Chapter ML:III

III. Decision Trees

- □ Decision Trees Basics
- □ Impurity Functions
- □ Decision Tree Algorithms
- Decision Tree Pruning

ML:III-32 Decision Trees © STEIN/LETTMANN 2005-2013

Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the example set D that is represented by t. [Illustration]

Possible criteria for a splitting of X(t):

1. Size of D(t).

2. Purity of D(t).

3. Ockham's Razor.

Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the example set D that is represented by t. [Illustration]

Possible criteria for a splitting of X(t):

1. Size of D(t).

D(t) will not be partitioned further if the number of examples, |D(t)|, is below a certain threshold.

2. Purity of D(t).

D(t) will not be partitioned further if all examples in D are members of the same class.

3. Ockham's Razor.

D(t) will not be partitioned further if the resulting decision tree is not improved significantly by the splitting.

Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes $C = \{c_1, c_2, c_3, c_4\}$. Distribution of D for two possible splittings of X:

ML:III-35 Decision Trees © STEIN/LETTMANN 2005-2013

Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes $C = \{c_1, c_2, c_3, c_4\}$. Distribution of D for two possible splittings of X:

- The left splitting should be preferred, since it minimizes the *impurity* of the subsets of D in the leaf nodes. The argumentation presumes that the misclassification costs are independent of the classes in C.
- The impurity is a function defined on $\mathcal{P}(D)$, the set of all subsets of an example set D.

ML:III-36 Decision Trees © STEIN/LETTMANN 2005-2013

Definition 4 (Impurity Function ι)

Let $k \in \mathbb{N}$. An impurity function $\iota : [0;1]^k \to \mathbb{R}$ is a partial function which is defined for those tuples (p_1, \ldots, p_k) where $\sum_{i=1}^k p_i = 1$, $p_i \ge 0$, and for which the following properties hold:

- (a) ι becomes minimum at points (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 0, 1).
- (b) ι is symmetric with regard to its arguments, p_1, \ldots, p_k .
- (c) ι becomes maximum at point $(1/k, \ldots, 1/k)$.

Definition 5 (Impurity of an Example Set $\iota(D)$)

Let D be a set of examples, let $C = \{c_1, \ldots, c_k\}$ be set of classes, and let $c: X \to C$ be the ideal classifier for X. Moreover, let $\iota: [0; 1]^k \to \mathbf{R}$ an impurity function. Then, the impurity of D, denoted as $\iota(D)$, is defined as follows:

$$\iota(D) = \iota\left(\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|}, \dots, \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_k\}|}{|D|}\right)$$

ML:III-38 Decision Trees © STEIN/LETTMANN 2005-2013

Definition 5 (Impurity of an Example Set $\iota(D)$)

Let D be a set of examples, let $C = \{c_1, \ldots, c_k\}$ be set of classes, and let $c: X \to C$ be the ideal classifier for X. Moreover, let $\iota: [0; 1]^k \to \mathbf{R}$ an impurity function. Then, the impurity of D, denoted as $\iota(D)$, is defined as follows:

$$\iota(D) = \iota\left(\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|}, \dots, \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_k\}|}{|D|}\right)$$

Definition 6 (Impurity Reduction $\Delta \iota$)

Let D_1, \ldots, D_s be a partitioning of an example set D, which is induced by a splitting of a feature space X. Then, the resulting impurity reduction, denoted as $\Delta \iota(D, \{D_1, \ldots, D_s\})$, is defined as follows:

$$\Delta\iota(D, \{D_1, \dots, D_s\}) = \iota(D) - \sum_{j=1}^s \frac{|D_j|}{|D|} \cdot \iota(D_j)$$

ML:III-39 Decision Trees © STEIN/LETTMANN 2005-2013

Remarks:

- Observe the different domains of the impurity function ι in the Definitions 4 and 5, namely, $[0;1]^k$ and D. The domains correspond to each other: the set of examples, D, defines via its class portions an element from $[0;1]^k$ and vice versa.
- The <u>properties</u> in the definition of ι suggest to minimize the <u>external path length</u> of T with respect to D in order to minimize the overall impurity characteristics of T.
- \Box Within the *DT-construct* algorithm usually a greedy strategy (local optimization) is employed to minimize the overall impurity characteristics of a decision tree T.

Impurity Functions Based on the Misclassification Rate

Definition for two classes:

$$\iota_{\textit{misclass}}(p_1, p_2) = 1 - \max\{p_1, p_2\} = \left\{ egin{array}{ll} p_1 & \text{if } 0 \leq p_1 \leq 0.5 \\ 1 - p_1 & \text{otherwise} \end{array} \right.$$

$$\iota_{\textit{misclass}}(D) = 1 - \max\left\{\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|}, \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|}\right\}$$

ML:III-41 Decision Trees

Impurity Functions Based on the Misclassification Rate

Definition for two classes:

$$\iota_{\textit{misclass}}(p_1, p_2) = 1 - \max\{p_1, p_2\} = \left\{ egin{array}{ll} p_1 & \text{if } 0 \leq p_1 \leq 0.5 \\ 1 - p_1 & \text{otherwise} \end{array} \right.$$

$$\iota_{\textit{misclass}}(D) = 1 - \max\left\{\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|}, \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|}\right\}$$

Graph of the function $\iota_{\textit{misclass}}(p_1, 1 - p_1)$:

ML:III-42 Decision Trees © STEIN/LETTMANN 2005-2013

Impurity Functions Based on the Misclassification Rate (continued)

Definition for *k* classes:

$$\iota_{\mathit{misclass}}(p_1,\ldots,p_k) = 1 - \max_{i=1,\ldots,k} \ p_i$$

$$\iota_{\textit{misclass}}(D) = 1 - \max_{c \in C} \ \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c\}|}{|D|}$$

Impurity Functions Based on the Misclassification Rate (continued)

Problems:

- $\triangle \underline{\iota}_{misclass} = 0$ may hold for all possible splittings.
- □ The impurity function that is induced by the misclassification rate underestimates pure nodes (see splitting on the right-hand side):

ML:III-44 Decision Trees © STEIN/LETTMANN 2005-2013

Impurity Functions Based on the Misclassification Rate (continued)

Problems:

- $\triangle \underline{\lambda}_{misclass} = 0$ may hold for all possible splittings.
- □ The impurity function that is induced by the misclassification rate underestimates pure nodes (see splitting on the right-hand side):

$$\underline{\Delta\iota}_{\textit{misclass}} = \iota_{\textit{misclass}}(D) - \left(\frac{|D_1|}{|D|} \cdot \iota_{\textit{misclass}}(D_1) + \frac{|D_2|}{|D|} \cdot \iota_{\textit{misclass}}(D_2) \right)$$

left splitting: $\underline{\Delta \iota}_{\textit{misclass}} = \frac{1}{2} - (\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}) = \frac{1}{4}$

right splitting: $\underline{\Delta \iota}_{\textit{misclass}} = \frac{1}{2} - (\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0) = \frac{1}{4}$

Definition 7 (Strict Impurity Function)

Let $k \in \mathbb{N}$ and let $\iota : [0; 1]^k \to \mathbb{R}$ be an <u>impurity function</u>. ι is called strict, if it is strictly concave:

(c)
$$\rightarrow$$
 (c') $\iota(\lambda \mathbf{p} + (1 - \lambda)\mathbf{p}') > \lambda \iota(\mathbf{p}) + (1 - \lambda)\iota(\mathbf{p}'), \quad 0 < \lambda < 1, \ \mathbf{p} \neq \mathbf{p}'$

ML:III-46 Decision Trees © STEIN/LETTMANN 2005-2013

Definition 7 (Strict Impurity Function)

Let $k \in \mathbb{N}$ and let $\iota : [0; 1]^k \to \mathbb{R}$ be an <u>impurity function</u>. ι is called strict, if it is strictly concave:

(c)
$$\rightarrow$$
 (c') $\iota(\lambda \mathbf{p} + (1 - \lambda)\mathbf{p}') > \lambda \iota(\mathbf{p}) + (1 - \lambda)\iota(\mathbf{p}'), \quad 0 < \lambda < 1, \ \mathbf{p} \neq \mathbf{p}'$

Lemma

Let ι be a strict impurity function and let D_1, \ldots, D_s be a partitioning of an example set D, which is induced by a splitting of a feature space X. Then the following inequality holds:

$$\underline{\Delta\iota}(D,\{D_1,\ldots,D_s\})\geq 0$$

The equality is given iff for all $i \in \{1, ..., k\}$ and $j \in \{1, ..., s\}$ holds:

$$\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_i\}|}{|D|} = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_j : c(\mathbf{x}) = c\}|}{|D_j|}$$

ML:III-47 Decision Trees © STEIN/LETTMANN 2005-2013

The proof of the Lemma exploits the strict concavity property of ι .

ML:III-48 Decision Trees

strictly concave.

Impurity Functions Based on Entropy

Definition 8 (Entropy)

Let A denote an event and let P(A) denote the occurrence probability of A. Then the entropy (self-information, information content) of A is defined as $-\log_2(P(A))$.

Let \mathcal{A} be an experiment with the exclusive outcomes (events) A_1, \ldots, A_k . Then the mean information content of \mathcal{A} , denoted as $H(\mathcal{A})$, is called Shannon entropy or entropy of experiment \mathcal{A} and is defined as follows:

$$H(\mathcal{A}) = -\sum_{i=1}^k P(A_i) \log_2(P(A_i))$$

Remarks:

- □ The smaller the occurrence probability of an event, the larger is its entropy. An event that is certain has zero entropy.
- The Shannon entropy combines the entropies of an experiment's outcomes, using the outcome probabilities as weights.
- □ In the entropy definition we stipulate the identity $0 \cdot \log_2(0) = 0$.

Impurity Functions Based on Entropy (continued)

Definition 9 (Conditional Entropy, Information Gain)

Let \mathcal{A} be an experiment with the exclusive outcomes (events) A_1, \ldots, A_k , and let \mathcal{B} be another experiment with the outcomes B_1, \ldots, B_s . Then the conditional entropy of the combined experiment $(\mathcal{A} \mid \mathcal{B})$ is defined as follows:

$$H(\mathcal{A} \mid \mathcal{B}) = \sum_{j=1}^{s} P(B_j) \cdot H(\mathcal{A} \mid B_j),$$

where
$$H(\mathcal{A}|\ B_j) = -\sum_{i=1}^k P(A_i|\ B_j)\log_2(P(A_i|\ B_j))$$

Impurity Functions Based on Entropy (continued)

Definition 9 (Conditional Entropy, Information Gain)

Let \mathcal{A} be an experiment with the exclusive outcomes (events) A_1, \ldots, A_k , and let \mathcal{B} be another experiment with the outcomes B_1, \ldots, B_s . Then the conditional entropy of the combined experiment $(\mathcal{A} \mid \mathcal{B})$ is defined as follows:

$$H(\mathcal{A} \mid \mathcal{B}) = \sum_{j=1}^{s} P(B_j) \cdot H(\mathcal{A} \mid B_j),$$

where
$$H(\mathcal{A}|B_j) = -\sum_{i=1}^k P(A_i|B_j) \log_2(P(A_i|B_j))$$

ML:III-52 Decision Trees

Impurity Functions Based on Entropy (continued)

Definition 9 (Conditional Entropy, Information Gain)

Let \mathcal{A} be an experiment with the exclusive outcomes (events) A_1, \ldots, A_k , and let \mathcal{B} be another experiment with the outcomes B_1, \ldots, B_s . Then the conditional entropy of the combined experiment $(\mathcal{A} \mid \mathcal{B})$ is defined as follows:

$$H(\mathcal{A} \mid \mathcal{B}) = \sum_{j=1}^{s} P(B_j) \cdot H(\mathcal{A} \mid B_j),$$

where
$$H(\mathcal{A}|B_j) = -\sum_{i=1}^k P(A_i|B_j)\log_2(P(A_i|B_j))$$

The information gain due to experiment \mathcal{B} is defined as follows:

$$H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B}) = H(\mathcal{A}) - \sum_{j=1}^{s} P(B_j) \cdot H(\mathcal{A} \mid B_j)$$

Remarks [Bayes for classification]:

- Information gain is defined as reduction in entropy.
- In the context of decision trees, experiment \mathcal{A} corresponds to classifying feature vector \mathbf{x} with regard to the target concept. A possible question, whose answer will inform us about which event $A_i \in \mathcal{A}$ occurred, is the following: "Does \mathbf{x} belong to class c_i ?" Likewise, experiment \mathcal{B} corresponds to evaluating feature \mathcal{B} of feature vector \mathbf{x} . A possible question, whose answer will inform us about which event $B_j \in \mathcal{B}$ occurred, is the following: "Does \mathbf{x} have value b_j for feature B?"
- Rationale: Typically, the events "target concept class" and "feature value" are statistically dependent. Hence, the conditional entropy $H(\mathcal{A} \mid \mathcal{B})$ of class $c(\mathbf{x})$ will become smaller if one learns the value of some feature of \mathbf{x} (recall that the class of \mathbf{x} is unknown). We experience an information gain with regard to the outcome of experiment \mathcal{A} , which is rooted in our information about the outcome of experiment \mathcal{B} . Under no circumstances the information gain will be negative; it is zero if the involved events are statistically independent.
- \Box Since H(A) is constant, the feature that provides the maximum information gain (= the maximally informative feature) is given by the minimization of $H(A \mid B)$.
- \Box The expanded form of $H(A \mid B)$ reads as follows:

$$H(\mathcal{A} \mid \mathcal{B}) = -\sum_{j=1}^{s} P(B_j) \cdot \sum_{i=1}^{k} P(A_i \mid B_j) \log_2(P(A_i \mid B_j))$$

Impurity Functions Based on Entropy (continued)

Definition for two classes:

$$\iota_{\mathit{entropy}}(p_1, p_2) = -(p_1 \log_2(p_1) + p_2 \log_2(p_2))$$

$$\begin{split} \iota_{\textit{entropy}}(D) = -\left(\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} + \\ \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|} \right) \end{split}$$

ML:III-55 Decision Trees

Impurity Functions Based on Entropy (continued)

Definition for two classes:

$$\iota_{\mathit{entropy}}(p_1, p_2) = -(p_1 \log_2(p_1) + p_2 \log_2(p_2))$$

$$\begin{split} \iota_{\textit{entropy}}(D) = -\left(\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} + \\ \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|} \right) \end{split}$$

Graph of the function $\iota_{\textit{entropy}}(p_1, 1 - p_1)$:

ML:III-56 Decision Trees © STEIN/LETTMANN 2005-2013

Impurity Functions Based on Entropy (continued)

Graph of the function $\iota_{\mathit{entropy}}(p_1,p_2,1-p_1-p_2)$:

ML:III-57 Decision Trees © STEIN/LETTMANN 2005-2013

Impurity Functions Based on Entropy (continued)

Definition for *k* classes:

$$\iota_{ extit{entropy}}(p_1,\ldots,p_k) = -\sum_{i=1}^k p_i \log_2(p_i)$$

$$\iota_{\textit{entropy}}(D) = -\sum_{i=1}^k \ \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_i\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_i\}|}{|D|}$$

ML:III-58 Decision Trees

Impurity Functions Based on Entropy (continued)

 $\underline{\Delta \iota}_{\it entropy}$ corresponds to the information gain $H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B})$:

$$\underline{\underline{\Delta\iota}_{\textit{entropy}}} = \iota_{\textit{entropy}}(D) \qquad - \qquad \underbrace{\sum_{j=1}^{s} \frac{|D_j|}{|D|} \cdot \iota_{\textit{entropy}}(D_j)}_{H(\mathcal{A}|\mathcal{B})}$$

Impurity Functions Based on Entropy (continued)

 $\underline{\Delta \iota}_{\it entropy}$ corresponds to the information gain $H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B})$:

$$\underline{\underline{\Delta\iota}_{\textit{entropy}}} = \iota_{\textit{entropy}}(D) \qquad - \qquad \underbrace{\sum_{j=1}^{s} \frac{|D_j|}{|D|} \cdot \iota_{\textit{entropy}}(D_j)}_{H(\mathcal{A}|\mathcal{B})}$$

Legend:

- \square $\iota_{entropy}(D) = \iota_{entropy}(P(A_1), \ldots, P(A_k))$
- \square $\iota_{entropy}(D_j) = \iota_{entropy}(P(A_1 \mid B_j), \ldots, P(A_k \mid B_j)), \ j = 1, \ldots, s$
- $egin{array}{ll} \iota_{\mathit{entropy}}(p_1,\ldots,p_k) = -\sum_{i=1}^k \, p_i \cdot \log_2(p_i) \end{array}$
- $\square \frac{|D_j|}{|D|} = P(B_j), \ j = 1, \dots, s$
- A_i , i = 1, ..., k, denotes the event that $\mathbf{x} \in X(t)$ belongs to class c_i . The experiment A corresponds to the classification $c: X(t) \to C$.
- $\exists B_j, \ j=1,\ldots,s$, denotes the event that $\mathbf{x} \in X(t)$ has value b_j for feature B. The experiment \mathcal{B} corresponds to evaluating feature B and entails the following splitting: $X(t) = X(t_1) \cup \ldots \cup X(t_s) = \{\mathbf{x} \in X(t) : \mathbf{x}|_B = b_1\} \cup \ldots \cup \{\mathbf{x} \in X(t) : \mathbf{x}|_B = b_s\}$
- \square $P(A_i), P(B_i), P(A_i \mid B_i)$ are estimated as relative frequencies based on D.

Impurity Functions Based on the Gini Index

Definition for two classes:

$$\iota_{\textit{Gini}}(p_1, p_2) = 1 - (p_1^2 + p_2^2) = 2 \cdot p_1 \cdot p_2$$

$$\iota_{\textit{Gini}}(D) = 2 \cdot \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} \cdot \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|}$$

ML:III-61 Decision Trees

Impurity Functions Based on the Gini Index

Definition for two classes:

$$\iota_{\textit{Gini}}(p_1, p_2) = 1 - ({p_1}^2 + {p_2}^2) = 2 \cdot p_1 \cdot p_2$$

$$\iota_{\textit{Gini}}(D) = 2 \cdot \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_1\}|}{|D|} \cdot \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_2\}|}{|D|}$$

Graph of the function $\iota_{\textit{Gini}}(p_1, 1 - p_1)$:

Impurity Functions Based on the Gini Index (continued)

Definition for *k* classes:

$$\iota_{ extit{Gini}}(p_1,\ldots,p_k)=1-\sum_{i=1}^k(p_i)^2$$

$$\iota_{\mathit{Gini}}(D) = \left(\sum_{i=1}^k \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_i\}|}{|D|}\right)^2 - \sum_{i=1}^k \left(\frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D : c(\mathbf{x}) = c_i\}|}{|D|}\right)^2$$

$$=1-\sum_{i=1}^{k}\left(\frac{|\{(\mathbf{x},c(\mathbf{x}))\in D:c(\mathbf{x})=c_i\}|}{|D|}\right)^2$$