EXERCISE 11.1

(1) One angle of a parallelogram is 130°. Find the measures of its remaining angles.

Given

ABCD is a parallelogram that $m\angle A = 130^{\circ}$

To Prove

(Required) To find the measures of $\angle B$, $\angle C$, $\angle D$

Proof

Statements	Reasons	
$m\angle C = m\angle A$	Opposite angles of parallelogram.	
$m\angle C = 130^{\circ}$	Given, $m\angle A = 130^{\circ}$	
$m\angle B + m\angle A = 180^{\circ}$	$\overline{AD} \parallel \overline{BC}$ and \overline{AB} is transversal.	
	∴ sum of interior angles.	
$m\angle B + 130^{\circ} = 180^{\circ}$	Given $m\angle A = 130^{\circ}$	
$m\angle B = 180^{\circ} - 130^{\circ}$		
$m\angle B = 50^{\circ}$		
$m\angle D = m\angle B$	Opp. angles	
$m\angle D = 50^{\circ}$	As $m\angle B = 50^{\circ}$	
$m\angle B = 50^{\circ}, m\angle C = 130^{\circ},$		
$m\angle D = 50^{\circ}$		

(2) One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

Given

ABCD is a parallelogram, side AB has been produced to p to form exterior angle $m\angle CBP = 40^{\circ}$ and name the interior angles as $\angle 1$, $\angle C$, $\angle D$, $\angle A$.

C

130°

Required

To find the degree measures of $\angle 1$, $\angle C$, $\angle D$, $\angle A$

Proof

Statements			Reasons	
m∠1 + m∠CBP	=	180°	Supp.angles.	
m∠1 +40°	=	180°	$m\angle CBP = 40^{\circ} \text{ given}$	

∴
$$m \angle 1$$
 = $180^{\circ} - 40^{\circ}$
 $m \angle 1$ = 140° (i)
 $m \angle D$ = $m \angle 1$ Opp.angles of llm

$$m \angle D$$
 = 140°(ii) From (i)

$$m \angle A + m \angle 1 = 180^{\circ}$$
 AD || BC and AB is transversal.

$$m \angle A + 140^{\circ} = 180^{\circ}$$
 (Interior angles)

$$m \angle A = 180^{\circ} - 140^{\circ}$$
 From (i)

$$m \angle A = 40^{\circ}$$
.....(iii)

$$m \angle C = m \angle A$$
 Opp. angles

$$m \angle C = 40^{\circ}$$
 From (iii)

Theorem

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

Given

In a quadrilateral ABCD, $\overline{AB} \cong \overline{DC}$ and $\overline{AB} \parallel \overline{DC}$

To prove

ABCD is a parallelogram.

Construction

Join the point B to D and in the figure, name the angles as indicated:

$$\angle 1$$
, $\angle 2$, $\angle 3$ and $\angle 4$

Proof

	Statements	Reasons
In	$ \Delta ABD \leftrightarrow \Delta CDB $ $ \overline{AB} \cong \overline{DC} $	Given
	$\frac{\angle 2}{BD} \cong \frac{\angle 1}{BD}$	Alternate angles Common
∴ Now	$\triangle ABD \cong \triangle CDB$ $\angle 4 \cong \angle 3$	S.A.S. postulate (corresponding angles of congruent triangles)
:.	AD BC	(ii) From (i)

and	$\overline{AD} \cong \overline{BC}$	(iii)	Corresponding sides of congruent As
Also	ABII DC	(iv)	Given
Hence	ABCD is a parallelog	ram	From (ii) – (iv)