

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມມັດທະຍົມສຶກສາ

ຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູງນເກັ່ງຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດ ປະຈຳສົກຮູງນ 2014-2015

ເວລາ: 120 ນາທີ

ວິຊາ: ຟີຊິກສາດ

1. ເມື່ອເອົາວັດຖຸ A ຕິດໄຟຟ້າບັນຈຸມາໃກ້ໆກັບວັດຖຸຈາວໄຟຟ້າ BC ດັ່ງຮູບ. ຈະເກີດປາກົດການແນວໃດ? ຢູ່ວັດຖຸຈາວໄຟຟ້າ ຕາມແຕ່ລະກໍລະນີລຸ່ມນີ້:

2. ໝາກບີ່ເຫຼັກໜ່ວຍໜຶ່ງມີມວນສານ m ເລີ່ມຕົກຈາກລະດັບສູງ h ທູບໃສ່ໜ້າດິນ. ຈົ່ງອະທິບາຍ ແລະ ຫາເຫດຜົນມາຢັ້ງຢືນວ່າ **ພະລັງງານກົນຈັກ** ຢູ່ຈຸດເລີ່ມຕົ້ນຕົກ ແລະ ຈຸດທີ່ໝາກບີ່ຕົກຮອດດິນເທົ່າກັນ. ຮູ້ ວ່າຄວາມເລັ່ງຂອງການຕົກຕາມລຳພັງແມ່ນ g.

3. ຄວາມແຮງ F ໜຶ່ງກະທົບໃສ່ວັດຖຸທີ່ເປັນຮູບກ້ອນສາກ ມີຂ້າງແມ່ນ a ສາມາດຈົມຢູ່ໃນນ້ຳໄດ້ພໍດີ. ເພື່ອເຮັດໃຫ້ວັດຖຸອີກກ້ອນໜຶ່ງຄືກັນທີ່ມີຂ້າງເທົ່າ 2a ໃຫ້ຈົມລົງໃນນ້ຳໄດ້ພໍດີຄືກັບວັດຖຸທີ່ໜຶ່ງ, ຈະຕ້ອງ ກະທົບຄວາມແຮງໃສ່ເທົ່າໃດເທື່ອຂອງຄວາມແຮງ F ຖ້?

- 4. ລົດເກັງຄັນໜຶ່ງ ເລີ່ມເຄື່ອນທີ່ຊື່ດ້ວຍຄວາມໄວທຳອິດເທົ່າສູນ ແລະ ມີຄວາມເລັ່ງ a₁ ຈົນມີຄວາມໄວ v ແລ້ວສືບຕໍ່ເຄື່ອນທີ່ດ້ວຍຄວາມໄວຄົງຄ່າໄດ້ໄລຍະໜຶ່ງ, ຫຼັງຈາກນັ້ນ ຄວາມໄວຂອງລົດຄັນດັ່ງກ່າວໄດ້ຫຼຸດ ລົງ ແລະ ມີຄວາມເລັ່ງ a₂ ຈົນຢຸດ. ຖ້າໄລຍະທາງທັງໝົດແມ່ນ S ຖາມວ່າ:
 - ກ. ຕະຫຼອດເສັ້ນທາງການເຄື່ອນທີ່ຂອງລົດຄັນດັ່ງກ່າວເປັນການເຄື່ອນທີ່ປະເພດໃດແດ່? ຍ້ອນຫຍັງ?
 - ຂ. ຈົ່ງສະແດງໃຫ້ເຫັນວ່າ ໄລຍະເວລາທັງໝົດທີ່ໃຊ້ໃນການເຄື່ອນທີ່ແມ່ນ: $t = \frac{S}{v} + \frac{v}{2} \left(\frac{1}{a_1} + \frac{1}{a_2} \right)$
- 5. ວັດຖຸໜຶ່ງມີມວນສານ m=300g ມັດໃສ່ລໍຂໍແລ້ວເຮັດໃຫ້ມັນສັ່ນໄກວກົມກຸງວຕາມສົມຜົນ $x=10\sin 10\pi t$. ໃນນັ້ນ t ມີຫົວໜ່ວຍເປັນວິນາທີ (s) ແລະ x ມີຫົວໜ່ວຍເປັນຊັງຕີແມັດ (cm). ກຳນົດໃຊ້ຄ່າ $\pi^2\approx 10$, $\sqrt{2}=1,41$; $\sqrt{3}=1,73$; $\sqrt{5}=2,24$.
 - ກ. ຈົ່ງຄິດໄລ່ ສຳປະສິດຫິດຢຶດຂອງລໍຊໍ.
 - ຂ. ຖ້າກຳນົດເອົາຈຸດເຄົ້າຂອງການສັ່ນໄກວແມ່ນຈຸດດຸ່ນດ່ຽງ ແລະ ເວລາເລີ່ມຕົ້ນ $t_0=0$ ວັດຖຸກຳລັງ ຜ່ານທີ່ຕັ້ງດຸ່ນດ່ຽງ. ຖາມວ່າ ດົນປານໃດຄວາມໄວຂອງວັດຖຸຈຶ່ງຈະມີຄ່າເທົ່າກັບເຄິ່ງໜຶ່ງຂອງຄວາມ ໄວສູງສຸດ?
 - ຄ. ຄວາມໄວຂອງວັດຖຸຈະມີຄ່າເທົ່າໃດ ເມື່ອວັດຖຸຜ່ານຈຸດທີ່ມີໄລຍະເຄື່ອນຍ້າຍເທົ່າເຄິ່ງໜຶ່ງຂອງໄລຍະ ປ່ຽນຂອງການສັ່ນໄກວ?
- 6. ການປະກອບສ້າງວົງຈອນໄຟຟ້າດັ່ງ (ຮູບ ກ). R ແມ່ນຄວາມຕ້ານຂອງເຄື່ອງຕ້ານໄຟຟ້າ R,M ແມ່ນ ເຄື່ອງໃຊ້ໄຟຟ້າ ຊຶ່ງມີຄ່າຄວາມຕ້ານປ່ຽນແປງຂຶ້ນກັບກະແສໄຟຟ້າ I ທີ່ໄປຜ່ານມັນ, ຄວາມຕ້ານຂອງ ເຄື່ອງໃຊ້ໄຟຟ້າມີສູດ M = PI + b (P ແລະ b ເປັນຄ່າຄົງທີ່ບວກ), E ແມ່ນຄ່າແຮງເຄື່ອນໄຟຟ້າຂອງບໍ່ ໄຟຟ້າ E ແລະ ບໍ່ໄຟຟ້າບໍ່ມີຄວາມຕ້ານພາຍໃນ (r = 0).

- ກ. ໃນກໍລະນີເຄື່ອງຕ້ານ R ແລະ ເຄື່ອງໃຊ້ໄຟຟ້າ M ຕໍ່ລຽນກັນ ດັ່ງຮູບ ກ. ຖ້າ $P=5~\Omega/A;$ $b=4\Omega\;;\;\;R=16\Omega\;;\;E=25V\;.$ ຈົ່ງຄິດໄລ່ຄວາມເຂັ້ມກະແສໄຟຟ້າທີ່ບໍ່ໄຟຟ້າສົ່ງອອກ.
- ຂ. ໃນກໍລະນີເຄື່ອງຕ້ານ R ແລະ ເຄື່ອງໃຊ້ໄຟຟ້າ M ຕໍ່ແບບຂະໜານກັນດັ່ງຮູບ ຂ. ຖ້າ P=1 Ω/A ; $b=1\Omega$; $R=4\Omega$; E=2V . ຈົ່ງຄິດໄລ່ຄວາມເຂັ້ມກະແສໄຟຟ້າທີ່ບໍ່ໄຟຟ້າສື່ງອອກ.

- 7. ໃຊ້ກ້ອງຖ່າຍຮູບ ຖ່າຍຮູບໃຫ້ເດັກນ້ອຍຜູ້ໜຶ່ງທີ່ມີຄວາມສູງ 1,2m ແລະ ຢືນຢູ່ຫ່າງຈາກກ້ອງໄລຍະ
 4,1m, ຄວາມສູງຂອງຮູບທີ່ປາກົດຢູ່ແຜ່ນຟີມແມ່ນ 3cm. ຈົ່ງຄິດໄລ່:
 - ກ. ໄລຍະສຸມແສງຂອງເລນທີ່ໃຊ້ເຮັດກ້ອງຖ່າຍຮູບໜ່ວຍນີ້.
 - ຂ. ຖ້າເອົາເລນຊະນິດດຽວກັນ ແລະ ມີໄລຍະສຸມແສງເທົ່າກັນມາວາງແປະໄວ້ຂ້າງໜ້າຂອງເລນເດີມ.
 ຖາມວ່າຕ້ອງປັບຟົມໃຫ້ຢູ່ຫ່າງຈາກເລນໄລຍະເທົ່າໃດຈິ່ງຈະໄດ້ຮັບຮູບແຈ້ງດີ? ແລະ ຮູບທີ່ໄດ້ຮັບຈະມີ ລວງສູງເທົ່າໃດ?
- 8. ເພິ່ນເຮັດການທົດລອງກ່ຽວກັບກາສສົມບູນປະລິມານໃດໜຶ່ງ ທີ່ບັນຈຸໃນກະບອກລູກສູບມີຄວາມດັນ P_0 ແລະ ມີບໍລິມາດ V_0 ຖ້າເຮັດໃຫ້ບໍລິມາດ ແລະ ຄວາມ ດັນປ່ຽນແປງ ຊຶ່ງສາມາດສະແດງຜົນການທົດລອງດັ່ງ

ດນປູນແບງ ຊຸງສາມາດສະແດງຜນການທົດລອງດງ ແຜນພາບສະແດງການພົວພັນລະຫວ່າງຄວາມດັນ ແລະ ບໍລິມາດ ລຸ່ມນີ້. ຈົ່ງຄິດໄລ່:

- ກ. ແຮງງານຂອງກ້ຳສທີ່ເກີດຂຶ້ນໃນຊ່ວງ AB.
- ຂ. ແຮງງານທີ່ເກີດຈາກກ້າສໃນຊ່ວງ CD.
- ຄ. ແຮງງານທີ່ເກີດຈາກກ້າສໃນຊ່ວງ ABC.
- ງ. ພະລັງງານຄວາມຮ້ອນທີ່ເກີດຂຶ້ນໃນລະບົບ.

- 9. ເພິ່ນສາຍເລົາແສງໃສ່ແຕ່ນ ໂລຫະຊະນິດໜຶ່ງຊຶ່ງມີຄວາມຖີ່ຂີດເລີ່ມ $9{,}68 \times 10^{14} \mathrm{Hz}$. ຖາມວ່າ:
 - ກ. ພະລັງງານນ້ອຍສຸດຂອງແສງທີ່ເຮັດໃຫ້ເກີດປາກົດການໂຟໂຕອີເລັກຕຣອນແມ່ນເທົ່າໃດ?
 - ຂ. ເມື່ອສາຍແສງທີ່ມີຄວາມຖີ່ $1.5 \times 10^{15} \, \mathrm{Hz}$, ພະລັງງານເດີນເຄື່ອນສູງສຸດທີ່ເຮັດໃຫ້ອີເລັກຕຣອນຫຼຸດ ອອກຈາກຜີວໜ້າໂລຫະແມ່ນເທົ່າໃດ? ກຳນົດໃຫ້ຄ່າຄົງທີ່ຂອງປຼັງແມ່ນ $6.63 \times 10^{-34} \mathrm{J.s.}$
- 10. ເອເລັກຕຣົງເມັດໜຶ່ງເຄື່ອນທີ່ດ້ວຍຄວາມໄວ $4\times10^6~\mathrm{m/s}$ ຜ່ານເຂົ້າໃນທີ່ງໄຟຟ້າສະເໝີ ທີ່ມີຄວາມເຂັ້ມ ເທົ່າກັບ $910~\mathrm{V/m}$ ຕາມທິດທາງດູງວກັບເສັ້ນຄວາມແຮງທີ່ງໄຟຟ້າ. ຈົ່ງຄິດໄລ່ ຄວາມເລັ່ງ ແລະ ໄລຍະ ທາງຂອງເອເລັກຕຣົງທີ່ເຄື່ອນທີ່ເຂົ້າໄປໄດ້ໃນທີ່ງໄຟຟ້າ. ຮູ້ວ່າເອເລັກຕຣົງມີມວນສານເທົ່າ $9.1\times10^{-31}\,\mathrm{kg}$ ແລະ ມີໄຟຟ້າບັນຈຸ $q=-1.6\times10^{-19}\,\mathrm{C}$.

ຄະນະກຳມະການອອກຫົວບົດ