

Introduction

Introduction

High frequency trading is becoming important in financial markets

Arbitrage opportunity comes from occasionally irrational price quotes.

• Parallel Programming is very suitable for finding arbitrage opportunity in

big data financial markets.

Introduction

Convexity Strategy Formula(Merton, 1973):

$$(X_3 - X_2) * C_{x1} + (X_2 - X_1) * C_{x3} - (X_3 - X_1) * C_{x2} \ge C_s$$

 X_1, X_2, X_3 : exercise price

 $_{\cdot, \times_{1}}^{\cdot, \times_{1}}$ $_{\cdot, \times_{2}}^{\cdot, \times_{2}}$: the price of exercise price

C_s: trading cost

Flow Chart

Combination of exercise price

Get data belong to one of these

Read input of current time T

CSV

Next time

Check whether satisfy formula

Example

CSV

Exercise Price	Put/Call	Time	Price	Volume
8200	С	84500	101	2 .
8250	С	84500	101	2
8250	С	84500	69	6
8250	С	84500	69	6
8250	С	84500	69	5
8300	С	84500	69	5
8300 。	С	84500	40.5	36
8400	Č °	84500	40.5	36

Example

Combination of exercise price

Get data belong to one of these

Read input of current time T Next time T

Check whether satisfy formula

Output results

CSV

Example

Find unique exercise price

8200	8250	8300	8400

• Get combination of the exercise price (C(n,3))

8200	8250	8300
8200	8250	8400
。 8200	8300	8400
° 8250	8300	8400

Problem Statement: Example

- Get data belong to certain exercise price
 - 8200

					V	
	8200	С	84500	101	2.	-
0	8250				•	
	8250	С	84500	101	2	
	8250	С	84500	69	6	
	8250	С	84500	69	6	
0 0	° 8250 °	С	84500	69	5	
. 0 .	. 8300					
0	8300	C	84500	69	5	
٥	8300	C	84500	40.5	36	

Flow Chart

Combination of exercise price

Read input of current time T Next time T

Check whether satisfy formula

Output results

CSV

Problem Statement: Example

- Get data belong to certain exercise price
 - 8200

					V / \
	8200	С	84500	101	2.
0	8250				•
	8250	С	84500	101	2
	8250	C	84500	69	6
		С	84500	69	6
0 0	°8250 °	C	84500	69	5
. 0	8300				
0	8300	C	84500	69	5
0		•	84500	40.5	36

Problem Statement: Example

• Get one data from each exercise price

8200	С	84500	101	2.
8250	С	84500	101	2 *
8300	С	84500	69	5

Check whether the equation is satisfied

$$(X_3 - X_2)^*C_{x1} + (X_2 - X_1)^*C_{x3} - (X_3 - X_1)^*C_{x2} \ge C_s$$

- If TRUE then count + 1
- Return the answer and continue to do the next timestamp

- Language and type selection :
 - Use Python to handle data preprocessing

- Language and type selection :
 - Use Python to handle data preprocessing
 - Implement C++ instead, since Python needs too much time
 - We also implement vector and array version of C++

- Focus on checking all combinations satisfy formula
- Parallel model includes Pthread, OpenMP, MPI

• Split exercise price combination to each thread

Environment

- Language: Python, C++
- Parallel model : Pthread, OpenMP, MPI
- Hardware: PP-f19 server
- Data: TAIEX Weekly Equity Index Options
 - (source:https://www.taifex.com.tw/cht/3/dlOptPrevious30DaysSalesData)
- Data size : 25/50/75/100 days

Evaluation: Time

Days	Serial	Pthread	OpenMP	MPI
25	19.49	24.65	12.66	10.87
50	33.48	42.29	20.85	18.30
75	50.01	64.61	31.68	27.15
100	69.44	89.03	43.99	36.65

process	Serial	Pthread	OpenMP	MPI
2	1	0.85	1.27	1.40
4	1	0.78	1.61	1.96
6	1	0.69	1.63	2.15
8	1	0.56	1.62	2.33

Evaluation: Efficiency

Serial	Pthread	OpenMP	MPI
1	0.425	0.635	0.7
1	0.195	0.403	0.49
1	0.115	0.271	0.358
1	0.07	0.203	0.29
	Serial	1 0.425 1 0.195 1 0.115	1 0.425 0.635 1 0.195 0.403 1 0.115 0.271

Pthread Problem

- We assume that the reason why pthread slows down the computation is the huge overhead.
- To verify our assumption, we enlarge the calculation per thread.

Pthread Problem

		Pthread	Pthread	Pthread
Days	Serial	compute	time	day
25	19.49	24.65	14.82	9.46
50	33.48	42.29	24.55	14.16
75	50.01	64.61	37.05	19.16
100	69.44	89.03	50.69	22.51

Pthread Problem

		Pthread	Pthread	Pthread
process	Serial	compute	time	day
2	1	0.85	1.11	1.81
4	1	0.78	1.37	3.04
6	1	0.69	1.49	3.47
8	1	0.56	1.59	3.48

Related Work

- Yu-Wen Chen,"Online Derivatives Arbitrage Trading Mechanism Based on CUDA Framework"
 - Use more sophisticated data set.

Parallel model : Cuda

Conclusion

- We have tried two languages and three different parallel models
- Use MPI can speedup at most 2.33 times with 8 processors than serial
- Pthread is slower than serial because of overhead
- Distributed-memory model is better than shared-memory in our case

THANKS

Mpi_array	2	49.723	
	4	35.390	
	6	32.234	
	8	29.748	

openmp_array	2	54.617
	4	43.119
	6	42.719
	8	42.768
pthread _array	2	81.898
	4	89.388
. 0	6	100.095
	8	123.781

			1
serial_array	25	19.494	
	50	33.464	
	75	50.010	•
	100	69.436	
Mpi_array 4	25	10.865	
	50	18.3	
0	75	27.152	
•	100	36.651	
Python	1	1172.3	
serial_array	° 1	0.938	

		1
openmp_array	25	12.656
	50	20.849
	75	31.681
	100	43.990
pthread _array	25	24.650
	50	42.285
. 0	75	64.614
	100	89.028
Python pthread °	1	973.502
*		

serial_vector	25	118.143	
	50	191.710	
	75	287.307	•
	100	408.539	
Mpi_vector	25		
	50		
0	75		
• • • • • • • • • • • • • • • • • • • •	100		

openmp_vector	25	71.123	
	50	119.934	
	75	183.272	•
	100	280.355	
pthread _vecor	25		
	50		
. 0	75		
• • • • • • • • • • • • • • • • • • • •	100		

Divide intratime 4	25	14.821
	50	24.549
	75	37.054
	100	50.694
Divide day 4	25	9.455
	50	14.163
	75	19.163
	100	22.511

Divide intratime(days=100)	2	62.396
	4	50.694
	6	46.730
	8	43.802
Divide day(days=100)	2	38.276
	4	22.806
. 0	6	19.996
• • • • • •	8	19.948