Projekt P2 - Aufgabenstellung vom Auftraggeber (FS_2015)

Reglerdimensionierung mit Hilfe der Schrittantwort

1. Einleitung

In der Praxis werden die klassischen Regler (PI, PID, PD, ...) oft mit sog. Faustformeln dimensioniert. Dazu benötigt man bestimmte Informationen der zu regelnden Strecke. Handelt es sich dabei um "langsame Strecken" mit Zeitkonstanten im Bereich von Sekunden bis Minuten, so ist das Bestimmen und Ausmessen der Schrittantwort oft die einzige Möglichkeit zur Identifikation der Strecke. Typische Beispiele dafür sind Temperaturheizstrecken, welche meistens mit einem PTn-Verhalten modelliert werden können (Kaffeemaschine, Boiler, Raumheizungen, Lötkolben, Warmluftfön, usw.).

Die Schrittanwort wird mit Hilfe einer Wendetangente vermessen und die Kenngrössen Streckenbeiwert (K_s), Verzugszeit (T_u) und Anstiegszeit (T_g) werden bestimmt. Dies kann sowohl von Hand (grafisch) oder auch automatisiert durchgeführt werden, falls die Messdaten elektronisch vorliegen. Mit diesen drei Kenngrössen können mit Hilfe sog. Faustformeln PI- und PID-Regler dimensioniert werden (Ziegler/Nichols, Chien/Hrones/Reswick, Oppelt, Rosenberg). Die Faustformeln liefern zwar sehr schnell die Reglerdaten, aber die Schrittantworten der entspr. Regelungen sind teilweise weit vom "Optimum" entfernt und der Regelkreis kann sogar instabil werden. In der Praxis muss man diese "Startwerte" häufig nachoptimieren, damit die Schrittantwort der Regelung die Anforderungen erfüllt.

Die sog. "Phasengangmethode zur Reglerdimensionierung" wurde von Jakob Zellweger (FHNW) entwickelt und liefert Reglerdaten, welche näher am "Optimum" sind und für die Praxis direkt verwendet werden können. Dabei kann das Überschwingen der Schrittantwort vorgegeben werden (z.B. 20%, 10%, 2%, oder aperiodisch). Bei dieser Methode kann also das für viele Anwendungen wichtige Verhalten der Schrittantwort beeinflusst werden. Um die Phasengangmethode anwenden zu können, muss der Frequenzgang der Strecke bekannt sein (analytisch oder numerisch/gemessen). Mit Hilfe der Hudzovik-Approximation (oder anderer ähnlicher Verfahren) wird dieses Problem gelöst, in dem vorgängig aus den Kenngrössen der Schrittantwort (K_s , T_u , T_g) eine PTn-Approximation der Strecke erzeugt wird. Mit dem Frequenzgang der PTn-Approximation können dann die Regler dimensioniert werden (I, PI, PID). Die Phasengangmethode war ursprünglich eine grafische Methode, basierend auf dem Bodediagramm der Strecke. Aktuell soll die Methode direkt numerisch im Rechner durchgeführt werden.

In dieser Arbeit geht es um die Entwicklung und Realisierung eines Tools zur **Reglerdimensionierung mit der Phasengangmethode**. Ausgehend von der PTn-Schrittantwort der Strecke sollen "optimale Regler" (PI, PID-T1) dimensioniert werden, wobei das Überschwingen der Regelgrösse vorgegeben werden kann. Zum Vergleich sollen die Regler auch mit den üblichen Faustformeln dimensioniert werden. Wünschenswert wäre auch eine Simulation der Schrittantwort des geschlossenen Regelkreises, so dass die Dimensionierung kontrolliert und evtl. noch "verbessert" werden könnte.

2. Aufgaben/Anforderungen an Tool

Entwerfen und realisieren Sie ein benutzerfreundliches Tool/Programm/GUI/usw. mit welchem PI- und PID-Regler mit der Phasengangmethode dimensioniert werden können. Dabei sind folgende Anforderungen und Randbedingungen vorgegeben:

- Die zu regelnden Strecken sind PTn-Strecken, wobei entweder die Schrittantwort grafisch vorliegt oder die Kenngrössen K_s , T_u und T_g schon bekannt sind
- Die Bestimmung einer PTn-Approximation wird vom Auftraggeber zur Verfügung gestellt und muss entsprechend angepasst und eingebunden werden (Matlab zu Java)
- Das Überschwingen der Regelgrösse (Schrittantwort) soll gewählt werden können
- Zum Vergleich sind die Regler auch mit den üblichen Faustformeln zu dimensionieren.
- Das dynamische Verhalten des geschlossenen Regelkreises soll auch berechnet und visualisiert werden (Schrittantwort)

3. Bemerkungen

Die Software und das GUI sind in enger Absprache mit dem Auftraggeber zu entwickeln. Der Auftraggeber steht als Testbenutzer zu Verfügung und soll bei der Evaluation des GUI eingebunden werden. Alle verwendeten Formeln, Algorithmen und Berechnungen sind zu verifizieren, eine vorgängige oder parallele Programmierung in Matlab ist zu empfehlen. Zum Thema der Regelungstechnik und speziell zur Reglerdimensionierung mit der Phasengangmethode werden Fachinputs durchgeführt (Fachcoach).

Literatur

- [1] J. Zellweger, *Regelkreise und Regelungen*, Vorlesungsskript.
- [2] J. Zellweger, *Phasengang-Methode*, Kapitel aus Vorlesungsskript.
- [3] H. Unbehauen, *Regelungstechnik I*, Vieweg Teubner, 2008.
- [4] W. Schumacher, W. Leonhard, *Grundlagen der Regelungstechnik*, Vorlesungsskript, TU Braunschweig, 2003.
- [5] B. Bate, *PID-Einstellregeln*, Projektbericht, FH Dortmund, 2009.

16.02.2015 Peter Niklaus