

## **Covariate shift - More Math**

#### **Covariate Shift and GANs**



- Generative Adversarial Networks
  - Generator reweights training data such that it is indistinguishable from test data

$$\{(x_1, y_1), \dots (x_m, y_m)\} \rightarrow \{\alpha_1(x_1, y_1), \dots \alpha_m(x_m, y_m)\}$$

Discriminator tries to distinguish training and test data

$$\underset{\alpha}{\text{minimize maximize}} \sum_{i=1}^{m} \alpha_i \log p(f(x_i, w), 1) + \frac{1}{m'} \sum_{i=1}^{m'} \log p(f(x_i', w), -1)$$

• Theorem: this is minimized for  $\alpha(x) = q(x)/p(x)$ 

#### **Proof - Covariate Shift and GANs**



Loss per covariate

$$c \log r(y = 1 | x) + d \log r(y = -1 | x)$$

$$= (c + d) \left[ \frac{c}{c + d} \log r(y = 1 | x) + \frac{d}{c + d} \log(1 - r(y = 1 | x)) \right]$$

$$= (c + d) [\gamma \log \rho + (1 - \gamma) \log(1 - \rho)]$$

- Maximizing wrt.  $\rho$  yields  $\rho = \gamma$ , i.e.  $-(c+d)H[\gamma]$
- Minimizing with regard to  $\gamma$  yields  $\gamma = 0.5$  (entropy mode) Distributions must not be distinguishable.

#### **Proof - Covariate Shift and GANs**



Functional derivative with respect to f yields

$$\partial_r \left[ \int dp(x) \alpha(x) \log r(y = 1 \mid x) + \int dq(x) \log r(y = -1 \mid x) \right]$$

$$= \partial_r \int dq(x) \left[ \alpha(x) \frac{p(x)}{q(x)} \log r(y = 1 \mid f(x)) + \log r(y = -1 \mid x) \right]$$

Using optimality yields 
$$\alpha(x) = \frac{q(x)}{p(x)}$$
, i.e. same as before

#### **More Connections**



Maximum Entropy (Agarwal, Li, Smola, 2011)

Solving the classification problem is equivalent to maximum entropy subject to matching moments

maximize 
$$H[\alpha]$$
 subject to  $\left\| \frac{1}{m} \sum_{i=1}^{m} \alpha_i \phi(x_i) - \frac{1}{m'} \sum_{i=1}^{m'} \phi(x_i') \right\|^2 \le \epsilon$ 

Works for Deep Network feature maps, too!



# Case Study - Face Recognition

### Pilot Parliaments Benchmark (Buolamwini & Gebru, 2018)





#### **Face Recognition**











Fewer features make it easier to recognize a face ...

... but that can correlate with other attributes ...

## Face recognition accuracy





Balakrishnan et al, 2020

## **Controlling for Attributes**





Balakrishnan et al, 2020

### **Controlling for Attributes**





#### In Math ...



Given loss l(y, f(x)) with

- Mean  $R[p, f] := \mathbf{E}_{(x,y)\sim p}[l(y, f(x))]$
- . Variance  $\sigma^2[p,f] := \underset{(x,y)\sim p}{\operatorname{Var}} \left[l(y,f(x))\right]$

There exists a q(x) such that  $R[q,f] \ge R[p,f] + \sigma$ 

**Proof**: Mean value theorem implies that there exists at least some  $\mathcal{X}'$  with  $\mathbf{E}_{y|x}[l(y,f(x))] \geq R[p,f] + \sigma$ . Pick q(x) on  $\mathcal{X}'$ .

## **Key Takeaways**



- You can always find a distribution that makes it worse.
  - Simply overweight data with large errors.
  - Ensure proper matching before drawing conclusions.
- Covariate Shift
  - Fixed via GAN (weighting)
  - Fixed via MMD features and MaxEnt
  - Lots more feature-based fixes (not all are sufficient)

## **Training** ≠ **Testing**



- Generalization performance (the empirical distribution lies)
- Covariate shift (the covariate distribution lies)
- Adversarial data
   (the support of the distribution lies)
- Label shift (the label distribution lies)

$$p_{\rm emp}(x,y) \neq p(x,y)$$

$$p(x) \neq q(x)$$

$$\operatorname{supp}(p) \neq \operatorname{supp}(q)$$

$$p(y) \neq q(y)$$