Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

PATIENT			
Name: 曲敬華			Patient ID: 17033986
Date of Birth: Oct 26, 1957			Gender: Female
Diagnosis: Pancreatic cancer			
ORDERING PHYSICIAN			
Name: 姜乃榕醫師	Name: 姜乃榕醫師		
Facility: 臺北榮總			
Address: 臺北市北投區石牌路二段 201 號			
SPECIMEN			
Specimen ID: S11179260 Collection site: Pancreas			Type: FFPE tissue
Date received: Jul 21, 2022 Lab ID: AA-22-04214			D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive Resistant		Cancer Types
Not detected			

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
ARID1A E1718*	Dasatinib, Olaparib, Rucaparib, Talazoparib	-
KRAS G12V	-	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Cetuximab, Panitumumab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 24

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
ARID1A	E1718*	15.7%
KRAS	G12V	16.0%
TP53	R175H	23.0%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
	Not	detected	

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 30% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **24**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level 3A			
KRAS G12V	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Cetuximab, Panitumumab	resistant	
Level 3B			
ARID1A E1718*	Olaparib	sensitive	
Level 4			
ARID1A E1718*	Dasatinib, Rucaparib, Talazoparib	sensitive	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **24**

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
Not	detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
<i>TP53</i> R175H	Platinum- and taxane- based regimens	Less sensitive	Clinical	Ovarian cancer
ARID1A	Platinum-based	Less sensitive	Clinical	Ovarian cancer
E1718*	regimens			

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

VARIANT INTERPRETATION

ARID1A E1718*

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription^{[1][2]}. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers^[3]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers^{[4][5][6][7][8]}.

E1718* mutation results in a premature truncation of the ARID1A protein at amino acid 1718 (UniProtKB). This mutation is predicted to lead to a loss of ARID1A function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesis-based therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor^{[9][10]}; 2) AKT-inhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib^[11]; 3) multiple kinase inhibitor, dasatinib^[12].

Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression^[13]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinum-based chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients^{[14][15]}.

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients^{[16][17]}. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation^[18]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression^[19].

ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347).

The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways^[20].

KRAS G12V

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[21]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[21][22]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[23][24]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)^{[21][25]}, colon carcinomas (40-50%)^{[26][27]}, and lung carcinomas (30-50%)^{[28][29]}, but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[22].

KRAS G12V is a hotspot mutation that has been shown to result in the increased activation of downstream signaling pathways^[30].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 5 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214 ONC

Date Reported: Aug 03, 2022

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target[31]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations [32][33][34][35].

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib[36]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment[37]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study[38].

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors[39]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new potential therapeutic strategy in CRC^[40], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression[41]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models[42].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wildtype metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients^[43]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)[44][45]. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies [46][47][48][49][50][51][52].

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC[53], KRAS-mutant NSCLC[54], and KRAS-amplified melanoma^[55].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients(J Clin Oncol 34, 2016 (suppl; abstr 3525))[56][57].

In NCCN guidelines for NSCLC, KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients[58][59][60].

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[61].

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively[62]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time[63].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖 B345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214 ONC

Date Reported: Aug 03, 2022

In patients with metastatic colorectal cancer treated with bevacizumab, the shortest survival was observed in patients with tumors harboring G12V or G12A KRAS mutation, and the PFS and OS for patients with G12V/A KRAS mutation was 6.6 and 16.8 compared to 11.6 and 23.6 months for patients with tumors harboring other KRAS mutation type^[64]. In another retrospective study, Patients with KRAS G12V exhibited worse OS and higher recurrence incidences compared with the entire cohort (OS: 26 months vs 60 months; DFS: 15 months vs 24 months) in lung adenocarcinoma[65].

TP53 R175H

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis[66]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation[67].

The R175H is a hotspot mutation lies within the DNA binding domain of p53 and can be detected in various human cancers[68]. This is a gain-of-function (GOF) mutant losing the wild-type tumor suppressor activity and with acquired new oncogenic activities that capable of contributing to malignant progression [69]. Increased expression of TP53 R175H in endometrial cancer cells has been shown to increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway[70].

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[71].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[72]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[73].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53[74][75][76]. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)[77]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[78][79]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53[80].

TP53 oncomorphic mutations, including P151S, Y163C, R175H, L194R, Y220C, R248Q, R248W, R273C, R273H, R273L, and R282W have been shown to predict resistance to platinum- and taxane-based chemotherapy in advanced serous ovarian carcinoma patients[81].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 7 of 24

ACTOnco® + Report

US FDA-APPROVED DRUG(S) Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

DASISION ^[82]	Chronic myeloid leukemia (Approved on 2010/10/28)
NCT00481247	
NC100401247	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[83]	Chronic myeloid leukemia (Approved on 2007/11/08)
NCT00123474	
NC100123474	Dasatinib [ORR(%): 63.0]
[84]	Acute lymphocytic leukemia (Approved on 2006/06/28)
NCT00123487	Dasatinib [ORR(%): 38.0]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

Oh mani A	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	gBRCA					
NC102032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[85] NCT02987543	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm, PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm					
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[86] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)					
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
POLO ^[87]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
	Germline BRCA mutation (deleterious/suspected deleterious)					
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
201 0 4[88]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
SOLO-1 ^[88]	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)					
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Ol A D [89]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[89]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative					
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
SOLO-2/ENGOT-Ov21 ^[90] NCT01874353	gBRCA+					
NC1018/4353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
NC101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 24

ACTOnco® + Report

C4d4 0[91]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
Study19 ^[91]	
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]
04 1 40[02]	Ovarian cancer (Approved on 2014/12/19)
Study 42 ^[92]	Germline BRCA mutation (deleterious/suspected deleterious)
NCT01078662	Olaparib [ORR(%): 34.0, DOR(M): 7.9]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONO	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA+, sBRCA
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [93]	Ali HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]
ARIEL2 [94]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[95]	Breast cancer (Approved on 2018/10/16)
	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **9** of **24**

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 24

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ARID1A	E1718*	20	c.5152G>T	NM_006015	COSM5444730	15.7%	1138
KRAS	G12V	2	c.35G>T	NM_004985	COSM520	16.0%	2570
TP53	R175H	5	c.524G>A	NM_000546	COSM10648	23.0%	1682

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-04214

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page 11 of 24

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
DCUN1D1	Splice region	-	c.4-3T>C	NM_020640	-	62.3%	77
JAK1	N973K	21	c.2919C>A	NM_002227	-	47.0%	1498
KMT2A	N524S	3	c.1571A>G	NM_001197104	-	48.0%	929
LIG1	R317C	12	c.949C>T	NM_000234	COSM8280753	54.4%	1525
PIK3C2B	P1490S	31	c.4468C>T	NM_002646	-	50.1%	1213
SPEN	C766Y	11	c.2297G>A	NM_015001	_	37.7%	1033
SYNE1	E5157K	81	c.15469G>A	NM_182961	-	50.3%	1557

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **24**

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jun 2022
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11179260
- Collection site: Pancreas
- Examined by: Dr. Chien-Ta Chiang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 10%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 30%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 1144x
- Target Base Coverage at 100x: 95%

RNA test

Average unique RNA Start Sites per control GSP2: 34

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214 ONC

Date Reported: Aug 03, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be \geq 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖 B345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號 Yun Yu Chen

Sign Off 醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

Yun Yu Chen

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

COLLEGE A AMERICAN MATHOLOGISTS Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 24

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	ТВХЗ
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK BRAF FGFR FGFR1 FGFR2 FGFR3 MFT NRG1 NTRK1 NTRK2 NTRK3 RFT ROS1								
ALV DDAE ECED ECED1 ECED2 ECED2 MET NIDC1 NIDV1 NIDV2 DET DOC1								
ALV DRAE ECER ECERT ECERT ECERT MET NIRCT NITRY NITRY DET DOCT								
	ALK	EGFR	FGFR1					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之临床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 16 of 24

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

REFERENCE

- PMID: 10757798; 2000, Mol Cell Biol;20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- PMID: 25387058; 2015, Annu Rev Pathol;10():145-71 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science;330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas.
- PMID: 21412130; 2011, Am J Surg Pathol;35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet;43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.
- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther; 15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance.
- 14. PMID: 22101352; 2012, Mod Pathol;25(2):282-8 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63
 Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.
- 16. PMID: 26770240; 2015, J Breast Cancer;18(4):339-46 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- 17. PMID: 21889920; 2012, Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 18. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- PMID: 2453289; 1988, Cell;53(4):549-54
 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- 22. PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74
 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82
 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30
 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 23455880; 2013, J Cancer Res Clin Oncol;139(6):953-61
 KRAS allel-specific activity of sunitinib in an isogenic disease model of colorectal cancer.
- PMID: 25414119; 2014, Drugs;74(18):2111-28
 The biology and clinical development of MEK inhibitors for cancer.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.
- PMID: 25265494; 2014, N Engl J Med;371(20):1867-76
 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 35. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- 38. PMID: 25722381; 2015, Ann Oncol;26(5):894-901
 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

39. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61

Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.

PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.

41. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25

Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.

42. PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14

Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.

43. PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52

FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer.

44. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6

American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.

45. PMID: 18802721; 2008, Virchows Arch;453(5):417-31

KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.

46. PMID: 25605843; 2015, J Clin Oncol;33(7):692-700

Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.

47. PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655

Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.

48. PMID: 24024839; 2013, N Engl J Med;369(11):1023-34

Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.

49. PMID: 24666267; 2014, Acta Oncol;53(7):852-64

The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

50. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201

Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.

51. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214

A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.

52. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705

Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.

53. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54

Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.

54. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51

A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.

55. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82

Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

- 56. PMID: 23828442; 2013, Med Oncol;30(3):650
 KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.
- 57. PMID: 28632865; 2017, JAMA;317(23):2392-2401
 Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.
- 58. PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8

 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.
- PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21
 KRAS mutation: should we test for it, and does it matter?
- 60. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- 61. PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- 62. PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 63. PMID: 24549645; 2013, J Pathol;231(4):449-56
 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- 64. PMID: 26662311; 2016, Tumour Biol;37(5):6823-30
 G12V and G12A KRAS mutations are associated with poor outcome in patients with metastatic colorectal cancer treated with bevacizumab.
- 65. PMID: 26372703; 2015, Br J Cancer;113(8):1206-15
 Prognostic value of the KRAS G12V mutation in 841 surgically resected Caucasian lung adenocarcinoma cases.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 67. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- PMID: 20182602; 2010, Cold Spring Harb Perspect Biol;2(1):a001008
 TP53 mutations in human cancers: origins, consequences, and clinical use.
- PMID: 24651012; 2014, Cancer Cell;25(3):304-17
 Mutant p53 in cancer: new functions and therapeutic opportunities.
- 70. PMID: 19917135; 2009, Mol Cancer;8():103
 Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway.
- 71. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 73. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- 74. PMID: 27466356; 2016, Mol Cancer Ther; 15(10):2475-2485

ACCREDITED COLLEGE of AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.

75. PMID: 23670029; 2013, Oncotarget;4(5):705-14

P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.

76. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14

Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.

77. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52

p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.

78. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21

p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.

79. PMID: 10786679; 2000, Cancer Res;60(8):2155-62

Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.

80. PMID: 25672981; 2015, Cancer Res;75(7):1187-90

VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.

81. PMID: 25385265; 2015. Int J Oncol:46(2):607-18

TP53 oncomorphic mutations predict resistance to platinum and taxane based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma.

82. PMID: 20525995; 2010, N Engl J Med;362(24):2260-70

Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.

83. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12

Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.

84. PMID: 17496201; 2007, Blood;110(7):2309-15

Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.

85. PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102

Olaparib for Metastatic Castration-Resistant Prostate Cancer.

86. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428

Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

87. PMID: 31157963: 2019. N Engl J Med:381(4):317-327

Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.

88. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.

89. PMID: 28578601; 2017, N Engl J Med;377(6):523-533

Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.

90. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.

91. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.

92. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 24

Project ID: C22-M001-02183 Report No.: AA-22-04214_ONC Date Reported: Aug 03, 2022

ACTOnco® + Report

Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.

- 93. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 94. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87
 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 24 of 24