Algorithms - Assignment 1

(Complexity)

Prof. Eunwoo Kim

Due: 19th March

1) Show directly that $\Omega(n) = n^2 + 3n^3 \in O(n^3)$ and $\Omega(n) = n^2 + 3n^3 \in \Omega(n^3)$.

① let $g(x) = n^3$. When $n \ge 1$, $f(n) = n^2 + 3n^3 \le 4g(x)$. $f(n) = n^2 + 3n^3 \in O(g(n))$ ② let $g(x) = n^3$. When $n \ge 1$, $f(n) = n^2 + 3n^3 \ge g(x)$. $f(n) = n^2 + 3n^3 \in O(g(n))$

2) Using the definitions of 0 and Ω , show that

- 3) The function $f(n) = 3n^2 + 10n \log n + 1000n + 4 \log n + 9999$ belongs in which of the following complexity categories:

So for is O(n2)

4) The function $f(n) = (\log n)^2 + 2n + 4n + \log n + 50$ belongs in which of the

following complexity categories:

- (a) $\Theta(\lg n)$ (b) $\Theta((\log n)^2)$ (c) $\Theta(n)$ (d) $\Theta(n\lg n)$ (e) $\Theta(n(\lg n)^2)$ (f) None of these A5 $0 \le \log n \le (\log n)^2 \le n$ for $n \ge 16$ (because: $|e + n = 2^m$, $(\log n)^2 = m^2 \le 2^m = n$), f(n) is O(n). And clearly f(n) is O(n)
 - 5) The function $f(n) = n + n^2 + 2^n + n^4$ belongs in which of the following complexity categories:
 - (a) $\Theta(n)$ (b) $\Theta(n^2)$ (c) $\Theta(n^3)$ (d) $\Theta(n \lg n)$ (e) $\Theta(n^4)$ None of these

As $0 \le n \le n^2 \le n^4 \le 2^n$ for $n \ge 16$, f(n) is $O(2^n)$

And clearly f(n) is $\Omega(2^n)$

So fin) belongs none of these; $\theta(n)$, $\theta(n^4)$, $\theta(n^4)$, $\theta(n^4)$

Lbecause n≤nlgn≤n² for n≥16 6) What is the runtime (time complexity) of the below code? $O((|e_n(array)|^2))$, or can be written as $O(n^2)$

def printUnorderedPairs(array):	s/e	frequency	total Steps
for i in range(0,len(array)):	(len(avay)	same as frequency
for j in range(i+1,len(array)):	1	len(array). 1 (len(anay)-[)	some as frequency
print(array[i] + "," + array[j])		len (away) · [(len (away)-1)	save as frequency
•	1	Total	(len(array))2

7) What is the runtime of the below code? $O(|en(armyA)\cdot |en(armyB))$, or can be written as O(n)

•		, , ,	
def printUnorderedPairs(arrayA, arrayB):	5/e	frequency	total Steps
for i in range(len(arrayA)):		len (array A')	<i>rr</i>
for j in range(len(arrayB)):	1	lea(arrayA)-lea(arrayB)	-/
for k in range(0,100000):	1	len(arrayA)·len(arrayB)·100000	
print(str(arrayA[i]) + "," + str(arrayB[j]))		len(arayA). len(arrayB). (00000	~
			len (army A)

(logu)

8) What is the runtime of the below code?

def powersOf2(n):
$$T_{(n)} = T(\frac{n}{2}) + C$$

print("n:"+str(n))

$$prev = powersOf2(int(n/2))$$

print(prev)

print(curr)

return curr