Machine Learning and Data Mining

Loss Functions

Prof. Alexander Ihler Fall 2012

Loss functions

- Measure error in our predictions
 - A function of the parameters and training data
- $J(\theta) = \dots$
- Ideally, these should
 - Measure what we care about
 - Be easy to optimize over
- Often these two goals are in conflict...

Cost functions for regression

$$\ell_2$$
 : $(y-\hat{y})^2$ (MSE)

$$\ell_1 : |y - \hat{y}|$$
 (MAE)

Something else entirely...

$$c - \log(\exp(-(y - \hat{y})^2) + c)$$
(???)

"Arbitrary" functions can't be solved in closed form...

- use gradient descent

Effects of cost function choice

Sensitivity to outliers

L1 error

Classification cost functions

- Consider a linear classifier
- J(.) = # of misclassified data?
 - Not smooth = hard to train

- This is called the 0/1 loss
 - Cost 0 when we're right; cost 1 when we're wrong
- Often, it's what we care about
 - Measures the number of mistakes we will make
- It's hard to optimize
 - No incentive to be "less wrong" or "more right"

Surrogate loss functions

• Replace 0/1 loss $J(\theta, x^{(i)}) = \delta(T(\theta x^{(i)}) \neq y^{(i)})$ with something easier:

Logistic MSE

$$J(\theta, x^{(i)}) = \left(\sigma(\theta x^{(i)}) - y^{(i)}\right)^2$$

Hinge loss

$$J(\theta, x^{(i)}) = \max \left[0, 1 - y^{(i)} \theta x^{(i)}\right]$$

Exponential loss

$$J(\theta, x^{(i)}) = \exp\left[-y^{(i)} \theta x^{(i)}\right]$$

Surrogate loss functions

- Properties of a good loss function
 - Close to desired "real" loss?
 - Upper bound: low surrogate loss => low real loss
 - Smooth
 - Derivative = 0 only if real cost = 0
 - Convex?
 - Easy to optimize; no local optima

