Część II: Rachunek różniczkowy

Twierdzenie 1 (Własność Darboux). Niech f będzie funkcją ciągłą w przedziale [a, b] oraz $f(a) \neq f(b)$. Wtedy dla każdej liczby y_0 leżącej pomiędzy f(a) oraz f(b) istnieje liczba $x_0 \in (a, b)$, taka że $f(x_0) = y_0$.

Twierdzenie 2 (Weierstrassa o osiąganiu kresów). Niech f będzie funkcją ciągłą w przedziale [a, b]. Wtedy funkcja ta w przedziale [a, b] osiąga wartość największą i najmniejszą tzn. $\exists x_1, x_2 \in [a, b] : f(x_1) = \max f(x)$ oraz $f(x_2) = \min f(x)$.

Twierdzenie 3 (Rolle'a). Niech f będzie funkcją ciągłą w przedziale [a, b] oraz różniczkowalną w przedziale (a, b). Jeśli f(a) = f(b), to istnieje punkt $c \in (a, b)$, taki że f'(c) = 0.

Wniosek 4 (Interpretacja geometryczna tw. Rolle'a). 1 Przy założeniach tw. Rolle'a w przedziale (a, b) istnieje punkt, w którym 2 styczna do wykresu funkcji jest równoległa do osi Ox. (Współczynnik kierunkowy prostej równy 0 oznacza, że jest to funkcja liniowa stała).

Twierdzenie 5 (Lagrange'a o wartości średniej). Niech f będzie funkcją ciągłą w przedziale [a,b] oraz różniczkowalną w przedziale (a,b). Wtedy istnieje punkt $c \in (a,b)$, taki, że $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Wniosek 6 (Interpretacja geometryczna tw. Lagrange'a). ³ Przy założeniach tw. Lagrange'a w przedziale (a, b) istnieje punkt, w którym styczna do wykresu funkcji jest równoległa do siecznej przechodzącej przez punkty (a, f(a)) i (b, f(b)).

(Sieczna ma współczynnik kierunkowy równy $\frac{f(b) - f(a)}{b - a}$, zaś styczna f'(c). Równoległość tych prostych oznacza równość ich współczynników, a wiec równość z tezy).

 $^{^1}$ Twierdzenie Rolle'a można interpretować również fizycznie: Po prostym torze porusza się koń, który startuje i kończy bieg w tym samym punkcie (f(a)=f(b)). Z lekcji fizyki wiemy, że pochodną drogi po czasie jest prędkość, a więc równość z tezy oznacza, że istnieje taki moment, gdy prędkość konia wynosi 0, co jest zgodne z intuicją, bo koń kończy bieg w punkcie startu, więc w pewnym momencie musiał zawrócić, czyli nastąpił moment zatrzymania.

 $^{^2}$ skrót myślowy: w przedziale (a,b) znajduje się oczywiście tylko pierwsza współrzędna punktu styczności – sam punkt przy oznaczeniach z twierdzenia ma postać (c,f(c)). Analogiczna sytuacja dotyczy twierdzenia Lagrange'a.

 $^{^{3}}$ To twierdzenie również ma interpretację fizyczną: Równość z tezy twierdzenia oznacza, że w pewnym momencie prędkość chwilowa poruszającego się obiektu (czyli f'(c)) jest równa prędkości średniej tego obiektu.

Twierdzenie 7 (Reguła de l'Hospitala). Niech f i g będą funkcjami różniczkowalnymi w pewnym sąsiedztwie $S(x_0)$ oraz $\forall x \in S(x_0): g(x) \neq 0 \land g'(x) \neq 0$. Jeśli $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty$ lub $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ oraz istnieje granica $^4 \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, to istnieje również granica $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ i zachodzi równość: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Uwaga 8. Twierdzenie jest prawdziwe również dla granic jednostronnych oraz granic przy $\pm \infty$.

Przykład 9.

$$\lim_{x \to 0} \frac{x + \sin x}{x^3} = \left[\frac{0}{0} \right] = \dots$$

Liczymy więc granicę pochodnych $\lim_{x\to 0} \frac{(x+\sin x)'}{(x^3)'} = \lim_{x\to 0} \frac{1+\cos x}{3x^2} = \left[\frac{2}{0^+}\right] = +\infty.$

A zatem granica $\lim_{x\to 0} \frac{x+\sin x}{x^3}$ istnieje i wynosi $+\infty$.

 $^{^4}$ właściwa lub niewłaściwa