





### **ROBOTICS PROJECT**

on

## **Autonomous Driving of Turtlebot3**

#### **Presenters:**

Aderinoye, Lateef Olalekan Jimoh, Fatai Olarinde

#### Evaluator(s):

DUVERNE RAPHAEK SEULIN RALPH RODRIGUEZ J. JOAQUIN MARTINS RENATO



December 15, 2021.



# TABLE OF CONTENTS

#### **Problem Statement**

- Tetiscpeto jante focuses on elementary of turtlebot3 self-driving, which drives between two
- The project is to solve an autonomous driving lane tracking challenge; and
- All steps taken were described in <u>Turtlebot3 emanual.robotis.com</u>.

#### Requirements:

- TurtleBot3 Burger
- A stationary PC, connected to the TurtleBot3 running Ubuntu 18.04

- Camera Raspberry Pi 'fish-eye' camera
- ROS Ainto Factle 2029 And of Rependent ROS packages were installed by cloning this

**Architecture:** 

- Camera calibration:
  - Camera Imaging Calibration
  - Intrinsic Camera Calibration
  - Extrinsic Camera Calibration
- Lane Detection.

- a. Camera Calibration
  - Camera Imaging Calibration



camera: ISO: 963 awb mode: auto brightness: 57 contrast: 6 exposureCompensation: 0 exposure\_mode: auto hFlip: false saturation: 83 sharpness: 41 shutterSpeed: 25000 vFlip: false videoStabilisation: false ZOOM: 1.0

- Intrinsic Camera Calibration





**Undistorted Checkerboard** 

- Extrinsic Camera Calibration





#### b. Lane Detection



#### b. Lane Detection



Result

# 5 Demo

#### Conclusion

- and phojocojacuses and eivergothe wing thethrops external discerbandete cting two lanes
- The major limitation was the effect of environment light intensity.
- Airslongtometeration of the traffic light detection and work further on other

### Reference:

- httpsg/amanuel/robotis.com/docs/en/platform/turtlebot3/autonomous\_d

# Thank you for your attention!