PHYS 1511 Discussion Section: Week 2

Connor Feltman

University of Iowa

23 January 2020

Review Lecture

- -Solving Symbolically
- -Speed vs Velocity & Distance vs Displacement
- $-\Delta x = x_f x_o$ notation & Kinematic Charts
- -Gravity & gravitational acceleration

Relevant Equations

$$v = \frac{\Delta x}{\Delta t} \qquad \text{(Average Velocity)} \tag{1}$$

The Kinematic Equations:

$$v_f = v_o + at \tag{2}$$

$$\Delta x = x_f - x_o = v_o t + \frac{1}{2} a t^2 \tag{3}$$

$$v_f^2 = v_o^2 + 2a\Delta x \tag{4}$$

Circular Logic

A couple walks around a circular lake of radius $1.5 \, \text{km}$. They start at the east side of the lake and head north to begin with. They eventually take a break when they are 235° from due east. (assume the origin is at the center of the lake) What is the distance traveled by the couple?

BONUS: What is the magnitude of the couple's displacement measured from due east?

Float like a butterfly

According to inews.com the Testa Model S Car has one of the greatest accelerations. It managed 0 to 60mph (95.56 kph) in about 2.28 seconds.

- a) Calculate the average acceleration the car must've experienced to achieve this (in $\rm m/\it s^{2}\rm)$
- b) Find the distance travelled by the Model S during this time (in meters)

Knights of the Round

Sir Gawain and Sir Lancelot are jousting towards one another. Each rider starts from rest a distance 88m apart, then ride directly towards one another. Gawain has an acceleration of $a_G = 0.3 \frac{m}{s^2}$ while Lancelot has $a_L = 0.2 \frac{m}{s^2}$. Relative to Gawain, where do the knights collide?

Astronaut Symbols

An astronaut wants to measure the acceleration due to gravity at the surface of the mystery planet they're on. They toss a rock up into the air and measure the time it takes to fall back into their hand. Solve for the gravity of the planet **symbolically** if you know the following (assume no air resistance):

 t_{toss} - The time it takes for the rock to return to the astronaut's hand once thrown

 V_o - The initial speed of the rock

Astronaut Symbols

An astronaut wants to measure the acceleration due to gravity at the surface of the mystery planet they're on. They toss a rock up into the air and measure the time it takes to fall back into their hand. Solve for the gravity of the planet **symbolically** if you know the following:

 t_{toss} - The time it takes for the rock to return to the astronaut's hand once thrown

 V_o - The initial speed of the rock

If $t_{toss} = 20.0$ s and $V_o = 15$ m/s what is the gravitational acceleration on the planet?

Question #5: Challenge Problem

Sets of equations

While standing on a bridge that's "h" meters high you push a stone (from rest) off the bridge towards the water below. When the first stone has travelled Δx distance you throw another rock down with some initial velocity V_o . Solve for the initial velocity of the second rock **symbolically** if both rocks are to hit the water at the same instant? (Write your answers in terms of gravitational constant g_ih and Δx)