This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SECTION II—CLAIMS

1.-38. (Canceled)

39. (New) An apparatus comprising a diffractive grating formed in a substrate, the diffractive grating comprising:

a plurality of sub-gratings, each sub-grating having a pair of lateral edges and a periodic array of diffraction elements, wherein the sub-gratings are positioned laterally adjacent to each other and wherein each sub-grating has an amplitude, a spatial phase shift, a spatial period, and an optical phase shift ($A_i, x_i, \Lambda_i, \varphi_i$, respectively), and wherein amplitude and phase parameters of each sub-grating are determined according to the equation

$$a_{i} = \beta d \int_{m/(\beta\Lambda_{i})-1/(2\beta d)}^{m/(\beta\Lambda_{i})+1/(2\beta d)} \frac{T(v)}{F_{i}(v)} \exp\left(-j\pi(v\beta - m/\Lambda_{i})(x_{i}^{a} + x_{i}^{b})\right) dv$$

wherein T(v) is a complex-value spectral transfer function, j is the square root of -1, m is a diffraction order, v is a frequency of an input optical field, $F_i(v)$ is a spatial Fourier transform applied to the input optical field by an ith sub-grating, $\beta = (\sin \theta_{in} + \sin \theta_{out})/c$, wherein c is the vacuum speed of light and θ_{in} and θ_{out} are angles between a direction of propagation of the input optical field and an output optical field and a line normal to the sub-grating, respectively, x_i^a and x_i^b are edge coordinates of the ith sub-grating, d is a sub-grating width equal to $x_i^b - x_i^a$, A_i determines an amplitude of a_i , and a_i and a_i and a_i determine a phase of a_i .

- 40. (New) The apparatus of claim 39 wherein the sub-gratings are positioned to apply a predetermined complex-valued spectral function to the input optical field.
- 41. (New) The apparatus of claim 40 wherein amplitudes of the sub-gratings control the predetermined complex-valued spectral transfer function.
- 42. (New) The apparatus of claim 41, further comprising an active device that dynamically reprograms each sub-grating to correspond to the predetermined complex-valued spectral transfer function.

- 43. (New) The apparatus of claim 39 wherein the sub-gratings have optical thicknesses, the optical thicknesses of each sub-grating being controlled by respective variations in thickness of the substrate.
- 44. (New) The apparatus of claim 39 wherein the sub-gratings are transmissive gratings.
- 45. (New) The apparatus of claim 39 wherein the sub-gratings are reflective gratings.
- 46. (New) The apparatus of claim 39 wherein the sub-gratings are positioned along a planar surface.
- 47. (New) The apparatus of claim 39 wherein the sub-gratings are positioned along a non-planar surface.