MM3110 Assignment 6 Part-1

Ayesha Ulde MM19B021

October 21, 2021

1 Problem 1

The source code for this question is in the file pt1q1.m

For a 50×50 computational grid with 500 grains and a velocity vector of $0.6\hat{i} + 0.6\hat{j}$, the output image obtained is shown below.

The gif file showing the microstructure evolution of these equiaxed grains with 2 as the frequency at which output files are written is labelled $equiaxed_evol.gif$

Figure 1: Output image of the evolved microstructure having equiaxed grains

For a 50×50 computational grid with 500 grains and a velocity vector of $0.6\hat{i} + 0.4\hat{j}$, the output image obtained is shown in Figure 2.

The gif file showing the microstructure evolution of these elongated grains with 2 as the frequency at which output files are written is labelled $elongated_evol.gif$

Figure 2: Output image of the evolved microstructure having elongated grains

2 Problem 2

The source code for this question is in the file pt1q2.m For a 1024×1024 computational grid having 100 grains: Fraction of grain boundary pixels and triple point pixels = 0.0260 Fraction of grain interior pixels = 0.9740 The total computational time taken for the above calculation was 5 seconds.

For a 1024×1024 computational grid having 500 grains: Fraction of grain boundary pixels and triple point pixels = 0.0566Fraction of grain interior pixels = 0.9434The total computational time taken for the above calculation was 1127.88 seconds.

3 Problem 3

The source code for this question is in the file pt1q3.m

Figure 3: A digital microstructure generated using Voronoi tessellation with 30 grains as input