1.(c) Evaluate the following limit:

Lt
$$(2-\frac{x}{a})^{\frac{1}{4}an(\frac{\pi x}{2a})}$$
 tan $(\frac{\pi}{2}a)^{\frac{1}{2}a}$

Sol: Let,

 $L = \frac{1}{2} + \frac{$

1.(d) Evaluate the following integral:

$$\int_{1/2}^{1/3} \frac{3}{\sqrt{3} \sin x} dx \qquad (10)$$
Sol: Let
$$I = \int_{1/2}^{1/3} \frac{(\sin x)^{\frac{1}{3}}}{(\sin x)^{\frac{1}{3}} + (\cos x)^{\frac{1}{3}}} dx \qquad (10)$$

$$= \int_{1/2}^{1/3} \frac{[\sin (\frac{\pi}{6} + \frac{\pi}{3} - x)]^{\frac{1}{3}}}{[\sin (\frac{\pi}{6} + \frac{\pi}{3} - x)]^{\frac{1}{3}}} dx \qquad (10)$$

$$= \int_{1/2}^{1/3} \frac{[\sin (\frac{\pi}{6} + \frac{\pi}{3} - x)]^{\frac{1}{3}}}{[\cos x]^{\frac{1}{3}} + [\cos (\frac{\pi}{6} + \frac{\pi}{3} - x)]^{\frac{1}{3}}} dx \qquad (2)$$

$$= \int_{1/2}^{1/3} \frac{(\cos x)^{\frac{1}{3}}}{(\cos x)^{\frac{1}{3}} + (\sin x)^{\frac{1}{3}}} dx \qquad (2)$$

$$= \int_{1/2}^{1/3} \frac{(\sin x)}{(\sin x)^{\frac{1}{3}} + (\cos x)^{\frac{1}{3}}}{(\sin x)^{\frac{1}{3}} + (\cos x)^{\frac{1}{3}}} dx$$

$$= \int_{1/2}^{1/3} dx = \left[x\right]_{1/2}^{1/3} = \left(\frac{\pi}{3} - \frac{\pi}{6}\right)$$

$$\therefore I = \frac{1}{2} \times \frac{\pi}{6} = \frac{\pi}{12}$$

2.(b) A conical tent is of given capacity. For the least amount of canvas required, for it, find the ratio of its height to the radius of its bate. (13 (13) Sol: Volume is fined here, $\frac{1}{3}\pi r^2 h = V$ Swiface Area (Lateral) S= 1781 = 178 JAZh2 5 is minimized whenever (s2) is minimized (for to non-negative values). Hence, we take $S^{2} = \pi^{2} S^{2} (S^{2} + k^{2})$ $= \prod_{k=1}^{3} \frac{3V}{\pi k} \left[\frac{3V}{\pi k} + k^2 \right] \left[\frac{1}{1} \frac{3V}{\pi k} \right]$ $= 3\pi \sqrt{\left(\frac{3\nu}{\pi}\right) \cdot \frac{1}{h^2} + h}$ Differentiating w.r.t. h $\frac{d(s')}{dh} = 3\pi V \left| \frac{-6V}{\pi} \cdot \frac{1}{13} + 1 \right|$ $\frac{d(s^2)}{dh^2} = 3\pi \sqrt{\frac{18V}{\pi}} \cdot \frac{1}{k^4} > 0$ for critical points, d(s)/dh = 0 $3\pi\sqrt{\frac{-6V}{\pi h^3}} + 1 = 0 \Rightarrow 6V = \pi h^3$ $\frac{1}{\pi} = \sqrt{2} \quad \text{and} \quad \frac{d(s^2)}{dh^2} > 0 \quad \therefore \quad \text{Minima.}$

3.(b) Which point of the sphere x2+y2+z2=1 is at the maximum distance from the point (2,1,3)? Sol: (Calculus Approach): Let (x, y, z) be such point). Then maximize, $u = (x-2)^{\frac{2}{4}} (y-1)^{\frac{2}{4}} (z-3)^{\frac{2}{-}} (1)$ such that, x + y = 2 = 1 -(2) Let, $u = x^{2} + y^{2} + z^{2} - 1$ Consider, $F = u + \lambda u$ $F = (x-2)^{\frac{3}{4}}(y-1)^{\frac{3}{4}}(z-3)^{\frac{3}{4}} + \lambda(x^{\frac{3}{4}}y^{\frac{3}{4}}z^{\frac{3}{2}}1)$ For critical points, df=0. 2[(n-2)+2n]dn+2[(y-1)+2y]dy+2[(2-3)+2]dz=0 $(\lambda+1)x=2$ =) $x=\frac{2}{\lambda+1}$, $y=\frac{1}{\lambda+1}$, $z=\frac{3}{\lambda+1}$ $(\lambda+1)$ y=1from (2), $\frac{4+1+9}{(\lambda+1)^2} = 1 \Rightarrow \lambda+1 = \pm \sqrt{14}$ $(\lambda+1)z=3$ Taking $\lambda+1=\sqrt{14}$, $(x,y,z)=\left(\frac{2}{\sqrt{14}},\frac{1}{\sqrt{14}},\frac{3}{\sqrt{14}}\right)$ $\therefore u = \left(\frac{2}{\sqrt{14}} - 2\right)^{2} + \left(\frac{1}{\sqrt{14}} - 1\right)^{2} + \left(\frac{3}{\sqrt{14}} - 3\right)^{2} = \left(\sqrt{14} - 1\right)^{2}$ Taking, A+1 = -Jiy, (x, y, z) = (-2 , -1 , -3). · u = (== -2)+(==-1)+(==-3)= (54+1)2 hence, the point $\left(\frac{-2}{J_{14}}, \frac{-1}{J_{14}}, \frac{-3}{J_{14}}\right)$ of the sphere is at the maximum distance from point (2,1,3) max distance = Ju = (J14+1) Greometrical Approach! The egn of st line through

Centre (0,0,0) and point (21,3) is 2/2 = 3/3 = 2/3.

This line will cut the sphere in two points (one max one min).

Scanned by CamScanner
Scanned with CamScanner

Sol: We divide the domain R into two parts R, *Ro.

in R1, 4>x2

$$\therefore |y-x^2| = (y-x^2)$$

$$\int \int \overline{y-x^2} \, dx \, dy = \iint \overline{y-x^2} \, dx \, dy + \iint \overline{y-x^2} \, dx \, dy$$

$$R_1 \qquad R_2$$

$$= \int \int \frac{y-x^2}{y-x^2} dxdy + \int \int \frac{x^2-y}{x^2-y} dxdy$$

$$x=-1 = 0$$

$$= \int \frac{2}{3} (y-x^2)^{3/2} \Big|_{y=x^2}^{y=2} dx + \int \frac{2}{3} (x^2y)^{3/2} \Big|_{y=0}^{y=x^2} dx$$

$$=\frac{2}{3}\int (2-x^2)^{3/2}dx+\left(-\frac{2}{3}\right)\int (0-x^3)dx$$

$$= \frac{4}{3} \int (2-\chi^2)^{3/2} dx + \frac{2}{3} \left[\frac{\chi^4}{4} \right]_{-1}^{1} \left(: \int f(x) = 2 \int f(x) dx \right)$$

$$= \frac{4}{3} \int_{0}^{\pi/40} (1 + \cos 2\theta)^{2} d\theta = \frac{4}{3} + \frac{\pi}{2}.$$

V	
	classmate
	Date C
	Fage
111	For the function (x-nJy, (1,4) \neq (90)
991	N
سيست	$f(x,y) = \int x^2 + y$
, .	f(x,y) = (0,0)
	1 O. L.
	Examine the continuity and differentiability.
	Examine the constitute and
	First we check at (0,0) Approaching (0,0) along the curve, $y = mx^2$.
	FITH WE ENCE TO along the curve, y=mx
	Approaching (0,0) and
	$\chi = \chi \int m\chi^2$
	lim (Coun)
	$Lim f(x,y) = Lim x^2 + mx^2$ $(x,y) \rightarrow (90) (x,y) \rightarrow (90)$
	(x,y)->(90) (x,y)->(90) x+11x
	1-Jm
	1+m
	hence
1 4 4	As limit is deflendent on 'm', hence Lim f(x,y) does not exist. (x,y) -> (90)
	Lim f(x,y) does not exist.
-	$(x,y) \rightarrow (0,0)$
	- (C(1)) of the land of (DD)
	=) f(x,y) is not continuous at (90)
	since, Continuity implies differentiability. : f(x,y) is not differentiable at (0,0).
100	t(x,y) is not differentiable at (0,0).
	I se fra a state while it is the set in the

 $f(x,y) = \int \frac{x^2 - x \sqrt{y}}{x^2 + y}; \quad (x,y) \neq (0,0)$ $0; \quad (x,y) = (0,0)$ Page No. _ 22-x Jy is defined for y) 0

By 22-x Jy is defined for 22+y

the Boints where x2+y + 0 i'y 7,0 7 the only.

At when $x^2 + y = 0$ is set (0,0) $\phi(x,y) = x^2 - x \cdot y \quad \text{is cont} \cdot \lambda \, \text{diff}.$ $\psi(x,y) = x^2 + y \quad \text{is cont} \cdot \lambda \, \text{diff}.$ So, Φ(x, y) is cont . & deff.

Ψ(x, y)