Equation of a Circle $(x-h)^2+(y-k)^2=r^2$ Point-Slope Form $Ax+By+C=0$ Positive trigonometric functions Law of Cosines $a^2=b^2+c^2-2bc\cdot\cos A$
Vertical Shifts of Graphs Suppose $c > 0$. Suppose $c > 0$. Graph $y = f(x) + c$ by shifting $y = f(x)$ down c . Graph $y = f(x) - c$ by shifting $y = f(x)$ down c . Graph $y = f(x) + c$ by shifting $y = f(x)$ down d and d by shifting d and d by shifting d and d by shifting d and d are d are d are d and d are d and d are d are d are d are d and d are d and d are d are d are d are d are d and d are d and d are d and d are d
Reflecting Graphs Graph $y = -f(x)$ by reflecting $y = f(x)$ in the x-axis. Graph $y = f(-x)$ by reflecting $y = f(x)$ in the y-axis. Vertical Stretching of Graphs To graph $y = cf(x)$, graph $y = f(x)$, then if $c > 1$ stretch vertically a by factor of c if $0 < c < 1$ shrink vertically a by factor of c $y = \frac{k}{x}$
Horizontal Stretching of Graphs To graph $y = f(cx)$, graph $y = f(x)$, then if $c > 1$ shrink horizontally by a factor of $\frac{1}{c}$ if $0 < c < 1$ stretch horizontally by a factor of $\frac{1}{c}$
Permutations $p(x,y) = \frac{x!}{(x-y)!}$ Choose Formula $C(x,y) = \begin{pmatrix} x \\ y \end{pmatrix} = \frac{x!}{y!(x-y)!}$ Law of Sines $C(x,y) = \frac{A \cdot \pi}{a} = \frac{\sin C}{b} = \frac{\sin C}{c}$ Degrees to Radians If $C(x) = \frac{A \cdot \pi}{180} = \theta$ Remainder Theorem If $C(x) = \frac{A \cdot \pi}{180} = \theta$ remainder $C(x) = \frac{A \cdot \pi}{180} = \theta$
$ \sin = \frac{\text{opp}}{\text{hyp}} \cos = \frac{\text{adj}}{\text{hyp}} \tan = \frac{\text{opp}}{\text{adj}} $ $ \frac{\text{Sector Area}}{A = \frac{1}{2}r^2\theta} $ $ \frac{\text{Sin opplation Growth}}{A = \frac{1}{2}r^2\theta} $ $ \frac{\text{Sin opplation Growth}}{Variation oppriories of the proportion of the proport$
Properties of logs $ (\log_a b)(\log_c d) = (\log_a d)(\log_c b) $ $\log m + \log n = \log mn $ $\log m - \log n = \log \frac{m}{n} $ $m \log n = \log n^m $ $ \log n = \log n^m $ Quadratic Formula $ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $ Slope-Intercept Form $ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $ $ y = mx + b $
i raised to a power $i^1 = i$ $i^2 = -1$ $i^3 = -i$ $i^4 = 1$ $\begin{bmatrix} \frac{\text{Complex numbers}}{a + bi} & a - bi \\ a + bi & = \sqrt{(a + bi)(a - bi)} \end{bmatrix}$

 $i^4 = 1$...

Algebra of Functions

Let f and g be functions with domains A and B.

$$(f+g)(x) = f(x) + g(x)$$
 Domain $A \cap B$
 $(f-g)(x) = f(x) - g(x)$ Domain $A \cap B$

$$(f-g)(x) = f(x) - g(x)$$

Domain $A \cap B$

$$(f-g)(x) = f(x) - g(x)$$

Domain $A \cap B$

$$(fg)(x) = f(x)g(x)$$
$$\binom{f}{g}(x) = \frac{f(x)}{g(x)}$$

Domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Domain $\{x \in B \mid g(x) \in A\}$

Polynomial Synthetic Division

Result is $x^2 - x + 2 - \frac{5}{x+2}$

Polynomial Long Division

Rational Roots Theorem $2x^3 + 2x^2 - 3x - 6$ $\pm 1, \pm 2$ $\pm 1, \pm 2, \pm 3, \pm 6$ Possible rational roots:

 $\pm 1, \pm \frac{1}{2}, \pm 2, \pm 3, \pm \frac{3}{2}, \pm 6$

Decartes' Rule of Signs
Count num. of sign changes
$$P(x) = 3x^{6} + 4x^{5} + 3x^{3} - x - 3$$
1 positive real root
$$P(-x) = 3x^{6} - 4x^{5} - 3x^{3} + x - 3$$
1 or 3 negative real roots

Logarithm Formulas $\log(m \cdot n) = \log m + \log n$ $\log\left(\frac{m}{n}\right) = \log m - \log n$ $\log(m^n) = n \cdot \log m$

$$\log\left(\frac{n}{n}\right) = \log m - \log m$$

$$\log(m^n) = n \cdot \log m$$

$$\log_b b^x = x = b^{\log_b x}$$

Other trig stuff $\cot =$

Horizontal Asymptotes

When degree of numerator is more than one greater than degree of denominator

$$y = \frac{2x^2 - 4x + 5}{x^2 - 2x + 1}$$

Original Equation

$$=\frac{2x^2}{r^2}$$

 $x \to \infty$, other terms $\to \text{tiny}$

Cancel, horizontal asymptote

If degree of denominator is greater, 0

Slant Asymptotes

When degree of numerator is one greater than degree of denominator

$$y = \frac{x^2 - 4x - 1}{x - 3}$$

Original Equation

$$= x - 1 - \frac{8}{x - 3} \quad \text{Di}$$

Divide

$$= x - 1$$

 $x \to \infty$, other terms $\to \text{tiny}$

Vertical Asymptotes

Vertical Asym
$$y = \frac{2x^2 - 4x + 5}{x^2 - 2x + 1}$$

Original Equation

$$=\frac{2x^2-4+5}{(2x-1)(x+2)}$$

Factor demoniator

$$x = \frac{1}{2} \text{ or } x = -2$$

Impossible

Trig Identities $\sin^2 + \cos^2 = 1$ $\tan^2 + 1 = \sec^2$ $1 + \cot^2 = \csc^2$

sin/cos/csc/sec Graph **Properties** If in form: $y = a\sin k(x - b)$ amplitude |a|, period $2\pi/k$,

phase shift b

tan/cot Graph Properties If in form:

 $y = a\sin k(x - b)$ amplitude |a|, period π/k , phase shift b