Designing optimal cell factories: integer programming couples elementary mode analysis with regulation

Molecular Networks B SS13

Jonas Ibn-Salem

25.04.13

1 / 21

Paper and authors

Jungreuthmayer and Zanghellini *BMC Systems Biology* 2012, **6**:103 http://www.biomedcentral.com/1752-0509/6/103

METHODOLOGY ARTICLE

Open Access

Designing optimal cell factories: integer programming couples elementary mode analysis with regulation

Christian Jungreuthmayer^{1,2} and Jürgen Zanghellini^{1,2*}

source: biotec.boku.ac.at

source: biotec.boku.ac.at

- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria

Overview

- 1 Background and Motivation
- 2 Theory
- 3 Illustrative example
- 4 Including regulation
- **5** (Optimizing metabolic functionality)
- **6** Results of realistic example
- Discussion
- 8 Summary and conclusions

Background and Motivation

- microbes can be used for metabolic engineering e.g. ethanol production in *E. coli*
- Methabolic networks are available for some model organisms

Gaol

Gene deletion strategie to optimize the production efficiency of strains.

4 / 21

Metabolic network

source A.Bockmayer lecture slides Algorithms in Systembiology SS12 Model of metabolic network with

- *m* internal metabolites
- n reactions
- $S \in \mathbb{R}^{m \times n}$ stoichiometric matrix
- $\hat{v} \in \mathbb{R}^n$ flux vector

fig?

Steady state assumption

Steady state assumption

Metabolite concentrations and reaction rates are constant.

$$S \cdot \hat{\mathbf{v}} = \mathbf{0} \tag{1}$$

Steady state flux coen:

$$C = \{v \in \mathbb{R}^n | Sv = 0, v_i \ge 0, i \in Irr\}$$

Elementary mode analysis

- For $v \in \mathbb{R}^n$, the support of v is defined as $supp(v) = \{i \in \{1, ..., n\} | v_i \neq 0\}$
- $v \in C$ is an elementary flux mode if supp(v) is minimla w.r.t \subseteq i.e, if there is no $v' \in C$, $v' \neq 0$ with $supp(v') \subsetneq supp(v)$.

Definition

An elementary mode (EM) is a minimal and indivisible set of reactions that operates under steady state conditions, while obeying all (ir-)reversibility constraints.

Network of minimal functionality (NMF)

8 / 21

Theory: Elementary mode analysis

 $e = e(\hat{e})$ is the binary representation of a EM e.

$$e_i := e(\hat{e}_i)) = \begin{cases} 1 & \text{if } \hat{e}_i \neq 0 \\ 0 & \text{if } \hat{e}_i = 0 \end{cases}$$
 (2)

$$e^T v \le e^T e = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n e_i =: ||e||$$

Binary linear program (BLP)

Group all q elementary modes:

$$G := (e_1, ..., e_r)^T$$

$$H := (e_{r+1}, ..., e_{r+s})^T$$

$$K := (e_{r+s+1}, ..., e_{r+s+t})^T$$

goal matrix with desirable EM
helper matrix tolerated EM
kill matrix unwanted EM

where
$$q = r + s + t$$

Binary linear program (BLP)

max ||x|| s.t.

$$\begin{split} e_g^T x &= ||e_g|| & g \in \{1,...,r\} \\ e_h^T x &\leq ||e_h|| & h \in \{r+1,...,r+s\} \\ e_k^T x &\leq ||e_k|| - 1 & k \in \{r+s+1,...,r+s+t\} \end{split}$$

$$\Delta_{min} = n - ||x||$$

Alternative solutions

- The BLP may have no or a finite number of solutions.
- Iteratively exclude existing solutions $x^{(j)}$ by adding constraints:

$$\sum_{i \in B} x_i \le |B| - 1$$
$$\sum_{i \in N} x_i \ge 1$$

where

$$B = \{i | x_i^{(j)} = 1\}$$
$$N = \{i | x_i^{(j)} = 0\}$$

Illustrative example

Elementary modes Θ . 0 0 0 EM 1 EM 2 · EM 3 ---@ @ 0 **(3)** $\Diamond \odot \Box \Diamond \Box$ 0 EM 4 -----EM 5 ---@ **(** 0 · ----·

List of elementary modes

	R4 R5	R6	R7	R8	R9	R10	R11	R12
EM 1 1.0 0.0 0.0 1	.0 0.0	0.0	1.0	1.0	0.0			
			1.0	1.0	0.0	0.0	0.0	1.0
EM 2 1.0 0.0 0.0 0).5 1.0	0.0	1.0	0.0	0.5	0.0	1.0	1.0
EM 3 1.0 0.0 0.0 0).5 0.0	1.0	0.0	0.0	0.5	1.0	0.0	1.0
EM 4 0.5 1.0 0.0 1	.0 0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
EM 5 0.5 1.0 0.0 0).5 1.0	0.0	0.0	0.0	0.5	0.0	1.0	0.0
EM 6 0.5 1.0 0.0 0).5 0.0	1.0	-1.0	0.0	0.5	1.0	0.0	0.0
EM 7 0.0 0.0 1.0 1	.0 0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
EM 8 0.0 0.0 1.0 0).5 1.0	0.0	0.0	0.0	0.5	0.0	1.0	0.0
EM 9 0.0 0.0 1.0 0	0.0	1.0	-1.0	0.0	0.5	1.0	0.0	0.0

List of binary elementary modes

	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	$ e_i $	
G =	1	0	0	1	0	0	1	1	0	0	0	1	5	= g
	1	0	0	1	1	0	1	1	1	0	1	1	8	
	1	0	0	1	0	1	0	0	1	1	0	1	6	
<i>K</i> =	1	1	0	1	0	0	0	1	0	0	0	0	4	= k
	1	1	0	1	1	0	0	0	1	0	1	0	6	
	1	1	0	1	0	1	1	0	1	1	0	0	7	
	0	0	1	1	0	0	0	1	0	0	0	0	3	
H =	0	0	1	1	1	0	0	0	1	0	1	0	5	= h
	0	0	1	1	0	1	1	0	1	1	0	0	6	

BLP for example network

subject to
$$x_1 + x_4 + x_7 + x_8 + x_{12} = 5$$
$$x_3 + x_4 + x_8 \le 3$$
$$x_3 + x_4 + x_5 + x_9 + x_{11} \le 5$$
$$x_3 + x_4 + x_6 + x_7 + x_9 + x_{10} \le 6$$
$$x_1 + x_4 + x_5 + x_7 + x_8 + x_9 + x_{11} + x_{12} \le 7$$
$$x_1 + x_4 + x_6 + x_0 + x_{10} + x_{12} \le 5$$

$$x_1 + x_2 + x_4 + x_8 \le 3$$

$$x_1 + x_2 + x_4 + x_5 + x_9 + x_{11} \le 5$$

$$x_1 + x_2 + x_4 + x_6 + x_7 + x_{9} + x_{10} \le 6$$

Minimal cut sets

	w_1										
i	min	imal cu	f_i								
1	R2	R9		9.0							
2	R2	R5	R6	8.0							
3	R2	R5	R10	8.0	*						
4	R2	R6	R11	8.0							
5	R2	R10	R11	8.0	*						

Biological feasibility

Problem:

- Distinguish chemical from genetic interventions
- Gene-enzyme-reaction mapping not always known.

Solution:

add weights to objective function

$$max||w^Tx||$$

- low weights for uptake reactions
- high weights for reactions with missing genetic information

Example

$$w_2^T = (0.1, 0.1, 0.1, 99, 1, 99, 2, 1, 99, 1, 1, 99)$$

Minimal cut sets wights wights

			w_1		w_2					
i	mir	nimal cu	ıt set	f_i		mir	nimal cu	f_i		
1	R2	R9		9.0		R2	R5	R10	301.2	*
2	R2	R5	R6	8.0		R2	R10	R11	301.2	*
3	R2	R5	R10	8.0	*	R2	R9		204.2	
4	R2	R6	R11	8.0		R2	R5	R6	203.2	
5	R2	R10	R11	8.0	*	R2	R6	R11	203.2	

Introduction: Fixed Point Analysis

Given the system of differential equations:

$$y' = f(y)$$

Definition

A fixed point y^* is defined by $f(y^*) = 0$.

- Solve the equation f(y) = 0
- Analyse eigenvalues of the Jacobian at fixed points.

Now: System with controle parameter μ .

$$y' = f(y, \mu)$$

How does μ influence the number, location and stability of fixed points?