Tema 3. Aplicaciones lineales

3.0. Contenido y documentación

- 3.0. Contenido y documentación
- 3.1. Aplicaciones lineales
 - 3.1.1. Subespacios núcleo e imagen
 - 3.1.2. Matriz de una aplicación lineal
- 3.2. Regla de la cadena
 - 3.2.1. Cambio de base
- 3.3. Espacio vectorial cociente

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/a59b4bc8-47c4-46a3-90f5-2b1e15b9ef82/H3 AplicacionesLineales.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/df225987-ac66-4155-9854-16ce3dc 112cc/H4 Cocientes.pdf

3.1. Aplicaciones lineales

Definición. Una aplicación $f:V\to W$ entre dos espacios vectoriales V y W definidos sobre el mismo cuerpo $\mathbb K$ se llama **lineal** si:

1.
$$f(v_1 + v_2) = f(v_1) + f(v_2), \forall v_1, v_2 \in V$$
.

2.
$$f(\lambda v) = \lambda f(v), \forall \lambda \in \mathbb{K}, \forall v \in V$$
.

Ejemplo 1. Sea $f:\mathbb{R}^2 o\mathbb{R}, f(x,y)=x^2$, ¿es lineal?

Sea
$$v=(7,1), \lambda=3$$
. $\begin{cases} f(\lambda v)=f(3(7,1))=f(21,3)=21^2=441 \\ \lambda f(v)=3\cdot f(7,1)=3\cdot 7^2=147 \end{cases} \Rightarrow f(\lambda v)
eq \lambda f(v), ext{ luego } f(x)=f(x)$

no es lineal.

Definición. Una aplicación lineal $f:V\to W$ se llama **isomorfismo** si f es biyectiva. Nota. En este caso $f^{-1}:W\to V$ también es lineal.

3.1.1. Subespacios núcleo e imagen

Definición. Si f:V o W es lineal:

1.
$$f^{-1}(\vec{0}) = \ker f = N(f)$$
, núcleo de f .

2. Im f = f(V), imagen de f.

Proposición. $\ker f$ e $\operatorname{Im} f$ son subespacios de V y W respectivamente.

Demostración.

a) $\ker f$

1.
$$f(\vec{0}) = \vec{0} \Rightarrow \vec{0} \in \ker f$$
.

$$2. \ v_1, v_2 \in \ker f \Rightarrow f(v_1) = \vec{0} \land f(v_2) = \vec{0} \Rightarrow f(v_1 + v_2) = f(v_1) + f(v_2) = \vec{0} + \vec{0} = \vec{0} \Rightarrow$$

$$v_1+v_2\in\ker f.$$
b) Im f 1. $f^{-1}(\operatorname{Im} f)=V\Rightarrow\operatorname{Im} f=f(V)\in W$

Ejemplo 2. Sea $f:\mathbb{K}^2 o M_{2 imes 2}(\mathbb{K}), f(a,b)=egin{pmatrix} a&b\\b&a \end{pmatrix}$, una aplicación lineal, determina $\ker f$ e $\operatorname{Im} f$.

$$\begin{aligned} &\operatorname{Sean} \, v_1 = (a_1,b_1), v_2 = (a_2,b_2). \\ & \left\{ f(v_1+v_2) = f(a_1+a_2,b_1+b_2) = \begin{pmatrix} a_1+a_2 & b_1+b_2 \\ b_1+b_2 & a_1+a_2 \end{pmatrix} \right. \\ & \left\{ f(v_1) + f(v_2) = \begin{pmatrix} a_1 & b_1 \\ b_1 & a_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ b_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_1+a_2 & b_1+b_2 \\ b_1+b_2 & a_1+a_2 \end{pmatrix} \right. \\ & \operatorname{ker} \, f = \left\{ (a,b) = f(a,b) = \begin{pmatrix} a & b \\ b & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}. \\ & \operatorname{Im} \, f = \left\{ f(a,b) : (a,b) \in \mathbb{K}^2 \right\} = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a,b \in \mathbb{K}^2 \right\}. \end{aligned}$$

Proposición. f es inyectiva $\Leftrightarrow \ker f = {\vec{0}}$.

Demostración.

$$\Rightarrow$$
 $)$ $v \in \ker f \Rightarrow egin{cases} f(v) = ec{0} \ f(ec{0}) = ec{0} \end{cases} \Rightarrow v = ec{0} \Rightarrow \ker f = \{ec{0}\}.$ $ext{ } \Leftarrow$ $)$ $f(v_1) = f(v_2) \Rightarrow f(v_1) - f(v_2) = ec{0} \Rightarrow f(v_1 - v_2) = ec{0} \Rightarrow v_1 - v_2 \in \ker f = \{ec{0}\} \Rightarrow v_1 - v_2 \in ec{0} \Rightarrow v_1 = v_2. \ \Box$

Proposición. Sea f:V o W una aplicación lineal. Entonces $\dim V=\dim(\ker f)+\dim(\operatorname{Im} f)$.

Demostración.

Sea $\{v_1,...,v_r\}$ una base de $\ker f$. Sea $\{v_1,...,v_r,v_{r+1},...,v_n\}$ una base de V. Basta probar que $f(v_{r+1}),...,f(v_n)$ es una base de $\operatorname{Im} f.w \in \operatorname{Im} f \Rightarrow w = f(v), v \in V \Rightarrow w = f(v), v = \lambda_1 v_1 + \ldots + \lambda_r + v_r + \lambda_{r+1} v_{r+1} + \ldots + \lambda_n v_n \Rightarrow w = f(\lambda_1 v_1 + \ldots + \lambda_r + v_r + \lambda_{r+1} v_{r+1} + \ldots + \lambda_n v_n) = \lambda_{r+1} f(v_{r+1}) + \ldots + \lambda_n f(v_n) \Rightarrow \text{ son generadores}.$ $a_{r+1} f(v_{r+1}) + \ldots + a_n f(v_n) = \vec{0} \Rightarrow f(a_{r+1} v_{r+1} + \ldots + a_n v_n) = \vec{0} \Rightarrow a_{r+1} v_{r+1} + \ldots + a_n v_n \in \ker f = \langle v_1, \ldots, v_r \rangle \Rightarrow a_{r+1} v_{r+1} + \ldots + a_n v_n = a_1 v_1 + \ldots + a_r v_r, a_i \in \mathbb{K} \Rightarrow a_1 = \ldots = a_r = a_{r+1} = \ldots = a_n = 0 \Rightarrow \text{ son linealmente independientes. } \square$

Observaciones. Sea $f:V \to W$ un isomorfismo. Entonces:

- 1. $\{v_1,...,v_n\}$ son generadores de $V\Rightarrow \{f(v_1),...,f(v_n)\}$ son generadores de W.
- 2. $\{v_1,...,v_n\}$ son linealmente independientes en $V\Rightarrow\{f(v_1),...,f(v_n)\}$ son linealmente independientes.
- 3. $\{v_1,...,v_n\}$ son base de $V\Rightarrow \{f(v_1),...,f(v_n)\}$ son base de W. En particular, $\dim V=\dim W$.
- 4. $V\cong W$ (existe un isomorfismo entre ellos) $\Leftrightarrow \dim V = \dim W$.

Demostración.

1. Sea
$$w\in W\Rightarrow \exists v\in V: f(v)=w$$
. Pero $v=\sum\limits_{i=1}^n\lambda_iv_i\Rightarrow w=f(v)=\sum\limits_{i=1}^n\lambda_if(v_i)$. \Box

 $4. \Rightarrow$) Vista.

 \Leftarrow) Sean $\{v_1,...,v_n\},\{w_1,...,w_n\}$ bases de V y W respectivamente. Entonces, defino f:V o W como $f(v_i)=w_i$. Como $v=\sum\limits_{i=1}^n\lambda_iv_i\Rightarrow f(v)=\sum\limits_{i=1}^n\lambda_if(v_i)=\sum\limits_{i=1}^n\lambda_iw_i$. \square

Ejemplo 3. Sea
$$\mathrm{P}_n(\mathbb{K}) = \mathbb{K}[x]_{\leq n} \xrightarrow{f} \mathbb{K}^{n+1}$$
, tal que $a_0 + a_1x + ... + a_nx^n \xrightarrow{f} (a_0, a_1, ..., a_n)$ y $a_0 + a_1x + ... + a_nx^n \xleftarrow{f} (a_0, a_1, ..., a_n)$.

Ejemplo 4. ¿Es $B=\{v_1=1+4x+x^3,v_2=4+x^2,v_3=6x,v_4=6\}$ base de $P_3(\mathbb{K})$?¿Cuáles son las coordenadas de $v=1+x+x^2+x^3$ respecto de B?

Por lo anterior, $\{v_1, v_2, v_3, v_4\}$ es base de $P_3(\mathbb{K}) \Leftrightarrow \{\varphi_B(v_1), \varphi_B(v_2), \varphi_B(v_3), \varphi_B(v_4)\}$ es base de \mathbb{K}^4 .

Tenemos que ver que
$$\begin{cases} \varphi_B(v_1) = (1,4,0,1) \\ \varphi_B(v_2) = (4,0,1,0) \\ \varphi_B(v_3) = (0,6,0,0) \\ \varphi_B(v_4) = (6,0,0,0) \end{cases} \text{ es una base de } \mathbb{K}^4. \begin{pmatrix} 1 & 4 & 0 & 1 & | & 1 \\ 4 & 0 & 1 & 0 & | & 1 \\ 0 & 6 & 0 & 0 & | & 1 \\ 6 & 0 & 0 & 0 & | & 1 \\ 6 & 0 & 0 & 0 & | & 1 \end{pmatrix} \Rightarrow B \text{ sí es una base y } \operatorname{coord}_B(v) = (1,1-\frac{1}{2},-\frac{2}{3}).$$

3.1.2. Matriz de una aplicación lineal

Proposición. Sea
$$A=egin{pmatrix} a_{11}&\ldots&a_{1n}\ dots&\ddots&dots\ a_{m1}&\ldots&a_{mn} \end{pmatrix}\in\mathbb{M}_{m imes n}(\mathbb{K})$$
, entonces, $arphi_A:$ $\mathbb{K}^n o\mathbb{K}^m$, $arphi_A(X)=AX$, donde $X=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}$, también es lineal.

Definición. Sea $f:V^n\to W^m$ lineal. Sean $B=\{v_1,...,v_n\}$ y $B'=\{w_1,...,w_m\}$ bases ordenadas de V y W respectivamente. Entonces la matriz de f respecto a las bases B y B' es la matriz

$$M_{BB'}(f)=egin{pmatrix} a_{11}&\ldots&a_{1n}\ dots&\ddots&dots\ a_{m1}&\ldots&a_{mn} \end{pmatrix}$$
 , que representa las coordenadas de $f(v_1),...,f(v_n)$ respecto de B'

Esta matriz determina f porque si $v \in V$ tiene coordenadas $(\lambda_1,...,\lambda_n)$ respecto de B, entonces f(v)

tiene coordenadas
$$M_{BB'}(f)egin{pmatrix} \lambda_1 \ dots \ \lambda_n \end{pmatrix}$$
 respecto de B' .

Comprobación.

$$v = \lambda_1 v_1 + ... + \lambda_n v_n \Rightarrow f(v) = \lambda_1 f(v_1) + ... + \lambda_n f(v_n) = \lambda_1 (a_{11} w_1 + ... + a_{m1} w_m) + ... + \lambda_n (a_{m1} w_1 + ... + a_{mn} w_m) = w_1 (a_{11} \lambda_1 + ... + a_{1n} \lambda_n) + ... + w_m (a_{m1} \lambda_1 + ... + a_{mn} \lambda_n)$$
. \square

Ejemplo 5. Sea $f: \mathbb{M}_{2 \times 2} o P_2 = \mathbb{K}[X]_{\leq 2}, f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b)x^2 + (c+d)x.$ Sean B la base canónica de $\mathbb{M}_{2 \times 2}$ y el conjunto de matrices $\left\{E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$ $M_{BB'}(f) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$ Luego, $f(E_1) = x^2, f(E_2) = -x^2, f(E_3) = x, f(E_4) = x.$

3.2. Regla de la cadena

Sean E,F,G espacios vectoriales sobre \mathbb{K} ; $B=\{v_1,...,v_n\}, B'=\{v_1',...,v_m'\}$ y $B''=\{v_1'',...,v_d''\}$ bases de E,F,G respectivamente; y $f:E\to F,g:F\to G$ aplicaciones lineales, de forma que $f\circ g:E\to G$ también lo sea. Entonces, $M_{BB''}(f\circ g)=M_{B'B''}(g)\cdot M_{BB'}(f)$.

Ejemplo 6. Sea
$$f: \mathbb{M}_{2 \times 2} \to \mathbb{P}_2$$
, con $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b)x^2 + (c+d)x$; $C_1 = \text{canónica}$, $C_2 = \{1,x,x^2\}$, $B_1 = \left\{v_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, v_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right\}$, $B_2 = \{1+x^2,3x+x^2,5\}$. Calcula la matriz de f .
$$f(v_1) = f \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = x^2 = (1+x^2) - \frac{1}{5}(5).$$

$$f(v_2) = f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = 0.$$

$$f(v_3) = f \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = x = -\frac{1}{3}(1+x^2) + \frac{1}{3}(3x+x^2) + \frac{1}{15}(5).$$

$$f(v_4) = f \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 2x = 2\left(\frac{1}{3}(3x+x^2) - \frac{1}{3}(1+x^2) + \frac{1}{15}(5)\right).$$
 Luego, $M_{B_1B_2}(f) = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & 0 & \frac{1}{15} & \frac{2}{15} \end{pmatrix}.$

3.2.1. Cambio de base

Definición. Llamamos **matriz de cambio de base** a aquella que nos permite tranformar las coordenadas de un vector v en la base B_1 en las coordenadas de v respecto a la base B_2 .

Sea
$$id_V: V o V$$
 , $f: V o W$, $id_W: W o W$. Entonces, $M_{B_1B_2}(f) = M_{B_1B_2}(id_V \cdot f \cdot id_W) = M_{C_2B_2} \cdot M_{C_1C_2}(f) \cdot M_{B_1C_1} \Rightarrow M_{B_1B_2}(f) = M_{B_2C_2}^{-1} \cdot M_{C_1C_2}(f) \cdot M_{B_1C_1}.$

Ejemplo 8.

$$M_{B_1C_1} = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 \end{pmatrix}$$
 , $M_{C_2B_2} = M_{B_2C_2}^{-1} = egin{pmatrix} 1 & 0 & 5 \ 0 & 3 & 0 \ 1 & 1 & 0 \end{pmatrix}^{-1} = egin{pmatrix} 0 & -rac{1}{3} & 1 \ 0 & rac{1}{3} & 0 \ rac{1}{5} & rac{1}{15} & -rac{1}{5} \end{pmatrix}$.

Luego, $M_{B_1B_2}(f) = M_{B_2C_2}^{-1} \cdot M_{C_1C_2}(f) \cdot M_{B_1C_1} =$

$$\begin{pmatrix} 0 & -\frac{1}{3} & 1 \\ 0 & \frac{1}{3} & 0 \\ \frac{1}{5} & \frac{1}{15} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & 0 & \frac{1}{15} & \frac{2}{15} \end{pmatrix}.$$

La matriz $M_{B_1C_1}$ transforma las coordenadas de v en B_1 en las coordenadas de v respecto a C_1 , es la matriz de cambio de base.

3.3. Espacio vectorial cociente

Sea E un espacio vectorial sobre \mathbb{K} y $F\subset E$ un subespacio, en E se define la siguiente relación: $v_1\sim v_2\Leftrightarrow v_2-v_1\in F$. Dicha relación cumple las siguientes propiedades:

- 1. Reflexiva. $v-v=\vec{0}\in F\Rightarrow v\sim v.$
- 2. Simétrica. $v_1 \sim v_2 \Rightarrow v_2 v_1 \in F \Rightarrow v_1 v_2 \in F \Rightarrow v_2 \sim v_1$.
- 3. Transitiva. $v_1 \sim v_2 \wedge v_2 \sim v_3 \Rightarrow v_2 v_1, v_3 v_2 \in F \Rightarrow (v_2 v_1) + (v_3 v_2) = v_3 v_1 \in F \Rightarrow v_1 \sim v_3$.

Es decir, \sim es una relación equivalencia, por lo que existe un conjunto cociente, $^E/_\sim=^E/_f$, formado por clases, [v], de forma que $w\in [v]\Leftrightarrow w\sim v\Leftrightarrow w-v=u\in F\Leftrightarrow w=v+u, u\in F.$

Proposición. Con las operaciones $[v_1]+[v_2]=[v_1+v_2]$ y $\lambda[v]=[\lambda v]$, con $v\in E, \lambda\in \mathbb{K},\ ^E/_F$ es un espacio vectorial sobre $\mathbb{K}.$

Nota. La comprobación de las 8 propiedades del espacio vectorial es trivial, aunque es importante considerar que la operaciones + y \cdot están bien definidas.

Ejemplo 9. En \mathbb{R}^2 , $v_1 \sim v_2 \Leftrightarrow v_2 - v_1 \in \mathbb{Q}^2$ es una relación de equivalencia en \mathbb{R}^2 . Sin embargo, $\sqrt{2}([(0,0)]) = [(0,0)]$, mientras que $\sqrt{2}([(1,1)]) = [(\sqrt{2},\sqrt{2})]$, de forma que $[(0,0)] \neq [(\sqrt{2},\sqrt{2})]$. Por lo que $\mathbb{R}^2/\mathbb{Q}^2$ no es un espacio vectorial.

Demostración.

$$egin{aligned} +) egin{cases} [v_1] &= [v_1'], v_1, v_1' \in E \ [v_2] &= [v_2'], v_2, v_2' \in E \end{cases} \Rightarrow egin{cases} v_1' - v_1 \in F \ v_2' - v_2 \in F \end{cases} \Rightarrow (v_1' + v_2') - (v_1 + v_2) \in F \Rightarrow [v_1' + v_2'] = [v_1 + v_2]. \ \cdot) \ \lambda \in \mathbb{K}, v_1' - v_1 \in F \Rightarrow \lambda v_1' - \lambda v_1 \in F \Rightarrow [\lambda v_1'] = [\lambda v_1]. \ \Box \end{cases}$$

Proposición. $\dim(^E/_F) = \dim E - \dim F$.

Demostración.

Sea $\{v_1,...,v_r\}$ una base de F y $\{v_1,...,v_r,v_{r+1},...,v_n\}$ una base de E. Afirmamos que $\{[v_1],...,[v_n]\}$ es una base de E/F. - Generadores. Sea $[v] \in E/F$ arbitrario, sabemo que $v = \lambda_1 v_1 + ... + \lambda_r v_r + \lambda_{r+1} v_{r+1} + ... + \lambda_n v_n$, con $\lambda_i \in \mathbb{K}$, $\Rightarrow [v] = [\lambda_1 v_1 + ... + \lambda_r v_r + \lambda_{r+1} v_{r+1} + ... + \lambda_n v_n] = \lambda_1 [v_1] + ... + \lambda_r [v_r] + \lambda_{r+1} [v_{r+1}] + ... + \lambda_n [v_n] = \lambda_{r+1} [v_{r+1}] + ... + \lambda_n [v_n]$, ya que $[v_1] = ... = [v_r] = [\vec{0}]$. - Independientes. Sea $\mu_{r+1}[v_{r+1}] + ... + \mu_n [v_n] = [\vec{0}]$, con $\mu_i \in \mathbb{K}$, $\Rightarrow [\mu_{r+1} v_{r+1} + ... + \mu_n v_n] = [\vec{0}]$

 $ec{[0]}\Rightarrow \mu_{r+1}v_{r+1}+...+\mu_nv_n=\mu_1v_1+...+\mu_rv_r=0$. \square

Para encontrar una base de $^E/_F$:

- 1. Se escribe una base de F, $\{v_1,...,v_r\}$.
- 2. Se amplia a una base de $E, \{v_1, ..., v_r, v_{r+1}, ..., v_n\}$.
- 3. $\{[v_{r+1}],...,[v_n]\}$ es una base de $^E/_F$.

Ejemplo 10. Sea $V=\mathbb{Q}^3$ un espacio vectorial sobre \mathbb{Q} . $F=\langle v_1=(1,1,0),v_2=(1,0,0)\rangle$, $\dim V=3$ y $\dim F=2$, luego $\dim(^V/_F)=1$.

Una base de V es $\{v_1,v_2,v_3=(0,0,1)\}$, que es una base de \mathbb{Q}^3 . Luego, $\{[v_3]\}$ es una base de $V/_F$.

Si $v=(1,0,1)\in ^V/_F$, entonces $[(1,0,1)]=\lambda[(0,0,1)]=[(0,0,\lambda)]$. Escribimos $v=(1,0,1)=v_2+v_3\Rightarrow [v]=[v_2]+[v_3]=[v_3]$, luego [(1,0,1)]=[(0,0,1)].

Teorema de isomorfía. Sea f:V o W lineal entre espacios vectoriales. Entonces, $\bar f:^V/_{\ker f} o \mathrm{Im} f$, definida como $v+\ker f=[v] o \bar f([v])=f(v)$, es lineal, de hecho, es un isomorfismo.

Demostración.

Comprobamos que \bar{f} está bien definida: $(\bar{f}[v_1]+[v_2])=\bar{f}([v_1]+[v_2])=f(v_1)+f(v_2)$. Supongamos que $v_1,v_2\in V$ tales que $[v_1]=[v_2]\Rightarrow v_1-v_2\in \ker f\Rightarrow \vec{0}=f(v_1-v_2)=f(v_1)-f(v_2)\Rightarrow f(v_1)=f(v_2)$. Claramente, \bar{f} es sobreyectiva, pues $\forall f(v)\in \mathrm{Im} f\Rightarrow f(v)=\bar{f}([v])$. Además, $\ker \bar{f}=\{[v]\in V_{\ker f}:\bar{f}([v])=f(v)=\vec{0}\}=\{[v]\in V_{\ker f}:v\in \ker f\}=\{[\vec{0}]\}$, lo que implica que \bar{f} es inyectiva. Luego, \bar{f} es un isomorfismo. \Box

Ejemplo 11. Sea
$$f: \mathbb{M}_{2 \times 3} \to \mathbb{P}_2[x]$$
, tal que $f \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} = (a+b) + (c+c')x + (a'+b')x^2$. $N(f) = \ker f = \{A = \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}: f(A) = (a+b) + (c+c')x + (a'+b')x^2 = 0\} = \{A = \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix}: b = -a, c' = -c, b' = -a\}, \dim N(f) = 3$. Base de $N(f) = \{A_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix}\}$. Además, $\forall A \in N(f) \Rightarrow A = \begin{pmatrix} a & -a & c \\ a' & -a' & -c \end{pmatrix} = aA_1 + a'A_2 + cA_3$. Luego, son generadores.