Notes on Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Jonathan Chen

May 27, 2025

Contents

1	Machine Learning Landscape			
	1.1	What is ML?	2	
	1.2	Types of ML	2	

1 Machine Learning Landscape

1.1 What is ML?

- ML: science of programming computers so they can learn from data
- training set: examples the system uses to learn
 - each example = a sample / training instance
- model: system that learns and makes predictions
- performance measures: used to evaluate the model
- situations to use ML
 - if rules are too complicated to write completely
 - rules could be changing constantly
 - you want to use ML and learn from how they learned
- data mining: digging into large amounts of data and finding patterns

1.2 Types of ML

- training supervision
 - supervised
 - * training set contains labels
 - * divided into classification and regression tasks based on the type of labels
 - · classification: categorical labels
 - · regression: numerical labels
 - unsupervised
 - * unlabeled data
 - * clustering algorithms: cluster data into bins
 - * **visualization** algorithms: outputs 2D or 3D representations of data that can be plotted
 - * dimensionality reduction: simplify data without losing too much information
 - * feature extraction: transforming raw data into meaningful features; often a good idea to do dimensionality reduction before feeding it to a supervised model
 - * anomaly detection: check for rare samples
 - * novelty detection: check for completely unseen data before
 - * association rule learning: dig into large amounts of data and discover relationships between attributes

semi-supervised

- * partially labeled data
- * most are combinations of unsupervised and supervised algorithms
- * example: use unsupervised for grouping, label those data based on grouping, then put into supervised model

self-supervised

- * turn fully unlabeled data to fully labeled data
- * example: use masked images as inputs and full images as outputs
- * usually not the final goal, example: want to train network to repair images, then transfer learn and classify

- reinforcement learning

- * agent observes
- * agent selects action using policy
- * agent chooses action
- * agent gets rewarded / punished
- * agent updates policy as a result
- * iterates until optimal policy is found

• batch vs. online learning

- batch learning

- * trained using all available data
- * offline and requires lots of time / computing resources
- * offline learning: train and then deploy after it is done learning doesn't learn after deployment
- * **model rot**: performance decays over time as the world evolves, so should regularly retrain
- * impossible to use if:
 - · amount of data is huge
 - · need to be autonomous
 - · limited resources
 - · continuous stream of data

- online learning

- * training a model incrementally with data fed one instance at a time in small minibatches
- * fast, on-the-fly learning that adapts to rapidly changing environments
- * good for limited resources

* learning rate

· high learning rate = fast adaptation but risks forgetting old data

- \cdot low learning rate = slower learning but more stable and less prone to noise or outliers
- * bad data can quickly degrade performance so live systems must be monitoried closely through anomaly detection, disabling learning, reverting to previous state of the model

References

[1] Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition, O'Reilly Media, 2022.