

PERSPECTIVES ON HIGH TEMPERATURE SUPERCONDUCTING ELECTRONICS

T. Venkatesan
Bellcore
Red Bank, New Jersey

ABSTRACT

The major challenges in making HTSC electronics viable are predominantly materials problems. Unlike their predecessors the metal oxide-based superconductors are integratable with other advanced technologies such as opto- and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces for junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. I will illustrate these issues with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of $5*10^6$ A/cm² at 77 K have been prepared by this technique. Ultra-thin films, less than 100 Å show $T_c > 80$ K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T_c of 87 K and J_c of $6*10^4$ A/cm² have been fabricated on silicon substrates. Sub-micron structures with $J_c > 2*10^7$ at 10 K have been fabricated. Results on nonlinear switching elements, IR detectors and microwave studies will be briefly summarized.