

Environmental Performance Index 2022

Technical Appendix

epi.yale.edu

Suggested Citation:

Wolf, M. J., Emerson, J. W., Esty, D. C., de Sherbinin, A., Wendling, Z. A., et al. (2022). 2022 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy. epi.yale.edu

Last updated 2022-07-29

2022 Environmental Performance Index

Technical Appendix

This technical appendix is a companion document to the 2022 Environmental Performance Index (EPI) report. It contains additional details about the methods used in the 2022 EPI. Along with the files available online, the purpose of this technical appendix is to provide all information necessary for fully replicating the analysis or re-running the analysis using different choices and assumptions.

Note: Throughout this appendix, **TLA** is used to refer to the **t**hree letter **a**bbreviations of the input data sources and resulting indicators, issue categories, and policy objectives.

Table of Contents

1. Indicator and Data Overview	3
2. Data Sources	4
3. Indicator Construction	36
4. Country Coverage	89
5. Temporal Coverage	93
6. Transformations & Targets	96
7. Materiality	98
8. Global Scorecard	99
9. Data File Guide	104

1. Indicator and Data Overview

Table TA-1. Organization of the 2020 EPI, with three-letter abbreviations (TLAs) and weights (Wt.) within each level of aggregation.

Policy Objective	Issue Category	TLA	Wt.	Indicator	TLA	Wt.
·				Projected GHG Emissions in 2050	GHN	36.3%
		ССН		CO ₂ Growth Rate	CDA	36.3%
				CH ₄ Growth Rate	CHA	8.7%
Climate Change PCC (38%)	Climate Change Mitigation		100%	CO ₂ from Land Cover	LCB	3.9%
				GHG Intensity Trend	GIB	3.9%
				F-Gas Growth Rate Black Carbon Growth Rate	FGA BCA	3.7% 2.6%
				GHG Emissions per Capita	GHP	2.6%
				N ₂ O Growth Rate	NDA	1.8%
				PM _{2.5} Exposure	PMD	47%
				Household Solid Fuels	HAD	38%
				Ozone Exposure	OZD	5%
	Air Quality	AIR	55%	NOx Exposure	NOE	5%
Envisonmental				SO2 Exposure	SOE	2%
Environmental Health				CO Exposure	COE	2%
HLT				VOC Exposure	VOE	2%
(20%)	Sanitation &	H2O	25%	Unsafe Drinking Water	UWD	60%
	Drinking Water			Unsafe Sanitation	USD	40%
	Heavy Metals	HMT	10%	Lead Exposure	PBD	100%
	Waste	WM	100/	Controlled Solid Waste	MSW REC	50% 25%
	Management	nagement G	10%	Recycling Rates Ocean Plastic Pollution	OCP	25% 25%
				Terrestrial Biome Protection (national)	TBN	22.2%
	Biodiversity & BDH Habitat		Terrestrial Biome Protection (global)	TBG	22.2%	
				Marine Protected Areas	MPA	22.2%
		RDH	43%	Protected Areas Rep. Index	PAR	14%
		ווטט	4570	Species Habitat Index	SHI	8.3%
				Species Protection Index	SPI	8.3%
			Biodiversity Habitat Index	BHV	3%	
F				Tree Cover Loss	TCL	75%
Ecosystem Vitality ECO (42%)	Ecosystem ECS Services	FCC	19%	Grassland Loss	GRL	
		ECS	19%	Wetland Loss		12.5%
					WTL	12.5%
	Fisheries FSI	FCLI	44.00/	Fish Stock Status	FSS	36%
		F2H	11.9%	Marine Trophic Index	RMS	36%
				Fish Caught by Trawling	FTD	28%
	Acid Rain	ACD	9.5%	SO ₂ Growth Rate	SDA	50%
	7.00			NO _x Growth Rate	NXA	50%
	Agriculture	AGR	9.5%	Sustainable Nitrogen Mgmt. Index	SNM	50%
				Sustainable Pesticide Use Wastewater Treatment	SPU	50%
	Water Resources	WRS	7.1%	vvastewater Treatment	WWT	100%

2. Data Sources

The 2022 EPI draws on data from a wide variety of sources. This section of the Technical Appendix describes the sources of data used in the EPI, using the following template.

TLA	Three letter abbreviation for the variable.
Source	The organization that produces the dataset.
URL	Where the dataset may be found on the Internet. If the dataset is not publicly available online, the URL points to the source institution.
Date received	The date on which the dataset used in the 2022 EPI came into the possession of the EPI team.
Instructions	Any special instructions for navigating the data source website or other means of retrieving the dataset.
Citation	Formal citation for the dataset, source organization, or other relevant published materials that are helpful in understanding the dataset.
Documentation	Additional documents that describe the dataset.
Note	Additional details for understanding how to retrieve or use the dataset.

Due to the variety of data sources, not every field is applicable to every dataset. Each entry below provides the fullest account possible.

AMP Total area of all Marine Protected Areas in a country Source World Database on Protected Areas, Flanders Marine Institute Maritime Boundaries Geodatabase, World EEZ, version 9 URL http://www.protectedplanet.net Date received 2022-02-01 **APR** Pesticide application rate **Source** Maggi et al. URL https://doi.org/10.1038/s41597-019-0169-4 **Date received** 2021-01-14 Reference Maggi, F., Tang, F.H., la Cecilia, D. and McBratney, A., (2019). PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific data, 6(1), 1-20. **Note** Application rate data are globally gridded. Post-processing determines country values. BHV Biodiversity Habitat Index - Vascular Plants **Source** Commonwealth Scientific and Industrial Research Organization URL https://data.csiro.au/

Date received 2022-03-08

Note Received via personal communication

BLC Black Carbon Emissions [Gg]

Source Community Emissions Data Systems

URL https://zenodo.org/record/4741285#.YrMk-5DMKdY

Date received 2022-01-13

Instructions Under the Files pane, click to download CEDS v2021-04-21 emissions.zip

(53.7 MB).

Citation O'Rourke, Patrick R, Smith, Steven J, Mott, Andrea, Ahsan, Hamza,

McDuffie, Erin E, Crippa, Monica, Klimont, Zbigniew, McDonald, Brian, Wang, Shuxiao, Nicholson, Matthew B, Feng, Leyang, & Hoesly, Rachel M. (2021). CEDS v_2021_04_21 Release Emission Data (v_2021_02_05)

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.4741285

Note ZIP file contains: BC_CEDS_emissions_by_country_2021_04_21.csv,

README.txt, Supplemental Data and Assumptions.pdf, Supplemental

Figures and Tables.pdf

CDL CO₂ emissions from land cover change

Source Mullion Group

URL https://flintpro.com

Date received 2022-03-16

Note Received via personal communication

CDO CO₂ emissions [Gg], excluding land use and forestry

Source Potsdam Institute for Climate Impact Research

URL https://zenodo.org/record/5494497#.YrNVZ5DMKdY

Date received 2022-01-24

Instructions Under Files, click to download <u>Guetschow-et-al-2021-PRIMAP-</u>

hist v2.3.1 20-Sep 2021.csv (44.6 MB)

• Scenario: HISTTP

• Category: IPCM0EL

• Entity: CO2

Citation Gütschow, Johannes, Günther, Annika, & Pflüger, Mika. (2021). The

PRIMAP-hist national historical emissions time series (1750-2019) v2.3.1 (2.3.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5494497

CH4 Methane emissions [Gg]

Source Potsdam Institute for Climate Impact Research

URL https://zenodo.org/record/5494497#.YrNVZ5DMKdY

Date received 2022-01-24

Instructions Under Files, click to download <u>Guetschow-et-al-2021-PRIMAP-</u>

hist v2.3.1 20-Sep 2021.csv (44.6 MB)

• Scenario: HISTTP

Category: IPCM0EL

Entity: CH4

Citation Gütschow, Johannes, Günther, Annika, & Pflüger, Mika. (2021). The

PRIMAP-hist national historical emissions time series (1750-2019) $\vee 2.3.1$

(2.3.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5494497

COE CO exposure

Source Copernicus Atmosphere Monitoring Service

URL https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-

reanalysis-eac4-monthly

Date received 2021-09-14

Instructions Variable: Multi Level; Carbon monoxide

Model level: 60 Year: Select all Month: Select all

Product type: Monthly mean

Time: Select all Area: Full model area

References Wolf, M.J., Esty, D.C., Kim, H., Bell, M.L., Brigham, S., Nortonsmith, Q.,

Zaharieva, S., Wendling, Z.A., de Sherbinin, A. and Emerson, J.W., (2022). New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants. *Environmental science & technology*, *56*(7), 3984-3996,

https://doi.org/10.1021/acs.est.1c08080...

Note Ground-level concentration data are weighted by population density to

derive country-average exposure values. See Wolf et al. 2022 for details.

CTH Fish catch [tonnes]

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2021-09-07

Note Received via personal communication.

CXN Proportion of population connected to wastewater system Source UNSD URL https://unstats.un.org/unsd/envstats/qindicators.cshtml Date received 2022-02-24 **Instructions** Click on "Inland Water Resources" Population connected to wastewater treatment o Number of persons of the resident population whose wastewater is treated at wastewater treatment plants. https://unstats.un.org/unsd/envstats/fdes/manual bses.cshtml Documentation https://unstats.un.org/unsd/environment/FDES/MS%205.1%20 Human%20settlements.pdf Note EPI CXN is a combination of several distinct data sources. Each source is documented in the file WWT_sources_reduced.csv. **CXN** Proportion of population connected to wastewater system Source OECD URL https://data.oecd.org/water/waste-water-treatment.htm Date received 2022-02-24 **Instructions** Go to: https://data.oecd.org/water/waste-water-treatment.htm Click "Download" Click "Full indicator data" File name: DP_LIVE_22062022204044791 https://stats.oecd.org/Index.aspx?DataSetCode=WATER TREAT Click "Export" → "Text File (CSV)" Documentation https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx? Dataset=WATER_TREAT&Lang=en

Note EPI CXN is a combination of several distinct data sources. Each source

is documented in the file WWT_sources_reduced.csv.

CXN Proportion of population connected to wastewater system

Source Eurostat

URL https://ec.europa.eu/eurostat/web/products-datasets/-/med_en47

Date received 2022-02-24

Instructions For "Population connected to Wastewater Treatment"

https://ec.europa.eu/eurostat/web/products-datasets/-/med_en47

Click on "View Table"/"Download" in the upper right

In the CSV section, select "Multiple files"

Unclick "Flags and footnotes"

Click "Download in CSV Format"

Documentation https://ec.europa.eu/eurostat/cache/metadata/en/env nwat esms.htm

https://circabc.europa.eu/sd/a/32b27ab0-611c-42e4-add5-

2942f2237394/Guidelines%20-%20Definitions Notes Schemes.pdf

CXN Proportion of population connected to wastewater system

Source Malik et al. 2015

URL https://www.sciencedirect.com/science/article/abs/pii/S146290111500007

6?via%3Dihub

Instructions See data in <u>Appendix A. Supplementary data</u>

Citation Malik, O. A., Hsu, A., Johnson, L. A., & de Sherbinin, A. (2015). A global indicator

of wastewater treatment to inform the Sustainable Development Goals

(SDGs). Environmental Science & Policy, 48, 172–185.

https://doi.org/10.1016/j.envsci.2015.01.005

Note The supplementary information for this paper contains details of historic

sources of information on this variable. For certain countries, no new

updates were available from UNSD/UNEP, OECD, or Eurostat. In these cases,

data were taken from the previous EPI research, if available.

EPI CXN is a combination of several distinct data sources.

EEZ Total area of all Economic Exclusion Zones in a country

Source World Database on Protected Areas

URL http://www.marineregions.org/

Date received 2022-02-01

EXG Exports of goods and services (% of GDP)

Source WorldBank

URL https://data.worldbank.org/indicator/NE.EXP.GNFS.ZS

Date received 2022-02-25

Instructions Under Download on right side of web page, click "csv"

Documentation ID: NE.EXP.GNFS.ZS

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

FTD Fish catch by trawling and dredging [tonnes], by EEZ and gear type

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2021-09-07

Note Received via personal communication.

FOG F-gasses emissions [Gg CO₂-eq.]

Source Potsdam Institute for Climate Impact Research

URL https://zenodo.org/record/5494497#.YrNVZ5DMKdY

Date received 2022-01-24

Instructions Under Files, click to download <u>Guetschow-et-al-2021-PRIMAP-</u>

hist v2.3.1 20-Sep 2021.csv (44.6 MB)

Scenario: HISTTPCategory: IPCM0EL

Entity: FGASESAR4

Citation Gütschow, Johannes, Günther, Annika, & Pflüger, Mika. (2021). The

PRIMAP-hist national historical emissions time series (1750-2019) v2.3.1 (2.3.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5494497

FSS Fish stock status [%]

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2021-09-07

Instructions Data set: "css"

Sum "Collapsed" and "Over-exploited"

Note Received via personal communication.

GDP GDP [PPP, constant 2017 international \$] **Source** World Bank URL https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.KD Date received 2022-02-31 **Instructions** Under Download on right side of web page, click "csv" **Documentation** ID: NY.GDP.MKTP.PP.KD Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by GDP GDP [PPP, constant international \$]] Source IMF URL https://www.imf.org/en/Publications/WEO/weo-database/2021/April Date received 2022-01-18 **Instructions** -Click on "By Countries (country-level data) -Click on "All Countries" -Click on "Clear all", and check boxes next to: Djibouti, Eritrea, Libya, Qatar, Sao Tome and Principe, Somalia, South Sudan, Syria, Taiwan, and Venezuela -Select "Gross domestic product, current prices: Purchasing power parity; international dollars" -Select: Start year = 1994, End year = 2018 -Click next to "ISO Alpha-3 Code" -Unclick "Subject descriptor" -Click "Prepare Report" -Click on the icon at the bottom of the page to download the report **Note** This produces a report to help fill data gaps in the World Bank data. **GL5** Gross loss in Grassland area over five-year interval **Source** Copernicus URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover Date received 2021-07-02 **Instructions** • Navigate to the "Download data" tab Select all years Select both versions (v2.0.7cds for 1992–2015; v2.1.1 for 2016–2020) **Documentation** https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land- cover?tab=doc **Note** Copernicus data are globally gridded. Post-processing determines country values.

GOE Government Effectiveness

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2022-02-25

Instructions Country: various

Series: Government Effectiveness Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

GRA Grassland area [km2]

Source Copernicus

URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover

Date received 2021-07-02

Instructions • Navigate to the "Download data" tab

Select all years

Select both versions (v2.0.7cds for 1992–2015; v2.1.1 for 2016–2020)

Documentation https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-

cover?tab=doc

HAD Household Air Pollution [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Household air pollution from solid fuels

Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

IEF Index of Economic Freedom

Source Heritage Foundation

URL https://www.heritage.org/index/explore

Date received 2022-02-24

Instructions Click on "All Index Data"

Choose individual countries and/or region: Highlight all countries

(Ctrl + A)

Select Year(s): Select all years

Click "View the Data"

Click "Export this dataset to Excel"

Citation Miller, T., Kim, A. B., & Roberts, J. M., Tyrrell, P., Roberts, K. D. (2022).

2022 Index of Economic Freedom. The Heritage Foundation.

https://www.heritage.org/index/

Documentation https://www.heritage.org/index/pdf/2022/book/02_2022_IndexOf

EconomicFreedom_METHODOLOGY.pdf

LDA Land area (sq. km) **Source** World Database on Protected Areas **Date received** 2022-03-02 **MAG** Exports of goods and services (% of GDP) Source WorldBank **URL** https://data.worldbank.org/indicator/NV.IND.MANF.ZS Date received 2022-02-25 **Instructions** Under Download on right side of web page, click "csv" **Documentation** ID: NV.IND.MANF.ZS Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by MSW Sustainably controlled solid waste **Source** Wiedinmyer et al. URL https://pubs.acs.org/doi/10.1021/es502250z **Date received** 2021-07-13 Citation Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Technology, 48(16), 9523-9530. https://doi.org/10.1021/es502250z Note Report used for its estimates on waste collection MSW Sustainably controlled solid waste **Source** What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 URL http://datatopics.worldbank.org/what-a- waste/trends in solid waste management.html **Date received** 2021-07-21 Citation Kaza, S., Yao, L., Bhada-Tata, P., & Von Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (Urban Development Series). World Bank. http://datatopics.worldbank.org/what-awaste/trends in solid waste management.html Note Data for this report are drawn from United Nations Statistics Division survey data, OECD data, and regional and national reports.

MSW Sustainably controlled solid waste **Source** Lebreton and Andrady **URL** https://doi.org/10.1057/s41599-018-0212-7 **Date received** 2021-02-23 Citation Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5, 6. https://doi.org/10.1057/s41599-018-0212-7 Note Report used for its estimates on mismanaged waste. MSW Sustainably controlled solid waste Source Jambeck et al. **URL** https://doi.org/10.1126/science.1260352 Date received 2021-01-10 Citation Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R. and Law, K.L., (2015). Plastic waste inputs from land into the ocean. Science, 347 (6223), 768-771. Report used for its estimates on mismanaged waste. Note MSW Sustainably controlled solid waste Source Law et al. URL https://doi.org/10.1126/sciadv.abd0288 Date received 2021-02-10 Citation Law, K.L., Starr, N., Siegler, T.R., Jambeck, J.R., Mallos, N.J. and Leonard, G.H., (2020). The United States' contribution of plastic waste to land and ocean. Science advances, 6(44).

Report used for its estimates on mismanaged waste.

Note

NOE NO_x exposure

Source Copernicus Atmosphere Monitoring Service

URL https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-

reanalysis-eac4-monthly

Date received 2021-09-14

Instructions Variable: Multi Level; Nitrogen monoxide and Nitrogen dioxide

Model level: 60 Year: Select all Month: Select all

Product type: Monthly mean

Time: Select all Area: Full model area

References Wolf, M.J., Esty, D.C., Kim, H., Bell, M.L., Brigham, S., Nortonsmith, Q.,

Zaharieva, S., Wendling, Z.A., de Sherbinin, A. and Emerson, J.W., (2022). New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants. *Environmental science & technology*, *5*6(7), 3984-3996,

https://doi.org/10.1021/acs.est.1c08080...

Note Ground-level concentration data are weighted by population density to

derive country-average exposure values. See Wolf et al. 2022 for details.

NOT N₂O emissions [Gg]

Source Potsdam Institute for Climate Impact Research

URL https://zenodo.org/record/5494497#.YrNVZ5DMKdY

Date received 2022-01-24

Instructions Under Files, click to download <u>Guetschow-et-al-2021-PRIMAP-</u>

hist v2.3.1 20-Sep 2021.csv (44.6 MB)

• Scenario: HISTTP

Category: IPCM0EL

Entity: N2O

Citation Gütschow, Johannes, Günther, Annika, & Pflüger, Mika. (2021). The

PRIMAP-hist national historical emissions time series (1750-2019) v2.3.1 (2.3.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5494497

NOx NOx emissions [Gg]

Source Community Emissions Data Systems

URL https://zenodo.org/record/4741285#.YrMk-5DMKdY

Date received 2022-01-13

Instructions Under the Files pane, click to download CEDS v2021-04-21 emissions.zip

(53.7 MB).

Citation O'Rourke, Patrick R, Smith, Steven J, Mott, Andrea, Ahsan, Hamza,

McDuffie, Erin E, Crippa, Monica, Klimont, Zbigniew, McDonald, Brian, Wang, Shuxiao, Nicholson, Matthew B, Feng, Leyang, & Hoesly, Rachel M. (2021). CEDS v_2021_04_21 Release Emission Data (v_2021_02_05)

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.4741285

Note ZIP file contains: NOx_CEDS_emissions_by_country_2021_04_21.csv,

README.txt, Supplemental Data and Assumptions.pdf, Supplemental

Figures and Tables.pdf

OCP Marine plastic pollution emissions

Source Chen et al.

URL https://doi.org/10.1088/1748-9326/ab8659

Date received 2020-11-13

Citation Chen, D.M.C., Bodirsky, B.L., Krueger, T., Mishra, A. and Popp, A., (2020).

The world's growing municipal solid waste: trends and impacts.

Environmental Research Letters, 15(7).

Note Article used for its estimates on plastic pollution.

OCP Marine plastic pollution emissions

Source Borelle et al.

URL https://doi.org/10.1126/science.aba3656

Date received 2020-10-19

Citation Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern,

A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A. and Eriksen, M., (2020). Predicted growth in plastic waste exceeds efforts to

mitigate plastic pollution. Science, 369(6510), 1515-1518.

Note Article used for its estimates on plastic pollution.

OCP Marine plastic pollution emissions

Source Meijer et al.

URL https://doi.org/10.1126/sciadv.aaz5803

Date received 2021-05-19

Citation Meijer, L.J., van Emmerik, T., van der Ent, R., Schmidt, C. and Lebreton, L.,

2021. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 7(18).

Note Article used for its estimates on plastic pollution.

OZD Ozone [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Ambient ozone pollution

Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: Both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359

diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Users must register for a free account to download data.

PAR Protected Areas Representativeness Index

Source Commonwealth Scientific and Industrial Research Organization

URL https://data.csiro.au/

Date received 2022-03-02

Citations Ferrier, S., Manion, G., Elith, J. and Richardson, K. (2007) Using generalised

dissimilarity modelling to analyse and predict patterns of betadiversity

in regional biodiversity assessment. Diversity and

Distributions 13: 252-264.

Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C., and van Rompaey, R.S.A.R (2004) Mapping more of terrestrial biodiversity for global conservation assessment. BioScience 54: 1101-1109.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2. Group

on Earth Observations Biodiversity Observation Network Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Version1. 2 low.pdf

Williams, K.J., Harwood, T.D., Ferrier, S. (2016) Assessing the ecological representativeness of Australia's terrestrial National Reserve System: A community-level modelling approach. Publication Number EP163634. CSIRO Land and Water, Canberra, Australia.

https://publications.csiro.au/rpr/pub?pid=csiro:EP163634

Note Prepared by CSIRO, received via personal communication

PBD Lead Exposure [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/qbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Lead exposure Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: Both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859-1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Users must register for a free account to download data.

PMD Ambient PM2.5 [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Particulate matter pollution

Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: Both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Users must register for a free account to download data.

PST Pesticide risk score

Source Tang et al.

URL https://doi.org/10.1038/S41561-021-00712-5

Date received 2021-07-25

Reference Tang, F.H., Lenzen, M., McBratney, A. and Maggi, F., (2021). Risk of

pesticide pollution at the global scale. Nature Geoscience, 14(4), 206-210.

Note

POP Population Source WorldBank URL https://data.worldbank.org/indicator/SP.POP.TOTL Date received 2022-01-28 **Instructions** Under Download on right side of web page, click "csv" **Documentation** SP.POP.TOTL Note Eritrea and Taiwan: IMF replaces incomplete World Bank data for entire time series POP Population Source IMF URL https://www.imf.org/en/Publications/WEO/weo-database/2021/April Date received 2022-01-18 **Instructions** -Click on "By Countries (country-level data) -Click on "All Countries" -Click on "Clear all", and check boxes next to Eritrea and Taiwan -Click "Continue" at bottom of page -Select "Population" -Click "Continue" at bottom of page -Select: Start year = 1994, End year = 2018 -Unclick all Notes -Click next to "ISO Alpha-3 Code" -Unclick "Subject descriptor" -Click "Prepare Report" Note This produces a report to help fill data gaps in the World Bank data. **REC** Recycling rate **Source** Chen et al. **URL** https://doi.org/10.1088/1748-9326/ab8659 Date received 2020-11-13 Citation Chen, D.M.C., Bodirsky, B.L., Krueger, T., Mishra, A. and Popp, A., (2020). The world's growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7).

Article used for its estimates on rates of recycling by mass.

RMS Slope of RMTI from peak year to 2018

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2022-01-20

Note Received via personal communication

ROL Rule of Law

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2022-02-25

Instructions Country: *various*

Series: Rule of Law Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

RQU Regulatory Quality

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2022-02-25

Instructions Country: various

Series: Regulatory Quality Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

SEG Services, value added (pct of GDP)

Source WorldBank

URL https://data.worldbank.org/indicator/NV.SRV.TOTL.ZS

Date received 2022-02-25

Instructions Under Download on right side of web page, click "csv"

Documentation ID: NV.SRV.TOTL.ZS

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

SHI Species Habitat Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2022-01-07

Citations Jetz, W., D. S. Wilcove, and A. P. Dobson. 2007. Projected Impacts of

Climate and Land-Use Change on the Global Diversity of Birds. PLoS

Biology 5:1211-1219.

Rondinini, C., et al. 2011. Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B: Biological

Sciences 366:2633-2641.

Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating biodiversity distribution knowledge: toward a global map of life.

Trends in Ecology and Evolution 27:151-159.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2. Group on Earth Observations Biodiversity Observation Network

Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Ve

rsion1.2_low.pdf

Note Prepared by Map of Life, received via personal communication

SNM Sustainable Nitrogen Management Index

Source University of Maryland Center for Environmental Science

URL http://research.al.umces.edu/xzhang/

Date received 2021-03-29

Citation Zhang, X., & Davidson, E. (2019). Sustainable Nitrogen Management Index

[Preprint]. Soil Science. https://doi.org/10.1002/essoar.10501111.1

Note Prepared by Xin Zhang et al.., received via personal communication

SO2 SO2 emissions [Gg]

Source Community Emissions Data Systems

URL https://zenodo.org/record/4741285#.YrMk-5DMKdY

Date received 2022-01-13

Instructions Under the Files pane, click to download CEDS v2021-04-21 emissions.zip

(53.7 MB).

Citation O'Rourke, Patrick R, Smith, Steven J, Mott, Andrea, Ahsan, Hamza,

McDuffie, Erin E, Crippa, Monica, Klimont, Zbigniew, McDonald, Brian, Wang, Shuxiao, Nicholson, Matthew B, Feng, Leyang, & Hoesly, Rachel M. (2021). CEDS v_2021_04_21 Release Emission Data (v_2021_02_05)

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.4741285

Note ZIP file contains: SO2_CEDS_emissions_by_country_2021_04_21.csv,

README.txt, Supplemental Data and Assumptions.pdf, Supplemental

Figures and Tables.pdf

SOE SO₂ exposure

Source Copernicus Atmosphere Monitoring Service

URL https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-

reanalysis-eac4-monthly

Date received 2021-09-14

Instructions Variable: Multi Level; Sulfur dioxide

Model level: 60 Year: Select all Month: Select all

Product type: Monthly mean

Time: Select all Area: Full model area

References Wolf, M.J., Esty, D.C., Kim, H., Bell, M.L., Brigham, S., Nortonsmith, Q.,

Zaharieva, S., Wendling, Z.A., de Sherbinin, A. and Emerson, J.W., (2022). New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants. *Environmental science & technology*, 56(7), 3984-3996,

https://doi.org/10.1021/acs.est.1c08080...

Note Ground-level concentration data are weighted by population density to

derive country-average exposure values. See Wolf et al. 2022 for details.

SPI Species Protection Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2022-01-07

Citation Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating

biodiversity distribution knowledge: toward a global map of life.

Trends in Ecology and Evolution 27:151-159.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2.

Group

on Earth Observations Biodiversity Observation Network Secretariat.

Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Version1.

2_low.pdf

Note Prepared by Map of Life, received via personal communication

TCA Tree cover area (30% canopy cover)

Source Global Forest Watch

URL https://www.globalforestwatch.org/

Date received 2021-04-19

Citations Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A.

Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A.

Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover

Change." Science 342 (15 November): 850–53. Data available on-line from: http://earthenginepartners.appspot.com/science-2013-global-forest.

Zarin, D., Harris, N.L. et al. 2016. Can carbon emissions drop by 50% in five years? Global Change Biology, 22: 1336-1347. doi:10.1111/gcb.13153

Global Administrative Areas Database, version 3.6. Available at

http://gadm.org/

Note Prepared by GFW, received via personal communication

TCL Tree cover loss, annual (30% canopy cover)

Source Global Forest Watch

URL https://www.globalforestwatch.org/

Date received 2021-04-19

Citations Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. Data available on-line from: http://earthenginepartners.appspot.com/science-2013-global-forest.

> Zarin, D., Harris, N.L. et al. 2016. Can carbon emissions drop by 50% in five years? Global Change Biology, 22: 1336-1347. doi:10.1111/gcb.13153 Global Administrative Areas Database, version 3.6. Available at http://gadm.org/

Note Prepared by GFW, received via personal communication

TEW Areas of biomes

Source World Wildlife Fund

URL https://www.worldwildlife.org/publications/terrestrial-ecoregionsofthe-

<u>world</u>

Date received 2022-02-01

Citation Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G.

V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C.,

Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F.,

Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51(11), 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

TPA Terrestrial protected areas

Source World Database on Protected Areas

Date received 2022-02-01

> Citation IUCN and GeUNEP-WCMC (2017), The World Database on Protected

(WDPA) [On-line], March Release, Cambridge, UK: UNEP-WCMC.

USD Unsafe Sanitation [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Unsafe sanitation Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: Both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359

diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Users must register for a free account to download data.

UWD Unsafe Water [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/qbd-results-tool

Date received 2021-02-01

Instructions Select the following parameters:

GDB Estimate: Risk factor

Measure: DALYs Metric: Rate

Risk: Unsafe water source Cause: Total all causes

Location: Select all countries and territories

Age: Age-standardized

Sex: Both Year: Select all

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Users must register for a free account to download data.

VOE Volatile organic compound exposure

Source Copernicus Atmosphere Monitoring Service

URL https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-

reanalysis-eac4-monthly

Date received 2021-09-14

Instructions Variable: Multi Level; Ethane, Propane, Formaldehyde, and Isoprene

Model level: 60 Year: Select all Month: Select all

Product type: Monthly mean

Time: Select all Area: Full model area

References Wolf, M.J., Esty, D.C., Kim, H., Bell, M.L., Brigham, S., Nortonsmith, Q.,

Zaharieva, S., Wendling, Z.A., de Sherbinin, A. and Emerson, J.W., (2022). New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants. *Environmental science & technology*, *5*6(7), 3984-3996,

https://doi.org/10.1021/acs.est.1c08080...

Note Ground-level concentration data are weighted by population density to

derive country-average exposure values. See Wolf et al. 2022 for details.

WL5 Gross loss in Wetland area over five-year interval (km²)

Source Copernicus

URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover

Date received 2021-07-02

Instructions • Navigate to the "Download data" tab

Select all years

Select both versions (v2.0.7cds for 1992–2015; v2.1.1 for 2016–2020)

Documentation https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-

cover?tab=doc

WST Proportion of wastewater collected that is treated Source UNSD URL https://unstats.un.org/unsd/envstats/gindicators.cshtml **Date received** 2021-06-02 **Instructions** Go to: https://unstats.un.org/unsd/envstats/qindicators.cshtml - Click on "Inland Water Resources" - Click on the following links to download their corresponding files: + Wastewater generated - receives: Wastewater generated.xlsx + Wastewater treated in independent treatment facilities - receives: Wastewater treated in independent treatment facilities.xlsx + Wastewater treated in other wastewater treatment plants - receives: Wastewater treated in other wastewater treatment plants.xlsx + Wastewater treated in urban wastewater treatment plants - receives: Wastewater treated in urban wastewater treatment plants.xlsx https://unstats.un.org/unsd/envstats/fdes/manual_bses.cshtml Documentation https://unstats.un.org/unsd/environment/FDES/MS%205.1%20 Human%20settlements.pdf WST Proportion of wastewater collected that is treated Source OECD URL https://data.oecd.org/water/waste-water-treatment.htm **Date received** 2021-06-02 **Instructions** - Go to: https://data.oecd.org/water/waste-water-treatment.htm - Click "Download" - Click "Full indicator data" - Go to: https://stats.oecd.org/Index.aspx?DataSetCode=WATER_TREAT - Click "Export" > "Text File (CSV)" https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx? Documentation Dataset=WATER TREAT&Lang=en

WST Proportion of wastewater collected that is treated

Source Eurostat

URL https://ec.europa.eu/eurostat/web/products-datasets/-/med-en47

Date received 2022-03-03

Instructions https://ec.europa.eu/eurostat/web/products-datasets/-/env_ww_con

- Click on "View Table"

- Click the + button next to the dropdown menu that says,

"Wastewater

treatment plants" with "Total connected to wastewater treatment" as the

default selection.

- In the pop-up window:
- Select "Urban and other wastewater treatment plants total" (code: URB-OTH)
 - In the upper right corner, click "Update"
 - Back in the main window, click on "Download" in the upper right
 - In the CSV section, select "Multiple files"
 - Unclick "Flags and footnotes"
 - Click "Download in CSV Format"
 - Receive: "env_ww_con.zip"
 - unzip to get dataset file:
 - + "env_ww_con_1_Data.csv""

Documentation https://ec.europa.eu/eurostat/cache/metadata/en/env_nwat_esms.htm

Note EPI WST is a combination of several distinct data sources. Each source is documented in the file WWT_sources_reduced.csv.

WST Proportion of wastewater collected that is treated

Source Malik et al. 2015

URL https://www.sciencedirect.com/science/article/abs/pii/S1462901115000076

?via%3Dihub

Instructions On right sidebar of screen, last item, "Extras (1)," click on "Document."

Citation Malik, O. A., Hsu, A., Johnson, L. A., & de Sherbinin, A. (2015). A global indicator

of wastewater treatment to inform the Sustainable Development Goals

(SDGs). Environmental Science & Policy, 48, 172–185.

https://doi.org/10.1016/j.envsci.2015.01.005

Note The supplementary information for this paper contains details of historic

sources of information on this variable. For certain countries, no new updates were available from UNSD/UNEP, OECD, or Eurostat. In these cases, data

were taken from the previous EPI research, if available.

WTA Wetland area [km²]

Source Copernicus

URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover

Date received 2021-07-02

Instructions • Navigate to the "Download data" tab

Select all years

Select both versions (v2.0.7cds for 1992–2015; v2.1.1 for 2016–2020)

Documentation https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-

cover?tab=doc

3. Indicator Construction

Chapter 15 of the 2022 EPI report describes in greater detail the steps undertaken to construct indicators. Data as received by the EPI team undergo several steps before they can be used as indicators, including additional calculations, standardizations, transformations, and scoring. This section describes how the data are used to construct the 40 indicators of the 2022 EPI. On the following pages, you will see each metric described according to the following template.

TLA: Indicator / Issue Category / Policy Objective

Short description of the indicator.

Units Units of the raw data

Years Years for which raw data are available

Source Organization

Transformation Whether the normalized data had to be transformed

Targets Basis for selection of targets

Performance	Nominal	Raw	Transformed
Best	Value or percentile	Value	Transformed value
Worst	Value or percentile	Value	Transformed value

Calculations

If any calculations were required, they are described here.

Imputations

If any imputation was required, it is described here.

Note

Any additional information that would be helpful for understanding indicator construction.

Due to the variety of data sources, not every field is applicable to every indicator. Each entry below provides the fullest account possible.

PMD: Ambient particulate matter pollution / Air Quality / Environmental Health

We measure PM_{25} exposure using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to fine air particulate matter smaller than 2.5 micrometers (PM₂₅).

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	1st percentile	118.458	4.7087
Worst	95th percentile	3961.869	7.9045

HAD: Household air pollution from solid fuels / Air Quality / Environmental Health

We measure *household solid fuels* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to household air pollution (HAP) from the use of household solid fuels.

Units Age-standardized DALYs/100k people

Years 1990-2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.7850	-0.2420
Worst	99th percentile	10838.9	9.2909

OZD: Ozone / Air Quality / Environmental Health

We measure *ozone exposure* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to ground-level ozone pollution.

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	5th percentile	1.1145	0.1084
Worst	99th percentile	255.88	5.5447

NOE: NO_x Exposure / Air Quality / Environmental Health

We measure NO_x exposure using the population-weighted annual average concentration of the air pollutant at ground level.

Units Concentration (ppm)

Years 1990-2019

Source Copernicus; Wolf et al. 2021

Performance	Nominal	Raw	Transformed
Best	5th percentile	1.0382 × 10 ⁻⁴	-9.1728
Worst	95th percentile	0.0411	-3.1919

SOE: SO₂ Exposure / Air Quality / Environmental Health

We measure *sulfur dioxide exposure* using the population-weighted annual average concentration of the air pollutant at ground level.

Units Concentration (ppm)

Years 1990-2019

Source Copernicus; Wolf et al. 2021

Performance	Nominal	Raw	Transformed
Best	5th percentile	2.7871 × 10 ⁻⁴	-8.1853
Worst	95th percentile	0.0626	-2.7703

COE: CO Exposure / Air Quality / Environmental Health

We measure *carbon monoxide exposure* using the population-weighted annual average concentration of the air pollutant at ground level.

Units Concentration (ppm)

Years 1990-2019

Source Copernicus; Wolf et al. 2021

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.0625	-2.7730
Worst	95th percentile	0.4699	-0.7553

VOE: VOCs Exposure / Air Quality / Environmental Health

We measure *volatile organic compound exposure* using the populationweighted annual average concentration of the air pollutant at ground level.

Units Concentration (ppm)

Years 1990-2019

Source Copernicus; Wolf et al. 2021

Performance	Nominal	Raw	Transformed
Best	5th percentile	7.6966 × 10 ⁻⁴	-7.1696
Worst	95th percentile	0.0958	-2.3450

USD: Unsafe sanitation / Sanitation & Drinking Water / Environmental Health

We measure *unsafe sanitation* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to their exposure to inadequate sanitation facilities.

Units Age-standardized DALYs/100k people

Years 1990-2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	5th percentile	1.6067	0.4742
Worst	95th percentile	4442.2	8.3989

UWD: Unsafe Drinking Water / Sanitation & Drinking Water / Environmental Health

We measure *unsafe drinking water* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to unsafe drinking water.

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	5th percentile	2.3921	0.8722
Worst	95th percentile	5940.8	8.6896

PBD: Lead Exposure / Heavy Metals / Environmental Health

We measure *lead exposure* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to lead contamination in the environment.

Units Age-standardized DALYs/100k people

Years 1990-2019

Source Institute for Health Metrics and Evaluation

Performance	Nominal	Raw	Transformed
Best	1st percentile	22.353	3.1070
Worst	99th percentile	1372.9	7.2247

MSW: Solid Waste / Waste Management / Environmental Health

Controlled solid waste refers to the proportion of household and commercial waste generated in a country that is collected and treated in a manner that controls environmental risks. Examples of controlled disposal methods include sanitary landfills, incineration, recycling, composting, and anaerobic digestion.

Units proportion

Years 2019–2019

Sources Kaza et al. 2018, Lebreton and Andrady 2019,

Jambeck et al. 2015, Law et al. 2020

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

Calculations

Country values are determined by the arithmetic mean value of data reported in the above studies.

OCP: Ocean Plastic Pollution / Waste Management / Environmental Health

We measure ocean plastic pollution using the total mass of post-consumer plastics entering the ocean each year.

Units tons

Years 1990-2020

Source Chen et al 2020; Borelle et al. 2020; Meijer et al. 2021

Transformation $\ln (x + \alpha)$

 $\alpha = 4.50 \times 10^{-6}$

Performance	Nominal	Raw	Transformed
Best	0	0	-12.3114
Worst	99th percentile	0.5937	-0.5213

Calculations

Country values are determined by the arithmetic mean value of data reported in the above studies.

REC: Recycling Rates / Waste Management / Environmental Health

We measure *recycling rates* as the proportion of post-consumer recyclable materials (glass, plastic, paper, and metal) that is recycled.

Units proportion

Years 1990-2020

Source Chen et al 2020.

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

CDA: CO₂ intensity trend / Climate Change Mitigation / Climate Change

The CO_2 growth rate is calculated as the average annual rate of increase or decrease in raw carbon dioxide emissions over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1850-2019

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0759	-0.0759
Worst	0.0759	0.0759

Calculations

Compo	nent	Units	Source
CDO	Emissions of CO ₂	Gg	PIK
GDP	Gross Domestic Product	2017\$	World Bank & IMF
CDR	Correlation coefficient	_	
CDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between CO_2 emissions and GDP over a ten-year period,

Second, we regress logged CO₂ emissions over ten years to find a slope,

$$ln(CDO) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in CO₂ emissions,

CDB =
$$\exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$CDA = \begin{cases} CDB \text{ if } CDB \ge 0\\ CDB \times (1 - CDR) \text{ if } CDB < 0 \end{cases}$$

CHA: Methane intensity trend / Climate Change Mitigation / Climate Change

The CH_4 growth rate is calculated as the average annual rate of increase or decrease in raw methane emissions over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1850-2019

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.05	-0.05
Worst	0.05	0.05

Calculations

Compo	nent	Units	Source
CH4	Emissions of CH ₄	Gg	PIK
GDP	Gross Domestic Product	2017\$	World Bank & IMF
CHR	Correlation coefficient	_	
СНВ	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between CH_4 emissions and GDP over a ten-year period,

Second, we regress logged CH₄ emissions over ten years to find a slope,

$$ln(CH4) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in CH₄ emissions,

CHB =
$$\exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$CHA = \begin{cases} CHB \text{ if } CHB \ge 0\\ CHB \times (1 - CHR) \text{ if } CHB < 0 \end{cases}$$

FGA: F-gasses intensity trend / Climate Change Mitigation / Climate Change

The *F-gas growth rate* is calculated as the average annual rate of increase or decrease in raw fluorinated gas emissions over the years 2010–2019.

Units proportion

Years 1850–2019

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	0.2	0.2

Calculations

Compo	onent	Units	Source
FOG	Emissions of F-gases	Gg CO ₂ -eq.	PIK
FGB	Emission growth rate	proportion	
t	Years		

First, we regress logged F-gas emissions over ten years to find a slope,

$$ln(FOG) = \alpha + \beta t$$

Second, we calculate an unadjusted average annual growth rate in F-gas emissions,

$$FGB = exp(\beta) - 1$$

Third, because F-gas emissions are largely uncorrelated with GDP, we simply use the unadjusted average annual emission growth rate,

NDA: N₂O intensity trend / Climate Change Mitigation / Climate Change

The N_2O growth rate is calculated as the average annual rate of increase or decrease in raw nitrous oxide emissions over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1850-2019

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0195	-0.0195
Worst	95th percentile	0.0551

Calculations

Compo	nent	Units	Source
NOT	Emissions of N ₂ O	Gg	PIK
GDP	Gross Domestic Product	2017\$	World Bank & IMF
NDR	Correlation coefficient	_	
NDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between N_2O emissions and GDP over a ten-year period,

$$NDR = corr(NOT, GDP)$$

Second, we regress logged N₂O emissions over ten years to find a slope,

$$ln(NOT) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in N₂O emissions,

NDB =
$$\exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$NDA = \begin{cases} NDB \text{ if } NDB \ge 0\\ NDB \times (1 - NDR) \text{ if } NDB < 0 \end{cases}$$

BCA: Black Carbon intensity trend / Climate Change Mitigation / Climate Change

The black carbon growth rate is calculated as the average annual rate of increase or decrease in black carbon over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1750-2019

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0187	-0.0187
Worst	95th percentile	0.0515

Calculations

Compo	nent	Units	Source
BLC	Emissions black carbon	Gg	CEDS
GDP	Gross Domestic Product	2017\$	World Bank & IMF
BCR	Correlation coefficient	_	
ВСВ	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between black carbon emissions and GDP over a ten-year period,

$$BCR = corr(BLC, GDP)$$

Second, we regress logged black carbon emissions over ten years to find a slope,

$$ln(BLC) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in black carbon emissions,

$$BCB = exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$BCA = \begin{cases} BCB \text{ if } BCB \ge 0\\ BCB \times (1 - BCR) \text{ if } BCB \le 0 \end{cases}$$

GHN: Projected 2050 GHG Emissions / Climate Change Mitigation / Climate Change

The *projected GHG emissions in 2050* metric is calculated by extrapolating each country's emissions trajectory over the most recent 10 years of data to 2050. Countries projected to reach low emissions by or before 2050 receive top scores.

Units proportion

Years 1999–2019

Source Potsdam Institute for Climate Impact Research

Transformation $\ln (x + \alpha)$

 $\alpha = 1$

Performance	Nominal	Raw	Transformed
Best	5th percentile	639.8	5.4612
Worst	95th percentile	3.016 × 10 ⁶	13.9194

Calculations

Compo	nent	Units	Source
CDO	Emissions of CO ₂	Gg	PIK
CH4	Emissions of CH ₄	Gg	PIK
FOG	Emissions of F-gases	Gg CO ₂ -eq.	PIK
NOT	Emissions of N ₂ O	Gg	PIK
GHG	Emissions of GHG	Gg CO₂-eq.	
E50	Projected 2050 GHG Emissions	Gg CO₂-eq.	
t	Years		

First, we calculate total greenhouse gas emissions, applying Global Warming Potentials to convert all units to Gg of CO_2 -equivalents. N.B. that F-gas emissions are already converted to CO_2 -eq. by the Potsdam Institute.

 $GHG = CDO + FOG + 273 \times NOT + 27.2 \times CH4$

Next, we regress GHG emissions from over 10 years to find a slope,

$$GHG = \alpha + \beta t$$

Using this slope, we then extrapolate emissions from the latest year's data out to 2050:

$$E50 = GHG_t + \beta(2050 - t)$$

Country scores are based on logged projected emissions in 2050.

GHP: GHG emissions per capita / Climate Change Mitigation / Climate Change

We calculate *greenhouse gas (GHG) emissions per capita* for each country in the year 2019.

Units Gg CO₂-eq./person

Years 1990-2019

Source Potsdam Institute for Climate Impact Research

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.00099	-6.9128
Worst	95th percentile	0.02330	-3.7592

Calculations

Component		Units	Source
CDO	Emissions of CO ₂	Gg	PIK
CH4	Emissions of CH ₄	Gg	PIK
FOG	Emissions of F-gases	Gg CO₂-eq.	PIK
NOT	Emissions of N ₂ O	Gg	PIK
POP	Population	persons	World Bank & IMF
GHG	Emissions of GHG	Gg CO₂-eq.	

First, we calculate total greenhouse gas emissions, applying Global Warming Potentials to convert all units to Gg of CO_2 -equivalents. N.B. that F-gas emissions are already converted to CO_2 -eq. by the Potsdam Institute.

$$GHG = CDO + FOG + 273 \times NOT + 27.2 \times CH4$$

Second, we calculate GHG emissions per capita (GHP) as the GHG emissions divided by population (POP).

$$GHP = GHG \div POP$$

LCB: CO₂ from Land Cover / Climate Change Mitigation / Climate Change

This new indicator estimates CO_2 emissions from land cover change and is calculated over the years 2001–2015.

Units proportion

Years 2001–2015

Source Mullion Group

Transformation none

Performance	Nominal	Raw
Best	5th percentile	-0.1295
Worst	95th percentile	0.2142

Calculations

Component		Units	Source
CDL	CO₂emissions from land cover change (LULC)	Gg	Mullion Group
t	Time	Years	

First, we regress logged CO_2 emissions from land cover change (LULC) over 10 years to find a slope,

$$ln(CDL) = \alpha + \beta t$$

Then, we calculate an unadjusted average annual growth rate in these CO₂ emissions,

$$LCB = exp(\beta) - 1$$

GIB: GHG emission intensity growth rate / Climate Change Mitigation / Climate Change

Our greenhouse gas (GHG) intensity growth rate indicator serves as a signal of countries' progress in decoupling emissions from economic growth. We calculate an annual average growth rate in GHG emissions per unit of GDP over the years 2010–2019. This indicator highlights the need for action on climate change mitigation in countries at all income levels.

Units proportionYears 1999–2019

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	5th percentile	-0.0632
Worst	95th percentile	0.0283

Calculations

Component		Units	Source
CDO	Emissions of CO ₂	Gg	PIK
CH4	Emissions of CH ₄	Gg	PIK
FOG	Emissions of F-gases	Gg CO ₂ -eq.	PIK
NOT	Emissions of N ₂ O	Gg	PIK
GDP	GDP	2017\$, PPP	World Bank & IMF
GHI	GHG Intensity	Gg CO ₂ -eq./\$	

First, we calculate total greenhouse gas emissions, applying Global Warming Potentials to convert all units to Gg of CO_2 -equivalents. N.B. that F-gas emissions are already converted to CO_2 -eq. by the Potsdam Institute.

$$GHG = CDO + FOG + 273 \times NOT + 27.2 \times CH4$$

Second, we calculate the GHI, which is the quotient of GHG and GDP,

$$GHI = \frac{GHG}{GDP}$$

Third, we regress logged greenhouse gas emission intensity over ten years to find a slope,

$$ln(GHI) = \alpha + \beta t$$

Finally, we calculate an unadjusted average annual growth rate,

GIB =
$$\exp(\beta) - 1$$

TBN: Terrestrial Biome Protection (National weights) / Biodiversity / Ecosystem Vitality

We derive the *terrestrial biome protection* indicators by first calculating the proportions of the area of each of a country's biome types that are covered by protected areas and then constructing a weighted sum of the protection percentages for all biomes within that country. For the *terrestrial biome protection (national weights)* indicator, protection percentages are weighted according to the prevalence of each biome type within that country. This indicator evaluates a country's efforts to achieve 17% protection for all biomes within its borders, as per Aichi Target 11.

Units %

Years 1990-2022

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	17.0	17.0
Worst	0.0	0.0

Calculations

Component		Units	Source
TEW	Area of biomes	sq. km	World Wide Fund for Nature
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} \text{ if } PCT_{bc} \leq 0.17 \\ 0.17 \text{ if } PCT_{bc} > 0.17 \end{cases}$$

Third, the national weight placed on each biome is calculated by the proportion of that biome for the entire country,

$$w_{bc} = \frac{TEW_{bc}}{\sum_{b} TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBN_c = \sum_{b} [w_{bc} \times ICT_{bc}] \times 100$$

TBG: Terrestrial Biome Protection (Global weights) / Biodiversity / Ecosystem Vitality

We derive the *terrestrial biome protection* indicators by first calculating the proportions of the area of each of a country's biome types that are covered by protected areas and then constructing a weighted sum of the protection percentages for all biomes within that country. For the *terrestrial biome protection* (*global weights*) indicator, protection percentages are weighted according to the global prevalence of each biome type. This indicator evaluates a country's contribution toward the global 17% protection goal.

Units %

Years 1990-2022

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	17.0	17.0
Worst	0.0	0.0

Calculations

Component		Units	Source
TEW	Area of biomes	sq. km	World Wildlife Fund
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} \text{ if } PCT_{bc} \le 0.17 \\ 0.17 \text{ if } PCT_{bc} > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_{bc} = \frac{\left[\frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}{\left[\sum_{b} \frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG_c = \sum_b [w_{bc} \times ICT_{bc}]$$

MPA: Marine Protected Areas / Biodiversity / Ecosystem Vitality

We calculate the *marine protected areas* indicator as the percentage of a country's total exclusive economic zone (EEZ) designated as marine protected areas (MPAs). MPAs represent a critical tool for protecting marine ecosystems from unsustainable fishing practices, pollution, and human disturbance. This indicator evaluates a country's contribution toward the global 17% protection goal, as defined in Aichi Biodiversity Target 11.

Units %

Years 1990-2022

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	10.0	10.0
Worst	0.0	0.0

Calculations

Component		Units	Source
AMP	Area of MPAs	sq. km	World Database of Protected Areas
EEZ	Area of EEZs	sq. km	Flanders Marine Institute
i	An index of all MPAs in a country		
j	An index of all EEZs in a country		

These components are used to calculate the metric on *Marine Protected Areas*. Because each country may have multiple EEZs, the summed area of MPAs is divided by the summed EEZ.

$$MPA = \frac{\sum AMP_i}{\sum EEZ_i} \times 100$$

PAR: Protected Areas Representativeness Index / Biodiversity & Habitat / Ecosystem Vitality

The *PARI* indicator measures ecological representativeness as the proportion of biologically scaled environmental diversity included in a country's terrestrial protected areas. The measure relies on remote sensing, biodiversity informatics, and global modeling of fine-scaled variation in biodiversity composition for plant, vertebrate, and invertebrate species.

Units unitless

Years 2000–2020

Source Commonwealth Scientific and Industrial Research Organization

Transformation none

Performance	Nominal	Raw
Best	0.31	0.31
Worst	5th percentile	0.0308

SHI: Species Habitat Index / Biodiversity & Habitat / Ecosystem Vitality

Species Habitat Index (SHI) estimates potential population losses, as well as regional and global extinction risks of individual species, using habitat loss as a proxy. The SHI indicator measures the proportion of suitable habitat within a country that remains intact for each species in that country relative to a baseline set in the year 2001.

Units %

Years 2001–2014

Source Map of Life

Transformation none

Performance	Nominal	Raw
Best	100.0	100.0
Worst	1st percentile	93.3115

Countries for which SHI values were censored. Map of Life warns that estimates for countries with land areas less than 100,00 sq. km may be unreliable.

Antigua and	Grenada	Saint Vincent and the
Barbuda	Kiribati	Grenadines
Bahrain	Luxembourg	Samoa
Barbados	Maldives	Sao Tome and Principe
Brunei	Malta	Seychelles
Darussalam	Marshall Islands	Singapore
Cabo Verde	Mauritius	Tonga
Comoros	Micronesia	Trinidad and Tobago
Cyprus	Saint Lucia	
Dominica		

SPI: Species Protection Index / Biodiversity & Habitat / Ecosystem Vitality

Species Protection Index (SPI) evaluates the species-level ecological representativeness of each country's protected area network. The SPI metric uses remote sensing data, global biodiversity informatics, and integrative models to map suitable habitat for over 30,000 terrestrial vertebrate, invertebrate, and plant species at high resolutions. Data for this indicator come from the Map of Life.

Units %

Years 1980–2021

Source Map of Life

Transformation none

Performance	Nominal	Raw
Best	100.0	100.0
Worst	0.0	0.0

BHV: Variable / Biodiversity & Habitat / Ecosystem Vitality

The *Biodiversity Habitat Index (BHI)* estimates the effects of habitat loss, degradation, and fragmentation on the expected retention of terrestrial biodiversity. Due to updated methodology used to derive the BHI, only one year of data (2020) is available.

Units unitless

Years 2020-2020

Source Commonwealth Scientific and Industrial Research Organization

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

TCL: Tree cover loss, % / Ecosystem Services / Ecosystem Vitality

We quantify tree cover loss by constructing a five-year moving average of the percentage of forest lost from the extent of forest cover in the reference year 2000. We define a forest as any land area with over 30% canopy cover.

Units proportion

Years 2005-2020

Source Global Forest Watch

Transformation $\ln(x + \alpha)$

 α = 9.70E-07

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-13.845
Worst	99th percentile	0.0198	-3.9194

Calculations

Compo	onent	Units	Source
TCA	Tree cover area (30% canopy cover)	ha	Global Forest Watch
TCC TC5	Tree cover loss Sum of last 5 years of loss	ha ha	Global Forest Watch Global Forest Watch
t	An index of years		

First, TC5 is calculated by adding the last 5 years of tree cover loss for a country,

$$TC5 = \sum_{i=0}^{4} TCC_{t-i}$$

Next, TCL is calculated by dividing TC5 by five times the tree cover area (TCA) from the reference year of 2000,

$$TCL = \frac{TC5}{5 \times TCA_{2000}}$$

GRL: Grassland Loss / Ecosystem Services / Ecosystem Vitality

Grassland loss is measured using a five-year moving average of percentage of gross losses in grassland areas compared to the 1992 reference year. Data are derived from a time series of annual global land cover maps for the years 1992–2020 released by the Copernicus Climate Change Service.

Units proportion

Years 1997-2020

Source Copernicus

Transformation $ln(x + \alpha)$

 α = 4.45E-06

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-12.323
Worst	99th percentile	0.0199	-3.9194

Calculations

Compo	nent	Units	Source
GL5	Gross loss in Grassland area over five-year interval	km²	Copernicus
GRA	Grassland Area	km²	Copernicus
t	An index of time		

First, GL5 is calculated by adding the last 5 years of grassland loss for a country,

$$GL5 = \sum_{i=0}^{4} Yearly Grassland Loss_{t-i}$$

Next, GRL is calculated by dividing GL5 by five times the total grassland area (GRA) from the reference year of 1992,

$$GRL = \frac{GL5}{5 \times GRA_{1992}}$$

WTL: Wetland Loss / Ecosystem Services / Ecosystem Vitality

Wetland loss is quantified using a five-year moving average of percentage of gross losses in wetland areas compared to the 1992 reference year. Data are derived from a time series of annual global land cover maps for the years 1992–2015 released by the Copernicus Climate Change Service.

Units proportion
Years 1997–2020
Source Copernicus
Transformation $ln(x + \alpha)$

 $\alpha = 2.47E-06$

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-12.911
Worst	99th percentile	0.0667	-2.7078

Calculations

Compo	nent	Units	Source
WL5	Gross loss in Wetland area over five-year interval	km²	Copernicus
WTA	Wetland Area	km²	ESA Copernicus
t	An index of time		

First, WL5 is calculated by adding the last 5 years of wetland loss for a country,

WL5 =
$$\sum_{i=0}^{4}$$
 Yearly Wetland Loss_{t-i}

Next, WTL is calculated by dividing WL5 by five times the total wetland area (WTA) from the reference year of 1992,

$$WTL = \frac{WL5}{5 \times WTA_{1992}}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

Fish stock status evaluates the percentage of a country's total catch that comes from overexploited or collapsed stocks, considering all fish stocks within a country's EEZs. Because continued and increased stock exploitation leads to smaller catches, this indicator sheds light on the impact of a country's fishing practices.

Units proportion

Years 1950–2018

Source Sea Around Us

Transformation $ln(x + \alpha)$

 α = 1.13E-05

Performance	Nominal	Raw	Transformed
Best	0.01	0.01	-4.6040
Worst	99th percentile	0.7775	-0.2516

Calculations

Compo	nent	Units	Source
FSC	Fish stock class	%	Sea Around Us
CTH	Catch	tonnes	Sea Around Us
е	An index of EEZs in a country		
k	An index of classes: $\{1 = \text{collapsed}, 2 = \text{over-exploited}, 3 = \text{exploited}, 4 = \text{developing}, 5 = \text{rebuilding}\}$		

The metric is calculated as an average percentage weighted by catch and summed across classes of concern.

$$FSS = \frac{\sum_{e} [FSC_{k=1,e} \times CTH_{e}] + \sum_{e} [FSC_{k=2,e} \times CTH_{e}]}{\sum_{e} CTH_{e}}$$

RMS: Regional Marine Trophic Index / Fisheries / Ecosystem Vitality

Marine Trophic Index (MTI) describes the health of a country's fishing stock based on expected catch and changes over time. The MTI describes the degree to which a country is depleting species at higher trophic levels and "fishing down the food web."

Units unitless

Years 2018–2018

Source Sea Around Us

 $\textbf{Transformation} \quad \text{ln}(x+\alpha)$

 α = 9.51E-07

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-13.866
Worst	99th percentile	0.0355	-3.3393

Calculations

Marine Trophic Index is defined as the slope of the trophic index (TI) from the year of peak trophic index to the trophic index in the latest year of data, 2018.

$$MTI = \frac{TI_{max} - TI_{2018}}{Year_{max} - 2018}$$

FTD: Fish caught by Trawling and Dredging / Fisheries / Ecosystem Vitality

Fish caught by trawling measures the percentage of a country's fish caught by bottom trawling, where a fishing net is pulled along the seafloor behind a boat, or dredging, where the seafloor is scraped in search bottom-dwelling species. These practices are indiscriminate and wasteful and can severely damage marine ecosystems.

Units proportion

Years 1950–2018

Source Sea Around Us

Transformation $ln(x + \alpha)$

 α = 8.40E-08

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-16.2924
Worst	99th percentile	0.9644	-0.0362

Calculations

Compo	onent	Units	Source
FTD	Catch by gear type and EEZ	tonnes	Sea Around Us
CTH	Catch by EEZ	tonnes	Sea Around Us
е	An index of EEZs in a country		
g	An index of gear types: {1 = bottom trawling, 2 = dredging, 3 = pelagic trawling, 4 = gillnets, 5 = longline, 6 = other}		

$$FTD = \frac{\sum_{g=1}^{2} \sum_{e} FTD_{eg}}{\sum_{e} CTH_{e}}$$

SDA: SO2 intensity trend / Pollution Emissions / Ecosystem Vitality

The SO_2 growth rate is calculated as the average annual rate of increase or decrease in SO_2 over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units unitless

Years 1750-2019

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	95th percentile	0.1021

Calculations

Compo	nent	Units	Source
SO2	Emissions of SO ₂	Gg	CEDS
GDP	Gross Domestic Product	2017\$	World Bank & IMF
SDR	Correlation coefficient	_	
SDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between SO_2 emissions and GDP over a ten-year period,

$$SDR = corr(SO2, GDP)$$

Second, we regress logged SO₂ emissions over ten years to find a slope,

$$ln(SO2) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in SO₂ emissions,

$$SDB = exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$SDA = \begin{cases} SDB \text{ if } SDB \ge 0\\ SDB \times (1 - SDR) \text{ if } SDB < 0 \end{cases}$$

NXA: NOx intensity trend / Pollution Emissions / Ecosystem Vitality

The NO_X growth rate is calculated as the average annual rate of increase or decrease in NO_X over the years 2010–2019. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units unitless

Years 1750-2019

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	95th percentile	0.0945

Calculations

Compo	nent	Units	Source
NOX	Emissions of NO _X	Gg	CEDS
GDP	Gross Domestic Product	2017\$	World Bank & IMF
NXR	Correlation coefficient	_	
NXB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between NO_X emissions and GDP over a ten-year period,

$$NXR = corr(NOX, GDP)$$

Second, we regress logged NO_X emissions over ten years to find a slope,

$$ln(NOX) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in NO_x emissions,

$$NXB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$NXA = \begin{cases} NXB & \text{if } NXB \ge 0\\ NXB \times (1 - NXR) & \text{if } NXB < 0 \end{cases}$$

SNM: Sustainable Nitrogen Management Index / Agriculture / Ecosystem Vitality

The Sustainable Nitrogen Management Index (SNMI) seeks to balance efficient application of nitrogen fertilizer with maximum crop yields as a measure of the environmental performance of agricultural production. The 2022 EPI uses the SNMI as a proxy for agricultural drivers of environmental damage.

Units unitless

Years 1961–2015

Source UMCES

Transformation none

Performance	Nominal	Raw
Best	0.0	0.0
Worst	99th percentile	1.3641

Imputation

Since Taiwan was missing, its value was imputed as an average of five neighbors: Japan, Philippines, South Korea, Malaysia, and Indonesia.

SPU: Sustainable Pesticide Use / Agriculture / Ecosystem Vitality

We calculate the *sustainable pesticide use* indicator by adjusting a country's pesticide risk score (Tang et al. 2021) using pesticide application rates (Maggi et al. 2019) to balance food security with ecosystem health.

Units unitless

Years 1961–2015

Source Tang et al. 2021; Maggi et al. 2019.

Transformation none

Performance	Nominal	Raw
Best	0.0	0.0
Worst	4.5	4.5

Calculations

Componer	nt	Units	Source
PRS	Pesticide risk score	_	Tang et al. 2021
APR	Pesticide application rate	kg ha ⁻ ¹ yr ⁻¹	Maggi et al. 2019
С	Country index		
SPU	Sustainable pesticide use score	_	

We first identify the 25th percentile of pesticide application rate to use as a baseline for sustainable pesticide application rates:

We then correct each country's pesticide risk score based on how far its pesticide application rate falls below the baseline application rate:

$$\mathsf{SPU} = \left\{ \begin{aligned} &\mathsf{PRS}_{\mathsf{c}} \; \mathsf{if} \; \mathsf{APR}_{\mathsf{c}} \geq \mathsf{APR}_{\mathsf{25th}} \\ &(\mathsf{APR}_{\mathsf{25th}} - \mathsf{APR}_{\mathsf{c}}) \times \mathsf{APR}_{\mathsf{25th}} + \mathsf{PRS}_{\mathsf{c}} \; \mathsf{if} \; \mathsf{APR}_{\mathsf{c}} < \mathsf{APR}_{\mathsf{25th}} \end{aligned} \right.$$

WWT: Wastewater treatment level / Water Resources / Ecosystem Vitality

We measure wastewater treatment as the percentage of wastewater that undergoes at least primary treatment in each country, normalized by the proportion of the population connected to a municipal wastewater collection system.

Units proportion

Years 2020–2020

Source UNSD, OECD, Eurostat, etc.

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

Calculations

Compo	pnent	Units	Source
WST	Wastewater treatment level	proportion	various
CXN	Sewerage connection rate	proportion	various
GPC	GDP per capita	2017\$/person	World Bank & IMF
PDN	Population density	Persons/km²	PIK
R	A vector of region dummies		
S	A vector of source dummies	{UNSD, OECD, Eurostat, PMY, GWI, EPI]	

The WWT metric was calculated through the product of treatment level and connection rate:

$$WWT = WST \times CXN$$

Imputation — CXN

First, we run a predictive model on countries for which we have data,

CXN=
$$\alpha$$
 + β GPC + γ R + δ S + ϵ

where γ and δ are coefficients for categorical dummies in the vectors of R and S.

Second, we predict values for countries where CXN is missing but GPC and R are not. We force the source, S, to take the value of "UNSD."

$$\widehat{CXN} = \widehat{\alpha} + \widehat{\beta}GPC + \widehat{\gamma}R + \widehat{\delta}S$$

Third, we limit the range of CXN to fall within the range of 0–1 and apply a 25% penalty for failing to report data to the applicable organization requesting information on wastewater treatment.

$$CXN = 0.25 \times \begin{cases} 0 \text{ if } \widehat{CXN} < 0 \\ \widehat{CXN} \text{ if } 0 \le \widehat{CXN} \le 1 \\ 1 \text{ if } \widehat{CXN} > 1 \end{cases}$$

Countries for which CXN was imputed

Antigua & Barbuda	Grenada	Samoa
Bahamas	Kiribati	São Tomé and Príncipe
Barbados	Kyrgyzstan	Seychelles
Comoros	Micronesia	St Vincent & Grenadines
Côte d'Ivoire	Republic of Congo	Tonga
Eswatini	Saint Lucia	Vanuatu
Gambia		

Imputation — WST

First, we run a predictive model on countries for which we have data,

WST =
$$\alpha$$
 + β GPC + θ PDN + γ R + δ S + ϵ

where γ and δ are coefficients for categorical dummies in the vectors of R and S.

Second, we predict values for countries where WST is missing but GPC, PDN, and R are not. We force the source, S, to take the value of "UNSD."

$$\widehat{\text{WST}} = \widehat{\alpha} + \widehat{\beta} \text{GPC} + \widehat{\theta} \text{PDN} + \widehat{\gamma} R + \widehat{\delta} S$$

Third, we limit the range of WST to fall within the range of 0–1 and apply a 25% penalty for failing to report data to the applicable organization requesting information on wastewater treatment.

WST=
$$0.25 \times \begin{cases} 0 \text{ if } \widehat{WST} < 0 \\ \widehat{WST} \text{ if } 0 \leq \widehat{WST} \leq 1 \\ 1 \text{ if } \widehat{WST} > 1 \end{cases}$$

Countries for which WST was imputed

Antigua & Barbuda	Dominica	Maldives	São Tomé and Príncipe
Bahamas	Gambia	Micronesia	Seychelles
Barbados	Grenada	North Macedonia	St Vincent & Grenadines
Belize	Iceland	Republic of Congo	Tonga
Brunei Darussalam	Kiribati	Saint Lucia	Trinidad and Tobago
Comoros	Kyrgyzstan	Samoa	Vanuatu
Côte d'Ivoire			

4. Country Coverage

The EPI seeks to cover as many countries as possible. When selecting datasets for our calculations, the EPI team gathers information on all territories that data providers have to offer. After the team has finalized the list of indicators used in the EPI, a survey of country data coverage determines which countries have sufficient information to be included in rankings. Unfortunately, some countries do not have sufficient data to support the calculation of an overall EPI score. Whether or not a country is included is not a reflection of the environmental performance of those countries; rather, data sparseness makes it impossible to say something meaningful. Another set of countries is excluded because government instability skews available information. As we discuss in Chapter 15 the 2022 EPI Report, we also identify certain territories for which data may be reported separately but should be considered as under the control or protection of a sovereign government. In these cases, we aggregate data on the territories with the sovereign country.

4.1 Countries in the 2022 EPI

Afghanistan Gambia North Macedonia

Albania Georgia Norway
Algeria Germany Oman
Angola Ghana Pakistan
Antigua & Barbuda Greece Panama

Argentina Grenada Papua New Guinea

Armenia Guatemala Paraguay Australia Guinea Peru Guinea-Bissau Austria **Philippines** Azerbaijan Guyana Poland Bahamas Haiti Portugal Bahrain Honduras Qatar

Bangladesh Hungary Republic of Congo

BarbadosIcelandRomaniaBelarusIndiaRussiaBelgiumIndonesiaRwandaBelizeIranSaint Lucia

Benin Iraq St Vincent & Grenadines

Bhutan Ireland Samoa

Bolivia Israel São Tomé and Príncipe

Bosnia & Herzegovina Italy Saudi Arabia Botswana Jamaica Senegal Brazil Serbia Japan Brunei Darussalam Jordan Sevchelles Bulgaria Kazakhstan Sierra Leone Burkina Faso Kenya Singapore Burundi Kiribati Slovakia Cabo Verde Kuwait Slovenia

CambodiaKyrgyzstanSolomon IslandsCameroonLaosSouth AfricaCanadaLatviaSouth Korea

Central African Rep. Lebanon Spain Lesotho Chad Sri Lanka Chile Sudan Liberia China Lithuania Suriname Colombia Sweden Luxembourg Switzerland Comoros Madagascar Costa Rica Malawi Taiwan Côte d'Ivoire Tajikistan Malaysia Croatia Maldives Tanzania Cuba Mali Thailand Malta Timor-Leste Cyprus

Czech Republic Marshall Islands Togo Dem. Rep. Congo Mauritania Tonga

Denmark Mauritius Trinidad and Tobago

Djibouti Mexico Tunisia Dominica Micronesia Turkey

Dominican Republic Moldova Turkmenistan

Ecuador Mongolia Uganda Egypt Montenegro Ukraine

El Salvador Morocco United Arab Emirates Equatorial Guinea Mozambique United Kingdom

Eritrea Myanmar United States of America

Estonia Namibia Uruguay Eswatini Nepal Uzbekistan Netherlands Ethiopia Vanuatu New Zealand Fiji Venezuela Finland Viet Nam Nicaragua France Niger Zambia Zimbabwe Gabon Nigeria

4.2 Countries excluded from the 2022 EPI

Andorra	French Polynesia	Macao	Sint Maarten
Anguilla	Greenland	Monaco	Somalia
Aruba	Guernsey	Nauru	South Sudan
Bermuda	Holy See	New Caledonia	State of Palestine
British Virgin Isls.	Hong Kong	Niue	Syria
Cayman Islands	Isle of Man	North Korea	Turks & Caicos Isls.
Cook Islands	Jersey	Palau	Tuvalu
Curacao	Kosovo	Saint Barthelemy	Wallis & Futuna Isls.
Faeroe Islands	Libya	St Kitts & Nevis	Western Sahara
Falkland Islands	Liechtenstein	San Marino	Yemen

4.3 Territories within sovereign countries

Table TA-2. Territories found in gathered data sets and their sovereign countries.

Tamitam	Same and and
Territory	Sovereign
Åland Islands	Finland
American Samoa	United States of America
Bonaire, Sint Eustatius, and Saba	Netherlands
Bouvet Island	Norway
British Indian Ocean Territory	United Kingdom
Christmas Island	Australia
Cocos Islands	Australia
French Guiana	France
French Southern Territories	France
Gibraltar	United Kingdom
Guadeloupe	France
Guam	United States of America
Heard Island and McDonald Islands	Australia
Martinique	France
Mayotte	France
Montserrat	United Kingdom
Norfolk Island	Australia
Northern Mariana Islands	United States of America
Pitcairn	United Kingdom
Puerto Rico	United States of America
Reunion	France
Saint Helena	United Kingdom
Saint Martin	France
Saint Pierre and Miquelon	France
South Georgia and the South Sandwich Islands	United Kingdom
Svalbard and Jan Mayen Islands	Norway
Tokelau	New Zealand
United States Minor Outlying Islands	United States of America
United States Virgin Islands	United States of America

5. Temporal Coverage

Table TA-3. Temporal coverage for indicators used in the 2022 EPI.

TLA	9	5		0	0		0	5		10)		15	5		20	5	
GHN																		
CDA																		
CHA																		
LCB																		
GIB																		
FGA																		
BCA																		
GHP																		
NDA																		
PMD																		
HAD																		
OZD																		
NOE																		
SOE																		
COE																		
VOE																		
UWD																		
USD																		
PBD																		
MSW																		
REC																		
OCP																		
TBN																		
TBG																		
MPA																		
PAR																		
SHI																		
SPI																		
BHV																		
TCL																		
GRL																		
WTL																		
FSS																		
RMS																		
FTD																		
SDA																		
NXA																		
SNM																		
SPU																		
WWT																		
GDP																		
POP																		

Table TA-4. Designations of years supporting the current and baseline scores for each indicator.

Indicators	Current	Baseline
Climate Change Mitigation		
Projected GHG Emissions in 2050	2019	2009
CO ₂ Growth Rate	2019	2009
CH₄ Growth Rate	2019	2009
CO ₂ from Land Cover	2017	2010
F-gas Growth Rate	2019	2009
Black Carbon Growth Rate	2019	2009
GHG Emissions per Capita	2019	2009
N₂O Growth Rate	2019	2009
Air Quality		
PM _{2.5} Exposure	2019	2009
Household Solid Fuels	2019	2009
Ozone Exposure	2019	2009
NOx Exposure	2019	2009
SO2 Exposure	2019	2009
CO Exposure	2019	2009
VOC Exposure	2019	2009
Sanitation & Drinking Water		
Unsafe Sanitation	2019	2009
Unsafe Drinking Water	2019	2009
Heavy Metals / Lead Exposure	2019	2009
Waste Management		
Controlled Solid Waste	2019	2019
Recycling Rates	2020	2010
Ocean Plastic Pollution	2020	2010
Biodiversity & Habitat		
Terrestrial Biome Protection (national)	2022	2012
Terrestrial Biome Protection (global)	2022	2012
Marine Protected Areas	2022	2012
Protected Areas Representativeness Index	2020	2010
Species Habitat Index	2014	2004
Species Protection Index	2021	2011
Biodiversity Habitat Index	2020	2020

Indicators	Current	Baseline
Ecosystem Services		
Tree Cover Loss	2020	2010
Grassland Loss	2020	2010
Wetland Loss	2020	2010
Fisheries		
Fish Stock Status	2018	2008
Marine Trophic Index	2018	2018
Fish Caught by Trawling	2018	2008
Acid Rain		
SO2 Growth Rate	2019	2009
NOx Growth Rate	2019	2009
Agriculture		
Sustainable Nitrogen Management Index	2015	2005
Sustainable Pesticide Use	2020	2020
Water Resources / Wastewater Treatment	2020	2020

6. Transformations & Targets

Table TA-5. Transformations and targets used in indicator construction.

			No	minal			
			Targ	ets	Val	ue Targets	
TLA	Trans.	Shift (α)	Best	Worst	Best	Worst	Polarity
ВСА			-0.0187	95%	-0.0187	0.0516	-
BHV			1	0	1	0	+
CDA			-0.0759	0.0759	-0.0759	0.0759	-
CHA			-0.05	0.05	-0.05	0.05	-
COE	log		5%	95%	-2.773	-0.7553	-
FGA			-0.0394	0.2	-0.0394	0.2	-
FSS	log	1.13E-05	0.01	99%	-4.604	-0.2516	-
FTD	log	8.40E-08	0	99%	-16.2924	-0.03622	-
GHN	log	1	5%	95%	5.4511	13.9194	-
GHP	log		5%	95%	-6.9128	-3.7593	-
GIB			5%	95%	-0.06318	0.02831	-
GRL	log	4.45E-06	0	99%	-12.3226	-2.6652	-
HAD	log		5%	99%	-0.242	9.2909	-
LCB			5%	95%	-0.1295	0.2132	-
MPA			10	0	10	0	+
MSW			0	1	0	1	-
NDA			-0.0195	95%	-0.0195	0.05505	-
NOE	log		5%	95%	-9.17282	-3.19189	-
NXA			-0.0394	95%	-0.03943	0.09455	-
OCP	log	4.50E-06	0	99%	-12.31143	-0.52133	-
OZD	log		5%	99%	0.1084	5.54471	-
PAR			0.31	5%	0.31	0.030791	+
PBD	log		1%	99%	3.10702	7.22471	-
PMD	log		1%	95%	4.70879	7.90451	-
REC			0	1	0	1	-
					-	-3.33925	-
RMS	log	9.51E-07	0	99%	13.86575		
			-		-0.03944	0.10215	-
SDA			0.03944	95%			
SHI			100	1%	100	93.27	+
SNM			0	99%	0	1.36405	-
SOE	log		5%	95%	-8.18534	-2.77028	-
SPI			100	0	100	0	+
SPU			0	4.5	0	4.5	-
TBG			17	0	17	0	+
TBN			17	0	17	0	+

						2.010.4		—
					-	-3.9194	-	
TCL	log	9.70E-07	0	99%	13.84597			
USD	log		5%	95%	0.47427	8.39892	-	
UWD	log		5%	95%	0.87224	8.68962	-	
VOE	log		5%	95%	-7.16957	-2.34501	-	
WTL	log	2.47E-06	0	99%	-12.91129	-2.7077	-	
WWT			1	0	1	0	+	

Notes:

- 1. % indicates percentile, not the units of the indicator.
- 2. Negative (-) polarity indicates lower raw values are better.

7. Materiality

Table TA-6. Materiality Filter applied to the 2022 EPI. Countries meeting the listed criteria are not scored on the associated indicators and issue categories.

Materiality Filter	Criteria	Issue Category	Indicator	No. of Countries
SEA	Landlocked or Coastline: Land area	Fisheries	Fish Stock Status, MTI, Fish caught by trawling	44
	ratio < 0.01		Marine Protected Areas	_

Countries in the 2022 EPI affected by the SEA Materiality Filter

Afghanistan	Eswatini	Niger
Armenia	Ethiopia	North Macedonia
Austria	Hungary	Paraguay
Azerbaijan	Iraq	Rwanda
Belarus	Jordan	Serbia
Bhutan	Kazakhstan	Slovakia
Bolivia	Kyrgyzstan	Slovenia
Bosnia & Herzegovina	Laos	Switzerland
Botswana	Lesotho	Tajikistan
Burkina Faso	Luxembourg	Turkmenistan
Burundi	Malawi	Uganda
Central African Rep.	Mali	Uzbekistan
Chad	Moldova	Zambia
Czech Republic	Mongolia	Zimbabwe
Dem. Rep. Congo	Nepal	

8. Global Scorecard

Many of the EPI's 40 indicators can be aggregated to produce global metrics of performance. Some global aggregates are available from the original data sources, detailed in Sections 2 and 3 above. Other times, the data can be combined to permit global-scale analyses. This section describes how the construction of the global scorecard values for the 2022 EPI. First, a global aggregate for each metric was either downloaded from a data partner or calculated from the raw, country-level data. Second, these data were constructed into indicators, as described in Section 3. Third, these global indicators were then turned into a 0–100 score using the same targets and transformations summarized in Section 5.

8.1 Data available from data partners already aggregated to the global level.

Table TA-7. Variables available from data sources already aggregated to the global level.

TLA	Variable	Source
NOX	NO_X growth rate	CEDS
SO2	SO_2 growth rate	CEDS
BLC	Black carbon growth rate	CEDS
SOE	SO_2 exposure	Copernicus
NOE	NO_X exposure	Copernicus
COE	CO exposure	Copernicus
VOE	VOE exposure	Copernicus
PAR	Protected Areas Rep. Index	CSIRO
BHV	Biodiversity Habitat Index	CSIRO
PMD	$PM_{2.5}$ exposure	IHME
HAD	Household solid fuels	IHME
OZD	Ozone exposure	IHME
UWD	Unsafe drinking water	IHME
USD	Unsafe sanitation	IHME
PBD	Lead exposure	IHME
SPI	Species Protection Index	MOL
LCB	CO ₂ from land cover	Mullion
CDO	CO ₂ growth rate	PIK
CH4	CH₄ growth rate	PIK
GHN	Projected emissions in 2050	PIK
FOG	F-gas growth rate	PIK
NOT	N₂O growth rate	PIK
GHP	GHG emissions per capita	PIK/World Bank
GIB	GHG intensity trend	PIK/World Bank
SNM	Sustainable Nitrogen Mgmt. Index	UMCES

8.2 Data requiring aggregation to the global level

In the descriptions to follow, the superscript g indicates a global aggregate metric, and the subscript c is an index of countries in the raw data.

MSW: Municipal Solid Waste / Waste Management / Environmental Health

The global aggregate of *municipal solid waste* is calculated by diving the sum of all countries' sustainably managed solid waste by the total waste generated:

$$MSW^g = \sum_{c} \frac{Sust. Waste_{c}}{Total Waste_{c}}$$

OPC: Ocean Plastic Pollution / Waste Management / Environmental Health

The global aggregate of *ocean plastic pollution* is calculated by aggregating country-level pollution data:

$$OCP^g = \sum_{c} OCP_c$$

Poor performance is benchmarked relative to the 99th percentile of global pollution levels through all years of data.

REC: Recycling / Waste Management / Environmental Health

The global aggregate of *recycling rates* is defined as the proportion of all countries' recyclable materials that are recycled.

MPA: Marine Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

The global aggregate of *Marine Protected Areas* is calculated by the aggregation of country-level data.

$$MPA^{g} = \frac{\sum_{c} \sum_{i} AMP_{ic}}{\sum_{c} \sum_{j} EEZ_{jc}} \times 100$$

TBG: Terrestrial Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

Because national weights do not apply to global aggregates, there is no comparable metric for TBN. Instead, TBG serves as the global indicator of *Terrestrial Protected Areas* and is calculated as a simple aggregation of country-level data.

First, the percent of each biome in the world that lies within a protected area is given by,

$$PCT_b = \frac{\sum_c TPA_{bc}}{\sum_c TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_b = \begin{cases} PCT_b \text{ if } PCT_b \leq 0.17 \\ 0.17 \text{ if } PCT_b > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_b = \frac{\sum_c TEW_{bc}}{\sum_b \sum_c TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG^g = \sum_b [w_b \times ICT_b]$$

TCL: Tree Cover Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *tree cover loss* is calculated as a simple aggregation of country-level data.

$$TCL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} TCC_{c,t-i}}{\sum_{c} TCA_{c}}$$

GRL: Grassland Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *grassland loss* is calculated as a simple aggregation of country-level data.

$$GRL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} GRC_{c,t-i}}{\sum_{c} GRA_{c}}$$

WTL: Wetland Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *wetland loss* is calculated as a simple aggregation of country-level data.

$$WTL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} WTC_{c,t-i}}{\sum_{c} WTA_{c}}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

The global aggregate of *fish stock status* is calculated as a catch-weighted average of all country-level values.

$$FSS^{g} = \sum_{k=1}^{2} \frac{\sum_{c} \sum_{e} [FSC_{kec} \times CTH_{ec}]}{\sum_{c} \sum_{e} \sum_{k} [FSC_{kec} \times CTH_{ec}]}$$

FGT: Fish Caught by Trawling / Fisheries / Ecosystem Vitality

The global aggregate of *fish caught by trawling* is calculated as a catch-weighted average of all country-level values.

$$FGT^{g} = \frac{\sum_{m=1}^{3} \sum_{c} \sum_{e} Gear_type_{ecm}}{\sum_{c} \sum_{e} CTH_{ec}}$$

WWT: Wastewater Treatment / Water Resources / Ecosystem Vitality

The global aggregate of *Wastewater Treatment* is calculated as a population-weighted average of all country-level values.

$$WWT^{g} = \sum_{c} \left[WWT_{c} \times \frac{POP_{c}}{\sum_{c} POP_{c}} \right]$$

8.3 Indicators for which it was not possible to construct a global aggregate.

SHI Species Habitat Index

RMS Marine Trophic Index

SPU Sustainable Pesticide Use

9. Data File Guide

The data underlying the 2022 EPI report's analyses is available for download from https://epi.yale.edu/downloads. These include both raw data and indicator data. Raw data files contain the data in their original units. Section 2 of this appendix describes the sources for these data. Indicator data contain the scores for the 40 metrics on a 0 to 100 scale. Section 3 of this appendix describes how the raw data are converted into indicator data.

Raw data files are named according to three-letter abbreviations (TLAs) unique to each variable. Within these files, columns are labeled *TLA.raw.YYYY*, where *YYYY* is the year. Not every indicator TLA is in the raw data – some indicators must be calculated from other raw data, as described in Section 3. Higher level aggregations, i.e., issue categories and policy objectives, will not have raw data files.

We provide two versions of each raw data file, with and without missing data codes. For all raw data files that are named *TLA_raw.csv*, missing values are noted with the following codes,

-9999	the as-received dataset has cells with missing values
-8888	the country is not reported by the data source
-7777	the missing values are missing because they are not material
-4444	censored data (values not reliable due to small country size)

For all raw data files that are named *TLA_raw_na.csv*, missing values are noted simply as NA.

Indicator file columns are formatted as *TLA.ind.YYYY*. The years covered in each indicator file are not necessarily the same as the underlying raw data files for two reasons. First, the EPI team resizes every file to begin in 1990 and end in 2022. Second, the EPI data processing pipeline uses linear interpolation to fill in missing data years between observations and hold values constant to extend to beginning and ending years. For example, if a data series ends in the year 2019, we hold that value constant over the years 2020 to 2022. Table TA-3 illustrates the actual temporal coverage of raw data.