Chapter 4 Discrete Random Variables

Yingbo Li

Clemson University

MATH 4000 / 6000

Recap

Independence

- $P(A \cap B) = P(A) \times P(B), \ P(A|B) = P(A)$
- Events A_1, A_2, \ldots, A_n is (mutually) independent if for any $1 \le r \le n$ of them

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_r}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_r})$$

Question

Which of the following statements is false?

- (a) Two disjoint events cannot occur at the same time.
- (b) Two independent events cannot occur at the same time.
- (c) Two complementary events cannot occur at the same time.

2 / 1

Question

The figure and table on the right show the average daily probabilities for being born on any day in a certain month. If we randomly select two people, what is the probability that the first one is born in April and the second in July?

- (a) $0.0026426 \times 0.0028655$
- (b) $(0.0026426 \times 30) + (0.0028655 \times 31)$
- (c) $(0.0026426 \times 30) \times (0.0028655 \times 31)$
- (d) $(0.0026426^{30}) \times (0.0028655^{31})$

Jan	0.0026123	Jul	0.0028655
Feb	0.0026785	Aug	0.0028954
Mar	0.0026838	Sep	0.0029407
Apr	0.0026426	Oct	0.0027705
May	0.0026702	Nov	0.0026842
Jun	0.0027424	Dec	0.0026864

Figure 1. Average Daily United States Birth Frequencies, by Month. The rate increases fairly steadily from about 5% below the average in January to about 7% above it in September. The dashed line shows the uniform birth probability distribution of 1/365.

3 / 1

Nunnikhoven (1992). A Birthday Problem Solution for Nonuniform Birth Frequencies.

Outline

Random Variables

Definition

Random Variable X is a real-valued function on the sample space S.

Example: If $S=\{a=(a_1,a_2): 1\leq a_1,a_2\leq 6\}$ is the 36 element space resulting from rolling two fair six-sided dice, then the following are all random variables

$$X(a) = a_1$$

 $Y(a) = |a_1 - a_2|$
 $Z(a) = a_1 + a_2$

- Random variable is a number associated with a random experiment.
- Random variables are in essence a fancy way of describing an event,
 e.g.

$$P(X = 1) = 1/6$$

Example: a coin is flipped until a head is obtained. The flips are Independent and each one has probability p of heads. Let the random variable X denote the number of flips until a head is obtained.

$$P(X = 1) = P(H) = p$$

 $P(X = 2) = P(TH) = (1 - p)p$
 $P(X = 3) = P(TTH) = (1 - p)^{2}p$
......
 $P(X = n) = P(TT \cdots TH) = (1 - p)^{n-1}p \cdots$

Cumulative distribution function (cdf)

Definition

For a random variable X, the function F defined by

$$F(x) = P(X \le x), \quad -\infty < x < \infty$$

is called the cumulative distribution function of X.

Note that

- Capital X: random variable
- Little x: a real-valued number

In the previous coin flipping example,

$$F(n) = P(X \le n) = \sum_{i=1}^{n} (1-p)^{i-1}p = \frac{[1-(1-p)^n]p}{1-(1-p)} = 1-(1-p)^n$$

Properties of the cdf

- $P(a < X \le b) = F(b) F(a)$, for all a < b
- ullet P(X < b) does not necessary equal to $P(X \le b)$.
- F(x) is a non-decreasing function; i.e., if $x_1 < x_2$, then

$$F(x_1) \le F(x_2)$$

2

$$\lim_{x \to \infty} F(x) = 1 \Longleftrightarrow P(X \le \infty) = 1$$

(3

$$\lim_{x \to -\infty} F(x) = 0 \Longleftrightarrow P(X > -\infty) = 1$$

• F(x) is right continuous; i.e., for any decreasing sequence $\{x_n : n = 1, 2, \ldots\}$ that converges to x,

$$\lim_{n \to \infty} F(x_n) = F(x) \Longrightarrow \lim_{n \to \infty} P(X \le x + \frac{1}{n}) = P(X \le x)$$

The cdf tells us everything about a rv X

FIGURE 4.8: Graph of F(x).

•
$$P(X \le 0.5) = 0.5 \times \frac{1/2}{1} = 0.25$$

•
$$P(X > 2) = 1 - P(X \le 2) = \frac{1}{12}$$

•
$$P(X < 1) = 0.5, P(X \le 1) = \frac{2}{3}$$

•
$$P(X = 1) = P(X \le 1)$$

- $P(X < 1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$

Discrete random variables

Definition

- A random variable X that can take on at most a countable number of possible values is a discrete random variable.
- For a discrete random variable X, we define the probability mass function (pmf) by

$$p(x) = P(X = x)$$

Note: pmf is also written as f(x).

Examples of discrete rv

- Flip a coin 10 times, X = number of heads. X can be $0, 1, 2, \ldots, 10$, finite. \Longrightarrow discrete rv.
- X = number of your ex boyfriends / girlfriends. X can be $0, 1, 2, \ldots, \infty$, countable. \Longrightarrow discrete rv.
- X =a random number in [0,1] generated by computer X can anything in [0,1], uncountable. \Longrightarrow not discrete rv.

pmf and cdf

ullet For a discrete rv X, there exists a countable sequence x_1, x_2, \ldots , st

$$\begin{aligned} p(x_i) > 0 &\quad \text{for } i = 1, 2, \dots \\ p(x) = 0 &\quad \text{for all other values of } x \end{aligned}$$

and

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Relationship between pmf and cdf (for discrete rv)

$$F(a) = \sum_{\mathsf{all}} p(x)$$

• If we know pmf, we can compute cdf. And vice versa.

X has a pmf given by

$$p(1) = \frac{1}{4}, \ p(2) = \frac{1}{2}, \ p(3) = \frac{1}{8}, \ p(4) = \frac{1}{8}$$

$$F(a) = \begin{cases} 0 & a < 1 & \frac{1}{2} \\ \frac{1}{4} & 1 \le a < 2 & \frac{3}{4} \\ \frac{3}{4} & 2 \le a < 3 & \frac{7}{8} & 3 \le a < 4 \\ 1 & 4 \le a & \frac{1}{4} \end{cases}$$

Recap

Random Variable

ullet Random Variable X is a real-valued function on the sample space S.

$$X:S\longrightarrow \mathbb{R}$$

Cumulative distribution function (cdf)

$$F_X(x) = P(X \le x)$$
, for any $x \in \mathbb{R}$

Discrete random variable

- can only take at most a countable number of possible values.
- probability mass function (pmf)

$$p_X(x) = P(X = x)$$

 $\bullet \ \sum_{i=1}^{\infty} p(x_i) = 1$

•
$$F(a) = \sum_{\text{all } x \leq a} p(x)$$

Expected value

Definition

The expected value (or mean) of a discrete random variable is defined as

$$E[X] = \sum_{x:p(x)>0} x \cdot P(X = x) = \sum_{x:p(x)>0} xp(x)$$

• E[X] is a weighted average of the possible values x that X can take on, each value being weighted by the probability p(x).

When she told me I was average, she was just being mean.

Example: X is the outcome when we roll a 4-sided fair die. Find E[X].

$$p(1) = p(2) = p(3) = p(4) = \frac{1}{4}$$
$$E[X] = 1 \times \frac{1}{4} + 2 \times \frac{1}{4} + 3 \times \frac{1}{4} + 4 \times \frac{1}{4} = 2.5$$

Toss a coin. Suppose the probability of a head is p. Let X be a 0-1 indicator random variable s.t.

$$X = \begin{cases} 1 & \text{if head is obtained} \\ 0 & \text{otherwise} \end{cases}$$

Compute $\mu = E[X]$.

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p$$

• In general, for indicator variable $X = \delta_A$ or $\mathbf{1}_A$, denoted as

$$X = \left\{ \begin{array}{ll} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{otherwise} \end{array} \right.$$

The expected value of X equals the probability that A occurs.

$$E[X] = 1 \cdot P(A) + 0 \cdot P(A^c) = P(A)$$

Question

Let the rv ${\cal X}$ denote the GP a certain student will earn in this class. Suppose its pmf is

$$p(0) = 0.05, \quad p(1) = 0.05, \quad p(2) = 0.3, \quad p(3) = 0.4$$

Calculate his/her expected GP E[X].

Since the domain of X (all possible values X can take) is $\{0,1,2,3,4\}$, first compute p(4).

$$p(4) = 1 - p(0) - p(1) - p(2) - p(3) = 0.2$$

Then compute E[X]

$$E[X] = 0 \times 0.05 + 1 \times 0.05 + 2 \times 0.3 + 3 \times 0.4 + 4 \times 0.2 = 2.65$$

Expectation of a function of a random variable

• If X is a discrete rv, and g is a real-valued function then the expectation (or expected value) of Y=g(X) is

$$E[g(X)] = \sum_{x:p_X(x)>0} g(x) \cdot p_X(x)$$

X is a discrete rv with pmf

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline p_X(x) & 1/4 & 1/2 & 1/4 \end{array}$$

 $Y = X^2$. Compute E[Y].

$$\begin{split} E[Y] &= \sum_{\text{all } x} x^2 \cdot p_X(x) \\ &= (-1)^2 \times \frac{1}{4} + 0^2 \times \frac{1}{2} + 1^2 \times \frac{1}{4} \\ &= \frac{1}{2} \end{split}$$

Properties of expected values

If a and b are constants, then

$$E[aX + b] = aE[X] + b$$

- Holds for all rv X (not necessary discrete rv).
- Proof for discrete rv: let g(X) = aX + b

Special cases of linear transformation E[aX + b] = aE[X] + b

constant factor

$$E[aX] = aE[X]$$

constant

$$E[b] = b$$

Recap

Expectation μ

- \bullet For discrete rv $E[X] = \sum_{\mathsf{all}\ x} x \cdot p(x)$
- \bullet Functions $E[g(X)] = \sum_{\mathsf{all}\ x} g(x)\ p(x)$
- Indicators $E[\delta_A] = P(A)$ where δ_A is an indicator function
- Linear function E[aX + b] = aE[X] + b
- Constants E[c] = c if c is constant

For two rv's X and Y

$$E[X+Y] = E[X] + E[Y]$$

Variance

 \bullet Expected value (or mean) $\mu=E[X]$ yields the weighted average of the possible values of X

Definition

Variance measures the variation (or spread) of these values

$$\sigma^2 = Var(X) = E\left[(X - E(X))^2 \right] = E\left[(X - \mu)^2 \right]$$

This holds for all rv X (not necessary discrete rv).

One common simplification:

$$Var(X) = E(X^2) - \mu^2$$

Standard deviation

Definition

Standard Deviation is the square root of the variance

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Example: compute the standard deviation of a fair 4-sided die toss.

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[X] = 1 \times \frac{1}{4} + 2 \times \frac{1}{4} + 3 \times \frac{1}{4} + 4 \times \frac{1}{4} = 2.5$$

$$E[X^{2}] = 1 \times \frac{1}{4} + 4 \times \frac{1}{4} + 9 \times \frac{1}{4} + 16 \times \frac{1}{4} = 7.5$$

$$Var(X) = 7.5 - 2.5^{2} = 1.25$$

$$SD(X) = \sqrt{Var[X]} = 1.12$$

Variance measures the spread of X

 X_1 is a discrete rv with pmf

 X_2 is a discrete rv with pmf

$$\begin{array}{c|c|c|c} x & -1 & 1 \\ \hline p_{X_1}(x) & 1/2 & 1/2 \end{array}$$

$$\begin{array}{c|c|c} x & -2 & 2 \\ \hline p_{X_2}(x) & 1/2 & 1/2 \end{array}$$

$$\mu_1 = 0, \ \sigma_1^2 = E[X_1^2] - 0^2 = 1, \ \sigma_1 = 1$$

$$\mu_2 = 0, \ \sigma_2^2 = E[X_2^2] - 0^2 = 4, \ \sigma_2 = 2$$

Increasing variance (or sd) reflects increasing spread.

Distributions with SD = 1

Property of variance

Question

We know that $Var(X) = E[(X - \mu)^2]$, and for constants a, b,

$$E[aX + b] = aE[X] + b.$$

Write Var(aX + b) as a function of Var(X).

$$Var(aX + b) = E[(aX + b - E[aX + b])^{2}]$$

$$= E[(aX + b - aE[X] - b)^{2}]$$

$$= E[(aX - a\mu)^{2}]$$

$$= E[a^{2}(X - \mu)^{2}]$$

$$= a^{2}Var(X)$$

Properties of variance

 $Var(X) \ge 0$

• Var(X) = 0 if and only if X is a constant.

If a and b are constants, then

$$Var(aX + b) = a^2 Var(X)$$

•

$$Var(aX) = a^2 Var(X)$$

$$Var(X + b) = Var(X)$$

$$Var(b) = 0$$

Bernoulli distribution

A trial has two outcomes: success (1) or failure (0). Let $rv\ X$ be the number of success in a single trial.

Definition

Random variable X has a Bernoulli distribution, if

$$P(X = 1) = p, \quad P(X = 0) = 1 - p$$

where $0 \le p \le 1$ is the probability of a success.

• The pmf of Bernoulli distribution

$$X \sim \mathsf{Ber}(p) \iff p(1) = p, \ p(0) = 1 - p$$

• Found by Switzerland mathematician Jacob Bernoulli.

Examples of Bernoulli distributions

- Toss a fair coin and obtain a head. p = 0.5.
- Roll a fair 6-sided die and obtain a 6. p = 1/6.
- Earn an A for this class. $p \in [0, 1]$.

Question

Find the mean and variance of $X \sim \text{Ber}(p)$.

$$E(X) = 1 \times p + 0 \times (1 - p) = p$$
$$Var(X) = E(X^{2}) - (E[X])^{2} = 1^{2} \times p + 0^{2} \times (1 - p) - p^{2} = p - p^{2} = p(1 - p)$$

Recap

Variance σ^2

For all rv

$$Var(X) = E[(X - \mu)^2] = E[X^2] - \mu^2$$

Linear function

$$Var(aX + b) = a^2 Var(X)$$

Constants

$$Var(c) = 0$$

Standard deviation

$$SD(X) = \sqrt{Var(X)}$$

Bernoulli distribution

$$p(1) = p, \quad p(0) = 1 - p$$

 $\mu = p, \quad \sigma^2 = p(1 - p)$

Binomial distribution

Definition

Define X to be the <u>number of successes</u> in a <u>fixed number</u> n of <u>independent trials</u> with the <u>same probability of success</u> p as having a <u>Binomial distribution</u>.

Then the pmf of X is P(X = k) = P(getting k successes in n trials)

$$X \sim \mathit{Bin}(n,p) \Longleftrightarrow \ p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0,1,\dots,n$$

Example of Binomial distributions

- The number of heads obtained by tossing a fair coin 10 times. n = 10, p = 0.5.
- The number of 6 obtained when roll four fair 6-sided dice simultaneously. n=4, p=1/6.
- The number of A's students will earn in this semester.
 n = number of classes you're taking, p varies by classes...
 not really a Binomial rv!

36 / 1

Example: let X be the number of 6 obtained when roll four fair 6-sided dice simultaneously. Find its pmf.

$$n = 4, \ p = 1/6,$$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$p(0) = {4 \choose 0} (1/6)^0 (5/6)^4 = 0.4823$$

$$p(1) = {4 \choose 1} (1/6)^1 (5/6)^3 = 0.3858$$

$$p(2) = {4 \choose 2} (1/6)^2 (5/6)^2 = 0.1157$$

$$p(3) = {4 \choose 3} (1/6)^3 (5/6)^1 = 0.0154$$

$$p(4) = {4 \choose 4} (1/6)^4 (5/6)^0 = 0.0008$$

Question

Example : let X be the number of 6 obtained when roll four fair 6-sided dice simultaneously. Its pmf is.

x	0	1	2	3	4
p(x)	0.4823	0.3858	0.1157	0.0154	0.0008

Find its cdf F(x).

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.4823 & \text{if } 0 \le x < 1 \\ 0.8681 & \text{if } 1 \le x < 2 \\ 0.9838 & \text{if } 2 \le x < 3 \\ 0.9992 & \text{if } 3 \le x < 4 \\ 1 & \text{if } x \ge 4 \end{cases}$$

Question

Suppose 42% of the students in a class have part time jobs. Among a random sample of 10 students in that class, what is the probability that exactly 8 have part time jobs?

Binomial distribution. n = 10, p = 0.42.

$$P(X = 8) = {10 \choose 8} \times 0.42^8 \times 0.58^2 = 0.0147$$

We can use the binomial distribution to calculate the probability of k successes in n trials, as long as

- the trials are independent
- \bigcirc the number of trials, n, is fixed
- each trial outcome can be classified as a success or a failure
- \bullet the probability of success, p, is the same for each trial

Pmf of Binomial distribution: uni-modal

Binomial pmf is valid (or well-defined)

• Positive: for any $x \in \mathbb{R}$

$$p(x) \ge 0$$

Total one:

$$\sum_{k=0}^{n} p(k) = 1$$

Recall the Binomial Theorem $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Mean of Binomial random variable

Toss a coin n times, each toss has prob p being a head. On average, total number of heads equals np.

$$E[X] = np$$

Properties of Binomial distribution

Variance

$$Var[X] = np(1-p)$$

• If we have independent Bernoulli rv's X_1, X_2, \dots, X_n with the same probability of success p, then their sum has a Binomial distribution

$$X = X_1 + X_2 + \dots + X_n \sim \mathsf{Bin}(n, p)$$

Question

Roll 4 fair six-sided dice. Let X be the number of 6 obtained. Find its mean and variance.

$$X \sim \mathsf{Bin}(n=4, p=1/6)$$

$$E[X] = np = 4 \times (1/6) = 2/3$$

$$Var(X) = np(1-p) = 4 \times (1/6) \times (5/6) = 5/9$$

Recap

Binomial distribution $X \sim Bin(n, p)$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- ullet mean $\mu=np$
- variance $\sigma^2 = np(1-p)$

Question

Random variable $X \sim \text{Binom}(n,p)$, and the value of n is fixed. For any fixed n, find p such that the distribution of X has the largest spread.

Variance (or standard deviation) is a measurement of spread.

$$\sigma^2 = np(1-p)$$

To find the \hat{p} that maximize the spread, i.e., find the root of the derivative

$$\frac{d\sigma^2}{dp} = n(1 - p + (-p)) = 0$$
$$\implies \hat{p} = 1/2$$

Count the number of ...

In beer brewing, cultures of yeast are kept alive in jars of fluid before being put into the mash.

- It's critical to control the amount of yeast used.
- Number of yeast cells in a fluid sample can be seen under a microscopes.
- Yeast cells are constantly multiplying and dividing.
- A famous statistician, Wiliam Sealy Gosset (aka "Student"), who worked for the Guinness Brewing Compnay in early 1900's, modeled the counts of yeast cells using the *Poisson distribution*.

The Poisson distribution was used in 1898 to count the number of soldiers in the Prussian Army who died accidentally from horse kicks

47 / 1

Poisson distribution

Definition

Denote $\operatorname{rv} X$ that takes value in $\{0,1,2,\ldots\}$ as having a Poisson distribution with parameter λ if its pmf is

$$X \sim P(\lambda) \iff p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

- Formulated by French mathematician
 Siméon Denis Poisson
- Usually is used to model "the number of xxx occur". Hence lower bound is 0, no upper bound.
- Examples
 - Number of rains in this year
 - Number of mis-placed books in the Cooper library
 - Number of roses you will receive on the next Valentines Day

Example: number of Math classes taken

Yingbo Li (Clemson)

Example: number of siblings

Pmf of Poisson distribution

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

• Well-defined (validness of pmf): non-negative, and

$$\sum_{k=0}^{\infty} p(k) = 1$$

Taylor Series

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \cdots$$

• Use Taylor series to verify that the Poisson distribution is well-defined

$$e^{\lambda} = 1 + \lambda + \frac{\lambda^2}{2!} + \dots + \frac{\lambda^k}{k!} + \dots$$

Yingbo Li (Clemson)

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Mean

$$E[X] = \lambda$$

Properties of Poisson distribution $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Variance

$$Var[X] = \lambda$$

Question

Suppose Clemson students have 1.73 siblings on average. What's the probability that a randomly selected student has at most one sibling?

$$X \sim \mathsf{P}(\lambda), E[X] = 1.73 \Longrightarrow \lambda = 1.73$$

$$P(X \le 1) = p(0) + p(1)$$

$$= e^{-\lambda} \frac{\lambda^0}{0!} + e^{-\lambda} \frac{\lambda^1}{1!}$$

$$= 0.1773 + 0.3067 = 0.4840$$

Example: find the probability that a randomly selected student has odd number of siblings.

$$X \sim \mathsf{P}(\lambda), \lambda = 1.73$$

$$\begin{split} P(X \text{ is an odd number}) &= p(1) + p(3) + p(5) + \cdots \\ &= e^{-\lambda} \frac{\lambda^1}{1!} + e^{-\lambda} \frac{\lambda^3}{3!} + e^{-\lambda} \frac{\lambda^5}{5!} + \cdots \end{split}$$

Note that

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$
$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} - \cdots$$

$$P(X \text{ is an odd number}) = e^{-\lambda} \left(\frac{e^{\lambda} - e^{-\lambda}}{2} \right) = \frac{1 - e^{-2\lambda}}{2} = 0.4843$$

Use Poisson to approximate Binomial distribution

Let $X \sim \text{Bin}(n, p)$. If

- p: small
- n: large
- $\lambda = np$: of moderate size

then the distribution of X can be approximated by $P(\lambda)$.

Recap

Poisson distribution $X \sim P(\lambda)$

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- $\bullet \ \operatorname{mean} \ \mu = \lambda$
- $\bullet \ \ {\rm variance} \ \sigma^2 = \lambda$
- Approximate Binomial distribution with small p, large n, moderate np

$$P(np) \approx Bin(n, p)$$

Question

 $X \sim P(\lambda)$. Which is the following is FALSE?

- (a) The mean and standard deviation of X are different.
- (b) Pmf of X can be a decreasing function.
- (c) λ can only take values $0, 1, 2, \ldots$
- (d) None of the above.

Geometric distribution

A gambler plays at a roulette table and alway bet on red until he wins... In each round, his chance of winning is 18/38 = 0.47. Let X denote the number of rounds he plays.

Definition

Denote $rv\ X$ that takes value in $\{1,2,\ldots\}$ as having a Geometric distribution with parameter $p\in(0,1)$ if its pmf is

$$X \sim \text{Geometric}(p) \iff p(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

- ullet X represents the number of trials performed until we get a success, where p is the probability of success on each trial.
- Note the difference between Geometric distribution and Binomial distribution! Eg: whether the total number of trials is fixed.

Properties of Geometric distribution $p(k) = (1-p)^{k-1}p$

• Well-defined (validness of pmf): non-negative, $\sum_{k=1}^{\infty} p(k) = 1$

$$\sum_{k=1}^{\infty} (1-p)^{k-1}p = p[1 + (1-p) + (1-p)^2 + \cdots] = \frac{p}{1 - (1-p)} = 1$$

- • Cdf: $P(X \le k) = 1 - (1-p)^k$ $P(X \ge k+1) = P(\text{The first } k \text{ trials all fail})$
- Mean

$$E[X] = \frac{1}{p}$$

Variance

$$Var[X] = \frac{1-p}{n^2}$$

Gambler's fallacy

If the gambler loses 5 times in a row, will he more likely to win in the 6th round?

$$P(X > 6 \mid X > 5) \stackrel{?}{<} P(X > 1)$$

Unfortunately, not.

Definition

We say a distribution is memoryless, if

$$P(X > n + k \mid X > n) = P(X > k)$$

Geometric rv is memoryless.

$$P(X > n + k \mid X > n) = \frac{P(X > n + k)}{P(X > n)}$$
$$= \frac{(1 - p)^{n+k}}{(1 - p)^n} = (1 - p)^k = P(X > k)$$

Pmf of Geometric distribution

Example: X denotes the number of times a die is rolled until 6 is obtained.

- What are the odds we have to roll it 10 or more times?
- 4 How many times do we expect to roll?
- Find Var[X].
- \bullet $X \sim \mathsf{Geometric}(p=1/6)$, and

$$P(X \ge 10) = 1 - P(X \le 9) = 1 - [1 - (1 - p)^9] = (5/6)^9$$

Mean of Geometric distribution

$$E[X] = 1/p = 6$$

Variance

$$Var[X] = \frac{1-p}{p^2} = \frac{\frac{5}{6}}{\frac{1}{6} \cdot \frac{1}{6}} = 30$$

Negative Binomial distribution

Definition

Denote $rv\ X$ that takes value in $\{1,2,\ldots\}$ as having a Negative Binomial distribution with parameter $p\in(0,1)$ if its pmf is

$$X \sim \mathit{NB}(r,p) \iff p(k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r, \quad k = r, r+1, \dots$$

- X represents the number of trials performed until we get r success, where p is the probability of success on each trial.
- Well-defined (validness of pmf).
- Connection between Negative Binomial and Geometric distributions

$$X \sim \mathsf{Geometric}(p) \Longleftrightarrow X \sim \mathsf{NB}(1,p)$$

Note: Proof of $\sum_{k=r}^{\infty} p(k) = 1$ for Negative Binomial distribution is not required.

Yingbo Li (Clemson) Chapter 4 MATH 4000 / 6000 66 / 1

Properties of Neg Binom $p(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r$

Mean

$$E[X] = \frac{r}{p}$$

Variance

$$Var[X] = \frac{r(1-p)}{p^2}$$

Recall that for Geometric(p),

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Pmf of Negative Binomial distribution

Question

Consider independent trials with success probability p. Let q=1-p. What's the probability of getting r successes before m failures?

- (a) $p^{r-1}q^m$
- (b) $\binom{r+m-1}{r-1} p^{r-1} q^m$
- (c) $\sum_{k=r}^{r+m} {k-1 \choose r-1} p^r q^{k-r}$
- (d) $\sum_{k=r}^{r+m-1} {k-1 \choose r-1} p^r q^{k-r}$

Let X denote the number of trials needed to get r successes. Then $X \sim \mathrm{NB}(r,p).$

$$\begin{split} &P(r \text{ successes before } m \text{ failures}) \\ =&P(r^{\mathsf{th}} \text{ success occurs on trials } r, r+1, \ldots, r+m-1) \\ =&P(X=r) + P(X=r+1) + \cdots + P(X=r+m-1) \end{split}$$