Heat Equation: Reduced Order Modeling

Anwar Khaddaj, Carlos Taveras, Karthik Goli

ELEC 519 Final Project Rice University, Houston, Texas

April 20, 2024

Outline

Diffusion

Convection

Heat diffusion

Consider a perfectly insulated heat-conducting rod

Diffusion of heat described by linear PDE

$$\frac{\partial \mathbf{T}}{\partial t}(x,t) = \frac{\partial^2 \mathbf{T}}{\partial x^2}(x,t), \quad t \ge 0, \quad x \in [0,1], \tag{1}$$

with Neumann boundary conditions

$$\frac{\partial \mathbf{T}}{\partial x}(0,t) = 0$$
 and $\frac{\partial \mathbf{T}}{\partial x}(1,t) = u(t)$,

and measured output

$$\mathbf{y}(t) = \mathbf{T}(0, t)$$

where $\mathbf{T}(x,t)$ temp. at distance x from origin and time t.

Transfer Function

- ▶ To compute transfer function, we first apply Laplace transforms on (1), its boundary conditions, and output
- ► Solve for $\hat{\mathbf{u}}(s)$ and $\hat{\mathbf{y}}(s)$
- ► Resulting transfer function

$$\mathbf{Z}(s) = \frac{\hat{\mathbf{y}}(s)}{\hat{\mathbf{u}}(s)} = \frac{1}{\sqrt{s}\sinh(\sqrt{s})}.$$

Poles are

$$s = -k^2 \pi^2 \quad \text{for } k \in \mathbb{Z}.$$

Impulse Response and Approximations

We can show that impulse response of system is

$$\mathbf{z}(t) = 1 + 2\mathbf{h}(t) \text{ where } \mathbf{h}(t) = \sum_{k=1}^{\infty} (-1)^k e^{-\pi^2 k^2 t}, \quad t \ge 0.$$

- We now investigate 3 different approximations of z
 - Modal approximation

$$\mathbf{z}_{mod}(t) = 1 + 2(-e^{-\pi^2 t} + e^{-4\pi^2 t})$$

► High-order finite dim. approximation

$$\tilde{\mathbf{z}}(t) = 1 + 2\sum_{k=1}^{8} (-1)^k e^{-\pi^2 k^2 t}$$

ightharpoonup Second order Lyapunov balanced truncation $\mathbf{z}_L = 1 + 2\mathbf{h}_L$

Impulse Response and Step Responses of Approximations

Bode Amplitude Diagrams

Approximant	\mathcal{H}_{∞} norm of error system
$ ilde{\mathbf{h}}$	1.3e-03
\mathbf{h}_{mod}	1.4e-02
$\overline{\mathbf{h}_L}$	$1.0 \text{e-} 03 \le 1.3 e - 03$

Loewner Framework (250 interpol. points)

Hankel Framework

Outline

Diffusion

Convection

Heat Diffusion + Convection

- ▶ Add a convection coefficient $\eta = 0.01$
- The PDE becomes

$$\frac{\partial \mathbf{T}}{\partial t}(x,t) = \frac{\partial^2 \mathbf{T}}{\partial x^2}(x,t) - 2\eta \frac{\partial \mathbf{T}}{\partial x}(x,t), \quad t \ge 0, \quad x \in [0,1], \quad \eta \ge 0$$
(2)

with Neumann boundary conditions

$$\frac{\partial \mathbf{T}}{\partial x}(0,t) = 0 \text{ and } \frac{\partial \mathbf{T}}{\partial x}(1,t) = u(t),$$

and measured output

$$\mathbf{y}(t) = \mathbf{T}(0, t).$$

Discretization

Partition rod into N+1 intervals of length $h=\frac{1}{N+1}$ with variables

$$T(kh), \quad k = 0, 1, ..., N + 1$$

Discretize using

$$\dot{\mathbf{T}}(kh) = \frac{1}{h^2} \left[\mathbf{T}((k+1)h) - 2\mathbf{T}(kh) + \mathbf{T}((k-1)h) \right]$$
$$- \frac{2\eta}{h} \left[\mathbf{T}(kh) - \mathbf{T}((k-1)h) \right], \quad k = 0, 1, ..., N+1$$

▶ Include 2 ghost terms $\mathbf{T}(-h)$ and $\mathbf{T}((N+2)h)$ which can be eliminated using the discretized boundary conditions

$$(\mathbf{T}(0) - \mathbf{T}(-h))/h = 0$$
 & $(\mathbf{T}((N+2)h) - \mathbf{T}((N+1)h)/h = \mathbf{u}$.

Finally, the measured output is y = T(0).

Discretization Continued

ightharpoonup Studying the discretization at k=0, we have

$$\dot{\mathbf{T}}(0) = \frac{1}{h^2} \left[\mathbf{T}(h) - 2\mathbf{T}(0) + \mathbf{T}(-h) \right] - \underbrace{\frac{2\eta}{h} \left[\mathbf{T}(0) - \mathbf{T}(-h) \right]}_{0}$$

$$= \frac{1}{h^2} \left[\mathbf{T}(h) - \mathbf{T}(0) \right]$$

- ightharpoonup Similarly with k=N+1.
- Resulting system has the form

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

where

$$\mathbf{A} = \frac{1}{h^2} \begin{bmatrix} -1 & 1 & 0 \\ 1 + 2h\eta & -2(1+h\eta) & 1 \\ & \ddots & \ddots & \ddots \\ & & & 1 + 2h\eta & -2(1+h\eta) & 1 \\ & & & 0 & 1 + 2h\eta & -1 - 2h\eta \end{bmatrix}$$

$$\mathbf{B} = \frac{1}{h} \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}^T, \mathbf{C} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.$$

Transfer Function

► Transfer function

$$\mathbf{Z}(s) = \frac{\hat{\mathbf{y}}(s)}{\hat{\mathbf{u}}(s)} = \frac{1}{se^{\eta}} \cdot \frac{\sqrt{\eta^2 + s}}{\sinh(\sqrt{\eta^2 + s})}.$$

Poles are

$$s=0$$
 and $s=-\eta^2-k^2\pi^2$ for $k\in\mathbb{Z}$

Bode Amplitude Diagrams

	, ,			_	
(a) Rode	plot	ΟŤ	approximants

(b) Bode plot of error systems

Approximant	\mathcal{H}_{∞} norm of error system
$\tilde{\mathbf{h}}$	7e-04
\mathbf{h}_{mod}	7.3e-03
\mathbf{h}_L	$5.0 \text{e-} 04 \le 6.3 e - 04$

Loewner Framework

Hankel Framework

sys

sysk

Thank you!