TIMESERIES 2

10.23.2020

- * lots of things oscillate/vibrate/wobble/
 wiggle
- * why?

Neuron spiking

Alpha wave (EEG)

Theta wave (hippocampus)

- * feedback cycles
 - * A causes B causes C causes ... causes A
- * (but not all feedback cycles cause oscillations)

- * some feedback cycles are complicated, involving lots of variables that are related in non-linear ways
- * like the Hodgkin-Huxley equations that (mostly) govern how action potentials work in neurons

- * these complicated feedback cycles can generate periodic outputs
- * but they tend to be weird looking (like action potentials)

- * but many feedback cycles are quite simple
- * a common type is the harmonic oscillator
 - * these appear wherever acceleration (or force) is negatively proportional to location, a(t)=-bx(t)
 - * e.g. spring, rubber band,
 pendulum, most things bouncy
 or springy

* instead of complicated, weird looking outputs, harmonic oscillators always generate very nice and simple outputs:

* sine waves

- * for this (and other, more mathematical) reason(s), it's often useful to think of timeseries as the sum of a bunch of sine waves with different frequencies
- * this is called fourier analysis

- * the fourier transform is a function that figures out how to represent your timeseries as a sum of sine waves
- * every timeseries has a fourier transform
- * (although it might need infinitely many sine waves)

Joey Fourier

- * the fourier transform (FT) of a timeseries f is often written F
 - * i.e. FT(f) = F
- * if the units of f are seconds, then the units of F are (1/seconds) or hertz (Hz)

- * fourier transforms have an interesting property related to convolution:
- * given two timeseries, f and g, the fourier transform of their convolution = the element-wise product of their fourier transforms

$$FT(f*g) = F \cdot G$$

* the reverse is also true:

$$F * G = FT(f \cdot g)$$

- * this property is important, because convolution is expensive
- * oftentimes it's (much!) faster to
 - (1) take the fourier transform of both,
 - (2) take their element-wise product, and
 - (3) take the inverse fourier transform

* this property is also important because it makes the effect of filtering much more intuitive

- * to take a fourier transform of an array you can use np.fft.fft
 - * (fft is the "fast fourier transform" algorithm invented by Cooley & Tukey)
- * but you *almost never* want to use this directly
- * (unless you really know what you are doing)

THE PROBLEM WITH FOURIER TRANSFORMS

- * for the fourier transform to be invertible, its input and output have the same dimensionality
- * that means the fourier transform of a 1-million-point timeseries gives you 1 million frequencies

* this makes fourier transforms noisy, unwieldy, and unreliable

SPECTRAL ANALYSIS

- * if you want to know which frequencies make up a timeseries, you should probably compute the power spectrum or power spectral density (psd)
- * common psd methods (such as welch's periodogram) behave much more nicely than plain fourier transforms in many situations

SPECTRAL ANALYSIS

- * spectral density estimators work by taking the fourier transforms of many small snippets (aka windows) of the signal, and then averaging the results
- * thus the psd can have many fewer points than the original signal
- * which means that it's better behaved, and less sensitive to noise, etc.

THE SPECTROGRAM

- * what if we took the fourier transform of many small snippets of our timeseries, and then just looked at them instead of averaging them together?
- * this is called a spectrogram
- * a spectrogram tells you which frequencies are present in a timeseries at each time

THE SPECTROGRAM

* spectrograms are 2-dimensional arrays with time on the x-axis (columns) and frequency on the y-axis (rows)

Time

THE SPECTROGRAM

* matplotlib provides an excellent method for computing spectrograms: plt.specgram

GOOGLE SPECTROGRAM

* https://musiclab.chromeexperiments.com/ Spectrogram/

CORTEX VORTEX

* http://changlabucsf.github.io/cortexvortex/build/index.html

END