Séries

Exemplo

Tem-se $\sum_{k=0}^{\infty} \frac{1}{k!} = e$.

Com efeito, o polinómio de Taylor da função \boldsymbol{e}^x de ordem \boldsymbol{n} à volta de 0 é

$$P(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}.$$

Assim, temos a fórmula de Taylor-Lagrange

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{e^c}{(n+1)!} x^{n+1}, \quad c \text{ estritamente entre } 0 \text{ e } x.$$

Para x = 1 obtemos

$$e = \sum_{k=0}^{n} \frac{1}{k!} + \frac{e^{c}}{(n+1)!}, \quad 0 < c < 1.$$

Séries numéricas

Sejam r um número natural e $(a_k)_{k \geq r}$ uma sucessão. A sucessão de termo geral

$$s_n = \sum_{k=r}^n a_k = a_r + a_{r+1} + \dots + a_n \quad (n \ge r)$$

denomina-se série numérica de termo geral a_k e indica-se por $\sum\limits_{k=r}^{\infty}a_k$.

O limite da série, quando existe (finito ou infinito), denomina-se *soma* da série e indica-se, por um abuso de notação, também pelo símbolo $\sum_{k=r}^{\infty} a_k.$

Se a soma for finita, diremos que a série é *convergente*. Se a soma for infinita ou se o limite da série não existir, diremos que a série é *divergente*.

A soma $\sum_{k=r}^{n} a_k$ é chamada *soma parcial de ordem* n da série.

Exemplo

Logo

$$\left| \sum_{k=0}^{n} \frac{1}{k!} - e \right| = \left| e - \sum_{k=0}^{n} \frac{1}{k!} \right| = \frac{e^{c}}{(n+1)!} < \frac{e}{(n+1)!}.$$

Portanto

$$-\frac{e}{(n+1)!} < \sum_{k=0}^{n} \frac{1}{k!} - e < \frac{e}{(n+1)!}$$

e então

$$e - \frac{e}{(n+1)!} < \sum_{k=0}^{n} \frac{1}{k!} < e + \frac{e}{(n+1)!}$$

Como $\lim_{n\to\infty}e-\frac{e}{(n+1)!}=e=\lim_{n\to\infty}e+\frac{e}{(n+1)!}, \ \ \text{pelo Teorema do}$ confronto,

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = e.$$

Séries harmónicas

A série $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$, onde α é um numéro real dado, denomina-se *série* harmónica de ordem α .

Para $\alpha > 1$, a série harmónica é convergente. Para $\alpha \leq 1$,

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = +\infty.$$

Critérios de convergência

Seja $\sum\limits_{k=r}^{\infty}a_k$ uma série numérica e l>r. Então a série $\sum\limits_{k=l}^{\infty}a_k$ é conver-

gente se e só se $\sum\limits_{k=r}^{\infty}a_k$ é convergente. Se as somas das séries existirem, então

$$\sum_{k=r}^{\infty} a_k = \sum_{k=r}^{l-1} a_k + \sum_{k=l}^{\infty} a_k.$$

Exemplo

Como a série geométrica $\sum\limits_{k=0}^{\infty}\frac{1}{2^k}$ é convergente, a série $\sum\limits_{k=2}^{\infty}\frac{1}{2^k}$ é convergente. Temos

$$\sum_{k=2}^{\infty} \frac{1}{2^k} = \sum_{k=0}^{\infty} \frac{1}{2^k} - \sum_{k=0}^{1} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} - \left(1 + \frac{1}{2}\right) = \frac{1}{2}.$$

Séries geométricas

A série $\sum_{k=0}^{\infty} q^k$ $(q \in \mathbb{R})$ denomina-se *série geométrica*.

Temos

$$(1-q)\sum_{k=0}^{n} q^{k} = \sum_{k=0}^{n} q^{k} - q^{k+1}$$

$$= q^{0} - q^{1} + q^{1} - q^{2} + q^{2} - q^{3} + \dots + q^{n} - q^{n+1}$$

$$= 1 - q^{n+1}.$$

Assim, se |q| < 1,

$$\sum_{k=0}^{\infty} q^k = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q}.$$

Se $|q| \ge 1$, a série geométrica é divergente.

Critérios de convergência

Uma série numérica é uma sucessão e então uma função especial. Logo cada resultado sobre limites de funções dá origem a um resultado sobre somas de séries. Assim temos por exemplo:

Proposição

Seja $\sum\limits_{k=r}^{\infty}a_k$ uma série de termos não negativos. Se a série (isto é a

sucessão das somas parciais) for limitada, então $\sum\limits_{k=r}^{\infty}a_k$ é convergente.

Critérios de convergência

Proposição

Se a série $\sum_{k=r}^{\infty} a_k$ for convergente, então a sucessão $(a_k)_{k\geq r}$ converge para 0.

Exemplo

Como a sucessão $(k!)_{k\in\mathbb{N}}$ não tende para 0, a série $\sum\limits_{k=0}^{\infty}k!$ é divergente.

Nota

Como mostra o exemplo da série harmónica $\sum\limits_{k=1}^{\infty}\frac{1}{k}$, uma série $\sum\limits_{k=r}^{\infty}a_k$ pode ser divergente mesmo que $\lim\limits_{k\to\infty}a_k=0$.

Critério de comparação

Exemplos

- (i) A série $\sum_{k=1}^{\infty} \frac{-1}{k2^k}$ é convergente. Com efeito, $\left|\frac{-1}{k2^k}\right| \leq \frac{1}{2^k}$ e a série $\sum_{k=1}^{\infty} \frac{1}{2^k}$ é convergente (série geométrica).
- (ii) A série $\sum\limits_{k=2}^{\infty} \frac{1}{\ln k}$ é divergente. Com efeito, $\frac{1}{\ln k} \geq \frac{1}{k}$ e a série $\sum\limits_{k=2}^{\infty} \frac{1}{k}$ é divergente (série harmónica).

Critério de comparação

- (i) Seja $\sum\limits_{k=r}^{\infty}c_k$ uma série convergente de termos não negativos. Se existir $p\geq r$ tal que, para todo o $k\geq p$, $|a_k|\leq c_k$, então a série $\sum\limits_{k=r}^{\infty}a_k$ é convergente.
- (ii) Seja $\sum\limits_{k=r}^{\infty}d_k$ uma série divergente de termos não negativos. Se existir $p\geq r$ tal que, para todo o $k\geq p,$ $a_k\geq d_k$, então a série $\sum\limits_{k=r}^{\infty}a_k$ é divergente.

10

Critério de Dirichlet

Teorema

Seja $\sum\limits_{k=r}^{\infty}b_k$ uma série limitada e $(a_k)_{k\geq r}$ uma sucessão monótona que tende para 0. Então a série $\sum\limits_{k=r}^{\infty}a_kb_k$ é convergente.

Como corolário temos a

Regra de Leibniz

Seja $(a_k)_{k\geq r}$ uma sucessão monótona que tende para 0. Então a série $\sum\limits_{k=r}^{\infty} (-1)^k a_k$ é convergente.

Exemplo

Pela regra de Leibniz, a série $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ é convergente, pois a sucessão $\left(\frac{1}{k}\right)_{k>1}$ tende para 0 de maneira monótona.

110

Séries de Taylor

Sejam I um intervalo e $f\colon I\to\mathbb{R}$ uma função de classe C^∞ . Sejam $x_0\in I$ e $n\in\mathbb{N}$. Pelo Teorema de Taylor-Lagrange, podemos escrever, para qualquer $x\in I$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x),$$

onde

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} (x-x_0)^{n+1}, \quad \min\{x, x_0\} \le c_x \le \max\{x, x_0\}.$$

Definição

A série de Taylor de f à volta de x_0 no ponto x é a série

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

13

Exemplos

(a) Consideremos a função exponencial $f\colon \mathbb{R}\to\mathbb{R},\, f(x)=e^x$. A série de Taylor de f a volta de $x_0=0$ é

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

Para $x\geq 0$, sejam $\alpha=1$ e $C=e^x$. Tem-se $C\geq 1$ e então $C^n\geq C$. Para $0\leq t\leq x$,

$$|f^{(n)}(t)| = e^t \le e^x = C \le C^n = \alpha C^n.$$

Para x<0, sejam $\alpha=1$ e C=1. Então, para $x\leq t\leq 0$, $|f^{(n)}(t)|=e^t<1=\alpha C^n.$

Segue-se que, para todo o $x \in \mathbb{R}$,

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

Séries de Taylor

Teorema

Seja $x \in I$.

(a) Tem-se

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

se e só se $\lim_{n\to\infty} R_n(x) = 0$.

(b) Se existirem constantes $\alpha, C \in \mathbb{R}$ tais que $|f^{(n)}(t)| \leq \alpha C^n$ para todo o $n \geq 1$ e todo o $\min\{x, x_0\} \leq t \leq \max\{x, x_0\}$, então

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

14

Exemplos

(b) Consideremos a função $f \colon \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \cos x$. A série de Taylor de f à volta de 0 é

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}.$$

Tomando $\alpha = C = 1$ tem-se $|f^{(n)}(t)| \leq \alpha C^n$ para todo o t entre x e 0. Logo

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

para todo o $x \in \mathbb{R}$.

(c) Do mesmo modo, para todo o $x \in \mathbb{R}$,

$$\operatorname{sen} x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

16

Séries de Taylor

Nota

Em geral, uma função não é igual à sua série de Taylor (à volta de um ponto x_0) para todo o x. Por exemplo, a série de Taylor à volta de 0 da função $f:]-1, +\infty[\to \mathbb{R}, x \mapsto \ln(1+x)$ é

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}.$$

Para $-1 < x \le 1$,

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k},$$

mas a série é divergente para x > 1.

17

Raio de convergência

O raio de convergência da série de potências $\sum\limits_{k=l}^{\infty}a_k(x-x_0)^k$ é o maior r (eventualmente ∞) tal que a série é convergente para todo o x com $|x-x_0| < r$. Se o raio de convergência r é maior do que 0, o conjunto $\{x \in \mathbb{R}: |x-x_0| < r\}$ diz-se o intervalo de convergência da série.

Nota

Seja r o raio de convergência da série de potências $\sum\limits_{k=l}^{\infty}a_k(x-x_0)^k$. Então a série é divergente para $|x-x_0|>r$. Para $|x-x_0|=r$, não se pode dizer nada a priori.

Séries de potências

Uma série da forma $\sum_{k=l}^{\infty} a_k (x-x_0)^k$ diz-se uma *série de potências* centrada em x_0 . Por exemplo, as séries de Taylor são séries de potências.

Teorema

- (a) Se a série de potências $\sum_{k=1}^{\infty} a_k (x-x_0)^k$ é convergente para $x=x_1$, então ela é convergente para qualquer x com $|x-x_0|<|x_1-x_0|$.
- (b) Se a série de potências $\sum_{k=l}^{\infty} a_k (x-x_0)^k$ é divergente para $x=x_1$, então ela é divergente para qualquer x com $|x-x_0| > |x_1-x_0|$.

1 Q

Exemplos

- (a) O raio de convergência da série de potências $\sum\limits_{k=0}^{\infty}x^k$ é 1 (série geométrica). A série é divergente para |x|=1.
- (b) Consideremos a série de potências $\sum\limits_{k=1}^{\infty}\frac{x^k}{k}$. Para x=1, a série é divergente (série harmónica de ordem 1). Para x=-1, a série é convergente pelo critério de Leibniz. Logo o raio de convergência de $\sum\limits_{k=0}^{\infty}\frac{x^k}{k}$ é 1.

20