

Analytic factorization of Lie group representations

Heiko Gimperlein, Bernhard Krötz, Christoph Lienau

Abstract

For every moderate growth representation (π, E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E^ω . There exists a natural algebra of superexponentially decreasing analytic functions $\mathcal{A}(G)$, such that $E^\omega = \Pi(\mathcal{A}(G)) E^\omega$. As a corollary we obtain that E^ω coincides with the space of analytic vectors for the Laplace–Beltrami operator on G .

1 Introduction

Consider a category \mathcal{C} of modules over a nonunital algebra \mathcal{A} . We say that \mathcal{C} has the *factorization property* if for all $\mathcal{M} \in \mathcal{C}$,

$$\mathcal{M} = \mathcal{A} \cdot \mathcal{M} := \text{span} \{a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M}\}.$$

In particular, if $\mathcal{A} \in \mathcal{C}$ this implies $\mathcal{A} = \mathcal{A} \cdot \mathcal{A}$.

Let (π, E) be a representation of a real Lie group G on a Fréchet space E . Then the corresponding space of smooth vectors E^∞ is again a Fréchet space. The representation (π, E) induces a continuous action Π of the algebra $C_c^\infty(G)$ of test functions on E given by

$$\Pi(f)v = \int_G f(g)\pi(g)v \, dg \quad (f \in C_c^\infty(G), v \in E),$$

which restricts to a continuous action on E^∞ . Hence the smooth vectors associated to such representations are a $C_c^\infty(G)$ –module, and a result by Dixmier and Malliavin [3] states that this category has the factorization property.

In this article we prove an analogous result for the category of analytic vectors.

For simplicity, we outline our approach for a Banach representation (π, E) . In this case, the space E^ω of analytic vectors is endowed with a natural inductive limit topology, and gives rise to a representation (π, E^ω) . To define an appropriate algebra acting on E^ω , we fix a left-invariant Riemannian metric on G and let d be the associated distance function. The continuous functions $\mathcal{R}(G)$ on G which decay faster than $e^{-nd(g,1)}$ for all $n \in \mathbb{N}$ form a $G \times G$ –module under the left-right regular representation. We define $\mathcal{A}(G)$ to be the space of analytic vectors of this action. Both $\mathcal{R}(G)$ and $\mathcal{A}(G)$ form an algebra under convolution, and the action Π of $C_c^\infty(G)$ extends to give E^ω the structure of an $\mathcal{A}(G)$ –module.

In this setting, our main theorem says that the category of analytic vectors for Banach representations of G has the factorization property. More generally, we obtain a result for F -representations:

Theorem 1.1. *Let G be a real Lie group and (π, E) an F -representation of G . Then*

$$\mathcal{A}(G) = \mathcal{A}(G) * \mathcal{A}(G)$$

and

$$E^\omega = \Pi(\mathcal{A}(G)) E^\omega = \Pi(\mathcal{A}(G)) E.$$

Let us remark that the special case of bounded Banach representations of $(\mathbb{R}, +)$ has been proved by one of the authors in [7].

As a corollary of Theorem 1.1 we obtain that a vector is analytic if and only if it is analytic for the Laplace–Beltrami operator, which generalizes a result of Goodman [5] for unitary representations.

In particular, the theorem extends Nelson’s result that $\Pi(\mathcal{A}(G)) E^\omega$ is dense in E^ω [8]. Gårding had obtained an analogous theorem for the smooth vectors [4]. However, while Nelson’s proof is based on approximate units constructed from the fundamental solution $\varrho_t \in \mathcal{A}(G)$ of the heat equation on G by letting $t \rightarrow 0^+$, our strategy relies on some more sophisticated functions of the Laplacian.

To prove Theorem 1.1, we first consider the case $G = (\mathbb{R}, +)$. Here the proof is based on the key identity

$$\alpha_\varepsilon(z) \cosh(\varepsilon z) + \beta_\varepsilon(z) = 1,$$

for the entire functions $\alpha_\varepsilon(z) = 2e^{-\varepsilon z \operatorname{erf}(z)}$ and $\beta_\varepsilon(z) = 1 - \alpha_\varepsilon(z) \cosh(\varepsilon z)$ on the complex plane¹. We consider this as an identity for the symbols of the Fourier multiplication operators $\alpha_\varepsilon(i\partial)$, $\beta_\varepsilon(i\partial)$ and $\cosh(i\varepsilon\partial)$. The functions α_ε and β_ε are easily seen to belong to the Fourier image of $\mathcal{A}(\mathbb{R})$, so that $\alpha_\varepsilon(i\partial)$ and $\beta_\varepsilon(i\partial)$ are given by convolution with some $\kappa_\alpha^\varepsilon, \kappa_\beta^\varepsilon \in \mathcal{A}(\mathbb{R})$. For every $v \in E^\omega$ and sufficiently small $\varepsilon > 0$, we may also apply $\cosh(i\varepsilon\partial)$ to the orbit map $\gamma_v(g) = \pi(g)v$ and conclude that

$$(\cosh(i\varepsilon\partial) \gamma_v) * \kappa_\alpha^\varepsilon + \gamma_v * \kappa_\beta^\varepsilon = \gamma_v.$$

The theorem follows by evaluating in 0.

Unlike in the work of Dixmier and Malliavin, the rigid nature of analytic functions requires a global geometric approach in the general case. The idea is to refine the functional calculus of Cheeger, Gromov and Taylor [2] for the Laplace–Beltrami operator in the special case of a Lie group. Using this tool, the general proof then closely mirrors the argument for $(\mathbb{R}, +)$.

The article concludes by showing in Section 6 how our strategy may be adapted to solve some related factorization problems.

¹Some basic properties of these functions and the Gaussian error function erf are collected in the appendix.

2 Basic Notions of Representations

For a Hausdorff, locally convex and sequentially complete topological vector space E we denote by $GL(E)$ the associated group of isomorphisms. Let G be a Lie group. By a *representation* (π, E) of G we understand a group homomorphism $\pi : G \rightarrow GL(E)$ such that the resulting action

$$G \times E \rightarrow E, \quad (g, v) \mapsto \pi(g)v,$$

is continuous. For a vector $v \in E$ we shall denote by

$$\gamma_v : G \rightarrow E, \quad g \mapsto \pi(g)v,$$

the corresponding continuous orbit map.

If E is a Banach space, then (π, E) is called a *Banach representation*.

Remark 2.1. Let (π, E) be a Banach representation. The uniform boundedness principle implies that the function

$$w_\pi : G \rightarrow \mathbb{R}_+, \quad g \mapsto \|\pi(g)\|,$$

is a *weight*, i.e. a locally bounded submultiplicative positive function on G .

A representation (π, E) is called an *F-representation* if

- E is a Fréchet space.
- There exists a countable family of seminorms $(p_n)_{n \in \mathbb{N}}$ which define the topology of E such that for every $n \in \mathbb{N}$ the action $G \times (E, p_n) \rightarrow (E, p_n)$ is continuous. Here (E, p_n) stands for the vector space E endowed with the topology induced from p_n .

Remark 2.2. (a) Every Banach representation is an *F-representation*.

(b) Let (π, E) be a Banach representation and $\{X_n : n \in \mathbb{N}\}$ a basis of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of the Lie algebra of G . Define a topology on the space of smooth vectors E^∞ by the seminorms $p_n(v) = \|d\pi(X_n)v\|$. Then the representation (π, E^∞) induced by π on this subspace is an *F-representation* (cf. [1]).

(c) Endow $E = C(G)$ with the topology of compact convergence. Then E is a Fréchet space and G acts continuously on E via right displacements in the argument. The corresponding representation (π, E) , however, is not an *F-representation*.

2.1 Analytic vectors

If M is a complex manifold and E is a topological vector space, then we denote by $\mathcal{O}(M, E)$ the space of E -valued holomorphic maps. We remark that $\mathcal{O}(M, E)$ is a topological vector space with regard to the compact-open topology.

Let us denote by \mathfrak{g} the Lie algebra of G and by $\mathfrak{g}_{\mathbb{C}}$ its complexification. We assume that $G \subset G_{\mathbb{C}}$ where $G_{\mathbb{C}}$ is a Lie group with Lie algebra $\mathfrak{g}_{\mathbb{C}}$. Let us stress

that this assumption is superfluous but simplifies notation and exposition. We denote by $\mathcal{U}_{\mathbb{C}}$ the set of open neighborhoods of $\mathbf{1} \in G_{\mathbb{C}}$.

If (π, E) is a representation, then we call a vector $v \in E$ *analytic* if the orbit map $\gamma_v : G \rightarrow E$ extends to a holomorphic map to some GU for $U \in \mathcal{U}_{\mathbb{C}}$. The space of all analytic vectors is denoted by E^ω . We note the natural embedding

$$E^\omega \rightarrow \lim_{U \rightarrow \{\mathbf{1}\}} \mathcal{O}(GU, E), \quad v \mapsto \gamma_v,$$

and topologize E^ω accordingly.

3 Algebras of superexponentially decaying functions

We wish to exhibit natural algebras of functions acting on F -representations. For that let us fix a left invariant Riemannian metric \mathbf{g} on G . The corresponding Riemannian measure dg is a left invariant Haar measure on G . We denote by $d(g, h)$ the distance function associated to \mathbf{g} (i.e. the infimum of the lengths of all paths connecting g and h) and set

$$d(g) := d(g, \mathbf{1}) \quad (g \in G).$$

Here are two key properties of $d(g)$, see [4]:

Lemma 3.1. *If $w : G \rightarrow \mathbb{R}_+$ is locally bounded and submultiplicative (i.e. $w(gh) \leq w(g)w(h)$), then there exist $c, C > 0$ such that*

$$w(g) \leq Ce^{cd(g)} \quad (g \in G).$$

Lemma 3.2. *There exists $c > 0$ such that for all $C > c$, $\int e^{-Cd(g)} dg < \infty$.*

We introduce the space of *superexponentially decaying continuous functions* on G by

$$\mathcal{R}(G) := \left\{ \varphi \in C(G) \mid \forall n \in \mathbb{N} : \sup_{g \in G} |\varphi(g)| e^{nd(g)} < \infty \right\}.$$

It is clear that $\mathcal{R}(G)$ is a Fréchet space which is independent of the particular choice of the metric \mathbf{g} . A simple computation shows that $\mathcal{R}(G)$ becomes a Fréchet algebra under convolution

$$\varphi * \psi(g) = \int_G \varphi(x) \psi(x^{-1}g) dx \quad (\varphi, \psi \in \mathcal{R}(G), g \in G).$$

We remark that the left-right regular representation $L \otimes R$ of $G \times G$ on $\mathcal{R}(G)$ is an F -representation.

If (π, E) is an F -representation, then Lemma 3.1 and Remark 2.1 imply that

$$\Pi(\varphi)v := \int_G \varphi(g) \pi(g)v dg \quad (\varphi \in \mathcal{R}(G), v \in E)$$

defines an absolutely convergent integral. Hence the prescription

$$\mathcal{R}(G) \times E \rightarrow E, \quad (\varphi, v) \mapsto \Pi(\varphi)v,$$

defines a continuous algebra action of $\mathcal{R}(G)$ (here continuous refers to the continuity of the bilinear map $\mathcal{R}(G) \times E \rightarrow E$).

Our concern is now with the analytic vectors of $(L \otimes R, \mathcal{R}(G))$. We set $\mathcal{A}(G) := \mathcal{R}(G)^\omega$ and record that

$$\mathcal{A}(G) = \lim_{U \rightarrow \{1\}} \mathcal{R}(G)_U,$$

where

$$\mathcal{R}(G)_U = \left\{ \varphi \in \mathcal{O}(UGU) \mid \forall Q \Subset U \ \forall n \in \mathbb{N} : \sup_{g \in G} \sup_{q_1, q_2 \in Q} |\varphi(q_1 g q_2)| e^{nd(g)} < \infty \right\}.$$

It is clear that $\mathcal{A}(G)$ is a subalgebra of $\mathcal{R}(G)$ and that

$$\Pi(\mathcal{A}(G)) E \subset E^\omega$$

whenever (π, E) is an F -representation.

4 Some geometric analysis on Lie groups

Let us denote by $\mathcal{V}(G)$ the space of left-invariant vector fields on G . It is common to identify \mathfrak{g} with $\mathcal{V}(G)$ where $X \in \mathfrak{g}$ corresponds to the vector field \tilde{X} given by

$$(\tilde{X}f)(g) = \frac{d}{dt} \Big|_{t=0} f(g \exp(tX)) \quad (g \in G, f \in C^\infty(G)).$$

We note that the adjoint of \tilde{X} on the Hilbert space $L^2(G)$ is given by

$$\tilde{X}^* = -\tilde{X} - \text{tr}(\text{ad } X).$$

Note that $\tilde{X}^* = -\tilde{X}$ in case \mathfrak{g} is unimodular. Let us fix an orthonormal basis X_1, \dots, X_n of \mathfrak{g} with respect to \mathbf{g} . Then the Laplace–Beltrami operator $\Delta = d^*d$ associated to \mathbf{g} is given explicitly by

$$\Delta = \sum_{j=1}^n (-\tilde{X}_j - \text{tr}(\text{ad } X_j)) \tilde{X}_j.$$

As (G, \mathbf{g}) is complete, Δ is essentially selfadjoint. We denote by

$$\sqrt{\Delta} = \int \lambda \, dP(\lambda)$$

the corresponding spectral resolution. It provides us with a measurable functional calculus, which allows to define

$$f(\sqrt{\Delta}) = \int f(\lambda) \, dP(\lambda)$$

as an unbounded operator $f(\sqrt{\Delta})$ on $L^2(G)$ with domain

$$D(f(\sqrt{\Delta})) = \left\{ \varphi \in L^2(G) \mid \int |f(\lambda)|^2 \, d\langle P(\lambda)\varphi, \varphi \rangle < \infty \right\}.$$

Let $c, \vartheta > 0$. We are going to apply the above calculus to functions in the space

$$\begin{aligned}\mathcal{F}_{c,\vartheta} &= \left\{ \varphi \in \mathcal{O}(\mathbb{C}) \mid \forall N \in \mathbb{N} : \sup_{z \in \mathcal{W}_{N,\vartheta}} |\varphi(z)| e^{c|z|} < \infty \right\}, \\ \mathcal{W}_{N,\vartheta} &= \{z \in \mathbb{C} \mid |\operatorname{Im} z| < N\} \cup \{z \in \mathbb{C} \mid |\Im z| < \vartheta |\operatorname{Re} z|\}.\end{aligned}$$

The resulting operators are bounded on $L^2(G)$ and given by a symmetric and left invariant integral kernel $K_f \in C^\infty(G \times G)$. Hence there exists a convolution kernel $\kappa_f \in C^\infty(G)$ with $\kappa_f(x) = \kappa_f(x^{-1})$ such that $K_f(x, y) = \kappa_f(x^{-1}y)$, and for all $x \in G$:

$$f(\sqrt{\Delta}) \varphi = \int_G K_f(x, y) \varphi(y) dy = \int_G \kappa_f(y^{-1}x) \varphi(y) dy = (\varphi * \kappa_f)(x).$$

A theorem by Cheeger, Gromov and Taylor [2] describes the global behavior:

Theorem 4.1. *Let $c, \vartheta > 0$ and $f \in \mathcal{F}_{c,\vartheta}$ even. Then $\kappa_f \in \mathcal{R}(G)$.*

We are going to need an analytic variant of their result.

Theorem 4.2. *Under the assumptions of the previous theorem: $\kappa_f \in \mathcal{A}(G)$.*

Proof. We only have to establish local regularity, as the decay at infinity is already contained in [2].

The Fourier inversion formula allows to express κ_f as an integral of the wave kernel:

$$\kappa_f(\cdot) = K_f(\cdot, \mathbf{1}) = f(\sqrt{\Delta}) \delta_1 = \int_{\mathbb{R}} \hat{f}(\lambda) \cos(\lambda \sqrt{\Delta}) \delta_1 d\lambda.$$

As we would like to employ $\|\cos(\lambda \sqrt{\Delta})\|_{\mathcal{L}(L^2(G))} \leq 1$, we cut off a fundamental solution of Δ^k to write

$$\delta_1 = \Delta^k \varphi + \psi$$

for a fixed $k > \frac{1}{4} \dim(G)$ and some compactly supported $\varphi, \psi \in L^2$. Hence,

$$\Delta^l \kappa_f(\cdot) = \int_{\mathbb{R}} \hat{f}^{(2k+2l)}(\lambda) \cos(\lambda \sqrt{\Delta}) \varphi d\lambda + \int_{\mathbb{R}} \hat{f}^{(2l)}(\lambda) \cos(\lambda \sqrt{\Delta}) \psi d\lambda.$$

In the appendix we show the following inequality for all $n \in \mathbb{N}$ and some constants $C_n, R > 0$

$$|\hat{f}^{(l)}(\lambda)| \leq C_n l! R^l e^{-n|\lambda|}.$$

Using $\|\cos(\lambda \sqrt{\Delta})\|_{\mathcal{L}(L^2(G))} \leq 1$ and the Sobolev inequality, we obtain

$$|\Delta^l \kappa_f(\cdot)| \leq C_1 (2l)! S^{2l}$$

for some $S > 0$. A classical result by Goodman [10] now implies the right analyticity of κ_f , while left analyticity follows from $\kappa_f(x) = \kappa_f(x^{-1})$. Browder's theorem (Theorem 3.3.3 in [6]) then implies joint analyticity. \square

4.1 Regularized distance function

In the last part of this section we are going to discuss a holomorphic regularization of the distance function. Later on this will be used to construct certain holomorphic replacements for cut-off functions.

Consider the time-1 heat kernel $\varrho := \kappa_{e^{-\lambda^2}}$ and define \tilde{d} on G by

$$\tilde{d}(g) := e^{-\Delta} d(g) = \int_G \varrho(x^{-1}g) \, d(x) \, dx.$$

Lemma 4.3. *There exist $U \in \mathcal{U}_{\mathbb{C}}$ and a constant $C_U > 0$ such that $\tilde{d} \in \mathcal{O}(GU)$ and for all $g \in G$ and all $u \in U$*

$$|\tilde{d}(gu) - d(g)| \leq C_U.$$

Proof. According to Theorem 4.2 the heat kernel ϱ admits an analytic continuation to a superexponentially decreasing function on GU for some bounded $U \in \mathcal{U}_{\mathbb{C}}$. This allows to extend \tilde{d} to GU . To prove the inequality, we consider the integral

$$\bar{\varrho}(y) = \int_G \varrho(x^{-1}y) \, dx$$

as a holomorphic function of $y \in GU$. By the left invariance of the Haar measure and the normalization of the heat kernel, $\bar{\varrho} = 1$ on G , and hence on GU . Recall the triangle inequality on G : $|d(x) - d(g)| \leq d(x^{-1}g)$. This implies the uniform bound

$$\begin{aligned} |\tilde{d}(gu) - d(g)| &= \left| \int_G \varrho(x^{-1}gu) (d(x) - d(g)) \, dx \right| \\ &\leq \int_G |\varrho(x^{-1}gu)| \, d(x^{-1}g) \, dx \\ &\leq \sup_{v \in U} \int_G |\varrho(x^{-1}v)| \, d(x^{-1}) \, dx. \end{aligned}$$

□

5 Proof of the Factorization Theorem

Let (π, E) be a representation of G on a sequentially complete locally convex Hausdorff space and consider the Laplacian as an element

$$\Delta = \sum_{j=1}^n (-X_j - \text{tr}(\text{ad } X_j)) \, X_j$$

of the universal enveloping algebra of \mathfrak{g} . A vector $v \in E$ will be called Δ -analytic, if there exists $\varepsilon > 0$ such that for all continuous seminorms p on E one has

$$\sum_{j=0}^{\infty} \frac{\varepsilon^j}{(2j)!} p(\Delta^j v) < \infty.$$

Lemma 5.1. *Let E be a sequentially complete locally convex Hausdorff space and $\varphi \in \mathcal{O}(U, E)$ for some $U \in \mathcal{U}_{\mathbb{C}}$. Then there exists $R = R(U) > 0$ such that for all continuous semi-norms p on E there exists a constant C_p such that*

$$p\left(\left(\widetilde{X_{i_1}} \cdots \widetilde{X_{i_k}} \varphi\right)(\mathbf{1})\right) \leq C_p k! R^k$$

for all $(i_1, \dots, i_k) \in \mathbb{N}^k$, $k \in \mathbb{N}$.

Proof. There exists a small neighborhood of 0 in \mathfrak{g} in which the mapping

$$\Phi : \mathfrak{g} \rightarrow E, X \mapsto \varphi(\exp(X)),$$

is analytic. Let $X = t_1 X_1 + \cdots + t_n X_n$. Because E is sequentially complete, Φ can be written for small X and t as

$$\Phi(X) = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha|=k}} \left(\widetilde{X_{\alpha_1}} \cdots \widetilde{X_{\alpha_k}} \varphi \right) (\mathbf{1}) t^\alpha.$$

As this series is absolutely summable, there exists a $R > 0$ such that for every continuous semi-norm p on E there is a constant C_p with

$$p\left(\left(\widetilde{X_{i_1}} \cdots \widetilde{X_{i_k}} \varphi\right)(\mathbf{1})\right) \leq C_p k! R^k$$

for all $(i_1, \dots, i_k) \in \mathbb{N}^k$, $k \in \mathbb{N}$. \square

As a consequence we obtain:

Lemma 5.2. *Let (π, E) be a representation of G on some sequentially complete locally convex Hausdorff space E . Then analytic vectors are Δ -analytic.*

In Corollary 5.6 we will see that the converse holds for F -representations.

Let (π, E) be an F -representation of G . Then for each $n \in \mathbb{N}$ there exists $c_n, C_n > 0$ such that

$$\|\pi(g)\|_n \leq C_n \cdot e^{c_n d(g)} \quad (g \in G),$$

where

$$\|\pi(g)\|_n := \sup_{\substack{p_n(v) \leq 1 \\ v \in E}} p_n(\pi(g)v).$$

For $U \in \mathcal{U}_{\mathbb{C}}$ and $n \in \mathbb{N}$ we set

$$\mathcal{F}_{U,n} = \left\{ \varphi \in \mathcal{O}(GU, E) \mid \forall Q \Subset U \ \forall \varepsilon > 0 : \sup_{g \in G} \sup_{q \in Q} p_n(\varphi(gq)) e^{-(c_n + \varepsilon)d(g)} < \infty \right\}.$$

We are also going to need the subspace of superexponentially decaying functions in $\bigcap_n \mathcal{F}_{U,n}$:

$$\mathcal{R}(GU, E) = \left\{ \varphi \in \mathcal{O}(GU, E) \mid \forall Q \Subset U \ \forall n, N \in \mathbb{N} : \sup_{g \in G} \sup_{q \in Q} p_n(\varphi(gq)) e^{Nd(g)} < \infty \right\}.$$

We record:

Lemma 5.3. *If $\kappa \in \mathcal{A}(G)_V$, then right convolution with κ is a bounded operator from $\mathcal{F}_{U,n}$ to $\mathcal{F}_{V,n}$ for all $n \in \mathbb{N}$.*

We denote by \mathcal{C}_ε the power series expansion $\sum_{j=0}^{\infty} \frac{\varepsilon^{2j}}{(2j)!} \Delta^j$ of $\cosh(\varepsilon\sqrt{\Delta})$. Note the following consequence of Lemma 5.1:

Lemma 5.4. *Let $U, V \in \mathcal{U}_{\mathbb{C}}$ such that $V \Subset U$. Then there exists $\varepsilon > 0$ such that \mathcal{C}_ε is a bounded operator from $\mathcal{F}_{U,n}$ to $\mathcal{F}_{V,n}$ for all $n \in \mathbb{N}$.*

As in the Appendix, consider the functions $\alpha_\varepsilon(z) = 2e^{-\varepsilon z} \operatorname{erf}(z)$ and $\beta_\varepsilon(z) = 1 - \alpha_\varepsilon(z) \cosh(\varepsilon z)$, which belong to the space $\mathcal{F}_{2\varepsilon, \vartheta}$. We would like to substitute $\sqrt{\Delta}$ into our key identity (A.3)

$$\alpha_\varepsilon(z) \cosh(\varepsilon z) + \beta_\varepsilon(z) = 1$$

and replace the hyperbolic cosine by its Taylor expansion.

Lemma 5.5. *Let $U \in \mathcal{U}_{\mathbb{C}}$. Then there exist $\varepsilon > 0$ and $V \subset U$ such that for any $\varphi \in \mathcal{F}_{U,n}$, $n \in \mathbb{N}$,*

$$\mathcal{C}_\varepsilon(\varphi) * \kappa_\alpha^\varepsilon + \varphi * \kappa_\beta^\varepsilon = \varphi$$

holds as functions on GV .

Proof. Note that $\kappa_\alpha^\varepsilon, \kappa_\beta^\varepsilon \in \mathcal{A}(G)$ according to Theorem 4.2. We first consider the case $E = \mathbb{C}$ and $\varphi \in L^2(G)$. With $|\alpha_\varepsilon(z) \cosh(\varepsilon z)|$ being bounded, $\cosh(\varepsilon\sqrt{\Delta})$ maps its domain into the domain of $\alpha_\varepsilon(\sqrt{\Delta})$, and the rules of the functional calculus ensure

$$\varphi - \beta_\varepsilon(\sqrt{\Delta})\varphi = (\alpha_\varepsilon(\cdot) \cosh(\varepsilon\cdot))(\sqrt{\Delta})\varphi = (\cosh(\varepsilon\sqrt{\Delta})\varphi) * \kappa_\alpha^\varepsilon$$

in $L^2(G)$ for all $\varphi \in D(\cosh(\varepsilon\sqrt{\Delta}))$. For such φ , the partial sums of $\mathcal{C}_\varepsilon\varphi$ converge to $\cosh(\varepsilon\sqrt{\Delta})\varphi$ in $L^2(G)$, and hence almost everywhere. Indeed,

$$\begin{aligned} & \left\| \cosh(\varepsilon\sqrt{\Delta})\varphi - \sum_{j=0}^N \frac{\varepsilon^{2j}}{(2j)!} \Delta^j \varphi \right\|_{L^2(G)}^2 \\ &= \int \left\langle dP(\lambda) \left(\cosh(\varepsilon\sqrt{\Delta})\varphi - \sum_{j=0}^N \frac{\varepsilon^{2j}}{(2j)!} \Delta^j \varphi \right), \cosh(\varepsilon\sqrt{\Delta})\varphi - \sum_{k=0}^N \frac{\varepsilon^{2k}}{(2k)!} \Delta^k \varphi \right\rangle \\ &= \int \left(\cosh(\varepsilon\lambda) - \sum_{k=0}^N \frac{(\varepsilon\lambda)^{2k}}{(2k)!} \right)^2 \langle dP(\lambda)\varphi, \varphi \rangle \\ &= \sum_{j,k=N+1}^{\infty} \int \frac{(\varepsilon\lambda)^{2j}}{(2j)!} \frac{(\varepsilon\lambda)^{2k}}{(2k)!} \langle dP(\lambda)\varphi, \varphi \rangle, \end{aligned}$$

and the right hand side tends to 0 for $N \rightarrow \infty$, because

$$\sum_{j,k=0}^{\infty} \int \frac{(\varepsilon\lambda)^{2j}}{(2j)!} \frac{(\varepsilon\lambda)^{2k}}{(2k)!} \langle dP(\lambda)\varphi, \varphi \rangle = \int \cosh(\varepsilon\lambda)^2 \langle dP(\lambda)\varphi, \varphi \rangle < \infty.$$

In particular, given $\varphi \in \mathcal{R}(GU, E)$ and $\lambda \in E'$, we obtain $\mathcal{C}_\varepsilon \lambda(\varphi) = \cosh(\varepsilon \sqrt{\Delta}) \lambda(\varphi)$ almost everywhere and

$$\mathcal{C}_\varepsilon(\lambda(\varphi)) * \kappa_\alpha^\varepsilon + \lambda(\varphi) * \kappa_\beta^\varepsilon = \lambda(\varphi)$$

as analytic functions on G for sufficiently small $\varepsilon > 0$.

Since the above identity holds for all $\lambda \in E'$, we obtain

$$\mathcal{C}_\varepsilon(\varphi) * \kappa_\alpha^\varepsilon + \varphi * \kappa_\beta^\varepsilon = \varphi$$

on any connected domain GV , $\mathbf{1} \in V \subset U$, on which the left hand side is holomorphic.

Recall the regularized distance function $\tilde{d}(g) = e^{-\Delta} d(g)$ from Lemma 4.3, and set $\chi_\delta(g) := e^{-\delta \tilde{d}(g)^2}$ ($\delta > 0$). Given $\varphi \in \mathcal{F}_{U,n}$, $\chi_\delta \varphi \in \mathcal{R}(GU, E)$ and

$$\mathcal{C}_\varepsilon(\chi_\delta \varphi) * \kappa_\alpha^\varepsilon + (\chi_\delta \varphi) * \kappa_\beta^\varepsilon = \chi_\delta \varphi.$$

The limit $\chi_\delta \varphi \rightarrow \varphi$ in $\mathcal{F}_{U,n}$ as $\delta \rightarrow 0$ is easily verified. From Lemma 5.3 we also get $(\chi_\delta \varphi) * \kappa_\beta^\varepsilon \rightarrow \varphi * \kappa_\beta^\varepsilon$ as $\delta \rightarrow 0$. Finally Lemma 5.3 and Lemma 5.4 imply

$$\mathcal{C}_\varepsilon(\chi_\delta \varphi) * \kappa_\alpha^\varepsilon \rightarrow \mathcal{C}_\varepsilon(\varphi) * \kappa_\alpha^\varepsilon \quad (\delta \rightarrow 0).$$

The assertion follows. \square

Proof of Theorem 1.1. Given $v \in E^\omega$, the orbit map γ_v belongs to $\bigcap_n \mathcal{F}_{U,n}$ for some $U \in \mathcal{U}_\mathbb{C}$. Applying Lemma 5.5 to the orbit map and evaluating at $\mathbf{1}$ we obtain the desired factorization

$$v = \gamma_v(\mathbf{1}) = \Pi(\kappa_\alpha^\varepsilon)(\mathcal{C}_\varepsilon(\gamma_v)(\mathbf{1})) + \Pi(\kappa_\beta^\varepsilon)(\gamma_v(\mathbf{1})).$$

\square

Note the following generalization of a theorem by Goodman for unitary representations [5, 10].

Corollary 5.6. *Let (π, E) be an F -representation. Then every Δ -analytic vector is analytic.*

Remark 5.7. a) A further consequence of our Theorem 1.1 is a simple proof of the fact that the space of analytic vectors for a Banach representation is complete.

b) We can also substitute $\sqrt{\Delta}$ into Dixmier's and Malliavin's presentation of the constant function 1 on the real line [3]. This invariant refinement of their argument shows that the smooth vectors for a Fréchet representation are precisely the vectors in the domain of Δ^k for all $k \in \mathbb{N}$.

6 Related Problems

We conclude this article with a discussion of how our techniques can be modified to deal with a number of similar questions.

In the context of the introduction, given a nonunital algebra \mathcal{A} , a category \mathcal{C} of \mathcal{A} -modules is said to have the *strong factorization property* if for all $\mathcal{M} \in \mathcal{C}$,

$$\mathcal{M} = \{am \mid a \in \mathcal{A}, m \in \mathcal{M}\}.$$

6.1 A Strong Factorization of Test Functions

Our methods may be applied to solve a related strong factorization problem for test functions. On \mathbb{R}^n the Fourier transform allows to write a test function $\varphi \in C_c^\infty(\mathbb{R}^n)$ as the convolution $\psi * \Psi$ of two Schwartz functions, and [9] posed the natural problem whether one could demand $\psi, \Psi \in \mathcal{R}(\mathbb{R}^n)$. We are going to prove this in a more general setting.

Theorem 6.1. *For every real Lie group G*

$$C_c^\infty(G) \subset \{\psi * \Psi \mid \psi, \Psi \in \mathcal{R}(G)\}.$$

As above, we first regularize an appropriate distance function and set

$$l(z) = \frac{1}{\sqrt{\pi}} e^{-z^2} * \log(1 + |z|).$$

Lemma 6.2. *The function $l(z)$ is entire and approximates $\log(1 + |z|)$ in the sense that for all $N > 0$, $\vartheta \in (0, 1)$ there exists a constant $C_{N,\vartheta}$ such that*

$$|l(z) - \log(1 + |z|)| \leq C_{N,\vartheta} \quad (z \in \mathcal{W}_{N,\vartheta}).$$

Let $m \in \mathbb{N}$. We would like to substitute the square root of the Laplacian associated to a left invariant metric G into a decomposition

$$1 = \widehat{\psi}_m(z) \widehat{\Psi}_m(z)$$

of the identity. In the current situation we use $\widehat{\psi}_m(z) = e^{-ml(z)}$ and $\widehat{\Psi}_m(z) = e^{ml(z)}$. Denote the convolution kernels of $\widehat{\psi}_m(\sqrt{\Delta})$ and $\widehat{\Psi}_m(\sqrt{\Delta})$ by ψ_m resp. Ψ_m . The ideas from the proof of Theorem 4.2 may be combined with the results of [2] to obtain:

Lemma 6.3. *Let $\chi \in C_c^\infty(G)$ with $\chi = 1$ in a neighborhood of 1 . Then $\chi \Psi_m$ is a compactly supported distribution of order m and $(1 - \chi) \Psi_m \in \mathcal{R}(G) \cap C^\infty(G)$. Given $k \in \mathbb{N}$, $\psi_m \in \mathcal{R}(G) \cap C^k(G)$ for sufficiently large m .*

Therefore $\widehat{\Psi}_m(\sqrt{\Delta})$ maps $C_c^\infty(G)$ to $\mathcal{R}(G)$. The functional calculus leads to a factorization

$$\text{Id}_{C_c^\infty(G)} = \widehat{\psi}_m(\sqrt{\Delta}) \widehat{\Psi}_m(\sqrt{\Delta})$$

of the identity, and in particular for any $\varphi \in C_c^\infty(G)$,

$$\varphi = (\widehat{\Psi}_m(\sqrt{\Delta}) \varphi) * \psi_m \in \mathcal{R}(G) * \mathcal{R}(G).$$

6.2 Strong Factorization of $\mathcal{A}(G)$

It might be possible to strengthen Theorem 1.1 by showing that the analytic vectors have the strong factorization property.

Conjecture 6.4. *For any F -representation (π, E) of a real Lie group G ,*

$$E^\omega = \{\Pi(\varphi)v \mid \varphi \in \mathcal{A}(G), v \in E^\omega\}.$$

We provide some evidence in support of this conjecture and verify it for Banach representations of $(\mathbb{R}, +)$ using hyperfunction techniques.

Lemma 6.5. *The conjecture holds for every Banach representation of $(\mathbb{R}, +)$.*

Proof. Let (π, E) be a representation of \mathbb{R} on a Banach space $(E, \|\cdot\|)$. Then there exist constants $c, C > 0$ such that $\|\pi(x)\| \leq Ce^{c|x|}$ for all $x \in \mathbb{R}$. If $v \in E^\omega$, there exists $R > 0$ such that the orbit map γ_v extends holomorphically to the strip $S_R = \{z \in \mathbb{C} \mid \operatorname{Im} z \in (-R, R)\}$. Let

$$\begin{aligned}\mathcal{F}_+(\gamma_v)(z) &= \int_{-\infty}^0 \gamma_v(t)e^{-itz} dt, \quad \operatorname{Im} z > c, \\ -\mathcal{F}_-(\gamma_v)(z) &= \int_0^\infty \gamma_v(t)e^{-itz} dt, \quad \operatorname{Im} z < -c.\end{aligned}$$

Define the Fourier transform $\mathcal{F}(\gamma_v)$ of γ_v by

$$\mathcal{F}(\gamma_v)(x) = \mathcal{F}_+(\gamma_v)(x + 2ic) - \mathcal{F}_-(\gamma_v)(x - 2ic).$$

Note that $\|\mathcal{F}(\gamma_v)(x)\| e^{r|x|}$ is bounded for every $r < R$. Let $g(z) := \frac{Rz}{2} \operatorname{erf}(z)$ and write $\mathcal{F}(\gamma_v)$ as

$$\mathcal{F}(\gamma_v) = e^{-g} e^g \mathcal{F}(\gamma_v) \tag{1}$$

Define the inverse Fourier transform $\mathcal{F}^{-1}(\mathcal{F}(\gamma_v))$ for $x \in \mathbb{R}$ by

$$\mathcal{F}^{-1}(\mathcal{F}(\gamma_v))(x) = \int_{\operatorname{Im} t=2c} \mathcal{F}_+(\gamma_v)(t)e^{itx} dt - \int_{\operatorname{Im} t=-2c} \mathcal{F}_-(\gamma_v)(t)e^{itx} dt.$$

Applying the inverse Fourier transform to both sides of (1) and evaluating at 0 yields

$$v = (2\pi)^{-1} \Pi(\mathcal{F}^{-1}(e^{-g})) (\mathcal{F}^{-1}(e^g \mathcal{F}(\gamma_v))(0)).$$

The assertion follows because $\mathcal{F}^{-1}(e^{-g}) \in \mathcal{A}(\mathbb{R})$. \square

Strong factorization likewise holds for Banach representations of $(\mathbb{R}^n, +)$. Using the Iwasawa decomposition we are able to deduce from this the conjecture for $SL_2(\mathbb{R})$.

A An Identity of Entire Functions

Consider the following space of exponentially decaying holomorphic functions

$$\begin{aligned}\mathcal{F}_{c,\vartheta} &= \left\{ \varphi \in \mathcal{O}(\mathbb{C}) \mid \forall N \in \mathbb{N} : \sup_{z \in \mathcal{W}_{N,\vartheta}} |\varphi(z)| e^{c|z|} < \infty \right\}, \\ \mathcal{W}_{N,\vartheta} &= \{z \in \mathbb{C} \mid |\Im z| < N\} \cup \{z \in \mathbb{C} \mid |\Im z| < \vartheta |\Re z|\}.\end{aligned}$$

To understand the convolution kernel of a Fourier multiplication operator on $L^2(\mathbb{R})$ with symbol in $\mathcal{F}_{c,\vartheta}$, or more generally functions of $\sqrt{\Delta}$ on a manifold as in Section 4, we need some properties of the Fourier transformed functions.

Lemma A.1. *Given $f \in \mathcal{F}_{c,\vartheta}$, there exist $C, R > 0$ such that*

$$|\hat{f}^{(k)}(z)| \leq C_n k! R^k e^{-n|z|}$$

for all $k, n \in \mathbb{N}$.

Proof. Given $f \in \mathcal{F}_{c,\vartheta}$, the Fourier transform extends to a superexponentially decaying holomorphic function on $\mathcal{W}_{c,\vartheta}$. It follows from Cauchy's integral formula that

$$|\hat{f}^{(k)}(z)| \leq C_n k! R^k e^{-n|z|}$$

for all $k, n \in \mathbb{N}$. \square

Some important examples of functions in $\mathcal{F}_{c,\vartheta}$ may be constructed with the help of the Gaussian error function [11]

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^x e^{-t^2} dt.$$

The error function extends to an odd entire function, and $\text{erf}(z) - 1 = O(z^{-1}e^{-z^2})$ as $z \rightarrow \infty$ in a sector $\{|\text{Im } z| < \vartheta \text{ Re } z\}$ around \mathbb{R}_+ .

Remark A.2. The function

$$z \text{erf}(z) = \frac{1}{\sqrt{\pi}} e^{-z^2} * |z| - \frac{1}{\sqrt{\pi}} e^{-z^2}$$

is just one convenient regularization of the absolute value $|z|$, and the basic properties we need also hold for other similarly constructed functions. For example replace the heat kernel $\frac{1}{\sqrt{\pi}} e^{-z^2}$ by a suitable analytic probability density.

For any $\varepsilon > 0$, some algebra shows that the even entire functions $\alpha_\varepsilon(z) = 2e^{-\varepsilon z} \text{erf}(z)$ and $\beta_\varepsilon(z) = 1 - \alpha_\varepsilon(z) \cosh(\varepsilon z)$ decay exponentially as $z \rightarrow \infty$ in $\mathcal{W}_{N,\vartheta}$ for any $\vartheta < 1$. Hence $\alpha_\varepsilon, \beta_\varepsilon \in \mathcal{F}_{2\varepsilon,\vartheta}$. Our later factorization hinges on a multiplicative decomposition of the constant function 1:

Lemma A.3. *For all $\varepsilon > 0, \vartheta \in (0, 1)$, the functions $\alpha_\varepsilon, \beta_\varepsilon \in \mathcal{F}_{2\varepsilon,\vartheta}$ satisfy the identity*

$$\alpha_\varepsilon(z) \cosh(\varepsilon z) + \beta_\varepsilon(z) = 1.$$

References

- [1] J. Bernstein, B. Krötz, *Smooth Fréchet Globalizations of Harish-Chandra Modules*, arXiv:0812.1684 (2008).
- [2] J. Cheeger, M. Gromov, M. Taylor, *Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator, and the Geometry of Complete Riemannian Manifolds*, J. Differential Geom. **17** (1982), 15–53.
- [3] J. Dixmier, P. Malliavin, *Factorisations de fonctions et de vecteurs indéfiniment différentiables*, Bull. Sci. Math. **102** (1978), 307–330.

- [4] L. Gårding, *Note on continuous representations of Lie groups*, Proc. Nat. Acad. Sci. USA **33** (1947), 331–332
- [5] R. W. Goodman, *Analytic Domination by Fractional Powers of a Positive Operator*, J. Functional Analysis **3** (1969), 246 –264.
- [6] S. G. Krantz, H. R. Parks, *A Primer of Real Analytic Functions*, Birkhäuser, Basel, 1992.
- [7] C. Lienau, *Analytic Representation Theory of $(\mathbb{R}, +)$* , J. Functional Analysis **257** (2009), 3293 –3308.
- [8] E. Nelson, *Analytic Vectors*, Ann. of Math. **70** (1959), 572–615.
- [9] L. A. Rubel, W. A. Squires, B. A. Taylor, *Irreducibility of Certain Entire Functions With Applications to Harmonic Analysis*, Ann. of Math. **108** (1978), 553–567.
- [10] G. Warner, *Harmonic Analysis on Semi-Simple Lie Groups I*, Springer, New York, 1972.
- [11] see e.g. <http://functions.wolfram.com>