Lecture notes Mathematical Programming

Kateřina Vokálová

21. 5. 2024

1 Cut and correlation polytopes

Definition 1.1. A polytope $P \subseteq \mathbb{R}^n$ is the convex hull of a finite set of points in \mathbb{R}^n . It can also be viewed as a bounded set defined by a finite number of linear constraints (halfspaces in \mathbb{R}).

$$P = \operatorname{conv}(\{v_1, v_2, \dots, v_k\})$$

$$P = \{x \in \mathbb{R}^n | Ax \le b \text{ for } A \in \mathbb{R}^{r \times n}, b \in \mathbb{R}^r \}$$

Remark. The number of vertices defining a polytope may be exponential in the number of halfspaces. Consider the hypercube H_d in \mathbb{R}^d which needs d inequalities $0 \le x_i \le 1$, but 2^d vertices $(H_d = \text{conv}(\{0,1\}^d))$.

Definition 1.2. For graph G = (V, E) and cut $E' \subseteq E$ define its *incidence vector* $\chi^{E'}$ of size |E| as

$$\chi_e^{E'} = \begin{cases} 1 & e \in E' \\ 0 & e \notin E' \end{cases}$$

and define the *cut polytope* as

$$CUT(G) := conv\{\chi^{E'} | E' \subseteq E \text{ is an edge cut}\}.$$

If G is the complete graph K_n , we simply denote $CUT(K_n)$ by CUT_n .

Definition 1.3. We define the *correlation polytope* as

$$CORR(n) = conv\{bb^T | b \in \{0, 1\}^n\}$$

The polytope lies in \mathbb{R}^{n^2} . The feasible point of this polytope is a matrix $x \in \mathbb{R}^{n \times n}$.

2 Extension complexity and rectangle covering bound

Definition 2.1. The extension complexity of a polytope P, denoted by xc(P), is the smallest number of facets of polytope $Q \subseteq \mathbb{R}^m$ such that P is a projection of Q.

Alternatively, the extension complexity, xc(P), is the minimum number of inequalities required to describe Q, even when allowed to use auxiliary variables or extended formulations.

Definition 2.2. Let P be a polytope as defined in Definition 1.1. Then $S \in \mathbb{R}^{r \times k}$ defined as $S_{ij} := b_i - A_i v_j$ is the slack matrix of P w.r.t. $Ax \leq b$ and V.

Definition 2.3. We define the support matrix supp(S) for the slack matrix S as

$$supp(S)_{i,j} = \begin{cases} 1 & S_{i,j} \neq 0 \\ 0 & S_{i,j} = 0 \end{cases}$$

Definition 2.4. A rectangle is the cartesian product of a set of row indices and a set of column indices. The rectangle covering bound is the minimum number of rectangles needed to cover all the 1-entries of supp(S).

Definition 2.5. Monochromatic 1-rectangle is a rectangle, which has all elements ones.

Theorem 2.1 (Yannakakis). Let M be any matrix with nonnegative real entries and supp(M) its support matrix. Then $rk_+(M) \ge rectangle$ covering bound for supp(M).

Theorem 2.2 (Yannakakis from the Lecture 11). For polytope P and its slack matrix S it holds

$$xc(P) = rk_+(S).$$

3 $CORR_{n-1} \cong CUT_n$

Lemma 3.1. For all $a \in \{0,1\}^n$, the inequality

$$\langle 2 \operatorname{diag}(a) - aa^T, x \rangle \leq 1$$

is valid for $x \in CORR_n$.

Proof. We can show the inequality is satisfied for vertices $x = bb^T$ and by convexity, it is satisfied for every point of $CORR_n$. The inequality can be rewritten as

$$(1 - a^T b)^2 > 0$$

which trivially holds.

Definition 3.1. The slack matrix of the CORR_n is $2^n \times 2^n$ matrix $M^* = M^*(n)$

$$M_{a,b}^* = (a^T b - 1)^2.$$

Each row a represents a subset of [n] (can be viewed as n-bit strings), the same applies to the column b.

Theorem 3.2. For a slack matrix M^* of a correlation polytope $CORR_n$ it holds that every 1-monochromatic rectangle cover of $supp(M^*)$ has size $2^{\Omega(n)}$.

Corollary 1.

$$\operatorname{rk}_+(M^*) \ge 2^{\Omega(n)}$$

Corollary 2.

$$xc(CORR_n) = 2^{\Omega(n)}$$

We have somewhat an equivalence between polytopes CUT_n and CORR_n formulated in the following theorem:

Theorem 3.3. Let M(n) denote the slack matrix of CUT_n , extended with a suitably chosen set of 2^n redundant inequalities. Then $M^*(n-1)$ occurs as a submatrix of M(n) and hence

$$xc(CUT_n) = 2^{\Omega(n)}$$
.

The theorem can be also formulated as:

Lemma 3.4. For every $n \ge 1$, the polytopes CUT_{n+1} and $CORR_n$ are affine-equivalent.

4 Lower bound on $xc(CORR_n)$

Definition 4.1. Define a rectangle of the slack matrix M^*

$$D(n) = \{(a, b), a \subseteq [n], b \subseteq [n] | a \cap b = \emptyset\}.$$

There are only positions where a and b are different, so $a^Tb = 0$ and $(a^Tb - 1)^2 = (0 - 1)^2 = 1$. It is a monochromatic 1-rectangle.

Proposition 4.1.

$$|D(n)| = 3^n$$

Proof. We have n vertices and the vertex can have 3 states. Either it is in a, or it is in b, or it is neither in a nor b.

Proposition 4.2 (Decomposition of D(n) into rectangles). Let us have the non-negative rank of matrix M^* rk₊ $(M^*) = k$. We can find $T \in \mathbb{R}^{2^n \times k}$ and $U \in \mathbb{R}^{k \times 2^n}$ such that $M^* = TU$. We will furtherly decompose M^* as

$$M^* = T_1 U^1 + T_2 U^2 + \ldots + T_k U^k$$

with $T_i \in \mathbb{R}^{2^n \times 1}$ and $U_i \in \mathbb{R}^{1 \times 2^n}$.

For support matrices, it holds that

$$supp(M^*) = \bigcup_{i=1}^k supp(T_iU^i) = \bigcup_{i=1}^k supp(T_i) \times supp(U^i)$$

Moreover, if the all the matrices T_i , U^i are nonzero, we can define a rectangle $R_i = supp(T_i) \times supp(U^i)$ for each T_iU^i . These rectangles together cover the whole matrix D(n)

$$D(n) \subseteq \bigcup_{i=1}^{k} R_i.$$

Definition 4.2. A set $R \subseteq D(n)$ is valid if $\forall (a,b), (a',b') \in R : |a \cap b'| \neq 1$. For a valid R define two sets R_1, R_2 as following

$$R_1 := \{(a,b) \in R \text{ such that } n \in a, n \notin b\} \cup \{(a,b) \in R \text{ such that } (a \cup \{n\}, b) \notin R, n \notin b\}$$

$$R_2 := \{(a,b) \in R \text{ such that } n \notin a, n \in b\} \cup \{(a,b) \in R \text{ such that } (a,b \cup \{n\}) \notin R, n \notin a\}.$$

Lemma 4.3.

$$(a,b) \in R \Rightarrow (a,b) \in R_1 \cup R_2$$

Proof. Assume $a \cap b = \emptyset$ and we will split the proof into 3 cases: $n \in a, n \notin a, n \in b, n \notin a$ and $n \notin b$.

At first, $n \in a$ implies $n \notin b$, so $(a, b) \in R_1$.

Secondly, $n \notin a, n \in b$ implies $(a, b) \in R_2$.

Thirdly, we will split the case $n \notin a, n \notin b$ into subcases.

- $(a \cup \{n\}, b) \notin R \Rightarrow (a, b) \in R_1$
- $(a, b \cup \{n\}) \notin R \Rightarrow (a, b) \in R_2$
- $(a \cup \{n\}, b) \in R$ and $(a, b \cup \{n\}) \in R \Rightarrow$ we have item at row $a \cup \{n\}$ and column b and another item at row a and column $b \cup \{n\}$, so we must have the item at row $a \cup \{n\}$ and column $b \cup \{n\}$ since it is rectangle. This implies $(a \cup \{n\}, b \cup \{n\}) \in R$ which is contradiction with the assumption that they are disjoint.

Lemma 4.4. Let Q be a polyhedron having f facets such that $CORR_n$ is an affine image of Q. Then there exists a covering of D(n) of size f.

Proof. By Definition 2.1 of the extension complexity and Theorem 2.2,

$$f = \operatorname{xc}(\operatorname{CORR}_n) = \operatorname{rk}_+(M^*).$$

In Proposition 4.2, we have found a rectangle covering of size $rk_+(M^*)$, so it is a rectangle covering of size f.

Theorem 4.5.

$$xc(CORR_n) \ge \left(\frac{3}{2}\right)^n$$

Proof. Let $\rho(n)$ be the largest cardinality of any valid subset of D(n). Any covering of D(n) must have size $\geq \frac{|D(n)|}{\rho(n)} = \frac{3^n}{\rho(n)}$. It remains to prove that $\rho(n) \leq 2^n$, which we will show by proving that $\rho(n) \leq 2\rho(n-1)$ holds for all $n \geq 1$. We will prove this by induction on n.

Let R be a valid subset with sets R_1, R_2 . Define the function $f: R \to D(n-1)$ as

$$f((a,b)) := (a \setminus \{n\}, b \setminus \{n\})$$

$$f(R_1) = \{(a \setminus \{n\}, b \setminus \{n\}) | (a,b) \in R_1\}$$

$$f(R_2) = \{(a \setminus \{n\}, b \setminus \{n\}) | (a,b) \in R_2\}$$

The two parts of each R_i are disjoint when n is subtracted, so it holds that $|R_i| = |f(R_i)|$. Then by Lemma 4.3 and using induction hypothesis, we have

$$|R| \le |R_1| + |R_2| = |f(R_1)| + |f(R_2)| \le \rho(n-1) + \rho(n-1) = 2\rho(n-1)$$

Corollary 3.

$$\operatorname{xc}(\operatorname{CUT}_n) \ge \left(\frac{3}{2}\right)^n$$

5 Under construction

Let P be polytope (by default let it be 0/1-polytope so all vertices lie on $\{0,1\}^d$), S is slack matrix of P.

Definition 5.1. Let C be a cut. Define 1, -1 encoding C' for each edge e:

$$C'_e := \begin{cases} -1 & e \in C \\ +1 & e \notin C \end{cases}$$

Proposition 5.1. The 1, -1 encoding can be obtained from 0, 1 encoding by linear transformations

Proof.
$$0, 1 \leadsto -\frac{1}{2}, \frac{1}{2} \leadsto -1, 1 \leadsto 1, -1$$

Definition 5.2. Denote by $U \subseteq V$ one part of vertices of the graph using the cut C. Then define χ_U as following

$$(\chi_U)_v = \begin{cases} +1 & v \in U \\ -1 & v \notin U \end{cases}$$

Then we have $C' = \chi_U \chi_U^T$

Have the graph K_n with vertices numbered from 1 to n (so the numbers are from set [n]) and $x_{ij} := x_i x_j$ corresponding to the edge between vertices i and j.

$$(w^T x - 1)^2 = \left(\sum_{i \in [n]} w_i x_i - 1\right)^2 \ge 0$$

Have the quadratic polynomial with variable vector x

$$(w^T x - 1)^2 = \left(\sum_{i \in [n]} w_i x_i - 1\right)^2 = \left(\sum_i w_i x_i\right)^2 - 2\sum_{i \in [n]} w_i x_i + 1 = \sum_{i,j} w_i w_j x_i x_j - 2\sum_i w_i x_i + 1 = \sum_{i,j} w_i w_j x_{ij} - 2\sum_i w_i x_i + 1$$