Hierarchical Latent Class Models for Mortality Surveillance Using Partially Verified Verbal Autopsies

UC SANTA CRUZ

Yu Zhu ¹, Zehang Richard Li ¹

¹ University of California, Santa Cruz

Introduction

- Cause-of-death (CoD) monitoring is important for public health emergencies, especially in low-resource setting;
- Verbal Autopsy (VA) is a vital tool used to gather CoD information through the interviews.

Partially Verified VA Data

- Observed predictors $X \in \{0,1\}^p$: p-dimensional binary vector of COVID-related signs/symptoms.
- Partially verified death labels $Y \in \{0, 1\}$: cause-of-death outcomes for whether being COVID-19 related;
- Introduce **verification variable** $L \in \{0,1\}$ as binary indicator of whether the death was selected for verification;
- Only part of the cause of death labels are verified (L = 1).
- Stratification variables $D \in \{1, ..., G\}$: indicator of which sub-population the observation belongs to.
- In this study, we set D = (Sex, Time, Age) with:
- $Sex \in \{1, 2\}$: 1 = male and 2 = female;
- $Time \in \{1, ..., T\};$
- $Age \in \{1, ..., A\}.$
- Goals of inference $p(Y \mid D)$: stratum-specific prevalence of the disease.

Figure 1:True prevalences under stratification of sex, time and age

Hierarchical Latent Class Model

- We use X to predict Y under a generative model $p(Y)p(X \mid Y)$;
- Let $Z_i \in \{1, 2, ..., K\}$ as the latent class indicator. We assume the following data-generating process with $g \in \{1, ..., G\}, c \in \{0, 1\}$ and $k \in \{1, ..., K\}$:

$$Y_i \mid D_i = g \sim \operatorname{Bern}(\pi^{(g)})$$

$$Z_i \mid Y_i = c, D_i = g \sim \text{Cat}(\lambda_c^{(g)})$$

$$X_{ij} \mid Y_i = c, Z_i = k \sim \text{Bern}(\phi_{ckj}), \quad j = 1, ..., p$$
 (3)

Structured Priors

- Apply the stick-breaking prior for $\lambda_c^{(g)}$ and the Beta prior for ϕ ;
- Structured prior for $\pi^{(g)}$ (e.g., Gao et al., 2021) \rightarrow borrow information across related sub-populations
- Reparameterize $\pi^{(g)}$ as $\pi^{(s,t,a)}$;
- Assume baseline method: $\pi^{(s,t,a)} \sim \text{Beta}(1,1)$;
- Assume that π follows the simple additive model:

$$\pi^{(s,t,a)} = logit^{-1}(\mu + \alpha_{s=1} + \alpha_t + \alpha_a + \epsilon_{sta})$$

with
$$\mu \sim N(0, 100)$$
, $\alpha \sim N(0, 100)$, $\epsilon_{sta} \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$.

- Establish three structured priors that differ in the amount of information shared across strata:
- Fixed effect: $\alpha_t \sim N(0, 100)$ and $\alpha_a \sim N(0, 100)$
- Independent random effect: $\alpha_t \sim N(0, \sigma^2)$ and $\alpha_a \sim N(0, \sigma^2)$
- Random walk of order 1:

$$\alpha_t \mid \alpha_{t-1} \sim N(\alpha_{t-1}, \sigma^2)$$
 and $\alpha_a \mid \alpha_{a-1} \sim N(\alpha_{a-1}, \sigma^2)$.

• Gibbs sampling with Pólya-Gamma augmentations.

Brazil COVID-19 Surveillance Data

- Evaluate our methods on the flu syndrome surveillance dataset in Brazil from Jan to Oct, 2021:
- Final cause of death for all 411,491 observations;
- X (p = 16);
- Stratify data by sex (S = 2), month (T = 10) and age group (A = 8).

Numeric Experiment

- Randomly sample 50% observations within each sub-population and repeat the process for 50 times;
- Verification mechanism set-up:

$$p(L_i \mid X_i =, A_i = a, T_i = t) = logit^{-1}(a_t + a_a + b_{ta}^T).$$

Model comparisons:

• Continuous Ranked Probability Score (CRPS) with $CRPS(F,x) = E_F|X-x| - \frac{1}{2}E_F|X-X'|;$

Latent class analysis:

Conclusions

- Develop a novel framework for analyzing partially verified VA data under a non-ignorable data selection mechanism;
- Propose a latent class model that allows for stratum-specific prevalence inference under the distribution shift;
- Leverage the structured priors to enhance prevalence estimation for small sub-populations.