Projeto Eletrônica Digital II E208 – L1

Equipe – 3

Professor:

Bruno de Oliveira Monteiro bruno@inatel.br

Monitores:

Luis Gabriel Carvalho Silva luisgabriel@get.inatel.br

Integrantes / Matrícula / Curso:

- 1º Alexânder Augusto Silva Fernandes / 1333 / G.E.C.
- 2° Gabriel Augusto Abreu Melo / 577 / G.E.A.
- 3º João Pedro de Souza Tavares / 612 / G.E.A.
- 4º Lucas de Oliveira Saldanha / 609 / G.E.A.
- 5º Pedro Bonfilio Lima / 620 / G.E.A.

1. Introdução e Objetivo

O projeto constitui-se por um circuito que tem como intuito a automatização do caixa de uma loja de esportes chamada TTL Sports. O proprietário da loja queria que fosse desenvolvido um sistema que somasse a quantidade de produtos vendidos em um determinado caixa, para que quando uma certa quantia de vendas fosse atingida, um alarme sonoro seria acionado indicando que o caixa estaria com uma quantidade alta de dinheiro. Essa quantia poderia ser retirada do caixa, para que o proprietário não tenha um prejuízo tão grande caso a loja seja assaltada.

2. Tabela da Verdade e Funcionamento

2.1. Contador de bonés:

Para simular a contagem de bonés vendidos na loja, foi utilizado um contator assíncrono crescente de 0 à 8, sendo que quando o contador assumir o valor 9, uma armadilha será acionada fazendo com que a contagem retorne ao seu início e comece a contar novamente:

Contagem decimal	Q3	Q2	Q1	Q0	Armadilha
0	0	0	0	0	1
1	0	0	0	1	1
2	<u>0</u>	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	0	0	0	0	1
9	1	0	0	1	0

2.2. Contador de mochilas:

Para simular a quantia de mochilas vendias na loja, foi utilizado um outro contador assíncrono crescente de 0 à 9, visto que quando o contador assume o valor 10, a contagem é zerada e retornará ao seu início, começando todo processo novamente:

Contagem decimal	Q3	Q2	Q1	Q0	Armadilha
0	0	0	0	0	1
1	0	0	0	1	1
2	<u>0</u>	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	0	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0

2.3. Decodificador 7447

A contagem dos produtos será mostrada em dois displays de 7 segmentos que serão ligados a um descodificador 7447 que tem a função de interpretar um código (BCD) e gerar os sinais para ligar o digito correspondente a este código no display de 7 segmentos:

Entr	adas	Bina	arias	Salidas Decodificadas						Salida 7 Display	
D	С	В	A	а	b	С	d	e	f	g	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

2.4. Somador e Comparador de Magnitude

Para fazer a adição da quantidade de bonés e mochilas vendidas, foi utilizado um bloco somador que será ligado à saída dos dois contadores. Após fazer a soma dos produtos, o resultado será enviado para um comparador de magnitude que será conectado a um LED Luminoso e a um Buzzer. Se a quantidade total de produtos vendidos estiver abaixo do valor 9, o LED ficará aceso, porém se a quantidade atingir o valor 9, um buzzer será acionado, indicando a necessidade de retirada do dinheiro do caixa ao final do dia. O sistema O sistema também conterá uma chave de reinicialização para zerar a contagem dos CI's quando o dinheiro for retirado do caixa.

3. Esquema elétrico

3.1.Contador assíncrono de 0 à 8:

3.2. Contador assíncrono de 0 à 9:

3.3. Somador

3.4. Comparador de magnitude

4. Anexos

4.1. Resistores

Foram utilizados 1 resistor para o LED Luminoso e 7 resistores para cada display de sete seguimentos.

4.1.1. LED Luminoso

Para que o LED não seja queimado, é necessário limitar a corrente que passa em seus terminais. Então, basta conhecer a tensão de alimentação, a tensão do LED e a corrente do LED para que os cálculos sejam feitos. A formula abaixo representa como deve ser feito os cálculos:

$$R(LED) = \frac{V(i) - V(LED)}{I(LED)}$$
 (1)

$$R = \frac{3.3 - 1.8}{10mA}$$

$$R = 150 \Omega$$

Por motivos técnicos, foi adotado o resistor com o valor de 180 Ω .

Considere:

R(LED) = Resistor do LED

V(i) = Tensão de alimentação (+ 3.3V)

V(LED) = Tensão do LED (1.8V)

I = Corrente do LED (10mA)

4.1.2. Display de 7 seguimentos

Como o display apresenta vários LEDs em sua composição, então podemos usar a equação 1 para calcular seus resistores, porém a tensão de alimentação é os 5V de entrada do circuito:

$$R = \frac{5 - 1.8}{10mA}$$

$$R = 320 \Omega$$

Por motivos técnicos, foi adotado os resistores com o valor de 510 Ω .

4.2. Circuito real do Projeto

4.2.1. Contadores com armadilha

4.2.2. Display de 7 Segmentos

4.2.3. Somador e Comparador de Magnitude

4.2.4. Circuito final

