3)- Para los siguientes algoritmos de scheduling. Ejemplifique Algoritmos

FCFS: es un algoritmo no preesciptivo (no cede lugar ante pedidos del cpu). Se basa en una vez que arranca un proceso se debe continuar hasta terminarlo para darle paso al siguiente proceso. Mientras tanto si llegan nuevos procesos en el medio se van encolando para ser procesados luego de que termine el proceso actual. NO SE TOMAN LAS PRIORIDADES. EN CASO DE EMPATE 1* se toma el proceso que llego 1ro, si el empate continua. Se toma el del PID mas chico. TR= Tiempo desde la llegada hasta el fin del proceso. TE= Tiempo de espera donde el proceso espera a ser atendido.

																						•									
Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		TR	TE
P1	0	9	-	>1	2	3	4	5	6	7	8	9<																		9	0
P2	1	5	-		>								1	2	3	4	5<													13	8
P3	2	3	-			>												1	2	3<										15	12
P4	3	7	-				>														1	2	3	4	5	6	7<			21	14
FCFS(Fisrt	Coome First	Served)	QUEUE	4	2	3	4																				PR	OMED	10	14,5	8,5

SJF: es un algoritmo no preesciptivo (no cede lugar ante pedidos del cpu). Se basa en una vez que arranca un proceso se debe continuar hasta terminarlo para darle paso al siguiente proceso. Mientras tanto si llegan nuevos procesos en el medio se van encolando para ser procesados luego. El una vez terminado el proceso actual se verifica cual de los procesos encolados tienela rafaga de uso de procesador mas corta, y ese proceso es el que sigue para ser ejecutado.

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		TR	TE
P1	0	9	-	>1	2	3	4	5	6	7	8	9<																		9	0
P2	1	5	-		>											1	2	3	4	5<										16	11
P3	2	3	-			>							1	2	3<															10	7
P4	3	7	-				>														1	2	3	4	5	6	7<			21	14
SJF (Sh	nortest Job F	irst)	QUEUE	4	2	3	4																				PF	ROMED	Ю	14	8

RR - TV (Round River - Tiempo Variable): es un algoritmo no preesciptivo (no cede lugar ante pedidos del cpu). Similar al FCFS en cuanto al uso de la cola. Una vez que arranca un proceso se debe continuar hasta terminarlo o que se terminen los QUANTUMS de la operacion para darle paso al siguiente proceso. Mientras tanto si llegan nuevos procesos en el medio se van encolando para ser procesados con la misma logica que en FCFS. Luego de que termine el proceso actual(ya sea por finalizacion o por Quantum), se prosigue con el siguiente de la cola. Si el siguiente proceso finaliza antes que el quantum, el quantum restante se desecha. inicando el contador nuevamente. ESTE ALGORITMO NOS EVITA LA INANICION DE PROCESOS al ejecutar todos en una primera pasada.

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		TR	TE
P1	0	9	-	>1	2	3	4												5	6	7	8					9<			24	15
P2	1	5	-		>			1	2	3	4												5<							19	14
P3	2	3	-			>						1	2	3<																9	6
P4	3	7	-				>								1	2	3	4						5	6	7<				20	13
RF	2 - TV Q=4		QUEUE	4	2	3	4	4	2	4	4																PF	ROMED	10	18	12

RR - TF (Round River - Tiempo Fijo): es un algoritmo no preesciptivo (no cede lugar ante pedidos del cpu). Similar al FCFS en cuanto al uso de la cola. Una vez que arranca un proceso se debe continuar hasta terminarlo o que se terminen los QUANTUMS de la operacion para darle paso al siguiente proceso. Mientras tanto si llegan nuevos procesos en el medio se van encolando para ser procesados con la misma logica que en FCFS. Luego de que termine el proceso actual(ya sea por finalizacion o por Quantum), se prosigue con el siguiente de la cola. Si el siguiente proceso finaliza antes que el quantum, el quantum restante se utiliza para el siguiente proceso.

																														-	
Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		TR	TE
P1	0	9	-	>1	2	3	4									5	6	7	8					9<						21	12
P2	1	5	-		>			1	2	3	4									5<										16	11
P3	2	3	-			>						1	2	3<																9	6
P4	3	7	-				>								1						2	3	4		5	6	7<			21	14
RR	- TF Q=4		QUEUE	4	2	3	4	4	2	4	4	4															PR	ROMED	10	16,75	10,75

Proceso	Llegada	CPU	Prioridad	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		TR	
P1	0	9	3	>1																2	3	4	5	6	7	8	9<			24	1
P2	1	5	2		>1				2	3	4	5<																		8	
P3	2	3	1			>1	2	3<																						3	
P4	3	7	2				^						1	2	3	4	5	6	7<											13	
F	rioridades		QUEUE 1	3																							PR	ROMEDI	10	12	
			QUEUE 2	2	2	4																									
			QUEUE 3	4	4																										
																															t
			me first) : E tiene meno										nuevo e		orto (e	n cuan															
valua													nuevo e	s mas o	orto (e	n cuan															
evalua :	si el proces	o actual	tiene meno	s tiemp		cpu que	e el nue		esado			, si el r	nuevo e PAR	s mas o	orto (e	n cuan UND	to a raf	fagas d	e CPU), tome	el luga	r del c	ou del c	que esta	aba. Es	STE AL	GORIT	MO ES		FICIOS	SC
oceso P1	si el proces	CPU	Prioridad	s tiemp		cpu que	e el nue		esado			, si el r	nuevo e PAR	s mas o	orto (e	n cuan UND	to a raf	fagas d	e CPU), tome	el luga	r del c	ou del c	ue esta 20	aba. Es	STE AL	GORIT 23	MO ES		TR	S
oceso P1 P2	si el proces	CPU 9	Prioridad -	s tiemp	oos de	cpu que	e el nue		resado 5	hacien		, si el r	nuevo e PAR	s mas o	orto (e	n cuan UND	to a raf	fagas d	e CPU), tome	el luga	r del c	ou del c	ue esta 20	aba. Es	STE AL	GORIT 23	MO ES		TR 24	S
	Llegada 0 1	CPU 9 5	Prioridad -	s tiemp	oos de	cpu que	e el nue	evo ingr	resado 5	hacien		, si el r	nuevo e PAR	s mas o	orto (e	n cuan UND	to a raf	fagas d	e CPU), tome	el luga	r del c	ou del c	ue esta 20	aba. Es	STE AL	GORIT 23	MO ES		TR 24	SC