

The Berezinskii-Kosterlitz-Thouless Transition

Lara Turgut Francesco Conoscenti Ben Bullinger Computational Statistical Physics (402-0812-00L), Spring 2025

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

1. Introduction

- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

The 2D XY Model

XY model: classical continuos spins on a 2D lattice, with O(2) symmetry.

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

Each spin is a unit vector $S_i = (\cos \theta_i, \sin \theta_i)$.

- ▶ Mermin-Wagner theorem: No spontaneous breaking of continuous symmetries at T > 0 in d < 2.
- ▶ Yet, the 2D XY model *does* exhibit a phase transition!
- ▶ The Berezinskii-Kosterlitz-Thouless (BKT) transition:
 - Topological phase transition
 - Infinite order transition, with no conventional order parameter.

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Order in the 2D XY Model

Hamiltonian Low Temperature expansion:

- Second order Taylor expansion $\cos(\theta_i \theta_j) \to 1 \frac{1}{2}(\theta_i \theta_j)^2$
- Continuum limit $\theta_i \to \theta(r)$, $\theta_i \theta_i \to \nabla \theta(r)$

$$H \approx E_0 + \frac{J}{2} \int d\mathbf{r} (\nabla \theta(\mathbf{r}))^2$$

Correlation function analysis

$$g(r) = \langle e^{i(\theta(\mathbf{r}) - \theta(0))} \rangle$$

- ▶ Low-T phase (QLRO) [1]: $g(r) \sim r^{-\eta(T)}$, Algebraic decay of correlations, $\xi = \infty$.
- ▶ **High-T phase (Disordered):** $g(r) \sim e^{-r/\xi(T)}$, Exponential decay.

Vortices

Steady states of this Hamiltonian are[1]:

$$\frac{\delta H}{\delta \theta} = 0 \Rightarrow \nabla^2 \theta = 0$$

This Laplace equation has 2 types of solutions

- ▶ Ground state: $\theta(r) = \text{const}$ with Ferromagnetic order, E = 0
- ▶ Vortices: topological defects with winding of $2\pi n$ [1]

$$\oint_{r_0} \nabla \theta \cdot d\mathbf{l} = 2\pi n$$

Energy difference of adding a single vortex is:

$$\Delta E = E_{vort} - E_{no_vort} = \pi J \int \frac{d\mathbf{r}}{r} = \pi J \ln \frac{L}{a}$$

Entropy of a single vortex:

$$\Delta S = k_B \ln \frac{L^2}{a^2} = 2k_B \ln \frac{L}{a}$$

Identify the Phases

The Free energy of a single vortex is

$$\Delta F = \Delta E - T\Delta S = (\pi J - 2k_B T) \ln \frac{L}{a}$$

It identify 2 different phases:

- ▶ For $T>\frac{\pi J}{2k_B}$: $\Delta F<0$ free vortices proliferate ($\Delta F\to -\infty$ as $L\to \infty$)
- ▶ For $T<\frac{\pi J}{2k_B}$: $\Delta F>0$, single vortices are forbidden ($\Delta F\to\infty$ as $L\to\infty$)

But pairs of a vortex and an antivortex can appear.

$$\Delta F_{pair} = (\pi J - 2k_B T) \ln \frac{r}{a}$$

Pairs are stable because their energy is finite and entropy is insufficient to unbind them.

Visualizing Spin Configurations and Vortices

QLRO

XY Model Spin Configuration L = 20, T = 0.85

$$T = 0.85 \lesssim T_{KT}$$

Transition

XY Model Spin Configuration L = 20, T = 0.92

 $T \approx 0.92 \gtrsim T_{KT}$

Disorder

XY Model Spin Configuration L = 20, T = 1.20

$$T = 1.20 > T_{KT}$$

Renormalization Group

Understand large-scale behavior by tracking how coupling constants evolve with scale.

▶ Mapping the 2D XY model to a 2D Coulomb gas.

Topological Hamiltonian:

$$H_v = \sum_{i} H_{n_i}^{\text{core}} + 2\pi K \sum_{i < j} n_i n_j \ln(|r_i - r_j|)$$

Fugacity: $y_0 = \exp \left(H_{n_i}^{\mathsf{core}} \right)$ regulates vortex excitation.

Screening modifies the effective interaction:

$$H_{ ext{eff}}(r-r') pprox -2\pi K_{ ext{eff}} \ln ig(r-r'ig)$$

Partition function of XY Model resembles that of a neutral 2D Coulomb gas

Renormalization Group

RG Flow equations:[1]

$$\begin{cases} \frac{dK^{-1}}{dl} = 4\pi^3 y_0^2 + \mathcal{O}(y_0^4), \\ \frac{dy_0}{dl} = (2 - \pi K)y_0 + \mathcal{O}(y_0^3) \end{cases}$$

Universal jump:

$$\lim_{l \to \infty} K^{-1}(T_{KT}^{-}) = \pi/2,$$
$$\lim_{l \to \infty} K^{-1}(T > T_{KT}) = 0$$

- $-y_0=0$ is a line of fixed points up to $K^{-1}=\pi/2$
- Below T_{KT} : bound vortex pairs (quasi-ordered)
- Above T_{KT} : unbound vortices (disordered)

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Simulating the XY Model

- ▶ Challenges in simulating BKT transition:
 - Critical slowing down near phase transition
 - ▶ Need for large system sizes (finite-size effects)
 - Long correlation times

Simulating the XY Model

- Challenges in simulating BKT transition:
 - Critical slowing down near phase transition
 - Need for large system sizes (finite-size effects)
 - Long correlation times
- Metropolis algorithm:
 - Energy change for spin flip

$$\Delta E = -J \sum_{\langle i,j \rangle} [\cos(\theta_i' - \theta_j) - \cos(\theta_i - \theta_j)]$$

Accept new state with probability

$$\mathbb{P}_{\text{accept}} = \min(1, e^{-\beta \Delta E})$$

Very inefficient near critical point due to large correlated regions

Simulating the XY Model

- ▶ Challenges in simulating BKT transition:
 - Critical slowing down near phase transition
 - Need for large system sizes (finite-size effects)
 - Long correlation times
- Metropolis algorithm:
 - Energy change for spin flip

$$\Delta E = -J \sum_{\langle i,j \rangle} [\cos(\theta_i' - \theta_j) - \cos(\theta_i - \theta_j)]$$

Accept new state with probability

$$\mathbb{P}_{\text{accept}} = \min(1, e^{-\beta \Delta E})$$

- Very inefficient near critical point due to large correlated regions
- Wolff cluster algorithm:
 - ▶ Updates entire clusters of spins, significantly reducing critical slowing down.

Wolff Cluster Algorithm for the XY Model

Algorithm [1]:

- ▶ Choose a random reflection axis: Pick an angle $\phi \in [0, 2\pi)$ and define the unit vector $\mathbf{r} = (\cos \phi, \sin \phi)$.
- ▶ **Project spins:** For each site *i*, compute $s_i = \mathbf{S}_i \cdot \mathbf{r} = \cos(\theta_i \phi)$.
- Cluster growth:
 - ightharpoonup Pick a random seed site i_0 .
 - \blacktriangleright For each neighbor j of a site i in the cluster, add j to the cluster with probability:

$$\mathbb{P}_{\mathsf{add}} = 1 - \exp\left[\min(0, -2\beta J s_i s_j)\right]$$

▶ Reflect all spins in the cluster: $\theta_i \to 2\phi - \theta_i \quad \forall i \in \text{cluster}.$

Wolff Cluster Algorithm for the XY Model

Algorithm [1]:

- ▶ Choose a random reflection axis: Pick an angle $\phi \in [0, 2\pi)$ and define the unit vector $\mathbf{r} = (\cos \phi, \sin \phi)$.
- ▶ **Project spins:** For each site *i*, compute $s_i = \mathbf{S}_i \cdot \mathbf{r} = \cos(\theta_i \phi)$.
- Cluster growth:
 - \triangleright Pick a random seed site i_0 .
 - For each neighbor j of a site i in the cluster, add j to the cluster with probability:

$$\mathbb{P}_{\mathsf{add}} = 1 - \exp\left[\min(0, -2\beta J s_i s_j)\right]$$

▶ Reflect all spins in the cluster: $\theta_i \to 2\phi - \theta_i \quad \forall i \in \text{cluster}.$

Remarks

- ▶ Non-local updates reduce autocorrelation times compared to Metropolis algorithm
- ▶ Dramatically reduces critical slowing down near T_{KT} by building clusters that scale with correlation length $\xi(T)$

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Thermodynamic Observables

Observable	Formula
Energy per spin	$e = \langle H \rangle / N$
Magnetization	$\langle \mathbf{m} angle$
Specific heat	$c_v = \frac{\langle E^2 \rangle - \langle E \rangle^2}{NT^2}$
Susceptibility	$\chi = rac{N}{T} \left(\left\langle \left \mathbf{m} \right ^2 \right\rangle - \left\langle \left \mathbf{m} \right \right angle^2 ight)$
Spin stiffness (for $J=1$)	$\rho_s = \frac{1}{2N} \left(\left\langle \sum_{\langle i,j \rangle_x} \cos(\Delta \theta_{ij}) \right\rangle - \beta \left\langle \left(\sum_{\langle i,j \rangle_x} \sin(\Delta \theta_{ij}) \right)^2 \right\rangle \right) + (x \leftrightarrow y)$
Vortex density (ω_v)	$\omega_v = \left\langle \frac{1}{N} \sum_{\square} \left \frac{1}{2\pi} \oint_{\square} \mathrm{d}\theta \right \right\rangle$
Correlation function	$g(r) = \left\langle e^{i(\theta(\mathbf{r}) - \theta(0))} \right\rangle$

Thermodynamic Observables

Observable	Formula
Energy per spin	$e = \langle H \rangle / N$
Magnetization	$\langle \mathbf{m} angle$
Specific heat	$c_v = \frac{\langle E^2 \rangle - \langle E \rangle^2}{NT^2}$
Susceptibility	$\chi = \frac{N}{T} \left(\langle \mathbf{m} ^2 \rangle - \langle \mathbf{m} \rangle^2 \right)$
	$\rho_s = \frac{1}{2N} \left(\left\langle \sum_{\langle i,j \rangle_x} \cos(\Delta \theta_{ij}) \right\rangle - \beta \left\langle \left(\sum_{\langle i,j \rangle_x} \sin(\Delta \theta_{ij}) \right)^2 \right\rangle \right) + (x \leftrightarrow y)$
Vortex density (ω_v)	$\omega_v = \left\langle \frac{1}{N} \sum_{\square} \left \frac{1}{2\pi} \oint_{\square} \mathrm{d}\theta \right \right\rangle$
Correlation function	$g(r) = \left\langle e^{i(\theta(\mathbf{r}) - \theta(0))} \right\rangle$

The spin stiffness and correlation function are used to locate T_{KT}

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

▶ Stiffness: The estimate $T_{KT}^{\rho_s}$ is extracted by intersecting $\rho_s(T)$ with the Nelson-Kosterlitz Jump line [5]:

$$\rho_s(T) = \frac{2k_B T_{KT}}{\pi}$$

▶ Stiffness: The estimate $T_{KT}^{\rho_s}$ is extracted by intersecting $\rho_s(T)$ with the Nelson-Kosterlitz Jump line [5]:

$$\rho_s(T) = \frac{2k_B T_{KT}}{\pi}$$

▶ Correlation decay exponent: The decay exponent η is extracted by fitting the correlation function $g(r) \sim r^{-\eta}$ in the QLRO regime. Intersecting $\eta(T)$ with the universal value [3]

$$\eta = 1/4$$

yields the estimate $T_{KT}^{\eta}(L)$.

▶ Stiffness: The estimate $T_{KT}^{\rho_s}$ is extracted by intersecting $\rho_s(T)$ with the Nelson-Kosterlitz Jump line [5]:

$$\rho_s(T) = \frac{2k_B T_{KT}}{\pi}$$

▶ **Correlation decay exponent:** The decay exponent η is extracted by fitting the correlation function $g(r) \sim r^{-\eta}$ in the QLRO regime. Intersecting $\eta(T)$ with the **universal value** [3]

$$\eta = 1/4$$

yields the estimate $T_{KT}^{\eta}(L)$.

▶ Correlation length: The correlation length ξ is extracted by fitting the correlation function $g(r) \sim e^{-r/\xi(T)}$ in the disordered regime, where for $T \to T_{\rm BKT}^+$, ξ diverges exponentially in the thermodynamic limit [1]:

$$\xi(T) \approx a \exp \left[\frac{\pi^2}{8b} \sqrt{\frac{T_{KT}}{T - T_{KT}}} \right]$$

This fit yields $T_{KT}^{\xi}(L)$.

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Implementation Details

- Simulation structure:
 - ▶ Thermalization: Ensure equilibrium is reached at each target temperature.
 - ▶ **Measurement**: Measure observables over many sweeps in equilibrium.
 - ▶ Analysis: Calculate averages, estimate $T_{KT}(L)$, perform finite-size scaling analysis to extract $T_{KT}(\infty)$

Implementation Details

- Simulation structure:
 - ▶ **Thermalization**: Ensure equilibrium is reached at each target temperature.
 - ▶ **Measurement**: Measure observables over many sweeps in equilibrium.
 - ▶ Analysis: Calculate averages, estimate $T_{KT}(L)$, perform finite-size scaling analysis to extract $T_{KT}(\infty)$
- Optimizations:
 - Pre-computation of neighbor indices.
 - Vectorization of NumPy operations.
 - Just-in-time compilation (Numba '@njit' [4]) for core simulation loops (Wolff/Metropolis updates, energy calculations, observable measurements).
 - ▶ Parallelization over (L,T) pairs

Error Analysis: Estimating Statistical Uncertainty

We use the standard error for sufficiently decorrelated data, and Jackknife resampling otherwise.

Error Analysis: Estimating Statistical Uncertainty

We use the standard error for sufficiently decorrelated data, and Jackknife resampling otherwise.

- Standard Error of the Mean (SEM):
 - Formula: $SE = s/\sqrt{N_{meas}}$ (where s is the sample standard deviation).
 - $ightharpoonup L^2$ cluster attempts per Wolff sweep significantly decorrelate direct measurement data
 - Used for: Energy and Magnetization.

Error Analysis: Estimating Statistical Uncertainty

We use the standard error for sufficiently decorrelated data, and Jackknife resampling otherwise.

- Standard Error of the Mean (SEM):
 - Formula: $SE = s/\sqrt{N_{meas}}$ (where s is the sample standard deviation).
 - L² cluster attempts per Wolff sweep significantly decorrelate direct measurement data
 - Used for: Energy and Magnetization.

Jackknife Resampling:

ightharpoonup Recalculate statistics on N_{meas} subsamples obtained in leave-one-out manner

$$\sigma_{\sf JK}^2 = rac{N_{\sf meas}-1}{N_{\sf meas}} \sum_{i=1}^{N_{\sf meas}} (ar{O}_i - ar{O})^2$$

where \bar{O}_i is the statistic with the *i*-th observation removed, and \bar{O} is the average of the \bar{O}_i .

- ▶ The variance of the jackknife estimates provides an estimate of the true variance.
- ▶ Convenient for non-linear functions of measured quantities and for correlated data.
- ▶ Used for: Spin Stiffness, Susceptibility, Specific Heat, Binder Cumulant, Vortex Density, η exponent, and Correlation length ξ .

Error Analysis

Error Propagation for Derived Critical Temperatures

- ▶ To estimate the errors on $T_{KT}(L)$ we
 - directly propagate the errors on the primary observables
 - ightharpoonup propagate the covariance matrix of intermediate fits (in the case of $\xi(T)$)

Error Analysis

Error Propagation for Derived Critical Temperatures

- ▶ To estimate the errors on $T_{KT}(L)$ we
 - directly propagate the errors on the primary observables
 - ightharpoonup propagate the covariance matrix of intermediate fits (in the case of $\xi(T)$)
- ▶ Obtain $T_{KT}(\infty)$ by weighted linear regression on the scaling form

$$T_{KT}(L) = T_{KT}(\infty) + \frac{a}{(\ln L)^2}$$

with weights $1/\sigma_{T_{KT}(L)}^2$ (where $\sigma_{T_{KT}(L)}$ is the standard error on each $T_{KT}(L)$).

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Energy and Specific Heat

Energy per Spin (e)

Increases smoothly and monotonically with temperature, no sharp change in slope near the transition.

Specific Heat (c_v)

- ▶ Exhibits a broad peak around $T \approx 1.1 J/k_B$.
- No divergence at T_{KT}.

Magnetization ($|\mathbf{m}|$)

- ▶ Decreases with L, consistent with the Mermin–Wagner theorem.
- ▶ Decays slowly with L in the low-temperature phase, consistent with QLRO: $|\mathbf{m}| \sim L^{-\eta(T)/2}$. [2]
- Decays rapidly with L in the high-temperature disordered phase. [2]

Susceptibility (χ)

- Peaks in the range $T \approx 1.0 1.1 J/k_B$
- ▶ The peak height increases significantly with L, as the correlation function decays algebraically in the $T < T_{\rm BKT}$ phase: $G(r) \sim r^{-\eta(T)}$, leading to a susceptibility that scales as $\chi \sim L^{2-\eta(T)}$ [3].
- $\lambda \text{ diverges as } L \to \infty \text{ for }$ $T \le T_{KT}.$
- For $T>T_{\rm KT}$, exponential decay $G(r)\sim e^{-r/\xi}$ implies $\chi\sim \xi^2(T)$, so χ stays finite as $L\to\infty$. [3]

Spin Stiffness (Helicity Modulus ρ_s)

- Smooth curves due to finite sized systems.
- Universal jump prediction by Nelson-Kosterlitz:

$$\rho_s(T_{KT}^-) = \frac{2k_B T_{KT}}{\pi}$$

- Intersection of $\rho_s(T, L)$ with this line provides an estimate of $T_{KT}(L)$.
- For L = 70, our data suggests $T_{KT} \approx 0.913 J/k_B$.

Decay exponent (η)

- ► The decay exponent η is extracted by fitting the spin–spin correlation function $G(r) \sim r^{-\eta}$.
- ► The dashed line indicates the BKT transition criterion $\eta = \frac{1}{4}$.
- The crossing points with the dashed line yield the estimates of T_{BKT}.
- For L = 70, our data suggests $T_{KT} \approx 0.940 J/k_B$.

Correlation length (ξ)

- ▶ Rapid increase of ξ near the transition.
- For L = 70, our data suggests $T_{KT} \approx 0.894 J/k_B$.

Vortex Density ω_v

- ▶ At low temperatures ($T \ll T_{KT}$):
 - Vortices exist only in tightly bound vortex-antivortex pairs.
 - Density is very low.
- ightharpoonup Near T_{KT} :
 - Pairs start to unbind.
 - Density increases sharply.
- ightharpoonup Above T_{KT} :
 - Proliferation of free vortices/antivortices.
 - Density becomes large, destroying QLRO.

Finite-Size Scaling of $T_{KT}(L)$, Spin Stiffness Method

- ► Estimate $T_{KT}(L)$ for each size L from the intersection $\rho_s(T,L) = 2k_BT/\pi$.
- ▶ $T_{KT}(L) = T_{KT}(\infty) + \frac{a}{(\ln L)^2}$, where a is non-universal constant.
- ▶ The y-intercept gives the estimate for $T_{KT}(\infty)$.
- Weighted linear fit yields: $T_{KT}(\infty) \approx 0.8934(24)J/k_B$
- Result is **consistent** with the literature value $T_{KT} \approx 0.89213(10)J/k_B$. [6]

Finite-Size Scaling of $T_{KT}(L)$, η Method

- ► Estimate $T_{KT}(L)$ for each size L from the intersection $\eta(T,L) = 0.25$.
- ▶ $T_{KT}(L) = T_{KT}(\infty) + \frac{a}{(\ln L)^2}$, where a is non-universal constant.
- ► The y-intercept gives the estimate for $T_{KT}(\infty)$.
- Weighted linear fit yields: $T_{KT}(\infty) \approx 0.8946(22)J/k_B$
- ► Result is nearly consistent with the literature value $T_{KT} \approx 0.89213(10)J/k_B$. [6]

Finite-Size Scaling of $T_{KT}(L)$, ξ Method

- $\begin{tabular}{l} {\bf Estimate} \ T_{KT}(L) \ {\it for each size} \ L \\ {\it using} \ \xi(T) \propto \exp \left[\frac{\pi^2}{8b} \sqrt{\frac{T_{\rm BKT}}{T-T_{\rm BKT}}} \right]. \\ \end{tabular}$
- ▶ $T_{KT}(L) = T_{KT}(\infty) + \frac{a}{(\ln L)^2}$, where a is non-universal constant.
- ► The y-intercept gives the estimate for $T_{KT}(\infty)$.
- ▶ Weighted linear fit yields: $T_{KT}(\infty) \approx 0.8098(73)J/k_B$
 - Result is **not consistent** with the literature value $T_{KT} \approx 0.89213(10)J/k_B$. [6]; possibly due to insufficient number of temperature points to reliably fit the exponential divergence of $\xi(T)$.

Outline

- 1. Introduction
- 2. Theoretical Background
- 3. Monte Carlo Methods
- 4. Thermodynamic Observables
- 5. Estimating $T_{KT}(L)$
- 6. Implementation Details & Error Analysis
- 7. Results and Analysis
- 8. Conclusion

Conclusion

- Implemented the Wolff algorithm
- Measured observables for different system sizes
- ▶ Verified BKT transition and estimated $T_{KT} \approx 0.8934(24)J/k_B$

Thank you for your attention!

Back up slide I

Binder Cumulant $|U_L|$)

- In the low-temperature phase, |U_L| remains high and nearly size-independent.
- ► Around T_{BKT} , curves for different L start to separate.
- The absence of a common intersection point in the Binder cumulant curves indicates the lack of a conventional second-order phase transition.

References I

- [1] Victor Drouin-Touchette. "The kosterlitz-thouless phase transition: an introduction for the intrepid student". In: arXiv preprint arXiv:2207.13748 (2022).
- [3] J Michael Kosterlitz. "The critical properties of the two-dimensional xy model". In: Journal of Physics C: Solid State Physics 7.6 (1974), p. 1046.
- [4] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. "Numba: A llvm-based python jit compiler". In: *Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC*. 2015, pp. 1–6.
- [5] David R Nelson and John Michael Kosterlitz. "Universal jump in the superfluid density of two-dimensional superfluids". In: *Physical Review Letters* 39.19 (1977), p. 1201.

References II

[6] Peter Olsson. "Monte Carlo analysis of the two-dimensional XY model. II. Comparison with the Kosterlitz renormalization-group equations". In: *Physical Review B* 52.6 (1995), p. 4526.

Lara Turgut | lturgut@ethz.ch

ETH Zurich, Department of Physics

Francesco Conoscenti@ethz.ch

ETH Zurich, Department of Information Technology and Electrical Engineering

Ben Bullinger bben@ethz.ch

ETH Zurich, Department of Computer Science