2. Assume that the following hexadecimal values are <u>16-bit twos-complement.</u> Convert each to the corresponding decimal value.	g
i. 0x0013 ii. 0x0444 iii. 0x1234 iv. 0xffff v. 0x8000 Orgative of 2's complement v. 0x8000	b
0×0013 $0000 0000 0001 0011$ $2^{1} + 7^{1} + 7^{2}$ $= 16 + 7 + 1 = 19$	
0xffff 202120 1111 1111 1111 4 add 1	
0000 0000 0000 0000 0001	
0x8000 = 1000 0000 0000 0000 23-1000 0000 0000	
25 comptiment:	6
$= 1000 000 0000 0000 = 2^{15} = -3216$	庆

$$100$$
 $100/z = 50 \cdot 0$

0000 0000 0110 000

convert 5 to binaly:

3/2 = Zr1 0000 0000 0000 0101

0000 0000 0110 0160

+wo's complement

invert:

| 1111 1111 1001 1611

add 1)

+

4. What decimal numbers do the following single-precision IEEE 754-encoded bit-strings represent? Value = $(-1)^{Sign} \times 2^{Exp - 127} \times (1 + Frac)$ float x = 3.4 h. 0 01101110 10100000101000001010000 Sign exponent -l'action a) sign = 0 $(-1)^{\circ}$ \times $(-1)^{\circ}$ \times $(-1)^{\circ}$ exponent = 0 - 1×7-127 frac = 0 f) Sign exp = 1000 0000 = 27 = 178 frac = .0110 -5-5000 0000 0000 = 2-2 + 7-3 $\frac{1}{4} = 0.375$ 0000 0000 -1-2-3 $(-1)^{0} \times (1 + 375) \times 2^{1} \times 2^{1}$

5. Convert the following decimal numbers into IEEE 754-encoded bit-strings:

$$\frac{0.375}{(-2)} = 1.5$$

$$0.375 = 1.5 \times 2^{-2}$$

= $(1 - 0.5) \times 2^{-2}$

$$e \times p - 127 = n$$
 $e \times p - 127 = -2$
 $e \times p = -2 + 127$

Sign

$$125/2 = 62 \text{ V}|$$
 $62/2 = 31 \text{ V}|$
 $31/2 = (5 \text{ I}|$
 $7/2 = 3 \text{ V}|$
 $3/2 = (1 \text{ V}|$

unions

a,b	
stind	
a	
6	

union

100.0

$$\frac{160}{2^{\lfloor \log_2(100)\rfloor}} \approx 6.6$$

$$\frac{100}{2^6} = n = 1.5625$$
 $100 = 1.5625 \times 2^6$

$$exponent = 6$$
 $exponent = 6 + 127$

 $133 \cdot n \cdot binary:$ $133/2 = 66 \cdot n \cdot 1$ $86/n = 37 \cdot 0$ 33/7 =

frac $0.5625 \times 2 = 0.125$ $0.125 \times 7 = 0.25$ $0.75 \times 7 = 0.5$ $0.5 \times 7 = 0.5$

Sign

Oberause it positive result:

0 0010 0001 1001 000000...

1601 ...