Numerical resolution of semi-discrete generated Jacobian equation and application to non-imaging optics

Anatole Gallouët

Institut Camille Jordan - Lyon 1

Joint work with Boris Thibert and Quentin Mérigot

Optimal Transport Cargese Workshop - April 8-12, 2024

Non-imaging optics

Goal: Construct a mirror that reflects a given light source toward a prescribed target.

Non-imaging optics: transport of measure

Input: Light source \mathcal{X} with intensity $\mu \in \mathcal{P}(\mathcal{X})$. Target distribution \mathcal{Y} with intensity $\nu \in \mathcal{P}(\mathcal{Y})$.

Non-imaging optics: transport of measure

Input: Light source \mathcal{X} with intensity $\mu \in \mathcal{P}(\mathcal{X})$. Target distribution \mathcal{Y} with intensity $\nu \in \mathcal{P}(\mathcal{Y})$.

Output: A surface Σ such that $T_{\Sigma\#}\mu = \nu$ with $T_{\Sigma\#}\mu(B) = \mu(T_{\Sigma}^{-1}(B))$

Optimal transport & Generated Jacobian eq.

- Assume $\mu(x) = \rho(x) \, \mathrm{d} \, x$ and $\nu(y) = \sigma(y) \, \mathrm{d} \, y$ then $T_{\#}\mu = \nu$ amounts to: $\forall x \in \mathcal{X}, \sigma(T(x)) \det(DT(x)) = \rho(x)$
- From Snell's law if Σ is parametrized by a function $u: \mathcal{X} \to \mathbb{R}$ then T is a function of x, u(x) and $\nabla u(x)$.

A Monge-Ampère type equation:

$$\forall x \in \mathcal{X}, \det(DT(x)) = \frac{\rho(x)}{\sigma(T(x))} \text{ with } T(x) = f(x, u(x), \nabla u(x)).$$

In some particular cases this equation is OT, otherwise it is a GJE.
[Trudinger '14]

Discretization for numerical purposes

 $T_{\Sigma\#}\mu = \nu \text{ becomes}(\forall i, \mu(V_i) = \nu_i)$ Prescribe the mass of each cell

The far-field reflector problem

• Collimated light source $\mu \in \mathcal{P}^{\mathrm{ac}}(\mathcal{X})$.

■ Far field target $\nu = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i}$ with $y_i \in \mathbb{S}^2$.

Target "at infinity"

The far-field reflector problem

- Impose Σ to be the graph of $u(x) = \max_{1 \leq iN} \langle x | p_i \rangle \psi_i$
- $V_i(\psi) = T^{-1}(y_i) = \{ x \in \mathcal{X} \mid \forall j, \langle x | p_i \rangle \psi_i \ge \langle x | p_j \rangle \psi_j \}$

Problem: Find $\psi \in \mathbb{R}^N$ such that for all $i \in \{1, \dots, N\}$, $\mu(V_i(\psi)) = \nu_i$

- Semi-discrete Optimal Transport with $c(x,y) = -\langle x|y\rangle$

Semi-discrete optimal transport

Definition: (Laguerre diagram) Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a twisted cost. For $\mathcal{Y} = (y_i)_{1 \leq i \leq N}$, and $\psi \in \mathbb{R}^{\mathcal{Y}}$, the Laguerre diagrams partitions \mathcal{X} in N cells by

$$\operatorname{Lag}_{y}(\psi) = \{ x \in \mathcal{X} \mid \forall z \neq y, c(x, y) + \psi(y) \leq c(x, z) + \psi(z) \}$$

Let T_{ψ} defined by $T_{\psi}(x) = y \iff x \in \text{Lag}_{y}(\psi)$

Let $\mu \in \mathcal{P}(X)$ and $\nu = T_{\psi \#} \mu \in \mathcal{P}(\mathcal{Y})$

Semi-discrete optimal transport

Definition: (Laguerre diagram) Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a twisted cost. For $\mathcal{Y} = (y_i)_{1 \leq i \leq N}$, and $\psi \in \mathbb{R}^{\mathcal{Y}}$, the Laguerre diagrams partitions \mathcal{X} in N cells by

$$\operatorname{Lag}_{y}(\psi) = \{ x \in \mathcal{X} \mid \forall z \neq y, c(x, y) + \psi(y) \leq c(x, z) + \psi(z) \}$$

Let T_{ψ} defined by $T_{\psi}(x) = y \iff x \in \text{Lag}_{y}(\psi)$

Let
$$\mu \in \mathcal{P}(X)$$
 and $\nu = T_{\psi \#} \mu \in \mathcal{P}(\mathcal{Y})$

Then
$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}$$

$$c(x, T_{\psi}(x)) + \psi(T_{\psi}(x)) \le c(x, y) + \psi(y)$$

So for any
$$\gamma \in \Pi(\mu, \nu)$$
, $\int c(x, T_{\psi}(x)) + \psi(T_{\psi}(x)) d\mu \leq \int c(x, y) + \psi(y) d\gamma$

Semi-discrete optimal transport

Definition: (Laguerre diagram) Let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a twisted cost. For $\mathcal{Y} = (y_i)_{1 \leq i \leq N}$, and $\psi \in \mathbb{R}^{\mathcal{Y}}$, the Laguerre diagrams partitions \mathcal{X} in N cells by

$$\operatorname{Lag}_{y}(\psi) = \{ x \in \mathcal{X} \mid \forall z \neq y, c(x, y) + \psi(y) \leq c(x, z) + \psi(z) \}$$

Let T_{ψ} defined by $T_{\psi}(x) = y \iff x \in \text{Lag}_{y}(\psi)$

Let
$$\mu \in \mathcal{P}(X)$$
 and $\nu = T_{\psi \#} \mu \in \mathcal{P}(\mathcal{Y})$

Then
$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}$$

$$c(x, T_{\psi}(x)) + \psi(T_{\psi}(x)) \le c(x, y) + \psi(y)$$

So for any
$$\gamma \in \Pi(\mu, \nu)$$
, $\int c(x, T_{\psi}(x)) + \psi(T_{\psi}(x)) d\mu \leq \int c(x, y) + \psi(y) d\gamma$

 T_{ψ} is optimal between μ and $\nu = T_{\psi\#}\mu$ for the cost c

The Near-Field Parallel reflector

Collimated light source:

$$\mu \in \mathcal{P}(\mathcal{X})$$
 abs. cont.

Near field target:

$$u = \sum_{1 \leq i \leq N} \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$$

The Near-Field Parallel reflector

- Collimated light source: $\mu \in \mathcal{P}(\mathcal{X})$ abs. cont.
- Near field target: $\nu = \sum \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$

• Mirror Σ is a maximum of paraboloids of focus (y_i) .

 $1 \le i \le N$

Parametrization of Σ : $u(x) = \max_{1 \le i \le N} \frac{1}{2\psi_i} - \frac{\psi_i}{2} ||x - y_i||^2$

The Near-Field Parallel reflector

- Collimated light source: $\mu \in \mathcal{P}(\mathcal{X})$ abs. cont.
- Near field target: $\nu = \sum \nu_i \delta_{y_i} \text{ with } y_i \in \mathbb{R}^2.$
- Mirror Σ is a maximum of paraboloids of focus (y_i) .

 $1 \le i \le N$

■ Parametrization of Σ : $u(x) = \max_{1 \le i \le N} \frac{1}{2\psi_i} - \frac{\psi_i}{2} \|x - y_i\|^2 = G(x, y_i, \psi_i)$

$$Lag_{i}(\psi) = \left\{ x \in \mathcal{X} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} \|x - y_{i}\|^{2} \ge \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} \|x - y_{j}\|^{2} \right\}$$

Problem: Find $\psi \in \mathbb{R}^N$ such that for all $i \in \{1, \dots, N\}$, $\mu(\operatorname{Lag}_i(\psi)) = \nu_i$

Not linear in $\psi \to \text{not optimal transport}$.

Semi-discrete generated Jacobian eq.

Definition: (Generating function & generalized Laguerre cells)

- Generating function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ satisfies (Reg), (Twist), (UC) and (Mono).
- Generalized Laguerre diagram for $\psi \in \mathbb{R}^N$

$$Lag_i(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \dots, N\}, G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j)\}$$

Semi-discrete generated Jacobian eq.

Definition: (Generating function & generalized Laguerre cells)

- Generating function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ satisfies (Reg), (Twist), (UC) and (Mono).
- Generalized Laguerre diagram for $\psi \in \mathbb{R}^N$

$$\operatorname{Lag}_{i}(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \cdots, N\}, G(x, y_{i}, \psi_{i}) \geq G(x, y_{j}, \psi_{j})\}\$$

 $\operatorname{Lag}_i(\psi)$

Mass function:

$$H: \mathbb{R}^N \to \mathbb{R}^N$$
$$\psi \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$$

Generated Jacobian eq: (Trudinger '14)

Find $\psi \in \mathbb{R}^N$ such that

$$H(\psi) = \nu$$

Examples:

- $G(x, y, v) = -c(x, y) v \qquad (OT)$
- $G(x, y, v) = \frac{1}{2v} \frac{v}{2} ||x y||^2 \quad (NFPar)$

Semi-discrete generated Jacobian eq.

Definition: (Generating function & generalized Laguerre cells)

- Generating function $G: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$ satisfies (Reg), (Twist), (UC) and (Mono).
- Generalized Laguerre diagram for $\psi \in \mathbb{R}^N$

$$\operatorname{Lag}_{i}(\psi) = \{x \in \mathcal{X} \mid \forall j \in \{1, \cdots, N\}, G(x, y_{i}, \psi_{i}) \geq G(x, y_{j}, \psi_{j})\}$$

 $\operatorname{Lag}_i(\psi)$

Mass function:

$$H: \mathbb{R}^N \to \mathbb{R}^N$$

 $\psi \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N}$

Generated Jacobian eq: (Trudinger '14) Find $\psi \in \mathbb{R}^N$ such that Solve using $H(\psi) = \nu$ Newton alg.

Examples:

- $G(x, y, v) = -c(x, y) v \qquad (OT)$
- $G(x, y, v) = \frac{1}{2v} \frac{v}{2} ||x y||^2 \quad (NFPar)$

The optimal transport case

Dual formulation of Optimal Transport:

$$\max_{\psi \in \mathbb{R}^{\mathcal{Y}}} \int_{\mathcal{X}} \psi^{c} d\mu - \sum_{y \in \mathcal{Y}} \psi(y)\nu(y) := \mathcal{K}(\psi)$$

where $\psi^c(x) = \min_i c(x, y_i) + \psi_i$

- lacktriangleright K is concave and invariant by addition of a constant.
- $\text{Lag}_i(\psi) = \{x \mid \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j \}$
- $\forall x \in \operatorname{Lag}_i(\psi), \psi^c(x) = c(x, y_i) + \psi_i \text{ so } \nabla \mathcal{K} = H(\psi) \nu$

The optimal transport case

Dual formulation of Optimal Transport:

$$\max_{\psi \in \mathbb{R}^{\mathcal{Y}}} \int_{\mathcal{X}} \psi^{c} d\mu - \sum_{y \in \mathcal{Y}} \psi(y)\nu(y) := \mathcal{K}(\psi)$$

where $\psi^c(x) = \min_i c(x, y_i) + \psi_i$

- lacktriangleright K is concave and invariant by addition of a constant.
- $\text{Lag}_i(\psi) = \{x \mid \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$
- $\forall x \in \operatorname{Lag}_i(\psi), \psi^c(x) = c(x, y_i) + \psi_i \text{ so } \nabla \mathcal{K} = H(\psi) \nu$

Theorem: [Mérigot-Thibert '16] If the cost is \mathcal{C}^2 and twisted, and $\operatorname{spt}(\mu)$ is connected and compact, then \mathcal{K} is \mathcal{C}^2 and locally strongly concave on $\mathcal{S}^+ \cap \mathbf{1}^\perp$, where $\mathcal{S}^+ = \{x \mid \forall i, H_i(\psi) > 0\}$.

- lacktriangle In particular DH is symmetric non-positive definite
- Solving $H(\psi) = \nu$ amounts to maximize a (strongly) concave function.

Differential of the mass function H

Proposition 1: [G-M-T '21] (Formula for DH) Assume that G is C^2 and $\operatorname{spt}(\mu)$ is compact, then for any $i \neq j$ we have:

$$\frac{\partial H_{j}}{\partial \psi_{i}}(\psi) = \int_{[\operatorname{Lag}_{ij}(\psi)]} \rho(x) \frac{|\partial_{3} G(x, y_{i}, \psi_{i})|}{\|\nabla_{x} G(x, y_{j}, \psi_{j}) - \nabla_{x} G(x, y_{i}, \psi_{i})\|} d\mathcal{H}^{d-1}(x) \ge 0$$

$$\operatorname{Lag}_{ij} = \operatorname{Lag}_{i} \cap \operatorname{Lag}_{j}$$

$$\sum_{i} H_{i}(\psi) = 1 \implies \frac{\partial H_{i}}{\partial \psi_{i}}(\psi) = -\sum_{j \neq i} \frac{\partial H_{j}}{\partial \psi_{i}}(\psi)$$

Differential of the mass function H

Proposition 1: [G-M-T'21] (Formula for DH) Assume that G is C^2 and $\operatorname{spt}(\mu)$ is compact, then for any $i \neq j$ we have:

$$\frac{\partial H_{j}}{\partial \psi_{i}}(\psi) = \int_{\left(\text{Lag}_{ij}(\psi)\right)} \rho(x) \frac{\left(\left[\partial_{3}G(x, y_{i}, \psi_{i})\right]\right)}{\left(\left[\left[\nabla_{x}G(x, y_{j}, \psi_{j}) - \nabla_{x}G(x, y_{i}, \psi_{i})\right]\right]\right)} d\mathcal{H}^{d-1}(x) \geq 0$$

$$\text{Lag}_{ij} = \text{Lag}_{i} \cap \text{Lag}_{j} \qquad \neq 0 \text{ by (Twist)}$$

 $Lag_{ij} = Lag_i \cap Lag_i$

$$\sum_{i} H_{i}(\psi) = 1 \implies \frac{\partial H_{i}}{\partial \psi_{i}}(\psi) = -\sum_{j \neq i} \frac{\partial H_{j}}{\partial \psi_{i}}(\psi) < 0 \text{ if } H_{i}(\psi) > 0$$

Descent direction for Newton

Proposition 2: [G-M-T '21] Let $\psi \in \mathcal{S}^+ = \{\psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > 0\}$, then

- The differential $DH(\psi)$ is of rank N-1.
- Its image is $\operatorname{Im}(DH(\psi)) = \mathbf{1}^{\perp}$ where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^N$.
- Its kernel is $\ker(DH(\psi)) = \operatorname{span}(w)$ with $w_i > 0$ for $1 \le i \le N$.
 - Consequence of Perron-Frobenius for irreducible matrices
 - lacktriangle The differential DH has no reason to be symmetric

Descent direction for Newton

Proposition 2: [G-M-T '21] Let $\psi \in S^+ = \{\psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > 0\}$, then

- The differential $DH(\psi)$ is of rank N-1.
- Its image is $\operatorname{Im}(DH(\psi)) = \mathbf{1}^{\perp}$ where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^N$.
- Its kernel is $\ker(DH(\psi)) = \operatorname{span}(w)$ with $w_i > 0$ for $1 \le i \le N$.
 - Consequence of Perron-Frobenius for irreducible matrices
 - lacktriangle The differential DH has no reason to be symmetric

Corollary: (Descent direction) Let $\psi \in \mathcal{S}^+$, the system

$$\begin{cases}
DH(\psi)u = H(\psi) - \nu \\
u_1 = 0
\end{cases}$$

has a unique solution $u \in \mathbb{R}^N$.

Idea of proof:

- We have $H(\psi) \nu \in \mathbf{1}^{\perp} = \operatorname{Im}(DH(\psi))$.
- Fixing $u_1 = 0$ is possible because of the structure of $\ker(DH(\psi))$.
- Uniqueness comes from the rank of $DH(\psi)$.

Damped Newton algorithm

Newton algorithm for solving $H(\psi) = \nu$

Initialize
$$\psi^0 \in \mathcal{S}^{\delta} = \{ \psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > \delta \}$$
 and $\varepsilon > 0$.

While $||H(\psi) - \nu|| \ge \varepsilon$:

$$\longrightarrow$$
 Compute u^k solution of

 \rightarrow Define for $\tau \in [0,1]$, $\psi^{k,\tau} = \psi^k - \tau u^k$.

Parameter Compute
$$\tau^k = \sup \left\{ \tau \in [0,1] \mid \|H(\psi^{k,\tau}) - \nu\| \le (1-\frac{\tau}{2})\|H(\psi^k) - \nu\| \right\}$$
 and $\psi^{k,\tau} \in \mathcal{S}^{\delta}$

 \longrightarrow Put $\psi^{k+1} \leftarrow \psi^{k,\tau^k}$ and $k \leftarrow k+1$

Return ψ^k .

Iterate stays in admissible set

Damped Newton algorithm

Newton algorithm for solving $H(\psi) = \nu$

Initialize
$$\psi^0 \in \mathcal{S}^{\delta} = \{ \psi \in \mathbb{R}^N \mid \forall i, H_i(\psi) > \delta \}$$
 and $\varepsilon > 0$.

While $||H(\psi) - \nu|| \ge \varepsilon$:

 \rightarrow Define for $\tau \in [0,1]$, $\psi^{k,\tau} = \psi^k - \tau u^k$.

Damping

Parameter Compute
$$\tau^k = \sup \left\{ \tau \in [0,1] \mid \|H(\psi^{k,\tau}) - \nu\| \le (1 - \frac{\tau}{2}) \|H(\psi^k) - \nu\| \right\}$$
 and $\psi^{k,\tau} \in \mathcal{S}^{\delta}$

 \longrightarrow Put $\psi^{k+1} \leftarrow \psi^{k,\tau^k}$ and $k \leftarrow k+1$

Return ψ^k .

Iterate stays in admissible set

convergence

Theorem: [G-M-T'21] (Convergence) Assume that the support of μ is connected and compact and that the set \mathcal{Y} is generic. Then $\exists \tau^* > 0$ s.t

$$||H(\psi^k) - \nu|| \le \left(1 - \frac{\tau^*}{2}\right)^k ||H(\psi^0) - \nu||$$

Proof: Bound τ^k below for any k by compactness of the set

$$K = \{ \psi \in \mathcal{S}^{\delta} \mid \psi_1 = \psi_1^0 \text{ and } ||H(\psi) - \nu|| \le ||H(\psi^0) - \nu|| \}.$$

Implementation for the Near field reflector

■ Laguerre diagram for (NF-par):

$$\operatorname{Lag}_{i}(\psi) = \left\{ x \in \mathbb{S}^{2} \mid \forall j, \frac{1}{2\psi_{i}} - \frac{\psi_{i}}{2} \|x - y\|^{2} \right\}$$
$$\geq \frac{1}{2\psi_{j}} - \frac{\psi_{j}}{2} \|x - y\|^{2} \right\}$$

Definition: (Power and Möbius diagram)

- Power diagram : $Pow_i(c, r) = \{x \mid \forall j, ||x c_i||^2 + r_i \le ||x c_j||^2 + r_j\}$
- Möbius diagram : $Mob_i(y, \lambda, \mu) = \{x \mid \forall j, \lambda_i ||x y_i||^2 + \mu_i \le \lambda_j ||x y_j||^2 + \mu_j \}$

Theorem: [Boissonnat-Wormser-Yvinec '07]. For any family $(\lambda_i, \mu_i)_i \subset \mathbb{R}$, and $(y_i)_i \subset \mathbb{R}^d$ there exists $(r_i)_i \subset \mathbb{R}$ and $(c_i)_i \subset \mathbb{R}^{d+1}$ such that

$$\mathrm{Mob}_i(y,\lambda,\mu) = \Pi(\mathrm{Pow}_i(c,r) \cap P)$$

where $P=\{(x,\|x\|^2),x\in\mathbb{R}^d\}$ and Π is the orthogonal projection of \mathbb{R}^{d+1} on $\mathbb{R}^d imes\{0\}$.

Numerical experiments

- $\mathcal{X} = [-1, 1]^2$ with μ uniform
- $\mathcal{Y} \subset [0,1]^2$, with ν uniform and N=5000.

Initial diagram

Final diagram

Laguerre diagram before and after convergence of the Newton algorithm

Numerical experiments

- $\mathcal{X} = [-1,1]^2$ with μ uniform
- $\mathcal{Y} \subset [0,1]^2$, with ν uniform

Convergence rate for different values of N.

Thank you for your attention

Appendix

Generating Function:

- $\qquad \qquad G(x,y,v) \text{ is } \mathcal{C}^1 \text{ in } x \text{ and } v \text{ and } \sup_{\mathcal{X} \times \mathcal{Y} \times [\alpha,\beta]} |\nabla_x G(x,y,v)| < +\infty \quad \text{(Reg)}$
- $\forall x \in \mathcal{X}, (y, v) \mapsto (G(x, y, v), \nabla_x G(x, y, v))$ is injective on $\mathcal{Y} \times \mathbb{R}$ (Twist)
- $\forall y \in Y, \lim_{v \to -\infty} \inf_{x \in \mathcal{X}} G(x, y, v) = +\infty$ (UC)

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

Fixed point iterate: $\psi^{k+1} = \psi^k + \tau^k (H^{\varepsilon}(\psi) - \nu)$

A stochastic algorithm for GJE

Entropic regularization:

- Regularized cells: $\mathcal{L}_{\varepsilon,i}[\psi](x) = \frac{e^{G(x,y_i,\psi_i)/\varepsilon}}{\sum_k e^{G(x,y_k,\psi_k)/\varepsilon}} \xrightarrow[\varepsilon \to 0]{} \begin{cases} 1 \text{ if } x \in \operatorname{Lag}_i(\psi) \\ 0 \text{ otherwise} \end{cases}$
- Regularized mass function: $H_i^{\varepsilon}(\psi) = \int_X \mathcal{L}_{\varepsilon,i}[\psi](x) \,\mathrm{d}\,\mu(x) \xrightarrow[\varepsilon \to 0]{} H_i(\psi)$

Regularized GJE: Find $\psi \in \mathbb{R}^N$ such that $H^{\varepsilon}(\psi) = \nu$

Stochastic fixed point iterate: $\psi^{k+1} = \psi^k + \tau^k (\mathcal{L}_{\varepsilon}[\psi](x_k) - \nu)$ where $x_k \sim \mu$ so that $\mathbb{E}(\mathcal{L}_{\varepsilon}[\psi](x_k)) = H^{\varepsilon}(\psi)$

- Stochastic gradient descent in the case of optimal transport.
- \blacksquare Numerical experiments converge for $\tau^k = \frac{1}{\sqrt{k}}$
- Proof of convergence is an open problem.