Лекции по курсу *"Математическая Статистика"* CONTENTS

Contents

Источники			2	
1	Мно	огомерное нормальное распределение	3	
	1.1	Замечание	3	
	1.2	Лемма 1	3	
	1.3	Определение 1	3	
	1.4	Лемма 2	3	
	1.5	Лемма 3	4	
	1.6	Лемма 4	4	
		note	4	
	1.7	Определение 2	4	
		Заменание	4	

CONTENTS

Источники

• Ивченко Г. И., Медведев Ю. И. "Математическая статистика", изд. "Высшая школа", 1984

- Кибзун А. И., Наумов А. В., Горяинова Е. Р. "Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами", изд "ФИЗМАТЛИТ", 2013
- Панков А. Р., Платонов Е. Н. "Практикум по математической статистике", изд. "МАИ", 2006

1 Многомерное нормальное распределение

1.1 Замечание

Вектор $X=(X_1,\dots,X_n)^t$ называется **случайным**, если X_1,\dots,X_n — случайные векторы (далее **с.в**), определенные на одном вероятностном пространстве.

Через $M[X]=m_x$ обозначим вектор математического ожидания:

$$M[X] = m_x = \begin{pmatrix} M[X_1] \\ \vdots \\ M[X_n] \end{pmatrix}$$

Через K_x обозначим ковариационную матрицу с.в X:

$$K_x = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

1.2 Лемма 1

Пусть $K_x \in \mathbb{R}^{n \times n}$ — ковариационная матрица с.в X. Тогда:

1.
$$K_x \geqslant 0$$
, r.e. $\forall x \in \mathbb{R}^n \setminus \{0\}, x^T K_x x \geqslant 0$;

2.
$$K_x^T = K_x$$

1.3 Определение 1

Случайный вектор $X = (X_1, \dots, X_n)^T$ называется **невырожденным нормальным вектором**:

$$X \sim N(m_x, K_x)$$

если совместная плотность вероятности имеет вид:

$$f_x(x) = ((2\pi)^n \det K_x)^{\frac{-1}{2}} \exp\{\frac{-1}{2}(x-m_k)^T K_x^{-1}(x-m_x)\}$$

где
$$m_x \in \mathbb{R}^n, K_x \in \mathbb{R}^{n \times n}, K_x > 0, K_x^T = K_x$$

1.4 Лемма 2

Пусть X — невырожденный нормальный вектор с параметрами m_x и K_x .

Тогда $M[X]=m_x$, а K_x — корвариационная матрица X.

Рассмотрим основные свойства многомерного нормального распределения.

1.5 Лемма 3

Пусть $X \sim N(m_x, K_x), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$ Тогда:

$$Y = AX + b \sim N(m_y, K_y),$$

$$m_y = Am_x + b,$$

$$K_y = AK_xA^T.$$

1.6 Лемма 4

Пусть $X \sim N(m_x, K_x)$.

Тогда компоненты вектора X независимы тогда и только тогда, когда они некоррелированы.

note

Доказательство данных утверждений при помощи аппарата функций распределения и плотности довольно сложно. Поэтому рассмотрим аппарат характеристических функций.

1.7 Определение 2

Пусть $X=(X_1,\dots,X_n)^T$ — случайный вектор.

Тогда характеристической функцией называется:

$$\psi_X(\lambda) = M[e^{i\lambda^TX}] = \int\limits_{\mathbb{R}^n} e^{i\lambda^TX} dF_X(x)$$

1.8 Замечание

Характеристическая функция определена для любого случайного вектора или с.в. Если с.в дискретная, то:

$$\psi_X(\lambda) = \int\limits_{\mathbb{R}} e^{i\lambda X} f_X(x) dx$$

В этом случае $\psi_X(\lambda)$ является **преобразованием Фурье** f_X .

Поскольку преобразование Фурье взаимно однозначно, а f_X однозначно определяет распределение, то характеристическая функция характеристическая функция $\psi_X(x)$ также однозначно определяет распределение с.в X.

Причем:

$$f_X(x) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}} e^{-i\lambda^T X} \psi_X(x) d\lambda$$