SAS Part

1. A SCREEN SHOT OF YOUR PROJECT DIAGRAM

2. A SCREEN SHOT OR LISTING OF ALL SAS CODE USED IN YOUR DIAGRAM

```
data mylib.selection;
call streaminit(12345);
set &em import data;
urand = rand('uniform');
proc sort data=mylib.selection;
by urand;
data &em_export_train;
drop fold size urand;
set mylib.selection NOBS=nobs ;
fold size = round(nobs /4.0);
if _N_ <= fold_size then fold='A';</pre>
if _N_ > fold_size and _N_ <=2*fold_size then fold='B';</pre>
if _N_ > 2*fold_size and _N_ <=3*fold_size then fold='C';</pre>
if _N_ > 3*fold_size then fold='D';
proc means data=&em export train;
by fold;
var Log_Cum_Production;
run;
```

SAS CODE 2

```
data mylib.temp1;
retain c1 c2 c3 c4 0;
keep c1 c2 c3 c4;
set &em_import_data end=eof;
if fold='A' then c1 = c1 + 1;
if fold='B' then c2 = c2 + 1;
if fold='C' then c3 = c3 + 1;
if fold='D' then c4 = c4 + 1;
if eof then output;
data &em_export_validate;
drop c1 c2 c3 c4 rfold;
retain rfold '0';
set mylib.AllData_Train;
if rfold ='0' then do;
set mylib.temp1;
if c1=0 then rfold='A';
if c2=0 then rfold='B';
if c3=0 then rfold='C';
if c4=0 then rfold='D';
end;
if fold= rfold then output;
run;
```

3. A table of the metrics for each of the decision tree cross-validation folds.

Depth	3	4	5	6	7	8	9	10	11	12	13	14	15
ASE-Fold A	0.321	0.300	0.286	0.274	0.269	0.265	0.264	0.264	0.264	0.264	0.264	0.264	0.264
ASE-Fold B	0.286	0.266	0.262	0.255	0.250	0.249	0.249	0.247	0.247	0.247	0.247	0.247	0.247
ASE-Fold C	0.291	0.270	0.263	0.251	0.248	0.248	0.248	0.246	0.246	0.246	0.246	0.246	0.246
ASE-Fold C	0.300	0.277	0.270	0.269	0.264	0.263	0.261	0.261	0.261	0.261	0.261	0.261	0.261
Average	0.300	0.278	0.270	0.262	0.258	0.256	0.256	0.255	0.255	0.255	0.255	0.255	0.255
Minimum	0.255	\$Q\$6											

4. Describe which decision tree you selected and why.

The tree with depth=10. It is the minimum depth with the minimum lowest Validation Average Square Error.

5. Compare the best decision tree to the random forest solution.

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
.og Cu .og Cu .og Cu .og Cu .og Cu	Log Cu Log Cu Log Cu Log Cu Log Cu Log Cu	ASE DIV MAX NOBS RASE SSE	Average Divisor f Maximu Sum of Root Av Sum of	4752 3.384702 4752 0.470909		

Average Square Error for Random forest= 0.221755 vs a decision tree where lowest ASE was 0.254626. So, random forest performs better

Python Part

1. A listing of your python code.

```
'Log_Proppant_LB':['I',(6,18)],
        'Log Carbonate':['I',(-4,4)],
        'Log_Frac_Fluid_GL':['I',(7,18)],
        'Log_GrossPerforatedInterval':['I',(4,9)],
        'Log_LowerPerforation_xy':['I',(8,10)],
        'Log_UpperPerforation_xy':['I',(8,10)],
        'Log_TotalDepth':['I',(8,10)],
        'N_Stages':['I',(2,14)],
        'X_Well':['I',(-100,-95)],
        'Y Well':['I',(30,35)],
'Operator':['N',('1','2','3','4','5','6','7','8','9','10','11','12','13', \
'14','15','16','17','18','19','20','21','22','23','24','25', \
                         '26','27','28')],
'County':['N',('1','2','3','4','5','6','7','8','9','10','11','12','13','14')]
        }
rie = ReplaceImputeEncode(data map=attribute map, interval scale='std', \
                          nominal_encoding='one-hot', drop=False,
display=True)
encoded df = rie.fit transform(df)
varlist = ['Log Cum Production']
X = encoded_df.drop(varlist, axis=1)
y = encoded df[varlist]
np_y = np.ravel(y) #convert dataframe column to flat array
col = rie.col
col.remove('Log Cum Production')
print("\n****** RANDOM FOREST ******")
\max_{depth_{list}} = [3,4,5,6,7,8,9,10,11,12,13,14,15]
n trees list = [10, 50, 100]
score_list = ['neg_mean_squared_error', 'neg_mean_absolute_error']
score names = ['MSE', 'MAE']
min mse = 1e64
for n_trees in n_trees_list:
    for d in max_depth_list:
        print("\nNumber of Trees: ", n_trees, " Max_Depth: ", d)
        rfr = RandomForestRegressor(n_estimators=n_trees, criterion='mse',
max depth=d, \
                                    max_features='auto', min_samples_split=2,
n_jobs=1, \
                                    random state=12345)
        scores = cross_validate(rfr, X, np_y, scoring=score_list,
return train score=False, cv=5)
        print("{:.<13s}{:>6s}{:>13s}".format("Metric", "Mean", "Std. Dev."))
        i=0
        for s in score_list:
```

```
var = "test_"+s
            mean = math.fabs(scores[var].mean())
            std = scores[var].std()
            label = score_names[i]
            i += 1
            print("{:.<13s}{:>7.4f}{:>10.4f}".format(label, mean, std))
            if label == 'MSE' and mean < min mse:
                min mse = mean
                best depth = d
                best_n_trees = n_trees
print("\nBest based on MSE from a forest with ", best_n_trees, " trees.")
print("Best Depth (trees) = ", best_depth)
#Decision Tree
from sklearn.tree import DecisionTreeRegressor
print("\n*************Decision Tree**********")
best depth dt=0
min_mse_dt = 1e64
for d in max depth list:
    print("\nDepth = ",d)
    dtr = DecisionTreeRegressor(max_depth= d, max_features='auto',
random state=12345)
    scores dt = cross validate(dtr, X, np y,
scoring=score_list,return_train_score=False, cv=4)
    print("{:.<13s}{:>6s}{:>13s}".format("Metric", "Mean", "Std. Dev."))
    i=0
    for s in score_list:
        var = "test "+s
        mean_dt = math.fabs(scores_dt[var].mean())
        std_dt = scores_dt[var].std()
        label dt = score names[i]
        i += 1
        print("{:.<13s}{:>7.4f}{:>10.4f}".format(label_dt, mean_dt, std_dt))
        if label dt == 'MSE' and mean dt < min mse dt:</pre>
            min mse = mean
            best_depth_dt = d
```

2. A table of the metrics calculated for each of your 4 cross-validation folds.

```
****** RANDOM FOREST *******
Number of Trees: 10 Max_Depth:
                    Std. Dev.
Metric..... Mean
                                 Number of Trees: 10 Max Depth:
MSE..... 0.5854
                     0.0489
                                                      Std. Dev.
                                 Metric..... Mean
MAE..... 0.5809
                     0.0266
                                                       0.0479
                                 MSE..... 0.4863
                                 MAE..... 0.5213
                                                       0.0232
Number of Trees: 10 Max Depth:
Metric..... Mean
                    Std. Dev.
                                 Number of Trees: 10 Max_Depth:
                     0.0497
MSE..... 0.5515
                                 Metric..... Mean
                                                      Std. Dev.
MAE..... 0.5630
                     0.0279
                                 MSE..... 0.4888
                                                       0.0458
                                 MAE..... 0.5216
                                                       0.0229
Number of Trees: 10 Max Depth:
Metric.... Mean
                    Std. Dev.
                                 Number of Trees: 10 Max Depth:
MSE..... 0.5238
                     0.0486
                                                      Std. Dev.
                                 Metric..... Mean
MAE..... 0.5473
                     0.0260
                                 MSE..... 0.4834
                                                       0.0435
                                                       0.0219
                                 MAE..... 0.5177
Number of Trees: 10
                   Max Depth:
                    Std. Dev.
Metric..... Mean
                                 Number of Trees: 10
                                                     Max Depth:
MSE..... 0.5095
                     0.0486
                                                      Std. Dev.
                                 Metric..... Mean
MAE..... 0.5384
                     0.0251
                                                       0.0483
                                 MSE..... 0.4866
                                 MAE..... 0.5193
                                                       0.0237
Number of Trees: 10
                   Max Depth:
                    Std. Dev.
Metric..... Mean
                                 Number of Trees: 10
                                                     Max Depth:
MSE..... 0.5017
                     0.0478
                                 Metric..... Mean
                                                      Std. Dev.
MAE..... 0.5322
                     0.0249
                                 MSE..... 0.4872
                                                       0.0441
                                 MAE..... 0.5199
                                                       0.0216
Number of Trees: 10
                   Max Depth:
                    Std. Dev.
Metric..... Mean
                                 Number of Trees: 10
                                                     Max Depth:
MSE..... 0.4909
                     0.0435
                                 Metric..... Mean
                                                      Std. Dev.
MAE..... 0.5255
                     0.0215
                                 MSE..... 0.4874
                                                       0.0472
                                 MAE..... 0.5200
                                                       0.0223
Number of Trees: 10
                   Max Depth:
Metric..... Mean
                    Std. Dev.
                                 Best based on MSE from a forest with 10 trees.
MSE..... 0.4862
                     0.0438
                                 Best Depth (trees) = 12
MAE..... 0.5224
                     0.0220
```

3. Describe which model you selected from Cross-Validation, and why Chose the model based on MSE = depth = 12; MSE = 0.4834

4. Compare the best decision tree solution to the random forest solution.

```
Depth = 3
Metric..... Mean
                   Std. Dev.
MSE..... 0.6365
                   0.0389
MAE..... 0.6112
                   0.0166
Depth = 4
                                   Depth = 10
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.6046 0.0338
                                   MSE..... 0.6781
                                                       0.0544
MAE..... 0.5923
                   0.0140
                                   MAE..... 0.6012
                                                       0.0206
Depth = 5
                                   Depth = 11
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.5848
                   0.0425
                                   MSE..... 0.7161
                                                       0.0631
MAE..... 0.5773
                   0.0162
                                   MAE..... 0.6117
                                                       0.0204
Depth = 6
                                   Depth = 12
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.5827
                   0.0397
                                   MSE..... 0.7629
                                                       0.0584
MAE..... 0.5742
                   0.0185
                                   MAE..... 0.6284
                                                       0.0154
Depth = 7
                                   Depth = 13
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.5853
                  0.0371
                                   MSE..... 0.7812
                                                       0.0602
MAE..... 0.5699
                   0.0177
                                   MAE..... 0.6418
                                                       0.0155
Depth = 8
                                   Depth = 14
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.6202
                   0.0407
                                   MSE..... 0.7843
                                                       0.0421
MAE..... 0.5837
                   0.0185
                                   MAE..... 0.6436
                                                       0.0135
Depth = 9
                                   Depth = 15
Metric..... Mean
                   Std. Dev.
                                   Metric..... Mean
                                                      Std. Dev.
MSE..... 0.6522
                   0.0337
                                   MSE..... 0.8295
                                                       0.0653
MAE..... 0.5895
                   0.0175
                                   MAE..... 0.6574
                                                       0.0147
```

The model with depth = 6 is the best based on MSE = 0.5827.

This is clearly more than MSE of random forest's best. Hence, random forest turns out to give better results