The "Imprinting Manuscript" Normal Expression Bias of Imprinted Genes in Schizophrenics

Attila Gulyas-Kovacs

Chess lab meeting 12/12/17

The CommonMind data

- questions
 - schizophrenia and imprinting (15q11-q13 microduplications)
 - imprinted genes in adult human DLPFC
 - determinants of imprinting (age, ancestry, gender)
- key studies
 - Fromer et al 2016 Nat Neurosci
 - Gregg et al 2010 Science
 - Baran et al 2015 Genome Res
 - Perez et al 2015 eLife

Read count ratio gauges allelic bias and thus imprinting

Ranking genes based on variation across individuals

Gene score and previous imprinted gene clusters

Establishing imprinting status in the human DLPFC

- prior expectation: near cluster
- alternative causes of high read count ratio
 - mapping bias
 - @ eQTL

Including 3 slightly lower scoring genes

Known imprinted genes

Explaining variation with psychiatric diagnosis, Dx

The simple but "confounded" approach

More information with more explanatory variables

explanatory variable	levels
Age	
Institution	[MSSM], Penn, Pitt
Gender	[Female], Male
PMI	
Dx	[Control], SCZ, AFF
RIN	
$RNA_{\mathtt{batch}}$	[A], B, C, D, E, F, G, H, 0
Ancestry.1	
:	
Ancestry.5	

Dependencies: the source of confounding

Quantities

- observed variables
 - $ightharpoonup Y_{\sigma} = S_{\sigma}$: response = read count ratio for gene g
 - $ightharpoonup Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - $\triangleright X_i$: the j-th column of design matrix X
- model parameters
 - $\triangleright \beta_{ig}$ (or b_{ig}): regression coefficient for Y_g and X_i
 - $\triangleright \sigma_g$ (or m_{ig}): parameters for noise

- given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - $\triangleright X_i$: the *j*-th column of design matrix X
- model parameters
 - $\triangleright \beta_{ig}$ (or b_{ig}): regression coefficient for Y_g and X_i
 - $\triangleright \sigma_g$ (or m_{ig}): parameters for noise

- given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Untransformed read count ratio S_g

Transformed read count ratio Q_g

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - $\triangleright X_i$: the *j*-th column of design matrix X
- model parameters
 - $\triangleright \beta_{ig}$ (or b_{ig}): regression coefficient for Y_g and X_i
 - $\triangleright \sigma_g$ (or m_{ig}): parameters for noise

- given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - \triangleright X_i : the *j*-th column of design matrix X
- model parameters
 - β_{jg} (or b_{jg}): regression coefficient for Y_g and X_j
 - σ_g (or m_{ig}): parameters for noise

- given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - \triangleright X_i : the *j*-th column of design matrix X
- model parameters
 - β_{jg} (or b_{jg}): regression coefficient for Y_g and X_j
 - σ_g (or m_{ig}): parameters for noise

- ullet given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Three classes of dependency structure

fixed I

fixed II

mixed

- fixed I: too complex ⇒ low power
- fixed II: too simplistic ⇒ bias
- mixed: powerful middle ground—even with interactions

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - \triangleright X_i : the j-th column of design matrix X
- model parameters
 - β_{jg} (or b_{jg}): regression coefficient for Y_g and X_j
 - σ_g (or m_{ig}): parameters for noise

- ullet given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - link function
 - noise distribution

Quantities

- observed variables
 - $Y_g = S_g$: response = read count ratio for gene g
 - $Y_g = Q_g$ (or $Y_g = R_g$): response = transformed read count ratio
 - \triangleright X_i : the *j*-th column of design matrix X
- model parameters
 - β_{jg} (or b_{jg}): regression coefficient for Y_g and X_j
 - σ_g (or m_{ig}): parameters for noise

- ullet given g, the structure of dependencies among $Y_g, X_1, ..., X_p$
- parametric family (normal or logistic)
 - ▶ link function
 - noise distribution

Parametric families

model family	abbrev.	response var.
<i>u</i> nweighted <i>n</i> ormal <i>l</i> inear	unlm	<i>S</i> , <i>Q</i> , or <i>R</i>
<i>w</i> eighted <i>n</i> ormal <i>l</i> inear	wnlm	S, Q, or R
<i>logi</i> stic	logi	5
<i>logi</i> stic, $\frac{1}{2}$ × down-scaled link fun.	logi2	S

Fit of fixed I models for PEG3

Fixed multiple regression model, PEG3

Fit of fixed I models for KCNK9

Fit of mixed models (all genes jointly)

Regression coefficients

Testing independence of read count ratio

Based on unImQ mixed model

predictor term	interpretation	ΔΑΙC	p-value
(1 Gene)	variability among genes	-126.8	8.5×10^{-28}
(1 Dx)	variability among Control, SCZ, AFF	2.0	1.0
(1 Dx : Gene)	Gene specific variability among Ctrl, SCZ, AFF	0.4	0.21
Age	effect of Age	1.3	0.39
(Age Gene)	Gene specific effect of Age	-18.9	2.5×10^{-5}
Ancestry.1	effect of Ancestry.1	0.6	0.24
(Ancestry.1 Gene)	Gene specific effect of Ancestry.1	-71.2	4.6×10^{-16}
Ancestry.3	effect of Ancestry.3	1.6	0.54
(Ancestry.3 Gene)	Gene specific effect of Ancestry.3	-17.9	3.8×10^{-5}
(1 Gender)	difference between Male and Female	2.0	1.0
(1 Gender : Gene)	Gene specific difference between M and F	-5.7	5.5×10^{-3}

Untransformed read count ratio S_g

- CommonMind RNA-seq read count ratio gauging allelic bias
- 2 \approx 30 imprinted genes in human DLPFC
 - ▶ in agreement with more recent estimates
- onormal allelic bias of imprinted genes in schizophrenics
 - subtle effect + noise and bias?
 - complex genetic architecture
- gene-specific effect of ancestry, gender, and age
 - aging: "imprinting and the social brain"
 - "DNA methylation age"

- CommonMind RNA-seq read count ratio gauging allelic bias
- ${f 2}$ pprox 30 imprinted genes in human DLPFC
 - in agreement with more recent estimates
- o normal allelic bias of imprinted genes in schizophrenics
 - subtle effect + noise and bias?
 - complex genetic architecture
- gene-specific effect of ancestry, gender, and age
 - aging: "imprinting and the social brain"
 - "DNA methylation age"

- CommonMind RNA-seq read count ratio gauging allelic bias
- $\mathbf{2} \approx 30$ imprinted genes in human DLPFC
 - in agreement with more recent estimates
- onormal allelic bias of imprinted genes in schizophrenics
 - subtle effect + noise and bias?
 - complex genetic architecture
- gene-specific effect of ancestry, gender, and age
 - aging: "imprinting and the social brain"
 - "DNA methylation age"

- CommonMind RNA-seq read count ratio gauging allelic bias
- $\mathbf{2} \approx 30$ imprinted genes in human DLPFC
 - in agreement with more recent estimates
- onormal allelic bias of imprinted genes in schizophrenics
 - subtle effect + noise and bias?
 - complex genetic architecture
- gene-specific effect of ancestry, gender, and age
 - aging: "imprinting and the social brain"
 - "DNA methylation age"