Quantitative Economics Lecture 2 - Probability Distributions

Richard Povey

University of Oxford

24th April 2018

richard.povey@hertford.ox.ac.uk, richard.povey@st-hildas.ox.ac.uk

With thanks to Ian Crawford, Margaret Stevens, Vanessa Berenguer-Rico.

Distribution Functions

Functions associated with Random Variables:

- Cumulative Distribution Function: $F_X(x)$
- Probability Density Function (continuous) or Probability Mass Function (discrete) : $f_X(x)$

Important - Note on Notation

- Upper case X for random variables.
- Lower case x or x_i for realisations / specific values.
- Subscripts / superscripts denote individual observations X_i .

Distribution Functions

Definition

The cumulative distribution function (CDF) of a random variable X, denoted by $F_X(x)$ is the function

$$F_X(x) = P_X(X \le x) : -\infty < x < \infty$$

Properties:

- (i) $0 \le F(x) \le 1$ for all x
- (ii) F(x) is non-decreasing in x
- (iii) $\lim_{x\to-\infty} \{F(x)\} = 0$ and $\lim_{x\to\infty} \{F(x)\} = 1$

Definition - Discrete Distribution PMF

The real-valued function $f_X(x)$ defined by $f_X(x) = P(X = x)$ is called the probability mass function (PMF) of X.

Distribution of a Discrete Random Variable

Example: Rolling two dice

Define X as the sum of the outcomes from each die:

$$f_X(x) = P(X = x)$$
 for all x .

X = x	Α	$f_X(x)$
2	$\{(1,1)\}$	1/36
3	$\{(1,2),(2,1)\}$	2/36
4	$\{(1,3),(2,2),(3,1)\}$	3/36
5	$\{(1,4),(2,3),(3,2),(1,4)\}$	4/36
6	$\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$	5/36
7	$\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$	6/36
8	$\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$	5/36
9	$\{(3,6),(4,5),(5,4),(6,3)\}$	4/36
10	$\{(4,6),(5,5),(6,4)\}$	3/36
11	$\{(5,6),(6,5)\}$	2/36
12	{(6,6)}	1/36

Distribution of a Continuous Random Variable

Definition

A continuous random variable X on a probability space (X, \mathcal{A}, P) is a real-valued function $X(\omega)$, $\omega \in \Omega$, such that for $-\infty < x < \infty$, $\{\omega | X(\omega) \le x\}$ is an event.

Definition

A probability density function (PDF) is a non-negative function f such that $\int_{-\infty}^{\infty} f_X(y) dy = 1$.

Cumulative Distribution Function:

$$F_X(x) = \int_{-\infty}^x f_X(y) dy : -\infty < x < \infty.$$

- Remark 1: It is possible to construct continuous distribution functions that do not have densities.
- **Remark 2**: Distribution functions that have densities are called absolutely continuous (the usual case).

Cumulative Distribution Functions

Example: Discrete Random Variable. Tossing a coin

$$F_X(x) = \begin{cases} 0 & -\infty < x < 0 \\ 1/2 & 0 \le x < 1 \\ 1 & 1 \le x < \infty \end{cases}$$

Cumulative Distribution Functions

Example: Choose a number from the interval [a, b] at random

Continuous Random Variable. Uniform CDF:

$$F_X(x) = \left\{ \begin{array}{ll} 0 & -\infty < x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & b \le x < \infty \end{array} \right\}$$

Uniform PDF:

$$f_X(x) = \frac{1}{b-a}$$
 for $a < x < b$

and 0 elsewhere

Discrete Random Variables

Continuous Random Variables

Bernouilli Distribution

Special Distributions

- **Discrete r.v.** Main Distributions used for QE course: Bernoulli, Binomial (Other examples: Poisson)
- Continuous r.v. Main Distributions for QE: Uniform, Normal, Chi-Square, F, Student's t (Other examples: Logistic)

Bernoulli Distribution : $X \stackrel{d}{=} B(p)$ (or $X \sim B(p)$)

Binary (dichotomous) outcomes: 0 (failure) and 1 (success).
 Example: Is gender of a new born female? (X=1 yes, X=0 no)

$$X = \left\{ \begin{array}{ll} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{array} \right\}$$

• PMF: $f_X(x) = p^x(1-p)^{1-x}$ for $x \in \{0,1\}$ and 0 elsewhere.

Binomial Distribution

Binomial Distribution : $Y \stackrel{d}{=} B(n, p)$ (or $Y \sim B(n, p)$)

- Total number of successes from n repetitions of the same Bernoulli experiment. So $Y = \sum_{i=1}^{n} [X_i]$ with each $X_i \stackrel{d}{=} B(p)$. (Important for Lecture 3.)
- Binomial random variable $X \stackrel{d}{=} B(n, p)$ takes values $\{0, 1, 2, ..., n\}$
- PMF: $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$ for $x \in \{0, 1, 2, ..., n\}$ and 0 elsewhere.
- Look in statistics textbooks for Binomial probabilities. These can get complicated. Fortunately, as we see in Lecture 2, mostly in QE we rely on n being high and a normal approximation to the B(n, p) distribution.

Binomial and Bernouilli PMF Examples

$$X \stackrel{d}{=} B(p)$$
 and $Y \stackrel{d}{=} B(3, 0.5)$

Y=y	f _Y (y)
0	0.125
1	0.375
2	0.375
3	0.125

$$P(\{(HHH)\}) = P(\{(TTT)\}) = (\frac{1}{2})^3 = 0.125$$

 $P(\{(HHT), (HTH), (THH)\}) = P(\{(TTH), (THT), (HTT)\}) = 3(\frac{1}{2})^3 = 0.375$

Characterising a Distribution

• Centrality: Expected Value

Dispersion: Variance, Standard Deviation

• Asymmetry: **Skewness**

• Tailedness: Kurtosis

Expected Value

Definition

• Let X be a discrete random variable having mass function $f_X(x)$. If $\sum_{j=1}^{\infty} [|x_j| f_X(x_j)] < \infty$, we say that X has finite expectation and we define its expectation by:

$$E[X] = \sum_{j=1}^{\infty} [x_j f_X(x_j)] = \sum_{j=1}^{\infty} [x_j P(X = x_j)].$$

If $\sum_{j=1}^{\infty} [|x_j| f_X(x_j)] = \infty$ then we say that X has no finite expectation and E[X] is undefined.

Definition

• Let X be a continuous random variable having density $f_X(x)$. If $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$, we say that X has finite expectation and we define its expectation by:

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Characterising a Distribution: Expected Value

Example: Bernoulli distribution

$$X \stackrel{d}{=} B(p) \Longrightarrow E[X] = \sum_{i=1}^{2} [x_i P(X = x_i)]$$

 $= 1 \times P(X = 1) + 0 \times P(X = 0) = P(X = 1) = p$

Example: Uniform distribution

$$X \stackrel{d}{=} U[a, b] \Longrightarrow E[X] = \int_{a}^{b} x \left(\frac{1}{b - a}\right) dx$$

$$= \left\lceil \left(\frac{1}{b-a}\right) \frac{x^2}{2} \right\rceil_a^b = \frac{b^2 - a^2}{2(b-a)} = \frac{(a+b)(b-a)}{2(b-a)} = \boxed{\frac{a+b}{2}}$$

Characterising a Distribution: Expected Value

Properties of the Expected Value

- If c is a constant and P(X = c) = 1 then E[X] = c.
- If c is a constant and P(X = c) = 1 then E[g(X)] = g(c).
- If b and c are constants then E[b+cX] = b+cE[X]. (Linearity of expectation operator.)
- Jensen's Inequality:
 - If X is a random variable and g(X) is a concave function, then $E[g(X)] \leq g(E[X])$.
 - If g(X) is a convex function, then $g(E[X]) \leq E[g(X)]$.
 - For strict concavity / convexity (and non-constant X), ≤ becomes < in each of the above inequalities.

Jensen's Inequality

Example: Core Micro: Expected utility theory

 If X is a randomly distributed amount of wealth (i.e. a lottery) and utility u(X) is a strictly concave function (due to diminishing marginal utility) then:

- So, utility from expected wealth is greater than expected utility of wealth.
- The agent with concave utility would be better off with the expected value of the lottery for certain than with the risky lottery (i.e. they are risk averse).

Jensen's Inequality

Example: Core Macro: Precautionary saving

- Suppose a consumer has logarithmic utility $u(C) = \ln(C)$ so MU is $u'(C) = \frac{1}{C}$.
- If the consumer's subjective discount rate equals the interest rate then the Euler equation for optimal consumption is $u'(C_1) = E[u'(C_2)].$
- u'(C) is *strictly convex*, so under uncertainty about C E[u'(C)] > u'(E[C]). Hence the Euler equation implies that:

$$u'(C_1) > u'(E[C_2]) \Longrightarrow \frac{1}{C_1} > \frac{1}{E[C_2]} \Longrightarrow E[C_2] > C_1$$

• The consumer expects/plans to consume more tomorrow (whereas with certainty about the future we get $C_2 = C_1$).

Characterising a Distribution: Variance

Definition

 The variance is simply an expectation - the expectation of the squared difference between the random variable and its mean/expected value:

$$\sigma_X^2 = Var(X) = E\left[(X - E[X])^2\right]$$

Discrete Random Variables:

$$\sigma_X^2 = Var(X) = \sum_{i=1}^k \left[(x_i - E[X])^2 f_X(x_i) \right]$$

Continuous Random Variables:

$$\sigma_X^2 = Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$$

Characterising a Distribution: Variance

Properties of the Variance

- $Var(X) = E[X^2] (E[X])^2$
- $Var(cX) = c^2 Var(X)$
- $Var(b+cX) = c^2 Var(X)$
- By Jensen's inequality, for a non-constant X, Var(X) > 0 since $(X E[X])^2$ is a strictly convex function.

Definition

Standard Deviation: $\sigma_X = sd(X) = \sqrt{Var(X)}$

Characterising a Distribution: Skewness and Kurtosis

Asymmetry: Skewness

$$Skew(X) = E\left[\left(\frac{X - E(X)}{\sigma_X}\right)^3\right] = \frac{E[(X - E[X])^3]}{Var(X)^{\frac{3}{2}}}$$

 Skewness is positive if there is a "long right tail" (e.g. income distribution) and negative if there is a long left tail (e.g. age of death).

Source: http://www.statisticshowto.com

Tailedness: Kurtosis

$$Kurt(X) = E\left[\left(\frac{X - E(X)}{\sigma_X}\right)^4\right] = \frac{E[(X - E[X])^4]}{Var(X)^2}$$

Characterising a Distribution: Bernoulli Distribution

Example: Bernouilli Distribution $X \stackrel{d}{=} B(p)$

- E[X] = P(X = 1) = p
- $Var(X) = \sum_{i=1}^{2} \left[(x_i E[X])^2 f_X(x_i) \right] = (1-p)^2 p + (0-p)^2 (1-p) = p(1-p)((1-p)+p) = p(1-p)$
- $Skew(X) = \frac{(1-p)^3p + (0-p)^3(1-p)}{(p(1-p))^{\frac{3}{2}}} = \frac{p(1-p)((1-p)^2 p^2)}{(p(1-p))^{\frac{3}{2}}} = \frac{p(1-p)(1-2p)}{(p(1-p))^{\frac{3}{2}}} = \frac{\frac{p(1-p)(1-2p)}{(p(1-p))^{\frac{3}{2}}}}{(p(1-p))^{\frac{3}{2}}}$
- We can see that if p < 0.5 then the B(p) Bernoulli distribution is positively skewed and if p > 0.5 then it is negatively skewed.

