Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
			dedicadas
15/04/2024	1. Redefinición de la conversión del código para valores discretos (CartPole) a valores continuos (Pendulum).	 a) El error en select_action() se corrigió pero desconfiguró parte de la función optimize_model(). b) Corrección del error en optimize_model(). c) Persisten los problemas de indexado y proceso. 	6 horas
15/04/2024	2. Pruebas de entrenamiento del modelo (<i>Pendulum</i>).	a) Se entrenaron cuatro modelos diferentes a 600 episodios para comparar el efecto de cuatro propuestas de redes neuronales artificiales (ANN).	6 horas
16/04/2024	2. Pruebas de implementación CUDA en Windows.	a) SASASASAS.	4 horas
17/04/2024	2. Pruebas de entrenamiento del modelo <i>Pendulum DQN</i> .	a) SASASASAS.	4 horas
18/04/2024	3. Reunión de seguimiento con el asesor del proyecto.	 a) Revisión de avance en el código y errores de forma. b) Se acordó realizar entrenamientos con diferentes formatos de indicación del target_angle. 	2 horas

19/04/2024	ciales errores en el código	función de recompensa calculate_reward() para evitar salto. b) Adición de lógica para guardado de checkpoints al entrenamiento y corrección	6 horas
		del guardado del modelo.	
Total de horas de trabajo:			

Contenidos de actividades

AAA [1].

Referencias

 $[1]\,$ A. Paszke and M. Towers, "Reinforcement learning (dqn) tutorial," PyTorch.