Math 101 Homework 4

Jeff Carney

January 30, 2017

1

Let a, b be rational numbers s.t. \sqrt{ab} is irrational. WTS: this implies that $\sqrt{a}+\sqrt{b}$ is irrational. We can prove this by contradiction. Assume that $\sqrt{a}+\sqrt{b}$ is rational. $\sqrt{ab}=\sqrt{a}\sqrt{b}$, thus either \sqrt{a} is irrational, \sqrt{b} is irrational, or both are irrational. By our assumption $\sqrt{a}+\sqrt{b}=\frac{j}{k}\in\mathbb{Q}$, where $j,k\in\mathbb{Z}.\Rightarrow k$ $\sqrt{a}+k\sqrt{b}=j$. Given that one or both of \sqrt{a} , \sqrt{b} is irrational, by homework 0 problem 4, one or both of $k\sqrt{a}$, $k\sqrt{b}$ is irrational. Again by homework 0 problem 4, we know that the sum of an irrational and a rational number is an irrational number. Thus, the sum $k\sqrt{a}+k\sqrt{b}$ is an irrational number. But $k\sqrt{a}+k\sqrt{b}=j$ which is a rational number $\Rightarrow \Leftarrow$.

2

We are given that A is a non-empty set of reals and $B = \{-a|a \in A\}$. Suppose A is bounded below. By the Greatest Lower Bound Axiom $\exists x \in A$ s.t. glb(A) = x. That is $\forall y \in A, x \leq y$. Now let $b \in B, \Rightarrow -b \in A \Rightarrow x \leq -b \Rightarrow -x \geq b$ where b is any element in B. Thus B is bounded above by -x. So, B is bounded above.

3

We are given that $A \subseteq \mathbb{R}$ s.t. $A \neq \emptyset$ where p = lub(A) and $B = \{-a | a \in A\}$. WTS: -p = glb(B). In order to show this we must show:

1)
$$\forall x \in B, x \ge -p$$

2) $\forall -z > -p, \exists -y \in B \text{ s.t. } -y < -z$

By the previous problem, we know that part 1) is true. Now we must prove that part 2) is true. Given that p = lub(A), we know that if we let $z \in A$ s.t. z < p, $\exists y \in A$ s.t. y > z. From this we know that $-z \in B$ and that -z > -p. But we also know that $-y \in B$ and because y > z we know that -y < -z. Thus, -p = glb(B).

4

We are given that $X \subseteq \mathbb{R}$ and $X = \emptyset$ s.t. $\forall x \in X, \ a \le x \le b$. WTS: there exists a positive real number c s.t. $\forall x \in X, \ |x| \le c$. Let c = max(|a|, |b|). From this we know that $c \ge |a| \Rightarrow -c \le -|a| \le a \Rightarrow -c \le a$. We also know that $c \ge |b| \ge b \Rightarrow c \ge b$. Combining what we know we have $-c \le a \le x \le b \le c \Rightarrow -c \le x \le c$. This implies that $|x| \le c$.