

Assessing Urban Environments with Vision-Language Models: A Comparative Analysis of Al-Generated Ratings and Human Volunteer Evaluations

Felipe A. Moreno-Vera and Jorge Poco

Context & Motivation

Which one looks safer?

Bangú (RJ)

City Center (RJ)

Context

By understanding how people perceive and experience cities, we can create more complex models to analyze the perception and obtain insights from inferences.

Motivation

Using vision-language models we add more subjective information from Street View images, aiming to understanding urban perception based on dual-modality studies.

Overview

- Main goal: Analyze the impact of adding textual descriptions to images for evaluating urban perception.
- **Image-to-Text model comparison:** We compare LlaVA (1.5-7b-hf), BLIP-2 (opt-2.7b), and BLIP (ic-large) for image descriptions.
- **Model training:** Binary classification and regression tasks.
- Ablation studies: We freeze and unfreeze certain components and layers to study their impact and understand the contribution of each part of the model to the overall performance.
 - o **Image-to-Text models:** Generates "positive" and "negative" descriptions
 - Dual-modality: The projections from Image and Text encoders
 - Contrastive Image-text alignment: Contrastive learning
 - **Heads:** Only classification and regression heads

Place Pulse

Place Pulse dataset

http://pulse.media.mit.edu/

^{*} Comparisons were made using two random images from random cities.

Place Pulse dataset

left-id	right-id	winner	left-lat	left-long	right-lat	right-long	category
513d7e23fdc9f	513d7ac3fdc9f	equal	40.744156	-73.93557	-33.52638	-70.591309	depressing
513f320cfdc9f	513cc3acfdc9f	left	52.551685	13.416548	29.76381	-95.394621	safety
513e5dc3fdc9f	5140d960fdc9f	right	48.878382	2.403116	53.32932	-6.231007	lively

- 1 223 649 Comparisons
- 111 390 images
- 32 countries, 56 cities
- 6 categories: safety, lively, beauty, wealthy, boring, and depressing

Strength of Schedule*

$$Award_{i}^{k} = \frac{1}{w_{i}^{k}} \sum_{j=1}^{n_{1}} \frac{w_{i}^{k}}{w_{i}^{k} + d_{i}^{k} + l_{i}^{k}}$$

$$Penalty_{i}^{k} = \frac{1}{l_{i}^{k}} \sum_{j=1}^{n_{2}} \frac{l_{i}^{k}}{w_{i}^{k} + d_{i}^{k} + l_{i}^{k}}$$

$$Q_{i}^{k} = \frac{10}{3} \left(\frac{w_{i}^{k}}{w_{i}^{k} + d_{i}^{k} + l_{i}^{k}} + Award_{i}^{k} - Penalty_{i}^{k} + 1 \right)$$

^{*} Park et. al., A network-based ranking system for us college football

Strength of Schedule

			Image Perceptual Scores
left	right	winner	Scores
		draw	, 8.35
		left	(, 7.16)
		right	(5.01)
	· ·	· ·	•••
acopte		right	(, 1.29)
		left	(0.55)

Processed samples

Image	ID	Safety	Lively	Wealthy	Beauty	Boring	Depressive
	513d7e23fdc9f	7.42	8.58	6.5	7.3	2.64	1.23
	513f320cfdc9f	6.07	4.97	7.13	8.61	1.67	0.86

Statistics

Place Pulse 2.0										
Continent	#countries	#cities	#images							
Europe	19	22	38,747							
North America	3	17	37504							
South America	2	5	12,524							
Asia	5	7	11,417							
Oceania	1	2	6,097							
Africa	2	3	5,101							
Total	32	56	111,390							

Place Pulse 2.0									
Catagory	# comparisons	# images	maan						
Safety	368,926	111,389	5.188						
Livery	201,292	111,540	5.005						
Beautiful	175,361	110,766	4.920						
Wealthy	152,241	107,795	4.890						
Depressing	132,467	105,495	4.816						
Boring	127,362	106,363	4.810						
Total	1,223,649								

High safety scores images

Low safety scores images

Experiments and Results

Experiment settings

Place Pulse 2.0

- Dataset split into 75% for training and 25% for validation/testing.
- Binary labeling:

$$y_{i,k} = \begin{cases} 1 & \text{if } Q_i^k > \mu^k + \delta \sigma^k \% \\ 0 & \text{if } Q_i^k < \mu^k - \delta \sigma^k \% \end{cases}$$

5 Cross-Validation

• Environment:

- Python 3.10 + Pytorch
- NVIDIA RTX 3090 GPU with 16 VRAM.
- o Intel Core i9-12900K CPU with 125Gb RAM.
- We use float16 precision for memory save.

Image descriptions

ID	50f5ec33fdc9f065f00087c3	50f5ec42fdc9f065f00088e0	50f5eb65fdc9f065f000826f
Image	Congle	Google © 2015 Google	Google 0 2015 Google
Model	Description	Description	Description
LlaVA	The image depicts a narrow alleyway between two buildings, with one of the buildings being a brick structure. The alleyway is surrounded by a dirt road, and there are a few cars parked along the road.	The image depicts a narrow alleyway between two buildings, with one of the buildings being a brick structure. The alleyway is surrounded by a dirt road. There are a few cars parked along the road.	The image shows a residential area with a well-maintained hedge around a house and several potted plants, creating a pleasant, aesthetic, and inviting atmosphere.
BLIP-2	This image shows a narrow street in a residential area under development or construction. The buildings are primarily made of exposed and unfinished red bricks and concrete.	This image depicts a wide, well- maintained urban street in a more af- fluent area. The environment appears clean, organized, and secure, with good infrastructure and urban planning.	The image shows a residential street scene. Additionally, a tall hedge covers a gate and wall, possibly concealing a private residence.
BLIP	This is a Google Street View image of a building under construction.	This is a Google Street View image of a building in a city.	This is a Google Street View image of a green residential area in the Philippines.

Randomly select 50 samples and compare the description results

UrbanVLM

Ablation study

Ablation	Model		Classific	cation		Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE
Zero-shot	CLIP	0.39	0.41	0.39	0.24	-14.05	4.53	4.89
	SigLIP	0.57	0.43	0.57	0.45	-14.17	4.61	4.77
Only heads	LlaVA+CLIP	0.67	0.67	0.66	0.66	0.57	2.43	2.56
W/o description, contrastive & dual-modality	LlaVA+SigLIP	0.66	0.66	0.67	0.66	0.56	2.43	2.68
and the many control will be an an arranged	BLIP-2+CLIP	0.63	0.61	0.62	0.61	0.53	3.4	3.21
	BLIP-2+SigLIP	0.64	0.63	0.63	0.63	0.53	3.38	3.35
Contrastive	LlaVA+CLIP	0.7	0.69	0.68	0.68	0.62	1.81	1.95
W/o description & dual-modality	LlaVA+SigLIP	0.71	0.71	0.7	0.7	0.61	1.98	1.84
	BLIP-2+CLIP	0.68	0.67	0.68	0.67	0.56	2.75	2.35
	BLIP-2+SigLIP	0.69	0.68	0.69	0.68	0.55	2.68	2.2
Visual projections	LlaVA+CLIP	0.73	0.72	0.71	0.71	0.67	1.69	1.73
W/o contrastive & dual-modality	LlaVA+SigLIP	0.72	0.72	0.71	0.71	0.65	1.68	1.71
	BLIP-2+CLIP	0.7	0.7	0.69	0.69	0.59	1.95	2.06
	BLIP-2+SigLIP	0.71	0.71	0.7	0.7	0.59	1.88	1.94
Dual-modality	LlaVA+CLIP	0.76	0.76	0.75	0.75	0.78	1.33	1.42
W/o description & contrastive	LlaVA+SigLIP	0.75	0.75	0.74	0.74	0.75	1.29	1.51
	BLIP-2+CLIP	0.72	0.72	0.73	0.72	0.69	1.6	1.34
	BLIP-2+SigLIP	0.73	0.73	0.72	0.72	0.68	1.4	1.21
UrbanVLM	LlaVA+CLIP	0.82	0.78	0.79	0.78	0.84	1.04	0.78
	LlaVA+SigLIP	0.83	0.79	0.78	0.78	0.83	1.08	0.79
	BLIP-2+CLIP	0.78	0.77	0.78	0.77	0.76	1.32	1.15
	BLIP-2+SigLIP	0.79	0.78	0.79	0.78	0.75	1.26	1.01

Ablation study: Zero-shot

Ablation	Model		Classification				Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE	
Zero-shot	CLIP	0.39	0.41	0.39	0.24	-14.05	4.53	4.89	
	SigLIP	0.57	0.43	0.57	0.45	-14.17	4.61	4.77	

We use the "positive" and "negative" description for each image.

Ablation study: Only heads

Ablation	Model	Classification					Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE	
Only heads	LlaVA+CLIP	0.67	0.67	0.66	0.66	0.57	2.43	2.56	
W/o description, contrastive & dual-modality	LlaVA+SigLIP	0.66	0.66	0.67	0.66	0.56	2.43	2.68	
Committee of the commit	BLIP-2+CLIP	0.63	0.61	0.62	0.61	0.53	3.4	3.21	
	BLIP-2+SigLIP	0.64	0.63	0.63	0.63	0.53	3 38	3 35	

We use the corresponding "positive" description (learns heads).

Ablation study: Contrastive

Ablation	Model	Classification				Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE
Contrastive	LlaVA+CLIP	0.7	0.69	0.68	0.68	0.62	1.81	1.95
W/o description & dual-modality	LlaVA+SigLIP	0.71	0.71	0.7	0.7	0.61	1.98	1.84
•	BLIP-2+CLIP	0.68	0.67	0.68	0.67	0.56	2.75	2.35
	BLIP-2+SigLIP	0.69	0.68	0.69	0.68	0.55	2.68	2.2

We use the "positive" and "negative" descriptions (learns to match).

Ablation study: Visual projections

Ablation	Model	Classification					Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE	
Visual projections	LlaVA+CLIP	0.73	0.72	0.71	0.71	0.67	1.69	1.73	
W/o contrastive & dual-modality	LlaVA+SigLIP	0.72	0.72	0.71	0.71	0.65	1.68	1.71	
	BLIP-2+CLIP	0.7	0.7	0.69	0.69	0.59	1.95	2.06	
	BLIP-2+SigLIP	0.71	0.71	0.7	0.7	0.59	1.88	1 94	

We refine the corresponding "positive" description (learns to describe).

Ablation study: Dual-modality

Ablation	Model	Classification					Regression	
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE
Dual-modality	LlaVA+CLIP	0.76	0.76	0.75	0.75	0.78	1.33	1.42
W/o description & contrastive	LlaVA+SigLIP	0.75	0.75	0.74	0.74	0.75	1.29	1.51
2 of the state of the following that is described a described outside the state of	BLIP-2+CLIP	0.72	0.72	0.73	0.72	0.69	1.6	1.34
	BLIP-2+SigLIP	0.73	0.73	0.72	0.72	0.68	1.4	1.21

We use the corresponding "positive" description (learns to encode).

Ablation study: UrbanVLM

Ablation	Model	Classification				Regression		
Study	Tested	Acc	Precision	Recall	F-1	R^2	RMSE	MAE
UrbanVLM	LlaVA+CLIP	0.82	0.78	0.79	0.78	0.84	1.04	0.78
	LlaVA+SigLIP	0.83	0.79	0.78	0.78	0.83	1.08	0.79
	BLIP-2+CLIP	0.78	0.77	0.78	0.77	0.76	1.32	1.15
	BLIP-2+SigLIP	0.79	0.78	0.79	0.78	0.75	1.26	1.01

We use the "positive" and "negative" descriptions (learns all together).

Classification and regression results

ACCURACY REPORT USING BINARY CLASSIFICATION IN SAFE CATEGORY

REGRESSION RESULTS IN SAFE CATEGORY

Model	Acc	
PspNet+VGG [29]	48.38	
DeepLabV3+VGG [29]	51.93	
DSAPN+ResNet [54]	64.87	
MTDRALN-LC [25]	65.07	
MTDRALN-TC [25]	65.82	
VGG+ImageNet [28]	65.72	
VGG-GAP+ImageNet [28]	66.09	
VGG+Places365 [28]	66.46	
VGG-GAP+Places365 [28]	66.96	
VGG19+ImageNet [4]	67.01	
PSPNet+SVR [55]	70.63	
DeiT+ResNet50 [40]	71.16	
ViT-nn [27]	71.29	
ViT-nn+OneFormer [27]	75.68	
UrbanVLM (LlaVA+SigLIP)	82.55	

Model	R^2	RMSE	
PSPNet-Regressor [55]	0.25		
Fine-Tuned BERT [22]	0.42	-	
FPN-based regressor [20]	0.52	-	
DeepLabV3+ regressor [20]	_	2.16	
DeepLabV3+ regressor [52]	-	2.91	
SFB5+ConvNeXt-B+RF [60]	0.67	1.29	
VIT+SegFormer+RF [11]	0.76	1.75	
UrbanVLM (LlaVA+CLIP)	0.84	1.04	

Scores comparison

Conclusions

Conclusions

- We develop a VL-based model called **UrbanVLM**, aiming to improve binary classification and regression tasks.
- **Ablation studies:** The ablation results highlighted that fine-tuning image and text projection layers had the highest impact, while encoder layers contributed less to performance gains.
 - Image-to-Text models: Learns to refine descriptions.
 - o **Dual-modality:** Learns to encode image and descriptions
 - Contrastive Image-text alignment: Learns to match image-text
 - **Heads:** Learns heads for each tasks.
- We **evaluate** the importance of **adding textual description** of images, by using MLLM models such as LlaVA and BLIP-2, we provide deeper context to our contrastive model.

THANKS!

Any Questions?