

Relativistic Calculation of Anomalous Scattering Factors for X Rays

Don T. Cromer and David Liberman

Citation: The Journal of Chemical Physics 53, 1891 (1970); doi: 10.1063/1.1674266

View online: http://dx.doi.org/10.1063/1.1674266

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/53/5?ver=pdfcov

Published by the AIP Publishing

Re-register for Table of Content Alerts

Create a profile.

Sign up today!

Relativistic Calculation of Anomalous Scattering Factors for X Rays*

Don T. Cromer and David Liberman
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544
(Received 20 April 1970)

Anomalous scattering factors $\Delta f'$ and $\Delta f''$ have been calculated relativistically for Cr, Fe, Cu, Mo, and Ag K_{α} radiations for the atoms Li through Cf. An interpolation scheme for other wavelengths is included in a separate report. Relativistic calculations of the photoelectric cross section have been made and the integral for the principal contribution to $\Delta f'$ has been evaluated numerically without approximation to the form of the cross section-vs-energy curve, as has been done in previous calculations. Many of the results are significantly different from previous calculations. Where experimental values exist, agreement for $\Delta f''$ is improved. For the rare gases, except for xenon, agreement between $\Delta f'$ and experiment is improved. Because of the more rigorous evaluation of $\Delta f'$ from cross-section information, it is presumed that the present $\Delta f'$ values are more accurate than previous calculated values. Calculated mass absorption coefficients for the elements are included as incidental information.

I. INTRODUCTION

In 1965 an extensive calculation of anomalous x-ray scattering factors $\Delta f'$ and $\Delta f''$ was published by Cromer.¹ The method used in making those calculations was the same as that given by James,² developed in a more general form by Parratt and Hempstead,³ and later used by Dauben and Templeton⁴ and by Templeton.⁵ The major improvement by Cromer¹ was in the use of relativistic wavefunctions to compute the oscillator strengths required by the method.

In all these previous calculations an approximation was made concerning the variation of the photoelectric absorption coefficient, or cross section, with energy. This approximation, where $\sigma(\omega)$ is the cross section at energy ω and ω_k is the binding energy of the electron, was used for two reasons: (1) The variation of the cross section with energy, although not well known, was believed to be approximately of this form, and (2) this functional form made it possible to integrate the function for $\Delta f'$ in closed form. The value of n in Eq. (1) was assumed to be 11/4 for the 1s 1/2 orbital, 7/3 for the 2s 1/2 orbital, and 5/2 for all other orbitals. The constant, $\sigma(\omega_k)$, can be obtained from the oscillator strength. The use of Eq. (1) was recognized as a basic flaw in the method, and the present calculations were undertaken to remove this approximation.

II. THEORY

The scattering amplitude for light by a bound electron is, according to relativistic quantum theory, 6

$$\sigma(\omega) = (\omega_k/\omega)^n \sigma(\omega_k), \qquad (1) \text{ is, according to relativistic q}$$

$$S_{i\to f} = -2\pi i \delta(\epsilon_1 + \hbar\omega_1 - \epsilon_2 - \hbar\omega_2) \cdot \left[4\pi (e\hbar c)^2 / 2mc^2 \hbar(\omega_1\omega_2)^{1/2}\right] f,$$

where

$$f = mc^{2} \sum_{n+} \left(\frac{\langle 2 \mid \mathbf{e}_{2} \cdot \boldsymbol{\alpha} \exp(-i\mathbf{k}_{2} \cdot \mathbf{r}) \mid n^{+} \rangle \langle n^{+} \mid \mathbf{e}_{1} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k}_{1} \cdot \mathbf{r}) \mid 1 \rangle}{\epsilon_{1} - \epsilon_{n}^{+} + \hbar \omega_{1}} + \frac{\langle 2 \mid \mathbf{e}_{1} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k}_{1} \cdot \mathbf{r}) \mid n^{+} \rangle \langle n^{+} \mid \mathbf{e}_{2} \cdot \boldsymbol{\alpha} \exp(-i\mathbf{k}_{2} \cdot \mathbf{r}) \mid 1 \rangle}{\epsilon_{1} - \epsilon_{n}^{+} - \hbar \omega_{2}} + mc^{2} \sum_{n} \left(\frac{\langle 2 \mid \mathbf{e}_{2} \cdot \boldsymbol{\alpha} \exp(-i\mathbf{k}_{2} \cdot \mathbf{r}) \mid n^{-} \rangle \langle n^{-} \mid \mathbf{e}_{1} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k}_{1} \cdot \mathbf{r}) \mid 1 \rangle}{\epsilon_{2} + |\epsilon_{n}^{-}| + \hbar \omega_{2}} + \frac{\langle 2 \mid \mathbf{e}_{1} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k}_{1} \cdot \mathbf{r}) \mid n^{-} \rangle \langle n^{-} \mid \mathbf{e}_{2} \cdot \boldsymbol{\alpha} \exp(-i\mathbf{k}_{2} \cdot \mathbf{r}) \mid 1 \rangle}{\epsilon_{2} + |\epsilon_{n}^{-}| - \hbar \omega_{1}} \right).$$
 (2)

f is the desired scattering factor; \mathbf{e}_1 and \mathbf{e}_2 are the polarization vectors, and \mathbf{k}_1 and \mathbf{k}_2 the wave vectors of the incident and scattered light; ω_1 and ω_2 are the corresponding angular frequencies; $c\alpha$ is the Dirac velocity operator; 1 and 2 are the initial and final states of the electron; and n^+ and n^- indicate intermediate electron states of positive and negative energy. The sums are over all positive and negative intermediate states except those positive energy states occupied by other atomic electrons. A further sum must be taken over all the electrons of the atom, but this will not be indicated explicitly in most of the following formulas.

To put f into a form which resembles the nonrelativistic scattering factor more closely and which is simpler for computational purposes, we write

$$f = f_0 + (f - f_0),$$
 (3)

where f_0 is defined by an equation like Eq. (2), except that all energy denominators are replaced by $2mc^2$, and 1891

the sums over n^+ and n^- include all states without exception. Since the set of intermediate states is complete,

$$f_0 = mc^2 \langle 2 \mid (\mathbf{e_2 \cdot \alpha e_1 \cdot \alpha + e_1 \cdot \alpha e_2 \cdot \alpha}) \exp[i(\mathbf{k_1 - k_2}) \cdot \mathbf{r}] \mid 1 \rangle / 2mc^2$$

$$= \mathbf{e_1 \cdot e_2} \langle 2 \mid \exp[i(\mathbf{k_1 - k_2}) \cdot \mathbf{r}] \mid 1 \rangle. \tag{4}$$

 f_0 is the main part of the scattering factor for x rays. The remaining anomalous terms are treated as follows. Let the two sums in Eq. (2) be called f^+ and f^- and let f_0 be similarly decomposed. Then Eq. (3) may be rewritten as

$$f = f_0 + f^+ - f_0^+ + (f^- - f_0^-). \tag{5}$$

 f^+ is the largest of the anomalous terms and will be evaluated by being related to the photoelectric cross section as indicated below; f_0^+ is small and may be evaluated by making the nonrelativistic approximation and considering only the electric dipole contributions; and $f^--f_0^-$ is of similar size and is evaluated by using the same approximations.

For a particle obeying the Dirac equation,

$$(c\boldsymbol{\alpha} \cdot \mathbf{p} + \beta mc^2 + V - \epsilon)\psi = 0, \tag{6}$$

where

$$\psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix},\tag{7}$$

the nonrelativistic approximation (to the order of accuracy needed here) consists, for positive energy states, in setting $\epsilon^+ = mc^2 + E^+$.

$$H^{+}\phi = E^{+}\phi, \qquad H^{+} = p^{2}/2m + V,$$

 $\chi = c\boldsymbol{\sigma} \cdot \mathbf{p}\phi/2mc^{2};$ (8)

and, for negative energy states,

$$\epsilon^{-} = -mc^{2} - E^{-},$$

$$H^{-}\chi = E^{-}\chi, \qquad H^{-} = p^{2}/2m - V,$$

$$\phi = -c\sigma \cdot p\chi/2mc^{2}.$$
(9)

The solutions of $H^+\phi = E^+\phi$ and $H^-\chi = E^-\chi$ form complete sets of eigenfunctions.

The electric dipole approximation assumes that $1/|\mathbf{k}|$ is much larger than orbital dimensions and permits the replacement of $\exp(i\mathbf{k}\cdot\mathbf{r})$ by 1.

In evaluating the anomalous terms f^+ , $-f_0^+$, and $(f^--f_0^-)$, we limit ourselves to coherent, nearly forward scattering. Then

State 1 = State 2,

$$\omega_1 = \omega_2,$$

$$|\mathbf{k}_1| = |\mathbf{k}_2| \gg |\mathbf{k}_1 - \mathbf{k}_2|,$$

$$\mathbf{e}_1 \approx \mathbf{e}_2.$$
(10)

The subscripts 1 and 2 will be dropped from ω , \mathbf{k} , and \mathbf{e} .

Turning now to f_0^+ we have

$$f_0^+ = mc^2 \sum_{\mathbf{r}, \mathbf{r}} |\langle n^+ | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1\rangle|^2 \cdot 2/2mc^2.$$
 (11)

In each matrix element there are two terms of equal magnitude: one involving the large component of $|n^+\rangle$ and the small component of $|n^+\rangle$ and the large component of $|1\rangle$. Using the electric dipole approximation and Eq. (8), we get

$$f_0^+ = \sum_{n} | (\phi_n | (\mathbf{\sigma} \cdot \mathbf{e} \mathbf{\sigma} \cdot \mathbf{p} + \mathbf{\sigma} \cdot \mathbf{p} \mathbf{\sigma} \cdot \mathbf{e}) / 2mc | \phi_1) |^2$$

$$= (\phi_1 | (\mathbf{\sigma} \cdot \mathbf{e} \mathbf{\sigma} \cdot \mathbf{p} + \mathbf{\sigma} \cdot \mathbf{p} \mathbf{\sigma} \cdot \mathbf{e})^2 / 4m^2c^2 | \phi_1)$$

$$= (\phi_1 | (\mathbf{e} \cdot \mathbf{p} / mc)^2 | \phi_1). \tag{12}$$

If an average over polarization is now taken, f_0 ⁺ is reduced to

$$f_0^+ = 2/3mc^2(\phi_1 \mid p^2/2m \mid \phi_1). \tag{13}$$

Thus f_0^+ is expressed in terms of the electron kinetic energy. If a sum over all electrons is now taken, we get

$$(-f_0^+)_{\text{tot}} = -2T_{\text{tot}}/3mc^2. \tag{14}$$

The total kinetic energy, T_{tot} , is related by the virial theorem for Coulomb forces to the total energy of the atom by

$$T_{\text{tot}} = -E_{\text{tot}},\tag{15}$$

and the latter is available from self-consistent field calculations.

Next consider the other small anomalous term

$$f^{-} - f_{0}^{-} = mc^{2} \sum_{n^{-}} |\langle n^{-} | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1\rangle|^{2} [\langle \epsilon_{1} + |\epsilon_{n^{-}}| + \hbar\omega\rangle^{-1} - (2mc^{2})^{-1} + (\epsilon_{1} + |\epsilon_{n^{-}}| - \hbar\omega)^{-1} - (2mc^{2})^{-1}]. \quad (16)$$

The bracketed energy denominators are, in the nonrelativistic approximation,

$$-2[(E_1-E_n^{-})/(2mc^2)^2]. (17)$$

In the matrix elements the only important terms involve ϕ_1 for the atomic electron states and χ_n for the negative energy states. Again using the electric dipole term only, we get

$$f^{-}-f_{0}^{-} = mc^{2} \sum_{n} | (\chi_{n} | \mathbf{\sigma} \cdot \mathbf{e} | \phi_{1}) |^{2} \{-2[(E_{1}+E_{n}^{-})/(2mc^{2})^{2}]\}$$

$$= -\sum_{n} (\phi_{1} | \mathbf{\sigma} \cdot \mathbf{e} | \chi_{n}) (\chi_{n} | (H^{+}+H^{-})\mathbf{\sigma} \cdot \mathbf{e} | \phi_{1})/2mc^{2}$$

$$= -(\phi_{1} | (\mathbf{\sigma} \cdot \mathbf{e})^{2}(H^{+}+H^{-}) | \phi_{1})/2mc^{2}$$

$$= -(\phi_{1} | p^{2}/2m | \phi_{1})/mc^{2}.$$
(18)

So $(f^--f_0^-)$ is the same as $-f_0^+$ except for a constant factor, and the same is true for the total contribution to the scattering factor. The sum of the two small anomalous terms for all the electrons in an atom is

$$(-f_0^+ + f^- - f_0^-)_{\text{tot}} = 5E_{\text{tot}}/3mc^2.$$
 (19)

The principal anomalous term, for the case of coherent, nearly forward scattering, is

$$f^{+} = mc^{2} \sum_{n^{+}} |\langle n^{+} | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1\rangle|^{2} [(\epsilon_{1} - \epsilon_{n}^{+} + \hbar\omega)^{-1} + (\epsilon_{1} - \epsilon_{n}^{+} - \hbar\omega)^{-1}].$$
(20)

There are contributions from both unoccupied bound states and continuum states, but the contribution from the unoccupied bound states is small and will be omitted. An estimate of these terms will be given later.

The sum over the continuum states, when they are properly normalized, is

$$f^{+} = mc^{2} \int_{mc^{2}}^{\infty} |\langle \epsilon^{+} | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1\rangle|^{2} [\langle \epsilon_{1} - \epsilon^{+} + \hbar \omega \rangle^{-1} + (\epsilon_{1} - \epsilon^{+} - \hbar \omega)^{-1}] d\epsilon^{+}.$$
 (21)

The first energy denominator has a singularity if $\hbar\omega$ exceeds the electron binding energy. The treatment for the singular integral is well known from scattering theory. The amplitude of the initial state decreases with time because of depletion due to the scattering. Thus the time dependence in the absence of scattering, $\exp(-i\epsilon_1 t/\hbar)$, is changed to $\exp[-i(\epsilon_1 - i\gamma)t/\hbar]$, where γ is a very small positive number. The singular factor in the integral is changed in the same way:

$$(\epsilon_1 - \epsilon^+ + \hbar\omega)^{-1} \rightarrow (\epsilon_1 - i\gamma - \epsilon^+ + \hbar\omega)^{-1} = P(\epsilon_1 - \epsilon^+ + \hbar\omega)^{-1} + i\pi\delta(\epsilon_1 - \epsilon^+ + \hbar\omega), \tag{22}$$

where P indicates that the principal value of the integral is to be taken and δ is the Dirac delta function. The imaginary part arises from the part of the contour of integration which is close to and just above the singularity. It is the mathematical origin of the imaginary part of the dispersion, $\Delta f''$.

The frequency dependent scattering, f^+ , neglecting transitions to the unoccupied bound states, is then given by

$$mc^{2} \left(P \int_{mc^{2}}^{\infty} \frac{|\langle \epsilon^{+} | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1 \rangle|^{2}}{\epsilon_{1} - \epsilon^{+} + \hbar \omega} d\epsilon^{+} \right.$$

$$+ \int_{mc^{2}}^{\infty} \frac{|\langle \epsilon^{+} | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1 \rangle|^{2}}{\epsilon_{1} - \epsilon^{+} - \hbar \omega} d\epsilon^{+} + i\pi |\langle \epsilon_{1} + \hbar \omega | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1 \rangle|^{2} \right)$$

$$= mc^{2} \left(P \int_{mc^{2}}^{\infty} \frac{2(\epsilon^{+} - \epsilon_{1}) |\langle \epsilon^{+} \langle \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1 \rangle|^{2}}{(\hbar \omega)^{2} - (\epsilon^{+} - \epsilon_{1})^{2}} + i\pi |\langle \epsilon^{+} + \hbar \omega | \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) | 1 \rangle|^{2} \right). \quad (23)$$

The photoelectric cross section is⁶

$$\sigma(\hbar\omega) = (4\pi^2 e^2 m/c\omega) \cdot mc^2 \mid \langle \epsilon_1 + \hbar\omega \mid \mathbf{e} \cdot \boldsymbol{\alpha} \exp(i\mathbf{k} \cdot \mathbf{r}) \mid 1 \rangle \mid^2.$$
 (24)

The matrix element in Eq. (24) is the same as that in the imaginary part of Eq. (23), and $\Delta f''$ is, therefore, given by

$$\Delta f'' = (mc/4\pi\hbar e^2) (\hbar\omega) \sigma(\hbar\omega). \tag{25}$$

Equation (25), although expressed in terms of the cross section rather than the oscillator strength, is the same as given by James.² The real part of f^+ can also be expressed in terms of the cross section and is

$$f^{+} = \left(\frac{mc}{2\pi^{2}\hbar e^{2}}\right) P \int_{mc^{2}}^{\infty} \frac{(\epsilon^{+} - \epsilon_{1})^{2} \sigma(\epsilon^{+} - \epsilon_{1}) d\epsilon^{+}}{(\hbar\omega)^{2} - (\epsilon^{+} - \epsilon_{1})^{2}}.$$
 (26)

This equation is also equivalent to that given by James.² Equation (26) will be applied without approximation to the functional form of the cross section.

Cross sections were computed with the Brysk and Zerby⁷ relativistic photoelectric cross section program. This program was designed to use Dirac–Slater relativistic wavefunctions.⁸ The actual wavefunctions used were computed with the Kohn–Sham⁹ potential, i.e., 2/3 of the Slater¹⁰ $[\rho(\mathbf{r})]^{1/3}$ exchange potential. In addition, experimental energy levels¹¹ were used rather than the computed Dirac–Slater eigenvalues. Equation (26) was then numerically integrated by the Gauss–Legendre method.

Equation (26) must first be transformed into a form convenient for calculation. When atomic units with $\hbar = e = m = 1$ and c = 137.0367 are used, and the integration variable ϵ^+ is redefined by subtracting mc^2 , Eq. (26) may be rewritten as

$$f^{+} = \left(\int_{0}^{\infty} \frac{\sigma(\epsilon^{+} - \epsilon_{1}) \left(\epsilon^{+} - \epsilon_{1}\right)^{2} - \sigma(\hbar\omega) \left(\hbar\omega\right)^{2}}{(\hbar\omega)^{2} - (\epsilon^{+} - \epsilon_{1})^{2}} d\epsilon^{+} + P \int_{0}^{\infty} \frac{\sigma(\hbar\omega) \left(\hbar\omega\right)^{2}}{(\hbar\omega)^{2} - (\epsilon^{+} - \epsilon_{1})^{2}} d\epsilon^{+} \right) \frac{c}{2\pi^{2}}.$$
 (27)

The first integral in Eq. (27) is now continuous at the former singularity, and the second integral is easily evaluated as

$$P \int_{0}^{\infty} \frac{\sigma(\hbar\omega)(\hbar\omega)^{2}}{(\hbar\omega)^{2} - (\epsilon^{+} - \epsilon_{1})^{2}} d\epsilon^{+} = \frac{1}{2} \left[-(\hbar\omega)\sigma(\hbar\omega) \right] \log \frac{|\hbar\omega - \epsilon_{1}|}{|\hbar\omega + \epsilon_{1}|}.$$
 (28)

In order to perform the Gauss-Legendre numerical integration, the integration limits must be changed from 0 to ∞ to 0 to 1 by making one of the following changes of variable:

$$x = -\epsilon_1/(\epsilon^+ - \epsilon_1)$$
 for $1 < \epsilon_1 < 70 \text{ keV}$, (29a)

$$x = [-\epsilon_1/(\epsilon^+ - \epsilon_1)]^2$$
 for $\epsilon_1 \ge 70 \text{ keV}$, (29b)

or

$$x = \left[-\epsilon_{\mathbf{i}} / (\epsilon^{+} - \epsilon_{\mathbf{i}}) \right]^{1/2} \quad \text{for} \quad \epsilon_{\mathbf{i}} \le 1 \text{ keV}. \tag{29c}$$

Substitution (29b) serves to contract the range of energies at which the cross sections must be calculated and substitution (29c) expands this range. These substitutions result in

$$f^{+} = \frac{c\epsilon_{1}}{2\pi^{2}} \int_{0}^{1} \frac{\sigma(-\epsilon_{1}/x) \cdot \epsilon_{1}^{2} - \sigma(\hbar\omega) (\hbar\omega)^{2}x^{2}}{x^{2} \left[x^{2} (\hbar\omega)^{2} - \epsilon_{1}^{2}\right]} dx + \text{Eq. (28)}, \tag{30a}$$

$$f^{+} = -\frac{c}{4\pi^{2}} \epsilon_{1} \int_{0}^{1} \frac{\sigma(-\epsilon_{1} x^{1/2}) \cdot \epsilon_{1}^{2}}{x^{1/2} \lceil (\hbar \omega x)^{2} - \epsilon_{1}^{2} x \rceil} dx + \text{Eq. (28)},$$
 (30b)

 $[\sigma(\hbar\omega) = 0$ in this case for x rays of interest

$$f^{+} = \frac{-c\epsilon_{1}}{\pi^{2}} \int_{0}^{1} \frac{\sigma(-\epsilon_{1}/x^{2})\epsilon_{1}^{2} - \sigma(\hbar\omega)(\hbar\omega)^{2}x^{4}}{x^{3} \lceil (\hbar\omega)^{2}x^{4} - \epsilon_{1}^{2} \rceil} dx + \text{Eq. (28)}.$$
(30c)

The term in Eq. (28) must be added to Eq. (30). With these substitutions it was found that a five-point numerical integration gave f^+ with a numerical accuracy of about four significant figures. The total real dispersion, $\Delta f'$, is then given by f^+ and the energy term of Eq. (19).

III. RESULTS

In addition to the cross sections at the five energies selected by the Gauss-Legendre integration method, the cross section at the incident x-ray energy must also be calculated. The dispersion terms $\Delta f'$ and $\Delta f''$ were calculated in the above fashion for the K_{α_1} energies of Cr, Fe, Cu, Mo, and Ag. The results are given

in Table I. The total cross sections were converted to mass absorption coefficients and these values are also listed in Table I. Table II lists the energy dependent terms of Eq. (19).

The dispersion terms in Table I are for the wavelengths commonly used in crystallography. For other wavelengths the cross sections at those wavelengths must be known. One can interpolate with sufficient

Table I. Anomalous scattering factors and mass absorption coefficients (in square centimeters per gram).

	Ċ	R K ALPH 2.28962	A 1		E K ALPH 1.93597		c	U K ALPH 1.54052		MI	3 K ALPH •70926		AC	6 K ALPH	
ATOM	FP	FPP	MU/RHO	FP	FPP	MU/RHO	FΡ	£ P P	MUZRHO	FP	FPP	MU/RHO	FP	F PP	MU/RHU
L I 8 E	.002	.001 .003	.9 2.9	.002	.001 .002	.5 1.7	.001 .003	.000	-3	000 000	.000 .000	• 0	000 001	.000	• 6
В	.018	•009	6.8	.013	.002	4.0	.003	-004	.8 1.9	000	•001	•1	001	.000	•6 •1
Ċ	.035	.021	13.8	.026	.J15	8.1	.017	• 009	3.9	- 002	• 202	• 3	.000	. 00 1	. 1
N C	.059 .090	•042 •073	23.1 35.5	.044 .069	•029 •052	13.7 21.3	.029 .047	.018	6.7 10.5	•004 •008	•003 •006	•6 •9	.001	• 00 Z • 00 4	• 3 • 4
F	.129	-119	48.9	.100	-085	29.5	•069	. 153	14.7	•:14	•010	1.3	.006	.004	. 6
۸E	.174	-184	70.9	.138	-132	43.0	.097	.083	21.6	-021	•016	2.0	.011	. 01 0	. 9
NA M-G	•223 •272	-270 -381	91.4 122.0	.180 .224	•195 •277	55.8 74.8	•129 •165	.124	28.2 38.1	•930 •942	•025 •036	2.6 3.6	•016 •023	.015 .022	1.7
AL	.318	•522	150.4	. 269	.381	92.8	.264	.246	47.6	• '56	•052	4.6	.032	.031	2.2
12	.355 .377	.693 .900	191.9 225.9	.311 .347	•509 •664	119.1 140.8	•244 •283	• 330 • 434	61.5 73.2	•672 •990	•071 •095	6.1 7.3	.042 .055	•043 •058	2.9 3.6
s	374	1.142	276.9	.370	.847	173.6	.319	.557	90.8	.110	•124	9.3	.068	.076	4.5
CL	• 335	1.423	312.0	.375	1.061	196.6	.348	.702	103.6	.132	• 159	10.8	.084	. 099	5.3
AR K	.243 .070	1.747 2.110	340.0 419.5	• 35 2 • 28 6	1.309	215.4 267.2	•366 •365	•d72 1•u66	114.2 142.6	•155 •179	•201 •250	12.1 15.4	.101 .118	.125 .156	5.9 7.6
C A	221	2.514	487.6	.163	1.904	312.3	.341	1.286	167.8	.203	• 336	18.4	.137	.193	9.1
S C T 1	717 -1.683	2.968 3.470	513.3 563.1	038 357	2 • 256 2 • 643	329.9 362.8	.285 .169	1.533	178.4 197.3	• 226 • 248	• 372 • 446	19.9 22.4	•156 •175	.235 .283	9.9 11.2
v.	-3.841	•459	70.0	- 896	3.070	396.1	.035	2.110	216.6	. 267	•530	25.1	.194	- 338	12.6
CR	-2.161	-548	82.0	-1.973	3.533	446.6	198	2.443	245.8	• 284	•624	28.9	. 213	. 399	14.6
MN FE	-1.639 -1.339	•650 •764	92.0 106.4	-3.367 -2.095	•481 •566	57.5 66.6	568 -1.179	2.808 3.204	267.3 300.1	• 295 • 301	• 729 • 845	32.0 36.5	• 22 9 • 24 4	. 468 . 545	16.2 16.5
CO	-1.124	-893	117.7	-1.623	. 662	73.8	-2.464	3.608	320.3	. 299	•973	39.8	· 256	.630	26.3
N I CU	956 795	1.036	137.2 146.3	-1.343 -1.129	.769 .888	86.1 91.9	-2.956 -2.019	•509 •589	45.4 48.5	.285 .263	1.113 1.266	45.6 48.0	.261 .265	. 724 . 826	23.4
ŽN	684	1.373	163.3	~.978	1.021	102.7	-1.612	.678	54.3	.222	1.431	52.7	. 260	. 938	27.3
GA GE	570	1.569	175.0	841	1.168	110.1	-1.354	.777	58.3	- 163	1.609	55.6	.249	1.059	28.9
GE AS	462 365	1.786 2.022	191.3 209.8	~.717 ~.607	1.331 1.508	120.5	-1.163 -1.011	.886 1.006	63.9 70.2	•€81 -•∩30	1.801 2.037	59.8 64.5	.228 .196	1.190	31•1 33•8
SE	273	2.283	224.7	~.503	1.704	141.9	879	1.139	75.5	178	2.223	67.8	.152	1.481	35.6
BR KR	198 130	2.563 2.872	249.3 266.4	~.413 ~.328	1.916 2.149	157.6 168.6	767 665	1.283 1.439	84.0 89.8	374 652	2.456 2.713	74.0 78.0	.090 .008	1.643	39.0 41./
RB	082	3.201	291.1	~.256	2.398	184.5	574	1.608	98-4	-1.044	2.973	83.8	099	2.003	44.5
SR	012	3.608	320.1	161	2.709	203.2	465	1.820	108-7	-1.657	3.264	89.7	230	2.203	47.8
Y ZR	.006 .007	4.002	349.9 376.9	106 661	3.009 3.329	222•4 239•9	386 314	2.)25 2.245	119.1 128.7	-2.951 -2.965	3.542 .560	95.9 14.8	406 639	2.411	51.5 54.8
NB	013	4.876	408.0	~.028	3.676	260.1	248	2.482	139.8	-2.197	•621	16.1	957	2.860	56.5
¥0 TC	063 153	5.353 5.862	433.7 460.3	~.012 ~.017	4.043 4.434	277.0 294.4	191 145	2.735 3.005	149.1 158.8	-1.825 -1.590	•688 •759	17.3 18.5	-1.416 -2.205	3.103 3.353	61.4 64.3
ŔŰ	270	6.406	492.8	~.039	4.854	315.7	105		170.6	-1.420	• R36	19.9	-5.524	3.651	68.6
RH PD	424	6.984	527.6	~.083	5.300	338.5	077	3.605	183.2	-1.287	919	21.5	-2.649	. 596	11.0
AG.	639 924	7.594 8.235	554.9 593.5	~.157 ~.259	5.773 6.271	356.6 382.1	059 060	3.934 4.282	193.4 207.6	-1.177 -1.085	1.007 1.101	22.8 24.6	-2.128 -1.834	.654 .717	11.7 12.6
CD	-1.303	8.912	616.4	416	6.800	397.7	079	4.653	216.6	-1.005	1.202	25.8	-1.637	.783	13.2
IN SN	-1.788 -2.401	9.627 10.380	651.8 679.9	626 888	7.356 7.943	421.1 439.9	126 194	5.345 5.459	229.8 240.6	-•936 -•873	1.310 1.424	27.5 28.9	-1.493 -1.378	.854 .930	14.1 14.9
3.4	24401	13.300	017.7	-2.00	14 743	73747		3.437	240.0		*****	2007		• 750	. , , ,
SB	-3.194	11.166	713.0	-1.214	8.557	462.0	287	5.894	253.2	616	1.546	30.6	-1.284	1.010	15.6
T E I	-4.267 -5.852	11.995 12.850	730.8 787.2	-1.630 -2.147	9.203 9.885	474.1 512.0	418 579	6.352 6.835	260.4 281.7	-•7 7 2 -•7 2 6	1.675 1.812	31.6 34.4	-1.212 -1.144	1.096 1.187	16.3 17.8
ХE	-8.133	11.933	706.5	-2.812	10.608	531.1	783	7.348	292.7	684	1.958	35.9	-1.084	1.284	18.6
CS BA	-10.742 -11.460	12.919 9.981	755.7 565.0	-3.652 -4.832	11.382	563.0 582.2	-1.022 -1.334	7.904 8.460	311.1 322.2	644 613	2.119 2.282	38.4 40.0	-1.029 983	1.391	19.9 23.7
LA	-12.135	3.565	199.5	-6.683	12.937	612.2	-1.716	9.036	340.2	5 8 8	2,452	42.5	942	1.615	22.1
C E P R	-9.574 -7.817	3.843 4.130	213.2 227.9	-8.388 -12.457	11.953 6.285	560.8 293.2	-2.170 -2.939	9.648 10.535	360.2 391.1	564 530	2.632 2.845	45.2 48.6	904 859	1.735	23.5 25.2
ND	-7.486	4.427	238.6	-11.016	9.874	450.0	-3.431	10.933	396.5	535	3.018	50.4	842	1.995	26.3
PM	-6.891	4.741	250.7	-12.122	3.627	162.2	-4.357	11.614	413.3	530	3.225	52.8	- 818	2.135	27.6
5 M E U	-6.429 -6.050	5.073 5.416	262.3 277.1	-9.616 -8.352	3.883 4.149	169.8 179.5	-5.696 -7.718	12.320 11.276	428.6 388.1	533 542	3.442 3.669	55.1 58.1	798 782	2.281 2.435	28.8 30.4
GD	-5.779	5.773	285.4	- 7. 565	4.427	185.0	-9.242	11.946	397.4	564	3.904	59.8	774	2.595	31.3
TB CY	-5.525 -5.250	6.153 6.549	301.0 313.3	-6.980 -6.492	4.721 5.026	195.3 203.3	-9.498 -10.423	9.242 9.748	304.2 313.8	591 619	4.151 4.410	62.9 65.4	767 761	2.764 2.940	33.0 34.4
HQ	-5.040	6.958	328.0	-6.112	5.343	213.0	-12.255	3.704	117.5	666	4.678	68.3	765	3.124	36.0
ER TM	-4.878	7.387	343.3	-5.810	5.675	223.0	-9.733	3.937	123-1	723	4.958	71.4	773	3.316	37.6 39.5
YB	-4.753 -4.652	7.833 8.291	360.5 372.5	-5.565 -5.361	6.022 6.378	234.3 242.3	-8.488 -7.701		129.5 134.0	795 884	5.248 5.548	74.8 77.2	790 815	3.515 3.723	40.9
LU	-4.580	8.759	389.2	-5.190	6.745	253.4	-7.133	4.693	140-3	988	5.858	80.6	847	3.937	42.7
HF TA	-4.592 -4.540	9.277 9.811	404.1 421.5	-5.088 -4.948	7.148 7.565	263.3 274.8	-6.715 -6.351	4.977 5.271	145.8 152.4	-1.118 -1.258	6.185 6.523	85.5 86.8	890 937	4.164 4.399	44.3 46.2
w	-4.499	10.364	438.2	-4.823	7.996	285.9	-6.048	5.577	158.7	-1-421	6.872	90.0	993	4.643	48.0
RE OS	-4.483 -4.503	10.929 11.520	456.3 470.9	-4.719 -4.647	8.439 8.903	297.9 307.7	-5.790 -5.581	5.891 6.221	165.5 171.1	-1.598 -1.816	7.232 7.605	93.5 96.3	-1.048 -1.127	4.894 5.156	49.9 51.5
IR	-4.527	12.140	491.0	-4.578	9.389	321.1	-5.391	6.566	178.7	-2.066	7.990	100.1	-1.216	5.427	53.6
PT	-4.584	12.787	509.5	-4.535	9.895	333.4	-5.233	6.925	185.7	-2.352	8.388	103.5	-1.319	5.708	55.6
AU HG	-4.668 -4.803	13.451 14.143	530.9 548.1	-4.510 -4.523	10.418 10.963	347.7 359.2	-5.096 -4.990	7.297 7.686	193.8 200.4	-2.688 -3.184	8.798 9.223	107.6 110.7	-1.438 -1.576	5.998 6.299	57.8 59.6
T t.	-4.945	14.860	565.3	-4.532	11.528	370.8	~4.883	8.089	207.0	-3.556	9.659	113.8	-1.730	6.610	61.4
98 8 I	-5.161 -5.420	15.595	585.2 607.9	-4.596 -4.688	12.108	384.2 399.5	-4.818 -4.776	8.505 8.930	214•7 223•5	-4.133 -4.861	10.102 10.559	117.4 121.7	-1.910 -2.116	6.930 7.258	63.5 66.0
PO	-5.742	16.341 17.139	634.5	~4.817	13.331	417.3	-4.756	9.383	233.7	-5.424	11.042	126.6	-2.353	7.600	68.7
ΑT	-6.132	17.942	664.2	-4.992	13.969	437.2	-4.772	9.843	245.2	-7.444	9.961	114.2	-2.630	7.949	71.9
RN FR	-6.545 -7.052	18.775 19.615	657.5 683.8	-5.173 -5.402	14.629 15.299	433.2 451.0	-4.787 -4.833	10.317	243.1 253.4	-8.862 -7.912	7.754	112.8 83.7	-2.932 -3.285	8.307 8.674	71.1 73.9
R A	-7.614	20.461	703.8	~5.659	15.977	464.7	-4.898	11.296	261.5	-7.620	8.105	86.4	-3.702	9.047	76.0
A C T H	-8.318 -9.150	21.327 22.240	730.4 745.1	~5.976 ~6.313	16.668 17.397	482.7 492.8	-4.994 -5.091	11.799 12.330	271.9 277.9	-7.725 -8.127	8.472 8.870	89.9 92.1	-4.192 -4.784	9.428 9.819	78.9 80.4
PA	-10.382	23.161	779.5	~6.695	18.140	516.2	-5.216	12.868	291.4	-8.960	9.284	96.8	-5.555	10.227	84.1
U	-10.930	23.121	755.2	~7.126	18.879	521.4	-5.359	13.409	294.7	-10.673	9.654	97.7	-6.735	10.637	84.9
N P P U	-12.152 -12.280	24.097 23.658	790.4 753.8	-7.624 -8.187	19.642 20.425	544.8 550.3	-5.529 -5.712	13.967 14.536	308.3 311.6	-11,15B -9,725	4.148	42.2 42.7	-7.842 -8.473	9.570 6.999	76.7 54.5
ΔM	-12.771	24.607	787.2	-8.872	21.173	572.8	-5.930	15.387	324.8	-8,926	4.511	44.7	-7.701	7.296	57.0
CM BK	-13.513 -14.827	25.540 26.801	803.8 843.5	~9.743 -10.539	21.896 21.942	582.7 583.9	-6.176 -6.498	15.634 16.317	331.1 345.5	-8.416 -7.990	4.697 4.908	45.8 47.9	-7.388 -7.485	7.589 7.931	58.4 61.0
CF	-16.272	27.898	864.1	-11.641	22.785	596.7	-6.798	16.930	352.8	-7.683	5.107	49.0	-7.638	8.246	62.4

Table II. Calculated values of 5/3 (E_{tot}/mc^2).

LI001	BR	231	HO -1.119
BE001	KR	247	ER -1.161
B002	RB	264	TM -1.204
C003	SR	282	YB -1.248
N005	Υ	300	LU -1.293
0007	ZR	319	HF -1.338
F009	NB	338	TA -1.385
NE011	MO	359	W -1.433
NA014	TC	380	RE -1.482
MG018	RU	401	DS -1.532
AL021	RH	424	IR -1.583
SI026	PD	447	PT -1.636
P030	AG	471	AU -1.689
S035	CD	496	HG -1.743
CL041	IN	521	TL -1.799
AR047	SN	547	PB -1.856
K053	SB	575	BI -1.914
CA060	TE	602	PO -1.973
SC068	I	631	AT -2.033
TI075	ΧE	660	RN -2.095
V084	CS	690	FR -2.157
CR093	BA	721	RA -2.221
MN102	LA	753	AC -2.287
FE113	CE	786	TH -2.353
CO123	PR	819	PA -2.421
NI135	ND	854	U -2.490
CU146	PM	889	NP -2.561
ZN159	SM	925	PU -2.633
GA172	ΕU	962	AM -2.707
GE186	GD	-1.000	CM -2.782
AS200	TB	-1.039	BK -2.858
SE215	ΕY	-1.079	CF -2.936

accuracy from the cross sections that have already been computed. We are separately publishing a Los Alamos Scientific Laboratory report¹² containing all of the necessary cross sections and energies and a Fortran program which interpolates the cross section for the desired incident radiation and computes the dispersion. This report is available from the authors on request.

IV. DISCUSSION

The present results are not greatly different from those given by Cromer¹ but should be more accurate because of the more rigorous treatment.¹³ Much of the difference is related to the fact that the cross section-vs-energy relation is not as simple as indicated in Eq. (1). Figure 1 shows log-log plots of calculated cross section vs energy for some of the xenon orbitals. The dashed lines are the cross sections given by Eq. (1), with the cross section at the edge computed from the oscillator strength¹ and an exponent of 7/3 for the 2s orbital and 5/2 for the other orbitals shown.

An estimate of the contribution of unoccupied bound states for the 1s 1/2 orbital of uranium was made in two ways. First, in the self-consistent atomic calculation, the potential was changed to go to zero at a finite radius rather than as 1/r. This change has the

effect of pushing many of the formerly unoccupied bound states into the continuum. The cross-section calculations hardly changed. One can also formally treat these transitions as a sum, analogous to the f^+ integral and write;

Unoccupied bound state contribution to

$$f^{+} = \sum_{i} \left\{ g(i, k) \left(\epsilon_{i} - \epsilon_{k} \right)^{2} / \left[(\hbar \omega)^{2} - (\epsilon_{i} - \epsilon_{k})^{2} \right] \right\}$$

$$= \left\{ \Delta E^{2} / \left[(\hbar \omega)^{2} - \Delta E^{2} \right] \right\} \sum_{i} g(i, k), \tag{31}$$

where the g(i, k) are the transition probability matrix elements used in the sum rule, and ϵ_i is the energy of an unoccupied bound state. Because the ϵ_i are virtually the same, $(\epsilon_i - \epsilon_k)$ can be treated as a constant, ΔE . The wavefunctions were computed for these states up to $10p \ 3/2$, beyond which the program would not bind an electron, and the matrix elements were computed. The results are given in Table III. It is clear that neglect of these transitions has produced little error in f^+ .

V. COMPARISON WITH EXPERIMENT

Experimental measurement of $\Delta f'$ or $\Delta f''$ is very difficult. For $\Delta f'$, intensity measurements must be made on an absolute scale and the unmodified scattering factor, f_0 , must be known. In principle, $\Delta f''$ can be determined from the absorption coefficient, but it is difficult to separate the true photoelectric absorption from all other processes that diminish the intensity. The best way to measure $\Delta f''$ seems to be the very direct process of measuring diffracted intensities of Friedel related pairs, i.e., I(hkl) and $I(h\bar{k}\bar{l})$, from suitable noncentric crystals.

Zachariasen has made direct measurements of Δf" for Si, ¹⁴ K, ¹⁵ and P. ¹⁵ His results and the present and former calculations are given in Table IV. The present calculations are in much better agreement with experiment.

Grimvall and Persson¹⁶ have recently published experimental work on absorption by the 1s 1/2 orbital of germanium. They made experimental estimates of $\Delta f'$,

Table III. Contribution of unoccupied bound states to f^+ for the 1s 1/2 orbital of uranium.

Transition	f+ (Cu radiation)
1s 1/2→7 p1/2	-6.2×10^{-6}
7p3/2	-1.3×10^{-5}
8p1/2	-1.6×10^{-6}
8p3/2	-4.2×10^{-6}
9p1/2	-6.8×10^{-7}
9p3/2	-1.9×10^{-6}
10p1/2	-4.3×10^{-7}
10p3/2	-1.4×10^{-6}
	-29.4×10^{-6}

Fig. 1. Calculated cross sections vs photon energy for several xenon orbitals. The dashed lines are the curves calculated from Eq.(1).

Table IV. Comparison of experimental 14,15 and calculated $\Delta f^{\prime\prime}$ for Si, P, and K.

		$\mathrm{Cu}\;K_\alpha$			Mo K_{lpha}			
	Exptl	Present	Cromer ¹	Exptl	Present	Cromer		
Si	0.31±0.01	0.330	0.36		0.071	0.09		
P	0.44 ± 0.02	0.434	0.46	0.107 ± 0.007	0.095	0.12		
K	1.04 ± 0.06	1.066	1.11	0.271 ± 0.010	0.250	0.30		

TABLE V.	Comparison of	experimental16 a	and calculated Δf	$'$ and Δi	f'' for the 1s 1.	/2 orbital of germanium.

		$\Delta f'$			$\Delta f^{\prime\prime\prime}$		
Ι	Radiation	Exptl	Present	Cromer ¹	Exptl	Present	Cromer
	Cu K _α	-1.79	-1.803	-1.78	0	0	0
	$Mo K_{\alpha}$	0.08	-0.082	0.01	1.58	1.588	1.60
	$Ag K_{\alpha}$	0.27	-0.142	0.21	1.06	1.054	1.05

Table VI. Comparison of experimental and calculated $\Delta f'$ and $\Delta f''$ for the rare gases with Mo K_{α} radiation.

		$\Delta f'$		$\Delta f^{\prime\prime}$			
	Exptl	Present	Cromer ¹	Exptl	Present	Cromer	
Ne	-0.01	0.021	0.03	0.017 ± 0.004	0.016	0.02	
Ar	0.10	0.155	0.18	0.202 ± 0.005	0.201	0.24	
Kr	-0.81	-0.652	-0.47	2.78 ± 0.07	2.713	2.96	
Xe	-0.40	-0.684	-0.59	2.09 ± 0.01	1.958	2,30	

 $\Delta f''$, g, and the exponent in the empirical formula of Eq. (1). By extrapolating the absorption curve from energies that the K edge did not absorb, they were able to estimate the absorption from the K edge alone. Table V gives a comparison of their results with calculated values. The agreement for $\Delta f''$ is good but for $\Delta f'$, except for Cu radiation, is not as good as one would like. Grimvall and Persson obtained $\Delta f'$ from their absorption data by forcing it to fit Eq. (1), which has been shown by these calculations to be an inadequate approximation. It would be interesting to fit their data to a two-term function of the form of Eq. (1) and then compute the $\Delta f'$ integral. Their absorption data were only given graphically, so we could not do this calculation. The calculated $\Delta f'$ includes a contribution of -0.088 from the single orbital equivalent of Eq. (19). This kinetic energy of a single electron was not available as output from our relativistic atomic calculations. Instead, it was estimated from Hartree calculations by Larson and Waber.17

The best measurement of $\Delta f'$ appears to be that of Chipman and Jennings¹⁸ on the rare gases. Table VI gives a comparison of their results with calculated values. The agreement with experiment is improved over previous values in all cases except $\Delta f'$ for xenon.

VI. CONCLUSION

We believe that the present results for both $\Delta f'$ and $\Delta f''$ are significantly improved over those of previous calculations. The fact that $\Delta f''$ now agrees better with experiment shows that the cross-section calculations are reasonably good, and because a more rigorous treatment of the cross sections to obtain $\Delta f'$ has been used, these values should also be more accurate. Much further experimental work on both these quantities, however, is very desirable.

ACKNOWLEDGMENTS

We wish to express our thanks to H. Brysk and C. D. Zerby for providing the cross-section program. This work would have been impossible without this program.

- * Work performed under the auspices of the U. S. Atomic Energy Commission.
 - ¹ D. T. Cromer, Acta Cryst. 18, 17 (1965).
- ² R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell, London, 1948).
- ³ L. G. Parratt and C. F. Hempstead, Phys. Rev. 94, 1593 (1954).
- ⁴ C. H. Dauben and D. H. Templeton, Acta Cryst. 8, 841 (1955).
- ⁵ D. H. Templeton, International Tables for X-Ray Crys-
- tallography (Kynoch Press, Birmingham, 1962), Vol. III, p. 213.

 6 A. I. Akhiezer and V. B. Berestetsky, "Quantum Electrodynamics (Part I)" (translated by Consultants Bureau, Inc.), Technical Information Service Extension, Oak Ridge, Tennessee, AEC-tr-2876 (Pt. I), 1957, p. 357. Available from Office of Technical Services, Department of Commerce, Washington 25, Petrimear Services, Department of Commerce, Washington 28, D.C., \$2.65. Or sec A. I. Akhiezer and V. B. Berestetsky, Quantum Flectrodynamics, Translated by C. M. Volkoff (Interscience, New York, 1965), 2nd ed.

 7 H. Brysk and C. D. Zerby, Phys. Rev. 171, 292 (1968).

 8 D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev. 137, 127 (1968).
- A27 (1965). ⁹ W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

- J. C. Slater, Phys. Rev. 81, 385 (1951).
 J. A. Bearden, Rev. Mod. Phys. 31, 78 (1967).
 D. T. Cromer and D. Liberman, "Relativistic Calculation of Anomalous Scattering Factors for X Rays," LASL Rept. 1472. LA-4403, 1970.
- 13 A report was given on this work at the International Union of Crystallography meeting at Stony Brook, N. Y., August 1970. At that time the present results were thought to be rather different from Cromer's. However, the energy term of Eq. (19) had not been included because it was believed to be negligible. Further investigation has since shown it to be quite significant.
 - ¹⁴ W. H. Zachariasen, Acta Cryst. **18**, 714 (1965)
- W. H. Zachariasen (private communication, 1969).
 G. Grimvall and E. Persson, Acta Cryst. A25, 417 (1969).
- A. C. Larson and J. T. Waber, "Self-Consistent Field Hartree Calculation for Atoms and Ions," LASL Rept. LA-4297 (1969).
 B. R. Chipman and L. D. Jennings, Phys. Rev. 132, 728 (1963).