# Actuariat de l'Assurance Non-Vie # 9

A. Charpentier (UQAM & Université de Rennes 1)



ENSAE ParisTech, Octobre 2015 - Janvier 2016.

http://freakonometrics.hypotheses.org

#### Fourre-Tout sur la Tarification

- modèle collectif vs. modèle individuel
- cas de la grande dimension
- choix de variables
- choix de modèles

#### Modèle individuel ou modèle collectif? La loi Tweedie

Consider a Tweedie distribution, with variance function power  $p \in (1, 2)$ , mean  $\mu$  and scale parameter  $\phi$ , then it is a compound Poisson model,

• 
$$N \sim \mathcal{P}(\lambda)$$
 with  $\lambda = \frac{\phi \mu^{2-p}}{2-p}$ 

• 
$$Y_i \sim \mathcal{G}(\alpha, \beta)$$
 with  $\alpha = -\frac{p-2}{p-1}$  and  $\beta = \frac{\phi \mu^{1-p}}{p-1}$ 

Consversely, consider a compound Poisson model  $N \sim \mathcal{P}(\lambda)$  and  $Y_i \sim \mathcal{G}(\alpha, \beta)$ , then

- variance function power is  $p = \frac{\alpha + 2}{\alpha + 1}$
- mean is  $\mu = \frac{\lambda \alpha}{\beta}$
- scale parameter is  $\phi = \frac{\left[\lambda \alpha\right]^{\frac{\alpha+2}{\alpha+1}-1} \beta^{2-\frac{\alpha+2}{\alpha+1}}}{\alpha+1}$

# Modèle individuel ou modèle collectif? La régression Tweedie

In the context of regression

$$N_i \sim \mathcal{P}(\lambda_i) \text{ with } \lambda_i = \exp[\boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta}_{\lambda}]$$

$$Y_{j,i} \sim \mathcal{G}(\mu_i, \phi) \text{ with } \mu_i = \exp[\boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta}_{\mu}]$$

Then  $S_i = Y_{1,i} + \cdots + Y_{N,i}$  has a Tweedie distribution

- variance function power is  $p = \frac{\phi + 2}{\phi + 1}$
- mean is  $\lambda_i \mu_i$
- scale parameter is  $\frac{\lambda_i^{\frac{1}{\phi+1}-1}}{\mu_i^{\frac{\phi}{\phi+1}}} \left(\frac{\phi}{1+\phi}\right)$

There are  $1 + 2\dim(\mathbf{X})$  degrees of freedom.

# Modèle individuel ou modèle collectif? La régression Tweedie

**Remark** Note that the scale parameter should not depend on i.

A Tweedie regression is

- variance function power is  $p \in (1, 2)$
- mean is  $\mu_i = \exp[\boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta}_{\text{Tweedie}}]$
- scale parameter is  $\phi$

There are  $2 + \dim(\mathbf{X})$  degrees of freedom.

### Double Modèle Frquence - Coût Individuel

Considérons les bases suivantes, en RC, pour la fréquence

```
> freq = merge(contrat, nombre_RC)
 pour les coûts individuels
 > sinistre_RC = sinistre[(sinistre$garantie=="1RC")&(sinistre$cout>0)
2 > sinistre_RC = merge(sinistre_RC, contrat)
 et pour les co ûts agrégés par police
 > agg_RC = aggregate(sinistre_RC$cout, by=list(sinistre_RC$nocontrat)
      , FUN = 'sum')
2 > names(agg_RC)=c('nocontrat','cout_RC')
 > global_RC = merge(contrat, agg_RC, all.x=TRUE)
4 > global_RC$cout_RC[is.na(global_D0$cout_RC)]=0
```

#### Double Modèle Frquence - Coût Individuel

# Simple Modèle Coût par Police

Ofreakonometrics

#### **Comparaison des primes**

```
> freq2 = freq
2 > freq2$exposition = 1
3 > P_f = predict(reg_f,newdata=freq2,type="response")
4 > P_c = predict(reg_c,newdata=freq2,type="response")
5 \text{ prime1} = P_f*P_c
_1 > k = 1.5
2 > reg_a = glm(cout_D0~zone+bs(ageconducteur)+carburant, offset=log(
      exposition), data=global_DO, family=tweedie(var.power=k, link.power
      =0))
3 > prime2 = predict(reg_a,newdata=freq2,type="response")
 > arrows (1:100, prime1 [1:100], 1:100, prime2 [1:100], length = .1)
```

Impact du degré Tweedie sur les Primes Pures

# Impact du degré Tweedie sur les Primes Pures

Comparaison des primes pures, assurés no1, no2 et no 3 (DO)







## 'Optimisation' du Paramètre Tweedie



# Tarification et données massives (Big Data)

Problèmes classiques avec des données massives

- beaucoup de variables explicatives, k grand,  $\boldsymbol{X}^\mathsf{T}\boldsymbol{X}$  peut-être non inversible
- gros volumes de données, e.g. données télématiques
- données non quantitatives, e.g. texte, localisation, etc.





### La fascination pour les estimateurs sans biais

En statistique mathématique, on aime les estimateurs sans biais car ils ont plusieurs propriétés intéressantes. Mais ne peut-on pas considérer des estimateurs biaisés, potentiellement meilleurs ?

Consider a sample, i.i.d.,  $\{y_1, \dots, y_n\}$  with distribution  $\mathcal{N}(\mu, \sigma^2)$ . Define  $\widehat{\theta} = \alpha \overline{Y}$ . What is the optimal  $\alpha^*$  to get the best estimator of  $\mu$ ?

- bias: bias  $(\widehat{\theta}) = \mathbb{E}(\widehat{\theta}) \mu = (\alpha 1)\mu$
- variance:  $\operatorname{Var}\left(\widehat{\theta}\right) = \frac{\alpha^2 \sigma^2}{n}$
- mse: mse  $(\widehat{\theta}) = (\alpha 1)^2 \mu^2 + \frac{\alpha^2 \sigma^2}{n}$

The optimal value is  $\alpha^* = \frac{\mu^2}{\mu^2 + \frac{\sigma^2}{n}} < 1$ .

#### **Linear Model**

Consider some linear model  $y_i = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$  for all  $i = 1, \dots, n$ .

Assume that  $\varepsilon_i$  are i.i.d. with  $\mathbb{E}(\varepsilon) = 0$  (and finite variance). Write

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}, n \times 1} = \underbrace{\begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,k} \end{pmatrix}}_{\mathbf{X}, n \times (k+1)} \underbrace{\begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}}_{\mathbf{\beta}, (k+1) \times 1} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\mathbf{\varepsilon}, n \times 1}.$$

Assuming  $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})$ , the maximum likelihood estimator of  $\boldsymbol{\beta}$  is

$$\widehat{oldsymbol{eta}} = \operatorname{argmin}\{\|oldsymbol{y} - oldsymbol{X}^\mathsf{T}oldsymbol{eta}\|_{\ell_2}\} = (oldsymbol{X}^\mathsf{T}oldsymbol{X})^{-1}oldsymbol{X}^\mathsf{T}oldsymbol{y}$$

... under the assumtption that  $\boldsymbol{X}^\mathsf{T}\boldsymbol{X}$  is a full-rank matrix.

What if  $\boldsymbol{X}_i^{\mathsf{T}} \boldsymbol{X}$  cannot be inverted? Then  $\widehat{\boldsymbol{\beta}} = [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}]^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$  does not exist, but  $\widehat{\boldsymbol{\beta}}_{\boldsymbol{\lambda}} = [\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \boldsymbol{\lambda} \mathbb{I}]^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$  always exist if  $\boldsymbol{\lambda} > 0$ .

#### **Ridge Regression**

The estimator  $\widehat{\boldsymbol{\beta}} = [\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \lambda \mathbb{I}]^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$  is the Ridge estimate obtained as solution of

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} [y_i - \beta_0 - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}]^2 + \lambda \underbrace{\|\boldsymbol{\beta}\|_{\ell_2}}_{\mathbf{1}^{\mathsf{T}} \boldsymbol{\beta}^2} \right\}$$

for some tuning parameter  $\lambda$ . One can also write

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_2} \leq s} \{ \|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2} \}$$

**Remark** Note that we solve  $\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} \{ \operatorname{objective}(\beta) \}$  where

objective(
$$\beta$$
) =  $\mathcal{L}(\beta)$  +  $\mathcal{R}(\beta)$  regularization

### Going further on sparcity issues

In severall applications, k can be (very) large, but a lot of features are just noise:  $\beta_j = 0$  for many j's. Let s denote the number of relevent features, with s << k, cf Hastie, Tibshirani & Wainwright (2015),

$$s = \operatorname{card}\{S\} \text{ where } S = \{j; \beta_j \neq 0\}$$

The model is now  $y = X_{\mathcal{S}}^{\mathsf{T}} \beta_{\mathcal{S}} + \varepsilon$ , where  $X_{\mathcal{S}}^{\mathsf{T}} X_{\mathcal{S}}$  is a full rank matrix.

#### Going further on sparcity issues

Define  $\|\boldsymbol{a}\|_{\ell_0} = \sum \mathbf{1}(|a_i| > 0)$ . Ici dim $(\boldsymbol{\beta}) = s$ .

We wish we could solve

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_0} \leq s} \{ \|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2} \}$$

**Problem**: it is usually not possible to describe all possible constraints, since  $\binom{s}{k}$  coefficients should be chosen here (with k (very) large).

Idea: solve the dual problem

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}; \|\boldsymbol{Y} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\beta}\|_{\ell_2} \leq h} \{\|\boldsymbol{\beta}\|_{\ell_0}\}$$

where we might convexify the  $\ell_0$  norm,  $\|\cdot\|_{\ell_0}$ .

# Regularization $\ell_0$ , $\ell_1$ et $\ell_2$



#### Going further on sparcity issues

On  $[-1,+1]^k$ , the convex hull of  $\|\boldsymbol{\beta}\|_{\ell_0}$  is  $\|\boldsymbol{\beta}\|_{\ell_1}$ 

On  $[-a, +a]^k$ , the convex hull of  $\|\boldsymbol{\beta}\|_{\ell_0}$  is  $a^{-1}\|\boldsymbol{\beta}\|_{\ell_1}$ 

Hence,

$$\widehat{oldsymbol{eta}} = \mathop{\mathrm{argmin}}_{oldsymbol{eta}; \|oldsymbol{eta}\|_{\ell_1} \leq \widetilde{s}} \{ \|oldsymbol{Y} - oldsymbol{X}^\mathsf{T} oldsymbol{eta}\|_{\ell_2} \}$$

is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

$$\widehat{oldsymbol{eta}} = \operatorname{argmin}\{\|oldsymbol{Y} - oldsymbol{X}^\mathsf{T}oldsymbol{eta}\|_{\ell_2} + \lambda \|oldsymbol{eta}\|_{\ell_1}\}$$

# LASSO Least Absolute Shrinkage and Selection Operator

$$\widehat{\boldsymbol{\beta}} \in \operatorname{argmin}\{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T}\boldsymbol{\beta}\|_{\ell_2} + \lambda \|\boldsymbol{\beta}\|_{\ell_1}\}$$

is a convex problem (several algorithms\*), but not strictly convex (no unicity of the minimum). Nevertheless, predictions  $\hat{y} = x^{\mathsf{T}} \hat{\beta}$  are unique

\* MM, minimize majorization, coordinate descent Hunter (2003).

# **Optimal LASSO Penalty**

Use cross validation, e.g. K-fold,

$$\widehat{\boldsymbol{\beta}}_{(-k)}(\lambda) = \operatorname{argmin} \left\{ \sum_{i \notin \mathcal{I}_k} [y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}]^2 + \lambda \|\boldsymbol{\beta}\| \right\}$$

then compute the sum of the squared errors,

$$Q_k(\lambda) = \sum_{i \in \mathcal{I}_k} [y_i - \boldsymbol{x}_i^\mathsf{T} \widehat{\boldsymbol{\beta}}_{(-k)}(\lambda)]^2$$

and finally solve

$$\lambda^* = \operatorname{argmin} \left\{ \overline{Q}(\lambda) = \frac{1}{K} \sum_k Q_k(\lambda) \right\}$$

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) suggest the largest  $\lambda$  such that

$$\overline{Q}(\lambda) \leq \overline{Q}(\lambda^*) + \operatorname{se}[\lambda^*] \text{ with } \operatorname{se}[\lambda]^2 = \frac{1}{K^2} \sum_{k=1}^K [Q_k(\lambda) - \overline{Q}(\lambda)]^2$$

```
> freq = merge(contrat, nombre_RC)
2 > freq = merge(freq,nombre_D0)
 > freq[,10] = as.factor(freq[,10])
4 > mx=cbind(freq[,c(4,5,6)],freq[,9]=="D",
      freq[,3]%in%c("A","B","C"))
_5 > colnames(mx)=c(names(freq)[c(4,5,6)],"
      diesel", "zone")
 > for(i in 1:ncol(mx)) mx[,i]=(mx[,i]-mean(
     mx[,i]))/sd(mx[,i])
 > names(mx)
 [1]
       puissance agevehicule ageconducteur
        diesel
                     zone
 > library(glmnet)
10 > fit = glmnet(x=as.matrix(mx), y=freq[,11],
       offset=log(freq[,2]), family = "poisson
      ")
 > plot(fit, xvar="lambda", label=TRUE)
```

### LASSO, Fréquence RC



## LASSO, Fréquence RC

```
plot(fit,label=TRUE)
```

- 3 > plot(cvfit)
- 4 > cvfit\$lambda.min
- 5 [1] 0.0002845703
- 6 > log(cvfit\$lambda.min)
- 7 [1] -8.16453
  - Cross validation curve + error bars





```
> freq = merge(contrat, nombre_RC)
2 > freq = merge(freq,nombre_D0)
 > freq[,10] = as.factor(freq[,10])
4 > mx=cbind(freq[,c(4,5,6)],freq[,9]=="D",
      freq[,3]%in%c("A","B","C"))
_5 > colnames(mx)=c(names(freq)[c(4,5,6)],"
      diesel", "zone")
 > for(i in 1:ncol(mx)) mx[,i]=(mx[,i]-mean(
     mx[,i]))/sd(mx[,i])
 > names(mx)
 [1]
       puissance agevehicule ageconducteur
        diesel
                     zone
 > library(glmnet)
10 > fit = glmnet(x=as.matrix(mx), y=freq[,12],
       offset=log(freq[,2]), family = "poisson
      ")
 > plot(fit, xvar="lambda", label=TRUE)
```

### LASSO, Fréquence DO



# LASSO, Fréquence DO

```
> plot(fit,label=TRUE)
```

- 2 > cvfit = cv.glmnet(x=as.matrix(mx), y=freq [,12], offset=log(freq[,2]), family = poisson")
- > plot(cvfit)
- > cvfit\$lambda.min
- [1] 0.0004744917
- > log(cvfit\$lambda.min)
- [1] -7.653266
  - Cross validation curve + error bars





# Model Selection and Gini/Lorentz (on incomes)

Consider an ordered sample  $\{y_1, \dots, y_n\}$ , then Lorenz curve is

$$\{F_i, L_i\}$$
 with  $F_i = \frac{i}{n}$  and  $L_i = \frac{\sum_{j=1}^i y_j}{\sum_{j=1}^n y_j}$ 

The theoretical curve, given a distribution F, is

$$u \mapsto L(u) = \frac{\int_{-\infty}^{F^{-1}(u)} t dF(t)}{\int_{-\infty}^{+\infty} t dF(t)}$$

see Gastwirth (1972, econpapers.repec.org)

# Model Selection and Gini/Lorentz (on incomes)



# Model Selection and Gini/Lorentz (on incomes)

Gini index is the ratio of the areas  $\frac{A}{A+B}$ . Thus,

$$G = \frac{2}{n(n-1)\overline{x}} \sum_{i=1}^{n} i \cdot x_{i:n} - \frac{n+1}{n-1}$$
$$= \frac{1}{\mathbb{E}(Y)} \int_{0}^{\infty} F(y)(1 - F(y)) dy$$



 $\rightarrow$  Gini(x)

2 [1] 0.4640003

### **Comparing Models**

Consider an ordered sample  $\{y_1, \dots, y_n\}$  of incomes, with  $y_1 \leq y_2 \leq \dots \leq y_n$ , then Lorenz curve is

$$\{F_i, L_i\}$$
 with  $F_i = \frac{i}{n}$  and  $L_i = \frac{\sum_{j=1}^i y_j}{\sum_{j=1}^n y_j}$ 

We have observed losses  $y_i$  and premiums  $\widehat{\pi}(\boldsymbol{x}_i)$ . Consider an ordered sample by the model, see Frees, Meyers & Cummins (2014),  $\widehat{\pi}(\boldsymbol{x}_1) \geq \widehat{\pi}(\boldsymbol{x}_2) \geq \cdots \geq \widehat{\pi}(\boldsymbol{x}_n)$ , then plot

$$\{F_i, L_i\}$$
 with  $F_i = \frac{i}{n}$  and  $L_i = \frac{\sum_{j=1}^i y_j}{\sum_{j=1}^n y_j}$ 





# Choix et comparaison de modèle en tarification



See Frees et al. (2010) or Tevet (2013).