Kafli 1

Inngangur: Efni og mælingar

1.1 Nám í efnafræði

- Efnafræði fjallar um eðli og hegðun efna og efnabreytingar.
- Efni (matter) er allt það sem hefur massa og rúmmál.
 - T.d. Blað, líkami, föt, loft...
- Efni eru mjög fjölbreytt en aðeins gerð úr rúmlega 100 grunnefnum: Frumefnum (*elements*).
- Hvert frumefni er gert úr sérstakri tegund atóma.
 - Atóm eru byggingareiningar efnis.

1.1 Nám í efnafræði

- Tvö eða fleiri atóm geta tengst saman á ákveðinn hátt og myndað sameindir (molecule).
 - Sameindir geta verið gerðar úr einni tegund atóma.
 - T.d. H₂, O₂, O₃, S₈
 - Sameindir geta verið gerðar úr mismunandi tegundum atóma.
 - T.d. H₂O, NH₃, CO₂, C₁₂H₂₂O₁₁
- Mikill munur getur verið á eiginleikum efna þó lítill munur sé á byggingu eða efnasamsetningu þeirra.
 - T.d. C₂H₆O og C₂H₆O₂

(f) Asperín

1.2 Flokkun efna

- Tvær meginaðferðir við flokkun efna:
 - Eftir eðlisástandi.
 - 2. Eftir efnasamsetningu.

• 1. Eftir eðlisástandi (ástandsformi). Efni getur verið:

- Loftkennt (gas, g)
 - Hefur hvorki ákveðna lögun né ákveðið rúmmál.
 - Hægt að þrýsta saman og getur þanist út í stærra rúmmál.
 - Langt bil á milli sameinda.

• Vökvi (liquid, l)

- Hefur ákveðið rúmmál en ekki ákveðna lögun.
- Ekki hægt að þrýsta saman að neinu ráði.
- Sameindir þétt saman en hreyfast fram og til baka og renna yfir hver aðra svo auðvelt er að hella vökva.

Fast efni (solid, s)

- Hefur ákveðna lögun og ákveðið rúmmál.
- Ekki hægt að þrýsta saman að neinu ráði.
- Sameindir eru fast skorðaðar oftast með ákveðinni röðun / reglu.

1.2 Flokkun efna

• 2. Eftir efnasamsetningu

- Frumefni (elements)
 - Frumefni er ekki hægt að sundra í önnur frumefni.
 - Frumefni er bara gert úr einni tegund atóma.
 - Frumefnum er raðað í lotukerfið, efnin í sama flokki hafa svipaða eiginleika.
 - Hvert frumefni með sitt efnatákn, einn eða tveir bókstafir.
 - T.d. C: Kolefni, H: Vetni, Na: Natrín, Fe: Járn
- Efnasambönd (compounds)
 - Flest frumefni geta hvarfast / tengst við önnur frumefni og myndað efnasambönd.
 - Alltaf tvö eða fleiri frumefni í efnasambandi.
 - T.d. H₂O , CH₄ , CO₂ , C₆H₁₂O₆

Algengustu frumefnin í jarðskorpunni og líkamanum

1.2 Flokkun efna

- Efnablöndur (Mixtures)
 - Blanda tveggja eða fleiri efna sem hvert hefur sín efnafræðilegu einkenni.
 - T.d. Sykurvatn, gosdrykkur, kjötsúpa, sandur
 - Efnablöndur hafa ekki fasta efnasamsetningu.
 - T.d. Sykurvatn getur innihaldið mikið af sykri eða lítið af sykri...
 - Efnin sem eru í efnablöndunni nefnast þættir (components) blöndunnar.
 - Efnablöndum er skipt í **misleitar** (heterogeneous) og **einsleitar** (homogeneous) efnablöndur.
 - Misleit efnablanda: Efnablanda sem er ekki eins alls staðar í efnasamsetningu, eiginleikum og útliti.
 - T.d. Kjötsúpa, sandur, salsa
 - Einsleit efnablanda: Efnablanda sem er eins alls staðar í efnasamsetningu, eiginleikum og útliti. Einsleit efnablanda er líka kölluð lausn (solution).
 - T.d. Andrúmsloft, mjólk, saltvatn

Misleit efnablanda

Einsleit efnablanda

1.2 Flokkun efna

- Lögmálið um föst hlutföll: Í hverju hreinu efnasambandi er alltaf sama hlutfall á milli frumefna.
 - Þegar tvö efni hafa mismunandi efnasamsetningu eða mismunandi eiginleika er um að ræða ólík efnasambönd eða mishrein efni.
 - T.d. H₂O og H₂O₂
- Hrein efni hafa ákveðna eiginleika og sérstaka, fasta efnasamsetningu.
 - Öll hrein efni eru annað hvort frumefni eða efnasambönd, aldrei efnablöndur.

(a) Atóm frumefnis

(b) Sameindir frumefnis

(c) Sameindir efnasambands

(d) Blanda frumefna og efnasambands

1.2 Flokkun efna

Dæmi: Flokkaðu eftirfarandi efni í frumefni, efnasambönd eða efnablöndur:

- a) Hrísgrjónagrautur
- b) Silfur
- c) Svali
- d) Borðsykur
- e) C-vítamín
- f) Hvítagull
- g) Aspirín
- h) Flúór
- i) Bensín
- j) Kranavatn
- k) Matarsalt

- **Eðliseiginleikar** (physical properties): Eiginleikar sem hægt er að mæla án þess að breyta einkennum eða efnasamsetningu efnisins.
 - T.d. Litur, lykt, eðlismassi, bræðslumark, suðumark og harka.
 - **Eðlisbreyting** (physical change): Eiginleikar efnisins breytast en ekki efnasamsetning þess.
 - Þ.e. efnið er það sama fyrir og eftir breytingu.
 - T.d. Við bráðnun ísmola breytist ástandsform vatns, úr föstu formi í vökva.
 - Allar ástandsbreytingar efna eru eðlisbreytingar.

- Efnaeiginleikar (chemical properties): Hvernig efni breytist eða hvarfast við að mynda önnur efni. Efnasamsetning efnisins breytist.
 - T.d. Eldfimi (hversu hratt efnið hvarfast við súrefni), leysni, sýrustigsjafnvægi.
 - Efnabreyting/efnahvörf (chemical change/reaction): Efni umbreytast í ný efnasambönd.
 - T.d. Þegar vetni brennur hvarfast það við súrefni og myndar vatn.

• *Dæmi*. Finndu dæmi um eðliseiginleika og efnaeiginleika í eftirfarandi lýsingu:

Zinki er lýst á eftirfarandi hátt: Það er silfurgrár málmur sem bráðnar við 429°C. Þegar zinkmolar eru settir í þynnta brennisteinssýru myndast vetni og málmurinn leysist upp. Harka þess á Mohs-skala er 2,5 og eðlismassi þess er 7,13 g/cm³ við 25°C. Við háan hita hvarfast það hægt við súrefni og myndar sinkoxíð, ZnO.

- Eðlisbundnir eiginleikar (intensive properties): Eiginleikar sem eru óháðir því hversu mikið er af efninu.
 - T.d. Eðlismassi, suðumark og bræðslumark.
- Magnbundnir eiginleikar (extensive properties): Eiginleikar sem eru háðir magni efnisins sem fengist er við hverju sinni.
 - T.d. Mælingar á massa og rúmmáli.

- 1.3 Eiginleikar efna
- Að skilja í sundur efni í efnablöndu-
- Með síun (filtration) má skilja í sundur fast efni og vökva.
 - Fasta efnið sest í síupappírinn en síaði vökvinn fer í gegn og safnast í ílát.

- Að skilja í sundur efni í efnablöndu-
- Eiming (distillation): Ef vökvar í einsleitri efnablöndu hafa mismunandi suðumörk má aðskilja þá með eimingu.
 - Þá er hverjum þætti efnablöndunnar breytt í gufu sem síðan er safnað saman. Það efni sem hefur lægsta suðumark eimast fyrst.

- Að skilja í sundur efni í efnablöndu-
- Skiljun (Chromatography) má nota til að greina í sundur efni sem hafa mismunandi viðloðun við fast yfirborð efnis.
 - Því meiri viðloðun sem efnið hefur við yfirborð fasta efnisins (pappírsins), því hægar fer það.
 - Ef efnið hefur mikla viðloðun við leysinn sem er notaður, þá fylgir það honum betur.

- Margir eiginleikar efna eru magnbundir, þ.e. þá má tákna með tölu og einingu sem verður alltaf að fylgja tölunni.
 - "Tala án einingar er tala án meiningar"
 - Til dæmis:
 - Að segja að blýantur sé 17,5 segir okkur ekki neitt, þetta er merkingarlaust.
 - Þegar við segjum að blýantur sé 17,5 cm fær stærðin merkingu, ljóst er við hvað er átt.

-SI-einingakerfið

- Samræmt alþjóðlegt einingakerfi sem tekið var upp árið 1960.
 - Hefur 7 grunnstærðir, allar aðrar stærðir eru leiddar af grunnstærðunum.

Grunnstærð	Tákn stærðar	SI-eining	Tákn einingar
Massi	m	kílógramm	kg
Lengd	S	metri	m
Tími	t	sekúnda	S
Hiti	Т	kelvín	K
Efnismagn	n	mól	mól
Rafstraumur	I	amper	Α
Ljósstyrkur	lv	kandela	cd

• Forskeyti eru notuð til að gefa upp stærðargráðu eininganna.

TABLE 1.5	Selected Prefixes Used in the Metric System			
Prefix	Abbreviation	Meaning	Example	
Giga	G	$ \begin{array}{c} 10^9 \\ 10^6 \\ 10^3 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-12} \\ 10^{-13} \\ 10^{-14} \\ 10^{-14} \\ 10^{-15} $	1 gigameter (Gm) = 1×10^9 m	
Mega	M		1 megameter (Mm) = 1×10^6 m	
Kilo	k		1 kilometer (km) = 1×10^3 m	
Deci	d		1 decimeter (dm) = 0.1 m	
Centi	c		1 centimeter (cm) = 0.01 m	
Milli	m		1 millimeter (mm) = 0.001 m	
Micro	μ^a		1 micrometer (μ m) = 1×10^{-6} m	
Nano	n		1 nanometer (nm) = 1×10^{-9} m	
Pico	p	$10^{-12} \\ 10^{-15}$	1 picometer (pm) = 1×10^{-12} m	
Femto	f		1 femtometer (fm) = 1×10^{-15} m	

^aThis is the Greek letter mu (pronounced "mew").

Dæmi: Skrifaðu eftirfarandi stærðir með því að nota viðeigandi forskeyti.

- a) 2·10⁻⁹ g
- b) 4,0·10⁻⁶ s
- c) 1·10⁻² m
- d) 6,0·10³ m
- e) 50·10⁻⁴ mól

Dæmi: Breyttu eftirfarandi stærðum og skilaðu svörum í staðalformi:

- a) 1 ps í s
- b) 3,76 mg í g
- c) 22,6 m í dm
- d) 7,98 Gm í cm
- e) $3,12 \mu s i s$
- f) 6,8 mm í nm
- g) 0,312 kg í ng
- h) $1,27\cdot10^4$ ps i ns

1.5 Einingar og mælingar -Lengd og massi

- SI-eining lengdar er metri, m
 - Nokkrar aðrar algengar lengdareiningar:
 - Tommur, fet, mílur

- SI-eining massa er kílógramm, kg
 - Nokkrar aðrar algengar massaeiningar:
 - Pund, tonn, stone

- Hiti

- Hitastig hlutar: Mælikvarði á hve heitur eða kaldur hluturinn er. Gefur einnig upplýsingar um flutning varma / varmaorku.
 - Varmi streymir ætíð frá heitari að kaldari stað.
- Algengustu hitakvarðarnir eru Kelvin, Celsíus og Fahrenheit.
 - Kelvinkvarði
 - Notaður í vísindum.
 - SI-kvarðinn. SI-einingin er Kelvin, K.
 - Byggður á eiginleikum lofttegunda.
 - Alkul: 0 K = -273,15°C

- Hiti

- Celsíuskvarðinn
 - Einnig notaður í vísindum.
 - Byggður á bræðslumarki (0°C) og suðumarki (100°C) vatns við sjávarmál.

- Fahrenheitkvarðinn
 - Algengur í N-Ameríku.
 - Upphaflega byggður á hitastigi saltvatns.
 - Vatn frýs við 32°F og sýður við 212°F

$$^{\circ}$$
C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$$
 $^{\circ}F = \frac{9}{5} (^{\circ}C) + 32$

- Hiti

- Celsíus og Kelvinkvarðinn hafa jafn stórar einingar.
 - 1 gráða á Kelvin = 1 gráða á Celsíus
 - Því tengjast kvarðarnir:

$$K = ^{\circ}C + 273,15$$

Dæmi:

- a) Hvað eru 31°C margar Kelvin?
- b) Kvikasilfur bráðnar við -38,7°C. Hvað er það í Kelvin?
- c) Hvað eru 375,7 K margar gráður á Celsíus?

- Samsettar einingar

- Grunnstærðir SI-kerfisins eru notaðar til að mynda aðrar stærðir.
 - T.d. Hraði hlutar = Lengd / Tími
 - SI-eining hraða er því m/s

Dæmi:

- a) Meðalhraði nitursameindar er 515 m/s. Hvað er það í km/klst?
- b) Breyttu 16,9 km/klst í cm/mín.

- Samsettar einingar, rúmmál

- Rúmmál tenings er lengd í þriðja veldi.
 - SI-eining rúmmáls er því m³
 - Í efnafræði eru notaðar fleiri einingar fyrir rúmmál. Algengast er að nota millilítra, mL.
 - $1 \text{ mL} = 1 \text{ cm}^3$
 - Eða:

$$1 L = 1 dm^3 = 1000 cm^3 = 1000 mL$$

$$1L = 1 \text{ dm}^3 = 1000 \text{ cm}^3$$

- Samsettar einingar, rúmmál

Algeng áhöld til að mæla rúmmál:

Dæmi:

- a) Hvað eru 2,0 L margir cm³?
- b) Hvað eru 300 mL margir L?
- c) Hvað eru 13 mL margir dm³?
- d) Hvað eru 7,56 L margir nm³?

-Eðlismassi

- Ákveðinn eðlismassi eða þéttleiki einkennir efni.
- Eðlismassi: Massi á rúmmálseiningu
 - Eðlismassi = massi / rúmmál
 - d = m/V
- SI-eining eðlismassa er kg/m³ en algengara er að nota g/cm³
 - $g/cm^3 = g/mL$

- Eðlismassi

 Eðlismassi er stærð sem er háð hita þar sem rúmmál efna breytist með hita.

Eðlismassi nokkurra efna við 25°C:

Andrúmsloft: 0,001 g/cm³

• Etanól: 0,79 g/cm³

• Vatn: 1,00 g/cm³

• Sykur: 1,59 g/cm³

• Matarsalt: 2,16 g/cm³

• Járn: 7,9 g/cm³

• Gull: 19,32 g/cm³

Dæmi:

- a) Gullstöng vegur 301 g og rúmmál hennar er 15,6 cm³. Hver er eðlismassi gulls?
- b) Reiknaðu rúmmál 65,0 g sýnis af metanóli ef eðlismassi þess er 0,79 g/mL.
- c) Hver er massi (í g) gulltenings ef kantlengd teningsins er 2,00 cm?

- Tvær gerðir talna í náttúruvísindum:
 - Nákvæmar tölur.
 - Gildi þeirra er þekkt nákvæmlega.
 - Til dæmis: Tylft = 12, 1 kg = 1000 g, nákvæmur fjöldi nemenda í bekknum.
 - Ónákvæmar tölur sem hafa óvissu.
 - Til dæmis: Öll mæligildi, fjöldi gesta á hátíðarsamkomum.
 - Mæld gildi hafa ætíð óvissu og takmarkaða nákvæmni.
 - Mælitæki hafa takmörk í nákvæmni.
 - Einnig eru þeir sem framkvæma mælinguna misnákvæmir.

- Óvissa og skekkja

- Óvissa (precision): Mæling á því hversu góð samsvörun er á milli mæligilda, þ.e. hve nálægt mæligildin eru hvert öðru.
- Skekkja (accuracy): Hversu nálægt einstakar mælingar eru rétta gildinu, þ.e. hversu mikil frávik eru á mælingu miðað við rétta gildið.

Þegar sama stærðin er mæld oft og góð samsvörun er á milli mælinga táknar það litla óvissu.

- Marktækir tölustafir

- Mæliniðurstöður eru oftast skrifaðar á þann hátt að aðeins síðasti tölustafurinn er óviss.
 - T.d. Vog getur mælt með fjórum aukstöfum (þ.e. hefur óvissuna 0,0001 g). Demantur er settur á vogina og vegur 2,2405 g. Þá má skrá: 2,2405 ± 0,0001 g. Þetta þýðir að demanturinn getur verið frá 2,2404 – 2,2406 g.
 - ± merkinu er oft sleppt þegar mæliniðurstöður eru skrifaðar en í staðinn er gert ráð fyrir að síðasti tölustafurinn sem er skrifaður sé óviss.
 - Dæmi: Hitmælir er skalaður með 5°C millibili. Sjá mynd. Hvert er hitastigið?

- Marktækir tölustafir

- Marktækir tölustafir: Allir tölustafir sem eru gefnir upp við mælingu, það er bæði vissu stafirnir sem og aftasti, óvissi stafurinn.
 - Tölustafurinn núll er stundum ómarktækur stafur.
 - Fjöldi skráðra tölustafa endurspeglar nákvæmni mælingarinnar.
 Því fleiri marktækir tölustafir, því nákvæmari mæling.
 - T.d. Hversu margir marktækir tölustafir eru í:
 - 2,2 g?
 - 2,243 g?
 - Dæmi: Hver er munurinn á mælingunni 4,0 g og 4,00 g ?
 - Dæmi: Nákvæmni vogar er ±0,001 g. Á voginni er vigtað 25 g sýni. Hvernig á að skrifa mæliniðurstöðuna?

- Marktækir tölustafir

- Tölustafurinn núll er stundum ómarktækur tölustafur:
 - 1. Núll er **alltaf** marktækt ef það er á milli annarra tölustafa.
 - T.d. 1005 kg
 - T.d. 2,4003 cm
 - 2. Núll fremst í tölu er **aldrei** marktækur tölustafur.
 - T.d. 0,06 g
 - T.d. 0,000425 L
 - 3. Núll aftast í tölu á eftir kommu er **alltaf** marktækt.
 - T.d. 3,00 cm
 - T.d. 0,0200 g
 - 4. Núll aftast í tölu sem er án kommu getur bæði verið marktækur og ómarktækur tölustafur. Því er best að skrifa niðurstöður á staðalformi.
 - T.d. 10300 g

-Marktækir tölustafir

Dæmi: hvað eru margir marktækir tölustafir í:

- a) 4,003 kg
- b) 6,023 · 10²³ atóm
- c) 5000 L
- d) 3,5302 g
- e) $2.3 \cdot 10^{-3}$ m
- f) 0,0022459 m³
- g) 0,000120300 s

- Marktækir tölustafir í útreikningum

- Við útreikninga þarf að hafa í huga:
 - Ónákvæmasta talan ræður nákvæmni útkomunnar.
 - Í lokasvari á aðeins að skrá marktæka stafi, þ.e. einn staf með óvissu.
- Við margföldun og deilingu á lokasvarið að innihalda jafn marga marktæka tölustafi og sú tala sem hefur fæsta marktæka tölustafi.
 - Dæmi: Hvert er flatarmál ferhyrnings sem mælist með hliðarnar: 6,221 cm og 5,2 cm?
 - Dæmi: Hvert er rúmmál kassa sem hefur lengdina: 27,3 cm, breiddina: 15,5 cm og hæðina: 5,4 cm?

- Marktækir tölustafir í útreikningum

• Við samlagningu og frádrátt á lokasvarið að innihalda jafn marga stafi eftir kommu (aukastafi) og sú tala sem hefur fæsta stafi eftir kommu.

• Dæmi: 20,42 g + 1,322 g + 83,1 g =

• Dæmi: 56,56 L – 23,2 L =

- Marktækir tölustafir í útreikningum

- Þegar þarf að námunda útkomur:
 - Ef aftasti stafur er <5 er næst aftasti stafur óbreyttur.
 - Dæmi: Námundaðu 7,248 í tvo marktæka tölustafi:
 - Dæmi: Námundaðu 63009 í þrjá marktæka tölustafi:
 - Ef aftasti stafur er ≥5 er næst aftasti stafur hækkaður um 1.
 - Dæmi: Námundaðu 7,248 í þrjá marktæka tölustafi:
 - Dæmi: Námundaðu 63009 í fjóra marktæka tölustafi:

- Marktækir tölustafir í útreikningum

• Dæmi: Skilaðu eftirfarandi svörum með réttum fjölda marktækra tölustafa:

a)
$$\frac{1,00\cdot10^2m}{10,5\,s} = 9,5238\,\frac{m}{s}$$

b)
$$35,356 L + 235,5 L + 3423 L = 3693,856 L$$

c)
$$\frac{(0,034 \, m \acute{o}l - 0,00234 \, m \acute{o}l)}{0,600 \, L} = 0,052767 \, \frac{m \acute{o}l}{L}$$

• Dæmi: Ílát með rúmmálið 1,05 · 10³ cm³ við 25°C inniheldur lofttegund. Ílátið með lofttegundinni vegur 837,6 g en án lofttegundarinnar vegur ílátið 836,2 g. Hver er eðlismassi lofttegundarinnar?

• Einingagreining: Einingar eru notaðar í dæmareikningi til að fylgjast með hvort dæmið sé rétt uppsett.

- Einingarnar eiga að fylgja með alla leið í útreikningum
 - Það er, þær eru margfaldaðar saman, deilt með þeim eða stytt út eftir því hvað er viðeigandi.

Gefin eining
$$\cdot \frac{Endanleg \ eining}{Gefin \ eining} = Endanleg \ eining$$

• Dæmi: Epli kosta 95 kr/kg. Hvað er hægt að kaupa mörg kg fyrir 600 kr?

$$600 \, \frac{kr}{95 \, \frac{1}{kr}} = 6.3 \, kg$$

• Dæmi: Hvað eru 2,5·10⁻² Gm margir mm?

$$2.5 \cdot 10^{-2} \frac{Gm}{1 \frac{Gm}{m}} = 2.5 \cdot 10^{10} mm$$

Dæmi: Hvað eru 515 m/s margir km/klst?

$$515 \frac{m}{s} \cdot \frac{10^{-3}km}{1 m} \frac{3600 s}{1 klst} = 1,85 \cdot 10^{3} \frac{km}{klst}$$

• Dæmi: Eðlismassi alkóhóls er 0,79 g/cm³. Hvað eru mörg grömm af alkóhóli í 1,5 L?

$$cm^3 = mL$$

$$1.5 L \cdot \frac{10^3 mL}{1 L} = 1.5 \cdot 10^3 mL$$

$$0,79 \; \frac{g}{mL} \cdot 1,5 \cdot 10^3 \; mL = 1,2 \cdot 10^3 \; g$$

- Dæmi: Breyttu 8,00 m í tommur.
 - 1 tomma = 2,54 cm

$$8,00 \ m \ \frac{10^2 cm}{1 \ m} = 8,00 \cdot 10^2 cm$$

$$8,00 \cdot 10^2 \frac{cm}{2,54 \frac{cm}{m}} = 315 tommur$$

• Dæmi: Rúmmál sjávar á jörðinni er um 1,36·10⁹ km³. Hvað er það í lítrum?

$$L = dm^3$$

$$1,36 \cdot 10^9 \frac{km^3}{1 \cdot km} \cdot \left(\frac{10^4 dm}{1 \cdot km}\right)^3 = 1,36 \cdot 10^{21} dm^3$$

$$= 1.36 \cdot 10^{21}L$$