Algebraic Number Theory

Harry Armitage

February 15, 2021

Contents

1	Absolute Values and Places 1.1 Extensions and Places	2 3
2	Number Fields 2.1 Places of Number Fields	5 7
3	Different and Discriminant 3.1 Examples	9 13
6	Ideles and Adeles6.1 Ideles	16 19
7	Geometry of Numbers	20

1 Absolute Values and Places

K is a field. An *absolute value* (AV) on *K* is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that, for all $x, y \in K$:

i)
$$|x| = 0 \iff x = 0$$

ii)
$$|xy| = |x||y|$$

iii)
$$|x + y| \le |x| + |y|$$

We will also assume that $|\cdot|$ is not trivial, i.e.

iv)
$$\exists x \in K : |x| \neq 0, 1$$

An AV is non-archimedean if it satisfies

iii-NA)
$$|x + y| \le \max(|x|, |y|)$$

and archimedean otherwise.

An AV determines a metric d(x, y) = |x - y| which makes K a *topological field*.

Remark It's convenient to weaken iii):

iii')
$$\exists \alpha > 0$$
 s.t. $\forall x, y, |x + y|^{\alpha} \le |x|^{\alpha} + |y|^{\alpha}$

For non-archimedean AVs, this makes no difference. What this does mean is that if $|\cdot|$ is an AV, then so is $|\cdot|^{\alpha}$ for any $\alpha > 0$. The point of this is that we want $z \mapsto z\bar{z}$ on \mathbb{C} to be an AV - we'll see why later.

Let's suppose $|\cdot|$ is a non-archimedean AV. Then $\{x \in K : |x| \le 1\} = R$ is a subring of K. It is a local ring with unique maximal ideal $\{|x| < 1\} = \mathfrak{m}_R$.

It is a *valuation ring* of K (i.e. $x \in K \setminus R \implies x^{-1} \in R$).

Lemma 1.1. *R is a maximal subring of K.*

Proof. Let $x \in K \setminus R$, so |x| > 1. Then if $y \in K$, there is some $n \ge 0$ with $|yx^{-n}| = \frac{|y|}{|x|^n} \le 1$. So $y \in x^n R$ for $n \gg 0$, and hence R[x] = K. Hence R is maximal.

There is a general notion of valuation (not nec. \mathbb{R} -valued). In the more general context, these valuations are called *rank 1 valuations*, and they have this maximality property.

We say two absolute values $|\cdot|$ and $|\cdot|'$ are *equivalent* if there is $\alpha > 0$ with $|\cdot|' = |\cdot|^{\alpha}$. This is an equivalence relation.

Proposition 1.2. *The following are equivalent:*

- i) $|\cdot|$, $|\cdot|'$ are equivalent.
- ii) $|x| \le |y| \iff |x|' \le |y|'$.
- iii) $|x| < |y| \iff |x|' < |y|'$.

Proof. From local fields, or exercise.

Corollary 1.3. Let $|\cdot|$, $|\cdot|'$ be non-archimedean AVs, with valuation rings R, R'. Then $|\cdot|$, $|\cdot|'$ are equivalent if and only if R = R' if and only if $R \subset R'$.

П

Equivalent AVs define equivalent metrics, hence the same topologies, hence the *completion* of K with respect to $|\cdot|$ depends only on the equivalence class of $|\cdot|$.

Inequivalent AVs determine "independent" topologies in the following sense:

Proposition 1.4 (Weak Approximation). Let $|\cdot|_i$ for $1 \le i \le n$ be pairwise inequivalent AVs on K, and $a_1, \ldots, a_n \in K$, $\delta > 0$.

Then there is $x \in K$ such that, for all $i, |x - a_i|_i < \delta$.

Proof. Suppose $z_j \in K$ such that $|z_j|_j > 1$, and $|z_j|_i < 1$ for all $i \neq j$. Then $|\frac{z_j^N}{z_j^N + 1}|_i \to 0$ as $N \to \infty$ if $i \neq j$, and to 1 if i = j.

So then $x = \sum a_j \frac{z_j^N}{z_j^N + 1}$ works for N sufficiently large. So it's enough to find z_j , and by symmetry take j = 1. We then induct on n. The case n = 1 is trivial.

Suppose we have y with $|y|_1 > 1$, and $|y|_2, \ldots, |y|_{n-1} < 1$. If $|y|_n < 1$, we're finished, otherwise pick $w \in K$ with $|w|_1 > 1 > |w|_n$, by **1.2**. If $|y|_n = 1$, then $z = y^N w$ works, and if $|y|_n > 1$, then $z = \frac{y^N w}{y^N + 1}$ works.

Remark. If $K = \mathbb{Q}$, $|\cdot|_1, \ldots, |\cdot|_n$ are the p_i -adic AVs for distinct primes p_i and $a_i \in \mathbb{Z}$, then weak approximation says that, for all $n_i \geq 1$, there is $x \in \mathbb{Q}$ which is a p_i -adic integer for all i, and $x \equiv a_i \mod p_i^{n_i}$ for all i. This is weaker than CRT, which guarantees $x \in \mathbb{Z}$.

Definition. A *place* of *K* is an equivalence class of AVs on *K*.

Example $K = \mathbb{Q}$. *Ostrowski's Theorem* implies every AV on \mathbb{Q} is equivalent to one of $|\cdot|_p$, $|\cdot|_{\infty}$. So places of \mathbb{Q} are the primes, and ∞ . We write V_K for the set of places of K.

We write $V_{K,\infty}$ for the places given by archimedean AVs (the infinite places).

We write $V_{K,f}$ for the places given by non-archimedean AVs (the finite places).

We often use letters v, w denote places. Given $v \in V_K, K_v$ will denote the completion of K at v. If $v : K^{\times} \to \mathbb{R}$ is a *valuation*, we will also use v to denote the corresponding place, i.e. the equivalence class of AVs $x \mapsto \gamma^{-v(x)}$.

We can restate the weak approximation in terms of places:

Proposition 1.4. Let v_1, \ldots, v_n be distinct places of K. Then the image of the diagonal inclusion

$$K \hookrightarrow \prod_{1 \le i \le n} K_{v_i}$$

is dense.

1.1 Extensions and Places

Let L/K be finite and separable, and let v, w be places of K, L respectively. Say w *lies over* or *divides* v (notation w|v) if v is the restriction of w to K.

Then there is a unique continuous $K_v \hookrightarrow L_w$ extending $K \hookrightarrow L$.

Proposition 1.5. There is a unique isomorphism of topological rings

$$L \otimes_K K_v \xrightarrow{\sim} \prod_{w|v} L_w$$

mapping $x \otimes y$ to $(xy)_w$.

Proof. Both sides are finite dimensional normed K_v -vector spaces. The idea will be to choose a basis of L/K so that $L \otimes_K K_v \cong K_v^{[L:K]}$ (with the sup norm), and on the RHS we also use the sup norm. Then we use the fact that any 2 norms on a finite dimensional vector space over a field complete with respect to an absolute value are equivalent (see Cassesl and Fröhlich, Ch. III, section 8).

Write L = K(a) where $f \in K[T]$ is a minimal polynomial for a, and is separable. Factor $f = \prod g_i$ in K_v , so that the $g_i \in K_v[T]$ are irreducible and distinct.

Let $L_i = K_v[T]/(g_i)$. Then $L \otimes_K K_v = K_v[T]/(f) \cong \prod_i L_i$. Now let w|v, inducing $i_w : L \hookrightarrow I_w$. Let $g_w \in K_v[T]$ be the minimal polynomial of $i_w(a)$ over K_v . Then $g_w|f$, so g_w is one of the g_i s, and $L_w = K_v(i_w(a)) = L_i$.

Conversely, K_v is complete and L_i/K_v is finite, so there is a unique extension of v to L_i , and we get a bijection $\{g_i\} \leftrightarrow \{w|v\}$, and $L \otimes_K K_v \cong \prod L_w$.

Corollary 1.6.

- 1. $\{w|v\}$ is finite, nonempty, and $[L:K] = \sum_{w|v} [L_w:K_v]$
- 2. $\forall x \in K$, $N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x)$ $\text{Tr}_{L/K}(x) = \sum_{w|v} \text{Tr}_{L_w/K_v}(x)$.

If L/K is Galois with Galois group G, then G acts on the places w of L lying over a given v: if $|\cdot|$ is an AV on L then, for all $g \in G$, the map $x \mapsto |g^{-1}x|$ is an AV on L, agreeing with $|\cdot|$ on K, and hence gives a (left) action of G on $\{w|v\}$, $g(w) = w \circ g^{-1}$. If $w = v_P$ for a prime P, then $gw = v_{g(P)}$.a

We define the *decomposition group* D_w or G_w to be the stabiliser of w. This action is transitive. If $g \in D_w$, then it is continuous for the topology induced by w on L, so it extends to an automorphism of L_w , the completion of L at w.

$$G \supset \operatorname{Gal}(L_w/K_v) \supseteq D_w$$

Then we have

$$\begin{split} \#G &= (G:G_w) \# G_w \\ &\leq (G:G_w) [L_w:K_v] \\ &= \sum_{g \in G/G_w} [L_{g(w)}:K_v] \\ &\leq \sum_{w|v} [L_w:K_v] \\ &= [L:K] = \# G \end{split}$$

Hence equality holds throughout, and $G_w = Gal(L_w/K_v)$.

Suppose v is a *discrete valuation* of L, i.e. it is a finite place, and the valuation ring is a DVR. Then so is any w|v, and we define:

- f(w|v), the degree of residue class extension, = e_{L_w/K_v}
- e(w|v), the ramification degree

and $[L_w : K_v] = e(w|v)f(w|v)$.

2 Number Fields

A lot of this theory applies to other global fields, e.g. function fields. K will here be a number field (i.e. finite extension of the rationals) with ring of integers O_K . We have some basic properties:

- O_K is a *Dedekind domain*, i.e.
 - 1. Noetherian (in fact, O_K is a f.g. \mathbb{Z} -module).
 - 2. Integrally closed in *K* (by definition).
 - 3. Every non-zero prime ideal is maximal, so has Krull dimension ≤ 1 .

We have some basic results about Dedekind domains:

Theorem 2.1.

- 1. A local domain is Dedekind if and only if it is a DVR.
- 2. For a domain R, TFAE:
 - (a) R is Dedekind.
 - (b) R is Noetherian and for every non-zero prime \mathfrak{p} , $R_{\mathfrak{p}}$ is a DVR.
 - (c) Every fractional ideal of R is invertible.
- 3. A Dedekind domain with only finitely many prime ideals (i.e. semi-local) is a PID.

Proof.

- 1. Proved in local fields, \implies is the hardest part.
- 2. Let $K = \operatorname{Frac}(R)$. A fractional ideal of R is a non-zero R-submodule $I \subset K$ for some $0 \neq x \in R$ where $xI \subset R$ is an ideal. For $(a) \Longrightarrow (b)$ it is enough to check (exercise) that the basic properties are preserved under localisation.

For $(b) \Longrightarrow (c)$, I is invertible if there is a fractional ideal I^{-1} such that $II^{-1} = R$. To prove (c), we may assume $I \subset R$ is an ideal. Then let $I^{-1} = \{x \in K : xI \subset R\}$. If $0 \neq y \in I$, then $R \subset I^{-1} \subset y^{-1}R$, and so I^{-1} is a fractional ideal. Clearly $I^{-1}I \subset R$. Now let $P \subset R$ be prime - it is sufficient to show $I^{-1}I \not\subset P$. Let $I = (a_1, \ldots, a_n)$. WLOG take $v_P(a_1) \leq v_P(a_i)$ for all i > 1. Then $IR_P = a_1R_P$, as R_P is a DVR.

Hence $a_i/a_1 = x_i/y_i \in R_P$ where $x_i \in R$, $y_i \in R \setminus P$. Then $y = \prod y_i \notin P$ as P is prime, and $ya_i/a_1 \in R$ for all i, and so $y/a_i \in I^{-1}$, so $y \in II^{-1} \setminus P$.

For $(c) \Longrightarrow (a)$, we check the properties. R is Noetherian - let $I \subset R$ be an ideal. Then $II^{-1} = R \Longrightarrow 1 = \sum_{i=1}^n a_i b_i, a_i \in I, b_i \in I^{-1}$. Let $I' = (a_1, \ldots, a_r) \subset I$. Then $I'I^{-1} = R = II^{-1}$, and so I' = I, and I is finitely generated.

R is integrally closed. Let $x \in K$, integral over R. Then $I := R[x] = \sum_{0 \le i < d} Rx^i \subset K$ is a fractional ideal. Obviously $I^2 = I$, so $I = I^2I^{-1} = II^{-1} = R$, i.e. $x \in R$.

Every non-zero prime is maximal. Take $\{0\} \neq Q \subset P \subsetneq R$ where P,Q are prime. Then $R \subsetneq P^{-1} \subset Q^{-1}$, and $Q \subsetneq P^{-1}Q \subset R$, and $P(P^{-1}Q) = Q$, so as Q is prime and $P^{-1}Q \not\subset R$, we must have $P \subset Q$, and so P = Q.

3. Let R be a semi-local Dedekind domain with non-zero primes P_1, \ldots, P_n . Choose $x \in R$ with $x \in P_1 \setminus P_1^2, x \in P_2, \ldots, P_n$. Then $P_1 = (x)$ and every ideal is a product of powers of $\{P_i\}$ (see below), hence R is a PID.

Theorem 2.2. Let R be Dedekind. Then:

1. The group of fractional ideals is freely generated by the non-zero prime ideals, and

$$I = \prod_{P} P^{v_P(I)}$$

with $v_P(I) = \inf_{x \in I} (v_P(x))$.

2. If $(R:I) < \infty$ for all $I \neq (0)$, then for all I, I, (R:II) = (R:I)(R:I).

Proof.

1. If $I \neq R$, then $I \subset P$ for some prime ideal P. Then $I = PI', I' = IP^{-1} \supseteq I$. Then by Noetherian induction, I is a product of powers of prime ideals, say $I = \prod P^{a_P}$.

We get the same for fractional ideals $I = x^{-1}I$.

Consider the homomorphisms {fractional ideals of R} \to {fractional ideals of R_P } $\to \mathbb{Z}$ given by $I \mapsto IR_P$, $(\pi^n) \mapsto n$.

The composition is $I \mapsto v_P(I)$, and if $Q \neq P$ then $v_P(Q) = 0$.

So {fractional ideals of R} $\to \bigoplus_P \mathbb{Z}$ maps $\prod P^{a_P}$ to $(a_P)_P$. Hence the a_P are unique and this is an isomorphism.

2. By unique factorisation of ideals (part 1.), $\prod P^{a_P} \cap \prod P^{b_P} = \prod P^{\max a_P, b_P}$. So if I + J = R, then $IJ = I \cap J$, and so by CRT, $R/IJ \cong R/I \cap J \cong R/I \times R/J$, and we are done in this case.

Hence this step reduces to showing that $(R: P^{n+1}) = (R: P)(R: P^n)$.

Now localising at *P* gives $P^n \cong R_P/P^nR_P$, so WLOG *R* is local, hence a DVR, and $P = (\pi)$.

Then $R/(\pi^n) \cong (\pi)/(\pi^{n+1})$ via multiplication by π , and hence $(R:P^{n+1}) = (R:P)(P:P^{n+1}) = (R:P)(R:P^n)$.

The quotient group $Cl(R) := \{ fractional ideals of R \} / \{ principal fractional ideals of R \}$ is the *class group* (or *Picard group*) of *R*.

If *K* is a number field, then we write $Cl(K) = Cl(O_K)$, the *ideal class group* of *K*.

Theorem 2.3. For K a number field, Cl(K) is finite.

The proof will come later.

2.1 Places of Number Fields

Recall Ostrowski's theorem, which says that $V_{\mathbb{Q}} = \{p : p \text{ prime}\} \cup \{\infty\}.$

Let $\mathfrak{p} \subset O_K$ be a nonzero prime ideal. Then \mathfrak{p} determines a discrete valuation $v_{\mathfrak{p}}$ of K, and so a non-archimedean absolute value $|x|_{\mathfrak{p}} = r^{-v_{\mathfrak{p}}(x)}$ where r > 1.

Theorem 2.4. This gives a bijection {primes of O_K } $\rightarrow V_{K,f}$.

Proof. Let $P \neq Q$. Then there exists $x \in P \setminus Q$, and then $|x|_P < 1 = |x|_Q$, so $|\cdot|_P$, $|\cdot|_Q$ are inequivalent, and the map is injective.

Let $|\cdot|$ be a non-archimedean absolute value on K, with valuation ring $R = \{x \in K : |x| \le 1\}$. As $|\cdot|$ is non-archimedean, $\mathbb{Z} \subset R$ and hence $R \supset O_K$ as R is integrally closed. So $R \supset O_{K,P}$ for some prime $P = \mathfrak{m}_R \cap O_K$. Hence $R = O_{K,P}$ because by **1.1**, $O_{K,P}$ is a maximal subring of K.

Hence $|\cdot|$ and $|\cdot|_P$ are equivalent.

For $v \in V_{K,f}$, write P_v for the corresponding prime deal of O_K . Then K_v , the completion of K at v, is a complete discretely valued field, with valuation ring O_v or $O_{K_v} \subset K_v$, not to be confused with O_{K,P_v} .

The normalised discrete valuation will be the one for which $v: K^{\times} \twoheadrightarrow \mathbb{Z}$ is surjective. We will denote by $\pi_v \in O_v$ any generator of the maximal ideal. We often assume $\pi_v \in K$. Then $v(\pi_v) = 1$.

We write $k_v = O_K/P_v \cong O_v/(\pi^v)$, is finite, of order $q_v = p^{f_v}$ for a rational prime p divisible by v.

We then normalise the absolute value so that $|x|_v = q_v^{-v(x)}$, so that $|\pi_v|_v = \frac{1}{q_v}$.

For infinite places, we have the unique infinite place ∞ of \mathbb{Q} , with $\mathbb{Q}_{\infty} = \mathbb{R}$. So then $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in V_{K,\infty}} K_v$. Each K_v is a finite extension of \mathbb{R} , so is one of \mathbb{R} and \mathbb{C} . These correspond to the cases where we say v is real or complex respectively.

In the complex case, since $K \subset K_v$ is dense, we cannot have $K \subset \mathbb{R}$. On the other hand, by Galois theory $\Sigma_K = \{\text{homomorphisms } K \hookrightarrow \mathbb{C}\}$ has order $n = [K : \mathbb{Q}]$, and $K \otimes_{\mathbb{Q}} \mathbb{C} \cong \prod_{\sigma \in \Sigma_K} \mathbb{C}$. Complex conjugation acts on both sides by $x \otimes z \mapsto x \otimes \overline{z}$ and $(z_{\sigma})_{\sigma} \mapsto (\overline{z_{\overline{\sigma}}})_{\sigma}$.

Let $\sigma_1, \ldots, \sigma_{r_1} : K \hookrightarrow \mathbb{R}$, $\sigma_{r_1+1} = \overline{\sigma}_{r_1+r_2+1}, \ldots, \sigma_{r_1+r_2} = \overline{\sigma}_n : K \hookrightarrow \mathbb{C}$ where $r_1 + 2r_2 = n$. Then, taking fixed points under complex conjugation,

$$K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{(\sigma, \bar{\sigma})} \{ (z, \bar{z}) \in \mathbb{C} \times \mathbb{C} \} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$$

Therefore we have:

Theorem 2.5. *There is a bijection*

$$\Sigma_K/(\sigma \sim \bar{\sigma}) \xrightarrow{\sim} V_{K,\infty}$$

given by $\sigma \mapsto |\sigma(\cdot)|$, where $|\cdot|$ is the Euclidean absolute value in \mathbb{R} or \mathbb{C} .

We write $K_{\infty} := K \otimes_{\mathbb{Q}} \mathbb{R}$, which is canonically isomorphic to $\prod_{v \in V_{K,\infty}} K_v$ and noncanonically isomorphic to $\mathbb{R}^{\#\{\text{real }v\}} \times \mathbb{C}^{\#\{\text{complex }v\}}$.

We now choose the normalised absolute values such that, if v is real corresponding to $\sigma: K \hookrightarrow \mathbb{R}$, then $|x|_v = |\sigma(x)|_{\infty}$, and if v is complex, then $|x|_v = \sigma(x)\overline{\sigma}(x) = |\sigma(x)|^2$.

If v is finite and w|v, then L_w/K_v is a finite extension of non-archimedean local fields, and $[L_w:K_v]=e(w|v)f(w|v).$

If v is infinite and w|v, then $L_w/K_v = \begin{cases} \mathbb{R}/\mathbb{R} & f=e=1\\ \mathbb{C}/\mathbb{C} & f=e=1\\ \mathbb{C}/\mathbb{R} & v \text{ ramified, } e=2, f=1 \end{cases}$

Proposition 2.6. *Let* $x \in L$, $v \in V_K$. *Then:*

$$|N_{L/K}(x)|_v = \prod_{w|v} |x|_w$$

Proof. $N_{L/K}(x) = \prod_{w \mid v} N_{L_w/K_v}(x)$, so it is enough to show that $|N_{L_w/K_v}(x)|_v = |x|_w$.

For v a finite place, it is enough to take $x = \pi_w \in L$. Then:

$$|N_{L_w/K_v}(\pi_w)|_v = |u\pi_v^{f(w|v)}|_v$$

= $q_v^{-f(w|v)} = q_w^{-1} = |\pi_w|_w$

For v an infinite place, we need only consider $L_w/K_v \cong \mathbb{C}/\mathbb{R}$. But $N_{\mathbb{C}/\mathbb{R}}(z) = z\bar{z}$ by definition. \square

Theorem 2.7 (Product Formula). Let $x \in K^{\times}$. Then:

 $|x|_v = 1$ for all but finitely many v

and

$$\prod_{v \in V_K} |x|_v = 1$$

Proof. Write x=a/b where $a,b\in O_K^{\times}$. Then $\{v\in V_K: |x|_v\neq 1\}\subset V_{K,\infty}\cup \{v\in V_{K,f}: |x|_v\neq 1\}$ v(a) or v(b) > 0, a finite set.

Now $\prod_{v \in V_K} |x|_v = \prod_{p \le \infty} \left(\prod_{v \mid p} |x|_v \right) = \prod_{p \le \infty} |N_{K/\mathbb{Q}}(x)|_p$, so it is enough to prove this for $K = \mathbb{Q}$.

By multiplicativity, we reduce to x = q, a prime, or x = -1. In the former case, $|q|_p =$ $\begin{cases} \frac{1}{q} & p = q \\ 1 & p \neq q, \infty, \text{ and in the latter, } |-1|_p = 1 \text{ for all } p \leq \infty. \text{ Hence the product over all of these is } \\ 2 & n = \infty \end{cases}$

Remark. In \mathbb{R} , the standard measure dx transforms under \mathbb{R}^{\times} as d(ax) = |a|dx. In \mathbb{C} , the standard measure is dxdy. This transforms under \mathbb{C}^{\times} as $dxdy \mapsto |a|^2 dxdy$. In both these cases, we see the scaling is the normalised AV of *a*.

Fact: on K_v for any v there is a translation-invariant measure, the "Haar measure", $d_v(x)$. Then for all $a \in K_v^{\times}$, $d_v(ax) = |a|_v d_v(x)$, where $|\cdot|_v$ is a normalised AV.

3 Different and Discriminant

Suppose $R \subset S$ are commutative rings with 1, such that S is a free R-module of finite rank $n \ge 1$. Then we have a trace map $\text{Tr}_{S/R} : S \to R$, the trace of the R-linear map $y \mapsto xy$.

If x_1, \ldots, x_n are elements of S, define the discriminant:

$$\operatorname{disc}_{S/R}(x_i) = \operatorname{disc}(x_i) = \operatorname{det} \operatorname{Tr}_{S/R}(x_i x_i) \in R$$

If $y_i = \sum_{j=1}^n r_{ji} x_j$, then $\text{Tr}_{S/R}(y_i y_j) = \sum_{k,\ell} r_{ki} r_{\ell j} \text{Tr}_{S/R}(x_k x_\ell)$.

Hence $disc(y_i) = det(r_{ij})^2 disc(x_i)$.

Writing $S = \bigoplus_{i=1}^{n} Re_i$, we also define $\operatorname{disc}(S/R) = (\operatorname{disc}(e_i)) \subset R$, an ideal of R, independent of basis by the previous line.

This has the following basic properties:

- $S = S_1 \times S_2$ implies $\operatorname{disc}(S/R) = \operatorname{disc}(S_1/R) \operatorname{disc}(S_2/R)$
- If $f: R \to R'$ is a ring homomorphism, then $\operatorname{disc}(S \otimes_R R'/R') = f(\operatorname{disc}(S/R)) \subset R'$.
- If R is a field, then $\operatorname{disc}(S/R)$ is an ideal, so is R or $\{0\}$, and is R iff the R-bilinear form $(x,y)\mapsto \operatorname{Tr}_{S/R}(sy)$ is non-degenerate.

If L/K is a finite field extension, then $\operatorname{disc}(L/K) = K \iff$ the trace form is non-degenerate, which holds \iff there is some $x \in L$ with non-zero trace, i.e. iff L/K is separable. More generally:

Theorem 3.1. Let k be a field and A a finite dimensional k-algebra. Then $disc(A/k) \neq 0$ (so = k) if and only if $A = \prod K_i$ where K_i/k are finite separable field extensions.

Proof. We can write $A = \prod A_i$ where A_i are indecomposable, so local, k-algebras, and so we may assume A is local with maximal ideal \mathfrak{m} .

If m = 0, i.e. A is field, then this is reduced to the previous statement.

If not, then every element of \mathfrak{m} is nilpotent, so there is $x \in \mathfrak{m} \setminus 0$ nilpotent, and so the endomorphism $y \mapsto xy$ of A is nilpotent, and for all $r \in A$, so is $y \mapsto (rx)y$, and hence for all $r \in A$, $\mathrm{Tr}_{A/k}(rx) = 0$, giving a degenerate trace form so a zero discriminant.

If R is a Dedekind domain, $K = \operatorname{Frac}(R)$, and L/K is finite separable with S the integral closure of R in L, then we say S/R is an *extension of Dedekind domains*. Then S is a finitely generated R-module, but needn't be free.

Proposition 3.2. *S* is a **locally free** *R*-module of rank n = [L : K] (i.e. for all $P \subset R$, $S_P \cong R_p^n$).

Proof. $S \subset L$ so S is torsion free, hence so is S_P , and R_P is a PID, so S_P is free. S spans L as a K-vector space, so S has rank dim $_K L = n$. □

Lemma 3.3. *If* $x \in S$, $\operatorname{Tr}_{L/K}(x) \in R$.

Proof. If *R* is local, then *S* is a free *R*-module, so $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S \otimes_R K/K}(x \otimes 1) = \operatorname{Tr}_{S/R}(x) \in R$. So, in general, for all $0 \neq P \subset R$, $y = \operatorname{Tr}_{L/K}(x) \in R_P$, and $\bigcap_P R_P = \{x \in K : v_P(x) \geq 0 \ \forall P\} = R$. □

Then there are 2 equivalent definitions of disc(S/R):

Definition. disc(S/R) := the ideal of R generated by {disc $_{L/K}(x_1,...,x_n): x_1,...,x_n \in S$ }. If S is free, this gives the previous definition.

As $S \otimes_R K = L$ is separable over K, $\operatorname{disc}(L/K) \neq 0$, and so $\operatorname{disc}(S/R) \neq \{0\}$.

Proposition 3.4. $\operatorname{disc}(S/R)R_P = \operatorname{disc}(S_P/R_P)$ for all P.

Proof. We claim there exist $x_1, \ldots, x_n \in S$ which are an R_P -basis for S_P . Certainly, there is such a basis in S_P , say e_1, \ldots, e_n . Now let:

$$Q := \{ \text{primes } Q \subset S : v_O(e_i) < 0 \text{ for some } i \}$$

Q is finite. Then by the CRT, there are $a_i \in S$ such that $v_Q(a_i) + v_Q(e_i) \ge 0$ for all $Q \in Q$, and $v_P(a_i) \ge 1$.

Then $x_i = a_i e_i \in S$, and $x_i \equiv e_i \mod PS$. So (x_i) is an R/P-basis for $S/PS = S_P/PS_P$. So (x_i) is an R_P basis for S_P (this follows by Nakayama's lemma).

Hence the discriminant $\operatorname{disc}(S_P/R_P) = \operatorname{disc}(x_i)R_P$, and hence $\operatorname{disc}(x_i) \in \operatorname{disc}(S/R)$. So $\operatorname{disc}(S_P/R_P) \subset \operatorname{disc}(S/R)R_P$, and the other inclusion is obvious.

The alternate definition of disc(S/R) is:

• if $x_1, \ldots, x_n \in S$ is a K-basis for L, then $\mathrm{disc}_{L/K}(x_i) \neq 0$. Let $\mathcal{P} = \{P \subset R : v_P(\mathrm{disc}_{L/K}(x_i)) > 0\}$, a finite set. So for all $P \notin \mathcal{P}$, $\mathrm{disc}(S_P/R_P) = R_P$. Then we can define $\mathrm{disc}(S/R) = \prod_{P \in \mathcal{P}} P^{v_P(\mathrm{disc}(S_P/R_P))}$.

This is equivalent to the previous definition by 3.4.

Theorem 3.5. $v_P(\operatorname{disc}(S/R)) = 0$ if and only if P is unramified in S and for all $Q \subset S$ over P, the residue field extension $\frac{S}{O}/\frac{R}{P}$ is separable.

Proof. We may assume R is local, so that S is a free R-module. We know $PS = \prod_{Q} Q^{e_Q}$. So:

$$S\otimes_R(R/P)\cong S/PS\cong\prod_Q S/Q^{e_Q}$$

So $v_P(\operatorname{disc}(S/R)) = 0$ if and only if $\operatorname{disc}(\frac{S}{PS}/\frac{R}{P}) = \frac{R}{P}$ if and only if each S/Q^{e_Q} is a finite separable field extension of R/P, if and only if, for all Q, $e_Q = 1$ and $\frac{S}{Q}/\frac{R}{P}$ is separable.

Corollary 3.6. In an extension S/R of Dedekind domains (i.e. S is the integral closure of R in a finite separable extension of Frac(R)), only finitely many primes are ramified - precisely the primes such that $v_P(\operatorname{disc}(S/R)) > 0$.

Proposition 3.7. Let $P \subset R$. Then $v_P(\operatorname{disc}(S/R)) = \sum_{Q\supset P} v_P(\operatorname{disc}(\widehat{S}_Q/\widehat{R}_P))$.

Proof. By **3.4** we may assume *R* is local, so *S* is a free *R*-module, and then:

$$S \otimes_R \widehat{R} \cong \prod \widehat{S}_Q$$

So $v_P(\operatorname{disc}(S/R)) = v_P(\operatorname{disc}(S \otimes_R \widehat{R}/\widehat{R})) = \sum_O v_P(\operatorname{disc}(\widehat{S}_Q/\widehat{R})).$

Definition. The *inverse different* $\mathcal{D}_{S/R}^{-1}$ of an extension S/R of Dedekind domains is:

$$\mathcal{D}_{S/R}^{-1} = \{x \in L: \ \forall y \in S, \mathrm{Tr}_{L/K}(xy) \in R\}$$

This is the dual of *S* with respect to the trace form $(x, y) \mapsto \operatorname{Tr}_{L/K}(xy)$.

This is clearly an S-submodule of L. If $\bigoplus_{i=1}^n Rx_i \subset S$, let (y_i) be the dual basis to (x_i) for the trace form, i.e. $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$. Then $S \subset \mathcal{D}_{S/R}^{-1} \subset \bigoplus_{i=1}^n Ry_i$, so $\mathcal{D}_{S/R}^{-1}$ is a fractional ideal (since it is finitely generated), and its inverse $\mathcal{D}_{S/R}$ is an ideal of S, called the *different*.

Proposition 3.8.

- 1. $P \subset R \implies \mathcal{D}_{S_P/R_P} = \mathcal{D}_{S/R}S_P$
- 2. $N_{L/K}(\mathcal{D}_{S/R}) = \operatorname{disc}(S/R)$
- 3. $Q \subset S$ lying over $P \subset R$. Then $v_Q(\mathcal{D}_{S/R}) = v_Q(\mathcal{D}_{\widehat{S}_Q/\widehat{R}_P})$

Proof.

- 1. Exercise. Same idea as **3.4**.
- 2. By (1) and **3.4**, we can suppose R is local. Then S is a PID by **2.1.iii**, so the inverse different $\mathcal{D}_{S/R}^{-1} = x^{-1}S$ for some $0 \neq x \in S$. Let (e_i) be a basis for S/R. Then there exists a basis (e_i') for S/R such that

$$\operatorname{Tr}_{L/K}(e_i x^{-1} e_i') = \delta_{ij}$$

Let $x^{-1}e_j = \sum_k b_{kj}e_k$ where $b_{kj} \in K$. Then the ideal:

(1) =
$$(\det[\operatorname{Tr}_{L/K}(e_i x^{-1} e'_j)])$$

= $(\det(\operatorname{Tr}_{L/K}(e_i e_j)) \det(b_i j))$
= $\det(b_{ij}) \operatorname{disc}(S/R)$

But $N_{L/K}(x^{-1}) = u \det(b_{ij})$ for some unit in R. So $(1) = (N_{L/K}(x^{-1})) \operatorname{disc}(S/R)$. Since we are in Dedekind domains we can cancel $\operatorname{disc}(S/R)$, giving the result.

3. Assume R is local, $P = (\pi_P)$. Write $\widehat{K} = \operatorname{Frac}(\widehat{R})$ for $Q = (\pi_Q) \subset S$, and $\widehat{L}_Q = \operatorname{Frac}(\widehat{S}_Q)$. So $L \otimes_K \widehat{K} \cong \prod_Q \widehat{L}_Q$ viea $x \mapsto (x_Q)_Q$, say, and $S \otimes_R \widehat{R} \cong \prod_Q \widehat{S}_Q$.

We also have $\operatorname{Tr}_{L \otimes_{\mathbb{K}} \widehat{K}/\widehat{K}}(x) = \sum_{Q} \operatorname{Tr}_{\widehat{L}_{Q}/\widehat{K}}(x)$.

Let $S = \bigoplus_{i=1}^{n} Rx_i$, and $\mathcal{D}_{S/R}^{-1} = \prod_{Q} \pi_{Q}^{-a_Q} S = \bigoplus_{i=1}^{n} Ry_i$ for some $a_Q \ge 0$, $y_i \in L$ a dual basis to x_i .

Then, as $S \otimes_R \widehat{R} = \bigoplus \widehat{R} x_i$ (really $x_i \otimes 1$), we have:

$$\begin{split} \mathcal{D}_{S \otimes_R \widehat{R}/\widehat{R}}^{-1} &:= \{ x \in L \otimes_K \widehat{K} : \ \forall y \in S \otimes_R \widehat{R}, \mathrm{Tr}_{L \otimes_K \widehat{K}/\widehat{K}}(xy) \in \widehat{R} \} \\ &= \bigoplus_{i=1}^n \widehat{R} y_i \\ &= \mathcal{D}_{S/R}^{-1} \cdot S \otimes_R \widehat{R} \subset L \otimes_K \widehat{K} \end{split}$$

On the other hand,

$$\mathcal{D}_{S \otimes_R \widehat{R}/\widehat{R}}^{-1} \cong \prod_{O} \mathcal{D}_{\widehat{S}_Q/\widehat{R}}^{-1} \subset \prod_{O} \widehat{L}_Q$$

So:

$$\begin{split} \mathcal{D}_{\widehat{S}_{Q}/\widehat{R}}^{-1} &= (\prod_{Q'} \pi_{Q'}^{-a_{Q'}}) \widehat{S}_{Q} \\ &= \pi_{Q}^{-a_{Q}} \widehat{S}_{Q} \end{split}$$

as
$$v_Q(\pi_{Q'}) = 0$$
 if $Q' \neq Q$.

Theorem 3.9. Let $\mathfrak{p}S = \prod_{i=1}^g Q_i^{e_i} \subset S$. Then $Q_i | \mathscr{D}_{S/R} \iff e_i > 1$; and $Q_i^{e_i-1} | \mathscr{D}_{S/R}$.

Proof. First assume R is complete and local, and $\mathfrak{p}=(\pi_R)$. Then S is also local and complete, and there is a unique prime $Q=(\pi_S)$. Then $\mathscr{D}_{S/R}=(\pi_S)^d$ for some $d\geq 0$. By **3.8.2**, $\mathrm{disc}(S/R)=(N_{L/K}(\pi_S)^d)=(\pi_R)^{df}$. So as $v_P(\mathrm{disc}(S/R))=0\iff \mathfrak{p}$ is unramified (3.5), the first statement holds.

For the second statement, we claim $\operatorname{Tr}_{L/K}(Q) \subset \mathfrak{p}$. Let $x \in Q$. Then multiplication by x is a nilpotent endomorphism of $S \otimes (R/\mathfrak{p}) \cong S/Q^e$, and so $\operatorname{Tr}_{S \otimes_R (R/\mathfrak{p})/(R/\mathfrak{p})}(x \otimes 1) = 0$, i.e. $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S/R}(x) \in \mathfrak{p}$, and hence the claim.

Therefore $\operatorname{Tr}_{L/K}(\pi_R^{-1}Q) = \operatorname{Tr}_{L/K}(Q^{1-e}) \subset R$, and hence $Q^{1-e} \subset \mathcal{D}_{S/R}^{-1}$, or $Q^{e-1}|\mathcal{D}_{S/R}$.

For the general case, apply the above to $\widehat{S}_{Q_i}/\widehat{R}_P$ and use **3.8.3**.

Some facts:

- If $p \nmid e_i$, then $v_{Q_i}(\mathcal{D}_{S/R}) = e_i 1$
- If $p|e_i$ then $v_{O_i}(\mathcal{D}_{S/R}) \ge e_i$.

More precisely, $v_{Q_i}(\mathcal{D}_{S/R})$ is determined by the orders of the higher ramification groups for a Galois closure of L/K. See e.g. Serre 'Local Fields', IV.2.4.

• If S = R[x] and x has minimal polynomial $f \in R[T]$, then $\mathcal{D}_{S/R} = (f'(x))$ where f' is the derivative.

This means that $\mathcal{D}_{S/R}$ is the annihilator of the cyclic *S*-module $\Omega_{S/R}$ of Kahler differentials.

For an extension L/K of number fields, we write $\mathcal{D}_{L/K} = \mathcal{D}_{O_L/O_K}$, and $\delta_{L/K} = \operatorname{disc}(O_L/O_K)$. **Remark.** Take K/\mathbb{Q} , (e_i) a \mathbb{Z} -basis for O_K . Then $\delta_{K/\mathbb{Q}} \subset \mathbb{Z}$ is $(\operatorname{disc}(e_i))$, and if (e_i') is another basis, say $e_i' = \sum a_{ii}e_i$, then $\operatorname{disc}(e_i') = (\det a_{ii})^2\operatorname{disc}(e_i) = \operatorname{disc}(e_i)$.

So the integer $\operatorname{disc}(e_i)$ is independent of the basis (not just the ideal it generates). We call this the absolute discriminant $d_K \in \mathbb{Z} \setminus \{0\}$.

Theorem 3.10 (Kummer-Dedekind Criterion). Let S/R be an extension of Dedekind domains, and $x \in S$ such that L = K(x). Suppose there is $\mathfrak{p} \subset R$ such that $S_{\mathfrak{p}} = R_{\mathfrak{p}}[x]$.

Let $g \in R[T]$ be the min. poly. of x, and $\bar{g} = \prod_i \bar{g}_i^{e_i} \in (R/\mathfrak{p})[T]$ be a factorisation of the reduction of g into powers of distinct irreducibles, where \bar{g}_i are monic. Let $g_i \in R[T]$ be any monic lift of \bar{g}_i , and $f_i = \deg(g_i) = \deg(\bar{g}_i)$.

Then $Q_i = \mathfrak{p}S + (g_i(x)) \subset S$ is prime, of residue degree $[S/Q_i : R/\mathfrak{p}] = f_i$, $Q_i \neq Q_j$ if $i \neq j$, and $\mathfrak{p}S = \prod_i Q_i^{e_i}$.

Proof. We can assume R is local, so S = R[x]. Set $\mathfrak{p} = (\pi), R/\mathfrak{p} = k$. We claim Q_i is prime, $Q_i \neq Q_j$, with residue degree f_i .

Now $S/Q_i \equiv k[T]/(\bar{g}_i)$, and \bar{g}_i is irreducible of degree f_i .

If $i \neq j$, then there exists $a, b \in R[T]$ such that $\bar{a}\bar{g}_i + \bar{b}\bar{g}_j = 1$, and so $1 = ag_i + bg_j + \pi c$ for some $c \in R[T]$, hence $1 \in Q_i + Q_j = (\pi, g_i(x), g_j(x))$.

Let $g = \prod g_i^{e_i} + \pi h$ where $h \in R[T]$. Then:

$$\prod_i Q_i^{e_i} = \prod_i (\pi, g_i(x))^{e_i} \subset \prod_i (\pi, g_i(x)^{e_i}) \subset (\pi, \prod g_i(x)^{e_i}) = (\pi, \pi h(x)) \subset \mathfrak{p}S = (\pi)$$

Now $\dim_k(S/\mathfrak{p}S) = n = [L:K]$, and $\dim_k(S/Q_i^{e_i}) = \sum_{j=0}^{e_i-1} \dim_k(Q_i^j/Q_i^{j-1}) = e_i \dim_k(S/Q_i) = e_i f_i$.

Hence $\prod_i Q_i^{e_i} \subset \mathfrak{p} S$ gives $\sum e_i f_i \geq n$. As $\sum e_i f_i = \sum e_i \deg(\bar{g}_i) = \deg(\bar{g}) = n$, we have equality. \square

3.1 Examples

Quadratic Fields

Let $K = \mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Q}^{\times}$ not a square. Multiplying by a square, we may assume $d \in \mathbb{Z} \setminus \{0, 1\}$ squarefree.

Then $O_k \supset \mathbb{Z}[\sqrt{d}] = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d}$. Now the multiplication map by $a + b\sqrt{d}$ takes:

$$(a + b\sqrt{d}) \cdot 1 = a \cdot 1 + b \cdot \sqrt{d}$$
$$(a + b\sqrt{d}) \cdot \sqrt{d} = a\sqrt{d} + bd = bd \cdot 1 + a \cdot \sqrt{d}$$

so we have:

$$\operatorname{Tr}_{K/\mathbb{Q}}(a+b\sqrt{d}) = \operatorname{Tr}\begin{pmatrix} a & bd \\ b & a \end{pmatrix} = 2a$$

And so $\operatorname{Tr}_{K/\mathbb{Q}}(1) = 2$, $\operatorname{Tr}_{K/\mathbb{Q}}(\sqrt{d}) = 0$, $\operatorname{Tr}_{K/\mathbb{Q}}(d) = 2d$. Then for the discriminant, we have:

$$\operatorname{disc}(1, \sqrt{d}) = \det \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d$$

Hence we have one of 2 cases:

- 1. $d_K = 4d$, and so $O_K = \mathbb{Z}[\sqrt{d}]$, or:
- 2. $d_K = d$, and $(O_K : \mathbb{Z}[\sqrt{d}]) = 2$.

We are in the second case iff there are $m, n \in \mathbb{Z}$ not both even with $\frac{m+n\sqrt{d}}{2} \in O_K$ iff $\frac{1+\sqrt{d}}{2} \in O(K)$, since it is obvious that $\frac{1}{2}, \frac{\sqrt{d}}{2} \notin O_K$. The min poly of $\frac{1+\sqrt{d}}{2}$ is $T^2 - T - \frac{d-1}{4}$, so we have this precisely when $d \equiv 1 \mod 4$, in which case $O_K = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2} = \mathbb{Z} \left[\frac{1+\sqrt{d}}{2}\right]$.

In case 1, we can then compute $\operatorname{Tr}_{K/\mathbb{Q}}(1\cdot\frac{1}{2})=1$, $\operatorname{Tr}_{K/\mathbb{Q}}(\sqrt{d}\cdot\frac{1}{2\sqrt{d}})=1$, so we have a dual basis for the trace form given by $\{\frac{1}{2},\frac{1}{2\sqrt{d}}\}$, and hence $\mathscr{D}_{K/\mathbb{Q}}^{-1}=(\frac{1}{2},\frac{1}{2\sqrt{d}})=(\frac{1}{2\sqrt{d}})=(2\sqrt{d})^{-1}$, and so $\mathscr{D}_{K/\mathbb{Q}}=(2\sqrt{d})$

In case 2, our basis is now $\{1, \frac{1+\sqrt{d}}{2}\}$. The dual basis is thus $\{\frac{1}{2}, \frac{1}{1+\sqrt{d}}\}$, so $\mathcal{D}_{K/\mathbb{Q}}^{-1} = (\frac{1}{2}, \frac{1}{1+\sqrt{d}}) = (2, 1+\sqrt{d})^{-1} = (\sqrt{d})^{-1}$, so $\mathcal{D}_{K/\mathbb{Q}} = (\sqrt{d})$.

Alternatively, in case 1, $O_K = \mathbb{Z}[\sqrt{d}]$, and the min. poly. of \sqrt{d} is $f(T) = T^2 - d$. Hence $\mathcal{D}_{K/\mathbb{Q}} = (f'(\sqrt{d})) = (2\sqrt{d})$. In case 2, $O_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$, so we have min. poly. $T^2 - T - \frac{d-1}{4}$, and so $\mathcal{D}_{K/\mathbb{Q}} = (2\frac{1+\sqrt{d}2}{2}-1) = (\sqrt{d})$.

We can now look at the decomposition of $(p) \subset O_K$. Using Kummer-Dedekind:

• If $p \neq 2$ or $d \not\equiv 1 \mod 4$, then $p \nmid (O_K : \mathbb{Z}[\sqrt{d}])$. So, applying the criterion to $T^2 - d$, we see:

$$(p) = \begin{cases} P^2 & \text{ramified, if } p | d, P = (p, \sqrt{d}) \\ P & \text{inert, if } p \nmid d, \left(\frac{d}{p}\right) = -1 \\ PP' & \text{split, if } p \nmid d, \left(\frac{d}{p}\right) = +1.P = (p, \sqrt{d} - a) \neq P' = (p, \sqrt{d} + a) \end{cases}$$

• If p = 2 and $d \equiv 1 \mod 4$, then we factor $T^2 - T - \frac{d-1}{4} \mod 2$ and get:

(2) =
$$\begin{cases} (2) & \text{inert, if } d \equiv 5 \mod 8 \\ PP' & \text{split, if } d \equiv 1 \mod 8P = (2, \frac{\sqrt{d}+1}{2}) \neq P' = (2, \frac{\sqrt{d}-1}{2}) \end{cases}$$

Cyclotomic Fields

Recall some Galois theory: if n > 1, and K is a field of characteristic prime to n. Suppose $L = K(\zeta_n)$, where ζ_n is a primitive n^{th} root of unity. Equivalently, ζ_n is a root of the n^{th} cyclotomic polynomial Φ_n of degree $\varphi(n)$, defined recursively by

$$T^n - 1 = \prod_{d|n} \Phi_d(T)$$

Then L/K is Galois with abelian Galois group, and an injective homomorphism

$$Gal(L/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

given by

$$g \mapsto a \text{ s.t. } g(\zeta_n) = \zeta_n^a$$

Theorem 3.11. *Let* $L = \mathbb{Q}(\zeta_n)$ *. Then:*

- 1. $Gal(L/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 2. p ramifies in L iff p|n.
- 3. $O_L = \mathbb{Z}[\zeta_n]$.

Remark. Condition 1 is equivalent to Φ_n being irreducible over \mathbb{Q} , iff $[L:\mathbb{Q}] = \varphi(n)$.

Proof. Let $n = p^r m$ for $r \ge 1$ where p is a prime not dividing m. Let $\zeta_m = \zeta_n^{p^r}$, $\zeta_{p^r} = \zeta_n^m$. Then there exist $a, b \in \mathbb{Z}$ such that $p^r a + mb = 1$, so $\zeta_n = \zeta_{pr}^a \zeta_m^b$. Now let $K = \mathbb{Q}(\zeta_m)$. Then $L = K(\zeta_{p^r})$. We will prove:

- Φ_{v^r} is irreducible over K.
- If $v \in V_{K,f}$ and $v \nmid p$, then v is unramified in L/K.
- If v|p then v is totally ramified in L/K.
- $\bullet \ \ O_L = O_K[\zeta_{p^r}].$

This will prove the theorem by induction on n.

For a place w of L, write $x_w \in L_w$ for the image of ζ_{p^r} under $L \hookrightarrow L_w$. Now suppose v|p. By induction, v is unramified in K/Q, so v(p) = 1. Then:

$$\Phi_{p^r}(T+1) = \frac{(T+1)^{p^r} - 1}{(T+1)^{p^{r-1}} - 1}$$

is an Eisenstein polynomial in $O_{K_v}[T]$, congruent to $T^{p^{r-1}(p-1)} \mod p$, and the constant coefficient is p, so it has valuation 1.

Then from local fields, Φ_{p^r} is irreducible over K_v and hence over K, and L/K is totally ramified at v, and if w is the unique place of L over v, then $O_{L_w} = O_{K_v}[\pi_w]$, where $\pi_w = x_w - 1$, a root of $\Phi_{p^r}(T+1)$ in K_w .

Now let $v|q \neq p$. Then Φ_{p^r} is separable mod q. We have:

$$K_v \otimes_K L \cong \prod_{w \mid v} L_w = \prod_{w \mid v} K_v(x_w)$$

Let $f_w \in O_{K_v}[T]$ be the minimal polynomial of $x_w|K_v$. Then $\prod_{w|v} f_w = \Phi_{p^r}$, so the reduction of f_w at v is separable, and hence L_w/K_v is unramified. Then, by local fields again, $O_{L_w} = O_{K_v}[x_w]$, and $\prod_{w|v} O_{L_w} = \prod_{w|v} O_{K_v}[T]/(f_w) \cong O_{K_v}[T]/(\Phi_{p^r})$.

Hence, for all $v \in V_{K,f}$,

$$O_{K_v} \otimes_{O_K} O_K[\zeta_{p^r}] \cong O_{K_v}[T]/(\Phi_{p^r}) \cong \prod_{w \mid v} O_{L_w} \cong O_{K_v} \otimes_{O_K} O_L$$

So we must have $O_K[\zeta_{p^r}] = O_L$.

Given L/K a Galois extension of number fields with w|v finite places, with $G = \text{Gal}(L/K) \supset G_w \cong \text{Gal}(L_w/K_v)$, the decomposition group of w, we have a short exact sequence:

$$0 \to I_w \to G_w \to \operatorname{Gal}(\ell_w/k_v) \to 1$$

Suppose w is unramified in L/K (iff v unramified in L/K). Then $I_w = \{1\}$. We define the *Frobenius* at w to be the element $\sigma_w \in G_w$ mapping to the generator $x \mapsto x^{q_v}$ of $Gal(\ell_w/k_v)$.

So the order of $\sigma_w = f(w|v) = [\ell_w : k_v] = [\ell_{w'} : k_v]$ for any other w'|v.

In particular, $\sigma_w = 1 \iff v$ splits completely in L/K, i.e., there are precisely [L:K] places of L over v.

Now suppose G is abelian. Then G_w , σ_w are independent of w, so depend only on v, and so we write σ_v or $\sigma_{L/K,v}$ for σ_w , the (*arithmetic*) *Frobenius at v*.

Remark. If L/F/K with L/K abelian, then $\sigma_{L/K}|_F = \sigma_{F/K}$, by definition.

Example. Take $L = \mathbb{Q}(\zeta_n)$, $K = \mathbb{Q}$, n > 2. We have $(\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Gal}(L/\mathbb{Q})$, given by

$$\lambda(a \mod n): \zeta_n \mapsto \zeta_n^a$$

We now claim $\sigma_p = \sigma_{L/\mathbb{Q},p} = \lambda(p)$ if $p \nmid n$.

Indeed, σ_p is characterised by, the following property: for all v|p, σ_p induces $(x \mapsto x^p)$ on the residue field $\mathbb{Z}[\zeta_n]/\mathfrak{p}_v$, whereas $\lambda(p)$ induces $(x \mapsto x^p)$ on $\mathbb{Z}[\zeta_n]/(p)$.

Remarks.

- 1. These elements σ_p generate $\operatorname{Gal}(L/\mathbb{Q})$, since every integer prime to n is a product of $p \nmid n$. This gives with some thought another proof that $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 2. If $\sigma: L \hookrightarrow \mathbb{C}$ is any embedding, then $\overline{\sigma(\zeta_n)} = \sigma(\zeta_n^{-1})$. So $\lambda(-1)$ is complex conjugation for any embedding.

We will now specialise to the case where n = q is a prime > 2. Then $Gal(L/\mathbb{Q}) \cong (\mathbb{Z}/q\mathbb{Z})^{\times}$, cyclic of order q - 1. So we have a unique index 2 subgroup H, the squares.

Let $K = L^H$ be a quadratic extension of \mathbb{Q} . Every $p \neq q$ is unramified in L, hence also in K. So $K = \mathbb{Q}(\sqrt{\pm q})$, and as 2 is unramified we must have $K = \mathbb{Q}(\sqrt{q^*})$, where $q^* = \begin{cases} q & q \equiv 1 \mod 4 \\ -q & q \equiv 3 \mod 4 \end{cases}$. Note that $d_K = q^*$.

Now let $p \neq q$ be an odd prime. Then $\sigma_{K/\mathbb{Q},p} = 1 \iff \sigma_{L/\mathbb{Q},p} \in H \iff \left(\frac{p}{q}\right) = 1$.

But $\sigma_{K/\mathbb{Q},p} = 1 \iff p$ splits in K which is equivalent to saying that $\left(\frac{q^*}{p}\right) = 1$, and so:

$$\left(\frac{p}{q}\right) = \left(\frac{q^*}{p}\right)$$

Combining this with $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ gives quadratic reciprocity.

In algebraic number theory terms, quadratic reciprocity says that the splitting of p in K/\mathbb{Q} depends only on the congruence class of p mod something. Class field theory tells us that a similar thing holds for any abelian extension of number fields. There is a law describing the decomposition of primes in an abelian extension which is just a congruence condition.

 \llbracket Apparently my numbering is off compared to the lecturer - I can't work out where this happened, so we're skipping section numbers 4 and 5 \rrbracket

6 Ideles and Adeles

To study congruences mod p^n , Hensel introduced \mathbb{Z} , \mathbb{Q}_p , $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$. For congruences to arbitrary moduli or to study "local-global" problems in general, it would be nice to simultaneously embed

 $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all $p \leq \infty$. The first guess for how to do this would be to embed into $\prod_{p \leq \infty} \mathbb{Q}_p$, but this product is not nice.

Better is to notice that, if $x \in \mathbb{Q}$, then the image of x lies in \mathbb{Z}_p for all but finitely many p. So we introduce a small product with better properties. We introduce two objects:

- \mathbb{A}_k , the ring of adeles of *K* (or valuation vectors)
- J_k , the group of ideles of K.

These are topological rings/groups respectively, and are highly disconnected.

Definition of \mathbb{A}_k . Let K be a number field, and $V_K = V_{K,\infty} \sqcup V_{K,f}$. It's completion is K_v and if $v \in V_{K,f}$ then $O_v \subset K_v$.

We then define:

$$\mathbb{A}_K := \{(x_v) \in \prod_{v \in V_K} K_v : \text{for all but finitely many } v, x_v \in O_v\}$$

$$= \bigcup_{\text{finite } S \subset V_{K,f}} U_{K,S} \subseteq \prod_{v \in V_K} K_v$$

where

$$U_{K,S} = \prod_{v \in V_{K,\infty}} K_v \times \prod_{v \in S} K_v \times \prod_{v \in V_{K,f} \setminus S} O_v$$

We will sometimes refer to $K_{\infty} = \prod_{v \in V_{K,\infty}} K_v = K \otimes_{\mathbb{Q}} \mathbb{R}$.

 \mathbb{A}_K is a ring. We then put a topology on \mathbb{A}_K . It will be generated by all $V \subset U_{K,S}$ open as S varies, where $U_{K,S}$ has the product topology.

This means in particular, every $U_{K,S} \subset \mathbb{A}_K$ is open.

$$U_{K,\emptyset} = K_{\infty} \times \prod_{v \in V_{K,f}} O_v$$

is open and has the product topology.

For example, take $K = \mathbb{Q}$. Then $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \{(x_p) \in \prod_{p < \infty} \mathbb{Q}_p : \text{for all but finitely many } p, x_p \in \mathbb{Z}_p \}$.

So, letting $m = \prod_p (\text{denominator } p^i \text{ of } x_p) \in \mathbb{Z}_{>0}$, we see that $m \cdot (x_p)_p \in \prod_{p < \infty} \mathbb{Z}_p = \widehat{\mathbb{Z}}$.

I.e.,
$$(x_p)_p \in \frac{1}{m}\widehat{\mathbb{Z}} \subset \prod_p \mathbb{Q}_p$$
.

Let
$$\widehat{\mathbb{Q}} = \bigcup_{m \geq 1} \frac{1}{m} \widehat{\mathbb{Z}} \cong \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$$
. Then $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \widehat{\mathbb{Q}}$.

Proposition 6.1. \mathbb{A}_K is Hausdorff and locally compact (i.e. every point has a compact neighbourhood).

Proof. $U_{K,\emptyset} = K_{\infty} \times \prod_{v \nmid \infty} O_v \cong K_{\infty} \times \widehat{O}_K$ is Haudorff and locally compact (as K_{∞} is locally compact and \widehat{O}_K is compact), and is an open neighbourhood of 0. Then by translation, \mathbb{A}_K is Hausdorff and locally compact.

We have the diagonal embedding $K \hookrightarrow \mathbb{A}_K$.

Proposition 6.2. *K* is discrete in \mathbb{A}_K .

Proof. We need to find a neighbourhood of 0 containing only $0 \in K$. Let

$$U = \{x = (x_v) \in \mathbb{A}_K : \forall v \in V_{K,f} | x_v|_v \le 1, \forall v \in V_{K,\infty} | x_v|_v < 1\}$$

Then $U \subseteq \mathbb{A}_K$ is open. If $x \in K \cap U$, then the first condition implies $x \in O_K$, and the second implies $|N_{K/\mathbb{Q}}(x)| < 1$, so x = 0. Hence K is discrete.

Remark. Intuitively, this must be true - if not, we would have a place-independent topology on *K*.

Let L/K be an extension of number fields. For all $v \in V_K$, we have an inclusion $K_v \hookrightarrow \prod_{w|v} L_w$. This induces an inclusion of rings $\mathbb{A}_K \hookrightarrow \mathbb{A}_L$, which is visibly continuous.

Proposition 6.3. Let (a_1, \ldots, a_n) be a K-basis for L. Consider:

$$\mathbb{A}_K^n \xrightarrow{f} \mathbb{A}_K \otimes_K L \xrightarrow{g} \mathbb{A}_L$$

given by $(x^{(i)}) \mapsto \sum x^{(i)} \otimes_K a_i \mapsto \sum a_i x^{(i)}$. Then g is a ring isomorphism, f is an \mathbb{A}_K -module isomorphism, and $g \circ f$ is a homeomorphism.

This then defines a unique topology on $\mathbb{A}_K \otimes_K L$ such that g is an isomorphism of topological rings.

Proof. Since $L = \bigoplus Ka_i \cong K^n$, f is an \mathbb{A}_K -module isomorphism. By definition, g is a ring homomorphism. So it is sufficient to prove that $g \circ f$ is bijective, and that it maps $X^n = (K_\infty \times \widehat{O_K})^n$ homeomorphically to an open subgroup of O_L .

Note that multiplication by any $x \in K^{\times}$ is a self-homeomorphism of \mathbb{A}_K with itself, and so is multiplication by x^{-1} . The same is true for \mathbb{A}_L . So we may replace a_i by non-zero K-multiples, and hence WLOG we may take $a_i \in O_L$.

Let $S = \{v \in V_{K,f} : v((O_L : \sum a_i O_K)) > 0\}$ - this is a finite subset of $V_{K,f}$. Then for all $v \in V_{K,f} \setminus S$,

$$O_{K_v}^n \cong \prod_{w|v} O_{L_w} \cong O_{K_v} \otimes_{O_K} O_L$$

and for all $v \in S$, $\sum a_i O_{K_v} = M_v$ is an open O_{K_v} -submodule of $\prod_{w|v} O_{L_w}$.

Hence $gf((K_{\infty} \times \widehat{O_K})^n) = L_{\infty} \times \prod_{v \notin S, v \nmid \infty} \prod_{w \mid v} O_{L_w} \times \prod_v M_v$ is a homeomorphism onto an open subgroup of \mathbb{A}_L .

Moreover, for any finite $S' \supset S \supset V_{K,\infty}$,

$$gf: (\prod_{v \in S'} K_V \times \prod_{v \notin S'} O_{K_v})^n \to \prod_{w \mid v \in S'} L_w \times \prod_{w \mid v \notin S'} O_{L_w}$$

so gf is a bijection.

In particular, $\mathbb{A}_K = \mathbb{A}_{\mathbb{Q}} \otimes_{\mathbb{Q}} K$.

Corollary 6.4. \mathbb{A}_L is a free \mathbb{A}_K -module of rank [L:K], and the following diagram commutes:

Proof. Exercise.

Theorem 6.5. \mathbb{A}_K/K *is compact and Hausdorff.*

Proof. K is closed in \mathbb{A}_K , and \mathbb{A}_K is Hausdorff, so \mathbb{A}_K/K is Hausdorff.

By **6.3**, $\mathbb{A}_K/K \cong (\mathbb{A}_\mathbb{Q}/\mathbb{Q})^{[K:\mathbb{Q}]}$ as topological groups, so we may assume $K = \mathbb{Q}$. Let $X = [0,1] \times \widehat{\mathbb{Z}} \subset \mathbb{A}_\mathbb{Q}$. X is compact, so it's enough to show that $X + \mathbb{Q} = \mathbb{A}_\mathbb{Q}$, as then $X \twoheadrightarrow \mathbb{A}_\mathbb{Q}/\mathbb{Q}$. Let $X = (x_p)_{p \le \infty} \in \mathbb{A}_\mathbb{Q}$, and let $S = \{p < \infty : x_p \notin \mathbb{Z}_p\}$ - a finite set of finite places.

Then there is $r_p \in \mathbb{Z}[1/p]$ such that $x_p - r_p \in \mathbb{Z}_p$ for all $p \in S$.

Let $r = \sum_{p \in S} r_p \in \mathbb{Q}$. For all primes $p < \infty$, $x_p - r \in \mathbb{Z}_p$, i.e. $x - r \in \mathbb{R} \times \widehat{\mathbb{Z}}$, and then for suitable $m \in \mathbb{Z}$, $x - (r + m) \in [0, 1] \times \widehat{\mathbb{Z}}$.

From 6.3 we also get

$$\mathbb{A}_K = K_\infty \times \widehat{K}$$

where $\widehat{K} = \widehat{O_K} \otimes_{\mathbb{Z}} \mathbb{Q} = \widehat{O_K} \otimes_{O_K} K$, and $\widehat{O_K} = \prod_P \widehat{O_{K,P}} = \prod_{v \nmid \infty} O_{Kv}$.

6.1 Ideles

Definition 6.6. The **idele group of K** is $J_K = \mathbb{A}_K^{\times}$, the group of units of \mathbb{A}_K . In other words, this is

$$\{(x_v) \in \prod_{v \in V_{\mathbb{K}}} K_V^{\times} : \textit{for all but finitely many } v, \, x_v \in O_v^{\times}\}$$

We can write this in a similar way as we did adeles:

$$\bigcup_{S \subset K_{K,f}} \left(K_{\infty}^{\times} \times \prod_{v \in S} K_{v}^{\times} \times \prod_{v \in V_{K,f} \setminus S} O_{v}^{\times} \right)$$

We call this set in the union $J_{K,S}$, and the topology on J_K is generated by open subsets of $J_{K,S}$ where $J_{K,S}$ has the product topology.

In particular, $K_{\infty}^{\times} \times \prod_{v \nmid \infty} O_v^{\times}$ is an open subgroup and has the product topology. We have an embedding $J_K \hookrightarrow \mathbb{A}_K$ which is continuous, but is not a homomorphism onto its image, as $x \mapsto x^{-1}$ is not continuous for the \mathbb{A}_K -topology.

However, $x \mapsto (x, x^{-1})$ is a homeomorphism $J_K \hookrightarrow \mathbb{A}_k \times \mathbb{A}_K$ onto the closed subset $\{xy = 1\} \subset \mathbb{A}^2_K$.

 $K^{\times} \hookrightarrow J_K$ since $x \in K^{\times} \implies |x|_v = 1$ for all but finitely many v, and has a discrete image. We define $C_K = J_K/K^{\times}$, the *idele class group* of K. This is a Hausdorff locally compact topological group.

We have 2 important homomorphisms:

• The *idele norm*. Let $x = (x_v) \in J_K$. Then for all v, $|x_v|_v \neq 0$, and for all but finitely many v, $|x_v|_v = 1$. So we can define a homomorphism:

$$|\cdot|_{\mathbb{A}}:J_K\to\mathbb{R}_{>0};|(x_v)|_{\mathbb{A}}=\prod_{v\in V_K}|x_v|_v$$

This is continuous since the restriction to $J_{K,S}$ is.

If $x \in K^{\times}$, then $|x|_{\mathbb{A}} = 1$ by the product formula, so $|\cdot|_{\mathbb{A}} : J_K \to C_K \to \mathbb{R}_{>0}$. We define $J_K^1 = \{x \in J_K : |x|_{\mathbb{A}} = 1\}$, and $C_K^1 = J_K^1/K^{\times}$. Clearly $|\cdot|_{\mathbb{A}}$ is surjective, as $K_{\infty}^{\times} \subset J_K$.

Proposition 6.7. $J_K \cong J_K^1 \times \mathbb{R}_{>0}$, $C_K \cong C_K^1 \times \mathbb{R}_{>0}$

Proof. We have $|\cdot|_{\mathbb{A}}: J_K \twoheadrightarrow \mathbb{R}_{>0}$. Consider $i: \mathbb{R}_{>0} \to K_\infty^\times \subset J_K$ given by $x \mapsto (x^{1/n})_{v|\infty}$. Because $|x|_v$ is $|x|_\infty$ if v is real and $|v|^2$ if v is complex, this homomorphism is a right inverse to $|\cdot|_{\mathbb{A}}$, so defines a splitting $J_K \cong J_K^1 \times \mathbb{R}_{>0}$.

Since
$$i(R_{>0}) \cap K^{\times} = \{1\}$$
, we also have $C_K \cong C_K^1 \times \mathbb{R}_{>0}$.

• The *content map*, $c: J_K \to I(K)$, the group of fractional ideals of K, which is a free abelian group generated by $V_{K,f}$, given by $(x_v) \mapsto \prod_{v \in V_{K,f}} P_v^{v(x_v)}$, where P_v is the prime ideal corresponding to the finite place v. We write v also for the corresponding normalised discrete valuation. This is a continuous homomorphism, since $\ker(c) = J_{K,\emptyset} = K_{\infty}^{\times} \times \prod_{v \nmid \infty} O_v^{\times}$ is open.

If $x \in K^{\times}$, then c(x) is the principal fractional ideal (x). So c descends to a homomorphism $c: C_K = J_K/K^{\times} \to Cl(K) = J(K)/P(K)$, where P(K) is the group of principal fractional ideals. The image of this inclusion $K^{\times} \hookrightarrow J_K$ is called the subgroup of principal ideles.

c is clearly surjective, since $K_v^{\times} \to \mathbb{Z}$, so $C_K \to Cl(K)$. As $\mathbb{R}_{>0} \xrightarrow{c \circ i} Cl(K)$ is zero, we have a surjection $C_K^1 \to Cl(K)$. We will now prove that $C_K^1 = J_K^1/K^{\times}$ is compact, and the corollary of this will be that Cl(K) is finite, since it's compact and discrete.

Variant: suppose $S \subset V_{K,f}$ is a finite subset, we can define a restricted map $c^S : J_K \to I^S(K)$, the fractional ideals prime to S, i.e. I such that, for all $v \in S$, v(I) = 0 by $c^S((x_v)) = \prod_{v \in V_{K,f} \setminus S} P_v^{v(x_v)}$. This will be useful later on.

7 Geometry of Numbers

Classically, we embed $K \hookrightarrow K_{\infty} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \cong \mathbb{R}^n$, and study the image $\sigma(I) \subset \mathbb{R}^n$. Let U be a finite dimensional vector space. A *lattice* $\Lambda \subset U$ is a discrete subgroup such that U/Λ is compact.

Proposition 7.1. A subgroup $\Lambda \subseteq U$ is a lattice iff $\Lambda = \bigoplus \mathbb{Z}e_i$ where (e_i) is an \mathbb{R} -basis for U.

Proof. Ex. Sheet.

Theorem 7.2 (Minkowski). Let $\Lambda \subset \mathbb{R}^n$ be a lattice, and let $\mu_{\Lambda} = vol(\mathbb{R}^n/\Lambda)$ be the covolume of Λ . Let $X \subset \mathbb{R}^n$ be a compact subset, which is convex (so that given $x, y \in X$, $t \in [0, 1]$, we have $tx + (1 - t)y \in X$) and symmetric about 0 (so that $x \in X \implies -x \in X$).

If $vol(X) > 2^n \mu_{\Lambda}$, then $X \cap \Lambda \neq \emptyset$.

Proof. We have $\pi: \mathbb{R}^n \to \mathbb{R}^n/2\Lambda$. Then $\operatorname{vol}(\pi(X)) \leq \operatorname{vol}(\mathbb{R}^n/2\Lambda) = 2^n \operatorname{vol}(\mathbb{R}^n/\Lambda) < \operatorname{vol}(X)$. So π is not injective, so there are $x \neq y$ such that $x - y = 2\lambda \in 2\Lambda$. But then $\lambda \neq 0$, so $\lambda = \frac{1}{2}x + \frac{1}{2}(-y) \in X$ by symmetry and convexity.

Theorem 7.3. There is a constant $r_K > 0$ such that, if $(d_v)_{v \in K}$ is the positive reals with $d_v \in |K_v^\times|_v = \{|x|_v : x \in \mathbb{K}_v^\times\} \subset \mathbb{R}_{>0}$, $d_v = 1$ for all but finitely many v, and $\prod_{v \in V_K} d_v > r_K$. Then $\{x \in K : \forall v, |x|_v \leq d_v\} \neq \{0\}$.

Proof. For all $v \nmid \infty$, we can write $d_v = q_v^{-n_v}$, where $n_v \in \mathbb{Z}$. $I = \{X \in K : \forall v \nmid \infty, |x|_v \leq d_v\} = \prod P_v^{n_v}$ is a fractional ideal of K.

Then $\mu_{\sigma(I)} = m^{-n}\mu_{\sigma(mI)} = m^{-n}\mu_{\sigma(O_K)}(\sigma(O_K):\sigma(mI)) = m^{-n}\mu_{\sigma(O_K)}N(mI) = \mu_{\sigma(O_K)}\prod q_v^{n_v}$, and $\sigma(I)$ is a lattice in \mathbb{R}^n .

Let

$$X = \{x \in \prod_{v \mid \infty} K_v \cong \mathbb{R}^n : \forall v, |x_v|_v \le d_v\} = \prod_{v \text{ real}} [-d_v, d_v] \times \prod_{v \text{ complex}} \{|z|^2 \le d_v\}$$

which is convex, compact, symmetric, with volume $2^{r_1}\pi^{r_2}\prod_{v\mid\infty}d_v>2^n\mu_{\sigma(I)}=2^n\prod v\nmid\infty d_v^{-1}\mu_{\sigma(O_K)}$, provided that $\prod_{\text{all }v}d_v>r_K=(4/\pi)^{r_2}\mu_{\sigma(O_K)}$. Then apply Minkowski.