第四章 半导体器件概述

—— 4.2 双极型半导体三极管

李泳佳 东南大学电子系国家ASIC工程中心 yongjia.li@outlook.com

4.2 双极型半导体三极管

本节内容

- 4.2.1 三极管的结构及工作原理
- 4.2.2 三极管的基本特性
- 4.2.3 三极管的主要参数及电路模型
- 4.2.4 三极管的应用举例

4.2.0 PN结回顾

✓ 载流子与电流:

- 正偏
- 反偏

✓ 半导体晶体管:

- 双极型晶体管 (三极管): Bipolar Junction Transistor (BJT)
 - 由两种载流子参与导电的半导体器件
 - Current controlled current source, CCCS器件
 - 1947年由William Shockley等发明, 1956年诺贝尔奖
- 场效应晶体管 (场效应管): Field-Effect Transistor (FET)
 - 由一种载流子参与导电的半导体器件
 - Voltage controlled current source, VCCS器件

✓ 结构、符号和分类:

- 基本结构框图: 三个掺杂区域, 形成两个背靠背的PN结, 三个电极

- **发射极 (Emitter)** : 重掺杂

- 基极 (Base) : 中度掺杂, 薄

- **集电极 (Collector)** : 轻掺杂, 面积大

✓ 载流子输运:

- 直流偏置电压: 发射极正偏, 集电极反偏

- BE正偏: 发射极重掺杂, 电子扩散电流为主; 基极中等掺杂, 空穴扩散电流小

- BC反偏: 扩散受抑制, 漂移增强

- 基极窄: BE的电子扩散到BC空间电荷区,少量复合,大量被BC电场拉入C

✓ 载流子输运与电流关系:

- 发射区: 电子浓度高, 扩散到基区和集电区

- 基区: 发射区电子部分与基区空穴复合,形成IBE

- 集电区:扩散到基区的发射区电子被反向电场VBC拉入集电区,形成I_{CE}

- BC区反偏:少子在反向电场作用下形成反向饱和电流I_{CBO}

✓ 载流子输运与电流关系:

- 发射区: 电子浓度高, 扩散到基区和集电区

- 基区: 发射区电子部分与基区空穴复合,形成IBE

- 集电区:扩散到基区的发射区电子被反向电场VBC拉入集电区,形成I_{CE}

- BC区反偏:少子在反向电场作用下形成反向饱和电流I_{CBO}

$$I_{E} = I_{B} + I_{C}$$

$$I_{B} = I_{BE} - I_{CBO}$$

$$I_{C} = I_{CE} + I_{CBO}$$

$$\overline{\alpha} = I_{CE}/I_{E}$$

$$\overline{\beta} = \frac{\overline{\alpha}}{1 - \overline{\alpha}}$$

$$\begin{split} I_{C} &= \overline{\beta} I_{B} + I_{CEO} \\ \overline{\alpha} &\approx I_{C} / I_{E} \\ \overline{\beta} &\approx I_{C} / I_{B} \end{split}$$

✓ BJT放大电路的组态:

- 以输入输出信号的公共端命名:三端口器件,必然有一端共用

✓ BJT共发射极放大电路:

- 条件: R=1k, V_{CC} =5V, β=50, I_{B} =20μA

- 条件2: ΔV_i到 ΔV_o

✓ 输入特性曲线:

- 以共发射极为例: $I_B = f(V_{BE})|_{V_{CE}=const}$

- **V**_{CE}=**0**: 等效于两个PN结并联

- $V_{CE} > 1V$: 集电极反偏,处于放大状态

✓ 输入特性曲线:

- 以共发射极为例: $I_B = f(V_{BE})|_{V_{CE}=const}$

- V_{BE}>V_{TH}, V_{CE}=0: 等效于两个PN结并联

- V_{BE}>V_{TH}, V_{CE}>V_{BE}-V_{TH}:集电极反偏,再增加V_{CE}右移不明显

✓ 输入特性曲线:

- 以共发射极为例: $I_B = f(V_{BE})|_{V_{CE}=const}$

- V_{BE}>V_{TH}, V_{CE}>V_{BE}-V_{TH}:集电极反偏,再增加V_{CE}右移不明显

- 基区宽度调制效应: 基区宽度变窄导致复合减弱

✓ 输出特性曲线:

- 以共发射极为例: $I_C = f(V_{CE})|_{I_{BE}=const}$

- V_{CE}>V_{BE}-V_{TH}: I_C几乎恒流

- 增加IB: 进一步增加IC

✓ 输出特性曲线:

- 截止区: BE零偏/反偏或V_{BE}<V_{TH}

- 饱和区:BE正偏,CE零偏或正偏,V_{BE}>V_{TH},V_{CE}<V_{BE}-V_{TH}

- 放大区: BE正偏, CE反偏, V_{BE}>V_{TH}, V_{CE}>V_{BE}-V_{TH}

✓ 开关特性:

- 截止状态: I_B=0, I_C=0, V_{CE}=V_{CC}
- 饱和状态: I_B=I_{BS}, I_C=I_{CS}, V_{CE}=V_{CES}
- 饱和压降V_{CES}: I_C饱和时的管压降
- 基极饱和电流I_{BS}: I_B>I_{BS}

$$I_{CS} = \frac{V_{CC} - U_{CES}}{R_C} \approx \frac{V_{CC}}{R_C}$$

$$I_{BS} = \frac{I_{CS}}{\beta} = \frac{V_{CC}}{\beta \cdot R_C}$$

✓ 开关时间:

- 延迟时间td: +U_{B2}加入→ 0.1I_{CS}

- **上升时间tr**: 0.11_{CS} → 0.91_{CS}

- 存储时间ts: -U_{B1}加入→ 0.9I_{CS}

- 下降时间tf: 0.9I_{CS} → 0.1I_{CS}

- 开通时间: ton=td+tr

- 关闭时间: toff=ts+tf

✓ 开通时间和关闭时间总称为**开关时间**

✓ 主要参数: 直流参数,交流参数,极限参数

- **直流参数: 共发射极**直流电流放大系数 $\overline{\beta}$, $\overline{\beta} = (I_C - I_{CEO})/I_B$

在输出特性曲线上决定 $ar{eta}$

 $\overline{\beta}$ 值与 I_{C} 的关系

✓ 主要参数: 直流参数,交流参数,极限参数

- **直流参数: 共基极**直流电流放大系数 $\overline{\alpha}$, $\overline{\alpha} = (I_C - I_{CBO})/I_E$

$$\overline{\alpha} = \frac{\overline{\beta}}{1 + \overline{\beta}}$$
 $\overline{\beta} = \frac{\overline{\alpha}}{1 - \overline{\alpha}}$

✓ 反向饱和电流I_{CBO}: 发射极开路

✓ 穿透电流I_{CFO}: 基极开路

✓ 主要参数: 直流参数,交流参数,极限参数

- 交流参数: 共发射极交流电流放大系数 β $\beta = \Delta I_{\rm C}/\Delta I_{\rm B} |_{u_{\rm CE}={\rm const}}$

✓ 输出特性曲线上,通过垂直于X轴的直线求取

✓ 主要参数: 直流参数,交流参数,极限参数

- 交流参数: 特征频率f_T

- 由于结电容的影响,当信号频率增加时,三极管的β将会下降。 当β下降到1时所对应的频率称为特征频率,用 f_{τ} 表示。

✓ 主要参数: 直流参数,交流参数,极限参数

- 极限参数:集电极最大允许电流I_{CM}

- 当集电极电流增加时, β 就要下降,当 β 值下降到线性放大区 β 值的2/3时,所对应的集电极电流称为集电极最大允许电流 I_{CM}

- 并不代表会损坏

✓ 主要参数: 直流参数,交流参数,极限参数

- 极限参数:集电极最大允许功率损耗P_{CM}

- 集电极电流通过集电结时所产生的功耗,P_{CM}=I_CU_{CB}≈I_CU_{CE}

- 因发射结正偏,呈低阻,所以功耗主要集中在集电结上。在计算时往往 用U_{CF}取代U_{CB}

✓ 主要参数: 直流参数,交流参数,极限参数

- 极限参数: 反向击穿电压

- 反向击穿电压表示三极管电极间承受反向电压的能力

✓ U_{(BR)CBO}: 发射极开路时集电极击穿电压

✓ U_{(BR)CEO}: 基极开路时C和E间的击穿电压

✓ U_{(BR)CER}: BE间连接有电阻

✓ U_{(BR)CES}: BE间短路

 $\checkmark U_{(BR)CBO} > U_{(BR)CES} > U_{(BR)CER} > U_{(BR)CEO}$

✓ 安全工作区:

- 由P_{CM}、I_{CM}和U_{(BR)CEO}在输出特性曲线上可确定过损耗区、过电流区和击穿区。

✓ 三极管型号:

国家标准对半导体三极管的命名如下:

第二位: A锗PNP管、B锗NPN管、

C硅PNP管、D硅NPN管

第三位: X低频小功率管、D低频大功率管、

G高频小功率管、A高频大功率管、K开关管

表02.01 双极型三极管的参数

参数型号	P_{CM} mW	I _{CM} mA	VR _{CBO} V	VR _{CEO} V	VR _{EBO} V	$I_{\mathrm{CBO}} \ \mu\mathrm{A}$	f_{T} MHz
3AX31D	125	125	20	12		≪6	*≥ 8
3BX31C	125	125	40	24		≪6	*≥ 8
3CG101C	100	30	45			0. 1	100
3DG123C	500	50	40	30		0.35	
3DD101D	5A	5A	300	250	4	≤2mA	
3DK100B	100	30	25	15		≤ 0. 1	300
3DKG23	250W	30A	400	325			8

注: *为f_B

✓ NPN型三极管:

✓ 封装:

✓ 电路模型:

- 物理结构

✓ 电路模型:

- 直流/简化交流等效电路模型

✓ 跨导定义:

理想二极管

$$g_m = \frac{\Delta I_C}{\Delta U_{BE}}$$

✓ 电路模型:

- 混合π型微变等效电路

✓ 电路模型:

- 混合π型微变等效电路进一步简化

$$i_c = g_m u_{b'e} = \beta i_b$$

$$u_{b'e} = i_b r_{b'e}$$

$$\beta = g_m r_{b'e}$$
其中 $r_{b'e} = (1 + \beta) \frac{v_T}{I_E}$