Lecture 7-1

Application & Tips:
Learning rate, data preprocessing, overfitting

Sung Kim <hunkim+mr@gmail.com>

Gradient descent

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

```
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis), reduction_indices=1)) # Cross entropy
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent
                                                                   LOSS
```

Minimize error using cross entropy

learning_rate = 0.001

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Large learning rate: overshooting

Small learning rate: takes too long, stops at local minimum

Try several learning rates

- Observe the cost function
- Check it goes down in a reasonable rate

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

Standardization

$$\begin{array}{c} \boldsymbol{x}_{j}' = \frac{\boldsymbol{x}_{j} - \boldsymbol{\mu}_{j}}{\boldsymbol{\sigma}_{j}} \end{array}$$

X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Overfitting

- Our model is very good with training data set (with memorization)
- Not good at test dataset or in real use

Overfitting-Model model 2 $\mathbf{1}_{\mathbf{2}}$

Solutions for overfitting

- More training data!
- Reduce the number of features
- Regularization

• Let's not have too big numbers in the weight

• Let's not have too big numbers in the weight

Wariansian Strangth • Let's not have too big numbers in the weight LOSS $d = \frac{1}{N} \sum_{i} \mathcal{D}(S(\omega_{X_i+b}),$ TRAINING SET 0100/

• Let's not have too big numbers in the weight

LOSS
$$\int \frac{12\text{reg}}{1} = 0.001 * \text{tf.reduce_sum(tf.square(W))}$$

$$\int \frac{1}{N} \sum_{i} D(S(\omega X_{i} + b), L_{i}) + \sum_{i} W^{2}$$
TRAINING SET

Summary

- Learning rate √
- Data preprocessing
- Overfitting
 - More training data
 - Regularization

Lecture 7-2

Application & Tips: Learning and test data sets

Sung Kim <hunkim+mr@gmail.com>

Performance evaluation: is this good?

Evaluation using training set?

Size	Price	<u> </u>
2104	400	troking set 2 mode
1600	330	
2400	369	
1416	232	
3000	540	
1985	300	
1534	315	• 100% correct (accuracy)
1427	199	o 100% correct (accuracy)
1380	212	Can memorize
1494	243	

Training and test sets

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Training, validation and test sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

Online learning

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

M NIST Dataset

Zip: 633

 2

train-images-idx3-ubyte.gz: training set images (9912422 bytes)

<u>train-labels-idx1-ubyte.gz</u>: training set labels (28881 bytes)

t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)

t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

http://yann.lecun.com/exdb/mnist/

Accuracy

- How many of your predictions are correct?
- 95% ~ 99%?
- Check out the lab video

