MCA (SEM-III) THEORY EXAMINATION 2019-20 COMPUTER BASED OPTIMIZATION TECHNIQUES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. What is linear programming?
- b. What are slack, surplus and artificial variables?
- c. What is meant by unbalanced transportation problem?
- d. Explain the procedure of North-West Corner Rule.
- e. What are the useful aspects of Duality in LLP?
- f. What is meant by a mathematical model of a real situation?
- g. What is assignment problems? Give two applications.
- h. Describe the characteristics of Dynamic Programming.
- i. What is the relationship among State, Stage and Policy?
- j. What are the elements of Queuing theory?

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. What is Operations Research? Explain briefly the different phases of Operations Research and general method for solving Operations Research models.
- b. What are Inventory models? Give the classification of different inventory models and describe them briefly.
- c. What are the main steps in the basic procedure of modified distribution method?
- d. Solve the following programming problem by graphical method:

Minimize Z = 2x + 4ySubject to $x + y \le 14$ $2x + 2y \ge 30$ $2x + y \le 18$

Where as $x, y \ge 0$

e. State and prove the Markovian Property of Inter Arrival times.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Explain the economic order quantity model. What are its assumptions? What are the practical limitations in using this formula.
- (b) A factory has a large number of bulbs, all of which must be in working condition. The mortality of bulbs is given in the following table:

Week	1	2	3	4	5	6
Proportion	0.10	0.15	0.25	0.35	0.12	0.03
of bulbs						
Failing						

If a bulb fail in service, it costs Rs. 3.50 to be replaced; but if all the bulbs are replaced at a time it costs Rs.1.20 each, find the optimum group replacement policy.

Roll No:

4. Attempt any *one* part of the following:

$$10 \times 1 = 10$$

- (a) Briefly define the disadvantages of revised simplex method over the original simplex method?
- (b) Solve the following LPP:

Max.
$$Z = 20X_1 + 10X_2$$

s.to. $X_1 + X_2 = 150$
 $X_1 \le 40$

 $X_2 \ge 20$ where as $X_1, X_2 \ge 0$

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Explain degeneracy in a transportation problem. How degeneracy is overcome?
- (b) A car hire company has one car at each of the five depots a, b, c, d & e. A customer in each of the five towns A, B, C, D & E requires a car. The distance (in miles) between he depots (origin) and the towns (destinations) where the customers are given the following distance matrix.

	A	b	C	d	e
A	160	130	175	190	200
В	135	120	130	160	175
\mathbf{C}	140	110	155	170	185
D	50	50	80	80	110
E	55	35	70	80	105

How should the cars be assigned to the customers so as to minimize the distance travelled.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Discuss Wolfe's method for solving a Quadratic Programming Problem.
- (b) Use dynamic programming to solve the following LPP

Max.
$$Z = 2X_1 + 5X_2$$

s.to. $2X_1 + X_2 \le 43$
 $2X_2 \le 46$
where $X_1, X_2 \ge 0$

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Explain the essential features of Queuing System.
- (b) What is Queuing Theory? What information can be obtained by analyzing a queuing system?