Chosen plaintext attack

Chosen plaintext attack

Idea: You choose the messages to be encrypted

CPA and deterministic ciphers

Claim - No deterministic cipher is CPA secure

Intuition: It leaks that two identical ciphertexts encode the same message

Proof Idea

We iterate the game of semantic security but we use the same key

- Adversary queries i pairs (m_{i0}, m_{i1})
- · Challenger picks a message and returns the encryption
- · The adversary must't be able to distinguish which ciphertext was encrypted

Attack

- ullet Let the adversary query (m,m) o c and (m,m')
- if at the 2nd query he gets c back then m was encrypted, otherwise it was m'

Deterministic CPA security

But what if we never repeat a message?

- same Idea but the (k, m) pairs must not repeat
- Therefore the attacker cannot querry (m,m) under the same key
- Uses
 - In a database with a unique UID
 - ullet Encrypting keys o very low probability to repeat

CPA security

Task

- · Make ciphers CPA secure
- ullet Let E,D be the encryption and decryption algorithms

Stateful encryption

Encryption/decryption can be stateful, meaning that every call to E or D willactually modify the value of k.

Randomized encryption

Randomized encryption

Each time a plaintext is encrypted, the E algorithm chooses fresh, independent randomness specifc to that encryption.

 The main challenge in designing a randomized encryption method is to incorporate randomness into each ciphertext in such a way that decryption is still possible.

• Every encryption goes to 1 different point in the "ball" each time

Ex:

- ullet $F:K imes R\longrightarrow M$ be a secure PRF
- $E(k,m)=(r,F(k,r)\oplus m)$ for a random $r\in R$

Mode of operation example:

CBC mode

Nonce-based encryption

We have 3 inputs E(k,m,n)

- A "nonce" stands for "number used only once"
 - $\, \circ \,$ and it refers to an extra argument that is passed to the E and D algorithms
 - A nonce does not need to be chosen randomly;
 - it does not need to be secret;
 - ullet the pair k,n must be different for every message

Ex:

- Counter mode
 - Start pick a starting number then increment it for each message
 - You can send the nonce along the message
 - The parties can keep the counter