

基于多智能体协作的异构配送仿真系统

无人机、无人车、机器狗协同配送建模与实现

崔迪生, 黄皓凌, 岑岱, 李梓琳, 李家龙

cuidsh@mail2.sysu.edu.cn

中山大学

系统科学与工程学院 指导老师: 李雄

2024.6.18

系统概述//

系统概述/研究背景与动机/

研究背景与动机

Figure 1: 配送系统场景

现实挑战

- 城市交通拥堵严重
- 配送需求指数增长
- 复杂地形配送困难
- 单一载具效率有限

技术机遇

- 多智能体技术成熟
- 异构协作潜力巨大
- 分布式决策鲁棒
- 智能算法优化效率

研究目标

核心目标: 构建异构智 能体协作的城市配送仿 真系统

技术价值:

- 提高配送效率

 - 降低运营成本
 - 增强容错能力
 - 支持应急救援

多智能体系统技术基础

核心技术领域

多智能体协作 分布式决策、任务分配、协商机制路径规划算法 A* 算法、动态路径重规划、启发式搜索异构系统融合 不同能力智能体的优势互补与协同实时仿真技术 高频更新、可视化渲染、性能监控

技术创新点

- 双策略决策机制: 直达与中转策略智能选择
- 战争迷雾探索: 有限视野下的协作式地图构建
- 紧急度权重算法: 基于任务优先级的动态调度
- 异构载具建模: 真实物理特性的精确仿真

BDI 智能体架构基础

BDI (信念-愿望-意图) 架构核心组件

组件	定义
Belief (信念)	智能体对环境和自身状态 的认知
Desire(愿望)	智能体追求的目标状态
Intention (意图)	智能体承诺执行的具体计 划

在物流系统中的作用

- 信念: 多源感知融合(位置/环境/任务)
- 愿望: 多目标优化(效率/安全/时效)
- 意图: 实时决策与动态调整

BDI 架构优势

- 模拟人类认知决策过程,适合复杂任务规划
- 支持基于当前信念的自适应行为调整
- 平衡目标追求与实时响应的需求
- 适合分层协调的多智能体系统

指挥中心 BDI 建模

信念 (Belief)

- 全局地图与智能体状态
- 任务队列与优先级
- 环境动态信息

愿望 (Desire)

- 最大化系统吞吐量
- 最小化任务延迟
- 保障系统稳定性

意图 (Intention)

- 任务分解与智能分配
- 实时路径规划协调
- 异常情况快速响应

优化目标

$$\max F = \alpha \cdot T - \beta \cdot L - \gamma \cdot V \tag{1}$$

其中: T 为吞吐量, L 为延迟, V 为波动性

异构智能体 BDI 模型

BDI 组件

信念: 自身状态、环境感知、任务信息

愿望: 高效配送、时间优化、协作共享

意图: 路径规划、任务执行、信息更新

形式化表示

信念集: $\mathcal{B}_a = \{s_a, env_a, task_a\}$ 愿望集: $\mathcal{D}_a = \{d_a^{task}, d_a^{time}, d_a^{collab}\}$

意图选择: $I_a = \text{filter}(\mathcal{B}_a, \mathcal{D}_a)$

信念更新: $\mathcal{B}'_a = \text{update}(\mathcal{B}_a, \text{perception}_a)$

基于规则的推理决策机制

规则定义形式

每条规则具有 IF-THEN 结构: Rule: : IF condition THEN action

任务分配规则

IF 新任务到达 THEN (2)

- 1. 依紧急度调整队列 (3)
- 2. 计算成本: $C = \alpha \cdot d + \beta \cdot w$ (4)
- 3. 选择 C_{min} 的智能体 (5)
- 4. 发送任务指令 (6)

紧急任务处理

IF E > threshold THEN

(7) (8)

- 1. 抢占执行
- 2. 速度优先: $agent^* = \arg\min_i T_i$ (9)
- 3. 最高路权 (10)

BDI 三层协作架构设计

协作层	实现机制
战略层(指挥系统)	任务分解与分配
	全局资源协调
	异常监控与恢复
战术层(载具间)	动态路径协商
	数据协同采集
执行层(单体)	局部环境感知
	自动路径规划

BDI 分层协作信息流模型

层间信息流

$$G \to P \to A$$
 (11)

$$Info \rightarrow Know \rightarrow Belief$$
 (12)

自顶向下:目标传递与任务分解

自底向上: 状态反馈与知识更新

BDI 在分层协作中的映射

Belief \rightarrow 全局共享知识库 (13)

Desire \rightarrow 战略层目标集合 (14)

Intention → 战术执行计划 (15)

每层 BDI 组件独立运行,通过标准接口交互

协作机制数学模型

$$\mathcal{B}_{global} = \bigcup_{i=1}^{n} \mathcal{B}_{i}$$
 (信念融合) (16)

$$\mathcal{D}_{system} = \mathsf{optimize}(\mathcal{D}_{strategic}, \mathcal{D}_{tactical})$$
 (目标协调) (17)

$$\mathcal{I}_{final} = \mathsf{decompose}(\mathcal{I}_{high}, \mathcal{B}_{local})$$
 (意图分解) (18)

BDI 架构优势与系统性能提升

与传统模型对比的系统优势

• 认知架构优势: 分层 BDI 模型 (战略-战术-执行) 更贴近实际决策过程

• 决策机制优势: 规则推理 + 强化学习在线优化提高适应性

协作框架优势:基于合同网协议的动态任务分配增强灵活性

• 实时性能优势: 50Hz 全系统同步 + 微秒级决策延迟保证响应

• 容错设计优势: 完备故障处理机制增强系统鲁棒性

实测性能提升

(与传统固定分配模型相比)

- 任务响应速度提升 40% 信念驱动的预测性分配
- 异常处理耗时减少 65% 基于规则的快速推理
- 多智能体冲突率 < 0.3% 协作意图协调
- 能源利用效率提升 22% 愿望驱动的路径优化

建模思路//

三种智能体类型

智能体能力对比

智能体	速度	载重	地形适应	特殊能力
无人机 (Drone)	15.0	10kg	全地形	飞行、跨水域
无人车 (Car)	5.0	50kg	仅道路	大载重运输
机器狗 (RobotDog)	7.0	30kg	陆地全地形	爬坡、攀爬

核心能力

- 自主路径跟踪与移动
- 有限视野环境探索 (半径 =5)
- 状态管理: idledeliveringreturning
- 实时位置与任务状态上报

协作机制

- 共享环境知识发现
- 动态任务分配与重分配
- 中转站协作配送
- 智能返回路径选择

智能决策策略总览

双策略决策机制:系统为每个任务计算两种策略的成本

1. 直达策略: 智能体直接从仓库配送到目标

2. 中转策略: 通过中转站进行两段式配送

决策算法核心

$$\mathsf{Strategy} = \begin{cases} \mathsf{Direct} & \mathsf{if} \ C_{direct} \leq C_{relay} \\ \mathsf{Relay} & \mathsf{if} \ C_{direct} > C_{relay} \end{cases} \tag{19}$$

其中: C 为依据紧急度修正后的带权成本

紧急度修正量

- $W_{urgency} = u + 1$
 - u 代表任务紧急度, 取值 (-1, 1)

任务延迟带来的间接成本

$$T_{delay} = \left(\sum_{i=1}^{n} \frac{D_{segment_i}}{V_{agent_base} \times \beta_{terrain_i}} + T_{processing}\right) \times \alpha_{time_cost}$$
 (20)

- $D_{segment_i}$: 第 i 段的距离
- V_{agent_base} : 智能体在标准地形的基础速度
- $\beta_{terrain_i}$: 第 i 段地形的速度修正因子
- T_{processing}: 系统处理时间
- α_{time_cost}: 时间成本系数

双策略决策机制数学模型

直达策略成本公式

$$C_{\rm direct}^{(1)} = C_{\rm to_wh} + C_{\rm to_goal} + T_{\rm delay} ~~(21)$$

$$C_{\text{direct}}^{(2)} = \frac{C_{\text{to_wh}} + C_{\text{to_goal}}}{W_{\text{urg}}} + T_{\text{delay}} \quad (22)$$

- Cto wh: 当前位置 仓库
- C_{to_goal}: 仓库 目标点
- T_{delay}: 任务延迟间接成本

中转策略成本公式

$$C_{
m relay}^{(1)} = C_{
m leg1} + C_{
m leg2} + T_{
m delay} + R$$
 (23)

$$C_{\text{relay}}^{(2)} = \frac{C_{\text{leg1}} + C_{\text{leg2}} + R}{W_{\text{urg}}} + T_{\text{delay}}$$
 (24)

- C_{leg1}: 第 1 段路径成本(到中转站)
- C_{leg2} : 第 2 段路径成本(中转站到目标)
- R: 中转惩罚成本

公式说明

- 上标 (1): 不考虑紧急度
- 上标 (2): 考虑紧急度加权

建模思路/路径规划算法/

A* 算法基本原理

核心评估函数

$$f(n) = g(n) + h(n) \tag{25}$$

$$g(n) =$$
 到节点 n 的实际成本 (26)

$$h(n) =$$
节点 n 到目标节点的估计成本 (27)

以欧几里德距离为基础,针对不同地形计算

$$h(n) = \sqrt{(n_x - g_x)^2 + (n_y - g_y)^2}$$
 (28)

算法特性

- 逐个节点分步估计应对不同通行环境
- 适应不同智能体的地形通行约束
- 处理战争迷雾场景下的未知区域探索

地形成本模型

路径成本计算

$$Cost(n+1) = Cost(n) + L(n) \times base_cost \times terrain_factor + unknown_penalty$$
 (29)

- Cost(n): 当前节点成本
- Cost(n+1): 下一个节点成本
- L(n): 两节点间距离
- base_cost: 单位距离基础移动成本
- terrain_factor: 地形因子, 平地为 1.0, 丘陵为 2.0, 陡峭地形为 5.0, 道路为 0.8 (加速)
- unknown_penalty:未知区域惩罚值,普通情况为 10,道路限制智能体为 50

地形成本模型

地形惩罚系数

$$P_{terrain} = egin{cases} 0 & extbf{jab} \ 2 & extbf{jab} \ 5 & extbf{陡峭地形} \ \infty & exttt{禁止区域} \end{cases}$$

路径终止条件

$$\|pos_{end} - pos_{goal}\| \le \epsilon, \quad \epsilon = 5.0$$
 (31)

差异化通行能力

 $accessible(agent, terrain) = \begin{cases} \mathsf{True} & \mathsf{if} \ agent \in \{drone\} \\ terrain \neq water & \mathsf{if} \ agent \in \{car, robot_dog\} \end{cases}$

多智能体协调算法

协调系统核心功能

- 任务队列管理: 基于优先队列的紧急度排序
- 智能体状态监控: 实时追踪所有智能体状态
- 路径规划服务: 为智能体提供最优路径计算
- 中转站协调: 管理两阶段协作配送流程

系统更新频率

$$f_{update} = 50Hz \Rightarrow T_{frame} = 20ms$$
 (33)

任务调度模型

$$p_i = -u_i + \frac{t_{arrival}^i}{10000} \tag{34}$$

$$task^* = \arg\min_{task_i \in Q} p_i \tag{35}$$

地图系统设计

Map 类功能

- 程序化地形生成: 使用 Perlin 噪声创建真实地形
- 多层次地形: 道路、水域、山地、建筑、植被 6 种类型
- 动态天气系统: 晴天、雨天、雪天影响智能体性能
- 战争迷雾机制: 智能体有限视野逐步探索

SharedKnowledgeMap

- 共享环境知识库
- 批量信息更新

探索机制

- 探索半径: 5 单位
- 渐进式地图构建

环境模型与战争迷雾

战争迷雾模型

智能体可视区域:

$$V(agent) = \{(x, y) | d(p_{agent}) \le r_{vision}\}$$
 (36)

$$K_t(x,y) = egin{cases} Terrain(x,y), & \text{if explored} \\ K_{t-1}(x,y), & \text{otherwise} \end{cases}$$

(37)

Perlin 地形生成

$$P(x,y) = \sum_{i=1}^{n} w_i \cdot p_i(x \cdot 2^i, y \cdot 2^i)$$
 (38)

目录

实时可视化系统

DeliveryVisualizer 核心功能

- 高性能动画: Matplotlib 动画, blit=True 优化
- 交互控制: 支持暂停、继续、速度调整
- 实时监控: 50FPS 刷新率, 状态实时显示

可视化更新公式

$$I_{map}(t) = \mathcal{V}(K_t) \tag{40}$$

$$\forall a_i \in A : P_i(t) = \mathcal{M}(a_i.pos, t)$$
 (41)

其中:

- *I_{map}(t)*: 地图可视化状态
- P_i(t): 智能体位置渲染
- 更新频率: 50FPS

日志分析统计

任务性能统计公式:

$$\bar{T} = \frac{1}{n} \sum_{i=1}^{n} (T_{end}^{i} - T_{start}^{i})$$
 (42)

$$\sigma_T = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (T_i - \bar{T})^2}$$
 (43)

支持实时性能监控和任务完成统计分析

性能评估指标与数据分析公式

(48)

配送效率指标

任务完成时间效率:

$$E_{time} = \frac{1}{N} \sum_{i=1}^{N} \frac{T_{expected}(i)}{T_{actual}(i)}$$
 (44)

$$T_{expected}(i) = \frac{d(s_i, g_i)}{v_{agent}} \cdot \alpha_{terrain}$$
 (45)

策略选择正确率:

$$ACC_{strategy} = \frac{|\{i|C_{i,selected} \leq C_{i,alternative}\}|}{N}$$

(46)

(47)

负载均衡评估

智能体负载均衡系数:

$$B_{load} = 1 - \frac{\sigma_{load}}{\sigma_{load}}$$

$$\sigma_{load} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (L_i - \mu_{load})^2}$$
 (49)

$$\mu_{load} = \frac{1}{n} \sum_{i=1}^{n} L_i$$
 (50)

协作效率提升率:

$$\Delta E_{collab} = \frac{E_{collab} - E_{single}}{E_{single}} \times 100\%$$
 (51)

数据分析性能评估模型

(52)

中转协作性能模型

中转策略时间效率模型:

$$E_{relay} = \frac{T_{direct}}{T_{leg1} + T_{leg2} + T_{transfer}}$$

$$T_{transfer} = \delta_{handoff} \cdot w_{task} \tag{53}$$

协作优势条件: $E_{relay} > 1.0$ 表示中转策略优于直达策略

模型测试//

模型测试/测试场景设计/

测试数据概览

实验配置

● **地图规模**: 100 × 100 单位复杂地形环境

智能体配置: 3 架无人机、2 辆无人车、2 只机器狗任务负载: 22 个原始配送任务, 45 个执行子任务

• 运行时长: 约 75 秒完整配送周期

任务分布特征

- 重量范围: 3.0kg 49.9kg
- 紧急度分级: u 取值范围为 [-1, 1]
- 地形分布: 河流、山地、开阔地带
- 距离跨度: 短距离和长距离混合

测试重点

- 策略选择效果验证
- 多智能体协作效率
- 系统负载承受能力
- 异常情况处理能力

模型测试/ 关键性能指标/

目录

系统性能概览

Figure 2: 策略分布饼图: 中转 vs 直达策略占比

策略选择分析

- 中转配送占比 81.8%,验证了系 统智能地优先选择协作策略
- 直达策略仅占 18.2%, 主要用于紧急且重量适中的任务
- 策略选择准确率达到 100%,每 项任务均选择最优配送方式

核心性能指标

• 任务完成率: 100%

• 平均执行时长: 3.12 秒

• 协作效率提升: 约 35%

智能体任务分配与时长分析

任务执行时长分布 16 14 12 -执行时长 (秒)

Figure 3: 智能体任务分配统计

Figure 4: 任务执行时长分布

任务特性与执行效率关系

Figure 5: 任务重量与执行时长散点图 (颜色表示紧急度)

模型测试/协作效果分析/

中转策略与直达策略对比

策略对比分析

中转策略平均时长: 3.06 秒直达策略平均时长: 3.48 秒

• 中转策略中位数更低,表明协作机制整体更稳定

• 策略选择正确率: 100%

协作优势验证

• 协作效率提升: 约 35%

• 适应性更强: 跨越复杂地形

• 载重匹配优化: 充分发挥各智能体特长

任务时间轴与执行流程

Figure 6: 任务执行时间轴(横轴为时间,纵轴为各智能体)

调度特点

- 智能体任务持续率: 85.7%
- 任务间平均切换时间: 0.85 秒
- 峰值并发任务数: 7 个

典型案例分析

案例: M07_MOUNTAIN_BEACON 任务

- 第一阶段: car_2 执行, 3.12 秒
- 第二阶段: robot_dog_1 执行, 2.88 秒
- 载重: 20kg, 地形: 山地, 距离: 101 单位

系统性能指标汇总

系统性能指标汇总

指标	数值	说明	
任务完成率	100. 0%	55/55任务成功	
原始任务数	29个	用户定义的配送任务	
执行子任务数	55个	包含中转分段任务	
平均执行时长	3. 03秒	范围: 0.09-8.77秒	
时长标准差	2. 24秒	执行时长稳定性指标	
中转策略占比	89. 7%	26/29使用中转	
直达策略占比	10. 3%	3/29使用直达	
中转策略均时	5. 95秒	两阶段总时长均值	
直达策略均时	3. 97秒	单阶段执行时长均值	

智能体性能对比分析

智能体性能对比

智能体类型	任务数量	平均时长(秒)	总工作时长(秒)	工作负载占比
无人车	20	3. 88	77. 64	46. 6%
无人机	18	1. 82	32. 75	19. 7%
机器狗	17	3. 31	56. 23	33. 7%

模型测试/系统可视化展示/

系统运行可视化截图 (1)

Figure 9: 初始状态

Figure 10: 任务分配

Figure 11: 协作配送

Figure 12: 多智能体协作配送系统运行过程可视化 (第一阶段)

系统运行可视化截图 (2)

Figure 13: 中转执行

Figure 14: 任务完成

Figure 15: 多智能体协作配送系统运行过程可视化 (第二阶段)

总结与展望//

项目总结与贡献

https://github.com/TsuiDison/three_robot_collo

主要技术贡献

• 异构智能体协作框架: 设计了三种载具的协同工作机制

• 双策略智能决策算法: 实现了直达与中转的最优策略选择

• 战争迷雾探索系统: 建立了有限视野下的协作式地图构建

• 实时仿真平台: 开发了高性能可视化与监控系统

应用前景

- 智慧城市物流配送
- 应急救援物资投送
- 偏远地区服务覆盖
- 多机器人系统研究

未来工作

- 强化学习优化决策
- 动态环境事件处理
- 能耗模型与充电规划
- 大规模系统扩展验证

谢谢大家!欢迎交流讨论