SERIA 7

Twierdzenie (Twierdzenie Diniego).

(1) Załóżmy, że $n \in \mathbb{N}$, $K \subset \mathbb{R}$ jest zbiorem zwartym oraz funkcje $f, f_n \colon K \to \mathbb{R}$ są ciągłe. Załóżmy ponadto, że $f_n \to f$ punktowo na K oraz

$$f_1 \leqslant f_2 \leqslant \ldots \leqslant f_n \leqslant \ldots$$
 na K_1

Wówczas $f_n \rightrightarrows f$ na K.

(2) Załóżmy, że $f_n: [a, b] \to \mathbb{R}$ są niemalejące i ciąg (f_n) jest punktowo zbieżny na [a, b] do funkcji ciągłej f. Wówczas $f_n \rightrightarrows f$ na [a, b].

Definicja. Mówimy, że szereg funkcji $\sum_{k=k_0}^{\infty} f_k(x)$ jest zbieżny punktowo (jednostajnie) do f(x) na zbiorze X wtedy i tylko wtedy gdy ciąg sum częściowych $S_n = \sum_{k=k_0}^n f_k(x)$ jest zbieżny punktowo (jednostajnie) do f na X.

Twierdzenie (Kryterium Weierstraßa). Niech $f_n: X \to \mathbb{R}$ dla $n = 1, 2, \ldots$ Jeśli $|f_n(x)| \le a_n$ dla $n \in \mathbb{N}$ oraz szereg liczbowy $\sum_{n=1}^{\infty} a_n$ jest zbieżny wówczas $\sum_{n=1}^{\infty} f_n(x)$ i $\sum_{n=1}^{\infty} |f_n(x)|$ są zbieżne jednostajnie na X.

Zadanie 1. Wykazać, że w Twierdzeniu Diniego założenia: ciągłość (f_n) , ciągłość f, punktowa monotnoniczność (f_n) oraz zwartość K są założeniami istotnymi.

Zadanie 2.

(1) Załóżmy, że $\{f_n\}$ jest ciągiem jednostajnie zbieżnym na X do funkcji f. Załóżmy ponadto, że x_0 jest punktem skupienia zbioru X i istnieje granica $\lim_{x\to x_0} f_n(x)$ dla wszystkich n większych od pewnego n_0 . Wtedy

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} f(x).$$

(2) Udowodnić także, że jeśli $\{f_n\}$ jest ciągiem funkcji jednostajnie zbieżnym do f na przedziale (a, ∞) i istnieje granica $\lim_{x\to\infty} f_n(x)$ dla wszystkich n większych od pewnego n_0 , to

$$\lim_{n \to \infty} \lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} f(x).$$

(3) Załóżmy, że $f_n \in C(X)$, $n \in \mathbb{N}$ oraz szereg funkcyjny $\sum_{n=1}^{\infty} f_n(x)$ jest jednostajnie zbieżny na X. Wykazać, że jeśli $x_0 \in X$ jest punktem skupienia zbioru X, to

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} f_n(x_0).$$

(Równości powyższe rozumiemy w ten sposób, że jeśli istnieje granica po jednej stronie równości, to istnieje też granica po drugiej stronie równości i są one równe.)

2 SERIA 7

Zadanie 3. Pokazać, że szereg $\sum_{n=1}^{\infty} \frac{\ln(1+nx)}{nx^n}$ jest zbieżny jednostajnie na każdym przedziale $[a, \infty)$ dla a > 1.

Zadanie 4. Zbadać czy szereg $\sum_{n=1}^{\infty} x^n (1-x)$ jest zbieżny jednostajnie na przedziale [0,1].

Zadanie 5. Zbadać zbieżność jednostajną $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ na zbiorze \mathbb{R} .

Zadanie 6. Wyznaczyć sumę szeregu funkcyjnego $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ i zbadać czy jest on zbieżny jednostajnie na zbiorze \mathbb{R} .

Zadanie 7. Niech $f_n: [1, \infty) \to \mathbb{R}$,

$$f_n(x) = \begin{cases} \frac{1}{x} & \text{dla } x \in [n, n+1) \\ 0 & \text{dla pozostałych } x, \end{cases} \quad n = 1, 2, \dots$$

Wykazać, że szereg funkcyjny $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżny jednostajnie na przedziale $[1,\infty)$ mimo, że nie ma tutaj zastosowania kryterium Weierstraßa.

Zadanie 8. Wykazać, że

- (a) $\lim_{x\to 1^-} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln 2,$ (b) $\lim_{x\to 0^+} \sum_{n=1}^{\infty} \frac{1}{2^n n^x} = 1,$ (c) $\lim_{x\to \infty} \frac{x^2}{1+n^2 x^2} = \frac{\pi^2}{6}.$