Errata

- p 28, exercise 2: change s_1, \ldots, s_k to $s_1 = (1, \sigma), \ldots, s_k$
- p 28, exercise 3: change $n \ge 0$ to n > 0
- p 32, exercise 7: change last sentence to:

Show that the functions computed by straightline programs [see Exercise 6] are a proper subset of the functions computed by forward-branching programs.

- p 43, l -5: change h_2, h_2, h_3 to h_1, h_2, h_3
- p 61, l-3: change (x)j to $(x)_i$
- p 62, exercise 1: append to first sentence: "and $f'(x)\uparrow$ if Lt(x) > n"
- p 62, exercise 2: change first sentence to:

Define Sort($[x_1, \ldots, x_n] - 1$) = $[y_1, \ldots, y_n] - 1$, where $n = \text{Lt}([x_1, \ldots, x_n])$ and y_1, \ldots, y_n is a permutation of x_1, \ldots, x_n such that $y_1 \leq \cdots \leq y_n$.

- p 71, l -12: change Im to I_m
- p 76, l 9: change "this equation" to "equation (3.1)"
- p 79, l 13: change "Lt(x) = m" to "Lt(x) < m & x > 0"
- p 86, l-9: insert "." between product terms
- p 95, ll 3 and 9: change TOTAL to TOT
- p 97, exercise 8: append to first sentence: "such that $\bigcirc \subset R_{\Gamma} \subset N$ "
- p 111: change the definition of $\phi_t(x)$ to:

$$\phi_t(x) = \begin{cases} x+1 & \text{if } t=0\\ 0 & \text{if } t=1\\ l(x) & \text{if } t=2\\ r(x) & \text{if } t=3\\ \phi_{l(n)}(\phi_{r(n)}(x)) & \text{if } t=3n+4, \ n\geq 0\\ \langle \phi_{l(n)}(x), \phi_{r(n)}(x) \rangle & \text{if } t=3n+5, \ n\geq 0\\ 0 & \text{if } t=3n+6, \ n\geq 0 \text{ and } x=0\\ \phi_{l(n)}((x-1)/2) & \text{if } t=3n+6, \ n\geq 0 \text{ and } x \text{ is odd}\\ \phi_{r(n)}(\phi_t(x/2)) & \text{if } t=3n+6, \ n\geq 0 \text{ and } x \text{ is even} \end{cases}$$

- p 111, second line after definition of $\phi_t(x)$: change "where n > 0 and i = 1, 2, or 3" to "where $n \ge 0$ and i = 4, 5, or 6"
- p 111: change the definition of g(z, t, x) to:

$$g(z,t,x) = \begin{cases} x+1 & \text{if } t=0 \\ 0 & \text{if } t=1 \\ l(x) & \text{if } t=2 \\ r(x) & \text{if } t=3 \end{cases}$$

$$\Phi_z^{(2)}(l(n),\Phi_z^{(2)}(r(n),x)) & \text{if } t=3n+4, \ n\geq 0 \\ \langle \Phi_z^{(2)}(l(n),x),\Phi_z^{(2)}(r(n),x) \rangle & \text{if } t=3n+5, \ n\geq 0 \\ 0 & \text{if } t=3n+6, \ n\geq 0 \text{ and } x=0 \end{cases}$$

$$\Phi_z^{(2)}(l(n),\lfloor x/2 \rfloor) & \text{if } t=3n+6, \ n\geq 0 \text{ and } x \text{ is odd}$$

$$\Phi_z^{(2)}(r(n),\Phi_z^{(2)}(t,\lfloor x/2 \rfloor)) & \text{if } t=3n+6, \ n\geq 0 \text{ and } x \text{ is even}$$

- p 119, l -15: change 10 to 109
- p 121, exercise 8: change "Show" to "For $n \geq 2$, show"
- p 143: insert missing last line: "program in Fig. 4.5. You may use macros."
- p 155, l 2: change "represents" to "represent"
- p 165, l 8 of Table 6.1: change \bar{q}_i to \tilde{q}_i
- p 171, exercise 4: add # to set A and change $b_{j_1}^{i_1}\cdots b_{j_n}^{i_n}$ to # $b_{j_1}^{i_1}\cdots b_{j_n}^{i_n}$ #
- p 190, l –14: change $\stackrel{*}{\Rightarrow}$ to $\stackrel{*}{\Rightarrow}$
- p 215, l 6: change "principle" to "principal"
- p 232, l 14: append to paragraph: "(E.g., $3 = \langle 2, 0 \rangle$ codes (0,0), (0,0).)"
- p 233, l 6: change " $a_i \in a_i \in$ " to " $a_i \in$ "
- p 253, l 2: change u_1, \ldots, u_n to $u_1 \cdots u_n$
- p 255, l –11: append to line: " $R_{ii}^0 = \{0\}$, and, for $i \neq j$,"
- p 258, l 9: change "language" to "languages"
- p 258, l -1: change last \cup to \cup
- p 298, l 12: change "us" to "use"
- p 309, l -13: change T* to T*

- p 310, l 15: change T* to T*
- p 310, l -5: change " $\{0\}$ " to " $\{0\}$ "
- p 320, exercise 8(c): change $L = N(\mathcal{M})$ to $L \cup \{0\} = N(\mathcal{M})$
- p 349, l 2 (after Table 1.1): delete \times
- p 387, l -14: change **V** to \boldsymbol{v}
- p 407: change exercises 2 and 3 as follows:
 - 2. Let **W** be a vocabulary with relation symbol \equiv , where $\delta(\equiv) = 2$, and let Ω be a set of **W**-sentences containing $EQ_{\mathbf{W}}$, where $EQ_{\mathbf{W}}$ consists of the sentence $(\forall x)(x=x)$ and all sentences of the form

$$(\forall x_1) \cdots (\forall x_{2i})((x_1=x_{i+1} \land \cdots \land x_i=x_{2i}) \supset f(x_1,\ldots,x_i)=(x_{i+1},\cdots,x_{2i})),$$

 $(\forall x_1) \cdots (\forall x_{2i})((x_1=x_{i+1} \land \cdots \land x_i=x_{2i} \land p(x_1,\ldots,x_i)) \supset p(x_{i+1},\cdots,x_{2i}))$

where f is a function symbol in \mathbf{W} with $\delta(f) = i$, and p is a predicate symbol in \mathbf{W} with $\delta(p) = j$. A model I of Ω is normal if $\equiv^I(x,y) = 1$ if and only if x, y are the same element. Show that Ω has a model if and only if it has a normal model. [Hint: Let D be the domain of a model of Ω . Create a normal model using domain elements $[a] = \{x \in D \mid \equiv^I(x,a) = 1\}$, where $a \in D$.]

- 3. Let **W** and δ be as in Exercise 2. Show that if Ω has arbitrarily large finite normal models, then it has an infinite normal model. [Hint: Show that $\Omega \cup \{(\exists x_1) \cdots (\exists_n) \bigwedge_{1 \leq i < j \leq n} \neg x_i = x_j \mid n \in N\}$ has a normal model.]
- p 410, exercise 5: change introduction to

Let **W** be a vocabulary with relation symbol =, where $\delta(=) = 2$. A function $f(x_1, \ldots, x_n)$ is representable in an axiomatizable theory **T** containing $\mathrm{EQ}_{\mathbf{W}}$ [see Exercise 6.2] if there is a formula $\alpha(b_1, \ldots, b_n, b)$ such that if $f(m_1, \ldots, m_n) = k$ then

$$\vdash_{\mathbf{T}} \alpha(\overline{m_1}, \dots, \overline{m_n}, \overline{k}) \text{ and } \vdash_{\mathbf{T}} (\forall y)(\alpha(\overline{m_1}, \dots, \overline{m_n}, y) \supset y = \overline{k}).$$

We say that α represents $f(x_1, \ldots, x_n)$ in **T**. Let **T** be a consistent axiomatizable theory [see Exercise 2] such that (i) $\mathrm{EQ}_{\mathbf{W}} \subseteq \mathbf{T}$, (ii) $\vdash_{\mathbf{T}} \neg \overline{0} = \overline{1}$, and (iii) every primitive recursive function is representable in **T**.

• p 410, exercise 5(d): change $\vdash_{\mathbf{T}} \overline{0} \neq \overline{1}$ to $\vdash_{\mathbf{T}} \neg \overline{0} = \overline{1}$.

- p 450, exercise 11 should be: Prove Theorem 2.3 without using Church's thesis.
- p 455, l –12: change $\rho_{i_e,j,k}$ to $\rho_{i_c,j,k}$ and change $\sigma_{j_e,j,k+1}$ to $\sigma_{j_c,j,k+1}$
- p 456, l 9: change "it" to "the preceding configuration"
- p 486, l 3: delete \sqcup
- p 493, l -17: change $(D \rightarrow \text{to } (D \rightarrow E))$
- p 507, l −16: delete second)
- p 509, l -14: change \rightarrow to \rightarrow
- p 517, l 12: t should be t
- p 520, l 11, l 12: change $\sqsubseteq_{\mathcal{A}_{\mathcal{T}(V)}}$ to $\sqsubseteq_{\mathcal{A}_{\mathcal{T}(V)}}$
- p 542, l 15: delete "a"
- p 549, l 11: change \sqsubseteq_{τ^+} to \sqsubseteq_{τ^+}
- p 549, l 13: change \sqsubseteq_{τ^+} to \sqsubseteq_{τ^+}
- p 552, l 3: change 1 to 1
- p 562, l -10: change $\mathbf{if}_{\mathbf{N}}(\cdots)$ to $\mathbf{if}_{\mathbf{N}}(\cdots)$
- p 563 l 11: $\underline{s_1^{-1}}(1)$ to $\underline{s_1^{-1}}(1)$
- p 564, l 4 of footnote: delete first ","
- p 565, l −6: delete last ")"
- p 565, l-4: change $rr_{\mathbf{P}}(is_{-0}(2))$ to $rr_{\mathbf{P}}(is_{-0}(2))$
- p 570, l 10: change first "on" to "and"
- p 578, l -1: change X_n to \mathbf{X}_n , change X_1 to \mathbf{X}_1
- p 580, l 13: change $\Big[\cdots\Big]$ to $[\cdots]$
- p 597, column 2, l -15: change $\alpha_{(d_1...d_n)}$ to $\alpha_{(d_1,...,d_n)}$
- $\bullet\,$ p 598, column 2, l 7: change $\mathbf{T}_{\mathcal{S}}$ to $\mathbf{T}_{\mathcal{S}}$