本节主题

控制信号的集成

北京大学。嘉课

制作人:陈龄就

现有指令所需的控制信号

处理器的设计步骤

- ① 分析指令系统,得出对数据通路的需求
- ② 为数据通路选择合适的组件
- ③连接组件建立数据通路
- ④ 分析每条指令的实现,以确定控制信号
- ⑤ 集成控制信号,形成完整的控制逻辑

控制逻辑与数据通路

控制信号的汇总(以add指令为例)

add: $R[rd] \leftarrow R[rs] + R[rt]$; $PC \leftarrow PC + 4$

控制信号的逻辑表达式

func	100000	100010	/			
opcode (op)	000000	000000	001101	100011	101011	000100
	add	sub	ori	lw	sw	beq
RegDst	1	1	0	0	X	X
ALUSrc	0	0	1	1	1	0
MemtoReg	0	0	0	1	X	X
RegWr	1	1	1	1	0	0
MemWr	0	0	0	0	1	0
nPC_sel	0	0	0	0	0	1
ExtOp	X	Х	0	1	1	X
ALUctr<1:0>	00(ADD)	01(SUB)	10 (OR)	00(ADD)	00(ADD)	01(SUB)

控制信号的逻辑表达式

func	100000	100010	/			
opcode (op)	000000	000000	001101	100011	101011	000100
	add	sub	ori	lw	sw	beq
RegDst	1	1	0	0	X	X

```
RegDst = add + sub
add =rtype · func5 ·~func4 ·~func3 ·~func2 ·~func1 ·~func0
sub =rtype · func5 ·~func4 ·~func3 ·~func2 · func1 ·~func0
rtype =~op5 ·~op4 ·~op3 ·~op2 ·~op1 ·~op0
```

R	opcode	rs	rt	rd	shamt	funct	
ı	opcode	rs	rt	immediate			

add, sub

ori, lw, sw, beq

控制器的逻辑表达式

```
RegDst
             = add + sub
ALUSTC
             = ori + lw + sw
MemtoReq = lw
RegWr
              = add + sub + ori + lw
MemWr
            = sw
nPC sel
             = beq
ExtOp = lw + sw
ALUctr[0] = sub + beq
ALUctr[1] = or
add
        = rtype ·func5 ·~func4 ·~func3 ·~func2 ·~func1 ·~func0
         = rtype ·func5 ·~func4 ·~func3 ·~func2 · func1 ·~func0
sub
rtype = \sim op5 \cdot \sim op4 \cdot \sim op3 \cdot \sim op2 \cdot \sim op1 \cdot \sim op0,
ori
        = \sim op5 \cdot \sim op4 \cdot op3 \cdot op2 \cdot \sim op1 \cdot op0
         = op5 \cdot \sim op4 \cdot \sim op3 \cdot \sim op2 \cdot op1 \cdot op0
lw
         = op5 \cdot \sim op4 \cdot op3 \cdot \sim op2 \cdot op1 \cdot op0
SW
       = \sim op5 \cdot \sim op4 \cdot \sim op3 \cdot op2 \cdot \sim op1 \cdot \sim op0
beq
```

控制器的实现示意图

处理器的设计步骤

- ① 分析指令,得出对数据通路的需求
- ② 为数据通路选择合适的组件
- ③连接组件建立数据通路
- ④ 分析每条指令的实现,以确定控制信号
- ⑤ 集成控制信号,形成完整的控制逻辑

本节小结

控制信号的集成

北京大学。嘉课

计算机组制成

制作人:陈龄就

