Frequent Item Sets

Chau Tran & Chun-Che Wang

Outline

- 1. Definitions
 - Frequent Itemsets
 - Association rules
- 2. Apriori Algorithm

Frequent Itemsets

What? Why? How?

Motivation 1: Amazon suggestions

Frequently Bought Together

Price for all three: \$85.90

Add all three to Wish List

Show availability and shipping details

- ▼ This item: Kit Kat Candy Bar, Crisp Wafers in Milk Chocolate, 1.5-Ounce Bars (Pack of 36) \$28.63 (\$0.53 / oz)
- Reese's Peanut Butter Cups, 1.5-Ounce Packages (Pack of 36) \$24.30 (\$0.45 / oz)
- ☑ Twix-chocolate Caramel Cookie Bars, 36ct \$32.97 (\$9.16 / 10 Items)

Amazon suggestions (German version)

Motivation 2: Plagiarism detector

- Given a set of documents (eg. homework handin)
 - Find the documents that are similar

Motivation 3: Biomarker

- Given the set of medical data
 - For each patient, we have his/her genes, blood proteins, diseases
 - Find patterns
 - which genes/proteins cause which diseases

What do they have in common?

- A large set of items
 - things sold on Amazon
 - set of documents
 - genes or blood proteins or diseases
- A large set of baskets
 - shopping carts/orders on Amazon
 - set of sentences
 - medical data for multiple of patients

Goal

- Find a general many-many mapping between two set of items
 - \circ {Kitkat} \Rightarrow {Reese, Twix}
 - (Document 1) ⇒ (Document 2, Document 3)
 - {Gene A, Protein B} ⇒ {Disease C}

Approach

- $A = \{A1, A2, ..., Am\}$
- $B = \{B1, B2, ..., Bn\}$

A, B are subset of I = set of items

$$P(B|A) = \frac{P(A,B)}{P(A)}$$
$$= \frac{Count(A,B)}{Count(A)}$$

Definitions

- Support for itemset A: Number of baskets containing all items in A
 - Same as Count(A)
- Given a support threshold s, the set of items that appear in at least s baskets are called frequent itemsets

Example: Frequent Itemsets

Items = {milk, coke, pepsi, beer, juice}

B1 = {m,c,b}	$B2 = \{m,p,j\}$
B3 = {m,b}	$B4 = \{c,j\}$
B5 = {m, p, b}	B6 = $\{m,c,b,j\}$
$B7 = \{c,b,j\}$	B8 = {b,c}

- Frequent itemsets for support threshold = 3:
 - (m), {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

Association Rules

- A ⇒ B means: "if a basket contains items in A, it is likely to contain items in B"
- There are exponentially many rules, we want to find significant/interesting ones
- Confidence of an association rule:
 - Conf(A \Rightarrow B) = P(B | A)

Interesting association rules

- Not all high-confidence rules are interesting
 - The rule X ⇒ milk may have high confidence for many itemsets X, because milk is just purchased very often (independent of X), and the confidence will be high
- Interest of an association rule:
 - Interest(A \Rightarrow B) = Conf(A \Rightarrow B) P(B) = P(B | A) - P(B)

- Interest(A \Rightarrow B) = P(B | A) P(B)
 - \circ > 0 if P(B | A) > P(B)
 - $\circ = 0 \text{ if } P(B \mid A) = P(B)$
 - \circ < 0 if P(B | A) < P(B)

Example: Confidence and Interest

B1 = $\{m,c,b\}$	$B2 = \{m,p,j\}$
$B3 = \{m,b\}$	$B4 = \{c,j\}$
B5 = {m, p, b}	B6 = $\{m,c,b,j\}$
B7 = $\{c,b,j\}$	B8 = {b,c}

- Association rule: {m,b} ⇒ c
 - \circ Confidence = 2/4 = 0.5
 - Interest = $0.5 \frac{5}{8} = -\frac{1}{8}$
 - High confidence but not very interesting

Overview of Algorithm

- Step 1: Find all frequent itemsets I
- Step 2: Rule generation
 - For every subset A of I, generate a rule A ⇒ I \ A
 - Since I is frequent, A is also frequent
 - Output the rules above the confidence threshold

Example: Finding association rules

B1 = $\{m,c,b\}$	$B2 = \{m,p,j\}$
$B3 = \{m,b\}$	$B4 = \{c,j\}$
B5 = {m, p, b}	B6 = $\{m,c,b,j\}$
B7 = $\{c,b,j\}$	B8 = {b,c}

- Min support s=3, confidence c=0.75
- 1) Frequent itemsets:
 - (b,m) {b,c} {c,n} {c,j} {m,c,b}
- 2) Generate rules:

. . .

How to find frequent itemsets?

- Have to find subsets A such that Support(A)
 - > S
 - There are 2ⁿ subsets
 - Can't be stored in memory

How to find frequent itemsets?

Solution: only find subsets of size 2

Really?

- Frequent pairs are common, frequent triples are rare, don't even talk about n=4
- Let's first concentrate on pairs, then extend to larger sets (wink at Chun)
- The approach
 - Find Support(A) for all A such that |A| = 2

Naive Algorithm

- For each basket b:
 - o for each pair (i1,i2) in b:
 - increment count of (b1,b2)
- Still fail if (#items)^2 exceeds main memory
 - Walmart has 10⁵ items
 - Counts are 4-byte integers
 - \circ Number of pairs = $10^5*(10^5-1)/2 = 5 * 10^9$
 - o 2 * 10^10 bytes (20 GB) of memory needed

Not all pairs are equal

- Store a hash table
 - (i1, i2) => index
- Store triples [i1, i2, c(i1,i2)]
 - o uses 12 bytes per pair
 - but only for pairs with count > 0
- Better if less than ⅓ of possible pairs actually occur

Triangular Matrix

Triples

Summary

- What?
 - Given a large set of baskets of items, find items that are correlated
- Why?
- How?
 - Find frequent itemsets
 - subsets that occur more than s times
 - Find association rules
 - $Conf(A \Rightarrow B) = Support(A,B) / Support(A)$

Naive Algorithm Revisited

- Pros:
 - Read the entire file (transaction DB) once
- Cons
 - Fail if (#items)^2 exceeds main memory

- Designed to reduce the number of pairs that need to be counted
- How?
 - hint: There is no such thing as a free lunch
- Perform 2 passes over data

- Key idea : monotonicity
 - If a set of items appears at least
 s times, so does every subset
- Contrapositive for pairs
 - If item i does not appear in s baskets, then no pair including i can appear in s baskets

Pass 1:

- Count the occurrences of each individual item
- items that appear at least s time are the frequent items

• Pass 2:

 Read baskets again and count in only those pairs where both elements are frequent (from pass 1)

Frequent Tripes, Etc.

For each k, we construct two sets of *k-tuples*

 C_k Candidate k-tuples = those might be frequent sets (support > s)

 L_k The set of truly frequent k-tuples

Example

Hypothetical steps of the A-Priori algorithm

- C₁ = { {b} {c} {j} {m} {n} {p} }
- Count the support of itemsets in C₁
- Prune non-frequent: L₁ = { b, c, j, m }
- Generate C₂ = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
- Count the support of itemsets in C₂
- Prune non-frequent: L₂ = { {b,m} {b,c} {c,m} {c,j} }
- Generate C₃ = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }

A-priori for All Frequent Itemsets

- For finding frequent k-tuple: Scan entire data k times
- Needs room in main memory to count each candidate k-tuple
- Typical, k = 2 requires the most memory

What else can we improve?

Observation

In pass 1 of a-priori, most memory is idle!

Can we use the idle memory to reduce memory required in pass 2?

PCY Algorithm

- PCY (Park-Chen-Yu) Algorithm
- Take advantage of the idle memory in pass1
 - During pass 1, maintain a hash table
 - Keep a count for each bucket into which pairs of items are hashed

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

PCY Algorithm - Pass 1

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

If we assign milk=1, coke=2, cookies= 3, pepsi=4, and juice=5 Then,

$$\begin{array}{lll} B_1 = \{1,\,2,\,3\} & B_2 = \{1,\,4,\,5\} \\ B_3 = \{1,\,3\} & B_4 = \{2,\,5\} \\ B_5 = \{1,\,3,\,4\} & B_6 = \{1,\,2,\,3,\,5\} \\ B_7 = \{2,\,3,\,5\} & B_8 = \{2,\,3\} \end{array}$$

Define the hash function: h(i, j) = (i + j) % 5 = K (Hashing pair (i, j) to bucket K)

Pass 1

Item#	Count
1	5
2	5
3	5
4	2
5	4

The hash table is

Bucket#	Count
0	6
1	2
2	4
3	4
4	5

For s=3, $L_1 = \{1, 2, 3, 5\}$, and Bitmap $\{1, 0, 1, 1, 1\}$

Observations about Buckets

The hash table is

Bucket #	Count
0	6
1	2
2	4
3	4
4	5

For
$$s=3$$
, $L_1 = \{1, 2, 3, 5\}$

- If the count of a bucket is >= support s, it is called a frequent bucket
- For a bucket with total count less than s, none of its pairs can be frequent. Can be eliminated as candidates!
- For Pass 2, only count pairs that hash to frequent buckets

PCY Algorithm - Pass 2

- Count all pairs {i, j} that meet the conditions
 - 1. Both *i* and *j* are frequent items
 - 2. The pair {i, j} hashed to a frequent bucket (count >= s)
- All these conditions are necessary for the pair to have a chance of being frequent

PCY Algorithm - Pass 2

Hash table after pass 1:

The hash table is

Bucket #	Count
0	6
1	2
2	4
3	4
4	5

For s=3, $L_1 = \{1, 2, 3, 5\}$, and Bitmap $\{1, 0, 1, 1, 1\}$

Pass 2

Frequent items are {1, 2, 3, 5} Candidate pairs and their counts

Pair	Count
(2,3)	4
(2,5)	3
(1,2)	2
(3,5)	2
(1,3)	4

$$(1, 4)$$
, $(2, 3) \Rightarrow h(i, j) = 0$
 $(1, 5)$, $(2, 4) \Rightarrow h(i, j) = 1$
 $(2, 5)$, $(3, 4) \Rightarrow h(i, j) = 2$
 $(1, 2)$, $(3, 5) \Rightarrow h(i, j) = 3$
 $(1, 3)$, $(4, 5) \Rightarrow h(i, j) = 4$

frequent itemsets are

*{*1*}*, *{*2*}*, *{*3*}*, *{*5*}*, *{*1, 3*}*, *{*2, 3*}*, *{*2, 5*}*

Main-Memory: Picture of PCY

Refinement

- Remember: Memory is the bottleneck!
- Can we further limit the number of candidates to be counted?
- Refinement for PCY Algorithm
 - Multistage
 - Multihash

Multistage Algorithm

- Key Idea: After Pass 1 of PCY, rehash only those pairs that qualify for pass 2 of PCY
- Require additional pass over the data
- Important points
 - Two hash functions have to be independent
 - Check both hashes on the third pass

Multihash Algorithm

- Key Idea: Use several independent hash functions on the first pass
- Risk: Halving the number of buckets doubles the average count
- If most buckest still not reach count s, then we can get a benefit like multistage, but in only 2 passes!
- Possible candidate pairs {i, j}:
 - o i, j are frequent items
 - {i, j} are hashed into both frequent buckets

Frequent Itemsets in <= 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes
 - Random sampling
 - may miss some frequent itemsets
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (not going to conver)

Random Sampling

- Take a random sample of the market baskets
- Run A-priori in main memory
 - Don't have to pay for disk I/O each time we read over the data
 - Reduce the support threshold proportionally to match the sample size (e.g. 1% of Data, support => 1/100*s)
- Verify the candidate pairs by a second pass

Main memory

Copy of sample baskets

Space for counts

SON Algorithm

- Repeatedly read small subsets of the baskets into main memory and run an inmemory algorithm to find all frequent itemsets
- Possible candidates:
 - Union all the frequent itemsets found in each chunk
 - why? "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset
- On a second pass, count all the candidate

SON Algorithm- Distributed Version

MapReduce for Pass 1

- Distributed data mining
- Pass 1: Find candidate itemsets
 - Map: (F,1)
 - F : frequent itemset
 - Reduce: Union all the (F,1)
- Pass 2: Find true frequent itemsets
 - Map: (C,v)
 - C : possible candidate
 - Reduce: Add all the (C, v)

FP-Growth Approach

Introduction

A-priori

- Generation of candidate itemset (Expensive in both space and time)
- Support counting is expensive
 - Subset checking
 - Multiple Database scans (I/O)

FP-Growth approach

- FP-Growth (Frequent Pattern-Growth)
 - Mining in main memory to reduce (#DBscans)
 - Without candidate itemsets generation
- Two step approach
 - Step 1: Build a compact data structure called the FPtree
 - Step 2: Extracts frequent itemsets directly from the FP-tree (Traversal through FP-tree)

FP-Tree construction

- FP-Tree construction
 - Pass 1:
 - Find the frequent items
 - Pass 2:
 - Construct FP-Tree

f	4	
c	4	
a	3	
b	3	
m	3	
р	3	

TID	Items bought	Ordered
100	${a, c, d, f, g, i, m, p}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, i, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	{f, b}
400	$\{b, c, k, s, p\}$	{c, b, p}
500	${a, c, e, f, l, m, n, p}$	{f, c, a, m, p}

FP-Tree

- FP-Tree
 - Prefix Tree
 - Has a much smaller size than the uncompressed data
 - Mining in main memory
- How to find the Frequent itemset?
 - Tree traversal
 - Bottom-up algorithm
 - Divide and conquer
 - More detail:

http://csc.lsu.edu/~jianhua/FPGrowth.pdf

FP-Growth V.S A-priori

	Apriori	FP-Growth
# Passes over data	depends	2
Candidate Generation	Yes	No

- FP-Growth Pros:
 - "Compresses" data-set, mining in memory
 - much faster than Apriori
- FP-Growth Cons:
 - FP-Tree may not fit in memory
 - FP-Tree is expensive to build
 - Trade-off: takes time to build, but once it is build, frequent itemsets are read off easily

Acknowledgements

- Stanford CS246: Mining Masive Datasets (Jure Leskovec)
- Mining of Massive Datasets (Anand Rajaraman, Jeffrey Ullman)
- Introduction to Frequent Pattern Growth (FP-Growth) Algorithm (Florian Verhein)
- NCCU: Data-mining (Man-Kwan Shan)
- Mining frequent patterns without candidate generation. A frequent-tree approach, SIGMOD '00 Proceedings of the 2000