Mini-Project in Mathematical and Computational Modeling

École Polytechnique Fédérale de Lausanne, Switzerland

Florian + Dariush

Introduction

Introduction to the article goes here Introduction to the article goes here

The Model

Part A - One-Cell Model

(a) One-Cell Model

The gene mRNA X codes for protein Y which, in turn, activates transcriptional inhibitor Z. The resulting model behaves as a three-variable oscillator.

$$\begin{split} \frac{\delta X}{\delta t} &= v_1 \frac{K_1^n}{K_1^n + Z^n} - v_2 \frac{X}{K_2 + X} \\ \frac{\delta Y}{\delta t} &= k_3 X - v_4 \frac{Y}{K_4 + Y} \\ \frac{\delta Z}{\delta t} &= k_5 Y - v_6 \frac{Z}{K_6 + Z} \end{split}$$

translation rate of X v_1 degradation rate of X v_2 degradation rate of Y v_4 degradation rate of Z v_6 transcription rate of X k_3 transcription rate of Z k_5

Michaelis constant of X K_1

Michaelis constant of Y K_4

 K_6 Michaelis constant of Z

(a) Trajectories

The limit cycle is reached as the variations of X(t), Y(t) and Z(t) become fixed: The trajectories converge, non-lineary (the ellipse (where the blue stripes accumulate)

(b) Frequency spectrum

The amplitude of the three variations stabilize after a few distance between similar trajectories aren't regular) towards an hundred hours. The signal are not in phase but have the same, regular, frequencies.

Figure 3:

Trajectories of X(t), Y(t) and Z(t) with initial conditions: $X_0=0.16,\,Y_0=0.33,\,Z_0=1.8$ [nM] We observe on both graphs that Z(t) has the bigger amplitude of variation whereas X(t) and Y(t) have small amplitudes. Additionally, the convergence towards a single loop in (a) indicate that the frequencies of the signals are equal; this is illustrated as well in (b)

Figure 4: X(t), Y(t) and Z(t) with initial conditions $X_0 = 0.16$, $Y_0 = 0.33$, $Z_0 = 1.8$ [nM] The first signal to fade is Y(t) and its oscillatory stability predicts stability of the system. We also observe that the signals converge towards null or the limit cycle in a non-linear fashion. At the opposite, it is rather difficult to predict the threshold value of v_1 using those plots?

Figure 5: Bifurcation Diagram: X_{min} and X_{max} plotted at time intervals [9/10; 1] of h_{max} A limit cycle might be reached when $X_{min} \neq X_{max}$. However, the system needs to be run for enough time for the cycle to be reached, as the (a) suggests. (b) illustrates the non-linear convergence of the system; also the threshold for v_1 seems to be around 4.5

Figure 6: Trajectories when varying v_1 with initial conditions $X_0 = 0.16$, $Y_0 = 0.33$, $Z_0 = 1.8$ [nM] v_1 has to reach a certain value for X(t) to be able to compensate its inhibition by Z(t) and therefore for the system to reach a limit cycle. We observe that this value is slightly greater than 4 nM/h, as the trajectories still converge to null in (e); there is an 'eye', even though it is smaller than in (f) and (g), since the timescale is not big enough to let the system dissipate completely.

Figure 7: Superimposed trajectories at late timepoints with initial conditions $X_0 = 0.16$, $Y_0 = 0.33$, $Z_0 = 1.8$ [nM] and $v_1 = 0.1/0.3/0.5/0.7/0.9$ nM/h. We observe here that Z(t) tends to reach greater concentration stability with increasing v_1 .

Part B - Multiple Cells Model

 v_1

 v_2

 v_4

 v_8

 k_3

 k_5

 k_7

(a) Multiple Cells Model

The gene X codes for protein Y which, in turn, activates transcriptional inhibitor Z. In addition, gene X activates a positive feedback loop through the mean concentration of extracellular protein V

$$\begin{split} \frac{\delta X}{\delta t} &= v_1 \frac{K_1^n}{K_1^n + Z^n} - v_2 \frac{X}{K_2 + X} + v_c \frac{KF}{K_c + KF} \\ \frac{\delta Y}{\delta t} &= k_3 X - v_4 \frac{Y}{K_4 + Y} \\ \frac{\delta Z}{\delta t} &= k_5 Y - v_6 \frac{Z}{K_6 + Z} \\ \frac{\delta V_i}{\delta t} &= k_7 X_i - v_8 \frac{V_i}{K_8 + V_i} \\ \end{split}$$
 where $F = \frac{1}{N} \sum_{i=1}^N V_i$

 v_c

K

translation rate of X degradation rate of X degradation rate of Y degradation rate of Z degradation rate of Y transcription rate of X transcription rate of Z transcription rate of Y

 k_1 transcription rate of X K_1 Michaelis constant of X K_4 Michaelis constant of Y K_6 Michaelis constant of Z K_8 Michaelis constant of Y K_c Michaelis constant of X by Y

Activation rate of X by F Coupling Constant

Figure 10: X_1 and X_2 trajectories with varying λ_i in a two-cells Model I don't really know what to say except 'wow it's cool' + square is max/min of Xs

Figure 11: $X_1(t)$ and $X_2(t)$ trajectories in a two-cells Model We observe that

Figure 12: X_1 and Y_2 trajectories

Figure 14: raraara

Figure 15: raraara