J.R.Schrieffer, 1964, Theory of Superconductivity

Koji Higasa

2020 年吉日

目次

第1章	Introduction	5
1.1	Simple Experimental Facts	5
1.2	Phenomenological Theories	5
第2章	The Pairing Theory of Superconductivity	7
2.1	Physical Nature of the Superconducting State	7
2.2	The One-Pair Problem	7
2.3	Landau's Theory of a Fermi Liquid	7
2.4	The Pairing Approximation	7
2.5	Quasi-Particle Excitations	7
2.6	Linearized Equations of Motion	7

第1章

Introduction

- 1.1 Simple Experimental Facts
- 1.2 Phenomenological Theories
- 1.2.1 Gorter-Casimir Model

(1-6).

$$\begin{split} \frac{\partial F}{\partial x} &= \frac{1}{2} \frac{1}{\sqrt{x}} \bigg(-\frac{1}{2} \gamma T^2 \bigg) - 1 (-\beta) = 0 \\ &\frac{\gamma T^2}{4} \frac{1}{\sqrt{x}} = \beta \\ &\therefore \sqrt{x} = \frac{\gamma T^2}{4\beta} \\ &\therefore x = \bigg(\frac{\gamma}{4\beta} \bigg)^2 T^4 \end{split}$$

(1-8).

$$H_c^2(T) = 8\pi (F_n(T) - F_s(T)) = 8\pi (F(1,T) - F(0,T))$$

$$= 8\pi (f_n(T) - f_s(T)) = 8\pi \left(-\frac{1}{2}\gamma T^2 + \beta\right)$$

$$= 8\pi \beta \left(1 - \frac{\gamma}{2\beta}T^2\right) \equiv H_0\left(1 - \left(\frac{T}{T_c}\right)\right)$$

(1-9).

$$C_{es}(T) = -T\left(\frac{\partial^2 F}{\partial T^2}\right) = -T\sqrt{x}(-\gamma) = \gamma T\sqrt{x}$$
$$= \gamma T_c \left(\frac{T}{T_c}\right)^3 :: \text{Eq.}(1\text{-}6)$$

- 1.2.2 The London Theory
- 1.2.3 F.London's Justification of the London Theory
- 1.2.4 Pippard's Nonlocal Generalization of the London Theory
- 1.2.5 Ginsburg-Landau Theory

(1-43).

$$\begin{split} f(T) &= a \left(-\frac{a}{b} \right) + \frac{1}{2} b \left(-\frac{a}{b} \right)^2 \\ &= -\frac{a^2}{b} + \frac{a^2}{2b} = -\frac{a^2(T)}{2b(T)} \end{split}$$

(1-44).

$$\frac{\lambda^2(0)}{\lambda^2(T)} = \frac{n_s^2(T)}{n_s^2(0)} = \frac{|\Psi_e(T)|^2}{|\Psi_e(0)|^2} :: \text{Eq.}(1\text{-}38)$$
$$= |\Psi_e(T)|^2 :: n = n_s \quad \text{for} \quad T = 0$$
$$: : |\Psi_e(0)| = 1$$

(1-48).

$$\begin{split} \frac{\partial f}{\partial \Psi(\mathbf{r})} &= 0 \\ \Rightarrow 0 &= -\frac{\hbar^2}{2m^*} \bigg(\nabla + \frac{\mathrm{i} e^*}{\hbar c} A(\mathbf{r}) \bigg) 2 \Psi(\mathbf{r}) \\ 0 &= -\frac{H_c^2(T)}{4\pi m^*} \frac{\lambda^2(T)}{\lambda^2(0)} \bigg(1 - \frac{\lambda^2(T)}{\lambda^2(0)} |\Psi(\mathbf{r})|^2 \bigg) 2 \Psi(\mathbf{r}) \\ \therefore &\underbrace{\text{Eq.} (1\text{-}48)}_{\text{expression}} \end{split}$$

(1-51).

(1-52).

第2章

The Pairing Theory of Superconductivity

- 2.1 Physical Nature of the Superconducting State
- 2.2 The One-Pair Problem
- 2.3 Landau's Theory of a Fermi Liquid
- 2.4 The Pairing Approximation
- 2.5 Quasi-Particle Excitations
- 2.6 Linearized Equations of Motion

参考文献

[1] J.R.Schrieffer. 1964. Theory of Superconductivity [Revised Printing]. http://zimp.zju.edu.cn/~qchen/Teaching/AdvStat/Schrieffer.pdf