Урок 44 Електричний опір. Закон Ома

Мета уроку:

Навчальна. Установити залежність між силою струму, напругою на однорідній ділянці електричного кола й опором цієї ділянки.

Розвивальна. Розвивати логічне мислення учнів та показати практичну значущість отриманих знань.

Виховна. Формування таких якостей особистості, як відповідність, організованість, дисциплінованість, обов'язок.

Тип уроку: комбінований урок

Обладнання: навчальна презентація, комп'ютер, амперметр, вольтметр.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

Проведення фронтального опитування або самостійна робота

- 1. Що називають силою струму?
- 2. За якою формулою визначають силу струму?
- 3. Яка одиниця сили струму?
- 4. Як вмикають амперметр у електричне коло?
- 5. Що таке електрична напруга?
- 6. За якою формулою визначають електричну напругу?
- 7. У яких одиницях вимірюють напругу?
- 8. Яким приладом вимірюють напругу?
- 9. Поясніть, як вмикають вольтметр в електричне коло.

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Ми вже знаємо, що таке сила струму та напруга.

Чи взаємопов'язані дані фізичні величини між собою?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Залежність сили струму від напруги

Проведемо дослід

Складемо електричне коло, споживачем у якому буде лампочка, а джерела струму будемо використовувати різні. Для вимірювання сили струму в

провіднику та напруги на його кінцях використаємо амперметр і вольтметр (рис. а).

В разі збільшення напруги у 3 рази сила струму зросте у 3 рази (рис. б); В разі збільшення напруги у 6 разів сила струму зросте у 6 разів (рис. в);

В разі збільшення напруги у 8 разів сила струму зросте у 8 разів (рис. г);

Сила струму в провіднику прямо пропорційна напрузі на кінцях провідника.

Цю залежність першим експериментально встановив німецький учений Георг Сімон Ом (1787 - 1854) у 1826 р.

2. Електричний опір

Проведемо дослід

Напруга в колі незмінна. Перевіримо, як буде змінюватися сила струму в колі якщо будемо вмикати різні провідники. Знову замкнемо коло і побачимо, що сила струму в колі зменшилася.

Сила струму в провіднику залежить не тільки від напруги на його кінцях, але й від властивостей самого провідника.

В

Залежність сили струму від властивостей провідника пояснюється тим, що напрямленому руху вільних електронів у металевому провіднику протидіють їхні хаотичні зіткнення з йонами кристалічної решітки, що перебувають у стані теплового руху. Ця протидія призводить до зменшення швидкості напрямленого руху заряджених частинок, тобто до зменшення сили струму в колі.

Електричний опір — це фізична величина, яка характеризує властивість провідника протидіяти проходженню електричного струму.

Одиниця опору в CI – *ом:*

$$[R] = 1 \text{ Om}$$

Кратні й частинні одиниці опору:

$$1 \text{ MOM} = 1.10^{-3} \text{ OM};$$

$$1 \text{ кОм} = 1.10^3 \text{ Ом};$$

 $1 \text{ MOM} = 1.10^6 \text{ OM}$

3. Закон Ома для ділянки кола

Закон Ома для ділянки кола:

Сила струму в ділянці кола прямо пропорційна напрузі на кінцях цієї ділянки.

$$I = \frac{U}{R}$$

I – сила струму;

U – напруга;

Із закону Ома випливає, що:

$$R=\frac{U}{I}$$

 $1 \ Om$ — це опір такого провідника, в якому за напруги на кінцях $1 \ B$ сила струму дорівнює $1 \ A$:

$$1 \text{ Om} = 1 \frac{B}{A}$$

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. На цоколі електричної лампи написано 3,5 В; 0,28 А. Що це значить? Знайдіть опір спіралі лампи.

Дано: U = 3,5 B I = 0,28 AR - ?

Розв'язання

$$I = \frac{U}{R}$$
 => $R = \frac{U}{I}$
 $R = \frac{3,5 \text{ B}}{0,28 \text{ A}} = 12,5 \text{ Om}$

Відповідь: $R = 12,5 \, \text{Ом}.$

2. Яку напругу треба створити на кінцях провідника опором 0,02 кОм, щоб у ньому виникла сила струму 500 мА?

Дано:

$$R = 0.02 \text{ кОм}$$

 $= 20 \text{ Ом}$
 $I = 500 \text{ мA} = 0.5 \text{ A}$
 $U - ?$

Розв'язання

$$I = \frac{U}{R}$$
 => $U = IR$
 $U = 0.5 \text{ A} \cdot 20 \text{ Om} = 10 \text{ B}$

Відповідь: U = 10 B.

3. У провіднику за 30 хв проходить електричний заряд 3,6 кКл. Визначте опір провідника, якщо напруга на ньому 12 В.

Дано: t = 30 xB = 1800 c q = 3.6 кКл = 3600 Кл U = 12 BR - ?

Розв'язання

$$R = \frac{U}{I}$$

$$I = \frac{q}{t}$$

$$R = \frac{U}{\frac{q}{t}} = \frac{Ut}{q}$$

$$[R] = \frac{B \cdot c}{K\pi} = \frac{B \cdot c}{A \cdot c} = \frac{B}{A} = OM$$

$$R = \frac{12 \cdot 1800}{3600} = 6 \text{ (OM)}$$

Відповідь: $R = 6 \, \text{Ом}.$

4. Якщо на резисторі напруга дорівнює 10 В, то через нього протікає струм 0,5 А. Яку напругу потрібно подати на резистор, щоб сила струму стала 0,25 А?

$$\mathcal{A}$$
ано:
 $U_1 = 10 \text{ B}$
 $I_1 = 0.5 \text{ A}$
 $I_2 = 0.25 \text{ A}$
 $U_2 - ?$

Розв'язання

$$U_2=I_2R_2$$
 Резистор не змінюють, а це означає, що $R_2=R_1$ $R_1=\dfrac{U_1}{I_1}$ $U_2=I_2\cdot\dfrac{U_1}{I_1}$

$$[U_2] = A \cdot \frac{B}{A} = B$$

$$U_2 = 0.25 \cdot \frac{10}{0.5} = 5 \text{ (B)}$$

Відповідь: $U_2 = 5 \text{ B.}$

5. На рисунку подано вольт-амперні характеристики кількох провідників. Визначте опори цих провідників.

$$R_1 = \frac{4 \text{ B}}{\frac{2 \text{ A}}{4 \text{ B}}} = 2 \text{ Om}$$
 $R_2 = \frac{4 \text{ B}}{\frac{1 \text{ A}}{2 \text{ B}}} = 4 \text{ Om}$
 $R_3 = \frac{2 \text{ B}}{2 \text{ A}} = 1 \text{ Om}$

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Опишіть дослід, який демонструє, що сила струму в провіднику прямо пропорційна напрузі на його кінцях.
- 2. Опишіть дослід, який демонструє, що сила струму в провіднику залежить від властивостей провідника.
 - 3. Дайте означення опору провідника.
 - 4. Сформулюйте закон Ома для ділянки кола.
 - 5. Що таке 1 *Ом?*

VII. ДОМАШН€ ЗАВДАННЯ

Вивчити § 29, Вправа № 29 (1, 3, 5)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com