Lecture 8

吴昊 2016K8009929015

1. Knapsack Greedy algorithm

Prove that the greedy algorithm can be made to perform arbitrarily bad.

Prove

Let the capacity bound B = 1, we have two items a_1 and a_2 . $size(a_1) = x$ and $profit(a_1) = 2x$, $size(a_2) = 1$ and $profit(a_2) = 1$, here 0 < x < 1.

We have $\frac{profit(a_1)}{size(a_1)}=2>\frac{profit(a_2)}{size(a_2)}=1$, according to the greedy algorithm, we should pick a_1 . The total profit is 2x, can be arbitrarily small when $x\to 0$.

However, if we choose a_2 , the total profit is 1.

2.Improvement for Greedy algorithm

Show the approximation ratio of the modified algorithm is $\frac{1}{2}$

Prove

Assume that

$$rac{p(a_1)}{s(a_1)} \geq rac{p(a_2)}{s(a_2)} \geq ... \geq rac{p(a_n)}{s(a_n)}$$

Denote by OPT the optimal result, now only need to prove

$$\sum_{i=1}^{k+1} profit(a_i) \geq OPT$$

Which is obvious because $\sum_{i=1}^{k+1} size(a_i) > B$, and they are chosen in a greedy way. Therefore

$$max\{\{a_1,a_2,...,a_k\},a_{k+1}\} \geq rac{1}{2}OPT$$

3.Steiner Tree

Let G=<V,E> be a graph with nonnegative edge costs. S,the senders and R, the receivers, are disjoint subsets of V . The problem is to find a minimum cost subgraph of G that has a path connecting each receiver to a sender (any sender suffices). Partition the instances into two cases: $S \cup R = V$ and $S \cup R \neq V$. Show that these two cases are in P and NP-hard,respectively. For the second case, give a factor 2 approximation algorithm.

Solve:

 $S \cup R = V$ instance:

```
Polynomial Algorithm:
T = NULL
while R not empty do
find a shortest edge e connect a vertex in R (say v) and a vertex in S
add edge e in T, remove v from R, add v in S
endwhile
```

In *line 3* of each loop, we pick a shortest edge, and this edge must be in the optimal set. This guarantees that the algorithm produces the optimal result.

$S \cup R \neq V$ instance:

First, we show that this problem is NP-hard by reducing original Steiner Tree problem to it.

For a Steiner Tree problem with G=<V,E>, $V=R\cup S$. Select a random vertex in R, say v, let S'=v, R'=R-v, S in Steiner Tree problem denotes (V-S'-R') in the new problem.

2-approximation algorithm:

Add a new vertex which is connected to each sender by a zero cost edge. Consider the new vertex and all receivers as required and the remaining vertices as Steiner, and find a minimum cost Steiner tree.

$$result = result(SteinerTree) \le 2 \cdot OPT(SteinerTree) = 2 \cdot OPT$$