IS5102 Database Management Systems

Lecture 6: Relational Model

Alexander Konovalov

alexander.konovalov@st-andrews.ac.uk

(with thanks to Susmit Sarkar)

2021

- ► Lower level (logical) data models
- ► Relational data models
- ▶ Translations
- ► Formal query analysis

- \blacktriangleright Let A_1, A_2, \ldots, A_n are attributes
- ▶ Let $R = (A_1, A_2, ..., A_n)$ is a relation schema
- ightharpoonup Let $K \subseteq \{A_1, A_2, \dots, A_n\}$
- $lackbox{ } K$ is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)

Example: $\{ID\}$ and $\{ID, name\}$ are both superkeys of instructor

- Superkey K is a candidate key if K is minimal
 - Example: $\{ID\}$ is a candidate key for instructor
- One of the candidate keys is selected to be the primary key
 - which one?

Choosing Primary Keys

- ▶ Need to define a primary key for each table
- Sometimes a suitable set of attributes may already be present in data model
 - ▶ e.g. a consider the relation Branch with attributes {branch_name, assets, branch_city}
- Sometimes they will not . . .
 - e.g. relation Person with {name, age}
 - In such cases, need to invent one or more artificial attributes which are designed to be unique
 - examples are NI number, passport number, driving licence number, NHS number, clubcard number, etc.

Foreign key constraint: Value in one relation must appear in another

A foreign key constraint from attribute A of relation R_1 to the primary key B of relation R_2 :

for every tuple in R_1 , the value of A must also be the value of some tuple in R_2 :

$$\forall v \in R_1 \quad \exists w \in R_2 : v.A = w.B$$

- ▶ A foreign key from R_1 referencing R_2
- $ightharpoonup R_1$ referencing relation
- $ightharpoonup R_2$ referenced relation

Example: schema diagram

Exercise: how can the foreign key constraints be violated?

Reduction to Relation Schemas

- ► Entity sets and relationship sets can be expressed uniformly as **relation schemas** that represent the contents of the database.
- ► A database which conforms to an E-R diagram can be represented by a **collection of schemas**.
- ► For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- ► Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets With Simple Attributes

- ► A strong entity set reduces to a schema with the same attributes student(<u>ID</u>, name, credits)
- ► A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set

```
(building_id, floor, room_no,occupant)
```

Representing Relationship Sets

- ▶ A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- Example: schema for relationship set advisor advisor = (s_id, ins_id)

Redundancy of Schemas

Many-to-one and one-to-many relationship sets that are **total** on the many-side:

Can be represented by adding an **extra attribute** to the "many" side, containing the primary key of the "one" side

Example: Instead of creating a schema for relationship set inst_dept:

add an attribute dept_name to the schema arising from entity set instructor

Composite and Multivalued Attributes

Composite attributes are **flattened out** by creating a separate attribute for each component attribute

Example: given entity set instructor with composite attribute name with component attributes first_name, middle_initial and last_name

The schema corresponding to the entity set instructor has the attributes first_name, middle_initial and last_name

Composite and Multivalued Attributes

A multivalued attribute M of an entity E is represented by a separate schema EM

- ► Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
- Example: Multivalued attribute phone_number of instructor is represented by a schema:

```
inst_phone = (ID, phone_number)
```

► Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM

Relational Algebra

- Abstract query language
- ▶ Defines a set of operations on relations
- Operations take a relation(s) as input and produce a relation as output
- ► They form the basis for the SQL language

Relational algebra operators include:

Selection	σ	(unary)
Projection	Π	(unary)
Cartesian Product	×	(binary)
Natural Join	\bowtie	(binary)
Union	\cup	(binary)
Intersection	\cap	(binary)
Set difference	_	(binary)

Selection Operation

Relation r:

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{\mathsf{A}\,=\,\mathsf{B}\;\mathsf{and}\;\mathsf{D}\,>\,\mathsf{5}}(r)$$
 :

Α	В	С	D
α	α	1	7
β	β	23	10

Projection Operation

Relation r:

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 $\Pi_{\mathsf{A},\mathsf{D}}(r)$:

Α	D	
α	7	
β	3	
β	10	

Set operations: union, intersection, difference

Relation r

Α	В
α	1
α	2
β	1

 $r \cup s$

Α	В
α	1
α	2
β	1
β	3

 ${\sf Relation}\ s$

Α	В
α	2
β	3

r-s

$$\begin{bmatrix} \mathbf{A} \\ \alpha \\ \beta \end{bmatrix}$$

 $r \cap s$

 α

Cartesian Product

Relation r

Α	В
α	1
β	2

Relation s

С	D	Е
α	10	а
α	20	а
β	10	b

 $r \times s$:

Α	В	С	D	Ε
α	1	α	10	а
α	1	α	20	а
α	1	β	10	b
β	2	α	10	а
β	2	α	20	а
β	2	β	10	b

Relation r

Α	В	U	D
α	1	α	а
β	2	γ	а
γ	4	β	b
α	1	γ	а
δ	2	β	b

Relation s

В	D	Е
1	а	α
3	а	β
1	а	γ
2	b	δ
3	b	ϵ

$r \bowtie s$:

Α	В	С	D	Е
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Relational Algebra Summary

Symb	ol Name	Result
σ	Selection	Returns rows of the input relation that satisfy the predicate
П	Projection	Returns the specified attributes from all rows of the input relation. Duplicate rows removed
×	Cartesian product	Output all combinations of rows from the two input relations
\bowtie	Natural Join	Output all combinations of rows from the two input relations that are equal on their common attribute names
U	Union	Output all rows that are in the two similarly structured input relations or in both. Duplicate rows are eliminated
\cap	Intersection	Output all rows that are in both the two similarly structured input relations
_	Difference	Output all rows that are the first input relation but are not in the second

Reading and Practice

- Consolidation
 - Chapter 7, Database Design, 2nd Ed., Watt and Eng
 - ► Chapter 2, Database System Concepts, 6th Ed., Silberschatz, Korth and Sudarshan
 - ► Chapter 4 & 5.1, Database Systems, 6th Ed., Connolly, Begg
- Next few weeks: SQL
 - Chapters 15-16, Database Design, 2nd Ed., Watt and Eng
 - ▶ Chapters 3-5, Database System Concepts, 6th Ed., Silberschatz, Korth and Sudarshan
 - Chapters 6-8, Database Systems, 6th Ed., Connolly, Begg

oin