EyeScope: A 3D Interaction Technique for Accurate Object Selection in Immersive Environments

Cleber Ughini, Fausto Blanco, Francisco Pinto, Carla M.D.S. Freitas, Luciana P. Nedel UFRGS

- Metaphors
 - Exocentric
 - Egocentric
 - Virtual hand
 - Virtual pointer
- Immersive environments
 - HMD
 - Data glove

Requirements

- Accuracy
- Reachability
- Time saving
- Comfort
- Simplicity
- Immersion sense
- Error and tolerance

Virtual hand

- User's hand is explicitly represented in the virtual environment
- To select an object the user intercept the object with the virtual hand
- Selection is confirmed by:
 - pressing a button on the input device
 - performing a specific gesture with the fingers or the whole hand
- More physical hand movement
 - Lack of comfort

- Requirements
 - Accuracy
 - Reachability
 - Time saving
 - Comfort
 - Simplicity
 - Immersion sense
 - Error and tolerance

- Ray casting
 - Bolt (1990)
 - An infinite and semi-transparent ray from the user's hand towards the point indicated by the hand orientation
 - The object pointed at by the ray is selected through a specific command using the input device
 - Powerful technique but
- Fails in dense environments or with faraway objects
 - Lack of accuracy

- Requirements
 - Accuracy
 - Reachability
 - Time saving
 - Comfort
 - Simplicity
 - Immersion sense
 - Error and tolerance

- Gaze-directed technique
 - Jacob (1990)
 - Tracking the user's eye movement and determining to where the user is looking at
 - Selection of the object the user pointed by the viewing direction
- Fails in dense environments or with faraway objects
 - Lacks accuracy

Gaze-directed selection technique

- Used by other authors
 - Bleser and Sibert (1990)
 - Tanaka (1999)
 - Yamato et al. (2000)
- Appropriate for use with HMD
- Lacks accuracy in dense environments or with faraway objects due to the low precision of pointing with the eye's or head movement

Goal

- Improving selection in immersive environments using virtual hand
 - Looking at objects and zooming in their direction for selection
 - Provide a finer control over the viewing direction during zoom in to improve precision of object selection
 - HMD controls the viewing direction
 - Data glove gestures control zoom in/out and selection

Eyescope

- HMD movement
 - used to control the position of the cursor (red cross)
- Hand (using a data glove) closing gestures
 - control zoom in/out and selection

Opening/closing *Zooming in or out*

Closed Selection

Eyescope: hand gestures to zooming factor

- Zooming in occurs between almost open and almost closed hands
- Open hand means no zoom through a smooth zoom out
- Closed hand means selection of the object under the cursor

Open *No zoom*

Almost open Zooming out

Almost closed Zooming in

Closed Selection

Eyescope: head movements

- Gaze-directed selection
 - Angles are mapped 1:1 from the HMD to the virtual observer in the VRE
 - Lack of stability

Eyescope

 Larger zooming levels imply smaller angular variations in the viewing direction for the same variation in the HMD orientation

Application

- Spheres populate the VRE
- Apparatus
 - VFX3D head-mounted display with yaw, pitch and roll orientation sensors; maximum screen resolution of 640 by 480 pixels, and 60° frustum
 - 5DT data glove
 - Background music (Super Mario Bros)

Experiment: task and hypotheses

- Task: Selection of the target object
- Hypotheses
 - H1. Eyescope is more efficient in the cases of far, small or partially occluded objects
 - H2. Eyescope is always more accurate, avoiding wrong selections
 - H3. Eyescope will be chosen as better than gazedirected selection, and the users will feel more confident with it

Experiment: variables and sample

Independent

- Age
- Gender
- Previous use of virtual reality devices
- Previous use of 3D applications, like games, CAD, etc.
- Previous participation in experimental studies
- The technique being used (eyescope=with zoom/ gaze directed=without zoom)
- The scenario

Dependent

- Time to select the target
- Number of errors until task completion

Subjects

- 24 subjects
- 9 women and 15 men aging from 19 to 37 years old.

Experiment: procedure

- Users trained until feeling confident
- Tasks executed in an interleavead way
 - 12 no zoom / 12 zooming on and vice-versa
- Post-questionnaire
- Log of results

- First result
 - There is no correlation between any variables and time completion/errors
 - Time and number of errors are correlated to each other and to zoom

	Gdr	Age	Dev	Env	Rsr	Scn	Time	Zm	Ers
Gender	×	61	30	45	20	0	5	2	7
Age	-51	×	14	35	9	0	2	1	1
Device	-37	2	×	24	91	0	9	1	7
Envrmn:	-37	-11	33	×	34	0	1	2	4
Research	-31	-1	92	41	×	0	5	0	3
Scene	0	0	0	0	0	×	5	0	2
Time	8	-5	-8	-7	-7	-5	×	11	67
Zoom	0	0	0	0	0	0	-10	×	27
Errors	-4	1	5	-3	4	-2	66	-27	×

Results

 H1. Eyescope is more efficient in the cases of far, small or partially occluded objects

H1 holds for all scenarios taken altogether:
eyescope is better, mean time of 8.369+6.47 x
10.09+10.19

Results (H1)

2

- ANOVA applied to data from each scenario
- Eyescope is better in scenario 2

$$- F = 17.159$$
; p < 0.000146

Gaze-directed is better in scenario 6

$$- F = 6.754$$
; p < 0.0125

 No significant difference in the other scenes

Results

H2: Eyescope is always more accurate, avoiding wrong selections

Except scenarios 1
 and 6, all showed
 significant differences,
 eyescope being better

F = 38.291

p < 1.46605E-09

Results (H2)

Eyescope avoids wrong selection

Results

- H3. Eyescope will be chosen as better than gazedirected selection, and the users will feel more confident with it
- From the post-test questionnaires:
 - Only 2 of the 24 users preferred the gaze-directed
 - 29.71% said the zoom sometimes confused them
 - 92% preferred the eyescope technique

Conclusions

- Eyescope demonstrated to be better for selecting objects due to the fine control
 - Taking into account all the scenes, the total time to accomplish the tasks dropped from 90.81 seconds with the gaze-directed selection to 75.31 seconds with eyescope
 - The mean number of errors until task completion was reduced from 13.79 to 2.75
- Future work
 - Use data glove's other degrees of freedom to allow navigation in the VRE

http://www.inf.ufrgs.br/~ughini/EyeScope/index.html

