Electronics Foundations: Basic Circuits

with Barron Stone

Challenge

Challenge: Design the light detector circuit for a light-activated switch.

Circuit Description

The light detector circuit is built using a Wheatstone bridge to produce a differential output voltage.

- When the circuit is under light, Voltage A should be greater than Voltage B.
- When the circuit is in the dark, Voltage B should be less than or equal to Voltage A.

 $V_{A} = V_{in} \frac{10k\Omega}{10k\Omega+10k\Omega}$ $V_{in} = 5v$ $V_{A} = 2.5V$ Set $R_{p} = R_{V}$ So $V_{A} = V_{p}$ at the Calibration
light level $R_{p} = R_{V} = 5k\Omega$ at light level

Goal: Determine the value and location of the following components within the Wheatstone bridge.

- Photoresistor (approximately 1 k Ω in the light/10 k Ω in the dark) -
- Variable resistor ———
- Constant-value resistors