

DIMENSIONALITY REDUCTION OF MASSIVE SPARSE DATASETS USING CORESETS

Poster by Abzal Yessengazy and Jo Quinn Work by Dan Feldman, Mikhail Volkov, Daniela Rus [1]

INTRODUCTION

Given a (large) dataset \mathcal{D} , and an algorithm \mathcal{A} with $\mathcal{A}[\mathcal{D}]$ intractable, can we efficiently reduce \mathcal{D} to \mathcal{C} such that $\mathcal{A}[\mathcal{C}]$ is fast and $\mathcal{A}[\mathcal{C}] \approx \mathcal{A}[\mathcal{D}]$?

Often A is a **dimensionality reduction** algorithm. It is often desirable to reduce the dimension of the data, to improve on storage overheads, assist with visualisation, and help avoid the "curse of dimensionality". Some dimensionality reduction techniques include:

- Principal Components Analysis (PCA)
- Random Projection
- Low Rank Approximation

BACKGROUND

Coresets come from computational geometry. A strict definition depends on the problem at hand; in short we want to approximate a large set of points with a smaller weighted subset.

The paper [1] focuses on dimensionality reduction, and defines a coreset as follows:

$$C = \{w_i a_i | w_i > 0, i = 1, ..., n\}$$

such that for every k-subspace S of \mathbb{R}^d ,

$$\left| \sum_{i} dist^{2}(a_{i}, S) - \sum_{i} dist^{2}(w_{i}a_{i}, S) \right|$$

$$\leq \epsilon \sum_{i} dist^{2}(a_{i}, S)$$

Left: full dataset, right: coreset [3].

We want to minimise the cardinality

$$|C| = \{w_i | w_i \neq 0, i = 1, ..., n\}.$$

KEY FINDINGS

The key findings are as follows:

- 1. **Proof** that one can always find an (ϵ, k) coreset of size $O(k/\epsilon^2)$; not dependent on either n or d!.
- 2. An algorithm for computing such a coreset.
- 3. Application of these methods to two open problems: low rank approximation and 1mean queries.

Previous best method could find a coreset of size $O(dk^3/\epsilon^2)$ [2].

EXAMPLE: WIKIPEDIA

We can associate an occurence matrix with the English Wikipedia, documenting the number of occurrences of a word in each document:

	word1	word2	word3	word4
doc1	0	0	1	0
doc2	0	0	0	0
doc3	1	0	0	0

This matrix is **fat** (O(d) = O(n)) and **sparse**.

- Want to do Latent Semantic Analysis (ie SVD with occurence matrices).
- Modern SVD implementations crash or take several days.
- Coreset algorithm doesn't depend on number of rows or columns
- Since coreset consists of few weighted rows, it tells us which records in are most important, and how much so!

Running time of SVD Coreset vs MATLAB SVD

METHODOLOGY

 (ϵ, k) -coreset C is computed as follows:

- 1. Restructure input points using k-rank SVDdecomposition $\bar{U}\bar{D}V^T$ into new input matrix P.
- 2. Normalise P to get X
- 3. Arbitrarily select starting point $X_i = X_1$, and weight $w_j = 1$ (with all other w_i set to 0)
- 4. Compute farthest point from X_i by projecting the weighted points onto the current point.
- 5. α = ratio of distances from current point, current center, and new center, and weights are updated based on this new α .

The algorithm runs for k/ϵ^2 iterations, or until α converges to 1

Output: sparse vector of weights

Illustration of steps 3 and 4

CONCLUSION

Comparison of sampling methods with k=50 coresets

Now have a way of finding coresets independent of size of the data. Applications include

- Fast approximations: efficiently compute low-rank approximations
- Sparse data: handle massive datasets with limited memory
- Streaming parallel computation: can compute C in embarrassingly parallel fashion
- Interpretation: weights w_i can tell us the most important data points

Coresets are ideal for modern dimensionality reduction challenges!

REFERENCES

- [1] Dan Feldman, Mikhail Volkov, and Daniela Rus. Dimensionality reduction of massive sparse datasets using coresets. In Advances in Neural Information Processing Systems, pages 2766–2774, 2016.
- [2] Kasturi Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems. arXiv preprint arXiv:1209.4893, 2012.
- Sebastian Mair and Ulf Brefeld. Coresets for archetypal analysis. In *Advances in Neural Information Processing* Systems, pages 7245–7253, 2019.