齐型空间上的拓扑

March 15, 2020

Definition 0.1. A quasi-metric space (\mathcal{X}, d) is a non-empty set \mathcal{X} equipped with a quasi-metric d, namely, a non-negative function defined on $\mathcal{X} \times \mathcal{X}$, satisfying that, for any $x, y, z \in \mathcal{X}$,

- (i) d(x, y) = 0 if and only if x = y;
- (ii) d(x, y) = d(y, x);
- (iii) there exists a constant $A_0 \in [1, \infty)$, independent of x, y, and z, such that $d(x, z) \le A_0[d(x, y) + d(y, z)]$.

The ball B on \mathcal{X} , centered at $x_0 \in \mathcal{X}$ with radius $r \in (0, \infty)$, is defined by setting

$$B := \{ x \in \mathcal{X} : d(x, x_0) < r \} =: B(x_0, r).$$

构造齐型空间 \mathcal{X} 中的拓扑有两种方法,一种是用球来定义开集,一种是用收敛性来定义闭集.

Definition 0.2. 称 $E \subset \mathcal{X}$ 是闭集, 若 $\{x_k\}_{k \in \mathbb{N}} \subset E$ 在 \mathcal{X} 中收敛到x 能推出 $x \in E$. 称 $E \subset \mathcal{X}$ 是开集, 若 $\mathcal{X} \setminus E$ 是闭集.

Theorem 0.3. 设 $E \subset \mathcal{X}$, 则E 是开集当且仅当对 $\forall x \in E$, 存在 $\delta \in (0, \infty)$ 使得 $B(x, \delta) \subset E$.

Proof. 先证" ⇒ ". 设E 是开集, 则 E^c 是闭集. 反设对 $\forall \delta \in (0, \infty)$, 存在 $x_\delta \in B(x, \delta)$ 使 得 $x_\delta \notin E$. 则存在序列 $\{x_k\}_{k\in\mathbb{N}} \subset E^c$ 使得

$$\lim_{k \to \infty} x_k = x.$$

进一步由 E^c 是闭集知, $x \in E^c$, 矛盾. 从而存在 $\delta \in (0, \infty)$ 使得 $B(x, \delta) \subset E$.

再证" \Leftarrow ". 设存在 $\delta \in (0,\infty)$ 使得 $B(x,\delta) \subset E$. 反设 E^c 不是闭集, 则存在 $x \in E$ 和 $\{x_k\}_{k \in \mathbb{N}} \subset E^c$ 使得

$$\lim_{k \to \infty} x_k = x.$$

因此存在 $k_0 \in \mathbb{N}$ 使得 $d(x_{k_0}, x) < \delta$, 故 $x_{k_0} \in B(x, \delta) \cap E^c$, 矛盾. 从而 E^c 不是闭集, 故E是开集, 定理证毕.

由上述定理, 可得到如下等价定义.

Definition 0.4. 称 $E \subset \mathcal{X}$ 是开集, 若对 $\forall x \in E$, 存在 $\delta \in (0,\infty)$ 使得 $B(x,\delta) \subset E$. 称 $E \subset \mathcal{X}$ 是闭集, 若 $\mathcal{X} \setminus E$ 是开集.

从这个定义出发来证明等价性也一样的.

Theorem 0.5. 设 $E \subset \mathcal{X}$. E 是闭集当且仅当 $\{x_k\}_{k \in \mathbb{N}} \subset E$ 在 \mathcal{X} 中收敛到x 能推出 $x \in E$.

Proof. 先证" ⇒ ". 设E 是闭集, 则 E^c 是开集. 若 $\{x_k\}_{k\in\mathbb{N}}$ \subset E 在 \mathcal{X} 中收敛到x, 可断言 $x\in E$. 事实上, 反设 $x\notin E$, 则 $x\in E^c$, 由此及 E^c 是开集知, 存在 $\delta\in(0,\infty)$ 使得 $B(x,\delta)\subset E^c$. 这与 $\{x_k\}_{k\in\mathbb{N}}\subset E$ 收敛到x 相矛盾, 故断言成立.

再证" \leftarrow ". 设 $\{x_k\}_{k\in\mathbb{N}}$ \subset E 在 \mathcal{X} 中收敛到x 能推出 $x\in E$. 下证 E^c 是开集. 事实上, 对 $\forall x\in E^c$, 反设对 $\forall \delta\in(0,\infty)$, 存在 $x_\delta\in B(x,\delta)$ 使得 $x_\delta\in E$. 则存在序列 $\{x_k\}_{k\in\mathbb{N}}\subset E$ 使得

$$\lim_{k \to \infty} x_k = x.$$

进一步由条件知, $x \in E$, 与 $x \in E^c$ 相矛盾. 从而存在 $\delta \in (0,\infty)$ 使得 $B(x,\delta) \subset E^c$. 由 $x \in E^c$ 的任意性知, E^c 是开集. 故E 是闭集, 定理证毕.