

Рекомендательные системы

Гриша Сапунов

NEWPROLAB.COM

Оценка качества рекомендательных систем

offline эксперименты

Experimental protocols

- hidden data
- cross-validation

Experimental protocols

- разбить данные на k блоков
 - обучаться на k-1
 - тестировать на 1

Experimental protocols

- На уровне пользователя для тестовой выборки
 - скрыть случайным образом х% (х) рейтингов
 - скрыть рейтинги с некоторого момента времени

метрики точности предсказания

Точность предсказания

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Root Mean Squared Error)

Mean Absolute Error (MAE)

предсказание

hidden ratings

- \bullet K множество всех скрытых рейтингов (hidden ratings)
- ullet |K| количество элементов множества K
- ullet \hat{r}_{ui} предсказание для товара i и пользователя u
- \bullet r_{ui} истинный рейтинг для товара i и пользователя u

Mean Squared Error (MSE)

предсказание

$$MSE = \frac{1}{|K|} \sum_{i \in K, u} (\hat{r}_{ui} - r_{ui})^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{|K|}} \sum_{u,i \in K} (\hat{r}_{ui} - r_{ui})^2$$

	The Godfather 1972 R 175 min ∓	Amélie 2001 R 122 min ∓	Charlie's Angels 2000 PG-13 98 min ∓	Avatar 2009 PG-13 162 min #	Harry Potter and the 2004 PG 141 min #
	The Godfather		ARGEES	AVATAR	Harty Potter
true	5	5	3	5	3
prediction	4	4	2	1	5

MAE = 1.6

MSE = 4.6

RMSE = 2.14

MAE RMSE

			Account to the second of the s			
true	5	4	3	5		
A	5	2	1	3	1.5	1.73
В	5	4	3	1	1	2

Как агрегировать

- по всем рейтингам сразу?
- по пользователям?

Как агрегировать

 $RMSE_{ratings}$? $RMSE_{users}$

NEW PRØ LAB

Как сравнить два алгоритма?

- разница в шкале рейтингов
- одни и те же данные
- что если покрытие разное?

decision-support метрики

- принятие «хороших» решений
- ошибки (errors)

$$3.5*-5* = good$$

true	5	5	1	5	4
prediction	2	4	4	4	5

$$0.5^*-2.5^* = bad$$

errors = 2

Precision and Recall

	Recommended	Not Recommended	
Preferred	True-Positive (tp)	False-Negative (fn)	#tp + #fn
Not Preferred	False-Positive (fp)	True-Negative (tn)	#fp + #tn
	#tp + #fp		

NEW PRØ LAB

Precision $P = \frac{\#tp}{\#tp + \#fp}$

	Recommended	Not Recommended	
Preferred	True-Positive (tp)	False-Negative (fn)	#tp + #fn
Not Preferred	False-Positive (fp)	True-Negative (tn)	
	#tp + #fp		

Recall

$$R = \frac{\#tp}{\#tp + \#fn}$$

True Positive Rate

	Recommended	Not Recommended	
Preferred	True-Positive (tp)	False-Negative (fn)	#tp + #fn
Not Preferred	False-Positive (fp)	True-Negative (tn)	
	#tp + #fp		

NEW PRØ LAB

False Positive Rate

$$= \frac{\#fp}{\#fp + \#tn}$$

	Recommended	Not Recommended	
Preferred	True-Positive (tp)	False-Negative (fn)	#tp + #fn
Not Preferred	False-Positive (fp)	True-Negative (tn)	#fp + #tn
	#tp + #fp		

- precision/recall curve
- true positive rate/false positive rate (ROC Receiver Operating Characteristic)

Что такое Recall в RecSys?

- прогнозировать топ по всем данным, засчитывать только оцененные раньше
- ограничиться только оцененными товарами
- попросить людей оценить

Table 7.4. Example user ratings.

Row	UserID	MovieID	Rating
1	234	110	5
2	234	151	5
3	234	260	3
4	234	376	5
5	234	539	4 ^a
6	234	590	5
7	234	649	1
8	234	719	5 ^a
9	234	734	3
10	234	736	2

^a Randomly selected ratings for testing.

 $recset_{234} = \{(912, 4.8), (47, 4.5), (263, 4.4), (539, 4.1), (348, 4), \dots, (719, 3.8)\}$

комбинированная
$$F1=rac{2\cdot P\cdot R}{P+R}$$

- P@k
- R@k
- усреднение по пользователям
- MAP@k (Mean Average Precision at K)

RMSE

	Netflix	BookCrossing
Pearson	1.07	3.58
Cosine	1.90	4.5

A Survey of Accuracy Evaluation Metrics of Recommendation Tasks

1, 3, 5, 10, 25 и 50 рекомендаций

(b) News click stream recommendations

Figure 3: Comparing recommendations generated by the item-item recommender and the expected profit recommender on the Ta-Feng data set.

Базовая метрика - Precision (точность).

Измеряем долю позитива в рекоменованном списке длины N_{rec}

Обобщаем формулу на всех пользователей сервиса

$$Precision = \frac{\sum\limits_{\substack{\text{все пользователи}\\ \text{есе пользователи}}}{\sum\limits_{\substack{\text{есе пользователи}\\ \text{есе пользователи}}} | Pекомендованные объекты | = \frac{\sum\limits_{\substack{\text{все пользователи}\\ \text{N}_{rec}: | Bce пользователи}}}{| N_{rec}: | Bce пользователи | }$$

UMXOHET

Учёт баллов в Precision

Формулу для Precision можно усовершенствовать и учитывать не только факт того, что фильм понравился пользователю, но и то насколько сильно он понравился.

В таком виде метрика Precision реагирует не только на концентрацию позитивных оценок в рекомендованном списке, но и на их качество.

$$Precision^* = \frac{\sum_{rate > 5} (rate - 5)}{N_{rec}}$$

Дисконтированная метрика

Если нам известно, какая доля пользователей W_N останавливается на N-ом элементе (дальше не просматривает), то полная усредненная удовлетворенность всей аудитории должна представлять собой взвешенную таким образом сумму значений Precision:

$$AUC = \sum_{N} Pr_{N} w_{N} = \sum_{N} \frac{\sum_{\text{rate} > 5} (rate - 5)}{N \cdot |Users|} w_{N}$$