Power Series

Find the radius of convergence and the interval of convergence.

1.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} (x+3)^n$$

$$2. \sum_{n=1}^{\infty} \frac{n^2 x^n}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$

$$3. \sum_{n=1}^{\infty} \sqrt{n} x^n$$

4.
$$\sum_{n=1}^{\infty} \frac{n(x-4)^n}{n^3+1}$$

5.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$

Representations of Functions as Power Series

Find a power series representation for the function and determine the interval of convergence.

6.
$$f(x) = \frac{x}{4x+1}$$

7. (a)
$$f(x) = \ln(1+x)$$

(b)
$$f(x) = x \ln(1+x)$$

(c)
$$f(x) = x \ln(x^2 + 1)$$
 (Hint: Use part (a).)

8. (a) Evaluate
$$\int \frac{1}{1+x^7} dx$$

(b) Use part (a) to approximate
$$\int_{-5}^{0} \frac{1}{1+x^7} dx$$

9. Evaluate $\int \arctan(2x^3) dx$ using a power series.

Taylor and Maclaurin Series

- 10. Find the Taylor series for f centered at x = 1 and the radius of convergence given that $f^{(n)}(1) = \frac{(-1)^n n! n!}{2^n}$
- 11. Use the Maclaurin series for e^x to calculate $e^{-0.2}$ correct to five decimal places.
- 12. Find the Taylor series for $f(x) = \cos x$ centered at $a = \pi$.
- 13. Find the Maclaurin series for $f(x) = e^{-x/2}$ and the radius of convergence.
- 14. Use the Taylor series for $f(x) = x^4 2x^3 + 1$ centered at x = -1 to evaluate f(-1.1).
- 15. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{4^{2n+1} (2n+1)!}$
- 16. Use a Maclaurin series to evaluate the following limit:

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.$$

17. Evaluate the indefinite integrals using infinite series.

(a)
$$\int \frac{\sin x}{x} dx$$

(b)
$$\int_{0}^{\infty} \frac{x - \sin x}{x^3} dx$$

Parametric Equations

- 18. Eliminate the parameter to find a Cartesian equation of the curve. $x = e^{2t}$, $y = e^t t$
- 19. $x = 4\cos\theta, y = 5\sin\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
 - (a) Eliminate the parameter to find a Cartesian equation of the curve.
 - (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced.
- 20. Find an equation of the tangent line to the curve $x = \cos \theta + \sin(2\theta), y = \sin \theta + \cos(2\theta)$ at the point $\theta = 0$.
- 21. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the curve $x = t + \ln t$, $y = t \ln t$. For what values of t is the curve concave up?
- 22. Find the length of the curve $x = e^t + e^{-t}x$, y = 5 2t, for $0 \le t \le 3$.
- 23. Find the length of the curve $x = \frac{t}{1+t}$, $y = \ln(1+t)$, for $0 \le t \le 2$.