MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

Courbes paramétrées en deux et en trois dimensions

Introduction

- Fonctions vectorielles.
- Courbes paramétrées en deux dimensions.
- Courbes paramétrées en trois dimensions.

Définition

Une fonction vectorielle en deux dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ est une fonction qui associe à chaque valeur $t \in [a, b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^2$.

Définition

Une fonction vectorielle en deux dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ est une fonction qui associe à chaque valeur $t \in [a,b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^2$.

On définit habituellement une fonction vectorielle en donnant explicitement les composantes de $\vec{r}(t)$:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}, \ a \le t \le b,$$

où x, y sont des fonctions de t.

Courbe paramétrée dans le plan

Courbe paramétrée dans le plan

Courbe paramétrée dans le plan

Définition

• L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire *t* est appelé *paramètre*.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

Définition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans le plan.

Définition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans le plan.

Le point $\vec{r}(t)$ est alors la position de l'objet à l'instant t.

Définition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

Équations paramétriques de la courbe :

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [a, b]$$

Définition

Une fonction vectorielle en trois dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ est une fonction qui associe à chaque valeur $t \in [a,b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^3$.

Définition

Une fonction vectorielle en trois dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ est une fonction qui associe à chaque valeur $t \in [a, b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^3$.

On définit habituellement une fonction vectorielle en donnant explicitement les composantes de $\vec{r}(t)$:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \ a \le t \le b,$$

où x, y, z sont des fonctions de t.

Définition

• L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire *t* est appelé *paramètre*.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

Définition

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans l'espace.

Le point $\vec{r}(t)$ est alors la position de l'objet à l'instant t.

Définition

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

Équations paramétriques de la courbe :

$$\begin{cases} x = x(t) \\ y = y(t) , t \in [a, b] \\ z = z(t) \end{cases}$$

Courbes paramétrées

Remarques importantes:

• Une paramétrisation définit une courbe ainsi qu'un sens de parcours de cette courbe : de $\vec{r}(a)$ à $\vec{r}(b)$.

Courbes paramétrées

Remarques importantes:

- Une paramétrisation définit une courbe ainsi qu'un sens de parcours de cette courbe : de $\vec{r}(a)$ à $\vec{r}(b)$.
- Il existe une infinité de paramétrisations possibles pour une courbe donnée (vue comme un ensemble de points dans le plan ou l'espace).

Résumé

• Définition de fonction vectorielle en deux et en trois dimensions.

Résumé

- Définition de fonction vectorielle en deux et en trois dimensions.
- Courbe paramétrée en deux et en trois dimensions.