Majeure Machine Learning

Concepts

Contenu

- Principe d'apprentissage (Cost function)
- Régression linéaire + polynomiale
- Descente de gradient
- Underfitting / Overfitting
- Régularisation
- Espaces de grandes dimensions

Ce que vous devrez savoir faire

- Comprendre le rôle de la Cost function
- Comprendre le principe de minimisation de coût grâce à la descente de gradient
- Définir et identifier l'Overfitting et l' Underfitting
- Comprendre le rôle de la Régularisation
- Comprendre les limites liées aux dimensions

Principe d'apprentissage

Qu'est-ce que l'entraînement ?

Jeu de données :

Superfici e (m²)	Prix (en milliers d'€)
2000	200 000
2500	250 000
1600	160 000
1200	120 000
2300	230 000
1800	180 000

Cost function

Superfi cie (m²)	Prix (en milliers d' €)	Prix prédit
2000	200 000 👡	300 000
2500	250 000	350 000
1600	160 000	260 000
1200	120 000	220 000
2300	230 000	330 000
1800	180 000	280 000

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

=> Objectif: Minimiser la Cost function

Qu'est-ce que l'entraînement ?

Jeu de données :

Х	Υ
x_1	y_1
x_2	y_2
•••	
x_n	y_n

Features: X

Label: Y

Valeur réelle : y(x)

Valeur prédite : $\hat{y}(x)$

Modèle: j

Objectif:

 $orall x_i, \hat{y}(x_i) pprox y(x_i)$

Exemple: La Régression linéaire

Superficie (m²)	Prix (en milliers d' €)
2000	200 000
2500	250 000
1600	160 000
1200	120 000
2300	230 000
1800	180 000

$$(heta_1, heta_0) => \hat{y}(x) = heta_1 x + heta_0$$

=> Comment trouver θ_0 et θ_1 ?

(10, 0)

(100, 0)

(100, 100)

Minimisation de la Cost function

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

Dérivée partielle : -1

 \Rightarrow Objectif : Mettre à jour itérativement θ grâce à sa dérivée partielle pour atteindre un minimum de $J(\theta)$

Dérivée partielle :
$$rac{\partial J(heta)}{\partial heta_1} = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n)) x_n$$

La descente de gradient

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

Dérivée partielle :
$$rac{\partial J(heta)}{\partial heta_1} = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n)) x_n$$

Pour i allant de 1 à nombre_choisi :

$$heta_1 = heta_1 - lpha rac{\partial J(heta)}{\partial heta_1}$$

Avec α > 0, le pas d'avancement

$$\theta$$
1 = 5
Dérivé partielle = 3
=> θ 1 = 5 - 1*3 = 2

$$\theta$$
1 = 2
Dérivé partielle = -1
=> θ 1 = 2 - 1*(-1) = 2 + 1 = 3

Minimisation de la Cost function

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

■ □ v

Capacité d'apprentissage

Capacité d'un modèle

$$\hat{y}(x) = \theta_1 x_1 + \theta_0$$

$$\hat{y}(x) = heta_2 x^{\mathbf{2}} + heta_1 x_1 + heta_0$$

$$\hat{y}(x)= heta_4x^4+ heta_2x^3+ heta_2x^2+ heta_1x_1+ heta_0$$

=> Capacité:

- Faculté à apprendre "par coeur"

Overfitting / Underfitting

$$\hat{y}(x) = heta_1 x_1 + heta_0$$

$$\hat{y}(x)= heta_4x^4+ heta_2x^3+ heta_2x^2+ heta_1x_1+ heta_0$$

Overfitting / Underfitting

Les causes :

- Underfitting :
 - Capacité du modèle trop faible
 - Pas assez d'itérations d'apprentissage
 - Manque de qualité dans les données
- Overfitting :
 - Capacité du modèle trop forte
 - Trop peu d'exemples

<u>Diagnostique</u>:

Overfitting / Underfitting - Quizz

	Overfitting	Underfitting
Train: 95% Test: 60%	✓	
Train: 80% Test: 78%		
Train: 40% Test: 42%		✓

La Régularisation

=> Objectif : Réduire la capacité pour prévenir l'Overfitting

Pénalisation de la Cost function :

$$J(heta) = 1/N \sum_{n=1}^{N} (\hat{y}(x_n, heta) - y(x_n))^2 + \lambda heta^2$$

Avec $\lambda > 0$, la "force" de régularisation

Les problèmes liés aux grandes dimensions

La Malédiction des dimensions

- => La <u>difficulté à généraliser</u> peut augmenter exponentiellement avec le nombre de dimensions
- => La complexité et le temps de calcul vont aussi augmenter

Fin du chapitre 2.1