北京化工大学 2017—2018 学年第二学期

《高等数学 A (下)》期末考试试卷

课程代码 M A T 1 3 9 0 5	呈代码	T 1 3	9 0 5	Т
----------------------	-----	-------	-------	---

阅卷教师:

复核教师: _____

题号		=						三					四四	台分	
		1	2	3	4	5	6	7	1	2	3	4	5	<u> </u>	心力
得分															

一、填空(3分×6=18分)

- 2. 极限 $\lim_{(x \ v) \to (0,1)} \frac{\sqrt{2 e^{xy}} 1}{xv^2} = \underline{\hspace{1cm}}$ 。
- 4. 已知对于 xoy 面内任意闭曲线 L 上都有 $\oint_L (x+2y)dx + (ax+y)dy = 0$ 则
- 5. 设 Σ 为平面x+y+z=1位于第一卦限内部分上侧,则对坐标的曲面积分 $\iint\limits_{\mathbb{R}}P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy$ 化为对面积的曲面积分
- 6. 函数 $f(x) = \begin{cases} -1, & -\pi \le x < 0 \\ 1 + x^2, & 0 \le x < \pi \end{cases}$ 的傅里叶级数在 x = 0 处收敛于______。

《高等数学 A (下)》 第 1 页

二、解答题(6分×7=42分)

1. 求过点 P(1,1,1) 且与直线 $e: \begin{cases} x+y+z-2=0 \\ x-y+z+2=0 \end{cases}$ 平行的直线方程。

2. 计算积分 $\int_0^{\pi} dx \int_0^x \frac{\sin y}{\pi - y} dy.$

4. 计算积分 $\oint_{L} \frac{xdy - ydx}{x^2 + y^2}$, 其中 $L: x^2 + y^2 = 1$, 取逆时针方向。

5. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6 \\ x^2 + y^2 - z^2 = 4 \end{cases}$$
 在点 $P(2,1,1)$ 处的切线方程。

6. 验证微分形式 $\frac{x+y}{x^2+y^2} dx - \frac{x-y}{x^2+y^2} dy$ 在右半平面 (x>0) 内为某函数的全微分, 并求出这样一个函数。 7. 求函数 $f(x,y) = 3axy - x^3 - y^3$ 的极值,其中 a 为非零常数。

三、解答题 (7分×5=35分)

1. 求函数 $u = e^{-z} + \int_0^{xy} e^{-t^2} dt$ 在点 P(1,1,1) 处沿着曲面 $2x^2 + 3y^2 + z^2 = 6$ 上点 P 的外法线方向的方向导数。

2. 计算积分 $\iint_{\Sigma} xyz \, dS$, 其中 Σ 为曲面 x+y+z=1 在第一卦限的部分。

3. 判断级数 $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$ 的收敛性,若收敛请指明是绝对收敛还是条件收敛。

5. 求幂级数 $\sum_{n=0}^{\infty} \frac{1}{(n+2)n!} x^{n+2}$ 的收敛域及和函数。

四、解答题(5分)

设函数 z = f(x,y) 满足 dz = 2xdx - 2ydy,且 f(1,1) = 2,求函数 f(x,y) 在 $D = \left\{ (x,y) \mid x^2 + \frac{y^2}{4} \le 1 \right\} \text{ L的最大值与最小值}.$