(Re)constructing Code Loops

American Mathematical Monthly 121:1

Abstract. The Parker loop is a central extension of the extended binary Golay code. It the prototypical example of a general class of nonassociative structures known as code loops, which have been studied from a number of different algebraic and combinatorial perspectives. This expository article aims to also highlight an experimental approach to computing in code loops, by a combination of a small amount of precomputed information and making use of the rich identities that code loops' twisted cocycles satisfy. As a byproduct one can reconstruct the multiplication in the Parker loop from a mere fragment of its twisted cocycle, and we have found relatively large subspaces of the Golay code over which the Parker loop splits as a direct product.

1. INTRODUCTION. Associativity is one of the standard axioms for groups, along with inverses and the identity element. At first it can be difficult to imagine what algebraic structures could be like that are not associative. However, we are all familiar with the nonassociative operation of exponentiation: $(2^3)^2 \neq 2^{(3^2)}$, for example However, exponentiation is an ill-behaved binary operation, with neither (a two-sided) inverse nor identity element, hence very much unlike a group. One class of nonassociative structures as close to being a group as possible, but lacking associativity, are *Moufang* loops, which are more or less "groups without full associativity" (more techically: unital quasigroups, satisfying the Moufang identities), having an identity element and two-sided inverses. This article is concerned with a special class of Moufang loops known as *code loops*.

The first published example of a code loop appeared as a step in John Conway's construction of the Monster sporadic simple group [3]. This loop originally appeared in an unpublished manuscript by Richard Parker. A general study of loops of this type was later then made by Robert Griess [6], who gave them their name, as they can be built from doubly-even binary codes. The Parker loop is then constructed by starting with the famous extended Golay code. Griess also proved the existence of code loops by an algorithmic construction, which we adopt below. More recent approaches will be discussed in section 6.

Note, however, that both Conway's and Greiss's treatment of the Parker loop is rather implicit. The point of the present paper is to give a concrete and efficient approach to code loops in general, and the Parker loop in particular. Since the latter has 8192 elements, each of which is described by 13 bits, the multiplication table is essentially a 104MB lookup tabel with approximately 16 million entries.

It is not obvious, on first consideration, that code cocycles even exist, or how many there are for a given doubly even code. However, Griess gave a proof that inductively constructs code cocycles, and counts how many arbitrary choices can be made along the way, proving that code cocycles do indeed exist. The number of possible code cocycles quickly becomes fearsome: 2^{2^k-k-1} , for $k=\dim \mathcal{C}$ ([6, Theorem 10]). For the 4-dimensional Hamming code given above, this is 512, but for the Golay code there are 2^{4083} possible code cocycles, a number with 1230 digits in base 10. Even though there are many code cocycles, finding even one by brute force is infeasible, due to needing to verify more than 2^{3k} identities for each candidate. The set of all possible functions $\mathcal{C} \times \mathcal{C} \to \mathbb{F}_2$ has 2^{2^k} elements; for the Golay code (k=12) this number is astronomical.

 $(\approx 16 \times 10^6)$.

code loops sandbox.tex

The theory of codes makes for a fascinating study. At their heart, codes are "merely" subspaces of vector spaces over some small finite field, with certain combinatorial properties. Why do such things exist? Like a lot of exceptional objects in combinatorics, it can come down to "because." This makes constructing codes sometimes more of an art than something systematic. In this article, we are going to consider the construction of certain structures closely related to codes, called *code loops*. We will only consider the case where the base field is $\mathbb{F}_2 = \{0, 1\}$, and refer to its elements as bits.

The first published example of a code loop appeared as a step in John Conway's construction of the Monster sporadic simple group [3]. The code loop Conway used originally appeared in an unpublished manuscript by Richard Parker. A general study of code loops was then made by Robert Griess [6]. Griess also proved the existence of code loops by an algorithmic construction, starting from a particular type of code. More recent approaches will be discussed below.

Recall that the elements (or *words*) in a code C, being vectors, can be combined by addition—this is a group operation and hence associative. The elements of a code loop consist of a pair: a code word and one extra bit. The extra bit twists the addition so that combination of code loop elements is a nonassociative operation: $(x \star y) \star z \neq$ $x \star (y \star z)$ in general.

More specifically, while addition of words in a code is performed by coordinatewise addition in \mathbb{F}_2 (bitwise XOR), the algebraic operation in a code loop is not so easily described. The code loop operation can be reconstructed from a function \mathcal{C} × $\mathcal{C} o \mathbb{F}_2$ satisfying certain identities, called a *twisted cocycle*. It is the computation and presentation of these functions that will mainly concern us in this article, using Griess's method [6, proof of Theorem 10]. As a result, we will observe some curious features of the Parker loop, obtained via experimentation and, it seems, previously unknown.

2. EXTENSIONS AND COCYCLES. As a warm-up, we will describe a more familiar structure using the techniques that will be used later. Recall that the quaternion group Q_8 is the group consisting of the positive and negative basis quaternions:

$$Q_8 = \{1, i, j, k, -1, -i, -j, -k\}$$

The elements of Q_8 satisfy the identities

$$i^2 = j^2 = k^2 = -1, \quad ij = k.$$

There is a surjective group homomorphism $\pi\colon Q_8 \to \mathbb{F}_2 \times \mathbb{F}_2 =: V_4$ (the Klein 4-group), sending i to (1,0) and j to (0,1), and the kernel of π is the subgroup $\{1,-1\}\simeq \mathbb{F}_2$. Moreover, this kernel is the *center* of Q_8 , the set of all elements that commute with every other element of the group. This makes Q_8 an example of a central extension: $\mathbb{F}_2 \to Q_8 \to V_4$.

Now Q_8 is a nonabelian group, but both \mathbb{F}_2 and V_4 are abelian. One might think that it shouldn't be possible to reconstruct Q_8 from the latter two groups, but it is! That is, if we are given some extra information that uses only the two abelian groups. There is a function $s: V_4 \to Q_8$, called a *section*, defined by

$$(0,0) \mapsto 1$$
 $(1,0) \mapsto i$ $(0,1) \mapsto j$ $(1,1) \mapsto k$.

This *almost* looks like a group homomorphism, but it is not, as (1,0) + (1,0) = (0,0)in V, but $s(1,0)s(1,0)=i^2\neq 1=s(0,0)$ in Q_8 . We can measure the failure of s to be a group homomorphism by considering the two-variable function

American Mathematical Monthly 121:1

$$d: V_4 \times V_4 \to \mathbb{F}_2$$

defined by $(-1)^{d(v,w)} = s(v)s(w)s(v+w)^{-1}$. This function is called a *cocycle*. It is a nice exercise to see that $s(v)s(w)s(v+w)^{-1}$ is always ± 1 , so that this definition makes sense. The values of d(v, w) are given as

$v \setminus w$	00	10	01	11
00	0	0	0	0
10	0	1	1	0
01	0	0	1	1
11	0	1	0	1

where we write 00 for (0,0), 10 for (1,0), and so on. If s were a homomorphism, d would be the zero function. One can check that d satisfies the *cocycle identities*

$$d(v, w) - d(u + v, w) + d(u, v + w) - d(u, v) = 0$$

for all triples $u, v, w \in V_4$. It is also immediate from the definition that d(0,0) = 0. An alternative visualization is given in Figure 1.

Figure 1. A 4×4 array giving the values of the cocycle $d: V_4 \times V_4 \to \mathbb{F}_2$, with white = 0, black = 1. The order of the row/colum labels is 00, 10, 01, 11.

The reason for this somewhat mysterious construction is that we can build a bijection of sets using s and the isomorphism $(\mathbb{F}_2,+) \simeq (\{1,-1\},\times)$, namely the composite

$$\phi: \mathbb{F}_2 \times V_4 \simeq (\{1\} \times V_4) \cup (\{-1\} \times V_4) \longrightarrow \{1, i, j, k\} \cup \{-1, -i, -j, -k\} = Q_8$$

Now, if we define a new product operation using the cocycle d on the underlying set of $\mathbb{F}_2 \times V_4$ by

$$(s, v) *_d (t, w) := (s + t + d(v, w), v + w),$$

then the cocycle identities ensure that this is in fact associative and further, a group operation. Finally, ϕ can be checked to be a homomorphism for the group operation on Q_8 and for $*_d$, hence is a group isomorphism.

Thus we can reconstruct, at least up to isomorphism, the nonabelian group Q_8 from the two abelian groups V_4 and \mathbb{F}_2 , together with the *cocycle*

$$d: V_4 \times V_4 \to \mathbb{F}_2.$$

If we didn't know about the group structure of Q_8 already, we could construct it from scratch using d. We can also build loops (particularly code loops) in the same way, which we will now outline.

3. TWISTED COCYCLES AND LOOPS. The construction in the previous section is a fairly typical case of reconstructing a central extension from a cocycle (although in general one does not even need the analogue of the group V_4 to be abelian). However, we wish to go one step further, and construct a structure with a nonassociative product from a pair of abelian groups: the group \mathbb{F}_2 and additive group of a vector space V over \mathbb{F}_2 . Instead of a cocycle, we use a twisted cocycle: a function $\alpha \colon V \times V \to \mathbb{F}_2$ like d that instead satisfies

$$\alpha(v, w) - \alpha(u + v, w) + \alpha(u, v + w) - \alpha(u, v) = f(u, v, w)$$

for a nonzero twisting function $f: V \times V \times V \to \mathbb{F}_2$. We will assume that α satisfies $\alpha(0,v)=\alpha(v,0)=0$ for all $v\in V$, a property that holds for the map d in the previous section. From a twisted cocycle α the set $\mathbb{F}_2 \times V$ can be given a binary operation $*_{\alpha}$:

$$(s, v) *_{\alpha} (t, w) := (s + t + \alpha(v, w), v + w).$$
 (1)

We denote the product $\mathbb{F} \times V$ of sets equipped with this binary operation by $\mathbb{F}_2 \times_{\alpha} V$. If the twisting function is zero, then α is a cocycle, $*_{\alpha}$ is an associative operation, and $\mathbb{F}_2 \times_{\alpha} V$ reduces to a group.

Recall that a *loop* is a set L with a binary operation $\star : L \times L \to L$, a unit element $e \in L$ such that $e \star x = x \star e = x$ for all $x \in L$, and such that for each $z \in L$, the functions $r_z(x) = x \star z$ and $\ell_z(x) = z \star x$ are bijections $L \to L$. Informally, this means that every element $z \in L$ has a left inverse and a right inverse for \star , and these are unique—but may be different in general. The following is a worthwhile exercise using the twisting function and the assumption that $\alpha(0, v) = \alpha(v, 0) = 0$.

Lemma 1. The operation $*_{\alpha}$ makes $\mathbb{F}_2 \times_{\alpha} V$ into a loop, with identity element $(0,\underline{0})$, for 0 the zero vector in V. There is a homomorphism $\pi: \mathbb{F}_2 \times_{\alpha} V \to V$ that projects onto the second factor, and whose kernel is $\mathbb{F}_2 \times \{0\}$.

Groups are examples of loops, but they are, in a sense, the uninteresting case. Arbitrary loops are quite badly behaved: their product is nonassociative in general. But there is a special nonassociative case, introduced by Ruth Moufang [10], with better algebraic properties.

Definition. A Moufang loop is a loop (L, \star) satisfying the identity

$$x \star (y \star (x \star z)) = ((x \star y) \star x) \star z$$

for all choices of elements $x, y, z \in L$.

The most famous example of a Moufang loop is probably the set of non-zero octonions under multiplication. A key property of a Moufang loop L is that any subloop $\langle x,y\rangle < L$ generated by a pair of elements x,y is in fact a group. As a corollary, powers of a single element are well-defined, and do not require extra bracketing: $x \star (x \star x) = (x \star x) \star x =: x^3$, for example. Additionally, the left and right inverses always agree in a Moufang loop, so that for each $x \in L$, there is a unique x^{-1} such that $x \star x^{-1} = x^{-1} \star x = e$. Important for us, code loops, defined below as a special case of the construction of $\mathbb{F} \times_{\alpha} V$, turn out to be Moufang.

Example 1. Let $V = (\mathbb{F}_2)^3$. The 16-element Moufang loop $M := M_{16}(C_2 \times C_4)$ of [1, Theorem 2] is isomorphic to $\mathbb{F}_2 \times_{\mu} V$, where $\mu \colon V \times V \to \mathbb{F}_2$ is the twisted cocycle given by the 8×8 array of bits in Figure 2.

American Mathematical Monthly 121:1

Figure 2. Twisted cocycle for the Moufang loop M of Example 1; white = 0, black = 1. The order of the row/colum labels is 000, 100, 010, 110, 001, 101, 011, 111.

Notice that the first four columns/rows correspond to the subgroup $U \subset V$ generated by 100 and 010, and that the restriction of μ to $U \times U$ is identically zero (i.e., white).

This means that the restriction $M|_{U} < M$ —the subloop of M whose elements are mapped to U by $M \to V$ —is isomorphic to the direct product $\mathbb{F}_2 \times U$, using the definition (1) of the product, and in particular is a group.

4. CODES AND CODE LOOPS. To describe the twisting function f for our code loops, we need to know about some extra operations that exist on vector spaces over the field \mathbb{F}_2 . For W an n-dimensional vector space over \mathbb{F}_2 and vectors $v, w \in W$, there is a new vector $v \& w \in W$ given by

$$v \& w := (v_1 w_1, v_2 w_2, \dots, v_n w_n).$$

If we think of such vectors as binary strings, then this operation is bitwise AND. Note that if we take a code $\mathcal{C} \subset (\mathbb{F}_2)^n$, then \mathcal{C} is not guaranteed to be closed under this operation. The other operation takes a vector $v \in W$ and returns its weight: the sum, as an integer, of its entries: $|v| := v_1 + \cdots + v_n$. Equivalently, it is the number of nonzero entries in v.

The twisting function is then a combination of these two, namely f(u, v, w) :=|u & v & w|. However, as alluded to above, we are going to ask that further identities hold. For these identities to make sense we need to start with a code with the special property of being doubly even.

Definition. A code $\mathcal{C} \subset (\mathbb{F}_2)^n$ is *doubly even* if for every word $v \in \mathcal{C}$, |v| is divisible by 4.

Example 2. The *Hamming* (8,4) *code* is the subspace $\mathcal{H} \subset (\mathbb{F}_2)^8$ spanned by the rows of the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

and is doubly even.

A more substantial example is given by the Golay code.

Example 3. The (extended binary) Golay code $\mathcal{G} \subset (\mathbb{F}_2)^{24}$ is the span of the following (row) vectors, denoted b_1, \ldots, b_6 (left) and b_7, \ldots, b_{12} (right):

000110000000010110100011	101001011100111001111111
10100111110110111111110001	100000011100001001001100
000100000000100100111110	000001000000111001001110
010000000010000110101101	100000001000111000111000
000000000010010101010111	100000000100101000010111
100000000000100111110001	011011000001111011111111

This basis is different from the more usual ones (e.g., [4, Figure 3.4]), which can be taken as the rows of a 12×24 matrix whose left half is the 12×12 identity matrix. Our basis, however, allows us to demonstrate some interesting properties.

The inclusion/exclusion formula applied to counting nonzero entries allows us to show that, for all v and w in any doubly even code C,

$$|v + w| + |v \& w| = |v| + |w| - |v \& w|$$
.

In other words: $|v \& w| = \frac{1}{2}(|v| + |w| - |v + w|)$, which implies that |v & w| is divisible by 2. Thus for words v, w in a doubly even code, both $\frac{1}{4}|v|$ and $\frac{1}{2}|v \& w|$ are integers.

Definition (Griess [6]). Let \mathcal{C} be a doubly even code. A *code cocycle*¹ is a function $\theta \colon \mathcal{C} \times \mathcal{C} \to \mathbb{F}_2$ satisfying the identities

$$\theta(v,w)-\theta(u+v,w)+\theta(u,v+w)-\theta(u,v)=|u\ \&\ v\ \&\ w|\pmod 2; \quad \text{(2)}$$

$$\theta(v, w) + \theta(w, v) = \frac{1}{2} |v \& w| \pmod{2}; \tag{3}$$

$$\theta(v,v) = \frac{1}{4}|v| \pmod{2}.\tag{4}$$

A code loop is then a loop arising as $\mathbb{F}_2 \times_{\theta} \mathcal{C}$ (up to isomorphism) for some code

An example of a code cocycle appears in Figure 2, so that the loop M of Example 1 is a code loop.

There is a notion of what it means for two twisted cocycles to be equivalent, and equivalent twisted cocycles give isomorphic loops. As part of [6, Theorem 10], Griess proves that all code cocycles for a given doubly even code are equivalent, and hence give isomorphic code loops.

5. GRIESS'S ALGORITHM AND ITS OUTPUT. The algorithm that Griess describes in the proof of [6, Theorem 10] to construct code cocycles for a code \mathcal{C} takes as input an ordered basis $\{b_0,\ldots,b_{k-1}\}$ for \mathcal{C} . A code cocycle is then built up inductively over larger and larger subspaces $V_i = \text{span}\{b_1, \dots, b_i\}$.

However, the description by Griess is more of an outline, using steps like "determine the cocycle on such-and-such subset using identity X," where X refers to one of (2), (3), (4), or corollaries of these. We have reconstructed the process in detail in Algorithm 1.

¹What we call a code cocycle, Griess actually calls a "factor set". Given that a code cocycle is an example of a twisted cocycle, we prefer a name that indicates this.

We implemented Algorithm 1 in the language Go [11], together with diagnostic tests, for instance to verify the Moufang property. The output of the algorithm is a code cocycle, encoded as a matrix of ones and zeros, and can be displayed as an array of black and white pixels. There are steps where an arbitrary choice of a single bit is allowed; we consistently took this bit to be 0. For the Golay code this image consists of slightly over 16 million pixels.

As a combinatorial object, a code cocycle $\theta: \mathcal{G} \times \mathcal{G} \to \mathbb{F}_2$ constructed from Algorithm 1 using the basis in Example 3 can be too large and unwieldy to examine for any interesting structure. Moreover, to calculate with the Parker loop $\mathcal{P} := \mathbb{F}_2 \times_{\theta} \mathcal{G}$ one needs to know all 16 million or so values of θ . It is thus desirable to have a method that will calculate values of θ by a method shorter than Algorithm 1.

Lemma 2. Let C be a doubly even code and θ a code cocycle on it. Given $C = V \oplus W$ a decomposition into complementary subspaces, then for $v_1, v_2 \in V$ and $w_1, w_2 \in W$,

Proof. We apply the identity (2) three times and then the identity (3) once:

$$\begin{split} \theta(v_1+w_1,v_2+w_2) &= \theta(v_1,w_1) + \theta(v_1,v_2+w_1+w_2) + \theta(w_1,v_2+w_2) \\ &+ |v_1 \& w_1 \& (v_2+w_2)| \\ &= \theta(v_1,w_1) + \left\{ \theta(v_1,v_2) + \theta(v_1+v_2,w_1+w_2) \right) \\ &+ \theta(v_2,w_1+w_2) + |v_1 \& v_2 \& (w_1+w_2)| \right\} \\ &+ \left\{ \theta(w_1,w_2) + \theta(w_1+w_2,v_2) + \theta(w_2,v_2) + |w_1 \& w_2 \& v_2| \right\} \\ &+ |v_1 \& w_1 \& (v_2+w_2)| \\ &= \theta(v_1,w_1) + \left\{ \theta(v_1,v_2) + \theta(v_1+v_2,w_1+w_2) \right) \\ &+ |v_1 \& v_2 \& (w_1+w_2)| \right\} \\ &+ \left\{ \theta(w_1,w_2) + \theta(w_2,v_2) + |w_1 \& w_2 \& v_2| \right\} \\ &+ |v_1 \& w_1 \& (v_2+w_2)| + \frac{1}{2} |v_2 \& (w_1+w_2)|. \end{split}$$

Observe that in Lemma 2, on the right-hand side of (5), the code cocycle θ is only ever evaluated on vectors from the subset $V \cup W \subset \mathcal{C}$. This means we can throw away the rest of the array and still reconstruct arbitrary values of θ using (5). If we assume that \mathcal{C} is 2k-dimensional, and that V and W are both k-dimensional, then the domain of the restricted θ has $(2^k + 2^k - 1)^2 = 2^{2(k+1)} - 2^{k+2} + 1 = O((2^k)^2)$ elements. Compared to the full domain of θ , which has $2^{2k} \times 2^{2k} = (2^k)^4$ elements, this is roughly a square-root saving.

However, the rationale for choosing the subspaces V and W is that one is after a reduction in the *entropy* (roughly, the disorderedness) of the restricted code cocycle. This is true, even if the size of $V \cup W$ is not minimized

And, now it should be clear why the Golay code basis in Example 3 was partitioned into two lists of six vectors: we can reconstruct all 16 777 216 values of the resulting code cycle θ , and hence the Parker loop multiplication, from a mere $2^{14} - 2^8 + 1 =$ 16 129 values. The span of the left column of vectors in Example 3 is the subspace $V \subset \mathcal{G}$, and the span of the right column of vectors is $W \subset \mathcal{G}$.

The top left quadrant of Figure 3 then contains the restriction of θ to $V \times V$, and the bottom right quadrant the restriction to $W \times W$. The off-diagonal quadrants contain the values of θ restricted to $V \times W$ and $W \times V$.

Figure 3. The restriction of the Parker loop code cocycle θ to $(V \cup W)^2$. A machine-readable version is available in [11] or as an arXiv ancillary file. The order of the row/column labels is $0, b_1, b_2, b_1 + b_2, b_3, \dots, b_1 + b_2$ $\cdots + b_6, b_7, b_8, b_7 + b_8, \ldots, b_7 + \cdots + b_{12}.$

From Figure 3 and (1) we can see that the restriction of the Parker loop $\mathcal{P}|_V$ is a direct product (hence is a group), as $\theta\big|_{V\times V}$ is identically zero. Moreover, the restriction of $\mathcal{P}|_{W}$ is the direct product $(\mathbb{F}_2)^3 \times M$, where M is the Moufang loop from Example 1. This is because what was a single pixel in Figure 2 is now an 8×8 block of pixels in the lower right quadrant of Figure 3.

6. DISCUSSION AND COMPARISON. The Parker loop \mathcal{P} is a sporadic object that has spawned a small industry trying to understand and construct code loops in general, as a class of Moufang loops that are fairly easy to describe.

Aside from the description by Griess using code cocycles, there was an unpublished description by Parker, an unpublished thesis [8], characterizations as loops with specified commutators and associators [2], an iterative construction using centrally twisted products [7], and a construction using groups with triality [12]. The LOOPS library [13] for software package GAP [5] contains all the code loops of order 64 and below, although "the package is intended primarily for quasigroups and loops of small order, say up to 1000." Even the more recent [14], which classifies code loops up to order 512 in order to add them to the LOOPS package, falls short of the Parker loop's 8192 elements; the authors say "our work suggests that it will be difficult to extend the classification of code loops beyond order 512." In principle, there is nothing stopping the construction of \mathcal{P} in LOOPS, but it will essentially be stored as a multiplication table, which would comprise 67 108 864 entries, each of which is a 13-bit element label. The paper [9] describes an algebraic formula for a code cocycle that will build the Parker loop, as a combination of the recipe in the proof of Proposition 6.6 and the generating function in Proposition 9.2 appearing there. This formula is a polynomial with 330 cubic terms and 12 quadratic terms in 24 variables, being coefficients of basis vectors of G. To compare, combined with the small amount of data in Figure 3 together with a labelling of rows/columns by words of the Golay code, Lemma 2 only requires 9 terms, of which four are cubic and the rest come from the 16 129 stored values of θ . Since large-scale computation in large code loops requires optimising the binary operation, and we have found a space/time trade-off that vastly improves on existing approaches.

American Mathematical Monthly 121:1

In addition to computational savings, the ability to visually explore the structure of code loops during experimentation more generally is a novel advance—the recognition of $(\mathbb{F}_2)^3 \times M$ inside \mathcal{P} was purely by inspection of the picture of the code cocyle then consulting the small list of Moufang loops of small order [1]. Discovery of the basis in Example 3 was by walking through the spaces of bases of subcodes and working with the heuristic that more regularity in the appearance of the code cocycle is better. Additionally, our software flagged when subloops thus considered were in fact associative, and hence a group, leading to the discovery of the relatively large elementary subgroups $(\mathbb{F}_2)^7 < \mathcal{P}$ and $(\mathbb{F}_2)^6 < (\mathbb{F}_2)^3 \times M < \mathcal{P}$.

Finally, one can also remark that because of the identity (3), one can replace the formula in Lemma 2 by one that is only ever evaluated on V^2 , W^2 or $V \times W$, with just one more term. This allows the reconstruction the top right quadrant of Figure 3 from the bottom left quadrant. Thus one can describe the Parker loop as being generated by the subloops $(\mathbb{F})^7$ and $(\mathbb{F}_2)^3 \times M$, with relations coming from the information contained in the bottom left quadrant of Figure 3, and the formulas (3) and (5). The regularity in that bottom left quadrant is intriguing, and perhaps indicative of further simplifications; this will be left to future work.

```
Data: Basis B = \{b_0, b_1, \dots, b_{k-1}\} for the code C
Result: Code cocycle \theta \colon \mathcal{C} \times \mathcal{C} \to \mathbb{F}_2, encoded as a square array of elements from \mathbb{F}_2, with
            rows and columns indexed by C
// Initialise
forall c_1, c_2 \in C do
      \theta(c_1, c_2) \leftarrow 0
end
\theta(b_0,b_0) \leftarrow \frac{1}{4} |b_0|
forall 1 \le i \le \text{length}(B) do
      Define V_i := \operatorname{span}\{b_0, \dots, b_{i-1}\}
       // (D1) define theta on \{bi\} x Vi then deduce on Vi x \{bi\}
      forall v \in V_i do
             if v \neq 0 then
                    \theta(b_i, v) \leftarrow \text{random}
                                                                                       // In practice, random = 0
                    \theta(v,b_i) \leftarrow \frac{1}{2} |v \& b_i| + \theta(b_i,v)
             else
                    // 	heta(b_i,v) is already set to 0
                    \theta(v,b_i) \leftarrow \frac{1}{2} |v \& b_i|
             end
      end
      // (D2) deduce theta on \{bi\} x Wi and Wi x \{bi\}
      forall v \in V_i do
             \theta(b_i, b_i + v) \leftarrow \frac{1}{4} |b_i| + \theta(b_i, v)
             \theta(b_i + v, b_i) \leftarrow \frac{1}{2} |b_i \& (b_i + v)| + \frac{1}{4} |b_i| + \theta(b_i, v)
      end
       // (D3) deduce theta on Wi x Wi
      forall v_1 \in V_i do
             forall v_2 \in V_i do
                   w \leftarrow b_i + v_2
                    a \leftarrow \theta(v_1, b_i)
                    b \leftarrow \theta(v_1, b_i + w)
                    r \leftarrow \frac{1}{2} |v_1 \& w| + a + b + c
                    \theta(w, \bar{b}_i + v_1) \leftarrow r
             end
      end
       // (D4) deduce theta on Wi x Vi and Vi x Wi
      forall v_1 \in V_i do
             forall v_2 \in V_i do
                    w \leftarrow b_i + v_2
                    a \leftarrow \theta(w, v_1 + w)
                   \begin{array}{l} \theta(w,v_1) \leftarrow \frac{1}{4} \left| w \right| + a \\ \theta(v_1,w) \leftarrow \frac{1}{2} \left| v_1 \& w \right| + \frac{1}{4} \left| w \right| + a \end{array}
             end
      end
end
```

Algorithm 1: Reverse-engineered from proof of [6, Theorem 10].

REFERENCES

1. Chein, O. (1974). Moufang loops of small order. I. Trans. Amer. Math. Soc., 188: 31-51. http://dx. doi.org/10.2307/1996765.

American Mathematical Monthly 121:1

- 2. Chein, O., Goodaire, E. G. (1990). Moufang loops with a unique nonidentity commutator (associator, square). J. Algebra, 130(2): 369-384. http://dx.doi.org/10.1016/0021-8693(90)90087-5.
- Conway, J. H. (1985). A simple construction for the Fischer-Griess monster group. Invent. Math., 79(3): 513-540. http://dx.doi.org/10.1007/BF01388521.
- Conway, J. H., Sloane, N. J. A. (1999). Sphere packings, lattices and groups, vol. 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 3rd ed.
- 5. The GAP Group (2019). GAP Groups, Algorithms, and Programming, Version 4.10.2. https://www. gap-system.org.
- Griess, Jr., R. L. (1986). Code loops. J. Algebra, 100(1): 224-234. http://dx.doi.org/10.1016/ 0021-8693(86)90075-X.
- 7. Hsu, T. (2000). Explicit constructions of code loops as centrally twisted products. Math. Proc. Cambridge Philos. Soc., 128(2): 223-232. http://dx.doi.org/10.1017/S030500419900403X.
- Johnson, P. M. (1988). Gamma spaces and loops of nilpotence class two. Ph.D. thesis, University of Illinois at Chicago.
- Morier-Genoud, S., Ovsienko, V. (2011). A series of algebras generalizing the octonions and Hurwitz-Radon identity. Comm. Math. Phys., 306(1): 83-118. http://dx.doi.org/10.1007/s00220-011-1279-9.
- 10. Moufang, R. (1935). Zur Struktur von Alternativkörpern. Math. Ann., 110(1): 416-430. http://dx. doi.org/10.1007/BF01448037.
- 11. library authors (2019).codeloops library. https://adelaide.figshare.com/s/ e1cf101636659583a124
- 12. Nagy, G. P. (2008). Direct construction of code loops. Discrete Math., 308(23): 5349–5357. http:// dx.doi.org/10.1016/j.disc.2007.09.056.
- 13. Nagy, G., Vojtěchovský, P. (2018). LOOPS a GAP package, Version 3.4.1. https://gap-packages. github.io/loops/.
- O'Brien, E. A., Vojtěchovský, P. (2017). Code loops in dimension at most 8. J. Algebra, 473: 607-626. http://dx.doi.org/10.1016/j.jalgebra.2016.11.006.