

Actividad 2:

1) Dada las características de un Sensor (rango, alcance, error, exactitud; etc.), explique: ¿Qué es el régimen estático y transitorio de un sensor?

Alumnos: Ale, Ulises Colado, Maria Belen Cohorte : 2023

Respuesta:

Régimen Estático: El régimen estático de un sensor se refiere a su comportamiento cuando la cantidad que está midiendo cambia de manera constante y gradual, sin cambios bruscos ni fluctuaciones. En este caso, el sensor tiene tiempo suficiente para ajustarse a la nueva condición y proporcionar una lectura estable y precisa. En el régimen estático, las características de precisión y exactitud del sensor son muy importantes. La exactitud se relaciona con qué tan cerca está la medición del valor verdadero, mientras que la precisión se refiere a qué tan consistente es el sensor en sus mediciones repetidas.

Régimen Transitorio: El régimen transitorio ocurre cuando la cantidad medida cambia de manera abrupta o rápida, lo que puede provocar que el sensor no tenga tiempo suficiente para adaptarse completamente a la nueva situación. Durante este período, es probable que el sensor muestre respuestas temporales erráticas o imprecisas, debido a la inercia en su capacidad de respuesta. El régimen transitorio es especialmente relevante en aplicaciones donde se esperan cambios rápidos en las condiciones, como en sistemas de control o monitoreo en tiempo real.

2 De ejemplo de las características de 1 sensor real, por ejemplo (temperatura, presión, humedad, aceleración, posición, color, distancia, etc.). (Buscar el datasheet de un sensor real y copiar tabla de características).

El DHT11 es un sensor de temperatura y humedad que utiliza un sensor capacitivo de humedad y un termistor para medir el aire circundante, y muestra los datos mediante una señal digital en el pin de datos.

Voltaje de Operación: 3V - 5V DC

- Rango de medición de temperatura: 0 a 50 °C
- Precisión de medición de temperatura: ±2.0 °C
- Resolución Temperatura: 0.1°C
- Rango de medición de humedad: 20% a 90% RH.
- Precisión de medición de humedad: 5% RH.
- Resolución Humedad: 1% RH
- Tiempo de sensado: 1 seg.
- Interface digital: Single-bus (bidireccional)
- Modelo: DHT11

- Dimensiones: 16*12*5 mm
- Peso: 1 gr.
- Carcasa de plástico celeste

PINES

- 1- Alimentación:+5V (VCC)
- 2- Datos (DATA)
- 3- No Usado (NC)
- 4- Tierra (GND)

arameters	Conditions	Minimum	Typical	Maximum
umidity				
esolution		1%RH	1%RH	1%RH
			8 Bit	
epeatability			±1%RH	
Accuracy	25°C		±4%RH	
	0-50°C			±5%RH
terchangeability F	ully Interchangeable			
Ieasurement	0°C	30%RH		90%RH
Range	25°C	20%RH		90%RH
	50°C	20%RH		80%RH
esponse Time	1/e(63%)25°C,	6 S	10 S	15 S
Seconds)	1m/s Air			
ysteresis			±1%RH	
ong-Term	Typical		±1%RH/year	
tability				
emperature				
esolution		1°C	1°C	1°C
		8 Bit	8 Bit	8 Bit
epeatability			±1°C	
ccuracy		±1°C		±2°C
easurement		0°C		50°C
ange				
esponse Time	1/e(63%)	6 S		30 S

3.- Un sensor de temperatura, que tiene un rango de medida de 20-250 °C, entrega una lectura de 55 °C. Especificar el error en la lectura si la exactitud se expresa de las siguientes formas, indicando el rango de medición en cada caso.

 \pm 0,5% del valor máximo de lectura En este caso, el valor máximo de lectura es 250 °C. Error = (Exactitud en %) * (Valor máximo de lectura) Error = (0,5/100) * 250 = 1,25 °C \pm 1,25 °C

 \pm 0,75% del alcance (FS) El alcance (rango completo) del sensor es 250 - 20 = 230 °C. Error = (Exactitud en %) * (Alcance) Error = (0,75/100) * 230 = 1,725 °C

 \pm 1,725 °C c. \pm 0,8% de la lectura Error = (Exactitud en %) * (Lectura actual) Error = (0,8/100) * 55 = 0,44 °C \pm 0,44 °C

4.- Durante el diseño de un equipo de control de temperatura se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía una temperatura constante de 18°C, dando como resultado los datos consignados en la tabla. ¿Cuál sensor ofrece la mayor exactitud y cuál ofrece la mayor precisión?

Sensor	Lectura 1 (ºC)	Lectura 2 (ºC)	Lectura 3 (ºC)	Lectura 4 (ºC)	Lectura 5 (ºC)	Promedio	Desviación Estándar	
Α	18,10	18,05	18,00	18,10	18,15	18,08	0,0457	
В	18,00	18,05	18,00	18,05	18,00	18,02	0,0272	
С	17,95	17,90	17,85	17,98	17,80	17,90	0,0567	
D	17,90	17,92	17,91	17,90	17,91	17,91	0,0077	

- Mayor exactitud: El sensor A tiene el promedio más cercano a la temperatura real (18°C). Por lo tanto, tiene la mayor exactitud en este caso.
- Mayor precisión: El sensor D tiene la menor desviación estándar (0.0077°C), lo que indica que sus lecturas individuales están más cerca unas de otras. Por lo tanto, tiene la mayor precisión en este caso.
- 5.- Determinar el alcance, exactitud y precisión de cada uno de los modelos de sensores de presión que se muestran en el catálogo

	Modelo	PSE570	PSE573	PSE574	PSE575	PSE576	PSE577
Fluido	Fluido Aplicable	Gas o líquido que no corroerá los materiales de las piezas en contacto con el fluido.					
Presión	Rango de presión nominal	0 a 1 MPa	-100 a 100 kPa	0 a 500 kPa	0 a 2 MPa	0 a 5 MPa	0 a 10 MPa
	Salida analógica exacta (Temperatura ambiente de 25ºC)	+-1.0% FS			+-2.5% FS		
	Repetibilidad (Temperatura ambiente de 25ºC)	+-0.2% FS			+-0.5% FS		
	Alcance:	1 MPa	200 kPa	500 kPa	2 MPa	5 MPa	10 MPa
	Exactitud:	0.01 MPa	2.0 kPa	5.0 kPa	0.05 MPa	0.125 MPa	0.25 MPa
	Precisión:	0.002 MPa	0.4 kPa	1.0 kPa	0.01 MPa	0.025 MPa	0.05 MPa