一、是非判断(对的在括号内打"√",错的打"×")

- 1. 射极输出器的特点是放大倍数接近 1,输入电阻小,输出电阻大。 (X)
- 2. 对四输入端的译码器,其输出端最多为8个。 (X)
- 3. 三态门有三种输出状态,分别是高电平、低电平和高阻态。 (\checkmark)
- 4. 时序逻辑电路的特点是:输出不仅取决于当前输入的状态还与电路原来的状态有关。

 (\checkmark)

- (\mathbf{x}) 5. 通常要求电压放大电路的输入电阻要小,输出电阻要大。
- 6. 只要放大电路的静态工作点设置合适,输出波形就不会失真。 (X)
- 7. 一正弦波加到非门的输入端,则非门的输出端是与输入波形反相的正弦波。(×)
- 8. JK 触发器和 D 触发器是双稳态触发器。 $(\sqrt{})$

二、单项选择

- 1. 某放大电路中晶体管三个电极的电位分别为: $V_1=4V$, $V_2=3.3V$, $V_3=10V$, 则该 晶体管为(A)。

 - A. NPN型硅管, 2脚为E极 B. NPN型锗管, 2脚为C极
 - C. PNP型硅管, 3脚为C极 D. PNP型锗管, 1脚为E极
- 2. 无论 J-K 触发器原来状态如何, 当输入端 J=1、K=0 时, 在时钟脉冲作用下, 其输出 端 Q 的状态为(B)
 - A. 0
- B. 1
- C. 保持不变
- D. 不能确定
- 3. 左下图所示放大电路中,若旁路电容 C_E 开路,则电路的电压放大倍数的绝对值 $|A_{\mu}|$ 及电路 的输入电阻r的变化分别为(B)。
 - A. $|A_{ij}|$ 变大, r_{ij} 变小
- B. $|A_{\mu}|$ 变小, r变大
- C. $|A_n|$ 变大, r_i 变大 D. $|A_n|$ 变小, r_i 变小

4. 以下关于射极输出器特性的说法中正确的是(A)

- A.射极输出器没有电压放大能力,但具有电流放大能力
- B.射极输出器的 Ù。与 Ù,的相位相反
- C.射极输出器的输入电阻不大,一般约为 1000Ω
- D.射极输出器的带负载能力不强
- 5. 共射极单管放大电路及输入输出电压如下图所示,输出出现失真,这是由于放大器的静态工作点Q设置(A),可以采用()方法解决此问题。

- A. 过高,增大 R_B
- B. 过低,减小 RB
- C. 过高,增大 R_C
- D. 过低, 减小 Rc
- 6.已知下图所示 JK 触发器 C 端输入的时钟脉冲频率为 1000Hz,则 Q端输出的脉冲频率为

- A. 100Hz
- B. 500Hz
- C. 1000Hz
- D. 2000Hz

7 右图所示波形图的逻辑关系为(D)

A.
$$F = A \cdot B$$

- B. F = A + B
- C. $F = \overline{A \cdot B}$
- D. $F = \overline{A + B}$

三、填空题(将答案填入空格内)

- 1. 共发射极放大器输出波形的正半周缩顶了,则放大器产生的失真是<u>截止</u>失真,为消除这种失真,应将静态工作点上移。。
- 2. 右图所示的逻辑电路,输出与输入的逻辑函数表达式为 $F = \underline{A} + \overline{B} + \overline{C}$; 当输入ABC = 011 时,输出F = 0 。

- 3.某晶体三极管三个电极的电位分别是: *V*₋= 2V, *V*₂= 1.7V, *V*₂=-2.5V, 可判断该三极管管脚 "1"为 发射 极,管脚 "2"为 基 极,管脚 "3"为 集电 极,且属于 锗 材料 PNP 型三极管。
- 4. 电路如图所示,已知 $U_{CC}=12V$, $R_{C}=3k\Omega$, $\beta=40$ 且忽略 U_{BE} ,若要使静态时 $U_{CE}=9V$,则 $R_{B}=480k\Omega$ 。

5. 辑电路如图所示,设初始状态为 "0",在 t_1 、 t_2 、 t_3 、 t_4 四个瞬间,输出 Q 是 "0" 的瞬间分别为 t_1 、 t_3 。

6. 下图所示电路的输出函数 $F = \underline{A \oplus B}$

7. 右图所示四位右移寄存器,其最右边一位输出接至右移串

行数据输入端 D_{SR} 。 设初始状态为 $Q_DQ_CQ_BQ_A=1100$,则当第 5 个 CP 脉冲作用后, $Q_DQ_CQ_BQ_A=0110$ 。

四、JK 触发器构成的逻辑电路和输入波形如

图所示, Q_0 , Q_1 的初始状态均为"0"

试求:

- (1)写出触发器的驱动方程与状态方程;
- (2) 并画出 Q₀和 Q₁的波形;

解: (1)
$$J_0 = A\overline{Q}_1^n + \overline{A}Q_1^n$$
; $K_0 = 1$

$$J_1 = Q_0^n \quad ; \quad K_1 = 1$$

$$Q_0^{n+1} = J_0\overline{Q}_0^n + \overline{K}_0Q_0^n - \left(\Lambda\overline{Q}_0^n + \overline{\Lambda}Q_0^n\right)\overline{Q}_0^n$$

$$Q_0^{n+1} = J_0 \overline{Q}_0^n + \overline{K}_0 Q_0^n = \left(A \overline{Q}_1^n + \overline{A} Q_1^n \right) \overline{Q}_0^n$$

$$Q_{1}^{n+1} = J_{1}\overline{Q}_{1}^{n} + \overline{K}_{1}Q_{1}^{n} = Q_{0}^{n}\overline{Q}_{1}^{n}$$

五、如图所示电路,试求 Q_1 、 Q_2 和 Y,并画出 Q_1 、 Q_2 和 Y 的波形。设两个触发器的初始状态均为 Q_2 0。

解:

$$\begin{aligned} Q_{1}^{n+1} &= J_{1}\overline{Q}_{1}^{n} + \overline{K}_{1}Q_{1}^{n} = \overline{Q}_{1}^{n} + Q_{1}^{n} = 1 \\ Q_{2}^{n+1} &= J_{2}\overline{Q}_{2}^{n} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q}_{2}^{n} + Q_{1}^{n}Q_{2}^{n} = Q_{1}^{n} \\ Y &= Q_{1}^{n}\overline{Q}_{2}^{n} \end{aligned}$$

波形图如下:

六、写出如下所示逻辑电路图中各触发器的驱动方程和状态方程,列出状态转换表(包括有效状态与无效状态),画出波形图,指出是什么类型的计数器(触发类型,能否自启动,几进制)。

状态转换表

Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}		
0	0	0	1		
0	1	1	0	}	有效状态
1	0	0	0	IJ	
1	1	0	0		无效状态

电路为下降沿触发的能够自启动的三进制同步计数器

七、放大电路如图所示:

- (1) 画出放大电路的微变等效电路;
- (2) 已知 $\beta = 100$, $r_{be} = 1.5$ kΩ, 求电压放大 倍数 A_u 、输入电阻 r_i 、输出电阻 r_o

解: (1)放大电路的微变等效电路

(2)电压放大倍数

$$A_{u} = \frac{(1+\beta)(R_{E}//R_{L})}{\left[r_{be} + (1+\beta)(R_{E}//R_{L})\right]} = \frac{101*0.5}{1.5+101*0.5} = 0.9712$$

$$r_i = R_B / [r_{be} + (1+\beta)(R_E / / R_L)] = 500 / (1.5 + 101*0.5) = 47.1 \text{k}\Omega$$

$$r_o = R_E / \frac{r_{be}}{1+\beta} = 1000 / \frac{1500}{101} = 14.63\Omega$$