

1

Equations of Motion Joint Space $A(q)\ddot{q} + b(q,\dot{q}) + g(q) = \Gamma$ Operational Space $\Lambda(x)\ddot{x} + \mu(x,\dot{x}) + p(x) = F$ Relationships $\Gamma = J^T F$ $(A\ddot{q} + b + g) = \mathbf{J}^{T}(\Lambda \ddot{x} + \mu + p)$ $(A\ddot{q} + b) = J^{T}(\Lambda \ddot{x} + \mu)$ Inertial forces

Redundancy $A\ddot{q} + b + g = \Gamma$ (joint dynamics) projection $\Lambda \ddot{x} + \mu + p = F$ (Task dynamics) $\overline{J} = A^{-1}J^T\Lambda$ and $\Lambda^{-1} = JA^{-1}J^T$ \overline{J} : dynamically consistent generalized inverse 6

7

$$\Gamma = \boldsymbol{J}^T \boldsymbol{F}$$

Given F , Γ is $\left(oldsymbol{J}^T F
ight)$

Given Γ , what is ${\it F}$

$$F = J^{^{\#^T}}\Gamma$$
 ?

9

However

different selections of $J^{\#}$ $\left(J=J\,J^{\#}J\right)$

would lead

to different solutions

10

Dynamic Constraints

$$A(q) \ddot{q} + b(q, \dot{q}) + g(q) = \Gamma$$

$$\Gamma = J^{T} F + \left[I - J^{T} J^{\#^{T}} \right] \Gamma_{0}$$

$$A \ddot{q} + (b + g) = J^{T} F + \left[I - J^{T} J^{\#^{T}} \right] \Gamma_{0}$$

Dynamic Consistency $\Gamma \longrightarrow JA^{-1}\Gamma$ joint torques task acceleration $\begin{aligned} &\Gamma &\longrightarrow JA^{-1}\Gamma \\ &\text{joint torques} &\text{task acceleration} \end{aligned}$ Relationship $\Gamma = J^TF + \left(I - J^TJ^{\#^T}\right)\Gamma_0$ Dynamic Constraint $JA^{-1}\left(I - J^TJ^{\#^T}\right)\Gamma_0 \equiv 0 \\ &JA^{-1} = \left(JA^{-1}J^T\right)J^{\#^T}$ $\left(JA^{-1}J^T\right)^{-1}JA^{-1} = J^{\#^T}$

Dynamic Consistency

 $\overline{J}(q)$ is the Dynamically Consistent Generalized Inverse

Theorem (Consistency)

 $\overline{J}_{}$ is unique and $\overline{J}_{}=A^{-1}J^{T}_{}\Lambda_{}$

Non-redundant

$$\overline{J} = J^{-1}$$

19

20

Velocity Force Duality	
Velocity	Force

Velocity	10100
Non Red. $\delta q = J^{-1} \delta x$	$\Gamma = \boldsymbol{J}^T F$
Redundant $\delta q = \overline{J} \delta x + \left[I - \overline{J} J \right] \delta q_0$	$\Gamma = \boldsymbol{J}^T F + \left[\boldsymbol{I} - \boldsymbol{J}^T \overline{\boldsymbol{J}}^T \right] \Gamma_0$

21

22

Task dynamics

$$\Lambda(q)\ddot{x} + \mu(q,\dot{q}) + p(q) = F$$

$$\Lambda = \left(J A^{-1} J^T \right)^{-1}$$

$$\mu(q,\dot{q}) = \overline{J}^T b(q,\dot{q}) - \Lambda(q)\dot{J}(q)\dot{q}$$

$$p(q) = \overline{J}^T g(q)$$

Redundant Robot Control

Task Space: J^T

Null Space: N^T

where $N = I - \overline{J}J$

Robot Control

dynamically decoupled

23

Stability

$$\Gamma^T_{dis} \dot{q} \leq 0$$
 ; for $\dot{q} \neq 0$ \dot{q} Γ_{dis}
$$\Gamma_{dis} = -k_{\nu} J^T \dot{x} = -k_{\nu} J^T J \dot{q}$$

$$\dot{q}^T D(q) \dot{q} \geq 0 \; ; \qquad \dot{q} \neq 0$$

$$D(q) = k_{\nu} \left(J^T J \right)$$

 $J^T J$: is a n x n matrix of rank m_0 it is Positive Semi-definite

The System is Stable, but not asymptotically stable

$$\dot{q}^T D(q) \dot{q} = 0$$

26

25

Asymptotic Stability

Asymptotic Stability

$$\Gamma^T_{dis}\,\dot{q}<0\;\;;\quad \text{for}\ \ \dot{q}\neq 0$$

$$\Gamma_{dis}=-k_{_{\boldsymbol{V}}}J^TJ\dot{q}-k_{_{\boldsymbol{V}\boldsymbol{Q}}}\dot{q}$$

$$\downarrow \hspace{-0.5cm}\downarrow$$

$$D(q)=k_{_{\boldsymbol{V}}}\,J^TJ\;+k_{_{\boldsymbol{V}\boldsymbol{Q}}}\,I_{_{\boldsymbol{D}}}$$
 Positive definite
$$\dot{q}^TD(q)\,\dot{q}>0 \qquad \text{for}\ \, \dot{q}\neq 0$$

27

28

30

Find a pseudo-inverse J^+

29

Pseudo Inverse Solution $\frac{l_1 + l_2}{l_1^2 (l_1 + l_2)^2} \delta y_{(1)}$ θ_2

Kinematic Singularities

The end-effector mobility locally decreases

Singularities

$$S(q) = \det[J(q)] = S_1(q).S_2(q)...S_{n_0}(q)$$

Singular direction

$$S_i = 0$$
 ; ζ_i Infinite effective mass infinite effective inertia

32

34

Kinematic Singularities

Singularity Neighborhood

$$S(q) = S_1(q).S_2(q).S_3(q) \cdots S_{n_e}(q)$$

Singularity S_i

31

33

$$D_{S_i} = \left\{ q \mid \left| S_i(q) \right| \le S_{0_i} \right\}$$

 $\left|S_{i}\right| \leq S_{0}$

Singularity Neighborhood

In $D_{\rm S}$, the robot is treated as redundant w.r.t. motions in the subspace \bot to the singular direction

Along Singular Directions:

Control in Null Space $\Gamma_{null-space}$

• In subspace \perp to singular direction

Control in sub-O-Space F_{sub-os}

Types of Singularities

Elbow Lock Wrist Lock Overhead Lock
Type 1 Type 2

35 36

Singularity Control

 $\Gamma = J_{sub}^T F_{sub} + N_{sub}^T \Gamma_{s_i}$

where

 $N_{sub} = I - \overline{J}_{sub} J_{sub}$ and $\Gamma_{S_i} = -\nabla V_i(S_i)$

Moving to a singularity

Control $S_i(q)$ to reach $S_i=0$

Moving out of a singularity

Control \dot{S}_i from zero to the desired Velocity at the singularity boundary

38

39

41