Games on Graphs

Giuseppe Perelli

giuseppeperelli.github.io perelli@diag.uniroma1.it

Sapienza University of Rome

Reasoning Agents Seminar

Where do games come from?

Games on graphs are a useful mathematical model of many phenomena in computer science, economics, biology, that involve dynamic interaction among two or more agents.

Main idea: Capture strategic interaction

Model: Two players moving a token along the edges of a graph, resulting in a infinite (sometime finite) path called a play. Player 0 is trying to ensure the play satisfies a given property, and player 1 is trying to fail such property.

- □ It's fun!
- Solve synthesis problems
- $\, \triangleright \,$ Evaluate logic formulas

Image credits: Martin Zimmerman

Synthesis

Image credits: Itlf2dfa.diag.uniroma1.it

Reasoning Agents

Players

- 1 player;
- 2 players;
- multi-players.

Players Interaction

1 player; Turn-based;

2 players; Concurrent.

multi-players.

G. Perelli (Sapienza) Games on Graphs

Reasoning Agents

Players Interaction Information

1 player; Turn-based; Perfect;

2 players; Concurrent. Imperfect.

multi-players.

Players	Interaction	Information	Nature
1 player;	$Turn ext{-}based;$	Perfect;	Deterministic;
2 players;	Concurrent.	Imperfect.	Stochastic.
multi-players.			

Players	Interaction	Information	Nature	Objective
1 player;	Turn-based;	Perfect;	Deterministic;	Reachability;
2 players;	Concurrent.	Imperfect.	Stochastic.	Safety;
multi-players.				Buchi;
				co-Buchi;

. . .

Players Interaction Information Nature Objective 1 player; Turn-based: Perfect: Deterministic: Reachability: 2 players: Concurrent Imperfect. Stochastic. Safety: multi-players. Buchi: co-Buchi;

. . .

Today

2-player turn-based perfect information games.

Players Interaction Information Nature Objective

1 player; Turn-based; Perfect; Deterministic; Reachability; 2 players; Concurrent. Imperfect. Stochastic. Safety;

multi-players.

Buchi;

co-Buchi:

Today

2-player turn-based perfect information games.

Possible projects

See the blue and red.

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = v_0$$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = \mathbf{v}_0 \cdot \mathbf{v}_1$$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = v_0 \cdot v_1 \cdot v_2$$

Reasoning Agents

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = v_0 \cdot v_1 \cdot v_2 \cdot v_5$$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_o \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset $Obj \subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = v_0 \cdot v_1 \cdot v_2 \cdot v_5 \cdot \mathbf{v_7} \cdot \ldots \in V^{\omega}$$

For a subset of the vertexes $T \subseteq V$:

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$
- Safety: stay in T forever.

$$\mathsf{Safe}(T) = \{ \pi \in \mathbf{V}^{\omega} : \forall i \in \mathbb{N}, \pi_i \in T \}$$

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$
- Safety: stay in T forever.

$$\mathsf{Safe}(T) = \{ \pi \in \mathbf{V}^{\omega} : \forall i \in \mathbb{N}, \pi_i \in T \}$$

Büchi: visit T infinitely many times.

$$\mathsf{Buchi}(T) = \{ \pi \in \mathbf{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi_i \in T \}$$

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$
- Safety: stay in T forever. Safe $(T) = \{ \pi \in V^{\omega} : \forall i \in \mathbb{N}, \pi_i \in T \}$
- Büchi: visit T infinitely many times. Buchi $(T) = \{\pi \in V^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi_i \in T\}$
- co-Büchi: reach and stay in T forever. coBuchi(T) = { $\pi \in V^{\omega} : \exists j \in \mathbb{N}, \forall i > j, \pi_i \in T$ }

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$
- Safety: stay in T forever.

$$\mathsf{Safe}(T) = \{ \pi \in \mathbf{V}^{\omega} : \forall i \in \mathbb{N}, \pi_i \in T \}$$

Büchi: visit T infinitely many times.

$$\mathsf{Buchi}(T) = \{ \pi \in \mathbf{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi_i \in T \}$$

- co-Büchi: reach and stay in T forever. coBuchi(T) = { $\pi \in V^{\omega} : \exists j \in \mathbb{N}, \forall i > j, \pi_i \in T$ }
- Parity, Rabin, Streett, Muller, LTL, ...

(more advanced conditions)

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit the target set T at least once. Reach $(T) = \{\pi \in V^{\omega} : \exists i \in \mathbb{N}, \pi_i \in T\}$
- Safety: stay in T forever. Safe(T) = { $\pi \in V^{\omega} : \forall i \in \mathbb{N}, \pi_i \in T$ }
- Büchi: visit T infinitely many times. Buchi(T) = { $\pi \in V^{\omega} : \forall i \in \mathbb{N}, \exists i > i, \pi_i \in T$ }
- coBuchi(T) = { $\pi \in V^{\omega} : \exists i \in \mathbb{N}, \forall i > i, \pi_i \in T$ } co-Büchi: reach and stay in T forever.
- Parity, Rabin, Streett, Muller, LTL.... (more advanced conditions)

Question: what if we have more alternations of existential and universal quantifiers?

G. Perelli (Sapienza) Games on Graphs Reasoning Agents

Strategies and consistent plays

Strategies

A strategy maps partial outcomes (i.e., finite sequences of vertexes) into successors and it is of the form

Player 0 strategy $\sigma_0: \mathrm{V}^* \cdot \mathrm{V_o} o \mathrm{V}$

Player 1 strategy $\sigma_1: \mathrm{V}^* \cdot \mathrm{V}_{\scriptscriptstyle 1} o \mathrm{V}$

Consistent plays

Strategies "restricts" the game only to those play π that are consistent with σ_0 , that is such that $\pi_{i+1} = \sigma_0(\pi_0 \cdot \pi_1 \cdot \ldots \cdot \pi_i)$, if $\pi_i \in V_o$.

For given strategies σ_0, σ_1 , there is only one consistent play starting from ν .

Solving Games

Winning strategies

A strategy σ_0 is winning for Player 0 in v if every consistent path π starting from v belongs to Obj. (Winning set Win $_0 \subseteq V$)

A strategy σ_1 is winning for Player 1 in v if every consistent path π starting from v does not belong to Obj. (Losing set Win₁ $\subseteq V$)

Solving a game

The solution of a game G is the set Win_0 of vertexes that are winning for Player 0.

Winning strategies

A strategy σ_0 is winning for Player 0 in v if every consistent path π starting from v belongs to Obj. (Winning set Win $_0 \subseteq V$)

A strategy σ_1 is winning for Player 1 in v if every consistent path π starting from v does not belong to Obj. (Losing set Win₁ $\subseteq V$)

Solving a game

The solution of a game G is the set Win_0 of vertexes that are winning for Player 0.

Warning! While $Win_0 \cap Win_1 = \emptyset$, it is not always the case that $V = Win_0 \cup Win_1$.

A reachability game

Consider again the arena below and let $T = \{v_4, v_5\}$ (the double bordered nodes).

What is the winning set of **G**?

Consider the function force defined as follows:

$$\mathsf{force}_{\scriptscriptstyle 0}(X) = \{ v \in \mathcal{V}_{\scriptscriptstyle 0} : E(v) \cap X \neq \emptyset \} \cup \{ v \in \mathcal{V}_{\scriptscriptstyle 1} : E(v) \subseteq X \}$$

Player 0 has a move to enter the region X;

Player 1 cannot avoid to enter the region X.

The function computes the vertexes from which Player 0 can enforce the token to move in the subset X of vertexes.

Constrained problem

 $Reach^n(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

n = 0: T I have to be in T already.

$$\mathsf{Reach}^\mathrm{o}(\mathbf{G}) = T$$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

$$\mathsf{Reach}^n(\mathbf{G}) = \mathsf{Reach}^{n-1}(\mathbf{G}) \cup \mathsf{force}_o(\mathsf{Reach}^{n-1}(\mathbf{G}))$$

Constrained problem

 $\operatorname{Reach}^n(\mathbf{G}) := \operatorname{"Player 0 can reach } T \text{ in at most } n \text{ moves"}.$

n = 0: T I have to be in T already.

$$\mathsf{Reach}^\mathrm{o}(\mathbf{G}) = T$$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

$$\mathsf{Reach}^n(\mathsf{G}) = \mathsf{Reach}^{n-1}(\mathsf{G}) \cup \mathsf{force}_o(\mathsf{Reach}^{n-1}(\mathsf{G}))$$

Solving reachability

 $Win_o(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

Constrained problem

 $\operatorname{Reach}^n(\mathbf{G}) := \operatorname{"Player 0 can reach } T \text{ in at most } n \text{ moves"}.$

n = 0: T I have to be in T already.

$$\mathsf{Reach}^\mathrm{o}(\mathbf{G}) = \mathcal{T}$$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

$$\mathsf{Reach}^n(\mathbf{G}) = \mathsf{Reach}^{n-1}(\mathbf{G}) \cup \mathsf{force}_o(\mathsf{Reach}^{n-1}(\mathbf{G}))$$

Solving reachability

 $Win_o(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

$$\mathsf{Win}_0(\mathbf{G}) = \mathsf{Reach}^0(\mathbf{G}) \cup \mathsf{Reach}^1(\mathbf{G}) \cup \ldots \cup \mathsf{Reach}^n(\mathbf{G}) \cup \ldots$$

G. Perelli (Sapienza)

Constrained problem

 $Reach^n(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

n = 0: T I have to be in T already.

$$\mathsf{Reach}^\mathrm{o}(\mathbf{G}) = \mathcal{T}$$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

$$\mathsf{Reach}^n(\mathsf{G}) = \mathsf{Reach}^{n-1}(\mathsf{G}) \cup \mathsf{force}_o(\mathsf{Reach}^{n-1}(\mathsf{G}))$$

Solving reachability

 $Win_o(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

$$\mathsf{Win}_{\mathrm{o}}(\mathbf{G}) = \mathsf{Reach}^{\mathrm{o}}(\mathbf{G}) \cup \mathsf{Reach}^{\mathrm{n}}(\mathbf{G}) \cup \ldots \cup \mathsf{Reach}^{n}(\mathbf{G}) \cup \ldots$$

$$\mathsf{Reach}^{\mathrm{o}}(\mathbf{G}) \subseteq \mathsf{Reach}^{\mathrm{n}}(\mathbf{G}) \subseteq \ldots \subseteq \mathsf{Reach}^{n}(\mathbf{G}) \subseteq \ldots$$

Constrained problem

 $Reach^n(\mathbf{G}) := "Player 0 can reach T in at most n moves".$

n = 0: T I have to be in T already.

$$\mathsf{Reach}^\mathrm{o}(\mathbf{G}) = T$$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

$$\mathsf{Reach}^n(\mathbf{G}) = \mathsf{Reach}^{n-1}(\mathbf{G}) \cup \mathsf{force}_o(\mathsf{Reach}^{n-1}(\mathbf{G}))$$

Solving reachability

$$Win_o(\mathbf{G}) := "Player 0 can reach T in at most n moves".$$

$$\mathsf{Win}_{\mathrm{o}}(\mathbf{G}) = \mathsf{Reach}^{\mathrm{o}}(\mathbf{G}) \cup \mathsf{Reach}^{\mathrm{n}}(\mathbf{G}) \cup \ldots \cup \mathsf{Reach}^{n}(\mathbf{G}) \cup \ldots$$

$$\mathsf{Reach}^{\scriptscriptstyle{0}}(\mathbf{G})\subseteq\mathsf{Reach}^{\scriptscriptstyle{1}}(\mathbf{G})\subseteq\ldots\subseteq\mathsf{Reach}^{n}(\mathbf{G})\subseteq\ldots$$

Fix-point calculation

$$\mu X.(T \cup \mathsf{force}_{\mathrm{o}}(X))$$

Algorithm 1 Reachability game

```
1: Win := T
```

2: **while** Win \neq Win \cup force_o(Win) **do**

3: Win := Win \cup force_o(Win)

4: end while

5: **return** Win

Question: What is the complexity this procedure?

Question: Can we do (theoretically) better?

Memoryless strategy

A strategy σ_0 is memoryless if it is of the form

$$\sigma_0: \overset{\bullet}{V} V_o \to V$$

that is, at every vertex v, the next move does not depend on the past history (and thus it is always the same).

Memoryless strategies

A strategy σ_0 is memoryless if it is of the form

$$\sigma_0: V \cdot V_o \to V$$

that is, at every vertex v, the next move does not depend on the past history (and thus it is always the same).

If $v \in Win_0$, then there exists a memoryless strategy σ_0 that is winning from v.

G. Perelli (Sapienza) Games on Graphs Reasoning Agents

It holds that $Win_0 \cup Win_1 = V$. When this is the case, we say that the game is determined.

Theorem (determinacy)

Every 2-player turn-based reachability game is determined.

G. Perelli (Sapienza) Games on Graphs Reasoning Agents

16 / 20

An excursion to other games Concurrent games

A Concurrent Game is played over a structure (V, Ac, tr) a set of actions Ac and a transition function $tr: V \times (Ac \times Ac) \rightarrow V$

The token is sent to a successor by a coordinated action, following the transition function.

Plays and objectives are as for turn-based games.

An excursion to other games Concurrent games

A Concurrent Game is played over a structure (V,Ac,tr) a set of actions Ac and a transition function $tr:V\times (Ac\times Ac)\to V$

The token is sent to a successor by a coordinated action, following the transition function.

Plays and objectives are as for turn-based games.

Concurrent games are not determined!

G. Perelli (Sapienza)

Games on Graphs

Reasoning Agents

An excursion to other games Stochastic games

A Stochastic Game is played by 2 players over (V, E) but $V = V_o \cup V_1 \cup V_s$.

Player 0 has to maximize the probability of winning its objective.

An excursion to other games Multi-player games

A Multi-player Game is played by n players over (V, E) with $V = V_o \cup \ldots V_{n-1}$.

Player i is assigned an objective $\operatorname{Obj}_i \subseteq V^{\omega}$.

Rather than winning strategies, we are interested in finding equilibria.

Project ideas

Implement, and validate algorithms for solving extensions of 2-player turn-based reachability games towards different directions

Objective: Buchi, co-Buchi,

Interaction: Concurrent games;

Number of players: Multi-player games;

Nature: Stochastic games.

Feel free to get in touch with me to discuss details of this

perelli@diag.uniroma1.it

G. Perelli (Sapienza) Games on Graphs Reasoning Agents