Лабораторная работа № 4 по курсу «Программное обеспечение цифрового проектирования» «Синтез регистровых схем»

Необходимое программное обеспечение:

- Xilinx ISE
- 1. Составить структурное и повеленческое vhdl-описание n-разрялного синхронного и асинхронного регистра хранения, произвести его функциональное моделирование (см. рис. 1):

Рис. 1. Структура регистра хранения.

2. Составить структурное и поведенческое vhdl-описание сдвигового п-разрядного регистра (см. рис. 2) и произвести его функциональное моделирование

Рис. 2. Структура сдвигового регистра.

- 3. Выполните индивидуальное задание (составление поведенческой модели и функциональное моделирование при помощи TestBench):
- 3.1. п-разрядный счетчик Джонсона;

Генератор М-последовательности с внешними сумматорами по модулю два и полиномом (см. Puc. 3):

Рис. 3. Структура генератора М-последовательности с внешними сумматорами по модулю 2.

- 3.2. $\varphi(x) = 1 \oplus x$;
- 3.3. $\varphi(x) = 1 \oplus x \oplus x^2$;
- 3.4. $\varphi(x) = 1 \oplus x \oplus x^3$;
- 3.5. $\varphi(x) = 1 \oplus x \oplus x^4$;
- 3.6. $\varphi(x) = 1 \oplus x^2 \oplus x^5$;
- 3.7. $\varphi(x) = 1 \oplus x \oplus x^6$;
- 3.8. $\varphi(x) = 1 \oplus x \oplus x^7$;
- 3.9. $\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$;
- 3.10. $\varphi(x) = 1 \oplus x^4 \oplus x^9$;
- 3.11. $\varphi(x) = 1 \oplus x^3 \oplus x^{10}$;

Генератор М-последовательности с внутренними сумматорами по модулю два и полиномом (см. рис. 4):

Рис. 4. Структура генератора М-последовательности с внешними сумматорами по модулю 2.

- 3.12. $\varphi(x) = 1 \oplus x$;
- 3.13. $\varphi(x) = 1 \oplus x \oplus x^2$;
- 3.14. $\varphi(x) = 1 \oplus x \oplus x^3$;

3.15.
$$\varphi(x) = 1 \oplus x \oplus x^4$$
;

3.16.
$$\varphi(x) = 1 \oplus x^2 \oplus x^5$$
;

3.17.
$$\varphi(x) = 1 \oplus x \oplus x^6$$
;

3.18.
$$\varphi(x) = 1 \oplus x \oplus x^{7}$$
;

3.19.
$$\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$$
;

3.20.
$$\varphi(x) = 1 \oplus x^4 \oplus x^9$$
;

3.21.
$$\varphi(x) = 1 \oplus x^3 \oplus x^{10}$$
;

Одноканальный сигнатурный анализатор с полиномом (см. рис. 5):

3.22.
$$\varphi(x) = 1 \oplus x$$
;

3.23.
$$\varphi(x) = 1 \oplus x \oplus x^2$$
;

3.24.
$$\varphi(x) = 1 \oplus x \oplus x^3$$
;

3.25.
$$\varphi(x) = 1 \oplus x \oplus x^4$$
;

3.26.
$$\varphi(x) = 1 \oplus x^2 \oplus x^5$$
;

3.27.
$$\varphi(x) = 1 \oplus x \oplus x^6$$
;

3.28.
$$\varphi(x) = 1 \oplus x \oplus x^7$$
;

3.29.
$$\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$$
:

3.30.
$$\varphi(x) = 1 \oplus x^4 \oplus x^9$$
;

3.31.
$$\varphi(x) = 1 \oplus x^3 \oplus x^{10}$$
;

В общем виде полином выглядит следующим образом:

$$\varphi(x) = \sum_{k=0}^{n} \alpha_k x^k$$

- а. Генератор Джонсона (4 балла).
- b. Задание а и генератор M последовательности е внутренними и внешними сумматорами по модулю два (6 баллов)
- с. Задание b и одноканальный сигнатурный анализатор (8 баллов).
- d. Задание с и реализовать вывод м-последовательности на плате быстрого прототипирования (светодиоды, семисегментные индикаторы) с частотой 1 Гц. (9 баллов).
- е. Задание d и реализовать схему, представленную на рисунке 6. В качестве генератора тестовых векторов выбрать любой из реализованных генераторов м-последовательности. Комбинационную тестируемую схему составить самостоятельно (количество входов определяется степенью порождающего полинома выбранного генератора. Одноканальный сигнатурный анализатор взять из задания с.

Рисунок 6 – Схема проведения тестового эксперимента

7. Контрольные вопросы

- Предназначение сдвиговых регистров.
- Отличие синхронных и асинхронных регистров.
- Что такое расстояние Хемминга.?
- Что такое сигнатурный анализатор?