一选择题 (共72分)

1. (本题 3分)(5527)

如图所示, 折射率为n、厚度为e的透明介质薄膜 的上方和下方的透明介质的折射率分别为 n_1 和 n_3 ,已 知 $n_1 < n_2 > n_3$. 若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上、下两表面反射的光束(用①与② 示意)的光程差是

- (A) $2n_2e$.
- (B) $2n_2e-\lambda/2$.
- (C) $2n_2e-\lambda$.
- (D) $2n_2 e^{-\lambda/(2n_2)}$.

 n_2

 $\overline{n_3}$

Γ

2. (本题 3分)(3666)

如图所示,波长为λ的平行单色光垂直入射在折射率为 n_2 的薄膜上,经上下两个表面反射的两束光发生干涉. 若 薄膜厚度为 e, 而且 $n_1 > n_2 > n_3$,则两束反射光在相遇点的 相位差为

- (A) $4\pi n_2 e / \lambda$.
- (B) $2\pi n_2 e / \lambda$.
- (C) $(4\pi n_2 e / \lambda) + \pi$. (D) $(2\pi n_2 e / \lambda) \pi$.

3. (本题 3分)(3664)

如图所示, 平行单色光垂直照射到薄膜上, 经上下两 表面反射的两束光发生干涉,若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长,则 两束反射光在相遇点的相位差为

- (A) $2\pi n_2 e / (n_1 \lambda_1)$.
- (B) $[4\pi n_1 e / (n_2 \lambda_1)] + \pi$.
- (C) $[4\pi n_2 e / (n_1 \lambda_1)] + \pi$.
- (D) $4\pi n_2 e / (n_1 \lambda_1)$.

٦ Γ

4. (本题 3分)(3612)

在双缝干涉实验中, 若单色光源 S 到两缝 S_1 、 S_2 距离相 等,则观察屏上中央明条纹位于图中O处. 现将光源S向 下移动到示意图中的S位置,则

- (A) 中央明条纹也向下移动, 且条纹间距不变.
- (B) 中央明条纹向上移动, 且条纹间距不变.
- (C) 中央明条纹向下移动, 且条纹间距增大.
- (D) 中央明条纹向上移动, 且条纹间距增大.

Γ ٦

5. (本题 3分)(3676)

在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D(D>>d). 波 长为2的平行单色光垂直照射到双缝上, 屏幕上干涉条纹中相邻暗纹之间的距离 是

- (A) $2\lambda D/d$.
- (B) $\lambda d/D$.
- (C) dD / λ .
- (D) $\lambda D/d$.

6. (本题 3分)(3678)

在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为D(D>>d),单色光波 长为 2, 屏幕上相邻明条纹之间的距离为

- (A) $\lambda D/d$.
- (B) $\lambda d/D$.
- (C) $\lambda D/(2d)$.
- (D) $\lambda d/(2D)$.

7. (本题 3分)(3174)

在双缝干涉实验中, 屏幕 E 上的 P 点处是明条纹. 若 将缝 S_2 盖住,并在 S_1 S_2 连线的垂直平分面处放一高折射 率介质反射面M,如图所示,则此时

- (A) P 点处仍为明条纹.
- (B) P 点处为暗条纹.
- (C) 不能确定 P 点处是明条纹还是暗条纹.
- (D) 无干涉条纹.

Γ

1

7

8. (本题 3分)(3185)

在图示三种透明材料构成的牛顿环装置中,用单色光垂 直照射,在反射光中看到干涉条纹,则在接触点P处形成的 圆斑为

图中数字为各处的折射

- (A) 全明.
- (B) 全暗.
- (C) 右半部明, 左半部暗.
- (D) 右半部暗, 左半部明.

Γ

9. (本题 3分)(3508)

如图 a 所示,一光学平板玻璃 A 与待测工件 B 之 间形成空气劈尖, 用波长 λ =500 nm (1 nm=10⁻⁹ m)的 单色光垂直照射.看到的反射光的干涉条纹如图 b 所 示. 有些条纹弯曲部分的顶点恰好与其右边条纹的直 线部分的连线相切.则工件的上表面缺陷是

- (A) 不平处为凸起纹,最大高度为 500 nm.
- (B) 不平处为凸起纹,最大高度为 250 nm.
- (C) 不平处为凹槽,最大深度为500 nm.
- (D) 不平处为凹槽, 最大深度为 250 nm.

]

10. (本题 3分)(3200)

在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片, 放入后,这条光路的光程改变了

- (A) 2 (n-1) d.
- (B) 2nd.
- (C) 2 (n-1) $d+\lambda/2$.
- (D) *nd*.
- (E) (n-1) d.

Γ 1

11. (本题 3分)(3516)

在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后, 测出两束光的光程差的改变量为一个波长2,则薄膜的厚度是

(A) $\lambda/2$.

(B) $\lambda / (2n)$.

(C) λ / n .

(D)
$$\frac{\lambda}{2(n-1)}$$
.

Γ]

12. (本题 3分)(3719)

在单缝去琅禾费衍射实验中, 若减小缝宽, 其他条件不变, 则中央明条纹

- (A) 宽度变小;
- (B) 宽度变大;
- (C) 宽度不变, 且中心强度也不变;
- (D) 宽度不变,但中心强度变小.

٦

13. (本题 3分)(3520)

根据惠更斯一菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某 点 P 的光强度决定于波阵面 S 上所有面积元发出的子波各自传到 P 点的

(A) 振动振幅之和.

(B) 光强之和.

(C) 振动振幅之和的平方. (D) 振动的相干叠加.

Γ

14. (本题 3分)(3741)

在单缝去琅禾费衍射实验中波长为2的单色光垂直入射到单缝上,对应于衍 射角为30°的方向上, 若单缝处波面可分成3个半波带, 则缝宽度 a 等于

 $(A) \lambda$.

(B) 1.5λ .

(C) 2λ .

(D) 3 λ .

Γ

٦

15. (本题 3分)(3204)

测量单色光的波长时,下列方法中哪一种方法最为准确?

(A) 双缝干涉.

(B) 牛顿环 .

(C) 单缝衍射.

(D) 光栅衍射.

٦

Γ

16. (本题 3分)(3212)

一束平行单色光垂直入射在光栅上,当光栅常数(a+b)为下列哪种情况时(a+b)代表每条缝的宽度),k=3、6、9 等级次的主极大均不出现?

(A) a+b=2 a.

(B) a+b=3 a.

(C) a+b=4 a.

(A) a+b=6 a.

17. (本题 3分)(5534)

设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面 入射变为斜入射时,能观察到的光谱线的最高级次k

(A) 变小.

(B) 变大.

(C) 不变. (D) 的改变无法确定.

 \circ 当光垂直入射到光栅平面时,光栅衍射公式为 $d\sin\theta=k\lambda$,其中d是光栅常数,heta是衍射角,k是衍射级

 \circ 对于衍射条纹,衍射角heta的取值范围是 $-rac{\pi}{2} \leq heta \leq rac{\pi}{2}$,所以能观察到的光谱线的最高级次 k_{max} 满足 $k_{max}=rac{d}{\lambda}$ (当 $heta=rac{\pi}{2}$ 时取到最大值)

 \circ 当光斜入射时,设入射角为lpha,此时光栅衍射公式变为 $d(\sinlpha+\sin heta)=k\lambda$ 。

。 同样,衍射角 θ 的取值范围是 $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ 。 当 $\theta = \frac{\pi}{2}$ 时,k取得最大值,此时 $k_{max} = \frac{d(\sin \alpha + 1)}{\lambda}$

3. 比较两种情况得出结论

 \circ 因为 $\sin \alpha + 1 > 1$ ($\alpha \neq 0$, 当 $\alpha = 0$ 时为垂直入射情况),所以当光从垂直入射变为斜入射时,能观 察到的光谱线的最高级次**k**会增大。

18. (本题 3分)(3173)

在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹. 若在两缝后放一个偏振片,则

- (A) 干涉条纹的间距不变, 但明纹的亮度加强.
- (B) 干涉条纹的间距不变, 但明纹的亮度减弱.
- (C) 干涉条纹的间距变窄, 且明纹的亮度减弱.
- (D) 无干涉条纹.

[]

19. (本题 3分)(3368)

一束光强为 I_0 的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成 45° 角,则穿过两个偏振片后的光强 I 为

- (A) $I_0/4\sqrt{2}$.
- (B) $I_0 / 4$.
- (C) $I_0/2$.
- (D) $\sqrt{2} I_0 / 2$.

[]

20. (本题 3分)(3538)

两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动 180°时透射光强度发生的变化为:

- (A) 光强单调增加.
- (B) 光强先增加,后又减小至零.
- (C) 光强先增加,后减小,再增加.
- (D) 光强先增加, 然后减小, 再增加, 再减小至零.

21. (本题 3分)(5222)

光强为 I_0 的自然光依次通过两个偏振片 P_1 和 P_2 . 若 P_1 和 P_2 的偏振化方向的夹角 α =30°,则透射偏振光的强度 I 是

- (A) $I_0 / 4$.
- (B) $\sqrt{3} I_0 / 4$.
- (C) $\sqrt{3} I_0 / 2$.
- (D) $I_0 / 8$.

(E) $3I_0 / 8$.

٦

Γ

22. (本题 3分)(3246)

一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为

- (A) 1/2.
- (B) 1/3.
- (C) 1 / 4.
- (D) 1/5.

23. (本题 3分)(3544)

一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角 i_0 ,则在界面 2 的反射光

- (A) 是自然光.
- (B) 是线偏振光且光矢量的振动方向垂直于入射面.
- (C) 是线偏振光目光矢量的振动方向平行于入射面.

误.

(D) 是部分偏振光.

2

自然光穿过方解石后被分解为垂直于纸面的e光和平行于纸面的e光(注意看左边的光线箭头,黑点表示垂直于纸面,黑竖线表示平行于纸面),故两光线的电场振动方向互相垂直,由于折射作用导致两光线的传播方向不同,故C正确,ABD错

24. (本题 3分)(5330)

ABCD 为一块方解石的一个截面,AB 为垂直于纸面的晶体平面与纸面的交线. 光轴方向在纸面内且与 AB 成一锐角 θ ,如图所示. 一束平行的单色自然光垂直于 AB 端面入射. 在方解石内折射光分解为 o 光和 e 光, o 光和 e 光的

- 内折射光分解为 o 光和 e 光, o 光和 e 光的 + (A) 传播方向相同, 电场强度的振动方向互相垂直.
- (B) 传播方向相同,电场强度的振动方向不互相垂直.
- (C) 传播方向不同, 电场强度的振动方向互相垂直.
- (D) 传播方向不同, 电场强度的振动方向不互相垂直.

[]

二填空题 (共74分)

25. (本题 3分)(3671)

单色平行光垂直入射到双缝上. 观察屏上 P 点到两缝的距离分别为 r_1 和 r_2 . 设双缝和屏之间充满折射率为 n 的媒质,

则 P 点处二相干光线的光程差为_____.

26. (本题 4分)(3167)

如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的光. A 是它们连线的中垂线上的一点. 若在 S_1 与 A 之间插入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的相位差 $\Delta \phi$ =

______. 若已知 λ =500 nm, n=1.5, A 点恰为第

四级明纹中心,则 e=____nm. (1 nm =10⁻⁹ m)

27. (本题 4分)(3179)

如图所示,在双缝干涉实验中 $SS_1=SS_2$,用波长为 λ 的光照射双缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹. 已知 P 点处为第三级明条纹,则 S_1 和 S_2 到 P

液体中,P点为第四级明条纹,则该液体的折射率 n=_____.

<mark>28. (本题 3分)(3690)</mark>

波长为 λ 的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为n,第二

29. (本题 3分)(3203) 用迈克耳孙干涉仪测微小的位移. 若入射光波波长 λ =628.9 nm, 当动臂反
射镜移动时,干涉条纹移动了 2048 条,反射镜移动的距离 d=
30. (本题 3分)(3711) 已知在迈克耳孙干涉仪中使用波长为λ的单色光. 在干涉仪的可动反射镜移
动距离 d 的过程中,干涉条纹将移动条.
31. (本题 3分)(3378) 光强均为 I_0 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的
最大光强是
32. (本题 3分)(5647) 维纳光驻波实验装置示意如图. MM 为金属反射镜; NN 为涂有极薄感光层的玻璃板. MM 与 NN 之间夹角 ϕ = 3.0×10^{-4} rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光驻波, NN 板的感光层上形成对应于波腹波节的条纹. 实验测得两个相邻的驻波波腹感光点
来头· 关型例 [57] 1 和 [4] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$A \times B$ 的间距 $\overline{AB} = 1.0$ mm,则入射光波的波长为mm.
$A \times B$ 的间距 $\overline{AB} = 1.0 \text{ mm}$,则入射光波的波长为mm. 33. (本题 3分)(3521)
A、B的间距 AB = 1.0 mm,则入射光波的波长为mm. 33. (本题 3分)(3521) 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用
A、B的间距 AB = 1.0 mm,则入射光波的波长为mm. 33. (本题 3分)(3521) 惠更斯引入
A、B的间距 AB = 1.0 mm, 则入射光波的波长为
A、B的间距 AB = 1.0 mm, 则入射光波的波长为
A、B的间距 AB = 1.0 mm, 则入射光波的波长为

37. (本题 4分)(3217) 一束单色光垂直入射在光栅上, 衍射光谱中共出现 5 条明纹. 若已知此光栅
缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第
级和第级谱线.
38. (本题 3分)(3370) 一束自然光垂直穿过两个偏振片,两个偏振片的偏振化方向成45°角. 已知通过此两偏振
片后的光强为1,则入射至第二个偏振片的线偏振光强度为
39. (本题 3 分)(3550) 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝 S ,在屏幕上能看到干涉条纹.若在双缝 S_1 和 S_2 的一侧分别加一同质同厚的偏振片 P_1 、 P_2 ,则当 P_1 与 S S_2 P_2 的偏振化方向相互
看到很清晰的干涉条纹.
40. (本题 5 分)(3236) 一束平行的自然光,以 60°角入射到平玻璃表面上. 若反射光束是完全偏
振的,则透射光束的折射角是; 玻璃的折射率
为
41. (本题 5 分)(3234) 一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为
, 反射光 Ē 矢量的振动方向, 透
射光为
42. (本题 3 分)(3238) 如图所示,一束自然光入射到折射率分别为 n_1 和 n_2 的两种介质的交界面上,发生反射和折射. 已知反射光是完全偏振光,那
么折射角 r 的值为
43. (本题 3 分)(3374)
光,则折射光为偏振光,且反射光线和折射光线之间的夹角为

44. (本题 3分)(3808)

光的干涉和衍射现象反映了光的 性质. 光的偏振现像说明光波是

_____波.

45. (本题 3分)(3807)

在光学各向异性晶体内部有一确定的方向、沿这一方向寻常光和非常光的

_____相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称

为 晶体.

46. (本题 4分)(3244)

用方解石晶体(负晶体)切成一个截面为正三角形的棱镜, 光轴方向如图. 若自然光以入射角 *i* 入射并产生双折射. 试定 性地分别画出 *o* 光和 *e* 光的光路及振动方向.

三 计算题 (共66分)

47. (本题 8分)(3651)

薄钢片上有两条紧靠的平行细缝,用波长 λ =546.1 nm (1 nm= 10^{-9} m)的平面光波正入射到钢片上. 屏幕距双缝的距离为D=2.00 m,测得中央明条纹两侧的第五级明条纹间的距离为 Δx =12.0 mm.

- (1) 求两缝间的距离.
- (2) 从任一明条纹(记作 0)向一边数到第 20 条明条纹, 共经过多大距离?
- (3) 如果使光波斜入射到钢片上,条纹间距将如何改变?

48. (本题10分)(3182)

在双缝干涉实验中,波长 λ =550 nm 的单色平行光垂直入射到缝间距 a=2× 10^{-4} m 的双缝上,屏到双缝的距离 D=2 m. 求:

- (1) 中央明纹两侧的两条第 10 级明纹中心的间距;
- (2) 用一厚度为 $e=6.6\times10^{-5}$ m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? (1 nm = 10^{-9} m)

49. (本题 5分)(0448)

在折射率 n=1.50 的玻璃上,镀上n'=1.35 的透明介质薄膜. 入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对 $\lambda_1=600$ nm 的光波干涉相消,对 $\lambda_2=700$ nm 的光波干涉相长. 且在 600 nm 到 700 nm 之间没有别的波长是最大限度相消或相长的情形. 求所镀介质膜的厚度. $(1 \text{ nm} = 10^{-9} \text{ m})$

50. (本题 5分)(3513)

用波长为 λ_1 的单色光照射空气劈形膜,从反射光干涉条纹中观察到劈形膜装置的A点处是暗条纹.若连续改变入射光波长,直到波长变为 λ_2 ($\lambda_2 > \lambda_1$)时,A点再次变为暗条纹.求A点的空气薄膜厚度.

51. (本题10分)(3198) 别忘记加半波损失

如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e_0 . 现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为R,求反射光形成的牛顿环的各暗环半径.

52. (本题 8分)(3199)

在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第 $_{10}$ 个明环的直径由充液前的 $_{14.8~\rm cm}$ 变成充液后的 $_{12.7~\rm cm}$,求这种液体的折射率 $_{n}$.

53. (本题 5分)(3724)

用氦氖激光器发射的单色光(波长为 λ =632.8 nm)垂直照射到单缝上,所得夫琅禾费衍射图样中第一级暗条纹的衍射角为 5°,求缝宽度. (1nm= 10^{-9} m)

54. (本题 5分)(3743)

如图所示,设波长为 λ 的平面波沿与单缝平面法线成 θ 角的方向入射,单缝AB的宽度为a,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角 φ .

55. (本题10分)(0470)

用每毫米 300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长 λ_R 在 0.63—0.76 μ m 范围内,蓝谱线波长 λ_R 在 0.43—0.49 μ m 范围内. 当光垂直入射到光栅时,发现在衍射角为 24.46°处,红蓝两谱线同时出现.

- (1) 在什么角度下红蓝两谱线还会同时出现?
- (2) 在什么角度下只有红谱线出现?