

NLP基础2023春

HMM模型数学推导-补充

主讲人: 明训

- HMM 要解决的问题
- 已知模型 HMM 用 λ 表示, λ = (π, A, B)
- 在给定模型 λ 的情况下,出现了观测序列 O = {o1, o2, o3,...,oT},计算该序列出现的概率 P(O | λ)
- 在给定观测序列 O = {o1, o2, o3,...,ot} 的情况下,求解参数 $\lambda = (\pi, A, B)$,使得观测序列 O 出现的概率最大 $\lambda_{MLE} = argmax_{\lambda}P(O|\lambda)$
- 在给定模型 λ 的情况下, 出现了观测序列 O = {o1, o2, o3,...,oT}, 求隐藏序列 I, 使得P(I | O, λ) 的概率最大 Î = argmax_IP(I|O)

- 初始概率分布 $\pi = \{\pi_1, \pi_2, ... \pi_P\}$
- 隐藏状态序列 $I = \{i_1, i_2, ... i_T\}$
- 隐藏状态合集 $Q = \{q_1, q_2, ..., q_N\}$
- 观察状态序列 $O = \{o_1, o_2, ... o_T\}$
- 观测状态合集 $V = \{v_1, v_2, ... v_M\}$
- 隐藏状态转移矩阵 A $a_{i,j} = P(i_{t+1} = q_j | i_t = q_i)$
- 观测状态转移矩阵 B $b_j(k) = P(o_t = v_k | i_t = q_j)$

			Today		
			cloud		
Yesterday	sun	[0.50	0.375	0.125]	
Yesterday	cloud	0.25	0.125	0.625	
	rain	L0.25	0.375	0.375	

	海藻状态					
		干燥	半干	湿润	湿透	
天气 状态	晴天	0.6	0.2	0.15	0.05	
1000	多云	0.25	0.25	0.25	0.25	
	雨天	0.05	0.1	0.35	0.5	

- 在给定模型 λ 的情况下,出现了观测序列 $O = \{o1, o2, o3,...,oT\}$,计算该序列出现的概率 $P(O \mid \lambda)$
- Brute Force
- 在指定模型下, 寻找指定观测序列出现的概率 = 指定模型下, 寻找所有可能的隐藏状态序列产生指定的观测序列出现的概率

$$P(O|\lambda) = \sum_{I} P(O, I|\lambda)$$

$$P(O, I|\lambda) = P(I|\lambda)P(O|I, \lambda)$$

• $P(I \mid \lambda) = 在给定模型 \lambda 的前提下,隐藏状态序列 I 出现的概率$

$$\begin{split} I &= \{i_1, i_2, \dots, i_T\} \\ P(I|\lambda) &= P(i_1, i_2, \dots, i_T|\lambda) \\ P(i_1, i_2, \dots, i_T|\lambda) &= P(i_1|\lambda) P(i_2, \dots i_T|i_1, \lambda) \\ P(i_1, i_2, \dots, i_T|\lambda) &= P(i_1|\lambda) P(i_2, i_3, \dots i_T|i_1, \lambda) = P(i_1|\lambda) P(i_2|i_1, \lambda) P(i_3, i_4, \dots i_T|i_1, i_2, \lambda) \\ P(i_1|\lambda) P(i_2|i_1, \lambda) P(i_3, i_4, \dots i_T|i_1, i_2, \lambda) &= P(i_1|\lambda) P(i_2|i_1, \lambda) \dots P(i_T|i_1, i_2, \dots i_{T-1}, \lambda) \end{split}$$

$$P(i_{1}|\lambda)P(i_{2}|i_{1},\lambda)\dots P(i_{T}|i_{1},i_{2},\dots i_{T-1},\lambda) = P(i_{1})P(i_{2}|i_{1})P(i_{3}|i_{2})\dots P(i_{T}|i_{T-1})$$

$$P(i_{1})P(i_{2}|i_{1})P(i_{3}|i_{2})\dots P(i_{T}|i_{T-1}) = a_{i_{T-1,T}}a_{i_{T-2,T-1}}a_{i_{1,2}}\pi_{i}a_{i_{1}}$$

$$a_{i_{t-1,t}}a_{i_{t-2,t-1}}a_{i_{1,2}}\pi_{i}a_{i_{1}} = \pi_{i}a_{i_{1}}\prod_{t=2}^{T}a_{i_{t-1,t}}$$

$$Yesterday \begin{tabular}{l} sun \\ sun \\ cloud \\ 0.25 \\ cloud \\ rain \begin{tabular}{l} 0.50 \\ 0.25 \\ 0.$$

rain [0.25]

0.375

0.625

0.375

- $P(O|I, \lambda) = 在给定模型 \lambda和隐藏状态序列 I 的前提下,出现观测序列 O= <math>\{o_1, o_2, ... o_T\}$ 的概率
- $P(O | I, \lambda) = P(O | I) = P(o_1, o_2..., o_T | i_1, i_2..., i_T)$
- 基于观测独立性假设

$$P(o_1,o_2...,o_T|i_1,i_2...,i_T) = P(o_1|i_1,...i_t)P(o_2,...o_T|i_1,...i_T) = b_{i_1}(o_1)b_{i_2}(o_2)...b_{i_T}(o_T)$$

$$b_{i_1}(o1)b_{i_2}(o2)\dots b_{i_t}(o_t) = \prod_{t=1}^T b_{i_t}(o_t)$$

エゟ	= 11	<u>></u> ★
人	ૌ∥୵	念

海藻状态					
		干燥	半干	湿润	湿透
	晴天	0.6	0.2	0.15	0.05
	多云	0.25	0.25	0.25	0.25
	雨天	0.05	0.1	0.35	0.5

$$egin{aligned} P(O,I|\lambda) &= P(I|\lambda)P(O|I,\lambda) \ \\ P(O|\lambda) &= \sum_{I} P(O,I|\lambda) \ \\ P(I|\lambda)P(O|I,\lambda) &= \sum_{I} \pi(a_{i_1}) \prod_{t=2}^{T} a_{i_{t-1},i_t} \prod_{t=1}^{T} b_{i_t}(o_t) \end{aligned}$$

$$\sum_I = \sum_{i_1,i_2...,i_T}$$

每一个隐藏状态位置都有N种可能性,所以这里的时间复杂度是 $O(N^T)$

Brute Force 是一种解决思路,但肯定不是好解决思路

- 前向算法 Forward
- 给定t时刻的隐藏状态为i, 观测序列 {01,02...,04的概率

$$\alpha_t(i) = P(o_1, o_2..., o_t, i_t = q_i | \lambda)$$

$$lpha_T(i) = P(o1, \dots oT, i_T = q_i | \lambda) = P(O, i_T = q_i | \lambda)$$

$$P(O|\lambda) = \sum_{i=1}^N P(O,i_T=q_i|\lambda) = \sum_{i=1}^N lpha_T(i)$$

$$\begin{aligned} &\alpha_{t+1}(j) = P(o_1, o_2 \dots, o_{t+1}, i_{t+1} = q_j | \lambda) \\ &P(o_1, o_2 \dots, o_{t+1}, i_{t+1} = q_j | \lambda) = \sum_{i=1}^N P(o_1, \dots o_{t+1}, i_{t+1} = q_j, i_t = q_i | \lambda) \\ &\sum_{i=1}^N P(o_1, \dots o_{t+1}, i_{t+1} = q_j, i_t = q_i | \lambda) = \sum_{i=1}^N P(o_{t+1} | o_1, \dots o_t, i_{t+1} = q_j, i_t = q_i, \lambda) P(o_1, \dots o_t, i_t = q_i, i_{t+1} = q_j | \lambda) \\ &\sum_{i=1}^N P(o_{t+1} | o_1, \dots o_t, i_{t+1} = q_j, i_t = q_i, \lambda) P(o_1, \dots o_t, i_t = q_i, i_{t+1} = q_j | \lambda) = \sum_{i=1}^N P(o_{t+1} | i_{t+1} = q_j | \lambda) P(o_1, \dots o_t, i_t = q_i, i_{t+1} = q_j | \lambda) \\ &= \sum_{i=1}^N P(o_{t+1} | i_{t+1} = q_j | \lambda) P(i_{t+1} = q_j | o_1, \dots o_t, i_t = q_i, \lambda) P(o_1, \dots o_t, i_t = q_i | \lambda) \\ &= \sum_{i=1}^N P(o_{t+1} | i_{t+1}) P(i_{t+1} = q_j | i_t = q_i) \alpha_t(i) = \sum_{i=1}^N b_j(O_{t+1}) a_{i,j} \alpha_t(i) \end{aligned}$$

Hidden Markov 概念

• 假设有三个盒子,每个盒子有红白两种颜色的球

• 盒子1:5红5白

• 盒子2:4红6白

• 盒子3:7红3白

$$\pi = \begin{pmatrix} 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \qquad A = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \qquad B = \begin{bmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{bmatrix}$$

- 观测状态集合: V= {红,白}, M = 2
- 隐藏状态集合: Q= {盒子1, 盒子2, 盒子3}, N= 3
- 观测序列结果: O = {红,白,红}

• 时刻1

• (红色球, 盒子1) =
$$\alpha_1(1) = \pi_1 b_1(o_1) = 0.2 * 0.5 = 0.1$$

• (红色球, 盒子2) =
$$\alpha_1(2) = \pi_2 b_2(o_1) = 0.4 * 0.4 = 0.16$$

• (红色球, 盒子3) =
$$\alpha_1(3) = \pi_3 b_3(o_1) = 0.4 * 0.7 = 0.28$$

$$\pi = \begin{pmatrix} 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \qquad A = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \qquad B = \begin{bmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{bmatrix}$$

• 时刻2

• (白色球, 盒子1) =
$$\alpha_2(1) = \left[\sum_{i=1}^{3} \alpha_1(i)a_{i_1}\right]b_1(o2) = [0.1*0.5+0.16*0.3+0.28*0.2]*0.5 = 0.077$$

• (白色球, 盒子2) =
$$\alpha_2(2) = \left[\sum_{i=1}^3 \alpha_1(i)a_{i_2}\right]b_2(o2) = [0.1*0.2+0.16*0.5+0.28*0.3]*0.5 = 0.1104$$

• (白色球, 盒子3) =
$$\alpha_2(3) = \left[\sum_{i=1}^3 \alpha_1(i)a_{i_3}\right]b_3(o_2) = [0.1*0.3+0.16*0.2+0.28*0.5]*0.5 = 0.0606$$

$$\pi = \begin{pmatrix} 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \qquad A = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \qquad B = \begin{bmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{bmatrix}$$

• 时刻3

• (红色球, 盒子1) =
$$\alpha_3(1) = \left[\sum_{i=1}^3 \alpha_2(i)a_{i_1}\right]b_1(o3) = [0.077*0.5+0.1104*0.3+0.0606*0.2]*0.5 = 0.0606$$

• (红色球, 盒子2) =
$$\alpha_3(2) = \left[\sum_{i=1}^3 \alpha_2(i)a_{i_2}\right]b_2(o3) = [0.077*0.2+0.1104*0.5+0.0606*0.3]*0.4 = 0.03$$

• (红色球, 盒子3) =
$$\alpha_3(3) = \left[\sum_{i=1}^3 \alpha_3(i)a_{i_3}\right]b_3(o3) = [0.077*0.3+0.1104*0.2+0.0606*0.5]*0.7 = 0.03$$

$$\pi = \begin{pmatrix} 0.2 \\ 0.4 \\ 0.4 \end{pmatrix} \quad A = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \quad B = \begin{bmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{bmatrix}$$

- 后向算法 Backward
- 给定t时刻的隐藏状态为i, 和观测序列{ot+1, Ot+2...,的概率

$$eta_t(i) = P(o_{t+1}, \ldots o_T | i_t = q_i, \lambda)$$

$$eta_1(i) = P(o_2, \ldots o_T | i_1 = q_i, \lambda)$$

$$P(O|\lambda) = P(o_1, ... o_T|\lambda)$$

$$=\sum_{i=1}^N P(o_1,\ldots,o_T,i_1=q_i)=\sum_{i=1}^N P(o_1,\ldots,o_T|i_1=q_i)P(i_1=q_i)$$

$$=\sum_{i=1}^N P(o_1|o_2,\ldots,o_T,i_1=q_i)P(o_2,\ldots,o_T|i_1=q_i)\pi_i$$

$$=\sum_{i=1}^N P(o_1|i_1=q_i)eta_1(i)\pi_i = \sum_{i=1}^N b_i(o_1)eta_1(i)\pi_i$$

$$eta_t(i) = P(O_{t+1}, \dots, O_T | i_t = q_i)$$
 $= \sum_{j=1}^N P(O_{t+1}, \dots O_T, i_{t+1} = q_j | i_t = q_i)$
 $= \sum_{j=1}^N P(O_{t+1}, \dots O_T | i_{t+1} = q_j, i_t = q_i) P(i_{t+1} = q_j | i_t = q_i)$
 $= \sum_{j=1}^N P(O_{t+1}, \dots O_T | i_{t+1} = q_j) a_{i,j}$
 $= \sum_{j=1}^N P(o_{t+1} | o_{t+2}, \dots O_T, i_{t+1} = q_j) P(o_{t+2}, \dots o_T | i_{t+1} = q_j) a_{i,j}$
 $= \sum_{j=1}^N P(o_{t+1} | i_{t+1} = q_j) eta_{t+1}(j) a_{i,j}$

得P(I | O, λ) 的概率最大

• 在给定模型 λ 的情况下,出现了观测序列 O = {o1, o2, o3,...,oT}, 求隐藏序列 I, 使

- 在给定模型 λ 的情况下,出现了观测序列 O = {o1, o2, o3,...,oT}, 求隐藏序列 I, 使得P(I | O, λ) 的概率最大
- t时刻的隐藏状态为qi的隐藏状态序列最大值为θ

$$egin{aligned} heta_t(i) &= \max_{i_1,i_2,...i_{t-1}} P(o_1,o_2,\ldots o_t,i_1,i_2,\ldots,i_{t-1},i_t=q_i,\lambda) = \max_{i_1,i_2,...i_{t-1}} P(o_1,o_2,\ldots o_t,i_1,i_2,\ldots,i_{t-1},i_t=q_i) \ heta_{t+1}(j) &= \max_{i_1,i_2,...i_t} P(o_1,o_2,\ldots o_t,o_{t+1},i_1,i_2,\ldots,i_t,i_{t+1}=q_j) \ heta_{t+1}(j) &= \max_{i_1,i_2,...i_t} P(o_1,o_2,\ldots o_t,o_{t+1},i_1,i_2,\ldots,i_t,i_{t+1}=q_j) \end{aligned}$$

- 维特比算法
- 在给定模型 λ 的情况下, 出现了观测序列 O = {o1, o2, o3,...,oT}, 求隐藏序列 I, 使得P(I | O, λ) 的概率最大
- t时刻的隐藏状态为qi的隐藏状态序列最大值为θ

$$egin{aligned} \delta_t(i) &= \max_{i_1,i_2,\dots i_{t-1}} P(o_1,o_2,\dots o_t,i_1,i_2,\dots,i_{t-1},i_t=q_i,\lambda) = \max_{i_1,i_2,\dots i_{t-1}} P(o_1,o_2,\dots o_t,i_1,i_2,\dots,i_{t-1},i_t=q_i) \ \delta_{t+1}(j) &= \max_{i_1,i_2,\dots i_t} P(o_1,o_2,\dots o_t,o_{t+1},i_1,i_2,\dots,i_t,i_{t+1}=q_j) \ &= \max_{1\leq i\leq N} \delta_t(i)a_{i,j}b_j(o_{t+1}) \ &arphi_{t+1}(j) &= arg\max_{1\leq i\leq N} \delta_t(i)a_{i,j} \end{aligned}$$

• 隐状态转移矩阵

		Next	5
Current	A	В	End
Start	0.7	0.3	0
A	0.2	0.7	0.1
В	0.7	0.2	0.1

• 观测状态转移矩阵

	,	Word	
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

- 观测序列为 x y y
- 假设第0位置,隐藏序列取 <start sign> 的概率为1 δ_0 (< start >) = 1

		Next	t
Current	A	В	End
Start	0.7	0.3	0
A	0.2	0.7	0.1
В	0.7	0.2	0.1

$$\delta_1(A) = \max_{i_0} P(A|i_0)P(< start > |i_0)\delta_0(i_0)$$

$$\delta_1(A) = 1 imes 1 imes 0.7 = 0.7$$

$$\delta_1(B)=1 imes1 imes0.3=0.3$$

$$\psi_1(A) = \psi_1(B) = O_0$$

	Next				
Current	A	В	End		
Start	0.7	0.3	0		
A	0.2	0.7	0.1		
В	0.7	0.2	0.1		

	1	Word	
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

$$\delta_1(A) = \max_{i_0} P(A|i_0) P(*S*|i_0) \delta_0(i_0)$$

$$\delta_1(A) = 1 imes 1 imes 0.7 = 0.7$$

$$\delta_1(B)=1 imes1 imes0.3=0.3$$

$$\psi_1(A) = \psi_1(B) = *S*_0$$

	Next				
Current	A	В	End		
Start	0.7	0.3	0		
A	0.2	0.7	0.1		
В	0.7	0.2	0.1		

		Word	
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

$$\delta_2(A) = \max_{i_1} P(A|i_1) P(*S*|i_1) \delta_1(i_1) = max\{0.2 \times 0.4 \times 0.7, 0.7 \times 0.3 \times 0.3\} = 0.063$$

$$\psi_1(A) = B_1 \qquad \psi_1(B) = A_1$$

$$\delta_2(B) = \max_{i_1} P(B|i_1) P(*S*|i_1) \delta_1(i_1) = max\{\overbrace{0.7\times0.4\times0.7}, \overbrace{0.2\times0.3\times0.3}\} = 0.196$$

	Next				
Current	A	В	End		
Start	0.7	0.3	0		
A	0.2	0.7	0.1		
В	0.7	0.2	0.1		

	Word		
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

$$\delta_3(A) = max\{0.2 \times 0.6 \times 0.063, 0.7 \times 0.7 \times 0.196\}$$

$$\psi_1(A) = B_1 \qquad \psi_1(B) = A_1$$

$$\delta_2(B) = max\{0.7 \times 0.6 \times 0.063, 0.2 \times 0.7 \times 0.196\}$$

	Next		
Current	A	В	End
Start	0.7	0.3	0
A	0.2	0.7	0.1
В	0.7	0.2	0.1

	Word		
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

$$\delta_4(End) = max\{0.1 \times 0.6 \times 0.02744, 0.1 \times 0.7 \times 0.2646\}$$

$$\psi_4(End) = ABB$$

$$P(ABB,xyy)=0.00185$$

	Next		
Current	A	В	End
Start	0.7	0.3	0
A	0.2	0.7	0.1
В	0.7	0.2	0.1

	Word		
State	*S*	\boldsymbol{x}	y
Start	1	0	0
A	0	0.4	0.6
В	0	0.3	0.7

