

B. Gosselé Prof. Dr. R. Wuyts

Exascience Life Lab

KATHOLIEKE UNIVERSITEIT

Schaalbare genoomanalyse

https://github.com/bgossele/geminicassandra

Context: case study

- Multi-sample genoomanalyse
- Annotaties, vb:
 - aaf_1kg_afr (frequentie) genetische variant in Afrikaanse populatie)
 - is_somatic (somatische mutatie, mogelijk carcinogeen)
- Ad-hoc queries
- SQLite = te traag, schaalt niet

Probleem

- Relationeel dataschema GEMINI
 - variants-tabel
 - Genotype-kolommen: compressed binary vectors samples-table: geslacht, herkomst, familierelaties

Sumples tab	ne. gesident,	nerkomst, re	illinici ciac	103	variants
variant_id	chrom	start		gts	***
1	chromX	24		A/A	
				A/G	
				T/T	
				T/C	
2	chromY	3541	•••	<i>T/T</i>	•••
				T/T	
				1/0	
Ad-hoc querie	es:			A/G	

- - Standaard SQL-queries (onmogelijk op binary genotype-arrays)
 - Daarom: --gt-filter: gt_type.alex == HET
 - Wildcards: (COL).(SAMPLE_WILDCARD).(WILDCARD_RULE).(RULE_ENFORCEMENT) Bvb. (gt types).(sex == 1).(== HET).(all)

- Apache Cassandra i.p.v. SQLite
 - Schaalbaarheid √
 - Relationele tabellen ⇒ columnair model √
 - Concurrency √
 - CQL ~= SQL; Python API √

Maar...

- Minder support voor indexing, querying
 - Geen joins
 - Beperkingen op WHERE-clause
 - » Cassandra = gigantische multimap <keys, columns> -> values
 - » Niet itereren en alle rijen filteren, maar hash(key) berekenen -> map nr correcte rijen
 - » Enkel opeenvolgend opgeslagen rijen opvragen
 - » PRIMARY KEY ((col1,...), (col_x)*)

partition key | clustering key

bepaalt node in cluster | bepaalt volgorde rijen met == partition key

» Geen OR, NOT, !=,...

Oplossing

Dataschema

- Genotype-kolommen => kolom voor elke sample

variant_id | ref | alt | ... | gt_type_alex | gt_type_john | ... | gt_depth_alex | gt_depth_john | ...

- Arbitraire queries:
 - Zonder indices
 - · Duplicatie data: extra tabellen met geschikte keys definiëren

sample_name | gt_depth | variant_id | chrom | start | variant_id | sex sample_name

- Extra tabellen verbergen voor gebruiker
- Geen joins => denormalizatie

Inladen genoomdata

- Vullen variants-tabel efficiënt te parallelliseren
- Cores schrijven parallel nr 1 Cassandra cluster >< SQLite: elk nr 1 DB, achteraf mergen

Oplossing

Queries

- Query op hoofdtabel (variants, samples) => splitsen in subqueries op hulptabellen. Bvb:

SELECT * FROM variants WHERE chrom = 'chromX'

AND start > 1500 AND gt_type.alex = HET

=> SELECT variant_id FROM variants_by_chrom_start WHERE chrom = 'chromX' AND start > 1500

SELECT variant id FROM variants by samples gt type

WHERE sample_name = 'Alex' AND gt_type = HET

Resultaten subqueries = verzamelingen

- Combineren met set-operaties

 Resulterende rijen, kolommen opvragen uit hoofdtabel

S	Query	Resultaat
1	p AND r	$res(p) \cap res(r)$
	p OR r	$res(p) \cup res(r)$
	NOT p	$I \setminus res(p)$

Oplossing

--gt-filter wildcards

- Lange ketens subqueries op genotype-hulptabellen
- Evaluatie subqueries voor verschillende samples => parallelliseren

User interface

- Gebruiker moet hulptabellen kennen
- SQL-syntax licht gewijzigd => parsen
 - Queries binnen 1 hulptabel: CQL syntax
 - Gekoppeld met && i.p.v. AND, ||, NOT

\$ gemini query -q "SELECT chrom, start, subtype FROM variants WHERE chrom = 'chromX' AND start > 5600 AND gene = 'gene A'" --gt-filter "(gt_types).(phenotype==1).(==HOM REF).(all)" \$ geminicassandra query -q "SELECT chrom, start, subtype FROM variants WHERE chrom = 'chromX' AND start > 5600 && gene = 'gene A'" --gt-filter "[gt_types].[phenotype==1].[==HOM REF].[all]"

Conclusies

- Doel: schaalbare genoomanalyse
- GEMINI = genoom-DB + uitgebreide ad-hoc SQL-queries
- Apache Cassandra: compromis
 - Schaalbaarheid vs. query-features
- Dataduplicatie, denormalisatie
- Queries in applicatie-laag
- Parallellisatie
- Flexibel schema

