Faster Weighted and Unweighted Tree Edit Distance and APSP Equivalence

Jakob Nogler¹

Adam Polak²

Barna Saha³

Virginia Vassilevska Williams⁴ Yinzhan Xu³

Christopher Ye³

¹ETH Zurich

³UC San Diego ²Bocconi University

⁴MIT

Problem Definition

(String) Edit Distance

Tree Edit Distance (TED)

Input: Strings S, S'. **Input:** Labeled, left-to-right ordered trees T, T'. **Output:** Cheapest transformation of S into S'. Output: Cheapest transformation of T into T'.

Allowed Operations:

Unweighted: All operations have cost 1.

Weighted: Cost of operations is specificed by a cost function δ , i.e. $\delta(c,c')$, $\delta(c,\varepsilon)$ and $\delta(\varepsilon, c)$ specify substitution, deletion and insertion cost of character c.

Previous Works and Our Results

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-\epsilon})$ algo under APSP
2024	This work	weighted	$n^3/2^{\Omega(\sqrt{\log n})}$
2022	Mao	unweighted	$\mathcal{O}(n^{2.9546})$
2023	Dürr	unweighted	$O(n^{2.9148})$
2024	This work	unweighted	$\mathcal{O}(n^{2.687})$

More details on our results:

- We show how to reduce TED to APSP. Combined with the APSP lower bound, this gives equivalence between TED and APSP.
- Via the state-of-the-art APSP Algorithm [Williams'18] we get faster weighted TED.
- Previous truly subcubic algorithm by Mao and Dúrr, reduce (unweighted) TED to monotone min-plus product, but lose some polynomial factors on the way. We show how to get a tight reduction. By doing so, via the state-of-the art algorithm for this product [CDXZ'22], we obtain a $\mathcal{O}(n^{(\omega+3)/2})$ -time algorithm.

■ *B* is row monotone:

 $\forall i, j \quad B_{i,j} \leq B_{i,j+1}.$

• A, B are bounded:

 $\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$

Problem Re-Definition

Rather than finding we finding a least-cost transformation, we aim to a maximize a matching. We define the cost $\eta(c,c')$ of matching two characters:

$$\eta(c,c') := \delta(c,\varepsilon) + \delta(\varepsilon,c') - \delta(c,c').$$

String Similarity: maximum total weight match- Tree Similarity: maximum total weight matching, ing, under the condition that matching do not under the condition that matching respect same ancestry and pre-order orderings of the matched cross. nodes.

The following relation holds for string/tree distance and similarity:

$$\mathrm{sim}(A,B) = \sum\nolimits_{a \in A} \delta(a,\varepsilon) + \sum\nolimits_{b \in B} \delta(\varepsilon,b) - \mathrm{ed}(A,B).$$

Similarity Computation on a Grid: Strings vs Caterpillar Trees

N.B. Border-to-border distances in such graphs can be computed in $\mathcal{O}(n^2)$ time.

(2) Caterpillar Trees

N.B. Here we assume the left, right and spine nodes $l_1, l_2, \ldots, r_1, r_2, \ldots$, and c_1, c_2, \ldots of **T** only match with the left, right and spine nodes $l'_1, l'_2, \ldots, r'_1, r'_2, \ldots$, and c'_1, c'_2, \ldots of \mathbf{T}' .

A Divide and Conquer Scheme for Caterpillar Tree Similarity

Input:

- The lower-left corner (a, a') and upper-right corner (b, b') of a rectangle.
- $\blacksquare sim((x, x'), (y, y')) \ \ \forall (x, x'), (y, y') \in A$ $([a \ldots b] \times \{b'\}) \cup (\{b\} \times [a' \ldots b']).$

Output:

 \blacksquare $sim((x, x'), (y, y')) \ \forall (x, x'), (y, y') \in$ $([a \cdot b] \times \{a'\}) \cup (\{a\} \times [a' \cdot b']).$

sim((x,x'),(y,y')) equals to the maximum achievable sum of:

- 1. the weight of a path from (x, x') to (n + 1, n + 1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (y, y') to (n + 1, n + 1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).

We obtain the recurrence $T(n) = 4T(n/2) + \mathcal{O}(T_{\mathsf{APSP}}(n))$. Thus, $T(n) = \mathcal{O}(T_{\mathsf{APSP}}(n))$.

How to Extend to General Caterpillars

Dropping the assumption on the mapping adds one more path in a string alignment graph.

How to Extend to General Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T, T', root-to-leaf paths $S \subseteq T, S' \subseteq T'$, and $sim(sub(v), sub(v')) \ \forall (v, v') \in (T \times T') \setminus T'$ $(S \times S')$.

Output: $sim(sub(v), sub(v')) \ \forall (v, v') \in S \times S'$.

Why?

- There are still spine, left, and right nodes.
- The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.
- TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.