EP 739856 A2 19961030 EP 96250091 19960424 199648 B EP 739856 A3 19961127 EP 96250091 199702 Α 19960424 199740 JP 9194298 19970729 JP 96105667 Α 19960425 Α Priority Applications (No Type Date): JP 95297141 A 19951115; JP 95101329 A 19950425 Cited Patents: No-SR. Pub; 3. Jnl. Ref; WO 9111390 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes A2 E 12 C01B-037/02 EP 739856 Designated States (Regional): DE FR GB A 8 C30B-029/34 JP 9194298

C01B-037/02

Abstract (Basic): EP 739856 A

A3

EP 739856

A periodic silica-surfactant nano-composite with a crystalline structure belongs to a hexagonal system comprising regularly arrayed cylindrical micelle rods formed by a surfactant surrounded by a silica layer. Also claimed are (i) a less-periodic silica-surfactant nano-composite with a crystalline structure comprising irregularly arrayed cylindrical micelle rods formed by a surfactant surrounded by a silica layer; (ii) prodn. of a silica-surfactant nano-composite comprising (a) hydrolysing tetraalkoxysilane under acidic conditions, (b) coating the mixed soln. of the resulting hydrolysates and surfactants to a surface of a substrate, and (c) drying the soln. on the substrate; (iii) a periodic silica porous material obtd. by calcining the above periodic silica-surfactant nano-composite, the material having an average channel dia. of 1-2 nm and Brunauer-Emett-Teller (BET) surface area of at least 1,000 m2/g; and (iv) aa less-periodic silica porous material obtd. by calcining the above less-periodic silica-surfactant nano-composite, the material having an average channel diameter of 1-2 nm, and BET surface area of at least 1,000 m2/g.

USE - The silica porous materials are used as optical functional materials, electronic functional materials, catalysis carriers and as

ADVANTAGE - The nano-composites are easily prepd. and the silica porous material has high specific surface area.

Dwg. 1/5

Title Terms: SILICA; SURFACTANT; NANO; COMPOSITE; SILICA; POROUS; MATERIAL; CRYSTAL: STRUCTURE: HEXAGON: SYSTEM; COMPRISE; CYLINDER; MICELLAR; ROD; FORMING; SURFACTANT; SURROUND; SILICA; LAYER

Derwent Class: E16; E36; J01; J04; L03; U11

International Patent Class (Main): C01B-037/02; C30B-029/34

International Patent Class (Additional): B01J-020/10; C01B-033/12;

C30B-029/68

File Segment: CPI; EPI

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-194298

(43)公開日 平成9年(1997)7月29日

(51) Int. Cl. 6	識別記号	FI	· -	
C30B 29/34		C30B 29/34	Z	
C01B 33/12		C01B 33/12	С	
C30B 29/68		C30B 29/68		

審査請求 未請求 請求項の数8 OL (全8頁)

(21)出願番号	特願平8-105667	(71)出願人	000006792	
	•		理化学研究所	
(22)出願日	平成8年(1996)4月25日		埼玉県和光市広沢2番1号	
		(72)発明者	小川 誠	
(31)優先権主張番号	特願平7-101329		東京都新宿区赤城下町62 アネックス62-	
(32)優先日	平7 (1995) 4月25日		404	
(33)優先権主張国	日本(JP)	(72)発明者)発明者 雀部 博之	
(31)優先権主張番号	特願平7-297141		埼玉県和光市広沢2番1号 理化学研究所	
(32)優先日	平7 (1995)11月15日		内	
(33)優先権主張国	日本(JP)	(74)代理人	弁理士 平木 祐輔 (外1名)	
	•			

(54) 【発明の名称】シリカー界面活性剤ナノ複合体及びその製造方法

(57)【要約】

【解決手段】 六方晶系に属し、界面活性剤が形成する棒状ミセルをシリカ層が包囲した周期的な結晶構造を有するシリカー界面活性剤ナノ複合体。前記ナノ複合体を焼成することにより得られる、周期的な結晶構造を有し、BET表面積が1000 m²/g以上で、平均孔径1~2 nmのシリカ多孔体。テトラアルコキシシランを酸性下で加水分解し、次いで得られた加水分解物に界面活性剤を混合した溶液を基材に塗布し、乾燥する工程を含む、シリカー界面活性剤ナノ複合体の製造方法。

【効果】 製造が簡単で、しかも透明なフィルムとして も得ることができる。また、シリカ多孔体は、比表面積 が大きい。したがって、光学的機能材料等として有用で ある。

【特許請求の範囲】

【請求項1】 六方晶系に属し、界面活性剤が形成する 棒状ミセルをシリカ層が包囲した周期的な結晶構造を有 するシリカー界面活性剤ナノ複合体。

【請求項2】 界面活性剤が形成する棒状ミセルをシリカ層が包囲した不規則な配列の結晶構造を有するシリカー界面活性剤ナノ複合体。

【請求項3】 テトラアルコキシシランを酸性下で加水分解し、次いで得られた加水分解物に界面活性剤を混合した溶液を基材に塗布し、乾燥する工程を含む、シリカー界面活性剤ナノ複合体の製造方法。

【請求項4】 テトラアルコキシシランがテトラメトキシシランである、請求項3に記載のシリカー界面活性剤ナノ複合体の製造方法。

【請求項5】 界面活性剤が長鎖アルキル基及び親水基を有する化合物である、請求項3又は4に記載のシリカー界面活性剤ナノ複合体の製造方法。

【請求項6】 界面活性剤が、下記一般式(1):

 $C_n H_{2n-1} N (CH_3)_3 X$ (1)

(式中、nは8~18の整数であり、Xは、ハロゲン化物イオン、HSO、又は有機アニオンである。)で表されるアルキルアンモニウム塩である、請求項3又は4に記載のシリカー界面活性剤ナノ複合体の製造方法。

【請求項7】 請求項1に記載のシリカー界面活性剤ナノ複合体を焼成することにより得られる、周期的な結晶構造を有し、ブルナウアーーエメットーテーラー (BET)表面積が1000 m²/g 以上で、平均孔径1~2 nmのシリカ多孔体。

【請求項8】 請求項2に記載のシリカー界面活性剤ナノ複合体を焼成することにより得られる、不規則的な配列の結晶構造を有し、ブルナウアーーエメットーテーラー(BET)表面積が1000 m²/g 以上で、平均孔径1~2 mのシリカ多孔体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光機能性材料、電子機能性材料、触媒担体、吸着剤などへの応用が可能なシリカー界面活性剤ナノ複合体及びその製造方法、並びに触媒担体、センサー、吸着媒体、包接化合物のホスト等として利用可能なシリカ多孔体に関する。

[0002]

【従来の技術】近年、有機化合物を利用した無機物の構造制御は、新規な形状、構造を有する物質を得る方法として注目されている。特に、界面活性剤を利用した無機種の超微粒子の調製や多孔体の調製等は、基礎、応用両面から特に注目されている。

【0003】ところで、ナノ複合体は、分子やナノメートルサイズのクラスターが媒質によって組織化された複合物質であり、生体系に見られるような精密に設計された物質を構築する上で、また、量子サイズ効果等に起因

する新規な物性の発現が期待できる点で、光・電子機能性材料等として有望な物質である。また、ナノ複合体の中には、機械的強度が向上されたものや熱的性質が変化したものもある。周期的な結晶構造をもつシリカー界面活性剤ナノ複合体フィルムを透明フィルムとして得ることができれば、その複合体フィルムを、光学的機能性材料、電子的機能性材料等に適用することができるため、そのような複合体フィルムの開発が望まれている。また、細孔径(1 mm以上)の揃った、比表面積の高い透明なシリカ多孔体を得ることができれば、触媒担体、センサー、吸着媒体、包接化合物のホスト等として利用することができるので、そのようなシリカ多孔体の開発も望まれている。

【0004】シリカー界面活性剤ナノ複合体の製造方法 としては、層状ケイ酸塩の一種であるカネマイトと界面 活性剤とのイオン交換により複合体を製造する方法 (Yan agisawa, T., Shimizu, T., Kuroda, K. and Kato, C., Bul 1. Chem. Soc. Jpn., 63, 988-992 (1990)、及び、Inagaki, S., Fukushima, Y. and Kuroda, K., J. Chem. Soc. Chem. Co mmun., 680-682(1993)参照) や、シリカゲルと界面活性 剤などを密封した耐圧容器内で水熱合成することにより 複合体を製造する方法 (Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature, 35 9, 710-712(1992) , Beck, J. S. et al., J. Am. Chem. So c., 114, 10834-10843(1992), Monnier, A. et al., Scie nce, 261, 1299-1303(1993), Huo, Q. et al., Nature, 368, 317-321(1994), Huo, Q. et al., Chem. Mater. 6, 1176-1191 (1994) Tanev, P. T., Chibwe, M. and P. innavaia, T. J., Nature, 368, 321-323(1994)、及び、T anev, P.T. and Pinnavaia, T.J., Science, 267, 865-8 67(1995) 参照) が知られている。しかしながら、これ らの方法は操作が複雑である。また、これらの方法によ り得られるシリカー界面活性剤ナノ複合体は微結晶又は 微粉末である。

[0005]

【発明が解決しようとする課題】本発明の課題は、周期 的な結晶構造を有するシリカー界面活性剤ナノ複合体及 びその簡単な製造方法、並びに比表面積の高いシリカ多 孔体を提供することにある。

40 [0006]

【課題を解決するための手段】上記課題を解決すべく鋭意検討した結果、テトラアルコキシシランの加水分解物に直接界面活性剤を混合し、得られた溶液を基材に塗布し、乾燥することにより、周期的な結晶構造をもつシリカー界面活性剤ナノ複合体を得ることを見いだし、本発明を完成した。本発明は、六方晶系に属し、界面活性剤が形成する棒状ミセルをシリカ層が包囲した周期的な結晶構造を有するシリカー界面活性剤ナノ複合体(以下、ナノ複合体1という。)を提供する。

50 【0007】また、本発明は、界面活性剤が形成する棒

1

状ミセルをシリカ層が包囲した不規則な配列の結晶構造を有するシリカー界面活性剤ナノ複合体(以下、ナノ複合体2という。)を提供する。更に、本発明は、テトラアルコキシシランを酸性下で加水分解し、次いで得られた加水分解物に界面活性剤を混合した溶液を基材に塗布し、乾燥する工程を含む、シリカー界面活性剤ナノ複合体の製造方法を提供する。

【0008】更に、本発明は、上記ナノ複合体1を焼成することにより得られる、周期的な結晶構造を有し、ブルナウアーーエメットーテーラー(BET)表面積が1000m²/g以上で、平均孔径1~2 nmのシリカ多孔体を提供する。更に、本発明は、上記ナノ複合体2を焼成することにより得られる、不規則的な配列の結晶構造を有し、ブルナウアーーエメットーテーラー(BET)表面積が1000m²/g以上で、平均孔径1~2 nmのシリカ多孔体を提供する。

【0009】以下、本発明を詳細に説明する。

[0010]

【発明の実施の形態】ナノ複合体1又はナノ複合体2を製造するには、まず、テトラアルコキシシランの加水分解を行う。この加水分解は、酸性下、好ましくはpH1~4にて行う。加水分解を酸性下で行うのは、テトラアルコキシシランの加水分解、縮合速度を制御することにより、界面活性剤混合後に粘性のある溶液を得るためである。pH調整剤としては、フッ酸以外の酸であればいずれのものも使用可能であり、例えば、希塩酸、臭酸、硫酸等が挙げられる。

【0011】テトラアルコキシシランとしては、具体的にはテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が挙げられるが、テトラメ

トキシシランが好適である。また、テトラアルコキシシランとともにメチルトリメトキシシラン等のアルキルトリアルコキシシランを使用することも可能である。テトラアルコキシシランは1種単独で又は2種以上の組み合わせで使用する。

【0012】また、添加する水の量は、テトラアルコキシシラン1モル当たり、好ましくは0.5~20モルであり、更に好ましくは0.5~10モルである。添加する水の量が多すぎると加水分解、縮合が進みすぎてゲル化するという不都合があり、また、少なすぎると続いて添加される界面活性剤が溶解しないという不都合がある。この加水分解は、室温で、通常、数分乃至3時間程度行う。テトラアルコキシシランに水を加えた直後、即ち加水分解初期の段階においては混合物はエマルジョン状であるが、加水分解の進行に伴って均一な溶液になる。

【0013】本発明のナノ複合体を製造する際の最大の特徴は、上記のテトラアルコキシシランの加水分解物に、直接界面活性剤を混合することにある。界面活性剤を添加し、適宜混合物のHを酸性に調整しながら室温で数分間激しく攪拌することにより透明、均一で、粘性のある溶液が得られる。尚、界面活性剤を添加した後、密閉容器中で長時間反応させると、混合物がゲル化し、得られる複合体が非晶質になるため注意が必要である。

【0014】界面活性剤としては、通常、長鎖アルキル 基及び親水基を有する化合物を使用する。長鎖アルキル 基としては、炭素原子数8~18のものが好ましい。ま た、親水基としては、例えば、

[0015]

【化1】

$$-N^{+}-$$
, $-NH_{2}$, $-NO$, $-OH$, $-COOH$

【0016】等が挙げられる。界面活性剤としては、具体的には、下記一般式(1):

 $C_n H_{2n+1} N (CH_3)_3 X$ (1)

(式中、nは8~18の整数であり、Xは、塩化物イオン、臭化物イオン等のハロゲン化物イオン、HSO、又は酢酸イオン等の有機アニオンである。)で表されるアル 40キルアンモニウム塩 (例えば、セチルトリメチルアンモニウムブロマイド);セチルアルコール等のアルキルアルコール;パルミチン酸等の脂肪酸等が挙げられるが、上記一般式(1)で表されるアルキルアンモニウム塩が好適である。

【0017】界面活性剤とテトラアルコキシシランの仕込み組成を変えることにより、ナノ複合体のシリカ層の厚さや熱的安定性を制御することができる。界面活性剤とテトラアルコキシシランの仕込み比(モル)は、 $1:10\sim1:1$ が好ましく、更に $1:6\sim1:3$ が好まし

い。界面活性剤が多すぎると、複合体形成に寄与しない 余剰の界面活性剤結晶が試料中に混在する等の不都合が あり、少なすぎると、複合体形成に寄与しない余剰のシ リカが混在し、またシリカ層が厚くなり構造の規則性が 低下する等の不都合がある。

40 【0018】上記の界面活性剤を混合して得られた溶液を基材に塗布して乾燥することにより、フィルム状又はゲル状の固まりのシリカー界面活性剤ナノ複合体を製造することができる。ナノ複合体1は、上記の界面活性剤を混合して得られた溶液を基材に塗布して、通常0~120℃で、通常10分~1時間乾燥して該基材上に厚さ0.5~10μmのフィルムを形成することにより製造することができる。また、ナノ複合体2は、上記の界面活性剤を混合して得られた溶液を基材に塗布して、通常25~120℃で、通常1~150時間乾燥して該基材上に厚さ1~100μmのフィルムを形成することにより製造することが

できる。基材上に形成されたナノ複合体1のフィルム又はナノ複合体2のフィルムは透明であり、そのまま利用することもでき、剝がして粉末状にして利用することもできる。また、ナノ複合体2のフィルムは自己保持性があるため、基材から剝がしてフィルムとして利用することができる。

【0019】ナノ複合体フィルム形成用の上記基材とし ては、一般的に用いられるものであればいずれのものも 使用でき、例えば、ガラス、石英、アクリル板等が挙げ られ、板状、皿状等のいずれの形状のものも使用でき る。また、基材に前記溶液を塗布し、乾燥する方法とし ては、例えば、スピンコート法、キャスティング法、デ ィップコート法等が挙げられる。スピンコート法による 場合、スピナー上に基板を置き、該基板に試料を滴下し て 500~5000rpm 、好ましくは2000~5000rpm で回転さ せることにより、均一な膜を形成することができる。得 られるスピンコート膜は、スピンコートの条件により1 μ mから50 μ mの膜厚に調節することができる。キャス ティング法により得られるキャスト膜は、更に厚くする ことができる。例えば、前記溶液を、ペトリ皿等の容器 に流し込み、乾燥することにより、厚さ1μm乃至 100 μmのキャスト膜を得ることが可能である。

【0020】本発明のナノ複合体1について Si固体N MR及びIRにより分析した結果、テトラアルコキシシ ランは加水分解後、縮合してシロキサンネットワークを 形成していることが確認された。また、X線回折分析な どの結果から、このナノ複合体1は、界面活性剤が形成 する棒状ミセル(直径2~4nm)を厚さ1~2nmのシリ カ層が包囲した周期的な結晶構造を有するものであるこ とが確認された。しかも、このナノ複合体1は、六方晶 系に属するものであることが確認された。更に、ケイ素 原子と界面活性剤のモル比は、4:1であり、また、前 駆体溶液にTMOS及び界面活性剤が適切な比率で含有され る場合、全てのケイ酸塩及び界面活性剤がナノ複合体に 転化されることも確認された。また、上記したように、 テトラアルコキシシラン加水分解物に界面活性剤を混合 した後、密閉容器中で混合物がゲル化するまで長時間反 応させると、得られる複合体が非晶質になるということ から、溶液中の界面活性剤の状態は明らかではないが、 このような周期的な結晶構造はその溶液からの揮発性成 分(テトラアルコキシシランの加水分解により発生する アルキルアルコール) の蒸発により形成されるものと考 えられる。一方、ナノ複合体2は、X線回折分析から、 界面活性剤が形成する棒状ミセル (直径2~4 nm) をシ リカ層が包囲した不規則な配列の結晶構造を有すること が確認された。

【0021】上記ナノ複合体1を、加熱して界面活性剤を除去することにより、周期的な結晶構造を有するシリカ多孔体(以下、シリカ多孔体1という。)を製造することができる。また、ナノ複合体2を加熱して界面活性

剤を除去することにより、不規則的な配列の結晶構造を有するシリカ多孔体(以下、シリカ多孔体2という。)を製造することができる。加熱温度は、いずれも好ましくは500~1000℃であり、更に好ましくは550~700℃である。フィルム状のシリカー界面活性剤ナノ複合体をそのまま使用した場合、フィルム状のシリカ多孔体を得ることができ、また、シリカー界面活性剤ナノ複合体を粉末状にして加熱することにより、粉末状のシリカ多孔体を得ることができる。シリカ多孔体1及びシリカ多孔体を得ることができる。シリカ多孔体1及びシリカ多孔体2は、いずれもブルナウアーーエメットーテーラー

(BET) 表面積が、 $1000m^2/g$ 以上と高く(BET表面積の上限は、通常、 $1200m^2/g$ 程度である。)、平均孔径 $1\sim2\,nm$ であり、細孔径の揃ったものである。シリカ多孔体1、2が得られる。

[0022]

【実施例】

20

50

【実施例1】テトラメトキシシラン(TMOS)1gに、純水 236mgを添加して(TMOS:水のモル比は1:2)、pH $1\sim4$ (希塩酸で調整)にて、室温で約1時間加水分解を行った。純水添加時はエマルジョンであったが、数分で透明、均一な溶液になった。得られた加水分解物に界面活性剤としてヘキサデシルトリメチルアンモニウム塩化物(C_{16} H_{33} $N(CH_{3})$ $_{3}$ C1、以下C16TACという。) 526mg [TMOS:C16TAC(モル比)は4:1である〕を添加し、希塩酸を用いてpHを3に保持しながら数分間激しく攪拌した。このようにして、透明、均一で、粘性のある前駆体溶液が得られた。

【0023】前駆体溶液を、ガラス基板上にスピンコートし、空気中で乾燥することにより該基板上に厚さ約4 μ mの透明フィルムが形成された。その透明フィルムについてX線回折分析を行った。そのX線回折パターンを図1に示す。このX線回折パターンは、d値が 3.7 μ mの非常に鋭い回折ピークを示し、4.0 μ mの5 μ mの2 μ mの5 μ mの5 μ mの6 μ mの7 μ mの6 μ mの6 μ mの7 μ mの6 μ mの7 μ mの6 μ mの7 μ mの7 μ mの7 μ mの7 μ mの6 μ mの7 μ mの7 μ mの7 μ mの7 μ mの8 μ mの7 μ m

【0024】 (実施例2) 本実施例において、C16TACの代わりにドデシルトリメチルアンモニウム塩化物 (Cn2 H25 N(CH₅),C1、以下C12TACという。)、テトラデシルトリメチルアンモニウム塩化物 (Cn4 H25 N(CH₅),C1、以下C14TACという。)又はヘキサデシルトリメチルアンモニウム臭化物 (Cn5 H25 N(CH₅),Br、以下C16TABという。)を使用した以外は実施例1と同様の方法で、それぞれ透明なシリカーC12TACナノ複合体フィルム、シリカーC14TACナノ複合体フィルム及びシリカーC16TABナノ複合体フィルムを得た。

【0025】得られたシリカーC12TACナノ複合体フィル ム及びシリカーC14TACナノ複合体フィルムそれぞれにつ いてX線回折分析を行った。そのX線回折パターンを、 それぞれ図2の(a) 及び(b) に示す。それらフィルムは 全てヘキサゴナル相に帰するX線反射を示した。 d m 値(C12TAC及びC14TACナノ複合体についてそれぞれ 3.2 及び 3.6nm) は界面活性剤のアルキル鎖長によって変化 している。このことは、界面活性剤凝集体がナノ複合体 の構造において重要な役割を演ずるということを裏付け ている。また、界面活性剤としてC16TABを用いることに より得られたヘキサゴナルのナノ複合体のX線回折分析 を行ったところ、d₁₀₀ 値が 3.9nmであり、シリカーC1 6TACナノ複合体の d_{1∞} 値(3.7nm) よりもわずかに大き い。この測定結果はハロゲン化物イオンがシリカと界面 活性剤の親水基との界面に位置することを示唆するもの である。

【0026】〔実施例3〕実施例1と同様の方法で調製した前駆体溶液をガラス基板上にキャスティングし、60℃で1時間乾燥することにより厚さ5μmのゲル状の生成物を得た。その生成物は亀裂を生じ、平均約3mmの小さい断片になった。次に、そのゲル状生成物を基板から

$$Q_{s}: si0-\frac{si}{si}-0si$$

$$Q_{s}: si0-\frac{si}{si}$$

【0030】に帰属されるピークが、-110ppm付近に 【0031】 【化3】

$$\begin{array}{ccc} & & \text{Si} & \\ O & \\ O & \\ -\frac{\text{Si}}{1} - 0 \text{Si} \\ O & \\ -\frac{\text{Si}}{1} \end{array}$$

【0032】に帰属されるピークが観察された(図4参照)。上記のIR及びNMRの分析結果から、シロキサンネットワークが形成されていることがわかる。尚、NMRスペクトルで観察されたピークはブロードであることから、シロキサン結合角に多少のバラツキがあり、シリカ骨格は局所的にはガラスに近い構造であることもわかる。更に、上記ゲル状生成物について熱重量測定による分析を行ったところ、200℃から、C16TACの量に相当する重量損失を示した。また、示差熱分析を行ったところ、そのDTA 曲線は 300℃付近にC16TACの酸化分解による発熱ピークを示した。

【0033】これらの分析結果から、TMOSの大部分がシリカに転化し、定量的にC16TACと複合してヘキサゴナルのシリカー界面活性剤ナノ複合体を形成することが示された。全ての出発成分が生成物に転化されたことは本発明の方法の利点として特筆すべきことである。

取り除き、砕いて粉末にした。粉末状のシリカーC16TACナノ複合体のX線回折パターンを図2の(c) に示す。そのX線回折パターンもdcoo 値が 3.7nmであるヘキサゴナル相に指数付けられた。その粉末試料を下記のキャラクタリゼーション及び多孔性材料への転換に用いた。

【0027】キャラクタリゼーション

上記ゲル状生成物の組成はC (38.0%); N (2.3 %); C1 (5.9%); 灰 (41.0%) であった。実測の C: N比(19.3)はC16TACの比(19.0)とほぼ一致した。Si: C16TAC比(4.1:1.0) も予想値(4.0:1.0) とほぼ一致 し、界面活性剤: C1の比は1.0:1.0 であった。

【0028】また、上記ゲル状生成物について赤外分光分析を行ったところ、そのIRスペクトルは、C16TACに特徴的な吸収バンド (C-H 伸縮振動など)及びシリカ (1230及び1080cm 1 付近のSi-O-Si 対称伸縮振動及び 460cm 1 付近のSi-O-Si 変角振動など) に特徴的な吸収バンドを示した。また、上記ゲル状生成物について 2 Si固体NMR分析を行ったところ、-100ppm付近に

[0029]

20 【化2】

(Rは水素原子又はアルキル基)

【0034】多孔体への転換

上記の粉末状のシリカーC16TACナノ複合体を空気中、 8 73Kで1時間加熱して、複合体からC16TACを除去した。 30 焼成生成物のX線回折パターンを図2の(d) に示す。回 折強度は焼成により変化しておらず、界面活性剤の除去後でさえ規則的な構造が維持されていることがわかる。 焼成生成物のd1∞ 値(2.9nm)は焼成前のd1∞ 値よりも約0.8nm小さい。焼成によりd1∞ 値が小さくなることはMCM-41材料系についても観察されていたが、その収縮の原因は今のところ明らかではない。

【0036】 [実施例4] 実施例1と同様の方法で得た 前駆体溶液をペトリ皿に流し込み、30℃で24時間乾燥す ることにより、厚さ約30μmの透明な自己保持性のフィ ルムが得られた。そのフィルムのX線回折パターンはd 値約 4.0nmの幅の広い回折ピークを示した (図5参 照)。 X線回折ピークは、実施例1のものと比較してき わめて幅が広く、そのX線回折パターンには他には反射 は観察されない。本実施例の複合体が幅の広い回折ピー クを示すことは、その複合体がC16TACの円筒形ミセルが シリカに囲まれた不規則配列からなることを示唆するも のである。尚、このフィルムを空気中、 873Kで焼成し た後においてもそのフィルムのモルホロジー及び透明性 が保持されたことは特筆すべきことである。また、焼成 試料のX線回折パターンもd値 3.0nmの一つの回折ピー クを示した。その熱処理フィルムのBET表面積は1100 m^2/g である。このようにして、透明な自己保持性の多 孔体フィルムが得られた。

[0037]

【発明の効果】本発明の周期的な結晶構造を有するシリカー界面活性剤ナノ複合体及びシリカ多孔体は、簡単に製造することができ、しかもそれらは透明なフィルム又は大きなゲル状の固まりとしても得ることができる。ま

た、前駆体溶液中のテトラアルコキシシラン及び界面活性剤の含有割合を調節することにより、ほとんど全てのケイ酸塩及び界面活性剤をナノ複合体に転化することができる。このようなシリカー界面活性剤ナノ複合体は、光活性な色素を複合化することにより光学的機能材料として、また、触媒担体、修飾電極等の材料として有用である。また、本発明のシリカ多孔体は、比表面積が大きいことから、特にその透明フィルムは、触媒担体、センサー、吸着媒体、包接化合物のホスト等として、特に光り機能をもつセンサー等として用いることができる。

【図面の簡単な説明】

【図1】実施例1で得られた透明ナノ複合体フィルムの X線回折パターンを示す図である。

【図2】実施例2で得られた透明ナノ複合体フィルム、 並びに実施例3で得られた粉末状ナノ複合体及び焼成生 成物のX線回折パターンを示す図である。

【図3】実施例3で得られた焼成生成物の77Kにおける 窒素の吸着/脱離の等温線を示す図である。

【図4】実施例3で得られた透明ナノ複合体の²³ Si固体 20 NMRスペクトルを示す図である。

【図5】実施例4で得られた透明ナノ複合体フィルムの X線回折パターンを示す図である。

【図1】

シリカーC16TACナノ複合体フィルムのX線回折パターン

【図2】

X銀四折パターン

[図4]

(77K)

