AYT Fizik Formülleri

İsa Cebir

24.05.2025

İçindekiler		
1	Hız-Zaman Denklemi	2
2	Konum-Zaman Denklemi	2
3	Zamansız Hız Denklemi	2
4	İş	2
5	Güç	2
6	Kinetik Enerji	2
7	Potansiyel Enerji	2
8	Yay Potansiyeli	2
9	Kuvvet	2
10	Tork	3
11	İtme	3
12	Çizgisel Momentum	3
13	Elektriksel Kuvvet	3
14	Elektriksel Alan	3
15	Elektriksel Potansiyel Enerji	3
16	Elektriksel Potansiyel	3
17	P.L.A. Elektriksel Alan	3
18	P.L.A. Parçacığa Etki Eden Kuvvet	3
19	P.L.A. Potansiyel Farkı	3
20	P.L.A. Kinetik Enerji Değişimi	4
21	Sığaç Kapasite Formülü	4
22	Fotonun Enerjisi	4
23	Fotoelektrik Denklemi	4
24	De Broglie Denklemi	4

1 Hız-Zaman Denklemi

 $\vec{v} = \vec{v}_0 + \vec{a} \cdot t$

- \vec{v} : Son hiz
- \vec{v}_0 : Başlangıç hızı
- \vec{a} : İvme
- t: Zaman

2 Konum-Zaman Denklemi

$$\vec{x} = \vec{x}_0 + \vec{v}_0 \cdot t + \frac{1}{2}\vec{a} \cdot t^2$$

- \vec{x} : Son konum
- \vec{x}_0 : Başlangıç konumu
- \vec{v}_0 : Başlangıç hızı
- \vec{a} : İvme
- t: Zaman

3 Zamansız Hız Denklemi

$$v^2 = v_0^2 + 2a \cdot \Delta x$$

- $\bullet \ v$: Son hızın büyüklüğü
- $\bullet \ v_0\colon \mathsf{Başlangı}$ hızının büyüklüğü
- a: İvme
- Δx : Yer değiştirme

4 \dot{I}_{\S}

$$W = \vec{F} \cdot \vec{d} = Fd \cos \theta$$

- \bullet W:İş
- \vec{F} : Kuvvet
- \vec{d} : Yer değiştirme
- $\bullet \ \theta\colon \mathbf{Kuvvet}$ ile yer değiştirme arasındaki açı

5 Güç

$$P = \frac{W}{t}$$

- *P* : Güç
- W : Yapılan iş
- t: Zaman

6 Kinetik Enerji

$$K = \frac{1}{2}mv^2$$

- K: Kinetik enerji
- m: Kütle
- v: H₁z

7 Potansiyel Enerji

$$U = mgh$$

- \bullet U: Potansiyel enerji
- \bullet m: Kütle
- g: Yerçekimi ivmesi
- h: Yükseklik

8 Yay Potansiyeli

$$U = \frac{1}{2}kx^2$$

- \bullet U: Yayın potansiyel enerjisi
- \bullet k: Yay sabiti
- ullet x: Yayın uzama veya sıkışma miktarı

9 Kuvvet

$$\vec{F} = m \cdot \vec{a}$$

- \vec{F} : Kuvvet
- m: Kütle
- \vec{a} : İvme

10 Tork

 $\vec{\tau} = \vec{d} \times \vec{F}$

- $\vec{\tau}$: Tork
- \vec{d} : Denge merkezine olan dik uzaklık
- \vec{F} : Kuvvet

11 İtme

 $\vec{I} = \vec{F}_{\rm net} \times \Delta t$

- \vec{I} : İtme
- $\vec{F}_{\rm net}$: Uygulanan kuvvet
- Δt : Geçen zaman

12 Çizgisel Momentum

$$\vec{p} = m \cdot \vec{v}$$

- \vec{p} : Çizgisel momentum
- m: Kütle
- \vec{v} : Hiz

13 Elektriksel Kuvvet

$$\vec{F} = k \frac{q_1 \cdot q_2}{r^2}$$

- \vec{F} : Elektriksel kuvvet
- q_1, q_2 : Yükler
- \bullet r: Yükler arası uzaklık
- k: Coulomb sabiti

14 Elektriksel Alan

$$\vec{E} = \frac{\vec{F}}{q}$$

- \vec{E} : Elektriksel alan
- \vec{F} : Elektriksel kuvvet
- q: Test yükü

15 Elektriksel Potansiyel Enerji

 $U = \pm k \frac{q_1 \cdot q_2}{r}$

- U: Elektriksel potansiyel enerji
- q_1, q_2 : Yükler
- r: Yükler arası uzaklık
- k: Coulomb sabiti

16 Elektriksel Potansiyel

$$V = \pm k \frac{Q}{r}$$

- \bullet V: Elektriksel potansiyel
- $\bullet~Q\colon \mathbf{Noktasal}$ yük
- r: Uzaklık
- k: Coulomb sabiti

17 Paralel Levhalar Arasında Elektriksel Alan

$$E = \frac{V}{d}$$

- \bullet E: Elektriksel alan
- V: Potansiyel farkı
- d: Levhalar arası mesafe

18 Paralel Levhalar Arasında Parçacığa Etki Eden Kuvvet

$$F = q \cdot E$$

- F: Elektriksel kuvvet
- q: Yüklü parçacık
- \bullet E: Elektriksel alan

19 Paralel Levhalar Arasında Potansiyel Farkı

$$V = \pm E \cdot d$$

- V: Potansiyel farkı
- \bullet E: Elektriksel alan
- \bullet d: Levhalar arası mesafe

AYT Fizik Formülleri İsa Cebir

20 Paralel Levhalar Arasında Kinetik Enerji Değişimi

$$\Delta K = \pm q \Delta V$$

- $\Delta K \colon \text{Kinetik enerji değişimi}$
- *q* : Yük
- ΔV : Potansiyel farkı

21 Sığaç Kapasite Formülü

$$C = \frac{\varepsilon A}{d}$$

- C: Kapasitans (sığa)
- $\bullet \ \varepsilon\colon {\rm Ortamın}$ elektriksel geçirgenliği
- A: Plaka yüzey alanı
- \bullet d: Plaklar arası mesafe

22 Fotonun Enerjisi

$$E = h \cdot f = \frac{hc}{\lambda}$$

- \bullet E: Fotonun enerjisi
- f: Frekans
- λ : Dalga boyu
- c: Işık hızı

23 Fotoelektrik Denklemi

$$E_q = E_0 + E_{e^-}$$

- E_g : Gelen fotonun enerjisi
- E_0 : Metalin eşik enerjisi
- $\bullet \ E_{e^-}$: Saçılan elektronun kinetik enerjisi

24 De Broglie Denklemi

$$\lambda = \frac{h}{P}$$

- λ : Parçacığın dalga boyu
- h: Planck sabiti
- P: Momentun