Practical session

- Plan of Action
- 15:00 16:00 Consensus/Variant talk + same tutorial on GitHub
- 16:00 16:30 Break
- 16:30 18:00 Group practical
- Dengue-S
- Dengue-B

Consensus and Variant Calling

Richard Orton

MRC-University of Glasgow Centre for Virus Research
May 2024

Summary so far ...

Consensus Sequence

- What is a consensus sequence?
 - At each genome position call the most frequent nucleotide observed

```
1234567890123456789012345678901234
Pos:
Ref:
       ACGGTGACACGTAGCAGTACGCGGGTTACACAGA
       ACGGCGA
                      CAGTTCG
                                   AC-CAGA
             AGACGTA
                            GCGGGTT
                                 TTACACAG
                  GTAGCAGT
          GCGACAC
                          TCGCGGG
                                   TACACAT
        CGGCGAC
                       AGTTCGC
               ACG-AGC
                              GGGGTAC
       1223334333333333333333333444333331
Cov:
```

Consensus Sequence

- What is a consensus sequence?
 - At each genome position call the most frequent nucleotide observed

Genome Position 253, Reference = C

A: 1000	A: 1	A: 750	A: 501	A: 700	A: 1
C: 0	C: 0	C: 0	C: 0	C: 300	C: 1
G: 0	G: 0	G: 250	G: 0	G: 0	G: 0
T: 0	T: 0	T: 0	T: 499	T: 0	T: 0

Del: 750

Sequence characters – IUPAC Codes

 The nucleic acid notation currently in use was first formalized by the International Union of Pure and Applied Chemistry (IUPAC) in 1970.

Symbol	Description	Bas	es Rep	Num		
Α	Adenine	Α				1
С	Cytosine		С			1
G	Guanine			G		1
Т	Thymine				Т	1
U	Uracil				J	1
W	Weak	Α			Т	2
S	Strong		С	G		2
M	a M ino	Α	С			2
K	K eto			G	Т	2
R	pu R ine	Α		G		2
Υ	p Y rimidine		С		Т	2
В	not A (B comes after A)		С	G	Т	3
D	not C (D comes after C)	Α		G	Т	4
Н	not G (H comes after G)	Α	С		Т	4
V	not T (V comes after T & U)	Α	С	G		4
N	Any N ucleotide	Α	С	G	Т	4
-	Gap					0

A: 750

C: 0

G: 250

T: 0

A: 501

C: 0

G: 0

T: 499

A: 700

C: 300

G: 0

T: 0

Del: 750

What do you need

- BAM file
 - Reads aligned to a reference
- Reference file
 - The reference file used in the BAM

```
3
       1234567890123456789012345678901234
Pos:
Ref:
       ACGGTGACACGTAGCAGTACGCGGGTTACACAGA
       ACGGCGA
                      CAGTTCG
                                    AC-CAGA
             AGACGTA
                            GCGGGTT
                  GTAGCAGT
                                  TTACACAG
          GCGACAC
                          TCGCGGG
        CGGCGAC
                       AGTTCGC
                                   TACACAT
               ACG-AGC
                              GGGGTAC
       122333433333332333333433333444333331
Cov:
```

Pileup the data – samtools mpileup

HQ156345.1

HQ156345.1

3 Pos: 123456789**0**123456789**0**123456789**0**1234 Ref: ACGGTGACACGTAGCAGTACGCGGGTTACACAGA CAGTTCG ACGGCGA AC-CAGA AGACGTA GCGGGTT **GTAGCAGT** TTACACAG GCGACAC TCGCGGG CGGCGAC AGTTCGC TACACAT ACG-AGC GGGGTAC 1223**3**3433333333333**3**343333344433331 Cov: **Qualities** Ref RefBase Pos Cov Bases HQ156345.1 Α Α HQ156345.1 C CC ΙH G HQ156345.1 GG ΙB HQ156345.1 G GGG **CCB** CCC HQ156345.1 CID 3 HQ156345.1 G GGG FFF

3

AAAA

GCC

IIFF

Ш

Pileup the data – samtools mpileup

Ref	Pos	Reads	RefBase	Bases	Qualities
HQ156345.1	1	1	Α	Α	I
HQ156345.1	2	2	С	CC	IH
HQ156345.1	3	2	G	GG	IB
HQ156345.1	4	3	G	GGG	ССВ
HQ156345.1	5	3	T	CCC	CID
HQ156345.1	6	3	G	GGG	FFF
HQ156345.1	7	4	Α	AAAA	IIEE
HQ156345.1	8	3	С	G CC	III

- . = match to the reference base in forward direction
- , = match to the reference base in reverse direction
- **ACGTN** = mismatch to ref in forward direction
- acgtn = mismatch to ref in reverse direction

Ref	Pos	Reads	RefBase	Bases	Qualities
HQ156345.1	1	1	Α	•	I
HQ156345.1	2	2	С	• ,	IH
HQ156345.1	3	2	G	• ,	IB
HQ156345.1	4	3	G	• , •	CCB
HQ156345.1	5	3	T	CcC	CID
HQ156345.1	6	3	G	• , •	FFF
HQ156345.1	7	4	Α	.,	IIEE
HQ156345.1	8	3	С	G.,	III

samtools mpileup command

samtools mpileup -aa -d 0 -Q 0 -B -A my.bam > my_mpileup.txt

Ref	Pos	Reads	RefBase	Bases	Qualities
HQ156345.1	1	1	Α	•	I
HQ156345.1	2	2	С	• ,	IH
HQ156345.1	3	2	G	• ,	IB
HQ156345.1	4	3	G	• , •	CCB
HQ156345.1	5	3	T	CcC	CID
HQ156345.1	6	3	G	• , •	FFF
HQ156345.1	7	4	Α	. ,	IIEE

iVar: https://github.com/andersen-lab/ivar

- We will be using the iVar consensus caller in this practical
 - Used alot for SARS-CoV-2 data
 - Can also be used for trimming amplicon primers based on BAM alignment co-ordinates
- iVar uses samtools mpileup to feed data in
 - samtools mpileup -aa -A -d 0 -Q 0 my.bam | ivar consensus -p myseq
- -aa: output data for all positions (even positions with zero coverage)
- -A: don't discount orphan reads (not in a pair)
- -d 0: disable the maximum depth to report [default is 8000]
- -Q 0: minimum base quality 0
- my.bam: the name of the bam file
- |: pipe/pass the data/results/output into the next command
- ivar: the name of the program we are using
- consensus: the name of the function within ivar we are using
- -p myseq: the prefix of the output file that ivar will create -> myseq.fasta

Consensus sequences - alternatives

- bcftools (with bedtools to mask low coverage regions)
- **samtools** consensus
- VirusConsensus
- <u>https://github.com/niemasd/ViralConsensus</u>
- ConsensusFixer
- https://github.com/cbg-ethz/ConsensusFixer
- Kindel
- https://github.com/bede/kindel
- VarScan2
- http://varscan.sourceforge.net

Consensus sequences – minimum coverage?

- iVar default is 10 illumina has been used a lot for ARTIC SARS-CoV-2 samples
- How much data do you have?
- How desperate are you to get (any) sequence?
- 100 is a strong threshhold
- 20 is a good threshold
- 10 is a decent threshold
- 5 is a weak threshold [high quality, low ambiguity]
- 2 & 1 are desperate thresholds
- Low coverage = potential for many ambiguities: coverage 5, 3As 2 Ts -> consensus = A, but very high probability the consensus could have been T
- The 5'/3' ends of genomes/segments are typically poorly covered RACE
 - RACE: Rapid amplification of cDNA ends

Variant calling

Consensus level (e.g. >50%)

• Low frequency variants (25%, 10%, 1%, 0.1%)

Viral Populations

- Small, compact genomes gives high depth with HTS
- Mutation rate ~10⁻⁴ mutations per nucleotide per transcription cycle every genome replication introduces new mutations
- Evolve rapidly: Large population size, high replication rate, error prone RNA polymerase
- Enables them to rapidly adapt to new (host) environments and selective pressures such as drug treatments
- Exist within their hosts as large, complex and heterogeneous populations
- Comprising a spectrum of related but non-identical genome sequences termed the quasispecies.

HTS Applications

Viral mutation tracking

Wright et al. (2011): **Beyond the consensus:** dissecting within-host viral population diversity of FMDV by using NGS

Viral mutation tracking

- Morelli et al 2013. BMC Veterinary Medicine; 44: 12
- Min coverage of 1000, quality 30 filtering
- Sequenced in duplicate
- PCR control data 0.5%

Sequence Errors

Reference Genome Reference Mapping Reference Variants

- Sequencing errors make it hard to identify low frequency variants in the population
- Coverage of 20,000
- All at Q40 (P=0.0001, 0.01%)
- Expect 2 errors (variant frequency 0.01%)
- Coverage of 20,000
- All at Q30 (P=0.001, 0.1%)
- Expect 20 errors (variant frequency 0.1%)

Genome Position Specific

 At each genome position, sum all the Q score probabilities of every base aligned there, calculate average probability of error

Some positionsregions more prone
to **poor quality**bases and therefore
will have more **errors**

Basic Modelling of Sequence Errors

HTS p=0.001

- Binomial probability distribution- number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p.
- Coin toss
 - n = number of throws (1000)
 - p = probability of getting a head (0.5, 50%)
 - 1000 replicates
 - On average you will observe 500 heads (50%) variation
- HTS
 - n = coverage at genome position (30,000)
 - p = average error probability at genome position (0.001 = 0.1%)
 - 1000 replicates
 - On average you will observe 30 errors (0.1%) variation

Systematic Errors

- Defined as an error associated with a flaw in the equipment or experiment
- 454 has well known problems with homopolymers – MinION deletions as well
- Illumina errors more likely at some sequence motifs than others – typically independent of Q scores
 - Meacham et al 2011 BMC Bioinformatics
 - Nakamura et al 2011 Nucl Acids Res
 - Li et al 2012 Genome Biology
 - MIRA manual
- Inverted Repeats
- At or downstream of GGC, GGT, GGX not fully understood
- Compounds variant identification especially at lower frequencies

Strand Bias Examples

 A true variant should appear equally on reads going in both directions - can be used to identify systematic errors

- Ref Seg
- ACCGTAGCCTGGTATGTACGTAG
- Fwd Reads
- ACCGTAGCCTGGgATGTACGTAG
- ACCGTAGCCTGGgATGTACGTAG
- ACCGTAGCCTGGgATGTACGTAG
- ACCGTAGCCTGGgATGTACGTAG
- ACCGTAGCCTGGgATGTACGTAG
- Rev Reads
- TGGCATCGGACCATACATGCATC
- TGGCATCGGACCATACATGCATC
- TGGCATCGGACCATACATGCATC
- TGGCATCGGACCATACATGCATC

Ref Seq

ACGTACGTACGTTTTTTTACGTACGT

Fwd Reads

ACGTACGTACGTTTTTTTtCGTACGT

ACGTACGTACGTTTTTTTtCGTACGT

ACGTACGTACGTTTTTTTtCGTACGT

ACGTACGTACGTTTTTTTtCGTACGT

ACGTACGTACGTTTTTTTtCGTACGT

Rev Reads

TGCATGCATGCAAAAAAATGCATGCA

TGCATGCATGCAAAAAAATGCATGCA

TGCATGCATGCAAAAAATGCATGCA

TGCATGCATGCAAAAAAATGCATGCA

- Statistical tests for strand bias such as Fisher's exact test.
- Does the variant show the same/similar bias to the reference.

Variant Calling - LoFreq

- LoFreq
 - Fast and sensitive variant calling from next-gen sequencing data
 - https://csb5.github.io/lofreg/
 - Wilm et al. 2012
- LoFreq is an advanced variant caller that use a range of data to call variants
 - Quality Scores
 - Transition/Transversion mutation matrix
 - Strand Bias test
- Python
 - BAM file
 - Reference file
 - Output VCF file
- lofreq call -f ref.fasta -o var.vcf my.bam
- more/less/cat var.vcf

Variant calling—minimum coverage & frequency

- A good first step is to use LoFreq or another variant caller and trust the results
- You can further filter the results
 - Depth (DP) of the site > 1000
 - Only trust variants above 0.5% or 1%
 - Some tools allow base quality filtering e.g. Q30
- LoFreq does not account for RT-PCR errors

Clone Results

Variant Call Format - .vcf files

- Many tools output this data in the VCF (Variant Call Format)
- Text file tab delimited: more/less/cat/head/tail

```
lofreq_vcf.tzt.txt ~
##fileformat=VCFv4.0
##fileDate=20160403
##source=./lofreq_star-2.1.2/bin/lofreq_call -f ebov_ref.fasta -o ebov_var.txt ebov1.bam
##reference=ebov ref.fasta
##INFO=<ID=DP,Number=1,Type=Integer,Description="Raw Depth">
##INFO=<ID=AF, Number=1, Type=Float, Description="Allele Frequency">
##INFO=<ID=SB,Number=1,Type=Integer,Description="Phred-scaled strand bias at this position">
##INFO=<ID=DP4,Number=4,Type=Integer,Description="Counts for ref-forward bases, ref-reverse, alt-forward and alt-reverse bases">
##INFO=<ID=INDEL,Number=0,Type=Flag,Description="Indicates that the variant is an INDEL.">
##INFO=<ID=CONSVAR, Number=0, Type=Flag, Description="Indicates that the variant is a consensus variant (as opposed to a low frequency variant).">
##INFO=<ID=HRUN.Number=1.Type=Integer.Description="Homopolymer length to the right of report indel position">
##FILTER=<ID=min_dp_10, Description="Minimum Coverage 10">
##FILTER=<ID=sb_fdr,Description="Strand-Bias Multiple Testing Correction: fdr corr. pyalue > 0.001000">
##FILTER=<ID=min_snvgual_64, Description="Minimum_SNV_Quality_(Phred)_64">
##FILTER=<ID=min indelgual 20, Description="Minimum Indel Quality (Phred) 20">
#CHROM POS
                                        QUAL
                                                FILTER INFO
KM034562.G3686.1
                        170
                                                         86
                                                                         DP=807; AF=0.013631; SB=0; DP4=728,65,11,0
KM034562.G3686.1
                                                        104
                                                                 PASS
                                                                         DP=806; AF=0.013648; SB=2; DP4=724,68,11,0
KM034562.G3686.1
                                                         80
                                                                 PASS
                                                                         DP=2249; AF=0.004446; SB=30; DP4=1124, 1110, 0, 10
                                                                 PASS
                                                                         DP=2181:AF=0.004585:SB=4:DP4=1318.852.8.2
KM034562.G3686.1
                                                                         DP=2278; AF=0.004390; SB=0; DP4=1076, 1187, 5, 5
KM034562.G3686.1
```

Variant Call Format

Ref	Pos	Reads	RefBase	Bases	Qualities
HQ156345.1	1	1	Α	•	I
HQ156345.1	2	2	С	• ,	IH
HQ156345.1	3	2	G	٠,	IB
HQ156345.1	4	3	G	• , •	CCB
HQ156345.1	5	3	T	CcC	CID
HQ156345.1	6	3	G	٠,٠	FFF
HQ156345.1	7	4	Α	.,	IIEE
HQ156345.1	8	3	C	G.,	III

CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO
HQ156345.1	5	•	Т	C	60	PASS	DP=3;AF=1;SB=0;DP4=0,0,2,1
HQ156345.1	8	•	C	G	58	PASS	DP=3,AF=0.333;SB=0;DP4=1,1,1,0

CHROM: Chromosome Name (i.e. viral genome name)

POS: Position the viral genome

ID: Name of the known variant from DB

REF: The reference allele (i.e. the reference base)

ALT: The alternate allele (i.e. the variant/mutation observed)

QUAL: The quality of the variant on a Phred scale

FILTER: Did the variant pass the tools filters

INFO: Information

DP = Depth

AF = Alternate Allele Frequency

SB = Strand Bias P-value

DP4=Extra Depth Information (forward ref; reverse ref; forward non-ref; reverse non-ref)

Variant Calling – alternatives

- LoFreq
- iVar
- VPhaser2 old
- https://www.broadinstitute.org/viral-genomics/v-phaser-2
- SegminatorII old
- http://www.bioinf.manchester.ac.uk/segminator/
- VarScan2
- http://varscan.sourceforge.net
- Freebayes
- https://github.com/freebayes/freebayes
- SNVer
- http://snver.sourceforge.net

SNPeff

- SNPeff
 - Takes variants in VCF format
 - Uses information of gene start/stop co-ordinates
 - Adds synonymous/missense annotations to the vcf
- snpEff -ud 0 NC_045512.2 sars2.vcf > sars2_snpeff.vcf
- -ud 0: Set upstream downstream interval length to 0
- NC_045512.2: the reference <u>name</u> not filename
- sars2.vcf: the input vcf file name
- sars2_snpeff.vcf: the annotated output vcf file name

SNPeff

```
CHROM
           POS ID
                                                INFO
                      REF ALT QUAK FILTER
NC 045512.2 23403.
                           G
                                44968.0
                      Α
                                           PASS DP=1286;AF=0.995334;SB=0;DP4=1,1,628,652
DP=1286;AF=0.995334;SB=0;DP4=1,1,628,652;ANN=G|missense variant|MODERATE|S|GU280 gp02|transcript|GU2
80 gp02 protein coding 1/1 c.1841A>G p.Asp614Gly 1841/3822 1841/3822 614/1273 | |
;ANN=G
missense variant
                      Annotation
MODERATE
                      Annotation Impact
S
                      Gene Name
GU280 gp02
                      GeneID
transcript
                      Feature Type
GU280 gp02
                      FeatureID
protein coding
                      Transcript BioType
1/1
                      Rank
c.1841A>G
                      HGVS.coding [Human Genome Variation Society]
                      HGVS.protein
p.Asp614Gly
                      cDNA.pos / cDNA.length
1841/3822
1841/3822
                      CDS.pos / CDS.length
614/1273
                      AA.pos / AA.length
```

• The A to G mutation at genome position 23403 corresponds to position 1841 (out of 3822) within the Spike (S) gene which corresponds to codon 614 (out of 1273) within Spike(S)

SNPeff alternatives

- SNPeff alternatives
 - vcf-annotator: https://github.com/rpetit3/vcf-annotator

Practical session

- DENV3 sample
- denv3.bam
- **ivar** -> consensus
- **lofreq** -> variants
- conda activate snpeff
- **snpeff** to add characterisation to SNPs
- Extra things:
 - Check the ivar manual call variants on the denv3.bam how do they compare to lofreq
- Plan of Action
- 15:00 16:00 Same tutorial on GitHub
- 16:00 16:30
- 16:30 18:00 Group practical

The end