MAL 122: REAL AND COMPLEX ANALYSIS

Department of Mathematics, IIT Delhi MAJOR 05 - 05 - 2007

Max. Marks: 50

ALL QUESTIONS ARE COMPULSORY AND CARRY EQUAL MARKS

- 1. State whether the following are True or False. Justify your answer.
 - (a) Continuous image of a complete metric space is complete.
 - (b) A Cauchy sequence $\langle x_n \rangle$ in a metric space (X, d) converges if it has a cluster point.
- 2. Let (X, d) be a metric space and let $x_0 \in X$. Show that the function $f: X \to \mathbb{R}$ defined as $f(x) = d(x, x_0)$ is continuous. Is it uniformly continuous? Justify.
- 3. State whether the following are True or False. Justify your answer.
 - (a) An analytic function $f:\mathbb{C}\to\mathbb{C}$ is constant if and only if \overline{f} is analytic.
 - (b) If v_1 and v_2 are harmonic conjugates of u in a domain D, then v_1 and v_2 must differ by an additive constant.
- 4. Let $f: D \to \mathbb{C}$ be an analytic function on a domain D, and let $z_0 \in D$. Let γ be the (positively oriented) boundary of $B(z_0, r)$ lying within D. Prove that

$$f(z) - f(z_0) - \frac{z - z_0}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^2} dw = \frac{(z - z_0)^2}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)(w - z_0)^2} dw$$

for any $z \in B(z_0, r)$. Deduce that

$$f'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^2} dw$$

- 5. Evaluate $\int_{\gamma} \frac{e^z}{z-1} dz$ and $\int_{\gamma} \frac{e^z}{\pi i 2z} dz$ where $\gamma = \{z \in \mathbb{C} : |z| = 2\}$.
- 6. Let f be an entire function such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion $f(z) = \sum_{n=1}^{\infty} a_n (z-z_0)^n$ is zero. Prove that f is a polynomial.
- 7. Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function with $f(z) = z^2$ for all $z \in \mathbb{Q}$. Does it follow that $f(z) = z^2$ for all $z \in \mathbb{C}$? Justify.
- 8. Let f be an entire function such that $|f(z)| \le C|z|$ for all z, where C is a fixed positive number. Show that f(z) = az where a is a complex constant.
- 9. Find the Laurent expansion of the function $f(z) = \frac{1}{(z+2)(z^2+1)}$ about the point z = i, valid in the annulus $2 < |z i| < \sqrt{5}$.
- 10. Evaluate $\int_0^\infty \frac{\sin x}{x} dx$.