

Università degli Studi di Padova

STRUCTURAL ANALYSIS OF THE ZEBRAFISH CONNECTOME

Karan Kabbur Hanumanthappa Manjunatha (1236383) Nora Nikoloska (2013006) Iriarte Delfina (1231682) Spatial neural positions (random colours)

Dataset description

SWC format

General network properties

Network Property	Zebrafish	Cancer network	Random network
Graph type	Directed	Undirected	Directed
Number of Nodes(Neurons)	3163	351	3163
Number of Edges	349194	1783	349948
N/W Density	0.03491	0.029	0.035
Diameter	10	7	11
Avg. Shortest path length	4.1595	*	2.03
Global Efficiency	0.4775	*	0.5349
Local Efficiency	0.7106	*	0.4818
Clustering coefficient	0.2947	0.261	0.035
Assortativity	*	0.12	*
In-Assortativity exponent	0.488	*	0.482
Out-Assortativity exponent	0.287	*	0.482
Giant Components (Number of Nodes)	3154	107	3163
Giant Components (Number of Edges)	349027	*	349948
Number of cliques	2264453	149677	1071503
Max clique size	81	15	6

The value for average shortest path length is small, as anticipated for brain networks.

Network centralities

Box plots for various centrality measures

Degree distribution and assortativity

Since **y** exponent is ~[2-3] for both in and out degree, we observe the scale free property

The network shows strong assortativity for both in-in and out-out degree

Robustness influence on diameter

Robustness influence on avg. path length

No. of Connected Components at each node removals

Global efficiency by removal of nodes

Community detection

Community algorithm	Number of Clusters	Modularity	Number of Cluster (GC)	Modularity (GC)		
Walktrap	41	0.380	33	0.395		
Infomap	47	0.351	34	0.399		
Label Propagation	44	0.312	8	0.184		
Louvain Modularity	12	0.460	9	0.463		
Lovuain RBER	54	0.454	48	0.452		
Louvain CPM	54	0.444	52	0.441		
Louvain Significance	117	0.323	108	0.333		
Louvain Surprise	147	0.305	135	0.324		
Spinglass	*	*	17	$0.468 (T_f = 0)$		

While the number of communities varies a lot between algorithms, all of them detect [~10 / ~20] communities with significant number of nodes.

Anatomical plots

No distinguished anatomical regions have been detected with any of the algorithms. This is probably attributed to the non-uniform sampling of neurons during the dataset creation

Dorsal view of modularity according to walktrap algorithr

Dorsal view of modularity according to label propagation

Comparison between algorithms: Distribution Size

Comparison between algorithms

Comparison between algorithms: \vee

Giant Component

Whole Graph

																	$\underline{}$		
Walktrap	0	1.7	2.1	1.6	1.6	1.7	2.2	2.3	1.7	0	1.9	2.2	1.6	1.7	1.7	2.3	2.2		-2.5
Infomap	1.7	0	2.6	1.7	1.6	1.7	1.7	1.9	2	1.9	0	2.5	1.9			1.8	1.7	Ш	
Label propagation		2.6	0	2	2.2	2.3	3.2	3.2	1.7	2.2	2.5	0	2.3	2.2	2.3	2.6	2.6		- 2.0
Louvian Modularity	1.6	1.7	2	0	0.94	1.1	2.4	2.2	1.4	1.6	1.9	2.3	0	1	1.2	2.4	2.2		- 1.5
Louvian RBER	1.6	1.6	2.2	0.94	0	0.63	2.1	1.9	1.6	1.7		2.2	1	0	0.85	2.1			- 1.0
Louvian CPM	1.7	1.7	2.3	1.1	0.63	0	2	1.9	1.7	1.7		2.3	1.2	0.85	0	2	1.8		1.0
Louvian Significance		1.7	3.2	2.4			0	1.6	2.7	2.3	1.8	2.6	2.4	2.1	2	0	1.5		- 0.5
Louvian Surprise		1.9	3.2	2.2	1.9	1.9	1.6	0	2.8	2.2	1.7	2.6	2.2	2	1.8	1.5	0		-0.0
Spin Glass	1.7		1.7	1.4	1.6	1.7	2.7	2.8	0	Walktrap	Infomap	agation	dularity	Louvian RBER	Louvian CPM	ficance	urprise		-0.0
	Walktrap	Infomap	el propagation	ian Modularity	Louvian RBER	Louvian CPM	in Significance	uvian Surprise	Spin Glass	8	ī	Label propagation	Louvian Modularity	Louvia	Louvië	ouvian Significance	Louvian Surprise		

Community algorithm	Optimal size	Min conductance	Optimal size (GC)	Min conductance (GC)
Walktrap	1703	0.467	1668	0.511
Infomap	1461	0.412	1284	0.487
Label Propagation	1801	0.545	2411	0.464
Louvian Modularity	1828	0.374	1543	0.394
Lovuain RBER	1449	0.295	1272	0.478
Louvian CPM	1257	0.338	1371	0.457
Louvian Significance	1163	0.528	1360	0.621
Louvain Surprise	219	0.345	1179	0.526
Spin Glass	-	-	1832	0.338

P

Whole Graph

Size of clusters

Conductance

$$\phi(S) = \frac{\text{cut}(S)}{\min(\text{vol}(S), \text{vol}(\bar{S}))} \frac{\text{(total edges in the set)}}{\text{in the set)}}$$

Giant Component

Categorization based on Community Detection

WHOLE GRAPH

Large Brain Regions:

- Louvian Modularity
- Louvian RBER
- Louvian CPM

Specific Brain Region:

- Louvian Significance
- Louvian Surprise
- Infomap

Large and small Brain Region:

- Walktrap
- Label propagation

GIANT COMPONENT

Large Brain Region:

- 1. With uniform cluster size:
 - Louvian Modularity
 - Louvian RBER
 - Louvian CPM
- 2. A mixture:
 - Walktrap
- 3. Irregular cluster sizes:
 - Infomap
 - Spin Glass

Specific Brain Region:

- LouvianSignificance
- LouvianSurprise

$$\gamma \sim [2, 3] \rightarrow Scale$$
free
$$d \approx \ln (\ln N) / \ln (\gamma - 2)$$
Ultra Small
$$V \sim [2, 3] \rightarrow Scale$$

Unusual robustness → Threshold near one

- → more susceptible to the attack based on betweenness centrality
- Notable efficiency → more susceptible to the attack based on Closeness centrality
- Positive assortativity for in-Degree and out-Degree
- Many nodes act as authorities and few nodes act as hubs.

Conclusion

- Classification according to brain size of communities
- Around 10-20 number of **meaningful** communities
- Louvian modularity exhibit biggest value for the whole graph whereas Spin Glass for the GC
- Spin Glass may be the best one to capture the "real" regions of the brain.
- Most of the clusters have almost equal value for average betweenness.
- Robustness attack by communities ordered by betweenness centrality does not decrease the GC fraction any faster than the random attack.

