The Single Top Quark Coupling to the Higgs Potential

Lewis McNish

University of Glasgow

November 27, 24

Outline

- Background Physics
- Why the Top quark is of Importance
- The Single Top Quark and its specific uses
- Production and Decay of the Illusive Single Top Quark
- Current efforts and the plans for the future
- The rewards of our efforts and what impact this could have on the field in the future

Background Particle Physics

- The Standard Model
 - Quark Families
 - The Higgs Boson
- Symmetries
 - Charge Conjugation
 - Parity
- The Top Yukawa Coupling

Background Particle Physics

- The Standard Model
 - Quark Families
 - The Higgs Boson
- Symmetries
 - Charge Conjugation
 - Parity
- The Top Yukawa Coupling

The Importance of the Top Quark

- Yukawa Coupling Magnitude
 - ElectroWeak Scale
- Limit of Current Experimental Results
- An Indicator for Beyond Standard Model Physics
 - SUSY Particle
- Single Top Quark Measurements
 - Cross-Section Measurements
 - Phase
 - CP Violation

The Production and decay of Single Tops

- Productions Channels
 - t-channel
 - s-channel
 - tW production
 - Neutral Boson Production
- Identification of Top Quarks
 - bW Decay
 - b-tagged Jets
 - Hadronic Jets

The Production and decay of Single Tops

Productions Channels

- t-channel
- s-channel
- tW production
- Neutral Boson Production
- Identification of Top Quarks
 - bW Decay
 - b-tagged Jets
 - Hadronic Jets

Figure 1: t-channel production of a single Top Quark

Current Searches and Future Prospects

- Run 1 and 2 Data
- Run 3 Analysis
 - Published results
 - What the entire dataset may tell us
- HL-LHC
 - How does this help
- FCC, do we really need a bigger Collider?

Current Searches and Future Prospects

- Run 1 and 2 Data
- Run 3 Analysis
 - Published results
 - What the entire dataset may tell us
- HL-LHC
 - How does this help
- FCC, do we really need a bigger Collider?

Table 1: Total Energies of Runs at the LHC

	Energy
Run 1	7 & 8 TeV
Run 2	13 TeV
Run 3	13.6 TeV

Current Searches and Future Prospects

- Run 1 and 2 Data
- Run 3 Analysis
 - Published results
 - What the entire dataset may tell us
- HL-LHC
 - How does this help
- FCC, do we really need a bigger Collider?

Table 1: Total Energies of Runs at the LHC

	Energy
Run 1	7 & 8 TeV
Run 2	13 TeV
Run 3	13.6 TeV

What this Means for BSM Physics

- Returning to CP Violation
- A Probe for higher energy physics
 - Beyond the TeV Scale
 - Recombination of the ElectroWeak Symmetry
- Baryogenesis

Summary

- The Yukawa Coupling
- The Top Quark As the current limit of Particle Physics
- Production and why this is difficult
- What we can do in the Future to improve data collection
- How the Top Quark is a leading candidate for BSM Physics