(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 24 June 2004 (24.06.2004)

PCT

(10) International Publication Number WO 2004/052425 A2

(51) International Patent Classification⁷:

A61M

(21) International Application Number:

PCT/US2003/039048

(22) International Filing Date: 8 December 2003 (08.12.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/314,825	9 December 2002 (09.12.2002)	US
60/515,718	30 October 2003 (30.10.2003)	US
60/515,775	30 October 2003 (30.10.2003)	US
60/515,793	30 October 2003 (30.10.2003)	US
62/515,794	30 October 2003 (30.10.2003)	US
10/729,757	5 December 2003 (05.12.2003)	US

(71) Applicant: PURGO CREATIONS, INC. [US/US]; 50114 East Fellows Creek Court, Plymouth, MI 48170 (US). (72) Inventors: POWERS, Jeffrey, L.; 50114 East Fellows Creek Court, Plymouth, MI 48170 (US). DAVIS, Dennis, W.; 427 East Washington Avenue, Eustis, FL 32726 (US). THIMM, David, P.; 48770 Quail Run Drive SW, Plymouth, MI 48170-5718 (US). STENZ, James, M.; 7090 Linden Road, Fenton, MI 48430-9324 (US).

(74) Agent: GUSTAVSON, William, R.; Thompson & Gustavson L.L.P., 9330 LBJ Freeway, Suite 1185, Dallas, TX 75243 (US).

(81) Designated States (national): CN, JP.

(84) Designated States (regional): European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PORTABLE DEVICE FOR DISPENSING HAND TREATMENTS

(57) Abstract: The present invention contemplates an arm-mountable device (1, 13, 241, 561, 593, 631) for the discharge of skin treatment medications such as onto the palm of the hand. In its simplest embodiment, the device (1) is a compressible squeeze bladder with a nozzle (5) that is affixed to the wrist with a wristband (3). The contents of he bladder are ejected in a small burst to the palm of the hand upon initiation of compression of the bladder by the free hand. Features of various advanced embodiments include pressure multiplying squeeze bladders (42, 45), plunger-based devices (131), and adjustable nozzles (201).

PORTABLE DEVICE FOR DISPENSING HAND TREATMENTS

5

TECHNICAL FIELD OF THE INVENTION

10

This invention relates to skin treatments, and in particular to the application of disinfectants and lotions to skin, such as on the hands.

BACKGROUND OF THE INVENTION

5

10

15

The increase in bacterial immunity to modern antibiotics is problematic and one of the chief vectors of infection is the human hand. Hence, when not in the proximity of a washroom to disinfect one's hands, it would be useful to have a means to accomplish such sanitation. Also, in the midst of daily activities, it can be inconvenient to uncap bottles of disinfecting gels or hand lotions to otherwise treat the hands.

Fortunately, it has been established that ethyl alcohol is a most effective antiseptic for gram-negative pathogens; it is of low viscosity, easily dispensed from a portable container, and does not require the use of a material wipe or cloth because of the speed of its evaporation. Further, an adequate dose for sanitizing the hands comprises but a few drops of this antiseptic. To prevent chafing, glycerin can be added to the alcohol without levels of viscosity increase that would be deleterious to the dispensing process.

20

Various methods of portable disinfectant or lotion dispensers have been disclosed in the prior art. These include body-mounted dispensers, wrist bracelet dispensers, and others. U. S. patent 6,371,946 discloses a dispensing tube that drips liquid onto the hand. U. S. patent 6,053,898 discloses a tube-fed finger dispenser. A body worn dispenser of form factor similar to a pager is disclosed in U. S. patent 5,927,548.

SUMMARY OF THE INVENTION

What has not been demonstrated is a dispenser that is wrist- or arm-worn that provides ease of actuation and, more specifically, single hand actuation. Neither has there been a device that can be surreptitiously actuated. This is an important consideration with respect to public relations. Individuals such as business and sales personnel may come in contact with and greet many people during the day. It would be desirable to have the option of sanitizing the hands after a handshake with a person without conveying a disdainful message to that person in so doing.

10

15

5

A wrist-mounted dispenser that achieves dispensing directly to the hand with a simple hand action is a major advantage of the present invention. This is especially useful to nurses and doctors in busy hospital settings, as well as to allied health care workers who cannot take time to repeatedly wash their hands with soap and water. With the advent of new forms of communicable disease such as SARS, an important consideration regards means to prevent disease spread. In this vein, the present invention provides a dispensing modality for viricidal and antibacterial prophylactic treatments of the hands and other exposed parts of the body.

20 am
por
me
or
In
25 wir
der
nor
han

30

The present invention discloses a wrist- or forearm-mounted device for dispensing a small amount of alcohol-based disinfectant hand rub, moisturizer, or other hand medicament. Even powder-based hand treatments can be dispensed using the present invention. A wristband or other means affix the device to the arm or wrist. Various locations are feasible including the top, side, or underside of the wrist or forearm. One embodiment provides for a finger-mounted geometry. In a preferred embodiment, the device is in the form of a low profile, wrist-mounted dispenser with a nozzle that produces a small amount of dispensed skin treatment when actuated. The device can be in the form of a thin, conformal squeeze bottle with a fluid stream-producing nozzle. When actuated, it dispenses a short jet of liquid into the palm or onto the fingers of the hand above which it is mounted. In an advanced embodiment, the bottle is of a pressure-multiplying design that shoots a single "dose" of liquid under pressure when mildly actuated by the fingers of the hand. Surreptitious actuation and dispensing of hand treatments is made possible with embodiments of the invention that are mounted on the underside of the wrist and

can be easily actuated in a causal, not easily detected manner.

5

10

15

20

25

30

Because only a few drops of alcohol-based disinfectant comprise a dose adequate to achieve sanitation of the hands, the device of the present invention can dispense hundreds of doses of disinfectant before requiring refill or disposal. It can be used at any orientation of the arm and will avoid leakage when not actuated. Options exist for the fabrication of the device whether disposable or refillable. For example, hard or soft pliable plastics can be employed and even biodegradable materials can be used for disposable versions. Various embodiments of the invention include different mechanical designs for actuation and nozzles, dispensers detachable from wristbands, cartridge-based dispensers, dispensers with functioning watch faces, hybrid watch-dispensers, and methods of mounting to the top, side, or underside of the wrist or arm. In an advanced embodiment, very light compression of the device with one or more fingers of the alternate hand will generate a pressurized jet of disinfectant that is easily captured by the target hand. The dispensing device can be fabricated from pliable plastic and can be disposable. Other embodiments of the invention include actuation means on the top side of the wrist, adjustable nozzles, and pressurized and electro-mechanical actuation.

In another embodiment, a wristband or other means affix the device to the wrist. It can be positioned at any circumferential position about the wrist. When actuated, it dispenses a short jet of liquid either onto the top of the hand or into the palm or onto the fingers of the hand above which it is mounted. In an advanced embodiment, very light compression of the device with the alternative hand will generate a pressurized jet of disinfectant that is easily captured by the target hand. Other embodiments of the invention include actuation means on the top side of the wrist for dispensing from the underside or the wrist, adjustable nozzles, and pressurized and electromechanical actuation.

Another embodiment of the present invention discloses a wrist or forearm-mounted device for dispensing a small amount of alcohol-based disinfectant hand rub, moisturizer, or other hand medicament, as well as free-standing portable dispensers. Even powder-based hand treatments can be dispensed using the present invention. In the case of the arm-mounted device, a wristband or other means affix the device to the wrist. The device can be mounted so as to slide

along a wristband and thereby be positioned at any circumferential location on the wrist. This adjustable positioning scheme can be used with any of the embodiments of the dispenser disclosed in the aforementioned patents and the present disclosure. Embodiments disclosed herein include, the dispensing device in the form of a low profile pump spray bottle, a capped bottle, dosage dispensing detachable squeeze or spray bladders, refillable cartridge-based as well as free-standing dispensers. The latter can be in the form of cartoon characters, animals or other shapes appealing to young children. Actuation of the pump spray bottle dispenses a short jet of liquid or aerosol either onto the top of the hand or into the palm or onto the fingers of the hand above which it is mounted. The capped bottle allows dispensing of drops of hand treatment material upon displacement of a cap mechanism and squeezing or inversion of the bottle.

The dispensing device can be fabricated from pliable plastic and can be disposable as might be useful for food service workers.

15

10

5

Additional embodiments of wrist mounted hand treatment dispensers as well as dispensers that are integral to wristwatches or are attachable to either wristwatches or wristwatch bands are disclosed. These embodiments include provision for refillable reservoirs or the use of packet inserts that contain the hand treatment material.

20

Additional embodiments of wrist-mounted and finger-mounted hand treatment dispensers are also disclosed. Notable features include the presence of a watch face on the lid of a refillable dispenser, ring-like finger-mounted dispensers, and fully disposable dispensers.

25

Several objects and advantages of the present invention are:

- (a) Provide a convenient, portable means for dispensing hand treatments;
- (b) Provide a cost-effective means for dispensing hand treatments;

30

(c) Provide an unobtrusive means of dispensing hand treatments;

- (d) Provide an easily actuated means of dispensing hand treatments;
- (e) Provide an arm- or wrist- mounted means for dispensing hand treatments.
- (f) Provide a hand treatment dispensing device that is appealing to children.
- (g) Provide a portable dispenser of hand treatments that is refillable with hand treatment cartridges or packets.

5

10

15

- (h) Provide a means for dispensing hand treatments that is incorporated into the structure of a wearable timepiece.
 - (i) Provide a means of dispensing hand treatments that is conveniently part of a wristwatch or wristwatch band.
 - (j) Provide a means for dispensing hand treatments that is worn on the finger much as a ring would be worn.
 - (k) Provide a wrist-mounted disposable means for dispensing hand treatments.
 - (l) Provide a cartridge- or packet-based means for dispensing hand treatments.
 - (m) Provide a hand treatment dispenser with wristwatch functionality.
- 25 (n) Provide a means of dispensing hand treatments that, whether wrist-mounted or finger-mounted, is fully disposable.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following Detailed Description, taken in conjunction with the accompanying Drawings, in which:

FIG. 1a is a pictorial diagram of the basic form of a dispenser mounted on the top side of the wrist.

10

5

- FIG. 1b is a pictorial diagram of articulation of the hand to receive hand treatment dispensed from the device of FIG. 1a.
- FIG. 2 is a pictorial diagram of the basic form of a dispenser mounted on the under side of the wrist.
 - FIG. 3a is a pictorial diagram of a dispenser exhibiting a refill port and actuation area mounted on the under side of the wrist.
 - FIG. 3b is a pictorial diagram of the dispenser of FIG. 3a showing a convenient method of actuation.
 - FIG. 4 is a pictorial diagram of a hand treatment fluid-filled wristband usable with a dispenser such as that of FIG. 2.

25

- FIG. 5a is a pictorial diagram of a dispenser detachable from a wristband.
- FIG. 5b is an end view of a dispenser of FIG. 5a attachable to a wristband using Velcro.
- FIG. 5c is a pictorial view of snaps used to attach a dispenser of FIG. 5a to a wristband.

FIG. 6a is a cross-sectional view of a basic squeeze dispenser.

FIG. 6b is a cross-sectional view of a pressure-multiplying squeeze dispenser.

FIG. 6c is a plan view of components of the nozzle assembly of the pressure-multiplying squeeze dispenser.

FIG. 6d is a pictorial view of the hidden components of the nozzle assembly of the pressure-multiplying squeeze dispenser.

FIG. 7 is a pictorial view of wrist motion actuation of a plunger-based dispenser.

FIG. 8 is a cross-sectional view of a prior art plunger.

10

15

20

25

30

FIG. 9a is a cross-sectional view of a pressure-multiplying plunger dispenser.

FIG. 9b is a pictorial view of components of the pressure-multiplying plunger dispenser.

FIG. 10 is a cross-sectional view of an adjustable nozzle.

FIG. 11 is a pictorial view of a dispenser with a flow-adjusting nozzle.

FIG. 12a is a pictorial view of a detachable plunger-based dispenser with the plunger motion collinear with the fluid ejection axis.

FIG. 12b is a perspective view of the dispenser of FIG. 12a.

FIG. 12c is a pictorial view of the dispenser having a cap.

FIG. 13 is a pictorial view of a plunger-based dispenser having the plunger oriented perpendicular to the fluid ejection axis.

FIG. 14 is a cross-sectional view of the plunger and nozzle assembly of the dispenser of FIG. 13.

FIG. 15 is a pictorial view of a cartridge-based dispenser.

5

- FIG. 16 is a pictorial view of a siphon pump-based dispenser ejecting fluid perpendicular to the longitudinal axis of the arm.
- FIG. 17 is a pictorial view of a siphon pump-based dispenser ejecting fluid parallel to the longitudinal axis of the arm.
 - FIG. 18 is a pictorial view of a screw mechanism-based dispenser.
 - FIG. 19 is a pictorial view of a thumbwheel-actuated dispenser.

15

- FIG. 20 is a pictorial view of a ratchet mechanism-actuated dispenser.
- FIG. 21 is a pictorial view of a rotary compression-based dispenser.

20

- FIG. 22 is a pictorial view of a direct compression-based, packet-refillable dispenser.
- FIG. 23 is a pictorial view of refillable, of a first push button-actuated dispenser.
- FIG. 24 is a cross-sectional view of the dispenser of FIG. 23.

25

- FIG. 25 is an exploded diagram of the components of the dispenser of FIG. 23.
- FIG. 26a is a pictorial view of refillable, second push button-actuated dispenser having a functioning watch face.

30

FIGS. 26b, c and d are a cross-sectional view, top view and end view, respectively, of

the dispenser of FIG. 26a.

5

10

FIG. 27 is a pictorial diagram of a dispenser removably attachable to a wristwatch band.

FIG. 28 is a pictorial diagram of a dispenser permanently attached to a wristwatch band.

FIG. 29 is a pictorial diagram of a dispenser that is integral to the construction of a wristwatch.

FIG. 30 is a pictorial diagram of a dispenser mounted to a finger of the hand.

DETAILED DESCRIPTION

5

10

15

20

25

30

The following definitions serve to clarify the disclosed and claimed invention:

Bladder refers to an elastic, resilient container that can be deformed under compression.

Pressure-multiplying refers to those devices relying on the technique of increasing, by mechanical advantage, the compression pressure of a working fluid. This is achieved by use of an ejection fluid-containing tube that penetrates an ejection fluid-containing piston under the influence of the working fluid.

Hand treatment material comprises any of a host of liquid, powder, gel, or aerosol medications, or sanitizing agents that are topically applied to the hands. Examples include alcohol, glycerin, moisturizing lotions, and desiccating powders.

Working fluid refers to the fluid which transfers manual pressure to the material to be dispensed. Such transfer of pressure can occur in one or multiple stages and typical working fluids include air contained in a squeeze bottle as well as liquid versions of the hand treatment material itself.

The present invention is useful for dispensing either hand treatments such as moisturizers or disinfectants; even powders can be dispensed in powder-aerosol form. Typically the active ingredient in hand antiseptics such as Purel is ethyl alcohol. This is fortuitous because it is a relatively non-toxic liquid that exhibits low viscosity over the temperature range of interest for this application. This makes delivery of a directed stream of fluid relatively easy. In contrast to liquid, alcohol gels are useful in that they do not run and although they will require more force to dispense than liquid, such higher viscosity disinfectant or moisturizing formulations can be accommodated in differing embodiments of the present invention. Various means of dispensing the aforementioned hand treatments are feasible and can be tailored to the type of material to be dispensed. The target locations for deposition of the hand treatment include the regions on the top of the hand, and the underside of the hand, either fingers or palm. The preferred embodiment

for a means of dispensing hand treatment dosages is a device that attaches to either the top or underside of the wrist. Such a device can be worn unobtrusively underneath a long-sleeved shirt.

Various approaches can be used to create the fluid dispenser. In a simple squeeze compartment design, a bladder reservoir expels fluid upon application of pressure to the bladder. In a plunger-based design, a syringe-type plunger causes the fluid in a reservoir to be expelled upon application of force to the plunger. Spray or squirting mechanisms analogous to squirt guns use a more specialized plunger mechanism and include a nozzle. A drip system would rely on gravity feeding of the liquid through some orifice for delivery to the hand. More elaborate schemes include use of a prime mover such as a miniature electrical actuator or pump.

Following is a taxonomy of dispenser types identified

Squeeze

15

10

5

- (1) simple compression
- (2) pressure multiplied compression

Plunger

- (1) simple plunger
- (2) pressure multiplied plunger
- (3) same hand-actuated

Drip

25

20

Gas Pressurized

- (1) disposable
- (2) gas cartridge

30

Pump

(1) thermoelectrically-heated working fluid

(2) electromechanical

Remote control using low power radio frequency means and single chip receivers

5

10

15

20

25

30

Basic Configuration

There are two fundamental approaches to dispensing hand treatment. In one approach, the hand treatment is dispensed to the hand of the arm upon which the dispenser is mounted. Actuation of this dispenser can be by either hand. In the second approach, the hand treatment is dispensed to the hand of the arm or other body part which does not have a dispenser attached. In this case, it is also true that actuation of the dispenser can be by either hand. The various embodiments discussed below will use one of these two approaches. Typically, hand treatment material will be ejected either parallel or perpendicular to the longitudinal axis of the forearm. In a preferred embodiment that uses the second aforementioned approach, the hand treatment material is ejected perpendicular to the longitudinal axis of the arm upon which the dispenser is mounted.

The simplest reduction to practice would be a low profile bladder, with associated orifice or nozzle for ejection of hand treatment, mounted on the wrist. Figure 1a depicts a hand treatment dispenser 1 having an aperture or nozzle 5 for dispensing hand treatment material to a surface of the hand. It is shown mounted to the top side of the wrist by means of a strap 3. The dispenser is characteristically actuated by compression of the bladder comprising the dispenser. Details of its construction and various embodiments are discussed below. Figure 1b depicts the slight upward articulation of the hand about the wrist that is conducive to dispensing treatment from nozzle 11 to the top of the hand upon compression of dispenser 9 attached to wristband 7. Figure 2 depicts the dispenser 13 mounted by strap 15 to the underside of the wrist for dispensing of treatment to the palm of the user's hand by way of nozzle 17. Mounting to the underside of the wrist provides a more covert implementation, especially if worn under a long-sleeved shirt or blouse.

The dispenser can be removably attached to the wristband so the user can mount it to the top, side, or bottom of the wrist to suit the user's desire. Various attachment schemes including Velcro, snaps, and other methods, as well as various nozzle configurations that are compatible with these various mounting schemes are discussed in detail below.

5

10

15

20

25

30

A refinement of the device of Figure 2 is depicted in Figures 3a and 3b showing a thin bladder 19 mounted on the underside of the wrist by wristband 21. The device is shown to have a nozzle assembly 27 and, optionally, a capped refill aperture 23. A finger depression area 25 is highlighted. Alternatively, the wristband itself can be part of the dispenser as shown in Figure 4. A working fluid whether air or liquid can fill a portion or all of the wristband 27. Upon depression of the area 28 atop the wristband, pressure can be conveyed to the dispensing bladder underneath the wrist to cause a stream to be ejected into the hand. This can be especially effective by means of the pressure-multiplying dispenser discussed below. A three-dimensional depiction of the dispensing bladder is provided in Figure 5a. The bladder 31 can be formed from soft, pliable plastic such as polyethylene or other plastic not attacked by the chemical constituents of the hand treatment. A nozzle assembly 32 is shown with a centrally-located nozzle aperture 33. The bladder 31 can be made integral with wristband 30 or as shown in Figures 5b and 5c, made attachable to the wristband. In Figure 5b, the bladder 31 is shown attachable to the wristband 30 by Velcro component strips 34 and 35. Figure 5c depicts the use of snap elements 36 on the wristband 30 that mate with the snap element counterparts on the side of the bladder. Another approach is to use clips that would attach to a wristwatch band.

Figure 6a is a cross-sectional view of a simple embodiment comprising a squeeze bottle 37. Internal to the squeeze bottle 37 are shown an air volume 38 and a hand treatment material-filled pliable bladder 39. Upon squeezing bottle 37, the pressure of air volume 38 is conveyed to material-filled bladder 39 so that the material is ejected from check valve-controlled channel 40. The check valve in this channel prevents leakage, but allows ejection of hand treatment material under pressure. Upon release of pressure to bottle 37, air is allowed to enter check valve-controlled channel 41 so as to replace the volume of hand treatment material ejected. The segregation of air and hand treatment material volumes permits the use of the device at any orientation with respect to gravity.

Pressure-Multiplying Squeeze Dispenser

5

10

15

20

25

30

A more sophisticated embodiment of the invention makes use of a pressure-multiplying squeeze dispenser. Such a dispenser provides relatively high pressure ejection of fluid upon application of relatively little manual pressure. This allows good fluid stream formation and control over the stream trajectory to the target hand. For this reason, U.S. patents 4,603,794 and 5,289,948 are hereby incorporated by reference thereto. In the first of these patents, the fundamental concept of a pressure-multiplying piston is disclosed. A pressure amplification is achieved that is equal to the ratio of the cross-sectional area of the pressure-multiplying piston to the cross-sectional area of a tube penetrating the pressure-multiplying piston.

Necessary to the present invention is means to allow the dispenser to operate independent of its orientation with respect to the gravity field and the need to insure leak-proof operation. The pressure multiplying concept is adapted to the present invention to achieve these goals as shall be described with reference to Figure 6b, a cross-sectional view of a pressure-multiplying version of the present invention. Shown is an outer bladder 42 having an output nozzle assembly 63 and a refill port with cap 74. Interior to the bladder 42 is an even more pliable bladder 45 that segregates the volume of the bladder 42 into an air-filled space 43 and a fluid-filled space 87. As can be appreciated, this is for the purpose of allowing operation independent of orientation with respect to gravity, in the same fashion as the embodiment of Figure 6a. Upon compression of bladder 42, air in volume 43 causes compressive pressure on fluid-filled bladder 45. This pressure is transferred to fluid-filled movable cylinder 49 which translates within an outer guide cylinder 47. Cylinder 49 has been filled with fluid by virtue of port 51 on the side of cylinder 47 near its base. As cylinder 49 is caused to translate upward, port 51 is sealed by the wall of cylinder 47 so that the pressure of fluid 53 inside cylinder 49 is applied to the end of tube assembly 83. Similarly, as cylinder 49 begins upward translation, air intake port 58 is sealed by the wall of cylinder 49 so that air in volume 89 is exhausted through channel 61. The pressure of the fluid in channel 81 of tube assembly 83 is increased over the pressure of the fluid in bladder 45 by the ratio of the cross-sectional area of cylinder 49 to the cross-sectional area of the end of tube assembly 83.

As cylinder 49 travels upward against the preload provided by spring 57 which is in turn captivated by spring seat 59, the air in volume 43 opens spring-loaded gate valve assembly 73 so as to allow fluid to be ejected from channel 81. Retaining protrusions 55 on the inside wall of cylinder 47 limit the upward travel of fluid-filled cylinder 49 in dispensing of a single dose of hand treatment. After the maximum amount of fluid in volume 53 of cylinder 49 is ejected at the limit of travel for cylinder 49 and upon removal of actuation pressure to bladder 42, cylinder 49 under spring tension travel back downward into bladder 45. Retaining flange 52 limits the downward travel of cylinder 47. As cylinder 49 descends, its interior is under a partial vacuum and upon exposure of port 51 to the fluid in volume 87 by way of port 57 in the wall of cylinder 47, the interior of cylinder 49 is refilled with liquid. At this same time, air intake port 58 in the wall of cylinder 47 is opened to allow air to enter volume 43 by way of volume 89 and channel 61.

15

10

5

Figures 6c and 6d serve to illustrate the function of gate valve assembly 73. In Figure 6c, it can be observed that the gate valve assembly 73 is actually a mechanism with three forward prongs and one backward-directed extension held in a position which blocks fluid channel 81 by means of preload spring 71. The central forward prong has a rectangular or square cross section in contrast to the circular cross sections of the other prongs and the backward-directed extension so as to seat over the top of channel 81. Air pressure to displace the gate valve assembly 73 and open fluid channel 81 is applied only to the two outboard prongs of assembly 73 by way of air channels 75. Upon displacement of gate valve assembly 73, it occupies additional volume 77. Air channel 65 provides for release of air from spring compartment 69 upon progress of the backward-directed extension of assembly 73 into compartment 69.

25

30

20

Plunger-Type Dispenser

An alternative to squeeze dispensing makes use of a plunger. The way in which a plunger would be exploited in the present invention is shown in Figure 7, a pictorial side view of such a plunger-based device. In this embodiment, a fluid storage compartment 91 of the same form factor as the previously described squeeze bladder is likewise mounted on the underside of the

wrist. A fluid-dispensing plunger 93 is actuated by downward flexion of the hand at the wrist so as to depress plunger 93 with the base of the palm. With this motion, hand treatment fluid is ejected onto the base of the palm and both hands can be rubbed together to disperse the treatment.

5

The type of plunger device 101 used on dish soap dispensers is shown in Figure 8. A movable plunger 103 is spring loaded and captivated by housing 105. The preload spring 121 is seated against plunger 103 within cylinder 117. Tube 127 extends into fluid volume not shown. When the plunger 103 is depressed, air in volume 119 is impeded in downward flow by gravity check valve 125 having a cage 123 and is promoted in upward flow through channel 107 past spring loaded check valve 113. Upon release of plunger 103, a partial vacuum is formed in volume 119 which pulls fluid up through aperture 129 of tube 127 into volume 119 and onward up through channel 107 and out aperture 115. The tension of spring 109 is small, but sufficient to prevent unintended leakage of fluid. A miniature version of this plunger assembly can be fabricated for use as part of a plunger embodiment of the present invention.

15

10

Pressure-Multiplying Plunger-Type Dispenser

20

version of the plunger device. A cross-sectional view of this device is shown in Figure 9a. A movable plunger 133 has a preload tension from spring 140 that maintains its normal extended position. Spring 140 is seated against structural fins 171 internal to the dispenser. The plunger 133 has a central channel 135 that accepts the introduction of tube 149 connected by fins 171 to the dispenser housing 165, as plunger 133 is depressed. Cutouts 145 on the sides of plunger 133 admit the insertion of structural fins 171 which hold tube 149 in place. The lower portion of plunger 133 forms a cylinder 151 which houses a pressure-multiplying cylinder 159. Upon depression of plunger 133, the lower flange 157 of the plunger applies pressure to fluid volume 134 which in turn applies pressure to cylinder 159. This results in the upward travel of pressure-multiplying cylinder 159 and the high pressure ejection of fluid along channel 167 and channel 135, past check valve 141 and out through aperture 137. As the plunger 133 is depressed, the perforations of air intake tube 146 are sealed. Upon release of actuation pressure, plunger 133 returns upward by virtue of spring 140 and cylinder 159 returns downward under the influence

Analogous to the pressure-multiplying squeeze dispenser is a pressure-multiplying

30

of spring 155. Cylinder 159 refills with fluid as aperture 160 is in fluid communication with fluid volume 134. Near the limit of return travel for plunger 133, the perforations of air intake tube 146 are opened for air to refill volume 168. A flexible membrane 158 at the base of fluid container 163 allows air pressure in volume 168 to equilibrate with fluid pressure in volume 134. Retaining flange 152 limits the downward travel of cylinder 159. In Figure 9b, the three-dimensional shape of plunger 133 is more clearly manifested. Shown are the cutout areas 145 which are penetrated by the structural fins 171 which hold tube 149 in fixed disposition with respect to the dispenser housing 165.

Nozzle Configurations

5

10

15

20

25

30

In the simplest embodiment, the nozzle of the present invention is of a fixed geometry. Other embodiments include retractable or extendible versions, as well as nozzles that can be adjusted in direction and those which allow selection of the output flow type from streaming to spraying. Adjustable nozzles can be implemented for pressure-multiplying dispensers with some increase in complexity over counterparts for non pressure-multiplying dispensers.

In various embodiments of the present invention, the nozzle will be oriented to provide unobstructed dispensing of hand treatment to the target hand. For the case in which hand treatment is to be dispensed to the hand of the arm upon which the dispenser is mounted, this can be accomplished even when the user is wearing a long-sleeved shirt or blouse, or a jacket. In situations where a garment might obstruct dispensing, it could be efficacious to have an extendible nozzle. An example of such a nozzle is shown in Figure 10. A cylindrical nozzle body 201 is shown with ring embossments 203. A set of complementary ring depressions 205 is present in the neck 207 of the dispenser so that longitudinal motion of the nozzle body 201 relative to the dispenser neck 207 establishes a fixed number of detent positions. As dictated by the preference of the user of the invention, the type of flow of dispensed material can be selected in an embodiment with flow control means. Numerous prior art examples of variable flow nozzles are extant in the patent literature; examples include U. S. patents 3,843,030, 3,967,765, and 4,234,128. These nozzle designs exhibit variable flow geometry. An attending alteration in the flow from a streaming to spraying nature occurs upon rotation of one of the component

members of the nozzle relative to the other. In Figure 11, this type of nozzle is shown in the context of the present invention. A fixed nozzle component 223 is attached to the dispenser body 221. Rotation of the movable nozzle component 225 results in variation in the type of flow. In such an implementation, the flow channel is segmented into two portions and the alignment of a particular cross-sectional geometry of each of these portions of the channel is used to adjust the nature of the flow. Another method of varying the type of flow is that used in typical garden hose nozzles in which a flow output aperture is variably occluded by the longitudinal translation of a conical member with its apex directed into the flow output aperture by a screw motion.

Cartridge- and Pump-Based Embodiments of the Invention

5

10

15

20

25

30

A dispenser detachable from a wristband is shown in Figures 12a through 12c. Depicted are wrist mounted, detachable, pump-based dispensers. Figure 12a shows a pump spray type dispenser 241 mounted on top of the wrist. Flange 243 allows the depression of the end of the dispenser column to eject material from the nozzle 245. Figure 12c depicts a detachable capped bottle. The cap 247 can be one which pops off, but is retained in connection with the dispenser by a plastic link. Figure 13 depicts a pump spray bottle 261 in which the pump actuator flange 265 is mounted at 90 degrees to the axis of the spray nozzle 261. This can improve the ease of actuation by the fingers of the alternate hand. Figure 14 depicts a naive means of implementing the dispenser of Figure 13. When depressed, the actuation flange 299 with attached plunger 291 compresses spring 287 and reduces the free volume of plunger-containing body 289. Upon release of depressed actuation flange 299, the plunger 291 retracts creating a suction on inlet port 281 to intake fluid which fills plunger-containing body 289 and proceeds to travel through flexible tube 293 for ejection from nozzle 297. Check valves 283 and 295 prohibit deleterious flow of fluid.

Figure 15 depicts a cartridge-based dispenser showing the disposable hand treatment-containing cartridge 311 having indentations 325 and easily punctured, self-sealing dispensing port 313. The wrist-mounted holder 323 is shown having flexible side fingers 315 which seat in indentations 325 for retaining an installed cartridge 311. The body of the holder 317 has a base plate to which is attached wristband 321. As is well known in the prior art, the

cartridge 311 can be inserted into the holder 317 so as to provide leak-free dispensing of fluid through nozzle 319 upon squeezing of a deformable portion of cartridge 311.

For children, the dispenser can be in the shape of or be embossed with the logos of sports teams, super heroes, or cartoon icons. Further, dose-delivering dispensers in the shape of cartoon characters or refillable cartridge-based dispensers are feasible. With a cartridge or refillable dispenser other functions can be added to the dispenser such as having LEDs on them that light up with use. High brightness, low current LEDs as used on cell phones are quite striking. Consideration can be given to a time delay for sequential dispensing so that children would be less inclined to waste the hand treatment material. By this, is meant that it would take a minute or two before a second dose could be dispensed. This could be achieved by establishing the time constant for repressurization of the bladder using a suitably small sized air hole.

15

20

25

30

10

5

A number of more refined embodiments of the wrist mounted dispenser of hand treatments are shown in Figures 16 through 26. Figure 16 depicts a siphon pump design that would be actuated by thumb pressure against a sliding actuator 570(siphon pump and atomizer). Spray is ejected from the end of the actuator 570 as fluid is siphoned from the reservoir 572. This design applies the basic pump principles that are embodied in a nasal spray device. A piston pump with two one-way check valves enables a tube to siphon fluid from a reservoir and spray a fine mist of fluid at the target, in this case, the palm/fingers of the had to which the device is attached. Another form factor for the siphon pump is provided in the design of Figure 17 wherein the actuator is in the form of a button that can be depressed to cause ejection of hand treatment. The design of Figure 17 has a siphon pump 574 and reservoir 576. The design of Figure 17 applies the basic pump principles that are embodied in a spray bottle or squirt gun. A piston pump with two one-way check valves enables a tube to siphon fluid from a reservoir and spray a stream of fluid at the target, the palm/fingers of the hand to which the device is attached. The reservoir can be remotely located(on top of wrist) in order to achieve a smaller package size. In the designs of both Figures 16 and 17, two oneway check valves are employed as is common practice in the art. The design of Figure 18 exploits a screw thread mechanism to exert pressure on a fluid. The main housing is the fluid

reservoir. As the outer housing comprising both piston and one-way valve is rotated to cause fluid compression, the fluid is exhausted through the one-way valve in the center of the outer housing into the palm of the other hand. The design is refillable or disposable. A screw drive mechanism similar in function to those found in glue sticks and stick deodorant dispensers is depicted in the design of Figure 19. With a turn of the thumb-wheel, a fix amount of sanitizer will be forced through a one-way valve at the bottom of the dispenser via the displacement of a piston. Clear windows in the device allow the user to see the remaining sanitizer. A ratchet clip mechanism 578 is used in the design of Figure 20 to squeeze hand treatment fluid from a tube that is captivated by ratchet housing. The simple ratchet clip mechanism exerts pressure on the sanitizer fluid contained in a foil tube. The action of sliding the ratchet crimper effectively keeps a constant pressure on the fluid contained in the reservoir. The doses would be metered via a one-way valve. Each ratchet click expels one dosage of sanitizer. A replacement tube 580 is provided. In Figure 21, a design is shown which exploits a roller pump mechanism. The design includes a refill dispenser 582 with disposable sanitizer packets. The roller pump mechanism exerts pressure on the sanitizing fluid and draws it through the main passage from the reservoir. Each incremental turn of the dispenser dial would cause a fraction of the contained fluid to be ejected while preventing leakage past the seal maintained by the rollers. For example, each turn of the dispenser dial would activate a third of a turn of the roller pump. The reservoir package could be a replaceable foil/plastic membrane similar to disposable contact lens packages. A simple, direct pressure mechanism is used in the design of Figure 22 to squeeze hand treatment fluid through a one-way valve, similar to an instant glue dispenser. The design has a molded in tongue 584 that compresses the packet when pressed and a sanitizer exit 586. The replaceable sanitizer packet is punctured when inserted. The sanitizer packets can be provided in replaceable foil tubes. The main carriage which holds the tube slides out like a drawer for replacement of a spent reservoir. The act of closing the drawer will puncture the new tube for fresh dispensing.

Preferred Embodiments

5

10

15

20

25

30

Figure 23 is a pictorial diagram of a dispenser using the basic principle of Figure 16.Hence, the depicted device dispenses hand treatment fluid to the hand of the arm which

does not have the dispenser attached. The ejection axis for dispensing is perpendicular to the iongitudinal-axis of the arm to which the device is attached and fluid is dispensed onto the fingers of the actuating hand. The cross sectional view of the device is provided in Figure 24. With respect to Figure 23, the dispenser body 349 is shown attached to wristband 341. It comprises a hinged lid 351 that contains a hand treatment fluid refillable volume. Depression of spring-loaded pump button 343 causes the ejection of hand treatment fluid through nozzle 345.

5

10

15

20

25

30

Figure 25 is an exploded diagram of the components of this embodiment. The upper housing 411 provides a means of enclosing, retaining, and protecting the pump assembly and actuation components. It secures actuation button 441 to lower housing 427 via interlocking pin and slot feature and retains the dispensing nozzle 433. The actuation button 441 is the primary user interface for activation of the device. The contour shape is designed to accommodate a discreet, "no-look" actuation. The piston shaft 439 is the main mechanical link between the actuation button 441 and the pump piston 435. Piston housing 437 provides precise cylinder bore for high compression dispensing of hand treatment fluid. Mechanical means of pressurizing the pump chamber 417 via displacement of actuator button 441 is provided by piston 435. It displaces hand treatment fluid through the exit port of pump chamber 417 on the dispensing stroke and provides negative pressure to draw fresh hand treatment fluid from the reservoir contained in lower housing 427 on the intake stroke. The return force necessary to drive piston 435 through the intake stroke is provided by return spring 431. Main pump chamber 417 provides the main cylinder for pressurization during dispensing and intake strokes. It integrates the valve mating surface for the exit check valve 419 and retains piston housing 437 via a precision friction slip fit. An inlet port 413 provides a precision sealing surface between the reservoir and inlet check valve 415 which seals the inlet port 413 during the dispensing stroke and hence stops hand treatment fluid backflow into the reservoir. Exit check valve 419 provides a means of sealing the pump chamber 417 during the inlet stroke, preventing air intake through dispensing nozzle 433 to reduce or eliminate pump cavitation. This nozzle establishes a calibrated orifice through which a metered dosage of hand treatment fluid can exit the dispenser. An exit tube 421 routes hand treatment fluid to the dispensing nozzle 433 and provides a means of retaining the exit check valve 419. The lower housing 427 retains the upper housing 411 and actuation button 441. It also

houses the main fill port for refillable dispensers. Enclosing and sealing the main fluid reservoir is the reservoir fill lid 423. It is easily released for refilling by an ergonomic snap feature at its leading edge. O-ring 425 provides additional sealing at the fill port by compression when fill lid 423 is snapped shut. It also provides a barrier which reduces or prevents evaporation of fresh hand treatment fluid. Band pins 429 provide attachment of the dispenser assembly to the wristband 443.

Figure 26a is a pictorial diagram of dispenser similar to that of Figures 23 through 25. Shown is a functional watch face atop the dispenser top 527. The battery for this watch, not shown, can be conveniently located within the dispenser. Also, in lieu of a fluid reservoir, cartridge packets 531 are used in this embodiment. The cross sectional view of the device is provided in Figure 26b. With respect to Figure 26b, the dispenser body is shown to be part of a wrist ring 521. It comprises a hinged top 527 that contains removable sanitizer-containing packet 531. Upon insert of packet 531 and closure of hinged top 527, the packet 531 is punctured by channel inlet 533. Retraction of spring-loaded pump button 523 creates a partial vacuum in cylinder volume 535 which is filled through channel 537 by sanitizer fluid from packet 531. Upon depression of pump button 523, backflow through channel 537 is prevented by a check valve or other means and the fluid in volume 535 is forced through channel 539 and ejected from nozzle 529.

20

25

30

5

10

15

It is to be understood that a plethora of cartridge or packet designs and form factors are within the scope of the present invention, including color-coded packets that can distinguish the type or strength of hand treatment contained therein. Also within the scope of this invention are various means to dispense hand treatment material from such packets including the mechanisms for extracting the hand treatment material from said packets. Extraction mechanisms can invoke pressure (internal or external to packet) or suction.

Another category of embodiments of the present invention comprise those dispensers that are either attachable to wristwatches or are part of wristwatches or wristwatch bands. Figure 27 depicts wristwatch 571 and band 573. A hand treatment dispenser 561 is attachable to the wristband by means of a Velcro surface 563 that mates with a complementary Velcro

surface on the underside of the wristband 573. The dispenser 561 is shown having a push button 579 actuator that dispenses a spray 577 of hand treatment.

Pluralities of alternate attachment schemes are possible for dispensers of varying form factor. Examples of other attachment schemes include magnetic means, mechanical clips, loops, slide inserts, etc. Various types of dispensers can be made attachable including disposable, and refillable as in the case of packet dispensers described above.

Figure 28 depicts a dispenser 593 that is manufactured as part of the wristband for watch 591 and hence would be refillable. Other schemes for fabrication of the dispenser integral to the wristband include fabricating a wristband that serves as the reservoir for hand treatment fluid and the placement of the dispenser actuator at differing positions along the wristband. Figure 29 depicts a dispenser that is made part of the wristwatch body 595. A hinged lid 599 houses the refillable dispenser packet not shown. An actuation button 597 is depressed to cause a stream of hand treatment material to be ejected from nozzle 601.

Figure 30 depicts a finger-mounted dispenser 631 mounted on a finger band or ring 633 and having a dispensing aperture 635. Any number of the aforementioned actuation schemes can be used in this device, so that simple compression of the exposed face of dispenser 631 will yield ejection of fluid from aperture 635.

Dispenser Types Using Other Mechanisms

5

10

15

20

25

30

Among other dispenser types are drip, pressurized, and pump-driven versions. Drip type dispensers are of limited practicality given that they are orientation sensitive. One way in which such a dispenser could be used involves actuating a shutoff valve. Various approaches well known in the prior art can be used to actuate the opening of such a valve by hand pressure. Subsequent to opening the valve, it is required to orient the dispenser to allow hand treatment to drip into the hand.

Borrowing from the technology used in the fabrication of pressurized shaving cream

dispensers, there are well known methods of producing gas-pressurized streams of liquids and gels. The dispenser exploiting gas pressurization could be a low profile metal, disposable cartridge that removably attaches to a wristband.

5

10

15

Applicable miniature electromechanical schemes that could be used for ejecting hand treatment material are well known in the prior art. Foremost among electromechanical actuation methods is that of a solenoid. The miniature solenoids used in ink jet printing can be applied to discharging small jets of fluid. Sufficient electrical energy for hundreds of actuations can be contained in small form factor batteries such as those of the disc lithium variety. Alternatively, miniature diaphragm pumps and piezoelectric pumps used for insulin delivery can be used for discharge of small jets of fluid. Finally, in the category of thermoelectric devices, Peltier effect devices can be used with working fluids or phase change materials to effect large pressure changes with modest electrically-induced temperature changes and thereby eject fluids upon initiation of current flow into the Peltier device. In all electrical methods, a consistent fixed dosage of ejected hand treatment material can be established by electronically fixing the duration of the governing voltage or current pulse. Remote control actuation is imminently feasible with commercially-available low power consumption microtransmitters and receivers. There are numerous ways in which such remote control can be executed, typically using the free hand or other part of the body.

20

A final concept is that of a dispenser similar to that of Listerine oral patches that dissolve in the mouth. Such a dispenser would dispense a sanitizing compound in the same form as the Listerine thin film, but which would disperse on the hands. Because the dispersal cannot rely on water, a particular formulation containing alcohol, perhaps using long chain hydrocarbons in concert with ethanol, would need to be used. Such an alcohol-based formulation could be a thin film formable solid until liquefied by the friction/pressure (rather than heat) of rubbing hands together.

30

25

Various means of attaching hand treatment dispensers to the wrist or arm include permanent as well as removable attachment to wrist bands. Removable attachment is easily accomplished by use of Velcro or snaps. Another concept for attachment employs a sliding

element in a track. The track can comprise the wrist band provided with captivating rolled-over edges which hold a sliding element to which the dispenser is permanently or removably attached. A serration along the edges of the track and a corresponding serration along the edges of the sliding element would allow the user to position the dispenser at a preferred angular position about the wrist (ex. top, bottom, or side of wrist) with a kind of ratcheting motion.

Detailed various mechanisms and form factors for portable hand mounted sanitizer dispensers have been disclosed above. It must be emphasized that many of these can be made sufficiently inexpensive that they could be disposable upon depletion of the hand sanitizing treatment material contained within. A very simple version of a disposable dispenser would be a wrist-mounted packet of hand treatment fluid having a self-sealing nozzle element attached thereto. By applying a certain threshold of pressure to the packet, the nozzle would be caused to release fluid, but would otherwise remained "sealed" to the extent that there would be no unintentional release of fluid.

15

20

10

5

While there have been shown and described the preferred embodiments of the present invention, it is to be understood that the invention can be embodied otherwise than is herein specifically illustrated and described and that, within such embodiments certain changes in the detail and configuration of this invention, and in the form and arrangements of the components of this invention, can be made without departing from the underlying idea or principles of this invention within the scope of the appended claims.

Claims

1. A device for discharging skin treatment material from a user's forearm into said user's skin, the device comprising in combination:

- (a) a dispenser containing said material;
- (b) actuation means for dispensing said material; and
- (c) attachment means for affixing said dispenser to said user's forearm.

said device attachable to said user's forearm in the proximity of said user's wrist and ejecting an amount of said skin treatment material to said user's skin when said actuation means is exercised by said user, said dispenser thereby providing the capability of convenient, portable application of said skin treatment material to said user's skin and other skin surfaces.

- 2. A device as recited in claim 1 wherein said attachment means affixes said dispenser to the top side of said user's wrist.
- 3. A device as recited in claim 1 wherein said attachment means affixes said dispenser in adjustable fashion to said user's wrist so that said dispenser can be positioned at an arbitrary location along the circumference of said user's wrist, whereby said skin treatment material can be ejected onto the top, side, bottom of said user's skin.
 - 4. A device as recited in claim 1 which includes
 - (a) a reservoir containing said skin treatment material;
 - (b) a push button actuated pump mechanism;
 - (c) a return spring mechanism; and
 - (d) nozzle means,

said push button actuated pump mechanism serving to dispense said skin treatment material from said reservoir through said nozzle means upon actuation and said return spring mechanism serving to restore the state of said pump mechanism for a next dispensing.

- 5. A device as recited in claim 4 wherein said reservoir serves as containment for packets of said skin treatment material.
- 6. A device as recited in claim 1 wherein said dispenser is a squeeze bottle and said actuation means comprises compressive deformation of said squeeze bottle.
- 7. A device as recited in claim 6 wherein said dispenser contains an internal bladder for segregating an air volume internal to said dispenser from the volume of said skin treatment material, thereby allowing the use of said dispenser at arbitrary orientations with respect to gravity.
- 8. A device as recited in claim 6 wherein said dispenser includes check valve means for preventing the leakage of said skin treatment material.
- 9. A device as recited in claim 1 wherein said dispenser is a pressure-multiplying dispenser providing relatively high pressure ejection of said skin treatment material upon application of light compressive force to said dispenser.
 - 10. A device as recited in claim 1 wherein said dispenser is a plunger-based dispenser.
 - 11. A device as recited in claim 1 wherein said dispenser includes a functional watch.
- 12. A device as recited in claim 1 wherein said dispenser is a drip dispenser including leak control means.
 - 13. A device as recited in claim 1 wherein said dispenser is a gas-pressurized dispenser.

14. A device as recited in claim 1 wherein said actuation means includes an electric pump.

- 15. A device as recited in claim 1 wherein said actuation means includes a piezoelectric pump.
 - 16. A device as recited in claim 1 wherein said actuation means includes a solenoid pump.
- 17. A device as recited in claim 1 which includes means for adjusting the type of said ejection from streaming flow to spray.
 - 18. A device as recited in claim 1 which is disposable.
- 19. A device as recited in claim 1 wherein said dispenser is removably attached to said attachment means.
- 20. A device as recited in claim 1 wherein said dispenser includes adjustable nozzle means.
- 21. A device as recited in claim 1 wherein said attachment means contains a working fluid volume in fluid communication with the interior of said dispenser so that said dispenser can be compressively-actuated by depression of said attachment means at a location on top of said user's wrist.
- 22. A method for discharging skin treatment material from a user's forearm into said user's skin, the method comprising the following steps:
- (a) attaching a dispenser containing said skin treatment material to the wrist of said user's forearm;
 - (b) actuating said dispenser to eject said skin treatment material onto said user's skin.

F19 A

Fig. 6a.

Fig.6b

Fig. 6c

Fig. 6d

WO 2004/052425 PCT/US2003/039048 11/32

Fig. 7

Fig. 9b

WO 2004/052425 PCT/US2003/039048

23/32

Fig. 23

Fig. 24

Fig. 26a

Fig.27

Fig. 28

Fig. 29

