Problem (Problem 1): Let $a_1, \ldots, a_n \in \mathbb{R}$. Suppose that for each $i \in \{1, \ldots, n\}$, we are given $m_i \ge 0$ and m+1 numbers $b_{i0}, \ldots, b_{im_i} \in \mathbb{R}$. Use the Chinese Remainder Theorem to show that there exists a polynomial $f(x) \in \mathbb{R}[x]$ such that

$$f(a_i) = b_{i0}$$

$$f'(a_i) = b_{i1}$$

$$\vdots$$

$$f^{(m_i)} = b_{im_i}.$$

Solution: We observe that if we take

$$f(x) = q_{01}(x)(x - a_1) + b_{10},$$

then

$$f'(x) = q_{01}(x) + q'_{01}(x)(x - a_1),$$

so that

$$f'(a_1) = q_{01}(a_1)$$

and

$$f'(x) = q_{11}(x)(x - a_1) + b_{11},$$

meaning

$$f(x) = (q_{11}(x)(x - a_1) + b_{11})(x - a_1) + b_{10}.$$

Inductively, we thus desire a solution to the system of congruences

$$\begin{split} f(x) &\equiv b_{10} + b_{11}(x - a_1) + \dots + b_{1m_1}(x - a_1)^{m_1 - 1} \bmod (x - a_1)^{m_1} \\ &\equiv b_{20} + b_{21}(x - a_2) + \dots + b_{2m_2}(x - a_2)^{m_2 - 1} \bmod (x - a_2)^{m_2} \\ &\vdots \\ &\equiv b_{n0} + b_{n1}(x - a_n) + \dots + b_{nm_n}(x - a_n)^{m_n - 1} \bmod (x - a_n)^{m_n}. \end{split}$$

Since the family of ideals $\{((x-a_1)^{m_1}), \dots, ((x-a_n)^{m_n})\}$ are pairwise coprime, as the corresponding family of principal ideals $\{(x-a_1), \dots, (x-a_n)\}$ are pairwise coprime, the Chinese Remainder Theorem implies that some $f(x) \in \mathbb{R}[x]$ satisfies this system of congruences.

Problem (Problem 3): Let R be a commutative ring with 1. A prime ideal $P \subseteq R$ is called minimal if there is no prime ideal $P' \subseteq R$ with $P' \subseteq P$. Prove the existence of minimal prime ideals by applying Zorn's Lemma.

Solution: We know that R has at least one maximal ideal, and since maximal ideals are prime, we let $M \subseteq R$ be a maximal ideal, and define

$$\mathcal{P} = \big\{ P \subseteq R \ \big| \ P \subseteq M, P \text{ is a prime ideal} \big\}$$

to be a partially ordered set ordered by containment — i.e., $P_1 \leq P_2$ if $P_1 \supseteq P_2$. Notice that \mathcal{P} is nonempty, as M is prime in R and $M \subseteq M$. Next, if $\{P_i\}_{i \in I} = \mathcal{C} \subseteq \mathcal{P}$ is a chain, we set

$$P = \bigcap_{i \in I} P_i$$
.

We claim that P is prime. Let $ab \in P$; then, $ab \in P_i$ for all $i \in I$. We claim that this implies that either $a \in P_i$ for all i or $b \in P_i$ for all i. If not, then there would be some index j such that both a and b are not

in P_i for all $i \ge j$. This would imply that for all $i \ge j$, $ab \notin P_i$, as each of the P_i are prime. Thus, it must be the case that either $a \in P$ or $b \in P$.

Since \mathcal{P} is a nonempty partially ordered set (by containment) where every chain has an upper bound, \mathcal{P} has a "maximal" (with respect to containment, so minimal) element.

Problem (Problem 4):

- (a) Let R, S be commutative rings with 1, and let $f: R \to S$ be a ring homomorphism such that $f(1_R) = 1_S$. Show that for any prime ideal $P \subseteq S$, the preimage $f^{-1}(P)$ is a prime ideal of R.
- (b) Give an example of a ring homomorphism $f: R \to S$ with $f(1_R) = 1_S$ and a maximal ideal $M \subseteq S$ such that $f^{-1}(M)$ is not a maximal ideal of R.

Solution:

- (a) Let $a, b \in R$ be such that $ab \in f^{-1}(P)$. Then, by definition of preimage, we have that $f(ab) \in P$, and since f is a ring homomorphism, $f(a)f(b) \in P$. Since P is prime, we have $f(a) \in P$ or $f(b) \in P$, so by the definition of preimage, we must have either $a \in f^{-1}(P)$ or $b \in f^{-1}(P)$. Thus, $f^{-1}(P)$ is prime.
- (b) Let $R = \mathbb{Z}$ and $S = \mathbb{Q}$, with $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ being the natural inclusion. Since \mathbb{Q} is a field, the only maximal ideal of \mathbb{Q} is $\{0\}$, but $\{0\} = f^{-1}(\{0\})$ is not maximal in \mathbb{Z} since there are other proper ideals in \mathbb{Z} .

Problem (Problem 6): Let $R = \mathbb{C}[x,y]$ be the ring of polynomials in two variables over the field of complex numbers. Let J be the ideal of R generated by $x + y^2$ and $y + x^2 + 2xy^2 + y^4$. The goal of this problem is to compute the quotient R/J, and conclude that J is a maximal ideal. For this, we set I to be the ideal generated by $x + y^2$ and use the Third Isomorphism Theorem.

- (a) Consider the ring homomorphism $f: \mathbb{C}[x,y] \to \mathbb{C}[y]$ given by $f(x) = -y^2$ and f(y) = y. Show that f is surjective, and that $\ker(f) = I$.
- (b) By the Third Isomorphism Theorem, $R/J \cong (R/I)/(J/I)$. Observe that this identifies J/I with f(J), and compute f(J) explicitly. Then, compute $R/J \cong \mathbb{C}[y]/f(J)$, and conclude that J is a maximal ideal.

Solution:

(a) We consider the identification $\mathbb{C}[x,y] \cong (\mathbb{C}[y])[x]$, and perform Euclidean division by $x + y^2$ in x, which is well-defined as $x + y^2$ is monic in x. Therefore, we get that for any $p(x,y) \in \mathbb{C}[x,y]$, we have

$$p(x,y) = q(x,y)(x + y^2) + r(x,y),$$

where since $\deg_x(r) < 1$, we have $r(x,y) \equiv r(y)$. Via the properties of the division algorithm, we observe that if we map $p(x,y) \mapsto r(y)$, then this map is well-defined, as any two such $r_1(y)$ and $r_2(y)$ that satisfy the division algorithm must have the same degree in x, which is zero, hence are equal to each other, and surjective with kernel $(x + y^2)$.

Notice then that $x \mapsto -y^2$, as $x = (1)(x + y^2) - y^2$, and $y \mapsto y$, as $y = (0)(x + y^2) + y$, implying that the map $p(x, y) \mapsto r(y)$ is exactly the map f.

(b) Observe that J is the ideal consisting of all polynomials of the form

$$p(x,y) = a(x,y)(x + y^2) + b(x,y)(y + x^2 + 2xy^2 + y^4)$$

By performing division with respect to $x + y^2$, we find that

$$p(x,y) = (a(x,y) + b(x,y)(x + y^2))(x + y^2) + y(q(x,y)(x + y^2) + r(y))$$

= $\ell(x,y)(x + y^2) + yk(y)$,

meaning that f(J) can be expressed as

$$f(J) = \{yk(y) \mid k \in \mathbb{C}[y]\}.$$

Now, by performing division in $\mathbb{C}[y]$ by y, we find that for any $r(y) \in \mathbb{C}[y]$,

$$r(y) = yk(y) + c,$$

where $c \in \mathbb{C}$. Thus, $R/J \cong (R/I)/(J/I) \cong \mathbb{C}$, implying that J is maximal.