Sample title

Anonymous

Overleaf

2021

Introduction

Definitions

- Options are contracts that give the holders the right to buy/sell an underlying asset at a pre-established at some point in the future before or at the expiration date.
- ► The **strike** price is the pre-established price at which the holder will buy/sell the **option**.
- ▶ The **maturity** date is the expiration date of the contract.
- Exercising the option refers to the act of buying/selling the underlying asset.
- ► The **premium** is the money charged by the writer to the holder for entering the contract.

Introduction

Definitions

- Options are contracts that give the holders the right to buy/sell an underlying asset at a pre-established at some point in the future before or at the expiration date.
- ► The **strike** price is the pre-established price at which the holder will buy/sell the **option**.
- ▶ The **maturity** date is the expiration date of the contract.
- Exercising the option refers to the act of buying/selling the underlying asset.
- ► The **premium** is the money charged by the writer to the holder for entering the contract.

American options pricing problem Definitions

American options pricing problem Definitions

	At time maturity	Before and at maturity
Buy	European call options	American call options
Sell	European put options	American put options

Goal: Given an American call/put option with a **strike price** (K), and **maturity date** (T), find the **premium** (V(S)) charged by the **writer** to the holder such as there is no **arbitrage** opportunity. Arbitrage refers to the possibility that either the writer or holder to make a risk-free profit.

Mathematical model

- ▶ T: [0, T]
- $\triangleright \mathcal{X}: [0,\infty)$
- $\triangleright \mathcal{D}: \mathcal{X} \times \mathcal{T}$
- $V: \mathcal{D} \to \mathbb{R}$

Mathematical model

The payoff of function is defined as

$$H(S,t) = \max(S - K, 0) \tag{1a}$$

$$H(S,t) = \max(K - S, 0) \tag{1b}$$

Black-Scholes model

- American options is bounded from below by the payoff $V(S,t) \geq H(S,t)$
- $ightharpoonup \mathcal{D}$ is divided in two exclusive regions: the exercise region \mathcal{S} and continuation region \mathcal{C} .
- $ightharpoonup \bar{S}(t)$ is the optimal exercise price.
- The price V(S, t) behaves similar to the price of a European option in the continuation region.
- \triangleright S: {(S, t): V(S, t) = H(S, t)}
- $ightharpoonup C: \{(S,t): V(S,t) > H(S,t)\}$

Free boundary problem

$$\begin{cases}
\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial S^2} + (r - \delta) \frac{\partial V}{\partial S} - rV = 0 & \text{for } (S, t) \in \mathcal{C} \\
V(S, t) = H(S, t) & \text{for } (S, t) \in \partial \mathcal{C}
\end{cases} \tag{2}$$

Free boundary problem

$$\frac{\partial v}{\partial t} + \frac{1}{2}\sigma^2 \frac{\partial^2 v}{\partial x^2} + \left(r - \delta - \frac{\sigma^2}{2}\right) \tag{3}$$