PCP and Hardness of Approximation

Aman Bansal Adwait Godbole

October 2019

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

Aman Bansal

Approximate Problems

Given an instance $\mathbf{x} \in \mathcal{X}$ of an NP-hard optimization problem with objective function $Obj: \mathcal{Y} \to \mathbb{R}$ (which is to be maximized¹), a solution \mathbf{y} is said to be an α -approximate (for $\alpha \leq 1$) solution to the instance if

$$\alpha \cdot Obj(\mathbf{y}^*) \leq Obj(\mathbf{y}) \leq Obj(\mathbf{y}^*)$$

where \mathbf{y}^* is the true (not approximated) solution to the problem instance.

¹If the problem is a minimization problem then we have a slightly different definition.

Aman Bansal Adwait Godbole PEP and Hardness of Approximation October 2019 4 / 37

Approximate Problems

α -approximate algorithms

An algorithm **A** is an α -approximate algorithm if for all **x** in the instance space \mathcal{X} , it returns an α -approximate solution **y**.

α -approximate problems

Problems that render (poly-time) α -approximate algorithms are called α -approximate problems.

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

Aman Bansal A

Promise Problem

A *promise* problem Π is specified by a pair of sets (YES, NO) such that YES, NO $\subseteq \mathcal{X}$ and YES \cap NO $= \Phi$.

Any algorithm **A** solving Π , on input **x**, should output 'yes' if $\mathbf{x} \in \mathsf{YES}$, 'no' if $\mathbf{x} \in \mathsf{NO}$ and any output if **x** is a don't care instance

Recollect the PromiseΠ problem from the midsem.

Gap Problems

A gap problem is a promise problem parametrized by α (< 1). Let P be an NP-hard optimization problem with objective function $Obj: \mathcal{Y} \to \mathbb{R}$ (which is to be maximized), the corresponding gap problem gap_{α} -P is a promise problem with (YES, NO) sets as given below:

$$YES = \{ \langle \mathbf{x}, k \rangle \mid \exists \mathbf{y} \in \mathcal{Y} \text{ such that } Obj(\mathbf{y}) \geq k \}$$
$$NO = \{ \langle \mathbf{x}, k \rangle \mid \forall \mathbf{y} \in \mathcal{Y}, Obj(\mathbf{y}) < \alpha k \}$$

Intuitively, the 'gap' refers to the interval $(\alpha k, k)$.

Aman Bansal Adwai

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- Hardness of Approximation

Aman Bansal

Intuition

Intuitively, it seems that approximate problems and gap problems are similar.

 $\alpha\text{-approximation}$ is a relaxed variant of a search problem

 gap_{α} is a relaxed variant of a decision problem

Indeed, this notion can be formalized.

α -approximate o gap_{α}

Connnection between α -approximation and gap_{α}

For any problem P and $0 < \alpha < 1$, α -approximating P is at least as hard as solving gap_{α} -P.

Proof:

Let A be an α -approximate algorithm for P. The following algorithm solves gap_{α} -P:

On input (ϕ, k) :

- 1. Let $k' = A(\phi)$
- 2. Accept iff $k' \geq \alpha k$

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- 2 A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- Hardness of Approximation

Probabilistically Checkable Proof System

(r, q, m, t)-restricted Verifier

Let $r,q,m,t:\mathbb{N}\to\mathbb{N}$. A language $\mathsf{L}\in PCP_{c,s}[r,q,m,t]$ if L has an (r,q,m,t) restricted verifier V such that

$$\forall x \in L, \exists \pi \text{ of size at most } m(|x|), Pr_R[V^{\pi}[x; R] = acc] \ge c(|x|)$$

 $\forall x \notin L, \forall \pi \text{ of size at most } m(|x|), Pr_R[V^{\pi}[x; R] = acc] < s(|x|)$

Resource bounds

- 1. r(|x|) is a bound on randomness used by V
- 2. q(|x|) is a bound on the number of locations queried by V
- 3. m(|x|) is a bound the length of the proof to which V has oracle access
- 4. t(|x|) is a bound on the runtime of V

Completeness and Soundness constraints

c(|x|) and s(|x|) are the completeness and soundness specifications

Aman Bansal Adwait Godbole PGF and Hardness of Approximation October 2019 14 / 37

Remarks

- The verifier could be adaptive or non-adaptive
- If the verifier is non-adaptive then $m(n) \le q(n) \cdot 2^{r(n)}$
- $q(n) \leq t(n)$
- $PCP_{c,s}[r,q] \subseteq NTIME(q(n) \cdot 2^{r(n)})$
- $NP = PCP_{1,0}[0, poly(n)]$
- $BPP = PCP_{\frac{2}{3},\frac{1}{3}}[poly(n),0]$

PCP Theorem

PCP Theorem

$$\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{log}(\mathit{n}),1]$$

PCP Theorem

PCP Theorem

$$\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{log}(\mathit{n}),1]$$

We will today present a weaker version of the PCP theorem.

PCP Theorem [Weaker]

$$NP = PCP_{1,\frac{1}{2}}[poly(n), 1]$$

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

Aman Bansal

Subset XOR

Consider the function $f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} \odot \mathbf{u}$.

Here for $\mathbf{x}, \mathbf{y} \in \{0,1\}^n, \mathbf{x} \odot \mathbf{y} = \sum_i \mathbf{x}_i \mathbf{y}_i \pmod{2}$.

Subset XOR

Consider the function $f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} \odot \mathbf{u}$. Here for $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n, \mathbf{x} \odot \mathbf{y} = \sum_i \mathbf{x}_i \mathbf{y}_i \pmod{2}$.

Note that $f_{\mathbf{u}}$ is equivalent to choosing a subset (given by \mathbf{u}) of elements from [n] and evaluating parity over this subset.

Subset XOR

Consider the function $f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} \odot \mathbf{u}$.

Here for $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n, \mathbf{x} \odot \mathbf{y} = \sum_i \mathbf{x}_i \mathbf{y}_i \pmod{2}$.

Note that $f_{\mathbf{u}}$ is equivalent to choosing a subset (given by \mathbf{u}) of elements from [n] and evaluating parity over this subset.

Random Subsum Principle

For $\mathbf{x},\mathbf{y}\in\{0,1\}^n$ with $\mathbf{y}\neq 0^n$, $Pr_{\mathbf{x}\in\{0,1\}^n}[\mathbf{x}\odot\mathbf{y}=1]=\frac{1}{2}$

Walsh-Hadamard Code

Main Idea: Bit strings $\mathbf{u} \in \{0,1\}^n$ are encoded as the truth table of a *linear* function over F_2

Walsh-Hadamard Code

Main Idea: Bit strings $\mathbf{u} \in \{0,1\}^n$ are encoded as the truth table of a *linear* function over \mathbf{F}_2

WH encoding

For an *n*-bit string $\mathbf{u} \in \{0,1\}^n$, $\mathrm{WH}(\mathbf{u})$ is the 2^n bit string representing the truth table of the function $f(\mathbf{x}) = \mathbf{x} \odot \mathbf{u}$ for $\mathbf{x} \in \{0,1\}^n$.

Walsh-Hadamard Code

Main Idea: Bit strings $\mathbf{u} \in \{0,1\}^n$ are encoded as the truth table of a *linear* function over \mathbf{F}_2

WH encoding

For an *n*-bit string $\mathbf{u} \in \{0,1\}^n$, $\mathrm{WH}(\mathbf{u})$ is the 2^n bit string representing the truth table of the function $f(\mathbf{x}) = \mathbf{x} \odot \mathbf{u}$ for $\mathbf{x} \in \{0,1\}^n$.

Walsh-Hadamard codeword

 $f \in \{0,1\}^{2^n}$ such that $f = WH(\mathbf{u})$ for some $\mathbf{u} \in \{0,1\}^n$.

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めらぐ

EC *Error correcting* with minimum distance $\frac{1}{2}$. This means that for $\mathbf{x}, \mathbf{y} \in_R \{0,1\}^n$ with $\mathbf{x} \neq \mathbf{y}$, $\mathrm{WH}(\mathbf{x})$ and $\mathrm{WH}(\mathbf{y})$ differ in 1/2 the bits.

- EC *Error correcting* with minimum distance $\frac{1}{2}$. This means that for $\mathbf{x}, \mathbf{y} \in_R \{0, 1\}^n$ with $\mathbf{x} \neq \mathbf{y}$, $\mathrm{WH}(\mathbf{x})$ and $\mathrm{WH}(\mathbf{y})$ differ in 1/2 the bits.
- LIN Linearity of $WH(\mathbf{u})$ $f=WH(\mathbf{u})$ when viewed as a function from $\{0,1\}^n$ to $\{0,1\}$ is in fact linear (over \mathbf{F}_2)

- EC *Error correcting* with minimum distance $\frac{1}{2}$. This means that for $\mathbf{x}, \mathbf{y} \in_R \{0, 1\}^n$ with $\mathbf{x} \neq \mathbf{y}$, $\mathrm{WH}(\mathbf{x})$ and $\mathrm{WH}(\mathbf{y})$ differ in 1/2 the bits.
- LIN Linearity of WH(u) f = WH(u) when viewed as a function from $\{0,1\}^n$ to $\{0,1\}$ is in fact linear (over \mathbf{F}_2)
- LT Locally Testable Given access to a function $f:\{0,1\}^n \to \{0,1\}$, we can check whether it is a Walsh-Hadamard code-word by querying a constant number of places.

- EC *Error correcting* with minimum distance $\frac{1}{2}$. This means that for $\mathbf{x}, \mathbf{y} \in_R \{0, 1\}^n$ with $\mathbf{x} \neq \mathbf{y}$, $\mathrm{WH}(\mathbf{x})$ and $\mathrm{WH}(\mathbf{y})$ differ in 1/2 the bits.
- LIN Linearity of WH(u) f = WH(u) when viewed as a function from $\{0,1\}^n$ to $\{0,1\}$ is in fact linear (over \mathbf{F}_2)
- LT Locally Testable Given access to a function $f:\{0,1\}^n \to \{0,1\}$, we can check whether it is a Walsh-Hadamard code-word by querying a constant number of places.
- LD Locally Decodable Given f and an $\mathbf{x} \in \{0,1\}^n$, we can find $\tilde{f}(\mathbf{x})$ in constant queries to f, where \tilde{f} is the true codeword.

LT: Local Testability

LIN: WH(\mathbf{u}) for $\mathbf{u} \in \{0,1\}^n$ captures all *n*-bit linear functions on \mathbf{F}_2 .

LT: Local Testability

LIN: WH(\mathbf{u}) for $\mathbf{u} \in \{0,1\}^n$ captures all n-bit linear functions on \mathbf{F}_2 .

ρ -closeness of functions

Functions f, g are ρ -close if $Pr_{\mathbf{x} \in_R \{0,1\}^n} [f(\mathbf{x}) = g(\mathbf{x})] \ge \rho$.

A function f is ρ -close to a linear function if there exists a linear function g such that f and g are ρ -close

LT: Local Testability

LIN: WH(\mathbf{u}) for $\mathbf{u} \in \{0,1\}^n$ captures all n-bit linear functions on \mathbf{F}_2 .

ρ -closeness of functions

Functions f, g are ρ -close if $Pr_{\mathbf{x} \in_R \{0,1\}^n}[f(\mathbf{x}) = g(\mathbf{x})] \ge \rho$.

A function f is ρ -close to a linear function if there exists a linear function g such that f and g are ρ -close

Let f be such that

$$Pr_{\mathbf{x},\mathbf{y}\in_{R}\{0,1\}^{n}}[f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})]\geq\rho$$

for some $\rho>\frac{1}{2}.$ Then f is $\rho\text{-close}$ to a linear function.

Aman Bansal Adwait Godbole

EC: For $\mathbf{x} \neq \mathbf{y}$, $\mathrm{WH}(\mathbf{x})$ and $\mathrm{WH}(\mathbf{y})$ differ in 1/2 the bits

EC: For $\textbf{x} \neq \textbf{y}, \, \mathrm{WH}(\textbf{x})$ and $\mathrm{WH}(\textbf{y})$ differ in 1/2 the bits

Let f be $(1-\delta)$ -close to a linear function \tilde{f} for some $\delta < 1/4$. Then by EC, f uniquely determines \tilde{f} .

EC: For $\mathbf{x} \neq \mathbf{y}$, WH(\mathbf{x}) and WH(\mathbf{y}) differ in 1/2 the bits

Let f be $(1 - \delta)$ -close to a linear function \tilde{f} for some $\delta < 1/4$. Then by EC, f uniquely determines \tilde{f} .

So, given a (possibly illegal) f, having a corresponding \tilde{f} , we want to find $\tilde{f}(\mathbf{x})$. Here we have oracle access only to f. The idea is to once again use randomness.

Objective: With oracle access only to f, given an $\mathbf{x} \in \{0,1\}^n$, find $\tilde{f}(\mathbf{x})$. The idea is to use randomness and linearity.

Objective: With oracle access only to f, given an $\mathbf{x} \in \{0,1\}^n$, find $\tilde{f}(\mathbf{x})$. The idea is to use randomness and linearity.

- Choose $\mathbf{x}' \in_R \{0,1\}^n$
- Set $\mathbf{x}'' \leftarrow \mathbf{x} + \mathbf{x}'$
- Let $\mathbf{y}' = f(\mathbf{x}')$ and $\mathbf{y}'' = f(\mathbf{x}'')$
- $\bullet \ \mathsf{Output} \ \boldsymbol{y}' + \boldsymbol{y}''$

LD: Local Decodability

Objective: With oracle access only to f, given an $\mathbf{x} \in \{0,1\}^n$, find $\tilde{f}(\mathbf{x})$. The idea is to use randomness and linearity.

- Choose $\mathbf{x}' \in_R \{0,1\}^n$
- Set $\mathbf{x}'' \leftarrow \mathbf{x} + \mathbf{x}'$
- Let $\mathbf{y}' = f(\mathbf{x}')$ and $\mathbf{y}'' = f(\mathbf{x}'')$
- $\bullet \ \mathsf{Output} \ \boldsymbol{y}' + \boldsymbol{y}''$

With probability at least $1 - 2\delta$ we have $\mathbf{y}' = f(\mathbf{x}')$ and $\mathbf{y}'' = f(\mathbf{x}'')$ and hence $\tilde{f}(\mathbf{x}) = \mathbf{y}' + \mathbf{y}''$.

Aman Bansal

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- Hardness of Approximation

PCP Theorem [Weaker]

 $\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{poly}(\mathit{n}),1]$

PCP Theorem [Weaker]

$$\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{poly}(\mathit{n}),1]$$

We show that QUADEQ - the satisfiability problem for quadratic equations over \mathbf{F}_2 - has a PCP[poly(n),1] proof system

PCP Theorem [Weaker]

$$\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{poly}(\mathit{n}),1]$$

We show that QUADEQ - the satisfiability problem for quadratic equations over \mathbf{F}_2 - has a PCP[poly(n), 1] proof system

QUADEQ over variables u_1, u_2, \cdots, u_n is is of the form AU = b, where A is an $m \times n^2$ matrix and $b \in \{0,1\}^m$. $U = \mathbf{u} \otimes \mathbf{u}$ is the tensor product (or the Hadamard product).

PCP Theorem [Weaker]

$$\mathit{NP} = \mathit{PCP}_{1,\frac{1}{2}}[\mathit{poly}(\mathit{n}),1]$$

We show that QUADEQ - the satisfiability problem for quadratic equations over \mathbf{F}_2 - has a PCP[poly(n), 1] proof system

QUADEQ over variables u_1, u_2, \dots, u_n is is of the form AU = b, where A is an $m \times n^2$ matrix and $b \in \{0,1\}^m$. $U = \mathbf{u} \otimes \mathbf{u}$ is the tensor product (or the Hadamard product).

Claim

QUADEQ, the language of all satisfiable instances is NP-complete

Aman Bansal Adwait Godbole PCP and Hardness of Approximation ______October 2019 25 / 37

π and ${\cal V}$

What is the proof π and what does the verifier ${\mathcal V}$ do?

 π and ${\cal V}$

What is the proof π and what does the verifier ${\mathcal V}$ do?

 π The proof is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$

π and ${\cal V}$

What is the proof π and what does the verifier $\mathcal V$ do?

- π The proof is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$
- $\mathcal V$ Denote the proof by $f=\mathrm{WH}(\mathbf u)$ and $g=\mathrm{WH}(\mathbf u\otimes \mathbf u)$. The verifier does the following
 - 1) Check linearity of f and g
 - 2) Verify that g encodes $\mathbf{u} \otimes \mathbf{u}$
 - 3) Verify that f encodes a satisfying assignment

Check linearity of f and g

Note that
$$f = WH(\mathbf{u})$$
 and $g = WH(\mathbf{u} \otimes \mathbf{u})$

Check linearity of f and g

Note that
$$f = WH(\mathbf{u})$$
 and $g = WH(\mathbf{u} \otimes \mathbf{u})$

 \mathcal{V} performs a 0.99-close (high-probability) linearity test on both f and g. This is done by the LT property described earlier.

Check linearity of f and g

Note that
$$f = WH(\mathbf{u})$$
 and $g = WH(\mathbf{u} \otimes \mathbf{u})$

 $\mathcal V$ performs a 0.99-close (high-probability) linearity test on both f and g. This is done by the LT property described earlier.

Note crucially that a high but nevertheless constant closeness suffices. This is since we eventually plan to query π at only a small constant number of points.

Verify that g encodes $\mathbf{u} \otimes \mathbf{u}$

 \mathcal{V} chooses \mathbf{r} , \mathbf{r}' independently at random from $\{0,1\}^n$ and assert that $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$.

Verify that g encodes $\mathbf{u} \otimes \mathbf{u}$

 $\mathcal V$ chooses $\mathbf r$, $\mathbf r'$ independently at random from $\{0,1\}^n$ and assert that $f(\mathbf r)f(\mathbf r')=g(\mathbf r\otimes \mathbf r')$.

Let W be an $n \times n$ matrix representing the entries of \mathbf{w} and U be such a matrix for $\mathbf{u} \otimes \mathbf{u}$. Then

- 1. $g(\mathbf{r} \oplus \mathbf{r}') = \mathbf{w} \odot (\mathbf{r} \otimes \mathbf{r}') = \mathbf{r} W \mathbf{r}'$
- 2. $f(\mathbf{r})f(\mathbf{r}') = (\mathbf{u} \odot \mathbf{r})(\mathbf{u} \odot \mathbf{r}') = \mathbf{r}U\mathbf{r}'$

Verify that g encodes $\mathbf{u} \otimes \mathbf{u}$

 $\mathcal V$ chooses $\mathbf r$, $\mathbf r'$ independently at random from $\{0,1\}^n$ and assert that $f(\mathbf r)f(\mathbf r')=g(\mathbf r\otimes \mathbf r')$.

Let W be an $n \times n$ matrix representing the entries of \mathbf{w} and U be such a matrix for $\mathbf{u} \otimes \mathbf{u}$. Then

- 1. $g(\mathbf{r} \oplus \mathbf{r}') = \mathbf{w} \odot (\mathbf{r} \otimes \mathbf{r}') = \mathbf{r} W \mathbf{r}'$
- 2. $f(\mathbf{r})f(\mathbf{r}') = (\mathbf{u} \odot \mathbf{r})(\mathbf{u} \odot \mathbf{r}') = \mathbf{r}U\mathbf{r}'$

By the random subsum principle, we claim this test rejects atleast 1/4 of the time on instances where $\mathbf{w} \neq \mathbf{u} \otimes \mathbf{u}$. Repeating this 3 times, we get probability of rejection as 37/64.

Aman Bansal Adwait

Now we are assured that the form of π is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$ for some $\mathbf{u} \in \{0, 1\}^n$.

Now we are assured that the form of π is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$ for some $\mathbf{u} \in \{0, 1\}^n$.

- 1 All that remains is to check that \mathbf{u} is a satisfying assignment
- 2 Wonderfully, we also have O(1) access to $A_i \cdot (\mathbf{u} \otimes \mathbf{u})$, the value of the i^{th} equation in the QUADEQ instance and can match it with b_i .

29 / 37

Now we are assured that the form of π is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$ for some $\mathbf{u} \in \{0, 1\}^n$.

- 1 All that remains is to check that \mathbf{u} is a satisfying assignment
- 2 Wonderfully, we also have O(1) access to $A_i \cdot (\mathbf{u} \otimes \mathbf{u})$, the value of the i^{th} equation in the QUADEQ instance and can match it with b_i .

But but but ... how do we check all the m equations of the QUADEQ instance in constant number of queries? \odot

Now we are assured that the form of π is $\langle WH(\mathbf{u}), WH(\mathbf{u} \otimes \mathbf{u}) \rangle$ for some $\mathbf{u} \in \{0, 1\}^n$.

- 1 All that remains is to check that \mathbf{u} is a satisfying assignment
- 2 Wonderfully, we also have O(1) access to $A_i \cdot (\mathbf{u} \otimes \mathbf{u})$, the value of the i^{th} equation in the QUADEQ instance and can match it with b_i .

But but but ... how do we check all the m equations of the QUADEQ instance in constant number of queries? \odot

Use the random subsum principle AGAIN! Choose a subset of equations randomly from [k] and add them together to create a new quadratic equation. If ${\bf u}$ did not satisfy even one equation of the original system, it will not satisfy the new equation with probability at least 1/2.

Aman Bansal Adwait Godbole FCF and Hardward Company October 2019 29 / 37

QED

With this, we have proved that $NP \subseteq PCP[poly(n), 1]$. The other direction is trivial.

The stronger theorem makes further observations regarding the form of the proof π given here. Then it uses further results such as gap amplification and alphabet reduction to prove the general statement NP = PCP(log(n), 1).

Trajectory

- Relaxations of Hard Problems
 - Approximate Problems
 - Gap Problem
 - Connection between Approximation and Gap
- A New Proof System
 - Probabilistically Checkable Proof Systems
 - Some Preliminaries
 - Proof of the PCP Theorem
- 3 Hardness of Approximation

A Sad Result

 gap_{α} -MAX3SAT is NP-hard

Just as SAT captured the essence of hardness of exact solution, gap_{α} -MAX3SAT, or it's more general formulation, qCSP, captures the essence of hardness of approximation

Aman Bansal A

Proof Method

PCP Theorem $\implies gap_{\alpha}$ -MAX3SAT is NP-hard

Proof: Consider any $L \in PCP_{1,\frac{1}{2}}[c \cdot log(n), Q]$. The idea is to encode the Verifier's possible actions by a Boolean formula Ψ .

$$\Psi = \bigwedge_{coins} h_R$$

But h_r is an arbitrary predicate over Q variables.

Aman Bansal

Fact

 $\forall q, \exists l(q), k(q)$ such that any q-ary Boolean function h can be encoded by a 3-CNF formula ψ_h with k(q) clauses over q + l(q) variables $x_1, \ldots, x_q, z_1, \ldots, z_l(q)$ such that

$$h(x) = 1 \implies \exists z, \psi_h(x, z) = 1$$

$$h(x) = 0 \implies \forall z, \psi_h(x, z) = 0$$

$$\Psi = \bigwedge_{coins\ R} \psi_{h_R}$$

- 1. If $x \in L$ then \exists proof π such that $\forall R, h_R(\pi) = 1$
- 2. If $x \notin L$ then at least $\frac{1}{2}$ choices of R accept make $h_R(\pi) = 0$. If the total number of clauses are M ($= 2^R k(q)$) then maximum fraction of clauses that can be satisfied is $(1 \frac{1}{k})$.

This proves that PCP-theorem leads to the hardness of gap_{α} -MAX3SAT which in turn as presented earlier leads to NP-hardness of α -approximating MAX3SAT.

References

- 1 Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
- 2 Limits of approximation algorithms: PCPs and Unique Games -Spring Semester (2009-10) at TIFR, IMSc http://www.tcs.tifr.res.in/prahladh/teaching/2009-10/limits/

