Course Code : CST 221 ITSJ/RW - 17/1308

Fourth Semester B. E. (Computer Science and Engineering) Examination

SYSTEMS PROGRAMMING

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) Questions One and Six have internal choices.
- (2) Due credit will be given to neatness.
- (3) Assume suitable data wherever required.
- 1. Solve any Two :—
 - (a) Construct a possible solution for the design of single pass assembler with the help of flowchart. 5 (CO 2)
 - (b) Illustrate following assembler directives with examples.
 - (i) DC
 - (ii) BALR

(iii) EQU 5 (CO 2)

- (c) What are different instruction formats used in IBM 360 assembly language programming? 5 (CO 1)
- 2. (a) Construct macro definitions INCR and DECR for implement and Decrement operations respectively. Write a macro definition SAMPLE using AIF for the following such that it must call
 - Macro INCR when count > 20 else
 - Macro DECR when count > 10

5 (CO 1, CO 2)

(b) Exemplify macro definition within macro. Is it feasible to have two pass macro processor that can handle macro definition within macro? Why? 5 (CO 2)

ITSJ/RW-17 / 1308 Contd.

3. (a) Assume that following programs are loaded at location 400 in order PROG and then SEGMT. Obtain ESD, TXT, RLD tables.

SEGMT	START	
	ENTRY	SEGMT2
	EXTRN	PROG2,PROG3
SEGMT1	DC	A(SEGMT1), A(PROG2+12)
SEGMT2	DC SEGMT1) END	A(SEGMT1 – SEGMT), A(PROG3 –
PROG	START	
	ENTRY	PROG2, PROG3
	EXTRN	SEGMT2, SEGMT
PROG1	DC	A(PROG2 + 4), A(SEGMT)
PROG2	DC	A(SEGMT2 + *), A(PROG3 - SEGMT2)
PROG3	DC END	A(PROG2 – PROG + SEGMT)
		5 (CO 2 CO 2)

5 (CO 2, CO 3)

- (b) Outline following terms:
 - (i) Binder and Module loader
 - (ii) Overlay structure.

5 (CO 3)

- 4. (a) Given the files exp.c and main.c, write a "Makefile" for the same. Also give command to :
 - (i) Compile this Makefile

(ii) Execute final executable

```
exp.c
```

```
#include<stdio.h>
  void myprog(void);
/*function definition*/
  void myprog(void)
  {
    printf("Body of
    myunc\n");}

main.c

#include<stdio.h>
    void myprog(void);
    int main()
      {
        printf("Hello, World.\n");
        myprog();
        fflush(stdout);
      }
      5 (CO 4)
```

- (b) How Source Code Control Systems are helpful while building a project? 5 (CO 4)
- 5. (a) Explain different types of UNIX device drivers. 5 (CO 1)
 - (b) Answer the following questions for a LINUX device driver:
 - (1) What is Major number and it's usage ?
 - (2) Can we have same major number for more than one device file ?
 - (3) What is minor number and it's usage ?
 - (4) What is range of major and minor numbers?

 5 (CO 2, CO 4)

6. Solve any Two :—

- (a) Draw a block diagram explaining syntax analysis and semantic analysis phases of a compiler. Explain each phase with examples. Also give some tools used by these phases while compiler construction.

 5 (CO 4)
- (b) How a simple calculator can be implemented using LEX and YACC scripts ? 5 (CO 4)
- (c) Optimize matrix after elimination of common sub expression.

$$Q = B + C - (P - A) - D * (C + B) / (P - A)$$
5 (CO 2)