Groepen theorie

Luc Veldhuis

25 April 2017

§3.1 Quotiëntgroepen en homomorfismes

Samenvatting

$$G$$
 een groep. $N \subseteq G \Leftrightarrow \begin{cases} N \leqslant G \\ gng^{-1} \in N \ \forall n \in N, g \in G \end{cases}$ Er geldt ook $yN = Ny \forall y \in G$
$$G/N = \{gN | g \in G\} \text{ is dan een groep via } \overline{x} \cdot \overline{y} = \overline{xy} \text{ met } \overline{x} = xN \\ xN \cdot yN = xyN \text{ en } N \cdot N = N^2 = N \text{ want gesloten onder producten.}$$
 $N^2 = \{n_1n_2 \in N | n_1, n_2 \in N\} = N$

Rekenregels

- $\bullet \ \overline{x} \cdot \overline{y} = \overline{xy}$
- $(\overline{x})^{-1} = \overline{x^{-1}}$
- $\overline{x} = \overline{y} \Leftrightarrow x \in N$

§3.1 Quotiëntgroepen en homomorfismes

Opmerking

Met $N \subseteq G$ en $\pi : G \to G/N$ met $x \mapsto \overline{x} = de$ klasse van x

- π is een homomorfisme want $\pi(xy) = \overline{xy} = \overline{x} \cdot \overline{y} = \pi(x)\pi(y)$ $\forall x, y \in G$
- $\operatorname{Ker}(\pi) = N$
- Normaaldelers van G zijn precies de kernen van een homomorfisme $\phi: G \to H$

Stelling van Lagrange

Zij G een **eindige** groep, $H \leq G$. Dan $|H| \mid |G|$ en $\frac{|G|}{|H|}$ is het aantal linkernevenklassen van H in G.

Bewijs

Zij |H| = n en k het aantal nevenklassen van H in G. Dus k = |G/N|. Als $g \in G$, dan is |gH| = |H| $H \to gH$ zijn elkaars inverses

$$h \mapsto gh$$

$$x \mapsto g^{-1}x$$

Dus elke linkernevenklasse van H in G heeft |H| = n.

G bestaat uit de (disjuncte) linkernevenklassen, dus

$$|G| = kn = k|H|$$
 en $k = \frac{|G|}{|H|}$.

Voorbeeld

- $G = S^3$, $H = \langle (1 \ 2) \rangle$. $k = \frac{|G|}{|H|} = \frac{3!}{2!} = 3$ $H = \langle (1 \ 2) \rangle$ cyklisch, dus $|\langle (1 \ 2) \rangle| = |(1 \ 2)| = 2 = |H|$
- S_3 heeft geen ondergroepen van orde 4 of 5, want die delen $|S_3| = 6$ niet.

Definitie

G een groep, $H \leq G$. Het aantal linkernevenklassen van H in G heet de index van H in G. Notatie: |G:H|

$$|G:H|=\frac{|G|}{|H|}$$

In het bijzonder: Als $N \subseteq G$, dan is $|G/N| = \frac{|G|}{|N|}$ met G eindig.

Voorbeeld

$$G = S_3$$
, $H = \langle (1\ 2\ 3) \rangle$. Dan $|G:H| = \frac{|G|}{|H|} = \frac{3!}{3} = 2$ dus $\langle (1\ 2\ 3) \rangle \le S_3$

Corollary

Als G eindig is en $x \in G$, dan deelt de orde van x de orde van G: $|x| \mid |G|$.

Bewijs

Al gezien: $|x|=|\langle x\rangle|$ en $|\langle x\rangle|$ | | | Volgens Lagrange, want $\langle x\rangle\leqslant G$

Voorbeeld

Zij p een oneven priem. $G=D_{2p}$. Als $H\leqslant G$, dan $|H|\mid |G|=2p$. De positieve delers van 2p zijn: 1,2,p,2p Als |H|=1, dan $H=\{e\}$, want |e|=1 Als |H|=2, dan $H=\langle sr^i\rangle$, want $|\langle sr^i\rangle|=2$ Als |H|=p, dan $H=\langle r\rangle=\{e,r,r^2,\ldots,r^{p-1}\}$, want $|\langle r\rangle|=p$ Als |H|=2p, dan $H=D_{2p}$

Let op!

In het algemeen geldt niet dat: Stel $n \mid |G|$ met $n \geq 1$, dan is er $H \leq G$ met |H| = nLaat zien: $A_4 \leq S_4$, met 12 elementen, maar A_4 heeft geen

ondergroep met 6 elementen.

Corollary (Lagrange)

Als G een eindige groep is met orde een priemgetal p, dan is G isomorf met $\mathbb{Z}/p\mathbb{Z}=\langle\overline{1}\rangle$, dus G cyklisch

Bewijs

Neem $x \in G$, $x \neq e$. Dan is $H = \langle x \rangle \leqslant G$, $H \neq \{e\}$ Dan geldt voor |H|: |H| > 1, $|H| \mid |G|$ (Lagrange) Dus |H| = 1 of p (priem). Dus |H| = p = |G|, dus $\langle x \rangle = H = G$ Al gezien als $|x| = n < \infty$, dan is $\langle x \rangle \cong \mathbb{Z}/n\mathbb{Z}$ en $\overline{a} \mapsto x^a$ Pas dit toe met n = p

Voorbeeld

De ondergroepen van S_3 : $|S_3|=3!=6$ Zij $H\leqslant S_3$, dan $|H|\mid |G|\Rightarrow |H|\mid 6\Rightarrow H=1,2,3$ of 6.

- $|H| = 1 \Rightarrow H = \{e\}$
- $|H| = 2 \Rightarrow H = \langle x \rangle$ met |x| = 2, want 2 priem. (Volgens gevolg van Lagrange)

Elementen van orde 2: $(1\ 2), (1\ 3), (2\ 3) \Rightarrow 3$ ondergroepen H met |H|=2

$$\langle (1\ 2) \rangle = \{e, (1\ 2)\} \text{ en } \langle (1\ 3) \rangle = \{e, (1\ 3)\}$$

 $\langle (2\ 3) \rangle = \{e, (2\ 3)\}$

- $|H| = 3 \Rightarrow H = \langle y \rangle$ met |y| = 3, want 3 priem. $y = (1 \ 2 \ 3) \lor y = (1 \ 3 \ 2) = (1 \ 2 \ 3)^{-1} \Rightarrow H = \langle (1 \ 2 \ 3) \rangle = \langle (1 \ 3 \ 2) \rangle$
- $|H| = 6 \Rightarrow H = S_3$

Stelling

Zij G een groep, $H \leqslant G$ met |G:H| = 2, dan is $H \leq G$

Bewijs (Incompleet)

Neem $g \in G$, $g \neq H$, dan is $H \neq gH$, dus de elementen van G/H zijn H en gH

Nu gaan we na: als $h \in H$ en $x \in G$, dan $xhx^{-1} \in H$. Bewijs uit ongerijmde:

Stel $xhx^{-1} \notin H$ voor een $h \in H$, $x \in G$ enz... (Zie boek)

Voorbeeld

- $G = D_{2p} \text{ met } n \ge 3$. $H = \langle r \rangle$, |G| = 2n, |H| = nDus $|G:H| = \frac{|G|}{|H|} = \frac{2n}{n} = 2$, dus $\langle r \rangle \le N$
- $\langle (1\ 2\ 3) \rangle \subseteq S_3$ (ga na)

Vraag

 $H \leqslant G$, $K \leqslant G$. Is $HK = \{hk | h \in H, k \in K\} \leqslant G$?

Stelling

 $H, K \leqslant G$. Dan is $HK \leqslant G \Leftrightarrow HK = KH$

Bewijs

```
'\Leftarrow': Neem x = h_1 k_1 en y = h_2 k_2 met h_i \in H en k_i \in K

Dan is xy^{-1} = h_1 k_1 (h_2 k_2)^{-1} = h_1 k_1 k_2^{-1} h_2^{-1} met k_1 k_2^{-1} = k \in K, h = h_2^{-1} \in H

Dus kh \in KH = HK dan kh = h'k' met h' inH en k' \in k

Dus h_1 kh' = h_1 h'k' \in HK want h_1 h \in H en k' \in K

'\Rightarrow': HK \leqslant G. HK = \{x^{-1} | x \in HK\} = \{(hk)^{-1} | h \in H, k \in K\} = \{k^{-1} h^{-1} \in HK | h \in H, k \in K\} = KH
```

Voorbeeld

$$G = D_{2n}, \ H = \langle s \rangle = \{e, s\}. \ K = \langle r \rangle = \{e, r, \dots, r^{n-1}\}$$

Dan is $HK = \{er^i | 0 \le i \le n-1\} \cup \{sr^i | 0 \le i \le n-1\} = D_{2n}$
Dus $KH = HK = D_{2n}$

Stelling

$$H, K \leqslant G_{eindig}. |HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Voorbeeld

$$G=S_3,\ H=\langle (1\ 2)\rangle,\ K=\langle (1\ 2\ 3)\rangle$$
 Dit geeft $|HK|=\frac{|H|\cdot|K|}{|H\cap K|}=\frac{2\cdot 3}{1}=6$ Want $|H\cap K|$ is een ondergroep van H , dus $|H\cap K|$ $|$ 2 en $|H\cap K|$ $|$ 3, dus $|H\cap K|=1$ Omdat $|S_3|=6$ geeft dit $S_3=HK$