Алгоритм Робинсона— Шенстеда— Кнута и его свойства

Дужин Василий Сергеевич

vduzhin@gmail.com http://bit.ly/38zatKO

27.02.2020

Алгоритм Робинсона — Шенстеда — Кнута (RSK)

Входные данные - перестановка натуральных чисел от до n:

$$13, 2, 16, 4, 7, 9, 12, 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15$$

Результат работы - пара таблиц Юнга одинаковой формы: записывающая (P) и нумерующая (Q).

P:

Построение таблицы P

На вход подаётся перестановка из n элементов $\phi = \{\phi_1, \phi_2, ..., \phi_n\}.$ Изначально таблица P пустая.

- $oldsymbol{0}$ ϕ_1 помещается в таблицу P.
- ② Элементы $\phi_i, i=2..n$ помещаются в таблицу следующим образом:

Если ϕ_i больше всех значений в столбце, то сверху столбца добавляется клетка с ϕ_i (форма таблицы изменяется).

Иначе ϕ_i записывается на место ближайшего большего числа, которое "выталкивается" в столбец справа. Вытолкнутое значение помещается в следующий столбец по тому же принципу.

Обработка элемента ϕ_i заканчивается после изменения формы таблицы P.

Построение таблицы Q

Изначально таблица Q пустая.

- При обработке очередного элемента перестановки выполняется серия последовательных перемещений значений, записанных в таблицу P, в результате которых форма таблицы изменяется это происходит в ячейке, помещенной сверху какого-либо столбца.
- К таблице Q добавляется ячейка с теми же координатами: таким образом, формы таблиц совпадают. В данную ячейку записывается индекс обработанного элемента перестановки.

Таблица Q нумерует ячейки в порядке изменения формы таблицы P.

Преобразование RSK: пример

См. RSKexample.pdf

Обратное преобразование RSK: пример

Алгоритм RSK обратим: с помощью обратного RSK возможно по паре таблиц Юнга одинаковой формы восстановить исходную перестановку.

См. RSKrev.pdf

Преобразование RSK и вещественные числа

Алгоритм RSK обобщается на последовательности элементов произвольного линейно упорядоченного множества (Для любой пары элементов a и b имеет место $a \le b$ или $b \le a$).

При этом таблица P будет полустандартной, а таблица Q – стандартной.

Например, алгоритм RSK может быть применён для обработки последовательности вещественных чисел от 0 до 1.

См. RSKreal.pdf

Вопросы

- Сколько существует перестановок длины n?
- Сколько существует пар таблиц Юнга одинаковой формы, состоящих из n клеток?
- Если подавать на вход RSK случайные равномерно распределенные перестановки длины n, какая вероятность получить ту или иную диаграмму Юнга? (форму таблиц Юнга)

Формула Планшереля

Формула Планшереля:

$$n! = \sum_{\lambda \in \Lambda} \dim^2(\lambda),$$

где $\dim(\lambda)$ - размерность диаграммы λ , Λ - множество диаграмм размера n. Разделим обе части на n!:

$$1 = \sum_{\lambda \in \Lambda} \frac{\dim^2(\lambda)}{n!}$$

Вероятность генерации диаграммы λ (распределение Планшереля):

$$p(\lambda) = \frac{\dim^2(\lambda)}{n!}$$

Перестановки длины 4 и пары таблиц P, Q

1, 2, 3, 4 P 4 Q 4 3 2 1 1	1, 2, 4, 3 P Q 3 3 2 2 1 4 1 4	1, 3, 2, 4 P Q 4 4 2 2 1 3 1 3	1, 3, 4, 2 P Q 4 3 2 1 3 1 4	1, 4, 2, 3 P Q 3 4 2 2 1 4 1 3	1, 4, 3, 2 P 2 1 3 4 Q 2 1 3 4
2, 1, 3, 4	2, 1, 4, 3	2, 3, 1, 4	2, 3, 4, 1	2, 4, 1, 3	2, 4, 3, 1
P Q 4 3 1 2 1 2	P Q 3 4 3 4 1 2	P Q 4 2 1 3	P Q 3 3 2 1 4	P Q 2 4 1 3	P 3 1 2 4 Q 2 1 3 4
3, 1, 2, 4	3, 1, 4, 2	3, 2, 1, 4	3, 2, 4, 1	3, 4, 1, 2	3, 4, 2, 1
P Q 4 3 1 3 1 2	P Q 3 4 1 2	P 4 1 2 3 Q 4 1 2 3	P 1 2 3 Q 3 1 2 4	P Q 2 4 2 4 1 3	P 1 2 3 Q 2 1 3 4
4, 1, 2, 3	4, 1, 3, 2	4, 2, 1, 3	4, 2, 3, 1	4, 3, 1, 2	4, 3, 2, 1
P Q 4 3 1 4 1 2	P 2 1 3 4 Q 3 1 2 4	P 3 1 2 4 Q 4 1 2 3	P 3 1 2 4 Q 3 1 2 4	P 2 1 3 4 Q 4 1 2 3	P

Перестановки длины 4 и пары таблиц P, Q

1, 2, 3, 4 P 4 3 2 4 3 2 1	1, 2, 4, 3 P Q 3 3 2 2 1 4 1 4	1, 3, 2, 4 P Q 4 4 2 2 1 3 1 3	1, 3, 4, 2 P Q 4 3 2 2 1 3 1 4	1, 4, 2, 3 P Q 3 4 2 2 1 4 1 3	1, 4, 3, 2 P 2 1 3 4 Q 2 1 3 4
2, 1, 3, 4 P Q	2, 1, 4, 3	2, 3, 1, 4 P Q	2, 3, 4, 1 P Q	2, 4, 1, 3	2, 4, 3, 1
4 4 3 1 2 1 2	P Q 3 4 3 4 1 2	4 4 2 1 3	4 3 3 2 1 2 1 4	P Q 3 4 2 4 1 3	P 1 2 4 Q 2 1 3 4
3, 1, 2, 4	3, 1, 4, 2	3, 2, 1, 4	3, 2, 4, 1	3, 4, 1, 2	3, 4, 2, 1
P Q 4 2 3 1 2	P Q 3 4 1 2	P 4 1 2 3 Q 4 1 2 3	P 1 2 3 Q 3 1 2 4	P Q 2 4 2 4 1 3	P 4 1 2 3 Q 2 1 3 4
4, 1, 2, 3	4, <u>1,</u> 3, 2	4, 2 <u>, 1</u> , 3	4, 2, 3, 1	4, 3 <u>, 1</u> , 2	4, 3, 2, 1
P Q 4	P 2 1 3 4	P 3 1 2 4	P 3 1 2 4	P 2 1 3 4	P 1 2 3 4
2 3 1 4 1 2	Q 3 1 2 4	Q 4 1 2 3	Q 3 1 2 4	Q 4 1 2 3	Q 1 2 3 4

Обратные перестановки

Определение

Обратной перестановкой π^{-1} называется перестановка, в которой числа из перестановки π меняются местами с их порядковыми номерами.

Например, перестановка p_2 является обратной по отношению к перестановке p_1 :

$$p_1 = \{3, 8, 5, 10, 9, 4, 6, 1, 7, 2\}$$

$$p_2 = \{8, 10, 1, 6, 3, 7, 9, 2, 5, 4\}$$

При этом выполняется следующее соотношение: $\pi\pi^{-1}=\pi^{-1}\pi=\epsilon$, где ϵ – тождественная перестановка (числа равны порядковым номерам).

Связь перестановок и обратных перестановок

Если перестановке π соответствует пара таблиц P,Q, то обратной перестановке π^{-1} соответствуют таблицы Q, P.

Перестановка:

Эквивалентность по Кнуту. Двойственная эквивалентность

Определение

Две перестановки называются эквивалентными по Кнуту, если их записывающие ("P") таблицы совпадают.

Определение

Две перестановки **двойственно эквивалентны по Кнуту**, если их нумерующие ("Q") таблицы совпадают.

Эквивалентность по Кнуту может быть описана в терминах преобразований Кнута

Преобразования Кнута

Определение

Преобразование Кнута преобразует одну перестановку в другую, соответствуя одному из нескольких типов, указанных ниже (a<b<c), остальные элементы остаются на месте

Классы эквивалентности по Кнуту

Шесть перестановок образуют класс эквивалентности по Кнуту, причём те перестановки, что могут быть получены друг из друга одним преобразованием Кнута, соединены ребром.

Класс эквивалентности по Кнуту

Примеры возрастающих подпоследовательностей

Перестановка:

 $13,\ 2,\ 16,\ 4,\ 7,\ 9,\ 12,\ 1,\ 3,\ 20,\ 11,\ 6,\ 18,\ 14,\ 5,\ 19,\ 17,\ 10,\ 8,\ 15$

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, **16**, 4, 7, 9, 12, 1, 3, **20**, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15

Возрастающие подпоследовательности:

13, 16, 20

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, **16**, 4, 7, 9, 12, 1, 3, 20, 11, 6, **18**, 14, 5, **19**, 17, 10, 8, 15

- 13, 16, 20
- 13, 16, 18, 19

Примеры возрастающих подпоследовательностей

Перестановка:

13, <mark>2,</mark> 16, 4, 7, <mark>9, 12,</mark> 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, **15**

- 13, 16, 20
- 13, 16, 18, 19
- 2, 9, 12, 15

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, 16, 4, 7, 9, 12, 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15

- 13, 16, 20
- 13, 16, 18, 19
- 2, 9, 12, 15
- 2, 4, 7, 9, 12, 14, 19 (максимально возможная длина = 7)

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, 16, 4, 7, 9, 12, 1, <mark>3,</mark> 20, 11, <mark>6,</mark> 18, <mark>14,</mark> 5, 19, <mark>17,</mark> 10, 8, 15

- 13, 16, 20
- 13, 16, 18, 19
- 2, 9, 12, 15
- 2, 4, 7, 9, 12, 14, 19 (максимально возможная длина = 7)
- 3, 6, 14, 17

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, 16, 4, 7, 9, 12, <mark>1,</mark> 3, <mark>20,</mark> 11, 6, 18, 14, 5, 19, 17, 10, 8, 15

- 13, 16, 20
- 13, 16, 18, 19
- 2, 9, 12, 15
- 2, 4, 7, 9, 12, 14, 19 (максимально возможная длина = 7)
- 3, 6, 14, 17
- **1**, 20

Примеры возрастающих подпоследовательностей

Перестановка:

13, 2, 16, 4, 7, 9, 12, 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15

- 13, 16, 20
- 13, 16, 18, 19
- 2, 9, 12, 15
- 2, 4, 7, 9, 12, 14, 19 (максимально возможная длина = 7)
- 3, 6, 14, 17
- 1, 20
- 4, 7, 9, 11, 18, 19

Перестановка:

13, 2, 16, 4, 7, 9, 12, 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15 Алгоритм RSK преобразует данную перестановку в пару таблиц:

		<i>P</i> :		
15				
14		_		
10	17		_	
8	9	19		
5	6	18		
3	4	11	16	20
1	2	7	12	13

		Q.		
16				
10				
7	17			
6	13	20		
5	11	14		
3	4	9	18	19
1	2	8	12	15

Максимальная длина возрастающей подпоследовательности (7) = высоте первого столбца таблиц.

Теорема Шенстеда

Теорема Шенстеда

Рассмотрим перестановку чисел от 1 до n, а также соответствующую ей пару таблиц Юнга P и Q формы $\lambda=\{\lambda_1,\lambda_2,...,\lambda_k\}$, где λ_i – высота i-го столбца, k – ширина первой строки.

- Высота первого столбца λ_1 таблиц P, Q равна длине наибольшей возрастающей подпоследовательности a_{max} в соответствующей перестановке.
- Ширина первой строки k таблиц P, Q равна длине наибольшей убывающей подпоследовательности d_{max} в соответствующей перестановке.

Простые подпоследовательности

Определение

i-я простая подпоследовательность (basic subsequence) — хронологически упорядоченная последовательность чисел, занимающих клетку в строке i первого столбца таблицы P во время работы алгоритма RSK.

Очевидно, что каждая простая подпоследовательность убывающая, т.к. число может быть вытолкнуто в соседний столбец только меньшим числом.

Теорема Шенстеда: доказательство

Поскольку каждая простая подпоследовательность убывает, возрастающая подпоследовательность может включать в себя не более одного члена каждой простой подпоследовательности, а значит искомая длина наибольшей возрастающей подпоследовательности $a_{max} \leq \lambda_1$.

При этом для каждого члена j-й простой подпоследовательности r найдется член j-1-й простой подпоследовательности, строго меньший r. Соответственно, если начать с λ_1 -й простой подпоследовательности, то можно построить возрастающую последовательность длины λ_1 (последовательность строится справа налево!), из чего вытекает, что $a_{max}=\lambda_1$.

Свойства алгоритма RSK

- Равномерно распределенные перестановки порождают таблицы с планшерелевским распределением.
- Взаимная однозначность между перестановками и парами таблиц Юнга (обратимость преобразования).
- Алгоритм работает в том числе для последовательностей с повторяющимися элементами.
- Алгоритм работает в том числе для <u>бесконечных</u> входных последовательностей.
- **5** Если перестановке π соответствует пара таблиц P,Q, то обратной перестановке π^{-1} соответствуют таблицы Q,P.
- Высота первого столбца таблицы равна длине наибольшей возрастающей подпоследовательности в соответствующей ей перестановке, а ширина первой строки равна длине наибольшей убывающей подпоследовательности (теорема Шенстеда).

Пути выталкиваний

Для изучения эволюции значений таблицы P в алгоритме RSK удобно рассматривать т.н. пути выталкиваний.

Путь выталкиваний — это последовательность клеток таблицы P, перемещающихся в ходе одной итерации преобразования RSK.

4	7			
2	5	8	10	
1	3	> 6	9	

4	7			
2	5	8	10	
1-	3	6	9	

В пути выталкивания i-я клетка соединена **ссылкой** с i+1-ой клеткой.

Лес выталкиваний

Лес выталкиваний — объединение всех путей выталкиваний таблицы P.

Лес выталкиваний

Лес выталкиваний — объединение всех путей выталкиваний таблицы P.

Примеры путей выталкиваний

Предельная форма путей выталкиваний

Предельные формы путей выталкиваний изучались в [Romik,Śniady'14].

Предельные формы

Визуализация роста таблиц с помощью поверхности в \mathbb{R}_3 (предельная форма)

Литература

- Donald E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching / D. E. Knuth. USA: Addison Wesley Longman Publishing Co., Inc., 1998. 800 с.: начиная со стр.47
- *C. Schensted*, Longest increasing and decreasing subsequences, Canad. J. Math., Volume 13 (1961), pp. 179-191
- Н. Н. Васильев, В. С. Дужин, А. Д. Кузьмин, Исследование свойств классов эквивалентности перестановок с помощью обратного преобразования Робинсона Шенстеда Кнута // Информационно-управляющие системы. 2019. Т. 98, № 1. С. 11—22.