Определение 1. Пусть d — целое число, свободное от квадратов. *Нормой* элемента $z = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ называется целое число $N(z) = x^2 - dy^2$.

Задача 1. Норма мультипликативна: N(zw) = N(z)N(w).

Определение 2. Пусть d — целое число, свободное от квадратов. Диофантово уравнение $x^2 - dy^2 = 1$ называется уравнением Пелля.

Решением уравнения Пелля мы будем называть как пару целых чисел $(x\ y)$, так и соответствующий элемент единичной нормы $x+y\sqrt{d}$ кольца $\mathbb{Z}[\sqrt{d}]$.

Задача 2. а) Если уравнение Пелля имеет нетривиальное (отличное от $(\pm 1\ 0)$) решение, то оно имеет бесконечно много решений.

б) Если уравнение Пелля имеет нетривиальное решение, то группа его положительных решений изоморфна \mathbb{Z} .

Задача 3*. Пусть $N=(1\ 0); P$ и Q — пара точек на гиперболе $x^2-dy^2=1.$ Проведем через точку N секущую, параллельную хорде PQ.

- **а)** Эта секущая пересекает гиперболу еще ровно в одной точке¹.
- **б)** Построенная точка соответствует произведению элементов единичной нормы, соответствующих точкам P и Q.

Задача 4. Решите уравнение **a)** $x^2 - 3y^2 = -2$; **б)** $x^2 - 3y^2 = -1$.

Задача 5. Найдите формулу для *k*-го треугольного числа, являющегося точным квадратом.

Определение 3. Значением $\kappa в a d p a m u u h o u d p o p m u$ с (симметричной) матрицей Q на векторе v называется число (v,Qv). Таким образом, матрица $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ задает квадратичную форму $ax^2 + bxy + cy^2$.

Задача 6*. Отображение Q квадратично тогда и только тогда, когда отображение $(u,v)\mapsto Q(u+v)-Q(u)-Q(v)$ билинейно².

Задача 7. Как меняется квадратичная форма при замене координат с матрицей С?

Задача 8. а) Существует лишь конечное число целочисленных квадратичных форм с ac < 0 и фиксированным дискриминантом -d < 0.

б) Целочисленная квадратичная форма $\begin{pmatrix} 1 & 0 \\ 0 & -d \end{pmatrix}$ имеет нетривиальный автоморфизм (т. е. существует обратимая целочисленная замена координат, при которой эта форма не меняется).

Указание. Рассмотрите алгоритм вытягивания носов для \sqrt{d} .

- в) Уравнение Пелля имеет нетривиальное решение.
- г) Разложение числа \sqrt{d} в цепную дробь периодично.

д)* Разложение иррационального числа в цепную дробь периодично тогда и только тогда, когда это квадратичная иррациональность ("теорема Лагранжа").

Задача 9. У числа \sqrt{d} бесконечно много приближений, таких что $|\alpha - \frac{p}{q}| < \frac{1}{(2\sqrt{d}-\varepsilon)q^2}.$

Задача 10*. а) Период цепной дроби числа \sqrt{d} без последнего числа — палиндром.

б) Уравнение $x^2 - dy^2 = -1$ имеет решение тогда и только тогда, когда период цепной дроби числа \sqrt{d} имеет нечетную длину.

1	2 a	2 6	3 a	3 6	4 a	4 6	5	6	7	8 a	8 6	8 B	8 г	8 д	9	10 a	10 6

 $[\]overline{}^1$ Если отрезок PQ оказался вертикальным, то надо считать, что вторая точка совпадает с N (в этом случае наша "секущая" как раз касается гиперболы).

²Это можно считать определением квадратичного отображения — а доказывать, соответственно, что любое квадратичное отображение задается некоторой симметричной матрицей.