

planetmath.org

Math for the people, by the people.

ideal

Canonical name Ideal1

Date of creation 2013-03-22 13:05:43 Last modified on 2013-03-22 13:05:43

Owner mclase (549) Last modified by mclase (549)

Numerical id 8

Author mclase (549)Entry type Definition Classification ${\rm msc}\ 20{\rm M}12$ Classification msc 20M10Related topic ReesFactor Defines left ideal Defines right ideal Defines principal ideal Defines principal left ideal Defines principal right ideal Let S be a semigroup. An *ideal* of S is a non-empty subset of S which is closed under multiplication on either side by elements of S. Formally, I is an ideal of S if I is non-empty, and for all $x \in I$ and $s \in S$, we have $sx \in I$ and $xs \in I$.

One-sided ideals are defined similarly. A non-empty subset A of S is a left ideal (resp. right ideal) of S if for all $a \in A$ and $s \in S$, we have $sa \in A$ (resp. $as \in A$).

A principal left ideal of S is a left ideal generated by a single element. If $a \in S$, then the principal left ideal of S generated by a is $S^1a = Sa \cup \{a\}$. (The notation S^1 is explained http://planetmath.org/AdjoiningAnIdentityToASemigroup3here.)

Similarly, the *principal right ideal* generated by a is $aS^1 = aS \cup \{a\}$.

The notation L(a) and R(a) are also common for the principal left and right ideals generated by a respectively.

A principal ideal of S is an ideal generated by a single element. The ideal generated by a is

$$S^1 a S^1 = SaS \cup Sa \cup aS \cup \{a\}.$$

The notation $J(a) = S^1 a S^1$ is also common.