MAT232 - Lecture 6

vectors?

AlexanderTheMango

Prepared for January 23, 2025

Contents

Title Page		0
Preliminary Concepts		1
Introduction to Vectors		1
Vector Representation		1
Basic Vector Operations		2
Scalar Multiplication		2
Vector Addition		2
Vector Subtraction	()	3
Vector Components		3
Magnitude of a Vector		4
Properties of Vector Operations		4
Applications of Vectors		4

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Introduction to Vectors

Definition

A **vector** is a quantity that has both magnitude and direction. Vectors can be optionally denoted in multiple ways:

• Boldface Notation: v

• Arrow Notation: \vec{v}

• Overline Notation: \overline{v}

Note

In MAT232H5, the contents of a vector are typically written using angle bracket notation:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle$$

For example, a 3D vector can be represented as:

$$\vec{v} = \langle 2, -1, 3 \rangle$$

Depending on the context, you might see $\mathbf{v} = \langle v_1, v_2 \rangle$ in 2D or $\mathbf{v} = \langle v_1, v_2, v_3, v_4 \rangle$ in higher dimensions.

Remark

Quantities such as velocity and force are examples of vectors because they require both magnitude and direction to be fully described.

Vector Representation

A vector in a plane is represented by a directed line segment (an arrow) with an **initial point** and a **terminal point**. The length of the segment represents its **magnitude**, denoted $\|\vec{v}\|$. A vector with the same initial and terminal point is called the **zero vector**, denoted $\vec{0}$.

Two vectors \vec{v} and \vec{w} are equivalent if they have the same magnitude and direction, written as $\vec{v} = \vec{w}$.

Exercise

Sketching Vectors

Sketch a vector in the plane from initial point P(1,1) to terminal point Q(8,5).

Basic Vector Operations

Scalar Multiplication

Multiplying a vector \vec{v} by a scalar k results in a new vector $k\vec{v}$ with the following properties:

- · Its magnitude is |k| times the magnitude of \vec{v} .
- · Its direction remains the same if k > 0.
- · Its direction is reversed if k < 0.
- If k = 0 or $\vec{v} = \vec{0}$, then $k\vec{v} = \vec{0}$.

Note

The zero vector $\vec{0}$ is the vector with a magnitude of 0 and no direction (or any direction). It is the only vector that is orthogonal (perpendicular) to every vector, including itself.

Exercise

Scalar Multiplication

Given vector \vec{v} , sketch the vectors $3\vec{v}$, $\frac{1}{2}\vec{v}$, and $-\vec{v}$.

Vector Addition

The sum of two vectors \vec{v} and \vec{w} is constructed by placing the initial point of \vec{w} at the terminal point of \vec{v} . The vector sum, $\vec{v} + \vec{w}$, is the vector from the initial point of \vec{v} to the terminal point of \vec{w} .

Exercise

Vector Addition

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} + \vec{w}$ using both the triangle method and the parallelogram method.

Graphical Methods for Vector Addition

- 1. Place the vectors with the head of the previous vector \vec{u} connected to the tail of the successive vector \vec{v} .
- 2. The resultant vector $\vec{u} + \vec{v}$ is formed by connecting the tail of the first vector to the head of the last vector.

Parallelogram Method

- 1. Place both vectors, \vec{u} and \vec{v} at the same initial point.
- 2. Complete the parallelogram.
- 3. The diagonal of the parallelogram is the resultant vector $\vec{u} + \vec{v}$.

Vector Subtraction

The difference $\vec{v} - \vec{w}$ is defined as $\vec{v} + (-\vec{w})$, where $-\vec{w}$ is the vector with the same magnitude as \vec{w} but opposite direction.

Exercise

Vector Subtraction

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} - \vec{w}$.

Vector Components

A vector in standard position has its initial point at the origin (0,0). If the terminal point is (x,y), the vector is written in **component form** as $\vec{v} = \langle x, y \rangle$. The scalars x and y are called the **components** of \vec{v} .

Exercise

Expressing Vectors in Component Form

Express vector \vec{v} with initial point (-3,4) and terminal point (1,2) in component form.

Magnitude of a Vector

Definition

The magnitude of a vector $\vec{v} = \langle x, y \rangle$ is its length, and is given by:

$$\|\overrightarrow{v}\| = \sqrt{x^2 + y^2}.$$

Exercise

Find the magnitude of the vector $\overrightarrow{v} = \langle 3, -4 \rangle$.

Properties of Vector Operations

Theorem

Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} be vectors, and let k and c be scalars. Then:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Commutative Property)
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associative Property)
- 3. $k(c\vec{v}) = (kc)\vec{v}$ (Associativity of Scalar Multiplication)
- 4. $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ (Distributive Property)

Proof

Proof of Commutative Property:

Let $\overrightarrow{u} = \langle u_1, u_2 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2 \rangle$. Then:

$$\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2 \rangle = \langle v_1 + u_1, v_2 + u_2 \rangle = \overrightarrow{v} + \overrightarrow{u}.$$

Applications of Vectors

Example

Real-Life Applications

- A boat crossing a river experiences a force from its motor and a force from the river current. Both forces are vectors.
- A quarterback throwing a football applies a velocity vector to the ball, determining its speed and direction.

