1

Assignment-5

Name: Sai Pravallika Danda, Roll Number: CS20BTECH11013

b)

Download all latex-tikz codes from

https://github.com/spdanda/AI1103/blob/main/ Assignment5/Assignment5.tex

CSIR-UGC-NET June-2016 Q50:

Let X and Y be independent and identically distributed random variables such that $Pr(X = 0) = Pr(X = 1) = \frac{1}{2}$. Let Z = X + Y and W = |X - Y|. Then which statement is not correct?

- 1) X and W are independent.
- 2) Y and W are independent.
- 3) Z and W are uncorrelated.
- 4) Z and W are independent.

Solution:

 $X, Y \in \{0, 1\} \implies Z \in \{0, 1, 2\} \text{ and } W \in \{0, 1\}.$

Also,

$$\Pr(X = x) = \begin{cases} \frac{1}{2} & x \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$
 (0.0.1)

$$\Pr(Y = y) = \begin{cases} \frac{1}{2} & y \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$
 (0.0.2)

a)

$$Pr(W = 0) = Pr(X = 0, Y = 0) +$$

 $Pr(X = 1, Y = 1)$ (0.0.3)

$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \tag{0.0.4}$$

$$=\frac{1}{2} \tag{0.0.5}$$

$$Pr(W = 1) = 1 - Pr(W = 0)$$
 (0.0.6)

$$=\frac{1}{2}$$
 (0.0.7)

$$\therefore \Pr(W = w) = \begin{cases} \frac{1}{2} & w \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$

$$(0.0.8)$$

Also
$$E[W] = 0 \times \frac{1}{2} + 1 \times \frac{1}{2}$$
 (0.0.9)
= $\frac{1}{2}$ (0.0.10)

 $\Pr(Z = z) = \Pr(X + Y = z)$

 $= \sum_{x=0}^{z} \Pr(X = x) \Pr(Y = z - x)$

$$= (2 - |z - 1|) \times \frac{1}{2} \times \frac{1}{2} \qquad (0.0.12)$$

$$=\frac{2-|z-1|}{4}\tag{0.0.13}$$

$$\therefore \Pr(Z = z) = \begin{cases} \frac{2 - |z - 1|}{4} & z \in \{0, 1, 2\} \\ 0 & \text{otherwise} \end{cases}$$
(0.0.14)

And
$$E[Z] = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4}$$
(0.0.15)

$$= 1$$
 (0.0.16)

Now, for checking each option,

1) Checking if X and W are independent

$$p_{1} = \Pr(X = x, W = w) \qquad (0.0.17)$$

$$= \Pr(X = x, Y = x \pm w) \qquad (0.0.18)$$

$$= \Pr(X = x) \times \Pr(Y = x \pm w) \qquad (0.0.19)$$

$$= \frac{1}{2} \times \frac{1}{2} \qquad (0.0.20)$$

$$= \begin{cases} \frac{1}{4} & (x \pm w) \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise} \end{cases}$$

$$(0.0.21)$$

(only one value for Y is obtained for each case when x and w are substituted)

$$Pr(X = x) \times Pr(W = w) = \frac{1}{2} \times \frac{1}{2}$$
(0.0.22)
$$= \frac{1}{4} \quad (0.0.23)$$

$$Pr(X = x) Pr(W = w) =$$

 $Pr(X = x, W = w) (0.0.24)$

 \implies X and W are independent and hence Option 1 is true.

- 2) Checking if Y and W are independent Solving of this case is identical to the first option except the variable X is replaced by Y. Hence on solving, you get Y and W are independent.
 - : Option 2 is also true.
- 3) Checking if W and Z are uncorrelated Uncorrelated random variables: Two variables are said to be uncorrelated if the expected value of their joint distribution is equal to product of the expected values of their respective marginal distributions.

Also, $WZ \in \{0, 1, 2\}$

$$Pr(WZ = 2) = Pr(W = 1, Z = 2) = 0$$
(0.0.25)

(: If Z = 2, $X = Y = 1 \implies W = 0$ i.e., \neq to 1)

$$\Pr(WZ = 0) = \frac{1}{2} \tag{0.0.26}$$

(: either W = 0 or Z = 0)

$$Pr(WZ = 1) = 1 - Pr(WZ = 0) -$$

 $Pr(WZ = 2) (0.0.27)$

$$=1-\frac{1}{2} \qquad (0.0.28)$$

$$=\frac{1}{2}$$
 (0.0.29)

 \therefore Expected value of WZ, E[WZ]

$$= \sum_{k=0,1,2} k \Pr(WZ = k) \qquad (0.0.30)$$

$$= 1 \times \frac{1}{2} + 0 \tag{0.0.31}$$

$$=\frac{1}{2} \tag{0.0.32}$$

Also
$$E[W] \times E[Z] = \frac{1}{2} \times 1 = \frac{1}{2}$$
(0.0.33)
$$= E[WZ] \quad (0.0.34)$$

Hence from the above equation W and Z are uncorrelated random variables.

∴Option 3 is also true.

4) Let's check for one particular case.

$$Pr(W = 0 | Z = 0) = 1 (0.0.35)$$

$$(\because Z = 0 \implies X = Y = 0 \implies W = 0)$$

$$\therefore \frac{\Pr(W = 0, Z = 0)}{\Pr(Z = 0)} = 1 \qquad (0.0.36)$$

$$\implies \Pr(W = 0, Z = 0) = \Pr(Z = 0)$$

 $\neq \Pr(W = 0) \times \Pr(Z = 0) \quad (0.0.37)$

 \therefore W and Z are not independent random variables

Hence Option 4 is incorrect.

∴ Answer is Option4.