ROLAND

Framework for extending static GNNs to dynamic

Steven Morse

William & Mary, Data Science DATA 691, Graph Learning

April 10, 2025

Overview

"ROLAND: Graph Learning Framework for Dynamic Graphs." Jiaxuan You, Tianyu Du, Jure Leskovec (Stanford), KDD 2022.

Idea

How can we adapt powerful GNN architectures directly to a dynamic setting?

Introduction and Related work

Adapting GNNs to dynamic setting introduces 3 challenges:

- 1. Model design. Sequence model on top of a GNN, RNN with GCN elements, ...
- 2. Evaluation setting. Partitioning temporal data risks distribution shifts.
- 3. Training strategy. Prohibitive memory overhead for dynamic training.

Figure: EvolveGCN

Extending static to dynamic out-of-the-box

Idea

Instead of doing dynamic updates at the top-level, do them hierarchically at each layer.

A little more detail

Algorithm 1 ROLAND GNN forward computation

Input: Dynamic graph snapshot G_t , hierarchical node state H_{t-1} Output: Prediction y_t , updated node state H_t

1:
$$H_t^{(0)} \leftarrow X_t$$
 {Initialize embedding from G_t }
2: **for** $l = 1, ..., L$ **do**
3: $\tilde{H}_t^{(l)} = \text{GNN}^{(l)}(H_t^{(l-1)})$ {Implemented as Equation (4)}
4: $H_t^{(l)} = \text{Update}^{(l)}(H_{t-1}^{(l)}, \tilde{H}_t^{(l)})$ {Equation (2)}
5: $y_t = \text{MLP}(\text{Concat}(\mathbf{h}_{t-1}^{(l)}, \mathbf{h}_{n-1}^{(l)})), \forall (u, v) \in E$ {Equation (5)}

"GNN" is:

$$\begin{split} & \boldsymbol{m}_{u \rightarrow v}^{(l)} = \boldsymbol{W}^{(l)} \mathrm{Concat}^{(l)}(\boldsymbol{h}_{u}^{(l-1)}, \boldsymbol{h}_{v}^{(l-1)}, \boldsymbol{f}_{uv}) \\ & \boldsymbol{h}_{v}^{(l)} = \mathrm{Agg}^{(l)}(\{\boldsymbol{m}_{u \rightarrow v}^{(l)} | u \in \textit{N}(v)\}) + \boldsymbol{h}_{v}^{(l-1)} \end{split}$$

How to update?

Moving average:

$$H_{t,v} = \kappa_{t,v} H_{t-1,v}^{(I)} + (1 - \kappa_{t,v}) \tilde{H}_{t,v}^{(I)}.$$

$$\kappa_{t,v} = \frac{\sum_{\tau=1}^{t-1} |E_{\tau}|}{\sum_{\tau=1}^{t-1} |E_{\tau}| + |E_{t}|}$$

- MLP: $H_t^{(l)} = \text{MLP}(\text{Concat}(H_{t-1}^{(l)}, \tilde{H}_t^{(l-1)}))$
- GRU: $H_t^{(I)} = GRU(H_{t-1}^{(I)}, \tilde{H}_t^{(I-1)})$

Figure: GRU

Wait — isn't this the same as EvolveGCN?

"While many works combine GNNs with recurrent models, we want to emphasize that our ROLAND framework is quite different."

EvolveGCN: weight params evolve (via RNN)

$$H_t^{(l+1)} = \text{Gnn}(H_t^{(l)}; W_t^{(l)})$$

 $W_t^{(l)} = \text{Update}(H_t^{(l)}, W_{t-1}^{(l)})$

Memory efficient, but historical information slowly decays and we're limited to simpler GNN architectures.

ROLAND: weight params are static (w/in t)

$$\begin{split} \tilde{H}_t^{(l+1)} &= \text{Gnn}(H_t^{(l)}; W_t^{(l)}) \\ H_t^{(l)} &= \text{Update}(H_{t-1}^{(l)}, \tilde{H}_t^{(l)}) \end{split}$$

Not memory efficient (but fixed through their training strat), no decay, and no constraint on architecture.

Live-update evaluation and meta-training

Idea

Account for temporal distribution shifts by 1) training on the fly and 2) training a meta-model.

Algorithm 2 ROLAND live-update evaluation

Input: Dynamic graph $G = \{G_1, \dots, G_T\}$, link prediction labels y_1, \dots, y_T , number of snapshots T, $GNN(\cdot)$ defined in Algorithm 1 Output: Performance MRR, model GNN

- 1: Initialize hierarchical node state Ho
- 2: **for** t = 2, ..., T **do**
- Collect link prediction labels $y_{t-1} = y_{t-1}^{(train)} \cup y_{t-1}^{(val)}, y_t$
- while MRR(val) is increasing do
- $H_{t-1}, \hat{y}_{t-1} \leftarrow \text{Gnn}(G_{t-1}, H_{t-2}), \, \hat{y}_{t-1} = \hat{y}_{t-1}^{(train)} \cup \hat{y}_{t-1}^{(val)}$ Update Gnn via backprop based on $\hat{y}_{t-1}^{(train)}$, $y_{t-1}^{(train)}$
- $MRR_{t-1}^{(val)} \leftarrow EVALUATE(\hat{y}_{t-1}^{(val)}, y_{t-1}^{(val)})$
- $H_t, \hat{u}_t \leftarrow Gnn(G_t, H_{t-1})$
- $MRR_t \leftarrow EVALUATE(\hat{u}_t, u_t)$
- 10: MRR = $\sum_{t=0}^{T} MRR_t/(T-1)$

Algorithm 3 ROLAND training algorithm

Input: Graph snapshot G_t , link prediction label u_t , hierarchical node state H_{t-1} , smoothing factor α , meta-model $Gnn^{(meta)}$ Output: Model GNN, updated meta-model GNN (meta)

- 1: GNN ← GNN (meta)
- 2: Move GNN, Gr, Hr-1 to GPU
- 3: while MRR, (val) is increasing do
- $H_t, \hat{y}_t \leftarrow Gnn(G_t, H_{t-1}), \hat{y}_t = \hat{y}_t^{(train)} \cup \hat{y}_t^{(val)}$
- Update GNN via backprop based on $\hat{y}_{t}^{(train)}$, $y_{t}^{(train)}$
- $MRR^{(val)} \leftarrow EVALUATE(\hat{u}^{(val)}, u^{(val)})$
- 7: Remove GNN, Gt, Ht-1 from GPU 8: $GNN^{(meta)} \leftarrow (1 - \alpha)GNN^{(meta)} + \alpha GNN$

Experiments

	Bitcoin-OTC	Bitcoin-Alpha	UCI-Message	
GCN [14]	0.0025	0.0031	0.1141	
DynGEM [12]	0.0921	0.1287	0.1055	
dyngraph2vecAE [8]	0.0916	0.1478	0.0540	
dyngraph2vecAERNN [8]	0.1268	0.1945	0.0713	
EvolveGCN-H [30]	0.0690	0.1104	0.0899	
EvolveGCN-O [30]	0.0968	0.1185	0.1379	
ROLAND Moving Average	0.0468 ± 0.0022	0.1399 ± 0.0107	0.0649 ± 0.0049	
ROLAND MLP	0.0778 ± 0.0024	0.1561 ± 0.0114	0.0875 ± 0.0110	
ROLAND GRU	0.2203 ± 0.0167	0.2885 ± 0.0123	0.2289 ± 0.0618	
Improvement over best baseline	73.74%	43.33%	65.99%	

Figure: Standard fixed-split setting

	BSI-ZK MRR	AS-733 MRR	Reddit-Title MRR	Reddit-Body MRR	BSI-SVT MRR	UCI-Message MRR	Bitcoin-OTC MRR	Bitcoin-Alpha MRR
			Baseline Mo	dels with standa	ard training			
EvolveGCN-H	N/A, OOM	N/A, OOM	N/A, OOM	0.148 ± 0.013	0.031 ± 0.016	0.061 ± 0.040	0.067 ± 0.035	0.079 ± 0.032
EvolveGCN-O	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	0.015 ± 0.006	0.071 ± 0.009	0.085 ± 0.022	0.071 ± 0.025
GCRN-GRU	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	0.080 ± 0.012	N/A, OOM	N/A, OOM
GCRN-LSTM	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	$\boldsymbol{0.083 \pm 0.001}$	N/A, OOM	N/A, OOM
GCRN-Baseline	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	0.069 ± 0.004	0.152 ± 0.011	0.141 ± 0.005
TGCN	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	N/A, OOM	0.054 ± 0.024	0.128 ± 0.049	0.088 ± 0.038
			Baseline Mo	dels with ROLA	ND Training			
EvolveGCN-H	N/A, OOM	0.251 ± 0.079	0.165 ± 0.026	0.102 ± 0.010	0.032 ± 0.008	0.057 ± 0.012	0.076 ± 0.022	0.054 ± 0.015
EvolveGCN-O	0.396	0.163 ± 0.002	0.047 ± 0.004	0.033 ± 0.001	0.018 ± 0.003	0.066 ± 0.012	0.032 ± 0.004	0.034 ± 0.002
GCRN-GRU	N/A, OOM	0.344 ± 0.001	0.338 ± 0.006	0.217 ± 0.004	0.050 ± 0.004	0.089 ± 0.004	0.173 ± 0.003	0.140 ± 0.004
GCRN-LSTM	N/A, OOM	0.341 ± 0.001	0.344 ± 0.005	0.216 ± 0.000	0.051 ± 0.002	0.091 ± 0.010	0.174 ± 0.004	0.146 ± 0.005
GCRN-Baseline	0.754	0.336 ± 0.002	0.351 ± 0.001	0.218 ± 0.002	0.054 ± 0.002	0.095 ± 0.008	0.183 ± 0.002	0.145 ± 0.003
TGCN	0.831	0.343 ± 0.002	0.391 ± 0.004	0.251 ± 0.001	$\boldsymbol{0.157 \pm 0.004}$	0.080 ± 0.015	0.083 ± 0.011	0.069 ± 0.013
			1	ROLAND results				
Moving Average	0.819	0.309 ± 0.011	0.362 ± 0.007	0.289 ± 0.038	0.177 ± 0.006	0.075 ± 0.006	0.120 ± 0.002	0.0962 ± 0.010
MLP-Update	0.834	0.329 ± 0.021	0.395 ± 0.006	0.291 ± 0.008	0.217 ± 0.003	0.103 ± 0.010	0.154 ± 0.010	0.148 ± 0.012
GRU-Update	0.851	$\boldsymbol{0.340} \pm 0.001$	$\textbf{0.425} \pm 0.015$	$\boldsymbol{0.362} \pm 0.002$	0.205 ± 0.014	$\textbf{0.112} \pm 0.008$	$\textbf{0.194} \pm 0.004$	0.157 ± 0.007
mprovement over the best baseline	2.40%	-1.16%	8.70%	44.22%	38.21%	17.89%	6.01%	7.53%

Figure: Live update evaluation

Experiments

Figure: ROLAND model retraining

Subsequent and related work

- (Related) GraphGym framework (SNAP-Stanford)
- ROLAND = Discrete time, integrated. (See taxonomy)
- Extensions: WinGNN (2023)
- Applications: network biology (2024)

Figure: Dynamic graph learning taxonomy (from Zheng et al, 2025)

Figure: WinGNN (2023)

Questions?