import pandas as pd
import numpy as np
import seaborn as sns

LOADING THE DATASET

df=pd.read_csv('/content/abalone.csv')

df

₽						Whole	Shucked	Viscera	Shell	
_		Sex	Length	Diameter	Height	weight	weight	weight	weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
	4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
	4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
	4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
	4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

df.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64

dtype: object

import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns

UNIVARIATE ANALYSIS

```
plt.scatter(df.index,df['Diameter'])
plt.show()
```


sns.scatterplot(x=df.index,y=df['Diameter'],hue=df['Sex'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f62aadf9cd0>


```
sns.set(rc={'figure.figsize': (7,7)})
sns.set (font_scale=1.5)
fig=sns.lineplot (x=df.index, y=df['Length'], markevery=1, marker='d', data=df, hue=df ['Sex'
fig.set(xlabel='index')
```

[Text(0.5, 0, 'index')]

sns.stripplot (y=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f62a9477b90>

sns.stripplot (x=df['Sex'], y=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f62a9445dd0>

sns.set(rc={'figure.figsize': (5,5)})
sns.swarmplot (x=df['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 61.6% (
 warnings.warn(msg, UserWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f62a93ac150>

plt.hist(df['Height'])

plt.figure (figsize=(5,5))
df ['Height'].plot (kind='density')

fig, ax = plt.subplots()
sns.rugplot (df ['Height'])
ax.set_xlim (3,9)
plt.show()

plt.boxplot(df['Height'])

BIVARIATE ANALYSIS

```
sns.barplot(x='Sex',y='Height',data=df)
sns.countplot(x='Sex',data=df)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f62a66cded0>

sns.violinplot (x="Sex", y="Length", data=df, size=8)
plt.show()

sns.boxplot (x='Sex',y='Diameter', data=df)
plt.show()

MULTIVARIATE ANALYSIS

sns.pairplot (df, hue="Sex", size=3)
plt.show()

PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

pd.set_option('display.width', 100)
pd.set_option('precision', 3)
description = df.describe()
print(description)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell
count	4177.000	4177.000	4177.000	4177.000	4177.000	4.177e+03	2
mean	0.524	0.408	0.140	0.829	0.359	1.806e-01	
std	0.120	0.099	0.042	0.490	0.222	1.096e-01	
min	0.075	0.055	0.000	0.002	0.001	5.000e-04	
25%	0.450	0.350	0.115	0.442	0.186	9.350e-02	
50%	0.545	0.425	0.140	0.799	0.336	1.710e-01	
75%	0.615	0.480	0.165	1.153	0.502	2.530e-01	
max	0.815	0.650	1.130	2.825	1.488	7.600e-01	

	Rings
count	4177.000
nean	9.934
std	3.224
min	1.000
25%	8.000
50%	9.000
75%	11.000
max	29.000

Check for Missing values

df.isnull()

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
	0	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	
4	172	False	False	False	False	False	False	False	
4	173	False	False	False	False	False	False	False	
4	174	False	False	False	False	False	False	False	
4	175	False	False	False	False	False	False	False	
4	176	False	False	False	False	False	False	False	

4177 rows × 9 columns

df.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	True	True	True	True	True	True	True	True	True
1	True	True	True	True	True	True	True	True	True
2	True	True	True	True	True	True	True	True	True
3	True	True	True	True	True	True	True	True	True
4	True	True	True	True	True	True	True	True	True
							•••		

sns.heatmap(df.isnull(),yticklabels=False,cbar=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f62a60e4490>

Find the outliers and replace them outliers

sns.boxplot(df['Rings'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f62a49d1850>

df['Rings'].hist()

fare_mean = df['Rings'].mean()
fare_std = df['Rings'].std()
low= fare_mean -(3 * fare_std)
high= fare_mean + (3 * fare_std)
fare_outliers = df[(df['Rings'] < low) | (df['Rings'] > high)]
fare_outliers.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell
6	F	0.530	0.415	0.150	0.777	0.237	0.141	
72	F	0.595	0.475	0.170	1.247	0.480	0.225	
83	М	0.595	0.475	0.160	1.317	0.408	0.234	
166	F	0.725	0.575	0.175	2.124	0.765	0.452	
167	F	0.680	0.570	0.205	1.842	0.625	0.408	

```
Q1 = df['Rings'].quantile(0.25)
Q3 = df['Rings'].quantile(0.75)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 -(whisker_width*IQR)
upper_whisker = Q3 +(whisker_width*IQR)
df['Rings']=np.where(df['Rings']>upper_whisker,upper_whisker,np.where(df['Rings']<lower_whisk
sns.boxplot(df['Rings'],data=df)</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th
 FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f62a48ce190>


```
Q1 = df['Rings'].quantile(0.10)
Q3 = df['Rings'].quantile(0.90)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
index=df['Rings'][(df['Rings']>upper_whisker)|(df['Rings']<lower_whisker)].index
df.drop(index,inplace=True)</pre>
```

Check for Categorical columns and perform encoding

```
from sklearn.compose import make_column_selector as selector
categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(df)
categorical_columns
```

```
['Sex']
```

```
data_categorical = df[categorical_columns]
data_categorical.head()
```

```
Sex

0 M

1 M

2 F

3 M

4 I
```

from sklearn.preprocessing import OrdinalEncoder

from sklearn.preprocessing import OneHotEncoder

```
encoder = OneHotEncoder(sparse=False)
```

feature_names = encoder.get_feature_names_out(input_features=["Sex"])
Sex_encoded = pd.DataFrame(Sex_encoded, columns=feature_names)
Sex_encoded

	Sex_F	Sex_I	Sex_M	1
0	0.0	0.0	1.0	
1	0.0	0.0	1.0	
2	1.0	0.0	0.0	
3	0.0	0.0	1.0	
4	0.0	1.0	0.0	
•••				
4172	1.0	0.0	0.0	
4173	0.0	0.0	1.0	
4174	0.0	0.0	1.0	
4175	1.0	0.0	0.0	
4176	0.0	0.0	1.0	

4177 rows × 3 columns

Split the data into dependent and independent variables

```
X= df.iloc[ : , :-1].values
```

print(X)

```
[['M' 0.455 0.365 ... 0.2245 0.101 0.15]
    ['M' 0.35 0.265 ... 0.0995 0.0485 0.07]
    ['F' 0.53 0.42 ... 0.2565 0.1415 0.21]
    ...
    ['M' 0.6 0.475 ... 0.5255 0.2875 0.308]
    ['F' 0.625 0.485 ... 0.531 0.261 0.296]
    ['M' 0.71 0.555 ... 0.9455 0.3765 0.495]]

y= df.iloc[ : , 4].values
print(y)

[0.514 0.2255 0.677 ... 1.176 1.0945 1.9485]
```

Scale the independent variables

from sklearn import preprocessing

df.drop(labels="Sex",axis=1)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.514	0.225	0.101	0.150	15.0
1	0.350	0.265	0.090	0.226	0.100	0.049	0.070	7.0
2	0.530	0.420	0.135	0.677	0.257	0.141	0.210	9.0
3	0.440	0.365	0.125	0.516	0.215	0.114	0.155	10.0
4	0.330	0.255	0.080	0.205	0.089	0.040	0.055	7.0
4172	0.565	0.450	0.165	0.887	0.370	0.239	0.249	11.0
4173	0.590	0.440	0.135	0.966	0.439	0.214	0.261	10.0
4174	0.600	0.475	0.205	1.176	0.525	0.287	0.308	9.0
4175	0.625	0.485	0.150	1.095	0.531	0.261	0.296	10.0
4176	0.710	0.555	0.195	1.948	0.946	0.377	0.495	12.0

4177 rows × 8 columns

Split the data into training and testing

from sklearn.model_selection import train_test_split

```
X=df.iloc[ : , :-1]
y=df.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.05, random_state=0)
```

X_train

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
678	F	0.450	0.380	0.165	0.817	0.250	0.192	0.265
3009	I	0.255	0.185	0.065	0.074	0.030	0.017	0.020
1906	I	0.575	0.450	0.135	0.825	0.338	0.211	0.239
768	F	0.550	0.430	0.155	0.785	0.289	0.227	0.233
2781	М	0.595	0.475	0.140	1.030	0.492	0.217	0.278
1033	М	0.650	0.525	0.185	1.622	0.664	0.323	0.477
3264	F	0.655	0.500	0.140	1.171	0.540	0.318	0.285
1653	М	0.595	0.450	0.145	0.959	0.463	0.206	0.254
2607	F	0.625	0.490	0.165	1.127	0.477	0.236	0.319
2732	I	0.410	0.325	0.110	0.326	0.133	0.075	0.101

3968 rows × 8 columns

```
y_train
```

678 15.5 3009 4.0 1906 11.0 11.0 768 2781 10.0 . . . 10.0 1033 3264 12.0 1653 10.0 9.0 2607 2732 8.0

Name: Rings, Length: 3968, dtype: float64

Build the Model -> Train and test the model

```
train, test = train_test_split(df, test_size=0.25, random_state=1)
print('Train data points :', len(train))
print('Test data points :', len(test))
```

```
Train data points : 3132
Test data points : 1045
```



```
fig, axes = plt.subplots(4,2,figsize=(16, 14))
axes = np.ravel(axes)
```

```
for i, c in enumerate(numerical_features):
    hist = train[c].plot(kind = 'hist', ax=axes[i], title=c, color='blue', bins=30)

plt.tight_layout()
plt.show()
```


idx = train.loc[train.Height>0.4].index
train.drop(idx, inplace=True)

idx = train.loc[train['Viscera weight']>0.6].index
train.drop(idx, inplace=True)

idx = train.loc[train[target]>25].index
train.drop(idx, inplace=True)

X_train = train[features]
y_train = train[target]

250

X_test = test[features]
y_test = test[target]

X_train.head()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Sex
401	4 0.625	0.480	0.175	1.065	0.486	0.259	0.285	1
325	0.480	0.380	0.130	0.618	0.300	0.142	0.175	1
30	0.200	0.145	0.060	0.037	0.013	0.009	0.011	0
185	7 0.505	0.400	0.145	0.705	0.334	0.142	0.207	0
439	0.500	0.415	0.165	0.689	0.249	0.138	0.250	1

```
from sklearn.linear_model import LinearRegression
```

from xgboost import XGBRegressor

models = {'linear regression':LinearRegression(),

from sklearn. linear_model import Lasso

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

^{&#}x27;lasso':Lasso(random_state=1),

^{&#}x27;decision_tree':DecisionTreeRegressor(random_state=1),

^{&#}x27;random_forest':RandomForestRegressor(random_state=1),

```
'xgboost':XGBRegressor(random_state=1),
}
```

Measure the performance using Metrics.

```
# Linear regression
lr_params = {'fit_intercept':[True,False]}
lasso_params = {'alpha': [1e-4, 1e-3, 1e-2, 1, 10, 100]}
# Decision tree
dt_params = {'max_depth': [4, 6, 8, 10, 12, 14, 16, 20],
            'min_samples_split': [5, 10, 20, 30, 40, 50],
            'max_features': [0.2, 0.4, 0.6, 0.8, 1],
            'max leaf nodes': [8, 16, 32, 64, 128,256]}
# Random Forest
rf_params = {'bootstrap': [True, False],
             'max_depth': [2, 5, 10, 20, None],
             'max features': ['auto', 'sqrt'],
             'min samples_leaf': [1, 2, 4],
             'min samples split': [2, 5, 10],
             'n estimators': [100, 150, 200, 250]}
# XGBoost
xgb_params = {'n_estimators':[100, 200, 300] ,
             'max depth':list(range(1,10)) ,
             'learning_rate':[0.006,0.007,0.008,0.05,0.09],
             'min child weight':list(range(1,10))}
from sklearn.model selection import RandomizedSearchCV
params = [lr_params, lasso_params, dt_params, rf_params, xgb_params]
# searching Hyperparameters
i=0
for name, model in models.items():
   print(name)
   regressor = RandomizedSearchCV(estimator = model,n iter=10,param distributions = params[i
    search = regressor.fit(X train, y train)
   print("Best params :",search.best_params_)
   print("RMSE :", -search.best score )
    i+=1
   print()
rf_params = {'n_estimators': 200,
```

```
'min_samples_split': 2,
             'min_samples_leaf': 4,
             'max_features': 'sqrt',
             'max_depth': None,
             'bootstrap': True}
model = RandomForestRegressor(random_state=1, **rf_params)
model.fit(X_train, y_train)
     RandomForestRegressor(max_features='sqrt', min_samples_leaf=4, n_estimators=200,
                           random_state=1)
import pickle
with open("model.pkl", "wb") as f:
    pickle.dump(model, f)
y_pred = model.predict(X_test)
fig = plt.figure(figsize=(10, 6))
plt.scatter(range(y_test.shape[0]), y_test, color='red', label='y_true')
plt.scatter(range(y_test.shape[0]), y_pred, color='blue', label='y_pred')
plt.legend()
plt.show()
```



```
plt.figure(figsize=(10,5))
plt.hist(y_pred-y_test, bins=30)
plt.show()
```



```
def predict_age(x):
    x = pd.DataFrame([x], columns=features)
    age = model.predict(x)
    return round(age[0],2)

with open("model.pkl", 'rb') as f:
    model = pickle.load(f)
ex = [0.295 , 0.225 , 0.08 , 0.124 , 0.0485, 0.032 , 0.04 , 0.]
print("Estimated age : ",predict_age(ex))
Estimated age : 7.26
```