

04 FEB 2003

REC'D 10 FEB 2004
WIPO PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 00 570.6

Anmeldetag: 10. Januar 2003

Anmelder/Inhaber: DaimlerChrysler AG, Stuttgart/DE

Bezeichnung: Verfahren zum Regeln einer Sitztemperatur
eines Fahrzeugsitzes

IPC: B 60 N 2/56

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der
ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. November 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Letang

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1 (a) OR (b)

DaimlerChrysler AG

Sourell
07.01.2003

Verfahren zum Regeln einer Sitztemperatur
eines Fahrzeugsitzes

Die Erfahrung bezieht sich auf ein Verfahren zum Regeln einer Fahrzeugsitztemperatur gemäß dem Oberbegriff des Patentanspruchs 1.

Dem Insassen eines Fahrzeugs einen optimalen Sitzkomfort anzubieten, ist eine der vorrangigen Aufgabenstellungen bei der Ausgestaltung eines Fahrzeuginnenraums. Ein besonderes Augenmerk wird hierbei auf den thermophysiologischen Komfort durch eine Regulierung des Wärme- und Feuchtetransports gerichtet. Keine andere Komponente des Fahrzeugs steht so großflächig und andauernd in Kontakt mit dem Insassen wie der Fahrzeugsitz. Dementsprechend wichtig ist ein gesundes und komfortables Mikroklima zwischen der Sitzoberfläche und dem Insassen, das sich positiv auf dessen mentale und physische Leistungsfähigkeit auswirkt.

Aus der DE 198 51 979 C2 ist ein Fahrzeugsitz bekannt, bei dem zum Einstellen eines komfortablen Sitzklimas ein Steuergerät vorgesehen ist, das eingangsseitig mit einem Temperaturfühler zum Aufnehmen der Sitzoberflächentemperatur, dem sogenannten Integralsensor, und einem Feuchtemesser sowie ausgangsseitig mit elektrischen Schaltkreisen einer Sitzheizung und einer Sitzlüftung verbunden ist. Das Steuergerät ist eingangsseitig zusätzlich mit einem Außentemperaturfühler zum Messen der Umgebungstemperatur verbunden. In dem Steuergerät ist eine Temperaturregelung integriert, die mittels Sitzhei-

zung und Sitzbelüftung die Oberflächentemperatur von Sitzpolster und Lehnopolster auf einen vorgegebenen Sollwert einregelt. In dem Steuergerät wird dabei der Sollwert in Abhängigkeit von dem vom Außenfühler gelieferten Temperaturwert 5 korrigiert. Die Korrektur kann dabei so erfolgen, dass bei einer Außentemperatur unterhalb von 20°C der Sollwert auf z.B. 36°C eingestellt ist und bei einer Außentemperatur oberhalb von 20°C der Sollwert auf z.B. 35°C abgesenkt wird. Mit dieser Beeinflussung der an der Sitzoberfläche einzuregelnden 10 Temperatur wird dem Temperaturempfinden des Sitzbenutzers je nach Jahreszeit Rechnung getragen.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zum Regeln einer Fahrzeugsitztemperatur mit einer Sitzbelüftung und einer Sitzheizung auf einen vorgegebenen Sollwert 15 T_{soll} , bei dem die Fahrzeugsitztemperatur T_s im Bereich der Sitzoberfläche mit einem ersten Temperatursensor und die Außentemperatur T_a mit einem zweiten Temperatursensor erfasst wird anzugeben, das für einen Insassen ein dauerhaft komfortables, warmtrockenes Mikroklima zwischen ihm und der Sitzoberfläche gewährleistet. 20

Die Aufgabe wird gelöst durch ein Verfahren zum Regeln einer Fahrzeugsitztemperatur mit einer Sitzbelüftung und einer Sitzheizung gemäß den Merkmalen des Patentanspruchs 1. 25

Erfindungsgemäß wird zum Regeln einer Sitztemperatur T_s unterhalb einer ersten Temperaturschwelle T_{a1} für die Außentemperatur T_a eine Sitzbelüftung und oberhalb einer zweiten Temperaturschwelle T_{a2} für die Außentemperatur T_a eine Sitzheizung ausgeschaltet. Die Sitztemperatur T_s bei geringen Außentemperaturen T_a (unterhalb der ersten Temperaturschwelle T_{a1} , die Regelung arbeitet in einem sogenannten Winterbetrieb) wird daher nur mit der Sitzheizung und ohne die Sitzbelüftung 30

eingestellt, währenddessen die Sitztemperatur T_s bei hohen Außentemperaturen T_a (oberhalb der zweiten Temperaturschwelle T_{a2} , die Regelung arbeitet in einem sogenannten Sommerbetrieb) nur mit der Sitzbelüftung und ohne die Sitzheizung eingestellt wird. Im Temperaturintervall für die Außentemperatur T_a zwischen den beiden Temperaturschwellen T_{a1} und T_{a2} können zum Regel der Sitztemperatur T_s sowohl die Sitzheizung als auch die Sitzbelüftung eingesetzt werden. Versuche bei geringen Außentemperaturen T_a zeigen, dass bei paralleler Aktivierung von Sitzbelüftung und Sitzheizung von einem Insassen ein kühler Luftzug wenigstens im oberen Körperbereich empfunden wird. Ein großer Anteil der von der Sitzbelüftung in den Fahrzeugsitz zugeführte Luft entweicht über den Schulterbereich des Insassen aus der Rückenlehne des Fahrzeugsitzes. Die trockene zugeführte Luft nimmt dabei einen Anteil der Feuchte von der Hautoberfläche des Insassen auf, wodurch für den Insassen ein unangenehm kühles Empfinden entsteht. Ein Empfinden, welches bei sommerlichen Witterungsbedingungen vom Insassen durchaus als positiv wahrgenommen wird, stellt sich bei geringeren Außentemperaturen T_a als problematisch heraus. Bei gedrosselter Luftzufuhr wird das kühle Empfinden als nicht mehr so negativ empfunden. Bei einem Winterbetrieb ohne Einsatz der Sitzbelüftung ist das unangenehm kühle Empfinden beim Insassen nicht mehr vorhanden und ein uneingeschränktes Wohlbefinden stellt sich beim Insassen ein. Bei höheren Außentemperaturen T_a setzt bei einem gemeinsamen Betrieb von Sitzheizung und Sitzbelüftung zum Regeln der Sitztemperatur T_s ein als vom Insassen als unangenehm empfundenes Schwitzen ein. Das beste Wohlbefinden beim Insassen wird erzielt, wenn im Sommerbetrieb die Sitzheizung nicht eingesetzt wird. Mit dem vorliegenden Verfahren werden im Winter und in Sommer komfortable Polstertemperaturen erreicht, die im Bereich der normalen Hauttemperaturen liegen. Die Kleidung und die Haut des Insassen bleibt auch unter extremen Klimabedi-

gungen trocken. Es wird ein dauerhaft komfortables, warmtrockenes Mikroklima zwischen der Sitzoberfläche und dem Insassen erreicht.

5 In einer Ausgestaltung wird der Wert für die erste Temperaturschwelle T_a1 gleich dem Wert für die zweite Temperaturschwelle T_a2 gesetzt. Insbesondere beträgt dieser gemeinsame Wert ca. 18°C. Dadurch wird auf einen Übergangsbereich, der einen parallelen Einsatz von Sitzheizung und Sitzbelüftung ermöglicht, ganz verzichtet, wodurch die Regelung der Sitztemperatur T_s erheblich vereinfacht wird. Zum Einstellen der Sitztemperatur T_s wird in Abhängigkeit von der Außentemperatur T_a , mit anderen Worten im Sommer- oder im Winterbetrieb, nur noch die Sitzbelüftung oder die Sitzheizung eingesetzt.

10

15

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen wiedergegeben.

Die Erfindung wird anhand mehrerer Ausführungsbeispiele in der einzigen Figur näher erläutert, wobei die Figur einen Ausschnitt aus einem Blockschaltbild zum Regeln einer Sitztemperatur T_s eines Fahrzeugs mit einer Sitzbelüftung und einer Sitzheizung zeigt.

25 Gemäß der Figur wird bei einem Verfahren zum Regeln einer Sitztemperatur T_s eines Fahrzeugs auf einen über eine nicht weiter dargestellte Bedienvorrichtung einstellbaren vorgegebenen Sollwert T_{soll} die Sitztemperatur T_s im Bereich einer nicht weiter dargestellten Sitzoberfläche mit einem ersten Temperatursensor 2 erfasst und mit dem Sollwert T_{soll} verglichen. Zusätzlich wird mit einem zweiten Temperatursensor 4 die Außentemperatur T_a gemessen und mit einem Schwellwert T_{ax} für die Außentemperatur T_a verglichen.

30

Die Regelabweichung $T_{soll}-T_s$ zwischen dem vorgegebenen Sollwert T_{soll} und der Sitztemperatur T_s wird von einem ersten Regler 6 für eine Sitzheizung 8 oder von einem zweiten Regler 10 für eine Sitzbelüftung 12 verarbeitet. In Abhängigkeit von 5 der Schaltstellung eines Schalters 14 mit einer temperaturabhängigen Schaltfunktion wird entweder die Sitzheizung 8 gemäß einer Ausgangsgröße des ersten Reglers 6 oder die Sitzbelüftung 12 gemäß einer Ausgangsgröße des zweiten Reglers 10 eingestellt.

10

Die temperaturabhängige Schaltfunktion des Schalter 14 ist so ausgelegt, dass unterhalb eines vorgegebenen Schwellwerts T_{ax} für die Außentemperatur T_a , einem sogenannten Winterbetrieb, nur die Sitzheizung 8 mit der Regelung über den ersten Regler 15 6 eingestellt wird. Die Sitzbelüftung 12 ist im Winterbetrieb ausgeschaltet. Oberhalb des vorgegebenen Schwellwerts T_{ax} für die Außentemperatur T_a , einem sogenannten Sommerbetrieb, wird nur die Sitzbelüftung 12 mit der Regelung über den zweiten Regler 10 eingestellt. Die Sitzheizung 12 ist im Sommerbetrieb 20 ausgeschaltet. In der Erprobung hat sich als Schwellwert T_{ax} ein Temperaturwert von angenähert $18^\circ C$ bewährt. Eine Abgrenzung zwischen Winter- und Sommerbetrieb bei diesem Schwellwert T_{ax} für die Außentemperatur T_a wird von Insassen 25 als besonders angenehm empfunden. In Abhängigkeit vom persönlichen Empfinden kann der Schwellwert T_{ax} variiert werden. Durch eine Deaktivierung der Regelung ist weiterhin eine manuelle Betätigung von Sitzheizung 8 und Sitzbelüftung 12 gewährleistet.

30 In einem nicht weiter dargestellten Ausführungsbeispiel ist der Schwellwert T_{ax} für die Außentemperatur T_a in eine erste Temperaturschwelle T_{a1} und eine zweite Temperaturschwelle T_{a2} mit T_{a1} kleiner T_{a2} aufgespaltet. Unterhalb der ersten Temperaturschwelle T_{a1} ist die Sitzbelüftung 12 und oberhalb der

zweiten Temperaturschwelle T_a2 ist die Sitzheizung 8 ausgeschaltet. Der Winter- und Sommerbetrieb ist durch das Temperaturintervall zwischen den beiden Temperaturschwellen T_a1 und T_a2 getrennt, in welchem ein Mischbetrieb möglich ist. In
5 dem Temperaturintervall können Sitzheizung 8 und Sitzbelüftung 12 parallel zum Regeln der Sitztemperatur T_s eingesetzt werden, um den Sitzkomfort für die Insassen zu verbessern. Ein Einzelbetrieb von Sitzheizung 8 und Sitzbelüftung 12 ist aber auch in diesem von den Temperaturschwellen T_a1 und T_a2
10 begrenzten Temperaturintervall möglich.

In dem in der Figur dargestellten Ausführungsbeispiel ist so-
mit als Spezialfall der Wert für die erste Temperaturschwelle
15 T_a1 gleich dem Wert für die zweite Temperaturschwelle T_a2 ge-
wählt.

Der vorgegebene Sollwert T_{soll} für die Sitztemperatur T_s weist einen Wert im Temperaturbereich zwischen 32,5°C und
20 35,5°C auf, welcher dem persönlichen Wohlfühlempfinden des
Insassen entspricht und individuell eingestellt werden kann.
Unabhängig von der Außentemperatur T_a bevorzugen Insassen je-
weils einen engen Temperaturbereich der Sitztemperatur T_s ,
den sie als angenehm empfinden. Dieser liegt im Regelfall im
angegebenen Temperaturbereich zwischen 32,5°C und 35,5°C und
25 ist im Wesentlichen unabhängig vom Sommer- und Winterbetrieb.

In einer weiteren Ausgestaltung des Verfahrens kann unterhalb
30 der ersten Temperaturschwelle T_a1 für die Außentemperatur T_a die Sitztemperatur T_s auf einen oberen Sollwert T_{sollo} und
oberhalb der zweiten Temperaturschwelle T_a2 für die Außentem-
peratur T_a die Sitztemperatur T_s auf einen unteren Sollwert
 T_{sollu} geregelt werden, wobei der untere Sollwert T_{sollu}
kleiner als der obere Sollwert T_{sollo} ist. Beide Sollwerte
 T_{sollu} und T_{sollo} liegen im Temperaturbereich zwischen 32,5°C

und 35,5°C. Damit wird dem persönlichen Empfinden Rechnung getragen, dass im Sommerbetrieb einer etwas kühleren Sitztemperatur T_s als im Winter der Vorzug gegeben wird, wodurch eine erfrischende Wirkung erzielt wird.

5

Mit dem angegebenen Verfahren wird dem Insassen ein komfortables Mikroklima im Sitzbereich zur Verfügung gestellt, das unangenehme gefühlsmäßige Empfindungen bezüglich des thermophysiologischen Sitzkomforts weitestgehend ausschließt.

10

DaimlerChrysler AG

Sourell

07.01.2003

Patentansprüche

5 1. Verfahren zum Regeln einer Sitztemperatur T_s eines Fahrzeugsitzes mit einer Sitzbelüftung (12) und einer Sitzheizung (8) auf wenigstens einen vorgegebenen Sollwert T_{soll} , bei dem die Sitztemperatur T_s im Bereich einer Sitzoberfläche mit einem ersten Temperatursensor (2) und die Außentemperatur T_a mit einem zweiten Temperatursensor (4) erfasst wird,
d a d u r c h g e k e n n z e i c h n e t ,
dass unterhalb einer ersten Temperaturschwelle T_{a1} für die Außentemperatur T_a die Sitzbelüftung (12) und oberhalb einer zweiten Temperaturschwelle T_{a2} für die Außen-temperatur T_a die Sitzheizung (8) ausgeschaltet wird.

10
15
20
25
30

2. Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Wert für die erste Temperaturschwelle T_{a1} gleich dem Wert für die zweite Temperaturschwelle T_{a2} ist.

3. Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
dass der vorgegebenen Sollwert T_{soll} für die Sitztemperatur T_s einen Wert im Temperaturbereich zwischen 32,5°C und 35,5°C aufweist.

4. Verfahren nach Anspruch 1,
durch gekennzeichnet,
dass der vorgegebenen Sollwert T_{soll} für die Sitztempera-
tur T_s in Abhängigkeit von der Außentemperatur T_a einge-
stellt wird.

5. Verfahren nach Anspruch 1,
durch gekennzeichnet,
dass unterhalb der ersten Temperaturschwelle T_{a1} für die
Außentemperatur T_a die Sitztemperatur T_s auf einen oberen
Sollwert T_{sollo} und oberhalb der zweiten Temperatur-
schwelle T_{a2} auf einen unteren Sollwert T_{solll} geregelt
wird, wobei der untere Sollwert T_{solll} kleiner als der
obere Sollwert T_{sollo} ist und beide im Temperaturbereich
zwischen $32,5^{\circ}\text{C}$ und $35,5^{\circ}\text{C}$ liegen.

1/1

DaimlerChrysler AG

Sourell

07.01.2003

Zusammenfassung

- 5 Bei einem Verfahren zum Regeln einer Sitztemperatur T_s eines Fahrzeugsitzes mit einer Sitzbelüftung (12) und einer Sitzheizung (8) auf einen vorgegebenen Sollwert T_{soll} , bei dem die Sitztemperatur T_s im Bereich einer Sitzoberfläche mit einem ersten Temperatursensor (2) und die Außentemperatur T_a 10 mit einem zweiten Temperatursensor (4) erfasst wird, wird unterhalb einer ersten Temperaturschwelle T_{a1} für die Außentemperatur T_a die Sitzbelüftung (12) und oberhalb einer zweiten Temperaturschwelle T_{a2} für die Außentemperatur T_a die Sitzheizung (8) ausgeschaltet. Durch diese Maßnahmen wird einem 15 Insassen für sein Wohlbefinden ein komfortables Mikroklima im Sitzbereich zur Verfügung gestellt.

Figur

