数字逻辑与计算机组成实验六 单周期 CPU 设计与 测试 实验报告

一、一、实验目的

- 1. 了解指令执行过程及其与 CPU 基本结构之间的关系。
- 2. 掌握单周期数据通路及其控制器的设计方法。
- 3. 掌握 RISC-V 汇编语言程序的基本设计方法。
- 4. 理解汇编语言程序与机器语言代码之间的对应关系。

二、二、实验环境

Logisim: https://github.com/Logisim-Ita/Logisim RISC-V 模拟器工具RARS: https://github.com/thethirdone/rars

三、三、实验内容

进行单周期 CPU 设计与测试。支持9 条 RV32I 目标指令的单周期 CPU 结构

1. 1. 控制器设计实验

原理图及电路图

功能表

funct3	000	010	011	110	无关	010	010	000	无关
op	0110011	0110011	0110011	0010011	0110111	0000011	0100011	1100011	1101111
控制信号	add	slt	sltu	ori	lui	lw	sw	beq	jal
Branch	0	0	0	0	0	0	0	1	0
Jump	0	0	0	0	0	0	0	0	1
ALUASrc	0	0	0	0	×	0	0	0	1
ALUBSrc<1:0>	00	00	00	10	10	10	10	00	01
ALUctr<3:0>	0000	0010	0011	0110	1111	0000	0000	1000	0000
	(add)	(slt)	(sltu)	(or)	(srcB)	(add)	(add)	(sub)	(add)
MemtoReg	0	0	0	0	0	1	×	×	0
RegWr	1	1	1	1	1	1	0	0	1
MemWr	0	0	0	0	0	0	1	0	0
ExtOp<2:0>	×	×	×	000 immI	001 immU	000 immI	010 immS	011 immB	100 immJ

仿真测试

错误现象及分析

无

2. 2. 单周期 CPU 设计实验

原理图及电路图

输入输出引脚

instr:

op 操作码 funct3 功能码

rd 目标寄存器 rs1 rs2 源寄存器 funct7额外功能码

extop 扩展方式 imm扩展的立即数

仿真测试

见 3 4 实验

错误现象及分析

由于按照pdf文件描述更改了寄存器堆和pc的触发方式,导致死循环QWQ

3. 3. 用累加和程序进行 CPU 设计验证

原理图及电路图

见实验2

输入输出引脚

同实验2

仿真测试

在 RARS 的编辑窗口中编写汇编语言源程序并进行保存

错误现象及分析

无

4. 4. 用冒泡排序程序进行 CPU 设计验证

原理图及电路图

同上

输入输出引脚

同上

仿真测试