Bootcamp Practice Problems

August 2020

1 Distributions

1. Let $X \sim Exp(\theta)$. Show that $cX \sim Exp(\theta/c)$ where c is some constant.

2 Calculus

- 1. Find the derivatives of the following functions
 - $f(x) = xe^x$;
 - $f(x) = 1 \cos^2 x$;
 - $f(x) = \frac{\ln x}{x}.$
- 2. $f(x) = \frac{1}{\sqrt{\gamma}} \exp\left(-\frac{(x-\mu)^2}{\gamma}\right)$ where constants $\gamma > 0$ and $\mu \in \mathbb{R}$, and $x \in \mathbb{R}$. Calculate f'(x) and find $x_0 \in \mathbb{R}$ such that the tangent line of f(x) at x_0 is horizontal.
- 3. Find $\lim_{x\to 0} (1+x)^{1/x}$.
- 4. Which following functions are convex?

A
$$f_1(x) = |x|, x \in [-1, 1];$$

B
$$f_2(x) = \ln(x^2 + 1), x \in \mathbb{R};$$

$$C f_3(x) = e^{-x}, x \in \mathbb{R}.$$

- 5. Let $f(x) = \frac{1}{x}, x > 0$. For every positive integer n, find $f^{(n)}(x)$.
- 6. $f(x) = 4xe^{-2x}$ with $x \in (0, \infty)$ which is a Gamma(2,2) density. Find the global maximum of f(x).
- 7. Calculate $\int xe^x dx$.
- 8. Calculate $\int_1^e \frac{\ln x}{x} dx$.
- 9. Calculate $\int_0^{\pi} x \cos x dx$.
- 10. Find the limit of the sequence a_n where $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}$.
- 11. Let $a_n = \frac{2^n}{n!}$, $n \in \mathbb{N}$. Is the sequence a_n convergent? If so, what is its limit?
- 12. For a function such that $f'(x) \leq 0$, show that $\sum_{i=k+1}^{\infty} f(i) \leq \int_{k}^{\infty} f(x) \ dx \leq \sum_{i=k}^{\infty} f(i)$
- 13. Let $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$. If $\alpha > 1$, show that $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$.

3 Linear Algebra

- 1. Show, using the definition of a matrix product, that $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.
- 2. Show that the product of two upper-triangular matrices is also upper triangular. What is \mathbf{AB}_{ii} ?
- 3. Give an example of two symmetric matrices whose product is not symmetric. When will the product of two symmetric matrices be symmetric?
- 4. For a symmetric and positive definite $n \times n$ matrix A, show that $tr(AA) = \sum_{i=1}^{n} a_{i,i}^{T} a_{i,i}$, where $a_{i,i}$ is the *i*th row of A.
- 5. Suppose X^TX is an invertable $p \times p$ matrix. Find $tr(X(X^TX)^{-1}X^T)$.
- 6. Let X be an $n \times p$ matrix. Find the centering matrix C such that CX subtracts the column means of X and leaves the standard deviation of each column unchanged. Find the standardizing matrix operation such that the resulting matrix is equal to X with the column means of X subtracted and the resulting matrix has column standard deviations of 1.

4 Probability

- 1. Show that $\Gamma(1/2) = \sqrt{\pi}$, where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$.
 - Hint: Use *u*-substitution with $x = u^2$.
 - Hint: If we have f(x) is an even function about 0 then $\int_{-\infty}^{\infty} f(x)dx = 2\int_{0}^{\infty} f(x)dx$
- 2. Let X be a random variable with pdf

$$f(x) = \begin{cases} \frac{|x|}{10} & -2 \le x \le 4\\ 0 & o.w. \end{cases}$$

Calculate $\mathbb{E}[X]$.

- 3. Show that cov(X, Y) = E[XY] E[X]E[Y].
- 4. Show that Var(X + Y) = Var(X) + Var(Y) + 2cov(X, Y).
- 5. Suppose X and Y have joint density

$$f(x,y) = \begin{cases} 0.13e^{-0.5x - 0.2y} - 0.04e^{-x - 0.1y} - 0.06e^{-0.5x - 0.4y} + 0.16e^{-x - 0.4y} & x, y > 0 \\ 0 & o.w. \end{cases}$$

What is the standard deviation of X?

6. Let X and Y have joint density

$$f(x,y) = \begin{cases} \frac{8}{3}xy & 0 \le x \le 1, x \le y \le 2x \\ 0 & o.w. \end{cases}$$

Calculate the covariance of X and Y.

- 7. Let $X = \{-1, 0, 1\}$ each with probability 1/3, and let $Y = X^2$.
 - (a) What is cov(X, Y)?
 - (b) Are X and Y independent?
- 8. Let the joint pdf of X, Y, Z be defined as

$$f(x, y, z) = \begin{cases} \frac{1 - \sin(x)\sin(y)\sin(z)}{8\pi^3} & 0 \le x, y, z \le 2\pi \\ 0 & o.w. \end{cases}$$

- (a) Find the pdf for (X, Y).
- (b) Find the pdf for X.
- (c) Are X and Y independent?
- (d) Are X, Y, Z independent?
- 9. Show that if $X \sim Pois(\lambda)$ is independent of $Y \sim Pois(\theta)$, then $X + Y \sim Pois(\lambda + \theta)$
 - (a) Brute force approach
 - (b) MGF approach

10. A random variable X has pdf

$$f(x) = \begin{cases} 0.005(20 - x) & 0 < x < 20\\ 0 & o.w. \end{cases}$$

Given that X > 8, calculate the probability that X > 16.

- 11. Suppose we model X_1 and X_2 as independent $Exp(\lambda_1)$ and $Exp(\lambda_2)$ random variables. What is $\mathbb{E}[min(X_1, X_2)]$?
- 12. Challenge? Let X_1, \ldots, X_n be i.i,d, with pdf

$$f(x|\theta) = \begin{cases} \frac{2}{\pi\theta} \exp\left\{-\frac{x^2}{\pi\theta^2}\right\} & x \ge 0\\ 0 & o.w. \end{cases}$$

- (a) (Optional) Find the MLE for θ .
- (b) Define the random variable $Y = \frac{2}{\pi\theta^2} \sum_i X_i^2$. What distribution does Y follow? *Hint:* First find the distribution of $W_1 = \frac{2}{\pi\theta^2} X_i^2$.

5 Inference

- 1. For $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for known variance σ^2 , show that \overline{X} , the sample mean, is sufficient for μ .
- 2. Let X_1, \ldots, X_n be i.i.d $Poisson(\theta)$. Find the MLE for θ .
- 3. Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Find the MLEs of the mean μ and variance σ^2 .
- 4. Let X_1, \ldots, X_n be i.i.d. $Unif(0, \theta), \ \theta > 0$ unknown with pdf

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta \\ 0 & o.w. \end{cases}$$

Find the MLE for θ .

5. Let X_1, \ldots, X_n be i.i.d. $Unif(0, \theta), \ \theta > 0$ unknown with pdf

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x < \theta \\ 0 & o.w. \end{cases}$$

Show the MLE for θ does not exist.

6. Let X_1, \ldots, X_n be i.i.d. $Unif(\theta, \theta + 1), \theta$ unknown with pdf

$$f(x|\theta) = \begin{cases} 1 & \theta \le x \le \theta + 1 \\ 0 & o.w. \end{cases}$$

Show that the MLE for θ is not unique.

- 7. Let X_1, \ldots, X_n be i.i.d $Poisson(\theta)$. Find the Fisher Information $I_n(\theta)$ of the n observations.
- 8. Show that the MSE can be decomposed into the sum of the bias squared plus the variance of the estimator. Specifically, suppose δ is some estimate of the parameter of interest, θ . Show that $E[(\delta \theta)^2] = \text{Bias}(\delta)^2 + \text{Var}(\delta)$.
- 9. Consider an experiment where the sample size is random. First, draw $N \sim \text{Pois}(\lambda)$ and then collect the data from the sampling distribution: $X|N \sim \text{Binom}(N+1,p)$. We desire inference on p.
 - (a) Is X/(N+1) an unbiased estimate of p?
 - (b) Compare this experiment to one where N is fixed at N_f and $X_f \sim \text{Binom}(N_f, p)$. Is the variance of X_f/N_f always lower than the variance of X/(N+1) when N is a random variable?
 - (c) What does the fixed sample size have to be to ensure equal variances? Will the expected value of N be bigger or smaller than this fixed sample size?
- 10. Show that if a two-sided, equal tailed hypothesis test rejects the null, the confidence interval of the same significance level will not include 0.