Partitioning

system design

- Decomposition of a complex system into smaller subsystems.
- Each subsystem can be designed independently speeding up the design process.
- Decomposition scheme has to minimize the interconnections among the subsystems.
- Decomposition is carried out hierarchically until each subsystem is of managable size.

Levels of Partitioning

• The levels of partitioning: System, Board, Chip.

Partitioning of a Circuit

- The task of cutting a circuit into smaller parts.
- **Objective:** Partition the circuit into sub-circuits such that every sub-circuit is within a pre-specified size and the # of connections among sub-circuits is minimized.
 - Other possible constraints (e.g., # of pins in a sub-circuit)
 - Other possible objectives (e.g., critical path delay)
- Cutset? Cut size? Size of a sub-circuit?

Problem Definition

- k-way partitioning: Given a graph G(V,E), where each vertex $v \in V$ has a size s(v) and each edge $e \in E$ has a weight w(e), the problem is to divide the set V into k disjoint subsets V_1, V_2, \ldots, V_k , such that an objective function is optimized, subject to certain constraints.
- **Bounded size constraint:** The size of the *i*-th subset is bounded by L_i and U_i (i.e., $L_i \leq \sum_{v \in V_i} s(v) \leq U_i$)
- **Min-cut cost between two subsets:** Minimize $\sum_{\forall e=(u,v)\land p(u)\neq p(v)} w(e)$, where p(u) is the subset where u is.
- The 2-way, size-constrained partitioning problem is NP-hard, even in its simple form with identical vertex sizes and unit edge weights.

Kernighan-Lin (KL) Algorithm

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," *The Bell System Technical Journal*, vol. 49, no. 2, Feb. 1970.
- An **iterative**, **2-way**, **balanced** partitioning (bi-sectioning) heuristic.
- Restrictions:
 - Assume all vertices are of the same size.
 - Work only for 2-terminal nets.

Key Idea of KL Algorithm

- Start with any initial partitions A and B.
- A pass (exchanging each vertex exactly once) consists of:
 - Exchange a vertex pair which gives the **maximum** gain g_i (i.e., largest decrease or smallest increase in cut size), and **lock** them (which thus are prohibited from participating in any further exchanges).
 - This process continues until all vertices are locked.
 - Find the largest partial sum G (i.e., find k such that $g_1+...+g_k$ is maximized).
 - Exchange the first *k* pairs.
- Repeat the pass until there is no improvement (i.e., G=0).

KL Algorithm: A Simple Example

• Each edge has a unit weight.

Step #	Vertex pair	Cost reduction	Cut cost
0	-	0	5
1	{d, g}	3	2
2	{c, f}	1	1
3	{b, h}	-2	3
4	{a, e}	-2	5

• Questions: How to compute cost reduction? What pairs to be swapped?

7

Properties

- Two sets A and B such that |A|=n=|B| and $A \cap B=\emptyset$.
- External cost of $a \in A$: $E_a = \sum_{n \in B} c_{an}$.
- Internal cost of $a \in A$: $I_a = \sum_{n \in A} c_{an}$.
- D-value of a vertex a: $D_a = E_a I_a$ (cost reduction for moving a).
- Cost reduction (gain) for swapping a and b: $g_{ab} = D_a + D_b 2c_{ab}$.
- If $a \in A$ and $b \in B$ are interchanged, then the new D-values, D', are given by $D'_x = D_x + 2c_{xa} - 2c_{xb}, \forall x \in A - \{a\}$ $D'_y = D_y + 2c_{yb} - 2c_{ya}, \forall y \in B - \{b\}.$

 $Gain_{b \Rightarrow A} : D_b = c_{ab}$

 c_{xb}

before swap	after swap	$\triangle C$
$-c_{xa}$	$+c_{xa}$	$+2c_{xa}$
$+c_{xb}$	$-c_{xb}$	$-2c_{xb}$

Internal cost vs. External cost

updating D-values

KL Algorithm: A Weighted Example

	а	b	С	đ	е	f	
$ \begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \end{array} $	0 1 2 3 2 4	I 0 I 4 2 I	2 I 0 3 2 I	3 4 3 0 4 3	2 2 2 4 0 2	4 I I 3 2 0	

costs associated with a

Initial cut
$$cost = (3+2+4)+(4+2+1)+(3+2+1) = 22$$

• Iteration 1:

$$I_a$$
=1+2=3; E_a =3+2+4=9; D_a = E_a - I_a =9-3=6
 I_b =1+1=2; E_b =4+2+1=7; D_b = E_b - I_b =7-2=5
 I_c =2+1=3; E_c =3+2+1=6; D_c = E_c - I_c =6-3=3
 I_d =4+3=7; E_d =3+4+3=10; D_d = E_d - I_d =10-7=3

$$I_e$$
=4+2=6; E_e =2+2+2=6; D_e = E_e - I_e =6-6=0

Unit 3
$$I_f$$
=3+2=5; E_f =4+1+1=6; D_f = E_f - I_f =6-5=1

• Iteration 1:

$$\begin{split} I_a &= 1 + 2 = 3; & E_a = 3 + 2 + 4 = 9; & D_a = E_a - I_a = 9 - 3 = 6 \\ I_b &= 1 + 1 = 2; & E_b = 4 + 2 + 1 = 7; & D_b = E_b - I_b = 7 - 2 = 5 \\ I_c &= 2 + 1 = 3; & E_c = 3 + 2 + 1 = 6; & D_c = E_c - I_c = 6 - 3 = 3 \\ I_d &= 4 + 3 = 7; & E_d = 3 + 4 + 3 = 10; & D_d = E_d - I_d = 10 - 7 = 3 \\ I_e &= 4 + 2 = 6; & E_e = 2 + 2 + 2 = 6; & D_e = E_e - I_e = 6 - 6 = 0 \\ I_f &= 3 + 2 = 5; & E_f = 4 + 1 + 1 = 6; & D_f = E_f - I_f = 6 - 5 = 1 \end{split}$$

• $g_{xy}=D_x+D_y-2c_{xy}$.

$$g_{ad} = D_a + D_d - 2c_{ad} = 6 + 3 - 2 * 3 = 3$$

$$g_{ae} = 6 + 0 - 2 * 2 = 2$$

$$g_{af} = 6 + 1 - 2 * 4 = -1$$

$$g_{bd} = 5 + 3 - 2 * 4 = 0$$

$$g_{be} = 5 + 0 - 2 * 2 = 1$$

$$g_{bf} = 5 + 1 - 2 * 1 = 4 \text{ (maximum)}$$

$$g_{cd} = 3 + 3 - 2 * 3 = 0$$

$$g_{ce} = 3 + 0 - 2 * 2 = -1$$

$$g_{cf} = 3 + 1 - 2 * 1 = 2$$

 $\sup_{\text{Unit }3} \text{Swap } b \text{ and } f! (\bar{g_1}=4)$

•
$$D_x = D_x + 2c_{xp} - 2c_{xq}, \forall x \in A - \{p\}$$
 (swap p and $q, p \in A, q \in B$)
$$D_a = D_a + 2c_{ab} - 2c_{af} = 6 + 2*1 - 2*4 = 0$$

$$D_c = D_c + 2c_{cb} - 2c_{cf} = 3 + 2*1 - 2*1 = 3$$

$$D_d = D_d + 2c_{df} - 2c_{db} = 3 + 2*3 - 2*4 = 1$$

$$D_e = D_e + 2c_{ef} - 2c_{eb} = 0 + 2*2 - 2*2 = 0$$
• $g_{xy} = D_x + D_y - 2c_{xy}$.
$$g_{ad} = D_a + D_d - 2c_{ad} = 0 + 1 - 2*3 = -5$$

$$g_{ae} = D_a + D_d - 2c_{ae} = 0 + 0 - 2*2 = -4$$

$$g_{cd} = D_c + D_d - 2c_{cd} = 3 + 1 - 2*3 = -2$$

$$g_{ce} = D_c + D_d - 2c_{ce} = 3 + 0 - 2*2 = -1 \text{ (maximum)}$$
• Swap c and e ! ($\vec{q}_2 = -1$)

•
$$D_{x}^{"} = D_{x}^{'} + 2c_{xp} - 2c_{xq}, \forall x \in A - \{p\}$$

$$D_{a}^{"} = D_{a}^{'} + 2c_{ac} - 2c_{ae} = 0 + 2*2 - 2*2 = 0$$

$$D_{d}^{"} = D_{d}^{'} + 2c_{de} - 2c_{dc} = 1 + 2*4 - 2*3 = 3$$

- $g_{xy} = D_x'' + D_y'' 2x_{xy}.$ $g_{ad} = D_a'' + D_d'' 2c_{ad} = 0 + 3 2 \cdot 3 = -3 \quad (\hat{g}_3 = -3)$
- Note that this step is redundant $\left(\sum_{i=1}^{n} \bar{g}_{i} = 0\right)$
- Summary: $\hat{g}_1 = g_{bf} = 4$, $\hat{g}_2 = g_{ce} = -1$, $\hat{g}_3 = g_{ad} = -3$.
- Largest partial sum $\max \sum_{i=1}^{k} \hat{g_i} = 4 \ (k = 1) \Rightarrow \text{Swap } b \text{ and } f$.

	abcde f	$\int \int \int d$
a b c d e f	0 1 2 3 2 4 1 0 1 4 2 1 2 1 0 3 2 1 3 4 3 0 4 3 2 2 2 4 0 2 4 1 1 3 2 0	$\begin{pmatrix} 4 & & & & & & & & & & & & & & & & & & $

Initial cut cost = (1+3+2)+(1+3+2)+(1+3+2) = 18(22-4)

- Iteration 2: Repeat what we did at Iteration 1 (Initial cost=22-4=18)
- Summary: $\hat{g}_1 = g_{ce} = -1$, $\hat{g}_2 = g_{ab} = -3$, $\hat{g}_3 = g_{fd} = 4$.
- Largest partial sum= $\max \sum_{i=1}^{k} \hat{g}_i = 0 \ (k = 3) \Rightarrow \text{Stop!}$

Algorithm: Kernighan-Lin(*G*)

Input: G=(V,E), |V|=2n.

Output: Balanced bi-partition A and B with "small" cut cost.

1 begin

- 2 Bi-partition G into A and B such that $|V_A| = |V_B|$, $V_A \cap V_B = \emptyset$, and $V_A \cup V_B = V$.
- 3 repeat
- 4 Compute D_{v} , $\forall v \in V$.
- 5 **for** i=1 **to** n **do**
- Find a pair of unlocked vertices $v_{ai} \in V_A$ and $v_{bi} \in V_B$ whose exchange makes the largest decrease or smallest increase in cut cost;
- Mark v_{ai} and v_{bi} as locked, store the gain \hat{g}_i , and compute the new D_v , for all unlocked $v \in V$;
- 8 Find k, such that $G_k = \sum_{i=1}^k \hat{g_i}$ is maximized;
- 9 **if** $G_k > 0$ **then**
- Move $v_{ai},...,v_{ak}$ from V_A to V_B and $v_{bi},...,v_{bk}$ from V_B to V_A ;
- 11 Unlock $v, \forall v \in V$.
- 12 until $G_{k} \leq 0$;
- 13 **end**

Time Complexity

- Line 4: Initial computation of D: $O(n^2)$
- Line 5: The **for**-loop: O(n)
- The body of the loop: $O(n^2)$
 - Lines 6-7: Step i takes $O(n-i+1)^2$ time.
- Lines 4-11: Each pass of the repeat loop: $O(n^3)$.
- Suppose the repeat loop terminates after r passes.
- The total running time: $O(rn^3)$.

Extension of KL Algorithm

- *k*-way partitioning
 - 1. Partition the graph into *k* equal-sized sets. Apply the KL algorithm for each pair of subsets.
 - 2. Apply the KL algorithm recursively.

Drawbacks of KL Algorithm

- KL handles only unit vertex weights.
 - Vertex weights might represent block sizes, different from blocks to blocks.
 - Reducing a vertex with weight w(v) into a clique with w(v) vertices and edges with a high cost increases the size of the graph substantially.
- KL handles only exact bisections.
 - Need dummy vertices to handle the unbalanced problem.
- KL cannot handle hypergraphs.
 - A hypergraph consists of a set of vertices and a set of hyperedges, where each hyperedge e_i corresponds to a subset N_i of distinct vertices with $|N_i| \ge 2$
- The time complexity of a pass is high, $O(n^3)$.

Fiduccia-Mattheyses (FM) Algorithm

- Fiduccia and Mattheyses. "A linear time heuristic for improving network partitions," 19th Design Automation Conf.,1982.
- Same as KL:
 - Work in passes.
 - Lock vertices after moved.
 - Actually, only move those vertices up to the maximum partial sum of gain.
- Different from KL:
 - Aim at reducing net-cut costs; the concept of cut size is extended to hypergraphs.
 - Only a single vertex is moved across the cut in a move.
 - Vertices are weighted.
 - Can handle "unbalanced" partitions; a balance factor is introduced.
 - A special data structure is used to select vertices to be moved across the cut to improve running time.
 - **Time complexity of a pass is** O(P), where P is the total # of pins.

FM: Notation

- n(i): # of cells in Net i; e.g., n(1)=4.
- s(i): size of Cell i.
- p(i): # of pins in Cell i; e.g., p(6)=3.
- *C*: total # of cells; e.g., *C*=6.
- *N*: total # of nets; e.g., *N*=6.
- P: total # of pins; P = p(1) + ... + p(C) = n(1) + ... + n(N).

Cut

- **Cutstate** of a net:
 - Net 1 and Net 3 are cut.
 - Net 2, Net 4, Net 5, and Net 6 are **uncut.**
- **Cutset**= {Net 1, Net 3}.
- |A|=size of A = s(1)+s(5); |B|=s(2)+s(3)+s(4)+s(6).
- Balanced 2-way partitioning: Given a fraction r, 0 < r < 1, partition a graph into two sets A and B such that

$$-\frac{|A|}{|A|+|B|} \approx r$$

Size of the cutset is minimized.
 Unit 3

Input Data Structures

	Cell array	Net array			
C1	Nets 1, 2	Net 1	C1, C2, C3, C4		
C2	Nets 1, 3	Net 2	C1, C5		
C3	Nets 1, 4	Net 3	C2, C5		
C4	Nets 1, 5, 6	Net 4	C3, C6		
C5	Nets 2, 3	Net 5	C4, C6		
C6	Nets 4, 5, 6	Net 6	C4, C6		

- Size of the circuit: $P = \sum_{i=1}^{6} n(i) = 14$
- Construction of the two arrays takes O(P) time.

Basic Ideas: Balance and Movement

Only move a cell at a time, preserving "balance."

$$\frac{|A|}{|A|+|B|} \approx r$$

$$rW - S_{\text{max}} \le |A| \le rW + S_{\text{max}},$$

$$|A|+|B|: S_{\text{max}} = \max_{i} s(i).$$

when W=|A|+|B|; $S_{\text{max}}=\max_{i}s(i)$.

• g(i): gain in moving cell i to the other set, i.e., size of **old** cutset - size of **new** cutset.

g(b) is the largest

balanced condition holds

Suppose \widehat{g}_i 's: g(b), g(e), g(d), g(a), g(f), g(c) and the largest partial sum is g(b)+g(e)+g(d). Then we should move $b,e,d \rightarrow$ resulting two sets: $\{a, c, e, d\}, \{b, f\}$

Cell Gains and Data Structure Manipulation

• Two "bucket list" structures, one for set A and one for set $B(P_{max}=\max_{i} p(i))$.

• O(1)-time operations: find a cell with Max Gain, remove Cell i from the structure, insert Cell i into the structure, update g(i) to $g(i) + \Delta$, update the Max Gain pointer.

Net Distribution and Critical Nets

- Distribution of Net i: (A(i), B(i)) = (2, 3).
 - (A(i), B(i)) for all i can be computed in O(P) time.

- Critical Nets: A net is critical if it has a cell which if moved will change its cutstate.
 - 4 cases: A(i) = 0 or 1, B(i) = 0 or 1.

Gain of a cell depends only on its critical nets.

Computing Cell Gains

Initialization of all cell gains requires O(P) time:

Tanization of all cell gains requires
$$O(P)$$
 time $g(i) \leftarrow 0$; $F \leftarrow$ the "from block" of cell i ; $T \leftarrow$ the "to block" of cell i ; for each net n on Cell i do

if $F(n) = 1$ then $g(i) \leftarrow g(i) + 1$;

if $T(n) = 0$ then $g(i) \leftarrow g(i) - 1$;

Cell i
 $F \cap T$

Cell i
 $F \cap T$
 $F \cap T$

Only need O(P) time to maintain all cell gains in one pass.

Updating Cell Gains

- To update the gains, we only need to look at those nets, connected to the base cell, which are critical before or after the move.
- **Base cell**: The cell selected for movement from one set to the other.

Algorithm for Updating Cell Gains

Algorithm: Update_Gain

- 1 **begin** /* move base cell and update neighbors' gains */
- $2 F \leftarrow$ the Front Block of the base cell;
- 3 $T \leftarrow$ the To Block of the base cell;
- 4 Lock the base cell and complement its block;
- 5 **for** each net *n* on the base cell **do**
 - /* check critical nets before the move */
- 6 **if** T(n) = 0 then increment gains of all free cells on n **elseif** T(n) = 1 **then** decrement gain of the only T cell on n, if it is free /* change F(n) and T(n) to reflect the move */
- 7 $F(n) \leftarrow F(n) 1$; $T(n) \leftarrow T(n) + 1$; /* check for critical nets after the move */
- 8 **if** F(n) = 0 **then** decrement gains of all free cells on n **elseif** F(n) = 1 **then** increment gain of the only F cell on n, if it is free
- 9 end

Complexity of Updating Cell Gains

- Once a net has "locked" cells at both sides, the net will remain cut from now on.
- To update the cell gains, it takes O(n(i)) work for Net i.
- Total time = n(1) + n(2) + ... + n(N) = O(P)

Unit 3 28

FM: An Example

• Computing cell gains: $F(n) = 1 \Rightarrow g(i) + 1$; $T(n) = 0 \Rightarrow g(i) - 1$

		m	q		k		p			\overline{j}	
Cell	F	T	F	T	F	T	F	T	F	T	g(i)
c1	0	-1									-1
c2	0	-1	0	0	+1	0	+ 1	0			+1
с3	0	-1	0	0							-1
с4			+1	0					0	-1	0
c4 c5					+1	0			0	-1	0
с6							+1	0			+1

- Balanced criterion: r|V| $S_{max} \le |A| \le r|V| + S_{max}$. Let r = 0.4 => |A| = 9, |V| = 18, $S_{max} = 5$, r|V| = 7.2 => Balanced: $2.2 \le 9 \le 12.2!$
- Maximum gain: c_2 and balanced: $2.2 \le 9-2 \le 12.2 =>$ Move c_2 from A to B (use size criterion if there is a tie).

FM: An Example (Cont'd)

Changes in net distribution:

	Be	fore move	After move				
Net	F	T	F'	T'			
k	1	1	0	2			
m	3	0	2	1			
q	2	1	1	2			
p	1	1	0	2			

• Updating cell gains on critical nets (run Algorithm Update_Gain):

	Gains due to $T(n)$				Gain due to $F(n)$				Gain changes		
Cells	k	m	q	p	k	m	q	p	Old	New	
c_1		+1							-1	0	
c_3		+1					+1		-1	+1	
c_4			-1						0	-1	
c_5	-1				-1				0	-2	
c_6				$\mid -1$				-1	+ 1	-1	

• Maximum gain: c_3 and balanced! $(2.2 \le 7-4 \le 12.2)$

Unit \equiv > Move c_3 from A to B (use size criterion if there is a tie).

Summary of the Example

Step	Cell	Max gain	A	Balanced?	Locked cell	A	В
0	-	-	9	_	Ø	1, 2, 3	4, 5, 6
1	c_2	+1	7	yes	c_2	1, 3	2, 4, 5, 6
2	<i>c</i> 3	+1	3	yes	c_2, c_3	1	2, 3, 4, 5, 6
3	c_1	+1	0	no	-	-	-
3′	c_6	-1	8	yes	c_2, c_3, c_6	1, 6	2, 3, 4, 5
4	c_1	+ 1	5	yes	c_1, c_2, c_3, c_6	6	1, 2, 3, 4, 5
5	c_5	-2	8	yes	c_1, c_2, c_3, c_5, c_6	5, 6	1, 2, 3, 4
6	C 4	0	9	yes	all cells	4, 5, 6	1, 2, 3

- $g_1=1$, $g_2=1$, $g_3=-1$, $g_4=1$, $g_5=-2$, $g_6=0 =>$ Maximum partial sum $G_k=+2$, k=2 or 4.
- Since k = 4 results in a better balanced => Move c_1 , c_2 , c_3 , $c_6 => A = \{6\}$, $B = \{1,2,3,4,5\}$.
- Repeat the whole process until new $G_k \le 0$.

Simulated Annealing Revisited

• Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," *Science*, May 1983.

Unit 3

32

Simulated Annealing Basics

- Non-zero probability for "up-hill" moves.
- Probability depends on
 - 1. magnitude of the "up-hill" movement
 - 2. total search time

$$Prob(S \rightarrow S') = \left\{ \begin{array}{ll} 1 & \text{if } \Delta C \leq \texttt{0} & /* \text{``down} - hill'' \text{ moves * /} \\ e^{-\frac{\Delta C}{T}} & \text{if } \Delta C > \texttt{0} & /* \text{``up} - hill'' \text{ moves * /} \end{array} \right.$$

- $\triangle C = cost(S') cost(S)$
- T: Control parameter (temperature)
- Annealing schedule: $T = T_0, T_1, T_2, ...,$ where $T_i = r^i T_0, r < 1$.

Generic Simulated Annealing Algorithm

Algorithm: Simulated_Annealing

```
1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0;
4 while not yet "frozen" do
     for 1<i<P do
        Pick a random neighbor S' of S;
        \triangle \leftarrow cost(S') - cost(S);
         /* down hill move */
        if \triangle < 0 then S \leftarrow S
         /* uphill move */
        if \triangle > 0 then S \leftarrow S' with probability e^{-\frac{\Delta}{T}};
9
      T \leftarrow rT; /* reduce temperature */
11 return S
12 end
Unit 3
```

34

Basic Ingredients for Simulated Annealing

- Solution space
- Neighborhood structure
- Cost function
- Annealing schedule

Partitioning by Simulated Annealing

- Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," *Science*, May 1983.
- **Solution space**: set of all partitioning solutions

Neighborhood structure:

Partitioning by Simulated Annealing (cont'd)

- Cost function: $f = C + \lambda B$
 - C: the solution cost as used before.
 - B: a measure of how balance the solution is
 - λ : a constant

• Annealing schedule:

- $T_n = r^n T_0$, r = 0.9.
- At each temperature, either
 - 1. There are 10 accepted moves/cell on the average, or
 - 2. # of attempts ≥ 100 * total # of cells.
- The system is "frozen" if very low acceptances at 3 consecutive temperatures.

Multilevel Partitioning

- Three phases (for bipartitioning)
 - Coarsening: construct a sequence of smaller (coarser) graphs.
 - Initial partitioning: construct a bipartitioning solution for the coarsest graph.
 - Uncoarsening & refinement: the bipartitioning solution is successively projected to the next-level finer graph, and at each level an iterative refinement algorithm (such as KL or FM) is used to further improve the solution.

hMETIS

- Kayrpis, Aggarwal, Kumar and Shekhar, "Multilevel hypergraph partitioning: application in VLSI domain," DAC, 1997.
- Three coarsening algorithms:
 - Edge coarsening: A maximal matching of the vertices.
 - **Hyperedge coarsening**: a set of hyperedges is selected, and the vertices belonging to a selected hyperedge are merged into a cluster. (Preference: hyperedges with large weights and hyperedges of small size.)
 - Modified hyperedge coarsening: hyperedge coarsening + merging the remaining vertices of each hyperedge into a cluster.

hMETIS (Cont'd)

Unit 3 40

hMETIS (Cont'd)

- Two uncoarsening & refinement algorithms:
 - FM algorithm with modifications:
 - * Restrict the maximum number of passes to 2.
 - * Stop each pass when no improvement is made from the first *k* moves.
 - Hyperedge refinement: move groups of vertices between subsets so that an entire hyperedge is removed from the cut set.

Partitioning for Wirelength Minimization

- Chen, Chang, Lin, "IMF: Interconnection-driven floorplanning for large-scale building-module designs," ICCAD-05
- Minimizing cut size is *not* equivalent to minimizing wirelength (WL)

- Problem: hyperedge weight is a constant value!
 - Shall map the min-cut cost to wirelength (WL) change
 - Shall assign the hyperedge weight as the value of wirelength contribution if the hyperedge is cut

Unit 3 42

Net Weight Assignment

• net₁ connects a movable node *a* and a fixed node 1.

Weight(
$$net_1$$
) = WL(net_1 is cut) – WL(net_1 is not cut)

$$=L-0L=L$$

• net₂ connects a movable node *b* and a fixed node 2.

Weight(
$$net_2$$
) = WL(net_2 is cut) – WL(net_2 is not cut)

$$= 0.8L - 0.2L = 0.6L$$

Examples

Cut weight is proportitional to the wirelength (WL) WL = Cut weight + 0.2L

(0.2L is the WL lower bound: placing a & b in the left side)

Relationship Between WL and Cut Weight

- Theorem: $WL_i = W_{1,i} + n_{cut,i}$
 - n_{cut.i}: cut weight for net i
 - $w_{1,i}$: the wirelength lower bound for net i
- Then, we have $\min(\sum WL_i) = \min(\sum (w_{1,i} + n_{cut,i})) = \sum w_{1,i} + \min(\sum n_{cut,i})$

Finding the minimum wirelength is equivalent to finding the cut weight

Clustering for Delay Minimization

- Allow gate duplication.
- Gate duplication may help reduce delay.

 $D=3; M=2; \delta(v)=1, w(v)=1, \text{ for each } v.$

Without gate duplication

With gate duplication

Unit Delay Model

- No gate delay.
- No interconnection delay within a cluster.
- Delay of 1 unit for an interconnection between 2 clusters.
- An optimal algorithm for area constraint only (Lawler, Levitt and Turner, IEEE TC, 1966).
- An optimal algorithm for pin constraint only (Cong and Ding, ICCAD, 1992).

Circuit delay = 3.

General Delay Model

- Each gate has a delay.
- No interconnection delay within a cluster.
- Delay of *D* units for an interconnection between 2 clusters.
- A heuristic algorithm for area constraint only (Murgai, Brayton and Sangivanni-Vincentelli, ICCAD, 1991).

$$D = 2$$
, $\delta(v) = 1$, circuit delay = 6+4 = 10.

- Rajaraman and Wong, "Optimal clustering for delay minimization," DAC, 1993.
- Optimal algorithm: $O(n^2 \log n + nm)$, where n is # of gates, m is # of interconnections.
- Definitions:
 - M: the area constraint on a cluster.
 - W(C): the total area of the gates in cluster C.
 - *N*: a given combinational circuit.
 - N_v : v and all its *predecessors* in N.
 - $\delta(v)$: the delay of v.
 - $\Delta(u,v)$: maximum delay along any path from the output of u to the output of v, ignoring delays on interconnections.
 - w(v): the area of v.
 - l(v): the delay at v in an optimal clustering of N_v . For each *primary input* v, $l(v) = \delta(v)$.
 - $-l'(u)=l(u)+\Delta(u,v), \text{ for each } u \text{ in } N_v-\{v\}.$

- Algorithm: labeling phase + clustering phase.
- Labeling phase: compute l(v) for each v in a topological order.
 - P: the set of nodes in N_v -{v} sorted in non-increasing order in the value of l'.

```
Algorithm Labeling(v);
begin
done \leftarrow false;
cluster(v) \leftarrow \{v\};
while (not done)
       Remove the first node u in P;
       if (W(cluster(v)) + w(u)) \leq M
                 cluster(v) \leftarrow cluster(v) \cup \{u\};
                 if P is empty
                         done ← true;
                 endif
       else
                 done ← true;
       endif
endwhile
l_1(v) \leftarrow max\{l'(x) \mid x \in cluster(v) \cap PI\};

l_2(v) \leftarrow l(u) + D; max\{l'(u) + P \mid u \in N_v - cluster(v)\}
l(v) \leftarrow max\{l_1(v), l_2(v)\};
end
```

- Clustering phase: generate the clusters based on the information obtained in the labeling phase.
- Overall algorithm:

```
begin
Compute the maximum delay matrix \Delta. \Delta(i, j) is the
maximum delay along any path from the output of i
to the output of j;
for each PI i, do l(i) \leftarrow \delta(i);
Sort the non-PI nodes of N in topological order
to obtain list T;
while T is non-empty
      Remove the first node v from T;
      Compute N_v;
      for each node u \in N_v \setminus \{v\} do
              l'(u) \leftarrow l(u) + \Delta(u, v);
      Sort the nodes in N_v \setminus \{v\} in order of
       decreasing value of l' to form list P;
       Call Labeling(v);
endwhile
L \leftarrow \mathcal{PO};
S \leftarrow \phi;
while L is not empty
       Remove a node v from L; N- cluster (w)
       S \leftarrow S \cup \{cluster(v)\};
       for all nodes x in (N), such that x is adjacent
       to y, for some y \in cluster(v), L \leftarrow L \cup \{x\};
endwhile
end
```

• An example: M=3, D=3

52