Master in Control Engineering

Process Automation 2020-2021

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Process Automation

8. ROBUST STABILITY

Outline

- Robust stability
 - Robust control problem and uncertainty definitions
 - Parametric uncertainty
 - Dynamic uncertainty
 - Sufficient conditions for robust stability of linear SISO systems
 - Example
 - Sufficient conditions for robust stability of linear SISO systems in the IMC approach
- Summary

Robust control problem and uncertainty definitions

Parametric uncertainty

- Given
 - · A parametric process model

$$P(s) = K \frac{s^m + a_m s^{m-1} + \dots + a_0}{s^n + b_n s^{n-1} + \dots + b_0} = K \frac{N_P(s; \mathbf{a})}{D_P(s; \mathbf{b})}$$

- where a and b are the vectors of the parameters of the numerator of P(s)
- · A range of admissible values for the parameters

$$K \in [K_1, K_2] = \mathcal{K}, \boldsymbol{a} \in \left[a_{m_1}, a_{m_2}\right] \times \cdots \times \left[a_{0_1}, a_{0_2}\right] = \mathcal{A}, \boldsymbol{b} \in \left[b_{n_1}, b_{n_2}\right] \times \cdots \times \left[b_{0_1}, b_{0_2}\right] = \mathcal{B}$$

A set of admissible transfer functions

$$\Pi := \left\{ P(s) = K \frac{N_P(s; \boldsymbol{a})}{D_P(s; \boldsymbol{b})} | K \in \mathcal{K}, \boldsymbol{a} \in \mathcal{A}, \boldsymbol{b} \in \mathcal{B} \right\}$$

- The robust control problem is defined as follows: Find a feedback controller C(s) which stabilizes all the processes $P(s) \in \Pi$.

Robust control problem and uncertainty definitions

• Additive uncertainty P(s) r e C(s) $\Delta(s)$

- Given a process P(s) and a nominal process model $\tilde{P}(s)$, the additive uncertainty $\Delta(s)$ is defined as the function such that

$$P(s) = \tilde{P}(s) + \Delta(s)$$

- Given an upperbound $l_a(j\omega)$ of the additive uncertainty, i.e., a function such that $\|l_a(j\omega)\|_{\infty} > \|\Delta(j\omega)\|_{\infty}$

the set of admissible transfer functions is defined as

$$\Pi \coloneqq \left\{ P(s) = \tilde{P}(s) + \Delta(s) \middle| |l_a(j\omega)| > |\Delta(j\omega)|, \forall \omega \right\}$$

- The robust control problem is defined as follows: Find a feedback controller C(s) which stabilizes all the processes $P(s) \in \Pi$.

Robust control problem and uncertainty definitions

Multiplicative uncertainty

Given a process P(s) and a nominal process model $\tilde{P}(s)$, the *multiplicative* uncertainty $\Delta_m(s)$ is defined as the function such that

$$P(s) = \tilde{P}(s) \cdot (1 + \Delta_m(s))$$

- Given an upperbound $l_m(j\omega)$ of the multiplicative uncertainty, i.e., a function such that

$$||l_m(j\omega)||_{\infty} > ||\Delta_m(j\omega)||_{\infty}$$

the set of admissible transfer functions is defined as

$$\Pi := \left\{ P(s) = \tilde{P}(s) \cdot (1 + \Delta_m(s)) \middle| |l_m(j\omega)| > |\Delta_m(j\omega)|, \forall \omega \right\}$$

- The robust control problem is defined as follows: Find a feedback controller C(s) which stabilizes all the processes $P(s) \in \Pi$.

- Lemma
 - Necessary condition for the robust stability problem is that the controller C(s) stabilizes the nominal process $\tilde{P}(s)$
- Proof
 - C(s) must stabilize all the process $P(s) \in \Pi$
 - $\tilde{P}(s) \in \Pi$

- Theorem 1 (additive uncertainty)
 - By assuming that
 - the controller C(s) stabilizes the nominal process $\tilde{P}(s)$
 - the process P(s) and the nominal process $\tilde{P}(s)$ have the same number of RHP poles: $n_P^+ = n_{\tilde{P}}^+$
 - then a sufficient condition for the solution of the robust stability problem is that the controller C(s) is such that

$$||l_a(j\omega)C(j\omega)\tilde{S}(j\omega)||_{\infty} < 1$$

- Proof
 - Since $n_P^+ = n_{\widetilde{P}}^+$, to satisfy the Nyquist theorem, the number of counter-clockwise encirclements about -1 + j0 of the vectors $\overline{F(j\omega)} = \overline{C(j\omega)P(j\omega)}$ and $\overline{\tilde{F}(j\omega)} = \overline{C(j\omega)\tilde{P}(j\omega)}$, as the frequency ω ranges from $-\infty$ to ∞ , must be the shame
 - By the additive uncertainty definition, it holds that: $F(j\omega) = C(j\omega)P(j\omega) = C(j\omega)\left(\tilde{P}(j\omega) + \Delta(j\omega)\right) = \tilde{F}(j\omega) + C(j\omega)\Delta(j\omega)$
 - Since $|l_a(j\omega)| > |\Delta(j\omega)|$, $\forall \omega$ by definition, it follows that, for all ω , the complex vector $\overrightarrow{F(j\omega)}$ lies in a circle centered in $\widetilde{F}(j\omega)$ and with radius $|C(j\omega)l_a(j\omega)|$

Teorema: condizioni sufficienti per la stabilità robusta – dimostrazione (cont.)

$$|l_a(j\omega_1)C(j\omega_1)| > |\Delta(j\omega_1)C(j\omega_1)|$$

- Proof (cont'd)
 - Therefore, the Nyquist diagram of $F(j\omega)$ lies in a 'tube' with variable radius $|C(j\omega)l_a(j\omega)|$ around the Nyquist diagram of $\tilde{F}(j\omega)$
 - Since, by assumption, C(s) stabilizes $\tilde{P}(s)$ and $n_P^+ = n_{\tilde{P}}^+$, sufficient condition for C(s) to stabilize all the processes $P(s) \in \Pi$ is that the point -1 lies outside the tube
 - Therefore, the distance between all *P*'s and -1 must be always positive:

$$|F(j\omega) - (-1)| > 0, \forall \omega, \forall \Delta(j\omega)$$

$$\Rightarrow |\tilde{F}(j\omega) + C(j\omega)\Delta(j\omega) + 1| > 0, \forall \omega, \forall \Delta(j\omega)$$
(1)

- Since $|a + b| \ge |a| - |b|$, $\forall a, b \in \mathbb{C}$, it follows that

$$\left|1 + \tilde{F}(j\omega) + C(j\omega)\Delta(j\omega)\right| > \left|1 + \tilde{F}(j\omega)\right| - |C(j\omega)\Delta(j\omega)|, \forall \omega, \forall \Delta(j\omega)$$
 (2)

- From equation (2), it follows that a sufficient condition for equation (1) to be verified is:

$$\left|1 + \tilde{F}(j\omega)\right| - \left|\mathcal{C}(j\omega)\Delta(j\omega)\right| > 0, \forall \omega, \forall \Delta(j\omega) \tag{3}$$

Proof (cont'd)

- From the definition of upperbound of the additive uncertainty, it follows from equation (3) that:

$$\left|1 + \tilde{F}(j\omega)\right| - |C(j\omega)\Delta(j\omega)| > \left|1 + \tilde{F}(j\omega)\right| - |C(j\omega)l_a(j\omega)|, \forall \omega, \forall \Delta(j\omega)$$
(4)

- From equation 3(3) and (4), it follows that a sufficient condition for equation (1) to be verified is:

$$\left|1 + \tilde{F}(j\omega)\right| - |C(j\omega)l_a(j\omega)| > 0, \forall \omega \tag{5}$$

$$\Rightarrow |\mathcal{C}(j\omega)l_a(j\omega)| < |1 + \tilde{F}(j\omega)|, \forall \omega \tag{6}$$

$$\Rightarrow |\mathcal{C}(j\omega)l_a(j\omega)| \cdot \left| 1 + \tilde{F}(j\omega) \right|^{-1} < 1, \forall \omega \tag{7}$$

Recalling the definition of sensitivity function:

$$\tilde{S}(s) \coloneqq \frac{1}{1 + \tilde{P}(s)C(s)} = \frac{1}{1 + \tilde{F}(s)} \tag{8}$$

from equations (7) and (8) it follows that:

$$\left| l_a(j\omega)C(j\omega)\tilde{S}(s) \right| < 1, \forall \omega \tag{9}$$

- Theorem 2 (multiplicative uncertainty)
 - By assuming that
 - the controller C(s) stabilizes the nominal process $\tilde{P}(s)$
 - the process P(s) and the nominal process $\tilde{P}(s)$ have the same number of RHP poles: $n_P^+ = n_{\tilde{p}}^+$
 - then a sufficient condition for the solution of the robust stability problem is that the controller C(s) is such that

$$||l_m(j\omega)\tilde{T}(j\omega)||_{\infty} < 1$$

- Proof
 - From the definitions of additive and multiplicative uncertainties, it follows that:

$$\Delta_m(s) = \Delta(s) \tilde{P}^{-1}(s)$$

- From the definitions of sensitivities functions, it follows that:

$$\tilde{T}(s) = \frac{\tilde{F}(s)}{1 + \tilde{F}(s)} = C(s)\tilde{P}(s)\tilde{S}(s)$$

- Therefore, the sufficient condition (9) becomes

$$\left|l_a(j\omega)\mathcal{C}(j\omega)\tilde{S}(s)\right| = \left|l_m(j\omega)\tilde{P}^{-1}(s)\tilde{P}(s)\tilde{T}(s)\right| = \left|l_m(j\omega)\tilde{T}(s)\right| < 1, \forall \omega$$

Process with parametric uncertainty	$P(s) = K_{P} \frac{(s+1)}{s(s-1)};$ $K_{P} \in [1.5, 2.5]$
Nominal process	$\widetilde{P}(s) = K_{\widetilde{p}} \frac{(s+1)}{s(s-1)} = 2.5 \frac{(s+1)}{s(s-1)};$ $K_{\widetilde{p}} = 2.5$
Controller	C(s) = 1
Nominal open-loop transfer function	$\widetilde{F}(s) = 2.5 \frac{(s+1)}{s(s-1)}$
Stable nominal closed-loop transfer function	$\widetilde{W}(s) = \frac{\widetilde{F}(s)}{1 + \widetilde{F}(s)} = 2.5 \frac{s+1}{s^2 + 1.5s + 2.5}$

Nyquist diagram of the nominal open-loop system

From parametric uncertainty to additive uncertainty

- Suff. Condition for robust stability $\|l_a(j\omega)\mathcal{C}(j\omega)\tilde{S}(j\omega)\|_{\infty} < 1$

Remark: condition verified conservatively

- Theorem 3 (additive uncertainty, IMC approach)
 - By assuming that
 - the controller Q(s) is stable and the nominal process $\tilde{P}(s)$ is stable
 - the process P(s) and the nominal process $\tilde{P}(s)$ have the same number of RHP poles: $n_P^+ = n_{\tilde{p}}^+$
 - then a sufficient condition for the solution of the robust stability problem is that the controller Q(s) is such that

$$||l_a(j\omega) Q(j\omega)||_{\infty} < 1$$

- Proof
 - In the IMC design approach, the sensitivity function is $\tilde{S}(s) = 1 Q(s)\tilde{P}(s)$, and the controller C(s) is written in terms of the controller Q(s) as $C(s) = \frac{Q(s)}{1 \tilde{P}(s)Q(s)}$
 - It follows that

$$\left\|l_a(j\omega)C(j\omega)\tilde{S}(j\omega)\right\|_{\infty} = \left\|l_a(j\omega)\frac{Q(s)}{1-\tilde{P}(s)Q(s)}\left(1-\tilde{P}(s)Q(s)\right)\right\|_{\infty} = \|l_a(j\omega)Q(s)\|_{\infty} < 1$$

- Theorem 4 (multiplicative uncertainty, IMC approach)
 - By assuming that
 - the controller Q(s) is stable and the nominal process $\tilde{P}(s)$ is stable
 - the process P(s) and the nominal process $\tilde{P}(s)$ have the same number of RHP poles: $n_P^+ = n_{\tilde{P}}^+$
 - then a sufficient condition for the solution of the robust stability problem is that the controller Q(s) is such that

$$||l_m(j\omega)\tilde{P}(s)Q(s)||_{\infty} < 1$$

- Proof
 - In the IMC design approach, the sensitivity function is $\tilde{T}(j\omega) = Q(s)\tilde{P}(s)$
 - It follows that

$$||l_m(j\omega)\tilde{T}(j\omega)||_{\infty} = ||l_m(j\omega)\tilde{P}(s)Q(s)||_{\infty} < 1$$

Summary

- Robust control
 - Definitions of parametric and dynamic (additive, multiplicative) uncertainty
 - Definitions of the robust control problem
 - Sufficient conditions for robust stability of linear SISO systems
 - Additive uncertainty
 - Multiplicative uncertainty
 - IMC design
 - Example with parametric uncertainty

