به نام خدا

دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران پروژه ۲ درس نظریه زبان ها و ماشین ها ۹۸ – ۹۷

abbasi.sa77@yahoo.com, sina95kachoei@gmail.com

زمان آپلود : ۷ تیر زمان تحویل حضوری اعلام می گردد

در این پروژه قرار است یک گرامر مستقل از متن دلخواه گرفته و الگوریتم پارس کردن برای آن بنویسید. بدین منظور سه بخش زیر را به ترتیب پیاده سازی خواهید کرد:

بخش اول: ساده سازی گرامر مستقل از متن

حذف قواعد لامبدا

sample input	sample output	
$A \rightarrow aA \mid \lambda$	$A \rightarrow aA \mid a$	
$S \rightarrow ABC$	$S \rightarrow A \mid AB \mid AC \mid ABC$	
$A \rightarrow Aa \mid a$	$A \rightarrow Aa \mid a$	
$B \to Bb \mid \lambda$	$B \rightarrow Bb \mid b$	
$C \rightarrow Cc \mid \lambda$	$C \rightarrow Cc \mid c$	

اا. حذف قواعد يكه

$A \rightarrow aA \mid B$	$A \rightarrow aA \mid bB \mid AA$
$B \rightarrow bB \mid AA$	$B \rightarrow bB \mid AA$
$S \rightarrow A$	$S \rightarrow cB \mid c$
$A \rightarrow B$	$A \rightarrow cB \mid c$
$B \rightarrow C$	$B \rightarrow cB \mid c$
$C \rightarrow S \mid cB \mid c$	$C \rightarrow cB \mid c$

ااا. حذف قواعد بي فايده

- i. حذف قواعد غير مولد
- ii. حذف قواعد دسترس ناپذیر از متغیر شروع

$A \rightarrow aA \mid a \mid BA$	$A \rightarrow aA \mid a$
$S \rightarrow sAS$	
$A \rightarrow aS \mid B$	
$B \rightarrow cC \mid c$	
$S \rightarrow aSb \mid ab$	$S \rightarrow aSb \mid ab$
$T \rightarrow tT \mid t$	

توجه: توصیه می شود ترتیب ساده سازی بالا را رعایت کنید.

بخش دوم: تبدیل به فرم نرمال چامسکی

قواعد تولید گرامر به فرم نرمال چامسکی به صورت زیر هستند:

 $\begin{array}{ll} V \rightarrow V_1 V_2 & V_1, V_2 \in NT \\ V \rightarrow \sigma & \sigma \in T \end{array}$

در این بخش شما باید گرامر ساده شده ی قسمت قبل را به فرم بالا در آورید.

sample input		sample output
$V \rightarrow \sigma_1 V_2 V_3 \sigma_4 \sigma_5 V_6 \dots$ $V_2 \rightarrow \dots$	$V \rightarrow V_1 V_2 V_3 V_4 V_5 V_6 \dots$ $V_1 \rightarrow \sigma_1$	$V \to V_1 T_1 T_1 \to V_2 T_2$
$V_3 \to \cdots \\ V_6 \to \cdots$	$V_4 \to \sigma_4 \\ V_5 \to \sigma_5$	$T_2 \to V_3 T_3 T_3 \to V_4 T_4$
	$V_2 \to \cdots \\ V_3 \to \cdots$	$T_4 \to V_5 T_5 T_5 \to V_6 \dots$
	$V_6 \rightarrow \cdots$	$V_1 \to \sigma_1 \\ V_4 \to \sigma_4$
		$V_5 \to \sigma_5$ $V_2 \to \cdots$
		$\begin{array}{c} V_3 \to \cdots \\ V_6 \to \cdots \end{array}$

بخش سوم: پياده سازى الگوريتم CYK

الگوریتم CYK یک گرامر به فرم نرمال چامسکی به همراه یک رشته گرفته و معین می کند که رشته توسط این گرامر پذیرفته می شود یا خیر.

این الگوریتم به ازای هر رشته n حرفی یک ماتریس $M_{n imes n}$ ساخته و درایه های قطر اصلی و بالای آن را را با مجموعه هایی از متغیر های گرامر پر می کند. در نهایت رشته پذیرفته است اگر و تنها اگر متغیر شروع در درایه $M_{1,n}$ یافت شود.

parsing grammar	with word	results in
$S \rightarrow AB$	aabbb	accept
$A \rightarrow BB \mid a$	ab	accept
$B \rightarrow AB \mid b$	ba	reject
	aabbabaab	reject
$A \rightarrow AB \mid CD$	x	reject
$B \rightarrow AB \mid CD$	xx	accept
$C \rightarrow AB \mid CD$	xxx	accept
$D \rightarrow AB \mid CD$		
$S \rightarrow AB \mid CD$		
$A \rightarrow x$		
$B \rightarrow x$		
$C \rightarrow x$		
$D \rightarrow x$		

توضیح: برای گرامر اول و رشته 'aabbb' ماتریس تولید شده توسط الگوریتم به صورت زیر خواهد بود:

Α		S, B	Α	S , B
	Α	S, B	Α	S, B
		В	Α	S, B
			В	Α
				В

توضیح ورودی و خروجی:

ابتدا قواعد گرامر را خط به خط خوانده تا به علامت \$ در یک خط که نشان دهنده اتمام گرامر است برسید.

حال اگر گرامر در فرم نرمال چامسکی بود True در غیر این صورت False چاپ کنید و در خطوط بعد گرامر معادل آن به فرم نرمال چامسکی را چاپ کنید.

سپس در هر خط یک رشته می خوانید و به ازای آن خروجی True یا False متناسب با پذیرفته شدن یا نشدن رشته مورد نظر روی گرامر می دهید تا باز به علامت \$ که نشان دهنده اتمام رشته هاست برسید.

توضيحات تكميلى:

- در تعریف قواعد تولید گرامر ورودی متغیر ها حروف انگلیسی بزرگ و ترمینال ها حروف انگلیسی کوچک هستند.
 - متغیر شروع گرامر ورودی همواره S است.
 - زبان گرامر های ورودی شامل λ نیست. (قاعده $\lambda \leftarrow \cdots \leftarrow S$ نداریم)
- تابعی برای چاپ گرامر داشته باشید تا در صورت نیاز هنگام تحویل پس از هریک از بخش های یک و دو آن را فراخوانی کنید.
- تابعی برای نمایش ماتریس حاصل از اجرای الگوریتم CYK داخل کد داشته باشید تا در صورت نیاز هنگام تحویل فراخوانی کنید
 - کد خود را در یک فایل zip به فرمت SID.zip که SID شماره دانشجویی شماست آپلود کنید.
 - موارد مطروحه در مورد **CA** را با دستیاران آموزشی مربوطه مطرح کنید.
- سعی کنید خودتان برای تایید صحت عملکرد برنامه، تعدادی ورودی خروجی نمونه که حالات مختلف را پوشش دهد ایجاد نمایید.