Designing the Frame of an Airplane Seat

Natalia Borysowska-Ślęczka

Obtained Results:

Simulations

Static Analysis:

<u>Distribution of stress according to the Mises criterion after a static analysis of the BASE MODEL:</u>

Topology Study:

Mass reduction (by 80%):

<u>Distribution of stress according to the Mises criterion after a static analysis of the NEW MODEL:</u>

RESULTS:

for the base frame \rightarrow mass = 7256.14 grams

for the new frame \rightarrow mass = 1930.99 grams

Maksymalne naprężenie wg Misesa Po analizie statycznej modelu bazowego Maksymalne Masa modelu Masa modelu 7256.14 g

17.173 Mpa

Po analizie statycznej nowego

modelu

CONSLUSIONS

The new model of the airplane seat frame, designed using topological optimization, shows a significant reduction in mass with an increase in maximum stress. The study allowed for a significant reduction in the weight of the seat frame, which is crucial in aviation for fuel savings and improving aircraft efficiency.

Mass distribution after topological optimization for various load cases:

1930.99 g

Mass distribution after topological optimization for various load cases and the area maintained for loads only:

