



# Observability and Fault Tolerance for LLM training

Odej Kao

Distributed and Operating Systems Technische Universität Berlin



### **Mitigating Training Instabilities**



- LLMs as core technology with expensive (1000xGPUs, huge data sets) and long-lasting (weeks, months) training to produce models with hundreds of billions parameters
- Significant impact of training instabilities due to
  - Increased likelihood of hardware faults, impacting training time and cost
  - Loss fluctuations associated with slow convergence / non-convergence (loss spikes)

| Component                      | Interruption Count | % of Interruptions |
|--------------------------------|--------------------|--------------------|
| Faulty GPU                     | 148                | 30.1%              |
| GPU HBM3 Memory                | 72                 | 17.2%              |
| Software Bug                   | 54                 | 12.9%              |
| Network Switch/Cable           | 35                 | 8.4%               |
| Host Maintenance               | 32                 | 7.6%               |
| GPU SRAM Memory                | 19                 | 4.5%               |
| GPU System Processor           | 17                 | 4.1%               |
| NIC                            | 7                  | 1.7%               |
| NCCL Watchdog Timeouts         | 7                  | 1.7%               |
| Silent Data Corruption         | 6                  | 1.4%               |
| GPU Thermal Interface + Sensor | 6                  | 1.4%               |
| SSD                            | 3                  | 0.7%               |
| Power Supply                   | 3                  | 0.7%               |
| Server Chassis                 | 2                  | 0.5%               |
| IO Expansion Board             |                    | 0.5%               |
| Dependency                     | 2 2                | 0.5%               |
| CPU                            | 2                  | 0.5%               |
| System Memory                  | 2                  | 0.5%               |



## **Silent Data Corruptions**



- Hardware faults relate to CPU/GPU, communication, memory
  - ➤ Error signals available → challenging root cause detection
  - ➤ Hardware failing without sending error signals → Silent data corruption
- ⇒SDCs can lead models to converge to different optima with different weights and even cause spikes in the training loss
- Research goal

Develop methods to identify and localize SDCs in the presence of LLM training instabilities, particularly loss spikes, and provide non-preemptive mitigation strategies



#### **Research Questions**



- RQ1: Which types of silent data corruptions can cause training/inferencing instabilities?
- RQ2: How to discover relevant silent data corruptions?
- RQ3: Which elastic techniques allow to mitigate interruption and continue training?
- Midterm vision: Predicting and detecting silent data corruptions and corresponding training instabilities.



# First Steps



- In-depth study
  - Metrics (e.g. gradient norm, query and key vectors, entropy attention matrix, cosine similarity, ...)
  - Mitigation strategies (e.g. parametric singularity smoothing, QK normalization, decreased learning rate, gradient clipping, ...)
- Setting-up research environment
- Challenges
  - Access to data
  - Developing fault injectors

# Thank you!



