

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) An exhaust emission purifying apparatus for an engine, comprising:
 - a reduction catalyst disposed in an engine exhaust system, for reductively purifying nitrogen oxides with a reducing agent;
 - a reducing agent oxidation catalyst disposed on an exhaust downstream side of said reduction catalyst, for oxidizing the reducing agent passed through said reduction catalyst;
 - a storage tank for storing therein the reducing agent;
 - a reducing agent supply device that suppliesfor supplying the reducing agent from said storage tank to said reduction catalyst;
 - a first discharge-forcing device that forcibly dischargesfor forcibly discharging a gas in an upper space of said storage tank to an intake system or said exhaust system on an upstream side of said reducing agent oxidation catalyst;
 - a temperature detecting device that detectsfor detecting a temperature of said reducing agent oxidation catalyst; and
 - a first operation control device that operatesfor operating said first discharge-forcing device when the temperature detected by said temperature detecting device reaches an activating temperature for said reducing agent oxidation catalyst or above.
2. (Currently Amended) The apparatus according to claim 1, wherein said first operation control device is configured to operateoperates said first discharge-forcing device for a predetermined period of time.
3. (Original) The apparatus according to claim 1, wherein said first discharge-forcing device is an electric fan disposed on piping which communicatively connects the upper space of said storage tank to the intake system or the exhaust system on the upstream side of said

reducing agent oxidation catalyst.

4. (Currently Amended) The apparatus according to claim 3, wherein said piping is disposed with a check valve which is opened-configured to be opened only in a direction in which the gas in the upper space of said storage tank is discharged to the intake system or the exhaust system.

5. (Currently Amended) The apparatus according to claim 1, wherein said first discharge-forcing device comprises: a venturi disposed in the intake system or the exhausted system, on the upstream side of said reducing agent oxidation catalyst; and a switching valve disposed on piping which ~~provides~~for providing a fluid communication between the upper space of said storage tank and said venturi, and said first operation control device ~~that opens~~for opening said switching valve when the temperature detected by said temperature detecting device reaches the activating temperature for said reducing agent oxidation catalyst or above.

6. (Currently Amended) The apparatus according to claim 1, wherein said temperature detecting device is configured to detect~~detects~~ the temperature of said reducing agent oxidation catalyst indirectly via the exhaust emission temperature on the upstream side of said reducing agent oxidation catalyst.

7. (Currently Amended) An exhaust emission purifying apparatus for an engine, comprising:

a reduction catalyst disposed in an engine exhaust system, for reductively purifying nitrogen oxides with a reducing agent;

a storage tank for storing therein the reducing agent;

a reducing agent supply device for supplying the reducing agent stored in said storage tank to said reduction catalyst;

a second discharge-forcing device for forcibly discharging the gas in an upper space of said storage tank;

an adsorbing device for temporarily adsorbing thereto the gas forcibly discharged by said second discharge-forcing device; and

an oxidation catalyst for oxidizing the gas desorbed from said adsorbing device,
wherein said second discharge-forcing device, said adsorbing device and said oxidation
catalyst are disposed on a top wall of the storage tank,
wherein after passing through the oxidation catalyst, the gas is to be discharged into an
atmosphere.

8. (Currently Amended) The apparatus according to claim 7, further comprising:
a reducing agent temperature detecting device for detecting the temperature of the
reducing agent in said storage tank; and
a second operation control apparatus that operatesfor operating said second discharge-
forcing device when the temperature of the reducing agent detected by said reducing agent
temperature detecting device is equal to or higher than the first predetermined temperature.

9. (Currently Amended) The apparatus according to claim 8, wherein said second operation
control device operatesis configured to operate said second discharge-forcing device for a
predetermined period of time.

10. (Currently Amended) The apparatus according to claim 7, further comprising:
a catalyst temperature detecting device that detectsfor detecting the temperature of said
oxidation catalyst; and
a catalyst activating device that activatesfor activating said oxidation catalyst based on
the catalyst temperature detected by said catalyst temperature detecting device.

11. (Currently Amended) The apparatus according to claim 10, further comprising:
a heating device that heatsfor heating said oxidation catalyst,
wherein said catalyst activating device controlsis configured to control said heating
device so that the catalyst temperature detected by said catalyst temperature detecting device
reaches the activating temperature for said oxidation catalyst or above.

12. (Currently Amended) The apparatus according to claim 11, wherein said catalyst
activating device stopsis configured to stop an operation of said heating device when the catalyst

temperature detected by said catalyst temperature detecting device reaches the second predetermined temperature or above.

13. (Original) The apparatus according to claim 7, wherein said adsorbing device is mordenite, cobalt-supported mordenite or activated carbon.

14. (Original) The apparatus according to claim 7, wherein said oxidation catalyst is an electrically heated honeycomb catalyst.

15. (Currently Amended) An exhaust emission purifying apparatus for an engine, comprising:

a reduction catalyst disposed in an engine exhaust system, for reductively purifying nitrogen oxides with a reducing agent;

a storage tank ~~that stores~~for storing therein the reducing agent;

a reducing agent supply device ~~that supplies~~for supplying the reducing agent stored in said storage tank to said reduction catalyst;

a heating device ~~that circulates~~for circulating a heating medium heated by said engine, within said storage tank, to heat said reducing agent stored in said storage tank;

a blocking device ~~that blocks~~for blocking a passage which leads said heating medium into said storage tank;

a heating medium temperature detecting device ~~that detects~~for detecting the temperature of said heating medium; and

first control means for controlling said blocking device to block said passage, when the heating medium temperature detected by said heating medium temperature detecting device is higher than the third predetermined temperature.

16. (Currently Amended) The apparatus according to claim 15, further comprising: a reducing agent temperature detecting device ~~that detects~~for detecting the temperature of the reducing agent stored in said storage tank; and second control means for controlling said blocking device to block said passage, when the reducing agent temperature detected by said reducing agent temperature detecting device is equal to or higher than the fourth predetermined

temperature.

17. (Currently Amended) The apparatus according to claim 15 or claim 16, further comprising[[;]]third control means for controlling said blocking device to forcibly cancel the blocking of said passage for a predetermined period of time, immediately after an operation of said engine is started, and also, when the heating medium temperature detected by said heating medium temperature detecting device is ~~higher~~higher than the freezing temperature of the reducing agent.

18. (Original) The apparatus according to claim 15, wherein said blocking device is manually controllable, to cancel the blocking of said passage.