Sommation formelle

On se donne une somme $S_n = \sum_{k=n_0}^n a_k$, existe-t-il une expression "fermée" de S_n , en fonction de n ?

Exemples

- $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- $\bullet \quad \Sigma_{k=1}^n \, \frac{1}{k(k+1)} = \frac{n}{n+1}$
- $\sum_{k=1}^{n} \frac{n^3 2n^2 1}{n^4 + n^2 + 1} (n-1)! = \frac{n!}{n^2 + n + 1}$
- $\bullet \quad \Sigma_{k=1}^n \, \frac{1}{n!} = ?$
- $\sum_{k=1}^{n} \frac{2n+3}{n(n+1)} = ?$

Formes fermées

On s'interesse aux sommes $S_n = \sum_{k=n_0}^n a_k$ telles que : $\frac{S_n}{S_{n-1}}$ soit une fraction rationnelle en n.

Proposition 1. $\frac{S_n}{S_{n-1}}$ est une fraction rationelle en n ssi il existe deux fractions rationelles R(X) et $\alpha(X)$ telles que :

- $\forall n \in \mathbb{N}, \ \frac{a_n}{a_{n-1}} = R(n)$
- $\forall n \in \mathbb{N}, S_n = \alpha(n)a_n$

Si c'est le cas on dit que S_n admet une forme fermée.

Algorithme de Gosper : Etant donné la fraction rationelle R(X) (determinée à l'aide de l'expression de a_n), l'algorithme doit determiner si la fraction rationelle $\alpha(X)$ existe et dans ce cas doit la calculer.

Principe de l'algorithme

Proposition 2. Il existe 3 polynômes p(X), q(X), et r(X) tels que :

- $R(X) = \frac{p(X)q(X)}{p(X-1)r(X)}$
- $\forall k \in \mathbb{N}, \ q(X) \land r(X+k) = 1$

Preuve algorithmique:

On définit séquentiellement des polynomes $p_j(X)$, $q_j(X)$ et $r_j(X)$ tels que : $R(X) = \frac{p_j(X)q_j(X)}{p_j(X-1)r_j(X)}$:

- On définit : $p_0(X) = 1$ et $R(X) = \frac{q_0(X)}{r_0(X)}$ avec $q_0(X) \wedge r_0(X) = 1$
- Si $\forall k \in \mathbb{N}, q_i(X) \land r_i(X+k) = 1$ on s'arrête
- Si $\exists k \in \mathbb{N}, q_j(X) \land r_j(X+k) \neq 1$: On pose g(X) le pgcd de $q_j(X)$ et de $r_j(X+k)$ et : $q_{j+1}(X) = \frac{q_j(X)}{g(X)}, r_{j+1}(X) = \frac{r_j(X)}{g(X-k)}$ et $p_{j+1}(X) = p_j(X)g(X)g(X-1)...g(X-k+1)$ On a $R(X) = \frac{p_{j+1}(X)q_{j+1}(X)}{p_{j+1}(X-1)r_{j+1}(X)}$ et deg $q_{j+1}(X) < \deg q_j(X)$

Problème :

Comment tester algorithmiquement si : $\forall k \in \mathbb{N}, q(X) \land r(X+k) = 1$?

On introduit le **résultant** par rapport à la variable X des polynômes q(X) et r(X+Y) :

$$G(Y) = Res(q(X), r(X + Y))$$

On teste ensuite si ce polynôme G admet des racines entières.

Proposition 3. Si la fraction rationelle $\alpha(X)$ existe, alors elle est de la forme

$$\alpha(X) = \frac{q(X+1)}{p(X)}f(X)$$

 $avec\ f(X)\ polynôme\ v\'erifiant\ l\'equation\ fonctionelle\ :$

$$p(X) = q(X+1)f(X) - f(X-1)r(X)$$

Proposition 4. Majoration du degré de f(X):

On pose
$$s_{+}(X) = q(X+1) + r(X), \ s_{-}(X) = q(X+1) - r(X)$$

• Si deg $s_{-}(X) \neq deg \ s_{+}(X) - 1 \ alors$

$$deg \ f(X) = deg \ p(X) - max(deg \ s_{-}(X), \ deg \ s_{+}(X) - 1)$$

• $Si \ l = deg \ s_{-}(X) = deg \ s_{+}(X) - 1$ $On \ \acute{e}crit : s_{-}(X) = u_{l}X^{l} + \dots \ et \ s_{+}(X) = v_{l+1}X^{l+1} + \dots$ $On \ pose \ n_{0} = -2\frac{u_{l}}{u_{l+1}}$ $Alors \ deg \ f \leq \begin{cases} deg \ p - l & si \ n_{0} \notin \mathbb{N} \\ max(deg \ p - l, n_{0}) & sinon. \end{cases}$

Exemple : $\Sigma_{k=0}^n k^2$

•
$$a_n = n^2$$
, $\frac{a_n}{a_{n-1}} = \frac{n^2}{n^2 - 2n + 1}$ donc $R(X) = \frac{X^2}{X^2 - 2X + 1}$

- On écrit $R(X) = \frac{p(X)q(X)}{p(X-1)r(X)}$: on trouve $p(X) = X^2$, q(X) = r(X) = 1.
- On cherche f vérifiant (*) : p(X) = q(X+1)f(X) f(X-1)r(X). La majoration donne f de degré au plus **3**.
- On cherche donc f sous la forme $f(X) = w_0 + w_1X + w_2X^2 + w_3X^3$ (*) s'écrit $X^2 = (w_1 - w_2 + w_3) + (2w_2 - 3w_3)X + 3w_3X^2$ donc matriciellement :

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

• On trouve alors $f(X) = 1/3X^3 + 1/2X^2 + 1/6X$. Donc $\alpha(X) = \frac{q(X+1)}{p(X)} f(X) = f(X)/X^2$ Puis $S_n = n^2 \alpha(n) = 1/3n^3 + 1/2n^2 + 1/6 = \frac{n(n+1)(2n+1)}{6}$

Programmation de l'algorithme en Ocaml

Programmation difficile car il faut en particulier :

- Gérer les polynômes, les fractions rationelles sur Q
- Gérer les matrices
- Calculer le résultant de deux polynômes de $(\mathbb{Q}[X])[Y]$
- Résoudre un système linéaire
- Trouver les racines entières d'un pôlynome

Solution : développer une librairie d'algèbre en Ocaml travaillant sur un corps quelconque.

On utilise les fonctionnalités de **Modules** d'Ocaml : module, module de type et foncteurs.

Définition d'un corps en Ocaml

```
module type DRing = sig

type elem

val zero: elem

val one: elem

val add: elem -> elem -> elem

val minus: elem -> elem

val mult: elem -> elem

val inv: elem -> elem

val inv: elem -> elem

end
```

Utilisation des foncteurs

On prend un module en paramètre pour créer un nouveau module :

```
module Matrix = functor (C : DRing) ->
    struct
    type matrix = C.elem array array
        (* ... *)
    end
```

Librairie complète : 450 lignes de code.

Implémentation de l'algorithme à l'aide de cette librairie

175 lignes de code

```
open Algebra
module C = DRing_Rat(* Les rationnels *)
module Q = Frac(DRing_Rat)(*Les fractions rat.*)
module Py = Poly(Q.DRing_F) (* Les fractions
rationnelles a 2 variables*)

(* 1ière étape : on ecrit R sous la forme : *)
(* R(X) = p(X)q(X) / p(X-1)r(X) avec pour tout k € N
: q(X) ^ r(X+k) = 1 *)
(* Il faut donc calculer les polynomes p, q, r *)

(* 2ième étape : Majoration du degré de f *)

(* 3ième étape calcul explicite de f(X) *)

let solve R = (* *)
let solve_q a_n k0 = (* *)
```

Exemples

• $\sum_{k=0}^{n} k^2$

```
# solve_q ([((1, 1), 2)], [((1,1), 0)]) 0;;

p = 1x^2

q = 1

r = 1

majoration du degre : 3

f = 1/6 x + 1/2 x^2 + 1/3 x^3

Resultat : 1/6 x + 1/2 x^2 + 1/3 x^3
```

On a donc $\sum_{k=0}^{n} k^2 = 1/6n + 1/2n^2 + 1/3n^3 = \frac{n(n+1)(2n+1)}{6}$

• $\sum_{k=0}^{n} \frac{1}{(k+2)(k+5)}$ $(k+2)(k+5) = k^2 + 7k + 10$ # solve_q ([((1,1), 0)], [((10,1), 0); ((7,1), 1); ((11,1), 2)]) 0::

1); ((1,1), 2)]) 0;; p = $432 + 252x + 36x^2$ q = -1/6 + -1/6 xr = -5/6 + -1/6 xmajoration du degre : 3 f = $3384 + 1728x + 216x^2$ Resultat : $(6 + 323/36 x + 10/3 x^2 + 13/36 x^3)/(60 + 47x + 12x^2 + 1x^3)$

On a donc $\sum_{k=0}^{n} \frac{1}{(k+2)(k+5)} = \frac{216+323n+120n^2+13n^3}{36(60+47n+12n^2+n^3)}$

```
• \sum_{k=1}^{n} \frac{n^3 - 2n^2 - 1}{n^4 + n^2 + 1} (n - 1)!

\frac{a_n}{a_{n-1}} = \frac{3 - 6n + 10n^2 - 16n^3 + 14n^4 - 6n^5 + n^6}{-4 + 3n - 2n^2 + 3n^3 - 4n^4 + n^5}
```

```
#let gR = [((3, 1), 0); ((-6, 1), 1); ((10, 1), 2); ((-16,1), 3); ((14,1), 4); ((-6,1),5); ((1,1), 6)], [((-4, 1), 0); ((3, 1), 1); ((-2,1),2); ((3,1), 3); ((-4,1), 4); ((1,1), 5)];; print $ solve gR;; p = -21/16 + -21/8 x^2 + 21/16 x^3 q = -16/7 + 32/7 x + -64/21 x^2 + 16/21 x^3 r = 16/21 + 16/21 x + 16/21 x^2 majoration du degre : d = 0 f = 441/256 Resultat : <math>(1x + -1x^2 + 1x^3)/(-1 + -2x^2 + 1x^3) - : unit = ()
```

Donc
$$S_n = a_n \frac{n - n^2 + n^3}{-1 - 2n^2 + n^3} = \frac{n!}{1 + n + n^2}$$

$$\sum_{k=0}^{n} \frac{1}{k!}$$

$$\frac{a_n}{a_{n-1}} = \frac{1}{n}$$

```
# print $ solve (Q. normalise ([((1, 1), 0)], [((1, 1), 1)]));;

p = 1
q = 1
r = 1x
majoration du degre : d = -1
pas de solution.
```

Il n'existe donc pas d'expression "fermée" de $\sum_{k=0}^{n} \frac{1}{k!}$.

Calcul des racines entières d'un polynome rationnel

$$a_0 + a_1 X + ... + a_d X^d \in \mathbb{Z}[X]$$

Soit $p \in \mathbb{N}$ tel que $a_0 + a_1 p + ... + a_d p^d = 0$
Alors $a_0 = -p(a_1 + ... + a_n p^{d-1})$
Donc **p divise** a_0

Preuve de la proposition 1 :

 $\frac{S_n}{S_{n-1}}$ est une fraction rationelle en n ssi il existe deux fractions rationelles R(X) et $\alpha(X)$ telles que :

- $\forall n \in \mathbb{N}, \frac{a_n}{a_{n-1}} = R(n)$
- $\forall n \in \mathbb{N}, S_n = \alpha(n)a_n$

Preuve:

- C'est suffisant : $\frac{S_n}{S_{n-1}} = \frac{\alpha(n)a_n}{\alpha(n-1)a_{n-1}} = \frac{\alpha(n)R(n)}{\alpha(n-1)}$ fraction rationelle en n.
- C'est nécessaire : supposons que $\frac{S_n}{S_{n-1}} = \sigma(n)$ est une fraction rationelle en n.

On a
$$\frac{a_n}{a_{n-1}} = \frac{S_n - S_{n-1}}{S_{n-1} - S_{n-2}} = \frac{S_n - S_{n-1}}{S_{n-1}(1 - \frac{S_{n-2}}{S_{n-1}})} = \frac{\sigma(n) - 1}{1 - \frac{1}{\sigma(n-1)}}$$

Donc $R(X) = \frac{\sigma(X) - 1}{1 - \frac{1}{\sigma(X-1)}}$
Et $a_n = S_n - S_{n-1} = S_n(1 - \frac{1}{\sigma(n)})$ donc $S_n = \frac{1}{1 - \frac{1}{\sigma(n)}}a_n$

Donc
$$\alpha(X) = \frac{1}{1 - \frac{1}{\sigma(X)}}$$

Preuve de la proposition 3

- On a $1 = \frac{S_n S_{n-1}}{a_n} = \frac{\alpha(n)a_n \alpha(n-1)a_{n-1}}{a_n} = \alpha(n) \frac{\alpha(n-1)}{R(n)}$ Donc $1 = \alpha(n) - \frac{\alpha(n-1)p(n-1)r(n)}{p(n)q(n)}$ Donc $\forall n \in \mathbb{N}, p(n)q(n) = \alpha(n)p(n)q(n) - \alpha(n-1)p(n-1)r(n)$
- On pose $\beta(X) = \alpha(X)p(X)$ On a donc $p(X)q(X) = \beta(X)q(X) - \beta(X-1)r(X)$
- β est un polynôme ! Supposons par l'absurde que ça ne soit pas le cas. Soit z un pôle (complexe) de β .
 - $-p(X)q(X)=\beta(X)q(X)-\beta(X-1)r(X)$ donc : z pôle complexe de $\beta(X-1)$ ou q(z)=0
 - $-p(X+1)q(X+1)=\beta(X+1)q(X+1)-\beta(X)r(X+1)$ donc : z pôle complexe de $\beta(X+1)$ ou r(z+1)=0
 - $-\beta$ a un nombre fini de pôles, donc il existe z : z pôle de β et z-1 n'est pas pôle de β .
 - -z-1 n'est pas pôle de β donc z n'est pas pôle de $\beta(X-1)$. Donc q(z)=0. $\forall k\in\mathbb{N},\, q(X)\wedge r(X+k)=1,\, \mathrm{donc}\,\, \forall k\in\mathbb{N}, r(z+k)\neq 0$. Donc z+1 pôle de β et par récurrence : $\forall k\in\mathbb{N}:\, z+k$ pôle de β .
 - Donc β a un nombre infini de pôles, c'est absurde, donc β est un polynôme.
- $p(X+1)q(X+1) = \beta(X+1)q(X+1) \beta(X)r(X+1)$ et $q(X+1) \wedge r(X+1) = 1$ donc $\beta(X) = f(X)q(X+1)$, f polynôme. On a alors :

$$p(X) = q(X+1)f(X) - f(X-1)r(X)$$

$$\alpha(X) = \frac{q(X+1)}{p(X)}f(X)$$