Applications of Logic

Applied Logic

Department of Computer Science

Relational Databases

- Databases store massive amount of persistent data efficiently
- They are reliable and provide safe access to multiple

users

Introduction to Databases (CS3319) and Database II (CS4411)

- Database management systems (DBMSs). Sortware systems that store and manage databases
- They use relational data model for storing data in tables:
 - A database consist of a schema and a database instance

Database Schemas

- A k-ary relation schema $R(A_1, ..., A_k)$ consists of
 - Relation name R
 - Attributes $\{A_1, \dots, A_k\}$
- Each attribute A_i has a domain $dom(A_i)$ of values
- **Example:** $Account(accoun_no, customer, branch, balance)$ $dom(balance) = \mathbb{R}^+ \cup \{0\} \quad dom(account_no) = \mathbb{Z}^+$ $Branch(branch_no, address)$
- Database schema: A set of relation schemas $Sch = \{Account, Branch, Customer\}$

Database Instances

 Relation instance D of a relation schema R:

$$D \subseteq dom(A_1) \times \cdots \times dom(A_k)$$

- Database instance I with schema Sch:
 - Relation instances $D_1, ..., D_n$ of the relation schemas in Sch

Example: Account and Branch

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
7758	888013	Prince	5,000
0159	863279	Ali	250
5982	789815	Zoya	7,000

Branch

branch_no	address
9205	782 Dovetail Estates
3244	746 Andell Road
2501	3605 Oakridge Lane

Structured Query Language (SQL)

SQL is a language for querying relational data

Example:

SELECT account_no, customer FROM Account WHERE

branch = 9205 **AND** balance > 3,000

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
7758	888013	Prince	5,000
0159	863279	Ali	250
5982	789815	Zoya	7,000

Integrity Constraints

 Integrity constraints prohibit some database instances

Example:

There is no pair of accounts with the same account number!

- account_no is a primary key in Account
- branch is a foreign key and refers to the primary key (branch_no) in Branch

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
7758	888013	Prince	5,000
0159	863279	Ali	250
5982	789815	Zoya	7,000

Branch

	branch_no	address
	9205	782 Dovetail Estates
>	3244	746 Andell Road
	2501	3605 Oakridge Lane
		•••
		_

Relational Databases and Predicate Logic

- Two approaches for representing relational databases in first-order predicate logic (Raymond Reiter, 1984):
 - Model theoretic
 - Proof theoretic

- A database instance is represented as a structure (model) \mathcal{S}
- $U_{\mathcal{S}}$ is the union of all attribute domains
- **Example:** $U_S = \{9205, 3244, ..., Ivano, Teresa, ..., 500, ...\}$

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

- Relations correspond to predicates
- Relation instances specify predicate interpretations

Example:

```
Account_{\mathcal{S}} = \{(9205, 890516, Ivano, 10000), (3244, 503947, Teresa, 500), ...\}
```

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

- Queries are WFFs in predicate logic
- Free variables represent selected values in the query
- A lookup that maps free variables to values in a query answer
- Query answering is done by model checking: $S \models_I Q$
- Example:

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

SELECT account_no, customer **FROM Account WHERE** branch = 9205 **AND** balance > 3,000

 $Q(x,y): \exists z, t \ (Account(z,x,y,t) \land z = 9205 \land t > 3000)$

- Boolean queries are sentences (formulas without free variables)
- A Boolean query returns true if structure \mathcal{S} satisfies the query sentence

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

Example:

 $Q: \exists x, y, z, t \ (Account(z, x, y, t) \land t > 10000 \land z = 9205)$

- Integrity Constraints are represented as sentences
- Example: branch_no is a primary key

Branch

branch_no	address
9205	782 Dovetail Estates
3244	746 Andell Road
2501	3605 Oakridge Lane

$$\forall x_1 \forall y_1 \forall x_2 \forall y_2 \ ((Branch(x_1, y_1) \land Branch(x_2, y_2) \land x_1 = x_2))$$
$$\rightarrow y_1 = y_2)$$

 Example: branch in Account is a foreign key and refers to branch_no in Branch

$$\forall x, y, z, t \ \left(Account(x, y, z, t) \rightarrow (\exists u \ Branch(x, u)\right)$$

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

Branch

branch_no	address
9205	782 Dovetail Estates
3244	746 Andell Road
2501	3605 Oakridge Lane

- A database instance is represented as a theory T with axioms:
 - Equality: reflexivity, symmetry, transitivity, and substitution (the 4th axiom)
 - Assertion: for each tuple in each relation
 - Completion axioms: for closed-world assumption
 - Axioms for unique-name assumption

• Query answering is done by proving logical consequences of T: For Boolean query Q, prove $T \vdash Q$

 For every tuple, T includes an atomic sentence called an assertion

Example:

Account (9205, 890516, Ivano, 10000) Account (3244, 503947, Teresa, 500)

...

are assertion axioms in T

Account

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

Account

- Databases make the closed-world assumption (CWA)
- CWA: Any tuple that is not in a database is false in the model of the database

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

Example: a completion axiom for CWA

$$\forall x, y, z, t \ (Account(x, y, z, t) \rightarrow ((x = 9205 \land y = 890516 \land z = Ivano \land t = 10000) \lor (x = 3244 \land y = 503947 \land z = Teresa \land t = 500) \lor$$

...

$$(x = 3244 \land y = 789815 \land z = Zoya \land t = 7000)))$$

Account

- Databases also make the uniquename assumption (UNA)
- Constants in assertions are NOT mapped to the same entities in the universe of the database structure

branch	account_no	customer	balance
9205	890516	Ivano	10,000
3244	503947	Teresa	500
9205	888013	Prince	5,000
9205	863279	Ali	250
3244	789815	Zoya	7,000

• Example: Teresa and Ali must refer to different individuals. They must be mapped to different entities in $U_{\mathcal{S}}$

 $Teresa \neq Ali \land Teresa \neq Ivano \land Ivano \neq 500 \land \cdots$

Program Verification

- Software verification: Checking if a software system does what it is supposed to do
- Software testing for software verification
 - Effective in finding certain errors and faults (bugs) in software systems
 - It does not guarantee a software system is error-free

Why Should We Formally Verify Code?

- Automatic verification through logical reasoning
- Documentation
- Decreasing time-to-market: testing and debugging cost and time
- Refactoring and reuse: A verified software with a clear formal specification is easier to refactor and reuse
- Certification audits: Safety-critical software systems cannot rely on manual testing and debugging

Formal Program Verification

- Software development starts with informal program requirements R
- A framework for formal program verification
 - Convert R to sentences ϕ_R in a formal language
 - Write a program P to a realize the requirements
 - Prove the program P satisfies ϕ_R

A Simple Language

Integer expressions

Boolean expressions

Example:

- 5
- X
- x (x * (y (5 + z)))

Example:

- false, true
- *x* < 3
- !(x + 1 == 3)
- (x < 3 || x > 10) &(z < y)

A Simple Language

- Assignment commands and control structures
- Example:

```
x := (z + 1) * y
If (x == y) {
z := y
} else {
x := 2 * y
}
```

```
while (x == y) {
y := z * 2
x := 2 + y
...
}
```

Program: A sequence of assignments and control structures

Hoare Logic: Syntax

- A sentence is a Hoare triple $(\phi)P(\psi)$
 - ϕ and ψ are sentences in some formal language, e.g., First-Order Predicate Logic
 - P is a program in the simple language
- ϕ and ψ are pre-conditions and post-conditions
- ϕ and ψ only bound variables that do not appear in P (variables in P appear as free variables in ϕ and ψ)

Hoare Logic: Syntax

• Example: A program *P* that calculates a number whose square is less than *x*:

$$(x > 0) P (y \times y < x)$$

• Example:

$$(T) y := x + 1 (y = x + 1)$$

• Example:

$$(x \ge 0) P' (y = x!)$$

y := 0;while $(y \times y < x)$ { y := y + 1;} y := y - 1;

```
z := x;

y := 1;

while(z ! = 0) {

y := y \times z;

z := z - 1;

}
```

P'

Hoare Logic: Semantics

- State: A variable look up that assigns a real number to each variable in the program and the free variables in ϕ and ψ
- A state l satisfies ϕ if $\mathbb{R} \models_{l} \phi$
- $(\phi)P(\psi)$ is valid, denoted by $\models (\phi)P(\psi)$, if for all states that satisfy ϕ , the state resulting from P's execution satisfies ψ
- Software validity reduces to checking if a Hoar sentence is valid

Hoare Logic: Semantics

- If P always terminates, we say the triple is **totally** correct, denoted by $\models_{tot} (\phi)P(\psi)$
- If P does not always terminate, $(\phi)P(\psi)$ is partially correct, denoted by $\vDash_{par} (\phi)P(\psi)$

Hoare Logic: Semantics

Example:

$$(x = x_0 \land x \ge 0) Fac(y = x_0!)$$
$$(x \ge 0) Fac(y = x!)$$

Example:

```
(x = 3)Sum(z = 6)

(x = 8)Sum(z = 36)

(x = x_0 \land x \ge 0)Sum(z = x_0 \times (x_0 + 1)/2)
```

Fac

```
y := 1;
while(x ! = 0) {
y := y \times x;
x := x - 1;
}
```

Sum

```
z := 0;
while(x > 0) {
z := z + x;
x := x - 1;
```

Hoare Logic: Proof System

- Proof of correctness: $\vdash (\phi)P(\psi) \quad (\vdash_{tot} \text{ or } \vdash_{par})$
- Two proof rules (among other rules):

$$\frac{(\phi)C_1(\eta) \quad (\eta)C_2(\psi)}{(\phi)C_1; C_2(\psi)}$$
 Composition

$$\frac{(\phi \land B)C_1(\psi) \ (\phi \land \neg B)C_2(\psi)}{(\phi) \ \mathsf{lf}(B)\{C_1\} \ \mathsf{else}\ \{C_2\}(\psi)} \ \mathsf{lf\text{-statement}}$$

Hoare Logic: Proof System

Example:

$$\frac{(\phi)C_1(\eta) \quad (\eta)C_2(\psi)}{(\phi)C_1; C_2(\psi)}$$
 Composition

Hoare Logic: Proof System

Example:

$$\frac{(\phi \land B)C_1(\psi) \ (\phi \land \neg B)C_2(\psi)}{(\phi) \ \mathsf{lf}(B)\{C_1\} \ \mathsf{else}\ \{C_2\}(\psi)} \ \mathsf{lf\text{-statement}}$$

$$(x > 0) y \coloneqq x; (y = |x|)$$
$$(x \le 0) y \coloneqq -x; (y = |x|)$$

If-statement

(T) if
$$(x > 0)$$
 { $y = x$; } else { $y = -x$; } $(y = |x|)$

