Mecânica Aplicada

Adenda da sebenta prática de Mecânica Aplicada: Noções básicas de cinemática do corpo rígido

JPC
Departamento da Engenharia Mecânica
Universidade de Aveiro
2012-2013

O movimento de corpo rígido

Um corpo rígido é um meio material contínuo que não sofre deformação, pelo que a distância entre 2 seus quaisquer pontos não varia.

Deste modo, o movimento de rotação no espaço de um corpo rígido (isolado ou numa associação de corpos rígidos) é unicamente caracterizado por 2 vectores a nível global associados à rotação: ω (velocidade angular) e a sua derivada temporal α (aceleração angular).

Por outro lado, cada ponto do corpo rígido tem os seus 2 vectores **v** (velocidade) e **a** (aceleração), que podem variar de ponto para ponto.

O movimento de corpo rígido

Então, em geral o movimento de um corpo rígido é caracterizado por 2 vectores globais, ω e α , e um conjunto infinito de pares de vectores locais, \mathbf{v} e \mathbf{a} .

Em seguida vamos classificar os movimentos e ver o que acontece aos 2 vectores globais ω e α , bem como aos pares de vectores locais \mathbf{v} e \mathbf{a} .

O movimento de um corpo rígido pode ser classificado de plano ou não-plano. Diz-se que o movimento é plano quando as suas partículas descrevem trajectórias que evoluem num conjunto de planos paralelos no espaço, mantendo-se a trajectória de um qualquer ponto móvel sempre no mesmo plano.

Classificação do movimento de corpo rígido

- 1 Movimento do tipo plano:
 - a) Translação plana
 - b) Rotação em torno de eixo fixo
 - c) Movimento plano geral
- 2 Movimento do tipo não-plano:
 - a) Translação não-plana
 - b) Rotação em torno de um ponto fixo
 - c) Movimento geral

1 – Translação plana

Corpo rígido => $\mathbf{r}_{A/B}$ é constante. Além disso, ω e α são nulos em qualquer instante, pois o corpo não roda no espaço, mantendo-se sempre paralelo a si mesmo.

Assim, a velocidade **v** e a aceleração **a** são iguais em todos os pontos, e têm componentes nulas na perpendicular ao plano.

O movimento do corpo rígido é caracterizado apenas pelos 2 vectores **v** e **a**, que são iguais para todos os pontos, podendo **a** ser nulo no movimento rectilíneo uniforme.

2 – Rotação em torno de eixo fixo

Direcção de ω (não-nulo) é constante; Se o movimento é uniforme, então α é nulo, senão α é paralelo a ω (pois ω só pode variar de tamanho); \mathbf{v} e \mathbf{a} estão nos planos perpendiculares a ω ; \mathbf{v} e \mathbf{a} são nulos nos pontos do eixo.

No movimento de rotação em torno de um eixo fixo de um corpo rígido todos os segmentos de recta têm igual rotação θ no plano, associada à velocidade angular ω e à aceleração angular α (se o movimento de rotação for não-uniforme).

$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$
 $\mathbf{a}_n = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$
 $\mathbf{a}_t = \boldsymbol{\alpha} \times \mathbf{r}$

3 – Movimento plano geral

O corpo rígido roda em torno de um eixo que não está fixo e que se move ao longo do plano mantendo-se sempre perpendicular a este.

Assim, a direcção de ω (não-nulo) é constante; Se ω é constante, então α é nulo, senão α é paralelo a ω (pois ω só pode variar de tamanho).

 ${\bf v}$ e ${\bf a}$ estão nos planos perpendiculares a ${\bf \omega}$.

Centro instantâneo de rotação => ponto em torno do qual o corpo roda num dado instante. Corresponde à intersecção do eixo instantâneo de rotação com o plano do movimento. Atenda-se a que em cada instante **v** é nulo no centro instantâneo de rotação, mas **a** não o é (porquê?).

Tipos de movimento plano

Exemplos

Translação rectilínea (plana)	A^{\bullet} A^{\bullet	
Translação curvilínea plana	B. A. A.	
Rotação em torno de eixo fixo	B B'	
Movimento plano geral		

4 – Translação não-plana

No caso de translação não-plana o movimento é curvilíneo.

Tal como se referiu para a situação de translação plana de um corpo rígido, tem-se que $\mathbf{r}_{A/B}$ é constante, sendo também $\boldsymbol{\omega}$ e $\boldsymbol{\alpha}$ nulos em qualquer instante, pois o corpo não roda no espaço, mantendo-se sempre paralelo a si mesmo.

Tal como no caso plano, a velocidade **v** e a aceleração **a** iguais em todos os pontos, sendo também o movimento do corpo rígido caracterizado apenas pelos 2 vectores **v** e **a**, que são iguais para todos os pontos.

5 – Rotação em torno de ponto fixo

$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$
$$\mathbf{a} = \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$

Movimento não-plano;

Direcção de ω não é constante => ω não pode ser paralelo a α ;

v é nulo nos pontos do eixo instantâneo de rotação nO;

a não é nulo nos pontos desse eixo, excepto no ponto fixo O (porquê?);

Numa análise considera-se a rotação em torno do eixo instantâneo de rotação.

Atenção: rotações finitas θ não definem um vector (não se verifica a regra do paralelogramo), mas rotações infinitesimais d θ sim.

$$d\theta_1 \times \mathbf{r} + d\theta_2 \times \mathbf{r} = (d\theta_1 + d\theta_2) \times \mathbf{r}$$

 $\boldsymbol{\omega} = \dot{\boldsymbol{\theta}} = \boldsymbol{\omega}_1 + \boldsymbol{\omega}_2.$

6 – Movimento geral

Neste caso de movimento não-plano, os vectores ω , α , \mathbf{v} e \mathbf{a} têm direcções e magnitudes arbitrárias, mas distingue-se do caso anterior pelo facto de não haver um ponto fixo no espaço.

A não-existência de um ponto fixo no espaço leva a que em cada instante exista um eixo não-fixo (i.e., que varia de posição no tempo) em torno do qual o corpo roda instantaneamente, possuindo, todavia, simultaneamente um movimento de translação ao longo da direcção desse mesmo eixo.