M3P11 Galois Theory

Lectured by Prof Alessio Corti Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	What is Galois theory?	3
1	Elementary facts	g
2	Axiomatics	11

0 What is Galois theory?

The following are references.

- E Artin, Galois theory, 1994
- A Grothendieck and M Raynaud, Revêtements étales et groupe fondamental, 2002
- I N Herstein, Topics in algebra, 1975
- M Reid, Galois theory, 2014

Notation. If K is a field, or a ring, I denote

$$K[x] = \{a_0 + \dots + a_n x^n \mid a_i \in K\},\$$

the ring of polynomials with coefficients in K.

Example.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Quadratic fields

$$\mathbb{Q}\left(\sqrt{2}\right) = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\right\} = \frac{\mathbb{Q}\left[x\right]}{\langle x^2 - 2\rangle}.$$

It is also a field, since

$$\frac{1}{\left(a+b\sqrt{2}\right)} = \frac{a-b\sqrt{2}}{a^2-2b^2}.$$

- If p is prime, $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ is a finite field. If $f(x) \in K[x]$ is irreducible, $K[x]/\langle f(x)\rangle$ is a field. For example, $x^2 2$. Both \mathbb{Z} and K[x] have a division algorithm. For example, let $[a] \in \mathbb{Z}/p\mathbb{Z}$ and $[a] \neq 0$, that is $p \mid a$. Since p is prime, $\gcd(p, a) = 1$, so there exist $x, y \in \mathbb{Z}$ such that ax + py = 1. Thus $[a] \cdot [x] = 1$ in $\mathbb{Z}/p\mathbb{Z}$.
- For K a field, either for all $m \in \mathbb{Z}$, $m \neq 0$ in K, so K has characteristic ch(K) = 0, or there exists p prime such that m = 0 if and only if $p \mid m$, so K has characteristic ch(K) = p.
- For K a field,

$$K\left(x\right) = Frac\left(K\left[x\right]\right) = \left\{\phi\left(x\right) = \frac{f\left(x\right)}{g\left(x\right)} \mid f, g \in K\left[x\right], \ g \neq 0\right\}.$$

is also a field, the field of rational functions with coefficients in K. For example, $\mathbb{F}_p(x, Y) = \mathbb{F}_p(x)(Y)$.

Example. Consider algebraic equations in a field K.

• Let $ax^2 + bx^2 + c = 0$ for $a, b, c \in K$ be a quadratic. There is a formula

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

• For a cubic $y^3 + 3py + 2q = 0$,

$$y = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}.$$

- There is a formula for quartic equations.
- It is a theorem that there can be no such formula for equations of degree at least five.

Galois theory deals with these easily.

Lecture 2 Friday 11/01/19

Lecture 1

Thursday 10/01/19

M3P11 Galois Theory Spring 2019

Definition 0.1. A field homomorphism is a function $\phi: K_1 \to K_2$ that preserves the field operations, for all $a, b \in K_1$,

$$\phi(a+b) = \phi(a) + \phi(b),$$

$$\phi(ab) = \phi(a) \phi(b),$$

and $\phi(0_{K_1}) = 0_{K_2}$ and $\phi(1_{K_1}) = 1_{K_2}$.

Remark. All field homomorphisms are injective. If $a \in K_1 \setminus \{0\}$, then there exists $b \in K_1$ such that ab = 1, then $\phi(a) \phi(b) = 1$, so $\phi(a) \neq 0$. This easily implies ϕ is injective. If $a_1 \neq a_2$, then $a_1 - a_n \neq 0$, so $0 \neq \phi(a_1 - a_2) = \phi(a_1) - \phi(a_2)$. Then $\phi(a_1) \neq \phi(a_2)$.

We concern ourselves with field extensions $k \subset K$, and every homomorphism is an extension. Consider a field extension $k \subset K$ and $\alpha \in K$. Then $k(\alpha) \subset K$ denotes the smallest subfield of K that contains k, α . Not to be confused with k(x).

Example. There are two very different cases exemplified in $\mathbb{Q} \subset \mathbb{C}$.

- $\alpha = \sqrt{2}, \mathbb{Q}(\sqrt{2}).$
- $\alpha = \pi$, $\mathbb{Q}(\pi)$.

Definition 0.2.

- α is algebraic over k if $f(\alpha) = 0$ for some $0 \neq f \in k[x]$. Otherwise we say that α is **transcendental** over k.
- The extension $k \subset K$ is algebraic if for all $\alpha \in K$, α is algebraic over k.

Definition 0.3. Consider a field k and $f \in k[x]$. We say that $k \subset K$ is a splitting field for f if

- $f(x) = a \prod_{i=1}^{n} (x \lambda_i) \in K[x]$ for $a \in k \setminus \{0\}$, and
- $K = k(\lambda_1, \ldots, \lambda_n)$.

Example.

• If $f(x) = x^2 - 2 \in \mathbb{Q}[x]$, then $K = \mathbb{Q}(\sqrt{2})$ is a splitting field for f. Indeed

$$x^{2}-2=\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)\in\mathbb{Q}\left(\sqrt{2}\right)\left[x\right].$$

- If $f(x) = x^2 + 2$, then $K = \mathbb{Q}(\sqrt{-2})$.
- If $f(x) = x^3 2$, then

$$\mathbb{Q}\left(\sqrt[3]{2}\right) = \left\{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\right\}$$

is not a splitting field. $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = \frac{-1+\sqrt{3}}{2}$, is a splitting field.

$$x^{3} - 2 = (x - \sqrt[3]{2})(x - \omega\sqrt[3]{2})(x - \omega^{2}\sqrt[3]{2}).$$

Theorem 0.4 (Fundamental theorem of Galois theory). Assume characteristic zero. Let $k \subset K$ be the splitting field of $f(x) \in k[x]$. Let

$$G = \{\sigma : K \to K \mid \sigma \text{ field automorphism}, \ \sigma \mid_k = id_k \}.$$

We call this group the Galois group. There is a one-to-one correspondence

$$\begin{array}{ccc} \{k \subset K_1 \subset K \mid K_1 \ subfield\} & \leftrightarrow & \{H \leq G \mid H \ subgroup\} \\ & K_1 & \mapsto & \{\sigma \in G \mid \forall \lambda \in K_1, \ \sigma\left(\lambda\right) = \lambda\} \\ \{\lambda \in K \mid \forall \sigma \in H, \ \sigma\left(\lambda\right) = \lambda\} & \leftrightarrow & H \leq G. \end{array}$$

Why is this cool? Fields are hard, groups are easy. We will see that there is a good formula for the roots of f(x) if and only if G is a soluble group.

Lecture 3 Tuesday 15/01/19

Example. Let $\deg(f) = 2$ and $f(x) = x^2 + 2Ax + B \in K[x]$. If K already contains the roots then L = K and $G = \{id\}$. Suppose K does not contain the roots. We still have quadratic formula

$$\lambda_{1,2} = -A \pm \sqrt{A^2 - B}.$$

If $\Delta = A^2 - B$ then $\sqrt{\Delta}$ does not exist in K. We must have

$$L = K\left(\sqrt{\Delta}\right) = \left\{a + b\sqrt{\Delta} \mid a, b \in K\right\}.$$

Then $K \subset L$ and

$$G = \{ \sigma : L \to L \mid \sigma \mid_K = id_K \} = C_2$$

is generated by

$$\sigma: a + b\sqrt{\Delta} \mapsto a - b\sqrt{\Delta}.$$

Further specialisation is the following.

• Let $K = \mathbb{R}$ and $\Delta = -1$. Then

$$L = \mathbb{C} = \left\{ a + b\sqrt{-1} \mid a, b \in \mathbb{R} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a+b\sqrt{-1} \mapsto a-b\sqrt{-1},$$

complex conjugation.

• Let $K = \mathbb{Q}$ and $\Delta = 2$. Then

$$L = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

The fundamental theorem implies there does not exist

$$K \subsetneq K_1 \subsetneq K\left(\sqrt{\Delta}\right) = L.$$

Is this obvious? Consider $x \in L \setminus K$, so $x = a + b\sqrt{\Delta}$, and $b \neq 0$, and then

$$\sqrt{\Delta} = \frac{x - a}{b},$$

so K(x) = L.

Example. Let $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ and $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = \frac{-1 + i\sqrt{3}}{2}$ is a solution of $x^2 + x + 1 = 0$. Then

$$\mathbb{Q}\left(\omega\right)=\mathbb{Q}\left(\sqrt{-3}\right),\qquad \mathbb{Q}\left(\sqrt[3]{2}\right)=\left\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\mid a,b,c\in\mathbb{Q}\right\}.$$

Remark. For any splitting field of f, there is always a natural inclusion group homomorphism

$$\rho: G \hookrightarrow S(\lambda_1, \ldots, \lambda_n)$$
,

where $S(\lambda_1, \ldots, \lambda_n)$ is the group of permutations of the roots of $f = x^n + a_1 x^{n-1} + \cdots + a_n$.

• If $\sigma \in G$, $f(\lambda) = 0$, so $\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0$.

$$0 = \sigma(0) = \sigma(\lambda^n + a_1\lambda^{n-1} + \dots + a_n) = \sigma(\lambda)^n + a_1\sigma(\lambda)^{n-1} + \dots + a_n.$$

• ρ is injective. If for all i, $\sigma(\lambda_i) = \lambda_i$, then $\sigma = id$ on $K(\lambda_1, \ldots, \lambda_n) = L$.

The fundamental theorem and remark gives $G = \mathfrak{S}_3$.

Lecture 4 Thursday 17/01/19

Definition 0.5. $K \subset L$ is **finite** if L is finite-dimensional as a vector space over K. The **degree** of L over K is $[L:K] = \dim_K(L)$.

Two things about this.

Theorem 0.6 (Tower law). Let $K \subset L \subset F$. Then [F:K] = [F:L][L:K].

Theorem 0.7. Suppose $f(x) \in K[x]$ is irreducible of degree $d = \deg(f)$ and $L = K(\lambda)$ where $f(\lambda) = 0$, then $[K(\lambda) : K] = d$.

Example.

$$K = \mathbb{Q}\left(\sqrt[3]{2}\right) = \left\{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\right\}$$

is a field, and $[K:\mathbb{Q}]=3$.

Example. Let $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$ be the splitting field of $x^3 - 2$ over \mathbb{Q} . The lattice of subfields is

Then

$$\mathbb{Q}\left(\sqrt[3]{2}+\omega\right)=L,\qquad \mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)\cap\mathbb{Q}\left(\omega\sqrt[3]{2}\right)=\mathbb{Q},\qquad \mathbb{Q}\left(\sqrt[3]{2},\omega\sqrt[3]{2}\right)=L.$$

(Exercise) What is $[L:\mathbb{Q}(\sqrt[3]{2})]$? Note that $L=\mathbb{Q}(\sqrt[3]{2})(\sqrt{-3})$. Could $\sqrt{-3}\in\mathbb{Q}(\sqrt[3]{2})$? Consider $x^2+3\in\mathbb{Q}(\sqrt[3]{2})[x]$. By the tower law,

$$\begin{cases} [L:\mathbb{Q}] = [L:\mathbb{Q}\left(\omega\right)] \left[\mathbb{Q}\left(\omega\right):\mathbb{Q}\right] = 2 \left[L:\mathbb{Q}\left(\omega\right)\right] & \Longrightarrow 2 \mid [L:\mathbb{Q}] \\ [L:\mathbb{Q}] = \left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] \left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right] = 3 \left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] & \Longrightarrow 3 \mid [L:\mathbb{Q}] \end{cases} \Rightarrow 6 \mid [L:\mathbb{Q}].$$

- Either $x^2 + 3$ is irreducible over $\mathbb{Q}\left(\sqrt[3]{2}\right)$, so by Theorem 0.7 $\left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] = 2$ and $\left[L:\mathbb{Q}\right] = 6$.
- Or $x^2 + 3$ is not irreducible, so $\mathbb{Q}(\sqrt[3]{2}) = L$ and $[L : \mathbb{Q}] = 3$, a contradiction.

Are there any other fields? Claim that there are no other fields. Suppose $\mathbb{Q} \subsetneq K \subsetneq L$ is such a field. By the tower law $[K:\mathbb{Q}]=2$ or $[K:\mathbb{Q}]=3$.

• Suppose $[K:\mathbb{Q}]=2$.

- Either $\omega \in K$, that is $\mathbb{Q}(\omega) \subset K$, so by the tower law $\mathbb{Q}(\omega) = K$.
- Or $ω \notin K$ gives [K(ω) : K] = 2, so $[K(ω) : \mathbb{Q}] = 4$ contradicts the tower law for $\mathbb{Q} \subset K(ω) \subset L$.
- Suppose $[K:\mathbb{Q}]=3$.

Claim that $x^3-2\in K[x]$ splits. Suppose that it were irreducible, then $\left[K\left(\sqrt[3]{2}\right):K\right]=3$, which contradicts the tower law for $K\subset K\left(\sqrt[3]{2}\right)\subset L$. So it has a root in K. Either $\sqrt[3]{2}\in K$, $\omega\sqrt[3]{2}\in K$, or $\omega^2\sqrt[3]{2}\in K$. Thus $\mathbb{Q}\left(\sqrt[3]{2}\right)=K$, $\mathbb{Q}\left(\omega\sqrt[3]{2}\right)=K$, or $\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)=K$.

I want to prove that

$$G=\operatorname{Aut}_{\mathbb{Q}}\left(L\right)=\left\{\sigma:L\rightarrow L\mid\sigma\mid_{\mathbb{Q}}=id_{\mathbb{Q}}\right\}=\mathfrak{S}_{3}.$$

Lecture 5 Friday 18/01/19

Proof of Theorem 0.6. Suppose $y_1, \ldots, y_m \in F$ is a basis of F as a vector space over L. Suppose $x_1, \ldots, x_n \in L$ is a basis of L as a vector space over K. Claim that $\{x_iy_j\}$ is a basis of F over K.

• $\{x_iy_j\}$ generates F. Let $z \in F$. There exist $\mu_1, \ldots, \mu_n \in L$ such that

$$z = \mu_1 y_1 + \dots + \mu_n y_n. \tag{1}$$

 $\mu_j \in L$ so for all j there exists $\lambda_{ij} \in K$ such that

$$\mu_j = x_1 \lambda_{1j} + \dots + x_m \lambda_{mj}. \tag{2}$$

Plug in (2) into (1),

$$z = \sum_{i,j} \lambda_{ij} x_i y_j.$$

• $\{x_iy_j\}$ are linearly independent over K. Suppose there exists $\lambda_{ij} \in K$ such that

$$0 = \sum_{i,j} \lambda_{ij} x_i y_j = \sum_j \left(\sum_i \lambda_{ij} x_i \right) y_j,$$

so for all j, $\sum_{i} \lambda_{ij} x_i = 0$, so for all j and all i, $\lambda_{ij} = 0$.

M3P11 Galois Theory Spring 2019

Example. To show $G = \mathfrak{S}_3$. Let $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$. A basis of L/\mathbb{Q} is

$$1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \omega, \omega, \sqrt[3]{2}, \omega, \sqrt[3]{4}.$$

- $\sigma(1) = 1$.
- $\sigma\left(\sqrt[3]{2}\right) = \omega\sqrt[3]{2}$.
- $\sigma(\omega\sqrt[3]{2}) = \sqrt[3]{2}$.
- $\sigma(\sqrt[3]{4}) = \sigma(\sqrt[3]{2} \cdot \sqrt[3]{2}) = \omega\sqrt[3]{2} \cdot \omega\sqrt[3]{2} = \omega^2\sqrt[3]{4} = (-\omega 1)\sqrt[3]{4} = -\omega\sqrt[3]{4} \sqrt[3]{4}$
- $\sigma(\omega) = \sigma(\omega\sqrt[3]{2}/\sqrt[3]{2}) = \sigma(\omega\sqrt[3]{2})/\sigma(\sqrt[3]{2}) = \sqrt[3]{2}/\omega\sqrt[3]{2} = 1/\omega = -1 \omega$.
- $\bullet \ \sigma\left(\omega\sqrt[3]{4}\right) = \sigma\left(\omega\sqrt[3]{2}\cdot\sqrt[3]{2}\right) = \sigma\left(\omega\sqrt[3]{2}\right)\cdot\sigma\left(\sqrt[3]{2}\right) = \sqrt[3]{2}\cdot\omega\sqrt[3]{2} = \omega\sqrt[3]{4}.$

Thus

$$\sigma = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

A question is if there were $\sigma \in G$ such that $\rho(\sigma) = \begin{pmatrix} 1 & 2 \end{pmatrix}$ then we have written the matrix of σ as a \mathbb{Q} -linear map of L in a basis. But how to check that this \mathbb{Q} -linear map is a field homomorphism? We know the Galois correspondence for extensions of degree two.

$$Gal_{\mathbb{Q}(\sqrt[3]{2})}(L), Gal_{\mathbb{Q}(\omega^2\sqrt[3]{2})}(L), Gal_{\mathbb{Q}(\omega\sqrt[3]{2})}(L) \subset G$$

contain an element of order two, and

$$\begin{array}{ccc} \rho: & \operatorname{Gal}_{\mathbb{Q}\left(\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 2 & 3 \end{pmatrix} \\ & \operatorname{Gal}_{\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 1 & 2 \end{pmatrix} \\ & \operatorname{Gal}_{\mathbb{Q}\left(\omega\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 1 & 3 \end{pmatrix}. \end{array}$$

The lattice of subgroups is

 $\mathbb{Q}(\omega)/\mathbb{Q}$ is the splitting field of $x^2 + x + 1$ and of $x^2 + 3$.

We can learn the following. Let $k \subset L$ be a splitting field. Consider $k \subset K \subset L$. Then $K \subset L$ is also a splitting field. The corresponding $H \leq G$ is the Galois group $Gal_K(L)$. On the other hand $k \subset K$ is not always a splitting field. It is a splitting field if and only if the corresponding $H \leq G$ is a normal subgroup and in that case $Gal_k(K) = G/H$.

1 Elementary facts

Let $K \subset L$ and $a \in L$. The evaluation homomorphism

Lecture 6 Tuesday 22/01/19

$$e_a: K[x] \rightarrow K[a] \subset L$$

 $f(x) \mapsto f(a)$

is a surjective ring homomorphism, where K[a] is the smallest subring of L containing K and a.

Definition 1.1. $f(x) = a_0 x^n + \cdots + a_n \in K[x]$ is **monic** if $a_0 = 1$.

Lemma 1.2.

• If a is transcendental, e_a is injective and it extends to $\widetilde{e_a}: K(x) \to K(a)$, by

$$K(x) \cup \widetilde{e_a} .$$

$$K[x] \xrightarrow{e_a} L$$

• If a is algebraic, then $Ker(e_a) = \langle f_a \rangle$, where $f_a \in K[x]$ is irreducible, or prime, and unique if monic, then called the minimal polynomial of $a \in L/K$. In this case

$$K[x] \xrightarrow{e_a} K[a] \cong K(a) \subset L$$

$$\bigcup_{[e_a]} K[x]$$

$$\langle f_a \rangle$$

Proof. There is nothing to prove.

Remark. Let $g(x) \in K[x]$ and $g(a) \neq 0$. Claim that $1/g(a) \in K[a]$. Indeed $\gcd(f,g) = 1$ in K[x] and $f \nmid g$. There exists $\phi, \psi \in K[x]$ such that $f\phi + g\psi = 1$ and $g(a) \psi(a) = 1$. All of this is saying

- $K[a] \cong K(a)$, and
- $K[x]/\langle f_a \rangle \cong K(a)$.

Let

$$Emb_{K}\left(K\left(a\right),F\right)=\left\{ \sigma:K\left(a\right)\rightarrow F\mid\sigma\text{ field homomorphism, }\sigma_{K}=id_{K}\right\} ,$$

where

$$K(a)$$
 σ
 k
 σ
 σ
 F

Corollary 1.3. For $K \subset L$ and $a \in L$ algebraic over K,

- $[K(a):K] = \deg(f_a)$, and
- If $K \subset F$ is an extension,

$$Emb_{K}(K(a), F) = \{b \in F \mid f_{a}(b) = 0\}.$$

Proof. Since K(a) = K[a], $[K(a) : K] = \dim_K (K(a)) = \dim_K [K(a)]$. Suppose

$$f(x) = x^n + \mu_1 x^{n-1} + \dots + \mu_n \in K[x]$$

is the minimal polynomial of a over K. Claim that $1, \ldots, a^{n-1}$ is a basis of K[a] over K.

• The set generates K[a]. Let $c \in K[a]$. There exists $g \in K[x]$ such that g(a) = c. Long division gives

$$g(x) = f(x) q(x) + r(x), \qquad m = \deg(r(x)) < n.$$

Then $r(x) = \lambda_0 + \cdots + \lambda_m x^m$ and $g(a) = r(a) = \lambda_0 + \cdots + \lambda_m a^m$.

• The set is linearly independent, otherwise there exists

$$g(x) = \lambda_0 + \dots + \lambda_{n-1} x^{n-1} \in K[x], g(a) = 0,$$

and f was not the minimal polynomial.

 $\sigma(a)$ is a root of f, since applying σ to f(a) = 0 gives

$$0 = \sigma (a^{n} + \mu_{1}a^{n-1} + \dots + \mu_{n}) = \sigma (a)^{n} + \mu_{1}^{n-1}\sigma (a)^{n-1} + \dots + \mu_{n} = f(\sigma (a)).$$

Vice versa, if $b \in F$ is a root of f,

$$K(b) \stackrel{[e_b]}{\leftarrow} \frac{K[x]}{\langle f \rangle} \stackrel{[e_a]}{\sim} K(a),$$

then $\sigma = [e_b][e_a]^{-1}$. Thus there is a one-to-one correspondence

$$Emb_{K}\left(K\left(a\right),F\right) \quad \leftrightarrow \quad \{b \in F \mid f\left(b\right)=0\}$$

$$\sigma \quad \mapsto \quad \sigma\left(a\right)$$

$$\left[e_{b}\right]\left[e_{a}\right]^{-1} \quad \longleftrightarrow \quad b$$

Corollary 1.4. Let K be a field and $f \in K[x]$. Then there exists $K \subset L$ such that f has a root in L.

Proof. Take g a prime factor of f. Take $L = K[x]/\langle g \rangle$. In here a = [x] is a root of g hence a root of f. \square

From now on in this course, we study field extensions $K \subset L$, always assumed to be finite, so $[L:K] = \dim_K(L) < \infty$.

Lecture 7 Thursday 24/01/19

Remark. $K \subset L$ is finite if and only if

- it is algebraic, that is for all $a \in L$, a is algebraic over K, and
- it is finitely generated, that is there exist $a_1, \ldots, a_m \in L$ such that $L = K(a_1, \ldots, a_m)$.

An important point of view is that we study all possible field homomorphisms

$$Emb(K, L) = \{ \sigma : K \to L \mid \sigma \text{ field homomorphism} \}.$$

Often there is a field $k \subset K, L$ in the background which we want to stay fixed, so

$$Emb_{k}\left(K,L\right)=\left\{ \sigma:K\rightarrow L\mid\sigma\text{ field homomorphism, }\sigma\mid_{k}=id_{k}\right\} .$$

Example. Let $K = \mathbb{Q}(\sqrt[3]{2})$. The minimal polynomial of $\sqrt[3]{2}$ is $x^3 - 2$. Let $L = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$ be the splitting field of $x^3 - 2$. Then

$$Emb_{\mathbb{Q}}\left(K,L\right)=Emb\left(K,L\right)=\left\{ \text{roots of }x^{3}-2\text{ in }L\right\} =\left\{ \sqrt[3]{2},\omega\sqrt[3]{2},\omega^{2}\sqrt[3]{2}\right\} .$$

Remark. Suppose $k \subset K$. $Emb_k(K, K) = G = Gal_k(K)$. Indeed every k-homomorphism $\sigma : K \to K$ is automatically invertible. We know σ is injective. σ is also surjective because σ is a k-linear endomorphism of a finite-dimensional k-vector space.

M3P11 Galois Theory Spring 2019

2 Axiomatics

Proposition 2.1. Fix $k \subset K$ and $k \subset L$. Then $\#Emb_k(K, L) \leq [K : k]$.

Proof.

Special case. If K = k(a), let $f(x) \in k[x]$ be the minimal polynomial of a. Then $Emb_k(k(a), L)$ is the roots of f(x) in L, so

$$\#Emb_k(K, L) = \#\{\text{roots}\} \le \deg(f) = [k(a) : k],$$

as proved last time.

General case. If k = K, nothing to do. Otherwise choose $a \in K \setminus k$.

$$\begin{array}{cccc}
 & L \\
 & \downarrow & \\
 & k & \subset & k(a) & \subset & K
\end{array}$$

Consider the restriction map

$$\rho: Emb_k(K, L) \to Emb_k(k(a), L)$$
.

Fix $y \in Emb_k(k(a), L)$. Then

$$\rho^{-1}(y) = \{x : K \to L \mid x \mid_{k(a)} = id_{k(a)} \}.$$

Since [k(a):k] > 1, by the tower law [K:k(a)] < [K:k]. By induction we may assume $\#\rho^{-1}(y) \le [K:k(a)]$. So

$$\#Emb_{k}\left(K,L\right)\leq\sum_{y\in Emb_{k}\left(k\left(a\right),L\right)}\#\rho^{-1}\left(y\right)\leq\left[k\left(a\right):k\right]\left[K:k\left(a\right)\right]=\left[K:k\right],$$

by the tower law.

Proposition 2.2. Suppose given two field extensions $k \subset K$ and $k \subset L$. Then there is a bigger field

that contains both.

Remark.

- More formally, suppose given $\sigma_1 \in Emb(k, K)$ and $\sigma_2 \in Emb(k, L)$, then there exists Ω , $\phi_1 \in Emb(K, \Omega)$, and $\phi_2 \in Emb(L, \Omega)$ such that $\phi_1 \circ \sigma_1 = \phi_2 \circ \sigma_2$.
- I never said that Ω is unique. For example, let $K = \mathbb{Q}(\sqrt[3]{2})$ and $L = \mathbb{Q}(\sqrt[3]{2})$. One choice is $\Omega = k$. Another choice is $\Omega = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$, where

$$\mathbb{Q} \left(\sqrt[3]{2} \right)$$

$$\sigma_{C} \qquad \qquad \left(\sqrt[\phi_{1}: \sqrt[3]{2} \mapsto \sqrt[3]{2} \right)$$

$$\mathbb{Q} \qquad \qquad \mathbb{Q} \left(\sqrt[3]{2}, \sqrt{-3} \right) \cdot \left(\sqrt[\phi_{2}: \sqrt[3]{2} \mapsto \sqrt{-3} \right)$$

$$\mathbb{Q} \left(\sqrt[3]{2} \right)$$