MSP430 - GPIO - Entrada: Resumo

P1REN.x 1 = Enable O:IN 1:OUT P1DIR.x 0 = Entrada P1DIR.x P1IN.x Schmitt Trigger

MSP430 - GPIO - LEDs e Chaves

Table 10. Port Mapping Mnemonics and Functi

MSP430 - Mapeamento de P4

Como mapear P4.7 para saída OUT0 do Timer B0?

Acesso ao mapeamento é habilitado com chave.

Tranca automaticamente após 32 ciclos.

P4DIR |= BIT7; //P4.7 como saída

P4SEL |= BIT7; //P4.7 recebe saída alternativa

PMAPKEYID = 0X02D52; //Liberar mapeamento P4MAP7 = PM_TB0CCR0A; //Sair por P4.7

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
0	PM_NONE	None	0789
	PM_CBOUT9		Compensior_B output
1	PM_TBOCLK	TB0 clock input	
	PM_ADC12CLK		ADC12CLK
2	PM_DMAE0	DMAE0 input	
	PM_SVMOUT		SVM output
3	PM_TB00UTH	TB0 high impedance input TB0OUTH	
4	PM_TB00CR0A	TB0 CCR0 capture input CCI0A	TB0 CCR0 compare output Out0
5	PM_TB0CCR1A	TB0 CCR1 capture input CCI1A	TB0 CCR1 compare output Out1
6	PM_TB0CCR2A	TB0 CCR2 capture input CCt2A	TB0 CCR2 compare output Out2
7	PM_TB0CCRBA	TB0 CCR3 capture input CCISA	TB0 CCRS compare output Out
8	PM_TBGCCR4A	TB0 CCR4 capture input CCHA	TB0 CCR4 compare output Out-
9	PM_TB0CCR6A	TB0 CCR5 capture input CCt5A	TB0 CCR5 compare output Outi
10	PM_TB00CR6A	TB0 CCR6 capture input CC16A	TB0 CCR6 compare output Out
	PM_UCA1RXD	USCI_A1 UART RXD (Direction	
11	PM UCA180MI	USCI_A1 SPI sleve out master in	(deaction controlled by USCI)
	PM_UCA1TXD	USCLAT UART TXD (Direction	
12	PM_UCA18/MO	USCL A1 SPI slava in master ou	
	PM_UCA1CLK	USCLAT dock input/output (c	
18	PM_UCB1STE	USCLB1 SPI slave transmit enab	ie (direction controlled by USCI)
	PM UCBISOMI	USCL B1 SPI slave out master in	
14	PM UCBISCL	USCI_B1 I2C clock (open dean a	and direction controlled by USCI)
	PM UCB19IMO	USCL B1 SPI clave in master or	t (direction controlled by USCI)
15	PM UCBISDA	USCI_B1 I2C data (open drain a	nd direction controlled by USCI)
	PM_UCB1CLK	USCI_B1 clock input/output (direction controlled by USCI)	
18	PM_UCA1STE	USCL A1 SPI slave transmit enable (direction controlled by USCI)	
17	PM_CBOUT1	None	Comparator_B output
1.0	PM_MCLK	Note	MCLK
19 - 30	Reserved	None	OVBS
N ADERDA(I)	PM ANALOG	Disables the output driver as well as	the input Schmitt-trigger to preven

MSP430 - Mapeamento P1 e P2

Porta	IN	OUT
P1.0	TAOCLK	ACLK
P1.1	TAO CCIOA	TAO OUTO
P1.2	TAO CCI1A	TA0 OUT1
P1.3	TAO CCI2A	TA0 OUT2
P1.4	TAO CCI3A	TA0 OUT3
P1.5	TAO CCI4A	TA0 OUT4
P1.6	TA1CLK	Comparador B
P1.7	TB0 CCIOA	TB0 OUT0

Porta	IN	OUT
P2.0	TA1 CCI1A	TA1 OUT1
P2.1	TA1 CCI2A	TA1 OUT2
P2.2	TA2 CLK	SMCLK
P2.3	TA2 CCIOA	TA2 OUT0
P2.4	TA2 CCI1A	TA2 OUT1
P2.5	TA2 CCI2A	TA2 OUT2
P2.6	DMATRG	RTC CLK
P2.7	SPI USCI_A0	SPI USCI_B0 SPI USCI_A0

MSP430 - Exemplo Interrupção P2.1

//Também pode-se usar: #pragma vector = 42
#pragma vector = PORT2_VECTOR
__interrupt void port2(void)(
 int n;
 n = __even_in_range(P2IV,0x10);
 switch(n)(
 ...
}

C

Pri	ASM	Vetor ISR em C	Fonte	Flag	N Reg	Endereço
63	".int63"	RESET_VECTOR	Reset	WDTIFG, KEYV	SYSRSTIV	0xFFFE
82	".int62"	SYSNMI_VECTOR	System NMI	SVMLIFG,	SYSSNIV	OXFFFC
61	".int61"	UNMI_VECTOR	User NMI	NMIIFG, OFIFG,	SYSUNIV	OxFFFA
	".int60"	COMPB_VECTOR	Comp_B	CBIV	CBIV	OxFFF8
59	".int59"	TIMER_B0_VECTOR	TBO	TBOCCRO CCIFGO	- COIV	0xFFF6
58	".int58"	TIMER_B1_VECTOR	TBO	CCIFG1 a CCIFG6	TBOIV	0xFFF4
7	".int57"	WDT_VECTOR	Watch Dog	WDTIFG		0xFFF2
8	".int58"	USCI_A0_VECTOR		UCAORXIFG, UCAOTXIFG	UCAOIV	0xFFF0
5	".int55"	USCI_B0_VECTOR	USCI_B0 T=Rx ou Tx	UCBORXIFG, UCBOTXIFG	UCBOIV	0xFFEE

Pri	ASM	Vetor ISR em C	Fonte	Flag	IV Reg	Endereço
54	".int54"	ADC12_VECTOR	ADC12_A	ADC12IFG0 a ADC12IFG15	ADC12IV	OXFFEC
53	".Int53"	TIMERO_AO_VECTOR	TAO	TAOCCRO CCIFGO	-	OXFFEA
52	".Int52"	TIMERO_A1_VECTOR	TAO	CCIFG1 a CCIFG8	TACIV	0xFFE8
51	".int51"	USB_UBM_VECTOR	USB_UBM	USB interrupts	USBIV	0xFFE6
50	".int50"	DMA_VECTOR	DMA	DMA0IFG, DMA1IFG, DMA2IFG	DMAIV	0xFFE4
49	".in149"	TIMER1_A0_VECTOR	TA1	TA1CCR0 CCIFG0	-	0xFFE2
48	".int48"	TIMER1_A1_VECTOR	TA1	CCIFG1 a CCIFG8	TA1IV	0xFFE0

Pri	ASM	Vetor ISR em C	Fonte	Flag	IV Reg	Endereço
47	*.int47*	PORT1_VECTOR	VO Port 1	P1IFG.0 a P1IFG.7	P1IV	0xFFDE
46	".int46"	USCI_A1_VECTOR	USCI_A1 T=Rx ou Tx	UCA1RXIFG, UCA1TXIFG	UCA1IV	0XFFDC
15	".int45"	USCI_B1_VECTOR	USCI_B1 T=Rx ou Tx	UCB1RXIFG, UCB1TXIFG	UCB1IV	0xFFDA
4	".int44"	TIMER2_A0_VECTOR	TA2	TA2CCR0 CCIFG0	-	0xFFD8
13	".int43"	TIMER2_A1_VECTOR	TA2	CCIFG1 a CCIFG6	TA2IV	0xFFD6
2	".int42"	PORT2_VECTOR	VO Port 2	P2IFG.0 a P2IFG.7	RTCIV	0xFFD4
1	".int41"	RTC_VECTOR	RTC_A	RTCRDYIFG, RTCTEVIFG,		0xFFD2
	-		-		-	-
0					-	-

TAxIV → Vetor de Interrupção do Timer Ax Indicar qual flag 0 TAx Interrupt vector provocou a interrupção 0x0 → Sem Interrupção Pendente Prioridade 0x2 → Interrupção Captura/Compara 1 (TAxCCR1 CCIFG) mals alta 0x4 → Interrupção Captura/Compara 2 (TAxCCR2 CCIFG) 0x6 → Interrupção Captura/Compara 3 (TAxCCR3 CCIFG) 0x8 → Interrupção Captura/Compara 4 (TAxCCR4 CCIFG) 0xA → Interrupção Captura/Compara 5 (TAxCCR5 CCIFG) 0xC → Interrupção Captura/Compara 6 (TAxCCR6 CCIFG) Prioridade 0xE → Timer Overflow (TAxCTL TAIFG) mais baixa

Seleção do clock para TAxR

TAxCTL → Controle do Timer Ax

Output Mode 7: Reset/Set

Interrupt Events

EQU2 | EQU2

EQU2

TAIFG

EQU2

MSP430 - Reg. do USCI (UART)

UCAxCTL0 → Controle 0 do USCI_Ax

Reg. do USCI (UART)

UCAxBRW → Palavra de Controle do BR

Este registrador (16 bits) é o divisor UCBRx

Reg. do USCI (UART)

0 = Rejeita

1 = Recebe (UCRXIFG)

UCAxMCTL → Controle do Modulador de USCI_Ax

Reg. do USCI (UART)

UCAxSTAT → Registrador de Status do USCI_Ax

Reg. do USCI (UART)

UCAxIFG → Registrador de Flags de Interrupção

Reg. do USCI (UART)

UCAxIV → Vetor de Interrupção do UCA

Reg. do USCI (UART)

UCAxIE → Registrador Habilita Interrupção

UCBxCTL0 → Controle 0 do USCI_Bx

MSP430 - Registradores - USCI - I²C

UCBxCTL1 → Controle 1 do USCI_Bx

UCAxBRW → Palavra de Controle de Bit Rate

Este registrador (16 bits) é o divisor UCBRx

UCBxSTAT → Registrador de Status do USCI_Bx

UCBxI2COA → Próprio Endereço do USCI_Bx

UCBxl2CSA → Endereço do Escravo do USCI_Bx

UCBxIE → Habilitação de Interrupções do USCI_Bx

UCBxIFG → Flags de Interrupções do USCI_Bx

UCBxRXBUF → Buffer de Recepção

UCBxTXBUF → Buffer de Transmissão

UCBxIV → Vetor de Interrupção do USCI Bx

ADC12MEMx → Registrador Conversão x

ADC12IE → Habilita Interrupções

ADC12IFG → Vetores de Interrupção

ADC12MCTLx → Controle x Reg de Memória 4 3 ADC12INCHX ADC12SREFX ADC12EOS Entrada Fim de Sequência 0 = AO 1 = A1 2 = A2 3 = A30 = Não é o fim 4 = AA 5 = A5 1 = É o fim 6 = A6 7= A7 Seleção da Referência 8 = VeREF+ VR. = AVSS 0 → VR+ = AVCC 9 = VREF-NeREF-VR = AVSS 1 - VR. = VREF+ 10 = Temperatura VR = AVSS 2 -> VR+ = VeREF+ 11 = (AVCC-AVSS)/2 VR. = AVSS 3 -> VR+ = VeREF+ VR. = VREF-NeREF-12 = A12 13 = A13 → VR. = AVCC 15 = A15 VR. = VREF-NeREF-14 =A14 5 -> VR+ = VREF+ VR = VREF-NeREF-6 → V_{R+} = VeREF+ VR. = VREF-/VeREF 7 -> VR+ = VeREF+ ADC12IFG → Flags de Interrupção

1 = Sem Interrupção Pendente

-Ativado quando resultado é carregado no registrador
 -Apagado quando o resultado é lido

ADC12CON SEQx	Modo	Operação
00	Um canal, uma conversão	Um único canal é convertido uma única vez
01	Seq. de Canais (Autoscan)	Uma seq. de canais é convertido uma única vez
10	Repete um canal	Um único canal é convertido repetidamente
11	Repete Seq. de Canais (Rep. Autoscan)	Uma seq. de canais é convertida repetidamente

MSP430 - ADC12_A

Considerações sobre intervalo de amostragem

- SAMPCON = 0 → Entradas Ax em Hi-Z.
- SAMPCON = 1 → Entradas têm modelo abaixo.
- Capacitor do S/H precisa de tempo para se carregar de tal forma que V_S – V_C < ½ bit V_S.

Figure 28-6. Analog Input Equivalent Circuit

MSP430 - ADC12 A

Considerações sobre intervalo de amostragem

- Cálculo do tempo de amostragem depende de $\ensuremath{\mathsf{R}}_{\ensuremath{\mathsf{S}}}$

$$t_{sample} > (R_S + R_I) \times ln(2^{n+1}) \times C_I + 800 \, ns$$

Substituindo os valores:

$$t_{sample} > (R_S + 1.8 k) \times ln(2^{n+1}) \times 25 p + 800 ns$$

• Por exemplo, para $R_s = 10 \text{ k}\Omega$ e n = 12 bits:

$$t_{sample} > 3,46 \, \mu s$$

MSP430 - DMA - Modos

DMADT	Modo	- INIOGOS
000	Class I	Descrição
	Simples	Um disparo para cada transferência. Se DMAxSZ = 0 → DMAEN = 0.
001	Bloco	I Im diagram
		Um disparo para transferir todo o bloco Ao final do bloco → DMAEN = 0.
010		Um dispers - 1
011	Rajada	Um disparo para transferir todo o bloco. CPU intervalada com as transferências. Ao final do bloco → DMAEN = 0.
100	Simples repetido	
101		Um disparo para cada transferência. DMAEN permanece habilitado.
101	Bloco repetido	Um disparo para transferir todo o bloco.
		DMAEN permanece habilitado.
110	Delada	Um disparo para transferir todo o bloco.
	Rajada repetida	CPU intervalada com as transferências. DMAEN permanece habilitado.

DMAxSZ = quantidade de transferências programada.

MSP430 – DMA - Rajada

- · O primeiro disparo inicia a transferência.
- · Só pára quando contador chegar a zero.
- · CPU intercalada com as transferências.

MSP430 - DMA - Fonte de Disparos

DMACTLx

Trigger	Canal			
	0	1	2	
0	DMAREQ	DMAREQ	DMAREQ	
1	TAOCCRO CCIFG	TAUCCRU CCIFG	TAOCCRO CCIFG	
2	TA0CCR2 CCIFG	TAOCCR2 CCIFG	TA0CCR2 CCIFG	
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG	
1	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG	
5	TA2CCR0 CCIFG	TA2CCR0 CCIFG	TA2CCR0 CCIFG	
6	TA2CCR2 CCIFG	TA2CCR2 CCIFG	TA2CCR2 CCIFG	
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG	
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG	

MSP430 - DMA - Fonte de Disparos

DMACTLx

Trigger	Canal		
1119901	0	1	2
16	UCAORXIFG	UCAORXIFG	UCA0RXIFG
17	UCAOTXIFG	UCAOTXIFG	UCA0TXIFG
18	UCBORXIFG	UCBORXIFG	UCB0RXIFG
19	UCBOTXIFG	UCB0TXIFG	UCB0TXIFG
20	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
21	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
22	UCB1RXIFG	UCB1RXIFG	UCB1RXIFG
23	UCB1TXIFG	UCB1TXIFG	UCB1TXIFG

MSP430 - DMA - Simples

- Precisa de um disparo para cada transferência.
- CPU entra em Hold por um curto período.

MSP430 - DMA - Bloco

- O primeiro disparo inicia a transferência.
- Só pára quando contador chegar a zero.

MSP430 - DMA - Fonte de Disparos

DMACTLx

Trigger	Canal		
mgg-	0	1	2
9	Reservado	Reservado	Reservado
10	Reservado	Reservado	Reservado
11	Reservado	Reservado	Reservado
12	Reservado	Reservado	Reservado
13	Reservado	Reservado	Reservado
14	Reservado	Reservado	Reservado
15	Reservado	Reservado	Reservado

MSP430 - DMA - Fonte de Disparos

DMACTLx

Trigger	Canal		
	0	1	2
24	ADC12IFGx	ADC12IFGx	ADC12IFGx
25	Reservado	Reservado	Reservado
26	Reservado	Reservado	Reservado
27	USB FNRXD	USB FNRXD	USB FNRXD
28	USB Ready	USB Ready	USB Ready
29	MPY Ready	MPY Ready	MPY Ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

