Math 650 Fall 2016 Homework #1

Due Sept. 20, Tue in class

- 1. Let $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ be given, and $\|\cdot\|_p$ denote the *p*-norm on the Euclidean space. Show each of the following minimization problems has an optimal solution.
 - (1) $\min_{x \in P} \|y Ax\|_2^2$, where the set $P := \{x \in \mathbb{R}^n : \|x\|_1 \le \alpha\}$ for a positive constant α .
 - (2) $\min_{x \in \mathbb{R}^n} \|y Ax\|_2^2 + \lambda \|x\|_1$, where λ is a positive constant.

Remark: These minimization problems are related to the Least Absolute Shrinkage and Selection Operator (or LASSO), which is popular in statistics and machine learning nowadays.

- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be $f(x) = x^T A x + c^T x, \forall x \in \mathbb{R}^n$, where A is a positive definite matrix, and $c \in \mathbb{R}^n$ is a given vector.
 - (1) Show that f is coercive on \mathbb{R}^n ;
 - (2) Show that for any nonempty closed set P in \mathbb{R}^n , $\min_{x \in P} f(x)$ has an optimal solution.
- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function on \mathbb{R}^n . Suppose f is homogeneous of degree ν with $\nu \in \mathbb{N}$, namely, for any real number λ , $f(\lambda x) = \lambda^{\nu} f(x), \forall x \in \mathbb{R}^n$. Show that for any vector norm $\|\cdot\|$ on \mathbb{R}^n , there exist real numbers α and β such that $\beta \|x\|^{\nu} \leq f(x) \leq \alpha \|x\|^{\nu}, \forall x \in \mathbb{R}^n$. Further, if the degree ν is odd and f is not identically zero on \mathbb{R}^n , then $\alpha > 0$.
- 4. Solve the following problems:
 - (1) Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be two lower semicontinuous functions on \mathbb{R}^n . Show that f + g is lower semincontinuous.
 - (2) Let $f_{\alpha}: \mathbb{R}^n \to \mathbb{R}$ be an indexed function with index $\alpha \in I$. Let f be the pointwise supremum of f_{α} 's, i.e., $f(x) := \sup_{\alpha \in I} f_{\alpha}(x), \forall x \in \mathbb{R}^n$. Show that $\operatorname{epi}(f) = \bigcap_{\alpha \in I} \operatorname{epi}(f_{\alpha})$.
 - (3) Use (2) and the epigraph argument to construct an alternative proof of the fact: the pointwise supremum of a family of lower semicontinuous functions is lower semicontinuous. (*Hint*: what can you say about the intersection of a family of closed sets?)

More practice problems: Do not submit

Let $\|\cdot\|_0$ be the pseudo 0-norm on \mathbb{R}^n defined as

 $||x||_0 :=$ the number of nonzero elements in x, $\forall x \in \mathbb{R}^n$.

- (1) Explain why $\|\cdot\|_0$ is not a norm on \mathbb{R}^n .
- (2) Show that pseudo 0-norm on \mathbb{R} is lower semicontinuous.
- (3) Use (2) to show that $\|\cdot\|_0$ on \mathbb{R}^n is lower semicontinuous. (*Hint*: for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $\|x\|_0 = |x_1|_0 + |x_2|_0 + \dots + |x_n|_0$, where $|\cdot|_0$ is the pseudo 0-norm on \mathbb{R} .)