Supplementary Table S1

Table S1. Total number of swapped individual identities

Mismatch ratio									
No.	idTracker	Segment + idTracker	Proposed						
1	6	NaN	NaN 2						
2	2	3	4	3					
3	0	0	0	0					
4	4	0	0	0					
5	3	2	6	0					
6	1	1	1	2					
7	2	1	3	1					
8	11	41	24	14					
9	4	17	3	0					
10	4	8	0	8					
Average	3.7	8.1	4.3	2.8					

Supplementary Table S2

Table S2. Multiple object tracking accuracy for the systems evaluated

No.	MOTP (pixels)				MOTA			
	idTracker	Segment + idTracker	Loli Tracker	Proposed system	idTracker	Segmen+ idTracker	Loli Tracker	Proposed system
1	11.388	NaN*	11.662	6.346	1.000	NaN*	0.990	0.988
2	21.434	12.176	18.395	15.024	0.541	0.922	0.921	0.853
3	20.648	20.879	18.854	8.113	1	0.975	0.985	0.998
4	16.728	17.665	23.208	10.669	0.987	0.840	0.987	0.993
5	21.545	21.727	21.890	15.525	-0.01	0.895	0.139	0.994
6	13.151	12.562	15.020	12.786	-0.27	-0.0864	0.914	0.936
7	25.230	43.746	80.630	30.082	0.005	0.725	0.504	0.954
8	53.096	59.666	98.936	36.901	-0.39	0.739	0.209	0.956
9	29.921	48.739	142.834	15.960	0.673	-0.1071	0.327	0.989
10	219.329	27.532	189.975	25.121	-0.18	0.133	0.906	0.920
Average	43.247	29.410	62.14	17.65	0.33	0.56	0.69	0.96

^{*} No valid data generated due to the running error when testing sequence 1.

Supplementary Note 1 Building training samples for a short video

October 30, 2017

For a short video where the length is less than the training sample required, duplicate video frames are added to the beginning of the video sequence to estimate background model. Fig. 1 illustrates the process of constructing the training samples from a short video.

Figure 1: Building training samples for a short video.

The green frame series in Fig. 1 indicates the original time-lapse zebrafish larvae microscopic short video $\mathbb V$. The frames in front of this video are its training sample $\mathbb S$, used to estimate the background model parameters of $\mathbb V$. The set of training samples $\mathbb S$ consists of: S_{obv} , frames from the original short video $\mathbb V$ in obverse order from [start, end-1] frames, shown by the pink frame series; S_{rev} , frames from the original video short video $\mathbb V$ in reverse order from [end, 2nd] frames, shown as the light blue; and, S_{frg} , the video fragment shown in orange. The obverse order frame series S_{obv} and reverse order frame series S_{rev} are alternately linked to each other to construct the training sample, and the last frame to connect to the original video is the reverse order frame to ensure a smooth background transition between the last frame in the reverse order frame series to the first frame of the original microscopic short video.

To construct a training set with length of L_{sample} images, a video fragment, S_{frg} , taken from the short video studied will be added to the training set for the set length requirement when the S_{obv} and S_{rev} series do not have exact L_{sample} images.

The required number of videos, N and number of frames, M, are calculated using Eq. (1) and Eq. (2).

$$N = L_{sample} \backslash N_{frames} \tag{1}$$

where the MATLAB built-in function idivide is applied for the integer division with fractional quotients being rounded toward negative infinity to the nearest integer for implementation.

$$M = L_{sample} - L_{sample} \backslash N_{frames}$$
 (2)

Based on the required number of videos N (in obverse order and reverse order), the video fragment S_{frg} is constructed according to Eq. (3).

$$S_{frg} = \begin{cases} \{S_{rev}(i) \mid i = M+1, \dots, 3, 2\}, & \frac{N}{2} \text{ is even} \\ \{S_{obv}(i) \mid i = 2, \dots, 3, M+1\}, & \frac{N}{2} \text{ is odd} \end{cases}$$
(3)