#### Mostafa Sabri

# Lecture 12

4.3 Linearly Independent Sets; Bases



#### Linear independence

When does a linear combination vanish? Let V be a vector space,  $\mathbf{v}_i \in V$  and  $c_i \in \mathbb{R}$ . Consider the equation

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}. \tag{1}$$

This is always possible by taking  $c_i = 0$  for all i.

If this is the *only way*, we say the  $\mathbf{v}_i$  are *linearly independent*. If we can choose the  $c_i$  such that not all are zero and (1) holds, we say the  $\mathbf{v}_i$  are *linearly dependent*.

To test for independence, we solve equation (1) for the variables  $c_i$ .

### Linear independence

In  $P_n$ , two polynomials  $\sum_{k=0}^n c_k x^k$  and  $\sum_{k=0}^n d_k x^k$  are equal iff all coefficients are equal, i.e.  $c_k = d_k$  for all k. For example,  $p(x) = a + bx + cx^2$  and  $q(x) = d + ex + fx^2$  iff a = d and b = e and c = f.

This implies that the vectors  $\{1, x, x^2, \dots, x^n\}$  are linearly independent: if  $c_01 + c_1x + c_2x^2 + \dots + c_nx^n = \mathbf{0}$ , then  $\sum_{k=0}^n c_k x^k = \sum_{k=0}^n 0x^k$  and thus  $c_k = 0$  for all k.

Are the vectors  $\{1 + x + 3x^2, -2 + x, 1 + x^2\}$  in  $P_2$  linearly independent ?

Are the vectors  $\left\{\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right\}$  in  $M_{2,2}$  linearly independent?

#### Linear independence

Thm: A set  $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  is linearly dependent iff at least one of the vectors  $\mathbf{v}_i$  is a linear combination of the  $\mathbf{v}_j$  preceding it, j < i.

In particular, two vectors  $\mathbf{u}$  and  $\mathbf{v}$  are linearly dependent iff one of them is a scalar multiple of the other one.

Are the vectors 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$  linearly independent in  $M_{2,2}$ ?

## Basis for a vector space

A set  $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  in a vector space V is a basis for V if S is linearly independent and spans V.

- 1. Is  $S = \{(1, 1), (1, -1)\}$  a basis for  $\mathbb{R}^2$ ?
- 2. Is  $S = \{1, x, ..., x^n\}$  a basis for  $P_n$ ?
- 3. Suggest a standard basis for  $M_{2,2}$ .

```
Spanning Set Thm. If \mathbf{u} \in \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\} then \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{u}\} = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}. If \{\mathbf{0}\} \neq H = \operatorname{Span}(S), then a subset of S is a basis for H.
```

Prove this theorem.

# Bases for Col(A) and Row(A)

A basis is the smallest set which spans the vector space. Adding vectors to a basis makes it dependent. Removing vectors from a basis makes it lose the spanning property. e.g. among  $\{\mathbf{e}_1\}$ ,  $\{\mathbf{e}_1,\mathbf{e}_2\}$ ,  $\{\mathbf{e}_1,\mathbf{e}_2,(1,1)\}$  in  $\mathbb{R}^2$ , only  $\{\mathbf{e}_1,\mathbf{e}_2\}$  is a basis.

<u>Reminder:</u> To find a basis for Col(A), reduce  $A \sim B$  to row-echelon form, find the pivot columns, the corresponding columns in A form a basis of Col(A).

Thm: If a matrix A is row-equivalent to a matrix B in row-echelon form, then the nonzero row vectors of B form a basis for the row space of A.

#### **Row Spaces**

<u>Proof.</u> We know Row(A) = Row(B). Moreover, the nonzero vectors of B are linearly independent because their pivots shift in each row, so a linear combination  $\sum_{i=1}^k c_i \mathbf{r}_i(B)$  of the nonzero rows takes the form  $(0, c_1p_1, c_1*, c_2p_2 + c_1*, \ldots, c_kp_k + c_{k-1}* + \cdots + c_1*)$ , where  $p_i$  are the pivots, and equals  $(0, \ldots, 0)$  iff  $c_1 = \cdots = c_k = 0$ . Thus,  $S = \{\mathbf{r}_1, \ldots \mathbf{r}_k\}$  is linearly independent and spans Row(B) by the previous thm.  $\square$ 

| г.                                                    |   |   |   |   |   |   |   |   |   |
|-------------------------------------------------------|---|---|---|---|---|---|---|---|---|
| 0                                                     | - | * | * | * | * | * | * | * | * |
| 0                                                     | 0 | 0 | - | * | * | * | * | * | * |
| 0                                                     | 0 | 0 | 0 | • | * | * | * | * | * |
| 0                                                     | 0 | 0 | 0 | 0 | • | * | * | * | * |
| $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | * |

#### Methods to obtain a basis

1. Find a basis for the row space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix}.$$

To find a basis for the subspace H of  $\mathbb{R}^n$  spanned by  $\mathbf{v}_1, \ldots, \mathbf{v}_p$ , consider the matrix A

- 1. Method 1. with rows  $\mathbf{v}_i$  and find a basis  $\mathcal{B}$  for Row(A). Then  $\mathcal{B}$  is a basis for H.
- 2. Method 2. with columns  $\mathbf{v}_i$  and find a basis  $\mathcal{B}$  for Col(A). Then  $\mathcal{B}$  is a basis for H.
- 2. Find a basis for  $Span\{(1, 1, 3), (-2, 1, 0), (1, 0, 1)\}$ .