Modern Control Systems

Matthew M. Peet Illinois Institute of Technology

Lecture 5: Controllability and Observability

State-Space

The standard state-space form is

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

State-space reflects an approach based on **internal dynamics** as opposed to input-output maps.

• For a given mapping, $G: u \mapsto y$, the choice of A, B, C, D is not unique.

Solving the Equations

Find the output given the input

State-Space:

Basic Question: Given an input function, u(t), what is the output?

Solution: Solve the differential Equation.

Example: The equation

$$\dot{x}(t) = ax(t), \qquad x(0) = x_0$$

has solution

$$x(t) = e^{at}x_0,$$

But we are interested in Matrices. Can we define the matrix exponential?

The Solution to State-Space

Ignore Inputs and Outputs:

The equation

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0$$

has solution

$$x(t) = e^{At}x_0$$

The function e^{At} must satisfy the following

$$e^0 = I, \qquad {
m and} \qquad {d \over dt} e^{At} = A e^{At}$$

For scalars, the matrix exponential is defined as

$$e^{a} = 1 + a + a^{2}/2 + \dots + \frac{a^{n}}{n!} + \dots$$

We define the exponential for matrices is defined the same way as scalars

$$e^{A} = I + A + \frac{1}{2}A^{2} + \frac{1}{6}A^{3} + \dots + \frac{1}{k!}A^{k} + \dots$$

The Solution to State-Space

The matrix exponential has the following properties

•
$$e^0 = I$$

• $e^0 = I + 0 + \frac{1}{2}0^2 + \frac{1}{6}0^3 + \dots = I$
• $e^{M^*} = (e^M)^*$
• $e^{M^*} = I + M^* + \frac{1}{2}(M^*)^2 + \frac{1}{6}(M^*)^3 + \dots + \frac{1}{k!}(M^*)^k + \dots$

$$= I + M^* + (\frac{1}{2}M^2)^* + (\frac{1}{6}M^3)^* + \dots + (\frac{1}{k!}M^k)^* + \dots$$

$$= (I + M + \frac{1}{2}M^2 + \frac{1}{6}M^3 + \dots + \frac{1}{k!}M^k + \dots)^*$$

The Solution to State-Space

•
$$\frac{d}{dt}e^{At} = Ae^{At}$$

$$\begin{split} \frac{d}{dt}e^{At} &= \frac{d}{dt}\left(I + (At) + \frac{1}{2}(At)^2 + \dots + \frac{1}{k!}(At)^k + \dots\right) \\ &= 0 + A + \frac{2}{2}A(At) + \frac{3}{6}A(At)^2 + \dots + \frac{k}{k!}A(At)^k + \dots \\ &= A\left(I + (At) + \frac{1}{2}(At)^2 + \dots + \frac{1}{(k-1)!}(At)^{k-1} + \dots\right) \end{split}$$

However,

$$e^{M+N} \neq e^M e^N$$

Unless, MN = NM.

Find the output given the input

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0$$

has solution

$$x(t) = e^{At}x_0$$

Proof.

Let $x(t) = e^{At}x_0$, then

•
$$\dot{x}(t) = Ae^{At}x_0 = Ax(t)$$
.

•
$$x(t) = e^0 x_0 = x_0$$

What happens when we add an input instead of an initial condition?

Find the output given the input

State-Space:

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t) \qquad x(0) = 0$$

The equation

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = 0$$

has solution

$$x(t) = \int_0^t e^{A(t-s)} Bu(s) ds$$

Proof.

Check the solution:

$$\dot{x}(t) = e^{0}Bu(t) + A \int_{0}^{t} e^{A(t-s)}Bu(s)ds$$
$$= Bu(t) + Ax(t)$$

Find the output given the input

Solution for State-Space

State-Space:

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t) \qquad x(0) = 0$$

Now that we have x(t), finding y(t) is easy

$$y(t) = Cx(t) + Du(t)$$
$$= \int_0^t Ce^{A(t-s)}Bu(s)ds + Du(t)$$

Conclusion: Given u(t), only one integration is needed to find y(t)! Note that the state, x, doesn't appear!!

We have solved the problem.

Calculating the Output

Numerical Example, $u(t) = \sin(t)$

State-Space:

$$\dot{x} = -x(t) + u(t)$$

 $y(t) = x(t) - .5u(t)$ $x(0) = 0$
 $A = -1;$ $B = 1;$ $C = 1;$ $D = -.5$

Solution:

$$y(t) = \int_0^t Ce^{A(t-s)}Bu(s)ds + Du(t)$$

$$= e^{-t} \int_0^t e^s \sin(s)ds - \frac{1}{2}\sin(t)$$

$$= \frac{1}{2}e^{-t} \left(e^s(\sin s - \cos s)|_0^t\right) - \frac{1}{2}\sin(t)$$

$$= \frac{1}{2}e^{-t} \left(e^t(\sin t - \cos t) + 1\right) - \frac{1}{2}\sin(t)$$

$$= \frac{1}{2} \left(e^{-t} - \cos t\right)$$

$$\dot{x}(t) = Ax(t)$$

There are several notions of stability.

• All notions are equivalent for linear systems.

Definition 1.

A differential equation is stable if any solution x(t) satisfies

$$\lim_{t \to \infty} x(t) = 0$$

The unique solution has the form $x(t) = e^{At}x_0$.

$$\dot{x}(t) = Ax(t)$$

Question: Is it stable?

Suppose A is diagonalizable, so $A = T\Lambda T^{-1}$, so that

$$A^k = T\Lambda T^{-1}T\Lambda T^{-1} \cdots T\Lambda T^{-1} = T\Lambda^k T^{-1}$$

We conclude that

$$e^{At} = \left(TT^{-1} + (T\Lambda T^{-1})t + \frac{1}{2}(T\Lambda^2 T^{-1})t^2 + \dots + \frac{1}{k!}(T\Lambda^k T^{-1})t^k + \dots\right)$$
$$= T\left(I + (\Lambda t) + \frac{1}{2}(\Lambda t)^2 + \dots + \frac{1}{k!}(\Lambda t)^k + \dots\right)T^{-1}$$
$$= Te^{\Lambda t}T^{-1}$$

But we can see that $e^{\Lambda t}$ converges

$$\begin{split} e^{\Lambda t} &= I + \Lambda t + \dots + \frac{1}{k!} \Lambda^k t^k + \dots \\ &= \begin{bmatrix} 1 + \lambda_1 t + \dots & & & \\ & \ddots & & \\ & & 1 + \lambda_n t + \dots \end{bmatrix} = \begin{bmatrix} e^{\lambda_1 t} & & & \\ & \ddots & & \\ & & e^{\lambda_n t} \end{bmatrix} \end{split}$$

The solution is a linear combination of the functions of the form $e^{\lambda_i t}$.

• $\lim_{t\to\infty} e^{\lambda_i t} \to 0$ if and only if $\operatorname{Re} \lambda_i(A) < 0$ for all i.

Inconveniently, not all matrices are diagonalizable.

- However, all matrices are Jordan diagonalizable.
 - $A^k = TJ^kT^{-1}, \text{ where } J$
- Hence $e^{At} = Te^{Jt}T^{-1}$

Consider a single Jordan block $J_i = \lambda_i I + N$.

- Convenient because $\lambda_i I$ and N commute.
 - Hence $e^{\lambda_i I + N} = e^{\lambda_i I} e^N$. $e^{J_i t} = e^{\lambda_i t + Nt} = e^{\lambda_i t} e^{Nt}$

Conveniently $N^d=0$, so the series expansion terminates

$$e^{Nt} = 1 + N + \frac{1}{2}N^2 + \dots + \frac{1}{(k-1)!}N^{k-1}t^{k-1}$$

$$e^{J_i t} = \begin{bmatrix} e^{\lambda_i t} & & \\ & \ddots & \\ & & e^{\lambda_i t} \end{bmatrix} \left[1 + N + \frac{1}{2}N^2 + \dots + \frac{1}{(k-1)!}N^{k-1}t^{k-1} \right]$$

This time all terms have the form $t^i e^{\lambda t}$ for $i \leq k$

• $\lim_{t\to\infty} t^i e^{\lambda t} = 0$ if and only if $\operatorname{Re} \lambda < 0$

M. Peet Lecture 5: State-Space Theory 14 / 16

Now consider the general case $A = TJT^{-1}$ where

$$J = \begin{bmatrix} J_1 & & & \\ & \ddots & & \\ & & J_n \end{bmatrix}$$

Then

$$e^{At} = Te^{Jt}T^{-1} = T\begin{bmatrix} e^{J_1t} & & & \\ & \ddots & & \\ & & e^{J_nt} \end{bmatrix}T^{-1}$$

 e^{At} is entirely composed of terms of the form

$$\frac{e^{\lambda_i t} t^k}{k!}$$

We conclude that $\dot{x}(t) = Ax(t)$ is stable if and only if $\operatorname{Re} \lambda < 0$.

Definition 2.

A is **Hurwitz** if $\operatorname{Re} \lambda_i(A) < 0$ for all i.

Theorem 3.

 $\dot{x}(t) = Ax(t)$ is stable if and only if A is Hurwitz.