

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

A unified framework of demographic time

Tim Riffe
Jonas Schöley
Francisco Villavicencio

Demographic time

Α	chronological age
P	period
С	birth cohort
Т	thanatological age (TTD)
D	death cohort
L	ultimate complete lifespan

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

objective

We add a third dimension to the Lexis diagram to account for time-to-death. This results in three *new* kinds of 2D Lexis diagrams, and a 3D Lexis diagram that is the intersection of the four *degenerate* diagrams.

(It turns out Lexis himself did something eerily similar, but not identical. Happy to explain how it works too)

The APC demographic time identity

APC diagram (Lexis diagram)

The TAL demographic time identity

TAL diagram

The TPD demographic time identity

The LCD demographic time identity

Four demographic time identities

The demographic time identity

Building the demographic time diagram (1)

Building the demographic time diagram (2)

Building the demographic time diagram (3)

Building the demographic time diagram (4)

Building the demographic time diagram (5)

- to uncover more patterns
- to improve measurement
- to make better models
- to understand processes

- to uncover more patterns
- to improve measurement
- to make better models
- to understand processes

- to uncover more patterns
- to improve measurement
- to make better models
- to understand processes

- to uncover more patterns
- to improve measurement
- to make better models
- to understand processes

You should

- make an origami tetrahedron and label its edges with the demographic time measures
- visualize data structured in this way ASAP, because you might see new and exciting things

You should

- make an origami tetrahedron and label its edges with the demographic time measures
- visualize data structured in this way ASAP, because you might see new and exciting things

Thanks!

- compare end-of-life trajectories for several birth cohorts (1905 -1925)
- HRS (Rand), waves 1-11 (years 1992-2012)
- use TAL plane to uncover patterns that APC hides
- this example: prevalence of poor self-reported health

- compare end-of-life trajectories for several birth cohorts (1905 -1925)
- HRS (Rand), waves 1-11 (years 1992-2012)
- use TAL plane to uncover patterns that APC hides
- this example: prevalence of poor self-reported health

- compare end-of-life trajectories for several birth cohorts (1905 -1925)
- HRS (Rand), waves 1-11 (years 1992-2012)
- use TAL plane to uncover patterns that APC hides
- this example: prevalence of poor self-reported health

- compare end-of-life trajectories for several birth cohorts (1905 -1925)
- HRS (Rand), waves 1-11 (years 1992-2012)
- use TAL plane to uncover patterns that APC hides
- this example: prevalence of poor self-reported health

1905 cohort

- easier to detect patterns
- to better understand the relationships between the measures of demographic time

- easier to detect patterns
- to better understand the relationships between the measures of demographic time