Devoir Non Surveillé

Devoir optionnel, pour vous entraîner. À rendre (si vous le souhaitez!) pour le 4 février.

L'objectif de ce devoir est de démontrer qu'il existe exactement 5 structures de catégories de modèles sur la catégorie des ensembles pointés Set_* . On rappelle que les objets de Set_* sont les paires (X, x_0) où X est un ensemble et $x_0 \in X$ est un élément. Les morphismes sont donnés par :

$$\operatorname{Hom}_{\operatorname{Set}_*}((X,x_0),(Y,y_0)) = \{ f: X \to Y \, | \, f(x_0) = y_0 \}.$$

- 1. Démontrer que la catégorie Set_{*} est complète et cocomplète. On pourra utiliser le fait que Set l'est. Quel est le produit, le coproduit ? Quel est l'objet initial, l'objet final ?
- 2. On considère le carré commutatif suivant :

$$(A, a_0) \xrightarrow{f} (X, x_0)$$

$$\downarrow \qquad \qquad \downarrow p$$

$$(B, b_0) \xrightarrow{g} (Y, y_0)$$

- (a) Donner une condition nécessaire et suffisante sur f et i pour qu'il existe une application pointée l telle que $l \circ i = f$ (i.e. le triangle supérieur commute). On pourra raisonner en termes d'éléments ayant les mêmes images.
- (b) Donner une condition nécessaire et suffisante sur g et p pour qu'il existe une application pointée l telle que $p \circ l = g$ (i.e. le triangle inférieur commute). On pourra raisonner en termes d'éléments ayant ou non des antécédents.
- (c) En déduire une condition nécessaire et suffisante sur f, i, g, p pour qu'il existe une application pointée l telle que tout le diagramme commute.
- 3. Soit i et p deux applications pointées comme dans le diagramme précédent. On note $i \perp p$ si quelles que soient les applications f et g, on peut trouver un relèvement l.
 - (a) Montrer que

$$i \perp p \iff \begin{cases} i \text{ est injective ou } p \text{ est injective,} \\ i \text{ est surjective ou } p \text{ est surjective.} \end{cases}$$

- (b) Soit $i:(A,a_0)\to (B,b_0)$ une application pointée. Déterminer la classe i^\perp des applications pointées p telles que $i\perp p$.

 Dualement, soit $p:(X,x_0)\to (Y,y_0)$ une application pointée. Déterminer la classe $^\perp p$ des applications pointées i telles que $i\perp p$.
- 4. Un système à factorisation faible est une paire de classes d'applications $(\mathcal{E},\mathcal{M})$ telle que :

- $\mathcal{E} = \mathcal{M}^{\perp}$ est exactement la classe des applications qui ont la propriété de relèvement à droite par rapport à toutes les applications de \mathcal{M} ;
- $\mathcal{M} = {}^{\perp}\mathcal{E}$ est exactement la classe des applications qui ont la propriété de relèvement à gauche par rapport à toutes les applications de \mathcal{E} ;
- toute application f peut se factoriser sous la forme $f = i \circ p$ où $i \in \mathcal{M}$ et $p \in \mathcal{E}$.
- (a) Soit i une application pointée quelconque. Montrer que la paire $R(i) := (^{\perp}(i^{\perp}), i^{\perp})$ est un système à factorisation faible. (On pourra raisonner au cas par cas sur i.)
- (b) Soit $(\mathcal{E}, \mathcal{M})$ un système à factorisation faible quelconque. Montrer qu'il fait partie de la liste précédente.
- 5. Supposons désormais que $(Set_*, \mathcal{W}, \mathcal{C}, \mathcal{F})$ est une structure de catégorie de modèles où \mathcal{W} sont les équivalences faibles, \mathcal{C} sont les cofibrations et \mathcal{F} sont les fibrations.
 - On rappelle que $(C \cap \mathcal{W}, \mathcal{F})$ et $(C, \mathcal{F} \cap \mathcal{W})$ sont des systèmes à factorisation faibles et qu'ils font donc partie de la liste trouvée à la Question 4. Quelles paires sont possibles étant données les relations d'inclusions existant entre ces deux systèmes?
- 6. La classe \mathcal{W} doit satisfaire une condition supplémentaire pour obtenir une catégorie de modèles.
 - (a) Quelle est cette condition?
 - (b) Exprimer la classe W en fonction de C et \mathcal{F} .
 - (c) Parmi les paires de systèmes à factorisation faibles $((\mathcal{C} \cap \mathcal{W}, \mathcal{F}), (\mathcal{C}, \mathcal{F} \cap \mathcal{W}))$ possibles trouvées à la question précédente, lesquelles vérifient l'hypothèse supplémentaire sur \mathcal{W} ?
- 7. Lister toutes les structures de catégories de modèles sur Set_{*}. On pourra les numéroter pour y référer plus facilement par la suite.
- 8. Pour chacune de ces structures :
 - (a) Décrire les objets fibrants et cofibrants.
 - (b) Pour chaque ensemble pointé, décrire les cylindres et les objets chemins.
 - (c) Décrire quand deux applications sont homotopes à gauche, resp. à droite.
 - (d) Décrire la catégorie homotopique $Ho(Set_*) = Set_*[\mathcal{W}^{-1}].$
- 9. Entre lesquelles de ces structures existe-t-il des équivalences de Quillen?