Ley de la oferta y la demanda, interpretacion geométrica. El caso lineal.

$$Q = O(p)$$

Ley de la oferta

- Debido a que la oferta es proporcional al precio, las curvas de oferta son, generalmente crecientes.
- Debido a la ley de los rendimientos decrecientes, la marginal (derivada) de una curva de oferta puede ser decreciente (es decir, suele ser una función cóncava), aunque no necesariamente.

Ley de la demanda

La curva de demanda precio normalmente tiene una trayectoria descendente que muestra cómo, a medida que sube el precio, va descendiendo el consumo del producto.

$$Q = D(p)$$

$$\begin{aligned} Q_n &= O(p_n) \\ Q_n &= D(p_{n+1}) \end{aligned}$$

• Vamos a interpretar geométricamente el modelo dinámico:

$$Q_n = O(p_n)$$

$$Q_n = D(p_{n+1})$$

• Marco el precio inicial p_0 .

$$Q_n = O(p_n)$$

$$Q_n = D(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .

$$Q_n = O(p_n)$$

$$Q_n = D(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .
- Para esta cantidad el mercado responderá con un precio p₁.

$$Q_n = O(p_n)$$

$$Q_n = D(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .
- Para esta cantidad el mercado responderá con un precio p₁.
- Volvemos a estimar la nueva oferta Q₁

$$Q_n = O(p_n)$$

$$Q_n = D(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .
- Para esta cantidad el mercado responderá con un precio p₁.
- Volvemos a estimar la nueva oferta Q_1
- Para esta cantidad el mercado responderá con un precio p₂.

$$Q_n = O(p_n)$$
$$Q_n = D(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .
- Para esta cantidad el mercado responderá con un precio p₁.
- Volvemos a estimar la nueva oferta Q_1
- Para esta cantidad el mercado responderá con un precio p₂.
- Así sucesivamente...

$$Q_n = O(p_n)$$

$$Q_n = O(p_{n+1})$$

- Marco el precio inicial p_0 .
- Calculo la oferta Q_0 .
- Para esta cantidad el mercado responderá con un precio p₁.
- Volvemos a estimar la nueva oferta Q₁
- Para esta cantidad el mercado responderá con un precio p₂.
- Así sucesivamente...

Modelo lineal

$$O(p)$$
 = $ap - b$
 $D(p) = c - dp$

donde

• a, b, c, d son positivos.

$$ap_n - b = c - dp_{n+1},$$

despejando

$$p_{n+1} = \frac{c+b}{d} - \frac{a}{d}$$

que tiene equilibrio

$$p^* = \frac{c+b}{d+a}.$$

Estabilidad del mercado

Lema

Sea la ley

$$x_{n+1} = \alpha x_n + \beta,$$

donde α y β son dos constantes reales. Entonces existe un único equilibrio x^* si y solo si $\alpha \neq 1$. Además

- $Si |\alpha| < 1$ todas las soluciones tienden al equilibrio.
- Si $\alpha = -1$ todas las soluciones oscilan entorno al equilibrio alternado dos valores.
- $Si |\alpha| > 1$ todas las soluciones tienden a infinito en modulo.

Comportamiento de un mercado

Un mercado se dice estable si a < d y en ese caso los precios siempre tienden al equilibrio.