Linear & Logistic Regression: Backward elimination

Farhat Jabeen 20/1/2022

Contents

Linear Regression		3
Step by step elimination		4
•		7
Model interpretation		7
Logistic Regression1		7
		8
Logistic Regression2		9
		11
	lating log of Balance	13
		14
Checking for multicollinearity		15
Load the required libraries.		
<pre>lapply(c("lme4", "lmerTest", "emmeans",</pre>	"car", "lattice", "ggplot2", "irr", "knitr", "	languageR", "MASS
## Loading required package: lme4		
## Loading required package: Matrix		
## Loading required package: lmerTest		
##		
## Attaching package: 'lmerTest'		
	Incolone Incol.	
<pre>## The following object is masked from ##</pre>	package.ime4 .	
## lmer		
## The following object is masked from	'package:stats':	
##		
## step		
## Loading required package: emmeans		
## Loading required package: car		
## Loading required package: carData		
## Registered S3 methods overwritten by	'car':	
## method fr	om	
## influence.merMod lm		
## cooks.distance.influence.merMod lm	e4	
## dfbeta.influence.merMod lm	e4	
## dfbetas.influence.merMod lm	e4	
## Loading required package: lattice		

```
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.6.2
## Loading required package: irr
## Loading required package: lpSolve
## Loading required package: knitr
## Loading required package: languageR
## Loading required package: MASS
## Loading required package: Rmisc
## Loading required package: plyr
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 3.6.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following object is masked from 'package:MASS':
##
##
       select
## The following object is masked from 'package:car':
##
##
       recode
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
## Loading required package: MuMIn
## Loading required package: tidyr
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
       expand, pack, unpack
##
## Loading required package: corpcor
## Warning: package 'corpcor' was built under R version 3.6.2
## [[1]]
## [1] TRUE
##
## [[2]]
```

```
## [1] TRUE
##
## [[3]]
## [1] TRUE
## [[4]]
## [1] TRUE
##
## [[5]]
## [1] TRUE
## [[6]]
## [1] TRUE
##
## [[7]]
## [1] TRUE
##
## [[8]]
## [1] TRUE
## [[9]]
## [1] TRUE
##
## [[10]]
## [1] TRUE
## [[11]]
## [1] TRUE
##
## [[12]]
## [1] TRUE
##
## [[13]]
## [1] TRUE
## [[14]]
## [1] TRUE
##
## [[15]]
## [1] TRUE
```

Linear Regression

Problem: Predicting company profits.

```
#Read in the dataset.
startup <- read.table("~/Desktop/dataScience/resources/P12-50-Startups.csv", sep = ",", header = T)</pre>
head(startup)
     {\tt R.D.Spend} \  \, {\tt Administration} \  \, {\tt Marketing.Spend}
                                                        State
                                                                 Profit
## 1 165349.2
                      136897.80
                                        471784.1
                                                     New York 192261.8
## 2 162597.7
                      151377.59
                                        443898.5 California 191792.1
## 3 153441.5
                                        407934.5 California 191050.4
                      101145.55
```

```
## 4 144372.4
                    118671.85
                                      383199.6
                                                 New York 182902.0
## 5 142107.3
                     91391.77
                                      366168.4 California 166187.9
                                                 New York 156991.1
## 6 131876.9
                     99814.71
                                      362861.4
names(startup)
## [1] "R.D.Spend"
                          "Administration"
                                            "Marketing.Spend" "State"
## [5] "Profit"
create a dummy variable for state (California, New York)
startup$newyork <- 0
startup[startup$State == "New York",]$newyork <- 1</pre>
#I chose not to create the dummy for California as it can't be included in the analysis anyway.
```

Step by step elimination

Begin modeling with putting all the variables in the linear regression model.

Predicting profit based on how much companies spend on R&D, administration, marketing, and if their location plays a role in this.

```
profitAll <- lm(Profit ~ R.D.Spend + Administration + Marketing.Spend + newyork, data = startup)
#Calculate Type III Anova for significant p-value (0.05 in thsi instance).
Anova(profitAll, type = "III")
## Anova Table (Type III tests)
##
## Response: Profit
##
                       Sum Sq Df F value
                                            Pr(>F)
## (Intercept)
                   4.9756e+09 1 57.4168 1.431e-09 ***
                   2.7031e+10 1 311.9298 < 2.2e-16 ***
## R.D.Spend
## Administration 1.7979e+07 1
                                  0.2075
                                            0.6509
## Marketing.Spend 2.1662e+08 1
                                  2.4997
                                            0.1209
## newyork
                  2.1248e+07 1
                                  0.2452
                                            0.6229
## Residuals
                  3.8996e+09 45
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(profitAll)
##
## Call:
## lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend +
##
       newyork, data = startup)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -34163 -4312
                   113
                          6631
                              17916
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                   5.042e+04 6.654e+03
                                          7.577 1.43e-09 ***
## (Intercept)
## R.D.Spend
                   8.080e-01 4.575e-02 17.662 < 2e-16 ***
## Administration -2.362e-02 5.186e-02 -0.455
                                                   0.651
```

```
## Marketing.Spend 2.637e-02 1.668e-02
                                                  0.121
                                        1.581
                  -1.332e+03 2.690e+03 -0.495
                                                  0.623
## newyork
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9309 on 45 degrees of freedom
## Multiple R-squared: 0.951, Adjusted R-squared: 0.9467
## F-statistic: 218.4 on 4 and 45 DF, \, p-value: < 2.2e-16
Remove the variable with the highest p-value (exceeding the a-level of 0.05) i.e. Administration.
profit A <- lm(Profit ~ R.D.Spend + Marketing.Spend + newyork, data = startup)
Anova(profitA, type = "III")
## Anova Table (Type III tests)
##
## Response: Profit
                      Sum Sq Df F value Pr(>F)
## (Intercept)
                  2.1289e+10 1 249.9752 < 2e-16 ***
## R.D.Spend
                  3.0667e+10 1 360.0894 < 2e-16 ***
## Marketing.Spend 2.7864e+08 1
                                  3.2718 0.07702 .
## newyork
                  2.6807e+07 1
                                  0.3148 0.57749
## Residuals
                  3.9176e+09 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(profitA)
##
## Call:
## lm(formula = Profit ~ R.D.Spend + Marketing.Spend + newyork,
      data = startup)
##
## Residuals:
   Min
           1Q Median
                           3Q
                                 Max
## -34332 -4681
                 100
                         5792 17834
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   4.772e+04 3.018e+03 15.811
                                                 <2e-16 ***
## R.D.Spend
                   8.003e-01 4.217e-02 18.976
                                                 <2e-16 ***
## Marketing.Spend 2.859e-02 1.581e-02
                                         1.809
                                                  0.077 .
## newyork
                  -1.485e+03 2.646e+03 -0.561
                                                  0.577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9228 on 46 degrees of freedom
## Multiple R-squared: 0.9508, Adjusted R-squared: 0.9476
## F-statistic: 296.2 on 3 and 46 DF, p-value: < 2.2e-16
```

Remove the next variable with the highest p-value i.e. newyork.

```
profitB <- lm(Profit ~ R.D.Spend + Marketing.Spend, data = startup)</pre>
Anova(profitB, type = "III")
## Anova Table (Type III tests)
##
## Response: Profit
##
                      Sum Sq Df F value Pr(>F)
                  2.5595e+10 1 304.9767 < 2e-16 ***
## (Intercept)
                  3.1149e+10 1 371.1616 < 2e-16 ***
## R.D.Spend
## Marketing.Spend 3.1165e+08 1
                                  3.7135 0.06003 .
## Residuals
                 3.9444e+09 47
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(profitB)
##
## Call:
## lm(formula = Profit ~ R.D.Spend + Marketing.Spend, data = startup)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -33645 -4632
                 -414
                         6484 17097
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  4.698e+04 2.690e+03 17.464
                                                 <2e-16 ***
## R.D.Spend
                  7.966e-01 4.135e-02 19.266
                                                 <2e-16 ***
## Marketing.Spend 2.991e-02 1.552e-02
                                         1.927
                                                   0.06 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9161 on 47 degrees of freedom
## Multiple R-squared: 0.9505, Adjusted R-squared: 0.9483
## F-statistic: 450.8 on 2 and 47 DF, p-value: < 2.2e-16
Remove the next variable with the highest p-value i.e. Marketing. Spend
profitC <- lm(Profit ~ R.D.Spend, data = startup)</pre>
Anova(profitC, type = "III")
## Anova Table (Type III tests)
##
## Response: Profit
                  Sum Sq Df F value
                                       Pr(>F)
## (Intercept) 3.3097e+10 1 373.27 < 2.2e-16 ***
## R.D.Spend
             7.5349e+10 1 849.79 < 2.2e-16 ***
## Residuals
              4.2560e+09 48
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(profitC)
```

```
##
## Call:
## lm(formula = Profit ~ R.D.Spend, data = startup)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
   -34351 -4626
                   -375
                          6249
                                17188
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.903e+04
                          2.538e+03
                                       19.32
                                               <2e-16 ***
## R.D.Spend
               8.543e-01
                          2.931e-02
                                       29.15
                                               <2e-16 ***
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 9416 on 48 degrees of freedom
## Multiple R-squared: 0.9465, Adjusted R-squared: 0.9454
## F-statistic: 849.8 on 1 and 48 DF, p-value: < 2.2e-16
```

Model comparison

Adjusted R-squared value shows that profitB model is better with a slightly high value. Although the p-value for "Marketing.Spend" (0.06) is slightly above the a-level, removing it lowers the Adjusted R-squared value. As its p-value is only marginally above the a-level, "Marketing.Spend" can be kept in the final model.

Model interpretation

The summary of profitB model shows that higher expenditure on R&D leads to higher company profits. The spending on marketing also leads to an increase in profits.

Logistic Regression1

Using their age and gender, is it possible to predict if someone visiting a website took an action or not.

```
email <- read.table("~/Desktop/dataScience/resources/P12-Email-Offer.csv", sep = ",", header = T)
head(email)</pre>
```

```
##
     Age Gender TookAction
      38 Female
## 1
## 2
      32 Female
                           0
## 3
      46
           Male
                           1
                           0
## 4
      34
           Male
## 5
      40
           Male
                           0
      37 Female
                           0
## 6
```

Look at the distribution of gender and if males/females differed in terms of taking action.

```
table(email$TookAction, email$Gender)

##
## Female Male
## 0 35 25
## 1 15 25
```

Create a dummy varibale for Gender.

```
email$female <- "0"
email[email$Gender == "Male",]$female <- "1"</pre>
head(email)
     Age Gender TookAction female
##
## 1 38 Female
                          0
                          0
## 2 32 Female
                                 0
## 3
     46
           Male
                          1
                                 1
## 4
      34
           Male
                          0
                                 1
## 5 40
           Male
                          0
                                 1
## 6 37 Female
                          0
                                 0
```

Run a logistic regression model with both the independent variables.

```
femaleAge.glm <- glm(TookAction ~ Age + female, data = email, family = "binomial")</pre>
summary(femaleAge.glm)
##
## Call:
## glm(formula = TookAction ~ Age + female, family = "binomial",
       data = email)
##
##
## Deviance Residuals:
##
              1Q
                        Median
                                       3Q
                                                Max
## -1.96524 -0.09857 -0.00566
                                 0.09864
                                            2.67479
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -38.1520
                           9.9869 -3.820 0.000133 ***
                0.8872
                            0.2318
                                     3.828 0.000129 ***
## Age
                 4.4374
                            1.4919
                                     2.974 0.002937 **
## female1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 134.602 on 99 degrees of freedom
## Residual deviance: 29.613 on 97 degrees of freedom
## AIC: 35.613
##
## Number of Fisher Scoring iterations: 8
```

Both the variables are significant at the a-level of 0.05. Older people are more likely to take an action as compared with younger ones. Males took action significantly more often than females.

Model interpretation: Probabilities

Probability for Age.

```
plogis(0.88)
## [1] 0.7068222
```

Probability for Gender

```
plogis(4.43)
## [1] 0.9882258
```

Logistic Regression2

Geo-demographic segmentation: Using independent variables to predict how likely is a customer to leave a (fictional) bank.

```
#Following error message occurred: EOF within quoted string number of items read is not a multiple of t
#using quote = "" resolves this issue.
exitData <- read.table("~/Desktop/dataScience/resources/P12-Churn-Modelling.csv", sep = ",", header = T
head(exitData)
    RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## 1
            1
                 15634602 Hargrave
                                           619
                                                  France Female 42
## 2
                 15647311
                                           608
             2
                              Hill
                                                   Spain Female 41
## 3
                15619304
                              Onio
                                           502
                                                                          8
             3
                                                  France Female
                                                                  42
             4
                 15701354
                              Boni
                                           699
                                                  France Female
                                                                          1
## 4
                                           850
                                                                          2
## 5
             5
                 15737888 Mitchell
                                                   Spain Female
                                                                 43
## 6
             6
                 15574012
                               Chu
                                           645
                                                    Spain
                                                            Male 44
       Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
##
## 1
          0.00
                           1
                                     1
                                                    1
                                                             101348.88
## 2 83807.86
                           1
                                     0
                                                     1
                                                             112542.58
## 3 159660.80
                           3
                                     1
                                                     0
                                                             113931.57
                                                                            1
## 4
         0.00
                           2
                                     0
                                                     0
                                                              93826.63
                                                                            0
## 5 125510.82
                           1
                                     1
                                                     1
                                                              79084.10
                                                                            0
## 6 113755.78
                           2
                                     1
                                                     0
                                                             149756.71
                                                                            1
nrow(exitData)
```

[1] 10000

Create dummies for gender and geography.

```
exitData$female <- 0
exitData$Gender != "Female",]$female <- 1

#keeping France as baseline, just due to alphabetical order.
exitData$Germany <- 0
exitData$Germany != "Germany",]$Germany <- 1

exitData$Spain <- 0
exitData$Spain <- 0
exitData$Geography != "Spain",]$Spain <- 1

head(exitData)</pre>
```

```
##
    RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## 1
            1
                15634602 Hargrave
                                          619
                                                 France Female 42
## 2
            2
                15647311
                             Hill
                                          608
                                                  Spain Female
                                                                        1
## 3
                             Onio
                                          502
                                                 France Female 42
                                                                        8
            3
               15619304
## 4
            4 15701354
                             Boni
                                          699
                                                 France Female 39
                                                                        1
## 5
                                          850
                                                                        2
            5 15737888 Mitchell
                                                  Spain Female 43
```

```
Spain
## 6
                  15574012
                                  Chu
                                               645
                                                                Male 44
##
       Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
## 1
          0.00
                             1
                                        1
                                                         1
                                                                 101348.88
## 2 83807.86
                                        0
                                                                  112542.58
                                                                                  0
                             1
                                                         1
## 3 159660.80
                             3
                                        1
                                                         0
                                                                  113931.57
                                                                                  1
## 4
                             2
                                        0
                                                         0
                                                                                  Λ
          0.00
                                                                  93826.63
## 5 125510.82
                             1
                                        1
                                                         1
                                                                  79084.10
## 6 113755.78
                             2
                                        1
                                                         0
                                                                  149756.71
                                                                                  1
##
     female Germany Spain
## 1
          0
                   1
## 2
           0
                   1
## 3
           0
                   1
                          1
## 4
           0
                   1
                          1
## 5
           0
                   1
                          0
## 6
                          0
           1
                   1
```

Run a logistic regression with all the independent variables.

```
geodem.glm <- glm(Exited ~ CreditScore + Age + Tenure + Balance + NumOfProducts + HasCrCard + IsActiveM
summary(geodem.glm)
##
## Call:
  glm(formula = Exited ~ CreditScore + Age + Tenure + Balance +
      NumOfProducts + HasCrCard + IsActiveMember + EstimatedSalary +
##
      female + Spain + Germany, family = "binomial", data = exitData)
##
## Deviance Residuals:
                     Median
      Min
                1Q
                                  3Q
                                          Max
## -2.3097 -0.6589 -0.4560 -0.2697
                                       2.9940
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -2.582e+00 2.641e-01
                                         -9.777 < 2e-16 ***
                                         -2.384
## CreditScore
                  -6.683e-04 2.803e-04
                                                  0.0171 *
## Age
                   7.271e-02 2.576e-03 28.230
                                                < 2e-16 ***
## Tenure
                  -1.595e-02 9.355e-03
                                         -1.705
                                                  0.0882 .
## Balance
                   2.637e-06
                              5.142e-07
                                          5.128 2.92e-07 ***
## NumOfProducts
                  -1.015e-01 4.713e-02
                                         -2.154
                                                  0.0312 *
## HasCrCard
                  -4.468e-02 5.934e-02
                                        -0.753
                                                  0.4515
## IsActiveMember -1.075e+00
                              5.769e-02 -18.643 < 2e-16 ***
## EstimatedSalary 4.807e-07
                              4.737e-07
                                          1.015
                                                  0.3102
## female
                  -5.285e-01 5.449e-02 -9.699
                                                 < 2e-16 ***
## Spain
                  -3.522e-02 7.064e-02 -0.499
                  -7.747e-01 6.767e-02 -11.448 < 2e-16 ***
## Germany
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 10109.8 on 9999 degrees of freedom
##
## Residual deviance: 8561.4 on 9988 degrees of freedom
## AIC: 8585.4
```

```
##
## Number of Fisher Scoring iterations: 5
Step by step elimination
Remove the variable with the highest p-value (exceeding the a-level of 0.05) i.e. Spain
geodem.glmA <- glm(Exited ~ CreditScore + Age + Tenure + Balance + NumOfProducts + HasCrCard + IsActive
summary(geodem.glmA)
##
## Call:
## glm(formula = Exited ~ CreditScore + Age + Tenure + Balance +
      NumOfProducts + HasCrCard + IsActiveMember + EstimatedSalary +
##
      female + Germany, family = "binomial", data = exitData)
##
## Deviance Residuals:
      Min
                     Median
                1Q
                                  3Q
## -2.3099 -0.6584 -0.4559 -0.2691
                                       2.9901
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                  -2.620e+00 2.533e-01 -10.342 < 2e-16 ***
## (Intercept)
                  -6.666e-04 2.803e-04 -2.378
## CreditScore
                                                 0.0174 *
                  7.272e-02 2.575e-03 28.238 < 2e-16 ***
## Age
## Tenure
                  -1.598e-02 9.354e-03 -1.708
                                                  0.0876 .
                                          5.129 2.91e-07 ***
## Balance
                  2.637e-06 5.142e-07
## NumOfProducts -1.013e-01 4.713e-02 -2.149
                                                  0.0316 *
## HasCrCard
                  -4.493e-02 5.934e-02
                                        -0.757
                                                 0.4489
## IsActiveMember -1.075e+00 5.768e-02 -18.640 < 2e-16 ***
## EstimatedSalary 4.813e-07 4.736e-07
                                         1.016
                                                0.3095
                  -5.283e-01 5.449e-02 -9.697 < 2e-16 ***
## female
## Germany
                  -7.629e-01 6.336e-02 -12.041 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8561.6 on 9989 degrees of freedom
## AIC: 8583.6
##
## Number of Fisher Scoring iterations: 5
Remove HasCrCard
```

```
geodem.glmB <- glm(Exited ~ CreditScore + Age + Tenure + Balance + NumOfProducts + IsActiveMember + Est
summary(geodem.glmB)
##</pre>
```

```
## glm(formula = Exited ~ CreditScore + Age + Tenure + Balance +
```

Call:

```
##
      NumOfProducts + IsActiveMember + EstimatedSalary + female +
##
      Germany, family = "binomial", data = exitData)
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -2.3152 -0.6585 -0.4565 -0.2699
                                       2.9859
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -2.654e+00 2.493e-01 -10.647 < 2e-16 ***
## CreditScore
                  -6.640e-04 2.803e-04
                                        -2.369
                                                  0.0178 *
                   7.273e-02 2.575e-03 28.243 < 2e-16 ***
## Age
## Tenure
                  -1.615e-02 9.351e-03 -1.727
                                                  0.0842 .
## Balance
                   2.645e-06 5.141e-07
                                          5.146 2.66e-07 ***
## NumOfProducts
                  -1.013e-01 4.712e-02 -2.150
                                                  0.0315 *
## IsActiveMember -1.074e+00 5.767e-02 -18.631
                                                 < 2e-16 ***
## EstimatedSalary 4.818e-07 4.737e-07
                                          1.017
                                                  0.3091
## female
                  -5.285e-01 5.449e-02 -9.700 < 2e-16 ***
                  -7.619e-01 6.334e-02 -12.028 < 2e-16 ***
## Germany
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8562.2 on 9990 degrees of freedom
## AIC: 8582.2
## Number of Fisher Scoring iterations: 5
Remove EstimatedSalary
geodem.glmC <- glm(Exited ~ CreditScore + Age + Tenure + Balance + NumOfProducts + IsActiveMember + fem
summary(geodem.glmC)
##
## Call:
## glm(formula = Exited ~ CreditScore + Age + Tenure + Balance +
      NumOfProducts + IsActiveMember + female + Germany, family = "binomial",
##
##
      data = exitData)
##
## Deviance Residuals:
                    Median
      Min
                1Q
                                  3Q
                                          Max
## -2.3272 -0.6592 -0.4557 -0.2688
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -2.605e+00 2.445e-01 -10.654 < 2e-16 ***
## CreditScore
                 -6.664e-04 2.803e-04 -2.378
                                                 0.0174 *
## Age
                  7.270e-02 2.575e-03 28.238 < 2e-16 ***
## Tenure
                 -1.598e-02 9.349e-03 -1.710
                                                 0.0873 .
## Balance
                  2.653e-06 5.140e-07
                                       5.162 2.44e-07 ***
## NumOfProducts -1.005e-01 4.712e-02 -2.132 0.0330 *
```

Transforming independent variables: Calculating log of Balance

```
#+1 because there are 0s in the Balance column
exitData$logBalance <- log10((exitData$Balance) + 1)
head(exitData)</pre>
```

```
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## 1
                15634602 Hargrave
                                     619
                                                  France Female 42
            1
## 2
                                          608
            2
                15647311
                             Hill
                                                   Spain Female 41
## 3
            3
                15619304
                              Onio
                                          502
                                                 France Female 42
                                                                         8
## 4
            4 15701354
                             Boni
                                           699
                                                  France Female
## 5
            5
                15737888 Mitchell
                                           850
                                                  Spain Female 43
                                                                         2
## 6
            6
                 15574012
                              Chu
                                           645
                                                  Spain
                                                           Male 44
##
      Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
## 1
         0.00
                         1
                                     1
                                                   1
                                                           101348.88
## 2 83807.86
                                     0
                                                            112542.58
                          1
                                                   1
## 3 159660.80
                          3
                                     1
                                                   0
                                                           113931.57
## 4
         0.00
                           2
                                     0
                                                   0
                                                            93826.63
                                                                           Λ
## 5 125510.82
                           1
                                     1
                                                   1
                                                             79084.10
                           2
## 6 113755.78
                                                   0
                                                           149756.71
                                                                           1
    female Germany Spain logBalance
## 1
         0
                 1
                       1
                           0.000000
## 2
         0
                 1
                        0
                           4.923290
## 3
                           5.203201
         0
                 1
                        1
## 4
         0
                 1
                        1
                            0.000000
## 5
          0
                  1
                        0
                           5.098685
## 6
         1
                 1
                           5.055977
```

Replace Balance with log Balance in the regression model.

data = exitData)

##

```
geodem.glmD <- glm(Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember + female +
summary(geodem.glmD)
##
## Call:</pre>
```

glm(formula = Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember +
female + Germany + Tenure + logBalance, family = "binomial",

```
##
## Deviance Residuals:
      Min
                10
                     Median
## -2.3104 -0.6586 -0.4553 -0.2679
                                       2.9827
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                            0.2480823 -10.635 < 2e-16 ***
## (Intercept)
                 -2.6382591
                 -0.0006749 0.0002803 -2.408
## CreditScore
                                                 0.0160 *
                             0.0025745 28.221
                  0.0726550
                                                < 2e-16 ***
## NumOfProducts -0.0950198
                             0.0475374
                                        -1.999
                                                 0.0456 *
## IsActiveMember -1.0757759
                             0.0576457 -18.662
                                                < 2e-16 ***
## female
                 -0.5267214
                             0.0544591
                                       -9.672
                                                < 2e-16 ***
## Germany
                                                < 2e-16 ***
                 -0.7475955
                             0.0650514 - 11.492
## Tenure
                 -0.0158791
                             0.0093463
                                       -1.699
                                                 0.0893 .
## logBalance
                  0.0690263 0.0139592
                                         4.945 7.62e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8565.1 on 9991 degrees of freedom
## AIC: 8583.1
##
## Number of Fisher Scoring iterations: 5
```

Creating derived variables

Balance divided by age to calculate accumulation of wealth over time in a customer's life.

```
exitData$wealthAcc <- exitData$Balance / exitData$Age
head(exitData)</pre>
```

```
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
##
## 1
             1
                 15634602 Hargrave
                                             619
                                                    France Female
## 2
             2
                 15647311
                               Hill
                                             608
                                                     Spain Female
                                                                            1
## 3
             3
                 15619304
                               Onio
                                             502
                                                    France Female
                                                                            8
## 4
                 15701354
                               Boni
                                             699
                                                    France Female
                                                                    39
                                                                            1
             4
## 5
                 15737888 Mitchell
                                             850
                                                     Spain Female
## 6
                 15574012
                                Chu
                                             645
             6
                                                     Spain
                                                              Male
                                                                    44
##
       Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
## 1
          0.00
                            1
                                       1
                                                      1
                                                               101348.88
## 2
     83807.86
                            1
                                       0
                                                      1
                                                               112542.58
## 3 159660.80
                            3
                                       1
                                                      0
                                                               113931.57
                                                                               1
                            2
                                       0
          0.00
                                                      0
                                                                93826.63
                                                                               0
## 5 125510.82
                                       1
                                                                79084.10
                                                                               0
                            1
                                                      1
                            2
## 6 113755.78
                                       1
                                                               149756.71
     female Germany Spain logBalance wealthAcc
## 1
          0
                  1
                         1
                             0.000000
                                           0.000
## 2
          0
                  1
                         0
                             4.923290
                                       2044.094
## 3
          0
                  1
                             5.203201 3801.448
                         1
                             0.000000
## 4
                  1
                                           0.000
```

```
## 5 0 1 0 5.098685 2918.856
## 6 1 1 0 5.055977 2585.359
```

Add variable for wealth accumulation to the model.

```
geodem.glmE <- glm(Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember + female + Germany + Ten
summary(geodem.glmE)
##
## Call:
## glm(formula = Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember +
      female + Germany + Tenure + logBalance + wealthAcc, family = "binomial",
##
      data = exitData)
##
## Deviance Residuals:
##
      Min
                     Median
                10
                                  30
## -2.3047 -0.6585 -0.4550 -0.2698
                                       2.9662
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -2.556e+00 2.582e-01 -9.898 < 2e-16 ***
## CreditScore
                 -6.756e-04 2.803e-04 -2.410 0.015958 *
                  7.067e-02
                             3.095e-03 22.836 < 2e-16 ***
## NumOfProducts -9.553e-02 4.756e-02 -2.009 0.044576 *
## IsActiveMember -1.073e+00 5.767e-02 -18.612 < 2e-16 ***
## female
                 -5.257e-01 5.447e-02 -9.651 < 2e-16 ***
## Germany
                 -7.463e-01
                            6.513e-02 -11.459 < 2e-16 ***
## Tenure
                 -1.593e-02 9.347e-03 -1.704 0.088415 .
## logBalance
                 9.509e-02 2.662e-02 3.572 0.000354 ***
                 -4.336e-05 3.779e-05 -1.147 0.251224
## wealthAcc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8563.8 on 9990 degrees of freedom
## AIC: 8583.8
## Number of Fisher Scoring iterations: 5
#not significant. Also, possible collinearity as balance and age are related with wealthAcc here.
```

Checking for multicollinearity

```
#Subset data from columns 7 to 19 to exclude irrelevant variables or the ones with factors. colExitData <- exitData[,7:19] head(colExitData)
```

```
Balance NumOfProducts HasCrCard IsActiveMember
##
     Age Tenure
                     0.00
## 1 42
              2
                                                  0
## 2
                 83807.86
     41
              1
                                       1
                                                                  1
## 3 42
              8 159660.80
                                       3
                                                  1
                                                                  0
```

```
0.00
                                         2
## 4
      39
                                                    0
                                                                     0
## 5
      43
               2 125510.82
                                         1
                                                    1
                                                                     1
               8 113755.78
## 6
      44
                                         2
                                                    1
                                                                     0
##
     EstimatedSalary Exited female Germany Spain logBalance wealthAcc
## 1
            101348.88
                            1
                                    0
                                             1
                                                   1
                                                        0.000000
                                                                      0.000
## 2
            112542.58
                            0
                                    0
                                             1
                                                   0
                                                        4.923290
                                                                  2044.094
## 3
            113931.57
                            1
                                    0
                                             1
                                                        5.203201
                                                                   3801.448
## 4
                            0
                                                        0.000000
                                                                      0.000
             93826.63
                                    0
                                             1
                                                   1
## 5
             79084.10
                            0
                                    0
                                             1
                                                   0
                                                        5.098685
                                                                   2918.856
## 6
            149756.71
                                             1
                            1
                                    1
                                                        5.055977
                                                                  2585.359
```

Calculate collineairy: Alternative 1

Using cor()

round(cor(colExitData), 2)

```
Age Tenure Balance NumOfProducts HasCrCard
##
## Age
                     1.00
                           -0.01
                                     0.03
                                                   -0.03
                                                             -0.01
                            1.00
                                    -0.01
## Tenure
                    -0.01
                                                   0.01
                                                              0.02
                                                             -0.01
## Balance
                     0.03
                           -0.01
                                     1.00
                                                   -0.30
## NumOfProducts
                    -0.03
                            0.01
                                    -0.30
                                                    1.00
                                                              0.00
## HasCrCard
                    -0.01
                            0.02
                                   -0.01
                                                    0.00
                                                              1.00
## IsActiveMember
                     0.09
                           -0.03
                                    -0.01
                                                    0.01
                                                             -0.01
                            0.01
                                     0.01
                                                   0.01
                                                             -0.01
## EstimatedSalary -0.01
## Exited
                     0.29
                           -0.01
                                     0.12
                                                   -0.05
                                                             -0.01
## female
                    -0.03
                            0.01
                                     0.01
                                                   -0.02
                                                              0.01
## Germanv
                    -0.05
                            0.00
                                    -0.40
                                                   0.01
                                                             -0.01
## Spain
                     0.00
                            0.00
                                     0.13
                                                   -0.01
                                                              0.01
## logBalance
                     0.03
                           -0.01
                                     0.94
                                                   -0.33
                                                             -0.02
## wealthAcc
                    -0.25 -0.01
                                     0.93
                                                   -0.28
                                                             -0.01
##
                    IsActiveMember EstimatedSalary Exited female Germany Spain
                                                       0.29
                                                                      -0.05 0.00
## Age
                              0.09
                                              -0.01
                                                             -0.03
## Tenure
                             -0.03
                                               0.01
                                                     -0.01
                                                              0.01
                                                                       0.00 0.00
## Balance
                             -0.01
                                               0.01
                                                       0.12
                                                              0.01
                                                                      -0.40 0.13
## NumOfProducts
                              0.01
                                               0.01
                                                     -0.05
                                                             -0.02
                                                                       0.01 -0.01
## HasCrCard
                             -0.01
                                              -0.01
                                                      -0.01
                                                              0.01
                                                                      -0.01
                                                                            0.01
                                                     -0.16
                                                              0.02
                                                                       0.02 -0.02
## IsActiveMember
                              1.00
                                              -0.01
## EstimatedSalary
                             -0.01
                                               1.00
                                                       0.01
                                                             -0.01
                                                                      -0.01 0.01
## Exited
                             -0.16
                                               0.01
                                                       1.00
                                                             -0.11
                                                                      -0.17 0.05
## female
                              0.02
                                              -0.01
                                                      -0.11
                                                              1.00
                                                                       0.02 -0.02
                                              -0.01
                                                     -0.17
                                                              0.02
                                                                       1.00 -0.33
## Germany
                              0.02
## Spain
                             -0.02
                                               0.01
                                                       0.05
                                                             -0.02
                                                                      -0.33 1.00
## logBalance
                              0.00
                                               0.01
                                                       0.12
                                                              0.01
                                                                      -0.44 0.15
  wealthAcc
                             -0.02
                                               0.01
                                                       0.02
                                                              0.02
                                                                      -0.35 0.13
##
                    logBalance wealthAcc
## Age
                          0.03
                                    -0.25
## Tenure
                         -0.01
                                    -0.01
## Balance
                          0.94
                                     0.93
## NumOfProducts
                         -0.33
                                    -0.28
## HasCrCard
                         -0.02
                                    -0.01
## IsActiveMember
                          0.00
                                    -0.02
                          0.01
                                     0.01
## EstimatedSalary
## Exited
                          0.12
                                     0.02
## female
                          0.01
                                     0.02
```

```
## Germany -0.44 -0.35
## Spain 0.15 0.13
## logBalance 1.00 0.87
## wealthAcc 0.87 1.00
```

#wealthAcc has high collinearity with Balance (0.93) and logBalance (0.87). Understandable!

Calculate collineairy: Alternative 2

Using corpcor package

```
cor2pcor(cov(colExitData))
```

```
##
                 [,1]
                             [,2]
                                          [,3]
                                                      [,4]
                                                                   [,5]
   [1,] 1.0000000000 -0.010596217 5.393986e-01 -0.038456102
##
                                                            0.002767123
   [2,] -0.0105962264 1.000000000
                                  1.320113e-02 0.007582190
                                                            0.021918773
##
   [3,] 0.5393985863 0.013201127
                                  1.000000e+00 0.038209396 -0.005734808
   [4,] -0.0384561023 0.007582190 3.820940e-02 1.000000000 -0.006046996
   [5,] 0.0027671234 0.021918773 -5.734809e-03 -0.006046996 1.000000000
##
##
   [6,] 0.1306974492 -0.029332504 -4.471046e-02 0.012264209 -0.011415124
##
   [7,] -0.0080509947 0.007935803 -3.701465e-05 0.019484691 -0.009905243
   [8,] 0.1774696036 -0.015517917 4.997432e-02 -0.024889284 -0.005288715
   ## [10,] 0.0126525454 -0.007493160 -5.078621e-04 -0.152980539 -0.018428780
  [11,] -0.0009135134 -0.004243426 -8.264777e-03 -0.005755951 0.010319045
  [12,] 0.0066923788 -0.008434607 5.722448e-01 -0.160853721 -0.015984403
  [13,] -0.6993040895 -0.013467296 7.796735e-01 -0.034936751 0.012485159
##
                                                      [,9]
                [,6]
                             [,7]
                                         [,8]
                                                                  [,10]
   [1,] 0.130697449 -8.050995e-03 0.177469604 -0.004298063 0.0126525455
   [2,] -0.029332503 7.935802e-03 -0.015517915 0.013736093 -0.0074931596
##
   [3,] -0.044710460 -3.701461e-05 0.049974323 0.019698926 -0.0005078621
##
   [4,] 0.012264209 1.948469e-02 -0.024889284 -0.020655075 -0.1529805392
   [5,] -0.011415124 -9.905243e-03 -0.005288715 0.005360705 -0.0184287798
   [6,] 1.000000000 -8.336570e-03 -0.183530111 0.006582948 -0.0034749408
##
   [7,] -0.008336570 1.000000e+00 0.010529674 -0.006575613 0.0010614128
   [8,] -0.183530111 1.052967e-02 1.000000000 -0.099506531 -0.1222298844
   [9,] 0.006582948 -6.575613e-03 -0.099506531 1.000000000 0.0086409050
  [10,] -0.003474941 1.061413e-03 -0.122229884 0.008640905 1.0000000000
  [11,] -0.010090117 3.259705e-03 -0.003695600 -0.009824189 -0.2966226756
  [12,] 0.017716657 8.921042e-03 0.001100671 -0.013377858 -0.1971020489
##
  [13,] 0.047135430 -1.808001e-03 -0.050179540 -0.008135059 0.0219679169
##
                [,11]
                             [,12]
                                          [,13]
##
   [2,] -0.0042434258 -0.0084346066 -0.0134673030
   [3,] -0.0082647766  0.5722448017  0.7796734774
   [4,] -0.0057559514 -0.1608537209 -0.0349367507
   [5,] 0.0103190449 -0.0159844034 0.0124851593
##
   [6,] -0.0100901168  0.0177166571  0.0471354297
##
   [7,] 0.0032597055 0.0089210423 -0.0018080012
   [8,] -0.0036956000 0.0011006708 -0.0501795400
   [9,] -0.0098241889 -0.0133778577 -0.0081350586
## [10,] -0.2966226756 -0.1971020489 0.0219679168
## [11,] 1.0000000000 -0.0006985821 0.0112791586
## [12,] -0.0006985821 1.000000000 0.0007911062
## [13,] 0.0112791586 0.0007911063 1.0000000000
```

Remove logBalance from the model due to collinearity with wealthAcc.

```
geodem.glmF <- glm(Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember + female + Germany + Ten
summary(geodem.glmF)
##
## Call:
## glm(formula = Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember +
       female + Germany + Tenure + wealthAcc, family = "binomial",
##
       data = exitData)
##
## Deviance Residuals:
                     Median
                                   3Q
      Min
                 10
                                           Max
## -2.3224 -0.6600 -0.4569 -0.2701
                                        2.9883
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -2.599e+00 2.577e-01 -10.088 < 2e-16 ***
## CreditScore
                 -6.719e-04 2.801e-04 -2.399 0.016434 *
                  7.583e-02 2.750e-03 27.579 < 2e-16 ***
## Age
## NumOfProducts -1.210e-01 4.711e-02 -2.569 0.010187 *
## IsActiveMember -1.079e+00 5.766e-02 -18.708 < 2e-16 ***
## female
                 -5.263e-01 5.443e-02 -9.670
                                                < 2e-16 ***
## Germany
                             6.293e-02 -12.843 < 2e-16 ***
                 -8.082e-01
## Tenure
                 -1.580e-02 9.341e-03 -1.692 0.090664 .
## wealthAcc
                 7.075e-05 1.946e-05
                                          3.636 0.000277 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8576.6 on 9991 degrees of freedom
## AIC: 8594.6
##
## Number of Fisher Scoring iterations: 5
Calculate log of wealthAcc.
exitData$logWealthAcc <- log10((exitData$wealthAcc) + 1)</pre>
head(exitData)
     RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## 1
                 15634602 Hargrave
                                           619
                                                  France Female 42
            1
                 15647311
                                           608
## 2
             2
                              Hill
                                                   Spain Female
                                                                 41
                                                                         1
                                           502
## 3
             3
                 15619304
                              Onio
                                                  France Female
                                                                 42
                                                                         8
## 4
             4
                 15701354
                              Boni
                                           699
                                                  France Female
                                                                 39
                                                                         1
                                           850
## 5
             5
                 15737888 Mitchell
                                                   Spain Female
                                                                 43
## 6
             6
                 15574012
                               Chu
                                           645
                                                                44
                                                                         8
                                                   Spain
                                                           Male
##
       Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
## 1
         0.00
                                                            101348.88
                                                                           1
                          1
                                     1
                                                    1
## 2
     83807.86
                           1
                                     0
                                                    1
                                                            112542.58
                                                                           0
## 3 159660.80
                           3
                                     1
                                                    0
                                                            113931.57
                                                                           1
```

```
## 4
          0.00
                                                     0
                                                               93826.63
## 5 125510.82
                            1
                                      1
                                                     1
                                                               79084.10
                                                                             0
## 6 113755.78
                            2
                                      1
                                                     0
                                                              149756.71
     female Germany Spain logBalance wealthAcc logWealthAcc
## 1
          0
                  1
                        1
                             0.000000
                                          0.000
                                                    0.000000
## 2
                            4.923290 2044.094
          0
                  1
                                                    3.310713
                        0
## 3
          0
                  1
                        1
                            5.203201 3801.448
                                                    3.580063
## 4
          0
                  1
                        1
                             0.000000
                                          0.000
                                                    0.000000
## 5
          0
                  1
                        0
                             5.098685
                                       2918.856
                                                    3.465361
## 6
          1
                  1
                        0
                             5.055977 2585.359
                                                    3.412689
```

Replace wealthAcc with logWealthAcc in the model.

```
geodem.glmG <- glm(Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember + female + Germany + Ten
summary(geodem.glmG)
##
## glm(formula = Exited ~ CreditScore + Age + NumOfProducts + IsActiveMember +
##
       female + Germany + Tenure + logWealthAcc, family = "binomial",
##
       data = exitData)
##
## Deviance Residuals:
      Min
##
                1Q
                     Median
                                   3Q
                                          Max
## -2.3098 -0.6589 -0.4551 -0.2676
                                        2.9867
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                 -2.6543746 0.2503565 -10.602 < 2e-16 ***
## (Intercept)
                 -0.0006752 0.0002802 -2.409
## CreditScore
                                                 0.0160 *
## Age
                  0.0733182  0.0025818  28.398  < 2e-16 ***
## NumOfProducts -0.0967189 0.0475513 -2.034
                                                 0.0420 *
## IsActiveMember -1.0763060 0.0576443 -18.672
                                                < 2e-16 ***
## female
                 -0.5265970
                             0.0544528 - 9.671
                                                < 2e-16 ***
## Germany
                 -0.7515239 0.0650669 -11.550
                                                < 2e-16 ***
## Tenure
                 -0.0158549 0.0093454 -1.697
                                                 0.0898 .
## logWealthAcc
                 0.0985483 0.0204776
                                         4.812 1.49e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 10109.8 on 9999 degrees of freedom
## Residual deviance: 8566.4 on 9991 degrees of freedom
## AIC: 8584.4
## Number of Fisher Scoring iterations: 5
#Coefficient looks better for logWealthAcc.
```

The final model is left with all the variables that are significant at the a-level of 0.05.