Hash Tables

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

February 13, 2019

- ► A hash table has both a size (number of contained elements) and a capacity ("space" reserved for further elements)
- ► A hash table with capacity *m* contains an array (the table) with *m* slots, called hash buckets
- ▶ The data is distributed across the table, so that:
 - 1. For every item x, there is one specific slot where it "should" be placed (quickly computable), depending on hash(x)
 - 2. Almost all of the *n* different items are placed in different slots
 - 3. For the case where two items land in the same bucket, need collision handling (for example, external list for each bucket)
- ▶ If done perfectly, this would imply constant-time insert, delete, lookup operations

- ► A hash table has both a size (number of contained elements) and a capacity ("space" reserved for further elements)
- ► A hash table with capacity *m* contains an array (the table) with *m* slots, called hash buckets
- ▶ The data is distributed across the table, so that:
 - For every item x, there is one specific slot where it "should" be placed (quickly computable), depending on hash(x)
 - 2. Almost all of the n different items are placed in different slots
 - 3. For the case where two items land in the same bucket, need collision handling (for example, external list for each bucket)
- ► If done perfectly, this would imply constant-time insert, delete, lookup operations

- ► A hash table has both a size (number of contained elements) and a capacity ("space" reserved for further elements)
- ► A hash table with capacity *m* contains an array (the table) with *m* slots, called hash buckets
- ► The data is distributed across the table, so that:
 - 1. For every item x, there is one specific slot where it "should" be placed (quickly computable), depending on hash(x)
 - 2. Almost all of the n different items are placed in different slots
 - 3. For the case where two items land in the same bucket, need collision handling (for example, external list for each bucket)
- ▶ If done perfectly, this would imply constant-time insert, delete, lookup operations

- ► A hash table has both a size (number of contained elements) and a capacity ("space" reserved for further elements)
- ► A hash table with capacity *m* contains an array (the table) with *m* slots, called hash buckets
- ► The data is distributed across the table, so that:
 - 1. For every item x, there is one specific slot where it "should" be placed (quickly computable), depending on hash(x)
 - 2. Almost all of the n different items are placed in different slots
 - 3. For the case where two items land in the same bucket, need collision handling (for example, external list for each bucket)
- ► If done perfectly, this would imply constant-time insert, delete, lookup operations

First example: Integer keys

- ▶ Have: Array with m slots (say m = 7)
- ▶ Want: Map any integer (arbitrary 32-bit number) into $\{0,1,2,\ldots,6\}$
- ► Use modulo operation (Java: %):
 - -0%7 = 0
 - ► 1%7 = 1
 - ▶ ...
 - ► 6%7 = 6
 - 7%7 = 0
 - > 8%7 = 1
 - ▶ ...
- ▶ (Like the hands of a clock; minutes are counted mod 60)

First example: Integer keys

- ▶ Have: Array with m slots (say m = 7)
- ► Want: Map any integer (arbitrary 32-bit number) into {0,1,2,...,6}
- ► Use modulo operation (Java: %):
 - -0%7 = 0
 - ► 1%7 = 1
 - ▶ ...
 - ► 6%7 = 6
 - 7%7 = 0
 - ▶ 8 % 7 = 1
 - ▶ ...
- ► (Like the hands of a clock; minutes are counted mod 60)

- ► For consecutive data (1000, 1001, 1002...), always get different slots
- ► For random data, usually get different slots
- ► Remains: Weird or especially crafted data (more later)
- ► Also: index (e.g, 1001 % 7) is cheap to compute (single CPU instruction)

- ► For consecutive data (1000, 1001, 1002...), always get different slots
- ► For random data, usually get different slots
- ► Remains: Weird or especially crafted data (more later)
- ► Also: index (e.g, 1001 % 7) is cheap to compute (single CPU instruction)

- ► For consecutive data (1000, 1001, 1002...), always get different slots
- ► For random data, usually get different slots
- ► Remains: Weird or especially crafted data (more later)
- ► Also: index (e.g, 1001 % 7) is cheap to compute (single CPU instruction)

- ► For consecutive data (1000, 1001, 1002...), always get different slots
- ► For random data, usually get different slots
- ► Remains: Weird or especially crafted data (more later)
- ► Also: index (e.g, 1001 % 7) is cheap to compute (single CPU instruction)

- ▶ If they set *K* of keys is uniformly distributed (i.e., every key in *K* is equally likely to occur), then the choice of *m* is not important.
- ▶ But, what happens if *K* is not uniformly distributed?
- ▶ If the keys occur in the multiples of 4 then all of the slots that are not multiples of 4 will be empty (which is really bad in terms of hash table performance).
- ► This can happen.

- ▶ If they set *K* of keys is uniformly distributed (i.e., every key in *K* is equally likely to occur), then the choice of *m* is not important.
- ▶ But, what happens if *K* is not uniformly distributed?
- ▶ If the keys occur in the multiples of 4 then all of the slots that are not multiples of 4 will be empty (which is really bad in terms of hash table performance).
- ► This can happen.

- ▶ If they set *K* of keys is uniformly distributed (i.e., every key in *K* is equally likely to occur), then the choice of *m* is not important.
- ▶ But, what happens if *K* is not uniformly distributed?
- ▶ If the keys occur in the multiples of 4 then all of the slots that are not multiples of 4 will be empty (which is really bad in terms of hash table performance).
- ► This can happen.

- ▶ If they set *K* of keys is uniformly distributed (i.e., every key in *K* is equally likely to occur), then the choice of *m* is not important.
- ▶ But, what happens if *K* is not uniformly distributed?
- ▶ If the keys occur in the multiples of 4 then all of the slots that are not multiples of 4 will be empty (which is really bad in terms of hash table performance).
- This can happen.

General object data

- ► For other data (strings, lists, ...), need to "convert" object into integer via hash function
- ► Process: e.g., for insert(x):
 - 1. Compute h=hash(x)
 - 2. Find hash bucket h\%m with modulo operation
 - 3. If it's empty, good; if not, need collision handling
- ► Lookup:
 - 1. Compute h=hash(x)
 - 2. Find hash bucket h%m
 - If it contains x or is empty, we're happy (otherwise, see later)
- ► Since hash(x) behaves "as if random", keys will spread out into different slots
- ► Most operations will be efficient

General object data

- ► For other data (strings, lists, ...), need to "convert" object into integer via hash function
- ► Process: e.g., for insert(x):
 - 1. Compute h=hash(x)
 - 2. Find hash bucket h\mathbb{m} with modulo operation
 - 3. If it's empty, good; if not, need collision handling
- ► Lookup:
 - Compute h=hash(x)
 - 2. Find hash bucket h%m
 - 3. If it contains x or is empty, we're happy (otherwise, see later)
- ► Since hash(x) behaves "as if random", keys will spread out into different slots
- ► Most operations will be efficient

General object data

- ► For other data (strings, lists, ...), need to "convert" object into integer via hash function
- ► Process: e.g., for insert(x):
 - 1. Compute h=hash(x)
 - 2. Find hash bucket h\%m with modulo operation
 - 3. If it's empty, good; if not, need collision handling
- ► Lookup:
 - Compute h=hash(x)
 - 2. Find hash bucket h%m
 - 3. If it contains x or is empty, we're happy (otherwise, see later)
- Since hash(x) behaves "as if random", keys will spread out into different slots
- ► Most operations will be efficient

Handling collisions

- ► There are two different principles for handling collisions:
 - Chaining (closed addressing): Place colliding keys outside of main table
 - Open addressing: Place colliding keys inside the table, in a new slot
- ► Chaining (used in Java): Each table slot is the start of a linked list of table entries
- ▶ If several items should go into slot (say) 3, they are put into such a list
- ► Insert/lookup/delete still fast if lists are short and rare

Handling collisions

- ► There are two different principles for handling collisions:
 - Chaining (closed addressing): Place colliding keys outside of main table
 - Open addressing: Place colliding keys inside the table, in a new slot
- Chaining (used in Java): Each table slot is the start of a linked list of table entries
- ► If several items should go into slot (say) 3, they are put into such a list
- ► Insert/lookup/delete still fast if lists are short and rare

Handling collisions

- ► There are two different principles for handling collisions:
 - Chaining (closed addressing): Place colliding keys outside of main table
 - Open addressing: Place colliding keys inside the table, in a new slot
- Chaining (used in Java): Each table slot is the start of a linked list of table entries
- ► If several items should go into slot (say) 3, they are put into such a list
- ► Insert/lookup/delete still fast if lists are short and rare

Chaining lookup procedure (Java)

- Will use two ubiquitous Java functions:
 - object.hashCode(): Computes a 32-bit hash of object
 - object1.equals(object2): Checks whether object1 and object2 have "equivalent" contents
 - ► (Note: x.equals(y) and x == y are very different: x==y tests pointer equality
- ► Lookup procedure: Consider call lookup(item)
 - 1. Let hash1 = item.hashCode()
 - Compute hash bucket bucket = (hash1 % m) (table capacity m)
 - 3. For each element item2 stored in slot bucket
 - 3.1 If item2.hashCode() != hash1: Continue to next object
 - 3.2 If item2.hashCode() == hash1, test item2.equals(item)
 - 3.3 If positive, return YES (found a copy of item in the hash table)
 - 4. If we have looked at all items in the bucket, the answer is NO

Chaining lookup procedure (Java)

- Will use two ubiquitous Java functions:
 - object.hashCode(): Computes a 32-bit hash of object
 - object1.equals(object2): Checks whether object1 and object2 have "equivalent" contents
 - (Note: x.equals(y) and x == y are very different: x==y tests pointer equality
- ► Lookup procedure: Consider call lookup(item)
 - 1. Let hash1 = item.hashCode()
 - Compute hash bucket bucket = (hash1 % m) (table capacity m)
 - 3. For each element item2 stored in slot bucket:
 - 3.1 If item2.hashCode() != hash1: Continue to next object
 - 3.2 If item2.hashCode() == hash1, test item2.equals(item)
 - 3.3 If positive, return YES (found a copy of item in the hash table)
 - 4. If we have looked at all items in the bucket, the answer is NO

Insert, remove, get, put with chaining

- ► Insert(item) on chaining hash tables:
 - Compute hash1=item.hashCode()
 - 2. Compute bucket=hash1 % m
 - 3. For every element item2 in slot bucket:
 - 3.1 If item2.hashCode() != hash1: Continue to next object
 - 3.2 If item2.hashCode() == hash1, test item2.equals(item)
 - 3.3 If positive, return (item already contained)
 - 4. If loop terminates, add item into bucket (e.g., to the front)
- ► Remove(item): very similarly
- ► For get, put (Map rather than Set):
 - 1. Every object x in hash table has x.key and x.value types
 - 2. E.g., put(key,value)
 - 2.1 Find or create slot x for object key exactly as above
 - 2.2 Let x.value==value

Insert, remove, get, put with chaining

- ► Insert(item) on chaining hash tables:
 - Compute hash1=item.hashCode()
 - 2. Compute bucket=hash1 % m
 - 3. For every element item2 in slot bucket:
 - 3.1 If item2.hashCode() != hash1: Continue to next object
 - 3.2 If item2.hashCode() == hash1, test item2.equals(item)
 - 3.3 If positive, return (item already contained)
 - 4. If loop terminates, add item into bucket (e.g., to the front)
- ► Remove(item): very similarly
- ► For get, put (Map rather than Set):
 - 1. Every object x in hash table has x.key and x.value types
 - 2. E.g., put(key,value)
 - 2.1 Find or create slot x for object key exactly as above
 - 2.2 Let x.value==value

Insert, remove, get, put with chaining

- Insert(item) on chaining hash tables:
 - Compute hash1=item.hashCode()
 - 2. Compute bucket=hash1 % m
 - 3. For every element item2 in slot bucket:
 - 3.1 If item2.hashCode() != hash1: Continue to next object
 - 3.2 If item2.hashCode() == hash1, test item2.equals(item)
 - 3.3 If positive, return (item already contained)
 - 4. If loop terminates, add item into bucket (e.g., to the front)
- ► Remove(item): very similarly
- ► For get, put (Map rather than Set):
 - 1. Every object x in hash table has x.key and x.value types
 - 2. E.g., put(key,value):
 - 2.1 Find or create slot x for object key exactly as above
 - 2.2 Let x.value==value

- ► Alternative to chaining: Keep data inside table
- ► Advantages:
 - ► Less memory usage
 - ► Better data locality (linked lists frequently slower)
- ▶ Open addressing: If our first slot is full, try another one...
 - ▶ Linear probing: After slot i, try slot i + 1, i + 2, . . .
 - ▶ Double hashing: Have second hash function hash2 which decides element-specific search order (0 < hash2 < m)</p>
 - ► Try slots h1(x), (h1(x)+h2(x)), (h1(x)+2*h2(x)), ... (mod m)
- ► Linear probing can lead to "pileups", but double hashing is efficient (colliding objects go to different slots)

- ► Alternative to chaining: Keep data inside table
- ► Advantages:
 - ► Less memory usage
 - ► Better data locality (linked lists frequently slower)
- ► Open addressing: If our first slot is full, try another one...
 - ▶ Linear probing: After slot i, try slot i + 1, i + 2, ...
 - ► Double hashing: Have second hash function hash2 which decides element-specific search order (0 < hash2 < m)
 - ► Try slots h1(x), (h1(x)+h2(x)), (h1(x)+2*h2(x)), ... (mod m)
- ► Linear probing can lead to "pileups", but double hashing is efficient (colliding objects go to different slots)

- ▶ Alternative to chaining: Keep data inside table
- ► Advantages:
 - ► Less memory usage
 - ► Better data locality (linked lists frequently slower)
- ► Open addressing: If our first slot is full, try another one...
 - ▶ Linear probing: After slot i, try slot i + 1, i + 2, . . .
 - ▶ Double hashing: Have second hash function hash2 which decides element-specific search order (0 < hash2 < m)</p>
 - ► Try slots h1(x), (h1(x)+h2(x)), (h1(x)+2*h2(x)), ... (mod m)
- ▶ Linear probing can lead to "pileups", but double hashing is efficient (colliding objects go to different slots)

- ► Alternative to chaining: Keep data inside table
- ► Advantages:
 - ► Less memory usage
 - Better data locality (linked lists frequently slower)
- ► Open addressing: If our first slot is full, try another one...
 - ▶ Linear probing: After slot i, try slot i + 1, i + 2, . . .
 - ▶ Double hashing: Have second hash function hash2 which decides element-specific search order (0 < hash2 < m)</p>
 - ► Try slots h1(x), (h1(x)+h2(x)), (h1(x)+2*h2(x)), ... (mod m)
- ► Linear probing can lead to "pileups", but double hashing is efficient (colliding objects go to different slots)

Hash tables worst/average case

- ► A running theme in this course:
 - ► Worst case is easier to estimate (usually)
 - ► Worst case is a sure guarantee
 - ► Average case can be better than worst case (quicksort)
 - Average case makes some assumptions about use pattern (ex: "input is in random order"; "all hash keys act purely random")
 - ▶ If this assumption is reasonable, then we're happy using average case data
 - ▶ But is it reasonable?

- ► A running theme in this course:
 - Worst case is easier to estimate (usually)
 - ► Worst case is a sure guarantee
 - Average case can be better than worst case (quicksort)
 - Average case makes some assumptions about use pattern (ex: "input is in random order"; "all hash keys act purely random")
 - If this assumption is reasonable, then we're happy using average case data
 - ▶ But is it reasonable?

- ► A running theme in this course:
 - Worst case is easier to estimate (usually)
 - ► Worst case is a sure guarantee
 - Average case can be better than worst case (quicksort)
 - Average case makes some assumptions about use pattern (ex: "input is in random order"; "all hash keys act purely random")
 - ▶ If this assumption is reasonable, then we're happy using average case data
 - ▶ But is it reasonable?

- ► A running theme in this course:
 - ► Worst case is easier to estimate (usually)
 - ► Worst case is a sure guarantee
 - Average case can be better than worst case (quicksort)
 - Average case makes some assumptions about use pattern (ex: "input is in random order"; "all hash keys act purely random")
 - If this assumption is reasonable, then we're happy using average case data
 - ▶ But is it reasonable?

- ► A running theme in this course:
 - Worst case is easier to estimate (usually)
 - ► Worst case is a sure guarantee
 - Average case can be better than worst case (quicksort)
 - Average case makes some assumptions about use pattern (ex: "input is in random order"; "all hash keys act purely random")
 - ► If this assumption is reasonable, then we're happy using average case data
 - ► But is it reasonable?

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises:
 - ► The worst case is (unlikely/possible):

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When input is already sorted
 - ► The worst case is (unlikely/possible):

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When input is already sorted
 - ► The worst case is (unlikely/possible): Very plausible

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When input is already sorted
 - ► The worst case is (unlikely/possible): Very plausible
- 2. Quicksort(array, low, high) with pivot array[(low+high)/2]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises:
 - ► The worst case is (unlikely/possible):

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When input is already sorted
 - ► The worst case is (unlikely/possible): Very plausible
- 2. Quicksort(array, low, high) with pivot array[(low+high)/2]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When middle item is always smallest
 - ► The worst case is (unlikely/possible):

- 1. Quicksort(array,low,high) with pivot array[low]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When input is already sorted
 - ► The worst case is (unlikely/possible): Very plausible
- 2. Quicksort(array, low, high) with pivot array[(low+high)/2]
 - ▶ Average case $O(n \log n)$ for random input
 - ▶ Worst case $O(n^2)$ arises: When middle item is always smallest
 - ► The worst case is (unlikely/possible): Probably unlikely?

- ▶ Worst case for hash table operations is $\Theta(n)$, when all items have the same hash code
 - ▶ Item 1 into slot s, time 1
 - ▶ Item 2 into slot s: time 2 (to scan existing item)
 - ▶ Item 3 into slot s: time 3 (to scan existing items)
 - ▶ ...
 - ▶ Item n into slot s: time n (to scan existing items)
- ▶ Total work to insert n such items is $\Theta(n^2)$
- ► Likely/unlikely?
- Worst case essentially requires malicious crafting (reverse-engineer hashCode implementation, break it to figure out how to produce collisions)
- ▶ Unless your hash function is very bad, this is unlikely

- ▶ Worst case for hash table operations is $\Theta(n)$, when all items have the same hash code
 - ▶ Item 1 into slot s, time 1
 - ▶ Item 2 into slot s: time 2 (to scan existing item)
 - ▶ Item 3 into slot s: time 3 (to scan existing items)
 - ▶ ..
 - ▶ Item n into slot s: time n (to scan existing items)
- ▶ Total work to insert n such items is $\Theta(n^2)$
- ► Likely/unlikely?
- Worst case essentially requires malicious crafting (reverse-engineer hashCode implementation, break it to figure out how to produce collisions)
- ▶ Unless your hash function is very bad, this is unlikely

- ▶ Worst case for hash table operations is $\Theta(n)$, when all items have the same hash code
 - ▶ Item 1 into slot s, time 1
 - ▶ Item 2 into slot s: time 2 (to scan existing item)
 - ▶ Item 3 into slot s: time 3 (to scan existing items)
 - ▶ ..
 - ▶ Item n into slot s: time n (to scan existing items)
- ▶ Total work to insert n such items is $\Theta(n^2)$
- ► Likely/unlikely?
- Worst case essentially requires malicious crafting (reverse-engineer hashCode implementation, break it to figure out how to produce collisions)
- ▶ Unless your hash function is very bad, this is unlikely

- ▶ Worst case for hash table operations is $\Theta(n)$, when all items have the same hash code
 - ▶ Item 1 into slot s, time 1
 - ▶ Item 2 into slot s: time 2 (to scan existing item)
 - ▶ Item 3 into slot s: time 3 (to scan existing items)
 - ▶ ..
 - ▶ Item n into slot s: time n (to scan existing items)
- ▶ Total work to insert n such items is $\Theta(n^2)$
- ► Likely/unlikely?
- Worst case essentially requires malicious crafting (reverse-engineer hashCode implementation, break it to figure out how to produce collisions)
- ▶ Unless your hash function is very bad, this is unlikely

- ▶ Worst case for hash table operations is $\Theta(n)$, when all items have the same hash code
 - ▶ Item 1 into slot s, time 1
 - ▶ Item 2 into slot s: time 2 (to scan existing item)
 - ▶ Item 3 into slot s: time 3 (to scan existing items)
 - ▶ ..
 - ▶ Item n into slot s: time n (to scan existing items)
- ▶ Total work to insert n such items is $\Theta(n^2)$
- Likely/unlikely?
- Worst case essentially requires malicious crafting (reverse-engineer hashCode implementation, break it to figure out how to produce collisions)
- ▶ Unless your hash function is very bad, this is unlikely

- ► Hash tables implement Set and Map efficiently on average
- ► Ingredients:
 - 1. Hash function x.hashCode() gives digital fingerprint
 - 2. Have table of p hash buckets to store objects in
 - Some kind of collision handling (open/closed) to handle over-populated buckets
 - 4. If the hash function is high quality, and capacity is, e.g., prime number $p \approx 2n$, then most requests don't collide
- Worst case unavoidably much worse, but also very unlikely

- ► Hash tables implement Set and Map efficiently on average
- ► Ingredients:
 - 1. Hash function x.hashCode() gives digital fingerprint
 - 2. Have table of p hash buckets to store objects in
 - Some kind of collision handling (open/closed) to handle over-populated buckets
 - 4. If the hash function is high quality, and capacity is, e.g., prime number $p \approx 2n$, then most requests don't collide
- Worst case unavoidably much worse, but also very unlikely

- ► Hash tables implement Set and Map efficiently on average
- ► Ingredients:
 - 1. Hash function x.hashCode() gives digital fingerprint
 - 2. Have table of p hash buckets to store objects in
 - Some kind of collision handling (open/closed) to handle over-populated buckets
 - 4. If the hash function is high quality, and capacity is, e.g., prime number $p \approx 2n$, then most requests don't collide
- Worst case unavoidably much worse, but also very unlikely

- ► Hash tables implement Set and Map efficiently on average
- ► Ingredients:
 - 1. Hash function x.hashCode() gives digital fingerprint
 - 2. Have table of p hash buckets to store objects in
 - Some kind of collision handling (open/closed) to handle over-populated buckets
 - 4. If the hash function is high quality, and capacity is, e.g., prime number $p \approx 2n$, then most requests don't collide
- ► Worst case unavoidably much worse, but also very unlikely

- ► Hash tables implement Set and Map efficiently on average
- ► Ingredients:
 - 1. Hash function x.hashCode() gives digital fingerprint
 - 2. Have table of p hash buckets to store objects in
 - Some kind of collision handling (open/closed) to handle over-populated buckets
 - 4. If the hash function is high quality, and capacity is, e.g., prime number $p \approx 2n$, then most requests don't collide
- Worst case unavoidably much worse, but also very unlikely