Universidade de Aveiro

Sistemas Multimédia

2018/2019

Practical Class 04

I. Discrete Fourier Transform

1. Based on the function fft(.), develop a MATLAB/Octave function, named SpectrumSM, which returns and presents (in amplitude only) the spectrum of a signal (specified through its vector of samples, \mathbf{x}) sampled with sampling period T_a . The spectrum graphic must present, in the horizontal axis, the frequency in Hz, from $-f_a/2$ to $+f_a/2$, where $f_a = 1/T_a$.

function
$$[\mathbf{X}, \mathbf{f}] = SpectrumSM(\mathbf{x}, T_a)$$

X – vector of the same dimension of **x**, with the DFT coefficients of x(t).

f – vector of the same dimension of \mathbf{x} , with the frequencies (in Hz) of each element of \mathbf{X} .

- 2. Try the function developed in point 1, representing the spectrum of the following signals:
 - a) $x(t) = \sin(2\pi t)$, registered during 10 periods.
 - b) $y(t) = \sin(10\pi t) + \cos(12\pi t) + \cos(14\pi t \pi/4)$, registered for 5 secs.
 - c) z(t) square wave between 0 and 1, of frequency 1 Hz, registered for 5 secs.
 - d) q(t) triangular wave between -1 and 1, of frequency 1 Hz, registered for 5 secs.
- 3. Add to the function *SpetrumSM*, developed in point 1, the possibility of implementing *windowing*, to analyze the spectral content of sequences of samples that are not periodic. For such, add a third input argument, *w*, which, if nonzero, applies a Blackman window to the sequence of samples before applying the *fft*.
- 4. Try the function of point 3 to create the spectrum of a signal composed of:
 - 500 samples;
 - sampling period equal to 1 ms;
 - the sum of 20 sinusoidal signals, each of unit amplitude, whose frequencies are randomly set between 1 and 20 Hz(with uniform probability density function);
 - $\mbox{-}$ the phase of each sinusoid is also randomly determined.

Compare the obtained spectra, with and without windowing.

5. Now, develop the function **ReconstructSM** that performs the reverse operation of that developed in point 1 (i.e., receiving the vector **X** of the Fourier representation, it reconstructs the time-domain sample sequence of the signal, **x**, plotting, afterwards, the reconstructed signal). Try the function with the data obtained in the previous points.