Multivariate Statistics (Week 2): Multivariate normal distribution

Erwan Koch

EPFL (Institute of Mathematics)

EPFL

Motivation

- Easy generalization of its univariate counterpart. Multivariate analysis almost parallel to the corresponding analysis based on univariate normality.
- Entirely defined by its mean vector and covariance matrix \implies only p(p+3)/2 parameters in all.
- Zero correlation implies independence and pairwise independence implies independence.
- Multivariate normal distribution justified by the multivariate central limit theorem.
- Linear transformations of multivariate normal rvs are again multivariate normal.
- Marginal and conditional distributions are also multivariate normal distributions.

Outline

- Density-based definition
- Properties and more general definitions
- Sampling from a multivariate normal distribution
- 4 Conditional distributions and multiple correlations

Definition

• Recall that a random variable X follows the univariate normal distribution with mean μ and variance σ^2 if its density is written as

$$f(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)\right), \quad x \in \mathbb{R}.$$

We write $X \sim N(\mu, \sigma^2)$.

A plausible extension to the p-variate case is

$$f(\mathbf{x}) = \det(2\pi\Sigma)^{-1/2} \exp\left(-rac{1}{2}(\mathbf{x}-m{\mu})'\Sigma^{-1}(\mathbf{x}-m{\mu})
ight), \quad \mathbf{x} \in \mathbb{R}^{
ho},$$

where Σ is a positive definite matrix (sometimes denoted $\Sigma > 0$ in the following).

Multivariate normal distribution

Let Σ be a positive definite matrix. A random vector $\mathbf X$ is said to have the p-variate normal (or p-dimensional multinormal or multivariate normal) distribution with mean vector $\boldsymbol \mu$ and covariance matrix Σ if its density is given by

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right), \quad \mathbf{x} \in \mathbb{R}^{p}.$$
 (1)

We write $\mathbf{X} \sim N_p(\mu, \Sigma)$.

Some consequences of the definition

- The multivariate normal distribution (MND) is completely characterized by its mean vector μ and its covariance matrix Σ .
- The sets of points with equal density are ellipsoids of the form

$$(\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c,$$

where c is a positive constant (contours of the distribution or "ellipsoids of equal concentration").

- Whenever a multivariate density $f(\mathbf{x})$ depends on \mathbf{x} only through the quadratic form $(\mathbf{x} \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x} \boldsymbol{\mu})$, it is the density of a so-called elliptical distribution (see later).
- The components of ${\bf X}$ are mutually independent iff Σ is diagonal, i.e., iff the components of ${\bf X}$ are uncorrelated.

Density plot in the bivariate case

Normal distribution with
$$\mu = \mathbf{0}$$
 and $\Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$

Contours of the distribution

Outline

- Density-based definition
- Properties and more general definitions
- 3 Sampling from a multivariate normal distribution
- 4 Conditional distributions and multiple correlations

Symmetric decomposition of matrices

Any positive semi-definite matrix Σ can be written as $\Sigma = B^2$, where B is a symmetric matrix. B is usually denoted $\Sigma^{1/2}$ and is termed the square root matrix of Σ . If Σ is positive definite, then so is $\Sigma^{1/2}$.

Theorem

Let $\mathbf{X} \sim N_p(\mu, \Sigma)$ with $\Sigma > 0$, and let $\mathbf{Y} = (Y_1, \dots, Y_p)' = \Sigma^{-1/2}(\mathbf{X} - \mu)$, where $\Sigma^{-1/2}$ is the symmetric positive definite square root of Σ^{-1} . Then $Y_1, \dots, Y_p \stackrel{iid}{\sim} N(0, 1)$, which can be written

$$\mathbf{Y} \sim \mathsf{N}_{p}(\mathbf{0}, \mathit{I}_{p}). \tag{2}$$

Proof.

By Week 1, we deduce that the absolute value of the Jacobian of the transformation u from \mathbf{Y} to \mathbf{X} is

$$|J| = |\det(\Sigma^{1/2})| = \det(\Sigma^{1/2}) = \sqrt{\det(\Sigma)}.$$

Now, $\mathbf{x} = \Sigma^{1/2}\mathbf{y} + \boldsymbol{\mu} = u(\mathbf{y})$ yields

$$(u(\mathbf{y}) - \mu)' \Sigma^{-1}(u(\mathbf{y}) - \mu) = (\Sigma^{1/2}\mathbf{y})' \Sigma^{-1}(\Sigma^{1/2}\mathbf{y}) = \mathbf{y}' \Sigma^{1/2} \Sigma^{-1/2} \Sigma^{-1/2} \Sigma^{1/2} \mathbf{y} = \mathbf{y}' \mathbf{y}.$$

Thus, the theorem about the transformation of rvs yields

$$\begin{split} f_{\mathbf{Y}}(\mathbf{y}) &= f_{\mathbf{X}}(u(\mathbf{y}))|J| = \frac{1}{(2\pi)^{p/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}\mathbf{y}'\mathbf{y}\right) \sqrt{\det(\Sigma)} \\ &= \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}\mathbf{y}'\mathbf{y}\right) \\ &= \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y_i^2}{2}\right). \end{split}$$

Corollary

Let $\mathbf{X} \sim N_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} > 0$. Then

$$E[X] = \mu$$
 and $V(X) = \Sigma$.

Proof.

Introducing $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$, we have by (2) that $\mathrm{E}[\mathbf{Y}] = \mathbf{0}$ and $\mathrm{V}(\mathbf{Y}) = I_p$. Hence, since $\mathbf{X} = \Sigma^{1/2}\mathbf{Y} + \boldsymbol{\mu}$, we directly obtain (see Week 1) $\mathrm{E}[\mathbf{X}] = \boldsymbol{\mu}$ and

$$V(\boldsymbol{X}) = \Sigma^{1/2} V(\boldsymbol{Y}) (\Sigma^{1/2})' = \Sigma^{1/2} I_p(\Sigma^{1/2})' = \Sigma.$$

Theorem

Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} > 0$. Then

$$U = (\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi_{\rho}^2$$
.

Proof.

We introduce

$$\mathbf{Y} = \Sigma^{-1/2} (\mathbf{X} - \boldsymbol{\mu}),$$

which, by (2), follows $N_p(\mathbf{0}, I_p)$. Thus

$$U = (\mathbf{Y}'\Sigma^{1/2})\Sigma^{-1}(\Sigma^{1/2}\mathbf{Y}) = \mathbf{Y}'\mathbf{Y} = \sum_{i=1}^{\rho} Y_i^2$$

where $Y_1, \ldots, Y_p \stackrel{iid}{\sim} N(0, 1)$. The result follows by definition of the chi-square distribution.

Characteristic function

The cf of $\mathbf{X} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} > 0$, is $\phi_{\mathbf{X}}(\mathbf{t}) = \exp{(i\mathbf{t}'\boldsymbol{\mu} - \mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}/2)}$, $\mathbf{t} \in \mathbb{R}^p$.

Proof.

Again, we use $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$, which gives $\mathbf{X} = \boldsymbol{\mu} + \Sigma^{1/2}\mathbf{Y}$. Hence, we have, for $\mathbf{t} \in \mathbb{R}^{\rho}$,

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}'\boldsymbol{X})] = \mathbb{E}\left[\exp(i\boldsymbol{t}'\boldsymbol{\mu})\right]\mathbb{E}\left[\exp(i\boldsymbol{t}'\boldsymbol{\Sigma}^{1/2}\boldsymbol{Y})\right].$$

Denoting $\mathbf{u}' = \mathbf{t}' \Sigma^{1/2}$ and using the fact that $Y_1, \ldots, Y_p \stackrel{iid}{\sim} N(0, 1)$,

$$\mathbb{E}\left[\exp(i\mathbf{t}'\boldsymbol{\Sigma}^{1/2}\mathbf{Y})\right] = \mathbb{E}\left[\exp(i\mathbf{u}'\mathbf{Y})\right] = \mathbb{E}\left[\prod_{j=1}^{p}\exp(iu_{j}Y_{j})\right] = \prod_{i=1}^{p}\phi_{Y_{i}}(u_{i}) = \prod_{i=1}^{p}\exp\left(-u_{i}^{2}/2\right)$$
$$= \exp(-\mathbf{u}'\mathbf{u}/2) = \exp(-\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}/2),$$

where the u_i are the components of \mathbf{u} .

Also true with more general definitions of the MVN, i.e., with Σ not necessarily positive-definite but positive semi-definite (sometimes denoted $\Sigma \geq 0$ in the following); see below.

Theorem: linear combination of components

Let $\mathbf{X} \sim \mathit{N}_{p}(\mu, \Sigma), \, \Sigma > 0$. For any $\mathbf{a} \in \mathbb{R}^{p} \backslash \{\mathbf{0}\}$,

$$\mathbf{a}'\mathbf{X} \sim N(\mathbf{a}'\boldsymbol{\mu},\mathbf{a}'\boldsymbol{\Sigma}\mathbf{a}).$$

Proof.

Let $\mathbf{a} \in \mathbb{R}^{p} \setminus \{\mathbf{0}\}$. The cf of $Y = \mathbf{a}'\mathbf{X}$ is

$$\phi_Y(t) = \exp(itY) = \exp(it\mathbf{a}'\mathbf{X}) = \phi_{\mathbf{X}}(t\mathbf{a}) = \exp(it\mathbf{a}'\boldsymbol{\mu} - t^2\mathbf{a}'\boldsymbol{\Sigma}\mathbf{a}/2),$$

which is the cf of a normal random variable with mean $\mathbf{a}'\mu$ and variance $\mathbf{a}'\Sigma\mathbf{a}$.

Following the idea of the Cramér-Wold device, we can give a more general (and density-free) definition of the MND.

Linear combinations-based definition

A *p*-dimensional rv **X** has the *p*-dimensional normal distribution iff $\mathbf{a}'\mathbf{X}$ is univariate normal for any $\mathbf{a} \in \mathbb{R}^p$.

Comments on the linear combinations-based definition

- One can prove the existence of the MND defined in this way using the cf and univariate normality. The MND with mean μ and covariance Σ defined in this way is also denoted $N_p(\mu, \Sigma)$.
- Only $\Sigma \ge 0$ is required. If $\Sigma > 0$, then the df of **X** is absolutely continuous with density given in (1).
- If Σ is not positive-definite, we say that the MND is singular and one can define the singular density using the generalized inverse.
- Geometric interpretation.

Theorem: linear transformation

Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\boldsymbol{\Sigma} \geq 0$, and $\boldsymbol{B} \in \mathbb{R}^{k \times p}$, $\mathbf{b} \in \mathbb{R}^k$. We have

$$BX + b \sim N_k(B\mu + b, B\Sigma B').$$
 (3)

Proof.

Let $\mathbf{c} \in \mathbb{R}^k$ and let us denote $\mathbf{Y} = B\mathbf{X} + \mathbf{b}$. Then $\mathbf{c}'\mathbf{Y} = \mathbf{c}'B\mathbf{X} + \mathbf{c}'\mathbf{b} = \mathbf{a}'\mathbf{X} + \mathbf{c}'\mathbf{b}$, where $\mathbf{a} = B'\mathbf{c} \in \mathbb{R}^p$. We know that $\mathbf{a}'\mathbf{X}$ is univariate normal and thus $\mathbf{a}'\mathbf{X} + \mathbf{c}'\mathbf{b}$ as well. Thus, \mathbf{Y} is multivariate normal. We have $\mathrm{E}(\mathbf{Y}) = B\mathrm{E}(\mathbf{X}) + \mathbf{b} = B\mu + \mathbf{b}$ and $\mathrm{V}(\mathbf{Y}) = B\mathrm{V}(\mathbf{X})B' = B\Sigma B'$. The result follows.

Corollary

Any subset of elements of a multinormal vector itself has a MND. In particular the individual elements each have univariate normal distributions.

Theorem

- **1** Two p and q-dimensional multinormal rvs \mathbf{X} , \mathbf{Y} are independent iff $C(\mathbf{X}, \mathbf{Y}) = \mathbf{0}_{p \times q}$, i.e., iff they are uncorrelated.
- For two multinormal vectors, pairwise independence of their components implies complete independence.

Proof.

The cf of $\mathbf{Z}=(\mathbf{X}',\mathbf{Y}')'$ factorizes as required only when the corresponding submatrix of the covariance matrix of \mathbf{Z} is zero. This happens only when the vectors are uncorrelated.

Corollary

Let $\mathbf{X} \sim N_{\rho}(\mu, \Sigma)$, $\Sigma > 0$ and $A \in \mathbb{R}^{k_1 \times \rho}$, $B \in \mathbb{R}^{k_2 \times \rho}$. Then $A\mathbf{X}$ and $B\mathbf{X}$ are independent iff $A\Sigma B' = 0_{k_1 \times k_2}$.

Proof.

We know from the previous theorem that $A\mathbf{X}$ and $B\mathbf{X}$ are independent iff $\mathrm{C}(A\mathbf{X},B\mathbf{X})=0_{k_1\times k_2}$. Thus, the fact that

$$C(AX, BX) = AC(X, X)B' = A\Sigma B'$$

vields the result.

Partitioning and marginal distributions

Let $\mathbf{X} \sim N_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and write $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$, where \mathbf{X}_1 and \mathbf{X}_2 are k- and $(\rho - k)$ -dimensional, respectively. Introducing in the same way $\boldsymbol{\mu} = (\boldsymbol{\mu}_1', \boldsymbol{\mu}_2')'$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}$, we have

$$\mathbf{X}_1 \sim \textit{N}_\textit{k}(\mu_1, \Sigma_{11})$$
 and $\mathbf{X}_2 \sim \textit{N}_\textit{p-k}(\mu_2, \Sigma_{22}).$

Proof.

We have $\mathbf{X}_1 = B\mathbf{X}$, where $B = [I_k, 0_{k \times (p-k)}]$. Now, $B\boldsymbol{\mu} = \boldsymbol{\mu}_1$. Moreover, $B\boldsymbol{\Sigma} = [\boldsymbol{\Sigma}_{11}, \boldsymbol{\Sigma}_{12}]$ and thus $B\boldsymbol{\Sigma}B' = \boldsymbol{\Sigma}_{11}$. Hence applying (3) we obtain the result for \mathbf{X}_1 . The same reasoning with $B = [0_{(p-k)\times k}, I_{p-k}]$ yields the result for \mathbf{X}_2 .

Convolution

Let $\mathbf{X} \sim N_{\rho}(\mu, \Sigma)$ and $\mathbf{Y} \sim N_{\rho}(\tilde{\mu}, \tilde{\Sigma})$. If they are independent, then

$$\mathbf{X} + \mathbf{Y} \sim N_{p}(\boldsymbol{\mu} + \tilde{oldsymbol{\mu}}, \Sigma + \tilde{\Sigma}).$$

Proof.

It is straightforward using cfs.

Outline

- Density-based definition
- Properties and more general definitions
- 3 Sampling from a multivariate normal distribution
- 4 Conditional distributions and multiple correlations

Alternative definition

A rv $\mathbf{X} = (X_1, \dots, X_p)'$ has a multivariate normal distribution iff

$$\mathbf{X} \stackrel{d}{=} \boldsymbol{\mu} + A \mathbf{Z},$$
 (4)

where $\mathbf{Z} = (Z_1, \dots, Z_k)'$ with $Z_1, \dots, Z_k \stackrel{iid}{\sim} N(0, 1)$, $A \in \mathbb{R}^{p \times k}$ and $\mu \in \mathbb{R}^p$.

From above, we know that if X is defined by (4), then

$$\mathbf{X} \sim N_{\rho}(\mu + AE(\mathbf{Z}), AV(\mathbf{Z})A'), \quad \text{i.e.,} \quad \mathbf{X} \sim N_{\rho}(\mu, AA').$$

• In the non-singular case where $\operatorname{rank}(A) = p \le k$, $\Sigma = AA'$ has full rank p and is therefore invertible (non-singular) and positive definite \implies the df of **X** is absolutely continuous with density given in (1).

For $\Sigma > 0$, assume that $AA' = \Sigma$ and that **X** is defined as in (4). Then $\mathbf{X} \sim N_p(\mu, \Sigma)$.

⇒ previous definition provides a simulation recipe for multinormal vectors.

Cholesky factorization of matrices

Any symmetric, positive-definite matrix Σ can be written as $\Sigma = AA'$ for a lower triangular matrix A with positive diagonal elements. A is known as the Cholesky factor.

Sampling from $N_p(\mu, \Sigma)$, $\Sigma > 0$

- **1** Perform a Cholesky decomposition of Σ to obtain the Cholesky factor A.
- ② Generate $Z_1, \ldots, Z_p \stackrel{iid}{\sim} N(0, 1)$.
- **3** Return $\mathbf{X} = \mu + A\mathbf{Z}$, where $\mathbf{Z} = (Z_1, \dots, Z_p)'$.

Outline

- Density-based definition
- Properties and more general definitions
- 3 Sampling from a multivariate normal distribution
- 4 Conditional distributions and multiple correlations

Preliminary result

Lemma

Let $\mathbf{X} \sim N_p(\mu, \Sigma)$, $\Sigma > 0$, and write $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$, where \mathbf{X}_1 and \mathbf{X}_2 are k- and (p-k)-dimensional, respectively. Moreover, let $\mathbf{X}_{2.1} = \mathbf{X}_2 - \Sigma_{21}\Sigma_{11}^{-1}\mathbf{X}_1$. Then

$$\mathbf{X}_1 \sim N_k(\mu_1, \Sigma_{11})$$
 and $\mathbf{X}_{2.1} \sim N_{p-k}(\mu_{2.1}, \Sigma_{22.1}),$

where

$$\mu_{2.1} = \mu_2 - \Sigma_{21} \Sigma_{11}^{-1} \mu_1$$
 and $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

Furthermore, X_1 and $X_{2,1}$ are independent.

Proof.

We have $\mathbf{X}_1 = A\mathbf{X}$, where $A = [I_k, 0_{k \times (p-k)}]$, and $\mathbf{X}_{2.1} = B\mathbf{X}$, where $B = [-\Sigma_{21}\Sigma_{11}^{-1}, I_{p-k}]$. Equation (3) yields the first result about normality. Check it in detail! Now, it is easily checked that $A\Sigma B' = 0$, which yields the independence.

Conditional distribution

Theorem

Let **X** as before with $\Sigma > 0$. Then

$$\mathbf{X}_2|\mathbf{X}_1 = \mathbf{x}_1 \sim \mathcal{N}_{p-k}(\boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \Sigma_{22.1}).$$

Proof.

As $\mathbf{X}_{2.1}$ is independent of \mathbf{X}_1 , the distribution of $\mathbf{X}_{2.1}|\mathbf{X}_1$ is the same as the distribution of $\mathbf{X}_{2.1}$. Now, $\mathbf{X}_2 = \mathbf{X}_{2.1} + \Sigma_{21}\Sigma_{11}^{-1}\mathbf{X}_1$, and the latter term is constant when \mathbf{X}_1 is given. Thus the conditional distribution of $\mathbf{X}_2|\mathbf{X}_1$ is multivariate normal. Moreover, its conditional mean is

$$\begin{split} \mathrm{E}[\mathbf{X}_{2}|\mathbf{X}_{1}] &= \mathrm{E}[\mathbf{X}_{2.1}|\mathbf{X}_{1}] + \mathrm{E}[\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\mathbf{X}_{1}|\mathbf{X}_{1}] = \boldsymbol{\mu}_{2.1} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\mathbf{X}_{1} \\ &= \boldsymbol{\mu}_{2} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{X}_{1} - \boldsymbol{\mu}_{1}), \end{split}$$

and

$$V[\boldsymbol{X}_{2}|\boldsymbol{X}_{1}] = V[\boldsymbol{X}_{2.1}|\boldsymbol{X}_{1}] + V[\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{X}_{1}|\boldsymbol{X}_{1}] = V(\boldsymbol{X}_{2.1}) = \boldsymbol{\Sigma}_{22.1}.$$

Bivariate case

Example: bivariate case

Let $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$

We have

$$\Sigma_{21}\Sigma_{11}^{-1} = \rho\sigma_1\sigma_2/\sigma_1^2 = \rho\sigma_2/\sigma_1$$

and

$$\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} = \sigma_2^2 - \rho^2 \sigma_1^2 \sigma_2^2 / \sigma_1^2 = \sigma_2^2 (1 - \rho^2).$$

Thus,

$$X_2|X_1 = x_1 \sim N\left(\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(x_1 - \mu_1), \sigma_2^2(1 - \rho^2)\right).$$

- Mean is strictly increasing wrt x_1 if $\rho > 0$ and strictly decreasing if $\rho < 0$.
- The larger $|\rho|$, the smaller the variance, i.e., the more information X_1 gives about X_2 .
- If, e.g., $\rho > 0$ and $\sigma_2 = \sigma_1$, mean of X_2 does not increase relative to μ_2 as much as x_1 increases relative to $\mu_1 \implies$ "regression".

Comments on the general case

- The conditional mean depends only linearly on the variates held fixed.
- In general, if there are positive covariances between \mathbf{X}_1 and \mathbf{X}_2 , then a realization of \mathbf{X}_1 greater than μ_1 (componentwise) will result in a positive adjustment of the conditional mean (componentwise).
- Knowing that X₁ = x₁ alters the covariance matrix, but the new covariance matrix does not depend on x₁.
- The matrix $\beta = \Sigma_{21}\Sigma_{11}^{-1}$ is called the matrix of regression coefficients of \mathbf{X}_2 on \mathbf{x}_1 , and $\boldsymbol{\mu}_2 + \beta(\mathbf{x}_1 \boldsymbol{\mu}_1)$ is termed the regression function.
- The rv $\mathbf{X}_2 \mu_2 \beta(\mathbf{X}_1 \mu_1)$ is called the vector of residuals of \mathbf{X}_2 from its regression on \mathbf{X}_1 . It is independent of \mathbf{X}_1 and its covariance matrix is $\Sigma_{22.1}$.

Partial variance, covariance and correlation

Let $\sigma_{ij.1,...,k}$ be the i,j-th element of $\Sigma_{22.1}$, i,j=1,...,p-k.

Definition: Partial variance and covariance

- For i, j = 1, ..., p k, $\sigma_{ij,1,...,k}$ is called the partial covariance between the i-th and j-th components of \mathbf{X}_2 .
- For i = 1, ..., p k, $\sigma_{ii.1,...,k}$ is the partial variance of the *i*-th component of \mathbf{X}_2 .

Definition: Partial correlation

For i, j = 1, ..., p - k, the partial correlation between the *i*-th and *j*-th components of \mathbf{X}_2 holding \mathbf{X}_1 (i.e., $(X_1, ..., X_k)'$) fixed is defined by

$$\rho_{ij.1,...,k} = \frac{\sigma_{ij.1,...,k}}{\sqrt{\sigma_{ij.1,...,k}}\sqrt{\sigma_{ij.1,...,k}}}.$$

- These are the counterparts of classical variance, covariance and correlation, but when holding X₁ fixed, i.e, eliminating the effect of X₁.
- Note that partial variances, covariances and correlations do not depend on the realization x₁ of X₁.

Multiple correlation coefficient

For i = 1, ..., p - k, let X_i and μ_i denote the i-th components of X_2 and μ_2 , respectively. Moreover, let β'_i be the i-th row of β .

One can easily show that $\mu_i + \beta_i'(\mathbf{X}_1 - \mu_1)$ is the best linear predictor of X_i in the sense that for all functions of \mathbf{X}_1 of the form $\mathbf{a}'\mathbf{X}_1 + c$, $\mathbf{a} \in \mathbb{R}^k$ and $c \in \mathbb{R}$, the mean squared error of the above is minimum. Related to:

Theorem

For every vector $\alpha \in \mathbb{R}^k$,

$$\operatorname{Corr}(X_i, \beta_i' \mathbf{X}_1) \geq \operatorname{Corr}(X_i, \alpha' \mathbf{X}_1).$$

Definition: multiple correlation coefficient

The maximum correlation between X_i and the linear combination $\alpha' \mathbf{X}_1$, $\alpha \in \mathbb{R}^k$, is called the multiple correlation between X_i and \mathbf{X}_1 .

→ Measure of association between one variable and a set of others.

Generalization

Let **X** be a *p*-dimensional rv (not necessarily multivariate normal) and write $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$.

- The fact that β'_iX₁ is the best linear predictor and maximizes the correlation with linear functions of X₁ depends only on the covariance structure ⇒ expression of the multiple correlation coefficient unchanged.
- We can still define the regression of X₂ on X₁ by

$$\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{X}_1 - \mu_1),$$

and the residuals can be defined as before.

 Partial covariances and correlations can be defined as the covariances and correlations of residuals.