Adaptive numerical solvers

for Ordinary Differential Equations

Bruno Guindani Michele Vidulis

July 22, 2019

Introduction

Ordinary differential equations (ODE)

Given
$$I = [t_0, t_F] \subset \mathbb{R}$$
, $f(t, \boldsymbol{y}) : I \times \mathbb{R}^n \to \mathbb{R}^n$, $f \in C^1$, and $t_0 \in I, \boldsymbol{y}_0 \in \mathbb{R}^n$:

Initial Value Problem (IVP):

find a C^1 function ${\boldsymbol y}(t):I\to \mathbb{R}^n$ that solves

$$egin{cases} m{y}'(t) = f(t, m{y}(t)) & \quad ext{with } t \in I \ m{y}(t_0) = m{y}_0 \end{cases}$$

(first order ODE)

Existence and uniqueness guaranteed under $\emph{Lipschitz}$ continuity of f

Iterative methods

- Discretization of time into N intervals: $t_0,\ t_1,\ \ldots,\ t_N=t_F$ through a scretization step h: $t_{n+1}=t_n+h$, with $n=0,1,\ldots,N$
- $\boldsymbol{y}(t_n)$ is numerically approximated by \boldsymbol{u}_n :

$$oldsymbol{u}_0 = oldsymbol{y}_0, oldsymbol{u}_1, \dots, oldsymbol{u}_N \in \mathbb{R}^n$$

Iterative methods

- Discretization of time into N intervals: $t_0,\ t_1,\ \ldots,\ t_N=t_F$ through a scretization step h: $t_{n+1}=t_n+h$, with $n=0,1,\ldots,N$
- $y(t_n)$ is numerically approximated by u_n :

$$oldsymbol{u}_0 = oldsymbol{y}_0, oldsymbol{u}_1, \dots, oldsymbol{u}_N \in \mathbb{R}^n$$

• In **single-step methods**, u_{n+1} depends directly only on the one previous step u_n :

$$u_{n+1} = u_n + h \ \phi(t_n, h, u_n, u_{n+1}, f)$$

- ullet In **explicit** methods, $oldsymbol{u}_{n+1}$ does not appear in ϕ
- In **implicit** methods, u_{n+1} appears in ϕ \implies nonlinear equations

Runge-Kutta methods

- Family of **single-step** methods
- Weighted average of s evaluations (stages) of f:

$$oldsymbol{u}_{n+1} = oldsymbol{u}_n + h \sum_{i=1}^s b_i oldsymbol{K}_i$$
 with

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i$$
 with $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$

Runge-Kutta methods

- Family of single-step methods
- Weighted average of s evaluations (**stages**) of f:

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i$$
 with $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$

Butcher tableau:

$$egin{array}{cccc} c_1 & a_{11} & \dots & a_{1s} \\ \vdots & & \ddots & & \\ c_s & a_{s1} & & a_{ss} \\ \hline & b_1 & \dots & b_s \end{array} \qquad ext{with } c_i = \sum_j a_{ij}$$

Runge-Kutta methods

- Family of single-step methods
- Weighted average of s evaluations (**stages**) of f:

$$m{u}_{n+1} = m{u}_n + h \sum_{i=1}^s b_i m{K}_i$$
 with $m{K}_i = f(t_0 + c_i h, \ m{u}_n + \sum_{j=1}^s a_{ij} m{K}_j)$

Butcher tableau:

$$egin{array}{ccccc} c_1 & a_{11} & \dots & a_{1s} \\ dots & & \ddots & & \\ c_s & a_{s1} & & a_{ss} \\ \hline & b_1 & \dots & b_s & & \end{array}$$
 with $c_i = \sum_j a_{ij}$

- $O(sn^2)$ if f linear
- Explicit if $[a_{ij}]_{ij}$ is lower triangular

Examples of RK variants (1)

• Forward Euler (FE) (explicit):

$$a = 0, b = 1, c = 0$$

 $\mathbf{u}_{n+1} = \mathbf{u}_n + hf(t_n, \mathbf{u}_n)$

• RK4 (standard) (explicit):

0 $\frac{1}{2}$ $\frac{1}{2}$ 1	$\frac{1}{2}$	$\frac{1}{2}$	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Examples of RK variants (2)

• Heun (explicit):

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & \\
\hline
& \frac{1}{2} & \frac{1}{2} & \\
\end{array}$$

• Iserles-Nørsett (implicit):

$ \begin{array}{r} \frac{1}{3} \\ \frac{2}{3} \\ \frac{21+\sqrt{57}}{48} \\ \underline{21-\sqrt{57}} \\ 48 \end{array} $	$\frac{1}{3}$ $\frac{1}{3}$	$\frac{1}{3}$	$\frac{21 + \sqrt{57}}{48} \\ \frac{3 - \sqrt{57}}{24}$	$\frac{21+\sqrt{57}}{48}$
	$\frac{9+3\sqrt{57}}{16}$	$\frac{9+3\sqrt{57}}{16}$	$-\frac{1+3\sqrt{57}}{16}$	$-\frac{1+3\sqrt{57}}{16}$

Convergence analysis for RK

- Convergence \rightarrow absolute error: $||y_n u_n|| \simeq O(h^q)$
- Consistence \to truncation error: $\max_n ||\tau_n(h)|| \simeq O(h^q)$
- ullet Under reasonable Lipschitz continuity assumptions on ϕ , a single-step method which is consistent is also convergent

Convergence analysis for RK

- Convergence \rightarrow absolute error: $||y_n u_n|| \simeq O(h^q)$
- Consistence \to truncation error: $\max_n ||\tau_n(h)|| \simeq O(h^q)$
- ullet Under reasonable Lipschitz continuity assumptions on ϕ , a single-step method which is consistent is also convergent
- Runge-Kutta is consistent iff $\sum_i b_i = 1 \implies$ convergent
- Steep limitations on order of convergence:
 - Maximum order is the number of stages
 - ▶ If $s \ge 5$, equality cannot be achieved in explicit variants

order	5	6	7	8
minimum s	6	7	9	11

Adaptive methods

- Step h is updated at every iteration adaptively, i.e. based on the trend of the solution
 - ▶ Small h near steep slopes, large h near flat points
 - A posteriori estimate of error is needed
 - ▶ Compute two-round solution with $\frac{h}{2}$, with single-round solution with h
- No need for input of "correct" step
- Computational gain

Consistency of adaptive methods

Forward Euler:

Truncation errors:

$$e_h = h^2/2y''(\xi), \qquad e_{h/2} = h^2/8y''(\eta) \cdot 2 + o(h^2)$$

Error estimate:

$$|u_{h/2} - u_h| \simeq |e_{h/2}| \simeq h^2/4|y''(\widehat{\eta})| + o(h^2) \stackrel{\downarrow}{<} \frac{\varepsilon}{2}$$
 (tolerance)

Consistency of adaptive methods

Forward Euler:

Truncation errors:

$$e_h = h^2/2y''(\xi), \qquad e_{h/2} = h^2/8y''(\eta) \cdot 2 + o(h^2)$$

• Error estimate:

$$|u_{h/2} - u_h| \simeq |e_{h/2}| \simeq h^2/4|y''(\widehat{\eta})| + o(h^2) \stackrel{\downarrow}{<} \frac{\varepsilon}{2}$$
 (tolerance)

Runge-Kutta:

• ...

Code structure

Code structure

. . .

Implementation choices

Separate FE class is much more efficient than RK specialized class:

Adaptive single_step() class methods are not efficient

Parallel Iserles-Nørsett

- Exploits block-diagonal structure of Butcher array
- Runs in parallel on 2 processors, each dealing with one indpendent 2-by-2 block
- Fixed point algorithm was used for nonlinear equations

Results

Results

Actual efficiency of parallelism

Speedup is heavily dependent on the problem function:

$$f(t, y(t)) = \exp_2(-\frac{y(t)}{4} + 6 + 10t)$$

Multiple run results

Why?

Workload distribution

⇒ load imbalance

A vectorial example

- Efficiency still depends on the function
- Here fixed point iterations are well-balanced among processors:

Test #4:
$$f(t, y(t)) = \begin{bmatrix} -3 & -1 \\ 1 & -5 \end{bmatrix} y(t) + \begin{bmatrix} \sin(t) \\ -2t \end{bmatrix}$$

Bibliography

- Nodhaisky, Parallel two-step Runge-Kutta methods
- Quarteroni, Saleri, Calcolo scientifico
- Quarteroni, Sacco, Saleri, Gervasio, Matematica numerica
- Solodushkin, lumanova, Parallel Numerical Methods for Ordinary Differential Equations: a Survey