Chapters 2-4

Chapter 2: A gentle start

Terminology:

- Domain set (instance space): \mathcal{X} , all the objects (instances) we may wish to label. Represented as a vector of features.
- Label set: \mathcal{Y} , set of all possible labels, generated by some unknown true labelling function f
- Training data $(x, y) \in D$, |D| = m

Empirical risk minimization

The training error is defined over the training set (sample) S

$$L_S(h) \stackrel{def}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

Overfitting: a trivial classifier that achieves zero training error simply copies labels from examples in the training set, and outputs a random label if the input vector is not from the training set.

A **Hypothesis class** is a set of predictors (family of models) \mathcal{H} . Each $h \in \mathcal{H}$ is a function mapping \mathcal{X} to \mathcal{Y} .

Formally, the predictor chosen by the ERM rule is the one that minimizes the training error.

$$ERM_{\mathcal{H}}(S) \in \arg\min_{h \in \mathcal{H}} L_S(h)$$

The choice to restrict the hypothesis space is called an *inductive bias*. The choice of a family of predictors should be based on some prior knowledge about the problem. Ideally, we would want guarantees that the chosen family will not overfit.

DEFINITION 2.1 (The realizability assumption): There exists $h^* \in \mathcal{H}$ s.t. $L_{(\mathcal{D},f)}(h^*) = 0$

Note: this definition holds for any S-S can be any random sample from the true data distribution D labelled by f.

IID assumption All samples are *independently* and *identically* distributed according to \mathcal{D} : $S \sim \mathcal{D}^m$.

Accuracy: the accuracy parameter ϵ determines what we consider as failure of the classifier. If $L_{(\mathcal{D},f)}(h_s) > \epsilon$ we consider this a failure of the learner, while $L_{(\mathcal{D},f)}(h_s) \leq \epsilon$ we consider the algorithm an approximately correct predictor.

Upper bounding the number of failures: The number of bad hypotheses (which obtain error larger than ϵ) which minimize the training loss on some existing sample(s) S_x .

Union bound: for two sets A, B and a distribution \mathcal{D} :

$$\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B)$$

TODO: annotate upper bound on sample size / accuracy

COROLLARY 2.3 \mathcal{H} is a finite hypothesis class. Let $\delta \in (0,1)$, $\epsilon > 0$ and m is an integer satisfying

$$m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

Then, for **any** labeling function f and **any** distribution \mathcal{D} for which the realizability assumption holds, with probability of at least $1 - \delta$ over the choice of an i.i.d. sample S of size m, for **every** ERM hypothesis h_S , the following holds:

$$L_{(D,f)}(h_S) \le \epsilon$$

For a sufficiently large m, the ERM_H rule over a finite hypothesis class will be probably $(1 - \delta)$ approximately (up to error ϵ) correct (PAC).

Chapter 3: A formal learning model

PAC Learning

TODO: PAC learnability definition

Sample complexity is the *minimal** number of examples required to guarantee a PAC solution. $m_H: (0,1)^2 \to \mathbb{N}$.

COROLLARY 3.2 Every finite hypothesis class is PAC learnable with sample complexity

$$m_H(\epsilon, \delta) \le \left\lceil \frac{log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

Relaxations: Two relaxations with respect to our original problem are necessary for real-world problems:

• Removing the realizability assumption (agnostic PAC)

• Learning problems beyond binary classification

Agnostic PAC Learning: practically, it is not realistic that there will exist a classifier which perfectly approximates the labeling function over the whole data distribution. In place of the absolute labelling function f, we introduce the conditional probability D((x,y)||x) indicating the probability of an input sample x to have the class label y.

Revising the empirical and true error

$$L_D(h) \stackrel{def}{=} \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] \stackrel{def}{=} \mathcal{D}(\{(x,y) : h(x) \neq y\})$$

The definition of empirical risk remains the same as before.

TODO: Bayes optimal predictor formula

The Bayes optimal predictor assigns class label 1 to samples that have probability of having label 1 larger than 0.5, and 0 otherwise.

TODO: Agnostic PAC learnability definiton

Agnostic PAC defines the *relative* distance from the best classifier in the chosen hypothesis class rather then the absolute minimal error.

Generalized loss functions

Given any set \mathcal{H} and a domain set \mathcal{Z} , l is any function mapping from HxZ to nonnegative real numbers.