Felix Linhart: 318801

Exercise 1

a)

•
$$\alpha_1 = a^*.(b.a^+)^{\omega} + a^*.(b.a^+)^*.b.a^{\omega}$$

•
$$\alpha_2 = ((c.(b.c)^*.a + b).a)^{\omega}$$

b)

c)

 \mathcal{L}^1_ω :

Since the stated NBA is already a DBA there obviously exists one.

 \mathcal{L}^2_{ω} :

The proof follows the principle of the proof of $(A+B)^*.A^{\omega}$. In this case A corresponds to c and B to b.

Assuming there exists a DBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}^2 =: L$.

Felix Linhart: 318801

Note that $\mathcal{L}_{\omega}((c+b)^*.c^{\omega}) \subseteq L$, since c occurs infinitely many times and a and b only occur finitely many times.

Following the proof yields a sequence n_1, n_2, \ldots of natural numbers and a sequence q_1, q_2, \ldots of accepting states such that $\delta(q_0, c^{n_1}bc^{n_2}\ldots c^{n_{i-1}}bc^{n_i}) = \{q_i\}.$

Since Q is finite, there ex. i < j such that $\delta(q_0, c^{n_1}b \dots bc^{n_i}) = \delta(q_0, c^{n_1}b \dots bc^{n_j})$.

Thus, \mathcal{A} has an accepting run on $c^{n_1}b \dots bc^{n_i}(bc^{n_{i+1}}\dots bc^{n_j})^{\omega} \notin L$, since c and b occur infinitely many times. This contradicts $\mathcal{L}_{\omega}(\mathcal{A}) = L$.

Question:

I guess we cannot just apply the theorem from slide 176 of lec9+10 with $A = \{c\}$ and $B = \{a, b\}$, because the union with $(a + b + c)^* \cdot (a + b)^{\omega}$ could theoretically make it DBA-realizable again?

Exercise 2

Counting?

Exercise 3

a)

 \boldsymbol{A}

 q_2

b)

 $\mathbf{c})$

d)

Based on the picture in Exercise 3 b), we can see that once we enter the state (s_2, q_0) we will never leave it. Therefore we can never be infinitely often in the final state $(s_0, q_2) \in F_2$.

So we cannot fulfill the acceptance criteria that we are infinitely often in a state of every set in $\mathcal{F} = \{F_1, F_2\}$. So there is no word $w \in \mathcal{L}_{\omega}(\mathcal{G}) \Rightarrow \mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$

Exercise 4

a)

$$\begin{split} &\alpha_{pre} = ((b.b)^* + (c.(a.a)^*.c)^*)^* \\ &\alpha_{(q_2,q_3)} = c.a^\omega \\ &\alpha_{(q_1,q_3)} = false = \text{no combination} \\ &\alpha_{(q_0,q_2)} = c^\omega \\ &\alpha = \alpha_{pre}.(\alpha_{(q_2,q_3)} + \alpha_{(q_1,q_3)} + \alpha_{(q_0,q_2)}) = ((b.b)^* + (c.(a.a)^*.c)^*)^* + (c.a^\omega + c^\omega) \end{split}$$

b)

Let GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ then we can construct the equivalent nondeterministic Muller automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, \mathcal{F}')$ by just taking for every set $F_i \in \mathcal{F}, 1 \leq i \leq |\mathcal{F}|$ and build the cross product of all these F_i 's:

$$\mathcal{F}' = F_1 \times F_2 \times \cdots \times F_{|\mathcal{F}|}$$

In \mathcal{G} , in order to be accepting, we had to visit at-least one element of every F_i infinitely often. In The Muller automaton we have to reach one of every possible combination.

Let ρ be an arbitrary accepting run of \mathcal{G} . Then ρ visits at-least one state of every set F_i infinitely often, since all those F_i are of finite length.

Therefore we can state a $f_i \in F_i$ that is visited infinitely often.

By construction $\{f_1, f_2, \dots, f_{|\mathcal{F}|}\} \in \mathcal{F}'$ and therefore \mathcal{A} accepts.

Let ρ' be an accepting run of \mathcal{A} . Then there is a $F' \in \mathcal{F}'$, s.t. $\exists^{\infty} i \geq 0. q_i = q$ or in words: every element of F' is visited infinitely often. By construction this set F' is a combination of elements, s.t.

- $|F'| = |\mathcal{F}|$
- $\forall 0 \leq i \leq |F'|$.for $f_i \in F'$ the *i*-th element also $f_i \in F_i \in \mathcal{F}$

or in words: every i-th element of F' is an element of the i-th element of \mathcal{F}

So for every set in \mathcal{F} there is an element that is visited infinitely often. And so it is also an accepting run in \mathcal{G} .

Since every accepting run of \mathcal{G} is an accepting run of \mathcal{A} and vice versa those two are equivalent.