Санкт-Петербургский Национальный Исследовательский Университет Информационных Технологий, Механики и Оптики

Факультет Прикладной Информатики

Практическая работа №1

Выполнил:

Зенин Д.Д.

Проверил:

Харитонов А.Ю.

Санкт-Петербург, 2025

Содержание

ВВЕДЕНИЕ	3
1	
2	
3	
4	
5	10
6	19
ЗАКЛЮЧЕНИЕ	28

ВВЕДЕНИЕ

Цель работы:

Получить практические навыки по конфигурированию сети в операционных системах Microsoft Windows, ознакомиться с утилитами командной строки, предназначенными для диагностики и настройки сети, разработать исполняемые файлы, конфигурирующие сетевой интерфейс по заданным параметрам, ознакомиться с форматом записи пути до сетевого ресурса UNC.

Практическая работа выполняется на ОС Windows 11

1.

Проверим, активны ли следующие пункты в свойствах используемого сетевого подключения:

- Клиент для сетей Microsoft
- Служба доступа к файлам и принтерам Microsoft
- Протокол ТСР/ІР.

Для этого нужно перейти в Параметры -> Сеть и Интернет -> Дополнительные сетевые параметры. Далее в разделе «Сетевые адаптеры» выберем свою сеть и нажмем «Изменить другие параметры адаптера». Откроется следующее окно:

 $Pисунок\ 1- Свойства\ noдключенного\ сетевого\ noдключения$ Все требуемые пункты в свойствах подключенного сетевого подключения

активны.

Определим теперь назначение каждого из требуемых компонентов:

1. Клиент для сетей Microsoft

• Отвечает за подключение компьютера к сетевым ресурсам, таким как общие папки, файлы и принтеры на других компьютерах или серверах. Без этого компонента компьютер не сможет получать доступ к общим папкам и файлам в локальной сети.

2. Служба доступа к файлам и принтерам Microsoft

• Позволяет другим компьютерам в сети получать доступ к файлам и принтерам, которые открыты для общего доступа на вашем ПК. Если отключить, другие устройства не смогут видеть файлы и принтеры, которые вы делаете доступными в сети.

3. Протокол Интернета (ТСР/ІР)

- Это основной сетевой протокол, который используется для связи между устройствами в сети и Интернете.
- IP отвечает за адресацию и маршрутизацию пакетов данных. ТСР гарантирует, что данные передаются без ошибок и в правильном порядке.

2.

Настроим сетевой интерфейс таким образом, чтобы внешние пользователи не могли получить доступ к ресурсам компьютера по протоколу SMB.

Для этого в параметрах соединения уберем галочку с «Общий доступ к файлам и принтерам для сетей Microsoft». Это отключит возможность делиться ресурсами через SMB, ведь протокол SMB (Server Message Block) используется для доступа к файлам и принтерам.

Рисунок 2 – Свойства подключенного сетевого подключения с отключенным SMB

3.

Разберемся в назначении параметров и ключей утилиты ping.

а) Проверка доступности удаленного хоста:

```
C:\Users\zenin>ping ya.ru

Обмен пакетами с ya.ru [213.180.193.56] с 32 байтами данных:
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54

Статистика Ping для 213.180.193.56:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)

Приблизительное время приема-передачи в мс:
Минимальное = 13мсек, Максимальное = 15 мсек, Среднее = 13 мсек
```

Рисунок 3 – Проверка доступности удалённого хоста уа.ru

Команда ping отправила несколько ICMP-запросов этому хосту и вывела результаты, включая время задержки (ping) в миллисекундах.

b) Запуск бесконечной проверки доступности:

```
C:\Users\zenin>ping -t ya.ru
Обмен пакетами с ya.ru [213.180.193.56] с 32 байтами данных:
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=16мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=16мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=16мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=14мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=16мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=14мс TTL=54
Статистика Ping для 213.180.193.56:
    Пакетов: отправлено = 11, получено = 11, потеряно = 0
     (0% потерь)
Приблизительное время приема-передачи в мс:
    Минимальное = 13мсек, Максимальное = 16 мсек, Среднее = 15 мсек
Control-C
```

Рисунок 4 – Бесконечная проверка доступности удалённого хоста уа.ru

Эта команда продолжала отправлять ICMP-запросы на указанный хост бесконечно, пока выполнение команды не было прервано с помощью нажатия Ctrl+C.

с) Ограничение числа запросов:

```
C:\Users\zenin>ping -n 5 ya.ru

Обмен пакетами с ya.ru [213.180.193.56] с 32 байтами данных:
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=13мс TTL=54
Ответ от 213.180.193.56: число байт=32 время=15мс TTL=54

Статистика Ping для 213.180.193.56:
Пакетов: отправлено = 5, получено = 5, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 13мсек, Максимальное = 15 мсек, Среднее = 14 мсек
```

Рисунок 5 — Ограничение числа запросов проверки доступности удалённого хоста ya.ru

Эта команда отправила указанное количество ICMP-запросов на хост и затем завершилась.

d) Изменение размера пакетов:

```
C:\Users\zenin>ping -l 1000 ya.ru

Обмен пакетами с ya.ru [213.180.193.56] с 1000 байтами данных:
Ответ от 213.180.193.56: число байт=1000 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=1000 время=15мс TTL=54
Ответ от 213.180.193.56: число байт=1000 время=14мс TTL=54
Ответ от 213.180.193.56: число байт=1000 время=17мс TTL=54

Статистика Ping для 213.180.193.56:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 14мсек, Максимальное = 17 мсек, Среднее = 15 мсек
```

Рисунок 6 – Изменение размера пакетов при проверке доступности удалённого хоста ya.ru

Эта команда позволила отправить пакеты определенного размера в байтах.

е) Определение маршрута к хосту:

```
C:\Users\zenin>tracert ya.ru
Трассировка маршрута к уа.ru [213.180.193.56]
с максимальным числом прыжков 30:
                                              <1 MC KEENETIC-6582 [192.168.3.1]
                                             11 ms 5x19x0x106.static-business.spb.ertelecom.ru [5.19.0.106]
2 ms 5x19x0x242.static-business.spb.ertelecom.ru [5.19.0.242]
3 ms bbr01.spb.ertelecom.ru [188.234.129.214]
20 ms 31x131x196x151.static.ertelecom.ru [31.131.196.151]
16 ms klg-32z3-ae2.yndx.net [93.158.160.175]
                              9 ms
2 ms
            4 ms
             3 ms
                               3 ms
                             13 ms
15 ms
            17 ms
                             16 ms
13 ms
                                              16 ms
                                                          10.1.3.1
             18 ms
                                              13 ms familysearch.yandex.ru [213.180.193.56]
            15 ms
Трассировка завершена.
```

Рисунок 6 – Определение маршрута к удалённому хосту уа.ru

Команда tracert используется для отслеживания маршрута пакетов к указанному хосту и отображает список промежуточных узлов, через которые проходят пакеты.

f) Сохранение результатов в файл:

```
C:\Users\zenin>ping ya.ru >> "C:\Users\zenin\Desktop\result_ping.txt"
```

Рисунок 7 — Сохранение результатов проверки доступности удалённого хоста уа.ru в файл

С помощью конструкции ping [хост] > [путь_к_файлу] можно сохранить результат выполнения программы в файле. В самом файле записалось следующее:

```
      ЋЎ¬Ґ Ї ЄҐВ ¬Ё б ya.ru [213.180.193.56] б 32 Ў ®В ¬Ё ж ле:

      ЋВЎҐВ ®В 213.180.193.56: ЗЁб«® Ў ®В=32 ЎЗҐ¬П=16¬6 ТТL=54

      ЋВЎҐВ ®В 213.180.193.56: ЗЁб«® Ў ®В=32 ЎЗҐ¬П=15¬6 ТТL=54

      ЋВЎҐВ ®В 213.180.193.56: ЗЁб«® Ў ®В=32 ЎЗҐ¬П=14¬6 ТТL=54

      ЋВЎҐВ ®В 213.180.193.56: ЗЁб«® Ў ®В=32 ЎЗҐ¬П=16¬6 ТТL=54

      'В ВЁбВЁЄ Ріпд ж«п 213.180.193.56:

      Ц ЄҐВ®Ў: ®ВЇа ў«Ґ® = 4, Ї®«ГЗҐ® = 4, Ї®ВҐаП® = 0

      (0% Ї®ВҐам)

      ЦаЁў«ЁВЁҐ«м®Ґ ўзҐ¬п ЇаЁҐ¬ -ЇҐаҐж ЗЁ ў ¬6:

      ВЁЁ¬ «м®Ґ = 14¬бҐє, Њ єбЁ¬ «м®Ґ = 16 ¬бҐє, 'аҐжҐҐ = 15 ¬бҐє
```

Рисунок 8 – Результат проверки доступности удалённого хоста уа.ru в файле

Кодировка нарушена из-за изначальной кодировки текстового документа, куда был сохранен результат, но в остальном команда работает правильно.

4.

Разберемся в назначении параметров и ключей утилиты tracert.

а) Отслеживание маршрута к удаленному хосту:

```
C:\Users\zenin>tracert google.com
Трассировка маршрута к forcesafesearch.google.com [216.239.38.120]
 максимальным числом прыжков 30:
        2 ms
                               1 ms KEENETIC-6582 [192.168.3.1]
                   2 ms
        62 ms 58 ms 56 ms 10.8.0.1
  3
       47 ms 47 ms 49 ms 172.17.0.1
        49 ms 48 ms 50 ms 10.0.0.1
  5
       53 ms 56 ms 63 ms fra3-edge.aeza.network [109.120.149.19]
       68 ms 62 ms 62 ms fra1-core.aeza.network [109.120.149.25]
56 ms 57 ms 56 ms 72.14.223.64
66 ms 60 ms 56 ms 192.178.109.241
56 ms 64 ms 59 ms 142.250.229.59
68 ms 55 ms 59 ms any-in-2678.1e100.net [216.239.38.120]
  6
  7
  9
 10
Грассировка завершена.
```

Рисунок 9 – Отслеживание маршрута к удалённому хосту google.com

Команда tracert выполнила последовательность запросов к хосту и отобразила список узлов (маршрут), через которые прошли запросы.

b) Изменение максимального количества прыжков (хопов):

```
C:\Users\zenin>tracert -h 5 google.com
Трассировка маршрута к forcesafesearch.google.com [216.239.38.120]
с максимальным числом прыжков 5:
                                KEENETIC-6582 [192.168.3.1]
                 1 ms
                          1 ms
        1 ms
                49 ms
                                 10.8.0.1
  2
                          47 ms
       50 ms
  3
                                 172.17.0.1
       52 ms
                51 ms
                          51 ms
  4
       60 ms
                63 ms
                          62 ms
                                 10.0.0.1
                                fra3-edge.aeza.network [109.120.149.19]
  5
       67 ms
                69 ms
                         64 ms
Трассировка завершена.
```

Рисунок 10 – Определение маршрута к удалённому хосту google.com с измененным максимальным количеством хопов

Эта команда позволяет установить максимальное количество хопов (узлов) в маршруте.

с) Изменение времени ожидания для каждого хопа:

```
C:\Users\zenin>tracert -w 500 google.com
Трассировка маршрута к forcesafesearch.google.com [216.239.38.120]
с максимальным числом прыжков 30:
                                 KEENETIC-6582 [192.168.3.1]
        1 ms
                 1 ms
                           1 ms
                53 ms
       55 ms
                                 10.8.0.1
  3
                                 172.17.0.1
                54 ms
                          49 ms
  4
       55 ms
                64 ms
                          59 ms
                                 10.0.0.1
  5
                                 fra3-edge.aeza.network [109.120.149.19]
       54 ms
                53 ms
                          68 ms
  6
       71 ms
                70 ms
                                 fra1-core.aeza.network [109.120.149.25]
  7
                          77 ms
       70 ms
                81 ms
                                 72.14.223.64
  8
                94 ms
                          94 ms
                                 192.178.109.241
                          61 ms
                                 142.250.229.59
  9
       62 ms
                62 ms
                                 any-in-2678.1e100.net [216.239.38.120]
       57 ms
                55 ms
                          56 ms
Трассировка завершена.
```

Рисунок 11 – Определение маршрута к удалённому хосту google.com с измененным временем ожидания для каждого хопа

Команда установила время ожидания (в миллисекундах) для каждого хопа

5.

Разберемся в назначении параметров и ключей утилиты ipconfig.

а) Сведения о сетевых настройках адаптеров

```
C:\Users\zenin>ipconfig
Hастройка протокола IP для Windows
Адаптер Ethernet Ethernet 2:
   DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . . : fe80::402b:6c63:9465:f4aa%13
   Основной шлюз. . . . . . . . .
Адаптер беспроводной локальной сети Подключение по локальной сети* 9:
   Состояние среды. . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Подключение по локальной сети* 10:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер Ethernet outline-tap0:
   Состояние среды. . . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть:
   DNS-суффикс подключения . . . . :
   Локальный IPv6-адрес канала . . . : fe80::d18a:7e63:763f:6f71%11
   IPv4-адрес. . . . . . . . . . . . : 172.28.122.100
Маска подсети . . . . . . . . : 255.255.192.0
Основной шлюз. . . . . . . . : 172.28.64.1
Адаптер Ethernet Сетевое подключение Bluetooth:
   Состояние среды. . . . . . . . Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер Ethernet vEthernet (WSL (Hyper-V firewall)):
   DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . . : fe80::c488:6378:4384:2022%43
IPv4-адрес . . . . . . . . . . : 172.21.16.1
Маска подсети . . . . . . . : 255.255.240.0
   Основной шлюз. . . . . . . . . .
```

Рисунок 12 – Результат вывода команды ipconfig

Команда для каждого адаптера в сети выводит доступные к нему настройки.

- **IPv4-адрес:** Текущий IP-адрес устройства в локальной сети
- Маска подсети: Определяет диапазон IP-адресов в локальной сети
- **Основной шлюз:** IP-адрес роутера, через который устройство выходит в интернет
- **IPv6-адрес:** Современный IP-адрес в формате IPv6
- **DNS-суффикс подключения:** Доменное имя, которое автоматически добавляется к неполным именам хостов при запросе DNS

b) Подробные сведения о сетевых настройках адаптеров

Рисунок 13 – Подробные сведения о сетевых настройках адаптеров

```
        Далтер беспроводной локальной сети Беспроводная сеть:

        DNS-суффикс подключения
        : Intel(R) Wi-Fi 6 AX201 160MHz

        Физический адрес
        : 30-05-05-98-88-D7

        DHCP включен
        : Да

        Автонастройка включена
        : Да

        Локальный IPv6-адрес канала
        : fe80s: d18a:7e63:763f:6f71%11(Ocновной)

        IPv4-адрес
        : 172.28.122.100(Основной)

        Маска подсети
        : 255.255.192.0

        Аренда получена
        : 7 марта 2025 г. 13:53:36

        Срок аренды истекает
        : 7 марта 2025 г. 14:29:00

        Основной шлюз
        : 172.28.64.1

        DHCP-сервер
        : 172.28.64.1

        IAID DHCPv6
        : 422577413

        DUID клиента DHCPv6
        : 60-01-00-01-2E-3A-99-A7-2E-7F-CD-2E-2C-68

        DNS-серверы
        : 77.234.194.2

        172.28.64.1
        NetBios через TCP/IP
        : Включен

        Адаптер Ethernet Сетевое подключение Bluetooth:
        Состояние среды
        : Среда передачи недоступна

        DNS-суффикс подключения
        : Виетоотh Device (Personal Area Network)

        Физический адрес
        : 30-05-05-98-85-DB

        DHCP включен
        : Да

        Адаптер Ethernet vEthernet (WSL (Hyper-V firewall)):

        DNS-суффи
```

Рисунок 14 – Подробные сведения о сетевых настройках адаптеров

Команда выводит подробные сведения о сетевых настройках адаптеров.

Помимо сведений, которые были описаны выше при использовании команды ipconfig, можно выделить некоторые:

- Основной DNS домен: домен, к которому принадлежит компьютер.
- Тип узла: способ разрешения имен в сети
- **IP-маршрутизация включена:** если включена, компьютер работает как маршрутизатор
- WINS-прокси включен: WINS устаревшая служба для разрешения NetBIOS-имен.
- Физический адрес: МАС-адрес адаптера
- **DHCP включен:** если IP-адрес задан вручную, а не получен автоматически.

с) Показ всех сохраненных записей DNS

Рисунок 15 – Часть сохраненных записей DNS

Команда отображает содержимое кэша DNS-клиента, показывая все сохраненные записи DNS. Это может быть полезно для диагностики и проверки текущих записей DNS, которые система использует для разрешения доменных имен.

Вывод команды достаточно большой, ведь записей DNS обычно много. В отчет не попал полный вывод ввиду ненадобности: поля вывода почти всегда одинаковы для всех записей.

d) Освобождение текущего IP-адреса от DHCP-сервера для всех адаптеров или указанного адаптера.

```
C:\Users\zenin>ipconfig /release
Hастройка протокола IP для Windows
Невозможно выполнять операции над Подключение по локальной сети* 9, пока отключена сеть.
Невозможно выполнять операции над Сетевое подключение Bluetooth, пока отключена сеть.
Адаптер Ethernet Ethernet 2:
   DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . . : fe80::402b:6c63:9465:f4aa%13
IPv4-адрес. . . . . . . . . . . : 192.168.56.1
Маска подсети . . . . . . . . . . : 255.255.255.0
   Основной шлюз. . . . . . . . . .
Адаптер беспроводной локальной сети Подключение по локальной сети* 9:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Подключение по локальной сети* 10:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Беспроводная сеть:
   DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . . : fe80::d18a:7e63:763f:6f71%11
   Основной шлюз. . . . . . . . .
Адаптер Ethernet outline-tap0:
   Состояние среды. . . . . . . : Среда передачи недоступна. DNS-суффикс подключения . . . . :
Адаптер Ethernet Сетевое подключение Bluetooth:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер Ethernet vEthernet (WSL (Hyper-V firewall)):
   DNS-суффикс подключения . . . . :
Локальный IPv6-адрес канала . . . : fe80::5a77:1d98:2ee0:be86%43
   IPv4-адрес. . . . . . . . . . . . . . . 172.21.16.1
   Маска подсети . . . . . . . . : 255.255.240.0
Основной шлюз. . . . . . . . :
```

Рисунок 16 — Освобождение текущего IP-адреса от DHCP-сервера для всех адаптеров

Команда освобождает текущий IP-адрес, полученный от DHCP-сервера, для всех сетевых адаптеров или указанного адаптера. Это означает, что система отказывается от использования текущего IP-адреса и сообщает об этом DHCP-серверу. Обычно эту команду используют вместе с ipconfig /renew для обновления IP-адреса.

а) Очищение кэша DNS

C:\Users\zenin>ipconfig /flushdns Настройка протокола IP для Windows Кэш сопоставителя DNS успешно очищен.

Рисунок 17 – Очищение кэша DNS

Команда сбрасывает кэш DNS-клиента, удаляя все записи, сохраненные в системе. Если в кэше содержатся устаревшие или некорректные записи, это может привести к проблемам с доступом к сайтам или сетевым ресурсам. В таких случаях очистка кэша помогает решить проблемы с разрешением доменных имен.

Разберемся в назначении параметров и ключей утилиты ipconfig.

а) Управление локальными группами пользователей

Рисунок 18 – Список локальных групп на компьютере

Команда позволяет управлять локальными группами пользователей. Если

ввести ее без дополнительных параметров, то выведется список все групп. Если ввести через пробел имя группы, имя пользователя и /add или /delete, то произойдет соответственно добавление пользователя в группу или удаление.

b) Список доступных компьютеров в сети.

```
C:\Windows\System32>net view localhost
Общие ресурсы на localhost

Имя общего ресурса

Тип

Используется как Комментарий

HP Ink Tank 310 series PCL-3

Users

Диск

Команда выполнена успешно.
```

Рисунок 19 - Список доступных компьютеров

Отображает список доступных компьютеров или ресурсов в сети. Кроме того, с ее помощью можно увидеть список общих папок и принтеров на определенном компьютере сети. Может быть полезна для диагностики сети и ее администрирования.

Введя команду net view localhost, получим общие ресурсы на локальном компьютере localhost.

с) Управление общими ресурсами на локальном компьютере.

Рисунок 20 – Просмотр общих ресурсов

Создание общего ресурса:

C:\Windows\System32>net share localhost=C:\Users\zenin\Downloads\xf localhost успешно назначен общим.

Рисунок 21 – Создание общего ресурса в сети

Делает папку "C:\Users\zenin\Downloads\xf" доступной в сети localhost

Удаление общего ресурса:

C:\Windows\System32>net share localhost /delete localhost успешно удален.

Рисунок 22 – Удаление общего ресурса

d) Информация о выполняющихся службах

```
C:\Windows\System32>net config
Допускается управление следующими выполняющимися службами:
Сервер
Рабочая станция
Команда выполнена успешно.
```

Рисунок 23 – Информация о выполняющихся службах

Вывод команды означает, что на компьютере доступны две основные сетевые службы:

- 1. **Сервер** это служба, которая позволяет компьютеру работать как сервер, предоставляя общие ресурсы другим компьютерам в сети.
- 2. **Рабочая станция** это служба, которая позволяет компьютеру подключаться к другим компьютерам в сети для доступа к их ресурсам
 - е) Статистика сетевых служб

C:\Windows\System32>net statistics WORKSTATION		
Статистика рабочей станции для \\DANILPC		
C 44 02 2025 40.24.22		
Статистика после 11.03.2025 19:31:33		
Получено байт	59248	
Принятые блоки сообщений сервера SMB	1	
Передано байт	53923	
Переданные блоки сообщений сервера SMB	0	
Операции чтения	0	
Операции записи	0	
Отказано в чтении	0	
Отказано в записи	0	
Ошибки сети	0	
Выполненные подключения	0	
Повторные подключения	0	
Отключений от сервера	91	
Запущенные сеансы	0	
Зависание сеансов	0	
Сбои в сеансах	0	
Сбои в операциях	0	
Счетчик использования	182	
Счетчик сбоев при использовании	0	
/		
Команда выполнена успешно.		

Рисунок 24 – Статистика рабочей станции

Эта команда предоставляет подробную информацию о статистике работы сетевых служб. Этот вывод будет содержать статистику о количестве активных сессий, времени работы службы, количестве переданных и принятых байтов и других данных, которые показывают, как работает служба сервера.

6.

С помощью утилиты netsh создадим командный файл для интерпретатора CMD.exe, с помощью которого можно было бы, задав параметры в диалоге с пользователем, настраивать выбранный сетевой интерфейс двумя способами:

- получение всех настроек через DHCP-сервер (автоматически) (IP, mask, gateway, DNS)
- ввод всех настроек вручную (статически).

```
@echo off
chcp 65001 >nul
cls
      Настройка сетевого интерфейса
echo
есһо Доступные сетевые интерфейсы:
netsh interface show interface
echo.
set /p INTERFACE="Введите точное имя интерфейса: "
:: Выбор режима (DHCP или статический)
echo Выберите режим настройки:
echo 1 - Автоматическая настройка (DHCP)
echo 2 - Ввести настройки вручную
set /p choice="Введите номер выбора: "
if "%choice%"=="1" goto dhcp
if "%choice%"=="2" goto static
echo Неверный выбор, попробуйте снова.
goto menu
:dhcp
echo Настройка сетевого интерфейса %INTERFACE% для получения IP через DHCP
netsh interface ip set address name="%INTERFACE%" source=dhcp
netsh interface ip set dns name="%INTERFACE%" source=dhcp
есho Проверка новых настроек:
echo -----
netsh interface ipv4 show config name="%INTERFACE%"
есho Успешно настроено!
pause
goto menu
:static
set /p ip="Введите статический IP-адрес: "
set /р mask="Введите маску подсети:
set /p gateway="Введите шлюз: '
set /p dns="Введите адрес DNS сервера: "
echo Настройка сетевого интерфейса %INTERFACE% на статический IP...
netsh interface ip set address name="%INTERFACE%" static %ip% %mask% %gateway%
netsh interface ip set dns name="%INTERFACE%" static %dns%
netsh interface ipv4 show config name="%INTERFACE%"
есho Успешно настроено!
pause
goto menu
```

Рисунок 25 – Скрипт для настройки сетевого интерфейса

В данном скрипте спрашиваем у пользователя, хочет он задавать IP-адрес вручную или с помощью DHCP-сервера. В первом случае введенные пользователем данные о адресе передаются как параметры в утилиту netsh, а во втором все параметры берутся из dhcp.

Запустим скрипт и выберем настройку через DHCP

```
Введите имя сетевого интерфейса: Беспроводная сеть
Выберите режим:
1 - Автоматическое получение IP (DHCP)
2 - Ручная настройка IP-адреса
Введите 1 или 2: 1
Настройка сетевого интерфейса Беспроводная сеть для получения IP через DHCP
DHCP is already enabled on this interface.
Настройки применены.
Проверка новых настроек:
Configuration for interface "Беспроводная сеть"
   DHCP enabled:
                                        Yes
    IP Address:
                                        192.168.3.10
    Subnet Prefix:
                                        192.168.3.0/24 (mask 255.255.255.0)
   Default Gateway:
                                        192.168.3.1
    Gateway Metric:
    InterfaceMetric:
                                        30
   DNS servers configured through DHCP: 192.168.3.1
    Register with which suffix: Primary only
   WINS servers configured through DHCP: None
Press any key to continue \dots
```

Рисунок 26 — Настройка сетевого интерфейса через DHCP Все успешно выполнилось. Дальше настроим сетевой интерфейс вручную.

```
Настройка сетевого интерфейса
Доступные сетевые интерфейсы:
Admin State State
                               Type
                                                   Interface Name
Enabled Connected Dedicated Ethernet 2
Enabled Disconnected Dedicated outline-tap0
Enabled Connected Dedicated Беспроводная
                                                 Беспроводная сеть
Введите точное имя интерфейса: Беспроводная сеть
Выберите режим настройки:
1 - Автоматическая настройка (DHCP)
 2 - Ввести настройки вручную
Введите номер выбора: 2
Введите статический ІР-адрес: 192.168.50.1
Введите маску подсети (например, 255.255.25.0): 255.255.255.0
Введите шлюз (например, 192.168.1.1): 192.168.5.1
Введите адрес DNS сервера: 8.8.8.8
Настройка сетевого интерфейса Беспроводная сеть на статический ІР...
The configured DNS server is incorrect or does not exist.
Configuration for interface "Беспроводная сеть"
    DHCP enabled:
    Default Gateway:
                                              192.168.5.1
    Gateway Metric:
    InterfaceMetric:
    Statically Configured DNS Servers: 8.8.8.8
Register with which suffix: Primary only
    Statically Configured WINS Servers: None
Успешно настроено!
 Press any key to continue \dots
```

Рисунок 26 — Измененные вручную параметры сетевого интерфейса Как видим, все успешно поменялось.

7.

Выполним задание с помощью PowerShell.

Необходимо, чтобы можно было узнать:

- а. Модель сетевой карты
- b. Наличие физического подключения (линка)
- с. Скорость и режим работы адаптера (speed, duplex)

Напишем скрипт в Windows PowerShell ISE

Рисунок 27 – Настройка сетевого интерфейса с помощью PowerShell

```
□function Display-Menu {
59
60
            Write-Host
Write-Host
                            Настройка сетевого адаптера "
            Write-Host
 61
            63
64
65
66
67
     }
    68
 70
           if ($adapters.Count -eq 0) {
    Write-Host "Нет доступных активных адаптеров."
    return $null
71
72
 73
74
75
76
77
78
79
           Write-Host "Выберите сетевой адаптер:"
$adapters | ForEach-Object { Write-Host "$($_.Name) - $($_.InterfaceDescription)" }
            $selection = Read-Host "Введите номер адаптера (например, 1 для первого)"
 80
            if (\$selection -match '\land\d+\$' -and \$selection -gt 0 -and \$selection -le \$adapters.Count) {
 81
                 return $adapters[$selection - 1].Name
 82
 83
           } else {
    Write-Host "Ошибка: Неверный выбор. Попробуйте снова."
84
 85
                 return Select-NetworkAdapter
           }
 86
      }
 87
 88
    ⊟while ($true) {
    Display-Menu
    $selection = Read-Host "Выберите номер действия"
 89
 91
           switch ($selection) {
  "1" { Configure-DHCP }
  "2" { Configure-StaticIP }
  "3" { Get-NetworkDetails }
  "" { Set-NetworkDetails }
}
 93
 94
 95
 96
                 "3" { Get-NetworkDetails }
"4" { break }
default { Write-Host "Ошибка: Некорректный ввод, попробуйте снова." }
 98
     }
100
```

Рисунок 28 – Настройка сетевого интерфейса с помощью PowerShell

Далее показан вывод программы для изменения IP с помощью DHCP

Рисунок 29 – Включение DHCP с помощью PowerShell

Далее поставим статический IP

```
C:\Windows\system32> powershell -ExecutionPolicy Bypass -File "C:\Users\zenin\Downloads\script (1).ps
   Настройка сетевого адаптера
     Включить DHCP
    Настроить статический IP
Показать информацию об адаптере
 1. Выйти
Выберите номер действия: 2
Выберите сетевой адаптер:
thernet 2 - VirtualBox Host-Only Ethernet Adapter
веспроводная сеть - Intel(R) Wi-Fi 6 AX201 160МНz
Введите номер адаптера (например, 1 для первого): 1
ведите IP-адрес: 192.168.1.10
Введите маску подсети (например, 255.255.255.0): 255.255.255.0
Введите шлюз: 192.168.1.2
Введите шлюз: 192.168.1.2
TPAddress.
                                  : 192,168,1,10
InterfaceIndex
InterfaceAlias
                                   : 13
: Ethernet 2
  ddressFamily
                                   : IPv4
 ype
refixLength
 PrefixLengtn
PrefixOrigin
SuffixOrigin
AddressState
ValidLifetime
PreferredLifetime
                                  : Manual
: Manual
: Tentative
  kipAsSource
                                   : False
: ActiveStore
  olicyStore
                                   : 192.168.1.10
IPAddress
  nterfaceIndex
nterfaceAlias
                                    : 13
: Ethernet 2
  ddressFamily
                                    : IPv4
                                     Unicast
24
 ype
refixLength
                                   : Manual
: Manual
: Invalid
  refixOrigin
uffixOrigin
ddressState
ValidLifetime
  referredLifetime
kipAsSource
                                   : False
: PersistentStore
```

Рисунок 30 — Установка статического IP с помощью PowerShell Далее посмотрим информацию об адаптере

```
G C:\Windows\system32> powershell -ExecutionPolicy Bypass -File "C:\Users\zenin\Downloads\script (1).ps1
 Настройка сетевого адаптера
. Включить DHCP
 Настроить статический IP
 . Показать информацию об адаптере
 Выйти
ыберите номер действия: 3
ыберите сетевой адаптер:
Ethernet 2 - VirtualBox Host-Only Ethernet Adapter
еспроводная сеть - Intel(R) Wi-Fi 6 AX201 160MHz
Введите номер адаптера (например, 1 для первого): 1
    Сведения о сетевом адаптере ==
мя: Ethernet 2
одель: VirtualBox Host-Only Ethernet Adapter
остояние соединения: Up
.
Скорость соединения: 1 Gbps
ежим работы:
 Настройка сетевого адаптера
 Включить DHCP
  Настроить статический IP
 Показать информацию об адаптере
Выберите номер действия:
```

Рисунок 31 – Просмотр информации об адаптере с помощью PowerShell

Ответы на вопросы

1. Как ограничить доступ через конкретный сетевой интерфейс к ресурсам компьютера и запретить компьютеру доступ к ресурсам других устройств в сети Microsoft?

Чтобы ограничить доступ к компьютеру через определённый сетевой интерфейс, нужно настроить правило в брандмауэре Windows. wf.msc → выберите "Правила для входящих подключений" → создайте правило → "Блокировать". Чтобы запретить компьютеру доступ к ресурсам других устройств в сети, нужно создать аналогичное правило в разделе "Правила исходящих подключений", блокируя порты 445 (SMB) и 137-139 (NetBIOS).

2. Назначение команды net с различными директивами (use, view, stop, start, share, config, session, user, statistics, localgroup). Примеры.

Команда net используется для управления сетевыми ресурсами и настройками. Примеры:

о net use — подключение сетевых ресурсов (например, net use R: $\NSRV\TEST$);

- o net view просмотр доступных сетевых ресурсов;
- o net stop и net start остановка и запуск служб;
- net share управление общими ресурсами;
- о net config настройка серверных или рабочих станций;
- o net session управление активными сессиями;
- o net user управление учётными записями пользователей;
- o net statistics просмотр статистики сети;
- o net localgroup управление локальными группами.

Более подробное описание с примерами представлено в п.5

3. Как узнать адрес DNS через командную строку в Windows?

Для этого нужно использовать команду ipconfig /all. В выводе команды есть строка с DNS-серверами, где будет указан текущий адрес DNS.

4. Для чего нужна команда net use? Как подключить сетевую папку на локальный диск?

Команда net use позволяет подключать сетевые ресурсы, такие как общие папки или принтеры, к локальной системе. Например, чтобы подключить папку TEST с компьютера SRV на локальный диск R: нужно использовать команду:

net use R: $\SRV\TEST$

5. Как переименовать сетевое соединение в PowerShell?

Для этого нужно использовать команду:

Rename-NetAdapter -Name "СтароеИмя" -NewName "НовоеИмя"

6. Какие режимы работы сетевого адаптера (duplex) существуют и чем они отличаются?

Сетевые адаптеры поддерживают два режима работы:

 Полудуплексный режим: данные передаются только в одном направлении в определённый момент времени, что ограничивает скорость передачи. о **Полнодуплексный режим**: данные могут передаваться и приниматься одновременно, что увеличивает пропускную способность и производительность сети.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы №1 были получены навыки работы с командной строкой Windows и Powershell