

Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics A 987 (2019) 99-111

www.elsevier.com/locate/nuclphysa

α -decay half-lives of neutron-deficient nuclei

J.P. Cui a,b, Y. Xiao a,b, Y.H. Gao a,b, Y.Z. Wang a,b,c,*

Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
 Institute of Applied Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
 China Institute of Atomic Energy, P. O. Box 275 (10), Beijing 102413, China

Received 24 March 2019; received in revised form 17 April 2019; accepted 18 April 2019 Available online 25 April 2019

Abstract

The α -decay half-lives of neutron-deficient nuclei with Z=80-118 are studied by employing the effective liquid drop model (ELDM), generalized liquid drop model (GLDM) with the fission-like mode and the cluster-like mode, Royer formula, and Denisov formula. By comparison between the calculated half-lives and the experimental ones, it is shown that the accuracy by the GLDM with the cluster-like mode is higher than those by other models and formulas. In addition, the α -decay half-lives of the unmeasured neutron-deficient nuclei with Z=80-120 are predicted using the GLDM with the cluster-like mode by inputting the Weizsäcker-Skyrme-4 (WS4) Q_{α} values. These predictions are helpful for future measurements. © 2019 Elsevier B.V. All rights reserved.

Keywords: α-Decay; Neutron-deficient nuclei

1. Introduction

 α -decay was firstly observed by Rutherford and Geiger at the beginning of the last century [1]. For unstable nuclei, α -decay is a dominant radioactive decay mode and it has been a powerful tool to identify the new elements or new isotopes [2–11]. Meanwhile, via the observation of the α radioactivity, rich nuclear structure information can be obtained, such as the half-lives, decay energies, spin-parity, radii, and shell effects [2–5]. On the aspect of the theoretical study, the α radioactivity was explained successfully as a typical quantum tunneling effect by Gamov [12]

E-mail address: yanzhaowang09@126.com (Y.Z. Wang).

^{*} Corresponding author.

and by Condon and Gurney [13] in 1928. Since then, various theoretical models and empirical formulas were proposed to calculate the α -decay half-lives [14–43]. The experimental α -decay half-lives can be reproduced more or less satisfactorily by these theoretical models and formulas [14–43].

Recent years, the synthesis of superheavy nuclei (SHN) has been a hot subject in modern nuclear physics. So far, many SHN have been produced by cold and hot fusion reactions [3–11]. But these synthesized nuclei are neutron-deficient ones. Meanwhile, the heavy nuclei in the upper left part of the nuclear chart have been paid attention by many researchers [44–50]. Owing to the application of digital data acquisition and the exploration on multi-nucleon transfer reactions, some new heavy neutron-deficient nuclei have been produced, such as 215,216,221 U [44–46], 219,223,224 Np [47–49], and 220 Pa [50]. The α radioactivity of these nuclei is helpful for understanding the nuclear structure and predicting the limit of existence. On the other hand, these experimental data can provide a ground for testing the extant α -decay models. We know that the ELDM [32–36] and GLDM [39] are successful models to estimate the α -decay half-lives. In addition, some empirical formulas, such as the Royer formula [40,41], the Denisov formula [42,43], are usually used to calculate the α -decay half-lives. So in this article we will extend them to investigate the α radioactivity of the neutron-deficient nuclei. This article is organized in the following way. Sec. 2 gives the theoretical approaches. In Sec. 3 numerical results and discussions are performed. In the last section, some conclusions are drawn.

2. Theoretical methods

2.1. ELDM

The ELDM is a successful phenomenological model, which was proposed by Goncalves and Duarte in 1993 [32]. It is assumed as a super-asymmetric fission model to study the α -decay, the proton emission, the cluster radioactivity, and the cold fission in a unified framework. The details of the ELDM can be seen from Refs. [32–36]. In the framework of the ELDM, the decay constant is defined as

$$\lambda = \nu_0 P,\tag{1}$$

where v_0 is the assault frequency of α particle on the barrier of the parent nucleus. For the varying mass asymmetry shape (VMAS) description, the v_0 value is taken as 1.8×10^{22} s⁻¹. P is the Gamow penetrability factor through the barrier, which is calculated by

$$P = \exp\left[-\frac{2}{\hbar} \int_{\zeta_0}^{\zeta_c} \sqrt{2\mu_{WW}^{VMAS} [V(\zeta) - Q_\alpha]} d\zeta\right]. \tag{2}$$

Here, the limits ζ_0 and ζ_c of the integral are the inner and outer turning points, respectively. μ_{WW}^{VMAS} is the inertial coefficient obtained by using the Werner-Wheeler approximation [51] within the VMAS description. $V(\zeta)$ is the one-dimensional total potential energy which consists of Coulomb energy, effective surface energy, and the centrifugal potential energy [32]. Q_{α} denotes the energy released in α -decay process. Then the α -decay half-life is calculated by

$$T_{1/2} = \frac{\ln 2}{\lambda}.\tag{3}$$

2.2. GLDM

In GLDM, the process of the shape evolution from one body to two separated fragments can be described in a unified way. Its details can be found in Refs. [29,39].

The decay constant λ can be obtained by the fission-like mode and cluster-like mode, respectively. To discuss conveniently in the next section, the GLDM with the fission-like mode and the GLDM with the cluster-like mode are represented by GLDM1 and GLDM2, respectively. For GLDM1 [52], the λ is defined by Eq. (1) and ν_0 is taken as $1.0 \times 10^{19} s^{-1}$. For GLDM2, λ is defined as [53]

$$\lambda = S_{\alpha} \nu_0 P,\tag{4}$$

where S_{α} denotes the preformation factor of the α cluster in the parent nucleus. The S_{α} value can be extracted from the following expression [54]

$$\log S_{\alpha} = a + b(Z - Z_1)(Z_2 - Z) + c(N - N_1)(N_2 - N) + dA, \tag{5}$$

where the coefficients of a, b, c, d, Z, N, A, Z_1 , Z_2 , N_1 , and N_2 can be found in Ref. [54]. ν_0 is estimated by the classical method

$$\nu_0 = \frac{1}{2R} \sqrt{\frac{2E_\alpha}{M_\alpha}},\tag{6}$$

where R is the radius of the parent nucleus. E_{α} and M_{α} represent the kinetic energy and the mass of the emitted α particle, respectively.

The penetrability factor P is calculated by the WKB approximation, which is expressed as

$$P = \exp\left[-\frac{2}{\hbar} \int_{R_{\text{in}}}^{R_{\text{out}}} \sqrt{2B(r)[E(r) - E_{sph}]} dr\right],\tag{7}$$

where $R_{\rm in}$ and $R_{\rm out}$ are the two turning points of the WKB action integral, respectively. Here, the approximation is used: $B(r) = \mu$, which stands for the reduced mass of the α particle and the residual daughter nucleus. The macroscopic energy E(r) is written as

$$E(r) = E_V + E_S + E_C + E_{Prox} + E_{cen}(r),$$
 (8)

where E(r) contains the volume, surface, Coulomb, proximity, and the centrifugal potential energy [55], respectively. Then by combining Eq. (3), the α -decay half-lives can be estimated.

2.3. Royer and Denisov formulas

The Royer formula [41] and Denisov formula [42,43] were proposed to calculate the α -decay half-lives by fitting 344 experimental data from ground state to ground state. The two formulas are dependent on the orbital angular momentum (l) carried by the α -particle, which are listed as follows

$$\log_{10} T_{1/2}(Royer) = a + bA^{1/6}\sqrt{Z} + c\frac{Z}{\sqrt{Q_{\alpha}}} + \frac{dANZ[l(l+1)]^{1/4}}{Q_{\alpha}} + eA[1 - (-1)^{l}], (9)$$

$$\log_{10} T_{1/2}(Denisov) = a + b \frac{A^{1/6} Z^{1/2}}{\mu} + c \frac{Z}{\sqrt{Q_{\alpha}}} + d \frac{\sqrt{l(l+1)}}{Q_{\alpha} A^{-1/6}} + e[(-1)^{l} - 1],$$
 (10)

where A, N, and Z are the mass number, neutron number, and charge number of the parent nucleus, respectively. In the Denisov formula, $\mu = [A/(A-4)]^{1/6}$. The values of the parameters a, b, c, d, and e can be found in Refs. [41–43].

3. Results and discussions

We have performed calculations on the α -decay half-lives of the ground state to ground state for 120 neutron-deficient nuclei with Z=80-118 by the ELDM, GLDM1, GLDM2, Royer formula, and Denisov formula by inputting the experimental Q_{α} values. The calculated results are listed in Table 1. The first column of Table 1 denotes the parent nuclei. In column 2 the experimental Q_{α} values are shown. The third column represents the minimal orbital angular momenta carried by α particles, which are determined by the spin-parity selection rule. For SHN with Z=104-118, the orbital angular momenta carried by α particles are selected as 0. The experimental half-lives are listed in columns 4. The calculated half-lives by the ELDM, GLDM1, and GLDM2 are listed in the 5th-7th columns. The half-lives by the Royer formula and Denisov formula are listed in the last two columns. To test the agreement between the experimental half-lives and the calculated ones, the average deviation $\overline{\sigma}$ and the standard deviation $\sqrt{\overline{\sigma^2}}$ are calculated, which are written as

$$\overline{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \left| \log_{10} T_{1/2}^{\exp.i} - \log_{10} T_{1/2}^{cal.i} \right|,\tag{11}$$

$$\sqrt{\overline{\sigma^2}} = \left[\frac{1}{n} \sum_{i=1}^{n} (\log_{10} T_{1/2}^{\exp.i} - \log_{10} T_{1/2}^{cal.i})^2 \right]^{1/2}.$$
 (12)

By using Eqs. (11) and (12) the $\overline{\sigma}$ and $\sqrt{\overline{\sigma^2}}$ for the 120 neutron-deficient nuclei from the above mentioned models (formulas) can be obtained, whose values are listed in Table 2. As can be seen from Table 2, the GLDM2 generates the smallest $\overline{\sigma}$ and $\sqrt{\overline{\sigma^2}}$ values by comparison with those of other models (formulas), which are 0.407 and 0.512, respectively. This means that the average deviation between the experimental half-lives and the calculated ones is about 3 times. This indicates that the GLDM2 is the most accurate one to reproduce the experimental half-lives of the neutron-deficient nuclei among these models (formulas).

We know that the ELDM is assumed as a super-asymmetric fission model. In the frameworks of the ELDM and the GLDM1, the assaulting frequencies v_0 of the α particles on potential barrier are selected as constants $(1.8 \times 10^{22} \text{ s}^{-1} \text{ and } 1.0 \times 10^{19} \text{ s}^{-1}$, respectively), which is too rough. For the Royer and Denisov formulas, only some simple nuclear structure information, such as A, Z, Q_{α} , and l, is included. So the extracted half-lives by the ELDM, the GLDM1, and the two formulas have some deviation from the experimental ones. However, in GLDM2 more physical information is considered. On the one hand, the v_0 is not a simple constant, which is correlated with the kinetic energies of the α particles. On the other hand, the preformation factor S_{α} in the parent nucleus plays an important role in the α -decay process. In the S_{α} expression (Eq. (5)), more microscopic nuclear structure information is taken into account, such as the shell effect, odd-even effect, and isospin effect. Thus the GLDM2 can reproduce the experimental half-lives better than other models (formulas). Similar conclusion can be found in our previous work [29]. However, from the 7th column of Table 1 we find that the each ratio between the calculated half-life and the experimental one of six isotopes (187 Bi, 232 Am, 243 Es, 258 Db, 260 Bh, and 272 Rg)

Table 1 The experimental and calculated α -decay half-lives of 120 neutron-deficient nuclei with Z=80-118. The experimental half-lives and Q_{α} values are taken from Refs. [38,44–50,56–58].

	s una ga van			C15. [50,11 50,5				
Nuclei	Q_{α} (MeV)	l	$T_{1/2}^{\text{Exp.}}$ (s)	$T_{1/2}^{\text{ELDM}}$ (s)	$T_{1/2}^{\text{GLDM1}}$ (s)	$T_{1/2}^{GLDM2}$ (s)	$T_{1/2}^{\text{Royer}}$ (s)	$T_{1/2}^{\text{Denisov}}$ (s)
¹⁷¹ Hg	7.668	0	7.00×10^{-5}	2.56×10^{-4}	9.07×10^{-4}	1.90×10^{-4}	1.25×10^{-4}	1.27×10^{-4}
¹⁷² Hg	7.524	0	2.31×10^{-4}	6.61×10^{-4}	2.35×10^{-3}	2.80×10^{-4}	2.90×10^{-4}	3.05×10^{-4}
¹⁷³ Hg	7.373	0	7.00×10^{-4}	1.84×10^{-3}	6.59×10^{-3}	1.20×10^{-3}	9.69×10^{-4}	1.06×10^{-3}
¹⁷⁴ Hg	7.233	0	1.91×10^{-3}	4.93×10^{-3}	1.78×10^{-2}	2.00×10^{-3}	2.27×10^{-3}	2.34×10^{-3}
¹⁷⁷ Tl	7.067	0	2.47×10^{-2}	4.11×10^{-2}	1.47×10^{-1}	2.96×10^{-2}	2.37×10^{-2}	2.69×10^{-2}
¹⁷⁸ Tl	7.020	0	4.79×10^{-1}	5.68×10^{-2}	1.89×10^{-1}	1.00×10^{-1}	6.85×10^{-2}	7.23×10^{-2}
¹⁷⁹ Tl	6.718	0	2.30×10^{-1}	6.45×10^{-1}	2.17×10^{0}	4.33×10^{-1}	4.17×10^{-1}	5.10×10^{-1}
¹⁷⁸ Pb	7.790	0	1.20×10^{-4}	5.22×10^{-4}	1.69×10^{-3}	3.32×10^{-4}	2.57×10^{-4}	2.42×10^{-4}
¹⁷⁹ Pb	7.598	2	3.50×10^{-3}	3.07×10^{-3}	1.05×10^{-2}	1.39×10^{-2}	3.45×10^{-3}	4.44×10^{-3}
¹⁸⁰ Pb	7.419	0	4.10×10^{-3}	6.58×10^{-3}	2.17×10^{-2}	4.13×10^{-3}	3.46×10^{-3}	3.19×10^{-3}
¹⁸⁵ Bi	8.140	0	5.80×10^{-4}	9.41×10^{-5}	2.93×10^{-4}	2.02×10^{-4}	4.16×10^{-5}	4.33×10^{-5}
¹⁸⁶ Bi	7.423	4	1.02×10^{-2}	6.32×10^{-2}	3.95×10^{-2}	1.10×10^{-1}	9.34×10^{-2}	1.30×10^{-1}
¹⁸⁷ Bi	7.778	5	4.22×10^{-1}	1.01×10^{-2}	3.81×10^{-2}	2.36×10^{-2}	1.14×10^{-2}	2.63×10^{-2}
¹⁸⁶ Po	8.503	0	2.80×10^{-5}	2.25×10^{-5}	6.53×10^{-5}	8.10×10^{-6}	1.13×10^{-5}	9.43×10^{-6}
¹⁸⁸ Po	8.083	0	3.50×10^{-4}	2.94×10^{-4}	8.77×10^{-4}	1.13×10^{-4}	1.60×10^{-4}	1.31×10^{-4}
¹⁸⁹ Po	7.695	0	4.38×10^{-2}	4.02×10^{-3}	1.21×10^{-2}	6.13×10^{-3}	2.46×10^{-3}	3.19×10^{-3}
¹⁹¹ At	7.822	0	1.70×10^{-3}	3.80×10^{-3}	1.12×10^{-2}	4.64×10^{-3}	2.20×10^{-3}	2.67×10^{-3}
¹⁹² At	7.696	0	1.15×10^{-2}	8.94×10^{-3}	2.66×10^{-2}	1.80×10^{-2}	1.16×10^{-2}	1.52×10^{-2}
¹⁹³ At	7.572	0	2.90×10^{-2}	2.12×10^{-2}	5.98×10^{-2}	2.35×10^{-2}	1.32×10^{-2}	1.68×10^{-2}
¹⁹⁴ At	7.454	0	2.86×10^{-1}	4.93×10^{-2}	1.41×10^{-1}	7.96×10^{-2}	6.47×10^{-2}	9.13×10^{-2}
¹⁹³ Rn	8.042	0	4.42×10^{-3}	1.91×10^{-3}	5.24×10^{-3}	1.77×10^{-3}	1.23×10^{-3}	1.65×10^{-3}
¹⁹⁴ Rn	7.862	0	7.80×10^{-4}	6.37×10^{-3}	1.77×10^{-2}	1.87×10^{-3}	4.27×10^{-3}	3.11×10^{-3}
195 Rn	7.694	0	6.02×10^{-3}	2.05×10^{-2}	5.77×10^{-2}	1.90×10^{-2}	1.43×10^{-2}	2.10×10^{-2}
¹⁹⁶ Rn	7.617	0	4.41×10^{-3}	3.44×10^{-2}	9.58×10^{-2}	1.12×10^{-2}	2.39×10^{-2}	1.71×10^{-2}
¹⁹⁷ Fr	7.900	3	2.33×10^{-3}	2.71×10^{-2}	2.92×10^{-2}	8.04×10^{-3}	1.72×10^{-1}	3.23×10^{-1}
¹⁹⁸ Fr	7.869	0	1.50×10^{-2}	1.29×10^{-2}	3.52×10^{-2}	8.98×10^{-3}	1.78×10^{-2}	2.70×10^{-2}
¹⁹⁹ Fr	7.817	0	6.60×10^{-3}	1.80×10^{-2}	4.94×10^{-2}	1.36×10^{-2}	1.19×10^{-2}	1.60×10^{-2}
200 Fr	7.623	0	4.90×10^{-2}	7.18×10^{-2}	2.01×10^{-1}	5.32×10^{-2}	1.00×10^{-1}	1.64×10^{-1}
201 Ra	8.002	0	2.00×10^{-2}	1.11×10^{-2}	2.84×10^{-2}	6.74×10^{-3}	8.17×10^{-3}	1.25×10^{-2}
202 Ra	7.880	0	1.60×10^{-2}	2.55×10^{-2}	6.44×10^{-2}	6.94×10^{-3}	1.99×10^{-2}	1.28×10^{-2}
203 Ra	7.742	0	3.10×10^{-2}	6.73×10^{-2}	1.71×10^{-1}	4.31×10^{-2}	5.25×10^{-2}	8.59×10^{-2}
204 Ra	7.636	0	5.70×10^{-2}	1.43×10^{-1}	3.67×10^{-1}	4.71×10^{-2}	1.16×10^{-1}	7.29×10^{-2}
^{205}Ac	8.090	0	2.00×10^{-2}	1.27×10^{-2}	3.15×10^{-2}	6.92×10^{-3}	8.79×10^{-3}	1.24×10^{-2}
206 Ac	7.944	0	2.20×10^{-2}	3.42×10^{-2}	8.65×10^{-2}	1.62×10^{-2}	4.99×10^{-2}	9.08×10^{-2}
^{207}Ac	7.840	0	2.70×10^{-2}	7.03×10^{-2}	1.80×10^{-1}	4.41×10^{-2}	5.25×10^{-2}	7.79×10^{-2}
^{208}Ac	7.720	0	9.60×10^{-2}	1.65×10^{-1}	4.22×10^{-1}	1.13×10^{-1}	2.41×10^{-1}	4.72×10^{-1}
208 Th	8.200	0	2.40×10^{-3}	1.28×10^{-2}	3.13×10^{-2}	3.40×10^{-3}	1.12×10^{-2}	6.43×10^{-3}
²¹⁰ Th	8.053	0	9.00×10^{-3}	3.34×10^{-2}	7.69×10^{-2}	1.04×10^{-2}	2.96×10^{-2}	1.68×10^{-2}
²¹¹ Th	7.942	0	3.70×10^{-2}	7.14×10^{-2}	1.67×10^{-1}	4.26×10^{-2}	5.93×10^{-2}	1.04×10^{-1}
²¹² Pa	8.429	0	5.10×10^{-3}	5.58×10^{-3}	1.26×10^{-2}	2.55×10^{-3}	8.35×10^{-3}	1.62×10^{-2}
²¹³ Pa	8.390	0	5.30×10^{-3}	6.97×10^{-3}	1.59×10^{-2}	3.70×10^{-3}	4.96×10^{-3}	7.37×10^{-3}
²¹⁵ Pa	8.240	0	1.40×10^{-2}	1.80×10^{-2}	4.13×10^{-2}	1.17×10^{-2}	1.33×10^{-2}	2.04×10^{-2}
²¹⁶ Pa	8.098	0	3.55×10^{-1}	4.73×10^{-2}	1.09×10^{-1}	7.62×10^{-2}	7.15×10^{-2}	1.54×10^{-1}
^{215}U	8.588	0	7.30×10^{-4}	4.13×10^{-3}	8.96×10^{-3}	1.94×10^{-3}	3.30×10^{-3}	5.61×10^{-3}
^{216}U	8.542	0	4.72×10^{-3}	5.37×10^{-3}	1.17×10^{-2}	1.82×10^{-3}	5.13×10^{-3}	2.63×10^{-3}
^{217}U	8.169	0	1.60×10^{-2}	6.80×10^{-2}	1.54×10^{-1}	4.20×10^{-2}	6.05×10^{-2}	1.13×10^{-1}
^{218}U	8.775	0	5.10×10^{-4}	1.09×10^{-3}	2.25×10^{-3}	1.29×10^{-3}	9.89×10^{-4}	5.02×10^{-4}
							(continued	l on next page)

Table 1 (continued)

Nuclei	Q _α (MeV)	l	$T_{1/2}^{\text{Exp.}}$ (s)	$T_{1/2}^{\text{ELDM}}$ (s)	$T_{1/2}^{\text{GLDM1}}$ (s)	$T_{1/2}^{\text{GLDM2}}$ (s)	$T_{1/2}^{\text{Royer}}$ (s)	T ^{Denisov} _{1/2} (s)
²¹⁹ Np	9.207	0	1.50×10^{-4}	1.68×10^{-4}	3.33×10^{-4}	6.29×10^{-4}	1.04×10^{-4}	1.49×10^{-4}
^{223}Nn	9.650	0	2.15×10^{-6}	1.13×10^{-5}	2.19×10^{-5}	9.15×10^{-6}	5.74×10^{-6}	7.75×10^{-6}
$^{225}\mathrm{Nn}$	8.790	0	3.60×10^{-3}	1.77×10^{-3}	3.63×10^{-3}	9.67×10^{-4}	1.21×10^{-3}	1.87×10^{-3}
$^{226}\mathrm{Np}$	8.200	0	3.50×10^{-2}	9.42×10^{-2}	2.06×10^{-1}	4.86×10^{-2}	1.49×10^{-1}	3.84×10^{-1}
$228 p_{11}$	7.940	0	1.10×10^{0}	1.50×10^{0}	3.01×10^{0}	3.60×10^{-1}	4.68×10^{-1}	7.99×10^{-1}
229 Pu	7.590	0	9.00×10^{1}	2.31×10^{1}	4.67×10^{1}	8.05×10^{0}	2.64×10^{1}	6.51×10^{1}
230_{P11}	7.182	0	1.26×10^{2}	7.39×10^{2}	1.51×10^{3}	1.44×10^{2}	2.13×10^{2}	4.20×10^{2}
²³¹ Pu	6.839	0	5.16×10^{3}	1.74×10^{4}	3.61×10^{4}	6.01×10^{3}	2.35×10^{4}	7.26×10^{4}
232 Am	7.300	0	2.63×10^{3}	6.47×10^{2}	1.32×10^{3}	1.63×10^{2}	1.15×10^{3}	4.75×10^{3}
²³³ Am	7.060	0	4.27×10^{3}	5.49×10^{3}	1.15×10^4	1.78×10^{3}	7.72×10^{3}	1.84×10^{4}
²³³ Cm	7.470	0	1.35×10^{2}	3.77×10^{2}	7.59×10^{2}	1.05×10^{2}	5.08×10^{2}	1.46×10^{3}
²³⁴ Cm	7.365	0	1.28×10^{2}	9.07×10^{2}	1.86×10^{3}	1.71×10^{2}	2.88×10^{2}	5.35×10^{2}
²³⁶ Cm	7.067	0	2.27×10^{3}	1.27×10^4	2.32×10^4	1.88×10^{3}	3.82×10^{3}	7.51×10^{3}
²³⁷ Cf	8.220	0	1.14×10^{0}	4.96×10^{0}	8.57×10^{0}	1.06×10^{0}	6.36×10^{0}	1.68×10^{1}
²⁴⁰ Cf	7.719	0	9.76×10^{1}	2.41×10^{2}	4.35×10^{2}	3.82×10^{1}	8.53×10^{1}	1.43×10^{2}
²²³ Np	9.650	0	2.15×10^{-6}	1.13×10^{-5}	2.19×10^{-5}	9.15×10^{-6}	5.74×10^{-6}	7.75×10^{-6}
$^{225}\mathrm{Np}$	8.790	0	3.60×10^{-3}	1.77×10^{-3}	3.63×10^{-3}	9.67×10^{-4}	1.21×10^{-3}	1.87×10^{-3}
²²⁶ Np	8.200	0	3.50×10^{-2}	9.42×10^{-2}	2.06×10^{-1}	4.86×10^{-2}	1.49×10^{-1}	3.84×10^{-1}
²²⁸ Pu	7.940	0	1.10×10^{0}	1.50×10^{0}	3.01×10^{0}	3.60×10^{-1}	4.68×10^{-1}	7.99×10^{-1}
²²⁹ Pu	7.590	0	9.00×10^{1}	2.31×10^{1}	4.67×10^{1}	8.05×10^{0}	2.64×10^{1}	6.51×10^{1}
²³⁰ Pu	7.182	0	1.26×10^{2}	7.39×10^2	1.51×10^{3}	1.44×10^{2}	2.13×10^{2}	4.20×10^{2}
²³¹ Pu	6.839	0	5.16×10^{3}	1.74×10^4	3.61×10^4	6.01×10^{3}	2.35×10^4	7.26×10^4
²³² Am	7.300	0	2.63×10^{3}	6.47×10^2	1.32×10^{3}	1.63×10^{2}	1.15×10^{3}	4.75×10^{3}
²³³ Am	7.060	0	4.27×10^{3}	5.49×10^{3}	1.15×10^4	1.78×10^{3}	7.72×10^{3}	1.84×10^4
²³³ Cm	7.470	0	1.35×10^{2}	3.77×10^2	7.59×10^2	1.05×10^{2}	5.08×10^{2}	1.46×10^{3}
²³⁴ Cm	7.365	0	1.28×10^2	9.07×10^{2}	1.86×10^{3}	1.71×10^2	2.88×10^{2}	5.35×10^2
²³⁶ Cm	7.067	0	2.27×10^{3}	1.27×10^4	2.32×10^4	1.88×10^{3}	3.82×10^{3}	7.51×10^3
²³⁷ Cf	8.220	0	1.14×10^{0}	4.96×10^{0}	8.57×10^{0}	1.06×10^{0}	6.36×10^{0}	1.68×10^{1}
²⁴⁰ Cf	7.719	0	9.76×10^{1}	2.41×10^{2}	4.35×10^{2}	3.82×10^{1}	8.53×10^{1}	1.43×10^2
²⁴² Es	8.160	0	3.12×10^{1}	1.62×10^{1}	2.90×10^{1}	4.96×10^{0}	3.23×10^{1}	1.48×10^{2}
243Es	8.072	0	3.29×10^2	3.11×10^{1}	5.51×10^{1}	1.59×10^{1}	4.19×10^{1}	9.80×10^{1}
²⁴³ Fm	8.690	0	2.54×10^{-1}	7.52×10^{-1}	1.25×10^{0}	2.49×10^{-1}	9.67×10^{-1}	2.55×10^{0}
²⁴⁶ Md	8.890	0	9.20×10^{-1}	3.95×10^{-1}	5.98×10^{-1}	1.51×10^{-1}	8.11×10^{-1}	3.63×10^{0}
²⁴⁷ Md	8.764	1	1.20×10^{0}	1.05×10^{0}	1.42×10^{0}	6.51×10^{-1}	5.53×10^{1}	6.20×10^{1}
²⁵¹ No ²⁵³ Lr	8.752	0	9.64×10^{-1}	2.06×10^{0}	3.14×10^{0}	4.83×10^{0}	2.93×10^{0}	8.55×10^{0}
²⁵³ Lr ²⁵⁴ Lr	8.918	0	7.02×10^{-1}	1.40×10^{0}	2.09×10^{0}	4.93×10^{0}	1.91×10^{0}	4.62×10^{0}
²⁵⁴ Lr ²⁵⁵ Rf	8.816	0	2.38×10^{1}	2.79×10^{0}	3.88×10^{0}	3.14×10^{1}	6.14×10^{0}	3.40×10^{1}
²⁵⁶ Rf	9.055	1	3.46×10^{0}	1.35×10^{0}	1.61×10^{0}	6.09×10^{0}	2.62×10^2	2.57×10^2
²⁵⁶ Rf ²⁵⁶ Db	8.923	0	2.08×10^{0}	2.87×10^{0}	3.98×10^{0}	1.72×10^{0}	1.40×10^{0}	1.74×10^{0}
²⁵⁷ Db	9.340	0	2.84×10^{0}	3.82×10^{-1}	5.09×10^{-1}	2.63×10^{0}	8.87×10^{-1}	5.05×10^{0}
258Db	9.206	0	2.45×10^{0} 5.58×10^{0}	9.08×10^{-1}	1.20×10^{0}	5.00×10^{0}	1.31×10^{0}	3.30×10^{0} 1.54×10^{0}
²⁵⁹ Sg	9.500	0		1.24×10^{-1}	1.60×10^{-1}	2.71×10^{-1}	2.80×10^{-1} 5.54×10^{-2}	
²⁶⁰ Sg	9.804	0	3.11×10^{-1}	3.90×10^{-2}	4.72×10^{-2}	2.05×10^{-1}		1.59×10^{-1}
²⁶¹ Sg	9.901	0	1.24×10^{-2}	2.07×10^{-2}	2.49×10^{-2}	1.33×10^{-2}	1.12×10^{-2}	1.15×10^{-2}
²⁶⁰ Sg	9.714	0	1.87×10^{-1} 3.50×10^{-2}	6.38×10^{-2} 2.35×10^{-3}	7.95×10^{-2}	2.85×10^{-1} 2.87×10^{-3}	9.17×10^{-2}	2.69×10^{-1} 2.77×10^{-2}
²⁶¹ Bh	10.400	0	3.50×10^{-2} 1.18×10^{-2}	2.35×10^{-3} 1.28×10^{-3}	2.64×10^{-3} 1.47×10^{-3}	2.87×10^{-3} 6.64×10^{-3}	5.29×10^{-3} 1.39×10^{-3}	2.77×10^{-2} 3.14×10^{-3}
²⁶⁴ Hs	10.500	0	1.18×10^{-2} 1.60×10^{-3}	1.28×10^{-3} 1.48×10^{-3}	1.47×10^{-3} 1.53×10^{-3}	6.64×10^{-3} 1.04×10^{-3}	1.39×10^{-3} 8.64×10^{-4}	3.14×10^{-3} 7.87×10^{-4}
- HS	10.591	0	1.00 × 10	1.48 × 10	1.33 × 10	1.04 × 10	6.04 X 1U	1.87 × 10

Table 1 (continued)

Nuclei	Q_{α} (MeV)	l	$T_{1/2}^{\text{Exp.}}$ (s)	$T_{1/2}^{\text{ELDM}}$ (s)	$T_{1/2}^{\text{GLDM1}}$ (s)	$T_{1/2}^{\text{GLDM2}}$ (s)	$T_{1/2}^{\text{Royer}}$ (s)	T _{1/2} Denisov (s)
²⁶⁵ Hs	10.470	0	1.96×10^{-3}	2.83×10^{-3}	2.96×10^{-3}	1.18×10^{-2}	3.80×10^{-3}	1.06×10^{-2}
266 Hs	10.346	0	2.30×10^{-3}	5.58×10^{-3}	5.94×10^{-3}	3.47×10^{-3}	3.27×10^{-3}	3.06×10^{-3}
$^{267}\mathrm{Ds}$	11.780	0	1.00×10^{-5}	1.17×10^{-5}	1.21×10^{-5}	6.41×10^{-5}	1.25×10^{-5}	3.05×10^{-5}
269 Ds	11.509	0	1.79×10^{-4}	4.13×10^{-5}	4.29×10^{-5}	1.89×10^{-4}	4.73×10^{-5}	1.21×10^{-4}
$^{270}\mathrm{Ds}$	11.117	0	2.05×10^{-4}	3.01×10^{-4}	3.05×10^{-4}	2.24×10^{-4}	1.88×10^{-4}	1.54×10^{-4}
$^{271}\mathrm{Ds}$	10.870	0	1.63×10^{-3}	1.10×10^{-3}	1.12×10^{-3}	4.16×10^{-3}	1.50×10^{-3}	4.32×10^{-3}
272 Rg	11.197	0	3.80×10^{-3}	3.81×10^{-4}	3.73×10^{-4}	3.13×10^{-4}	9.05×10^{-4}	5.66×10^{-3}
278 Rg	10.850	0	4.20×10^{-3}	2.03×10^{-3}	1.88×10^{-3}	2.48×10^{-3}	4.89×10^{-3}	3.37×10^{-2}
²⁷⁹ Rg	10.520	0	1.70×10^{-1}	1.29×10^{-2}	1.24×10^{-2}	2.79×10^{-2}	1.77×10^{-2}	4.78×10^{-2}
280 Rg	9.891	0	3.53×10^{0}	5.96×10^{-1}	6.00×10^{-1}	9.60×10^{-1}	1.59×10^{0}	1.38×10^{1}
²⁸¹ Rg	9.414	0	1.70×10^{2}	1.42×10^{1}	1.50×10^{1}	2.93×10^{1}	2.77×10^{1}	8.95×10^{1}
282 Rg	9.084	0	1.86×10^{2}	1.47×10^{2}	1.61×10^{2}	3.11×10^{2}	4.13×10^{2}	4.49×10^{3}
²⁷⁷ Cn	11.620	0	6.90×10^{-4}	7.42×10^{-5}	6.87×10^{-5}	2.34×10^{-4}	9.26×10^{-5}	2.58×10^{-4}
²⁸¹ Cn	10.460	0	1.30×10^{-1}	3.70×10^{-2}	3.37×10^{-2}	8.17×10^{-2}	6.31×10^{-2}	2.19×10^{-1}
²⁸³ Cn	9.670	0	3.80×10^{0}	5.21×10^{0}	4.92×10^{0}	1.02×10^{1}	1.09×10^{1}	4.48×10^{1}
²⁸⁴ Cn	9.301	0	9.81×10^{0}	6.61×10^{1}	6.42×10^{1}	3.03×10^{1}	4.42×10^{1}	4.45×10^{1}
²⁸⁵ Cn	9.320	0	3.20×10^{1}	5.57×10^{1}	5.47×10^{1}	9.47×10^{1}	1.25×10^{2}	5.62×10^{2}
$^{278}\mathrm{Nh}$	11.850	0	2.40×10^{-4}	4.61×10^{-5}	4.19×10^{-5}	3.06×10^{-5}	1.07×10^{-4}	6.98×10^{-4}
²⁸² Nh	10.780	0	7.00×10^{-2}	1.18×10^{-2}	1.02×10^{-2}	1.05×10^{-2}	3.15×10^{-2}	2.60×10^{-1}
$^{283}\mathrm{Nh}$	10.265	0	1.02×10^{-1}	2.47×10^{-1}	2.15×10^{-1}	5.66×10^{-1}	4.29×10^{-1}	1.31×10^{0}
²⁸⁴ Nh	10.112	0	9.43×10^{-1}	6.22×10^{-1}	5.56×10^{-1}	6.81×10^{-1}	1.78×10^{0}	1.73×10^{1}
²⁸⁵ Nh	9.840	0	3.22×10^{0}	3.52×10^{0}	3.25×10^{0}	7.17×10^{0}	6.95×10^{0}	2.28×10^{1}
$^{286}\mathrm{Nh}$	9.432	0	2.00×10^{1}	5.61×10^{1}	5.38×10^{1}	7.90×10^{1}	1.67×10^{2}	1.96×10^{3}
²⁸⁵ Fl	10.540	0	4.70×10^{-1}	9.36×10^{-2}	7.74×10^{-2}	2.16×10^{-1}	1.79×10^{-1}	6.80×10^{-1}
286 Fl	10.370	0	3.50×10^{-1}	2.54×10^{-1}	2.19×10^{-1}	1.50×10^{-1}	1.91×10^{-1}	1.60×10^{-1}
287 Fl	10.160	0	5.20×10^{-1}	9.15×10^{-1}	8.01×10^{-1}	1.87×10^{0}	1.92×10^{0}	7.90×10^{0}
²⁸⁸ Fl	10.072	0	7.50×10^{-1}	1.55×10^{0}	1.36×10^{0}	8.06×10^{-1}	1.16×10^{0}	1.01×10^{0}
²⁸⁹ Fl	9.970	0	2.40×10^{0}	2.92×10^{0}	2.59×10^{0}	5.01×10^{0}	6.36×10^{0}	2.74×10^{1}
²⁸⁷ Mc	10.740	0	1.20×10^{-1}	5.72×10^{-2}	4.52×10^{-2}	1.34×10^{-1}	9.85×10^{-2}	3.06×10^{-1}
²⁸⁸ Mc	10.630	0	1.90×10^{-1}	1.06×10^{-1}	8.40×10^{-2}	7.77×10^{-2}	3.12×10^{-1}	3.17×10^{0}
²⁸⁹ Mc	10.489	0	2.00×10^{-1}	2.40×10^{-1}	1.93×10^{-1}	4.77×10^{-1}	4.44×10^{-1}	1.44×10^{0}
$^{290}\mathrm{Mc}$	10.450	0	1.30×10^{0}	2.95×10^{-1}	2.38×10^{-1}	2.57×10^{-1}	8.74×10^{-1}	9.35×10^{0}
$^{290}\mathrm{Lv}$	10.990	0	8.00×10^{-3}	2.57×10^{-2}	1.92×10^{-2}	1.67×10^{-2}	2.10×10^{-2}	1.56×10^{-2}
²⁹¹ Lv	10.890	0	2.80×10^{-2}	4.41×10^{-2}	3.31×10^{-2}	8.62×10^{-2}	8.72×10^{-2}	3.43×10^{-1}
²⁹² Lv	10.774	0	2.40×10^{-2}	8.41×10^{-2}	6.41×10^{-2}	4.80×10^{-2}	6.86×10^{-2}	5.23×10^{-2}
²⁹³ Lv	10.680	0	8.00×10^{-2}	1.42×10^{-1}	1.11×10^{-1}	2.40×10^{-1}	2.94×10^{-1}	1.21×10^{0}
²⁹³ Ts	11.180	0	1.46×10^{-2}	1.66×10^{-2}	1.15×10^{-2}	3.18×10^{-2}	2.83×10^{-2}	9.00×10^{-2}
²⁹⁴ Ts	11.200	0	5.10×10^{-2}	1.43×10^{-2}	9.94×10^{-3}	8.02×10^{-3}	4.24×10^{-2}	4.51×10^{-1}
²⁹⁴ Og	11.810	0	1.40×10^{-3}	1.10×10^{-3}	7.44×10^{-4}	8.14×10^{-4}	9.52×10^{-4}	6.20×10^{-4}

is not within the factor of 0.1. To explain the reason, the extracted S_{α} values from Eq. (5) and the experimental S_{α} values are given in Table 3. From Table 3, we see the S_{α} values from Eq. (5) deviate largely from the experimental ones. As a result, the estimated α -decay half-lives are not in agreement with the experimental data. But as a whole, the GLDM2 is a successful model to calculate the α -decay half-lives.

Encouraged by the good agreement with the GLDM2, the α -decay half-lives of the neutron-deficient nuclei where the experimental data are not available are predicted by it. We know that

Table 2 The $\overline{\sigma}$ and the $\sqrt{\overline{\sigma^2}}$ values between the experimental and calculated α -decay half-lives for the 120 neutron-deficient nuclei using different models (formulas).

Models (Formulas)	$\overline{\sigma}$	$\sqrt{\overline{\sigma^2}}$
ELDM [32–36]	0.465	0.576
GLDM1 [52]	0.577	0.677
GLDM2 [53]	0.407	0.512
Royer [41]	0.445	0.577
Denisov [42,43]	0.563	0.713

Table 3 The experimental and theoretical S_{α} values. The experimental S_{α} values are extracted by the method of Ref. [54]. The theoretical S_{α} values are calculated by Eq. (5).

Nuclei	S_{α} (Expt.)	S_{α} (Theo.)
¹⁸⁷ Bi	6.31×10^{-4}	1.13×10^{-2}
²³² Am	3.90×10^{-3}	6.33×10^{-2}
²⁴³ Es	1.26×10^{-3}	2.61×10^{-2}
²⁵⁸ Db	2.03×10^{-4}	4.17×10^{-3}
²⁶⁰ Bh	5.12×10^{-4}	6.25×10^{-3}
²⁷² Rg	6.52×10^{-4}	7.91×10^{-3}

the Q_{α} value plays an important role in the α -decay half-life. Its value is usually derived by the relationship between the Q_{α} value and the nuclear mass excesses M(Z,N)

$$Q_{\alpha}(Z,N) = M(Z,N) - M(Z-2,N-2) - M(2,2). \tag{13}$$

Nowadays, many nuclear mass models with different accuracies have been developed [59–66]. Among these mass models, the rms deviation of the WS4 mass model with respect to the 2353 known masses fall to 0.298 MeV [66]. Moreover, recent studies indicate that the WS4 mass model is more accurate than the other mass models by systematic analysis [14,67]. So in present work, we select the WS4 mass model to get the Q_{α} values. By inputting the WS4 Q_{α} values the predicted α -decay half-lives with Z=80-120 of the unmeasured neutron-deficient nuclei within the GLDM2 are listed in Table 4. We hope it may be useful for future experiments.

4. Conclusions

In this article, the α -decay half-lives of 120 neutron-deficient nuclei with Z=80-118 have been studied by the ELDM, GLDM1, GLDM2, Royer formula, and Denisov formula. According to the comparison between the calculated half-lives and the experimental ones, it is found that the GLDM2 is the most accurate model to reproduce the experimental data among those models (formulas) because more nuclear structure information is taken into account in it. Additionally, by inputting the WS4 Q_{α} values the α -decay half-lives of some unmeasured neutron-deficient nuclei with Z=80-120 are predicted by GLDM2. These predictions are helpful for future measurements.

Table 4 The predicted half-lives of neutron-deficient nuclei with Z=80-120 using the GLDM2 by inputting the Q_{α} values extracted from the WS4 mass model.

Nuclei	$Q_{\alpha}^{\mathrm{WS4}}$ (MeV)	$T_{1/2}^{\text{GLDM2}}$ (s)
¹⁶⁹ Hg	7.887	6.28×10^{-5}
¹⁷⁰ Но	7.849	3.95×10^{-5}
¹⁷⁴ Tl	7.569	1.19×10^{-3}
¹⁷⁵ Tl	7.468	1.68×10^{-3}
¹⁷⁶ Pb	7.873	2.35×10^{-4}
¹⁷⁷ Pb	7.688	6.31×10^{-3}
¹⁸² Bi	8.345	7.62×10^{-4}
¹⁸³ Bi	8.058	4.46×10^{-4}
¹⁸⁴ Po	9.151	2.24×10^{-7}
¹⁸⁵ Po	8.966	2.98×10^{-6}
¹⁸⁹ At	8.456	7.88×10^{-5}
¹⁹⁰ At	8.153	1.06×10^{-3}
¹⁹¹ Rn	8.493	1.09×10^{-4}
¹⁹² Rn	8.225	1.60×10^{-4}
195 _{Fr}	8.319	5.09×10^{-4}
196 _{Fr}	8.212	9.54×10^{-4}
¹⁹⁹ Ra	8.195	1.93×10^{-3}
200 _{Ra}	8.032	2.36×10^{-3}
²⁰³ Ac	8.513	3.87×10^{-4}
204 Ac	8.361	7.31×10^{-4}
²⁰⁶ Th	8.577	2.32×10^{2}
²⁰⁷ Th	8.366	2.03×10^{-3}
²⁰⁹ Pa ²¹⁰ Pa	8.597	7.93×10^{-4}
²¹⁰ Pa ²¹³ U	8.359	2.82×10^{-3}
²¹⁴ U	8.822	3.79×10^{-4}
221	9.157	3.01×10^{-5}
²²¹ Np ²²² Np	10.551	1.94×10^{-7}
²²² Np ²²⁶ Pu	10.077	1.61×10^{-6}
²²⁷ Pu	8.792	1.29×10^{-3}
²²⁸ Am	8.518	9.84×10^{-3} 4.36×10^{-3}
²²⁹ Am	8.707	4.36×10^{-2} 6.98×10^{-2}
²³¹ Cm	8.321 8.160	6.98×10^{-1} 4.41×10^{-1}
²³² Cm	7.995	4.41×10^{-1} 1.15×10^{0}
²³² Bk	8.620	1.13×10^{-2} 1.92×10^{-2}
²³³ Bk	8.467	8.95×10^{-2}
235Cf	8.803	1.52×10^{-2}
²³⁶ Cf	8.637	4.32×10^{-2}
238 _{Es}	8.871	1.04×10^{-2}
239Es	8.666	9.05×10^{-2}
²³⁹ Fm	9.318	2.04×10^{-3}
²⁴⁰ Fm	9.113	8.01×10^{-3}
²⁴³ Md	9.194	1.27×10^{-2}
²⁴⁴ Md	9.285	4.87×10^{-3}
246No	10.002	1.23×10^{-4}
²⁴⁷ No	9.841	7.82×10^{-4}
- 10		d on next page)

(continued on next page)

Table 4 (continued)

Table + (commuta)		
Nuclei	$Q_{\alpha}^{\mathrm{WS4}}$ (MeV)	$T_{1/2}^{\text{GLDM2}}$ (s)
²⁴⁹ Lr	9.893	1.53×10^{-3}
²⁵⁰ Lr	9.598	1.09×10^{-2}
²⁵¹ Rf	9.824	6.26×10^{-3}
²⁵² Rf	9.556	1.07×10^{-2}
²⁵³ Db	9.804	2.07×10^{-2}
²⁵⁴ Db	9.595	1.10×10^{-1}
²⁵⁶ Sg	9.747	1.91×10^{-2}
257 Sg	9.711	2.91×10^{-1}
²⁵⁸ Bh	10.205	2.87×10^{-2}
²⁵⁹ Bh	10.243	3.77×10^{-2}
²⁶¹ Hs	10.956	1.45×10^{-3}
²⁶² Hs	11.017	1.39×10^{-4}
²⁶³ Mt	11.721	5.84×10^{-5}
²⁶⁴ Mt	11.669	9.68×10^{-6}
²⁶¹ Ds	12.147	6.75×10^{-6}
²⁶² Ds	12.224	2.96×10^{-6}
²⁶³ Ds	12.337	9.14×10^{-6}
²⁶⁴ Ds	12.387	1.05×10^{-6}
²⁶⁵ Ds	12.334	6.87×10^{-6}
²⁶⁶ Ds	12.172	2.07×10^{-6}
²⁶⁶ Rg	12.728	1.92×10^{-7}
267 Rg	12.545	5.24×10^{-6}
²⁶⁸ Rg	12.240	1.72×10^{-6}
²⁶⁹ Rg	11.925	6.63×10^{-5}
270 Rg	11.637	3.13×10^{-5}
²⁷¹ Rg	11.373	7.66×10^{-4}
²⁷⁰ Cn	12.285	5.28×10^{-6}
²⁷¹ Cn	12.061	6.96×10^{-5}
²⁷² Cn	11.862	3.04×10^{-5}
²⁷³ Cn	11.640	3.50×10^{-4}
²⁷⁴ Cn	11.548	9.89×10^{-5}
²⁷⁵ Cn	11.741	1.65×10^{-4}
²⁷² Nh	12.512	1.31×10^{-6}
²⁷³ Nh	12.325	3.48×10^{-5}
²⁷⁴ Nh	12.084	8.33×10^{-6}
²⁷⁵ Nh	11.934	1.63×10^{-4}
276 _{Nh}	12.064	1.02×10^{-5}
²⁷⁷ Nh	12.201	3.73×10^{-5}
278 _{Fl}	12.519	4.47×10^{-6}
279 _{Fl}	12.430	2.56×10^{-5}
280 _{Fl}	12.226	1.34×10^{-5}
281 _{Fl}	11.816	3.42×10^{-4}
²⁸² Fl	11.378	7.05×10^{-4}
283 _{Fl}	10.879	3.68×10^{-2}
²⁸¹ Mc	12.203	1.37×10^{-4}
²⁸² Mc	11.777	1.37×10^{-4} 1.15×10^{-4}
²⁸³ Mc	11.324	8.03×10^{-3}
²⁸⁴ Mc	10.933	1.08×10^{-2}
²⁸⁵ Mc	10.730	1.87×10^{-1}
IVIC	10.750	1.07 \ 10

Table 4 (continued)

Nuclei	$Q_{\alpha}^{\text{WS4}} \text{ (MeV)}$	$T_{1/2}^{\text{GLDM2}}$ (s)
		1/2
²⁸⁶ Mc	10.501	1.61×10^{-1}
²⁸³ Lv	12.107	3.76×10^{-4}
²⁸⁴ Lv	11.832	3.52×10^{-4}
²⁸⁵ Lv	11.549	4.80×10^{-3}
²⁸⁶ Lv	11.312	4.38×10^{-3}
²⁸⁷ Lv	11.284	1.60×10^{-2}
²⁸⁸ Lv	11.290	3.83×10^{-3}
²⁸⁵ Ts	12.445	1.53×10^{-4}
²⁸⁶ Ts	12.267	2.52×10^{-5}
²⁸⁷ Ts	12.052	7.56×10^{-4}
²⁸⁸ Ts	11.982	1.03×10^{-4}
²⁸⁹ Ts	11.987	7.80×10^{-4}
²⁹⁰ Ts	11.839	2.33×10^{-4}
²⁸⁸ Og	12.616	3.47×10^{-5}
²⁸⁹ Og	12.592	1.10×10^{-4}
²⁹⁰ Og	12.601	2.98×10^{-5}
²⁹¹ Og	12.420	1.91×10^{-4}
²⁹² Og	12.240	1.32×10^{-4}
²⁹³ Og	12.242	3.53×10^{-4}
²⁸⁹ 119	13.175	2.16×10^{-5}
²⁹⁰ 119	13.067	1.66×10^{-6}
²⁹¹ 119	13.048	2.90×10^{-5}
²⁹² 119	12.902	3.76×10^{-6}
²⁹³ 119	12.715	9.87×10^{-5}
²⁹⁴ 119	12.726	7.97×10^{-6}
²⁹¹ 120	13.509	1.03×10^{-5}
²⁹² 120	13.468	3.74×10^{-6}
²⁹³ 120	13.400	1.26×10^{-5}
²⁹⁴ 120	13.242	6.73×10^{-6}
²⁹⁵ 120	13.272	1.48×10^{-5}
²⁹⁶ 120	13.343	3.46×10^{-6}

Acknowledgements

We thank professors Jianzhong Gu, Shangui Zhou, and Ning Wang for their helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant No. U1832120 and No. 11675265), the State Scholarship Fund of China Scholarship Council (Grant No. 201708130035), and the Natural Science Foundation for outstanding Young Scholars of Hebei Province of China (Grant No. A2018210146).

References

- [1] E. Rutherford, H. Geiger, Proc. R. Soc. Lond. A 81 (1908) 162.
- [2] J.H. Hamilton, S. Hofmann, Y.T. Oganessian, Annu. Rev. Nucl. Part. Sci. 63 (2013) 383.
- [3] J. Khuyagbaatar, A. Yakushev, Ch.E. Düllmann, et al., Phys. Rev. Lett. 112 (2014) 172501.
- [4] Z.G. Gan, J.S. Guo, X.L. Wu, et al., Eur. Phys. J. A 20 (2004) 385.
- [5] Z.Y. Zhang, Z.G. Gan, L. Ma, et al., Chin. Phys. Lett. 29 (2012) 012502.
- [6] J. Dvorak, W. Brüchle, M. Chelnokov, et al., Phys. Rev. Lett. 100 (2008) 132503.
- [7] Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, et al., Phys. Rev. C 74 (2006) 044602.

- [8] P.A. Wilk, K.E. Gregorich, A. Türler, et al., Phys. Rev. Lett. 85 (2000) 2697.
- [9] Yu.Ts. Oganessian, F.Sh. Abdullin, S.N. Dmitriev, et al., Phys. Rev. Lett. 108 (2012) 022502.
- [10] Yu.Ts. Oganessian, F.Sh. Abdullin, C. Alexander, et al., Phys. Rev. C 87 (2013) 054621.
- [11] P.A. Ellison, K.E. Gregorich, J.S. Berryman, et al., Phys. Rev. Lett. 105 (2010) 182701.
- [12] G. Gamow, Z. Phys. 51 (1928) 204.
- [13] E.U. Condon, R.W. Gurney, Nature 122 (1928) 439.
- [14] Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu, Phys. Rev. C 92 (2015) 064301.
- [15] D.S. Delion, A. Sandulescu, J. Phys. G, Nucl. Part. Phys. 28 (2002) 617.
- [16] Y.Z. Wang, Z.Y. Li, G.L. Yu, Z.Y. Hou, J. Phys. G, Nucl. Part. Phys. 41 (2014) 055102.
- [17] K.P. Santhosh, S. Sabina, R.K. Biju, Nucl. Phys. A 825 (2009) 159.
- [18] Y.Z. Wang, J.Z. Gu, J.M. Dong, B.B. Peng, Eur. Phys. J. A 44 (2010) 287.
- [19] A. Sobiczewski, A. Parkhomenko, Prog. Part. Nucl. Phys. 58 (2007) 292.
- [20] D.N. Poenaru, R.A. Gherghescu, N. Carjan, Europhys. Lett. 77 (2007) 62001.
- [21] Y.Z. Wang, J.Z. Gu, J.M. Dong, B.B. Peng, Int. J. Mod. Phys. E 19 (2010) 1961.
- [22] P.E. Hodgson, E. Bétäk, Phys. Rep. 374 (2003) 1.
- [23] Y.Z. Wang, H.F. Zhang, J.M. Dong, G. Royer, Phys. Rev. C 79 (2009) 014316.
- [24] B. Buck, A.C. Merchant, S.M. Perez, At. Data Nucl. Data Tables 54 (1993) 53.
- [25] R. Moustabchir, G. Royer, Nucl. Phys. A 683 (2001) 266.
- [26] L.L. Li, S.G. Zhou, E.G. Zhao, W. Scheid, Int. J. Mod. Phys. E 19 (2010) 359.
- [27] S. Zhang, Y.L. Zhang, J.P. Cui, Y.Z. Wang, Phys. Rev. C 95 (2017) 014311.
- [28] Y.L. Zhang, Y.Z. Wang, Nucl. Phys. A 966 (2017) 102.
- [29] J.P. Cui, Y.L. Zhang, S. Zhang, Y.Z. Wang, Int. J. Mod. Phys. E 25 (2016) 1650056.
- [30] D. Ni, Z. Ren, T. Dong, C. Xu, Phys. Rev. C 78 (2008) 044310.
- [31] C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103 (2009) 072501.
- [32] M. Goncalves, S.B. Duarte, Phys. Rev. C 48 (1993) 2409.
- [33] M. Goncalves, S.B. Duarte, F. Garcia, O. Rodriguez, Comput. Phys. Commun. 107 (1997) 246.
- [34] O.A.P. Tavares, S.B. Duarte, O. Rodríguez, et al., J. Phys. G, Nucl. Part. Phys. 24 (1998) 1757.
- [35] S.B. Duarte, O. Rodriguez, O.A.P. Tavares, et al., Phys. Rev. C 57 (1998) 2516.
- [36] S.B. Duarte, O.A.P. Tavares, F. Guzman, A. Dimarco, At. Data Nucl. Data Tables 80 (2002) 235.
- [37] Y.Z. Wang, J.P. Cui, Y.L. Zhang, S. Zhang, J.Z. Gu, Phys. Rev. C 95 (2017) 014302.
- [38] J.P. Cui, Y.L. Zhang, S. Zhang, Y.Z. Wang, Phys. Rev. C 97 (2018) 014316.
- [39] G. Royer, B. Remaud, J. Phys. G, Nucl. Part. Phys. 8 (1982) L159.
- [40] G. Royer, J. Phys. G, Nucl. Part. Phys. 26 (2000) 1149.
- [41] G. Royer, Nucl. Phys. A 848 (2010) 279.
- [42] V.Yu. Denisov, A.A. Khudenko, Phys. Rev. C 79 (2009) 054614.
- [43] V.Yu. Denisov, A.A. Khudenko, Phys. Rev. C 82 (2010) 059901(E).
- [44] J. Khuyagbaatar, A. Yakushev, Ch.E. Düllmann, et al., Phys. Rev. Lett. 115 (2015) 242502.
- [45] L. Ma, Z.Y. Zhang, Z.G. Gan, et al., Phys. Rev. C 91 (2015) 051302(R).
- [46] H.B. Yang, Z.Y. Zhang, J.G. Wang, et al., Eur. Phys. J. A 51 (2015) 88.
- [47] M.D. Sun, Z. Liu, T.H. Huang, et al., Phys. Lett. B 771 (2017) 303.
- [48] H.B. Yang, L. Ma, Z.Y. Zhang, et al., Phys. Lett. B 777 (2018) 212.
- [49] T.H. Huang, W.Q. Zhang, M.D. Sun, et al., Phys. Rev. C 98 (2018) 044302.
- [50] T.H. Huang, W.Q. Zhang, M.D. Sun, et al., Phys. Rev. C 96 (2017) 014324.
- [51] D.N. Poenaru, J.A. Maruhn, W. Greiner, et al., Z. Phys. A 333 (1989) 291.
- [52] Y.J. Wang, H.F. Zhang, W. Zuo, J.Q. Li, Chin. Phys. Lett. 27 (2010) 062103.
- [53] H.F. Zhang, G. Royer, Phys. Rev. C 77 (2008) 054318.
- [54] H.F. Zhang, G. Royer, et al., Phys. Rev. C 80 (2009) 057301.
- [55] J.M. Dong, H.F. Zhang, Y.Z. Wang, et al., Nucl. Phys. A 832 (2010) 198.
- [56] NuDat2.7, http://www.nndc.bnl.gov.
- [57] M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41 (2017) 030003.
- [58] G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41 (2017) 030001.
- [59] G. Royer, A. Subercaze, Nucl. Phys. A 917 (2013) 1.
- [60] A. Bhagwat, Phys. Rev. C 90 (2014) 064306.
- [61] X.Y. Qu, Y. Chen, S.Q. Zhang, et al., Sci. China, Phys. Mech. Astron. 56 (2013) 2031.
- [62] C. Qi, J. Phys. G, Nucl. Part. Phys. 42 (2015) 045104.
- [63] P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109-110 (2016) 1.

- [64] H. Koura, T. Tachibana, M. Uno, Prog. Theor. Phys. 113 (2005) 305.
- [65] http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire.htm.
- [66] N. Wang, M. Liu, X.Z. Wu, J. Meng, Phys. Lett. B 734 (2014) 215, http://www.imqmd.com/mass/.
- [67] Z.Y. Wang, Z.M. Niu, Q. Liu, J.Y. Guo, J. Phys. G, Nucl. Part. Phys. 42 (2015) 055112.