

Calibrated Physics-Informed Uncertainty Quantification

Workshop on calibrating prediction uncertainty
University of Cambridge

Vignesh Gopakumar

June 6, 2025

Need for Surrogates

Motivation

- Cannot "afford" iterative test-based engineering design.
- In-silico design at the Exascale
- Simulations and Digital Twins

Need for Surrogates

Motivation

Computational Complexity

Latency

Unknown unknowns

- Cannot "afford" iterative test-based engineering design.
- In-silico design at the Exascale
- Simulations and Digital Twins

Surrogate Model Ecosystem

Surrogate Model here refers to a data-driven method such as a neural network

Surrogate Model Ecosystem

Surrogate Model here refers to a data-driven method such as a neural network

The Issue with current UQ methods

Validity and Guaranteedness

Traditional NN architectures are deterministic

Fails to scale to high dimensions

Requires extensive sampling

Unable to capture out-of-distribution

The Issue

Validity and Guaranteedness

Fails to scale to high dimensions

Traditional NN architectures are deterministic

Requires extensive sampling

Unable to capture out-of-distribution

Multivariate CP

Cellwise Marginal CP

As long as the calibration and prediction data is exchangeable:

- √ Statistically valid coverage guarantees
- ✓ Model agnostic
- ✓ Infinite dimensions

Multivariate CP

Cellwise Marginal CP

As long as the calibration and prediction data is exchangeable:

- √ Statistically valid coverage guarantees
- ✓ Model agnostic
- ✓ Infinite dimensions

*Requires sufficient calibration data for each prediction regime

Uncertainty Quantification of Surrogate Models using Conformal Prediction - Gopakumar et al

Residual Errors

Dynamical physical systems are solved by minimising the residual error.

Dynamics in the Standard Canonical Form:

$$Ax = b$$

A: Discrete dynamics operator

x: State of the system

b: Externals

Prediciton errors are quantified as the residual: r=Ax-b

For a well-defined PDE this takes the form: D(u) - b = 0

A: Differential Operator

u: physical field

b: Externals

Physics Residual Errors (PRE)

PDE Residuals as a measure of surrogate performance=

Consider the 2D Wave Equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Physics Residual Error over prediction \hat{u} :

$$D = \frac{\partial^2 \hat{u}}{\partial t^2} - c^2 \left(\frac{\partial^2 \hat{u}}{\partial x^2} + \frac{\partial^2 \hat{u}}{\partial y^2} \right)$$

CP-PRE

Implicit knowledge of the PDEs as the nonconformity score function

Method	Score Function	Prediction Set
Absolute Error Residual (AER)	$\left(\left f_{\theta}(X_i) - Y_i\right \right)_{i=1}^n$	$f_{\theta}(X_{n+1}) \pm \hat{q}^{\alpha}$

CP-PRE

Implicit knowledge of the PDEs as the nonconformity score function

Method	Score Function	Prediction Set
Absolute Error Residual (AER)	$\left(\left f_{\theta}(X_{i})-Y_{i}\right \right)_{i=1}^{n}$	$f_{\theta}(X_{n+1}) \pm \hat{q}^{\alpha}$
Physics Residual Error (PRE)	$\left(D(f_{\theta}(X_i)) - 0 \right)_{i=1}^n$	$0\pm\hat{q}^{lpha}$

CP-PRE Framework

Overview

Joint CP-PRE for spatio-temporal coverage

Helps identify entire predictions that are unfeasible

Score Function (Marginal):
$$\hat{s} = |D(f_{\theta}(X))|$$

Score Function (Joint):
$$\mathcal{S} = \sup_{X \in \Omega, \, t \in [0,T]} \left(\frac{\hat{S}}{\sigma(\hat{S})} \right)$$

CP-PRE

√ Guaranteed Coverage

✓ Model Agnostic

√ Modification-Free

√ Sampling-Free

✓ Data-Free

√ Physics-Informed

Example: 1D Advection

$$\frac{\partial u}{\partial t} + \nu \frac{\partial u}{\partial x} = 0$$

CP-PRE as a measure of model quality

Only marginal CP visualised

Tokamak Design

Optimal placement of poloidal field coils for Magnetic Equilibrium

Tokamak Design

Optimal placement of poloidal field coils for Magnetic Equilibrium

Example: Magnetic Equlibrium in a Tokamak

Bounds over the PRE of the Grad-Shafranov Equation

$$\frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} = -\mu_0 r^2 \frac{dp}{d\psi} - \frac{1}{2} \frac{dF^2}{d\psi}$$

Example: Magnetic Equlibrium in a Tokamak

Bounds over the PRE of the Grad-Shafranov Equation

$$\frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} = -\mu_0 r^2 \frac{dp}{d\psi} - \frac{1}{2} \frac{dF^2}{d\psi}$$

Conclusion

- Valid, guaranteed bounds over the conservative space for Neural PDE solvers
- Data-free, physics-informed and model-agnostic UQ method
- Marginal-CP for identifying erroneous regions within the spatio-temporal domain
- Joint-CP for identifying erroneous predictions across the entire spatiotemporal domain
- Extends to predictive cases with an equality constraint expressed in the standard canonical form: D(u) b = 0

Paper

Accepted at ICML 2025

Calibrated Physics-Informed Uncertainty Quantification

Authors:

Vignesh Gopakumar, Ander Gray, Lorenzo Zanisi, Timothy Nunn, Stanislas Pamela, Daniel Giles, Matt Kusner, Marc Deisenroth

Estimating Differential Operators

Finite-Difference Stencils as Convolutional Kernels

$$\nabla^2 \approx \frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

ConvOps for PRE

```
from ConvOps_2d import ConvOperator
# Define each operator within the PDE
D_tt = ConvOperator(domain='t', order=2)  #time-derivative
D_xx_yy = ConvOperator(domain=('x','y'), order=2) #Laplacian
# Setting up additive kernels for PRE
c = 0.5 # wave speed
D = ConvOperator()
D.kernel = D_tt.kernel - c**2 * D_xx_yy.kernel
#Estimating PRE over model prediction
y_pred = model(X)
PRE = D(y_pred)
```

CP-PRE: Gist

The prediction set for a given nonconformity score function is given as:

$$\mathbb{C}^{\alpha}(X_{n+1}) = \{ y : S(X_{n+1}, y) \le \hat{q}^{\alpha} \}$$

The score function while using AER is expressed as:

$$S_{AER}(X, Y) = |f_{\theta}(X) - Y|$$

Where the prediction set that defines the coverage is:

$$\mathbb{C}_{AER}^{\alpha}(X_{n+1}) = [f_{\theta}(X_{n+1}) - \hat{q}^{\alpha}, f_{\theta}(X_{n+1}) + \hat{q}^{\alpha}]$$

Similarly, the score function while using PRE actually has a target:

$$S_{PRE}(f_{\theta}(X)) = |D(f_{\theta}(X)) - 0|$$

Leading to a prediction set that is independent of the input:

$$\mathbb{C}^{\alpha}_{PRE} = [-\hat{q}^{\alpha}, \hat{q}^{\alpha}]$$