Task 2-Diminos Case Study

```
In [1]:
import pandas as pd
import numpy as np
In [2]:
df=pd.read_csv("C:/Users/priya/Downloads/diminos_data.csv")
In [3]:
df.shape
Out[3]:
(15000, 3)
In [4]:
df.size
Out[4]:
45000
In [5]:
```

df.head()

Out[5]:

	order_id	order_placed_at	order_delivered_at
0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132
1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241
2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385
3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399
4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056

In [6]:

```
df.tail()
```

Out[6]:

	order_id	order_placed_at	order_delivered_at
14995	1538106	2023-03-27 23:37:05	2023-03-27 23:52:37.409378
14996	1538107	2023-03-27 23:47:38	2023-03-28 00:04:22.672912
14997	1538108	2023-03-27 23:50:16	2023-03-28 00:05:40.676238
14998	1538109	2023-03-27 23:52:44	2023-03-28 00:08:41.810358
14999	1538110	2023-03-27 23:58:20	2023-03-28 00:13:42.499311

In [7]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15000 entries, 0 to 14999
Data columns (total 3 columns):
```

dtypes: int64(1), object(2)
memory usage: 351.7+ KB

order_id

In [8]:

```
df.describe()
```

Out[8]:

count 1.500000e+04 mean 1.530610e+06 std 4.330271e+03 min 1.523111e+06 25% 1.526861e+06 50% 1.530610e+06

75% 1.534360e+06 **max** 1.538110e+06

Type Casting from object to datetime

```
In [9]:
```

```
df['order_placed_at']=pd.to_datetime(df['order_placed_at'])
df['order_delivered_at']=pd.to_datetime(df['order_delivered_at'])
```

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15000 entries, 0 to 14999
Data columns (total 3 columns):
    Column
                        Non-Null Count Dtype
#
    _____
                        -----
0
    order_id
                        15000 non-null int64
    order_placed_at
                        15000 non-null datetime64[ns]
 1
    order_delivered_at 15000 non-null datetime64[ns]
dtypes: datetime64[ns](2), int64(1)
memory usage: 351.7 KB
```

Number of day of month

In [11]:

```
df['order_placed_at'].dt.day
```

Out[11]:

```
0
           1
1
           1
2
           1
3
           1
           1
14995
         27
14996
         27
14997
         27
         27
14998
14999
          27
Name: order_placed_at, Length: 15000, dtype: int64
```

NUmber of month of year

In [12]:

```
df['order_placed_at'].dt.month
Out[12]:
0
         3
1
         3
2
         3
3
         3
4
         3
14995
         3
14996
         3
         3
14997
         3
14998
14999
Name: order_placed_at, Length: 15000, dtype: int64
```

Number of week of year(for week in month(-8))

In [13]:

```
df['order_placed_at'].dt.week
```

C:\Users\priya\AppData\Local\Temp\ipykernel_14652\1912616968.py:1: FutureW
arning: Series.dt.weekofyear and Series.dt.week have been deprecated. Plea
se use Series.dt.isocalendar().week instead.
 df['order_placed_at'].dt.week

Out[13]:

```
0
           9
           9
1
2
           9
3
           9
           9
14995
         13
14996
         13
14997
         13
14998
         13
14999
Name: order_placed_at, Length: 15000, dtype: int64
```

Number of day of week on which order is placed

In [14]:

```
df['order_placed_at'].dt.dayofweek
Out[14]:
         2
0
         2
1
2
         2
         2
3
         2
14995
14996
         0
14997
14998
         0
14999
Name: order_placed_at, Length: 15000, dtype: int64
```

Number of day of month on which order is placed

In [15]:

```
df['day_of_month']=df['order_placed_at'].dt.day
```

In [16]:

```
df.head()
```

Out[16]:

	order_id	order_placed_at	order_delivered_at	day_of_month
0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132	1
1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241	1
2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385	1
3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399	1
4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056	1

In [17]:

```
df.tail()
```

Out[17]:

	order_id	order_placed_at	order_delivered_at	day_of_month
14995	1538106	2023-03-27 23:37:05	2023-03-27 23:52:37.409378	27
14996	1538107	2023-03-27 23:47:38	2023-03-28 00:04:22.672912	27
14997	1538108	2023-03-27 23:50:16	2023-03-28 00:05:40.676238	27
14998	1538109	2023-03-27 23:52:44	2023-03-28 00:08:41.810358	27
14999	1538110	2023-03-27 23:58:20	2023-03-28 00:13:42.499311	27

Name of the day on which order is placed

```
In [18]:
```

```
df['order_placed_at'].dt.day_name()
Out[18]:
         Wednesday
0
1
         Wednesday
         Wednesday
2
3
         Wednesday
4
         Wednesday
14995
            Monday
14996
            Monday
14997
            Monday
14998
            Monday
14999
            Monday
Name: order_placed_at, Length: 15000, dtype: object
In [19]:
df['day_of_week']=df['order_placed_at'].dt.day_name()
```

In [20]:

```
df.head()
```

Out[20]:

	order_id	order_placed_at	order_delivered_at	day_of_month	day_of_week
0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132	1	Wednesday
1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241	1	Wednesday
2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385	1	Wednesday
3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399	1	Wednesday
4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056	1	Wednesday

In [21]:

df.tail()

Out[21]:

	order_id	order_placed_at	order_delivered_at	day_of_month	day_of_week
14995	1538106	2023-03-27 23:37:05	2023-03-27 23:52:37.409378	27	Monday
14996	1538107	2023-03-27 23:47:38	2023-03-28 00:04:22.672912	27	Monday
14997	1538108	2023-03-27 23:50:16	2023-03-28 00:05:40.676238	27	Monday
14998	1538109	2023-03-27 23:52:44	2023-03-28 00:08:41.810358	27	Monday
14999	1538110	2023-03-27 23:58:20	2023-03-28 00:13:42.499311	27	Monday

In [22]:

df['day_of_week'].value_counts()

Out[22]:

Thursday 2280
Wednesday 2259
Monday 2256
Friday 2223
Saturday 2209
Sunday 2191
Tuesday 1582

Name: day_of_week, dtype: int64

In [23]:

```
df['day_of_month'].value_counts()
Out[23]:
20
      597
22
      591
2
      588
      587
10
23
      583
6
      582
12
      582
8
      578
7
      570
4
      567
24
      565
9
      564
18
      559
27
      551
5
      551
1
      550
25
      547
16
      545
15
      540
17
      537
11
      536
      534
3
26
      532
19
      526
13
      526
21
      520
14
      492
Name: day_of_month, dtype: int64
```

In [24]:

```
df['day_of_month'].value_counts().plot(kind='barh')
```

Out[24]:

In [25]:

```
df['day_of_month'].value_counts().sort_index().plot(kind='barh')
```

Out[25]:

In [26]:

```
df['day_of_month'].value_counts().sort_index().plot(kind='line');
```


In [27]:

df['day_of_month'].value_counts().sort_index().plot(kind='line',figsize=(16,7))

Out[27]:

In [28]:

```
df['day_of_month'].value_counts().plot(kind='line')
```

Out[28]:

In [29]:

df['day_of_week'].value_counts().plot(kind='bar')

Out[29]:

<AxesSubplot:>

In [30]:

df.head()

Out[30]:

_		order_id	order_placed_at	order_delivered_at	day_of_month	day_of_week
	0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132	1	Wednesday
	1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241	1	Wednesday
	2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385	1	Wednesday
	3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399	1	Wednesday
	4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056	1	Wednesday

Calculation of Delivery time

In [31]:

```
df['delivery_time']=df['order_delivered_at']-df['order_placed_at']
df.head()
```

Out[31]:

	order_id	order_placed_at	order_delivered_at	day_of_month	day_of_week	delivery_time
0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132	1	Wednesday	0 days 00:17:08.443132
1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241	1	Wednesday	0 days 00:15:35.925241
2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385	1	Wednesday	0 days 00:15:06.291385
3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399	1	Wednesday	0 days 00:38:32.019399
4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056	1	Wednesday	0 days 00:16:10.61905€
4						•

Calculating it in seconds

In [32]:

```
df['delivery_time'].dt.total_seconds()
```

Out[32]:

```
0
         1028.443132
1
          935.925241
          906.291385
2
3
         2312.019399
4
          970.619056
             . . .
14995
          932.409378
         1004.672912
14996
14997
          924.676238
14998
          957.810358
14999
          922.499311
```

Name: delivery_time, Length: 15000, dtype: float64

Calculating time in minutes

In [33]:

```
df['delivery_time']=df['delivery_time'].dt.total_seconds()/60
```

In [34]:

```
df.head()
```

Out[34]:

	order_id	order_placed_at	order_delivered_at	day_of_month	day_of_week	delivery_time
0	1523111	2023-03-01 00:00:59	2023-03-01 00:18:07.443132	1	Wednesday	17.140719
1	1523112	2023-03-01 00:03:59	2023-03-01 00:19:34.925241	1	Wednesday	15.598754
2	1523113	2023-03-01 00:07:22	2023-03-01 00:22:28.291385	1	Wednesday	15.104856
3	1523114	2023-03-01 00:07:47	2023-03-01 00:46:19.019399	1	Wednesday	38.533657
4	1523115	2023-03-01 00:09:03	2023-03-01 00:25:13.619056	1	Wednesday	16.176984

In [35]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15000 entries, 0 to 14999
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	order_id	15000 non-null	int64
1	order_placed_at	15000 non-null	datetime64[ns]
2	order_delivered_at	15000 non-null	datetime64[ns]
3	day_of_month	15000 non-null	int64
4	day_of_week	15000 non-null	object
5	delivery_time	15000 non-null	float64

dtypes: datetime64[ns](2), float64(1), int64(2), object(1)

memory usage: 703.2+ KB

In [36]:

```
df['delivery_time'].describe()
```

Out[36]:

count	15000.000000
mean	20.499389
std	96.160362
min	15.000010
25%	15.274826
50%	15.797986
75%	17.279661
max	7299.831375

Name: delivery_time, dtype: float64

```
In [37]:
```

```
df['delivery_time'].median()
```

Out[37]:

15.79798606666668

Checking for outliers

In [38]:

```
df['delivery_time'].plot(kind='box')
```

Out[38]:

<AxesSubplot:>

Removing the outliers

In [39]:

```
df=df[df['delivery_time']<40]</pre>
```

```
In [40]:

df['delivery_time'].plot(kind='box')
```

Out[40]:

<AxesSubplot:>


```
In [41]:
```

```
df['delivery_time'].quantile(0.95)
```

Out[41]:

23.596276583333314

In [42]:

```
df.shape
```

Out[42]:

(14669, 6)

In [43]:

```
df[df['delivery_time']>31].shape
```

Out[43]:

(226, 6)

In [44]:

```
df['delivery_time'].plot(kind='kde')
```

Out[44]:

<AxesSubplot:ylabel='Density'>

Now,it is ok as 95 percentile deliveries are in range but around 500 pizzas are given for free that is loss of around 5lakh in a month. It is loss in bussiness. Suggetions I can give:- 1.Improvement should be in delivery time. 2.More hubs should be set in areas so that delivery take less time.