CSED211: Introduction to Computer SW Architecture

Lecture 2: Bits, Bytes, Integers

Jong Kim

Pohang Univ. of Sci. & Tech. Dept. of Comp. Sci. & Eng.

*Disclaimer:

Most slides are taken from author's lecture slides.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bi-stable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
 - Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 1111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - -0xFA1D37B
 - 0xfa1d37b

Hex Decimal

0 0 0000 1 1 0001 2 2 0010 3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110 F 15 1111			
3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	_	0	0000
3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	1	1	0001
3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	2	2	0010
4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	3	3	0011
6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	4		0100
7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	5		0101
7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	6	6	0110
9 9 1001 A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110	7	7	0111
A 10 1010 B 11 1011 C 12 1100 D 13 1101 E 14 1110		8	1000
B 11 1011 C 12 1100 D 13 1101 E 14 1110	9	9	1001
C 12 1100 D 13 1101 E 14 1110	A	10	1010
D 13 1101 E 14 1110	1	11	1011
E 14 1110		12	1100
	D	13	1101
F 15 1111	E	14	1110
	F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	_	10/16
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1_
0	0	0
1	0	1

Or

■ A | B = 1 when either A=1 or B=1

ı	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

<u>$ 01010101 | 01010101 ^ 01010101 ~ 01010101</u>

01000001 01111101 00111100 10101010
```

• All of the Properties of Boolean Algebra Apply

Ex: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w−1}
- $a_j = 1 \text{ if } j \subseteq A$
 - 01101001 { 0, 3, 5, 6 }
 - 76543210
 - 01010101 { 0, 2, 4, 6 }
 - 76543210

Operations

- &	Intersection	01000001	{ 0, 6 }
-	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
_ ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
_ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0x41 \rightarrow 0xBE$
 - $\sim 01000001_2 \rightarrow 101111110_2$
 - $-\sim 0$ x00 \rightarrow 0xFF
 - $\sim 00000000_2 \rightarrow 111111111_2$
 - $-0x69 & 0x55 \rightarrow 0x41$
 - $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
 - $-0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - View 0 as "Fa
 - Anythi Watch out for && vs. & (and || vs. |)...
 - Always one of the more common oopsies in
 - Early t C programming
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $-0x69 \&\& 0x55 \rightarrow 0x01$
 - $-0x69 | |0x55 \rightarrow 0x01$
 - p && *p (avoids null pointer access)

Shift Operations

- Left Shift: x << y
 - Shift bit-vector **x** left **y** positions
 - Throw away extra bits on left
 - Fill with o's on right
- Right Shift:
- x >> Å
- Shift bit-vector **x** right **y** positions
 - Throw away extra bits on right
- Logical shift
 - Fill with o's on left
- Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or > word size

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

• C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Sign

Bit

Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

CSED211-2018 17

Numeric Ranges

Unsigned Values

$$- UMin = 0
000...0
- UMax = 2w - 1
111...1$$

• Two's Complement Values

$$- TMin = -2^{w-1}
100...0
- TMax = 2^{w-1} - 1
011...1$$

Other Values

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W				
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Observations

$$-|TMin| = TMax + 1$$

• Asymmetric range

$$-UMax = 2 * TMax + 1$$

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

X	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	- 4
1101	13	- 3
1110	14	-2
1111	15	-1

• Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

• ⇒ Can Invert Mappings

$$- U2B(x) = B2U^{-1}(x)$$

- Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned	
0000	0		0	
0001	1		1	
0010	2		2	
0011	3		3	
0100	4		4	
0101	5	→ T2U →	5	
0110	6		6	
0111	7	← U2T ←	7	
1000	-8		8	
1001	-7		9	
1010	-6		10	
1011	-5		11	
1100	-4		12	
1101	-3		13	
1110	-2		14	
1111	-1		15	

CSED211-2018 23

Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned	
0000	0		0	
0001	1		1	
0010	2		2	
0011	3	=	3	
0100	4		4	
0101	5		5	
0110	6		6	
0111	7		7	
1000	-8		8	
1001	-7		9	
1010	-6	. / 10	10	
1011	-5	+/- 16	11	
1100	-4		12	
1101	-3		13	
1110	-2		14	
1111	-1		15	

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

- Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed CSED211-2018 28

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting
 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Sign Extension

• Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

• Rule:

- Make *k* copies of sign bit:

CSED211-2018 31

Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

-	Decimal	Нех	Binary		
X	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Negation: Complement & Increment

• Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits

Discard Carry: w bits

 $UAdd_{w}(u, v)$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly
 with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

- Wraps Around
 - If true sum ≥ 2^w
 - At most once

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
- Will give s == t
```

TAdd Overflow

Functionality

- True sum requires w+1bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

• Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min: Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max: Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

• Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * 2^k$
- Both signed and unsigned

Examples

$$- u << 5 - u << 3 == u * 24$$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

k

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Arithmetic: Basic Rules

• Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

• Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- *Don't* use without understanding implications
 - Easy to make mistakes
 unsigned i;
 for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];
 Can be very subtle
 #define DELTA sizeof(int)
 int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, *Secure Coding in C and C++*
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- · Addition, negation, multiplication, shifting
- Representation in memory, pointers, strings

Byte-Oriented Memory Organization

- Programs Refer to Virtual Addresses
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

- Big Endian
 - Least significant byte has highest address
- Little Endian
 - Least significant byte has lowest address
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

Address	Instruction Code	Assembly Rendition	
8048365:	5b	pop %ebx	
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx	
804836c:	83 bb 28 00 00 00 00	cmpl \$6x0,0x28(%ebx)	

- Deciphering Numbers
 - Value:
 - Pad to 32 bits:
 - Split into bytes:
 - Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation (Covered later)

CSED211-2018 59

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```

Representing Pointers

```
int B = -15213;
int *P = &B;
```


Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18243";

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit *i* has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

Integer C Puzzles

- Assume 32-bit word size, two's complement integers
- For each of the following C expressions: true or false? Why?

Initialization

•
$$x < 0$$

$$\Rightarrow$$
 ((x*2) < 0)

•
$$ux >= 0$$

$$\Rightarrow$$
 (x<<30)<0

•
$$ux > -1$$

•
$$x > y$$

$$\Rightarrow$$
 -x < -y

•
$$x * x >= 0$$

•
$$x > 0 \&\& y > 0$$

$$\Rightarrow x + y > 0$$

•
$$x \ge 0$$

$$\Rightarrow$$
 -x <= 0

•
$$x \le 0$$

$$\Rightarrow$$
 -x >= 0

•
$$(x|-x)>>31==-1$$

•
$$ux >> 3 == ux/8$$

•
$$x >> 3 == x/8$$

•
$$x & (x-1) != 0$$

Extras

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^{w}$$

$$1 + \mathop{a}_{i=0}^{w-1} 2^{i} = 2^{w}$$

- w = 0:
 - $-1=2^{0}$
- Assume true for w-1:

$$-1+1+2+4+8+...+2^{w-1}+2^{w} = 2^{w}+2^{w} = 2^{w+1}$$

$$= 2^{w}$$

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
   memcpy(user dest, kbuf, len);
    return len;
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel (mybuf, MSIZE);
   printf("%s\n", mybuf);
```

Malicious Usage

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
   memcpy(user dest, kbuf, len);
    return len;
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \leq \mathrm{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Characterizing TAdd

Functionality

- − True sum requires *w*+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     * /
   void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

• What if:

```
- ele_cnt = 2^{20} + 1 = 4096 = 2^{12} - Allocation= ??
```

• How can I make this function secure?

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%eax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $\times >> k \text{ gives } \lfloor \times / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax
js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

• Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathrm{UMult}_{w}(u, v) \leq 2^{w} - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two's complement multiplication and addition
 - Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0$$
 \Rightarrow $u + v > v$
 $u > 0, v > 0$ \Rightarrow $u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
```