

Experiment No. 4

Experiment Title: Support Vector Machine(SVM)

Student Name: YANA SRIVASTAVA **UID:** 20BCS2279

Branch: CSE **Section/Group:** 20BCS-WM-906/B **Date of Performance:** 14/10/22

Subject Name: Machine Learning Lab **Subject Code:** 21CSP-317

Logistic Regression

1. Aim/Overview of the practical:

Implement Support Vector Machine on any data set and analyze the accuracy with Logistic regression.

2. Steps of Experiment:

- Import all the required library.
- Import the dataset which you want to implement.
- Split data into x and y and perform some task.
- Split data into training set and testing set.

- Feature Scaling
- Predict The test set result
- Check the accuracy score by using different kernel
- Plot the train data
- Plot the test data
- Predicting the test set result
- Plot data points
- Create the hyperplane
- Plot the hyperplane

3. Source Code/Result/Output:

```
[75]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Importing the datasets
df=pd.read_csv("Social_Network_Ads.csv")
df.head()
```

[75]:		User ID	Gender	Age	EstimatedSalary	Purchased
	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0

```
[8]: df.shape
```

[8]: (400, 5)

```
Discover. Learn. Empower.
```

```
•[11]: x=df.iloc[:,[2,3]]#Independent variable
        y=df.iloc[:, 4]#Dependent variable
 [12]: x.head()
 [12]:
           Age EstimatedSalary
                           19000
         0
            19
                           20000
         1
             35
         2
             26
                           43000
         3
             27
                           57000
         4
                           76000
             19
 [13]: y.head()
 [13]: 0
              0
        1
              0
        2
              0
        3
        4
        Name: Purchased, dtype: int64
 [18]: #Splitting the dataset into the Training set and Test set
       from sklearn.model_selection import train_test_split
       X_Train, X_Test, Y_Train, Y_Test =train_test_split(x, y, test_size= 0.25, random_state = 0)
 [19]: print("Training data : ",X_Train.shape)
       print("Training data : ",X_Test.shape)
       Training data: (300, 2)
       Training data: (100, 2)
 [26]: #Feature Scaling
       from sklearn.preprocessing import StandardScaler
       sc_X=StandardScaler()
       X_Train=sc_X.fit_transform(X_Train)
       X_Test=sc_X.transform(X_Test)
 [31]: from sklearn.svm import SVC
       classifier =SVC(kernel = "linear", random_state = 0)
       classifier.fit(X_Train, Y_Train)
       #Predicting the test set results
       Y_pred =classifier.predict(X_Test)
```

```
[32]: Y_pred
[32]: array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
              0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
              1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
              0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1], dtype=int64)
[35]: from sklearn import metrics
       print("Accuracy score: with linear kernel")
       print(metrics.accuracy_score( Y_Test,Y_pred))
       Accuracy score: with linear kernel
       0.9
• [44]: from sklearn.svm import SVC
       classifier =SVC(kernel = 'rbf')#radial basic function
       classifier.fit (X_Train, Y_Train)
       #Predicting the test set results
       Y_pred = classifier.predict(X_Test)
       print("Accuracy Score: with default rbf kernel")
       print(metrics.accuracy_score(Y_Test,Y_pred))
       Accuracy Score: with default rbf kernel
       0.93
```

```
[58]: import matplotlib.pyplot as plt
plt.scatter (X_Train [:, 0], X_Train[:, 1],c=Y_Train)
plt.xlabel('Age')
plt.ylabel('Estimated salary')
plt.title("Training Data")
plt.show()
```



```
[59]: import matplotlib.pyplot as plt
plt.scatter (X_Test [:, 0], X_Test[:, 1],c=Y_Test)
plt.xlabel('Age')
plt.ylabel('Estimated salary')
plt.title("Test Data")
plt.show()
```



```
[76]: from sklearn.svm import SVC
      classifier= SVC(kernel='linear', random_state = 0)
      classifier.fit(X_Train, Y_Train)
      #Predicting the test set results
      Y pred=classifier.predict(X Test)
      #Plot data points
      plt.scatter(X_Test[:, 0], X_Test[:, 1],c=Y_Test)
      plt.scatter(X_Train[:, 0],X_Train[:, 1],c=Y_Train)
      #Create the hyperplane
      w = classifier.coef [0]
      a=-w[0]/w[1]
      xx= np.linspace(-2.5, 2.5)
      yy= a*xx -(classifier. intercept_[0])/w[1]
      #Plot the hyperplane
      plt.plot(xx, yy)
      plt.axis("off"),plt.show();
```


Learning outcomes (What I have learnt):

- 1. Learnt to analyze the data.
- 2. Learnt to import various libraries.
- 3. Learnt to read csv files.
- 4. Learnt to implement Logistic Regression.
- 5. Learnt to train and test the data.
- 6. Learnt the concept of SVM (Support Vector Machine).

Evaluation Grid:

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Student Performance (Conduct of experiment) objectives/Outcomes.		12
2.	Viva Voce		10
3.	Submission of Work Sheet (Record)		8
	Total		30