

E		States/UTs	State/UT- Wise Total Number of Road Accidents during 2016	Wise Total	State/UT- Wise Total Number of Road Accidents during 2018	Total	Wise Total Number of Road Accidents	Share of States/UTs in Total Number of Road Accidents - 2016	States/UTs in Total Number of Road Accidents	States/UTs in Total Number of Road	State in Number
	0	Andhra Pradesh	24888	25727	24475	21992	8.0	5.177967	5.533759	5.240406	4.8
	1	Arunachal	249	241	277	237	30.0	0.051805	0.051838	0.059309	0.0

+ Code	+	Text					75 60		RAM Disk	→ ⊜ Cola	ib Al
○ (±)		Pradesh	7177		0.20	20,0			0.00000	U. Williams	
	9	Jammu and Kashmir	5501	5624	5978	5796	18.0	1.144487	1.209696	1.279965	5
	10	Jharkhand	4932	5198	5394	5217	20.0	1.026106	1.118066	1.154923	
	11	Karnataka	44403	42542	41707	40658	5.0	9.238077	9.150588	8.929994	
	12	Kerala	39420	38470	40181	41111	4.0	8.201360	8.274720	8.603258	
	13	Madhya Pradesh	53972	53399	51397	50669	2.0	11.228914	11.485879	11.004745	1
	14	Maharashtra	39878	35853	35717	32925	6.0	8.296647	7.711815	7.647459	
	15	Manipur	538	578	601	672	25.0	0.111931	0.124325	0.128682	
	16	Meghalaya	620	675	399	482	27.0	0.128991	0.145189	0.085431	0
	17	Mizoram	83	68	53	62	35.0	0.017268	0.014626	0.011348	0
	18	Nagaland	75	531	430	358	28.0	0.015604	0.114216	0.092068	0.
	19	Odisha	10532	10855	11262	11064	12.0	2.191190	2.334861	2.411336	2.
	20	Punjab	6952	6273	6428	6348	17.0	1.446369	1.349293	1.376316	1
	21	Rajasthan	23066	22112	21743	23480	7.0	4.798898	4.756189		
	22	200				Statute II	1100	4.140030	4.130193	4.655450	5.2

Barrier (Christian)


```
[5] # Graph 1: Total Accidents by State during 2019
      fig1 = px.bar(df, x='States/UTs', y='State/UT-Wise Total Number of Road Accidents during 2019 - Numbers',
                    title='Total Accidents by State during 2019']
      figl.update layout(xaxis title='State', yaxis title='Number of Accidents')
      fig1.show()
      # Graph 2: Comparison of Accidents in 2016 and 2019 for the Top 5 States with Most Accidents
      top states = df.nlargest(5, 'State/UT-Wise Total Number of Road Accidents during 2019 - Numbers')
      fig2 = px.bar(top states, x='States/UTs', y=['State/UT-Wise Total Number of Road Accidents during 7010', 'State
                   title='Comparison of Accidents in 2016 and 2019 for the Top 5 States with Most Accidents 1
      fig2.update layout(xaxis title='State', yaxis title='Number of Accidents')
      fig2.show()
      # Graph 3: Ranking of Accidents by State in 2019
      fig3 = px.bar(df, x='States/UTs', y='State/UT-Wise Total Number of Road Accidents during 2019 - Mark',
                   title='Ranking of Accidents by State in 2019')
      fig3.update_layout(xaxis_title='State', yaxis_title='Hanking')
      fig3.show()
      @ Graph 4: Percentage of Accidents in 2019 by State
     fig4 = px.pie(df, names='States/UTs', values='Share of States/UTs in Total number of head Accidents 2019'.
                   title='Percentage of Accidents in 2019 by State'l
      f1g4. show()
```

Total Accidents by State during 2019


```
model.fit(X train, y train)
    # Make predictions on the test set
    y pred = model.predict(X test)
    # Galculate evaluation metrics t, y pred
    mse = mean squared error(y test, y pred)
    mae = mean absolute error(y test, y pred)
    r2 = r2 score(y test, y pred)
    msle = mean squared log error(y test, y pred)
    # Display metrics
    print(f"Mean Squared Error: (mse: 2f)")
    print(f"Mean Absolute Error: (mae: .2f)")
   print(f"Mean Squared Logarithmic Error: {msle:.2f}")
   print(fcR-squared: (r2)0)
    tean Absolute Frenci 5.00
   Mean Squared Error: 10:00 Error: 0.00
   Mean Absolute Error: 0.00
   Mean Squared Logarithmic Error: 0.00
   R-squared: 1.0
Start coding or generate with AI.
```

