

Test report No.
Page
Issued date
FCC ID

: 12717687H-A-R1 : 1 of 61 : July 1, 2019 : VPYLB1KS

RADIO TEST REPORT

Test Report No.: 12717687H-A-R1

Applicant : Murata Manufacturing Co., Ltd.

Type of Equipment: Communication Module

Model No. : Type1KS

FCC ID : VPYLB1KS

Test regulation : FCC Part 15 Subpart C: 2018

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 12717687H-A. 12717687H-A is replaced with this report.

February 4 to April 8, 2019

Representative test engineer:

Date of test:

Yuta Moriya
Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 2 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

REVISION HISTORY

Original Test Report No.: 12717687H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	Test report No. 12717687H-A	April 26, 2019	-	-
1	12717687H-A-R1	April 26, 2019 July 1, 2019	P 1	Change of NVLAP logo to NVLAP combined ILAC MRK mark
1	12717687H-A-R1	July 1, 2019	P 28	Addition of explanatory note *2)
1	12717687H-A-R1	July 1, 2019	P 31	Addition of explanatory note *1)
1	12717687H-A-R1	July 1, 2019	P 50	Correction of Conducted Spurious Emission test data in APPENDIX 1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.
Page
Issued date
FCC ID

: 12717687H-A-R1 : 3 of 61 : July 1, 2019 : VPYLB1KS

CONTENTS **PAGE** Customer information......4 **SECTION 1:** Equipment under test (E.U.T.).....4 **SECTION 2: SECTION 3:** Test specification, procedures & results......5 **SECTION 4:** Operation of E.U.T. during testing......9 **SECTION 5: SECTION 6: SECTION 7:** APPENDIX 1: Test data ________16 6 dB Bandwidth and 99 % Occupied Bandwidth.......17 Power Density51 Radiated Spurious Emission60

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 4 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (E.U.T.)
- SECTION 4: Operation of E.U.T. during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Communication Module

Model No. : Type1KS

Serial No. : Refer to Section 4, Clause 4.2

Rating : VBAT: Min 2.7 V / Typ. 3.3 V / Max. 3.6 V

Receipt Date of Sample : February 4, 2019

(Information from test lab.)

Country of Mass-production : China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: Type1KS (referred to as the EUT in this report) is a Communication Module.

Radio Specification

WLAN (IEEE802.11b/g/n-20)

WEAT (IEEEOVE:115/g/i 20)					
Type of radio	IEEE802.11b	IEEE802.11g/n			
		(20 M band)			
Radio Type	Transceiver				
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz			
of operation					
Type of modulation	DSSS	OFDM-CCK			
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)			
Channel spacing	5 MHz				
Antenna type	Monopole Antenna				
Antenna Gain	0.5 dBi				

Variant model

This model has variant models: Type1KP, Type1KQ, Type1KR.

These models are identical in RF characteristics.

The tests were performed with Type1KS as a representative according to the customer's request.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 5 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 6 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	QP	Complied	
Conducted Emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	31.36 dB, 0.15000 MHz, L AV 26.56 dB, 19.38305 MHz, N	a)	-
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)		Complied b)	Conducted
	IC: -	IC: RSS-247 5.2(a)		- /	
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)	See data.	Complied	Conducted
	IC: RSS-Gen 6.12	IC: RSS-247 5.4(d)		<i>C)</i>	
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied d)	Conducted
	IC: -	IC: RSS-247 5.2(b)		u)	
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)		Complied# e), f)	Conducted (below 30 MHz)/
	IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	1.8 dB 2483.500 MHz, AV, Hori.		Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Conducted Emission)
- b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- d) Refer to APPENDIX 1 (data of Power Density)
- e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99% Occupied	RSS-Gen 6.7	IC: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 12717687H-A-R1
Page : 7 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.3 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

Conducted emission

using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.8 dB
	0.15 MHz to 30 MHz	3.4 dB

Radiated emission

Measurement		
	Frequency range	Uncertainty (+/-)
distance		• ` ′
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.9 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	5.0 dB
	6 GHz to 18 GHz	5.3 dB
1 m	10 GHz to 26.5 GHz	5.8 dB
	26.5 GHz to 40 GHz	5.8 dB
10 m	1 GHz to 18 GHz	5.2 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 8 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 9 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	2 Mbps, PN9
IEEE 802.11g (11g)	9 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 1, PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power settings: 0

Software: CC3120 CC3220 RadioTool 1.0.2

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission	11g Tx *1)	2437 MHz
Radiated Spurious Emission (Below 1GHz)		
Spurious Emission (Conducted)		
6dB Bandwidth,	11b Tx	2412 MHz
99% Occupied Bandwidth	11g Tx	2437 MHz
	11n-20 Tx	2462 MHz
Maximum Peak Output Power,	11b Tx	2412 MHz
Power Density	11g Tx	2417 MHz
Radiated Spurious Emission (Above 1GHz)	11n-20 Tx	2437 MHz
		2457 MHz
		2462 MHz

^{*1)} The test was performed on the mode as a representative, because it had the highest power at antenna terminal test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Power of the EUT was set by the software as follows;

Test report No. : 12717687H-A-R1
Page : 10 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

4.2 Configuration and peripherals

All Test except for Antenna Terminal Conducted test

Description of EUT and Support equipment

2 to this will be a time to the support of the supp					
No.	Item	Model number	Serial number	Manufacturer	Remark
A	Communication Module	Type1KS	12	Murata Manufacturing Co., Ltd.	EUT
В	Jig board	-	-	Murata Manufacturing Co., Ltd.	*1)
С	Regulated DC Power Supply	PW16-2ATP	GJR810407	KIKUSUI	-

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	
2	AC Cable	1.2	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 12717687H-A-R1
Page : 11 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

For Antenna Terminal Conducted test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

DUSCI .	iption of Ect and Supp	ort equipment			
No.	Item	Model number	Serial number	Manufacturer	Remark
A	Communication Module	Type1KS	5	Murata Manufacturing Co., Ltd.	EUT
В	Jig board	-	-	Murata Manufacturing Co., Ltd.	*1)
С	Laptop PC	CF-N8HWCDPS	0BKSA07449	Panasonic	-
D	AC Adapter	CF-AA6372B	6372BM409X17298B	Panasonic	-

^{*1)} The test was performed with the module that as normal assumed implementation conditions.

The use of a jig does not influence on the test result.

List of cables used

List of tubies useu										
No.	Name	Length (m)	Sh	Remark						
			Cable	Connector						
1	DC Cable	0.9	Unshielded	Unshielded						
2	USB Cable	1.0	Shielded	Shielded	_					
3	DC Cable	1.0	Unshielded	Unshielded	_					
4	AC Cable	1.5	Unshielded	Unshielded	-					

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 12 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX Test result : Pass

Figure 1: Test Setup

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 13 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

estricted band or r			(10).	
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			11.12.2.5.2	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12717687H-A-R1

 Page
 : 14 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- × : Center of turn table

10 GHz - 26.5 GHz

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 4.0 m

Test Volume: 2.0 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

r = 0.0 m

* The test was performed with $r=0.0\ m$ since EUT is small and it was the rather conservative condition.

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 15 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW VBW		Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
•	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

Test report No. : 12717687H-A-R1
Page : 16 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

APPENDIX 1: Test data

Conducted Emission

Report No. 12717687H

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date April 8, 2019
Temperature / Humidity Engineer Yuta Moriya
Mode Tx 11g 2437MHz

Limit: FCC_Part 15 Subpart C(15.207)

П	-	Rea	ding	11011	1000	Res	ults	Lir	nit	Mai	rgin		
No.	Freq.	(QP)	(CAV)	LISN	LOSS	(QP)	(CAV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
- 1	0.15000	21.10	2.40	0.06	13.28	34.44	15.74	66.00	56.00	31.56	40.26	N	
2	0.23050	9.10	-1.90	0.06	13.29	22.45	11.45	62.40	52.40	39.95	40.95	N	
3	0.44280	-0.80	-5.30	0.06	13.31	12.57	8.07	57.00	47.00	44.43	38.93	N	
4	0.77704	-0.10	-4.40	0.07	13.34	13.31	9.01	56.00	46.00	42.69	36.99	N	
5	1.45607	-2.50	-680	0.08	13.39	10.97	6.67	56.00	46.00	45.03	39.33	N	
6	19.38305	14.20	9.10	0.35	13.99	28.54	23.44	60.00	50.00	31.46	26.56	N	
7	0.15000	21.30	2.70	0.06	13.28	34.64	16.04	66.00	56.00	31.36	39.96	L	
8	0.18640	15.40	-020	0.06	13.29	28.75	13.15	64.20	54.20	35.45	41.05	L	
9	0.33680	0.90	-3.90	0.05	13.30	14.25	9.45	59.30	49.30	45.05	39.85	L	
10	0.70820	-1.80	-6.30	0.06	13.33	11.59	7.09	56.00	46.00	44.41	38.91	L	
11	1.71752	-3.00	-7.30	0.08	13.41	10.49	6.19	56.00	46.00	45.51	39.81	L	
12	19.37240	8.70	4.20	0.35	13.99	23.04	18.54	60.00	50.00	36.96	31.46	L	
					l	l					i		
		ļ			l	- 1	1				- 1		

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 17 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity Engineer 23 deg. C / 32 % RH
Yuta Moriya

Mode Tx

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
Wiode	ricquency	-	Oub bandwidth	
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	14062.0	9.438	> 0.5000
	2437	14070.4	9.112	> 0.5000
	2462	14089.6	9.584	> 0.5000
11g	2412	17204.1	15.084	> 0.5000
	2437	18538.1	15.074	> 0.5000
	2462	17157.8	15.106	> 0.5000
11n-20	2412	18178.7	15.076	> 0.5000
	2437	18460.5	15.116	> 0.5000
	2462	18173.3	15.081	> 0.5000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 18 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

99 % Occupied Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 19 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

99 % Occupied Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 20 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

6 dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 21 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

6 dB Bandwidth

11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 22 of 61 : July 1, 2019 : VPYLB1KS Issued date FCC ID

Maximum Peak Output Power

12717687H Report No.

Ise EMC Lab. No.3 Measurement Room Test place

Date February 4, 2019 23 deg. C / 34 % RH Temperature / Humidity

Engineer Yuta Moriya Mode Tx 11b

					Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin	Antenna	Res	sult	Liı	nit	Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	7.54	0.75	10.09	18.38	68.87	30.00	1000	11.62	0.50	18.88	77.27	36.02	4000	17.14	
2417	8.00	0.75	10.09	18.84	76.56	30.00	1000	11.16	0.50	19.34	85.90	36.02	4000	16.68	
2437	7.95	0.75	10.09	18.79	75.68	30.00	1000	11.21	0.50	19.29	84.92	36.02	4000	16.73	
2457	7.94	0.75	10.09	18.78	75.51	30.00	1000	11.22	0.50	19.28	84.72	36.02	4000	16.74	
2462	8.05	0.75	10.09	18.89	77.45	30.00	1000	11.11	0.50	19.39	86.90	36.02	4000	16.63	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

Long 2437MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	7.87	
2	7.90	
5.5	7.90	
11	7.72	

*: Worst Rate

Short 2437MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	7.90	
2	7.95	*
5.5	7.91	
11	7.74	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 23 of 61 : July 1, 2019 : VPYLB1KS Issued date FCC ID

Maximum Peak Output Power

12717687H Report No.

Ise EMC Lab. No.3 Measurement Room Test place

February 4, 2019 Date 23 deg. C / 34 % RH Temperature / Humidity

Engineer Yuta Moriya Mode Tx 11g

					Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	8.90	0.75	10.09	19.74	94.19	30.00	1000	10.26	0.50	20.24	105.68	36.02	4000	15.78	
2417	9.80	0.75	10.09	20.64	115.88	30.00	1000	9.36	0.50	21.14	130.02	36.02	4000	14.88	
2437	9.98	0.75	10.09	20.82	120.78	30.00	1000	9.18	0.50	21.32	135.52	36.02	4000	14.70	
2457	9.93	0.75	10.09	20.77	119.40	30.00	1000	9.23	0.50	21.27	133.97	36.02	4000	14.75	
2462	9.11	0.75	10.09	19.95	98.86	30.00	1000	10.05	0.50	20.45	110.92	36.02	4000	15.57	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

*The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	9.73	
9	9.98	*
12	9.80	
18	9.67	
24	9.60	
36	9.59	
48	9.46	
54	9.57	

^{*:} Worst Rate

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 24 of 61 : July 1, 2019 : VPYLB1KS Issued date FCC ID

Maximum Peak Output Power

12717687H Report No.

Ise EMC Lab. No.3 Measurement Room Test place

February 4, 2019 Date 23 deg. C / 34 % RH Temperature / Humidity Engineer Yuta Moriya Tx 11n-20

					Con	ducted Po	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin	Antenna	Re	sult	Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW] [dBm] [mW]				[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	8.62	0.75	10.09	19.46	88.31	30.00	1000	10.54	0.50	19.96	99.08	36.02	4000	16.06	
2417	9.63	0.75	10.09	20.47	111.43	30.00	1000	9.53	0.50	20.97	125.03	36.02	4000	15.05	
2437	9.74	0.75	10.09	20.58	114.29	30.00	1000	9.42	0.50	21.08	128.23	36.02	4000	14.94	
2457	9.74	0.75	10.09	20.58	114.29	30.00	1000	9.42	0.50	21.08	128.23	36.02	4000	14.94	
2462	8.94	0.75	10.09	19.78	95.06	30.00	1000	10.22	0.50	20.28	106.66	36.02	4000	15.74	

Sample Calculation:

Mode

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

MCS	Reading	Remark
Number		
	[dBm]	
0	9.73	
1	9.74	*
2	9.70	
3	9.49	
4	9.45	
5	9.47	
6	9.55	
7	9.01	

^{*:} Worst Rate

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 12717687H-A-R1
Page : 25 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Average Output Power (Reference data for RF Exposure)

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity Engineer February 5, 2019
23 deg. C / 32 % RH
Yuta Moriya

Mode Tx

11b **5.5 Mbps(short)**

110	5.5 111bps	(311011)						
Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-0.33	0.75	10.09	10.51	11.25	5.83	16.34	43.05
2417	-0.03	0.75	10.09	10.81	12.05	5.83	16.64	46.13
2437	-0.21	0.75	10.09	10.63	11.56	5.83	16.46	44.26
2457	-0.17	0.75	10.09	10.67	11.67	5.83	16.50	44.67
2462	0.14	0.75	10.09	10.98	12.53	5.83	16.81	47.97

11g **6 Mbps**

118	o minha							
Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-5.21	0.75	10.09	5.63	3.66	5.63	11.26	13.37
2417	-0.59	0.75	10.09	10.25	10.59	5.63	15.88	38.73
2437	-0.75	0.75	10.09	10.09	10.21	5.63	15.72	37.33
2457	-0.50	0.75	10.09	10.34	10.81	5.63	15.97	39.54
2462	-5.03	0.75	10.09	5.81	3.81	5.63	11.44	13.93

11n-20 MCS 2

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-5.01	0.75	10.09	5.83	3.83	5.11	10.94	12.42
2417	-1.22	0.75	10.09	9.62	9.16	5.11	14.73	29.72
2437	-1.43	0.75	10.09	9.41	8.73	5.11	14.52	28.31
2457	-1.13	0.75	10.09	9.71	9.35	5.11	14.82	30.34
2462	-4.76	0.75	10.09	6.08	4.06	5.11	11.19	13.15

The average output power was measured with the maximum burst power average data rate.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12717687H-A-R1

 Page
 : 26 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Burst rate confirmation

Report No. 12717687H

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Date February 4, 2019
Temperature / Humidity 20 deg. C / 30 % RH
Engineer Yuta Moriya

Mode Tx

11b 2 Mbps 11g 9 Mbps

11n-20 MCS 1

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 27 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Burst rate confirmation

Report No. 12717687H

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Date February 4, 2019 Temperature / Humidity 20 deg. C / 30 % RH Engineer Yuta Moriya

Mode Tx

11b 5.5 Mbps

11g 6 Mbps

11n-20 MCS 2

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 28 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 4, 2019 February 5, 2019
Temperature / Humidity 22 deg. C / 32 % RH 24 deg. C / 31 % RH
Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Tomohisa Nakagawa (10 GHz - 26.5 GHz)

Mode Tx 11b 2412 MHz

Dolomites	E	Datastan	Daadina	Ant Eng	I	Gain	Dustry Englan	Result	Limit	Monoin	Remark
Polarity	Frequency [MHz]	Detector	Reading [dBuV]	[dB/m]	Loss [dB]	[dB]	Duty Factor [dB]		[dBuV/m]	Margin [dB]	Remark
	,		,	, ,	, ,	. ,	[db]	,	,		
Hori	2390.000	PK	52.4	27.8	5.7	32.7	-	53.2	73.9	20.7	
Hori	4020.000	PK	51.9	30.1	6.8	32.0	-	56.8	73.9	17.1	
Hori	4824.000	PK	50.3	31.7	7.0	31.8	-	57.2	73.9	16.7	
Hori	7236.000	PK	43.9	35.9	8.4	32.6	-	55.6	73.9	18.3	Floor noise
Hori	9648.000	PK	43.2	38.7	9.3	33.3	-	57.9	73.9	16.0	Floor noise
Hori	2390.000	AV	41.6	27.8	5.7	32.7	5.6	48.0	53.9	5.9	*1)
Hori	4020.000	AV	38.7	30.1	6.8	32.0	5.6	49.2	53.9	4.7	*2)
Hori	4824.000	AV	36.9	31.7	7.0	31.8	5.6	49.4	53.9	4.5	
Hori	7236.000	AV	32.9	35.9	8.4	32.6	-	44.6	53.9	9.3	Floor noise
Hori	9648.000	AV	31.3	38.7	9.3	33.3	-	46.0	53.9	7.9	Floor noise
Vert	2390.000	PK	53.0	27.8	5.7	32.7	-	53.8	73.9	20.1	
Vert	4020.000	PK	51.3	30.1	6.8	32.0	-	56.2	73.9	17.7	
Vert	4824.000	PK	49.4	31.7	7.0	31.8	-	56.3	73.9	17.6	
Vert	7236.000	PK	43.6	35.9	8.4	32.6	-	55.3	73.9	18.6	Floor noise
Vert	9648.000	PK	45.7	38.7	9.3	33.3	-	60.4	73.9	13.5	Floor noise
Vert	2390.000	AV	40.2	27.8	5.7	32.7	5.6	46.6	53.9	7.3	*1)
Vert	4020.000	AV	38.1	30.1	6.8	32.0	5.6	48.6	53.9	5.3	*2)
Vert	4824.000	AV	36.5	31.7	7.0	31.8	5.6	49.0	53.9	4.9	
Vert	7236.000	AV	31.2	35.9	8.4	32.6	-	42.9	53.9	11.0	Floor noise
Vert	9648.000	AV	32.0	38.7	9.3	33.3	-	46.7	53.9	7.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: $1 \text{ GHz} - 10 \text{ GHz} \quad 20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ $10 \text{ GHz} - 26.5 \text{ GHz} \quad 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

20ube bu	ta Siicci									
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	99.1	27.7	5.7	32.7	99.8	-	-	Carrier
Hori	2400.000	PK	49.6	27.8	5.7	32.7	50.4	79.8	29.4	
Hori	6432.000	PK	42.7	33.5	8.8	32.2	52.8	79.8	27.0	
Vert	2412.000	PK	100.5	27.7	5.7	32.7	101.2	-	-	Carrier
Vert	2400.000	PK	49.8	27.8	5.7	32.7	50.6	81.2	30.6	
Vert	6432.000	PK	41.3	33.5	8.0	32.2	50.6	81.2	30.6	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz 20log (4.0 m / 3.0 m) = 2.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Noise synchronized with duty of carrier frequency.

: 12717687H-A-R1 Test report No. Page : 29 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3

February 4, 2019 Temperature / Humidity

22 deg. C / 32 % RH Tomohisa Nakagawa Engineer (1 GHz - 10 GHz) Tx 11b 2412 MHz Mode

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 30 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 4, 2019
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Tomohisa Nakagawa

(1 GHz - 10 GHz)

Mode Tx 11b 2417 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	52.3	27.8	5.7	32.7	-	53.1	73.9	20.8	
Hori	2390.000	AV	40.9	27.8	5.7	32.7	5.6	47.3	53.9	6.6	*1)
Vert	2390.000	PK	53.3	27.8	5.7	32.7	-	54.1	73.9	19.8	
Vert	2390.000	AV	41.4	27.8	5.7	32.7	5.6	47.8	53.9	6.1	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2417.000	PK	101.7	27.6	5.7	32.7	102.3	-	-	Carrier
Hori	2400.000	PK	51.6	27.8	5.7	32.7	52.4	82.3	29.9	
Vert	2417.000	PK	103.6	27.6	5.7	32.7	104.2	-	-	Carrier
Vert	2400.000	PK	56.5	27.8	5.7	32.7	57.3	84.2	26.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

 Test report No.
 : 12717687H-A-R1

 Page
 : 31 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 4, 2019 February 5, 2019
Temperature / Humidity 22 deg. C / 32 % RH 24 deg. C / 31 % RH
Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Tomohisa Nakagawa (10 GHz - 26.5 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	4060.000	PK	46.4	30.1	6.8	32.0	-	51.3	73.9	22.6	
Hori	4874.000	PK	43.0	31.7	7.1	31.7	-	50.1	73.9	23.8	
Hori	7311.000	PK	42.9	36.3	8.4	32.7	-	54.9	73.9	19.0	Floor noise
Hori	9748.000	PK	44.2	39.0	9.3	33.4	-	59.1	73.9	14.8	Floor noise
Hori	4060.000	AV	34.6	30.1	6.8	32.0	5.6	45.1	53.9	8.8	*1)
Hori	4874.000	AV	32.3	31.7	7.1	31.7	5.6	45.0	53.9	8.9	
Hori	7311.000	AV	32.5	36.3	8.4	32.7	-	44.5	53.9	9.4	Floor noise
Hori	9748.000	AV	30.8	39.0	9.3	33.4	-	45.7	53.9	8.2	Floor noise
Vert	4060.000	PK	47.6	30.1	6.8	32.0	-	52.5	73.9	21.4	
Vert	4874.000	PK	45.0	31.7	7.1	31.7	-	52.1	73.9	21.8	
Vert	7311.000	PK	43.4	36.3	8.4	32.7	-	55.4	73.9	18.5	Floor noise
Vert	9748.000	PK	43.6	39.0	9.3	33.4	-	58.5	73.9	15.4	Floor noise
Vert	4060.000	AV	36.1	30.1	6.8	32.0	5.6	46.6	53.9	7.3	*1)
Vert	4874.000	AV	34.5	31.7	7.1	31.7	5.6	47.2	53.9	6.7	
Vert	7311.000	AV	32.7	36.3	8.4	32.7	-	44.7	53.9	9.2	Floor noise
Vert	9748.000	AV	31.8	39.0	9.3	33.4	-	46.7	53.9	7.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20\log (4 \text{ m}/3.0 \text{ m}) = 2.5 \text{ dB}$ 10 GHz - 26.5 GHz $20\log (1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{10 0112 2015 0112 2010}g (110 iii / 310 iii)

^{*1)} Noise synchronized with duty of carrier frequency.

Test report No. : 12717687H-A-R1
Page : 32 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 4, 2019
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Tomohisa Nakagawa

(1 GHz - 10 GHz)

Mode Tx 11b 2457 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	51.6	27.5	5.7	32.7	-	52.1	73.9	21.8	
Hori	2483.500	AV	37.1	27.5	5.7	32.7	5.6	43.2	53.9	10.7	*1)
Vert	2483.500	PK	53.8	27.5	5.7	32.7	-	54.3	73.9	19.6	
Vert	2483.500	AV	40.5	27.5	5.7	32.7	5.6	46.6	53.9	7.3	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 12717687H-A-R1
Page : 33 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 4, 2019 February 5, 2019
Temperature / Humidity 22 deg. C / 32 % RH 24 deg. C / 31 % RH
Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Tomohisa Nakagawa (10 GHz - 26.5 GHz)

Mode Tx 11b 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
'	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	55.6	27.5	5.7	32.7	-	56.1	73.9	17.8	
Hori	4924.000	PK	46.5	31.8	7.1	31.7	-	53.7	73.9	20.2	
Hori	7386.000	PK	43.1	36.6	8.4	32.7	-	55.4	73.9	18.5	Floor noise
Hori	9848.000	PK	42.3	39.1	9.4	33.4	-	57.4	73.9	16.5	Floor noise
Hori	2483.500	AV	40.7	27.5	5.7	32.7	5.6	46.8	53.9	7.1	*1)
Hori	4924.000	AV	35.7	31.8	7.1	31.7	5.6	48.5	53.9	5.4	
Hori	7386.000	AV	32.4	36.6	8.4	32.7	-	44.7	53.9	9.2	Floor noise
Hori	9848.000	AV	31.3	39.1	9.4	33.4	-	46.4	53.9	7.5	Floor noise
Vert	2483.500	PK	56.0	27.5	5.7	32.7	-	56.5	73.9	17.4	
Vert	4924.000	PK	42.3	31.8	7.1	31.7	-	49.5	73.9	24.4	
Vert	7386.000	PK	43.4	36.6	8.4	32.7	-	55.7	73.9	18.2	Floor noise
Vert	9848.000	PK	43.4	39.1	9.4	33.4	-	58.5	73.9	15.4	Floor noise
Vert	2483.500	AV	40.9	27.5	5.7	32.7	5.6	47.0	53.9	6.9	*1)
Vert	4924.000	AV	31.8	31.8	7.1	31.7	5.6	44.6	53.9	9.3	
Vert	7386.000	AV	32.4	36.6	8.4	32.7	-	44.7	53.9	9.2	Floor noise
Vert	9848.000	AV	31.3	39.1	9.4	33.4	-	46.4	53.9	7.5	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz \sim 20log (4 m / 3.0 m) = 2.5 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2462.000	PK	100.5	27.4	5.7	32.7	100.9	-	-	Carrier
Hori	6565.417	PK	40.6	34.1	8.0	32.3	50.4	80.9	30.5	
Vert	2462.000	QP	102.1	27.4	5.7	32.7	102.5	-	-	Carrier
Vert	6565.417	QP	40.0	34.1	8.0	32.3	49.8	82.5	32.7	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 12717687H-A-R1 Page : 34 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 February 4, 2019

Temperature / Humidity

22 deg. C / 32 % RH Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Mode Tx 11b 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12717687H-A-R1

 Page
 : 35 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 4, 2019 February 5, 2019
Temperature / Humidity 22 deg. C / 32 % RH 24 deg. C / 31 % RH
Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Tomohisa Nakagawa (10 GHz - 26.5 GHz)

Mode Tx 11g 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	60.0	27.8	5.7	32.7	-	60.8	73.9	13.1	
Hori	4824.000	PK	46.3	31.7	7.0	31.8	-	53.2	73.9	20.7	
Hori	7236.000	PK	43.3	35.9	8.4	32.6	-	55.0	73.9	18.9	Floor noise
Hori	9648.000	PK	42.5	38.7	9.3	33.3	-	57.2	73.9	16.7	Floor noise
Hori	2390.000	AV	41.3	27.8	5.7	32.7	5.3	47.4	53.9	6.5	*1)
Hori	4824.000	AV	36.4	31.7	7.0	31.8	5.3	48.6	53.9	5.3	
Hori	7236.000	AV	32.1	35.9	8.4	32.6	-	43.8	53.9	10.1	Floor noise
Hori	9648.000	AV	31.1	38.7	9.3	33.3	-	45.8	53.9	8.1	Floor noise
Vert	2390.000	PK	60.2	27.8	5.7	32.7	-	61.0	73.9	12.9	
Vert	4824.000	PK	43.3	31.7	7.0	31.8	-	50.2	73.9	23.7	
Vert	7236.000	PK	44.1	35.9	8.4	32.6	-	55.8	73.9	18.1	Floor noise
Vert	9648.000	PK	43.6	38.7	9.3	33.3	-	58.3	73.9	15.6	Floor noise
Vert	2390.000	AV	41.7	27.8	5.7	32.7	5.3	47.8	53.9	6.1	*1)
Vert	4824.000	AV	33.6	31.7	7.0	31.8	5.3	45.8	53.9	8.1	
Vert	7236.000	AV	32.1	35.9	8.4	32.6	-	43.8	53.9	10.1	Floor noise
Vert	9648.000	AV	31.6	38.7	9.3	33.3	-	46.3	53.9	7.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz - 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

20the Data Silect										
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	96.3	27.7	5.7	32.7	97.0	-	-	Carrier
Hori	2400.000	PK	60.4	27.8	5.7	32.7	61.2	77.0	15.8	
Hori	6432.000	PK	41.9	33.5	8.0	32.2	51.2	77.0	25.8	
Vert	2412.000	QP	96.0	27.7	5.7	32.7	96.7	-	-	Carrier
Vert	2400.000	QP	62.9	27.8	5.7	32.7	63.7	76.7	13.0	
Vert	6432.000	QP	40.4	33.5	8.0	32.2	49.7	76.7	27.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

: 12717687H-A-R1 Test report No. Page : 36 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

•VBW 300 kHz

20dBc Plot

Sweep 2.4 ms (1201 pts)

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3

∗VBW 3 MHz

Trace Green: Peak Plot

Trace Purple: Average Plot

Temperature / Humidity

February 4, 2019 22 deg. C / 32 % RH Tomohisa Nakagawa Engineer (1 GHz - 10 GHz) Tx 11g 2412 MHz Mode

Horizontal Restricted-band band-edge Plot Authorized-band band-edge Plot Mkr1 2.413 250 GHz 96.25 dB**µ**V Ref 113.6 dBpV •EmiPk Atten 20 dB Ref 113.6 dBµV ■Peak Log 10 dB/ Log 10 •LgAv LgAv V1 S2 V3 FC £(f): FTun £(f): Swp

Res BW 100 kHz

Sweep 1.04 ms (1201 pts)

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

•Res BW (CISPR) 1 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 37 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date April 8, 2019 Temperature / Humidity 20 deg. C / 40 % RH

Engineer Yuta Moriya

(1 GHz - 10 GHz) Tx 11g 2417 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	60.1	27.8	5.7	32.7	-	60.9	73.9	13.0	
Hori	2390.000	AV	41.7	27.8	5.7	32.7	5.3	47.8	53.9	6.1	*1)
Vert	2390.000	PK	62.0	27.8	5.7	32.7	-	62.8	73.9	11.1	
Vert	2390.000	AV	42.5	27.8	5.7	32.7	5.3	48.6	53.9	5.3	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

20dBc Data Sheet

Mode

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2417.000	PK	97.7	27.6	5.7	32.7	98.3	-	-	Carrier
Hori	2400.000	PK	62.4	27.8	5.7	32.7	63.2	78.3	15.1	
Vert	2417.000	QP	97.9	27.6	5.7	32.7	98.5	-	-	Carrier
Vert	2400.000	QP	63.1	27.8	5.7	32.7	63.9	78.5	14.6	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 12717687H-A-R1
Page : 38 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Date February 4, 2019 February 5, 2019 February 5, 2019
Temperature / Humidity Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) February 5, 2019 February 5, 2019 24 deg. C / 31 % RH Tomohisa Nakagawa (10 GHz - 26.5 GHz) (Below 1GHz)

Mode Tx 11g 2437 MHz

Polarity	Frequency	Datastar	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Folality	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]		Kemark
Hori	110.000	OP	26.9	11.6	8.3	32.2	[db]	14.6	43.5	28.9	
Hori	167.962	`	32.7	15.9	8.9	32.2		25.3	43.5	18.2	
Hori	301.420	`	36.1	13.7	10.1	32.1	1	27.8	46.0	18.2	
Hori	335.946	`	36.3	14.9	10.1	32.1	1	29.4	46.0	16.6	
Hori	359.920	`	33.6	15.2	10.5	32.1	_	27.2	46.0	18.8	
Hori	878.266	`	22.3	22.1	13.6	31.2	-	26.8	46.0	19.2	
Hori	4874.000	_	42.0	31.7	7.1	31.7	-	49.1	73.9	24.8	
Hori	7311.000		42.5	36.3	8.4	32.7	-	54.5	73.9	-	Floor noise
Hori	9748.000		42.3	39.0	9.3	33.4	-	57.1	73.9		Floor noise
Hori	4874.000		31.9	39.0	7.1	31.7	5.3	44.3	53.9	9.6	Floor noise
Hori	7311.000			36.3	7.1 8.4	32.7	5.5	44.3	53.9		El
			31.9				-				Floor noise
Hori	9748.000		30.8	39.0	9.3	33.4	-	45.7	53.9		Floor noise
Vert	78.026	`	39.6	6.8	7.9	32.2	-	22.1	40.0	17.9	
Vert	110.260	`	27.6	11.7	8.3	32.2	-	15.4	43.5	28.1	
Vert	304.487	`	32.3	13.8	10.1	32.1	-	24.1	46.0	21.9	
Vert	383.880	`	32.2	15.4	10.7	32.1	-	26.2	46.0	19.8	
Vert	455.892	`	29.0	16.9	11.1	32.1	-	24.9	46.0	21.1	
Vert	909.915	QP	22.3	22.2	13.8	31.0	-	27.3	46.0	18.7	
Vert	4874.000		42.3	31.7	7.1	31.7	-	49.4	73.9	24.5	
Vert	7311.000	PK	42.8	36.3	8.4	32.7	-	54.8	73.9	19.1	Floor noise
Vert	9748.000	PK	42.5	39.0	9.3	33.4	-	57.4	73.9	16.5	Floor noise
Vert	4874.000	AV	32.1	31.7	7.1	31.7	5.3	44.5	53.9	9.4	·
Vert	7311.000	AV	32.0	36.3	8.4	32.7	-	44.0	53.9	9.9	Floor noise
Vert	9748.000	AV	31.3	39.0	9.3	33.4	-	46.2	53.9	7.7	Floor noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor$

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 12717687H-A-R1
Page : 39 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 4, 2019
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Tomohisa Nakagawa

(1 GHz - 10 GHz) Tx 11g 2457 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	64.4	27.5	5.7	32.7	-	64.9	73.9	9.0	
Hori	2483.500	AV	45.1	27.5	5.7	32.7	5.3	50.9	53.9	3.0	*1)
Vert	2483.500	PK	63.7	27.5	5.7	32.7	-	64.2	73.9	9.7	
Vert	2483.500	AV	44.9	27.5	5.7	32.7	5.3	50.7	53.9	3.2	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

Mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

 Test report No.
 : 12717687H-A-R1

 Page
 : 40 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date February 4, 2019 February 5, 2019
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) February 5, 2019
24 deg. C / 31 % RH
Tomohisa Nakagawa (10 GHz - 26.5 GHz)

Mode Tx 11g 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
'	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	61.2	27.5	5.7	32.7	-	61.7	73.9	12.2	
Hori	4924.000	PK	43.5	31.8	7.1	31.7	-	50.7	73.9	23.2	
Hori	7386.000	PK	44.2	36.6	8.4	32.7	-	56.5	73.9	17.4	Floor noise
Hori	9848.000	PK	44.0	39.1	9.4	33.4	-	59.1	73.9	14.8	Floor noise
Hori	2483.500	AV	42.4	27.5	5.7	32.7	5.3	48.2	53.9	5.7	*1)
Hori	4924.000	AV	31.4	31.8	7.1	31.7	5.3	43.9	53.9	10.0	
Hori	7386.000	AV	32.8	36.6	8.4	32.7	-	45.1	53.9	8.8	Floor noise
Hori	9848.000	AV	30.9	39.1	9.4	33.4	-	46.0	53.9	7.9	Floor noise
Vert	2483.500	PK	61.8	27.5	5.7	32.7	-	62.3	73.9	11.6	
Vert	4924.000	PK	41.2	31.8	7.1	31.7	-	48.4	73.9	25.5	
Vert	7386.000	PK	40.5	36.6	8.4	32.7	-	52.8	73.9	21.1	Floor noise
Vert	9848.000	PK	40.8	39.1	9.4	33.4	-	55.9	73.9	18.0	Floor noise
Vert	2483.500	AV	42.9	27.5	5.7	32.7	5.3	48.7	53.9	5.2	*1)
Vert	4924.000	AV	31.8	31.8	7.1	31.7	5.3	44.3	53.9	9.6	
Vert	7386.000	AV	33.0	36.6	8.4	32.7	-	45.3	53.9	8.6	Floor noise
Vert	9848.000	AV	31.4	39.1	9.4	33.4	-	46.5	53.9	7.4	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 12717687H-A-R1 Page : 41 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 February 4, 2019

Temperature / Humidity

22 deg. C / 32 % RH Engineer Tomohisa Nakagawa (1 GHz - 10 GHz)

Mode Tx 11g 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 42 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic ChamberNo.3No.4DateFebruary 4, 2019April 8, 2019Temperature / Humidity22 deg. C / 32 % RH20 deg. C / 40 % RH

Engineer Tomohisa Nakagawa Yuta Moriya

(1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	PK	58.3	27.6	5.8	31.4	-	60.4	73.9	13.5	
Hori.	4824.000	PK	40.4	31.4	7.2	30.6	-	48.4	73.9	25.5	Floor noise
Hori.	7236.000	PK	42.0	36.2	8.6	31.9	-	54.9	73.9	19.0	Floor noise
Hori.	9648.000	PK	42.0	38.0	9.5	32.1	-	57.4	73.9	16.5	Floor noise
Hori.	2390.000	AV	43.5	27.6	5.8	31.4	5.2	50.8	53.9	3.1	*1)
Hori.	4824.000	AV	32.0	31.4	7.2	30.6	-	40.0	53.9	13.9	Floor noise
Hori.	7236.000	AV	31.9	36.2	8.6	31.9	-	44.8	53.9	9.1	Floor noise
Hori.	9648.000	AV	31.1	38.0	9.5	32.1	-	46.5	53.9	7.4	Floor noise
Vert.	2390.000	PK	56.8	27.6	5.8	31.4	-	58.9	73.9	15.0	
Vert.	4824.000	PK	40.7	31.4	7.2	30.6	-	48.7	73.9	25.2	Floor noise
Vert.	7236.000	PK	42.2	36.2	8.6	31.9	-	55.1	73.9	18.8	Floor noise
Vert.	9648.000	PK	42.6	38.0	9.5	32.1	-	58.0	73.9	15.9	Floor noise
Vert.	2390.000	AV	43.0	27.6	5.8	31.4	5.2	50.3	53.9	3.6	*1)
Vert.	4824.000	AV	32.0	31.4	7.2	30.6	-	40.0	53.9	13.9	Floor noise
Vert.	7236.000	AV	33.1	36.2	8.6	31.9	-	46.0	53.9	7.9	Floor noise
Vert.	9648.000	AV	31.2	38.0	9.5	32.1	-	46.6	53.9	7.3	Floor noise

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Duty \ fac$

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	97.0	27.7	5.7	32.7	97.7	-	-	Carrier
Hori	2400.000	PK	63.5	27.8	5.7	32.7	64.3	77.7	13.4	
Vert	2412.000	PK	96.2	27.7	5.7	32.7	96.9	-	-	Carrier
Vert	2400.000	PK	63.4	27.8	5.7	32.7	64.2	76.9	12.7	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz $20 \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

: 12717687H-A-R1 Test report No. Page : 43 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 February 4, 2019

Temperature / Humidity

22 deg. C / 32 % RH Tomohisa Nakagawa Engineer (1 GHz - 10 GHz) Tx 11n-20 2412 MHz Mode

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 44 of 61 : July 1, 2019 : VPYLB1KS Issued date FCC ID

Radiated Spurious Emission

12717687H Report No. Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

April 8, 2019 Temperature / Humidity 20 deg. C / 40 % RH Engineer

Yuta Moriya (1 GHz - 10 GHz)

Mode Tx 11n-20 2417 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	PK	58.9	27.6	5.8	31.4	-	60.9	73.9	13.0	
Hori.	2390.000	AV	41.3	27.6	5.8	31.4	5.2	48.6	53.9	5.3	*1)
Vert.	2390.000	PK	61.0	27.6	5.8	31.4	-	63.1	73.9	10.8	
Vert.	2390.000	AV	43.4	27.6	5.8	31.4	5.2	50.7	53.9	3.2	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

	vade Data Sheet													
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark				
				Factor										
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]					
Hori.	2412.000	PK	99.0	27.5	5.8	31.3	101.0	-	-	Carrier				
Hori.	2400.000	PK	65.3	27.6	5.8	31.3	67.4	81.0	13.7					
Vert.	2417.000	PK	98.7	27.5	5.8	31.3	100.7	-	-	Carrier				
Vert.	2400.000	PK	65.0	27.6	5.8	31.3	67.1	80.7	13.6					

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 45 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.4
Date February 4, 2019 April 8, 2019
Temperature / Humidity 22 deg. C / 32 % RH 20 deg. C / 40 % RH

Engineer Tomohisa Nakagawa Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2437 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	PK	42.6	31.5	7.3	30.6	-	50.7	73.9	23.2	Floor noise
Hori.	7311.000	PK	41.8	36.3	8.6	31.9	-	54.8	73.9	19.1	Floor noise
Hori.	9748.000	PK	41.0	38.3	9.6	32.1	-	56.7	73.9	17.2	Floor noise
Hori.	4874.000	AV	31.9	31.5	7.3	30.6	-	40.0	53.9	13.9	Floor noise
Hori.	7311.000	AV	32.8	36.3	8.6	31.9	-	45.8	53.9	8.1	Floor noise
Hori.	9748.000	AV	30.9	38.3	9.6	32.1	-	46.6	53.9	7.3	Floor noise
Vert.	4874.000	PK	41.4	31.5	7.3	30.6	-	49.5	73.9	24.4	Floor noise
Vert.	7311.000	PK	42.5	36.3	8.6	31.9	-	55.5	73.9	18.4	Floor noise
Vert.	9748.000	PK	41.5	38.3	9.6	32.1	-	57.2	73.9	16.7	Floor noise
Vert.	4874.000	AV	32.2	31.5	7.3	30.6	-	40.3	53.9	13.6	Floor noise
Vert.	7311.000	AV	32.7	36.3	8.6	31.9	-	45.7	53.9	8.2	Floor noise
Vert.	9748.000	AV	31.6	38.3	9.6	32.1	-	47.3	53.9	6.6	Floor noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier)$

Distance factor: 1 GHz - 10 GHz $20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 12717687H-A-R1
Page : 46 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date February 4, 2019
Temperature / Humidity 22 deg. C / 32 % RH
Engineer Tomohisa Nakagawa

(1 GHz - 10 GHz)

Mode Tx 11n-20 2457 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	61.0	27.5	5.7	32.7	-	61.5	73.9	12.4	
Hori	2483.500	AV	46.1	27.5	5.7	32.7	5.2	51.8	53.9	2.1	*1)
Vert	2483.500	PK	60.7	27.5	5.7	32.7	-	61.2	73.9	12.7	
Vert	2483.500	AV	45.7	27.5	5.7	32.7	5.2	51.4	53.9	2.5	*1)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

 Test report No.
 : 12717687H-A-R1

 Page
 : 47 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Radiated Spurious Emission

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.4

Date February 4, 2019 April 8, 2019

Temperature / Humidity 22 deg. C / 32 % RH 20 deg. C / 40 % RH

Engineer Tomohisa Nakagawa Yuta Moriya (1 GHz - 10 GHz) (10 GHz - 26.5 GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	PK	60.0	27.5	5.9	31.3	-	62.1	73.9	11.8	
Hori.	4924.000	PK	41.3	31.6	7.3	30.6	-	49.5	73.9	24.4	Floor noise
Hori.	7386.000	PK	42.6	36.3	8.6	31.9	-	55.6	73.9	18.3	Floor noise
Hori.	9848.000	PK	42.2	38.4	9.6	32.2	-	58.0	73.9	15.9	Floor noise
Hori.	2483.500	AV	44.8	27.5	5.9	31.3	5.2	52.1	53.9	1.8	*1)
Hori.	4924.000	AV	31.7	31.6	7.3	30.6	-	39.9	53.9	14.0	Floor noise
Hori.	7386.000	AV	33.4	36.3	8.6	31.9	-	46.4	53.9	7.5	Floor noise
Hori.	9848.000	AV	30.8	38.4	9.6	32.2	-	46.6	53.9	7.3	Floor noise
Vert.	2483.500	PK	59.4	27.5	5.9	31.3	-	61.5	73.9	12.4	
Vert.	4924.000	PK	41.1	31.6	7.3	30.6	-	49.3	73.9	24.6	Floor noise
Vert.	7386.000	PK	42.4	36.3	8.6	31.9	-	55.4	73.9	18.5	Floor noise
Vert.	9848.000	PK	43.0	38.4	9.6	32.2	-	58.8	73.9	15.1	Floor noise
Vert.	2483.500	AV	43.5	27.5	5.9	31.3	5.2	50.8	53.9	3.1	*1)
Vert.	4924.000	AV	32.6	31.6	7.3	30.6	-	40.8	53.9	13.1	Floor noise
Vert.	7386.000	AV	33.6	36.3	8.6	31.9	-	46.6	53.9	7.3	Floor noise
Vert.	9848.000	AV	30.8	38.4	9.6	32.2	-	46.6	53.9	7.3	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20\log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 12717687H-A-R1 Page : 48 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12717687H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 February 4, 2019

Temperature / Humidity

22 deg. C / 32 % RH Engineer Tomohisa Nakagawa (1 GHz - 10 GHz) Mode Tx 11n-20 2462 MHz

Start 2.483 500 GHz *Res BW (CISPR) 1 MHz

Horizontal Restricted-band band-edge Plot Ref 112.1 dBpV •EmiPk Atten 20 dB Log 10 dB/ •LgAv €(f): FTun Swp

> •VBW 3 MHz Trace Green: Peak Plot Trace Purple: Average Plot

Stop 2.500 000 GHz Sweep 1.04 ms (1201 pts)

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 49 of 61 Issued date : July 1, 2019 FCC ID : VPYLB1KS

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12717687H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 February 4, 2019 Date

Temperature / Humidity

Engineer

(1 GHz - 10 GHz) Tx 11g 2437 MHz Mode

No.3 No.3

February 5, 2019 22 deg. C / 32 % RH 24 deg. C / 31 % RH Tomohisa Nakagawa

Tomohisa Nakagawa (10 GHz - 26.5 GHz) February 5, 2019 24 deg. C / 31 % RH Tomohisa Nakagawa

(Below 1GHz)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 50 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Conducted Spurious Emission

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity Engineer Yuta Moriya
Mode Tx 11g 2437 MHz

I	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	19.34	-90.2	0.75	9.8	2.0	1	-77.6	300	6.0	-16.3	41.8	58.1	
	1991.00	-89.6	0.75	9.8	2.0	1	-77.1	30	6.0	4.2	29.5	25.4	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than $2.0~\mathrm{dBi}$.

 Test report No.
 : 12717687H-A-R1

 Page
 : 51 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Power Density

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity Engineer February 5, 2019
23 deg. C / 32 % RH
Yuta Moriya

Engineer Yuta Mode Tx 11b

11b

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-26.60	0.75	19.98	-5.87	8.00	13.87
2417.00	-26.22	0.75	19.98	-5.49	8.00	13.49
2437.00	-26.04	0.75	19.98	-5.31	8.00	13.31
2457.00	-26.36	0.75	19.98	-5.63	8.00	13.63
2462.00	-26.08	0.75	19.98	-5.35	8.00	13.35

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 52 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Power Density

11b

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 53 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Power Density

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity Engineer 23 deg. C / 32 % RH
Yuta Moriya

Engineer Yuta Mori Mode Tx 11g

11g

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-35.70	0.75	19.98	-14.97	8.00	22.97
2417.00	-31.26	0.75	19.98	-10.53	8.00	18.53
2437.00	-31.48	0.75	19.98	-10.75	8.00	18.75
2457.00	-31.14	0.75	19.98	-10.41	8.00	18.41
2462.00	-35.66	0.75	19.98	-14.93	8.00	22.93

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1 Page : 54 of 61 Issued date : July 1, 2019 : VPYLB1KS FCC ID

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12717687H-A-R1

 Page
 : 55 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Power Density

Report No. 12717687H

Test place Ise EMC Lab. No.6 Measurement Room

Date February 5, 2019
Temperature / Humidity 23 deg. C / 32 % RH
Engineer Yuta Moriya
Mode Tx 11n-20

11n-20

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-35.28	0.75	19.98	-14.55	8.00	22.55
2417.00	-31.94	0.75	19.98	-11.21	8.00	19.21
2437.00	-31.42	0.75	19.98	-10.69	8.00	18.69
2457.00	-31.62	0.75	19.98	-10.89	8.00	18.89
2462.00	-34.72	0.75	19.98	-13.99	8.00	21.99

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 56 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

Power Density

11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12717687H-A-R1
Page : 57 of 61
Issued date : July 1, 2019
FCC ID : VPYLB1KS

APPENDIX 2: Test instruments

Test Instruments (1/2)

Test Instruments (1/2)										
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int		
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/19/2018	09/30/2019	12		
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	06/26/2018	06/30/2020	24		
RE	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) 1608S087(5 m)	/08/08/2018	08/31/2019	12		
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	06/07/2018	06/30/2019	12		
AT	141568	Thermo-Hygrometer	CUSTOM	CTH-201	2901	01/11/2019	01/31/2020	12		
AT	141547	DIGITAL HiTESTER	HIOKI	3805	60500120	02/25/2019	02/29/2020	12		
ΑT	141561	Thermo-Hygrometer	CUSTOM	CTH-201	1401	01/11/2019	01/31/2020	12		
AT	141174		HIROSE ELECTRIC CO.,LTD.		901247	01/10/2019	01/31/2020	12		
AT	141173		HIROSE ELECTRIC CO.,LTD.	AT-110	-	12/17/2018	12/31/2019	12		
AT	141842	Power sensor	AGILENT	N1923A	MY54070003	08/21/2018	08/31/2019	12		
AT	141812	Power Meter	AGILENT	8990B	MY51000271	08/21/2018	08/31/2019	12		
AT	141832	Power sensor	ANRITSU	MA2411B	738174	10/09/2018	10/31/2019	12		
AT	141810	Power Meter	ANRITSU	ML2495A	824014	10/09/2018	10/31/2019	12		
AT	141899	Spectrum Analyzer	AGILENT	E4448A	MY46180655	08/10/2018	08/31/2019	12		
RE	141580	MicroWave System Amplifier	AGILENT	83017A	MY39500779	03/05/2019	03/31/2020	12		
RE	141902	Spectrum Analyzer	AGILENT	E4440A	MY46187105	10/04/2018	10/31/2019	12		
RE	141532	DIGITAL HiTESTER	HIOKI	3805	51201197	01/29/2019	01/31/2020	12		
RE	141554	Thermo-Hygrometer	CUSTOM	CTH-180	1301	01/11/2019	01/31/2020	12		
RE	142013	AC3_Semi Anechoic Chamber(SVSWR)		Semi Anechoic Chamber 3m	DA-10005	04/06/2018	04/30/2019	12		
RE	142237	Antenna Tilt Jig	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-0002	-	-	-		
RE,CE	141936	Terminator	TME	CT-01BP	-	12/05/2018	12/31/2019	12		
RE,CE	141358	LISN(AMN)	Schwarzbeck	NSLK8127	8127-730	07/25/2018	07/31/2019	12		
RE,CE	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/06/2018	12/31/2019	12		
RE,CE	141357	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	07/24/2018	07/31/2019	12		
RE,CE	141216	Coaxial cable		5D-2W/SFM14/ sucoform141-PE/421-010	-/00640	07/03/2018	07/31/2019	12		
RE,CE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/06/2018	08/31/2019	12		
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	03/25/2019	03/31/2020	12		
RE	141424	Biconical Antenna	Schwarzbeck	BBA9106	1915	06/04/2018	06/30/2019	12		
RE	141247	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/06/2018	12/31/2019	12		
RE	148897	Attenuator	KEYSIGHT	8491A	MY52462349	12/20/2018	12/31/2019	12		
RE	141323	Coaxial cable	UL Japan	-	-	07/03/2018	07/31/2019	12		
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck	ВВНА9170	BBHA9170306	06/07/2018	06/30/2019	12		
RE	141945	Torque wrench	Huber+Suhner	74 Z-0-0-21	98142	01/23/2018	01/31/2021	36		
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/08/2019	02/29/2020	12		
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	06/08/2018	06/30/2019	12		
RE	141412	Microwave Cable	Junkosha	MWX221	1305S002R(1m) / 1405S146(5m)	06/14/2018	06/30/2019	12		
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/19/2018	09/30/2019	12		

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12717687H-A-R1

 Page
 : 58 of 61

 Issued date
 : July 1, 2019

 FCC ID
 : VPYLB1KS

Test Instruments (2/2)

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE		MicroWave System Amplifier	AGILENT	83017A	650	10/04/2018	10/31/2019	12
RE	141506	Horn Antenna 15-40GHz	Schwarzbeck	ВВНА9170	BBHA9170307	06/08/2018	06/30/2019	12
RE	142285	_	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-0003	-	-	-
RE	141562	Thermo-Hygrometer	CUSTOM	CTH-201	0010	01/11/2019	01/31/2020	12
RE,CE	141217	Coaxial cable	3	5D-2W/SFM141/ 421-010/sucoform141-P	-/04178	06/13/2018	06/30/2019	12
RE,CE	142227	Measure	KOMELON	KMC-36	-	_	-	-
RE,CE		DIGITAL HiTESTER	HIOKI	3805	51201148	01/29/2019	01/31/2020	12
CE	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/08/2018	08/31/2019	12
AT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/2/2018	11/30/2019	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN