} = 14 \text{ ma}, See Figure 2$	30	nsec

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

FIGURE 2 - STORAGE TIME

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{out} = 50~\Omega$, \mathbf{I}_r , $\mathbf{I}_f \leq 1~\mathrm{nsec}$, PW $> 100~\mathrm{nsec}$. b. Waveforms are manitored on an oscilloscope with the following characteristics: $\mathbf{I}_r \leq 1~\mathrm{nsec}$, $\mathbf{R}_{in} \geq 100~\mathrm{k}~\Omega$, $\mathbf{C}_{in} \leq 5~\mathrm{pf}$.

^{*}Indicates JEDEC registered data

DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- Electrically Identical to 2N2906, 2N2906A, 2N2907, and 2N2907A in Space-Saving TO-46 Package
- High Breakdown Voltage Combined With Very Low Saturation Voltage

*mechanical data

absolute maximum ratings at 25°C	free-air	tempe	erature	(unless	otherwise	noted)	2N3485 2N3485A 2N3486 2N3486A
*Collector-Base Voltage .							–60 v –60 v
*Collector-Emitter Voltage (Se	e Note 1)						
*Emitter-Base Voltage							–5 v –5 v
*Collector Current							←— 0.6 a ——
Continuous Device Dissipation	n at (or be	low) 25	°C Free-	Air Temp	erature (See	Note 2)	← 0.4 w →
*Continuous Device Dissipation	n at (or be	elow) 25'	°C Case	Tempero	iture (See No	ote 3)	\leftarrow 2 w \rightarrow
*Storage Temperature Range							-65°C to +200°C
Lead Temperature 1/4 Inch fr	om Case	for 10 S	seconds				←— 300°C—→

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				2N:	3485	2N3	486	2N3	485A		486A	UNIT
	PARAMETER	TEST CONDITIONS	5	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\mathrm{C}}=-10~\mu\mathrm{a},~I_{\mathrm{E}}=0$		60		-60		60		-60		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C}=-10$ ma, $I_{\rm B}=0$,	See Note 4	–40		–40		60		-60		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -10 \mu a, \ I_{C} = 0$		5		–5		– 5		-5		٧
•	C 11 C . 11 C	$V_{CB} = -50 \text{ v}, I_{E} = 0$			-20		-20		-10		-10	na
Ісво	Collector Cutoff Current	$V_{CB} = -50 \text{ v}, I_E = 0,$	$T_A = 150$ °C		-20		-20		-10		-10	μ a
ICEV	Collector Cutoff Current	$V_{CE} = -30 \text{ v}, \ V_{BE} = 0.5 \text{ v}$			-50		-50		-50		-50	na
I _{BEV}	Base Cutoff Current	$V_{CE} = -30 \text{ v}, \ V_{BE} = 0.5 \text{ v}$			50		50		50		50	na
		$V_{CE} = -10 \text{ v}, \ \ I_{C} = -100 \ \mu \text{a}$		20		35		40		75		
		$V_{CE} = -10 \text{ v}, I_{C} = -1 \text{ ma}$		25		50		40		100		
	Static Forward Current	$V_{CE} = -10 \text{ v}, I_{C} = -10 \text{ ma}$		35		75		40		100		
h _{FE}	Transfer Ratio	$V_{CE} = -10 \text{ v}, I_{C} = -150 \text{ ma}$		40	120	100	300	40	120	100	300	
		$V_{CE} = -10 \text{ v}, I_{C} = -500 \text{ ma}$	1	20		30		40		50		
		$V_{CE} = -1 \text{ v}, I_{C} = -150 \text{ ma}$	See	20		50		20		50		
v	David Carleton Vale	$I_B = -15 \text{ ma}, I_C = -150 \text{ ma}$	Note		-1.3		-1.3		-1.3		-1.3	٧
V _{BE}	Base-Emitter Voltage	$I_B = -50 \text{ ma}, I_C = -500 \text{ ma}$	4		-2.6		-2.6		-2.6		-2.6	٧
	Collector-Emitter	$I_B = -15 \text{ ma}, \ I_C = -150 \text{ ma}$	1		-0.4		-0.4		-0.4		-0.4	٧
V _{CE(sat)}	Saturation Voltage	$I_B = -50 \text{ ma}, \ I_C = -500 \text{ ma}$	1		-1.6		-1.6		-1.6		-1.6	٧

NOTES: 1. This value applies between 0 and 100 ma collector current when the base-emitter diode is open circuited.

- 2. Derate linearly to 200 °C free-air temperature at the rate of 2.28 mw/C°.
- *Indicates JEDEC registered data.

- 3. Derate linearly to 200°C case temperature at the rate of 11.43 mw/C°.
- 4. These parameters must be measured using pulse techniques. PW \leq 300 μ sec, Duty Cycle ≤ 2%.

*electrical characteristics at 25°C free-air temperature

	PARAMETER		TEST CONDITIO	ONS		TYPES MAX	UNIT
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -20 \text{ v,}$	$I_{C}=-50$ ma,	f = 100 Mc	2		
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -10 \text{ v},$	I _E = 0,	f = 100 kc		8	pf
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -2 v$,	I _C = 0,	f = 100 kc		30	pf

*switching characteristics at 25°C free-air temperature

	PARAMETER	Ti	ST CONDITIONS	ALL TYPES MAX	UNIT
t _d	Delay Time	$I_{\rm C} = -150 {\rm ma}$	$I_{B(1)} = -15 \text{ ma}, \ V_{BE(off)} = 0,$	10	nsec
tr	Rise Time	$R_L = 200 \Omega$,	See Figure 1	40	nsec
t _s	Storage Time	$I_{\rm C} = -150 {\rm ma}$	$I_{B(1)} = -13 \text{ ma}, I_{B(2)} = 17 \text{ ma},$	80	nsec
tr	Fall Time	$R_L = 37 \Omega$	See Figure 2	30	nsec

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $t_{out} = 50 \text{ }\Omega$, $t_r \le 2 \text{ nsec}$, $t_f \le 2 \text{ nsec}$, PW = 200 nsec, PRR = 150 pps. b. Waveforms are manitored on an oscilloscope with the following characteristics: $t_r \leq 5$ nsec, $R_{in} = 10$ M Ω .

^{*}Indicates JEDEC registered data.

HIGH-VOLTAGE TRANSISTORS FULLY CHARACTERIZED FOR HIGH-SPEED, LOW-NOISE, MEDIUM-POWER SWITCHING AND GENERAL-PURPOSE AMPLIFIER APPLICATIONS

- h_{FE} Guaranteed from 100 μ A to 100 mA
- Made with TRI-REL[†] Redundant Stabilization (Field-Relief Electrode[‡],
 Special Oxide Passivation, Annular Guard Rina[§])

*mechanical data

Device types 2N3494 and 2N3495 are in JEDEC TO-5 packages. Device types 2N3496 and 2N3497 are in JEDEC TO-18 packages.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3494	2N3495	2N3496	2N3497	UNIT
Collector-Base Voltage	80	-120	80	-120	٧
Collector-Emitter Voltage (See Note 1)	-80	-120	-80	-120	٧
Emitter-Base Voltage	-4.5	-4.5	-4.5	-4.5	٧
Continuous Collector Current	-100	-100	-100	-100	mA
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Notes 2 and 3)	0.6	0.6	0.4	0.4	w
Storage Temperature Range		-65	to 200		°C
Lead Temperature 1/16 Inch from Case for 10 Seconds		3	00		°C

NOTES: 1. These values apply between 0 and 100 mA collector current when the base-emitter diode is open-circuited.

- 2. Derate 2N3494 and 2N3495 linearly to 200°C free-air temperature at the rate of 3.43 mW/deg. See Figure 3.
- 3. Derate 2N3496 and 2N3497 linearly to 200°C free-air temperature at the rate of 2.28 mW/deg. See Figure 4.

†Trademark of Texas Instruments

‡Patent Pending

§Patented by Texas Instruments

*electrical characteristics at 25°C free-air temperature

			TO-5 →	2N3			495	
	PARAMETER	TEST CONDITIONS	TO-18→	2N3 MIN	496 MAX	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = -10 \ \mu {\rm A}, I_{\rm E} = 0$		-80		-120		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = -10 \text{ mA}, I_{B} = 0,$	See Note 4	-80		-120		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \ \mu A, I_C = 0$		-4.5		-4.5		٧
	Collector Cutoff Current	$V_{CB} = -50 \text{ V}, I_{E} = 0$			-0.1			μA
ICBO	Collector Cutorr Cutrent	$V_{CB} = -90 \text{ V}, I_{E} = 0$					-0.1	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -3 V$, $I_C = 0$			-2 5		25	nA
		$V_{CE} = -10 \text{ V}, I_{C} = -100 \ \mu\text{A}$		35		35		
	Static Forward Current	$V_{CE} = -10 \text{ V}, I_{C} = -1 \text{ mA}$	See	40		40		
h _{FE}	Transfer Ratio	$V_{CE} = -10 \text{ V}, I_{C} = -10 \text{ mA}$	Note	40		40		
	Transfer Name	$V_{CE} = -10 \text{ V}, I_{C} = -50 \text{ mA}$	4	40		40		
		$V_{CE} = -10 \text{ V}, I_{C} = -100 \text{ mA}$	<u> </u>	35				
V _{BE}	Base-Emitter Voltage	$I_B = -1 \text{ mA}, I_C = -10 \text{ mA},$	See Note 4	-0.6	-0.9		-0.9	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -1 \text{ mA}, I_C = -10 \text{ mA},$	See Note 4		-0.3		-0.35	V
h _{ie}	Small-Signal Common-Emitter Input Impedance	V _{CE} = -10 V.		0.1	1.2	0.1	1.2	kΩ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$I_{CE} = -10 \text{ V},$ $I_{C} = -10 \text{ mA}.$		40	300	40	300	
h _{re}	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio	I _C — -10 IIIA,	f = 1 kHz		2 x 10 ⁻⁴		2 x 10-4	
h∞	Small-Signal Common-Emitter Output Admittance		1 — 1 KHZ		300		300	μ mho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, I_{C} = -20 \text{ mA},$	f = 100 MHz	2		1.5		
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB}=-10\;V, I_E=0,$	f = 100 kHz		7		6	pF
C _{ibo}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -2 V$, $I_{C} = 0$,	f = 100 kHz		30		30	pF
Re(h _{ie})	Small-Signal Common-Emitter Input Resistance	$V_{CE} = -10 \text{ V}, I_{C} = -20 \text{ mA},$	f = 300 MHz		30		30	Ω

NOTE 4: These parameters must be measured using pulse techniques. t $_{
m p}=$ 300 μ s, duty cycle \leq 2%.

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
ton	Turn-On Time	$I_C=-10$ mA, $I_{B(1)}=-1$ mA, $V_{BE(off)}=0$, $R_L=3$ k Ω , See Figure 1	300	ns
t _{off}	Turn-Off Time	$I_C=-10$ mA, $I_{B(1)}=-1$ mA, $I_{B(2)}=1$ mA, $R_L=3$ k Ω , See Figure 2	1	μς

^{*}Indicates JEDEC registered data

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for turn-on time is calculated using a minimum value of V_{BE}. Nominal base currents for turn-off times are calculated using the maximum value of V_{BE}.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - TURN-OFF TIME

NOTES: a. The input waveforms are supplied by a generator with 2 $_{\rm out} =$ 50 $\Omega.$

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 10$ ns, $R_{in} \geq 100$ k Ω .

*Indicates JEDEC registered data

THERMAL INFORMATION

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

Shipping Weight 1-lb 10-oz • \$10.00

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 •

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM

278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April 66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

- Recommended for Complementary Use With 2N3014
- High f_T: 350 Mc min at 10 v, 30 ma
- *mechanical data

 \bullet Low Guaranteed $V_{CE(sat)} {:}~0.18 \, v$ at 30 ma

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																			. –3	5 v
Collector-Emitter Voltage (See Note																				
Collector-Emitter Voltage (See Note	2) .																		. –2	0 v
Emitter-Base Voltage																			–	5 v
Continuous Collector Current															• `				-200	ma
Peak Collector Current (See Note 3)																			-500	ma
Continuous Device Dissipation at (or I	belo	w)	25°	C F	ree	-Ai	r Te	emp	erc	ıtur	e (See	: N	ote	4)				. 360 r	nw
Continuous Device Dissipation at (or I	belo	w)	25°	C	Case	e Te	emp	oerd	atur	e (See	· N	ote	5)					. 1.2	Ż W
Storage Temperature Range																-65	°C	to	+200	°C
Lead Temperature 1/4 Inch from Case	for	10	Sec	ond	٢.														. 300	°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	NS	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = -100 \mu {\rm a}, I_{\rm E} = 0$		- 35		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -10 {\rm ma}, \ I_{\rm B} = 0,$	See Note 6	- 20		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{C}=-100~\mu$ a, $V_{BE}=0$		- 35		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -100 \mu a, I_{C} = 0$		- 5		٧
I _{CES}	Collector Cutoff Current	$V_{CE} = -20 \text{ v}, V_{BE} = 0$			- 0.3	μ α
ICES	Collector Colori Colleni	$V_{CE} = -20 v, V_{BE} = 0,$	T _A = 125°C		– 40	μα
i _B	Base Current	$V_{CE} = -20 \text{ v}, V_{BE} = 0$			0.3	μα
		$V_{CE} = -0.4 \text{ v}, I_{C} = -10 \text{ ma}$		25		
l.		$V_{CE} = -0.4 \text{ v}, I_{C} = -30 \text{ ma}$	See	30	120	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -1 v$, $I_{C} = -100 ma$	Note	25		
		$V_{CE} = -0.4 \text{ v}, I_{C} = -30 \text{ ma},$	6	12		
		T _A = - 55°C				
		$I_8 = -1 \text{ma}, I_C = -10 \text{ma}$	See	- 0.75	 0.85	V
V _{BE}	Base-Emitter Voltage	$I_8 = -3 \text{ ma}, I_C = -30 \text{ ma}$	Note	- 0.75	- 0.95	٧
		$I_B = -10 \text{ ma}, I_C = -100 \text{ ma}$	6		- 1.20	٧
		$I_B = -1 \text{ ma}, I_C = -10 \text{ ma}$			- 0.18	٧
V	Collector-Emitter Saturation Voltage	$I_B = -3 \text{ ma}, I_C = -30 \text{ ma}$	See		- 0.18	٧
V _{CE(sat)}	Conecior-Emmier Juloidilon Vollage	$I_{B} = -10 \text{ ma}, I_{C} = -100 \text{ ma}$	Note		- 0.35	٧
		$I_B = -3 \text{ ma}, I_C = -30 \text{ ma},$	6		- 0.25	٧
L		T _A = 125°C				

- NOTES: 1. This value applies when the base-emitter diode is short-circuited.
 - 2. This value applies between 0 and 10 ma collector current when the base-emitter diode is open-circuited.
 - 3. This value applies for PW \leq 10 μ sec, Duty Cycle \leq 40%.
 - 4. Derate linearly to 175°C free-air temperature at the rate of 2.4 mw/(°.
 - 5. Derate linearly to 175°C case temperature at the rate of 8 mw/C°.
 - 6. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

TYPE 2N3829

P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 v, I _C = -30 ma, f = 100 Mc	3.5	
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -5 \text{ v}, I_E = 0, \qquad f = 140 \text{ kc}$	6	pf
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -0.5 \text{ v, } I_{C} = 0, \qquad f = 140 \text{ kc}$	10	pf

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	s† MIN MAX	UNIT
t _d	Delay Time	$I_{C} = -30 \text{ ma}, \qquad I_{B(1)} = -3 \text{ ma},$	$V_{BE(off)} = 0, 10$	nsec
tr	Rise Time	$R_L = 94 \Omega$, See Figure 1	15	nsec
t,	Storage Time	$I_{C} = -30 \text{ ma}, \qquad I_{B(1)} = -I_{B(2)} =$	= _3 ma, 50	nsec
t _f	Fall Time	$R_L = 94 \Omega$, See Figure 1	15	nsec
VCEO	_{NL)} ‡ Collector-Emitter Nonlatching Voltage	$I_{C(on)} = -200 \text{ ma}, I_{B(on)} = -20 \text{ m}$ $I_{B(off)} = 0,$ See Figure 2	na, —20	v

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

‡This characteristic is the highest value of collector supply voltage which may be safely used with a resistive-load switching circuit in which the collector current approaches —200 ma.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 2 — COLLECTOR-EMITTER NONLATCHING VOLTAGE TEST CIRCUIT

- NOTES: a. The input waveforms in Figure 1 are supplied by a pulse generator with the following characteristics: $\mathbf{Z}_{out} = 50 \ \Omega$, $\mathbf{t}_r \le 1 \ \text{nsec}$, PW $\ge 300 \ \text{nsec}$,
 - b. Waveforms of Figure 1 are monitored on an oscilloscope with the following characteristics: $t_r \leq 1$ nsec, $R_{in} \geq 100$ k Ω , $C_{in} \leq 5$ pf.
 - c. The input waveform in Figure 2 has the following characteristics: PW = \leq 10 μ sec, Duty Cycle \leq 2%.
 - d. Total collector shunt capacitance $C_T \leq 15$ pf.

TYPES 2N3962, 2N3963, 2N3964, 2N3965 P-N-P PLANAR SILICON TRANSISTORS

2012042

F-N-F FLANAR SILICON TRANSIST

FOR EXTREMELY LOW-LEVEL, LOW-NOISE, HIGH-GAIN, SMALL-SIGNAL AMPLIFIER APPLICATIONS

- Guaranteed hff at 10 μ A, TA = -55°C and 25°C
- Guaranteed Low-Noise Characteristics at 20 "A
- Made with TRI-REL[†] Redundant Stabilization (Field-Relief Electrode[‡], Special Oxide Passivation, Annular Guard Ring[‡])

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3962 2N3965	2N3963 2N3964
Collector-Base Voltage	. –60 V	–80 V −45 V
Collector-Emitter Voltage (See Note 1)	. –60 V	−80 V −45 V
Emitter-Base Voltage	. –6 V	–6 V –6 V
Continuous Collector Current	. —	- 200 mA →
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2		
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 3)	. ←	$1.2 \text{W} \longrightarrow$
Storage Temperature Range	65	5°C to 200°C →
Lead Temperature 1/4 Inch from Case for 60 Seconds	. —	300°C →

NOTES: 1. These values apply between 10 μ A and 5 mA collector current when the base-emitter diode is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 2.06 mW/deg. See Figure 1.
- 3. Derate linearly to 200°C case temperature at the rate of 6.85 mW/deg. See Figure 2.

†Trademark of Texas Instruments ‡Patent Pending §Patented by Texas Instruments *Indicates JEDEC registered data

TYPES 2N3962 THRU 2N3965 P-N-P PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	NS.		3962		3963		3964		3965	UNIT
		TEST CONDITIO			MAX		MAX		MAX		MAX	
V _{(BR)CBO}		$I_C = -10 \mu A$, $I_E = 0$		-60		-80		45		-60		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -5 \text{ mA}, I_B = 0,$	See Note 4.	60		-80		-45		-60		٧
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_C = -10 \mu A$, $I_B = 0$		⊸60		-80		-45		−60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \ \mu A, \ I_C = 0$		-6		1		-6		_ ←		٧
		$V_{CB} = -40 \text{ V}, I_{E} = 0$							-10			nA
I _{C8O}	Collector Cutoff Current	$V_{CB} = -50 \text{ V}, I_E = 0$		L	-10						-10	nA
		$V_{CB} = -70 \text{ V}, I_E = 0$					-10					nA
		$V_{CE} = -40 \text{ V}, V_{EB} = 0$				<u> </u>		<u> </u>	-10			nA
		V _{CE} = -50 V, V _{EB} = 0			-10	<u> </u>					-10	nA
I _{CES}	Collector Cutoff Current	V _{CE} = -70 V, V _{EB} = 0		ļ		<u> </u>	-10	<u> </u>		├		пA
		V _{CE} = -40 V, V _{EB} = 0	7 - 1000						-10	_	-10	μA
		V _{CE} = -50 V, V _{EB} = 0	T _A = 150°C		-10			-			-10	μA
I _{EBO}	Emitter Cutoff Current	$V_{CE} = -70 \text{ V}, V_{EB} = 0$ $V_{EB} = -4 \text{ V}, I_{C} = 0$		-	-10		-10 -10		-10		-10	μA nA
'EBO	Limiter Colori Collegii	$V_{CE} = -5 \text{ V}, I_{C} = -1 \mu \text{A}$		60	-10	60	-10	180		180	10	1111
		$V_{CE} = -5 \text{ V}, I_{C} = -10 \mu\text{A}$		100	300	100	300	250	500	250	500	
		$V_{CE} = -5 \text{ V}, I_{C} = -10 \mu\text{A},$	T. = -55°C	40	300	40	300	100	300	100	300	-
		$V_{CE} = -5 \text{ V}, I_{C} = -100 \mu\text{A}$	·A 22 1	100		100		250		250		<u> </u>
h	Static Forward Current	V _{CE} = -5 V, I _C = -1 mA		100	450	100	450	250	600	250	600	<u> </u>
h _{FE}	Transfer Ratio	$V_{CE} = -5 \text{ V}, I_{C} = -1 \text{ mA},$	T _A = 100°C		600		600		800		800	
		$V_{CE} = -5 \text{ V}, I_{C} = -10 \text{ mA},$	See Note 4	100		100		200		200		
		$V_{CE} = -5 \text{ V}, I_{C} = -50 \text{ mA},$	See Note 4	90		90		180		180	-	
		V _{CE} = -5 V, I _C = -50 mA,	$T_A = -55^{\circ}C$					90		90		
			See Note 4	45		45				90		
V _{RE}	Base-Emitter Voltage	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$			-0.9		-0.9		-0.9	<u> </u>	-0.9	V
	C.H. A. F. Inc.	$I_C = -50 \text{ mA}, I_B = -5 \text{ mA},$	See Note 4		-0.95	_	-0.95 .		-0.95	_	-0.95	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$	6 H . 4	:	-0.25		-0.25		-0.25	<u> </u>	-0.25	V
	Small-Signal Common-Emitter	$I_C = -50 \text{ mA}, I_B = -5 \text{ mA},$	See Note 4		-0.4		-0.4 _	<u> </u>	-0.4	_	-0.4	٧
h _{ie}	Input Impedance	V _{CF} = -5 V,		2.5	17	2.5	17	6	20	6	20	kΩ
	Small-Signal Common-Emitter	CE - 1,						-		-		-
h _{fe}	Forward Current Transfer Ratio			. 100	550	100	550	250	700	250	70 0	
	Small-Signal Common-Emitter	$I_{C} = -1 \text{ mA},$			10		10		10		10	
h _{re}	Reverse Voltage Transfer Ratio				x10 ⁻⁴		x10 ⁻⁴		x10 ⁻⁴		x10 ⁻⁴	
hoe	Small-Signal Common-Emitter		f = 1 kHz	5	40	5	40	5	50	5	50	μπћο
08	Output Admittance			Ľ		<u></u>		<u></u>		<u>_</u>		μυ
$ h_{fo} $	Small-Signal Common-Emitter	$V_{CE} = -5 \text{ V}, \ I_{C} = -0.5 \text{ mA},$	f = 20 MHz	2	8	2	8	2.5	8	2.5	8	
	Forward Current Transfer Ratio Common-Base Open-Circuit	C C		<u> </u>		<u> </u>		ļ				
C ^{opo}	Output Capacitance	$V_{CB} = -5 \text{ V}, I_E = 0,$	f = 1 MHz	İ	6		6	l	6	1	6	pF
	Common-Base Open-Circuit			\vdash		<u> </u>		 				
(ibo	Input Capacitance	$V_{EB} = -0.5 \text{ V, } I_{C} = 0,$	f == 1 MHz	ı	15	i	15	l	15	I	15	pF

NOTE 4: These parameters must be measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle $\leq 1\%$.

^{*}Indicates JEDEC registered data

TYPES 2N3962 THRU 2N3965 P-N-P PLANAR SILICON TRANSISTORS

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N3962 2N3963 MAX	2N3964 2N3965 MAX	UNIT
		$V_{CE}=-5$ V, $I_{C}=-20~\mu$ A, $R_{G}=10~k\Omega$, $f=10~Hz$, Noise Bandwidth $=2~Hz$		8	dB
		$V_{CE} = -5 \text{ V, } I_{C} = -20 \mu\text{A, } R_{G} = 10 \text{ k}\Omega,$ $f = 100 \text{ Hz, } \text{Noise Bandwidth} = 15 \text{ Hz}$	10	4	dB
NF	Spot Noise Figure	$V_{CE}=-5$ V, $I_{C}=-20~\mu$ A, $R_{G}=10~k\Omega$, $f=1~kHz$, Noise Bandwidth = 150 Hz	3	2	dB
		$V_{CE}=-5$ V, $I_{C}=-20~\mu A$, $R_{G}=10~k\Omega$, $f=10~kHz$, Noise Bandwidth $=1.5~kHz$	3	2	dB
RF	Average Noise Figure	$V_{CE}=-5$ V, $I_{C}=-20~\mu$ A, $R_{G}=10~k\Omega$, Noise Bandwidth $=$ 15.7 kHz, See Note 5	3	2	dB

NOTE 5: Average Noise Figure is measured in an amplifier with low-frequency response down 3 dB at 10 Hz.

THERMAL INFORMATION

^{*}Indicates JEDEC registered data

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ALABAMA

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791 Birmingham, Alabama 35233

ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA

KIERULFF ELECTRONICS. INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix, Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015 R. V. WEATHERFORD COMPANY 1651 S. State College Blvd. (714) KI 7-7521

Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680 MERQUIP ELECTRONICS, INC.

7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. Indianapolis, Indiana 46219 RADIO DISTRIBUTING COMPANY 814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC. 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS DEMAMBRO ELECTRONICS

1095 Commonwealth Ave. (617) 787-1200 Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109

ELECTRONIC COMPONENTS FOR INDUSTRY 2605 South Hanley Rd./(314) MI 7-5505

St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. HARRISON EQUIPMENT COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY 301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC. Albuquerque, New Mexico 87108

NEW YORK

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013

ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800 Rochester, New York 14614 TI SUPPLY COMPANY

4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040 **NORTH CAROLINA**

ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429 MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102

NEWARK-HERRLINGER ELECTRONICS CORP.

112 E. Liberty St./(513) GA 1-5282 Cincinnati, Ohio 45210

W. M. PATTISON SUPPLY CO 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770

RIDC Park Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235 5240 Eim Street/(713) MO 6-2175 Houston, Texas 77036

1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

UTAH

STANDARD SUPPLY COMPANY 2524 Baylor Dr. S.E./(505) 247-1055 225 E. Sixth South St./(801) EL 5-2971 Salt Lake City, Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS. INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario

TI SUPPLY COMPANY Dorval, Quebec

WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR

MELBOURNE, Australia RADIO PARTS PTY, LTD. PERTH, Australia PRECISION ELECTRONICS BRISBANE, Australia DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS BRUSSELS IV, Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V, Denmark TEXAS INSTRUMENTS A/S

HELSINKI, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM, Sweden AB GOSTA BACKSTROM

ZURICH 32, Switzerland FABRIMEX AG ZURICH

> PARIS, FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

BULLETIN NO. DL-S 688216, APRIL 19

REVISED MAY 1968

TYPES 2N4058, 2N4059, 2N4060, 2N4061, 2N4062 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

SILECT† TRANSISTORS

- ENCAPSULATED IN PLASTIC
 - INSENSITIVE TO LIGHT
- HIGHLY MOISTURE RESISTANT

Recommended For Complementary Use With 2N3707 thru 2N3711

2N4058 2N4059 2N4060 2N4061 2N4062 For Low-Level, Low-Noise Applications

For General-Purpose, Low-Level, High-Gain Applications

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage											- 30 V
Collector-Emitter Voltage (See Not											
Emitter-Base Voltage											
Continuous Collector Current .											
Continuous Device Dissipation at (o											
Storage Temperature Range .											
Lead Temperature 1/4 Inch from Co											

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

* Indicates JEDEC registered data (typical data excluded).

†Trademark of Texas Instruments

‡Patent Pending

TYPES 2N4058 THRU 2N4062 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

PARAMETER		TEST CON	2N4058 MIN MA	2N4 K MIN	1059 MAX	2N4 MIN	060 MAX	2N4 MIN		2N4 MIN		UNIT	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = -1 mA,	$I_B = 0$	– 30	- 30		30		— 30		— 30		V
I _{CBO}	Collector Cutoff Current	V _{CB} = -20 V,	$I_{\rm E}=0$	— 10)	— 100		- 100		- 100	-	- 100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -6 V$,	I _C = 0	-10	0	— 100	-	- 100		- 100	•	– 100	nA
	Static Forward Current	$V_{CE} = -5 V$	$I_{\rm C} = -100~\mu{\rm A}$	100 40	0								
h _{FE}	Transfer Ratio	$V_{CE} = -5 V$	$I_C = -1 \text{ mA}$		45	660	45	165	90	330	180	660	
V _{BE}	Base-Emitter Voltage	$V_{CE} = -5 V$	$I_{C} = -1 \text{ mA}$	- 0.5 -	I — 0.5	-1	- 0.5	-1	- 0.5	-1	- 0.5	-1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = -0.5 mA,	$I_{\rm C} = -10~{\rm mA}$	– 0.	7	- 0.7		- 0.7		— 0.7		 0.7	V
	Small-Signal Common-Emitter	$V_{CE} = -5 V$, f = 1 kHz	$I_{C} = -100 \mu\text{A},$	100 55	0								
h _{fe}	Forward Current Transfer Ratio	$V_{CE} = -5 V,$ $f = 1 \text{ kHz}$	$I_{C}=-1$ mA,		45	800	45	250	90	450	180	800	

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N4	2N4058				
	PARAMEIER	TEST CONDITIONS	TYP	MAX	UNIT			
ÑĒ	Average Noise Figure	$ m V_{CE} = -5$ V, $ m I_{C} = -100~\mu A$, $ m R_{G} = 5$ k $ m \Omega$, Noise Bandwidth = 15.7 kHz, See Note 3	1.7	5	dB			

NOTE 3: Average Noise Figure is measured in an amplifier with low-frequency response down 3 dB at 10 c/s.

THERMAL INFORMATION

FIGURE 1

^{*}Indicates JEDEC registered data (typical data excluded).

TYPE 2N4423

P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

SILECT† TRANSISTOR FOR HIGH-SPEED SWITCHING APPLICATIONS

- Electrically Similar to the 2N2894
- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C method 106B. The transistor is insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage												. –12 V
Collector-Emitter Voltage (See Note 1))											12 V
Collector-Emitter Voltage (See Note 2)											12 V
Emitter-Base Voltage	• •											4 V
Continuous Collector Current											٠.	-200 mA
Continuous Device Dissipation at (or be	low)	25°C	Free	-Air T	empe	ature	(See	Note	3)			360 mW
Continuous Device Dissipation at (or be	low)	25°C	Lead	Temp	eratur	e (Se	e No	te 4)				500 mW
Storage Temperature Range												
Lead Temperature 1/6 Inch from Case 1	for 10) Sec	onds								Ϊ.	260°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TECT	CONDITIONS		MIN	MAX	HAUT
						MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C}=-10~\mu$ A,	$I_E = 0$		-12		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ mA},$	$I_B=0$,	See Note 5	-12		٧
V(BR)CES	Collector-Emitter Breakdown Voltage	$I_{\rm C}=-10~\mu$ A,	$V_{BE} = 0$		-12		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -100 \mu A$	I _C = 0		-4		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = -6 V$,	I _E = 0,	$T_A = 70$ °C		-1	μA
I _{CES}	Collector Cutoff Current	$V_{CE} = -6 V$,	$V_{BE} = 0$			-80	nA
I _{EBO}	Emitter Cutoff Current	V _{EB} = _3 V,	I _C = 0			-20	nA
		$V_{CE} = -0.3 V$,	$I_{C} = -10 \text{ mA}$	See	30		
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -0.5 \text{ V},$	$I_{\rm C} = -30~{\rm mA}$	Note	40	150	
		$V_{CE} = -1 V$	$I_{\rm C} = -100 \mathrm{mA}$	5	20		
		$I_B = -1 \text{ mA},$	$I_C = -10 \text{ mA}$	See	-0.76	-0.98	٧
V _{BE}	Base-Emitter Voltage	$I_B = -3 \text{ mA},$	$I_{\rm C} = -30 {\rm mA}$	Note	-0.82	-1.2	٧
		$I_B = -10 \text{ mA},$	$I_{\rm C} = -100~{\rm mA}$	5		-1.7	٧
		$I_B = -1 \text{ mA},$	$I_{\rm C}=-10~{\rm mA}$	See		-0.15	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -3 \text{ mA},$	$I_{\rm C} = -30~{\rm mA}$	Note		-0.2	٧
		$I_B = -10 \text{ mA},$	$I_C = -100 \text{ mA}$	5		-0.5	٧

- NOTES: 1. This value applies when the base-emitter diode is short-circuited.
 - 2. This value applies between 0 and 200 mA collector current when the base-emitter diade is open-circuited. Maximum rated voltage and 200 mA collector current may be simultaneously applied provided the time of application is 10 μs or less and the duty cycle is 2% or less.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
 - Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.
 - 5. These parameters must be measured using pulse techniques, $t_{
 m p}=$ 300 $\mu{
 m s}$, duty cycle \leq 2%.

*Indicates JEDEC registered data †Trademark of Texas Instruments ‡Patent Pending

TYPE 2N4423

P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

*electrical characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
h _{fo} Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=-5$ V, $I_{C}=-30$ mA, $f=100$ MHz	4	
C _{cb} Collector-Base Capacitance	$V_{CB} = -5 \text{ V}, I_E = 0, \qquad \qquad f = 1 \text{ MHz}, $ See Note 6	6	рF
C _{ob} Emitter-Base Capacitance	$V_{EB} = -0.5 \text{ V}, I_{C} = 0, \qquad \text{f} = 1 \text{ MHz},$ See Note 6	6	рF

NOTE 6: C_{cb} and C_{eb} are measured using three-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

*switching characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIO	NS†	MAX	UNIT
t _d Delay Time			15	ns
t _r Rise Time	$I_{C} = -30 \text{ mA}, I_{B(1)} = -3 \text{ mA},$ $R_{I} = 93 \Omega.$	$V_{BE(off)} = 0$,	30	ns
t _{on} Turn-On Time	R _L = 93 12,	See Figure 1	40	ns
t _s Storage Time			40	ns
t _f Fall Time	$I_{C} = -30 \text{ mA}, I_{B[1]} = -3 \text{ mA},$ $R_{L} = 93 \Omega,$	$I_{B(2)}=3 \text{ mA},$	15	ns
t _{off} Turn-Off Time	R _L 93 12,	See Figure 2	50	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{out} = 50~\Omega$, $\mathbf{r}_r \leq 1~\mathrm{ns}$, $\mathbf{t}_p \geq 200~\mathrm{ns}$, duty cycle $\leq 2\%$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathbf{t}_r \leq 1~\mathrm{ns}$, $\mathbf{R}_{in} \geq 100~\mathrm{k}\Omega$, $\mathbf{C}_{in} \leq 10~\mathrm{pF}$.

SILECT[†] TRANSISTORS

Encapsulated in Plastic for Such Applications as Medium-Power Amplifiers, Class B Audio Outputs, and Hi-Fi Drivers

- Electrically Equivalent to 2N3702 and 2N3703
- For Complementary Use with 2N5449, 2N5450, and 2N5451
- Rugged, One-Piece Construction Features Standard 100-mil TO-18 Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N5447	2N5448
Collector-Base Voltage	-40 V	-50 V
Collector-Emitter Voltage (See Note 1)	–25 V	-30 V
Emitter-Base Voltage	−5 V	-5∨
Continuous Collector Current	←-20 0) mA →
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2).	← 360	$mW \rightarrow$
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Note 3)	← 500	$mW \rightarrow$
Storage Temperature Range	-65°C 1	to 150°C
Lead Temperature 1 6 Inch from Case for 10 Seconds	← 26	0° C \longrightarrow

- NOTES: 1. These values apply when the base-emitter diade is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
 - 3. Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the collector lead 1/16 inch from the case.

*Indicates JEDEC registered data †Trademark of Texas Instruments ‡Patent pending

TYPES 2N5447, 2N5448 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS		5447		448	UNIT
		TEST CONDITIONS	MIN	MAX	MIN	MAX	UNII
$V_{\{BR\}CBO}$	Collector-Base Breakdown Voltage	$I_{C} = -100 \mu A, I_{E} = 0$	-40		-50		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ mA}, I_B = 0,$ See Note 4	-25		-30		γ
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -100 \ \mu\text{A}, \ I_C = 0$	- 5		-5		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = -20 \text{ V}, I_E = 0$		-100		-100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -3 V$, $I_C = 0$		-100		-100	nA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -5 \text{ V}, I_{C} = -50 \text{ mA}, \text{See Note 4}$	60	300	30	150	
V _{BE}	Base-Emitter Voltage	$V_{CE} = -5 \text{ V}, I_{C} = -50 \text{ mA}, \text{ See Note 4}$	-0.6	-1	-0.6	-1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -5 \text{ mA}, I_C = -50 \text{ mA}, \text{See Note 4}$		-0.25		-0.25	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ V}, I_{C} = -50 \text{ mA}, \text{ f} = 20 \text{ MHz}$	5		5		-
Ссь	Collector-Base Capacitance	$V_{CB} = -10 \text{ V}, I_E = 0, \qquad \qquad f = 1 \text{ MHz},$ See Note 5		12		12	pF

NOTES: 4. These parameters must be measured using pulse techniques. tp = 300 μ s, duty cycle \leq 2%. 5. Ccb is measured using three-terminal measurement techniques with the emitter guarded.

THERMAL INFORMATION

FIGURE 1

FIGURE 2

^{*}Indicates JEDEC registered data

TYPES 2N5447, 2N5448 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL APPLICATION DATA

SILICON 15-WATT QUASI-COMPLEMENTARY POWER AMPLIFIER

TYPICAL PERFORMANCE SPECIFICATIONS																
Continuous Output Power	_									15	w	@ ().1	5%	TI	НD
Power Bandwidth @ 7.5 W											20	H	z –	- 2	0 k	Hz
Frequency Response ± 0.5 dB											10	H	z –	- 5	0 k	Hz
Total Harmonic Distortion @ 7.5 W														. (0.0	6%
Intermodulation Distortion @ 7.5 W														. (0.1	5%
Sensitivity @ 15 W														85	0 n	n V
Input Impedance															1 N	ſΩ
Hum and Noise: "C" Weighting																
Input Shorted															95	dΒ
Input Open															85	dΒ
Damping Factor																48

TI World-Wide Sales Offices

ALABAMA

3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Sahara Office Park Bldg., Suite 111 Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 - P.O. Box 5012 Dallas, Texas 75222 214-238-4861

3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°. France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany

Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato **Buenos Aires, Argentina**

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPE 2N918

N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR USE IN VHF AND UHF AMPLIFIER AND OSCILLATOR APPLICATIONS TO THE KILOMEGACYCLE REGION

- Low Noise Figure 3 db tvp at 60 mc
- High Neutralized Power Gain 18 db typ at 200 mc
- High Oscillator Power Output 50 mw typ at 500 mc
- Low Collector-Base Time Constant 8 psec typ

*mechanical data

\$TO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																		. 30 v
Collector-Emitter Voltage (See Note 1).																		. 15 v
Emitter-Base Voltage																		
Collector Current																		
Total Device Dissipation at (or below) 25°	C F	ree-	Air	Tem	per	atu	re (Se	e N	ote	2))					. 2	00 mw
Total Device Dissipation at (or below) 25°																		
Operating Collector Junction Temperatur	e			•														200°C
Storage Temperature Range													_	- 65	°C	to	+	200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_C = 1\mu a$, $I_E = 0$	30			٧
BVCEO	Collector-Emitter Breakdown Voltage	I _C = 3 ma, I _B = 0 -	→ 15			٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu a, I_C = 0$	3			٧
	Collector Cutoff Current	$V_{CB} = 15 v, I_E = 0$			10	na
ICBO	Collector Cutoff Current	$V_{CB} = 15 \text{ v}, I_{E} = 0, T_{A} = 150 ^{\circ}\text{C}$			1	μ_0
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 1v$, $I_{C} = 3 \text{ ma}$	20			
V _{BE}	Base-Emitter Voltage	I _B = 1 ma, I _C = 10 ma			1.0	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 1 ma, I _C = 10 ma			0.4	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ v}, I_C = 4 \text{ ma}, f = 100 \text{ mc}$	6.0	9.0		
Cop	Common-Base Open-Circuit	$V_{CB} = 10 \text{ v, } I_{E} = 0, \qquad f = 140 \text{ kc}$			1.7	pf
	Output Capacitance	$V_{CB} = 0$, $I_E = 0$, $f = 140 \text{ kc}$			3.0	pf
CiP	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 v, I_C = 0, \qquad f = 140 kc$			2.0	pf
r₀′C₀	Collector-Base Time Constant	$V_{CB} = 10 \text{ v}, I_{E} = -4 \text{ ma}, f = 79.8 \text{ mc}$		8		psec

NOTES: 1. This value applies when the base-emitter diade is open-circuited.

- 2. Derate linearly to 200°C free-air temperature at the rate of 1.14 mw/C°.
- 3. Derate linearly to 200°C case temperature at the rate of 1.71 mw/C°.

†The fourth lead (case) is floating for all measurements except Power Gain. For this parameter the fourth lead is grounded.

^{*}Indicates JEDEC registered data (typical data excluded).

N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
NF	Spot Noise Figure	$V_{CE}=6$ v, $I_{C}=1$ ma, $R_{G}=400$ Ω f = 60 mc	,	3	6	db
Gpe	Neutralized Small-Signal Common- Emitter Insertion Power Gain	$V_{CB} = 12 \text{ v}, I_{C} = 6 \text{ ma}, f = 200 \text{ mc}$ (See Figure 1)	15	18		ďЬ
P _o	Oscillator Power Output	V _{CB} = 15 v, I _C = 8 ma, f = 500 mc	30	50		mw
η	Collector Efficiency	(See Figure 2)	25%	42%		

[†]The fourth lead (case) is floating for all measurements except
Power Gain. For this parameter the fourth lead is grounded.

PARAMETER MEASUREMENT INFORMATION

*CIRCUIT SCHEMATIC C2 FROM 50 Ω SOURCE C1 C2 C7 TO 50 Ω DETECTOR

NEUTRALIZATION ADJUSTMENT PROCEDURE

After tuning amplifier as for normal gain measurement, reverse input and output connections and tune L2 for minimum indication on detector. This sequence is repeated until optimum settings are obtained for all variables.

- * CIRCUIT COMPONENT INFORMATION
- C3: 1.5 7.5 pf R2: $1 \text{ k}\Omega$
- C4 and C5: 0.01 µf
- L1: 3½ T #16 AWG, $\frac{1}{16}$ ID, $\frac{1}{16}$ length Turns Ratio \approx 2 to 1
- L2: $0.4 0.65\mu h$, Miller #4303 (or equivalent).
- L3: 8 T #16 AWG, ½" ID, ¾" length, Turns Ratio ≈ 8 to 1
- L4: 200 mc RFC

FIGURE 1 - NEUTRALIZED 200 mc INSERTION POWER GAIN

CIRCUIT SCHEMATIC

CIRCUIT COMPONENT INFORMATION

C1 and C3: 1000 pf

C2: 50 pf

C4: 75 pf

R1: 2.2 kΩ

L1, L3, and L4: 0.2 µh, Ohmite Z460 (or equivalent).

L2: 2 T #16 AWG, %" OD, 1¼" length Double Stub Tuner consists of the following plumbing (or equivalent):

2 GR Type 874 TEE

1 GR Type 874-D20 Adjustable Stub

1 GR Type 874-LA Adjustable Line

1 GR Type 874-WN3 Short-Circuit Termination

* FIGURE 2 - 500 mc OSCILLATOR POWER OUTPUT

^{*}Indicates JEDEC registered data (typical data excluded).

REPLACES BULLETIN NO. DL-S 644729, JANUARY 1964

TYPES 2N3570, 2N3571, 2N3572 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

FOR APPLICATIONS REQUIRING LOW NOISE FIGURE AND SUPERIOR SMALL-SIGNAL PERFORMANCE FROM VHF TO 1.5 GIGACYCLES

2N3570 (Formerly TIX3015) Features:

- Guaranteed Noise Figure 7.0 db max at 1 Gc
- Guaranteed Gain-Bandwidth Product 1.5 Gc

description

• Guaranteed rb'Cc — 8 psec max

These transistors are ideally suited for such applications as amplifiers, oscillators, and mixers. The guaranteed minimum gain-bandwidth products range from 1 to 1.5 Gc. Guaranteed minimum calculated f_{max} ranges from 1.7 to 2.7 Gc. These features coupled with low noise figures insure VHF through L-band amplifier and oscillator capability.

*mechanical data

TTO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximun	ı ratings at 2	5°C free-air	temperature	(unless	otherwise n	ıoted)
-------------------	----------------	--------------	-------------	---------	-------------	--------

Collector-Base Voltage	. 30 v 25 v 25 v
Collector-Emitter Voltage (See Note 1)	. 15 v 15 v 13 v
Emitter-Base Voltage	. 3v 3v 3v
Collector Current	. ← 50 ma →
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature	
(See Note 2)	. ← 200 mw →
Continuous Device Dissipation at (or below) 25°C Case Temperature	·
(See Note 3)	. ← 350 mw →
Storage Temperature Range	
Lead Temperature & Inch from Case for 10 Seconds	∠ 300°C ->

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST COMPLICANS		2N35	70	2N:	3571	2N:	3572	
	FARAMEIER	TEST CONDITIONS†	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	$I_C = 1 \mu a$, $I_E = 0$	30			25		25		٧
BACEO	Collector-Emitter Breakdown Voltage	$I_C = 2 \text{ ma}, I_B = 0,$ See Note 4	15			15		13		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = 10 \mu a, I_C = 0$	3			3		3		٧
1	Collector Cutoff Current	$V_{CB}=6 v, I_E=0$			10		10		10	na
ICBO	Conector Coron Correni	$V_{CB} = 6 \text{ v}, I_E = 0, T_A = 150^{\circ}\text{C}$			1		1		1	μa
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 6 \text{ v}, I_{C} = 5 \text{ ma}$	20		150	20	200	20	300	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 6 \text{ v}, I_C = 5 \text{ ma}, f = 1 \text{ kc}$	20		200	20	250	20	350	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 6 \text{ v}, I_{C} = 5 \text{ ma}, f = 400 \text{ Mc}$	3.75	4.25	6	3	6	2.5	6	
Cep	Collector-Base Capacitance	$V_{CB}=6$ v, $I_{E}=0$, $f=1$ Mc, See Note 5		0.60	0.75		0.85		0.85	pf
ι ^ρ ζο	Collector-Base Time Constant	$V_{CB}=6$ v, $I_{E}=-5$ ma, $f=79.8$ Mc	1	5	8	1	10	1	13	psec

- NOTES: 1. This value applies between 0 and 15 ma collector current when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 200°C free-air temperature at the rate of 1.14 mw/C°.
 - 3. Derate linearly to 200°C case temperature at the rate of 2 mw/C°.
 - 4. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.
 - 5. Cab is measured using three-terminal measurement techniques with case and emitter guarded.

†The fourth lead (case) is grounded for all measurements except C_{cb} and Oscillator Power Output.

*Indicates JEDEC registered data (typical data excluded).

TYPES 2N3570, 2N3571, 2N3572 N-P-N EPITAXIAL PLANAR SILICON TRANSISTORS

*operating characteristics at 25°C free-air temperature

ſ		TEST COMPUTIONS	2N3570		2N3571		2N3572		UNIT
١	PARAMETER	TEST CONDITIONS†	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
١	NF Cont Nation Figure	$V_{CB}=6$ v, $I_{E}=-2$ ma, $R_{G}=50$ Ω , $f=1$ Gc, See Note 6	6	7					db
1	NF Spot Noise Figure	$V_{CB}=6$ v, $I_E=-2$ ma, $R_G=100$ Ω , $f=450$ Mc				4		6	db

†The fourth lead (case) is grounded for all measurements except Cob and Oscillator Power Output.

operating characteristics at 25°C case temperature

PARAMETER TEST CONDITIONS		TEST COMPLETIONS		2N3570	UNIT	
1	PARAMEIER	IEST CONDITIONS	MIN	TYP	MAX	01411
	P _o Oscillator Power Output	$V_{CC}=20 \text{ v, } I_{C}=15 \text{ ma, } f=1 \text{ Gc,}$ See Figure 1 and Note 7		60		mw

TYPICAL CHARACTERISTICS AT TA = 25°C

NOTE 6: For detailed information on measurement technique, write for "Transistor Noise Figure Measurement at 1 Gc", referring to publication SC-4461.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 — 1-Gc OSCILLATOR POWER OUTPUT TEST CIRCUIT

KOTE 7: For detailed information on measurement technique, write for "Transistor Oscillator Power Output Measurement at 1 Gc", refering to publication SC-4730.

*Indicates JEDEC registered data.

TYPE 2N3866 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

- Ideal Broadband Amplifier for CATV Line Amplifiers (50 MHz to 250 MHz)
- High Power Gain...10 dB Min at 400 MHz
- High Collector Efficiency...45% Min
- High f. ... 500 MHz Min
- High V(BR)CEO ... 30 V Min
- Applications in Military, Commercial, and Citizens Band Radio Equipment

*mechanical data

\$10-39 is similar to TO-5 except for minimum lead length.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage																	. 55 V
Collector-Emitter Voltage (See Note	1) .																. 30 V
Emitter-Base Voltage																	. 3.5 V
Continuous Collector Current																	400 mA
Continuous Base Current																	400 mA
Continuous Device Dissipation at (or	below) 25	°C (Case	Ter	npe	ratu	re (S	ee	Not	e 2	2)					. 5 W
Storage Temperature Range														-6	5°	C t	o 200°C
Lead Temperature 1/4 Inch from Case	for 10) Se	conc	ls .													230°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 200°C case temperature at the rate of 28.6 mW/deg.

*Indicates JEDEC registered data

TYPE 2N3866 N-P-N EPITAXIAL PLANAR SILICON TRANSISTOR

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 5 \text{ mA}, I_B = 0,$	See Note 3	30			٧
V _{(BR)CER}	Collector-Emitter Breakdown Voltage	$I_C=5$ mA, $R_{BE}=10$ Ω ,	See Note 3	55			٧
		$V_{CE} = 55 \text{ V}, \ V_{BE} = -1.5 \text{ V}$				0.1	mA
ICEA	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, \ V_{BE} = -1.5 \text{ V},$	$T_C = 200$ °C			5	mA
ICEO	Collector Cutoff Current	V _{CE} = 28 V, I _B = 0				20	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.5 \text{ V}, I_{C} = 0$				0.1	mA
		$V_{CE} = 5 \text{ V}, I_{C} = 360 \text{ mA},$	See Note 3	5			
hee	Static Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA},$	See Note 3	10	35	200	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 20 \text{ mA}, I_C = 100 \text{ mA},$	See Note 3			1	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=15 \text{ V}, \ I_{C}=50 \text{ mA},$	f = 200 MHz	2.5			
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{CB}=28 \text{ V}, \ I_E=0,$	f = 1 MHz			3	pF

HOTE 3: These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

*operating characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Pie	Large-Signal Common-Emitter Input Power	$P_{OE} = 1 \text{ W},$ $f = 400 \text{ MHz},$		0.1	W
η	Collector Efficiency	See Figure 1	45%		

^{*}Indicates JEDEC registered data

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - 400-MHz INPUT POWER AND COLLECTOR EFFICIENCY TEST CIRCUIT

DESIGNED FOR VHF THRU MICROWAVE APPLICATIONS

- Ideal Broad-Band Amplifiers for CATV
 Line Amplifiers (50 MHz to 250 MHz)
- Linear Amplifiers for Single-Sideband Applications

Calculated f_{max}^{\dagger} ... 1.9 GHz Min (2N4874)

* mechanical data

\$TO-39 is similar to TO-5 except for minimum lead length.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

2N487	4 2N4875	2N4876
Collector-Base Voltage	40 V	40 V
Collector-Emitter Voltage (See Note 1)	25 V	30 V
Emitter-Base Voltage	2 V	2 V
Continuous Collector Current	200 mA -	→
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature		
(See Note 2)	- 720 mW	\longrightarrow
Continuous Device Dissipation at (or below) 25°C Case Temperature		
(See Note 3)	6W	\longrightarrow
Storage Temperature Range	55°C to 200	$^{\circ}$ C \longrightarrow
Lead Temperature 16 Inch from Case for 10 Seconds	— 300°С –	\longrightarrow

NOTES: 1. This value applies between 0 and 100 mA collector current when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 4.8 mW/dea.
- 3. Derate linearly to 175°C case temperature at the rate of 40 mW/deg.

*Indicates JEDEC registered data.

†Maximum Frequency of Oscillation may be calculated from the equation: f_{max} (MHz) = 200 $\sqrt{\frac{|h_{fe}| x f_{moos}}{r_h' C_e}}$ (MHz)

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

					2N4	1874	2N4	2N4875 2N4876			UNIT
ا	PARAMETER	TES	T CONDITIO	NS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C}=100~\mu\text{A},$	I _E = 0		30		40		40		٧
	Collector-Emitter Breakdown Voltage	$I_{C} = 10$ mA,	I _B = 0,	See Note 4	20		25		30		٧
		$V_{CB} = 15 V$	$I_E = 0$			0.5		0.5		0.5	μA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 15 V$	$I_E = 0$,	$T_A = 150$ °C		0.5		0.5		0.5	mA
1 _{EBO}	Emitter Cutoff Current	$V_{EB} = 2 V$,	$I_{C} = 0$			10		10		10	μA
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 50 mA,	f = 1 kHz	20	200	20	200	20	200	
le l	Small-Signal Common-Emitter	V _{CE} = 10 V,	I _C = 20 mA,	f = 100 MHz	7	24	6	24			
h _{fe}	Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 50 mA	f = 100 MHz	9	25	8	25	6.5		
Ccp	Collector-Base Capacitance	V _{CB} = 10 V,	I _E = 0,	f = 1 MHz, See Note 5		3.5		3.5		3.5	рF
r₀′C₀	Collector-Base Time Constant	V _{CB} = 10 V,	I _E = -50 mA	, f = 79.8 MHz		10		10		10	ps

NOTES: 4. These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

*operating characteristics at 25°C free-air temperature

		TECT COMPLETIONS	2N4874	2N4875	2N4876	UNIT
1	PARAMETER	TEST CONDITIONS	MIN	MIN	MIN	UNII
GPE	Large-Signal Common-Emitter Insertion Power Gain	$V_{BB}=20$ V, $I_{E}=-100$ mA, $P_{IE}=0.1$ W, $f=400$ MHz, See Figure 1	10	9.5	8.5	dB

*PARAMETER MEASUREMENT INFORMATION

*Indicates JEDEC registered data

FIGURE 1 - 400-MHz INSERTION-POWER-GAIN TEST CIRCUIT

^{5.} Collector-Base Capacitance is measured using three-terminal measurement techniques with the emitter guarded.

TYPICAL CHARACTERISTICS

NOTE 4: These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

FORWARD BASE CURRENT

vs

BASE-SUPPLY VOLTAGE

NOTE 4: These parameter must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

MAGNITUDE OF SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT

vs FREQUENCY

CONTOURS OF CONSTANT MAGNITUDE OF SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO — $|h_{f_n}|$

I_C —Collector Current—mA

FIGURE 10

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-EMITTER

SMALL-SIGNAL COMMON-EMITTER

TYPICAL CHARACTERISTICS

NOTE 5: Collector-Base Capacitance is measured using three-terminal measurement techniques with the emitter guarded.

FIGURE 17

FIGURE 18

PARAMETER MEASUREMENT INFORMATION

BLOCK DIAGRAM

- 1. HP 608D Signal Generator
- 2. HP 608D Signal Generator
- 2a, Boonton 230A Power Amplifier
- 3. Power Divider
- 4. Boonton Model 91D RF Voltmeter
- 5. Test Amplifier Shown Below
- 6. HP Variable Attenuator (0-120 dB)

- 7. Boonton 230A Power Amplifier
- 8. Boonton Model 91D RF Voltmeter
- 9. Telonic RF Detector
- 10. HP 412A D-C Voltmeter
- 11. HP 130A Oscilloscope
- 12. 1-kHz Variable-Gain Amplifier
- 13. HP 400H RMS Voltmeter

CALIBRATING AND OPERATING INSTRUCTIONS

- 1. Set up equipment as shown in Block Diagram
- 2. Calibration
 - A. Set signal generator 1 to desired-signal frequency (f₁ = 150 MHz).

 B. Tune Boonton VHF Amplifier to 150 MHz.

 - C. Set desired-signal level for 50 mV at input of test amplifier 5>
 - D. Modulate desired signal 20% with 1 kHz.

 - G. Set signal generator 2 to undesired-signal frequency (f₂ = 210 MHz).
 - H. Modulate undesired signal 30% with 1 kHz.
- 3. Measurement
 - A. Remove modulation from signal generator 1 .
 - Increase the 30%-modulated undesired signal until a specified percentage of cross-modulation of the desired signal is indicated on the HP 400H 13
 - C. Record the undesired-signal voltage at the input of test amplifier 5 with desired signal turned off.
- 4. This reading is the modulated undesired-signal voltage required to cause a specified percentage of cross-modulation on the desired-signal carrier.

FIGURE 19 - MEASUREMENT OF CROSS-MODULATION DISTORTION

DOUBLE-EMITTER PLANAR TRANSISTORS DESIGNED FOR CHOPPER APPLICATIONS

- Low Offset Voltage
- Excellent Thermal Stability
- Very Low Leakage 2 na max at 15 v (3N74, 3N75, 3N76)
- High Breakdown Voltage 18 v min (3N74, 3N75, 3N76)

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	3N74 3N77 3N75 3N78 3N76 3N79
Collector-Base Voltage	50 v 40 v
Emitter-One-Collector Voltage (See Note 1)	18 v 12 v
Emitter-Two-Collector Voltage (See Note 1)	18 v 12 v
Emitter-One-Emitter-Two Voltage (See Note 2)	18 v 12 v
Emitter-One-Base Voltage (See Note 3)	18 v 12 v
Emitter-Two-Base Voltage (See Note 3)	18 v 12 v
Collector Current	20 ma
Base Current	20 ma
Emitter-One Current	10 ma
Emitter-Two Current	10 ma
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)	300 mw
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 5)	600 mw
Storage Temperature Range	-65°C to + 200°C

NOTES: 1. This value applies when the base and alternate emitter are open-circuited.

- 2. This value applies when the collector is short-circuited to the base but open-circuited with respect to the emitters.
- 3. This value applies when the collector and alternate emitter are open-circuited.
- 4. Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.
- 5. Derate linearly to 175°C case temperature at the rate of 4 mw/C°.

^{*}Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	A D A A4FTFD	TECT COMPLETIONS	3N	74	3N	75	3N	76	UNIT
P/	ARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	וואט
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C}=100~\mu a$, $I_{E1}=I_{E2}=0$	50		50		50		٧
BV _{E1BO} }	Emitter-Base Breakdown Voltage	I_{E1} (or I_{E2}) $=$ 10 μa I_{E2} (or I_{E1}) $=$ 0, I_{C} $=$ 0	18		18		18		٧
BV _{E1E2}	Emitter-Emitter Breakdown Voltage	$I_{E1}=\pm 10~\mu$ a, $V_{CB}=0$ (See Note 6)	±18		±18		±18		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 30 \text{ v, } I_{E1} = I_{E2} = 0$		10		10		10	na
I _{E1BO}	Emitter Cutoff Current	V_{E1B} (or V_{E2B}) = 15 v I_{E2} (or I_{E1}) = I_{C} = 0		2		2		2	na
		$V_{E1E2}=\pm15 \text{ v, } V_{CB}=0$ (See Note 6)		±2		±2		±2	na
I _{E1E2}	Emitter Cutoff Current	$V_{E1E2} = \pm 15 \text{ v, } V_{CB} = 0$ $T_A = 100 \text{ °C, (See Note 6)}$		±100		±100		±100	na
V _{E1E2}	Offset Voltage	$I_{B}=1$ ma, $I_{E1}=I_{E2}=0$ $T_{A}=-25$ °C, $+25$ °C, and $+100$ °C (See Figure 1)		50		100		200	μν
△V _{E1E2} △I _B	Offset Voltage Change With Base Current†	$I_{B(1)} = 1.5 \text{ ma}, \ I_{B(2)} = 0.5 \text{ ma}$ $I_{E1} = I_{E2} = 0$		25		25		50	μν
△V _{E1E2} △TA	Offset Voltage Change With Temperature†	$I_B = 1 \text{ ma}, \ I_{E1} = I_{E2} = 0$ $T_{A(1)} = 100 ^{\circ}\text{C}, \ T_{A(2)} = -25 ^{\circ}\text{C}$		75		125		175	μν
h _{fo1}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V_{CE1} (or V_{CE2}) = 5 v, I_{E2} (or I_{E1}) = 0 I_{C} = 1 ma, f = 20 mc	1.5		1.5		1.5		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 \text{ y}, \ I_{E1} = I_{E2} = 0$ $f = 140 \text{ kc}$		8		8		8	pf
C _{e1b}	Common-Base Open-Circuit Input Capacitance	V_{E1B} (or V_{E2B}) = 5 v I_{E2} (or I_{E1}) = 0 I_{C} = 0, f = 140 kc		5		5		5	pf
r ₀₁₀₂	Dynamic On Series Resistance	$I_B=1~ma,~I_{E1}=I_{E2}=0$ $I_{o1}=100~\mu a,~f=1~kc$ (See Figure 2)	10	40	10	40	10	50	ohm

^{6.} These parameters must be measured with the collector short-circuited to the base but open-circuited with respect to the emitters.

[†] Offset Voltage Change is defined as the magnitude of the algebraic difference between the offset voltage at the higher base current (or temperature) and the offset voltage at the lower base current (or temperature).

^{*}Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			31	177	3N	78	3N	179	UNIT
P/	ARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C}=100~\mu a$, $I_{E1}=I_{E2}=0$	40		40		40		٧
BV _{E1BO} }	Emitter-Base Breakdown Voltage	$l_{ m E1}$ (or $l_{ m E2}$) $=$ 10 μ a $l_{ m E2}$ (or $l_{ m E1}$) $=$ 0, $l_{ m C}$ $=$ 0	12		12		12		٧
BV _{E1E2}	Emitter-Emitter Breakdown Voltage	$I_{ extsf{E}1}=\pm$ 10 μ a, $V_{ extsf{C}B}=$ 0 (See Note 6)	±12		±12		±12		٧
I _{CBO}	Collector Cutoff Current	$V_{CB}=30$ v, $I_{E1}=I_{E2}=0$		10		10		20	na
I _{E1BO}	Emitter Cutoff Current	$V_{E_{1B}}$ (or $V_{E_{2B}}$) = 5 v I_{E_2} (or I_{E_1}) = I_C = 0		5		5		10	na
	c	$V_{\text{E1E2}}=\pm 5 \text{ v, } V_{\text{CB}}=0$ (See Note 6)		±5		±5		± 10	na
I _{E1E2}	Emitter Cutoff Current	$V_{E1E2}=\pm 5 \text{ v, } V_{CB}=0$ $T_A=100 \text{ °C, (See Note 6)}$		±100		±100		<u>±</u> 200	nα
V _{E1E2}	Offset Voltage	$I_B=1$ ma, $I_{E1}=I_{E2}=0$ $T_A=-25$ °C, $+25$ °C, and $+100$ °C (See Figure 1)	i	50		100		200	μν
△V _{E1E2} △1 _B	Offset Voltage Change With Base Current†	$I_{B(1)} = 1.5 \text{ma}, \ I_{B(2)} = 0.5 \text{ma}$ $I_{E1} = I_{E2} = 0$		25		50		75	μν
△V _{E1E2} △TA	Offset Voltage Change With Temperature†	$I_B=1$ ma, $I_{E1}=I_{E2}=0$ $T_{A\{1\}}=100$ °C, $T_{A\{2\}}=-25$ °C		75		125		175	μν
h _{fo1}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V_{CE1} (or V_{CE2}) = 5 v, I_{E2} (or I_{E1}) = 0 I_{C} = 1 ma, f = 20 mc	1.5		1.5		1.5		
C _{ob}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 \text{ v}, \ I_{E1} = I_{E2} = 0$ f = 140 kc		8		8		10	pf
(e1b)	Common-Base Open-Circuit Input Capacitance	V_{E1B} (or V_{E2B}) = 5 v I_{E2} (or I_{E1}) = 0 I_{C} = 0, f = 140 kc		5		5		6	pf
r _{e1e2}	Dynamic On Series Resistance	$I_{B}=1$ ma, $I_{E1}=I_{E2}=0$ $I_{o1}=100~\mu$ a, f = 1 kc (See Figure 2)	10	50	10	50	10	60	ohm

^{6.} These parameters must be measured with the collector short-circuited to the base but open-circuited with respect to the emitters.

[†] Offset Voltage Change is defined as the magnitude of the algebraic difference between the offset voltage at the higher base current (or temperature) and the offset voltage at the lower base current (or temperature).

^{*}Indicates JEDEC registered data

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - OFFSET VOLTAGE TEST CIRCUIT

FIGURE 2 --- ON SERIES RESISTANCE TEST CIRCUIT

NOTES: 7. Care must be taken to avoid error due to thermocouple action.

8. The voltmeter impedance must be high enough that halving it does not change the measured value.

^{*}Indicates JEDEC registered data

SILECT† COMPLEMENTARY TRANSISTORS

Available in Matched Complementary Pairs (TIS90M thru TIS93M) for Complementary-Symmetry or Other Class-B Audio-Amplifier Applications

- Supplied in Color-Coded h_{FE} Brackets of 3-dB-Maximum Range
- 1.6-W Rating at 25°C Case Temperature

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

High-thermal-conductivity leads allow operation at unusually high dissipation levels.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)§

Collector-Base Voltage													. 40 V
Collector-Emitter Voltage (See Note	1) .												. 40 V
Emitter-Base Voltage													. 5 V
Continuous Collector Current													400 mA
Continuous Device Dissipation at (or b	elow)	25°C	Free-	Air	Tempe	eratur	e (See	Note	2)				625 mW
Continuous Device Dissipation at (or b	elow)	25°C	Lead	Ten	perat	ture (S	See N	ote 3)					1.25 W
Continuous Device Dissipation at (or b	elow)	25°C	Case-	and	-Lead	Temp	eratu	e (Se	e No	te 4) .		1.6 W
Storage Temperature Range											65°	C t	o 150°C
Lead Temperature 1/16 Inch from Case	for 10	Seco	nds .										260°C

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 5 mW/deg.
 - Derate linearly to 150°C lead temperature at the rate of 10 mW/deg.
 Lead temperature is measured on the collector lead 1/16 inch from the case.
 - This rating applies with the entire case (including the leads) maintained at 25°C.
 Derate linearly to 150°C case-and-lead temperature at the rate of 12.8 mW/deg.

†Trademark of Texas Instruments
‡Patent pending
\$Voltages and currents apply to the n-p-n transistors.
For the p-n-p transistors the values are the same, but the polarities are reversed.

electrical characteristics at 25°C free-air temperature

			N-P-N	P-N-P	
	PARAMETER	TEST CONDITIONS†	TIS90, TIS90M TIS92, TIS92M	TIS91, TIS91M TIS93, TIS93M	UNIT
			MIN TYP MAX	MIN TYP MAX	1
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	40	-40	٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0,$ See Note 5	40	-40	٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \ \mu A, \ I_C = 0$	5	-5	٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_{E} = 0$	100	-100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3 \text{ V}, I_{C} = 0$	100	-100	nA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 2 \text{ V}, I_{C} = 50 \text{ mA}, \text{ See Note 5}$	100 160 300	100 160 300	
V _{BE}	Base-Emitter Voltage	$V_{CE} = 2 \text{ V}, I_{C} = 50 \text{ mA}, \text{ See Note 5}$	0.6 0.77 1	-0.6 -0.76 -1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 \text{ mA}, I_C = 50 \text{ mA}, \text{See Note 5}$	0.04 0.25	-0.06 -0.25	٧
*CE(sat)	Conscior-Emilier Saluration Vollage	$I_B = 20$ mA, $I_C = 200$ mA, See Note 5	0.17	-0.23	V

NOTE 5: These parameters must be measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

Test condition voltages and currents apply to the n-p-n transistors. For the p-n-p transistors the values are the same, but the polarities are reversed.

PARAMETER COLOR-CODE INFORMATION

To facilitate matching and identification these transistors are color-coded in h_{FE} brackets, each having a maximum spread of 3 dB as shown in the table below. No guarantee is made as to distribution of h_{FE} values, except that equal numbers of n-p-n and p-n-p devices will be shipped in any given bracket when matched complementary pairs are ordered. To order from specific brackets, contact a TI sales office or distributor.

COLOR CODE	YELLOW	GREEN	BLUE	VIOLET	GRAY
$egin{array}{l} h_{ extsf{FE}} ext{Range,} \ V_{ extsf{CE}} = 2 ext{V,} I_{ extsf{C}} = 50 ext{mA} \end{array}$	100 - 125	115 - 150	140 - 190	170 - 235	215 - 300

ORDERING INFORMATION — To order matched complementary pairs, order the same quantity each of TIS90M and TIS91M or TIS92M and TIS93M. Devices may be ordered separately by specifying TIS90, TIS91, TIS92, or TIS93.

THERMAL INFORMATION

FIGURE 1

TYPICAL CHARACTERISTICS

P-N-P TYPES TIS91, TIS91M, TIS93, TIS93M
COMMON-EMITTER COLLECTOR CHARACTERISTICS

FIGURE 2

FIGURE 3

FIGURE 5

NOTE 5: These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

TYPICAL APPLICATION DATA

CIRCUIT COMPONENT INFORMATION

Ali resi:	stors $1/2$ W, ten percent t	tolerance	C ₆ : 100 μF, 35 V, electrolytic
R ₅ : 24 kΩ	R ₁₀ : 1.2 kΩ		C₅: 330 pF
R₄: 100 Ω	R9: 10 Ω		$C_4\colon 20\;\muF,20\;V,electrolytic$
R₃: 2 kΩ	R ₈ : 360 Ω	R_{13} : 3.9 Ω	C_3 : 5 μ F, 30 V, electrolytic
R₂: 2 kΩ	R_{7} : 200 Ω	R_{12} : 3.9 Ω	C_2 : 50 μ F, 30 V, electrolytic
R_1 : 1 $M\Omega$	R_6 : 1.3 $k\Omega$	R ₁₁ : 300 Ω	C ₁ : 0.05 μF
	RESISTORS		CAPACITORS

TYPICAL PERFORMANCE, $R_L=40~\Omega,~f=1~kHz, T_A=25^{\circ}C$ (except where noted)
Sensitivity at 1-W Output
Input Impedance
Total Harmonic Distortion at 2-W Output
Total Harmonic Distortion at 1-W Output 1.2%
Total Harmonic Distortion at 50-mW Output 0.15%
Frequency Response Down 3 dB at 63 Hz and 17 kHz
Power Supply Drain at Zero Signal
Power Supply Drain at Rated Output

NOTE 6: Heat sink the collector lead.

FIGURE 6 - TYPICAL 2-WATT COMPLEMENTARY AMPLIFIER

HIGH-VOLTAGE DOUBLE-EMITTER PLANAR TRANSISTORS DESIGNED FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS REQUIRING VERY LOW OFFSET VOLTAGE

- May be Used in Some Circuits Designed for N-P-N Types by Reversing Collector and Base Terminations
- High Breakdown Voltages ... 50 V Min (3N108, 3N109)
- Low Offset-Voltage/Temperature Sensitivity
- Extremely Low Leakage ... 0.1 nA Max at 25 V (3N108, 3N109)
- Military Version (JAN3N108) Available

*mechanical data

TTO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	3N108 3N109	3N110 3N111
Collector-Base Voltage	–50 V	–50 V
Emitter-One-Collector Voltage (See Note 1) · · · · · · · · · · · ·		–30 V
Emitter-Two-Collector Voltage (See Note 1)	–50 V	–30 V
Emitter-One-Emitter-Two Voltage (See Note 2)		±30 V
Emitter-One-Base Voltage · · · · · · · · · · · · · · · · · · ·	-50 V	–30 V
Emitter-Two-Base Voltage · · · · · · · · · · · · · · · · · · ·	-50 V	-30 V
Continuous Collector Current	← ±2	0 mA ≻
Continuous Base Current	← ±2	0 mA . →
Continuous Emitter-One Current		
Continuous Emitter-Two Current		
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) .		
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 4)		
Storage Temperature Range	- 65°C	to 200°C
Lead Temperature 1/4 Inch from Case for 10 Seconds	← 30	o∘ċ →

- NOTES: 1.- This value applies between 0 and 10 mA collector current when the base and alternate emitter are open-circuited.
 - 2. This value applies when the collector is short-circuited to the base but open-circuited with respect to the emitters.
 - 3. Derate linearly to 200°C free-air temperature at the rate of 1.71 mW/deg.
 - 4. Derate linearly to 200 $^{\rm o}{\rm C}$ case temperature at the rate of 3.43 mW/deg.

^{*}Indicates JEDEC registered data

TYPES 3N108, 3N109, 3N110, 3N111 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	70	ST CONDITION		3N108	3N109	3N110	3N111	UNIT
	PARAMEIER	16	31 CONDITION	3	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNII
V(BR)CBO	Collector-Base Breakdown Voltage	$I_C = -1 \mu A$,	$I_{\rm E1}=I_{\rm E2}=0$		-50	-50	-50	-50	٧
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	$I_E = -1 \mu A$,	$I_8 = 0$,	See Note 5	-50	-50	-30	-30	٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -1 \mu A$,	I _C = 0,	See Note 5	-50	-50	-30	-30	٧
V _{(BR)E1-E2}	Emitter-Emitter Breakdown Voltage	$I_{E1}=\pm 1 \mu A$,	V _{CB} = 0,	See Note 6	±50	±50	±30	±30	٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = -30 \text{ V},$	$I_{E1}=I_{E2}=0$		-0.25	-0.25	-0.5	-0.5	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -25 V$,	I _C = 0,	See Note 5	-0.1	-0.1	-0.5	-0.5	nA
		V _{E1-E2} = ± 25 V	, V _{CB} = 0,	See Note 6	±0.1	±0.1	±0.5	±0.5	nA
l _{E1-E2(off)}	Emitter Cutoff Current	$V_{E1-E2}=\pm 25 \text{ V}$, V _{C8} = 0,	T _A = 100°C, See Note 6	±10	±10	±50	±50	nA
V _{E1-E2(ofs)}	Emitter-Emitter Offset Voltage	I _B = - 1 mA, T _A = - 25°C, 25°		See Figure 1,	30	150	30	150	μ V
△VE1-E2(ofs) △18	Offset Voltage Change With Base Current†	$I_{B(1)} = -1.5 \text{ mA},$	$I_{B(2)} = -0.5 \text{ mA}$	$I_{E1}=I_{E2}=0$	20	50	20	50	μ۷
AVEI-EZ(ofs)	Offset Voltage Change With Temperature†	$I_B = -1 \text{ mA},$		Tam = - 25°C	יוכ ו	150	50	150	μ۷
r _{e1-e2(on)}	Small-Signal Emitter-Emitter On-State Resistance	I _B = -1 mA, f = 1 kHz,	$I_{E1} = I_{E2} = 0,$	$I_o = 100 \mu A$, See Figure 2	10 50	10 50	10 50	10 50	Ω
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -6 V$,	$I_C = -1 \text{ mA},$	f = 4 MHz, See Note 5	3	3	3	3	
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -6 V$,	$I_{E1}=I_{E2}=0,$	f = 1 MHz	10	10	10	10	pF
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -6 V,$	I _C = 0,	f = 1 MHz, See Note 5	3	3	3	3	pF

- NOTES: 5. These limits apply separately for each emitter with the alternate emitter open-circuited.
 - 6. These parameters must be measured with the collector short-circuited to the base but open-circuited with respect to the emitters. The limits apply to both polarities of emitter-to-emitter voltage.

†Offset Voltage Change is defined as the magnitude of the algebraic difference between the offset voltages at two specified base currents or temperatures.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 2 — SMALL-SIGNAL EMITTER-EMITTER
ON-STATE RESISTANCE TEST CIRCUIT

- NOTES: 7. Care must be taken to avoid error due to thermocouple action.
 - 8. The voltmeter impedance must be high enough that halving it does not change the measured value.
- *Indicates JEDEC registered data

TYPES 3N108, 3N109, 3N110, 3N111 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 9: This parameter is measured with the collectors short-circuited to the base but open-circuited with respect to the emitters, \dagger The polarity of the offset voltage at $T_A = 25^{\circ}C$ and $I_B = -1$ mA is arbitrarily assumed to be positive.

TYPES 3N108, 3N109, 3N110, 3N111 P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 10: This curve applies separately for each emitter with the alternate emitter open-circuited.

THERMAL INFORMATION

FIGURE 13

568

TWO TRIODES INTERNALLY CONNECTED IN DARLINGTON CONFIGURATION

- Very High Gain 1000 min at 100 µa
- Low Leakage 10 na max at 60 v
- Rugged Internal Connections

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																				. 75 v
Collector-Emitter Voltage (See Note	1)	١.														•	٠		•	. 40 v
Emitter-Base Voltage																				. 7 v
Collector Current																			- 3	300 ma
Total Device Dissipation at (or below	v) 2	25°0	C F	ree	-Ai	r To	emp	oero	atu	re ((See	, N	lote	2)				٠.		0.5 w
Total Device Dissipation at (or below	w)	25°	C	Cas	ie T	em	pei	ratu	re	(Se	e l	Vot	е 3)						1.5 w
Storage Temperature Range	·						٠.										-65	°C	to	200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	Ti	EST CONDITION	vs	MIN	MAX	UNIT
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100~\mu a$,	I _E = 0		75		٧
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{C}=30$ ma,	$I_B=0$,	See Note 4	40		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_{E}=100~\mu a$,	I _C = 0		7		٧
	A. H	V _{C8} = 60 v,	$I_E = 0$			10	na
I _{CBO}	Collector Cutoff Current	V _{CB} = 60 v,	I _E = 0,	T _A = 150°C		10	μ a
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 v$,	$I_C = 0$			10	na
		V _{CE} = 10 v,	$I_{C}=100\mu a$		1.000		
		V _{CE} = 10 v,	I _C = 10 ma		4000		
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 10 v,	$I_{\rm C}=100~{ m ma}$,	See Note 4	7000	70 000	
		V _{CE} = 10 v, See Note 4	I _C = 100 ma,	$T_A = -55$ °C,	1000		
V _{BE}	Base-Emitter Voltage	V _{CE} = 10 v,	$I_{C}=100$ ma,	See Note 4	0.9	1.8	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 1 ma$,	$I_{C}=100$ ma,	See Note 4		1.6	٧
C ^{op}	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 v,	$I_E = 0$,	f = 1 mc		35	pf

NOTES: 1. This value applies when the emitter-base diode is open-circuited.

2. Derate linearly to 175°C free-air temperature at the rate of 10.0 mw/C°.

3. Derate linearly to 175°C case temperature at the rate of 10.0 mw/C°.

4. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

*Indicates JEDEC registered data

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM

278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

TWO TRANSISTORS IN ONE PACKAGE FOR DIFFERENTIAL AMPLIFIER APPLICATIONS

- Medium Power
- High Operating Voltage

*mechanical data

[†] Applicable to 2N2223 and 2N2223A only. Registered minimum dimension for 2N2060 is 0.140.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N2	2060		223 223A	
	EACH TRIODE	TOTAL DEVICE	EACH TRIODE	TOTAL DEVICE	UNIT
Collector-Base Voltage	100		100		٧
Collector-Emitter Voltage (See Note 1)	80		80		٧
Collector-Emitter Voltage (See Note 2)	60		60	-	٧
Emitter-Base Voltage	7.0		7.0		٧
Collector Current	500		500		ma
Total Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)	0.5	0.6	0.5	0.6	w
Total Dissipation at (or below) 25°C Case Temperature (See Notes 4 and 5)	1.5	3.0	1.6	3.0	w
Total Dissipation at 100°C Case Temperature	0.86	1.7	0.91	1.7	w
Operating Collector Junction Temperature	200		200		°C
Storage Temperature Range		— 65°C to	+ 200 °C	***	•
Lead Temperature 1/16 Inch from Case for 10 Seconds		300	°C		

- NOTES: 1. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 10 ohms.
 - 2. This value applies when the base-emitter diode is open-circuited.
 - 3. Derate linearly to 200°C free-air temperature at the rate of 2.86 mw/C° for each triode and 3.43 mw/C° for total device.
 - 4. Derate 2N2060 linearly to 200°C case temperature at the rate of 8.6 mw/C° for each triode and 17.2 mw/C° for total device.
 - 5. Derate 2N2223 and 2N2223A linearly to 200°C case temperature at the rate of 9.1 mw/C° for each triode and 17.2 mw/C° for total device.
 - 6. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
 - 7. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 1%.
 - 8. The lower of the two $h_{\mbox{\scriptsize FE}}$ readings is taken as $h_{\mbox{\scriptsize FEI}}$.
 - 9. This parameter is measured in an amplifier with response down 3db at 25 cps and 10 kc and a high frequency rolloff of 6 db/octave.

^{*}Indicates JEDEC registered data.

TYPES 2N2060, 2N2223, 2N2223A DUAL N-P-N PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

* individual triode characteristics (see note 6)

	PARAMETER	TEST CONDITIONS	2N2	060	2N2 2N2		UNIT
			MIN	MAX	MIN	MAX	
BVCBO	Collector-Base Breakdown Voltage	$I_{C} = 100 \mu a, I_{E} = 0$	100		100		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ma}, I_B = 0$ (See Note 7)	60		60		٧
BVCER	Collector-Emitter Breakdown Voltage	$I_{C}=100$ ma, $R_{BE}=10~\Omega$ (See Note 7)	80		80		٧
BVEBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \mu {\rm a}, \ I_{\rm C} = 0$	7.0		7.0		٧
	Collector Cutoff Current	$V_{CB} = 80 \text{ v}, I_E = 0$		2		10	na
ICBO	Collector Cutoff Current	$V_{CB} = 80 \text{ v}, I_E = 0, \qquad T_A = 150 ^{\circ}\text{C}$		10		15	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 \text{ v}, I_{C} = 0$		2		10	na
		$V_{CE} = 5 \text{ v}, I_{C} = 10 \mu \text{a}$	25	75	15		
	Static Forward Current Transfer Ratio	$V_{CE}=5 \text{ v}, I_{C}=100 \ \mu \text{g}$	30	90	25	150	
h _{FE}	Static Forward Corrent Transfer Katto	$V_{CE} = 5 \text{ v}, I_{C} = 1 \text{ ma}$	40	120			
		$V_{CE} = 5 \text{ v}, I_{C} = 10 \text{ ma} \text{(See Note 7)}$	50	150	50	200	
V _{BE}	Base-Emitter Voltage	$I_B = 5 \text{ ma}, I_C = 50 \text{ ma}$		0.9		0.9	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 \text{ ma}, I_C = 50 \text{ ma}$		1.2		1.2	٧
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f = 1 \text{ kc}$	20	30	20	30	ohm
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f = 1 \text{ kc}$			3	.0 x 10-4	
h _{ob}	Small-Signal Common-Base Output Admittance	$V_{CB} = 5 \text{ v}, I_{C} = 1 \text{ ma}, f = 1 \text{ kc}$				0.5	μ mho
hio	Small-Signal Common-Emitter Input Impedance	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	1000	4000			ohm
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	50	150	40	200	
h _{oo}	Small-Signal Common-Emitter Output Admittance	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	4	16			μ mho
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 v, I _C = 50 ma, f = 20 mc	3.0		2.5		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ v}, I_E = 0, \qquad f = 1 \text{ mc}$		15		15	pf
Cib	Common-Base Open-Circuit Input Capacitance	$V_{EB} = 0.5 v, I_C = 0, \qquad f = 1 mc$		85		85	pf

* triode matching characteristics

			2N:	2060	2N	2223	2N2	223A	UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
heel	Static Forward Current	$V_{CE} = 5 \text{ v}, I_{C} = 100 \mu\text{a}, \text{(See Note 8)}$	0.9	1.0	0.8	1.0	0.9	1.0	
h _{FE1}	Gain Balance Ratio	$V_{CE} = 5 \text{ v, } I_{C} = 1 \text{ ma}, \text{ (See Note 8)}$	0.9	1.0					
	Base-Emitter-Voltage	$V_{CE} = 5 \text{ v, } I_{C} = 100 \mu \text{a}$		5		15		5	mv
V _{BE1} -V _{BE2}	Differential	$V_{CE} = 5 \text{ v, } I_{C} = 1 \text{ ma}$		5					mv
△(V _{BE1} -V _B	Base-Emitter-Voltage - Differential Temperature Gradient	$V_{CE}=5$ v, $I_{C}=100~\mu a$, From $T_{A}=-55^{\circ}C$ to $T_{A}=125^{\circ}C$		10		25		25	μν/C°

operating characteristics at 25°C free-air temperature

*individual triode characteristics (see note 6)

	PARAMETER	TEST CONDITIONS	2N2060 MAX	UNIT
NF	Average Noise Figure	$V_{CE}=10$ v, $I_{C}=300~\mu a$, $R_{G}=510~\Omega$ Noise Bandwidth $=900$ cps to 1100 cps	8	db
		$ m V_{CE}=10$ v, $ m I_{C}=300~\mu a$, $ m R_{G}=1.0~k\Omega$ Noise Bandwidth = 15.7 kc (See Note 9)	8	db

^{*}Indicates JEDEC registered data.

TYPES 2N2639, 2N2640, 2N2641, 2N2642, 2N2643 AND 2N2644 DUAL N-P-N PLANAR SILICON TRANSISTORS

REVISED MAY 1968

TWO TRANSISTORS IN ONE PACKAGE RECOMMENDED FOR

- Differential Amplifiers
- High-Gain, Low-Noise Audio Amplifiers
- Transducer Signal-Conditioner Amplifiers
- · Low-Level Flip-Flops

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		Each Triode	Total Device
Collector-Base Voltage		45 v	
Collector-Emitter Voltage (See Note 1)		45 v	
Emitter-Base Voltage		5 v	
Collector Current		30 ma	
Total Dissipation at (or below) 25°C Free-Air Temperature (See	Note 2) .	0.3 w	0.6 w
Total Dissipation at (or below) 25°C Case Temperature (See N	ote 3)	0.6 w	1.2 w
Storage Temperature Range		- 65°C to 200	°C

NOTES: 1. This value applies when the emitter-base diode is open-circuited.

- 2. For each triode derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.
- 3. For each triode derate linearly to 175°C case temperature at the rate of 4 mw/C°.

*Indicates JEDEC registered data

TYPES 2N2639, 2N2640, 2N2641, 2N2642, 2N2643 AND 2N2644 DUAL N-P-N PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

* individual triode characteristics (see note 4)

	PARAMETER	TEST	CONDITIO		2N2639 2N2640 2N2641			UNIT			
					MIN	TYP	MAX	MIN	TYP	MAX	
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = 10 \mathrm{ma}, I_B =$	= 0,	See Note 5	45			45			٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = 45 \text{ v}, I_E : V_{CB} = 45 \text{ v}, $		T _A = 150°C			10 10			10 10	na μα
ICEO	Collector Cutoff Current	$V_{CE} = 5 \text{ v,} I_B = 1 \text{ s.}$	= 0				10			10	na
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 \text{ v}, I_{C}$	= 0				10			10	na
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 5 v, I _C V _{CE} = 5 v, I _C V _{CE} = 5 v, I _C V _{CE} = 5 v, I _C	$= 10 \mu_0,$ = 100 μ_0	T _A =-55°C	50 10 55 65		300	100 20 110 130	150 40 170 200	300	
V _{BE}	Base-Emitter Voltage	$I_B = 0.5 \text{ma}, I_C$	⇒ 10 ma		0.6	0.76	1	0.6	0.76	1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_8 = 0.5 \text{ma}, I_C$	= 10 ma				1		0.35	1	٧
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = 5 v$, $I_E = 1$	= -1 ma,	f = 1 kc	25	26.5	32	25	26.5	32	ohm
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	V _{CB} = 5 v, I _E	= 1 ma,	f = 1 kc		120 x 10 ⁻⁶	600 x 10 ⁻⁶		120 x 10 ⁻⁶	600 x 10 ⁻⁶	
h _{ob}	Small-Signal Common-Base Output Admittance	V _{CB} = 5 v, I _E	= - 1 ma,	f = 1 kc		0.1	1		0.1	1	μ mho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ v}, I_{C}$	= 1 ma,	f = 1 kc	65		600	130	250	600	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 v$, I_{C}	= 1 ma,	f = 20 mc	4	11		4	11		db
€	Common-Base Open-Circuit Output Capacitance	V _{CB} = 5 v, I _E :	= 0,	f = 1 mc		5	8		5	8	pf

^{*} triode matching characteristics

PARAMETER			TEST CONDITIONS		2639 2642	2N 2N	UNIT	
		}		MIN	MAX	MIN	MAX	1
h _{FE1} h _{FE2}	Static Forward-Current-Gain Balance Ratio	$V_{CE} = 5 v$,	$I_{C}=10~\mu a$, See Note 6	0.9	1	0.8	1	
V _{BE1} -V _{BE2}	Base-Emitter-Voltage Differential	$V_{CE} = 5 v$,	$I_C = 10 \mu a$		5		10	mv
∆(V _{BE1} -V _{BE2}) △T _A	Base-Emitter-Voltage-Differential Temperature Gradient		$I_{C} = 10 \mu a$ (C - (-55°C)] and [125°C -25°C]		10		20	μν/C°

operating characteristics at 25°C free-air temperature

^{*}individual triode characteristics (see note 4)

			ALL	<u>-</u>	
l	PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT
Ī	NF Average Noise Figure	$V_{CB}=5$ v, $I_{E}=-10~\mu a$, $R_{G}=10~k\Omega$ Noise Bandwidth 10 cps to 15.7 kc	1.8	4	db

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.

^{5.} This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{6.} The lower of the two hpe readings is taken as hpe1.

^{*}Indicates JEDEC registered data (Typical data excluded.)

TYPES 2N3043, 2N3044, 2N3045, 2N3046, 2N3047, 2N3048 DUAL N-P-N PLANAR SILICON TRANSISTORS

DESIGNED FOR DIFFERENTIAL AMPLIFIERS AND HIGH-GAIN LOW-NOISE AUDIO AMPLIFIERS

- Electrically Similar to 2N2639-2N2644 Series
- Individual Triodes are Electrically Similar to 2N929, 2N930
- Popular TO-89 Flatpack Facilitates High-Density Packaging
- Welded Metal Construction

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		EACH TRIODE	TOTAL DEVICE
Collector-Base Voltage		. 45 v	
Collector-Emitter Voltage (See Note 1)		. 45 v	
Emitter-Base Voltage		. 5 v	
Continuous Collector Current		. 30 ma	
Continuous Dissipation at (or below) 25°C Free-Air Temperature (See Note	2) .	. 250 mw	350 mw
Continuous Dissipation at (or below) 25°C Case Temperature (See Note 3)		. 0.7 w	1.4 w
Storage Temperature Range		. —65°C to	+200°C
Lead Temperature 1/4 Inch from Case for 10 Seconds			. 230°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 1.67 mw/C° for each triode and 2.33 mw/C° for total device.
- 3. Derate linearly to 175°C case temperature at the rate of 4.67 mw/C° for each triode and 9.33 mw/C° for total device.

^{*}Indicates JEDEC registered data

TYPES 2N3043 THRU 2N3048 DUAL N-P-N PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS	2N:	3043 3044 3045	2N: 2N: 2N:	UNIT	
			MIN	MAX	MIN	MAX	
V _{(BR)CBO}	Collector-Emitter Breakdown Voltage	$I_C=10$ ma, $I_B=0$, See Note 5	45		45		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu a, \ I_C = 0$	5		5		٧
1	Collector Cutoff Current	$V_{CB} = 45 \text{ v, } I_E = 0$		10		10	na
I _{CBO}	Collector Cotoff Coffeiii	$V_{CB} = 45 \text{ v}, I_E = 0, T_A = 150 ^{\circ}\text{C}$		10		10	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB}=4$ v, $I_{C}=0$		10		10	na
h _{FE}	Static Forward Current	$V_{CE}=5$ v, $I_{C}=10~\mu a$	100	300	50	200	
IIFE	Transfer Ratio	$V_{CE} = 5 \text{ v}, I_{C} = 1 \text{ ma}$	130		65		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 \text{ v}, I_{C} = 10 \text{ ma}$	0.6	0.8	0.6	0.8	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 0.5 ma, I _C = 10 ma		. 1		1	v
h _{io}	Small-Signal Common-Emitter Input Impedance	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	3.2	19	1.6	13	kΩ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	130	600	65	400	
hoo	Small-Signal Common-Emitter Output Admittance	$V_{CE} = 5 \text{ v}, I_C = 1 \text{ ma}, f = 1 \text{ kc}$	- 11.11	100		70	μ mho
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 v, I _C = 1 ma, f = 20 Mc	1.5		1.5		
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 5 \text{ v}, I_E = 0, \qquad f = 1 \text{ Mc}$		8		8	pf

*triode matching characteristics

PARAMETER		TEST CONDITIONS		1043 1046	2N3 2N3	UNIT	
			MIN	MAX	MIN	MAX]
h _{FE1} h _{FE2}	Static Forward-Current- Gain Balance Ratio	$V_{CE}=5 ext{v}, \qquad I_{C}=10\mu ext{a},$ See Note 6	0.9	1	0.8	1	
V _{BE1} — V _{BE2}	Base-Emitter-Voltage- Differential	$V_{CE}=5$ v, $I_{C}=10~\mu a$		5		10	mv
law v	Base-Emitter-Voltage-	$V_{CE}=5 \text{ v}, I_{C}=10 \ \mu\text{a}, \ T_{A(1)}=25 \text{ °C}, T_{A(2)}=-55 \text{ °C}$		0.8		1.6	mv
Δ (V BE1 - V BE2) Δ	TA Differential Change With Temperature	$V_{CE}=5$ v, $I_{C}=10~\mu a$, $T_{A(1)}=25$ °C, $T_{A(2)}=125$ °C		1		2	mv

operating characteristics at 25°C free-air temperature

*individual triode characteristics (see note 4)

TECT COMPLICANCE		TEST CONDITIONS	ALL	UNIT	
	PARAMETER	1E31 CONDITIONS	TYP	MAX	ONI
NF	Average Noise Figure	$V_{CE}=5$ v, $I_{C}=10$ μ a, $R_{G}=10$ k Ω , Noise Bandwidth $=15.7$ kc, See Note 7	2	5	db

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.

- 5. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.
- 6. The lower of the two hpe readings is taken as hpe1.
- 7. Average Noise Figure is measured in an amplifier with low-frequency-response down 3 db at 10 cps.

^{*}Indicates JEDEC registered data

TYPES 2N3049, 2N3050, 2N3051 DUAL P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

DESIGNED FOR DIFFERENTIAL AMPLIFIERS, LOW-NOISE AMPLIFIERS, AND LOW-LEVEL SWITCHING

- Each Triode Electrically Similar to 2N2411 and 2N2412 Transistors
- Popular TO-89 Flatpack Facilitates High-Density Packaging
- Welded Metal Construction

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	_																EACH TRIODE -25 v	DEVICE
Collector-Emitter Voltage (See Note																		
Emitter-Base Voltage	•							•	•	•	•		•	•	•	•	-5 v	
Continuous Collector Current																	—100 ma	
Continuous Dissipation at (or below)	25°	CF	ree	-Ai	r T	em	per	atu	re	(Se	e N	ote	2)				250 mw	350 mw
Continuous Dissipation at (or below)	25°	C	Cas	e To	emi	oer	atu	re ((Se	e N	ote	3)					0.7 w	1.4 w
Storage Temperature Range					. '				•								-65°C to	+ 200°C
Lead Temperature 1/4 Inch from Case																		230°C

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIO	NS	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = -10 \text{ma}, \ I_{B} = 0,$	See Note 5	– 20		٧
•	Calledon Cutoff Courset	$V_{CB} = -25 \text{ v}, I_E = 0$			-10	na
ICBO	Collector Cutoff Current	$V_{CB} = -25 \text{ v}, \ I_E = 0,$	T _A = 150°C		10	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -5 v, I_{C} = 0$			-10	na
		$V_{CE} = -5 \text{ v}, I_{C} = -10 \mu \text{a}$		20	120	
		$V_{CE} = -5 \text{ v}, I_{C} = -100 \ \mu \text{a}$		30	120	
hre	Static Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma}$		30	120	
		$V_{CE} = -5 \text{ v}, I_{C} = -10 \text{ ma},$	See Note 5	30	120	
		$V_{CE} = -1 \text{ v}, I_{C} = -10 \text{ ma}$		20		
V _{BE}	Base-Emitter Voltage	$I_B = -1 \text{ ma}, I_C = -10 \text{ ma}$		- 0.7	· 0.9	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -1 \text{ ma}, I_C = -10 \text{ ma}$			- 0.2	٧
hio	Small-Signal Common-Emitter Input Impedance	$V_{CE} = -5 \text{ v}, I_C = -1 \text{ ma},$	f = 1 kc	0.75	4.5	kΩ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_C = -1 \text{ ma},$	f = 1 kc	30	130	
hoo	Small-Signal Common-Emitter Output Admittance	$V_{CE} = -5 \text{ v}, I_C = -1 \text{ ma},$	f = 1 kc		50	μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma},$	f = 20 Mc	3		
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB}=-5 \text{ v}, I_E=0,$	f = 1 Mc		8	pf

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Berate linearly to 175°C free-air temperature at the rate of 1.67 mw/C° for each triode and 2.33 mw/C° for total device.
- 3. Derate linearly to 175°C case temperature at the rate of 4.67 mw/C° for each triode and 9.33 mw/C° for total device.
- 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
- 5. These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data

TYPES 2N3049, 2N3050, 2N3051 DUAL P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*triode matching characteristics

D.	ARAMETER	TEST CONDITIONS	2N3049	2N3050	UNIT
<u>'</u>	ARAMEIER	TEST CONDITIONS	MIN MAX	MIN MAX	Oltil
h _{FE2}	Static-Forward-Current- Gain Balance Ratio	$V_{CE}=-5$ v, $I_{C}=-100~\mu a$, See Note 6	0.9 1	0.8 1	
V _{8E1} V _{8E2}	Base-Emitter-Voltage - Differential	$V_{CE}=-5$ v,, $\dot{I}_{C}=-100~\mu a$	5	10	mv
Δ (V _{BE1} — V _{BE2})	Base-Emitter-Voltage-	$V_{CE} = -5 \text{ v}, I_{C} = -100 \ \mu\text{a}, \ T_{A(1)} = 25 ^{\circ}\text{C}, T_{A(2)} = -55 ^{\circ}\text{C}$	0.8	1.6	mv
	With Temperature	$V_{CE} = -5 \text{ v}, I_{C} = -100 \mu \text{a}, \ T_{A(1)} = 25 ^{\circ}\text{C}, T_{A(2)} = 125 ^{\circ}\text{C}$	1	2	mv

NOTE 6: The lower of the two hpe readings is taken as hpe1.

operating characteristics at 25°C free-air temperature

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS	ALL	UNIT	
	FARAMEIER	TEST CONDITIONS	TYP	MAX	OMIT
NF	Average Noise Figure	$ m V_{CE}=-5$ v, $ m I_{C}=-100~\mu a$, $ m R_{G}=1~k\Omega$, Noise Bandwidth $=15.7$ kc , See Note 7	2	6	db

NOTE 7: Average Noise Figure is measured in an amplifier with low-frequency-response down 3 db at 10 cps.

switching characteristics at 25°C free-air temperature

*individual triode characteristics (see note 4)

	PARAMETER	TEST COMPITIONS	2N3	UNIT	
	PARAMETER	TEST CONDITIONS†	TYP	MAX	ONII
t _d	Delay Time	$I_{C} = -10 \text{ ma}, I_{B(1)} = -2.5 \text{ ma}, I_{B(2)} = 2 \text{ ma},$	10	15	nsec
tr	Rise Time		15	20.	nsec
t _s	Storage Time	1	60	120	nsec
tf	Fall Time	See Figure 1	18	30	nsec
t _r	Storage Time	$C = 10 \text{ ma}, I_{B(1)} = -2.5 \text{ ma}, I_{B(2)} = 2 \text{ ma},$ $V_{\text{BE(off)}} = +1.2 \text{ v}, R_{\text{L}} = 300 \Omega,$ See Figure 1		120	

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SWITCHING TIMES

NOTES: a. The input waveform has the following characteristics: $t_r \leq 1$ nsec, $t_t \leq 1$ nsec, PW ≥ 200 nsec, Duty Cycle $\leq 2\%$.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \le 1$ nsec, $R_{in} \ge 100$ kΩ, $C_{in} \le 3$ pf. The input impedance of the oscilloscope is included in the values shown for R_L , Total Collector Load Resistance, and C_T , Total Collector Shunt Capacitance.

4504

^{*}Indicates JEDEC registered data (typical data excluded).

DUAL P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

TWO P-N-P TRANSISTORS IN ONE PACKAGE

- Each triode electrically similar to 2N2604 and 2N2605 transistors
- Recommended for low-noise, high-gain differential amplifiers
- Designed for complementary use with TI 2N2639 through 2N2644 dual N-P-N transistors

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH TRIODE	TOTAL DEVICE
Collector-Base Voltage	60 v	
Collector-Emitter Voltage (See Note 1)	45 v	
Emitter-Base Voltage	-6 v	
Collector Current	—30 ma	
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	0.3 w	0.6 w
Total Device Dissipation at (or below) 25°C Case Temperature (See Note 3)	0.6 w	1.2 w
Storage Temperature Range	-65°C to	+200°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 2.0 mw/C° for each triode and 4.0 mw/C° for total device.
- 3. Derate linearly to 175°C case temperature at the rate of 4.0 mw/C° for each triode and 8.0 mw/C° for total device.

*Indicates JEDEC registered data.

TYPES 2N3347, 2N3348, 2N3349, 2N3350, 2N3351, 2N3352 DUAL P-N-P EPITAXIAL PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS	2N3347 2N3348 2N3349 MIN MAX	2N3350 2N3351 2N3352 MIN MAX	UNIT
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -10 \mu a, I_{E} = 0$	60	60	٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = -10 \text{ ma}, I_B = 0,$ See Note 5	45	45	٧
BVEBO	Emitter-Base Breakdown Voltage	$I_E = -10 \mu a, I_C = 0$	-6	<u>6</u>	ν
	Callester Cutall Comment	$V_{CB} = -45 \text{ v}, I_E = 0$	_10	-10	na
ICBO	Collector Cutoff Current	$V_{CB} = -45 \text{ v}, I_E = 0, \qquad T_A = 150 ^{\circ}\text{C}$	-10	-10	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -6 v$, $I_C = 0$	-2	-2	na
hee	Static Forward Current	$V_{CE}=-5 \text{ v}, I_{C}=-10 \ \mu\text{a}$	40 300	100 300	
re	Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma}$	60	150	
V _{RE}	Base-Emitter Voltage	$V_{CE} = -5 \text{ v}, I_{C} = -10 \text{ ma}$	-0.9	-0.9	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -0.5 \text{ ma}, I_C = -10 \text{ ma}$	-0.5	-0.5	٧
h _{ie}	Small-Signal Common-Emitter Input Impedance	$V_{CE} = -5 \text{ v}, I_{C} = -3 \text{ ma, } f = 1 \text{ kc}$	1.5 20	3.7 20	kohm
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma, } f = 1 \text{ kc}$	60 600	150 600	
hoo	Small-Signal Common-Emitter Output Admittance	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma, } f = 1 \text{ kc}$	100	100	μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ v}, I_{C} = -1 \text{ ma, f} = 30 \text{ Mc}$	2.0 8.0	2.0 8.0	
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -5 \text{ v}, I_E = 0, f = 1 \text{ Mc}$	6	6	pf
Cib	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -0.5 v, I_C = 0, f = 1 Mc$	8	8	pf

*triode matching characteristics

PARAMETER		TEST CONDITIONS		347 350	2N3	3348 3351_	2N3 2N3	UNIT	
• •	ARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	
h _{FE1}	Static Forward-Current- Gain Balance Ratio	$ m V_{CE} = -5 \ v, I_{C} = -10 \ \mu a,$ See Note 6	0.9	1.0	0.8	1.0	0.6	1.0	
V _{BE1} — V _{BE2}	Base-Emitter-Voltage Differential	$V_{CE}=-5$ v, $I_{C}=-10~\mu$ a		5		10		20	mv
Δ (V _{BE1} — V _{BE2})	Base-Emitter-Voltage-	$V_{CE} = -5 \text{ v}, I_{C} = -10 \mu \text{g}, \\ T_{A(1)} = 25 \text{°C}, T_{A(2)} = -55 \text{°C}$		0.8		1.6		3.2	mv
	A Differential Change With Temperature	$V_{CE} = -5 \text{ v}, I_{C} = -10 \mu a, \\ T_{A(1)} = 25^{\circ}\text{C}, T_{A(2)} = 125^{\circ}\text{C}$		1.0		2.0		4.0	mv

operating characteristics at 25°C free-air temperature

*individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS	ALL	TYPES	UNIT
		TEST CONDITIONS	TYP	MAX	····
NF Average Noise F	igure	$ m V_{CE} = -5$ v, $ m I_{C} = -10$ $ m \mu a$, $ m R_{G} = 10$ k $ m \Omega$, Naise Bandwidth $= 15.7$ kc, See Note 7	2	4	db

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.

- 5. This parameter must be measured using pulse techniques. PW = 300 μsec , Duty Cycle \leq 2%.
- 6. The lower of the two hee readings is taken as heet.
- 7. Average Noise Figure is measured in an amplifier with low-frequency response down 3 db at 10 cps.

^{*}Indicates JEDEC registered data (typical data excluded).

TYPE 2N3680 DUAL N-P-N PLANAR SILICON TRANSISTOR

RECOMMENDED FOR DIFFERENTIAL AMPLIFIERS

- Featuring Matching and Tracking Improvements over 2N2453, 2N2642, and 2N2920
- Each Triode Electrically Similar to 2N2484 and 2N930
- h_{FE} at 1 μα: 80 Min
- Matched from —55°C to 125°C
- $\frac{\Delta (V_{BE1} V_{BE2})}{\Delta T_A}$: 5 μ v/C° Max, Averaged over Temperature Range
- Also Recommended for Low-Level Flip-Flops;
 High-Gain, Low-Noise Audio Amplifiers;
 and Transducer Signal-Conditioner Amplifiers

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	Each Triode	Total Device
Collector-Base Voltage	60 v	
Collector-Emitter Voltage (See Note 1)	50 v	
Emitter-Base Voltage	6 v	
Collector -1 — Collector - 2 Voltage		± 120 v
Lead-to-Case Voltage		± 120 v
Collector Current	30 ma	
Continuous Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	0.3 w	0.6 w
Continuous Dissipation at (or below) 25°C Case Temperature (See Note 3)	0.6 w	1.2 w
Storage Temperature Range	65°C	to 200°C
Lead Temperature 1/16 Inch From Case For 10 Seconds		300°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 2 mw/C° for each triode and 4 mw/C° for total device.
- 3. Derate linearly to 175°C case temperature at the rate of 4 mw/C° for each triode and 8 mw/C° for total device.

*Indicates JEDEC registered data

TYPE 2N3680 DUAL N-P-N PLANAR SILICON TRANSISTOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*individual triode characteristics (see note 4)

	PARAMETER	TI	EST CONDITION	MIN	MAX	UNIT	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu a$	$I_E = 0$		60		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 10 \text{ma},$	$I_B = 0$,	See Note 5	50		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu a$,	$I_{C} = 0$		6		٧
	6.11.	$V_{CB} = 45 v$	$I_E = 0$			10	na
ICBO	Collector Cutoff Current	$V_{CB} = 45 v$	$I_E = 0$,	T _A = 150°C		10	μα
I _{CEO}	Collector Cutoff Current	$V_{CE} = 5 v$	$I_B = 0$			10	na
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 v$,	$I_C = 0$			10	na
		$V_{CE} = 5 v$,	$I_C = 1 \mu a$		80		
he Static Forward Current Transfer Ratio	$V_{CE} = 5 v$,			150	600		
h _{FE}	Static Forward Current Transfer Kallo .	$V_{CE} = 5 v$,	$I_C = 10 \mu a$,	T _A = -55°C	45		
		$V_{CE} = 5 v$,	$I_C = 100 \mu a$		225		
		$V_{C\dot{E}} = 5 v$	$I_{\rm C}=1{\rm ma}$		300		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 v$,	$I_{\rm C}=10~{\rm ma}$		0.6	0.8	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 0.5 \text{ma},$	$I_{\rm C}=10~{\rm ma}$			0.7	٧
	Small-Signal Common-Emitter				7.5	24	kΩ
h _{ie}	Input Impedance	$V_{CE} = 5 v$			7.3		
h _{fe}	Small-Signal Common-Emitter	102 51,			300	900	
Ilfe	Forward Current Transfer Ratio	4	$I_{\rm C}=1$ ma,				
h _{re}	Small-Signal Common-Emitter	ļ				10 x 10 ⁻⁴	
	Reverse Voltage Transfer Ratio Small-Signal Common-Emitter	-		f = 1 kc			
hoe	Output Admittance					45	μ mho
	Small-Signal Common-Emitter				<u> </u>		
h _{fe}	Forward Current Transfer Ratio	$V_{CE} = 5 v$	$I_{C}=500~\mu a$,	f = 30 Mc	2	6	
	Common-Base Open-Circuit	V - 5 ::	I _E = 0,	f = 1 Mc		6	pf
C _{obo}	Output Capacitance	ACB — 2 A'	IE — U,	1 — 1 mt			P'
	Common-Base Open-Circuit	$V_{co} = 0.5 \text{ v}.$	$I_{C}=0$,	f = 1 Mc		6	pf
C _{ibo}	Input Capacitance	VEB 0.5 V,	4,				F-

*triode matching characteristics

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
	Ct. ti. Francisco Comment	$V_{CE}=5 extsf{v},\;\; extsf{I}_{C}=10\;\mu extsf{a},\;\; extsf{See}\; extsf{Note}\; 6$	0.9	1	
h _{FE1}	Static Forward-Current- Gain Balance Ratio	$V_{CE}=5$ v, $I_{C}=100~\mu a$, See Note 6, $T_{A}=-55$ °C to 125°C	0.85	1	
V _{BE1} -V _{BE2}	Base-Emitter-Voltage Differential	$V_{CE} = 5 \text{ v}, I_{C} = 10 \ \mu \text{a}$		3	mv
la or v	Base-Emitter-Voltage	$V_{CE} = 5 \text{ v}, I_{C} = 10 \ \mu \text{a}, T_{A(1)} = 25 \text{°C}, \\ T_{A(2)} = -55 \text{°C}$		400	μ ν
△ (V _{BE1} — V _{BE2}	2) _{ATA} Differential Change With Temperature	$V_{CE} = 5 \text{ v}, I_{C} = 10 \ \mu \text{a}, T_{A(1)} = 25 ^{\circ}\text{C}, \\ T_{A(2)} = 125 ^{\circ}\text{C}$		500	μν

operating characteristics at 25°C free-air temperature

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
N	F Average Noise Figure	$V_{CB}=5$ v, $I_{E}=-10~\mu a$, $R_{G}=10~k\Omega$, Noise Bandwidth $=15.7$ kc, See Note 7		3	db

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.

- 5. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2 %.
- 6. The lower of the two $h_{\mbox{\scriptsize FE}}$ readings is taken as $h_{\mbox{\scriptsize FE1}}.$
- 7. Average Noise Figure is measured in an amplifier with low-frequency response down 3 db at 10 cps.

^{*}Indicates JEDEC registered data.

TYPE 2N3680 DUAL N-P-N PLANAR SILICON TRANSISTOR

TYPICAL MATCHING CHARACTERISTICS

NOTE 5: This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

DUAL N-P-N PLANAR SILICON TRANSISTOR

TYPICAL MATCHING CHARACTERISTICS

THERMAL INFORMATION

NOTES: 5. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle $\leq 2\%$.

6. The lower of the two h_{FE} readings is taken as h_{FE1}.

N-P-N P-N-P DUAL EPITAXIAL PLANAR SILICON TRANSISTOR

DESIGNED FOR COMPLEMENTARY MEDIUM-POWER. HIGH-SPEED SWITCHING AND GENERAL PURPOSE **AMPLIFIER APPLICATIONS**

- Electrically Similar to 2N2222/2N2907
- D-C Beta Guaranteed from 100 μ a to 150 ma
- Miniature Flatpack Facilitates High-Density Packaging

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

																	EACH TRIODE	TOTAL DEVICE
Collector-Base Voltage																	60 v	
Collector-Emitter Voltage (See Note	1)																40 v	
Emitter-Base Voltage																	5 v	
Collector-1 — Collector-2 Voltage .																		±120 v
Lead-to-Case Voltage																		±120 v
Continuous Collector Current																	600 ma	
Continuous Device Dissipation at (or	belo	w)	25	°C	Fre	e-/	Air	Te	mp	era	ture	e (S	ee	No	ote	2)	250 mw	350 mw
Continuous Device Dissipation at (or	belo	w)	25	°C	Co	ıse	Те	mp	era	tur	e (\$	See	N	ote	3)		700 mw	1400 mw
Storage Temperature Range											.•						65°C to	+200°C
Lead Temperature 1/4 Inch from Case	for	10	Se	co	nds													300°C

NOTES: 1. This value applies between 0 and 10 ma when the base-emitter diade is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 1.67 mw/C° for each triode and 2.34 mw/C° for total device.
- 3. Derate linearly to 175°C case temperature at the rate of 4.67 mw/C° for each triode and 9.34 mw/C° for total device.

TVoltages and currents apply to the N-P-N triode. For the P-N-P triode, the values are the same, but the signs are reversed.

^{*}Indicates JEDEC registered data

N-P-N P-N-P DUAL EPITAXIAL PLANAR SILICON TRANSISTOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

*individual triode characteristics (see note 4)

	PARAMETER		TEST CONDI	TIONS	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu a$	1 _E =0		60		٧
V(BR)CEO	Collector-Emitter Breakdown Voltage	I _C =10 ma,	I _B =0,	See Note 5	40		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E =10 μα,	I _C =0		5		٧
	Collector Cutoff Current	V _{CE} =50 v,	V _{BE} =-0.5 v			10	na
I _{CEY} Collector Cutoff Current		V _{CE} =50 v,	V _{BE} =-0.5 v,	T _A =150°C		10	μ α
IBEV	Base Cutoff Current	V _{CE} = 50 v,	V _{BE} =-0.5 v			-10	na
I _{EBO}	Emitter Cutoff Current	V _{E8} =3 v,	I _C =0			10	na
		V _{CE} =1 v,	$I_C = 150 \text{ ma},$	See Note 5	50		
_	Static Forward Current	V _{CE} =10 v,	I _C =100 μα		35		
h _{FE}	Transfer Ratio	V _{CE} =10 v,	I _C =1 ma		50		
		V _{CE} =10 v,	$I_{\rm C}=10$ ma,	See Note 5	75	١	
		V _{CE} =10 v,	$I_C = 150 \text{ ma},$	See Note 5	100	300	
VBE	Base-Emitter Voltage	I _B =15 ma,	I _C =150 ma,	See Note 5	0.85	1.3	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B =15 ma,	$I_{\rm C} = 150 {\rm ma}$	See Note 5	Ì	0.4	٧
h _{ie}	Small-Signal Common-Emitter Input Impedance	V _{CE} =10 v,			1.5	9	kΩ
h _{fe}	Small-Signal Ferward Current Transfer Ratio		$I_C=1$ ma,		60	300	
h _{oe}	Small-Signal Common-Emitter Output Admittance			f=1 kc		50	μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} =10 v,	I _C =20 ma,	f=100 Mc	2		
Cobo	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 v,	I _E =0,	f=140 kc		8	pf

operating characteristics at 25°C free-air temperature†

*individual triode characteristics (see note 4)

	PARAMETER	TEST	CONDITIONS‡	MIN	MAX	UNIT
t _d	Delay Time	I _C =150 ma,	$I_{B(1)} = 15 \text{ ma}, V_{BE(off)} = 0,$		10	nsec
tr	Rise Time	$R_L = 64 \Omega$,	See Figure 1		40	. nsec
t,	Storage Time	I _C =150 ma,	$I_{B(1)} = -I_{B(2)} = 15 \text{ ma},$		250	nsec
t _f	Fall Time	$R_L = 64 \Omega$,	See Figure 2		90	nsec
V _{CEO(NL)}	Collector-Emitter Nonlatching Voltage§	I _{C(on)} = 600 ma, I _{B(off)} = 0,	I _{B(on)} = 120 ma, See Figure 3	40		٧
NF	Spot Noise Figure	$V_{CE}=10 \text{ v},$ $R_{G}=1 \text{ k}\Omega,$	I _C =100 μα, f=1 kc		8	db

NOTES: 4. The terminals of the triode net under test are open-circuited for the measurement of these characteristics.

^{5.} These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data

TVoltages and currents apply to the N-P-N triode. For the P-N-P triode, the values are the same, but the signs are reversed.

[‡]Voltages and current values shown are nominal; exact values vary with device parameters.

SThis characteristic is the highest value of collector supply voltage which may be safely used with a resistive-load switching circuit in which the collector current approaches 600 ma.

TYPE 2N3838 N-P-N P-N-P DUAL EPITAXIAL PLANAR SILICON TRANSISTOR

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1

FIGURE 2

FIGURE 3 - COLLECTOR-EMITTER NONLATCHING VOLTAGE TEST CIRCUIT

- NOTES: a. The input waveforms are supplied by a generator with the following characteristics: for Figure 1, $I_{out} = 50 \Omega$, $I_r \le 1$ nsec, PW ≥ 400 nsec, Duty Cycle $\le 2\%$; for Figure 2, $I_{out} = 50 \Omega$, $I_r \le 10$ nsec, PW = 10 μ sec, Duty Cycle $\le 2\%$.
 - b. The waveforms are monitored on an oscilloscope with the following characteristics: for Figure 1, $t_r \le 1$ nsec, $R_{in} \ge 100$ k Ω , $C_{in} \le 5$ pf; tor Figure 2, $t_r \le 5$ nsec, $R_{in} \ge 100$ k Ω , $C_{in} \le 12$ pf.
 - c. The input waveform in Figure 3 has the following characteristics: PW \leq 10 μ sec, Duty Cycle \leq 2%.
 - d. The signs and polarity symbols shown are for the N-P-N triode; the signs and polarity symbols are reversed for the P-N-P triode,

.-

^{*}Indicates JEDEC registered data

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791 Birmingham, Alabama 35233 ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA KIERULFF ELECTRONICS, INC.

2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034 R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center

Phoenix, Arizona CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025 KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015 R. V. WEATHERFORD COMPANY

1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. Indianapolis, Indiana 46219 RADIO DISTRIBUTING COMPANY 814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS DEMAMBRO ELECTRONICS 1095 Commonwealth Ave. (617) 787-1200

Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237 NEWARK-INDUSTRIAL

ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109 ELECTRONIC COMPONENTS FOR

INDUSTRY

2605 South Hanley Rd./(314) MI 7-5505 St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102 TI SUPPLY COMPANY

301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC. 2524 Baylor Dr. S.E./(505) 247-1055 Albuquerque, New Mexico 87108

NEW YORK

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216 LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431 MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600

New York, New York 10013 ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800 Rochester, New York 14614

TI SUPPLY COMPANY 4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA

ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

OHIO

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102

NEWARK-HERRLINGER ELECTRONICS CORP. 112 E. Liberty St./(513) GA 1-5282 Cincinnati, Ohio 45210

W. M. PATTISON SUPPLY CO. 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park Pittsburgh, Pennsylvania 15238

TFXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235

5240 Elm Street/(713) MO 6-2175 Houston, Texas 77036 HARRISON EQUIPMENT COMPANY, INC. 1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

IITAH

STANDARD SUPPLY COMPANY 225 E. Sixth South St./(801) EL 5-2971 Salt Lake City, Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS, INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario TI SUPPLY COMPANY

Dorval, Quebec WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR MELBOURNE, Australia

RADIO PARTS PTY, LTD. PERTH, Australia PRECISION ELECTRONICS BRISBANE, Australia DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS

BRUSSELS IV, Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V, Denmark TEXAS INSTRUMENTS A/S

> **HELSINKI**, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

> OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM, Sweden AB GOSTA BACKSTROM

ZURICH 32, Switzerland FABRIMEX AG ZURICH

> PARIS, FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

TYPES 2N4854, 2N4855

N-P-N, P-N-P, DUAL EPITAXIAL PLANAR SILICON TRANSISTORS

DESIGNED FOR COMPLEMENTARY MEDIUM-POWER, HIGH-SPEED SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- 2N4854 Electrically Similar to 2N2222/2N2907
- 2N4855 Electrically Similar to 2N2221/2N2906
- h_{FE} Guaranteed from 100 μ A to 300 mA
- Low-Profile Case

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

											EACH TRIODE	TOTAL DEVICE
Collector-Base Voltage											60 V	
Collector-Emitter Voltage (See Note 1	1) .										40 V	
Emitter-Base Voltage											5 V	
Collector-1 — Collector-2 Voltage												±120 V
Lead-to-Case Voltage												±120 V
Continuous Collector Current											600 mA	
Continuous Device Dissipation at (or be	elow)	25°C	Free	-Air	Temp	eratu	re (See	N	ote 2)	300 mW	600 mW
Continuous Device Dissipation at (or be											1 W	2 W
Storage Temperature Range											-65°C 1	o 200°C
Lead Temperature $lambda_6$ Inch from Case fo	or 10	Seco	nds .	•			•	•				300°C

- NOTES: 1. This value applies between 0 and 600 mA collector current when the base-emitter diode is open-circuited. 40 V and 600 mA collector current may be simultaneously applied provided the time of application is 10 µs or less and the duty cycle is 2% or less.
 - 2. Derate linearly to 175°C free-air temperature at the rate of 2 mW/deg for each triode and 4 mW/deg for total device.
 - 3. Derate linearly to 175°C case temperature at the rate of 6.67 mW/deg for each triode and 13.33 mW/deg for total device.

†Voltages and currents apply to the N-P-N triode. For the P-N-P triode the values are the same, but the signs are reversed.

^{*}Indicates JEDEC registered data

TYPES 2N4854, 2N4855 N-P-N, P-N-P, DUAL EPITAXIAL PLANAR SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)†

*individual triode characteristics (see note 4)

	PARAMETER		EST CONDITIO	MC	2N4	854	2N4	855	UNIT
	PARAMEIER		ESI CONDITIO	742	MIN	MAX	MIN	MAX	Oldi
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A$	I _E = 0		60		60		V
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA},$	$I_B = 0$,	See Note 5	40		40		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A$,	$I_{C} = 0$		5		5		٧
	Collector Cutoff Current	$V_{CB} = 50 V$	$I_E = 0$			10		10	nA
I _{CBO}	Collector Cutoff Cuttern	$V_{CB} = 50 V$	$I_{E}=0$,	$T_A = 150$ °C		10		10	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3 V$,	$I_{C} = 0$			10		10	nA
		$V_{CE} = 1 V,$	$I_C = 150 \text{ mA},$	See Note 5	50		20		
		$V_{CE} = 10 V$	$I_{C} = 100 \mu A$		35		20		
	Static Forward Current	$V_{CE} = 10 \text{ V},$	$I_C = 1 \text{ mA}$		50		25		
h _{FE}	Transfer Ratio	$V_{CE} = 10 V$	$I_{\rm C}=10$ mA,	See Note 5	75		35		
		$V_{CE} = 10 V$	$I_C = 150 \text{ mA},$	See Note 5	100	300	40	120	
		$V_{CE} = 10 V$	$I_C = 300 \text{ mA},$	See Note 5	35		20		
V _{BE}	Base-Emitter Voltage	$I_B = 15 \text{ mA},$	$I_C = 150 \text{ mA},$	See Note 5	0.75	1.2	0.75	1.2	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 15 \text{ mA},$	$I_C = 150 \text{ mA},$	See Note 5		0.4		0.4	٧
hio	Small-Signal Common-Emitter Input Impedance	V _{CE} = 10 V,			1.5	9	0.75	4.5	kΩ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio		$I_C = 1 \text{ mA,}$		60	300	30	150	
h _{oe}	Small-Signal Common-Emitter Output Admittance			f = 1 kHz		50	_	25	μ mho
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 20 mA,	f = 100 MHz	2		2		
Ccp	Collector-Base Capacitance	V _{CB} = 10 V,	I _E = 0,	f = 1 MHz, See Note 6		8		8	pF

operating characteristics at 25°C free-air temperature†

*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
td	Delay Time	$I_C = 150 \text{ mA}, I_{B(1)} = 15 \text{ mA}, V_{BE(off)} = -0.5 \text{ V},$		20	ns
tr	Rise Time	$R_L=200\Omega$, See Note 7 and Figure 1		40	ns
t _s	Storage Time	$I_C = 150 \text{ mA}, \ I_{B(1)} = 15 \text{ mA}, \ I_{B(2)} = -15 \text{ mA},$	-	280	ns
te	Fall Time	$R_L=200~\Omega$, See Note 7 and Figure 2		70	ns
NF	Spot Noise Figure	$V_{CE}=10 \text{ V}, I_{C}=100 \mu\text{A}, R_{G}=1 \text{ k}\Omega, \\ f=1 \text{ kHz}$		8	dB

NOTES: 4. The ferminals of the triode not under test are open-circuited for the measurement of these characteristics.

- 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.
- 6. Collector-Base Capacitance is measured using three-terminal measurement techniques with the emitter and case guarded.
- 7. Voltages and current values shown are nominal; exact values vary with device parameters.

†Voltages and currents apply to the N-P-N triode. For the P-N-P triode the values are the same, but the signs are reversed.

^{*}Indicates JEDEC registered data

TYPES 2N4854, 2N4855 N-P-N, P-N-P, DUAL EPITAXIAL PLANAR SILICON TRANSISTORS

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - DELAY AND RISE TIMES

FIGURE 2 - STORAGE AND FALL TIMES

NOTES: a. The input waveforms have the following characteristics: For figure 1, $t_r \le 2$ ns, $t_p = 200$ ns, duty cycle $\le 2\%$; for figure 2, $t_f \le 5$ ns, $t_p = 10$ μ s, duty cycle $\le 2\%$.

b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 5$ ns, $R_{in} \geq 100$ k Ω , $C_{in} \leq 12$ pF.

c. The signs and polarity symbols shown are for the N-P-N triode; for the P-N-P triode the signs and polarity symbols are reversed.

TI World-Wide Sales Offices

ALABAMA -

3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Sahara Office Park Bldg., Suite 111 Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie. New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 - P.O. Box 5012 Dallas, Texas 75222 214-238-4861

3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. **Boite Postale 5** Villeneuve-Loubet (A.M.), France

11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany

Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato **Buenos Aires, Argentina**

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

SILECT† FIELD-EFFECT TRANSISTORS SUPPLIED AS MATCHED PAIRS

- High |y_{fs}|/C_{iss} Ratio (High-Frequency Figure-of-Merit)
- Low Input Capacitance, Ciss ... 8 pF Max
- Low Gate Reverse Current Differential ... 10 nA Max at T₄ = 100°C
- Recommended for Low-Cost, Low-Level D-C Amplifiers, Sample-Hold Circuits, and Series-Shunt Choppers

mechanical data

Each TIS68, TIS69, or TIS70 comprises a matched pair of transistors. A clip is supplied with each transistor pair. These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage																					. 25 V
Reverse Gate-Source Voltage																					–25 V
Continuous Forward Gate Curre	ent																				30 mA
Continuous Device Dissipation of	at (or	bel	ow)	25°	C F	ee-	Air	Ten	npe	rat	ure	(Se	ee	Not	e	1)				. :	360 mW
Storage Temperature Range .																		_65	°C	to	150°C
Sidiage reinperature kange .			•	•		•	•	•	•	•	•	•	•	•	•	•	•	-			. 130 C

NOTE 1: Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

†Trademark of Texas Instruments

‡Patent Pending

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

individual triode characteristics

	PARAMETER	1	EST CONDITI	ONS	MIN	MAX	UNIT
		$V_{GS} = -25 V$	$V_{DS} = 0$			— 1	μΑ
less	Gate Reverse Current	$V_{GS} = -15 V$	$V_{DS} = 0$			-2	nA
		$V_{GS} = -15 V$	$V_{DS} = 0$,	T _A = 100°C		-2	μΑ
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 V$	I _D = 2 nA		-0.5	-5	٧
loss	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 V$	$V_{GS} = 0$,	See Note 2	0.5	8	mA
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 V$,	V _{GS} = 0,	f = 1 kHz	1	6	mmho
y _{os}	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 V,$	V _{GS} = 0,	f = 1 kHz		35	μmho
C _{iss}	Small-Signal Common-Source Input Capacitance	V _{DS} = 15 V,	ν _{GS} = 0,	f = 1 MHz		8	pF
C _{rss}	Small-Signal Common-Source Reverse Transfer Capacitance	V _{DS} = 15 V,	V _{GS} = 0,	f = 1 MHz		4	pF
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	V _{DS} = 15 V,	V _{GS} = 0,	f = 100 MHz	0.8		mmho

triode matching characteristics

p	ARAMETER	TEST CO	NDITIONS		568		569		570	UNIT
		1251 66		MIN	MAX	MIN	MAX	MIN	MAX	0.1
$\left I_{GSS1}-I_{GSS2}\right $	Gate-Reverse-Current Differential	$V_{GS} = -15 V,$	V _{DS} = 0, T _A = 100°C		10		10		10	nA
V _{GS1} V _{GS2}	Cata Source Voltage Differential	$V_{DS} = 15 V$	$I_D = 50 \mu A$		8		16		32	m۷
VGS1 - VGS2	sate-source-voltage vitterential	$V_{DS} = 15 V$	$I_D = 500 \mu A$		5		10		15	m۷
law v v	Gate-Source-Voltage Differential	$V_{DS} = 15 V,$ $T_{A(1)} = 25 ^{\circ}C,$	$I_D = 500 \mu A,$ $T_{A(2)} = -40 ^{\circ} C$		5		10		15	mV
A(Aesi — Aess) VI	Change with Temperature	$V_{DS} = 15 \text{ V},$ $T_{A(1)} = 25 ^{\circ}\text{C},$	$I_D = 500 \mu A$,		5		10		15	m۷
I _{DSS1} I _{DSS2}	Zero-Gate-Voltage Drain Current Ratio	$V_{DS} = 15 V$,	V _{GS} = 0, See Note 3	0.95	1	0.9	1	0.8	1	
Yfs 1 Yfs 2	Small-Signal Common-Source Forward Transfer Admittance Ratio	$V_{DS} = 15 V,$ f = 1 kHz,	V _{GS} = 0, See Note 3	0.95	1	0.9	1	0.8	1	

NOTES: 2. This parameter must be measured using pulse techniques. $t_{\rm p} \approx$ 100 ms, duty cycle \leq 10%.

^{3.} The lower of the two characteristic readings is taken as the numerator.

SYMMETRICAL N-CHANNEL SILECT† FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low $r_{ds(on)}$: 25 Ω Max (TIS73)
- Low I D(off) : 2 nA Max
- Low Drain-Gate Capacitance (C_{rss}): 8 pF Max
- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin-Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage		•																	•	•	•	•		. 30 V
Drain-Source Voltag	е.																							. 30 V
Reverse Gate-Source	Vol	tag	е																					–30 V
Continuous Forward	Gate	e Cı	Jrre	ent																				50 mA
Continuous Device D	issip	atio	n a	t (o	r be	elow) 2	5°C	Fre	e-A	Air T	emp	era	ture	e (S	ee	No	ote	1)					360 mW
Continuous Device D Continuous Device D															•				•					
	issipo	oite	ı a	t (o	r be	elow	25	5°C	Le	ad	Ten	nper	atur	е (See	N	ote	2)	•					500 mW
Continuous Device D	issipo Rar	ation nge	1 a	t (o	r be	elow	2:	5°C	Le	ad	Ten	per	atur •	e (See	• N •	ote	2)		•	-6	5°C	. to	500 mW 5 150°C

NOTES: 1. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

2. Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the gate lead 1/16 inch from the case.

†Trademark of Texas Instruments ‡Patent Pending

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEC	T CONDITION	16	TI	S73	TI	S74	TI	575	115117
	PARAMETER	1 E3	CONDITION	13	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1 \mu A$	$V_{DS} = 0$		-30		-30		-30		٧
less	Gate Reverse Current	$V_{GS} = -15 V$	$V_{DS} = 0$			-2		-2		-2	пA
1622	oule Reverse Correin	$V_{GS} = -15 V$	$V_{DS}=0$,	$T_A = 100$ °C		-5		-5		-5	μA
laa	Drain Cutoff Current	$V_{DS} = 15 V$	$V_{GS} = -10 V$			-2		-2		-2	nA
I _{D(off)}	Diam colon conem	$V_{DS} = 15 V$	$V_{GS} = -10 V$,	$T_A = 100$ °C		-5		-5		-5	μA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 V$	$I_D = 4 \text{ nA}$		-4	-10	-2	-6	-0.8	-4	٧
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 V$	$V_{GS} = 0$,	See Note 3	50		20	100	8	80	mA
	David Comme	$I_D = 20 \text{ mA},$	$\Lambda^{ez} = 0$			0.75					٧
V _{DS(on)}	Drain-Source On-State Voltage	$I_D = 10 \text{ mA},$	$\Lambda^{ez} = 0$					0.5			٧
	Oil-Sidie Vollage	$I_D = 5 \text{ mA},$	$V_{es} = 0$							0.5	٧
r _{ds(on)}	Small-Signal Drain-Source On-State Resistance	$v_{GS} = 0$,	I _D = 0,	f = 1 kHz		25		40		60	Ω
C _{iss}	Common-Source Short-Circuit Input Capacitance	$V_{DS}=0$,	$v_{es} = -10 v$,	f = 1 MHz		18		18		18	рF
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{DS}=0$,	V _{GS} = -10 V,	f = 1 MHz		8		8		8	рF

switching characteristics at 25°C free-air temperature

	PARAMETER		CONDITIONS	TI	573	TIS	74	TIS	75	
· ·	AKAMETEK	1531	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{d(on)}	Turn-On Delay Time	V _{DS} = 10 V,	(20 mA (TIS73)		6		6		10	ns
tr	Rise Time	$V_{GS(on)}=0,$	$I_{D(on)}^{\dagger} = \begin{cases} 20 \text{ mA (TIS73)} \\ 10 \text{ mA (TIS74)} \\ 5 \text{ mA (TIS75)} \end{cases}$		3		4		10	ns
t _{off}	Tum-Off Time	See Figure 1	V _{GS[off]} = \begin{cases} -10 V (TIS73) \\ -6 V (TIS74) \\ -4 V (TIS75) \end{cases}		25		50		100	ns

NOTE 3: These parameters must be measured using pulse techniques. $\rm t_p \approx 100$ ms, duty cycle $\leq 10\%$.

†These are nominal values, exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{\text{out}} = 50~\Omega$, duty cycle $\approx 2\%$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathbf{I}_{\text{r}} \leq 0.75~\text{nn},~R_{\text{in}} \geq 1~\text{M}\Omega,~C_{\text{in}} \leq 2.5~\text{pF}.$

TYPICAL CHARACTERISTICS COMMON-SOURCE SHORT-CIRCUIT COMMON-SOURCE SHORT-CIRCUIT REVERSE TRANSFER CAPACITANCE INPUT CAPACITANCE GATE-SOURCE VOLTAGE GATE-SOURCE VOLTAGE Crss — Common-Source Reverse Transfer Capacitance — pF 50 50 f = 1 MHz f = 1 MHz Ciss -- Common-Source Input Capacitance -- pF T_A = 25°C See Note 40 40 30 30 V_{DS} = 10 V 20 20 10 10 ٥ 0 -0.01 -0.1 -0.4 -0.01 -0.1 -0.4 -10 V_{GS} — Gate-Source Voltage -V_{GS} — Gate-Source Voltage -FIGURE 2 FIGURE 3

NOTE 4: These parameters were measured with bias voltages applied for less than five seconds to avoid overheating the devices.

TYPICAL CHARACTERISTICS

FIGURE 8-MEASUREMENT INFORMATION FOR FIGURES 6 & 7

NOTES: 5. The circuit of figure 1 is used, varying R_L from 100 Ω to 10 k Ω . $t_p=1$ μ s, duty cycle \leq 2%. 6. Voltmeter input resistance $R_{in}\geq$ 10 M Ω .

‡In the circuit of figure 8, Average Output Voltage results from capacitive feed-through of the gate-drive signal.

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

N-CHANNEL SILECT† FIELD-EFFECT TRANSISTOR FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Power Gain . . . 10 dB Min at 400 MHz
- ullet High Transconductance . . . 4000 μ mho Min at 400 MHz
- Low C_{rss}... 1 pF Max
- High |y_{fs}|/C_{iss} Ratio (High-Frequency Figure-of-Merit)
- Drain and Gate Leads Separated for High Maximum Stable Gain
- Cross-Modulation Minimized by Square-Law Transfer Characteristic
- For Use in VHF Amplifiers in FM, TV, and Mobile Communications Equipment

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C method 106B. The transistor is insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage																30 V
Drain-Source Voltage								•							•	. 30 V
Reverse Gate-Source	Voltage															-30 V
Continuous Forward G	ate Curr	ent .														50 mA
Continuous Device Dis	sipation c	at (or	below) 25°	C Fr	ee-Air	Temp	erat	ure (See	Not	e 1)				360 mW
Continuous Device Dis	sipation c	at (or	below	/) 25°	'C Le	ad Te	mper	ature	(See	No	te 2)				500 mW
Storage Temperature	Range .												-6	55°C	C t	o 150°C
Lead Temperature 1/6 le	nch from	Case	for 10	Seco	nds											260°C

NOTES: 1. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

2. Derate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the gate lead 1/16 inch from the case.

†Trademark of Texas Instruments

‡Patent pending

TYPE TIS88

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G}=-1~\mu\text{A},~V_{DS}=0$	-30		V
less	Gate Reverse Current	$V_{GS} = -20 V$, $V_{DS} = 0$		-1	nA
		$V_{GS} = -20 \text{ V}, \ V_{DS} = 0, T_A = 100^{\circ}\text{C}$		-0.5	μA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ nA}$	-1	-6	V
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0, \text{See Note 3}$	5	15	mA
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1 \text{ kHz}$	4.5	7.5	mmho
yos	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1 \text{ kHz}$		0.05	mmho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = 15 V$,		4.5	рF
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{GS}=0, \ f=1$ MHz		1	pF
Re(y _{is})	Small-Signal Common-Source Input Conductance	$V_{DS} = 15 V$		0.1	mmho
lm(y _{is})	Small-Signal Common-Source Input Susceptance	$V_{GS}=0$,		3	mmho
Re(yos)	Small-Signal Common-Source Output Conductance	f = 100 MHz		0.075	mmho
Im(y _{os})	Small-Signal Common-Source Output Susceptance	1 100 MHZ		0.9	mmho
Re(y _{is})	Small-Signal Common-Source Input Conductance			1	mmho
lm(y _{is})	Small-Signal Common-Source Input Susceptance	$V_{DS} = 15 V$,		12	mmho
Re(y _{fs})	Small-Signal Common-Source Forward Transfer Conductance	$v_{es} = 0$,	4		mmho
Re(yos)	Small-Signal Common-Source Output Conductance	f = 400 MHz		0.1	mmho
Im(yos)	Small-Signal Common-Source Output Susceptance			4	mmho

NOTE 3: This parameter must be measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDI	TIONS	MIN	MAX	UNIT
	Small-Signal Common-Source	$V_{DS} = 15 \text{ V}, I_D = 5 \text{ mA}, R_{G'} = 1 \text{ k}\Omega,$	f = 100 MHz, See Figure 1	18		dB
G _{ps}	Neutralized Insertion Power Gain	$V_{DS} = 15 \text{ V}, I_D = 5 \text{ mA}, R_{G'} = 1 \text{ k}\Omega,$	f = 400 MHz, See Figure 1	10		QB
NF	Spot Noise Figure	$V_{DS}=15$ V, $I_{D}=5$ mA, $R_{G'}=1$ k Ω ,	f = 100 MHz, See Figure 1		2	dB
lui lui	shar uaise ridaie	$V_{DS}=15 \text{ V}, I_{D}=5 \text{ mA}, \\ R_{G'}=1 \text{ k}\Omega,$	f = 400 MHz, See Figure 1		4	uB

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

PARAMETER MEASUREMENT INFORMATION

			IRCUIT	COMPONENT INFORMATION			
CAPACITORS				COILS			
	100 MHz	400 MHz		100 MHz	400 MHz		
Cı	not used	1.8 pF		8.5 T, #16 copper, tapped 2.5 T from bottom, 3/8" ID, 1 1/4" long	1.25 T, #20 copper, 3/16" ID,		
C2	7 pF	not used	լ		3/8" long		
C ₃	1—12 pF	0.8-8 pF	1		5, 5 long		
C ₄	1000 pF	27 pF	L ₂	15 T, #20 enameled copper, close-wound, 1/4" ID	4 T, #20 enameled copper,		
C ₅	1—12 pF	0.8-8 pF	Ţ <u></u>		close-wound, 3/16" ID		
C ₆	not used	1 pF	٦.	13.5 T, #16 copper, tapped 5 T from bottom, 3/8" ID, 1 1/4" long	0.5 T, #20 copper, 1/2" ID,		
C ₇	3 pF	not used	L ₃		no length		

FIGURE 1 — SCHEMATIC AND COMPONENT INFORMATION FOR 100-MHz AND 400-MHz NEUTRALIZED INSERTION POWER GAIN AND SPOT NOISE FIGURE TEST CIRCUITS

TYPICAL CHARACTERISTICS

CORRELATION OF SMALL-SIGNAL COMMON-SOURCE
FORWARD TRANSFER ADMITTANCE and
GATE-SOURCE CUTOFF VOLTAGE
with
NDIVIDUAL DEVICE ZERO-GATE-VOLTAGE DRAIN CURRE

FIGURE 3

TYPE TIS88

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS

NOTE 3: This parameter must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$. †Data is for devices having the indicated values of t_{DS} at $V_{DS}=15~V$, $V_{GS}=0$, and $T_A=25^{\circ}C$.

TYPE TIS88 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-SOURCE

SMALL-SIGNAL COMMON-SOURCE OUTPUT ADMITTANCE

FIGURE 11 †Data is for devices having the indicated values of IDSS at VDS = 15 V, VGS = 0, and TA = 25°C.

FIGURE 12

TYPE TIS88

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-SOURCE OUTPUT ADMITTANCE

FIGURE 15

FIGURE 16

TYPE TIS88 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS

TYPE TIS88

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL APPLICATION DATA

CIRCUIT COMPONENT INFORMATION

CAPACITORS	RESISTORS	COILS
C ₁ : 0.001 μF C ₁₂ : 1.2 pF C ₂ : 10 pF C ₁₃ : † C ₃ : † C ₁₄ : 10 pF C ₄ : 0.001 μF C ₁₅ : 240 pF C ₅ : † C ₁₆ : 0.001 μF C ₆ : 10 pF C ₁₇ : 0.1 μF C ₇ : 0.001 μF C ₁₈ : 0.01 μF C ₈ : 12 pF C ₁₉ : 47 pF C ₉ : 4.7 pF C ₂₀ : 0.01 μF C ₁₀ : 6.8 pF C ₂₁ : 100 pF C ₁₁ : 4.7 pF C ₂₂ : 0.01 μF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L ₁ : 2.5 T, #16 bus, ½" ID, carbonyl "E" core, tapped at 1 T and 2 T from bottom L ₂ : 4 T, #16 bus, ½" ID, air core, tapped at 1.3 T and 1 T from bottom L ₃ : 1 µH L ₄ : 3 T, #16 bus, ½" ID, carbonyl "E" core
+Three cana 4-21 nF each with trimmers		

FIGURE 19 - TYPICAL FM TUNER

FOR INDUSTRIAL SMALL-SIGNAL APPLICATIONS

• High Input Impedance (> 3 megohms at 1 kc)

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	Т	EST CONDITI	ONS	MIN	MAX	UNIT
BV _{DGO}	Drain-Gate Breakdown Voltage (See Note 3)	$I_D = -10 \mu a$	$I_S = 0$		- 20		٧
l _{GSS}	Gate Cutoff Current	$V_{GS} = 10 \text{ v},$ $V_{GS} = 10 \text{ v},$		T _A = 100°C		0.01	μα μα
I _{D(off)}	Pinch-Off Drain Current	$V_{DS} = -12 \text{ v,}$	V _{GS} = 8 v			-10	μα
yis	Small-Signal Common-Source Input Admittance	$V_{DS} = -10 \text{ v},$	$V_{GS}=0$,	f = 1 kc		0.3	μ mho
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v},$	V _{GS} = 0,	f = 1 kc	1000		μ mho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = -10 \text{ v},$	V _{GS} = 0,	f = 140 kc		50	pf

NOTES: 1. Derate linearly to 175°C free-air temperature at the rate of 3.3 mw/C°.

- 2. Derate linearly to 175°C case temperature at the rate of 10 mw/C°.
- 3. This parameter corresponds closely to BV_{DSS} (the Drain-Source Breakdown Voltage for $V_{GS} = 0$). BV_{DSX} (the Drain-Source Breakdown Voltage for other values of V_{GS}) may be calculated from: $|BV_{DSV}| \cong |BV_{DGO}| |V_{GS}|$.

^{*}Indicates JEDEC registered data

P-CHANNEL DIFFUSED PLANAR SILICON FIELD-EFFECT TRANSISTOR

BIAS DESIGN CURVE FOR TYPICAL UNITS

TYPICAL APPLICATION DATA

HIGH-INPUT-IMPEDANCE AMPLIFIER

NOTES: a. Adjust for + 18 v at Point "A". b. All resistors ± 5% tolerance, 1/2 watt.

TYPICAL SMALL-SIGNAL CIRCUIT PERFORMANCE CHARACTERISTICS

FREQUENCY	Z _{in} †
10 cps	70 M.Ω
100 cps	70 MΩ
1 kc	50 MΩ
10 kc	10 MΩ

R _g	3-db BANDWIDTH†		
100 kΩ	1 cps to 200 kc		
IMΩ	1 cps to 50 kc		
10 MΩ	1 cps to 8 kc		

VOLTAGE GAIN				
Adjustable from 1 to 20				

† T_A = 25°C, "Gain Adjust" set for Gain of 10

TYPES 2N2497, 2N2498, 2N2499, 2N2500 P-CHANNEL DIFFUSED PLANAR SILICON FIELD-EFFECT TRANSISTORS

FOR SMALL-SIGNAL, LOW-NOISE APPLICATIONS

- Guaranteed 10 cps Noise Figure (2N2500)
- High Input Impedance (>5 megohms at 1 kc)
- High Nuclear Radiation-Damage Resistance

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Continuous Forward Gate Current . . Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 1) Total Device Dissipation at (or below) 25°C Case Temperature (See Note 2). Storage Temperature Range . . . -195°C to +200°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		2497	2N2498		2N2499		2N2500		UNDT
	FARAMEIER	TEST CONDITIO	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
BVDGO	Drain-Gate Breakdown Voltage (See Note 3)	$I_D=-10~\mu$ a, $I_S=$	0 — 20		20		— 20		— 20		٧
less	Gate Cutoff Current	V _{GS} = 10 v, V _{DS} =	= 0	0.01		0.01		0.01		0.01	μα
Iess	Gate Cutoff Current	$V_{GS} = 10 \text{ v}, V_{DS} = 0 \text{ T}_{A} $	= 0 : 150°C	10		10		10		10	μα
IDSS	Zero-Gate-Voltage Drain Current	V _{DS} = - 10 v, V _{GS} =	= 0 -1	— 3	— 2	-6	-5	— 15	-1	— 6	ma
I _{D(off)}	Pinch-Off Drain Current	$V_{DS} = -15 \text{ v}, V_{GS}$	See Note 4	— 10		— 10		10		— 10	μα
r _{DS}	Static Drain-Source Resistance	$I_{D} = -100 \mu a, V_{GS} =$	= 0	1000		800		600			ohm
y _{is}	Small-Signal Common-Source Input Admittance			0.2		0.2		0.2		0.2	μmho
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	V _{DS} = - 10 v, I _D : Se	1000 1000	2000	1500	3000	2000	4000	1000	2200	μmho
y _{rs}	Small-Signal Common-Source Reverse Transfer Admittance	f = 1 kc		0.1		0.1		0.1		0.1	μmho
y _{os}	Small-Signal Common-Source Output Admittance			20		40		100		20	μmho
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v}, I_{D}: Sec$ $f = 10 \text{ mc}$	Note 5 900		1350		1800		900		μmho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{GS} = 0,$ $V_{DS} = 140 \text{ kc}$	= — 10 v	32		32		32		32	pf

*operating characteristics at 25°C free-air temperature

NF Spot Noise Figure	Snot Mairo Eigura	$V_{DS} = -5 \text{ v},$ $f = 1 \text{ kc},$	${ m I}_{ m D}=-1$ ma ${ m R}_{ m G}=1$ M Ω	3	3	4	1	db
"	spot noise rigute	$V_{DS} = -5 \text{ v},$ $f = 10 \text{ cps},$	$I_D = -1 \text{ ma}$ $R_G = 10 \text{ M}\Omega$				5	đb

NOTES: 1. Derate linearly to 175°C free-air temperature at the rate of 3.3 mw/C°.

- 2. Derate linearly to 175°C case temperature at the rate of 10 mw/C°.
- 3. This parameter corresponds closely to BY_DSS (the Drain-Source Breakdown Voltage for $V_{\rm GS}=$ 0). ${\rm BV_{DSX}}$ (the Drain-Source Breakdown

Voltage	for	other	values	of	V _{GS})	may	calculated	fron
BVDSX	\cong	BVDG	- 0	٧G	sl.			

	2N2497	2N2498	2N2499	2N2500
NOTE 4: V _{GS} =	5 v	6 v	8 v	6 v
NOTE 5: I _D =	—1 ma	2 ma	— 5 ma	—1 ma

^{*}Indicates JEDEC registered data.

TYPES 2N2497, 2N2498, 2N2499, 2N2500 P-CHANNEL DIFFUSED PLANAR SILICON FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - GATE CUTOFF CURRENT TEST CIRCUIT

* FIGURE 2 - PINCH-OFF DRAIN CURRENT TEST CIRCUIT

FIGURE 3 - INPUT ADMITTANCE TEST CIRCUIT

FIGURE 4 - REVERSE TRANSFER ADMITTANCE TEST CIRCUIT

f	R1	R2	C1	C2	СЗ	C4
1 kc	1 k Ω	10Ω	10 pf	10 µf	10 µf	10 µf
10 mc	30 Ω	20Ω	39pf	0 . 02µf	0.02 µf	0.02µf

FIGURE 5 — FORWARD TRANSFER ADMITTANCE TEST CIRCUIT

FIGURE 6 — OUTPUT ADMITTANCE TEST CIRCUIT

^{*} Indicates JEDEC registered data.

TYPES 2N3329, 2N3330, 2N3331, 2N3332 P-CHANNEL DIFFUSED PLANAR SILICON FIELD-EFFECT TRANSISTORS

FOR SMALL-SIGNAL, LOW-NOISE APPLICATIONS

- Active Elements Insulated from Case
- High Input Impedance (> 5 megohms at 1 kc)
- High Nuclear Radiation-Damage Resistance

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†	2N	2N3329		2N3330		3331	2N3332		UNIT	
		1231 60	14011101431	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII	
BVGSS	Gate-Source Breakdown Voltage	$I_G=10~\mu a$,	$V_{DS} = 0$	20		20		20		20		٧	
IGSS	Gate Cutoff Current	$V_{GS} = 10 v$	$V_{DS} = 0$	T	0.01		0.01		0.01		0.01	μο	
less	Gate Cutoff Current	V _{GS} = 10 v,	V _{DS} = 0, T _A = 150°C		10		10		10		10	μα	
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = -10 \text{ v},$	$v_{GS} = 0$	-1	-3	-2	-6	5	-15	-1	-6	ma	
v _{GS}	Gate-Source Cutoff Voltage	$V_{DS} = -15 v$,	$I_D = -10 \mu a$		5		6		8		6	٧	
rDS	Static Drain-Source Resistance	$I_D = -100 \mu a$,	$v_{GS} = 0$		1000		800		600			chm	
y _{is}	Small-Signal Common-Source Input Admittance				0.2		0.2		0.2		0.2	μ mho	
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	V _{DS} = -10 v,	I _D — See Note 2,	1000	2000	1500	3000	2000	4000	1000	2200	μmho	
y _{rs}	Small-Signal Common-Source Reverse Transfer Admittance	f = 1 kc			0.1		0.1		0.1		0.1	μmho	
y _{os}	Small-Signal Common-Source Output Admittance				20		40		100		20	μmho	
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v},$ $f = 10 \text{ Mc}$	I _D — See Note 2,	900		1350		1800		900		μmho	
C _{iss}	Common-Source Short-Circuit Input Capacitance	$V_{DS} = -10 \text{ v},$ $f = 1 \text{ Mc}$	$V_{GS} = 1 v$,		20		20		20		20	pf	

*operating characteristics at 25°C free-air temperature

NF	Spot Noise Figure	$V_{DS} = -5 v$, $f = 1 kc$,	$I_{ m D}=-1$ ma, $R_{ m G}=1$ M Ω	3	3	4	1	db
	- The state of the	$V_{DS} = -5 \text{ v},$ $f = 10 \text{ cps},$	$I_D = -1 \text{ ma},$ $R_G = 10 \text{ M}\Omega$				5	db

NOTE 1: Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.

	2N3329	2N3330	2N3331	2N3332
NOTE 2: ID =	—1 ma	2 ma	—5 ma	—1 ma

[†]The fourth lead (case) is connected to the source for all measurements.

^{*}Indicates JEDEC registered data.

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM 278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

REVISED MAY 1968

N-CHANNEL PLANAR SILICON FIELD-EFFECT TRANSISTOR

SILECT[†] FIELD-EFFECT TRANSISTOR

For Industrial and Consumer Small-Signal Applications

- ullet Low C_{rss} : \leq 4 pf ullet High y_{fs}/C_{iss} Ratio (High-Frequency Figure of Merit)
- Cross Modulation Minimized by Square-Law Transfer Characteristics

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C method 106B. The transistor is insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage																							25 v
Drain-Source Voltage																							25 v
Reverse Gate-Source Voltage																							- 25 v
Gate Current																					_		10 ma
Continuous Device Dissipation	at ((or	bel	ow	25 (5°C	Fre	ee-	Air	Te	mp	era	tur	e (See	No	te	1)				3	360 mw
Storage Temperature Range																			_	65	°C	to	150°C
Lead Temperature 1/4 Inch from	m C	Case	e fo	or 1	0.5	ecc	and	s															260°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = -1 \mu a, V_{DS} = 0$	— 25		٧
less	Gate Cutoff Current	$V_{GS} = -15 \text{ v}, V_{DS} = 0$		— 2	na
-633		$V_{GS} = -15 \text{ v}, V_{DS} = 0, T_A = 100 ^{\circ}\text{C}$		— 2	μα
I _{DSS}	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 \text{ v}, V_{GS} = 0, \text{ See Note 2}$	2	20	ma
Ves	Gate-Source Voltage	$V_{DS} = 15 \text{ v}, I_{D} = 200 \ \mu \text{a}$	- 0.5	—7.5	v
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ v}, I_D = 2 \text{ na}$		-8	٧
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 \text{ v}, V_{GS} = 0, \text{ f} = 1 \text{ kc},$ See Note 2	2000	6500	μmho
y _{os}	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 \text{ v}, V_{GS} = 0, \text{ f} = 1 \text{ kc},$ See Note 2		50	μmho
C _{iss}	Common-Source Short-Circuit Input Capacitance	$V_{DS} = 15 \text{ v},$		8	pf
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{GS} = 0,$ $f = 1 Mc$		4	pf
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 v$, $V_{GS} = 0$, $f = 100 Mc$	1600		μ mho

NOTES: 1. Derate linearly to 150°C free-air temperature at the rate of 2.88 mw/C°.

568

^{2.} These parameters must be measured using pulse techniques. PW pprox 100 msec, Duty Cycle \leq 10%.

^{*}Indicates JEDEC registered data.

[†]Trademark of Texas Instruments

[‡]Patent Pending

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ALABAMA

ACK SEMICONDUCTORS INC.
3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791
Birmingham, Alabama 35233 Indianapolis, Indiana 46219

ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA

KIERULFF ELECTRONICS, INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix. Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SÁLES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015

R. V. WEATHERFORD COMPANY 1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC.
2442 N. Shadeland Ave./(317) 357-879
Indianapolis, Indiana 46219
RADIO DISTRIBUTING COMPANY
814 North Senate Avenue
(317) 637-5571
Indianapolis. Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC. 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS DEMAMBRO ELECTRONICS 1095 Commonwealth Ave.

(617) 787-1200
Boston, Massachusetts 02215
TI SUPPLY COMPANY
480 Neponset Road/(617) 828-5020
Canton, Massachusetts 02021
LAFAYETTE INDUSTRIAL ELECTRONICS

1400 Worcester Rd./(617) 969-6100
Natick, Massachusetts 01760
MILGRAY/NEW ENGLAND INC.

75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109

ELECTRONIC COMPONENTS FOR INDUSTRY 05 South Hanley Rd./(314) MI 7-550

2605 South Hanley Rd./(314) MI 7-5505 St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY 301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC. 2524 Baylor Dr. S.E./(505) 247-1055 Albuquerque, New Mexico 87108

NEW YORK

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013

ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800 Rochester, New York 14614

TI SUPPLY COMPANY 4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

UHIU

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND
1821 East 40th Street/(216) 881-8800
Cleveland, Ohio 44102
NEWARK-HERRLINGER
ELECTRONICS CORP.
112 E. Liberty St./(513) GA 1-5282
Cincinnati, Ohio 45210

W. M. PATTISON SUPPLY CO. 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park

Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY
6000 Denton Drive/(214) FL 7-6121
Dallas, Texas 75235
5240 Elm Street/(713) MO 6-2175
HOUSTON, Texas 77036
HARRISON EQUIPMENT COMPANY, INC.

HARRISON EQUIPMENT COMPANY, INC 1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

UTAH

STANDARD SUPPLY COMPANY
225 E. Sixth South St./(801) EL 5-2971
Salt Lake City. Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS, INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD.
Calgary, Alberta
Edmonton, Alberta
Lethbridge, Alberta
Medicine Hat, Alberta
Vancouver, B. C.

CESCO ELECTRONICS LTD.
Downsview, Quebec
Quebec, Quebec
Ottawa, Ontario
Toronto, Ontario

TI SUPPLY COMPANY Dorval, Quebec

WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR MELBOURNE, Australia

RADIO PARTS PTY, LTD.
PERTH, Australia
PRECISION ELECTRONICS
BRISBANE, Australia
DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS
BRUSSELS IV, Belgium
S.A. AVI-FLEC N.V.

COPENHAGEN V, Denmark TEXAS INSTRUMENTS A/S

> HELSINKI, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM, Sweden AB GOSTA BACKSTROM

ZURICH 32, Switzerland FABRIMEX AG ZURICH

> PARIS, FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

TYPE 2N3820

P-CHANNEL PLANAR SILICON FIELD-EFFECT TRANSISTOR

SILECT † FIELD-EFFECT TRANSISTOR For Industrial and Consumer **Small-Signal Applications**

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process: developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C method 106B. The transistor is insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage						–20 v
Drain-Source Voltage						–20 v
Reverse Gate-Source Voltage						20 v
Gate Current						
Continuous Device Dissipation at (or below) 25°	C Free-A	ir Temperature	(See Note	: 1) .		. 360 mw
Storage Temperature Range					-65°C	to +150°C
Lead Temperature 1/4 Inch from Case for 10 Secon						

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 10 \ \mu a, \ V_{DS} = 0$	20		٧
1	Gate Cutoff Current	$V_{GS} = 10 \text{ v}, V_{DS} = 0$		20	na
IGSS	date Coloit Colletti	$V_{GS} = 10 \text{ v}, V_{DS} = 0, T_A = 100 ^{\circ}\text{C}$		2	μα
I _{DSS}	Zero-Gate-Voltage Drain Current	$V_{DS} = -10 \text{ v}, V_{GS} = 0,$ See Note 2	-0.3	-15	ma
V _{GS}	Gate-Source Voltage	$V_{DS}=-10 \text{ v, } I_{D}=-30 \mu \text{a}$	0.3	7.9	٧
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = -10 \text{ v}, I_{D} = -10 \mu \text{a}$		8	٧
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v, } V_{GS} = 0, \qquad f = 1 \text{ kc,}$ See Note 2	800	5000	μ mho
yos	Small-Signal Common-Source Output Admittance	$V_{DS} = -10 \text{ v, } V_{GS} = 0, \qquad f = 1 \text{ kc,}$ See Note 2		200	μmho
C _{iss}	Common-Source Short-Circuit Input Capacitance	$V_{DS} = -10 \text{ v},$ $V_{GS} = 0,$		32	pf
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{GS} = U,$ $f = 1 Mc$		16	pf
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v}, V_{GS} = 0, f = 10 \text{ Mc}$	700		μmho

NOTES: 1. Derate linearly to 150°C free-air temperature at the rate of 2.88 mw/C°.

‡Patent Pending

^{2.} These parameters must be measured using pulse techniques. PW pprox 100 msec, Duty Cycle \leq 10%.

^{*}Indicates JEDEC registered data.

[†]Trademark of Texas Instruments

TI World-Wide Sales Offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 — P.O. Box 5012 Pallas, Texas 75222 214-238-4861 3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato Buenos Aires, Argentina

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPES 2N3821, 2N3822 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR SMALL-SIGNAL APPLICATIONS

• Low Leakage: ≤ 100 pa

Low Input Capacitance: ≤ 6 pf

• High y_{fs} /C_{iss} Ratio (High-Frequency Figure-of-Merit)

*mechanical data

TO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage			. 50 v
Drain-Source Voltage			
Reverse Gate-Source Voltage	•		. –50 v
Gate Current			. 10 ma
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 1).			300 mw
Storage Temperature Range	-6	5°C to	+200°C
Lead Temperature 1/4 Inch from Case for 10 Seconds			

* electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	DADAMETER	TECT	CONDITIONS		2N3	3821	2N3	822	UNIT
	PARAMETER	lE31 (CONDITIONS	1	MIN	MAX	MIN	MAX	Oldii
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1 \mu a$,	$V_{DS} = 0$		-50		-50		٧
1	Gate Cutoff Current	$V_{GS} = -30 v$	$V_{DS} = 0$			-0.1		-0.1	na
less	Gare Curori Current	$V_{GS} = -30 v$	$V_{DS} = 0$,	T _A = 150°C		-0.1		-0.1	μα
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 v$	$V_{GS} = 0$,	See Note 2	0.5	2.5	2	10	ma
v	Cata Saurea Valtaga	$V_{DS} = 15 v$	$I_D = 50 \mu a$		-0.5	-2			٧
V GS	Gate-Source Voltage	$V_{DS} = 15 v$	$I_D=200~\mu a$	-			-1	4	٧
VGSIoff	Gate-Source Cutoff Voltage	$V_{DS} = 15 v$	$I_D = 0.5 \text{ na}$			-4		-6	٧
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 v$,	$V_{GS} = 0$,	f = 1 kc See Note 2	1500	4500	3000	6500	μmho
y _{os}	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 v$	$V_{GS} = 0$,	f = 1 kc See Note 2		10		20	μmho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = 15 v$	v _ 0			6		6	pf
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance		$V_{GS} = 0$,	f = 1 Mc		3		3	pf
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 v$,	V _{GS} = 0,	f = 100 Mc	1500		3000		μ mho

NOTES: 1. Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.

2. These parameters must be measured using pulse techniques, PW = 100 msec, Duty Cycle \leq 10%.

†The fourth lead (case) is connected to the source for all measurements.

*Indicates JEDEC registered data

TYPES 2N3821, 2N3822 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

*operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS†	MAX	UNIT
NF Average Noise Figure	$V_{DS}=15$ v, $V_{GS}=0$, $f=10$ cps, $R_{G}=1$ M Ω , Noise Bandwidth $=5$ cps	5	db
e _n Equivalent Input Noise Voltage	$V_{DS}=15 \text{ v}, V_{GS}=0, f=10 \text{ cps},$ Noise Bandwidth=5 cps	200	nv∕ cps½

†The fourth lead (case) is connected to the source for all measurements.

THERMAL INFORMATION

*Indicates JEDEC registered data.

TYPE 2N3823

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTOR FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- Low Noise Figure: ≤ 2.5 db at 100 Mc
- Low C_{rss} : \leq 2 pf
- High y_{fs}/C_{iss} Ratio (High-Frequency Figure-of-Merit)
- Cross Modulation Minimized by Square-Law Transfer Characteristic

*mechanical data

†TO-72 outline is same as TO-18 except for addition of a fourth lead.

Drain-Gate Voltage																					
Drain-Source Voltage .		•																			30 v
Reverse Gate-Source Voltag	ge .			•																	–30 v
Gate Current																					
Continuous Device Dissipat	ion	at (or	belo	w)	25	°C I	Free	-Air	Te	mp	erate	Jre	(See	Ν	ote	- 1))		. :	300 mw
Storage Temperature Rang																					
Lead Temperature 1/4 Inch f	rom	Cas	e f	or 1	0.5	eco	nds				_										300°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIO	NS‡	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1 \mu a$	$V_{DS} = 0$		-30		٧
less	Gate Cutoff Current	$V_{GS} = -20 v$,	$V_{DS} = 0$			-0.5	na
ıess	oule Colon Correin	$V_{GS} = -20 v$,	$V_{DS} = 0$,	$T_A = 150$ °C		-0.5	μ a
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 v$	$V_{GS} = 0$,	See Note 2	4	20	ma
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 v$	$I_{D} = 400$	μα	-1	-7.5	٧
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 v$	$I_{D} = 0.5 \text{ n}$	a		"	٧
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 v$,	V _{GS} = 0,	f = 1 kc, See Note 2	3500	6500	μ mho
yos	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 v$,	V _{GS} = 0,	f = 1 kc, See Note 2		35	μ mho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = 15 v$,	V _{GS} = 0,			6	pf
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance		ves — u,	f = 1 Mc		2	pf
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 v$,			3200		μ mho
Re(y _{is})	Small-Signal Common-Source Input Conductance		$\mathbf{v}_{\mathrm{GS}}=0,$			800	μ mho
Re(yos)	Small-Signal Common-Source Output Conductance			f = 200 Mc		200	μ mho

NOTES: 1. Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.

2. These parameters must be measured using pulse techniques. PW = 100 msec, Duty Cycle \leq 10%.

*Indicates JEDEC registered data.

‡The fourth lead (case) is connected to the source for all measurements.

TYPE 2N3823

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

* operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS‡	MAX	UNIT
NF	Common-Source Spot Noise Figure	$V_{DS}=15 \text{ v}, V_{GS}=0, f=100 \text{ Mc}, R_{G}=1 \text{ k}\Omega$	2.5	db

TYPICAL CHARACTERISTICS[‡]

NOTE 2: These parameters must be measured using pulse techniques. PW = 100 msec, Duty Cycle \leq 10%.

Indicates JEDEC registered data.

\$The fourth lead (case) is connected to the source for all measurements.

TYPE 2N3823 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS!

SMALL-SIGNAL COMMON-SOURCE FORWARD TRANSFER ADMITTANCE

NOTE 2: These parameters must be measured using pulse techniques. PW = 100 msec, Duty Cycle \leq 10%.

^{\$}The fourth lead (case) is connected to the source for all measurements.

TYPE 2N3823

N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTOR

TYPICAL CHARACTERISTICS‡

SMALL-SIGNAL COMMON SOURCE FORWARD TRANSFER ADMITTANCE

SMALL-SIGNAL COMMON-SOURCE **OUTPUT ADMITTANCE**

\$The fourth lead (case) is connected to the source for all measurements.

SMALL-SIGNAL COMMON-SOURCE REVERSE TRANSFER ADMITTANCE

COMMON-SOURCE SHORT-CIRCUIT INPUT AND REVERSE-TRANSFER CAPACITANCES

FOR INDUSTRIAL SMALL-SIGNAL APPLICATIONS

- Electrically Similar to 2N2386
- TO-72 Case Outline
- Active Elements Insulated From Case

*mechanical data

†TO-72 outline is same as TO-18 outline, except for fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage																						–20 v
Drain-Source Voltage																						–20 v
Reverse Gate-Source	Voltage	∍.																				20 v
Gate Current																						–10 ma
Continuous Device D	issipatic	n a	t (oı	- be	low)	25	°C	Free	-Air	Te	mpe	ratu	re (See	No	ote	1)				. :	300 mw
Storage Temperature	Range										٠.							-6	5°¢	C to	o +	200°C
Lead Temperature 1/4	Inch fro	om C	Case	for	10 :	Seco	onds		_			_			_							300°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ‡	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 10 \ \mu a, \ V_{DS} = 0$	20		٧
less	Gate Cutoff Current	$V_{GS} = 10 \text{ v}, V_{DS} = 0$		10	na
,e22	oute Colon Cortein	$V_{GS} = 10 \text{ v}, V_{DS} = 0, \qquad T_A = 100 ^{\circ}\text{C}$		1	μα
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = -10 \text{ v}, V_{GS} = 0$	-0.3	-15	ma
Ves	Gate-Source Voltage	$V_{DS}=-10~\mathrm{v}$, $I_{D}=-30~\mu\mathrm{a}$	0.3	7.9	٧
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = -10 \text{ v, } I_{D} = -10 \mu \text{a}$		8	٧
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v},$	1000	5000	μmho
y _{os}	Small-Signal Common-Source Output Admittance	$V_{GS} = 0,$ $f = 1 kc$		100	μmho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = -10 \text{ v},$ $V_{GS} = 0,$		32	pf
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	ves = 0, f = 1 Mc		16	pf
yfs	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = -10 \text{ v}, V_{GS} = 0, f = 10 \text{ Mc}$	900		μmho

NOTE 1: Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.

[‡] The fourth lead (case) is connected to the source for all measurements.

^{*}Indicates JEDEC registered data.

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN
138 Pages • 137 Illustrations • Published April '65 •
Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM 278 Pages • 315 Illustrations • Published January '68 •

SOLID STATE COMMUNICATIONS

Shipping Weight 2-lb • \$14.50

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

TYPES 2N3993, 2N3994

P-CHANNEL DIFFUSED PLANAR SILICON FIELD-EFFECT TRANSISTORS

FOR HIGH-SPEED COMMUTATOR AND **CHOPPER APPLICATIONS**

- Low r_{ds(on)}: 150 ohms max (2N3993)
- High y_{fs} /C_{iss} Ratio (High-Frequency Figure-of-Merit)
- Low Leakage Low Capacitance

*mechanical data

TTO-72 outline is same as TO-18 outline with the addition of a fourth lead.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Drain-Gate Voltage																								–25 ∨
Drain-Source Voltage																								–25 ∨
Reverse Gate-Source																								
Gate Current																								
Continuous Device Di	sgiss	oite	n c	ıt (d	or I	bel	ow)	25	°C	Fr	ee-	Air	Te	mp	erc	iture	e (See	N	ote	1)			300 mw
Storage Temperature																								
Lead Temperature 1/6																								

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			2N:	3993	2N3		
	PARAMETER	TEST CONDITIONS\$	MIN	MAX	MIN	MAX	UNIT
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G=1 \mu a$, $V_{DS}=0$	25		25		٧
	Drain Reverse Current	$V_{DG} = -15 \text{ v, } I_S = 0$		-1.2		-1.2	na
IDEO	Drain Keverse Current	$V_{DG} = -15 \text{ v, } I_S = 0, T_A = 150^{\circ}$	C	-1.2		-1.2	μα
IDSS	Zero-Gate-Voltage Drain Current	V _{DS} =-10 v, V _{GS} =0, See Note 2	-10		–2		ma
	· · · · · · · · · · · · · · · · · · ·	V _{DS} =-10 v, V _{GS} =6 v				-1.2	na
	Durin Cutoff Comment	V _{DS} =-10 v, V _{GS} =6 v, T _A =150°					μα
D(off)	Drain Cutoff Current	V _{DS} =-10 v, V _{GS} =10 v		-1.2			na
		V _{DS} =-10 v, V _{GS} =10 v, T _A =150°		-1			μα
Ves .	Gate-Source Voltage	$V_{DS} = -10 \text{ v}, I_D = -1 \mu \text{a}$	4	9.5	1	5.5	٧
r _{ds(on)}	Small-Signal Drain-Source "On" Resistance	V _{GS} =0, I _D =0, f=1 kc		150		300	Ω
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	V _{DS} =-10 v, V _{GS} =0, f=1 kc, See Note 2	6	12	4	10	mmho
Ciss	Common-Source Short-Circuit Input Capacitance	V _{DS} =-10 v, V _{GS} =0, f=1 Mc		16		16	pf
	Common-Source Short-Circuit	V _{GS} =6 v, V _{DS} =0, f=1 Mc				5	pf
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 10 \text{ v}, V_{DS} = 0, f = 1 \text{ Mc}$		4.5			pf

NOTES: 1. Derate linearly to 175°C free-air temperature at the rate of 2 mw/C°.

2. These parameters must be measured using pulse techniques. PW pprox 100 msec, Duty Cycle \leq 10%.

\$The fourth lead (case) is connected to the source for all measurements.

^{*}Indicates JEDEC registered data.

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ALABAMA

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South / (205) FA 2-0588 2442 N. Shadeland Ave. / (317) 357-8791 Birmingham, Alabama 35233 Indianapolis, Indiana 46219

ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA

KIERULFF ELECTRONICS, INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix, Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015

R. V. WEATHERFORD COMPANY 1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FI ORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. RADIO DISTRIBUTING COMPANY

814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC. 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS

DEMAMBRO ELECTRONICS 1095 Commonwealth Ave. (617) 787-1200 Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS

1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY
2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109

ELECTRONIC COMPONENTS FOR INDUSTRY 2605 South Hanley Rd./(314) MI 7-5505

St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. HARRISON EQUIPMENT COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY 301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013 ROCHESTER RADIO SUPPLY CO., INC.

140 W. Main St./(716) 454-7800 Rochester, New York 14614 TI SUPPLY COMPANY

4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA

ELECTRONIC WHOLESALERS. INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102 NEWARK-HERRLINGER

ELECTRONICS CORP. 112 E. Liberty St./(513) GA 1-5282 Cincinnati, Ohio 45210

W. M. PATTISON SUPPLY CO. 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park

Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235 5240 Elm Street/(713) MO 6-2175 Houston, Texas 77036

1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

UTAH

KIERULFF ELECTRONICS, INC.
2524 Baylor Dr. S.E./(505) 247-1055
Albuquerque, New Mexico 87108
Salt Lake City, Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON. D.C.

ELECTRONIC WHOLESALERS, INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario TI SUPPLY COMPANY Dorval, Quebec

WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR

MELBOURNE, Australia RADIO PARTS PTY, LTD. PERTH, Australia PRECISION ELECTRONICS BRISBANE. Australia DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS BRUSSELS IV. Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V. Denmark TEXAS INSTRUMENTS A/S

> **HELSINKI**. Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM. Sweden AB GOSTA BACKSTROM

ZURICH 32, Switzerland FABRIMEX AG ZURICH

> PARIS. FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

TYPES **2N4416**, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

N-CHANNEL EPITAXIAL PLANAK SILICON FIELD-EFFECT TRANSISTOR

FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Power Gain...10 dB Min at 400 MHz
- Low Noise Figure ... 4 dB Max at 400 MHz
- ullet High Transconductance . . . 4000 μ mho Min at 400 MHz
- Low C_{rss} ... 0.8 pF Max
- High $|y_{fs}|/C_{iss}$ Ratio (High-Frequency Figure-of-Merit)
- Cross-Modulation Minimized by Square-Law Transfer Characteristic
- Recommended for Use in VHF-UHF Bandpass Amplifiers
- Excellent for General-Purpose Amplifier and Chopper Applications

*mechanical data

†TO-72 outline is same as TO-18 outline with the addition of a fourth lead.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N4416	2N4416A
*Drain-Gate Voltage	. 30 V	35 V
*Drain-Source Voltage	. 30 V	35 V
*Reverse Gate-Source Voltage	. –30 V	–35 V
*Continuous Forward Gate Current	10	0 mA →
*Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 1)	. ←—30	0 mW →
Continuous Device Dissipation at (or below) 125°C Case Temperature (See Note 2)		
*Storage Temperature Range	. –65°C	to 200°C
*Lead Temperature 1/4 Inch from Case for 60 Seconds	. ← 30	00°C →

NOTES: 1. Derate linearly to 200°C free-air temperature at the rate of 1.7 mW/deg.

2. Derate linearly to 200°C case temperature at the rate of 6 mW/deg.

*Indicates JEDEC registered data

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS		416		416A	UNIT
				MIN	MAX	MIN	MAX	
	Gate-Source Breakdown Voltage	$I_G = -1 \mu A$,		-30*		-35*		٧
V _{GS(f)}	Gate-Source Forward Voltage	$I_{\Theta} = 1 \text{ mA},$]*		1*	٧
		$V_{GS} = -20 V$,	$V_{DS} = 0$		-0.1*		-0.1*	nA
less	Gate Reverse Current		$V_{DS}=0,\ T_A=150^{\circ}C$		−0.2* −0.1†		-0.2* -0.1†	μΑ
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 V$	$I_D = 1 \text{ nA}$		6*	-2.5*	-6*	٧
Ves	Gate-Source Voltage	$V_{DS} = 15 V$	$I_D = 0.5 \text{ mA}$	-1*	5.5*	-1*	-5.5*	٧
IDSS	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 V$	V _{GS} = 0, See Note 3	5*	15*	5*	15*	mA
yfs	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 V$		4.5*	7.5*	4.5*	7.5*	
yos	Small-Signal Common-Source Output Admittance		$V_{GS} = 0$, $f = 1 \text{ kHz}$		0.05*		0.05*	mmho
Ciss	Common-Source Short-Circuit Input Capacitance	$V_{DS} = 15 V$			4*		4*	
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance		$v_{GS} = 0$,		0.8*		0.8*	рF
Coss	Common-Source Short-Circuit Output Capacitance			2*		2*		
Re(y _{is})	Small-Signal Common-Source Input Conductance	V - 15V			0.1*		0.1*	
lm(y _{is})	Small-Signal Common-Source Input Susceptance	$V_{DS} = 15 V,$		2.5*		2.5*		
Re(yos)	Small-Signal Common-Source Output Conductance		$V_{GS} = 0$, $f = 100 \text{ MHz}$		0.075*		0.075*	mmho
Im(y _{os})	Small-Signal Common-Source Output Susceptance		T — TOU MHZ		1*		1*	
Re(y _{is})	Small-Signal Common-Source Input Conductance				1*		1*	
lm(y _{is})	Small-Signal Common-Source Input Susceptance	$V_{DS} = 15 V,$			10*		10*	
Re(y _{fs})	Small-Signal Common-Source Forward Transfer Conductance		$v_{GS} = 0$,	4*		4*		mmho
Re(yos)	Small-Signal Common-Source Output Conductance		f = 400 MHz		0.1*		0.1*	
lm(y _{os})	Small-Signal Common-Source Output Susceptance				4*		4*	

NOTE 3: This parameter must be measured using pulse techniques, $t_p=300~\mu s$, duty cycle $\leq 1\%$. †Texas Instruments guarantees this value in addition to the JEDEC registered value, which is also shown.

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
G _{ps}	Small-Signal Common-Source	$V_{DS}=15~V,~I_{D}=5~mA,~f=100~MHz, R_{G}'=1~k\Omega,~See~Figure~1$	18		- dB
	Neutralized Insertion Power Gain	$V_{DS}=15~V,~I_{D}=5~mA,~f=400~MHz, R_{G}'=1~k\Omega,~See~Figure~1$	10		"
NF	Spot Noise Figure	$V_{DS}=15~V,~I_{D}=5~mA,~f=100~MHz, R_{G}'=1~k\Omega,~See~Figure~1$		2	ارد
INF	shot woise cidnie	$V_{DS}=15~V,~~I_{D}=5~mA,~~f=400~MHz, R_{G}{}^{\prime}=1~k\Omega,~~See~Figure~1$		4	dB

^{*}Indicates JEDEC registered data

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

		CIRCI	JIT COM	APONENT INFORMATION (See No	ote 4)
	CAPAC	CITORS		COILS	
	100 MHz	400 MHz		100 MHz	400 MHz
(,	7 pF	1.8 pF	١,	0.14 µH, 3.5 T, #18 enameled	0.022 μH, 5%" of #16 copper
C2	0.0015 μF	0.001 μF	7 4	copper wire, 36" I.D., 14" long	wire formed to 0.5 T, $\frac{1}{4}$ " I.D.
(,	1—12 pF	0.8-8 pF	1	3 µH, 17 T, #28 enameled	0.2 µH, 6 T, #24 enameled copper
C4	1000 pF	27 pF	100 MHz L ₁ 0.14 µH, 3.5 T, #18 enameled copper wire, 3/6" I.D., 1/4" long 3 µH, 17 T, #28 enameled copper wire, close wound, 3/2" I.D., powdered iron slug 0.25 µH, 4.5 T, #18 enameled	wire, close wound, 1/32" I.D.,	
C ₅	1—12 pF	0.8-8 pF	1	I.D., powdered iron slug	aluminum slug
C۴	0.0015 μF	0.001 μF	Ι,	0.25 µH, 4.5 T, #18 enameled	0.03 µH, 1½" of #16 enameled
C ₇	3 pF	1 pF	L3	copper wire, 3%" I.D., 5%" long	copper wire formed to 1 T, 36" I.D.

FIGURE 1 - NEUTRALIZED POWER GAIN AND SPOT NOISE FIGURE TEST CIRCUIT

NOTE 4: Transformed equivalent source resistance (R'g) is 1000 S2 at 100 MHz for 100-MHz amplifier, and 1000 S2 at 400 MHz for 400-MHz amplifier.

TYPICAL CHARACTERISTICS

FIGURE 3

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 3: This parameter must be measured using pulse techniques, $t_p=300~\mu s$, duty cycle $\leq 2\%$. †Data is for devices having the indicated values of t_{DS} at $V_{DS}=15~V$, $V_{GS}=0$, and $T_A=25°C$.

-7 -10 -20 .-40

-2

VGS — Gate-Source Voltage — V

FIGURE 7

-1 -2 -4 -7 -10 -20 -40 -- Gate-Source Voltage --- V

FIGURE 8

-0.1 -0.2 -0.4

VGs -

0.1 -0.2

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-SOURCE FORWARD TRANSFER ADMITTANCE NORMALIZED DRAIN CURRENT — Forward Transfer Admittance — mmho = 100 MHz 1_{DSS} = 10 mA† DSS = 15 mA+ 0.7 DSS = 15 mAT 0.4 *≠* 0.2 0.1 0.01 0.02 0.04 0.1 0.2 0.4 0.7 1 1_D - Normalized Drain Current

SMALL-SIGNAL COMMON-SOURCE REVERSE TRANSFER ADMITTANCE

SMALL-SIGNAL COMMON-SOURCE OUTPUT ADMITTANCE

FIGURE 10

†Data is for devices having the indicated values of I_{DSS} at $V_{DS}=15$ V, $V_{GS}=0$, and $T_A=25$ °C.

FIGURE 12

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-SOURCE FORWARD TRANSFER ADMITTANCE

FIGURE 13

FIGURE 14

SMALL-SIGNAL COMMON-SOURCE OUTPUT ADMITTANCE

FIGURE 15

FIGURE 16

TYPES 2N4416, 2N4416A N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 18

THERMAL INFORMATION

FIGURE 19

FIGURE 20

TI World-Wide Sales Offices

ALABAMA

3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Sahara Office Park Bldg., Suite 111 Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 - P.O. Box 5012 Dallas, Texas 75222 214-238-4861

3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.). France

11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany

Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato **Buenos Aires, Argentina**

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPES 2N4856, 2N4857, 2N4858, 2N4859, 2N4860, 2N4861 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS 2N4859 Formerly TIXS41

• Low r_{ds(on)}: 25 Ω Max (2N4856, 2N4859)

• Low Ip(off): 0.25 nA Max

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N4856 2N4859 2N4857 2N4860 2N4858 2N4861
Drain-Gate Voltage	40 V 30 V
Drain-Source Voltage	40 V 30 V
Reverse Gate-Source Voltage	–40 V –30 V
Forward Gate Current	\leftarrow 50 mA \rightarrow
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 1)	← 360 mW→
Storage Temperature Range	-65°C to 200°C
Lead Temperature $\frac{1}{10}$ Inch from Case for 10 Seconds	<300°C>

NOTE 1: Derate linearly to 175°C free-air temperature at the rate of 2.4 mW/deg.

TYPES 2N4856 THRU 2N4861 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

		7747 40NDIBIO:::	· 2N	4856	2N	4857	2N	4858	2N	4859	2N4860		2N4861		
P/	ARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	וואט
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1 \mu A$, $V_{DS} = 0$	4		-40		–40		-30		-30		-30		٧
		$V_{GS} = -20 \text{ V}, V_{DS} = 0$		-0.25		-0.25		-0.25							nA
I _{GSS}	Gate Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0, $ $T_A = 150 ^{\circ}\text{C}$		-0.5		-0.5		-0.5							μΑ
	Current	$V_{GS} = -15 V$, $V_{DS} = 0$								-0,25		-0.25		-0.25	nA
		$V_{GS} = -15 \text{ V}, \ V_{DS} = 0, \\ T_A = 150 \text{ C}$								-0.5		-0.5		-0.5	μA
Dra	Drain Cutoff	$V_{DS} = 15 \text{ V}, V_{GS} = -10 \text{ V}$		0.25		0.25		0.25		0.25		0.25		0.25	nA
I _{D(off)}	Current	$V_{DS} = 15 \text{ V}, V_{GS} = -10 \text{ V}, \\ T_A = 150 ^{\circ}\text{C}$		0.5		0.5		0.5		0.5		0.5		0.5	μΑ
V _{GSIoff)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 0.5 \text{ nA}$	4	10	-2	-6	-0.8	-4	-4	-10	-2	-6	-0.8	-4	V
I _{DSS}	Zero-Gate- Voltage Drain Current	$ m V_{DS} = 15 V, V_{GS} = 0,$ See Note 2	50		20	100	8	80	50		20	100	8	80	mA
	Drain-Source	$I_D = 20$ mA, $V_{GS} = 0$		0.75						0.75					٧
V _{DS(on)}	On-State	$I_D = 10$ mA, $V_{GS} = 0$				0.50						0.50			٧
	Voltage	$I_D = 5 \text{ mA}, V_{GS} = 0$						0.50						0.50	٧
^r ds(on)	Small-Signal Drain-Source On-State Resistance	$V_{GS} = 0$, $I_D = 0$, $f = 1 \text{ kHz}$		25		40		60		25		40		60	Ω
C _{iss}	Common-Source Short-Circuit Input Capacitance	$V_{GS} = -10 \text{ V}, V_{DS} = 0,$ $f = 1 \text{ MHz}$		18		18		18		18		18		18	pF
C _{rss}	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{GS} = -10 \text{ V}, V_{DS} = 0,$ $f = 1 \text{ MHz}$		8		8		8		8		8		8	pF

*switching characteristics at 25°C free-air temperature

PA	RAMETER	TI	ST CONDITI	ons	2N4856 2N4859 MAX	2N4857 2N4860 MAX	2N4858 2N4861 MAX	UNIT
[†] d(on)	Turn-On Delay Time	V _{DD} = 10 V,	I _{D(on)} † =	20 mA (2N4856, 2N4859) 10 mA (2N4857, 2N4860)	6	6	10	ns
1 _r	Rise Time	$V_{GS(on)}=0,$		(5 mA (2N4858, 2N4861) (-10 V (2N4856, 2N4859)	3	4	10	ns
† _{off}	Turn-Off Time	See Figure 1	V _{GS(off)} =	-6 V (2N4857, 2N4860) -4 V (2N4858, 2N4861)	25	50	100	ns

NOTE 2: This parameter must be measured using pulse techniques. $t_{\rm p} \approx$ 100 ms, duty cycle \leq 10%.

†These are nominal values; exact values vary slightly with transistor parameters.

^{*}Indicates JEDEC registered data

TYPES 2N4856 THRU 2N4861 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{out} = 50~\Omega$, duty cycle $\approx 2\%$. b. Waveforms are manitored on an oscilloscope with the following characteristics: $\mathbf{I}_{r} \leq 0.75~\mathrm{ns},~R_{\mathrm{in}} \geq 1~\mathrm{M}\Omega$, $C_{\mathrm{in}} \leq 2.5~\mathrm{pF}$.

*Indicates JEDEC registered data

TYPICAL CHARACTERISTICS

NOTE 3: These parameters were measured with bias voltages applied for less than five seconds to avoid overheating the devices,

TYPES 2N4856 THRU 2N4861 N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 4. The circuit of figure 1 is used, varying R_L from 100 Ω to 10 k Ω . t_D = 1 μ s, duty cycle \leq 2%. 5. Voltmeter input resistance $R_{\rm in} \geq 10~{\rm M}\Omega$.

‡In the circuit of figure 8, Average Output Voltage results from capacitive feed-through of the gate-drive signal.

TYPES 2N5045, 2N5046, 2N5047

DUAL N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

MATCHED, SYMMETRICAL, FIELD-EFFECT TRANSISTORS

- High |y_{fs}|/C_{iss} Ratio (High-Frequency Figure-of-Merit)
- Low Input Capacitance Ciss...8 pF Max
- Low Gate Reverse Current Differential ... 10 nA Max at $T_A = 100^{\circ}$ C
- Recommended for Low-Level D-C Amplifiers,
 Sample-Hold Circuits, and Series-Shunt Choppers

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH TRIODE	TOTAL DEVICE
Drain-Gate Voltage	50 V	
Reverse Gate-Source Voltage	-50 V	
Gate-1 — Gate-2 Voltage		±100 V
Lead-to-Case Voltage		±100 V
Continuous Forward Gate Current		
Continuous Dissipation at (or below) 25°C Free-Air Temperature (See Note 1)		
Storage Temperature Range	–65°C ¹	to 200°C
Lead Temperature $\frac{1}{16}$ Inch from Case for 10 Seconds $\dots \dots \dots \dots \dots \dots$		300°C

NOTE 1: Derate linearly to 175°C free-air temperature at the rate of 1.67 mW/deg for each triode and 2.67 mW/deg for the total device.
*Indicates JEDEC registered data

TYPES 2N5045, 2N5046, 2N5047 DUAL N-CHANNEL EPITAXIAL PLANAR SILICON FIELD-EFFECT TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

individual triode characteristics (see note 2)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
		$V_{GS} = -50 \text{ V}, V_{DS} = 0$		-1	μA
less	Gate Reverse Current	$V_{\rm es}=-30$ V, $V_{\rm DS}=0$		0.25	nA
		V _{GS} = -30 V, V _{DS} = 0, T _A = 150°C		-250	nA
VGS(off)	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 0.5 \text{ nA}$	-0.5	-4.5	V
I _{DSS}	Zero-Gate-Voltage Drain Current	$V_{DS} = 15 V$, $V_{GS} = 0$	0.5	8	mA
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1 \text{ kHz}$	1.5	6	mmho
yos	Small-Signal Common-Source Output Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1 \text{ kHz}$		25	μ mho
Ciss	Small-Signal Common-Source Input Capacitance	$V_{DS}=15 \text{ V}, V_{GS}=0, f=1 \text{ MHz}$		8	pF
C _{rss}	Small-Signal Common-Source Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		4	pF
y _{fs}	Small-Signal Common-Source Forward Transfer Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 100 \text{ MHz}$	1.5		mmho

triode matching characteristics

		TECT COMPLETIONS	2N:	5045	2N:	5046	2N:	5047	UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	ONII
I _{GSS1} — I _{GSS2}	Gate-Reverse-Current Differential	$V_{GS} = -15 V, V_{DS} = 0,$ $T_A = 100 °C$		10		10		10	nA
	Gate-Source-Voltage Differential $V_{DS} = 15 \text{ V}, I_{D} = 2 \text{ M}$	$V_{DS} = 15 \text{ V}, I_{D} = 50 \ \mu\text{A}$		5		10		15	m۷
V _{GS1} — V _{GS2}		$V_{DS} = 15 \text{ V}, I_{D} = 200 \ \mu\text{A}$		5		10		15	m۷
LATV W \	Gate-Source-Voltage-Differential	$V_{DS} = 15 \text{ V}, I_{D} = 200 \ \mu\text{A}, \\ T_{A(1)} = 25 \text{°C}, \ T_{A(2)} = -25 \text{°C}$		5		10		15	m۷
Δ (VGSI-VGS2/ΔTA	Gate-Source-Voltage-Differential Change with Temperature	$V_{DS} = 15 \text{ V}, I_{D} = 200 \ \mu\text{A}, \\ T_{A(1)} = 25 \text{ °C}, T_{A(2)} = 100 \text{ °C}$		5		10		15	m۷
I _{DSS1} I _{DSS2}	Zero-Gate-Voltage Drain Current Ratio	$V_{DS} = 15 \text{ V}, V_{GS} = 0,$ See Note 3	0.95	1	0.9	1	0.8	1	
	Small-Signal Common-Source Forward Transfer Admittance Ratio	$V_{DS}=15$ V, $I_{D}=200$ μ A, $f=1$ kHz, See Note 3	0.95	1	0.9	1	0.8	1	
Yos 1 — Yos 2	Small-Signal Common-Source Output Admittance Differential	$V_{DS}=15$ V, $I_{D}=200~\mu\text{A}$, $f=1$ kHz		1		2		3	μ mho

*operating characteristics at 25°C free-air temperature

individual triode characteristics (see note 2)

		TEST CONDITIONS 2N5045		2N5046	UNIT
Į .	PARAMETER	IEST CONDITIONS	MAX	MAX	ONII
NF	Spot Noise Figure	$V_{DS}=15~V,~~V_{GS}=0,~f=10~Hz,~~R_{G}=1~M\Omega,~~Noise~Bandwidth=5~Hz$	5	5	dB
V _n	Equivalent Input Noise Voltage	V _{DS} = 15 V, V _{GS} = 0, f = 10 Hz, Noise Bandwidth = 5 Hz	200	200	nV∕Hz½

NOTES: 2. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.

^{3.} The lower of the two characteristic readings is taken as the numerator.

^{*}Indicates JEDEC registered data

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B 2N491A P-N GROWN SILICON UNIJUNCTION TRANSISTORS

REVISED MAY 1968

P-N GROWN SILICON UNIJUNCTION TRANSISTORS

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits

- Highly Stable Negative Resistance and Firing Voltage
- Low Firing Current
- High Pulse Current Capabilities
- Simplified Circuit Design

mechanical data

The transistors are hermetically sealed in a welded package with glass-to-metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Emitter-Base Reverse Voltage below 150°C Junction Temperature	60 v
Interbase Voltage	ote 1
RMS Emitter Current) ma
Peak Emitter Current below 150°C Junction Temperature	2 a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)) mw
Total Device Dissipation at (or below) 25°C Free-Air Temperature, Stabilized (See Notes 3, 4) . 600	hmw
Operating Temperature Range	10°C
Operating Temperature Range, Stabilized (See Note 4)	75°C
Storage Temperature Range	500
Lead Temperature 1/4 Inch from Case for 10 Seconds	200

NOTES 1. For maximum interbase voltage see Figure 1

- 2. Derate linearly to 140°C free-air temperature at the rate of 3.9 mw/°C.
- 3. Derate linearly to 175°C free-air temperature at the rate of 4.0 mw/°C.
- 4. Total interbase power dissipation must be limited by external circuit.

^{*} Indicates JEDEC registered data.

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				PARENT	SERIES	A SI	ERIES	B SE		UNIT
	PARAMETER	TEST CONDITIONS	TYPE	MIN	MAX	MIN	MAX	MIN	MAX	UNII
r _{BB}	Static Interbase Resistance	$V_{B2B1} = 3 \text{ v}, I_E = 0$	2N489, 2N491, 2N493	4.7	6.8	4.7	6.8	4.7	6.8	kΩ
DD		•••	2N490, 2N492, 2N494	6.2	9.1	6.2	9.1	6.2	9.1	kΩ
η	Intrinsic Standoff Ratio	V _{R2R1} = 10 v	2N489, 2N490	0.51	0.62	0.51	0.62	0.51	0.62	
7		See Figure 5	2N491, 2N492	0.56	0.68	0.56	0.68	0.56	0.68	
			2N493, 2N494	0.62	0.75	0.62	0.75	0.62	0.75	
I _{B2(mod)}	Modulated Interbase Current	V _{B2B1} = 10 v, I _E = 50 ma	All Types	6.8	22	6.8	22	6.8	22	ma
I _{EB2O}	Emitter Reverse Current	$V_{B2E} = 60 \text{ v}, I_{B1} = 0$	All Types		-2		-2		-2	μα
'EB2O		V _{B2E} = 30 v, I _{B1} = 0	All Types						- 0.2	μα
		V _{B2E} = 10 v, I _{B1} = 0 T _J = 150°C	All Types		- 20		— 20		— 20	μα
l _p	Peak-Point Emitter Current	V _{B2B1} = 25 v	All Types		12		12		6	μα
V _{EB1(sat)}	Emitter Base-One	V _{B2B1} = 10 v, I _E = 50 ma	2N489, 2N490		5.0		4.0		4.0	٧
COLLEGE	Saturation Voltage	-	2N491, 2N492		5.0		4.3		4.3	٧
			2N493, 2N494		5.0		4.6		4.6	٧
ly	Valley-Point Emitter Current	$V_{B2B1} = 20 \text{ v}, R_{B2} = 100 \Omega$	All Types	8		8		8		ma
V _{ОВІ}	Base-One Peak Pulse Voltage	$V_1=20 \text{ V}$ $R_{B1}=20 \Omega$ See Figure 4	All Types			3.0		3.0		٧

FIGURE 1-INTERBASE VOLTAGE RATING CURVE

*Indicates JEDEC registered data

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE

FIGURE 4 - VOB1 TEST CIRCUIT

FIGURE 5 - TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (7)

TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO

 η — Intrinsic Standoff Ratio — This parameter is defined in terms of the peak-point voltage, V $_p$, by means of the equation: V $_p=\eta$ V $_{B2-B1}$ + V $_p$, where V $_p$ is about 0.56 v at 25°C and decreases with temperature at about 3 mv/deg.

The circuit used to measure η is shown in the figure. In this circuit, R_1 , C_1 , and the unijunction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diode D_1 automatically subtracting the voltage V_F . To use the circuit, the "cal" button is pushed, and R_3 is adjusted to make the current meter M_1 read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full-scale deflection of 100 μa .

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

NORMALIZED INTERBASE CHARACTERISTICS ${\rm Normalized\ to\ Value\ at\ V_{B2B1}=10\ v,\ I_E=50\ ma,\ T_A=25°C.}$

NOTE 5: This parameter is measured using pulse techniques. $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

STATIC EMITTER CHARACTERISTICS

NOTE 5: This parameter is measured using pulse techniques. $t_{\rm p}=300~\mu {\rm s}$, duty cycle $\leq 2\%$.

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 5: This parameter is measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 5: This parameter is measured using pulse techniques. $t_{p}=300~\mu$ s, duty cycle $\leq 2\%$.

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

NORMALIZED BASE-ONE PEAK PULSE VOLTAGE

MINIMUM SUPPLY VOLTAGE TO TRIGGER SCR

CURVE	SCR TYPE	R _{B1}
A	High-Current SCR's	27 Ω
В	[I _{G7} up to 200 ma]	47 Q
С	V _{GT} up to 3.5 v	Pulse Eng PE 2231 †
D		27 Ω
E	2N681, A, 2N1842, A, B, TI145A0	47 Ñ
F	Cor up to 3 v	Sprague 31Z204 †
E	2N1595, 2N1600	27 Ω
F	2N1770, 2N1929	47 Ω
G	V _{GT} up to 3 v	Sprague 31,7204 †

† or equivalent

TYPES 2N489 THRU 2N494, 2N489A THRU 2N494A, 2N489B THRU 2N494B P-N GROWN SILICON UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

A-C PHASE CONTROL SYSTEM USING 2N491A UNIJUNCTION

CAITIII

CIRCUIT FEATURES

- Unijunction provides accurate and smooth control.
- Half-wave operation conducts from 10° to 170° of waveform.
- 2N5449 acts as zener and synchronizes the 2N491A to line frequency.
- Circuit used as lamp dimmer, relay driver, motor control, or small heater control.

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM

278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

1524

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits

- Highly Stable Negative Resistance and Firing Voltage
- Low Firing Current
- High Pulse Current Capabilities
- Simplified Circuit Design

mechanical data

The transistors are hermetically sealed in a welded package with glass-to-metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Emitter-Base Reverse Voltage	2N1671 2 2N1671A 2N1671B — 30 y	2N2160
Emitter-Base Reverse Voltage below 140°C Junction Temperature	-	-30 v
Interbase Voltage	35 v	35 v
RMS Emitter Current	50 ma	
DC Emitter Current		70 ma
Peak Emitter Current (See Note 1)	2 a	
Peak Emitter Current below 140°C Junction Temperature		2 a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Notes 2 & 3)		50 mw
Operating Temperature Range (See Note 3)	- 65°C to	140°C
Storage Temperature Range (See Note 4)	- 65°C to	150°C
Lead Temperature $\frac{1}{10}$ Inch from Case for 10 Seconds	260°C	260°C

NOTES: 1. Capacitor discharge — 10 μ f or less, 30 volts or less — total interbase power dissipation must be limited by external circuitry.

- 2. Derate linearly to 140°C free-air temperature at the rate of 3.9 mw/°C. (2N1671 series only, thermal resistance to case = 0.16°C/mw.)
- 3. Texas Instruments guarantees a maximum operating temperature of 175°C free-air. Derate linearly at the rate of 3 mw/°C.
- 4. Texas Instruments guarantees a maximum storage temperature of 175°C.

^{*}Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature

			2N1	671	2N16	571A	2N1	571B	2N2	160	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
r _{BB}	Static Interbase Resistance	V _{B281} = 3 v, I _E = 0	4.7	9.1	4.7	9.1	4.7	9.1	4.0	12_	kΩ
η	Intrinsic Standoff Ratio	V _{B2B1} = 10 v, See Figure 4	0.47	0.62	0.47	0.62	0.47	0.62	0.47	0.80	
I _{B2(mod)}	Modulated Interbase Current	V _{82B1} = 10 v, I _E = 50 ma	6.8	22	6.8	22	6.8	22	6.8	30	ma
I _{EB2} O	Emitter Reverse Current	$V_{B2E} = 30 \text{ v, } I_{B1} = 0$		- 12		-12		-0.2		-12	μα
l _p	Peak-Point Emitter Current	V _{B2B1} = 25 v		25		25		6		25	μα
V _{EB1(sat)}	Emitter Saturation Voltage	V _{B2B1} = 10 v, I _E = 50 ma		5		5		5			٧
ly	Valley-Point Emitter Current	$V_{B2B1} = 20 \text{ v, R}_{B2} = 100 \Omega$	8		8		8		8		ma
V _{OB1}	Base-One Peak Pulse Voltage	$V_1=20 \text{ v, R}_{B1}=20 \Omega,$ See Figure 3			3		3		3		٧

^{*}Indicates JEDEC registered data

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-UNIJUNCTION TRANSISTOR NOMENCLATURE

FIGURE 2-GENERAL STATIC EMITTER CHARACTERISTIC CURVE

FIGURE 3 - VOB1 TEST CIRCUIT

PARAMETER MEASUREMENT INFORMATION

 η — Intrinsic Standoff Ratio — This parameter is defined in terms of the peak-point voltage, V_p , by means of the equation: $V_p = \eta \ V_{B2-B1} + V_p$, where V_p is about 0.56 v at 25°C and decreases with temperature at about 3 mv/deq.

The circuit used to measure η is shown in the figure. In this circuit, R_1 , C_1 , and the uniquaction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diode D_1 automatically subtracting the voltage V_F . To use the circuit, the "cal" button pushed, and R_3 is adjusted to make the current meter M_1 road full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full-scale deflection of 109 μ a.

FIGURE 4 - TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (7)

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NORMALIZED INTERBASE CHARACTERISTICS†

 \dagger Normalized to value at $V_{B2B1}=10\,\mathrm{v},\ I_E=50\,\mathrm{ma},\ T_A=25^{\circ}\mathrm{C}.$

STATIC EMITTER CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques. ${\rm t_p} = {\rm 300~\mu s,~duty~cycle} \le 2\%.$

TYPICAL CHARACTERISTICS

NORMALIZED BASE-ONE PEAK PULSE VOLTAGE

NORMALIZED PEAK-POINT EMITTER CURRENT

VALLEY-POINT EMITTER CURRENT

NORMALIZED BASE-ONE PEAK PULSE VOLTAGE

TYPICAL APPLICATION DATA

MINIMUM SUPPLY VOLTAGE TO TRIGGER SCR

CURVE	SCR TYPE	R _{B1}
Α	2N681, A, 2N1842,	27 _∩_
В	T1145A0	47 <u>.</u> n.
c	I _{GT} up to 150 ma	Sprague
"	V _{G1} up to 3 v	31Z204†
В	2	27 L
С	2N1595, 2N1600	47 L
D	I _{Gt} up to 50 ma V _{Gt} up to 3 v	Sprague 31Z204†

† or equivalent

TYPES 2N3980, 2N4947 THRU 2N4949

P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

PLANAR UNIJUNCTION TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY, SPACE, AND INDUSTRIAL APPLICATIONS:

2N3980 for General-Purpose UJT Applications 2N4947 for High-Frequency Relaxation-Oscillator Circuits 2N4948 for Thyristor (SCR) Trigger Circuits 2N4949 for Long-Time-Delay Circuits

• Planar Process Ensures Extremely Low Leakage, High Performance for Low Driving Currents, and Greatly Improved Reliability

*mechanical data

Package outline is same as JEDEC TO-18 except for lead position. All TO-18 registration notes also apply to this outline.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Emitter—Base-Two Reverse Voltage																			–30 \	/
Interbase Voltage																		See	Note 1	1
Continuous Emitter Current																			50 mA	4
Peak Emitter Current (See Note 2) .																				
Continuous Device Dissipation at (or b	oelo	w)	25	°C	Fre	ee-	Air	Tei	mpe	erat	ture	(S	iee	No	te	3)		. 3	360 mW	,
Storage Temperature Range																				
Lead Temperature 1/6 Inch from Case																				

NOTES: 1. Interbase voltage is limited solely by power dissipation, $V_{B2-B1}=\sqrt{r_{BB} \cdot P_{T}}$

- 2. This value applies for a capacitor discharge through the emitter—base-one diode. Current must fall to 0.37 A within 3 ms and pulse-repetition rate must not exceed 10 pps.
- 3. Derate linearly to 175°C free-air temperature at the rate of 2.4 mW/deg.

*Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

			2N3	980	2N4	947	2N4	1948	2N4	UNIT	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
r _{BB}	Static Interbase Resistance	$V_{B2-B1} = 3 V, I_E = 0$	4	8	4	9.1	4	12	4	12	kΩ
$\alpha_{\sf rBB}$	Interbase Resistance Temperature Coefficient	$V_{B2-B1} = 3 V$, $I_E = 0$, $T_A = -65$ °C to 100 °C, See Note 4	0.4	0.9	0.1	0.9	0.1	0.9	0.1	0.9	%/deg
η	Intrinsic Standoff Ratio	V _{B2-B1} = 10 V, See Figure 1	0.68	0.82	0.51	0.69	0.55	0.82	0.74	0.86	
I _{B2(mod)}	Modulated Interbase Current	V _{B2-B1} = 10 V, I _E = 50 mA, See Note 5	12		12		12		12		mA
		$V_{EB2} = -30 \text{ V}, I_{B1} = 0$		-10		-10		-10		-10	nA
I _{EB2} O	Emitter Reverse Current	$V_{EB2} = -30 V$, $I_{B1} = 0$, $T_A = 125 O$		-1		-1		-1		-	μΑ
lp .	Peak-Point Emitter Current	V _{B2-B1} = 25 V		2		2		2		1	μΑ
V _{EB1(sat)}	Emitter — Base-One Saturation Voltage	V _{B2-B1} = 10 V, I _E = 50 mA, See Note 5		3		3		3		3	V
Ι _γ	Valley-Point Emitter Current	V _{B2-B1} = 20 V	1	10	4		2		2		mA
V _{OBI}	Base-One Peak Pulse Voltage	See Figure 2	6		3		6		3		V

NOTES: 4. Temperature coefficient
$$\alpha_{rBB}$$
 is determined by the following formula:

$$r_{RB} = \left[\frac{(r_{BB} @ 100^{\circ}C) - (r_{BB} @ -65^{\circ}C)}{(r_{BR} @ 25^{\circ}C)} \right] \frac{100\%}{165 \text{ deg}}$$

To obtain r_{BB} for a given temperature $T_{A\{2\}}$, use the following formula:

$$r_{BB(2)} = [r_{BB} @ 25^{\circ}C] [1 + (\alpha_{rBB}/100\%)(T_{A(2)}-25^{\circ}C)]$$

5. These parameters are measured using pulse techniques. $t_p=300~\mu$ s, duly cycle $\leq 2\%$.

*PARAMETER MEASUREMENT INFORMATION

 $\eta-$ Intrinsic Standoff Ratio - This parameter is defined in terms of the peak-point voltage, ${\rm V_{p}},$ by means of the equation: ${\rm V_{p}}=\eta$ ${\rm V_{8281}}~+~{\rm V_{F}},$ where ${\rm V_{F}}$ is about 0.56 volt at 25°C and decreases with temperature at about 3 millivolts/deg.

The circuit used to measure η is shown in the figure. In this circuit, R₁, C₁ and the unijunction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diode D₁ automatically subtracting the voltage V_F. To use the circuit, the "cal" button is pushed, and R₁ is adjusted to make the current meter M₁ read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full-scale deflection of 100 μ A.

D1: 1N457, or equivalent, with the following characteristics:

 $V_{\rm F} = 0.565 \ {
m V} \ {
m at} \ {
m I}_{
m F} = 50 \ \mu{
m A},$

 $I_R \le 2 \,\mu\text{A}$ at $V_R = 20 \,\text{V}$

FIGURE 1 — TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

PEAK-POINT EMITTER CURRENT FREE-AIR TEMPERATURE 0.8 0.7 - Peak-Point Emitter Current - µA 0.6 _{B2-B1}= 30 \ 0.5 B2-B1= 20 V. 0.4 0.3 0.2 0.1 100 125 25 T_A - Free-Air Temperature - °C

FIGURE 9

NOTE 5: These parameters are measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NOTE 5: These parameters are measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

TYPICAL MINIMUM SUPPLY VOLTAGE TO TRIGGER THYRISTOR

20 kΩ 100 Ω 2N4948 RL +30 V

INDEX OF THYRISTOR TYPES

CURVE	THYRISTOR TYPES	RL
Α	TI3037-42, 2N3936-40	35 Ω
В	2N681-88, 2N681A-89A, 2N1842B-50B	70 Ω
С	T1145A0-A4, 2N1595-99, T140A0-A5, 2N1600-04, 2N1770-77, 2N2653, T13010, TIC28-31	70 Ω
D	2N3001-08, 2N877-81, 2N885-88, 2N2687-90, 2N3555-62, TIC44-47	70 Ω

FIGURE 13 - OPERATING INFORMATION (2N4948)

NOTE 6: This chart shows typical observed values of minimum base-two supply valtage required to trigger individual thyristors of the types indicated.

PLANAR UNIJUNCTION <u>SILECT</u>† TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY, SPACE AND INDUSTRIAL APPLICATIONS:

2N4891 for General Purpose UJT Applications (Replaces TIS43)

2N4892 for High-Frequency Relaxation-Oscillator Circuits

2N4893 for Thyristor (SCR) Trigger Circuits

2N4894 for Long-Time-Delay Circuits

- Planar Process Provides Extremely Low Leakage, High Performance at Low Driving Currents, and Greatly Improved Reliability
- Rugged, One-Piece Construction Features Standard 100-mil TO-18 Pin-Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process‡ developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The transistors are insensitive to light.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Emitter — Base-Two Reverse Voltage	•																			–30 V
Interbase Voltage																			See	Note 1
Continuous Emitter Current																				50 mA
Peak Emitter Current (See Note 2) .																				1 A
Continuous Device Dissipation at (or	bel	ow)	25	o°C	Fre	ee-	Air	Te	mp	era	ture	(5	iee	No	te	3)			. :	360 mW
Storage Temperature Range																		65°	'C to	150°C
Lead Temperature 1/4 Inch from Case	for	10	Se	co	nds															260°C
about college to Booked college by account distance to			٠.		-	_														

NOTES: 1. Interbase voltage is limited solely by power dissipation, $V_{B2-B1} = \sqrt{r_{BB} \cdot P_T}$.

- 2. This values applies for a capacitor discharge through the emitter—base-one diode. Current must fall to 0.37 A within 3 ms and pulse-repetition rate must not exceed 10 pps.
- 3. Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.

*Indicates JEDEC registered data

†Trademark of Texas Instruments

‡Patent Pending

TYPES 2N4891 THRU 2N4894 P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	2N4	891 MAX	2N4892 MIN MAX	2N4893 MIN MAX	2N4894 MIN MAX	UNIT
r _{BB}	Static Interbase Resistance	$V_{B2-B1} = 3 \text{ V}, I_E = 0$	4	9.1	4 9.1	4 12	4 12	kΩ
$\alpha_{{\scriptscriptstylerBB}}$	Interbase Resistance Temperature Coefficient	$V_{B2-B1} = 3 \text{ V}, I_E = 0, T_A = -55^{\circ}\text{C to } 100^{\circ}\text{C},$ See Note 4	0.1	0.9	0.1 0.9	0.1 0.9	0.1 0.9	%/deg
η	Intrinsic Standoff Ratio	$V_{B2-B1} = 10 V$, See Figure 1	0.55	0.82	0.51 0.69	0.55 0.82	0.74 0.86	
I _{B2(mod)}	Modulated Interbase Current	$V_{B2-B1} = 10 \text{ V}, I_E = 50 \text{ mA}, See Note 5$	10		10	10	10	mA
I _{EB2O}	Emitter Reverse Current	$V_{EB2} = -30 \text{ V, } I_{B1} = 0$		-10	-10	-10	-10	nA
l _P	Peak-Point Emitter Current	$V_{B2-B1} = 25 \text{ V}$		5	2	2	1	μΑ
V _{EB1(sat)}	Emitter — Base-One Saturation Voltage	$V_{B2-B1} = 10 \text{ V}, I_E = 50 \text{ mA}, \text{ See Note 5}$		4	4	4	4	٧
lγ	Valley-Point Emitter Current	$V_{B2-B1} = 20 \text{ V}$	2		4	2	2	mA
Vos	Base-One Peak Pulse Voltage	See Figure 2	3		3	6	3	٧

NOTES: 4. Temperature coefficient, α_{rBB} , is determined by the following formula:

$$\alpha_{\text{rBB}} = \left[\frac{(r_{\text{BB}} @ 100^{\circ} \text{C}) - (r_{\text{BB}} @ -55^{\circ} \text{C})}{(r_{\text{BB}} @ 25^{\circ} \text{C})} \right] \frac{100\%}{155 \text{ deg}}$$

To obtain r_{BB} for a given temperature $T_{A\{2\}}$, use the following formula:

$$r_{BB(2)} = [r_{BB} @ 25^{\circ}C] [1 + (\alpha_{rBB}/100) (T_{A(2)} -25^{\circ}C)]$$

5. These parameters must be measured using pulse techniques. $t_{\rm p}=300~\mu{\rm s}$, duty cycle $\leq 2\%$.

*Indicates JEDEC registered data.

PARAMETER MEASUREMENT INFORMATION

 η — Intrinsic Standoff Ratio — This parameter is defined in terms of the peak-point voltage, V_p, by means of the equation: V_p = η V₈₂₈₁ + V_F, where V_F is about 0.56 volt at 25°C and decreases with temperature at about 3 millivolts/deg.

The circuit used to measure η is shown in the figure. In this circuit, R_1 , C_1 and the uniquaction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diode D_1 automatically subtracting the voltage V_F . To use the circuit, the "cal" button is pushed, and R_1 is adjusted to make the current meter M_1 read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full-scale deflection of

D1: 1N457, or equivalent, with the following characteristics:

 $V_F = 0.565 \text{ V at } I_F = 50 \mu\text{A},$

 $I_{R} \leq$ 2 μA at $V_{R} =$ 20 V

FIGURE 1 — TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE

TYPES 2N4891 THRU 2N4894 P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

2N4893 BASE-ONE PEAK PULSE VOLTAGE V3 FREE-AIR TEMPERATURE

TYPES 2N4891 THRU 2N4894 P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

2N4894 PEAK-POINT EMITTER CURRENT VS FREE-AIR TEMPERATURE

NOTE 5: This parameter is measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

TYPES 2N4891 THRU 2N4894 P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

2N4892
VALLEY-POINT EMITTER CURRENT

vs

FREE-AIR TEMPERATURE

NOTE 5: This parameter is measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

TYPES 2N4891 THRU 2N4894 P-N PLANAR UNIJUNCTION SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

TYPICAL MINIMUM SUPPLY VOLTAGE TO TRIGGER THYRISTOR

C₁ -Capacitance -µF

TEST CIRCUIT

INDEX OF THYRISTOR TYPES

CURVE	THYRISTOR TYPES	R
A	TI3037-42, 2N3936-40	35 Ω
В	2N681-88, 2N681A-89A, 2N1842B-50B	70 Ω
С	T1145A0-A4, 2N1595-99, T140A0-A5, 2N1600-04, 2N1770-77, 2N2653, T13010, TIC28-31	70 Ω
D	2N3001-08, 2N876-81, 2N884-88, 2N2687-90, 2N3555-62, TIC44-47	70 Ω

FIGURE 13 - OPERATING INFORMATION (2N4893)

NOTE 6: This chart shows typical observed values of minimum base-two supply voltage required to trigger individual thyristors of the types indicated.

TYPES 2N398, 2N398A AND 2N398B P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

High-Voltage Transistors For Direct Control of Neon Indicators

environmental tests

To ensure maximum integrity, stability, and long life, finished devices are subjected to the following tests and conditions prior to thorough testing for rigid adherence to specified characteristics.

- All devices receive a 100°C stabilization bake for 100 hours minimum.
- The hermetic seal is verified by submerging all devices in a 2% detergent solution at 100 psi for 24 hours.
- Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.
- Continuous Quality Control checks on in-process assembly are maintained.

*mechanical data

The transistors are in a JEDEC TO-5 hermetically sealed welded package with glass-to-metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N398	2N398A	2N398B
Collector-Base Voltage	105 v	105 v	105 v
Collector-Emitter Voltage (See Note 1)	105 v	105 v	105 v
Emitter-Base Voltage	50 v	50 v	75 v
Collector Current	100 ma	200 ma	200 ma
Emitter Current	100 ma	200 ma	200 ma
Total Device Dissipation (See Note 2)	50 mw	150 mw	250 mw
Operating Temperature	55°C	100°C	100°C
Storage Temperature Range	- 65°C to + 85°C	-65°C to + 100°C	-65°C to + 100°C

NOTES: 1. This value applies when the base-emitter diode is short-circuited.

2. For 2N398 derate linearly to 55°C maximum free-air temperature at the rate of 0.75 mw/C°; this corresponds to 10 mw maximum dissipation at 55°C. For 2N398A derate linearly to 100°C free-air temperature at the rate of 2.0 mw/C°.

For 2N398B derate linearly to 100°C free-air temperature at the rate of 3.33 mw/C°.

Andicates JEDEC registered data.

TYPES 2N398, 2N398A, AND 2N398B P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

				2N39	В]	2N398	A	1			
	PARAMETER	TEST CONDITIONS	MIN*	TYP	MAX*	MIN*	TYP	MAX*	MIN*	TYP	MAX*	UNIT
ВУСВО	Collector-Base Breakdown Voltage	$I_C = -50\mu a$ $I_E = 0$	— 105									٧
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = -50\mu a$ $I_C = 0$	50									٧
V _{PT}	Punch-Through Voltage (See Note 3)	$Y_{EBfI} = -1 \text{ v}$ $R_{BE} = 11 \text{ M}\Omega$	— 105			- 105			105			٧
ICBO	Collector Cutoff Current	$V_{CB} = -2.5 \text{ v}$ $I_E = 0$		- 6	- 14		-6	- 14		– 4	-6	μα
СВО	Collector Cutoff Current	$V_{CB} = -105 \text{ v}$ $I_{\epsilon} = 0$					- 10	— 50		- 8	- 25	μα
I _{CBO}	Collector Cutoff Current	$V_{CB} = -105 \text{ V}$ $I_{E} = 0$ $I_{A} = 71^{\circ}\text{C}$								180	— 300	μα
IEBO	Emitter Cutoff Current	$V_{EB} = -2.5 \text{ v}$ $I_C = 0$		-5			5			- 3	- 6	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -50 \text{ v}$ $I_C = 0$		-6			-6	– 50				, μα
IEBO	Emitter Cutoff Current	$V_{EB} = -75 \text{ v}$ $I_C = 0$								- 8	– 50	μα
CES	Collector Cutoff Current	$V_{CE} = -105 \text{ v}$ $V_{BE} = 0$		- 60	- 600		- 60	- 600		— 40	— 300	μα
I _{CER}	Collector Cutoff Current	$V_{CE} = -55 \text{ v}$ $R_{BE} = 10 \text{ K}\Omega$								140	— 300	μα
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -0.35 \text{ V}$ $I_{C} = -5 \text{ ma}$	20	35		20	35					
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -0.25 \text{ v}$ $I_{C} = -5 \text{ ma}$							20	45		
V _{BE}	Base-Emitter Voltage	$I_B = -0.25 \text{ ma}$ $I_C = -5 \text{ ma}$		0.23	- 0.40		0.23	0.40		0.20	- 0.30	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -0.25$ ma $I_C = -5$ ma		- 0.14	- 0.35		- 0.14	- 0.35		- 0.12	- 0.25	٧
h' _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -6 \text{ v}$ $I_C = -1 \text{ ma}$ $f = 1 \text{ kc}$		45		20	45		40	65		
f _{hfb}	Common-Base Alpha-Cutoff Frequency	$V_{CB} = -6 v$ $I_E = 1 ma$		0.8			0.8		1	1.4		тс

^{3.} V_{PT} is determined by measuring the emitter-base floating potential, V_{BEfl} . Collector-base voltage, V_{CB} , is increased until $V_{BEfl} = -1v$; this value of $V_{CB} = (V_{PT} - 1v)$.

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

TYPES 2N398, 2N398A, AND 2N398B P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS

2N398B

NOTE: These characteristics are measured by the sweep method using Tektronix 575 curve tracer or equivalent.

TYPES 2N398, 2N398A AND 2N398B P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

TYPES 2N404, 2N404A

High-Frequency Transistors for Computer and Switching Applications

Close parameter control and the JEDEC TO-5 welded package ensure device reliability and stable characteristics

environmental tests

To ensure maximum reliability, stability, and long life, all units are aged at 100°C for 100 hours minimum prior to electrical characterization. All transistors are thoroughly tested for complete adherence to specified design characteristics. In addition, continuous qualification tests are made comprising temperature-humidity cycling, shock, and vacuum leak testing under rigid in-process control procedures.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. These units meet JEDEC TO-5 registration.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

							2N404	2N404A
Collector-Base Voltage							25 v	40 v
Collector-Emitter Voltage (see note 1)							24 v	35 v
Emitter-Base Voltage							12 v	25 v
Collector Current							100 ma	150 ma
Emitter Current							100 ma	150 ma
Total Device Dissipation (see note 2)							150 mw	150 mw
Operating Collector Junction Temperature							85°C	100°C
Storage Temperature Range							–65°C to	–65°C to
							+100°C	+100°C

NOTES: 1. Punch-through voltage.

For 2N404 derate linearly to 85°C free-air temperature at the rate of 2.5 mw/°C;
 For 2N404A derate linearly to 100°C free-air temperature at the rate of 2.0 mw/°C.

*Indicates JEDEC registered data.

The maximum power dissipation at 25°C case temperature is 300 mw.

TYPES 2N404, 2N404A

P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

		test		2N404			2N404	A	unit
	parameter	conditions	min	typ	max	min	typ	max	Unit
		$V_{C8} = -12 v, I_E = 0$		-1	-5*		-1	-5 *	μα
I _{CBO}	Collector cutoff current	$V_{CB} = -12 \text{ v}, I_E = 0$ $T_A = 80 \text{ °C}$		-40	-90*		–40	-90°	μα
I _{EBO}	Emitter cutoff current	$V_{EB} = -2.5 v, I_{C} = 0$	T	-1	-2.5*		-1	-2.5*	μα
BVCBO	Collector-base breakdown voltage	$I_C = -20\mu a$, $I_E = 0$	-25*			-40*			٧
BVEBO	Emitter-base breakdown voltage	$I_E = -20\mu a$, $I_C = 0$	-12*			-25*			٧
hpe	DC forward current	$V_{CE} = -0.15 \text{v}, I_{C} = -12 \text{ma}$	30	100		30	100		
	transfer ratio	$V_{CE} = -0.20 \text{ v, } I_{C} = -24 \text{ ma}$	24	110		24	110		
v	Dara amittar valtara	$I_{B} = -0.4 \text{ma}, I_{C} = -12 \text{ma}$		-0.26	-0.35*		-0.26	-0.35*	٧
V _{BE}	Base-emitter voltage	$I_8 = -1$ ma, $I_C = -24$ ma	i i	-0.30	-0.40°		-0.30	-0.40*	٧
V _{CE(sat)}	Collector-emitter	$I_8 = -0.4 \text{ma}, I_C = -12 \text{ma}$	1	-0.08	-0.15*		-0.08	-0.15*	٧
01,00.,	saturation voltage	$I_B = -1 \text{ ma}, I_C = -24 \text{ ma}$		-0.08	-0.20*		-0.08	-0.20*	٧
V _{pt}	Punch-through voltage†	V _{EBf1} = -1 v	-24*						٧
V _{EBfI}	Emitter-base floating potential	$V_{CB} = -35 \text{ v}$					-0.2	-1*	٧
h _{fo}	AC common-emitter forward current transfer ratio	$V_{CE} = -6 \text{ v}, I_{C} = -1 \text{ ma}$ $f = 1 \text{ kc}$		135			135		
hio	AC common-emitter input impedance	$V_{CE} = -6 \text{ v}, I_{C} = -1 \text{ ma}$ $f = 1 \text{ kc}$		4			4		Kohm
hoo	AC common-emitter output admittance	$V_{CE} = -6 \text{ v}, I_{C} = -1 \text{ ma}$ $f = 1 \text{ kc}$		50			50		μ mho
h _{re}	AC common-emitter reverse voltage transfer ratio	$V_{CE} = -6 \text{ v}, I_{C} = -1 \text{ ma}$ $f = 1 \text{ kc}$		7x10 ⁻⁴			7x10-4		
(_{ob}	Common-base output capacitance	$V_{CB} = -6 \text{ v}, f_E = 0$ $f = 1 \text{ mc}$		9	20*				pf
ч оь	common-pass output capacitance	$V_{CB} = -6 \text{ v}, I_E = 1 \text{ ma}$ $f = 2 \text{ mc}$					9	20*	pf
f _{hfb}	Common-base alpha cutoff frequency	$V_{CB}=-6 \text{ v}, I_E=1 \text{ ma}$	4*	12		4*	12		mc

TVpt is determined by measuring the emitter-base floating potential VEBH, using a veltmeter with 11 megahms minimum input impedance. The collector-base voltage, VCB, is increased until VEBI =-1 v; this value of VCB = (Vpt + 1). Care must be taken not to exceed maximum collector-base voltage specified under maximum ratings.

switching characteristics at 25°C free-air temperature

		test		2N404			2N404A		unit
`	parameter	conditions	min	typ	max	min	typ	max	Unit
t _d	Delay time	See Circuit 1		0.14			0.15		μsec
tr	Rise time	See Circuit 1		0.20			0.27		μѕѳς
t _a	Storage time	See Circuit 1		0.38			0.38		μ sec
te	Fall time	See Circuit 1		0.19			0.24		μѕес
Q _{sb}	Stored base charge	See Circuit 2		800	1400*		800	1400*	pcb

- NOTES: 1. Input pulse supplied by generator with following characteristics:
 - a. Output impedance: 50 ohms
 - b. Repetition rate: 1 kc

- c. Rise and fall time: 20 nanoseconds maximum 2. Waveforms monitored on scope with following
 - characteristics:
 - a. Input resistance 10 megohms minimum
- b. Input capacitance 15 pf maximum c. Risetime — 15 nanoseconds maximum
- 3. All resistors ±1% tolerance.

TYPES 2N404, 2N404A P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS ... AS MEASURED ON TEKTRONIX 575 CURVE TRACER

NORMALIZED DC FORWARD CURRENT TRANSFER RATIO

NORMALIZED DC FORWARD CURRENT TRANSFER RATIO

MEASUREMENT PROCEDURE

 C_1 is increased until the t_{off} time of the output waveform is decreased to 0.2 µsec. Q_{sb} is then calculated by $Q_{sb} = C_1 \ V_{in}$.

TYPES 2N404, 2N404A

P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

REPLACES BULLETIN NO. DL-S 60349, MAY 1960

M-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 P-N-P TYPES 2N1303, 2N1305, 2N1307, AND 2N1309

COMPLEMENTARY ALLOY-JUNCTION GERMANIUM TRANSISTORS

High-Frequency Transistors for Computer and Switching Applications

- Complementary Families
- Proven Reliability and Stability

environmental tests

To ensure maximum integrity, stability, and long life, finished devices are subjected to the following tests and conditions prior to thorough testing for rigid adherence to specified characteristics.

- All devices receive a 100°C stabilization bake for 100 hours.
- The hermetic seal for all devices is verified by helium leak testing.
- Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.
- Continuous Quality Control checks on in-process assembly are maintained.

*mechanical data

The transistors are in a JEDEC TO-5 hermetically sealed welded package with glass to metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

																			2N1302, 2N1304 2N1303, 2N1305, 2N1306, 2N1308 2N1307, 2N1309
Collector-Base Voltage																			← 25 v ← 30 v ←
Emitter-Base Voltage .																			₹
Collector Current																			→ 300 ma
Total Device Dissipation	at	(or	be	elov	w) 2	25°	C F	ree	-Ai	r T	em	per	atu	re	(Se	e l	Vot	e 1)	150 mw
Operating Collector Jun	ctic	on	Ter	npe	erat	ure	٠.												▼ 85°C →
Storage Temperature Re	ang	је																	-65°C to 100°C

NOTE: 1. Derate linearly to 85°C free-air temperature at the rate of 2.5 mw/C°.

*Indicates JEDEC registered data.

TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 N-P-N ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST	CONDITIONS		2N130	2	:	2N1304		:	2N1306	5	:	2N1308	1	וואט
	PARAMETER		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	l on
BVCBO	Collector-Base Breakdown Voltage	ι _C = 100 μα,	I _E = 0	25			25			25			25			٧
BVEBO	Emitter-Base Breakdown Voltage	I _E = 100 μα,	I _C = 0	25			25			25			25			٧
•V _{PT}	Punch Through Voltage†	V _{EBfI} = 1 v		25			20			15			15			٧
*I _{CBO}	Collector Cutoff Current	V _{CB} = 25 v,	I _E = 0		3	6		3	6		3	6		3	6	μα
*I _{EBO}	Emitter Cutoff Current	V _{E8} = 25 v,	I _C = 0		2	6		2	6		2	6		2	6	μα
*h _{FE}	Static Forward Current	V _{CE} == 1 v,	I _C = 10 ma	20	100		40	115	200	60	130	300	80	160		
	Transfer Ratio	V _{CE} = 0.35 v,	I _C = 200 ma	10	100		15	110		20	125		20	140		
•V _{BE}	Base-Emitter Voltage	I _B = 0.5 ma,	I _C = 10 ma	0.15	0.22	0.40	0.15	0.22	0.35	0.15	0.22	0.35	0.15	0.22	0.35	٧
		I _B == 0.5 ma,	I _C = 10 ma		0.07	0.20										٧
*V _{CEIsati}	Collector-Emitter	1 _B = 0.25 ma,	I _C = 10 ma					0.07	0.20							٧
	Saturation Voltage	I _B = 0.17 ma,	I _C = 10 ma								0.07	0.20				٧
		I _B = 0.13 ma,	I _C = 10 ms											0.07	0.20	٧
h _{ib}	Small-Signal Common-Base Input Impedance	V _{CB} = 5 v, f = 1 kc	I _E = - 1 ma		28			28			28			28		ohm
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	V _{CB} = 5 v, f = 1 kc	I _E = -1 ma		5 x 10-4			5 x 10-4			5 x 10-4			5 x 10 ⁻⁴		
h _{ob}	Small-Signal Common-Base Output Admittance	V _{CB} = 5 v, f = 1 kc	I _E = -1 ma		0.34			0.34			0.34			0.34		μmhe
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 v, f = 1 kc	I _C = 1 ma		105			120			135			170		
*f _{hfb}	Common-Base Alpha- Cutoff Frequency	V _{CB} = 5 v,	I _E = -1 ma	3	12		5	14		10	16		15	20		mc
•C _{ob}	Common-Base Open Circuit Output Capacitance	V _{CB} = 5 v, f = 1 mc	I _E = 0		14	20		14	20		14	20		14	20	pf
Cip	Common-Base Open-Circuit Input Capacitance	V _{EB} = 5 v, f = 1 mc	I _C = 0		13			13			13			13		pf

 $[\]dot{T}V_{PT}$ is determined by measuring the emitter-base floating potential V_{EBf1} . The collector-base voltage, V_{CB} , is increased until $V_{EBf1}=1$ valt; this value of $V_{CB}=(V_{PT}+1 \text{ v})$.

switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS††	;	N 1302	1	:	2N1304		2	N1306	5	1	2N1308	1	UNIT
	PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	JON.
t _d	Delay Time	1 - 10 1 12		0.07			0.07			0.06			0.06		μιεες
tr	Risa Time	$I_C = 10 \text{ ma}, I_{B[1]} = 1.3 \text{ ma}$ $I_{B[2]} = -0.7 \text{ ma}, V_{BE \text{ (off)}} = -0.8 \text{ v}$		0.20			0.20			0.18			0.15		μςες
†s	Storage Time	$R_1 = 1 \text{ k } \Omega \text{ (See Fig. 1)}$		0.70			0.70			0.64			0.64		µsec
† _f	Fall Time	1 ML 1 K 13 (360 F19. 1)		0.40			0.40			0.36			0.34		μsec
Q _{sb}	Stored Base Charge	$I_{B(1)} = 1$ ma, $I_C = 10$ ma (See Fig. 2)		800			760			720			680		pcb

^{††}Voltage and current values shown are nominal; exact values vary slightly with device parameters.

operating characteristics at 25°C free-air temperature

١	PARAMETER	TEST CONDITIONS	2	N1302		2	N1304		2	N1306		2	N1308		UNIT
	PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	J. C. C. L.
	MF Spot Noise Figure	$V_{C8} = 5 \text{ v}$ $I_E = -1 \text{ ma}$ $f = 1 \text{ kc}, \qquad R_G = 1 \text{ k} \Omega$		4			4			3			3		db

^{*}Indicates JEDEC registered data (typical values excluded).

TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 N-P-N ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS

I_B = 0.05 mc

2

NOTE: These Characteristics are measured by the sweep method using a 575 Tektronix Curve Tracer (or equivalent).

PARAMETER MEASUREMENT INFORMATION

3

V_{CE} - Collector-Emitter Voltage - v

- NOTES: 1. Input pulse supplied by generator with following characteristics:
 - a. Output impedance: 50 ohms
 - b. Repetition rate: 1 kc

0

- c. Rise and fall time: 20 nanoseconds maximum
- d. Pulse width: 10 microseconds
- 2. Waveforms monitored on scope with following characteristics:
 - a. Input resistance: 10 megohms minimum
 - b. Input capacitance: 15 pf maximum
 - c. Risetime: 15 nanoseconds maximum
- 3. All resistors ±1% tolerance

TYPES 2N1303, 2N1305, 2N1307, AND 2N1309 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	1	2N1303	3		2N130	5	:	2N1307	,		2N 1 309	,	
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNI
BVCBO	Collector-Base Breakdown Voltage	$I_C = -100 \mu a, I_E = 0$	- 30			- 30			30			- 30			•
BYEBO	Emitter-Base Breakdown Voltage	$I_E = -100 \mu a, I_C = 0$	- 25			25			25			- 25			v
•V _{pt}	Punch Through Voltage†	V _{EBfI} = -1 v	- 25			- 20			15			15			,
*I _{CBO}	Collector Cutoff Current	$V_{CB} = -25 \text{ v}, I_E = 0$		-2	-6		-2	-6		-2	-6		-2	-6	μα
*I _{EBO}	Emitter Cutoff Current	V _{EB} = - 25 v, I _C = 0		- 1.5	-6		- 1.5	-6		- 1.5	-6		1.5	-6	μα
*h _{FE}	Static Forward Current	$V_{CE} = -1 \text{ v}, I_{C} = -10 \text{ ma}$	20	100		40	115	200	60	130	300	80	160		
	Transfer Ratio	V _{CE} = - 0.35 v, I _C = - 200 mm	10	45		15	55		20	65		20	75		
•V _{BE}	Base-Emitter Voltage	$I_B = -0.5$ ma, $I_C = -10$ ma	- 0.15	- 0.25	- 0.40	- 0.15	- 0.25	- 0.35	- 0.15	- 0.25	- 0.35	- 0.15	- 0.25	- 0.35	•
		$I_B = -0.5 \text{ma}, I_C = -10 \text{ma}$		- 0.08	- 0.20										•
*Y _{CE(sat)}	Collector-Emitter	$I_B = -0.25$ ma, $I_C = -10$ ma					- 0.08	- 0.20							v
	Saturation Voltage	$I_B = -0.17 \text{ma}, I_C = -10 \text{ma}$								- 0.08	- 0.20				v
		$I_B = -0.13 \text{ma}, \ I_C = -10 \text{ma}$											- 0.08	- 0.20	v
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = -5 \text{ v}, I_E = 1 \text{ ma}$ $f = 1 \text{ kc}$		29			29			29			29		ohm
h _{fb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	$V_{CB} = -5 \text{ v}, I_E = 1 \text{ ma}$ $f = 1 \text{ kc}$		7 x 10-4			7 x 10-4			7 x 10-4			7 x 10-4		
hob	Small-Signal Common-Base Output Admittance	$V_{CB} = -5 v$, $I_E = 1 ma$ f = 1 kc		0.40			0.40			0.40			0.40		μmho
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CP} = -5 \text{ v}, I_C = -1 \text{ me}$ $f = 1 \text{ kc}$		115			130			150			190		
•f _{hfb}	Common-Base Alpha— Cutoff Frequency	$V_{CB} = -5 v$, $I_E = 1 ma$	3	12		5	14		10	16		15	20		mc
•(_{ob}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -5 \text{ v}, I_E = 0$ $f = 1 \text{ mc}$		10	20		10	20		10	20		10	20	pf
Cib	Common-Base Open-Circuit Input Capacitance	$V_{E8} = -5 \text{ v}, I_{C} = 0$ $f = 1 \text{ mc}$,			9			9			9		pf

 $[\]uparrow V_{PT}$ is determined by measuring the emitter-base floating potential V_{EBf1} . The collector-base voltage, V_{CB} , is increased until $V_{EBf1} = -1$ volt; this value of $V_{CB} = (V_{PT} - 1 \text{ v})$.

switching characteristics at 25°C free-air temperature

		TEST CONDITIONS††		2N130	3		2N130	5		2N130	7		2N130	9	UNIT
1	PARAMETER	TEST CONDITIONS[]	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIII
t _d	Delay Time	1 - 10 1 - 13		0.06			0.06			0.06			0.05		μѕес
tr	Rise Time	$_{\rm C} = -10 { m ma}$, ${ m I}_{{ m B(1)}} = -1.3 { m ma}$		0.18			0.18			0.14			0.14		μςος
Ť _s	Storage Time			0.80			0.80			0.78			0.76		μsec
t _f	Fall Time	RE 1 K 24 (340 Fig. 1)		0.38			0.38			0.36			0.30		μѕес
Q _{sb}	Stored Base Charge	$I_{B(1)} = -1 \text{ ma}, I_C = -10 \text{ ma (See Fig. 2)}$		960			920			880			800		pcb

^{††}Voltage and current values shown are nominal, exact values vary slightly with device parameters.

operating characteristics at 25°C free-air temperature

			2	N1303		2	N1305	5	2	N130	,		2N1309		UNIT
ł	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	Oldin
NF	Spot Noise Figure	$V_{CB} = -5 \text{ v}$ $I_E = 1 \text{ ma}$ $f = 1 \text{ kc}, R_G = 1 \text{ k} \Omega$		4			4			3			3		db

^{*}Indicates JEDEC registered data (typical values excluded).

TYPES 2N1303, 2N1305, 2N1307, AND 2N1309 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS

NOTE: These Characteristics are measured by the sweep method using a 575 Tektronix Curve Tracer (or equivalent).

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT C₁ (16-250 pf) 560 Ω OUTPUT OUTPUT OUTPUT OUTPUT OVAVEFORM FOR CORRECT VALUE OF C₁

FIGURE 2 STORED BASE CHARGE

(POLARITIES SHOWN APPLY TO P-N-P)

TEST PROCEDURE

The value of capacitor C_1 is increased until the transistor turns off monotonically, as shown. The stored base charge is then calculated from $\mathbf{Q}_{sb} = \mathbf{V}_{in} \ C_1$.

- NOTES: 1. Input pulse supplied by generator with following characteristics:
 - a. Output impedance: 50 ohms
 - b. Repetition rate: 1 kc
 - c. Rise and fall time: 20 nanoseconds
 - d. Pulse width: 10 microseconds
- 2. Waveforms monitored on scope with following characteristics:
 - a. Input resistance: 10 megohms minimum
 - b. Input capacitance: 15 pf maximum
 - c. Risetime: 15 nanoseconds maximum
- 3. All resistors ±1% tolerance

N-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 P-N-P TYPES 2N1303, 2N1305, 2N1307, AND 2N1309 COMPLEMENTARY ALLOY-JUNCTION GERMANIUM TRANSISTORS

N-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 P-N-P TYPES 2N1303, 2N1305, 2N1307, AND 2N1309 COMPLEMENTARY ALLOY-JUNCTION GERMANIUM TRANSISTORS

N-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 P-N-P TYPES 2N1303, 2N1305, 2N1307, AND 2N1309 COMPLEMENTARY ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPES 2N1372

LINEAR BETA, LOW DISTORTION, HIGH POWER GAIN

Specifically designed for low-frequency general-purpose industrial applications

- switching
- servo amplifiers
- audio amplifiers

- pagers
- intercoms
- motor controls

environmental tests

To ensure maximum integrity, stability, and long life, finished devices are subjected to the following tests and conditions prior to thorough testing for rigid adherence to specified characteristics.

- Continuous Quality Control checks on in-process assembly are maintained.
- All devices are heat aged at 100°C for 100 hours minimum.
- The hermetic seal is verified for all devices by gross-leak tests.

Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.

mechanical data

The transistors are in a JEDEC TO-5* hermetically sealed welded package with glass-to-metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

				2N1372 2N1374 2N1376	2N1373 2N1375 2N1377	2N1378 2N1380	2N1379 2N1381
Collector-Base Voltage	•	•	:	–25 V –15 V	-45 V -45 V -25 V	– 7 V	–25 V –25 V –15 V
Continuous Collector Current					250 	mW ———	\Rightarrow

NOTES: 1. This value applies when base-emitter resistance R $_{\rm BE} \leq$ 2.2 k Ω .

2. Derate linearly to 100°C free-air temperature at the rate of 3.33 mW/deg.

*Indicates JEDEC registered data.

TYPES 2N1372 THRU 2N1381 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

*electrical characteristics at 25°C free-air temperature

	NA DA METER	TEST CONDITIONS	2N	372	2N1	373	2N1	374	2N1375		2N1376		UNIT
,	PARAMETER	1E31 CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	OIVII
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\mathrm{C}}=-100~\mu\mathrm{A}$, $I_{\mathrm{E}}=0$	-25		–45		–25		–45		-25		٧
V _{(BR)CER}	Collector-Emitter Breakdown Voltage	$ m I_C = -100~\mu A$, $ m R_{BE} = 2.2~ks$	Ω –25		–45		-25		-45		-25		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -100 \ \mu A, \ I_{C} = 0$	-15		25		-15		-25		-15		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = -20 \text{ V}, I_E = 0$		-7		-7		-7		-7		7	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -4.5 \text{ V}, I_{C} = 0$		-15		-15		-15		-15		-15	μA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -1 \text{ V}, I_{C} = -50 \text{ m}$	A 27	105	27	105	45	165	45	165	67	165	
V _{BE}	Base-Emitter Voltage	$V_{CE} = -1 V$, $I_{C} = -100 v$	mA —0.2	-0.7	-0.2	-0.7	0.2	-0.7	-0.2	-0.7	-0.2	-0.7	٧
		$I_B = -5 \text{ mA}, I_C = -100 \text{ m}$	mA	1		-1							
V _{CE(sat)}	Collector-Emitter	$I_B = -3 \text{ mA}, I_C = -100 \text{ mg}$	mA					-1		-1			٧
	Saturation Voltage	$I_B = -2.5 \text{ mA}, I_C = -100 \text{ m}$	mA									-1	1
h _{fe}	Small-Signal Common- Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ V, I}_{E} = 1 \text{ mA, f} =$	= 1 kHz 18	127	18	127	36	187	36	187	54	187	

_	PARAMETER TEST CONDITIONS	TEST COMPLETIONS	2N1	377	2N1	378	2N1	379	2N1	380	2N1	381	UNIT
"	ARAMEIEK	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Olti
V _{{BR}CBO}	Collector-Base Breakdown Voltage	$I_{\mathrm{C}}=-100~\mu\mathrm{A},~I_{\mathrm{E}}=0$	-45		-12		-25		-12		-25		٧
V _{(BR)CER}	Collector-Emitter Breakdown Voltage	$ m I_C = -100~\mu A$, $ m R_{BE} = 2.2~k\Omega$	-45	:	-12		-25		-12		-25		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = -100~\mu{\rm A},~I_{\rm C} = 0$	-25		-7		-15		-7		-15		V
	Callanta a Catall Comment	$V_{CB} = -12 V, I_E = 0$				7				-14			μΑ
ICBO	Collector Cutoff Current	$V_{CB} = -20 \text{ V}, I_E = 0$		-7				-7				-14	μη
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -4.5 V, I_C = 0$		-15		-15		-15		-15		-15	μA
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -1 \text{ V}, I_C = -50 \text{ mA}$	67	165	85	330	85	330	27	330	27	330	
V _{BE}	Base-Emitter Voltage	$V_{CE} = -1 V$, $I_{C} = -100 \text{ mA}$	-0.2	-0.7	-0.2	-0.7	-0.2	0.7	-0.2	-0.7	-0.2	-0.7	٧
		$I_B = -5 \text{ mA}, I_C = -100 \text{ mA}$								-1		-1	
V _{CE(sat)}	Collector-Emitter	$I_B = -2.5 \text{mA}, I_C = -100 \text{mA}$		-1									٧ [
(,	Saturation Voltage	$I_B = -1.5 \text{mA}, \ I_C = -100 \text{mA}$				-1	T	-1					1
h _{fe}	Small-Signal Common- Emitter Forward Current Transfer Ratio	$V_{CE} = -5 \text{ V, } I_E = 1 \text{ mA, } f = 1 \text{ kHz}$	54	187	67	385	67	385	18	385	18	385	

^{*}Indicates JEDEC registered data.

TYPES 2N1372 THRU 2N1381 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPES 2N1372 THRU 2N1381 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO
vs

FIGURE 5

NORMALIZED STATIC FORWARD CURRENT TRANSFER RATIO

For Medium-Power Switching and General Purpose Applications

- High Current Gain
- High Cutoff Frequency
- Guaranteed Switching Times
- Leads Isolated From Case

environmental tests

To ensure maximum reliability, stability, and long life, all units are aged at 100°C for 100 hours minimum prior to electrical characterization. All transistors are thoroughly tested for complete adherence to specified design characteristics. In addition, continuous qualification tests are made comprising temperature-humidity cycling, shock, and vacuum leak testing under rigid in-process control procedures.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately one gram. These units meet JEDEC outline TO-5.

absolute maximum ratings at 25°C ambient temperature (unless otherwise noted)

	2N1997	2N1998	2N1999
Collector-Base Voltage	45 v	35 v	30 v
Collector-Emitter Voltage (see note 1)	40 v	35 v	20 v
Emitter-Base Voltage	45 v	30 v	20 v
Collector Current	500 ma	500 ma	500 ma
Base Current	50 ma	50 ma	50 ma
Total Device Dissipation (see note 2)	250 mw	250 mw	250 mw
Total Device Dissipation at 25°C Case (see note 3)		500 mw	500 mw
Collector Junction Temperature		100°C	100°C
Storage Temperature Range		-65°C to	-65°C to

NOTES: 1. V_{BE} = 0.3 v

- 2. Derate 3.3 mw/°C above ambient temperature of 25°C.
- 3. Derate 6.6 mw/°C above case temperature of 25°C.

TYPES 2N1997, 2N1998, and 2N1999

P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C ambient temperature

				2N19	97		2N199	8		2N199	9	1 1
	parameter	test conditions	min	typ	max	min	typ	max	min			unit
ICBO	Collector reverse current	$V_{CB} = -1.5 \text{ v}, \ I_E = 0$		-1.5	5		-1.5	– 5		-1.5	5	μ a
Ісво	Collector reverse current	$V_{CB} = -15 v, I_E = 0$		-2.5	-6		-2.5	-6		-2.5	-6	μ_0
	Collector-base breakdown voltage	$I_C=-25~\mu$ a, $I_E=0$	-45			-35			-30			v
BVCEX	Collector-emitter breakdown voltage	$I_{C} = -100~\mu$ a, V $_{BE} = 0.3~v$	-40			-35			-20			v
BV _{EBO}	Emitter-base breakdown voltage	$I_{\rm E}=-50~\mu{ m a},~~I_{ m C}=0$	-45			-30			-20			v
h _{FE}	DC forward current transfer ratio	$V_{CE} = -1 v$, $I_C = -100 ma$	40	70	200	70	95	225	100	150	350	
h _{FE}	DC forward current transfer ratio	$ m V_{CE} = -1~v,~~I_{C} = -200~ma$				50	70	160	75	120	250	
VBE	Base-emitter voltage	$I_B = -0.33$ ma, $I_C = -10$ ma		-0.26	-0.34	-0.15	-0.25	-0.34		-0.24	-0.34	٧
V _{BE}	Base-emitter voltage	$I_{B} = -6.6 \text{ma}, \ I_{C} = -200 \text{ma}$		<u> </u>	<u> </u>	-0.30	-0.56	-0.65	-0.30	-0.52	-0.65	٧
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{\mathrm{B}}=-0.33$ ma, $I_{\mathrm{C}}=-10$ ma		-0.10	-0.20		-0.07	-0.20		-0.06	-0.20	v
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = -6.6 ma, I _C = -200 ma					-0.23	-0.35	ļ	-0.20	-0.35	v
h _{fe}	AC common-emitter forward current transfer ratio	$V_{CE}=-5 \text{ v}, I_{E}=3 \text{ ma, f}=4 \text{ m}$	nc			1.4	2.0		2.5	4.0	_	1_
C ^{op}	Common-base output capacitance	$V_{CB}=-5 v, I_E=0, f=1 m$	c	10	20		10	20		10	20	pf
f _{hfb}	Common-base alpha cutoff frequency	$V_{CB}=-5 v, I_E=3 ma$	3	6			10			17		mc

switching characteristics at 25°C ambient temperature

			1 2	2N1997			2N199	В				
	parameter	test conditions	min	typ	max	min	typ	max	min	type	max	unit
'n	Delay time	See Circuit A		0.040	0.060		0.040	0.060		0.030	0.060	μ se
_	Rise time	See Circuit A		0.250	0.300		0.180	0.240		0.110	0.175	μ se
	Storage time	See Circuit B		0.440	0.750		0.430	0.750		0.390	0.750	μ se
<u>. </u>	Fall time	See Circuit B		0.200	0.400		0.150	0.330		0.090	0.185	μse
+	Total switching time			0.930			0.800			0.620		μse

^{*}Tektronix 541 scope with type CA plug-in, or equivalent. Maximum probe capacitance 15 pf.

TYPICAL COMMON-EMITTER COLLECTOR CHARACTERISTICS

MEASURED ON TEKTRONIX 575 CURVE TRACER, T_{Δ} = 25°C

2N1997

2N1998

2N1999

TYPICAL COMMON-EMITTER COLLECTOR CHARACTERISTICS MEASURED ON TEKTRONIX 575 CURVE TRACER, TA = 25°C

HIGH - CURRENT SATURATION REGION

VCF - COLLECTOR - EMITTER VOLTAGE -- V

LOW - CURRENT SATURATION REGION

VCE - COLLECTOR -EMITTER VOLTAGE -- V

2N1998

HIGH - CURRENT SATURATION REGION

LOW - CURRENT SATURATION REGION

VCE - COLLECTOR-EMITTER VOLTAGE - V

2N1999

HIGH - CURRENT SATURATION REGION

VCE - COLLECTOR - EMITTER VOLTAGE - V

LOW - CURRENT SATURATION REGION

VCE -COLLECTOR - EMITTER VOLTAGE ---

TYPICAL CHARACTERISTICS

BASE - EMITTER VOLTAGE

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

High-Frequency Transistors for Computer and Switching Applications

- High Beta
- 1 Amp Collector Current
- Guaranteed Switching Times

environmental tests

To ensure maximum reliability, stability, and long life, all units are aged at 100° C for 100 hours minimum prior to electrical characterization. In addition, the hermetic seal is checked by a helium leak test to detect 50×10^{-8} standard cubic centimeters/second of helium. All transistors are thoroughly tested for complete adherence to specified electrical characteristics.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. These units meet JEDEC outline TO-5.

absolute maximum ratings at 25°C ambient temperature (unless otherwise noted)

	2N2000	2N2001	unit
Collector-Base Voltage	 50	30	v
Emitter-Base Voltage	 20	20	v
Collector Current	 1	1	amp
Total Device Dissipation (see note)	 300	300	mw
Collector Junction Temperature	 100	°C	
Storage Temperature Range	 −65°C to	100°C	

NOTE: Derate 4.0 mw/°C above ambient temperature of 25°C. This is equivalent to a maximum power rating of 600 mw at a case temperature of 25°C.

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C ambient temperature (unless otherwise noted)

		4004	nditions	2N2	000	2N2	2001	·
	parameter	test cor	naitions	min	max	min	max	unit
I _{CBO}	Collector reverse current	$V_{CB} = -30 \text{ v},$ $V_{CB} = -15 \text{ v},$	$I_E = 0$ $I_E = 0$		-10		-6	μα μα
BVCBO	Collector-base breakdown voltage	$I_{\rm C}=-100~\mu {\rm a}$	I _E = 0	50		-30	-	v
BVCEX	Collector-emitter breakdown voltage	$I_{C}=-100~\mu a$	$V_{BE} = 0.5 v$	-50		-30		v
BVEBO	Emitter-base breakdown voltage	$I_E=-100~\mu a$	$I_{C} = 0$	-20		-20		V
h _{FE}	DC forward current transfer ratio	$V_{CE} = -0.3 v$	$I_C = -100 \text{ma}$	50	300	100		
h _{FE}	DC forward current transfer ratio	$V_{CE} = -0.5 \text{ v},$	$I_{\rm C}=-500~{ m ma}$	50	300	60		
V _{BE}	Base-emitter voltage	$I_B = -2 \text{ ma},$ $I_B = -20 \text{ ma},$	$I_{C} = -100 \text{ ma}$ $I_{C} = -500 \text{ ma}$	-0.2 -0.4	0.4 0.7	-0.2 -0.4	0.4 0.7	V V
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = -2 \text{ ma},$ $I_B = -20 \text{ ma},$	$I_{C} = -100 \text{ ma}$ $I_{C} = -500 \text{ ma}$		0.25 0.35		-0.20 -0.35	V
Cop	Common-base output capacitance	V _{C8} = -10 v, I _E	= 0, f = 1 mc		35		35	pf
f _{hfb}	Common-base alpha cutoff frequency	$V_{CB} = -5 v$,	$I_{\rm E}=3~{ m ma}$	2		6		mc

switching characteristics (measured in switching test circuit shown below at 25°C ambient temp.)

		2N	2000	2	N2001	
	parameter	min	max	min	max	unit
t _d	Delay time		0.12		0.10	μ sec
t _r	Rise time		0.70		0.60	μsec
ts	Storage time		0.65		0.65	μsec
tf	Fall time		0.75		0.65	μsec

OUTPUT

541 Tektronix Oscilloscope and CA Plug-In Unit. Equivalent, Probe Capacitance 15 pf Maximum

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL COMMON-EMITTER COLLECTOR CHARACTERISTICS AT 25°C

AMBIENT TEMPERATURE AS MEASURED ON TEKTRONIX 575 CURYE TRACER

2N2000

HIGH - CURRENT REGION

2N2001

0

HIGH - CURRENT REGION

VCE - COLLECTOR - EMITTER VOLTAGE- V

LOW - CURRENT REGION

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL COMMON-EMITTER COLLECTOR CHARACTERISTICS AT 25°C

AMBIENT TEMPERATURE AS MEASURED ON TEKTRONIX 575 CURVE TRACER

2N2000

HIGH - CURRENT SATURATION REGION

LOW - CURRENT SATURATION REGION

2N2001

HIGH - CURRENT SATURATION REGION

LOW - CURRENT SATURATION REGION

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

BASE-EMITTER VOLTAGE

COMMON-BASE INPUT AND OUTPUT CAPACITANCE

COLLECTOR REVERSE CURRENT

TYPES 2N2000 and 2N2001 P-N-P ALLOY-JUNCTION GERMANIUM TRANSISTORS TYPICAL CHARACTERISTICS

NORMALIZED COLLECTOR VOLTAGE CHARACTERISTICS

NORMALIZED COLLECTOR - EMITTER BREAKDOWN VOLTAGE CHARACTERISITCS

N-P-N DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

VERY-HIGH-SPEED SWITCHING TRANSISTOR

Guaranteed Total Switching Time —120 nsec Maximum at 10 mg

Guaranteed V_{CE(sat)} — 0.14 v Maximum at 10 ma

Guaranteed V_{CE(sat)} — 0.35 v Maximum at 50 mg

Guaranteed f - - 600 mc Minimum

Complementary to Ultra-High-Speed P-N-P Germanium Switching Transistors

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage							 					. 20 v
Collector-Emitter Voltage (See note	1) .											. 7 v
Emitter-Base Voltage												. 4 v
Collector Current												150 ma
Total Device Dissipation at 25°C Free	-Air Te	empe	ratu	e (Se	e not	e 2)						150 mw
Collector Junction Operating Temper	ature	٠.				. '						100°C
Storage Temperature Range						Ĭ.	Ţ.			500	٠,	- 100°C

electrical characteristics at 25°C free-air temperature

	parameter	test coi	nditions	*min	typ	*max	unit
I _{CBO}	Collector Cutoff Current	$V_{CB} = 10 v$,	$I_E = 0$		0.1	1.0	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 1 v$,	$I_{c} = 0$		0.1	1.0	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4 v$,	$I_{c} = 0$			100	μα
BVCBO	Collector-Base Breakdown Voltage	$I_{\rm C}=100~\mu {\rm a}$	I _E = 0	20			٧
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{C} = 5 \text{ma},$	$I_B = 0$	7.0			٧
h _{FE}	DC Forward Current Transfer Ratio	$V_{CE}=0.25 v$,	I _C = 10 ma	40	75		
h _{FE}	DC Forward Current Transfer Ratio	$V_{CE} = 0.5 v$,	$I_{\rm C}=50~{\rm ma}$	40	85		
V _{BE}	Base-Emitter Voltage	$I_B = 0.5 \text{ma}$	$I_{C} = 10 \text{ma}$	0.30	0.38	0.44	v
V _{BE}	Base-Emitter Voltage	$I_B = 2.5 \mathrm{ma}$	I _C = 50 ma	0.40	0.58	0.72	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 0.5 \text{ma}$	$I_{C} = 10 \text{ma}$		0.10	0.14	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 2.5 \text{ma}$	I _C = 50 ma		0.26	0.35	٧
h _{fo}	AC Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 v, f = 100 mc	$I_{\rm C}=30~{\rm ma}$	6.0	10		
Ccp	Collector-Base Capacitance †	V _{CB} = 5 v, f = 1 mc	$I_E = 0$		3.0	4.0	pf

NOTES: 1. This value applies when the emitter-base diode is open-circuited. This value can be exceeded in applications where the dc circuit resistance (RBE) between base and emitter is a finite value * Indicates JEDEC registered data.

- 2. Derate linearly to 100°C free-air temperature at the rate of 2 mw/°C.
- † Collector-Base Capacitance is measured using three-terminal measurement techniques with the emitter guarded.

The device is capable of 300mw dissipation at 25°C case temperature. Derate linearly to 100°C case temperature at the rate of 4 mw/°C.

N-P-N DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

switching characteristics at 25°C free-air temperature

parameter	*test conditions	approximate circuit conditions	typ	*max	unit
t _{on} Turn-on Time	See	$V_{BE(0)} = -1.25 \text{ v}, I_{B(1)} = 1 \text{ ma}, \\ I_{C} = 10 \text{ ma} \qquad \text{(See note 3)}$	27	40	nsec
t _{off} Turn-off Time	Figure 1	$I_{g(1)} = 1$ ma, $I_{g(2)} = -0.33$ ma, $I_{C} = 10$ ma (See note 3)	60	80	nsec

SWITCHING CIRCUIT

For accurate measurement of switching speed of this transistor, a mercury relay input pulse and sampling scope are required. Oscilloscope input resistance is approximately 100K; the input capacitance is approximately 3 pf.

NOTE 3: Current calculations (I_{B[1]}, I_{B[2]}, and I_C) include the typical values of V_{BE} or V_{CE[sat]} for appropriate values of collector current.

Indicates JEDEC registered** data.

TYPE 2N797 N-P-N DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

TYPICAL CHARACTERISTICS

NOTES: 4. These parameters were measured using pulse techniques. PW == 300 μ sec, duty cycle \leq 2%.

5. To obtain f_r , the $|h_{ro}|$ response with frequency is extrapolated at -6 db/octave from f = 100 mc to the frequency at which $|h_{ro}|$ = 1.

TYPE 2N797

N-P-N DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

TYPICAL CHARACTERISTICS

NORMALIZED DC FORWARD CURRENT TRANSFER RATIO

2N960 2N961 2N962

TYPES 2N960, 2N961, 2N962, 2N964, 2N965, 2N966

FOR ULTRA-HIGH-SPEED SWITCHING APPLICATIONS

- Epitaxial Process
- Rugged Mesa Construction
- Low V_{CE(sat)} Guaranteed at 10 ma, 50 ma, and 100 ma Typically 0.11 v at 10 ma
- Ultra-Fast-Switching Time Guaranteed at 10 ma and 100 ma
- High f_T Guaranteed Minimum of 300 mc, Typically 500 mc

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

															2N965	
Collector-Base Voltage														15 v	12 v	12 v
Collector-Emitter Voltage (Se	e Note	1)												15 v	12 v	12 v
Collector-Emitter Voltage (S	e Note	2)												7 v	7 v	7 v
Emitter-Base Voltage														2.5 v	2.0 v	1.25 v
Collector Current															100 ma	>
Total Device Dissipation at (or	below) 2	25°C	Fre	e-Ai	r Te	emp	erc	itur	e (See	N	ote	3)	←	150 mw	>
Total Device Dissipation at (or	below) :	25°(C Ca	se T	em	oerd	atui	re (See	· N	ote	4)		←	300 mw	\longrightarrow
Operating Collector Junction	Temper	atur	е.												100°C	>
Storage Temperature Range														-65°C	C to +	100°C

quick-selection guide (for details see characteristics on pages 2 and 3)

TYPE	MINIMU	M BV _{CBO}	MINIM	UM h _{FE}	MAXIN	IUM t _{off}
	15 v	12 v	40	20	60 nsec	75 nsec
2N960	•			•	•	
2N961		•		•	•	
2N962		•		•		•
2N964	•		•		•	
2N965		•	•		•	
2N966		•	•			•

NOTES: 1. This value applies when the emitter-base diode is short-circuited.

2. This value applies when the emitter-base diode is open-circuited.

3. Derate linearly to 100°C free-air temperature at the rate of 2 mw/C°.

4. Derate linearly to 100°C case temperature at the rate of 4 mw/C°.

*Indicates JEDEC registered data.

TYPES 2N960, 2N961, 2N962, 2N964, 2N965, 2N966 P-N-P EPITAXIAL DIFFUSED-BASE MESA GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature

					2N960			2N961		:	2N962		UNII
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	<u> </u>
BVCBO	Collector-Base Breakdown Voltage	$I_{\rm C} = -100 \ \mu a$	$I_E = 0$	- 15 *			- 12+			- 12÷			
BVEBO	Emitter-Base Breakdown Voltage	$I_{E} = -100 \ \mu a$		- 2.5*			- 2.0+			- 1.25+			٧
ACEX(r)	Collector-Emitter Latching Voltage	V _{CC} = -11.5 v, (See Figure 1, Page		- 11.5			11.5			- 11.5			
ICBO	Collector Cutoff Current	$V_{CB} = -6 v$	I _E = 0			- 3.0*			- 3.0+			- 3.0+	+
CES	Collector Cutoff Current	$V_{CE} = -15 v$,	$V_{BE}=0$			- 100+						- 100+	μο
		$V_{CE} = -12 v$,		L					- 100+			- 100*	٠÷
		$V_{EB} = -2.5 \text{ v},$	I _C = 0		<u></u>	- 100+							μα
IEBO	Emitter Cutoff Current	$V_{EB} = -2.0 v$,	$I_C = 0$			L			- 100+				μο
		$V_{EB} = -1.25 \text{ v},$	I _C = 0			1	ł					- 100+	μο
		$V_{CE} = -0.3 \text{ v},$	I _C = - 10 ma	20+			20+			20*			<u> </u>
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = -1 v,		20+			20+			20+			<u> </u>
	Transfer Katio	$V_{CE} = -1 v$,	I _C = - 100 ma	20+			20+			20+			1_
		$I_8 = -1 \text{ mo},$	I _C = - 10 ma	— 0.30+	- 0.40	- 0.50+	- 0.30*	- 0.40	- 0.50+	- 0.30+	- 0.40	- 0.50 •	-
V _{BE}	Base-Emitter Voltage	$l_B = -5 \text{ ma},$		- 0.40+	- 0.51	- 0.75*	- 0.40*	- 0.51	- 0.75+	- 0.40+	- 0.51	- 0.75•	
-		$I_B = -10 \text{ ma},$	$I_C = -100 \text{ ma}$	- 0.40+	- 0.60	- 1.00+	- 0.40+	- 0.60	- 1.00+	- 0.40*	- 0.60	- 1.25	
		$I_B = -1 \text{ ma},$	$I_C = -10 \text{ mg}$		- 0.12	- 0.20+		- 0.12	- 0.20*		- 0.12	0.20+	<u>' </u>
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -5 \text{ ma},$	I _C = - 50 ma		- 0.17	- 0.40+		- 0.17	- 0.40+		- 0.17	- 0.40	-
CEISAI)	•	$I_B = -10 \text{ ma},$			- 0.27	- 0.70+		- 0.27	- 0.70*		- 0.27	- 0.70	·
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CB} = -1 \text{ v},$ $f = 100 \text{ mc}$	I _E == 20 ma (See Note 5)	3.0*	5.0		3.0+	5.0		3.0+	5.0		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -10 \text{ v},$ $f = 1 \text{ mc}$	I _E = 0		3.0	4.0*		3.0	4.0*		3.0	4.0	1
Cib	Common-Base Open-Circuit	$V_{EB} = -1 v$, f = 100 kc	I _C = 0		2.0	3.5*		2.0	3.5*		2.0	3.5	· P

electrical characteristics at 25°C free-air temperature

					N964			2N965		:	2N966		זואט
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNI
BVCBO	Collector-Base Breakdown Voltage	$I_{\rm C} = -100 \mu a$,	$I_E = 0$	— 15 *			12•			- 12*			_ <u>'</u>
BVEBO	Emitter-Base Breakdown Voltage	$I_E = -100 \ \mu a$,	1 _C = 0	- 2.5*			- 2.0 *			1.25+			٧
ACEX(r)	Collector-Emitter Latching Voltage	V _{CC} = -11.5 v, (See Figure 1, Page		11.5			- 11.5			- 11.5			Ľ
I _{CBO}	Collector Cutoff Current	$V_{CB} = -6 v$	I _E = 0			- 3.0*			- 3.0*			- 3.0*	μα
	Collector Cutoff Current	$V_{CE} = -15 \text{ v},$	$V_{BE}=0$			100+							μα
CES	Conscior Culon Consti	V _{CE} = - 12 v _s							100+			- 100+	1 1
		$V_{EB} = -2.5 \text{ v},$	$I_{C} = 0$			- 100+						L	μο
IEBO	Emitter Cutoff Current	$V_{EB} = -2.0 \text{ v},$	I _C = 0						- 100+				μα
	ĺ	$V_{EB} = -1.25 \text{ v},$	$I_C = 0$									- 100•	μο
		$V_{CE} = -0.3 v$	$I_{\rm C} = -10$ ma	40+			40*			40+			↓
h _{FE}	Static Forward Current	$V_{CE} = -1 v$	I _C == - 50 ma	40*			40*		L	40*			
	Transfer Ratio	V _{CE} = -1 v,	$I_C = -100 \text{ ma}$	40+			40*			40*			<u> </u>
		$I_B = -1 \text{ mo, }$	$I_C = -10 \text{ ma}$	- 0.30*	- 0.40	0.50+	- 0.30*	- 0.40	- 0.50*	0.30+	0.40		
V _{RF}	Base-Emitter Voltage	$I_B = -5 \text{ ma},$	I _C = - 50 ma	- 0.40*	- 0.51	- 0.75*	- 0.40*	- 0.51	 0.75+	- 0.40+	- 0.51	- 0.75	· v
		I _B = - 10 ma,	$I_C = -100 \text{ ma}$	- 0.40*	- 0.60	1.00+	- 0.40*	- 0.60	1.00+	- 0.40+	- 0.60		
		$I_B = -1 ma$,	$I_C = -10 \text{ ma}$		- 0.11	- 0.18		- 0.11	- 0.18+	L	- 0.11	- 0.18	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -5 \text{ ma},$	I _C = - 50 ma		- 0.16	- 0.35+		- 0.16	- 0.35+		- 0,16		
ortigui	· ·	$t_B = -10 \text{ ma},$	$I_C = -100 \text{ ma}$		- 0.26	- 0.60*		- 0.26	- 0.60•	L	- 0.26	- 0.60	· V
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CB} = -1 \text{ v},$ $f = 100 \text{ mc}$	I _E == 20 ma (See Note 5)	3.0*	5.0		3.0*	5.0		3.0*	5.0		
(_{ob}	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -10 \text{ v},$ $f = 1 \text{ mc}$	$I_E = 0$		3.0	4.0*		3.0	4.0*		3.0	4.0	Ľ
C _{ib}	Common-Base Open-Circuit Input Capacitance	V _{EB} == -1 v, f == 100 kc	$I_C = 0$		2.0	3.5		2.0	3.5		2.0	3.5	pf

NOTE 5: This is equivalent to $f_{T}=300$ mc minimum. To obtain f_{T} , the $|h_{fe}|$ response with frequency is extrapolated at the rate of -6 db/octave from f=100 mc to the frequency at which $|h_{fe}|=1$.

^{*} Indicates JEDEC registered data.

TYPES 2N960, 2N961, 2N962, 2N964, 2N965, 2N966 P-N-P EPITAXIAL DIFFUSED-BASE MESA GERMANIUM TRANSISTORS

switching characteristics at 25°C free-air temperature

	PARAMETER	TE	ST CONDITIONS	t	2N 2N 2N 2N	964	2N9 2N9	966	UNIT
					TYP	MAX	TYP	MAX	
		I _C = - 10 ma,	$I_{B(1)} = -1 \text{ ma}$	See Figure 3	22	30	22	30	nsec
١.	Turn-On Time	$V_{BE(off)} = + 1.25 v,$	$R_L = 300 \Omega$	See Figure 4		50+		50+	nsec
ton	turn-un time	I _C = - 100 ma,	$I_{8(1)} = -5 \text{ ma}$	See Figure 5	15	30	15	30	nsec
		$V_{BE(off)} = + 1.25 v,$	$R_L = 50 \Omega$	See Figure 6		50+		50+	nsec
		I _C = - 10 ma,	$I_{B(i)} = -1 \text{ ma}$	See Figure 3	48	60	55	75	nsec
		$I_{B(2)} = + 0.25 \text{ma},$	$R_L = 300 \Omega$	See Figure 4		85.		100.	nsec
†off	Turn-Off Time	$I_{\rm C} = -100 {\rm mg}$	$I_{B(1)} = -5 \text{ ma}$	See Figure 5	40	. 60	42	75	nsec
		$I_{B(2)} = + 1.25 ma$	$R_L = 50 \Omega$	See Figure 6		85.		190.	nsec
_	Total Control Channe	$I_C = -10 \text{ ma},$	I _{B(1)} = -1 ma	See Figure 7		80.		90.	pcb
QT	Total Control Charge	I _C = - 100 ma,	$I_{B(1)} = -5 \text{ ma}$	See Figure 8		125+		150.	pcb

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 — COLLECTOR-EMITTER LATCHING VOLTAGE TEST CIRCUIT

FIGURE 2 — VOLTAGE WAVEFORM DETAILS FOR 10 ma $_{\rm AND}$ 100 ma (I $_{\rm C}$) SWITCHING CIRCUITS

FIGURE 3 - 10 ma (I_C) SWITCHING CIRCUIT

 \star FIGURE 4 — 10 ma (I $_{\rm C}$) SWITCHING CIRCUIT

- NOTES: a. The input waveforms in Figures 3 and 5 have the following characteristics: $t_r \le 1$ nsec, $t_f \le 1$ nsec, PW ≥ 200 nsec.
 - b. Waveforms in Figures 3 and 5 are monitored on an oscilloscope with the following characteristics: $\mathbf{1_r} \leq 1$ nsec, $\mathbf{R_{in}} \geq 100$ K Ω . $\mathbf{C_{in}} \leq 3$ pl. The input impedance of the oscilloscope is included in the values shown for $\mathbf{R_L}$, Total Collector Load Resistance, and $\mathbf{C_T}$, Total Collector Shunt Coppositiance,
- c. The input waveforms in Figures 4 and 6 are supplied by a generator with the following characteristics: $t_r \le 2$ nsec, $t_f \le 2$ nsec, $t_{cut} = 50~\Omega$
- d. Waveforms in Figures 4 and 6 are monitored on an oscilloscope with the following characteristics: $t_r \leq 10$ nsec, $R_{in} \geq 1$ meg Ω , $C_{in} \leq 20$ pf.
- e. All resistors ± 1% tolerance.

+Indicates JEDEC registered data.

TYPES 2N960, 2N961, 2N962, 2N964, 2N965, 2N966 P-N-P EPITAXIAL DIFFUSED-BASE MESA GERMANIUM TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 5 - 100 ma (I_C) SWITCHING CIRCUIT

* FIGURE 6 - 100 ma (I_C) SWITCHING CIRCUIT

C = 16 pf for 2N960, 2N961, 2N964, 2N965 C = 18 pf for 2N962, 2N966

 FIGURE 7 — 10 ma (I_C) TOTAL CONTROL CHARGE TEST CIRCUIT

C = 25 pf for 2N960, 2N961, 2N964, 2N965 C = 30 pf for 2N962, 2N966

*FIGURE 8 — 100 ma (I_C) TOTAL CONTROL CHARGE TEST CIRCUIT

The output waveform is viewed on an oscilloscope with the following characteristics: $t_r \leq 3.5 \text{ nsec}, \ R_{in} \geq 100 \text{K}\Omega, \ C_{in} \leq 10 \text{ pf}$

FIGURE 9 — OUTPUT VOLTAGE WAVEFORM DETAILS FOR TOTAL CONTROL CHARGE CIRCUITS

•Indicates JEDEC registered data.

P-N-P EPITAXIAL DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

FOR HIGH-VOLTAGE, HIGH-SPEED SWITCHING APPLICATIONS

- EPITAXIAL PROCESS
- RUGGED MESA CONSTRUCTION
- BV_{CBO} GUARANTEED 30 v
- HIGH SPEED GUARANTEED t_T OF 300 nsec

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE.

All JEDEC TO-18 dimensions and notes are applicable.

ALL DIMENSIONS ARE IN INCHES UNLESS OTHERWISE SPECIFIED.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

* Collector-Base Voltage .																				•			30 v
* Collector-Emitter Voltage	(See	N	ote	1)																			15 v
* Emitter-Base Voltage .																						. 2	2.5 v
* Collector Current																						100) ma
* Total Device Dissipation of	t (or	belo	w)	25°	C	Free	e-A	ir	Tem	pe	rat	ure	(Se	e l	Not	e 2	?)					150) mw
Total Device Dissipation of	ıt (or	belo	w)	25°	'n	Cas	e 1	Гen	npe	rati	ure	(S	ee l	No	te 3	3).						300) mw
* Storage Temperature Rar	nge .								•									_	65	°C	to	+10	ю°С

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	*MIN	*MAX	UNIT
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -100 \mu a, \ I_{E} = 0$	- 30		٧
BVCEO	Collector-Emitter Breakdown Voltage	$I_C = -2 \text{ ma}, I_B = 0$	- 15		٧
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = -100 \mu a, I_C = 0$	- 2.5		٧
ГСВО	Collector Cutoff Current	$V_{CB} = -25 \text{v}, I_E = 0$		-5	μα
		$V_{CB} = -25 \text{ v}, I_E = 0, \qquad T_A = +55 ^{\circ} C$		- 20	μα
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -1 \text{ v}, I_C = 0$		- 20	μα
		$V_{CE} = -0.5 \text{ v}, I_{C} = -10 \text{ ma}$	30		
		$V_{CE} = -1 \text{ v}, I_C = -50 \text{ ma}$	45	300	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -1 \text{ v}, I_{C} = -50 \text{ ma}, T_{A} = -55 \text{°C}$	25		
		$V_{CE} = -1 \text{ v}, I_{C} = -100 \text{ ma}$	30		
V _{BE}	Base-Emitter Voltage	$I_B = -0.5 \text{ma}, I_C = -10 \text{ma}$		0.45	٧
		$I_B = -2.5 \text{ ma}, I_C = -50 \text{ ma}$	T	0.70	Ý
		$I_8 = -2.5 \text{ ma}, I_C = -50 \text{ ma}, T_A = -55 ^{\circ}\text{C}$	I	- 0.85	٧
		$I_B = -10 \text{ma}, I_C = -100 \text{ma}$		- 0.90	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_8 = -0.5 \text{ma}, I_C = -10 \text{ma}$		- 0.20	٧
		$I_8 = -2.5 \text{ma}, I_C = -50 \text{ma}$		- 0.40	v
		$I_B = -2.5 \text{ ma}, I_C = -50 \text{ ma}, T_A = +55^{\circ}C$		- 0.45	٧
		$I_{B} = -10 \text{ ma}, I_{C} = -100 \text{ ma}$		- 0.75	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -2 v$, $I_{C} = -30 \text{ ma}$, $f = 100 \text{ mc}$	1.5		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -5 \text{ v}, I_E = 0, \qquad f = 1 \text{ mc}$		5.0	pf
C _{ib}	Common-Base Open-Circuit Input Capacitance	$V_{EB} = -1 v$, $I_C = 0$, $f = 1 mc$		4.0	pf

^{*}Indicates JEDEC registered data.

P-N-P EPITAXIAL DIFFUSED-BASE MESA GERMANIUM TRANSISTOR

switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS †	MIN	TYP	*MAX	UNIT
t _d	Delay Time	$I_{C} = -11 \text{ ma}, \qquad I_{B(1)} = -1 \text{ ma}$			20	nsec
tr	Rise Time	$I_{B(2)} = + 0.25 \text{mg}$			30	nsec
t,	Storage Time	$V_{BE(off)} = 1.25 \text{v}, R_L = 300 \Omega$			185	nsec
tr	Fall Time	(See Figure 1)			65	nsec
ton	Turn-on Time	$I_{C} = -40 \text{ ma}, \qquad I_{B(1)} = -2.5 \text{ ma}$ $V_{BE(off)} = 1.8 \text{v} \qquad \text{(See Figure 2)}$		25		nsec
t _{off}	Turn-off Time	$I_C = -14 \text{ ma}, \qquad I_{B(1)} = -2.5 \text{ ma}$ $I_{B(2)} = 1.5 \text{ ma} \qquad \text{(See Figure 3)}$		80		nsec

[†]Voltage and current values shown are nominal; exact values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION

* FIGURE 1 SWITCHING CIRCUIT

FIGURE 2 TDL NAND TURN-ON SWITCHING CIRCUIT SIMULATED FOR M = N = 3

FIGURE 3 TDL NAND TURN-OFF SWITCHING CIRCUIT SIMULATED FOR M = N = 3

FIGURE 4 VOLTAGE WAVEFORM DETAILS FOR SWITCHING MEASUREMENTS

NOTES: A. The input waveform of Figure 1 has following characteristics: t_r and $t_f \le 1$ nsec; PW $\ge 0.5\,\mu\text{soc}$; Duty cycle $\le 50\%$.

- B. Waveforms are monitored en equipment with following characteristics: $t_r \le 3.5$ nsec; $R_{in} \ge 100k \Omega$; $C_{in} \le 3pf$; C_T , total output shunt capacitance, includes C_{in} .
- C. Operating frequency is 60 cps.

^{*}Indicates JEDEC registered data.

FOR APPLICATIONS REQUIRING LOW NOISE FIGURE AND SUPERIOR SMALL-SIGNAL PERFORMANCE FROM VHF TO 1 GIGAHERTZ (Improved Versions of TIXM101) 2N5043 Features

- Guaranteed Noise Figure ... 2.5 dB Max at 400 MHz
- Guaranteed f_T...1.5 GHz Min
- Guaranteed 50-Ohm Insertion Power Gain |S₂₁₀|²
 ...8.5 dB Min at 400 MHz
- Operation over the Entire Military Temperature
 Range...—65°C to 125°C

*mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage																				–15 V
Collector-Emitter Voltage (See Note	1)																			–7 V
Emitter-Base Voltage																				-0.3 V
Continuous Collector Current																				-30 mA
Continuous Device Dissipation at (or	bel	ow)	10	00°C	C F	ree	-Ai	r T	em	per	atu	re	(See	Ν	ote	2)				30 mW
Storage Temperature Range										٠.			٠.				-65	°C	to	125°C
Lead Temperature 1/4 Inch from Case	for	10	Se	ecor	nds															230°C

NOTES: 1. This value applies between 0 and 3 mA collector current when the emitter-base diode is open-circuited.

2. Derate linearly to 125°C free-air temperature at the rate of 1.2 mW/deg.

*Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	2N	5043	2N:	5044	HAUT
	TARAMETER	1EST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C=-100~\mu$ A, $I_E=0$	-15		-15		٧
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -3 \text{ mA}, I_B = 0$	-7		-7		٧
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -100 \ \mu A, \ I_C = 0$	-0.3		-0.3		٧
I _{CBO}	Collector Cutoff Current	$V_{CB} = -10 \text{ V}, I_E = 0$		-6		-6	μΑ
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -5 \text{ V}, I_{C} = -3 \text{ mA}$	15	150	15	150	
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -5 V$, $I_C = -3 \text{ mA}$, $f = 400 \text{ MHz}$	3.75	7.5	2.5	6.25	
\$ ₂₁₀ 2	Unneutralized Small-Signal Common-Emitter Insertion Power Gain	$V_{CE}=-5$ V, $I_{C}=-3$ mA, $Z_{G}=Z_{L}=50~\Omega+j0$, $f=400$ MHz	8.5	12.5	6.5	10.5	dB
С _{сь}	Collector-Base Capacitance	$V_{CB} = -5 V$, $I_E = 0$, $f = 1 MHz$, See Note 3	0.2	1	0.2	1	pF

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N5	043	2N5	044	UNIT
		1EST CONDITIONS	MIN	MAX	MIN	MAX	UNII
NF	Common-Emitter Spot Noise Figure	$V_{CB}=-5$ V, $I_E=3$ mA, $R_G=50$ $\Omega, f=400$ MHz, See Note 4	1	2.5	1	3.5	dB

NOTES: 3. C_{cb} is measured using three-terminal measurement techniques with the case and emitter guarded.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-BLOCK DIAGRAM OF A TYPICAL S-PARAMETER MEASUREMENT SYSTEM

^{4.} This noise figure measurement is made using a temperature-limited noise dlode (Hewlett-Packard VHF Noise Source, Type 343A, or equivalent) operated according to the manufacturer's specification.

^{*}Indicates JEDEC registered data

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-EMITTER S PARAMETERS

 $V_{CE} = -5 \text{ V}, I_C = -3 \text{ mA}, Z_G = Z_L = 50 \text{ ohms} + j0, T_A = 25^{\circ}C$

TYPES 2N5043, 2N5044

P-N-P EPITAXIAL PLANAR GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 6

 G_{max} is the gain equal to the sum of G_0 , $G_{1[max]}$, and $G_{2[max]}$. G_{max} is achieved when the input and output of the transistor are terminated in the complex conjugates of S_{11e} and S_{22e} respectively. G_{max} is calculated using the expression:

$$G_{\text{max}} = 10 \log \frac{|S_{210}|^2}{(1 - |S_{110}|^2)(1 - |S_{220}|^2)}$$

 G_0 is the forward power gain with the input and output terminated in 50 ohms. G_0 is calculated using the expression:

$$G_0 = 10 \log |S_{210}|^2$$

G_{1(max)} is the additional power gain resulting from conjugately matching the generator to S_{11e}. G_{1(max)} is calculated using the expression:

$$G_{1(max)} = 10 \log \frac{1}{1 - |S_{110}|^2}$$

G2[max] is the additional power gain resulting from conjugately matching the load to S220. G2[max] is calculated using the expression:

These expressions assume that the value of $|S_{12e}|$ is so small that its effect is negligible.

In general, gain is the sum of G₀, G₁, and G₂ and can be calculated from the data given in figures 6 through 14 when generator and load impedances are known.

TYPICAL CHARACTERISTICS

CIRCLES OF CONSTANT G $_1$ V $_{\text{CE}}=-5$ V, I $_{\text{C}}=-3$ mA, T $_{\text{A}}=25^{\circ}\text{C}$ Generator Impedances in Ohms

TYPICAL CHARACTERISTICS

CIRCLES OF CONSTANT G_2 $V_{CE}=-5$ V, $I_C=-3$ mA, $T_A=25$ °C Load Impedances in Ohms

TYPES 2N5043, 2N5044 P-N-P EPITAXIAL PLANAR GERMANIUM TRANSISTORS

TYPICAL CHARACTERISTICS

CONTOURS OF CONSTANT SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO, $\mid h_{fe} \mid$

COMMON-EMITTER SPOT NOISE FIGURE DEVIATION

FIGURE 17

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ALARAMA

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791 Birmingham, Alabama 35233

ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA

KIERULFF ELECTRONICS, INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix, Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015

R. V. WEATHERFORD COMPANY 1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. Indianapolis, Indiana 46219 RADIO DISTRIBUTING COMPANY 814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC. 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS **DEMAMBRO ELECTRONICS** 1095 Commonwealth Ave.

(617) 787-1200 Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800

Burlington, Massachusetts 02021 **MICHIGAN**

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI

TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109

ELECTRONIC COMPONENTS FOR INDUSTRY

2605 South Hanley Rd./(314) MI 7-5505 St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102 TI SUPPLY COMPANY

301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC. 2524 Baylor Dr. S.E./(505) 247-1055 Albuquerque, New Mexico 87108

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo, New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013

ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800 Rochester, New York 14614

TI SUPPLY COMPANY 4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA

ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

UHIU

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102

NEWARK-HERRLINGER ELECTRONICS CORP.

112 E. Liberty St./(513) GA 1-5282 Cincinnati, Ohio 45210 W. M. PATTISON SUPPLY CO.

4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC. 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107 RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park

Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235 5240 Elm Street/(713) MO 6-2175 Houston, Texas 77036

HARRISON EQUIPMENT COMPANY, INC. 1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

IITAH

STANDARD SUPPLY COMPANY 225 E. Sixth South St./(801) EL 5-2971 Salt Lake City, Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS. INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario TI SUPPLY COMPANY

Dorval, Quebec WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR MELBOURNE, Australia

RADIO PARTS PTY, LTD. PERTH, Australia PRECISION ELECTRONICS BRISBANE, Australia DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS BRUSSELS IV, Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V. Denmark TEXAS INSTRUMENTS A/S

> **HELSINKI**, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM, Sweden AB GOSTA BACKSTROM

ZURICH 32, Switzerland

FABRIMEX AG ZURICH PARIS, FRANCE

TI SUPPLY CO. MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP30, TIP30A

- 30 Watts at 25°C Case Temperature
- 1 A Rated Collector Current
- Min f_T of 3 MHz at 10 V, 200 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

		TIP29 TIP29A
Collector-Base Voltage	 	40 V 60 V
Collector-Emitter Voltage (See Note 1)	 	40 V 60 V
Emitter-Base Voltage		
Continuous Collector Current		
Continuous Base Current		
Safe Operating Region at (or below) 25°C Case Temperate		
Continuous Device Dissipation at (or below) 25°C Case Ten		
Continuous Device Dissipation at (or below) 25°C Free-Air		
Operating Collector Junction Temperature Range		
Storage Temperature Range		
Lead Temperature $\%$ Inch from Case for 10 Seconds		

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

8

- 2. Derate linearly to 150°C case temperature at the rate of 0.24 W/deg.
- 3. Derate linearly to 150°C free-air temperature at the rate of 16 mW/deg.

electrical characteristics at 25°C case temperature

					TII	29	TIP	29A	
	PARAMETER	TEST C	CONDIT	IONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ mA}, I_B =$	= 0,	See Note 4	40		60		٧
ICEO	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, I_B =$	= 0			0.3		0.3	mA
	Calleston Cotall Comment	$V_{CE} = 40 \text{ V}, V_{BE}$	= 0			0.2			mA
ICES	Collector Cutoff Current	$V_{CE} = 60 \text{ V}, V_{BE}$	= 0					0.2	IIIA
IEBO	Emitter Cutoff Current	$V_{EB} = 5 V$, I_{C}	= 0			1		1	mA
	Static Forward Current	V _{CE} = 4 V, I _C	= 0.2 A,	See Notes 4 and 5	40	200	40	200	
h _{FE}	Transfer Ratio	V _{CE} = 4 V, I _C	= 1 A,	See Notes 4 and 5	10		10		
V _{BE}	Base-Emitter Voltage	V _{CE} = 4 V, I _C	= 1 A,	See Notes 4 and 5		1.3		1.3	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 125 \text{ mA}, I_C$	= 1 A,	See Notes 4 and 5		0.7		0.7	٧
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C	= 0.2 A,	f = 1 kHz	20		20		
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C	= 0.2 A,	f = 1 MHz	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \leq 300~\mu s$, duty cycle $\leq 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

thermal characteristics

	PARAMETER	MAX	UNIT
θ₃-с	Junction-to-Case Thermal Resistance	4.17	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	62.5	ucy/ II

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†	TYP	UNIT
ton	Turn-On Time	$I_C = 200 \text{ mA}, I_{B(1)} = 20 \text{ mA}, I_{B(2)} = -20 \text{ mA},$	0.35	μS
toff	Turn-Off Time	$V_{BE(off)} = -3.4 \text{ V}, \ R_L = 150 \ \Omega,$ See Figure 1	1.10	μι

[†]Voltage and current values shown are nominal, exact values vary slightly with transistor parameters.

^{5.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

FIGURE 2

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

FIGURE 3

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \ \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP29, TIP29A

- 30 Watts at 25°C Case Temperature
- 1 A Rated Collector Current
- Min f, of 3 MHz at 10 V, 200 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

																		TIP30	TIP30A
Collector-Base Voltage																		-40 V	-60 V
Collector-Emitter Voltage (See Note	e 1)																	-40 V	–60 V
Emitter-Base Voltage																		← — −5	$V \longrightarrow$
Continuous Collector Current																		← −1	$A \longrightarrow$
Continuous Base Current																		← — - 0.	4 A →
Safe Operating Region at (or below) 25	°C	Cas	se T	em	pei	ratı	ıre										See Fig	gure 2
Continuous Device Dissipation at (or	r bel	ow)	25	°C	Ca	ıse	Tei	npe	era	ture	e (S	ee	No	te	2)			← 30	$W \longrightarrow$
Continuous Device Dissipation at (or	r bel	ow)	25	°C	Fre	e-,	Air	Tei	np	era	ture	e (S	iee	No	ote	3)		← 2	$w \to$
Operating Collector Junction Temper	eratı	ıre	Rar	nge	•	•	•	•	•	•	•	٠	•	•	•	•	•	-65°C t	o 150°C
Operating Collector Junction Temperature Range																			
																	•	-65°C t	150°C

- NOTES: 1. These values apply when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.24 W/deg.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 16 mW/deg.

electrical characteristics at 25°C case temperature

			TI	P30	TIP	30A	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEC}	Collector-Emitter Breakdown Voltage	$I_C = -30 \text{ mA}, I_B = 0,$ See Note 4	-40		60		٧
ICEO	Collector Cutoff Current	$V_{CE} = -30 \text{ V}, I_B = 0$		-0.3		-0.3	mA
	Collector Cutoff Current	$V_{CE} = -40 \text{ V}, \ V_{BE} = 0$		-0.2			mA
CES	Conector Colon Colleni	$V_{CE} = -60 \text{ V}, V_{BE} = 0$				-0.2	33174
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -5 \text{ V}, I_C = 0$		-1		-1	mA
	Static Forward Current	$V_{CE} = -4 \text{ V}, I_{C} = -0.2 \text{ A, See Notes 4 and}$	5 40	200	40	200	
h _{FE}	Transfer Ratio	$V_{CE} = -4 V$, $I_{C} = -1 A$, See Notes 4 and	5 10		10		
VBE	Base-Emitter Voltage	$V_{CE} = -4 V$, $I_{C} = -1 A$, See Notes 4 and	5	-1.3		-1.3	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -125$ mA, $I_C = -1$ A, See Notes 4 and	5	-0.7		-0.7	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, \ I_{C} = -0.2 \text{ A}, \ f = 1 \text{ kHz}$	20		20		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, I_{C} = -0.2 \text{ A}, f = 1 \text{ MHz}$	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. 1 $_{
m p} \le$ 300 μ s, duty cycle \le 2%.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

thermal characteristics

PARAMETER	MAX	UNIT
$ heta_{ extsf{J-C}}$ Junction-to-Case Thermal Resistance	4.17	dea/W
$ heta_{ exttt{J-A}}$ Junction-to-Free-Air Thermal Resistance	62.5	ucg/ II

switching characteristics at 25°C case temperature

	PARAMETER		TEST CONDIT	IONS†	TYP	UNIT
ton	Turn-On Time	$I_C = -200 \text{ mA},$	$I_{B(1)} = -20 \text{ mA},$	$I_{B(2)} = 20 \text{ mA},$	0.25	
t _{off}	Turn-Off Time	$V_{BE(off)} = 3.4 V,$	$R_L = 150 \Omega$,	See Figure 1	0.90	μs

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{5.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

FIGURE 1

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_{\rm f} \le$ 15 ns, $t_{\rm f} \le$ 15 ns, $t_{\rm out} =$ 50 Ω , $t_{\rm p} =$ 10 μ s, duty cycle \le 2%.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq$ 15 ns, $R_{in} \geq$ 10 M Ω , $C_{in} \leq$ 11.5 pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

FIGURE 2

TYPICAL CHARACTERISTICS

vs COLLECTOR CURRENT

COLLECTOR-EMITTER SATURATION VOLTAGE

vs COLLECTOR CURRENT

FIGURE 5

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \ \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP32, TIP32A

- 40 Watts at 25°C Case Temperature
- 3 A Rated Collector Current
- Min f_T of 3 MHz at 10 V, 500 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage																			. 40 V 60 V
Collector-Emitter Voltage	(See	Note	e 1)																. 40 V 60 V
Emitter-Base Voltage .																			$.\longleftarrow$ 5V \longrightarrow
Continuous Collector Curre	ent .																		\leftarrow 3 A \rightarrow
Continuous Base Current																			\leftarrow 1A \rightarrow
Safe Operating Region at	(or b	elow) 25	°C	Cas	se T	em	per	ratu	ıre									. See Figure 2
Continuous Device Dissipat	ion (at (oi	r bel	ow)	25	°C	Ca	ıse	Ter	npe	erat	ure	(S	ee	Νo	te	2)		\leftarrow 40 W \rightarrow
Continuous Device Dissipat	tion	at (o	r bel	low)	25	5°C	Fre	ee-	Air	Te	mp	era	ture	e (S	ee	N	ote	3)	\leftarrow 2 W \rightarrow
Operating Collector Juncti	on T	empe	eratu	re l	Ran	ge													65°C to 150°C
Storage Temperature Rang	ge .																		65°C to 150°C
Lead Temperature 1/2 Inch	from	Case	e for	10	Se	con	ds												.←—260°C—→

- NOTES: 1. These values apply when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.32 W/deg.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 16 mW/deg.

TIP31

TIP31A

electrical characteristics at 25°C case temperature

	PARAMETER	750	T CONDITIO	NIC .	TII	P31	TIP	31A	UNIT
	PARAMEIER	153	CONDITIO)N3	MIN	MAX	MIN	MAX	UNII
V(BR)CEO	Collector-Emitter Breakdown Voltage	$I_C = 50 \text{ mA},$	$I_B = 0$,	See Note 4	40		60		V
I _{CEO}	Collector Cutoff Current	$V_{CE} = 30 \text{ V},$	$I_B = 0$			0.5		0.5	mA
	Collector Cutoff Current	$V_{CE} = 40 \text{ V},$	$V_{BE} = 0$			0.3			1
ICES	Collector Cotoli Corrent	$V_{CE} = 60 \text{ V},$	$V_{BE} = 0$					0.3	mA
I _{EBO}	Emitter Cutoff Current	V _{€B} = 5 V,	I _C = 0			1		1	mA
L	Static Forward Current	V _{CE} = 4 V,	I _C = 1 A,	See Notes 4 and 5	20	100	20	100	
h _{FE}	Transfer Ratio	$V_{CE} = 4 V$	$I_{C} = 3 A$	See Notes 4 and 5	8		8		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 4 V$	I _C = 1 A,	See Notes 4 and 5		1.3		1.3	v
V BE	base-climiter voltage	$V_{CE} = 4 V$	$I_C = 3 A$	See Notes 4 and 5		1.8		1.8	, ,
V	Collector-Emitter Saturation Voltage	$I_B = 100 \text{mA},$	I _C = 1 A,	See Notes 4 and 5		0.6		0.6	v
V _{CE(sat)}	Collector-Elither Sulpranoli Vollage	$I_B = 375 \text{ mA},$	$I_C = 3 A$	See Notes 4 and 5		1.2		1.2	'
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 0.5 A,	f = 1 kHz	20		20		
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 0.5 A,	f = 1 MHz	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300~\mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

thermal characteristics

	PARAMETER	MAX	UNIT
θ.с	Junction-to-Case Thermal Resistance	3.125	J /W
$\theta_{ extsf{J-A}}$	Junction-to-Free-Air Thermal Resistance	62.5	deg/W

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITION	S†	TYP	UNIT
ton	Turn-On Time	$I_C = 1 \text{ A}, \qquad I_{B(1)} = 100 \text{ mA},$	$I_{B(2)} = -100 \text{mA},$	0.45	
toff	Turn-Off Time	$V_{BE(off)} = -3.7 \text{ V, R}_{L} = 20 \Omega$	See Figure 1	0.65	μs

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{5.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50 \ \Omega$, $t_p = 10 \ \mu s$, duty cycle $\le 2\%$
 - b. Waveforms are monitored an an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

16111

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

VS

COLLECTOR CURRENT

FIGURE 3

0.2

FIGURE 4

BASE-EMITTER VOLTAGE

COLLECTOR-EMITTER SATURATION VOLTAGE

vs

COLLECTOR CURRENT

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \leq 300~\mu s$, duty cycle $\leq 2\%$.

0.4

Ic - Collector Current - A

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

2

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

0.7 1

0.2

0.02 0.04 0.07 0.1

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP31, TIP31A

- 40 Watts at 25°C Case Temperature
- 3 A Rated Collector Current
- Min fr of 3 MHz at 10 V, 500 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage	–40 V –60 V
Collector-Emitter Voltage (See Note 1)	–40 V –60 V
Emitter-Base Voltage	$.\ \ .\longleftarrow -5V\longrightarrow$
Continuous Collector Current	$. .\longleftarrow -3\;A\longrightarrow$
Continuous Base Current	$. .\longleftarrow -1\;A\longrightarrow$
Safe Operating Region at (or below) 25°C Case Temperature	See Figure 2
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)	\leftarrow 40 W \rightarrow
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note	3) \leftarrow 2 W \rightarrow
Operating Collector Junction Temperature Range	65°C to 150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature 1/8 Inch from Case for 10 Seconds	J - 2400C

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. Derate linearly to 150°C case temperature at the rate of 0.32 W/deg.
- 3. Derate linearly to 150°C free-air temperature at the rate of 16 mW/deg.

TIDOO

TIDOOA

electrical characteristics at 25°C case temperature

	D. D. A. A. A. E. D. D. D. D. D. D. D. D. D. D. D. D. D.	TECT COMPLETIONS	TIE	32	TIP	32A	UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNII
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -50 \text{ mA}, I_B = 0,$ See Note 4	-40		60		٧
ICEO	Collector Cutoff Current	$V_{CE} = -30 \text{ V}, I_B = 0$		-0.5		-0.5	mA
	Collector Cutoff Current	$V_{CE} = -40 \text{ V}, V_{BE} = 0$		-0.3			mA
ICES	Collector Cutoff Current	$V_{CE} = -60 \text{ V}, V_{BE} = 0$				-0.3	IIIA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -5 V$, $I_C = 0$		-1		<u>–1</u>	mA
	Static Forward Current	$V_{CE} = -4 V$, $I_C = -1 A$, See Notes 4 and 5	20	100	20	100	
h _{FE}	Transfer Ratio	$V_{CE} = -4 V$, $I_{C} = -3 A$, See Notes 4 and 5	8		8		
,,	Dan Fridden Volkere	$V_{CE} = -4 V$, $I_C = -1 A$, See Notes 4 and 5		-1.3		-1.3	v
V _{BE}	Base-Emitter Voltage	$V_{CE} = -4 V$, $I_C = -3 A$, See Notes 4 and 5		-1.8		-1.8	
v	Callacter Emitter Cuturation Voltage	$I_B = -100$ mA, $I_C = -1$ A, See Notes 4 and 5		-0.6		-0.6	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B=-375$ mA, $I_C=-3$ A, See Notes 4 and 5		-1.2		-1.2	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, \ I_{C} = -0.5 \text{ A}, f = 1 \text{ kHz}$	20		20		
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, \ I_{C} = -0.5 \text{ A, f} = 1 \text{ MHz}$	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. $t_{
m p} \leq$ 300 μ s, duty cycle \leq 2%.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	3.125	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	62.5	deg/ W

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	TYP	UNIT
t _{on} Turn-On Time	$I_C = -1 \text{ A}, \qquad I_{B(1)} = -100 \text{ mA}, I_{B(2)} = 100 \text{ mA},$	0.17	•
t _{off} Turn-Off Time	$V_{BE(off)}=3.7 \text{ V}, \ R_L=20 \ \Omega,$ See Figure 1	0.5	μς

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$. b. Waveforms are manitored on an oscilloscope with the following characteristics: $t_r \le 15$ ns, $R_{in} \ge 10$ M Ω , $C_{in} \le 11.5$ pF.

- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

FIGURE 2

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

FIGURE 3

COLLECTOR-EMITTER SATURATION VOLTAGE

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \ \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP34, TIP34A

- 80 Watts at 25°C Case Temperature
- 10 A Rated Collector Current
- Min fr of 3 MHz at 10 V, 500 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

											TIP33	TIP33A
Collector-Base Voltage											40 V	60 V
Collector-Emitter Voltage (See Note	1)										40 V	60 V
Emitter-Base Voltage											← 5	$V \longrightarrow$
Continuous Collector Current												
Continuous Base Current												
Safe Operating Region at (or below)												
Continuous Device Dissipation at (or												
Continuous Device Dissipation at (or												
Operating Collector Junction Temper												
Storage Temperature Range												
Lead Temperature 1/8 Inch from Case	for	10	Sec	ond	s.						← 26	0°C—→

- NOTES: 1. These values apply when the base-emitter diade is open-circuited.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/deg.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 28 mW/deg.

electrical characteristics at 25°C case temperature

			TIF	233	TIP	33A	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 200 \text{ mA}, I_B = 0$, See Note 4	40		60		٧
I _{CEO}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, I_B = 0$		0.7		0.7	mA
•	S. H. at a Catalli Community	$V_{CE} = 40 \text{ V}, \ V_{BE} = 0$		0.4			mA
CES	Collector Cutoff Current	$V_{CE} = 60 \text{ V}, V_{BE} = 0$				0.4	ши
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 V$, $I_{C} = 0$		1		1_	mA
		$V_{CE} = 4 \text{ V}, I_{C} = 1 \text{ A}, \text{See Notes 4 and 5}$	25	125	25	125	
hee	Static Forward Current	$V_{CE} = 4 \text{ V}, I_{C} = 3 \text{ A}, \text{See Notes 4 and 5}$	12		12		
···re	Transfer Ratio	$V_{CE} = 4 \text{ V}, I_{C} = 10 \text{ A}, \text{ See Notes 4 and 5}$	4		4		
,	D F issa . Valanna	$V_{CE} = 4 \text{ V}, I_{C} = 3 \text{ A}, \text{See Notes 4 and 5}$		1.6		1.6	v
V _{BE}	Base-Emitter Voltage	$V_{CE} = 4 \text{ V}, I_{C} = 10 \text{ A}, \text{ See Notes 4 and 5}$		3		3	_ '_
,,	C-II F Valance	$I_B = 300$ mA, $I_C = 3$ A, See Notes 4 and 5		1		1	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B=2.5$ A, $I_C=10$ A, See Notes 4 and 5		4		4	•
L	Small-Signal Common-Emitter	V _{CF} = 10 V, I _C = 0.5 A, f = 1 kHz	20		20		
h _{fe}	Forward Current Transfer Ratio	VCE - 10 V, 1C - 0.5 M, 1 - 1 KHZ	20		20		
h _{fe}	Small-Signal Common-Emitter	$V_{CF} = 10 \text{ V}, I_{C} = 0.5 \text{ A}, f = 1 \text{ MHz}$	3		3		
	Forward Current Transfer Ratio	100 1017 10 31017 1	L				L

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \leq 300~\mu s$, duty cycle $\leq 2\%$. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	1.56	dea/W
	Junction-to-Free-Air Thermal Resistance	35.7	ucy/ W

switching characteristics at 25°C case temperature

	PARAMETER		EST CONDITIO	NS†	TYP	UNIT
t _{on} Tu	rn-On Time	I _C = 1 A,	$I_{B(1)} = 100 \text{ mA},$	$I_{B(2)} = -100 \text{ mA},$	0.45	Lus
	rn-Off Time	$V_{BE(off)} = -3.7 V$, $R_L=20\Omega$,	See Figure 1	0.35	سر

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

V_{CE} — Collector-Emitter Voltage — V FIGURE 2

B

TYPICAL CHARACTERISTICS

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \, \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP33, TIP33A

- 80 Watts at 25°C Case Temperature
- 10 A Rated Collector Current
- Min f_T of 3 MHz at 10 V, 500 mA

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

																	TIP34	TIP34A
Collector-Base Voltage																	–40 V	-60 V
Collector-Emitter Voltage (See Note	1)																-40 V	-60 V
Emitter-Base Voltage																	← -	$v \rightarrow$
Continuous Collector Current																	← -1	0 A
Continuous Base Current																	← -3	8 A →
Safe Operating Region at (or below	25	°C	Ca	se '	Ten	npe	rat	ure									See Fi	gure 2
Continuous Device Dissipation at (or	bel	ow)	25	°C	Сс	ıse	Те	mp	era	ture	e (S	iee	No	te	2)		← 80	$w \longrightarrow$
Continuous Device Dissipation at (or	bel	ow)	25	°C	Fre	e-,	Air	Ter	np	era	ture	e (S	ee	N	ote	3)	← 3.5	5 W →
Operating Collector Junction Tempe	ratu	ıre	Rar	ıge													-65°C 1	o 150°C
Storage Temperature Range																	65°C t	o 150°C
Lead Temperature 1/8 Inch from Case	fo	- 10	۰ ۹		٠de												- 26	noc

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/deg.
- 3. Derate linearly to 150°C free-air temperature at the rate of 28 mW/deg.

electrical characteristics at 25°C case temperature

	DADAMETER	TECT COMPLETIONS	TII	P34	TIP	34A	HAUT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -200 \text{ mA}, I_B = 0,$ See Note 4	-40		60		٧
I _{CEO}	Collector Cutoff Current	$V_{CE} = -30 \text{ V}, I_{B} = 0$		-0.7		-0.7	mA
		$V_{CE} = -40 \text{ V}, V_{BE} = 0$		-0.4			mA
ICES	Collector Cutoff Current	$V_{CE} = -60 \text{ V}, V_{BE} = 0$		_		-0.4	MA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -5 V$, $I_C = 0$		-1		-1	mA
		$V_{CE} = -4 V$, $I_{C} = -1 A$, See Notes 4 and 5	25	125	25	125	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -4 \text{ V}, I_{C} = -3 \text{ A}, \text{See Notes 4 and 5}$	12		12		l
,	Hansiel Kallo	$V_{CE} = -4 \text{ V}$, $I_{C} = -10 \text{ A}$, See Notes 4 and 5	4		4		
	B. F. W. W. L.	$V_{CE} = -4 V$, $I_{C} = -3 A$, See Notes 4 and 5		-1.6		-1.6	v
VBE	Base-Emitter Voltage	$V_{CE} = -4 V$, $I_{C} = -10 A$, See Notes 4 and 5		-3		-3	١ '
		$I_B = -300$ mA, $I_C = -3$ A, See Notes 4 and 5		-1		-1	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -2.5 \text{ A}$, $I_C = -10 \text{ A}$, See Notes 4 and 5		-4		-4	'
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -10 \text{ V}, I_{C} = -0.5 \text{ A}, f = 1 \text{ kHz}$	20		20		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V, I _C = -0.5 A, f = 1 MHz	3		3		

NOTES: 4. These parameters must be measured using pulse techniques, $^1_{\mathbf{p}} \leq 300~\mu s$, duty cycle $\leq 2\%$. Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

thermal characteristics

	PARAMETER	MAX	UNIT
θс	Junction-to-Case Thermal Resistance	1.56	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	35.7	ueg/ W

switching characteristics at 25°C case temperature

P	ARAMETER	TEST CONDITIONS†	TYP	UNIT
ton	Turn-On Time	$I_C = -1 \text{ A}, \qquad I_{B(1)} = -100 \text{ mA}, \ I_{B(2)} = 100 \text{ mA},$	0.35	
t _{off}	Turn-Off Time	$V_{BE(off)}=3.7$ V, $R_L=20$ Ω , See Figure 1	0.80	μ s

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{5.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

FIGURE 2

TYPICAL CHARACTERISTICS

NOTES:
4. These parameters must be measured using pulse techniques, t_p ≤ 300 μs, duty cycle ≤ 2%.
Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP36, TIP36A

- 90 Watts at 25°C Case Temperature
- 25 A Rated Collector Current
- Min f_T of 3 MHz at 10 V, 1 A

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	TIP35 TIP35A
Collector-Base Voltage	40 V 60 V
Collector-Emitter Voltage (See Note 1)	40 V 60 V
Emitter-Base Voltage	\leftarrow 5 V \longrightarrow
Continuous Collector Current	\leftarrow 25 A \longrightarrow
Continuous Base Current	\leftarrow 5 A \rightarrow
Safe Operating Region at (or below) 25°C Case Temperature	See Figure 2
Safe Operating Region at (or below) 25°C Case Temperature	•
	\leftarrow 90 W \rightarrow
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2)	$\begin{array}{c} \longleftarrow 90 \text{ W} \longrightarrow \\ \longleftarrow 3.5 \text{ W} \longrightarrow \end{array}$
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 2) Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)	← 90 W → ← 3.5 W → −65°C to 150°C

- NOTES: 1. These values apply when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/deg.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 28 mW/deg.

electrical characteristics at 25°C case temperature

			CT CON	DITIONS	TI	P35	TIP	UNIT	
	PARAMETER	i E:	ST CONI	DITIONS	MIN	MAX	MIN	MAX	UNII
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 200 mA, I	в = 0,	See Note 4	40		60		V
I _{CEO}	Collector Cutoff Current	V _{CE} = 30 V, I	_B = 0			1		1	mA
		V _{CE} = 40 V, \	V _{BE} = 0			0.7			mA
ICES	Collector Cutoff Current	V _{CE} = 60 V, \	V _{BE} = 0					0.7	MA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5 V$, 1	c = 0			1		1	mA
		V _{CE} = 4 V,	$I_{C} = 5 A,$	See Notes 4 and :	20	100	20	100	
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = 4 V,	l _c = 15 A	, See Notes 4 and :	10		10		
		V _{CE} = 4 V,	I _C = 25 A	, See Notes 4 and	5 5		5		
		V _{CE} = 4 V,	I _C = 15 A	, See Notes 4 and	5	2		2	v
V _{BE}	Base-Emitter Voltage	V _{CE} = 4 V,	I _C = 25 A	, See Notes 4 and	5	4		4	١ ٧
		$I_B = 1.5 A$,	l _c = 15 #	, See Notes 4 and	5	1.8		1.8	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 5 A$,	I _C = 25 A	, See Notes 4 and	5	4		4	'
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 1 A,	, f = 1 kHz	25		25		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 1 A,	f = 1 MHz	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \leq 300~\mu s$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	1.39	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	35.7	ueg/ II

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†	TYP	UNIT
ton	Turn-On Time	$I_C = 5 \text{ A}, \qquad I_{B(1)} = 500 \text{ mA}, I_{B(2)} = -500 \text{ mA},$	0.6	
t _{off}	Turn-Off Time	$V_{BE(off)} = -5 \text{ V, } R_L = 5 \Omega,$ See Figure 1	0.8	μs

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

^{5.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 5$ μ s, duty cycle $\le 2\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \ \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH TIP35, TIP35A

- 90 Watts at 25°C Case Temperature
- 25 A Rated Collector Current
- Min f_T of 3 MHz at 10 V, 1 A

mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

														TIP3	6 TIP36A
Collector-Base Voltage														. –40	√ –60 V
Collector-Emitter Voltage (See Note 1)														. –40	√ –60 V
Emitter-Base Voltage														.—	-5 V -→
Continuous Collector Current															−25 A>
Continuous Base Current														. —	-5 A →
Safe Operating Region at (or below) 25°	C C	ase 1	em	per	atu	re								. See	Figure 2
Continuous Device Dissipation at (or belo	w) 2	5°C	Cas	ie T	em	per	atu	re	(Se	e١	Vote	2)		90 W →
Continuous Device Dissipation at (or belo	w) 2	5°C	Fre	e-A	ir 1	em	per	ratu	ıre	(Se	e l	Vot	e 3) ←	3.5 W →
Operating Collector Junction Temperatur	e Ra	nge												. –65°	C to 150°C
Storage Temperature Range														. –65°	C to 150°C
Lead Temperature 1/8 Inch from Case for	10 S	econ	ds											. —	260°C →

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/deg.
- 3. Derate linearly to 150°C free-air temperature at the rate of 28 mW/deg.

electrical characteristics at 25°C case temperature

					TII	236	TIP	UNIT	
	PARAMETER	TE	ST CONDI	TIONS	MIN	MAX	MIN	MAX	UNII
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -200 \text{mA}$	$I_{B}=0$,	See Note 4	-40		-60		٧
Iceo	Collector Cutoff Current	$V_{CE} = -30 \text{ V},$				-1		-1	mA
		$V_{CE} = -40 \text{ V},$	V _{BE} = 0			-0.7			mA
ICES	Collector Cutoff Current	$V_{CE} = -60 \text{ V},$	V _{BE} = 0					-0.7	IIIA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -5 V$,	I _C = 0			-1		-1_	mA
	C	$V_{CE} = -4 V$,	$I_C = -5 A$	See Notes 4 and 5	20	100	20	100	
hre	Static Forward Current	$V_{CE} = -4 V$,	$I_{\rm c} = -15$	A, See Notes 4 and 5	10		10		1
	Transfer Ratio	$V_{CE} = -4 V$,	$I_{\rm c} = -25$	A, See Notes 4 and 5	5		-1 -1 100 20 100 10 5 -2 -2 -2 -4 -4 -1.8 -1.8		1
	D. P. Jan - V. la	$V_{CE} = -4 V$,	$I_{c} = -15$	A, See Notes 4 and 5		-2		-2	v
V _{BE}	Base-Emitter Voltage	$V_{CE} = -4 V$,	$I_{\rm c} = -25$	A, See Notes 4 and 5		-4		-4	•
l	C. H	$I_B = -1.5 A$,	$I_{c} = -15$	A, See Notes 4 and 5		-1.8		-1.8	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = -5 A$,	$I_{\rm C} = -25$	A, See Notes 4 and 5		-4		-4	1
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A	, f = 1 kHz	25		25		
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A	, f = 1 MHz	3		3		

NOTES: 4. These parameters must be measured using pulse techniques. t_p ≤ 300 μs, duty cycle ≤ 2%.
 Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.
 5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	1.39	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	35.7	ucy/#

switching characteristics at 25°C case temperature

	PARAMETER		TYP	UNIT		
ton	Tum-On Time	$I_C = -5 A$,	$I_{B(1)} = -500 \text{ mA},$	$I_{B(2)} = 500 \text{ mA},$	0.45	
toff	Turn-Off Time	$V_{BE(off)} = 5 V,$	$R_L = 5 \Omega$,	See Figure 1	0.55	μS

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ MeQ, $C_{in} \leq 11.5$ pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

MAXIMUM SAFE OPERATING REGION

FIGURE 2

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

VS

COLLECTOR CURRENT

NOTES: 4. These parameters must be measured using pulse techniques. $t_p \le 300 \ \mu s$, duty cycle $\le 2\%$.

Pulse width must be such that halving or doubling does not cause a change greater than the required accuracy of the measurement.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

HIGH-FREQUENCY POWER TRANSISTORS

- 50 Watts at 100°C Case Temperature
- Minimum fr of 10 Megacyles

mechanical data

absolute maximum ratings at 25°C ambient temperature (unless otherwise noted)

Collector-Emitter Voltage (See Note	1)																	80 v
Emitter-Base Voltage																		10 v
Collector Current, Continuous Collector Current, Peak (See Note	2)	•	•	٠	•	٠	•	•	•	٠	٠	•	•	•	•	•	٠	5 a
Total Device Dissipation at 100°C Co	ıse T	· emi	ber	atu	re (:	See	No	ote	3)	:	:	•	•	•	•	•	•	7.5 a 50 w
Total Device Dissipation at 25°C Am	bient	Te	mpe	erat	ure	(Se	eΝ	lote	4)									3 w
Collector Junction Operating Tempe Storage Temperature Range	ratu	re	•			•		•	•		•			•			+	175°C

- Note 1 This is the voltage at which $|\mathbf{h}_{\mathrm{FB}}|$ approaches one when the emitter-base diode is open-circuited. Maximum allowable collector-emitter voltage shall be derated with increasing collector current as shown in the maximum V_{CE} curve which appears with the collector characteristics. Average power dissipation shall not exceed the maximum ratings for this device.
- Note 2 Maximum peak collector current may be allowed if maximum junction temperature is not exceeded. See Figure 2, "Junction Temperature Response vs Pulse Width and Duty Cycle."
- Derate linearly to 175°C case temperature at the rate of 0.67 w/C°
- Derate linearly to 175°C ambient temperature at the rate of 20 mw/C°.
- Note 5 For correct measurement of I_{CES}, the base must be shorted to the emitter. The current meter must not be placed in the base-emitter short-circuit loop. I_{CES} may be used in place of I_{CBO} for circuit-stability calculations.
- For typical BY_{CER} at finite values of $R_{BE'}$ refer to BY_{CER} vs. R_{BE} curve. Peak collector-emitter voltage of 120 v may be allowed in the cutoff-current region if the emitter-base diode is short-circuited.
- Note 7 Heat-sinking sufficient to limit case temperature to 40°C or less over a 10-second measurement period must be used for this test.
- Note 8 DC collector current should not be applied longer than 5 seconds to maintain case temperature less than 40°C without a heat sink.
- Note 9 To obtain f_T , the $|h_{fe}|$ response with frequency is extrapolated at 6 db/octave to $|h_{fe}|=1$ from f=10 mc. The product of f_T x 1 has been referred to as the gain-bandwidth product.

TYPES 2N1722, 2N1724 N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

electrical characteristics at 25°C ambient temperature (unless otherwise noted)

	Parameter	Test Conditions	Min.	Max.	Unit
I _{CES}	Collector Reverse Current	$V_{CE} = 60 \text{ v}, V_{BE} = 0$ (See note 5)		1	ma
I _{CES}	Collector Reverse Current	V _{CE} = 60 v, V _{BE} = 0, T _C = + 150°C (See note 5)		2	ma
I _{CES}	Collector Reverse Current	$V_{CE} = 120 \text{ v, } V_{BE} = 0,$ $T_{C} = + 150 \text{ °C (See note 5)}$		10	ma
I _{EBO}	Emittet Reverse Current	$V_{EB} = 10 v, I_{C} = 0$		10	ma
*BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 200 \text{ ma}, I_B = 0$ (See notes 6 & 7)	80		V
*h _{FE}	DC Forward Current Transfer Ratio	$V_{CE} = 15 \text{ v, } I_C = 2 \text{ a}$	20	90	
*h _{FE}	DC Forward Current Transfer Ratio	$V_{CE} = 15 \text{ v, } I_{C} = 2 \text{ a,}$ $T_{A} = -55 \text{ °C}$	12		
*h _{FE}	DC Forward Current Transfer Ratio	$V_{CE} = 15 \text{ v, I}_{C} = 100 \text{ ma}$	20		
*V8E	Base-Emitter Voltage	I _B = 200 ma, I _C = 2 a		2.0	٧
*V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_B = 200 \text{ ma}, I_C = 2 \text{ a}$		1.0	٧
h _{fe}	AC Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 15 \text{ v, } I_{C} = 500 \text{ ma},$ $f = 10 \text{ mc} \text{ (See note 8)}$	1.0		
Cop	Common-Base Output Capacitance	$V_{CB} = 15 \text{ v, } I_E = 0, f = 1 \text{ mc}$		550	pf

Thermal Characteristics $\theta_{\text{J-C}}$ Thermal Resistance, Junction to Case (Bottom, Center of Case) 1.5 C°/w

TYPICAL CHARACTERISTICS

^{*}Semi-automatic testing is facilitated by using pulse techniques to measure these parameters. A 300 μ sec pulse (approximately 2% duty cycle) is utilized.

TYPES 2N1722, 2N1724

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

THERMAL INFORMATION

TABLE I

		INDELI								
Mounting	2N1722 mounted with four 2-56 screws at 4 in-lb torque 2N1724 mounted at 30 inlb. torque									
Conditions	Unfinished Alum. or Copper	Alum. or Copper with .0025" mica ins.	Anodized Aluminum	Anodized Alum. with DC-200 Oil						
$ heta_{ extsf{C-HS}}$ — contact thermal resistance $ extsf{C}^{ extsf{o}}/ extsf{w}$	0.15	0.45	0.40	0.28						

Symbol	Definition	Unit
P _T	DC or average total power dissipation	w
PTpeak	Peak total power dissipation (pulsed operation)	w
θ_{HS-A}	Heat-sink-to-ambient thermal resistance	(°/w
θ_{C-HS}	Case-to-heat-sink (contact) thermal resistance	(°/w
$\theta_{\text{J-C}}$	Junction-to-case thermal resistance	(°/w
θ_{J-A}	Junction-to-ambient thermal resistance (no heat sink)	(°/w
$\theta_{\text{C-A}}$	Case-to-ambient thermal resistance (no heat sink)	(°/w
T _A	Ambient temperature	٥(
THS	Heat-sink mounting surface temperature	°c
T _C	Case temperature (transistor mounting surface)	°(
T _{Jmax}	Maximum junction temperature	°c
10	Pulse width	msec

For steady-state power dissipation or pulsed dissipation with $t_{\rm o} < 100~\mu{\rm sec},$ maximum junction temperature may be considered equal to the ambient temperature plus the product of average power dissipation and total junction-to-cambient thermal resistance. Under these pulse conditions, the junction-to-case temperature gradient varies so slightly with instantaneous power dissipation that average dissipation may be used in thermal calculations. When a heat sink is used, junction-to-ambient thermal resistance may be broken down into three quantities: $\theta_{\rm J-C}$, $\theta_{\rm C-HS}$, and $\theta_{\rm HS-A}$. Thermal performance can then be calculated using the following equation:

$${\rm T_{Jmax}} = {\rm T_A} + {\rm P_T}(\theta_{\rm J-C} + \theta_{\rm C-HS} + \theta_{\rm HS-A})$$
 Or, if no heat sink is used,

$$T_{Jmax} = T_A + P_T \theta_{J-A}$$

 $\theta_{\text{J-C}}$, $\theta_{\text{J-A}}$, and $\theta_{\text{C-A}}$ are shown in Figure 1. To minimize contact thermal resistance, $\theta_{\text{C-HS}}$, the heat sink mounting surface should be as smooth as possible. $\theta_{\text{C-HS}}$ for several surface and mounting conditions is given in Table 1. These figures represent maximum values encountered on surfaces equivalent to those of most commercially available heat sinks. Note that in some cases, as with the anodized aluminum finish, $\theta_{\text{C-HS}}$ can be reduced substantially by the application of a film of silicone grease between transistor and heat sink.

As t_0 exceeds 100 μ sec during pulsed operation, the instantaneous variation of the junction-to-case temperature gradient increases sharply. Therefore, maximum rather than average junction temperature must be considered. Figure 2 shows the ratio of maximum instantaneous case-to-junction temperature rise at any pulse width and duty cycle to the rise which would occur at 100% duty cycle. Use of this curve is best explained by the equations below and by the example problems. Provided the other operating conditions are known, T_{Jmax} or P_{Toeak} may be found using the relation

$$\begin{split} \mathbf{I}_{\mathsf{Jmax}} &= \mathbf{I}_{\mathsf{A}} + \mathbf{P}_{\mathsf{Tpeak}}^{\mathsf{P}} \, \mathbf{x} \, \mathsf{duty} \, \mathsf{cycle} \, \mathbf{x} \, (\theta_{\mathsf{C-HS}} + \theta_{\mathsf{HS-A}}) \, + \\ & \left[\frac{\mathbf{I}_{\mathsf{Jmax}} - \mathbf{I}_{\mathsf{C}}}{\mathbf{P}_{\mathsf{Tpeak}} \, \theta_{\mathsf{J-C}}} \right] \mathbf{P}_{\mathsf{Tpeak}} \, \theta_{\mathsf{J-C}} \end{split}$$

Or, if no heat sink is used,

$$\begin{split} \mathbf{T}_{\mathsf{Jmax}} &= \mathbf{T}_{\mathsf{A}} + \mathbf{P}_{\mathsf{Tpeak}} \, \mathbf{x} \, \mathsf{duty} \, \mathsf{cycle} \, \mathbf{x} \, \boldsymbol{\theta}_{\mathsf{C-A}} + \\ & \left[\frac{\mathbf{T}_{\mathsf{Jmax}} - \mathbf{T}_{\mathsf{C}}}{\mathbf{P}_{\mathsf{Tpeak}} \, \boldsymbol{\theta}_{\mathsf{J-C}}} \right] \! \mathbf{P}_{\mathsf{Tpeak}} \, \boldsymbol{\theta}_{\mathsf{J-C}} \end{split}$$

Note that the ambient-to-fransistor case temperature rise remains constant at a value proportional to average power dissipation throughout the pulse width and duty cycle range shown in Figure 2. Values for $\theta_{\rm HS-A}$ taken from Figures 3 and 4 are used in the example problems. However, the curves in Figures 1 and 2 may be used for any heat sink provided its thermal resistance is known. Under no circumstances should peak power dissipation exceed the value indicated by the maximum $V_{\rm CE}$ curve on the collector characteristics.

Example 1, Find T_{Jmax}

Operating Conditions

Heat sink = Modine 1E11558, Delbert Blinn 113, or equivalent, anodized finish, convection cooling

$$\begin{array}{ll} T_{J_{max}} & = T_A + P_{T_{poak}} x \text{ duty cycle } x (\theta_{CH-S} + \theta_{HS-A}) + \\ & = \left[\frac{T_{J_{max}} - T_C}{P_{T_{poak}} \theta_{J-C}}\right] P_{T_{poak}} \theta_{J-C} \end{array}$$

From Figure 1,
$$\theta_{J-C} = 1.5$$
 (°/w From Figure 3, $\theta_{HS-A} = 3.15$ (°/w [$P_T = P_{TDeak} \times duty \ cycle$] From Table 1, $\theta_{C-HS} = 0.40$ (°/w From Figure 2, $\left[\frac{I_{Jmax} - I_C}{P_{TDeak} \theta_{J-C}}\right] = 0.20$

than

$$T_{Jmax} = 50$$
°C + 50w x 0.10 x (3.15 + 0.40) C°/w + 0.20 x 50w x
1.5 C°/w
= 50 + 17.7 + 15
= 82.7°C

Example 2; Find P_{Tpeak}

Operating Conditions

$$175^{\circ}C = 25^{\circ}C + P_{Tposk} \times 0.01 \times 48.5C^{\circ}/w + 0.50 \times 0.00$$

$$P_{\text{Tpeak}} = \frac{150}{0.485 + 0.75} = \frac{121 \text{ watts}}{121 \text{ watts}}$$

TYPICAL APPLICATION DATA, $T_A = -55$ °C TO 125°C.

35 watt, 400 cps SERVO AMPLIFIER

- RI 4.32 K, 1/2 w R2 - 3.32 K, 1/2 w R3 - 1.00 K, 1 w R4 - 33.2, 1/2 w
- R7 & R8 2.00 K, 1 w
- R9 & R10 1.00, 2 w R11 - 1.00 K, 1/2 w
 - C4 2.0 µf, 100 v D1 & D2 - TI 1N538 Q1, Q2, & Q3 - TI 2NI716 OR TI 2NI720 Q4 & Q5 - TI 2NI722 OR TI 2N1724
- T1: N1 = 755 T, #30 AWG; N2 = N3 = 330 T,
 - Core Magnetic Metals 75EI SL14 or equivalent - 1 x 1 interleaved.
- T2: N1 = N2 = 100 T, #20 AWG Bifilar Wound; N3 = 67 T, #28 AWG. Core - Magnetic Metals 100 El SL14 or equivalent - Butt Joint.

- NOTES: 1. All Resistance Values in ohms 5% Tolerance
 - 2. Resistor Wattage Ratings at 125°C Ambient
 - 3. Capacitor Voltage Ratings at 125°C Ambient

 - 4. Q1 on Heat Sink with $\theta_{C-HS}+\theta_{HS-A}\leq$ 40 C°/w 5. Q2 and Q3 on same Heat Sink. $\theta_{C-HS}+\theta_{HS-A}\leq$ 40C°/w each. θ_{FE} 's matched within 10%.
 - 6. Q4 and Q5 on Heat Sinks with $\theta_{C-HS} + \theta_{HS-A} \le 1.5 \text{C}^{\circ}/\text{w}$. h_{FE}'s matched within 10%.

- - 2. All Resistor Wattage Ratings at 125°C Ambient.
 - 3. Capacitor Voltage Ratings at 125°C Ambient.
 - 4. Q1 and Q2 on Same Heat Sink, θ_{C-HS} + $\theta_{HS-A} \le 4 \, \text{C}^{\circ}/\text{w}$ each.

TYPES 2N1722, 2N1724

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

TYPICAL APPLICATION DATA, $T_A = -55$ °C TO 125°C.

30 volt, 0 - 2.5 a VOLTAGE REGULATOR

Circuit Characteristics:

$$\frac{\Delta V_{\text{OUT}}}{\Delta I_{\text{OUT}}} \Big|_{\Delta V_{\text{IN}}} = 0 \quad = \text{Output Resistance} \leq 0.007 \text{ ohm}$$

$$100 \times \frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}}} \Big|_{\Delta I_{\text{OUT}}} = 0 \quad = \text{Input Regulation} \leq 0.05\% \text{ at } I_{\text{OUT}} = 2.0 \text{ at }$$

$$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{A}}} \begin{vmatrix} \Delta l_{\text{OUT}} = 0 \\ \Delta V_{\text{IN}} = 0 \end{vmatrix} = \text{Output Voltage Temperature Coefficient} \leq 0.007\%/\text{°C at } l_{\text{OUT}} = 2.0 \text{ a, } V_{\text{IN}} = 45 \text{ v}$$

Input Ripple Output Ripple = Ripple Reduction ≥ 10,000

Q2 - TI 2N1722 OR TI 2N1724

Q3 - TI 2N1714 OR D2 & D3 - TI 1N751 D4 - D6 - TI 1N752A TI 2N1718

Q4 - TI 2N343B Q5 & Q6 - TI 2N338 D1 - TI 1N746

C2 - 100 µf, 50 v R1 - 5.11 K, 1/2 w R2 - 681, 1/4 w R3 - 2.00 K, 1/4 w R4 - 2.43 K, 1/4w (Wirewound)

R5 - 35.7 K, 1/4 w R6 - 35.7 K, 1/4 w

R7 & R9 - 3.57 K, 1/4 w (Wirewound) R8 - 200, 1/4 w (Wirewound)

- NOTES: 1. All Resistor Values in ohms, 5% Tolerance.
 - 2. Resistor Wattage Ratings at 125°C Ambient.
 - 3. Capacitor Voltage Ratings at 125°C Ambient.
 - 4. Q2 and Q3 on Same Heat Sink: Q2: θ c−Hs + θHs−A ≤2 C°/w Q3: 0 c-Hs + 0 HS-A ≤ 22 C°/w
 - Q5 and Q6 on Same Heat Sink: Each, θc-Hs + θHS-A ≤ 80 C°/w

MAXIMUM ALLOWABLE INPUT VOLTAGE VS OUTPUT

^{*}See Voltage - Current Derating Curves Below

BULLETIN NO. DL-S 634284, AUGUST 1963 TYPES 2N2987, 2N2988, 2N2989, 2N2990 2N2991, 2N2992, 2N2993, 2N2994

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

PLANAR INTERMEDIATE-POWER TRANSISTORS

- 15 Watts at 100°C Case Temperature
- Nanoampere Leakages
- Beta Guaranteed at Seven Levels
- Guaranteed Parameters from -55°C to +175°C
- Minimum f_T of 30 mc

*mechanical data

The transistors are in a hermetically-sealed welded package with glass-to-metal seal between case and

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	2N2987 2N2991 2N2989 2N2993	2N2988 2N2992 2N2990 2N2994
Collector-Base Voltage	95 v	155 v
Collector-Emitter Voltage (See Note 1)	80 v	100 v
Emitter-Base Voltage	7 v	7 v
Collector Current, Continuous	← 1.	0 a ——→
Base Current, Continuous	← —— 0.	2 a
Total Device Dissipation at (or below) 25°C Free-Air	,	
Temperature (See Note 2)	1 w 2 w	1 w 2 w
Total Device Dissipation at (or below) 100°C Case		
Temperature (See Note 3)	← —— 15	5 w ——→
Operating Case Temperature Range	- 65°C to	+ 200°C
Storage Temperature Range	− 65°C to	+ 200°C
Lead Temperature 1/4" from Case for 10 Seconds	← 23	0°C→

- NOTES: 1. This value applies when base-emitter diode is open-circuited.
 - 2. Derate linearly to 200°C free-air temperature at the rate of 5.7 mw/C° for the TO-5 series and 11.4 mw/C° for the studded series.
- 3. Derate linearly to 200°C case temperature at the rate of 150 mw/C°.

*Indicates JEDEC registered data.

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994 N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)

		25 C 4430 101115014101		2987 2991	2N2	2988 2992	2N2989 2N2993		2N2990 ← 2N2994 ←		TO-5 STUD
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
BVCEO	Collector-Emitter Breakdown Voltage	$I_C=30$ ma, $I_B=0$, (See Note 4)	80		100		80		100		٧
I _{CEO}	Collector Cutoff Current	$V_{CE} = 50 \text{ v}, I_B = 0$		0,1				0.1			μα
ICEO	Conscior Coroni	$V_{CE} = 90 \text{ v}, I_B = 0$				0.1				0.1	μυ
		$V_{CE} = 90 \text{ v}, V_{BE} = -1.5 \text{ v}$		0.025				0.025			
		$V_{CE} = 150 v, \ V_{BE} = -1.5 v$				0.025				0.025	
I _{CEX}	Collector Cutoff Current	$V_{CE} = 90 \text{ v}, V_{BE} = -1.5 \text{ v}, \\ T_{C} = 175 ^{\circ} \text{C}$		15				15			μα
		$V_{CE} = 150 \text{ v}, \ V_{BE} = -1.5 \text{ v}, \ T_{C} = 175 ^{\circ} \text{C}$				15				15	
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 7 \text{ v}, I_{C} = 0$		0.025		0.025		0.025		0.025	μα
		$V_{CE}=5 \mathrm{v}, I_{C}=1 \mathrm{ma}, \ \mathrm{(See Note 4)}$	20		20		40		40		
		$V_{CE}=5 v$, $l_{C}=200 ma$, (See Note 4)	25	75	25	75	60	120	60	120	
h _{FE}	Static Forward Current Transfer Ratio	$ m V_{CE} = 5 v, I_{C} = 500 ma$, (See Note 4)	20		20		40		40		
		$V_{CE}=10 \text{ v}, I_{C}=100 \text{ ma}, (\text{See Note 4})$	25		25		50		50		
		$V_{CE}=5 \text{ v}, I_{C}=200 \text{ ma}, \\ I_{A}=-55 ^{\circ}\text{C}, \\ \text{(See Note 4)}$	10		10		20		20		
		$ m V_{CE} = 5 v, I_{C} = 200 ma,$ (See Note 4)		0.9		0.9		0.9		0.9	
V _{BE}	Base-Emitter Voltage	$I_B=20$ ma, $I_C=200$ ma, (See Note 4)		1.0		1.0		1.0		1.0	٧
		$I_B=50$ ma, $I_C=500$ ma, (See Note 4)		1.4		1.4		1.4		1.4	
VCE(cat)	Collector-Emitter	$I_B=20~{ m ma}, I_C=200~{ m ma},$ (See Note 4)		0.8		0.8		0.8		8.0	٧
- CE(MI)	Saturation Voltage	$I_{B}=50$ ma, $I_{C}=500$ ma , (See Note 4)		3.0		3.0		3.0		3.0	V
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=10 \text{ v}, I_{C}=100 \text{ ma}, \\ f=1 \text{ kc}$	25	85	25	85	50	170	50	170	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$ m V_{CE}=10~v,~~I_{C}=100~ma, \ f=30~mc$	1		1		1		1		
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ v}, I_E = 0,$ $f = 1 \text{ mc}$		50		50		50		50	pf

NOTE: 4. This parameter must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

^{*}Indicates JEDEC registered data.

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994 N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 1

FIGURE 2

FIGURE 3 FIGURE 4

NOTE: 6. These characteristics were measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 5

10

100

NORMALIZED COLLECTOR - EMITTER BREAKDOWN VOLTAGE

FIGURE 7

FIGURE 8

100 K

1 K

R_{BE} — Base - Emitter Resistance -

NOTE: 6. These characteristics were measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994 N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 11

NOTE: 6. These characteristics were measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

TYPES 2N2987, 2N2988, 2N2989, 2N2990, 2N2991, 2N2992, 2N2993, 2N2994 N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

THERMAL INFORMATION

FIGURE 12

FIGURE 13

MAXIMUM SAFE CONTINUOUS OPERATING REGIONS

FIGURE 14

FIGURE 15

NOTE: 5. Operation in this region is permissible only when the base is reverse-voltage-biased with respect to the emitter.

TYPE 2N3055 N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR

FOR POWER-AMPLIFIER APPLICATIONS

- 115 W at 25°C Case Temperature
- Max Ic of 15 A
- Min fhfe of 20 kHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

(Collector-Base Voltage																							100 V
(Collector-Emitter Voltage	(Se	e N	ote	1)																			70 V
ı	mitter-Base Voltage .																							7 V
(Continuous Collector Cur	rent																						15 A
(Continuous Base Current																							7 A
(Continuous Device Dissipo	noite	at	(or	bel	ow	2:	5°C	C	ase	Те	mp	era	ture	e (S	ee	No	te	2)					115 W
(Operating Case Tempera	ture	Rar	nge	٠.																-	55°	C to	200°C
5	itorage Temperature Ran	ge .																			-	65°	C to	200°C
1	ead Temperature ½ Inch	froi	m C	nse	for	10	ء د	cor	٠.de															22500

NOTES: 1. This value applies when the base-emitter resistance $\rm R_{BE}=100~\Omega.$

2. Derate linearly to 200°C case temperature at the rate of 0.66 W/deg.

*Indicates JEDEC registered data

TYPE 2N3055 N-P-N SINGLE-DIFFUSED MESA SILICON POWER TRANSISTOR

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TI	EST CONDITIO	ONS	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 200 mA,	$I_B = 0$,	See Note 4	60 .		٧
V _{(BR)CER}	Collector-Emitter Breakdown Voltage	I _C = 200 mA,	$R_{BE} = 100 \Omega$		70		٧
ICEO	Collector Cutoff Current	V _{CE} = 30 V,	$I_B = 0$			0.7	mA
	Collector Cutoff Current	V _{CE} = 100 V,	$V_{BE} = -1.5 \text{ V}$			5	
ICEV	Collector Cutoff Current	V _{CE} = 100 V,	$V_{BE} = -1.5 V$,	T _C = 150°C		30	mA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 7 V$,	I _C = 0	_		5	mA
	Static Forward Current Transfer Ratio	$V_{CE} = 4 V,$	$I_C = 4 A$,	See Notes 3 and 4	20	70	
h _{FE}	Static Forward Cottent Transfer Kallo	V _{CE} = 4 V,	I _C = 10 A,	See Notes 3 and 4	5		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 4 V,$	I _C = 4 A,	See Notes 3 and 4		1.8	٧
.,	C.H. d. F. in C.L. d. William	I _B = 400 mA,	I _C = 4 A,	See Notes 3 and 4		1.1	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 3.3 A,	I _C = 10 A,	See Notes 3 and 4		8	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 4 V,	I _C = 1 A,	f = 1 kHz	15	120	
f _{hfe}	Small-Signal Common-Emitter Forward Current Transfer Ratio Cutoff Frequency	V _{CE} = 4 V,	I _C = 1 A,	See Note 5	20		kHz

NOTES: 3. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

thermal characteristics

Ī		PARAMETER	MAX	UNIT
	<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	1.52	deg/W

^{4.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

^{5.} fife is the frequency at which the magnitude of the small-signal forward current transfer ratio is 0.707 of its low-frequency value. For this device, the reference measurement is made at 1 kHz.

^{*}Indicates JEDEC registered data

HIGH-FREQUENCY MEDIUM-POWER TRANSISTORS Formerly TIX3033, TIX3034, TIX3035, TIX3036

• High-Power Dissipation in TO-5 Package:

• Low-Leakage Current:

Low-Saturation Voltage:

• High f₇:

15 watts at $T_c = 100^{\circ}C$ 0.5 μ a at max voltage

 $V_{CE(sat)} = 0.25 \text{ v max at } I_c = 1 \text{ a}$ 40 Mc min at 10 v, 100 ma

mechanical data

These transistors are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the assembly process prevents sealed-in contamination. The approximate unit weight is 1.8 grams.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)	2N3418 2N3419 2N3420 2N3421
Collector-Base Voltage	85 v 125 v
Collector-Emitter Voltage (See Note 1)	60 v 80 v
Emitter-Base Voltage	\leftarrow 8v \longrightarrow
Collector Current, Continuous	\leftarrow 3a \rightarrow
Collector Current, Peak (See Note 2)	
Base Current	
Safe Operating Region	See Figures 8 and 9
Total Device Dissipation at (or below) 100°C Case Temperature (See Note 3)	< 15 w>
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)	
Operating Case Temperature Range	
Storage Temperature Range	
Lead Temperature 1/4 Inch from Case for 10 Seconds	< 230°C>

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. This value applies for PW \leq 1 msec, Duty Cycle \leq 50%.
- 3. Derate linearly to 200°C case temperature at the rate of 0.15 w/C° .
- 4. Derate linearly to 200°C free-air temperature at the rate of 5.72 mw/C°.

*Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

		TEST COMPLETIONS			3418	2N:	3419	2N:	3420	2N3421		UNIT
P	ARAMETER	TEST CONDITIO	N5	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =50 ma, I _B =0,	See Note 5	60		80		60		80		٧
		V _{CE} =80 v, V _{BE} =-0.5 v			0.5				0.5			μα
	Collector Cutoff	V _{CE} = 120 v, V _{BE} =-0.5 v					0.5				0.5	μυ
CEX	Current	V _{CE} =80 v, V _{BE} =-0.5 v,	T _C =150°C		50				50			
		V _{CE} == 120 v, V _{BE} == -0.5 v,	:-0.5 v, T _C == 150°C 50					50	μα			
	Emitter Cutoff	V _{EB} =6 v, I _C =0			500		500		500		500	na
EBO	Current	V _{EB} =8 v, I _C =0			10		10		10		10	μο
		V _{CE} =2 v, I _C =100 ma,	See Notes 5 and 6	20		20		40		40		
		V _{CE} =2 v, I _C =1 a,	See Notes 5 and 6	20	60	20	60	40	120	40	120	
h _{EE}	Static Forward Current Transfer	V _{CE} =2 v, I _C =2 a,	See Notes 5 and 6	15		15		30		30		
"FE	Ratio	V _{CE} =5 v, I _C =5 a,	See Notes 5 and 6	10		10		15		15		}
		V _{CE} =2 v, I _C =1 a,	T _C =-55°C See Notes 5 and 6	10		10		10		10		
	Base-Emitter	I _B =100 ma, I _C =1 a,	See Notes 5 and 6	0.6	1.2	0.6	1.2	0.6	1.2	0.6	1.2	
VBE	Voltage	I _B = 200 ma, I _C = 2 a,	See Notes 5 and 6	0.7	1.4	0.7	1.4	0.7	1.4	0.7	1.4	
	Collector-Emitter	$I_B = 100 \text{ ma}, I_C = 1 \text{ a},$	See Notes 5 and 6		0.25		0.25		0.25		0.25	,
V _{CE(sat)}	Saturation Voltage	I _B = 200 ma, I _C = 2 a,	See Notes 5 and 6		0.5		0.5		0.5		0.5	Ľ
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} =10 v, I _C =100 ma,	f == 20 Mc	2		2		2		2		
C ^{op}	Common-Base Open-Circuit Output Capacitance	V _{CB} =10 v, I _E =0,	f=1 Mc		150		150		150		150	pf

NOTES: 5. These parameters must be measured using pulse techniques.PW = 300 μ sec, Duty Cycle \leq 2%.

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS†	TYP	MAX	UNIT
ton	Turn-On Time	$I_C = 1 \text{ a, } I_{B(1)} = 100 \text{ ma, } I_{B(2)} = -100 \text{ ma,}$	165	300	
toff	Turn-Off Time	${ m V_{BE(off)}=-3.7}$ v, ${ m R_L=20}~\Omega$, See Figure 10	540	1200	nsec
ton	Turn-On Time	$I_{C}=2 a, I_{B(1)}=200 ma, I_{B(2)}=-200 ma,$	200		
t _{off}	Turn-Off Time	${ m V_{BE(off)}=-4.7}$ v, ${ m R_L=20~\Omega}$, See Figure ${ m 10}$	350		

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

These parameters are measured with voltage-sensing contacts located 0.25 in. from the header of the transistor. Voltage-sensing contacts are separate from current-carrying contacts.

^{*}Indicates JEDEC registered data (typical values excluded).

NOTES: 7. These parameters were measured using pulse techniques. PW = 300 μ sec. Duty Cycle \leq 2%.

^{8.} Separate voltage-sensing and current-carrying contacts were used.

TYPICAL CHARACTERISTICS

FIGURE 6

MAXIMUM SAFE OPERATING REGION

FIGURE 7

NOTE 9: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage-biased with respect to the emitter and the collector-base voltage rating is not

PARAMETER MEASUREMENT INFORMATION

Nominal I _C	R1	V _{CC}	V _{in(1)}	V _{in(2)}
l a	82 Ω	20.3 v	+16.0 v	-1.0 v
2 a	41 Ω	40.5 v	+32.0 v	-1.3 v

CIRCUIT CONDITIONS

FIGURE 10

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ nsec, $Z_{out} = 50 \Omega$, PW = 2 µsec, Duty Cycle $\le 2\%$.

b. Waveforms are monitored on an oscilloscope with the following characteristics: tr ≤15 nsec, R_{in} ≥10 MΩ, C_{in} ≤11.5 pf.

c. Resistors must be non-inductive types.

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation		₩
P _{T(max)}	Peak Power Dissipation		w
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	175	C°/w
θ _{J-C}	Junction-to-Case Thermal Resistance	6.67	C°/w
θ_{C-A}	Case-to-Free-Air Thermal Resistance	168.33	C°/w
$ heta_{ extsf{C-HS}}$	Case-to-Heat Sink Thermal Resistance		C°/w
θ_{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		(°/w
TA	Free-Air Temperature		°c
т _с	Case Temperature		°c
T _{J(avg)}	Average Junction Temperature	≤ 200	°C
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 12	
† _p	Pulse Width		msec
t _x	Pulse Period		msec
d	Duty Cycle Ratio (t _p /t _x)		

Equation No. 1 — Application: d-c power dissipation,

$$P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-C} + \theta_{C-HS} + \theta_{HS-A}} \text{ for } 100^{\circ}\text{C} \leq T_C \leq 200^{\circ}\text{C},$$

Equation No. 2 - Application: d-c power dissipation, no bent sink used

$$P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-A}} \text{ for 25°C} \leq T_A \leq 200°C, \\ \text{as in Figure 11}$$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P_{T(max)}}\!=\!\frac{\mathrm{T_{J(max)}}\!-\!\mathrm{T_{A}}}{\mathrm{d}\;(\theta_{\mathrm{C-HS}}+\theta_{\mathrm{HS-A}}\!+\!\mathrm{K}\;\theta_{\mathrm{J-C}}}\;\;\mathrm{for}\;100\,\mathrm{^{\circ}C}\!\leq\!\mathrm{T_{C}}\!\leq\!200\,\mathrm{^{\circ}C}$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\rm P_{TI_{maxl}} \! = \! \frac{T_{Ji_{maxl}} \! - \! T_A}{d \; \theta_{C-A} + K \; \theta_{J-C}} \; \; for \; 25\,^{\circ}C \leq T_A \leq 200\,^{\circ}C$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

 $heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} \!=$ 7 C°/w (From information supplied

$$t_p = 0.1 \text{ msec}$$

From Figure 12, Peak-Power Coefficient

K == 0.155 and by use of equation No. 3

$$P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d (\theta_{C-HS} + \theta_{HS-A}) + K \theta_{J-C}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (7) + 0.155 (6.67)} = 86 \text{ w}$$

N-P-N TRIPLE-DIFFUSED MESA SILICON TRANSISTORS

THIN-PAC

HIGH-SPEED POWER SWITCH, ISOLATED COLLECTOR FORMERLY TIX210, TIX211

- 40 Watts at 100°C Case Temperature
- Maximum r_{cs} of 0.1 Ohm at 10 Amperes I_c
- Maximum V_{BE} of 1.4 Volts at 10 Amperes I_C
- Maximum ton of 300 nsec

mechanical data

These transistors are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the assembly process prevents sealed-in contamination. The approximate unit weight is 3.8 grams.

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage		:		:	•	:	•	:	:	:	. 60 v 80 v
Continuous Collector Current											.← 12 a
Continuous Base Current	•	•	٠	•	•	•	•	•	•	٠	.
Continuous Emitter Current	•	•	•	•	•	•	•	•	•	•	·
Case Temperature											. See Figures 3 and 4
Continuous Device Dissipation at (or below											
Free-Air Temperature (See Note 2) . Continuous Device Dissipation at (or below)	10	o•c	•	•	•	•	•	•	•	•	
Case Temperature (See Note 3)											.← 40 w — →
Operating Collector Junction Temperature											.← 175°C →
Operating Case Temperature Range	•	•	•	•	•	•	•		•	•	$-65^{\circ}\text{C to} + 175^{\circ}\text{C} \rightarrow$
Storage Temperature Range	. 12	·	•	.	•	•	•	•	•	•	.← -65°C to + 200°C>
Lead Temperature 1/16 Inch from Case for	12	Sec	one	35	•	٠	•	•	•	٠	.

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. Derate linearly to 175°C free-air temperature at the rate of 8 mw/C°.
- 3. Derate linearly to 175°C case temperature at the rate of 0.53 w/C°.

†Trademark of Texas Instruments. *Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

					2N:	3551	2N3	552	
	PARAMETER	TES	ST CONDITIONS	i	MIN	MAX	MIN	MAX	UNIT
BVCBO	Collector-Base Breakdown Voltage	1 _C = 10 ma,	$I_E = 0$,	See Note 4	115		140		٧
BVCEO	Collector-Emitter Breakdown Voltage	I _C = 200 ma,	$I_B=0$,	See Note 4	60		80		٧
		$V_{CE} = 110 v$	$V_{BE} = -1.5 \text{ v}$			10			
ICEV	Collector Cutoff	$V_{CE} = 135 \text{ v},$			}			10	
ł	Current	$V_{CE} = 60 \text{ v},$	$V_{BE} = -1.5 v$,	$T_{\rm C}=150$ °C		10			ma
		$V_{CE} = 80 \text{ v,}$						10	
I _{EBO}	Emitter Cutoff	$V_{EB} = 5 v$,	I _C = 0			0.1		0.1	ma
	Current	V _{EB} = 7 v,	$I_C = 0$			1		1	mu
		V _{CE} = 2 v,	$I_{C} = 5 a$	See Note 4	25		25		
h _{FE}	Static Forward	V _{CE} = 2 v,	I _C = 10 a,	See Note 4	20	90	20	90	
	Current Transfer Ratio	V _{CE} = 2 v,	I _C = 10 a,	$T_C = -55$ °C, See Note 4	10		10		
V _{BE}	Base-Emitter	$l_B = 0.5 a$	$I_{C} = 5 a$	See Note 4		1.2		1.2	v
	Voltage	$I_B = 1 a$,	I _C = 10 a,	See Note 4		1.4		1.4	•
V _{CE(sat)}	Collector-Emitter	$I_B = 0.5 a$	$I_{C} = 5 a$	See Note 4		0.5		0.5	
``	Saturation Voltage	I _B = 1 a,	I _C = 10 a,	See Note 4		1.0		1.0	٧
h _{fe}	Small-Signal Common- Emitter Forward Current Transfer Ratio	V _{CE} = 10 v,	I _C = 3 a,	f = 10 Mc	4		4		
Cop	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 v,	I _E = 0,	f = 1 Mc		850		850	pf

NOTE 4: These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	1.875	(°/w
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	125	C°/w

*switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS‡	MAX	UNIT
ton	Turn-On Time	$I_C = 10 \text{ a, } I_{B(1)} = 1 \text{ a, } I_{B(2)} = -1 \text{ a}$	0.3	μsec
t _{off}	Turn-Off Time	$ extsf{V}_{ extsf{BE(off)}} = -$ 6 v, R $_{ extsf{L}} = 2.4 \Omega$, See Figure 1	2.5	μsec

[‡]Voltage and current values shown are nominal; exact values vary slightly with device parameters.

^{*}Indicates JEDEC Registered Data.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 20$ nsec, $t_f \le 20$ nsec, $t_{out} = 1500 \,\Omega$, PW = 5 μsec , Duty Cycle $\le 0.5\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 5$ nsec, $R_{in} \geq 1$ M Ω , $C_{in} \leq 5$ pf.
- c. Resistors must be noninductive types.

THERMAL INFORMATION

MAXIMUM SAFE OPERATING REGIONS

NOTE 5: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base-voltage rating is not exceeded.

FOR POWER-AMPLIFIER AND SWITCHING APPLICATIONS

- 150 W at 25°C Case Temperature
- 10 A Rated Collector Current
- Min f_{bfe} of 30 kHz
- Min f, of 4 MHz

*mechanical data

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

		2N3713 2N3714	2N3715 2N3716
*Collector-Base Voltage		80 V 100 V	80 V 100 V
*Collector-Emitter Voltage (See Note 1)		60 V 80 V	60 V 80 V
*Emitter-Base Voltage		← 7	v
*Continuous Collector Current		← 10	A
Peak Collector Current (See Note 2)			A
*Continuous Base Current		4	A
*Safe Operating Region at (or below) 25°C Case Temperature .		See Figure	s 8 and 9
*Continuous Device Dissipation at (or below) 25°C Case	•	000 1 1901 0	o o ana y
Temperature (See Note 3)		←−−−− 150	w
Continuous Device Dissipation at (or below) 25°C Free-Air			
Temperature (See Note 4)		← 4	w
*Operating Collector Junction Temperature Range			200°C——→
*Storage Temperature Range		-65°C to	200°C — →
Lead Temperature 1/6 Inch from Case for 10 Seconds		← 235	°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for $t_{\rm p}=$ 0.3 ms, duty cycle \leq 10%.
- 3. Derate linearly to 200°C case temperature at the rate of 0.855 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deg.

*Indicates JEDEC registered data

*electrical characteristics at 25°C case temperature (unless otherwise noted)

P	ARAMETER	TEST CONDI	rions		3713		3714		3715		3716	UNIT
V _{(BR)CEO}	Collector-Emitter	I _C = 200 mA, I _B = 0,	See Note 5	MIN 60	MAX	MIN 80	MAX	MIN 60	MAX	MIN 80	MAX	v
	Breakdown Voltage Collector Cutoff	$V_{CE} = 30 \text{ V}, I_{B} = 0$			0.7	-	-		0.7	"		
I _{CEO}	Current	$V_{CE} = 40 \text{ V}, I_B = 0$					0.7				0.7	mA
		$V_{CE} = 80 \text{ V}, \ V_{BE} = -1.5 \text{ V}$			1	<u> </u>		ļ	1			mA
I _{CEV}	Collector Cutoff Current	$V_{CE} = 100 \text{ V}, V_{BE} = -1.5 \text{ V}$			10		1_		10	<u> </u>	1.	
	Current	$\frac{V_{CE} = 60 \text{ V}, \ V_{BE} = -1.5 \text{ V}}{V_{CE} = 80 \text{ V}, \ V_{BE} = -1.5 \text{ V}}$			10	_	10		10	-	10	mA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 7 \text{ V}, I_{C} = 0$	· · · · · · · · · · · · · · · · · · ·		1		1		1		1	mA
	Static Forward	V _{CE} = 2 V, I _C = 1 A,		25	75	25	75	50	150	50	150	
h _{FE}	Current Transfer	V _{CE} = 2 V, I _C = 3 A,	See Notes 5 and 6	15		15		30		30		
	Ratio	V _{CE} = 4 V, I _C = 10 A,	See Notes 5 and 6	5		5		5		5		<u> </u>
V _{BE}	Base-Emitter Voltage	$\frac{V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ A},}{V_{CE} = 4 \text{ V}, I_{C} = 10 \text{ A},}$	See Notes 5 and 6	1	<u>2</u>	-	<u>2</u> 4	-	1.8		1.8	٧
	Collector-Emitter	$I_B = 0.5 \text{ A}, I_C = 5 \text{ A},$	See Notes 5 and 6	 	-		-	-	0.8		0.8	├
V _{CE(sat)}	Saturation Voltage	$I_B = 2 \text{ A}, I_C = 10 \text{ A},$	See Notes 5 and 6	<u> </u>	4	 	4		4	 	4	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, I_{C} = 0.5 \text{ A},$	f = 1 kHz	25	250	25	250	25	250	25	250	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 10 \text{ V}, \ I_{C} = 0.5 \text{ A},$	f = 1 MHz	4		4		4		4		
f _{hfo}	Small-Signal Common-Emitter Forward Current Transfer Ratio Cutoff Frequency	$V_{CE} = 10 \text{ V}, \ I_C = 0.5 \text{ A}$		30		30		30		30		kHz
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ V}, \ I_E = 0,$	f = 100 kHz		250		250		250		250	pF

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{Ј-С}	Junction-to-Case Thermal Resistance	1.17	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	43.7	ucg/ II

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

^{*}Indicates JEDEC registered data

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	TYP	UNIT
t _{on} Turn-On Time	$I_C = 1 \text{ A}, \qquad I_{B(1)} = 100 \text{ mA}, I_{B(2)} = -100 \text{ mA},$	450	
t _{off} Turn-Off Time	$V_{BE(off)} = -3.7 \text{ V}, \text{ R}_{L} = 20 \Omega, \qquad \text{See Figure 1}$	350	ns

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPICAL CHARACTERISTICS

NOTES: 5. These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu {
m s}$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING REGIONS

NOTES: 5. This parameter must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

7. Operation above maximum V_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base-voltage rating

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(av)}	Average Power Dissipation		₩
P _{T(max)}	Peak Power Dissipation		W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	43.7	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	1.17	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	42.5	deg/W
θ _{C-Hs}	Case-to-Heat-Sink Thermal Resistance		deg/W
θ _{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°c
τ _c	Case Temperature		°c
T _{J(av)}	Average Junction Temperature	≤ 200	°c
T _{J(max)}	Peak Junction Temperature	≤ 200	°C
K	Peak-Power Coefficient	See Figure 11	
† _p	Pulse Width		ms
t _x	Pulse Period		ms
d	Duty Cycle Ratio (t _p /t _x)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$P_{T\{av\}} = \frac{T_{J[av\}} - T_A}{\theta_{J\cdot C} + \theta_{C\cdot HS} + \theta_{HS\cdot A}} \;\; \text{for 25 °C} \leq T_C \leq 200 °C,}$$

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$P_{T(av)} = \frac{T_{J(av)} - T_A}{\theta_{J-A}}$$
for 25°C $\leq T_A \leq 200$ °C

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P}_{\mathrm{T[max]}} = \frac{\mathrm{T}_{\mathrm{J[max]}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d} \left(\theta_{\mathrm{C-HS}} + \theta_{\mathrm{HS-A}}\right) + \mathrm{K} \; \theta_{\mathrm{J-C}}} \mathrm{for} \;\; 25\,\mathrm{°C} \leq \mathrm{T_{C}} \leq 200\,\mathrm{°C}$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$P_{T[max]} = \frac{T_{J[max]} - T_A}{d \; \theta_{C-A} + K \; \theta_{J-C}} \text{for 25°C} \leq T_A \leq 200°C$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

 $heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} = ext{2.25 deg/W (From information supplied}$ with heat sink.)

$$T_{J(av)}$$
 (design limit) = 200°C

$$T_A = 50$$
°C

$$t_p = 0.1 \text{ ms}$$

Solution

From figure 11, Peak-Power Coefficient

K = 0.11 and by use of equation No. 3

$$P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d(\theta_{C-HS} + \theta_{HS-A}) + K\theta_{J-C}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1(2.25) + 0.11(1.17)} = 424 \text{ W}$$

FOR HIGH-SPEED POWER SWITCHING APPLICATIONS

- 30 W at 100°C Case Temperature
- Isolated-Stud Package (2N3996, 2N3997)
- Max $V_{CE(sat)}$ of 0.25 V at 1 A I_C
- Max ton of 300 ns at 1 A I_C
 Min f_T of 40 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage	
Collector-Emitter Voltage (See Note 1)	
Emitter-Base Voltage	
Continuous Collector Current	
Peak Collector Current (See Note 2)	
Continuous Base Current	
Safe Operating Region at (or below) 100°C Case Temperature See Figure 8	
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3) 30 W	
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4) 2 W	
Operating Collector Junction Temperature Range	
Storage Temperature Range	
ead Temperature ¼ Inch from Case for 10 Seconds	

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. This value applies for $t_{\rm p} \leq$ 1 ms, duty cycle \leq 50%.
 - 3. Derate linearly to 200°C case temperature at the rate of 0.3 W/deg.
 - 4. Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/deg.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS		2N	3996 3998	2N	3997 3999	UNIT
					MIN	MAX	MIN	MAX	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 50 mA,	$I_B = 0$,	See Note 5	80		80		٧
I _{CEO}	Collector Cutoff Current	V _{CE} = 60 V,	$I_B = 0$			10		10	μΑ
	Collector Cutoff	V _{CE} = 90 V,	$V_{BE} = 0$			5		5	
I _{CES}	Current	V _{CE} = 90 V,	$V_{BE} = 0$, $T_{C} = 150$ °C			50		50	μΑ
	Emitter Cutoff	$V_{EB} = 5 V$,				0.5		0.5	
I _{EBO}	Current	$V_{EB} = 8 V$,	I _C = 0			10		10	μΑ
		V _{CE} = 2 V,	$I_C = 50 \text{ mA}$		30		60		
	Static Forward Current Transfer	V _{CE} = 2 V,	I _C = 1 A,	See Note 5	40	120	80	240]
h _{FE}	Corrent transfer Ratio	$V_{CE} = 5 V$	$I_C = 5 A$,	See Note 5	15		20		
	Kullo	V _{CE} = 2 V,	$I_{C} = 1 \text{ A, } T_{C} = -55^{\circ} ($, See Note 5	10		20		
-	Base-Emitter	$I_B = 100 \text{ mA},$	$I_C = 1 A$,	See Note 5	0.6	1.2	0.6	1.2	v
V _{BE}	Voltage	$I_B = 500 \text{ mA},$	$I_{C} = 5 A$,	See Note 5		1.6		1.6	_ '
v	Collector-Emitter	$I_B = 100 \text{ mA},$	$I_{C} = 1 A$,	See Note 5		0.25		0.25	V
V _{CE(sat)}	Saturation Voltage	$I_B = 500 \text{ mA},$	$I_C = 5 A$	See Note 5		2		2	L' _
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 V,	I _C = 1 A, f = 10 MHz		4		4		
Copo	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 V,	$I_E = 0$, $f = 1$ MHz			150		150	pF

NOTE 5: This parameter must be measured using pulse techniques: $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

* thermal characteristics

Γ	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	3.33	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	87.5	deg/W

*switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†	2N3996 2N3998 MAX	2N3997 2N3999 MAX	TINU
tor	. Turn-On Time	$I_C = 1 \text{ A}, \qquad I_{B(1)} = 100 \text{ mA}, I_{B(2)} = -100 \text{ mA},$	0.3	0.3	μs
tot	Turn OM Time	$V_{BE(off)}=-3.7$ V, $R_L=20$ Ω , See Figure 1	1.5	2	μ.,

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{*}Indicates JEDEC registered data.

*PARAMETER MEASUREMENT INFORMATION

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 2$ μ s, duty cycle $\le 2\%$.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq$ 15 ns, $R_{in} \geq$ 10 M Ω , $C_{in} \leq$ 11.5 pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

NOTE 5: This parameter must be measured using pulse techniques: $t_{\rm p}=300~\mu$ s, duty cycle \leq 2%. *Indicates JEDEC registered data.

NOTE 5: This parameter must be measured using pulse techniques: $t_p=300~\mu s$, duty cycle $\leq 2\%$.

MAXIMUM SAFE OPERATING REGION

NOTE 6: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage-biased with respect to the emitter and the collector-base voltage rating is not exceeded.

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation		₩
P _{T(max)}	Peak Power Dissipation		₩
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	87.5	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	3.33	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	84.17	deg/W
θ _{C-HS}	Case-to-Heat-Sink Thermal Resistance		deg/W
HHS-A	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		٥,
Т _С	Case Temperature		۰۲
T _{J(avg)}	Average Junction Temperature	≤ 200	٥٥
T _{J(max)}	Peak Junction Temperature	≤ 200	°C
K	Peak-Power Coefficient	See Figure 10	
† _p	Pulse Width		ms
t _x	Pulse Period		ms
d	Duty Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation,

heat sink used.

$$P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J\text{-}C} + \theta_{C\text{-}HS} + \theta_{HS\text{-}A}} \text{ for } 100^{\circ}\text{C} \leq T_C \leq 200^{\circ}\text{C}$$

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J,A}} \text{for } 25^{\circ}C \leq T_A \leq 200^{\circ}C.$$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P}_{\mathrm{T[max]}} = \frac{\mathrm{T}_{\mathrm{J[max]}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d} \; (\theta_{\mathrm{C-HS}} + \theta_{\mathrm{HS-A}}) + \; \mathrm{K} \; \theta_{\mathrm{J-C}}} \mathrm{for} \; 100^{\circ} \mathrm{C} \leq \mathrm{T_{C}} \leq 200^{\circ} \mathrm{C}$$

Equation No. 4 — Application: Peak power dissipation,

$$P_{T[max]} = \frac{T_{J[max]} - T_A}{d \ \theta_{C-A} + \ K \ \theta_{J-C}}$$
for 25°C $\leq T_A \leq 200$ °C

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

 $heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} = extsf{7} ext{ deg/W (From information supplied}$ with heat sink.)

$$T_{J(avg)}$$
 (design limit) = 200°C $T_A = 50$ °C

$$t_p = 0.1 \text{ ms}$$

Solution

From Figure 10, Peak-Power Coefficient

K = 0.103 and by use of equation No. 3

$$\mathbf{P_{T(max)}} = \frac{\mathbf{T_{J(max)}} - \mathbf{T_{A}}}{\mathbf{d} \ (\theta_{\text{C-HS}} + \theta_{\text{HS-A}}) + \mathbf{K} \ \theta_{\text{J-C}}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (7) + (0.103) 3.33} = 143 \text{ W}$$

FOR HIGH-SPEED POWER SWITCHING APPLICATIONS

- 15 W at 100°C Case Temperature
- Max V_{CE (sat)} of 0.3 V at 0.5 A I_C
- Max ton of 300 ns at 0.5 A Ic
- Min f_T of 40 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	2N4000 2N4001
Collector-Base Voltage	. 100 V 120 V
Collector-Emitter Voltage (See Note 1)	. 80 V 100 V
Emitter-Base Voltage	. ← 8V →
Continuous Collector Current	. ← 1A →
Peak Collector Current (See Note 2)	. ← 3 A →
Continuous Base Current	. ←0.5 A →
Safe Operating Region at (or below) 100°C Case Temperature	. See Figure 8
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)	4—15 W—>
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)	. — 13 W—
Temperature (See 1401e 4)	.
Operating Collector Junction Temperature Range	65°C to 200°C
Storage Temperature Range	65°C to 200°C
Lead Temperature ¼ Inch from Case for 10 Seconds	

- NOTES: 1. These values apply when the base-emitter diode is open-circuited.

 - 2. This value applies for $t_p \le 1$ ms, duty cycle $\le 50\%$. 3. Derate linearly to 200°C case temperature at the rate of 0.15 W/deg.
 - 4. Derate linearly to 200°C free-air temperature at the rate of 5.72 mW/deg.
- *Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N4	1000	2N4		
	PARAMEIER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ mA}, I_B = 0,$ See Note 5	80		100		V
Iceo	Collector Cutoff Current	$V_{CE}=60 \text{ V}, I_{B}=0$		10			μΑ
-CEO	Conceior Colon Contain	$V_{CE} = 80 \text{ V}, I_B = 0$				10	μ.,
		$V_{CE} = 90 \text{ V}, V_{BE} = 0$		2			
	Collector Cutoff Current	$V_{CE} = 110 \text{ V}, V_{BE} = 0$				2	μΑ
ICES	Collector Cutoff Current	$V_{CE} = 90 \text{ V}, V_{BE} = 0, T_{C} = 150 ^{\circ}\text{C}$		50			μ"
		$V_{CE} = 110 \text{ V}, V_{BE} = 0, T_{C} = 150 ^{\circ}\text{C}$	1			50	
	Emitter Cutoff Current	$V_{EB} = 5 \text{ V}, I_{C} = 0$		500		500	nA
IEBO	Emitter Cutoff Cuttent	$V_{EB} = 8 \text{ V}, I_{C} = 0$		10		10	μA
		V _{CE} = 2 V, I _C = 50 mA	10		20		
	Static Forward Current Transfer Ratio	$V_{CE} = 2 \text{ V}, I_C = 0.5 \text{ A}, \qquad \text{See Note 5}$ $V_{CE} = 5 \text{ V}, I_C = 1 \text{ A}, \qquad \text{See Note 5}$	30	120	40	120	
h _{FE}			10		20		
		$V_{CE} = 2 \text{ V}, I_{C} = 0.5 \text{ A}, \ T_{C} = -55 ^{\circ}\text{C},$	10		15		
		See Note 5	10		1 ''		
v	David Carittee Vallage	$I_B = 50 \text{ mA}, I_C = 0.5 \text{ A},$ See Note 5		1		1	v
V _{BE}	Base-Emitter Voltage	$I_B = 100 \text{ mA}, I_C = 1 \text{ A},$ See Note 5		1.2		1.2	' '
v	Collector-Emitter	$I_B = 50 \text{ mA}, I_C = 0.5 \text{ A},$ See Note 5		0.3		0.3	v
V _{CE(sat)}	Saturation Voltage	$I_B = 100 \text{ mA}, I_C = 1 \text{ A},$ See Note 5		0.5		0.5	"
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE}=5$ V, $I_{C}=0.5$ A, $f=20$ MHz	2		2		
Copo	Common-Base Open-Circuit Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, \qquad f = 1 \text{ MHz}$		60		60	pF

NOTE 5: These parameters must be measured using pulse techniques. $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

*thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	6.67,	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	175	ueg/ W

*switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†	MAX	UNIT
ton	Turn-On Time	$I_C = 0.5 \text{ A}, \qquad I_{B(1)} = 50 \text{ mA}, I_{B(2)} = -50 \text{ mA},$	0.3	μs
t _{off}	Turn-Off Time	$V_{BE(off)} = -4$ V, $R_L = 20$ Ω , See Figure 1	2	μ s

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{*}Indicates JEDEC registered data.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_{out} = 50 \Omega$, $t_p = 10 \mu s$, duty cycle $\le 2\%$.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq$ 15 ns, $R_{in} \geq$ 10 M Ω , $C_{in} \leq$ 5 pF.

c. Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques. t $_{
m p}=$ 300 $\mu{
m s}$, duty cycle \leq 2%.

MAXIMUM SAFE OPERATING REGION

NOTE 6: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage-biased with respect to the emitter and the collector-base voltage rating is not exceeded.

TYPES 2N4000, 2N4001

N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTORS

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation		W
P _{T(max)}	Peak Power Dissipation		W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	175	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	6.67	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	168.33	deg/W
$\theta_{\text{C-HS}}$	Case-to-Heat-Sink Thermal Resistance		deg/W
HHS-A	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°c
Тc	Case Temperature		°c
T _{J(avg)}	Average Junction Temperature	≤ 200	°C
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 10	
1 _p	Pulse Width		ms
t _x	Pulse Period		ms
d	Duty Cycle Ratio (t _p /t _x)		

Equation No. 1 - Application: d-c power dissipation, heat sink used.

$$\rm P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J\text{-}C} + \theta_{C\text{-}HS} + \theta_{HS\text{-}A}} ~_{as~in~Figure~9} ~_{c} \leq 200 ^{\circ} C$$

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$P_{T(avg)} = rac{T_{J(avg)} - T_A}{ heta_{J-A}} ext{ for 25°C} \le T_A \le 200°C$$

Equation No. 3 - Application: Peak power dissipation, heat sink used.

$$\mathrm{P}_{\mathrm{T[max]}} = \frac{\mathrm{T}_{\mathrm{J[max]}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d} \; (\theta_{\mathrm{C-HS}} + \; \theta_{\mathrm{HS-A}}) \; + \; \mathrm{K} \; \theta_{\mathrm{J-C}}} \; \mathrm{for} \; 100 ^{\circ} \mathrm{C} \leq \mathrm{T_{C}} \leq 200 ^{\circ} \mathrm{C}$$

Equation No. 4 - Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d} \ \theta_{\mathrm{C-A}} \ + \ \mathrm{K} \ \theta_{\mathrm{J-C}}} \ \mathrm{for} \ 25^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le 200^{\circ}\mathrm{C}.$$

Example — Find P_{T(max)} (design limit)

OPERATING CONDITIONS:

 $heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} = extsf{7} ext{deg/W}$ (From information supplied with heat sink.)

 $T_{J(avg)}$ (design limit) = 200°C $T_A = 50$ °C

d = 10% (0.1)

 $t_p = 1 \text{ ms}$

From Figure 10, Peak-Power Coefficient K = 0.19 and by use of equation No. 3

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d} \; (\theta_{\mathrm{C-HS}} + \; \theta_{\mathrm{HS-A}}) \; + \; \mathrm{K} \; \theta_{\mathrm{J-C}}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (7) + (0.19) (6.67)} = 76 \text{ W}$$

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

- 30-A Rated Continuous Collector Current
- 100 Watts at 100°C Case Temperature
- Maximum V CE(sat) of 1.2 V at 30 A
- Maximum V_{RE} of 1.8 V at 30 A
- Maximum t_{on} of $1 \mu s$ at 15 A

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

																2N4002 2N4003
Collector-Base Voltage																. 100 V 120 V
Collector-Emitter Voltage (See Note	1)															. 80 V 100 V
Emitter-Base Voltage																. ← 8 V →
Continuous Collector Current																. ←—30 A——>
Peak Collector Current (See Note 2)																. ← 40 A →
Continuous Base Current																. ← 1 0 A →
Continuous Emitter Current																. ← 30 A →
Safe Operating Region at (or below)	100)°C	: C	ase	Te	emp	er	atur	e							. See Figure 7
Continuous Device Dissipation at (or b	elov	v) .	100	°C	Co	ıse.	Tei	mpe	erat	lure) (S	ee	No	te	3)	. ← 100 W →
Continuous Device Dissipation at (or b	elov	ı) 2	25°	C F	ree	-Ai	r T	em:	oer	atu	re	(Se	e N	ote	· 4)	$\cdot \leftarrow 4 \text{ W} \rightarrow$
Operating Collector Junction Tempera	iture	R	anç	је				. '				٠.			. ′	65°C to 200°C
Storage Temperature Range																65°C to 200°C
Terminal Temperature 1/6 Inch from Ca																

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$. 3. Derate linearly to 200°C case temperature at the rate of 1 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 22.9 mW/deq.

*Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

		TECT COMPLETIONS	2N4	1002	2N4		
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ mA}, I_B = 0$, See Note 5	80		100		٧
		$V_{CE} = 40 \text{ V}, I_B = 0$		2			mA
CEO	Collector Cutoff Current	$V_{CE} = 50 \text{ V}, I_B = 0$				2	IIIA
		$V_{CE} = 90 \text{ V}, V_{BE} = 0$		1			
	Collector Cutoff Current	$V_{CE} = 110 \text{ V}, V_{BE} = 0$				1	mA
I _{CES}	Conector Colon Colleni	V _{CE} = 90 V, V _{BE} = 0, T _C = 150°C		2			IIIA
		V _{CE} = 110 V, V _{BE} = 0, T _C = 150°C				2]
1	Emitter Cutoff Current	$V_{EB} = 5 V$, $I_{C} = 0$		100		100	μA
I _{EBO}	Cinities Colori Corrent	V _{EB} = 8 V, I _C = 0		50		50	mA
h _{FE}	Static Forward Current	$V_{CE} = 4 \text{ V}, I_{C} = 30 \text{ A}, \text{ See Notes 5 and 6}$	10		10		
"FE	Transfer Ratio	$V_{CE} = 4 V$, $I_{C} = 15 A$, See Notes 5 and 6	20	80	20	80	
V _{BE}	Base-Emitter Voltage	$V_{CE} = 4 \text{ V}, I_{C} = 30 \text{ A}, \text{ See Notes 5 and 6}$		1.8		1.8	٧
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 4 \text{ A}$, $I_C = 30 \text{ A}$, See Notes 5 and 6		1.2		1.2	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 4 V, I _C = 1 A, f = 1 kHz	30	-	30		
h _{fo}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 1 A, f = 10 MHz	3		3		

NOTES: 5. These parameters must be measured using pulse techniques. t $_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$.

*thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	1	deg/W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	43.7	deg/W

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

^{*}Indicates JEDEC registered data.

*switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	MAX	UNIT
t _{on} Turn-On Time	$I_C = 15 \text{ A}, \qquad I_{B(1)} = 1.5 \text{ A}, I_{B(2)} = -1.5 \text{ A},$	1	μs
t _{off} Turn-Off Time	$V_{ m BE\ (off)}=$ -2 V, $R_{ m L}=$ 3 Ω , See Figure 1	3	μι

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveform at point "A" has the following characteristics: $t_{r} \leq$ 100 ns, $t_{p} =$ 20 μ s, duty cycle \leq 0.2%.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 5$ ns, $R_{in} \geq 1$ M Ω , $C_{in} \leq 5$ pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

^{*}Indicates JEDEC registered data.

NOTES: 5. These parameters must be measured using pulse techniques, $t_p=300~\mu s$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

FIGURE 5 FIGURE 6

MAXIMUM SAFE OPERATING REGION

NOTE 5: These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu {
m s}$, duty cycle $\leq 2\%$.

Operation above maximum Y_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base voltage rating is not exceeded.

THERMAL INFORMATION

FIGURE 9

CAMBOI DECIMITION

SYMBOL	DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation		W
P _{T(max)}	Peak Power Dissipation		W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	43.7	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	1	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	42.7	deg/W
θ _{C-HS}	Case-to-Heat-Sink Thermal Resistance		deg/W
θ _{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°C
Tc	Case Temperature		°C
T _{J(avg)}	Average Junction Temperature	≤ 200	°C
T _{J(max)}	Peak Junction Temperature	≤ 200	°C
K	Peak-Power Coefficient	See Figure 9	
tp	Pulse Width		ms
t _x	Pulse Period		ms
d	Duty-Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$\rm P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-C} + \theta_{C-HS} + \theta_{HS-A}} ~ {\rm for} ~ 100 ^{\rm o}{\rm C} \leq T_C \leq 200 ^{\rm o}{\rm C},$$

Equation No. 2 — Application: d-c power dissipation,

$$P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-A}}$$
 for 25°C $\leq T_A \leq 200$ °C

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P_{T(max)}} = \frac{\mathrm{T_{J(max)}} - \mathrm{T_{A}}}{\mathrm{d} \; (\theta_{\mathrm{C-HS}} + \; \theta_{\mathrm{HS-A}}) + \; \mathrm{K} \; \theta_{\mathrm{J-C}}} \mathrm{for} \; 100^{\circ} \mathrm{C} \leq \mathrm{T_{C}} \leq 200^{\circ} \mathrm{C}$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T_{J(max)} - T_{A}}}{\mathrm{d}~\theta_{\mathrm{C-A}} + \mathrm{K}~\theta_{\mathrm{J-C}}} \mathrm{for}~25^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq 200^{\circ}\mathrm{C}$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

 $heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} = extsf{2.5 deg/W}$ (From information supplied with heat sink.)

$$T_{J[avg]}$$
 (design limit) = 200°C

$$T_A = 50^{\circ}C$$

$$d = 10\% (0.1)$$

$$t_p = 0.1 \text{ ms}$$

Solution

From Figure 9, Peak-Power Coefficient

K = 0.1 and by use of equation No. 3

$$P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d'(\theta_{C\text{-HS}} + \theta_{HS\text{-A}}) + K \, \theta_{J\text{-C}}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1(2.5) + 0.1(1)} = 428 \text{ W}$$

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

- 15 W at 100°C Case Temperature
- Max V_{CE(sat)} of 0.3 V at 1 A I_C
- Typ ton of 130 ns at 1 A Ic
- Min f_T of 30 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage		•		•		•	•	•	•	•	•	•	•	•	•	•	100 V
Collector-Emitter Voltage (See Note 1)														•	•		80 V
Emitter-Base Voltage																	8 V
Continuous Collector Current														•			2 A
Peak Collector Current (See Note 2) .																	4 A
Continuous Base Current																•	1 A
Continuous Emitter Current		•															3 A
Safe Operating Region at (or below) 100	°C C	ase 1	Temp	erat	ure										;	See	Figure 7
Continuous Device Dissipation at (or belo	w) 1	00°C	Cas	e Te	empe	ratu	re	(Se	e N	lote	e 3).					15 W
Continuous Device Dissipation at (or belo	w) 2	5°C	Free	Air	Tem	perc	itur	e (See	N	ote	4)					1 W
Operating Collector Junction Temperatu	re R	ange												_	65°	'C t	200°C
Storage Temperature Range														_	65°	'C t	200°C
Lead Temperature $1/6$ Inch from Case for	10 \$	Seco	nds														230°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for $t_{\rm p} \leq 0.3$ ms, duty cycle $\leq 10\%$.
- 3. Derate linearly to 200°C case temperature at the rate of 0.15 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 5.72 mW/deg.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 30 mA, I _B = 0, See Note 5	80		٧
I _{CEO}	Collector Cutoff Current	V _{CE} = 40 V, I _B = 0		1	μΑ
•	Called a Catall Comment	V _{CE} = 90 V, V _{BE} = 0		10	
ICES	Collector Cutoff Current	V _{CE} = 90 V, V _{BE} = 0, T _C = 150°C		75	μη
I _{EBO}	F 30 6 1 11 6 11 11 11 11 11 11 11 11 11 11	$V_{EB} = 5 \text{ V}, I_{C} = 0$		0.5	μA μA V
	Emitter Cutoff Current	V _{EB} = 8 V, I _C = 0		10	
	out to be at a finite	$V_{CE} = 2 \text{ V}, I_{C} = 1 \text{ A}, \text{See Notes 5 and 6}$	30	120	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 2 \text{ V}, I_{C} = 2 \text{ A}, \text{See Notes 5 and 6}$	15		
V _{BE}	Base-Emitter Voltage	$ m V_{CE} = 2~V, ~~I_{C} = 2~A, ~~See~Notes~5~and~6$		1.2	٧
		$I_B = 100$ mA, $I_C = 1$ A, See Notes 5 and 6		0.3	٧
V _{CE(sat)} Collector-Emitter Saturation Voltage		$I_B=200$ mA, $I_C=2$ A, See Notes 5 and 6		0.5	٧
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_C = 1 \text{ A}, f = 1 \text{ kHz}$	30		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 1 A, f = 15 MHz	2		

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

*thermal characteristics

PARAMETER		MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	6.66	1/111
$\theta_{ extsf{J-A}}$	Junction-to-Free-Air Thermal Resistance	175	deg/W

^{*}Indicates JEDEC registered data.

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†			TYP	UNIT
ton	Turn-On Time	I _C = 1 A,	$I_{B(1)} = 100 \text{ mA},$	$I_{B(2)} = -100 \text{ mA},$	0.13	
toff	Turn-Off Time	$V_{BE(off)} = -3.7 V,$	$R_L=20~\Omega$,	See Figure 1	1.5	μ s

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 2$ μ s, duty cycle $\le 2\%$.

b. Waveforms are manitored on an oscilloscope with the following characteristics: $t_{r} \leq$ 15 ns, $R_{in} \geq$ 10 M Ω , $C_{in} \leq$ 11.5 pF.

c. Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques, $t_{
m p}=$ 300 μ s, duty cycle \leq 2%.

NOTE 7: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base-voltage rating is not exceeded.

N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation		W
P _{T(max)}	Peak Power Dissipation		W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	175	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	6.66	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	168	deg/W
$\theta_{\text{C-HS}}$	Case-to-Heat-Sink Thermal Resistance		deg/W
θ _{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°C
T _C	Case Temperature		°c
T _{J(avg)}	Average Junction Temperature	≤ 200	°c
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 9	
t _p	Pulse Width		ms
1 _x	Pulse Period		ms
d	Duty-Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$\rm P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-C} + \theta_{C-HS} + \theta_{HS-A}} \quad \begin{array}{l} \rm for \; 100^{\circ}C \leq T_C \leq 200^{\circ}C \\ \rm as \; in \; Figure \; 8 \end{array}$$

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T[avg]}} = \frac{\mathrm{T}_{\mathrm{J[avg]}} - \mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{J-A}}} \quad \mathrm{for} \ 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$P_{T(max)} = \frac{T_{J(max)} - T_A}{d \; (\theta_{C-HS} + \; \theta_{HS-A}) + \; K \; \theta_{J-C}} \; \; \text{for 100°C} \leq T_C \leq 200°C$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d}\; \theta_{\mathrm{C-A}} + \; \mathrm{K}\; \theta_{\mathrm{J-C}}} \mathrm{for}\; 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

$$heta_{ extsf{C-HS}} + heta_{ extsf{HS-A}} = extsf{7} ext{ deg/W (From information supplied}$$
 with heat sink.)

$$T_{J(avg)}$$
 (design limit) = 200°C
 $T_A = 50$ °C
 $d = 10\%$ (0.1)

$$t_p = 0.1 \text{ ms}$$

Solution:

From Figure 9, Peak-Power Coefficient

K = 0.105 and by use of equation No. 3

$$P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d (\theta_{C-HS} + \theta_{HS-A}) + K \theta_{J-C}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (7) + 0.105 (6.66)} = 107 W$$

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS

- 50 W at 100°C Case Temperature
- Max V_{CE(sat)} of 0.4 V at 5 A I_C
- Typ ton of 150 ns at 5 A Ic
- Min f_T of 40 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current
Safe Operating Region at (or below) 100°C Case Temperature See Figure 7
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3) 50 W
Continuous Device Dissipation at (or below) 25° C Free-Air Temperature (See Note 4) $3.5\mathrm{W}$
Operating Collector Junction Temperature Range
Storage Temperature Range
Terminal Temperature 1/16 Inch from Case for 10 Seconds

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for t_p \leq 0.3 ms, duty cycle \leq 10%.
- 3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 20 mW/deg.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 30 \text{ mA}, I_B = 0, See Note 5$	80		٧
I _{CEO}	Collector Cutoff Current	V _{CE} = 40 V, I _B = 0		10	μΑ
_		$V_{CE} = 90 \text{ V}, V_{BE} = 0$		10	
ICES	Collector Cutoff Current	V _{CE} = 90 V, V _{BE} = 0, T _C = 150°C		500	μΑ
I _{EBO}		$V_{EB} = 5 \text{ V}, I_{C} = 0$		5	
	Emitter Cutoff Current	V _{EB} = 8 V, I _C = 0		50	
		$V_{CE} = 4 \text{ V}, I_{C} = 5 \text{ A}, \text{ See Notes 5 and 6}$	30	120	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 4 \text{ V}, I_{C} = 10 \text{ A, See Notes 5 and 6}$	15		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 4 \text{ V}, I_{C} = 10 \text{ A, See Notes 5} \text{ and 6}$		1.2	٧
		$I_B = 0.5 \text{ A}, I_C = 5 \text{ A}, \text{See Notes 5 and 6}$		0, 4	,,
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 1.3$ A, $I_C = 10$ A, See Notes 5 and 6		1	\
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ A}, f = 1 \text{ kHz}$	30		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_{C} = 1 \text{ A}, f = 20 \text{ MHz}$	2		

NOTES: 5. These parameters must be measured using pulse techniques. $t_{
m p}^{\, \cdot} = 300~\mu {
m s}$, duty cycle $\leq 2\%$.

*thermal characteristics

	PARAMETER	MAX	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	2	deg/W
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	50	uey/ W

^{*}Indicates JEDEC registered data.

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	TYP	UNIT
t _{on} Turn-On Time	$I_C = 5 \text{ A}, \ I_{B(1)} = 500 \text{ mA}, \ I_{B(2)} = -500 \text{ mA},$	0.15	
t _{off} Turn-Off Time	$V_{BE(off)}=-5$ V, $R_L=5$ $\Omega,$ See Figure 1	1.5	μs

[†]Voltage and current values shown are naminal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1

- NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 10$ μ s, duty cycle $\le 2\%$.
 - b. Waveforms are monitored on an oscilloscope with the following characteristics: t_r \leq 15 ns, R $_{in} \geq$ 10 M Ω , C $_{in} \leq$ 11.5 pF.
 - c. Resistors must be noninductive types.
 - d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

NOTES: 5. These parameters must be measured using pulse techniques. $t_{
m p}=300~\mu {
m s}$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING REGION

NOTE 7: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base-voltage rating is not exceeded.

N-P-N EPITAXIAL PLANAR SILICON POWER TRANSISTOR

THERMAL INFORMATION

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(avg)}	Average Power Dissipation	_	W
P _{T(max)}	Peak Power Dissipation		W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	50	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	2	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	48	deg/W
θ _{C-HS}	Case-to-Heat-Sink Thermal Resistance		deg/W
HHS-A	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°C
T _C	Case Temperature		°c
T _{J(avg)}	Average Junction Temperature	≤ 200	°c
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 9	
t _p	Pulse Width		ms
t _x	Pulse Period		ms
đ	Duty-Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$\rm P_{T(avg)} = \frac{T_{J(avg)} - T_A}{\theta_{J-C} + \theta_{C-HS} + \theta_{HS-A}} ~ {\rm for~100^{\circ}C} \leq T_C \leq 200^{\circ}C$$

FIGURE 9

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(avg)}} = \frac{\mathrm{T}_{\mathrm{J(avg)}} - \mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{J-A}}} \; \mathrm{for} \; 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\rm P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d\left(\theta_{C-HS} + \theta_{HS-A}\right) + \ K \ \theta_{J-C}} \ for \ 100°C \le T_{C} \le 200°C$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d}\;\theta_{\mathrm{C-A}} + \; \mathrm{K}\;\theta_{\mathrm{J-C}}} \mathrm{for}\; 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

$$heta_{\text{C-HS}} + heta_{\text{HS-A}} = ext{1.3 deg/W}$$
 (From information supplied with heat sink.)

$$T_{J(avg)}$$
 (design limit) = 200°C
 $T_A = 50$ °C
 $d = 10\%$ (0.1)

$$t_p = 0.1 \text{ ms}$$

Solution:

From Figure 9, Peak-Power Coefficient

K = 0.101 and by use of equation No. 3

$$P_{T(max)} = \frac{T_{J(max)} - T_{A}}{d (\theta_{C-HS} + \theta_{HS-A}) + K \theta_{J-C}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (1.3) + 0.101 (2)} = 450 \text{ W}$$

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH 2N4300

- 15 W at 100°C Case Temperature
- Max $V_{cE(sat)}$ of 0.45 V at 1 A I_c
- Typ ton of 150 ns at 1 A Ic
- Min f₇ of 30 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage	00 V
Collector-Emitter Voltage (See Note 1)	80 V
Emitter-Base Voltage	-6 V
Continuous Collector Current	-2 A
Peak Collector Current (See Note 2)	-5 A
Continuous Base Current	-1 A
Continuous Emitter Current	-3 A
Safe Operating Region at (or below) 100°C Case Temperature See Figu	ure 7
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3)	15 W
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)	1 W
Operating Collector Junction Temperature Range	00°C
Storage Temperature Range)0°C
Lead Temperature $\frac{1}{16}$ Inch from Case for 10 Seconds	50°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for $t_{\rm p} \leq$ 0.3 ms, duty cycle \leq 10%.
- 3. Derate linearly to 200°C case temperature at the rate of 0.15 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 5.72 mW/deg.

^{*}Indicates JEDEC registered data

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

*electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TE	ST CONDITI	ONS	MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{C}=-30$ mA,	$I_B = 0$,	See Note 5	80		٧
I _{CEO}	Collector Cutoff Current	V _{CE} = -40 V,	I _B = 0			-50	μΑ
I _{CES}	Collector Cutoff Current	V _{CE} = -90 V,	V _{BE} = 0			-10	
CES	Conecior Colon Conen	$V_{CE} = -50 \text{ V},$	$V_{BE}=0$,	T _C = 150°C		-500	μ.
I _{EBO}	Emitter Cutoff Current	V _{EB} = -4 V,	I _C = 0			-1	
TEBO LIMITEI COIOTI (Limiter Colon Colleni	V _{EB} = -6 V,	I _C = 0			-100	μΑ
hee	Static Forward Current Transfer Ratio	V _{CE} = -4 V,	I _C = -1 A,	See Notes 5 and 6	30	120	
"FE	Sidire forward Correlli Hallster Rallo	V _{CE} = -4 V,	I _C = -2 A,	See Notes 5 and 6	10		μA μA V
V _{BE}	Base-Emitter Voltage	V _{CE} = -4 V,	I _C = -2 A,	See Notes 5 and 6		-1.5	٧
V	Collector-Emitter Saturation Voltage	$I_B = -0.1 A,$	I _C = -1 A,	See Notes 5 and 6		-0.45	,,
V _{CE(sat)}	conector-chanter Saturation voltage	$I_B = -0.4 A,$	I _C = -2 A,	See Notes 5 and 6		-1] '
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A,	f = 1 kHz	30		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A,	f = 15 MHz	2		

NOTES: 5. These parameters must be measured using pulse techniques. I $_{
m p}=$ 300 μ s, duty cycle \leq 2%.

*thermal characteristics

	PARAMETER	MAX	UNIT
$ heta_{ extsf{J-C}}$	Junction-to-Case Thermal Resistance	6.66	deg/W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	175	aey/w

^{*}Indicates JEDEC registered data

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	TYP	UNIT	
t _{on} Turn-On Time	$I_C = -1 \text{ A}, \qquad I_{B(1)} = -0.1 \text{ A}, I_{B(2)} = 0.1 \text{ A},$	150		
t _{off} Turn-Off Time	$V_{BE(off)}=$ 3.7 V, $R_{L}=$ 20 Ω , See Figure 1	450	ns	

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50$ Ω , $t_p = 2$ μ s, duty cycle $\le 2\%$.

b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.

c. Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

VS

COLLECTOR CURRENT

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle $\leq 2\%$.

MAXIMUM SAFE OPERATING REGION

NOTE 7: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage biased with respect to the emitter and the collector-base-voltage rating is not exceeded.

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

THERMAL INFORMATION

FIGURE 9

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(av)}	Average Power Dissipation		₩
P _{T(max)}	Peak Power Dissipation		W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	175	deg/W
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	6.66	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	168	deg/W
θ _{C-HS}	Case-to-Heat-Sink Thermal Resistance		deg/W
θ _{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°C
т _с	Case Temperature		°c
T _{J(av)}	Average Junction Temperature	≤ 200	°c
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 9	
1 _p	Pulse Width		ms
1 _x	Pulse Period		ms
ď	Duty-Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$P_{T(av)} = \frac{T_{J(av)} - T_A}{\theta_{J\cdot C} + \theta_{C\cdot HS} + \theta_{HS\cdot A}} \ \ \text{for } 100^{\circ}\text{C} \leq T_C \leq 200^{\circ}\text{C}$$

Equation No. 2 — Application: d-c power dissipation,

$$P_{T(av)} = \frac{T_{J(av)} - T_A}{\theta_{J-A}}$$
 for $25^{\circ}C \le T_A \le 200^{\circ}C$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\rm P_{T(max)} = \frac{T_{J(max)} - T_A}{d~(\theta_{C-HS} + ~\theta_{HS-A}) ~+~ K~\theta_{J-C}}~~for~100°C \leq T_C \leq 200°C$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d}\; \theta_{\mathrm{C-A}} + \mathrm{K}\; \theta_{\mathrm{J-C}}} \;\; \mathrm{for}\; 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Example — Find P_{T(max)} (design limit)

OPERATING CONDITIONS:

 $heta_{\text{C-HS}} + heta_{\text{HS-A}} = text{7 deg/W (From information supplied}$

$$T_{J(av)}$$
 (design limit) = 200°C .
 $T_A = 50$ °C
 $d = 10\%$ (0.1)

$$t_p = 0.1 \text{ ms}$$

Solution:

From Figure 9, Peak-Power Coefficient

K = 0.105 and by use of equation No. 3

$$\mathbf{P_{T(max)}} = \frac{\mathbf{T_{J(max)}} - \mathbf{T_{A}}}{\mathbf{d} \ (\theta_{\text{C-HS}} + \theta_{\text{HS-A}}) + \mathbf{K} \ \theta_{\text{J-C}}}$$

$$P_{T(méx)} = \frac{200 - 50}{0.1 (7) + 0.105 (6.66)} = 107 \text{ W}$$

TYPES 2N5384, 2N5385

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTORS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH 2N3996 AND 2N3998

- 30 W at 100°C Case Temperature Typ t_{on} of 160 ns at 2 A I_c
- Max V_{CE(sat)} of 0.6 V at 2 A I_c
- Min f_x of 30 MHz

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Peak Collector Current (See Note 2)
Continuous Base Current
Continuous Emitter Current
Safe Operating Region at (or below) 100°C Case Temperature See Figure 2
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3) 30 W
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4) 2 W
Operating Collector Junction Temperature Range $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ \cdot \cdot \cdot \cdot \cdot $$ $$ $$ $$ $$ $$ $$ $$ $$
Storage Temperature Range
Terminal Temperature 1 4 Inch from Case for 10 Seconds $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. This value applies for t_p \leq 0.3 ms, duty cycle \leq 10%.

- 3. Derate linearly to 200°C case temperature at the rate of 0.3 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 11.4 mW/deg.

*Indicates JEDEC registered data

TYPES 2N5384, 2N5385 P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTORS

*electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -30 \text{ mA},$	I _B = 0,	See Note 5	80		٧
I _{CEO}	Collector Cutoff Current	V _{CE} = -40 V,	I ₈ = 0			-50	μΑ
		V _{CE} = -90 V,	$V_{BE} = 0$			-10	
ICES	Collector Cutoff Current	V _{CE} = -50 V,	$V_{BE} = 0$,	T _C = 150°C		-500	μ A
	- I	V _{EB} = _4 V,	$I_{C} = 0$			-1	
IEBO	Emitter Cutoff Current	$V_{EB} = -6 V$,	I _C = 0			-100	μΑ
		V _{CE} = -4 V,	$I_C = -2 A$	See Notes 5 and 6	20	80	
h _{FE}	Static Forward Current Transfer Ratio	V _{CE} = -4 V,	$I_C = -5 A$,	See Notes 5 and 6	10		
V _{BE}	Base-Emitter Voltage	$V_{CE} = -4 V$,	$I_C = -5 A$,	See Notes 5 and 6		-1.5	٧
		$I_B = -0.2 A,$	I _C = -2 A,	See Notes 5 and 6		-0.6	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = -1 A,	$I_C = -5 A$,	See Notes 5 and 6		-1.4] '
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A,	f = 1 kHz	20		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V,	I _C = -1 A,	f = 15 MHz	2		

NOTES: 5. These parameters must be measured using pulse techniques. $t_{p}=300~\mu s$, duty cycle $\leq 2\%$.

*thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-С}	Junction-to-Case Thermal Resistance	3.33	deg/W
$\theta_{\text{J-A}}$	Junction-to-Free-Air Thermal Resistance	87.5	ueg/ II

^{*}Indicates JEDEC registered data

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPES 2N5384, 2N5385 P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTORS

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†			TYP	UNIT
ton	Turn-On Time	$I_C = -2 A$,	$I_{B(1)} = -150 \text{ mA},$	I _{B(2)} = 150 mA,	160	
t _{off}	Turn-Off Time	$V_{BE(off)} = 2.8 V,$	$R_L=15~\Omega,$	See Figure 1	550	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $\mathbf{1_r} \leq 15 \text{ ns}$, $\mathbf{1_f} \leq 15 \text{ ns}$, $\mathbf{1_{p}} = 5 \text{ }\mu\text{s}$, duty cycle $\leq 2\%$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathbf{1_r} \leq 15 \text{ ns}$, $\mathbf{R_{in}} \geq 10 \text{ M}\Omega$, $\mathbf{C_{in}} \leq 11.5 \text{ pF}$.

c. Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPES 2N5384, 2N5385 P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTORS

MAXIMUM SAFE OPERATING REGION

NOTE 7: Operation above maximum Y_{CEO} is permissible if the base is reverse-voltage-biosed with respect to the emitter and the collector-base-voltage rating is not exceeded.

THERMAL CHARACTERISTICS

FOR POWER-AMPLIFIER AND HIGH-SPEED-SWITCHING APPLICATIONS DESIGNED FOR COMPLEMENTARY USE WITH 2N4301

- 50 W at 100°C Case Temperature
- Max V_{CE(sat)} of 0.6 V at 6 A Ic
- Typ ton of 230 ns at 6 A Ic
- Min f_T of 30 MHz at 10 V, 1 A

*mechanical data

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage) V
Collector-Emitter Voltage (See Note 1)	V
Emitter-Base Voltage	V
Continuous Collector Current	A
Peak Collector Current (See Note 2)	A
Continuous Base Current	A
Continuous Emitter Current	A
Safe Operating Region at (or below) 100°C Case Temperature See Figure	2 :
Continuous Device Dissipation at (or below) 100°C Case Temperature (See Note 3) 50	W
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 4) 3.5	W
Operating Collector Junction Temperature Range	°C
Storage Temperature Range	°C
Terminal Temperature 1/16 Inch from Case for 10 Seconds	°C

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%$.
- 3. Derate linearly to 200°C case temperature at the rate of 0.5 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 20 mW/deg.

*Indicates JEDEC registered data

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

*electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = -30 \text{ mA}, I_B = 0,$ See Note 5	80		٧	
I _{CEO}	Collector Cutoff Current	$V_{CE} = -40 \text{ V}, I_B = 0$		-50	μΑ	
1	Collector Cutoff Current	$V_{CE} = -90 \text{ V}, \ V_{BE} = 0$		-10		
ICES	Conector Coton Correni	$V_{CE} = -50 \text{ V}, \ V_{BE} = 0, \ T_{C} = 150 ^{\circ}\text{C}$		500	μΑ	
1	Emitter Cutoff Current	$V_{EB} = -4 V$, $I_C = 0$		-5		
IEBO	Emilier Colon Colleni	$V_{EB} = -6 V$, $I_C = 0$		-100	μΑ	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -4 V$, $I_C = -6 A$, See Notes 5 and 6	20	80		
IIFE	Static Forward Cottent Iransfer Kano	$V_{CE} = -4 V$, $I_{C} = -12 A$, See Notes 5 and 6	10			
V _{BE}	Base-Emitter Voltage	$V_{CE} = -4 V$, $I_{C} = -12 A$, See Notes 5 and 6		-1.5	٧	
v	Collector Emitter Entruntion Voltage	$I_B=-0.6$ A, $I_C=-6$ A, See Notes 5 and 6		-0.6		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B=-2.4$ A, $I_C=-12$ A, See Notes 5 and 6		-1.4	٧	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V, I _C = -1 A, f = 1 kHz	20			
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V, I _C = -1 A, f = 15 MHz	2			

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

*thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	2	
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	50	deg /W

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

^{*}Indicates JEDEC registered data

TYPE 2N5386 P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS†	TYP	UNIT
ton	Turn-On Time	$I_{C} = -6 \text{ A}, \qquad I_{B[1]} = -400 \text{ mA}, I_{B[2]} = 400 \text{ mA},$	230	
t _{off}	Turn-Off Time	$V_{ extsf{BE(off)}}=3.6$ V, $R_{ extsf{L}}=5$ Ω , See Figure 1	750	ns

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_{\rm r} \le 15$ ns, $t_{\rm f} \le 15$ ns, $t_{\rm cut} = 1.5$ k Ω , $t_{\rm p} = 5$ μ s, duty cycle $\le 2\%$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{\rm r} \le 15$ ns, $R_{\rm in} \ge 10$ M Ω , $C_{\rm in} \le 11.5$ pF.

c. Resistors must be noninductive types.

d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPE 2N5386

P-N-P EPITAXIAL PLANAR SILICON POWER TRANSISTOR

MAXIMUM SAFE OPERATING REGION

FIGURE 2

NOTE 7: Operation above maximum V_{CEO} is permissible if the base is reverse-voltage-blased with respect to the emitter and the collector-base-voltage rating is not exceeded.

THERMAL CHARACTERISTICS

FOR POWER-AMPLIFIER APPLICATIONS

- 200 V, 250 V, 300 V Rated Collector-Emitter Voltages
- 100 Watts at 100°C Case Temperature
- Typ ton of 300 ns at 2 A lc
- \bullet Min f_{τ} of 15 MHz at 10 V , 1 A

*mechanical data

*absolute maximum ratings at 25°C case temperature(unless otherwise noted)

	2N5387 2N5388 2N5389
Collector-Base Voltage	200 V 250 V 300 V
Collector-Emitter Voltage (See Note 1)	200 V 250 V 300 V
Emitter-Base Voltage	← 10 V>
Continuous Collector Current	← 7.5 A →
Peak Collector Current (See Note 2)	
Continuous Base Current	
Continuous Emitter Current	•
Safe Operating Region at (or below) 100°C Case Temperature	
Continuous Device Dissipation at (or below) 100°C Case Temperature	,
(See Note 3)	100 W
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature	,
(See Note 4)	∠3.5 W
Operating Collector Junction Temperature Range	
Storage Temperature Range	
Terminal Temperature 1/16 Inch from Case for 10 Seconds	

NOTES: 1. This value applies when the base-emitter diode is open-circuited.

- 2. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%$.
- 3. Derate linearly to 200°C case temperature at the rate of 1 W/deg.
- 4. Derate linearly to 200°C free-air temperature at the rate of 20 mW/deg.

*Indicates JEDEC registered data

*electrical characteristics at 25°C case temperature (unless otherwise noted)

		TICE CONDI	rionic		5387		5388		5389	UNIT
	PARAMETER	TEST CONDI	IIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C=30$ mA, $I_B=0$,	See Note 5	200		250		300		٧
		$V_{CE} = 180 \text{ V}, I_B = 0$			30					
ICEO	Collector Cutoff Current	$V_{CE}=225 \text{ V}, \text{ I}_{B}=0$					30			mA
		$V_{CE} = 270 \text{ V}, I_{B} = 0$							30	
		$V_{CE} = 180 \text{ V}, V_{BE} = 0$			1					
		$V_{CE}=225V,\;V_{BE}=0$					1			
		$V_{CE}=270 \text{ V}, V_{BE}=0$							1	
ICES	Collector Cutoff Current	$V_{CE} = 100 \text{ V}, V_{BE} = 0,$	T _C = 150°C		10					mA
		$V_{CE} = 125 V, \ V_{BE} = 0,$	T _C = 150°C				10]
		$V_{CE} = 150 \text{ V}, V_{BE} = 0,$	T _C = 150°C						10	
		$V_{EB} = 8 \text{ V}, I_{C} = 0$			0.1		0.1		0.1	
I _{EBO}	Emitter Cutoff Current	V _{EB} = 10 V, I _C = 0			1		1		1	mA
		V _{CE} = 5 V, I _C = 2 A,	See Notes 5 and 6	25	100	25	100	25	100	
h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = 5 \text{ V}, I_C = 5 \text{ A},$	See Notes 5 and 6	15		15		15] !
		V _{CE} = 5 V, I _C = 7 A,	See Notes 5 and 6	5		5		5		
V _{BE}	Base-Emitter Voltage	$V_{CE} = 5 \text{ V}, I_{C} = 7 \text{ A},$	See Notes 5 and 6		2.5		2.5		2.5	٧
.,	C. N. A F. itt C. A Malanca	$I_B = 1 A$, $I_C = 5 A$	See Notes 5 and 6		2		2		2	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_B = 1.4 \text{ A}, I_C = 7 \text{ A}$	See Notes 5 and 6		2.2		2.2		2.2	1 '
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 1 A	, f = 1 kHz	20		20		20		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 1 A	, f = 10 MHz	1.5		1.5		1.5		

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

*thermal characteristics

	PARAMETER	MAX	UNIT
θ _{Ј-С}	Junction-to-Case Thermal Resistance	1	deg/W
θ _{J-A}	Junction-to:Free-Air Thermal Resistance	50	

^{*}Indicates JEDEC registered data

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

switching characteristics at 25°C case temperature

	PARAMETER	T	EST CONDITION	IS†	TYP	UNIT
ton	Turn-On Time	$I_{C}=2A$	$I_{B(1)} = 200 \text{ mA},$	$I_{B(2)} = -200 \text{ mA},$	0.3	
t _{off}	Turn-Off Time	$V_{BE(off)} = -4.7 V,$	$R_L=20~\Omega$,	See Figure 1	1	μς

†Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_f \le 15$ ns, $t_{out} = 50 \Omega$, $t_p = 10 \mu s$, duty cycle $\le 2\%$.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leq$ 15 ns, $R_{in} \geq$ 10 M Ω , $C_{in} \leq$ 11.5 pF.
- c. Resistors must be noninductive types.
- d. The d-c power supplies may require additional bypassing in order to minimize ringing.

TYPICAL CHARACTERISTICS

STATIC FORWARD CURRENT TRANSFER RATIO

FIGURE 2

NOTES: 5. These parameters must be measured using pulse techniques. $t_p=300~\mu s$, duty cycle $\leq 2\%$.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING REGION

FIGURE 6

NOTE 5: This parameter must be measured using pulse techniques. $t_{_{
m D}}=300~\mu{\rm s}$, duty cycle \leq 2%.

THERMAL INFORMATION

FIGURE 7

FIGURE 8

SYMBOL DEFINITION

SYMBOL	DEFINITION	VALUE	UNIT
P _{T(av)}	Average Power Dissipation		W
P _{T(max)}	Peak Power Dissipation		₩
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	50	deg/W
θ _{J-C}	Junction-to-Case Thermal Resistance	1	deg/W
θ _{C-A}	Case-to-Free-Air Thermal Resistance	49	deg/W
$\theta_{\text{C-HS}}$	Case-to-Heat-Sink Thermal Resistance		deg/W
θ_{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance		deg/W
TA	Free-Air Temperature		°c
т _с	Case Temperature		°C
T _{J(av)}	Average Junction Temperature	≤ 200	°C
T _{J(max)}	Peak Junction Temperature	≤ 200	°c
K	Peak-Power Coefficient	See Figure 8	
t _p	Pulse Width		ms
t _x	Pulse Period		ms
d	Duty-Cycle Ratio (tp/tx)		

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$\mathrm{P}_{\mathrm{T(av)}} = \frac{\mathrm{T}_{\mathrm{J(av)}} - \mathrm{T_{A}}}{\theta_{\mathrm{J-C}} + \; \theta_{\mathrm{C-HS}} + \; \theta_{\mathrm{HS-A}}} \\ \underset{\mathrm{ds \; in \; Figure \; 7}}{\mathrm{for \; 100°C}} \leq \mathrm{T_{C}} \leq 200°\mathrm{C}$$

Equation No. 2 — Application: d-c power dissipation,

$$P_{T(av)} = \frac{T_{J(av)} - T_A}{\theta_{J-A}}$$
 for $25^{\circ}C \le T_A \le 200^{\circ}C$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d}\; (\theta_{\mathrm{C-HS}} + \; \theta_{\mathrm{HS-A}}) + \; \mathrm{K}\; \theta_{\mathrm{J-C}}} \mathrm{for} \; 100^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 200^{\circ} \mathrm{C}$$

Equation No. 4 — Application: Peak power dissipation, no heat sink used.

$$\mathrm{P}_{\mathrm{T(max)}} = \frac{\mathrm{T}_{\mathrm{J(max)}} - \mathrm{T}_{\mathrm{A}}}{\mathrm{d}\; \theta_{\mathrm{C-A}} + \mathrm{K}\; \theta_{\mathrm{J-C}}} \mathrm{for}\; 25^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 200^{\circ}\mathrm{C}$$

Example — Find P_{T(max)} (design limit)
OPERATING CONDITIONS:

 $\theta_{\text{C-HS}} + \theta_{\text{HS-A}} = 4 \text{ deg/W (From information supplied}$

$$T_{J(av)}$$
 (design limit) = 200°C $T_A = 50$ °C

$$t_p = 0.1 \text{ ms}$$

Solution:

From Figure 8, Peak-Power Coefficient

K = 0.105 and by use of equation No. 3 ,

$$P_{\mathsf{T}(\mathsf{max})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{max})} - \mathsf{T}_{\mathsf{A}}}{\mathsf{d} \; (\theta_{\mathsf{C-HS}} + \; \theta_{\mathsf{HS-A}}) \; + \; \mathsf{K} \; \theta_{\mathsf{J-C}}}$$

$$P_{T(max)} = \frac{200 - 50}{0.1 (4) + 0.106 (1)} = 296 W$$

TYPES 2N456A, 2N457A, 2N458A, 2N1021 AND 2N1022 P-N-P ALLOY - JUNCTION GERMANIUM POWER TRANSISTORS

CHOICE OF 40v, 60v, 80v, 100v, or 120v DEVICES LOW I_{CO} HIGH BETA LOW R_{CS} LOW THERMAL RESISTANCE 150 WATTS DISSIPATION

Designed specifically for High-Voltage Power Converters, High-Voltage
Amplifiers and Switching Circuits. Featuring Low Distortion,
Low Saturation Resistance and Fast Switching Times.

mechanical data

The use of silver alloy to assemble the mounting base and the use of resistance welding to seal the can, provide a hermetically sealed enclosure. During the assembly process the absence of flux, combined with extreme cleanliness, prevents sealed-in contamination.

The mounting base provides an excellent heat path from the collector junction to a heat sink which must be in intimate contact to permit operation at maximum rated dissipation.

The transistors are in a JEDEC TO-3 case.

absolute maximum ratings for all devices at 25°C mounting-base temperature (unless otherwise noted)*

Collector Current													7a
Base Current													3a
Total Device Dissipation**													150w
Collector Junction Temperature												. 10	00° C
Storage Temperature Range .										 55	to	+10	00° C
Thermal Resistance												0.5°	C/W

^{*}Maximum voltage ratings not specified because exceeding breakdown voltages will not permanently damage transistor characteristics so long as other maximum ratings are not exceeded.

^{**}Derate at 2 w/°C.

TYPES 2N456A, 2N457A, 2N458A, 2N1021 AND 2N1022 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

electrical characteristics at 25°C mounting-base temperature

							-
	2N456A	$V_{CB} = -40 \text{ v}$ $V_{CB} = -20 \text{ v}$ $V_{CB} = -40 \text{ v}$	I _E = 0, 25°C I _E = 0, 25°C I _E = 0, 71°C		-1.0 -0.2 -6.0	2.0 0.5 10.0	ma mo ma
	2N457A	$V_{CB} = -60 \text{ v}$ $V_{CB} = -60 \text{ v}$ $V_{CB} = -60 \text{ v}$	I _E = 0, 25°C I _E = 0, 25°C I _E = 0, 71°C		1.0 0.2 6.0	—2.0 —0.5 —10.0	ma ma ma
I _{CBO} Collector Reverse Curr	rent 2N458A	$V_{CB} = -80 \text{ v}$ $V_{CB} = -40 \text{ v}$ $V_{CB} = -80 \text{ v}$	I _E = 0, 25°C I _E = 0, 25°C I _E = 0, 71°C		1.0 0.2 6.0	—2.0 —0.5 —10.0	ma ma
	2N1021	$V_{CB} = -100 \text{ v}$ $V_{CB} = -50 \text{ v}$ $V_{CB} = -100 \text{ v}$	I _E = 0, 25°C I _E = 0, 25°C I _E = 0, 71°C	_	—1.0 —0.2 —6.0	—2.0 —0.5 —10.0	ma ma ma
	2N1022	$V_{CB} = -120 \text{ v}$ $V_{CB} = -60 \text{ v}$ $V_{CB} = -120 \text{ v}$	I _E = 0, 25°C I _E = 0, 25°C I _E = 0, 71°C		—1.0 —0.2 —6.0	2.0 0.5 10.0	ma ma ma
I _{EBO} Emitter Reverse Curre	nt All	V _{EB} = 10 v	I _C = 0		-0.2		ma
	2N456A 2N457A	I _C = -2 ma	$I_E = 0$ $I_E = 0$	<u>40</u>			v
BV _{CBO} Collector-Base Breakd		I _C = -2 ma	I _E = 0	80			٧
	2N1021	I _C = -2 ma	I _E = 0	—100			٧
	2N1022	I _C = -2 ma	I _E = 0	120			٧
	2N456A	I _C = -500 ma	$I_B = 0$	30	— 40	_	٧
	2N457A	I _C = -500 ma		 40	— 50		٧
BV _{CEO} Collector-Emitter Bred		I _C =500 ma		45	55		V
	2N1021	I _C = -500 ma		50	60		٧
	2N1022	I _C = -500 ma	$I_B = 0$	-55	-60		٧
	2N456A	I _C =200 ma			—50		V
	2N457A	I _C = -200 ma			60		٧
BV _{CER} Collector-Emitter Bre		I _C = -200 ma		ļ	67		٧
	2N1021		$R_{BE} = 33 \Omega$	 	—73 —78		V
	2N1022	I _C = -200 ma			-		V
	2N456A	I _C = -200 ma		—50	<u>60</u>		٧
	2N457A	I _C = -200 ma		<u>-60</u>	<u>70</u>		V
BV _{CES} Collector-Emitter Bred		I _C = -200 ma		<u>-65</u>	—78 —85	ļ	V
	2N1021 2N1022	I _C = -200 ma		—70 —75	85		V
BV _{EBO} Emitter-Base Breakd		I _E = -2 ma	I _C = 0	—20			v
		V _{CE} = -1.5 v	I _C = -7 a	22	47		
, nor	amadas Batia All	V _{CE} = -1.5 v	I _C = -5 a	30	60	90	
h _{FE} DC Forward Current 1	ransfer Ratio All	V _{CE} = -1.5 v	I _C = -3 a	35	82		
		V _{CE} = -1.5 v	I _C = —1 a	40	120		

TYPES 2N456A, 2N457A, 2N458A, 2N1021 AND 2N1022 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

electrical characteristics at 25°C mounting-base temperature

	PARAMETER	TYPE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
			$V_{CE} = -1.5 v I_{C} = -7 a$		-1.2		٧
V _{BE}	Base-Emitter Voltage	All	$V_{CE} = -1.5 \text{ v}$ $I_{C} = -5 \text{ a}$		-0.9	-1.5	٧
▼ BE	Dase-chiliter Vollage	All	$V_{CE} = -1.5 v I_{C} = -3 a$		-0.6		٧
			$V_{CE} = -1.5 v I_{C} = -1 a$		0.35		٧
			$I_{B} = -700 \text{ma} I_{C} = -7 \text{a}$		-0.3		٧
Vorum	Collector-Emitter Saturation Voltage	411	$I_{B} = -500 \text{ma} I_{C} = -5 \text{a}$		-0.2	0.5	٧
V _{CE(sat)}	Conecioi-cinnier Salaranon Vonage	All	I _B = -300 ma I _C = -3 a		0.1		٧
			$I_{B} = -100 \text{ma} I_{C} = -1 \text{a}$		05		٧
			V _{CE} = -1.5 v I _C = -7 a		5.7		mhos
y _{FE}	DC Common-Emitter Forward Transfer		$V_{CE} = -1.5 \text{ v}$ $I_{C} = -5 \text{ a}$	3.3	5.5		mhos
	Admittance	All	$V_{CE} = -1.5 v I_{C} = -3 a$		4.8		mhos
			$V_{CE} = -1.5 v \qquad I_{C} = -1 a$		3.0		mhos
			$V_{CE} = -1.5 \text{ v}$ $I_{C} = -7 \text{ a}$		8		ohms
h _{IE}	DC Common-Emitter Input Impedance	AII	$V_{CE} = -1.5 \text{ v}$ $I_{C} = -5 \text{ a}$		11	28	ohms
**16	be common cumor impor impounte	^"	$V_{CE} = -1.5 v$ $I_{C} = -3 a$		16		ohms
			$V_{CE} = -1.5 \text{ v}$ $I_{C} = -1 \text{ a}$		42		ohms
f _T	Internal Cutoff Frequency (where h _{fo} = 1)	All	$V_{CE} = -2 v$ $I_{C} = -1 a$		430		kc

TYPES 2N456A, 2N457A, 2N458A, 2N1021 AND 2N1022 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

TYPICAL CHARACTERISTICS

COLLECTOR REVERSE-CURRENT CHARACTERISTICS

GUARANTEE D COMMON-EMITTER DC FORWARD - CURRENT TRANSFER RATIO VS COLLECTOR CURRENT

COMMON-EMITTER DC FORWARD CURRENT TRANSFER RATIO, DC INPUT RESISTANCE, AND DC FORWARD TRANSFER ADMITTANCE VS COLLECTOR CURRENT

DISSIPATION DERATING

TYPES 2N1038, 2N1039, 2N1040, 2N1041 2N2552, 2N2553, 2N2554, 2N2555 2N2554, 2N2555 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

40-, 60-, 80-, or 100-VOLT UNITS
20 WATTS AT 25°C CASE TEMPERATURE
Choice of 10-5, Stud, or Hex Package
Guaranteed Beta at 1 amp and 50 ma lc

Guaranteed I_{CEX} at 85°C
LOW r_{CS} • LOW I_{CBO} • LOW V_{BE}
for
RELAY DRIVERS • PULSE AMPLIFIERS
SERVO AMPLIFIERS • AUDIO AMPLIFIERS

mechanical data

The transistors are in hermetically sealed, resistance-welded cases with glass-to-metal seals between case and leads. These devices are available in (1) a round TO-5 package weighing approximately 2.4 grams (2N1038 series), (2) a stud heat-sink package which weighs approximately 5.4 grams (2N2552 series) and (3) a hexagonal flanged-nut heat-sink package which weighs approximately 8.6 grams (2N2556 series). Mounting hardware available is shown on page 8.

*Indicates JEDEC Registered Data.

TYPES 2N1038, 2N1039, 2N1040, 2N1041 ● 2N2552, 2N2553, 2N2554, 2N2555 ● 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	2N1038 2N2552 2N2556	2N1039 2N2553 2N2557	2N1040 2N2554 2N2558	2N1041 2N2555 2N2559
Collector-Base Voltage	. 40 v	60 v	80 v	100 v
Collector-Emitter Voltage (see Note 1)	. 40 v	60 v	80 v	100 v
Emitter-Base Voltage	. 🛶	:	20 v	→
Collector Current	-		3 a	
Base Current			1 a	
Total Device Dissipation at (or below) 25°C				
Case Temperature (see Note 2)			20 w	
Operating Case Temperature Range				
Storage Temperature Range			to + 100°C -	

NOTES: 1. This value applies when base-emitter voltage ${
m V_{BE}}=+$ 0.2 v.

2. Derate linearly to + 100°C case temperature at the rate of 267 mw/C°.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYPE	MIN	TYP	MAX	UNIT
1			2N1038 2N2552 2N2556	— 40			
BV _{CBO}	Collector-Base Breakdown	$I_{\mathbf{C}}=-650\mu^{\mathbf{a}},\ I_{\mathbf{E}}=0$	2N1039 2N2553 2N2557	60			
, orcho	Voltage	·ς = - ωνμι, ·ξ = υ	2N1040 2N2554 2N2558	— 80			,
			2N1041 2N2555 2N2559	— 100			
	-		2N1038 2N2552 2N2556	— 30			
*BV _{CEO}	Collector-Emitter Breakdown	I _C = — 100 ma, I _B = 0	2N1039 2N2553 2N2557	— 40			
2.050	Voltage	, c	2N1040 2N2554 2N2558	— 50			ľ
			2N1041 2N2555 2N2559	— 60			

^{*}Indicates JEDEC Registered Data.

TYPES 2N1038, 2N1039, 2N1040, 2N1041 • 2N2552, 2N2553, 2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYPE	MIN	TYP	MAX	UNIT
		$V_{CB} = -20 \text{ v}, I_E = 0$	2N1038 2N2552 2N2556				
•1	Collector Cutoff	$V_{CB}=-30$ v, $I_{E}=0$	2N1039 2N2553 2N2557			— 125	μα
*I _{CBO}	Current	$V_{CB}=-40$ v, $I_{E}=0$	2N1040 2N2554 2N2558				
		$V_{CB}=-50$ v, $I_{E}=0$	2N1041 2N2555 2N2559				
		V _{CE} = -15 v, I _B = 0	2N1038 2N2552 2N2556			— 25	
•1	Collector Cutoff	$V_{CE}=-20$ v, $I_{B}=0$	2N1039 2N2553 2N2557			— 20	ma
*ICEO	Current	$V_{CE}=-25$ v, $I_{B}=0$	2N1040 2N2554 2N2558			— 20	, mg
		V _{CE} = -30 v, I _B = 0	2N1041 2N2555 2N2559			— 20	
		$V_{CE} = -40 \text{ v}, V_{BE} = +0.2 \text{ v}$	2N1038 2N2552 2N2556				
••	Collector	$ m v_{CE} = -60 \ v, \ \ v_{BE} = + 0.2 \ v$	2N1039 2N2553 2N2557			450	
*ICEX	Cutoff Current	$ m V_{CE} = -80 \ v, \ \ V_{BE} = + 0.2 \ v$	2N1040 2N2554 2N2558			— 650	μα
		$V_{CE} = -100 \text{ v}, \ V_{BE} = + 0.2 \text{ v}$	2N1041 2N2555 2N2559				
		$V_{CE} = -20 \text{ v.} V_{BE} = + 0.2 \text{ v}$ $T_{C} = + 85^{\circ} \text{C}$	2N1038 2N2552 2N2556				
4 1	Collector	$V_{CE} = -30 \text{ v}, V_{BE} = +0.2 \text{ v}$ $T_{C} = +85 \text{°C}$	2N1039 2N2553 2N2557	Į			
*I _{CEX}	Cutoff Current	$V_{CE} = -40 \text{ v}, V_{BE} = +0.2 \text{ v}$ $T_{C} = +85^{\circ}\text{C}$	2N1040 2N2554 2N2558			_5	ma .
		$V_{CE} = -50 \text{ v}, V_{BE} = + 0.2 \text{ v}$ $T_{C} = + 85^{\circ} \text{C}$	2N1041 2N2555 2N2559				
*I _{EBO}	Emitter Cutoff Current	$V_{EB} = -20 \text{ v}, I_{C} = 0$	AII			— 650	μα

^{*}Indicates JEDEC Registerea Data.

TYPES 2N1038, 2N1039, 2N1040, 2N1041 ◆ 2N2552, 2N2553, 2N2554, 2N2555 ◆ 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYPE	MIN	TYP	MAX	UNIT
h _{IE}	Static Common Emitter Input Impedance	$V_{CE}=-0.5 \text{ v, } I_{C}=-1 \text{ a}$ (see Note 3)	All			60	ohm
*hFE Current Transfer Ratio		$V_{CE} = -0.5 \text{ v, } I_{C} = -1 \text{ a}$ (see Note 3)	All	20		60	
	Cottent transfer Kano	$V_{CE} = -0.5 \text{ v}, I_{C} = -50 \text{ ma}$	All	33		200	
. Static Forward		$V_{CE} = -0.5 \text{ v, } I_{C} = -1 \text{ a}$ $I_{C} = -55^{\circ}\text{C (See Note 3)}$	All	15		60	
h _{FE}	Current Transfer Ratio	$V_{CE} = -0.5 \text{ v}, I_{C} = -1 \text{ a}$ $T_{C} = +85 \text{ C}$	AII	20		75	
YFE	Static Common-Emitter Forward Transfer Admittance	$V_{CE}=-0.5 \text{ v}, \ I_{C}=-1 \text{ a}$ (see Note 3)	AII	1.0			mho
*V _{BE}	Base-Emitter Voltage	$V_{CE}=-0.5$ v, $I_{C}=-1$ a (see Note 3)	All			— 1.0	٧
V _{BE}	Base-Emitter Voltage	$ m V_{CE} = -0.5 \ v, \ I_{C} = -50 \ ma$	All	i		— 0.35	٧
*V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\mathrm{B}}=-100$ ma, $I_{\mathrm{C}}=-1$ a (see Note 3)	All			— 0.25	٧
*h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -1.5 \text{ v}, I_{C} = -0.5 \text{ a}$ f = 1 kc	All	18		72	
* h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -1.5 \text{ v}, I_{C} = -0.5 \text{ a}$ $f = 112.5 \text{ kc}$	All	2.0			
Cop	Common-Base Open-Circuit Output Capacitance	$V_{CB} = -6 \text{ v}, I_E = 0$ $f = 135 \text{ kc}$	All		100		pf

NOTES: 3. Measurements are made with voltage sensing contacts located 0.25 inches from header of transistor.

Voltage sensing contacts are separate from current carrying contacts.

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS†	TYPICAL	UNIT
t _d Delay Time	I _C = -10	0.18	μѕвс
t _r Rise Time	V _{BE(off)} = 7.4v	0.47	μѕес
t _s Storage Time	$R_L = 29 \Omega$	0.59	μѕθς
t _f Fall Time	(See circuit on Page 8)	1.21	μsec
t _T Total Switching Time		2.45	μsec

[†]Voltage and current values are nominal; exact values vary slightly with device parameters.

^{*}Indicates JEDEC Registered Data.

TYPES 2N1038, 2N1039, 2N1040, 2N1041 ◆ 2N2552, 2N2553, 2N2554, 2N2555 ◆ 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS TYPICAL CHARACTERISTICS

TYPES 2N1038, 2N1039, 2N1040, 2N1041 • 2N2552, 2N2553, 2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

TYPICAL CHARACTERISTICS

TYPES 2N1038, 2N1039, 2N1040, 2N1041 ◆ 2N2552, 2N2553, 2N2554, 2N2555 ◆ 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS

TYPICAL CHARACTERISTICS

THERMAL CHARACTERISTICS

TYPES 2N1038, 2N1039, 2N1040, 2N1041 • 2N2552, 2N2553, 2N2554, 2N2555 • 2N2556, 2N2557, 2N2558, 2N2559 P-N-P ALLOY-JUNCTION GERMANIUM MEDIUM-POWER TRANSISTORS PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform has the following characteristics: $t_r \leq 10$ nsec, $t_f \leq 10$ nsec, PW = 1.6 msec, Duty Cycle = 10%.

- b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 14$ nsec, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pf.
- c. Resistors must be non-inductive types.

MOUNTING HARDWARE INFORMATION

TYPES 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

FOR HIGH-POWER SWITCHING AND AMPLIFIER APPLICATIONS

mechanical data

The use of silver alloy to assemble the mounting base and the use of resistance welding to seal the can, provides a hermetically sealed enclosure. During the assembly process the absence of flux, combined with extreme cleanliness, prevents sealed-in contamination.

The mounting base provides an excellent heat path from the collector junction to a heat sink which must be in intimate contact to permit operation at maximum rated dissipation.

*The transistors are in a JEDEC TO-3 case.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

					2N1539	2N1540	2N1541	2N1542	2N1543
*Collector-Base Voltage .					40v	60v	80v	100v	120v
*Collector-Emitter Voltage	(See	Note	1)		30v	45v	60v	75v	90v
*Emitter-Base Voltage .					20v	30v	40v	50∨	60v
*Collector Current					◄		5a -		→
*Emitter Current					-		5a -		
Total Device Dissipation									
Temperature (See Note	2) .				◀		150w -		
*Operating Collector Junct	ion Te	mper	ature		◀		100°C -		
*Storage Temperature Ran	ge .				←	— – 65	C to +1	100°C	

NOTES: 1. This value applies when base-emitter diode is short-circuited.

2. Derate linearly to + 100°C case temperature at the rate of 2 w/C°.

*Indicates JEDEC registered data.

TYPES 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	IS TYPE	MIN	MAX	UNIT	
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C=-20$ ma, $I_E=0$	2N1539 2N1540 2N1541 2N1542 2N1543	- 40 60 80 100 120		٧	
*BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{C}=-500$ ma, $I_{B}=0$	2N1539 2N1540 2N1541 2N1542 2N1543	- 20 - 30 - 40 - 50 - 60		٧	
*BV _{CES}	Collector-Emitter Breakdown Voltage	I _C = -500 ma, V _{BE} = 0	2N1539 2N1540 2N1541 2N1542 2N1543	- 30 - 45 - 60 - 75 - 90		٧	
*I _{CBO}	Collector Cutoff Current	$V_{CB} = -2.0 v$, $I_E = 0$	All		– 200	μα	
*I _{CBO}	Collector Cutoff Current	$\begin{array}{lll} {\rm V_{CB}} = -25{\rm v}, & {\rm I_E} = 0 \\ {\rm V_{CB}} = -40{\rm v}, & {\rm I_E} = 0 \\ {\rm V_{CB}} = -55{\rm v}, & {\rm I_E} = 0 \\ {\rm V_{CB}} = -65{\rm v}, & {\rm I_E} = 0 \\ {\rm V_{CB}} = -80{\rm v}, & {\rm I_E} = 0 \end{array}$	2N1539 2N1540 2N1541 2N1542 2N1543		- 2.0	ma	
*Ісво	Collector Cutoff Current	$\begin{array}{lll} {\rm V_{CB} = -40 \ v}, & {\rm I_E = 0} \\ {\rm V_{CB} = -60 \ v}, & {\rm I_E = 0} \\ {\rm V_{CB} = -80 \ v}, & {\rm I_E = 0} \\ {\rm V_{CB} = -100 \ v}, & {\rm I_E = 0} \\ {\rm V_{CB} = -120 \ v}, & {\rm I_E = 0} \end{array}$	2N1539 2N1540 2N1541 2N1542 2N1543		- 20	ma	
*I _{CBO}	Collector Cutoff Current	$V_{CB} = -22.5 \text{ v}, I_E = 0,$	$T_C = 90^{\circ}C$ 2N1541 $T_C = 90^{\circ}C$ 2N1542		- 20	ma	
*I _{CEX}	Collector Cutoff Current	$\begin{array}{c} {\rm V_{CE} = -40 \ v,} & {\rm V_{BE} =} \\ {\rm V_{CE} = -60 \ v,} & {\rm V_{BE} =} \\ {\rm V_{CE} = -80 \ v,} & {\rm V_{BE} =} \\ {\rm V_{CE} = -100 \ v,} & {\rm V_{BE} =} \\ {\rm V_{CE} = -120 \ v,} & {\rm V_{BE} =} \end{array}$	+ 1.0 v 2N1540 + 1.0 v 2N1541 + 1.0 v 2N1542		- 20	ma	
*I _{EBO}	Emitter Cutoff Current	$V_{EB} = -12 v$, $I_C = 0$	Ail		- 0.5	ma	
*I _{EBO}	Emitter Cutoff Current	$V_{EB} = -20 \text{ v}, \qquad I_{C} = 0$	All		– 25	ma	
*h _{FE}	Static Forward Current Transfer Ratio	$V_{CE} = -2 v$, $I_C = -$	- 3.0 a All	50	100		
*g _{FE}	Static Common-Emitter Forward Transfer Conductance	$V_{CE} = -2 v$, $I_C = -$	- 3.0 a All	3.0		mho	
*V _{BE}	Base-Emitter Voltage	$I_B = -300 \text{ ma}, I_C = -$			0.7	٧	
*V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_8 = -300 \text{ ma}, I_C = -$	– 3.0 a All	ļ	- 0.3	٧	
*f _{hfe}	Common-Emitter Forward Current Transfer Ratio Cutoff Frequency	$V_{CE} = -2 v$, $I_{C} = -2 v$		1		kc	
f _T	Transition Frequency (See Note 3)	$V_{CE} = -2 \text{ v}, I_{C} = -6 \text{ f} = 100 \text{ kc}$	– 1 a Ali	200		kc	

thermal characteristics

	PARAMETER	TEST CONDITIONS	TYPE	MIN	MAX	UNIT
* ө "с	Junction-to-Case Thermal Resistance		All		0.8	(°/w

NOTE 3: To obtain f_T , the $|h_{fo}|$ response is extrapolated at the rate of -6 db per octave from f=100 kc to the frequency at which $|h_{fo}|=1$.

^{*}Indicates JEDEC registered data

HIGH-FREQUENCY POWER TRANSISTORS for MILITARY AND INDUSTRIAL APPLICATIONS

environmental tests

To ensure maximum integrity, stability, and long life, finished transistors are subjected to the following tests and conditions prior to thorough testing for rigid adherence to the specified characteristics.

- All transistors are temperature cycled from 55°C to + 110°C for four complete cycles.
- All transistors are heat aged at 110°C for 100 hours minimum.
- The hermetic seal is verified for all devices by the use of both helium and gross leak tests.

Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.

mechanical data

These transistors are in precision welded, hermetically sealed enclosures. The mounting base provides an excellent heat path from the collector junction to a heat sink. The mounting base and heat sink must be in intimate contact for maximum heat transfer. Extreme cleanliness during the assembly process prevents sealed-in contamination. The approximate weight of the unit is 18 grams.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	2N1907 2N1908
Collector-Base Voltage	100 v* 130 v*
Collector-Emitter Voltage (See Note 1)	40 v 50 v
Emitter-Base Voltage	$\leftarrow \begin{cases} 1.5 \text{ v*} \\ 2.0 \text{ v*} \end{cases} \rightarrow$
Collector Current	← 20 a* →
Base Current	→ 3 a* →
Safe Continuous Operating Region	See Figures 15 and 16
Total Device Dissipation at (or below) 70°C Case Temperature (See Note 2) .	← 60 w →
Peak Collector Power Dissipation at (or below) 25°C	
Case Temperature (See Note 3)	800 w 1000 w
Operating Collector Junction Temperature	← 100°C* →
Storage Temperature Range	

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 100°C case temperature at the rate of 2 w/C°. This corresponds to the JEDEC registered maximum value of thermal resistance, $\theta_{\rm J-C}$, 0.5 C°/w.
 - These values apply for rectangular waveshape. See Figure 14 for allowable pulse width and duty cycle combinations. Derate linearly to 100°C case temperature.
- *Indicates JEDEC registered data.
- TTexas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.

electrical characteristics at 25°C case temperature (unless otherwise noted)

				2N1907	2N1907 2N1908			
	PARAMETER	TES	T CONDITIONS	MIN MAX	MIN MAX	UNIT		
BVCBO	Collector-Base Breakdown Voltage	$I_{\text{C}}=-10$ ma,	I _E = 0	— 100	– 130	٧		
BVCEO	Collector-Emitter Breakdown Voltage	I _C = -200 ma,	$I_B = 0$, See Note 4	- 40*	50*	V		
BVEBO	Emitter-Base	$I_{\rm E}=-2$ ma,	I _C = 0	-1.5	-1.5	v		
	Breakdown Voltage	$I_{\rm E}=-10$ ma,	I _C = 0	-2.0	2.0	,		
		,	I _E = 0	- 0.5* - 0.3†				
		$V_{CB} = -75 \text{ v},$	$I_E = 0$	- 2.0				
		$V_{CB} = -100 \text{ v},$ $V_{CB} = -75 \text{ v},$	I _E = 0	-10*				
I _{CBO}	Collector Cutoff Current	$V_{CB} = -75 \text{ v},$	$I_E = 0$, $T_C = +$	70°C – 12	-0.5*	ma		
-050		$V_{CB} = -3 v$,			- 0.3†			
		$V_{CB} = -100 \text{ v},$	$I_E = 0$		- 2.0			
		$V_{CB} = -130 \text{ v},$ $V_{CB} = -100 \text{ v}.$	$I_E = 0$		-10*			
		$V_{CB} = -100 v$,	$I_E = 0$, $T_C = +$	70°C	- 12			
	Collector Cutoff Current	$V_{CE} = -75v,$ $V_{CE} = -100 v,$	$V_{BE} = + 0.2 v$	— 2.0		ma		
ICEX	Collector Colon Collecti	$V_{CE} = -100 \text{ v,}$	$V_{BE} = + 0.2 v$		- 2.0			
I _{EBO}	Emitter Cutoff Current	$V_{EB}=-0.5 v$,	-	-0.2* -0.1†	-0.2* -0.1†	ma		
		$V_{EB} = -1.5 \text{ v},$	I _C = 0	- 2.0*	-2.0*			
		$V_{CE} = -1.5 v_{r}$	$I_{c}=-1$ a, See Note 4	80	80			
		$V_{CE} = -1.5 v$,	$I_C = -5 a$, See Note 4	90	90			
		$V_{CE} = -1.5 v$,	$I_{C}=-10$ a, See Note 4	30 170	30 170			
h _{FE}	Static Forward Current Transfer Ratio		$I_{c} = -15 a$, See Note 4	20	20			
	·	$V_{CE} = -1.5 v$, See Note 4	$I_C = -10 a$, $I_C = -10 a$	55°C, 30 (See Fig. 4)	30 (See Fig. 4)			
		$V_{CE} = -1.5 \text{ v,}$ See Note 4	$I_C = -10 a$, $I_C = +$	70°C, 15 100 (See Fig. 4)	15 100 (See Fig. 4)			
		$I_B = -100 \text{ ma},$	$I_{C}=-1$ a, See Note 4	-0.4	- 0.4			
	Base-Emitter Voltage	$I_B = -500 \text{ ma},$			-0.7	l v		
V _{BE}	base-cililler vollage	$I_B = -1 a$,	$I_{C}=-10$ a, See Note 4		- 1.0			
		$I_B = -1.5 a$	$I_{C} = -15 a$, See Note 4	-1.5	-1.5			
		$I_B = -100 \text{ ma},$	$I_{C}=-1$ a, See Note 4		- 0.2			
VCFIEAN	Collector-Emitter		$I_C = -5$ a, See Note 4		-0.4	l v		
CE(sd1)	Saturation Voltage	$I_B = -1 a$,	$I_C=-10$ a, See Note 4	- 0.7	- 0.7	↓ '		
		$I_B = -1.5 a$	$I_{C}=-15$ a, See Note 4	-1.0*	-1.0*			
h _{fe}	Small-Signal Common- Emitter Forward Current	V _{CE} = -15 v,	$I_C=-0.5$ a, $f=10$ r		1.0*			
	Transfer Ratio			2.0†	2.0†			

NOTE 4: If these parameters are measured without a heat sink, d-c collector current must not be applied longer than 250 msec.

TTexas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

^{*}Indicates JEDEC registered data.

switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS †	TYPICAL	UNIT
t _d Delay Time		0.1	μsec
t _r Rise Time	$I_C = -10\alpha$, $I_{B(1)} = -1.33\alpha$, $I_{B(2)} = 1.33\alpha$,	0.8	μ sec
t _s Storage Time	$V_{BE \{off\}} = 2 v, R_L = 2 \Omega,$	2.5	μsec
t _f Fall Time	See Figure 1	1.0	μsec
t _T Total Switching Time	7	4.4	μsec

[†] Voltage and current values are nominal; exact values vary slightly with device parameters.

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The pulse at point "A" has the following characteristics: $t_r \le 20$ nsec, $t_f \le 20$ nsec, PW ≥ 50 μ sec, duty cycle $\le 5\%$. b. The waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ nsec, $R_{in} \geq 1$ M Ω , $C_{in} \leq 20$ pf.

TYPICAL CHARACTERISTICS

COMMON-EMITTER COLLECTOR CHARACTERISTICS (High-Voltage Region)

FIGURE 3

NOTE 5: These characteristics were measured using pulse techniques. PW = 300 μ sec , Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

FIGURE 7

NOTE 5: These characteristics were measured using pulse techniques. PW = 300 μ sec., Duty Cycle \leq 2%.

FIGURE 6

TYPICAL CHARACTERISTICS

NOTE 5: These characteristics were measured using pulse techniques. PW = 300 μ sec., Duty Cycle \leq 2%.

THERMAL INFORMATION

NOTE 6: When $t_w>3.0$ msec or d >0.5 (50%), operation must be confined to the continuous operating regions of Figure 15 or 16.

MAXIMUM SAFE OPERATING REGIONS

MAXIMUM SAFE PULSE OPERATING REGION

NOTES: 6. When $t_{\rm w} >$ 3.0 msec or d > 0.5 (50%), operation must be confined to the continuous operating regions of Figure 15 or 16.

7. Operation in this region is permissible when base-emitter resistance R_{RE} \leq 5 Ω .

TYPES 2N1907, 2N1908

P-N-P ALLOY-DIFFUSED GERMANIUM POWER TRANSISTORS

THERMAL INFORMATION

TABLE I

HEAT SI	NK	†θ _{HS.A}	
Туре	Dimensions	10HS-A	
	4" x 4" x 1/8"	3.8 C°/w	
	6" x 6" x 1/8"	2.2 (°/w	
Bright Copper	8" x 8" x 1/8"	1.8 C°/w	
f	10" x 10" x 1/8"	1.4 C°/w	
	4" x 4" x 1/8"	6.5 C°/w	
	6" x 6" x 1/8"	4.5 C°/w	
Bright Aluminum	8" x 8" x 1/8"	3.5 (°/w	
Ī	10" x 10" x 1/8"	2.8 C°/w	
Delbert Blinn #113 or Medine 1E1155B, Unfinished (or Equivalents)		3.7 C°/w	
Delbert Blinn #113 or Modine 1E1155B, Black Anodized (or Equivalents)		3.2 C°/w	

 $[\]dagger \theta_{\text{HS-A}}$ are typical values based on convection cooling; plates and fins mounted in vertical position.

TABLE II

SYMBOL	DEFINITION	UNIT	VALUE
P _{T (avg.)}	Average Power Dissipation	w	
P _{T (max)}	Peak Power Dissipation	w	
$\theta_{ extsf{J-C}}$	Junction-to-Case Thermal Resistance	(°/w	0.5
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	(°/w	42.8
$ heta_{ extsf{C-A}}$	Case-to-Free-Air Thermal Resistance	Co/M	42.3
$\ddagger \theta_{\text{C-HS}}$	Case-to-Heat-Sink Thermal Resistance Typical With Dry Mounting Base	C°/w	0.65
	Typical with DC-11 Silicone Grease]	0.45
θ _{HS-A}	Heat-Sink-to-Free-Air Thermal Resistance	C°/w	see Table 1
TA	Free-Air Temperature	(°	
T _{J (avg)}	Average Junction Temperature	Co	≤100
T _{J (max 1)}	Peak Junction Temperature	(°	≤100
T _C	Case Temperature	Co	Ī
К	Peak-Power Coefficient		see Fig. 14
t _w	Pulse Width	msec	
1 _P	Pulse Period	msec	
d	Duty Cycle Ratio (t _w /t _p)		

For d-c operation, these transistors are voltage limited as well as thermally limited. Figure 12 and Figure 15 or 16 are recommended as a guide for selecting safe voltage and current combinations.

These transistors have a very low thermal resistance that may be fully utilized in a pulse-power application provided the pulse width is equal to (or less than) 3 milliseconds. If the power pulse is longer than 3 milliseconds, then the operating path is limited to the safe operating region described by Figure 12 and Figure 15 or 16.

The PEAK-POWER-COEFFICIENT CURVE shows the ratio of maximum instantaneous junction-to-case temperature rise for any pulse width and duty cycle to the rise which occurs at 100% duty cycle. Use of this curve is best explained by the equations and example below. See Table 11 for a definition of terms.

Equation No. 1 — Application: d-c power dissipation, heat sink used.

$$P_{T \text{ (avg)}} = \frac{T_{J \text{ (avg)}} - T_{A}}{\theta_{J\text{-}C} + \theta_{C\text{-}HS} + \theta_{HS\text{-}A}}$$

Equation No. 2 — Application: d-c power dissipation, no heat sink used.

$$P_{T \text{ (avg)}} = \frac{T_{J \text{ (avg)}} - T_{A}}{\theta_{J-A}}$$

Equation No. 3 — Application: Peak power dissipation, heat sink used.

$$\mathrm{P_{T\,(max\,1)}} = \frac{\mathrm{T_{J\,(max\,1} - T_{A}}}{\mathrm{d\,(\theta_{C\text{-HS}} + \theta_{HS\text{-}A}) + K\,\theta_{J\text{-}C}}}$$

Equation No. 4 - Application: Peak power dissipation, no heat sink used.

$$P_{T \text{ (max)}} = \frac{T_{J \text{ (max)}} - T_{A}}{d \theta_{C-A} + K \theta_{J-C}}$$

Example — Find $P_{T \; (max \;)}$ (design limit) OPERATING CONDITIONS: Heat Sink = 8" x 8" x 1/8" copper, $\theta_{HS-A} = 1.8 \; \text{Co}/\text{w}$ with Dc-11 grease, $\theta_{C-HS} = 0.45 \; \text{Ce}/\text{w}$ T_{J $(max \;)$} (design limit) = $100 \; \text{C}$ T_A = $35 \; \text{C}$ c d = $20 \% \; (0.2)$ t_w = 0.1 msec

SOLUTION:

From Figure 14 Peak-Power Coefficient,

K == 0.24, and by use of equation No. 3

$$\mathbf{P_{T (max)}} = \frac{\mathbf{T_{J (max)}} - \mathbf{T_{A}}}{\mathbf{d} (\theta_{\text{C-HS}} + \theta_{\text{HS-A}}) + \mathbf{K} \theta_{\text{J-C}}}$$

$$P_{T \text{ (max 1)}} = \frac{100 - 35}{0.2 (0.45 + 1.8) + 0.24 (0.5)} = 114 \text{ w}$$

[‡]All transistors mounted in the center of the heat sink with two 6-32 screws at 6 inch - pounds of torque.

TYPES TI3027, TI3028 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

HIGH-POWER TRANSISTORS for CONSUMER APPLICATIONS

mechanical data

These transistors are in a resistance-welded, hermetically sealed enclosure. The mounting base provides an excellent heat path from the collector junction to a heat sink. The entire mounting base must be in intimate contact with the heat sink for maximum heat transfer. A minimum torque of 10 inch-pounds applied to each of the mounting screws is recommended for mounting the device to the heat sink. Extreme cleanliness and the absence of flux during the assembly process prevents sealed-in contamination.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

Collector-Base Voltage															TI3027 TI3028 45 v -60 v
Collector-Emitter Voltage (See Note	= 1)				•										. –40 v –50 v
Emmer-base voltage									_	-	_				<u>←</u> -20 v —>
Collector Current													_		-7 a →
base Current															<u> </u>
Total Device Dissipation at (or below	1 25	°C	`nsa	Ter	nne	rati		٠ د د	Ň	•	٠.	•	•	•	-5 d
Total Device Dissipation at (or below	1 25	۰ ۲۰		A :	Tan			/	C	ME.	۷,	•	•	•	· — 150 W —>
Operating Case Townships Barres	, 23	٠.	ree-	AII.	ien	npei	aiu	re (see	INC	ore	3)	٠	•	· ← 2.0 w →
Operating Case Temperature Range	•		٠	•	•		•	٠	•	٠	•	•		•	65°C to +100°C
Storage Temperature Range	• .				•										65°C to +100°C
Lead Temperature, 1/8 Inch from Cas	se fo	r 10	Sec	onc	s										. ← 230°C →

- NOTES: 1. These values apply when the base-emitter resistance R $_{\rm BE}$ \leq 68 Ω .
 - 2. Derate linearly to 100°C case temperature at the rate of 2 w/C°.
 - 3. Derate linearly to 100° C free-air temperature at the rate of 26.7 mw/C°.

TYPES TI3027, TI3028 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

electrical characteristics at 25°C case temperature (unless otherwise noted)

			T1302	27	T13028		UNIT
	PARAMETER	TEST CONDITIONS	MIN A	XAN	MIN	MAX	UNII
BVCBO	Collector-Base Breakdown Voltage	$I_C = -5 \text{ ma}, I_E = 0$	-45		60		٧
BVCER	Collector-Emitter Breakdown Voltage	$I_{C}=-600$ ma, $R_{BE}=68\Omega$, See Note 4	-40		-50		٧
		$V_{CB} = -2 v$, $I_E = 0$	Ţ .	-0.15		-0.15	
I _{CBO}	Collector Cutoff Current	$V_{CB} = -30 \text{ v}, I_E = 0$	T .				ma
		$V_{CB} = -40 \text{ v}, I_E = 0$				-1	
I _{EBO}	Emitter Cutoff Current	$V_{EB} = -20 v, I_C = 0$	Ι.	_		-1	ma
		$V_{CE} = -2 v$, $I_{C} = -1 a$, See Note 4	70		70		
hFE	Static Forward Current Transfer Ratio	$V_{CE} = -2 v$, $I_{C} = -3 a$, See Note 4	40	250	40	250	
		$V_{CE} = -2 \text{ v}, I_{C} = -1 \text{ a}, \text{See Note 4}$	1	-0.5		-0.5	v
A ^{BE}	Base-Emitter Voltage	$V_{CE} = -2 v$, $I_C = -3 a$, See Note 4	1	-1.0		-1.0	
		$I_B = -100 \mathrm{ma}$, $I_C = -1 \mathrm{a}$, See Note 4	T .	-0.4		-0.4	v
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_8 = -300 \mathrm{ma}$, $I_C = -3 \mathrm{a}$, See Note 4		-0.5		-0.5	
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{CE} = -2 v$, $I_C = -1 a$, $f = 100 kc$	2		2		

NOTE 4: These parameters must be measured using pulse techniques. PW = 300 μ sec, Duty Cycle \leq 2%.

thermal characteristics

	PARAMETER	TEST CONDITIONS	MAX	UNIT
<i>θ</i> _{J-C}	Junction-to-Case Thermal Resistance	See notes in Thermal	0.5	(°/w
θ _{J-HS}	Junction-to-Heat-Sink Thermal Resistance		1.1	(°/w
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	Characteristics section	37.5	C°/w

NUMERICAL SYSTEM FOR he CODING

Upon request the transistors will be numerically coded to identify matched pairs. The transistors are in-house classified into 2-db (ratio 1.26 to 1) here brackets and any two units within a bracket constitute a matched pair. A 10% tolerance is included in the bracket limits shown below to allow for test-set correlation.

No h_{FE} -bracket distribution is implied by this classification system.

BRACKET	h _{FE} RANGE at
NUMBER	$V_{CE}=-2$ v, $I_{C}=-3$ a
1	40 — 60
2	50 — 80
3	65 — 100
4	80 — 125
5	100 — 150
6	125 — 200
7	160 — 250

TYPES TI3027, TI3028

P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

THERMAL INFORMATION

 $\theta_{\text{J-A}}$ is the thermal resistance from the junction of the transistor to free-air. The curve shown above was determined by positioning the transistor in the center of a box 12 inches by 12 inches by 12 inches with the temperature measured two inches below the transistor.

 $\theta_{\text{J-C}}$ is the thermal resistance from the junction of the transistor to the point on the mounting base of the transistor case specified on the outline drawing.

 $\theta_{\text{C-HS}}$ is the thermal resistance from the mounting base of the transistor case to the mounting surface of the heat sink. The heat sink used to determine this value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inches below the mounting surface in an area beneath the center of the transistor. The transistor was mounted directly to a clean, dry, heat-sink surface, without the use of silicone grease, and a torque of ten inch-pounds was applied to each of the mounting screws.

 $\theta_{\text{J-HS}}$ is the thermal resistance from the junction of the transistor to the mounting surface of the heat sink. $\theta_{\text{J-HS}} = \theta_{\text{J-C}} + \theta_{\text{C-HS}}$

The dissipation levels shown above are verified statistically by operating-life tests.

TYPICAL CHARACTERISTICS

TYPES TI3027, TI3028 P-N-P ALLOY-JUNCTION GERMANIUM POWER TRANSISTORS

TYPICAL APPLICATION DATA

CLASS B AUDIO AMPLIFIER

TYPICAL CIRCUIT PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, f = 1000 cps (except where noted)

	113027	113028
Minimum RMS Power Output at 5% Total Harmonic Distortion	20 w	25 w
Minimum Power Gain	18 db	20 db
Frequency Response	20 to 20	
D-C Collector Current with Zero Signal	–0.05 a	–0.05 a
D-C Collector Current with Maximum Signal	–1.25 a	−1.10 a
Peak Collector Current with Maximum Signal	-3.9 a	-3.5 a
Input Impedance, Base-to-Base	73 Ω	Ω 86

CIRCUIT COMPONENT INFORMATION

	T13027	TI3028		
R ₁ :	0.56 Ω , 1 w	0.56 Ω, 1 w		
R ₂ :	125 Ω , 5 w	150 Ω, 5 w		
R ₃ :	1.1 Ω, ½ w	1.2 Ω, ½ w		
Speaker Impedance:	α α	Ω 8		
All resistors ±	10% tolerance			

- C: Selected to meet desired low-frequency response. Working voltage equals 40 v.
- T: Driver transformer primary-winding impedance, currentcarrying capacity, and d-c resistance are determined by large-signal characteristics of driver stage. Secondary windings are bifilar wound. The a-c impedance of each secondary winding equals 18 ohms for TI3027 and 17 ohms for TI3028.

TYPES 1N456, 1N457, 1N458, 1N459 SILICON GENERAL PURPOSE DIODES

$V_{RM(wkq)}$. . . 25 to 175 Volts

- Rugged Whiskerless Construction
- Small Size
- Low Reverse Current

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		1N456	1N457	1N458	1N459	UNIT
V _{RM}	Peak Reverse Voltage	30	70	150	200	٧
V _{RM(wkg)}	Working Peak Reverse Voltage	25	60	125	175	٧
lo	Average Rectified Forward Current at (or below) 25°C Free-Air Temperature (See Notes 1 and 2)	90	75	55	40	mA
l _F	Steady State Forward Current at (or below) 25°C Free-Air Temperature (See Note 2)	135	110	80	60	mA
I _{FM(surge)}	Peak Surge Current, One Second (See Note 3)	0.7	0.6	0.5	0.4	A
I _{FM(surge)}	Peak Surge Current, Two Microseconds (See Note 4)	1.2	1	0.8	0.7	A
P	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 5)		200			
T _{stg}	Storage Temperature Range		—80 to 200			
	Altitude		Any			

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1N456		1N457		1N458		1N459		UNIT
		1231 CONDINONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	0.411
V _(BR)	Reverse Breakdown Voltage	$I_R = 100 \mu A$	30		70		150		200		٧
	Static Reverse Current	$V_R = Rated V_{RM(wkg)}$		25		25		25		25	nA
l _R		$V_R = Rated V_{RM(wkg)},$ $T_A = 150$ °C		5		5		5		5	μ λ
	Static Forward Voltage	I _F = 40 mA		1							٧
V _F		I _F = 20 mA				1					٧
		$I_F = 7 \text{ mA}$						1			٧
		$I_F = 3 \text{ mA}$								1	٧

- NOTES: 1. These values may be applied continuously under single-phase 60-c/s half-sine-wave operation with resistive load.
 - 2. Derate linearly to 0 at 200°C free-air temperature.
 - 3. These values apply for a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
 - 4. These values apply for 2-µs pulses, duty cycle \leq 1%, with the device at nonoperating thermal equilibrium immediately prior to the surge.
 - 5. Derate linearly to 200°C free-air temperature at the rate of 1.14 mW/deg.

†Trademark of Texas Instruments

^{*}Indicates JEDEC registered data

TI World-Wide Sales Offices

ALABAMA

Huntsville, Alabama 35801 205-881-4061

ARIZONA 2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave Hollywood, California 90028 213-466-7251

5005 West Century Bivd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass, 02154 617-891-8450

MICHIGAN

Sahara Office Park Bldg., Suite 111 Suite 706 West, Northland Towers Bldg. 3313 Memorial Parkway, S.W. 15565 Northland Dr. Huntsville, Alabama 35801 Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TFXAS

MS80 - P.O. Box 5012 Dallas, Texas 75222 214-238-4861

3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany

Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 **Don Torcuato Buenos Aires, Argentina**

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPES 1N482, 1N483, 1N484, 1N485 DIFFUSED SILICON GENERAL PURPOSE DIODES

V_{RM(wkg)} . . . 36 to 180 Volts

Rugged Whiskerless Construction • Small Size

Designed for

Magnetic Amplifiers • Modulators • Demodulators

Networks • Power Supplies

mechanical data

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		1N482	1N483	1N484	1N485	UNIT
V _{RM(wkg)}	Working Peak Reverse Voltage	36	70	130	180	V
lo	Average Rectified Forward Current at (or below) 25°C Free-Air Temperature (See Notes 1 and 2)		100			
lo	Average Rectified Forward Current at 150°C Free-Air Temperature (See Notes 1 and 3)		25			
I _{FM(rep)}	Repetitive Peak Forward Current at (or below) 25°C Free-Air Temperature (See Note 4)		400			mA
FM(surge)	Peak Surge Current, 100 Milliseconds (See Note 5)		1	-		A
P	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 6)		250		mW	
T _{A(opr)}	Operating Free-Air Temperature Range		65 to 200		°C	
T _{stg}	Storage Temperature Range		65 to	200		°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		1N482		1N483		1N484		1N485		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	ONII
V _(BR)	Reverse Breakdown Voltage	$I_R = 100 \mu A$		40		80		150		200		٧
I _R	Static Reverse Current	1N482: V _R = 30 V 1N483: V _R = 60 V	T _A = 25°C		0.25		0.25		0.25		0.25	μΑ
		1N484: V _R = 125 V 1N485: V _R = 175 V	T _A = 150°C		30		30		30		30	μΑ
V _F	Static Forward Voltage	I _F = 100 mA			1.1		1.1		1.1		1.1	٧

NOTES: 1. These values may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load.

- 2. Derate linearly to 25 mA at 150°C free-air temperature.
- 3. Derate linearly to 0 at 200°C free-air temperature.
- 4. These values apply for a 4-ms square-wave pulse, duty cycle \leq 25%.
- 5. These values apply for a 1/10-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
- 6. Derate linearly to 200°C free-air temperature at the rate of 1.43 mW/deg.

18105

[†]Trademark of Texas Instruments

^{*}Indicates JEDEC registered data

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM 278 Pages • 315 Illustrations • Published January '68 •

SOLID STATE COMMUNICATIONS

Shipping Weight 2-lb • \$14.50

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

TYPES 1N645 THRU 1N649, 1N645A DIFFUSED SILICON GENERAL-PURPOSE DIODES

400 mA • 225 V to 600 V Ruggedized to meet stringent military requirements

mechanical data

The diode is encased in a hermetically sealed hard-glass package. The outline drawing meets the JEDEC DO-7 outline.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		1N645	1N645A	1N646	1N647	1N648	1N649	UNIT
V _{RM(wkg)}	Working Peak Reverse Voltage over Operating Free-Air Temperature Range	225	225	300	400	500	600	٧
I _o	Average Rectified Forward Current at (or below) 25°C Free-Air Temperature (See Note 1)		400					mA
I _o	Average Rectified Forward Current at 150°C Free-Air Temperature (See Note 1)		150					mA
I _{FM(surge)}	Peak Surge Current, One Second, at 25°C to 150°C Free-Air Temperature (See Note 2)		3				,	A
Р .	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 3)		600				mW	
T _{A(opr)}	Operating Free-Air Temperature Range	-65 to 150				-	°C	
	Altitude at Rated Working Peak Reverse Voltage		100 000					

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	RAMETER	TEST COMPLETIONS	1N645	1N645A	1N646	1N647	1N648	1N649	
PA	KAMEIEK	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
V _(BR)	Reverse Breakdown Voltage	$I_R = 100 \ \mu A$, $T_A = 100 \ ^{\circ} C$	275	275	360	480	600	720	٧
	Static Reverse Current	$V_R = Rated V_{RM(wkg)}$	0.2	0.2	0.2	0.2	0.2	0.2	μΑ
		$V_R = Rated V_{RM(wkg)}$, $T_A = 100$ °C	15	15	15	20	20	25	μΑ
I _R		$V_R = 60 \text{ V}$		0.05					μΑ
		V _R = 60 V, T _A = 125°C		10					μΑ
V _F	Static Forward Voltage	I _F = 400 mA	3	1	1	1	1	1	٧
C _T	Total Capacitance	V _R = 12 V, f = 1 MHz	6 typ	6 typ	6 typ	6 typ	6 typ	6 typ	pF

NOTES: 1. These values may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Above 25°C derate according to figure 3.

^{2.} These values apply for a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

^{3.} Derate linearly to 200 mW at 150°C free-air temperature at the rate of 3.2 mW/deg.

^{*}Indicates JEDEC registered data.

TYPES 1N645 THRU 1N649, 1N645A DIFFUSED SILICON GENERAL-PURPOSE DIODES

TYPICAL CHARACTERISTICS

FIGURE 1

FIGURE 2

THERMAL CHARACTERISTICS

FIGURE 3

568

TYPES 1N914, 1N914A, 1N914B, 1N915, 1N916, 1N916A, 1N916B and 1N917 DIFFUSED SILICON SWITCHING DIODES

• Extremely Stable and Reliable High-Speed Diodes

mechanical data

absolute maximum ratings at 25°C ambient temperature (unless otherwise noted)

V_R Reverse Voltage at — 65 to + 150°C

I. Average Rectified Fwd. Current

lo Average Rectified Fwd. Current at + 150°C

Recurrent Peak Fwd. Current

iffsurgo), Surge Current, 1 sec

P Power Dissipation

T_A Operating Temperature Range

T_{sta} Storage Temperature Range

		•						
1N914	1N914A	1N914B	1N915	1N916	1N916A	1N916B	1N917	Unit
75	75	75	50	75	75	75	30	٧
75	75	75	75	75	75	75	50	ma
10	10	10	10	10	10	10	10	ma
225	225	225	225	225	225	225	150	ma
500	500	500	500	500	500	500	300	ma
250	250	250	250	250	250	250	250	mw
	-65 to + 175							
	200							

maximum electrical characteristics at 25°C ambient temperature (unless otherwise noted)

BV_R Min Breakdown Voltage at 100 μa

I_R Reverse Current at V_R

I_R Reverse Current at — 20 v

I_R Reverse Current at — 20 v at 100°C

I_R Reverse Current at — 20 v at + 150°C

I_R Reverse Current at — 10 v

l₂ Reverse Current at — 10 v at 125°C

 I_F Min Fwd Current at $V_F = 1 \text{ v}$

V_F at 250 μα

V_E at 1.5 ma

V_E at 3.5 ma

V_F at 5 ma

V_F Min at 5 ma

C Capacitance at $V_R = 0$

٧	40	100	100	100	65	100	100	100
μα		5	5	5	5	5	5	5
μα		0.025	0.025	0.025		0.025	0.025	0.025
μα	25	3	3	3	5	3	3	3
μ a		50	50	50		50	50	50
μ a	0.05				0.025			
μα								
ma	10	30	20	10	50	100	20	10
٧	0.64							
٧	0.74							
٧	0.83							
٧		0.73			0.73	0.72		
٧					0.60			
pf	2.5	2	2	2	4	4	4	4

operating characteristics at 25°C ambient temperature (unless otherwise noted)

t_{rr} Max Reverse Recovery Time

V_f Fwd Recovery Voltage (50 ma Peak Sq. wave, 0.1 µsec pulse width, 10 nsec rise time, 5 kc to 100 kc rep. rate)

**4 °8	**4 °8	**4 *8	°10	**4 °8	**4 °8	**4 °8	°3	nsec nsec
2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	v

Trademark of Texas Instruments

Lumatron (10 ma I_F 10 ma I_R, recover to 1 ma)

^{••} EG&G (10 ma I_F, 6v V_R, recover to 1 ma)

AUTHORIZED DISTRIBUTORS

FOR TEXAS INSTRUMENTS COMPONENTS GROUP

ACK SEMICONDUCTORS INC. 3101 Fourth Ave. South/(205) FA 2-0588 2442 N. Shadeland Ave./(317) 357-8791 Birmingham, Alabama 35233

ELECTRONIC WHOLESALERS, INC. 2310 Bob Wallace Avenue, S.W. (205) 534-2461 Huntsville, Alabama 35805

ARIZONA

KIERULFF ELECTRONICS. INC. 2633 East Buckeye Road (602) 273-7331 Phoenix, Arizona 85034

R. V. WEATHERFORD COMPANY 1917 North 25 Drive/(602) 272-7144 Carson Industrial Center Phoenix, Arizona

CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC. 1911 Armacost Avenue/(213) TR 9-0760 West Los Angeles, California 90025

KIERULFF ELECTRONICS, INC. 3969 E. Bayshore/(415) 968-6292 Palo Alto, California 94303

MILO OF CALIFORNIA 2060 India St./(714) BE 2-8951 San Diego, California 92101

RADIO PRODUCTS SALES, INC. 1501 S. Hill St./(213) RI 8-1271 Los Angeles, California 90015

R. V. WEATHERFORD COMPANY 1651 S. State College Blvd. (714) KI 7-7521 Anaheim, California 92805

6921 San Fernando Rd./(213) VI 9-3451 Glendale, California 91201 3240 Hillview Drive Stanford Industrial Park (415) DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/(213) 393-6731 Santa Monica, California 90404

COLORADO

TI SUPPLY COMPANY 2186 S. Holly/(303) 757-7671 Denver, Colorado 80222

FLORIDA

ELECTRONIC WHOLESALERS, INC. 345 Graham Ave./(305) 841-1550 Orlando, Florida 32814

9390 N. W. 27th Ave./(305) OX 6-1620 Miami, Florida 33147

ILLINOIS

ALLIED ELECTRONICS CORPORATION 100 N. Western Ave./(312) TA 9-9100 Chicago, Illinois 60680

MERQUIP ELECTRONICS, INC. 7701 No. Austin Ave./(312) 965-7500 Skokie, Illinois 60076

NEWARK ELECTRONICS CORP. 500 N. Pulaski Road/(312) 638-4411 Chicago, Illinois 60624

TI SUPPLY COMPANY 7135 N. Barry Avenue/(312) 296-7187 Des Plaines, Illinois 60018

INDIANA

ESCO ELECTRONICS INC. Indianapolis, Indiana 46219 RADIO DISTRIBUTING COMPANY 814 North Senate Avenue (317) 637-5571 Indianapolis, Indiana 46204

IOWA

DEECO, INC. 618 First St., N. W./(319) EM 5-7551 Cedar Rapids, Iowa 72405

LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse St./(504) HU 6-3777 New Orleans, Louisiana 70119

MARYLAND

ELECTRONIC WHOLESALERS, INC. 3200 Wilkens Ave./(301) 646-3600 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5405 Lafayette Place/(202) 864-1111 Hyattsville, Maryland 20781

MASSACHUSETTS

DEMAMBRO ELECTRONICS 1095 Commonwealth Ave. (617) 787-1200 Boston, Massachusetts 02215 TI SUPPLY COMPANY 480 Neponset Road/(617) 828-5020 Canton, Massachusetts 02021 LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Rd./(617) 969-6100 Natick, Massachusetts 01760 MILGRAY/NEW ENGLAND INC. 75 Terrace Hall Avenue/(617) 272-6800 Burlington, Massachusetts 02021

MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Ave./(313) 548-0250 Detroit, Michigan 48237

NEWARK-INDUSTRIAL ELECTRONICS CORP. 2114 So. Division/(616) CH 1-5695 Grand Rapids, Michigan 49507

MINNESOTA

STARK ELECTRONIC SUPPLY CO. 112 Third Avenue N/(612) FE 2-1325 Minneapolis, Minnesota 55401

MISSOURI TI SUPPLY COMPANY 2916 Holmes Street/(816) 753-4750 Kansas City, Missouri 64109

ELECTRONIC COMPONENTS FOR INDUSTRY

2605 South Hanley Rd./(314) MI 7-5505 St. Louis, Missouri 63144

NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. HARRISON EQUIPMENT COMPANY, INC. 600 Penn St./(609) WO 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY 301 Central Ave./(201) 382-6400 Clark, N. J. 07066

NEW MEXICO

KIERULFF ELECTRONICS, INC. 2524 Baylor Dr. S.E./(505) 247-1055 Albuquerque, New Mexico 87108

GENESEE RADIO & PARTS CO., INC. 2550 Delaware Ave./(716) TR 3-9661 Buffalo. New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS 165-08 Liberty Ave./(212) 658-5050 Jamaica, New York 11431

MILGRAY/NEW YORK 160 Varick St./(212) YU 9-1600 New York, New York 10013

ROCHESTER RADIO SUPPLY CO., INC. 140 W. Main St./(716) 454-7800 Rochester, New York 14614 TI SUPPLY COMPANY

4 Nevada Dr./(516) 488-3300 New Hyde Park, L. I., N. Y. 11040

NORTH CAROLINA

ELECTRONIC WHOLESALERS, INC. 938 Burke St./(919) PA 5-8711 Winston-Salem, North Carolina 27101

OHIO

ESCO ELECTRONICS INC. 3130 Valleywood Drive/(513) 298-0191 Dayton, Ohio 45429

MILGRAY/CLEVELAND 1821 East 40th Street/(216) 881-8800 Cleveland, Ohio 44102 NEWARK-HERRLINGER ELECTRONICS CORP. 112 E. Liberty St./(513) GA 1-5282

Cincinnati, Ohio 45210 W. M. PATTISON SUPPLY CO. 4550 Willow Parkway/(216) 441-3000 Cleveland, Ohio 44125

SREPCO ELECTRONICS, INC. 314 Leo Street/(513) BA 4-3871 Dayton, Ohio 45404

OKLAHOMA

TI SUPPLY COMPANY 12151 E. Skelly Dr./(918) 437-4555 Tulsa, Oklahoma 74110

OREGON

ALMAC STROUM ELECTRONICS CORPORATION 8888 S.W. Canyon Road/(503) 292-3534 Portland, Oregon 97225

PENNSYLVANIA

MILGRAY/DELAWARE VALLEY INC 2532 N. Broad St./(215) BA 8-2000 Philadelphia, Penn. 19107

RPC ELECTRONICS 620 Alpha Dr./(412) 782-3770 RIDC Park Pittsburgh, Pennsylvania 15238

TEXAS

TI SUPPLY COMPANY 6000 Denton Drive/(214) FL 7-6121 Dallas, Texas 75235 5240 Elm Street/(713) MO 6-2175

Houston, Texas 77036 1422 San Jacinto St./(713) CA 4-9131 Houston, Texas 77001

MIDLAND SPECIALTY COMPANY 2235 Wyoming Ave./(915) KE 3-9555 El Paso, Texas 79903

UTAH '

STANDARD SUPPLY COMPANY 225 E. Sixth South St. /(801) EL 5-2971 Salt Lake City, Utah 84110

WASHINGTON

ALMAC-STROUM ELECTRONICS 5811 Sixth Ave. So./(206) 763-2300 Seattle, Washington 98108

WASHINGTON, D.C.

ELECTRONIC WHOLESALERS, INC. 2345 Sherman Ave., N. W. (202) HU 3-5200 Washington, D.C. 20001

CANADA

CANADIAN ELECTRONICS LTD. Calgary, Alberta Edmonton, Alberta Lethbridge, Alberta Medicine Hat, Alberta Vancouver, B. C.

CESCO ELECTRONICS LTD. Downsview, Quebec Quebec, Quebec Ottawa, Ontario Toronto, Ontario TI SUPPLY COMPANY Dorval, Quebec

WELLINGTON, New Zealand W. G. LEATHAM LTD.

AUSTRALIAN TI DISTRIBUTOR MELBOURNE, Australia RADIO PARTS PTY, LTD.

PERTH, Australia PRECISION ELECTRONICS BRISBANE, Australia DOUGLAS ELECTRONICS

EUROPEAN TI DISTRIBUTORS BRUSSELS IV, Belgium S.A. AVI-ELEC N.V.

COPENHAGEN V. Denmark TEXAS INSTRUMENTS A/S

> **HELSINKI**, Finland OY CHESTER AB

HAMBURG, West Germany FIRMA ALFRED NEYE, ENATECHNIK

STUTTGART, WEST GERMANY TI SUPPLY CO.

> OSLO, Norway MORGENSTIERNE & CO.

STOCKHOLM. Sweden AB GOSTA BACKSTROM

ZURICH 32. Switzerland FABRIMEX AG ZURICH

> PARIS, FRANCE TI SUPPLY CO.

MILANO, ITALY TI SUPPLY CO.

MANCHESTER, ENGLAND TI SUPPLY CO.

TYPE 1N3064 DIFFUSED SILICON SWITCHING DIODE

WHISKERLESS, DOUBLE-PLUG CONSTRUCTION

mechanical data

The glass-passivated silicon wafer is encased in a hermetically sealed glass package. The high-temperature bond between wafer and leads ensures integral positive contact under extreme environmental conditions.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

*V _{RM}	Peak Reverse Voltage
lμ	Steady-State Forward Current at (or below) 25°C Free-Air Temperature (See Note 1) 115 mA
I _{FM(surge)}	Peak Surge Current, One Second (See Note 2)
I _{FM(surge)}	Peak Surge Current, One Microsecond (See Note 2)
*P ` ` `	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) 250 mW
	Storage Temperature Range
*T.	Lead Temperature 1/4 Inch from Case for 2 Seconds 250°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _(BR)	Reverse Breakdown Voltage	$I_R = 5 \mu A$	75		٧
l _R	Static Reverse Current	$V_R = 50 \text{ V}$		0.1	μΑ
'K		$V_R = 50 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
V _F	Static Forward Voltage	I _F = 10 mA		1	٧
$\alpha_{ m VF}$	Temperature Coefficient of Static Forward Voltage	I _F = 10 mA, See Note 4		3	mV/deg
(_T	Total Capacitance	$V_R = 0$, $f = 1 \text{ MHz}$		2	pF

*operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{rr} Reverse Recovery Time	$I_F=10$ mA, $I_{RM}=10$ mA, $R_L=100$ Ω , $C_L=10$ pF, $I_{rr}=1$ mA, See Figure 1	4	ns
V _{FM(roc)} Forward Recovery Voltage	$I_F=100$ mA, $R_L=50~\Omega$, See Figure 2	3	٧
$\eta_{ m r}$ Rectification Efficiency	$V_r=2V, \qquad R_L=5k\Omega, C_L=20pF, \ Z_{source}=50\Omega, f=100MHz$	45 %	

- NOTES: 1. These values may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Derate linearly to 0 at 150°C free-air temperature.
 - 2. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
 - 3. Derate linearly at the rate of 1.5 mW/deg.
 - 4. Temperature coefficient, $lpha_{
 m VF}$, is determined by the following formula:

$$\alpha_{VF} = \frac{V_F @ 150^{\circ}C - V_F @ -55^{\circ}C}{150^{\circ}C - (-55^{\circ}C)}$$

†Trademark of Texas Instruments *Indicates JEDEC registered data

TYPE 1N3064 DIFFUSED SILICON SWITCHING DIODE

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $\mathbf{Z}_{\text{out}} = 50~\Omega$, $\mathbf{t}_r \leq 0.25~\text{ns}$, $\mathbf{t}_p = 100~\text{ns}$. b. Output waveform is monitored on an oscilloscope with the following characteristics: $\mathbf{t}_r \leq 0.35~\text{ns}$, $\mathbf{Z}_{\text{in}} = 50~\Omega$.

FIGURE 2 - FORWARD RECOVERY VOLTAGE

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $\mathbf{Z}_{\mathrm{out}} = 50~\Omega$, $\mathbf{t}_{\mathrm{r}} \leq 20~\mathrm{ns}$, $\mathbf{t}_{\mathrm{p}} = 100~\mathrm{ns}$, PRR $\leq 160~\mathrm{kHz}$.

d. Output waveform is monitored on an oscilloscope with the following characteristics: $\mathbf{t}_{\mathrm{r}} \leq 0.4~\mathrm{ns}$, $\mathbf{R}_{\mathrm{in}} \geq 1~\mathrm{M}\Omega$, $\mathbf{C}_{\mathrm{in}} \leq 5~\mathrm{pF}$.

TYPE 1N3070 DIFFUSED SILICON SWITCHING DIODE

WHISKERLESS, DOUBLE-PLUG CONSTRUCTION

mechanical data

The glass-passivated silicon wafer is encased in a hermetically sealed glass package. The high-temperature bond between wafer and leads ensures integral positive contact under extreme environmental conditions.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

$*V_{RM}$	Peak Reverse Voltage
l _F	Steady-State Forward Current at (or below) 25°C Free-Air Temperature (See Note 1) 150 mA
I _{FM(surge)}	Peak Surge Current, One Second (See Note 2)
i _{FM(surge)}	Peak Surge Current, One Microsecond (See Note 2)
*P	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) 250 mW
*T _{stg}	Storage Temperature Range
*T _L	Lead Temperature 1/4 Inch from Case for 2 Seconds

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _(BR)	Reverse Breakdown Voltage	I _R = 0.1 mA	200		٧
l _R	Static Reverse Current	V _R = 175 V		0.1	μA
'R		$V_R = 175 V, T_A = 150 °C$		100	μΑ
VF	Static Forward Voltage	I _F = 100 mA	1	1	٧
α _{VF}	Temperature Coefficient of Static Forward Voltage	I _F = 100 mA, See Note 4		3	mV/deg
C _T	Total Capacitance	$V_R = 0$, $f = 1 \text{ MHz}$	1	5	pF

*operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _{rr}	Reverse Recovery Time	$I_F=30$ mÅ, $I_{RM}=30$ mÅ, $R_L=150$ Ω , $C_L=10$ pF, $I_{rr}=1$ mÅ, See Figure 2		50	ns
η_r	Rectification Efficiency	$V_r = 2 V$, $R_L = 5 k\Omega$, $C_L = 20 pF$, $Z_{source} = 50 \Omega$, $f = 100 MHz$	35 %		

- NOTES: 1. These values may be applied continuously under single-phase 60-Hz half-sine-wave operation with resistive load. Derate linearly to 0 at 200°C free-air temperature.
 - 2. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
 - 3. For operation above 25°C free-air temperature, refer to Dissipation Derating Curve, figure 1.
 - 4. Temperature coefficient, QVF, is determined by the following formula:

$$\alpha_{\rm VF} = \frac{{
m V_F @ 150^{\circ}C - V_F @ -55^{\circ}C}}{150^{\circ}C - (-55^{\circ}C)}$$

†Trademark of Texas Instruments
*Indicates JEDEC registered data

TYPE 1N3070 DIFFUSED SILICON SWITCHING DIODE

THERMAL INFORMATION

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 -- REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_{out}=50~\Omega$, $t_r\leq0.25$ ns, $t_p=100$ ns. b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r\leq0.35$ ns, $t_{in}=50~\Omega$.

TYPES 1N4148, 1N4149, 1N4446, 1N4447, 1N4448, 1N4449

PLANAR SILICON SWITCHING DIODES

- Small-Size, Whiskerless, Double-Plug Construction
- Extremely Stable and Reliable High-Speed Diodes

Electrical Equivalents

1N4148 • 1N914

1N4149 • 1N916

1N4446 • 1N914A

1N4447 • 1N916A

1N4448 • 1N914B

1N4449 • 1N916B

mechanical data

The glass-passivated silicon wafer is encased in a hermetically sealed glass package. High-temperature bond between wafer and leads insures integral positive contact under extreme environmental conditions.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

$V_{RM(wkg)}$	Working Peak Reverse Voltage
P	Continuous Power Dissipation at (or below) 25°C Free-Air
	Temperature (See Note 1)
T _{stg}	Storage Temperature Range
TL	Lead Temperature 1/16 Inch from Case for 10 Seconds

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1N4148	1N4149	1N4446	1N4447	1N4448	1N4449	[<u>.</u>
		1231 CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
V	Reverse Breakdown Voltage	$I_R = 5 \mu A$	75	75	75	75	75	75	٧
*(BK)		$I_R = 100 \mu A$	100	100	100	100	100	100	٧
		$V_R = 20 V$	25	25	25	25	25	25	nA
I _R	Static Reverse Current	$V_R = 20 \text{ V, T}_A = 100^{\circ}\text{C}$					3	3	μA
		$V_R = 20 V, T_A = 150 ° C$	50	50	50	50	50	50	
		I _F = 5 mA					0.62 0.72	0.63 0.73	V
		I _F = 10 mA	Ĩ	1					٧
٧F	Static Forward Voltage	$I_F = 20 \text{ mA}$			1	1			٧
		I _F = 30 mA						1	٧
		$I_F = 100 \text{ mA}$					1		٧
C _T	Total Capacitance	$V_R = 0$, $f = 1 MHz$	4	2	4	2	4	2	pF

NOTE 1: Derate linearly to 200°C at the rate of 2.85 mW/deg.

[†]Trademark of Texas Instruments

^{*} Indicates JEDEC registered data

TYPES 1N4148, 1N4149, 1N4446, 1N4447, 1N4448, 1N4449 **PLANAR SILICON SWITCHING DIODES**

*switching characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	1N4	1148	1N4	149	1N4	446	1N4	447	1N4	448	1N4	449	
	PAKAMEIEK	IEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Į.	D	$ I_F = 10 \text{ mA, } V_R = 6 \text{ V, } I_{rr} = 1 \text{ mA,}$								4		_		_	
l _{tt}	Reverse Recovery Time	$R_L = 100 \Omega$, See Figure 1		4		4		4		4		4		4	ns
	r	$ m I_F=50$ mA, $ m R_L=50~\Omega$, See Figure 2												٠.	
VFM(rec)	rorwara kecovery voitage	See Figure 2	l		i						l	2.5		2.5	٧

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 — REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $I_{out}=50~\Omega,~t_{p}\leq0.5~ns,~t_{p}=100~ns.$ b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \leq$ 0.6 ns, $Z_{in} =$ 50 Ω .

FIGURE 2 - FORWARD RECOVERY VOLTAGE

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $I_{out} = 50 \ \Omega$, $t_r \le 30 \ ns$, $t_p = 100 \ ns$, PRR = 5 to 100 kHz. d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 1$ M Ω , $C_{in} \leq 5$ pF. *Indicates JEDEC registered data

TYPES 1N4305, 1N4444, 1N4454 PLANAR SILICON SWITCHING DIODES

- Small-Size, Whiskerless, Double-Plug Construction
- Extremely Stable and Reliable High-Speed Diodes
- 1N4305 Electrically Equivalent to 1N3063
- 1N4454 Electrically Equivalent to 1N3064

mechanical data

The glass-passivated silicon wafer is encased in a hermetically sealed glass package. High-temperature bond between wafer and leads insures integral positive contact under extreme environmental conditions.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

		1N4305	1N4444	1N4454	UNIT
V_{RM}	Peak Reverse Voltage	75		75	V
$V_{RM(wkg)}$	Working Peak Reverse Voltage		50		٧
P	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 1)		500		mW
T _{stg}	Storage Temperature Range	-	-65 to 20	0	°C
TL	Lead Temperature 1/16 Inch from Case for 10 Seconds		300		°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1N	4305	1N4	444	1N4	454	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _(BR)	Reverse Breakdown Voltage	$I_R = 5 \mu A$	75		70		75		٧
l _R	Static Reverse Current	$V_R = 50 \text{ V}$		0.1		0.05		0.1	μΑ
'K 		$V_R = 50 \text{ V}, T_A = 150 ^{\circ}\text{C}$		100		50		100	μΑ
		I _F = 0.1 mA			0.44	0.55			٧
		I _F = 0.25 mA	0.505	0.575					٧
	61 F 111.	I _F = 1 mA	0.55	0.65	0.56	0.68		1	٧
٧ _F	Static Forward Voltage	I _F = 2 mA	0.61	0.71					٧
		I _F = 10 mA	0.70	0.85	0.69	0.82		1	٧
		I _F = 100 mA			0.85	1			٧
$\alpha_{ m VF}$	Forward Voltage Temperature Coefficient	$I_{ extsf{F}}=$ 10 μ A to 10 mA, See Note 2		3					mV/deg
C _T	Total Capacitance	$V_R = 0$, $f = 1 MHz$		2		2		2	pF

NOTES: 1. Derate linearly to 200°C at the rate of 2.85 mW/deg.

2. Temperature coefficient, $lpha_{
m VF}$, is determined by the following formula:

†Trademark of Texas Instruments

*Indicates JEDEC registered data

 $\alpha_{VF} = \frac{V_F @ 150^{\circ}(-V_F @ -55^{\circ}(-55^{\circ}))}{150^{\circ}(-(-55^{\circ}(-55^{\circ})))}$

TYPES 1N4305, 1N4444, 1N4454 PLANAR SILICON SWITCHING DIODES

*operating characteristics at 25°C free-air temperature

DADAMETER	TEST CONDITIONS	1114	1305	1N4	444	1N4	454	UNIT
PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	Oilli
A Danier Bassian Time	$I_F=10$ mA, $I_{RM}=10$ mA, $I_{rr}=1$ mA, $R_L=100$ Ω , See Figure 1, Condition 1		4		7		4	ns
t _{rr} Reverse Recovery Time	$I_F=10$ mA, $V_R=6$ V, $i_{rr}=1$ mA, $R_L=100$ Ω , See Figure 1, Condition 2		2				2	ns
V _{FM(rec)} Forward Recovery Voltage	${ m I_F}=$ 100 mA, ${ m R_L}=$ 50 Ω , See Figure 2						3	V
η_r Rectification Efficiency	$V_r=2$ V, $R_L=5$ k Ω , $C_L=20$ pF, $Z_{source}=50$ Ω , $f=100$ MHz	45						%

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $Z_{out}=50~\Omega,~t_r\leq0.5~ns,~t_p=100~ns.$ b. Output waveforms are monitored on an oscilloscope with the following characteristics: $t_r\leq0.6~ns,~Z_{in}=50~\Omega.$

FIGURE 2 - FORWARD RECOVERY VOLTAGE

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $I_{out}=50~\Omega,~t_r\leq30~ns,~t_p=100~ns,~PRR=5~to~100~kHz.$ d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r\leq15~ns,~R_{in}\geq1~M\Omega,~C_{in}\leq5~pF.$

*Indicates JEDEC registered data.

TYPES 1N4531 THRU 1N4534, 1N4536 PLANAR SILICON SWITCHING DIODES

- Microminiature, Whiskerless, Double-Plug Construction
- Extremely Stable and Reliable High-Speed Diodes

Electrical Equivalents

1N4531 • 1N914

1N4532 • 1N3064

1N4533 • 1N3605

1N4534 • 1N3606

1N4536 • 1N4009

mechanical data

The glass-passivated planar silicon wafer is encased in a hermetically sealed glass package. High-temperature bond between wafer and leads insures integral positive contact under extreme environmental conditions.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	·				,		
		1N4531	1N4532	1N4533	1N4534	1N4536	UNIT
V _{RM}	Peak Reverse Voltage	75	75	40	75	35	٧
*V _{RM(wkg)}	Working Peak Reverse Voltage	75	75	40	50	25	V
*P	Continuous Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 1)		•	500	-		mW
*T _{stg}	Storage Temperature Range		_	-65 to 200)		°C
*T _L	Lead Temperature 1/4 Inch from Case for 10 Seconds			300			°C

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

0,0	cirical cilaracieristi	cs at 25°C tree-air	remperatu	re (unies	otnerwis	e noted)		
	PARAMETER	TEST CONDITIONS	1N4531	1N4532	1N4533	1N4534	1N4536	
		TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
Viens	Reverse Breakdown Voltage	$I_R = 5 \mu A$	75	75	40	75	35	٧
* (DK)		$I_R = 100 \mu\text{A}$	100					٧
		$V_R = 20 V$	0.025					μΑ
		$V_{R} = 20 \text{ V}, T_{A} = 150 ^{\circ}\text{C}$	50					μA
		$V_R = 25 V$					0.1	μΑ
l _R	Static Reverse Current	$V_R = 25 \text{ V}, T_A = 150^{\circ}\text{C}$					100	μΑ
٠,		$V_R = 30 \text{ V}$			0.05			μA
		$V_R = 30 \text{ V}, T_A = 150^{\circ}\text{C}$			50			μΑ
		$V_R = 50 \text{ V}$		0.1		0.05		μA
		$V_R = 50 \text{ V}, T_A = 150^{\circ}\text{C}$		100		50		μΑ
		$I_F = 0.1 \text{ mA}$			0.49 0.55	0.49 0.55		·V
		$I_F = 0.25 \text{ mA}$			0.53 0.59	0.53 0.59		٧
		I _F = 1 mA			0.59 0.67	0.59 0.67		٧
٧F	Static Forward Voltage	I _F = 2 mA			0.62 0.70	0.62 0.70		٧
		$I_F = 10 \text{ mA}$	1	1	0.70 0.81	0.70 0.81		٧
		$I_F = 20 \text{ mA}$			0.74 0.88	0.74 0.88		٧
		I _F = 30 mA					1	٧
CT	Total Capacitance	$V_R = 0$, $f = 1 MHz$	4	2	2	2	4	pF

NOTE 1: Derate linearly to 200°C free-air temperature at the rate of 2.85 mW/deg.

†Trademark of Texas Instruments *Indicates JEDEC registered data

TYPES 1N4531 THRU 1N4534, 1N4536 PLANAR SILICON SWITCHING DIODES

*operating characteristics at 25°C free-air temperature

Г	-		1N4531	1N4532	1N4533	1N4534	1N4536	UNIT
	PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	Olvii
ľ		$\rm I_F=10$ mA, $\rm I_{RM}=10$ mA, $\rm I_{rr}=1$ mA, $\rm I_{L}=100~\Omega$, See Figure 1, $$ Condition 1		4	4	4	4	ns
	rr Reverse Recovery Time	$I_F=10$ mA, $V_R=6$ V, $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	4	2	2	2	2	ns
1	Forward Recovery FM(rec) Voltage	$I_{\rm F}=100$ mA, $R_{\rm L}=50\Omega$, See Figure 2		3		;		٧

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with-the following characteristics: $Z_{out}=50~\Omega_{\rm c}$, $t_{\rm p}\leq0.5$ ns, $t_{\rm p}=100$ ns. b. Output waveforms are monitored on an oscilloscope with the following characteristics: $t_{\rm p}\leq0.6$ ns, $Z_{\rm in}=50~\Omega_{\rm c}$.

FIGURE 2 - FORWARD RECOVERY VOLTAGE

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $I_{out}=50~\Omega,\,t_{r}\leq30~ns,\,t_{p}=100~ns,\,PRR=5~to~100~kHz.$

d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 1$ M Ω , $C_{in} \leq 5$ pF.

*Indicates JEDEC registered data

TYPES TID21, TID22, TID23, TID24 EPITAXIAL PLANAR SILICON 8-DIODE ARRAYS

8-DIODE CORE DRIVERS For Application With

Magnetic Cores • Memory Drums • Memory Tapes Magnetic Discs • Diode-Capacitor Storage

mechanical data

The diode arrays are mounted in a glass-to-metal hermetically sealed, welded package which falls within the JEDEC TO-89 outline. Leads are goldplated F-15† glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic.

†F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 29% nickel, 17% cobalt, and 53% iron.

schematic diagrams

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH	DIODE	TOTAL	
	TID21	TID22	DEVICE	UNIT
	TID 23	TID24	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		٧
Steady State Reverse Voltage, V _R	30	15		٧
Peak Forward Current at (or below) 25°C Free-Air Temperature (See Notes 1, 2, and 3)	50	00	500	mA
Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Notes 2 and 4)	10	00	200	mA
Storage Temperature Range		-65 to 20	0	°C
Lead Temperature 1/4 Inch From Case for 10 Seconds		300		°C

NOTES: 1. These values apply for 100- μ s pulses, duty cycle \leq 20%.

- 2. The values shown for total device apply for any combination provided the ratings of individual diodes are not exceeded.
- 3. Derate linearly to 150°C free-air temperature at the rate of 4 mA/deg.
- 4. Derate linearly to 150°C free-air temperature at the rate of 0.8 mA/deg for each diode and 1.6 mA/deg for the total device.

TYPES TID21, TID22, TID23, TID24 EPITAXIAL PLANAR SILICON 8-DIODE ARRAYS

electrical characteristics at 25°C free-air temperature

single-diode operation (see note 5)

				TI	D21	1	1D22	T	ID23	T	ID24	UNIT
	PARAMETER	TEST CONDITIONS		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	ON
V _(BR)	Reverse Breakdown Voltage	I _R =10 μA		60		40		60		40		٧
	0.4.8	V _R =30 V			0.1				0.1			μΑ
I _R	Static Reverse Current	V _R =15 V					0.1				0.1	μΑ
٧ _F	Static Forward Voltage	I _F =100 mA			1		1.1		1		1.1	٧
٧F	Instantaneous Forward Voltage	I _F =500 mA,	See Note 6		1.3		1.5		1.3		1.5	٧
V _{FM}	Peak Forward Voltage	I _F =500 mA,	See Note 7		5		5		5		5	Ÿ
C _T	Total Capacitance	V _R =0,	f=1 MHz		4		4		7		i	pF

multiple-diode operation (see note 8)

		TEST COMPUTIONS	T	TID21 TID22 TID23		T	TID24				
PARAMETER		TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
I _{R1}	Static Reverse Current	V _{R1} = rated V _R , I _{FN} = 25 mA		10		10		10		10	μΑ
VFI	Static Forward Voltage	I _{F1} = I _{FN} = 25 mA	Î	1		ſ		1		1	٧

switching characteristics at 25°C free-air temperature

single-diode operation (see note 5)

	PARAMETER	TEST CONDITIONS	ALL TYPES MAX	UNIT
tfr	Forward Recovery Time	I _F =500 mA, See Figure 2	40	ns
ter	Reverse Recovery Time	I_F = 200 mA, I_{RM} = 200 mA, R_L = 100 Ω , I_{rr} = 20 mA, See Figure 3	20	ns

- NOTES: 5. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics.
 - 6. This parameter is measured using pulse techniques. $t_p = 100~\mu s$, duty cycle $\leq 2\%$. Read time is 90 μs from leading edge of the pulse.
 - 7. The initial instantaneous value is measured using pulse techniques. $t_p = 150~\mu s$, duty cycle $\le 2\%$ pulse rise time $\le 10~ns$. The total diode shunt capacitance is 19 pF max and the equipment bandwidth is 80 MHz.
 - 8. Subscript numeral 1 refers to the diode under test; subscript N refers simultaneously to each of the other diodes. Each diode is individually tested after the device reaches operating thermal equilibrium.

TYPES TID21, TID22, TID23, TID24 EPITAXIAL PLANAR SILICON 8-DIODE ARRAYS

TYPICAL CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - FORWARD RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $t_{out} = 50~\Omega$, PW = 150 ns, duty cycle $\le 2\%$.

b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 4.5$ ns, $R_{in} \ge 1~\text{M}\Omega$, $C_{in} \le 5~\text{pF}$.

TYPES TID21, TID22, TID23, TID24 EPITAXIAL PLANAR SILICON 8-DIODE ARRAYS

PARAMETER MEASUREMENT INFORMATION

FIGURE 3 - REVERSE RECOVERY TIME

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $t_f \le 1$ ns, $T_{out} = 50 \Omega$, $t_p = 200$ ns, duty cycle $\le 1\%$.

d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 0.4$ ns, $R_{in} = 50 \Omega$.

16-DIODE CORE DRIVERS

For Application With Magnetic Cores • Memory Drums • Memory Tapes Diode-Capacitor Storage • Magnetic Discs

mechanical data

The diode arrays are mounted in a glass-to-metal hermetically sealed, welded package which falls within the JEDEC TO-89 outline. Leads are goldplated F-15† glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic.

†F-15 is the ASTM designation for an iron-nickel-cebalt alloy containing nominally 29% nickel, 17% cobalt, and 53% iron.

schematic diagrams

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH	DIODE	TOTAL	
	TID25	TID26	DEVICE	UNIT
	60 30	11520	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		V
Steady State Reverse Voltage, V _R	30 15			٧
Peak Forward Current at (or below) 25°C Free-Air Temperature (See Notes 1, 2, and 3)	5	500		mA
Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Notes 2 and 4)	1	100		mA
Storage Temperature Range		-65 to 200		°C
Lead Temperature 1/16 Inch From Case for 10 Seconds		300		°C

NOTES: 1. These values apply for $100-\mu s$ pulses, duty cycle \leq 20%.

- 2. The values shown for total device apply for any combination provided the ratings of individual diodes are not exceeded.
- 3. Derate linearly to 150°C free-air temperature at the rate of 4 mA/deg.
- 4. Derate linearly to 150°C free-air temperature at the rate of 0.8 mA/deg for each diode and 1.6 mA/deg for the total device.

electrical characteristics at 25°C free-air temperature

single-diode operation (see note 5)

PARAMETER		TECT COL	IDITIONS	TID25		TID26		*****
	PARAMEIER	TEST CO	ADITIONS	MIN	MAX	MIN	MAX	UNIT
V _(BR)	Reverse Breakdown Voltage	$I_R = 10 \mu A$		60		40		V
l _R	Static Reverse Current	V _R =30 V,	See Note 6		0.1			μΑ
IR.	Sidiic Keveise Colletti	V _R =15 V,	See Note 6				0.1	μΑ
V _F	Static Forward Voltage	I _F =100 mA			1		1.1	V
٧F	Instantaneous Forward Voltage	I _F =500 mA,	See Note 7		1.3		1.5	V
V _{FM}	Peak Forward Voltage	I _F = 500 mA,	See Note 8		5		5	٧
CT	Total Capacitance †	V _R =0,	f=1 MHz		8		8	pF

multiple-diode operation (see note 9)

	DADAMETER	TECT COMPLETIONS	TI	D25	TII	026	UNIT μA
PARAMETER		TEST CONDITIONS	MIN	MAX	MIN	UNII	
I _{R1}	Static Reverse Current	V _{R1} =rated V _R , I _{FN} =25 mA		10		10	μ
V _{F1}	Static Forward Voltage	I _{F1} =I _{FN} =25 mA		1		1	٧

switching characteristics at 25°C free-air temperature

single-diode operation (see note 5)

	DARAMETER	TEST CONDITIONS	ALL TYPES	UNIT
	PARAMETER Forward Recovery Time	lesi CONDITIONS	MAX	ONII
t _{fr}	Forward Recovery Time	I _F = 500 mA, See Figure 3	40	ns
t _{rr}	Reverse Recovery Time	I_F = 200 mA, I_{RM} = 200 mA, R_L = 100 Ω , I_{rr} = 20 mA, See Figure 4	20	ns

- NOTES: 5. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics, except for I_R as shown in figures 1 and 2.
 - 6. See figures 1 and 2, Parameter Measurement Information section.
 - 7. This parameter is measured using pulse techniques. $t_p = 100~\mu s$, duty cycle = 2%. Read time is 90 μs from leading edge of the pulse.
 - The initial instantaneous value is measured using pulse techniques. 1_p =150 μs, duty cycle ≤ 2%, pulse rise time ≤ 10 ns. The total diode shunt capacitance is 19 pF max and the equipment bandwidth is 80 MHz.
 - 9. Test conditions apply separately to the common-anode and common-cathode sections. Subscript numerial 1 refers to the diode under test; subscript N refers simultaneously to each of the other diodes in the section. Each diode is individually tested after the device reaches operating thermal equilibrium.

[†]C_T is the total pin-to-pin capacitance measured across any of the diedes. The interaction of the other diodes cannot easily be separated out unless three-terminal guarded measurement techniques are used. The actual capacitance of a single, isolated diode will typically be 30% of the measured pin-to-pin value for the common-anode diodes, and 75% of the measured value for the common-anode diodes.

PARAMETER MEASUREMENT INFORMATION

When measuring the reverse current of an individual diode the current meter must be placed so that the shunt current through the other diodes is bypassed around the meter. To obtain accurate readings, the voltage drop across the current meter must be less than 10 mV.

FIGURE 3 - FORWARD RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_r \le 15$ ns, $R_{out} = 50 \ \Omega$, $t_p = 150$ ns, duty cycle $\le 2\%$. b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 4.5$ ns, $R_{in} \ge 1$ M Ω , $C_{in} \le 5$ pF.

PARAMETER MEASUREMENT INFORMATION

FIGURE 4 — REVERSE RECOVERY TIME

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $t_r \le 1$ ns, $I_{out} = 50 \Omega$, $t_p = 200$ ns, duty cycle $\le 1\%$.

d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 0.4$ ns, $R_{in} = 50 \Omega$.

TYPES TID29, TID30 EPITAXIAL PLANAR SILICON DUAL 10-DIODE ARRAYS

20-DIODE CORE DRIVERS

For Application With Magnetic Cores • Memory Drums • Memory Tapes Diode-Capacitor Storage • Magnetic Discs Convenient Input/Output Lead Arrangement

mechanical data

The diode arrays are mounted in a glass-to-metal hermetically sealed, welded package which falls within the JEDEC TO-84 outline. Leads are goldplated F-15† glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic.

†F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 29% nickel, 17% cobalt, and 53% iron.

schematic diagrams

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH	DIODE	TOTAL	
	TID29	TID30	DEVICE	UNIT
	11029	11030	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		٧
Steady State Reverse Voltage, V _R	30	15		٧
Peak Forward Current at (or below) 25°C Free-Air Temperature (See Notes 1, 2, and 3)	500		500	mA
Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Notes 2 and 4)	100		200	mA
Storage Temperature Range	-65 to 200		0	°C
Lead Temperature 1/4 Inch From Case for 10 Seconds		300		°C

- NOTES: 1. These values apply for $100-\mu s$ pulses, duty cycle $\leq 20\%$.
 - 2. The values shown for total device apply for any combination provided the ratings of individual diodes are not exceeded.
 - 3. Derate linearly to 150°C free-air temperature at the rate of 4 mA/deg.
 - 4. Derate linearly to 150°C free-air temperature at the rate of 0.8 mA/deg for each diode and 1.6 mA/deg for the total device.

TYPES TID29, TID30 EPITAXIAL PLANAR SILICON DUAL 10-DIODE ARRAYS

electrical characteristics at 25°C free-air temperature

single-diode operation (see note 5)

				TID29		TID30			
	PARAMETER	TEST CON	ADITIONS	MIN	MAX	MIN MAX		UNIT	
V _(BR)	Reverse Breakdown Voltage	$I_R = 10 \mu A$		60		40		V	
	Static Reverse Current	V _R =30 V,	See Note 6		0.1			μΑ	
IR	Static Keverse Corrent	$V_R = 15 V$	See Note 6				0.1	μΑ	
VF	Static Forward Voltage	I _F =100 mA			1		1.1	٧	
VF	Instantaneous Forward Voltage	I _F = 500 mA,	See Note 7		1.3		1.5	٧	
V _{FM}	Peak Forward Voltage	I _F = 500 mA,	See Note 8		5		5	٧	
C _T	Total Capacitance †	V _R =0,	f=1 MHz		8		8	рF	

multiple-diode operation (see note 9)

PARAMETER			TID29		TID	30	UNIT	
		TEST CONDITIONS	MIN MAX MIN MAX				UNII	
I _{R1}	Static Reverse Current	V _{R1} =rated V _R , I _{FN} =25 mÅ		10		10	μΑ	
V _{F1}	Static Forward Voltage	I _{F1} =I _{FN} =25 mA		1		1	V	

switching characteristics at 25°C free-air temperature

single-diode operation (see note 5)

	TECT COMPLETIONS			
PARAMETER	TEST CONDITIONS	MAX	UNIT	
fr Forward Recovery Time	I _F = 500 mA, See Figure 3	40	ns	
Reverse Recovery Time	$I_F=200$ mA, $I_{RM}=200$ mA, $I_{rr}=20$ mA, $I_{L}=100$ Ω , See Figure 4	20	ns	

- NOTES: 5. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics, except for I_R as shown in figures 1 and 2.
 - 6. See figures 1 and 2, Parameter Measurement Information section.
 - 7. This parameter is measured using pulse techniques. $t_{\rm p}=100~\mu{\rm s}$, duty cycle =2%. Read time is 90 $\mu{\rm s}$ from leading edge of the pulse.
 - 8. The initial instantaneous value is measured using pulse techniques. t_p = 150 μ s, duty cycle \leq 2%, pulse rise time \leq 10 ns. The total diode shunt capacitance is 19 pF max and the equipment bandwidth is 80 MHz.
 - Test conditions apply separately to the common-anode and common-cathode sections. Subscript numerial 1 refers to the diade under test; subscript N refers simultaneously to each of the other diades in the section. Each diade is individually tested after the device reaches operating thermal equilibrium.

†C_T is the total pin-to-pin capacitance measured across any of the diodes. The interaction of the other diodes cannot easily be separated out unless three-terminal guarded measurement techniques are used. The actual capacitance of a single, isolated diode will typically be 30% of the measured pin-to-pin value for the common-cathode diodes, and 75% of the measured value for the common-anode diodes.

TYPES TID29, TID30 EPITAXIAL PLANAR SILICON DUAL 10-DIODE ARRAYS

PARAMETER MEASUREMENT INFORMATION

When measuring the reverse current of an individual diode the current meter must be placed so that the shunt current through the other diodes is bypassed around the meter. To obtain accurate readings, the voltage drop across the current meter must be less than 10 mV.

FIGURE 1 — TEST CIRCUIT FOR COMMON-CATHODE DIODES

FIGURE 2 — TEST CIRCUIT FOR COMMON-ANODE DIODES

FIGURE 3 - FORWARD RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_{\Gamma} \leq 15$ ns, $T_{out} = 50~\Omega$, $t_{p} = 150$ ns, duty cycle $\leq 2\%$. b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{\Gamma} \leq 4.5$ ns, $R_{in} \geq 1$ M Ω , $C_{in} \leq 5$ pF.

TYPES TID29, TID30 EPITAXIAL PLANAR SILICON DUAL 10-DIODE ARRAYS

PARAMETER MEASUREMENT INFORMATION

FIGURE 4 - REVERSE RECOVERY TIME

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $t_f \le 1$ ns, $I_{out} = 50 \Omega$, $t_p = 200$ ns, duty cycle $\le 1\%$.

d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r \le 0.4$ ns, $R_{in} = 50 \Omega$.

TYPES TIV306, TIV307, TIV308 PLANAR SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

FOR USE IN AUTOMATIC FREQUENCY CONTROL AND VOLTAGE-VARIABLE TUNING

- Small Size, Whiskerless, Double-Plug Construction
- High Q, High Capacitance Ratio
- Replaces TIV300 and TIV301

mechanical data

The glass-passivated silicon wafer is encased in a hermetically sealed glass package. High-temperature bond between wafer and leads ensures integral positive contact under extreme environmental conditions.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Peak Reverse Voltage					20 V
Continuous Device Dissipation at (or below)	25°C	C Free-Air	Temperature (See	Note 1).	250 mW
Operating Free-Air Temperature Range .					
Storage Temperature Range					-65°C +0 200°C

electrical characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	TI	TIV306	TIV307		TIV308		
		TEST CONDITIONS	MIN MAX		MIN	MAX	MIN	MAX	UNIT
V _(BR)	Breakdown Voltage	$I_R = 100 \mu A$	20		20		20		٧
I _R	Reverse Current	$V_R = 15 \text{ V}$		50		50		50	nA
CT	Total Capacitance	$V_R = 4 V$, $f = 1 MHz$	5	9	7	11	9	14	pF
Q	Figure of Merit (Note 2)	V _R = 4 V, f = 50 MHz	200		200		200		<u> </u>
C _{V1} C _{V2}	Capacitance Ratio	$V_1 = 1 V$, $V_2 = 5 V$, $f = 1 MHz$	1.5		1.5		1.5		

NOTES: 1. Derate linearly to 150°C free-air temperature at the rate of 2 mW/deg.

2. Figure of Merit, Q, is defined by the equation Q = $\frac{1}{2\pi f C_T r_s}$ where r_s is Equivalent Series Resistance, as measured on a Boonton RF Admittance Bridge, Model 33A or equivalent.

PLANAR SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES TYPES TIV306, TIV307, TIV308

TYPICAL APPLICATION DATA

CIRCUIT COMPONENT INFORMATION

SS COILS	10 kΩ
RESISTORS	R ₁ : 27 kΩ R ₂ : 10 kΩ R ₂ : 10 kΩ R ₆ : 330 kΩ R ₄ : 32 Λ kΩ R ₆ : 820 Ω R ₄ : 330 Ω R ₀ : 120 Ω R ₅ : 1 kΩ R ₁₁ : 330 Ω R ₆ : 2.7 kΩ R ₁₂ : 330 Ω All resistors 1/2 W, ten percent tolerance TRANSFORMER T ₁ : 10.7 MHz IF transformer
CAPACITORS	(c) 0.000
CAPA	0.001 年 10.001 年 10.001 年 10.001 年 12.001 年 12.12 年 13.47 章 14.47 章

LIBE 19 - TYPICAL FM TUNE

3.3 TO 12 VOLTS • 400 mw

GUARANTEED DYNAMIC ZENER IMPEDANCE

Available in 5% and 10% tolerances
-65 to 175°C operation & storage

mechanical data

The diode is encased in a hermetically sealed hard-glass package which falls within the JEDEC DO-7 outline. Unit weight is typically 0.195 gram.

*absolute maximum ratings

Average Rectified Forward Current at (or below) 25°C Free-Air Temperature							. 230 mg
Average Rectified Forward Current at 150°C Free-Air Temperature							. 85 ma
Continuous Power Dissipation at (or below) 50°C Free-Air Temperature .							. 400 mw
Continuous Power Dissipation at 150°C Free-Air Temperature							. 100 mw
Operating Free-Air Temperature Range						. –65	°C to 175 °C
Storage Temperature Range							

*Indicates JEDEC registered data

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER	Vz Zener Breakdown Voltage					Zener Temperature Smo Breakdown Coefficient Sign					
TEST CONDITIONS		I _{ZT} = 20 ma				I _{ZT} = 20 ma	l _{ZT} = 20 ma, l _{zt} = 1 ma	V _R = 1 v	V _R = 1 v, T _A =150°C		
LIMIT>	NOM	1N746 MIN	- 1N759 MAX	1N746A- MIN	- 1N759 A MAX	TYP	MAX	MAX	MAX		
UNIT>	٧	٧	٧	٧	٧	%/°C	Ω	μα	μα		
1N746 1N747 1N748 1N749 1N750	3.3 3.6 3.9 4.3 4.7	2.97 3.24 3.51 3.87 4.23	3.63 3.96 4.29 4.73 5.17	3.135 3.420 3.705 4.085 4.465	3.465 3.780 4.095 4.515 4.935	-0.062 -0.055 -0.049 -0.036 -0.018	. 28 24 23 22 19	10 10 10 2 2	30 30 30 30 30		
1N751 1N752 1N753 1N754 1N755	5.1 5.6 6.2 6.8 7.5	4.59 5.04 5.58 6.12 6.75	5.61 6.16 6.82 7.48 8.25	4.845 5.320 5.890 6.460 7.125	5.355 5.880 6.510 7.140 7.875	-0.008 +0.006 +0.022 +0.035 +0.045	17 11 7 5 6	1 0.1 0.1 0.1	20 20 20 20 20 20		
1N756 1N757 1N758 1N759	8.2 9.1 10.0 12.0	7.38 8.19 9.00 10.80	9.02 10.01 11.00 13.20	7 790 8 645 9 500 11 400	8.610 9.555 10.500 12.000	+ 0.052 + 0.056 + 0.060 + 0.060	8 10 17 30	0.1 0.1 0.1 0.1	20 20 20 20 20		

^{*}Indicates JEDEC registered data

TYPICAL ZENER TEMPERATURE COEFFICIENT vs ZENER VOLTAGE

TYPICAL CHARACTERISTICS

Vz vs Iz TYPE 1N746

An individual diode will have voltage characteristics which vary with reverse current as shown on all curves.

When a diode has a zener voltage at 20 ma different from the value shown, translate the curves to this new value or shift the voltage axis to correspond to the translation. The max-min curves will now give the individual diode zener voltage spread at different current levels.

TYPICAL CHARACTERISTICS

V_z vs I_z TYPE 1N751

An individual diode will have voltage characteristics which vary with reverse current as shown on all curves.

When a diode has a zener voltage at 20 ma different from the value shown, translate the curves to this new value or shift the voltage axis to correspond to the translation. The max-min curves will now give the individual diode zener voltage spread at different current levels.

TYPICAL CHARACTERISTICS

Vz vs Iz TYPE 1N752

An individual diode will have voltage characteristics which vary with reverse current as shown on all curves.

When a diode has a zener voltage at 20 ma different from the value shown, translate the curves to this new value <u>or</u> shift the voltage axis to correspond to the translation. The max-min curves will now give the individual diode zener voltage spread at different current levels.

TYPES 1N746 THRU 1N759, 1N746A THRU 1N759A SILICON VOLTAGE REGULATOR DIODES

TYPICAL CHARACTERISTICS

V, vs I, TYPE 1N754

An individual diode will have voltage characteristics which vary with reverse current as shown on all curves.

When a diode has a zener voltage at 20 ma different from the value shown, translate the curves to this new value <u>or</u> shift the voltage axis to correspond to the translation. The max-min curves will now give the individual diode zener voltage spread at different current levels.

TYPES 1N746 THRU 1N759, 1N746A THRU 1N759A SILICON VOLTAGE REGULATOR DIODES

TYPICAL CHARACTERISTICS

Vz vs Iz TYPE 1N759

An individual diode will have voltage characteristics which vary with reverse current as shown on all curves.

When a diode has a zener voltage at 20 ma different from the value shown, translate the curves to this new value or shift the voltage axis to correspond to the translation. The max-min curves will now give the individual diode zener voltage spread at different current levels.

TYPES 1N4370 THRU 1N4372, 1N4370A THRU 1N4372A ALLOY-JUNCTION SILICON VOLTAGE REGULATOR DIODES

400 mW - 2.4 V to 3 V

1N4370A Thru 1N4372A Can Be Supplied in Accordance with MIL-S-19500/127 Low Noise Density: 20 $\mu\text{V}/\sqrt{\text{Hz}}$ Typical Very Low Dynamic Zener Impedance

mechanical data

The diode is encased in a hermetically sealed hard-glass package. The outline drawing meets JEDEC DO-7 outline*. Unit weight is 0.195 gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

TYPE	I _{ZM} Steady-State Reverse Current (See Note 1)	P Dissipation T _A ≤ 50°C (See Note 2)	T _{stg} Storage Temperature Range	Lead Temperature (See Note 3)		
1N4370	150 mA		_55°C			
1N4370A	I JU IRA					
1N4371	195A	400 mW		230°C		
1N4371A	135 mA	אווו טט ר	to 175 ° C	230 C		
1N4372	120 mA	1	,,,,			
1N4372A	IZU MA]		

- NOTES: 1. The nominal I_{ZM} currents shown are applicable to devices having regulator voltages 10% above the nominal V_Z values. These values do not represent absolute limits. The actual steady-state current-voltage product must not exceed 400 mW.
 - 2. Derate linearly to 175°C free-air temperature at the rate of 3.2 mW/deg.
 - 3. This value applies $\frac{1}{16}$ inch from the case for 10 seconds.

^{*}Indicates JEDEC registered data.

TYPES 1N4370 THRU 1N4372, 1N4370A THRU 1N4372A ALLOY-JUNCTION SILICON VOLTAGE REGULATOR DIODES

*electrical characteristics at 25°C free-air temperature

PARAMETER	Vz Zener Breakdown Voltage			Z _Z Small-Signal Breakdown Impedance	I _R Static Reverse Current	Y _F Static Forward Voltage
TEST CONDITIONS	I _{ZT} = 20 mA (See Note 4)		I _{ZT} = 20 mA I _{Z†} = 2 mA f = 60 Hz	V _R = 1 V	I _F = 200 mA	
LIMIT	MIN	NOM†	MAX	MAX	MAX	MAX
UNIT		٧		Ω	μΑ	Ÿ
1N4370	2.16	2.4	2.64	30	100	1.5
1N4370A	2.28	2.4	2.52	30	100	1.5
1N4371	2.43	2.7	2.97	30	75	1.5
1N4371A	2.57	2.7	2.84	30	75	1.5
1N4372	2.70	3	3.30	29	50	1.5
1N4372A	2.85	3	3.15	29	50	1.5

ROTE 4: This parameter is measured after the device reaches operating thermal equilibrium.

†Tolerance is ±10% for the 1N4370 thru 1N4372 series; ±5% for the 1N4370A thru 1N4372A series.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - NOISE DENSITY TEST CIRCUIT

^{*}Indicates JEDEC registered data.

This data sheet identifies those standard hardware kits which are supplied with each device. At additional cost, nonstandard hardware items will be supplied.

The mounting hardware assembly drawings of Section A (Figures 1 and 2) specify the individual hardware items that are included in each mounting hardware kit. Section A also references the package outlines for which each kit is designed and shows the typical thermal resistance associated with the mounting hardware.

Section B contains mechanical drawings of the individual hardware items that are referenced in Figures 1 and 2.

TABLE A SILICON THYRISTORS

DEVICE TYPES	KIT
TIC20-TIC21	•
TIC22-TIC23	10
TI40A0-TI40A4	9
TIC44-TIC47	•
T1145A0-T1145A4	•
2N681,A-2N689,A	10
2N876-2N881	•
2N884-2N889	*
2N1595-2N1599	•
2N1600-2N1604	9
2N1770,A-2N1777,A	9
2N1778	9
2N1842B-2N1850B	10
2N2322-2N2326	*
2N2653	9
2N2687-2N2690	
2N3001-2N3004	
2N3005-2N3008	•
TI3037-TI3042	10
2N3555-2N3558	*
2N3559-2N3562	•
2N3936-2N3940	9
2N5273-2N5275	10

*No hardware furnished with these devices.

Texas instruments reserves the right to substitute similar parts at any time in order to expedite delivery or improve design.

SECTION A - MOUNTING HARDWARE ASSEMBLY DRAWINGS AND PHOTOGRAPHS

FIGURE 1

† θ_{C-HS} is the thermal resistance from the mounting base of the semiconductor-device case to the mounting surface of the heat sink. The heat sink used to determine this value was a smooth, flat, copper plate, with the thermocouple mounted 0.05 inch below the mounting surface in an area beneath the device. The device was mounted directly to a clean, dry, heat-sink surface, without the use of a thermal compound and a torque of ten inch-pounds was applied to the stud or each of the mounting screws.

‡Trademark of E.I. du Pont §Trademark of Cedar Plastics

SECTION B - MECHANICAL DRAWINGS OF HARDWARE ITEMS

SOLDER LUG

TERMINAL LUG

SECTION B - MECHANICAL DRAWINGS OF HARDWARE ITEMS

INSULATING WASHER Items 6 and 7

0.865

0.260

0.0015

Item	A	В	C
	0.340	0.270	0.072
'	0.330	0.260	0.052
10	0.271	0.203	0.050
10	0.251	0.191	0.035

INSULATING SLEEVE Items 9 and 10

SECTION B - MECHANICAL DRAWINGS OF HARDWARE ITEMS

Item	A	В	C
17	0.208	0.505	0.051
"	0.198	0.495	0.041
18	0.276	0.635	0.069
18	0.255	0.615	0.034

FLAT WASHER Items 17 and 18

Item	A	В	C
20	0.204	0.381	0.025
20	0.195	0.365	0.020
22	0.267	0.478	0.027
**	0.256	0.466	0.023

INTERNAL-TOOTH LOCK WASHER Items 20 and 22

SECTION B - MECHANICAL DRAWINGS OF HARDWARE ITEMS

Item	Thread	A	В	С	D
25	10-32 UNF-2B	0.375 0.362	0.433 0.413	0.130 0.117	30°
27	1/4-28 UNF-2B	0.438 0.423	0.506 0.488	0.193 0.178	30°

HEXAGONAL NUT Items 25 and 27

TYPES TIC20, TIC21, TIC22, TIC23 SILICON BIDIRECTIONAL TRIODE THYRISTORS

GATED SYMMETRICAL SWITCHES 200 and 300 VOLTS — 6 AMPS

description

The TIC20 through TIC23 are bidirectional triode semiconductor switches which may be triggered from the blocking state to the conducting state by either polarity of gate signal with either polarity of anode-2 voltage.

mechanical data

absolute maximum ratings over operating case temperature range (unless otherwise noted)

	TIC20 TIC22	TIC21 TIC23	UNIT
Peak Blocking Voltage (See Note 1)	200	300	v
Full-Cycle RMS Anode Current at (or below) 75°C Case Temperature (See Note 2)		6	а
Peak Anode Surge Current (See Note 3)		50	а
Average Gate Power Dissipation	0	.5	w
Peak Gate Power Dissipation for 5 msec		5	w
Operating Case Temperature Range	-25 to	+100	°C
Storage Temperature Range	-25 to	b +100	°C
Terminal Temperature ⅓ Inch from Case for 10 Seconds	23	30	°C

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYPE	TYP	MAX	UNIT
1	Pools Anado Placking Course	$V_{AAM} = 200 v, I_G = 0, \qquad T_C = 100 {}^{\circ}\text{C}$	TIC20 TIC22		,	ma
I _{AOM}	Peak Anode Blocking Current	V _{AAM} = 300 v, I _G = 0, T _C = 100°C	TIC21 TIC23		'	ma
		$V_{A2-A1}=+12$ v, $R_L=12~\Omega$, $PW_G\geq 20~\mu sec$	ALL		+ 50	
1	Gate Trigger Current	$V_{A2-A1}=+12$ v, $R_L=12~\Omega$, $PW_G\geq 20~\mu sec$	ALL		– 50	ma
'GT		$V_{A2\text{-}A1} = -$ 12 v, $R_{L} = $ 12 Ω , $PW_{G} \geq $ 20 μ sec	ALL	+100		IIIu
		$V_{A2-A1}=-12 \text{ v, } R_{L}=12 \Omega, PW_{G}\geq 20 \mu \text{sec}$	ALL		-50	
		$V_{A2-A1}=+12$ v, $R_L=12$ Ω , $PW_G\geq 20$ μsec	ALL		+3	
V	Gate Trigger Voltage	$ extsf{V}_{ extsf{A2-A1}} = +$ 12 v, $ extsf{R}_{ extsf{L}} =$ 12 Ω , $ extsf{PW}_{ extsf{G}} \geq$ 20 μ sec	ALL		-3	v
V GT	date trigger voltage	$V_{A2-A1}=-12 extsf{v},~ extsf{R}_{ extsf{L}}=12\Omega,~ extsf{PW}_{ extsf{G}}\geq20~\mu extsf{sec}$	ALL	+3		•
		$V_{A2-A1}=-12 extsf{v},~R_L=12\Omega,~PW_G\geq 20~\mu extsf{sec}$	ALL		-3	
VAAM	Peak "On" Voltage	$I_{A2M} = \pm 10 a$, See Note 4	ALL		1.9	٧

- NOTES: 1. These values apply bidirectionally when the gate—anode-1 resistance $R_{GA1} \leq \infty$.
 - 2. This value applies for 60-cps full-sine-wave operation with resistive load. Above 75°C derate according to Figure 3.
 - 3. This value applies for one 60-cps full sine wave when the device is operating at (or below) the rated value of anode current. Surge may be repeated after the device has returned to original thermal equilibrium.
 - 4. The initial instantaneous value is measured using pulse techniques. Anode-pulse width = 300 μ sec, Duty Cycle \leq 1%.

TYPES TIC20, TIC21, TIC22, TIC23 SILICON BIDIRECTIONAL TRIODE THYRISTORS

TYPICAL APPLICATION DATA

The two power terminals are designated as Anode 1 (A1) and Anode 2 (A2). The gate signal is referenced to Anode 1, see Figure 1.

LETTER SYMBOLS

Standard symbology has not as yet been developed for bidirectional thyristors. The following tentative list has been compiled by Texas Instruments.

 I_{AOM} , I_{ARM} , I_{ASM} , I_{ASM} — The peak value of anode blocking current with the gate terminal returned to the anode-1 terminal through a resistance R_{GA1} or bias network as indicated by the second subscript. "O" indicates $R_{GA1} = \infty$ (gate open-circuited). "R" indicates $R_{GA1} = \alpha$ finite specified value. "S" indicates $R_{GA1} = 0$ (gate short-circuited to anode-1). "X" indicates a bias which may be expressed as $V_{GG} = \alpha$ finite specified value in series with $R_{GA1} = \alpha$ finite specified value. The third subscript, "M" for peak value, may be replaced by "rms" to indicate total rms value.

 I_{A2-A10} , I_{A2-A10} . The steady-state current into the anode-2 terminal when it has positive polarity with respect to the anode-1 terminal and the device is blocking. Reversed polarity is indicated by a negative value of current. The final subscript indicates the gate-to-anode-1 termination as explained above.

 I_{A1M} , I_{A2M} , I_{6M} — The peak value of current into the anode-1, anode-2, or gate terminal as indicated by the first letter or letter-numeral subscript.

PW₆ — The width of the gate pulse.

 I_{A1} , I_{A2} , I_{G} — The steady-state current into the terminal indicated by the subscript.

V_{AAM} — The peak value of anode-to-anode voltage. Numerals may be added to the "A" subscripts if desirable to indicate relative anode polarity.

 V_{A2-A1} — Steady-state anode-2 voltage with respect to anode 1.

THERMAL INFORMATION

AVALANCHE SWITCHING DEVICES USED FOR FIRING SCRs AND TRIACS

description

Types TI42A, TIC54, and TIC55 guarantee the stated values of breakdown and breakback voltages only when the marked end is negative with respect to the unmarked end.

Types T143A, T1C56, and T1C57 are electrically symmetrical trigger diacs that have guaranteed breakdown voltage and negative resistance characteristics in both directions. The breakdown voltage in either direction is guaranteed to be within two volts of the breakdown voltage in the other direction.

mechanical data

absolute maximum ratings at 100°C free-air temperature (unless otherwise noted)

electrical characteristics at 25°C free-air temperature†

	PARAMETER	TEST CONDITIONS	TYPE	MIN	MAX	UNIT
			TI42A	28	36	
			TIC54	26	38	l
V _(BR) Breakdown Voltage	Broakdown Voltago	dv/dt = 12 V/ms,	TIC55	22	38	
	bieukuomii voiluge	See Figure 1	TI43A	28	36	V
			TIC56	26	38	
			TIC57	22	38	1
			TI43A			
V(BR)1-V(BR)2	Breakdown Voltage Differential‡	dv/dt = 12 V/ms, See Figure 1	TIC56	1	2	V
		Jee rigule i	TIC57			
△V	Breakback Voltage	dv/dt = 12 V/ms, See Figure 1	ALL	8		٧

NOTE 1: Derate linearly to 150°C free-air temperature at the rate of 2 mW/deg.

†Breakdown and breakback voltage characteristics apply unilaterally to the T142A, T1C54, and T1C55; bilaterally to the T143A, T1C56, and T1C57. See Description.

‡Breakdown Voltage Differential is the difference between the two breakdown voltages measured in the two directions.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE a: Capacitor C is adjusted until dv/dt across DUT is 12 V/ms.

FIGURE 1

TYPICAL CHARACTERISTICS

It is of special importance to recognise the fact that the breakdown voltage decreases in magnitude as the voltage rate of rise, dv/dt, is increased. This characteristic is illustrated by Figure 2.

TYPICAL APPLICATION DATA

FIGURE 4

FIGURE 5

TYPICAL APPLICATION DATA

FIGURE 6

FIGURE 7

SILECT† THYRISTORS

600 mA DC • 30 thru 200 VOLTS Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The thyristors are insensitive to light.

absolute maximum ratings over operating free-gir temperature range (unless otherwise noted)

	TIC44	TIC45	TIC46	TIC47	UNIT
Continuous Forward Blocking Voltage, V _{FO} (See Note 1)	30	60	100	200	٧
Peak Forward Blocking Voltage (See Note 1)	30	60	100	200	٧
Continuous Reverse Blocking Voltage, V _{RO} (See Note 1)	30	60	100	200	٧
Peak Reverse Blocking Voltage (See Note 1)	30	60	100	200	٧
Continuous Anode Forward Current at (or below) 55°C Case Temperature (See Note 2)			600		mA
Continuous Anode Forward Current at (or below) 25°C Free-Air Temperature (See Note 3)			300		mA
Average Anode Forward Current (180° Conduction Angle) at (or below) 55°C Case Temperature (See Note 4)			430		mA
Peak Anode Surge Current (See Note 5)			6		A
Peak Gate Reverse Voltage			8		٧
Peak Gate Forward Current (Pulse Width \leq 300 μ s)			1		A
Peak Gate Power Dissipation (Pulse Width \leq 300 μ s)			4		W
Operating Free-Air Temperature Range		-55	to 125		°C
Storage Temperature Range		-55	to 150		°C
Lead Temperature ⅓ Inch from Case for 10 Seconds		-	260		°C

NOTES: 1. These values apply when the gate-cathode resistance $R_{\text{GK}} \leq 1~\text{k}\Omega$.

- 2. These values apply for continuous d-c operation with resistive load. Above 55°C derate according to Figure 5.
- 3. These values apply for continuous d-c operation with resistive load. Above 25°C derate according to Figure 6.
- 4. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C derate according to Figure 5.
- 5. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse blocking voltage and anode forward current.

 Surge may be repeated after the device has returned to original thermal equilibrium.

†Trademark of Texas Instruments.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
IFR	Static Anode Forward Blocking Current	$V_F = Rated V_{FR}$	$R_{GK} = 1 k\Omega$, $T_A = 125$ °C		50	μΑ
IRR	Static Anode Reverse Blocking Current	$V_R = Rated V_{RR}$	$R_{GK} = 1 k\Omega$, $T_A = 125$ °C		50	μΑ
I _{GT}	Gate Trigger Current (See Note 6)	$V_{AA} = 6 V$	$R_L = 100 \Omega$, $t_{p(g)} \geq 20 \mu s$	T	200	μΑ
Vet	V _{GT} Gate Trigger Voltage (See Note 6)	$V_{AA} = 6 V$	$R_L = 100 \Omega$, $t_{p(g)} \geq 20 \mu s$		0.8	v
' GT	odie migger vonage (see Note b)	$V_{AA} = 6 V$	$R_L = 100 \Omega$, $t_{p(g)} \ge 20 \mu s$, $T_A = 125$ °C	0.2		٧
IHR	Holding Current	$R_L = 100 \Omega$,	$R_{GK} = 1 k\Omega$		5	mA
V _F	Static Forward Voltage	$I_F = 300 \text{ mA},$	$R_{GK} \geq 1$ k Ω , See Note 7		1.4	٧

NOTES: 6. When measuring these parameters, a 1 kΩ resistor should be used between gate and cathode to prevent triggering by random noise.

thermal characteristics

	PARAMETER	MAX	UNIT
θ _{J-C}	Junction-to-Case Thermal Resistance	75	4 /W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	275	deg/W

switching characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	TYP	UNIT
ton	Turn-On Time	$V_{AA}=30$ V, $R_L=50$ Ω , $R_G=20$ k Ω , $V_{in}=20$ V, See Figure 1	3.5	μs
t _{off}	Commutating Turn-Off Time	$V_{AA}=30$ V, $R_{L}=50$ Ω , $I_{R}=1$ A, See Figure 2	6.8	μs

^{7.} This parameter is measured using pulse techniques. $\rm t_p=1$ ms, duty cycle \leq 1%.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON TIME

- NOTES: A. \mathbf{V}_{in} is measured with gate and cathode terminals connected as shown and anode terminal open.
 - B. The input waveform of Figure 1 has the following characteristics: $t_r \leq$ 40 ns, $t_p \geq$ 20 $\mu s.$
 - C. Waveforms are monitored on an oscilloscope with the following characteristics: t_{\Gamma} \leq 14 ns, R $_{\rm in}$ \geq 10 MΩ, C $_{\rm in}$ \leq 12 pF.
 - D. $\mathbf{R}_{\mathbf{G}}$ includes the total resistance of the generator and the external resistor.

FIGURE 2 - COMMUTATING TURN-OFF TIME

- NOTES: E. Pulse generators for V₁ and V₂ are synchronized to provide an anode current waveform with the following characteristics: $t_p=50$ to 300 μ s, duty cycle = 1%. The pulse widths of V₁ and V₂ are \geq 10 μ s.
 - F. Resistor R_1 is adjusted for $I_R = 1$ A.

THERMAL INFORMATION

The minimum heat-sink requirements may be calculated for any anode-current, heat-sink combination by the following procedure:

- 1. Determine worst-case power dissipation from figure 3.
- 2. Calculate maximum allowable case-to-free-air thermal resistance by use of the equation:

$$\theta_{\text{C-A}} = \frac{T_{\text{J}} - T_{\text{A}}}{P_{\text{A(av)}}} - \theta_{\text{J-C}}$$

where: $T_J = Junction temperature$

T_A = Free-air temperature

PA(av) = Average anode power dissipation

(see figure 3 for worst-case values) $\theta_{\text{J-C}} = \text{Junction-to-case thermal resistance} =$ 75 deg/W maximum.

3. Determine area of heat sink from figure 4.

EXAMPLE

Determine: Minimum size of 1/4"-thick aluminum heat sink

for safe operation of thyristor at an average current of 0.4 A with a conduction angle of

180°.

 $\begin{array}{l} {\rm Maximum}\;{\rm T_J}=125^{\rm o}{\rm C}\\ {\rm T_A}=35^{\rm o}{\rm C}\\ \theta_{\rm J-C}=75\;{\rm deg/W} \end{array}$ Given:

From figure 3, $P_{A(av)} = 0.84 \text{ W}$ for 0.4 A Solution: with 180° conduction angle. Using the equa-

tion of step 2 above:

$$\theta_{\text{C-A}} = \frac{125^{\circ}\text{C} - 35^{\circ}\text{C}}{0.84\,\text{W}} - 75\,\text{deg/W} = 32\,\text{deg/W}$$

Figure 4 shows that for $heta_{ extsf{C-A}}$ of 32 deg/W, the area is 18 sq. in. The minimum dimensions of the sides should be:

$$\sqrt{\frac{\text{area}}{2}} \times \sqrt{\frac{\text{area}}{2}} = \sqrt{\frac{18}{2}} \times \sqrt{\frac{18}{2}} = 3'' \times 3''$$

NOTES: 8. The thyristor is mounted in the center of a square heat sink vertically positioned in still free air with both sides exposed. The heat-sink area is twice the area of one side.

9. $\theta_{\mathrm{C-A}}$ includes the case-to-heat sink thermal resistance, $\theta_{\mathrm{C-HS}}$, in addition to the heat-sink-to-free-air thermal resistance, $\theta_{\text{HS-A}}$, and is defined by the equation, $\theta_{\text{C-A}} = \theta_{\text{C-HS}} + \theta_{\text{HS-A}}$.

TYPICAL HEAT-SINK AREA

FIGURE 3

THERMAL INFORMATION

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

NOTE 6: When measuring these parameters, a 1 kΩ resistor should be used between gate and cathode to prevent triggering by random noise.

TYPICAL APPLICATION DATA

AUTOMATIC TURN-OFF CONTROL FOR HEADLIGHTS

Lights turn on with light switch.

Lights turn off 1 second to 15 minutes (adjustable) after

Lights turn of 1 second to 15 minutes (adjustable) ignition is turned off,

2N4891 unijunction used as variable timer.

TI World-Wide Sales Offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Mair. Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 — P.O. Box 5012 Dallas, Texas 75222 214-238-4861 3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato Buenos Aires, Argentina

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPES 2N3001, 2N3002, 2N3003, 2N3004

BULLETIN NO. DL-S 634260, AUGUST 196

TYPES 2N3001, 2N3002, 2N3003, 2N3004 P-N-P-N PLANAR SILICON REVERSE-BLOCKING TRIODE THYRISTORS

350 ma - 30 to 200 VOLTS - 20 μ a GATE SENSITIVITY

ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS NO SOLDER OR FLUXES

- High Operating Temperatures
- High Surge Current Capability
- Fast Switching Speeds
- Low Forward Voltage Drop

mechanical data

The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate weight is 0.35 gram.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	2N3001	2N3002	2N3003	2N3004	UNIT
*Continuous Forward Blocking Voltage, V _{FB} (See Note 1)	30	60	100	200	٧
*Continuous Reverse Blocking Voltage, V _R	30	60	100	200	٧
*Peak Forward Blocking Voltage (See Note 1)	30	60	100	200	٧
*Peak Reverse Blocking Voltage	30	60	100	200	V
Peak Gate Reverse Voltage			8	<u> </u>	v
*Continuous Anode Forward Current at (or below) 55°C Free-Air Temperature (See Note 2)	350			ma	
*Continuous Anode Forward Current at 130°C Free-Air Temperature (See Note-2)	75			ma	
*Average Anode Forward Current (180° Conduction Angle) at (or below) 55°C Free-Air Temperature (See Note 2)	250		ma		
*Anode Surge Current (See Note 3)	6			a	
*Peak Gate Forward Current (Pulse width ≤ 8 msec)	250		ma		
*Average Gate Power Dissipation	100		mw		
*Operating Free-Air Temperature Range	-65 to + 150		°C		
*Storage Temperature Range	-65 to + 200		°C		

- NOTES: 1. This value applies when the Gate-Cathode Resistance, R $_{\rm GK} \leq$ 1 k $\Omega.$
 - 2. For operation above 55°C free-air temperature, refer to Anode Forward Current Derating Curve, Figure 1.
 - 3. This rating applies for one half-cycle sine wave, 60 cps, when the device is conducting maximum rated current immediately before and after the surge. Surge may be repeated after the device has returned to original thermal equilibrium conditions.

^{*}Indicates JEDEC registered data.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{AK}=$ Rated V_{FB} , $R_{GK}=1$ k Ω			20	na
l _F	Anode Forward Blocking Current†	$V_{AK} = Rated V_{FB}$, $R_{GK} = 1 k\Omega$, $T_A = 150$ °C			20	μα
		$V_{KA} = Rated V_{R}, R_{GK} = \infty$			0.1	μα
I _R	Anode Reverse Blocking Current†	$V_{KA} = Rated V_{R}, R_{GK} = \infty, T_{A} = 150$ °C			100	μα
IGR	Gate Reverse Current	$V_{KG} = 5 v$, $R_L = \infty$			0.1	μα
IGTION	Gate Trigger Current†	$V_{AA} = 5 v$, $R_L = 12 \Omega$		5.0	20	μα
·Oilai		$V_{AA} = 5 v$, $R_L = 12 \Omega$, $T_A = -65 °C$			0.9	٧_
V _{GT(on)}	Gate Trigger Voltage†	$V_{AA} = 5 v$, $R_L = 12 \Omega$		0.55	0.7	٧
· · · · · ·		$V_{AA} = 5 \text{ v}, R_L = 12 \Omega, T_A = 150 \text{°C}$	0.2			٧
		$R_{GK} = 1k \Omega$		1.2	3.0	mo
l _H	Holding Current	$R_{GK} = 1k \Omega$, $T_A = -65$ °C			4.0	ma
V _F	Peak Instantaneous Fwd, Voltage	I _F = 350 ma, (See Note 4)			1.1	٧
dV/dt	Critical Rate of Anode Voltage Rise	V _{KG} = 1.0 v		400		v/µsec

†For additional TI guaranteed characteristics, see Figures 2, 3, 6, and 7.

switching characteristics at 25°C free-air temperature

chai	characteristics at 25°C free-air temperature			
<u> </u>	PARAMETER	TEST CONDITIONS	TYP	UNIT
ton	Turn-On Time	$V_{AA} = 200 \text{ v}, \ R_L = 2.2 \text{ k}\Omega, \ R_G = 100 \Omega, \ V_{in} = 3.0 \text{ v}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.3	μsec
t _{off}	Commutating Turn-Off Time	$V_{AA}=50 \text{ v}, R_L=140 \Omega, 1 \text{N}645 \text{ between}$ gate and cathode, (See Fig. 15)	3.5	μsec

thermal characteristics

	PARAMETER	TYP	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	75	C°/watt
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	275	C°/watt

NOTE 4: These parameters must be measured using pulse techniques. Anode pulse width = 300 μ sec, PRR = 10 pps.

ANODE FORWARD CURRENT DERATING CURVES

^{*} Indicates JEDEC registered data (typical data excluded).

ANODE CHARACTERISTICS

NOTE: 5. These parameters were measured using pulse techniques. Anode pulse width = 300 μ sec, PRR = 10 pps.

GATE CHARACTERISTICS

NOTE: 6. These parameters were measured using single pulse techniques. Anode pulse width = 300 μ sec, Duty Cycle = 0.

0

TYPICAL SWITCHING CHARACTERISTICS, TA = 25°C

FIGURE 11 COMMUTATING TURN-OFF TIME

100

V_{AA} — Anode Supply Voltage — v

150

PARAMETER MEASUREMENT INFORMATION

FIGURE 14 - TURN-ON TIME TEST CIRCUIT

FIGURE 15 -TURN-OFF TIME TEST CIRCUIT

MOTES: A. \mathbf{v}_{in} is measured with gate and cathode terminals connected as shown and anode terminal open.

- B. The input waveform has the following characteristics: $t_r \leq 40$ nsec, PW \geq device turn-on time at the operating point.
- C. Waveforms are monitored on an oscilloscope with following characteristics $t_r \leq 14$ nsec, $R_{\rm in} \geq 10$ M Ω , $C_{\rm in} \leq 12$ pf.

TYPICAL APPLICATION DATA

20-kc RING COUNTER

CIRCUIT PERFORMANCE CHARACTERISTICS FOR 10 STAGE OPERATION AT $T_A = 25^{\circ}C$

a. V_{AA} Range for 20kc Operation: 6 v to 30 v (Rated V_{FB})

b. VAA Range for 10kc Operation: 2.75 v to 30 v (Rated VFB)

c. Range of Input Amplitude for 10kc operation: 3v to 8 v

CIRCUIT COMPONENT INFORMATION

 $R_A: 330 \Omega$

 $C_A: 0.06 \mu f \pm 20\%$

 $R_{n}:33\,k\Omega$

 $C_B: 0.001 \ \mu f \pm 20\%$

R_G: 1kΩ

L : 40 mh

 $R_K:33\,\Omega$

D₁, D₂, and D₃: 1N914

All Resistors, ± 5% tolerance, ½ w

NOTE: 7. The commutating turn-off time of the 2N3001 series thyristor is significantly affected by the source impedance of the gate firing circuit as shown in Fig. 13. Faster turn-off times are achieved when this impedance is low. However, some circuits require the use of a high source impedance, even though fast turn-off is desired. In these applications, a clode may be used to by-pass the gate-cathede junction, as shown in the circuit in Fig. 15. This clode improves commutating turn-off time by eliminating the effect of the gate-cathede recovery time.

350 ma - 30 to 200 VOLTS - 200 μ a GATE SENSITIVITY **ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS** NO SOLDER OR FLUXES

- High Operating Temperatures
- Fast Switching Speeds
- High Surge Current Capability Low Forward Voltage Drop

 - Gate Turn-Off Capability

mechanical data

The devices are in a hermetically sealed welded case with a glass-to-metal seal between case and leads. Approximate weight is 0.35 gram.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	2N3005	2N3006	2N3007	2N3008	UNIT
*Continuous Forward Blocking Voltage, V _{FB} (See Note 1)	30	60	100	200	٧
*Continuous Reverse Blocking Voltage, V _R	30	60	100	200	٧
*Peak Forward Blocking Voltage (See Note 1)	30	60	100	200	V
*Peak Reverse Blocking Voltage	30	60	100	200	٧
Peak Gate Reverse Voltage			8		٧
*Continuous Anode Forward Current at (or below) 55°C Free-Air Temperature (See Note 2)	350			ma	
*Continuous Anode Forward Current at 130°C Free-Air Temperature (See Note 2)	75			ma	
*Average Anode Forward Current (180° Conduction Angle) at (or below) 55°C Free-Air Temperature (See Note 2)	250			ma	
*Anode Surge Current (See Note 3)	6			a	
*Peak Gate Forward Current (Pulse width ≤ 8 msec)	250			ma	
*Average Gate Power Dissipation	100		mw		
*Operating Free-Air Temperature Range	-65 to + 150			°C	
*Storage Temperature Range	-65 to + 200		°C		

MOTES: 1. This value applies when the Gate-Cathode Resistance, R $_{\rm GK} \leq$ 1 k $\Omega.$

- 2. For operation above 55°C free-air temperature, refer to Anode Forward Current Derating Curve, Figure 1.
- 3. This rating applies for one half-cycle sine wave, 60 cps, when the device is conducting maximum rated current immediately before and after the surge. Surge may be repeated after the device has returned to original thermal equilibrium conditions.

*Indicates JEDEC registered data.

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Anada Farmand Blacking Corrects	$V_{AK}=$ Rated V_{FR} , $R_{GK}=$ 1 k Ω			20	na
lp.	Anode Forward Blocking Current†	$V_{AK} = Rated V_{FB}$, $R_{GK} = 1 k\Omega$, $T_A = 150°C$			20	μα
	Anada Bayessa Blacking Correct+	$V_{KA} = Rated V_R, R_{GK} = \infty$			0.1	μα
I _R	Anode Reverse Blacking Current†	$V_{KA} = Rated V_R$, $R_{GK} = \infty$, $T_A = 150$ °C			100	μα
I _{GR}	Gate Reverse Current	$V_{KG} = 5 v$, $R_L = \infty$			0.1	μα
I _{GT[on]}	Gate Trigger Current†	$V_{AA} = 5 \text{ v}, R_L = 12 \Omega$		90	200	μα
		$V_{AA} = 5 \text{ v}, R_L = 12 \Omega, \qquad T_A = -65 \text{°C}$			0.9	٧
V _{GT(on)}	Gate Trigger Voltage†	$V_{AA} = 5 v$, $R_L = 12 \Omega$		0.6	0.8	٧
	·	$V_{AA} = 5 \text{ v}, R_L = 12 \Omega, \qquad T_A = 150 ^{\circ}\text{C}$	0.2			٧
	Holding Current	$R_{GK} = 1k\Omega$		1.8	5.0	mo
l _H	noiding corrent	$R_{GK} = 1k\Omega$, $T_A = -65$ °C			8.0	ma
٧ _F	Peak Instantaneous Fwd. Voltage	$I_F = 350 \text{ ma, (See Note 4)}$			1.1	٧
dV/dt	Critical Rate of Anode Voltage Rise	V _{KG} = 1.0 v		400		v/µsec

†For additional TI guaranteed characteristics, see Figures 2, 3, 6, and 7.

switching characteristics at 25°C free-air temperature

ciiuiu	cionisiics di 25 c ile	1 2.110000		
ſ	PARAMETER	TEST CONDITIONS	TYP	UNIT
ton	Turn-On Time	$V_{AA} = 200 \text{ v}, \ R_L = 2.2 \text{ k}\Omega, \ R_G = 100 \Omega, \ V_{in} = 3.0 \text{ v}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.55	μsec
toff	Commutating Turn-Off Time	$V_{AA}=50 \text{ v}, R_L=140 \Omega, 1\text{N645 between}$ gate and cathode, (See Fig. 15)	2.2	μισες
let (off)	Gate Turn-Off Current	I _F = 200 ma (See Note 5)	40	ma
V _{GT} (off	Gate Turn-Off Voltage	V _{AA} ≤ 100 v (Not to exceed Rated V _{FB})	4.0	٧

2N3008

thermal characteristics

	PARAMETER	TYP	UNIT
<i>θ</i> _{J-С}	Junction-to-Case Thermal Resistance	75	C°/watt
θ _{J-A}	Junction-to-Free-Air Thermal Resistance	275	C°/watt

NOTE 4: These parameters must be measured using pulse techniques. Anode pulse width = 300 μ sec, PRR = 10 pps. NOTE 5: Anode current not to exceed 200 ma for gate turn-off applications.

ANODE FORWARD CURRENT DERATING CURVES

^{*} Indicates JEDEC registered data (typical data excluded).

ANODE CHARACTERISTICS

NOTE 6: These parameters were measured using pulse techniques. Anode pulse width = 300 μ sec, PRR = 10 pps.

GATE CHARACTERISTICS

NOTE 7: These parameters were measured using single pulse techniques. Anode pulse width = 300 μsec , Duty Cycle = 0.

TYPICAL SWITCHING CHARACTERISTICS, TA = 25°C

PARAMETER MEASUREMENT INFORMATION

FIGURE 14 - TURN-ON TIME TEST CIRCUIT

FIGURE 15 - TURN-OFF TIME TEST CIRCUIT

NOTES: A. Vin is measured with gate and cathode terminals connected as shown and anode terminal open.

- B. The input waveform has the following characteristics: 1, \leq 40 nsec, PW \geq device turn-on time at the operating point.
- C. Waveforms are monitored on an oscilloscope with following characteristics $t_r \leq 14$ nsec, $R_{in} \geq 10$ M Ω , $C_{in} \leq 12$ pf.

TYPICAL GATE TURN-OFF CHARACTERISTICS

The 2N3005 series thyristors exhibit gate turn-off gain, in addition to the standard controlled switch characteristics. Figure 16 shows the typical gate turn-off gain as a function of anode current. This characteristic offers increased flexibility in the design of pulse-width modulators, pulse-forming networks, static switches, choppers, bistable-circuits and inverters.

Improved turn-off time may be realized using the gate turn-off method. A combination of gate turn-off and standard commutating turn-off will further improve the turn-off time. For applications requiring a guaranteed $\beta_{\rm Off}$, contact your nearest TI Sales Office for information on special types.

NOTE 8: The commutating turn-off time of the 2N3005 series thyristor is significantly affected by the source impedance of the gate firing circuit as shown in Fig. 13.
Faster turn-off times are achieved when this impedance is low. However, some circuits require the use of a high source impedance, even though fast turn-off is desired. In these applications, a diode may be used to by-pass the gate-cathode junction, as shown in the circuit in Fig. 15. This diode improves commutating turn-off time by eliminating the effect of the gate-cathode recovery time.

1 AMP AVG — 30 to 200 VOLTS — 20 $\mu\alpha$ GATE SENSITIVITY ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS NO SOLDER OR FLUXES

- High Operating Temperatures
- High Surge Current Capability
- Fast Switching Speeds
- Low Forward Voltage Drop

mechanical data

These devices are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the assembly process prevents sealed-in contamination. The approximate unit weight is 1.8 grams.

*absolute maximum ratinas over operatina case temperature range (unless otherwise noted)

	2N3555	2N3556	2N3557	2N3558	UNIT
Continuous Forward Blocking Voltage, V _{FR} (See Note 1)	30	60	100	200	٧
Peak Forward Blocking Voltage (See Note 1)	30	60	100	200	
Continuous Reverse Blocking Voltage, V _{RO} (See Note 2)	30	60	100	200	v
Peak Reverse Blocking Voltage (See Note 2)	30	60	100	200	٧
Continuous or RMS Anode Forward Current at (or below) 100°C Case Temperature (See Note 3)	1.6			a	
Average Anode Forward Current (180° Conduction Angle) at (or below) 100°C Case Temperature (See Note 4)	1				a
Peak Anode Surge Current (See Note 5)	18			. a	
Peak Gate Reverse Voltage		1	3		v
Peak Gate Forward Current (Pulse width ≤ 8 msec)	250		ma		
Average Gate Power Dissipation	100		mw		
Operating Case Temperature Range	-65 to +150			°C	
Storage Temperature Range	-65 to +200		°C		

- NOTES: 1. These values apply when the gate-cathode resistance $R_{GK} \leq 1~k~\Omega$.
 - 2. These values apply when the gate-cathode resistance $R_{GK} = \infty$.
 - 3. This value applies for continuous d-c or single-phase, 60-cps, half-sine-wave operation with resistive load. Above 100°C, derate according to Figure 13.
 - 4. This value may be applied continuously under single-phase, 60-cps, half-sine-wave operation with resistive load. Above 100°C, derate according to-Figure 13.
 - 5. This value applies for one 60-cps half sine wave when the device is operating at (or below) rated values of peak reverse blocking voltage and anode forward current. Surge may be repeated after the device has returned to original thermal equilibrium.

Andicates JEDEC registered data

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	Т	EST CONDITIO	ONS	MIN	TYP	MAX	UNIT
1	Static Anode Forward	$V_{AK} = Rated V_{FR}$					20	na
IFR	Blocking Current	$V_{AK} = Rated V_{FR}$	$R_{GK}=1~k\Omega$,	T _C = 150°C			20	μα
	Static Anode Reverse	$V_{KA} = Rated V_{RO}$, l _e = 0				0.1	μα
IRO	Blocking Current	$V_{KA} = Rated V_{RO}$, I ₆ = 0,	T _C = 150°C			100	μα
leko	Gate Reverse Current	$V_{KG} = 5 v$	$I_A = 0$				-0.1	μα
let	Gate Trigger Current	$V_{AA} = 5 v$	$R_L = 12 \Omega$,	$PW_{G} \ge 10 \ \mu sec$	1	5	20	μα
	Gate Trigger Voltage	$V_{AA} = 5 v$	$R_L = 12 \Omega$,	$PW_G \ge 10 \ \mu sec$, $T_C = -65$ °C			0.9	٧
V _{GT}		$V_{AA} = 5 v$	$R_L = 12 \Omega$,	$PW_G \ge 10 \ \mu sec$		0.55	0.7	٧
		$V_{AA} = 5 v$	$R_L = 12 \Omega$,	$PW_G \ge 10 \ \mu sec$, $T_C = 150$ °C	0.2			٧
	11.11.	$R_{GK} = 1 k\Omega$,	$R_L = 2 k\Omega$			1.2	3	ma
I _{HR}	Holding Current	$R_{GK} = 1.k\Omega_{r}$	$R_L = 2 k\Omega$,	T _C = -65°C	ŀ		4	ma
VF	Forward Voltage	$I_F = 1.6 a$,	$R_{GK} \ge 1 k\Omega$,	See Note 6			1.4	٧
dv/dt	Critical Rate of Anode Voltage Rise	V _{KG} = 1 v				400		v/µsec

switching characteristics at 25°C case temperature (unless otherwise noted)

	2.2		2N3558	*****
PARAMÉTER		TEST CONDITIONS	TYP	UNIT
ton	Turn-On Time	$V_{AA}=200 v, R_L=2.2 k\Omega, \ R_G=100 \Omega, \ V_{in}=3 v, See Fig. 14$	0.3	μ sec
t _{off}	Commutating Turn-Off Time	$V_{AA}=50 { m v}, \qquad R_{L}=140 \Omega, 1N645 \ { m between}$ gate and cathode, See Fig. 15	3.5	hreec

thermal characteristics

PARAMETER	MAX	UNIT
θ _{J-C} Junction-to-Case Thermal Resistance	35	C°/w

NOTE 6: The initial instantaneous value is measured using pulse techniques. Anode-pulse width = 300 μ sec, PRR = 10 pps.

^{*}Indicates JEDEC registered data (typical data excluded).

ANODE CHARACTERISTICS

NOTE 7: These parameters were measured using pulse techniques. Anode-pulse width = 300 μsec , PRR = 10 pps.

GATE CHARACTERISTICS

NOTES: 7. These parameters were measured using pulse techniques. Anode-pulse width = 300 μ sec, PRR = 10 pps.

8. These parameters were measured using single pulse techniques. Anode-pulse width = 300 μ sec, Duty Cycle = 0.

TYPICAL SWITCHING CHARACTERISTICS, TA=25°C

NOTE 9: The commutating turn-off time of the 2N3555 series thyristor is significantly affected by the source impedance of the gate firing circuit as shown in Figure 12. Faster turn-off times are achieved when this impedance is low. However, some circuits require the use of a high source impedance, even though fast turn-off is desired. In these applications, a diode may be used to by-pass the gate-cathode junction, as shown in the circuit in Figure 15. This diode improves commutating turn-off time by eliminating the effect of the gate-cathode recovery time.

ANODE FORWARD CURRENT DERATING CURVE

PARAMETER MEASUREMENT INFORMATION

FIGURE 14 -- TURN-ON TIME

- NOTES: A. V_{in} is measured with gate and cathode terminals connected as shown and anode terminal open.
 - B. The input waveform of Figure 14 has the following characteristics: $t_r \le 40$ nsec, PW \ge device turn-on time at the operating point.
 - C. Waveforms are maintained on an oscilloscope with following characteristics: $t_r \leq 14$ nsec, $R_{in} \geq 10$ M Ω , $C_{in} \leq 12$ pf.

PARAMETER MEASUREMENT INFORMATION

WAVEFORMS

TEST CIRCUIT

FIGURE 15 — COMMUTATING TURN-OFF TIME

- D. Pulse generators for V₁ and V₂ are synchronized to provide an anode current waveform with the following characteristics: PW=50 to 300 µsec. Duty Cycle = 1%. The pulse widths of V₁ and V₂ are ≥ 10 µsec.
- E. Resistor R_i is adjusted for $I_R = 1$ a.

TYPICAL APPLICATION DATA

20-kc RING COUNTER

CIRCUIT PERFORMANCE CHARACTERISTICS FOR 10-STAGE OPERATION AT $T_A=25^{\circ}\text{C}$

- a. VAA Range for 20-kc Operation: 6 v to 30 v (Rated VFR)
- b. VAA Range for 10-kc Operation: 2.75 v to 30 v (Rated VFR)
- c. Range of Input Amplitude for 10-kc operation: 3 v to 8 v

CIRCUIT COMPONENT INFORMATION

 $R_{\text{A}}:\,330\,\Omega$

 $C_A: 0.06 \mu f \pm 20\%$

 $R_B:33\,k\,\Omega$

 $C_B: 0.001 \ \mu f \pm 20\%$

 $R_{G}: 1 k \Omega$

L : 40 mh

R_K: 33 Ω

D₁, D₂, and D₃: 1N914

All Resistors, ± 5% tolerance, ½ w

1 AMP AVG — 30 to 200 VOLTS — 200 $\,\mu$ a GATE SENSITIVITY ALL PLANAR, OXIDE-PASSIVATED JUNCTIONS NO SOLDER OR FLUXES

- High Operating Temperatures
- High Surge Current Capability
- Fast Switching Speeds
- Low Forward Voltage Drop

mechanical data

These devices are in precision welded, hermetically sealed enclosures. Extreme cleanliness during the assembly process prevents sealed-in contamination. The approximate unit weight is 1.8 grams.

*absolute maximum ratings over operating case temperature range (unless otherwise noted)

manage of the special property of the second		,	•		
	2N3559	2N3560	2N3561	2N3562	UNIT
Continuous Forward Blocking Voltage, V _{FR} (See Note 1)	30	60	100	200	٧
Peak Forward Blocking Voltage (See Note 1)	30	60	100	200	V
Continuous Reverse Blocking Voltage, V _{RO} (See Note 2)	30	60	100	200	٧
Peak Reverse Blocking Voltage (Sea Note 2)	30	60	100	200	٧
Continuous or RMS Anode Forward Current at (or below) 100°C Case Temperature (See Note 3)	1.6			a	
Average Anode Forward Current (180° Conduction Angle) at (or below) 100°C Case Temperature (See Note 4)	1			a	
Peak Anode Surge Current (See Note 5)	18			a	
Peak Gate Reverse Voltage	8			٧	
Peak Gate Forward Current (Pulse width ≤ 8 msec)	250			ma	
Average Gate Power Dissipation	100			mw	
Operating Case Temperature Range	-65 to +150			°C	
Storage Temperature Range	-65 to +200			°C	

NOTES: 1. These values apply when the gate-cathode resistance $R_{GK} \leq 1~k\Omega$.

- 2. These values apply when the gate-cathode resistance $R_{GK}=\infty$.
- 3. This value applies for continuous d-c or single-phase, 60-cps, half-sine-wave operation with resistive load. Above 100°C, derate according to Figure 13.
- This value may be applied continuously under single-phase, 60-cps, half-sine-wave operation with resistive load. Above 100°C derate according to Figure 13.
- 5. This value applies for one 60-cps half sine wave when the device is operating at (or below) rated values of peak reverse blocking voltage and anode forward current. Surge may be repeated after the device has returned to original thermal equilibrium.

Andicates JEDEC registered data.

*electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IFR	Static Anode Forward Blocking Current	$ m V_{AK} = Rated V_{FR}, R_{GK} = 1 k\Omega$ $ m V_{AK} = Rated V_{FR}, R_{GK} = 1 k\Omega, T_{C} = 150 ^{\circ}C$			20. 20	na µa
I _{RO}	Static Anode Reverse Blocking Current	$V_{KA}=$ Rated V_{RO} , $I_G=0$ $V_{KA}=$ Rated V_{RO} , $I_G=0$, $T_C=150$ °C			0.1 100	μα μα
I _{GKO}	Gate Reverse Current	$V_{KG} = 5 v$, $I_A = 0$		<u> </u>	-0.1	μα
let	Gate Trigger Current	$V_{AA}=5 v$, $R_L=12 \Omega$, $PW_G \geq 10 \mu sec$		90	200	μα
		$V_{AA} = 5 \text{ v}, \qquad R_L = 12 \Omega, \qquad PW_G \ge 10 \mu\text{sec}, \\ T_C = -65 \text{°C}$		ļ _	0.9	v
V _{GT}	Gate Trigger Voltage	$V_{AA} = 5 \text{ v}, \qquad R_L = 12 \Omega, PW_G \ge 10 \mu\text{sec}$		0.6	0.8	٧
•61		$V_{AA} = 5 \text{ v}, \qquad R_L = 12 \Omega, \qquad PW_G \ge 10 \mu \text{sec}, \\ T_C = 150 \text{°C}$	0.2			٧
		$R_{GK} = 1 k\Omega, R_L = 2 k\Omega$		1.8	5	mα
I _{HR}	Holding Current	$R_{GK} = 1 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$, $T_C = -65 ^{\circ}\text{C}$			8	ma
V _E	Forward Voltage	$I_{\rm F}=1.6$ a, $R_{\rm GK}\geq 1$ k Ω , See Note 6			1.4	٧
leo	Gate Turn-Off Current	I _s = 200 ma (See Note 7),		-40		ma
	Gate Turn-Off Voltage	$V_{AA} \le 100 \text{ v}$ (Not to exceed Rated V_{FR})		-4		٧
	Critical Rate of Anode Voltage Rise			400		v/µsec

switching characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	2N3562 TYP	UNIT
ton	Turn-On Time	$V_{AA}=200$ v, $R_L=2.2k\Omega$, $R_G=100\Omega$, $V_{in}=3$ v, See Fig. 14	0.55	μισες
t _{off}	Commutating Turn-Off Time	$V_{AA}=50 \text{ v}, R_L=140\Omega, \ 1\text{N645} \text{ between}$ gate and cathode, See Fig. 15	2.2	μισες

thermal characteristics

PARAMETER		UNIT
A. a Junction-to-Case Thermal Resistance	35	(°/w

NOTES: 6. The initial instantaneous value is measured using pulse techniques. Anode-pulse width = 300 μ sec, PRR = 10 pps.

^{7.} Anode current not to exceed 200 ma for gate turn-off applications.

^{*}Indicates JEDEC registered data (typical data excluded).

ANODE CHARACTERISTICS

NOTE 8: These parameters were measured using pulse techniques. Anode-pulse width = 300 μ sec, PRR = 10 pps.

GATE CHARACTERISTICS

NOTES: 8. These parameters were measured using pulse techniques. Anode-pulse width = 300 μ sec, PRR = 10 pps.

^{9.} These parameters were measured using single pulse techniques. Anode-pulse width = 300 μ sec, Duty Cycle = 0.

TYPICAL SWITCHING CHARACTERISTICS, TA=25°C

NOTE 10: The commutating turn-off time of the 2N3559 series thyristor is significantly affected by the source impedance of the gate firing circuit as shown in Fig. 12. Faster turn-off times are achieved when this impedance is low. However, some circuits require the use of a high source impedance, even though fast turn-off is desired. In these applications, a diode may be used to by-pass the gate-cathode junction, as shown in the circuit in Fig. 15. This diode improves commutating turn-off time by eliminating the effect of the gate-cathode recovery time.

FIGURE 11

I_F — Anode Forward Current -

FIGURE 12

ANODE FORWARD CURRENT DERATING CURVE

PARAMETER MEASUREMENT INFORMATION

NOTES: A. V_{in} is measured with gate and cathode terminals connected as shown and anode terminal open.

- B. The input waveform of Figure 14 has the following characteristics: $t_r \le 40$ nsec, PW \ge device turn-on time at the operating point.
- C. Waveforms are monitored on an oscilloscope with following characteristics $t_r \leq 14$ nsec, $R_{in} \geq 10$ M Ω , $C_{in} \leq 12$ pf.

PARAMETER MEASUREMENT INFORMATION

WAVEFORMS

FIGURE 15 — COMMUTATING TURN-OFF TIME

- D. Pulse generators for V_1 and V_2 are synchronized to provide an anode current waveform with the following characteristics: PW = 50 to 300 μ sec, dury cycle = 1%. The pulse widths of V_1 and V_2 are \geq 10 μ sec.
- E. Resistor R_1 is adjusted for $I_R = 1$ a.

TYPICAL GATE TURN-OFF CHARACTERISTICS

The 2N3559 series thyristors exhibit gate-turn-off gain, in addition to the standard controlled switch characteristics. Figure 16 shows the typical gate-turn-off gain as a function of anode current. This characteristic offers increased flexibility in the design of pulse-width modulators, pulse-forming networks, static switches, choppers, bistable circuits and inverters.

Improved turn-off time may be realized using the gate-turn-off method. A combination of gate-turn-off and standard commutating turn-off will further improve the turn-off time. For applications requiring a guaranteed β_{off} , contact your nearest TI Sales Office for information on special types.

FORMERLY L140A, L140B, L140C

- HIGH TEMPERATURE HIGH CURRENT HIGH VOLTAGE
 - GATED, SYMMETRICAL SWITCHES
 - 200, 400, AND 600 VOLTS
 - 25 AMPS RMS

description

The 2N5273 through 2N5275 are bidirectional triode thyristors (triacs) which may be triggered from the off-state to the on-state by either polarity of gate signal with Main Terminal 2 positive, or by a negative gate signal with Main Terminal 2 negative.

*mechanical data

*absolute maximum ratings over operating case temperature range (unless otherwise noted)

	2N5273	2N5274	2N5275	UNIT		
Continuous Off-State Voltage, V _D (See Note 1)	200	400	600	٧		
Repetitive Peak Off-State Voltage, V _{DRM} (See Note 1)	200	400	600	٧		
Full-Cycle RMS On-State Current at (or below) 60° C Case Temperature, $1_{\text{T(rms)}}$ (See Note 2)		25		25		, A
Peak On-State Surge Current, I _{TSM} (See Note 3)		400				
Peak Gate Voltage, V _{GM}		±10				
Peak Gate Current, I _{GM}	±2			A		
Peak Gate Power Dissipation, $P_{\Theta M}$, at (or below) 60°C Case Temperature (Pulse Width $\leq 200~\mu s$)		10		w		
Average Gate Power Dissipation, $P_{G(av)}$, at (or below) 60°C Case Temperature (See Note 4)		2		w		
Operating Case Temperature Range	-40 to 125		°C			
Storage Temperature Range		65 to 150		°C		
Terminal Temperature 🄏 Inch from Case for 10 Seconds	260			°C		

- NOTES: 1. These values apply bidirectionally when the resistance between the gate and Main Terminal 1, R_{G} , $\leq \infty$.
 - 2. This value applies for 50-Hz to 60-Hz full-sine-wave operation with resistive load. Above 60°C derate according to figure 2.
 - 3. This value applies for one 60-Hz full sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 16.6 ms.

^{*}Indicates JEDEC registered data

*electrical characteristics

	PARAMETER	TEST CONDITIONS		TYPE	TYP	MAX	UNIT
-	D	$V_{DRM} = \pm 200 \text{ V}, I_{G} = 0,$	T _C = 125°C	2N5273		±1	
IDRM	Repetitive Peak Off-State Current	$V_{DRM} = \pm 400 V, I_{G} = 0,$	T _C = 125°C	2N5274		±1	mA
	on-sidio conteni	$V_{DRM} = \pm 600 \text{ V}, I_G = 0,$	T _C = 125°C	2N5275		±1	
		$V_{\text{supply}} = +12 \text{ V}^{\dagger}$, $R_L = 10 \Omega$, $t_{p(g)} \geq 50 \mu s$,	$T_{C} = -40$ °C			+150	
I _{GTM}	Peak Gate Trigger Current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$, $R_L = 10 \Omega$, $t_{p(g)} \geq .50 \mu s$,	$T_{\rm C}=-40$ °C	ALL		-150	mA
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$, $R_{\text{L}} = 10 \Omega$, $t_{\text{p(g)}} \geq 50 \mu \text{s}$,	$T_{C} = -40$ °C			-150	
		$V_{\text{supply}} = +12 \text{ V}^{\dagger}$, $R_{\text{L}} = 10 \Omega$, $t_{\text{p(q)}} \geq 50 \mu\text{s}$,	$T_{C} = -40$ °C			+3.5	
V _{GTM}	Peak Gate Trigger Voltage	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$, $R_{\text{L}} = 10 \Omega$, $t_{\text{p(g)}} \geq 50 \mu \text{s}$,	$T_{C} = -40$ °C	ALL		-3.5	٧
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}, \ R_{\text{L}} = 10 \ \Omega, \ t_{\text{p(g)}} \geq 50 \ \mu\text{s},$	$T_{C} = -40$ °C			-3.5	
i _H	Holding Current	$V_{\text{supply}} = \pm 12 \text{ V}^{\dagger}, \ I_{\text{G}} = 0,$	$T_C = -40$ °C	ALL	±12	±100	mA
·n		Initiating I _{TM} = ± 500 mA					
۱L	Latching Current	V _{supply} = ±12 V [†] , See Note 5,	$T_{\rm C} = -40$ °C	ALL	±23		mA
	Catalonal Danta of Disa	$V_{DRM} = \pm 200 V, I_G = 0,$	$T_c = 125$ °C	2N5273	300		
dV/dt	Critical Rate of Rise of Off-State Voltage	$V_{DRM} = \pm 400 \text{ V}, I_{G} = 0,$	T _C = 125°C	2N5274	300		V/μs
	or our-state voltage	$V_{DRM} = \pm 600 V, I_G = 0,$	T _C = 125°C	2N5275	300		
V _{TM}	Peak On-State Voltage	$I_{TM}=\pm 35$ A, $I_{G}=150$ mA, See Note 6,	T _C = 25°C	ALL		±1.7	٧

†The supply voltage is called positive when it causes Main Terminal 2 to be positive with respect to Main Terminal 1.

NOTES: 5. The triacs are triggered by a 15-V (open-circuit amplitude) putse supplied by a generator with the following characteristics: $R_G=100~\Omega$, $t_p=50~\mu s$, $t_p\leq 15~ns$, $t_p\leq 15~ns$, $t_p\leq 15~ns$, $t_p\approx 10~0~\Omega$, $t_p=10~0~\Omega$, $t_p=$

*thermal characteristics

	PARAMETER	MAX	UNIT
θ_{J-C}	Junction-to-Case Thermal Resistance	1.75	dea/W
θ_{J-A}	Junction-to-Free-Air Thermal Resistance	50	uog/ II

^{*}Indicates JEDEC registered data (typical values excluded)

^{6.} The initial instantaneous value is measured using pulse techniques. $t_p \leq 1$ ms, duty cycle $\leq 2\%$.

switching characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		UNIT
t _{gt} Gate-Controlled Turn-On Time	$V_{supply}=25$ V, $R_L=25$ Ω , R_{G} (off) $=60$ Ω , $V_{in}=18$ V, See Figure 1	0.3	μs

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - GATE-CONTROLLED TURN-ON TIME

NOTES: A. V_{in} is measured with gate terminal open.

- B. The input waveform of figure 1 has the following characteristics: $t_r \leq$ 40 ns, $t_p \geq$ 20 μs .
- C. Waveforms are monitored on an oscilloscope with the following characteristics: t_r \leq 14 ns, R_{in} \geq 10 M Ω , C $_{in} \leq$ 12 pF.
- D. R_{G (off)} includes the total resistance of the generator and the external resistor.

THERMAL INFORMATION

TYPICAL HEAT-SINK AREA

NOTES: 8. The thyristor is mounted in the center of a square heat sink vertically-positioned in still free air with both sides exposed. The heat-sink area is twice the area of one side.

^{9.} $\theta_{\text{C-A}}$ includes the case-to-heat-sink thermal resistance, $\theta_{\text{C-HS}}$, in addition to the heat-sink-to-air thermal resistance, $\theta_{\text{HS-A'}}$ and is defined by the equation $\theta_{\text{C-A}} = \theta_{\text{C-HS}} + \theta_{\text{HS-A'}}$.

THERMAL INFORMATION

The minimum heat-sink requirements may be calculated for any on-state current, heat-sink combination by the following procedure:

- 1. Determine worst-case power dissipation from figure 3.
- 2. Calculate maximum allowable case-to-free-air thermal resistance by use of the equation:

$$\theta_{\text{C-A}} = \frac{T_{\text{J}} - T_{\text{A}}}{P_{(av)}} - \theta_{\text{J-C}}$$

where: $T_J = Junction temperature$

 T_A = Free-air temperature

 $P_{(av)}$ = Average power dissipation

(see figure 3 for worst-case values)

 $\theta_{\text{J-C}}$ = Junction-to-case thermal resistance = 1.75 deg/W maximum.

3. If possible, determine area of heat sink from figure 4. If figure 4 cannot be used, a forced-air-cooling heat-sink system must be used, see figure 5.

EXAMPLE NO. 1

Determine minimum size of 1/32"-thick aluminum heat sink for safe operation of the thyristor at an rms current of 10 A, with device mounted directly on heat sink.

Given:

 $\begin{array}{l} \text{Maximum T}_{\text{J}} = 125^{\circ}\text{C} \\ \text{T}_{\text{A}} = 35^{\circ}\text{C} \\ \theta_{\text{J-C}} = 1.75 \text{ deg/W} \end{array}$

Solution: From figure 3,
$$R_{\rm [ev]}=13$$
 W for 10 A rms. Using the equation of step 2 above: $\theta_{\rm C-A}=\frac{125^{\rm o}{\rm C}-35^{\rm o}{\rm C}}{13\,{\rm W}}-1.75~{\rm deg/W}=5.1~{\rm deg/W}$

Figure 4 is applicable and shows that for θ_{C-A} of 5.1 deg/W, the area is 24 sq. in. The minimum dimensions of the sides should be:

$$\sqrt{\frac{\text{area}}{2}} \times \sqrt{\frac{\text{area}}{2}} = \sqrt{\frac{24}{2}} \times \sqrt{\frac{24}{2}} = 3.5" \times 3.5"$$

EXAMPLE NO. 2

Determine minimum heat sink requirements for safe operation of the thyristor at an rms current of 25 A.

Given: Maximum $T_J = 125$ °C $T_A = 25^{\circ}C$

 $\theta_{\text{J-C}} = 1.75 \text{ deg/W}$

Solution: From figure 5, $P_{(av)} = 37.5 \text{ W}$ for 25 A rms. Using the equation of step 2 above:

 $\theta_{\text{C-A}} = \frac{125^{\circ}\text{C} - 25^{\circ}\text{C}}{37.5 \text{ W}} - 1.75 \text{ deg/W} = 0.92 \text{ deg/W}$

Figure 5 is applicable and shows for $\theta_{\text{C-A}} = 0.92 \text{ deg/W}$, a Modine IE 1155B, Delbert Blinn #113 or equivalent heat sink should be used and be cooled by an air velocity of 630 ft/min.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

†The supply voltage is called positive when it causes Main Terminal 2 to be positive with respect to Main Terminal 1.

TYPICAL CHARACTERISTICS

NOTE 6: The initial instantaneous value is measured using pulse techniques. $t_{p} \leq 1$ ms, duty cycle $\leq 2\%$.

INPUT 60 Hz 0.1 μF 0.1 μF Main Terminal 2 Main Terminal 1

SYMMETRICAL CONTROL CIRCUIT

TYPICAL APPLICATION DATA

24608

TYPICAL APPLICATION DATA

LOW POWER CONTROLS FOR HEAVY LOADS USING 25-A TRIAC

CA17112

TI Microlibrary Books for Creative Circuit Designers

TRANSISTOR CIRCUIT DESIGN

523 Pages • 526 Illustrations • Published January '63 • Shipping Weight 3-lb 4 oz • \$15.00

FIELD-EFFECT TRANSISTORS • L. J. SEVIN 138 Pages • 137 Illustrations • Published April '65 • Shipping Weight 1-lb 10-oz • \$10.00

MOSFET IN CIRCUIT DESIGN • ROBERT H. CRAWFORD 136 Pages • 100 Illustrations • Published May '67 • Shipping Weight 1-lb 10-oz • \$10.00

CIRCUIT DESIGN FOR AUDIO, AM/FM AND TV 352 Pages • 145 Illustrations • Published February '67 • Shipping Weight 2-lb 8-oz • \$14.50

SILICON SEMICONDUCTOR TECHNOLOGY • W. R. RUNYAN

256 Pages • 301 Illustrations • Published May '65 • Shipping Weight 2-lb 9-oz • \$16.50

DESIGN AND APPLICATION OF TRANSISTOR SWITCHING CIRCUITS • LOUIS DELHOM

278 Pages • 315 Illustrations • Published January '68 • Shipping Weight 2-lb • \$14.50

SOLID STATE COMMUNICATIONS

366 Pages • 417 Illustrations • Published April '66 • Shipping Weight 2-lb 9-oz • \$12.50

SOLID STATE ELECTRONICS • ROBERT G. HIBBERD 170 Pages • 90 Illustrations • Published January '68 • Shipping Weight 1-lb 12-oz • \$8.95

Terms: F.O.B. destination, bulk rate. Other than bulk rate, indicate method of shipment, add shipping charges.

Outside U.S.: Indicate method of shipment, add shipping charges.

Send check or money order (no purchase orders) to:

EXECUTIVE SERVICES DISTRIBUTION Suite 148 8383 Stemmons Freeway Dallas, Texas 75247

TYPES 1N4001 THROUGH 1N4007 DIFFUSED-JUNCTION SILICON RECTIFIERS

50-1000 VOLTS • 1 AMP AVG

- MINIATURE MOLDED PACKAGE
- INSULATED CASE
- IDEAL FOR HIGH-DENSITY CIRCUITRY

*mechanical data

*absolute maximum ratings at specified ambient† temperature

		1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT
V _{RM}	Peak Reverse Voltage from -65°C to +175°C (See Note 1)	50	100	200	400	600	800	1000	٧
V _R	Steady State Reverse Voltage from 25°C to 75°C	50	100	200	400	600	800	1000	٧
lo	Average Rectified Forward Current from 25°C to 75°C (See Notes 1 and 2)	1				а			
I _{FM(rep)}	Repetitive Peak Forward Current, 10 cycles, at (or below) 75°C (See Note 3)	10				a			
FM(surge)	Peak Surge Current, One Cycle, at (or below) 75°C (See Note 3)	30				a			
T _{A(opr)}	Operating Ambient Temperature Range	-65 to +175				°C			
T _{stg}	Storage Temperature Range	-65 to +200				°C			
	Lead Temperature ¾ Inch from Case for 10 Seconds	350					°C		

- NOTES: 1. These values may be applied continuously under single-phase, 60-cps, half-sine-wave operation with resistive load. Above 75°C derate 10 according to Figure 1.
 - 2. This rectifier is a lead-conduction-cooled device. At (or above) ambient temperatures of 75°C, the lead temperature 3% inch from case must be no higher than 5°C above the ambient temperature for these ratings to apply.
 - 3. These values apply for 60-cps half sine waves when the device is operating at (or below) rated values of peak reverse voltage and average rectified forward current. Surge may be repeated after the device has returned to original thermal equilibrium.

[†] The ambient temperature is measured at a point 2 inches below the device. Natural air cooling shall be used.

^{*} Indicates JEDEC registered data.

TYPES 1N4001 THROUGH 1N4007 DIFFUSED-JUNCTION SILICON RECTIFIERS

*electrical characteristics at specified ambient† temperature

	PARAMETER	TEST	CONDITIONS	MAX	UNIT
		V _R = Rated V _R ,	T _A = 25°C	10	μα
I _R	Static Reverse Current	$V_R = Rated V_R$	T _A = 100°C	50	μ α
I _{R(avg)}	Average Reverse Current	V _{RM} = Rated V _{RM} , f = 60 cps,	l _O = 1 α, T _A = 75°C	30	μα
V _F	Static Forward Voltage	$I_F = 1 a$	T _A = 25°C to 75°C	1.1	V
V _{F(avg)}	Average Forward Voltage	$V_{RM} = Rated V_{RM},$ $f = 60 cps,$	I _O = 1 a, T _A = 25°C to 75°C	0.8	٧
V _{FM}	Peak Forward Voltage	V _{RM} = Rated V _{RM} , f = 60 cps,	I _O = 1 a, T _A = 25°C to 75°C	1.6	٧

^{*}Indicates JEDEC registered data.

THERMAL INFORMATION

NOTE 2: This rectifier is a lead-conduction-cooled device. At (or above) ambient temperatures of 75°C, the lead temperature 3% inch from case must be no higher than 5°C above the ambient temperature for these ratings to apply.

[†]The ambient temperature is measured at a point 2 inches below the device. Natural air cooling shall be used.

For Application in:
Character Recognition,
Tape Read-out, Photo Switching,
Proportional Control,
Differential Amplifiers

30 VOLTS 50 MILLIWATTS
Operation to 125° C
Designed for High Sensitivity,
Fast Response

mechanical data

Hard glass, hermetically sealed case. Unit weight 0.1 gram.

ratings — conditions at 25°C (unless otherwise noted)

	symbol	min	typical	max	unit
Power dissipation	P			50	mw
Reverse voltage	V_{R}			30	٧
Operating temperature	T _A			125	°C
Forward breakdown @ 100 μ a	BVF		8		v
Reverse breakdown @ 100 μ a	BV _R		50		٧
electrical specifications					
Light current @ 5 v *	I <u>L</u>	1.0	3.0		ma
Dark current @ 30 v	l _d		0.01	0.025	μ a
Dark current @ 30 v @ 125°C	l _d		10		μ a
Rise time**	t _r		1.5		μ s
Fall time**	ŧ		15		μs
Light current sensitivity between			7		μα/foot candle
300 and 600 foot candles @ 5 v					•

^{*}Measured with radiation of 9 mw/cm² in wavelengths from 0.7 to 1.0 microns.

58

^{**}Measured with 1000 ohm series resistance in wavelengths from 0.7 to 1.0 microns.

TYPE LS400 N-P-N PLANAR SILICON PHOTO DEVICE

TYPICAL APPLICATION DATA

LIGHT-PULSE-DURATION INDICATOR

CA17113
TIME IN SECONDS EQUALS ONE TENTH OF VOLTMETER READING IN VOLTS.

TYPICAL PERFORMANCE

Maximum Pulse Width 1 s
Minimum Pulse Width 1 μs
Operating Temperature Range . . . 0°C to 70°C

CIRCUIT COMPONENT INFORMATION

R ₁ : 4.7 kΩ	C ₁ : 100 μF, Mylar [†]
R_2 : 1 k Ω	
R ₃ : 1.5 kΩ	M_1 : VTVM, 10-M Ω input impedance
R ₄ : 3.6 kΩ	
R ₅ : 500 Ω	
[†] Trademark of E.	I. duPont

MICRO SENSOR DESIGNED FOR HIGH-DENSITY MATRIX AND LINE READ-OUT EQUIPMENT

- Recommended for Application in Character Recognition, Tape and Card Readers, Velocity Indicators, and Encoders
- Unique Package Design Allows for **Assembly into Printed Circuit Boards**
- Small Diameter Reduces Optical "Cross-Talk"
- Power Dissipation 50 mw

mechanical data

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Emitter Voltage	50 v
Emitter-Collector Voltage	7v
Total Device Dissipation at (or below) 25°C Free-Air Tempera	iture (See Note 1) 50 mw
Operating Free-AirTemperature Range	
Storage Temperature Range	65°C to +150°C
Soldering Temperature (3 minutes)	240°C

NOTE 1: Derate linearly to 125°C free-air temperature at the rate of 0.5 mw/C°

TYPE LS 600 N-P-N PLANAR SILICON LIGHT SENSOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
l _L	Light Current	V _{CE} = 5 v, H = 20 mw/cm ² (See Note 2)	0.8	1.0		ma
l _D	Dark Current	V _{CE} = 30 v, H = 0		0.01	0.025	μα
ID	Dark Current	V _{CE} = 30 v, H = 0 T _A = 100°C		10		μα
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_L=0.4 \mathrm{ma},\; H=20 \mathrm{mw/cm^2}$ (See Note 2)		0.3		V

NOTE 2. Irradiance (H) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear filament bulb operating at a 2870°K color temperature.

switching characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	TYP	UNIT
t _r Rise Time	$V_{CC}=35 \mathrm{v}, \; \mathrm{I_L}=800 \mu \mathrm{a}$	1.5	μ sec
t _f Fall Time	$R_L = 1k\Omega$, (See Figure 1)	15	μsec

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: a. Input irradiance is supplied by a pulsed xenon bulb source. Incident irridation is adjusted for $I_L=800\mu a$.

b. Output waveform is monitored on an oscilloscope with the following characteristics:

 $t_r \leq$ 12 nsec; $R_{in} \geq$ 1 megohm, $C_{in} \leq$ 20 pf.

FOR APPLICATION IN:

Tape readout
Card readout
Light switching
Measurement indicators

50 VOLTS
250 MILLIWATTS
Designed for 125°C operation
Unlimited altitude range

mechanical data

Hermetically sealed case. Unit weight 0.16 gram.

ratings

conditions	min	typical	max	unit
Bias Voltage @25°C Power Dissipation @25°C Operating Temperature Storage Temperature	65 65		±50 250 125 125	°C mw v
specifications				
‡Dark Current @25°C @±50 v Dark Current @100°C @±50 v †Light Current @25°C @±10 v * Typical Photocurrent Rise Time Typical Photocurrent Fall Time Typical Sensitivity	100	0.01 20 200 2 45 22.3	0.5 100	μα μα μs μs μσ/mw/cm²

NOTES

- ‡Dark current is leakage current across diode with no incident irradiation.
- † Light current is measured for a value of irradiance. Irradiance = 9 mw/cm² in a wave length range of .7 to 1.1 microns as defined by a Corning CS 7.69 filter.
- * Riss time is the time required for the photocurrent ** to rise from 10% to 90% of its final value after instantaneous application of excitation. Fall time is the time for the photocurrent to decay from 90% to 10% of its initial value after instantaneous removal of excitation.
- **Photocurrent is the difference between Light Current and Dark Current.

APPLICATION NOTES:

The 1N2175 is a subminiature symmetrically diffused silicon unit. The two junctions are symmetrical so either diode terminal can be blased positively or negatively. Because of this unique design, AC or DC bias voltage can be used. The small size and high light sensitivity of this unit makes it particularly useful in high speed reading of punched cards and tapes, light detection systems, and in production line screening or counting. Numerous other commercial and military applications exist.

TYPE 1N2175 N-P-N DIFFUSED SILICON PHOTO-DUO-DIODE

TYPICAL CHARACTERISTICS

. .

TYPE 1N2175 N-P-N DIFFUSED SILICON PHOTO-DUO-DIODE

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

PHOTO DUO-DIODE PREAMPLIFIER

This circuit was designed for use with the TI 1N2175 photo duo-diode. A voltage amplification of 30 db was obtained. This varied less than 1 db changing from low h_{FE} units at -40°C to high h_{FE} units at 100°C. An output of 4 volts peak to peak can be obtained across a 1 k Ω load resistor. The amplifiler response is ± 1 db from 10 cps to 10 kc.

Resistor values are in ohms.

TYPE 1N2175 N-P-N DIFFUSED SILICON PHOTO-DUO-DIODE

TYPICAL APPLICATION DATA

LOW-NOISE PHOTODIODE PREAMPLIFIER

CIRCUIT COMPONENT INFORMATION

RES	ISTORS	CAPACITORS
R ₁ : 10 kΩ	R ₉ : 3,3 kΩ	C ₁ : 1 μF
R_2 : 10 k Ω	R ₁₀ : 20 kΩ	C ₂ : 50 μF
R ₃ : 27 kΩ	R ₁₁ : 2 kΩ	C ₃ : 5 µF
R ₄ : 24 kΩ	R ₁₂ : 330 Ω	C ₄ : 0.05 μF
R ₅ : 220 Ω	R ₁₃ : 1.2 kΩ	C ₅ : 100 μF
R ₆ : 2 kΩ	R ₁₄ : 30 kΩ	C ₆ : 20 μF
R ₇ : 510 Ω	R ₁₅ : 51 kΩ	C ₇ : 20 μF
R ₈ : 100 Ω	R ₁₆ : 51 kΩ	

TYI	PIC	Αl	. P	EF	F	OR	M	AN	ICI	E C	ÞΑ	TA
Voltage Gain .												30 dB
Output Voltage												4 V
Frequency Respon	nse											1 Hz to 10 kHz
Operating Temper	atu	re	Ra	ang	8							-40°C to 100°C

TI World-Wide Sales Offices

ALABAMA

3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver, Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Sahara Office Park Bldg., Suite 111 Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

U.S. Highway #22 P.O. Box 366 Union, New Jersey 07083 201-687-7200

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424. Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 - P.O. Box 5012 Dallas, Texas 75222 214-238-4861

3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany

Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart **West Germany**

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Valleio Mexico 15, D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato **Buenos Aires, Argentina**

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan

TYPES CG1/8, CG1/4 AND CG1/2

PRECISION, CARBON-FILM, GLASS-ENCAPSULATED HERMETIC RESISTORS

- Proven high reliability —
 >40,000,000 test data hours
- -65°C to 175°C storage temperature
- Hermetically sealed in hard glass
- Meet or exceed all requirements of Specification MIL-R-10509D for Characteristics B, D & G
- Leads welded to end caps
- ±1% ohmic tolerance

environmental tests

To achieve maximum reliability, all TI glass resistors are 100% inspected for hermetic seal as a continuous process control. Tests are conducted to all electrical, environmental, and mechanical specifications to insure full and continuous compliance with Mil-R-10509D, Characteristics B,D, and G.

specifications

TI type number	(TI	re	ittage sting ≤ 70 MIL D	°()*	MIL desig- nation	standard resistance ranges	maximum working voltage**	body length*** (A)	body diameter (8)	lead length (C)	lead size	avg. weight per 100 unpacked units
	↓_						voits	inches	inches	inches	awg #	íbs.
CG%	1/8	-	1/6	Иο	RN55	10Ω to 100KΩ	250	0.240(+.010)	0.125(±0.015)	1.500(±0.125)	22	0.076
CG¼	14	1/8	14	1/8	RN60	10 Ω to 1 Meg Ω	350	$0.360(+.025 \atop015)$	0.140(±0.020)	1.500(±0.125)	22	0.09
CG½	1/2	1/4	1/2	1/4	RN65	10 Ω to 2 Meg Ω	500	0.560(±.025)	0.225(±0.020)	1.500(±0.125)	22	0.228

- *For operation at higher temperature, see Dissipation Derating Curves, Page 2.
- **Critical ohmic value and above. For lower values use $E = \sqrt{PR}$. See Paragraph 3.6 of MIL-R-10509D
- ***Length of glass package. Fillets on leads extend 0.035" max. beyond glass.

symbolization

CG1/8 — Standard stock symbolization includes manufacturer's identification, tolerance and ohmic value (e.g. — TI, 1%, 100 K).

CG1/4 — Standard stock symbolization includes manufacturer's identification, tolerance, mil-type designation and ohmic value (e.g. — II, 1%, RN60G, 1003F, 100 K).

CG1/2 — Standard stock symbolization includes manufacturer's identification, tolerance, mil-type designation and ohmic value (e.g. — TI, 1%, RN65G, 1003F, 100 K).

modifications available on request

± ½%, 2% or 5% Resistance Tolerance Resistance Values Outside Published Ranges Special symbolization

performance characteristics †

Temperature Cycling per MIL-R-10509D (4.6.4) Low Temperature Operation per MIL-R-10509D (4.6.5) Short Time Overload per MIL-R-10509D (4.6.6) Effect of Soldering per MIL-R-10509D (4.6.10) Insulation Resistance per MIL-R-10509D (4.6.11) Moisture Resistance per MIL-R-10509D (4.6.11) Shock per MIL-R-10509D (4.6.15) Vibration, High Frequency per MIL-R-10509D (4.6.16) Shelf Life, Change per Year Voltage Coefficient

limit	\$
	TI and
MIL Char D	MIL Char G
± 0.50%	± 0.25%
± 0.50%	± 0.25%
± 0.50%	± 0.25%
±0.50%	± 0.10%
greater than 10	,000 megohms
±1.50%	± 0.50%
± 0.50%	± 0.25%
± 0.50%	±0.25%
no requirement	no requirement
no requirement	no requirement
	±0.50% ±0.50% ±0.50% ±0.50% greater than 10 ±1.50% ±0.50% no requirement

†Unless otherwise noted, data is % change in initial resistance. The two-sigma limits were used as the range indications for average performance.

TYPES CG1/8, CG1/4 AND CG1/2 PRECISION, CARBON-FILM, GLASS-ENCAPSULATED HERMETIC RESISTORS

THERMAL INFORMATION DISSIPATION DERATING CURVES

TYPICAL CHARACTERISTICS

TEMPERATURE COEFFICIENT VS RESISTANCE 0 See Par. 4.6.12 of -0.01 -R-10509D **Temperature Coefficient** Resistance - (%/°C) -0.02 IIIICG1/2 CG1/2 CG1/4 Helixed -0.03 CG1/8 -0.04 -0.05 1 M 10 M 10 K 100 K 100 1 K Resistance—ohms

LOAD LIFE PERCENT CHANGE VS TIME

TYPES MC55, MC60, MC65, MC55D, MC60D, MC65D EPOXY-ENCAPSULATED PRECISION METAL-FILM RESISTORS

Designed to meet or exceed all requirements of Specification MIL-R-10509F for Characteristic C, D, E, & F.

- Load-rated for 125°C or 70°C applications
- High degree of stability and reliability
- Precision resistance tolerances
- Rugged cap-and-lead construction
- Temperature Coefficients ± 10 , ± 25 , ± 50 and ± 100 ppm/°C
- Tough Epoxy coating Fully insulated

specifications

MIL-F	R-10509F DESIG	NATION		ELECTRICAL RA	TINGS AND C	HARACTERISTICS	WE	CHANICAL DA	ATA	
•	applicable	power	_{T1}	maximum		resistance value	bod	y size	average weight	
type	characteristic	rating†	TYPE	power rating‡	working voltage	range§ (T _A = 25°C)	length — A diameter — B		for 100 unpacked units	
		₩		W	٧		inch	inch	ib	
RN55	C & E	1/10	MC55	1/8		24.9 Ω to	0.250	0.095		
KRJJ .	D	1/8	MC55D	1/4	250	100 k Ω	(±0.031)	(±0.015)	0.075	
RN60	C & E	1/8	MC60	1/4		49.9 Ω to	0.375	0.140		
KNOU	D	1/4	MC60D	3/8	300	499 k Ω	(±0.031)	(±0.015)	0.101	
	C & E	1/4					<u> </u>			
RN65	F	1/2	MC65	1/2	350	49.9 Ω to	0.575	0.171	0.198	
- [D	1/2	MC65D	1		1 ΜΩ	(土0.031)	(±0.015)	U.176	

symbolization

Standard stock symbolization includes TI Type Number, Resistance Value, Tolerance, and Temperature Coefficient, depending upon wattage size and space available. Military type symbolization is used when applicable. Resistance values are symbolized to a maximum of three significant figures per Table 1.

military devices

The resistors are available in accordance with the requirements of MIL-R-10509F. For current availability of resistance values, tolerances, and characteristics consult a TI Sales Office.

modifications available upon request

Special testing
"A" nickel weldable leads

Resistance values outside published ranges Special paint coverage

†These ratings apply at (or below) 125°C ambient temperature for characteristics C, E, and F and at (or below) 70°C ambient temperature for characteristic D. For higher temperatures refer to MIL-R-10509F.

‡These ratings apply at (or below) 125°C ambient temperature for MC55, MC60, and MC65 and at (or below) 70°C ambient temperature for "D" suffix devices. For higher temperatures refer to Power Dissipation Derating Curves Page 2.

§The value ranges shown are for a temperature coefficient of 25 ppm. See "high- and low-value availability" on Page 2.

TYPES MC55, MC60, MC65, MC55D, MC60D, MC65D EPOXY-ENCAPSULATED PRECISION METAL-FILM RESISTORS

RESISTANCE VALUE

standard values and tolerance

The following resistance values are standard and in most cases are available from stock. Nonstandard values will be manufactured to specific requirements.

TABLE 1 - 1% TOLERANCE

1.00	1 10	1 21	1 33	1 47	1 62	1.78	1.96	2.15	2.37	2.61	2.87	3.16	3.48	3.83	4.22	4.64	5.11	5.62	6.19	6.81	7.50	8.25	9.09
1.02	1 12	1 24	1 27	1.50	1.65	1.82	2 00	2 21	2 43	2 67	2 94	3.24	3.57	3.92	4.32	4.75	5.23	5.76	6.34	6.98	7.68	8.45	9.31
1.02	1.13	1.27	1.37	1.50	1.60	1.02	2.00	2 26	2.49	2 74	3.01	3 32	3.65	4.02	4.42	4.87	5.36	5.90	6.49	7.15	7.87	8.66	9.53
1.03	1.13	1.27	1.40	1.59	1.07	1 91	2.03	2 32	2.55	2.80	3.09	3.40	3.74	4.12	4.53	4.99	5.49	6.04	6.65	7.32	8.06	8.87	9.76

Standard stock tolerance is $\pm 1\%$ (F). Tolerances of $\pm 0.5\%$ (D), $\pm 0.25\%$ (C), and $\pm 0.1\%$ (B) are also available upon request. The MC - D series is also available with $\pm 2\%$ tolerance. The parenthetical letters are equivalent MIL-R-10509F tolerance designations.

temperature coefficient

T-C Code Designation	Comparable MIL-R-10509F Characteristic	T-C Range	Temperature Range
T-1	D	±100 ppm/°C	-55° to +175°C
T-2	C & F	±50 ppm/°C	-55° to +175°C
T-9	E	±25 ppm/°C	-55° to +175°C
T-10		±10 ppm/°C	+25° to +150°C

Special tracking requirements, temperature ranges, etc., are available.

hi- and low-value availability

The range of available resistance values is dependent upon temperature coefficient, e.g., the available range is extended for temperature coefficient of 100 ppm compared to 25 ppm. Contact a TI sales office for extended value ranges currently available in each T-C range.

POWER RATING AND PERFORMANCE CHARACTERISTICS

power dissipation derating curves

performance characteristics

Resistance-value stability is affected by power dissipation in operational-environment tests. Following are two typical examples. In one, the more stable MC series is tested to a low-power MIL-R-10509 application demonstrating maximum stability. In the other example, the lower-cost MC - D series is tested at its maximum TI-rated power to demonstrate its excellent stability under these extreme power conditions.

TECT DED 4001164015	MC55, MC	.60, MC65	MC55D, MC6	60D, MC65D
TEST PER APPLICABLE MIL-R-10509F PROCEDURE	MIL-R-10509F Char E LIMITS	TI TYPICAL PERFORMANCE	MIL-R-10509F Char D LIMITS	TI TYPICAL PERFORMANCE
1000-Hour Load Life	±0.50% max	+0.14% avg	±1.0 %	+0.30% avg=
Moisture Resistance	±0.50% max	+0.15% avg	±1.5 %	+0.40% avg■
Low-Temperature Operation	±0.25% max	<±0.05%	士0.50%	+0.10% avg
Temperature Cycling	±0.25% max	<±0.05%	±0.50%	<±0.05%
Short-Time Overload	±0.25% max	<±0.05%	±0.50%	+0.10% avg■
Effect of Soldering	±0.10% max	<±0.05%	土0.50%	<±0.05%
Insulation Resistance	>10 ¹⁰ \Omega	$>10^{12} \Omega$	$>10^{10} \Omega$	>10 ¹² Ω ■
Shock	± 0.25% max	<±0.05%	土0.50%	<±0.05%
Vibration	±0.25% max	<±0.05%	±0.50%	<±0.05%

Unless otherwise noted, data is percent change from initial resistance.

Operated at maximum TI-rated power.

SOLID-STATE TEMPERATURE-SENSING RESISTOR

HERMETICALLY SEALED, TEMPERATURE-SENSING, TEMPERATURE-COMPENSATING POSITIVE-TEMPERATURE-COEFFICIENT THERMISTOR

 Designed to meet or exceed all electrical requirements of MIL-T-23648A for positive-TC thermistors

mechanical data

The resistors are encapsulated in a hard-glass, hermetically sealed package with welded unborated solder-coated dumet leads.

maximum ratings

Power Dissipation at (or below) 25°C Ambient Temperature (See Figure 1)			250 mW
Power Dissipation at 100°C Ambient Temperature (See Figure 1)			125 mW
Operating Ambient Temperature Range			65°C to 150°C
Storage Temperature Range			65°C to 150°C

electrical and thermal characteristics

Zero-Power Resistance Ratio, R $_{25^{\circ}\text{C}}$ /R $_{125^{\circ}\text{C}}$ 0.55 \pm 15% Thermal Time Constant, τ 60 s max , 35 s typ

standard zero-power resistance values (ohms) at 25°C ambient temperature

10	12	15	18	22	27	33	39	47	50	56	68	82
100	120	150	180	220	270	330	390	470	500	560	680	820
1000	1200	1500	1800	2200	2700							

Standard stock tolerances are $\pm 5\%$ and $\pm 10\%$

TYPE TG 1/8

SOLID-STATE TEMPERATURE-SENSING RESISTOR

performance characteristics

TEST PER APPLICABLE MIL-T-23648A PROCEDURE	MAXIMUM RESISTANCE CHANGE, TA=25°C
Short-Time Overload	±1%
Dielectric Withstanding Voltage	±1%
Low-Temperature Storage	±1%
High-Temperature Storage	±2%
Terminal Strength	±1%
Thermal Shock	±2%
Resistance to Soldering Heat	±1%
Moisture Resistance	±2%
1000-Hour Load Life, T _A = 100°C	±2%
Vibration, High-Frequency	±1%
Shock	±1%
Immersion	±1%

military applications

The SENSISTOR silicon resistor has been designed to operate under military test conditions as stated above. Production lots are regularly tested to these criteria as part of Tl's continuing process-control testing program.

Special methods have been developed for load-life and temperature-coefficient testing. Test details, recommended test parameters, and test results are available upon request.

nominal resistance multiplying factor vs ambient temperature

dissipation derating curve

sensistor®

TYPES TM 1/8, TM 1/4, TC 1/8 AND P-100 PROBE SOLID-STATE TEMPERATURE-SENSING SILICON RESISTORS

Temperature Compensating • Temperature Sensing

POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS

Amplifiers • Power Supplies • Servos • Thermometry

Mag Amps • Computers • Telemetering

Large positive temperature coefficient of resistance (approx. 0.7%/deg)

sens/stor

Molded Silicon Types TM ¼ & TM ⅓ Axial Leads Full Load at 100°C Derated Linearly to 150°C

mechanical data

<u>sensistor</u>

Round Welded Case Silicon Type TC 1/8

Glass-to-Metal Hermetic Seal Between Case and Leads

Full Load at 100°C

Derated Linearly to 150°C

sensistor

Glass-Encased
Silicon Type P-100 Probe

All Glass Package Glass-to-Metal Hermetic Seal at Leads

Accurate
Resistance—Temperature Relationship
From —180°C to + 200°C

TYPES TM 1/8, TM 1/4, TC 1/8 AND P-100 PROBE SOLID-STATE TEMPERATURE-SENSING SILICON RESISTORS

TM 1/8, TM 1/4, & TC 1/8
POWER DERATING CURVE

T_A - Ambient Temperature - °C

performance characteristics

TEST PER APPLICABLE MIL-T-23648A PROCEDURE	MAXIMUM RESISTANCE CHANGE, TA=25°C
Short-Time Overload	±1%
Dielectric Withstanding Voltage	±1%
Low-Temperature Storage	±1%
High-Temperature Storage	±2%
Terminal Strength	±1%
Thermal Shock	±2%
Resistance to Soldering Heat	±1%
Moisture Resistance	±2%
1000-Hour Load Life, T _A = 100°C	±2%
Vibration, High-Frequency	±1%
Shock	±1%
Immersion	±1%

military applications

The SENSISTOR silicon resistor has been designed to operate under military test conditions as stated above. Production lots are regularly tested to these criteria as part of Ti's continuing process-control testing program.

Special methods have been developed for load-life and temperature-coefficient testing. Test details, recommended test parameters, and test results are available upon request.

TYPES TM 1/8, TM 1/4, TC 1/8 AND P-100 PROBE SOLID-STATE TEMPERATURE-SENSING SILICON RESISTORS

TYPICAL CHARACTERISTICS

To correct resistance value for self-heating effect, determine correction factor from the above curve. Choose the nearest approximate heat-dissipation condition (free still air or strapped to the chassis or heat sink). Multiply the factor thus obtained by resistor value which has been corrected for no-load ambient temperature if necessary.

TYPES TM 1/8, TM 1/4, TC 1/8 AND P-100 PROBE SOLID-STATE TEMPERATURE-SENSING SILICON RESISTORS

electrical specifications

	TC 1/8	TM 1/8	TM 1/4	P-100	UNIT
Wattage Rating	1/8	1/8	1/4	not	W
Standard Resistance Range*	10 - 5600	10 - 5600	10 - 10.000	applicable 100 - 4000	Ω
Maximum Thermal Time Constant	60	40	60	11	s

^{*}Resistances calibrated at 25°C ± 0.20°C; resistance tolerance ± 10%.

standard resistance values (ohms) for 1 to 10 decade† — TM ½, TM ¼, and TC ½ 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 47 50 56 68 82

standard resistance values (ohms) — P-100 Probe

100	500	1000	2000	4000

 $[\]pm$ 5% tolerances, matched pairs, and other resistance values available as special devices.

nominal resistance multiplying factor vs ambient temperature

T_A -- Ambient Temperature -- °C

[†]Resistance values not listed will be considered nonstandard.

TI world-wide sales offices

ALABAMA

Sahara Office Park Bldg., Suite 111 3313 Memorial Parkway, S.W. Huntsville, Alabama 35801 205-881-4061

ARIZONA

2535 W. Camelback Rd., Suite 1D Phoenix, Arizona 85017 602-279-5531

CALIFORNIA

1800 North Argyle Ave. Hollywood, California 90028 213-466-7251

5005 West Century Blvd., Suite 208 Inglewood, California 90301 213-673-3943

230 California Ave., Suite 201 Palo Alto, California 94306 415-326-6770

1505 East 17th St., Suite 201 Santa Ana, California 92701 714-547-6506

4185 Adams Ave. San Diego, California 92116 714-284-1181

COLORADO

2186 South Holly St., Suite 204 Denver Colorado 80222 303-757-8548

CONNECTICUT

300 Amity Road Woodbridge, Connecticut 06525 203-389-4521

FLORIDA

618 East South St., Suite 114 Orlando, Florida 32801 305-422-9894

ILLINOIS

Suite 205, Executive Towers 5901 N. Cicero Ave. Chicago, Illinois 60646 312-286-1000

MASSACHUSETTS

60 Hickory Drive Waltham, Mass. 02154 617-891-8450

MICHIGAN

Suite 706 West, Northland Towers Bldg. 15565 Northland Dr. Southfield, Michigan 48075 313-357-1703

MINNESOTA

7615 Metro Blvd. Suite 202, U.C.L.I. Bldg. Edina, Minn. 55424 612-941-4384

NEW JERSEY

25 U.S. Highway 22 Springfield, New Jersey 07081 201-376-9400

NEW YORK

P. O. Box 87, 2209 E. Main Endicott, New York 13760 607-785-9987

4 Nevada Drive New Hyde Park, N. Y. 11040 516-488-9894

131 Fulton Ave., Apt. J-2 Poughkeepsie, New York 12603 914-471-6095

6563 Ridings Rd. Syracuse, New York 13206 315-463-9291

OHIO

22035 Chagrin Blvd. Cleveland, Ohio 44122 216-751-2600

Suite 205, Paul Welch Bldg. 3300 South Dixie Dr. Dayton, Ohio 45439 513-298-7513

PENNSYLVANIA

Benjamin Fox Pavilion Suite 424, Foxcroft Square Jenkintown, Pa. 19046 215-885-3454

TEXAS

MS80 — P.O. Box 5012 Dallas, Texas 75222 214-238-4861 3609 Buffalo Speedway Houston, Texas 77006 713-526-3268

WASHINGTON

5801 Sixth Ave. S. Seattle, Washington 98108 206-762-4240

WASHINGTON, D.C.

1875 Connecticut Ave., N.W., Suite 913 Washington, D.C. 20009 202-234-9320

CANADA

Geophysical Service Incorporated 280 Centre Str. East Richmond Hills Ontario, Canada 925-1035

> 663 Orly Avenue Dorval Quebec, Canada 631-6010

EUROPE

Texas Instruments Limited Manton Lane Bedford, England

Texas Instruments France S. A. Boite Postale 5 Villeneuve-Loubet (A.M.), France

> 11 rue de Madrid Paris 8°, France

Texas Instruments Holland N.V. Semiconductor Division Enschedesestraat 19 Hengelo (Ov), Holland

Texas Instruments Italia S.p.A. Via Colautti 1 Milan, Italy

Texas Instruments Incorporated 118 Rue du Rhone 1204 Geneva, Switzerland

Texas Instruments Sweden A.B. Timmermansgatan 34, Box 17116 Stockholm 17, Sweden

Texas Instruments Deutschland GmbH Hildesheimerstr. 19 3 Hannover, W. Germany Texas Instruments Deutschland GmbH Wolframstrasse 26 7 Stuttgart West Germany

Texas Instruments Deutschland GmbH Clemensstrasse 30 8 Munich 23 West Germany

Texas Instruments Deutschland GmbH Kepserstrasse 33 805 Freising-Lerchenzeld West Germany

Texas Instruments Deutschland GmbH Koenigslacherstrasse 22 6 Frankfurt, West Germany

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Col. Ind. Vallejo Mexico 15. D.F.

ARGENTINA

Texas Instruments Argentina S.A.I.C.F. (P. O. Box 2296 — Correo Central) Ruta Panamericana Km. 13, 5 Don Torcuato Buenos Aires, Argentina

BRAZIL

Texas Instrumentos Electronicos do Brazil Ltda. Rua Cesario Alvim 770 Caixa Postal 30.103 Sao Paulo 6, Brazil

AUSTRALIA

Texas Instruments Australia Ltd. Box 63, Oldham Road Elizabeth, South Australia

Texas Instruments Australia Ltd. Room 5, Rural Bank Bldg. Burwood, N.S.W., Australia

JAPAN

Texas Instruments Asia Limited 404 T.B.R. Building No. 59, 2-chome, Nagata-cho Chiyoda-du, Tokyo, Japan