Курсовая работа по дисциплине «Дискретная математика». Синтез комбинационных схем.

Номер варианта	Условия, при которых f=1	Условия, при которых f=d
17.	$(x_2x_3+x_1)>x_4x_5$	$(x_2x_4x_5)=3$

Построить комбинационные схемы в различных базисах, реализующие не полностью определенную булеву функцию $f(X) = f(x_1, x_2, x_3, x_4, x_5)$, которая принимает значение 1 при условии: $(x_2x_3+x_1)>x_4x_5$ и неопределенное значение на наборах, для которых $(x_2x_4x_5)=3$. Необходимо выполнить следующие этапы:

- 1. Составить таблицу истинности заданной булевой функции.
- 2. Представить булеву функцию в аналитическом виде с помощью КДНФ и ККНФ.
- 3. Найти МДНФ и/или МКНФ методом Квайна Мак-Класки.
- 4. Найти МДНФ и МКНФ на картах Карно.
- 5. Преобразовать МДНФ и МКНФ к форме, обеспечивающей минимум цены схемы.
- 6. По полученной форме построить комбинационную схему в булевом базисе. Определить задержку схемы.
- 7. Построить схемы с минимальной ценой в универсальных базисах и сокращенных булевых базисах. Определить задержку каждой из схем.
- 8. Построить схему в базисе Жегалкина. Определить цену и задержку.
- 9. Построить схему в универсальном базисе с учетом заданного коэффициента объединения по входам. Определить цену и задержку схемы.
- 10. Выполнить анализ построенных схем, определив их реакцию на заданные комбинации входных сигналов.

1. Таблица истинности.

№	X ₁ X ₂ X ₃ X ₄ X ₅	X_2X_3	$(X_2X_3)_{10}$	X ₄ X ₅	$(X_4X_5)_{10}$	$X_2X_4X_5$	$(X_2X_4X_5)_{10}$	- 	f
0	00000	0.0	0	0.0	0	000	0	0	0
1	00001	0.0	0	0 1	1	001	1	1	0
2	00010	0.0	0	10	2	010	2	2	0
3	00011	0.0	0	11	3	011	3	3	d
4	00100	0.1	1	0.0	0	000	0	1	1
5	00101	0.1	1	0 1	1	0 0 1	1	0	0
6	00110	0 1	1	10	2	010	2	1	0
7	00111	0 1	1	11	3	011	3	2	d
8	01000	10	2	0.0	0	100	4	2	1
9	01001	10	2	0 1	1	101	5	1	1
10	01010	10	2	10	2	110	6	0	0
11	01011	10	2	1 1	3	111	7	1	0
12	01100	1 1	3	0.0	0	100	4	3	0
13	01101	1 1	3	0 1	1	101	5	2	1
14	01110	11	3	10	2	110	6	1	1
15	0 1 1 1 1	1 1	3	1 1	3	1 1 1	7	0	0
16	10000	0.0	0	0.0	0	000	0	0	1
17	1 0 0 0 1	0.0	0	0 1	1	0 0 1	1	1	0
18	10010	0.0	0	10	2	010	2	2	0
19	10011	0.0	0	11	3	0 1 1	3	3	d
20	10100	0 1	1	0.0	0	000	0	1	1
21	10101	0 1	1	0 1	1	0 0 1	1	0	1
22	10110	0 1	1	10	2	010	2	1	0
23	10111	0 1	1	1 1	3	0 1 1	3	2	d
24	11000	10	2	0 0	0	100	4	2	1
25	1 1 0 0 1	10	2	0 1	1	101	5	1	1
26	11010	10	2	10	2	110	6	0	1
27	1 1 0 1 1	10	2	1 1	3	1 1 1	7	1	0
28	11100	1 1	3	0 0	0	100	4	3	1
29	11101	1 1	3	0 1	1	101	5	2	1
30	11110	1 1	3	10	2	1 1 0	6	1	1
31	11111	1 1	3	1 1	3	111	7	0	1

2. Представление булевой функции в аналитическом виде.

 $KДН\Phi:f =$

 $\bar{X}_{1}\bar{X}_{2}X_{3}\bar{X}_{4}\bar{X}_{5}\ v\ \bar{X}_{1}X_{2}\bar{X}_{3}\bar{X}_{4}\bar{X}_{5}\ v\ \bar{X}_{1}X_{2}\bar{X}_{3}\bar{X}_{4}\bar{X}_{1}\ v\ X_{2}X_{3}\bar{X}_{4}X_{5}\ v\ \bar{X}_{1}X_{2}X_{3}X_{4}\bar{X}_{5}\ v\ X_{1}\bar{X}_{2}\bar{X}_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}\bar{X}_{2}\bar{X}_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}X_{2}\bar{X}_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}X_{2}X_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}X_{2}X_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}X_{2}X_{3}\bar{X}_{4}\bar{X}_{5}\ v\ X_{1}X_{2}X_{3}X_{4}\bar{X}_{5}\ v\ X_{1}X_{2}X_{3}X_{4}X_{5}\ v\ X_{1}X_{2}X_{3}X_{4}\bar{X}_{5}\ v\ X_{1}X$

KKHΦ: $f = (X_1 \lor X_2 \lor X_3 \lor X_4 \lor X_5)(X_1 \lor X_2 \lor X_3 \lor X_4 \lor \bar{X}_5)(X_1 \lor X_2 \lor X_3 \lor \bar{X}_4 \lor X_5)(X_1 \lor X_2 \lor \bar{X}_3 \lor \bar{X}_4 \lor \bar{X}_5)(X_1 \lor \bar{X}_2 \lor \bar{X}_3 \lor \bar{X}_4 \lor \bar{X}_5)(\bar{X}_1 \lor \bar{X}_2 \lor \bar{X}_3 \lor \bar{X}_4 \lor \bar{X}_5)$

3. Минимизация булевой функции методом Квайна - Мак - Класки.

Нахождение простых импликант (максимальных кубов):

Nº	$K^0(f) \cup X$	N(f)	K	$K^1(f)$		$K^2(f)$		z(f)
1	00011	V	00X11	V	1-3	X0X11	1-13	X0100
2	00100	V	X0011	V	1-9	X100X	5-19	X1110
3	00111	V	X0100		2-10	X1X01	7-22	X0X11
4	01000	V	X0111	V	3-12	1XX00	11-21	X100X
5	01001	V	0100X	V	4-5	1X10X	14-24	X1X01
6	01101	V	X1000	V	4-13	1X1X1	16-26	1XX00
7	01110	V	01X01	V	5-6	11X0X	19-24	1X10X
8	10000	V	X1001	V	5-14	11XX0	20-25	1X1X1
9	10011	V	X1101	V	6-17	111XX	24-27	11X0X
10	10100	V	X1110		7-18			11XX0
11	10101	V	10X00	V	8-10			111XX
12	10111	V	1X000	V	8-13			
13	11000	V	10X11	V	9-12			
14	11001	V	1010X	V	10-11			
15	11010	V	1X100	V	10-16			
16	11100	V	101X1	V	11-12			
17	11101	V	1X101	V	11-17			
18	11110	V	1X111	V	12-19			
19	11111	V	1100X	V	13-14			
20			110X0	V	13-15			
21			11X00	V	13-16			
22			11X01	V	14-17			
23			11X10	V	15-18			
24			1110X	V	16-17			
25			111X0	V	16-18			
26			111X1	V	17-19			
27			1111X	V	18-19			
28								
29								
30								
31								

Импликантная таблица.

Простые		0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
импликанты		0	1	1	1	1	0	0	0	1	1	1	1	1	1	1
(максималь		1	0	0	1	1	0	1	1	0	0	0	1	1	1	1
ные кубы)		0	0	0	0	1	0	0	0	0	0	1	0	0	1	1
		0	0	1	1	0	0	0	1	0	1	0	0	1	0	1
	№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X0100	1	(*)						*								
X1110	2					(*)									*	
X0X11	3															
X100X	4		(*)	*						*	*					
X1X01	5			*	(*)						*			*		
1XX00	6						(*)	*		*			*			
1X10X	7							*	*				*	*		
1X1X1	8								*					*		*
11X0X	9									*	*		*	*		
11XX0	10									*		(*)	*		*	
111XX	11												*	*	*	*

Существенные импликанты.
$$\mathbf{T} = \begin{cases} X0100 \\ X100X \\ X1X01 \\ X1110 \\ 1XX00 \\ 11XX0 \end{cases}$$

Приведенная импликантная таблица:

		10101	11111	
	Nº	a	b	
1X10X	A	*		
1X1X1	В	*	*	
111XX	С		*	

4. Минимизация булевой функции на картах Карно.

Определение МДНФ

Для x=0; x=1

X4X5

X2X3

		00	01	11	10
	00			d	
Ī	01	1		d	
Ī	11		1		1
	10	1	1		

X4X5

00 01 11 10 1 00 d 01 1 1 d X2X3 1 11 1 1 1 10 1 1 1

$$C_{min}(f) = \begin{cases} X1110 \\ X0100 \\ X100X \\ X1X01 \\ 1XX00 \\ 1X1X1 \\ 11X10 \end{cases} \qquad S^a = 24 \quad S^b = 31$$

МДНФ = $X_2X_3X_4\overline{X_5}$ ∨ $\bar{X}_2X_3\bar{X}_4\bar{X}_5$ ∨ $X_2\bar{X}_3\bar{X}_4$ ∨ $X_2\bar{X}_4X_5$ ∨ $X_1\bar{X}_4\bar{X}_5$ ∨ $X_1X_3X_5$ ∨ $X_1X_2X_3$ ∨ $X_1X_2X_4\bar{X}_5$

Определение МКНФ

Для x=0; x=1

X4X5

X2X3

	00	01	11	10
00	0	0	d	0
01		0	d	0
11	0		0	
10			0	0

X4X5

X2X3

	00	01	11	10
00		0	d	0
01			d	0
11				
10			0	

$$C_{min}(\bar{f}) = \begin{cases} XX011 \\ X00X1 \\ X0X1X \\ 000XX \\ 0XX11 \\ 01100 \\ 0X01X \\ 00XX1 \end{cases} \quad S^a = 25 \quad S^b = 33$$

 $\text{MKH} \Phi = (X_3 \text{v} \, \bar{X}_4 \text{v} \, \bar{X}_5) (X_2 \text{v} \, X_3 \text{v} \, \bar{X}_5) (X_2 \text{v} \, \bar{X}_4) (X_1 \text{v} \, X_2 \text{v} \, X_3) (X_1 \text{v} \, \bar{X}_4 \text{v} \, \bar{X}_5) (X_1 \text{v} \, \bar{X}_2 \text{v} \, \bar{X}_3 \text{v} \, X_4 \text{v} \, X_5) \\ (X_1 \text{v} \, X_3 \text{v} \, \bar{X}_4) (X_1 \text{v} \, X_2 \text{v} \, \bar{X}_5)$

5. Преобразование минимальных форм булевых функций.

Факторизация МДНФ:

МДНФ =
$$X_2X_3X_4\overline{X_5}$$
 \vee $\bar{X}_2X_3\bar{X}_4\bar{X}_5$ \vee $X_2\bar{X}_3\bar{X}_4$ \vee $X_2\bar{X}_4X_5$ \vee $x_1\bar{X}_4\bar{X}_5$ \vee $X_1X_3X_5$ \vee $X_1X_2X_4\bar{X}_5$ $S_q=27$

Факторизация:

$$f = X_2 X_3 X_4 \overline{X_5} \vee \overline{X_2} X_3 \overline{X_4} \overline{X_5} \vee X_2 \overline{X_3} \overline{X_4} \vee X_2 \overline{X_4} X_5 \vee X_1 \overline{X_4} \overline{X_5} \vee X_1 X_3 X_5 \vee X_1 X_2 X_4 \overline{X_5} = X_2 X_4 \overline{X_5} (X_3 \vee X_1) \vee X_3 (\overline{X_2} \overline{X_4} \overline{X_5} \vee X_1 X_5) \vee X_2 \overline{X_4} (\overline{X_3} \vee X_5)$$

$$S_a = 23$$

Факторизация МКНФ:

MKHΦ =
$$(X_3 v \bar{X}_4 v \bar{X}_5)(X_2 v X_3 v \bar{X}_5)(X_2 v \bar{X}_4)(X_1 v X_2 v X_3)(X_1 v \bar{X}_4 v \bar{X}_5)(X_1 v \bar{X}_2 v \bar{X}_3 v X_4 v X_5)$$

 $(X_1 v X_3 v \bar{X}_4)(X_1 v X_2 v \bar{X}_5)$
 $S_q = 32$

Факторизация:

$$f = (X_{3} \vee \bar{X}_{4} \vee \bar{X}_{5})(X_{2} \vee X_{3} \vee \bar{X}_{5})(X_{2} \vee \bar{X}_{4})(X_{1} \vee X_{2} \vee X_{3})(X_{1} \vee \bar{X}_{4} \vee \bar{X}_{5})(X_{1} \vee \bar{X}_{2} \vee \bar{X}_{3} \vee X_{4} \vee X_{5})$$

$$* (X_{1} \vee X_{3} \vee \bar{X}_{4})(X_{1} \vee X_{2} \vee \bar{X}_{5})$$

$$= (\bar{X}_{5} \vee (X_{3} \vee X_{2} \bar{X}_{4})(X_{1} \vee \bar{X}_{4})(X_{1} \vee \bar{X}_{4})(X_{1} \vee \bar{X}_{2}))(X_{2} \vee \bar{X}_{4})(X_{1} \vee (X_{3} \vee (X_{2} \bar{X}_{4})))(X_{1} \vee \bar{X}_{3} \vee X_{5} \vee \bar{X}_{2} \vee X_{4}) =$$

$$S_{q} = 26$$

$$\varphi = \bar{X}_2 \vee X_4 \qquad \qquad \bar{\varphi} = X_2 \bar{X}_4$$

Выражение после декомпозиции:

$$\varphi = \overline{X}_2 \vee X_4, f = (\overline{X}_5 \vee (X_3 \vee \overline{\varphi})(X_1 \vee \overline{X_4})(X_1 \vee X_2))(X_2 \vee \overline{X}_4)(X_1 \vee X_3 \vee \overline{\varphi})(X_1 \vee \overline{X_3} \vee X_5 \vee \varphi)$$

$$S_a = 21$$

6. Синтез комбинационных схем в булевом базисе

С парафазными входами:

Задержка схемы с парафазными входами $T=5\tau$, цена схемы $S_q=21$ С однофазными входами:

Задержка схемы с однофазными входами $T=7\tau$, цена схемы $S_{\rm q}=36$

Базис ИЛИ – НЕ: $\bar{\varphi} = \bar{X}_2 \downarrow X_4 \\ f = (\overline{X_5} \lor (X_3 \lor \bar{\varphi})(X_1 \lor \overline{X_4})(X_1 \lor X_2))(X_2 \lor \bar{X_4})(X_1 \lor X_3 \lor \bar{\varphi})(X_1 \lor \overline{X_3} \lor X_5 \lor \varphi) = \\ (\overline{X_5} \downarrow ((X_3 \downarrow \bar{\varphi}) \downarrow (X_1 \downarrow \overline{X_4}) \downarrow (X_1 \downarrow X_2))) \downarrow (X_2 \downarrow \bar{X_4}) \downarrow (X_1 \downarrow X_3 \downarrow \bar{\varphi}) \downarrow (X_1 \downarrow \overline{X_3} \downarrow X_5 \downarrow \varphi)$

Задержка схемы $T=4\tau$, цена $S_q=\ 27$

Базис И – НЕ:

$$\varphi = \bar{X}_{2} | X_{4}$$

$$f = (\bar{X}_{5} \vee (X_{3} \vee \bar{\varphi})(X_{1} \vee \bar{X}_{4})(X_{1} \vee X_{2}))(X_{2} \vee \bar{X}_{4})(X_{1} \vee X_{3} \vee \bar{\varphi})(X_{1} \vee \bar{X}_{3} \vee X_{5} \vee \varphi) = (X_{5} | (\bar{X}_{3} | \varphi)|(\bar{X}_{1} | X_{4})|(\bar{X}_{1} | \bar{X}_{2}))|(\bar{X}_{2} | X_{4})|(\bar{X}_{1} | \bar{X}_{3} | \varphi)|(\bar{X}_{1} | X_{3} | \bar{X}_{5} | \bar{\varphi})$$

Задержка схемы $T=4\tau$, цена $S_q=27$

Анализ построенных схем : На наборе 00000 функция принимает значение 0, а на наборе 00100 – значение 1. На всех схемах указана их реакция на эти наборы.
9