

Разработка программы управления горизонтальным полётом гиперзвукового самолёта для реализации в АБСУ

Магистр: Бакри И.

Руководитель: Д.А. Иванович

Постановка Задач

Динамическое проектирование гиперзвукового летательного аппарата, включающее:

- 1. Программирование управляемого движения,
- 2. Оптимизацию траектории минимизация расход топлива
- 3. Реализацию программ управления и оптимизации в АБСУ

Процесс Решения

- 1. Построение математической модель движения Самолёта
- 2. Определение идеи и метод оптимизации траектории
- 3. Писать логарифмы управления и оптимизации в МАТЛАБ
- 4. Решение задачи
- 5. Реализация программы в АБСУ

Идея И Метод Оптимизации Траектории

Задача оптимизации траектории это часть вариационного исчисления, который завесить от изменения значения некоторых параметров Системы (параметры управления) чтобы оптимизируются целевую функцию.

Метод решения метода Внутренних Точек (НЛП) - итерационно подойти к оптимальному решению из внутренней части допустимого множества данных функций и условий.

Идея И Метод Оптимизации Траектории

Суть метода Внутренних Точек:

- Объединение ограничения параметров и траектории, уравнения динамика с целевой функцией с помощью множителей Лагранжа в одной функции (функция Лагранжа).
- Минимизация функции Лагранжа:
 - 1. Круш-Кун-Таккер (производный первого порядка)
 - 2. Матрикс Гессиана (производный второго порядка)
- Поставить задачу в матричной форме и итеративно решить её с помощью итеративного метода Ньютона.

Идея И Метод Оптимизации Траектории

Результаты

Посмотрели две траектории с разными координатами:

Высота и Скорость

Угол крена и положение ДК

Масса самолёта и угол атака

Угли наклона траектории

Широта и долгота траектории

Траектория на карте земли

Угли крена и атака

Угол скольжение

Высота и Скорость

Угол крена и положение ДК

Масса самолёта и угол атака

Угли наклона траектории

Широта и долгота траектории

Latitude [deg] Time Longitude [deg] Time

Траектория на карте земли

Угли крена и атака

Угол скольжение

Реализация в АБСУ

Конца Презентации

