

MODULE: PROPOSITIONAL LOGIC

Horn Clauses and Horn Formulas:

- Alternative Form
- Limitation
- Satisfiability

Horn Clauses and Horn Formulas

- A propositional logic formula is said to be a Horn formula if it is a conjunction of Horn clauses
 - where a Horn clause is of the form:
 - $p_1 \wedge p_2 \wedge ... p_k \longrightarrow q$
 - where p_i and q are:
 - either atomic propositions or
 - atomic values (i.e. TRUE or FALSE)

Horn Clauses: Alternative Form

- A *Horn clause* is of the form:
 - $p_1 \wedge p_2 \wedge ... \wedge p_k \longrightarrow q$

where p_i and q are atomic propositions or atomic values (i.e. TRUE or FALSE)

- Alternative form of a Horn clause:
 - $p_1 \wedge p_2 \wedge ... \wedge p_k \longrightarrow q$ is equivalent to
 - $\neg (p_1 \land p_2 \land ... \land p_k) \lor q$ which is equivalent to
 - $\neg p_1 \lor \neg p_2 \lor ... \lor \neg p_k \lor q$
 - Therefore an alternative description of a Horn clause is this:
 - A Horn clause is <u>a disjunction of literals</u> in which <u>at</u> <u>most one of them is positive</u>.

Horn Formulas – Satisfiability

- When is a Horn formula satisfiable?
 - When is a Horn clause satisfiable?
 - When is p-->q satisfiable for any atomic propositions p and q?
 - But a Horn clause may be formed out of atomic values (TRUE and FALSE) as well:
 - Is p-->FALSE satisfiable?
 - Is TRUE-->q satisfiable?
 - Is TRUE-->FALSE satisifiable?

Horn Formulas – Satisfiability

- When is a Horn formula satisfiable?
 - When is a <u>conjunction of Horn clauses</u> satisfiable?
 - Transitivity of Implication!
 - e.g. TRUE -->q \wedge q -->FALSE:
 - Can you generalize this?
- Argue whether this example formula is satisfiable or not:
 - $(p \land q \rightarrow r) \land (s \rightarrow p) \land (t \rightarrow q) \land (s \rightarrow t) \land (\neg r) \land (s)$

MODULE: PROPOSITIONAL LOGIC

Algorithm for Satisfiability of Horn Formulas

- When is a Horn formula satisfiable?
 - When is a Horn clause satisfiable?
 - p --> q is satisfiable for any atomic propositions p and q
 - But a Horn clause may be formed out of atomic values (TRUE and FALSE) as well:
 - TRUE --> FALSE is not satisfiable.
 - When is a conjunction of Horn clauses not satisfiable?
 - Consider C_1 of the form p_1 --> q_1 and C_2 of the form p_2 --> q_2 :
 - What if q_1 and p_2 are the same but p_1 is TRUE and q_2 is FALSE.
 - Can you generalize this?

- A Horn formula is a conjunction of Horn clauses:
 - Consider these formulas for each, identify whether it is satisfiable and if so, when is it satisfied?
 - (p-->q) ∧ (q-->FALSE)
 - $(p-->q)\land(s-->t)\land(q-->s)\land(q-->r)\land(TRUE-->p)\land(t-->u)\land(u-->FALSE)$

- HORN_SAT(\(\phi\))
 - pre-condition: φ is a Horn formula
 - returns: yes if ϕ is satisfiable, no otherwise
- Steps:
 - 1. mark all occurrences of TRUE in ϕ
 - 2. while

```
(there is a clause p_1 \wedge p_2 \wedge ... \wedge p_k --> q of \phi such that all p_j are marked but q is not marked)
```

```
do { mark q }
```

3. if FALSE is marked then return "no" else return "yes"

- HORN_SAT(φ)
 - pre-condition: φ is a Horn formula
 - returns : yes if ϕ is satisfiable, no otherwise
- Steps:
 - 1. mark all occurrences of TRUE in ϕ
 - 2. while

```
(there is a clause p_1 \wedge p_2 \wedge ... \wedge p_k --> q of \phi such that all p_j are marked but q is not marked)
```

```
do { mark q }
```

3. if FALSE is marked then return "no" else return "yes"

Claim: This algorithm terminates for all correct inputs

- HORN_SAT(φ)
 - <u>pre-condition</u>: φ is a Horn formula
 - returns : yes if ϕ is satisfiable, no otherwise
- Steps:
 - 1. mark all occurrences of TRUE in ϕ
 - 2. while

```
(there is a clause p_1 \wedge p_2 \wedge ... \wedge p_k --> q of \phi such that all p_j are marked but q is not marked)
```

do { mark q }

3. if FALSE is marked then return "no" else return "yes" Claim: This algorithm terminates in at most n+1 iterations where n is the number of atomic propositions in ϕ

MODULE: PROPOSITIONAL LOGIC

Horn Clauses vs. Propositional Formulas

Horn Formulas - Limitation

- Can any propositional formula be written as a Horn formula?
 - No, by Horn's Theorem.
- Examples?

Horn's Theorem

- A propositional formula φ over atoms $x_1,...,x_n$ is expressible as a conjunction of Horn clauses if and only if
 - whenever ϕ evaluates to 1 for the assignments $\mathbf{z_1},...,\mathbf{z_n}$ and $\mathbf{y_1},...,\mathbf{y_n}$
 - it also evaluates to 1 for the assignment $\mathbf{z_1} \wedge \mathbf{y_1}, ..., \mathbf{z_n} \wedge \mathbf{y_n}$ for all assignments \mathbf{z}^{\rightarrow} and \mathbf{y}^{\rightarrow}

• Exercise:

- Find formulas that cannot be written in Horn form.
 - Hint: <u>Use a truth table.</u> End of Hint.

MODULE: PROPOSITIONAL LOGIC

Horn Clauses and Prolog Programming

Logic Programming - Prolog

- HORN clauses form the basis of the programming language Prolog
 - Of course Prolog uses predicates rather than propositions.
- A program in Prolog is a collection of rules
 - where each rule is a Horn clause.
 - e.g. grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
 - is a Horn clause:
 - parent(X,Z) \(\simes \) parent(Z,Y) --> grandparent(X,Y).
- A query is answered (i.e. resolved) in Prolog by finding a proof for the query using the given rules.

Prolog Programming and Complexity

- The execution overhead in a Prolog program is polynomialtime.
 - *i.e.* execution of a Prolog program proceeds by finding satisfiable assignments for Horn Clauses
 - which can be done in polynomial-time.

