Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Correction

Exercice 1: Projections simples

Soit un vecteur u tel que:

 $\vec{u} = u\vec{x_1}$

Pour chacun des deux cas proposés :

Question 1: Mettre en place le paramétrage angulaire $heta_{10}$

Question 2: Exprimer le vecteur u dans la base 0

$$\vec{u} = u \cos \theta_{1/0} \, \overrightarrow{x_0} + u \sin \theta_{1/0} \, \overrightarrow{y_0} = u \begin{pmatrix} \cos \theta_{1/0} \\ \sin \theta_{1/0} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$$

On prend u=1 et on s'intéresse aux 4 valeurs suivantes : $\theta=\left(0;\frac{\pi}{4};\frac{3\pi}{4};-\frac{\pi}{4}\right)$

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Correction

Question 3: Faire une représentation graphique pour chaque cas étudié et exprimer les composantes de \vec{u} dans la base 0

$$\vec{u} = \begin{pmatrix} \cos \theta_{1/0} \\ \sin \theta_{1/0} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$$

$\theta = 0$	$\theta = \frac{\pi}{4}$	$\theta = \frac{3\pi}{4}$	$\theta = -\frac{\pi}{4}$
\vec{y}_0 \vec{u} \vec{x}_0	$\overrightarrow{y_0}$ \overrightarrow{u} $\overrightarrow{x_0}$	\vec{v} \vec{v} \vec{v} \vec{v} \vec{v}	$\overrightarrow{y_0}$ $\overrightarrow{x_0}$ \overrightarrow{u}
$\vec{u} = \begin{pmatrix} \cos 0 \\ \sin 0 \\ 0 \end{pmatrix}^{\mathcal{B}_0}$ $\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^{\mathcal{B}_0}$	$\vec{u} = \begin{pmatrix} \cos\frac{\pi}{4} \\ \sin\frac{\pi}{4} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$ $\vec{u} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$	$\vec{u} = \begin{pmatrix} \cos\frac{3\pi}{4} \\ \sin\frac{3\pi}{4} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$ $\vec{u} = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}^{\mathcal{B}_0}$	$\vec{u} = \begin{pmatrix} \cos\left(-\frac{\pi}{4}\right) \\ \sin\left(-\frac{\pi}{4}\right) \\ 0 \end{pmatrix}^{\mathcal{B}_0}$ $\vec{u} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Correction

Exercice 2: Projection dans plusieurs bases

Soient deux bases 1 et 2 en rotation l'une par rapport à l'autre et une base 0. Le vecteur \vec{U} est fixe dans la base 2. On définit un angle non orienté α inférieur à 180° entre \vec{U} et $\vec{y_2}$.

Question 1: Proposer le paramétrage angulaire $(heta_{10}, heta_{21}, lpha)$

Question 2: Exprimer le vecteur \overrightarrow{U} dans la base 2

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Correction

Question 3: Exprimer le vecteur \overrightarrow{U} dans la base 1

Question 4: Exprimer le vecteur \overrightarrow{U} dans la base 0

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Correction

Exercice 3: Somme de vecteurs

 $i = 1: 2: \overrightarrow{u_1} = \cos \alpha_i \, \overrightarrow{x_0} + \sin \alpha_i \, \overrightarrow{y_0} = \begin{pmatrix} \cos \alpha_i \\ \sin \alpha_i \end{pmatrix}^{\beta_0}$

Question 1: Donner l'expression de \overrightarrow{U} dans la base 0.

$$\begin{split} i &= 3 : 4 : \overrightarrow{u_i} = -\sin \alpha_i \, \overrightarrow{x_0} + \cos \alpha_i \, \overrightarrow{y_0} = \begin{pmatrix} -\sin \alpha_i \\ \cos \alpha_i \end{pmatrix}^{\mathcal{B}_0} \\ \overrightarrow{u_5} &= \cos(\alpha_2 - \alpha_5) \, \overrightarrow{x_0} + \sin(\alpha_2 - \alpha_5) \, \overrightarrow{y_0} = \begin{pmatrix} \cos(\alpha_2 - \alpha_5) \\ \sin(\alpha_2 - \alpha_5) \end{pmatrix}^{\mathcal{B}_0} \\ \overrightarrow{u_6} &= -\sin(\alpha_3 - \alpha_6) \, \overrightarrow{x_0} + \cos(\alpha_3 - \alpha_6) \, \overrightarrow{y_0} = \begin{pmatrix} -\sin(\alpha_3 - \alpha_6) \\ \cos(\alpha_3 - \alpha_6) \end{pmatrix}^{\mathcal{B}_0} \\ \overrightarrow{u_7} &= \cos(\alpha_2 - \alpha_5 - \alpha_7) \, \overrightarrow{x_0} + \sin(\alpha_2 - \alpha_5) \, \overrightarrow{y_0} = \begin{pmatrix} \cos(\alpha_2 - \alpha_5 - \alpha_7) \\ \sin(\alpha_2 - \alpha_5 - \alpha_7) \end{pmatrix}^{\mathcal{B}_0} \\ \overrightarrow{U} &= \sum_{i=1}^4 \overrightarrow{U_i} = \sum_{i=1}^4 U_i \overrightarrow{u_i} \\ &= \sum_{i=1}^2 \left[U_i \begin{pmatrix} \cos \alpha_i \\ \sin \alpha_i \end{pmatrix}^{\mathcal{B}_0} \right] + \sum_{i=3}^4 \left[U_i \begin{pmatrix} -\sin \alpha_i \\ \cos \alpha_i \end{pmatrix}^{\mathcal{B}_0} \right] + U_5 \begin{pmatrix} \cos(\alpha_2 - \alpha_5) \\ \sin(\alpha_2 - \alpha_5) \end{pmatrix}^{\mathcal{B}_0} \\ + U_6 \begin{pmatrix} -\sin(\alpha_3 - \alpha_6) \\ \cos(\alpha_3 - \alpha_6) \end{pmatrix}^{\mathcal{B}_0} \\ &+ U_6 \begin{pmatrix} \cos(\alpha_3 - \alpha_6) \\ \cos(\alpha_3 - \alpha_6) \end{pmatrix}^{\mathcal{B}_0} \\ &= \begin{pmatrix} U_1 \cos \alpha_1 + U_2 \cos \alpha_2 - U_3 \sin \alpha_3 - U_4 \sin \alpha_4 + U_5 \cos(\alpha_2 - \alpha_5) - U_6 \sin(\alpha_3 - \alpha_6) \\ U_1 \sin \alpha_1 + U_2 \sin \alpha_2 + U_3 \cos \alpha_3 - U_4 \cos \alpha_4 + U_5 \sin(\alpha_2 - \alpha_5) + U_6 \cos(\alpha_3 - \alpha_6) \end{pmatrix}^{\mathcal{B}_0} \end{split}$$