Edge Detection

What is an Edge?

- An edge is a location of rapid intensity variation
- The often mark boundaries of objects, occlusion contours, shadow boundaries or surface contours
- Edges are very important in human perception

Find its edges?

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University, USA

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

Figure 4.31 Human boundary detection (Martin, Fowlkes, and Malik 2004) © 2004 IEEE. The darkness of the edges corresponds to how many human subjects marked an object boundary at that location.

- Convolution Operation
- Mask
 - Set of pixel positions and weights

Origin of mask

1	1	1
1	1	1
1	1	1

1	2	1
2	4	2
1	2	1

1 1 1

- $I_1 \otimes \text{mask} = I_2$
- Convention: I₂ is the same size as I₁
- Mask Application:
 - For each pixel
 - Place mask origin on top of pixel
 - Multiply each weight with pixel under it
 - Sum the result and put in location of the pixel

40	40	40	80	80	80
40	40	40	80	80	80
40	1/9	1/9	1/9	80	80
40	1/9	1/9	1/9	80	80
40	1/9	1/9	1/9	80	80
40	40	40	80	80	80

	1	1	1
1/9 x	1	1	1
	1	1	1

$$6*(1/9*40)+3*(1/9*80) = 53$$

40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80

Overall effect of this mask?

Smoothing filter

Result of applying Smoothing Mask

Material from Ohio State University, USA

What about corner pixels

- Expand image with virtual pixels
- Options
 - Fill with a particular value, e.g. zeros
 - Fill with nearest pixel value
- Or just ignore them

Edge Detection

Input

Output

-1	0	1
-1	0	1
-1	0	1

- Should give a zero on smooth output
- Should give a high value on non-smooth regions

How this mask would do that?

$$\mathbf{e} = \mathbf{I} \otimes \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

abs(e)

Finding Edges

- Edges are locations where intensity variation is high
- OR rate of change of intensity is high
- How do we find rate of change of intensity?
- DIFFERENTIATION

$$f' = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$f' = \frac{df}{dx} = f(x) - f(x-1)$$

- Continuous form
- Discrete form

Discrete Derivatives

Original Image

First Derivative of the original image

Second Derivative of Original Image

Stages in Edge Detection

- Stage 1: Smoothing
 - Because Noise is enhanced in differentiation, we often apply a smoothing filter first
- Stage 2: Differentiation
 - Enhances edge areas
- Stage 3: Detection
 - Produces a binary output, with edges marked by
 1, other areas as zero

Stage 1: Smoothing (Smoothing Masks)

- Mean Filter
- Gaussian Filter

$$g(x, y) = ce^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

5	21	35	21	5
21	94	155	94	21
35	155	255	155	35
21	94	155	94	21
5 ice:	21	35	21	5

Syed Farooq Ali, Fall 2012, Referer LUMS Slides, Material from Ohio State University ,USA

Stage1 (CONT.):Filtering

- Gaussian Filter
- Pixel weight is inversely proportional to distance from origin

$$g(x, y) = e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Value of σ has to be specified

Example

$$g(x, y) = e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

•
$$x = -1$$
, $y = -1$, $\sigma = 1$

$$g(-1,-1) = e^{-\frac{(-1)^2 + (-1)^2}{2}} \approx 0.367$$

- Implementation problem
 - Float multiplications are slow
- Solution
 - Multiply mask with 255, round to nearest integer
 - Scale answer by sum of all weights

94	155	94
155	255	155
94	155	94

1	2	1
2	4	2
1	2	1

5	21	35	21	5
21	94	155	94	21
35	155	255	155	35
21	94	155	94	21
5	21	35	21	5

Round(g/70)

LUMS Slides, Material from Ohio State
University, USA

0	0	0	0	1	2	2	2	1	0	0	0	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	3	11	26	50	73	82	73	50	26	11	3	0
1	6	20	50	93	136	154	136	93	50	20	6	1
2	9	3 0	73	136	198	225	198	136	73	30	9	2
2	11	34	82	154	225	255	225	154	82	34	11	2
2	9	30	73	136	198	225	198	136	73	30	9	2
1	6	20	50	93	136	154	136	93	50	20	6	1
0	3	11	26	50	73	82	73	50	26	11	3	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	0	0	0	1	2	2	2	1	0	0	0	0

Figure 2.3: Gaussian mask with $\sigma = 2$.

Stage1 (CONT.): Continuous Gaussian Function

• 1-D Gaussian

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

- Non zero from -∞ to ∞
- Width is controlled by σ
- Symmetric
- Area under curve = 1

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} = 1$$

Stage1 (CONT.): Continuous Gaussian Function

Stage1 (CONT.): 2-D Gaussian Function

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University, USA

Stage 2 Differentiation: Derivative Masks

From definition of derivatives

Prewitt Operator

-1	-1	-1
0	0	0
1	1	1

Stage 2 CONT:

Sobel Operator

-1	-2	-1
0	0	0
1	2	1

Robert's Operator

1	0
0	-1

Stage 2 (CONT.):Properties of Masks

- Smoothing Masks
 - All values are +ve
 - Sum to 1
 - Output on smooth region is unchanged
 - Blurs areas of high contrast
 - Larger mask -> more smoothing

- Derivative Masks
 - opposite signs
 - Sum to zero
 - Output on smooth region is zero
 - Gives high output in areas of high contrast
 - Larger mask -> more edges detected

Stage 2 (CONT.): Application of 2-D Masks

- If f_x is derivative in x-direction, f_y is derivative in y-direction
- Gradient Magnitude

$$M = \sqrt{f_x^2 + f_y^2}$$

Gradient Direction

$$\theta = \arctan \frac{f_y}{f_x}$$

Stage3: Detection Stage - Threshold

Gradient Magnitude

$$M(x,y) = \sqrt{f_x^2(x,y) + f_y^2(x,y)}$$

Gradient Magnitude normalized b/w 0-100

$$N(x,y) = \frac{M(x,y)}{\max_{i=1,\dots,n,j=1,\dots,n} M(i,j)} \times 100.$$

Application of a threshold

$$E(x,y) = \begin{cases} 1 & \text{if } N(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$

Gradient Magnitude Log of M to enhance visibility 150 200 250 300 350 400 Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State

University, USA

T = 10

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

T = 20

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

T = 40

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

T = 80

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University, USA

What about Gradient Direction?

- Gradient Direction is always perpendicular to edge
- Direction of most change of gray levels
- Thick edges can be eliminated using gradient direction
- Weak edges also captured in this manner

Canny's Edge Detector

- Filtering + Derivative:
 - Uses first derivative Gaussian masks
- Detection:
 - Uses Non-Maxima Suppression
 - Uses Hysteresis Thresholding

First Derivative of Gaussian

- Expression?
- Effect?
- Filtering + Derivative

University ,USA

Canny Edge Operator

$$\Delta S = \Delta (G_{\sigma} * I) = \Delta G_{\sigma} * I$$

$$\Delta G_{\sigma} = \begin{bmatrix} \frac{\partial G_{\sigma}}{\partial x} & \frac{\partial G_{\sigma}}{\partial y} \end{bmatrix}^{T}$$

$$\Delta S = \begin{bmatrix} \frac{\partial G_{\sigma}}{\partial x} * I & \frac{\partial G_{\sigma}}{\partial y} * I \end{bmatrix}^{T}$$

$$f_x(x,y) = f(x,y) * (\frac{-x}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

$$f_y(x,y) = f(x,y) * (\frac{-y}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

i Fall 2012 Reference:

 f_{x}

 f_{v}

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

$$M = \sqrt{f_x^2 + f_y^2}$$

University ,USA

Non-Maximum Suppression

Remove all points along the gradient direction that are not maximum points

Non-Maxima Suppression

$$M(x,y) = \begin{cases} M(x,y) & \text{if } M(x,y) > M(x\prime,y\prime) \text{ and} \\ & \text{if } M(x,y) > M(x\prime\prime,y\prime\prime) \\ 0 & \text{otherwise} \end{cases}$$

Where M(x',y') and M(x'',y'') are gradient magnitudes on both sides of edge at (x,y) in the gradient magnitude direction

Non-Maxima Supression

Quantization of Gradient Direction

$$\theta = \arctan \frac{f_y}{f_x}$$

Non-Maximum Suppression

M when $\sigma = 2$

Non-maxima suppressed image

Hysteresis Thresholding

- Two thresholds, T_H and T_L
- Apply non-maxima suppression to M (gradient magnitude)
- Scan image from left to right, top to bottom
- If M(x,y) is above T_H mark it as edge
- Recursively look at neighbors; if gradient magnitude is above T_L mark it as edge

Hysteresis Thresholding

Algorithm Summary

 Compute gradient of image f(x,y) by convolving with first derivative of Gaussian in x and y directions

$$f_x(x,y) = f(x,y) * (\frac{-x}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}.$$

$$f_y(x,y) = f(x,y) * (\frac{-y}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}.$$

Algorithm Summary

- Compute gradient magnitude and direction at each pixel
- Perform non-maxima suppression
 - Find gradient direction at pixel
 - Quantize it in 8 directions{0, 45, 90, 135, ... 315}
 - Compare current value of M with two neighbors in appropriate direction
 - If maximum, keep it, otherwise make it zero

Algorithm Summary

- Perform Hysteresis thresholding
 - Scan image from left to right, top to bottom
 - If M(x,y) is above T_H mark it as edge
 - Recursively look at neighbors; if gradient magnitude is above T_L mark it as edge

Choice of Sigma

Choice of Signma

Sigma	Size of Mask
0.5	3x3
1	5x5
2	9x9
3	13x13
4	19×19

Conv. Results

Syed Farcog Ali, Fall 2012, Reference: LUMS Shops, Material from Ohio State University, USA

Syed Faroog Ali, Fall 2012, Reference: LUMS Study, Waterial from Ohio State University ,USA

Gradient Magnitude Results

sigma = 0.5

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio Sigma = 2 University, USA

Gradient Magnitude Result

M when $\sigma = 2$

Non-maxima suppressed image

Gradient Direction Results

Syed Farooq Ali, Fall 2012, Reference: LUMS Slides, Material from Ohio State University ,USA

Hysteresis Thresholding

$$Th = 50$$

 $TI = 10$

Th = 100TI = 10

Proj1: Thumb Recognition

Proj 2: Advance Features in Thumb Recognition

Proj 3: Face Recognition

Proj 4:Face Recognition

Proj 5: Face to Cartoon

Proj 6: Fall Detection

Proj 7: License Plate Recognition

Proj 8: Matching Sketch to Image

Proj 9: Watermarking

Proj 10:Image Editor