mlr3proba

Package website: release | dev

Probabilistic Supervised Learning for mlr3.

What is mlr3proba?

mlr3proba is a probabilistic supervised learning (PSL) toolkit for machine learning in R utilising the mlr3 package. Probabilistic supervised learning is a field of supervised machine learning in which probability distributions are predicted. Regression and classification tasks can be shown to be sub-fields of PSL, for example reducing a predicted probability distribution from probabilistic regression by taking its mean gives a regression prediction. PSL is therefore a powerful tool to provide more information about predictions than the more classical regression or classification. Probably the most known variant of PSL is survival analysis, where the task of interest is to predict an individual's survival curve. Other forms of PSL include density estimation and probabilistic regression. To-date, PSL toolkits in R have been limited to Bayesian simulation packages, but mlr3proba hopes to change this by allowing domain-agnostic (Bayesian or Frequentist) fit/predict and evaluation workflows.

Installation

Install the last release from CRAN:

install.packages("mlr3proba")

Install the development version from GitHub:

remotes::install github("mlr-org/mlr3proba")

Survival Analysis

Survival Learners

ID	Learner	Package
surv.blackboost	Gradient Boosting with Regression Trees	mboost
surv.coxph	Cox Proportional Hazards	survival
surv.cvglmnet	Cross-Validated GLM with Elastic Net	glmnet
	Regularization	
surv.flexible	Flexible Parametric Spline Models	flexsurv
surv.gamboost	Gradient Boosting for Additive Models	mboost
surv.gbm	Generalized Boosting Regression	${ m gbm}$
	Modeling	
surv.glmboost	Gradient Boosting with Component-wise	mboost
	Linear Models	
surv.glmnet	GLM with Elastic Net Regularization	glmnet
surv.kaplan	Kaplan-Meier Estimator	survival
surv.mboost	Gradient Boosting for Generalized	mboost
	Additive Models	
surv.nelson	Nelson-Aalen Estimator	survival
surv.parametric	Fully Parametric Survival Models	survival
surv.penalized	L1 and L2 Penalized Estimation in GLMs	penalized
surv.randomForest	SIRGndomForestSRC Survival Forest	randomForestSRC

ID	Learner	Package
surv.ranger surv.rpart surv.svm	Ranger Survival Forest Regression, Ranking and Hybrid Support Vector Machines	ranger rpart survivalsvm

Survival Measures

ID	Learner	Package
surv.beggC	Begg's C-Index	survAUC
surv.chamblessAUC	Chambless and Diao's AUC	$\operatorname{survAUC}$
surv.gonenC	Gonen and Heller's C-Index	survAUC
surv.graf	Integrated Graf Score	mlr3proba
surv.grafSE	Standard Error of Integrated Graf Score	mlr3proba
surv.harrellC	Harrell's C-Index	mlr3proba
surv.hungAUC	Hung and Chiang's AUC	$\operatorname{survAUC}$
surv.intlogloss	Integrated Log Loss	mlr3proba
surv.intloglossSE	Standard Error of Integrated Log Loss	mlr3proba
surv.logloss	Log Loss	mlr3proba
surv.loglossSE	Standard Error of Log Loss	mlr3proba
surv.nagelkR2	Nagelkerke's R2	$\operatorname{survAUC}$
surv.oquigleyR2	O'Quigley, Xu, and Stare's R2	$\operatorname{survAUC}$
surv.songAUC	Song and Zhou's AUC	$\operatorname{survAUC}$
surv.songTNR	Song and Zhou's TNR	$\operatorname{survAUC}$
surv.songTPR	Song and Zhou's TPR	$\operatorname{survAUC}$
surv.unoAUC	Uno's AUC	$\operatorname{survAUC}$
surv.unoC	Uno's C-Index	$\operatorname{survAUC}$
surv.unoTNR	Uno's TNR	$\operatorname{survAUC}$
surv.unoTPR	Uno's TPR	$\operatorname{survAUC}$
surv.xuR2	Xu and O'Quigley's R2	$\operatorname{survAUC}$

Feature Overview and Lifecycle

The vision of mlr3proba is to be the first complete probabilistic machine learning package in R. This encompasses survival analysis, probabilistic regression, and unsupervised density estimation. The first release of mlr3proba is focused entirely on survival analysis and introduces TaskSurv. Later releases will include TaskDensity and will extend TaskRegr to have probabilistic predict types. The lifecycle of the survival task and features are considered maturing and any major changes are unlikely. The density and probabilistic regression tasks are currently in the early stages of development. The current main features of mlr3proba are:

- The added TaskSurv, LearnerSurv, PredictionSurv for survival analysis
- 17 survival learners, and 21 survival measures, including efficient implementations of censoring-adjusted probabilistic measures, such as the Integrated Graf (or Brier) Score.
- PipeOps integrated with **mlr3pipelines** for composition of probability distributions from linear predictors

Future Plans

· Add TaskDensity, PredictionDensity, LearnerDensity, and associated learners/measures

- Add prob predict type to TaskRegr, and associated learners/measures
- Allow MeasureSurv to return measures at multiple time-points simultaneously
- Improve estimation of integrated scores, and re-implement survAUC scores in mlr3proba
- Continue to add survival measures and learners

Bugs, Questions, Feedback

mlr3proba is a free and open source software project that encourages participation and feedback. If you have any issues, questions, suggestions or feedback, please do not hesitate to open an "issue" about it on the GitHub page!

In case of problems / bugs, it is often helpful if you provide a "minimum working example" that showcases the behaviour (but don't worry about this if the bug is obvious).

Please understand that the resources of the project are limited: response may sometimes be delayed by a few days, and some feature suggestions may be rejected if they are deemed too tangential to the vision behind the project.

Similar Projects

A predecessor to this package is **mlr**, using the survival task. Several packages exist for pure Bayesian probabilistic modelling, including **jags** and **stan**. For implementation of a few survival models and measures, the largest package is **survival**. There does not appear to be a package that implements many different variants of density estimation, but see **this list** for the biggest density estimation packages in R.