## Industrial manufacturing data

2023. 9.

가천대학교 스마트 팩토리 전공

정원종 교수

### Manufacturing data?

#### **Definition**

- → Digitalized data generated during the process of a manufacturing planning, designing, production, and operating a factory
- → Manufacturing big data: Data of the actual industrial field is vast in scale

#### Manufacturing AI data set

→ A structured manufacturing data collection systematically collected and stored for AI analysis

# Example of manufacturing data (열처리 공정최적화 AI 데이터셋)

#### • 공정(설비)상의 문제 현황

- 숙련공들의 세대교체와 현장 작업자의 잦은 변경으로 최적의 생산조건으로 생산을 진행하지 못해 불량이 발생하고 있다.
- 작업자의 현장 경험에 의존하여 생산성 및 품질관리가 취약하다.
- 외국인 작업자 및 신규 작업자가 Manual 및 SOP( Standard Operating Procedure, 표준운영절차)에 따라 생산을 하지만 품목에 따른 설비 세팅에 어려움이 있으며, 불량 등 제품에 문제 발생 시 정확한 원인 파악이 어렵다.

#### • 문제해결 장애요인

- 열처리 공정(뿌리산업)은 3D로 인식되는 열악한 생산 환경으로 인식되어 기피산업으로 분류되고, 신규인력의 유입이 어려워 악순환적 인력난이 발생하고 있다.
- 현장 관리자 과거의 경험과 지식을 통해 생산 및 개선활동을 하고 있으며, 숙련공이 아니면 파악할 수 없는 자신만의 노하우(Know-how)로 생산 활동을 진행하고 있다.
- 현장에서 오랫동안 생산을 해온 숙련공들의 생산지식 및 노하우를 데이터화하여 개인의 능력이 아닌 기업의 경쟁력을 높여줄 생산기술의 자산화가 이뤄지지 않고 있다.

#### • 극복 방안

- 생산 진행 중 실시간 품질을 예측하고 불량 발생 시 원인에 대한 개선조치를 실행할 수 있도록 AI 분석을 통해 도출한 공정 최적화 모델을 활용하여 외국인 작업자 및 신 규 작업자들도 큰 노력과 많은 시간을 소요하지 않아도 양품을 생산할 수 있도록 최적의 Manual 및 SOP 제공을 통해 극복하고자 한다.

| No | 구분                          |              | 내용                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----|-----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1  | <b>분석 목적</b><br>(현장 이슈, 목적) |              | <ul> <li>외국인 작업자 및 신규 작업자가 Manual 및 SOP( Standard Operating Procedure, 표준운영절차)에 따라 생산을 하지만 품목에 따른 설비 세팅에 어려움이 있으며, 불량 등 제품에 문제 발생 시 정확한 원인 파악이 어렵다.</li> <li>현장 관리자 과거의 경험과 지식을 통해 생산 및 개선 활동을 하고 있으며, 숙련공이 아니면 파악할 수 없는 자신만의 노하우(Know-how)로 생산 활동을 진행하고 있다.</li> <li>열처리 공정에서 발생하는 품질문제와 공정 데이터들을 분석하여 데이터 간의 상관관계를 찾고 주요 문제별 원인 인자를 분석하여 공정 최적화 모델을 활용하여 해결하고자 한다.</li> </ul> |  |  |  |  |
| 2  | 데이터셋 형태 및<br>수집방법           |              | 1) 분석에 사용된 변수 : 건조 1~2존 OP, 건조로 온도 1~2존 외 16개<br>2) 데이터 수집 방법 : 열처리의 소입로, 건조로 등 주요 존의 데이터 확보<br>3) 데이터셋 파일 확장자 : CSV, xlsx                                                                                                                                                                                                                                                      |  |  |  |  |
| 3  | 데이터 개수<br>데이터셋 총량           |              | - 데이터 개수: (raw_total_data) Row 수 2,939,722개*column 20개, 총 58,794,440개, (label) Row 수 136개*column 22개, 총 2,992개 - 데이터셋 총량: (raw_total_data) 481MB, (label) 24KB                                                                                                                                                                                                                  |  |  |  |  |
|    | 알고리즘                        |              | 선형 회귀(Linear Regression)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 4  | 분석적용<br>알고리즘                | 알고리즘<br>간략소개 | <ul> <li>선형 회귀(Linear Regression)는 고전 통계학을 기반으로 한 기본적인 회귀 분석 모형으로, 독립변수와 종속변수 사이의 선형 관계를 수치화하여 제시할 수 있는 기본적인 모형이다.</li> <li>선형 회귀를 통해 배정번호 별 공정의 불량률을 예측할 수 있고, 이를 기반으로 각 센서 별 최적값을 도출해 낼 수 있다.</li> </ul>                                                                                                                                                                      |  |  |  |  |
| 5  | 분석결과 및<br>시사점               |              | <ul> <li>분석결과: 선형 회귀 모형을 통해 불량비율을 예측할 수 있음을 확인했고, 이를 기반으로 공정 최적화를 위한 각 센서 별 범위 값을 계산할 수 있음을 확인했다. 이를 기반으로 비용과 시간을 절감할 것으로 기대한다.</li> <li>시사점: 데이터 가공 및 전처리, AI 모델 개발과 제조 공정의 적용 및 검증을 통해 열악한 중소기업에 빅데이터 및 AI 기술을 적용하여 실질적인 품질향상 및 비용절감을 기대한다.</li> </ul>                                                                                                                        |  |  |  |  |

https://kamp-ai.kr

### Example of manufacturing data (열처리 공정최적 화 AI 데이터셋)

| C-2-3     | 슬트조 온    |         |         |         |          | 000.004 |         | 0.450404 | 71.0405  |          |          | 77.0400  | CO 420C  |          |          | 20.0155  |          | 배정번호   |                  |
|-----------|----------|---------|---------|---------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|------------------|
|           |          |         |         |         |          | 859.854 |         |          | 71.8405  | 51.7169  | 59,7862  | 72.8403  | 68.4386  |          |          | 30.0155  | 75.6648  | 102410 | 2022-01-03 11:22 |
|           | 328.734  | 272.538 | 294.658 | 859.786 | 860.044  | 859.78  | 860.338 | 0.450356 |          | 50,4453  | 61.6286  | 78.4415  | 68.4386  | *****    |          | 32.2732  | 75.6706  | 102410 | 2022-01-03 11:22 |
|           | 328.734  | 272.538 | 294,658 | 859.724 | 859.981  | 859.78  | 860,338 | 0.450341 |          | 52.0196  | 61,5414  | 78.1099  | 68,4386  | 99.146   | 98.8533  | 32.1592  | 75.6776  | 102410 | 2022-01-03 11:22 |
|           | 328.674  | 272.538 | 294,719 | 859.599 | 859.95   | 859.842 | 860.338 | 0.450202 |          | 52.69425 | 60.6663  | 77.50725 |          | 99.17675 | 98.7918  | 30.8312  | 75.8656  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 272.599 | 294.721 | 859.731 | 859,991  | 859.791 | 860.351 | 0.450235 |          | 51,6915  | 61.1634  | 76,0262  | 68.4386  | 99.2075  | 98.7918  | 29.5274  | 73.6468  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 272.599 | 294.721 | 859,731 | 859.991  | 859.791 | 860.351 | 0.450448 | 71.5902  | 51.7122  | 61.1124  | 75.8826  | 68.4386  | 99.146   | 98.7918  | 29.5927  | 76.0051  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 272.599 | 294.781 | 859,731 | 859.991  | 859.854 | 860.351 | 0.450571 | 71.5729  | 51,7311  | 59.5448  | 75.7504  | 68.4386  | 99.2075  | 98,7918  | 29.5291  | 75.9804  | 102410 | 2022-01-03 11:22 |
| .74 32B.  | 328.74   | 272.599 | 294.721 | 859.731 | 859.991  | 859,791 | 860.351 | 0.450566 | 71.6125  | 51,8036  | 61.1314  | 75.6285  | 68.4275  | 99.2001  | 98.7825  | 29.5967  | 75.9607  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272,661 | 294.781 | 859.731 | 859,991  | 859.854 | 860,414 | 0.450445 | 71.5936  | 51.8148  | 59.6177  | 70,9577  | 68,4889  | 99.2001  | 98.7825  | 32,1726  | 76,2665  | 102410 | 2022-01-03 11:22 |
| 1.74 328. | 328.74   | 272,661 | 294.781 | 859.793 | 859.991  | 859.854 | 860.351 | 0.450361 | 70.1123  | 51.8251  | 59.6774  | 75.571   | 68.4275  | 99,2001  | 98.7825  | 29.828   | 76.2216  | 102410 | 2022-01-03 11:22 |
| 1.74 328. | 328.74   | 272,722 | 294.781 | 859.793 | 859.991  | 859.791 | 860.351 | 0.450424 | 70.1451  | 51.8345  | 61.1979  | 75.2962  | 68.4999  | 99.146   | 98.7918  | 29.8676  | 76.1841  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.8    | 272,722 | 294.842 | 859,793 | 859,991  | 859.791 | 860.351 | 0.450424 | 70.1451  | 51.8345  | 61.1979  | 75,2962  | 68.4999  | 99.146   | 98.7918  | 29.8676  | 76.1841  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272.722 | 294.842 | 859.793 | 860.053  | 859.854 | 860,414 | 0.450392 | 70.26955 | 51.08805 | 59.65355 | 72.89035 | 68.4386  | 99.2075  | 98.8533  | 30.62995 | 75.8357  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272.783 | 294.842 | 859.793 | 859.991  | 859.854 | 860.351 | 0.450331 | 70.26955 | 51.08805 | 59.65355 | 72.89035 | 68.4386  | 99.2075  | 98.7918  | 30.62995 | 75.8357  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272.783 | 294.842 | 859.793 | 859.991  | 859.854 | 860.351 | 0.450331 | 70.3805  | 51.911   | 59.738   | 75,3796  | 68.4386  | 99.2075  | 98.7918  | 31.7028  | 75.9706  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.8    | 272.783 | 294.842 | 859,731 | 859.991  | 859.885 | 860.289 | 0.450093 | 72.0212  | 50.4503  | 58.2672  | 79.8466  | 68.4999  | 99.146   | 98.8533  | 31.6755  | 75.9653  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.8    | 272,783 | 294,842 | 859.731 | 859.991  | 859.885 | 860,289 | 0.450359 | 72.0242  | 53.5931  | 59.887   | 79.5993  | 68.4999  | 99.146   | 98.8533  | 29.3941  | 75.9625  | 102410 | 2022-01-03 11:22 |
| 575 328.  | 328.7675 | 272.845 | 294.901 | 859.786 | 860.0485 | 859.842 | 860.338 | 0.450023 | 71.3329  | 50.68125 | 60.0822  | 77.3147  | 68.43305 | 99.1386  | 98.78715 | 31.5583  | 77.14945 | 102410 | 2022-01-03 11:22 |
| 575 328.  | 328.7675 | 272.783 | 294.841 | 859,786 | 860.0485 | 859.842 | 860.338 | 0.450023 | 71.3329  | 50.68125 | 60.0822  | 77.3147  | 68.43305 | 99.1386  | 98.78715 | 31,5583  | 77.14945 | 102410 | 2022-01-03 11:22 |
| 734 328.  | 328.734  | 272.906 | 294.901 | 859,786 | 859,981  | 859,842 | 860.307 | 0.45024  | 70.6799  | 51,6618  | 60.25705 | 77.40935 | 68,4582  | 99.1386  | 98.78715 | 31.56435 | 77.33935 | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272.845 | 294.903 | 859.731 | 859.991  | 859.854 | 860,289 | 0.450129 | 72.0549  | 52.1605  | 59,9928  | 78.3007  | 68.4889  | 99.1386  | 98.78715 | 31.3882  | 73.8723  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272.906 | 294.903 | 859,731 | 859,991  | 859,854 | 860,289 | 0.449746 | 72.0009  | 52.1415  | 59,9669  | 78.1798  | 68.6115  | 99.2001  | 98.78715 | 29.0334  | 76.2397  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272,845 | 294.964 | 859,793 | 860.053  | 859.791 | 860,289 | 0.449401 | 70.4874  | 50.6613  | 61.5196  | 77,9026  | 68,4889  | 99.2001  | 98.721   | 31,4442  | 76.2227  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.B    | 272.906 | 294.903 | 859.793 | 860.053  | 859.854 | 860,289 | 0.449263 | 70.5458  | 50.6935  | 59,9196  | 77.814   | 68.4275  | 99.1386  | 98.7825  | 31,4652  | 76.0877  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.8    | 272.906 | 294,964 | 859,793 | 860.053  | 859.854 | 860,289 | 0.449188 | 70.5994  | 50,7782  | 59,9556  | 77.5663  | 68,4386  | 99,146   | 98.7918  | 28.833   | 75.7536  | 102410 | 2022-01-03 11:22 |
| 8.8 328.  | 328.8    | 272.967 | 294.964 | 859.793 | 860.053  | 859.854 | 860,289 | 0.449211 | 70.6487  | 50.8556  | 59,9886  | 77.3389  | 68,4999  | 99.146   | 98.8533  | 31.146   | 75.7959  | 102410 | 2022-01-03 11:22 |
| .74 328.  | 328.74   | 272,906 | 294,964 | 859,793 | 860.053  | 859,791 | 860,289 | 0,449044 | 70,694   | 50,9265  | 61,4847  | 77,1301  | 68,4999  | 99,2075  | 98,7918  | 28.822   | 73.6985  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 272,967 | 295,025 | 859,793 | 860,053  | 859,854 | 860,351 | 0.448848 | 70,7356  | 50.9913  | 59,9434  | 72.541   | 68,4907  | 99,2057  | 98,7247  | 31,261   | 73.8339  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 273.028 | 294.964 | 859,731 | 859,991  | 859.791 | 860,289 | 0.448881 |          | 52,5136  | 61,4435  | 77,0722  | 68,4907  | 99,1441  | 98.7862  | 29,1108  | 74,0248  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 273,028 | 295,025 | 859,793 | 860,053  | 859,854 | 860,289 | 0,44864  | 70,7562  | 50,9466  | 59,906   | 76,8839  | 68,4294  | 99,1441  | 98,7247  | 29,1374  | 76,3859  | 102410 | 2022-01-03 11:22 |
|           | 328.74   | 273,028 | 295,025 | 859,793 | 860,053  | 859,854 | 860,289 | 0.448764 | 70,7378  | 50,9546  | 59,8885  | 76,7108  | 68,4907  | 99,1441  | 98,7862  | 31,421   | 73,9833  | 102410 | 2022-01-03 11:22 |

[그림 2] 열처리 공정 데이터

#### Classification of manufacturing data

#### Manufacturing data

- ① Facility(equipment) data (설비 데이터)
- → Facility status data, facility control data, and log data for connection between facilities generated from production facilities
- Ex) PLC (Programmable logic controller, PLC)
- ② Factory operations data (공장운영 데이터)
- → Management data from manufacturing information system such as MES, ERP, SCM, etc.
- ③ Energy and environment data (에너지·환경 데이터)
- → Energy input data to operated factory facilities and equipment
- ④ User experience data (사용자 경험 데이터)
- → User experience data for finished products generated from e-commerce platforms and social networking platforms

### [Note] PLC (Programmable logic controller)

공장의 지휘자, PLC 4분만에 완벽 이해하기 (기초 개념, 사용처, 원리, 장점) - YouTube



#### LS ELECTRIC | PLC [국문] - YouTube



### Characteristics of manufacturing data

#### ① Diversity (다양성)

- → Manufacturing data can encompass various types of information.
- → For example, it includes diverse information such as production volume, defect rates, process times, inventory levels, equipment status, raw material consumption, and more.

#### ② Large volume (대용량)

→ Manufacturing industries engage in large-scale production, leading to the generation of significant amounts of data. This is categorized as big data or large-scale data.

#### ③ Real-time (실시간)

- → Manufacturing data is generated in real-time and continuously updated during the production process.
- → This data plays a crucial role in real-time monitoring and control.

#### ④ Complexity (복잡성)

- → Manufacturing data involves interactions among various variables related to processes, equipment, raw materials, products, and human resources.
- → These intricate relationships can make data analysis and modeling challenging.

### Characteristics of manufacturing data

- ⑤ Quality management (품질관리)
- → Manufacturing data plays a pivotal role in monitoring and managing product quality. Metrics such as defect rates and quality-related indicators are part of this data.
- ⑥ Prediction and optimization (예측 및 최적화)
- → Data analysis of manufacturing data enables prediction and optimization of production processes. For instance, it can be used for minimizing inventory, improving production line efficiency, and forecasting demand.
- ⑦ Security and confidentiality (보완과 기밀성)
- → Manufacturing data may contain sensitive and confidential information.
- → Data security is a crucial consideration.
- ® Data quality (데이터 품질)
- → Accurate and reliable data are essential for prediction and optimization.

### Characteristics of manufacturing data

| 특징    | 레벨  | 설명                                                                                                                                    |
|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 다양성   | 높음  | 생산시 설비로부터 발생하는 다양한 종류의 데이터  Ex) 온도 센서로부터의 수치 데이터 비전 검사로부터의 영상 및 이미지 데이터 완제품 품질검사로부터의 진동 및 소리 데이터                                      |
|       |     | * 기업별 설비환경의 차이로 데이터 포맷이 다양함                                                                                                           |
| 생산속도  | 빠름  | 전통 제조가 IT기술(센서)과 결합되면 생산데이터 정보가 초단위, ms 단위까지 빠르게 생산됨                                                                                  |
| 크기    | 대용량 | 데이터가 빠르게 수집되는 만큼 축적되는 대용량의 제조데이터 셋이 만들어짐                                                                                              |
|       |     | Ex) (자동차 부품 제조업) 품질검사 머신비전 수행시 → 부품 융착 이미지 데이터 370 TB/yr (화학 제조업) 실시간 이상 탐지, 공정 데이터 수집: 100 GB/day (프레스 금형 제조업) 공정 데이터 수집: 100 GB/day |
| 보안 이슈 | 높음  | 각 기업의 제조 노하우나 영업비밀이 집적되어 있음                                                                                                           |

#### Key Al technologies for industry 4.0

High performance computing tech.

Realistic VR, AR tech. → metaverse, digital twin



#### Manufacturing Al applications





#### **Technical perspective**

- Al Predictive Maintenance (예지보전)
- Al Quality Control (품질검사)
- Manufacturing Al dataset management (제조Al 데이터셋 관리)
- ManufacturingAl Metaverse Factory (제조AI메타 버스 팩토리)

#### **Business perspective**

- Cost optimization (비용최적화)
- Demand forecast (수요예측)
- Cyber Physical Production System (사이버 물리 생산 시스템)
- Supply Chain Optimization (공급사슬 최적화)

### Manufacturing Al solution and infra

To offer manufacturing AI technology in a service platform that can be practically utilized in manufacturing environments, such as factories.

→ Manufacturing AI solution and infra !!

| Problem                                                    |               | Solution                  |
|------------------------------------------------------------|---------------|---------------------------|
| 정보 과잉 문제<br>(대규모 제조데이터 획득)<br>Information fatigue syndrome | $\rightarrow$ | AI 솔루션(Software)이 해결      |
| 인프라 문제                                                     | $\rightarrow$ | HPC, GPU, Storage (Cloud) |

### Advanced manufacturing country-Germany

**HLRS** (The High Performance Computing Center Stuttgart)

- A supercomputing center specialized in manufacturing
- Stuttgart: Automotive manufacturing hub in Germany
- 'HAWK': national-level supercomputer system
  - Ex) PORSCHE: modeling & simulation for aero-dynimics







### Purposes of manufacturing Al

Manufacturing AI: A type of software that can make autonomous decisions within a factory.

#### **Purpose:**

- → Technical perspective (기술 관점 제조 AI 적용 목적)
  - Early detection of equipment abnormalities (장비 이상 조기탐지)
  - Real-time quality process control (실시간 품질 공정 제어)
  - Detection/diagnosis of quality abnormalities (품질 이상 탐지/진단)
  - Optimization of equipment operation (장비운영 최적화)
- → Business perspective (경영 관점 제조 AI 적용 목적)
  - Demand prediction and inventory management (수요예측 및 재고관리)
  - Price optimization (가격 최적화)
  - Product development (제품개발)
  - Supply chain optimization (공급망 최적화)

### [Tech.] Early detection of equipment abnormality

- 1. 사람이 진단하듯이 AI가 기계를 진단하여 고장, 장애를 선제적으로 예측하는 것
  - 설비에서 발생하는 진동, 전류, 속도, 초음파, 윤활, 열화상, 전기 분석 등 AI 분석 목적에 맞게 다양한 제조 데이터 활용
- 2. 설비 예지보전 (PDM, Predictive Maintenance)
  - 회전 기계의 진동 데이터를 수집하고 분석을 통해 병든 기계를 진단, 사전 모니터링을 수행하고, 이상을 조기에 탐지하여 공장의 손실을 사전에 예방
- 3. 실제 국내 중소 제조업 적용 사례 (고원금속)
  - 무선진동센서를 통해 단조프레스 설비의 공정데이터를 수집하여 주파수 대역별 설비 진동 특성을 분석
  - AI 적용을 통해 단조 프레스의 고장 징추를 예측하여 장비 이상 조기탐지를 이끌어냄

### [Tech.] Real-time quality process control

- 1. 공정에서 주어진 목적함수를 최적화하기 위한 매개변수를 물리적 모델이나 기훈련된 AI머신러닝 모델 등을 활용하여 탐색
- 2. 데이터가 더 많이 축적될 수록 주어진 제한 조건하에서 최적의 공정조건 탐색이 가능
  - 장비운용 조건과 원재료의 물성을 입력치로 하여, 생산되는 제품의 품질을 머신러닝을 통한 공 정 최적화로 최적화
- 3. 실제 국내 중소 제조업 적용 사례 (주)켐프)
  - 도금공정 데이터 (전류, 시간, 두께 등)를 수집하여 최적화 작업을 수행
  - 작업자의 감에 의존하는 생산방식이 아닌 AI기반 최적생산 도금공정 조건을 분석
  - 불량율을 32% → 5% 로 감소

### [Tech.] Detection/diagnosis of quality abnormality

- 1. 생산된 제품의 품질을 영상, 진동, 소리 등의 제조데이터로 AI 분석, 정상범위에서 벗어난 것을 예측
- 2. 머신러닝 방법론은 물론 전통적 통계학 방법론에 기반하여 정상범위를 벗어난 이상 탐지를 통해 불량 검출
  - 다양한 센서에서 오는 진동데이터의 공분산 및 상관관계, 회귀분석, AI분석 등을 적용하여 품질 이상을 검출
- 3. 실제 국내 중소 제조업 적용 사례 (조선내화㈜)
  - 내화물의 X-ray 검사 동영상을 이미지로 분할 수집하여 불량 검출을 위한 이미지 객체 인식 AI방 법론을 도입
  - 기존의 작업자의 육안 검사 방식에서 AI 기반 자동 품질 이상 탐지/진단 방식 도입아여 검사 시간을 획기적으로 줄임

### [Tech.] Optimization of equipment operation

- 1. 제조 공정에 활용되는 다양한 장비들을 모니터링 및 AI 분석을 수행 → 가동 시간 증가, 유지보수 비용 절감, 가동 중단 시간 발생 최소화 등의 작업을 최적화 하는 것
- 2. 장비 활용 간의 병목현상이 존재하는 지를 분석하고 개선할 방법을 찾는 데 활용
  - 다양한 공정과 장비를 활용하는 제조현장에서의 장비운영 효율 증대로 생산성을 높이고, 비용을 절감
- 3. 실제 국내 중소 제조업 적용 사례 (대명씨엔에스㈜)
  - 내프레서 설비에 대한 정확한 금형 교체 주기를 예측하기 위해 청진기 센서를 활용하여 소리데 이터를 수집하고 소리 주파수 특성을 나타내는 스펙트럼을 분석
  - AI금형수명예측 모델 개발을 통해 프레스 설비 비가동 시간 최소화로 생산성 10% 향상 달성

#### Business perspective

- 1. Demand prediction and inventory management (수요예측 및 재고관리)
  - 계절적 수요패턴 분석을 통한 수요예측 모델을 구축하여 다품종 소량샌산 체제에 마즌 L 최적 주문량 도출 및 재고 부족 위험을 예방
  - 도넛 제조공장에서 기온, 습도, 냉음료 판매량 등의 빅데이터를 활용, 도넛 소비량을 예측할 수 있는 AI 분석 툴 개발
- 2. Price optimization (가격 최적화)
  - 실제적인 제약조건(가격 변동 횟수, 가격 변동의 최소양)에 AI 알고리즘을 적용하여 소매점 가격을 최적화
- 3. Product development (제품개발)
  - 원액기의 제품 개발 과정에서 스크류 압력 해석을 통해 최적 형상을 도출하여 착즙률 향상을 달성
- 4. Supply chain optimization (공급망 최적화)
  - 주문량 정보, 리드타임 정보를 활용하여 AI분석을 통해 총 재고 비용과 주문 만족율의 최적 화 조건을 도출

### 실사례

(予)KEMP

인공지능 중소벤처 제조 플랫폼 (kamp-ai.kr)

조선내화㈜

인공지능 중소벤처 제조 플랫폼 (kamp-ai.kr)