## Introduction to Modern Physics

Michael Brodskiy

Professor: Q. Yan

January 11, 2023

## Contents

1 Modern Physics

3

## Modern Physics 1

- Modern physics is a set of developments that emerged around 1900
- This led to the development of the Theory of Relativity and Quantum Theory
- Some theories of classical physics which helped develop modern physics, include:
  - Newton's law of mechanics, which describes interactions among microscopic particles
  - Maxwell's equations, which unify electricity and magnetism
  - The laws of thermodynamics
- In the early 20<sup>th</sup> century, two theories emerged:
  - Special Theory of Relativity (1905) Einstein
  - Quantum Theory (1900) Planck
- Classical Relativity
  - A theory of relativity provides a mathematical basis for expressing physical laws in different frames of reference
  - The mathematical basis is called a transformation
  - Ex. Two observers, O, who is still, and O', who is moving, are at rest in their own frames of reference (FOR). Relative velocity is defined as  $\overline{u}$ . For this course, an inertial FOR will be used, meaning Newton's law holds, where v=0, or constant, unless  $\overline{F} \neq 0$ . O and O' observe the same event.
    - \* Four quantities describe this event for O: x, y, z, t
    - \* For O', these quantities are: x', y', z', t'
    - \* Assuming postulate: t = t'
      - · Also, at t=0, the two origins coincide
    - \* To find x' from x, this would become x' = x ut
    - \* y' and z' remain equal to y and z, respectively
    - \* This is defined as a Galilean Transformation
    - \* This is defined as a Gamean France  $\left\{ \begin{array}{l} v_x = \frac{dx}{dt} \\ v_y = \frac{dy}{dt} \\ v_z = \frac{dz}{z} \end{array} \right. \text{ and } \left\{ \begin{array}{l} v_{x'} = v_x u \\ v_{y'} = v_y \\ v_{z'} = v_z \end{array} \right.$

for O and O', respectively

- \* This means the acceleration components are all equal
- Consequences of classical relativity

- From Maxwell's equations, it is concluded that light is an electromagnetic wave
  - \* Light travels in some medium, at speed  $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \approx 3 \times 10^8 \left[\frac{\text{m}}{\text{s}}\right]$
  - \* A postulate from Maxwell is that there is a preferred frame of reference with "ether" at rest, in which the speed of light is precisely c
  - \* Ether An invisible, massless medium
- Michelson-Morley Experiment (1887)



Figure 1: The Michelson-Morley Setup

- S is the source, O is an observer, and A, B, and C, are points along the path of light
- Generated a "fringe" pattern using light and mirrors
- Interference or "fringe" appears due to phase difference of light
  - \* Path difference: 2|AB AC|
  - $\ast\,$  Light travels faster through a cross-stream pattern
- With the same setup shown, they then rotated the device  $90^{\circ}$ 
  - \*  $2^{\rm nd}$  contribution then changes sign
  - \* Thus, phase difference changes
  - \* Number of fringes was measured

- \* The result: There was no observable change of fringe pattern the movement of ether was mapped out to be a speed of  $u < 5 \left\lceil \frac{\mathrm{km}}{\mathrm{s}} \right\rceil$
- \* This experiment was redone over the course of many years, most recently Herman at al. (2009), with  $u < 10^{-8} \left[\frac{\text{cm}}{\text{s}}\right]$
- This indicates that c is a constant, in any inertial reference frame
- Einstein's postulates for inertial relativity
  - 1. The principle of relativity The physical laws are the same in all inertial reference frames
  - 2. The principle of the constancy of the speed of light The speed of light in free space has the same value c in all inertial reference frames
  - The second postulate requires observers in all inertial reference frames to measure the same speed of c for the light beam
  - This explains the failure of Michelson & Morley
  - Now we can "dispose" of the ether hypothesis
  - 1.  $1^{\rm st}$  postulate doesn't allow a preferred frame of reference where ether stays at rest
  - 2.  $2^{\rm nd}$  postulate doesn't allow only a single frame of reference with light moving at speed c