In [1]:

```
import pandas as pd
data = pd.read_csv("C:\\Users\\kmit\\Desktop\\housing.csv",",")
print(data.head(5))
   longitude
              latitude
                         housing_median_age
                                              total_rooms
                                                           total bedrooms
     -122.23
0
                 37.88
                                       41.0
                                                    880.0
                                                                     129.0
     -122.22
1
                 37.86
                                        21.0
                                                   7099.0
                                                                    1106.0
2
     -122.24
                 37.85
                                        52.0
                                                   1467.0
                                                                     190.0
3
     -122.25
                 37.85
                                                                     235.0
                                        52.0
                                                   1274.0
     -122.25
                 37.85
                                       52.0
                                                   1627.0
                                                                     280.0
   population households median_income median_house_value ocean_proximity
                                   8.3252
0
        322.0
                     126.0
                                                      452600.0
                                                                       NEAR BAY
                                                      358500.0
1
       2401.0
                    1138.0
                                   8.3014
                                                                       NEAR BAY
2
                     177.0
        496.0
                                   7.2574
                                                      352100.0
                                                                       NEAR BAY
3
        558.0
                     219.0
                                   5.6431
                                                      341300.0
                                                                       NEAR BAY
        565.0
                     259.0
                                   3.8462
                                                      342200.0
                                                                       NEAR BAY
4
In [2]:
print("total samples....\n",data.size)
print("Null Values....\n", data.isnull().sum())
#print(data.isnull().count())
total samples....
206400
Null Values....
longitude
                          0
latitude
                         0
                         0
housing_median_age
total_rooms
                         0
total_bedrooms
                       207
population
                         0
households
                         0
median_income
                         0
median house value
                         0
ocean_proximity
                         0
dtype: int64
In [3]:
d1 = data.dropna(subset=['total_bedrooms'])
print(data.shape,d1.shape)
(20640, 10) (20433, 10)
```

In [4]:

d1.cov()

Out[4]:

	longitude	latitude	housing_median_age	total_rooms	total_b
longitude	4.014324	-3.957670	-2.758919	1.991284e+02	5.876
latitude	-3.957670	4.563981	0.320091	-1.711788e+02	-6.029
housing_median_age	-2.758919	0.320091	158.553558	-9.923225e+03	-1.700
total_rooms	199.128445	-171.178818	-9923.224538	4.775403e+06	8.567
total_bedrooms	58.768508	-60.299623	-1700.312817	8.567306e+05	1.775
population	227.660858	-263.874646	-4220.630517	2.122942e+06	4.191
households	43.286878	-58.619704	-1457.475788	7.677502e+05	1.578
median_income	-0.059174	-0.323087	-2.828672	8.213000e+02	-6.180
median_house_value	-10499.897668	-35669.333210	154703.602850	3.362452e+07	2.416
4					•

In [5]:

d1.corr()

Out[5]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	F
longitude	1.000000	-0.924616	-0.109357	0.045480	0.069608	
latitude	-0.924616	1.000000	0.011899	-0.036667	-0.066983	
housing_median_age	-0.109357	0.011899	1.000000	-0.360628	-0.320451	
total_rooms	0.045480	-0.036667	-0.360628	1.000000	0.930380	
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.000000	
population	0.100270	-0.108997	-0.295787	0.857281	0.877747	
households	0.056513	-0.071774	-0.302768	0.918992	0.979728	
median_income	-0.015550	-0.079626	-0.118278	0.197882	-0.007723	
median_house_value	-0.045398	-0.144638	0.106432	0.133294	0.049686	
•)	>

```
In [6]:
```

```
d1.corr()['median_house_value']
Out[6]:
longitude
                     -0.045398
latitude
                     -0.144638
housing_median_age
                      0.106432
total_rooms
                      0.133294
total_bedrooms
                      0.049686
population
                     -0.025300
households
                      0.064894
median_income
                      0.688355
median_house_value
                      1.000000
Name: median_house_value, dtype: float64
In [7]:
d1.corr()['median_house_value'].sort_values()[::-1]
Out[7]:
median_house_value
                      1.000000
median_income
                      0.688355
total_rooms
                      0.133294
housing_median_age
                      0.106432
households
                      0.064894
total bedrooms
                      0.049686
population
                     -0.025300
longitude
                     -0.045398
latitude
                     -0.144638
Name: median_house_value, dtype: float64
In [8]:
corr_cols=d1.corr()['median_house_value'].sort_values()[::-1]
corr_cols[1:4]
corr_cols.index
Out[8]:
Index(['median_house_value', 'median_income', 'total_rooms',
       'housing_median_age', 'households', 'total_bedrooms', 'population',
       'longitude', 'latitude'],
      dtype='object')
```

In [9]:

```
import matplotlib.pyplot as plt
plt.scatter(d1.median_income,d1.median_house_value)
plt.show()
```


In [10]:

```
plt.subplot(121)
plt.boxplot(d1.median_income)
plt.subplot(122)
plt.boxplot(d1.median_house_value)
plt.show()
```


In [11]:

```
d2=d1[d1.median_income<d1.median_income.quantile(0.8)]
d2.shape</pre>
```

Out[11]:

(16346, 10)

In [12]:

```
plt.subplot(121)
plt.boxplot(d2.median_income)
plt.subplot(122)
plt.boxplot(d2.median_house_value)
plt.show()
```


In [13]:

```
import matplotlib.pyplot as plt
plt.scatter(d2.median_income,d2.median_house_value)
plt.show()
```


In [14]:

```
import matplotlib.pyplot as plt
plt.scatter(d2.median_income,d2.median_house_value/10000)
plt.show()
```


In [15]:

```
d3=d2.drop(corr_cols.index[2:],axis=1)
print(d3)
d3=d3.drop(['ocean_proximity'],axis=1)
print(d3.shape)
#d3
d3.median_house_value = d3.median_house_value/100000
```

	median income	median_house_value	ocean proximity
4	3.8462	342200.0	NEAR BAY
5	4.0368	269700.0	NEAR BAY
6	3.6591	299200.0	NEAR BAY
7	3.1200	241400.0	NEAR BAY
8	2.0804	226700.0	NEAR BAY
9	3.6912	261100.0	NEAR BAY
10	3.2031	281500.0	NEAR BAY
11	3.2705	241800.0	NEAR BAY
12	3.0750	213500.0	NEAR BAY
13	2.6736	191300.0	NEAR BAY
14	1.9167	159200.0	NEAR BAY
15	2.1250	140000.0	NEAR BAY
16	2.7750	152500.0	NEAR BAY
17	2.1202	155500.0	NEAR BAY
18	1.9911	158700.0	NEAR BAY
19	2.6033	162900.0	NEAR BAY
20	1.3578	147500.0	NEAR BAY
21	1.7135	159800.0	NEAR BAY
22	1.7250	113900.0	NEAR BAY
23	2.1806	99700.0	NEAR BAY
24	2.6000	132600.0	NEAR BAY
25	2.4038	107500.0	NEAR BAY
26	2.4597	93800.0	NEAR BAY
27	1.8080	105500.0	NEAR BAY
28	1.6424	108900.0	NEAR BAY
29	1.6875	132000.0	NEAR BAY
30	1.9274	122300.0	NEAR BAY
31	1.9615	115200.0	NEAR BAY
32	1.7969	110400.0	NEAR BAY
33	1.3750	104900.0	NEAR BAY
• • •	• • •	• • •	• • •
20610	1.3631	45500.0	INLAND
20611	1.2857	47000.0	INLAND
20612	1.4934	48300.0	INLAND
20613	1.4958	53400.0	INLAND
20614	2.4695	58000.0	INLAND
20615	2.3598	57500.0	INLAND
20616	2.0469	55100.0	INLAND
20617	3.3021	70800.0	INLAND
20618	2.2500	63400.0	INLAND
20619	2.7303	99100.0	INLAND
20620	4.5625	100000.0	INLAND
20621	2.3661	77500.0	INLAND
20622	2.4167	67000.0	INLAND
20623	2.8235	65500.0	INLAND
20624	3.0739	87200.0	INLAND
20625	4.1250	72000.0	INLAND
20626	2.1667	93800.0	INLAND
20627	3.0000	162500.0	INLAND
20628	2.5952	92400.0	INLAND
20629	2.0943	108300.0	INLAND

```
8/23/2018
                                                  preprocessing1
                3.5673
  20630
                                    112000.0
                                                       INLAND
  20631
                3.5179
                                    107200.0
                                                       INLAND
  20632
                3.1250
                                    115600.0
                                                       INLAND
                2.5495
  20633
                                     98300.0
                                                       INLAND
  20634
                3.7125
                                    116800.0
                                                       INLAND
                                                       INLAND
  20635
                1.5603
                                     78100.0
  20636
                2.5568
                                     77100.0
                                                       INLAND
                1.7000
                                     92300.0
                                                       INLAND
  20637
  20638
                1.8672
                                     84700.0
                                                       INLAND
                2.3886
                                                       INLAND
  20639
                                     89400.0
  [16346 rows x 3 columns]
  (16346, 2)
  In [16]:
  testsize=(int)(d3.shape[0]*0.30)
  In [17]:
  train=d3[:-testsize]
  print(train.shape)
  test=d3[-testsize:]
  print(test.shape)
  (11443, 2)
  (4903, 2)
  In [18]:
  import numpy as np
  train_x=train['median_income']
  train_x=train_x[:,np.newaxis]
  train_y=train['median_house_value']
  train_y=train_y[:,np.newaxis]
  test_x = test['median_income']
  test_x = test_x[:,np.newaxis]
  test_y=test['median_house_value']
  test_y=test_y[:,np.newaxis]
  train_x.shape
  Out[18]:
  (11443, 1)
  In [19]:
  from sklearn import linear_model
  lm=linear_model.LinearRegression()
  lm.fit(train_x,train_y)
  train pred=lm.predict(train x)
```

#train_y-train_pred

```
In [20]:
```

```
#plt.scatter(train.median_income, train.median_house_value)
plt.subplot(121)
plt.scatter(train_x,train_y)
plt.plot(train_x,train_pred,'b')

test_pred=lm.predict(test_x)
plt.subplot(122)
plt.scatter(test_x,test_y)
plt.plot(test_x,test_pred,'b')

plt.show()
```


In [22]:

```
print(d2.median_income.size,train.median_income.size)
```

16346 11443

In [23]:

```
import matplotlib.pyplot as plt
plt.boxplot(d3.total_bedrooms)
plt.show()
```

```
AttributeError
                                           Traceback (most recent call last)
<ipython-input-23-e1b635c37c1d> in <module>()
      1 import matplotlib.pyplot as plt
---> 2 plt.boxplot(d3.total_bedrooms)
      3 plt.show()
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, na
me)
   3079
                    if name in self. info axis:
   3080
                        return self[name]
-> 3081
                    return object.__getattribute__(self, name)
   3082
            def __setattr__(self, name, value):
   3083
```

AttributeError: 'DataFrame' object has no attribute 'total_bedrooms'

In []:			