MACHINE LEARNING LAB-3

NAME:DILEEP

SRN:PES2UG23CS177

SEC:C


```
.csv --framework pytorch --print-tree
Running tests with PYTORCH framework
 target column: 'class' (last column)
Original dataset info:
Shape: (8124, 23)
Columns: ['cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor', 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color', 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring', 'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat', 'c
First few rows:
cap-shape: ['x' 'b' 's' 'f' 'k'] -> [5 0 4 2 3]
cap-surface: ['s' 'y' 'f' 'g'] -> [2 3 0 1]
cap-color: ['n' 'y' 'w' 'g' 'e'] -> [4 9 8 3 2]
class: ['p' 'e'] -> [1 0]
Processed dataset shape: torch.Size([8124, 23])
Number of features: 22
Features: ['cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor', 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color', 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring', 'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat']
Target: class
Framework: PYTORCH
Data type: <class 'torch.Tensor'>
```

DECISION TREE CONSTRUCTION DEMO
Total samples: 8124 Training samples: 6499 Testing samples: 1625
Constructing decision tree using training data
Decision tree construction completed using PYTORCH!
♣ DECISION TREE STRUCTURE
Root [odor] (gain: 0.9083)
├── = 0: ├── Class 0
├── = 1: ├── Class 1
— = 2: — Class 1
├─ = 3: ├─ Class 0
— = 4: — Class 1
├─ - 5:
├── [spore-print-color] (gain: 0.1469) ├── = 0:
├─ Class 0

```
= 4:
|— Class 0
             = 6:
             ├─ Class 0
          — Class 0
       - Class 1
      - Class 1
      - Class 1
 OVERALL PERFORMANCE METRICS
                      1.0000 (100.00%)
Precision (weighted): 1.0000
Recall (weighted): 1.0000
F1-Score (weighted): 1.0000
Precision (macro): 1.0000
Recall (macro):
                       1.0000
F1-Score (macro):
TREE COMPLEXITY METRICS
Maximum Depth:
Total Nodes:
                       29
Leaf Nodes:
```

1. Performance Comparison · Overall Classification Accuracy

For each dataset: Accuracy = (Number of correct predictions)
 / (Total predictions). Typical ID3 accuracy ranges from
 85100% for clean, categorical datasets.

Precision

 Precision = TP / (TP + FP). Measures the proportion of predicted positives that are actually positive. Report this for each dataset.

Recall

 Recall = TP / (TP + FN). Measures how many actual positives were correctly identified.

F1-Score

 F1 = 2 × (precision × recall) / (precision + recall). Harmonic average; balances precision and recall.

2. Tree Characteristics Analysis · Maximum Depth

 For each dataset, record the deepest level reached in the constructed tree (usually between 3-10 for medium datasets; larger for complex data).

Number of Nodes

 Count all internal and leaf nodes. More nodes = more complex tree.

Most Important Features (Root & Early Splits)

• The root and first few splits are on features with highest information gain; these explain most of the classification.

Tree Complexity vs. Dataset

 Deeper/wider trees indicate more complex/less separable data; shallow trees mean easy decision boundaries or possible overfitting on simple features.

3. Dataset-Specific Insights

Feature Contribution

 The feature chosen as root node/dominant in splits has the greatest impact on classification.

Class Balance

Check class distribution (e.g., 50:50 or highly skewed);
 imbalanced classes can bias the tree towards the majority class.

Common Decision Patterns

 Most branches may begin with the most informative attribute, with further splits often following simpler or binary features.

Overfitting Indicators

 Deep trees, high accuracy on train but low on test, and splits on rare feature values are signs of overfitting.

4. Comparative Analysis Report a) Algorithm Performance · Highest Accuracy

 The dataset with well-separated classes and most informative features will have the highest accuracy; usually the cleanest/best-labeled one.

Dataset Size Effect

 Larger datasets tend toward better generalization and stability; very small datasets risk overfitting.

Number of Features

 More features can help if they're informative, but may also introduce noise and unnecessary splits.

b) Data Characteristics Impact · Class Imbalance

 Imbalanced data makes the tree favor the majority class unless balancing or weighting is applied.

Feature Types

 Binary features (yes/no) simplify splits and may reduce tree depth. Multi-valued features create wider trees and can cause bias toward more splits (see ID3's tendency for this).

c) Practical Applications · Suitable Scenarios

 Medical diagnosis (categorical symptoms), customer segmentation, risk assessment, and educational exam marking.

· Interpretability Advantages

 Decision trees offer transparent, step-by-step classification logic, useful for non-technical stakeholders in all domains.

Performance Improvements

- For each dataset, consider:
- Pruning the tree (remove branches with little data/low info gain).
- Combining ID3 with ensemble methods (Random Forests).
- Addressing class imbalance (resampling, weighting).
- Cleaning or engineering features for stronger splits.