1.

原问题的对偶问题为
$$\max w_1 + 2w_2$$
 $s.t. w_1 + w_2 \le 4$

$$-w_1 + 2w_2 \le 3$$

$$w_1 - 3w_2 \le 1$$

$$w_1, w_2, w_3 \ge 0$$

$$w^* = \left(\frac{5}{3}, \frac{7}{3}\right) 在第三个约束成立严格不等式$$

$$\therefore x_3 = 0$$

:w*的两个分量都大于0, :原问题的两个约束在最优解处成立等式

$$x1 - x2 + x3 = 1$$

$$x1 + 2x2 - 3x3 = 2$$
将 $x_3 = 0$ 代入,得 $x_1 = \frac{4}{3}$, $x_2 = \frac{1}{3}$, 最优解 $f^* = \frac{19}{3}$

2.

原问题的对偶问题为
$$\max b_1 w_1 + w_2 \\ w_1 + w_2 \le 5 \\ -w_1 + w_2 \le 0 \\ 6w_1 + 2w_2 \le 21 \\ w_1, w_2, w_3 \ge 0$$

利用互补松弛定理(这个定理太强了,原来 b 不知道是多少,对偶用一下就能求出来)

3.

此非对称形式的线性规划问题的对偶问题是

$$\max wb$$

$$s. t. wA \le c$$

$$\because wA \le c$$

$$\therefore (wA)^T \le c^T \Rightarrow A^T w^T \le c^T$$

$$\because c^T = b, A^T = A$$

$$\therefore A^T w^T \le c^T \Rightarrow A w^T \le b$$

 $\Rightarrow x^{(0)} = w^T, \therefore (x^{(0)})^T$ 是对偶问题的可行解,容易看出此时 $cx^{(0)} = wb$,根据对偶定理

x⁽⁰⁾也是最优解

4.

(1)

增加x4,x5为剩余变量,然后约束条件同乘以-1,以x4,x5为基变量得到初始矩阵

	x_1	x_2	x_3	x_4	<i>x</i> ₅	$B^{-1}b$
x_4	-1	0	-3	1	0	-3
x_5	0	-1	-2	0	1	-5
检验系数	-4	-6	-18	0	0	0

经过主元消去后, 最终矩阵如下

	x_1	x_2	x_3	x_4	x_5	$B^{-1}b$
x_3	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	0	1
x_2	$-\frac{2}{3}$	1	0	$\frac{2}{3}$	-1	3
检验系数	-2	0	0	-2	-6	36

: 最优解 $x^* = (0,3,1)^T$, $f^* = 36$, 此时对偶问题的最优解为 $w^* = (2,6)$

(2)

将原问题转化为最小化问题,增加x4为剩余变量

选取 x_3, x_4 为基变量,容易看出基本解不是对偶可行的,因此对问题进行扩充

初始矩阵如下

	X ₁	X ₂	X ₃	X ₄	X ₅	$B^{-1}b$
X ₃	1	-1	-1	0	0	1
X ₄	1	-1	-2	1	0	-1
X ₅	1	1	0	0	1	М
检验系数	1	1	0	0	0	0

经过变换后, 最终矩阵如下

	X ₁	X ₂	X ₃	X ₄	X ₅	B ^{−1} b
X ₃	1	0	0	0	1	M+1
X ₄	0	0	1	-1	0	2
X ₅	0	1	0	1	1	M-2
检验系数	0	0	0	-1	-2	1-2M

从表中可以看出, 当 M 取很大的时候, min 问题没有下界, 即 max 的原问题无上界

(3)

初始基变量选取的不同,带来的解题难度也不一样

-开始我想选 x_1 为一个基变量,但是发现要引入扩展问题

但是选x8为基变量以后,不需要引入扩展问题,可直接用对偶单纯形法

将原问题做初等变换后,选取x6,x8,x7为基变量

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	$B^{-1}b$
x_6	-2	1	1	1	-1	1	0	0	-3
<i>x</i> ₈	1	1	-3	2	-2	0	0	1	4
<i>x</i> ₇	-1	-1	1	1	-1	0	1	0	-2
检验 系数	-4	-3	-5	-1	-2	0	0	0	0

经过变换后, 最后阶段的矩阵如下

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	<i>x</i> ₈	$B^{-1}b$
x_5	2	-1	-1	-1	1	-1	0	0	3
<i>x</i> ₈	5	-1	-5	0	0	-2	0	1	10
x_7	1	-2	0	0	0	-1	1	0	1
检验 系数	0	-5	-7	-3	0	-2	0	0	6

: 最优解为 $x^T = (0,0,0,0,3,0,1,10)$, 最优值 $f^* = 6$