

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 11: Shortest Path

CSCI 3070U: Design and Analysis of Algorithms

Learning Outcomes

- Single source shortest path problem:
 - Dijkstra
 - Bellman-Ford

Shortest-path Problem

• Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v

• Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is:

$$\sum_{i=1}^k w(\nu_{i-1},\nu_i)$$

Shortest-path weight u to v:

$$\delta(u, v) = \begin{cases} \min \left\{ w(p) : u \stackrel{p}{\leadsto} v \right\} & \text{if there exists a path } u \leadsto v ,\\ \infty & \text{otherwise .} \end{cases}$$

Shortest-path Problem

• Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v

Shortest-path Problem

- Variants:
 - Single-source:
 - Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$
 - Single-destination:
 - Find shortest paths to a given destination vertex.
 - Single-pair:
 - Find shortest path from u to v.
 - All-pairs:
 - Find shortest path from u to v for all $u, v \in V$. We'll see algorithms

Negative-Weight Edges

- OK, as long as no negative-weight cycles are reachable from the source.
 - If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle

Optimal Substructure

- Shortest path problem has optimal substructure
 - Any subpath of a shortest path is a shortest path.

Shortest path

- No negative-weight edges!
- Have two sets of vertices:
 - S: vertices whose final shortest-path weights are determined
 - Q: priority queue = V S
- Looks a lot like Prim's algorithm, but computing v.d, and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the closest vertex in V S to add to S


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY(Q, v, v.d)
```


 $Q: A(\infty), B(\infty), C(\infty), D(\infty), E(\infty), F(\infty), G(\infty), H(\infty), I(\infty)$

INIT-SINGLE-SOURCE (G, s)

for each $v \in G.V$

$$v.d = \infty$$

$$\nu.\pi = NIL$$

$$s.d = 0$$

DIJKSTRA(G, w, s)

INIT-SINGLE-SOURCE (G, s)

$$S = \emptyset$$

for each vertex $u \in G.V$

Dijkstra's algorithm

INSERT(Q, u)

while $Q \neq \emptyset$

$$u = \text{EXTRACT-MIN}(Q)$$

$$S = S \cup \{u\}$$

for each vertex $v \in G.Adj[u]$

if
$$v.d > u.d + w(u, v)$$

$$v.d = u.d + w(u, v)$$

$$\nu . \pi = u$$

if v.d changed

DECREASE-KEY(
$$Q, v, v.d$$
)

Q: A(0), B(∞), C(∞), D(∞), E(∞), F(∞), G(∞), H(∞), I(∞)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
                                     \mathcal{U}
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
                DECREASE-KEY(Q, v, v.d)
```


Q: A(0), B(8), C(
$$\infty$$
), D(∞), E(∞), F(∞), G(∞), H(∞), I(∞)

After update

DIJKSTRA(G, w, s)B = 8INIT-SINGLE-SOURCE (G, s)**D** =∞ H =∞ 3 $S = \emptyset$ \mathcal{U} 8 for each vertex $u \in G.V$ INSERT(Q, u)6 A = 0E =∞ **G** =∞ while $Q \neq \emptyset$ u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ **F** =∞ **for** each vertex $v \in G.Adj[u]$ **|** =∞ **C** =∞ **if** v.d > u.d + w(u, v)v.d = u.d + w(u, v)Q: A(0), B(8), C(2), $D(\infty)$, $E(\infty)$, $F(\infty)$, $G(\infty)$, $H(\infty)$, $I(\infty)$ $\nu.\pi = u$ if v.d changed After update DECREASE-KEY(Q, v, v.d)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
                                     \mathcal{U}
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
                DECREASE-KEY(Q, v, v.d)
```


Q: A(0), B(8), C(2), D(∞), E(∞), F(∞), G(∞), H(∞), I(∞)


```
DIJKSTRA(G, w, s)
                                                          B = 8
 INIT-SINGLE-SOURCE (G, s)
                                                                        D =∞
                                                                                                 H =∞
                                                                                          3
  S = \emptyset
                                                    8
 for each vertex u \in G.V
      INSERT(Q, u)
                                              A =0
                                                                        E =∞
                                                                                     G =∞
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
                                                                        F =∞
                                                                                                  | =∞
      for each vertex v \in G.Adj[u]
                                                        C = 2
            if v.d > u.d + w(u, v)
                 v.d = u.d + w(u, v)
                                               Q: A(0), B(8), C(2), D(\infty), E(\infty), F(6), G(\infty), H(\infty), I(\infty)
                 \nu.\pi = u
           if v.d changed
                 DECREASE-KEY (Q, v, v.d)
```


6

```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```

DECREASE-KEY(Q, v, v.d)

After update


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY(Q, v, v.d)
```


Q: A(0), B(7), C(2), D(∞), E(5), F(6), G(7), H(∞), I(∞)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```


Q: A(0), B(7), C(2), D(∞), E(5), F(6), G(7), H(∞), I($\frac{13}{}$)

After update


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY(Q, v, v.d)
```


Q: A(0), B(7), C(2), $D(\infty)$, E(5), F(6), G(7), $H(\infty)$, I(13)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```

DECREASE-KEY (Q, v, v.d)

Q: A(0), B(7), C(2), D(11), E(5), F(6), G(7), $H(\infty)$, I(13)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY (Q, v, v.d)
```



```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
          if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
          if v.d changed
               DECREASE-KEY(Q, v, v.d)
```


Q: A(0), B(7), C(2), D(9), E(5), F(6), G(7), H(10), I(13)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```

DECREASE-KEY(Q, v, v.d)

Q: A(0), B(7), C(2), D(9), E(5), F(6), G(7), H(10), I(13)


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```


D =9

E = 5

B = 7

8

A =0

 \mathcal{U}

3

G = 7

H=10

6

I = 13

```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v)
                \nu.\pi = u
          if v.d changed
```

DECREASE-KEY(Q, v, v.d)

Q: A(0), B(7), C(2), D(9), E(5), F(6), G(7), H(10), I(13)

You can draw a tree whose root is A


```
DIJKSTRA(G, w, s)
 INIT-SINGLE-SOURCE (G, s)
 S = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
                                          \Theta(V \log V)
      S = S \cup \{u\}
      for each vertex v \in G.Adj[u]
           if v.d > u.d + w(u, v)
                v.d = u.d + w(u, v) \quad \Theta(E \log V)
                v.\pi = u
```

Time Complexity

 $\Theta(E \log V)$

Bellman-Ford Algorithm

- Allows negative-weight edges
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise
- Main Idea:
 - Scan all edges |V|-1 times and update the shortest paths accordingly.
 - It should converge after |V|-1, if not there is negative-weight cycle(s)

Bellman-Ford Algorithm

```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
                \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


Bellman-Ford

```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


Bellman-Ford

```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


Bellman-Ford

```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
               \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```



```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
                \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


End of pass one (i = 1)


```
BELLMAN-FORD(G, w, s)
   for each v \in G.V
       v.d = \infty
        \nu.\pi = NIL
   s.d = 0
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           if v.d > u.d + w(u, v)
               v.d = u.d + w(u, v)
                \nu.\pi = u
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


Vertex	Distance	Path
Α	0	Α
В	7	A,C,B
С	2	A,C
D	9	A,C,E,G,D
E	5	A,C,E
F	6	A,C,F
G	7	A,C,E,G
Н	10	A,C,E,G,H
I	13	A,C,F,I

Wrap-up

- In this week we learned algorithms for finding the shortest paths between a source and other vertices:
 - Dijkstra
 - Bellman-Ford

