

Problem5 讲解 一点点关于 Hamel Basis 的知识

计算机科学与技术 人名 学号

2023年10月23日

一些题外话

● 一开始我自以为做出了 T5, 但是被 Isa 佬发现我一开始就翻译错了...

一些题外话

- 一开始我自以为做出了 T5, 但是被 Isa 佬发现我一开始就翻译错了...
- 于是我赶紧学会了高等做法, 但是初等的证明需要 Isa 老师来完善

1902

 Π_{λ}

一些题外话

- 一开始我自以为做出了 T5, 但是被 Isa 佬发现我一开始就翻译错了...
- 于是我赶紧学会了高等做法, 但是初等的证明需要 Isa 老师来完善
- 时间原因我可能讲的快, 但是结束后的课件会发到群里.

1902

前置知识: 度量空间 (Metric Space)

定义 (度量空间)

X 是集合. 如果存在 $d: X \times X \to \mathbb{R}_{\geqslant 0}$ 是 X 上双变量的函数, 满足如下三条 性质:

- a) 对任意的 x 和 y, $d(x, y) \ge 0$ 并且取等号当且仅当 x = y;
- b) 对任意的 x 和 y,d(x,y) = d(y,x);
- c) 三角不等式: 对任意的 $x, y, z \in X$, 我们有 $d(x, z) \ge d(x, y) + d(y, z)$. 我们就称二元组 (X, d) 是一个距离空间或者度量空间. 函数 d 被称作该距离空间上的**距离函数**.

前置知识: 度量空间 (Metric Space)

定义 (度量空间)

X 是集合. 如果存在 $d: X \times X \to \mathbb{R}_{\geqslant 0}$ 是 X 上双变量的函数, 满足如下三条 性质:

- a) 对任意的 x 和 y, $d(x, y) \ge 0$ 并且取等号当且仅当 x = y;
- b) 对任意的 x 和 y,d(x,y) = d(y,x);
- c) 三角不等式: 对任意的 $x,y,z\in X$, 我们有 $d(x,z)\geqslant d(x,y)+d(y,z)$. 我们就称二元组 (X,d) 是一个距离空间或者度量空间. 函数 d 被称作该距离空间上的**距离函数**.
- * **完备空间**或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内.

在 ℝ 中, 我们可以定义开集为开区间的并, 闭集为闭区间的并.

在 \mathbb{R} 中,我们可以定义开集为开区间的并,闭集为闭区间的并。对于一般的度量空间 (X,d),我们有更一般的定义:

在 \mathbb{R} 中,我们可以定义开集为开区间的并,闭集为闭区间的并,对于一般的度量空间 (X,d),我们有更一般的定义:

定义

(X,d) 是距离空间. 对任意的点 $x\in X, r>0$,我们称 $B(x,r)=\{y\in X\mid d(y,x)< r\}$ 为以 x 为中心以 r 为半径的开球. 如果 $U\subset X$ 是若干开球的并, 即

$$U = \bigcup_{\alpha \in A} B(x_{\alpha}, r_{\alpha})$$
 (指标集A是任意的)

,就称 X 是距离空间 (X, d) 中的开集.

在 R 中. 我们可以定义开集为开区间的并, 闭集为闭区间的并. 对于一般的度量空间 (X, d), 我们有更一般的定义:

定义

(X, d) 是距离空间. 对任意的点 $x \in X, r > 0$, 我们称 $B(x,r) = \{y \in X \mid d(y,x) < r\}$ 为以 x 为中心以 r 为半径的开球. 如果 $U \subset X$ 是若干开球的并 即

$$U = \bigcup_{\alpha \in A} B(x_{\alpha}, r_{\alpha})$$
 (指标集A是任意的)

,就称 X 是距离空间 (X, d) 中的开集。

如果 F 的补集是开集,那么 F 是**闭集**. 其中空集和全集都**既是开集又是闭集**.

南京大学计算机系

前置知识: 内点

接上一张: 闭的意思可以解释为对这个集合中的点列取极限是封闭的.

前置知识: 内点

接上一张: 闭的意思可以解释为对这个集合中的点列取极限是封闭的.

定义 (内点)

对于任意的集合 $Y \subset X$, 如果对 $y \in Y$, 存在 $\varepsilon > 0$, 使得 $B(y, \varepsilon) \subset Y$, 我们 就称 y 是 Y 的一个内点. 我们用 Y 表示 Y 的内点所组成的集合并称之为 Y 的内部.

前置知识: 稠密集 (Dense Set)

定义 (Dense Set)

给定距离空间 (X, d), $Y \subset X$ 是子集. 如果对任意的 $x \in X$ 和任意的 $\varepsilon > 0$, 都存在 $y \in Y$, 使得 $d(y, x) < \varepsilon$, 我们就称 Y 在 X 中是稠密的.

1902

贝尔范畴定理 (Baire Category Theorem)

定理 (Baire)

(X,d) 是完备的距离空间,那么任意可数个稠密的开集的交仍然是稠密的,即 若 $\{U_n\}_{n\geqslant 1}$ 是可数个稠密的开集,那么 $U_\infty=\bigcap_{n\geqslant 1}U_n$ 是稠密的.

1902

Hamel 基

定义 (Hamel)

(OTIS-Excerpts) \mathbb{R} 有一个作为 \mathbb{Q} 里的向量空间的基. 因此, 存在无穷实数集合 $\{e_{\alpha}\}$ 使得对于任意实数 $x \in \mathbb{R}$, 存在一种唯一的线性表示

$$x = a_1 e_{\alpha_1} + a_2 e_{\alpha_2} + \dots + a_n e_{\alpha_n}.$$

这些数 $\{e_{\alpha}\}$ 被叫做一组哈默尔基 (Hamel basis). 事实上, 你可以这样想:

$$\mathbb{R} = \{ a_1 + \sqrt{2}a_2 + \sqrt{3}a_3 + a_4\pi + a_5e + \dots \mid a_1, \dots \in \mathbb{O} \}$$

Hamel 基

定义 (Hamel)

(OTIS-Excerpts) \mathbb{R} 有一个作为 \mathbb{Q} 里的向量空间的基. 因此, 存在无穷实数集合 $\{e_{\alpha}\}$ 使得对于任意实数 $x \in \mathbb{R}$, 存在一种唯一的线性表示

$$x = a_1 e_{\alpha_1} + a_2 e_{\alpha_2} + \dots + a_n e_{\alpha_n}.$$

这些数 $\{e_{\alpha}\}$ 被叫做一组哈默尔基 (Hamel basis). 事实上, 你可以这样想:

$$\mathbb{R} = \{ a_1 + \sqrt{2}a_2 + \sqrt{3}a_3 + a_4\pi + a_5e + \dots \mid a_1, \dots \in \mathbb{Q} \}$$

题目是证明 Hamel 基的元素是不可数的.

证明.

设存在 $\{e_i\}_{i=1,2,\cdots}$ 是完备空间 V 上的一组可数的基,那么对于任意的 $k\geq 1$, 定义 V 的子空间

$$V_k = \operatorname{span}\{e_1, e_2, \cdots, e_k\}.$$

这里的 $span\{e_1, e_2, \dots, e_k\}$ 可以看做 $x = a_1e_1 + a_2e_2 + \dots + a_ne_k$. 构成的集 合.

证明.

设存在 $\{e_i\}_{i=1,2,\cdots}$ 是完备空间 V 上的一组可数的基, 那么对于任意的 $k\geq 1$,定义 V 的子空间

$$V_k = \operatorname{span}\{e_1, e_2, \cdots, e_k\}.$$

这里的 $span\{e_1, e_2, \dots, e_k\}$ 可以看做 $x = a_1e_1 + a_2e_2 + \dots + a_ne_k$. 构成的集合.

根据完备空间的定义, V_k 是一个闭集.

02

U Y

D 9 (P

证明.

设存在 $\{e_i\}_{i=1,2,\cdots}$ 是完备空间 V 上的一组可数的基, 那么对于任意的 $k\geq 1$, 定义 V 的子空间

$$V_k = \operatorname{span}\{e_1, e_2, \cdots, e_k\}.$$

这里的 $span\{e_1, e_2, \dots, e_k\}$ 可以看做 $x = a_1e_1 + a_2e_2 + \dots + a_ne_k$. 构成的集 合.

根据完备空间的定义, V_k 是一个闭集.我们现在说明, 对于任意的 $k \geq 1, V_k$ 的 内部是空集.

证明.

设存在 $\{e_i\}_{i=1,2,\cdots}$ 是完备空间 V 上的一组可数的基, 那么对于任意的 $k \geq 1$,定义 V 的子空间

$$V_k = \operatorname{span}\{e_1, e_2, \cdots, e_k\}.$$

这里的 $span\{e_1, e_2, \dots, e_k\}$ 可以看做 $x = a_1e_1 + a_2e_2 + \dots + a_ne_k$. 构成的集合.

根据完备空间的定义, V_k 是一个闭集.我们现在说明, 对于任意的 $k \geq 1, V_k$ 的内部是空集.

任取 $v \in V, \varepsilon > 0$ 有 $v + \varepsilon e_{k+1} \notin V_k$, 说明 v 不是 V_k 的内点.

999

证明.

设存在 $\{e_i\}_{i=1,2,\cdots}$ 是完备空间 V 上的一组可数的基, 那么对于任意的 $k \geq 1$,定义 V 的子空间

$$V_k = \operatorname{span}\{e_1, e_2, \cdots, e_k\}.$$

这里的 $span\{e_1, e_2, \dots, e_k\}$ 可以看做 $x = a_1e_1 + a_2e_2 + \dots + a_ne_k$. 构成的集合.

根据完备空间的定义, V_k 是一个闭集.我们现在说明, 对于任意的 $k \geq 1$, V_k 的内部是空集.

任取 $v \in V, \varepsilon > 0$ 有 $v + \varepsilon e_{k+1} \notin V_k$, 说明 v 不是 V_k 的内点. 根据定义. 有

$$V = \bigcup_{k>1} V_k$$

902

99 (P

证明.

我们设 $U_n = V - V_n$, 根据定义, U_n 是一个闭集的补集, 所以是开集. 因为 V_n 的内部为空集, 所以这是**稠密的**.

证明.

我们设 $U_n = V - V_n$, 根据定义, U_n 是一个闭集的补集, 所以是开集. 因为 V_n 的内部为空集, 所以这是**稠密的**.

根据 Baire 定理, $U = \bigcap_{n>1} U_n$ 是稠密的.

证明.

我们设 $U_n = V - V_n$, 根据定义, U_n 是一个闭集的补集, 所以是开集. 因为 V_n 的内部为空集, 所以这是**稠密的**.

根据 Baire 定理, $U = \bigcap_{n \ge 1} U_n$ 是稠密的.

我们注意到 $V = \bigcup_{k>1} V_k$ 的补集恰好就是 U, 所以 V 的内部为空

证明.

我们设 $U_n = V - V_n$, 根据定义, U_n 是一个闭集的补集, 所以是开集. 因为 V_n 的内部为空集, 所以这是**稠密的**.

根据 Baire 定理, $U = \bigcap_{n \ge 1} U_n$ 是稠密的.

我们注意到 $V = \bigcup_{k \geqslant 1} V_k$ 的补集恰好就是 U, 所以 V 的内部为空

但是 V 的内部不为空, 这就导出了矛盾.

时间原因,Baire 定理的证明不说了. 但是在附录里有 Baire 定理的证明. 感谢大家!

人名

2023年10月23日

南京大学计算机系

Baire.

任选 $x \in X$ 和 ε_0 ,我们将在 U_∞ 中找到一个点 x_∞ ,使得 $d(x_\infty,x) < 2\varepsilon_0$.为此,我们将归纳地构造 X 中的点列 $\{x_n\}_{n>1}$.

902

Baire.

任选 $x \in X$ 和 ε_0 ,我们将在 U_∞ 中找到一个点 x_∞ ,使得 $d(x_\infty,x) < 2\varepsilon_0$. 为此,我们将归纳地构造 X 中的点列 $\{x_n\}_{n\geqslant 1}$. 首先,根据 U_1 的稠密性,存在 $x_1 \in U_1$,使得 $d(x_1,x) < \varepsilon_0$. 再根据 U_1 是开集,我们可以找到 $\varepsilon_1 > 0$,使得 $B(x_1,2\varepsilon_1) \subset U_1$,其中 $B(x_1,2\varepsilon_1)$ 是闭球,即 $B(x_1,2\varepsilon_1) = \{y \in X \mid d(y,x) \leqslant 2\varepsilon_1\}$.

902

Baire.

任选 $x\in X$ 和 ε_0 , 我们将在 U_∞ 中找到一个点 x_∞ , 使得 $d(x_\infty,x)<2\varepsilon_0$. 为此, 我们将归纳地构造 X 中的点列 $\{x_n\}_{n\ge 1}$.

首先, 根据 U_1 的稠密性, 存在 $x_1 \in U_1$, 使得 $d(x_1, x) < \varepsilon_0$. 再根据 U_1 是开集, 我们可以找到 $\varepsilon_1 > 0$, 使得 $B(x_1, 2\varepsilon_1) \subset U_1$, 其中 $B(x_1, 2\varepsilon_1)$ 是闭球, 即 $B(x_1, 2\varepsilon_1) = \{y \in X \mid d(y, x) \leq 2\varepsilon_1\}$.

另外,通过缩小 ε_1 ,我们还可以要求 $2\varepsilon_1<\varepsilon_0$.我们用 x_1 代替 x_1 代替 ε_1 代替 ε_2 ,重复上面的过程: 根据 U_2 的稠密性,存在 $u_2\in U_2$,使得 $u_2\in U_2$,使得 $u_2\in U_2$,是开集,我们可以找到 $u_2>0$,使得 $u_2=U_2$,是开生可以进一步要求 $u_2=U_2$ 。

Baire.

任选 $x\in X$ 和 ε_0 , 我们将在 U_∞ 中找到一个点 x_∞ , 使得 $d(x_\infty,x)<2\varepsilon_0$. 为此, 我们将归纳地构造 X 中的点列 $\{x_n\}_{n\ge 1}$.

首先, 根据 U_1 的稠密性, 存在 $x_1 \in U_1$, 使得 $d(x_1, x) < \varepsilon_0$. 再根据 U_1 是开集, 我们可以找到 $\varepsilon_1 > 0$, 使得 $B(x_1, 2\varepsilon_1) \subset U_1$, 其中 $B(x_1, 2\varepsilon_1)$ 是闭球, 即 $B(x_1, 2\varepsilon_1) = \{y \in X \mid d(y, x) \leq 2\varepsilon_1\}$.

另外,通过缩小 ε_1 ,我们还可以要求 $2\varepsilon_1<\varepsilon_0$.我们用 x_1 代替 x_1 代替 ε_0 ,重复上面的过程: 根据 U_2 的稠密性,存在 $x_2\in U_2$,使得 $x_2\in U_2$,使得 $x_1\in U_2$ 化根据 $x_2\in U_2$,使得 $x_2\in U_2$,是开集,我们可以找到 $x_2>0$,使得 $x_2\in U_2$,是可以进一步要求 $x_2\in U_2$ 。

证明.

重复以上过程, 我们就得到了 $\{x_n\}_{n\geqslant 0}$ 和数列 $\{\varepsilon_n\}_{n\geqslant 0}$ (其中 $x_0=x,\varepsilon_0=\varepsilon$), 使得对任意的 $n\geqslant 0$. 有

- 1) $x_{n+1} \in U_{n+1} \not \to \exists d(x_{n+1}, x_n) < \varepsilon_n;$
- 2) $\overline{B(x_{n+1}, 2\varepsilon_{n+1})} \subset U_{n+1}$;
- 3) $0 < 2\varepsilon_{n+1} < \varepsilon_n$

02

证明.

重复以上过程, 我们就得到了 $\{x_n\}_{n\geqslant 0}$ 和数列 $\{\varepsilon_n\}_{n\geqslant 0}$ (其中 $x_0=x,\varepsilon_0=\varepsilon$), 使得对任意的 $n\geqslant 0$. 有

- 1) $x_{n+1} \in U_{n+1} \not \to \exists d(x_{n+1}, x_n) < \varepsilon_n;$
- 2) $\overline{B(x_{n+1}, 2\varepsilon_{n+1})} \subset U_{n+1}$;
- 3) $0 < 2\varepsilon_{n+1} < \varepsilon_n$

特别地,根据第三条,我们有 $\varepsilon_{n+k} < 2^{-k}\varepsilon_n$.

证明.

我们现在说明 $\{x_n\}_{n\geq 1}$ 是 Cauchy 列. 对任意的自然数 n 和 p, 我们有

$$d(x_{n+p}, x_n) \leqslant d(x_{n+p}, x_{n+p-1}) + d(x_{n+p-2}, x_{n+p-2}) + \dots + d(x_{n+1}, x_n)$$

$$< \varepsilon_{n+p} + \varepsilon_{n+p-1} + \dots + \varepsilon_{n+1}$$

$$< 2^{-p-1} \varepsilon_n + 2^{-p-2} \varepsilon_n + \dots + \varepsilon_n$$

$$< 2\varepsilon_n.$$

902

) Q (P

证明.

我们现在说明 $\{x_n\}_{n\geq 1}$ 是 Cauchy 列. 对任意的自然数 n 和 p, 我们有

$$d(x_{n+p}, x_n) \leqslant d(x_{n+p}, x_{n+p-1}) + d(x_{n+p-2}, x_{n+p-2}) + \dots + d(x_{n+1}, x_n)$$

$$< \varepsilon_{n+p} + \varepsilon_{n+p-1} + \dots + \varepsilon_{n+1}$$

$$< 2^{-p-1} \varepsilon_n + 2^{-p-2} \varepsilon_n + \dots + \varepsilon_n$$

$$< 2\varepsilon_n.$$

这表明, 对一切 $p\geqslant 0,\{x_{n+p}\}_{p\geqslant 1}$ 都落在 $\overline{B(x_n,2\varepsilon_n)}$ 中. 我们注意到, 上面的不等式直接给出

$$d(x_{n+n}, x_n) < 2^{-n+p} \varepsilon + 2^{-n+p-1} \varepsilon + \dots + 2^{-n+1} \varepsilon = 2^{-n} \varepsilon$$

0.2

人名

证明.

所以 $\{x_n\}_{n\geqslant 1}$ 是 Cauchy 列, 根据 X 的完备性, 存在 $x_\infty\in X$, 使得 $\lim_{n\to\infty}x_n=x_\infty$.

证明.

所以 $\{x_n\}_{n\geq 1}$ 是 Cauchy 列, 根据 X 的完备性, 存在 $x_\infty\in X$, 使得

 $\lim_{n\to\infty} x_n = x_\infty$.

特别地, 根据 $\{x_{n+p}\}_{p\geqslant 1}\subset\overline{B(x_n,2\varepsilon_n)}$, 我们知道 $x_\infty\in\overline{B(x_n,2\varepsilon_n)}$ (这是闭集).

从而对任意的 $n \ge 1, x_{\infty} \in U_n$, 所以, $x_{\infty} \in U_{\infty}$.

证明.

所以 $\{x_n\}_{n\geqslant 1}$ 是 Cauchy 列, 根据 X 的完备性, 存在 $x_\infty\in X$, 使得 $\lim_{n\to\infty}x_n=x_\infty$.

特别地,根据 $\{x_{n+p}\}_{p\geqslant 1}\subset \overline{B(x_n,2\varepsilon_n)}$,我们知道 $x_\infty\in \overline{B(x_n,2\varepsilon_n)}$ (这是闭集). 从而对任意的 $n\geqslant 1,x_\infty\in U_n$,所以, $x_\infty\in U_\infty$. 特别地,在最后一个不等式中取 n=0,我们有

$$d(x_p, x_0) < \varepsilon.$$

令 $p \to \infty$, 我们就得到 $d(x_{\infty}, x) < 2\varepsilon$. 我们完成了证明.

