```
In [1]:
import numpy as np
In [2]:
np.random.rand(1,30)
Out[2]:
array([[ 0.81281121, 0.2397257, 0.06264346, 0.71194874,
                                                            0.15036373,
        0.42112183, 0.47524667, 0.00302585, 0.7590526,
                                                            0.42987343,
        0.37910578, 0.82249466, 0.68506961, 0.56156163,
                                                            0.53974614,
        0.67543283, 0.79741554, 0.04520701, 0.33777323,
                                                            0.96891581,
        0.39539779, 0.31062647, 0.30175925, 0.69666277,
                                                            0.53586802,
        0.02778587, 0.46727117, 0.9538409, 0.19120507,
                                                            0.5904591 ]])
In [3]:
import random from numpy
  File "<ipython-input-3-9fc11c7e777d>", line 1
    import random from numpy
SyntaxError: invalid syntax
In [7]:
from numpy.random import randint
In [11]:
x = randint (1,30,30)
In [12]:
Х
Out[12]:
array([28, 4, 7, 16, 2, 7, 29, 1, 15, 4, 11, 19, 8, 21, 26, 20, 12,
```

```
9, 14, 24, 21, 6, 16, 16, 20, 24, 19, 28, 8, 7])
```

In [13]:

```
x.shape
```

Out[13]:

(30,)

In [25]:

```
x=x.reshape(6,5)
```

```
In [26]:
Х
Out[26]:
array([[28, 4, 7, 16, 2],
      [7, 29, 1, 15, 4],
      [11, 19, 8, 21, 26],
      [20, 12, 9, 14, 24],
      [21, 6, 16, 16, 20],
      [24, 19, 28, 8, 7]])
In [28]:
y=x[2:4,1:4]
In [30]:
У
Out[30]:
array([[19, 8, 21],
      [12, 9, 14]])
In [31]:
Х
Out[31]:
array([[28, 4, 7, 16, 2],
      [7, 29, 1, 15, 4],
      [11, 19, 8, 21, 26],
      [20, 12, 9, 14, 24],
      [21, 6, 16, 16, 20],
      [24, 19, 28, 8, 7]])
In [32]:
z=x>10
In [33]:
Z
Out[33]:
array([[ True, False, False, True, False],
      [False, True, False, True, False],
      [ True, True, False, True, True],
      [ True, True, False, True, True],
      [ True, False, True, True, True],
      [ True, True, True, False, False]], dtype=bool)
```

```
In [37]:
Х
Out[37]:
array([[28, 4, 7, 16, 2],
      [ 7, 29, 1, 15,
                       4],
      [11, 19, 8, 21, 26],
      [20, 12, 9, 14, 24],
      [21, 6, 16, 16, 20],
      [24, 19, 28, 8, 7]])
In [41]:
len(x)
Out[41]:
6
In [42]:
arr = np.arange(0,11)
In [43]:
arr
Out[43]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
In [45]:
0/arr
C:\Users\Rutanshu Desai\Anaconda3\lib\site-packages\ipykernel\__main__.py:
1: RuntimeWarning: invalid value encountered in true_divide
  if __name__ == '__main__':
Out[45]:
array([ nan, 0., 0., 0., 0., 0.,
                                                 0., 0., 0., 0.])
In [46]:
np.arange(10,51,2)
Out[46]:
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
      44, 46, 48, 50])
In [47]:
np.arange(0,9).reshape(3,3)
Out[47]:
array([[0, 1, 2],
      [3, 4, 5],
      [6, 7, 8]])
```

```
In [1]:
import pandas as pd
In [2]:
a=[1,2,3]
In [3]:
l=['a','b','c']
In [13]:
pd.Series(a,1)
Out[13]:
а
     1
b
     2
dtype: int64
In [15]:
import numpy as np
In [16]:
arr = np.array(a)
In [17]:
arr
Out[17]:
array([1, 2, 3])
In [18]:
а
Out[18]:
[1, 2, 3]
In [19]:
b=['a',1]
In [20]:
b
Out[20]:
['a', 1]
```

```
In [21]:
z=np.array(b)
In [22]:
z
Out[22]:
array(['a', '1'],
      dtype='<U1')</pre>
In [23]:
arr
Out[23]:
array([1, 2, 3])
In [27]:
x=['Rutanshu','Heena','Shubham','Karan']
In [28]:
Х
Out[28]:
['Rutanshu', 'Heena', 'Shubham', 'Karan']
In [29]:
x=np.array(x)
In [30]:
Χ
Out[30]:
array(['Rutanshu', 'Heena', 'Shubham', 'Karan'],
      dtype='<U8')</pre>
In [46]:
y=['90','98','65','78']
In [47]:
y=np.array(y)
```

```
In [48]:
У
Out[48]:
array(['90', '98', '65', '78'],
      dtype='<U2')</pre>
In [59]:
z=pd.Series(y,x)
In [60]:
z
Out[60]:
Rutanshu
             90
Heena
             98
Shubham
             65
Karan
             78
dtype: object
In [57]:
z=['Rutanshu']
In [61]:
Z
Out[61]:
Rutanshu
             90
Heena
             98
Shubham
             65
Karan
             78
dtype: object
In [62]:
z['Rutanshu']
Out[62]:
'90'
In [63]:
Z
Out[63]:
Rutanshu
             90
             98
Heena
Shubham
             65
Karan
             78
dtype: object
```

```
In [67]:
z['Karan']
Out[67]:
'78'
In [69]:
pd.Series([1,2,3],['a','b','c'])
Out[69]:
     1
a
     2
dtype: int64
```

In [83]:

z=pd. DataFrame(np.random.rand(3,3),'Rutanshu Heena Karan'.split(),'x y z'.split())

In [84]:

Z

Out[84]:

	x	у	z
Rutanshu	0.449647	0.235224	0.906918
Heena	0.343110	0.028906	0.073990
Karan	0.172928	0.880834	0.852781

In [74]:

```
z['Rutanshu']
```

Out[74]:

70

In [85]:

d= pd.DataFrame(np.random.rand(3,3),['Maths','Science','English'],['Rut','Karan','Heen a'])

In [86]:

d

Out[86]:

	Rut	Karan	Heena
Maths	0.607398	0.330748	0.429350
Science	0.831356	0.755811	0.825285
English	0.299190	0.673834	0.953940

In [88]:

points=pd.DataFrame(np.random.rand(4,4),'India Australia Pakistan
West_Indies'.split(),'P W L Points'.split())

In [89]:

points

Out[89]:

	Р	w	L	Points
India	0.144061	0.633331	0.050214	0.461035
Australia	0.095120	0.924519	0.165656	0.287074
Pakistan	0.781768	0.684987	0.937223	0.311360
West_Indies	0.414638	0.367861	0.120544	0.403726

In [98]:

points['P Points'.split()]

Out[98]:

	Р	Points
India	0.144061	0.461035
Australia	0.095120	0.287074
Pakistan	0.781768	0.311360
West_Indies	0.414638	0.403726

In [99]:

Z

Out[99]:

	x	у	z
Rutanshu	0.449647	0.235224	0.906918
Heena	0.343110	0.028906	0.073990
Karan	0.172928	0.880834	0.852781

In [106]:

```
z.drop('x',axis=1,inplace=True)
```

In [107]:

Χ

Out[107]:

In [108]:

z

Out[108]:

	у	z
Rutanshu	0.235224	0.906918
Heena	0.028906	0.073990
Karan	0.880834	0.852781

In [111]:

```
z.drop('Karan',inplace=True)
```

In [112]:

Z

Out[112]:

	у	z
Rutanshu	0.235224	0.906918
Heena	0.028906	0.073990

In [113]:

points

Out[113]:

	Р	w	L	Points
India	0.144061	0.633331	0.050214	0.461035
Australia	0.095120	0.924519	0.165656	0.287074
Pakistan	0.781768	0.684987	0.937223	0.311360
West_Indies	0.414638	0.367861	0.120544	0.403726

In [116]:

points.loc['India','P']

Out[116]:

0.1440610457675976

In [120]:

points.loc['India','Points']

Out[120]:

0.46103549225677032

In [121]:

Z

Out[121]:

	у	z
Rutanshu	0.235224	0.906918
Heena	0.028906	0.073990

In [128]:

z.loc['Heena']

Out[128]:

y 0.028906 z 0.073990

Name: Heena, dtype: float64

In [129]:

points

Out[129]:

	Р	w	L	Points
India	0.144061	0.633331	0.050214	0.461035
Australia	0.095120	0.924519	0.165656	0.287074
Pakistan	0.781768	0.684987	0.937223	0.311360
West_Indies	0.414638	0.367861	0.120544	0.403726

In [132]:

```
points.loc[['India','Pakistan'],['P','Points']]
```

Out[132]:

	Р	Points
India	0.144061	0.461035
Pakistan	0.781768	0.311360

In [8]:

```
x=pd.Series([1,2,3],['a','b','c'])
```

In [5]:

```
import pandas as pd
```

In []:

In [9]:

Out[9]:

a 1

b 2

c 3

dtype: int64

In [10]:

```
import numpy as np
```

```
In [11]:
```

```
y=pd.DataFrame(np.random.rand(3,3),['r1','r2','r3'],['c1','c2','c3'])
```

In [12]:

У

Out[12]:

	c1	c2	с3
r1	0.369921	0.405161	0.165639
r2	0.917178	0.459174	0.826614
r3	0.044381	0.487155	0.897790

In [25]:

y[['c1' ,'c2', 'c3']]

Out[25]:

	с1	c2	с3
r1	0.369921	0.405161	0.165639
r2	0.917178	0.459174	0.826614
r3	0.044381	0.487155	0.897790

In [28]:

y.loc['r1 r3'.split()]

Out[28]:

	c1	c2	с3
r1	0.369921	0.405161	0.165639
r3	0.044381	0.487155	0.897790

In [29]:

У

Out[29]:

	c1	c2	с3
r1	0.369921	0.405161	0.165639
r2	0.917178	0.459174	0.826614
r3	0.044381	0.487155	0.897790

In [30]:

```
y.loc[['r1','r3'],['c1','c2']]
```

Out[30]:

	c1	c2
r1	0.369921	0.405161
r3	0.044381	0.487155

In [31]:

у

Out[31]:

	с1	c2	с3
r1	0.369921	0.405161	0.165639
r2	0.917178	0.459174	0.826614
r3	0.044381	0.487155	0.897790

In [36]:

```
x=y[y>0.5]['c3']
```

In [33]:

Χ

Out[33]:

	c1	c2	с3
r1	NaN	NaN	NaN
r2	0.917178	NaN	0.826614
r3	NaN	NaN	0.897790

In [39]:

```
y[y>0.5]['c3']
```

Out[39]:

r1 NaN r2 0.826614 r3 0.897790

Name: c3, dtype: float64

```
In [38]:
```

Х

Out[38]:

r1 NaN r2 0.826614 r3 0.897790

Name: c3, dtype: float64

In [44]:

```
z=pd.DataFrame(np.random.rand(5,5),['R1','R2','R3','R4','R5'],
['C1','C2','C3','C4','C5'])
```

In [46]:

Z

Out[46]:

	C1	C2	C3	C4	C5
R1	0.220452	0.251384	0.480189	0.138022	0.599365
R2	0.966648	0.694482	0.849137	0.514044	0.986710
R3	0.125268	0.333992	0.615854	0.971583	0.150316
R4	0.573038	0.998836	0.461605	0.192233	0.326343
R5	0.417493	0.216326	0.227576	0.873046	0.943546

In [54]:

z[z['C1']>0.5]['C1']

Out[54]:

R2 0.966648 R4 0.573038

Name: C1, dtype: float64

In []:

In [55]:

Z

Out[55]:

	C1	C2	C3	C4	C5
R1	0.220452	0.251384	0.480189	0.138022	0.599365
R2	0.966648	0.694482	0.849137	0.514044	0.986710
R3	0.125268	0.333992	0.615854	0.971583	0.150316
R4	0.573038	0.998836	0.461605	0.192233	0.326343
R5	0.417493	0.216326	0.227576	0.873046	0.943546

In [56]:

```
r=z[z['C4']<0.5]['C4']
```

In [57]:

r

Out[57]:

R1 0.138022 R4 0.192233

Name: C4, dtype: float64

In [58]:

z['C4']<0.5

Out[58]:

R1 True

R2 False

R3 False

R4 True

R5 False

Name: C4, dtype: bool

In [59]:

```
s=z[z>0.5] & []
```

In [60]:

s

Out[60]:

	C1	C2	C3	C4	C5
R1	NaN	NaN	NaN	NaN	0.599365
R2	0.966648	0.694482	0.849137	0.514044	0.986710
R3	NaN	NaN	0.615854	0.971583	NaN
R4	0.573038	0.998836	NaN	NaN	NaN
R5	NaN	NaN	NaN	0.873046	0.943546

In [61]:

z

Out[61]:

	C1	C2	C3	C4	C5
R1	0.220452	0.251384	0.480189	0.138022	0.599365
R2	0.966648	0.694482	0.849137	0.514044	0.986710
R3	0.125268	0.333992	0.615854	0.971583	0.150316
R4	0.573038	0.998836	0.461605	0.192233	0.326343
R5	0.417493	0.216326	0.227576	0.873046	0.943546

In [62]:

z.reset_index()

Out[62]:

	index	C1	C2	C3	C4	C5
0	R1	0.220452	0.251384	0.480189	0.138022	0.599365
1	R2	0.966648	0.694482	0.849137	0.514044	0.986710
2	R3	0.125268	0.333992	0.615854	0.971583	0.150316
3	R4	0.573038	0.998836	0.461605	0.192233	0.326343
4	R5	0.417493	0.216326	0.227576	0.873046	0.943546

In [64]:

state= ['CA TX WY NY NC'.split()]

In [69]:

z.set_index(state, inplace=True)

In [71]:

Z

Out[71]:

	C1	C2	C3	C4	C5
СА	0.220452	0.251384	0.480189	0.138022	0.599365
тх	0.966648	0.694482	0.849137	0.514044	0.986710
WY	0.125268	0.333992	0.615854	0.971583	0.150316
NY	0.573038	0.998836	0.461605	0.192233	0.326343
NC	0.417493	0.216326	0.227576	0.873046	0.943546

In [72]:

Z

Out[72]:

	C1	C2	C3	C4	C5
СА	0.220452	0.251384	0.480189	0.138022	0.599365
TX	0.966648	0.694482	0.849137	0.514044	0.986710
WY	0.125268	0.333992	0.615854	0.971583	0.150316
NY	0.573038	0.998836	0.461605	0.192233	0.326343
NC	0.417493	0.216326	0.227576	0.873046	0.943546

In [1]:

import numpy as np

In [2]:

import pandas as pd

In [27]:

z = pd. DataFrame(np.random.rand(9).reshape(3,3)*100, ['Rutanshu', 'Heena', 'Karan'], ['History', 'Geography', 'Maths'])

In [8]:

Z

Out[8]:

	History	Geography	Maths
Rutanshu	55.669462	65.083363	4.864581
Heena	13.778152	29.080582	92.236913
Karan	49.056110	94.456614	74.419339

```
In [12]:
x=pd.Series([12,15,19],['a','b','c'])
In [13]:
Х
Out[13]:
     12
а
b
     15
     19
dtype: int64
In [15]:
list = [1,2,3]
In [18]:
np.array(list)
Out[18]:
array([1, 2, 3])
In [21]:
s=np.array([[1,2,3]])
In [22]:
s.shape
Out[22]:
(1, 3)
In [24]:
z=pd.DataFrame(s,['Rutanshu'],['History','Geography','Maths'])
In [25]:
z
Out[25]:
```

	History	Geography	Maths
Rutanshu	1	2	3

In [28]:

z

Out[28]:

	History	Geography	Maths
Rutanshu	8.341218	76.60617	34.255045
Heena	51.977966	19.19077	1.449494
Karan	55.814753	56.12741	78.609718

In [32]:

z.drop('Karan',inplace=True)

In [33]:

z

Out[33]:

	History	Geography	Maths
Rutanshu	8.341218	76.60617	34.255045
Heena	51.977966	19.19077	1.449494

In [34]:

Z

Out[34]:

	History	Geography	Maths
Rutanshu	8.341218	76.60617	34.255045
Heena	51.977966	19.19077	1.449494

In [35]:

z.drop('History',axis=1,inplace=True)

In [36]:

Z

Out[36]:

	Geography	Maths
Rutanshu	76.60617	34.255045
Heena	19.19077	1.449494

In [37]:

Z

Out[37]:

	Geography	Maths
Rutanshu	76.60617	34.255045
Heena	19.19077	1.449494

In [38]:

Z

Out[38]:

	Geography	Maths
Rutanshu	76.60617	34.255045
Heena	19.19077	1.449494

In [39]:

```
z['A']=z['Geography']+z['Maths']
```

In [40]:

Z

Out[40]:

	Geography	Maths	Α
Rutanshu	76.60617	34.255045	110.861215
Heena	19.19077	1.449494	20.640264

In [42]:

z['Geography']

Out[42]:

Rutanshu 76.60617 Heena 19.19077

Name: Geography, dtype: float64

In [43]:

z['A']

Out[43]:

Rutanshu 110.861215 Heena 20.640264 Name: A, dtype: float64

In [51]:

Z

Out[51]:

	Geography	Maths	Α
Rutanshu	76.60617	34.255045	110.861215
Heena	19.19077	1.449494	20.640264

In [55]:

```
z.loc[['Rutanshu'],['Geography','A']]
```

Out[55]:

	Geography	A
Rutanshu	76.60617	110.861215

In [56]:

```
z.loc['Rutanshu']
```

Out[56]:

Geography 76.606170 Maths 34.255045 A 110.861215

Name: Rutanshu, dtype: float64

In [57]:

z.loc['Heena']

Out[57]:

Geography 19.190770
Maths 1.449494
A 20.640264
Name: Heena, dtype: float64

In [60]:

a=z[z[]0]

```
File "<ipython-input-60-3fe9662cf143>", line 1
  a=z[z[]0]
```

SyntaxError: invalid syntax

In [61]:

z

Out[61]:

	Geography	Maths	Α
Rutanshu	76.60617	34.255045	110.861215
Heena	19.19077	1.449494	20.640264

In [72]:

z[z['A']<50][['A','Maths']]

Out[72]:

	Α	Maths
Heena	20.640264	1.449494

In [73]:

points=pd.DataFrame(np.random.rand(4,4),'India Australia Pakistan
West_Indies'.split(),'P W L Points'.split())

In [74]:

points

Out[74]:

	Р	w	L	Points
India	0.084774	0.124499	0.026374	0.836012
Australia	0.482796	0.236969	0.769871	0.956261
Pakistan	0.456510	0.836461	0.877085	0.427829
West_Indies	0.029037	0.302841	0.890738	0.305488

In [78]:

points[points['Points']>0.5][['P','Points']]

Out[78]:

	Р	Points
India	0.084774	0.836012
Australia	0.482796	0.956261

In [79]:

z

Out[79]:

	Geography Maths		Α
Rutanshu	76.60617	34.255045	110.861215
Heena	19.19077	1.449494	20.640264

In [80]:

points

Out[80]:

	Р	w	L	Points
India	0.084774	0.124499	0.026374	0.836012
Australia	0.482796	0.236969	0.769871	0.956261
Pakistan	0.456510	0.836461	0.877085	0.427829
West_Indies	0.029037	0.302841	0.890738	0.305488

In [87]:

Z

Out[87]:

	Geography	Maths	A	
Rutanshu	76.60617	34.255045	110.861215	
Heena	19.19077	1.449494	20.640264	

In [88]:

english=[10,20]

In [90]:

z['english'] = english

In [91]:

z

Out[91]:

	Geography	Maths	A	english
Rutanshu	76.60617	34.255045	110.861215	10
Heena	19.19077	1.449494	20.640264	20

In [92]:

Z

Out[92]:

	Geography	Maths	Α	english
Rutanshu	76.60617	34.255045	110.861215	10
Heena	19.19077	1.449494	20.640264	20

In [93]:

```
z['SS']=[12,40]
```

In [94]:

z

Out[94]:

	Geography	Maths	Α	english	SS
Rutanshu	76.60617	34.255045	110.861215	10	12
Heena	19.19077	1.449494	20.640264	20	40

In [95]:

points

Out[95]:

	Р	w	L	Points
India	0.084774	0.124499	0.026374	0.836012
Australia	0.482796	0.236969	0.769871	0.956261
Pakistan	0.456510	0.836461	0.877085	0.427829
West_Indies	0.029037	0.302841	0.890738	0.305488

In [103]:

In [100]:

```
new_index = ['UK','US','China','Russia']
```

In [104]:

points

Out[104]:

	Р	w	L	Points
India	0.084774	0.124499	0.026374	0.836012
Australia	0.482796	0.236969	0.769871	0.956261
Pakistan	0.456510	0.836461	0.877085	0.427829
West_Indies	0.029037	0.302841	0.890738	0.305488

In [105]:

new_index

Out[105]:

['UK', 'US', 'China', 'Russia']

In [111]:

newindex = 'UK','US','China','Russia'

In [112]:

newindex

Out[112]:

('UK', 'US', 'China', 'Russia')

In [116]:

points['Country']= newindex

In [117]:

points

Out[117]:

	Р	w	L	Points	Country
India	0.084774	0.124499	0.026374	0.836012	UK
Australia	0.482796	0.236969	0.769871	0.956261	US
Pakistan	0.456510	0.836461	0.877085	0.427829	China
West_Indies	0.029037	0.302841	0.890738	0.305488	Russia

In [122]:

z

Out[122]:

	Geography	Maths	Α	english	SS
Rutanshu	76.60617	34.255045	110.861215	10	12
Heena	19.19077	1.449494	20.640264	20	40

In [125]:

```
new_index = ('r','sas')
```

In [130]:

new_index

Out[130]:

('r', 'sas')

In [133]:

In [134]:

Z

Out[134]:

	Geography	Maths	Α	english	SS	Col
Rutanshu	76.60617	34.255045	110.861215	10	12	r
Heena	19.19077	1.449494	20.640264	20	40	sas

In [135]:

```
z.set_index('Col',inplace=True)
```

In [136]:

z

Out[136]:

	Geography	Maths	Α	english	ss
Col					
r	76.60617	34.255045	110.861215	10	12
sas	19.19077	1.449494	20.640264	20	40

In [137]:

Z

Out[137]:

	Geography	Maths	Α	english	ss
Col					
r	76.60617	34.255045	110.861215	10	12
sas	19.19077	1.449494	20.640264	20	40

In [141]:

```
z.drop ('A',axis=1,inplace=True)
```

In [142]:

7

Out[142]:

	Geography	Maths	english
Col			
r	76.60617	34.255045	10
sas	19.19077	1.449494	20

In [143]:

```
new_index = ('A','B')
```

In [146]:

```
z['new'] = new_index
```

In [147]:

z

Out[147]:

	Geography	Maths	english	new
Col				
r	76.60617	34.255045	10	Α
sas	19.19077	1.449494	20	В

In [149]:

```
z.set_index('new',inplace=True)
```

In [150]:

Z

Out[150]:

	Geography	Maths	english
new			
Α	76.60617	34.255045	10
В	19.19077	1.449494	20

In [2]:

```
import pandas as pd
import numpy as np
```

In [3]:

```
points=pd.DataFrame(np.random.rand(4,4),'India Australia Pakistan
West_Indies'.split(),'P W L Points'.split())
```

In [4]:

points

Out[4]:

	Р	w	L	Points
India	0.224448	0.765790	0.301159	0.247218
Australia	0.757083	0.522729	0.367672	0.846055
Pakistan	0.571082	0.880667	0.840488	0.029260
West_Indies	0.265322	0.417866	0.454936	0.780599

In [8]:

```
points.loc['India']['L']
```

Out[8]:

0.30115934602567662

In [11]:

```
points.loc['India'] [['P','W']]
```

Out[11]:

P 0.224448 W 0.765790

Name: India, dtype: float64

```
In [12]:
```

In [13]:

df

Out[13]:

	Α	В	С
0	1.0	5.0	1
1	2.0	NaN	2
2	NaN	NaN	3

In [16]:

```
df.dropna(axis=1, thresh = 2, inplace = True)
```

In [17]:

df

Out[17]:

	Α	U
0	1.0	1
1	2.0	2
2	NaN	3

In [27]:

```
d={'Rutanshu':(1,2,np.nan),'Heena':(1,4,5)}
```

In [4]:

```
import pandas as pd
import numpy as np
```

In [28]:

```
r=pd.DataFrame(d)
```

In [10]:

r

Out[10]:

	Heena	Rutanshu
0	1	1.0
1	4	2.0
2	5	NaN

In [11]:

r.dropna()

Out[11]:

	Heena	Rutanshu
0	1	1.0
1	4	2.0

In [12]:

r

Out[12]:

	Heena	Rutanshu
0	1	1.0
1	4	2.0
2	5	NaN

In [14]:

r.dropna(axis=1)

Out[14]:

	Heena
0	1
1	4
2	5

In [15]:

r

Out[15]:

	Heena	Rutanshu
0	1	1.0
1	4	2.0
2	5	NaN

In [32]:

```
r=r.fillna(value=r['Rutanshu'].mean())
```

In [24]:

```
label=('GRE','TOEFL','GMAT')
```

In [25]:

```
r=label
```

In [33]:

r

Out[33]:

	Heena	Rutanshu
0	1	1.0
1	4	2.0
2	5	1.5

In [34]:

```
r['Subjects'] = label
```

In [35]:

r

Out[35]:

	Heena	Rutanshu	Subjects
0	1	1.0	GRE
1	4	2.0	TOEFL
2	5	1.5	GMAT

In [36]:

```
r.set_index('Subjects')
```

Out[36]:

	Heena	Rutanshu
Subjects		
GRE	1	1.0
TOEFL	4	2.0
GMAT	5	1.5

In [37]:

In [39]:

```
df=pd.DataFrame(data)
```

In [50]:

```
df.groupby('Company').describe().transpose()
```

Out[50]:

Company	FB	В						GOOG		
	count	mean	std	min	25%	50%	75%	max	count	mean
Sales	2.0	296.5	75.660426	243.0	269.75	296.5	323.25	350.0	2.0	160.0

1 rows × 24 columns

←

In [58]:

In [59]:

scores

Out[59]:

	Maths	ss	Science	SrNo
Rutanshu	10	12	12	1
Heena	12	15	12	2
Karan	14	12	13	3

In [64]:

```
contact = pd.DataFrame(\{'SrNo': [1,2,3],'Mobile': [54646,654646,54654]\}, index = ['Rutanshu','Heena','Karan'])
```

In [65]:

contact

Out[65]:

	Mobile	SrNo
Rutanshu	54646	1
Heena	654646	2
Karan	54654	3

In [68]:

```
pd.merge(scores,contact, on='SrNo')
```

Out[68]:

	Maths	ss	Science	SrNo	Mobile
0	10	12	12	1	54646
1	12	15	12	2	654646
2	14	12	13	3	54654

In [3]:

```
import pandas as pd
import numpy as np
```

In [3]:

```
df = pd.DataFrame({'col1':[1,2,3,4],'col2':[444,555,666,444],'col3':
['abc','def','ghi','xyz']})
```

In [4]:

df

Out[4]:

	col1	col2	col3
0	1	444	abc
1	2	555	def
2	3	666	ghi
3	4	444	xyz

```
In [9]:
```

```
df['col2'].value_counts()

Out[9]:

444      2
555      1
666      1
Name: col2, dtype: int64

In [13]:

def rut(x): return x*3
```

In [14]:

```
df['col1'].apply(rut)
```

Out[14]:

0 31 62 93 12

Name: col1, dtype: int64

In [17]:

In [18]:

```
d=pd.DataFrame(data)
```

In [6]:

d

Out[6]:

			-	
	Α	В	С	D
0	foo	one	х	1
1	foo	one	у	3
2	foo	two	х	2
3	bar	two	у	5
4	bar	one	Х	4
5	bar	one	у	1

In [25]:

```
d.pivot_table(values='D',index=['A','B'],columns=['C'])
```

Out[25]:

	С	x	у
Α	В		
bar	one	4.0	1.0
Dai	two	NaN	5.0
foo	one	1.0	3.0
100	two	2.0	NaN

In [7]:

d

Out[7]:

	Α	В	С	D
0	foo	one	х	1
1	foo	one	у	3
2	foo	two	Х	2
3	bar	two	у	5
4	bar	one	Х	4
5	bar	one	у	1

In [13]:

```
d.drop('D',axis=1, inplace = True)
```

In [15]:

```
d.drop(0, inplace = True)
```

In [16]:

d

Out[16]:

	Α	В	С
1	foo	one	у
2	foo	two	х
3	bar	two	у
4	bar	one	х
5	bar	one	у

In [19]:

d

Out[19]:

	Α	В	С	D
0	foo	one	х	1
1	foo	one	у	3
2	foo	two	х	2
3	bar	two	у	5
4	bar	one	х	4
5	bar	one	у	1

In [20]:

d.sort_values(by = 'D')

Out[20]:

	Α	В	ပ	D
0	foo	one	х	1
5	bar	one	у	1
2	foo	two	х	2
1	foo	one	у	3
4	bar	one	Х	4
3	bar	two	у	5

In [22]:

pd.read_excel('Excel_Sample.xlsx',sheetname='Sheet1')

Out[22]:

	а	b	C	d
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11
3	12	13	14	15

In [25]:

pd.read_excel('CAREER PLAN.xlsx', sheetname='Sheet1')

Out[25]:

	Online Courses	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	SrNo	Name	Website	Fees	Mode of Pay	Time Frame	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	NaN	SQL certification	Oracle	249	exam	Dec END	NaN
4	NaN	Statistics	Coursera	NaN	NaN	Nov-Dec	NaN
5	NaN	Python	Udemy	14	NaN	Dec	NaN
6	NaN	R programming	Udemy	14	NaN	Dec	NaN
7	NaN	Excel Advanced	Udemy	14	NaN	Dec-Jan	NaN
8	NaN	Statistics with R	Coursera	NaN	NaN	Dec-Jan	NaN
9	NaN	Data Sci with Python	Coursera	NaN	NaN	NaN	NaN
10	NaN	Econometrics: Time Series	Coursera	NaN	NaN	NaN	NaN
11	NaN	Data Warehousing	Coursera	49	Per month	Dec-Jan	NaN
12	NaN	Analytics and Data Visulalization	Coursera	355	per course	Jan - March	NaN
13	NaN	Business Analytics	Coursera	533	per course	Dec-Jan	NaN
14	NaN	Machine Learning	Coursera	426	per course	NaN	NaN
15	NaN	Excel Advanced	Lynda	25	Per month	Dec-Jan	NaN
16	NaN	Python	Lynda	25	Per month	Dec-Jan	NaN
17	NaN	R programming	Lynda	25	Per month	Dec-Jan	NaN
18	NaN	Tableau	Lynda	25	Per month	Dec-Jan	NaN
19	NaN	Agile Project	Lynda	25	Per month	NaN	NaN

		Management	•				
	Online Courses	Unnamed: 1	Unnamed:	Unnamed:	Unnamed:	Unnamed: 5	Unnamed:
20	NaN	C++	Lynda	25	Per month	NaN	NaN
21	NaN	Java	Lynda	25	Per month	NaN	NaN
22	NaN	Hadoop, NoSQL	Lynda	25	Per month	NaN	NaN
23	NaN	HTML	Lynda	25	Per month	NaN	NaN
24	NaN	CSS	Lynda	25	Per month	NaN	NaN
25	NaN	JavaScript	Lynda	25	Per month	NaN	NaN
26	NaN	Certification of	Google Analytics	NaN	NaN	NaN	NaN
27	NaN	Data Structure and Algorithm	Coursera	NaN	NaN	NaN	https://www
28	NaN	Scala and Spark	Udemy	15	NaN	NaN	NaN
4							•

In [1]:

```
import numpy as np
```

```
In [2]:
```

```
x=np.array([1,2,3])
```

In [3]:

Out[3]:

Χ

array([1, 2, 3])

In [6]:

```
x=np.array([[1,2,3],[4,5,6],[7,8,9]])
```

In [7]:

Х

Out[7]:

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

In [8]:

```
y=np.arange(1,10)
```

```
In [9]:
У
Out[9]:
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [11]:
y=y.reshape(3,3)
In [12]:
У
Out[12]:
array([[1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]])
In [23]:
z=np.linspace(1,10,6)
In [24]:
z=np.array(z)
In [25]:
z
Out[25]:
array([ 1., 2.8, 4.6, 6.4, 8.2, 10.])
In [26]:
len(z)
Out[26]:
6
In [28]:
z=z.reshape(3,2)
In [29]:
Z
Out[29]:
array([[ 1. , 2.8],
         4.6, 6.4],
       [ 8.2, 10.]])
```

```
In [31]:
r=np.random.randint(1,100,15).reshape (3,5)
In [32]:
Out[32]:
array([[19, 19, 73, 37, 93],
       [90, 65, 16, 9, 21],
       [27, 11, 45, 87, 85]])
In [33]:
r.argmax()
Out[33]:
4
In [34]:
z.dtype
Out[34]:
dtype('float64')
In [35]:
x.dtype
Out[35]:
dtype('int32')
In [36]:
import randomint from random
  File "<ipython-input-36-7d1c8a0b634c>", line 1
    import randomint from random
SyntaxError: invalid syntax
In [1]:
import numpy as np
In [6]:
x=np.random.randint(1,50,10).reshape (2,5)
```