Olimpiada Naţională de Matematică Etapa finală, Iaşi, 6 aprilie 2010

CLASA a XI-a SOLUȚII ȘI BAREME ORIENTATIVE

Problema 1. Se consideră numerele reale a, b cu $b-a^2 > 0$. Determinați toate matricele $A \in \mathcal{M}_2(\mathbb{R})$ astfel încât $\det(A^2 - 2aA + bI_2) = 0$.

Soluţie. Fie $c = \sqrt{b - a^2}$. Avem

$$A^{2} - 2aA + bI_{2} = (A - (a + ic)I_{2})(A - (a - ic)I_{2})$$

$$\begin{pmatrix} a+x & y \\ \frac{a^2-x^2-b}{y} & a-x \end{pmatrix},$$

În concluzie toate matricile cu proprietatea din enunt sunt de forma

Problema 2. Fie matricele $A, B, C \in \mathcal{M}_n(\mathbb{R})$ astfel încât $ABC = O_n$ şi rang(B) = 1. Arătaţi că $AB = O_n$ sau $BC = O_n$.

$$O_n = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ \vdots & \vdots & \cdots & \vdots \\ a_nb_1 & \cdots & a_nb_2 & \cdots & a_nb_n \end{pmatrix}$$

Observații. Matricele A, B, C pot fi și nepătratice.

Se poate da și o soluție pe ranguri (folosind teorema lui Frobenius).

Problema 3. Fie $f: \mathbb{R} \to [0, \infty)$. Arătaţi că f satisface inegalitatea $f(x+y) \geq (1+y)f(x)$ pentru orice $x \in \mathbb{R}$ şi orice $y \geq 0$, dacă şi numai dacă funcţia $g: \mathbb{R} \to [0, \infty)$ definită prin $g(x) = e^{-x}g(x)$, pentru orice $x \in \mathbb{R}$, este crescătoare.

Soluţie. Are loc inegalitatea $e^y \ge 1+y$, pentru orice $y \in \mathbb{R}$ 1 punct Presupunem că funcţia g este monoton crescătoare pe \mathbb{R} . Atunci, pe baza inegalității de mai sus, obţinem:

$$f(x+y) = e^{x+y}g(x+y) \ge e^x(1+y)g(x) = (1+y)f(x),$$

Se verifică prin inducție proprietatea:

$$f(x+nt) > (1+t)^n f(x),$$

$$g(z) = e^{-z} f(z) = e^{-x-y} f\left(x + n \cdot \frac{y}{n}\right) \ge e^{-x-y} \left(1 + \frac{y}{n}\right)^n f(x) = \frac{\left(1 + \frac{y}{n}\right)^n}{e^y} g(x).$$

Rezultă

$$g(z) \ge \lim_{n \to \infty} \frac{\left(1 + \frac{y}{n}\right)^n}{e^y} g(x) = g(x).$$

Deducem că g este monoton crescătoare pe \mathbb{R} 3 puncte

Problema 4. Pentru un număr real pozitiv a, definim şirul de numere reale $(x_n)_n$ prin $x_1 = a$ și relația de recurență

$$x_{n+1} = \left| x_n - \frac{1}{n} \right|, \text{ pentru } n \ge 1.$$

Arătați că șirul este convergent și calculați limita.

Soluție. Are loc proprietatea: pentru oricare $n \in \mathbb{N}^*$, există $k \in \mathbb{N}$, $k \ge \infty$ n, astfel încât $x_k \leq \frac{1}{k}$ 1 punct Astfel, presupunând că, pentru un anumit $n \in \mathbb{N}^*$, am avea $x_k > \frac{1}{k}$, $\forall k \geq n$, ar rezulta

$$x_{m+1} = x_n + \sum_{k=n}^{m} (x_{k+1} - x_k) = x_n - \sum_{k=n}^{m} \frac{1}{k},$$

pentru orice $m \in \mathbb{N}, m \geq n$.

Fie $\varepsilon>0$. Considerăm $N\in\mathbb{N}^*$ astfel ca $\frac{1}{N}<\varepsilon$. În baza proprietății demonstrate, există $N_1 \geq N$ astfel ca $x_{N_1} \in \left[0, \frac{1}{N_1}\right]$. Se verifică prin inducție proprietatea: $x_n \in \left[0, \frac{1}{N_1}\right] \subset [0, \varepsilon)$, pentru oricare $n \geq N_1$. Rezultă că șirul converge la 0, pentru oricare $a \in \mathbb{R}$ 3 puncte

Observație. O demonstrație mai elegantă, dar bazată pe aceeași idee, rezultă considerând șirul $y_n = \max(x_n, \frac{1}{n})$