

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\operatorname{MAT}02215$ - Estatística Geral 2 - 2021/2

Plano Aula 11 e 12

Markus Stein

Testes de Hipóteses (Bussab e Morettin - capítulo 12)

- Podemos utilizar intervalos de confiança para tomar decisões? Sim.
 - Decisões acerca de valores possíveis para parâmetros: médias, variâncias e proporções, . . .
- O Teste de hipóteses é uma "máquina" de decisões, um mecanismo para se construir hipóteses e decidir sobre afirmações sobre possíveis valores para um parâmetro (usando uma regra probabilística e dados amostrais).
- Exemplo: Devo manter ou não uma operação financeira com base no retorno médio dos útlimos meses?
 - Qual o estimador pontual "natural" para o problema? E como construir um IC?
 - Como criar uma regra para tomar essa decisão?

Hipóteses estatísticas

- São afirmações acerca de parâmetros.
 - Exemplo: o salário médio, μ , na empresa A é superior a 2 salários mínimos (s.m.), ou seja, em termos do parêmetro, $\mu \leq 2s.m.$ ou $\mu > 2s.m.$
- Hipótese nula (H_0) versus hipótese alternativa $(H_1$ ou $H_A)$.
 - Hipoteses são subconjuntos dos possíveis valores para um parâmetro de interesse θ .
 - Devem ser complementares. $(H_0: \theta \leq \theta_0 \ contra \ H_1: \theta > \theta_0, \ ou \ H_0: \theta \geq \theta_0 \ contra \ H_1: \theta < \theta_0 \ ou \ H_0: \theta = \theta_0 \ contra \ H_1: \theta \neq \theta_0).$
- Teste unilateral (quando $H_1: \theta < \theta_0$ ou $H_1: \theta > \theta_0$) versus bilateral $(H_1: \theta \neq \theta_0)$.
 - Como definir hipóteses para cada problema?
- 1. A igualdade '=' vai sempre em H_0 .
- 2. A hipótese de pesquisa irá sempre em H_1 .

Erros de decisão e procedimento do Teste (Bussab e Morettin - seção 12.3)

- Erro tipo I: rejeitar H_0 quando H_0 for verdadeira.
 - Exemplo: seria afirmar que o salário na empresa A é maior do que 2s.m. com base na amostra, quando na realidade o salário médio é menor. (nesse caso tivemos o "azar" de ter coletado uma amostra extrema mesmo H_0 sendo verdade) É o erro que priorizamos.
- Erro tipo II: "aceitar" H_0 quando H_0 for falsa.

Probabilidade de Erro

- $\alpha = P(Erro\ I) = P("rejeitar\ H_0") "H_0\ verdadeiro")$, também denominado **nível de significância**;
- $\beta = P(Erro\ II) = P("n\~ao\ rejeitar\ H_0"|"H_0\ falsa")$, também denominado **poder do teste**.
 - Na prática fixamos α e geralmente β é ignorado. (Precisamos saber calcular β) Assim
- 1. se não rejeitamos H_0 , ou acertamos, ou erramos com probabilidade β (geralmente desconhecida).
- 2. se rejeitamos H_0 , afirmamos H_1 , então acertamos ou erramos com probabilidade α (geralmente escolhemos um valor muito pequeno).

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02215$ - Estatística Geral 2 - 2021/2

Região crítica (Região de rejeição)

É o conjunto de valores para a estatística de teste em que rejeitaremos a hipótese nula.

- Por exemplo, $RC = \{\overline{X} > \overline{x}_{crítico}\}\$ se $H_0: \mu \leq 2s.m.$.
- Depende das hipóteses e "vai na mesma direção" da hipótese alternativa.

Passo a passo para a construção de um Teste de hipóteses (Bussab e Morettin - seção 12.4)

- 1. **Definir hipóteses** acerca do parâmetro de interesse. $(H_0: \theta = \theta_0, H_0: \theta \ge \theta_0, ou H_0: \theta \le \theta_0)$
- 2. Escolher qual a **estatística de teste** adequada. $(z_{calc}, t_{calc}, ...)$
- 3. Fixar α e construir a **região crítica**.
- 4. Calcular a estatística de teste usando os valores da amostra observada.
- 5. Tomar decisão e conclusão sobre o problema.

Testes para a média de uma população (com variância conhecida) (Bussab e Morettin - seção 12.5)

Sob H_0 , supomos que X_1, \ldots, X_n são uma amostra aleatória de $X \sim Normal(\mu_0, \sigma^2)$ \$ então

$$Z_{calc} = \frac{\overline{X} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} \sim Normal(0, 1)$$

- Como construir a região crítica RC? (Depende das hipóteses, $H_1: \mu < \mu_0, H_1: \mu > \mu_0$ ou $H_1: \mu \neq \mu_0$)
- Para quais valores de Z_{calc} rejeitamos H_0 ? (Respectivamente $RC = \{z_{calc} < -z_{tab}\}$, ou $RC = \{z_{calc} > z_{tab}\}$) ou $RC = \{|z_{calc}| > z_{tab}\}$)
- Como encontrar z_{tab} para α fixado?

Testes para a média de uma população, com variância desconhecida

Sob H_0 , supomos que X_1, \ldots, X_n são uma amostra aleatória de $X \sim Normal(\mu_0, \sigma^2)$ com σ^2 desconhecida, então

$$T_{calc} = \frac{\overline{X} - \mu_0}{\sqrt{\frac{S^2}{n}}} \sim t(n-1)$$

Ler sl	ıdes	das	aulas	11	е	12

Fazer exercícios lista 2-1