

An Institute of Chemical Sciences

DPP-01 Group Theory

1.	According to rules of symmetry there is only one principal axis and many subsidiary axis present in a molecule, the principal axis is one which is							
	(a) Parallel to Horizontal Plane							
	(b) Perpendicu	lar to vertical plar	ne	0				
	(c) Perpendicu	lar to Horizontal P	Plane and is of lowest or	der				
	(d) Perpendicu	lar to Horizontal F	Plane and is of Highest o	rder				
2.	The symmetry	group is C ₂ for the	e molecule/ion					
	(a) H ₂ O	(b) H ₂ O ₂	(c) SO ₂	(d) NO ₂ -				
3.	Total number of symmetry elements present in HCI molecule							
	(a) 3	(b) ∞	(c) 4	(d) 2				
4.	How many C ₂ a	How many C_2 are present in S_4N_4 ?						
	(a) 1	(b) 2	(c) 3	(d) 4				
5.	The symmetry	The symmetry element, not belong to NH ₃ molecule.						
	1. Inversion	2. C ₂	3. C ₃	(d) C ₄				
	(a) 1 only		(b) 1 and 2 ((b) 1 and 2 only				
	(c) 1, 2 and 4		(d) 1 and 4 (only				
6.	The principal a	xis present in nor	bornane is:					
	(a) C ₂	(b) C ₃	(c) C ₆	(d) C_{ψ}				
7.	Conversion of	Conversion of boron trifluoride to tetrafluoroborate accompanies:						
	(a) Increase in	(a) Increase in symmetry and bond elongation.						
	(b) Increase in	symmetry and bo	and contraction					
	(c) Decrease in symmetry and bond contraction							

(d) Decrease in symmetry and bond elongation.

8.	which of the following	ng symmetry element	does not present in the	e following object.
	Eclipsed pentagons			
	(a) C ₅	(b) $5C_2 \perp C_5$	(c) S ₅	(d) i
9.	Which of the following	ng statement is incorre	ect regard a chiral mole	ecule.
	(a) It has superimpos	sable mirror image	(b) lack of centre of s	ymmetry
	(c) lack of alternate a	axis of symmetry	(d) All of the above	
10.	For an octahedron, n	umber of C ₃ axis is		
	(a) 0	(b) 3	(c) 4	(d) 8
11.	Which of the following	ng does not contain a (C ₃ axis?	
	(a) POCI ₃	(b) [NH ₄] ⁺	(c) [H ₃ O] ⁺	(d) CIF ₃
12.	Which of the following	ng species posses both	C ₃ and C ₂ axis?	
	(a) SO ₃	(b) NH ₃	(c) PCI ₃	(d) [H ₃ O] ⁺
13.	Which of the following	ng molecule or ions po	ssesses a C ₄ principal a	nxis?
	(a) XeF ₄	(b) CF ₄	(c) SF ₄	(d) (PF ₄)+
14.	What is the principle	axis in H ₂ O molecule		
	(a) C ₂	(b) C ₃	(c) C ₄	(d) None of these
		××x	×××	

An Institute of Chemical Sciences

ANSWERS

1. d

2. b

3. b

4. c

5. c 6. a

7 a

7. a

8. d

9. a

10. c

11. d

12. a

13. a

14. a

HINT & SOLUTIONS

1. (d)

Sol. The principal axis is one which is perpendicular to horizontal plane and is of highest order.

2. (b)

Sol. H_2O_2 have the open book structure, it contain only C_2 -axis as symmetry operation. $\begin{bmatrix} \mathbf{H} & \mathbf{H} \\ \mathbf{E} & \nabla \\ \mathbf{O} & \mathbf{O} \end{bmatrix}$ have C_2 —symmetry point group.

3. (b)

Sol.Point group of HCl is $\,C_{_{\infty_{v}}}$, and have $\,C_{_{\infty}},\infty\sigma_{_{v}},E\,$ i.e. $_{\infty}$ symmetry elements.

4. (c)

It has C_2 as principal axis and $2C_2$ perpendicular to the principal axis and have σ_d so " D_{2d} " is the point group.

5. (c)

Sol.NH₃ molecule have C_{3n} point group it contains E, C_3 and σ_v , it do not contain i, C_2 , C_4 .

6. (a)

C₂ (Principal axis)

7. (a)

Converting from planar to tetrahedral intend to increased the symmetry and due to decrease in the %s character there is bond elongation

8. (d)

Sol. This object contains C_5 axis as a principal axis, 5 perpendicular C_2 axis to C_5 , and improper rotation axis (S_5) but does not have COS.

9. (a)

Sol. A chiral molecule must not have any alternate axis of symmetry, centre of symmetry and plane of symmetry, and it has mirror image to which it is non superimposable.

10. (c)

Fitting octahedral in cube.

It has $\mathrm{C_3}$ axis passing through body diagonal of cube three are 4 body diagonal.

So, number of C₃ is "4".

11. (d)

Sol.CIF₃ does not C₃ axis

rest all have C₃ axis of symmetry.

An Institute of Chemical Sciences

DPP-02 Group Theory

1.	Molecule which c	ontain centre of sym	metry	
	(a) Ethene	(b) HCl	(c) NH_3	(d) SF ₄
2.	Molecule which c	ontain centre of sym	metry)
	(a) Ethene	(b) XeF ₄	(c) XeF ₂	(d) All of these
3.	The number of C_2	axes is SF ₆ are,		
	(a) 6	(b) 3	(c) 9	(d) 12
4.	Which of the follo	owing matched incor	rectly?	N
	Symmetry	Maximum no. ti	hat any molecule pose	s
	(a) S ₂	1		/
	(b) <i>i</i>	1		/
	(c) $\sigma_{\rm h}$	1	The state of the s	
	(d) C ₂	infinite	- TO THE R. P. LEWIS CO.	
5.	Which of the follo	owing molecule or io	ns poses an inversion	centre?
	(a) [PF ₆] ⁻	(b) SiH ₄	(c) BF_3	(d) PF ₅
6.	What symmeetry	elements are lost in g	going from NH ₃ to NH	_
	(a) C ₃ only	(b) two σ_{v}	(c) Both (a) and	d (b) (d) Neither (a) nor (b)
7.	Below is a molec molecule?	ule of AX ₄ with dif	ferent view. What is p	possible axis of symmetry for this
	(a) C ₄	(b) C ₂	(c) C ₃	(d) None of these
8.		ses trigonal planar and	d trigonal pyramidal str	ructure respectively what symmetry

(a) Centre of symmetry

(b) Vertical sigma plane

(c) Horizontal sigma plane

- (d) S₃ improper rotation
- Complex of $[\mathrm{Re_2Cl_8}]^{2-}$ is shown below. Predict how many $\mathrm{C_2}$ rotation is allowed 9.

(a) 2

(b) 3

(c)4

(d)5

- Predict which molecule contains S_4 without C_4 axis? 10.
 - (a) PBr₃ (Trigonal pyramidal)
- (b) ICl₄⁻ (square planar)

(c) SO₄²⁻ (tetrahedral)

- (d) 1Cl₂Br₂(square planar)
- 11. What is principal axis in triangle
 - (a) C_2
- (b) C_3
- (c) C_4

(d) None of these

- What is principle axis in square 12.
 - (a) C_2
- (b) C_3
- (c) C_4

(d) None of these

- 13. What is the principal axis in POCl₃?
 - (a) C₅
- (b) C₄
- $(c) C_5$

- (d) C₂
- Out of the following molecules which one contains maximum symmetry operations 14.

- 15. Which of the following is correct?
 - (a) $C_2^z \times \sigma_{xz} = E$
- (b) $C_2^z \times \sigma_{xz} = C_2^z$ (c) $C_2^z \times \sigma_{yz} = \sigma_{yz}$ (d) $C_2^z \times \sigma_{xz} = \sigma_{yz}$

XXXXX

An Institute of Chemical Sciences

ANSWERS

- 1. (a)
- 2. (d)
- 3. (c)
- 4. (c)
- 5. (a)
- 6. (c)
- 7. (b)

8.(b)

9. (d)

10. (c)

12. (c)

14. (a)

15. (d)

HINT & SOLUTIONS

1. Ethene

$$H$$
 $C = C$

this molecule contain inversion centre, have pair of molecule on opposite sides.

Ethene 2.

XeF,

XeF₂

clearly all of these contains inversion centre (d)

3.
$$F = \begin{cases} F_{\text{min}} & F \\ S & F \end{cases}$$
 (Octahedral)

A molecule can have infinite number of C_2 (linear molecule) but have only one S_2 , inversion centre (i) and σ_h can be 1 or more than 1 (in case of Octahedral). So, correct answer is (c).

- 5. $F
 \downarrow F F F F \text{ Oh has } S_2 \text{ or } i'$
- 6. $H \stackrel{N_{yy}}{H} H C_{3v} = E, C_3, 3\sigma_v$

7.

- 9. $4C_2$ passing through the centre of Re Re bond and $1C_2$ through Re Re bond, so total three are $4 + 1 = 5C_2$ rotation allowed.
- 10. In a tetrahedral geometry, there is C_3 axis is principal axis but number C_4 axis is not present in tetrahedral; but it has S_4 axis passing through adjacent triangular faces.

11. give equivalent structure,

Hence, C₃ is principle axis.

13. CI P

has C_3 (principal axis) and have σ_v point group C_{3v} .

- 14. 'a' is the correct option, because it have point group D_{3h} and having 12-symmetry operations, which are maximum in number.
- 15. $C_{2z}\sigma_{xz} = \sigma_{yz} \neq E$ $C_{2z}\sigma_{xz} = \sigma_{yz} \neq C_{2z}$ $C_{2z}\sigma_{yz} = \sigma_{xz} \neq \sigma_{yz}$ $C_{2z}\sigma_{xz} = \sigma_{yz} = \sigma_{yz}$ So, 'd' is correct option $\times \times \times \times$

An Institute of Chemical Sciences

DPP-(3) GROUP THEORY

1.	1. According to rules of symmetry there is only one principal axis and many subsidiary axis present in a molecule, the principal axis is one which is					
	(a) Parallel to Horizontal Plane					
	(b) Perpendicular to vertical plane					
	(c) Perpendicular to H	Horizontal Plane an	nd is of lowest order			
	(d) Perpendicular to I	Horizontal Plane ar	nd is of Highest order			
2.	Total number of sym	metry elements pr	esent in HCl molecule			
	(a) 3	(b) ¥	(c) 4	(d) 2		
3.	The symmetry group	is C ₂ for the molec	cule/ion			
	(a) H₂O (b	o) H ₂ O ₂	(c) SO ₂	(d) NO ₂		
4.	How many C₂ are pre	sent in S ₄ N ₄ ?				
	(a) 1	(b) 2	(c) 3	(d) 4		
5.	What is the principle a	axis in H ₂ O molecu	le			
	(a) C ₂	(b) C ₃	(c) C ₄	(d) None of these		
6.	Molecule which conta	in centre of symm	etry			
	(a) Ethene	(b) HCl	(c) NH ₃	(d) SF ₄		
7.	Molecule which conta	in centre of symm	etry			
	(a) Ethene	(b) XeF ₄	(c) XeF ₂	(d) All of these		
8.	The number of C ₂ axe	s is SF ₆ are,				
	(a) 6	(b) 3	(c) 9	(d) 12		
9.	Which of the followin	g matched incorred	ctly?			
	Symmetry	Maximum	no. that any molecule pos	es		
	(a) S ₂		1			
	(b) i		1			
	(c) о _h		1			
	(d) C ₂		infinite			
10.		g molecule or ions	poses an inversion centre	?		

Contact Us: 9990382567, 7082062392, 9717373074, 8285815185

11.	1. Which of the following statement is incorrect regard a chiral molecule.				
	(a) It has superimposable mirror image		(b) lack of centre of symmetry		
	(c) lack of alternate axis of sy	rmmetry	(d) All of the above		
12.	For an octahedron, number of	of C₃ axis is			
	(a) 0	(b) 3	(c) 4	(d) 8	
13.	Which of the following does	not contain a C₃ axis?			
	(a) POCl ₃	(b) [NH ₄] ⁺	(c) [H ₃ O] ⁺	(d) CIF ₃	
14.	Which of the following speci	es posses both C ₃ and	C ₂ axis?		
	(a) SO₃	(b) NH ₃	(c) PCI ₃	(d) [H₃O] ⁺	
15.	Which of the following mole	cule or ions possesses a	a C ₄ principal axis?		
	(a) XeF ₄	(b) CF ₄	(c) SF ₄	(d) (PF ₄) ⁺	

• • • • •

An Institute of Chemical Sciences

ANSWER KEY DPP-(3) GROUP THEORY

(d) 11. (a) 1. 6. (a) 2. (b) 12. (c) 7. (d) 3. (b) 13. (d) 8. (c) 4. (c) 9. (c) 14. (a) 5. (a) 10. (a) 15. (a)

An Institute of Chemical Sciences

DPP-(4) GROUP THEORY

- 1. What is principal axis in triangle
 - (a) C₂

- (b) C₃
- (c) C₄

(d) None of these

- 2. What is principle axis in square
 - (a) C₂

- (b) C₃
- (c) C₄

(d) None of these

- 3. What is the principal axis in POCl₃?
 - (a) C₅

- (b) C₄
- (c) C₅

- (d) C₂
- 4. Out of the following molecules which one contains maximum symmetry operations

$$(c)$$
 O N O H

- 5. Which of the following is correct?
 - (a) $C_2^z \times \sigma_{xz} = E$

(b) $C_2^z \times \sigma_{xz} = C_2^z$

(c) $C_2^z \times \sigma_{vz} = \sigma_{vz}$

- (d) $C_2^z \times \sigma_{xz} = \sigma_{yz}$
- 6. A molecule has a 2-fold axis and a mirror perpendicular to that. The point group must have a:
 - (a) S₄ axis
 - (b) Center of inversion
 - (c) s_d plane
 - (d) s_v plane
- 7. [Co(en)₃]³⁺ ion ("en" denotes ethylene diamine) shows optical activity because it has:
 - (a) An asymmetric carbon atom
 - (b) No S_n axis of symmetry
 - (c) A C₃ axis of symmetry
 - (d) A C₂ axis of symmetry perpendicular to C₂ axis

8. The correct statement about the following molecule is

- (a) Molecule is chiral and possesses a chiral plane
- (b) Molecule is chiral and possesses a chiral axis
- (c) Molecule is chiral and possesses a plane of symmetry
- (d) Molecule is chiral and possesses a centre of symmetry
- 9. Match list-I (molecule) with List-II (shape) and select the correct answer using the codes given below the lists:

	List-I		List-II
I.	P ₄	P.	Crown
II.	S ₈	Q.	Polymeric (Dimeric)
III.	AICI ₃	R.	Tetrahedral
IV.	PCI ₅	S.	Linear
		T.	Trigonal bipyramid

(a) I-R, II-P, III-Q, IV-T

(b) I-P, II-R, III-Q, IV-T

(c) I-P, II-Q, III-R, IV-S

- (d) I-R, II-P, III-S, IV-T
- 10. [Co(en)₃]³⁺ ion shows optical activity because it has
 - (a) An asymmetric C-atom

(b) No S_n axis of symmetry

(c) A C₃ axis of symmetry

- (d) A $C_2 \perp$ to C_3
- 11. The point group of H₂O₂ (planar) is:
 - (a) C_{2v}

- (b) D_{2d}
- (c) C_{2h}

(d) C_{3h}

- 12. The point group of 1, 3, 5, 7-tetraflurocyclo-octetraene is:
 - (a) D_{2d}

- (b) S₄
- (c) C_2

(d) C₁

- 13. The symmetry point group of propyne is
 - (a) C₃

- (b) C_{3V}
- (c) D₃

(d) D_{3d}

- 14. The point group of NSF₃ is:
 - (a) D_{3d}

- (b) C_{3h}
- (c) D_{3h}

- (d) C_{3v}
- 15. An AX₆ molecules belongs to the O_h group. The molecule is modified to AX₅Y. The point group changes to:
 - (a) D_{4h}

- (b) D_{6h}
- (c) C_{4h}

(d) C_{4V}

• • • • •

An Institute of Chemical Sciences

ANSWER KEY DPP-(4) GROUP THEORY

1	/ L_ \	
1.	(b)	

3. (a)

4. (a)

5. (d)

6. (b)

7. (b)

8. (a)

9. (a)

10. (b)

11. (c)

12. (a)

13. (b)

14. (d)

15. (d)

An Institute of Chemical Sciences

DPP-(5) GROUP THEORY

	DFF-(3) GROOF THEORY					
1.	Bipridyl (q = 90) belongs to	the point group				
	(a) C _S	(b) C _{5h}	(c) C ₂	(d) C _{2v}		
2.	Ethylene molecule belong t	o the				
	(a) D _{2h}	(b) C _{2h}	(c) C _{3v}	(d) C _{∞h}		
3.	$H_2SO_4 \xrightarrow{H_2O} A + 2H^+,$	the point group of 'A' is				
	(a) C _S	(b) T _d	(c) O _h	(d) None of these		
4.	The point group of Boric ac	id (non-planar) is P:				
	(a) C ₃	(b) C _{3v}	(c) C _{3h}	(d) None of these		
5.	Molecule belong to D _{3d} pio	ont group:				
	(a) Ferrocine		(b) Staggered ethane			
	(c) Staggered chromocene		(d) Staggered ferrocene			
6.	Ethyne molecule belong to	the				
	(a) D _{2h}	(b) C _{2h}	(c) C _{2v}	(d) D∞ _h		
7.	Tetrafluoro cubane belong	to the point group.				
	(a) D _{3d}	(b) T _d	(c) D _{2h}	(d) D _{2d}		
8.	$NH_3 + HC1 \xrightarrow{Aqueous} A +$	$\mathrm{Cl}^\Theta,$ the point group $\mathfrak c$	of 'A' is:			
	(a) C _S	(b) T _d	(c) O _h	(d) None of these		
9.	9. Trans, 1, 2 difluoroethylene molecule has a 2-fold rotational axis, a symmetry plane perpendicular to the rotational axis and an inversion centre. If two H atoms of the above molecule are also replaced by F atoms, the point group of the resultant molecule will be:					
	(a) C ₁	(b) C _{2h}	(c) C _{2v}	(d) D _{2h}		
10	. $[B_{12}H_{12}]^{2-}$ belongs to the po	int group:				
	(a) O _h	(b) T _d	(c) C _{2v}	(d) I _h		
11	. The molecule CO ₂ belongs	to the point group:				
	(a) C _{2v}	(b) C _{2h}	(c) D _{¥h}	(d) D _{2h}		
12	Trans, 1, 2 difluoroethylene rotational axis and an inver			plane perpendicular to the		
	(a) C ₁	(b) C _{2h}	(c) C _{2V}	(d) D _{2h}		

13. The point group of is:

(a) D_{3d}

- (b) C_{3v}
- (c) C_S

(d) C₁

belongs to the point group:

(a) O_h

- (b) C_S
- (c) C_i

(d) C_{2v}

- 15. 'B₂H₆' belong to the point group.
 - (a) D_{3d}

- $(b) T_d$
- (c) D_{2h}

(d) D_{2d}

• • • • •

An Institute of Chemical Sciences

ANSWER KEY DPP-(5) GROUP THEORY

1.	(c)

2. (a)

3. (b)

4. (a)

5. (b)

6. (d)

7. (b)

8. (b)

9. (d)

10. (d)

11. (c)

12. (c)

13. (c)

14. (b)

15. (c)

An Institute of Chemical Sciences

DPP-(6) GROUP THEORY

1. What is the point group of Fe₂(CO)₉?

2. D_{nd} point group contain:

(a) E,
$$C_n$$
, nC_2 , $n\sigma_d$, S_{2n} , i

(b) E,
$$C_n$$
, $nC_2 \perp n\sigma_d$, S_{2n} , i

(c) E,
$$C_n$$
, $nC_2 \perp C_n$, $n\sigma_d$, S_{2n}

(d) E,
$$C_n$$
, $C_2 \perp n\sigma_d$, S_{2n} , i

3. Write the matrix representing final coordinate after doing operation of inversion centre (i).

$$\begin{array}{c|cccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

4. A molecule contain C₄ principal axis of symmetry and also contain s_h plane of symmetry. If the point group of the molecule is D_{4h} than molecule contain:

(a)
$$E + C_4 + 4C_2 + S_8$$

(b) E +
$$C_4$$
 + $4C_2 \perp C_4$, s_n only

(c)
$$E + C_4 + S_h + 4C_2 + S_4 + i + 4S_b$$

H ² after performing inversion centre. 5. What is final structure of

6. Match the column-I with column-II

	Column-I		Column-II
I.	Ir ₄ (CO) ₁₂	P.	T _d
II.	S ₄ N ₄	Q.	C _{3v}
III.	S ₈	R.	D _{2d}
IV.	POCl ₃	S.	D ₂

				T.	D _{3h}	
				U.	D _{4d}	
(a) I-P, II-S,	III-U, IV-Q		(b) I-P	, II-R, III-U, IV-Q	
(c) I-S, II-R,	III-U, IV-Q		(d) I-S	, II-Q, III-R, IV-S	
7. T	he point g	roup of chair conf	ormer of chlorocyclo	hexane:		
(a) C _s		(b) D _{3d}	(c) C _{2v}		(d) C _{3v}
8. N	∕latch List-	I with List-II and s	elect the correct ansv	ver using	the codes given belo	ow the lists:
	(D)	†	List-l	1		ist-II
	(P)	[Cu(H ₂ O) ₆] ²⁺		1.	C _{3v}	
	(Q)	Fe ₂ (CO) ₉		2.	D _{3h}	
	(R)	Eclipsed ferroce	ne	3.4.	O _h	
	-			5.	D _{3d}	
				6.	D ₅ h	
1	-\ D 2 O 2	D.F.			D _{4h}	
	a) P-3, Q-2				6, Q-4, R-5	
	c) P-6, Q-2		valagula and its sorr		3, Q-6, R-4	usible representation are
	respective		lolecule and its corr	espondir	ig number of irred	ucible representation are
	a) C _{3v} and			(b) C ₂	_V and 4	
	c) C _{3v} and				_V and 3	
10. 7	he produc	ct $C_2^{\circ}\sigma_{xy}$ (C_2° is the	ne two-fold rotation a	xis arour	id the x-axis and σ_{xy}	is the xy mirror plane) is
(a) σ _{xz}		(b) σ _{yz}	(c) C_2^{γ}		(d) C ₂
11. T	he correct	relation involving	symmetry operation	ıs		
(a) $S_4^2 = S_2$			(b) σ($xz)\sigma(yz) = C_2(x)$	
(c) $S_4^3 = C_4^3$			(d) S ₆	= S ₂	
		le that possesses	S ₄ symmetry elemen	·	- 2	
	a) ethylene		(b) allene	(c) be	nzene	(d) 1, 3-butadiene
			•			ts. It is consistent with the
		p symmetry	, I Will spectrum c	71 31 4 3110	ws doublet of triple	is. It is consistent with the
(a) C _{3v}		(b) C _{4V}	(c) T _d		(d) C _{2v}
14. V	Vhich of th	ne following do no	t posses C _{2h} point gr	oup?		
(a) trans [C	O(en ₂ Cl] ⁺		(b) 1.	2 dichloroethylene (d	cis)
			ns)			•
			etry element is prese			
		axis of rotation	•		proper axis of rotation	on
(c) Centre c	of inversion		(d) Pla	ane of symmetry	
(4. V (4. V (6. (15. V (6. (16. V	a) C _{3V} Vhich of th a) trans [C c) 1, 2 dich Vhich of th a) proper a	ne following do no O(en ₂ Cl] ⁺ Iloroethylene (traine following symmetrics)	t posses C _{2h} point gr	oup? (b) 1, (d) difent in "T" (b) Im	proper axis of rotation	cis)

• • • • •

An Institute of Chemical Sciences

ANSWER KEY DPP-(6) GROUP THEORY

1. (b)	6. (b)	11.(d)
2. (c)	7. (a)	12. (b)
3. (d)	8. (c)	13. (d)
4. (c)	9. (b)	14. (b)
5. (c)	10. (a)	15.(a)

An Institute of Chemical Sciences

DPP-7 GROUP THEORY

1.	D _{nd} piont group contain:			
	(a) E, C_n , nC_2 , $n\sigma_d$, S_{2n} , i	(b) E, C_n , $nC_2 \perp n\sigma_d$, S_{2n} , i		
	(c) E, C_n , $nC_2 \perp C_n$, $n\sigma_d$, S_{2n}	(d) E, C_n , $C_2 \perp n\sigma_d$, S_{2n} , i		
n 2 n u 2n		is of symmetry and also contain σ_h plane of symmetry. If the		
	(a) $E + C_4 + 4C_2 + S_8$	(b) $E + C_4 + 4C_2 \perp C_4$, σ_n only		
	(c) $E + C_4 + \sigma_h + 4C_2 + S_4 + i + 4\sigma_h$			
3.	Match the column-I with column-II			
	Column-I	Column-II		
	I. Ir ₄ (CO) ₁₂	$P. T_{A}$		
	II. S_4N_4	$Q.$ $\overset{\circ}{C}_{3v}$		
	III. S ₈	$R. D_{2d}$		
	IV. POCl ₃	$S. D_2^{2a}$		
		T. D _{3h}		
		$U. D_{4d}$		
	(a) I-P, II-S, III-U, IV-Q	(b) I-P, II-R, III-U, IV-Q		
	(c) I-S, II-R, III-U, IV-Q	(d) I-S, II-Q, III-R, IV-S		
4.	The point group of chair conforme	r of chlorocyclohexane:		
	(a) C_s (b) D_{3d}	(c) C_{2v} (d) C_{3v}		
5.	Match List-I with List-II and select the correct answer using the codes given below the lists:			
	List-I	List-II		
	(P) $[Cu(H_2O)_6]^{2+}$	1. C _{3v}		
	(Q) $\operatorname{Fe}_2(\operatorname{CO})_9$	2. D _{3h}		
	(R) Eclippsed ferrocene	3. O _h		
		4. D _{3d}		
		5. D _{sh}		
		6. D _{4h}		
	(a) P-3, Q-2, R-5 (b) P-6, Q-4	, R-5 (c) P-6, Q-2, R-5 (d) P-3, Q-6, R-4		

				Diri-(7) / Group Theory		
6.	The low temperatu	ure (–98°C) ¹⁹ F NMR	spectrum of SF ₄ shows	doublet of triplet. It is consistent		
	with the point gro		·			
	(a) C_{3v}	(b) C _{4v}	(c) T_d	(d) C _{2v}		
7.	The symmetry elements	The symmetry elements that are present in BF ₃ are:				
	(a) C_3 , σ_v , σ_h , $3C_2$	(b) C_3 , $3C_2$, S_2 ,	σ_{v} (c) C_3 , $3C_2$, σ_{h} , S_2	G_2 (d) C_3 , σ_v , σ_v , i		
8. The symmetry point group of the most stable geometry of C(H)Cl is:				following molecule Cl(H)C = C =		
	(a) C ₂	(b) C ₁	(c) C _{2v}	$(d) C_{2h}$		
9.	List all the symme	etry elements in cyclo	ooctatetraene?			
	(a) E, $C_2 2C_2^{-1}$, σ_d		(b) E, $C_4 4C_2^{-1}$, σ_0	$_{_1}$ $S_{_8}$		
	(c) S_4 , C_2 , E , $2\sigma_d$,	$2C_{2}^{-1}$	(d) E $S_4 C_2 C_2^{-1} \sigma$	d		
10.	To what point gro	To what point group does the following molecule belong?				
		0				
	(a) C ₂	(b) C _i	(c) C _{2h}	(d) C _{2v}		
11.	Which of the following symmetry element is present in "T" point group.					
	(a) proper axis of rotation		(b) Improper axis	(b) Improper axis of rotation		
	(c) Centre of inversion		(d) Plane of s	(d) Plane of symmetry		
12.	Which of the following do not posses C _{2h} point group?					
	(a) trans [CO(en) ₂	Cl] ⁺	(b) 1, 2 dichloroe	ethylene (cis)		
	(c) 1, 2 dichloroethylene (trans)		(d) difluorobenze	(d) difluorobenzene		
13.	The low temperature (-98°C) ¹⁹ F NMR spectrum of SF ₄ shows doublet of triplets. It is consistent					
	with the point gro	up symmetry				
	(a) C _{3v}	(b) C _{4v}	(c) T _d	(d) C_{2v}		
14.	The molecule that possesses S_4 symmetry element is					
	(a) ethylene	(b) allene	(c) benzene	(d) 1, 3-butadiene		
15.	The correct relation involving symmetry operations					
	(a) $S_4^2 = S_2$		(b) $\sigma(xz)\sigma(yz) =$	$=C_2(x)$		
	(c) $S_4^3 = C_4^3$		(d) $S_6^3 = S_2$			

 $\times \times \times \times$

An Institute of Chemical Sciences

ANSWER KEY

1 (c)

2. (c)

3. (b)

4. (a)

5. (c)

6. d)

7. (a)

8. (a)

9. (c)

10. (d)

11. (a)

12. (b)

13. (d)

14. (b)

15. (d)

Hints and Solutions

1. D_{nd}, point group can be extended as

$$D_{nd} \rightarrow E + C_n + nC_2 + n\sigma_d + S_{2n}$$

2. D_{4h} , can be extended as

$$D_{4h} \rightarrow E + C_4 + 4C_2 + 4\sigma_v + \sigma_h + S_4 + S_2$$

 S_4N

extreme cradle structure

S₈ – crown shape, D_{4d}-point group

$$POCl_{3} - Cl \xrightarrow{P} Cl \xrightarrow{C_{3}\text{-axis}} 3C_{2}\text{-axis}$$

$$Cl \xrightarrow{X} Cl \xrightarrow{X} 3C_{2}$$

 C_{3v} – point group

 $-D_{2d}$

 $Ir_4(CO)_{12} \rightarrow Tetrahedral structure$

T_d-point group

4.

Only plane of symmetry

5. $Fe_2(CO)_{q}$

Eclipsed ferrocene[Cu(H₂O)₆]⁺²

 C_3 -axis \checkmark

C₅-axis ✓

 C_4 -axis \checkmark

3C₂-axis ✓

5C₂-axis ✓

 $\sigma_{_{h}}$

4C₂-axis ✓

 $\sigma_{_{h}}$

 $\sigma_{_{
m h}}$

D

 D_{4h}

6. Correct option is d.

7.

Point group: D_{3h}

It contans C_3 , $3C_2$, σ_h , S_3 , $3\sigma_v$

The symmetry elements matched with option (a)

8.

This molecule is chiral

Therefore, no plane, only one C_2 .

Correct option is (a)

9.

Point group, $\rm D_{2d}$, has $\rm C_2$, $\rm 2 \perp \rm C_2^{\ 1}, \, 2\sigma_{\rm d}$, $\rm S_4$, $\rm E$

10. It contains a C_2 axis as principal axis, which in contained by a place which bisect the molecule hence the point group in C_{2v} .

Correct answer (d)

- 11. The point group "T" has $4 C_3$ axis and $3C_2$ axis of symmetry only.
- 12. trans [Co(en)₂Cl]⁺

Point group C_{2h}

1,2 dichloroethylene (cis)

1,2 dichloroethylene (trans)

difluorobenzene:

$$N=N$$
 C_{2h}

- Possible structure of SF₄ are 13.
 - (i) F = S but it only give one signal in ¹⁹F NMR, because all F-atom are equivalent.

$$C_2$$
 \checkmark $2C_2$ \star σ_h \star $2\sigma_v$ \checkmark

- Only allene having D_{2d} point group contains S_4 -symmetry element. 14.
- $S_4^2 = C_4^2 \times \sigma^2 \rightarrow C_2 \times E \rightarrow C_2$ 15.

$$\sigma_{xx}\sigma_{yz} = C_{2z}$$

$$S_4^3 = C_4^3 \times \sigma^3 \to C_4^3 \times \sigma \to S_4^3$$

$$S_6^3 = C_6^3 \times \sigma^3 \to C_2 \times \sigma \to S_2$$

Correct option is 'd'

 $\times \times \times \times \times$

An Institute of Chemical Sciences

DPP-8 GROUP THEORY

(a) (-x, -y, z) (b) (x, -y, -z) (c) (-x, y, -z) (The result of the product $C_2(x)$ $C_2(y)$ is (a) E (b) σ_{xy} (c) $C_2(z)$ (

(b) σ_{xy}

1.

2.

3.

to:

The S_2 operation on a molecule with the axis of rotation as the z axis, moves a nucleus at (x, y, z)

Write down the matrix representing a two-step transformation of a general point (x, y, z): rota-

tion through 180° (about the z-axis) followed by reflection in an yz mirror plane:

		All the second	244 CONTY	400		
	(a) $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	(b) $ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	(c) $ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \qquad (d) \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	0 0 -1	
4.		T_d point group with T_d ne resultant point gro		ations, if centre of symme	etry added to	
	(a) T _d	(b) T	(c) T _i	(d) T_h		
5.	In a pyramidal molecule AB ₃ if one B atom is replaced by X-atom, then point group of the resultant molecule will					
	(a) C _{2v}	(b) C_{3v}	(c) C ₁	(d) C_s		
6.	The product σ_{xy} , S_4^2 (S_4^2 is the four fold improper axis of rotation around the z axis, and σ_{xy} is the reflection in the xy plane is).					
	(a) C_4^z	(b) C ₄ i	(c) C_4^y	(d) C_2^z		
7.	Transformation ma 'θ', with respect to		tation of unit vect	or along x, y, z direction	ı by an angle	

- 8. Which of the following is not equal to the identity?
 - (a) $(\sigma)^2$
- (b) C_{2}^{2}

(d) None

- What is the point group of five pointed star. 9.
 - (a) D_{6h}
- (b) D_{5h}
- $(c) C_{6v}$
- (d) C_{6v}
- What is the point group if the sharpened natraj pencil? 10.
 - (a) $D_{\infty h}$
- (b) D_{od}

- Write the matrix representing final coordinate after doing operation of inversion centre (i). 11.

- (a) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- What is final structure of H_1 H_2 after performing inversion centre. 12.

- What is the point group of $Fe_2(CO)_9$?

 (a) C_{3h} (b) D_{3h} (c) 13.

- 14. The product $C_2^x\sigma_{xy}$ (C_2^x is the two-fold rotation axis around the x-axis and σ_{xy} is the xy mirror plane) is
 - (a) σ_{xz}
- (b) σ_{vz}
- (c) C_2^y
- (d) C_2^z
- The point group of CIF3 molecule and its corresponding number of irreducible representation 15. are respectively
 - (a) C_{3v} and 4
- (b) C_{2v} and 4 (c) C_{3v} and 3 (d) C_{2v} and 3

 $\times \times \times \times$

An Institute of Chemical Sciences

ANSWER KEY

1 (d)

2. (c)

3. (a)

4. (d)

5. (d)

6. (a)

7. (a)

8. (c)

9. (b)

10. (c)

11. (d)

12. (c)

13. (b)

14. (a)

15. (b)

Hints and Solutions

1. S₂ is equivalent to inversion centre (i)

$$i(x, y, z) = (-x, -y, -z)$$

$$C_{2x}C_{2y}(x y z) \longrightarrow C_{2x}(-x y -z)$$

2.

$$(-x - y z) \longleftarrow C_{2z}(x y z)$$

3.

$$C_{2z}(x, y, z) \rightarrow (-x, -y, z)$$

$$\downarrow \sigma_{yz}$$

$$(x, -y, z)$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$$

4. If centre of symmetry added to this point group, the resultant point group will look like T_h.

$$B \xrightarrow{A'''''} B \xrightarrow{B} B \xrightarrow{A''''''} B$$

5.

contain only plane of symmerty passing through AX reflecting the 2B's.

Hence point group of C_s.

6.
$$\sigma_{xy}S_4^z$$

$$=\sigma_{xy}\sigma_{xy}C_4^z$$

$$=\,\sigma_{xy}^{2}C_4^z$$

$$= EC_4^z$$

$$= \mathbf{C}_{4}^{\mathbf{Z}}$$

Correct option is (a)

7.
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & +1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

but inversion centre does not give identical structure hence correct option (c).

9. There is a 5 fold rotation axis perpendicular to the plane of the page. There are $5C_2$ perpendicular to the principal rotation axis, so this is a D'group. There is a mirror plane in the plane of page, so point group D_{5h} .

5 pointed star

This linear shape has C infinity rotation axis along the axis of the pencil and no inversion centre. Therefore pencil is $C_{\infty v}$

11. Applying inversion centre, the coordinate of the system inverts to 180° , hence applying i to

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

given
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

12. To get final structure the following operation must be applied

13. $Fe_2(CO)_{q}$ contains

$$\begin{bmatrix} C_3 & \checkmark \\ 3C_2 & \checkmark \\ \sigma_h & \checkmark \end{bmatrix} \longrightarrow D_{3h}$$

14. $C_{2x}\sigma_{xy}(x,y,z) = C_{2x}(x,y,-z)$

$$=(x,-y,z)$$

which is equivalent to σ_{xz}

15. C_{2v} C_{2v} C_{2v} C_{2v} C_{2v}

 C_{2v} -point group have 4-class, it means, it have 4 irreducible representations (According to first postulate of GOT)

An Institute of Chemical Sciences

DPP-9 GROUP THEORY

1.	Which of the following	matrix represents	the rotation of	molecule about	z-axis?

(a)
$$\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & \theta & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & 0 \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

(c)
$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & 0 \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$
(d)
$$\begin{bmatrix} \cos 2\theta & \sin 2\theta & 0 \\ -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Write down the matrix representing a two-step transformation of general point (x, y, z); rotation 2. through 180°C (about the z-axis) followed by reflection in an yz mirror plane:

$$(a) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

If order of the group is H and that of the subgroup is G, then correct among the following is, 3. where K is an integer positive value K > 1

- (a) H = KG
- (b) G = KH
- (c) GH = K
- (d) None

D_{1d} point group is equivalent to the symmetry point group provided below 4.

- (a) C_2
- (b) C_{2y}
- (c) C_{2h}

A molecule contains the following symmetry operations E, $2C_6$, $2C_3$, $3\sigma_d$, & $3\sigma_v$. The number of 5. classes and order of the symmetry point group is:

- (a) 3, 12
- (b) 5, 12
- (c) 6, 12
- (d) 6, 6

The number of classes present in C_{4v} point group is: 6.

(a) 4

(b) 5

(c) 6

(d) 8

				,, ,		
7.	[CoCl ₄] ²⁻ is a blue coloured complex. Controlled treatment of this complex with water generates two isomeric light pink colour complexes of composition [Co(H ₂ O) ₄ Cl ₂]					
				complexes $[Co(H_2O)_4Cl_2]$.		
	(a) D_{2h} and $(C_{2v}$ an		(b) T_d and $(C_{2v}$ and C_{2v}			
	(c) D_{4h} and (C_{2v} an	d D _{4h})	(d) T_d and (C_{2v} and	C_{4v})		
8.		Trans 1,2-difluoroethylene molecule has a 2-fold rotational aixs, a symmetry plane perpendicu-				
	lar to the rotational axis and an inversion centre.					
		educible representations				
	(a) 1	(b) 2	(c) 3	(d) 4		
9.	The property that i	is not required (necessar	ily) for a group.			
	(a) Closure	(b) Commutativity	(c) associativity	(d) Identity element		
10.	Conversion of bore	on trifluride to tetrafluor	oborate accompanies:			
	(a) Increase in sym	nmetry and bond elongat	ion. (b) Increase in s	ymmetry and bond contraction		
	(c) Decrease in syr	nmetry and bond contra-	ction (d) Decrease in s	symmetry and bond elongation.		
11.	How many classes	of symmetry operation	are in the C_{2v} point gro	oup?		
	(a) 2	(b) 3	(c) 4	(d) 5		
12.	What is the mulike	What is the muliken symbol for the following IRR				
	D_{3h} E $2C_3$ 3	$3C_2' \sigma_h 2S_3 3\sigma_v$				
		-1 -1 -1 1	45			
	(a) A ₁	(b) A ₁ "	(b) A ₂	(d) A ₂ "		
13.	Identify the mulliken symbol					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$\Gamma \mid 1 1 -1$	-1 -1				
	(a) A"	(b) B",	(c) A' _{2u}	(d) A''_{2n}		
14.	What is the character of the $S_4(z)$ (clockwise rotation) operation, if x, y, z coordinate are used as					
	the bases?					
	(a) 1	(b) 2	(c) 0	(d)-1		
15.	A square pyramidal, MX_4 , molecule belongs to C_{4v} point group. The symmetry operations are: E,					
	$2C_4$, C_2 , $2\sigma_v$ and $2\sigma_d$. The trace for the reducible representation, when symmetry operations of					
	C_{4v} applied to MX_4 , is.					
	(a) 5 1 1 1 3	(b) 1 1 1 1 1	(c) 5 1 1 1 1	(d) 4 1 1 1 3		
		×>	<××			

An Institute of Chemical Sciences

ANSWER KEY

1 (a)

2. (a)

3. (a)

4. (c)

5. (c)

6. (b)

7. (b)

8. (d)

9. (b)

10. (a)

11. (c)

12. (d)

13. (d)

14. (d)

15. (a)

Hints and Solutions

1.
$$C_{nz} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $C_{2z}(x, y, z) \rightarrow (-x, -y, z)$

$$\int \sigma_{yz}$$

$$(x, -y, z)$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$$

3. If order of the group is H and that of the subgroup is G, then

H = KG

- $\boldsymbol{D}_{_{1d}}$ contains $\boldsymbol{C}_{_{1}}$, $1\boldsymbol{C}_{_{2}}\!,\,\boldsymbol{S}_{_{2}}\!,\,\boldsymbol{\sigma}_{_{d}}\!(perpendicular\ to\ \boldsymbol{C}_{_{2}}\!).$ These are the same symmetry element which 4. also make C_{2h} point group.
- 5. Number of classes in a character table of any point group is equal to the number of distinct symmetry operation.

So, the given distinct symmetry operations are 6 in number (E, $2C_6$, $2C_3$, C_2 , $3\sigma_d$, $3\sigma_v$).

From the given symmetry operation the point group is C_{6v} .

Hence, order = $6 \times 2 = 12$

- 6. C_{4v} contain E, $2C_4$, C_2 , $2\sigma_v$, $2\sigma'_v$ as distinct operation. Hence 5 classes.
- 7. $\left[\text{CoCl}_4\right]^{2^-}$ have tetrahedral structure, so its point group is \mathbf{T}_d . $\left[\text{Co}(\mathbf{H}_2\mathbf{O})_4\,\mathbf{Cl}_2\right]$ has two structures cis and trans, having \mathbf{C}_{2v} and \mathbf{D}_{4h} point group. respectively
- 8. Number of IRR = Classes in the point group C_{2h} have four classes, so number of IRR are 4.
- 9. A group must posses property like closure, associativity and should have identity element.

Converting from planar to tetrahedral intend to increased the symmetry and due to decrease in the %s character there is bond elongation.

- 11. There 4 classes: 1 (E), 1 (C_2), 1 ($\sigma_{v(yz)}$, 1 $\sigma_{v(xz)}$.
- 12. Symmetric wrt C_3 the principal axis then A, asymmetric wrt to subsidiary axis C_1 then A_2 and asymmetric wrt to σ_n then double dash, so muliken symbol is A_2 .
- 13. 1. Symmetric wrt C_n (principal axis) : A
 - 2. Assymmetric wrt ${}^{n}C_{2}$ (subsidiary) : A_{2}
 - 3. Assymmetric wrt "i"; A_{2u}
 - 4. Assymmetric wrt $\sigma_h = A''_{2u}$

$$\begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}$$

character =
$$0 + 0 - 1 = -1$$

15. Square Pyramidal MX_4 molecule $\rightarrow C_{4v}$

$$C_4$$
 passes through M $C_4^2 = C_2$

one $\sigma_d \to$ contains MX_1X_3 & reflects X_2 and X_4 & other σ_d contains MX_2X_4 and reflects X_1dX_3

An Institute of Chemical Sciences

DPP-10 GROUP THEORY

1.	Select correct sta	atement regarding C _{3v}	point group.					
	1. Order of the group is 6.							
	2. Class of the gr	coup is 3 (E, $2C_3$ and 3	$3\sigma_{\rm v}$)					
		educible representation						
	(a) 1 and 2	(b) 1 and 3	(c) 2 and 3	(d) 1, 2 and 3				
2.		ains the following symder of the symmetry p	and the same of th	C_6 , $2C_3$, C_2 , $3\sigma_d$, $3\sigma_v$. Thenumber				
	(a) 3, 12	(b) 5, 12	(c) 6, 12	(d) 6, 6				
3.	The character of	the irreducible repres	entation A ₁ in C _{2v} piont	group is given below:				
	$\begin{array}{c cccc} & E & C_2 \\ \hline \Gamma_1 & 1 & -1 \end{array}$		orthogonal to ${f A}_2$ amor	ng the following:				
	Γ_3 1 1	1 -2						
	Γ_4 1 -1	1 2	() F	(1) E				
4	(a) Γ_1	(b) Γ_2	(c) Γ_3	(d) Γ_4				
4.		at among the following						
		t in the group C_n com	nute with each other.					
		f Boric acid is D _{3h}						
	III. S ₈ molecule of	containing S_8 imprope	r axis of rotation					

(c) II, III

(d) All are correct

(b) I, III

(a) I, II

									I	DPP-(10) /	Group Theory
5.	If one B-atoms in te				are	excha	nged l	oy -ato:	ms, then	number	of classes in
	(a) 6	(b) 8			(c)	4			(d) 3	3	
6.	Incorrect statement	among the	follo	wing is							
	I. $C_n^{n+1} = C_n$										
	II. If S _n exist in a mo	olecule, the	n C _n	must e	xist i	n the	molec	ule.			
	III. A proper rotation sion centre, i.e. C_{2n}^{n}		en oi	rder an	d a p	erpen	dicula	r reflec	ction plar	ne genera	ıte an inver-
	(a) I, II, III	(b) I	, III	(c)	II,	III ((d)	I, II			
7.	Choose appropriate	answer:									
	(i) C _{2v} is an example	e of an abel	ian g	roup.	(ii)	C_{2v}	is pres	ent in	nonborna	ane.	
	(a) Only (i) is correct	t (b) Only	(ii) is	s corre	ct (c)	Both	are co	orrect	(d) No	ne is cor	rect
8.	If the displacement vacters of the reducib										ors the char-
	(a) 30, 10, 30, 0	(b) 30, 0							(d) 30,		
9.	The point group of are respectively:		- 4			/ //	E.	O.	of irredu	ıcible re _l	presentation
	(a) C_{3v} and 4	(b) C _{2v} a	nd 4		(c)	C_{3v}	and 3		(d) C_{2v}	and 3	
10.	Which of the follow	ing stateme	ent is	not tru	ıe?		YA	W.			
	(a) A and B represer		(See)			RR					
	(b) E represent muli		-								
	(c) T represent muli	ken symbol	for 3	3-D IR	R		19 J				
	(d) None of these	1		N∕⊗	æ	W.	YΑ	837			
11.	What is the trace of used are the bases.	the matrix	for C	$C_3(z)$ (c	lockv	vise r	otatio	n) oper	ation if x	x, y, z co	ordinate are
	(a) 1	(b) -1		-	(c)	0	rq.	P	(d) 2	2	
12.	Which of the follow	-	ct reg	garding		-		-	-	oups?	
	(a) $(ABC)^{-1} = B^{-1}C^{-1}$	$^{-1}A^{-1}$						$A^{-1}C^{-}$			
	(c) $(ABC)^{-1} = C^{-1}B^{-1}$	-1 A $^{-1}$			(d)	(AB	$C)^{-1} =$	$B^{-1}A^{-}$	${}^{1}C^{-1 }$		
13.	Character table of C	_{2v} , point gro	oup is	S							
		C_{2v}	Е	C_2	σ_{v}	$\sigma_{v'}$		1			
		A_1	1	1	1	1	z				
		A_2	1	1	-1	-1	1	1			
		B ₁	1	-1	1	-1					
				1			X	1			
		B_2	1	-1	-1	1	У				

If the initial and final states belong to A_1 to B_1 irreducible representation respectively, the allowed electronic transition A_1 to $B_{\setminus 1}$ is:

- (a) z-polarized
- (b) y-polarized
- (c) x-polarized
- (d) x, z-polarized

A molecules contains the following symmetry operations: E, $2C_6$, $2C_3$, C_2 , $3\sigma_d$, $3\sigma_v$. The num-14. ber of classes and order of the symmetry point group is

(a) 3, 12

(b) 5, 12

(c) 6, 12

(d) 6, 6

Identify the Mulliken notation for the following irreducible representation 15.

Е	Cn	nC ₂	i	σ_{h}
1	1	-1	-1	-1

(a) A_{1u}

(b) $A_{2u}^{''}$ (c) $B_{2u}^{'}$

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWER KEY

1	(a)	

2. (c)

3. (b)

4. (b)

5. (d)

6. (b)

7. (c)

8. (b)

9. (b)

10. (d)

11. (c)

12. (c)

13. (c)

14. (c)

15. (b)

Hints and Solutions

1.
$$C_{3y} \rightarrow E + 2C_3 + 3\sigma_y$$

order = 6, class = 3

 \Rightarrow Number of IRR = Class = 3

2. Molecule contain

3.

$$E + 2C_6 + 2C_3 + C_2 + 3\sigma_d + 3\sigma_v$$

Classes = 6, order = 12

$$\Gamma_1$$
, $\Gamma_1 \times A_1 = 1 \times 1 \times 1 + 1 \times (-1) \times 1 + 1 \times 1 \times 1 + 1 \times 1 \times 1 = 2$
 Γ_2 , $\Gamma_2 \times A_1 = 1 \times 1 \times 1 + 1 \times (-1) \times 1 + 1 \times (-1) \times 1 + 1 \times 1 \times 1 = 0$

4. C_n is a abelian point group in which all element commute with each other.

H₃BO₃-Boric Acid

it contain C_3 -axis and σ_h -mirror plane, so point group is C_{3h} .

have C_4 and have $\sigma_d 4C_2$

So point group is D_{4d} and it contains S_8 also.

5. If one B-atoms in tetrahedral molecule AB₄ are exchanged by -atoms, then number of classes in

In the resulting molecule there are 3 plane each passing through Cl - C - H bond and containing the principal axis, this plane is known as vertical plane (σ_v) and C_{3v} point group has 3 classes.

6.
$$C_n^{n+1} = C_n^n$$
. $C_n^1 = E_n^1 = C_n^1$

It is not necessary for a molecule to have C_n axis if S_n is present in the molecule. For example Allene has S_4 axis but do not have C_4 axis.

$$C_{2n}^{\ \ n}\sigma = C_{2}^{\ \ 1}\sigma = S_{2} = i.$$

7. All the element in C_{2v} are commute with each other hence it is a abelian point group.

C₂ (Principal axis)

and contain σ_v has plane of symmetry so point group is C_{2v} .

C_{2v}	Е	C_2	$\sigma_{\rm v}$	$\sigma_{\rm v}$ '
Number of unshift atoms	10	0	0	10
Contribution per atom	3	-1	1	1
Reducible representation	30	0	10	0

- 9. $C_1 F$ [C_2 , $2\sigma_v$ hence, C_{2v} point group]

 For C_{2v} point group, four irreducible representation Correct option is (b)
- 10. Correct option (d), all statements are true.
- 11. The matrix representation of $C_3(z)$ is

$$\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

trace =
$$-\frac{1}{2} - \frac{1}{2} + 1 = 0$$

12. The reciprocal of the product of two or more elements is equal to the product of the reciprocal in reverse order

$$(ABC....XY)^{-1} = Y^{-1}X^{-1}....C^{-1}B^{-1}A^{-1}$$

13.
$$A_{1} \times B_{1} =$$

$$A_{1} - 1 \quad 1 \quad 1 \quad 1$$

$$B_{1} - \frac{1}{1} \quad -1 \quad 1 \quad -1$$

$$1 \quad -1 \quad 1 \quad -1 \rightarrow B_{1} \rightarrow X - Plarized.$$

 \Rightarrow A₁ to B₂ is X-Polarized

14. Molecules contains \rightarrow E, 2C₆, 2C₃, C₂, 3 σ _d, 3 σ _v

$$Classes = 6$$

Order =
$$1+2+2+1+3+3=12$$

 $A_2 \rightarrow$ antisymm. w.r. to ηC_2

 $u \rightarrow antisymm. w.r. to i$

 $'' \rightarrow$ antisymm. w.r. to $\sigma_{_h}$

An Institute of Chemical Sciences

DPP-11 GROUP THEORY

The reducible representation for all motions of the water molecule is reduce to: 1.

(a)
$$3A_1 + 3A_2 + B_1 + 2B_2$$

(b)
$$3A_1 + A_2 + 3B_2 + 2B_2$$

(c)
$$A_1 + 3A_2 + B_1 + 2B_2$$

(d) None of these

					Market Co.
C_{3v}	Е	2C ₃	$3\sigma_{\rm v}$		
A_1	1	1	1 /	Z	$x^2 + y^2, + z^2$
A_2	1	1	-1	R_z	$(x^2 + y^2, + z^2)$ $(x^2 - y^2, xy)$
Е	2	-1	0	(x, y) (R_x, R_y)	(xz, yz)

2.

$$\begin{array}{c|cccc} C_{3v} & E & 2C_3 & 6\sigma_3 \\ \hline \Gamma & 12 & 0 & 2 \\ \end{array}$$

Reduced Γ to its irreducible representations:

(a)
$$3A_1 + A_2 + 4E$$

(b)
$$2A_1 + 2A_2 + 4E$$
 (c) $A_1 + 3A_2 + 4E$

(c)
$$A_1 + 3A_2 + 4B$$

(d)
$$3A_1 + 2A_2 + 3E$$

Given the character table of the point group C_{3v} . 3.

	Е	2C ₃	$3\sigma_{\rm v}$	
A ₁	1	1	1	S
A_2	1	1	-1	
Е	2	-1	0	(x, y)

Consider irreducible representation, Γ

	Е	2C ₃	$3\sigma_{\rm v}$
Γ	6	3	0

Its irreducible components are:

(a)
$$E + 2A_1 + 2A_2$$

(b)
$$2E + A_1 + A_2$$
 (c) $3A_1 + 3A_2$ (d) $E + 2A_1$

(c)
$$3A_1 + 3A_2$$

$$(d) E + 2A$$

4. Suppose that the characters of a reducible representation of the $C_{\scriptscriptstyle 2v}$ point group are $\chi(E)=4$, $\chi(C_2) = 2$, $\chi(\sigma_v) = 0$ and $\chi(\sigma_v) = 2$. This is usually expressed by writing $\Gamma = 4\ 2\ 0\ 2$. Determine how many times each irreducible representation of $C_{2\nu}$ is contained in $\Gamma=4\ 2\ 0\ 2.$

C_{2V}	Е	C_2	$\sigma_{v(xz)}$	$\sigma_{v(yz)}^{'}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B ₁	1	-1	1	-1
\mathbf{B}_2	1	-1	-1	1
Γ	4	2	0	2

(a)	2Δ	$+A_{2}$	+	R
(a)	LH_1	$+ H_{2}$	+	D,

(b)
$$2A_2 + 2A_2 + B_2$$
 (c) $A_1 + 2A_2 + B_2$ (d) None of these

(c)
$$A_1 + 2A_2 + B_1$$

Given below, a double headed arrow with represent the bending mode for SO_2 molecule, 5.

 $\mathbf{\hat{c}}_{\mathbf{O}}$, this bending mode belongs to which of the following irreducible representation.

(a)
$$A_2$$

(d)
$$B_2$$

The third part of the character table gives us information about 6.

(a) Mullikans's symbols.

(b) Characters of irreducible representations function.

(c) Rotations around X, Y, Z axes

(d) Transformation characteristic of quadratic

Refer to the character table of the point group C_{3v} given above. Find which of the following 7. transition is forbidden:

(a)
$$a_2 \leftrightarrow a_1$$

(b)
$$a_1 \leftrightarrow e$$

(c)
$$a_2 \leftrightarrow c$$

(d)
$$a_1 \leftrightarrow a$$

8. For the irreducible representation

$$(d) B_{2}$$

For the irreducible representation 9.

(a)
$$E_1$$

(b)
$$E_2'$$

What are trace element of NH₃, use the character table given below 10.

- (a) 4 0 1
- (b) 3 1 2
- (c) 3 2 1
- (d) 4 1 2

- 11. A complete set of element that are conjugate to one another is called
 - (a) order
- (b) class
- (c) representation
- (d) None of the above
- 12. Consider the following table and replace Γ by correct Muliken rotation (take z as the principle axis z)

$$\begin{array}{c|cccc} D_3 & E & 3C_2 & 3C_2' \\ \Gamma & +1 & +1 & -1 \end{array}$$

- (a) A_2
- (b) B_2
- $(c) B_1$

- $(d) A_1$
- 13. The irreducible representations of C_{2h} are A_g , B_g , A_u and B_u . The Raman active modes of trans-1, 3-butadiene belong to the irreducible representation
 - (a) A_g and B_g
- (b) A_{σ} and A_{μ}
- (c) A_u and B_g
- (d) B_g and B_u

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWER KEY

1 (b)

2. (a)

3. (a)

4. (a)

5. (b)

6. (c)

7. (d)

8. (a)

9. (b)

10. (b)

11. (b)

12. (a)

13. (a)

Hints and Solutions

1.

$$n_{A_1} = \frac{1}{4}[9 - 1 + 3 + 1] = 3$$

$$n_{A_2} = \frac{1}{4}[9 - 1 - 3 - 1] = 1$$

$$n_{B_1} = \frac{1}{4}[9+1+3-1] = 3$$

$$n_{B_2} = \frac{1}{4}[9+1-3+1] = 2$$

$$Total = 3A_1 + A_2 + 3B_1 + 2B_2$$

$$\begin{array}{c|cccc} C_{3v} & E & 2C_3 & 3\sigma_v \\ \hline A_1 & 1 & 1 & 1 \\ A_2 & 1 & 1 & -1 \\ \hline E & 2 & -1 & 0 \\ \hline \Gamma_{RR} & 12 & 0 & 2 \\ \hline \end{array}$$

$$2. \qquad \begin{array}{c|cccc} E & 2 & -1 & 0 \\ \hline \Gamma_{RR} & 12 & 0 & 2 \\ \hline \end{array}$$

$$A_1 = \frac{1}{6}[12 + 0 + 6] = 3$$

$$A_2 = \frac{1}{6}[12 + 0 - 6] = 3$$

$$E = \frac{1}{6}[12 \times 2 \times 1 + 0 + 0] = 4$$

$$\Rightarrow \Gamma = 3A_1 + A_2 + 4E$$

$$\begin{array}{c|cccc} E & 2C_3 & 3\sigma_v \\ \hline A_1 & 1 & 1 & 1 \\ \hline \end{array}$$

$$A_{1} = \frac{1}{6} [1 \times 1 \times 6 + 3 \times 2 \times 1 + 0] = 1$$

$$A_2 = \frac{1}{6}[6+6+0] = 2$$

$$E = \frac{1}{6} [6 \times 2 \times 1 + 3 \times (-1) \times 2 + 0] = 1$$

$$\Rightarrow \Gamma = 2A_1 + 2A_2 + E$$

$$A_1 = \frac{1}{4} [4 + 2 + 0 + 2] = \frac{8}{4} = 2$$

$$A_2 = \frac{1}{4} \left[4 \times 1 \times 1 + 2 \times 1 \times 1 + 0 + 2 \times (-1) \times 1 \right] = 1$$

$$B_{_{1}} = \frac{1}{4} \left[4 \times 1 \times 1 + 2 \times (-1) \times 1 + 0 + 2(-1) \times 1 \right] = 0$$

$$B_2 = \frac{1}{4} \left[4 \times 1 \times 1 + 2 \times (-1) \times 1 + 0 + 2 \times 1 \times 1 \right] = 1$$

$$\Rightarrow \Gamma = 2A_1 + A_2 + B_2$$

- 6. In a character table the third column represent or give information about the translational or rotational active modes.
- 7. The direct product of two energy state should transform according to x, y or z axis for electronic transition.

 $a_1 \times a_1 = a_1 = transition with z axis = allowed$

 $a_1 \times e = e = transition with x, y axis = allowed$

 $a_2 \times e = e = transition with x, y axis = allowed$

 $a_1 \times a_2 = a_2 = \text{Not transition } x, y \text{ or } z = \text{forbidden}$

Correct answer is (d)

- 8. This irreducible representation is symmetric with respect to principal axis hence (A), also symmetric wrt subsiduary air (C_2) then Mulliken symbols is A_1 .
- 9. Since the irreducible representation is 2 D, the symbol starts with E_1 and Asymmetric w.r.t susiduary exis, has no value in σ_v (vertical mirror), but symmetric wrt to σ_h , hence E_2 .
- 10. Trace elements are the number of unshifted atom after apply certain operation.

E:4

 $C_3: 1$

 σ_{x} : 2

- 11. A class is defined as the set of elements, which are conjugate to the another.
- 12. The Γ is symmetric wrt principal axis hence A and unsymmetric wrt subsidiary axis, Hence, A_2 muliken symbol.
- 13. $C_{2h} \rightarrow Point group C_{2h} \rightarrow A_g, B_g, A_u + B_u$.

Since C_{2h} Point group contains inversion centre (i), Therfore according to mutual exclusion principle, IR active modes are Raman inactive and Raman Active modes are IR inactive and mullikem symbols having (Ag, Bg) g in subscript are Raman active and that with subscript is (A_n, B_n) are IR active.

 \therefore in trans–1, 3–butadiene having $C_{\rm 2h}$ point group, the IRR's which are Raman active are $A_{\rm g}$ and $B_{_{\rm g}}.$

 $\times \times \times \times \times$

An Institute of Chemical Sciences

DPP-12 GROUP THEORY

1. Which of the following mode is only Raman active in H₂O molecule?

(b)
$$B_1$$

$$(c) A_{2}$$

2. The number of IR-active C - O stretching modes in $cis[Fe(CO)_4Cl_7]$ molecule, which

$$\begin{array}{c|cccc} C_{2v} & E & C_2 & \sigma_{(xz)} & \sigma_{(yz)} \\ \hline \Gamma & 4 & 0 & 2 & 2 \\ \end{array}$$

	Е	C ₂ (z)	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$	translational rotations	quadratic
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
\mathbf{B}_{1}	1	-1	1	-1	x, R_y	XZ
B_2	1	-1	-1	1	y, R _x	yz

(a)
$$2A_1 + B_1 + B_2$$
, all four IR active

(b)
$$2A_1 + B_1 + 2B_2$$
, all four IR active

(c)
$$2A_1 + B_1 + B_2$$
, but B_1 is IR active

(d)
$$2A_1 + B_1 + B_2$$
, all IR active

3. Character table of C_{2v} point group is:

C_{2v}	Е	C_2	$\sigma_{_1}$	σ_2	
A_1	1	1	1	1	Z
A_2	1	1	-1	-1	_
\mathbf{B}_{1}	1	-1	1	-1	X
\mathbf{B}_2	1	-1	-1	1	у

If the initial and final states belong to A_1 and B_1 irreducible representations respectively, the allowed electronic transition from A_1 to B_1 is:

- (a) z-polarized
- (b) y-polarized
- (c) x-polarized
- (d) x, z-polarized

4. The transition that is allowed by x-polarized light in trans-butadiend is: (The character table for C_{2h} is given below).

C_{2h}	Е	C_2	i	$\sigma_{_h}$	
A_{g}	1	1	1	1	R_x, x^2, y^2, z^3, xy
\mathbf{B}_{g}	1	-1	1	-1	R_x, R_y, xz, yz
A _u	1	1	-1	-1	Z
B _u	1	-1	-1	1	x,y

- (a) $A_u \rightarrow A_g$ (b) $A_u \rightarrow B_g$ (c) $B_u \rightarrow B_g$ (d) $B_g \rightarrow A_g$ The $E \otimes E$ direct product in D_3 point group contains the irreducible representations 5.

- (a) $A_2 + A_2 + E$ (b) $2A_1 + E$

- Which statement is correct regarding C O stretching modes for fac [Mo(CO)₂(NCH₂)₂]? 6.

C_{3v}	Е	2C ₃	$3\sigma_{\rm v}$
Γ	3	0	1

C_{3v}	Е	2C ₃	$3\sigma_{v}$		
A_1	1	1	1	Z	$x^2 + y^2, + z^2$
A_2	1	1	-1	R_{z}	$x^2 + y^2, + z^2$ $(x^2 - y^2, xy)$
E	2	-1	0	(x, y) (R_x, R_y)	(xz, yz)

I. For this $\Gamma = A_1 + E$

II. A,; symmetric stretching and IR active

III. E: IR active

IV. A₁ and E both IR active but degenerate.

(a) I and II are correct

(b) I and III are correct

(c) I, II and III are correct

- (d) I, II, III and IV are correct
- In BF $_3$ molecule; r_1 , r_2 , r_3 are the three vectors correspond to each B–F bond, as shown below, 7.

 $\frac{r_1}{r_1}$ these belongs to which of the following reducible representation according to bond

vector basis set.

	Е	2C ₃	$3C_2$	$\sigma_{_h}$	$2S_3$	$3\sigma_{\rm v}$
$\overline{\Gamma_1}$	3	1	1	3	1	1
Γ_2	3	0	1	3	0	1
Γ_3	4	1	2	4	1	2
Γ_4	4	1 0 1 0	1	4	0	1
(a) I					Γ_2	

- (c) Γ_3

Identify the symmetry species of the orbital $\psi = \psi_A - \psi_B$ in a C_{2v} NO_2 molecule, where ψ_A is an $O2p_x$ orbital on one O atom and ψ_B that on the other O atom. 8.

- (a) A,
- (b) A₁
- (c) B₁

(d) B₂

(a) p_x	$(b) p_v$	(c) p_z	(d) both p_x and p_y
known to be B	3 ₁ . Light polarized parall	el to the y-axis (paralle	apped in a solid. Its ground state is el to the OO separation) excited the
$(a) A_1$	(b) A ₂	$(c) B_1$	(d) B ₂
		ched by electric dipole	transitions from their (totally sym-
(a) $A_{1\sigma}$	(b) B_{30}	(c) A_{2n}	(d) B_{1g}
U	table of the $C_{2\nu}$ point gr	roup is given below:	15
		1 0	
21			
2			
1			
\mathbf{D}_2	_1 _1 1		
(a) A_1 and A_2	respectively	(b) Both A ₂	
(c) Both B ₂	A Comment	(d) B_1 and B_2 re	espectively.
		××××	
	combination 2p (a) p_x The ClO_2 mol known to be E molecule to an (a) A_1 What states of metrical) group (a) A_{1g} The character $ \begin{array}{c c} C_{2v} & E \\ \hline A_1 & 1 \\ \hline B_2 & 1 \end{array} $ The two functions the kth atom (a) A_1 and A_2	combination $2p_z(A) - p_z(B) - p_z(C)$ of the (a) p_x (b) p_y The ClO_2 molecule (which belongs to known to be B_1 . Light polarized parallel molecule to an upper state. What is the (a) A_1 (b) A_2 What states of anthracene, may be real metrical) ground states? (a) A_{1g} (b) B_{3u} The character table of the C_{2v} point ground $C_{2v} = C_2 = C_$	The ClO_2 molecule (which belongs to the group C_{2v}) was tracknown to be B_1 . Light polarized parallel to the y-axis (parallel molecule to an upper state. What is the symmetry of that state (a) A_1 (b) A_2 (c) B_1 What states of anthracene, may be reached by electric dipole metrical) ground states? (a) A_{1g} (b) B_{3u} (c) A_{2u} The character table of the C_{2v} point group is given below:

11. (b)

12. (c)

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWER KEY

1 (c)

2. (a)

3. (c)

4. (b)

5. (a)

6. (c)

7. (d)

8. (a)

9. (d)

10. (b)

Hints and Solutions

A, mode of water molecule is only Raman active vibrational mode. 1.

$$A_2 \mid 1 \quad 1 \quad -1 \quad -1$$

2.

$$A_1 = \frac{1}{4} [4 + 0 + 2 + 2] = 2$$

$$\mathbf{B}_{1} = \frac{1}{4} \left[4 + 0 + 2 - 2 \right] = 1$$

$$A_2 = \frac{1}{4} \left[4 + 0 - 2 - 2 \right] = 0$$

$$B_2 = \frac{1}{4} [4 + 0 - 2 + 2] = 1$$

 $\Gamma = 2A_1 + B_1 + B_2$, all A_1 , B_1 , B_2 transformed according to z, x and y and hence IR active.

3. Transition A_1 to B_1 can be evaluated by direct product $A_1 \times B_1$ and its transformation.

7		<i></i>	U	70 010		
		Е	\mathbb{C}_2	$\sigma_{\rm v}$	$\sigma_{\rm v}$ '	•
	A_1	1	1	1	1	
		X	X	X	X	
	B_1	1	-1	1	-1	
	$A_1 \times B_1$	1	-1	1	-1	$= \mathbf{B}_1$

B₁ transforms according to x-axis hence transition will be x-axis polarized.

	Е	\mathbb{C}_2	σ_{v}	σ_{v} '
A_{u}	1	1	-1	-1
	X	X	X	X
B_g	1	-1	1	-1
$A_u imes B_g$	1	-1	-1	1

4.

B₁₁ transforms according to x-axis hence transition will be x-axis polarized.

5.
$$E \times E = 2 \times 2$$

$$(-1)(-1)$$

$$0 \times 0$$

= 4

0

$$n_{A_1} = \frac{1}{6} [4 + 2 + 0] = 1 \implies n_{A_2} = \frac{1}{6} [4 + 2 - 0] = 1 \implies n_E = \frac{1}{6} [8 - 2 - 10] = 1$$

Therefore, $E \times E = A_1 + A_2 + E$

Correct answer is (a)

6.
$$nA_1 = 1/6(3 \times 1 \times 1 + 0 + 1 \times 1 \times 3) = 1$$

$$nA_2 = 1/6(3 \times 1 \times 1 + 0 + 1 \times -1 \times 3) = 0$$

$$nE = 1/6(3 \times 2 \times 1 + 0 + 1 \times 0 \times 3) = 1$$

For this
$$\Gamma = A_1 + E$$

A, and E both are IR active. But, only E is degenerate.

7. For E all three vectors remain unchanged. Hence, it contribute 3.

For C_3 all three bond vectors shifted. Hence, it contribute 0.

From these two values it is matched with Γ_2 .

8. The negative sign in ψ indicates that the sign of ψ_B is opposite to that of ψ_A . We need to consider how the combination changes under each operation of the group, and then write the character as +1, -1, or 0 as specified above. Then we compare the resulting characters with each row in the character table for the point group, and hence identify the symmetry species.

The combination is shown in figure given below. Under C2, ψ changes into itself, implying a

character of +1. Under the reflection σ_v , both orbitals change sign, so $\psi \to \psi$, implying a character of -1. Under σ_v' , $\psi \to \psi$, so the character for this operation is also -1. The characters are therefore

$$\chi(E) = 1$$
 $\psi(C_2) = 1$ $\chi(\sigma_v) = -1$ $\chi(\sigma_v') = -1$

These values match the characters of the A_2 symmetry species, so ψ can contribute to an a_2 orbital.

- 9. In order to have nonzero overlap with a combination of orbitals that spans E, an orbital on the central atom must itself have some E character, for only E can multiply E to give an overlap integral with a totally symmetric part. A galance at the character table shows that p_x and p_y orbitals available to a bonding N atom have the proper symmetry.
- 10. The product $\Gamma_f \times \Gamma$ (μ) $\times \Gamma_i$ must be contain A_1 . Then, since $\Gamma_i = B_1$, $\Gamma(\mu) = \Gamma(y) = B_2$ (C_{2v})

	Е	C_2	$\sigma_{\rm v}$	$\sigma_{v}^{'}$
\mathbf{B}_{1}	1	-1	-1	1

character table), we candraw up the following table of characters B_2

$$B_1B_2$$
 1 1 -1 $-1 = A_2$

Hence, the upper state is A_2 .

11. Anthracene

The components of μ span $B_{3u}(x)$, $B_{2u}(y)$, and $B_{tu}(z)$. The totally symmetric ground state in A_g . Since $A_g \times \Gamma = \Gamma$ in this group, the accessible upper terms are B_{3u} (x-polarized), B_{2u} (y-polarized), and B_{1u} (z-polarized).

12. $\psi_1 = P_1 + 2P_2 + 2P_3 + P_4$

$$\psi_2 = 2P_1 - P_2 - P_3 + 2P_4$$

Both the molecular orbitals belongs to B₂.

Correct answer is (c).

An Institute of Chemical Sciences

DPP-13 GROUP THEORY

1.	The or	rbita	$1 \psi = 1$	S _{HA} +	1S _{HB}	of wat	er belongs	s to the irreduc	cible representation.
	(a) A ₂				(b) B ₂			(c) A ₁	(d) B ₁
2.			table o					elow, the inte	grals $<$ $d_{xy} z d_{x^2-y^2} >$, were trans-
	C_{4v}	Е	2C _{4z}	C_2	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$			
	A_1	1	1	1	1	1	Z	$x^2 + y^2 + z^2$	4
	A_2	1	1	1	-1	1	R_z	1000	
	B_1	1	-1	1	1/	<u>.</u>		$x^2 - y^2$	
	\mathbf{B}_2	1	-1	1	-1	-1	1	ху	
	E	2	0	$\begin{vmatrix} -2 \end{vmatrix}$	0	0	(x,y)	(xz, yz)	/

3. Character table of C_{4v} point group is given below, the integral $< d_{xy} | l_z | d_{x^2-y^2} >$, is transformed according to the representation.

C_{4v}	Е	2C _{4z}	C_2	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$		
A_1	1	1	1	1	1	Z	$x^2 + y^2 + z^2$
A_2	1	1	1	-1	1	R_z	
\mathbf{B}_{1}	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	-1	1	-1	-1	1	xy
Е	2	0	-2	0	0	(x,y) (R_xR_y)	(xz, yz)
(a) A ₁				(b) A ₂			(c) B ₁

(b) B₁

- 4. Correct statement among the following are
 - I. Molecule belonging to the point group T_h and T_d cannot be chiral.

 $(d) B_{2}$

	r X, is the sum of the dia		ZV
(a) I, II	(b) II, III	(c) I, III	(d) All are correct
	-axis as the rotational ax m of SO ₂ belong to which	-	e molecular plane, P_y orbital correducible representation.
(a) A ₁	(b) A ₂	$(c) B_1$	(d) B ₂
	ector T _z , only placed on 2		is co-incident with the C_4 -axis, the he irreducible representation, char-
(a) A _{lu}	(b) A _{2u}	(c) B _{2u}	(d) A_{2g}
CO ₂ has			Ţ.
(a) 3 vibration	al modes		
(b) 4 vibration	al modes, 2 of which are	degenerate	
(c) Stretching	modes only		
(b) An IR activ	ve symmetric stretch		
Which of the f	following statement is co	rrect:	
(a) The symme	etric stretching mode of	PCl ₃ is IR active and	Raman inactive.
	etric stretching mode of		
	etric stretching mode of		ra l
	etric stretching mode of		
	stretching mode of the	Street Street, J. Britain, J. Britain, J. Britain, J. Britain, J. Britain, S.	
(a) Is IR active	The second second		W
(b) Is IR inacti	ve.	The second second	
(c) Generates	a change in molecular di	pole moment.	•
	to a strong absorption in	-	
	olecule exhibits two T _{lu}	-	ch statement is true:
"			one absorption in the IR spectrum
(b) Each T _{1u} m XY ₆ .	node is triply degenerate,	and each give rise to	three absorption in the IR spectrum
(c) Each T _{1u} m XY ₆ .	ode is triply degenerate,	and each give rise to	three absorption in the IR spectrum
(d) Each T _{1u} n	node is the symmetric str	ructure mode of XY ₆ .	
The pair of syn	nmetry points groups th	at are associated with	only polar molecules is:
(a) C_{2v} , $D_{\infty h}$	(b) C_{2v} , C_{2h}	$(c) D_{2h}, T_d$	(d) C_{2v} , $C_{\infty h}$
2 , -11	$= 1s_{H_A} - 1s_{H_B}$ of water b	2.1 4	- ,
(a) A ₁	$(b) B_1$	$(c) A_2$	(d) B_2

5.

6.

7.

8.

9.

10.

11.

12.

Use the character table below to answer Q. 13 and Q. 14 are

C_{2h}	Е	C_2	i	$\sigma_{\scriptscriptstyle \lambda}$
Ag	1	1	1	1
Bg	1	-1	1	-1
Ae	1	1	-1	-1
Bu	1	-1	-1	1

- 13. What are the character of the reducible representation formed by its component irreducible representation $2B_u + A_g$
 - (a) 3 1 1 3
- (b) -3 1 1 3
- (c) 3-1-13
- (d) 1 1 1 0
- 14. What are the character of the reducible representation formed by its component irreducible representation $B_{\rm g} + A_{\rm u} + 2B_{\rm u} + A_{\rm g}$
 - (a) 5 1 1 1
- (b) 5 1 1 -1
- $(c) -5 \ 1 \ 1 \ -1$
- (d) 5 -1 -1 1

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWER KEY

1 (c)	6. (b)	11. (d)
2. (c)	7. (b)	12. (b)
3. (a)	8. (b)	13. (c)
4. (c)	9. (b)	14. (a)
5. (d)	10. (a)	

Hints and Solutions

1. (H_A) (H_B)

This is symmetric with respect to principle axis and vertical plane. Hence,

The orbital $\psi = Is_{H_A} + Is_{H_B}$ of water belongs to A_I irreducible representation

- 2. In C_{4v} d_{xy} , $d_{x^2-y^2}$ spans B_2 and B_1 respectively, where Z-spans A_1 , so $< d_{xy} \mid z \mid d_{x^2-y^2} > = B_2 \times A_1 \times B_1 = B_2 \times B_1 = A_2$
- 3. d_{xy} , $d_{x^2-y^2}$ spans as B_2 and B_1 respectively and l_z transform as R_z which spans as A_2 , So, $d_{xy} | l_z | d_{x^2-y^2} > = B_2 \times A_2 \times B_1 = B_2 \times B_2 = A_1$
- 4. Only statement II is incorrect, because xy function has the symmetry species A_2 in C_{2v} point group.

Assymertic w.r.t. principle axis and molecular plane. Hence, it belongs to B₂.

D_{4h} (4/mmm)	E	$2C_4$	C_2	$2C_2'$	2C'' ₂	i	$2S_4$	$\sigma_{\rm h}$	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$		
$\frac{(4/mmn)}{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
$ m A_{2g}$	1	1	1	-1	-1	1	1	1	-1	-1	R_{z}	•
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		x^2-y^2
$\mathrm{B}_{2\mathrm{g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
$\mathrm{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
$ m A_{1u}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$ m A_{2u}$	1	1	1	-1	-1	-1	-1	-1	1	1	\boldsymbol{Z}	
$ m B_{1u}$	1	-1	1	1	-1	-1	1	-1	-1	1		
$ m B_{2u}$	1	-1	1	-1	1	-1	1	-1	1	-1		
$E_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

Correct option is (b)

- 7. CO₂ has 4 degree vibration in which only 2 modes are IR active and which are degenerate.
- 8. PCl₃ is pyramidal in structure symmetric stretching of which result in IR activity and Raman activity.
- 9. SiF₄ is tetrahedral in structure the symmetric stretching of tetrahedral is IR inactive
- 10. T represent the triply degenerate, 1, represent it is symmetric wrt principal axis and "u" suggest it is assymetric to inversion centre, hence they has only one absorption in the IR spectrum.
- 11. The polar point group are

$$C_{nv}, C_n, C_1, C_s, C_{\infty V}$$

Correct option is (d)

12.
$$(H_A)$$
 (H_B)

This is asymmetric with respect to principle axis and vertical plane. Hence,

The orbital $\psi = Is_{H_A} - Is_{H_B}$ of water belongs to B_1 irreducible representation

Correct option is (b)

An Institute of Chemical Sciences

DPP-14 GROUP THEORY

1.	What is the point	What is the point group of "P _x " orbital								
	(a) $C_{\infty y}$	(b) $D_{\infty h}$	(c) $D_{\infty d}$	(d) D_{∞}						
2.	What is point grou	up of d _{xv} orbital								
	(a) C _{2h}	(b) C _{2v}	(c) D _{2d}	(d) D_{2h}						
3.	What is point grou	up of dz² orbital		<u> </u>						
	(a) D _{∞h}	(b) $D_{\infty Cl}$	(c) $D_{\infty n}$	(d) D_{∞}						
4.	Find the number of	f isomer of C ₂ H ₂ Cl ₂ a		oint group of the non polar one.						
	(a) 3, C _{2v}	(b) 2, C _{2h}	(c) 4, C_{2v}	(d) 3, C _{2h}						
5.	=-	P 4000 1		vely in the following reaction						
	"X" $\frac{\text{H}_2\text{SO}_4}{80^{\circ}\text{C}}$	H ₂ SO ₄ 165°C	_ "Y"	y						
	(a) C_s and C_s resp	ectively	(b) C _{2h} and C ₂	respectively						
	(c) C_s and C_{2h} res	pectively	(d) None of th	ese						
6.	Which of the follo	owing is an example of	f abelian group,							
	(I) 1, 1 dichloroet	hylene (II) 1, 2 dichle	oroethylene cis	(III) Ammonia						
	(a) I only	(b) I and II only	(c) II only	(d) I, II, II						
7.		etching mode for PCl ₃ entries in the A ₁ row.		In the C_{3v} character table, there are						
	(a) The symmetric stretching mode of PCl ₃ is IR active and Raman inactive									
	(b) The symmetric stretching mode of PCl ₃ is IR active and Raman active									
	(c) The symmetric	stretching mode of P	Cl ₃ is IR inactive ar	nd Raman active						
	(d) The symmetric	stretching mode of P	Cl ₃ is IR active and	Raman active						
8.	An octahedral XY ₆ molecule exhibit term T _{1u} IR active mode which statement is true?									
		*		one absorption in the IR spectrum of						

			DPP-(14) /Group Theory
(b) Each T _{1u} mode of XY ₆ .	e is triply degenerate ar	nd each give rise to three a	bsorption in the IR spectrum
o .	e is non-degenerate, giv	ve rise to one absorption in	the spectrum of XY.
		e symmetric stretch mode	
			m ⁻¹ . Use these data to decide
the point group of			
(a) C_{3v}	(b) D _{3h}	(c) Cannot predicted	(d) None
	511	absorption at 55 and 254	cm ⁻¹ . Use the data to decide
the point group of	•	•	
(a) D _{4h}	(b) T _d	(c) Cannot be predict	ed (d) None
Matrices which de	scribes the transformat	ion of set of coordinate by	proper and improper rotation
are called m	atrices.		
(a) orthogonal	(b) conjugate	(c) inverse	(d) diagonal
$ \begin{array}{c c} P \longrightarrow N \longrightarrow N \\ \hline N \longrightarrow N \longrightarrow P \end{array} $ is	of which point group?		
(a) C _{2h}	(b) C _{2v}	(c) C _{2d}	(d) D_{2h}
Which of the follo	owing satisfy the condi	tion of abelian group?	
(a) $AB = BA$	(b) $AB \neq BA$	(c) AB + BA = 0	(d) $AB = A^{-1}B^{-1}$
Match the following	ing		
(A) Plane	(i) Inversion o	f all atom through the cen	tre
(B) Centre of sym	nmetry (ii) One or mo	re rotation about the axis	
(C) Proper axis	(iii) Reflection	1	
(D) Improper axis reflection in	(iv) One or n	nore repetition of the seq	uence: rotation followed by
	a plane perper	ndicular to the rotation axi	s.
(a) A (iv) B (i) C	(ii) D (iv)	(b) A (ii) B (i) C (iii)	D (iv)

(c) A (iii) B (i) C (ii) D (iv)

(d) A (iii) B (ii) C (iv) D (i)

Which of the following statement is/are true? 15.

(a) all assymmetric molecule are disymmetric

(b) all dissymmetric molecule are assymetric

(c) Both (a) and (b)

9.

10.

11.

12.

13.

14.

(d) Neither (a) nor (b)

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWER KEY

- 1 (d)
- 2. (d)
- 3. (a)
- 4. (d)
- 5. (a)

- 6. (b)
- 7. (d)
- 8. (a)
- 9. (b)
- 10. (b)

- 11. (a)
- 12. (a)
- 13. (a)
- 14. (c)
- 15. (a)

Hints and Solutions

1.

linear but no (i) is present hence point gruop $C_{\infty v}$

Correct option is (d).

2.

 $C_{_2}$ axis (P.A.) 2 perpendicular $C_{_2}$ and $\sigma_{_h}$ point group $D_{_{2h}}$

linear with centre of symmetry hence D

Correct option (a).

The distinct isomers are 4.

$$C_s$$
 C_s C_s C_s Only plane of symmetry C_s C_s C_s

Only plane of symmetry

5.

6. Any point group which do not posses axis of symmetry greater than two fold is known as abelian group

$$H \stackrel{N}{\underset{H}{\longleftarrow}} : C_{3v} \text{ contain } C_3$$

- 7. If the symmetry label (A, B, E) of a normal mode of vibration is associated with x, y or z in the character table then the mode is IR active.
 - If the symmetry label (A, B, E etc.) of a normal mode of vibration is associated with x^2 , xy, yz, $x^2 y^2$, $x^2 + y^2$, z^2) in the character table, then mode is raman active.
- 8. T represent the triply degenerate, 1, represent it is symmetric wrt principal axis and "u" suggest it is assymetric to inversion centre, hence they has only one absorption in the IR spectrum.
- XY₃ contains 6 degree of vibration, but in D_{3h} only 3 are IR active and in C_{3v} all 6 are IR active 9. hence point group of XY_3 here is D_{3h} .
- 10. XY_4 contains a degree of vibration but in D_{4h} only 3 are IR active and in T_d only 2 are IR active. So, point group of XY₄ is "T_d".

- 11. Orthogonal matrices are defined as the matrices which describes the transformation of set of coordinate by proper and improper rotation
- 12. The given molecule contains C_2 axis and plane perpendicular to it So the point group is C_{2h}
- 13. The groups in which combination is commutative are caused the abelian group.
 - \Rightarrow AB = BA (commutative property)
- 14. The symmetry operation of the following are as follows:

Symmetry Element	Symmetry Operation
Plane	Reflection
Centre of symmetry	Inverting the coordinates
Proper axis	Rotation
Improper axis	Rotation followed by reflection

15. The molecule that are not superimposable on their mirror images are termed dissymmetric. This term is used rather than assymetric, since the latter means, literally, have no symmetry; that is, it is applicable only to a molecule belonging to point group C₁. All asymmetric molecules possess some symmetry, but the converse is not true.

