

## evselect

January 12, 2017

#### Abstract

evselect: event selection and creation of products

## 1 Instruments/Modes

All event-list generating modes:

| Instrument | Mode                    |
|------------|-------------------------|
| EPIC MOS   | IMAGING, TIMING         |
| EPIC PN    | IMAGING, TIMING, BURST  |
| RGS        | SPECTROSCOPY, HIGH TIM- |
|            | ING                     |
| OM         | FAST                    |

## 2 Use

| pipeline processing  | yes |  |
|----------------------|-----|--|
| interactive analysis | yes |  |

In the interactive environment optionally used in combination with the dedicated GUI front-end **xmm-select**.

## 3 Description

Among the suite of individual SAS tasks  $\mathbf{evselect}$  is of central significance. It serves two complementary purposes

- 1. Filter event list data controlled by user-specified selection criteria
- 2. Extract images, spectra, and time series from the filtered event list obtained in the first step. The filtered list is selectable for output as well.

The availability of both features within a single task allows the user to generate useful products from an event list (e.g., create a rates file in the energy band 0.5 - 3 key from the X-ray source lying within a circle of 10 arcsec radius in the center of the FOV) in a convenient manner.

## 3.1 Filtering stage (selector)

The filtering process is carried out on an event-by-event basis controlled by user-specified selection criteria which take the form of a single boolean expression. The expression can contain symbolic names of "intrinsic" event attributes, and numeric constants combined with logical and arithmetic operators and functions. Events for which the expression does not evaluate to true will be marked as invalid or discarded from the data set and shall not be considered in the product extraction.

evselect supports selections based on intrinsic event attributes. These attributes are present in the input event list table as corresponding columns, the names of which are to be used in the selection expression. This group further falls into the following sub-categories:

- 1. spatial selections in raw pixel (RAWX/RAWY), physical detector (DETX/DETY) or sky pixel (X/Y) space, or indeed in any spatial coordinate system (e.g. TELX/TELY). Special pre-defined region shapes exists such as CIRCLE, ELLIPSE, ANNULUS, BOX, POLYGON. Spatial filtering with mask images is possible as well.
- 2. energy selections in the form of one or more interval specifications in either PHA or PI space.
- 3. time selections in the form of
  - (a) one or more interval specifications
  - (b) one or more Good Time Interval (GTI) files created with **tabgtigen** or any other SAS tasks which creates GTI files as output
- 4. any other event attributes which are present (e.g. PATTERNID, or CCDID, or WAVELENGTH in case of RGS)

#### 3.1.1 Selection Expression

The selection expression is input as a string using the parameter expression, which is set to the value "true" by default. One can also filter an event list based on the data subspace information stored in another data block. The name of this block is specified with the dssblock. Which type of filter is used (expression or data subspace) is controlled with the filtertype parameter, with is set to "expression" by default.

For a description of the syntax rules the boolean selection expression must adhere to, as well as example expressions, please consult the documentation of the SAS package **selectlib**.

## 3.2 Extraction Stage (extractor)

#### 3.2.1 Products creation

The selection stage yields a modified event list in which the events which do not satisfy the selection expression are removed or appropriately flagged. From this list the extraction stage creates images, spectra, and rates files. These products are aimed to adhere to OGIP standards as closely as possible.

Please note, however, that it is likewise possible to create data sets which do not map onto any standard OGIP file type, e.g. PHA-versus-wavelength image for RGS. Evselect also provides for extracting a histogram from a column of an event list. This product is for general use and does not conform to any OGIP standard.

The product creation process can be controlled via various command line parameters such as binning factors, cut-off boundaries, etc. Only one product file of each kind can be constructed per **evselect** run. If more than one file is required, e.g. time series files in different energy bands, **evselect** has to be run repeatedly. The parameters **blockstocopy** and **attributestocopy** can be used to copy selected blocks and attributes from the input file to the output product files. See the following subsections for a more detailed description of the production of the individual data product types.

For binned products, binning of a given column is in general controlled by a minimum value, a binning factor, and a maximum value. For integer-valued columns, these 3 parameters are all required to be integer-valued. In this case, any event with a value equal to the minimum value will be put into the first bin, and any event with a value equal to the maximum value will be put in the last bin. Thus for example, if the minimum value is 4, and the binning factor 3, then events with values of 3, 4 and 5 will be put into the first bin.

Information about the filtering criteria used to produce the product files will be stored in data blocks and attributes of the files using a data subspace model as described in [1]. See also documentation on the **dsslib** package.

#### 3.2.2 Event List Output

In addition to the above product files, the result of the filtering stage can be propagated into the output as well. This can be done in four different ways depending on the setting of the two task parameters flagcolumn and filteredset. The first parameter specifies the name of a column in the table which can be used to flag an event. In this non-destructive mode, non-selected events are merely flagged by setting a corresponding bit in the specified column, which must be integer-valued. The bit posistion to be manipulated must be set using the parameter flagbit. If the flagcolumn parameter is not set, non-selected events are physically removed, and thus will not be present in the final filtered event list. If non-destructive filtering is selected and the named flag-column does not exist, it will be created.

Thus setting of the filteredset parameter determines whether the input event list is modified according to the above two schemes or a new event list file is created accordingly. The following table provides a quick overview over the four possible cases:

|                          | flag column set                  | flag column not set                  |
|--------------------------|----------------------------------|--------------------------------------|
| output file name set     | the input file is modified; non- | the input file is modified by        |
|                          | selected events will be removed  | adding an integer flag column        |
|                          |                                  | indicating each event's selection    |
|                          |                                  | status                               |
| output file name not set | input file is not modified; se-  | input file is not modified;          |
|                          | lected events will be copied to  | all events (selected and non-        |
|                          | new output file                  | selected) get copied to new          |
|                          |                                  | event list file with an integer flag |
|                          |                                  | column                               |

If the filteredset parameter is not set, then the parameter keepfilteroutput, which is set to false by default, will prevent one from modifying the input table. If one wishes to modify the input file (either destructively or by flagging) one needs to set keepfilteroutput to true. Note that when evselect



produces an output table file, it does so by first creating an exact copy of the input table file, and then preforming all filtering operations on the copy. Thus any extensions in the input file will also appear in the output file.

Page:

#### 3.2.3 Spectrum Extraction

Spectrum extraction is turned on by setting the parameter spectrumset, which specifies the name of the output spectrum file. A spectrum, as defined here, is an OGIP compliant FITS file, made by histogramming the energy column of an input table. The energy column must be integer-valued, and any specified binning factor or energy ranges must be integer-valued as well. The column to histogram is specified with the parameter energycolumn. More general histogramming of real-valued columns can be performed using the histogram extraction utility in evselect. If a real-valued column is fed to the spectrum extractor, then a warning is issued, and all values in the column are truncated to integers before being accumulated into a spectrum. Note that the parameter energycolumn is also used in light curve extraction (see below).

evselect performs true binning of spectral files, as opposed to OGIP grouping. The binning factor is set via the parameter spectralbinsize, which is set to 10 by default. The energy range for the spectrum is determined in one of three ways. First, if the parameters specchannelmin and specchannelmax are set, they are used for the spectral range. If these values are not set, then the input data set is queried for the TLMIN and TLMAX attributes of the energy column, and if available these are used for the energy range. Finally, if no other information is available, then the actual range of the energy column data itself is used as the minimum and maximum values for extraction of the spectrum. Note that if specchannelmin or specchannelmax exceed the allowed data range set by TLMIN and TLMAX, then a warning message is issued, and the range is adjusted to be within the allowed limits. If the parameter ignorelegallimits is set to true, then the keywords TLMIN and TLMAX are ignored, that is they are treated as if their values are not set. All range and binning parameters are in the units of the column from which the data is being extracted.

As the energy range and binning factor of the spectrum is needed by down-stream software (for example to produce an RMF file), this information is written to keywords in the spectrum file, using a WCS style specification. The keyword SPECPIX gives the value of the reference channel in the spectrum. The keyword SPECVAL then is set to the value of the energy column which corresponds to the center of the spectrum's reference channel. The keyword SPECDELT is set to the binning factor.

For XMM only data, one can produce a spectrum of rates rather than counts, using the exposure information available in the XMM event files. In this case a "weight" column must also be specified, and is used to specify the weight given to each event in the event list. This is activated by setting the name of the weighting column using the parameter <code>zcolumn</code>. An error on the weight can also be specified using the <code>zerrorcolumn</code> parameter. If this parameter is not set, then the error on the weight is set to the value of the weight itself. Each weight is divided by the exposure time for the particular CCD from which the event originated, and these values are summed on a bin by bin basis to create the spectrum of rates. See the section on exposure information for more details on how the CCD exposures are calculated.

**evselect** does not calculate the BACKSCAL keyword, but simply sets its value to unity. The task **backscale** calculates a proper value for this keyword.

#### 3.2.4 Image Extraction

Image extraction is enabled by setting the name of the output file using the parameter imageset. The name of the columns to use for the x and y axes of the image are set using the parameters xcolumn and ycolumn. The range of the columns used for image extraction is determined using the same algorithm



as for the energy column in spectral extraction, and is controlled and determined independently for the x and y columns. The parameters used for the x column are ximagemin and ximagemax, with similarly named parameters for the y column.

There are two options available for binning of images. By default, the binning factor for the image is set such that the image will be of a certain size. The size of the image is controlled by the parameters ximagesize and yimagesize, and is set to  $600 \times 600$  by default. Note that non-integral binning of integer-valued columns is not allowed. Thus when extracting an image from integer-valued columns using ximagesize and yimagesize, the image binning factor will be rounded up to the nearest integer number, so that the actual extracted image may be smaller than what was requested. It is also possible under these circumstances that the x and y bin sizes could be set to different values, even though a square image was requested. In this case a square image can be produced by setting the parameter squarepixels to true. Then the x and y bin sizes will both be set to whatever is the larger of the two values.

Alternatively, one can control the binning factor directly by setting the parameters ximagebinsize and yimagebinsize.

By default, an image is accumulated simply as counts of the number of rows (events) falling within each pixel. However, if the parameter zcolumn is set, then the image is accumulated by summing up the values of the specified column for rows that fall within each pixel.

By default, evselect tries to determine the best data type for the image created, under the assumption that the smallest data type possible should be used. If zcolumn is not set, an integer-valued image will be created. If zcolumn is set, a real-valued image will be created. The default type of image can be over-ridden by setting the parameter imagedatatype.

Any World Coordinate System (WCS) information available for the columns used in image extraction will be propagated to the output image. If no WCS information is available for a column, then the CTYPE keyword for this axis of the image is set to the name of the column, and the other WCS keywords are set to reflect the range and binning of this column, as is done for SPEC\* keywords in spectral extraction. If the image extraction columns do have WCS information, then one can request evselect to shift the image so that it is centered on a particular point in the sky. This is activated by setting the coordinate center using the parameters raimagecenter and decimagecenter. Coordinates must be given in decimal degrees.

As well as the standard WCS keywords described above, **evselect** also writes keywords to the image describing the "physical" coordinate system, ie the native coordinate system of the columns used for extracting the image. In order to maintain backward compatibility, there are currently two sets of redundant keywords written for this purpose. The first set uses the LTMn\_m and LTVn keywords to specify the transformation, where n and m can take on the values of 1 or 2. The transformation from the physical  $(X_{ph}, Y_{ph})$  to the image  $(X_{im}, Y_{im})$  coordinates is

$$\begin{pmatrix} LTM_{11} & LTM_{12} & LTV_1 \\ LTM_{12} & LTM_{22} & LTV_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_{ph} \\ Y_{ph} \\ 1 \end{pmatrix} = \begin{pmatrix} X_{im} \\ Y_{im} \\ 1 \end{pmatrix}.$$

As there is no rotation in the transformation,  $LTM_{12} = LTM_{21} = 0$ .

The second method uses the multiple WCS conventions to specify the physical coordinate system for the image. In this scheme a second set of WCS keywords is written, except each of the standard keywords has a letter appended to it, which we have chosen to be "L". In addition we specify the following keywords to identify this coordinate system:

#### 3.2.5 Light Curve Extraction

Light curve extraction is controlled by setting the parameter rateset, which is the name of the output file containing the ligh curve. Light curves are OGIP compliant histogram files of counts as a function of time. The name of the time column is set using the parameter timecolumn. Unlike spectrum extraction, light curve extraction supports real-valued columns. The range of times used is determined using the same algorithm as for the energy column in spectral extraction. The parameters used to control this are timemin and timemax. The bin size is set with the parameter timebinsize. All range and binning parameters are in the units of the column from which the data is being extracted.

The OGIP standard allows for several variations on how a light curve can be stored in a FITS table. In the first variation, only a COUNTS column is required in the table. Timing information is stored in the keywords TSTART, TSTOP and TIMEDEL. Each row in the table represent a sequential time bin, with the first bin starting at TSTART and a bin size of TIMEDEL. This is the type of light curve which evselect produces by default.

In a second variation, the table also contains a TIME column, giving the time of each bin in the light curve. Production of this type of light curve is enabled in evselect by setting to true the parameter maketimecolumn.

In either of the variations above, it is possible to replace the COUNTS column with a RATE column. In addition, an ERROR column, giving the error on the rates, is also supplied. Use of the RATE column is activated by setting the makeratecolumn parameter to true. It is false by default.

The OGIP standard also specifes the keywords CHANMIN, CHANMAX and CHANTYPE, which describe the energy range of the events used to extract the light curve. These keywords are set in **evselect** by querying information from the input table column. As with images, rather than just accumulating counts in each bin of a light curve, one can sum up the values of a another column in the input table, by specifying the name of the column in the parameter zcolumn. In the case of light curves one can also specify the error on the value of the z column. A column in the input table containing this information should be specified using the parameter zcolumn. If zcolumn is not set, then the values in zcolumn are used as the error values.

Note that no exposure correction of time bins is done in evselect. Thus, for example, the possibility that a time bin might partially overlap with a GTI is not corrected for. Exposure correction of light curves is handle by the task **epiclccorr**.

### 3.2.6 Histogram Extraction

**evselect** also contains the facility to produce a general FITS histogram product, which does not have the constraints imposed on it by the OGIP compliance of light curves and spectra. This is enabled by seting the histogram output file, which is specified with the parameter histogramset. The column from which to extract the histogram is set with the parameter histogramcolumn.

The range of the histogram is set using the same algorithm as for setting the energy range in a spectrum, using the parameters histogrammin and histogrammax. The bin size is set with the parameter histogrambinsize. Real valued columns are supported. All range and binning parameters are in the units of the column from which the data is being extracted.

When a histogram table is created, it contains two columns, one named after the column from which it was extracted, and another named COUNTS. As with light curves, one can accumulate the values of a column from the input table, instead of just counts, by setting the parameter zcolumn. In this case, an ERROR column is also created in the output table, and its value is based on the parameter zerrorcolumn,

as with light curves.

## 3.3 Data Subspace Support

evselect supports the reading and writing of data subspace information into a data set, which allows one to track the filtering history of a file. A data set with data subspace information can be used as an input to evselect, in place of a filtering expression, using the parameter dssblock. evselect will also take the input filtering expression and convert it into a data subspace specification, which will then be written to all output files.

Not all possible filtering expressions allowed by **selectlib** can be converted to a data subspace specification. See the **dsslib** documentation for a detailed description of the capabilities of the data subspace parser.

The writing of data subspace information is enabled by default, and controlled by the parameter writedss. The data subspace also has a cleaning option, which will eliminate any components from the data subspace which do not select any events in the event list. This can result in the loss of important filtering information, and thus it is recommended that data subspace cleaning be used by experts only. The parameter for enabling data subspace cleaning is dssclean, and is set to false by default.

## 3.4 Exposure Information

evselect will optionally update exposure information for event lists and and product files (no exposure information is written to histograms). This can be done only for finalized XMM event lists, and if the event list does not have the right structure, a warning will be issued. By default exposure updating is turned on. It can be turned off by setting the boolean parameter updateexposure to false. Note that data subspace writing must be turned on in order for exposure correction to work correctly (writedss set to true).

For EPIC event lists, **evselect** uses information in the data subspace and in the EXPOSUnn extensions of the event lists to update the ONTIME, ONTIMEnn, LIVETIME, and LIVETInn keywords. Here nn refers to the relevant CCD number. For spectrum and rate files, **evselect** determines the EXPOSURE keyword by doing an average of the live times of the CCDs in the selection region, weighted by the number of selected events in each CCD. For images, the the EXPOSURE keyword is set to the maximum value of all the available ONTIMEnn values.

As the EXPOSUnn extensions for an event list can be quite large, evselect can filter these extensions, using the same timing information as is applied to events from the corresponding CCD. This option is controlled by the parameter filterexposure, which is set to true by default.

Exposure correction cannot be performed for the RGS within **evselect**. Instead, **evselect** simply propagates exposure information for RGS to any spectral files produced. A warning is issued if any TIME filtering is done for RGS event lists, as this would invalidate the RGS exposure information.

### 3.5 Usage Examples

• Extract a light curve from the table event.fits: EVENTS, using the default column name TIME. Write the light curve to the file rate.fits.

• Extract an image from the table event.fits:RAW EVENTS, using the default columns RAWX, RAWY when the value of RAWX is greater than 50. Write the output to the file image.fits. The results of the filtering is not saved.

evselect table='event.fits:RAW EVENTS' expression='RAWX>50' imageset=image.fits

• Extract a spectrum from the first extension in the file event.fits, in a circle in X, Y space. Write the spectrum to the file myspec.fits, and write the filter results back into the input file. Accumulate the spectrum using the default energy column PHA:

```
evselect table='event.fits' expression='circle(152.5,194.0,14.5,X,Y)' spectrumset=myspec.fits keepfilteroutput=true
```

• Filter the table event.fits:EVENTS, using the data subspace information in the block dss.fits:SPECTRUM. Rejected events are removed from the output file, which is written to good\_events.fits.

```
evselect table='event.fits:EVENTS' dssblock='dss.fits:SPECTRUM'
filteredset='good_events.fits'
```

### 4 Parameters

This section documents the parameters recognized by this task (if any).

| Parameter Mand | Type | Default | Constraints |
|----------------|------|---------|-------------|
|----------------|------|---------|-------------|

**Event List Parameters** 

| table | yes | table     | event | list | table | spec | i- |
|-------|-----|-----------|-------|------|-------|------|----|
|       |     | specifier | fier  |      |       |      |    |

A table specifier which must point to an event list table in a data set. It must be in either of the forms setname or setname:tableid where setname must be the name of an existing data set and tableid the name of a table in the specified data set. If the first form, setname, is used, the event data are sought in the first block of the named data set.

| filteredset | no       | string | filtered.fits | valid file name |
|-------------|----------|--------|---------------|-----------------|
| C 1 C1 1 1  | 1 .1 01. | 1 . 11 | 1 TC .1       |                 |

The name of the file to which the filtered event list is to be written. If this parameter is set, then keepfilteroutput is automatically set to true.

|  | keepfilteroutput | no | boolean | false | true false |
|--|------------------|----|---------|-------|------------|
|--|------------------|----|---------|-------|------------|

A boolean switch determining whether the result of the filtering process is to be kept or not. In the former case, the parameters flagcolumn and filteredset specify the form of the output from the filtering stage (see Sect. 3.2.2).

| flagcolumn | no | string | "EVFLAG" | column name |
|------------|----|--------|----------|-------------|
|            |    |        |          |             |

The name of the integer column used to store the selection status of a table row in non-destructive (see Sect. 3.2.2 for details) filtering mode, which is activated if this parameter is set. If the column does not exist, it will be created with type *int8*, otherwise the existing column will be re-used. If a table with a flag column which has been added by a previous non-destructive **evselect** run is subsequently filtered in destructive mode (see Sect. 3.2.2 for details) the flag column gets deleted at the end of the filtering



Page:

process. In case the flag column has not been created by **evselect**, the bit specified by the parameter flagbit (see Sect. 4) is cleared at the end.

| flagbit no integer | -1 | -1-31 |
|--------------------|----|-------|
|--------------------|----|-------|

In non-destructive (see Sect. 3.2.2 for details) filtering mode: the position of the bit in the integer column named via the flagcolumn (see Sect. 4) parameter used to store the row selection status. 0 signifies the least- and the default value -1 the most-significant bit (i.e. 31 for int32, 15 for int16, 7 for int8) respectively. This bit being set flags an event as selected.

#### Filtering Parameters

| expression | no | string | "true" | valid filter expression       |
|------------|----|--------|--------|-------------------------------|
|            |    |        |        | according to <b>selectlib</b> |
|            |    |        |        | syntax rules                  |

This is the expression controlling the filtering process. It's length is in principal unlimited, please note however, that this is not true for the length of a command line in most UNIX shells. With this limit being in the range of several kByte, it should not pose a real problem in practice, though. This parameter and the dssblock parameter cannot be used at the same time. If both are specified, the one listed on the command line first takes precedence.

| dssblock | no | block     |  |
|----------|----|-----------|--|
|          |    | specifier |  |

Specifies a block containing data subspace information. This is converted into a filter expression which is used to filter the event list. Note that this parameter and the expression parameter cannot be used at the same time. If both are specified, the one listed on the command line first takes precedence.

#### General Output Product Parameters

| writedss | no | boolean | true | true false |  |
|----------|----|---------|------|------------|--|
|          |    |         |      |            |  |

Controls the writing of data subspace information to the output data files.

| cleandss | no | boolean | false | true false |
|----------|----|---------|-------|------------|
|----------|----|---------|-------|------------|

Controls the use of data subspace cleaning, which deletes components from the data subspace which select no events from the event list. Recommended for use by experts only.

| updateexposure | no | boolean | true | true false |
|----------------|----|---------|------|------------|

Update exposure information in event lists and in spectrum files. For the event lists this means that new values of the keywords LIVETIME, LIVETInn, ONTIME, and ONTIMEnn will be calculated, where nn is the CCD number. For spectrum files, the EXPOSURE keyword is calculated; note that this part of evselect is XMM specific

| filterexposure             | no         | boolean    | true                       | true false                 |
|----------------------------|------------|------------|----------------------------|----------------------------|
| Filter EXPOSUnn extentions | of an EPIC | event list | with the same time filters | s applied to events in the |

corresponding CCD; XMM specific.



blockstocopy

## XMM-Newton Science Analysis System

string

no

Page:

10

list List of extensions in the input data set to be copied to any extracted data product file. This does not apply to output event lists. attributestocopy no string list List of attributes in the input table to be copied to any extracted data product table or array. energycolumn no string name of existing col-PHA umn Name of energy column, used for spectral extraction and for determining the energy range for light curve extraction. zcolumn no string name of existing col-WEIGHT umn Column from which to populate image, spectrum or light curve values. zerrorcolumn no string name of existing col-**EWEIGHT** umn Column containing the error on the zcolumn value, used to calculate errors for extracted products when accumulating using the zcolumn column. ignorelegallimits no boolean false true|false If true, ignore the TLMIN and TLMAX keywords when determining column extraction ranges. Image Extraction Parameters imageset string image.fits file name Name of the image product file. xcolumn name of existing colstring RAWX umn Name of column with spatial X-coordinates (for image creation and spectral area determintation). ycolumn string name of existing col-RAWY umn Name of column with spatial Y-coordinates (for image creation and spectral area determintation). squarepixels boolean false When ximagesize and yimagesize are set, forces the x and y bin sizes to be the same. The larger of the two bin sizes is used. 600 ximagesize integer > 0If set, the size of the image (ie. number of image pixels) along the x axis; for extraction using integer valued columns, the extracted image size may be somewhat smaller than the requested image size. ximagebinsize > 0no real

If set, the size of the image (ie. number of image pixels) along the y axis; for extraction using integer valued columns, the extracted image size may be somewhat smaller than the requested image size.

600

> 0

integer

If set, the binning factor for x axis in image creation

no

yimagesize



yimagebinsize no real 1 > 0

Page: 11

If set, the binning factor for y axis in image creation.

ximagemin real no

If set, the lower limit of x coordinate for image extraction.

ximagemax real 640

If set, the upper limit of x coordinate for image extraction.

yimagemin no

If set, the lower limit of y coordinate for image extraction.

yimagemax no real

If set, the upper limit of y coordinate for image extraction.

Real64 Int8|Int16|Int32|Real32|Real64 imagedatatype no string

Data type to use for the output image. If not set, evselect decides for itself what data type to use.

raimagecenter real no

If set, right ascension for the center of the output image, in decimal degrees.

decimagecenter no real

If set, declination for the center of the output image, in decimal degrees.

#### Spectrum Extraction Parameters

| spectrumset                 | no     | string | spectrum.fits | file name |
|-----------------------------|--------|--------|---------------|-----------|
| Name of the spectrum produc | t file |        |               |           |

spectralbinsize 10 >=1real

Binning factor for spectrum creation.

specchannelmin integer 0 >=0no

If set, the minimum channel number to consider for spectrum creation.

| specchannelmax | no | integer | 4095 | >= 0 |
|----------------|----|---------|------|------|
|                |    |         |      |      |

If set, the maximum channel number to consider for spectrum creation.

#### Rate Extraction Parameters

| rateset                       | no        | string | rate.fits | file name |
|-------------------------------|-----------|--------|-----------|-----------|
| Name of the time series produ | ict file. |        |           |           |

| timecolumn | no | string | TIME | name of existing col-<br>umn |
|------------|----|--------|------|------------------------------|
|------------|----|--------|------|------------------------------|

Name of column for time coordinate (to be used in rates files creation).



Page: 12

| timebinsize | no | real | 1 | > 0 |
|-------------|----|------|---|-----|
|             |    |      |   |     |

Size of time bins for the time series files.

| timemin | no | real | 0 |  |
|---------|----|------|---|--|

If set, the earliest time to consider in time series file creation.

| timemax | no | real | 1000 |  |
|---------|----|------|------|--|

If set, the latest time to consider in time series file creation.

| maketimecolumn                 | no          | boolean      | false                     | true false                   |
|--------------------------------|-------------|--------------|---------------------------|------------------------------|
| If true, include a time column | in the FITS | S table wher | creating a time series. I | f false, the table will only |

If true, include a time column in the FTTS table when creating a time series. If false, the table will only include a COUNTS column and the necessary keywords to deduce the time for each bin.

| makeratecolumn no | boolean | false | true false |
|-------------------|---------|-------|------------|
|-------------------|---------|-------|------------|

If true, produces a lightcurve containing a RATE, rather than a COUNTS column. An ERROR column is also produced.

#### Histogram Extraction Parameters

|  | histogramset | no | string | histo.fits | file name |
|--|--------------|----|--------|------------|-----------|
|--|--------------|----|--------|------------|-----------|

File name for the histogram.

| histogramcolumn no | string | TIME | column name |
|--------------------|--------|------|-------------|
|--------------------|--------|------|-------------|

Name of the column from which to extract the histogram.

| histogrambinsize no real 1 > 0 |                  |    |      |   |     |
|--------------------------------|------------------|----|------|---|-----|
|                                | histogrambinsize | no | real | 1 | > 0 |

Binning factor for histogram extraction.

| histogrammin | no | real | 0 |  |
|--------------|----|------|---|--|
|              |    |      |   |  |

If set, the lower limit for histogram extraction.

| histogrammax | no | real | 1000 |  |
|--------------|----|------|------|--|

If set, the upper limit for histogram extraction.

#### 5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and errors can also be generated in the SAS infrastructure libraries, in which case they would not be documented here. Refer to the index of all errors and warnings available in the HTML version of the SAS documentation.

#### RangeType (error)

In the subroutine getRange, a column was accessed which is not of a supported data type.

#### ColType (error)

Page: 13

Column type conversion not supported. The column cannot be converted to the desired data type.

#### EmptyTableName (error)

The name of the input table was specified as an empty string.

#### **DssException** (error)

An error occurred while parsing the selection expression in order to produce a data subspace specification.

#### ImgBinVal (error)

Binning factor must be an integer for integer-valued columns. Error occurred while performing image extraction.

#### XRangeVal (error)

X ranges must be integers for integer-valued columns.

#### YRangeVal (error)

Y ranges must be integers for integer-valued columns.

#### ImageType (error)

Image type is not of a supported data type.

#### WcsTransform (error)

The program failed to transform the raimgecenter and decimagecenter coordinates into pixel coordinates. This is because and error was returned by the wcslib routine wcsfwd. The error code is listed in the error message.

#### RateBinVal (error)

Binning factor must be an integer for integer-valued columns. Error occurred while performing light curve extraction.

## ${\bf Time Range Val} \ (error)$

Time ranges must be integers for integer-valued columns.

#### HistoBinVal (error)

Binning factor must be an integer for integer-valued columns.

#### HistoRangeVal (error)

Ranges must be integers for integer-valued columns.

#### SpecIntColumn (error)

Energy column must be of an integer type in order to extract an OGIP compliant spectrum.

#### NotXmmSpectrum (warning)

The input data set was not recognized as an XMM data set. A weighted rate spectrum can only be produced for XMM data.

corrective action: A spectrum file is not produced.

#### NoAttrib (warning)

The Attribute does not exist in the input event list. No value was copied. corrective action: No value for the given attribute is copied into the product file.

### MinParamRange (warning)

Value of parameter outside allowed range for column. Setting to minimum value. *corrective action:* The minimum value used for product extraction is set to the minimum allowed value.

### MaxParamRange (warning)

Value of parameter outside allowed range for column. Setting to maximum value. corrective action: The maximum value used for product extraction is set to the maximum allowed value.

#### MaxDataRange (warning)

Data values found outside of allowed range for column; will be ignored.

corrective action: Values greater than the maximum allowed value will not be used for product extraction

Page: 14

#### NoInputEvents (warning)

The input event table contains no events (zero rows).

corrective action: None - empty product files may be produced

#### NoFilteredEvents (warning)

No events have been selected during the filtering process.

corrective action: None - empty product files may be produced

#### BadHistoLimits (warning)

The column used for histogram extraction has its upper limit equal to its lower limit, or the column has the same value throughout.

corrective action: An empty histogram is created.

#### BadHistoLimits (error)

The column used for histogram extraction has its upper limit less than its lower limit.

#### HistoColumnName (warning)

The input column for accumulating a histogram is called COUNTS, which causes a name clash in the histogram output file.

corrective action: The X axis column in the histogram file is renamed to OLD\_COUNTS.

#### XlimitEpsilon (warning)

X axis upper limit adjusted by an epsilon amount. This is to guarentee that all events which fall into the range of the image get accumulated.

corrective action: X axis upper limit adjusted by an epsilon amount.

#### YlimitEpsilon (warning)

Y axis upper limit adjusted by an epsilon amount. This is to guarentee that all events which fall into the range of the image get accumulated.

corrective action: Y axis upper limit adjusted by an epsilon amount.

#### BadImgLimits (warning)

One of the columns used for image extraction has its upper limit less than or equal to its lower limit, or the column has the same value throughout.

corrective action: No image is created.

#### NoWCS (warning)

No WCS information is available for an image column.

corrective action: Pixel based WCS information is written to the output image.

### BinVsFrameTime (warning)

Time bin size is less than the mean frame readout time.

corrective action: No action taken.

#### RateEnergy (warning)

A data subspace energy filter has been found which cannot be incorporated into the calculation of E\_MIN and E\_MAX values for a rate curve. E\_MIN and E\_MAX values may be incorrect. corrective action: Energy filter is ignored.

#### BadRateLimits (warning)

The column used for light curve extraction has its upper limit equal to its lower limit, or the column has the same value throughout.

corrective action: An empty light curve is created.

#### BadRateLimits (error)

The column used for light curve extraction has its upper limit less than its lower limit

Page: 15

#### BadSpecLimits (warning)

The column used for spectral extraction has its upper limit equal to its lower limit, or the column has the same value throughout.

corrective action: An empty spectrum file is created.

#### BadSpecLimits (error)

The column used for spectral extraction has its upper limit less than its lower limit

## NotXMM (warning)

Can only update exposure information on XMM data. No updating of exposure information is performed.

corrective action: Exposure information is not updated.

#### RgsTimeFilter (warning)

You have used the TIME column to filter an RGS events list. This will invalidate any exposure information in the produced products.

corrective action: Execution continues.

#### NoTargetOntime (warning)

The  $\mathtt{ONTIME} nn$  attribute for the target CCD could not be found in the event list. The global  $\mathtt{ONTIME}$  will be set to zero.

corrective action: ONTIME is set to zero.

#### NoTargetLivetime (warning)

The LIVETInn attribute for the target CCD could not be found in the event list. The global LIVETIME will be set to zero.

corrective action: LIVETIME is set to zero.

#### ExpMultiCcdFilters (warning)

A data subspace component was found which contains more than one CCDNR filter, ie more than one expression specifying which CCD events should be selected from. The exposure correction code is not designed to handle this, I will in most cases produce wrong results when updating exposure information. Usually having more than one CCDNR filter in a component results in the exposure time (on time) not being uniform for all events in the CCD.

corrective action: Execution continues

#### ExpBadCcdType (warning)

The CCDNR column was used in a filtering expression for which it cannot be guaranteed that the selection criteria will result in a uniform exposure time (on time) for each CCD. This part of the filtering expression is thus ignored in the updating of the exposure information. corrective action: Filter ignored in updating of exposure information

#### ExpBadCcdComp (warning)

The CCDNR column was used in a filtering expression for which it cannot be guaranteed that the selection criteria will result in a uniform exposure time (on time) for each CCD. This part of the filtering expression is thus ignored in the updating of the exposure information. corrective action: Filter ignored in updating of exposure information

#### ExpBadTimeType (warning)

The TIME column was used in a filtering expression for which it cannot be guaranteed that the selection criteria will result in a uniform exposure time (on time) for each CCD. This part of the filtering expression is thus ignored in the updating of the exposure information. corrective action: Filter ignored in updating of exposure information

#### ExpBadTimeComp (warning)

The TIME column was used in a filtering expression for which it cannot be guaranteed that the selection criteria will result in a uniform exposure time (on time) for each CCD. This part of the filtering expression is thus ignored in the updating of the exposure information. corrective action: Filter ignored in updating of exposure information

#### Page: 16

## ${\bf ExpBadGlobalComp}\ (warning)$

The filtering expression used may not result in a uniform exposure time (on time) to be applied to all events for a given CCD. This is because the expression applies one time criteria to one set of events, and another time criteria to a different set of events.

corrective action: Execution continues

## ${\bf NotXmmProduct}\ (warning)$

Not XMM data. Cannot calculate EXPOSURE keyword for output products.

corrective action: Exposure calculation aborted. Execution continues.

#### NoProductExp (warning)

No live time information available. Cannot write EXPOSURE keyword for output products. corrective action: EXPOSURE keyword not written

#### NoRGSExposure (warning)

No EXPOSURE keyword in RGS event list. Cannot write exposure value to the product file.

corrective action: Exposure calculation aborted. Execution continues.

#### RGSprodAttributes (warning)

Could not find requested RGS attributes to copy to the product extension.

corrective action: Execution continues.

#### NoCCDcolumn (warning)

Event list does not have a CCDNR column. Cannot calculate EXPOSURE keyword for EPIC products.

corrective action: Exposure calculation aborted. Execution continues.

#### NoOutput (warning)

Input parameters have been set such that no output will be produced and no input files modified.

corrective action: Immediately exit program.

#### ExpNoDss (warning)

The user has requested that exposure information be updated without the writing of the data subspace (writedss set to false). This means it is likely that all filter information will not be taken into account when updating the exposure information. In general, writedss should be set to true when updateexposure is set to true.

corrective action: Execution continues.

#### ExpBadDss (warning)

An error occurred while parsing and processing the data subspace information. This means it is likely that all filter information will not be taken into account when updating the exposure information.

corrective action: Execution continues.

#### FrameTimeBiggerThanPeriod (warning)

Check phase expression.

corrective action: Execution continues.

#### NoFrameTimeKeywordFound (warning)

Check event list.

corrective action: Execution continues.

#### NoExpEmpty (warning)

The exposure calculation cannot be performed for an empty event list, as it is a weighting of the number of photons in the various CCDs.

corrective action: Exposure calculation aborted. Execution continues.

Please see the **selectlib** documentation for information on errors and warnings having to do with event selection and filtering.



Please see the **dsslib** documentation for information on errors and warnings having to do with the data subspace.

## 6 Input Files

- 1. event list file to filter/extract products from
- 2. Good Time Interval files (optional)
- 3. Mask image filter file (optional)
- 4. Region specification file (optional)

## 7 Output Files

- 1. filtered event list (optional)
- 2. (OGIP-compliant) product files (optional)

#### 8 Comments

- For interactive usage in a SAS session there is a Graphical-User-Interface to evselect xmm-select, which supports
  - the specification of the filtering expression
  - specification of all mandatory and optional parameters

in a convenient and user-friendly manner. In addition, to simplify repeated selection-extraction-viewing cycles the **evselect** GUI controls the automatic spawning of viewers for the inspection of products.

## 9 Future developments

None.

## 9.1 Implementation Status

All envisaged functionality implemented.

#### 9.2 TODO



# References

[1] J. McDowell. A Data Model for Astrophysical Data Analysis. Technical report, Chandra Science Center, 1997. Found at the URL: http://hea-www.harvard.edu/~jcm/asc/.