Name- Puspak Chakraborty, Roll No. DA24S002

High Level Design: Doodle Classifier System

This document provides a comprehensive high-level design for the Doodle Classifier.

Overview

The Doodle Classifier is a web-based application that allows users to draw doodles, classify them using a machine learning model, and save the drawings with their associated categories.

Along with the front end, backend and inference api, it also features a retraining pipeline, which takes care of updating the underlying model as and when enough data is accumulated.

System Architecture

The system consists of several interconnected components:

- 1. **User Interface (UI)**: A web frontend for users to draw doodles and view classification results.
- 2. **FastAPI Backend**: REST API service that processes requests, handles image data, and communicates with the ML model hosted by MLFlow.
- 3. **MLflow Model Server**: Hosts the latest trained machine learning model for doodle classification with help of MLFlow.
- 4. **Monitoring Stack**: Prometheus and Grafana for system metrics collection and visualization

UI Component

- Port: 9080
- Responsibilities:
 - Provide drawing interface for users.
 - Send doodle data to backend for classification
 - Display classification results.
 - Send image data if required to backend for further training.

FastAPI Backend

- Port: 8000
- **Dependencies**: MLflow Model Server
- Key Endpoints:
 - /save-image/: Saves user-drawn images with category labels
 - /invocations/: Forwards prediction requests to the MLflow model
 - /metrics: Exposes metrics which are ingested by Prometheus
- Responsibilities:
 - Process base64-encoded image data
 - Save images to the appropriate category folder
 - Forward prediction requests to the MLflow model
 - Provide metrics for monitoring
 - Handle errors and logging

MLflow Model Server

- **Port**: 5002
- Endpoint: /invocations/
- Responsibilities:
 - Host the latest trained doodle classification model
 - Process prediction requests
 - Return classification results

Monitoring Stack

Prometheus

- Port: 9090
- Responsibilities:
 - Collect metrics from the FastAPI backend and windows exporter running in host machine and make them available to Grafana

Grafana

- Port: 3000
- **Dependencies**: Prometheus
- Responsibilities:
 - Visualize metrics from Prometheus
 - Provide dashboards for system monitoring

Data Flow

1. Image Classification Flow:

- User draws a doodle on the UI
- UI encodes the image as base64 and sends to backend
- · Backend forwards the encoded image to model hosted by MLflow
- Model returns top classification results
- Results are displayed to the user

2. Image Saving Flow:

- If user is not satisfied with top prediction, user submits a doodle with a category
- UI sends the image and category to backend
- Backend decodes the image and saves it to the appropriate category folder
- Confirmation is returned to the UI

3. Metrics Flow:

- Backend tracks metrics (requests, latency)
- Prometheus scrapes metrics from the backend and host machine
- Grafana visualizes the metrics from Prometheus

Metrics and Monitoring

The system tracks several key metrics:

- Prediction Requests: Count of model prediction requests
- Prediction Latency: Time taken for predictions

- Api Errors: Errors occurring in the two apis
- Save Image Requests: Count of image save operations
- Save Image Latency: Time taken for image saving.
- System Statistics: CPU Usage, RAM Usage, Disk IO, Network IO

The system is containerized using Docker and orchestrated with Docker Compose:

- All components mentioned in System Architecture (other than MLFlow server) run in separate containers
- Entire architecture can be built in one go using Docker compose
- Inter-container communication is configured
- Volumes are used for persistent storage
- Environment variables configure component behaviour

Design of Pipeline used for retraining

1. Pipeline Architecture Overview

The retraining pipeline is orchestrated as a sequence of modular Python scripts, each representing a distinct stage. Execution and status tracking are managed by a pipeline orchestrator and a PostgreSQL database. The stages are:

2. Component Roles and Responsibilities

2.1 Orchestration and Tracking

- pipeline orchestrator.py:
 - Sequentially executes each stage as a subprocess.
 - Tracks run and stage statuses in the PostgreSQL database using functions from db_util.py.
 - Handles failure, success, and conditional stage skipping based on data thresholds and errors.

2.2 Data Ingestion and Preparation

- scan file count.py:
 - Scans the user-uploaded image directory, counts new images, and logs category statistics.
 - Used to determine if enough new data exists to trigger retraining.
- move preexisting new data to old data.py:
 - Moves or merges previously uploaded data into old dataset, makes space for upcoming images to be converted to npy files as new data for testing.
 - Cleans up new data directory after merging.
- convert_image_to_npy_delete_png.py:
 - Converts newly uploaded PNG images to .npy arrays and saves them to npy_data/uploaded_data/new_data folder to ensure that these are the ones that get picked during retraining.
 - Deletes original PNGs after conversion.

2.3 Data Versioning

- version_data.py:
 - Uses DVC and Git to add, commit, and track changes made to the training dataset.
 - Ensures reproducibility and data provenance for each model version.

2.4 Model Retraining

- retrain_model.py:
 - Loads the updated dataset, splits into train/validation sets, and prepares data loaders.
 - Loads the previous best model, unfreezes the last layer, and retrains using new data.
 - Logs training and validation metrics, saves the best model checkpoint.

2.5 Model Registration

- register_latest_model.py:
 - Registers the newly trained model in the model registry, and tags it appropriately to ensure the MLFlow server picks up the latest tagged model.
 - Enables deployment and version management.

2.6 Data Hygiene

- clean_empty_images_folders.py:
 - Removes empty category folders to keep the data directory clean.

Fig: Retraining pipeline

3. Monitoring, Logging, and Error Handling

- Logging: Each script logs to a stage-specific log file (e.g., stage1.log, stage5.log) for debugging and auditability.
- **Database Tracking**: Pipeline run and stage statuses, start/end times, and failures are tracked in PostgreSQL for monitoring and dashboarding, and a separated UI screen is made available to track these pipeline runs.
- **Failure Handling**: On failure, the orchestrator marks the current and all subsequent stages as failed and halts the pipeline.
- **Conditional Execution**: If enough new data isn't present, the pipeline marks subsequent stages as 'not_triggered' and exits gracefully.

4. Versioning and Reproducibility

- **Data Versioning**: DVC and Git are used to track changes in the dataset after each retraining cycle, ensuring reproducibility.
- **Model Versioning**: Trained models are saved with unique identifiers and registered for deployment and rollback.

Overall high level design diagram

