January 20, 2021 Jiaming Zhang

The Baltic Seminar Notes #1 Lecturer: Prof. Grigor Sargsyan

Definition. Some notions and terms:

- Reals or real numbers are members in the Baire space ω^{ω} , where we can define a topology with basic open sets $N_s = \{x \in \omega^{\omega} : s < x\}$ for all $s \in \omega^{<\omega}$.
- For any infinite cardinal κ , we say $T \subset \bigcup_{n \in \omega} \omega^n \times \kappa^n$ is a tree if it is closed on initial segments. We then denote [T] as the collection of all branches of T. When replacing $\omega^n \times \kappa^n$ with X^n , T is also called a tree on a set X.

Fact. Closed sets are of the form [T] for some tree T.

Remark. Proof. ([1], 12.10) Consider $T = \{x \mid m \mid x \in C \land m \in \omega\}$ for any closed set C. Use the definition of N_s and topology base.

Definition. Axiom of determinacy(ommited).

Theorem 1. Important theorems about determinacy:

- 1. (Martin) $ZFC+\exists\kappa(\kappa \text{ is measurable}) \vdash Analytic Determinacy;$
- 2. (Martin) $ZFC \vdash Borel\ Determinacy$;
- 3. (Martin-Steel) ZFC+infinitly many Woodin cardinals \vdash Projective determinacy;
- 4. (Martin-Steel-Woodin) ZFC+infinitly many Woodin cardinals+a measurable cardinal above them $\vdash AD^{L(\mathbb{R})}$.

We are going to prove the first one today and leave the last two as the aim of this seminar.

1 Shoenfield absoluteness

Lemma 2 (Shoenfield's tree). Given $\kappa \geqslant \omega$, there is a tree $T \in L$ on $\omega \times \kappa$ such that

$$p[T] = \{x \in \omega^{\omega} : x \ codes \ a \ well-founded \ structure\},$$

where p[T] is the collection of the projection of every branch of T.

Remark. In case that we shall later use the exact construction of this tree, I wrote something below for myself to learn this absoluteness theorem. This is not contained in this lecture.

Definition. Let $WF \subset \omega^{\omega}$ be the set defined as:

$$x \in WF \iff E_x$$
 is well-founded and extensional.

Here, $E_x \subset P(\omega^2)$ is defined as: $\langle m, n \rangle \in E_x$ iff $x(2^m 3^n) = 0$.

January 20, 2021 Jiaming Zhang

Naturally, we has defined a way of coding any countable and transitive \in -structure by some $x \in \omega^{\omega}$, and WF is thus the collection of these codes.

Fact ([1], 13.6). $WF \in \Pi_1^1 - \Sigma_1^1$.

We next prove the Π_1^1 version of the Shoenfield's Absoluteness theorem. Notice that this theorem can be generalized to Σ_2^1 . Thus by applying the theorem to WF, we complete the proof for Lemma 2.

Theorem 3 (Shoenfield, 1961; [1], 13.14). If $A \subset \omega^{\omega}$ is Π_1^1 , there is a tree $T \in L$ on $\omega \times \omega_1$ such that A = p[T].

Proof. Using the tree representation of Π_1^1 sets, we have: There is a tree U on $\omega \times \omega$ such that

$$x \in A \iff T_x \text{ is well-founded } \iff \exists g: T_x \to \omega_1 \text{ order preserving.}$$

Let $\langle s_i \mid i \in \omega \rangle$ be the canonical order of $\omega^{<\omega}$. Define the following tree on $\omega \times \omega_1$:

$$T = \{ \langle s, u \rangle \mid \forall i, j < |s|(s_i \supset s_j \land \langle s \mid |s_i|, s_i \rangle \in T \implies u(i) < u(j)) \}.$$

This is the tree we want.

Remark. ω_1 can be replaced with any $\kappa > \omega$ here.

2 Homogeneous Suslin Sets

Let κ be an infinite cardinal and let $meas(\kappa)$ be the collection of all ω_1 -complete ultrafilter on some $[\kappa]^n$.

A function $\mu:\omega^{<\omega}\to meas(\kappa)$ is called a homogeneous system iff:

- For all $s \in \omega^{<\omega}$, $\mu(s)$ concentrantes on $[\kappa]^{|s|}$;
- For all $s < t \in \omega^{<\omega}$, $\mu(t)$ projects to $\mu(s)$. I.e., for all $A \in \mu_t$, $p_{t,s}[A] = \{a \upharpoonright lh(s) : a \in A\} \in \mu_s$.

Definition. Ultrapower construction(ommited).

Suppose μ is a homogeneous system. We have $\forall s \in \omega^{<\omega}$, $Ult(V, \mu_s)$ is well-founded and $\pi_s: V \to Ult(V, \mu(s)) = M_s$ where $\pi_s = \pi_{\mu_s}$, the natural embedding.

Fact. We have a map $\pi_{s,t}: M_s \to M_t$ for s < t given by

$$\pi_{s,t}(\lceil f \rceil_{\mu_s}) = \lceil f' \rceil_{\mu_t}$$

where $f'(a) = f(a \upharpoonright lh(s))$. Then $\pi_{s,t}$ is an elementary embedding, and for s < t < u, we have

$$\pi_{s,u} = \pi_{t,u} \circ \pi_{s,t}.$$

January 20, 2021 Jiaming Zhang

Definition (Homogeneous Suslin). We say $A \subset \omega^{\omega}$ is homogeneous Suslin iff for some homogeneous system $\mu : \omega^{<\omega} \to meas(\kappa)$,

 $x \in A \iff (\mu_{x \upharpoonright n} : n \in \omega)$ is well-founded (i.e., has well-founded direct limit).

Lemma 4. Suppose μ is a homogeneous system and $x \in \omega^{\omega}$. Then the following statements are equivalent:

- a. $M_x = \operatorname{dirlim}_{n \to \infty} Ult(V, \mu_{x \upharpoonright n})$ is well-founded;
- b. For all $(A_i : i < \omega)$ such that $A_i \in \mu_{x \uparrow i}$, there is a fiber through them, i.e., there exists $f : \omega \to \kappa$ such that for all $i \in \omega$, $f \upharpoonright i \in A_i$.

Proof. a implies b: Suppose M_x well-founded and $(A_n : n \in \omega)$ is such that $A_n \in \mu_{x \upharpoonright n}$. Consider the relation R whose branches are exactly fibers there. Namely, $\operatorname{dom}(R) = \bigcup_{n \in \omega} A_n$ and

$$bRa \iff a < b \land b \in A_{|b|}.$$

We claim that R is ill-founded.

Remark. A such ill-founded sequence can be constructed by the projecting property and countable completeness of $\mu_{x \upharpoonright n}$.

b implies a: Suppose M_x is ill-founded. Then by the fiber granted by b, the ill-foundedness can be considered in V.

3 Analytic Determinacy

Theorem 5 (Martin). Suppose A is homogeneous Suslin. Then G_A is determined.

Fact. Suppose A is homogeneous Suslin. Let $\mu : \omega^{<\omega} \to meas(\kappa)$ be a homogeneous system s.t. $x \in A \iff M_x$ is well-founded. Then there exists a tree T on $\omega \times \kappa$, s.t.

- 1. A = p[T]
- 2. For all $s \in \omega^{<\omega}$, $T_s \in \mu_s$ where $T_s = \{u : (s, u) \in T\}^*$;

Proof. Suppose μ is a homogeneous representation of A and T is as above. We consider a new game G_A^* :

^{*}Also called "T is homogeneous".

$$I \qquad (n_0, \alpha_0) \qquad (n_2, \alpha_2) \qquad \dots$$

$$II \qquad n_1 \qquad n_3 \qquad \dots$$

Player I wins iff $(x, f) \in [T]$, where $x = (n_0, n_1, ...)$ and $f = (\alpha_0, \alpha_2, ...)$. Otherwise Player II wins. We claim that G_A^* is a closed game; i.e., if Player I loses the game, then he already loses it at a finite stage. We also claim that every closed game is determined.

Assume Player I has a winning strategy, then since the winning protocol of G_A^* is more strict than G_A for Player I, he can use the same strategy to defeat Player II.

Assume Player II has a winning strategy and let it be Σ^* . We now build a winning strategy Σ for Player II to win G_A . Let

- $\sigma(n_0) = n_1 \text{ iff } \{\alpha_0 : \Sigma^*(n_0, \alpha_0) = n_1\} \in \mu_{\langle n_0 \rangle};$
- $\sigma(n_0n_1n_2) = n_3$ iff $\{(\alpha_0, \alpha_2) : \Sigma^*((n_0, \alpha_0)n_1(n_2, \alpha_2)) = n_3\} \in \mu_{\langle n_0n_1n_2\rangle}$, etc.

We claim that σ is a winning strategy for Player II. Let

$$A_k = \{(a_0, ..., a_{2k}) : \Sigma^*((n_0, \alpha_0)n_1...(n_{2k}, a_{2k})) = n_{2k+1}\}.$$

We have $A_k \in \mu_{\langle n_0,...,n_{2k}\rangle}$. We want to see that $x \notin A \iff M_x$ is ill-founded. Suppose M_x is well-founded. There is a sequence $\alpha = (\alpha_0,...)$ s.t. for all $k \in \omega, \alpha \upharpoonright k \in A_k$. By the specific structure of T, $(x \upharpoonright n, (\alpha_0,...,\alpha_{2n})) \in T$ for all n. But Player II wins the game G_A^* . Contradiction!

Lemma 6. $\exists \kappa (\kappa \text{ is measurable}) \Longrightarrow \Pi^1_1 \text{ sets are homogeneous Suslin.}$

Proof. (As a part of the proof of [1], 31.1) Let U be a normal ultrafilter over κ and for each $s \in \omega^{<\omega}$, define:

$$X \in U_s \iff X \subset X \subset T_s \land \exists H \in U(|H|^{|s|} \subset \operatorname{ran}"X).$$

References

[1] Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings. Springer Science & Business Media, 2008.