



|   | € 百步气道大学                                                                                                                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 7.1 二进制运算与量化                                                                                                                                            |
|   | 一、定点与浮点                                                                                                                                                 |
| J | 在整个运算中,小数点在二进制数码中的位置是固定不变的,称为定点制。如<br>M=101.1101,如果这种七位字长的数其小数点始终固定在第三位上,就是定点的。<br>M=101.1101所代表的十进制数为                                                  |
|   | $\left(1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\right) + \left(1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}\right) = 5.8125$ |
|   | 通常定点制都把数限制在 ±1, 即-1 <m<1。这样就把小数点规定在第一位< td=""></m<1。这样就把小数点规定在第一位<>                                                                                     |
|   | 二进制码之前,面把整数位作为"符号位",代表数的正负号,数的本身只有小数部分,称为"尾数"。定点制的在实际应用中的框图如下:                                                                                          |
|   | 201011101 0.01011101<br>2x=101.1101 归一化,尾数符<br>号位及阶码分离                                                                                                  |
|   | 2 <sup>1</sup> ⇒ 2 <sup>100</sup> 可以看到:进入定点割之前要归一化和符号位处理,加之要考虑运算中的溢出问题,我们必须引入"阶码",这里的2 <sup>200</sup> 的100就是相应的阶码。                                      |

( 百安克道大學

浮点制的<mark>乘法是尾教相乘,阶码相加</mark>,尾教<mark>相乘过</mark>程与定点制相同,因此也 要作截尾或合入的处理。

浮点侧的相加需要分三步进行: 第一步要对位,使两敷的阶码相等;第二步是相加;第三步是使结果归一化并作尾敷和阶码处理。例如:  $x=0.1010 \times 2^{100}$   $y=0.1101 \times 2^{100}$  相加时,首先要将 y 调整到  $y=0.001101 \times 2^{100}$ ,然后再相加

0.1010 ×2<sup>100</sup> + 0.001101×2<sup>100</sup> 由近 0.110101×2<sup>100</sup>

是數載尾或會入处理后得到  $x+y=0.1101\times 2^{100}$ 。 由此可见浮点制的优点是动态范围很大,一般可以不考虑溢出问题。

但在浮点制的运算处理过程中,不论是相乘还是相加,都需要反复考虑归一化和 对位及阶码等问题,比定点制复杂的多,运算量也大的多,所以在实际中用的比 较少一些。本课程内容主要涉及<mark>定点制,</mark>侧重讨论采样量化和量化噪声问题。

 $\beta_0.\beta_1\beta_2\cdots\beta_b$ 

(7-1)

( 百安克道大学

# 二、负数表示法:原码与补码

不论是定点制还是浮点制的尾数都是将整数位用作符号位,其一般的(b+1)位码的形式为:  $\beta_0$ - $\beta_1$  $\beta_2$ ····· $\beta_b$ ,这里每个 $\beta_i$  代表第i 位二进码, $\beta_i$  可以取0或1, $\beta_0$  代表 符号位  $\beta_i$  至  $\beta_b$  代表 b 位字长的尾数值。由于负数表达形式的不同,二进码又可分为原码、补码和反码三种。由于经常使用的就是原码和补码,所以这里我们仅讨论这两种码。

### (1) 原码

原码也称为 "符号—幅度码",它的尾数部分代表数的绝对值(即其幅度大小),符号位代表数的正负号,一般  $eta_o=0$  代表正数, $eta_o=1$  代表负数。例如 x=0.110 表示的是 +0.75,而 x=1.110 则表示的是 -0.75。原码所代表的十进制数值可表示为

$$x = (-1)^{\beta_0} \sum_{i=1}^{b} \beta_i 2^{-i}$$
(7-2)

原码的优点是乘除运算方便,不论是正负数乘除运算都一样,并以符号位简单 地决定结果的正负号。但加减运算则不方便,因为两数相加,先要判断两数符号是 否相同。若相同则做加法;若不同则做减法。此时还要判断两数绝对值的大小,以 便用大者减心者。

( 百安克通大學

# (2) 补码

补码中负数是采用2的补数来表示。也即当 x 为负数时,则用 x 对2的补数  $x_c$  来代表 x ,  $x_c$  的十进位值可按以下公式计算

$$x_c = 2 - |x| \tag{7-3}$$

例如 x=-0.75 ,在原码中表示为1.110,在补码中  $x_c=2-0.75=1.25$ ,因此补码表示为1.010,这个整数1正好代表了负数。对于一般形式的式(7-1),补码所代表的十进数值可表示为

$$x = -\beta_0 + \sum_{i=1}^{b} \beta_i 2^{-i}$$
 (7-4)

● 例如 补码1.110,按照上式就知道其所表示的数为 x=-1+0.75=-0.25

采用补码后,加法运算就方便了,不论数的正负都可直接相加,而且符号位也同样参加运算,如果符号位发生进位,把进位的1丢掉就可以了。

(金) 百安克道大学

下面以b=3 为例,列表表示了原码和补码各自所表达的数字。

### 表7-1 原码和补码的表示法

| 二进制数  | 原码值 | 补码值 | 二进制数  | 原码值  | 补码值  |
|-------|-----|-----|-------|------|------|
| 0.111 | 7/8 | 7/8 | 1.000 | -0   | -1   |
| 0.110 | 6/8 | 6/8 | 1.001 | -1/8 | -7/8 |
| 0.101 | 5/8 | 5/8 | 1.010 | -2/8 | -6/8 |
| 0.100 | 4/8 | 4/8 | 1.011 | -3/8 | -5/8 |
| 0.011 | 3/8 | 3/8 | 1.100 | -4/8 | -4/8 |
| 0.010 | 2/8 | 2/8 | 1.101 | -5/8 | -3/8 |
| 0.001 | 1/8 | 1/8 | 1.110 | -6/8 | -2/8 |
| 0.000 | 0   | 0   | 1.111 | -7/8 | -1/8 |

由表中可见,每种码均可以组成±23=±8种数,原码中的0有两个数码表示, 因此三位码共能表达±7/8以内的15个数值,而在补码中0只有唯一一个表达形 式,因此补码的三位码可表达从-1到+7/8之间的16个数值。

| THE R | 五生   | 410 | 3 | + | N |
|-------|------|-----|---|---|---|
| 17871 | 10-3 | x   | 进 | ^ | 3 |

### 三、量化方式: 截尾与舍入

不论是定点制中的乘法还是浮点制的乘法和加法,运算完毕后都会使字长增加。例如原是 b 位字长,运算后增长到 b<sub>1</sub> 位字长,因而都需要对尾数作量化处理使 b<sub>1</sub> 位字长缩减为 b 位字长。 截尾处理是保留 b 位码,抛掉余下的尾数;而<mark>含入处</mark>理则是按接近的值取 b 位码。

这两种处理所产生的误差是不一样的,此外,不同的码制所得结果也不 样。我们来分别加以分析。并且侧重于定点制含入量化方式。

# (1) 定点制的截尾与舍入误差

我们先分析定点制的截尾处理。对于正数,原码和补码的形式都是相 同的,即一个 $b_1$ 位的正数x为

$$x = \sum_{i=1}^{b_1} \beta_i 2^{-i} \tag{7-6}$$

我们以[·]表示量化处理,而以[·]<sub>T</sub>表示截尾处理,因此

$$[x]_{T} = \sum_{i=1}^{b} \beta_{i} 2^{-i}$$
 (7-7)

# (金) 百岁交通大学

以 $E_T$ 表示截尾误差:  $E_T = [x]_T - x = -\sum_{i=1}^{p_i} \beta_i 2^{-i}$ (7-8) 上式表明截尾误差总是负的,并且在β;全部为1时,具有最大误差:

 $E_{\scriptscriptstyle T} = -\sum_{i=1}^{b_{\scriptscriptstyle 1}} \beta_{\scriptscriptstyle i} \, 2^{-i} = -\left(2^{-b} - 2^{-b_{\scriptscriptstyle 1}}\right) \; , \; \text{in } p \; -\left(2^{-b} - 2^{-b_{\scriptscriptstyle 1}}\right) \leq E_{\scriptscriptstyle T} \leq 0 \; \; \circ \; \;$ 

 $-般来说2^{-b_1} \ll 2^{-b}$  , 并以q表示2<sup>-b</sup>, 即:  $q=2^{-b}$ 

q是最小码位所代表的数值, 称为"量化宽度"或"量化阶"。因此正数 的截尾误差为: - q < E<sub>T</sub> ≤ o

对于负数,原码和补码的表达方式不同,误差也不同。

对于原码负数  $(\beta_0=1)$  :  $x=-\sum_{i=1}^{b_1}\beta_i 2^{-i}$  ,  $[x]_r=-\sum_{i=1}^{b}\beta_i 2^{-i}$  , 所以有  $E_T = [x]_T - x = \sum_{i=1}^{b_1} \beta_i 2^{-i}$  ,可见原码负数的误差是正的,即  $0 \le E_T < q$  。

例如 b<sub>1</sub> 为四位, b 为两位时, 负数 x =1.1010 (-0.625), [x]<sub>T</sub>= 1.10 (-0.5),  $E_T = [x]_T - x = -0.5 - (-0.625) = 0.125 > 0$ .



| 金入处理:对于舍入处理,由于是按最接近的数取量化,所以不论是正数、负数,也不论是原码还是补码,其误差总是在±q/2之间。我们以[·] <sub>R</sub> 表                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 示舍入处理。 例如                                                                                                                                                                                                                                  |
| $x=0.1001$ , $[x]_R=0.10$ 含去 $0.0001$ ,误差为 $\beta-2^4$ , $x=0.1011$ , $[x]_R=0.11$ 将 $0.0011$ 取入为 $0.01$ ,误差 为+ $2^4$ , $x=0.1010$ ,则 $x$ 与 $0.10$ 及 $0.11$ 距离相等,因此 $[x]_R$ 既可以取 $[x]_R=0.10$ ,也可以取 $[x]_R=0.11$ ,这一点的选择对误差影响并不大。一般就可以接四含五 |
| 入的规则, "逢5进1", 因此取[x] <sub>R</sub> =0.11。 图7.2 定点制舍入处理的量化特性                                                                                                                                                                                 |
|                                                                                                                                                                                                                                            |

|                        |                                                                                                                                                        | ● お子気道大学 NAM HAUTONG UNIVERSITY                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ■(2) 浮点制的包             | 入误差                                                                                                                                                    |                                                                          |
| 在浮点制                   | 制中截尾或舍入的处理只影                                                                                                                                           | 响尾数的字长,但是所产生的误                                                           |
| 差大小却与图                 | 个码的值有关。例如 x <sub>1</sub> 和 x <sub>2</sub>                                                                                                              | 为两个不同阶码的数:                                                               |
| 浮点制数                   | $x_1 = 0.1001 \times 2^{000} (= 0.5625)$                                                                                                               | $x_2 = 0.1001 \times 2^{011}  (= 4.5)$                                   |
| 量 化                    | $[x_1] = 0.10 \times 2^{000}  (=0.50)$                                                                                                                 | $[x_2] = 0.10 \times 2^{011}  (= 4.0)$                                   |
| 误 差                    | $E_1 = [x_1] - x_1 = -0.0625$                                                                                                                          | $E_2 = [x_2] - x_2 = -0.5$                                               |
| 应的量化误差E<br>有关的,所以用     | 。<br> 也比   大8倍。这说明在浮点<br> 相对误差比用绝对误差更能反                                                                                                                | 去的情况下,由于x <sub>2</sub> 比x <sub>1</sub> 大8倍,相<br>制中量化误差是与数字本身的大小<br>映其特点。 |
| 相对量化误                  | 差定义为 $\varepsilon = \frac{[x]-x}{x}$                                                                                                                   | (7-15)                                                                   |
|                        | 误差就可以表示为 E=[x]                                                                                                                                         | - x =8x .                                                                |
| 为 c, 则 -2°<br>数 x 是归一化 | <b>整花園。</b> 当采用含入处理时,<br>fq/2 < [x] <sub>R</sub> -x ≤ 2 <sup>c</sup> q/2 , 所以存<br>的浮点数,因此 2 <sup>c-1</sup> ≤  x  < 2 <sup>c</sup><br>17)代入不等式(7-16)就可: | (7-17)                                                                   |

# 7.2 采样、A/D变换与量化效应 一、连续、高水与女子作于 信号就是取值随着时间或空间的变化而改变的物理变量。为了能简洁的表述这个概念,除非特殊说明我们总假定该自变量代表时间。如果这个信号的值在一段连续时间后是有效可取的,那么我们称该信号为一个连续时间信号的例子。 在许多感兴趣的实际应用中,信号仅在一些离散时刻取值有效,这就是我们所说的离散时间信号。也就是成,根据自变量的取值是连续还是离散,可以将信号分为连续时间信号和离散时间信号。 "是说,根据自变量的取值是连续还是离散,可以将信号分为连续时间信号和离散时间信号—个个生离散时间信号和离散时间信号—个产生离散时间信号来(k)的方法,就是通过对连续时间信号进行如下采样:x(k)—x<sub>c</sub>(kT)、k=0,1,2,…

图7.4 采样间隔T=0.25秒的离散

时间信号 x(k)

这里T为采样时间间隔,单位为秒。采样间隔也可以

用T的倒数来表示,此时我们称之为采样频率 $f_s$ 。







| ∥7.3 量化噪声的统计分析与处理                                                                                                                                                                                                                                                                   | ● お子気道大学<br>WAS HANTEDS UNIVERSITY                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 一、量化效应的统计分析                                                                                                                                                                                                                                                                         |                                                                        |
| 式 (7-24) 和 (7-26) 虽然分析了量化误差的范围,但是要误差究竟多大几乎是不可能的。因为这要看信号的具体情况而定;要。一般我们只要知道误差的一些平均效应就够了,就可以作为非例如由此可以确定A/D变换所需字长、选择A/D芯片、滤波电路的采样速率等的依据,所以对于量化误差采用统计分析的方法是合量化误差e(n)统计模型的一些假定: x_(t) 是一个平稳的随机序列; (2) e(n)是一个平稳的随机序列; (3) e(n)具有均匀等概的分布; 图7.10 A/D变换的统计(4) e(n)序列本身的任意两个值之间也是不相关的,即e(n)是白 | 同时这也没有必<br>校们设计的依据了。<br>结构以及确定实际<br>合适的。<br>x(n) = x(n) + e(n)<br>分析模型 |
| 根据这样的假定,量化误差就是一个与信号序列完全不相关的<br>此也称为量化噪声,它与信号的关系是加性的。这样,一个实<br>可以看作为一个理想的A/D变换并在英输出端加入了一个白色。                                                                                                                                                                                         | 际的A/D变换就                                                               |

| (金) お子交互人が<br>は不ら [Addition Contract                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 应该注意到:这种统计假设并不一定符合实际情况,例如输入xa(t)是直流或者方波这一类规则信号时,显然误差不能认为是线性独立(正交),也不能认为其功率谱是白色的,也就不能使用这一模型。但是对于大多数不规则的自然信号来说,这种假设就非常接近实际。因此作为一种平稳随机信号的概率统计特性分析来说,这些假设是合适的。                                                                                                                        |
| 作为 <b>白噪声序列</b> ,我们来计算一下e(n)的均值 $m_e$ 和方差 $\sigma_e^2$ $m_e = E[e(n)] = \int_{-\infty}^{\infty} e P_i(e) de$ $(7-27)$ $\sigma_e^2 = E[(e(n)-m_e)^2] = \int_{-\infty}^{\infty} (e-m_e)^2 P_i(e) de$ $(7-28)$ $\psi$ |

(金) 百安克通大学

例如:字长b=10时, $q^2 = 2^{-20}$ ,量化噪声的方差  $\sigma_c^2 = 7.95 \times 10^{-8}$ ,A/D变换器输出信号的最大绝对值不超过1。因此 $\sigma_c^2$  比最大信号值低71dB( $=-10\log_{10}(\sigma_c^2)$ )。当字长增加到15位时, $\sigma_c^2 = 7.76 \times 10^{-11}$ ,这时 $\sigma_c^2$  就比最大信号值低10dB。= 3然字长越长A/D变换器的信噪比越高。但字长过长也没有必要,因为输入信号 $\chi_a(t)$ 本身有一定的信噪比,A/D变化的量化阶q比 $\chi_a(t)$ 的噪声电平低的多是沒有意义的。

另外,我们看到截尾噪声具有直流分量,将影响信号的频谱结构,因此一般总是更 愿意采用舍入量化处理。我们以后也只讨论舍入量化。

## 二、量化误差的时城(统计)表达

- (1) 数学期望  $m_e = E\left[e(n)\right] = \int_{-\infty}^{\infty} e P_1(e) de$   $m_e \Rightarrow$  直流分量,  $m_c^2 \Rightarrow$  直流分率。
- (2) 均方值  $E[e^*(n)e(n)] = E[|e(n)|^2] = \int_{-\infty}^{\infty} |e|^2 P_1(e) de$  "总功率"或"平均功率"
- (3) 方差  $\sigma_e^2 = E\left[\left(e(n) m_e\right)^*\left(e(n) m_e\right)\right] = E\left[\left|\left(e(n) m_e\right)\right|^2\right] = \int_{-\infty}^{\infty} \left|\left(e m_e\right)\right|^2 P_1(e) de$

方差是"交流功率", 总功率=直流功率+交流功率=平均功率。

# ( 百安克夏大学

則 政治  $E\left[\left|e\left(n\right)\right|^{2}\right]=m_{e}^{2}+\sigma_{e}^{2}$   $\Rightarrow$   $\sigma_{e}^{2}=E\left[\left|e\left(n\right)\right|^{2}\right]-m_{e}^{2}$ 

这三者(总功率、直流功率和交流功率)都只和一维概率密度有关。而对于平稳随机量化噪声而言,概率密度与时间n是无关的。以下会涉及到二维概率。

(4) 自相关函数

$$\phi_{ee}(m) = E[e^*(n_1)e(n_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e_1^* e_2 P_2(e_1, e_2, m) de_1 de_2 = E[e^*(n)e(n+m)]$$

(5) 自协方差函数

$$\begin{aligned} & \mathcal{F}_{ee}(m) = E\Big[\Big(e(n_1) - m_e^*\big)^* (e(n_2) - m_e^*\big)\Big] = E\Big[\Big(e(n) - m_e^*\big)^* (e(n+m) - m_e^*\big)\Big] \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (e_1 - m_e^*)^* (e_2 - m_e^*) P_2(e_1, e_2, m) de_1 de_2 \end{aligned}$$

$$\therefore \quad \gamma_{ee}\left(m\right) = \phi_{ee}\left(m\right) - m_e^2 \qquad \text{这里误差均值 } m_e = 0 \ , \ \text{所以 } \gamma_{ee}\left(m\right) = \phi_{ee}\left(m\right)$$

量化误差e(n)是一个平稳的随机过程,所以其均值 $m_e$ ,均方值 $E[|e|^2]$ 和方差 $\sigma_e$ 2均与n无关。而自相关函数和自协方差函数中的 $m=n_2\cdot n_1$ ,是时间差的概念。所以可以看出自相关函数 $\phi_{ee}$ (m)和自协方差函数 $\gamma_{ee}$ (m)均为m的函数。实际上,考虑到平稳随机过程的"各态历经"的假设:集合的平均就等于时间的平均。据此,"相关"在实际中就是我们以前讲的"内积"。

# (金) 百安克通大学

国 为  $\gamma_{ee}\left(m\right)=\phi_{ee}\left(m\right)$  , あ 当  $n_{\mathrm{l}}=n_{\mathrm{l}}=n$  時,  $m=n_{\mathrm{l}}-n_{\mathrm{l}}=n-n=0$  , 所 以 有  $\gamma_{ee}\left(0\right)=\phi_{ee}\left(0\right)=E\left[e^*\left(n\right)e\left(n\right)\right]=E\left[\left|e\left(n\right)\right|^2\right]=\sigma_e^2$ 

量化噪声序列e(n)是一个零均值的白噪声序列,所以其自相关函数应为

(アグラウに田)定 「今の国的日本  $\rho$  アグリ、 が以来日相大函数 $\mathbb{Z}$   $\phi_{ee}(m) = \sigma_e^2 \delta(m)$ 

根据Wiener-Khinchin定理: 自相关函数与功率谱是一对傅里叶变换对,即

$$\begin{cases}
P_{ee}(\omega) = \sum_{m=-e}^{e_e} \phi_{ee}(m) e^{-j\omega m}, & \Rightarrow P_{ee}(\omega) = \sigma_e^2 \\
\phi_{ee}(m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{ee}(\omega) e^{j\omega m} d\omega, & \Rightarrow \phi_{ee}(m) = \sigma_e^2 \delta(m)
\end{cases}$$

而我们应该注意到: 这里的ω是数字角频率, 它与采样前所用的模拟角频率Ω是有关系的ω=ΩT。据此, 我们代入这一关系式, 有

有关系的 
$$\omega$$
= $\Omega$ T。据此,我们代入这一关系式,有  $\phi_{ee}(m) = \frac{T}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} P_{ee}(\Omega T) e^{j\Omega T m} d\Omega = \sigma_e^2 \delta(m)$ 

同时我们前边已经看到量化误  $\sigma_e^2 = q^2/12$  差的方差与量化台阶大小有关

这就说明:噪声谱密度 不仅与量化台阶大小 有关,也与采样频率 f<sub>s</sub>=1/T有关系。







8位A/D变换器的量化方差:  $\sigma_e^2 = 2^{-16}/12 = 1.273 \times 10^{-6}$ 



而知果我们将A/D变换器换成10位A/D变换器,则  $\sigma_e^2 = \frac{2^{-20}}{12} = 7.947 \times 10^{-8}$ 。可见,10位的A/D变换器的曼化噪声方差会比8位的小的多了。曼化噪声的方差是衡量A/D变换器水平主要指标。

(2) 不换A/D芯片,不改变采样速率,改进中频采样A/D量化性能的措施

以上我们已经看到:量化噪声的方差是衡量AID变换器水平主要指标。要想不 换AID变换芯片,改善AID量化的性能,就可以从减小量化噪声的方差看手。可以 通过对图7.14中频采样与AID变换量化噪声输出e(n)的滤波处理来减小量化噪声, 而这种滤波不应伤及信号X(n)。据此,我们采用如下滤波处理.



( 百安克通太學

截至頻率为65MHz-75MHz。这样式 (7-33) 和式 (7-34) 可以得出带通滤波后量化 噪声e<sub>(</sub>(n)的方差

 $\sigma_{j}^{2} = \frac{\sigma_{s}^{2}}{2\pi} \int_{-\pi}^{\pi} \left| H_{d} \left( e^{j\omega} \right) \right|^{2} d\omega, \qquad \dot{\Xi} \tilde{\Xi} \tilde{\Xi} | \omega = \Omega T, \; \Omega = \frac{\omega}{T} = \omega f_{s}, \; d\omega = T d\Omega$ 

 $=\frac{\sigma_c^2 T}{2\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| H_d\left(e^{\jmath \Omega T}\right) \right|^2 d\Omega, \qquad \text{$\not=$$ $\not=$} \beta \otimes 1.15 \text{$\uparrow$} + \text{$\uparrow$} \oplus 1.15 \text{$\downarrow$} \oplus 1.$ 

 $=\frac{\sigma_{\epsilon}^2}{2\pi f_s} \int_{-\pi f_s}^{\pi f_s} \left| H_d \left( e^{j\Omega T} \right) \right|^2 d\Omega = \frac{\sigma_{\epsilon}^2}{2\pi f_s} \left\{ \int_{-\frac{75}{80}\pi f_s}^{\frac{65}{80}\pi f_s} d\Omega + \int_{\frac{55}{80}\pi f_s}^{\frac{75}{80}\pi f_s} d\Omega \right\} = \frac{\sigma_{\epsilon}^2}{2\pi f_s} \cdot \frac{2\pi f_s}{8}$ 

所以有:  $\sigma_f^2 = \frac{\sigma_e^2}{8}$ 

这意味着:由于带通滤波的作用,使得量化噪声的功率减小了7/8、A/D量化器的性能大为改善了。这样的改善等价于我们采用了多少位的A/D变换器呢?下面我们来分析一下:量化噪声方差 $q=q^2/12$ ,其中 $q=2^{-N}$ ,所以现对于8位A/D而言,

$$\frac{2^{-2N}}{12} = \sigma_f^2 = \frac{\sigma_e^2}{8} = \frac{\binom{q^2/12}{8}}{8} = \frac{(2^{-8})^2}{8 \times 12} = \frac{2^{-16}}{8 \times 12} \implies N = 9.5$$

- N=9.5这意味着我们在没有更换AID芯片,也没有改变采样途率的条件下,用8位 AID芯片达到了9.5位AID芯片的性能。这当然是非常有意义的。
- (3) 改变采样速率,改进中频采样A/D量化性能的措施

目前采样速率在500MHz以下的8位A/D芯片较为通用,市场售价便宜,性价比高。据此,我们可以在(2)中改造的基础上,通过适当地提高采样速率(不超过500MHz),例如:从原来的160MHz提高到320MHz,从而实现A/D量化性能的进一步改善。这样带通滤波的截至频率仍为65MHz-75MHz。量化噪声e(n)的方差为

$$\sigma_f^2 = \frac{\sigma_s^2}{2\pi f_s} \int_{-\pi f_s}^{\pi f_s} \left| H_d \left( e^{j\Omega T} \right) \right|^2 d\Omega = \frac{\sigma_s^2}{2\pi f_s} \left\{ \int_{\frac{160}{150}\pi f_s}^{\frac{65}{150}\pi f_s} d\Omega + \int_{\frac{160}{150}\pi f_s}^{\frac{150}{150}\pi f_s} d\Omega \right\} = \frac{\sigma_s^2}{2\pi f_s} \cdot \frac{2\pi f_s}{16} \cdot \frac{2\pi f_s}{16}$$

所以有:  $\sigma_f^2 = \frac{\sigma_e^2}{16} = 2^{-4} \sigma_e^2$ 

量化噪声的功率减小到原来的1/16了,A/D量化性能大为改善。也计算等价位数

$$\frac{2^{-2N}}{12} = \sigma_f^2 = \frac{\sigma_e^2}{16} = \frac{\left(q^2/12\right)}{2^4} = \frac{2^{-16}}{2^4 \times 12} \implies 2^{-2N} = 2^{-20} \implies N = 10$$

| ● お子気道大学<br>UND ANDROIS CONTRACT                                                                                                             |                                        |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------|
| N=10这意味着:我们通过适当提高采样选率和设置带通滤波器,用8位A/D芯片达到了10位A/D芯片的性能。这时的量化噪声方差已不再是8位的1.273×10 <sup>6</sup> ,而是10位对应的7.947×10 <sup>8</sup> 了,量化噪声的功率减小了两个数量级。 |                                        | <br> | <br> |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        | <br> | <br> |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
|                                                                                                                                              |                                        |      |      |
| <b>● 百步</b> 艾夏大學                                                                                                                             |                                        |      |      |
| ● 6考交包大學                                                                                                                                     |                                        |      |      |
| ● 百步沒至大學                                                                                                                                     |                                        |      |      |
|                                                                                                                                              | <u>-</u>                               |      |      |
| 采样、量化及量化噪声小结  (1) A/D量化由于有限位数、有限精度的限制会产生量化噪声,这种含入量化噪声                                                                                        | —————————————————————————————————————— |      |      |
| 采样、量化及量化噪声小结  (1) A/D量化由于有限位数、有限精度的限制会产生量化噪声, 这种含入量化噪声是一种零均值的白噪声。  (2) 量化噪声的方差 (功率) =q²/12, 其中Q是量化阶 (量化台阶), $q=2^{-N}$ ,                     |                                        |      |      |
| 采样、量化及量化噪声小结  (1) A/D量化由于有限位数、有限精度的限制会产生量化噪声,这种含入量化噪声是一种零均值的白噪声。                                                                             |                                        |      |      |
| 采样、量化及量化噪声小结  (1) A/D量化由于有限位数、有限精度的限制会产生量化噪声,这种含入量化噪声是一种零均值的白噪声。  (2) 量化噪声的方差 (功率) =q²/12, 其中q是量化阶 (量化台阶), $q = 2^{-N}$ , N是A/D量化的位数。        | —————————————————————————————————————— |      |      |