How to use PenningNotes

Neil Penning

Spring 2020

\mathbf{C}	on	it ϵ	n	\mathbf{ts}
\sim	O			

1	Introduction	1
	1.1 test	1

1 Introduction

1.1 test

Definition 1.1: The def of something

Introduce a new concept abc Here you explain the concept

Does The Flint Hills series Converge?

$$\sum_{n=1}^{\infty} \frac{1}{n^3 * \sin^2(n)}$$

This one has actually been left as an exercise to the writer.

remember to remember!

What am I to remember? Oh! That I forgot something!

How to do something

listen up youngins

Solve y'' + 5y' + 6y equals zero

$$0 = r^{2} + 5r + 6$$

= $(r+2)(r+3)$

Solve for
$$r_1, r_2$$

$$\begin{array}{rcl}
r_1 & = -3 \\
r_2 & = -2
\end{array}$$

Write General Solution
$$y = C_1 e^{-3t} + C_2 e^{-2t}$$

definition within a box

Definition 1.2:

This is a concept

this is it's explanation \mathbb{NQZ}

this is its derivation

Definition 1.3: Test

one two three

Un numbered definition

An unnumbered definition

Proof 1.1: $(\forall n \geq 3)(n \in Z)(x^n + y^n \neq z^n)$

This exercise is trivial and left as an exercise to the reader

Proof 1.2: $(\exists n \in Z)(x^2 + y^2 = z^2)$

This deceptively simple lemma has been unsolved for millennia. Don't bother attempting.