

Analyze the behavior of the three followers

- Modify SimpleLeader.java
- Set the leader price to be date
- Plot for follower price against leader price

Linear or Non-Linear

Mk2 with leader price = date

Mk1 and Mk2 are both linear

Mk3 could be non-linear

Linear Approaches

Goal: find the follower reaction function

- ALL HISTORICAL DATA
- MOVING WINDOW
- MODIFIED MOVING WINDOW
- WEIGHTED LEAST SQUARE WITH FORGETTING FACTOR

Best leader strategy given follower reaction

Given follower reaction

$$(u_L - c_L)S_L(u_L, u_F)$$

= $(u_L - 1)(2 - u_L + 0.3u_F)$

Substitue into Leader profit equation

 $u_F = \hat{a} + \hat{b}u_I$

Group common terms

$$\begin{aligned} 2u_L - u_L^2 + 0.3 \hat{a} \ u_L + 0.3 \hat{b} \ u_L^2 - 2 + u_L - 0.3 \hat{a} - 0.3 \hat{b} \ u_L \\ &= (0.3 \hat{b} - 1) u_L^2 + (3 + 0.3 \hat{a} - 0.3 \hat{b}) u_L + (-2 - 0.3 \hat{a}) \end{aligned}$$

Make 1st derivative equal to zero and solve the leader price

$$\frac{\partial}{\partial u_L} \left(0.3 \widehat{b} - 1\right) u_L^2 + \left(3 + 0.3 \widehat{a} - 0.3 \widehat{b}\right) u_L + \left(-2 - 0.3 \widehat{a}\right) = 0$$

$$2 \left(0.3 \widehat{b} - 1\right) u_L + \left(3 + 0.3 \widehat{a} - 0.3 \widehat{b}\right) = 0$$

$$u_L = -\frac{(3 + 0.3\hat{a} - 0.3\hat{b})}{2(0.3\hat{b} - 1)}$$

All Historical Data Approach

Use all the historical data to do the estimation

$$\sum_{t=1}^{T} \{y(t) - [a* + b* x(t)]\}^2 = \min_{\{\widehat{a}, \widehat{b}\}} \sum_{t=1}^{T} \{y(t) - [\widehat{a} + \widehat{b} x(t)]\}^2$$

In the equation x(t) is the leader price at day t And y(t) is the follower price at day t

Convert the minimization problem to maximization problem. Set the 1st order partial derivative equal to 0 to solve this problem.

$$\widehat{a}^* = \frac{\sum_{t=1}^{T} x^2(t) \sum_{t=1}^{T} y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} x(t) y(t)}{T \sum_{t=1}^{T} x^2(t) - (\sum_{t=1}^{T} x(t))^2}$$

$$\widehat{b}^* = \frac{T \sum_{t=1}^{T} x(t) y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} y(t)}{T \sum_{t=1}^{T} x^2(t) - (\sum_{t=1}^{T} x(t))^2}$$

Moving Window Approach

- Similar to All Historical Data Approach
- Instead of looping through all the historical data
- Use a window to loop only the recent data
- For example: a window size of 30 will just loop the data of past 30 days

Evaluation and Analysis

		All historical data	Moving window Size = 100	Size = 30	Weighed least square with forgetting factor Lambda = 0.99	ML	Best approach
MI	k1	17.557161331 1768	17.555740356 4453	17.55332946777 34	17.55502319335 94	17.555046081 5429	All historical data
MI	k 2	16.956459045 4102	16.955856323 2422	16.95775985717 77	16.95581626892 09	16.946899414 0625	Modifeid moving window
MI	k3	19.488283157 3486	19.488330841 0645	19.48791313171 39	19.48825645446 78	19.488372802 7343	ML

	Analysis		
Mk1	Linear and not depend on date		
Mk2	Linear and depend on date		
Mk3	Non-linear		

Thank you!

GROUP 36

BUSHUI ZHANG

WEILUE LUO

YECHENG CHU
ZHAOYU ZHANG