Fine Tuning Open LLMs on Kubernetes

\$ whoami

- → Abdel Sghiouar
- Senior Cloud Developer Advocate @Google
- Co-Host of the Kubernetes Podcast from Google
- Kubernetes, Containers, Service Mesh and Security
- Moroccan Living in Sweden

What are we talking about today?

Distributed ML on Kubernetes (Fine-tuning)

Running ML model on Kubernetes (Inference)

Open Source tools for ML on Kubernetes

What the future looks like

Fine Tuning

Adapting a pre-trained model to specific tasks:

- Exp: Adapting a Language model trained on English to speak Japanese.

Requires computational power (less than training)

The computation power sometimes exceed a single computer ability to run the workload --> **Distributed**

Distributed Computing

Why use one computer to solve a problem when you can use thousands?

Distributed Computing

Python is the "lingua franca" of Al

With GenAl distributed compute is no longer optional, it is required

Why Distributed Computing?

Scalability

Availability

Efficiency

Flexibility

Challenges

Consistency

Fault Tolerance

Concurrency Control

Load Balancing

Security Concerns

Complexity of Management

CAP Theorem

Consistency

Availability

Partition Tolerance

Demo

Kueue

Ray

Ray - Key Characteristics

Python first approach, open source

Simple and flexible API

Scalability

Support for bleeding edge hardware

Ray - Components

Ray Al Libraries

Demo

ML Platform

The ever growing AI/ML ecosystem

Data Preprocessing, LLM Fine-Tuning, Inference at Scale

Data Preprocessing, LLM Fine-Tuning, Inference at Scale

Why Kubernetes?

Google Cloud

22

KubeRay APIs

RayCluster

Manage and scale Ray clusters

Ideal for prototyping / development

RayJob

Execute a Ray job with ephemeral Ray clusters

Ideal for productionizing Ray batch workloads

RayService

Deploy a Ray Serve application with zero-downtime upgrades

Ideal for inference in production

Serve LLMs with vLLM & KubeRay

Manage, configure and scale model deployments with a single API.

See the latest guide on serving LLMs with vLLM, RayServe and KubeRay.

https://docs.ray.io/en/latest/cluster/kubernetes /examples/vllm-rayservice.html

```
apiVersion: ray.io/v1
kind: RayService
metadata:
  name: 11ama-3-8b
spec:
  serveConfigV2: |
    applications:
    - name: 11m
      route prefix: /
      import_path: ray-operator.config.samples.vllm.serve:model
      deployments:
      - name: VLLMDeployment
        num replicas: 1
        ray actor_options:
          num_cpus: 8
      runtime env:
        working dir:
"https://github.com/ray-project/kuberay/archive/master.zip"
        pip: ["vllm==0.5.4"]
        env_vars:
          MODEL ID: "meta-llama/Meta-Llama-3-8B-Instruct"
          TENSOR PARALLELISM: "2"
          PIPELINE PARALLELISM: "1"
```

Demo

DRA: Optimizing Resource Allocation

DRA enhances the Kubernetes scheduler with awareness of Ray's needs and the dynamic nature of certain workloads:

- Optimized resource utilization
- Improved cluster efficiency

26

Kubernetes v1.31 introduced new Device Resource Assignment (DRA) APIs.

Google Cloud Proprietary & Confidential

In-place VPA: Minimizing Disruptions

In-place Vertical Pod Autoscaling enables elastic memory consumption for Ray containers without requiring restarts.

Prevent performance degradation and risk of OOM-kill with resizable Pod memory

Feedback 🙏

Thank you

