2.1 Elementary Sorts Exercises

Vincent La

June 29, 2017

2.1.1 Show, in the style of the example trace with Algorithm 2.1, how selection sort sorts the array E A S Y Q U E S T I O N.

i	\min	0	1	2	3	4	5	6	7	8	9	10	11
		Е	A	S	Y	Q	U	Е	S	Τ	I	О	N
0	1	\mathbf{E}	A	\mathbf{S}	Y	Q	U	\mathbf{E}	\mathbf{S}	${\rm T}$	I	O	N
1	1	A	\mathbf{E}	\mathbf{S}	Y	Q	U	\mathbf{E}	\mathbf{S}	${\rm T}$	I	O	N
2	6	A	\mathbf{E}	\mathbf{S}	Y	Q	U	\mathbf{E}	\mathbf{S}	${\rm T}$	I	Ο	N
3	9	A	\mathbf{E}	\mathbf{E}	Y	Q	U	\mathbf{S}	\mathbf{S}	\mathbf{T}	I	Ο	N
4	11	A	\mathbf{E}	\mathbf{E}	Ι	Q	U	\mathbf{S}	\mathbf{S}	\mathbf{T}	Y	Ο	N
5	10	A	\mathbf{E}	\mathbf{E}	Ι	N	U	\mathbf{S}	\mathbf{S}	${ m T}$	Y	O	Q
6	11	A	\mathbf{E}	\mathbf{E}	Ι	N	Ο	\mathbf{S}	\mathbf{S}	${\rm T}$	Y	U	\mathbf{Q}
7	7	A	\mathbf{E}	\mathbf{E}	Ι	N	Ο	Q	\mathbf{S}	\mathbf{T}	Y	U	\mathbf{S}
8	11	A	\mathbf{E}	\mathbf{E}	Ι	N	Ο	Q	\mathbf{S}	${\rm T}$	Y	U	\mathbf{S}
9	11	A	\mathbf{E}	\mathbf{E}	Ι	Ν	Ο	Q	\mathbf{S}	\mathbf{S}	Y	U	\mathbf{T}
10	10	A	\mathbf{E}	\mathbf{E}	Ι	Ν	Ο	Q	\mathbf{S}	\mathbf{S}	\mathbf{T}	U	Y
		A	\mathbf{E}	\mathbf{E}	I	Ν	Ο	Q	\mathbf{S}	\mathbf{S}	\mathbf{T}	U	Y

2.1.2 The maximum number of exchanges involving a specific item is N exchanges. For example, take a list that is already sorted and then add to the beginning an item that is greater in value than the rest of the list. Specifically, consider the list Y A B C D.

i	\min	0	1	2	3	4
		Y	Α	В	С	D
0	1	Y	A	В	\mathbf{C}	D
1	2	A	Y	В	\mathbf{C}	D
2	3	A	В	Y	\mathbf{C}	D
3	4	A	В	\mathbf{C}	Y	D
4	4	A	В	\mathbf{C}	D	Y
		Α	В	\mathbf{C}	D	Y

Here, we can see Y was exchanged N times. Furthermore, because a selection sort performs one exchange for every array index, then there are at most N exchanges for an array of length N.

On the other hand, because there are N items and N exchanges then on average each item gets exchanged once. (Is this right)

2.1.3 Give an example of an array of N items that maximizes the number of times the test $a[j] < a[\min]$ succeeds (and, therefore, min gets updated) during the operation of selection sort.

Answer Hypothetically, the most that a[j] < a[min] can succeed is every time it is called. In fact, a list in descending order does just that. For example, consider the list E D C B A. Before the first exchange, the following compares are made:

- (a) D < E, so min = 1
- (b) C < D, so min = 2
- (c) B < C, so min = 3
- (d) A < B, so min = 4

(Expand on this answer later)