Derivative Identities

with variable x, constant a, Euler's number e, and various functions

(a)' = 0	$\sin'(x) = \cos(x)$
$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$	$\cos'(x) = -\sin(x)$
[a f(x)]' = a f'(x)	$\tan'(x) = \sec^2(x)$
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)	$\csc'(x) = -\csc(x) \cdot \cot(x)$
$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$	$\sec'(x) = \sec(x) \cdot \tan(x)$
	$\cot'(x) = -\csc^2(x)$
$[f(g(x))]' = f'(g(x)) \cdot g'(x)$ $(x^a)' = ax^{a-1}$	$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$
$(e^x)'=e^x$	$\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}$
$(a^{x})' = a^{x} \ln(a)$ $(\ln x)' = \frac{1}{x}$	$\arctan'(x) = \frac{1}{x^2 + 1}$
$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$	$\operatorname{arccsc}'(x) = \frac{-1}{ x \sqrt{x^2 - 1}}$
j (j (x))	$\operatorname{arcsec}'(x) = \frac{1}{ x \sqrt{x^2 - 1}}$
	$\operatorname{arccot}'(x) = \frac{-1}{x^2 + 1}$