

Quick start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100)Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X, Y, color='green')

fig.savefig("figure.pdf") plt.show()

Anatomy of a figure

Subplots layout

Getting help

matplotlib.org

github.com/matplotlib/matplotlib/issues

discourse.matplotlib.org

stackoverflow.com/questions/tagged/matplotlib https://gitter.im/matplotlib/matplotlib

y twitter.com/matplotlib

scatter(X, Y, ...) X, Y, [slizes, [clolors, marker, cmap

quiver([X], [Y], U, V, ...) API

Advanced plots

twilight

Tick locators

Ornaments

ticker.PercentFormatter(xmax=5)

ax.legend(...) handles, labels, loc, title, frameon

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Event handling

fig, ax = plt.subplots() def on_click(event): print(event) fig.canvas.mpl_connect('button_press_event', on_click)

Animation

import matplotlib.animation as mpla

```
T = np.linspace(0, 2*np.pi, 100)
S = np.sin(T)
line, = plt.plot(T, S)
def animate(i):
    line.set_ydata(np.sin(T+i/50))
anim = mpla.FuncAnimation(
    plt.gcf(), animate, interval=5)
plt.show()
```

Styles

plt.stvle.use(style)

Quick reminder

```
ax.set_[xy]lim(vmin, vmax)
ax.set_[xy]label(label)
ax.set_[xy]ticks(ticks, [labels])
ax.set_[xy]ticklabels(labels)
ax.set_title(title)
ax.tick_params(width=10, ...)
ax.set_axis_[on|off]()
fig.suptitle(title)
fig.tight_layout()
plt.gcf(), plt.gca()
mpl.rc('axes', linewidth=1, ...)
```

Keyboard shortcuts

[fig|ax].patch.set_alpha(0)

text=r'\$\frac{-e^{i\pi}}{2^n}\$'

Ten simple rules

1. Know your audience

2. Identify your message

3. Adapt the figure

4. Captions are not optional

5. Do not trust the defaults

6. Use color effectively

7. Do not mislead the reader

8. Avoid "chartiunk"

9. Message trumps beauty 10. Get the right tool