2. 逻辑代数基础

2.1 逻辑代数

- 基本逻辑关系及表示
- 基本公式、常用公式、重要定理
- 逻辑函数及其表示方法

2.2 逻辑函数的简化

- 公式化简法
- 卡诺图化简法

一、逻辑运算

1、算术运算

当两个二进制数码表示两个数量大小时,它们之间进行的数值运算。称为算术运算。

2、逻辑运算

当两个二进制数码表示不同的逻辑状态时,它们之间按照某种指定的因果关系进行的运算。

二、三种基本逻辑运算

- 1、逻辑与
 - (1) 概念

只有决定事件的全部条件都同时具备时, 事件才会发生, 这种因果关系叫逻辑与、逻辑相乘。

- (2) 物理意义
- (3) 真值表

设 A、B 闭合为1, 断开为0; 灯亮Y为1, 灭为0;

A B	Y
0 0	0
0 1	0
1 0	0
1 1	1

- (4) 逻辑函数式 Y = AB
- (5) 逻辑符号

2、逻辑或

(1) 概念

在决定事件的各种条件中,只要有任何一个满足,事件就会发生,这种因果关系叫逻辑或、逻辑相加。

- (2) 物理意义
- (3) 真值表

设 A、B 闭合为1, 断开为0;

灯亮Y为1, 灭为0;

- (4) 逻辑函数式 Y = A + B
- (5) 逻辑符号 A ≥1 ·

A B	Y
0 0	0
0 1	1
1 0	1
1 1	1

3、逻辑非

- (1)概念 只要条件具备,事件就不会发生,而条件不具备时, 事件一定发生,这种因果关系叫逻辑非、逻辑求反。
- (2) 物理意义
- (3) 真值表 设 A 闭合为1, 断开为0; 灯亮Y为1, 灭为0;

A	Y
0	1
1	0

- (4) 逻辑函数式 $Y = \overline{A}$
- (5) 逻辑符号 A 1 O— Y

三、常用复合逻辑运算

1、与非 Y= AB

2、或非 $Y = \overline{A+B}$

3、与或非 Y = AB + CD

4、异或
$$Y = \overline{A}B + A\overline{B} = A \oplus B$$

A B	A⊕B	A _O B
0 0	0	1
0 1	1	0
1 0	1	0
1 1	0	1

$$\frac{A}{B} = 1 - Y$$

$$\frac{A}{B} = Y$$

想一想:指示灯何时亮?

四、基本公式和常用公式

1、基本公式

(1) 交換律
$$A \cdot B = B \cdot A$$
; $A+B=B+A$

(2) 结合律
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
; $A + (B + C) = (A + B) + C$

(3) 分配律
$$A \cdot (B+C) = A \cdot B+A \cdot C$$

$$\widehat{A+BC} = (A+B) \cdot (A+C)$$

(4)
$$0$$
, 1 † $A \cdot 1 = A$; $A+1=1$

$$A \cdot 0 = 0; \quad A + 0 = A$$

(5) 互补律
$$A \cdot \overline{A} = 0$$
; $A + \overline{A} = 1$

$$(7)$$
 否定律 $\frac{=}{A=A}$

(8) 尽演律
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
; $\overline{A + B} = \overline{A} \cdot \overline{B}$ (摩根定律)

(9) 冗余律
$$AB + \overline{AC} + BC = AB + \overline{AC}$$

证明:

$$AB + \overline{AC} + BC$$

$$= AB + \overline{AC} + (\overline{A} + A)BC$$

$$= AB + ABC + \overline{AC} + \overline{ABC}$$

$$= AB + \overline{AC}$$

$$AB=AC$$
 \Rightarrow $B=C$ $A=0,B=0,C=1,$ 不成立 $A+B=A+C$ \Rightarrow $B=C$ $A=1,B=0,C=1,$ 不成立

请注意与普通代数的区别!

2、常用公式

- $\overline{(1)} A + AB = A$
- $(2) AB + A\overline{B} = A$
- $(3) A + \overline{A}B = A + B$
- (4) $AB + \overline{A}C + BC = AB + \overline{A}C$

例、用真值表法证明 $\overline{A+B} = \overline{A} \cdot \overline{B}$

列出输入变量的所有取 值组合

A B	$\overline{A + B}$	Ā • B
0 0	1	1
0 1	0	0
1 0	0	0
1 1	0	0

基本公式、常用公式。

可由真值表证明。

五、三个重要定理

1、代入定理

在任何一个逻辑恒等式中,

若将等式两边都出现的某一个变量A, 同时代之以一个逻辑函数F, 则等式仍成立。

主惠用途:

- 扩展公式的应用范围
- 用子证明恒等式

2、 反演定理 (德•摩根定理)

对任意一个逻辑函数表达式F, 若将F中所有的:

- ① "·" **→** "+"
- ② "+" **→** "•"
- ③ " 1 " **→** " 0 "
- **④** " **0** " **→** " **1** "
- ⑤ 原变量 ➡ 反变量
- ⑥ 反变量 ➡ 原变量

并保持原来的运算优 先级,则所得到的表 达式为F的反函数F。

主要用途:

○ 直越求任何一个逻辑函数的反函数

例1 已知
$$F = A \cdot B + C$$
,求 \overline{F} 。

解:

方法1

根据反演定理,可得:
$$\overline{F} = (\overline{A} + \overline{B}) \cdot \overline{C}$$

方法2

保持运算优 先级不变

$$\overline{\mathbf{F}} = \overline{\mathbf{A} \cdot \mathbf{B} + \mathbf{C}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{C}}$$
$$= (\overline{\mathbf{A}} + \overline{\mathbf{B}}) \cdot \overline{\mathbf{C}}$$

例2 已知
$$F = A + \overline{B + \overline{C} \cdot D + \overline{E}}$$
, 求 \overline{F} 。

解: $\overline{F} = \overline{A} \cdot \overline{B} \cdot (C + \overline{D} \cdot E)$

3、对偶定理

对任意一个逻辑函数表达式F, 若将 F 中所有的:

- ① "•" **→** "+"
- ② "+" **→** "•"
- ③ "1" **→** "0"
- <u>(4)</u> " 0 " → " 1 "

并保持运算优先级不变。

则所得到的表达式为F的 对偶式 F'。

重要性质 若两个逻辑函数式相等,则它们的对偶式也相等。

主要用途: 如明恒等式

$$Y = A\overline{B} + C\overline{D}E \longrightarrow Y' = (A + \overline{B})(C + \overline{D} + E)$$

$$Y = A + B + \overline{C} + \overline{D + \overline{E}} \longrightarrow Y' = A \cdot B \cdot \overline{C} \cdot \overline{D \cdot \overline{E}}$$

六、逻辑函数的描述方法

逻辑函数可用 <u>真值表</u>、<u>函数式</u>、逻辑图、卡诺图等多种形式描述。

例、某公司有A、B、C 三个股东,分别占公司50%、30%和 20% 的股份。一个议案要获得通过,必须有超过 50%股 份的股东投赞成票。

试列出该公司表决电路的 真值表 和逻辑函数式。

解:

(1) 真值表

A B C	股份	F
0 0 0	0	0
0 0 1	20	0
0 1 0	30	0
0 1 1	50	0
1 0 0	50	0
1 0 1	70	1
1 1 0	80	1
111	100	1

F { 1: 议案通过 0: 议案未通过

(2) 逻辑函数式

$$\Rightarrow$$
 $A \overline{B} C$ $F = A\overline{B}C + AB\overline{C} + ABC$

- \Rightarrow AB \overline{C}

- 七、逻辑函数的两种标准形式
 - 1、最小项表达式
 - (1) 什么是 最小项?
 - ① 乘积项
 - ② 包含了全部输入变量
 - ③ 每个输入变量都以原变量或反变量的形式在乘积项中出现、且仅出现一次 最小项表
 - (2) 什么是 最小项表达式?

由最小项相加构成的表达式,称为最小项表达式、标准与或式、标准积之和式。

3变量最小项

最小项	使最小项为1的 变量取值 A B C	对应十进制数	编号
ĀBC	0 0 0	0	$\mathbf{m_0}$
ĀBC	0 0 1	1	\mathbf{m}_{1}
ABC	0 1 0	2	$\mathbf{m_2}$
ABC	0 1 1	3	m_3
ABC	1 0 0	4	m_4
ABC	1 0 1	5	m_5
A B $\overline{\mathbf{C}}$	1 1 0	6	\mathbf{m}_{6}
A B C	1 1 1	7	m ₇

例1、求函数 $F(A,B,C)=A\overline{B}+BC+A\overline{B}\overline{C}$ 的最小项表达式

解: [方法]

利用基本公式 A+A=1,将乘积项中所缺的变量逐个补齐,可把任意一个逻辑函数展开成最小项表达式。

$$F (A, B, C) = A\overline{B} + BC + AB\overline{C}$$

$$= A\overline{B} (C + \overline{C}) + (A + \overline{A}) BC + AB\overline{C}$$

$$= A\overline{B}C + AB\overline{C} + ABC + \overline{A}BC + AB\overline{C}$$

$$= A\overline{B}C + AB\overline{C} + ABC + \overline{A}BC$$

$$= A\overline{B}C + AB\overline{C} + ABC + \overline{A}BC$$

$$= m_3 + m_4 + m_5 + m_7$$

$$= \sum m (3, 4, 5, 7)$$

- 2、最大项表达式
 - (1) 什么是 最大项?
 - ①和项
 - ② 包含了全部输入变量
 - ③ 每个输入变量都以原变量或反变量的形式在和项中出现、且仅出现一次 最大项表
 - (2) 什么是 最大项表达式?

由最大项相乘构成的表达式, 称为最大项表达式、 标准或与式、标准和之积式。

3变量最大项

最大项	使最大项为()的 变量取值 A B C	对应十进制数	编号
A+B+C	0 0 0	0	$\mathbf{M_0}$
$A+B+\overline{C}$	0 0 1	1	$\mathbf{M_1}$
$A + \overline{B} + C$	0 1 0	2	$\mathbf{M_2}$
$A + \overline{B} + \overline{C}$	0 1 1	3	M_3
$\overline{A}+B+C$	1 0 0	4	$\mathbf{M_4}$
$\overline{A}+B+\overline{C}$	1 0 1	5	\mathbf{M}_{5}
$\overline{A} + \overline{B} + C$	1 1 0	6	$\mathbf{M_6}$
$\overline{A} + \overline{B} + \overline{C}$	1 1 1	7	M_7

例2、求函数 $F(A, B, C) = A(\overline{B} + C)$ 的最大项表达式解:

$$F(A,B,C) = (A + B\overline{B} + C\overline{C}) (A\overline{A} + \overline{B} + C)$$

$$= (A + B\overline{B} + C) (A + B\overline{B} + C) (A + B\overline{B} + C) (A + B\overline{B} + C)$$

$$= (A + B + C) (A + B\overline{B} + C) (A + B + C) (A + B\overline{B} + C)$$

$$(A + B\overline{B} + C) (A + B\overline{B} + C)$$

$$= (A + B + C) (A + B\overline{B} + C) (A + B + C) (A + B\overline{B} + C)$$

$$= (A + B + C) (A + B\overline{B} + C) (A + B + C) (A + B\overline{B} + C)$$

$$= M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_6$$

$$= \Pi M (0, 1, 2, 3, 6)$$

3、最小项与最大项间的关系 $M_i = m_i$

3变量最小项、最大项

对应十进制数	ABC	最小项 m _i	最大项 M _i
0 1 2 3 4 5 6 7	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1	$ar{A} ar{B} ar{C} = m_0$ $ar{A} ar{B} ar{C} = m_1$ $ar{A} ar{B} ar{C} = m_2$ $ar{A} ar{B} ar{C} = m_3$ $A ar{B} ar{C} = m_4$ $A ar{B} ar{C} = m_5$ $A ar{B} ar{C} = m_6$ $A ar{B} ar{C} = m_7$	$A+B+C=M_0$ $A+B+\overline{C}=M_1$ $A+\overline{B}+C=M_2$ $A+\overline{B}+\overline{C}=M_3$ $\overline{A}+B+C=M_4$ $\overline{A}+B+\overline{C}=M_5$ $\overline{A}+\overline{B}+C=M_6$ $\overline{A}+\overline{B}+C=M_7$

4、最小项表达式与最大项表达式间的关系

给定函数
$$Y = \sum m_i$$
 \Rightarrow $\overline{Y} = \sum m_k$
$$\Rightarrow Y = \overline{\sum m_k} \qquad \Rightarrow Y = \prod_{k \neq i} \overline{m_k} \qquad \Rightarrow Y = \prod_{k \neq i} M_k$$

结论:

已知逻辑函数为 $Y = \sum m_i$ 时,定能将Y化为编号为i 以外的那些最大项的乘积。

例3、将例1中 $F(A,B,C) = \overline{A}B + BC + A\overline{B}\overline{C}$ 化为最大项表达式解: 由例1, $F = \sum m(3,4,5,7)$ $= \prod M(0,1,2,6)$

一、逻辑函数的最简形式

(1) 逻辑函数的最简与或式

系积项(与项)个数: 最少 每个乘积项中包含的变量数: 最少

(2) 逻辑函数的最简或与式

看个相加项中包含的变量数: 最少

2、逻辑函数的多种主要表达形式

(1)
$$Y = AB + AC$$
 — 与或式
$$= \overline{AB + AC} = \overline{AB} \cdot \overline{AC}$$
 — 与非一与非式
$$= (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{C})$$
 — 或与非式
$$= \overline{A + B} + \overline{A + C}$$
 — 或非一或式

(2)
$$Y = (A+B) \cdot (A+C)$$
 — 或与式
$$= \overline{(A+B) \cdot (A+C)}$$

$$= \overline{A+B} + \overline{A+C}$$
 — 或非一或非式
$$= \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C}$$
 — 与或非式
$$= \overline{A} \cdot \overline{B} \cdot \overline{A} \cdot \overline{C}$$
 — 与非一与式

二、逻辑函数的公式化简法

运用逻辑代数的基本公式、定理和规则来化简逻辑函数。

通用: 不受任何条件限制

灵活: 没有固定步骤, 需要经验技巧

糊涂:不易判断是否已达最简

利用公式 AB + AB = A 将两项合并成一项。

$$Y = A (B+C) + A \cdot \overline{B+C}$$

$$= A [(B+C) + \overline{B+C}]$$

$$= A$$

2、吸收法

利用公式 A + AB = A , 吸收 AB 项。

例2、化简逻辑函数
$$Y = A\overline{C} + AB\overline{C}$$
 $Y = A\overline{C} + AB\overline{C} = A\overline{C}$

3、消项法

利用公式 $AB + \overline{AC} + BC = AB + \overline{AC}$, 消掉BC项。

例3、化简逻辑函数
$$Y = ABC + \overline{AD} + \overline{CD} + BD$$

$$Y = ABC + \overline{AD} + \overline{CD} + BD$$

$$= ABC + (\overline{A} + \overline{C}) D + BD$$

$$= ABC + \overline{AC} D + BD = ABC + \overline{AC} D$$

$$= ABC + (\overline{A} + \overline{C}) D = ABC + \overline{AD} + \overline{CD}$$

4、消因子法

利用公式 $A + \overline{AB} = A + B$, 消去多余因子 \overline{A} 。

例4、化简逻辑函数
$$Y = AB + \overline{AC} + \overline{BC}$$

$$Y = AB + \overline{AC} + \overline{BC} = AB + (\overline{A} + \overline{B}) C$$

$$= AB + \overline{AB} C = AB + C$$

5、配项法

利用公式
$$A + \overline{A} = 1$$
, $AB + \overline{AC} = AB + \overline{AC} + \overline{BC}$ o

例5、化简逻辑函数
$$Y = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

$$Y = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

$$= A\overline{B} + B\overline{C} + \overline{B}C (A + \overline{A}) + \overline{A}B (C + \overline{C})$$

$$= A\overline{B} + B\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

$$= A\overline{B} + B\overline{C} + \overline{A}BC + \overline{A}BC$$

$$= A\overline{B} + B\overline{C} + \overline{A}BC + \overline{A}BC$$

$$= A\overline{B} + B\overline{C} + \overline{A}BC$$

$$= A\overline{B} + B\overline{C} + \overline{A}C$$

利用对偶或反函数化简:

$$Y=(\overline{B}+D)(\overline{B}+D+A+G)(C+E)(\overline{C}+G)(A+E+G)$$

解: ① 先求出Y的对偶函数Y',并对其进行化简。

$$Y' = \overline{B}D + \overline{B}DAG + CE + \overline{C}G + \overline{A}EG$$
$$= \overline{B}D + CE + \overline{C}G$$

② 求Y'的对偶函数,得到Y的最简或与表达式。

$$Y = (\overline{B} + D)(C + E)(\overline{C} + G)$$

例6、设计一个8421 BCD码非法组合检测器

解: ① 根据题意列真值表, 并得出逻辑函数式。

ABCD	F
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	0
1 0 0 0	0
1001	0

真值表 內函数式

ABCD	F	
1 0 1 0	1	\rightarrow ABCD
1011	1	\leftarrow ABCD
1 1 0 0	1	← 非形表 D
1 1 0 1	1	# ABC D
1 1 1 0	1	$\leftarrow ABCD$
1111	1	ABCD

合法

组合

 $\mathbf{F} = \mathbf{A}\mathbf{\overline{B}}\mathbf{C}\mathbf{\overline{D}} + \mathbf{A}\mathbf{\overline{B}}\mathbf{C}\mathbf{D} + \mathbf{A}\mathbf{B}\mathbf{\overline{C}}\mathbf{\overline{D}} + \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{\overline{D}} + \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{\overline{D}}$

2 化简

$$F = A\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$$

$$= A\overline{B}C + AB\overline{C} + ABC = A\overline{B}C + AB$$

$$= A (\overline{B}C+B) = A (C+B) = AC+AB$$

真值表 逻辑函数式

- ◆ 找出使逻辑函数 F=1 的输入变量 的取值组合;
- ◆ 每组输入变量的取值组合对应一个 乘积项;
- ◆ 将各乘积项相加,即可求得F的逻辑 函数式。 _____

返回例6

- 三、卡诺图化简法
 - 1、什么是卡诺图?
 - ① 是真值表的一种变形
 - ② 真值表的每一行对应一个小方格
 - ③ 小方格按相邻原则排列
 - ④ 直接用于逻辑函数的化简

什么是相邻原则?

几何上邻接的小方格里的最小项, 只有一个变量互为反变量, 其余变量完全相同。

卡诺图的一般形式

5变量

2、用卡诺图表示逻辑函数

逻辑函数式 产诺图

逻辑函数包含哪些最小项。与其对应的位置上 填1. 其余位置填0. 就得到表示该逻辑函数 的卡诺图。

例、用卡诺图表示逻辑函数 $F(A, B, C) = \Sigma (1,3)$

卡诺图

真值表

- 3、用卡诺图化简逻辑函数
 - (1) 化简依据

公式法 利用AB+AB=A, 合并乘积项

卡诺图法

凡是在卡诺图中:

- ① 具有逻辑相邻性
- ② 取值为1
- (3) 2^{i} \uparrow (1, 2, 4, 8)

最小项可以合并, 消去不同的因子

- (2) 化简方法
 - ① 逻辑相邻的2个最小项为1, 消去1个变量

② 逻辑相邻的4个最小项为1. 消去2个变量

③ 逻辑相邻的8个最小项为1, 消去3个变量

(2) 化简步骤

- ◆ 画出逻辑函数的卡诺图
- ◆ 将逻辑相邻的1格圈圈,直到所有1格 均被覆盖
- ♦ 将每个圈用相应的乘积项表示
- ♦ 将各乘积项相加

逻辑函数的最简写或式

- (3) 化简原则
 - ◆ 圏尽可能大 (乘积项中因子少)
 - ◆ 圈个数尽可能少 (乘积项个数少)
 - ♦ 同一个1格可以被圈多次
 - ◆ 每个圈必须有新1格

满足上述条件,圈的方案可能不同,化简结果有时不唯一。

例1、来函数 $F(A, B, C, D) = \sum_{m} (0, 3, 4, 6, 7, 9, 12, 14, 15)$ 的最简与或式。

$$\mathbf{F} = \mathbf{BC} + \mathbf{B\overline{D}} + \overline{\mathbf{A}}\mathbf{C}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D}$$

例2、求函数 $F(A, B, C, D) = \sum_{m} (1, 5, 6, 7, 11, 12, \overline{13, 15})$ 的最简与或式。

$$F = AB\overline{C} + \overline{A}BC + \overline{A}\overline{C}D + ACD$$

例3、求函数 $F(A, B, C, D) = \sum_{m} (0, 2, 3, 5, 7, 8, 10, 11, 13)$ 的最简或与式。

$$\mathbf{F} = (\overline{\mathbf{B}} + \mathbf{D})(\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}})(\overline{\mathbf{B}} + \mathbf{C} + \overline{\mathbf{D}})$$

例4、求函数 $F(A, B, C, D) = \prod M(0, 1, 2, 5, 7)$ 的 最简单与式。

- 4、利用无关项化简逻辑函数
 - (1) 什么是无关项? 在一个逻辑函数中,
 - ① 变量的某些组合不会出现
 - ② 函数在变量的某些组合时输出不确定,可能为0,也可能为1

这样的变量 取值组合 (最小项) 称为无关项

- (2) 如何利用无关项?
 - ◆ 有利于化简的作1格处理
 - ◆ 不利于化简的仍作()格处理

最简 与或式

例5、设计一个31天月份检测电路

解: 根据实际情况, 列真值表

无关项.

ABCD	月份	F
	9	ĪĀ
0001	1	1
0010	2	0
0011	3	1
0100	4	0
0101	5	1
0110	6	0
0111	7	1

ABCD	月份	F
1000	8	1
1001	9	0
1010	10	1
1011	11	0
1100	12	1
1101	- <u>1</u> 3 -	$\bar{\mathbf{x}}$
11110	14	X
1111_	<u>15</u>	_ <u>X</u> _i

①不利用无关项

作1格

处理

卡诺图化简法

- A、简单、直观,有 固定的化简步骤
- B、可得 最简与或式 最简或与式
- C、局限性: 变量少于5个

公式化简法

A、通用性强 不受任何条件限制

B、没有固定化简步骤, 需要经验、技巧

本章重点

- ◆ 基本逻辑运算、复合逻辑运算及其转换
- ◆ 基本公式、常用公式、三个定理
- ◆ 逻辑函数的几种表示方法及其转换
 - ◆ 逻辑函数表达式 最小项表达式、最大项表达式
 - ◆ 真值表
 - ◆ 卡诺图
 - ◆ 逻辑图
- ◆ 逻辑函数的化简方法
 - ◆ 公式法
 - ◆ 卡诺图法(包含无关项)

课后作业

2.9 (2, 3); 2.10 (1, 3); 2.11 (2);

2.12(1); 2.13(3, 5); 2.15(4, 5, 6);

2.16(1, 3, 4); 2.17(3, 4);