Efficient Algorithms for Geometric Partial Matching

Pankaj K. Agarwal Hsien-Chih Chang Allen Xiao

Department of Computer Science, Duke University

June 2019

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) matching

Geometric (bipartite) partial matching

Prior work

	approx.	time	
Hungarian algorithm (Kuhn)	exact	$O(km + k^2 \log n)$	$q \ge 1$
		$O(kn \operatorname{polylog} n)$	
Ramshaw, Tarjan 2012	exact ¹	$O(m\sqrt{k}\log(kC))$	$q \ge 1$
	$(1+\varepsilon)$	$O(n\sqrt{k}\operatorname{polylog} n\log(1/\varepsilon))$	
Sharathkumar, Agarwal 2012	$(1+\varepsilon)$	$O(n \operatorname{poly}(\log n, 1/\varepsilon))$	q = 1
new (Hungarian)	exact	$O((n+k^2)\operatorname{polylog} n)$	$q \ge 1$
new (cost-scaling)	$(1+\varepsilon)$	$O((n+k\sqrt{k}) \operatorname{polylog} n \log(1/\varepsilon))$	$q \ge 1$

¹Assuming integer costs $\leq C$.

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{
 ightarrow}w)\geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{ o}w) \geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- lacktriangledown heta-optimality: $c_{\pi}(v{ o}w) \geq - heta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

- ► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) \pi(v) + \pi(w)$
- θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- ▶ admissible residual arcs: $c_{\pi}(v \rightarrow w) \leq 0$

Cost-scaling (Ramshaw-Tarjan)

- ▶ θ -optimality: $c_{\pi}(v \rightarrow w) \geq -\theta$ on all residual arcs
- lacktriangledown heta-optimal circulation is +n heta approx. in general (+6k heta in our graph).
- ▶ Find θ -optimal circulations for geometrically decreasing values of θ :
 - 1. Reduce $\theta \leftarrow \theta/2$, while creating O(k) excess.
 - 2. Refine this pseudoflow into a circulation, while preserving θ -optimality

Cost-scaling for geometric partial matching

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has cost $\leq n^q \cdot \alpha$
 - 2. an $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.

• $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

Cost-scaling for geometric partial matching

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has cost $\leq n^q \cdot \alpha$
 - 2. an $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.

• $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

Cost-scaling for geometric partial matching

- ▶ Compute $\alpha \ge 0$ satisfying:
 - 1. there exists a k-matching whose longest edge has cost $\leq n^q \cdot \alpha$
 - 2. an $(\varepsilon \alpha/6k)$ -optimal circulation is $(1+\varepsilon)$ -approx.

• $(1+\varepsilon)$ -approx. geometric partial matching by executing $O(\log(n^q/\varepsilon))$ cost scales.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

- ► Inside Refine:
 - Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.

High-level goal per scale

- Inside Refine:
 - 1. Hungarian search: raise potentials until an excess-deficit admissible path exists.
 - 2. Augment by an admissible blocking flow.
- After $O(n \operatorname{polylog} n)$ -time preprocessing, perform Hungarian search and find each blocking flow in $O(k \operatorname{polylog} n)$ time.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with O(polylog n) update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with O(polylog n) update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

► Reduced cost: $c_{\pi}(v \rightarrow w) := c(v \rightarrow w) - \pi(v) + \pi(w)$

- ▶ Dynamic 2D bichromatic closest pair with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)
- Possible to batch potential updates (Vaidya) only need to bound number of relaxations.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- Alive nodes: nonzero excess/deficit, or adjoining flow support arcs.
- ▶ Dead nodes: ones which aren't alive.

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ightharpoonup Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

- ► Telescoping: $c_{\pi}(s \rightarrow a \rightarrow b) = c(a \rightarrow b) \pi(s) + \pi(b)$ (use BCP)
- ▶ Only O(k) relaxations per Hungarian search.
- Also: find a blocking flow in O(k) relaxations (DFS).

Problem: BCP initialization

▶ Dynamic 2D BCP with $O(\operatorname{polylog} n)$ update time, $O(\log^2 n)$ query time (Kaplan *et al.* SODA'17)

- ▶ Some BCP may begin a Hungarian search with $\Theta(n)$ vertices.
- ► Can't afford to construct from scratch for every Hungarian search.

- ▶ Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t .
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- ▶ Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- ▶ Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t .
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes.
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t .
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- lacktriangle Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- ▶ \mathcal{D}_t and \mathcal{D}_{t+1} differ by only a few nodes.
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t .
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- lacktriangle Let \mathcal{D}_t be the BCP at the start of the t-th Hungarian search.
- $ightharpoonup \mathcal{D}_t$ and \mathcal{D}_{t+1} differ by only a few nodes.
- ▶ To generate \mathcal{D}_{t+1} :
 - 1. Rewind the BCP updates of the last Hungarian search to obtain \mathcal{D}_t .
 - 2. Apply the few changes (newly matched, dead/alive).
 - Persistence?

- $ightharpoonup O(\log(n^q/\varepsilon))$ scales, $O(\sqrt{k})$ blocking flows per scale.
- Each blocking flow's Hungarian search uses O(k) relaxations (alive paths).
- Each blocking flow's Hungarian search BCP can be initialized using the previous one in $O(k \operatorname{polylog} n)$ time (rewinding). Need to spend $O(n \operatorname{polylog} n)$ once per scale to build data structures for t = 0.
- $ightharpoonup O((n+k\sqrt{k})\operatorname{polylog} n\log(1/\varepsilon))$
- Thank you.

- $ightharpoonup O(\log(n^q/\varepsilon))$ scales, $O(\sqrt{k})$ blocking flows per scale.
- ▶ Each blocking flow's Hungarian search uses O(k) relaxations (alive paths).
- Each blocking flow's Hungarian search BCP can be initialized using the previous one in $O(k \operatorname{polylog} n)$ time (rewinding). Need to spend $O(n \operatorname{polylog} n)$ once per scale to build data structures for t = 0.
- $ightharpoonup O((n+k\sqrt{k})\operatorname{polylog} n\log(1/\varepsilon))$
- Thank you.

- $ightharpoonup O(\log(n^q/\varepsilon))$ scales, $O(\sqrt{k})$ blocking flows per scale.
- ▶ Each blocking flow's Hungarian search uses O(k) relaxations (alive paths).
- Each blocking flow's Hungarian search BCP can be initialized using the previous one in $O(k \operatorname{polylog} n)$ time (rewinding). Need to spend $O(n \operatorname{polylog} n)$ once per scale to build data structures for t=0.
- $ightharpoonup O((n+k\sqrt{k})\operatorname{polylog} n\log(1/\varepsilon))$
- Thank you.

- $ightharpoonup O(\log(n^q/\varepsilon))$ scales, $O(\sqrt{k})$ blocking flows per scale.
- ▶ Each blocking flow's Hungarian search uses O(k) relaxations (alive paths).
- Each blocking flow's Hungarian search BCP can be initialized using the previous one in $O(k \operatorname{polylog} n)$ time (rewinding). Need to spend $O(n \operatorname{polylog} n)$ once per scale to build data structures for t=0.
- $ightharpoonup O((n+k\sqrt{k})\operatorname{polylog} n\log(1/\varepsilon))$
- Thank you.

- $ightharpoonup O(\log(n^q/\varepsilon))$ scales, $O(\sqrt{k})$ blocking flows per scale.
- ▶ Each blocking flow's Hungarian search uses O(k) relaxations (alive paths).
- Each blocking flow's Hungarian search BCP can be initialized using the previous one in $O(k \operatorname{polylog} n)$ time (rewinding). Need to spend $O(n \operatorname{polylog} n)$ once per scale to build data structures for t=0.
- $ightharpoonup O((n+k\sqrt{k})\operatorname{polylog} n\log(1/\varepsilon))$
- Thank you.