В первом семестре была задача нахождения максимального по площади вписанного n-угольника. Мы выяснили, что если максимум существует, то он достигается правильным n-угольником (суждение про сдвиг точки). Кроме того, мы доказали, что максимум существует, сделаем это снова, но другим методом.

Доказательство. Пусть внутренние углы многоугольника  $\varphi_1 \dots \varphi_n$ , тогда

$$S = \frac{1}{2}r^2(\sin\varphi_1 + \dots + \sin\varphi_n)$$
  
=  $\frac{1}{2}r^2(\sin\varphi_1 + \dots + \sin\varphi_{n-1} - \sin(\varphi_1 - \dots - \varphi_{n-1}))$ 

Очевидно  $\forall i \ \ 0 < \varphi_1 < \pi \quad \pi < \varphi_1 + \ldots + \varphi_{n-1} < 2\pi.$ 

Найдём максимум путём дифференцирования. Это требует существования максимума внутри области определения. Если все неравенства сделать нестрогими, то область определения становится замкнутой, очевидно ограниченной  $\Rightarrow \exists$  тах по теореме Вейерштрасса. Кроме того, максимум не лежит на границе области определения из очевидных геометрических соображений.

$$\frac{\partial S}{\partial \varphi_i} = 0 \Leftrightarrow \cos \varphi_i = \cos(\varphi_1 + \ldots + \varphi_{n-1})$$

$$\cos \varphi_i - \cos(\varphi_1 + \ldots + \varphi_{n-1}) = 0$$

$$2 \sin \frac{n\varphi}{2} \sin \frac{\pi - 2n\varphi}{2} = 0$$

$$\varphi = \frac{2\pi}{n}$$

## Диффеоморфизмы

Определение. Область — открытое связное множество.

Определение.  $F: \underbrace{O}_{\text{область}} \subset \mathbb{R}^m \to \mathbb{R}^m$  — диффеоморфизм, если:

- F обратимо
- Г дифференцируемо
- $F^{-1}$  дифференцируемо

M3137y2019 21.9.2020