Software Engineering Theory and Practice

School of Computing	UNIVERSITYOF PORTSMOUTH
Title	Software Engineering Theory and Practice
Module Coordinator	Steven Ossont
Email	steven.ossont@port.ac.uk
Code	M30819
Moodle	https://moodle.port.ac.uk/course/view.php?id=11429

U30819: Software Engineering Theory and Practice

https://moodle.port.ac.uk/course/view.php?id=11429

Software engineering in the car industry

- Requirements engineering
- Design
- Coding
- Software and system integration
- Maintenance

Requirements Engineering

- Who are the users?
 - Drivers anyone over 16 with a driving license
 - Passengers
 - Car maintainers
- Safety critical functions
- Context of operation of the systems

Requirements Engineering

- Diversity of functions
 - Embedded real time control
 - Infotainment
 - Comfort functions
 - Driver assistance
 - Energy management
 - Air bags
 - On board diagnosis and error logging

Requirements Engineering

"The complexity and spectrum of requirements for on board software is enormous"
 (Broy)

- Textual requirements are not enough
 - Illustrative pictures, tables, recommendations, explanations about design rationale or decisions taken, test information, parameters, background information
- Define a company wide metadata model for managing requirements and the relationships between them

- Manufacturer requirements specs vs. supplier system specs
- Manufacturer needs to make sure that parts provided by suppliers work together
- For every component, need to specify both hardware and software requirements
- Demand to keep competitive expertise in house leads to black-box requirements specs

- Redundancy in requirements specs
 - Several hundred large specification and related documents are elaborated in parallel on a tight schedule
 - Results in inconsistencies and double work
 - Dependencies between document are complex and partially non-transparent

- Systems are built in small increments
 - No formal elicitation or negotiation phase
 - The reuse of old specs takes place in an ad-hoc manner
 - The systematic recycling of existing specifications is an explicit step in requirements engineering

- Managing non-functional requirements and acceptance criteria
- Provide concrete examples of acceptance criteria for functional requirements and re-use these examples
- Non-functional requirements are refined until they are implemented as a set of functional ones

- Changes in requirements are typical daily work
 - Requirements management level oriented change management refinements and clarifications
 - Official change management between manufacturer and supplier large changes

- Well organised specification reviews are essential for a successful manufacturersupplier relationship
- Effective requirements management practices
- Appropriate tool support

- Distributed requirements engineering
 - Internal distribution departments, business units, business divisions, corporate brands
 - External distribution DaimlerChrysler and suppliers
 - Ensure information remains top secret multi server concept
 - Allow offline work on requirements

- Manage requirements traceability
 - Design guidelines on which links to establish, how to create links, and when to update them

- The need for tools in requirements engineering
 - Provide basic means for workflow support
 - Easily adaptable, quickly include new functionality to the tools
 - Tools should be controllable offline

Design

- Hardware architecture design
 - Electronic Control Units (ECUs), bus systems, communication devices, sensors, actuators
- Software infrastructure design
 - Operating system, bus drivers, additional services
- Application software design

Coding

• Most of the coding is carried out by suppliers, not manufacturers

Software and Systems Integration

- Major challenges
 - Virtual integration and architecture verification not possible
 - Sub-systems delivered by suppliers not working together
 - Error correction impossible due to missing guidelines of architecture

Maintenance

- Software compatibility problems
 - Replacing software of an ECU must consider interoperability with older versions
- Defect diagnosis and repair
 - New skills and training required for servicing cars
- Replacing hardware with newer types a re-implement software

20

Questions?

- https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/pure-play-software-in-automotive-industry.html
- Manfred Broy. 2006. Challenges in automotive software engineering. In Proceedings of the 28th international conference on Software engineering (ICSE '06). ACM, New York, NY, USA, 33-42. DOI=http://dx.doi.org/10.1145/1134285.
- Matthias Weber and Joachim Weisbrod. 2003. Requirements Engineering in Automotive Development: Experiences and Challenges. *IEEE Softw.* 20, 1 (January 2003), 16-24. DOI=http://dx.doi.org/10.1109/MS.2003.