Reducción y Recursión

Taller de Álgebra I

Primer cuatrimestre de 2016

► En el contexto de los lenguajes funcionales, llamamos modelo de cómputo al modo en que se calcula el valor de una expresión.

- En el contexto de los lenguajes funcionales, llamamos modelo de cómputo al modo en que se calcula el valor de una expresión.
- ► El mecanismo de evaluación en Haskell es la reducción:
 - 1 Reemplazamos una subexpresión por otra.
 - 2 La subexpresión a reemplazar es alguna instancia del lado izquierdo de alguna ecuación orientada del programa, y se la llama radical o redex (reducible expression).
 - Se La reemplazaremos por el lado derecho de esa misma ecuación, instanciado de manera acorde.
 - 4 El resto de la expresión no cambia.

Dado el siguiente programa:

```
resta :: Integer -> Integer -> Integer
resta x y = x - y

suma :: Integer -> Integer -> Integer
suma x y = x + y

digitos :: Integer -> Integer
digitos x = ??
```

▶ Qué sucede al evaluar suma (resta 2 (digitos 42)) 4

Dado el siguiente programa:

```
resta :: Integer -> Integer -> Integer
resta x y = x - y

suma :: Integer -> Integer -> Integer
suma x y = x + y

digitos :: Integer -> Integer
digitos x = ??
```

- ▶ Qué sucede al evaluar suma (resta 2 (digitos 42)) 4
- ▶ Buscamos un redex y una asignación: suma (resta 2 (digitos 42)) 4

redex

Dado el siguiente programa:

```
resta :: Integer -> Integer -> Integer
resta x y = x - y

suma :: Integer -> Integer -> Integer
suma x y = x + y

digitos :: Integer -> Integer
digitos x = ??
```

- ▶ Qué sucede al evaluar suma (resta 2 (digitos 42)) 4
- ▶ Buscamos un redex y una asignación: suma (resta 2 (digitos 42)) 4

redex

- x ← 2
- ▶ $y \leftarrow (digitos 42)$

Dado el siguiente programa:

```
resta :: Integer -> Integer -> Integer
resta x y = x - y

suma :: Integer -> Integer -> Integer
suma x y = x + y

digitos :: Integer -> Integer
digitos x = ??
```

- ▶ Qué sucede al evaluar suma (resta 2 (digitos 42)) 4
- ▶ Buscamos un redex y una asignación: suma (resta 2 (digitos 42)) 4
 - x ← 2
 y ← (digitos 42)
- Reemplazamos el redex con esa asignación: suma (resta 2 (digitos 42)) 4 → suma (2 - (digitos 42)) 4

Formas normales

- Las expresiones se reducen hasta que no haya más redexes.
- Como resultado se obtiene una forma normal (que no tiene un cómputo asociado).

Formas normales

- Las expresiones se reducen hasta que no haya más redexes.
- Como resultado se obtiene una forma normal (que no tiene un cómputo asociado).
- Mecanismo de reducción:
 - I Si la expresión está en forma normal, terminamos.
 - 2 Si no, buscar un redex, reemplazarlo y volver a empezar.

```
1 f x = f (f x) - icuánto vale f 3?
```

```
1 f x = f (f x) - \xi cuánto vale f 3?
```

- ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 ¿cuánto vale infinito?

- ▶ ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 ¿cuánto vale infinito?
 - 3 inverso $x \mid x \neq 0 = 1 / x$

- ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 ¿cuánto vale infinito?
 - 3 inverso x | x /= 0 = 1 / x icuanto vale inverso 0?

- ► ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 − ¿cuánto vale infinito?
 - 3 inverso x | x /= 0 = 1 / x $\frac{1}{2}$ cuánto vale inverso 0?
- Cuando existe una forma normal, ¿es única?

- ► ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 − ¿cuánto vale infinito?
 - 3 inverso $x \mid x \neq 0 = 1 / x icuánto vale inverso 0?$
- ► Cuando existe una forma normal, ¿es única? ¡Sí!

- ▶ ¿Toda expresión tiene forma normal? ¡No!
 - 1 f x = f (f x) icuánto vale f 3?
 - 2 infinito = infinito + 1 ¿cuánto vale infinito?
 - 3 inverso $x \mid x \neq 0 = 1 / x icuánto vale inverso 0?$
- Cuando existe una forma normal, ¿es única? ¡Sí!
 - Esta propiedad se llama confluencia.

▶ Las expresiones que no tienen forma normal se dicen que están indefinidas (⊥).

- Las expresiones que no tienen forma normal se dicen que están indefinidas (\bot) .
- ¿Cómo podemos clasificar las funciones?

- Las expresiones que no tienen forma normal se dicen que están indefinidas (\bot) .
- ¿Cómo podemos clasificar las funciones?
 - Funciones totales: nunca se indefinen.

- ▶ Las expresiones que no tienen forma normal se dicen que están indefinidas (⊥).
- ¿Cómo podemos clasificar las funciones?
 - Funciones totales: nunca se indefinen.
 suc :: Integer -> Integer
 suc x = x + 1

- ▶ Las expresiones que no tienen forma normal se dicen que están indefinidas (⊥).
- ¿Cómo podemos clasificar las funciones?
 - Funciones totales: nunca se indefinen.
 suc :: Integer -> Integer
 suc x = x + 1
 - Funciones parciales: hay argumentos para los cuales se indefinen.

- Las expresiones que no tienen forma normal se dicen que están indefinidas (\bot) .
- ¿Cómo podemos clasificar las funciones?
 - Funciones totales: nunca se indefinen.
 suc :: Integer -> Integer
 suc x = x + 1
 - Funciones parciales: hay argumentos para los cuales se indefinen.

```
inv :: Float -> Float
inv x | x /= 0 = 1/x
```

Evaluación estricta vs. no estricta

¿Qué sucede si intentamos aplicar una función sobre una expresión que se indefine?

Evaluación estricta vs. no estricta

¿Qué sucede si intentamos aplicar una función sobre una expresión que se indefine?

 Evaluación estricta: si cualquiera de los argumentos que pasamos a una función está indefinido, entonces la función se indefine.

Evaluación estricta vs. no estricta

¿Qué sucede si intentamos aplicar una función sobre una expresión que se indefine?

- Evaluación estricta: si cualquiera de los argumentos que pasamos a una función está indefinido, entonces la función se indefine.
- Evaluación no estricta: puede pasar que una función reciba argumentos indefinidos y de todas formas no se indefina.

¿Qué sucede si intentamos aplicar una función sobre una expresión que se indefine?

- Evaluación estricta: si cualquiera de los argumentos que pasamos a una función está indefinido, entonces la función se indefine.
- Evaluación no estricta: puede pasar que una función reciba argumentos indefinidos y de todas formas no se indefina.

Por ejemplo:

```
inv :: Float -> Float
inv x | x /= 0 = 1/x
const :: a -> Integer
const x = 42
¿A qué expresión reduce 'const (inv 0)'?
```

¿Qué sucede si intentamos aplicar una función sobre una expresión que se indefine?

- Evaluación estricta: si cualquiera de los argumentos que pasamos a una función está indefinido, entonces la función se indefine.
- Evaluación no estricta: puede pasar que una función reciba argumentos indefinidos y de todas formas no se indefina.

Por ejemplo:

```
inv x | x /= 0 = 1/x
const :: a -> Integer
const x = 42
¿A qué expresión reduce 'const (inv 0)'?
¡Depende del diseño del lenguaje!
El secreto está en el orden de evaluación.
```

inv :: Float -> Float

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

```
suma (3+4) (suc (2*3))
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)

→ suma 7 (suc 6)
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)

→ suma 7 (suc 6)

→ suma 7 (6 + 1)
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)

→ suma 7 (suc 6)

→ suma 7 (6 + 1)

→ suma 7 7
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

Ejemplo:

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)

→ suma 7 (suc 6)

→ suma 7 (6 + 1)

→ suma 7 7

→ 7 + 7
```

Orden aplicativo o eager ("ansioso"):

Empieza por reducir los redexes internos y continúa hacia afuera; es decir que primero evalúa los argumentos y después la función.

Ejemplo:

```
suma (3+4) (suc (2*3))

→ suma (3+4) (suc 6)

→ suma 7 (suc 6)

→ suma 7 (6 + 1)

→ suma 7 7

→ 7 + 7

→ 14
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))

→ (3+4) + (suc (2*3))
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))

→ (3+4) + (suc (2*3))

→ 7 + (suc (2*3))
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))

\rightarrow (3+4) + (suc (2*3))

\rightarrow 7 + (suc (2*3))

\rightarrow 7 + ((2*3) + 1)

\rightarrow 7 + (6 + 1)
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))

→ (3+4) + (suc (2*3))

→ 7 + (suc (2*3))

→ 7 + ((2*3) + 1)

→ 7 + (6 + 1)

→ 7 + 7
```

Orden normal o lazy ("perezoso"):

Reduce el redex más externo para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero evalúa la función y después los argumentos (si se necesitan).

```
suma (3+4) (suc (2*3))

→ (3+4) + (suc (2*3))

→ 7 + (suc (2*3))

→ 7 + ((2*3) + 1)

→ 7 + (6 + 1)

→ 7 + 7

→ 14
```

Orden aplicativo o eager:

- Primero redexes internos.
- Primero los argumentos, después la función.

Orden normal o lazy:

- El redex más externo para el que pueda saber qué ecuación del programa se debe aplicar.
- Primero la función, después los argumentos (si se necesitan).

Orden aplicativo o eager:

- Primero redexes internos.
- Primero los argumentos, después la función.

Orden normal o lazy:

- El redex más externo para el que pueda saber qué ecuación del programa se debe aplicar.
- Primero la función, después los argumentos (si se necesitan).

Observaciones:

- En caso de haber más de un redex en el mismo nivel, ambas estrategias proceden de izquierda a derecha.
- ▶ El orden 'lazy' siempre encuentra la forma normal, cuando existe.

Evaluación en Haskell

Consiste en aplicar el orden 'lazy' (redexes externos primero).

▶ Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".

- ▶ Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ¿Cómo es una función en Haskell para calcular el factorial de un número entero?

- Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ¿Cómo es una función en Haskell para calcular el factorial de un número entero?

$$n! = \prod_{k=1}^{n} k$$

- Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ¿Cómo es una función en Haskell para calcular el factorial de un número entero?

$$n! = \prod_{k=1}^{n} k,$$
 $n! = \begin{cases} 1 & \text{si } n = 0 \\ n \cdot (n-1)! & \text{si no} \end{cases}$

- Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ¿Cómo es una función en Haskell para calcular el factorial de un número entero?

$$n! = \prod_{k=1}^{n} k,$$
 $n! = \begin{cases} 1 & \text{si } n = 0 \\ n \cdot (n-1)! & \text{si no} \end{cases}$

¡La segunda definición de factorial involucra a esta misma función del lado derecho!

factorial :: Integer -> Integer


```
factorial :: Integer -> Integer
factorial n | n == 0 = 1
```



```
factorial :: Integer \rightarrow Integer factorial n \mid n == 0 = 1 factorial n \mid n > 0 = n * factorial (n-1)
```

- Propiedades de una definición recursiva:
 - 1 Tiene que tener uno o más casos base.
 - 2 Las llamadas recursivas del lado derecho tienen que acercarse al caso base, con relación a los parámetros del lado izquierdo de la ecuación.

- Propiedades de una definición recursiva:
 - 1 Tiene que tener uno o más casos base.
 - 2 Las llamadas recursivas del lado derecho tienen que acercarse al caso base, con relación a los parámetros del lado izquierdo de la ecuación.
- En cierto sentido, la recursión es el equivalente computacional de la inducción para las demostraciones.

Otras funciones recursivas

Programar las siguientes funciones

 Implementar la función fib :: Integer -> Integer que devuelve el i-ésimo número de Fibonacci. Recordar que la secuencia de Fibonacci se define como:

$$fib(n) = \begin{cases} 1 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ fib(n-1) + fib(n-2) & \text{en otro caso} \end{cases}$$

- Implementar la función par :: Integer -> Bool que determine si un número es par. No está permitido utilizar mod ni div.
- ▶ Implementar la función sumaImpares :: Integer -> Integer que dado $n \in \mathbb{N}$ sume los primeros n números impares. Ej: sumaImpares $3 \rightsquigarrow 1+3+5 \rightsquigarrow 9$.
- Escribir una función para determinar si un número es múltiplo de 3. No está permitido utilizar mod ni div.

Asegurarse de llegar a un caso base

Consideremos este programa recursivo para determinar si un número es par:

```
par :: Integer -> Bool
par 0 = True
par n = par (n-2)
¿Qué problema tiene esta función?
```

Asegurarse de llegar a un caso base

Consideremos este programa recursivo para determinar si un número es par:

```
par :: Integer -> Bool
par 0 = True
par n = par (n-2)
¿Qué problema tiene esta función?
¿Cómo se arregla?
```

Asegurarse de llegar a un caso base

Consideremos este programa recursivo para determinar si un número es par:

```
par :: Integer -> Bool
  par 0 = True
  par n = par (n-2)

¿Qué problema tiene esta función?
¿Cómo se arregla?

par 0 = True
  par 1 = False
  par n = par (n-2)

par 0 = True
```

par n = not (par (n-1))

Ejercicios

- Escribir una función doblefact para calcular n!! = n(n-2)(n-4)...2. Por ejemplo: doblefact $10 \rightsquigarrow 10*8*6*4*2 \rightsquigarrow 3840$. La función se debe indefinir para los números impares.
- 2 Escribir una función que dados $n, m \in \mathbb{N}$ compute el combinatorio $\binom{n}{m}$. Hacerlo usando la igualdad $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$.
- Escribir una función recursiva que no termine si se la ejecuta con números negativos (y en cambio sí termine para el resto de los números).
- Escribir una función que dado $n \in \mathbb{N}$ sume los números impares positivos cuyo cuadrado sea menor que n. Por ejemplo: sumaImparesCuyoCuadSeaMenorQue 30 \rightsquigarrow 1 + 3 + 5 \rightsquigarrow 9.