5 Introduction to the Theory of Order Statistics and Rank Statistics

- This section will contain a summary of important definitions and theorems that will be useful for understanding the theory of order and rank statistics. In particular, results will be presented for *linear rank statistics*.
- Many nonparametric tests are based on test statistics that are linear rank statistics.
 - For one sample: The Wilcoxon-Signed Rank Test is based on a linear rank statistic.
 - For two samples: The Mann-Whitney-Wilcoxon Test, the Median Test, the Ansari-Bradley Test, and the Siegel-Tukey Test are based on linear rank statistics.
- Most of the information in this section can be found in Randles and Wolfe (1979).

5.1 Order Statistics

- Let X_1, X_2, \ldots, X_n be a random sample of continuous random variables having cdf F(x) and pdf f(x).
- Let $X_{(i)}$ be the i^{th} smallest random variable $(i = 1, 2, \dots, n)$.
- $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ are referred to as the **order statistics** for X_1, X_2, \ldots, X_n . By definition, $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$.

Theorem 5.1: Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics for a random sample from a distribution with cdf F(x) and pdf f(x). The joint density for the order statistics is

$$g(x_{(1)}, x_{(2)}, \dots, x_{(n)}) = n! \prod_{i=1}^{n} f(x_{(i)}) \quad \text{for } -\infty < x_{(1)} < x_{(2)} < \dots < x_{(n)} < \infty \quad (16)$$

$$= 0 \quad \text{otherwise}$$

Theorem 5.2: The marginal density for the j^{th} order statistic $X_{(j)}$ (j = 1, 2, ..., n) is

$$g_j(t) = \frac{n!}{(j-1)!(n-j)!} [F(t)]^{j-1} [1 - F(t)]^{n-j} f(t) \qquad -\infty < t < \infty.$$

• For random variable X with cdf F(x), the **inverse distribution** $F^{-1}(\cdot)$ is defined as

$$F^{-1}(y) = \inf\{x : F(x) \ge y\}$$
 $0 < y < 1$.

• If F(x) is strictly increasing between 0 and 1, then there is only one x such that F(x) = y. In this case, $F^{-1}(y) = x$.

Theorem 5.3 (Probability Integral Transformation): Let X be a continuous random variable with distribution function F(x). The random variable Y = F(X) is uniformly distributed on (0,1).

• Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics for a random sample from a continuous distribution. Application of Theorem 5.3, implies that $F(X_{(1)}) < F(X_{(2)}) < \cdots < F(X_{(n)})$ are distributed as the order statistics from a uniform distribution on (0,1).

• Let $V_j = F(X_{(j)})$ for j = 1, 2, ..., n. Then, by Theorem 5.2, the marginal density for each V_j has the form

$$g_j(t) = \frac{n!}{(j-1)!(n-j)!} t^{j-1} [1-t]^{n-j} - \infty < t < \infty$$

because F(t) = t and f(t) = 1 for a uniform distribution on (0, 1).

• Thus, V_j has a beta distribution with parameters $\alpha = j$ and $\beta = n - j + 1$. Therefore, the moments of V_j are

$$E(V_j^r) = \frac{n! \; \Gamma(r+j)}{(j-1)! \; \Gamma(n+r+1)}$$

where $\Gamma(k) = (k-1)!$.

• Thus, when V_i is the j^{th} order statistic from a uniform distribution,

$$E(V_j) = \frac{j}{n+1}$$
 $Var(V_j) = \frac{j(n-j+1)}{(n+1)^2(n+2)}$

Simulation to Demonstrate Theorem 5.3 (Probability Integral Transformation)

Case 1: N(0,1) Distribution

- 1. Generate a random sample $(x_1, x_2, \dots, x_{5000})$ of 5000 values from a normal N(0, 1) distribution.
- 2. Determine the 5000 empirical cdf $\widehat{F}(x_i)$ values.
- 3. Plot the histograms and empirical cdf of the original N(0,1) sample. Note how they represent a sample from a standard normal distribution.
- 4. Plot the histograms and empirical cdf of the $\widehat{F}(x_i)$ values. Note the histograms and empirical cdf of the $\widehat{F}(x_i)$ values represent a sample from a uniform U(0,1) distribution (as supported by Theorem 5.3).

Case 2: Exp(4) Distribution

- 1. Generate a random sample $(x_1, x_2, \dots, x_{5000})$ of 5000 values from an exponential Exp(4) distribution.
- 2. Determine the 5000 empirical cdf $\widehat{F}(x_i)$ values.
- 3. Plot the histograms and empirical cdf of the original Exp(4) sample. Note how they represent a sample from an exponential Exp(4) distribution.
- 4. Plot the histograms and empirical cdf of the $\widehat{F}(x_i)$ values. Note the histograms and empirical cdf of the $\widehat{F}(x_i)$ values represent a sample from a uniform U(0,1) distribution (as supported by Theorem 5.3).

Histogram of N(0,1) Sample

Histogram of CDF of N(0,1) Sample)

ECDF of N(0,1) Sample

ECDF(ECDF of N(0,1) Sample)

Histogram of Exp(4) Sample

Histogram of CDF of Exp(4) Sample

ECDF of Exp(4) Sample

ECDF(ECDF of Exp(4) Sample)

R Code for Simulation of Theorem 5.3 (Probability Integral Transformation)

```
n = 5000 # size of random sample
# CASE 1: Random Samples from N(0,1) Distribution
x1 <- rnorm(n,0,1)
x1[1:10]
                    # view first 10 values
Fx1 <- pnorm(x1)
Fx1[1:10]
windows()
par(mfrow=c(2,2))
hist(x1,main="Histogram of N(0,1) Sample")
hist(Fx1, main="Histogram of CDF of N(0,1) Sample)")
plot(ecdf(x1),main="ECDF of N(0,1) Sample")
plot(ecdf(Fx1),main="ECDF(ECDF of N(0,1) Sample)")
# CASE 2: Random Samples from Exponential(4) Distribution
x2 < -rexp(n,4)
x2[1:10]
                    # view first 10 values
Fx2 \leftarrow pexp(x2,4)
Fx2[1:10]
windows()
par(mfrow=c(2,2))
hist(x2,main="Histogram of Exp(4) Sample")
hist(Fx2, main="Histogram of CDF of Exp(4) Sample)")
plot(ecdf(x2),main="ECDF of Exp(4) Sample")
plot(ecdf(Fx2),main="ECDF(ECDF of Exp(4) Sample)")
```

5.2 Equal-in-Distribution Results

• Two random variables S and T are **equal in distribution** if S and T have the same cdf. To denote equal in distribution, we write $S \stackrel{d}{=} T$.

Theorem 5.4 A random variable X has a distribution that is symmetric about some number μ if and only if $(X - \mu) \stackrel{d}{=} (\mu - X)$.

Theorem 5.5 Let X_1, X_2, \ldots, X_n be independent and identically distributed (i.i.d.) random variables. Let $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ denote any permutation of the integers $(1, 2, \ldots, n)$. Then $(X_1, X_2, \ldots, X_n) \stackrel{d}{=} (X_{\alpha_1}, X_{\alpha_2}, \ldots, X_{\alpha_n})$.

• A set of random variables X_1, X_2, \ldots, X_n is **exchangeable** if for every permutation $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ of the integers $1, 2, \ldots, n$,

$$(X_1, X_2, \dots, X_n) \stackrel{d}{=} (X_{\alpha_1}, X_{\alpha_2}, \dots, X_{\alpha_n}).$$

- If X_1, X_2, \ldots, X_n are i.i.d random variables, then the set X_1, X_2, \ldots, X_n is exchangeable.
- The statistic $t(\cdot)$ is
 - 1. a translation statistic if $t(x_1+k,x_2+k,\ldots,x_n+k)=t(x_1,x_2,\ldots,x_n)+k$
 - 2. a translation-invariant statistic if $t(x_1+k,x_2+k,\ldots,x_n+k)=t(x_1,x_2,\ldots,x_n)$

for every k and x_1, x_2, \ldots, x_n .

5.3 Ranking Statistics

- Let Z_1, Z_2, \ldots, Z_n be a random sample from a continuous distribution with cdf F(z), and let $Z_{(1)} < Z_{(2)} < \cdots < Z_{(n)}$ be the corresponding order statistics.
- Z_i has rank R_i among Z_1, Z_2, \ldots, Z_n if $Z_i = Z_{(R_i)}$ assuming the R_i^{th} order statistic is uniquely defined.
- By "uniquely defined" we are assuming that ties are not possible. That is, $Z_{(i)} \neq Z_{(j)}$ for all $i \neq j$.
- Let $\mathcal{R} = \{\mathbf{r} : \mathbf{r} \text{ is a permutation of the integers } (1, 2, ..., n)\}$. That is, \mathcal{R} is the set of all permutations of the integers (1, 2, ..., n).

Theorem 5.6 Let $\mathbf{R} = (R_1, R_2, \dots, R_n)$ be the vector of ranks where R_i is the rank of Z_i among Z_1, Z_2, \dots, Z_n . Then \mathbf{R} is uniformly distributed over \mathcal{R} . That is, $P(\mathbf{R} = \mathbf{r}) = 1/n!$ for each permutation \mathbf{r} .

Theorem 5.7 Let Z_1, Z_2, \ldots, Z_n be a random sample from a continuous distribution, and let **R** be the corresponding vector of ranks where R_i is the rank of Z_i for $i = 1, 2, \ldots, n$. Then

$$P[R_i = r] = 1/n$$
 for $r = 1, 2, ..., n$
= 0 otherwise

and, for $i \neq j$,

$$P[R_i = r, R_j = s] = \frac{1}{n(n-1)} \text{ for } r \neq s, r, s = 1, 2, \dots, n$$
$$= 0 \text{ otherwise}$$

Corollary 5.8 Let R be the vector of ranks corresponding to a random sample from a continuous distribution. Then

$$E[R_i] = \frac{n+1}{2}$$
 and $Var[R_i] = \frac{(n+1)(n-1)}{12}$ for $i = 1, 2, ..., n$

$$Cov[R_i, R_j] = \frac{-(n+1)}{12}$$
 for $i \neq j$.

- Let V_1, V_2, \ldots, V_n be random variables with joint distribution function D, where D is a member of some collection \mathcal{A} of possible joint distributions. Let $T(V_1, V_2, \ldots, V_n)$ be a statistic based on V_1, V_2, \ldots, V_n .
- The statistic T is **distribution-free over** \mathcal{A} if the distribution of T is the same for every joint distribution in \mathcal{A} .

Corollary 5.9 Let $Z_1, Z_2, ..., Z_n$ be a random sample from a continuous distribution, and let \mathbf{R} be the corresponding vector of ranks. If $V(\mathbf{R})$ is a statistic based only on \mathbf{R} , then $V(\mathbf{R})$ is distribution-free over the class \mathcal{A} of joint distributions of n i.i.d. continuous random variables.

• A statistic (such as $V(\mathbf{R})$) that is a function of Z_1, Z_2, \ldots, Z_n only through the rank vector \mathbf{R} is called a **rank statistic**.

Example of a distribution-free statistic: Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples from continuous distributions with cdfs F(x) and $G(x) = F(x - \Delta)$, respectively $(-\infty < \Delta < \infty)$. That is, Δ is a **shift parameter**.

- Combine the X and Y samples. Let R_i (i = 1, 2, ..., n) and Q_j (j = 1, 2, ..., m) be the ranks of the n X-values and the m Y-values in the combined sample. Thus, R_i and Q_j take on values 1, 2, ..., (m + n).
- Thus, the rank vector $\mathbf{R} = (R_1, R_2, \dots, R_n, Q_1, Q_2, \dots, Q_m)$ is simply a permutation of the integers $(1, 2, \dots, (m+n))$ which satisfy the constraint

$$\sum_{i=1}^{n} R_i + \sum_{j=1}^{m} Q_j = \sum_{k=1}^{m+n} k = \frac{(m+n)(m+n+1)}{2}.$$

- To construct a test for $H_0: \Delta = 0$ vs $H_1: \Delta > 0$ based on the ranks in rank vector \mathbf{R} , we compare the X-ranks (R_1, R_2, \ldots, R_n) to the Y-ranks (Q_1, Q_2, \ldots, Q_m) .
- If we know the X-ranks (R_1, R_2, \ldots, R_n) , then we also know the Y-ranks. Thus, it will be sufficient to consider a statistic based only on the X-ranks, say $W(R_1, R_2, \ldots, R_n)$.
- The test statistic proposed by Wilcoxon is $W = \sum_{i=1}^{n} R_i$. That is, W is the sum of the X-ranks. W is known as a **ranksum statistic**.
- Note that the statistic W is a function of the data only through the rank vector $\mathbf{R} = (R_1, R_2, \dots, R_n, Q_1, Q_2, \dots, Q_m)$. That is, once we have \mathbf{R} , we no longer need $(X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m)$ to calculate W.
- If $H_0: \Delta = 0$ is true, then the data $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ are i.i.d. continuous random variables. Applying Corollary 5.9, the rank statistic W is distribution-free over the class \mathcal{A} of all continuous distributions. That is, for any continuous cdf $F \in \mathcal{A}$, the distribution of W does not depend on the choice of F.

Theorem 5.10: Let W be the rank sum statistic when X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m are independent random samples from F(x) and $G(y) = F(y - \Delta)$, respectively. If $H_0: \Delta = 0$ is true, then the discrete distribution of W is given by

$$P_0[W = w] = \frac{t_{m,n}(w)}{\binom{m+n}{n}}$$
 for $w = \frac{n(n+1)}{2}$, $\frac{n(n+1)}{2} + 1$, ..., $\frac{n(2m+n+1)}{2}$
= 0 otherwise

where $t_{m,n}(w)$ is the number of subsets of n integers selected without replacement from $(1, 2, \ldots, (m+n))$ such that their sum = w.

- Thus, to calculate $P_0[W = w]$ for a given m and n, we need to (i) generate all $\binom{m+n}{n}$ possible assignments of (m+n) ranks to the X and Y observations, (ii) calculate W for each assignment, and (iii) count the number of cases where W = w.
- For example consider the case with n=2 and m=4. There are $\binom{6}{2}=15$. Thus, there will be two X-ranks (R_1,R_2) from the six possible ranks (1,2,3,4,5,6). $W=R_1+R_2$ is then calculated for all possible assignments of the 6 ranks.

ullet The following table shows the 15 assignments of the 6 ranks and the corresponding W statistic values.

X-ranks	Y-ranks		X-ranks	Y-ranks	
R_1, R_2	Q_1, Q_2, Q_3, Q_4	$W = R_1 + R_2$	R_1, R_2	Q_1, Q_2, Q_3, Q_4	$W = R_1 + R_2$
5,6	1,2,3,4	11	2,4	1,3,5,6	6
4,6	1,2,3,5	10	2,3	1,4,5,6	5
4,5	1,2,3,6	9	1,6	2,3,4,5	7
3,6	1,2,4,5	9	1,5	2,3,4,6	6
3,5	1,2,4,6	8	1,4	2,3,5,6	5
3,4	1,2,5,6	7	1,3	2,4,5,6	4
2,6	1,3,4,5	8	1,2	3,4,5,6	3
2,5	1,3,4,6	7			

For each of the 15 unordered assignments of ranks within samples, there are $4! \times 2! = 48$ ordered assignments yielding the same W value. Thus, overall there are 6! = 720 = (15)(48) ordered assignments of the 6 ranks.

 \bullet The distribution of W is

• Suppose that W = 9. Then for the test of $H_0: \Delta = 0$ vs $H_1: \Delta > 0$:

$$p-$$
 value = the probability of getting a test statistic W that is at least 9 = $2/15 + 1/15 + 1/15 = 4/15 \approx .27$.

Note that
$$w \in \{3, 4, ..., 11\} = \left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2} + 1, ..., \frac{n(2m+n+1)}{2}\right\}$$
 as stated in Theorem 5.10.

Theorem 5.11 Let $W = \sum_{j=1}^{n}$ be the ranksum statistic. If $H_0: \Delta = 0$ is true (i.e. F = G), then the distribution of W is symmetric about the value $\mu = n(m+n+1)/2$ and

$$E_0[W] = \mu$$
 $Var[W] = \frac{mn(m+n+1)}{12}.$

5.3.1 Statistics Based on Counting and Ranking

- Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution that is symmetric about value μ .
- Let $Z_1, Z_2, \ldots, Z_n = (X_1 \mu, X_2 \mu, \ldots, X_n \mu)$. Then Z_1, Z_2, \ldots, Z_n is a random sample that is symmetric about 0.
- Define $\Psi_i = \Psi(Z_i)$ to be an indicator variable where

$$\Psi(t) = 1 \ \text{if} \ t > 0 \qquad \text{and} \qquad \Psi(t) = 0 \ \text{if} \ t \leq 0$$

Lemma 5.12 Let Z be a random variable that is symmetrically distributed about 0. Then the random variables |Z| and $\Psi = \Psi(Z)$ are stochastically independent. That is,

$$P(\Psi = 1, |Z| \le t) = P(\Psi = 1)P(|Z| \le t)$$
 and $P(\Psi = 0, |Z| \le t) = P(\Psi = 0)P(|Z| \le t)$.

- For random variables Z_1, Z_2, \ldots, Z_n , the **absolute rank** of Z_i , denoted R_i^+ , is the rank of $|Z_i|$ among $|Z_1|, |Z_2|, \ldots, |Z_n|$.
- The signed rank of Z_i is $\Psi_i R_i^+$. Thus, (i) $\Psi_i = |Z_i|$ if $Z_i > 0$ and (ii) $\Psi_i = 0$ if $Z_i \leq 0$.
- A signed rank statistic is a statistic that is a function of $\Psi_1 R_1^+, \Psi_2 R_2^+, \dots, \Psi_n R_r^+$.
- The following theorem establishes properties of the joint distribution of $\Psi = (\Psi_1, \Psi_2, \dots, \Psi_n)$ and $\mathbf{R}^+ = (R_1^+, R_2^+, \dots, R_n^+)$.

Theorem 5.13 Let $Z_1, Z_2, ..., Z_n$ be a random sample from a continuous distribution that is symmetric about 0. Then $\Psi_1, \Psi_2, ..., \Psi_n, \mathbf{R}^+$ are mutually independent. Moreover, each Ψ_i is a Bernoulli random variable with p = 1/2, and \mathbf{R}^+ is uniformly distributed over \mathcal{R} (the set of all permutations of the integers (1, 2, ..., n)).

Proof of Theorem 5.13

- Z_1, Z_2, \ldots, Z_n are are independent because they are a random sample. Lemma 5.12 implies that $\Psi_1, |Z_1|, \Psi_2, |Z_2|, \ldots, \Psi_n, |Z_n|$ are 2n mutually independent random variables.
- Each Ψ_i is a Bernoulli random variable with parameter $p = P[Z_i > 0] = 1/2$ because Z_i is continuous and symmetrically distributed about 0.
- The \mathbf{R}^+ is independent of $\Psi_1, \Psi_2, \dots, \Psi_n$ because it is a function only of $|Z_1|, |Z_2|, \dots, |Z_n|$. That is, \mathbf{R}^+ does not depend on any Ψ_i .
- Because \mathbf{R}^+ is a rank vector of n i.i.d. continuous random variables, application of Theorem 5.6 shows that \mathbf{R}^+ is uniformly distributed over \mathcal{R} (the set of permutations of the integers $(1, 2, \ldots, n)$.

Let \mathcal{A}_0 be the set of joint distributions of n i.i.d. continuous random variables that are symmetrically distributed about 0.

Corollary 5.14 Let $S(\Psi, \mathbf{R}^+)$ be a statistic that depends on Z_1, Z_2, \ldots, Z_n only through $\Psi = \Psi_1, \Psi_2, \ldots, \Psi_n$ and $\mathbf{R}^+ = (R_1^+, R_2^+, \ldots, R_n^+)$. Then the statistic $S(\cdot)$ is distribution-free over \mathcal{A}_0 .

Proof of Corollary 5.14 This result follows from Theorem 5.13 because Ψ and \mathbf{R}^+ have the same joint distribution for every joint distribution $F_0(Z_1, Z_2, \dots, Z_n) \in \mathcal{A}_0$. That is, the joint distribution of Ψ and \mathbf{R}^+ does not depend on the choice of $F_0(Z_1, Z_2, \dots, Z_n) \in \mathcal{A}_0$.

• We will often be interested in functions of Ψ and \mathbf{R}^+ that are symmetric functions of the signed ranks $\Psi_1 R_1^+, \Psi_2 R_2^+, \dots, \Psi_n R_n^+$. If this is the case, then the following theorem can help establish the distribution of such a statistic.

Theorem 5.15 Let Z_1, Z_2, \ldots, Z_n be a random sample from a continuous distribution that is symmetric about 0. Let Q be the number of positive Zs. For Q = q, let $S_1 < S_2 < \cdots < S_q$ denote the ordered absolute ranks of those Zs that are positive (i.e., $S_1 < S_2 < \cdots < S_q$ are the positive signed ranks in numerical order). Then

$$P[Q=q, S_1=s_1, S_2=s_2, \dots, S_q=s_q] = (1/2)^n$$
 for $q=0,1,\dots,n$ and each of the q - tuples (s_1,s_2,\dots,s_q) such that s_i is an integer and $1 \le s_1 < s_2 < \dots < s_q \le n$ = 0 otherwise

- Recall: Suppose X_1, X_2, \ldots, X_n be a random sample from a continuous distribution that is symmetric about μ . Then $Z_1, Z_2, \ldots, Z_n = (X_1 \mu, X_2 \mu, \ldots, X_n \mu)$ is a random sample that is symmetric about 0.
- Thus, all of the preceding results also apply to the $(X_i \mu)$ random variables. That is, we can generalize the results to \mathcal{A}_{μ} = the class of continuous distributions that are symmetric about μ for any $-\infty < \mu < \infty$.

Example:

- Suppose we have a random sample X_1, X_2, \ldots, X_n from a distribution in \mathcal{A}_{μ} .
- The Wilcoxon signed rank statistic W^+ is defined as

$$W^{+} = \sum_{i=1}^{n} \Psi_{i} R_{i}^{+}.$$

That is, W^+ is the sum of the signed ranks.

• To test $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$, we would reject H_0 if W^+ is "too large". That is, we would reject H_0 if the *p*-value is small (e.g., *p*-value < .05). So how do we calculate the *p*-value?

Corollary 5.16 Let W^+ be the Wilcoxon signed rank statistic for testing $H_0: \theta = \theta_0$. For a random sample of size n, the distribution of W^+ assuming H_0 is true is

$$P_0[W^+ = k] = \frac{c_n(k)}{2^n}$$
 for $k = 0, 1, \dots, \frac{n(n+1)}{2}$
= 0 otherwise

where $c_n(k)$ = the number of subsets of integers $\{1, 2, ..., n\}$ for which W^+ is equal to k.

• Suppose n=4. The following table list the 2^4 combinations of signed ranks and the corresponding W^+ values.

Subset of $\{1, 2, 3, 4\}$	W^+	Subset of $\{1, 2, 3, 4\}$	W^+
\emptyset	0	$\{2,3\}$	5
{1}	1	$\{2,4\}$	6
{2}	2	$\{3,4\}$	7
{3}	3	$\{1,2,3\}$	6
$\{4\}$	4	$\{1,2,4\}$	7
$\{1,2\}$	3	$\{1,3,4\}$	8
$\{1,3\}$	4	$\{2,3,4\}$	9
{1,4}	5	$\{1,2,3,4\}$	10

Thus, the distribution of W^+ is

- Suppose the data are $(X_1, X_2, X_3, X_4) = (24.6, 25.1, 25.6, 25.7)$, and we want to test H_0 : $\mu = 25$ vs $H_1: \mu > 25$.
- Next calculate the deviations from $\mu_0 = 25$. That is, $(Z_1, Z_2, Z_3, Z_4) = (-.4, .1, .6, .7)$. and the vector of absolute values is $(|Z_1|, |Z_2|, |Z_3|, |Z_4|) = (.4, .1, .6, .7)$.
- The absolute rank vector $\mathbf{R}^+ = (R_1^+, R_2^+, R_3^+, R_4^+) = (2, 1, 3, 4).$
- $\Psi_i = 1$ if $Z_i > 0$ (or equivalently, if $X_i > 25$), and is 0 otherwise. Thus, $(\Psi_1, \Psi_2, \Psi_3, \Psi_4) = (0, 1, 1, 1)$.
- Therefore the signed rank statistic $W^+ = \sum_{i=1}^n \Psi_i R_i^+$ is

$$W^+ = (0)(2) + (1)(1) + (1)(3) + (1)(4) = 8.$$

• The p-value is the probability of getting a W^+ value that is <u>at least</u> 8. Therefore, the p-value = $P[W^+ = 8, 9, \text{ or } 10] = (1+1+1)/16 = 3/16 = .1875$.

Theorem 5.17 The distribution of the Wilcoxon signed rank statistic W^+ is symmetric about its mean $\mu_{W^+} = [n(n+1)/4]$ if $H_0: \mu = \mu_0$ is true.

5.4 Linear Rank Statistics

- Earlier we studied the ranksum statistic $W = \sum_{i=1}^{n} R_i$ where R_i is the rank of X_i among a combined sample $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$.
- If $H_0: \Delta = 0$ is true, then the random variables $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ are i.i.d, and by Corollary 5.9, W is distribution-free over the class of continuous distributions A.
- \bullet The test statistic W has two important properties:
 - 1. W maintains the desired α -level over a very broad class of distributions (\mathcal{A}).
 - 2. The power of W is excellent for detecting a shift for many distributions, especially for a medium-tailed distribution (such as the normal or logistic).
- ullet We now consider a general class of rank statistics (which includes W).
- Let $\mathbf{R} = (R_1, R_2, \dots, R_N)$ be a vector of ranks. Let $a(1), a(2), \dots, a(N)$ and $c(1), c(2), \dots, c(N)$ be two sets of n constants. A statistic of the form

$$S = \sum_{i=1}^{N} c(i) a(R_i)$$

is called a **linear rank statistic**. The constants $a(1), a(2), \ldots, a(n)$ are called the **scores**, and $c(1), c(2), \ldots, c(n)$ are called the **regression constants**.

• The choice of $c(1), c(2), \ldots, c(n)$ will depend on the specific testing problem of interest.

Case I:

• In two-sample problems **R** is the rank vector of $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$. In general, let R_1, R_2, \ldots, R_n be the ranks of X_1, X_2, \ldots, X_n and $R_{n+1}, R_{n+2}, \ldots, R_{m+n}$ be the ranks of Y_1, Y_2, \ldots, Y_m . If

$$c(i) = 1$$
 for $i = 1, 2, ..., n$
= 0 for $i = n + 1, n + 2, ..., m + n$ (17)

then $S = \sum_{i=1}^{m+n} c(i) a(R_i) = \sum_{i=1}^{n} a(R_i)$ which is the sum of the scores associated with the ranks of X_1, X_2, \dots, X_n .

• The constants c(i) in (17) are called **two-sample regression constants**.

Case II:

• For Case I, if we also let a(i) = i for i = 1, 2, ..., m + n, then $S = \sum_{i=1}^{n} R_i$ which is the ranksum statistic W. The scores a(i) = i are called the **Wilcoxon scores**.

Case III:

- It is clear that a different choice of $a(1), a(2), \ldots, a(N)$ scores for the two-sample problem will yield a test statistic with different properties.
- Let \widehat{M} = the median of the combined sample $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m$, and define

$$a(i) = 0$$
 if $i \le \frac{m+n+1}{2}$ (18)
= 1 if $i > \frac{m+n+1}{2}$

Consider S with these a(i) scores and the two-sample regression constants in Case I:

$$S = \sum_{i=1}^{n} a(R_i)$$
 = the number of X_i values larger than the sample median \widehat{M}

• This S is the linear rank statistic for the **two-sample median test**, and the scores in (18) are called the **median scores**.

5.4.1 Linear Rank Statistics under H_0

- In this section, general properties of linear rank statistics will be studied under the **null hypothesis** where "null hypothesis" refers to any set of assumptions that will result in the rank vector \mathbf{R} being uniformly distributed over \mathcal{R} (the set of permutations of the integers $1, 2, \ldots, N$).
- In future sections, we will study the null hypothesis for specific testing problems.

Lemma 5.18 Let $a(1), a(2), \ldots, a(N)$ be a set of N constants. Then, if **R** is uniformly distributed over permutation set \mathcal{R} ,

$$E[a(R_i)] = \frac{1}{N} \sum_{i=1}^{N} a(i) = \overline{a} \quad \text{for } i = 1, 2, ..., N$$

$$Var[a(R_i)] = \frac{1}{N} \sum_{k=1}^{N} (a(i) - \overline{a})^2$$

$$Cov[a(R_i), a(R_j)] = \frac{-1}{N(N-1)} \sum_{k=1}^{N} (a(i) - \overline{a})^2 = \frac{1}{N-1} Var[a(R_i)] \quad \text{for } i \neq j$$

- The proof of Lemma 5.18 involves using Theorem 5.7 and the definitions of $E(\cdot)$, $Var(\cdot)$, and $Cov(\cdot, \cdot)$.
- Lemma 5.18 is used to establish the mean and variance of a linear rank statistic under the null hypothesis.

Theorem 5.19 Let S be a linear rank statistic with regression constants $c(1), c(2), \ldots, c(N)$ and scores $a(1), a(2), \ldots, a(N)$. If **R** is uniformly distributed over \mathcal{R} , then

$$E[S] = N\overline{ca} \quad \text{and}$$

$$Var[S] = \frac{1}{N-1} \left[\sum_{i=1}^{N} (c(i) - \overline{c})^2 \right] \left[\sum_{k=1}^{N} (a(k) - \overline{a})^2 \right]$$
 where $\overline{a} = (1/N) \sum_{i=1}^{N} a(i)$ and $\overline{c} = (1/N) \sum_{i=1}^{N} c(i)$.

5.5 Asymptotic Normality of Rank Statistics (Supplemental)

- The regression constants $c(1), c(2), \ldots, c(N)$ are determined by the problem of interest. Thus, we will only place a weak restriction on these constants.
- The restriction essentially requires that asymptotically no individual c_i value is much larger than the other constants. Specifically, the restriction is

$$\frac{\sum_{i=1}^{N} (c(i) - \overline{c})^2}{\max_{1 \le i \le n} (c(i) - \overline{c})^2} \to \infty \text{ as } N \to \infty$$
(19)

where
$$(1/N) \sum_{i=1}^{N} c_i$$
.

This is known as **Noether's condition**.

• Let ϕ be a real-valued function defined on (0,1) that (i) does not depend on N, (ii) can be written as the difference $\phi = \phi_i - \phi_2$ of two non-decreasing functions, and (iii) satisfies

$$0 < \int_0^1 \left[\phi(u) - \overline{\phi}\right]^2 du < \infty \text{ with } \overline{\phi} = \int_0^1 \phi(u) du.$$

A function $\phi(\cdot)$ with these properties is called a square integrable score function.

- For a square integrable function, $\int_0^1 \left[\phi(u) \overline{\phi}\right]^2 du = \int_0^1 \phi^2(u) du [\overline{(\phi)}]^2$.
- Let ϕ be a square integrable score function and $a(1), a(2), \ldots, a(N)$ be scores that satisfy any of the following three conditions:

(A1)
$$a(i) = \phi\left(\frac{i}{N+1}\right)$$
.

(A2)
$$a(i) = N \int_{(i-i)/N}^{i/N} \phi(u) du$$
 for $i = 1, 2, ..., N$.

(A3) $a(i) = E[\phi(U_{(i)})]$ where $U_{(i)}$ is the i^{th} order statistic from a random sample of size N from a uniform (0,1) distribution.

Let
$$S = \sum_{i=1}^{N} c(i) a(R_i).$$

Let
$$S^+ = \sum_{i=1}^{N} c(i) \Psi(i) a(R_i).$$

Theorem 5.20 (Asymptotic Normality of Linear Rank Statistics): Under H_0 for a linear rank statistic S, and assuming Noether's condition and condition A1, A2 or A3, then

$$\frac{S - E(S)}{\sqrt{Var(S)}} \stackrel{d}{\to} N(0,1) \text{ as } N \to \infty$$

Theorem 5.21 (Asymptotic Normality of Signed Rank Statistics): Under H_0 for a linear rank statistic S^+ , and assuming Noether's condition and condition A1, A2 or A3, then

$$\frac{S^{+} - E(S^{+})}{\sqrt{Var(S^{+})}} \stackrel{d}{\rightarrow} N(0,1) \text{ as } N \rightarrow \infty$$

• The linear rank statistics and signed rank statistics discussed in this course all all have asymptotic N(0,1) distributions after standardizing.