Name: Tomas Rotbauer Student Number: 1003963124

ECE421 - Assignment 2: Neural Networks

Part 1 - Neural Networks Using Numpy

1.1 Helper Functions

```
1.
   def relu(x):
       return np.maximum(x, 0)
2.
   #Accepts matrix with rows of o vectors
   def softmax(x):
       #Prevent overflow by normalizing
       x \rightarrow np.amax(x, axis=1)[:, None]
       return np.exp(x) / np.sum(np.exp(x), axis=1)[:,None]
3.
   def computeLayer(X, W, b):
       return W.dot(X) + b[:, None]
4.
   def CE(target, prediction):
       #Avoid taking unnecessary logs by doing row-wise sum of the
   matrix product
       pred of tar = np.sum(target*prediction, axis=1)
       return (-1/target.shape[0])*np.sum(np.log(pred of tar))
```

5. The following is a derivation of the gradient of the cross entropy loss function with respect to the input to the softmax function **o**. First, simplify the loss function with respect to the one non-zero term, call it the yth term:

$$L = -(1) \times log(p_y)$$
$$= -log \frac{e^{o_y}}{\sum_{k=1}^{K} e^{o_k}}$$

Now, the gradient must account for the partial derivatives in terms of both o_y and o_z , $z \neq y$:

$$\frac{dL}{do_{y}} = \frac{-\sum_{k=1}^{K} e^{o_{k}}}{e^{o_{y}}} \times \frac{e^{o_{y}} (\sum_{k=1}^{K} e^{o_{k}}) - e^{2o_{y}}}{(\sum_{k=1}^{K} e^{o_{k}})^{2}}$$
$$= \frac{-(\sum_{k=1}^{K} e^{o_{k}}) + e^{o_{y}}}{\sum_{k=1}^{K} e^{o_{k}}}$$

Name: Tomas Rotbauer Student Number: 1003963124

$$= -1 + \frac{e^{oy}}{\sum\limits_{k=1}^{K} e^{ok}}$$

$$\frac{dL}{doz} = \frac{-\sum\limits_{k=1}^{K} e^{ok}}{e^{oy}} \times \frac{-e^{oz+oy}}{(\sum\limits_{k=1}^{K} e^{ok})^2}$$

$$= \frac{e^{oz}}{\sum\limits_{k=1}^{K} e^{ok}}$$

Noting the similarity between the two cases, the overall gradient simplifies to the following high-level expression:

$$\nabla_{\overline{o}}L = softmax(\overline{o}) - \overline{y}$$

Where \bar{y} is a vector for the one-hot encoded label. The following function computes the gradient derived:

```
def gradCE(target, prediction):
    return softmax(prediction) - target
```

1.2 Backpropagation Derivation

1. Using the gradient of the cross entropy loss function with respect to the input to the softmax function \mathbf{o} , the gradient with respect to the output layer weights $\mathbf{W}_{\mathbf{o}}$ can be computed with the chain rule:

$$\nabla \frac{1}{W_o} L = \nabla_{\overline{o}} L \cdot \frac{do}{dW}$$

$$= \left(\frac{e^{\overline{o}}}{\sum\limits_{k=1}^{K} e^{o_k}} - \overline{y}\right) \cdot \overline{h}^T$$

$$= \left(softmax(\overline{o}) - \overline{y}\right) \cdot \overline{h}^T$$

Note that this gradient has the form of a K by H matrix, or equivalently can be thought of as a set of K number of H sized vectors.

2. Similarly to the derivation above, the following is a derivation of the cross entropy loss function with respect to the output layer biases:

$$\nabla \frac{1}{b_o} L = \nabla \frac{1}{o} L \cdot \frac{do}{db}$$

$$= \left(\frac{e^{\frac{\overline{o}}{o}}}{\sum\limits_{k=1}^{K} e^{\frac{\overline{o}}{o}_k}} - \overline{y}\right) \circ \overline{1}$$

$$= softmax(\overline{o}) - \overline{y}$$

3. In order to find the gradient of the cross entropy loss function with respect to the hidden layer weights \mathbf{W}_{h} , the loss was expressed in terms of the hidden layer weights \mathbf{W}_{h} and the derivative taken directly. The one non-zero loss term has subscript y.

$$\begin{split} L &= -log(\frac{N}{D}) \\ &= -log(\frac{exp(W_y^{(o)} \cdot ReLU(W^{(h)}\overline{x} + b^{(h)}) + b_y^{(o)})}{\sum\limits_{k=1}^{K} exp(W_k^{(o)} \cdot ReLU(W^{(h)}\overline{x} + b^{(h)}) + b_k^{(o)})}) \end{split}$$

Then:

$$\frac{dL}{dW_{ij}^{(h)}} = -\frac{D}{N} \times \left[\frac{N \times ReLU'(W_{ij}^{(h)} \bar{x} + b_{i}^{(h)}) \cdot (x_{j})(W_{ij}^{(o)}) \times D}{D^{2}} - \frac{D \times ReLU'(W_{ij}^{(h)} \bar{x} + b_{i}^{(h)}) \cdot (x_{j})(W_{ki}^{(o)}) \times N}{D^{2}} \right]$$

$$= -ReLU'(\bar{h}) \cdot \left(\frac{x_{j}W_{yi}^{(o)} \sum_{l=1}^{K} exp(o_{l})}{\sum_{k=1}^{K} exp(o_{l})} - \frac{\sum_{l=1}^{K} exp(o_{l})x_{j}W_{li}^{(o)}}{\sum_{k=1}^{K} exp(o_{k})} \right)$$

$$= ReLU'(\bar{h}) \cdot x_{j} \left(\sum_{l=1}^{K} \frac{exp(o_{l})W_{li}^{(o)}}{\sum_{l=1}^{K} exp(o_{k})} - W_{yi}^{(o)} \right)$$

Here is the equivalent high-level vectorized expression:

$$ReLU'(\overline{h}) \circ \left[\left(\left(W^{o}\right)^{T} \cdot softmax(\overline{o}) - \left(W_{y}^{(o)}\right)^{T}\right) \cdot \overline{x}^{T}\right]$$

Similarly to the derivation above, The following expression is the gradient of the cross entropy loss function with respect to the hidden layer biases.

$$\frac{dL}{db_i^{(h)}} = ReLU'(\overline{h}) \bullet \left(\sum_{l=1}^K \frac{exp(o_i)W_{li}^{(o)}}{\sum_{k=1}^K exp(o_k)} - W_{yi}^{(o)}\right)$$

This is the equivalent high-level vectorized expression:

$$ReLU'(\overline{h}) \circ \left[(W^{o})^{T} \bullet softmax(\overline{o}) - \left(W_{y}^{(o)} \right)^{T} \right]$$

1.3 Learning

The following (Python) function was used for training the neural network. (Runtime for 200 epochs was roughly 5 minutes).

```
def gradDescent():
    #Constants
H = 1000
K = 10
F = 784
```

```
EPOCHS = 200
gamma = 0.9
alpha = 0.1
N = 10000
#Training and validation data/target extraction
Data = loadData()
data = Data[0].reshape(N, 784)
validData = Data[1].reshape(6000, 784)
Targets = convertOneHot(Data[3], Data[4], Data[5])
target = Targets[0]
validTarget = Targets[1]
del Data
del Targets
#Initialization of weights and biases
Wo = np.random.normal(0, np.sqrt(2/H), (K, H))
Wh = np.random.normal(0, np.sqrt(2/F), (H, F))
bo = np.zeros(K)
bh = np.zeros(H)
#Initialization of V matrices
VWo = np.full((K, H), 1e-5)
VWh = np.full((H, F), 1e-5)
Vbo = np.full(K, 1e-5)
Vbh = np.full(H, 1e-5)
#Data containers used for plotting
xpoints = np.arange(1, EPOCHS+1)
ytrain = []
yvalid = []
#Local function for computing a forward pass.
#Training is a boolean (set false for validation).
def forward propagation(training):
   nonlocal data, Wh, bh, Wo, bo
    if training:
        Sh = computeLayer(data.T, Wh, bh)
    else:
        Sh = computeLayer(validData.T, Wh, bh)
```

```
Xh = relu(Sh)
        So = computeLayer(Xh, Wo, bo)
        Xo = softmax(So.T)
        return Sh, Xh, So, Xo
    #Main training loop
    for epoch in range(EPOCHS):
        #Forward propagation
        Sh, Xh, So, Xo = forward propagation (True)
        #Gradients/backpropagation
        grad bo = gradCE(target, So.T)
        grad Wo = grad bo.T.dot(Xh.T)/N
        grad bo = np.sum(grad bo, axis=0)/N
        grad bh = (Wo.T.dot(Xo.T) - Wo.T.dot(target.T))*np.array(Xh,
dtype=bool)
        grad Wh = grad bh.dot(data)/N
        grad bh = np.sum(grad bh, axis=1)/N
        #Gradient descent with momentum
        VWo = gamma*VWo + alpha*grad Wo
        VWh = gamma*VWh + alpha*grad Wh
        Vbo = gamma*Vbo + alpha*grad bo
        Vbh = gamma*Vbh + alpha*grad bh
        #Update Weights and biases
        Wo -= VWo
       Wh -= VWh
       bo -= Vbo
       bh -= Vbh
        #Add new plotting data
        ytrain.append(accuracy(target, Xo))
        yvalid.append(accuracy(validTarget,
forward propagation(False)[3]))
    #Plot findings. Plots shown/labeled in main() function
    plt.plot(xpoints, ytrain, label = "Training")
    plt.plot(xpoints, yvalid, label = "Validation")
```

The following function was used for computing the accuracy for a given set of predictions and targets:

```
def accuracy(target, prediction):
    #N = number of examples
    N = target.shape[0]
    return np.sum(target[np.arange(N), np.argmax(prediction, axis=1)])/N
```

The accuracy and loss was plotted against epochs for both training and validation. The hidden unit size (H) was set to 1000, momentum parameter (γ) was set to 0.9, and learning rate (α) was set to 0.1.

