CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #4

Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Chapter 6

Aims of this lecture

- To introduce the HeapSort algorithm.
- To show how a clever data structure, a heap, can lead to a fast and in place sorting algorithm
 - In place: O(1) additional space.
- To practice the design and analysis of algorithms.
- To introduce the Priority Queue data structure

Idea behind HeapSort

- Idea:
 - Find the largest element.
 - Move it to the end of the array (put another one in its place).
 - Repeat with remaining elements.
- Like SelectionSort but ...
 - SelectionSort compares lots of elements to find the largest.
 - Can we store knowledge gained from these comparisons for the future?
 - Use this knowledge to make future iterations faster!

Use your imagination...

Photo: Thomas Bresson

- Essentially an array imagined as being a binary tree!
- Elements are arranged row by row from left to right.

- Navigate through the array/imaginary tree using these operations:
- Parent $(i) = \left\lfloor \frac{i}{2} \right\rfloor$ ("floor of i/2"), Left(i) = 2i, Right(i) = 2i + 1

Heap Properties

- Max-heap property: for every node other than the root, the parent is no smaller than the node, $A[Parent(i)] \ge A[i]$.
- In a max-heap, the root always stores a largest element.

• Min-heap property: for every node other than the root, the parent is no larger than the node, $A[Parent(i)] \leq A[i]$.

Procedures (what do we need)

- 1. Build-Max-Heap: produces a Max-Heap from an unordered array
- 2. Max-Heapify: maintains the max-heap property once the maximum has been removed
- 3. HeapSort: sorts an array in place
- New variable A.heap-size indicates how many elements of A are stored in a heap: $0 \le A$.heap-size $\le A$.length.
 - Decreasing A.heap-size by 1 effectively removes the last element from the heap (we imagine a heap without it)
- There are analogous operations for min-heaps:
 Min-Heapify and Build-Min-Heap.

Procedures (what do we need)

- 1. Build-Max-Heap: produces a Max-Heap from an unordered array
- 2. Max-Heapify: maintains the max-heap property once the maximum has been removed
- 3. HeapSort: sorts an array in place
- New variable A.heap-size indicates how many elements of A are stored in a heap: $0 \le A$.heap-size $\le A$.length.
 - Decreasing A.heap-size by 1 effectively removes the last element from the heap (we imagine a heap without it)
- There are analogous operations for min-heaps:
 Min-Heapify and Build-Min-Heap.

Max-Heapify(A, i)

- Assumes subtrees Left(i) and Right(i) are max-heaps, but max-heap property might be violated in root of subtree at i.
 - "Subtree x": the part of the tree including x and everything below.

Lets the value at A[i] "float down" if necessary, to restore

max-heap property at i

 At the end of Max-Heapify the subtree at i is a max-heap.

Max-Heapify: informal and in pseudocode

- Compare A[i] with all existing children
- If largest child is larger than A[i], swap and recurse on child

Max-Heapify(A, i)

```
1: l = Left(i)
```

2:
$$r = \text{Right}(i)$$

3: if
$$l \leq A$$
.heap-size and $A[l] > A[i]$ then

4:
$$\operatorname{largest} = l$$

6:
$$largest = i$$

7: if
$$r \leq A$$
.heap-size and $A[r] > A[largest]$ then

8:
$$\operatorname{largest} = r$$

9: if largest
$$\neq i$$
 then

10: exchange
$$A[i]$$
 with $A[largest]$

11:
$$MAX-HEAPIFY(A, largest)$$

Max-Heapify: Example

- Compare A[i] with all existing children
- If largest child is larger than A[i], swap and recurse on child

Runtime of Max-Heapify

- Define the height of a node as the longest number of simple downward edges from the node to a leaf.
- Leaf: a node without children.
- Max-Heapify takes constant time, $\Theta(1)$, on each level.
- Running time of Max-Heapify on a node of height h is O(h).
- It's not $\Omega(h)$ as Max-Heapify may stop early, e.g. if heap-property holds at i.
- For leaves h=0 and the time is O(1).

Max-Heapify(A, i)

```
1: l = \text{Left}(i)

2: r = \text{Right}(i)

3: if l \le A.\text{heap-size} and A[l] > A[i] then

4: largest = l

5: else

6: largest = i

7: if r \le A.\text{heap-size} and A[r] > A[\text{largest}] then

8: largest = r

9: if largest \ne i then

10: exchange A[i] with A[\text{largest}]

11: Max-Heapify(A, largest)
```


Bounding the height of a heap

- Claim: the height of a heap = height of the root is at most log n.
- Proof: the number n of elements in a heap of height h is
 - Doubling on each level
 - At least 1 node on the last level
 - Hence in total at least

$$1 + 2 + 4 + \dots + 2^{h-1} + 1 = 2^h$$

(we used
$$\sum_{i=0}^{k-1} 2^i = 2^k - 1$$
)

- So size and height are related as $n \ge 2^h \Leftrightarrow \log n \ge h$
- So the runtime of Max-Heapify is O(log n)

Max-Heapify: Correctness


```
MAX-HEAPIFY(A, i)

1: l = \text{Left}(i)

2: r = \text{Right}(i)

3: if l \leq A.\text{heap-size} and A[l] > A[i] then

4: \text{largest} = l

5: else

6: \text{largest} = i

7: if r \leq A.\text{heap-size} and A[r] > A[\text{largest}] then

8: \text{largest} = r

9: if \text{largest} \neq i then

10: \text{exchange } A[i] with A[\text{largest}]
```

Max-Heapify(A, largest)

- By induction (on the height):
- Base case: height = 0 (i is a leaf)
- Then left(i) and right(i) are larger than A.heap-size and the algorithm returns a heap!

11:

Max-Heapify: Correctness

By induction (on the height):

```
MAX-HEAPIFY(A, i)

1: l = \text{Left}(i)

2: r = \text{Right}(i)

3: if l \leq A.\text{heap-size} and A[l] > A[i] then

4: \text{largest} = l

5: else

6: \text{largest} = i

7: if r \leq A.\text{heap-size} and A[r] > A[\text{largest}] then

8: \text{largest} = r

9: if \text{largest} \neq i then

10: \text{exchange } A[i] with A[\text{largest}]

11: \text{MAX-HEAPIFY}(A, \text{largest})
```

- Inductive case: assume it works for height h=i-1 and show it works for h=i
- Then the algorithm swaps A[i] with the larger between Left(i) and Right(i) (if any) and one subtree was already a heap and the other will be by inductive hypothesis.

Building a Heap

- Idea: use Max-Heapify repeatedly to create a heap.
- Which order of nodes: top-down or bottom-up?
- Answer: bottom-up Max-Heapify assumes Left(i) and Right(i) are heaps. Top-down wouldn't work, bottom-up does.
- Note: nodes in $A\left[\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right),\ldots,n\right]$ are all leaves. Leaves are max-heaps, so no work required.

```
BUILD-MAX-HEAP(A, n)

1  A.heap-size = n

2  \mathbf{for} \ i = \lfloor n/2 \rfloor \ \mathbf{downto} \ 1

3  \mathbf{MAX}-HEAPIFY(A, i)
```


(e)

(f)

Correctness of Build-Max-Heap

```
BUILD-MAX-HEAP(A, n)

1  A.heap-size = n

2  \mathbf{for} \ i = \lfloor n/2 \rfloor \ \mathbf{downto} \ 1

3  \mathbf{MAX}-HEAPIFY(A, i)
```

- Loop invariant: At the start of each iteration of the for loop, each node $i+1,i+2,\ldots,n$ is the root of a max-heap.
- Initialisation: true for leaves $\left\lfloor \frac{n}{2} \right\rfloor + 1, \dots, n$.

Correctness of Build-Max-Heap

```
BUILD-MAX-HEAP(A, n)

1  A.heap-size = n

2  \mathbf{for} \ i = \lfloor n/2 \rfloor \ \mathbf{downto} \ 1

3  \mathbf{MAX}-HEAPIFY(A, i)
```

- Loop invariant: At the start of each iteration of the for loop, each node $i+1,i+2,\ldots,n$ is the root of a max-heap.
- Maintenance: by loop invariant, all children of i are roots of max-heaps (as their numbers are larger than i).

Then Max-Heapify (A, i) turns the subtree at i into a max-heap.

Correctness of Build-Max-Heap

```
BUILD-MAX-HEAP(A, n)

1  A.heap-size = n

2  \mathbf{for} \ i = \lfloor n/2 \rfloor \ \mathbf{downto} \ 1

3  \mathbf{MAX}-HEAPIFY(A, i)
```

- **Loop invariant:** At the start of each iteration of the for loop, each node $i+1,i+2,\ldots,n$ is the root of a max-heap.
- **Termination:** the loop terminates at i=0, hence node 1 is the root of a max-heap.

Runtime of Build-Max-Heap

- The height of a heap = height of the root is at most log n.
- So all nodes have height at most log n.
- Every call to Max-Heapify takes time $O(\log n)$.
- Build-Max-Heap calls Max-Heapify O(n) times.
- Total time is at most $O(n) \cdot O(\log n) = O(n \log n)$.
 - The time can be improved to O(n) since most nodes have small height.
 - $O(n \log n)$ is sufficient for us, though.

Refined Analysis of Build-Max-Heap

- Observation: most nodes have small height!
- One can show: there are at most $\left\lceil \frac{n}{2^{h+1}} \right\rceil$ nodes of height h.
- $O(\log n)$ time bound is correct, but crude for most nodes.
- A better bound:

$$\sum_{h=1}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right) = O\left(n \sum_{h=1}^{\infty} \frac{h}{2^h}\right) = O(n)$$

as the infinite series of $\frac{h}{2^h}$ is 2.

HeapSort

- Ideas:
 - 1. Build a max-heap, such that the root contains largest element.
 - 2. Swap the root with the last element of the heap/array.
 - 3. Discard the last element from the heap by reducing heap.size. (We simply imagine a smaller heap.)
 - 4. Call Max-Heapify(A, 1) to restore heap property at the root.

$\overline{\text{HEAPSORT}(A)}$

- 1: Build-Max-Heap(A)
- 2: for i = A.length downto 2 do
- 3: exchange A[1] with A[i]
- 4: A.heap-size = A.heap-size -1
- 5: MAX-HEAPIFY(A, 1)

HeapSort: Example

CSE217: Data Structures & Algorithm Analysis

• Ideas:

- 1. Build a max-heap, such that the root contains largest element.
- 2. Swap the root with the last element of the heap/array.
- 3. Discard the last element from the heap by reducing heap.size. (We simply imagine a smaller heap.)
- 4. Call Max-Heapify(A, 1) to restore heap property at the root.

HEAPS	$\overline{\mathrm{ORT}(A)}$	– Runtime:
1: Bu	ILD-MAX-HEAP (A)	$O(n \log n)$
2: for	i = A.length downto 2 do	
3:	exchange $A[1]$ with $A[i]$	$+(n-1)\cdot O(\log n)$
4:	A.heap-size = A.heap-size -1	$= O(n \log n)$
5:	Max-Heapify $(A, 1)$, ,

Correctness of HeapSort

Loop Invariant: "At the start of each iteration of the for loop of lines 2-5, the subarray A[1..i] is a max-heap containing the i smallest elements of A[1..n], and the subarray A[i+1..n] contains the n-i largest elements of A[1..n], sorted."

• **Initialization**: The subarray *A*[*i*+1..*n*] is empty, thus the invariant holds.

HEAPSORT(A)

- 1: Build-Max-Heap(A)
- 2: for i = A.length downto 2 do
- 3: exchange A[1] with A[i]
- 4: A.heap-size = A.heap-size -1
- 5: Max-Heapify(A, 1)

Correctness of HeapSort

Loop Invariant: "At the start of each iteration of the for loop of lines 2-5, the subarray A[1..i] is a max-heap containing the i smallest elements of A[1..n], and the subarray A[i+1..n] contains the n-i largest elements of A[1..n], sorted."

Maintenance: A[1] is the largest element in A[1..i] and it is smaller than the elements in A[i+1..n]. When we put it in the ith position, then A[i..n] contains the largest elements, sorted. Decreasing the heap size and calling Max-Heapify turns A[1..i-1] into a max-heap. Decrementing i sets up the invariant for the next iteration.

$\overline{\text{HEAPSORT}(A)}$

- 1: Build-Max-Heap(A)
- 2: for i = A.length downto 2 do
- 3: exchange A[1] with A[i]
- 4: A.heap-size = A.heap-size -1
- 5: Max-Heapify(A, 1)

Correctness of HeapSort

Loop Invariant: "At the start of each iteration of the for loop of lines 2-5, the subarray A[1..i] is a max-heap containing the i smallest elements of A[1..n], and the subarray A[i+1..n] contains the n-i largest elements of A[1..n], sorted."

• **Termination:** After the loop i=1. This means that A[2..n] is sorted and A[1] is the smallest element in the array, which makes the array sorted.

CSE217: Data Structures & Algorithm Analysis

Priority Queues: Motivation

- Schedule jobs on a computer shared among multiple users
- A max-priority queue keeps track of the jobs to be performed and their relative priorities
- When a job is finished the scheduler selects the job with highest priority from those pending
- Jobs can be added to the scheduler at any time

Job	Owner	Priority (key)
Job 1	Yao Xin	35
Job 12	Oliveto Pietro	2
Job 24	Hao Qi	22
Job 25	Yu Shiqi	18
Job 72	Yao Xin	30

Use a heap!

Priority Queue based on max-heap

• A data structure for maintaining a set S of elements with an associated element called key (the priority).

Operation	Time
Insert(S, x, k) – inserts x with key k into S	$O(\log n)$
Maximum (S) – returns the element in S with the largest key	0(1)
Extract-Max(S) – removes and returns element in S with the largest key	$O(\log n)$
Increase-Key(S, x, k) – increases they key of x to a larger value k (element may float up in the heap)	$O(\log n)$

Job x: x.satellite_data; x.job_address x.priority (key)
(We need a way to map the position of job x in the heap (and update it as it moves in the heap) as well as the pointer to the job to execute it)

Min-priority queue based on min-heap also exist: we will use them in graph algorithms (eg., Djikstra, Prim)

Find and extract next job

```
MAX-HEAP-MAXIMUM(A)

1 if A.heap-size < 1

2 error "heap underflow"

3 return A[1]

MAX-HEAP-EXTRACT-MAX(A)

1 max = MAX-HEAP-MAXIMUM(A)

2 A[1] = A[A.heap-size]

3 A.heap-size = A.heap-size - 1

4 MAX-HEAPIFY(A, 1)

5 return max
```

Increase job priority

```
MAX-HEAP-INCREASE-KEY (A, x, k)
  if k < x. key
       error "new key is smaller than current key"
   x.key = k
   find the index i in array A where object x occurs
   while i > 1 and A[PARENT(i)].key < A[i].key
       exchange A[i] with A[PARENT(i)], updating the information that maps
6
           priority queue objects to array indices
       i = PARENT(i)
                                                                                16
                                                                      15
                                                                                           10
                                                  14
                                                                                                  3
                                                               14
                                           15
                              15
                                                                                (d)
```

Insert new job

```
MAX-HEAP-INSERT (A, x, n)

1 if A.heap\text{-}size == n

2 error "heap overflow"

3 A.heap\text{-}size = A.heap\text{-}size + 1

4 k = x.key

5 x.key = -\infty

6 A[A.heap\text{-}size] = x

7 map x to index heap\text{-}size in the array

8 MAX-HEAP-INCREASE-KEY (A, x, k)
```

Summary

- HeapSort sorts in place in time $O(n \log n)$.
 - Building a Heap in time O(n).
 - Extracting the largest element and restoring the heap-property in total time $O(n \log n)$.
- The use of appropriate data structures can speed up computation (in contrast to SelectionSort).
 - The heap "memorises" information about comparisons of elements.
 - The heap is imaginary, no objects/pointers required!
- Heaps also play a role in Priority Queues.