Study of the energy resolution and uncertainties of Germanium detectors

Hilario Capettini Croatto
João Ramos da Silva Tabuaço Freitas

Professor Alberto Garfagnini

Table of contents

- Introduction
- Peaks characterization
- Detector calibration
- Detector energy resolution
- Conclusions
- References

Introduction

Germanium detectors have wide fields of applications for gamma and X-ray spectrometry thanks to their excellent energy resolution.

Germanium detector [3]

Introduction

Peak characterization: Model

Given a set of counts {N_k} measured at the channels {x_k}, what is our best estimate of the peak position and peak width?

The model:

$$D_k = A \exp\left(-\frac{(x_k - x_0)^2}{2\omega^2}\right) + B$$

Peak characterization

Bayesian Inference

$$P(x_0, \omega, A, B|\{N_k\}, I) \propto P(\{N_k\}|x_0, \omega, A, B) \times P(x_0, \omega, A, B|I)$$

The likelihood:

The priors:

$$D_k = A \exp\left(-\frac{(x_k - x_0)^2}{2\omega^2}\right) + B$$

$$P(A, B|I) = \begin{cases} \text{constant} & \text{for } A \ge 0 \text{ and } B \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

$$P(N_k|x_0, \omega, A, B, I) = \frac{D_k^{N_k} e^{-D_k}}{N_k!}$$

$$P(x_0|I) = \begin{cases} \text{constant} & x_{0 \, min} \le x_0 \le x_{0 \, max}, \\ 0 & \text{otherwise} \end{cases}$$

$$P(\{N_k\}|x_0,\omega,A,B,I) = \prod_{k=0}^{M} P(N_k|x_0,\omega,A,B,I)$$

$$P(\omega|I) = \begin{cases} \text{constant} & 1 \le \omega \le \omega_{max}, \\ 0 & \text{otherwise} \end{cases}$$


```
model{
      #The likelihood:
     for (i in 1:length(x)){
     S[i] \leftarrow (A * exp((-(x[i]-x0)^2) / (2 *w^2)) + B)
     y[i] \sim dpois(S[i])
             # Priors for A, B, x0, w
             A \sim dunif(0,50000)
             B \sim dunif(0,50000)
             x0 \sim dunif(", x0.min, ", ", x0.max, ")
             w \sim dunif(1,20)",
```


ADC channel


```
chain_number <- 3</pre>
burnin <- 1000
iterations <- 1.e4
thining <- 10
jm <- jags.model(model,</pre>
                  pk,
                 inits=init,
                 n.chains=chain_number,
                 quiet=TRUE)
#Update the Markov chain (Burn-in)
update(jm, burnin)
chain <- coda.samples(jm, c("A", "B", "w", "x0"), n.iter=iterations,thin=thining)</pre>
```

Peaks characterization: Statistics

Chain progress

Autocorrelations

Correlations

¹³⁷Cs

Log(counts)

²⁴¹Am

ADC channel

FHWM	$\sigma_{\rm FHWM}$	95% CI	 x_o	σ_{x_o}	95% CI
3.763	0.024	[3.716, 3.810]	206.184	0.010	[206.164, 206.204]
4.583	0.023	[4.538, 4.628]	542.816	0.010	[542.796, 542.836]
4.938	0.046	[4.848, 5.028]	968.728	0.019	[968.691, 968.765]
5.267	0.051	[5.167, 5.367]	1102.446	0.020	[1102.407, 1102.485]
8.204	0.715	[6.803, 9.605]	 2106.612	0.217	[2106.187, 2107.037]

ADC channel

ADC channel

ADC channel

FHWM	$\sigma_{\rm FHWM}$	95% CI		x_o	σ_{x_o}	95% CI
1.0123	0.0007	[1.0109, 1.0137]		1503.164	0.003	[1503.158, 1503.170]
1.0312	0.0035	[1.0251, 1.0389]	_	1890.172	0.014	[1890.145, 1890.199]
1.5339	0.0033	[1.5274, 1.5404]		3216.230	0.013	$[3216.205,\ 3216.255]$
1.4706	0.0017	[1.4673, 1.4739]		3672.191	0.007	[3672.177, 3672.205]
					•••	

Maximum FHWM: 3.6910 ± 0.0233 in Thallium (6) Minimum FHWM: 1.0123 ± 0.0007 in Lead (1)

Detector calibration

Energy = a * channel + b

Element	Energies	$\overline{x_o}$		
$^{241}\mathrm{Am}$	59.5409	206.1838		
$^{137}\mathrm{Cs}$	661.6570	542.8155		
⁶⁰ Co (1)	1173.2280	968.7283		
⁶⁰ Co (2)	1332.4920	1102.4458		
60 Co (3)	2505.6900	2106.6115		

```
linear_fit <- lm(df_ACC$ACC_energies[1:5] ~ df_ACC$x0_mean[1:5] )
intercept <- summary(linear_fit)$coefficients[1,1]
std_intercept <- summary(linear_fit)$coefficients[1,2]
slope <- summary(linear_fit)$coefficients[2,1]
std_slope <- summary(linear_fit)$coefficients[2,2]</pre>
```

Detector calibration: DATA1

Slope: 1.26 ± 0.06 keV

y-intercept: -92 ± 72 keV

Detector calibration: DATA2

Slope: 0.15896 ± 0.00002 keV

y-intercept: -0.7 ± 0.2 keV

Energy resolution: Model

Given a set of measurements of peak widths {y_i} at energies {E_gamma_i}, what is our best estimate of w and w_e?

Generative model:

$$FWHM(E_{\gamma}) = \sqrt{8\ln(2)} F E_{\gamma} w + w_e^2$$

Noise model:

$$y = FWHM(E_{\gamma}) + \epsilon$$

$$\epsilon = y - FWHM(E_{\gamma})$$

Normal distribution with zero mean and standard deviation sigma

Energy resolution

Bayesian Inference

$$P(w, w_e, \sigma | \{y_i\}, I) \propto P(\{y_i\} | w, w_e, \sigma, I) \times P(w, w_e, \sigma | I)$$

The likelihood:

$$P(y_i|E_{\gamma i}, w, w_e) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y_i - FWHM(E_{\gamma i}))^2}{2\sigma^2}\right]$$

$$P(\{y_i\}|w, w_e, \sigma, I) = \prod_{i=1}^{M} P(y_i|w, w_e, \sigma, I)$$

The priors:

$$P(w, w_e, \sigma | I) = P(w | I) P(w_e | I) P(\sigma | I)$$

$$P(w|I) = \begin{cases} \text{constant} & 1.e - 3 \le \omega \le 1, \\ 0 & \text{otherwise} \end{cases}$$

$$P(w_e|I) = \begin{cases} \text{constant} & 0 \le \omega \le 5, \\ 0 & \text{otherwise} \end{cases}$$

$$P(\sigma|I) = Norm(0,1)$$


```
model{
    #The likelihood:
    F = 0.113 #Fano factor
    for (i in 1:length(x)){
        f[i] \leftarrow sqrt(4*2*log(2) * F *x[i] * w + we**2);
        y[i] \sim dnorm(f[i], sigma);
    # Priors for
        ~ dunif(1.e-3,1);
        ~ dunif(0,10);
    sigma \sim dnorm(0,1);
```



```
chain_number <- 10</pre>
burnin <- 1000
iterations <- 1.e4
thining <- 10
jm <- jags.model(model,</pre>
             data,
             inits=init,
             n.chains=chain_number,
             quiet=TRUE)
update(jm, burnin)
chain <- coda.samples(jm, c("w","we","sigma"), n.iter=iterations,thin=thining)</pre>
```

Energy resolution: DATA1

FWHM as a function of the energy

Energy resolution: DATA2

FWHM as a function of the energy

Conclusions

- Energy calibration for Dataset 1
- Energy resolution for Dataset 1
- Energy calibration for Dataset 2
- Energy resolution for Dataset 2

Thank you for your attention

References

[1] D. S. Sivia, J. Skilling. **Data Analysis a Bayesian Tutorial.**

[2] L.Baudis, G. Benato, P. Carconi, C. Cattadori, P. De Felice, K. Eberhardt, R. Eichler, A. Petrucci, M. Tarka and M. Walter Production and Characterization of 228Th Calibration Sources with Low Neutron Emission for GERDA

Journal of Instrumentation, volume 10, Issue 12, article id. P12005, 2015

[3] radiation dosimetry

[4] Nucleid.org