

Olimpiada de Fizică - Etapa pe județ 15 ianuarie 2011

Grila de evaluare și de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr.	Problema I Mişcări periodice		Punctaj
item	, 1		
А. а.	Pentru: $\begin{cases} x_v = r \cdot \cos(\omega \cdot t) \\ y_v = r \cdot \sin(\omega \cdot t) \end{cases}$ $\begin{cases} x_P = x \\ y_P = 0 \end{cases}$	0,25p	2,00p
	$\ell^2 = (r \cdot \cos(\omega \cdot t) - x)^2 + (r \cdot \sin(\omega \cdot t))^2$	0,25p	
	$x^2 - 2 \cdot r \cdot x \cdot \cos(\omega \cdot t) - (\ell^2 - r^2) = 0$	0,25p	
	$x_{1,2} = r \cdot \cos(\omega \cdot t) \pm \sqrt{\ell^2 - (r \cdot \sin(\omega \cdot t))^2}$	0,25p	
	$r<<\ell$, deci $r\cdot\sin(\omega\cdot t)<<\ell$ soluția admisă pentru coordonata x a punctului P $x=\ell+r\cdot\cos(\omega\cdot t)$	0,50p	
	$x=\ell+r\cdot cos\left(\omega\cdot t\right)$ descrie o oscilație armonică a punctului P de-a lungul axei Ox . Oscilația are loc între pozițiile $\ell+r\geq x\geq \ell-r$ și este centrată pe punctul de coordonate $\left(\ell,0\right)$	0,50p	
A. b.	Pentru:		1,00p
	accelerația punctului P (solidar cu pistonul) $a = -r \cdot \omega^2 \cdot \cos(\omega \cdot t)$	0,25p	
	accelerația maximă $a_{max} = r \cdot \omega^2$	0,25p	
	$a_{max} \cong 140 m \cdot s^{-2}$	0,50p	
В. а.	Pentru: tabelul de variație în timp a coordonatelor x și y , realizat pentru o perioadă a mişcării compuse $T=2\pi\cong 6,28\mathrm{s}$ reprezentarea grafică a legilor de mişcare $\begin{cases} x(t)=1,00\cdot\sin 2t\\ y(t)=1,00\cdot\sin t \end{cases}$	1,00p	2,00p
	-1,00- -1,00- -1,00- -1,00- -1,00- -1,00- -1,00- -1,00- -1,00-	1,00p	

B. b.	Pentru:	1,00p
	schița traiectoriei corpului, supus celor două oscilații perpendiculare, cu indicarea coordonatelor punctelor O, A, B, C, D, E şi F	
	y (m) 🕇	
	B B	
	C A	
	1,00p	
	-1,00 × (m)	
	F	
	-1.00	
В. с.	Pentru:	0,75p
	$\sin^2(2\alpha) = 4\sin^2\alpha \cdot \cos^2\alpha = 4\sin^2\alpha \cdot \left(1 - \sin^2\alpha\right)$ 0,25p	
D .	ecuația traiectoriei $x^2 = 4 \cdot y^2 \cdot (1 - y^2)$ 0,50p	
B. d.	Pentru:	2,25p
	componentele vitezei instantanee a corpului $v_x(t) = 2,00 \cdot \cos 2t$	
	$v_x(t) = 2,00 \cdot \cos 2t$ $v_y(t) = 1,00 \cdot \cos t$ $0,50p$	
	79(1) ,,55 5551	
	modulul vitezei instantanee a corpului	
	$v(t) = \sqrt{4,00 \cdot \cos^2 2t + 1,00 \cdot \cos^2 t}$ 0,25p	
	condiția ca viteza corpului să fie paralelă cu direcția Oy $\begin{cases} v_x(t) = 0 \\ 2,00 \cdot \cos 2t = 0 \end{cases}$ 0,25p	
	$(2,00 \cdot \cos 2t = 0)$	
	momentele de timp la care componenta pe direcția Ox a vitezei se anulează	
	şi viteza corpului este paralelă cu direcția <i>Oy</i> 0,25p	
	$t_{k_{IIOY}} \cong (2k+1) \cdot 0.79 s, \qquad k = 0, 1, 2, 3,$	
	valoarea vitezei corpului, pentru situațiile în care aceasta este paralelă cu	
	direcția Oy $v(t_{K_{IIOY}}) = \left 1,00 \cdot cos(2k+1)\frac{\pi}{4} \right \approx 0.71 \frac{m}{s}$	
	, , , , , , , , , , , , , , , , , , , ,	
	condiția ca viteza corpului să fie paralelă cu direcția Ox $ \begin{cases} v_y(t) = 0 \\ 1,00 \cdot \cos t = 0 \end{cases} $ 0,25p	
	condiția ca viteza corpului să fie paralelă cu direcția $Ox \begin{cases} 1,00 \cdot cos t = 0 \end{cases}$ 0,25p	
	momentele de timp la care componenta pe direcția Oy a vitezei se anulează	
	şi viteza corpului este paralelă cu direcția Ox 0,25p	
	$t_{k_{IIOX}} \cong (2k+1) \cdot 1,57 s, \qquad k = 0, 1, 2, 3,$	
	valoarea vitezei corpului, pentru situațiile în care aceasta este paralelă cu	
	direcția Ox $v(t_{k_{11} \text{ ox}}) = \left 2,00 \cdot \cos(2k+1) \frac{\pi}{2} \right = 2,00 \cdot \frac{m}{s}$ 0,25p	
Oficiu		1,00p
	C Problema I	10p

Delia DAVIDESCU – Centrul Național pentru Evaluare și Examinare – M E C T S Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București

Olimpiada de Fizică - Etapa pe județ 15 ianuarie 2011

Grila de evaluare şi de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a II-a Diferite circuite electrice		Punctaj
A. a.		0,25p	1,00p
	$U_2 = E - I_2 \cdot r$	0,25p	
	$E = \frac{U_1 \cdot I_2 - U_2 \cdot I_1}{I_2 - I_1}$	0,25p	
	E=3.8 V	0,25p	
A. b.	Pentru:		0,50p
	expresia rezistenței interne a sursei $r = \frac{U_2 - U_1}{I_2 - I_1}$	0,25p	
	$r = 1.2 \Omega$	0,25p	
A. c.	Pentru:		0,50p
	rezistența electrică $R_1 = \frac{U_1}{I_1}$	0,25p	
	$R_1 = 6.4 \Omega$	0,25p	
В. а.	Pentru: nodurile aflate la potentiale egale sunt <i>I. E.</i> respectiv <i>L.D.</i> atunci când sursa	0,50p	1,00p
	când sursa este conectată între vârfurile P și R	0,50p	
B. b.	Pentru: schema electrică echivalentă a cubului conectat între vârfurile P şi O $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,75p	4,25p
	1 7R.	0,75p	

schema electricà echivalentà a cubului, intre nodurile P şi R P		schoma electrică echivalentă a cubului concetet între vârfurile. D. ci. D.	Ι
rezistenţa echivalentă a cubului, între nodurile P şi R $R_{PR} = \frac{5R_0}{6}$ 0,50p rezistenţa internă a sursei $r = \sqrt{R_{P,O} \cdot R_{P,R}}$ 0,50p $r = R_0 \cdot \sqrt{\frac{35}{72}}$ 0,25p 0,25p $I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{7 + \sqrt{70}}$ 0,25p $I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}}$ 0,25p $I_{P,R} = \frac{E_0}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $I_{P,R} = \frac{R_{P,O}}{1 + \sqrt{10}} = \frac{1}{1 + \sqrt{10}}$ 0,25p $I_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $I_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $I_{P,R} = \frac{1}{1 + \sqrt{7/10}} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})} = \frac{1}{1 + (r/R_{P,R})} = \frac{1}{1 + (r/R_{P,R})} = \frac{1}{1 + (r/R_{P,R})} = \frac{1}{$			
rezistenţa internă a sursei $r = \sqrt{R_{P,O} \cdot R_{P,R}}$ 0,50p $r = R_0 \cdot \sqrt{\frac{35}{72}}$ 0,25p $I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{7 + \sqrt{70}}$ 0,25p $I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}}$ 0,25p $I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}}$ 0,25p $I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}}$ 0,25p $I_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}}$ 0,25p $I_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}}$ 0,25p $I_{P,O} = I_{P,R} \cdot R_{P,R} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $I_{P,O} = \frac{1}{1 + \sqrt{10/7}}$ 0,25p $I_{P,R} = \frac{1}{1 + $		0,50p	
$ r = R_0 \cdot \sqrt{\frac{35}{72}} \qquad \qquad 0.25p $ $ I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{7 + \sqrt{70}} \qquad \qquad 0.25p $ $ U_{P,O} = I_{P,O} \cdot R_{P,O} = E_0 \cdot \frac{7}{7 + \sqrt{70}} \qquad \qquad 0.25p $ $ U_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}} \qquad \qquad 0.25p $ $ U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} \qquad \qquad 0.25p $ $ U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} \qquad \qquad 0.25p $ $ E. c. \qquad Pentru: \qquad \qquad 1,00p $ randamentul sursei, când aceasta este conectată între vârfurile P și O ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})} \qquad 0.25p $ $ \begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} & 0.25p \\ \eta_{P,O} = 45.6\% & 1 \end{cases} $ randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})} \qquad 0.25p $ $ \begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} & 0.25p \\ \eta_{P,R} = 54.5\% & 0.25p \\ \eta_{P,R} = 54.5\% & 0.25p \end{cases} $ $ Pentru: $ Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $ P_{UE} = P_{U,O} = U_{UE} \cdot I_{UE} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2} \qquad 0.50p $ $ P_{UE} = P_{U,O} = 12.00 \ W \qquad 0.25p $ $ Oficiu \qquad 0.25p $		rezistența echivalentă a cubului, între nodurile P și R $R_{P,R} = \frac{5R_0}{6}$ 0,50p	
$I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{7 + \sqrt{70}} \qquad \qquad 0,25p$ $U_{P,O} = I_{P,O} \cdot R_{P,O} = E_0 \cdot \frac{7}{7 + \sqrt{70}} \qquad \qquad 0,25p$ $I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}} \qquad \qquad 0,25p$ $U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} \qquad \qquad 0,25p$ $U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} \qquad \qquad 0,25p$ $B.c. \qquad \text{Pentru:} \qquad \qquad 1,00p$ randamentul sursei, când aceasta este conectată între vârfurile $P \neq 0$ 0 ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})} \qquad \qquad 0,25p$ $\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} \\ \eta_{P,O} \approx 45,6\% \\ \text{randamentul sursei, când aceasta este conectată între vârfurile } P \neq R \\ \text{ale cubului} \qquad \eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})} \qquad 0,25p$ $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \approx 54,5\% \end{cases}$ B. d. $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \approx 54,5\% \end{cases}$ B. d. $\begin{cases} P_{UE} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{(\sqrt{7} + \sqrt{10})^2} \\ 0,25p \end{cases}$ 0,25p $\begin{cases} 0,75p \\ 0,25p \end{cases}$ 0,25p		·	
$\begin{array}{c} U_{P,O} = I_{P,O} \cdot R_{P,O} = E_0 \cdot \frac{7}{7 + \sqrt{70}} & 0,25p \\ I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}} & 0,25p \\ U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} & 0,25p \\ \end{array}$			
$I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}} \qquad 0,25p$ $U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}} \qquad 0,25p$ B. c. $Pentru: \qquad 1,00p$ $randamentul sursei, când aceasta este conectată între vârfurile P și O ale cubului \qquad \eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})} \qquad 0,25p \begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} \\ \eta_{P,O} = 45,6\% \end{cases} \qquad 0,25p randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului \qquad \eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})} \qquad 0,25p \begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} = 54,5\% \end{cases} \qquad 0,25p R = \frac{1}{1 + \sqrt{7/10}} \qquad 0,$		$I_{P,O} = \frac{E_0}{R_0} \cdot \frac{12}{7 + \sqrt{70}} $ 0,25p	
B. c. Pentru: 1,00p randamentul sursei, când aceasta este conectată între vârfurile P și O ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} & 0,25p \\ \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} & 0,25p \\ \eta_{P,O} = 45.6\% & 0,25p \end{cases}$ randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} & 0,25p \\ \eta_{P,R} = 54.5\% & 0,25p \end{cases}$ 8. d. Pentru: Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{(\sqrt{7} + \sqrt{10})^2} & 0,50p \\ P_{U,E} = P_{U,O} = 12,00 \ W & 0,25p \end{cases}$ 0,25p		$U_{P,O} = I_{P,O} \cdot R_{P,O} = E_0 \cdot \frac{7}{7 + \sqrt{70}}$ 0,25p	
B. c. Pentru: 1,00p randamentul sursei, când aceasta este conectată între vârfurile P și O ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} \\ \eta_{P,O} \cong 45.6\% \end{cases}$ randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \cong 54.5\% \end{cases}$ 0,25p 0,25p $\begin{cases} P_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \cong 54.5\% \end{cases}$ 0,25p 0,50p 0,5		$I_{P,R} = \frac{E_0}{R_0} \cdot \frac{12}{10 + \sqrt{70}} $ 0,25p	
randamentul sursei, când aceasta este conectată între vârfurile P și O ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} \\ \eta_{P,O} \cong 45,6\% \end{cases}$ randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \cong 54,5\% \end{cases}$ 0,25p $\begin{cases} \theta_{P} = \theta_{U,O} = \theta_{U,E} \cdot I_{U,E} = \theta_{U,O} \cdot I_{U,O} = \frac{E_{O}^2}{R_{O}} \cdot \frac{12}{(\sqrt{7} + \sqrt{10})^2} \\ \theta_{U,E} = \theta_{U,O} = 12,00 \ W \end{cases}$ 0,25p $\begin{cases} \theta_{D,E} = \theta_{U,O} = 12,00 \ W \end{cases}$ 0,25p		$U_{P,R} = I_{P,R} \cdot R_{P,R} = E_0 \cdot \frac{10}{10 + \sqrt{70}}$ 0,25p	
ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p $\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} & 0,25p \\ \eta_{P,O} \cong 45,6\% & 0,25p \end{cases}$ randamentul sursei, când aceasta este conectată între vârfurile P și R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} & 0,25p \\ \eta_{P,R} \cong 54,5\% & 0,25p \end{cases}$ B. d. Pentru: Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{(\sqrt{7} + \sqrt{10})^2} & 0,50p \\ P_{U,E} = P_{U,O} = 12,00 \ W & 0,25p \end{cases}$ 0,25p	B. c.	Pentru:	1,00p
$\begin{cases} \eta_{P,O} = \frac{1}{1+\sqrt{10/7}} \\ \eta_{P,O} \cong 45,6\% \end{cases} \qquad 0,25p \\ \text{randamentul sursei, când aceasta este conectată între vârfurile } P \text{ şi } R \\ \text{ale cubului} \qquad \eta_{P,R} = \frac{R_{P,R}}{R_{P,R}+r} = \frac{1}{1+\left(r/R_{P,R}\right)} \qquad 0,25p \\ \begin{cases} \eta_{P,R} = \frac{1}{1+\sqrt{7/10}} \\ \eta_{P,R} \cong 54,5\% \end{cases} \qquad 0,25p \\ \end{cases}$ $\textbf{B. d.} \qquad \begin{array}{l} \textbf{Pentru:} \\ \textbf{Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune} \\ P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7}+\sqrt{10}\right)^2} \\ P_{U,E} = P_{U,O} = 12,00 \ W \end{cases} \qquad 0,25p \\ \\ \textbf{Oficiu} \qquad \qquad 0,100p \end{cases}$		randamentul sursei, când aceasta este conectată între vârfurile P și O	
randamentul sursei, când aceasta este conectată între vârfurile P şi R ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R}+r} = \frac{1}{1+\left(r/R_{P,R}\right)}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1+\sqrt{7/10}} & 0,25p \\ \eta_{P,R} \cong 54,5\% & 0,25p \end{cases}$ 8. d. Pentru: Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2} & 0,50p \\ P_{U,E} = P_{U,O} = 12,00 \ W & 0,25p \end{cases}$ 0,25p		ale cubului $\eta_{P,O} = \frac{R_{P,O}}{R_{P,O} + r} = \frac{1}{1 + (r/R_{P,O})}$ 0,25p	
ale cubului $\eta_{P,R} = \frac{R_{P,R}}{R_{P,R} + r} = \frac{1}{1 + (r/R_{P,R})}$ 0,25p $\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} & 0,25p \\ \eta_{P,R} \cong 54,5\% & 0,25p \end{cases}$ B. d. Pentru: Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{(\sqrt{7} + \sqrt{10})^2} & 0,50p \\ P_{U,E} = P_{U,O} = 12,00 \ W & 0,25p \end{cases}$ 0,25p		$\begin{cases} \eta_{P,O} = \frac{1}{1 + \sqrt{10/7}} \\ \eta_{P,O} \cong 45,6\% \end{cases}$ 0,25p	
B. d. Pentru: Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2}$ $P_{U,E} = P_{U,O} = 12,00 \ W$ 0,25p Oficiu 1,00p		•	
Puterea electrică furnizată cubului POLIEDRU de către sursa de tensiune $P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2}$ 0,50p $P_{U,E} = P_{U,O} = 12,00 \ W$ 0,25p $Oficiu$ 1,00p		$\begin{cases} \eta_{P,R} = \frac{1}{1 + \sqrt{7/10}} \\ \eta_{P,R} \cong 54,5\% \end{cases}$ 0,25p	
$P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2}$ $P_{U,E} = P_{U,O} = 12,00 \ W$ 0,25p 0,100p	B. d.	Pentru:	0,75p
$P_{U,E} = P_{U,O} = 12,00 \ W$ 0,25p 1,00p		•	
Oficiu 1,00p		$P_{U,E} = P_{U,O} = U_{U,E} \cdot I_{U,E} = U_{U,O} \cdot I_{U,O} = \frac{E_0^2}{R_0} \cdot \frac{12}{\left(\sqrt{7} + \sqrt{10}\right)^2} $ 0,50p	
Special		$P_{U,E} = P_{U,O} = 12,00 \ W$ 0,25p	
TOTAL Problema a II-a 10p			
l de la companya de	TOTAL Problema a II-a		

Delia DAVIDESCU – Centrul Național pentru Evaluare și Examinare – M E C T S Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București

Olimpiada de Fizică - Etapa pe județ 15 ianuarie 2011

Grila de evaluare şi de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a III-a Comprimare adiabatică provocată		Punctaj
a.	Pentru:		3,00p
	$p = p_0 + \frac{Mg}{S}$	0,50p	
	$p_1 = p_0 + \frac{(m+M)g}{S} = p + \frac{mg}{S} = p\left(1 + \frac{mg}{pS}\right)$	0,75p	
	$V_1 = V - S\Delta y_1 = V\left(1 - \frac{S\Delta y_1}{V}\right)$	0,50p	
	$pV^{\gamma} = p_1V_1^{\gamma}$	0,75p	
	$\Delta y_1 = \frac{V}{S} \left[1 - \left(1 + \frac{mg}{pS} \right)^{-\frac{3}{5}} \right]$	0,50p	
b.	Pentru:		1,25p
	$\frac{pV}{T} = \frac{p_1V_1}{T_1}$ sau $TV^{\gamma-1} = T_1V_1^{\gamma-1}$	0,75p	
	$T_1 = T \left(1 + \frac{mg}{pS} \right)^{\frac{2}{5}}$	0,50p	
C.	Pentru:		4,75p
	$\Delta E = L$	0,75p	
	$L = p_0 S \cdot \Delta y_1$	0,50p	
	$\Delta E = E_{c1} - E_c + \Delta E_p + \Delta U$	1,00p	
	$\Delta E_p = -(m+M)g\Delta y_1$	0,50p	

$$\Delta U = vC_{V}(T_{1} - T) = \frac{3}{2}vR(T_{1} - T) = \frac{3}{2}vRT \left[\left(1 + \frac{mg}{pS} \right)^{\frac{2}{5}} - 1 \right] =$$

$$= \frac{3}{2}pV \left[\left(1 + \frac{mg}{pS} \right)^{\frac{2}{5}} - 1 \right]$$

$$E_{c1} = E_{c} + \frac{5}{2}pV \left[1 + \frac{2}{5}\frac{mg}{pS} - \left(1 + \frac{mg}{pS} \right)^{\frac{2}{5}} \right]$$

$$O,50p$$

$$E_{c1} \cong E_{c} + \frac{3}{10}\frac{mg}{pS} \cdot mg \frac{V}{S}$$

$$O,25p$$

$$Oficiu$$

$$TOTAL Problema a III - a$$

$$10p$$

Conf. univ. dr. Sebastian POPESCU - Facultatea de Fizică, Universitatea "Alexandru Ioan Cuza" - Iași