Neural Network Exercise

Objective

Build and train a neural network with one hidden layer using PyTorch to classify a dataset with multiple classes. Implement the network without using high-level abstractions like torch.nn or torch.optim. Visualize the cost reduction over iterations to ensure that gradient descent is working effectively.

Dataset

- Generate a dataset using the make_blobs function from sklearn.datasets.
- The dataset should have 500 samples, 4 classes, and 2 features.
- Use a random state of 42 for reproducibility.
- Separate out 100 samples for testing.

Neural Network Specifications

- The network should have one hidden layer.
- The input layer should have 2 neurons (corresponding to the 2 features of the dataset).
- The hidden layer should have 5 neurons.
- The output layer should have 4 neurons (corresponding to the 4 classes).
- Use the sigmoid activation function for the hidden layer.
- Use the softmax activation function for the output layer.
- Initialize the weights randomly from a normal distribution.
- Initialize the biases to zeros.

Training Specifications

- Use the negative log likelihood (logarithmic loss) as the cost function.
- Implement gradient descent to update the weights and biases.
- Do not use torch.optim or any other optimization library.
- Use a learning rate of 0.01.
- Train the network for 1000 epochs.
- Print the cost every 100 epochs.

Visualization

Plot the cost over the epochs to visualize the training progress.

Evaluation

 After training, compute and print the accuracy of the model on the training and testing datasets.

```
import matplotlib.pyplot as plt
from sklearn.datasets import make blobs
import numpy as np
# Generate a 2D dataset with 4 centers
X, y = make blobs(n samples=500, centers=4, n features=2,
cluster_std=2.0, random_state=42)
# separate out 20% of the data for testing
test size = 0.2
test_size = int(test_size * X.shape[0])
X_train, X_test = X[:-test_size].copy(), X[-test_size:].copy()
y train, y test = y[:-test size].copy(), y[-test size:].copy()
# Visualize the dataset
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.jet, edgecolors='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Visualization of the Dataset')
plt.show()
```

Visualization of the Dataset


```
import torch
X = torch.tensor(X train, dtype=torch.float32)
y = torch.tensor(y train, dtype=torch.long)
# Initialize parameters
input size = \frac{2}{x} # two features (x,y)
hidden size = 5
output size = 4 # four outputs (which group)
learning rate = 0.01
epochs = 1000
# W1, b1 are for going from the input layer to the hidden layer
W1 = torch.randn(input size, hidden_size, requires_grad=True)
b1 = torch.zeros(hidden size, requires grad=True)
# W2, b2 are for going from the hidden layer to the output layer
W2 = torch.randn(hidden_size, output_size, requires_grad=True)
b2 = torch.zeros(output size, requires grad=True)
# Convert labels to one-hot encoding
Y = torch.zeros(y.size(0), output size)
Y[torch.arange(y.size(0)), y] = 1
# Training the model
costs = []
for epoch in range(epochs):
    # Forward pass
    Z1 = X.mm(W1) + b1 # hidden layer
    Z2 = Z1.mm(W2) + b2 # output layer
    A = torch.softmax(Z2, dim=1)
    # Compute cost (negative log likelihood loss)
    log likelihood = -torch.sum(Y * torch.log(A)) / y.size(0)
    cost = log likelihood
    costs.append(cost.item())
    # Backward pass
    cost.backward()
    # Update parameters
    with torch.no grad():
        W1 -= learning rate * W1.grad
        b1 -= learning rate * b1.grad
        W2 -= learning rate * W2.grad
        b2 -= learning rate * b2.grad
        W1.grad.zero ()
        bl.grad.zero_()
        W2.grad.zero ()
```

```
b2.grad.zero ()
    if epoch % 100 == 0:
        print(f'Epoch {epoch}, Cost: {cost.item()}')
# Plotting the cost, uncomment the following lines
# plt.plot(costs)
# plt.xlabel('Epochs')
# plt.ylabel('Cost')
# plt.title('Cost Reduction Over Iterations')
# plt.show()
# Evaluate accuracy on the training set
with torch.no_grad():
    # Forward pass for test data
    Z1 \text{ train} = X.mm(W1) + b1
    Z2 train = Z1.mm(W2) + b2
    A train = torch.softmax(Z2 train, dim=1)
    # Get predictions
    predictions train = torch.argmax(A train, dim=1)
    # Calculate accuracy
    accuracy_train = torch.mean((predictions train == y).float()) *
100
    print(f'Accuracy on the training set: {accuracy train.item()}%')
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.long)
# Evaluate on the test set
with torch.no_grad():
    Z1_{\text{test}} = X_{\text{test.mm}}(W1) + b1
    Z2 \text{ test} = Z1_{\text{test.mm}}(W2) + b2
    A test = torch.softmax(Z2 test, dim=1)
    predictions test = torch.argmax(A test, dim=1)
    accuracy test = torch.mean((predictions test == y test).float()) *
100
    print(f'Accuracy on the test set: {accuracy test.item()}%')
Epoch 0, Cost: nan
Epoch 100, Cost: nan
Epoch 200, Cost: nan
Epoch 300, Cost: nan
Epoch 400, Cost: nan
Epoch 500, Cost: nan
Epoch 600, Cost: nan
```

```
Epoch 700, Cost: nan
Epoch 800, Cost: nan
Epoch 900, Cost: nan
Accuracy on the training set: 24.75%
Accuracy on the test set: 26.0%

/tmp/ipykernel_4508/1360135762.py:78: UserWarning: To copy construct
from a tensor, it is recommended to use sourceTensor.clone().detach()
or sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).
    X_test = torch.tensor(X_test, dtype=torch.float32)
/tmp/ipykernel_4508/1360135762.py:79: UserWarning: To copy construct
from a tensor, it is recommended to use sourceTensor.clone().detach()
or sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).
```

y test = torch.tensor(y test, dtype=torch.long)