WHAT IS CLAIMED IS:

I	1. A process variable transmitter, comprising:
2	a first phase-locked loop having a first bandwidth producing a first output signal,
3	and operable to lock into a frequency of an input signal;
4	a second phase-locked loop having a second bandwidth narrower than the first
5	bandwidth, producing a second output signal, and operable to lock into the frequency of
6	the input signal with greater accuracy and greater immunity to noise than the first phase-
7	locked loop; and
8	a switch operable to switch an output signal of the process variable transmitter
9	between the first output signal and the second output signal.
1	2. The process variable transmitter of claim 1 wherein
2	the second phase-locked loop generates a lock indicator signal when the second
3	phase-locked loop is locked into the frequency of the input signal, and
4	the switch switches between the first output signal and the second output signal
5	based on a status of the lock indicator signal.
1	3. The process variable transmitter of claim 1 wherein at least one of the first
2	phase-locked loop and the second phase-locked loop comprises:
3	a phase sensitive detector operable to receive the input signal and to produce a
4	detector output signal;
5	a loop filter operable to receive the detector output signal and to produce a filtered
6	signal; and
7	a voltage controlled oscillator operable to receive the filtered signal and to
8	produce an oscillator/signal,

wherein the phase sensitive detector is further operable to receive the oscillator signal as a feedback signal of the at least one of the first phase-locked loop and the second phase-locked loop.

- 4. The process variable transmitter of claim 3 wherein the switch and each of the phase sensitive detector, the loop filter and the voltage controlled oscillator of at least one of the first and second phase-locked loops are implemented in a software process.
- 5. The process variable transmitter of claim 4 wherein the switch and each of the phase sensitive detector, the loop filter and the voltage controlled oscillator of at least one of the first and second phase-locked loops is implemented in the software process on a single digital signal processor chip.
- 6. The process variable transmitter of claim 3 wherein the phase sensitive detector of at least one of the first and second phase-locked loops comprises a Hilbert transformer.
- 7. The process variable transmitter of claim 6 wherein the at least one of the first and second phase-locked loops comprises a heterodyning module operable to heterodyne the input signal prior to processing the input signal with the Hilbert transformer.
- 8. The process variable transmitter of claim 1 further comprising an amplitude detector operable to sense an amplitude of the input signal and to generate a low flow signal when the amplitude of the input signal is below a user-controlled value.
- 9. The process variable transmitter of claim 8 further comprising a pre-filter operable to filter the input signal prior to processing by at least one of the first phase-

4

3	locked loop and the second phase-locked loop, and wherein, based on a status of the lo
4	flow signal,
5	a fixed center frequency of the second phase-locked loop is switchable between
6	the first output signal and $2\pi f_{ph}$, where f_{ph} is a high cut-off frequency of the pre-filter,
7	the pre-filter is switchable between an ON state and an OFF state, and
8	the switch switches the output signal of the process variable transmitter to the
9	second output signal.
1	10. The process variable transmitter of claim 1 further comprising a self-
2	validating module operable to generate validated uncertainty parameters including a
3	measurement value and an uncertainty value relating to the quality of the measurement
4	value.
1	11. The process variable transmitter of claim 10 wherein the validated
2	uncertainty parameters generated by the self-validating module include a measurement
3	status variable.
1	12. The process variable transmitter of claim 10 wherein the self-validating
2	module is implemented in a software process.
1	13. The process variable transmitter of claim 1 wherein the process variable
2	transmitter comprises a vortex flowmeter.
	\int
1	14. A vortex flowmeter comprising:
2	a flow sensor operable to sense pressure variations due to vortex-shedding of a
3	fluid in a passage and to convert the pressure variations to a flow sensor signal, in the

form of an electrical signal having sinusoidal characteristics; and

ĻĻ

output signal corresponding to the pressure variations due to vortex-shedding of the fluid 6 7 in the passage, the signal processor comprising: 8 phase-locked loops (PLLs) having different characteristics from each other 9 and operable to receive the flow sensor signal and lock onto the flow sensor signal, and 10 produce PLL output signals indicative of the flow sensor signal, and 11 a switch for switching the output signal generated by the signal processor 12 from among the PLL output signals... 15. 1 The vortex flowmeter of claim 14 wherein the signal processor is 2 implemented by a software process in a digital signal processor chip. The vortex flowmeter of claim 14 wherein a first one of the PLLs is 16. 1 operable to lock onto the flow sensor signal faster than any other PLL, and a second one 2 3 of the PLLs is operable to lock onto the flow sensor signal with greater accuracy and 4 greater immunity to noise than the first PLL! 17. The vortex flowmeter of claim 16 wherein the switch switches the output 1 2 signal generated by the signal processor from an output signal of the first PLL to an 3 output signal of the second PLL when the second PLL locks onto the flow sensor signal. The vortex flowmeter of claim 14 further comprising an amplitude 1 18. 2 detector operable to detect an amplitude of the flow sensor signal, wherein the amplitude 3 detector generates a low flow signal when the amplitude of the flow sensor signal is below a user-controlled value.

a signal processor operable to receive the flow sensor signal and to generate an

1

2

19. The vortex flowmeter of claim 18 further comprising a filter operable to filter the flow sensor signal prior to processing by the slow PLL.

TU ID

50

23.

1

2

6

7

The method of claim 21 further comprising providing the output signal of

wherein the self-validating module is operable to generate validated uncertainty

parameters based on the first and second lock indicator signals.

1

2

27. The signal processing apparatus of claim 25 wherein the validated uncertainty parameters generated by the self-validating module include a measurement status variable.