Université Sidi Mohamed Ben Abdellah Ecole Nationale des Sciences Appliquées Fès Année Universitaire : 2022-2023 Filière : 2AP, CP2

Semestre: S4

Examen d'Algèbre IV (session de rattrapage)

Le 06/06/2023 (durée 2h)

La clarté des raisonnements et la qualité de la rédaction seront prises en compte.

Exercice 1 (5pt)

Soit $A = \mathbb{Z}[i\sqrt{5}] := \{a + ib\sqrt{5} : a, b \in \mathbb{Z}\}.$

- 1. Déterminer les éléments inversibles de A.
- 2. Montrer que les éléments $3, 2 + i\sqrt{5}$ et $2 i\sqrt{5}$ sont irréductibles dans A.
- 3. L'anneau A est-il factoriel? principal? euclidien? Justifier.

Correction

Pour $z = a + ib\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$, posons $N(z) = |z|^2 = a^2 + 5b^2$.

- 1. Soit $z = a + ib\sqrt{5} \in \mathcal{U}(\mathbb{Z}[i\sqrt{5}])$, donc $\exists z' \in \mathbb{Z}[i\sqrt{5}]$ tel que zz' = 1. Par suite N(zz') = N(1) = 1, et donc N(z)N(z') = 1. Or $N(z) = a^2 + 5b^2 \in \mathbb{Z}^+$, on aura necéssairement N(z) = 1. Si $b \neq 0$, on aura $a^2 + 5b^2 > 1$. Donc b = 0, et par suite $a^2 = 1$. Ainsi $z = \pm 1$. D'où $\mathcal{U}(\mathbb{Z}[i\sqrt{5}]) \subset \{1; -1\}$. D'autre part, on a $\{1; -1\} \subset \mathcal{U}(\mathbb{Z}[i\sqrt{5}])$. Donc $\mathcal{U}(\mathbb{Z}[i\sqrt{5}]) = \{1; -1\}$.
- 2. 3 est irréductible, en effet, on a $3 \notin \mathcal{U}(\mathbb{Z}[i\sqrt{5}])$ car $N(3) = 9 \neq 1$. Soient $z_1, z_2 \in \mathbb{Z}[i\sqrt{5}]$ tels que $3 = z_1z_2$. Donc $N(z_1)N(z_2) = 9$. Ainsi $N(z_1) \in \{1, 3, 9\}$. Supposons que $N(z_1) = 3$ ($z_1 = a + ib\sqrt{5}$), alors $a^2 + 5b^2 = 3$, ce qui est impossible. Donc $N(z_1) = 1$ ou 9. Par conséquent z_1 ou z_2 est inversible. Il en résulte que 3 est irréductible. De la même façon on montre que $2 + i\sqrt{5}$ et $2 - i\sqrt{5}$ sont irréductibles dans A.
- 3. On a : $9 = 3.3 = (2 + i\sqrt{5})(2 i\sqrt{5})$. La décomposition de 9 en facteurs irréductibles dans $\mathbb{Z}[i\sqrt{5}]$ n'est pas unique, donc A n'est pas factoriel.

*Autre justification:

On a : $9 = (2 + i\sqrt{5})(2 - i\sqrt{5})$. Donc $z = (2 + i\sqrt{5}) \mid 9 = 3.3$, mais $z \nmid 3$ car $\frac{3}{2 + i\sqrt{5}} = \frac{2 - i\sqrt{5}}{3} \notin \mathbb{Z}[i\sqrt{5}]$. Il en résulte que z n'est pas un élément premier. L'élément z est irréductible mais non premier, ce qui entraîne que $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel. (Car dans un anneau factoriel tout élément irréductible est premier). Puisque A n'est pas factoriel, alors il n'est pas principal ni euclidien.

Exercice 2 (4pt)

On considère l'anneau $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} .

- 1. Montrer que l'application $\varphi: \mathbb{R}[X] \to \mathbb{C}$ définie par $\varphi(P) = P(i)$ est un morphisme d'anneaux surjectif.
- 2. Montrer que $ker(\varphi) = (X^2 + 1)$ (l'idéal principal engendré par $X^2 + 1$).
- 3. En déduire que $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.

4. Que peut-on dire de l'idéal $(X^2 + 1)$.

Correction

- 1. Il est clair que φ est un morphisme d'anneaux. De plus φ est surjectif car $\varphi(aX+b)=ai+b$.
- 2. On a $\varphi(X^2+1)=0$, donc $X^2+1\in ker(\varphi)$. Réciproquement, si $P\in ker(\varphi)$, on a P(i)=0 de même que
- P(-i) = 0. Donc $X^2 + 1 = (X i)(X + i) \mid P$, et par suite $P \in (X^2 + 1)$. Finalement, $ker(\varphi) = (X^2 + 1)$.
- 3. On a $\varphi: \mathbb{R}[X] \to \mathbb{C}$ est un morphisme d'anneaux surjectif, donc $Im(\varphi) = \mathbb{C}$. D'après le 1^{er} théorème d'isomorphisme on a $\mathbb{R}[X]/ker(\varphi) \cong Im(\varphi)$. Donc $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.

4. Puisque \mathbb{C} est un corps et $\mathbb{R}[X]/(X^2+1)\cong\mathbb{C}$, alors $\mathbb{R}[X]/(X^2+1)$ est un corps. Par suite (X^2+1) est un idéal maximal de $\mathbb{R}[X]$.

Exercice 3 (6pt)

Soit l'application $f: \mathbb{Z}[i] \to \mathbb{Z}/10\mathbb{Z}$ définie par $f(a+ib) = \overline{a+7b}$.

- 1. Montrer que f est un morphisme d'anneaux surjectif.
- 2. Soit (3+i) l'idéal principal de $\mathbb{Z}[i]$ engendré par 3+i. Montrer que $10 \in (3+i)$ et que $\ker(f) = (3+i)$.
- 3. En déduire que $\mathbb{Z}[i]/(3+i) \cong \mathbb{Z}/10\mathbb{Z}$.
- 4. 3 + i est-il premier dans $\mathbb{Z}[i]$? Justifier.

Correction

1) Montrons que f est un morphisme d'anneaux surjectif. Soient $x = a + ib, y = c + id \in \mathbb{Z}[i]$, on a:

$$f(x+y) = \underbrace{f((a+c)+i(b+d))}_{a+c+7(b+d)}$$
$$= \underbrace{a+c+7(b+d)}_{a+7b+c+7d}$$
$$= f(x)+f(y).$$

$$f(xy) = \frac{f((ac - bd) + i(ad + bc))}{(ac - bd) + 7(ad + bc)}$$

$$= \frac{(ac + 49bd) + 7(ad + bc)}{(ac + 49bc) + 7(ad + bc)}, \text{ car } -1 \equiv 49[10].$$

$$= \frac{a + 7b \cdot c + 7d}{a + 7b \cdot c + 7d}$$

$$= f(x) \cdot f(y).$$

 $f(1_{\mathbb{Z}[i]}) = f(1+i0) = \overline{1+7\times 0} = \overline{1} = 1_{\mathbb{Z}/10\mathbb{Z}}.$

Donc f est un morphisme d'anneaux.

f est aussi surjectif, en effet, soit $\overline{y} \in \mathbb{Z}/10\mathbb{Z}$, alors $\exists x = y = y + 0i \in \mathbb{Z}[i]$ tel que $f(x) = \overline{y}$.

2) - Montrons que $10 \in (3+i)$.

On a: 10 = (3+i)(3-i), donc $10 \in (3+i)$.

- Montrons que ker(f) = (3+i).

On a $(3+i) \subset ker(f)$, en effet, $f(3+i) = \overline{3+7\times 1} = \overline{10} = \overline{0}$.

Donc $3+i \in ker(f)$. Et puisque ker(f) est un idéal de $\mathbb{Z}[i]$, alors $(3+i) \subset ker(f)$.

On a aussi $ker(f) \subset (3+i)$. En effet, soit $x=a+ib \in ker(f)$, alors $f(x)=\overline{a+7b}=\overline{0}$.

 $\implies a + 7b \in 10\mathbb{Z}.$

 $\implies \exists k \in \mathbb{Z} \text{ tel que } a + 7b = 10k.$

Donc, x = (10k - 7b) + ib = 10k + (i - 7)b = (3 + i)(3 - i)k + (3 + i)(i - 2)b. Finalement, on obtient $x = (3 + i)[(3k - 2b) + i(b - k)] \in (3 + i)$.

3) Déduisons que $\mathbb{Z}[i]/(3+i) \cong \mathbb{Z}/10\mathbb{Z}$.

On a $f: \mathbb{Z}[i] \to \mathbb{Z}/10\mathbb{Z}$ est un morphisme d'anneaux, d'après le 1^{er} théorème d'isomorphisme $\mathbb{Z}[X]/ker(f) \cong Im(f)$. Or ker(f) = (3+i) et $Im(f) = \mathbb{Z}/10\mathbb{Z}$ (car f est surjectif). D'où le résultat.

4) L'anneau $\mathbb{Z}/10\mathbb{Z}$ n'est pas intègre car 10 n'est pas premier, alors $\mathbb{Z}[i]/(3+i)$ n'est pas intègre, par suite (3+i) n'est pas premier. D'où l'élément 3+i n'est pas premier.

Exercice 4 (5pt)

- 1. Déterminer $\mathcal{U}(\mathbb{Z}[X])$ et $\mathcal{U}((\mathbb{Z}/2\mathbb{Z})[X])$. (\mathcal{U} désigne l'ensemble des éléments inversibles).
- 2. On considère le morphisme d'anneaux surjectif

$$\varphi: \qquad \mathbb{Z}[X] \longrightarrow (\mathbb{Z}/2\mathbb{Z})[X]$$

$$P = \sum_{i=0}^{n} a_i X^i \longmapsto \varphi(P) = \sum_{i=0}^{n} \overline{a_i} X^i,$$

où \bar{a}_i désigne la classe de a_i modulo 2.

- (a) Montrer que $\ker(\varphi) = (2) = 2\mathbb{Z}[X]$ (l'idéal principal de $\mathbb{Z}[X]$ engendré par 2).
- (b) Que peut-on dire de (2) dans $\mathbb{Z}[X]$?

Correction

- 1. \mathbb{Z} est intègre, donc $\mathcal{U}(\mathbb{Z}[X]) = \mathcal{U}(\mathbb{Z}) = \{-1; 1\}.$ $\mathbb{Z}/2\mathbb{Z}$ est un corps, donc $\mathcal{U}(\mathbb{Z}/2\mathbb{Z}[X]) = (\mathbb{Z}/2\mathbb{Z})^* = \{\overline{1}\}.$
- 2. (a) On a $2\mathbb{Z}[X] \subset ker(\varphi)$, en effet, soit $P(X) = 2Q(X) = 2\sum_{i=0}^{n} a_i X^i \in 2\mathbb{Z}[X]$. On a

$$\varphi(P) = \varphi\left(\sum_{i=0}^{n} 2a_i X^i\right) = \sum_{i=0}^{n} \overline{2a_i} X^i = \overline{0}.$$

- Vérifions maintenant que $ker(\varphi) \subset 2\mathbb{Z}[X]$. Soit $U(X) = \sum_{i=0}^{n} a_i X^i \in ker(\varphi)$, donc $\varphi(U(X) = \sum_{i=0}^{n} a_i X^i)$

$$\sum_{i=0}^{n} \overline{a_i} X^i = \overline{0}, \text{ i.e., } \overline{a_i} = \overline{0}, \ \forall i, \text{ d'où } a_i = 2b_i \text{ avec } b_i \in \mathbb{Z}, \text{ et alors}$$

$$U(X) = \sum_{i=0}^{n} a_i X^i = 2 \sum_{i=0}^{n} b_i X^i \in 2\mathbb{Z}[X].$$

(b) Appliquons le 1^{er} théorème d'isomorphisme. On a $\varphi: \mathbb{Z}[X] \to (\mathbb{Z}/2\mathbb{Z})[X]$ est un morphisme d'anneaux, $ker(\varphi) = (2)$ et $Im(\varphi) = (\mathbb{Z}/2\mathbb{Z})[X]$ (car φ est surjectif). Donc $\mathbb{Z}[X]/(2) \cong (\mathbb{Z}/2\mathbb{Z})[X]$. Or $(\mathbb{Z}/2\mathbb{Z})[X]$ est intègre, donc $\mathbb{Z}[X]/(2)$ est intègre, par suite (2) est un idéal premier de $\mathbb{Z}[X]$.