Parseval Networks: Improving Robustness to Adversarial Examples

Moustapha Cisse¹, Piotr Bojanowski¹, Edouard Grave¹, Yann Dauphin¹, Nicolas Usunier¹

¹Facebook AI Research

ICML, 2017/ Presenter: Anant Kharkar

- Introduction
 - Motivation
- 2 Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

- Introduction
 - Motivation
- 2 Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Motivation

- Neural networks achieve extreme accuracy on image classification tasks...
- ...but are vulnerable to adversarial images
- Regularization is ineffective
- Current approaches: distillation (Papernot et al., 2016) adversarial training (Goodfellow et al., 2015)

Contribution: regularization-based approach to adversarial robustness Objective: minimize Lipschitz constant

- Introduction
 - Motivation
- Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Basic Formalization

Neural network node:

$$n: x \mapsto \phi^{(n)}(W^{(n)}, (n'(x))_{n':(n,n')\in\varepsilon})$$

 ϕ : activation, n': previous node Final neural net output: g(x, W)

Adversarial example:

$$\tilde{x} = \underset{\tilde{x}: \|\tilde{x} - x\|_{p} \le \epsilon}{\operatorname{argmax}} (\ell(g(\tilde{x}, W), y))$$

- Introduction
 - Motivation
- Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Lipschitz Constant

Objective: minimize the Lipschitz constant

Assume that:

$$\forall z, z' \in \mathbb{R}^Y, \forall \bar{y} \in \mathcal{Y}:$$

$$|\ell(z,\bar{y})-\ell(z',\bar{y})| \leq \lambda_p ||z-z'||_p$$

Or alternatively:

$$\frac{|\ell(z,\bar{y}) - \ell(z',\bar{y})|}{\|z - z'\|_{p}} \le \lambda_{p}$$

Thus, Lipschitz constant λ_p is a bound on the magnitude of the point-wise slope of the loss

- Introduction
 - Motivation
- Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Generalization Error

Basic error:

$$L(W) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\ell(g(x,W),y)]$$

Adversarial error:

$$L_{adv}(W, p, \epsilon) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\underset{\tilde{x} = x \| \leq \epsilon}{max} \ell(g(x, W), y)]$$

We know that $L(W) \leq L_{adv}(W, p, \epsilon)$

Generalization Error

Basic error:

$$L(W) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\ell(g(x,W),y)]$$

Adversarial error:

$$L_{adv}(W, p, \epsilon) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\underset{\tilde{x} - x \| \leq \epsilon}{max} \ell(g(x, W), y)]$$

We know that $L(W) \leq L_{adv}(W, p, \epsilon)$

$$\begin{array}{lcl} L_{adv}(W, p, \epsilon) & \leq & L(W) + \\ & & \mathbb{E} \left[\max_{(x,y) \sim \mathcal{D} \mid \tilde{x}: ||\tilde{x} - x|| \leq \epsilon} |\ell(g(\tilde{x}, W), y) - \ell(g(x, W), y)| \right] \\ & \leq & L(W) + \lambda_p \Lambda_p \epsilon \end{array}$$

Thus, $\lambda_p \Lambda_p \epsilon$ bounds added adversarial error

Lipschitz Constant of Neural Network

Perturbation based on previous layer:

$$||n(x) - n(\tilde{x})||_{p} \leq \sum_{n':(n,n')\in\varepsilon} \Lambda_{p}^{(n,n')} ||n'(x) - n'(\tilde{x})||_{p}$$

Lipschitz constant in terms of previous layer:

$$\Lambda_p^{(n)} \leq \sum_{n':(n,n')\in\varepsilon} \Lambda_p^{(n,n')} \Lambda_p^{(n')}$$

Linear layers (2-norm):

$$\Lambda_2^{(n)} = \|W^{(n)}\|_2 \Lambda_2^{(n')}$$

 $||W^{(n)}||_2$: spectral norm

- Introduction
 - Motivation
- 2 Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Basic Concept

Regularization to constrain Lipschitz constant of each hidden layer Two concepts:

- Orthonormal rows in linear/convolutional layers
 - Required to control spectral norm
 - Minimize spectral norm to minimize Lipschitz constant
- Convex combinations in aggregation layers

Approximation

Optimize weights while maintainin orthogonality - requires approximation of orthogonality Enforce W as Parseval tight frame Regularizer:

$$R_{\beta}(W_k) = \frac{\beta}{2} \|W_k^T W_k - \mathcal{I}\|_2^2$$

Weight update (2^{nd} step) :

$$W_k \leftarrow (1+\beta)W_k - \beta W_k W_k^T W_k$$

- Introduction
 - Motivation
- 2 Theoretical Background
 - Formalization
 - Lipschitz Constant
 - Generalization Error
- Parseval Networks
 - Basics
 - Results

Checking Orthogonality

Singular values concentrated around $1 o \mathsf{quasi}\text{-}\mathsf{orthogonal}$

Accuracy - Fully Connected Nets

Parseval networks perform better at all SNRs

Accuracy - Residual Nets

	Model	Clean	$\epsilon \approx 50$	$\epsilon \approx 45$	$\epsilon \approx 40$	$\epsilon \approx 33$
CIFAR-10	Vanilla	95.63	90.16	85.97	76.62	67.21
	Parseval(OC)	95.82	91.85	88.56	78.79	61.38
	Parseval	96.28	93.03	90.40	81.76	69.10
	Vanilla	95.49	91.17	88.90	86.75	84.87
	Parseval(OC)	95.59	92.31	90.00	87.02	85.23
	Parseval	96.08	92.51	90.05	86.89	84.53
CIFAR-100	Vanilla	79.70	65.76	57.27	44.62	34.49
	Parseval(OC)	81.07	70.33	63.78	49.97	32.99
	Parseval	80.72	72.43	66.41	55.41	41.19
	Vanilla	79.23	67.06	62.53	56.71	51.78
	Parseval(OC)	80.34	69.27	62.93	53.21	52.60
	Parseval	80.19	73.41	67.16	58.86	39.56
SVHN	Vanilla	98.38	97.04	95.18	92.71	88.11
	Parseval(OC)	97.91	97.55	96.35	93.73	89.09
	Parseval	98.13	97.86	96.19	93.55	88.47

Dimensionality & Convergence

	SGI	SGD-wd		SGD-wd-da		Parseval	
	all	class	all	class	all	class	
Layer 1	72.6	34.7	73.6	34.7	89.0	38.4	
Layer 2	1.5	1.3	1.5	1.3	82.6	38.2	
Layer 3	0.5	0.5	0.4	0.4	81.9	30.6	
Layer 4	0.5	0.4	0.4	0.4	56.0	19.3	

CIFAR-10 CIFAR-100