LECTURE 11

Boolean Algebra

Boolean Functions

The three operations of Boolean Algebra are:

- Complementation: Denoted by a bar and acts as a negation. Example: $\overline{0} = 1$ and $\overline{1} = 0$.
- > The Boolean Sum: Denoted by + or 'OR'. Example: 1+1=1; 1+0=1; 0+1=1; 0+0=0
- The Boolean Product: Denoted by '.' or by 'AND'. Example: 1.1=1; 1.0=0; 0.1=0; 0.0=0.

Boolean Functions Examples

1. Find the value of $1.0 + (\overline{0+1})$.

Solution:
$$1.0 + (\overline{0+1}) = 0 + \overline{1} = 0 + 0 = 0$$

2. Translate $1.1 + (\overline{0+1}) = 0$, into a logical equivalence.

Solution:
$$(T \land T) \lor \neg F \equiv T$$
 as $T = 1$ and $F = 0$.

3. Translate the logical equivalence $(T \land T) \lor \neg F \equiv T$ into an identity in Boolean Function

Solution:
$$1.0 + (\overline{0+1})$$

Boolean Expressions and Functions

- Let $B = \{0, 1\}$. Then $B^n = \{(x_1, x_2, x_3, \dots, x_n) | x_n \in B \text{ for } 1 \le i \le n\}$ is the set of all possible n-tuples of 0s and 1s. The variable x is called Boolean variables if it assumes values only from B, that is, if its only possible values are 0s and 1s. A function from B^n to B is called a Boolean function of degree n.
- Boolean functions can be represented using expression made up from variables and Boolean operations. The Boolean expressions in the variable $x_1, x_2, x_3, \dots, x_n$ are defined recursively as $0, 1, x_1, x_2, \dots, x_n$ are **boolean expressions**.

Boolean Expressions and Functions

1. Find the values of Boolean functions represented by $F(x,y,z) = xy + \bar{z}$

X	y	Z	xy	$ar{Z}$	$F(x,y,z) = xy + \bar{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Identities of Boolean Algebra

Identity	Name			
$\overline{\overline{x}} = x$	Law of the double complement			
$x + x = x$ $x \cdot x = x$	Idempotent laws			
$x + 0 = x$ $x \cdot 1 = x$	Identity laws			
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws			
x + y = y + x $xy = yx$	Commutative laws			
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws			
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws			
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \ \overline{y}$	De Morgan's laws			
x + xy = x $x(x + y) = x$	Absorption laws			
$x + \overline{x} = 1$	Unit property			
$x\overline{x} = 0$	Zero property			

Show that the distributive law x(y+z) = xy + xz

Solution: Can be proven using a logical equivalence table shown in slide 5.

Representing **Boolean Functions**

- Sum of Product expressions- Disjunctive normal form
- Product of Sum expressions- Conjunctive normal form

TABLE 2								
x	у	z	x + y	\bar{z}	$(x+y)\overline{z}$			
1	1	1	1	0	0			
1	1	0	1	1	1			
1	0	1	1	0	0			
1	0	0	1	1	1			
0	1	1	1	0	0			
0	1	0	1	1	1			
0	0	1	0	0	0			
0	0	0	0	1	0			

Find the sum-of-products expansion for the function $F(x, y, z) = (x + y)\overline{z}$.

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will use Boolean identities to expand the product and simplify. We find that

$$F(x, y, z) = (x + y)\overline{z}$$

$$= x\overline{z} + y\overline{z}$$
Distributive law
$$= x1\overline{z} + 1y\overline{z}$$
Identity law
$$= x(y + \overline{y})\overline{z} + (x + \overline{x})y\overline{z}$$
Unit property
$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$
Distributive law
$$= xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}.$$
Idempotent law

Second, we can construct the sum-of-products expansion by determining the values of F for all possible values of the variables x, y, and z. These values are found in Table 2. The sum-ofproducts expansion of F is the Boolean sum of three minterms corresponding to the three rows of this table that give the value 1 for the function. This gives

$$F(x, y, z) = xy\overline{z} + x\overline{y}\,\overline{z} + \overline{x}y\overline{z}.$$

It is also possible to find a Boolean expression that represents a Boolean function by taking a Boolean product of Boolean sums. The resulting expansion is called the **conjunctive normal** form or product-of-sums expansion of the function. These expansions can be found from sumof-products expansions by taking duals. How to find such expansions directly is described in Exercise 10.

Logic Gates

- Inverter/ NOT gate: Accept the value of one Boolean variable as input and produces the compliment of this value as output.
- OR gates: The input for this gate are the values of two or more Boolean variables. The output is the Boolean sum of their values.
- AND gates: The input for this gate are the values of two or more Boolean variables. The output is the Boolean product of their values.

FIGURE 3 Two ways to draw the same circuit.

FIGURE 4 Circuits that produce the outputs specified in Example 1.

Combinations of Gates

Construct circuit that produces the following output:

$$(a) (x + y) \overline{x} (b) \overline{x} (y + \overline{z}) (c) (x + y + z) (\overline{x} \overline{y} \overline{z})$$

Minimization of circuits

Karnaugh Maps: https://www.youtube.com/watch?v=PSg5MJLOPRU

Quine-McCluske Methods:

https://www.youtube.com/watch?v=e41p0zoKuXo