General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-137923) COST/BENEFIT TRADEOFFS FOR N77-23072 REDUCING THE ENERGY CONSUMPTION OF THE HCAI3/MF AOL COMMERCIAL AIR TRANSPORTATION SYSTEM. Unclass VOLUME 1: TECHNICAL ANALYSIS Final Report (Douglas Aircraft Co., Inc.) 289 p G3/03 30480

COST/BENEFIT TRADEOFFS FOR REDUCING THE ENERGY CONSUMPTION OF THE COMMERCIAL AIR TRANSPORTATION SYSTEM

FINAL REPORT

VOLUME I: TECHNICAL ANALYSIS

JUNE 1976

Prepared Under Contract NAS2-8618
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER

DOUGLAS AIRCRAFT COMPANY MCDONNELL DOUGLAS CORPORATION Long Beach, California

PREFACE

This report was prepared by the Douglas Aircraft Company, McDonnell Douglas Corporation, under NASA Contract NAS2-8618 for a study of the "Cost/Benefit Tradeoffs for Reducing the Energy Consumption of the Commercial Air Transportation System." The study, hereafter referred to as the RECAT Study (Reduced Energy for Commercial Air Transportation), was performed from November 5, 1974 to June 30, 1976.

The NASA Technical Monitor for the RECAT Study was Louis J. Williams, Research Aircraft Technology Office, Ames Research Center, Moffett Field, California.

The Douglas Study Team consisted of Emmett F. Kraus, responsible for Technical Analyses, assisted by Melvin A. Sousa, responsible for Turboprop Aircraft Analysis; and June C. Van Abkoude, responsible for Market and Economic Analyses, assisted by Clayton R. Sturdevant.

Appreciation for their cooperation and contribution is extended to the RECAT Study co-contractors: Lockheed-California Company, United Airlines and United Technologies Research Center. Appreciation is also extended to the Hamilton Standard Division of United Technologies Corporation for assistance in preparation of propfan propulsion data.

TABLE OF CONTENTS

				Page
PREFA	CE .			ii
LIST :	0ř FJ	GURES .		iiv
LIST	OF TA	ABLES .		riiix
SYMB0	LS A	ND ABBRE	VIATIONS	xviii
SUMMA	RY .			Ţ
				5
	- 4111		ET BASELINE AIRCRAFT	7
1.0	DOME 1.1	Silt FLE Baselir	ne Aircraft	7
	a. m=		OPERATING PROCEDURES	38
2.0		RNATIVE	Operations	38
	2.1	Flight	Climb and Descent Profiles	38
			Cruise Altitude	39
				40
		2.1.3	Cruise Speed	42
		2.1.4	Navigation	43
		2.1.5	Holding	43
		2.1.6	Reserves, Contingencies, and Tankering	44
	2.2	Airlin	e Operations	44
			Seating Density and Load Factor	44
			Maintenance	44
			Loading	45
			Flight Planning	45
			Ground Maneuver and Delays	46
			Takeoff and Landing	
	2.3	l Operat	ting Procedures Selected for Study	46

			Page
	THOUS	IOLOGY	53
3.0		Advanced Technology	53
	3.1	3.1.1 Improved Transonic Airfoils	53
		3.1.2 Winglet Drag Reduction	55
		3.1.3 Active Controls	57
		3.1.4 Advanced Material Applications	58
		3.1.5 Carbon Brakes	61
		3.1.6 Propulsive Noise Reduction	61
	3 2	State-of-the-Art Technology	61
	J. L	3.2.1 Fairings, Gaps, Steps	62
		3.2.2 Extended Wing Tips	62
		3.2.3 Cutback Pylons	64
		3.2.4 General Weight Reduction	64
			66
4.0	MOD:	IFICATION AND DERIVATIVE STUDIES	66
	4.1	Sensitivity Studies	66
	4.2	Modification and Derivative Configurations	
5.0	NFW	NEAR-TERM AIRCRAFT	125
010	5.1	and Chound Pules	126
		5.1.1 Interior Arrangements	126
	5.2	Design Procedures	134
	5.3	N80-2.15 Series Aircraft	139
		5.3.1 Configuration Trade Studies	139
		5.3.2 Optimum Design Characteristics	139
		5.3.3 Optimum Geometry	140
		5.3.4 Energy Efficiency	140
	5.4	4 N80-2.30 Series Aircraft	156
		5.4.1 Configuration Trade Studies	156
		5.4.2 Optimum Design Characteristics and Geometry	156
		E 4.2 Energy Efficiency	157

			Page
	5.5	N80-2.55 Series Aircraft	173
	J.J	5.5.1 Configuration Trade Studies	173
		5.5.2 Optimum Design Characteristics	173
		5.5.3 Energy Efficiency	173
	5.6	N80-4.30 Series Aircraft	182
	3.0	5.6.1 Configuration Trade Studies	182
		5.6.2 Optimum Design Characteristics	182
		5.6.3 Energy Efficiency	182
	5.7	N80-4.55 Series Aircraft	192
	017	5.7.1 Configuration Trade Studies	192
		5.7.2 Optimum Design Characteristics	192
		5.7.3 Energy Efficiency	192
	5.8	Comparison of New Near-Term Aircraft	201
		5.8.1 Fuel Savings Comparison	201
		5.8.2 Effect of Fuel Price on N80 Designs	202
		5.8.3 Payload-Range Capability	203
	5.9		215
		5.9.1 Nacelle Configuration Definition	215
		5.9.2 Noise Analysis Procedure	215
		5.9.3 FAR Part 36 Noise Level Estimates	216
		5.9.4 EPNL vs Distance and Noise Contours	216
		OTIDITE	232
6.0		BOPROP CONFIGURATION STUDIES	232
		Advanced Turboprop Propulsion	235
	6.2	Configuration Studies	238
	6.3		244
	6.4		040
	6.5		246
	6.6		251
	6.7	Effect of Improved Propulsive Efficiency	

		Page
7 0	CONCLUSIONS AND RECOMMENDATIONS	257
7.0	7.1 Technology Conclusions	257
	7.2 Research and Technology Recommendations	262
Ω Λ	REFERENCES	264

LIST OF FIGURES

Figure		<u>Page</u>
1	DC-8 Genealogy	9
2	DC-9 Genealogy	10
3	DC-10 Genealogy	11
4	Baseline Mission Profile - Domestic	15
5	DC-8-20 and DC-8-50 General Airplane Dimensions	16
6	DC-8-61 General Airplane Dimensions	17
7	DC-9-10 General Airplane Dimensions	18
8	DC-9-30 General Airplane Dimensions	19
9	DC-10-10 General Airplane Dimensions	20
10	DC-10-40 General Airplane Dimensions	21
11	DC-8-20 and DC-8-50 Baseline Interior Arrangement	22
12	DC-8-61 Baseline Interior Arrangement	23
13	DC-9-10 Baseline Interior Arrangement	24
14	DC-9-30 Baseline Interior Arrangement	25
15	DC-10-10 Baseline Interior Arrangement	26
16	DC-10-40 Baseline Interior Arrangement	27
17	Baseline Aircraft Payload-Range Comparison	29
18	Baseline Aircraft Fuel Efficiency Comparison	37
19	Long-Range and High-Speed Climb and Descent Schedules	39
20	Range Increment due to Slowdown from 0.85M	41
21	Fuel Saved by Fuel-Conservative Operations	52
22	Drag Divergence Mach Number Variation with Airfoil Thickness Ratio	54
23	Comparison of 2-D Airfoil Section Characteristics	56

Figure		<u>Page</u>
24	Local Mach Number on Upper Surface at Cruise Conditions	56
25	Representative Winglet Performance Summary for DC-10-30 Airplane	59
26	Structural Arrangement for Graphite-Epoxy Rudder	59
27	DC-10 Isogrid Window Belt	60
28	Tail Fillets	63
29	Wing Leading Edge Fillet	63
30	Spoiler Trailing Edge Step	65
31	Comparison of Original and Cutback DC-8 Pylons	65
32	Average Modification Sensitivity Factors	71
33	Fuel-Conservative DC-8 Retrofit Study Items	73
34	Fuel-Conservative DC-9 Study Items	74
35	Fuel-Conservative DC-10 Study Items	75
36	Payload-Range Comparison for DC-8-20 Models	89
37	Payload-Range Comparison for DC-8-50 Models	90
38	Payload-Range Comparison for DC-8-61 Models	91
39	Payload-Range Comparison for DC-9-10 Models	92
40	Payload-Range Comparison for DC-9-30 Models	93
47	Payload-Range Comparison for DC-10-10 Models	94
42	Payload-Range Comparison for DC-10-40 Models	95
43	Block Fuel vs. Range for Modified DC-8 Aircraft	116
	Block Fuel vs. Range for Modified DC-9-10 Aircraft	117
44 45	Block Fuel vs. Range for Modified and Derivative DC-9-30 Aircraft	118

F2		<u>Page</u>
Figure 46	Block Fuel vs. Range for Modified and Derivative DC-10-10 Aircraft	119
47	Block Fuel vs. Range for Modified and Derivative DC-10-40 Aircraft	120
48	Modified Aircraft Fuel Savings	123
49	Derivative Aircraft Fuel Savings	124
50	New Near-Term Aircraft Designator Code	125
51	Mission Profile for New Near-Term Aircraft	129
52	Advanced Technologies for New Near-Term Aircraft	130
53	Interior Arrangement for N80-2.15, N80-2.30, and N80-2.55	131
54	Interior Arrangement for N80-4.30 and N80-4.55	132
55	PASAP Sizing Grid	136
56	Sizing Procedure	138
57	N80-2.15 ₁₅ Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	141
58	N80-2.15 ₃₀ Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	142
59	N80-2.1560 Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	143
60	Relative DOC vs. Cruise Mach Number and Fuel Price for Optimum Geometry N80-2.15 Aircraft	144
61	N80-2.15 _{MF} Optimum Aircraft Geometry and Relative Fuel Use vs. Cruise Mach Number	
62	Effect of Wing Aspect Ratio on N80-2.15MF Block Fuel	146
63	Plan Views of Optimized N80-2.15 Aircraft	. 147
64	Effect of Fuel Price on N80-2.15 Optimum Aircraft Geometry and Cruise Mach Number	. 151

<u>Figure</u>		Page
65	Block Time and Block Fuel vs. Range - Optimum N80-2.15 Aircraft	152
66	Energy Efficiency Parameters vs. Range - Optimum N80-2.15 Aircraft	153
67	N80-2.30 ₁₅ Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	158
68	N80-2.5030 Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	159
69	N80-2.3060 Optimum Aircraft Geometry and Relative DOC vs. Cruise Mach Number	160
70	Relative DOC vs. Cruise Mach Number and Fuel Price for Optimum Geometry N80-2.30 Aircraft	161
71	Effect of Design Cruise Mach Number on DOC	162
72	N80-2.30 _{MF} Optimum Aircraft Geometry and Relative Fuel Use vs. Cruise Mach Number	163
73	Plan Views of Optimized N80-2.30 Aircraft	164
74	Effect of Fuel Price on N80-2.30 Optimum Aircraft Geometry and Cruise Mach Number	168
75	Block Time and Block Fuel vs. Range - Optimum N80-2.30 Aircraft	169
76	Energy Efficiency Parameters vs. Range - Optimum N80-2.30 Aircraft	170
77	Plan Views of Optimized N80-2.55 Aircraft	174
78	Block Time and Block Fuel vs. Range - Optimum N80-2.55 Aircraft	178
79	Energy Efficiency Parameters vs. Range - Optimum N80-2.55 Aircraft	179
80	Effect of Fuel Price on N80-4.30 Optimum Aircraft Geometry and Cruise Mach Number	183
81	Plan Views of Optimized N80-4.30 Aircraft	184

		Page
<u>Figure</u>	. of all the Bange - Ontimum	
82	Block Time and Block Fuel vs. Range - Optimum N80-4.30 Aircraft	188
83	Energy Efficiency Parameters vs. Range - Optimum N80-4.30 Aircraft	189
84	Plan Views of Optimized N80-4.55 Aircraft	193
85	Block Time and Block Fuel vs. Range - Optimum N80-4.55 Aircraft	· 197
86	Energy Efficiency Parameters vs. Range - Optimum N80-4.55 Aircraft	198
87	Energy Efficiency Parameters at Design Range for Optimum N80 Aircraft	204
88	Effect of Design Fuel Price on Fuel Use	205
89	Effect of Design Cruise Mach Number and Design Fuel Price on Fuel Use	206
90	N80 Block Fuel vs. Design Range	207
91	New Near-Term Aircraft Fuel Savings	208
92	New Near-Term Aircraft Cruise Mach Number Comparison	209
93	New Near-Term Aircraft Aspect Ratio Comparison	210
94	New Near-Term Aircraft Wing Span Comparison	211
95	Effect of Wing Aspect Ratio on DOC	212
	Payload-Range Envelopes for Domestic Range N80 Aircraft .	213
96 97	Payload-Range Envelopes for International Range N80 Aircraft	214
98	EPNL Map for N80-2.15 ₁₅ Aircraft	. 219
99	EPNL Map for N80-2.15 _{MF} Aircraft	
100	EPNL Map for N80-2.30 ₁₅ Aircraft	
	EPNL Map for N80-2.30 _{MF} Aircraft	
101	EPNL Map for N80-4.30 ₁₅ Aircraft	יניני
102	EPNL map for Non-4.3015 Afficiation	

Figure		<u>Page</u>
103	EPNL Map for N80-4.30 _{MF} Aircraft	224
104	Estimated Noise Contours for N80-2.15 ₁₅ Aircraft	225
105	Estimated Noise Contours for N80-2.15 _{MF} Aircraft	226
106	Estimated Noise Contours for N80-2.30 ₁₅ Aircraft	227
107	Estimated Noise Contours for N80-2.30 _{MF} Aircraft	228
108	Estimated Noise Contours for N80-4.30 ₁₅ Aircraft	229
109	Estimated Noise Contours for N80-4.30 _{MF} Aircraft	230
110	EPNL Contour Area Comparison for Aircraft Configurations with Optimization Parameters of Minimum DOC @ 15¢/Gallon and Minimum Fuel	231
111	Thrust vs. Mach Number for Propfans and Turbofans	234
112	General Configuration, DC-9-30D5 Propfan	236
113	DC-9-30D6 Propfan, Wing and Tail Configurations	237
114	Interior Arrangement, DC-9-30D5 and DC-9-30D6 Propfans	239
115	Alternate DC-9-30 Propfan Nacelle Configurations with Main Gear Stowed in Nacelle	240
116	DC-9-30 Propfan Nacelle Configuration with Main Gear Stowed in Fuselage	241
117	Turboshaft Engine Power-to-Weight Ratio vs. Shaft Horsepower	245
118	Propfan Payload-Range Comparisons	247
119	Block Fuel Comparison of DC-9-30 Turbofan, Propfan and SCW Derivatives - 30,000 ft Cruise Altitude	248
120	Block Fuel Comparison of DC-9-30 Turbofan, Propfan and SCW Derivatives - 15,000 ft Cruise Altitude	
121	Comparison of Block Fuel Savings	
122	Effect of TSFC on Propfan Payload - Range Envelope	
192	Fffect of TSFC on Propfan Fuel Savings	. 255

LIST OF TABLES

Table No.		Page
T	Units Conversion Table	6
2	DC Jets in U.S. Domestic Passenger Service	12
3	Baseline Aircraft Characteristics	13
4	Direct Operating Cost Assumptions	14
5	Technical Ground Rules	14
6	Passenger Convenience Data	28
7	DC-8-20 Baseline Flight Profile Data - Fuel Use vs. Distance	30
8	DC-8-50 Baseline Flight Profile Data Fuel Use vs. Distance	31
9	DC-8-61 Baseline Flight Profile Data ~ Fuel Use vs. Distance	32
10	DC-9-10 Baseline Flight Profile Data - Fuel Use vs. Distance	33
11	DC-9-30 Baseline Flight Profile Data - Fuel Use vs. Distance	34
12	DC-10-10 Baseline Flight Profile Data - Fuel Use vs. Distance	35
13	DC-10-40 Baseline Flight Profile Data - Fuel Use vs. Distance	36
14	Operational Variations	47
15	Effect of Fuel-Conservative Flight Operations on Block Fuel and DOC at 1973 CAB Average Stage Length	48
16	Baseline and High Density Seating Capacities	49
17	Effect of Fuel-Conservative Airline Operations on Block Fuel and DOC at 1973 CAB Average Stage Length	50
18	Modification Sensitivities	70

Table No.		<u>Page</u>
19	Design Changes for Retrofit, Production Modified, and Derivative Aircraft	72
20	Weight Change Summary - DC-8-20 and DC-8-50 Retrofit Aircraft	76
21	Weight Change Summary - DC-8-61 Retrofit Aircraft	77
22	Weight Change Summary - DC-9 and DC-10 Retrofit Aircraft	78
23	Weight Change Summary - DC-10-10 and DC-10-40 Production Modifications	79
24	Weight Change Summary - DC-9 Derivatives	80
25	General Weight Reduction Summary for DC-9 Derivatives	81
26	Composite Secondary Structure Weight Reduction Summary for DC-9 Derivatives	81
27	Weight Change Summary - DC-10 Derivatives	82
28	Low-Risk Composite Secondary Structure Weight Savings	83
29	Composite Secondary Structure Weight Savings	84
30a	Modified and Derivative Aircraft Characteristics	85
30b	Modified and Derivative Aircraft Characteristics	86
30c	Modified and Derivative Aircraft Characteristics	87
30d	Modified and Derivative Aircraft Characteristics	88
31	DC-8-20R - Fuel Use vs. Distance	96
32	DC-8-20DR - Fuel Use vs. Distance	97
33	DC-8-20ER - Fuel Use vs. Distance	98
34	DC-8-50R - Fuel Use vs. Distance	99
35	DC-8-50DR - Fuel Use vs. Distance	100
36	DC-8-50ER - Fuel Use vs. Distance	101

<u>Table No</u>	•	Page
37	DC-8-61R - Fuel Use vs. Distance	102
38	DC-8-61DR - Fuel Use vs. Distance	103
39	DC-8-61ER - Fuel Use vs. Distance	104
40	DC-9-10R - Fuel Use vs. Distance	105
41	DC-9-30R - Fuel Use vs. Distance	106
42	DC-10-10R - Fuel Use vs. Distance	107
43	DC-10-40R - Fuel Use vs. Distance	108
44	DC-10-10M - Fuel Use vs. Distance	109
45	DC-10-40M - Fuel Use vs. Distance	110
46	DC-9-30D1 - Fuel Use vs. Distance	111
47	DC-9-30D2 - Fuel Use vs. Distance	112
48	DC-9-30D3 - Fuel Use vs. Distance	113
49	DC-10-10D - Fuel Use vs. Distance	114
50	DC-10-40D - Fuel Use vs. Distance	115
51	Effect of Modifications and Derivative Designs on Block Fuel and DOC at 1973 CAB Average Stage Length	121
52	Effect of Individual Modification Items on Block Fuel at 1973 CAB Average State Length	122
53	NASA Design Study Ground Rules	127
54	New Airplane Specifications	128
55	Passenger Convenience Data	133
56	Sizing Constraints	137
57	Optimum N80-2.15 Aircraft Characteristics	148
58	N80-2.15 Design Data	149
59	N80-2.15 Weight Data	150

<u>Table No.</u>		Page
60	Block Time and Block Fuel vs. Distance - Optimum N80-2.15 Aircraft	154
61	Energy Efficiency Parameters vs. Distance - Optimum N80-2.15 Aircraft	155
62	Optimum N80-2.30 Aircraft Characteristics	165
63	N80-2.30 Design Data	166
64	N80-2.30 Weight Data	167
65	Block Time and Block Fuel vs. Distance - Optimum N80-2.30 Aircraft	171
66	Energy Efficiency Parameters vs. Distance - Optimum N80-2.30 Aircraft	172
67	Optimum N80-2.55 Aircraft Characteristics	175
68	N80-2.55 Design Data	176
69	N80-2.55 Weight Data	177
70	Block Time and Block Fuel vs. Distance - Optimum N80-2.55 Aircraft	180
71	Energy Efficiency Parameters vs. Distance - Optimum N80-2.55 Aircraft	
72	Optimum N80-4.30 Aircraft Characteristics	
73	N80-4.30 Design Data	. 186
74	N80-4.30 Weight Data	. 187
75	Block Time and Block Fuel vs. Distance - Optimum N80-4.30 Aircraft	190
76	Energy Efficiency Parameters vs. Distance - Optimum N80-4.30 Aircraft	. 191
77	Optimum N80-4.55 Aircraft Characteristics	. 194
78 _.	N80-4.55 Design Data	. 195
79	N80-4.55 Weight Data	. 196

Table No.		<u>Page</u>
80	Block Time and Block Fuel vs. Distance - Optimum N80-4.55 Aircraft	199
81	Energy Efficiency Parameters vs. Distance - Optimum N80-4.55 Aircraft	200
82	Noise Levels of Optimized N80 Aircraft	218
83	Geometric and Weight Data	242
84	Specific Range for Flight with 15,000 Ft Cruise Altitude	252
85	Specific Range for Flight with 30,000 Ft Cruise Altitude	253
86	Fuel Savings Summary - U.S. Domestic Fleet	258

SYMBOLS AND ABBREVIATIONS

Alt Altitude

APPROX Approximately

ASNM Available Seat-Nautical Miles

Assy Assembly

ATA Air Transport Association

ATC Air Traffic Control

BTU British Thermal Unit

c Chord Length

CAB Civil Aeronautics Board

c/4 Quarter Chord Location

 Δ_{C_d} Compressibility Drag Coefficient

CG Center of Gravity

C₂ Two-Dimensional Lift Coefficient

cm Centimeters

Cp Pressure Coefficient

Coeff Coefficient

CW Conventional Wing

D Diameter

DAC Douglas Aircraft Company

db Decibels

Deg Degrees

DOC Direct Operating Cost

DOC₁ Level 1 of Constant DOC

DOC₂ Level 2 of Constant DOC

DOC₃ Level 3 of Constant DOC

DOC₁₅ Optimization Parameter: Minimum DOC @ 15 Cents per Gallon Fuel

DOC₃₀ Optimization Parameter: Minimum DOC @ 30 Cents per Gallon Fuel

DOC₆₀ Optimization Parameter: Minimum DOC @ 60 Cents per Gallon Fuel

DSMA Douglas Santa Monica Airfoil

δ Pressure Ratio

Δ Incremental Parameter Change

Elev Elevator

EMER Emergency

Eng Engine

EPNdB Unit of Effective Perceived Noise Level

EPNL Effective Perceived Noise Level, EPNdB

ESHP Equivalent Shaft Horsepower

FAA Federal Aviation Administration

FAR Federal Air Regulation

FB1 Level 1 of Constant Fuel Burned

FB₂ Level 2 of Constant Fuel Burned

F_{B3} Level 3 of Constant Fuel Burned

F_N Net Thrust per Engine

fps Feet per Second

ft Feet

4-D RNAV Four-Dimensional Area Navigation

GAL Gallons

GAW General Aviation Wing

GE General Electric Company

GLA Gust Load Alleviation

Horiz Horizontal

HP Horsepower

hr Hour

in Inches

JFK Kennedy International Airport (New York)

KEAS Knots Equivalent Air Speed

kg Kilograms

kt Knots

LAV Lavatory

1b Pounds

LBM Mass in Pounds

L/D Lift-to-Drag Ratio

LDW Landing Weight

L.F. Load Factor

LH Left Hand

m Meters

M Mach Number

M_{DIV} Drag Divergence Mach Number

M_{LOCAL} Local Mach Number

MAX Maximum

Optimization Parameter: Minimum Fuel MF

Statute Miles Μi

Minimum MIN

Minutes min

Maneuver Load Alleviation MLA

Main Landing Gear MLG

National Aeronautics and Space Administration NASA

Nautical Miles NM

Number No.

New Near-Term Aircraft: NASA Specification, 1980 Introduction Date **08**N

Overall Sound Pressure Level OASPL

Operational Empty Weight 0EW

Passenger Aircraft Sizing and Performance Program PASAP

Passengers **PSGR**

Perceived Noise Level PNL

Peak Perceived Noise Level **PNLM**

Propeller PROP

Pounds per Square Foot psf

Pratt and Whitney Aircraft P&WA

Radians rad

Reduced Energy for Commercial Air Transportation **RECAT**

Right Hand RH

Area Navigation RNAV

Revenue Passenger Nautical Miles **RPNM**

Reduced Static Stability RSS

SCW Supercritical Wing

SFC Specific Fuel Consumption

SHP Shaft Horsepower

SL Sea Level

SLS Sea Level Static

Sq Square

Stab Stabilizer

STD Standard

SW Wing Area

T Thrust

TAS True Air Speed

TF Turbofan

TOGW Takeoff Gross Weight

TP Turboprop

TSFC Thrust Specific Fuel Consumption

USTEDLEC Study of Unconventional Aircraft Engines
Designed for Low Energy Consumption

VE Equivalent Air Speed

Vert Vertical

VOR Very High Frequency Omni-Directional Radio

VOR-DME VOR with Distance Measuring Equipment

X Distance along Chord from Airfoil Leading Edge

SUMMARY

The purpose of this study was to examine and compare the effectiveness and associated costs of operational and technical options for reducing the fuel consumption of the U.S. commercial airline fleet. The study examined the time period from 1973 to 1990, and was divided into three parts.

Part I, the primary study, investigated the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic passenger operations. Part II concentrated on the design and examination of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30. Part III extended the primary study in Part I to include the international operations of the U.S. scheduled carriers.

The Part I domestic fleet study began with the selection of representative Douglas jet transports in the domestic fleet. For these baseline aircraft, consistent fuel use and cost statistics were determined for standard, high speed flight profiles. Next the effects of operational variations from the baseline flight profile were considered for each aircraft. These variations included alternative flight operations, involving both navigational and aircraft management procedures, as well as alternative ground operations. The operational procedures were further divided into those that could be implemented without a significant change in the current air traffic control (ATC) system, and those that would require ATC changes.

Following the study of operational procedures, possible aircraft retrofit modifications for existing fleet aircraft were examined, including new engines, winglets, and general drag reduction items. More extensive production modifications for the DC-10 were also examined. These included winglets, general drag reduction items, and general weight reduction items including composite secondary structure.

Next, derivative versions of in-production Douglas airplanes were considered. These included a DC-9 with an all new supercritical wing, stretched versions of the DC-9 and DC-10, and a shortened, twin-engine derivative of the DC-10.

Finally, three families of new near-term domestic range aircraft were designed, based on 1976 technology with a 1980 target introduction date.

The families were defined by their range and payload capability: 1,500 nautical miles with 200 passengers; 3,000 nautical miles with 200 passengers; and 3,000 nautical miles with 400 passengers. Within each family, the airplanes were optimized for minimum direct operating cost (DOC) at three fuel prices of 15, 30, and 60 cents per gallon and for minimum fuel consumption.

Examination of the possibilities for reducing fuel consumption by means of operational changes, retrofit and production modifications, derivative aircraft, and new near-term aircraft led to the specification of 46 aircraft operational and design options for consideration in the domestic market.

The Part II turboprop study involved the examination of new Hamilton Standard propfans for the DC-9-30. Conventional wing-mounted engine locations were considered. Both the existing wing and an all new, high aspect ratio, supercritical wing were examined in conjunction with the turboprop.

In Part III, the domestic study results were extended to the aircraft in the international fleets of U.S. air carriers. A total of 13 baseline aircraft were examined, including Douglas, Lockheed, and Boeing airplanes in the international fleet. Fuel characteristics for derivative versions of several in-production aircraft were estimated.

Two families of new near-term international range aircraft were designed, again based on 1976 technology with a 1980 target introduction date. The payload-range requirements were 200 passengers at 5,500 nautical miles and 400 passengers at 5,500 nautical miles. Optimum aircraft were derived in both families for minimum DOC at 30 and 60 cents per gallon and for minimum fuel use.

In the domestic fleet, individual operational improvements offer seat-mile fuel savings of 4 to 13 percent over the baseline operation. Combinations of fuel-saving operations are possible in the far term which together give fuel savings as high as 30.5 percent. This high figure requires an advanced ATC system, an increase in average load factor from 58 to 65 percent, and high seating density. The near-term potential for fuel savings through operational improvements is approximately 6 percent, relative to the baseline operation, primarily due to reductions in cruise speed.

The fuel savings that result from study retrofit and production modifications range from 4 percent for DC-9 retrofits with aerodynamic improvements, to 28 percent for the DC-8-20 Retrofit with a new turbofan engine and aerodynamic improvements. However, considering the limited number of DC-8 aircraft remaining in the fleet, aerodynamic modifications show more fleetwide potential for fuel savings than engine modifications. The overall near-term potential for fuel savings in the domestic fleet through design modifications is approximately 6 percent.

The derivative aircraft designs studied in Part I and Part III use from 3 to 28 percent less fuel per seat-mile than their baseline aircraft. The shortened DC-10-10 uses 3 percent less fuel per seat-mile than the baseline DC-10-10 and 19 percent less fuel per seat-mile than the baseline DC-8-61. The stretched DC-10-40 with aerodynamic and structural improvements uses 28 percent less fuel per seat-mile than the baseline DC-10-40.

The new near-term aircraft substantially reduce seat-mile fuel use, due to the incorporation of current technologies, higher design fuel prices, and larger seating capacities. The new aircraft are approximately 20 percent more fuel efficient than current narrow-body aircraft and 10 percent more fuel efficient than current wide-body aircraft.

The DC-9-30 derivative turboprops use 27 to 33 percent less fuel than the baseline DC-9-30 at the average stage length of 290 nautical miles. At 59 percent load factor, the maximum range capability is increased up to 73 percent.

INTRODUCTION

In Autumn 1973, when jet fuel prices began to increase rapidly and fuel availability was restricted, attention was focused on the air transport industry's need to increase efficiency and conserve fuel. In response, the airlines made immediate adjustments in schedules and operations, and government and industrial organizations pursued efforts to identify the most effective means to reduce present and future transport fuel requirements.

Preliminary studies indicated that changes in aircraft schedules and operations, together with the application of new technologies, could lead to possible fuel savings of over 50 percent (References 1-10). However, the solutions presented were often a mixture of near-term and far-term improvements, and the real costs and effectiveness of these fuel saving possibilities over time were unclear.

In November 1974, the NASA Ames Research Center contracted with the Douglas Aircraft Company (DAC), Lockheed-California Company, United Airlines, and United Technologies Research Center to study the relative costs and benefits associated with near-term solutions for Reducing the Energy consumed by domestic Commercial Air Transportation (RECAT Study). The study was structured to provide interaction between the contractors in order to determine realistic bounds for the domestic demand for jet fuel through 1990, as well as the costs associated with the operation of the alternative aircraft fleets leading to these bounds.

During the course of the study, interest also developed in a specific examination of advanced turboprop aircraft and also in the particular problems associated with fuel conservation in the international market. In November 1975, the Douglas Aircraft Company was authorized to study DC-9 derivative turboprop-powered aircraft, and to conduct a preliminary investigation of fuel conservation for passenger aircraft on the international routes of U.S. carriers.

Volume 1, Sections 1 through 5, of this report describes the results of the technical analysis of the Douglas Aircraft Company domestic and international fleet study. Technical information on the DC-9 derivative turboprop designs

is presented in Volume 1, Section 6. The economic and market analyses for the domestic and international fleet studies and for the advanced turboprop aircraft are discussed in Volume II.

This report contains U.S. Customary Units. Table I gives conversions to International System (SI) Units.

TABLE 1
UNITS CONVERSION TABLE

TO CONVERT	MULTIPLY BY
LINEAR:	· · · · · · · · · · · · · · · · · · ·
INCHES TO CENTIMETERS	2.54
FEET TO METERS	0.3048
NAUTICAL MILES TO KILOMETERS	1.852
AREA:	
INCHES ² TO CENTIMETERS ²	6.452
FEET ² TO METERS ²	0.0929
NAUTICAL MILES ² TO KILOMETERS ²	3.430
VOLUME:	
INCHES TO CENTIMETERS 3	16.39
FEET ³ TO METERS ³	0.0283
GALLONS TO LITERS	3.785
GALLONS TO METERS ³	3.785 x 10 ⁻³
WEIGHT:	
POUNDS TO KILOGRAMS	0.4536

SECTION 1.0

DOMESTIC FLEET BASELINE AIRCRAFT

The domestic fleet study baseline year of 1973 was selected as representative of conditions before the energy crisis and the subsequent rapid rise of fuel prices. The study covers the period from 1973 to 1990. In the Douglas part of the RECAT Study, the domestic fleet of Douglas jet transports and the routes and passengers flown by Douglas jets were used to form the model for the overall U.S. fleet.

1.1 Baseline Aircraft

Passenger versions of Douglas turbojet and turbofan commercial transports used in the domestic fleet were chosen as baseline aircraft. These include aircraft from the following families: DC-8-20, DC-8-50, DC-8-60, DC-9-10, DC-9-30, DC-10-10, and DC-10-40. Figures 1 through 3 trace the genealogy of the DC-8, DC-9 and DC-10 aircraft. The total number of these aircraft in the fleets of domestic trunk and local service carriers, as of June 1974, is shown in Table 2 along with their average flight time and annual fuel use. Each aircraft family is comprised of several models. The most common model in domestic passenger service was chosen as the baseline aircraft for each family. The study baseline models and their characteristics are given in Table 3. The general characteristics of the airplanes are based on actual delivered aircraft. Weight adjustments were included to reflect both changes after delivery, as well as the new baseline interiors. The assumptions made in determining the baseline direct operating costs are given in Table 4. A more complete presentation of costs is presented in Volume II.

The technical ground rules and baseline flight operations profile for the study are given in Table 5 and Figure 4, respectively. These baseline operations were selected as representative of minimum DOC operations used by domestic carriers prior to the 1973 fuel price increases. Figures 5 through 10 show overall airplane dimensions; and interior arrangements are shown in Figures 11 through 16. The interiors shown do not directly correspond to current domestic airline interiors because of the seating density ground rules. The study interior arrangements are dual class interiors with approximately 10 percent first class seating and 90 percent coach seating.

Seat pitch is 38 inches for first class and 34 inches for coach. The aircraft in domestic commercial passenger service actually have fewer seats because of larger first class sections and/or larger seat pitch distances.

The 10/90 split between first class and coach seats and the 38/34-inch seat pitch standard were intended to allow comparison of aircraft using consistent cabin seating densities. Even so, exact comparisons between aircraft families are clouded because different seat widths and passenger conveniences, as shown in Table 6, imply different utilization of aircraft interior space. Consequently, the effects of scale and technology differences between aircraft families still remain slightly obscured.

Payload-range capabilities for the baseline airplanes, flying the baseline domestic flight profiles, are given in Figure 17. Tables 7 through 13 present fuel use parameters for the baseline airplanes at several ranges. Figure 18 shows the comparison of available seat-nautical miles per gallon for the baseline airplanes.

Tables 7 through 13 and the curves of Figure 18 are based on engineering handbook performance data. Consequently, they are representative of new aircraft on the idealized flight profile of Figure 4 in zero wind conditions. In practice, airlines actually experience greater air hold and ground delay times, clearances to non-optimum altitudes, winds, high temperatures, engine and airframe performance deterioration, and excess fuel loads. These factors, together with lower seating densities, lead to lower actual seat-mile fuel efficiency than indicated by handbook data. Fuel consumption reported by the airlines to the Civil Aeronautics Board (CAB), and published in Reference 11, is given for comparison in Figure 18 at the 1973 CAB average stage length for each aircraft. Actual aircraft fuel efficiency, in terms of seat-nautical miles per gallon, is a weighted average of 30.2 percent below the values derived for ideal conditions at the CAB average stage lengths. The weighted average is based on the CAB efficiency levels relative to ideal, given in Figure 18, and the annual fuel consumption for each aircraft, given in Table 2.

FIGURE 1. DC-8 GENEALOGY

FIGURE 2. DC-9 GENEALOGY

FIGURE 3. DC-10 GENEALOGY

TABLE 2 DC JETS IN U.S. DOMESTIC PASSENGER SERVICE

JUNE 1974

AIRPLANE	NUMBER IN SERVICE	AVERAGE FLIGHT TIME (HR)	YEARLY * FUEL USE (GAL)
DC-8-20	29	50,000	164,210,000
DC-8-50	41	32,000	232,200,000
DC-8-61	45	20,000	268,750,000
DC-9-10	84	18,000	182,040,000
DC-9-30	240	15,000	637,230,000
DC-10-10	81	000*9	522,160,000
DC-10-30	2	4,000	13,030,000
DC-10-40	22	3,000	143,280,000
TOTAL	544		2,162,900,000

*Estimated from Reference 11, using number of aircraft for June 1974.

TABLE 3
BASELINE AIRCRAFT CHARACTERISTICS

AIRCRAFT MODEL		DC-8-21	DC-8-52	DC-8-51	DC-9-15	DC-8-32	DC-10-10	0C-10-40
ENGINES: NUMBER		4	4	4	2	2	3	3
TYPE		JT4A-9	JT3D-3B	JT3D-3B	JT8D-7	JT8D-7	CF6-6D	JT90-20
SLS THRUST/ENGINE	(LB)	16,800	18,000	18,000	14,000	14,000	40,100	49,400
NUMBER OF PSGRS., 10/90% SPLIT, 38/34" PITCH		146	146	203	70	35	277*	252
HIGH SPEED CRUISE MACH NUMBER		.83	.82	.82	08.	8.	88.	.85
MAXIMUM MANGE: @ 100% LOAD FACTOR, HIGH SPEED CRUISE	Ē	2,670	4,200	3,260	1,360	1,220	3,410	5,020
e Ses LOAD FACTOR, HIGH SPEED CRUISE	E	3,060	4,800	3,560	1,420	1,310	3,880	5,560
1973 CAB AVERAGE STAGE LENGTH .	E	862	731	800	300	230	870	670
MAXIMUM TAKEOFF DISTANCE, SL, STD DAY	(FI	8,050	8,940	10,480	6,480	2,530	8,840	12,340
APPROACH SPEED AT STUDY LANDING WEIGHT, STD DAY	(KT)	121	120	128	911	E .	121	132
WING AREA	(PT ²)	2,773	2,881	2,864	934	1,00	3,550	3,647
NING SPAN	(F	142.4	142.4	142.4	3.5	4.82	155.3	165.3
MAXIMUM TAKEOFF WEIGHT	(FB)	276,000	300,000	325,000	90,700	106,000	430,000	955,000
MAXIMUM LANGING WEIGHT	(18)	193,660	202,000	240,000	61,780	900*66	363,500	403,000
STUDY LANDING LETCHT	(E	171,300	167,830	192,230	63,390	74,090	285,870	319,770
OPERATORS ENPTY WEIGHT	(FB)	137,900	138,430	156,100	49,840	57,900	237,240	270,910
STUDY PAYLOAD, 58% LOND FACTOR @ 200 LB/PSGR AND BAG	(LB)	17,000	17,000	23,600	8,200	10,600	32,200	29,200
FUEL CAPACITY	(GAL)	17,550	17,900	17,900	3,679	3,679	21,763	36,522
FUEL USE MITH STUDY PAYLOAD AT 1973 CAS AVERSAS STARE LENGTH	S S S S S S S S S S S S S S S S S S S	0.224	0.186	9.14	0.225	0.184	0.125	0.161
1973 DDC AT 1973 CAB AVERAGE STAGE LENGTH, 30¢/GAL FUEL PRICE	(ASIM)	2.029	1.86	1.495	2.803	5.308	1.403	1.846

*Lower Galley

TABLE 3
BASELINE AIRCRAFT CHARACTERISTICS

AIRCRAFT MODEL		DC-8-21	DC-8-52	DC-8-61	DC-9-15	00~9~32	01-01-00	DC-10-40
ENGINES: NUMBER		4	4	47	2	2	3	8
341.1		JT4A-9	JT3D-38	JT3D~3B	JT8D-7	J18D-7	CF6-6D	JT9D-20
SLS THRUST/ENGINE	(LB)	16,800	18,000	18,000	14,000	14,000	40,100	49,400
NUMBER OF PSGRS., 10/90% SPLIT, 38/34" PITCH	-	146	146	203	0,	92	277*	252
HIGH SPEED CRUISE MACH MUMBER	•	.83	.82	85	. 80	œ <u>.</u>	.85	.85
MAXIMUM MANGE: @ 100% LOAD FACTOR, HIGH SPEED CRUISE	(E	2,670	4,200	3,260	1,360	1,220	3,410	5,020
e 58% LOAD FACTOR, HIGH SPEED CRUISE	€	3,060	4,800	3,560	1,420	1,310	3,880	5,560
1973 CAB AVERAGE STAGE LENGTH .	€	862	731	800	300	290	870	670
HAXIMUM TAKEOFF DISTANCE, SL, STD DAY	(FE)	8,050	8,940	10,480	6,480	5,530	8,840	12,340
APPROACH SPEED AT STUDY LANDING WEIGHT, STD DAY	(XT)	121	120	128	116	Ξ.	121	132
WITE AREA	(PT ²)	2,773	2,881	2,884	934	1,00	3,550	3,647
NING SPEE	(F)	142.4	142.4	142.4	4.6	¥, £8	155,3	165,3
MAXIMUM TAKEOFF MEISHT	(18)	276,000	300 000	325,000	90,700	108,000	430,000	555,000
MAXIMUM LANDING MEIGHT	(63)	193,000	202,030	240,000	81,790	000.00	363,590	403,000
STUDY LANDING HEIGHT	(18)	177,300	167,830	192,230	63,390	74,090	285,870	319,770
OPERATORS ENETY NEIGHT	(LB)	137,900	138,430	156,100	49,840	57,900	237,240	270,910
STUDY PAYLOAD, 58% LOAD FACTOR @ 200 LB/PSGR AND BAG	(FB)	17,000	17,000	23,600	8,200	10,600	32,200	29,200
FUEL CAPACITY	(GAL.)	17,550	17,900	17,990	3,679	3,679	21,763	36,522
FUEL USE MITH STUDY PAYLORD AT 1973 ON AVERAGE STAGE LEMETH	(HE)	0.224	0.185	0.144	0.225	0.184	0.125	0.161
1973 DOS AT 1973 CAB AVERAGE STAGE LENGTH, 30¢/GAL FUEL PRICE	(ASM)	2.029	1.961	1.495	2.803	2,309	1.403	1.846

*Lower Galley

TABLE 4 DIRECT OPERATING COST ASSUMPTIONS

- ALL COSTS AND PRICES IN 1973 DOLLARS
- MODIFIED 1967 ATA DOC EQUATIONS
- CREW COSTS 1967 ATA EQUATION ESCALATED AT 6% PER YEAR
- FUEL PRICES 15¢, 30¢, AND 60¢ PER GALLON
- INSURANCE RATE 1%

PAYLOAD:

TOTAL MANEUVER TIME:

- DEPRECIATION 16 YEARS, 10% RESIDUAL
- SPARES 15% TOTAL FLYAWAY COST
- LABOR RATE \$6.10 PER HOUR
- DAC LATEST MAINTENANCE DATA
- MAINTENANCE BURDEN 1.8 x DIRECT AIRFRAME AND ENGINE LABOR COST

TABLE 5 TECHNICAL GROUND RULES

CEATING	DENSITY:	10/90 SPLIT WITH 38"/34"	PITCH
SEALTING	DEMOTIT:	10,50 31 221 1121	

8 ABREAST ON BASELINE DC-10

58% FOR FUEL USE COMPARISONS LOAD FACTOR: 100% FOR NEW AIRPLANE SIZING

> NO CARGO CARRIED IN FUEL USE COMPARISONS 200 LB/(PSGR & BAGS) IN FUEL USE COMPARISONS

LOWER DECK, WHERE FEASIBLE GALLEY LOCATION:

15 MINUTES

MISSION FUEL ONLY (INCLUDES RESERVES) FUEL ONBOARD: DENSITY = 6.8 LBM/GALLON

HEAT CONTENT = 18,600 BTU/LBM

BASELINE MISSION PROFILE - DOMESTIC FIGURE 4.

The state of the s

SAMPLE CONTROL OF THE PROPERTY OF THE PROPERTY

FIGURE 5. DC-8-20 AND DC-8-50 GENERAL AIRPLANE DIMENSIONS

FIGURE 6. DC-8-61 GENERAL AIRPLANE DIMENSIONS.

FIGURE 7. DC-9-10 GENERAL AIRPLANE DIMENSIONS

FIGURE 8. DC-9-30 GENERAL AIRPLANE DIMENSIONS

FIGURE 9. DC-10-10 GENERAL AIRPLANE DIMENSIONS

FIGURE 10. DC-10-40 GENERAL AIRPLANE DIMENSIONS

FIGURE 11. DC-8-20 AND DC-8-50 BASELINE INTERIOR ARRANGEMENT

FIGURE 12. DC-8-61 BASELINE INTERIOR ARRANGEMENT

FIGURE 13. DC-9-10 BASELINE INTERIOR ARRANGEMENT

FIGURE 14. PC-9-30 BASELINE INTERIOR ARRANGEMENT

FIGURE 15. DC-10-10 BASELINE INTERIOR ARRANGEMENT

FIGURE 16. DC-10-40 BASELINE INTERIOR ARRANGEMENT

TABLE 6 PASSENGER CONVENIENCE DATA

Baseline Aircraft	10/90 Split, 38"/34" Seat Pitch
-------------------	---------------------------------

								•
	NUMBER	COACH SEAT	ופט	EALLEYS	CLOSET SPACE	SPACE	LAVA	LAVATORIES
AIRCRAFT	OF SEALS	(in)	Area	Area/Psgr	Total Length Length/Psgr (in)	Length/Psgr (in)	Number	Psgr/Lav
			\			36 1	L	2 62
DC_8_20	146	16.5	5,670	38.8	56	0.1	7	!
		ת	5,670	38.8	199	1.36	5	29.2
05-8-50	 0 0	2	•		(;	٠ .	v.	33.8
 nc_8_61	203	16,5	10,700	52.7	210	co	·	
	1	1	0 400	34.3	80	1.14	2	35.0
DC-9-10	70	c*/	7) • •		;		7 06
טר ס אם	92	17.5	2,500	27.2	80	.87		20.1
חלים	. !		אס רכ	ווה	200	.72	7	39.6
DC-10-10*	277	c • 82	000) -				г. П
0	959	18.5	16,710	66.3	120	.48	°	51.0
UC-10-40	4.04							

* With lower galley, lower galley area (excluding walkway) = $23.856 \, \mathrm{in}^2$, upper galley area = $8.000 \, \mathrm{in}^2$

FIGURE 17. BASELINE AIRCRAFT PAYLOAD-RANGE COMPARISON

The second of the second secon

TABLE 7

DC-8-20 BASELINE FLIGHT PROFILE DATA FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
1.00	5,600	1,041,600	17.73	7,134
250	9,200	684,500	26.98	4,688
200	16,980	631,700	29.23	4,326
750	24,760	614,000	30.07	4,206
1,000	32,550	605,400	30,50	4,147
2,000	63,680	592,200	31,18	4,056
3,000	94,820	587,900	31,41	4,027
3,060	069,690	587,700	31,42	4,026

(1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

6.8 LB/GALLON 146, FUEL DENSITY = (2) TOTAL NUMBER OF SEATS =

TABLE 8

DC-8-50 BASELINE FLIGHT PROFILE DATA

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	Bru Available Seat - NM
100	5,200	967,200	19,09	6,625
250	8,900	662,200	27,89	4,535
200	14,560	541,600	34.09	3,710
750	20,220	501,500	36.82	3,435
1,000	25,890	481,600	38,35	3,298
2,000	48,540	451,400	40.91	3,092
3,000	71,190	441,400	41.84	3,023
3,500	82,510	438,500	42,11	3,003

(1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON 146, (2) TOTAL NUMBER OF SEATS =

TABLE 9

DC-8-61 BASELINE FLIGHT PROFILE DATA

FUEL USE VS. DISTANCE

	BTU Available Seat - NM	6,157	3,753	2,932	2,688	2,593	2,527	2,566	2,655
FUEL USE (1)	Available Seat - NM (2) Gallon	20,54	33.70	43,14	47.06	48.78	50.04	49.30	47.64
FUEL, I	BTU Nautical Mile	1,249,900	761,900	595,200	545,600	526,400	513,100	520,800	539,000
	Block Fuel (LB)	6,720	10,240	16,000	22,000	28,300	55,170	84,000	101,420
	Distance (NM)	100	250	500	750	1,000	2,000	3,000	3,500

58.0% (1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR =

203, FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 10

DC-9-10 BASELINE FLIGHT PROFILE DATA

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	2,400	446,400	19.83	6,377
250	4,200	312,500	28,33	797.7
500	7,000	260,400	34.00	3,720
750	9,700	240,600	36.80	3,437
1,000	12,550	233,400	37,93	3,335
1,250	15,700	233,600	37.90	3,337
1,420	17,930	234,900	37,70	3,355

(1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

(2) TOTAL NUMBER OF SEATS =

70, FUEL DENSITY = 6.8 LB/GALLON

DC-9-30 BASELINE FLIGHT PROFILE DATA TABLE 11

FUEL USE VS. DISTANCE

FUEL USE (1)	BTU Available Seat - NM Available Seat - NM Available Seat - NM	466,900 24.92 5,075	327,400 35.55 3,558	273,400 42.56 2,972	254,200 45.78 2,763	245,500 47.39 2,669	241,800 48.12 2,628	241,700 48.15 2,627	
	Distance Block Fuel NM) (LB)	100 2,510		· - · ·	750 10,250	1,000			

58.0% (1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR =

II (2) TOTAL NUMBER OF SEATS

TABLE 12

DC-10-10 BASELINE FLIGHT PROFILE DATA

FUEL USE VS. DISTANCE

	(2) BTU Available Seat - NM	5,580	3,331	2,578	2,390	2,283	2,175	2,194	2,237	
FUEL USE (1)	Available Seat - NM (2)	22.67	37,98	49.05	52,91	55,40	58.16	57.66	56.54	
TOET	BTU Nautical Mile	1,545,700	922,600	714,200	662,200	632,400	602,400	607,600	619,600	
	Block Fuel (LB)	8,310	12,400	19,200	26,700	34,000	64,770	000*86	116,600	
	Distance (NM)	100	250	500	750	1,000	2,000	3,000	3,500	

58.0% (1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PROFILES, LOAD FACTOR =

277, FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 13

DC-10-40 BASELINE FLIGHT PROFILE DATA FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance	Block Fuel	BTU Mile	Available Seat - NM (2)	BTU Available Seat - NM
(MN)	(LB)	Nautreat Hitte		
100	068,6	1,839,500	17,33	7,300
250	14,340	1,066,900	29.87	4,234
200	21,750	809,100	39,39	3,211
750	30,000	744,000	42,84	2,952
000 1	37,750	702, 200	45,39	2,786
2,000	71,500	900,599	47.93	2,639
3,000	108,000	009,699	47.60	2,657
3,500	128,240	681,500	46.77	2,704
•				

(1) FROM DAC PERFORMANCE DATA FOR BASELINE FLIGHT PRCFILES, LOAD FACTOR = 58.0%

^{252,} FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

DC-8-61 DC-10-40 DC-10-10 DC-8-50 CAB EFFICIENCY LEVEL RELATIVE TO IDEAL POINTS REPRESENT CAB AVERAGE FUEL USE DATA AT 1973 CAB AVERAGE RANGE - DC-8-20 -29.5% -29.9% -27.4% -30.7% -31.3% -34.3% -27.6% CURVES REPRESENT DAC PERFORMANCE DATA FOR IDEAL CONDITIONS AVAILABLE SEAT-NM GALLON 21.0 25.2 31.1 21.9 38.2 30.6 26.1 AIRCRAFT DC-8-20 DC-8-50 DC-8-61 DC-9-10 DC-9-30 DC-10-40 DC-9-10 DC-9-30 SYMBOL **♦**□**◊**∢**○** ○ D **** 4 40 10 20 30 9 20 FUEL EFFICIENCY AVAILABLE SEAT-NM GALLON

FIGURE 18. BASELINE AIRCRAFT FUEL EFFICIENCY COMPARISON

4000

3500

3000

2500

2000

1500

1000

500

_ | | RANGE (NM)

SECTION 2.0

ALTERNATIVE OPERATING PROCEDURES

Fuel-conservative operating procedures are the most effective means of immediately saving fuel. In this report, operations cover the total range of activity from the preliminary flight planning to the engine shutdown at the destination, and even include airline policy items such as average load factor and seating density. These operational variations were divided into two categories, flight operations and airline operations. Flight operations include aircraft climb and descent profiles, cruise profiles, navigational procedures, and maneuvers and delays. Airline operations include control over load factor, seating density, maintenance standards, and center of gravity location.

2.1 Flight Operations

2.1.1 Climb and Descent Profiles

The relationships between high-speed and long-range climb and descent profiles are shown in Figure 19. Long-range climb refers to a climb profile that gets to cruise altitude sooner (in terms of both time and distance), thereby allowing the longest cruise distance at the chosen cruise altitude. The long-range climb profile will result in an overall longer range flight for a given fuel weight than the high-speed climb, even though the long-range climb covers less distance during the climb itself (90 nautical miles versus 100 nautical miles). This result is due to the fact that an aircraft following the high-speed climb profile spends a greater amount of time at lower altitudes where aircraft fuel efficiency deteriorates rapidly.

For shortest overall flight time, the high-speed climb and descent profiles are used. This may again appear anomalous, since the actual time to climb is greater for the high-speed climb. However, the greater ground distance travelled in climb results in a net time saving. The descent times in this case are equal for the two profiles due to the cabin descent rate limit of 300 feet per minute. With this single exception, the concepts explained

for the climb profiles apply equally to descent profiles.

When cabin descent rate limits permit, use of flight idle during descent saves fuel, but may result in high fuselage angles for some aircraft types at high altitudes.

Figure 19. LONG-RANGE AND HIGH-SPEED CLIMB AND DESCENT SCHEDULES

2.1.2 Cruise Altitude

Cruise at optimum flight altitude is essential for maximum fuel economy. The optimum altitude increases as the aircraft becomes lighter, which means that to maintain optimum altitude the aircraft must climb as it cruises. Current ATC procedures do not permit cruise climb, therefore a step climb is used. Depending on the aircraft, flight weight, and Mach number, flying at an altitude 4,000 feet below the optimum (as well as above in the case of the DC-8 or DC-10) results in an increase of approximately 2 to 8 percent in the fuel required for a given range. Under current ATC procedures climb

steps of 4,000 feet in cruise altitude are used to stay as close to the optimum cruise altitude as possible. Airway congestion may limit this, particularly in international operations, where flight level flexibility is extremely limited. If closer flight level spacing were available, steps of 2,000 feet could be used. These smaller steps very closely approximate cruise climb in fuel efficiency.

For the DC-9, the highest attainable altitude results in the minimum fuel use. However, the altitude could be limited by any of three factors: short stage lengths where climb and descent comprise the total trip distance, cruise thrust limitations, or the 35,000 foot operational altitude limit. Furthermore, operators prefer to avoid flight levels for which the maximum rate of climb is less than 500 feet per minute. A typical short range operation for the DC-9 involves high speed climb to 15,000 feet, high-speed cruise at constant altitude, and high speed descent. The best efficiency profile for short range is the "spike" profile, where the aircraft climbs and descends at long range speeds with no cruise portion. At 290 nautical miles, the spike profile saves 20 percent of the fuel used by the high speed 15,000 foot profile. The cost in time is only 4 minutes.

2.1.3 Cruise Speed

Cruise Mach number has a significant effect on cruise fuel efficiency. Maximum fuel mileage is attained at the peak of the published specific range curves. This maximum efficiency point frequently occurs at very low Mach numbers (0.72 M for a DC10-10 at 25,000 feet and 400,000 pounds flight weight). Long-range cruise is defined at any altitude and flight weight as the speed corresponding to 99 percent maximum nautical miles per pound. This definition is used because at slower speeds, jet transports become speed unstable due to engine-airframe matching characteristics. The large throttle adjustments, required at lower Mach numbers to maintain steady speed, largely offset any potential gains in fuel economy.

Two other drawbacks of slower speeds are increased operating costs due to longer block times and increased penalties due to headwinds. The effect of headwinds on a DC-10-10 operating at 320,000 pounds average flight weight on a 2,000 nautical mile cruise leg at 30,000 feet is shown in Figure 20.

FIGURE 20, RANGE INCREMENT DUE TO SLOWDOWN FROM 0.85M

Horizontal lines represent the additional range capability gained by slowing from 0.85M to the noted Mach number. The curved lines show the additional miles that must be flown as a result of the effect of the headwind at each Mach number. The difference between the curves and the horizontal lines represents the actual benefit of the speed reduction. For very high headwinds, it is more economical to increase cruise speed in order to reduce the time of exposure to the headwind.

Tailwinds do not balance the headwind effect. At 0.82M at 30,000 feet a 40 knot tailwind gives back only about 85 percent as much fuel for a given cruise distance as a 40 knot headwind takes, because tailwind exposure time is less than headwind exposure time. Furthermore, not all winds are pure headwind or tailwind, and only quartering or pure tailwinds provide a net cruise benefit. Thus, only about 25 percent of the winds provide any fuel benefit at all in a random wind environment. In this study, still air was assumed. Consequently, the fuel-saving benefits shown in this study for reduced speed will be decreased in practice by the effect of the wind.

2.1.4 Navigation

Aircraft generally navigate along prescribed routes derived from ground based navigation stations such as VOR stations. Due to the locations of these stations, an aircraft may fly a nondirect route from origin to destination. Area navigation (RNAV) has been proposed as a means to reduce this nondirect routing in an advanced ATC system.

Area navigation is an onboard sensing and calculation system that operates upon radio signals from VOR-DME stations or other ground based navigational equipment. From these signals the current position of the aircraft is determined and further calculations allow the aircraft to fly along a direct route between two city pairs. Three-dimensional RNAV offers the increased possibility for direct vertical guidance during climb and descent maneuvers. Four-dimensional RNAV (4-D RNAV) adds the capability of scheduling the aircraft location precisely with time. This would permit timing the entire flight, from engine startup to shutdown, in order to schedule departure and arrival times to minimize delays.

2.1.5 Holding

Whenever possible, holding should be carried out with the aircraft in a clean configuration and at the highest possible altitude. When terminal delays are expected at the destination, the linear hold technique can be used if ATC permits. This involves reducing the cruise speed to absorb as much of the delay as possible enroute. One benefit of linear holding is that cruise speeds can be reduced to closely approximate long-range cruise. Another benefit results from eliminating or reducing time spent in a racetrack hold pattern. Maneuver requirements in the racetrack pattern increase fuel flow about 4 percent.

If significant congestion is anticipated at the destination airport, delays can be minimized by holding aircraft at the departure gate. The Federal Aviation Agency (FAA) has estimated that 658,000 gallons of jet fuel were saved on January 7, 1976 by holding aircraft at the originating airport until they could be assured of being accepted at Chicago's O'Hare International Airport. High winds at O'Hare had seriously reduced the airport's traffic-handling capacity that day. As a result of the success of this one-day test, this procedure is being refined for regular operational use.

2.1.6 Reserves, Contingencies, and Tankering

Airlines carry more fuel than required for the basic mission for several reasons. Fuel reserves are carried to assure that there is enough fuel to reach an alternate airport in the event that the destination airport is closed. Aside from a careful choice of alternates, and possibly adopting the technique of planning to reclear to the alternate enroute, regulations make it difficult to reduce fuel reserves. Airlines also carry contingency fuel, at the discretion of the pilot, in cases where extremely poor weather or other problems are anticipated. Fuel is tankered whenever local prices make this advantageous or when availability is a problem at certain locations.

Minimizing the amount of excess fuel carried is one of the most important items for overall fuel savings. Carrying extra fuel increases aircraft weight, which requires higher engine thrust and, hence, increases fuel use. For example, a DC-10 on a 2,000 nautical mile trip at 30,000 feet and 0.82M will consume 10 percent of any surplus fuel carried to the destination. At 5,000 nautical miles, 34 percent of the surplus fuel is consumed.

2.2 Airline Operations

2.2.1 Seating Density and Load Factor Seat-mile fuel economy can be improved by adding more seats and by filling more seats. However, airlines must watch their competitive position. Smaller, closer seats are less comfortable; and higher average load factors imply fewer available flights, sometimes resulting in the turning away of potential passengers at peak times. Both effects can seriously reduce passenger appeal if taken to an extreme.

2.2.2 Maintenance

Engine, airframe, and instrument maintenance standards can affect overall aircraft efficiency. Recent studies show that more intensive engine maintenance procedures can reduce the deterioration that causes SFC to rise with time, and additional work in this area has been recommended (References 12 and 13). In the RECAT study it was estimated that maintaining closer tolerances on engine performance could lead to a 0.3 percent improvement in SFC for narrow-body aircraft and a 1 percent improvement for wide-body aircraft.

Aircraft skin damage increases drag. In a recent audit of aircraft condition, one aircraft was found to have 170 dents caused by ground vehicles. Improperly rigged spoilers, ailerons and flaps can increase drag 5 to 10 percent. Machmeter, altimeter, and fuel flow instrument errors can adversely affect fuel economy. They can also improve economy, depending on direction of error. Consequently, in this study the overall fleetwide effect of instrument error was assumed to be negligible.

2.2.3 Loading

Aircraft center of gravity (CG) location has a small but noticeable effect on drag. From a fuel efficiency standpoint, it is better to load the airplane toward the aft CG limit because the down force required on the horizontal stabilizer to maintain trim is reduced, which reduces the overall airplane drag. Most airlines have a target CG location as far aft as possible. However, tight scheduling of passenger and baggage loading often makes it difficult to meet the target CG. It is uneconomical to delay the flight or to rearrange baggage in order to achieve the target CG. The RECAT study

airline contractor felt that the target CG could be moved aft another 1/2 to 1 percent if stricter discipline were used in loading. This could result in an average 0.1 percent reduction in fuel use.

2.2.4 Flight Planning

By careful selection of alternate airports closer to the destination, reserve fuel carried can be reduced. On long distance flights, another useful technique is reclearing to the alternate destination while enroute. Many airlines use computer-assisted flight planning techniques which permit examination of alternate routes and altitudes to take advantage of wind and temperature conditions.

2.2.5 Ground Maneuver and Delays

Large amounts of fuel can be consumed by extended ground circuits and delays at the takeoff point due to congestion. One airline has reported that one of its wide-body aircraft was number 46 in line for takeoff on a congested day at JFK Airport and burned 2,800 pounds of fuel from startup to start of takeoff.

Some airlines have experimented with shutting down one or several engines during taxi operations, but fuel savings were insignificant in most cases. Also, several operational problems were encountered, including increased jet blast and increased foreign body ingestion caused by the higher thrust of the engines in use, interruption of starting drills, additional pilot workload, need for fire protection during startup, increased problems if an engine fails to start, and the need for engine warm-up.

Tugs and powered wheels have been studied as fuel saving possibilities (References 14 and 15); but these solutions are cumbersome, add complexity, and are uneconomical because of the very slow ground movement speeds that result.

Careful scheduling and flight planning can minimize ground maneuver and delay time. The most effective way to reduce fuel consumed by departure delays is to hold the aircraft at the gate until a departure can be made without waiting at the takeoff point. Ground delays at the destination can be reduced by some of the holding methods described in Section 2.1.5.

2.2.6 Takeoff and Landing

Use of reduced flap settings and thrust settings can reduce takeoff fuel. When noise abatement is not a factor, flaps and slats should be retracted as soon as possible after passing 800 feet and clear of obstacles. On approach, the maneuvering configuration should be maintained until intercepting the glidepath. By delaying application of landing flap to 1,000 feet instead of 1,500 feet, additional fuel can be saved. Where runway and weather conditions permit, it is better to use reduced flap settings for fuel economy.

2.3 Operating Procedures Selected for Study

The study flight and airline operational variations are compared to the baseline operations in Table 14. Some alternative flight operations, such as cruise climb and 4-D RNAV require an advanced ATC system for their implementation.

The effect of 4-D RNAV in an advanced ATC environment is twofold: 1) it permits an average 1/2 percent reduction in flight distance due to direct routing, and 2) it allows precise departure and enroute scheduling, which is credited with an average 5 minute reduction in delay and maneuver time.

The effect of fuel-conservative flight profiles, relative to the baseline flight profile, is given in Table 15. The fuel-conservative profile in the current ATC system includes long-range operations in climb, cruise and descent. For an advanced ATC system, the fuel-conservative profile also includes cruise climb or 2,000 foot steps and use of 4-D RNAV.

Fuel-conservative operations in the current ATC system reduce fuel use by about 4 to 8 percent, depending on the aircraft. Block fuel savings are substantially improved by upgrading the ATC system, becoming 8 to 11 percent. An additional benefit of advanced ATC is the reduction in DOC's. With the current ATC system, fuel-saving flight profiles result in lower speeds which increase block time and DOC's. The assumed delay time reduction in the advanced ATC system reduces overall block time and, together with fuel savings, decreases DOC's.

In order to assess the possibility of additional fuel savings beyond those shown in Table 15 for fuel-conservative flight profiles with advanced ATC,

TABLE 14

OPERATIONAL VARIATIONS

FUEL - CONSERVATIVE OPERATION	ADVANCED ATC	LONG RANGE PROFILES	2000' STEP ALTITUDE WHEN APPROPRIATE, OR CRUISE CLIMB	LONG RANGE CRUISE @ 99% MAX NM/LB	4-D RNAV	10 MINUTES	85%	ALL COACH, 34" PITCH	ALSO MAINTAIN CLOSER TOLERANCES ON ENGINE AND AERODYNAMIC PER- FORMANCE	MOVE C.G. AFT 1%
FUEL - CONSER	CURRENT ATC	LONG RANGE PROFILES	4000' STEP ALTITUDE WHEN APPROPRIATE	LONG RANGE CRUISE @ 99% MAX NM/LB	VOR	15 MINUTES	82%	ALL COACH, 34" PITCH	ALSO MAINTAIN CLOSER TOLERANCES ON ENGINE AND AERODYNAMIC PER- FORMANCE	MOVE C.G. AFT 1%
BASELINE OPERATION		HIGH SPEED PROFILES	4000' STEP ALTITUDE WHEN APPROPRIATE	HIGH SPEED CRUISE MACH NUMBER (A)	VOR	15 MINUTES	58%	10/90 SPLIT, 38"/34" PITCH	MAINTAIN SAFETY RELIABILITY, AND APPEARANCE (B)	TARGET C.G. APPROXIMATELY 1-3% FORWARD OF MOST AFT C.G. LOCATION POSSIBLE(B)
OPERATIONAL ITEM		CLIMB AND DESCENT PROFILES	CRUISE ALTITUDE	CRUISE SPEED	NAVIGATION	MANEUVER & DELAY TIME	LOAD FACTOR	SEATING DENSITY	MAINTENANCE STANDARDS	C.G. LOCATION
		SN	0ITA939	O TH2I	IJ4	47	SN	01TAS	IBLINE OP	A

A SEE TABLE 1

B IN-SERVICE OPERATION, NOT STUDY BASELINE

TABLE 15
EFFECT OF FUEL-CONSERVATIVE FLIGHT OPERATIONS
ON BLOCK FUEL AND DOC
AT 1973 CAB AVERAGE STAGE LENGTH

	FUEL	FUEL -CONSERVATIVE CURRENT	FLIGHT PROFILE ⁽¹⁾ T ATC)FILE ⁽¹⁾	FVEL-	FUEL-CONSERVATIVE FLIGHT PROFILE (2) ADVANCED ATC	FLIGHT PRO)FILE ⁽²⁾
AIRCRAFT	ABLOCK FUEL (", BTU)		ADOC (% ¢ ASNM)		ABLOCK FUEL (, BTU)		∆DOC (% ¢ ASNM)	
	(* ASNM)	@ 15¢/GAL	@ 30¢/GAL	@ 60¢/GAL	(" ASNM)	@ 15¢/GAL	@ 30¢/GAL	@ 60¢/GAL
DC-8-20	-4.96	4.70	2.30	-0.10	-9.57	-0.28	-2,58	-4.89
DC-8-50	-4.44	5.54	3.42	1.08	-8.42	0.57	-1.34	-3.44
00-8-61	-4.84	5.40	3.20	0.78	-9.11	0.38	-1.65	-3.90
DC-9-10	-8.19	5.04	2.71	-0.13	-10.98	0.57	-1.46	-3.99
06-9-30	-7.86	3,53	1.56	-0.83	-9.85	-0.63	-2.30	-4.28
DC-10-10	-6.42	2.94	1.07	-0.97	-10.30	0.18	-1.92	-4.28
DC-10-40	-6.90	2.68	0.81	-1.35	-11.10	-0.42	-2,51	-4.92

(1) INCLUDES LONG RANGE CLIMB AND DESCENT, 4000' STEP ALTITUDE CRUISE @ 99% MAX NM/LB

(2) INCLUDES LONG RANGE CLIMB AND DESCENT, CRUISE CLIMB @ 99% MAX NM/LB, 33% (5 MIN.) REDUCTION IN DELAY AND MANEUVER TIME, 4-D RNAV.

an idealized mission profile was studied for the DC-10. The idealized profile involved calculation of the energy required to lift the aircraft to altitude, accelerate it to long-range cruise speed, cruise climb, and descend at flight idle. Power plant efficiency and aircraft drag were taken into consideration. The fuel use for the idealized profile was only 2 percent less than for the fuel-conservative operations with advanced ATC shown in Table 15. It is clear, then, that fuel-conservative flight profiles with advanced ATC permit nearly optimum fuel efficiency, and that the ATC system should be upgraded to take advantage of the existing aircraft capability to conserve fuel.

Seating density changes were made by removing the first class sections of the baseline configurations and converting to all coach interiors at 34-inch seat pitch. To show the effect of even higher density seating arrangements, the DC-10-40 interior was also changed from 8 to 9 abreast. Table 16 shows the baseline and high density seating capacities for the study baseline airplanes.

The effects of increased seating density are given in Table 17 at the 1973 CAB average stage length for each aircraft. Fuel use per scat-mile is reduced 7 to 13 percent, depending on the aircraft. The large difference between the DC-10-10 and DC-10-40 effects is due to the differences in both baseline and high density interiors.

TABLE 16
BASELINE AND HIGH DENSITY SEATING CAPACITIES

Aircraft	Baseline (10/90 split)	High Density (all coach)
DC-8-20	146	159
DC-8-50	146	159
DC-8-61	203	218
DC-9-10	70	77
DC-9-30	92	105
DC-10-10 ⁽¹⁾	277	293
DC-10-40	252	295 ⁽²⁾
1		<u> </u>

⁽¹⁾ lower galley, (2) 9-abreast

TABLE 17
EFFECT OF FUEL-CONSERVATIVE AIRLINE OPERATIONS
ON BLOCK FUEL AND DOC
AT 1973 CAB AVERAGE STAGE LENGTH

		INCREASED SEATING DENSITY(1)	ING DENSITY	(1)		INCREASED LOAD FACTOR ⁽²⁾	DAD FACTOR ⁽²	
AIRCRAFT	A BLOCK FUEL	_	\triangle DOC $\begin{pmatrix} x & \phi \\ x & ACNM \end{pmatrix}$		A BLOCK FUEL		△ DOC A DOC REPNM	
	(% BTU ASNM)	0 15¢/GAL	(ASMP) (0 30¢/GAL	@ 60¢/6AL	(% BTU (% RPNM)	@ 15¢/GAL	@ 30¢/GAL	@ 60¢/GAL
DC-8-20	-7.31	-7.86	-7.74	-7.61	-9.33	-10.11	96.6-	-9.73
DC-8-50	-7.33	-7.96	-7.80	-7.70	-9.36	-10.21	-10.04	-9.86
DC-8-61	-6.14	-6.73	-6.56	-6.45	-9.38	-10.30	-10.07	-9.87
DC-9-10	-8.63	-9.00	-8.92	-8.84	-10.29	-10.77	-10.66	-10.57
DC-6-30	-11.47	-12.17	-12.04	-11.91	-10.94	-12.20	-12.08	-11.97
0C-10-10	-4.87	-5.34	-5.27	-5.15	-9,49	-11.28	-11.14	-10.94
DC-10-40	-13.06	-14.06	-13.87	-13.63	-10.06	-11.50	-11.36	-11.26

(1) CHANGE 10/90 SPLIT TO ALL TOURIST @ 34" PITCH (ON DC-10-40, ALSO CHANGE SEATS FROM 8 TO 9 ABREAST)

(2) INCREASE LOAD FACTOR FROM 58% TO 65%

The increased load factor of 65 percent, shown for fuel-conservative airline operations in Table 14, is close to the maximum average value that can be maintained on a fleetwide basis without leaving a significant number of passengers behind in peak travel periods. The effects of increasing load factor from 58 to 65 percent are shown in Table 17. The energy per passenger carried is reduced approximately 9 to 11 percent. The variation between aircraft is due mostly to differences in baseline configurations. Operating costs on a passenger-mile basis are improved about 10 to 12 percent.

Since improvements in both maintenance standards and CG location result in fuel savings, these items were included in Table 14. The objective of improved maintenance standards is to maintain aircraft efficiency closer to new aircraft levels. No fuel saving benefit for improved maintenance is taken relative to baseline levels in this study, however, because the baseline fuel consumption levels are representative of aircraft in new condition. In addition, due to the difficulty in achieving a more stringent target aft CG location, and the small potential benefits (Section 2.2.3), no fuel saving credit is taken in this study for more aft loading.

Figure 21 summarizes the results of the fuel-conservative operations study. Fuel-saving operational options could be combined to give even greater savings. For example, relative to the baseline operation, the DC-10-40 shows an II.1 percent improvement in fuel consumption for fuel-conservative flight profiles in an advanced ATC system and a 13.1 percent improvement for 9-abreast, all coach seating. Together, these options would give a fuel saving of 22.7 percent. The percentages combine as follows: 1-(1-.111)(1-.131) = .227. If these improvements are combined with the 10.1 percent fuel reduction for increased load factor, the overall fuel saving is 30.5 percent. However, high seating density and high load factors together lead to reduced passenger appeal.

FUEL CONSERVATIVE FLIGHT PROFILE, CURRENT ATC SYSTEM.(BTU/ASM)

FUEL CONSERVATIVE FLIGHT PROFILE, ADVANCED ATC SYSTEM, (BTU/ASM)

LOAD FACTOR INCREASE FROM 58 PERCENT TO 65 PERCENT, (BTU/RPM)*

SEATING DENSITY INCREASED TO ALL COACH, (BTU/ASM)

FIGURE 21. FUEL SAVED BY FUEL-CONSERVATIVE OPERATIONS

SECTION 3.0 TECHNOLOGY

3.1 Advanced Technology

Technology, as applied to commercial aircraft, tends to be more of an evolutionary process than revolutionary. Aircraft designed in a particular time period contain the proven technology of that period, with derivative aircraft incorporating new technology as it becomes available and is costeffective. In recent years dramatic developments have been made in systems technology, transonic aerodynamics and new materials. A brief description of the technology advances considered viable for retrofit of existing aircraft, for derivatives of in-production aircraft, or for new aircraft available in the 1980 time period are given in this section.

3.1.1 Improved Transonic Airfoils

Improved transonic, or supercritical, airfoils have been in development for several years. This class of airfoil was originally developed by Dr. Richard T. Whitcomb of the NASA Langley Research Center. Extensive wind tunnel and theoretical research has been conducted in many countries in universities, industry, and national laboratories, and several aircraft have been flown using supercritical airfoils. Figure 22 shows that supercritical airfoils can offer a substantially higher drag divergence Mach number for a given airfoil thickness, an excellent structural shape, and high maximum lift coefficient.

Figure 23 compares the pressure distribution of a supercritical airfoil with that of an airfoil in use on a modern transport. Relative shapes are also shown. An important characteristic of supercritical airfoils is the higher loading towards the trailing edge due to aft camber. With greater load carried over the aft portion, the pressure coefficient is reduced at and aft of the airfoil crest. The crest is the point on the upper surface tangent to the freestream. Lowering the negative pressure coefficient at and aft of the crest raises the drag divergence Mach number.

Another significant characteristic of the airfoil, from which it derives its name "supercritical", is its flat upper surface which allows the shock to move back rapidly on the chord resulting in a larger chordwise extent of

 $C_L = 0.50$

DRAG DIVERGENCE MACH NUMBER VARIATION WITH AIRFOIL THICKNESS RATIO FIGURE 22.

supercritical flow than that exhibited on present-day airfoils (Figure 24). It is important to note that the maximum velocities on this type of airfoil are no higher than those of conventional airfoils; only the extent of the supercritical region differs. This large supercritical region results in a significantly improved L/D since much more lift is generated for a given shock loss. The third characteristic of the transonic airfoil is the tangency of the upper and lower surfaces at the trailing edge, which eliminates the large pressure increase normally found on an airfoil and permits the higher adverse pressure gradient required by the aft loading, without causing separation on the upper surface of the wing. The upper surface is relatively flat through the midsection of the airfoil and the lower surface is cusped just ahead of the trailing edge. This shape gives slightly greater front spar depth and somewhat lower rear spar depth for a given overall airfoil thickness.

A disadvantage of the airfoil is the difficulty of constructing a section with a tangent upper and lower surface at the trailing edge. This requires a very thin section. It appears, however, that modern structural technology can handle this problem with honeycomb techniques.

Although the characteristics of the supercritical airfoil can be used to increase either speed or lift capability, these characteristics can also be used to increase thickness and aspect ratio, and reduce sweep. The optimum configuration for any wing design is determined by analyzing various combinations of thickness and sweep. Important benefits can be obtained by using supercritical airfoils. The DC-9-30D3 aircraft, described in Section 4.0, derives nearly a 5 percent fuel saving from its supercritical wing, and a small reduction in operating costs is obtained at higher fuel prices.

3.1.2 Winglet Drag Reduction

Recent NASA research and wind tunnel work has shown potential aerodynamic performance improvements for specially tailored and cambered wing end plates, commonly referred to as winglets. Winglets are capable of providing induced drag reductions, and corresponding airplane performance improvements, which

FIGURE 23. COMPARISON OF 2-D AIRFOIL SECTION CHARACTERISTICS

FIGURE 24. LOCAL MACH NUMBER ON UPPER SURFACE AT CRUISE CONDITIONS

are greater than the performance penalties resulting from weight and parasite drag increases.

NASA and Douglas work to date indicates that the induced drag improvement is a function of winglet root loading. Primary design parameters controlling winglet loading include winglet span and winglet spanwise airfoil distribution, incidence angle, dihedral angle, chord and sweep. Of secondary importance are winglet taper ratio and geometric twist.

Since the maximum induced drag improvement for a winglet occurs when the winglet root is highly loaded, winglet geometry optimization requires a tradeoff between winglet loading and structural considerations for a given level of induced drag reduction. A measure of the additional wing bending material required to accommodate winglets (i.e., a "weight index") can be obtained from an integration of a weight parameter that is a function of both wing bending moment and airfoil thickness. A typical winglet performance summary is presented in Figure 25, which shows induced drag reduction and weight as a function of airplane lift coefficient and winglet incidence, for a given winglet dihedral. The root normal force coefficient on the winglet, which is indicative of the extent to which the winglet will maintain attached flow, is also shown. A summary of this type provides a measure of the weight penalty imposed for a given induced drag reduction at a specified level of winglet root loading.

3.1.3 Active Controls

Reductions in tail size and in gust and maneuver loads, and gains in the control of flutter have become possible by using active control systems. Reduced static stability (RSS) systems sense flight path perturbations and quickly actuate the proper control surface correction; and the smaller tails used with RSS result in lower drag, weight, fuel consumed and cost. Gust and maneuver load alleviation (GLA and MLA) extend fatigue life and decrease structural design loads and structural weight. Flutter control reduces wing stiffness requirements, and thus weight, to a level consistent with that required by strength.

3.1.4 Advanced Material Applications

Aircraft design improvements are rapidly evolving within structures technology through the application of high-modulus fibrous composites and advanced metallic materials.

Composite structure studies conducted by Douglas and other aircraft manufacturers have made it possible to apply composite technologies in the fabrication of commercial aircraft. The studies show that the use of high-modulus, low density fibrous composites, such as boron-epoxy, boron-aluminum, and graphite-epoxy, provides the flexibility to tailor the structural design more efficiently than with conventional materials, resulting in a substantial reduction in airplane weight, manufacturing cost, and airplane fuel consumption.

Recently, NASA contracted with Douglas to fabricate, and place into service, graphite-epoxy rudders for the DC-10. The structural arrangement is shown in Figure 26. Utilizing the technology gained from previous Douglas and NASA studies, Douglas has initiated additional DC-9 and DC-10 composite secondary structure weight reduction studies. These studies include composite wing and tail control surfaces and trailing edges, fuselage floors and floor beams, and doors. Preliminary results, on a wide variety of secondary structural components, have shown that weight savings of 15 to 30 percent can be achieved with the use of composites.

Previous advanced metallic structure studies have shown that the application of advanced metallics to future aircraft will require a minimum deviation from normal design procedures. The greatest difference will be due to the new fabrication techniques required for the new metallics systems. Douglas has studied many structural weight reduction concepts, including such items as integrally machined wing skin panels, honeycomb sandwich tail skin panels, and an isogrid fuselage shell. These have shown substantial potential weight savings over conventional structural fabrication methods.

An aluminum alloy isogrid window belt structure for the DC-10 is shown in Figure 27. Isogrid refers to frames or integrally stiffened plates with multiple triangular pockets. The gridwork behaves as an isotropic sheet,

- WINGLET GEOMETRY

 SPAN = 0.10 WING SPAN

 DIHEDRAL = 80 DEG

 - ROOT CHORD = 0.65 WING TIP CHORD
 - MODIFIED GAW AIRFOIL SECTION

REPRESENTATIVE WINGLET PERFORMANCE SUMMARY FOR DC-10-30 AIRPLANE FIGURE 25.

STRUCTURAL ARRANGEMENT FOR GRAPHITE-EPOXY RUDDER FIGURE 26.

FIGURE 27. DC-10 ISOGRID WINDOW BELT

hence, "isogrid". Both aluminum and composite panels of isogrid have been built and tested by DAC. Aluminum isogrid can be machined from flat plate on a numerically controlled mill. The simple repeating pattern is economical to design and build. The nodes provide numerous natural attachment points, and discontinuities can be handled by local adjustments in pocket size and/or web and skin width. Isogrid fuselage sections have a wall thickness nearly 4 inches thinner than conventional stiffened skin sections. If circumferential frames are used, as when isogrid is installed as a modification to an existing fuselage, the frames can be narrowed about 1.5 inch. The properties of isogrid make it a natural candidate for the window belt region. Extra cabin width is achieved along with design and construction simplicity. Weight savings are also achieved because the isogrid geometry can be tailored to local loads. On the DC-10-40D derivative presented in Section 4.0, the isogrid window belt saves 1,515 pounds relative to the built-up structure currently used. Isogrid window belts are also included in the study DC-10 production modifications and in the new near-term aircraft.

3.1.5 Carbon Brakes

The Douglas Aircraft Company, in conjunction with aircraft brake manufacturers, has initiated a program to develop the technology required for replacing the DC-10 steel brake assemblies with carbon brakes. Current carbon brake development studies and tests show that, due to a significant reduction in heat sink weight on the DC-10-40, there is a weight savings of 1,100 pounds. The benefit for the DC-10-10, which has no center main gear, is 890 pounds.

3.1.6 Propulsive Noise Reduction

Current production engines have single degree of freedom acoustically absorptive liners in the fan inlet, fan exhaust duct and turbine exhaust. For the new near-term aircraft study, multiple degree of freedom absorptive liners were assumed for the fan inlet and fan exhaust duct acoustic treatment, in order to provide noise reductions over a wider frequency range.

3.2 State-of-the-Art Technology

In addition to new technology that could be applied to commercial transports, a number of state-of-the-art modifications could be made to improve the performance of these aircraft. A brief description of the drag and weight improvement concepts considered in this study follows.

3.2.1 Fairings, Gaps, Steps

An examination of the existing fleet indicates that a general drag cleanup program involving fillets, fairings, gaps, seals, etc. can give a potential cruise drag improvement of 5 to 10 percent, depending on the airplane and extent of cleanup. High on the list of cleanup items for the DC-8 and DC-9 are the aerodynamically-balanced control surfaces which have inherently large gaps. Due to the low fuel price prevalent when the DC-8 and DC-9 were designed, the 4 to 5 percent drag penalty for these gaps was offset by the complexity and cost of a powered control system. Even with today's high fuel prices, the cost of modifying the DC-8 or DC-9 to use powered controls is too high. However, the DC-10 and most other recent commercial aircraft have powered controls.

Filleting at the tail/fuselage and the wing/fuselage intersections, as shown in Figures 28 and 29, can eliminate small areas of flow separation, giving up to a 3 percent cruise drag improvement. Elimination of production steps (e.g., slat-to-wing, spoiler-to-wing), as shown in Figure 30, can give a measurable drag improvement depending on the size of the step eliminated. Other items such as lights, antennas, drain masts, rain gutters, rivet heads, etc. have a potential for as much as 4 percent drag improvement if completely eliminated. However, it is very difficult and expensive to remove or otherwise house many of these items since they are required for commercial operation.

3.2.2 Extended Wing Tips

Traditionally wing tip extensions have been added primarily for takeoff performance improvement. However, a cruise drag improvement may also be obtained with a tip extension. A tip extension increases the parasite drag, while lowering the induced drag. Thus, the cruise lift coefficient is important in the evaluation of wing tip extensions. At low lift coefficients, the parasite drag penalty can exceed the induced drag improvement for a net drag increase. However, at the higher cruise lift coefficients typical of "growth" airplanes, the wing tip extensions can offer a significant improvement.

FIGURE 28. TAIL FILLETS

FIGURE 29. WING LEADING EDGE FILLET

3.2.3 Cutback Pylons

The cutback, or undercut, pylon was developed to minimize aerodynamic interference effects between the wing and the pylon. While the early models of the DC-8 did not use this approach, the DC-8-62 and DC-8-63 models (Figure 31) and all DC-10 models have this feature. Minimizing the interference effects requires the consideration of the curvature of the streamlines that exist on a swept wing. Since this curvature is most pronounced near the wing leading edge, pylons are now designed so that the pylon leading edge intersects the wing lower surface aft of this critical region. Typical improvements that could be applied to aircraft which do not currently have cutback pylons would be on the order of 0.5 percent of total airplane drag for short range missions and as much as two percent for long range missions.

3.2.4 General Weight Reduction

General weight reduction items include numerous changes, each of which provides a small weight improvement, and which together provide a sizeable weight savings. General weight reduction programs are ongoing throughout the production life of an aircraft, taking advantage of both new technology and service experience with the aircraft. Changes are incorporated on the production line as they are approved. These changes are typically not cost-effective as retrofit items. Some of the general weight saving items considered in this study are:

- reducing cabin interior side-wall lining thickness
- replacing current insulation blankets with lightweight blankets
- removing acoustic insulation from forward cabin floor
- deleting individual air outlets
- reducing cargo compartment liner to a thinner gage
- replacing steel door hinges with titanium hinges
- replacing steel fasteners with titanium fasteners
- removing clad from all aluminum bonded surfaces
- replacing current wires with equivalent lightweight wire
- reducing main gear trim cylinder diameter
- increasing main landing gear strut material allowables

į. 11111

DC-8-62 AND DC-8-63

EARLY DC-8 MODELS

FIGURE 31. COMPARISON OF ORIGINAL AND CUTBACK DC-8 PYLONS

SECTION 4.0

MODIFICATION AND DERIVATIVE STUDIES

Aircraft design changes were studied in order to identify the fuel-saving potential of retrofit modifications, production modifications, and derivative airplanes. Following a sensitivity study to determine the relative value of drag, SFC, and weight improvements on each baseline airplane, a total of twenty reconfigured aircraft were proposed and analyzed.

4.1 Sensitivity Studies

In order to assess the relative value of reductions in drag, SFC, and weight, a study was made of relative fuel use and DOC changes when these items are improved 10 percent. Table 18 presents the results at the 1973 CAB average stage length for each aircraft. Drag and SFC changes are equivalent. The effect on DOC of a 10 percent increase in aircraft cost is also presented. It can be observed that, on a percentage basis, drag and SFC changes are approximately twice as effective as weight changes in improving fuel consumption. The effect of fuel price on DOC sensitivities is also shown. A doubling of fuel price from 30 cents to 60 cents per gallon increases the effect of the drag, SFC, and weight reductions on DOC, and reduces the effect of increasing aircraft price. Figure 32 shows the average sensitivity factors for each of the DC-8, DC-9, and DC-10 aircraft families.

4.2 Modification and Derivative Configurations

Table 19 presents the design changes which were combined to create twenty reconfigured study airplanes. Nomenclature for these study airplanes is also given in Table 19. The areas affected by design changes are indicated in Figures 33, 34, and 35. General drag reduction items include aerodynamic improvements such as rerigged controls, new fairings, reduced gaps and steps, and other items described in Section 3.2.1. General weight reduction items are summarized in Section 3.2.4.

Retrofit modifications were limited to engine changes and drag reduction items, including winglets. Engine retrofits were considered only for the DC-8 airplanes because properly sized replacement engines offering substantial SFC reductions are not available for the DC-9 and DC-10. The DC-8 retrofit

packages were broken down into separate engine retrofit and drag retrofit packages in order to show the relative effects of these items.

Modification of production aircraft offers the possibility of structural redesign, using advanced metallics and composites to save weight. Only the DC-10 aircraft were studied for production modifications because only the DC-10-10 and DC-10-40 baseline aircraft have sufficient remaining production life to warrant substantial changes. Production has stopped on all DC-8 models and the DC-9-10 series. Production of the DC-9-30 is expected to continue for only about two years. It is being superseded by the DC-9-50 (Figure 2).

Derivatives involve extensive changes to the baseline aircraft, such as a new wing or fuselage. Derivatives of the DC-9-30, DC-10-10, and DC-10-40 were studied, as shown in Table 19. Three derivatives are stretched airplanes, one has an unchanged fuselage length, and one is shortened. Two have new supercritical wings. Four require new engines to meet thrust requirements. Weight and/or drag reduction items are also included in the derivative designs. The DC-9-30D2 has extended wing tips, a recontoured leading edge, and an improved high lift system, in addition to the items shown in Table 19. These features improve takeoff and landing performance and reduce airplane drag.

Weight adjustments were determined for each design change and are itemized in Tables 20 through 29. The weight tables also serve to define each modification and derivative design in more detail. It will be noticed that winglets on retrofit modifications involve a lower weight penalty than winglets on production modifications or derivative designs. Winglets change the wing span-load distribution and wing strengthening is required to maintain the same payload capability and service life. Wing box strengthening is straightforward on production aircraft, but is not practical as a retrofit item. Therefore, aircraft with retrofit winglets must be operated at a lower maximum takeoff gross weight in order to keep the maximum wing loads within the capacity of the original structure.

Table 25 details the items included in the general weight reduction program for DC-9 derivatives. Table 26 lists the DC-9 composite secondary structure weight savings. Composites are also used in modified and derivative versions of the DC-10-10 and DC-10-40. Table 28 lists low-risk composite weight

savings for DC-10 models and Table 29 lists state-of-the-art composite items which entail moderate risk.

General characteristics of these aircraft are given in Tables 30a through 30d. The average stage lengths and high speed cruise Mach numbers for the modified and derivative models are the same as for their respective baselines. Maximum takeoff weights and seating capacities for modified aircraft are also the same as their baselines. The fuel savings for the modified aircraft result in increased range capability. The payload-range profiles of the modified and derivative aircraft are compared to the profiles of the baseline airplanes in Figures 36 through 42. All payload-range plots were generated using the baseline flight profile, Figure 4. Fuel use parameters are given in Tables 31 to 50, and comparative fuel use plots are given in Figures 43 to 47.

The effects of the modification and derivative options on fuel use and DOC are summarized in Table 51 at the CAB average stage length. Modification options produce significant fuel use reductions but generally appear to be uneconomical at the study fuel prices. Substantial fuel benefits accrue from refan engine (JT8D-209) retrofits on the DC-8 models; but the economics of the refan retrofits are unfavorable, except for the DC-8-20R and DC-8-20ER at a fuel price of 60 cents per gallon. Although the cost of the engine modification on the DC-8-20 is as expensive as those for the DC-8-50 and DC-8-61, the used aircraft value assumed for the DC-8-20 in 1976 was very low. This fact, plus the substantial fuel savings achieved with the refan engines on the DC-8-20, in contrast to the savings on the DC-8-50 and DC-8-61, contributed to making the DC-8-20R and DC-8-20ER models economically viable relative to the baseline DC-8-20 at 60 cents per gallon.

Most modifications were expensive, and DOC penalties generally resulted even at a 60 cent per gallon fuel price, despite significant fuel savings. The drag retrofit modification is the least expensive redesign item and, due to the very low used DC-8-20 price, the DC-8-20DR DOC's were very good relative to the baseline DC-8-20. It should be noted, however, that the DOC's of each modification are strongly dependent on the ground rules assumed in calculating them. For instance, the baseline airplanes were priced as new aircraft in 1973 dollars. Aircraft out of production were priced on the

basis of the latest known sale price escalated to 1973 dollars. The modification prices were based on the 1976 used aircraft value de-escalated to 1973 dollars, plus the cost of the modification and any applicable airframe and engine refurbishment. Also, depreciation periods for the baseline airplanes were 16 years, while for the DC-8 retrofit models they were 5 years. A complete discussion of the aircraft prices and DOC's is presented in Section 2.0 of Volume II.

The stretched derivative airplanes show substantial seat-mile fuel use reductions, ranging from 19.8 percent for the DC-9-30Dl to 27.9 percent for the DC-10-40D; and much improved DOC's due to the increased number of seats. The DC-9-30D3 involves only a new supercritical wing, but fuel use is still reduced by 4.94 percent, with a small reduction in operating costs at 30 cents and 60 cents per gallon. The 2.76 percent reduction in fuel for the DC-10-10D is remarkable because this is a shortened aircraft with fewer seats than its baseline.

The fuel-saving effects of individual modification items are given in Table 52 and Figure 48. As a convenience, the percentages in Table 52 were combined by simple addition, rather than by the method of Section 2.3. This permits straightforward chart comparisons of the data, as in Figure 48. The retrofit winglet modifications are shown to give a slightly greater fuel-saving benefit than the production winglet modifications in Table 52, because the added weight of the wing box strengthening as part of the production winglet modification slightly reduces the amount of fuel saved.

Figure 49 shows derivative aircraft fuel savings compared to the baseline models. The DC-10-10D is also compared to the similar-capacity DC-8-61, and shows a 19 percent seat-mile fuel use improvement relative to this narrow-body aircraft.

TABLE 18

MODIFICATION SENSITIVITIES CHANGE IN BLOCK FUEL AND DOC

RESULTING FROM A 10% CHANGE IN PARAMETER FOR BASELINE OPERATION AT 1973 CAB AVERAGE RANGE

ASE IN CRAFT PRICE	A D0C	0 60¢ GAL	1.44	1.83	1.87	2.02	2.09	2.47	2.61
10% INCREASE IN 1973 AIRCRAFT TOTAL NEW PRICE]∇ %	e 30¢	2,15	2.61	2.67	2.75	2.83	3,45	3.63
N.	200	0 60¢ 6AL	-2.90	-2.66	-2.67	-1.45	-1.51	-2.49	-2.54
10% REDUCTION IN OEW	% A DOC	@ 30¢	-2.17	-1.90	-1.90	86 -0-	-1.03	-1.75	-1.76
10%		% A FUEL	-4.38	-4.47	-4.43	-2.72	-2.89	-4.37	-4.52
NI (A DOC	9 60¢ GAL	-6.36	-5.66	-5.75	-3.73	-3.64	-5.88	-5.71
10% REDUCTION IN DRAG OR SFC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	@ 30¢ GAL	-4.76	-4.03	-4.13	-2.53	-2.47	-4.11	-3.97
10% O		% A FUEL	-9.60	-9.51	-9.56	-7.05	-6.94	-10.32	-10.17
	1973 CAB F AVFRAGE	RANGE (NM)	862	731	800	300	290	870	670
		AIRPLANE	DC-8-20	DC-8-50	00-8-61	00-9-10	06-9-30	DC-10-10	DC-10-40

NOTE: DOC values based on 1973 aircraft new price

FIGURE 32. AVERAGE MODIFICATION SENSITIVITY FACTORS

DESIGN CHANGES FOR RETROFIT, PRODUCTION MODIFIED, AND DERIVATIVE AIRCRAFT TABLE 19

	NEW SUPERCRITICAL WING	DESIGNATORS: RETROFIT DRAG (AERODYNAMIC) RETROFIT ENGINE RETROFIT PRODUCTION MODIFICATION DERIVATIVE CUTBACK PYLON X			× :	× 1	
	STRETCH/ SHRINK	DESIGNATORS: RETROFIT DRAG (AERODYNAMIC) RETREBUGINE RETROFIT PRODUCTION MODIFICATION DERIVATIVE CUTBACK PYLON X X	1171+	+209	1	-360"	2
×	COMPOSITE SECONDARY STRUCTURE	(1) AIRCRAFT DESIGNAT R = RETROFIT DR = DRAG (AE ER = ENGINE F M = PRODUCT D = DERIVATI (2) INCLUDES CUTBACK X X X	>	< ×	ı	× >	<
DESIGN CHANGE ITEM	GENERAL WEIGHT REDUCTION PROGRAM	(1) _{AII} (2) _{IN} x		× ×	1	×:	×
DESIG	WINGLET	××	< :	× 1	1		×
	GENERAL DRAG REDUCTION PROGRAM	××	Υ	ı×	۱ :	×	×
	NEW ENGINE	JT8D-209 JT8D-209 JT8D-209(2) JT8D-209(2) JT8D-209(2) - - - - -	1	JT8D-17	607-0010	CF6-50	CF6-50A
	AIRCRAFT ⁽¹⁾ INTRODUCTION DATE	79 78 79 79 79 78 87 87 87	78	79	6 8	8 8	80
	AIRCRAFT (1)	DC-8-20R DC-8-20DR DC-8-20ER DC-8-50R DC-8-50BR DC-8-61BR DC-8-61DR DC-8-61DR DC-9-10R DC-9-10R DC-9-10R DC-9-10R DC-9-10R	DC-10-40M	DC-9-30D1	DC-9-30D2	DC-10-10D	DC-10-40D

FIGURE 33. FUEL-CONSERVATIVE DC-8 RETROFIT STUDY ITEMS

FIGURE 34. FUEL-CONSERVATIVE DC-9 STUDY ITEMS

FIGURE 35. FUEL-CONSERVATIVE DC-10 STUDY ITEMS

TABLE 20

WEIGHT CHANGE SUMMARY - DC-8-20 AND DC-8-50 RETROFIT. AIRCRAFT

137,900 137,900 138,430 13 (+617) (0) (+617) (+265) (0) (+265) +175 +175 +90 (0) (-2,732) (-1,605) (0) (-2,732) -236 -1,488 +904 +65 616	DC-8-20R	DC-8-20DR	DC-8-20ER	DC-8-50R	DC-8-50DR	DC-8-50ER
enalty (+617) (+617) (0) (+617) (+617) (10 (+265) (+265) (+265) (+265) (+265) (+265) (+265) (+265) (+175 (+1	137,900	137,900	137,900	138,430	138,430	138,430
re Retrofit Penalty (+617) (+617) (0) (+617) (+617) (+265) (+265) (+265) (0) (+265) (+265) (0) (+265) (175 (+175 (+175 (+175 (+175 (+175 (+175 (+175 (+175 (+175 (+175 (+175 (+176 (
t Redesign (+617) (+617) (0) (+617) (+265) (+265) (0) (+265) (+265) (0) (+265) (175 (+175						
t Redesign (+265) (+265) (0) (+265) (+265) (+175	Penalty (+617)	(+617)	(0)	(+617)	(+917)	(o)
t Redesign +90 +90 (-2,732) 8D-209) -3,400 -3,400 -236 +904 +904 +904		(+265)	(0)	(+265)	(+265)	(0)
t Redesign +90 +90 (-2,732) (0) (-2,732) 9 -3,400 -3,400 -3,400 -236 +904 +904 +904		+175		+175	+175	
9 8D-209) -3,400 -3,400 -236 -236 +904 +904 +904	1 Fillet Redesign	06+		06+	06+	
Replace Engine with JT8D-209 -3,400 -3,400 Dry Engine (JT4A-9 to JT8D-209) -236 -236 Thrust Reverser +904 +904 Nacelle and Systems Dry Engine (JT3D-3B to JT8D-209) Pylon Installation			(-2,732)	(-1,605)	(0)	(-1,605)
JT8D-209) -3,400 -3,400 -236 -1 -236 -1 +904 +904	le with JT8D-209	-				
-236 -1 -236 -1 +904 +904 	JT8D-209)		-3,400	1	<u>-</u>	ľ
tems +904 +904 +904 1004 1			-236	-1,488		-1,488
to JT8D-209)	tems		+904	+65		+65
	to JT8D-209)		[t	-616		-616
			1	+434		+434
TOTAL WEIGHT CHANGE -723 -723	-1,850	+882	-2,732	-723	+885	-1,605
RETROFIT OPERATIONAL EMPTY WEIGHT 136,050 138,782 135,168 137,707 1	136,050	138,782	135,168	137,707	139,312	136,825

TABLE 21

WEIGHT CHANGE SUMMARY - DC-8-61 RETROFIT AIRCRAFT

AIRCRAFT MODEL	DC-8-61R	DC-8-61DR	DC-8-61ER
BASELINE OPERATIONAL EMPTY WEIGHT	156,100	156,100	156,100
WEIGHT CHANGE ITEMS:			
Winglet Structure Retrofit Penalty	(+617)	(+617)	(0)
• Drag Reduction Penalty	(+565)	(+265)	(0)
- Wing Fillet Redesign	+175	+175	
- Horiz, and Vert. Tail Fillet Redesign	06+	06+	
e Propulsion System Modification	(-1,605)	(0)	(-1,605)
- Replace JT3D-3B with JT8D-209			
Dry Engine	-616		616
Thrust Reverser	-1,488		-1,488
Nacelle and Systems	+65		+65
Pylon Installation	+434		+434
TOTAL WEIGHT CHANGE	-723	+885	-1,605
RETROFIT OPERATIONAL EMPTY WEIGHT	155,377	156,982	154,495

TABLE 22 WEIGHT CHANGE SUMMARY - DC-9 AND DC-10 RETROFIT AIRCRAFT

AIRCRAFT MODEL	DC-9-10R	DC-9-30R	DC-10-10R	DC-10-40R
BASELINE OPERATIONAL EMPTY WEIGHT	49,840	57,900	237,240	270,910
WEIGHT CHANGE ITEMS				
Winglet Structure Retrofit Penalty	(+214)	(+214)	(+260)	(+)(09/+)
Drag Reduction Penalty	(+135)	(+132)	(+425)	(+425)
- Wing Fillet Redesign	+89	68+	+280	+280
- Horiz, and Vertical Tail Fillet Redesign	+46	+46	+145	+145
TOTAL WEIGHT CHANGE	+349	+349	+1,185	+1,185
RETROFIT OPERATIONAL EMPTY WEIGHT	50,189	58,249	238,425	272,095

TABLE 23

WEIGHT CHANGE SUMMARY - DC-10-10 AND DC-10-40 PRODUCTION MODIFICATIONS

AIRCRAFT MODEL	DC-10-10M	DC-10-40M
BASELINE OPERATIONAL EMPTY WEIGHT	237,240	270,910
WEIGHT CHANGE ITEMS:		
Winglet Installation Penalty	(+ 1,494)	(+ 1,494)
Bending Material	+ 734	+ 734
Winglet Structure	+ 760	+ 760
Drag Reduction Penalty	(+ 425)	(+ 425)
Wing Fillet Redesign	+ 280	+ 280
123	+ 145	+ 145
• General Weight Reduction	(- 3,285)	(- 5,546)
Carbon Brakes	- 890	- 1,100
Landing Gear Structure Technology Improvement	- 200	- 525
Integrally Machined Window Belt Structure	- 1,210	- 1,210
Miscellaneous Weight Savings	- 985	- 1,265
Sculptured Wing Skins	0	- 525
Delete Center Section Fuel Tanks	0	- 921
* Composite Secondary Structure	(50,0,6 -)	(- 3,226)
Total Weight Change	4,431	- 6,853
	232 800	264.057
MUDIFICALIUN UPEKALIUNAL EMPLI WEIGHL	2008	

*See Table 29

TABLE 24
WEIGHT CHANGE SUMMARY - DC-9 DERIVATIVES

AIRCRAFT MODEL	DC-9-30D1	DC-9-30D2	DC-9-30D3
BASELINE OPERATIONAL EMPTY WEIGHT	57,900	57,900	57,900
WEIGHT CHANGE ITEMS:			
 Basic Derivative Weight Changes 	(+6,710)	(+11,745)	(0)
Fuselage, Furnishings, Systems,& Operator Items	5,072	6,492	
- Wing and Tail	216	749	
- Landing Gear	577	591	
- Propulsion System	845	3,533	
- Others		380	
Technology Weight Changes			
- Winglet Installation Penalty	(+ 400)	(0)	(0)
Bending Material Winglet Structure	186 214		
- Drag Reduction Penalty	(0)	(+135)	(0)
Wing Fillet Redesign Horiz. and Vert. Tail Fillet Redesign		89 46	
- General Weight Reduction*	(-1,400)	(-1,400)	(0)
 Composite Secondary Structure Weight Reduction** 	(-1,000)	(-1,000)	(0)
 Supercritical Airfoil Wing Penalty 	(0)	(0)	(+ 180)
Wing Structure Control and Hydraulic Systems			280 -100
TOTAL WEIGHT CHANGE	+4,710	+9,480	+ 180
DERIVATIVE OPERATIONAL EMPTY WEIGHT	62,610	67,380	58,080

^{*} See Table 25

^{**} See Table 26

TABLE 25
GENERAL WEIGHT REDUCTION SUMMARY
FOR DC-9 DERIVATIVES

COMPOSITE SECONDARY STRUCTURE WEIGHT REDUCTION SUMMARY FOR DC-9 DERIVATIVES

TABLE 26

FUN DUES DENIVALIVES		
ITEM DESCRIPTION	WEIGHT SAVINGS (LB)	
Wing Skins	190	
Fuselage Skins	179	
Bolt Material	93	
Windows	53	
Bonded Metallics	19	
Thrust Reversers	12	
APU Gear Box	13	
Cabin Insulation	218	
Cabin Sidewall Panels	92	
Cargo Compartment Ceiling	26	
Electric Wiring	166	
Electric Relays	20	
Circuit Breakers	81	
Hydraulic Fittings	219	
Oxygen System	13.	
Miscellaneous Items	69	
TOTAL WEIGHT REDUCTION	1,400	

WEIGHT SAVINGS (LB) (359)(209)(432)20 24 38 30 16 1,000 124 85 100 145 43 74 194 20 28 28 Horiz, Stab. & Elev. Structure Trailing Edge Flap Structure Main Landing Gear Doors Passenger Entrance Door Trailing Edge Structure Floor Beams & Supports ITEM DESCRIPTION Emergency Exit Doors TOTAL WEIGHT REDUCTION Air Stair Structure Galley Service Door Belly Cargo Doors Spoiler Structure Aileron Structure Fairings and Tips Rudder Structure Floor Panels FUSELAGE: TAIL: WING:

TABLE 27

WEIGHT CHANGE SUMMARY - DC-10	DERIVATIVES	
AIRCRAFT MODEL	DC-10-10D	DC-10-40D
BASELINE OPERATIONAL EMPTY WEIGHT	237,240	270,910
WEIGHT CHANGE ITEMS:		
Basic Derivative Weight Changes	(-75,383)	(+12,721)
 Fuselage, Furnishings, Systems, Operator Items Wing and Tail Landing Gear 	-28,269 -30,455 - 6,257	14,905 1,886 154
- Propulsion System	-10,402	- 4,224
Technology Weight Changes	(-1,087)	(-7,911)
- Winglet Installation Penalty Bending Material Winglet Structure	(0) (0)*	(+1,560) + 766 + 794 (+ 425)
- Drag Reduction Penalty Wing Fillet Redesign Horiz. and Vert. Tail Fillet Redesign		+ 280 + 145
- General Weight Reduction Carbon Brakes Landing Gear Structural Technology Improvements Integral Machined Window Belt Structure Miscellaneous Weight Savings Sculptured Wing Skins Delete Center Section Wing Fuel Tank	(0)*	(-6,670) -1,100 - 600 -1,515 -1,265 - 525 -1,665
- Composite Secondary Structure Weight Reduction**	(-1,087)	(-3,226)
TOTAL WEIGHT CHANGE	(-76,470)	(+4,810)
DERIVATIVE OPERATIONAL EMPTY WEIGHT	160,770	275,720

^{*} Included in Basic Derivative Weight Changes ** See Table 29

TABLE 28

LOW-RISK COMPOSITE SECONDARY STRUCTURE WEIGHT SAVINGS

		WEIGHT SAVINGS (LB)	S
ITEM DESCRIPTION	DC-10-10M	DC-10-10D	DC-10-40M and DC-10-40D
LOW-RISK ITEMS:			10
WING:	(285)	(160)	(9/9)
Otow Twoiling Edge Structure	64	117	99
	76	43	9/
Spoint Structure	190		201
Side Sergetare Fairings and Tips	252		333
TAIL:	(131)	(52)	(134)
	12	10	12
	44	42	48
Fairing and Tips	75		74
FIISEI AGE FLOOR PANELS	(174)	(0)	(199)
ENGINE PYLON DOORS	(53)	(0)	(43)
TOTAL LOW-RISK WEIGHT REDUCTION	940	212	1,052
וחושר דחשיעיים שרזמון ויים מיים יים יים יים יים יים יים יים יים	·		_

TABLE 29
COMPOSITE SECONDARY STRUCTURE WEIGHT SAVINGS

		WEIGHT SAVINGS (LB)	DC-10-40M
	DC-10-10M	DC-10-10D	and DC-10-40D
	(566)	(367)	(579)
Inner Trailing Edge Structure	119	188	123
	272	179	281
Trailing Edge Flap Vanes	175		175
	(489)	(208)	(493)
	193	198	196
	276	310	279
	20		18
	(366)	(0)	(1,027)
	814		918
	146		159
	35		52
	(75)	(0)	(75)
REDUCTION	2,125	875	2,174
TOTAL LOW-RISK WEIGHT REDUCTION (TABLE 28)	940	212	1,052
TOTAL COMPOSITE SECONDARY STRUCTURE WEIGHT REDUCTION	3,065	1,087	3,226

TABLE 30a

MODIFIED AND DERIVATIVE AIRCRAFT CHARACTERISTICS

ATOCEART		DC-8-20R	DC-8-20DR	DC-8-20ER	DC-8-50R	DC-8-50DR
TANAMA						
Maximum Takeoff Weight	(LB)	270,000	270,000	276,000	294,000	294,000
	,		•		•	•
Engines: Number		4	4	4	7	4
Type		JT8D-209	JT4A-9	JT8D-209	JT8D-209	JT3D-3B
SLS Rated Thrust/Engine	(TB)	18,000	16,800	18,000	18,000	18,000
High Speed Cruise Mach Number		. 83	.83	. 83	.82	.82
Number of Mixed Class Passengers		146	146	146	146	146
Design Range: @ 100% Load Factor	(MA)	3,910	2,820	3,770	5,000	4,380
@ 58% Load Factor	(NM)	4,360	3,250	4,170	5,690	2,000
Average Stage Length	(MM)	862	862	862	731	731
Fuel Use at Average Stage Length, 58% Load Factor	$(\frac{LB}{ASNM})$	0.161	0.214	0.171	0,158	0.177
1973 DOC at Average Stage Length, 30¢/Gal Fuel Price	$(\frac{c}{A.SNM})$	2.200	1.853	2,231	2,485	2,014
			,			

* At High Speed Cruise Mach Number

TABLE 30b

MODIFIED AND DERIVATIVE AIRCRAFT CHARACTERISTICS

			3	9015 9 2c	DC-8-61ER	DC-9-10R
AIRGRAFT		DC-8-50ER	DC-8-61K	DC-0-0TDW		
արդանք Արժարե	(TB)	300,000	318,000	318,000	325,000	88, 900
Ü	,	. 4	4	4	4	7
Engines: Number		200 תפתד	TT8D~209	JT3D~3B	JT8D-209	JT8D-7
Type Type	(1.8)	18,000	18,000	18,000	18,000	14,000
SIS Kated Intust. mg-ruc		.82	.82	.82	.82	.80
High Speed Cruise mach number		146	203	203	203	70
Number of Mixed Class Fassengers	(MK)	4,820	3,850	3,420	3,700	1,440
Design Range: @ 100% hoad ractor		7 780	4,200	3,750	4,050	1,520
@ 58% Load Factor	(Mary)	731	800	800	800	300
Average Stage Length	1 II	0.166	0.122	0,137	0.129	0.216
Fuel Use at Average Stage Lengling 58% Load Factor	(ASNM)			1	960 6	3,197
1973 DOC at Average Stage Length, 30¢/Gal Fuel Price	$(\frac{c}{ASNM})$	2,507	2.007	1.652	7,020	

*At High Speed Cruise Mach Number

TABLE 30c

MODIFIED AND DERIVATIVE AIRCRAFT CHARACTERISTICS

AIRCRAFT		DC-9-30R	DC-10-10R	DC-10-40R	DC-10-10M	DC-10-40M
Maximum Takeoff Weight	(LB)	106,000	418,000	535,000	430,000	555,000
Engines: Number		2	ť	ന	ო	ന
Type		JT8D-7	CF6-6D	JT9D-20	CF6~6D	JT9D-20
SLS Rated Thrust/Engine	(LB)	14,000	40,100	46,400	40,100	49,400
High Speed Cruise Mach Number		08*	.85	. 82	.85	.85
Number of Mixed Class Passengers		92	277	252	277	252
Design Range: @ 100% Load Factor	(MN)	T,300	3,830	5,460	4,120	5,820
@ 58% Load Factor	(MM)	1,390	4,390	080*9	4,540	008*9
Average Stage Length	(MM)	290	870	670	870	670
Fuel Use at Average Stage Length, 58% Load Factor	$(\frac{LB}{ASNM})$	0.177	0.113	0,146	0.112	0.144
1973 DOC at Average Stage Length, 30¢/Gal Fuel Price	$\left(\frac{c}{ASNM}\right)$	2.691	1.418	1,825	1,503	1.976
-						

* At High Speed Cruise Mach Number

TABLE 30d

MODIFIED AND DERIVATIVE AIRCRAFT CHARACTERISTICS

AIRCRAFT		DC-9-30D1	DC-9-30D2	DC-9-30D3	DC-10-10D	DC-10-40D
		,				
Maximum Takeoff Weight	(LB)	121,000	127,000	108,000	283,000	530,000
Encines: Number		2	2	2	2	m
		JT8D-17	JT8D-209	JT8D-7	CF6-50	CF6-50A
SLS Rated Thrust/Engine	(LB)	16,000	18,000	14,000	46,600	49,000
High Speed Cruise Mach Number		.80	08*	08.	.85	.85
Number of Mixed Class Passengers		117	122	92	199	327
Design Range: * @ 100% Load Factor	(MM)	1,350	1,810	1,350	2,900	4,870
@ 58% Load Factor	(MN)	1,460	1,940	1,440	3,680	5,620
ού	(MM)	290	290	290	870	029
Fuel Use at Average Stage Length, 58% Load Factor	$\left(\frac{LB}{ASNM}\right)$	0.147	0.138	0,175	0.121	0.116
1973 DOC at Average Stage Length, 30¢/Gal Fuel Price	$(\frac{c}{ASNM})$	2,075	2,116	2,302	1.607	1.634
			•			

*At High Speed Cruise Mach Number

FIGURE 36. PAYLOAD-RANGE COMPARISON FOR DC-8-20 MODELS

PAYLOAD (1000 LB)

FIGURE 37. PAYLOAD-RANGE COMPARISON FOR DC-8-50 MODELS

FIGURE 38, PAYLOAD-RANGE COMPARISON FOR DC-8-61 MODELS

FIGURE 39. PAYLOAD-RANGE COMPARISON FOR DC-9-10 MODELS

PAYLOAD (1000 LB)

FIGURE 40. PAYLOAD-RANGE COMPARISON FOR DC-9-30 MODELS

The second of th

TABLE 31 DC-8-20R

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
	Block Fuel (LB)	BIU Nautical Mile	Available Seat - NM(2) Gallon	BIU Available Seat - NM
+	5, 260	978, 490	18.87	6,701
	8,220	611,600	30,19	4,189
	13,140	488,800	37,78	3,348
	18,060	447,900	41,23	3,068
	22,990	427,600	43,18	2,929
	42,680	396,900	46.52	2,719
	62,370	386,700	47.75	2,649
			•	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY - 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS = 146,

TABLE 32

DC-8-20DR

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM(2) Gallon	BTU Available Seat - NM
100	5,550	1,032,000	17.89	7,071
250	9,040	672,600	27,46	4,607
500	16,370	000,609	30.32	4,171
750	23,690	587,500	31.43	4,024
1,000	31,020	577,000	32.01	3,952
2,000	60,330	561,100	32.91	3,843
3,000	89,640	555,800	33,23	3,807
			·	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

146, FUEL DENSITY = 6,8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 33

DC-8-20ER

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	5,320	989,500	18.66	6,778
250	8,380	623,500	29,62	4,270
200	13,760	511,900	36.08	3,506
750	19,140	474,700	38,90	3,251
1,000	24,520	456,100	40,49	3,124
2,000	46,040	428,200	43,13	2,933
3,000	67,570	418,900	44.08	2,869

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON 146, (2) TOTAL NUMBER OF SEATS =

TABLE 34

DC-8-50R

FUEL USE VS. DISTANCE

	BTU Available Seat - NM	6,561	4,041	3,198	2,918	2,779	2,568	2,498	
FUEL USE (1)	Available Seat - NM (2) Gallon	19.28	31,30	39,55	43,34	45,52	49.25	50,64	
1 TENA	BTU Nautical Mile	957,900	590,000	466,900	426,100	405,700	375,000	365,000	
	Block Fuel (LB)	5,150	7,930	12,550	17,180	21,810	40,320	58,820	
	Distance (NM)	100	250	200	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

146 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 35

DC-9-50DR

FUEL USE VS. DISTANCE

	BTU Available Seat - NM	6,612	4,388	3,557	3,282	3,143	2,935	2,866	
FUEL USE (1)	Available Seat - NM (2)	19,13	28.83	35,56	38,54	40.24	43.09	44.12	
FUEL	BTU Nautical Mile	965,300	940,600	519,300	479,100	458,900	428,600	418,500	•
	Block Fuel (LB)	5,190	8,610	13,960	19,320	24,670	46,080	67,500	
	Distance (NK)	100	250	. 500	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

146 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS ==

TABLE 36

DC-8-50ER

FUEL USE VS. DISTANCE

	BTU Available Seat - NM	985*9	4,189	3,351	3,073	2,934	2,724	2,655	
FUEL USE (1)	Available Seat - NM (2)	19,20	30.19	37,75	41,16	43.11	46.43	47.64	.•
FUEL	BTU Nautical Mile	961,600	611,600	489,200	448,600	428,400	397,800	387,600	
	Block Fuel (LB)	5,170	8,220	13,150	18,090	23,030	42,770	62,520	
	Distance (NM)	100	250	500	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

⁽²⁾ TOTAL NUMBER OF SEATS = 146, 1

TABLE 37

DC-8-61R

FUEL USE VS. DISTANCE

•		BTU Available Seat - NM	5,323	3,207	2,500	2,287	2,203	2,123	2,123	
HIET 119 (1)	#P.0	Available Seat - NM (2)	23,76	39,44	50,60	55,30	57,42	59,56	59,59	
HILL	7770.7	BTU Nautical Mile	1,081,000	651,000	507,400	464,300	447,100	431,100	430,900	
		Block Fuer (LB)	5,810	8,750	13,640	18,720	24,040	46,350	69,500	
		Distance (NM)	100	250	500	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS = 203,

TABLE 38

DC-8-61DR

FUEL USE VS. DISTANCE

	M(2) BTU Available Seat - NM	5,910	3,588	2,800	2,567	2,475	2,405	2,431	
FUEL USE (1)	Available Seat - NM (2) Gallon	. 21,40	35,25	45.17	49.28	51,11	52.60	52.03	•
FUEL	BTU Nautical Mile	1,200,000	728,400	568,400	521,000	502,400	488,200	493,500	
	Block Fuel (LB)	6,450	9,790	15,280	21,010	27,010	52,490	79,600	
	Distance (NM)	100	250	. 200	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

6.8 LB/GALLON 203 , FUEL DENSITY = (2) TOTAL NUMBER OF SEATS =

TABLE 39

DC-8-61ER

FUEL USE VS. DISTANCE

		FUEL 1	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2)	BTU Available Seat - NM
				r P L
100	6,080	1,131,000	22.70	T/C*C
250	9,200	684,500	37,51	3,372
200	14,360	534,200	43.06	2,631
750	19,720	489,100	52,50	2,409
1,000	25,330	471,100	54.50	2,321
2,000	49,030	456,000	. 56.31	2,246
3,000	73,900	458,200	56.04	2,257

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS = 203,

TABLE 40

DC-9-10R

FUEL USE VS. DISTANCE

	BTU Available Seat - NM	-	6,165	4,283	3,555	3,270	3,159	3,146	3,157	
FUEL USE (1)	Available Seat - NM (2) Gallon		20,52	29.53	35,58	38.68	40.03	40.20	40.07	,
FUEL 1	BTU Nautical Mile		431,500	299,800	248,900	228,900	221,200	220,200	221,000	
	Block Fuel (LB)		2,320	4,030	069*9	9,230	11,890	14,800	17,820	
	Distance (NM)		100	C C C C	, 100 ×	7 750	000	יים ה ה	1,500	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

70 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 41

DC-9-30R

FUEL USE VS. DISTANCE

Distance (NM)	Block Fuel (LB)			
		Bru Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	2,420	450,100	. 25.85	4,893
250	4,240	315,500	36.89	3,429
500	7,040	261,900	44,43	2,847
750	9,780	242,500	47.98	2,636
1,000	12,540	233,200	49.89	. 2,535
1,250	15,370	228,700	50,88	2,486
1,390	17,060	228,300	50.97	2,481

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

(2) TOTAL NUMBER OF SEATS = 92, FUEL DENSITY

FUEL DENSITY = 6.8 LB/GALLON

TABLE 42

DC-10-10R

FUEL USE VS. DISTANCE

		FUEL U	FUEL USE (1)	
Block Fuel (LB)	100	BTU Nautical Mile	Available Seat - NM (2)	BTU Available Seat - NM
7.620	. ~	1.417.000	. 62.96	7117
	. &	854,100	41.02	3.083
	Ó	900,539	52,61	2,404
	9	604,100	57.99	2,181
30,810	ī	573,100	61.14	2,069
57,540 5	IJ	535,100	65,47	1,932
86,190	<u> </u>	534,400	65,56	1,929
		•		

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

277 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 43

DC-10-40R

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	9,410	1,750,000	18.21	6,945
250	13,380	995,500	32,02	3,950
200	19,990	743,600	42.86	2,951
750	26,900	667,100	47.78	2,647
1,000	33,820	629,100	50.67	2,496
2,000	62,000	576,600	55.28	2,288
3,000	93,080	577,100	55,23	2,290
			-	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS = 252,

TABLE 44

DC-10-10M

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM(2) Gallon	BTU Available Seat - NM
100	7,630	1,419,000	. 54.69	5,123
250	11,370	845,900	41.42	3,054
. 500	17,600	654,700	53,51	2,364
750	23,900	592,700	59.11	2,140
1,000	30,450	566,400	61.86	. 2,045
2,000	56,710	527,400	66.43	1,904
3,000	84,840	526,000	19*99	1,899
		•		

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

277, FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 45 DC-10-40M

FUEL USE VS. DISTANCE

	BIU Available Seat - NM	9886	3,906	2,913	2,594	. 2,453	2,236	2,235	
FUEL USE (1)	Available Seat - NM (2)	18.37	32,38	43,43	48,76	51,55	56,55	56.59	
FUEL 1	BrU Nautical Mile	1,735,000	984,300	734,000	653,700	618,300	563,600	563,300	
	Block Fuel (LB)	9,330	13,230	19,730	26,360	33,240	009*09	90,850	
	Distance (NM)	100	250	200	750	1,000	2,000	3,000	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

252 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS ==

TABLE 46

DC-9-30D1

FUEL USE VS. DISTANCE

		FUEX,	FUEL, USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	2,640	491,000	30,14	4,197
250	4,520	336,300	44.00	2,874
. 500	7,610	283,100	52,27	2,420
750	10,750	266,600	55,51	2,279
1,000	13,850	257,600	57.44	. 2,202
1,250	17,060	253,900	58.29	2,170
1,460	19,820	252,500	58.61	2,158
		•		•

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

117 , FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS ==

TABLE 47

DC-9-30D2

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	2,570	478,000	. 32,28	3,918
250	4,490	334,100	46.19	2,738
500	7,440	276,800	55.75	2,269
750	10,380	257,400	59,94	2,110
1,000	13,310	247,600	62,33	2,029
1,250	16,350	243,300	63,43	1,994
1,500	19,440	241,100	64.01	1,976
1,940	25,000	239,700	64,38	1,965

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

122 , FUEL DENSITY = 6,8 LB/GALLON (2) TOTAL NUMBER OF SEATS =

TABLE 48

DC-9-30D3

FUEL USE VS. DISTANCE

FUEL USE (1)	ance Block Fuel BTU Available Seat - NM (2) BTU Available Seat - NM (1.B) Available Seat - NM Available Seat - NM	00 2,400 446,400 446,400 4,852	50 4,200 312,500 37.24 3,397	00 6,970 259,300 44.88 2,818	50 9,670 239,800 48,52 2,607	00 12,390 230,500 50.49 2,505	50 15,170 225,700 51.55 2,454 .	40 17,400 224,800 51.77 2,443	
	Distance (NM)	100	250	200	750	1,000	1,250	1,440	

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

(2) TOTAL NUMBER OF SEATS = 92, FUEL DENS

FUEL DENSITY = 6.8 LB/GALLON

TABLE 49

DC-10-10D

FUEL USE VS. DISTANCE

		FUEL	FUEL USE (1)	
Distance (NM)	Block Fuel (LB)	BTU Nautical Mile	Available Seat - NM (2) Gallon	BTU Available Seat - NM
100	6,530	1,215,000	20.72	6,103
250	9,270	689,700	36,49	3,466
. 500	13,830	514,500	48,92	2,585
750	18,580	460,800	54.62	2,315
1,000	23,780	442,300	56.90	2,223
2,000	45,430	422,500	59,57	2,123
3,000	68,870	427,000	58,95	2,146
		•		•

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

FUEL DENSITY = 6.8 LB/GALLON 199, (2) TOTAL NUMBER OF SEATS =

TABLE 50

DC-10-40D

FUEL USE VS. DISTANCE

		NEUE.	FUEL USE (1)	
Distance	Block Fuel	BTU Nautical Mile	Available Seat - NM (2)	BTU Available Seat - NM
(MIX)	(gr)			
00	8, 320	1,548,000	26.73	4,732
750	12,910	960,500	43.06	2,937
500.	20,560	764,800	54.08	2,339
750	28,190	669,100	59,16	2,138
000	35,720	664,400	62,25	. 2,032
2 000	66,440	617,900	96*99	1,890
3,000	100,700	624,300	66.24	1,909
_				

(1) BASELINE FLIGHT PROFILES, LOAD FACTOR = 58.0%

^{327 ,} FUEL DENSITY = 6.8 LB/GALLON (2) TOTAL NUMBER OF SEATS **

FIGURE 43. BLOCK FUEL VS. RANGE FOR MODIFIED DC-8 AIRCRAFT

FIGURE 44. BLOCK FUEL VS. RANGE FOR MODIFIED DC-9-10 AIRCRAFT

FIGURE 45. BLOCK FUEL VS. RANGE FOR MODIFIED AND DERIVATIVE DC-9-30 AIRCRAFT

FIGURE 46. BLOCK FUEL VS. RANGE FOR MODIFIED AND DERIVATIVE DC-10-10 AIRCRAFT

FIGURE 47. BLOCK FUEL VS. RANGE FOR MODIFIED AND DERIVATIVE DC-10-40 AIRCRAFT

TABLE 51

EFFECT OF MODIFICATIONS AND DERIVATIVE DESIGNS

ON BLOCK FUEL AND DOC

AT 1973 CAB AVERAGE STAGE LENGTH (See Table 30)

Aircraft	Δ Block Fuel		Δ DOC (% ¢/ASNM)	
Aliciale	(% ETU ASNM)	@ 15¢/Gal	@ 30¢/Gal	@ 60¢/Gal
DC-8-20R DC-8-20DR DC-8-20ER DC-8-50R DC-8-50DR DC-8-50ER DC-8-61R DC-8-61DR DC-8-61ER DC-9-10R DC-9-30R	-28.25 - 4.52 -23.73 -14.97 - 4.47 -10.50 -14.92 - 4.53 -10.39 - 4.06 - 3.81	20.50 -10.09 20.96 37.90 4.66 38.16 47.70 14.57 48.04 18.01 20.97 3.65	8.43 - 8.67 9.96 26.72 2.70 27.84 34.25 10.50 35.52 14.06 16.54 1.07	- 3.69 - 7.28 - 1.22 14.29 0.57 16.44 19.46 5.99 21.70 9.27 11.21 - 1.78
DC-10-10R DC-10-40R	- 9.07 - 9.32	0.81	- 1.14	- 3,47
DC-10-10M DC-10-40M	-10.17 -10.76	11.49 11.37	7.13 7.04	2.24
DC-9-30D1 DC-9-30D2 DC-9-30D3 DC-10-10D DC-10-40D	-19.80 -24.68 - 4.94 - 2.76 -27.90	- 8.06 - 4.85 0.68 18.88 - 7.54	-10.13 - 8.36 - 0.30 14.54 -11.48	-12.68 -12.68 - 1.53 9.64 -16.12

TABLE 52 EFFECT OF INDIVIDUAL MODIFICATION ITEMS ON BLOCK FUEL AT 1973 CAB AVERAGE STAGE LENGTH (See Table 30)

		Δ Block Fuel	for Individ		ition Items
Modified Aircraft	Total A Block Fuel (%)	JT8D-209 Engine	Winglet	General Drag Reduction	General Weight Reduction (2)
DC-8-20R	-28.25	-23.73	-1.72	-2.80	
DC-8-20DR	- 4.52	·	-1.72	-2.80	
DC-8-20ER	-23.73	-23.73			
		(3)			
DC-8-50R	-14.97	-10.50 ⁽³⁾	- 1.70	-2.77	
DC-8-50DR	- 4.47		-1.70	-2.77	
DC-8-50ER	-10.50	-10.50 ⁽³⁾			
		(2)			
DC-8-61R	-14.92	-10.39 ⁽³⁾	-1.74	-2.79	
DC-8-61DR	- 4.53		-1.74	-2.79	
DC-8-61ER	-10.39	-10.39 ⁽³⁾			
70 0 107	- 4 . 06		-1.31	-2.75	
DC-9-10R	- 4.00		<u>-</u> T•2T	-2.73	
DC-9-30R	- 3.81		-1.26	-2.55	
DC-10-10R	- 9.07		- 3 . 99	-5.08	
DC-10-40R	- 9.32		-3.94	-5.38	
DC-10-10M	-10.17		-3.87	-5.10	-1.20
DC-10-40M	-10,76		-3. 84	-5,42	-1.50

⁽¹⁾ Relative to Baseline Aircraft

⁽²⁾ Includes Composite Secondary Structure(3) Includes Cutback Pylon

FIGURE 48. MODIFIED AIRCRAFT FUEL SAVINGS

FIGURE 49. DERIVATIVE AIRCRAFT FUEL SAVINGS

SECTION 5.0

NEW NEAR-TERM AIRCRAFT

The impact of rising fuel prices on the design of new aircraft was investigated to determine whether significant improvements in fuel efficiency could be achieved. The new aircraft were designed to NASA specifications and incorporate technology consistent with a 1980 introduction date..

Five families of new aircraft were studied, three domestic range families and two international range families, resulting in eighteen optimized configurations. The domestic range families include aircraft optimized for maximum fuel efficiency and for minimum DOC at three different fuel prices, 15, 30 and 60 cents per gallon. The international range airplanes were optimized for maximum fuel efficiency and for minimum DOC at two fuel prices, 30 and 60 cents per gallon.

As a convenience, a code has been developed to designate the various new near-term airplanes. For example, the 200 passenger, 1,500 nautical mile range aircraft optimized for DOC at a fuel price of 15 cents per gallon, is designated as shown in Figure 50. The subscript indicates the optimization parameter. If an aircraft was optimized for minimum fuel use, the subscript MF is used. When used without a subscript, the designator refers to an entire family of aircraft. The entire group of new near-term airplanes are sometimes referred to as N80 aircraft.

FIGURE 50. NEW NEAR-TERM AIRCRAFT DESIGNATOR CODE

5.1 Design Specifications and Ground Rules

The design ground rules provided by NASA for the five new near-term aircraft families are given in Table 53. Aircraft cruise Mach numbers were optimized in the range 0.70 - 0.90. Within these ground rules, specifications for baseline new near-term airplanes were developed by Douglas and are presented in Table 54. The flight profile used for the study is presented in Figure 51.

Figure 52 lists the advanced technologies incorporated in these airplanes. The use of composite secondary structure for the N80 airplanes was based on current DC-10 composite structure weight saving studies. Composite structure was assumed for the wing and tail control surfaces and trailing edges, and the fuselage floor, floor beams, and door structures. The N80 airplanes also include advanced technology weight saving items such as carbon brakes, thinwall composite nacelles, and isogrid window belts.

Both swept and straight wing designs were considered for minimum DOC as well as minimum fuel airplanes. Recent studies have indicated that the reduced number of parts required for a simpler straight wing could decrease the wing cost up to 15 percent and the overall aircraft cost about 3 percent.

5.1.1 Interior Arrangements

Detailed interior arrangements were prepared for the N80 aircraft and are shown in Figures 53 and 54. Passenger convenience information is provided in Table 55.

For consistency with other study airplanes the interior arrangements are dual class interiors with approximately 10 percent first class seating and 90 percent coach seating. Seat pitch is 38 inches for first class and 34 inches for coach. Actual passenger capacities differ slightly from the nominal 200 and 400 seat ground rules.

All of the 201 seat aircraft share a common interior arrangement (Figure 53). Six abreast seating is provided for first class and seven abreast in coach. The galleys are located on the upper deck.

The 404 seat aircraft also share a common interior arrangement (Figure 54). Six abreast seating is provided for first class and nine abreast in coach. The overall size of this configuration allows room for the forward galley to be located on the lower deck.

TABLE 53

NASA DESIGN STUDY GROUND RULES

NEW AIRPLANE FAMILY	N80-2,15	N80-2.30	N80-2,55	N80-4.30	N80-4.55
Engine	Turbofan	Turbofan	Turbofan	Turbofan	Turbofan
Cruise Mach Number	.7090	.7090	.7090	.7090	.7090
Passengers	200	200	200	400	400
Range (NM)	1,500	3,000	5,500	3,000	5,500
Target Noise Levels	FAR 36-10				

TABLE 54 NEW AIRPLANE SPECIFICATIONS

N80-4.55	4, Wing	CF6-6	m	404	50	Lower	5,500	11,000	130	31,000	MOS	0 FAR 36-10
N80-4.30	4, Wing	CF6-6	က	404	б	Lower	3,000	000 6	130	31,000	NOS	FAR 36-10
N80-2.55	4, Wing	CFM→56	ო	201	7	Upper	5,500	10,000	130	31,000	MOS	FAR 36-10
N80-2.30	4. Wina	CFM~56	ო	201	7	Upper	3,000	8,000	125	31,000	NOS	FAR 36-10
N80-2.15	2. Wind	S::	က	201	7	Upper	1,500	7,000	120	31,000	MOS	FAR 36-10
NEW AIRPLANE FAMILY	Number webtion		Number of Crew	Number of Pax (10/90 Split)	Seats Abreast	Galley Location	Design Range (NM)	Maximum Takeoff Distance (Ft)	Maximum Approach Speed (Kt)	Initial Cruise Altitude (Ft)	Airfoil Type	Target Noise Levels

PRIMARY MISSION:

- Warmup, taxi, takeoff (15 min)
- (2) Climb to 10,000 ft. at 250 KEAS
- 3 Accelerate to maximum rate of climb speed
- 4 Climb to optimum cruise altitude or to ceiling altitude
- ⑤ Cruise climb at constant cruise Mach number
- 6) Descend to 10,000 ft.
- (7) Decelerate to 250 KEAS
- (8) Final descent to sea level

RESERVE FUEL MISSION:

- Climb from Sea Level to 30,000 ft.
- Cruise at 30,000 ft. at 99 percent maximum nautical miles per pound
- Descend to Sea Level
- After arriving at alternate, cruise for 45 min. at 99 percent maximum nautical miles per pound at 30,000 ft.

FIGURE 51. MISSION PROFILE FOR NEW NEAR-TERM AIRCRAFT

WING

Supercritical Section

Improved High Lift System - leading edge slats with double slotted, track-motion flap

POWER PLANTS AND PODS

CF6-6 with 3/4 length pod (N80-2.15, N80-4.30, and N80-4.55)
CFM-56 with long duct pod (N80-2.30 and N80-2.55)

PROPULSIVE NOISE REDUCTION

Pods to include advanced acoustic composite nacelle technology

STRUCTURAL IMPROVEMENTS

Composites: floor beams, doors, nacelles, control

surfaces, fairings, wing panels

Advanced Metallics: isogrid machined window belt

WEIGHT REDUCTION OF SYSTEMS

Carbon Brakes

Environmental Systems

Auxiliary Power System

Control System - Longitudinal Stability Augmentation

COCKPIT

Reduced Workload

FIGURE 52. ADVANCED TECHNOLOGIES FOR NEW NEAR-TERM AIRCRAFT

201 PASSENGERS MIXED CLASS

INTERIOR ARRANGEMENT FOR N80-2.15, N80-2.30, AND N80-2.55 FIGURE 53.

404 PASSENGERS MIXED CLASS — LOWER FORWARD GALLEY

FIGURE 54. INTERIOR ARRANGEMENT FOR N80-4.30 AND N80-4.55

TÅBLE 55

PASSENGER CONVENIENCE DATA

New Near-Term Aircraft 10/90 Split, 38"/34" Seat Pitch

		Gal'	Galleys	Closet	Closet Space	Lavat	Lavatories
Aircraft Family	Number	Area		Total Length Length/Psgr	Length/Psgr	Number	Psgr/Lav
•	Seats	(In ²)	(In ²)	(In)	(In)		
N80-2.15	201	10,200	50.7	130	.65	2	40.2
N80-2.30	201	10,200	50.7	130	.65	2	40.2
N80-2.55	201	10,200	50.7	130	. 65	52	40.2
N80-4.30*	404	47,689	118.0	310	.77	10	40.4
N80-4.55	404	47,689	118.0	310	.77	10	40.4

*With lower galley, lower galley area (excluding walkway) = 34.889 inch², upper galley area = 12.800 inch².

5.2 Design Procedures

The final N80 configurations were the result of a systematic sizing study. The Passenger Aircraft Sizing and Analysis Program (PASAP) was used to perform the sizing. PASAP is a multi-disciplinary aircraft design program developed by DAC specifically for rapid analysis of new aircraft configurations. In sizing the N80-2.15 and N80-2.30 aircraft, approximately 140 combinations of thickness, sweep, aspect ratio and Mach number were studied. For each combination, at least five wing areas were considered for each of several thrust levels. The subsequent aircraft were sized using the trends.

A typical sizing grid is presented in Figure 55. The grid intersections represent fixed values of wing area and engine thrust. The left hand scale shows the design takeoff weight associated with grid locations. Design constraints shown include approach speed, takeoff field length and initial cruise altitude capability. The broken lines represent parameter barriers beyond which the constraints are not met. Lines of constant DOC (DOC1, DOC2, DOC3) and constant fuel burned (FB1, FB2, FB3) are overlayed and optimum configurations that meet the design constraints can be chosen. Point A is a minimum DOC design and Point B represents a minimum fuel case. In choosing the final wing area, a solve routine was employed to "ride" a known thrust constraint line, varying wing area until an optimum wing area or a constraint was reached. Thus, Point A is the lowest possible DOC configuration that meets all performance constraints, and Point B is the minimum fuel use configuration that meets all performance constraints.

Table 56 shows the sizing constraints for the N80 family. The optimization parameters at the head of each column correspond to the subscripts used in the aircraft designating code. The performance constraints -- takeoff distance, approach speed, and initial cruise altitude -- were specified in Table 54. Note that initial cruise altitude did not constrain any of the designs. The minimum thrust constraint represents the initial cruise thrust requirement (Reference 16). The fuel volume constraint is based on the assumption that all fuel is carried in the wing, and that the wing must be large enough to carry all of the fuel for the design mission and the reserve fuel mission. The minimum DOC or fuel use constraints are the optimization criteria. Performance and fuel volume constraints materially affect the final sizing of an aircraft optimized for DOC at low fuel prices, such as

10 cents per gallon, because designs at low fuel prices tend toward small wings and high thrust for minimum DOC. As fuel prices increase, or when the minimum fuel use criterion is used, the performance constraints have less of an effect on the wing and engine size. The N80 aircraft were all sized to achieve minimum DOC or minimum fuel use while meeting or exceeding the performance and range requirements.

The geometry optimization procedure is illustrated in Figure 56. At an initial constant cruise Mach number, the baseline N80 aircraft aspect ratio was first optimized for minimum DOC at a given fuel price. The sweep was then optimized, followed by the thickness. The optimum geometry characteristics were then combined, checked, and adjusted to obtain the minimum DOC airplane at the initial cruise Mach number. The Mach number was then incremented, and the optimization procedure repeated until an absolute minimum DOC aircraft was found. The optimization loop was then repeated for the remaining fuel prices, and for minimum block fuel.

FIXED FUSELAGE FIXED MACH NUMBER

0 0

FIGURE 55. PASAP SIZING GRID

TABLE 56 SIZING CONSTRAINTS

NEW AIRCRAFT FAMILY	-	N80-2.15	2,15		_	-08N	N80-2,30		N8	N80-2,55	55		N80~	N80-4.30		N8	N80-4.55	55
OPTIMIZATION PARAMETER	15	30	09	MF	15	0^	09	MF	30	9	Ψ	15	30	09	MF	30	09	MF
TAKEOFF DISTANCE	×	×	×	×				×				×	×	×	×	×	×	×
APPROACH SPEED	×	×	×		×	×	×											
INITIAL CRUISE ALT.																		
MINIMUM THRUST			·		×	×	×		×	×	×							
FUEL VOLUME									×	×	×							
MIN, DOC OR FUEL USE				×				×				×	×	×	×	×	×	×

FIGURE 56. SIZING PROCEDURE

5.3 N80-2.15 Series Aircraft

Each member of the Model N80-2.15 series is characterized by two wing-mounted engines, a capacity of 201 passengers, and a design range of 1,500 nautical miles.

5.3.1 Configuration Trade Studies

The baseline N80-2.15 aircraft was sized for minimum DOC at three fuel prices (15, 30, and 60 cents per gallon) and also for minimum block fuel. The sizing was performed in accordance with the ground rules and methods previously described.

The resulting sizing charts for the N80-2.15 minimum DOC aircraft at the three study fuel prices are presented in Figures 57, 58 and 59. As cruise Mach number increases, the wing geometry tends to decrease in aspect ratio, and increase in thickness and sweep. If the wing is constrained to be kept straight, the thickness is reduced as Mach number is increased to minimize the drag rise. At any given fuel price, the effect of not choosing the absolute minimum DOC airplane is shown in Figure 60. The effect is minimal. For example, if the design cruise Mach number of a "minimum DOC" airplane was chosen to be 0.85 instead of 0.81 at a fuel price of 30 cents per gallon, the relative DOC increases only 0.60 percent.

The sizing chart for the minimum block fuel aircraft is presented in Figure 61. Due to ground rules, no Mach numbers below 0.70 were investigated. The increased block time caused by flying at less than 0.70 Mach number would probably be unsuitable for commercial use. The high aspect ratio of 15.5 at Mach 0.70 was chosen from sizing studies (Figure 62). This high aspect ratio approaches the limits of present wing weight prediction techniques without further test information. For a one percent increase in block fuel, the aspect ratio could be reduced to about 13.

5.3.2 Optimum Design Characteristics

Plan views of the optimized N80-2.15 configurations are shown in Figure 63. The characteristics of the N80-2.15 series are summarized in Table 57. Additional design data is given in Table 58, and a weight statement for the

airplanes appears in Table 59. In these tabers, column headings give the optimization parameter for each aircraft. For example, ${\tt DOC}_{15}$ refers to the aircraft optimized for DOC at a fuel price of 15 cents per gallon, and so forth.

5.3.3 Optimum Geometry

The variation of optimum geometry and optimum cruise Mach number with fuel price is given in Figure 64. The results indicate that as design fuel price increases, the importance of short block time decreases, and cruise Mach number is reduced. As cruise Mach number decreases, the optimum geometry changes (increased aspect ratio, decreased sweep and thickness) to reduce drag which results in reduced engine size and fuel consumption.

5.3.4 Energy Efficiency

The variation of block time and block fuel with range at 58 percent load factor is presented in Figure 65. This load factor was chosen as a typical operational value. The energy efficiency parameters (BTU/NM, ASNM/GAL, BTU/ASNM) of the N80-2.15 airplanes at 58 percent load factor are presented in Figure 66. These results appear tabulated in Tables 60 and 61.

MODEL N80-2.15 201 PASSENGERS, 1500 NM RANGE 15 CENTS PER GALLON FUEL

- Swept Wing Design
- Straight Wing Design

FIGURE 57. N80-2.15₁₅ OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

MODEL N80-2.15 201 PASSENGERS, 1500 NM RANGE 30 CENTS PER GALLON FUEL

FIGURE 58. N80-2.15₃₀ OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

MODEL N80-2.15 201 PASSENGERS, 1500 NM RANGE 60 CENTS PER GALLON FUEL

Swept Wing DesignStraight Wing Design

FIGURE 59. N80-2.15₆₀ OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

Note: All Points Optimized

FIGURE 60. RELATIVE DOC VS. CRUISE MACH NUMBER AND FUEL PRICE FOR OPTIMUM GEOMETRY N80-2.15 AIRCRAFT

MODEL N80-2.15 201 PASSENGERS, 1500 NM RANGE MINIMUM BLOCK FUEL

FIGURE 61. N80-2.15_{MF} OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE FUEL USE VS. CRUISE MACH NUMBER

FIGURE 62. EFFECT OF WING ASPECT RATIO ON N80-2.15 $_{
m MF}$ BLOCK FUEL

FIGURE 63. PLAN VIEWS OF OPTIMIZED N80-2.15 AIRCRAFT

TABLE 57

OPTIMUM N80-2.15 AIRCRAFT CHARACTERISTICS

2 CF6-6D Type Engines, 201 Passengers, 1,500 NM Range

,			OPTIMIZATION PARAMETER	PARAMETER	
	.	DOC15	00°30	09 ₀₀ 00	BLOCK FUEL
Takeoff Gross Weight	Lb	234,700	231,200	231,600	236,300
Operational Empty Weight	rp T	148,900	149,100	151,200	159,000
Cruise Mach Number		0.85	0.81	0.78	0.70
Block Time (1)	H.	3,43	3.57	3.69	4,05
Block Fuel (1)	Lb	33,220	30,440	29,030	27,250
Critical Field Length	Ft	7,000	7,000	7,000	7,000
Approach Speed	KEAS	120	120	120	116
Thrust Per Engine Uninstalled	ГР	39,600	36,580	34,590	29,470
Direct Operating Cost (1) ¢/Seat: NM	t. NM				
@ 15¢ Per Gallon		1.157	1.169	1,197	1.274
@ 30¢ Per Gallon		1,386	1,379	1.390	1,462
@ 60¢ Per Gallon		1,844	1,798	1,789	1,839
Geometry					1
Aspect Ratio		7.7	9.4	10.9	15.5
Ouarter Chord Sweep	Deg	35	32	28	3,2167
Average Thickness-To-Chord Ratio		0.148	0.143	0.140	0.128
		0.30	0.30	0.30	0.30
	Ft^2	2,267	2,197	2,130	2,135
1,000 NM BTU/	BTU/ASNM	1,966	1,814	1,730	1,656

(1) At Design Range, 100 Percent Load Factor (2) Straight Rear Spar

TABLE 58 N80-2.15 DESIGN DATA

			OPTIMIZATIO	OPTIMIZATION PARAMETER	
DESIGN ITEMS		DOC ₁₅	DOC30	DOC ₆₀	BLOCK FUEL
Wing Area - Trapezoidal	Ft2	2,267	2,197	2,130	2,135
Wing Aspect Ratio		7.7	9,4	10.9	15.5
Wing Sweep @ C/4	Deg	35.0	32.0	28.0	3.20
Wing Taper Ratio		.30	.30	.30	.30
Wing Loading	PSF	103.5	105.2	108.7	110.7
Wing Thickness Ratio		.148	.143	.140	.128
Horizontal/Vertical Tail Area	Ft2	472/426	414/432	361/439	304/473
Horizontal/Vertical Tail Arm	In	625/745	825/745	825/745	825/745
Horizontal/Vertical Tail Volume Coeff.		.760/.088	.760/.086	.760/.084	.760/.076
Thrust/Weight Ratio		.337	.316	.299	.249
Fuel Fraction		190	.178	.169	.153
Fuselage Length	In	1,790	1,790	1,790	1,790
No. of Passengers (1st Class/Coach)		22/179	22/179	22/179	22/179
No. of Engines		8	2	2	2

TABLE 59
N80-2.15 WEIGHT DATA (LB)

WEIGHT ITEMS		OPTIMIZATI	ON PARAMETER	
	DOC 15	DOC ₃₀	DOC ₆₀	BLOCK FUEL
Wing	28,475	31,009	34,546	45,334
Horizontal Tail	2,019	1,793	1,598	1,389
Vertical Tail	1,555	1,588	1,638	1,794
Fuselage	28,746	28,733	28,749	28,602
Landing Gear	9,651	9,505	9,520	9,718
Flight Controls & Hydraulics	4,210	4,037	3,878	3,834
Propulsion System	24,347	22,493	21,266	18,119
Fuel System	1,029	1,101	1,187	1,417
Auxiliary Power Unit	7,312	1,312	1,312	1,312
Instruments	944	925	909	882
Air Conditioning & Pneumatics	2,852	2,852	2,852	2,852
Electrical System	4,037	4,037	4,037	4,037
Avionics	2,215	2,215	2,215	2,215
Furnishings	24,420	24,420	24,420	24,420
Anti-Ice	619	612	605	605
Handling Gear	69	68	68	<u>70</u>
Manufacturer's Empty Wt.	136,500	136,700	138,800	146,600
Operator Items	12,400	12,400	12,400	12,400
Operational Empty Weight	148,900	149,100	151,200	159,000
Payload	40,200	40,200	40,200	40,200
Zero Fuel Weight	189,100	189,300	191,400	199,200
Fuel	45,600	41,900	40,200	37,100
Takeoff Gross Weight	234,700	231,200	231,600	236,300

MODEL N80-2.15 201 PASSENGERS, 1500 NM RANGE

Swept Wing DesignStraight Wing Design

FIGURE 64. EFFECT OF FUEL PRICE ON N80-2.15 OPTIMUM AIRCRAFT GEOMETRY AND CRUISE MACH NUMBER

MODEL N80-2.15

- DESIGN FLIGHT PROFILE (FIGURE 51) 58% LOAD FACTOR

BLOCK TIME AND BLOCK FUEL VS. RANGE - OPTIMUM N80-2.15 AIRCRAFT FIGURE 65.

- DESIGN FLIGHT PROFILE (FIGURE 51) 58% LOAD FACTOR

ENERGY EFFICIENCY PARAMETERS VS. RANGE OPTIMUM N80-2.15 AIRCRAFT FIGURE 66.

TABLE 60

BLOCK TIME AND BLOCK FUEL VS. DISTANCE

OPTIMUM N80-2.15 AIRCRAFT

58 PERCENT LOAD FACTOR

	BLOCK FUEL	4,300	002*9	10,500	14,200	17,900	21,500	25,400	
BLOCK FUEL (LB)	0900	4,300	6,800	10,700	14,750	18,700	22,750	26,900	
BLOCK (1	D0C30	4,300	7,000	11,100	15,500	19,600	24,000	28,200	
	91 ₂ 000	4,300	7,100	11,900	16,500	21,250	26,000	30,800	
	BLOCK FUEL	.50	06.	1.53	2.16	2.77	3.41	4.03	
BLOCK TIME (HR)	09000	.50	68.	1.43	2.01	2.55	3.10	3.68	
BL0(D0C30	.50	.87	1,39	1.95	2.48	3.02	3.57	
	DOC15	.50	98•	1.36	1.90	2.40	2,92	3.43	
DI STANCE (NM)		100	250	500	750	1000	1250	1500	

TABLE 61

ENERGY EFFICIENCY PARAMETERS VS. DISTANCE - OPTIMUM N80-2.15 AIRCRAFT

58 PERCENT LOAD FACTOR

BTU/NM	DISTANCE (NM)	DOC ₁₅	DOC ³⁰	DOC 80	BLOCK FUEL
	100	799,800	799,800	799,800	799,800
	250	528,200	520,800	505,900	498,400
	500	442,600	412,900	398,000	390,600
	750	409,200	384,400	365,800	352,100
	1,000	395,200	364,500	347,800	332,900
	1,250	386,800	357,100	338,500	319,900
	1,500	381,900	349,600	333,500	314,900
ASNM/GAL	DISTANCE (NM)	DOC ₁₅	DOC ³⁰	DOC 60	BLOCK FUEL
	100	31.79	31.79	31.79	31.79
	250	48.13	48.81	50.25	51.00
	500	57.43	61.57	63.87	65.09
	750	62.13	66.14	69.50	72.19
	1,000	64.32	69.73	73.09	76.36
	1,250	65.71	71.19	75.10	79.47
	1,500	66.56	72.70	76.22	80.72
BTU/ASNM	DISTANCE (NM)	DOC 15	DOC ³⁰	DOC 60	BLOCK FUEL
	100	3,979	3,979	3,979	3,979
	250	2,628	2,591	2,517	2,480
	500	2,202	2,054	1,980	1,943
	750	2,036	1,912	1,820	1,752
	1,000	1,966	1,814	1,730	1,656
	1,250	1,925	1,777	1,684	1,592
	1,500	1,900	1,740	1,660	1,567

5.4 N80-2.30 Series Aircraft

Each member of the Model N80-2.30 series is characterized by four wing-mounted engines, a capacity of 201 passengers, and a design range of 3,000 nautical miles.

5.4.1 Configuration Trade Studies

Like the previous N80-2.15, the baseline N80-2.30 aircraft was sized for minimum DOC at three fuel prices (15, 30, and 60 cents per gallon) and also for minimum block fuel. Charts of optimum aircraft geometry versus cruise Mach number are presented in Figures 67, 68, 69 for the minimum DOC aircraft. Because of experience gained from the N80-2.15 studies, Mach numbers below 0.75 were not evaluated for the minimum DOC configurations. The same general geometry trends appear as described for the N80-2.15 aircraft. The effect on DOC of not choosing the design cruise Mach number for an absolute minimum DOC airplane is again very small as shown in Figure 70. In Figure 70, each solid line represents relative DOC for an aircraft operating at the fuel price for which it was optimized. Figure 71 shows the effect on DOC of optimizing the aircraft for a fuel price different from the operating fuel price. It is shown that between 0.80 to 0.85 Mach number, neither design fuel price nor design cruise Mach number greatly effects DOC. However, the DOC penalty associated with optimizing for too low a fuel price is greater than the DOC penalty associated with optimizing for too high a fuel price.

The sizing chart for the minimum block fuel aircraft is shown in Figure 72. The cruise Mach number, aspect ratio, and sweep were chosen for reasons previously discussed in Section 5.3.1.

5.4.2 Optimum Design Characteristics and Geometry

Plan views of the resultant optimum airplanes are shown in Figure 73. A summary of the N80-2.30 characteristics is given in Table 62. The effect of increased range has resulted in optimum N80-2.30 airplanes with larger wing areas than the N80-2.15 airplanes. The N80-2.30 aircraft are heavier because of their increased range capability; therefore, larger wing areas are required to meet the specified approach speeds. Additional design data is given in Table 63, and a weight statement for the airplanes is given in Table 64. The variation of optimum geometry with fuel price is presented in Figure 74. This variation is almost identical to the N80-2.15 results.

5.4.3 Energy Efficiency

The variation of block time and block fuel with range at 58 percent load factor is presented in Figure 75. The energy efficiency parameters (BTU/NM, ASNM/GAL, BTU/ASNM) of the N80-2.30 series at an operational load factor of 58 percent are presented in Figure 76. The optimum range for fuel efficiency appears to be about 2,500 nautical miles. These results are also tabulated in Tables 65 and 66.

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE 15 CENTS PER GALLON FUEL

- ⊙ Swept Wing Design
- □ Straight Wing Design

FIGURE 67. N80-2.30₁₅ OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE 30 CENTS PER GALLON FUEL

FIGURE 68. N80-2.3030 OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE 60 CENTS PER GALLON FUEL

FIGURE 69. N80-2.3060 OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE DOC VS. CRUISE MACH NUMBER

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE

Note: All Points Optimized

FIGURE 70. RELATIVE DOC VS. CRUISE MACH NUMBER AND FUEL PRICE FOR OPTIMUM GEOMETRY N80-2.30 AIRCRAFT

FIGURE 71. EFFECT OF DESIGN CRUISE MACH NUMBER ON DOC

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE MINIMUM BLOCK FUEL

⊙ Swept Wing Design

FIGURE 72. N80-2.30_{MF} OPTIMUM AIRCRAFT GEOMETRY AND RELATIVE FUEL USE VS. CRUISE MACH NUMBER

FIGURE 73. PLAN VIEWS OF OPTIMIZED N80-2.30 AIRCRAFT

TABLE 62

OPTIMUM N80-2.30 AIRCRAFT CHARACTERISTICS

4 CFM-56 Type Engines, 201 Passengers, 3,000 NM Range

		OPTIMIZATION PARAMETER	PARAMETER	
	D0C ₁₅	00C ₃₀	09 ₂₀₀	BLOCK FUEL
				0
Tabace Weight	279,800	275,700	271,500	2/4,300
4. 	156,000	157,400	157,500	164,700
3::6:0	0.85	0.82	0.78	0.70
Cruise Mach Number	6.52	6.74	7.05	7.77
	69.660	65,190	61,550	58,150
	06.79	6,877	7,660	8,000
reng ti	125	125	125	116
	02:	18,590	16,580	13,980
Thrust Per Engine Uninstalled	2000))	•	
Direct Operating Cost (1) ¢/Seat-NM	1	L	760 [1 335
@ 15¢ Per Gallon	1.19/	cnz.1	(67)) L
a 204 Don Gallon	1.429	1,427	1,448	. 535
6 504 Dow Gallon	1,908	1,879	1.872	1.937
g bot rer callon				
Geometry	7 0	0	11.0	15.5
	36.7	33.0	30.7	3.2(2)
Quarter Chord Sweep	0 1418	0.137	0.136	0.130
Average inickness-10-unord Katio	0 30	0,30	0.30	0.30
Taper Ratio		2,215	2,150	2,250
RTI		1,962	1,879	1,832
Fuel Use @ 1,000 NM				

(1) At Design Range, 100 Percent Load Factor (2) Straight Rear Spar

TABLE 63

N80-2,30 DESIGN DATA

			OPTIMIZATION PARAMETER	PARAMETER	
DESIGN ITEMS	1	DOC ₁₅	D0C30	DOC 60	BLOCK FUEL
() () () () () () () () () ()	2+5	2,286	2,215	2,150	2,250
Wing Area - Trapezoluai	3	7.8	9.6	11.0	15.5
wing Aspect Ratio	Ded	36.5	33.0	30,7	3.20
wing sweep & c/ +	n)	30	.30	.30	.30
wing laber wacio	PSF	122,4	124.5	126.3	122.1
Willy Loading		.142	.137	.136	.130
Willy interness sacio	Ft2	443/429	381/438	340/442	307/490
HOFIZOHEAI/ VELETCAI TATI TOTAL	a L	814/750	814/750	814/750	814/750
HOFIZORICAL/Vertical Tail Volume Coeff.		.700/.088	.700/.085	.700/.084	.700/.073
		.296	.270	.244	.207
ווותסר/ אפוקור יימנוס		.295	.280	.268	.249
ביים ביים ביים ביים ביים ביים ביים ביים	Ţ	1,810	1,810	1,810	1,810
ruserage Lengton		22/179	22/179	22/179	22/179
ers (isc ciass/				4	4
No. of Engines		 _	-	•	

TABLE 64
N80-2.30 WEIGHT DATA (LB)

WEIGHT ITEMS	ОР	TIMIZATION	PARAMETER	
WEIGHT ITEMS	DOC 15	DOC 30	DOC 60	BLOCK FUEL
Wing	29,874	34,306	37,276	47,139
Horizontal Tail	1,969	1,716	1,562	1,423
Vertical Tail	1,812	1,873	1,906	2,113
Fuselage	29,297	29,308	29,313	29,026
Landing Gear	11,536	11,367	11,192	11,320
Flight Controls & Hydraulics	4,185	4,008	3,868	3,996
Propulsion System	25,530	22,957	20,475	17,522
Fuel System	1,040	1,136	1,198	1,455
Auxiliary Power Unit	1,312	1,312	1,312	1,312
Instruments	936	916	905	890
Air Conditioning & Pneumatics	2,852	2,852	2,852	2,852
Electrical System	4,037	4,037	4,037	4,037
Avionics	2,215	2,215	2,215	2,215
Furnishings	25,512	25,512	25,512	25,512
Anti-Ice	621	614	607	617
Handling Gear	82	81	80	81
Manufacturer's Empty Weight	142,810	144,210	144,310	151,510
Operator Items	13,190	13,190	13,190	13,190
Operational Empty Weight	156,000	157,400	157,500	164,700
Payload	40,200	40,200	40,200	40,200
Zero Fuel Weight	196,200	197,600	197,700	204,900
Fuel	83,600	78,100	73,800	69,400
Takeoff Gross Weight	279,800	275,700	271,500	274,300

MODEL N80-2.30 201 PASSENGERS, 3000 NM RANGE

Swept Wing DesignStraight Wing Design

FIGURE 74. EFFECT OF FUEL PRICE ON N80-2.30 OPTIMUM AIRCRAFT GEOMETRY AND CRUISE MACH NUMBER

MODEL N80-2.30

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

FIGURE 75. BLOCK TIME AND BLOCK FUEL VS. RANGE - OPTIMUM N80-2.30 AIRCRAFT

! DEL N80-2.30

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

FIGURE 76. ENERGY EFFICIENCY PARAMETERS VS. RANGE OPTIMUM N80-2.30 AIRCRAFT

TABLE 65

BLOCK TIME AND BLOCK FUEL VS. DISTANCE

OPTIMUM N80-2.30 AIRCRAFT

58 PERCENT LOAD FACTOR

							į.	
DISTANCE		BLOCK 7	TIME (R)			BLUCK FUEL (LB)	ruer 3)	
(WN)	D0C _{1 5}	D0C ₃₀	09°C60	BLOCK FUEL	DOC ₁₅	DOC30	0900	BLOCK FUEL
	2							1
100		09.	09.	09.	2,300	2,300	5,300	2,300
) C	6	06	.91	.91	8,000	000*8	8,000	8,000
7 7	2	1,41	1.42	1.51	12,800	12,200	11,900	11,800
200	ρ	1 93	2.00	2.15	17,700	16,800	16,000	15,700
7555	5 .	2 47	2.56	2.78	22,300	21,200	20,300	19,800
0001	14.7 - 1	7 · · · ·	3.69	4.02	32,300	30,700	28,900	28,000
1500	0,40	י ק ה	4.80	5.27	42,800	40,200	37,900	36,300
2000		5.68	5.94	6.50	53,050	50,050	47,100	45,050
0008	6.52	6.74	7.05	7.77	64,700	009,09	57,100	54,100
)								

TABLE 66

ENERGY EFFICIENCY PARAMETERS VS. DISTANCE - OPTIMUM N80-2.30 AIRCRAFT
58 PERCENT LOAD FACTOR

BTU/NM	DISTANCE (NM)	DOC ₁₅	DOC ₃₀	DOC ₆₀	BLOCK FUEL
-	100	985,800	985,800	985,800	985,800
	250	595,200	595,200	595,200	595,200
	500	476,100	453,800	442,600	438,900
	750	438,900	416,600	396,800	389,300
	1,000	414,700	394,300	377,500	368,200
	1,500	400,500	380,600	358,300	347,200
	2,000	398,000	373,800	352,400	337,500
•	2,500	394,600	372,300	350,400	335,100
	3,000	401,100	375,700	354,000	335,400
ASNM/GAL	DISTANCE (NM)	DOC ₁₅	DOC30	DOC ₆₀	BLOCK FUEL
	100	25.79	25.79	25.79	25.79
	250	42.71	42.71	42.71	42.71
	500	53.39	56.02	57.43	57.92
	750	57.92	61.02	64.07	65.29
	7,000	61,29	64.47	67.33	69.03
	1,500	63.47	66.78	70.94	73.22
	2,000	63,87	68.00	72.13	75.31
	2,500	64.41	68.27	72.55	75.85
	3,000	63.38	67.66	71.81	75.79
BTU/ASNM	DISTANCE (NM)	DOC15	D0C30	DOC ₆₀	BLOCK FUEL
	100	4,904	4,904	4,904	4,904
	250	2,961	2,961	2,961	2,961
	500	2,369	2,258	2,202	2,184
	750	2,184	2,073	1,974	1,937
	1,000	2,064	1,962	1,879	1,832
	1,500	1,993	1,894	1,783	1,727
	2,000	1,980	1.860	1,754	1,680
	2,500	1,964	1,853	1,743	1,668
	3,000	1,996	1,869	1,761	1,669

5.5 N80-2.55 Series Aircraft

Each member of the Model N80-2.55 series is characterized by four wing-mounted engines, a capacity of 201 passengers, and an intercontinental range of 5,500 nautical miles.

5.5.1 Configuration Trade Studies

Due to the relative insensitivity of optimum geometry and optimum cruise Mach number to variations in range at each fuel price, no additional geometric trade studies were performed on the N80-2.55 series. The geometries were chosen from the N80-2.30 study. Configurations were sized for minimum DOC at two fuel prices (30 and 60 cents per gallon) and for minimum block fuel.

5.5.2 Optimum Design Characteristics

Plan views of the resulting intercontinental aircraft are shown in Figure 77. The N80-2.55 characteristics are summarized in Table 67. Additional design and weight data for these aircraft are given in Tables 68 and 69, respectively.

5.5.3 Energy Efficiency

The variation in block time and block fuel with range at 58 percent load factor is presented in Figure 78. The energy efficiency parameters (BTU/NM, ASNM/GAL, BTU/ASNM) of the N80-2.55 series at 58 percent load factor are shown in Figure 79. The optimum range for maximum fuel efficiency appears to be about 2,100 to 2,500 nautical miles. These results also appear in tabular form in Tables 70 and 71.

FIGURE 77. PLAN VIEWS OF OPTIMIZED N80-2.55 AIRCRAFT

TABLE 67

OPTIMUM N80-2.55 AIRCRAFT CHARACTERISTICS

4 CFM-56 Type Engines, 201 Passengers, 5,500 NM Range

	<u></u>	- OF	OPTIMIZATION PARAMETER	R
	d	DOC30	09 ₂₀₀	BLOCK FUEL
	4-	375,100	367,500	386,900
lakeort uross weight	- E	184,400	000,981	208,900
Operational Employ Weight		0,82	0.78	0.70
Cruise Macri Number	L.	12,05	12.64	14.00
Block time (1)		136,060	127,590	124,330
DIUCK 1 461 (1)	ىب	8,216	8,850	8,316
	KEAS	117.5	116.1	103.6
ine Uninstalled	1.b	22,720	20,240	17,780
Direct Operating Cost (1) ¢/Seat-NM	t-NM			
の 1 m + Dox Call 2 m - Dox Call 2		1,309	1,349	1,511
יים דים שים דים פי	-	1.567	1,591	1.749
G 50¢ Per dallon		2,082	2,074	2,225
g 60¢ Per dallon				
Geometry		u c] 22 22
Aspect Ratio		0.0	- 00	3 9(2)
Quarter Chord Sweep	Deg	33	2000	7 .
Average Thickness-To-Chord Ratio		0.137	0.136	0.13
		0.30	0.30	0.30
Tapes nacio.	Ft2	2,850	2,850	3,410
NM	BTU/ASNM	2,128	2,017	2,017

^{(1) 100} Percent Load Factor at Design Range(2) Straight Rear Spar(3) Fuel Volume Limited

TABLE 68

N80-2,55 DESIGN DATA

BLOCK FUEL 1,810 22/179 3,410 113.4 814/750 .184 .354 572/682 .30 .130 .700/.054 OPTIMIZATION PARAMETER 22/179 1,810 814/750 .220 .382 128.9 .136 519/534 .700/.066 2,850 11.0 30.7 09 000 1,810 22/179 814/750 131.6 .242 .399 2,850 9.0 33.0 556/517 000^{30} .30 .137 ,700/,068 Ft^2 Deg Ft² In 드 Horizontal/Vertical Tail Volume Coeff. No. of Passengers (1st Class/Coach) Horizontal/Vertical Tail Area Horizontal/Vertical Tail Arm DESIGN ITEMS Wing Area - Trapezoidal Wing Thickness Ratio Thrust/Weight Ratio Wing Aspect Ratio Wing Sweep @ C/4 Wing Taper Ratio Fuselage Length No. of Engines Fuel Fraction Wing Loading

TABLE 69
N80-2.55 WEIGHT DATA (LB)

LIPTOUT TTEMS	OPTIMI	ZATION PARAMET	ER
WEIGHT ITEMS	DOC ₃₀	DOC ₆₀	BLOCK FUEL
Wing	48,531	53,650	76,907
Horizontal Tail	2,441	2,258	2,385
Vertical Tail	2,340	2,411	3,042
Fuselage	30,165	30,099	29,767
Landing Gear	15,521	15,203	16,014
Flight Controls & Hydraulics	5,162	5,125	6,088
Propulsion System	28,067	25,003	21,962
Fuel System	1,289	1,379	1,791
Auxiliary Power Unit	1,312	1,312	1,312
Instruments	975	. 965	972
Air Conditioning & Pneumatics	2,852	2,852	2,852
Electrical System	4,037	4,037	4,037
Avionics	2,215	2,215	2,215
Furnishings	25,512	25,512	25,512
Anti-Ice	681	• 681	740
Handling Gear	110	108	114
Manufacturer's Empty Weight	171,210	172,810	195,710
Operator Items	13,190	13,190	13,190
Operational Empty Weight	184,400	186,000	208,900
Payload	40,200	40,200	40,200
Zero Fuel Weight	224,600	226,200	249,100
Fuel	150,500	141,300	137,800
Takeoff Gross Weight	375,100	367,500	386,900

MODEL N80-2.55

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

FIGURE 78. BLOCK TIME AND BLOCK FUEL VS. RANGE OPTIMUM N80-2.55 AIRCRAFT

RANGE (NM)

MODEL N80-2.55

- DESIGN FLIGHT PROFILE (FIGURE 51) 58% LOAD FACTOR

ENERGY EFFICIENCY PARAMETERS VS. RANGE FIGURE 79. OPTIMUM N80-2.55 AIRCRAFT

TABLE 70

BLOCK TIME AND BLOCK FUEL VS. DISTANCE

OPTIMUM N80-2.55 AIRCRAFT

58 PERCENT LOAD FACTOR

.UEL		50 BLOCK FUEL	000 9 00	00 8,500		·	000 21,800	31,200	100 40,800	300 61,800	700 83,200	105,500	117,600	
BLOCK FUEL	(m)	09 ₀₀₀	000*9	8,600	13,200	17,400	21,800	31,200	40,800	008,19	83,700	106,700	119,400	
		00030	000,9	8,800	13,300	18,000	23,000	33,300	43,700	65,600	89,200	114,200	127,300	
		BLOCK FUEL	0.67	1.04	1.66	2.28	2,90	4.14	5.38	7,86	10.34	12.82	14.06	
BLOCK TIME	(HR)	0900	0 65	86 0	1,54	2.09	2,65	3.76	4.87	7.10	3 0	11.55	12,66	
		00030	63	0 0	1 48	- 10 6	. c.	- C - C - C - C - C - C - C - C - C - C	3.59	4,00	77.0	0.0	12.07	
	DISTANCE	(WN)		001	250	200	ng/	000°1	1,500	2,000	3,000	4,000	5,000	nne e c

TABLE 71

ENERGY EFFICIENCY PARAMETERS VS. DISTANCE - OPTIMUM N80-2.55 AIRCRAFT
58 PERCENT LOAD FACTOR

BTU/NM	DISTANCE(NM)	DOC30	DOC ₆₀	BLOCK FUEL
	100	1,116,000	1,116,000	1,116,000
	250	654,700	639,800	632,400
	500	494,700	491,000	491,000
	750	446,400	431,500	431,500
	7,000	427,800	405,400	405,400
	1,500	412,900	386,800	386,800
	2,000	406,400	379,400	379,400
	3,000	406,700	383,100	383,100
	4,000 ·	414,700	389,200	386,800
	5,000	424,800	396,900	392,400
	5,500	430,500	403,700	397,700
ASNM/GAL	DISTANCE(NM)	DOC30	DOC ₆₀	BLOCK FUEL
	100	22.78	22.78	22.78
	250	38.83	39.73	40.20
	500	51.38	51.77	51.77
	750	56.95	58.91	58.91
	1,000	59.43	· 62.70	62.70
	1,500	61.57	65.71	65.71
	2,000	62.55	67.00	67.00
	3,000	62.51	66.35	66.35
	4,000	67.29	65.32	65.71
	5,000	59.84	64.05	64.78
	5,500	59.05	62.96	63.92
BTU/ASNM	DISTANCE(NM)	DOC ₃₀	DOC ₆₀	BLOCK FUEL
	100	5,552	5,552	5,552
	250	3,257	3,183	3,146
	500	2,461	2,443	2,443
	750	2,227	2,147	2,147
	1,000	2,128	2,017	2,017
	1,500	2,054	1,925	1,925
	2,000	2,022	1,888	1,888
	3,000	2,023	1,906	1,906
	4,000	2,064	1,936	1,925
	5,000	2,114	1,975	1,953
	5,500	2,142	2,009	1,979

5.6 N80-4.30 Series Aircraft

Each member of the Model N80-4.30 series is characterized by four wing-mounted engines, a capacity of 404 passengers, and a range of 3,000 nautical miles.

5.6.1 Configuration Trade Studies

Based upon the results of the N80-2.15 and N80-2.30 trade studies, a general variation of optimum geometry and cruise Mach number with fuel price was derived. Due to the weak sensitivity of DOC to geometry changes, as determined earlier for the N80-2.15 and N80-2.30 series, this general variation (Figure 80) was assumed to be valid for the N80-4.30 series. The configurations were sized for minimum DOC at three fuel prices (15, 30, and 60 cents per gallon) and also for minimum block fuel.

5.6.2 Optimum Design Characteristics

Plan views of the resulting N80-4.30 aircraft are shown in Figure 81. A summary of the optimum characteristics is given in Table 72. Additional design data is given in Table 73, and a weight statement appears in Table 74.

5.6.3 Energy Efficiency

The variation of block time and block fuel with range at 58 percent load factor is presented in Figure 82. The energy efficiency parameters (BTU/NM, ASNM/GAL, BTU/ASNM) of the N80-4.30 series at 58 percent load factor are presented in Figure 83. The optimum range for maximum fuel efficiency appears to be about 2,000 to 2,500 nautical miles. The results are also given in tabular form in Tables 75 and 76.

MODEL N80-4.30 404 PASSENGERS, 3000 NM RANGE

FIGURE 80. EFFECT OF FUEL PRICE ON N80-4.30 OPTIMU: IRCRAFT GEOMETRY AND CRUISE MACH NUMBER

TABLE 72

OPTIMUM N80-4.30 AIRCRAFT CHARACTERISTICS

4 CF6-6D Type Engines, 404 Passengers, 3,000 NM Range

		OPTIMIZATION PARAMETER	I PARAMETER	
	DOC ₁₅	DOC 30	0900	BLOCK FUEL
	527.400	519,100	517,200	548,200
Takeoff Gross Weight	301.400	304,700	309,100	345,300
weignt	0.85	0.82	0.79	0.70
Cruise Mach Number	6.52	6.78	96*9	7.77
	121,910	111,740	106,420	102,960
	000.6	000,6	000,6	000.6
Lengtn	123	125	125	115
Approach Speed	35,830	32,120	29,600	27,600
Direct Operating Cost (1)	0.00	0 846	0.857	0.959
@ 15¢ Per Gallon	. C.	1,036	1.038	1.136
@ 30¢ Per Gallon	1.464	1.416	1.400	1,489
6 60¢ Per dallon				
Geometry	7.75	9.5	11.0	15.5
Aspect Ratio	35.5	32.5	29.0	3.2(4)
(•)	0.144	0.140	0.139	0,135
Average Thickness-to-Chord Katlo	0.30	0.30	0.30	0.30
Taper Ratio	4,240	4,030	3,950	4,500
Wing Area Fuel Use @ 1,000 NM BTU/ASNM	1,740	1,611	1,542	1,533

(1) At Design Range, 100 Percent Load Factor (2) Straight Rear Spar

TABLE 73

N80-4,30 DESIGN DATA

		OPTIMIZATION PARAMETER	I PARAMETER	
DESIGN ITEMS	00015	DOC 30	09000	BLOCK FUEL
Wing Area - Trapezoidal Wing Aspect Ratio Wing Sweep @ C/4 Wing Taper Ratio Wing Loading Wing Thickness Ratio Horizontal/Vertical Tail Arm Horizontal/Vertical Tail Arm In Horizontal/Vertical Tail Olume Coeff. Thrust/Weight Ratio Fuel Fraction Fuel Fraction Fuel Fraction No. of Passengers (1st Class/Coach) No. of Engines	4,240 7.8 35.5 .30 124.4 .144 677/560 1,350/1,260 .700/.076 .272 .272 .272 .271 2,750 42/362	4,030 9.5 32.5 .30 128.8 .140 566/566 1,350/1,260 .700/.075 .247 .253 2,750 42/362	3,950 11.0 29.0 .30 130.9 .139 511/577 1,350/1,260 .700/.074 .229 .242 2,750 42/362	4,500 15.5 3.20 .30 121.8 .135 523/692 1,350/1,260 .700/.061 .201 .219 2,750 42/362

TABLE 74

N80-4.30 WEIGHT DATA (LB)

		OPTIMIZAT	ION PARAMETE	R
WEIGHT ITEMS	DOC ₁₅	DOC 30	DOC 60	BLOCK FUEL
Wing	68,266	77,451	85,319	121,249
Horizontal Tail	2,799	2,334	2,112	2,113
Vertical Tail	2,506	2,586	2,670	3,216
Fuselage	56,434	56,293	56,197	55,764
Landing Gear	21,890	21,540	21,465	22,762
Flight Controls & Hydraulics	6,991	6,571	6,401	7,227
Propulsion System	44,054	39,447	36,398	33,944
Fuel System	1,412	1,524	1,624	2,057
Auxiliary Power Unit	1,380	7,380	1,380	1,380
Instruments	1,771	1,701	1,670	1,657
Air Conditioning & Pneumatics	6,549	6,549	6,549	6,549
Electrical System	8,126	8,126	8,126	8,126
Avionics	2,215	2,215	2,215	2,215
Furnishings	52,805	52,805	52,805	52,805
Anti-Ice	827	805	797	855
Handling Gear	<u> </u>	<u>153</u>	<u>152</u>	161
Manufacturer's Empty Weight	278,180	281,480	285,889	322,080
Operator Items	23,220	23,220	23,220	23,220
Operational Empty Weight	301,400	304,700	309,100	345,300
Payload	80,800	80,800	80,800	80,800
Zero Fuel Weight	382,200	385,500	389,900	426,100
Fuel	145,200	133,600	127,300	122,100
Takeoff Gross Weight	527,400	519,100	517,200	548,200

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

FIGURE 82. BLOCK TIME AND BLOCK FUEL VS. RANGE OPTIMUM N80-4.30 AIRCRAFT

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

ENERGY EFFICIENCY PARAMETERS VS. RANGE FIGURE 83. OPTIMUM N80-4.30 AIRCRAFT

TABLE 75

BLOCK TIME AND BLOCK FUEL VS. DISTANCE

OPTIMUM N80-4.30 AIRCRAFT 5' PERCENT LOAD FACTOR

BLOCK FUEL (LB)	FUEL	6,800	11,300	18,800	26,000	33,300	48,200	63,500	79,200	95,700
	BLOCK FUEL	. 6,	֝֝֝֝֡֟֝֝֟֝֟֝	18,	26,	33,	48,	63	79	95,
	DOC ₆₀	6,800	11,400	18,800	26,100	33,500	48,800	64,500	80,400	97,900
	DOC30	6,800	11,600	19,500	27,300	35,000	51,200	67,800	84,800	102,800
	DOC ₁₅	008*9	12,000	20,700	29,100	37,800	55,200	73,400	92,000	112,000
	BLOCK FUEL	.55	.93	1.55	2.18	2.80	4.05	.5.28	6.52	77.77
	DOCES	. 55	.92	1.46	2.03	2.57	3.67	4.76	5.87	96*9
	00°30	. 55	. 89	1.44	1.97	2.50	3,58	4.63	5.69	6.78
	21,000	. 55	88.	1.38	1.90	2.42	3.44	4.48	5.50	6.52
DISTANCE (NM)		100	250	200	750	1000	1500	2000	2500	3000

TABLE 76

ENERGY EFFICIENCY PARAMETERS VS. DISTANCE - OPTIMUM N80-4.30 AIRCRAFT

58 PERCENT LOAD FACTOR

BTU/NM	DISTANCE (NM)	DOC ₇₅	DOC 30	DOC 60	BLOCK FUEL
	00 [1,264,800	1,264,800	1,264,800	1,264,800
	250	892,800	863,000	848,100	840,700
	500	770,000	725,400	699,300	699,300
	750	721,600	677,000	647,200	644,800
	1,000	703,000	651,000	623,100	619,300
	7,500	684,400	634,800	605,100	597,600
	2,000	682,500	630,500	599,800	590,500
	2,500	684,400	630,900	598,100	589,200
	3,000	694,400	637,300	606,900	593,300
ASNM/GAL	DISTANCE (NM)	DOC ₁₅	DOC ³⁰	DOC 60	BLOCK FUEL
	100	40.40	40.40	40.40	40.40
	250	57.23	59.27	60.25	60.78
	500	66.36	70.44	73.06	73.06
	750	70.80	75.47	78.94	79.25
	1,000	72.68	78.49	82.07	82,50
	1,500	74.65	80.48	84.44	85.49
	2,000	74.86	81.04	85.18	86.53
	2,500	74.65	80.99	85.42	86.72
	3,000	73.59	80.17	84.18	86.12
BTU/ASNM	DISTANCE (NM)	DOC ₁₅	DOC 30	DOC 60	BLOCK FUEL
	100	3,131	3,731	3,131	3,131
	250	2,210	2,136	2,099	2,081
	500	1,906	1,796	1,731	1,731
	750	1,786	1,676	7,602	1,596
	1,000	1,740	1,611	1,542	1,533
	1,500	1,694	1,571	1,498	1,479
	2,000	1,690	1,561	1,485	1,462
	2,500	1,694	1,562	1,481	1,459
	3,000	1,719	1,578	1,502	1,469

5.7 N80-4.55 Series Aircraft

Each member of the Model N80-4.55 series is characterized by four wing-mounted engines, a 404 passenger seating capacity, and an intercontinental range of 5,500 nautical miles.

5.7.1 Configuration Trade Studies

Due to the relative insensitivity of optimum geometry and optimum cruise Mach numbers to variations in range, no additional geometry optimization trades were conducted for the N80-4.55 series. The geometries were chosen from the N80-4.30 results. The configurations were sized for minimum DOC at two fuel prices (30 and 60 cents per gallon) and minimum block fuel.

5.7.2 Optimum Design Characteristics

Plan views of the resulting N80-4.55 intercontinental aircraft are shown in Figure 84. A summary of the characteristics of the series is given in Table 77, and additional design and weight data for these aircraft are given in Tables 78 and 79.

5.7.3 Energy Efficiency

The variation of block time and block fuel with range at 58 percent load factor is presented in Figure 85. The energy efficiency parameters (BTU/NM, ASNM/GAL, BTU/ASNM) of the N80-4.55 aircraft at 58 percent load factor are presented in Figure 86. The optimum range for maximum fuel efficiency appears to be about 3,000 nautical miles. These results are also tabulated in Tables 80 and 81.

FIGURE 84. PLAN VIEWS OF OPTIMIZED N80-4.55 AIRCRAFT

TABLE 77

OPTIMUM N80-4.55 AIRCRAFT CHARACTERISTICS

4 CF6-6D Type Engines, 404 Passengers, 5,500 NM Range

s Weight Lb 704,700 70 Empty Weight Lb 361,200 36 Number			0	OPTIMIZATION PARAMETER	TER
ight Lb 704,700 70 ight Lb 361,200 36 er Hr 12.12 Lb 238,170 ength Ft 11,000 1 KEAS 118.4 e Uninstalled Lb 40,240 3 cost (1) ¢/Seat-NM 0.947 on 1.169 on 1.169 on 1.169 ess-To-Chord Ratio 0.140 Eth 32.5 Sweep 0.30			D0C30	DOC ⁶⁰	BLOCK FUEL
er hr 12.12 Lb 238,170 ength Ft 11,000 KEAS e Uninstalled Lb 40,240 on cost (1) \$\psi/Seat-NM\$ on 1.169 on 1.612 Sweep Sweep Deg ess-To-Chord Ratio 6.30 Ft² 5.150	Takeoff Gross Weight	ГÞ	704,700	701,400	747,600
er Hr 12.12 Lb 238,170 Ength Ft 11,000 1 KEAS 118.4 e Uninstalled Lb 40,240 3 Cost (1) ¢/Seat-NM 0.947 on 1.169 on 1.612 on 1.612 Sweep Deg 32.5 Sweep 0.30 Ft² 5,150	Operational Empty Weight	ГÞ	361,200	368,400	420,400
Hr 12.12 238,170 22	Cruise Mach Number		0.82	0.79	0.70
Lb 238,170 22 Ength Ft 11,000 1 KEAS 118.4 e Uninstalled Lb 40,240 3 Cost (1) \$\psi/Seat-NM\$ 0.947 on 1.169 on 1.612 Sweep Deg 32.5 css-To-Chord Ratio 0.30 Ft² 5,150	Block Time (1)	뀨	12,12	12,48	13,95
ength Ft 11,000 1	Block Fuel (1)	Lb	238,170	228,690	223,880
KEAS 118.4 13.4 10.240 3 40.240 3 40.240 3 40.947 1.169 1.169 1.612 9.5 9.5 9.5 9.5 9.5 9.5 9.140 0.140 0.30 1.160	Critical Field Length	יח	11,000	11,000	11,000
ne Uninstalled Lb 40,240 3 g Cost (1) ¢/Seat-NM 0.947 lon lon lon lon lon lon lon lon len lon lon lon lon lon lon lon lon lon lo	Approach Speed	KEAS	118.4	118.1	112.0
\$\psi/Seat-NM\$ 0.947 1.169 1.612 1.612 9.5 Peg 32.5 rd Ratio 0.30 Ft² 5.150	Thrust Per Engine Uninstalled	Гр	40,240	37,290	35,160
Per Gallon 0.947 Per Gallon 1.169 Per Gallon 1.612 Ratio 9.5 r Chord Sweep 32.5 e Thickness-To-Chord Ratio 0.140 Ratio 6.30 Ratio 5.150	Direct Operating Cost (1)	¢/Seat-NM	***		
Per Gallon 1.169 Per Gallon 1.612 Ratio 9.5 r Chord Sweep 32.5 e Thickness-To-Chord Ratio 0.140 Ratio 6.30 Ratio 5.150	@ 15¢ Per Gallon		0.947	0.968	1,100
Per Gallon 1.612 Ratio 9.5 r Chord Sweep 32.5 e Thickness-To-Chord Ratio 0.140 Ratio 0.30 rea 5.150	@ 30¢ Per Gallon		1.169	1.182	1,311
Ratio 9.5 r Chord Sweep 32.5 e Thickness-To-Chord Ratio 0.140 Ratio 0.30 rea Ft² 5.150	@ 60¢ Per Gallon		1,612	1.610	1,735
9.5 Deg 32.5 D-Chord Ratio 0.140 Ft ² 5.150	Geometry		•		
Deg 32.5 5.75 0.30 Ft ² 5.150	Aspect Ratio		9.5	11.0	15.5
o.140 0.140 0.30 0.30 Ft. ² 5.150	Quarter Chord Sweep	Deg	32.5	29.0	3.2(4)
0.30 F± ² 5.150	Average Thickness-To-Chord Rat	ìo	0.140	0,139	0.135
F±2 5,150	Taper Ratio		0.30	0.30	0.30
	Wing Area	Ft^2	5,150	5,050	2,600
Fuel Used @ 1,000 NM BTU/ASNM 1,842	Fuel Used @ 1,000 NM	BTU/ASNM	1,842	1,846	1,848

(1) At Design Range, 100 Percent Load Factor (2) Straight Rear Spar

TABLE 78 N80-4.55 DESIGN DATA

		OPTIM:	OPTIMIZATION PARAMETER	ER
DESIGN ITEMS		DOC ³⁰	09 ₀₀₀	BLOCK FUEL
Wing Area - Trapezoidal	Ft ²	5,150	5,050	5,600
Wing Aspect Ratio		9.5	11.0	15,5
Wing Sweep @ C/4	Deg	32,5	29.0	3.20
Wing Taper Ratio		.30	.30	.30
Wing Loading	PSF	136.8	138.9	133,5
Wing Thickness Ratio		.140	.139	.135
Horizontal/Vertical Tail Area	Ft^2	818/676	738/692	726/837
Horizontal/Vertical Tail Arm	In	1,350/1,260	1,350/1,260	1,350/1,260
Horizontal/Vertical Tail Volume Coeff.		.700/.062	.700/.067	.700/.053
Thrust/Weight Ratio		.228	.213	.188
Fuel Fraction		.370	.357	.327
Fuselage Length	In	2,750	2,750	2,750
No. of Passengers (1st Class/Coach)		42/362	42/362	42/362
No. of Engines		4	4	4

TABLE 79
N80-4.55 WEIGHT DATA (LB)

	OPTIMIZATION PARAMETER					
WEIGHT ITEMS	DOC 30	^{DOC} 60	BLOCK FUEL			
Wing	109,934	121,584	172,925			
Horizontal Tail	3,458	3,064	2,930			
Vertical Tail	3,330	3,459	4,302			
Fuselage	58,245	57,979	57,329			
Landing Gear	29,303	29,169	31,094			
Flight Controls and Hydraulics	8,449	8-,223	9,054			
Propulsion System	49,478	45,863	43,215			
Fuel System	1,723	1,836	2,295			
Auxiliary Power Unit	1,380	1,380	1,380			
Instruments	1,855	1,809	1,771			
Air Conditioning & Pneumatics	6,549	6,549	6,549			
Electrical System	8,126	8,126	8,126			
Avionics	2,215	2,215	2,215			
Furnishings	52,805	52,805	52,805			
Anti-Ice	923	913	971			
Handling Gear	207	206	219			
Manufacturer's Empty Weight	337,980	345,180	397,180			
Operator Items	23,220	23,220	23,220			
Operational Empty Weight	361,200	368,400	420,400			
Payload	80,800	80,800	80,800			
Zero Fuel Weight	442,000	449,200	501,200			
Fuel	262,700	252,200	246,400			
Takeoff Gross Weight	704,700	701,400	747,600			

MODEL N80-4.55

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 58% LOAD FACTOR

FIGURE 85. BLOCK TIME AND BLOCK FUEL VS. RANGE OPTIMUM N80-4.55 AIRCRAFT

FIGURE 86. ENERGY EFFICIENCY PARAMETERS VS. RANGE OPTIMUM N80-4.55 AIRCRAFT

TABLE 80

BLOCK TIME AND BLOCK FUEL VS. DISTANCE - OPTIMUM N80-4.55 AIRCRAFT

58 PERCENT LOAD FACTOR

	BLOCK FUEL	8,750	13,960	22,660	31,390	40,150	57,130	73,820	109,280	147,500	188,480	210,000	
BLOCK FUEL (LB)	₀₉ 00	8,750	13,920	22,590	31,310	40,100	57,450	74,800	111,240	150,000	191,090	212,500	
	DOC30	8.750	13,860	22,470	31,180	40,000	57,660	75,560	113,420	154,000	197,320	220,000	
	BLOCK FUEL	0.52	0.90	1.52	2.14	2.76	4.00	5.24	7.73	10.21	12.70	13.94	
BLOCK TIME (HR)	DOC 60	0 63	96.0	1.5]	2.06	2,60	3.70	4.80	7.00	9.19	11.38	12,48	
	06,300	5	68 0	1.42	1.96	2.49	3.56	4.63	6.77	8,90	11.04	12.11	
DISTANCE	(WN)		100	500	750	000 L	, 500 1 500	000.6	3,000	4.000	22.5.	5,500	•

TABLE 81

ENERGY EFFICIENCY PARAMETERS VS. DISTANCE - OPTIMUM N80-4.55 AIRCRAFT
58 PERCENT LOAD FACTOR

BTU/NM	DISTANCE(NM)	DOC30	DOC ₆₀	BLOCK FUEL
}	100	1,627,500	1,627,500	1,627,500
	250	1,031,100	7,035,600	1,038,600
	500	835,800	840,300	842,900
d l	750	773,200	776,400	778,400
	1,000	744,000	745,800	746,700
	1,500	714,900	712,300	708,400
	2,000	702,700	695,600	686,500
	3,000	703,200	689,600	677,500
	4,000	716,100	697,500	685,800
	5,000	734,000	710,800	701,100
	5,500	744,000	718,600	710,100
ASNM/GAL	DISTANCE(NM)	DOC ₃₀	DOC ₆₀	BLOCK FUEL
	100	31.40	31.40	31.40
	250	49.55	49.34	49.20
	500	61.13	60.81	60.62
	750	66.08	65.81	65.64
	1,000	68.68	68.51	68.42
	1,500	71.47	71.73	72.13
	2,000	72.72	73.45	74.43
	3,000	72.66	74.09	75.42
	4,000	71.36	73.26	74.50
	5,000	69.61	71.88	72.88
	5,500	68.68	71.10	71.95
BTU/ASNM	DISTANCE(NM)	D0C30	DOC ₆₀	BLOCK FUEL
	100	4,028	4,028	4,028
	250	2,552	2,563	2,571
	500	2,069	2,080	2,087
	750	1,914	1,922	7,927
	1,000	1,842	1,846	1,848
	1,500	1,770	1,763	1,753
	2,000	1,739	1,722	1,699
	3,000	1,741	1,707	1,677
	4,000	1,773	1,726	1,698
	5,000	1,817	1,760	1,736
	5,500	1,842	1,779	1,758

5.8 Comparison of New Near-Term Aircraft
The results of the new near-term aircraft study are discussed in terms
of fuel savings, the effects of fuel price on design, and payload-range
capabilities.

5.8.1 Fuel Savings Comparison

The fuel use parameters for all of the N80 aircraft at their design ranges are shown in Figure 87. The results show the effect of design fuel price on energy efficiency. The energy efficiency penalty for long ranges is also shown. As the range increases, the payload capacity must also be increased to maintain high energy efficiencies.

The sensitivity of N80 fuel use with design fuel price is shown in Figure 88. Each curve in Figure 88 represents data at one-third of the aircraft design range, which corresponds to typical average ranges for aircraft in the domestic fleet. Fuel savings due to geometry optimization improve more gradually at the higher fuel prices. Both design fuel price and design cruise Mach number have a large effect on fuel use, as shown for the N80-2.30 at its design range in Figure 89. Note that the airplane optimized for DOC at a fuel price of 60 cents per gallon has fuel efficiency very close to that of the minimum fuel aircraft.

Figure 90 shows the effect of design range on the additional fuel used by a minimum DOC design, relative to a minimum fuel design. The difference varies little with design range.

The N80 aircraft can save a considerable amount of fuel, relative to existing baseline aircraft in the fleet, as shown in Figure 91. Comparisons are made in terms of BTU/ASNM at one-third of the design range of the N80 airplanes. The fuel use improvements due to new technology appear to be very large, but require some qualification because airplanes with unequal capabilities are being compared. In particular, the N80 airplanes were designed to carry only a full cabin payload plus baggage, while existing aircraft in the fleet are sized to carry cargo in addition to a full load of passengers and bags. Also, the design flight profiles for the N80 airplanes include cruise climb, which is more efficient than the step altitude profiles used to calculate fuel burned by the baseline airplanes in the fleet.

The N80-2.15 family has a considerable edge over the DC-9-30 in seat-mile fuel economy, most of which is due to the N80-2.15 having more than twice as many seats. Also, in comparing the N80-2.15 to the DC-10-10, it must be emphasized that the relatively long-range DC-10-10 is being compared at 500 nautical miles to an aircraft family optimized for short ranges. Similarly, the N80-4.30 family seat-mile fuel economy is substantially better than the substantially smaller DC-8-61 and DC-10-10; and the design ranges of the DC-8-61 and DC-10-10 are greater than for the N80-4.30.

The N80-2.30 and DC-8-61 have similar passenger capacities, but different design ranges. The N80-2.30 and DC-10-10 have different capacities and design ranges. So comparisons are not on a consistent basis, but these are the closest aircraft types for which comparisons are available. By interpolating the 30 cent and 60 cent cases for the N80-2.30 in Figure 91, it appears that, at a design fuel price of 45 cents per gallon, the N80s are approximately 26 percent more efficient than current narrow-body aircraft and 16 percent more efficient than current wide-body aircraft. However, considering differences in payload-range capabilities and cruise altitude profiles, the efficiencies of the N80s would be more accurately placed at 20 percent better than narrow-body aircraft and 10 percent better than current wide-body aircraft.

5.8.2 Effect of Fuel Price on N80 Designs
The optimum cruise Mach numbers for the N80 families are shown in Figure 92 as a function of the design fuel price and the optimization parameter. The N80 prefix is deleted from the aircraft designations for simplification.

All N80 minimum fuel designs have a cruise Mach number of 0.70, which was a study groundrule lower limit (see Sections 5.1 and 5.3.1). However, independent DAC studies for aircraft having a similar technology level have indicated that the optimum Mach number for energy efficiency is closer to 0.65M. The exact value is highly dependent upon the assumed relationship between aspect ratio and wing weight; and the high aspect ratios associated with minimum fuel designs make accurate preliminary wing weight predictions difficult, because of limited data on flutter weight penalties for high aspect ratio wings.

Figure 93 shows the effect of the design fuel price and the optimization parameter on aspect ratio. All N80 families follow a similar trend. The aspect ratio values for the DC-8-63, DC-10-40, and B-747 are shown for comparison. Higher design fuel prices for the N80 aircraft resulted in significantly higher aspect ratios for the minimum DOC airplanes. The aspect ratios for minimum fuel designs are even higher, but were limited to a maximum of 15.5 because predicted wing weights for higher aspect ratios are less reliable.

Large wing spans are associated with the high aspect ratios of the N80 airplanes, as shown in Figures 63, 73, 77, 81, and 84, and summarized in Figure 94. In particular, the wing spans of the minimum fuel designs all exceed the span of the DC-10-40; and the N80-4.55 $_{
m MF}$ wing span is nearly 300 feet.

The airline co-contractor expressed concern about the airport terminal compatibility of high aspect ratio winged aircraft. Consequently, the sensitivities of DOC and fuel use to changes in aspect ratio were examined. Figure 95 shows that the DOC for minimum DOC designs increases only about one percent when the aspect ratio is reduced 2 points from the optimum. Figure 62 shows that the fuel burned by minimum fuel designs increases only about one percent when the aspect ratio is reduced from the optimum value of 15.5 to 13.

5.8.3 Payload-Range Capability
The N8O aircraft payload-range capabilities are presented in Figures 96 and 97. The N8O-2.55 series is fuel volume limited.

MODEL N80 AIRCRAFT

- DESIGN FLIGHT PROFILE (FIGURE 51)
- 100% LOAD FACTOR

FIGURE 87. ENERGY EFFICIENCY PARAMETERS AT DESIGN RANGE FOR OPTIMUM N80 AIRCRAFT

FIGURE 88. EFFECT OF DESIGN FUEL PRICE ON FUEL USE

FIGURE 89. EFFECT OF DESIGN CRUISE MACH NUMBER AND DESIGN FUEL PRICE ON FUEL USE

N80 AIRCRAFT

 GEOMETRY OPTIMIZED FOR MINIMUM DOC @ 30 CENTS/GALLON

FIGURE 90. N80 BLOCK FUEL VS. DESIGN RANGE

COMPARISON OF (BTU/ASNM) AT 1/3 DESIGN RANGE

FIGURE 91. NEW NEAR-TERM AIRCRAFT FUEL SAVINGS

FAMILY

FAMILY

FAMILY

FIGURE 92. NEW NEAR-TERM AIRCRAFT CRUISE MACH NUMBER COMPARISON

FIGURE 93. NEW NEAR-TERM AIRCRAFT ASPECT RATIO COMPARISON

FIGURE 94. NEW NEAR-TERM AIRCRAFT WING SPAN COMPARISON

MODEL N80-2,30 • M = 0,80

FIGURE 95. EFFECT OF WING ASPECT RATIO ON DOC

FIGURE 97. PAYLOAD-RANGE ENVELOPES FOR INTERNATIONAL RANGE N80 AIRCRAFT

5.9 Acoustical Analysis

FAR Part 36 noise levels were estimated for the three domestic range families of N80 aircraft. Effective perceived noise level (EPNL) maps and 85, 90, and 95 EPNdB noise contours were generated for six of the aircraft configurations.

5.9.1 Nacelle Configuration Definition

Exhaust nozzle configuration - A separate exhaust nozzle configuration (coaxial) was used to evaluate the N80-2.15 and N80-4.30 aircraft, which used CF6-6D type engines. A conical exhaust, mixed nozzle configuration was used to evaluate the N80-2.30 aircraft with CFM-56 type engines.

Nacelle acoustic treatment configuration - Acoustic treatment was applied to the fan inlet, fan exhaust, and the turbine cowl walls. Acoustically treated rings were not included in the analysis. Multiple degree of freedom acoustically absorptive liners were assumed for the fan inlet and fan exhaust duct acoustic treatment. A single degree of freedom acoustically absorptive liner was assumed for the turbine exhaust acoustic treatment.

5.9.2 Noise Analysis Procedure

FAR Part 36 noise levels and EPNL maps - The engines used for the noise analysis of the N80 aircraft were the CF6-6D and CFM-56 high bypass ratio turbofan engines scaled in thrust and size as necessary to meet the aircraft performance requirements. Engine cycle parameters and aircraft performance parameters obtained from the PASAP sizing program provided the inputs for the DAC noise prediction technique used in estimating flyover noise levels and for generating EPNL maps.

The prediction procedure utilized static noise data from engines A and C of the NASA Quiet Engine Program (References 17 and 18) and flyover noise data from DC-8, DC-9, and DC-10 aircraft. Data inputs included fan pressure ratio, fan tip velocity, bypass ratio, total inlet flow rate, nozzle exit velocity, and nozzle exit area. The peak perceived noise levels (PNLM) were calculated for the fan inlet, fan exhaust, turbine, core, and jet noise sources. Adjustments were made for the number of engines, distance from the airplane, and acoustic treatment. The flyover noise level (EPNL) was determined by adjusting the maximum calculated PNL for flight effects and duration.

Noise Contours - Using a Douglas-developed noise contour program, noise contours of 85, 90, and 95 EPNdB were generated for the takeoff and 3 degree approach flight paths of the aircraft optimized for minimum DOC at 15 cents per gallon and for minimum fuel use. The program inputs consisted of EPNL map data, airplane altitude, airspeed, flap setting, and fan rotor speed. Adjustments were made to the calculated EPNL values for airspeed variation from the reference airspeed and for ground attenuation based on Reference 19.

5.9.3 FAR Part 36 Noise Level Estimates

<u>Sideline</u> - The sideline noise levels are below the FAR Part 36 requirement by

9 EPNdB for all two-engine aircraft and by 12 EPNdB or more for all fourengine aircraft (see Table 82a).

Takeoff (Cutback) - The takeoff (cutback) noise levels are below the FAR Part 36 requirements by 10 EPNdB or more for the two-engine and four-engine 201 passenger aircraft, and are 6 to 8 EPNdB below the FAR Part 36 requirement for the four-engine 400 passenger aircraft (See Table 82b).

Approach - The minimum fuel optimized aircraft within each family have the lowest approach noise levels, ranging from 5 to 9 EPNdB below the FAR Part 36 requirement (see Table 82c). The two-engine, 201 passenger family of aircraft (N80-2.15) have estimated approach noise levels ranging from 3 to 7 EPNdB below the requirement. The four-engine, 201 passenger family of aircraft (N80-2.30) have estimated approach noise levels ranging from 5 to 9 EPNdB below the requirement. The four-engine, 404 passenger family of aircraft (N80-4.30) have estimated approach noise levels ranging from 1 to 5 EPNdB below the requirement.

5.9.4 EPNL vs Distance and Noise Contours
EPNL maps are presented in Figures 98 through 103. Noise contours of 85,
90, and 95 EPNdB are presented in Figures 104 through 109.

Figure 110 presents a comparison of noise contour areas as a function of noise levels of the contours for the aircraft configurations studied. The N80-2.30 four-engine aircraft family with the CFM-56 type (mixed flow) engines resulted in the smallest contour areas. The N80-4.30 four-engine aircraft family with the CF6-6D type engines had the largest contour area.

The differences in total contour areas between the aircraft optimized for DOC at 15 cents per gallon and the minimum fuel aircraft are small within each aircraft family.

The approach areas for the minimum fuel configurations range from 50 to 75 percent less than those for the minimum DOC at 15 cents per gallon configurations, due to the lower landing thrust requirements for the minimum fuel aircraft. The takeoff areas for the minimum fuel configurations range up to 31 percent greater than those for the minimum DOC at 15 cents per gallon configurations, due mainly to the lower altitudes attained by minimum fuel aircraft during takeoff. The net effect of optimization parameter on total noise contour area is small as shown in Figure 110.

TABLE 82
NOISE LEVELS OF OPTIMIZED N80 AIRCRAFT

a) SIDELINE NOISE LEVELS

	EPNdB/ AEPNdB RELATIVE TO FAR 36								
AIRCRAFT	DOC ₁₅	DOC 30	DOC 60	BLOCK FUEL					
N80-2.15	96/-9	96/-9	96/-9	96/-9					
N80-2.30	87/-19	87/-19	87/-19	87/-19					
N80-4.30	95/-13	95/-13	95/-13	96/-12					

b) TAKEOFF (CUTBACK) NOISE LEVELS

	EPNdB/△EPNdB RELATIVE TO FAR 36							
AIRCRAFT	DOC ₁₅	DOC 30	DOC 60	BLOCK FUEL				
N80-2.15	87/-14	87/-14	88/-13	88/-13				
N8G-2.30	88/-14	89/-13	91/-11	92/-10				
N8G-4.30	99/-8	100/-7	100/-7	101/-6				

c) APPROACH NOISE LEVELS

	EPNdB/△EPNdB RELATIVE TO FAR 36							
AIRCRAFT	DOC 15	DOC 30	DOC 60	BLOCK FUEL				
N80-2.15	102/-3	101/-4	100/-5	98/-7				
N80-2.30	101/-5	100/-6	100/-6	97/-9				
N80-4.30	107/-1	106/-2	105/-3	103/-5				

The section of the se

FIGURE 98.

219

The regarded of the second of

220

to the second of the second se

221

The Company of the Co

EPNL MAP FOR N80-4.30_{MF} AIRCRAFT

FIGURE 103.

224

CONTOUR	AR	AREA
(EPNdB)	Sq.Mi	Sq.NM
95	1,8	1.3
06	4.0	3.0
85	7.4	5.5

TAKEOFF GROSS WEIGHT 234,700 LB LANDING WEIGHT 199,500 LB

FIGURE 104. ESTIMATED NOISE CONTOURS FOR N80-2.15₁₅ AIRCRAFT

		LANDING WEIGHT 200,900 LB			95 EPNdB	
AREA	Sq.NM	1.5	2.8	5.0		
AR	Sq.Mi	2.0	3.7	6.7	90 EPNdB	
CONTOUR	(EPNdB)	95	06	82	06	

FIGURE 105. ESTIMATED NOISE CONTOURS FOR N80-2.15_{MF} AIRCRAFT

		TAKEOFF GROSS WEIGHT	LANDING METON	
E.A.	Sq.NM	6.	2.0	4.5
AREA	Sq.Mi	1.2	2.7	5.9
CONTOIR	(EPNdB)	95	06	82

279,800 LB 237,800 LB

FIGURE 106. ESTIMATED NOISE CONTOURS FOR N80-2.30₁₅ AIRCRAFT

FIGURE 107. ESTIMATED NOISE CONTOURS FOR N80-2.30_{MF} AIRCRAFT

		TAKEOFF GROSS WEIGHT 527,400 LB			95 EPNdB¬	BPNdB SEPNdB	——————————————————————————————————————
					95 E		
AREA	Sq.NM	2.8	6.8	16.2		7	
AR	Sq.Mi	3.7	9.0	21.5		90 EPNdB	
CONTOILE	(EPNdB)	95	06	85		90 E	

FIGURE 108. ESTIMATED NOISE CONTOURS FOR N80-4.30₁₅ AIRCRAFT

		TAKEOFF GROSS WEIGHT 548,200 LB			95 EPNdB _T	——85 EPNdB	10,000 Ft.
AREA	Sq.NM	2.9	7.2	17.2			
AR	Sq.Mi	3.8	9.5	22.8		90 EPNdB	
CONTOIR	(EPNdB)	95	06	85		06	

FIGURE 109. ESTIMATED NOISE CONTOURS FOR N80-4.30_{MF} AIRCRAFT

			AIRCRA	FT CONFIG	GURATION
CURVE NO.	AIRCRAFT	NO. ENG.	NO. PSGR.	RANGE (NM)	OPTIMIZATION PARAMETER
1	N80-2.15	2	201	1500	DOC @ 15¢/GAL.
2	N80-2.15	2	201	1500	BLOCK FUEL
3	N80-2.30	4	201	3000	DOC @ 15¢/GAL.
4	N80-2.30	4	201	3000	BLOCK FUEL
5	N80-4.30	4	404	3000	DOC @ 15¢/GAL.
6	N80-4.30	4	404	3000	BLOCK FUEL

FIGURE 110. EPNL CONTOUR AREA COMPARISON FOR AIRCRAFT CONFIGURATIONS WITH OPTIMIZATION PARAMETERS OF MINIMUM DOC @ 15¢/GALLON AND MINIMUM FUEL

SECTION 6.0 TURBOPROP CONFIGURATION STUDIES

Fuel conservation studies for modified, derivative, and new near-term aircraft were previously analyzed and reported in Sections 4.0 and 5.0. This section considers potential improvements in fuel use due to advances in turboprop propulsion system technology and wing aerodynamics. Advanced structures technology was not considered. The advanced propulsion and aerodynamic technologies were incorporated on a DC-9-30 baseline aircraft, and the potential savings in fuel and improvements in range capability were assessed.

The advanced turboprop propulsion system incorporates a Hamilton Standard propfan, which is a multi-bladed, variable pitch propeller using swept blade tips and supercritical blade sections. Aerodynamic improvements include a supercritical wing section, greater sweep, and a higher aspect ratio.

In addition to the baseline DC-9-30 aircraft (with turbofan power and conventional wing), three derivative aircraft will be discussed. The DC-9-30D4 has aft fuselage-mounted turbofan engines and an all new supercritical wing. The DC-9-30D4 is identical to the DC-9-30D3, described in Section 4.0, but was renumbered in this section because a different flight profile was used to allow consistent comparisons with the turboprop aircraft. This resulted in slightly different fuel consumption and payload-range capability. The DC-9-30 baseline flight profile was also changed slightly for the same reason, but its designation remains the same. The DC-9-30D5 has two propfan engines mounted on a strengthened, conventional DC-9-30 wing. The DC-9-30D6 has two propfan engines, mounted on a strengthened DC-9-30D4 supercritical wing.

6.1 Advanced Turboprop Propulsion

The turboshaft engine performance used in this study represents 1985 technology, as provided in recent Pratt & Whitney STS 476 and Allison PD 370 studies. The propeller performance is based upon the Hamilton Standard propfan.

As part of this study, a propfan parametric analysis was performed using the data contained in Reference 20. The analysis encompassed 6 and 8 blades, $600\ \text{to}\ 800\ \text{fps}\ \text{static}\ \text{tip}\ \text{speed, power loading (SHP/D}^2)\ \text{values}\ \text{from}\ 61\ \text{to}\ 88$ for takeoff and from 35 to 50 at 35,000 ft. cruise altitude, and resulting

propeller efficiency values ranging from 0.65 to 0.80 at 35,000 ft. cruise altitude.

The propfan parametric study disclosed the following trends for a fixed cruise Mach number: (1) As propfan design tip speed is decreased: propfan cruise efficiency, maximum takeoff thrust, and takeoff thrust degradation decrease; while propfan diameter, engine size, and power plant weight (engine, gearbox, and propfan) increase. (2) As power loading is increased: cruise efficiency, takeoff thrust, diameter, and powerplant weight decrease; however, takeoff thrust degradation and required engine size increase.

Takeoff thrust degradation is illustrated in Figure III. Propfan thrust levels at speeds below 0.1 Mach are unusually low for propellers, as a result of their being optimized for high speed cruise. Unlike current propellers, which have a static thrust-to-horsepower ratio of 3 to 5, the propfan ratio is less than 1.0. For the study propfan airplanes, the propfan diameter is 13.0 feet and the equivalent static shaft horsepower is 13,400 HP. With a static thrust of 5,650 pounds, the value of $(T/ESHP)_{Static} = 0.422$. The propfan static and low speed thrust can be improved somewhat if the throttle is applied gradually during the takeoff roll. This reduces the power loading, which helps to minimize blade tip stall. Static and low speed thrust can also be improved by choosing a larger diameter propeller, if necessary. The propeller chosen for the study airplane provides a weighted average thrust during the takeoff sequence equivalent to that of the JT8D-9 engine. Smaller diameter propfans require more power and have a greater thrust degradation below 0.1 M.

Because of the limited amount of propfan design data available when the above parametric study was conducted, an accurate selection of the optimum propeller for the propfan installation could not be completed. Accordingly, the following design ground rules were adopted for the propfan: (1) 8 blades to minimize diameter; (2) a static tip speed of 720 fps, in order that the Electra turboprop aircraft could be used as a possible reference point for future studies of interior noise levels; (3) a weighted average thrust during the takeoff sequence equivalent to that of the turbofan engine (to account for degradation in propfan thrust at speeds below 0.1 Mach); (4) a spanwise location for the powerplant representing a preliminary choice between

FIGURE 111. THRUST VS. MACH NUMBER FOR PROPFANS AND TURBOFANS

passenger comfort levels (interior noise and vibration), and the effects of the propfan slipstream on aileron control and of the one-engine-out emergency condition on the vertical tail size.

6.2 Configuration Studies

The new wing and/or powerplant were incorporated into the three derivative aircraft with a minimum of configuration changes to the baseline. The derivative airplanes were not resized to the same payload-range specifications as the baseline aircraft. Instead, the gross weight and payload were held const nt; the supercritical wing was sized to meet the approach speed capability of the DC-9-30; the empty weight and fuel capacity were changed as required; and the range capability was determined as the result of the combination of fuel capacity changes and improved technology. The two propfan aircraft were rebalanced to allow for the forward location of the powerplants, and their vertical tails were resized for the one-engine-out emergency condition (the critical condition for determining vertical tail size for aircraft with wing-mounted engines). Specifications for takeoff, approach, and cruise performance of the propfan aircraft were chosen to match baseline DC-9-30 performance. The cruise condition for sizing the propfan installations was 0.80 Mach at 30,000 feet at maximum cruise weight.

The specifications and propfan design ground rules resulted in the selection of a propfan propulsion system installation with a sea level static power loading of $(SHP/D^2)_{Static} = 13,400/(13)^2 = 79.3$ and a design point cruise power loading of $(SHP/D^2)_{Static} = 45.3$. Figures 112 and 113 show the DC-9 propfan aircraft configurations. The propfan powerplants were located at 41 percent semi-span, and were mounted forward of the wing structural box to facilitate access and removal. This spanwise location provides a propeller tip-to-fuselage clearance of 56 percent of the propeller diameter and the propeller slipstream does not wet the ailerons. However, at this spanwise location, the asymmetric thrust in the one-engine-out condition requires a 30 percent increase in the vertical tail area and a change from a single to a dual hinge rudder. These changes in the vertical tail are required in addition to the large increase in tail arm resulting from a 100-inch forward relocation of the wing on the fuselage to rebalance the aircraft with the wing-mounted engines.

FIGURE 112. GENERAL CONFIGURATION, DC-9-30D5 PROPFAN

FIGURE 113. DC-9-30D6 PROPFAN, WING AND TAIL CONFIGURATIONS

Figure 113 summarizes the results of the tail configuration study. Two arrangements are shown, the current T-tail configuration and a conventional configuration made possible by the removal of the aft fuselage-mounted turbofans. In the T-tail arrangements, with the longer tail arm, the basic horizontal tail is adequate for control. In the conventional tail arrangement, the shorter tail arm requires a 24 percent increase in horizontal tail area. Because of the smaller tail area for the T-tail arrangement and its separation from the propeller slipstream, the T-tail configuration was chosen for this study.

Figure 114 shows the interior arrangement for the turboprop DC-9 configurations. Although the seating arrangement was changed from that of the baseline DC-9-30 (Figure 14), in order to locate the lavatories in the propeller plane, the total number of seats is unchanged.

Various nacelle and landing gear configurations were investigated for the turboprop airplanes. Figure 115 compares four landing gear arrangements on a nacelle with underwing exhaust. Spreading the wheels apart reduces nacelle depth but overall frontal area increases. The arrangement shown in Figure 116, with overwing exhaust, upper or lower inlet duct, and landing gear in the fuselage, allows for the slimmest nacelle and shortest main gear.

6.3 Aircraft Weights

Table 83 shows the summary of the geometry and weight data for the turbofan and propfan airplanes. The baseline airplane weights represent a typical DC-9-30 airplane. The three derivative airplanes were configured with maximum commonality to the baseline airplane and their weights were derived with the same philosophy. Design weight changes to the baseline airplane are as follows:

The D4 configuration represents a DC-9-30 with a supercritical airfoil wing and DC-9 type high lift devices. The weight change for the wing was the result of the combined effects of the increased depth of the ribs, bulkheads and leading edge for the supercritical airfoil, the higher wing aspect ratio, the higher wing sweep, and the smaller wing area. The flight controls and hydraulic system weights were reduced to reflect the smaller wing area.

92 PASSENGERS MIXED CLASS

COACH — 80 SEAT PITCH — 34 IN. 5-ABREAST

> FIRST CLASS — 12 SEAT PITCH — 38 IN. 4-ABREAST

FIGURE 114. INTERIOR ARRANGEMENT, DC-9-30D5 AND DC-9-30D6 PROPFANS

ALTERNATE DC-9-30 PROPFAN NACELLE CONFIGURATIONS WITH MAIN GEAR STOWED IN NACELLE FIGURE 115.

DC-9-30 PROPFAN NACELLE CONFIGURATION WITH MAIN GEAR STOWED IN FUSELAGE FIGURE 116.

TABLE 83
GEOMETRIC AND WEIGHT DATA

				
DESCRIPTION	DC-9-30 Baseline	DC-9-30D4 (TF, SCW)	DC-9-30D5 (TP, CW)	DC-9-30D6 (TP, SCW)
GEOMETRY DATA: Wing Area - Trapezoidal (Ft ²) Wing Aspect Ratio Wing Sweep @ C/4 (Deg) Wing Thickness Ratio Wing Taper Ratio High Lift System Propulsion System Wing Type Horiz. Tail Area (Ft ²) Vert. Tail Area (Ft ²) No. of Passengers (Mixed Class)	1,001 8.7 24.5 .11 .2 DC-9 Type TF DC-9 276 161	900 10.2 30.5 .139	1,001 8.7 24.5 .11 .2 Same TP DC-9 276 209 92	900 10.2 30.5 .139 .3 Same TP SCW 276 209 92
WEIGHT DATA: (Lb/Airplane) Baseline Operational Empty Wt. Weight Changes: Wing Tail Fuselage Propulsion System Furnishings Remaining Systems	57,900 0 0 0 0 0	57,900 280 0 0 0 0 -100	57,900 167 346 417 1,737 383 270	57,900 447 346 417 1,737 383 170
TOTAL WEIGHT CHANGE	0	180	3,320	3,500
OPERATIONAL EMPTY WEIGHT	57,900	58,080	61,220	61,400
Maximum Payload Maximum Zero Fuel Weight Maximum Fuel Capacity Maximum Landing Weight Takeoff Gross Weight Maximum Ramp Weight	29,800 87,700 24,650 99,000 108,000 109,000	29,800 87,880 23,865 99,000 108,000	29,800 91,020 24,500 99,000 108,000 109,000	91,200 * 23,715 ^{**} 99,000 108,000

NOTE: * Outer and center wing maximum capacity

^{**} Outer wing maximum capacity

The D5 configuration represents a DC-9-30 with two wing-mounted propfan engines. The weight change for the wing was the result of the combined effects of the higher torsional loads created by the location of the engines and the additional engine support structure, and a weight savings resulting from relief in wing bending loads due to the dead weight of the engines.

The D6 configuration represents a DC-9-30 with two wing-mounted propfan engines and a supercritical airfoil wing with DC-9 type high lift devices. The weight change for the wing represents the combined penalties of configuration D4 and D5. The weight penalties for the tail, fuselage, propulsion system, and furnishings are the same as for configuration D5. The remaining system weights are the same as for configuration D5, except the flight control and hydraulic weights are reduced to reflect the smaller wing area.

The tail weight penalty for the D5 and D6 configurations was due to the larger vertical stabilizer with dual hinged rudder required for one-engine-out control. The fuselage weight penalty was the net result of removing the basic DC-9 aft engines, and adding fuselage structure for propeller noise and engine vibration attenuation. The removal of the aft-mounted engines reduces the aft fuselage bending moments, thereby reducing the weight of the fuselage structure. The aft engine mounting structure weight is also removed. The additional fuselage structure for propeller noise and engine vibration attenuation (placed one-half propeller diameter forward of the propeller plane to one propeller diameter aft of the propeller plane) includes higher skin gages, smaller longeron spacing, and additional vibration dampening material.

The propulsion system weight change reflects the replacement of the basic turbofan engine installation with a propfan engine installation. The propeller and gear box weights were derived from weight data in Reference 21.

The propeller and gear box weights reflect Hamilton Standard advanced technology weight reductions of 11 percent and 6 percent, respectively. The turboshaft engine weight is based on the Allison PD 370-17 shaft horsepower-to-weight ratio (Figure 117). The nacelle and engine systems weights were based on previous turboprop engine studies.

The furnishings weight change reflects additional cabin insulation required to reduce inside cabin noise produced by the propellers.

The remaining systems weight changes include a weight penalty for the pneumatic system for an additional supercharger and related equipment; flight controls and hydraulic system weight penalties for the larger, double hinged rudder; and a reduction in the electrical and fuel system weights due to the shorter run lengths.

6.4 Mission Profile and Performance Assumptions The mission profile used for the DC-9-30, D4, D5 and D6 is the same as that shown in Section 1.1 with certain simplifying assumptions.

In general, no step cruise was assumed for high altitude operation, choosing instead constant 30,000 ft. altitude cruise at 0.80 Mach number. For low altitude (15,000 ft.) cruise, the DC-9-30 placard speed (350 knots) was chosen to demonstrate maximum high speed operation. All climb and descent speeds are for a DC-9 airplane. No speed schedule optimization was attempted to account for the effects of the supercritical wing or the turboshaft propulsion system.

Performance assumptions were made to accommodate the available turboshaft engine data. The warmup, taxi and takeoff fuel allowances for the basic DC-9-30 were used for all configurations. Idle descent fuel flows for all configurations were based on the fuel rate to produce zero net thrust. The performance comparisons in Sections 6.5 and 6.6 are based on the initial choice of a 720 fps rotational tip speed for the propfan, which resulted in a propeller efficiency of 0.73 and an installed cruise TSFC of 0.65 lb/lb/hr. In Section 6.7 the sensitivity of aircraft performance to propfan efficiency levels will be examined.

FIGURE 117. TURBOSHAFT ENGINE POWER-TO-WEIGHT RATIO VS. SHAFT HORSEPOWER

6.5 Payload-Range Comparisons

In Figure 118 the DC-9-30D4, D5, and D6 payload-range capabilities are compared to that of the basic DC-9-30. This figure illustrates the effects on range of changes in aerodynamics and propulsion technologies.

Range performance with the supercritical wing was attained with outer wing fuel tanks only, while both center section and outer wing fuel tanks were used on the basic DC-9 wing. This results in approximately 3.2 percent less fuel in the supercritical wing when compared to the basic DC-9 wing.

The passenger payload is based on 200 pounds per passenger, including baggage. The DC-9 type aircraft becomes fuel limited at payloads greater than the maximum passenger payload capacity.

When the aircraft are not fuel limited, the supercritical wing increases turbofan and turboprop range capability by 9 to 12 percent. For conditions when the aircraft are fuel limited, the range capability is increased by only 7 to 8 percent, as a result of the reduced fuel capacity of the smaller supercritical wings.

Compared to the turbofan, the propfan with either wing increases range 21 to 24 percent when the aircraft is not fuel volume limited, and 40 to 43 percent at payload-range points that are fuel capacity limited.

5.6 Block Fuel Comparisons

Figures 119 and 120 show block fuel versus range for the study aircraft at a typical long stage length cruise condition (30,000 ft. at 0.80 Mach) and at a typical short stage length cruise condition (15,000 ft. at 0.70 Mach). These figures demonstrate the superiority of the propfan over the turbofan, with either wing, at both cruise conditions.

Figure 121 shows the fuel savings due to the advanced supercritical wing, the propfan propulsion system, and the combination of both. The improvement due to the wing increases as range increases, for either propulsion system, from 6 to 9 percent at high altitude cruise and from 3 to 5 percent at low altitude cruise.

DC-9-32 TURBOFAN, PROPFAN AND SCW DERIVATIVES

CRUISE CONDITIONS: Alt = 30,000 Ft, M = .8

FIGURE 118. PROPFAN PAYLOAD-RANGE COMPARISONS

FIGURE 119. BLOCK FUEL COMPARISON OF DC-9-30 TURBOFAN, PROPFAN AND SCW DERIVATIVES 30,000 FT CRUISE ALTITUDE

 $V_E = 350 \text{ KT}$ LOAD FACTOR = 58% 14 **FUEL** RESERVES (LB) AIRPLANE 5392 DC-9-30 DC-9-30D4 5254 3662 DC-9-30D5 12 3600 DC-9-30D6 10 8 TURBOFANS FUEL DC-9-30-BURNED DC-9-30D4 -(1000 LB) 6 **PROPFANS** DC-9-30D5 DC-9-30D6 4 2 6 0 4 2 RANGE (100 NM)

CRUISE CONDITIONS:

ALT = 15,000 FT

FIGURE 120. BLOCK FUEL COMPARISON OF DC-9-30 TURBOFAN, PROPFAN AND SCW DERIVATIVES 15,000 FT CRUISE ALTITUDE

FIGURE 121. COMPARISON OF BLOCK FUEL SAVINGS

As shown in Tables 84 and 85, the propfan aircraft have a much shorter climb distance than the turbofan aircraft. For example, on a 1,250 nautical mile flight with a cruise altitude of 30,000 ft., the DC-9-30D5 reaches cruise altitude 102.7 - 54.6 = 48.1 nautical miles before the DC-9-30. At short ranges, a major part of the DC-9-30 flight profile involves climb. Since the specific range of the propfan aircraft in cruise is far greater than the specific range of the turbofan aircraft in climb, the propfan fuel savings at short ranges are very high, as is shown in Figures 121b and 121c.

For the cruise segments, the propfan specific ranges are higher than the turbofan specific ranges; but the propfan advantage in cruise is less than in the 48.1-nautical mile region, where only the propfan is in cruise while the turbofan is still climbing. Consequently, the propfan fuel savings, shown in Figure 121b, decreases as range increases from 27 to 23 percent at high altitude cruise and from 30 to 25 percent at low altitude cruise.

6.7 Effect of Improved Propulsive Efficiency

As initially selected, with a static tip speed of 720 fps, the propfan developed a propeller efficiency of 0.73, resulting in an installed TSFC of approximately 0.65 lb/lb/hr at cruise. This propfan design point was chosen because of noise considerations. However, a higher tip speed would improve efficiency. For example, an 8-bladed propfan with an 800 fps tip speed would have a propeller efficiency of 0.80 and an installed TSFC of approximately 0.59 lb/lb/hr at cruise. Furthermore, the latest information from engine manufacturers predicts a 10 percent improvement in turboshaft engine performance, which would result in an installed TSFC of 0.53 with the higher efficiency propeller.

Figure 122 shows the effect of a decrease in TSFC from 0.65 to 0.53 on the payload-range envelope of the DC-9-30D5. At 58 percent load factor, the range improvement over the DC-9-30 increases from 41 percent to 73 percent. Figure 123 shows the effect of the lower TSFC on fuel savings. At an average range of 290 nautical miles, fuel savings increase from 27 to 33 percent.

TABLE 84

SPECIFIC RANGE FOR FLIGHT WITH 15,000 FT CRUISE ALTITUDE

1.1000	FLIGHT	DISTANCE/FUEL = SPECIFIC RANGE (NM/LB)	
AIRCRAFT	SEGMENT	TOO NM 600 NM	
DC-9-30	C1 imb	25.6/994 = 0.026)26
(TF,CW)	Cruise	31.3/533 = 0.059 527.8/9372 = 0.0)56
	Descent	43.1/603 = 0.071)71
	Total	100.0/2130 = 0.047 600.0/11108 = 0.0)54
DC-9-30D4	Climb	24.2/945 = 0.026 27.6/1077 = 0.0	026
(TF,SCW)	Cruise	29.6/494 = 0.060 526.2/8815 = 0.0	ე60
•	Descent	46.2/628 = 0.074 46.2/628 = 0.0	074
	Total	100.0/2067 = 0.048 600.0/10520 = 0.0	057
DC-9-30D5	Climb	14.7/537 = 0.027 16.2/591 = 0.	027
(TP,CW)	Cruise	46.9/631 = 0.074 545.4/7361 = 0.	074
	Descent	38.4/323 = 0.119 38.4/323 = 0.	119
	Total	100.0/1491 = 0.067 600.0/8275 = 0.	.07
DC-9-30D6	Climb	14.3/524 = 0.027 15.7/575 = 0.	.02
(TP,SCW)	Cruise	45.0/574 = 0.078 543.6/6960 = 0.	.07
	Descent	40.7/335 = 0.121 40.7/335 = 0.	.12
	Total	100.0/1433 = 0.070 600.0/7870 = 0	.07

TABLE 85

SPECIFIC RANGE FOR FLIGHT WITH 30,000 FT CRUISE ALTITUDE

	FLIGHT	DISTANCE/FUEL = SPECIF	
AIRCRAFT	SEGMENT	290 NM	1250 NM
DC-9-30	Climb	81.4/2153 = 0.038	102.7/2680 = 0.038
(TF,CW)	Cruise	113.4/1406 = 0.081	1052.1/13499 = 0.078
(11,3011)	Descent	95.2/996 = 0.096	95.2/996 = 0.096
	Total	290.0/4555 = 0.064	1250.0/17175 = 0.073
DC-9-30D4	Climb	73.6/1977 = 0.037	89.5/2383 = 0.038
(TF,SCW)	Cruise	115.9/1303 = 0.089	1069.0/12172 = 0.08
(11, 300)	Descent	100.5/1004 = 0.100	100.5/1004 = 0.10
	Total	290.0/4284 = 0.068	1250.0/15559 = 0.08
DC-9-30D5	Climb	46.7/1166 = 0.040	54.6/1353 = 0.04
(TP,CW)	Cruise	154.3/1522 = 0.101	1106.4/11179 = 0.09
(,,	Descent	89.0/641 = 0.139	89.0/641 = 0.1
	Total	290.0/3329 = 0.087	1250.0/13173 = 0.0
DC-9-30D6	Climb	44.0/1110 = 0.040	50.5/1267 = 0.0
(TP,SCW)	Cruise	152.8/1375 = 0.111	1106.3/10107 = 0.1
(11,504)	Descent	93.2/641 = 0.145	93.2/641 = 0.
	Total	290.0/3126 = 0.093	1250.0/12015 = 0.

FIGURE 122. EFFECT OF TSFC ON PROPFAN PAYLOAD — RANGE ENVELOPE

FIGURE 123. EFFECT OF TSFC ON PROPFAN FUEL SAVINGS

The advantage of a lower tip speed is in reduced noise levels. Using Reference 22, a preliminary acoustic analysis of 8-bladed propfans was conducted, which compared a propfan operating at a tip speed of 800 fps to the study configuration with a 720 fps tip speed. The noise level (OASPL) of the 720 fps study configuration was approximately 5 to 7 dB lower at the outer fuselage wall. Therefore, the study configuration results in considerable noise insulation weight savings, which could partially offset the reduced efficiency of the quieter propfan.

The selection of an optimum propfan installation for a given airframe consists of a detailed study of propfan design parameters and the concurrent effect of propfan spanwise location on interior noise, tail size, weight, and drag. The design of an optimum propfan aircraft for a set of mission-payload performance requirements is a more detailed study involving the propfan design parameters together with airframe and configuration variables.

SECTION 7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Technology Conclusions

Actual aircraft seat-mile fuel efficiency is an average of 30.2 percent below the engineering values derived for ideal conditions at the 1973 CAB average stage length. Differences in actual values are caused by greater air holding and ground delay times, clearances to non-optimum altitudes, winds, high temperatures, engine and airframe deterioration, and excess fuel loads.

The results of the study of various fuel-saving options are summarized in Table 86. The column giving the range of possible fuel savings shows that opportunities for fuel savings vary widely from aircraft to aircraft. For a given option, the low value corresponds to the lowest fuel saving for any aircraft, and the high value corresponds to the greatest saving for any aircraft. For example, the minimum benefit for fuel-conservative flight operations in the current ATC system is approximately four percent for the DC-8-50, as shown in Table 15. In an advanced ATC system the maximum benefit is about 11 percent for the DC-10-40. Thus, the range shown in Table 86 is 4 to 11 percent.

The estimated maximum fleetwide near-term fuel-saving potential was derived for each option by assuming that the option is fully implemented in all aircraft, as qualified below. While the near-term period extends to the early to mid-1980's, no fleet projections are included in these estimates. The maximum fleetwide potential for each option was estimated by weighting the percent fuel savings for each aircraft type by its total yearly fuel use for 1974, as given in Table 2. The resulting estimates show the relative effect of each option in the fleet, but are not a substitute for the extensive fleet analysis given in Volume II. Also note that the results for the various options are usually not additive, since the same baseline aircraft are involved in each option.

Fuel-conservative operating procedures offer a significant and immediate potential for fuel savings. In the current ATC system, the different baseline aircraft could achieve fuel savings of 4 to 8 percent by means of long-range flight profiles instead of high-speed profiles. In an advanced

TABLE 86

FUEL SAVINGS SUMMARY - U.S. DOMESTIC FLEET

Fuel-Saving Option	Range of Possible Fuel Savings (%)	Estimated Maximum Fleetwide Near-Term Potential (%)
OPERATIONS	4 - 30	+9
- Flight	5 4 - 11	ω ~•
- Airline MODIFICATIONS	4 - 28	9
- Retrofit	4 - 28	9
- 'Production	10	10
DERIVATIVES	4 - 28	18
NEW NEAR-TERM AIRCRAFT	10 - 41	17
- Relative to Existing Narrow Body	20 - 41	20
- Relative to Existing Wide Body	10 - 33	10
PROPFAN DC-9	27 - 33	30*

* 1990 Introduction date rather than near-term.

ATC system, allowing 4-D RNAV and 2,000 ft. steps or cruise climb, these fuel savings would increase to 8 to 11 percent. Thus, the range of possible fuel savings for fuel-conservative flight operations is 4 to 11 percent. However, the advanced ATC system is a far term option. Consequently, the maximum fleetwide near-term potential for fuel savings from improved flight operations is only about 6 percent, relative to early 1973 fuel consumption levels.

Direct operating costs for fuel-conservative flight operations in the current ATC system are generally higher than for the baseline flight profiles because of the increased block times associated with long-range flight profiles. Direct operating costs for fuel-conservative flight operations in an advanced ATC system are generally lower than for the baseline operations because the reduced delay time compensates for the increased block times associated with long-range flight profiles.

Increased seating density would improve seat-mile fuel economy by 5 to 13 percent, depending on the airplane and the extent of its interior modification. An increase in average load factor from 58 to 65 percent would improve passenger-mile fuel economy by 9 to 11 percent. Thus, the range of possible fuel savings by means of changes in airline operations is 5 to 13 percent. However, airline seating density and load factor values are functions of passenger acceptance and marketing strategy, rather than technical factors. As a result, no technical estimate has been made of the maximum near-term potential for fuel savings from these options.

Seat-mile direct operating costs are improved 5 to 14 percent by increased seating density. Increased load factor improves passenger-mile operating costs by 10 to 12 percent.

Combinations of fuel-saving operations are possible in the far term which together give fuel savings as high as 30.5 percent. This high figure requires an advanced ATC system, an increase in load factor from 58 to 65 percent, and high density seating. Thus, operational changes could possibly yield fuel savings of approximately 4 to 30 percent, depending on the aircraft and the operating options implemented. However, the probable near-term potential for operational fuel savings is only a little more than 6 percent, primarily from reductions in cruise speed. Some of this improvement has

already been implemented by the airlines.

Aircraft design modifications offer significant potential for near-term fuel savings. On a percentage basis, drag and SFC reductions are approximately twice as effective as weight reductions in improving fuel consumption.

The fuel savings for study retrofit modifications range from 4 percent for DC-9 retrofits with aerodynamic improvements, to approximately 28 percent for the DC-8-20R with new JT8D-209 engines and aerodynamic improvements. However, considering the small number and limited remaining lifetime of the DC-8 aircraft in the domestic fleet, expensive DC-8 engine retrofits appear to be an unlikely option, and aerodynamic modifications offer more fleetwide potential for fuel savings. Thus, the probable maximum fleetwide near-term fuel savings, by means of retrofit modifications, is about 6 percent.

Production modifications could result in 10 percent fuel savings for the DC-10. Nevertheless, the maximum fleetwide near-term potential for fuel savings, by means of both retrofit and production modifications, is still approximately 6 percent.

Direct operating costs for retrofit and production modifications are generally higher than for the baseline aircraft. However, at higher fuel prices the DOC's for DC-10 aircraft with aerodynamic retrofits are lower than DC-10 baseline DOC's.

Derivative designs show more fuel-saving potential than either retrofit or production modifications. The study derivatives use from 5 to 28 percent less fuel per seat-mile than the airplanes they would replace. The stretched derivative airplanes show a substantial seat-mile fuel use reduction, ranging from approximately 20 percent for the DC-9-30D1 to 28 percent for the DC-10-40D. The supercritical wing on the DC-9-30D3 reduces fuel use by about 5 percent. The DC-10-10D uses about 3 percent less fuel per seat-mile than the baseline DC-10-10, and about 19 percent less fuel per seat-mile than the baseline DC-8-61. Assuming that the DC-10-10D replaces the DC-8s, the DC-9-30D2 replaces the DC-9-30, and the DC-10-40D replaces the DC-10-40, the maximum fleetwide near-term potential for fuel savings by introducing derivative aircraft is 18 percent.

At a fuel price of 30 cents per gallon, seat-mile DOC's for the stretched airplanes are improved 8 to 11 percent, relative to the study baselines, primarily due to the increased number of seats. Seat-mile DOC's for the supercritical wing DC-9-30D3 are reduced 0.3 percent at 30 cents per gallon and 1.5 percent at 60 cents per gallon, relative to the DC-9-30. Due to the decreased number of seats, the DC-10-10D seat-mile DOC's are about 15 percent higher than the baseline DC-10-10 at 30 cents per gallon and 10 percent higher at 60 cents per gallon.

The new near-term aircraft would substantially reduce seat mile fuel use, due to the higher design fuel prices and the incorporation of current technologies. All-new aircraft designed for a 1980 introduction date would be approximately 20 percent more fuel-efficient than current narrow-body aircraft and about 10 percent more fuel-efficient than current wide-body aircraft. Based on a fleetwide replacement of narrow-body and wide-body aircraft with new near-term aircraft, the maximum overall near-term potential for fuel savings is about 17 percent. However, the introduction of these new aircraft would, in fact, be too close to the introduction of the current wide-body aircraft and their derivatives to actually make any significant impact in the near term.

The optimization of aircraft for minimum DOC at high fuel prices, or for minimum fuel use, results in lower cruise Mach numbers and wings of very large span. However, reducing aspect ratio about two points from the optimum increases DOC's and fuel use only about 1 percent.

Aircraft optimized for minimum fuel use actually save very little more fuel than aircraft optimized for minimum DOC at 60 cents per gallon. However, DOC's for the minimum fuel airplanes are substantially higher than DOC's for aircraft optimized for minimum DOC at 60 cents per gallon.

The new near-term aircraft generally meet or are close to FAR 36 -10 sideline and takeoff noise levels. Approach noise levels do not meet the FAR 30 -10 goal, but improve with increasing design fuel price. Noise contour areas for the N80-2.30 family, with four CFM-56 type engines, were the lowest. The contour areas are primarily affected by payload-range capability, and are only mildly affected by the optimization parameters. Nevertheless, it is clear that energy conservative aircraft design is not in conflict with the desire for low noise.

The DC-9-30 propfan is included in Table 86 for completeness, even though it is more appropriately a far-term option. Depending on the assumed propulsive efficiency, the derivative propfan uses from 27 to 33 percent less fuel than the DC-9-30 at its average stage length of 290 nautical miles. Replacement of the entire domestic fleet with propfan aircraft would reduce air transport fuel consumption by approximately 30 percent

7.2 Research and Technology Recommendations

- Expand the study of fuel-conservative flight operations to include all aircraft types in the domestic fleet, and to include a wider scope of operational variations. The study results should be specific to each airline's market, fleet, and schedule.
- Study the costs and benefits of optimum cruise control, which would allow an aircraft to accurately follow a minimum-fuel flight profile within the mission and ATC system constraints.
- Perform an ATC system study in order to identify ways to reduce the constraints on minimum-fuel flight profiles.
- Continue the study and testing of winglets as a possible means of reducing the wing spans of future new transports designed for minimum DOC at high fuel prices.
- Study folding wing tips as an alternative approach for reducing wing spans in the airport terminal area.
- Continue the theoretical and experimental development of supercritical airfoil technology and three-dimensional applications.
- Study the contouring of aircraft surfaces to achieve more extensive natural laminar flow.
- Continue studies of active controls technology, including the use of active controls on derivatives of in-production aircraft.
- Study aeroelastic effects on the weight of very high aspect ratio transport wings.

- Demonstrate the full scale use of composite primary structure in transport aircraft.
- Conduct studies to improve the integration of high-bypass-ratio turbofan powerplants with airframes.
- Develop a broader spectrum of study engines for propfan applications.
- Conduct tests to verify theoretical propfan efficiency and noise levels.
- Study the effects of the propfan slipstream on airframe aerodynamics and also on noise and vibration in tail surfaces and the aft fuselage.
- Investigate propfan aircraft flight profiles, including takeoff performance and the effects of cruise altitude and Mach number on fuel use.

SECTION 8.0

REFERENCES

- 1. Malliaris, A.C. and Strombotne, R.L.: Demand for Energy by the Transportation Sector and Opportunities for Energy Conservation. ASME Paper 73-ICT-87, 1973.
- Gibson, J.D., et al: The Energy Dilemna and Its Impact on Air Transportation. NASA CR-135993, prepared by the 1973 NASA-ASEE Summer Faculty Program in Engineering Systems Design, 1973.
- 3. Mutch, James J.: The Potential for Energy Conservation in Commercial Air Transport. Rand Corp. Report R-1360-NSF, October 1973.
- 4. Rice, R.A.: Toward More Transportation with Less Energy. <u>Technology</u>
 <u>Review</u>, February 1974, pp. 45-53.
- 5. Hirst, E.: Total Energy Use for Commercial Aviation in the U.S. Oak Ridge National Laboratory Report ORNL-NSF-EP-68, April 1974.
- Pilati, D.A.: Energy Use and Conservation Alternatives for Airplanes.
 Transportation Research, October 1974, pp. 433-441.
- 7. Maddalon, D.V.: Rating Aircraft on Energy. <u>Astronautics and Aeronautics</u>, December 1974, pp. 26-43.
- 8. Ardema, M.D., Harper, M., Smith, C.L., Waters, M.H., and Williams, L.J.: Conceptual Design of Reduced Energy Transports. AIAA Paper 75-303, February 1975.
- 9. Nagel, A.L., Alford, W.J., Jr., and Dugan, J.F., Jr.: Future Long-Range Transports Prospects for Improved Fuel Efficiency. AIAA Paper 75-316, February 1975.
- 10. Mascy, A. and Williams, L.J.: Air Transportation Energy Consumption Yesterday, Today, and Tomorrow. AIAA Paper 75-319, February 1975.
- 11. Civil Aeronautics Board: Aircraft Operating Cost and Performance Report, Volume IX. July 1975.

- 12. Sallee, G.P., Kruckenberg, H.D., and Toomey, E.H.: Analysis of Turbofan Engine Performance Deterioration and Proposed Follow-On Tests. NASA CR-134769, prepared by American Airlines under contract NAS3-18537, 1975.
- 13. Gray, D.E.: Study of Turbofan Engines Designed for Low Energy Consumption. NASA CR-135002, prepared by Pratt & Whitney Aircraft Division of United Technologies Corporation under contract NAS3-19132, April 1976.
- 14. Hoffman, H.J., and Norr, W.E.: Ground Mobility for Large Transport Aircraft. Douglas Aircraft Company Report CAD-61, September 1970.
- 15. Hainline, B.C., Sellereite, B.K., and Swanke, K.V.: Powered Wheels A Concept for Parking and Taxiing of Commercial Transport Airplanes. SAE Paper 710446, May 1971.
- of a Jet Transport Airplane. <u>Proceedings of the First Turbine</u>

 <u>Powered Air Transportation Meeting</u>, Seattle, Washington, August 1954,

 pp. 111-121. Reprinted in J.M. Swihart (Ed.) <u>Jet Transport Design</u>.

 New York: American Institute of Aeronautics and Astronautics, 1969.

 pp. 41-53.
- 17. Kazin, S.B. and Paas, J.E.: NASA/GE Quiet Engine "A" Acoustic Test Results. NASA CR-121175, prepared by General Electric under contract NAS3-12430, October 1973.
- 18. Kazin, S.B. and Paas, J.E.: NASA/GE Quiet Engine "C" Acoustic Test Results. NASA CR-121176, prepared by General Electric under contract NAS3-12430, April 1974.
- 19. Society of Automotive Engineers: Procedures for Developing Aircraft Noise Exposure Contours Around Airports. Aerospace Recommended Practice Document SAE-ARP-1114, draft November 1969.
- 20. Hamilton Standard Division of United Aircraft Corporation: Generalized Prop-Fan Performance and Weight. Report SP 05A75, April 1975.

- 21. Hamilton Standard Division of United Technologies Corporation:
 Preliminary Prop-Fan Propulsion System Weight Estimates. Report
 SP 09A75, October 1975.
- 22. Hamilton Standard Division of United Technologies Corporation: Preliminary Prop-Fan Noise Estimation. Report SP 09A76, March 1976.