Chapter 2 Notes

Overview

- 2.1. Convergence in metric space
- 2.2. Continuity in metric spaces

Chapter 2 Notes

Overview

Convergence for sequence elements
Continuity for function
Continuity relates with Convergence

2.1. Convergence in metric space

Definition 2.1.1. — <u>Convergence</u>: ϵ language

 $(X_n)_{n\in\mathbb{N}}$ converges to $l\in\mathbb{R}$ if $orall \epsilon>0$, $\exists N\in\mathbb{N}$, s.t. $|l-x_n|<\epsilon$ $\ orall n>\mathbb{N}$

Definition 2.1.3.

A sequence of elements of a set $oldsymbol{X}$ is a function $x:\,\mathbb{N} o X$ wrote as $x=(x_n)$

Definition 2.1.4. — <u>Convergence</u>: metric language

 (X_n) converges to l in X if $orall \epsilon>0$, $\exists N\in\mathbb{N}$ s.t. $d(x_n,l)<\epsilon\ orall n>\mathbb{N}$

Definition 2.1.7. — Ball

Let (X,d) be a metric space, $p\in X$, $R\in \mathbb{R}_{>0}$

Open ball:

$$B_R^{\,d}(p) = \{x \in X: \ d(x,p) < R\}$$

Closed ball:

$$\bar{B}_R^{\,d}(p)=\{x\in X:\;d(x,p)\leq R\}$$

Tips: $x \in X$ in both open ball and closed ball

Definition 2.1.13. — <u>Convergence</u>: Ball language

 (X_n) converges to $l\in X$ if $orall \epsilon>0$, $\exists N\in\mathbb{N}$ s.t. $x_n\in B^d_\epsilon(l)$ $orall N>\mathbb{N}$

Definition 2.1.15

A sequence (x_n) in X is *eventually constant* if $\exists l \in X$ and $\exists N \in \mathbb{N}$ s.t. $x_n = l \ \forall n > N$

2.2. Continuity in metric spaces

Definition 2.2.1. — <u>Continuity</u>: $\epsilon - \delta$ language

Let $f: \mathbb{R} \to \mathbb{R}$. f is continuous at x_0 if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t.

$$|f(x) - f(x_0)| = d_1(f(x), f(x_0)) < \epsilon$$

Whenever $|x-x_0|=d_1(x,x_0)<\delta$

We say that f is continuous if f is continuous at every $x_0 \in \mathbb{R}$

Using lim,

If $\forall \epsilon > 0$, $\exists \delta > 0$ s.t.

$$|f(x) - l| = d_1(f(x), l) < \epsilon$$

Whenever $0 < |x - x_0| < \delta$, we say that

$$\displaystyle \mathop{lim}_{x o x_0} f(x) = l$$

Now extend these definitions to the general case of functions between metric spaces

Definition 2.2.2. — <u>Continuity</u>: functions between metric spaces

Let (X,d_X) , (Y,d_Y) be metric spaces. Let $f:X\to Y$ be a function, and let $x_0\in X$. Then we say that f is continuous at x_0 if $\forall \epsilon>0$, $\exists \delta>0$ s.t.

$$d_Y(f(x), f(x_0)) < \epsilon$$

whenever $d_X(x,x_0)<\delta$. We say that f is continuous if it is continuous $orall x_0\in X$

Similarly using lim,

If $\forall \epsilon > 0$, $\exists \delta > 0$ s.t.

$$d_Y(f(x), l) < \epsilon$$

whenever $0 < d_X(x,x_0) < \delta$, we say that

$$\displaystyle \mathop {lim} \limits_{x o x_0} \! f(x) = l$$

f is continuous at $x_0 \iff \lim_{x o x_0} f(x) = f(x_0)$

Remark 2.2.3. — Direct images and Inverse images of a function notation

We have f:X o Y and $f(x)\in Y$

Define that for a subset $A \subseteq X$, its <u>direct image</u> (像集):

$$f(A):=\{y\in Y:\ \exists x\in A\quad s.\,t.\ f(x)=y\}$$

Similarly for a subset $B \subseteq Y$ we define its <u>inverse image/preimage</u> (原像集):

$$f^{-1}(B) := \{ x \in X : s.t. \ f(x) \in B \}$$

由此我们可以用ball语言来重写连续性的定义

f is continuous at $x_0 \iff orall \epsilon > 0$ s.t. $f(B^{d_X}_\delta(x_0)) \subseteq B^{d_Y}_\epsilon(f(x_0))$

Where the latter is $d_x(X,X_0)<\delta
ightarrow d_Y(f(x),f(x_0))<\epsilon$

Corollary 2.2.6.

If f and g are both continuous, then so is $g\circ f$

Tips: 先f 再 g

Recast continuity in terms of convergence (class test 1考过)

Lemma 2.2.7.

Let (X,d_X) and (Y,d_Y) be metric spaces, $f:X\to Y$ a function and $p\in X$. The following are equivalent

$$egin{cases} f \ is \ continuous \ at \ p \ \ orall (x_n) \subseteq X \ s. \ t. \ x_n \stackrel{d_X}{\longrightarrow} p, \ f(x_n) \stackrel{d_Y}{\longrightarrow} f(p) \end{cases}$$

Remark: 这将收敛性与连续性联系了起来

Remark 2.2.8.

If f is continuous at p, by the above we have

$$f(\lim_n x_n) = \lim_n f(x_n)$$