

Sémantique des Langages de Programmation (SemLP) TD n° 3 : Unification & Termination

Exercice 1: (Ex. 52 in the course notes)

Apply the unification algorithm viewed in the course to the following systems of equations:

- **1.** $\{ f(x, f(x, y)) = f(g(y), f(g(a), z)) \}$
- **2.** $\{ f(x,g(y)) = f(y,g(g(x))) \}$

Exercice 2: *** (Ex. 55 in the course notes)

1. Propose a method to transform a unification problem of the shape:

$$E = \{ t_1 = s_1, \ldots, t_n = s_n \}$$

over the signature $\Sigma = \{g_1, g_n\}$ with $n, m \ge 1$ into a unification problem E' with the following properties :

- 1. E' contains exactly one equation,
- 2. the terms in E' range over the signature $\Sigma' = \{f\}$, where f is binary,
- 3. E has a solution if and only if E' has a solution, and
- **2.** Apply the method to the system below, where x, y and z are variables.

$$E = \{ x = h(y), g(c, x, y) = g(y, z, z) \}$$

Exercice 3: (Ex. 56 in the course notes)

Let t, s, ... be terms over the signature Σ . We say that t is a *filter* for s if there exists a substitution S with S t = s. We denote this fact as $t \leq s$. Prove or disprove the following assertions:

- **1.** If $t \leq s$, then t and s are unifiable.
- **2.** If t and s are unifiable, then $t \leq s$ and $s \leq t$.
- **3.** it $t \leq s$ and $s \leq t$, then s and t are unifiable.
- **4.** For all t, s there exists an r with $r \leq t$, and $r \leq s$.
- **5.** For all t, s, there exists an r with $t \leqslant r$ and $s \leqslant r$.

^{1.} Not to be confused with the notation $S \leq S'$ over substitutions.

Termination

Interpretation method

Exercice 4: (Ex. 63 in the course notes)

Find a polynomial interpretation to show termination of the following TRS:

$$f(f(x,y),z) \to f(x,f(y,z)), \qquad f(x,f(y,z)) \to f(y,y)$$

Exercice 5: (Ex. 64 in the course notes)

1. Find a polynomial interpretation for the following TRS:

$$x+0 \to x, \qquad x+\mathsf{s}(y) \to \mathsf{s}(x+y), \qquad \qquad \text{(addition)}$$

$$d(0) \to 0, \qquad d(\mathsf{s}(x)) \to \mathsf{s}(\mathsf{s}(d(x))), \qquad \qquad \text{(double)}$$

$$q(0) \to 0, \qquad q(\mathsf{s}(x)) \to q(x) + \mathsf{s}(d(x)), \qquad \qquad \text{(square)}$$

2. Consider the term $t = q^{n+1}(s^20)$ whose size is linear in n. Show that there is a reduction as shown below with length doubly exponential in n.

$$t \to^* q^{n+1}(s^{2^{2^n}})$$

Recursive path ordering

Exercice 6: (Ex. 65 in the course notes)

Consider the TRS:

$$(x+y)+z \rightarrow x + (y+z)$$
 $x * s(y) \rightarrow x + (y*x)$

Find a status function (τ) such the following inequalities hold:

$$(x+y) + z >_r x + (y+z)$$
 $x * s(y) >_r x + (y*x)$

Exercice 7: (Ex. 69 in the course notes)

Consider the TRS encoding the Ackermann function and prove its termination.

Exercice 8: (Ex. 70 in the course notes)

Consider the TRS

$$b(x) \to r(s(x))$$
 $r(s(s(x))) \to b(x)$

- 1. Show that the TRS terminates by polynomial interpretation.
- 2. Show that there is no RPO on Σ that can prove its termination.
- **3.** RPO is a particular type of simplification order. Is there a simplification order that shows termination of the TRS above?

Exercice 9: (Ex. 71 in the course notes)

Consider the TRS:

$$f(f(x)) \to f(g(f(x)))$$

- 1. Show that it is terminating.
- **2.** Show that there is no simplification order $>_r$ that contains \rightarrow .

Exercice 10: (Ex. 80 in the course notes)

Consider the product order \leq on \mathbb{N}^k (vectors of natural numbers):

$$(n_1, ..., n_k) \leq (m_1, ..., m_k) \text{ if } n_i \leq m_i, \text{ for } i \in [1, k]$$

- 1. Show that < (the strict part of \le) is well-founded.
- **2.** Show by induction on k, that from every sequence $\{v_n\}_{n\in\mathbb{N}}$ in \mathbb{N}^k we can extract a growing subsequence. Namely, that there is an injective function $\sigma: \mathbb{N} \to \mathbb{N}$ such that:

$$\forall n, \ v_{\sigma(n)} \leqslant v_{\sigma(n+1)}$$

3. Show that every set of incomparable elements in \mathbb{N}^k (an anti-chain) is finite.