Electric vehicles

GLOBAL AND NATIONAL ENERGY SCENARIO.

(1 hours)

INTRODUCTION TO ENERGY SOURCES

(2 hours)

Classification of Energy Sources in terms of Primary and Secondary Sources, Commercial and Non Commercial Sources of Energy; Renewable and Fossil based Sources of Energy;

INTRODUCTION TO FUELS AND ITS PROPERTIES

(1 hours)

INTRODUCTION TO VARIOUS ENERGY CONVERSION SYSTEMS (6 hours) like Power Plant, Pump, Refrigerator, Air Conditioner, Internal Combustion Engine, Solar PV Cell, Solar Water Heating System, Biogas Plant, Wind Turbine System general functioning including their normal rating specifications.

ASPECTS OF ENERGY CONSERVATION AND MANAGEMENT (4 hours)
Energy Conservation Act, Energy Policy of Company; Need for Energy Standards and
Labelling; Energy Building Codes.

ENERGY STORAGE IN BATTERIES

(2 hours)

Type of batteries; Electric Vehicles

Introduction

- An electric car is an alternative fuel automobile that uses electric motors and motor controllers for propulsion, in place of more common propulsion methods such as the internal combustion engine (ICE).
- Electric cars are specifically a variety of electric vehicle intended for use as a road-going automobile. Electric cars are commonly powered by on-board battery packs, and as such are battery electric vehicles (BEVs).
- Electric cars currently enjoy relative popularity in countries around the world for their eco-friendly nature.

History of EV's

☐ 1830's

- Battery electric vehicle invented by Thomas Davenport, Robert Anderson, others - using non-rechargeable batteries
- Davenport's car holds all vehicle land speed records until ~1900

□ 1890's

EV's outsold gas cars 10 to 1, Oldsmobile and Studebaker started as EV companies

1904

- First speeding ticket, issued to driver of an EV
- Krieger Company builds first hybrid vehicle

□ 1910's

- Mass-produced Ford cars undercut hand-built EV's
- EV's persist as status symbols and utility vehicles until Great Depression

Figure 52. Ford Electric Car No. 2. (From the collections of Henry Ford Museum & Greenfield Village, peg. 188.72082)

Ford Electric #2

Detroit Electric

Source: http://www.eaaev.org/History/Index.html

Hybrid electric vehicles

Vehicle Type	Electric Vehicle (EV)	Gasoline-Powered (Internal Combustion)	Plug-In Hybrid (PHEV)	Hybrid (HV)
Energy Source	Electric only	Gasoline only	Main: Electric Sub: Gasoline	Main: Gasoline Sub: Electric
Propulsion Mechanism	Motors	Engine	Combination of motor + engine	
CO2 Emissions	None	Yes	Yes	Yes
Fuel Facility Locations	Charging stations	Gas stations	Gas stations, chargers	Gas stations
Tax Liability	Low	High	Low	Low
Cruising Distance	Short	Long	Long	Long

Solar roof

ELECTRIC TRACTION MOTOR

ELECTRIC TRACTION MOTOR

An **electric traction motor** is an electric motor optimized for **drive or propulsion**. Its primary purpose is to deliver **torque** to drive the wheels or axles of a vehicle, providing the necessary **traction** for movement.

IC Engine (ICE) Vehicles	Electric Vehicles (EV)		
• Powertrain: IC engine	• Powertrain: Motor (+ Engine)		
 High specific energy of fuel 	•Low specific energy of battery		
 Power density: High 	Power density: Low		
 Emits greenhouse gases 	No tailpipe emissions		
• Travels > 300 miles / fill	• Travels < 100 miles / charge		
• Short refilling time (< 5 min.)	•Long charging time (0.5-8 hr.)		
 Fuel tank takes less space 	Battery takes large space		
 Fuel weight is very less 	Batteries are very heavy		
 Higher maintenance costs 	•Lesser maintenance costs		
 Braking energy not recovered 	 Can recover braking energy 		
 Running cost: high 	• Running cost: low		
 Engine efficiency: ~ 30% 	• Motor efficiency: ~ 80%		
 Needs complex gear system 	• Needs only one gear		
 Noisy operation 	• Quiet operation		
 Ample refilling infrastructure 	• Lacks charging infrastructure		
 Need to pick up some speed 	Produce maximum torque		
to deliver maximum torque	instantly after starting of motor		
 Uses only hydrocarbons 	• Uses electricity from many		
	resources		

Benefits of Driving an Electric Vehicle

Lower maintenance costs

Save on fuel costs

Tax breaks

Healthier for the environment

How EV works?

https://www.youtube.com/watch?v=GHGXy_sjbgQ

An Expensive Battery need to be replaced after 6-7 years

On average **a battery electric vehicle (BEV) contains about 83 kg of copper** and a plug-in hybrid electric vehicle (PHEV)contains about 60 kg compared with an average 23 kg in an internal combustion engine car," said Citi analyst Max Layton

Copper is **used** throughout **electric vehicles**, charging stations and supporting infrastructure because of the metal's durability, high conductivity and efficiency

The red metal is an essential component in **EVs**, and is **used in electric** motors, batteries, inverters and wiring

Copper is **used** throughout **electric vehicles**, charging stations and supporting infrastructure because of the metal's durability, high conductivity and efficiency

Hydrogen Energy conversion: Fuel Cell

https://www.youtube.com/watch?v=a4pXAmljdUA

A fuel cell uses chemical energy of hydrogen to produce electricity

If hydrogen is the fuel then electricity, water, and heat are the only products

Fuel cells are more efficient and pollution free For example, Fuel cell in Hydrogen cars

How Hydrogen Cars & FCEVs work

