Procesos de Dirichlet y Procesos Gaussianos para la Inferencia en Modelos de Regresión Bayesianos

Tiago Lazcano L.

Profesor: Andrés Iturriaga C.

15 de julio de 2025

1/49

MBML DP y GP en regresión 1-2025

Tabla de contenidos I

- Motivación
 - Paradoja de la omnipotencia
 - Marco teórico
- Desarrollo teórico
 - Distribución Dirichlet
 - Proceso de Dirichlet (DP)
 - Definición
 - Representación Stick Breaking
 - Posteriori
 - Ejemplo
 - Modelo de Mezcla del Proceso de Dirichlet (DPMM)
 - Representación como densidad
 - ¿Sobreajuste?
 - Distribución Normal Multivariada
 - Proceso Gaussiano (GP)
 - Definición de Proceso Gaussiano (GP)
 - Kernels
 - Proceso Gaussiano en regresión

Tabla de contenidos II

- Posteriori
- Ejemplo

- 3 Aplicación
 - Regresión vía DPM
 - Regresión vía GP
 - Aspectos a mejorar

4 Conclusión

Bibliografía

Paradoja de la omnipotencia

¿Puede un ser omnipotente crear una piedra tan pesada que ni siquiera él mismo pueda levantarla?

MBML DP y GP en regresión 1-2025

Marco teórico

- Inferencia y aprendizaje Bayesiano
- Regresión
- Modelos no paramétricos
- Procesos estocásticos
- Teoría de la medida

Motivación

¿Es posible obtener una estimación no parámetrica pero de manera Bayesiana?

Problema	Frecuestista	Bayesiano
Estimar F	Ê _n	Proceso de Dirichlet
Estimar f	Kernel	Modelo de Mezcla del Proceso de Dirichlet
Regresión	Suavizado por núcleo	Proceso Gaussiano

Distribución Dirichlet

Sea $\alpha = (\alpha_1, \dots, \alpha_K)$ el vector de parámetros de forma, con $\alpha_i > 0$, la función de densidad de probabilidad de la distribución Dirichlet está dada por:

$$f(\boldsymbol{p}|\boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_i\right)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \prod_{i=1}^{K} p_i^{\alpha_i - 1} = \frac{1}{\beta(\boldsymbol{\alpha})} \prod_{i=1}^{K} p_i^{\alpha_i - 1}$$

donde:

- $\mathbf{p} = (p_1, \dots, p_K)$ son las probabilidades de las categorías, con $p_i \in (0,1)$
- $\bullet \sum_{i=1}^K p_i = 1$

Entonces $\mathbf{p} \sim Dir(\alpha)$ La distribución Dirichlet es una generalización multicategórica de la distribución Beta y una distribución continua asociada a la distribución multinomial.

Definición Proceso de Dirichlet (DP)

Sea $\alpha>0$ un parámetro positivo y G_0 una medida de probabilidad definida en un espacio S. Un proceso de Dirichlet $DP(\alpha,G_0)$ es una medida de probabilidad aleatoria G definida en S, que asigna una probabilidad G(B) a cada conjunto medible $B\subseteq S$, cumpliendo que para cualquier partición finita y medible $\{B_1,\ldots,B_K\}$ del espacio S, la distribución conjunta de las probabilidades asignadas $\{G(B_1),\ldots,G(B_K)\}$ sigue una distribución de Dirichlet con parámetros proporcionales a $\alpha G_0(B_i)$, es decir:

$$(G(B_1), G(B_2), \ldots, G(B_k)) \sim Dir(\alpha G_0(B_1), \alpha G_0(B_2), \ldots, \alpha G_0(B_K))$$

Decimos entonces:

$$\begin{cases} y \mid G \sim G \\ G \sim DP(\alpha, G_0) \end{cases} ; \text{se sol\'a decir} \quad \begin{cases} y \mid \theta \sim G \\ \theta \sim \pi(\theta) \end{cases}$$

MBML

Definición Proceso de Dirichlet (DP)

Supongamos que \mathcal{F} es el conjunto de todas las funciones de distribución acumulada F en la recta real. Este es un conjunto infinito-dimensional, lo que significa que no podemos parametrizarlo utilizando un número finito de parámetros.

Aquí surge una limitación importante: no podemos obtener la posteriori directamente usando el teorema de Bayes, porque este requiere la existencia de una medida dominante σ -finita, y en este caso el conjunto $\mathcal F$ no tiene una medida dominante σ -finita. Sin embargo, esto no significa que no exista una posteriori.

Definición Proceso de Dirichlet (DP)

Entonces podemos entender los parámetros correspondientes al proceso de Dirichlet como:

- F_0 es la creencia inicial sobre la distribución F.
- α Una medida que cuantifica cuánta confianza tenemos en F_0 , es decir, un parámetro que controla la concentración de la distribución.

Representación Stick Breaking

Se extraen $S_1, S_2, \cdots \sim F_0$, se extraen:

$$V_i \stackrel{\mathsf{iid}}{\sim} \mathsf{Beta}(1, \alpha)$$
 tal que $p(v) \propto (1 - v)^{\alpha - 1}, \quad v \in (0, 1), \quad \alpha > 0$

Luego

$$W_1 = V_1$$
 y $W_j = V_j \prod_{k < j} (1 - V_k)$; $\sum_{j \geq 1} w_j = 1$

```
\begin{array}{c|c} \sigma(\eta_1) \\ \hline p(y=1|\eta) \\ \hline \\ \sigma(\eta_2)[1-\sigma(\eta_1)] \\ \hline p(y=1|\eta) & p(y=2|\eta) \\ \hline \\ \sigma(\eta_3)[1-\sigma(\eta_2)][1-\sigma(\eta_1)] \\ \hline \\ p(y=1|\eta) & p(y=2|\eta) & p(y=3|\eta) \\ \hline \\ [1-\sigma(\eta_3)][1-\sigma(\eta_2)][1-\sigma(\eta_1)] \\ \hline \\ p(y=1|\eta) & p(y=2|\eta) & p(y=3|\eta) \\ \hline \end{array}
```

Representación Stick Breaking

Por lo tanto, podemos escribir la función de distribución F(t) como una suma infinita de puntos o átomos:

$$F(t) = \sum_{j \geq 1} w_j \mathbb{1}(S_j \leq t)$$

O equivalentemente:

$$F(t) = \sum_{j \geq 1} w_j \delta_{S_j}$$

Donde δ_{S_i} es la medida de Dirac que se define como:

$$\delta_{x}(A) = \begin{cases} 0 & \text{si } x \notin A \\ 1 & \text{si } x \in A \end{cases}$$

Posteriori

Resulta que la distribución posterior también es un proceso de Dirichlet, dado que este es conjugado. Por lo tanto, la distribución $F|_X$ es tal que:

$$F|X \sim DP(\alpha + n, \bar{F})$$

Con:

$$\bar{F} = \frac{n}{n+\alpha}\hat{F}_n + \frac{\alpha}{n+\alpha}F_0$$

Notablemente, obtenemos esta forma de la posterior sin aplicar explícitamente el teorema de Bayes.

- Cuando $\alpha \to 0$, $\bar{F} \to \hat{F}_n$.
- Cuando $\alpha \to \infty$, $\bar{F} \to F_0$.
- Cuando $n \to \infty$, $\bar{F} \to \hat{F}_n$; sin embargo, como $\hat{F}_n \to F$ casi seguramente (Teorema de Glivenko-Cantelli), en realidad $\bar{F} \to F$.

MBML

Posteriori

Comúnmente se realizan N muestras F tal que:

$$F_1,\ldots,F_N\sim DP(\alpha+n,\bar{F})$$

Y es posible obtener una curva promedio de forma que:

$$\frac{1}{N}\sum_{i=1}^{N}F_{i}$$

Ejemplo

Se simuló 15 datos provenientes de una distribución normal de media 3 y varianza 1, además se decide usar la distribución o medida base de una normal estándar $\mathcal{N}(0,1)$ entonces:

$$\begin{cases} X|F \sim F \\ F \sim DP(\alpha, \mathcal{N}(0, 1)) \end{cases}$$

Figura 1: Histograma y densidad Kernel de los datos simulados.

MBML DP y GP en regresión 1-2025 15 / 49

Ejemplo

Prioris:

Figura 2: 20 simulaciones de $DP(\alpha, \mathcal{N}(0,1))$

MBML DP y GP en regresión 1-2025 16 / 49

Figura 3: Muestras del proceso de Dirichlet para diferentes valores de α .

MBML DP y GP en regresión 1-2025 17 / 49

Figura 4: Valores de los primeros cuatro pesos para diferentes valores de α .

MBML DP y GP en regresión 1-2025 18 / 49

Ejemplo '

Posterioris:

Figura 5: 20 simulaciones de $DP(\alpha + n, \bar{F})$

MBML DP y GP en regresión 1-2025 19 / 49

Representación como densidad

Lo que hacemos ahora es tomar una muestra n de parámetros θ de F, por lo que no estamos tomando una muestra de nuestros datos de F, sino que de nuestros parámetros, uno por cada observación que tengamos, por lo que cada x_i pertenecerá a la distribución $p(x_i|\theta_i)$, por lo que obtenemos:

$$\begin{cases} X_i | \theta_i \stackrel{\perp}{\sim} p(x_i | \theta_i) \\ \theta_i | G \stackrel{\text{iid}}{\sim} G \\ G \sim DP(\alpha, G_0) \end{cases}$$

Dado una distribución de probabilidad G definida en Θ , una mezcla de f_{θ} con respecto a G tiene como función de densidad:

$$f_G(x) = \int f(x|\theta) dG(\theta) = \sum_{j\geq 1} w_j p(x_j|\theta_j)$$

MBML DP y GP en regresión 1-2025

¿Sobreajuste?

La pregunta es, ¿No resulta esto en un sobreajuste dado que estamos asociando una densidad distinta por cada observación que tenemos? Pero eso es lo lindo de esto, recordemos que F es discreto, entonces, ¿Qué sucede cuando extraemos valores de esta? Obtendremos empates de forma regular, por lo que estamos obteniendo un número menor a n de parámetros, **estamos generando clusters**.

Distribución Normal Multivariada

Sea $\mu = (\mu_1, \mu_2, \dots, \mu_K)'$ el vector de medias, con $\mu_i \in \mathbb{R}$ y Σ la matriz de covarianzas tal que,

$$\Sigma = \begin{pmatrix} \mathsf{Var}(X_1) & \mathsf{Cov}(X_1, X_2) & \cdots & \mathsf{Cov}(X_1, X_K) \\ \mathsf{Cov}(X_2, X_1) & \mathsf{Var}(X_2) & \cdots & \mathsf{Cov}(X_2, X_K) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_K, X_1) & \mathsf{Cov}(X_K, X_2) & \cdots & \mathsf{Var}(X_K) \end{pmatrix}$$

la cual es semidefinida positiva, entonces $\boldsymbol{X} = (X_1, X_2, \dots, X_K)$ tiene distribución Normal Multivariada si,

$$f_{\mathbf{X}}(\mathbf{x}) = rac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

Entonces $m{X} \sim \mathcal{N}_{K}(m{\mu}, m{\Sigma})$

Definición de Definición Proceso Gaussiano (GP)

Un Proceso Gaussiano es una extensión de la distribución Gaussiana multivariante a dimensiones infinitas. Esto significa que es posible darle un vector $\mathbf{x} \in \mathbb{R}^n$ (para cualquier n) y el proceso devolverá un nuevo vector $\mathbf{y} \in \mathbb{R}^n$. Cada componente de \mathbf{y} representa la probabilidad de observar x_i según algún gaussiano en la dimensión i.

MBML DP y GP en regresión 1-2025 23 / 49

Kernels

Sea $\mathcal{K}(\pmb{x}_i,\pmb{x}_j\mid \pmb{ au})$ un kernel bajo los parámetros $\pmb{ au}$, kernels muy usados son:

- Kernel lineal: vxx'
- Kernel periódico: $\exp\left(\frac{2}{\ell^2}\sin^2\left(\frac{\pi}{p}||\pmb{x}-\pmb{x}'||\right)\right)$
- Kernel Gaussiano: $\sigma_g^2 \exp\left(-\frac{1}{2}\left(\frac{||x-x'||}{\ell}\right)^2\right)$

Es **computacionalmente** posible combinar kernels para obtener uno nuevo,

$$\mathcal{K}_{c}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau}) = \mathcal{K}_{a}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau}) + \mathcal{K}_{b}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau})$$
$$\mathcal{K}_{c}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau}) = \mathcal{K}_{a}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau})\mathcal{K}_{b}(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\tau})$$

No se puede construir una muestra de la función para \mathcal{K}_c multiplicando muestras de \mathcal{K}_a y \mathcal{K}_b , pero puede ser una aproximación útil. Tambien es posible realizar ciertas transformaciones para ajustar esta.

MBML DP y GP en regresión 1-2025 24 / 49

Proceso Gaussiano en regresión

Sean los datos de entrenamiento $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, asumiendo que $\mathbb{E}(y_i) = 0$, $\forall i$, además:

$$y_i = f(\mathbf{x}_i) + \varepsilon_i$$
 ; $\varepsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Queremos obtener distribuciones predictivas en los datos de prueba $\{x_i^*\}_{i=1}^M$, por lo que vamos a recolectar estos en matrices/vectores $\boldsymbol{X}, \boldsymbol{X}^*, \boldsymbol{y}, \boldsymbol{f}, \boldsymbol{f}^*$, donde:

- **X** es una matriz donde cada fila corresponde a un vector de datos de entrenamiento.
- **X*** es una matriz donde cada fila corresponde a un vector de datos de prueba.
- y es un vector de todas las salidas observadas.
- **f** es la salida de la función verdadera no observada para nuestras entradas de entrenamiento.
- f^* es la salida de la función verdadera no observada para nuestras entradas de prueba.

Proceso Gaussiano en regresión

Sea $K_{X,X}$ una matriz de $N \times N$ de todas las similaridades $\mathcal{K}(x_i,x_j \mid \tau)$, donde K_{X,X^*} , $K_{X^*,X}$ y K_{X^*,X^*} están definidos de manera similar. Entonces y y f^* están distribuidas como una Normal Mutlivariada N+M dimensional,

$$\begin{pmatrix} \textbf{y} \\ \textbf{f}^* \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \textbf{0} \\ \textbf{0} \end{pmatrix}, \begin{pmatrix} \hat{\textbf{K}}_{\textbf{X},\textbf{X}} & \textbf{K}_{\textbf{X},\textbf{X}^*} \\ \textbf{K}_{\textbf{X}^*,\textbf{X}} & \textbf{K}_{\textbf{X}^*,\textbf{X}^*} \end{pmatrix} \right)$$

donde $\hat{\mathbf{K}}_{\mathbf{X},\mathbf{X}} = \mathbf{K}_{\mathbf{X},\mathbf{X}} + \sigma_{\varepsilon}^2 \mathbf{I}$

Posteriori

La distribución posteriori sobre f^* proviene de condicionar:

$$m{f}^*|m{X}^*, \mathcal{D} \sim \mathcal{N}(m{\mu_{f^*}}, m{\Sigma_{f^*}})$$

donde

$$\mu_{f^*} = \mathcal{K}_{X^*,X} \hat{\mathcal{K}}_{X,X}^{-1} y$$
 $\Sigma_{f^*} = \mathcal{K}_{X^*,X^*} - \mathcal{K}_{X^*,X} \hat{\mathcal{K}}_{X,X}^{-1} \mathcal{K}_{X,X^*}$

Ejemplos visuales

MBML

Ejemplos visuales

Ejemplo

Se simularán datos provenientes de un proceso gaussiano (GP) utilizando una matriz de covarianza definida por un kernel específico. El conjunto de valores de entrada x se obtiene a partir de una muestra aleatoria ordenada de 100 puntos en el intervalo [0, 5].

Figura 6: 5 realizaciones a priori de un proceso gaussiano con kernel RBF.

MBML DP y GP en regresión 1-2025 30 / 49

Figura 7: Datos

MBML DP y GP en regresión 1-2025 31 / 49

```
model string <- '
model{
gp ~ dmnorm(mu,Sigma.inv)
Sigma.inv <- inverse(Sigma)</pre>
for(i in 1:n obs)
₹
mu[i] <- 0
Sigma[i,i] <- sigma_g^2 + 0.00001
for(j in (i+1):n_obs) {
Sigma[i,j] \leftarrow sigma_g^2 * exp(-(phi^2) * (d[i,j]^2))
Sigma[j,i] <- Sigma[i,j]</pre>
y[i]~dnorm(gp[i],sigma_y^-2)
sigma g ~ dt(0,10^-2,1)T(0,)
phi ~ dt(0,4^{-2},1)T(0,)
sigma_y \sim dt(0,10^{-2},1)T(0,)
```

٦,

Convergencia de cadenas

Figura 8: Convergencia de los parámetros

MBML DP y GP en regresión 1-2025

Figura 9: Curva predictiva

MBML DP y GP en regresión 1-2025

Figura 10: Distribución predictiva del punto x = 0.5

MBML DP y GP en regresión 1-2025

Aplicación

En este ejemplo se considerarán datos simulados de una distribución de mezcla, en este caso de:

$$y_i = 1 + 2x_i + x_i^2 + 0.5x_i^3 + \varepsilon_i$$
; $\varepsilon_i \sim \mathcal{SN}(\xi = 0, \omega = 10, \alpha = 5)$

Donde \mathcal{SN} corresponde a la distribución normal asimétrica centrada en -2, con desviación estándar 10 y asimetría 5.

Aplicación

Figura 11: $\alpha = 5$

37 / 49

Se estimaron los errores a través de los residuos del modelo ajustado por la instrucción:

$$ml=lm(formula = y \sim I(x) + I(x^2) + I(x^3), data = data)$$

$$\begin{cases} \varepsilon_i \mid F \sim F \\ F \sim DP(5, \mathcal{SN}(0, 1, 10)) \end{cases}$$

Figura 12: Histograma errores y scatterplot datos

MBML DP y GP en regresión 1-2025 38 / 49

$$\begin{cases} \varepsilon_i \mid F \sim F \\ F \sim DP(5, \mathcal{SN}(0, 1, 10)) \end{cases}$$

Figura 13: Densidad a posteriori de los residuos

Ahora se quiere estimar $f(x_i)$ en $y_i = f(x_i) + \varepsilon_i$ si es que suponemos que $\varepsilon_i \sim \mathcal{N}(0, \sigma_y^2)$, es este caso se hace uso de un kernel Gaussiano tal que:

$$\sigma_g^2 \exp\left(-\frac{1}{2}\left(\phi||\boldsymbol{x}-\boldsymbol{x}'||\right)^2\right)$$

MBML DP y GP en regresión 1-2025

40 / 49

Figura 14: Distribución predictiva del punto x = 4

MBML DP y GP en regresión 1-2025 44 / 49

Aspectos a mejorar

- Implementación de la distribución Normal Asimétrica en JAGS.
- Uso de un Kernel más adecuado para el problema, como por ejemplo uno polinomial.
- Cómo evaluar el ajuste de los modelos, usando métricas como el RMSE o la validación cruzada.
- Ser más flexible a la hora de modelar hiperparámetros en DP y GP.

Conclusión

A veces, los modelos excesivamente complejos dificultan la interpretación y pueden generar sobreajuste, mientras que los modelos demasiado rígidos no logran capturar toda la variabilidad de los datos. Este trabajo demuestra que los Procesos de Dirichlet y los Procesos Gaussianos logran un buen equilibrio, siendo lo suficientemente flexibles para ajustarse a los datos sin complicar su comprensión. Lo importante es encontrar un modelo que sea flexible pero lo suficientemente claro para obtener resultados fáciles de interpretar.

Referencias I

- Dahl, David (dic. de 2005). "Sequentially-allocated merge-split sampler for conjugate and nonconjugate Dirichlet process mixture models". En.
- Hanada, M. y S. Matsuura (2022). MCMC from Scratch: A Practical Introduction to Markov Chain Monte Carlo. Springer Nature Singapore. ISBN: 9789811927157. URL: https://books.google.cl/books?id=1nmWEAAAQBAJ.
- Jain, Sonia y Radford M. Neal (2004). "A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model". En: Journal of Computational and Graphical Statistics 13.1, págs. 158-182. ISSN: 10618600. URL: http://www.jstor.org/stable/1391150.
- Müller, Peter et al. (2015). Bayesian Nonparametric Data Analysis. 1st. Springer Series in Statistics. Springer. ISBN: 978-3-319-18967-1. DOI: https://doi.org/10.1007/978-3-319-18968-8.

Referencias II

Rizzo, M.L. (2007). Statistical Computing with R. Chapman & Hall/CRC The R Series. Taylor & Francis. ISBN: 9781584885450. URL: https://books.google.cl/books?id=BaHhdqOugjsC.

MBML DP y GP en regresión 1-2025

49 / 49