

Functional Magnetic Resonance Imaging

GitHub https://github.com/dcdace/fMRI training

Dace [datza] Apšvalka February 2025

Outline

- Introduction
- Experimental design
- Data management
- Pre-processing
- Statistical analysis
- Practical demo

Pre-process

Collect the data

Why can't we analyse right away?

Pre-process & Analyse

Raw data in example voxel

Raw data in example voxel

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise
- ... and many others

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise
- ... and many others

Artefacts

eye blink / movement effect (not just in eye balls!)

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise
- ... and many others

Head motion

Head motion correction

- Prevention is the best remedy
- Tell your subjects how to be good subjects
- Make sure the subject is comfortable going in
- Discourage any movements that would displace the head between scans

Bite bar

Thermoplastic mask

Vacuum pack

Often a bunch of foam padding works as well as anything

Head motion correction

Spatial realignment

- Most algorithms assume a rigid body (= the brain doesn't deform with movement)
- Align each volume of the brain to a target volume using 6 parameters: 3 translations and 3 rotations
- Target volume: e.g., the mean image of the first run

Head motion correction

- Spatial realignment
 - Not expected to work perfectly, but it helps
 - Be suspicious of data with a lot of head movement!

Translation (mm)			Rotation (rad)		
Χ	У	Z	Pitch	Roll	Yaw
0.3417	0.3348	1.8892	0.0182	0.0065	0.001
0.2733	0.418	1.5832	0.0165	0.0063	0.0061
0.8953	0.4925	0.8524	0.0234	0.0123	0.0269
1.8179	1.5353	1.8285	0.0327	0.0222	0.0939
1.0054	0.3014	0.7574	0.0043	0.0197	0.0094
0.737	0.9508	1.0428	0.026	0.0171	0.0164

150

image

200

250

300

50

100

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise
- ... and many others

Slice timing

Typically, the fMRI data are acquired slice-by-slice – not the whole brain all at once

Order: **Ascending**

Slice timing

Typically, the fMRI data are acquired slice-by-slice – not the whole brain all at once

Descending-Interleaved

Slice time correction

Temporal interpolation

- Adjusts the timings of the slices so that it is as if they had been collected simultaneously
- Uses information from nearby time points to estimate the amplitude of the MR signal at the onset of each TR
- Key parameters
 - Reference slice
 - The only slice that is not interpolated
 - Typical choice is to use the middle slice
 - Slice order
 - TR
- No need to slice time correct if TR is very short (e.g., multi-band: multiple slices at the same time)

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise
- ... and many others

Brain differences – between subjects

- Brain size can differ (up to 30%)
- Brain shape can differ

- Solution: normalise to a standard template
 - stretching, squeezing and warping each brain to the "standard brain"

Standard brain template

- Talairach space
 - From atlas of Talairach and Tournoux (1988)
 - Based on single subject (60y, Female, Cadaver)

- MNI Montreal Neurological Institute
 - Average scan of 152 'normal' right-handed subjects
 - Approximated to Talairach space
 - Slightly larger

Normalisation

Spatial smoothing

 Helps make residual errors in previous spatial pre-processing stages less problematic (e.g., imperfect normalisation, motion correction)

Can increase signal-to-noise ratio

 Necessary for validity of multiple corrections within random field theory

But it reduces the image resolution

Problems with fMRI data

- Artefacts
- Head motion
- Slice timing
- Brain differences
- Noise can be modelled in GLM
- ... and many others

Typical pre-processing pipeline

Pre-processing tools

Pre-processing tools

Idiosyncratic, Heterogeneous APIs

Pre-processing tools

- fMRIPrep https://fmriprep.org/en/stable/
 - Fully automated fMRI data pre-processing tool
 - The workflow is based on Nipype and encompasses a large set of tools from well-known neuroimaging packages, including FSL, ANTs, FreeSurfer, AFNI, and Nilearn. This pipeline was designed to provide the best software implementation for each state of pre-processing, and will be updated as newer and better neuroimaging software becomes available.
 - **Robustness** The pipeline adapts the pre-processing steps depending on the input dataset and should provide results as good as possible independently of scanner make, scanning parameters or presence of additional correction scans (such as fieldmaps).
 - **Ease of use** Thanks to dependence on the BIDS standard, manual parameter input is reduced to a minimum, allowing the pipeline to run in an automatic fashion.
 - "Glass box" philosophy Automation should not mean that one should not visually inspect the results or understand the methods. Thus, fMRIPrep provides visual reports for each subject, detailing the accuracy of the most important processing steps. This, combined with the documentation, can help researchers to understand the process and decide which subjects should be kept for the group level analysis.

fMRIPrep

T1-weighted

One or more (e.g. in longitudinal studies) T1w images

BOLD run

One run of one task (or resting-state) time-series of blood-oxygen level (BOLD) measurements

Fuse & Conform

All T1w images are aligned and averaged to form a 3D reference image NIfTI headers are checked for validity

INU Correction

The T1w reference is run through the N4 algorithm to correct for intensity nonuniformity (INU)

Skull-stripping

Atlas-based brain extraction is performed on the reference T1w image

Functional preprocessing

Generate reference & brain mask

Time-points showing non-steady state artifacts (excess of T1 contrast) are aligned and averaged to generate a reference image in native space

Estimation of head-motion

Parameters representing bulk head motion (due to involuntary drift, swallowing, etc.) of each timepoint with respect to the reference are estimated

(Optional) When the acquisition time of 2D axial slices of a given timepoint is available, temporal dynamics are estimated and all slices resampled to the mid-timepoint of that TR

Brain atlas

Default: MNI152 nonlinear asymmetric v2009c

Spatial normalization Non-linear, spatial

alignment to the brain

Brain tissue segmentation The brain-extracted image is

classified into CSF, GM and WM

Surface reconstruction

Surfaces of the cortical sheet are reconstructed from the anatomical information (T1w reference, T2w)

Alignment to T1w reference

Registers activity in BOLD voxels to anatomical location

Susceptibility distortion estimation

(Optional) Find a deformation field that compensates for the distortion, when adequate acquisitions are present

Sample on surface

Sample the BOLD signal on the surfaces reconstructed from the anatomical data

concatenating all pertinent transformations

Sample in native

"One-shot" resampling of the BOLD signal in its original grid, applying corrections

Calculate and store nuisance regressors such as noise components, motion parameters, global signals, etc.

DataOrganise & Manage

Notebook: nbo3_Quality-Control-and-Preprocessing.ipynb

Pre-process

Outline

- Introduction
- Experimental design
- Data management
- Pre-processing
- Statistical analysis
- Practical demo