BÀI TẬP TOÁN RỜI RẠC 2

Câu 1. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- **C.** Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- E. Các phương án khác đều sai.

Câu 2. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 3, 5\} \mid Ke(2) = \{1, 3\} \mid Ke(3) = \{1, 2\} \mid Ke(4) = \{5\} \mid Ke(5) = \{1, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . T không phải là cây vì T có chúa chu trình.
- **B.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- C. T không phải là cây vì không chứa đỉnh trụ.
- **D.** T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- E. Các phương án khác đều sai.

Câu 3. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	4	3	2

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- **B.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- C. T = (4, 2), (2, 1), (2, 3), (2, 5).
- **D.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- E. Các phương án khác đều sai.

Câu 4. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	4	2	4	6
2	3	8	1	4	1
1	3	7	3	4	7

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (1,4), (1,2), (2,3) với WT = 13.
- **B.** T = (1,4), (2,3), (1,3) với WT = 16.
- C. T = (2,3), (1,2), (1,3) với WT = 19.
- $\mathbf{D.} \ \mathrm{T} = (1,4), (1,2), (1,3) \ \mathrm{v\'et} \ \mathrm{WT} = 12.$
- E. Các phương án khác đều sai.

Biên soạn: TS. Nguyễn Kiều Linh

Câu 5. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
2	3	4	5
1	2	3	1

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- **B.** T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- C. T không phải là cây vì T có chúa chu trình.
- D. T không phải là cây vì T không liên thông.
- E. Các phương án khác đều đúng.

Câu 6. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	5	2	4	8
1	3	5	2	3	4
1	4	7	1	2	4

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (2,3), (3,4) với WT = 17.
- **B.** T = (2,4), (1,4), (3,4) với WT = 20.
- C. T = (1,2), (1,4), (3,4) v'oi WT = 16.
- **D.** T = (2,4), (1,3), (3,4) v'oi WT = 18.
- E. Các phương án khác đều sai.

Câu 7. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
3	5	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- **B.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- C. T = (4, 2), (4, 3), (2, 1), (2, 5).
- **D.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- E. Các phương án khác đều sai.

Câu 8. Cho đơn đồ thị G=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. G có cây khung khi và chỉ khi G không chứa chu trình..
- B. G có cây khung khi và chỉ khi G tất cả m cạnh đều là các cạnh cầu..
- C. G có cây khung khi và chỉ khi G là đồ thị liên thông..
- \mathbf{D} . G có cây khung khi và chỉ khi \mathbf{G} có $\mathbf{m}=\mathbf{n}$ -1 cạnh..
- E. Các phương án khác đều sai.

Câu 9. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	0 2 5		6
2	0	-1	2
5	-1	0	2
6	2	2	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,4), (1,3), (2,3) và WT = 10.
- **B.** T = (1,4), (2,4), (2,3) và WT = 7.
- **C.** T = (1,4), (1,3), (2,4) và WT = 13.
- **D.** T = (1,4), (1,3), (2,3) và WT = 10.
- E. Các phương án khác đều sai.

Câu 10. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	5	3	1
1	5	1	2

Chọn phương án đúng trong các phương án dưới đây:

A. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.

- B. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- C. T không phải là cây vì T có chứa chu trình.
- D. T là cây vì có đỉnh 1 là đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 11. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh. Đặt W(T) là tổng trọng số trên các cạnh của cây khung T của G. Cây khung T nhỏ nhất của G là:

- A. T có W(T) nhỏ nhất..
- B. T bao gồm n-1 cạnh có trọng số nhỏ nhất trong G..
- C. T chứa ít cạnh nhất..
- D. T chỉ gồm các cạnh nằm trên đường đi ngắn nhất từ đỉnh 1 đến đỉnh n..
- E. Các phương án khác đều sai.

Câu 12. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị liên thông và có số cạnh m = n.
- **B.** T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bán bậc ra là lẻ..
- C. T là đồ thị vô hướng liên thông và có m = n-1 cạnh..
- D. T là đồ thị vô hướng liên thông yếu và tất cả các đinh đều có bán bậc vào là chẵn...
- E. Các phương án khác đều sai.

Câu 13. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	8	3	2
8	0	2	8
3	2	0	6
2	8	6	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (1,2), (3,4) và WT = 22.
- **B.** T = (2,4), (1,2), (2,3) và WT = 18.
- C. T = (2,4), (1,2), (1,3) và WT = 19.
- **D.** T = (2,4), (1,2), (2,3) và WT = 18.
- E. Các phương án khác đều sai.

Câu 14. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	5	4	1
5	0	4	1
4	4	0	3
1	1	3	0

Biên soạn: TS. Nguyễn Kiều Linh

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,3), (3,4), (1,3) và WT = 11.
- **B.** T = (1,2), (3,4), (2,4) và WT = 9.
- C. T = (1,2), (2,3), (3,4) và WT = 12.
- **D.** T = (1,2), (3,4), (1,3) và WT = 12.
- E. Các phương án khác đều sai.

Câu 15. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3, 5\} \mid Ke(2) = \{5\} \mid Ke(3) = \{1, 4, 5\} \mid Ke(4) = \{3\} \mid Ke(5) = \{1, 2, 3\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (5,1), (5,2), (1,3), (1,4).
- **B.** T = (5,1), (1,3), (3,4), (5,2).
- C. T = (5,3), (5,2), (5,1), (1,3), (3,4).
- **D.** T = (5,1), (1,3), (1,4), (5,2).
- E. Các phương án khác đều sai.

Câu 16. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	0	1
1	0	0	1
1	1	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (2, 1), (1, 3), (2, 4).
- **B.** T = (2, 4), (1, 3), (2, 1).
- C. T = (1, 3), (2, 1), (2, 4).
- **D.** T = (2, 1), (2, 4), (1, 3).
- E. Các phương án khác đều sai.

Câu 17. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	4	-6	1	3	8
3	4	4	2	4	5
1	2	8	2	3	3

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (1,3), (2,3), (3,4) với WT = 15.
- **B.** T = (1,4), (2,3), (3,4) với WT = 1.
- C. Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **D.** T = (1,4), (1,2), (3,4) với WT = 6.
- E. Các phương án khác đều sai.

Câu 18. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách canh với trong số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	5	1	3	5
2	4	5	2	3	4
1	4	1	1	2	8

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tư tìm kiếm của thuật toán và WT là:

- **A.** T = (1,4), (1,3), (2,4) với WT = 11.
- **B.** T = (1,4), (3,4), (2,4) với WT = 11.
- **C.** T = (1,4), (2,3), (2,4) với WT = 10.
- $\mathbf{D} \cdot \mathbf{T} = (3,4), (2,3), (2,4) \text{ với WT} = 14.$
- E. Các phương án khác đều sai.

Câu 19. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	4	1	1	3	3
1	2	6	3	4	5
2	3	6	2	4	1

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (1,2), (2,4), (1,3) với WT = 10.
- **B.** T = (1,4), (1,2), (1,3) với WT = 10.
- C. T = (1,4), (2,3), (1,3) v'oi WT = 10.
- **D.** T = (1,4), (2,4), (1,3) với WT = 5.
- E. Các phương án khác đều sai.

Câu 20. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	5	4	8
5	0	5	8
4	5	0	5
8	8	5	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (1,3), (1,2), (3,4)$$
 và $WT = 14$.

- **B.** T = (1,2), (3,4), (2,3) và WT = 15.
- C. T = (1,2), (3,4), (1,4) và WT = 18.
- **D.** T = (1,2), (3,4), (2,4) và WT = 18.
- E. Các phương án khác đều sai.

Câu 21. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT bắt đầu tại đỉnh s của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **B.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- C. Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- **D.** Tìm e = (u, v) có trong số lớn nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- E. Các phương án khác đều sai.

Câu 22. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách canh với trong số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	9	1	3	3
1	4	7	2	4	3
2	3	-7	1	2	4

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (3,4), (1,3), (2,4) với WT = 15.
- **B.** T = (2,3), (1,3), (2,4) với WT = -1.
- C. Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **D.** T = (1,4), (1,3), (2,4) với WT = 13.
- E. Các phương án khác đều sai.

Câu 23. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng BFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Bfs(s){
                                                    Tree_Bfs(s){
  Queue = \emptyset;
                                                       For v \in V
  Queue ← s;
                                                         VS[v] = 0;
  VS[s] = 1;
                                                       T = \emptyset;
  While (Queue \neq \emptyset) {
                                                       Bfs(s);
                                                       For v \in V
     u \leftarrow Queue;
     For v \in Ke(u)
                                                          if (VS[v] = 0)
        if (VS[v] = 0) {
                                                            Return(<Không có cây khung>);
          Queue ← v;
                                                       Return(T);
          VS[v] = 1;
                                                    }
          T = T \cup \{(u, v)\};
     }
  }
}
```

Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là cây khung của G vì T chứa ít cạnh nhất của G.
- **B.** T là cây khung của G vì T liên thông và có n đỉnh.
- C. T là cây khung của G vì T liên thông có n đỉnh và n-1 cạnh.
- **D.** T là cây khung của G vì T có n-1 cạnh.
- E. Các phương án khác đều sai.

Câu 24. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	0	1	0
0	0	0	1
1	0	0	1
0	1	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

```
A. T = (2, 4), (4, 3), (3, 1).
```

B.
$$T = (3, 1), (4, 3), (2, 4).$$

C.
$$T = (4, 3), (2, 4), (3, 1).$$

D.
$$T = (2, 4), (3, 1), (4, 3).$$

E. Các phương án khác đều sai.

Câu 25. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim tìm cây khung nhỏ nhất T bắt đầu tại đỉnh s và WT của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Tìm e = (u, v) có trọng số nhỏ nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- **B.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **C.** Tìm e = (u, v) có trọng số nhỏ nhất.
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 26. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	7	7	-1
7	0	2	2
7	2	0	5
-1	2	5	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (3,4), (2,3) và WT = 14.
- **B.** T = (1,2), (3,4), (2,4) và WT = 14.
- C. T = (1,3), (1,2), (3,4) và WT = 19.
- **D.** T = (1,3), (1,2), (2,4) và WT = 16.
- E. Các phương án khác đều sai.

Câu 27. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT bắt đầu tại đỉnh s của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **B.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- C. Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- **D.** Tìm e = (u, v) có trọng số lớn nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- E. Các phương án khác đều sai.

Câu 28. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	4	9	7
4	0	-8	8
9	-8	0	6
7	8	6	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,1), (1,4), (1,2) và WT = 20.
- **B.** T = (3,1), (4,2), (2,4) và WT = 25.
- C. T = (3,1), (1,4), (1,2) và WT = 20.
- **D.** T = (3,1), (1,4), (4,2) và WT = 24.
- E. Các phương án khác đều sai.

Câu 29. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	4	1	4	5
1	3	5	2	3	5
3	4	4	2	4	9

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=1. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (3,2), (3,4) với WT = 14.
- **B.** T = (3,4), (3,2), (2,4) với WT = 18.

- C. T = (1,3), (1,2), (2,4) với WT = 18.
- **D.** T = (1,3), (3,2), (2,4) với WT = 19.
- E. Các phương án khác đều sai.

Câu 30. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1, 4, 5\} \mid Ke(3) = \{4\} \mid Ke(4) = \{1, 2, 3\} \mid Ke(5) = \{1, 2\}$$

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . T là cây vì có đỉnh 1 là đỉnh trụ.
- \mathbf{B} . T là cây vì có đúng 2 đỉnh bậc lẻ.
- ${f C.}\ T$ là cây vì T liên thông và không chứa chu trình.
- \mathbf{D} . T là cây vì có cạnh (1,4) là cạnh cầu.
- E. Các phương án khác đều sai.

Câu 31. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 3, 4\} \mid Ke(2) = \{1, 3\} \mid Ke(3) = \{1, 2\} \mid Ke(4) = \{1, 5\} \mid Ke(5) = \{4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- B. T không phải là cây vì không chứa đỉnh trụ.
- C. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- \mathbf{D} . T không phải là cây vì T có chứa chu trình.
- E. Các phương án khác đều sai.

Câu 32. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	5	5	2
3	3 2		1

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì có đỉnh 1 là đỉnh trụ.
- B. T không phải là cây vì T có chứa chu trình.
- C. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- **D.** T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- E. Các phương án khác đều sai.

Câu 33. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	0
1	0	1	0
0	1	0	1
0	0	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (3, 4), (2, 3), (1, 2).
- **B.** T = (2, 3), (1, 2), (3, 4).
- C. T = (1, 2), (2, 3), (3, 4).
- **D.** T = (3, 4), (1, 2), (2, 3).
- E. Các phương án khác đều sai.

Câu 34. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng BFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Bfs(s){
                                                      Tree_Bfs(s){
                                                         For \mathtt{v} \in \mathtt{V}
  Queue = \emptyset;
  Queue ← s;
                                                           VS[v] = 0;
  VS[s] = 1;
                                                         T = \emptyset;
  While (Queue \neq \emptyset) {
                                                        Bfs(s);
                                                         For v \in V
     u ← Queue;
     For v \in Ke(u)
                                                           if (VS[v] = 0)
        if (VS[v] = 0) {
                                                              Return(<Không có cây khung>);
           Queue ← v;
                                                         Return(T);
          VS[v] = 1;
                                                      }
          T = T \cup \{(u, v)\};
     }
  }
}
```

Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là cây khung của G vì T chứa ít cạnh nhất của G.
- **B.** T là cây khung của G vì T liên thông và có n đỉnh.
- **C.** T là cây khung của G vì T liên thông có n đỉnh và n-1 cạnh.
- **D.** T là cây khung của G vì T có n-1 cạnh.
- E. Các phương án khác đều sai.

Câu 35. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	2	1	4	9
2	3	5	3	4	10
2	4	-1	1	3	3

Biên soạn: TS. Nguyễn Kiều Linh

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,4), (1,4), (2,3) với WT = 24.
- **B.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- C. T = (3,4), (1,4), (1,3) với WT = 22.
- **D.** T = (3,4), (1,4), (1,2) với WT = 21.
- E. Các phương án khác đều sai.

Câu 36. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	6	1	2	9
2	4	-4	1	4	5
1	3	1	2	3	4

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **B.** T = (1,2), (3,4), (2,4) với WT = 11.
- C. T = (1,2), (3,4), (1,4) với WT = 20.
- **D.** T = (1,2), (1,3), (1,4) với WT = 15.
- E. Các phương án khác đều sai.

Câu 37. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	3	3	1	4	5
2	4	10	3	4	2
1	2	5	2	3	8

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=1. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,2), (2,4), (2,3) với WT = 23.
- **B.** T = (1,2), (1,4), (2,3) với WT = 18.
- C. T = (1,3), (2,4), (2,3) với WT = 21.
- **D.** T = (1,2), (2,4), (3,4) với WT = 17.
- E. Các phương án khác đều sai.

Câu 38. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối	
3	2	4	5	
3	1	5	3	

- A. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- B. T không phải là cây vì T có chứa chu trình.
- C. T là cây vì có đỉnh 1 là đỉnh trụ.
- D. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 39. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	6	1	4	2
1	2	3	2	3	7
2	4	2	1	3	-7

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- A. Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **B.** T = (1,3), (3,4), (1,4) với WT = 1.
- **C.** T = (1,3), (2,4), (3,4) với WT = 1.
- **D.** T = (1,3), (2,4), (1,4) với WT = -3.
- E. Các phương án khác đều sai.

Câu 40. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	1
1	1	0	1
0	1	1	0

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- **B.** T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- **D.** T là cây vì T liên thông.
- E. Các phương án khác đều sai.

Câu 41. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	4 5		2
2	1	1	4

- A. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- B. T là cây vì có đỉnh 1 là đỉnh trụ.
- C. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- D. T không phải là cây vì T có chứa chu trình.
- E. Các phương án khác đều sai.

Câu 42. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị vô hướng liên thông và mỗi đỉnh của T đều là đỉnh trụ...
- B. T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc lẻ..
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc chẵn..
- D. T là đồ thị vô hướng liên thông và mỗi cạnh của T đều là cạnh cầu...
- E. Các phương án khác đều sai.

Câu 43. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	9	3	-5
9	0	3	2
3	3	0	2
-5	2	2	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các canh của cây khung nhỏ nhất theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (4,1), (4,3) và WT = -1.
- **B.** T = (2,4), (4,1), (3,4) và WT = -1.
- **C.** T = (2,4), (4,1), (3,4) và WT = -1.
- **D.** T = (4,1), (4,3), (2,3) và WT = 0.
- E. Các phương án khác đều sai.

Câu 44. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	5	8	5
5	0	-6	4
8	-6	0	4
5	4	4	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,2), (1,4), (2,3) và WT = 4.
- **B.** T = (1,2), (1,4), (3,4) và WT = 14.
- C. T = (3,1), (1,2), (1,4) và WT = 18.
- **D.** T = (1,2), (1,4), (1,3) và WT = 18.
- E. Các phương án khác đều sai.

Đỉnh đầu	Đỉnh cuối	ỉnh cuối Dỉnh đầu	
2	3	4	5
3	1	1	2

- A. T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- B. T không phải là cây vì T không liên thông.

Biên soạn: TS. Nguyễn Kiều Linh

- C. T không phải là cây vì T có chứa chu trình.
- **D.** T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- E. Các phương án khác đều đúng.

Câu 46. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	0	1	1
0	0	1	0
1	1	0	1
1	0	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (2, 3), (3, 4), (3, 1).
- **B.** T = (2, 3), (3, 1), (3, 4).
- **C.** T = (3, 1), (2, 3), (3, 4).
- **D.** T = (3, 4), (2, 3), (3, 1).
- E. Các phương án khác đều sai.

Câu 47. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (2, 1), (3, 4), (2, 3).
- **B.** T = (2, 3), (3, 4), (2, 1).
- C. T = (3, 4), (2, 3), (2, 1).
- **D.** T = (2, 1), (2, 3), (3, 4).
- E. Các phương án khác đều sai.

Câu 48. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	3	3	3	4	7
2	4	5	1	4	8
1	3	9	1	2	5

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (1,4), (3,4) với WT = 24.
- **B.** T = (1,3), (1,4), (1,2) với WT = 22.
- C. T = (1,3), (1,4), (2,4) với WT = 22.
- **D.** T = (1,3), (1,4), (2,3) với WT = 20.
- E. Các phương án khác đều sai.

Câu 49. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1, 3, 4\} \mid Ke(3) = \{2\} \mid Ke(4) = \{1, 2\} \mid Ke(5) = \{1\}$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3,1), (1,2), (2,4), (4,5).
- **B.** T = (3,1), (3,5), (5,2), (5,4).
- C. T = (3,1), (1,2), (1,4), (1,5).
- **D.** T = (3,2), (2,1), (2,4), (1,5).
- E. Các phương án khác đều sai.

Câu 50. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT bắt đầu tại đỉnh s của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

A. Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.

- **B.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- C. Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- **D.** Tìm e = (u, v) có trọng số lớn nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- E. Các phương án khác đều sai.

Câu 51. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị vô hướng liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- B. T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc lẻ..
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc chẵn..
- D. T là đồ thi vô hướng liên thông và mỗi canh của T đều là canh cầu..
- E. Các phương án khác đều sai.

Câu 52. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
2	3	1	2
4	5	3	1

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì T không liên thông.
- **B.** T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- C. T không phải là cây vì T có chứa chu trình.
- **D.** T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- E. Các phương án khác đều đúng.

Câu 53. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4\} \mid Ke(2) = \{1, 5\} \mid Ke(3) = \{4\} \mid Ke(4) = \{1, 3\} \mid Ke(5) = \{2\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (5,1), (5,2), (1,3), (1,4).
- **B.** T = (5,2), (2,1), (1,4), (4,3).
- C. T = (5,1), (1,3), (3,4), (5,2).
- **D.** T = (5,1), (1,3), (1,4), (5,2).
- E. Các phương án khác đều sai.

Câu 54. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$| \text{Ke}(1) = \{2, 5\} | \text{Ke}(2) = \{1, 4, 5\} | \text{Ke}(3) = \{4\} | \text{Ke}(4) = \{2, 3\} | \text{Ke}(5) = \{1, 2\}$$

Chon phương án đúng trong các phương án dưới đây:

A. T không phải là cây vì không chứa đỉnh trụ.

- B. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- \mathbf{C} . T không phải là cây vì T có chứa chu trình.
- **D.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- E. Các phương án khác đều sai.

Câu 55. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3\} \mid Ke(2) = \{4, 5\} \mid Ke(3) = \{1, 4\} \mid Ke(4) = \{2, 3\} \mid Ke(5) = \{2\} \mid Ke(5)$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3,1), (1,2), (1,4), (1,5).
- **B.** T = (3,1), (3,4), (4,2), (2,5).
- C. T = (3,1), (1,2), (2,4), (4,5).
- **D.** T = (3,1), (3,5), (5,2), (5,4).
- E. Các phương án khác đều sai.

Câu 56. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	4	4	1	4	3
2	3	9	3	4	4
1	3	3	1	2	10

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=1. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (2,3), (2,4) với WT = 16.
- **B.** T = (1,2), (3,4), (2,4) với WT = 18.
- **C.** T = (1,2), (2,3), (3,4) với WT = 23.
- **D.** T = (1,2), (2,3), (2,4) với WT = 23.
- E. Các phương án khác đều sai.

Câu 57. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	1
1	1	0	1
0	1	1	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- **B.** T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- **D.** T là cây vì T liên thông.
- E. Các phương án khác đều sai.

Câu 58. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	1
1	1	0	0
1	1	0	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (2, 3), (2, 4), (1, 2).
- **B.** T = (1, 2), (2, 3), (2, 4).
- C. T = (2, 4), (2, 3), (1, 2).
- **D.** T = (2, 3), (1, 2), (2, 4).
- E. Các phương án khác đều sai.

Câu 59. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

	Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
	1	4	3	1	2	7
	3	4	-7	2	3	3
Ī	2	4	2	1	3	3

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,2), (2,3), (3,4) với WT = 3.
- **B.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- C. T = (1,2), (2,3), (1,4) v'oi WT = 13.
- **D.** T = (1,2), (1,3), (1,4) với WT = 13.
- E. Các phương án khác đều sai.

Câu 60. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	9	5	6
9	0	3	6
5	3	0	6
6	6	6	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,1), (1,4), (2,4) và WT = 17.
- **B.** T = (2,3), (3,1), (2,4) và WT = 14.
- C. T = (2,3), (3,1), (1,4) và WT = 14.
- **D.** T = (3,1), (1,4), (2,4) và WT = 17.
- E. Các phương án khác đều sai.

Câu 61. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
2	3	1	4
3	5	2	1

- A. T là cây vì có đỉnh 1 là đỉnh trụ.
- B. T không phải là cây vì T có chứa chu trình.
- C. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- D. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 62. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	0	0
1	0	0	1
0	0	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (1, 3), (1, 2), (3, 4).
- **B.** T = (1, 2), (1, 3), (3, 4).
- C. T = (3, 4), (1, 3), (1, 2).
- **D.** T = (1, 2), (3, 4), (1, 3).
- E. Các phương án khác đều sai.

Câu 63. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng BFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Bfs(s){
                                                     Tree_Bfs(s){
  Queue = \emptyset;
                                                       For v \in V
  Queue ← s;
                                                          VS[v] = 0;
  VS[s] = 1;
                                                       T = \emptyset;
  While (Queue \neq \emptyset) {
                                                       Bfs(s);
     u ← Queue;
                                                       For v \in V
     For v \in Ke(u)
                                                          if (VS[v] = 0)
        if (VS[v] = 0) {
                                                            Return(<Không có cây khung>);
          Queue \leftarrow v;
                                                       Return(T);
          VS[v] = 1;
                                                    }
          T = T \cup \{(u, v)\};
     }
  }
}
```

Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là cây khung của G vì T chứa ít cạnh nhất của G.
- **B.** T là cây khung của G vì T liên thông và có n đỉnh.
- C. T là cây khung của G vì T liên thông có n đỉnh và n-1 cạnh.
- **D.** T là cây khung của G vì T có n-1 cạnh.
- E. Các phương án khác đều sai.

Câu 64. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	0 2 1		1
2	0	-6	9
1	-6	0	2
1	9	2	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,3), (3,1), (1,4) và WT = -4.
- **B.** T = (2,3), (1,4), (1,3) và WT = -4.
- C. T = (3,1), (1,4), (1,2) và WT = 4.
- **D.** T = (3,1), (1,4), (2,4) và WT = 11.
- E. Các phương án khác đều sai.

Câu 65. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- E. Các phương án khác đều sai.

Câu 66. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
2	4	2	1
4	5	3	1

Biên soạn: TS. Nguyễn Kiều Linh

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì T có chúa chu trình.
- B. T là cây vì có đỉnh 1 là đỉnh trụ.
- C. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- D. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- E. Các phương án khác đều sai.

Câu 67. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{5\} \mid Ke(4) = \{1, 2, 5\} \mid Ke(5) = \{1, 3, 4\}$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3,1), (1,2), (1,4), (1,5).
- **B.** T = (3,5), (5,1), (5,4), (1,2).
- C. T = (3,1), (3,5), (5,2), (5,4).
- **D.** T = (3,1), (1,2), (2,4), (4,5).
- E. Các phương án khác đều sai.

Câu 68. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị liên thông yếu và không chứa chu trình..
- **B.** T là đồ thị vô hướng không chứa chu trình và có m = n-1 cạnh...
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- D. T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc chẵn..
- E. Các phương án khác đều sai.

Câu 69. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{4, 5\} \mid Ke(2) = \{3, 4\} \mid Ke(3) = \{2, 5\} \mid Ke(4) = \{1, 2, 5\} \mid Ke(5) = \{1, 3, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có cạnh (1,4) là cạnh cầu.
- **B.** T là cây vì có đúng 2 đỉnh bậc lẻ.
- C. T là cây vì T liên thông và không chứa chu trình.
- \mathbf{D} . T là cây vì có đỉnh 1 là đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 70. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

A. Hai đỉnh bất kỳ của T được nối với nhau bởi đúng 1 đường đi đơn...

- B. T là đồ thị liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- E. Các phương án khác đều sai.

Câu 71. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. Hai đỉnh bất kỳ của T được nối với nhau bởi đúng 1 đường đi đơn..
- B. T là đồ thị liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bậc lẻ...
- E. Các phương án khác đều sai.

Câu 72. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	0	1
1	0	0	1
1	1	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (2, 4), (4, 3), (1, 2).
- **B.** T = (1, 2), (4, 3), (2, 4).
- C. T = (4, 3), (1, 2), (2, 4).
- **D.** T = (1, 2), (2, 4), (4, 3).
- E. Các phương án khác đều sai.

Câu 73. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	1	1	2
2	4	2	5
3	5	1	4

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (3, 1), (1, 2), (2, 4), (2, 5).
- **B.** T = (3, 1), (3, 2), (3, 5), (2, 4).
- C. T = (3, 1), (1, 2), (2, 4), (3, 5).
- **D.** T = (3, 2), (2, 1), (2, 4), (2, 5).
- E. Các phương án khác đều sai.

Câu 74. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

Biên soạn: TS. Nguyễn Kiều Linh

0	9	8	9
9	0	9	9
8	9	0	1
9	9	1	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (1,4), (1,3) và WT = 26.
- **B.** T = (2,4), (1,4), (3,4) và WT = 19.
- C. T = (2,4), (2,3), (1,4) và WT = 27.
- **D.** T = (2,4), (1,4), (1,3) và WT = 26.
- E. Các phương án khác đều sai.

Câu 75. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	3	3	2	4	3
1	3	8	3	4	7
1	2	6	1	4	3

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,3), (3,4), (1,2) v'oi WT = 16.
- **B.** T = (1,3), (3,4), (1,2) với WT = 21.
- C. T = (1,3), (3,4), (1,4) với WT = 18.
- **D.** T = (1,3), (3,4), (2,4) với WT = 18.
- E. Các phương án khác đều sai.

Câu 76. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	0
1	1	0	1
1	0	1	0

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- B. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- C. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- D. T là cây vì T liên thông.
- E. Các phương án khác đều sai.

Câu 77. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3, 4\} \mid Ke(2) = \{3\} \mid Ke(3) = \{1, 2\} \mid Ke(4) = \{1, 5\} \mid Ke(5) = \{4\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

```
A. T = (5,1), (1,3), (3,4), (5,2).

B. T = (5,1), (5,2), (1,3),(1,4).

C. T = (5,1), (1,3), (1,4), (5,2).

D. T = (5,4), (4,1), (1,3), (3,2).

E. Các phương án khác đều sai.
```

Câu 78. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. Hai đỉnh bất kỳ của T được nối với nhau bởi đúng 1 đường đi đơn..
- B. T là đồ thị liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- E. Các phương án khác đều sai.

Câu 79. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 3\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{1, 5\} \mid Ke(4) = \{2, 5\} \mid Ke(5) = \{3, 4\}$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

```
A. T = (3,1), (3,5), (5,2), (5,4).
B. T = (3,1), (3,5), (1,2), (5,4).
C. T = (3,1), (1,2), (1,4), (1,5).
D. T = (3,1), (1,2), (2,4), (4,5).
E. Các phương án khác đều sai.
```

Câu 80. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim tìm cây khung nhỏ nhất T bắt đầu tại đỉnh s và WT của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Tìm e = (u, v) có trọng số nhỏ nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- **B.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **C.** Tìm e = (u, v) có trọng số nhỏ nhất.
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 81. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng DFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Dfs(s){
                                                         Tree_Dfs(s){
    VS[s] = 1;
                                                            For \mathtt{v} \in \mathtt{V}
    For v \in Ke(s)
                                                               VS[v] = 0;
        if (VS[v] = 0) {
                                                            T = \emptyset;
            T = T \cup \{(s, v)\};
                                                            Dfs(s);
            Dfs(v);
                                                            For \mathtt{v} \in \mathtt{V}
        }
                                                               if (VS[v] = 0)
}
                                                                  Return(<Không có cây khung>);
                                                            Return(T);
                                                         }
```

Hãy chọn phương án đúng trong các phương án sau:

- \mathbf{A} . T là cây khung của G vì T không chứa chu trình.
- **B.** T là cây khung của G vì T liên thông, có n đỉnh và n-1 cạnh.
- \mathbf{C} . T là cây khung của G vì T liên thông và có n đỉnh.
- \mathbf{D} . T là cây khung của G vì T có n cạnh.
- E. Các phương án khác đều sai.

Câu 82. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal tìm cây khung nhỏ nhất T và WT của G như sau:

```
(1)  (2) \ T = \emptyset; \ WT = 0; \ k = 0;  if (k = n - 1)  (3) \ For \ (e_i \in E) \ \{  Return (T \ v\grave{a} \ WT);   T = T \ \cup \ \{e_i\};   WT = WT + trong \ s\acute{o} \ c\mathring{u}a \ e_i;  (4) Return (<G \ không \ c\acute{o} \ cẩy \ khung>);
```

Thao tác cần thực hiện trong bước (1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$...
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 83. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim tìm cây khung nhỏ nhất T bắt đầu tại đỉnh s và WT của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Tìm e = (u, v) có trọng số nhỏ nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- **B.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **C.** Tìm e = (u, v) có trọng số nhỏ nhất.
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 84. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng DFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Dfs(s){
                                                         Tree_Dfs(s){
    VS[s] = 1;
                                                            For \mathtt{v} \in \mathtt{V}
                                                               VS[v] = 0;
    For v \in Ke(s)
        if (VS[v] = 0) {
                                                            T = \emptyset;
            T = T \cup \{(s, v)\};
                                                            Dfs(s):
                                                            For \mathtt{v} \in \mathtt{V}
            Dfs(v);
        }
                                                               if (VS[v] = 0)
}
                                                                  Return(<Không có cây khung>);
                                                            Return(T);
                                                         }
```

Hãy chọn phương án đúng trong các phương án sau:

- \mathbf{A} . T là cây khung của G vì T không chứa chu trình.
- **B.** T là cây khung của G vì T liên thông, có n đỉnh và n-1 cạnh.
- C. T là cây khung của G vì T liên thông và có n đỉnh.
- **D.** T là cây khung của G vì T có n cạnh.
- E. Các phương án khác đều sai.

Câu 85. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	0	1
1	0	0	1
1	1	1	0

- A. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- B. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T là cây vì T liên thông.
- D. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 86. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	0	1	0
0	0	1	1
1	1	0	0
0	1	0	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (2, 3), (3, 1), (2, 4).
- **B.** T = (2, 3), (2, 4), (3, 1).
- C. T = (2, 4), (3, 1), (2, 3).
- **D.** T = (2, 4), (2, 3), (3, 1).
- E. Các phương án khác đều sai.

Câu 87. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	3	3	2	4	4
2	3	7	1	2	8
3	4	8	1	4	1

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=1. Các cạnh của cây khung lớn nhất T theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (2,3), (3,4) với WT = 18.
- **B.** T = (2,4), (2,3), (3,4) với WT = 19.
- **C.** T = (1,2), (2,3), (3,4) với WT = 23.
- **D.** T = (1,4), (2,3), (3,4) với WT = 16.
- E. Các phương án khác đều sai.

Câu 88. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{4, 5\} \mid Ke(2) = \{3, 5\} \mid Ke(3) = \{2\} \mid Ke(4) = \{1, 5\} \mid Ke(5) = \{1, 2, 4\}$$

- \mathbf{A} . T không phải là cây vì T có chứa chu trình.
- **B.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- C. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- D. T không phải là cây vì không chứa đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 89. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	5	3	2

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- **B.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- C. T = (4, 2), (2, 1), (2, 3), (2, 5).
- **D.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- E. Các phương án khác đều sai.

Câu 90. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$| \text{Ke}(1) = \{3, 4, 5\} | \text{Ke}(2) = \{3, 5\} | \text{Ke}(3) = \{1, 2, 4\} | \text{Ke}(4) = \{1, 3, 5\} | \text{Ke}(5) = \{1, 2, 4\} |$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có cạnh (1,4) là cạnh cầu.
- \mathbf{B} . T là cây vì T liên thông và không chứa chu trình.
- C. T là cây vì có đúng 2 đỉnh bậc lẻ.
- \mathbf{D} . T là cây vì có đỉnh 1 là đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 91. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	5	3	4	5
1	3	6	2	4	5
1	4	5	2	3	5

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

```
A. T = (1,2), (2,4), (3,4) \text{ với } WT = 15.
```

B.
$$T = (1,3), (2,4), (1,4)$$
 với $WT = 16.$

C.
$$T = (1,3), (2,4), (3,4)$$
 với $WT = 16$.

D.
$$T = (1,3), (2,3), (3,4)$$
 với $WT = 16$.

E. Các phương án khác đều sai.

Câu 92. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT bắt đầu tại đỉnh s của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **B.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **C.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- **D.** Tìm e = (u, v) có trọng số lớn nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- E. Các phương án khác đều sai.

Câu 93. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	1
1	0	0	0
0	0	0	1
1	0	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

```
A. T = (1, 4), (1, 2), (4, 3).
```

B.
$$T = (4, 3), (1, 4), (1, 2).$$

C.
$$T = (1, 2), (1, 4), (4, 3).$$

D.
$$T = (1, 2), (4, 3), (1, 4).$$

E. Các phương án khác đều sai.

0	1	1	0
1	0	0	0
1	0	0	1
0	0	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

A. T = (2, 1), (1, 3), (3, 4).

Biên soạn: TS. Nguyễn Kiều Linh

- **B.** T = (1, 3), (2, 1), (3, 4).
- C. T = (3, 4), (2, 1), (1, 3).
- **D.** T = (3, 4), (1, 3), (2, 1).
- E. Các phương án khác đều sai.

Câu 95. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	4	2	3	1
2	4	9	1	3	5
1	2	9	1	4	10

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,3), (1,2), (1,3) với WT = 15.
- **B.** T = (1,4), (3,4), (1,3) với WT = 19.
- **C.** T = (1,4), (1,2), (1,3) với WT = 24.
- **D.** T = (3,4), (1,2), (1,3) v'oi WT = 18.
- E. Các phương án khác đều sai.

Câu 96. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	2	2	3
2	0	9	7
2	9	0	8
3	7	8	0

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T của G. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (1,2), (1,3), (3,4) và WT = 12.
- **B.** T = (1,2), (1,3), (3,4) và WT = 12.
- C. T = (1,2), (1,3), (1,4) và WT = 7.
- **D.** T = (1,2), (1,4), (2,3) và WT = 14.
- E. Các phương án khác đều sai.

Câu 97. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal tìm cây khung nhỏ nhất T và WT của G như sau:

```
(1)  (2) \ T = \emptyset; \ WT = 0; \ k = 0;  if (k = n - 1)  (3) \ For \ (e_i \in E) \ \{  Return (T \ v\grave{a} \ WT);   T = T \ \cup \ \{e_i\};   WT = WT + trong \ s\acute{o} \ c\mathring{u}a \ e_i;  (4) Return (<G \ không \ c\acute{o} \ cẩy \ khung>);
```

Thao tác cần thực hiện trong bước (1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$..
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 98. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	1
1	0	1	0
0	1	0	1
1	0	1	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- **B.** T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T là cây vì T liên thông.
- **D.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- E. Các phương án khác đều sai.

Câu 99. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị liên thông yếu và không chứa chu trình..
- **B.** T là đồ thị vô hướng không chứa chu trình và có m = n-1 cạnh...
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- D. T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc chẵn..
- E. Các phương án khác đều sai.

Câu 100. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0

Biên soạn: TS. Nguyễn Kiều Linh

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

A. T = (2, 1), (1, 4), (1, 3).

B. T = (1, 3), (1, 4), (2, 1).

C. T = (1, 4), (2, 1), (1, 3).

D. T = (2, 1), (1, 3), (1, 4).

E. Các phương án khác đều sai.

Câu 101. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3\} \mid Ke(2) = \{4, 5\} \mid Ke(3) = \{1, 4, 5\} \mid Ke(4) = \{2, 3, 5\} \mid Ke(5) = \{2, 3, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

A. T là cây vì có cạnh (1,4) là cạnh cầu.

 \mathbf{B} . T là cây vì T liên thông và không chứa chu trình.

C. T là cây vì có đỉnh 1 là đỉnh trụ.

 \mathbf{D} . T là cây vì có đúng 2 đỉnh bậc lẻ.

E. Các phương án khác đều sai.

Câu 102. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	4	5	8
4	0	4	1
5	4	0	4
8	1	4	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

A. T = (2,1), (2,3), (1,4) và WT = 16.

B. T = (2,1), (2,3), (3,4) và WT = 12.

C. T = (2,4), (2,1), (1,3) và WT = 10.

D. T = (2,4), (2,1), (2,3) và WT = 9.

E. Các phương án khác đều sai.

Câu 103. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	3	1	9
3	0	8	3
1	8	0	2
9	3	2	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

A. T = (2,1), (1,3), (1,4) và WT = 13.

B. T = (1,3), (3,4), (1,2) và WT = 6.

C.
$$T = (2,1), (1,3), (3,4)$$
 và $WT = 6$.

D.
$$T = (1,3), (3,4), (2,3)$$
 và $WT = 11.$

E. Các phương án khác đều sai.

Câu 104. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	2	10	1	3	2
3	4	8	2	4	7
2	3	5	1	4	4

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=1. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (1,2), (1,4), (4,3)$$
 với $WT = 22.$

B.
$$T = (2,3), (2,4), (4,3)$$
 với $WT = 20.$

C.
$$T = (1,2), (1,3), (4,3)$$
 với $WT = 20.$

D.
$$T = (1,2), (2,4), (4,3)$$
 với $WT = 25.$

E. Các phương án khác đều sai.

Câu 105. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

A.
$$T = (2, 3), (2, 4), (2, 1).$$

B.
$$T = (2, 3), (2, 1), (2, 4).$$

C.
$$T = (2, 4), (2, 3), (2, 1).$$

D.
$$T = (2, 1), (2, 3), (2, 4).$$

E. Các phương án khác đều sai.

Câu 106. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

	Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
	3	1	1	2
Ī	2	4	2	5
ĺ	3	4	1	4

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

A.
$$T = (3, 2), (2, 1), (2, 4), (2, 5).$$

- **B.** T = (3, 1), (1, 2), (2, 4), (2, 5).
- C. T = (3, 1), (1, 2), (2, 4), (3, 5).
- **D.** T = (3, 1), (3, 2), (3, 5), (2, 4).
- E. Các phương án khác đều sai.

Câu 107. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal tìm cây khung nhỏ nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$..
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 108. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$| \operatorname{Ke}(1) = \{3, 5\} | \operatorname{Ke}(2) = \{3, 4\} | \operatorname{Ke}(3) = \{1, 2\} | \operatorname{Ke}(4) = \{2, 5\} | \operatorname{Ke}(5) = \{1, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- **B.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- C. T không phải là cây vì không chứa đỉnh trụ.
- \mathbf{D} . T không phải là cây vì T có chứa chu trình.
- E. Các phương án khác đều sai.

Câu 109. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách canh với trong số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	5	1	4	4
2	3	2	2	4	-9
1	3	3	1	2	1

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (2,4), (1,2), (2,3) với WT = -6.
- **B.** T = (2,4), (1,2), (3,4) với WT = -3.
- C. Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **D.** T = (2,4), (3,4), (2,3) với WT = -2.
- E. Các phương án khác đều sai.

Câu 110. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	1	1	2
4	5	2	3

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì T có chứa chu trình.
- **B.** T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- C. T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- D. T không phải là cây vì T không liên thông.
- E. Các phương án khác đều đúng.

Biên soạn: TS. Nguyễn Kiều Linh

Câu 111. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	8	5	1
8	0	-7	4
5	-7	0	3
1	4	3	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,2), (1,3), (1,4) và WT = 14.
- **B.** T = (1,3), (2,4), (2,3) và WT = 2.
- C. T = (1,2), (1,3), (2,4) và WT = 17.
- **D.** T = (1,3), (2,4), (3,4) và WT = 12.
- E. Các phương án khác đều sai.

Câu 112. Cho đơn đồ thi vô hướng T gồm 5 đỉnh dưới dang danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1, 3\} \mid Ke(3) = \{2, 4\} \mid Ke(4) = \{1, 3\} \mid Ke(5) = \{1\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì T liên thông và không chứa chu trình.
- ${\bf B.}\ T$ là cây vì có đúng 2 đỉnh bậc lẻ.
- **C.** T là cây vì có cạnh (1,4) là cạnh cầu.
- \mathbf{D} . T là cây vì có đỉnh 1 là đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 113. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 3\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{1, 5\} \mid Ke(4) = \{2, 5\} \mid Ke(5) = \{3, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . T là cây vì có đỉnh 1 là đỉnh trụ.
- ${f B.}\ T$ là cây vì T liên thông và không chứa chu trình.
- C. T là cây vì có đúng 2 đỉnh bậc lẻ.
- **D.** T là cây vì có cạnh (1,4) là cạnh cầu.
- E. Các phương án khác đều sai.

Câu 114. Cho đơn đồ thị T = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. Hai đỉnh bất kỳ của T được nối với nhau bởi đúng 1 đường đi đơn..
- B. T là đồ thị liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bậc lẻ...
- E. Các phương án khác đều sai.

Câu 115. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị vô hướng liên thông và không chứa chu trình..
- B. T là đồ thị không chứa chu trình..
- \mathbf{C} . T là đồ thị liên thông và không chứa chu trình..
- **D.** T là đồ thị vô hướng có m = n-1 cạnh..
- E. Các phương án khác đều sai.

Câu 116. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là đồ thị liên thông và có số cạnh m = n..
- **B.** T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bán bậc ra là lẻ..
- C. T là đồ thị vô hướng liên thông và có m = n-1 canh...
- **D.** T là đồ thị vô hướng liên thông yếu và tất cả các đinh đều có bán bậc vào là chẵn...
- E. Các phương án khác đều sai.

Câu 117. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	0	1	0
0	0	0	1
1	0	0	1
0	1	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (1, 3), (3, 4), (4, 2).
- **B.** T = (3, 4), (1, 3), (4, 2).

```
C. T = (1, 3), (4, 2), (3, 4).
D. T = (3, 4), (4, 2), (1, 3).
E. Các phương án khác đều sai.
```

Câu 118. Cho đơn đồ thị vô hướng G=(V,E) gồm n đỉnh. Xét mô tả thuật toán sử dụng BFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Bfs(s){
                                                      Tree_Bfs(s){
  Queue = \emptyset;
                                                        For \mathtt{v} \in \mathtt{V}
                                                           VS[v] = 0;
  Queue ← s;
  VS[s] = 1;
                                                         T = \emptyset;
  While (Queue \neq \emptyset) {
                                                         Bfs(s);
                                                         For v \in V
     u ← Queue;
     For v \in Ke(u)
                                                           if (VS[v] = 0)
        if (VS[v] = 0) {
                                                              Return(<Không có cây khung>);
          Queue ← v;
                                                         Return(T);
                                                      }
          VS[v] = 1;
          T = T \cup \{(u, v)\};
     }
  }
}
```

Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là cây khung của G vì T chứa ít cạnh nhất của G.
- **B.** T là cây khung của G vì T liên thông và có n đỉnh.
- C. T là cây khung của G vì T liên thông có n đỉnh và n-1 cạnh.
- **D.** T là cây khung của G vì T có n-1 cạnh.
- E. Các phương án khác đều sai.

Câu 119. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thi liên thông yếu và không chứa chu trình..
- **B.** T là đồ thị vô hướng không chứa chu trình và có m = n-1 cạnh...
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- **D.** T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc chẵn..
- E. Các phương án khác đều sai.

Câu 120. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	0
1	0	1	1
0	1	0	1
0	1	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (2, 3), (2, 4), (2, 1).
- **B.** T = (2, 3), (2, 1), (2, 4).
- C. T = (2, 1), (2, 4), (2, 3).
- **D.** T = (2, 1), (2, 3), (2, 4).
- E. Các phương án khác đều sai.

Câu 121. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	1	3	6
1	0	5	1
3	5	0	2
6	1	2	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=4. Các cạnh của cây khung lớn nhất T theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (4,1), (1,3), (3,2) và WT = 14.
- **B.** T = (4,1), (1,3), (2,3) và WT = 14.
- C. T = (4,1), (1,3), (2,3) và WT = 14.
- **D.** T = (1,3), (3,2), (3,4) và WT = 10.
- E. Các phương án khác đều sai.

Câu 122. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	2	1	1
2	0	3	4
1	3	0	5
1	4	5	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,4), (2,1), (1,2) và WT = 9.
- **B.** T = (3,4), (4,2), (1,4) và WT = 10.
- C. T = (3,4), (4,2), (1,3) và WT = 10.
- **D.** T = (3,4), (4,2), (2,1) và WT = 11.
- E. Các phương án khác đều sai.

Câu 123. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	1
1	1	0	0
0	1	0	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì T liên thông.
- **B.** T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- C. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- **D.** T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- E. Các phương án khác đều sai.

Câu 124. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	5	3	1
1	2	2	3

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- B. T không phải là cây vì T không liên thông.
- C. T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- D. T không phải là cây vì T có chứa chu trình.
- E. Các phương án khác đều đúng.

Câu 125. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	1	1	9
1	0	-1	5
1	-1	0	8
9	5	8	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,1), (2,4), (1,3) và WT = 7.
- **B.** T = (2,1), (2,4), (3,4) và WT = 14.
- **C.** T = (2,3), (2,1), (2,4) và WT = 5.
- **D.** T = (2,3), (2,4), (1,3) và WT = 5.
- E. Các phương án khác đều sai.

Câu 126. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	6	5	7
6	0	-2	8
5	-2	0	4
7	8	4	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=4. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (4,2), (4,1), (2,3) \text{ và } WT = 13.$$

- **B.** T = (4,1), (1,3), (1,2) và WT = 18.
- C. T = (4,2), (1,3), (3,4) và WT = 17.
- **D.** T = (4,2), (4,1), (1,3) và WT = 20.
- E. Các phương án khác đều sai.

Câu 127. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	3	7	3
3	0	-3	9
7	-3	0	5
3	9	5	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (3,4), (1,2) và WT = 17.
- **B.** T = (1,3), (3,4), (2,3) và WT = 9.
- C. T = (2,4), (3,4), (1,4) và WT = 17.
- **D.** T = (2,4), (1,3), (3,4) và WT = 21.
- E. Các phương án khác đều sai.

Câu 128. Cho đơn đồ thi vô hướng T gồm 5 đỉnh dưới dang danh sách kề:

$$Ke(1) = \{2\} \mid Ke(2) = \{1, 3\} \mid Ke(3) = \{2, 4\} \mid Ke(4) = \{3, 5\} \mid Ke(5) = \{4\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (5,4), (4,3), (3,2), (2,1).
- **B.** T = (5,1), (1,3), (1,4), (5,2).
- C. T = (5,1), (5,2), (1,3), (1,4).
- **D.** T = (5,1), (1,3), (3,4), (5,2).
- E. Các phương án khác đều sai.

Câu 129. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	5	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- **B.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- C. T = (4, 2), (2, 1), (1, 5), (2, 3).
- **D.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- E. Các phương án khác đều sai.

Câu 130. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	1
1	0	1	1
0	1	0	0
1	1	0	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- **B.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- C. T là cây vì T liên thông.
- **D.** T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 131. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1\} \mid Ke(3) = \{4\} \mid Ke(4) = \{1, 3, 5\} \mid Ke(5) = \{1, 4\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (5,1), (5,2), (1,3), (1,4).
- **B.** T = (5,1), (1,3), (3,4), (5,2).
- C. T = (5,4), (5,1), (1,4), (1,2), (4,3).
- **D.** T = (5,1), (1,3), (1,4), (5,2).
- E. Các phương án khác đều sai.

Câu 132. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 4, 5\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{4, 5\} \mid Ke(4) = \{1, 2, 3\} \mid Ke(5) = \{1, 3\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có đúng 2 đỉnh bậc lẻ.
- **B.** T là cây vì có canh (1,4) là canh cầu.
- C. T là cây vì có đỉnh 1 là đỉnh trụ.
- \mathbf{D} . T là cây vì T liên thông và không chứa chu trình.
- E. Các phương án khác đều sai.

Câu 133. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	tầu Đỉnh cuối Đỉnh đầu		Đỉnh cuối	
3	1	1	2	
2	2 4		5	
1	1 5		5	

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (3, 1), (1, 2), (2, 4), (2, 5).
- **B.** T = (3, 1), (3, 2), (3, 5), (2, 4).
- **C.** T = (3, 1), (1, 2), (2, 4), (3, 5).
- **D.** T = (3, 2), (2, 1), (2, 4), (2, 5).
- E. Các phương án khác đều sai.

Câu 134. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	4	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- **B.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- C. T = (4, 2), (4, 3), (2, 1), (2, 5).
- **D.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- E. Các phương án khác đều sai.

Câu 135. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối Đỉnh đầu		Đỉnh cuối
4	2	4	3
2	1	2	5
3	2	1	5

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- **B.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- C. T = (4, 2), (2, 1), (2, 5), (4, 3).
- **D.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- E. Các phương án khác đều sai.

Câu 136. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- E. Các phương án khác đều sai.

Câu 137. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$| \text{Ke}(1) = \{2, 5\} | \text{Ke}(2) = \{1\} | \text{Ke}(3) = \{4, 5\} | \text{Ke}(4) = \{3, 5\} | \text{Ke}(5) = \{1, 3, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- ${\bf B.}\ {\rm T}$ là cây vì có đúng 2 đỉnh bậc lẻ 2 và ${\rm 3}.$
- \mathbf{C} . T không phải là cây vì T có chứa chu trình.
- D. T không phải là cây vì không chứa đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 138. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối	
3	2	1	2	
4	2	3	5	

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- B. T không phải là cây vì T có chứa chu trình.
- C. T là cây vì có đỉnh 1 là đỉnh trụ.
- **D.** T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 139. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì T liên thông.
- **B.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- C. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- D. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 140. Cho đơn đồ thi vô hướng G gồm 5 đỉnh và 6 canh dưới dang danh sách canh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	1	1	2
2	4	2	5
3	4	1	4

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (3, 1), (1, 2), (2, 4), (2, 5).
- **B.** T = (3, 1), (1, 2), (2, 4), (3, 5).
- C. T = (3, 2), (2, 1), (2, 4), (2, 5).
- **D.** T = (3, 1), (3, 2), (3, 5), (2, 4).
- E. Các phương án khác đều sai.

Câu 141. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	4	7	9
4	0	9	5
7	9	0	3
9	5	3	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (2,4), (4,3), (1,4) và WT = 17.
- **B.** T = (1,2), (4,3), (3,4) và WT = 10.
- C. T = (1,2), (2,4), (4,3) và WT = 12.
- **D.** T = (1,2), (4,3), (2,3) và WT = 16.
- E. Các phương án khác đều sai.

Câu 142. Cho đơn đồ thị vô hướng G=(V,E) gồm n đỉnh. Xét mô tả thuật toán sử dụng DFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Dfs(s){
                                                      Tree_Dfs(s){
   VS[s] = 1;
                                                        For \mathtt{v} \in \mathtt{V}
                                                           VS[v] = 0;
   For v \in Ke(s)
        if (VS[v] = 0) {
                                                        T = \emptyset;
           T = T \cup \{(s, v)\};
                                                        Dfs(s);
                                                        For v \in V
           Dfs(v);
        }
                                                           if (VS[v] = 0)
}
                                                              Return(<Không có cây khung>);
                                                        Return(T);
                                                      }
```

Hãy chọn phương án đúng trong các phương án sau:

- \mathbf{A} . T là cây khung của G vì T không chứa chu trình.
- **B.** T là cây khung của G vì T liên thông, có n đỉnh và n-1 cạnh.
- \mathbf{C} . T là cây khung của G vì T liên thông và có n đỉnh.
- \mathbf{D} . T là cây khung của G vì T có n cạnh.
- E. Các phương án khác đều sai.

Câu 143. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị vô hướng liên thông và không chứa chu trình..
- B. T là đồ thị không chứa chu trình..
- \mathbf{C} . T là đồ thị liên thông và không chứa chu trình..
- **D.** T là đồ thị vô hướng có m = n-1 cạnh..
- E. Các phương án khác đều sai.

Câu 144. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3, 5\} \mid Ke(2) = \{4, 5\} \mid Ke(3) = \{1, 4\} \mid Ke(4) = \{2, 3, 5\} \mid Ke(5) = \{1, 2, 4\}$$

Chon phương án đúng trong các phương án dưới đây:

- ${\bf A.}\ T$ là cây vì có đỉnh 1 là đỉnh trụ.
- ${\bf B.}\ T$ là cây vì T liên thông và không chứa chu trình.
- C. T là cây vì có cạnh (1,4) là cạnh cầu.
- **D.** T là cây vì có đúng 2 đỉnh bâc lẻ.
- E. Các phương án khác đều sai.

Câu 145. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	1
1	1	0	0
1	1	0	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- **B.** T là cây vì T liên thông.
- C. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- **D.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- E. Các phương án khác đều sai.

Câu 146. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 5\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{4, 5\} \mid Ke(4) = \{2, 3\} \mid Ke(5) = \{1, 3\} \mid Ke(5) = \{1, 3\} \mid Ke(5) = \{1, 4\} \mid Ke(5$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3,1), (1,2), (2,4), (4,5).
- **B.** T = (3,4), (3,5), (4,2), (5,1).
- C. T = (3,1), (1,2), (1,4), (1,5).
- **D.** T = (3,1), (3,5), (5,2), (5,4).
- E. Các phương án khác đều sai.

Câu 147. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	3	5	3	4	9
1	4	2	2	3	8
2	4	-9	1	2	9

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,4), (1,2), (2,3) v'oi WT = 26.
- **B.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- C. T = (3,4), (1,4), (2,3) v'oi WT = 19.
- **D.** T = (3,4), (1,2), (1,3) với WT = 23.
- E. Các phương án khác đều sai.

Câu 148. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 5\} \mid Ke(2) = \{1, 4\} \mid Ke(3) = \{4, 5\} \mid Ke(4) = \{2, 3, 5\} \mid Ke(5) = \{1, 3, 4\}$$

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3,1), (1,2), (2,4), (4,5).
- **B.** T = (3,4), (3,5), (4,2), (5,1).

C.
$$T = (3,1), (3,5), (5,2), (5,4).$$

D.
$$T = (3,1), (1,2), (1,4), (1,5).$$

E. Các phương án khác đều sai.

Câu 149. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	5	9	7
5	0	6	6
9	6	0	6
7	6	6	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (1,2), (2,3), (2,4)$$
 và $WT = 17$.

B.
$$T = (2,3), (2,4), (1,3)$$
 và $WT = 21.$

C.
$$T = (1,2), (2,4), (3,4)$$
 và $WT = 17.$

D.
$$T = (1,2), (2,4), (3,4)$$
 và $WT = 17$.

E. Các phương án khác đều sai.

Câu 150. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	7	2	4	5
1	2	3	1	3	1
2	3	10	1	4	1

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (2,3), (3,4), (2,4)$$
 với $WT = 22$.

B.
$$T = (2,3), (2,4), (1,2)$$
 với $WT = 18$.

C.
$$T = (1,4), (3,4), (1,2) \text{ v\'et } WT = 11.$$

D.
$$T = (2,3), (3,4), (1,2)$$
 với $WT = 20.$

E. Các phương án khác đều sai.

Câu 151. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng DFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Dfs(s){
                                                          Tree_Dfs(s){
    VS[s] = 1;
                                                            For \mathtt{v} \in \mathtt{V}
    For v \in Ke(s)
                                                               VS[v] = 0;
        if (VS[v] = 0) {
                                                             T = \emptyset;
             T = T \cup \{(s, v)\};
                                                            Dfs(s);
             Dfs(v);
                                                            For \mathtt{v} \in \mathtt{V}
                                                               if (VS[v] = 0)
}
                                                                  Return(<Không có cây khung>);
                                                            Return(T);
                                                          }
```

Hãy chọn phương án đúng trong các phương án sau:

- \mathbf{A} . T là cây khung của G vì T không chứa chu trình.
- **B.** T là cây khung của G vì T liên thông, có n đỉnh và n-1 cạnh.
- \mathbf{C} . T là cây khung của G vì T liên thông và có n đỉnh.
- \mathbf{D} . T là cây khung của G vì T có n cạnh.
- E. Các phương án khác đều sai.

Câu 152. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	1	4	5
2	3	1	2

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì T không liên thông.
- **B.** T không phải là cây vì có cạnh (2,3) không phải cạnh cầu.
- C. T không phải là cây vì T có chứa chu trình.
- **D.** T không phải là cây vì có cạnh (1,2) không phải cạnh cầu.
- E. Các phương án khác đều đúng.

Câu 153. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal tìm cây khung nhỏ nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$..
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 154. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	2	5	2
2	0	9	4
5	9	0	2
2	4	2	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

```
A. T = (2,3), (1,3), (2,4) và WT = 18.

B. T = (1,3), (2,4), (1,4) và WT = 11.

C. T = (2,3), (2,4), (1,2) và WT = 15.

D. T = (2,3), (2,4), (1,4) và WT = 15.

E. Các phương án khác đều sai.
```

Câu 155. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng DFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Dfs(s){
                                                  Tree_Dfs(s){
   VS[s] = 1;
                                                    For v \in V
   For v \in Ke(s)
                                                      VS[v] = 0;
       if (VS[v] = 0) {
                                                    T = \emptyset;
           T = T \cup \{(s, v)\};
                                                    Dfs(s);
                                                    For v \in V
           Dfs(v);
       }
                                                       if (VS[v] = 0)
}
                                                         Return(<Không có cây khung>);
                                                    Return(T);
                                                  }
```

Hãy chọn phương án đúng trong các phương án sau:

- \mathbf{A} . T là cây khung của G vì T không chứa chu trình.
- **B.** T là cây khung của G vì T liên thông, có n đỉnh và n-1 cạnh.
- C. T là cây khung của G vì T liên thông và có n đỉnh.
- **D.** T là cây khung của G vì T có n canh.
- E. Các phương án khác đều sai.

Câu 156. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	1	1	2
2	4	2	5
1	4	3	2

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=3. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

```
A. T = (3, 1), (1, 2), (2, 4), (2, 5).

B. T = (3, 1), (3, 2), (3, 5), (2, 4).

C. T = (3, 2), (2, 1), (2, 4), (2, 5).

D. T = (3, 1), (1, 2), (2, 4), (3, 5).

E. Các phương án khác đều sai.
```

Câu 157. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	4	6	2	3	2
1	2	5	3	4	5
1	3	5	1	4	6

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (2,3), (1,3), (1,2) với WT = 12.
- **B.** T = (2,3), (3,4), (1,2) với WT = 12.
- C. T = (2,3), (2,4), (1,2) với WT = 13.
- **D.** T = (1,3), (3,4), (1,2) với WT = 15.
- E. Các phương án khác đều sai.

Câu 158. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị không chứa chu trình và tất cả các đinh đều có bán bậc vào là chẵn..
- **B.** T không chứa chu trình và nếu bổ sung thêm 1 cạnh mới vào T sẽ nhận được đúng 1 chu trình..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bán bậc ra là lẻ..
- E. Các phương án khác đều sai.

Câu 159. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	4	2	4	7
1	3	3	2	3	10
1	4	3	1	2	-10

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (4,1), (2,4), (1,3) v'oi WT = 13.
- **B.** T = (4,1), (1,2), (1,3) với WT = -4.
- C. Không sử dụng được thuật toán Prim với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **D.** T = (3,4), (1,2), (1,3) với WT = -3.
- E. Các phương án khác đều sai.

Câu 160. Cho đơn đồ thị G=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. G có cây khung khi và chỉ khi G không chứa chu trình..
- B. G có cây khung khi và chỉ khi G tất cả m cạnh đều là các canh cầu...
- C. G có cây khung khi và chỉ khi G là đồ thị liên thông...
- **D.** G có cây khung khi và chỉ khi G có m = n-1 cạnh...
- E. Các phương án khác đều sai.

Câu 161. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	5	1	2
4	1	3	1

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì có đỉnh 1 là đỉnh trụ.
- B. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- C. T không phải là cây vì T có chứa chu trình.
- D. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 162. Cho đơn đồ thị vô hướng G = (V, E) gồm n đỉnh. Xét mô tả thuật toán sử dụng BFS tìm cây khung T của G bắt đầu tại đỉnh s như sau:

```
Bfs(s){
                                                         Tree_Bfs(s){
  Queue = \emptyset;
                                                            For \mathtt{v} \in \mathtt{V}
                                                               VS[v] = 0;
  Queue ← s;
                                                            T = \emptyset;
  VS[s] = 1;
  While (Queue \neq \emptyset) {
                                                            Bfs(s);
     u ← Queue;
                                                            For \mathtt{v} \in \mathtt{V}
     For v \in Ke(u)
                                                               if (VS[v] = 0)
        if (VS[v] = 0) {
                                                                  Return(<Không có cây khung>);
           Queue ← v;
                                                            Return(T);
                                                         }
           VS[v] = 1;
           T = T \cup \{(u, v)\};
     }
  }
}
```

Hãy chọn phương án đúng trong các phương án sau:

- **A.** T là cây khung của G vì T chứa ít cạnh nhất của G.
- **B.** T là cây khung của G vì T liên thông và có n đỉnh.
- C. T là cây khung của G vì T liên thông có n đỉnh và n-1 cạnh.
- **D.** T là cây khung của G vì T có n-1 cạnh.
- E. Các phương án khác đều sai.

Câu 163. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	4	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- **B.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- C. T = (4, 2), (2, 1), (2, 5), (4, 3).
- **D.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- E. Các phương án khác đều sai.

Câu 164. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	2	4	-1
2	0	9	1
4	9	0	4
-1	1	4	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=4. Các cạnh của cây khung lớn nhất T theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (4,3), (3,2), (1,4) và WT = 12.
- **B.** T = (4,3), (3,2), (1,2) và WT = 15.
- C. T = (4,3), (3,1), (2,3) và WT = 17.
- **D.** T = (4,3), (3,2), (3,1) và WT = 17.
- E. Các phương án khác đều sai.

Câu 165. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
3	4	4	2
5	4	5	1

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì có đỉnh 1 là đỉnh trụ.
- **B.** T không phải là cây vì có nhiều hơn 2 đỉnh bâc lẻ.
- C. T không phải là cây vì T có chứa chu trình.
- D. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 166. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
1	4	-2	3	4	3
1	2	2	1	3	3
2	4	10	2	3	3

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,4), (3,4), (1,3) với WT = 4.
- **B.** T = (2,4), (2,3), (1,3) với WT = 16.
- **C.** T = (2,4), (3,4), (1,3) với WT = 16.
- **D.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- E. Các phương án khác đều sai.

Câu 167. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3, 4\} \mid Ke(2) = \{5\} \mid Ke(3) = \{1, 4, 5\} \mid Ke(4) = \{1, 3\} \mid Ke(5) = \{2, 3\}$$

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=5. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (5,1), (5,2), (1,3), (1,4).
- **B.** T = (5,1), (1,3), (3,4), (5,2).
- C. T = (5,3), (5,2), (3,4), (3,1), (1,4).
- **D.** T = (5,1), (1,3), (1,4), (5,2).
- E. Các phương án khác đều sai.

Câu 168. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	9	2	6
9	0	1	3
2	1	0	2
6	3	2	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (1,2), (1,4), (3,4) và WT = 17.
- **B.** T = (3,1), (1,2), (1,4) và WT = 17.
- C. T = (1,2), (1,4), (3,4) và WT = 17.
- **D.** T = (3,1), (1,4), (2,4) và WT = 11.
- E. Các phương án khác đều sai.

Câu 169. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
1	5	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- **B.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- **C.** T = (4, 2), (2, 1), (1, 5), (2, 3).
- **D.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- E. Các phương án khác đều sai.

Câu 170. Cho đơn đồ thị vô hướng T gồm 5 đỉnh và 4 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	4	1	2
1	3	4	5

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì T có chứa chu trình.
- B. T không phải là cây vì có nhiều hơn 2 đỉnh bậc lẻ.
- C. T là cây vì có đỉnh 1 là đỉnh trụ.
- D. T là cây vì T liên thông và có số cạnh bằng số đỉnh bớt đi 1.
- E. Các phương án khác đều sai.

Câu 171. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	3	9	1	4	6
1	3	3	3	4	6
2	4	-9	1	2	3

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tư tìm kiếm của thuật toán và WT là:

- **A.** T = (2,4), (1,2), (2,3) với WT = 3.
- **B.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- C. T = (2,4), (1,2), (1,3) với WT = -3.
- **D.** T = (2,4), (1,2), (1,4) với WT = 0.
- E. Các phương án khác đều sai.

Câu 172. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	6	1	6
6	0	3	2
1	3	0	2
6	2	2	0

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T của G. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (1,3), (2,4), (1,2) và WT = 9.
- **B.** T = (1,3), (3,4), (1,2) và WT = 9.
- C. T = (1,3), (2,4), (3,4) và WT = 5.
- **D.** T = (2,4), (3,4), (1,4) và WT = 10.
- E. Các phương án khác đều sai.

Câu 173. Cho đơn đồ thi vô hướng T gồm 5 đỉnh dưới dang danh sách kề:

$$Ke(1) = \{5\} \mid Ke(2) = \{3, 5\} \mid Ke(3) = \{2, 4\} \mid Ke(4) = \{3, 5\} \mid Ke(5) = \{1, 2, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- \mathbf{B} . T không phải là cây vì T có chứa chu trình.
- C. T không phải là cây vì không chứa đỉnh trụ.
- D. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- E. Các phương án khác đều sai.

Câu 174. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	4	4	3	4	8
1	3	2	1	4	9
1	2	-6	2	3	6

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,4), (4,1), (3,2) v'oi WT = 23.
- **B.** T = (1,3), (4,1), (3,2) với WT = 17.
- C. Không sử dụng được thuật toán Prim với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **D.** T = (3,4), (2,4), (3,2) với WT = 18.
- E. Các phương án khác đều sai.

Câu 175. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0

Chon phương án đúng trong các phương án dưới đây:

A. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.

- B. T là cây vì T liên thông.
- C. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- D. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 176. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{5\} \mid Ke(2) = \{3, 4, 5\} \mid Ke(3) = \{2, 4\} \mid Ke(4) = \{2, 3\} \mid Ke(5) = \{1, 2\}$$

Chọn phương án đúng trong các phương án dưới đây:

- A. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- \mathbf{B} . T không phải là cây vì T có chứa chu trình.
- C. T không phải là cây vì không chứa đỉnh trụ.
- **D.** T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- E. Các phương án khác đều sai.

Câu 177. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- **B.** T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T là cây vì T liên thông.
- **D.** T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 178. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{3, 4, 5\} \mid Ke(2) = \{3, 4, 5\} \mid Ke(3) = \{1, 2, 4\} \mid Ke(4) = \{1, 2, 3\} \mid Ke(5) = \{1, 2\}$$

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . T là cây vì có đúng 2 đỉnh bậc lẻ.
- **B.** T là cây vì có cạnh (1,4) là cạnh cầu.
- \mathbf{C} . T là cây vì T liên thông và không chứa chu trình.
- \mathbf{D} . T là cây vì có đỉnh 1 là đỉnh trụ.
- E. Các phương án khác đều sai.

Câu 179. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim tìm cây khung nhỏ nhất T bắt đầu tại đỉnh s và WT của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Tìm e = (u, v) có trọng số nhỏ nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- **B.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **C.** Tìm e = (u, v) có trọng số nhỏ nhất.
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 180. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	0	1	1
0	0	1	1
1	1	0	1
1	1	1	0

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=2. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (3, 1), (2, 3), (2, 4).
- **B.** T = (2, 4), (2, 3), (3, 1).
- C. T = (2, 3), (3, 1), (2, 4).
- **D.** T = (2, 3), (2, 4), (3, 1).
- E. Các phương án khác đều sai.

Câu 181. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	3	-7	1	2	5
3	4	1	2	4	8
1	3	6	1	4	5

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = (2,4), (1,3), (2,3)$$
 với $WT = 7$.

- **B.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- C. T = (1,4), (1,3), (1,2) với WT = 16.
- **D.** T = (2,4), (1,3), (1,2) v'oi WT = 19.
- E. Các phương án khác đều sai.

Câu 182. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	5	4	4
5	0	3	5
4	3	0	5
4	5	5	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,4), (1,2), (1,3) và WT = 14.
- **B.** T = (3,4), (2,4), (1,4) và WT = 14.
- **C.** T = (3,4), (2,4), (1,4) và WT = 14.
- **D.** T = (3,4), (2,4), (1,2) và WT = 15.
- E. Các phương án khác đều sai.

Câu 183. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$Ke(1) = \{2, 3\} \mid Ke(2) = \{1\} \mid Ke(3) = \{1, 4, 5\} \mid Ke(4) = \{3, 5\} \mid Ke(5) = \{3, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . T là cây vì có đỉnh 1 là đỉnh trụ.
- \mathbf{B} . T là cây vì T liên thông và không chứa chu trình.
- C. T là cây vì có canh (1,4) là canh cầu.
- \mathbf{D} . T là cây vì có đúng 2 đỉnh bậc lẻ.
- E. Các phương án khác đều sai.

Câu 184. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
3	4	10	1	4	-7
1	3	6	2	4	9
1	2	10	2	3	10

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** Không sử dụng được thuật toán Kruskal với hiệu chỉnh phù hợp do G chứa trọng số âm.
- **B.** T = (1,2), (2,4), (3,4) với WT = 29.

- C. T = (1,2), (1,3), (3,4) với WT = 26.
- **D.** T = (1,2), (2,3), (3,4) với WT = 30.
- E. Các phương án khác đều sai.

Câu 185. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. Hai đỉnh bất kỳ của T được nối với nhau bởi đúng 1 đường đi đơn..
- B. T là đồ thị liên thông và mỗi đỉnh của T đều là đỉnh trụ..
- C. Hai đỉnh bất kỳ của T được nối với nhau bởi không quá 1 đường đi đơn..
- D. T là đồ thị không chứa chu trình và tất cả các đinh đều có bậc lẻ..
- E. Các phương án khác đều sai.

Câu 186. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT bắt đầu tại đỉnh s của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **B.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **C.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- **D.** Tìm e = (u, v) có trọng số lớn nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- E. Các phương án khác đều sai.

Câu 187. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

Đỉnh đầu	Đỉnh cuối	Trọng số	Đỉnh đầu	Đỉnh cuối	Trọng số
2	3	1	1	3	9
2	4	5	1	4	3
3	4	8	1	2	5

Sử dụng thuật toán Kruskal tìm cây khung nhỏ nhất T. Các cạnh của cây khung nhỏ nhất T theo thứ tự tìm kiếm của thuật toán và WT là:

- **A.** T = (2,3), (3,4), (2,4) với WT = 14.
- **B.** T = (2,3), (1,4), (2,4) với WT = 9.

- **C.** T = (2,3), (1,4), (1,3) với WT = 13.
- **D.** T = (2,3), (1,2), (2,4) với WT = 11.
- E. Các phương án khác đều sai.

Câu 188. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
3	2	1	3

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A.** T = (4, 2), (2, 1), (2, 5), (4, 3).
- **B.** T = (4, 2), (4, 3), (2, 1), (2, 5).
- C. T = (4, 2), (2, 1), (1, 5), (2, 3).
- **D.** T = (4, 2), (2, 1), (2, 3), (2, 5).
- E. Các phương án khác đều sai.

Câu 189. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	2	4	1
2	0	3	5
4	3	0	3
1	5	3	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=3. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (3,1), (3,2), (2,4) và WT = 12.
- **B.** T = (3,1), (2,4), (1,2) và WT = 11.
- C. T = (3,2), (2,4), (1,2) và WT = 10.
- **D.** T = (3,1), (3,2), (1,4) và WT = 8.
- E. Các phương án khác đều sai.

Câu 190. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal tìm cây khung nhỏ nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$...
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 191. Cho đơn đồ thị G = (V, E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. G có cây khung khi và chỉ khi G không chứa chu trình..
- B. G có cây khung khi và chỉ khi G tất cả m canh đều là các canh cầu...
- C. G có cây khung khi và chỉ khi G là đồ thị liên thông..
- **D.** G có cây khung khi và chỉ khi G có m = n-1 cạnh..
- E. Các phương án khác đều sai.

Câu 192. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- E. Các phương án khác đều sai.

Câu 193. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	0	1
1	0	0	1
0	1	1	0

Chọn phương án đúng trong các phương án dưới đây:

- **A.** T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- B. T là cây vì T liên thông.
- C. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.

- **D.** T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 194. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng trong các phương án sau:

- A. T là đồ thị liên thông và có số cạnh m = n...
- **B.** T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bán bậc ra là lẻ..
- C. T là đồ thị vô hướng liên thông và có m = n-1 cạnh...
- D. T là đồ thị vô hướng liên thông yếu và tất cả các đinh đều có bán bậc vào là chẵn..
- E. Các phương án khác đều sai.

Câu 195. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0

Chọn phương án đúng trong các phương án dưới đây:

- A. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- B. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- C. T là cây vì T liên thông.
- **D.** T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- E. Các phương án khác đều sai.

Câu 196. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Prim tìm cây khung nhỏ nhất T bắt đầu tại đỉnh s và WT của G như sau:

Thao tác cần thực hiện trong bước (2.1) là:

- **A.** Tìm e = (u, v) có trọng số nhỏ nhất, với $u \in V_T$ và $v \in V \setminus V_T$.
- **B.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- **C.** Tìm e = (u, v) có trọng số nhỏ nhất.

- **D.** Đánh dấu tất cả các đỉnh $v \in V$ chưa được chọn (VS(v) = 0).
- E. Các phương án khác đều sai.

Câu 197. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	9	9	5
9	0	-3	8
9	-3	0	3
5	8	3	0

Sử dụng thuật toán Kruskal với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất. Các cạnh của cây khung lớn nhất T theo thứ tự tìm kiếm của thuật toán với WT là:

- **A.** T = (1,3), (1,2), (2,4) và WT = 26.
- **B.** T = (1,2), (2,4), (2,3) và WT = 14.
- C. T = (1,3), (1,2), (1,4) và WT = 23.
- **D.** T = (1,3), (1,2), (1,4) và WT = 23.
- E. Các phương án khác đều sai.

Câu 198. Cho đơn đồ thị vô hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	3	4	8
3	0	-5	7
4	-5	0	4
8	7	4	0

Sử dụng thuật toán Prim với hiệu chỉnh phù hợp, tìm cây khung T của G có tổng trọng số WT lớn nhất bắt đầu tại đỉnh s=4. Các cạnh của cây khung lớn nhất T theo thứ tư tìm kiếm của thuật toán với WT là:

- **A.** T = (4,2), (1,3), (3,4) và WT = 15.
- **B.** T = (4,2), (1,3), (3,4) và WT = 15.
- C. T = (4,1), (4,2), (1,3) và WT = 19.
- **D.** T = (4,2), (1,3), (3,4) và WT = 15.
- E. Các phương án khác đều sai.

Câu 199. Cho đơn đồ thị vô hướng G gồm 4 đỉnh dưới dạng ma trận kề:

0	1	0	1
1	0	1	0
0	1	0	1
1	0	1	0

Sử dụng thuật toán DFS tìm cây khung T của G bắt đầu tại đỉnh s=1. Các cạnh của cây khung T theo thứ tự tìm kiếm của DFS là:

- **A.** T = (3, 4), (1, 2), (2, 3).
- **B.** T = (1, 2), (3, 4), (2, 3).

```
C. T = (2, 3), (3, 4), (1, 2).
D. T = (1, 2), (2, 3), (3, 4).
```

E. Các phương án khác đều sai.

Câu 200. Cho đơn đồ thị vô hướng có trọng số G = (V, E) gồm n đỉnh và m cạnh. Xét mô tả thuật toán Kruskal có hiệu chỉnh tìm cây khung có tổng trọng số lớn nhất T và WT của G như sau:

Thao tác cần thực hiện trong bước (1) là:

- **A.** Sắp xếp m cạnh của G theo thứ tự giảm của trọng số e_1, \ldots, e_m .
- **B.** Sắp xếp m cạnh của G theo thứ tự từ điển e_1, \ldots, e_m .
- C. Sắp xếp m cạnh của G theo thứ tự tăng của trọng số e_1, \ldots, e_m .
- **D.** Đánh dấu tất cả các cạnh $e_i \in E$ chưa được chọn $(VS(e_i) = 0)$.
- E. Các phương án khác đều sai.