Circuitos RLC

1. Introducción

Un circuito **RLC** es un circuito eléctrico compuesto por tres elementos pasivos fundamentales: una resistencia (R), una inductancia (L) y una capacitancia (C). Estos elementos pueden estar conectados en serie o en paralelo.

2. Elementos del circuito

- Resistencia (R): se opone al flujo de corriente, disipando energía en forma de calor. Su unidad es el Ω .
- Inductancia (L): almacena energía en forma de campo magnético. Se opone a cambios en la corriente. Su unidad es el H.
- Capacitancia (C): almacena energía en forma de campo eléctrico. Se opone a cambios en el voltaje. Su unidad es el F.

3. Ecuación diferencial (serie)

Para un circuito RLC en serie con una fuente de voltaje V(t), la ecuación diferencial que describe el circuito es:

$$V(t) = L\frac{\mathrm{d}I}{\mathrm{d}t} + RI(t) + \frac{1}{C} \int I(t) \, dt$$

O, en forma diferencial:

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = V(t)$$

donde q(t) es la carga en el capacitor e $I(t) = \frac{dq}{dt}$.

4. Solución del circuito sin fuente (respuesta natural)

Cuando V(t) = 0 (respuesta natural), la ecuación se convierte en:

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = 0$$

La solución depende del discriminante $\Delta = R^2 - 4L/C$:

- Subamortiguado ($\Delta < 0$): oscilaciones amortiguadas.
- Críticamente amortiguado ($\Delta = 0$): retorno más rápido sin oscilaciones.
- Sobreamortiguado ($\Delta > 0$): decaimiento lento sin oscilaciones.

5. Circuito RLC con fuente alterna (AC)

Con una fuente sinusoidal $V(t) = V_0 \cos(\omega t)$, se usa análisis en régimen permanente con impedancias:

- $\bullet\,$ Impedancia del resistor: $Z_R=R$
- Impedancia del inductor: $Z_L = j\omega L$
- Impedancia del capacitor: $Z_C = \frac{1}{j\omega C}$

Impedancia total (serie):

$$Z_{\text{total}} = R + j \left(\omega L - \frac{1}{\omega C} \right)$$

Corriente en el circuito:

$$I(t) = \frac{V_0}{|Z|}\cos(\omega t - \phi), \quad \text{con } \phi = \arg(Z)$$

6. Frecuencia de resonancia

La frecuencia de resonancia ocurre cuando la reactancia inductiva y capacitiva se cancelan:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

En resonancia:

$$Z = R, \quad I_{\text{máx}} = \frac{V_0}{R}$$

7. Factor de calidad (Q)

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC}$$

Indica cuán selectivo es el circuito en resonancia: mayor Q implica menor ancho de banda y mayor amplitud de oscilación.

8. Potencia en el circuito RLC

La potencia promedio disipada es:

$$P = \frac{1}{2}V_0I_0\cos(\phi)$$

Donde ϕ es el desfase entre voltaje y corriente. Solo el resistor disipa potencia en forma de calor. Los elementos L y C solo almacenan y devuelven energía.

9. Aplicaciones

Los circuitos RLC se usan en:

- Filtros eléctricos (pasa banda, pasa bajos, etc.)
- Sintonizadores de radio
- Osciladores
- Sistemas de telecomunicaciones y procesamiento de señales