Package 'eiCompare'

November 14, 2018

Type Package

Version 2.3

Title Compares EI, Goodman, RxC Estimates

Date 2018-11-13	
Author Loren Collingwood	
Maintainer Loren Collingwood < loren.collingwood@ucr.edu>	
Description Compares estimates from three ecological inference routines, based on King (1997) <isbn: 0691012407="">, http://gking.harvard.edu/eicamera/kinroot.html; King et abs.shtml>.</isbn:>	. al. (200
License GPL (>= 2)	
Depends eiPack, methods, tmvtnorm, foreach, ggplot2, ei, RCurl, RJSONIO, sjmisc, wru	
Imports data.table, ucminf, R.utils, mvtnorm, msm, mnormt, cubature, ellipse, plotrix, plyr, tidyr, magrittr, stringr	
NeedsCompilation no	
R topics documented:	
eiCompare-package 2 bayes_table_make 2 bisg_prep_race_predict 4 corona 6 cor_06 7 ei.reg.bayes.conf.int 7 ei_compare-class 9	

 ei_est_gen
 10

 ei_rc_congruence
 12

 ei_rc_good_table
 13

 goodman_generalize
 15

 lac_10
 16

 latlong2fips
 17

 mbd_two
 18

 mbd_two_minority
 18

 md_bayes_draw
 19

 mean_and_ci
 20

 ny_fips
 21

2 bayes_table_make

	ıy_voter	21
	olot.ei	22
	olot.ei_compare	22
	precinct_agg_combine	26
	ace_check_2_3	27
	ummary.ei	28
	init_comb_extract	29
Index	3	30

eiCompare-package

Compares EI, Goodman, RxC Estimates

Description

Compares estimates from three ecological inferences routines, based on King et. al.'s approach.

Details

See demo(demo, "eiCompare") for examples on how to use code

Author(s)

Loren Collingwood

Maintainer: Loren Collingwood < loren.collingwood@ucr.edu>

References

Gary King (1997). A Solution to the Ecological Inference Problem. Princeton: Princeton University Press. Lau, Olivia, Ryan Moore, and Michael Kellerman. eiPack: Ecological Inference and Higher-Dimension Data Management

bayes_table_make

EI:RxC Bayes Table Make

Description

Creates data.frame() table from eiPack RxC output, in the same format as ei_est_gen

Usage

```
bayes_table_make(ei_bayes_object, cand_vector, table_names)
```

Arguments

ei_bayes_object

Output from eiPack ei.reg.bayes() function

cand_vector Character vector of candidate name variables, usually "pct_johns" or something table_names Character vector of column names, e.g., c("RxC: Pct Hisp", "RxC: Pct Asian")

bayes_table_make 3

Value

Data frame object in similar vein to ei_est_gen

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

O. Lau, R. T. Moore, and M. Kellermann. eipack: RxC ecological inference and higher-dimension data management. New Functions for Multivariate Analysis, 18(1):43, 2006.

```
# TOY DATA EXAMPLE
canda <- runif(5)</pre>
candb <- 1-canda
white <- runif(5)
black <- 1 - white</pre>
total <- round( runif(5, min=20, max=40), 0)</pre>
toy <- data.frame(canda, candb, white, black, total)</pre>
cands <- c("canda", "candb")</pre>
table_names <- c("RxC: PCT Black", "RxC PCT White")</pre>
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda,candb) ~ cbind(black, white))</pre>
# Run Bayesian model
suppressWarnings (
ei_bayes <- ei.reg.bayes(form, data=toy, sample=100, truncate=TRUE)</pre>
# Table Creation, using function bayes_table_make
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
ei_bayes_res
# Load Package Data
data(corona)
# Create Character Vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")</pre>
table_names <- c("RxC: Pct Hisp", "RxC: Pct Asian", "RxC: Pct White")</pre>
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(pct_husted,pct_spiegel,pct_ruth,pct_button,pct_montanez,pct_fox)</pre>
~ cbind(pct_hisp, pct_asian, pct_white))
# Run Bayesian model
suppressWarnings (
ei_bayes <- ei.reg.bayes(form, data=corona, sample=10000, truncate=TRUE)</pre>
# Table Creation, using function bayes_table_make
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
ei_bayes_res
```

bisg_prep_race_predict

Bayesian Improved Surname Geocoding Data Preparation and Race Prediction

Description

Preps data for BISG estimation via WRU package

Usage

```
bisg_prep_race_predict(df, voterid=NULL, precinct=NULL, surname_char, state,
                                   census.geo="block", census.key, census.data,
                                   census.surname = TRUE, surname.only = FALSE,
                                  surname.year = 2010, age = FALSE, sex = FALSE,
                                   party, retry = 0)
```

Arguments

df	data.frame()	object,	containin	g voter file	information	ı with	FIPS	code inform	na-
	_							_	_

tion extracted using unit_comb_extract() function, which brings in relevant columns

String of voterid column name. Default = NULL. Probably want this. voterid String of precinct column name. Default = NULL. Probably want this. precinct

String of surname_char column name. This column is passed to wru package. surname_char

state String of two digit state abbreviation, e.g., "NY", or "CA".

String of geographic level used for BISG. Default is Census "block". An opcensus.geo

> tional character vector specifying what level of geography to use to merge in U.S. Census 2010 geographic data. Currently "county", "tract", "block", and "place" are supported. Note: sufficient information must be in user-defined voter.file object. If census.geo = "county", then voter.file must have column named county. If census.geo = "tract", then voter.file must have columns named county and tract. And if census.geo = "block", then voter.file must have columns named county, tract, and block. If census.geo = "place", then voter.file must have column named place. Specifying census.geo will call census_helper function to

merge Census geographic data at specified level of geography.

A character object specifying user's Census API key. Required if census.geo census.key

is specified, because a valid Census API key is required to download Census

geographic data.

census.data A list indexed by two-letter state abbreviations, which contains pre-saved Cen-

sus geographic data. Can be generated using get_census_data function from wru

package.

census.surname A TRUE/FALSE object. If TRUE, function will call merge_surnames to merge

> in Pr(Race | Surname) from U.S. Census Surname List (2000 or 2010) and Spanish Surname List. If FALSE, voter.file object must contain additional fields specifying Pr(Race | Surname), named as follows: p_whi for Whites, p_bla for Blacks, p_his for Hispanics/Latinos, p_asi for Asians, and/or p_oth for Other.

Default is TRUE.

surname.only	A TRUE/FALSE object. If TRUE, race predictions will only use surname data and calculate Pr(Race Surnname). Default is FALSE.
surname.year	A number to specify the year of the census surname statistics. These surname statistics is stored in the data, and will be automatically loaded. The default value is 2010, which means the surname statistics from the 2010 census will be used. Currently, the other available choice is 2000.
age	An optional TRUE/FALSE object specifying whether to condition race predictions on age (in addition to surname and geolocation). Default is FALSE. Must be same as age in census.data object. May only be set to TRUE if census.geo option is specified. If TRUE, voter.file should include a numerical variable age.
sex	optional TRUE/FALSE object specifying whether to condition race predictions on sex (in addition to surname and geolocation). Default is FALSE. Must be same as sex in census.data object. May only be set to TRUE if census.geo option is specified. If TRUE, voter.file should include a numerical variable sex, where sex is coded as 0 for males and 1 for females.
party	An optional character object specifying party registration field in voter.file, e.g., party = "PartyReg". If specified, race/ethnicity predictions will be conditioned on individual's party registration (in addition to geolocation). Whatever the name of the party registration field in voter.file, it should be coded as 1 for Democrat, 2 for Republican, and 0 for Other.
retry	The number of retries at the census website if network interruption occurs. Default = 0 .

Value

List object of of two data.frames. List item 1 is initial voter file data.frame. List object 2 (named bisg) includes race predictions.

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

References

wru R package. Kabir Khanna, Kosuke Imai, Hubert Jin. Imai and Khanna (2015) "Improving Ecological Inference by Predicting Individual Ethnicity from Voter Registration Records" <DOI:10.1093/pan/mpw001>

```
# EXAMPLE: NOT RUN #
# NOTE: You need to have a census key to run this #

data(ny_voter)
head(ny_voter)

# Load ny_census object #
# load ( system.file("extdata/ny_census.RData",package="eiCompare") )

# Now load your Census key #
# [add in here where you would do that]
# key_census = ""
```

6 corona

corona

Corona Precinct Racial Bloc Voting Data

Description

Data taken from a 2014 California election, with precinct results and racial demographics for Corona, CA precincts

Usage

```
data("corona")
```

Format

A data frame with 46 observations on the following 12 variables.

```
precinct a numeric vector
totvote a numeric vector
pct_husted a numeric vector
pct_spiegel a numeric vector
pct_ruth a numeric vector
pct_button a numeric vector
pct_montanez a numeric vector
pct_fox a numeric vector
pct_hisp a numeric vector
pct_asian a numeric vector
pct_white a numeric vector
pct_non_lat a numeric vector
```

References

Riverside County, CA board of elections

```
data(corona)
head(corona)
str(corona)
```

cor_06

cor_06

Corona 2006

Description

Precinct vote data from a Corona, CA 2006 election

Usage

```
data("cor_06")
```

Format

A data frame with 47 observations on the following 8 variables.

```
precinct a numeric vector
totvote a numeric vector
pct_latino a numeric vector
pct_other a numeric vector
pct_breitenbucher a numeric vector
pct_montanez a numeric vector
pct_spiegel a numeric vector
pct_skipworth a numeric vector
```

References

Riverside County, CA board of elections

Examples

```
data(cor_06)
# Look at data
head(cor_06)
str(cor_06)
```

```
ei.reg.bayes.conf.int Creates EI Reg Bayes Tables
```

Description

Creates EI reg bayes tables with confidence bands

Usage

```
ei.reg.bayes.conf.int(ei_bayes)
```

Arguments

ei_bayes

Object result of call to ei.reg.bayes() function.

8 ei.reg.bayes.conf.int

Value

Matrix object, table of results

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

```
eiPack, King et. al. (http://gking.harvard.edu/eiR)
```

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <-c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names, sample=100)
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda,candb) ~ cbind(black, white))</pre>
# Run Bayesian model
suppressWarnings (
  ei_bayes <- ei.reg.bayes(form, data=toy, sample=100, truncate=TRUE)</pre>
)
# Produce Table
ei.reg.bayes.conf.int(ei_bayes)
# Warning: Takes a while to run
# Load corona data
data(corona)
# Generate character vectors
{\tt cands} \, \leftarrow \, {\tt c("pct\_husted","pct\_spiegel","pct\_ruth","pct\_button","pct\_montanez","pct\_fox")}
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")</pre>
table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")
# Run EI iterative Fitting
results <- ei_est_gen(cand_vector=cands, race_group = race_group3,</pre>
total = "totvote", data = corona, table_names = table_names)
# EI: RxC model
```

ei_compare-class 9

```
# Generate formula
form <- formula(cbind(pct_husted,pct_spiegel,pct_ruth,pct_button,pct_montanez,pct_fox)
    cbind(pct_hisp, pct_asian, pct_white))
suppressWarnings (
ei_bayes <- ei.reg.bayes(form, data=corona, sample=10000, truncate=TRUE)
)
# Produce Table
ei.reg.bayes.conf.int(ei_bayes)</pre>
```

ei_compare-class

Class "ei_compare"

Description

An S4 class object stemming from ei_rc_good_table(), used for plotting, and examining comparison results.

Objects from the Class

Objects can, in principle, be created by calls of the form new("ei_compare", ...). However, the preferred form is to have them called ei_rc_good_table()

Slots

```
data: Object of class "data.frame" groups: Object of class "character"
```

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <-c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")</pre>
race\_group \leftarrow c("^ black") # only use one group for example
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names, sample=100)
# Generate formula for passage to ei.reg.bayes() function
```

10 ei_est_gen

```
form <- formula(cbind(canda,candb) ~ cbind(black, white))</pre>
# Run Bayesian model
suppressWarnings (
  ei_bayes <- ei.reg.bayes(form, data=toy, sample=100, truncate=TRUE)</pre>
table_names <- c("RxC: PCT Black", "RxC: PCT White")</pre>
cands <- c("canda", "candb")</pre>
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
ei_bayes_res <- ei_bayes_res[c(1,2,5),]
# Combine Results, results in object of class ei_compare
ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,</pre>
                                     groups= c("Black", "White")
# Produces data and character vector, which can be sent to plot()
ei_rc_combine
# Warning: Takes a while to run
# Load corona data
data(corona)
# Generate character vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")</pre>
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")
table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")</pre>
# Run EI iterative Fitting
results <- ei_est_gen(cand_vector=cands, race_group = race_group3,</pre>
total = "totvote", data = corona, table_names = table_names)
# EI: RxC model
# Generate formula
form <- formula(cbind(pct_husted,pct_spiegel,pct_ruth,pct_button,pct_montanez,pct_fox)</pre>
~ cbind(pct_hisp, pct_asian, pct_white))
ei_bayes <- ei.reg.bayes(form, data=corona, sample=10000, truncate=TRUE)</pre>
# RxC table names
table_names <- c("RxC: Pct Hisp", "RxC: Pct Asian", "RxC: Pct White")</pre>
# Table Creation, using function bayes_table_make in ei_est_generalize.R file
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
# Combine Results, results in object of class ei_compare
ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,</pre>
groups= c("Latino", "Asian", "White")
# Produces data and character vector, which can be sent to plot()
ei_rc_combine
```

ei_est_gen

Iterative EI Estimation

Description

Iteratively fits EI models for candidates and racial/ethnic groups

ei_est_gen 11

Usage

```
ei_est_gen(cand_vector, race_group, total, rho = 10, data, table_names,
sample = 1000, tomog = F, density_plot = F, beta_yes=F,...)
```

Arguments

cand_vector	Character vector of candidate names, taken from the dataset
race_group	Character vector of formula, e.g., "~ pct_latino"
total	Character vector (e.g., "totvote") of total variable name from data, variable in data is numeric
rho	Rho parameter for ei() estimate, defaults to 10, numeric
data	data.frame() object containing the data
table_names	Character vector of table names with same length as race_group. Used for formatting output. If only one racial group, must provide "Pct. Other" as second element of vector
sample	Number of samples used for EI calculation, default = 1000
tomog	Logical to display tomography plot. If true will will save pdf plot to working directory. Default is FALSE
density_plot	Logical to display density plot of betab and betaw. If true will save pdf plot to working directory. Default is FALSE
beta_yes	Logical to export betas (b, w) in list object in addition to table of results. Default is FALSE
	Arguments passed onto ei() function

Value

Data frame/table object containing EI individually estimated results. If beta_yes=T, two list items, first the data frame table of results, second dataframe of betas themselves.

Note

If this results in an error, "Error in .subset2(x, i, exact = exact): invalid subscript type 'list'", just rerun the algorithm again.

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

eiPack. Gary King (1997). A Solution to the Ecological Inference Problem. Princeton: Princeton University Press.

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <- c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30,80, 70, 20, 29)
```

12 ei_rc_congruence

```
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")</pre>
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
ei_est_gen(cands, race_group, "total",
            data = toy[c(1,3,5),], table_names = table_names, sample=100)
# WARNING -- May take a little while to execute
# Load Package Data
data(corona)
# Create Character Vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")</pre>
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")</pre>
table_names <- c("EI: Pct Hisp", "EI: Pct Asian", "EI: Pct White")
# Run ei_est_gen function
results <- ei_est_gen(cand_vector=cands, race_group = race_group3,</pre>
total = "totvote", data = corona, table_names = table_names)
# Run ei_est_gen function; Exporting betas into data frame
results_w_betas <- ei_est_gen(cand_vector=cands, race_group = race_group3,</pre>
total = "totvote", data = corona, table_names = table_names, beta_yes=T)
res1 <- results_w_betas[[1]]# table of mean estimates</pre>
res2 <- results_w_betas[[2]]# betas of estimates for each precinct</pre>
```

ei_rc_congruence

Congruence for 2x2

Description

Calculates congruence scores between EI and RxC for the 2x2 Scenario

Usage

```
ei_rc_congruence(ei_rc_table, cand_race, group_race)
```

Arguments

ei_rc_table	Object produced from ei_rc_good_table(), where include_good=F, of class ei_compare
cand_race	Numeric vector indicating race of the candidates in order they show up in table rownames, where 1=Latino; 2=Black; 3=Asian; 4=White/Non
group_race	Numeric vector, taking similar values as cand_race where 1=Latino; 2=Black; 3=Asian; 4=White/Non

ei_rc_good_table 13

Value

Table of congruence scores

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>, Matt Barreto < barretom@ucla.edu>

Examples

ei_rc_good_table

Create EI Comparison Table

Description

Takes output from EI model, EI RxC model, Goodman regression, and puts them into a data frame table for useful analysis and comparison.

Usage

```
ei_rc_good_table(ei, rc, good, groups, include_good = F)
```

Arguments

ei	Table/data frame object result from ei_est_gen. This assumes beta_yes=F in ei_est_gen(). See example below for beta_yes=T in ei_est_gen().
rc	Table/data frame from EI:RxC process from bayes_table_make()
good	Table/data frame from Goodman regression, from goodman_generalize(). Default is nothing
groups	Character vector of voting blocks (e.g., c("Latino", "White"))
include_good	Logical, default is FALSE (F), Set to TRUE (T) if including a Goodman ta-

ble/data object

Value

Object of class ei_compare containing a 1. data.frame() slot of comparisons across the three models; 2. Character vector of group names used for later plotting

Note

Most of the time the user will not include the Goodman table, as they are interested in the EI vs. EI:RxC comparison

14 ei_rc_good_table

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

```
eiPack, King et. al. (http://gking.harvard.edu/eiR)
```

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <-c(.8, .9, .10, .08, .11)
black <- 1 - white
total \leftarrow c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")</pre>
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names, sample=100)
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda,candb) ~ cbind(black, white))</pre>
# Run Bayesian model
suppressWarnings (
  ei_bayes <- ei.reg.bayes(form, data=toy, sample=100, truncate=TRUE)</pre>
table_names <- c("RxC: PCT Black", "RxC: PCT White")</pre>
cands <- c("canda", "candb")</pre>
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
ei_bayes_res \leftarrow ei_bayes_res[c(1,2,5),]
# Combine Results, results in object of class ei_compare
ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,</pre>
                                    groups= c("Black", "White")
# Produces data and character vector, which can be sent to plot()
ei_rc_combine
# Warning: Takes a while to run
# Load corona data
data(corona)
# Generate character vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")</pre>
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")</pre>
table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")
# Run EI iterative Fitting
```

goodman_generalize 15

```
results <- ei_est_gen(cand_vector=cands, race_group = race_group3,
total = "totvote", data = corona, table_names = table_names)
# EI: RxC model
# Generate formula
form <- formula(cbind(pct_husted,pct_spiegel,pct_ruth,pct_button,pct_montanez,pct_fox)</pre>
~ cbind(pct_hisp, pct_asian, pct_white))
suppressWarnings (
ei_bayes <- ei.reg.bayes(form, data=corona, sample=10000, truncate=TRUE)</pre>
# RxC table names
table_names <- c("RxC: Pct Hisp", "RxC: Pct Asian", "RxC: Pct White")</pre>
# Table Creation, using function bayes_table_make in ei_est_generalize.R file
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)
# Combine Results, results in object of class ei_compare
ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,</pre>
groups= c("Latino", "Asian", "White")
ei_rc_combine
# If set beta_yes=T in ei_est_gen():
#ei_rc_combine2 <- ei_rc_good_table(results[[1]], ei_bayes_res, groups= c("Black", "White"))</pre>
```

goodman_generalize

Goodman Regression Generalization

Description

Makes summary table out of multiple heckman regression results, for multiple candidates and groups

Usage

```
\verb|goodman_generalize| (cand_vector, race_group, total, data, table_names, \ldots)|
```

Arguments

cand_vector Character vector of candidate names, taken from the dataset

race_group Character vector of formula, e.g., "~ pct_latino"

total Character vector (e.g., "totvote") of total variable name from data, variable in data is numeric

data data.frame() object containing the data

table_names Character vector of table names with same length as race_group. Used for formatting output

... Arguments passed onto lm() function

Value

Object of class data.frame() returned containing table summary of all the Goodman regressions

16 lac_10

Author(s)

Loren Collingwood@ucr.edu>

References

eiPack King et. al. (http://gking.harvard.edu/eiR) L. A. Goodman. Ecological regressions and behavior of individuals. American Sociological Review, 1953.

See Also

```
ei_rc_good_table
```

Examples

```
# Load corona data
data(corona)
# Generate character vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")

# Goodman Regression
table_names <- c("Good: Pct Lat", "Good: Pct Asian", "Good: Pct Wht")
good_corona <- goodman_generalize(cands, race_group3, "totvote", corona, table_names)</pre>
```

lac_10

Los Angeles County Data

Description

Los Angeles County precinct dataset from 2010 election

Usage

```
data("lac_10")
```

Format

A data frame with 4980 observations on the following 10 variables.

```
precinct a character vector

tot_reg a numeric vector

i_jones a numeric vector

i_delatore a numeric vector

votescast a numeric vector

lat_voters a numeric vector

pct_latino a numeric vector

pct_delatorre a numeric vector

pct_jones a numeric vector

pct_other a numeric vector
```

latlong2fips 17

Source

Los Angeles county

Examples

```
data(lac_10)
head(lac_10)
str(lac_10)
```

latlong2fips

Latitude-Longitude Coordinates to FIPS Geocode

Description

Converts latitude/longitude coordinates to 15-digit FIPS code. Communicates with FCC API.

Usage

```
latlong2fips(latitude, longitude, number)
```

Arguments

latitude Numeric. Latitude coordinate.longitude Numeric. Longitude coordinate.

number Numeric. Usually part of a loop index counter

Value

Character string 15-digit FIPS code corresponding to Lat/Long entry

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

References

https://geo.fcc.gov/api/census/block/

```
# EXAMPLE: NOT RUN #
#census_block <- list()
#num_catch <- rep(NA, nrow(nom_geo))
#for (i in 1:nrow(nom_geo)) {
# census_block[[i]] <- latlong2fips(nom_geo$lat[i], nom_geo$lon[i], i)
#}
# Row Bind the list into a data.frame object #
#fips_df <- rbindlist(census_block)</pre>
```

18 mbd_two_minority

mbd_two

Multinomial Dirichlet Bayes Draw Two Candidates

Description

Extract posterior means and credible intervals. Need to label candidate vote variables: V1, V2, when two=F, add V3; Hispanic = VtdHVap_cor, White = VtdAVap_cor, Black = VtdBVap_cor

Usage

```
mbd_two(md, colnames, two=TRUE)
```

Arguments

md object from ei.MD.bayes() return

colnames Vector of candidate names. Stick to c(V1,V2) or c(V1,V2,V3)

two Logical. Two candidates (TRUE), or three (FALSE)

Value

List with two data frames

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

Examples

```
# EXAMPLE: NOT RUN #
```

<pre>mbd_two_minority</pre>	Multinomial	Dirichlet	Bayes	Draw	Two	Candidates,	and
	White/Minoria	ty voters					

Description

Extract posterior means and credible intervals. Need to call variables V1, V2. When two=F, add in V3; Race names = VtdAVap_cor, VtdMVap_cor

Usage

```
mbd_two_minority(md, colnames, two=TRUE)
```

md_bayes_draw 19

Arguments

md object from ei.MD.bayes() return

colnames Vector of candidate names. Stick to c(V1,V2) or c(V1,V2,V3)

two Logical. Two candidates (TRUE), or three (FALSE)

Value

List with two data frames

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

Examples

```
# EXAMPLE: NOT RUN #
```

md_bayes_draw

MD Bayes Draw

Description

Tunes and estimates MD Bayes algorithm (ei.MD.bayes)

Usage

Arguments

data.frame() object of just raw candidate vote and raw population counts. Put

vote results in first set of columns, put population counts next

race_vote_split

Numeric vector of length 2 indicating where vote column ends (e.g., 3), and

population counts begin (e.g., 4): c(3,4)

form Formula object, e.g.: cbind(V1, V2, novote) ~ cbind(VtdAVap_cor, VtdBVap_cor,

VtdHVap_cor, VtdOVap_cor)

ntunes Numeric; how much to tune tuneMD. Default = 10

totaldraws Numeric; How many total draws from MD. Default = 100000

seed Numeric. Default = 12345
sample Numeric. Default = 100000
thin Numeric. Default = 10
burnin Numeric. Default = 100000
ret.mcmc Logical. Default = TRUE

20 mean_and_ci

Value

Matrix object, of simulation reults

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

```
eiPack, King et. al. (http://gking.harvard.edu/eiR)
```

Examples

```
# TOY DATA EXAMPLE
canda <- c(10,8, 10, 4, 8)
candb <- 20-canda
white <- c(15, 12, 18, 6, 10)
black <- 20 - white
toy <- data.frame(canda, candb, white, black)

# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda,candb) ~ cbind(black, white))
# Then excute md_bayes_draw(); not run here due to time
# md_bayes_draw(toy, c(2,3), form )</pre>
```

mean_and_ci

mean_and_ci

Description

Internal

Usage

```
mean_and_ci(cbind_dat, ci=c(.025, .975))
```

Arguments

cbind_dat cbind object

ci Credible intervals. Default: c(.025, .975)

Value

Mean and credible interval

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

ny_fips 21

Examples

```
# EXAMPLE: NOT RUN #
```

ny_fips

New York state FIPS codes

Description

New York state FIPS codes example of 500 voters

Usage

```
data("ny_fips")
```

Format

A data frame with 500 observations on the following 2 variables.

```
row_id unique id
```

FIP 15 digit FIPS code including state, county, tract, block

Source

FCC

Examples

```
data(ny_fips)
str(ny_fips)
```

ny_voter

New York voter file sample

Description

New York voter file sample; example of 500 voters

Usage

```
data("ny_voter")
```

22 plot.ei

Format

A data frame with 500 observations on the following 10 variables.

```
Voter.ID Unique voter file id number, jumbled SD..Poll Precinct id fips 15-digit fips code st state fips code county county fips code tract tract fips code block block fips code st_cty state county fips code st_cty_tract state county tract fips code Last.Name Voters' surname
```

Source

ERCSD board of election

Examples

```
data(ny_voter)
str(ny_voter)
```

plot.ei

Plotting Ecological Inference Estimates

Description

```
'plot' method for the class 'ei'.
```

Usage

```
## S3 method for class 'ei'
## S3 method for class 'ei'
plot(x, ...)
```

Arguments

x An ei object from the function ei.

... A list of options to return in graphs. See values below.

Details

Returns any of a set of possible graphical objects, mirroring those in the examples in King (1997). Graphical option lci is a logical value specifying the use of the Law of Conservation of Ink, where the implicit information in the data is represented through color gradients, i.e. the color of the line is a function of the length of the tomography line. This can be passed as an argument and is used for "tomogD" and "tomog" plots.

plot.ei 23

Value

tomogD Tomography plot with the data only. See Figure 5.1, page 81.
tomog Tomography plot with ML contours. See Figure 10.2, page 204.

tomogCI Tomography plot with 80% confidence intervals. Confidence intervals appear

on the screen in red with the remainder of the tomography line in yellow. The confidence interval portion is also printed thicker than the rest of the line. See

Figure 9.5, page 179.

tomogCI95 Tomography plot with 95% confidence intervals. Confidence intervals appear

on the screen in red with the remainder of the tomography line in yellow. The confidence interval portion is also printed thicker than the rest of the line. See

Figure 9.5, page 179.

tomogE Tomography plot with estimated mean posterior B_ib and B_iw points.

tomogP Tomography plot with mean posterior contours.

betab Density estimate (i.e., a smooth version of a histogram) of point estimates of

B_ib's with whiskers.

betaw Density estimate (i.e., a smooth version of a histogram) of point estimates of

B_iw's with whiskers.

xt Basic X_i by T_i scatterplot.

xtc Basic X_i by T_i scatterplot with circles sized proportional to N_i.

xtfit X_i by T_i plot with estimated E(T_i|X_i) and conditional 80% confidence in-

tervals. See Figure 10.3, page 206.

xtfit g xtfit with Goodman's regression line superimposed.

estsims All the simulated B_ib's by all the simulated B_iw's. The simulations should

take roughly the same shape of the mean posterior contours, except for those

sampled from outlier tomography lines.

boundXb X_i by the bounds on B_ib (each precinct appears as one vertical line), see the

lines in the left graph in Figure 13.2, page 238.

boundXw X_i by the bounds on B_iw (each precinct appears as one vertical line), see the

lines in the right graph in Figure 13.2, page 238.

truth Compares truth to estimates at the district and precinct-level. Requires truth in

the ei object. See Figures 10.4 (page 208) and 10.5 (page 210).

movieD For each observation, one tomography plot appears with the line for the particu-

lar observation darkened. After the graph for each observation appears, the user can choose to view the next observation (hit return), jump to a specific observation number (type in the number and hit return), or stop (hit "s" and return).

movie For each observation, one page of graphics appears with the posterior distribu-

tion of B_ib and B_iw and a plot of the simulated values of B_ib and B_iw from the tomography line. The user can choose to view the next observation (hit return), jump to a specific observation number (type in the number and hit return),

or stop (hit "s" and return).

Note

Used within the ei_est_gen()

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: roberts8@fas.harvard.edu»

24 plot.ei_compare

References

Gary King (1997). A Solution to the Ecological Inference Problem. Princeton: Princeton University Press.

Examples

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <-c(.8, .9, .10, .08, .11)
black <- 1 - white
total \leftarrow c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")</pre>
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names,
                       sample=100, tomog=TRUE)
# Delete Pdf files produced
getwd() # Show working directory
list.files() # show all files in directory
# To remove pdf files, make sure no other pdf files in directory
# system ("rm *.pdf ")
```

plot.ei_compare

Plot Method for class ei_compare

Description

Allows quick plotting, using plot() of EI vs EI:RxC differences. Produces ggplot2 ouput, amazing.

Usage

```
## S3 method for class 'ei_compare'
plot(x, ...)
```

Arguments

x Object of class ei_compare, from the ei_rc_good_table() function... Arguments passed onto plot() and par()

Details

Limited amount of plotting flexibility. If user wants more flexibility extract relevant objects from ei_rc_good_table() output and do your own plotting!

plot.ei_compare 25

Value

ggplot2 graph output of EI and RxC differences

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

References

```
eiPack, King et. al. (http://gking.harvard.edu/eiR)
```

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <-c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names, sample=100)
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda,candb) ~ cbind(black, white))</pre>
# Run Bayesian model
suppressWarnings (
  ei_bayes <- ei.reg.bayes(form, data=toy, sample=100, truncate=TRUE)</pre>
)
table_names <- c("RxC: PCT Black", "RxC: PCT White")</pre>
cands <- c("canda", "candb")</pre>
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)</pre>
ei_bayes_res <- ei_bayes_res[c(1,2,5),]</pre>
# Combine Results, results in object of class ei_compare
ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,</pre>
                                    groups= c("Black", "White")
# Produces data and character vector, which can be sent to plot()
ei_rc_combine
# PLOT EI DIFFERENCES
plot(ei_rc_combine)
# Warning: Takes a while to run
# Load corona data
```

26 precinct_agg_combine

```
data(corona)
# Generate character vectors
cands <- c("pct_husted","pct_spiegel","pct_ruth","pct_button","pct_montanez","pct_fox")</pre>
\label{eq:compact} $$ $$ race\_group3 <- c("^ pct_hisp", "^ pct_asian", "^ pct_white") $$
table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")
# Run EI iterative Fitting
results <- ei_est_gen(cand_vector=cands, race_group = race_group3,</pre>
                       total = "totvote", data = corona, table_names = table_names)
# EI: RxC model
# Generate formula
form <- formula(cbind(pct_husted,pct_spiegel,pct_ruth,pct_button,pct_montanez,pct_fox)</pre>
~ cbind(pct_hisp, pct_asian, pct_white))
suppressWarnings (
  ei_bayes <- ei.reg.bayes(form, data=corona, sample=10000, truncate=TRUE)</pre>
# RxC table names
table_names <- c("RxC: Pct Hisp", "RxC: Pct Asian", "RxC: Pct White")</pre>
# Table Creation, using function bayes_table_make in ei_est_generalize.R file
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector= cands, table_names = table_names)
# Goodman Regression
table_names <- c("Good: Pct Lat", "Good: Pct Asian", "Good: Pct Wht")</pre>
good_corona <- goodman_generalize(cands, race_group3, "totvote", corona, table_names)</pre>
# Combine Results, results in object of class ei_compare
ei_rc_g_combine <- ei_rc_good_table(results, ei_bayes_res, good_corona,</pre>
                                      groups= c("Latino", "Asian", "White")
# Plot the Results
plot(ei_rc_g_combine)
```

precinct_agg_combine precinct_agg_combine

Description

Combines voter file surname geocoded data into aggregated precinct counts. To be performed on data object resulting from successful completion of bisg_prep_race_predict() function.

Usage

```
precinct_agg_combine(dat, precinct = "precinct")
```

Arguments

data.frame() object

precinct Character of precinct column name. Default = "precinct", which is what is out-

put from bisg_prep_race_predict()

Value

Aggregated dataset of nrow() precinct size, including racial size precinct estimates. Dataset suitable for EI/RxC.

race_check_2_3

Author(s)

Loren Collingwood < loren.collingwood@ucr.edu>

Description

Checks that both sides of the RxC equation for White/Minority and White, Black, Hispanic, Other, respectively, add up to the same values. If small rounding issues, adjusts the "other" race category.

Usage

Arguments

dat	data.frame() object. One no vote/third party vote column, with candidate votes (for either 2 or 3 candidates), then up to four demographics with last as other
split	Numeric vector of length 2. Default is $c(3,4)$, for two candidates and one catchall. $c(4,5)$ for three candidates and one catch all.
catch	Logical (TRUE/FALSE). Catch negative values. Default is FALSE
catch_col	Column names to be catched.
print_sides	Logical (TRUE/FALSE). Print out evaluations. Default is TRUE

Value

Dataset of Left side (Votes) vs. Right side (Demographics). diff column can be tagged on to exiting 'other' category to expedite data preparation process.

Author(s)

Loren Collingwood loren.collingwood@ucr.edu

Examples

EXAMPLE: NOT RUN

28 summary.ei

summary.ei

Summarize Ecological Inference Estimates

Description

'summary' method for the class 'ei'.

Usage

```
## S3 method for class 'ei'
## S3 method for class 'ei'
summary(object, ...)
```

Arguments

```
object An ei object from the function ei.... A list of options to return in graphs. See values below.
```

Note

Used within ei_est_gen() function

Author(s)

Gary King «email: king@harvard.edu» and Molly Roberts «email: roberts8@fas.harvard.edu»

References

Gary King (1997). A Solution to the Ecological Inference Problem. Princeton: Princeton University Press.

```
# TOY DATA EXAMPLE
canda <- c(.1, .09, .85, .9, .92)
candb <- 1-canda
white <- c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30,80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)</pre>
# CREATE VECTORS
cands <- c("canda")</pre>
race_group <- c("~ black") # only use one group for example</pre>
table_names <- c("EI: PCT Black", "EI: PCT White")</pre>
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
results <- ei_est_gen(cands, race_group, "total",</pre>
                       data = toy[c(1,3,5),], table_names = table_names, sample=100)
results
```

unit_comb_extract 29

 $unit_comb_extract$

Extract relevant geographic units from 15-digit FIPS code

Description

Extract relevant geographic units from 15-digit FIPS code

Usage

```
unit_comb_extract(fips)
```

Arguments

fips

Character vector. 15-digit FIPS code

Value

List with separate datasets of length fips, including values for fips, state, county, tract, block, state-county, and state-county-tract.

Author(s)

Loren Collingwood@ucr.edu>

Index

```
*Topic classes
    ei_compare-class, 9
*Topic datasets
    cor_06, 7
    corona, 6
    lac_10, 16
    ny_fips, 21
    ny_voter, 21
*Topic package
    eiCompare-package, 2
bayes_table_make, 2
bisg_prep_race_predict, 4
cor_06, 7
corona, 6
ei.reg.bayes.conf.int, 7
ei_compare-class, 9
ei_est_gen, 10
ei\_rc\_congruence, 12
ei_rc_good_table, 13, 16
eiCompare (eiCompare-package), 2
eiCompare-package, 2
goodman_generalize, 15
lac_10, 16
latlong2fips, 17
mbd\_two, 18
mbd_two_minority, 18
md_bayes_draw, 19
mean_and_ci, 20
ny_fips, 21
ny_voter, 21
plot.ei, 22
plot.ei_compare, 24
precinct_agg_combine, 26
race_check_2_3, 27
summary.ei, 28
unit_comb_extract, 29
```