1

4.

CLAIMS

What is claimed is:

	•	
1	1.	A method comprising:
2		providing a first wafer having a stack structure of a first base substrate,
3	layer of relax	ed film, and a first layer of strained film,
4		depositing a layer of oxide onto the layer of strained film to provide an
5	adhesion surf	ace to the first wafer;
6	,	providing a second wafer, the second wafer being a silicon on insulation
7	` '	aving a stack structure of a second base substrate and a layer of oxidized
8	film;	
9		attaching the first and second wafers; and
10		heating the first and second wafers at a first temperature to cause a
11	silicon dioxid	e (SiO ₂) adhesion of the first substrate to the second substrate.
1	2.	The method of claim 1 further comprising:
2		implanting hydrogen onto the first wafer before depositing the layer of
3	oxide onto the	e second layer of strained film to create an embrittled region in the layer
4	of relaxed film	n.
1	3.	The method of claim 2 further comprising:
2		heating the first and second wafers at a second temperature to
3	delaminate the	e two wafers along the embrittled region to form the second wafer having
4	the layer of re	laxed film.

The method of claim 3 further comprising:

2	•	etching the relaxed film on the surface of the second wafer to expose the
3	strained film.	
1	. 5.	The method of claim 1 wherein the first and second base substrates are
2	made of silico	n material.
1	6.	The method of claim 1 wherein the layer of relaxed film is a relaxed
2		anium (SiGe) layer having a thickness in a range of approximately 0.1 to
3	3.0um.	
4	7.	The method of claim 1 wherein the layer of oxide is deposited at a
5	thickness rang	ge of approximately 50 to 3000A.
1	8.	The method of claim 2 wherein the hydrogen is implanted at an energy
2	range of appro	eximately 1 to 20keV.
1	9.	The method of claim 3 wherein the second temperature is higher than
2	the first tempe	crature.
1	10.	The method of claim 3 wherein the first temperature is in a range of
2		100 °C to 300 °C.
4	approximatory	100 € 10 300 €.
1	11.	The method of claim 3 wherein the second temperature is in a range of
2	400 °C to 600	°C.
1	12.	The method of claim 1 further comprising:
2		etching the first base substrate, and the layer of relaxed film to result in
3	the strain of fi	lm on the surface of the SOI wafer.
1	13.	The method of claim 12 wherein the etching of the first layer of strained
2		s wet etching the layer of relaxed film.
_	min comprise:	s wot otoling the layer of relaxed film.
1	14.	A wafer comprising:
2	a cilio	on layer

3	a relaxed SiGe layer; and			
4	a strained silicon layer in contact with the relaxed SiGe layer, the strained			
5	silicon layer being transferred to the top of the relaxed SiGe layer by a heat treatment.			
1	15. The wafer of claim 14 wherein the relaxed SiGe layer contains an			
2	embrittled region.			
1	16. The wafer of claim 15 wherein the embrittled report is created by			
2	implanting hydrogen ions.			
1	17. A wafer comprising:			
2	a silicon layer;			
3	a SiO ₂ layer in contact with the silicon layer; and			
4	a strained silicon layer on top of the SiO ₂ layer, the strained silicon layer being			
5	transferred to an oxidized wafer by a heat treatment.			
1	18. The wafer of claim 17 wherein the oxidized wafer contains a relaxed			
2	SiGe layer.			
1	19. The wafer of claim 18 wherein the relaxed SiGe layer contains an			
2	embrittled region.			