TRAITEMENT DE L'INFORMATION

NUMERATION HEXADECIMALE

Situation dans le système automatisé

Les informations issues de la fonction « acquérir » doivent être TRAITEES puis communiquées à l'environnement (préactionneurs ou HMI)

Code HEXADECIMAL

1 Caractéristiques

Base	16			
16 symboles	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F			

Chaque digit d'un nombre hexadécimal à un poids qui est une puissance de 16.

Rang	n-1	 5	4	3	2	1	0
Poids	16^{n-1}	 16 ⁵	16 ⁴	16^3	16 ²	16 ¹	16^{0}
Ex:				С	3	F	Е

Exemple: Le nombre Hexadécimal C3FE se décompose ainsi :

$$C3FE_{(16)} = (C \times 16^{3}) + (3 \times 16^{2}) + (F \times 16^{1}) + (E \times 16^{0})$$

$$C3FE_{(16)} = (12 \times 4096) + (3 \times 256) + (15 \times 16) + (14 \times 1)$$

$$C3FE_{(16)} = 49152 + 768 + 240 + 14$$

$$C3FE_{(16)} = 50174_{(10)}$$

(16) et (10) sont ici utilisés pour préciser la base dans laquelle le nombre doit être lu.

2 Conversion HEXADECIMAL / DECIMAL

Il suffit de faire la somme des produits de chaque digit par son poids.

Exemple:

Poids	16 ³	16^2	16 ¹	16°		
Hexadécimal	C	3	F	E		
	(12×16^3)	(3×16^2)	(15×16^1)	(14×16^{0})		
	49152	768	240	14		
Décimal	50174					

3 Conversion DECIMAL / HEXADECIMAL

3.1 Utilisation de la pondération

La méthode précédente peut être appliquée en inverse. Il suffit alors de placer les digits de façon à ce que la somme des produits de ces digits par leurs poids respectifs soit égale au nombre Hexadécimal.

6_2HEXA.doc P.HOARAU 1/2

Exemple: soit à convertir 50174(10) en Hexadécimal

L'écriture des différents poids montre que le nombre débutera à partir du rang 3. En effet, à partir du rang 4, le poids (65536) est supérieur au nombre à convertir. Il suffit alors de chercher combien de fois chaque poids est contenu dans le nombre.

$$50174 = (12x4096)+(3x256)+(15x16)+(14x1)$$

Poids	 	 65536	4096	256	16	1
Digits			С	3	F	Е

$$50174_{(10)} = C3FE_{(16)}$$

3.2 Division entière par 16

Il suffit de diviser le nombre décimal par 16 ainsi que tous les différents quotients obtenus jusqu'à obtenir un quotient nul. Les restes de chaque division constituent le résultat.

6_2HEXA.doc P.HOARAU 2/2