# Basic Text Processing

By J. H. Wang

Feb. 23, 2023

#### Outline

- Words
  - Regular expressions
  - Pre-processing
- Language models
  - N-grams
- Syntax
  - POS tagging
  - Parsing

# **Basic Text Processing**

Regular Expressions

# Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
  - woodchuck
  - woodchucks
  - Woodchuck
  - Woodchucks



# Regular Expressions: Disjunctions

• Letters inside square brackets []

| Pattern      | Matches              |
|--------------|----------------------|
| [wW]oodchuck | Woodchuck, woodchuck |
| [1234567890] | Any digit            |

Ranges [A-Z]

| Pattern | Matches              |                                 |
|---------|----------------------|---------------------------------|
| [A-Z]   | An upper case letter | Drenched Blossoms               |
| [a-z]   | A lower case letter  | my beans were impatient         |
| [0-9]   | A single digit       | Chapter 1: Down the Rabbit Hole |

# Regular Expressions: Negation in Disjunction

- Negations [^Ss]
  - Carat means negation only when first in []

| Pattern | Matches                  |                                        |
|---------|--------------------------|----------------------------------------|
| [^A-Z]  | Not an upper case letter | O <u>y</u> fn pripetchik               |
| [^Ss]   | Neither 'S' nor 's'      | <pre>I have no exquisite reason"</pre> |
| [^e^]   | Neither e nor ^          | Look here                              |
| a^b     | The pattern a carat b    | Look up <u>a^b</u> now                 |

# Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

| Pattern                   | Matches       |
|---------------------------|---------------|
| groundhog woodchuck       | woodchuck     |
| yours   mine              | yours<br>mine |
| a b c                     | = [abc]       |
| [gG]roundhog [Ww]oodchuck | Woodchuck     |



# Regular Expressions: ? \* + .

| Pattern | Matches                    |                                       |  |
|---------|----------------------------|---------------------------------------|--|
| colou?r | Optional previous char     | <u>color</u> <u>colour</u>            |  |
| oo*h!   | 0 or more of previous char | oh! ooh! oooh!                        |  |
| o+h!    | 1 or more of previous char | oh! ooh! oooh!                        |  |
| baa+    |                            | <u>baa</u> <u>baaaa</u> <u>baaaaa</u> |  |
| beg.n   |                            | begin begun beg3n                     |  |



Stephen C Kleene

Kleene \*, Kleene +

# Regular Expressions: Anchors ^ \$

- ^: start of line
- •\$: end of line

| Pattern    | Matches              |
|------------|----------------------|
| ^[A-Z]     | Palo Alto            |
| ^[^A-Za-z] | <pre>1 "Hello"</pre> |
| \.\$       | The end.             |
| .\$        | The end? The end!    |

# Example

• Find me all instances of the word "the" in a text

the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

 $[^a-zA-Z][tT]he[^a-zA-Z]$ 

#### **Errors**

- The process we just went through was based on fixing two kinds of errors
  - Matching strings that we should not have matched (there, then, other)
    - False positives (Type I)
  - Not matching things that we should have matched (The)
    - False negatives (Type II)

#### Errors cont.

- In NLP we are always dealing with these kinds of errors
- Reducing the error rate for an application often involves two antagonistic efforts:
  - Increasing accuracy or precision (minimizing false positives)
  - Increasing coverage or recall (minimizing false negatives).

# Summary

- Regular expressions play a surprisingly large role
  - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
  - But regular expressions are are still used for pre-processing, or as features in the classifiers
  - Can be very useful in capturing generalizations

# **Basic Text Processing**

# More Regular Expressions: Substitutions and ELIZA

#### Substitutions

Substitution in Python and UNIX commands:

- s/regexp1/pattern/
- e.g.:
- s/colour/color/

# Capture Groups

Say we want to put angles around all numbers:

the 35 boxes 
$$\rightarrow$$
 the <35> boxes

- Use parens () to "capture" a pattern into a numbered register (1, 2, 3...)
- Use \1 to refer to the contents of the register

$$s/([0-9]+)/<\1>/$$

# Capture groups: multiple registers

- •/the (.\*)er they (.\*), the  $\ensuremath{\mbox{\sc ler}}$  we  $\ensuremath{\mbox{\sc ler}}$
- Matches
- the faster they ran, the faster we ran
- But not
- the faster they ran, the faster we ate

# But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and capturing

Non-capturing groups: add a ?: after paren:

```
•/(?:some|a few) (people|cats) like some
\1/
```

- matches
  - some cats like some cats
- but not
  - some cats like some some

#### Lookahead assertions

- (?= pattern) is true if pattern matches, but is zero-width; doesn't advance character pointer
- (?! pattern) true if a pattern does not match
- How to match, at the beginning of a line, any single word that doesn't start with "Volcano":
- /^(?!Volcano)[A-Za-z]+/

### Simple Application: ELIZA

- Early NLP system that imitated a Rogerian psychotherapist
  - Joseph Weizenbaum, 1966

- Uses pattern matching to match, e.g.,:
  - "I need X"

#### and translates them into, e.g.

• "What would it mean to you if you got X?

Simple Application: ELIZA Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here. YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

#### How ELIZA works

- s/.\* I'M (depressed|sad) .\*/I AM SORRY TO HEAR YOU ARE \1/
- s/.\* I AM (depressed|sad) .\*/WHY DO YOU THINK YOU ARE \1/
- s/.\* all .\*/IN WHAT WAY?/
- s/.\* always .\*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

# Basic Text Processing

Words and Corpora

# How many words in a sentence?

- "I do uh main- mainly business data processing"
  - Fragments, filled pauses
- "Seuss's cat in the hat is different from other cats!"
  - Lemma: same stem, part of speech, rough word sense
    - cat and cats = same lemma
  - Wordform: the full inflected surface form
    - cat and cats = different wordforms

# How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary
- Token: an instance of that type in running text
- How many?
  - 15 tokens (or 14)
  - 13 types (or 12) (or 11?)

# How many words in a corpus? N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary Heaps Law = Herdan's Law =  $|V| = kN^{\beta}$  where often .67 <  $\beta$  < .75 i.e., vocabulary size grows with > square root of the number of word tokens

|                                 | Tokens = N  | Types =  V  |
|---------------------------------|-------------|-------------|
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare                     | 884,000     | 31 thousand |
| COCA                            | 440 million | 2 million   |
| Google N-grams                  | 1 trillion  | 13+ million |

### Corpora

Words don't appear out of nowhere!

A text is produced by

- a specific writer(s),
- at a specific time,
- in a specific variety,
- of a specific language,
- for a specific function.

# Corpora vary along dimension like

- Language: 7097 languages in the world
- Variety, like African American Language varieties
  - AAE Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

```
S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe

["he was and will remain a friend ... don't worry ... but have faith"]
```

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES

# Corpus datasheets

Gebru et al (2020), Bender and Friedman (2018)

#### **Motivation:**

- Why was the corpus collected?
- By whom?
- Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

# Basic Text Processing

#### Word tokenization

#### Text Normalization

- Every NLP task requires text normalization:
  - 1. Tokenizing (segmenting) words
  - 2. Normalizing word formats
  - 3. Segmenting sentences

# Space-based tokenization

- A very simple way to tokenize
  - For languages that use space characters between words
    - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
  - Segment off a token between instances of spaces
- Unix tools for space-based tokenization
  - The "tr" command
  - Inspired by Ken Church's UNIX for Poets
  - Given a text file, output the word tokens and their frequencies

# Simple Tokenization in UNIX

- (Inspired by Ken Church's UNIX for Poets.)
- Given a text file, output the word tokens and their frequencies

Change all non-alpha to newlines

Merge and count each type

```
1945 A

72 AARON
25 Aaron
6 Abate
19 ABBESS
5 ABBOT
5 Abbess
1 Abess
6 Abbey
3 Abbot
```

NTUT CSIE

# The first step: tokenizing

```
tr -sc 'A-Za-z' '\n' < shakes.txt | head
```

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

. . .

# The second step: sorting

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
Α
Α
Α
Α
Α
Α
Α
Α
Α
. . .
```

NLP & TM, Spring 2023 NTUT CSIE 35

# More counting

Merging upper and lower case

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' 'n' | sort | uniq -c
```

Sorting the counts

```
tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c | sort -n -r
```

```
23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954 d
```

What happened here?

NLP & TM, Spring 2023 NTUT CSIE 36

#### Issues in Tokenization

- Can't just blindly remove punctuation:
  - m.p.h., Ph.D., AT&T, cap'n
  - prices (\$45.55)
  - dates (01/02/06)
  - URLs (http://www.stanford.edu)
  - hashtags (#nlproc)
  - email addresses (someone@cs.colorado.edu)
- Clitic: a word that doesn't stand on its own
  - "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
  - New York, rock 'n' roll

#### Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O'Reilly

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
   ([A-Z]\setminus.)+ # abbreviations, e.g. U.S.A.
w+(-)
                        # words with optional internal hyphens
   | \$?\d+(\.\d+)?%?
                        # currency and percentages, e.g. $12.40, 82%
... | \.\.\.
                        # ellipsis
    [][.,;"'?():-_']  # these are separate tokens; includes ], [
   , , ,
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

## Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!

How do we decide where the token boundaries should be?

#### Word tokenization in Chinese

- Chinese words are composed of characters called "hanzi" (or sometimes just "zi")
- Each one represents a meaning unit called a morpheme
- Each word has on average 2.4 of them
- But deciding what counts as a word is complex and not agreed upon

•姚明進入總決賽 "Yao Ming reaches the finals"

- •姚明進入總決賽 "Yao Ming reaches the finals"
- •3 words?
- •姚明 進入 總決賽
- YaoMing reaches finals

- •姚明進入總決賽 "Yao Ming reaches the finals"
- •3 words?
- •姚明 進入 總決賽
- YaoMing reaches finals
- •5 words?
- •姚 明 進入 總 決賽
- •Yao Ming reaches overall finals

- •姚明進入總決賽 "Yao Ming reaches the finals"
- •3 words?
- 進入總決賽 •姚明
- YaoMing reaches finals
- •5 words?
- •姚 明 進入 總 決賽
- •Yao Ming reaches overall finals
- •7 characters? (don't use words at all): •姚 明 進 入 總 決
- •Yao Ming enter enter overall decision game

## Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi) as a token

• So the **segmentation** step is very simple

In other languages (like Thai and Japanese), more complex word segmentation is required

 The standard algorithms are neural sequence models trained by supervised machine learning

## Basic Text Processing

Byte Pair Encoding

## Another option for text tokenization

Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize

**Subword tokenization** (because tokens can be parts of words as well as whole words)

#### Subword tokenization

- Three common algorithms:
  - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
  - Unigram language modeling tokenization (Kudo, 2018)
  - WordPiece (Schuster and Nakajima, 2012)
- All have 2 parts:
  - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens)
  - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

## Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

- Repeat:
  - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
  - Add a new merged symbol 'AB' to the vocabulary
  - Replace every adjacent 'A' 'B' in the corpus with 'AB'
- Until k merges have been done

## BPE token learner algorithm

```
function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V
```

```
V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens til k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

## Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens So we commonly first add a special end-of-word symbol '\_\_\_' before

space in training corpus

Next, separate into letters

#### BPE token learner

Original (very fascinating corpus:

low low low low lowest lowest newer newer

Add end-of-word tokens, resulting in this vocabulary:

```
vocabulary
```

 $\_$ , d, e, i, l, n, o, r, s, t, w

#### BPE token learner

Merge e r to er

#### **BPE**

```
corpus
                     vocabulary
    1 o w _
                     _, d, e, i, l, n, o, r, s, t, w, er
    lowest_
 6 newer_
 3 wider_
 2 new_
Merge er _ to er_
                     vocabulary
 corpus
 5 1 o w _
                     \_, d, e, i, 1, n, o, r, s, t, w, er, er\_
 2 lowest_
 6 newer_
   w i d er_
    new_
```

#### **BPE**

ne w \_

```
vocabulary
 corpus
     1 o w _
                       _, d, e, i, l, n, o, r, s, t, w, er, er_
     lowest_
 6 newer_
 3 wider_
   new_
Merge n e to ne
                      vocabulary
corpus
    1 o w _
                      \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne
    lowest_
   ne w er_
  wider_
```

#### **BPE**

The next merges are:

## BPE token **segmenter** algorithm

On the test data, run each merge learned from the training data:

- Greedily
- In the order we learned them
- (test frequencies don't play a role)

So: merge every e r to er, then merge er \_ to er\_, etc.

- Result:
  - Test set "n e w e r \_ " would be tokenized as a full word
  - Test set "I o w e r \_" would be two tokens: "low er\_"

## Properties of BPE tokens

Usually include frequent words

And frequent subwords

Which are often morphemes like -est or -er

A morpheme is the smallest meaning-bearing unit of a language

• unlikeliest has 3 morphemes un-, likely, and -est

# Basic Text Processing

Word Normalization and Other Issues

#### Word Normalization

- Putting words/tokens in a standard format
  - U.S.A. or USA
  - uhhuh or uh-huh
  - Fed or fed
  - am, is, be, are

## Case folding

- Applications like IR: reduce all letters to lower case
  - Since users tend to use lower case
  - Possible exception: upper case in mid-sentence?
    - e.g., *General Motors*
    - Fed vs. fed
    - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
  - Case is helpful (*US* versus *us* is important)

#### Lemmatization

Represent all words as their lemma, their shared root = dictionary headword form:

- am, are, is  $\rightarrow$  be
- car, cars, car's, cars'  $\rightarrow$  car
- Spanish quiero ('I want'), quieres ('you want')
- → querer 'want'
- He is reading detective stories
  - $\rightarrow$  He be read detective story

## Lemmatization is done by Morphological Parsing

#### Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Parts that adhere to stems, often with grammatical functions

### Morphological Parsers:

- Parse cats into two morphemes cat and s
- Parse Spanish *amaren* ('if in the future they would love') into morpheme *amar* 'to love', and the morphological features *3PL* and *future subjunctive*

## Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.



Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

•

#### Porter Stemmer

- Based on a series of rewrite rules run in series
  - A cascade, in which output of each pass fed to next pass
- Some sample rules:

```
ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)

ING \rightarrow \epsilon if stem contains vowel (e.g., motoring \rightarrow motor)

SSES \rightarrow SS (e.g., grasses \rightarrow grass)
```

# Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'
  - + tir `cause' + ama `not able'
  - + dik `past' + lar 'plural'
  - + imiz 'p1pl' + dan 'abl'
  - + mis 'past' + siniz '2pl' + casina 'as if'

## Sentence Segmentation

- !, ? mostly unambiguous but **period** "." is very ambiguous
  - Sentence boundary
  - Abbreviations like Inc. or Dr.
  - Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary.

An abbreviation dictionary can help

Sentence segmentation can then often be done by rules based on this tokenization.

## Thanks for Your Attention!