Tworzenie grafiki w LaTeX

Patryk Tokarski

1 Funkcja wykładnicza

Funkcja wykładnicza – funkcja postaci: $f(x) = a^x$, gdzie a > 0.

1.1 Funkcja eksponencjalna[1]

Szczególnym przypadkiem funkcji wykładniczej jest funkcja eksponencjalna, czyli funkcja wykładnicza o podstawie równej e (czyli podstawie logarytmu naturalnego). Innym oznaczeniem takiej funkcji jest e^x .

Wykres funkcji $y = e^x$:

1.2 Przykłady i zastosowania

- Ciąg geometryczny oraz suma szeregu geometrycznego
- Rozkład Poissona zawiera funkcję wykładniczą
- Algorytmika: niektóre problemy maja złozoność wykładniczą

1.3 Płaszczyzna zespolona

Funkcję eksponencjalną łatwo uogólnić na ciało liczb zespolonych. Jedną z metod jest wykorzystanie rozwinięcia funkcji w szereg Taylora i podstawienie zespolonego argumentu w miejsce rzeczywistego:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Rysunek 1: Wykres e^z na płaszczyźnie zespolonej uzyskany techniką kolorowania dziedziny

2 Schemat blokowy[4]

Schemat blokowy – narzędzie służące do przedstawienia kolejnych czynności w projektowanym algorytmie. Jest to diagram, na którym procedura, system lub program komputerowy są reprezentowane przez opisane figury geometryczne połączone strzałkami (niekiedy tylko liniami) zgodnie z kolejnością wykonywania czynności wynikających z przyjętego algorytmu rozwiązania zadania.

2.1 Podstawowe elementy budowy

- operator prostokąt, do którego wpisywane są wszystkie operacje z wyjątkiem instrukcji wyboru
- predykat romb, do którego wpisywane są wyłącznie instrukcje wyboru
- etykieta (blok graniczny) owal służący do oznaczania początku albo końca sekwencji schematu (kończy, zaczyna albo przerywa lub przenosi schemat).

2.2 Przykład (Algorytm gotowania budyniu)[3]

3 Graf pełny[2]

 ${\bf Graf\ pełny}$ – graf prosty, nieskierowany, w którym dla każdej pary węzłów istnieje krawędź je łącząca.

Graf pełny o n n n wierzchołkach oznacza się przez K_n . Niektóre źródła podają, że litera K pochodzi od niemieckiego słowa komplett, lecz niemiecki termin vollständiger Graph, oznaczający graf pełny, nie zawiera nawet tej litery. Inne źródła stwierdzają, że tę notację przyjęto w uznaniu zasług Kazimierza Kuratowskiego dla teorii grafów.

3.1 Własności grafów pełnych

- Pełny graf o nwierzchołkach posiada $\frac{n(n-1)}{2}$ krawędzi
- \bullet Pełny graf stopnia njest grafem regularnym stopnia n-1

3.2 Przykłady

Poniżej przedstawione zostały grafy pełne o liczbie wierzchołków od 1 do 4.

Spis treści

1	Funkcja wykładnicza	1
	1.1 Funkcja eksponencjalna[1]	1
	1.2 Przykłady i zastosowania	1
	1.3 Płaszczyzna zespolona	1
2	Schemat blokowy[4]	2
	2.1 Podstawowe elementy budowy	2
	2.2 Przykład (Algorytm gotowania budyniu)[3]	2
3	Graf pełny[2]	3
	3.1 Własności grafów pełnych	3
	3.2 Przykłady	3
\mathbf{L}^{i}	iteratura	
[1]	Funkcja wykładnicza. https://pl.wikipedia.org/wiki/Funkcja_wykladnicza. Dostęp: 20205-24.	22-
[2]	Graf pełny. https://pl.wikipedia.org/wiki/Graf_pe%C5%82ny. Dostęp: 2022-05-28.	
[3]	Przykładowe algorytmy. https://zsedabrowa.edu.pl/2016/09/0 przykladowe-algorytmy-z-zycia-codziennego. Dostęp: 2022-05-28.	2/
[4]	Schemat blokowy. https://pl.wikipedia.org/wiki/Schemat_blokowy. Dostęp: 2022-05-28	3.