у2018-3-3. Алгоритмы на строках

А. Сравнения подстрок

2 секунды, 256 мегабайт

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [a..b] и [с..d].

Входные данные

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов.

В следующих M строках запросы a,b,c,d. $0 \le M \le 10^5, \ 1 \le a \le b \le |S|, \ 1 \le c \le d \le |S|$

Выходные данные

M строк. Выведите Yes, если подстроки совпадают, и No иначе.

ВХОДНЫЕ ДАННЫЕ trololo 3 1 7 1 7 3 5 5 7 1 1 1 5 Выходные данные Yes Yes No

В. Префикс-функция

2 секунды, 256 мегабайт

Постройте префикс-функцию для заданной строки s.

Входные данные

Первая строка входного файла содержит s $(1 \le |s| \le 10^6)$. Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения префикс-функции строки s для всех индексов 1,2,...,|s|.

входные данные	
аааААА	
выходные данные	
0 1 2 0 0 0	

С. Z-функция

2 секунды, 256 мегабайт

Постройте Z-функцию для заданной строки s.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения Z-функции строки s для индексов 2, 3, ..., |s|.

входные данные	
аааААА	
выходные данные	
2 1 0 0 0	
входные данные	
abacaba	
выходные данные	
0 1 0 3 0 1	

D. Быстрый поиск подстроки в строке

2 секунды, 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

зходные данные	
aba BaCaba	
выходные данные	
	٦

Е. Поиск периода

2 секунды, 256 мегабайт

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

входные данные

Выведите длину искомой строки t.

abcabcabc	
выходные данные	
3	
входные данные	
abacaba	
выходные данные	

F. Подстроки-3

2 секунды, 256 мегабайт

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Входные данные

В первой строке число K ($1 \le K \le 10$).

В следующих K строках — собственно K строк (длины строк от 1 до $10\ 000$).

Выходные данные

Наибольшая общая подстрока.

входные данные	
3 abacaba	
mycabarchive acabistrue	

выходные данные cab

G. Множественный поиск

3 секунды, 1024 мегабайта

Дан массив строк S_i и строка t. Требуется для каждой строки S_i определить, встречается ли она в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки s_i выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

входные данные	
3 abc abcdr abcde xabcdef	
выходные данные	
YES	
NO	
YES	

Н. Множественный поиск 2

3 секунды, 1024 мегабайта

Дан массив строк s_i и строка t. Требуется для каждой строки s_i определить, сколько раз она встречается в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

For each line of s_i print one number: how many times it occurs in t. Lines are numbered in the order they appear in the input file.

входные данные	
3 abc abcdr abcde xabcdef	
выходные данные	
1 0 1	

І. Множественный поиск 3

3 секунды, 1024 мегабайта

Дан массив строк S_i и строка t. Требуется для каждой строки S_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки s_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 - 1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

входные данные
3
ab
bcd
abde
abcdab
выходные данные
0 4
1 1
-1 -1

J. Суффиксный массив

2 секунды, 512 мегабайт

Постройте суффиксный массив для заданной строки s, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные

Первая строка входного файла содержит строку s ($1 \le |s| \le 400~000$). Строка состоит из строчных латинских букв.

Выходные данные

В первой строке выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |s| - 1 чисел — длины наибольших общих префиксов.

входные данны	vie
ababb	
выходные данн	ные
1 3 5 2 4 2 0 1 1	

К. Количество подстрок

2 секунды, 512 мегабайт

Вычислите количество различных подстрок строки S.

Входные данные

Единственная строка входного файла содержит строку s ($1 \le |s| \le 400\ 000$). Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

L. Циклические сдвиги

2 секунды, 512 мегабайт

k-м μ иклическим сдвиаом строки S называется строка, полученная перестановкой k первых символов строки S в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Входные данные

В первой строке входного файла записана строка S, длиной не более 100~000 символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число $k~(1 \le k \le 100~000)$.

Выходные данные

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

входные данные	
abacabac 4	
выходные данные	
cabacaba	

Задачи - Codeforces

входные д	анные
abacabac 5	
выходные	данные
IMPOSSIBLE	

М. Наибольшая общая подстрока

2 секунды, 512 мегабайт

Найдите наибольшую общую подстроку строк s и t.

Входные данные

Первая строка входного файла содержит строку s, вторая — t ($1 \le |s|, |t| \le 100, 000$). Строки состоят из строчных латинских букв.

Выходные данные

Выведите одну строку — наибольшую общую подстроку строк s и t. В случае, если ответ не единственный, выведите минимальный лексикографически.

входные данные
pababb zabacabba
выходные данные
aba

Codeforces (c) Copyright 2010-2021 Михаил Мирзаянов Соревнования по программированию 2.0