Perspective Correction and Motion Estimation

CU Boulder

The Pinhole Camera

- Image is inverted
- Infinite depth of field

www.funsizephysics.con

Simplest Camera Model cont.

CU Boulder

- ▶ Upside down □ Upside up

Stereo Camera Model

 Camera diagrams like this are commonly encountered in computer vision and graphics

Projective Distortion

A circle in an object plane parallel to the image plane images as a circle

Front view of object plane

Front view of image plane picture

Perspective Distortion cont.

A circle in a plane tilted relative to the image plane images as an ellipse

Front view of object plane

Side view of object plane

Image plane

Front view of image plane picture

CU Boulder

Another example

- Parallel lines lying in a plane that is tilted relative to the image plane appear to converge at infinity
- If the lines were lying in a plane parallel to the image plane, they would appear parallel

Perspective Distortion cont.

CU Boulder

Distortions include

- Shape is not preserved
 - √ e.g. cirlces become ellipses
- Distance between two points is not preserved
 - ✓ e.g. parallel lines converge
- Angles are not preserved
 - ✓ e.g. Imagine rotating a right triangle lying in a plane that starts parallel to the image plane and ends perpendicular to it

Image Coordinate Systems

CU Boulder

PICS: Pixel Image Coordinate System CICS: Canonical Image Coordinate System

Projection Diagram

This diagram is in the X_1X_3 plane.

Visualize the point (X_1, X_2, X_3) as lying above the plane so that $X_2 < 0$

$$\frac{f}{X_3} = \frac{x_1}{X_1}$$

$$x_1 = f \frac{X_1}{X_3}$$

Non-linear Projection Formulas

Therefore, the Camera Coordinates (X₁, X₂, X₃) are related to the canonical image coordinates (x₁, x₂) via

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} f & 0 \\ 0 & f \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \frac{1}{X_3}$$

This term is UGLY and makes the relationship between (X_1, X_2, X_3) and (x_1, x_2) non-linear. There is a better way!

Linearizing the Projection Formulas

CU Boulder

Consider the following <u>linear</u> equation

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix}$$

- We put a "1" under the (X_1, X_2, X_3) vector
- We can get the CIC coordinates of the projection point, \underline{x} , by computing x_1/x_3 and x_2/x_3

This equation uses <u>homogenous</u> coordinates

Homogenous Coordinates

- In Euclidean geometry, a point in N-D space is described by an N-D vector
- In Projective geometry, a point in N-D space is described by an (N+1)-D vector (homogenous coordinates)
- The last coordinate is a <u>multiplier</u> of the first N coordinates: let its value be k
- A point now has <u>multiple representations</u>, one for each value of k
 - Example: the 2-D Euclidean point, (rows, cols), is the SAME POINT as <u>ANY</u> 3-D vector of the form

(k*rows, k*cols, k)

Homogenous Coordinates Rules

We refer to such a representation as a homogenous vector

$$(k*rows, k*cols, k) \leftarrow$$
 homogenous vector

- We say we are using <u>homogenous coordinates</u>
- We can find the Euclidean point corresponding to a homogenous vector by dividing the first N components by the last component
 - 2-D Example: (rows, cols) = (k*rows/k, k*cols/k)(12, 8, 2) \rightarrow (6, 4)

Projective Geometry Fact

Given a set of world points known to lie on a <u>plane</u>, there exists a matrix, H, that maps the (row, col) image points in one camera to the (row, col) image points in another

Take a course in computer vision for the details!

We seek a matrix H that maps lines converging at infinity to parallel lines in the Euclidean plane

$$\underline{\mathbf{v}} = H\underline{\mathbf{x}}$$

Homogenous vector in processed image

Homogenous vector in "distorted" image

Note that the points on the wall lie in a plane

Perspective Distortion cont.

CU Boulder

Perspective Distortion and its removal via image processing

Finding the Matrix *H*

- Assume we have specified N corresponding points in both images
 - We are free to choose points in one image and specify where they want them to be after mapping
 - For example, assume below are 4 of the N point correspondences we have specified

$$(c_1, d_1) \to (a_1, b_1)$$

 $(c_2, d_2) \to (a_2, b_2)$
 $(c_3, d_3) \to (a_3, b_3)$
 $(c_4, d_4) \to (a_4, b_4)$

(c, d) pairs are in the "distorted" image. (a, b) pairs are in the processed image. Coordinates are in PICS

The equations we need are these

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} c \\ d \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} v_1/v_3 \\ v_2/v_3 \end{bmatrix}$$

- We need to solve for the matrix values h_{ij}
 - There are 8 unknown variables in H

Note: you might wonder why we can specify the (3, 3) component of H to be one. The reason: since we are using homogenous coordinates, multiplying both sides of the equation by a constant has no net effect. So whatever h_{33} is, we assume we have multiplied the equation by $1/h_{33}$.

• By solving for v_1/v_3 and v_2/v_3 the previous equations yield

$$a = \frac{h_{11}c + h_{12}d + h_{13}}{h_{31}c + h_{32}d + 1}$$
$$b = \frac{h_{21}c + h_{22}d + h_{23}}{h_{31}c + h_{32}d + 1}$$

Each pair of corresponding points yields two equations, so we need a minimum of four corresponding points to solve for the eight variables in H. In practice, we want more.

These two equations can be rewritten in matrix form

$$\begin{bmatrix} c & d & 1 & 0 & 0 & 0 & -ac & -ad \\ 0 & 0 & 0 & c & d & 1 & -bc & -bd \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Each new pair of corresponding points adds 2 more rows to the matrix and 2 more rows to the right-hand side vector

$$\begin{bmatrix} c & d & 1 & 0 & 0 & 0 & -ac & -ad \\ 0 & 0 & 0 & c & d & 1 & -bc & -bd \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

These grow downward with more corresponding points

▶ This matrix equation can be solved for <u>h</u>

- If more than 4 points are used, solving for H becomes a linear regression problem
 - ✓ Use the pseudo inverse
- <u>h</u> can then be reshaped into the 3 x 3 matrix H

For this lab we will code up the pseudo-inverse calculation ourselves (you can <u>check</u> your result with the library function if you wish)

Removing Perspective Distortion

- Constructing the corrected image, once you have H, proceeds as follows:
 - Step through the pixels in the corrected image using for() loops
 - ✓ Declare an array of all black pixels as the corrected image
 - Use H⁻¹ to find corresponding pixels in the input image
 - ✓ The values you find will not be integers
 - ✓ If the values are outside the edge of the picture, skip to the next pixel
 - Bi-linearly interpolate values in the input image
 - ✓ Code to do this is provided in the lab writeup
 - Assign the interpolated result to the corrected image pixel

Measuring Points in an Image

- You can do this with photoshop, GIMP, or other offthe-shelf image display tools
- I have also uploaded to the lab 3 module a script called get_mouse_pos.py
 - It requires the module "pyuserinput" to run
 - You can install it via: pip3 install pyuserinput
- To use get_mouse_pos.py
 - Display the picture
 - Run the script in a terminal window
 - Click the upper left-hand corner of the picture (make sure the picture is displayed at its full resolution)
 - Click on the image points whose coordinates you desire (right-click to exit)