Spectrum of a Compact Operator

Jet-up.

Fredholm Theorem

Spectrum of compact operator

Bounds on th spectrum of a symmetric operator

References

Spectrum of a Compact Operator

William Chuang

March 15, 2018

Overview

Spectrum of a Compact Operator

> William Chuang

Set-u

Spectrum of

Spectrum of a compact operator

spectrum of a symmetric operator

References

- 1 Set-up.
- 2 Fredholm Theorem
- 3 Spectrum of a compact operator
- 4 Bounds on the spectrum of a symmetric operator
- 6 References

Notations

Spectrum of a Compact Operator

Set-up.

Theorem

Spectrum of a compact operator

Bounds on the spectrum of a symmetric operator

References

H represents Hilbert space.

 Λ is for bounded linear operators in H.

A stands for linear operator in \mathbb{R}^n .

- (,) inner products in Hilbert space H.
- \doteq means equal by definition.
- := means the left had side is defined as right hand side.

Definitions.

Spectrum of a Compact Operator

> William Chuang

Set-up.

Theorem

Spectrum of a compact operator

Bounds on the spectrum of a symmetric

References

- Λ is symmetric if $(\Lambda x, y) = (x, \Lambda y)$, for all $x, y \in H$, so Λ is self-adjoint
- The resolvent set of Λ , denoted as $\rho(\Lambda)$, is the set of numbers $\eta \in \mathbb{R}$ such that $\eta I \Lambda$ is a bijection¹
- The complement of the resolvent set: $\sigma(\Lambda) \doteq \mathbb{R} \backslash \rho(\Lambda)$ is called the **spectrum**.
- The **point spectrum** of Λ , denoted as $\sigma_p(\Lambda)$, is the set of numbers $\eta \in \mathbb{R}$ such that $\eta I \Lambda$ is not injective. In other words, If there exists a nonzero vector $w \in H$ such that

$$\Lambda w = \eta w$$

then $\eta \in \sigma_p(\Lambda)$ where η is an eigenvalue of Λ , and w is and associated **eigenvector**.

• The **essential spectrum** of Λ , denoted as $\sigma_e(\Lambda) = \sigma(\Lambda) \setminus \sigma_p(\Lambda)$, is the set of numbers $\eta \in \mathbb{R}$ such that $(\eta I - \Lambda)$ is injective, not surjective.

Bounds on the spectrum of a symmetric operator

Reference

The chapter 6 is initiated from classical linear algebra. For a linear operator $A: \mathbb{R}^n \mapsto \mathbb{R}^n$ in a finite-dimentional space, there are two results are what we would like to generalize to infinite-dimensional Hilbert space H:

- A is one-to-one if and only if A is onto, since $\dim(Ker(A)) = (Range(A))^{\perp}$.
- If A is symmetric, then its eigenvalues are real, and the space \mathbb{R}^n

The first result is still valid for operators with the form:

$$\Lambda = I - K$$

where I is the identity, and K is a compact operator. The second statement can be extended to any compact, and self-adjoint operator $\Lambda: H \mapsto H$.

Fredholm Theorem.

Spectrum of a Compact Operator

> William Chuang

Set-L

Fredholm Theorem

Spectrum of a compact operator

Bounds on th spectrum of a symmetric operator

References

Let H be a Hilbert space over the reals and let $K: H \mapsto H$ be a compact linear operator. Then

- KerI K is finitie-dimensional
- Range(I K) is closed
- Range(I K)=Ker $(I K^*)^{\perp}$
- $Ker(I K) = \{0\} \Leftrightarrow Range(I K) = H$
- Ker(I K) and $Ker(I K^*)$ have the same direction

This theorem tells us whether a linear equation:

$$u - Ku = f$$

has solutions, and if so, whether those solutions are unique.

Tow cases

Spectrum of a Compact Operator

> William Chuang

Set-up.

Fredholm Theorem

Spectrum of a compact operator

Bounds on the spectrum of a symmetric operator

References

- Case 1: $Ker(I K) = \{0\}$. The operator I K is one-to-one and onto. For every $f \in H$ the above linear equation has a unique solution.
- Case 2: $\operatorname{Ker}(I-K) \neq \{0\}$ Hence the homogeneous equation u-Ku=0 has a nontrivial solution. The above linear equation has solutions, if and only if $f \in \operatorname{Ker}(I-K^*)^{\perp}$. That is, if and only it, (f,u)=0, $\forall u \in H$ such that $u-K^*$.

Spectrum of a compact operator

Spectrum of a Compact Operator

> William Chuang

Set-u

Fredholn Theorem

Spectrum of a compact operator

Bounds on th spectrum of a symmetric operator

References

Theorem

Let H be an infinite-dimensional Hilbert space, and let $K: H \mapsto H$ be a compact linear operator.

Then

- $0 \in \sigma(K)$
- Either $\sigma_p(K)$ is finite, or else $\sigma_p(K) = \{\lambda_k : k \ge 1\}$, where the eigenvalues satisfy $\lim_{k \to \infty} \lambda_k = 0$

Bounds on the spectrum of a symmetric operator

Spectrum of a Compact Operator

> William Chuang

Set-u

Fredholn Theorem

Spectrum of a compact operator

Bounds on the spectrum of a symmetric operator

References

Lemma

Let $\Lambda: H \mapsto H$ be a bounded linear selfadjoint operator on a real Hilbert space H. Define the upper and lower bounds

$$m \doteq \inf_{u \in H, \|u\| = 1} (\Lambda u, u), \ M \doteq \sup_{u \in H, \|u\| = 1} (\Lambda u, u).$$
 (1)

Then

- The spectrum $\sigma(\Lambda)$ is contained in the interval [m, M]
- $m, M \in \sigma(\Lambda)$
- $\|\Lambda\| = \max\{-m, M\}$

References

Spectrum of a Compact Operator

Chuan

Set-u

Spectrum of

Spectrum of a compact operator

Bounds on th spectrum of a symmetric operator

References

- [1] Alberto Bressan (2013), "Lecture Notes on Functional Analysis—with Applications to Linear Partial Differential Equations." American Mathematical Society.
- [2] Anatole Katok (2011), "Spaces: From Analysis to Geometry and Back." Lecture Notes from MASS 2011 course in Analysis.

Spectrum of a Compact Operator

Set-up.

Fredholm Theorem

Spectrum of compact operator

Bounds on the spectrum of a symmetric operator

References

Thank you!