CE-451 **COURSE CODE: COURSE NAME:** ARTIFICIAL INTELLIGENCE IN THE BUILT ENVIRONMENT **CREDIT HOURS:** Theory Practical = 0 Total = 3 **CONTACT HOURS:** Theory = 48 Practical = 0 Total 48 PREREQUISITES: **MODE OF TEACHING:** 100% Instruction: Three hours of lecture per week Practical/ Laboratory Demonstration:

COURSE DESCRIPTION:

This course will introduce students to fundamental concepts of coding, computing, machine learning, and artificial intelligence, thus providing them with modern research tools necessary to develop state-of-the-art industrial and academic output.

COURSE OBJECTIVES:

Artificial Intelligence (AI) is a constantly and actively growing and changing field. After the successful completion of the course, the students will be able to:

- To introduce the basics of AI and its potential applications in the construction industry.
- To develop skills to design, implement, and manage AI-based systems and tools for construction projects.
- To understand how AI can be used to optimize construction processes and improve project performance.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

1	Engineering Knowledge:		7	Environment and Sustainability:	
2	Problem Analysis:		8	Ethics:	
3	Design/Development of Solutions:	$\overline{\checkmark}$	9	Individual and Team Work:	
4	Investigation:		10	Communication:	
5	Modern Tool Usage:	\checkmark	11	Project Management:	
6	The Engineer and Society:		12	Lifelong Learning:	\checkmark

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will demonstrate competency by being able to:

S.No	CLO	Domain	Taxonomy Level	PLO	
					П

1.	Evaluate the impact of machine learning algorithms on data related to built environment using an AI tool and gain insights to inform potential optimizations	Cognitive	5	5
2.	Design a machine learning-based solution for a problem in the built environment industry using a machine learning technique.	Cognitive	6	3
3.	Demonstrate independent learning ability by analysing different datasets and implement an appropriate machine learning algorithm to the realworld case study in the domain of built environmental.	Cognitive	3	12

TOPICS COVERED AND ITS MAPPING TO CLOs:

Theory:

Weeks	Topic	Reading assignmen t /Homework	CLO No.	PLO No.	Assessment methodology	Learning domain	Level of learning 1-6
1	Introduction to AI and Machine Learning	Lecture	1	5	Assignments, Quizzes, Mid Semester Exams.	Cognitive	5
	Overview of AI techniques				Exams.		
	AI-based applications in Building Information Modeling						
	Overview of Al in built environment						
2	PEAS Concept, Inputs,	Lecture, Handouts,	1	5			5
	Outputs, Processes,	Textbook 1					
	Al agents,	HW 1,					
	Agent function and agent program,	Quiz 1					
	Agent and Environment Types						
3	Exploration of Datasets and	Lecture, Handouts,	3	12	Assignments, Quizzes, Mid	Cognitive	3

	their Analysis	Textbook 1			Semester	
	Data collection and analysis techniques,	Lecture			Exams.	
	Data-driven decision- making algorithms					
4	Frequent pattern Mining,	Lecture, Handouts,	3	12		3
	Search algorithms,	Textbook 1 Lecture				
	Initial and goal states	Lecture				
5	Supervised vs Unsupervised Machine	Lecture, HW 2, Quiz 2	2	3		6
	Learning Techniques	Quiz z				
	Exploration of Supervised Learning Techniques					
6	Regression Analysis	Handouts	2	3		6
	Linear regression					
	Logistic Regression					
7	Clustering,	Handouts	2	3		6
	Bayes Classification,					
	KNN Classification					
8	Basics of Python Programming	Handouts	3	12		3
	Introduction to Anaconda IDE					
9	MID-SEMESTER	REXAM	·			

		T		ı	I	T	T
10	Overview of Artificial neural network (ANN) models, Usage of ANNs in different applications	Lecture Handouts Assignment 3, Quiz 3	2	3	Assignments, Quizzes, Mid Semester Exams.	Cognitive	6
11	Building Information Modelling Modelling in Revit	Lecture	3	12			3
12	Modelling in Revit (Contd.) Basics of Python Programming in BIM	Lecture, Assignment 4, Quiz 4	3	12			3
13	Weka's exploration and its usage	Lecture	3	12		3	
14	Case Studies Intelligent transportation system Soil Mechanics	Lecture, Assignment 5, Quiz 5	1	5		5	
15	Case Studies Intelligent scheduling, resource allocation, and risk management	Lecture	1	5		5	
16	Case Studies Use of AI in Structural Design Open AI construction	Lecture	1	5		5	
17	Project/ Major Assignment Demos and		2	3			6

	Vivas			
18	ESE			

Textbooks and Reference books

- S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2nd 1. Edition
- 2.
- The History of Artificial Intelligence Author Chris Smith, Brian McGuire, Ting Huang, Tarabishy, S., Kosicki, M., & Tsigkari, M. (2021). Artificial Intelligence for the Built 3. Environment. Springer International Publishing.

ASSESMENT SYSTEM:

1. **CLOs Assessment**

Cognitive	
Spreadsheet	

2. **Relative Grading**

Т	Theoretical / Instruction			
Assignments	10%			
Quizzes	10%			
Mid Exam	30%			
End Semester E				
	Total			

Written By (Instructor)	Dr. Aisha Shabbir, Muhammad Usman Hassan
Reviewed By (DLQEC)/HoD	Dr. Junaid Ahmed/Dr Muhammad Usman Hassan
Approved By (Assoc Dean)	Dr. S Muhammad Jamil