Исправление поисковых запросов

Ильвохин Дмитрий

25 марта 2019 г.

Запросы с ошибками

Около 11% поисковых запросов содержат ошибки.

Примеры ошибок в одном из самых популярных запросов рунета «вконтакте»:

- drjynfrnt (154),
- вкантакте (53),
- вконтак (34),
- вконтатке (22),
- в контак (18),
- вконта (14),
- вконтакти (13),
- вконтаке (13),
- в конта (11),
- вконакте (10).

Результаты поиска при ошибке в запросе

институт приёмная комиссия»

Рис. 2: Результаты по тому же запросу в неверной раскладке клавиатуры

Замена и пропуск букв

Замена

- ightharpoonup «вконтакте»,
- ightharpoonup «к \underline{o} талог орифлейм» o «к \underline{a} талог орифлейм»,

Пропуск

- ightharpoonup «одноклассники» ightharpoonup одноклассники,
- «с $\underline{\mathsf{K}}$ чать игру» \to «с $\underline{\mathsf{K}}$ ать игру».

Вставка и перестановка букв

Вставка

lacktriangle «тан $\underline{\mathbf{u}}$ цы айренби видео» o «танцы айренби видео».

Перестановка

- ightharpoonup «ск<u>ач</u>таь медиагет» ightarrow «ск<u>ча</u>таь медиагет»,
- «купить барслет» o «купить браслет».

Разбиение на слова

Склейка слов

- \blacktriangleright «голос 5 сезон <u>бв</u>ыпуск» \rightarrow «голос 5 сезон <u>бвыпуск»</u>,
- ightharpoonup «не работает пробел».

Расклейка слов

- «ма<u>к б</u>ук и вирусы» \rightarrow «ма<u>кб</u>ук и вирусы»,
- «<u>ю т</u>уб» → «<u>ют</u>уб».

Раскладка клавиатуры и транслит

Неверная раскладка клавиатуры

- wjlyjrkfccybrb» → «одноклассники»,
- ► «мл» → «vk».

Транслитерация

- ▶ «kupit televizor» → «купить телевизор»,
- ightharpoonup «мейл ру» ightarrow «mail ru».

Типы ошибок: сложные случаи

Неправильная раскладка клавиатуры?

Типы ошибок: сложные случаи

Неправильная раскладка клавиатуры?

$$vnc \rightarrow mtc$$

 ${
m VNC}$ — Virtual Network Computing, система удалённого доступа к рабочему столу компьютера.

Типы ошибок: сложные случаи Опечатка?

 \underline{a} ндекс o \underline{s} ндекс

Типы ошибок: сложные случаи Опечатка?

андекс \rightarrow яндекс

 $\acute{\mathbf{A}}$ ндекс — посёлок в Германии, который известен благодаря находящемуся там бенедиктинскому монастырю.

Типы ошибок: сложные случаи

Явная ошибка?

п
$$\underline{a}$$
года o п \underline{o} года

Типы ошибок: сложные случаи Явная ошибка?

пагода ightarrow погода

Па́года — буддийское или индуистское сооружение культового характера.

Типы ошибок: сложные случаи

Явная ошибка?

Рис. 3: Большая пагода в Лондоне

Виды исправлений

Автоисправление

Автоисправление — надежное исправление, в запросе точно допущена ошибка, будут показаны результаты по исправленному запросу.

Рис. 4: Пример автоисправления: оригинальный запрос: «спелчекер», автоисправление: «спеллчекер»

Виды исправлений Подсказка

Подсказка — ненадежное исправление, возможно, в запросе допущена ошибка, будут показаны результаты по оригинальному запросу и предложение исправить запрос.

Рис. 5: Пример подсказки, оригинальный запрос: «онлайм», подсказка: «онлайн»

Виды исправлений

Смешение выдач

Смешение — скорее всего в запросе допущена ошибка, будут показаны результаты как по оригинальному запросу, так и по исправленному.

Рис. 6: Пример смешения, оригинальный запрос: «кк сделать спелчекер», исправление: «как сделать спеллчекер»

Модель зашумленного канала 1

Задача

- Σ алфавит;
- ▶ Σ^* множество конечных строк над Σ ;
- ▶ $D \subseteq \Sigma^*$ словарь корректных слов;
- ▶ $q \notin D$, $c \in D$ строки над Σ .

Найти

$$\arg\max_{c\in D}P(c|q).$$

¹Brill E., Moore R. C. An improved error model for noisy channel spelling correction, 2000.

Модель зашумленного канала

$$\arg\max_{c\in D}P(c|q)=\arg\max_{c\in D}\frac{P(q|c)P(c)}{P(q)}=\arg\max_{c\in D}P(q|c)P(c).$$

Интерпретация

- ▶ P(c) модель источника (модель языка),
- ightharpoonup P(q|c) модель канала (модель ошибок).

Спеллчекер Питера Норвига (Peter Norvig) 2

- Словарь: слова из книг проекта Gutenberg, самые частотные слова из Wiktionary и British National Corpus.
- ▶ Модель языка на основе частот слов в корпусе.
- Модель ошибок на основе редакционного расстояния.

²https://norvig.com/spell-correct.html, 2007.

Спеллчекер Питера Норвига

Основная идея

```
def P(word, N=sum(WORDS.values())):
    return WORDS[word] / N
def correction(word):
    return max(candidates(word), key=P)
def candidates(word):
    return (known([word]) or
            known(edits1(word)) or
            known(edits2(word)) or [word])
def known(words):
    return set(w for w in words if w in WORDS)
          Рис. 7: «Сердце» спеллчекера
```

Общая схема работы

Рис. 8: Составные части системы и их связь

Модель ошибок 3

Идея

 $P(q|c) \propto EditDistance(q,c)$

- Расстояние Левенштейна.
- Расстояние Дамерау–Левенштейна (транспозиция одна операция).
- Взвесить операции редактирования.
- ightharpoonup Вес зависит от контекста и самой операции («тся» ightharpoonup «ться»).

³Ahmad F., Kondrak G. Learning a spelling error model from search query logs, 2005.

Модель ошибок Сбор данных

Нужны пары запрос o исправление.

Использование асессоров

- ▶ Выдать запрос, попросить исправить.
- Выдать запрос и исправление, попросить отобрать хорошие.
- Выдать корректный тест, попросить перепечатать.
- Выдать аудиофайл, попросить набрать.

Модель ошибок

Автоматический сбор данных

Нужны пары $запрос \rightarrow исправление$.

- Кликовые данные.
 - Отказы и согласия с исправлениями на страницах с результатами.
 - Интерливинг.
- Искусственная генерация данных.

Модель ошибок Построение

Редакционное расстояние между двумя строками а и b.

$$\mathsf{lev}_{a,b}(i,j) = \begin{cases} \mathsf{max}(i,j) & \text{if } \mathsf{min}(i,j) = 0, \\ \mathsf{min} \begin{cases} \mathsf{lev}_{a,b}(i-1,j) + 1 \\ \mathsf{lev}_{a,b}(i,j-1) + 1 \\ \mathsf{lev}_{a,b}(i-1,j-1) + 1_{(a_i \neq b_i)} \end{cases} & \text{otherwise}.$$

- ▶ Используем алгоритм Вагнера-Фишера (Wagner-Fischer).
- ▶ По матрице lev получаем редакционное предписание.
- По редакционному предписанию для всех пар сохраняем статистику.

Модель ошибок Построение, модели разных уровней

- Нулевого уровень: вероятность операции данного типа (вставка, замена, удаление)?
- Первый уровень: нулевой уровень и дополнительно учитывается текущая буква.
- Второй уровень: первый уровень и дополнительно учитывается предыдущая буква.
- **.** . . .

Модель ошибок

Построение, пример

«президент»
$$o$$
 «перзидеед»

Таблица 1: Построение модели ошибок

М	М	D	М	ı	М	М	М	М	R	R	М
^	П	р	е	П	3	И	Д	е	Н	Т	\$
^	П	٦	е	р	3	И	Д	е	е	Д	\$

$$ightharpoonup$$
 «пр» $ightharpoonup$ «п $_{\sqcup}$ » — 1,

▶ «т
$$\$$$
» \rightarrow «д $\$$ » -1 .

Модель ошибок

Смешение моделей разного уровня

$$\alpha Z + \beta F + \gamma S$$
,

где Z,F,S — модели нулевого, первого и второго уровней, $\alpha,\beta,\gamma\in[0,1],\alpha+\beta+\gamma=1.$

Модель языка

Пусть
$$Q=w_1,w_2,\ldots,w_n$$
 — запрос, состоящий из n слов, $P(Q)=P(w_1)P(w_2|w_1)P(w_3|w_1w_2)\ldots P(w_n|w_1\ldots w_{n-1}).$

Униграмная

$$P(Q) \approx P(w_1)P(w_2)P(w_3)\dots P(w_n).$$

Биграмная

$$P(Q) \approx P(w_1)P(w_2|w_1)P(w_3|w_2)\dots P(w_n|w_{n-1}).$$

Техники сглаживания⁴

Проблема

Пусть $Q=w_1,w_2,\ldots,w_n$ — запрос, состоящий из n слов, если $\exists w_k \not\in D \Rightarrow P(Q)=0.$

 $^{^4\}mathrm{Chen}$ S. F., Goodman J. An empirical study of smoothing techniques for language modeling, 1999.

Словарь Сбор данных

Источники данных

- ▶ Словари, книги, тексты новостей.
- Логи запросов.
- Слова из веб-документов.

Алгоритм поиска Префиксное дерево

Идея

- ▶ Построим префиксное дерево (бор, trie) для слов из словаря.
- Запустим на нем A*.
- ▶ Придумаем эвристик, чтобы быстро работало.

Префиксное дерево Эвристики⁵

Рис. 9: (a) — набор строк с частотами, (b) — префиксное дерево над этим набором

⁵Duan H., Hsu B. J. P. Online spelling correction for query completion, 2011.

Префиксное дерево Поиск⁶

```
Query trie T, transformation model \Theta, integer k, query prefix \bar{q}
Output: Top k completion suggestions of \bar{q}
          List l = \text{new List}()
          PriorityOueue pa = \text{new PriorityOueue}()
  R
          pq.Enqueue(new Path(0, T.Root, [], 1))
          while (!pa.Empty())
  Е
            Path \pi = pq. Dequeue()
            if (\pi.Pos < |\bar{q}|)
                                                  // Transform input auery
  G
                foreach (Transferme t in GetTransformations(\pi, \bar{q}, T, \Theta))
  Н
                              = \pi.Pos + t.Output.Length
                   Node n = \pi.Node.FindDescendant(t.Input)
                   History h = \pi. Hist + t
  K
                   Prob p = \pi.\text{Prob} \times (n.\text{Prob} / \pi.\text{Node.Prob}) \times
                                P(t, \pi. Hist; \Theta)
                   pq.Enqueue(new Path(i, n, h, p))
  M
            else
                                                  // Extend input auery
                if (π.Node.IsLeaf())
  0
                  1.Add(π.Node.Ouerv)
                   if (l.Count > k)
                      return /
                else
                   foreach (Transfeme t in GetExtensions(\pi, T, \Theta))
                      int i
                                 = \pi.Pos + t.Output.Length
                      Node n = \pi.Node.FindDescendant(t.Input)
                      History h = \pi. Hist + t
                      Prob p = \pi.Prob \times (n.Prob / \pi.Node.Prob)
                      pq.Enqueue(new Path(i, n, h, p))
          return l
```

Рис. 10: Псевдокод алгоритма поиска

⁶Duan H., Hsu B. J. P. Online spelling correction for query completion, 2011.

Оптимизации

Идеи для ускорения

- Используем только К-лучших переходов для каждой позиции в запросе.
- Делаем переходы в узлы, если вероятность в них выше определенного процента максимальной вероятности в позиции.
- Ограничение количества операций редактирования функция от длины запроса.
- Предподсчет ответов для частых запросов.

Алгоритм поиска

Альтернативный подход, фонетические алгоритмы

Metaphone — фонетический алгоритм для индексирования слов по их звучанию с учётом основных правил английского произношения.

Фонетические алгоритмы

Вариант для русского языка⁷

Таблица 2: Аналог Metaphone для русского языка

Код	Буквы	Код	Буквы
1	а, о, ы, у, я	8	г, к, х
3	и, е, ё, ю, я, э	9	Л
5	б, п	10	р
6	в, ф	11	М
7	д, т	12	Н

Код	Буквы	
13	з, с	
14	й	
15	щ, ч	
16	ж, ш	
17	ц	

 $^{^7}$ Sorokin A. A., Shavrina T. O. Automatic spelling correction for Russian social media texts, 2016.

Фонетические алгоритмы Пример работы

Замены по таблице и несколько других несложных правил.

Пример

- ightharpoonup «скачать» ightarrow {13, 8, 1, 15, 1, 7},
- «скочять» \rightarrow {13, 8, 1, 15, 1, 7}.

Алгоритм составления фразы идея

Пусть исходный запрос Q был разбит на слова w_1, w_2, \ldots, w_n . Для каждого слова были найдены вероятные кандидаты:

- \triangleright $w_1: c_{1,1}, c_{1,2}, \ldots, c_{1,k},$
- \triangleright $w_2: c_{2,1}, c_{2,2}, \ldots, c_{2,k},$
- **.** . . .
- $V_n: C_{n,1}, C_{n,2}, \ldots, C_{n,k}.$

Рис. 11: Схема формирования фразы

Алгоритм составления фразы

Имеем

- Скрытую Марковскую модель и последовательность наблюдений.
- ▶ Веса переходов вероятности языковой модели $P(w_i|w_{i-1})$.

Найти

Наиболее вероятную последовательность скрытых состояний.

Алгоритм составления фразы Алгоритм Витерби

Рис. 12: Пример работы алгоритма

Биграмная языковая модель

$$viterbi_{i,j} = \max_{0 \le k < |C_{i-1}|} viterbi_{i-1,k} \times P(c_{i,j}|c_{i-1,k}).$$

Другие типы исправлений

Общая схема работы похожа на исправление слов.

Разбиение слова

- ▶ Операции: добавить, убрать разделитель.
- Оцениваем результат с помощью модели языка.

Неверная раскладка

- ▶ Собственное разбиение на слова («rf_fxjr» \rightarrow |ка|б|ачок|).
- Дополнительная операция редактирования: смена раскладки (зависит от типа клавиатуры).

Классификатор исправлений

- \blacktriangleright «нечеткий п<u>ио</u>ск строки» \rightarrow «нечеткий п<u>ои</u>ск строки»,
- \blacktriangleright «нечеткий п<u>ио</u>ск строки» $\not\to$ «нечеткий п<u>и</u>ск строки»,
- \blacktriangleright «нечеткий п<u>ио</u>ск строки» $\not\to$ «нечеткий <u>к</u>иоск строки».

Признаки

- Пословные.
- Позапросные.
- По типам исправлений (исправление в имени, изменение формы слова).

Ранжирование

Сложности

- ▶ Нужно уметь ранжировать разнородные исправления.
- ▶ Сбор обучающих данных.

Итеративные исправления

Более 90% ошибок исправляются за одну итерацию.

- 1. «методы государственное подерки литираткра»,
- 2. «методы государственное подерки литературы»,
- 3. «методы государственной поддержки литературы».

Надежность исправлений

Решает нужно ли автоматическое исправление или подсказка.

Точно нужно исправлять, но во что?

- «п \underline{o} ск» \rightarrow {«п $\underline{o}\underline{u}$ ск», «п \underline{u} ск»},
- ▶ «атташа» \rightarrow {«наташа», «атташе}.

Вероятность исправления большая, но не факт, что есть ошибка.

- ► «vnc» → «мтс»,
- ▶ «пагода» → «погода».

Домашнее задание

Реализовать систему для исправления слов.

Kaggle-соревнование

https://www.kaggle.com/c/itmo-spelling-correction-2019

Метрика

Среднее расстояние Левенштейна.

Домашнее задание Ограничения

- ▶ Максимальное количество баллов 25.
- ▶ Решения хуже «No Fixes At All» получают 0 баллов.
- Не более шести посылок в сутки.
- Чужие решения сдавать нельзя.
- ▶ Deadline: 04/15/2019 11:59 PM UTC.

Домашнее задание

Код решения, его короткое описание и kaggle-хэндл нужно прислать на электронную почту.

Распределение баллов

- Префиксное дерево и эвристики с лекции 10 баллов.
- Фонетические алгоритмы 3 балла.
- Модель языка 2 балла.
- ▶ Модель ошибок 5 баллов (все уровни).
- Клёвые эвристики 5 баллов (не менее двух).

Домашнее задание

- ▶ Электронная почта: d.ilvokhin@corp.mail.ru
- ► Telegram: https://t.me/r3tsky