

Ingeniería Informática de Gestión y Sistemas de Información Programación Básica

Control 1 - 22/10/2013

Nombre y apellidos: _____

Ejercicio	1	2	3	4	Total
Puntos	1	2	3	4	10
Nota					

- 1. (1 punto) Responde las siguientes preguntas:
 - (a) ¿Cuál de las opciones corresponde a un tipo de datos básico?
 - A. MP3
 - B. Real
 - C. Bit
 - D. Datagrama

(a) _			
(,	, –			

- (b) Teniendo en cuenta la declaración de la variable *var: Booleano*, indica cuál de las operaciones es correcta:
 - A. $var \leftarrow$ "Esto es un mensaje"
 - B. $var \leftarrow 5$
 - C. $var \leftarrow 5 * 13$
 - D. $var \leftarrow 5 < 6$

(b) _____

- (c) ¿Cuál de estas afirmaciones es cierta?
 - A. Los valores 3, '3' y "3" son distintos
 - B. El resultado de dividir dos números enteros es un real
 - C. No se pueden concatenar (unir) cadenas de caracteres con números reales
 - D. Si se dividen dos números reales, el resultado es un número entero

(c) _____

- (d) Las sentencias condicionales
 - A. No pueden incluir una condición que contenga el operador Not
 - B. Se utilizan para indicar que un conjunto de instrucciones se pueden ejecutar varias veces
 - C. Se utilizan para determinar si una instrucción se ejecuta o no
 - D. Sirven para escribir texto en la salida estándar

(d) _____

Ingeniería Informática de Gestión y Sistemas de Información Programación Básica Control 1-22/10/2013

2. (2 puntos) Dado el algoritmo que se muestra a continuación,

```
Algoritmo 1: algoritmoSorpresa
    Datos:
             numUsuario: Entero
             resultado: Cadena
             dig: Entero
             base: Entero
             pot: Entero
 1 Empieza
        numUsuario ← LeeEntero ("Intoduce un número positivo")
        base \leftarrow \mathbf{LeeEntero} ("Intoduce la base [2,8,16]")
 3
        pot \leftarrow 0
 4
        resultado \leftarrow ""
 \mathbf{5}
        Repetir mientras numUsuario \neq 0
 6
            dig \leftarrow numUsuario\ Resto\ base
 7
            Si resultado \neq "" Entonces
 8
               resultado \leftarrow ``+`` \& \ resultado
 9
            Fin si
 10
           resultado \leftarrow dig \& "*" \& base \& "**" \& pot \& resultado
11
           numUsuario \leftarrow numUsuario/base
12
           pot \leftarrow pot + 1
13
        Fin repetir
14
        Escribe (resultado)
15
16 Fin
```

simula su ejecución y rellena la tabla para que refleje el estado de las variables tras la ejecución de cada una de las instrucciones suponiendo que los números introducidos por el usuario son 143 y 8 respectivamente.

Instrucción	numUsuario	base	pot	dig	resultado
2	143		_	_	
3	143	8			
4	143	8	0	_	
5	143	8	0		((((

Instrucción	numUsuario	hase	not	dig	resultado
Insuracción	Hamesdario	Dasc	Pot	uig	resurrado

3. (3 puntos) La empresa ChapuzaSoft nos ha facilitado el siguiente algoritmo para un programa que pide al usuario que introduzca un número entero positivo y calcula el sumatorio de ese número.

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + N$$

Ingeniería Informática de Gestión y Sistemas de Información Programación Básica Control 1-22/10/2013

Algoritmo 2: calcularSumatorio Datos: numUsuario: Entero sumatorio: Entero i: Entero salida: Cadena 1 Empieza numUsuario ←LeeEntero ("Intoduce un número positivo") $\mathbf{2}$ Repetir mientras numUsuario < 13 Escribe ("Número no valido") 4 Fin repetir 5 numUsuario ←LeeEntero ("Intoduce un número positivo") 6 $sumatorio \leftarrow 0$ 7 $salida \leftarrow$ "El sumatorio es " & sumatorio8 Para Cada i entre 1 y numUsuario9 $sumatorio \leftarrow sumatorio + 1$ 10 Fin para cada 11 Escribe (salida) **12** 13 Fin Analiza el algoritmo para identificar errores e indica como los corregirías.

4. (4 puntos) **Diseña** (utilizando pseudocódigo o un diagrama de flujo) un programa que lee de la entrada estándar una secuencia de números positivos y muestra en la salida estándar un resumen indicando el número y porcentaje de múltiplos de 3, de 5 y de 7.

Ingeniería Informática de Gestión y Sistemas de Información Programación Básica Control 1-22/10/2013

El usuario introducirá un θ para indicar el final de la secuencia. Suponed que los datos introducidos por el usuario son correctos.

Ejemplo: Si el usuario introduce la siguiente secuencia de números

1 9 45 33 55 49 7 10 0

la salida del programa sería:

Múltiplos de: 3

%Múltiplos de : 37,5% Múltiplos de 5: 3

Múltiplos de 5: 37,5%

Múltiplos de 7: 2 %Múltiplos de 7: 25%

Si el usuario no introduce ningún número (exceptuando el 0), el programa deberá mostrar un mensaje indicando que no se ha introducido ningún número.