DMRG algorithm

Team members:

Aikun Bexultanova

Alexey Fokin

Daniil Volkov

Alexandra Volkova

Alexandr Voronin

Introduction: What is DMRG

The density matrix renormalization group (DMRG) is a numerical variational technique devised to obtain the low-energy physics of quantum many-body systems with high accuracy.

Invented in 1992 by Steven White

Objectives of the project:

- Implement DMRG for Heisenberg Hamiltonian
- Share the results and discuss

Heisenberg Hamiltonian

- in quantum mechanics it describes the interactions between particles with spin, helping researchers understand phenomena such as **ferromagnetism**, **antiferromagnetism**, and **spin waves** in magnetic materials and systems with strong spin interactions.

Heisenberg Hamiltonian for a Spin Chain:

$$H = -J \sum_{\langle i,j
angle} (\sigma^x_i \sigma^x_j + \sigma^y_i \sigma^y_j + \sigma^z_i \sigma^z_j)$$

DMRG Key Features:

• Block Hamiltonian:

$$H_{ ext{super}} = H_{ ext{sys, enlarged}} \otimes \mathbb{I}_{ ext{env, enlarged}} + \mathbb{I}_{ ext{sys, enlarged}} \otimes H_{ ext{env, enlarged}} + H_{ ext{int, sys-env}}$$

Reduced Density Matrix:

$$ho_{
m sys} = {
m Tr}_{
m env}(|\Psi
angle\langle\Psi|)$$

• Eigenvalue Decomposition of Density Matrix:

$$ho_{
m sys} = \sum_i \lambda_i |\phi_i
angle \langle \phi_i|$$

• Truncation

Choosing m largest eigenvalues λ_i and corresponding $|\phi_i\rangle$ eigenvectors

• Transformation of Operators

$$ilde{O}_{
m sys} = U^\dagger O_{
m sys} U$$

Here, U is the matrix of eigenvectors $\{|\phi_i\rangle\}_{i=1}^m$

Iteration and Sweeping

Implementation Details:

```
model d = 2 # Single-site basis size
Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # Single-site <math>S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # Single-site S^+
H1 = np.array([[0, 0], [0, 0]], dtype='d') # Single-site portion of H is zero
def H2(Sz1, Sp1, Sz2, Sp2):
    J, Jz = 1., 1.
    return (J / 2) * (kron(Sp1, Sp2.T.conj()) + kron(Sp1.T.conj(), Sp2)) + Jz * kron(Sz1, Sz2)
initial block = Block(1, model d, {"H": H1, "conn Sz": Sz1, "conn Sp": Sp1})
def enlarge block(block):
   mblock = block.basis size
    o = block.operator dict
    enlarged operator dict = {
        "H": kron(o["H"], identity(model d)) + kron(identity(mblock), H1) + H2(o["conn Sz"], o["conn Sp"], Sz1, Sp1),
        "conn_Sz": kron(identity(mblock), Sz1),
        "conn Sp": kron(identity(mblock), Sp1),
    return EnlargedBlock(block.length + 1, block.basis size * model d, enlarged operator dict)
```

Implementation Details:

```
def construct superblock hamiltonian(sys enl, env enl):
    """Construct the full superblock Hamiltonian."""
    return kron(sys enl.operator dict["H"], identity(env enl.basis size)) + \
                                                                                         H_{	ext{super}} = H_{	ext{sys, enlarged}} \otimes \mathbb{I}_{	ext{env, enlarged}} + \mathbb{I}_{	ext{env, enlarged}}
            kron(identity(sys_enl.basis_size), env_enl.operator_dict["H"]) + \
            H2(svs enl.operator dict["conn Sz"], svs enl.operator dict["conn Sp"],
                                                                                              + \mathbb{I}_{\text{sys, enlarged}} \otimes H_{\text{env, enlarged}} + H_{\text{int. sys-env}}
               env enl.operator dict["conn Sz"], env enl.operator dict["conn Sp"])
def calculate ground state(superblock hamiltonian):
    """Calculate the ground state using ARPACK."""
    (energy,), psi0 = eigsh(superblock hamiltonian, k=1, which="SA")
    return energy, psi0
def reduced_density_matrix(sys_enl, psi0):

ho_{
m sys} = {
m Tr}_{
m env}(|\Psi
angle\langle\Psi|)
    """Construct the reduced density matrix of the system."""
    psi0 = psi0.reshape([sys enl.basis size, -1], order="C")
    return np.dot(psi0, psi0.T.conj())
def sort eigenstates(evals, evecs):
    """Sort eigenvectors by eigenvalue."""
    return sorted(zip(evals, evecs.T), reverse=True, key=lambda x: x[0])
def build transformation matrix(eigenstates, m, sys enl):
    """Build the transformation matrix from the most significant eigenvectors."""
    my m = min(len(eigenstates), m)
    transformation matrix = np.zeros((sys enl.basis size, my m), dtype='d', order='F')
    for i, ( , evec) in enumerate(eigenstates[:my m]):
                                                                                                              	ilde{O}_{
m sys} = U^\dagger O_{
m sys} U
        transformation matrix[:, i] = evec
    truncation error = 1 - sum(eigenvalue for eigenvalue, in eigenstates[:my m])
    print("truncation error:", truncation error)
    return transformation matrix, my m
```

Implementation Details:

```
def single dmrg step(sys, env, m):
    global energies
    assert is_valid_block(sys) and is_valid_block(env)
    sys_enl, env_enl = enlarge_blocks(sys, env)
    assert is_valid_enlarged_block(sys_enl) and is_valid_enlarged_block(env_enl)
    superblock_hamiltonian = construct_superblock_hamiltonian(sys_enl, env_enl)
    energy, psi0 = calculate_ground_state(superblock_hamiltonian)
    rho = reduced density matrix(sys enl, psi0)
    evals, evecs = np.linalg.eigh(rho)
    eigenstates = sort eigenstates(evals, evecs)
    transformation_matrix, my_m = build_transformation_matrix(eigenstates, m, sys_enl)
    new_operator_dict = rotate_truncate_operators(transformation_matrix, sys_enl)
    newblock = Block(length=sys_enl.length, basis_size=my_m, operator_dict=new_operator_dict)
    energies.append(energy)
    return newblock, energy
```

Results: Spin Chain of L=200 spins in 2 seconds

Results: Coincides with Theoretical

```
truncation error: 1.5571717717599576e-05
E/L = -0.4393810085136795
 ____**_
truncation error: 3.810215619159951e-05
E/L = -0.43938222224170687
truncation error: 1.5950394509522958e-05
E/L = -0.4393810230607624
truncation error: 3.869493973462923e-05
E/L = -0.43938224701346373
truncation error: 1.6081404228152074e-05
E/L = -0.4393810258988832
```

$$\frac{E_0}{L} = -\frac{J}{4} - \frac{\ln(2)J}{\pi}$$

DMRG method intersects with the following methods and ideas presented during the NLA course:

- Eigenvalue Problems
- Variational Methods
- High-Dimensional Problems
- Matrix Product States (MPS) as an instance of Tensor Trains

Contribution

Alexey, Alexander and Daniil were involved in the technical part of the project and code development.

Aikun and Alexandra did the theoretical research and rationale, as well as the graphic presentation.

References

- https://arxiv.org/pdf/1312.6542.pdfDMRG and AMEn
- https://github.com/simple-dmrg/simple-dmrg/ MIT Tutorial