Albert Ratschinski (5154309)

Aufgabe:	1	2	3	4	5	6	\sum
Punkte:							

Exercise Sheet Nr. 1 (Deadline - Freitag bis 14 Uhr)

Aufgabe 1

$$(A|b) = \begin{pmatrix} 1 & 3 & 0 & | & 1 \\ 2 & 1 & \lambda & | & 1 \\ 1 & 5 & 4 & | & \beta \end{pmatrix}$$

Ich wende die Gauß-Elimination an und erhalte:

$$\begin{pmatrix} 1 & 3 & 0 & | & 1 \\ 2 & 1 & \lambda & | & 1 \\ 1 & 5 & 4 & | & \beta \end{pmatrix} \qquad II - 2 \times I \\ III + I \times -1$$

$$\begin{pmatrix} 1 & 3 & 0 & | & 1 \\ 0 & -5 & \lambda & | & -1 \\ 0 & 2 & 4 & | & \beta - 1 \end{pmatrix} \qquad III + \frac{2}{5} \times II$$

$$\begin{pmatrix} 1 & 3 & 0 & | & 1 \\ 0 & -5 & \lambda & | & -1 \\ 0 & 0 & \frac{2\lambda + 20}{5} & | & \frac{5\beta - 7}{5} \end{pmatrix} \qquad III + \frac{2}{5} \times II$$

• Fall 1: $\lambda \neq -10$

Wir erhalten ε_3 durch Rückwärtseinsetzen:

$$\left(\frac{2\lambda + 20}{5}\right)\varepsilon_3 = \frac{5\beta - 7}{5}$$
$$\Leftrightarrow \varepsilon_3 = \frac{5\beta - 7}{2\lambda + 20}$$

Äquivalent dazu erhalten wir ε_2 durch Rückwärtseinsetzen:

$$-5\varepsilon_2 + \lambda\varepsilon_3 = -1$$

$$\Leftrightarrow -5\varepsilon_2 = 1 - \lambda \cdot \frac{5\beta - 7}{2\lambda + 20}$$

$$\Leftrightarrow -5\varepsilon_2 = 1 - \frac{5\beta\lambda - 7\lambda}{2\lambda + 20}$$

$$\Leftrightarrow \varepsilon_2 = \frac{-5\lambda - 5\lambda\beta - 20}{5(2\lambda + 20)}$$

$$\Leftrightarrow \varepsilon_2 = \frac{-\lambda + \lambda\beta + 4}{2\lambda + 20}$$

Äquivalent dazu erhalten wir ε_1 durch Rückwärtseinsetzen:

$$\begin{split} 1\varepsilon_1 + 3\varepsilon_2 &= 1 \\ \Leftrightarrow \varepsilon_1 &= 1 - 3 \cdot \frac{-\lambda + \lambda\beta + 4}{2\lambda + 20} \\ \Leftrightarrow \varepsilon_1 &= 1 - \frac{-3\lambda + 3\lambda\beta + 12}{2\lambda + 20} \\ \Leftrightarrow \varepsilon_1 &= \frac{-\lambda + 3\lambda\beta + 8}{2\lambda + 20} \end{split}$$

Somit ergibt sich die Lösungsmenge:

$$L_{\alpha,\beta}(G) = \left\{ \left(\frac{-\lambda + 3\lambda\beta + 8}{2\lambda + 20}, \frac{-\lambda + \lambda\beta + 4}{2\lambda + 20}, \frac{5\beta - 7}{2\lambda + 20} \right) \mid \lambda \neq -10 \right\}$$

• Fall 2: $\lambda = -10$ Für den Fall $\frac{5\beta}{7} \neq 0$ gibt es keine Lösung:

$$\begin{pmatrix}
1 & 3 & 0 & | & 1 \\
0 & -5 & \lambda & | & -1 \\
0 & 0 & 0 & | & \frac{5\beta-7}{5}
\end{pmatrix}$$

Für den Fall $\frac{5\beta}{7}=0$ gibt es unendlich viele Lösungen:

Wir wählen ε_3 als freie Variable und erhalten ε_2 durch Rückwärtseinsetzen:

$$-5\varepsilon_2 + \lambda\varepsilon_3 = -1$$

$$\Leftrightarrow \varepsilon_2 = \frac{-1 - \lambda\varepsilon_3}{-5}$$

$$\Leftrightarrow \varepsilon_2 = \frac{1}{5} + \frac{\lambda}{5} * \varepsilon_3$$

Äquivalent dazu erhalten wir ε_1 durch Rückwärtseinsetzen:

$$\begin{split} \varepsilon_1 + 3\varepsilon_2 &= 1 \\ \Leftrightarrow \varepsilon_1 &= 1 - 3\left(\frac{1}{5} + \frac{\lambda}{5} * \varepsilon_3\right) \\ \Leftrightarrow \varepsilon_1 &= 1 - \frac{3}{5} - \frac{3\lambda}{5} * \varepsilon_3 \\ \Leftrightarrow \varepsilon_1 &= \frac{2}{5} - \frac{3\lambda}{5} * \varepsilon_3 \end{split}$$

Somit ergibt sich die Lösungsmenge:

$$L_{\alpha,\beta}(G) = \left\{ \left(\frac{2}{5} - \frac{3\lambda}{5} * \varepsilon_3, \frac{1}{5} + \frac{\lambda}{5} * \varepsilon_3, \varepsilon_3 \right) \mid \lambda = -10, \varepsilon_3 \in \mathbb{R} \right\}$$

Aufgabe 2

- **Zu zeigen:** Die Relation \sim definiert durch $a \sim b : \Leftrightarrow n$ teilt a-b ist eine Äquivalenzrelation auf \mathbb{Z} .
- Beweis:
 - 1. Reflexivität: Sei $a \in \mathbb{Z}$. Dann gilt $n \mid a a = 0$, also $a \sim a$.
 - 2. **Symmetrie:** Seien $a, b \in \mathbb{Z}$ mit $a \sim b$. Das bedeutet, dass $n \mid a b$. Also gibt es ein $k \in \mathbb{Z}$, sodass a b = kn. Dann ist b a = -(a b) = -kn, was bedeutet, dass $n \mid b a$. Also ist $b \sim a$.
 - 3. **Transitivität:** Seien $a, b, c \in \mathbb{Z}$ mit $a \sim b$ und $b \sim c$. Das bedeutet, dass $n \mid a-b$ und $n \mid b-c$. Also gibt es $k, l \in \mathbb{Z}$, sodass a-b=kn und b-c=ln. Dann ist (a-c)=(a-b)+(b-c)=kn+ln=(k+l)n, also $n \mid (a-c)$. Also ist $a \sim c$.
- Da die Relation \sim reflexiv, symmetrisch und transitiv ist, ist sie eine Äquivalenzrelation auf \mathbb{Z} .
- Äquivalenzklasse von $a \in \mathbb{Z}$ bezüglich $\sim: \{a + kn \mid k \in \mathbb{Z}\}.$
- Repräsentantensystem für die Äquivalenzklassen: $\{0, 1, 2, ..., n-1\}$.