Math 624 Spring 2012: Midterm exam

Problem 1 Suppose $f: \mathbf{R} \to \mathbf{C}$ is a C^k function (i.e., k-times continuously differentiable) and periodic of period 2π . Show that the Fourier coefficients of f,

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx},$$

satisfy the bounds

$$c_n = o(n^{-k})$$

(Recall that we say that $c_n = o(g(n))$ if $\lim_{n\to\infty} \frac{c_n}{g(n)} = 0$.) Hint: Induction

Problem 2 Let (X, \mathcal{M}) be a measurable space. Suppose $\{\nu_n\}$ is a sequence of measures on (X, \mathcal{M}) which is increasing in the sense that

$$\nu_n(A) \le \nu_{n+1}(A)$$

for all $n = 0, 1, \dots$ and all $A \in \mathcal{M}$. Define ν by

$$\nu(A) = \lim_{n \to \infty} \nu_n(A)$$

Show that ν is a measure.

Problem 3 Let (X, \mathcal{M}, μ) be a *finite* measure space $\mu(X) < \infty$. Let \mathcal{F} be the set of all complex valued measurable functions on X (finite valued but not necessarily integrable). For $f, g \in \mathcal{F}$ let us define

$$\rho(f,g) \, = \, \int_X \frac{|f-g|}{1+|f-g|} \, d\mu \, .$$

Prove the following assertions

- 1. $0 \le \rho(f,g) < \infty$ and $\rho(f,g) = 0$ if and only if f = g a.e.
- 2. $\rho(f, q) = \rho(q, f)$
- 3. $\rho(f,h) \le \rho(f,g) + \rho(g,h)$
- 4. If $\{f_n\}$ satisfies $\lim_{m,n\to\infty} \rho(f_n,f_m)=0$, then there exists a complex-valued measurable function g such that $\lim_{n\to\infty} \rho(f_n,g)=0$.
- 5. For a sequence $\{f_n\}$ in \mathcal{F} and $f \in \mathcal{F}$ we have $\lim_{n\to\infty} \rho(f_n, f) = 0$ if and only if f_n converges to f in measure.

Note that this problem shows that the set of measurable functions on a finite metric space can be seen as a complete metric space, and that the metric ρ is the metric of convergence in measure.

Problem 4 Let ν be a Borel measure on the positive real line $[0,\infty)$ such that

$$\Phi(t) = \nu([0, t))$$

is finite for every t > 0.

Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function. For every t consider the level set

$$S(t) = \{x \in X; f(x) > t\}.$$

1. Prove that

$$\int_X \Phi(f(x)) d\mu \, = \, \int_{[0,\infty)} \mu(S(t)) \, d\nu$$

2. Compute this formula for (a) $d\nu = dt$, (b) $d\nu = pt^{p-1}dt$ and (c) $\nu = \delta_{t_0}$ (the delta measure at t_0).

Problem 5 Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ given by

$$g(x,y) = \begin{cases} 2 & \text{if } 0 \le y \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Let μ be the measure on \mathbf{R}^2 which is absolutely continuous with respect to the Lebesgue measure $m \times m$ on \mathbf{R}^2 with Radon Nikodym derivative

$$\frac{d\mu}{d(m\times m)}=g$$

Let $T: \mathbf{R}^2 \to \mathbf{R}$ be the map given by T(x,y) = x and and let $\tau = \mu \circ T^{-1}$ be the measure on \mathbf{R} given by

$$\tau(A) = \mu(T^{-1}(A))$$

Find the Lebesgue decomposition of the Lebesgue measure m on R with respect to τ , $m = m_{ac} + m_{sing}$ and compute the Radon-Nykodym derivative $\frac{dm_{ac}}{d\tau}$.