Y Connected Generator with Delta Load

- □ Configuration
 - Voltage and current relationships
- □ Example Problem
 - Balanced load, ABC phase sequence
 - Finding the currents and voltages
 - Checking our results
 - Simulation verification
 - □ Voltage and current measurements

Y Connected Generator with Delta Connected Load

Notes:

$$\mathbf{V}_{\phi} = \mathbf{E}_{L}$$

That is to say:

Vca = Eca

Vab = EAB

Vbc = EBC

$$I_L = \sqrt{3}I_{\phi}$$

We'll use KCL to check this shortly...

Y Connected Generator with Delta Connected Load - Example

- a. Find the phase angles θ_2 and θ_3 .
- b. Find the current in each phase of the load.
- c. Find the magnitude of the line currents.

Y Connected Generator with Delta Connected Load - Example

ABC phase sequence described by the line voltages

a. For an ABC sequence,

$$\theta_2 = -120^{\circ}$$
 and $\theta_3 = +120^{\circ}$

 $\mathbf{V}_{\phi} = \mathbf{E}_{L}$. Therefore,

$$\mathbf{V}_{ab} = \mathbf{E}_{AB}$$
 $\mathbf{V}_{ca} = \mathbf{E}_{CA}$ $\mathbf{V}_{bc} = \mathbf{E}_{BC}$

The phase currents are

$$\mathbf{I}_{ab} = \frac{\mathbf{V}_{ab}}{\mathbf{Z}_{ab}} = \frac{150 \text{ V} \angle 0^{\circ}}{6 \Omega + j 8 \Omega} = \frac{150 \text{ V} \angle 0^{\circ}}{10 \Omega \angle 53.13^{\circ}}$$
$$= 15 \text{ A} \angle -53.13^{\circ}$$

Y Connected Generator with Delta Connected Load - Example

$$\mathbf{I}_{bc} = \frac{\mathbf{V}_{bc}}{\mathbf{Z}_{bc}} = \frac{150 \text{ V} \angle -120^{\circ}}{10 \Omega \angle 53.13^{\circ}} = 15 \text{ A} \angle -173.13^{\circ}$$

$$I_{ca} = \frac{V_{ca}}{Z_{ca}} = \frac{150 \text{ V} \angle + 120^{\circ}}{10 \Omega \angle 53.13^{\circ}} = 15 \text{ A} \angle 66.87^{\circ}$$

c.
$$I_L = \sqrt{3}I_{\phi} = (1.73)(15 \text{ A}) = 25.95 \text{ A}$$
. Therefore,
$$I_{Aa} = I_{Bb} = I_{Cc} = \textbf{25.95 A}$$

As a check, solving for line current IAa:

KCL at node a:

$$IAa = 15 A < -53.13^{\circ} - 15 A < 66.87^{\circ}$$

$$IAa = 25.98 A < -83.13^{\circ}$$

Y Connected Generator with Delta Connected Load - Simulation

- Phase voltages in the Y are equal to (line voltages)/SQRT(3)
- L = 21.22mH for j8 Ohms (@ 60 Hz)

Y Connected Generator with Delta Connected Load - Simulation

- 212Vpk = 150Vrms
- **Vab** = 150Vrms < 0 Deg, reference
- 5.5msec -> 119 Deg ~ 120 Deg
- Vca leads by 120 Deg
- Vbc lags by 120 Deg

Y Connected Generator with Delta Connected Load - Simulation

- |**Ica**| = 211.5/10 = 21.15Apk ~ 15 Arms
- |**IAa**| = 366.6/10 = 36.66Apk ~ 25.95 Arms