# Solving Linear Programming Problems

The Simplex Method (PART 2)

Mohammed Brahimi

**ENSIA/Intelligent Systems Enginnering** 

March 11, 2023



#### Outline

Key Takeaways from Last Lecture

**Questions Regarding Simplex** 

Two-Phase method

Simplex: Special cases

Infeasibility

Unboundedness

Alternative Optima

Degeneracy and cycling

Sensitivity Analysis



#### Key Takeaways from Last Lecture

- Simplex is an efficient algorithm for finding optimal solutions to LP problems by navigating through the corner points of the feasible region.
- It iteratively moves from one Basic Feasible Solution (BFS) to a better neighborhood BFS until the optimal BFS is reached.
- By detecting the optimal BFS, the simplex method provides the optimal values of the decision variables and the objective function.



## **Questions Regarding Simplex**

• How can we choose an appropriate initial BFS if the origin is not a basic feasible solution (BFS)?



# **Questions Regarding Simplex**

- How can we choose an appropriate initial BFS if the origin is not a basic feasible solution (BFS)?
- What are the special cases that may arise when using Simplex?



## Questions Regarding Simplex

- How can we choose an appropriate initial BFS if the origin is not a basic feasible solution (BFS)?
- · What are the special cases that may arise when using Simplex?
- Does Simplex terminate in every LP?



#### **Artificial starting solution**

- LPs where all constraints are of the form "

  " with nonnegative right-hand sides can
  be conveniently started with an all-slack basic feasible solution.
- Select "all-slack" variables as basic variables to create an initial basic feasible solution (BFS).

$$S_{1} = b_{1} + \sum_{i=m+1}^{n} a_{1i}x_{i}$$

$$\vdots$$

$$S_{m} = b_{m} + \sum_{i=m+1}^{n} a_{mi}x_{i}$$

#### Artificial starting solution

- If LPs involves constraints of the form "\geq" or "=" do not have this convenient starting solution.
- This "ill-behaved" LPs, artificial variables should be used to find an initial BFS that
  we can start with.

| Maximize   | 3x + 9y        |
|------------|----------------|
| Subject to | $x + y \le 3$  |
|            | $5x - y \ge 3$ |
|            | $y \ge 1$      |

#### Two-Phase method

Maximize 
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$
  
Subject to  $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$   
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$   
 $\vdots$   
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$   
 $x_1, x_2, \dots, x_n \ge 0$ 

#### Two-Phase method

Minimize 
$$R_1 + R_2 + \cdots + R_m$$
  
Subject to  $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n + \mathbf{R_1} = b_1$   
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n + \mathbf{R_2} = b_2$   
 $\vdots$   
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n + \mathbf{R_m} = b_m$ 

- Feasible if the objective value reaches 0.
- All the R<sub>i</sub> are zeros.
- I have a BFS without the R<sub>i</sub>.

#### Example: The Standard form (Phase 1)

Maximize 
$$z = 3$$
  $x + 9y$   
Subject to  $x + y \le 3$   
 $5$   $x - y \ge 3$   
 $y > 1$ 

#### Example: The Standard form (Phase 1)

Maximize 
$$z = 3$$
  $x + 9y$   
Subject to  $x + y + S_1 = 3$   
 $5$   $x - y - S_2 = 3$   
 $y - S_3 = 1$ 

Minimize 
$$z = R_1 + R_2 + R_3$$
  
Subject to  $x + y + S_1 + R_1 = 3$   
 $5x - y - S_2 + R_2 = 3$   
 $y - S_3 + R_3 = 1$ 

| Basic | X | y  | $\boldsymbol{\mathcal{S}_1}$ | $\boldsymbol{S_2}$ | $S_3$ | $R_1$ | $R_2$ | $R_3$ | RHS | Ratio |
|-------|---|----|------------------------------|--------------------|-------|-------|-------|-------|-----|-------|
| Z     | 0 | 0  | 0                            | 0                  | 0     | -1    | -1    | -1    | 0   |       |
| $R_1$ | 1 | 1  | 1                            | 0                  | 0     | 1     | 0     | 0     | 3   |       |
| $R_2$ | 5 | -1 | 0                            | -1                 | 0     | 0     | 1     | 0     | 3   |       |
| $R_3$ | 0 | 1  | 0                            | 0                  | -1    | 0     | 0     | 1     | 1   |       |

- Basic variables =  $\{R_1, R_2, R_3\}$
- We should remove basic variables from the objective function to start Simplex.
- $Row(z) = Row(z) + Row(R_1) + Row(R_2) + Row(R_3)$



| Basic | X | y  | $\boldsymbol{S}_1$ | $\boldsymbol{S}_2$ | $\boldsymbol{S}_3$ | $R_1$ | $R_2$ | $R_3$ | RHS | Ratio |
|-------|---|----|--------------------|--------------------|--------------------|-------|-------|-------|-----|-------|
| Z     | 6 | 1  | 1                  | -1                 | -1                 | 0     | 0     | 0     | 7   |       |
| $R_1$ | 1 | 1  | 1                  | 0                  | 0                  | 1     | 0     | 0     | 3   |       |
| $R_2$ | 5 | -1 | 0                  | -1                 | 0                  | 0     | 1     | 0     | 3   |       |
| $R_3$ | 0 | 1  | 0                  | 0                  | -1                 | 0     | 0     | 1     | 1   |       |

- Entering variable:  $S_1$  Leaving Variable:  $R_1$
- Basic variables =  $\{S_1, R_2, R_3\}$
- We should remove basic variables from the objective function to start Simplex.
- Row(z) = Row(z) Pivot row



| Basic | X | y  | $\boldsymbol{S}_1$ | $\boldsymbol{S_2}$ | $S_3$ | $R_1$ | $R_2$ | $R_3$ | RHS | Ratio |
|-------|---|----|--------------------|--------------------|-------|-------|-------|-------|-----|-------|
| Z     | 5 | 0  | 0                  | -1                 | -1    | -1    | 0     | 0     | 4   |       |
| $S_1$ | 1 | 1  | 1                  | 0                  | 0     | 1     | 0     | 0     | 3   | 3     |
| $R_2$ | 5 | -1 | 0                  | -1                 | 0     | 0     | 1     | 0     | 3   | 3/5   |
| $R_3$ | 0 | 1  | 0                  | 0                  | -1    | 0     | 0     | 1     | 1   |       |

- Entering variable: x, Leaving Variable: R<sub>2</sub>
- Basic variables =  $\{S_1, x, R_3\}$
- $\mathit{Row}(z) = \mathit{Row}(z) 5*\mathit{Pivot}$  row
- $\textit{Row}(\textbf{S}_1) = \textit{Row}(\textbf{S}_1) \text{Pivot row}$



| Basic | X | у    | $\boldsymbol{S}_1$ | $\boldsymbol{S_2}$ | $\boldsymbol{S}_3$ | $R_1$ | $R_2$ | $R_3$ | RHS  | Ratio |
|-------|---|------|--------------------|--------------------|--------------------|-------|-------|-------|------|-------|
| Z     | 0 | 1    | 0                  | 0                  | -1                 | -1    | -1    | 0     | 1    |       |
| $S_1$ | 0 | 6/5  | 1                  | 1/5                | 0                  | 1     | -1/5  | 0     | 12/5 | 2     |
| X     | 1 | -1/5 | 0                  | -1/5               | 0                  | 0     | 1/5   | 0     | 3/5  |       |
| $R_3$ | 0 | 1    | 0                  | 0                  | -1                 | 0     | 0     | 1     | 1    | 1     |

- Entering variable: y, Leaving Variable: R<sub>3</sub>
- Basic variables =  $\{S_1, x, y\}$
- Row(z) = Row(z) Pivot row
- $\mathit{Row}(\mathit{S}_1) = \mathit{Row}(\mathit{S}_1) \frac{6}{5}\mathsf{Pivot}\,\mathsf{row}$
- $\mathit{Row}(x) = \mathit{Row}(x) + \frac{1}{5}\mathsf{Pivot}\,\mathsf{row}$



| Basic | X | y | $\boldsymbol{S}_1$ | $\boldsymbol{S_2}$ | $\boldsymbol{S}_3$ | $R_1$ | $R_2$ | $R_3$ | RHS | Ratio |
|-------|---|---|--------------------|--------------------|--------------------|-------|-------|-------|-----|-------|
| Z     | 0 | 0 | 0                  | 0                  | 0                  | -1    | -1    | -1    | 0   |       |
| $S_1$ | 0 | 0 | 1                  | 1/5                | 6/5                | 1     | - 1/5 | -6/5  | 6/5 |       |
| X     | 1 | 0 | 0                  | -1/5               | -1/5               | 0     | 1/5   | 1/5   | 4/5 |       |
| У     | 0 | 1 | 0                  | 0                  | -1                 | 0     | 0     | 1     | 1   |       |

- Optimally detected because ( $c_i \leq 0, \forall i$ ).
- $\cdot R_1 = R_2 = R_3 = 0$
- Basic variables =  $\{S_1, x, y\}$
- Non-basic variables =  $\{S_2, S_3\}$



Maximize 
$$z = 3 x + 9 y$$
  
Subject to  $S_1 = \frac{6}{5} + \frac{1}{5} S_2 + \frac{6}{5} S_3$   
 $x = \frac{4}{5} - \frac{1}{5} S_2 - \frac{1}{5} S_3$   
 $y = 1 - S_3$ 







| Basic | X  | y  | $\boldsymbol{S}_1$ | $\boldsymbol{S_2}$ | $S_3$ | RHS | Ratio |
|-------|----|----|--------------------|--------------------|-------|-----|-------|
| Z     | -3 | -9 | 0                  | 0                  | 0     | 0   |       |
| $S_1$ | 0  | 0  | 1                  | 1/5                | 6/5   | 6/5 |       |
| X     | 1  | 0  | 0                  | -1/5               | -1/5  | 4/5 |       |
| У     | 0  | 1  | 0                  | 0                  | -1    | 1   |       |

- Basic variables =  $\{S_1, x, y\}$
- We should remove basic variables from the objective function to start Simplex.
- $\cdot \ \textit{Row}(\textit{z}) = \textit{Row}(\textit{z}) + 3 \times \textit{Row}(\textit{x}) + 9 \times \textit{Row}(\textit{y})$



| Basic | X    | у    | $\boldsymbol{\mathcal{S}_1}$ | $\boldsymbol{s_2}$ | $\boldsymbol{S_3}$ | RHS  | Ratio |
|-------|------|------|------------------------------|--------------------|--------------------|------|-------|
| Z     | 0.00 | 0.00 | 0.00                         | -3/5               | -48/5              | 57/5 |       |
| $S_1$ | 0.00 | 0.00 | 1.00                         | 1/5                | 6/5                | 6/5  |       |
| X     | 1    | 0    | 0                            | -1/5               | -1/5               | 4/5  |       |
| У     | 0    | 1    | 0                            | 0                  | -1                 | 1    |       |

- Entering variable: S<sub>3</sub>, Leaving Variable: S<sub>1</sub>
- Pivot row  $=\frac{5}{6} \times$  Pivot row
- $\mathit{Row}(\mathit{z}) = \mathit{Row}(\mathit{z}) + \frac{48}{5} imes \mathsf{Pivot}\,\mathsf{row}$
- $\mathit{Row}(\mathit{x}) = \mathit{Row}(\mathit{x}) + \frac{1}{5} \times \mathsf{Pivot} \, \mathsf{row}$
- Row(y) = Row(y) + Pivot row



| Basic | x    | y    | $\boldsymbol{s_1}$ | $s_2$ | $s_3$ | RHS   | Ratio |
|-------|------|------|--------------------|-------|-------|-------|-------|
| Z     | 0.00 | 0.00 | 8.00               | 1.00  | 0.00  | 21.00 |       |
| $S_3$ | 0    | 0    | 5/6                | 1/6   | 1     | 1     |       |
| X     | 1    | 0    | 1/6                | -1/6  | 0     | 1     |       |
| У     | 0    | 1    | 5/6                | 1/6   | 0     | 2     |       |

- Optimally detected because ( $c_i \geq 0, \forall i$ ).
- Basic variables =  $\{S_3, x, y\}$
- Non-basic variables =  $\{S_1, S_2\}$
- Optimum (x = 1, y = 2) and z = 21.









#### Simplex: Special cases

- Infeasibility: occurs when there is no feasible solution that satisfies all of the constraints.
- **Unboundedness:** occurs when the objective function can be increased indefinitely without violating any of the constraints.
- Alternative Optima: occurs when several global optima with same objective value exists.
- Degeneracy: occurs when one or more basic variables become zero during the iteration process.



#### Special cases:Infeasibility

- · Empty feasible region.
- Can be detected using Two-Phase method.
- The objective function ( $\sum \mathbf{R}_i$ ) in Phase 1 cannot be 0.

Maximize 
$$z = 2x_1 - 3x_2$$
  
S.t.  $x_1 + x_2 \le 2$   
 $2x_1 - 2x_2 \ge 5$   
 $x_1 , x_2 \ge 0$ 

#### Special cases: Unboundedness

- Unbounded solutions allow for arbitrary increases in variables without violating any constraints.
- · Unboundedness may indicate a poorly constructed model.

| Maximize | z = | 2 | $x_1$ | + | $x_2$ |        |    |
|----------|-----|---|-------|---|-------|--------|----|
| S.t      |     |   | $x_1$ | _ | $x_2$ | $\leq$ | 10 |
|          |     | 2 | $x_1$ |   |       | $\leq$ | 40 |
|          |     |   | $x_1$ | , | $x_2$ | $\geq$ | 0  |

## Special cases: Unboundedness



#### How to detect Unboundedness

Simplex Method indicates unbounded solutions when all Ratios values are either infinite or negative, resulting in no leaving variable.

| Basic | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\boldsymbol{S}_1$ | $\mathcal{S}_2$ | RHS | Ratio    |
|-------|----------------|----------------|--------------------|-----------------|-----|----------|
| Z     | -2             | -1             | 0                  | 0               | 0   |          |
| $S_1$ | 1              | -1             | 1                  | 0               | 10  | Negative |
| $S_2$ | 2              | 0              | 0                  | 1               | 40  | Infinite |



- An LP problem may have infinite alternative optima when the objective function is parallel to a constraint.
- · Any point on that constraint line is also optimal.
- Alternative optima provide different variable combinations with the same optimal objective value.

Maximize 
$$z = 2$$
  $x_1 + 4x_2$   
S.t  $x_1 + 2x_2 \le 5$   
 $x_1 + x_2 \le 4$   
 $x_1 + x_2 > 0$ 





| Basic | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\boldsymbol{S}_1$ | $\boldsymbol{S}_2$ | RHS |
|-------|----------------|----------------|--------------------|--------------------|-----|
| Z     | -2             | -4             | 0                  | 0                  | 0   |
| $S_1$ | 1              | 2              | 1                  | 0                  | 5   |
| $S_2$ | 1              | 1              | 0                  | 1                  | 4   |

- Entering variable: x<sub>2</sub>, Leaving Variable: S<sub>1</sub>
- Pivot row  $= \frac{1}{2} imes$  Pivot row
- $oldsymbol{\cdot} \textit{Row}(\textit{z}) = \textit{Row}(\textit{z}) + 4 imes ext{Pivot row}$
- $\textit{Row}(S_2) = \textit{Row}(S_2) \text{Pivot row}$

- If a non-basic variable has a zero coefficient, it can be replaced with a basic variable whose right-hand side value is strictly positive without changing the objective function's right-hand side value.
- If we swap  $x_1$  with  $x_2$ , where  $x_2$  has a right-hand side value of 2.5, then the objective function's right-hand side value remains at 10. After the swap,  $x_1$  becomes the new basic variable with a value of 5, and  $x_1$  becomes a non-basic variable with a value of 0.

| Basic | $x_1$ | $\mathbf{x}_2$ | $\boldsymbol{\mathcal{S}}_1$ | $\boldsymbol{S_2}$ | RHS |
|-------|-------|----------------|------------------------------|--------------------|-----|
| Ζ     | 0     | 0              | 2                            | 0                  | 10  |
| $x_2$ | 0.5   | 1              | 0.5                          | 0                  | 2.5 |
| $S_2$ | 0.5   | 0              | -0.5                         | 1                  | 1.5 |



#### Special cases: Degeneracy

- · Feasibility condition of simplex method can have ties for minimum ratio.
- Ties can be broken arbitrarily but will result in a degenerate solution in the next iteration
- Degeneracy can cause the algorithm to cycle indefinitely and not terminate

**Maximize** 
$$z = 3$$
  $x_1 + 9$   $x_2$   
**S.t**  $x_1 + 4$   $x_2 \le 8$   $x_1 + 2$   $x_2 \le 4$   $x_1 + 2$   $x_2 \ge 0$ 

#### Special cases: Degeneracy



#### Special cases: Degeneracy

- · Ties in minimum ratio.
- Some basic variable are equal to zero.

| Basic                 | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathcal{S}_1$ | $\mathcal{S}_2$ | RHS | Ratio |
|-----------------------|----------------|----------------|-----------------|-----------------|-----|-------|
| Z                     | -3             | -9             | 0               | 0               | 0   |       |
| <b>S</b> <sub>1</sub> | 1              | 4              | 1               | 0               | 8   | 2     |
| $S_2$                 | 1              | 2              | 0               | 1               | 4   | 2     |



### Special cases: Degeneracy

- · Ties in minimum ratio.
- Some basic variable are equal to zero.

| Basic | $x_1$ | $\mathbf{x}_2$ | $\mathcal{S}_1$ | $\mathcal{S}_2$ | RHS | Ratio |
|-------|-------|----------------|-----------------|-----------------|-----|-------|
| Z     | -0.75 | 0              | 2.25            | 0               | 18  |       |
| $x_2$ | 0.25  | 1              | 0.25            | 0               | 2   | 8     |
| $S_2$ | 0.5   | 0              | -0.5            | 1               | 0   | 0     |



### Special cases: Degeneracy

- · Ties in minimum ratio.
- Some basic variable are equal to zero.

| Basic | $\mathbf{x}_1$ | $\pmb{x}_2$ | $\mathcal{S}_1$ | $\mathcal{S}_2$ | RHS | Ratio |
|-------|----------------|-------------|-----------------|-----------------|-----|-------|
| Z     | 0              | 0           | 1.5             | 1.5             | 18  |       |
| $x_2$ | 0              | 1           | 0.5             | -0.5            | 2   |       |
| $x_1$ | 1              | 0           | -1              | 2               | 0   |       |



#### Degeneracy interpretation

- The presence of degeneracy in an LP suggests the potential existence of a superfluous constraint.
- Shuffling around the basic variables without departing from a corner.
- Dealing with degeneracy in an LP can create the impression that we are moving from one corner to another, while keeping the objective value constant.



## Degeneracy can cause cycling

- Cycling happens when the simplex algorithm loops between multiple solutions without reaching the optimal solution due to degeneracy.
- This can cause the simplex algorithm to loop indefinitely.
- To prevent cycling, anti-cycling rules, such as Bland's rule, can be applied to stop revisiting the same solution and improve the efficiency of the simplex algorithm.
- If there are multiple ratios that are minimal, choose the variable  $x_j$  with the smallest index as the entering variable.



| Basic                 | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $\emph{\textbf{x}}_4$ | $x_5$ | $x_6$ | RHS |
|-----------------------|----------------|----------------|----------------|-----------------------|-------|-------|-----|
| Z                     | -2.3           | -2.15          | 13.55          | 0.4                   | 0     | 0     | 0   |
| <b>X</b> 5            | 0.4            | 0.2            | -1.4           | -0.2                  | 1     | 0     | 0   |
| <b>x</b> <sub>6</sub> | -7.8           | -1.4           | 7.8            | 0.4                   | 0     | 1     | 0   |



| Basic                 | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $x_3$ | $\textit{\textbf{X}}_4$ | $x_5$ | $x_6$ | RHS |
|-----------------------|----------------|----------------|-------|-------------------------|-------|-------|-----|
| Z                     | 0              | -1             | 5.5   | -0.75                   | 5.75  | 0     | 0   |
| <b>x</b> <sub>1</sub> | 1              | 0.5            | -3.5  | -0.5                    | 2.5   | 0     | 0   |
| <b>x</b> <sub>6</sub> | 0              | 2.5            | -19.5 | -3.5                    | 19.5  | 1     | 0   |



| Basic      | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\boldsymbol{x}_3$ | $\textit{\textbf{x}}_4$ | $x_5$ | $x_6$ | RHS |
|------------|----------------|----------------|--------------------|-------------------------|-------|-------|-----|
| Z          | 0              | 0              | -2.3               | -2.15                   | 13.55 | 0.4   | 0   |
| <b>X</b> 1 | 1              | 0              | 0.4                | 0.2                     | -1.4  | -0.2  | 0   |
| $x_2$      | 0              | 1              | -7.8               | -1.4                    | 7.8   | 0.4   | 0   |



| Basic                 | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $\mathbf{x}_4$ | <b>X</b> 5 | $x_6$ | RHS |
|-----------------------|----------------|----------------|----------------|----------------|------------|-------|-----|
| Z                     | 5.75           | 0              | 0              | -1             | 5.5        | -0.75 | 0   |
| <b>X</b> 3            | 2.5            | 0              | 1              | 0.5            | -3.5       | -0.5  | 0   |
| <b>x</b> <sub>6</sub> | 19.5           | 1              | 0              | 2.5            | -19.5      | -3.5  | 0   |



| Basic      | $\mathbf{x}_1$ | $\pmb{x}_2$ | $x_3$ | $\textit{\textbf{x}}_4$ | $x_5$ | $x_6$ | RHS |
|------------|----------------|-------------|-------|-------------------------|-------|-------|-----|
| Z          | 13.55          | 0.4         | 0     | 0                       | -2.3  | -2.15 | 0   |
| <b>X</b> 3 | -1.4           | -0.2        | 1     | 0                       | 0.4   | 0.2   | 0   |
| $x_4$      | 7.8            | 0.4         | 0     | 1                       | -7.8  | -1.4  | 0   |



| Basic      | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $x_3$ | $\mathbf{x}_4$ | $x_5$ | $\mathbf{x}_6$ | RHS |
|------------|----------------|----------------|-------|----------------|-------|----------------|-----|
| Z          | 5.5            | -0.75          | 5.75  | 0              | 0     | -1             | 0   |
| <b>X</b> 5 | -3.5           | -0.5           | 2.5   | 0              | 1     | 0.5            | 0   |
| $x_4$      | -19.5          | -3.5           | 19.5  | 1              | 0     | 2.5            | 0   |



| Basic      | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $\textit{\textbf{x}}_4$ | $x_5$ | $x_6$ | RHS |
|------------|----------------|----------------|----------------|-------------------------|-------|-------|-----|
| Z          | -2.3           | -2.15          | 13.55          | 0.4                     | 0     | 0     | 0   |
| <b>X</b> 5 | 0.4            | 0.2            | -1.4           | -0.2                    | 1     | 0     | 0   |
| $x_4$      | -7.8           | -1.4           | 7.8            | 0.4                     | 0     | 1     | 0   |

The Simplex has returned to its original state.



| Basic                 | $\mathbf{x}_1$ | $\mathbf{x_2}$ | <b>X</b> 3 | $x_4$ | <b>X</b> 5 | <b>x</b> <sub>6</sub> | RHS |
|-----------------------|----------------|----------------|------------|-------|------------|-----------------------|-----|
| Z                     | -2.3           | -2.15          | 13.55      | 0.4   | 0          | 0                     | 0   |
| <i>X</i> <sub>5</sub> | 0.4            | 0.2            | -1.4       | -0.2  | 1          | 0                     | 0   |
| <i>x</i> <sub>6</sub> | -7.8           | -1.4           | 7.8        | 0.4   | 0          | 1                     | 0   |

| Basic                 | $\mathbf{x}_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | RHS |
|-----------------------|----------------|-------|-------|-------|-------|-------|-----|
| Z                     | -2.3           | -2.15 | 13.55 | 0.4   | 0     | 0     | 0   |
| <i>x</i> <sub>5</sub> | 0.4            | 0.2   | -1.4  | -0.2  | 1     | 0     | 0   |
| $x_4$                 | -7.8           | -1.4  | 7.8   | 0.4   | 0     | 1     | 0   |

The Simplex will continuously cycle through these states.



#### Sensitivity Analysis

- Sensitivity analysis (or post-optimality analysis) determines how optimal solutions are affected by changes within specified ranges.
  - Changes in right-hand side (RHS) values.
  - Changes in objective function coefficients.



#### Sensitivity Analysis

- Sensitivity analysis (or post-optimality analysis) determines how optimal solutions are affected by changes within specified ranges.
  - Changes in right-hand side (RHS) values.
  - Changes in objective function coefficients.
- Managers must operate in dynamic environments with imprecise estimates of coefficients.



#### Sensitivity Analysis

- Sensitivity analysis (or post-optimality analysis) determines how optimal solutions are affected by changes within specified ranges.
  - Changes in right-hand side (RHS) values.
  - Changes in objective function coefficients.
- Managers must operate in dynamic environments with imprecise estimates of coefficients.
- Sensitivity analysis is important for managers to ask "what-if" questions about the problem.



### **Graphical sensitivity Analysis**

- We consider two cases:
  - Sensitivity of the optimum solution to changes in the availability of the resources (right-hand side of the constraints)
  - Sensitivity of the optimum solution to changes in unit profit or unit cost (coefficients of the objective function)



- JOBCO manufactures two products on two machines.
- · Processing times and revenues per unit are given as follows:
  - Product 1: 2 hrs on machine 1, 1 hr on machine 2, \$30 revenue per unit.



- JOBCO manufactures two products on two machines.
- · Processing times and revenues per unit are given as follows:
  - Product 1: 2 hrs on machine 1, 1 hr on machine 2, \$30 revenue per unit.
  - Product 2: 1 hr on machine 1, 3 hrs on machine 2, \$20 revenue per unit



- JOBCO manufactures two products on two machines.
- Processing times and revenues per unit are given as follows:
  - **Product 1**: 2 hrs on machine 1, 1 hr on machine 2, \$30 revenue per unit.
  - **Product 2**: 1 hr on machine 1, 3 hrs on machine 2, \$20 revenue per unit
- Total daily processing time available for each machine is 8 hrs
- $x_1$  and  $x_2$  represent the daily number of units of products 1 and 2.



- JOBCO manufactures two products on two machines.
- Processing times and revenues per unit are given as follows:
  - **Product 1**: 2 hrs on machine 1, 1 hr on machine 2, \$30 revenue per unit.
  - **Product 2**: 1 hr on machine 1, 3 hrs on machine 2, \$20 revenue per unit
- Total daily processing time available for each machine is 8 hrs
- $x_1$  and  $x_2$  represent the daily number of units of products 1 and 2.

Maximize 
$$z = 30$$
  $x_1 + 20$   $x_2$   
S.t  $2$   $x_1 + x_2 \le 8$   
 $x_1 + 3$   $x_2 \le 8$   
 $x_1 + x_2 \ge 0$ 



- Increasing machine 1 capacity from 8 to 9 hrs moves the optimum solution to point G.
- Rate of revenue change  $=\frac{z_G-z_C}{9-8}$ .
- $\frac{\$142 \$128}{9 8} = \$14 \setminus \text{hour}$
- The point G should stays between B and F.
- The dual price for machine 2 capacity is \$2/hr.





#### **Dual Prices**

- The dual price is the rate of change of the objective function per unit change of a resource.
- The abstract name "dual" or "shadow" price is standard in LP literature and software packages.
- The dual price of \$14/hr remains valid for changes in machine 1 capacity that move its constraint parallel to itself to any point on the line segment *BF*.
- The dual price is only valid in the **feasibility range** ( $2.67~\rm hr \le Machine 1$  capacity  $\le 16~\rm hr$ ), as calculated at points  $\it B$  and  $\it F$ .
- Changes outside this range produce a different dual price (worth per unit).



• **Question 1:** If JOBCO can increase the capacity of both machines, which machine should receive priority?



- Question 1: If JOBCO can increase the capacity of both machines, which machine should receive priority?
- **Response:** Priority should be given to machine 1, as each additional hour of machine 1 increases revenue by \$14, as opposed to only \$2 for machine 2.



- Question 1: If JOBCO can increase the capacity of both machines, which machine should receive priority?
- **Response:** Priority should be given to machine 1, as each additional hour of machine 1 increases revenue by \$14, as opposed to only \$2 for machine 2.
- Question 2: A suggestion is made to increase the capacities of machines 1 and 2 at the additional cost of \$10/hr for each machine. Is this advisable?



- Question 1: If JOBCO can increase the capacity of both machines, which machine should receive priority?
- **Response:** Priority should be given to machine 1, as each additional hour of machine 1 increases revenue by \$14, as opposed to only \$2 for machine 2.
- **Question 2:** A suggestion is made to increase the capacities of machines 1 and 2 at the additional cost of \$10/hr for each machine. Is this advisable?
- Response: Only machine 1 should be considered for capacity increase, as the
  additional net revenue per hour is 14-10=\$4, compared to a net of 2-10=\$-8 for
  machine 2.



• **Question 3:** If the capacity of machine 1 is increased from 8 to 13 hrs, how will this increase impact the optimum revenue?



- Question 3: If the capacity of machine 1 is increased from 8 to 13 hrs, how will this
  increase impact the optimum revenue?
- Response: The proposed increase falls within the feasibility range for machine 1 and will result in a \$14(13 8) =\$70 increase in revenue, from \$128 to \$198 ( =\$128 + \$70).



- Question 3: If the capacity of machine 1 is increased from 8 to 13 hrs, how will this
  increase impact the optimum revenue?
- Response: The proposed increase falls within the feasibility range for machine 1 and will result in a \$14(13 8) =\$70 increase in revenue, from \$128 to \$198 ( =\$128 + \$70).
- **Question 4:** Suppose that the capacity of machine 1 is increased to 20 hrs, how will this increase affect the optimum revenue?



- Question 3: If the capacity of machine 1 is increased from 8 to 13 hrs, how will this
  increase impact the optimum revenue?
- Response: The proposed increase falls within the feasibility range for machine 1 and will result in a \$14(13 8) =\$70 increase in revenue, from \$128 to \$198 ( =\$128 + \$70).
- **Question 4:** Suppose that the capacity of machine 1 is increased to 20 hrs, how will this increase affect the optimum revenue?
- **Response:** The proposed increase falls outside the feasibility range, and further calculations are needed to determine the impact on optimum revenue.



- Maximize  $z = c_1 x_1 + c_2 x_2$ .
- How the optimum changes when we change c<sub>1</sub> and c<sub>2</sub>.



- Maximize  $z = c_1 x_1 + c_2 x_2$ .
- How the optimum changes when we change c<sub>1</sub> and c<sub>2</sub>.
- Changes in objective coefficients change the slope of the isoprofit.



- Maximize  $z = c_1 x_1 + c_2 x_2$ .
- How the optimum changes when we change c<sub>1</sub> and c<sub>2</sub>.
- Changes in objective coefficients change the slope of the isoprofit.
- Optimum at C remains if objective function is between BF and DE.





- Maximize  $z = c_1 x_1 + c_2 x_2$ .
- How the optimum changes when we change c<sub>1</sub> and c<sub>2</sub>.
- Changes in objective coefficients change the slope of the isoprofit.
- Optimum at C remains if objective function is between BF and DE.
- Optimality range for coefficients keeping optimum at C:  $\frac{1}{3} \le \frac{c_1}{c_2} \le \frac{2}{1}$ .





# **Objective Coefficient Change questions**

- **Question 1:** If unit revenues for Products 1 and 2 are changed to \$35 and \$25, respectively, will the current optimum remain the same?
- The solution at C will remain optimal because  $\frac{c_1}{c_2}=\frac{35}{25}=1.4$  remains within the optimality range  $(\frac{1}{3},2)$ .
- **Question 2:** If the unit revenue of Product 2 is fixed at its current value  $c_2$  = \$20, what is the associated optimality range for the unit revenue for Product 1,  $c_1$ , that will keep the optimum unchanged?
- The optimality range for  $c_1$  is:  $20 \times \frac{1}{3} \le c_1 \le 2 \times 20$ .



#### Conclusion

To sum up, we have covered the following key points:

- The two-phase method provides a viable approach for finding an initial feasible solution for the Simplex method.
- While executing Simplex, one must consider its numerous special cases such as degeneracy, unboundedness, and infeasibility to prevent potential issues.
- Cycling may occur in LP problems with degeneracy, which requires attention to ensure convergence to an optimal solution.
- Graphical sensitivity analysis is a useful tool for investigating the impact of LP parameter changes on the optimal solution, particularly in two dimensions.

