

## Metabolic Biochemistry Notes - 2

Metabolic Biochemistry (University of Technology Sydney)



Scan to open on Studocu

http://www.youtube.com/watch?v=J8PAPK2h39w http://www.flashcardmachine.com/biochemistry-523.html http://voh.chem.ucla.edu/vohtar/spring04/classes/153A-2/pdf/Problem\_set\_5\_solutions.pdf

## Metabolic Biochemistry Notes (91320)

by Andrew Severino



Table of Contents Page No.

### Metabolism: (Greek: metabolē – "change")

- Has a coherent design with common motifs.
- Catabolism: energy being created from the breakdown of large molecules to smaller ones.
- Anabolism: compounds being synthesised by small molecules for cell functioning.
- Metabolites: substrates, intermediates and products of metabolism.

### Sources of Energy

- The 3 ways that humans obtain energy:
  - 1. Carbohydrates
    - 3 forms: simple sugars (glucose, fructose, sucrose), cellulose and starch.



- Glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) is yielded upon digestion.
- Energy is made by glucose being further digested.
- Found in food such as rice, bread, corn and cereals.



### 2. Proteins

- Major building blocks for cells and tissues.
- Also have enzymatic properties.
- Amino acids (aa) and N<sub>2</sub> are yielded upon digestion.





- AA → Proteins through translation process.
- Found in foods such as meat, poultry, fish, nuts and dairy products.



### 3. Lipids and Fats

- Concentrated sources of energy with different functions.
- Fatty acids and Acetyl-CoA (a coenzyme) is yielded upon digestion.
- Saturated fatty acids have single bonds, polyunsaturated have double or triple bonds.



### Saturated

#### Unsaturated

Found in foods such as sweets, butters, oils and fast foods.



Adenosine Triphosphate (ATP)

- Energy currency of cells.
- Phosphate groups have high energy bonds due to their covalence.
- $ATP \longrightarrow ADP \longrightarrow AMP$
- Carrier of chemical energy.
- Nicotinamide Adenine Dinucleotide (NAD+) carry H+ and e-.

### **NITROGENOUS PHOSPHATE** BASE $H_2N$ **GROUPS** -o-P-ი RIBOSE **SUGAR**

### Metabolic Pathways

- Series of reactions catalysed by enzymes.
- They share intermediates and products.
- Catabolic reactions are exergonic (ones that yield free energy from metabolites).
- Energy released by catabolic reactions is utilised to synthesise ATP.
- A few intermediates are shared in catabolism process.
- Products can be re-used as substrates for other reactions.
- Reactions abide to cellular demand by being continuously regulated and coordinated.



What is the difference between oxidised and reduced molecules?

- Reduced molecules have accepted e- which can be passed on to release free energy (more H+).
- Oxidised molecules are donors of e- and can pass less free energy (more O<sub>2</sub>).
- Fatty acids are highly reduced whereas glucose is highly oxidised.





### Inherited Metabolic Diseases

- Large class of genetic disease which involves disorders of metabolic.
- Can be caused by a single defective genes in the enzymatic process, substrates → products.
- Mainly includes carbohydrate and AA diseases.

### Metabolomics

Systematic study of unique chemical fingerprints that are left behind by specific cellular processes.

- Metabolomes represent a collection of all metabolites in an organism's biological cells, tissues and organs.
- Metabolic profiling = instantaneous snapshot of a cells' physiology.





### Bioenergetics and Enzyme Catalysis

### What is Life?

- Breathing **Energy and Respiration**
- Energy of organic molecules used for respiration.

### **Bioenergetics**

- Antoine Lavoisier discovered that chemical reactions needed O<sub>2</sub>.
- Metals became heavier when reacted with O<sub>2</sub> and lighter when react with carbon.
- How does a cell?... Extract energy and reduce power from environment, and synthesize macromolecules.



### **Thermodynamics**

- Flow of energy, heat and matter.
- Systems must be at equilibrium.
- Determines the stability of a system or the spontaneity of a reaction.



### **Equilibrium Constant**

$$A + B \longleftrightarrow C + D$$

$$K_{eq} = \frac{[C][D]}{[A][B]}$$

 $K_{eq} = equilibrum constant$  $[\ ] = concentration of substituent.$ A & B = reactantsC & D = products

### Thermodynamic laws

### 1. Conservation of Energy

- "Energy is neither created nor destroyed, but transformed and transferred.
- 2. Universe tends towards increasing disorder
  - "In all natural processes the universe's entropy increases.
  - > Entropy = Randomness.
  - Entropy also increases when heat is given off.

### Free Energy (Gibbs's Free Energy)

- "Energy that can be harnessed to do work".
- Chemical bonds also contain energy that can do work.
- Carbon-Hydrogen bonds are reduced (contains e<sup>-</sup>) meaning that they contain vast amounts of energy.

### $+\Delta G$

- = Unfavourable reaction that does not occur spontaneously because an energy input is needed.  $-\Delta G$  = favourable reaction that does occur spontaneously because energy is released.
  - Glycogen degradation is a favourable reaction whereas the synthesis of peptidoglycan is an unfavorable reaction.
  - Free energy ( $\Delta G$ ) is used to do Work.
  - Non-useable energy is lost to disorder (entropy:ΔS).

$$Total\ Energy = \Delta G + \Delta S$$

Exergonic Reaction:  $\Delta G < 0$ Endergonic Reaction:  $\Delta G > 0$ 

### Thermodynamic Parameters

- Change in  $\Delta G$ :
  - Negative, exergonic, loss of energy from system and favourable.
  - Positive, endergonic, system gains energy and unfavourable.
- Change in Enthalpy  $(\Delta H)$ :
  - Negative, exothermic, loss of heat from system.
  - Positive, endothermic, system gains heat.
- Change in ∆S:
  - Negative, order increases, entropy loss.
  - Positive, order decreases, entropy gain.

$$\Delta G = \Delta H - T \Delta S$$

 $\Delta G = Gibbs's$  Free Energy  $\Delta H = Change$  in Enthalpy T = Temperature (Kelvin: K)  $\Delta S = Change$  in Entropy

| Favourable Reaction | Unfavourable Reaction |
|---------------------|-----------------------|
| $\Delta H < 0$      | $\Delta H > 0$        |
| $\Delta S > 0$      | $\Delta S < 0$        |
| $\Delta G < 0$      | $\Delta G > 0$        |

### Quantifying thermodynamic Parameters

- $\Delta G$  is used to express the magnitude of the force driving a system to equilibrium when the system is not at this point.
- $\Delta G^{\prime \circ}$  = difference between a product's free energy content and reactants free energy content.
- $\Delta G^{\prime \circ}$  is used for:
  - Standard transformed constants.
  - Standard biological condition (buffered solutions):  $[H^+] = 10^{-7} M$ ,  $[H_2 O] = 55.5 M$

$$\Delta G'^{\circ} = -RTInK'_{eq}$$
 $R = 8.31447 \frac{J}{mol. K}$  (Universal Gas Constant)
 $T = temperature(K)$ 
In is the natural log

| Rules:          |                               |   |                                            |
|-----------------|-------------------------------|---|--------------------------------------------|
| $K'_{eq} > 1.0$ | $\Delta G'^{\circ} = -ive$    | • | reduction procedus formand openium ocusiy. |
| 1               |                               | • | Products less free energy than reactants.  |
| $K'_{eq} = 1.0$ | $\Delta G^{\prime \circ} = 0$ | - | Reaction at equilibrium.                   |
| $K'_{eq} < 1.0$ | $\Delta G'^{\circ} = +ive$    | • | Reaction tends to proceed in reverse.      |
|                 |                               | • | Products more free energy than reactants.  |

- Creatine contributes as an energy source to muscle contractions.
- Two forms:
  - Free creatine
  - Creatine phosphate
- Quickly replenishes ATP.
- Energy is released when chemical bonds are broken.
- Reduced compounds carry energy.

### Chapter 6 - Enzymes (pp.



### Activation Energy

- Energy required for a reaction to take place (to start).
- Determines reaction speed.
- A path of least resistance is followed.
- Always positive.

### Enzyme Kinetics as an approach to understanding the mechanism (pp. 200-

- A reaction rate the amount of time that a reactant takes to be converted into a products.
- Rate constants (k) and [chemicals] determine the rate.

| Reaction              | Rate of reaction               |  |  |
|-----------------------|--------------------------------|--|--|
| $A \longrightarrow C$ | -[A] = k[C]; decrease in $[A]$ |  |  |
|                       | [C] = k[A]; increase in $[C]$  |  |  |

NOTE: Enzyme kinetics is used to determine the rate of a reaction and how experimental parameters change this reaction rate.

### **Equilibrium Simple Reaction**

$$V_{forward}$$
  $V_{reverse}$ 

$$E+S \longleftrightarrow ES \longleftrightarrow EP \longleftrightarrow E+P$$

NOTE: Enzyme is Recycled and Product can be used for other reactions.

Rate Equation: 
$$V = k[S]$$

### Equilibrium Constants:

$$V_{forward} = k_{+1} [A]$$

$$V_{reverse} = k_{-1} [C]$$

$$k_{+1}[A] = k_{-1}[C](At Equilibrium)$$

- Therefore Equilibrium constant for a reaction is equal to:
  - Equilibrium ratio of product and reactant concentrations. Ι.
  - II. Ratio of characteristic rate constants of reaction.

$$k_{eq} = \frac{k_{+1}}{k_{-1}} = \frac{[C]}{[A]}$$

- Rate of reaction by enzymatic catalysis can be affected by substrate concentration [S].
- Initial velocity (V<sub>0</sub>) is a function of [S] and [S] itself is a constant.

 $V_0$  increases linearly with [S] when low increase in [S] slows increase in  $V_0$  $V_0 \approx [S]$  increase

Maximum velocity (V<sub>max</sub>) is this plateau-like region where [S] and V<sub>0</sub> remain the same because the enzyme has reached saturation point.

Downloaded by Daniel Wu (ca.danielwu@gmail.com)

### **Assumptions**

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2/k_{cat}}{\rightleftharpoons} E + P$$

$$\stackrel{k_1}{\longleftarrow} k_{\cdot 1} \stackrel{k_2}{\longleftarrow} E + P$$

$$\stackrel{Constant}{\longleftarrow}$$

K<sub>cat</sub> = # substrate molecules converted to product over a specified time on one enzyme molecule that is always saturated.

- No reverse reaction  $(k_{-2} = 0)$ .
- $k_2$  is rate limiting  $(k_{cat})$ .
- [ES] is constant.

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2/k_{cat}}{\rightleftharpoons} E + P$$

- Pre-steady state of a catalytic reaction is when [ES] builds up.
- Steady state is where [ES] remains constant over time.

### Michaelis-Menten Equation:

$$egin{aligned} oldsymbol{V_0} &= rac{oldsymbol{V_{max}}\left[oldsymbol{S}
ight]}{oldsymbol{K_m} + \left[oldsymbol{S}
ight]} \ oldsymbol{V_0} &= initial\ velocity \ oldsymbol{V_{max}} &= \max velocity \ \left[oldsymbol{S}
ight] = concentration\ of\ substrate \ oldsymbol{K_m} &= Michaelis\ Constant \end{aligned}$$

### Maximal Velocity

- Rate of reaction WILL NOT increase indefinitely if [S] is increased indefinitely.
- Saturation point is where the rate of reaction slows due to all catalytic sites being occupied by substrate.
- The equation reflects the velocity of which an enzyme catalyses a reaction.

### Michaelis Constant

- Measures the binding affinity of enzyme for substrate.
- Low K<sub>m</sub> there is tighter binding and high K<sub>m</sub> means weaker binding.
- If the constant is higher, a much larger [S] is needed to achieve half maximum velocity of reaction velocity.

$$K_m = \frac{(k_{-1} + k_2)}{k_1}$$

Mitochondria has low  $K_m$  Cytosol has high  $K_m$ .

### <u>Double-Reciprocal Plot (Lineweaver-Burk Plot)</u>

$$\begin{split} \frac{1}{V_0} &= \left(\frac{K_m}{V_{max}}\right) \frac{1}{[S]} + \frac{1}{V_{max}} \\ x - intercept &= \frac{-1}{K_m} \\ y - intercept &= \frac{1}{K_m} \end{split}$$

### Enzyme Inhibitors

- Irreversible inhibitors take long to dissociate from target enzyme due to covalent bonding (i.e. drugs and toxins).
- Reversible inhibitors rapidly dissociate from enzyme and can be competitive, uncompetitive or mixed.

| •                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Competitive Inhibitor</li> <li>Resembles substrate.</li> <li>Binds at catalytic site of free enzyme.</li> <li>Causes catalysis of substrate to stop, therefore no product is made.</li> </ul> | <ul> <li>Uncompetitive Inhibitor</li> <li>Binds to another site that is not the active site.</li> <li>Binds to ES complex.</li> </ul> | <ul> <li>Mixed Inhibitor</li> <li>Inhibitor site can be in the enzyme or ES complex.</li> <li>Noncompetitive inhibitors can bind enzyme even if substrate is bounded or not.</li> </ul> |

### Regulatory Enzymes

- When the product from a particular enzymatic reaction binds to an allosteric site, the conformation of that enzyme's catalytic site is altered.
- This alteration of the catalytic site is known as allosteric modulation.
- In any reaction, allosteric enzymes are at the initial steps or branch points.

# Chapter 14 – Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway (pp. 543-580)



### Glycolysis (pp. 544-558)

### **Greek:** glykys = "sugar" and lysis = splitting

- This process involves several enzyme-catalysed reactions that reduce glucose to make 2 pyruvate molecules.
- Throughout the process, free energy is stored as ATP and NADH.
- Fermentation is the anaerobic reduction of organic nutrients to obtain energy.

### Overview of Glycolytic phases

Glycolysis has a preparatory phase and payoff phase.

### Preparatory Stage (5 steps)

- Involves the phosphorylation of glucose and its conversion to glyceraldehyde 3phosphate.
- 1) Glucose *phosphorylated* at hydroxyl (OH) group on C-6 to make **glucose 6-phosphate**.
- 2) Glucose 6-phosphatase is then *converted* into fructose 6-phosphate.
- 3) Fructose 6-phosphate is then *phosphorylated* on C-1 to make fructose 1, 6-bisphosphate.

### In the first 3 steps, ATP is the phosphoryl group donor.

- 4) Fructose 1, 6-bisphosphate is then cleaved to yield Dihydroxyacetone phosphate and Glyceraldehyde 3-phosphate.
- 5) Isomerisation of Dihydroxyacetone phosphate to a second Glyceraldehyde 3-phosphate.

### Payoff Stage (Steps 6-10)

6) Oxidation and phosphorylation by PO<sub>4</sub>3- of both Glyceraldehyde 3-phosphate molecules occurs to yield two molecules of 1, 3-Biophosphoglycerate.

This also produces 2 NADH and ADP molecules.

- 7) Two ATP are formed by phosphorylation of ADP. This causes both 1, 3bisphosphoglycerate molecules to become 3-phosphoglycerates.
- 8) 3-phosphoglycerate molecules converted to 2-phosphoglycerate molecules.
- 9) 2-phosphoglycerate then undergoes a dehydration reaction to form phosphoenolpyruvate (PEP) and two ADP molecules.
- 10) Phosphoryl group is transferred from PEP to ADP and the end products are 2 ATP molecules and 2 pyruvate molecules.

The Preparatory Phase of Glycolysis in Detail

- 1) Phosphorylation of glucose through hexokinase trapping it in cells
- **Hexokinase** activates glucose through the *phosphorylation* of C-6.
- This phosphorylation occurs through ATP being a phosphoryl (PO<sub>3</sub><sup>2</sup>-) donor and **hexokinase** transferring PO<sub>3</sub><sup>2-</sup> to C-6 of glucose.

NOTE: Mg<sup>2+</sup> is needed to activate hexokinase because it shields the negative charges that the ATP PO<sub>3</sub><sup>2</sup> group possesses.

• This forms ADP and yields glucose 6-phosphate (G-6-P).

NOTE: This is an irreversible reaction and phosphorylation of glucose must occur to destabilise it and because G-6-P cannot diffuse out of cell.

- 2) Isomerisation: Converting G-6-P to Fructose 6-phosphate
  - Phosphohexose isomerase (phosphoglucose isomerase) catalyses the <u>reversible</u> isomerisation of the aldose G6P to the ketose fructose 6-phosphate (F6-P).
  - This promotes the formation of a fructose 5C ring.
- Small $\Delta G'^{\circ} = 1.7 \ kI/mol$ .
- 3) Phosphorylation of F6-P to fructose 1,6-bisphosphate
  - Phosphofructokinase-1 (PFK-1) catalyses the transfer of a PO<sub>3</sub><sup>2-</sup> from ATP to 1-C of F6-P and yields **fructose 1**, **6-bisphosphate**.

Mg<sup>2+</sup> is again used for this step.

- PFK-1 is an allosteric enzyme that has its activity regulated when ATP is diminished or if there is an excess of ADP and AMP.
- 4) Cleavage of 1, 6-bisphosphate
  - Aldolase catalyses a <u>reversible</u> aldol reaction of 1,6-bisphosphate to yield two triose phosphates:
    - Dihydroxyacetone phosphate (DHP) an aldose.
    - Glyceraldehyde 3-phosphate (GAP) a ketose. These triose phosphate compounds are isomers of each other.
- 5) Interconversion of DHP and GAP
  - Triose phosphate isomerase rapidly and reversibly converts DHP into GAP two form a second glyceraldehyde 3-phophate molecule.

The formation of two glyceraldehyde molecules ends the preparatory stage!!



The Payoff phase of Glycolysis in Detail

- 6) Oxidising GAP yields 1, 3-bisphosphoglycerate.
  - Glyceraldehyde 3-phosphate dehydrogenase <u>oxidises</u> GAP to yield 1, 3bisphosphoglycerate (1, 3-BPG).
  - Aldehyde (H-C=O) group on GAP is <u>oxidised</u> to a carboxylic acid anhydride, an acyl
    phosphate with a high standard free energy.
  - Energy is conserved by the <u>acyl phosphate group</u> being formed at C-1 of **1**, **3-BPG**.
  - NADH is formed by the reduction of NAD+ and is continuously reoxidised.to NADH.
  - Reduction of NAD+ also yields H+ ions
    - 1, 3-bisphosphoglycerate has high PO<sub>3</sub><sup>2-</sup> transfer potential.

### 7) 1, 3-BPG phosphoryl transfer to ADP

• The high-energy PO<sub>3</sub><sup>2-</sup> group from carboxyl group (C-1) of **1**, **3-BPG** is transferred to ADP via the enzyme **phosphoglycerate kinase (PGK)**.

Mg<sup>2+</sup> is used in the reaction and PGK does the reverse reaction.

- This phosphorylation yields **3-phosphoglycerate** and ATP.
- With ATP being formed by phosphorylation of **1**, **3-bisphosphoglycerate** it is referred to as substrate-level phosphorylation.

Net ATP = 0

NOTE: Steps 6 and 7 constitute an enzyme-coupling reaction where 1, 3-BPG is the product of step 6 and the reactant of step 7.

### 8) Isomerising 3-phosphoglycerate to make 2-phosphoglycerate

 Phosphoglycerate mutase catalyses a <u>reversible shift of the PO<sub>3</sub><sup>2-</sup> group</u> between C-2 and C-3 of glycerate.

NOTE: Mg<sup>2+</sup> is vital for this step to proceed.

• This reaction occurs in two steps to yield **2-phosphoglycerate**.

### 9) 2-phosphoglycerate dehydrated to phosphoenolpyruvate

- **Phosphenolpyruvate (PEP)** is yielded from **enolase** promoting <u>reversible removal</u> of water from **2-phosphoglycerate**.
- Mechanism of enolase reaction involves an enolic intermediate stabilised by Mg<sup>2+</sup>.

### 10) PO<sub>3</sub><sup>2-</sup> group transfer from phosphoenolpyruvate to ADP

- A PO<sub>3</sub><sup>2</sup> group is transferred from PEP to ADP is catalysed by pyruvate kinase.
- For **pyruvate kinase** to carry out catalysis K<sup>+</sup>, Mn<sup>2+</sup> or Mg<sup>2+</sup> is needed.
- **Pyruvate** first appears in its **enol** form and then undergoes <u>tautomerisation rapidly</u> and *nonenzymatically* to its keto form.
- Large, negative standard free-energy change.

### <u>Isoenzymes</u>

- Different enzymes that catalyse the same reaction
- **Hexokinase** and **Hexokinase IV (glucokinase)** catalyse the reaction of glucose and ATP.
- Hexokinase IV is found in the liver and pancreas.

# Glucokinase & MODY2



- Normal glucokinase: insulin secretion as the glucose >5 mM.
- MODY2: loss-of-function mutations → glucokinase molecule that is less sensitive or less responsive to rising levels of glucose.
- β-cells have a normal ability to make and secrete insulin, but do so only above an abnormally high threshold (7-8 mM).



### Gluconeogenesis (pp. 570-580)

- Process in which glucose is made.
- Mainly occurs in the liver.
- Glucose is sythesised from pyruvate.
- Glycolytic reactions involving hexokinase, PFK-1 and pyruvate kinase must be bypassed due their large negative ΔG.

### 1. Bypass 1: Conversion of pyruvate to PEP

- This involves two exergonic reactions:
  - i. Reaction where pyruvate is the glucogenic precursor
    - o Alanine transanimated from pvruvate.
    - Pyruvate carboxylase (only in mitochondria) converts pyruvate to oxaloacetate.

Coenzyme Biotin is needed for this conversion to take place.

- Mitochondrial malate dehydrogenase <u>reduces</u> oxaloacetate to malate in order for it to be transported across the membrane.
- Malate is reoxidised to oxaloacetate by cytosolic malate dehydrogenase.
- The final product, **PEP** is made by **phosphoenolpyruvate carboxykinase** converting oxaloacetate.

Reaction is dependent on Mg<sup>2+</sup>, and a PO<sub>3</sub><sup>2-</sup> group from GTP.



- ii. Reaction where lactate is the glucogenic precursor.
  - Lactate is transformed to pyruvate by lactase dehydrogenase, which also yields NADH and H<sup>+</sup> ion.
  - Once in the mitochondria, oxaloacetate is made by pyruvate being converted by pyruvate carboxylase.
  - Oxaloacetate is then quickly converted to PEP by the isozyme mitochondrial PEP carboxykinase and transported out of the mitochondria

### 2. Bypass 2: Phosphofructokinase

• Fructose 6-phophate is made by Mg<sup>2+</sup>-dependent fructose 1, 6-bisphosphatase (FBPase-1) *hydrolysing* the C-1 of fructose 1, 6-bisphosphatase.

### 3. Bypass 3: Hexokinase

- <u>Dephosphorylation</u> of glucose 6-phosphate to glucose.
- Glucose 6-phosphotase catalyses the <u>hydrolysis reaction</u> to yield glucose.

### Regulation of Glycolysis and Gluconeogenesis (page 574)

• Regulated by allosteric phosphorylation.

### **GLYCOLYSIS**



### **GLUCONEOGENESIS**



### Regulation by Transcription

- Increase hexokinase gene transcription activates glycolysis.
- Increase in glucose 6-phosphatase gene transcription activates gluconeogenesis.

### Regulation: Fructose 2, 6-bisphosphatase

- Stimulates PFK-1 in glycolysis.
- Inhibits FBPase-1 in gluconeogenesis.

### Regulation: Pyruvate kinase

- Glycolysis is inhibited by ATP, acetyl-coA and fatty acids.
- Glycolysis is activated by stimulation of pyruvate kinase by F1, 6BP.

### Pentoses and NADPH

- Rapidly dividing cells: bone marrow, skin and intestinal mucosa.
- Free radical exposed cells: RBCS and cornea.
- Cells synthesising fatty acids: liver, adipocytes and lactating mammary glands.
- Cells synthesising cholesterol and steroid hormones.



### Chapter 16 – The Citric Acid Cycle (pp. 633-666)

### The Mitochondria

- Matrix contains: pyruvate dehydrogenase (PDH), enzymes of the Citric Acid Cycle (CAC) and enzymes of other pathways.
- Outer membrane: large ion channels.
- Inner membrane: cristae, ATP synthase, a major permeability barrier.

### How is pyruvate transported into the mitochondria?

Pyruvate is transported in a symport with H<sup>+</sup> by pyruvate translocase.

### Pyruvate preparation via oxidative decarboxylation (page 634)

• Oxidative decarboxylation is an irreversible oxidative reaction which sees a carboxyl group (O=C-O<sup>-</sup>) removed from pyruvate as CO<sub>2</sub>.

### OXIDATION of the carboxyl group yields a 2C pyruvate molecule.

• This process generates NADH which then gives up a hydride (H<sup>-</sup>) ion to the respiratory chain.

### Reaction is catalysed by pyruvate dehydrogenase.

In anaerobic conditions, pyruvate is <u>oxidised</u> to lactate or ethanol.

### Pyruvate dehydrogenase (PDH) Complex coenzymes (pp. 634-635)

### I. Coenzyme A (CoA-SH)

- Reactive <u>thiol (-SH)</u> group vital for CoA as and <u>acyl carrier</u>.
- <u>Thioesters</u> formed by acyl groups covalently binding to the –SH group.
- Thioesters have a high acyl group transfer potential, allowing donation to several acceptor molecules.

### II. Nictotinamide adenine dinucleotide (NAD+)

- Reversible reduction of nicotinamide ring.
- Soluble e<sup>-</sup> carries.

### III. Flavin adenine dinucleotide (FAD)

- Derived from riboflavin.
- <u>Dimethylisoalloxazine ring</u> system can underdo <u>oxidation</u> and <u>reduction</u>.
- **Permanently bound** to **E**<sub>3</sub> of **PDH complex**, acting as a temporary e<sup>-</sup> holder.

FAD + 2e + 2H<sup>+</sup> → FADH<sub>2</sub>

### PERMANTELY BOUND TO E<sub>3</sub>.

### IV. Lipoate

- Has <u>two thiol groups</u> that can undergo <u>oxidation</u> to form a disulphide bond (-S-S-).
- Can be an e carrier and an acyl carrier.
- <u>Carboxyl end</u> of <u>lipoic acid</u> chain forms an <u>amide bond</u> with <u>sidechain of lysine</u> <u>residue</u> of E<sub>2</sub> to yield <u>lipoamide</u>.
- Long flexible arm links each <u>dithiol</u> of lipoamide to <u>one of two lipoate-binding</u> <u>domains</u> of E<sub>2</sub>.
- This flexible arm extends from core of multienzyme complex and exchange reducing equivalents to E<sub>3</sub>.

### PEMANENTLY BOUND TO E2.

### V. Thiamine pyrophosphate (TPP)

- Derivative of *thiamine* (vitamin B<sub>1</sub>).
- H<sup>+</sup> readily disassociates from the carbon (N=C-S) of *thiazole ring*.

 This results in a <u>carbanion</u> that can attack the e<sup>-</sup>deficient <u>keto carbon</u> of pyruvate.

### PERMANTELY BOUND TO E<sub>1</sub>.

### Three enzymes of the PDH Complex (page 635)

- 1. Pyruvate dehydrogenase (E<sub>1</sub>): 20-30 copies.
- 2. Dihydrolipoyl transacetylase (E2): 60 copies.
- 3. Dihydrolipoyl dehydrogenase (E<sub>3</sub>): 6 copies.

### PDH reaction

- i. <u>Keto carbon (C-1)</u> of **pyruvate** reacts with <u>carbanion (C-2)</u> of **TPP** on **E**<sub>1</sub> yields addition compound. <u>Thiazole ring</u> promotes loss of CO<sub>2</sub> and left is a **hydroyxlethyl-TPP**.
- ii. <u>Hydroxylethyl carbanion</u> on TPP of E₁ reacts with –S-S- of lipoamide on E₂. Keto carbon oxidised to acetate and –S-S- of lipoamide reduced to two –SH groups
- iii. Acetate transferred from –SH of lipoamide to –SH of CoA to form acetyl-CoA.
- iv. <u>Reduced lipoamide</u> swings to **E**<sub>3</sub> active site. Dihydroylipoamide is reoxidised to the –S-S-, as 2e<sup>-</sup> + 2H<sup>+</sup> are transferred to **E**<sub>3</sub> –S-S-.
- v. Dithiol on  $E_3$  is reoxidised as  $2e^- + 2H^+ \rightarrow FAD$ . FADH<sub>2</sub> is then reoxidised,  $2e^- + NAD \rightarrow NADH + H^+$ .

http://www.wiley.com/college/boyer/0470003790/animations/pdc/pdc.htm *Citric Acid Cycle (pp. 638-655)* 

### 1) Formation of Citrate

- Citrate synthase catalyses the condensation of acetyl-CoA and oxaloacetate to citrate
- Methyl carbon of acetyl group on pyruvate is attached to the <u>C-2</u> of oxaloacetate.
- On the catalytic site of citrate synthase, a temporary high-energy <u>thioester</u> intermediate, <u>citroyl-CoA</u> is formed.
- **Cytroyl-CoA** undergoes a rapid <u>hydrolysis reaction</u> to free **citrate** and **CoA** which then are released from catalytic site.
- <u>Hydrolysing</u> the <u>citroyl-CoA</u> causes the reaction to be <u>highly exergonic</u>  $\Delta G'^{\circ} = -32.2 \ kJ/mol$ .

NOTE: CoA is released to convert the second pyruvate to citrate.

### 2) Cis-Aconitate forms Isocitrate

- Aconitase catalyses the <u>reversible transformation</u> of citrate to isocitrate.
- Transformation occurs through the <u>intermediary formation</u> of **cis-aconitate** that **cannot** disassociate from the **aconitase active site**.
- <u>Reversible addition</u> of H<sub>2</sub>O to the double bond of **cis-Aconitate** is promoted by **aconitase**.
- Iron-sulphur centre of aconitate binds substrate at active site and catalytic addition/removal of H<sub>2</sub>O.

### 3) α-Ketoglutarate and CO<sub>2</sub> are products formed by Oxidation of Isocitrate

- Oxidative decarboxylation of isocitrate forms α-Ketoglutarate and CO<sub>2</sub> which is released.
- Reaction is catalysed by isocitrate dehydrogenase.
- Found in the enzyme's catalytic site is Mn<sup>2+</sup> which interacts with the C=O group of
   oxalosuccinate intermediate and stabilises the enol formed by <u>decarboxylation</u>.



# NOTE: Oxalosuccinate intermediate DOES NOT leave the binding site until it is decarboxylated into $\alpha$ -Ketoglutarate. Both the intermediate and enol are formed temporarily.

### 4) Oxidation of α-Ketoglutarate to Succinyl-CoA and CO<sub>2</sub>

- Succinyl-CoA and CO<sub>2</sub> are formed by the <u>oxidative decarboxylation</u> of α-Ketoglutarate.
- This <u>decarboxylation</u> is catalysed by the α-Ketoglutarate dehydrogenase complex, where NAD<sup>+</sup> acts as an e<sup>-</sup> acceptor and CoA as a succinyl group carrier.
- Energy of oxidation of  $\alpha$ -Ketoglutarate is  $\underline{convsered}$  in the  $\underline{succinyl-CoA\ thioester\ bond}$ .

### 5) Conversion of Succinyl-CoA to Succinate

- Succinate is made by energy from breaking the <u>thioester bond</u> of succinyl-CoA being used to synthesise a <u>phosphoanhydride bond</u> in GTP.
- Reaction is catalysed by succinyl-CoA synthetase.
  - Intermediate step: enzyme molecule being phosphorylated as a His residue found in its active site.
- PO<sub>3</sub><sup>2</sup>- is transferred to ADP (GDP) to form ATP (GTP).
- Nucleoside diphosphate kinase catalyses the <u>reversible reaction</u> of the PO<sub>3</sub><sup>2-</sup> transfer from GTP (formed by succinyl CoA) to ADP to make ATP.

### 6) Oxidation of Succinate → Fumarate

- Succinate is <u>oxidised</u> by flavoprotein succinate dehydrogenase to fumarate.
- Electrons pass from **succinate** through FAD to form FADH<sub>2</sub>.
- E<sup>-</sup> Are then passed from FADH<sub>2</sub> to O<sub>2</sub>, the terminal e<sup>-</sup> acceptor in the Electron Transport Chain (ETC).

NOTE: Succinate dehydrogenase is tightly bound to the mitochondrial inner membrane of eukaryotic cells.

### 7) Malate → Fumarate via hydration

- Fumerase catalyses the <u>reversible hydration</u> of fumarate to L-malate.
- Carbanion is a transition state of this reaction.
- Highly stereospecific; trans double bond of fumerate is hydrolytically catalysed.

### 8) Oxidation of L-Malate → Oxaloacetate

- Oxidation of L-malate → oxaloacetate is catalysed by NAD-linked L-malate dehydrogenase.
- Endergonic reaction with a very large standard free energy.
- Citrate synthase continually removes oxaloacetate.

http://www.wiley.com/college/boyer/0470003790/animations/tca/tca.htm

### Energy of oxidations in Cycle is Efficiently Conserved (pp. 647-648)

- Energy released in <u>oxidations</u> of **isocitrate** and α-ketoglutrate was conserved with 3x NAD<sup>+</sup> and 1x FAD being reduced and ATP being produced.
- Oxaloacetate is regenerated at the end of cycle.
- Although the cycle only produces 1x ATP (succinyl-CoA→succinate), the <u>four</u>
   oxidation steps provide a large flow of e<sup>-</sup> to the respiratory chain via NADH and FADH<sub>2</sub>.

### Citric Acid Cycle Regulation (pp.653-655)

### PDH complex is regulated by allosteric regulation and covalent modification

- PDH complex is inhibited by ATP, NADH and acetyl-CoA.
- Greatly enhanced from *allosteric inhibition* by fatty acids (FA).
- AMP, CoA and NAD+ (fuels) allosterically activate the **PDH complex** when acetate levels are very low.
- NADH competes with NAD+ for binding to E<sub>3</sub>.
- Acetyl-CoA competes with CoA for binding to E<sub>2</sub>.
- Citrate synthase is <u>inhibited</u> by NADH, succinyl-CoA, citrate and ATP but is allosterically activated by ADP.
- **Isocitrate dehydrogenase** is inhibited by ATP and allosterically activated by Ca<sup>2+</sup> and ADP.
- Succinyl-CoA and NADH *deactivate* the α-ketoglutarate dehydrogenase complex, but Ca<sup>2+</sup> *allosterically activates* it.

### Regulation of the mammalian PDH Complex via covalent modification



### Chapter 19 - Oxidative Phosphorylation (pp. 731-

### Overview

- Transference of e<sup>-</sup> from NADH and FADH<sub>2</sub> to membrane bound proteins in **ETC**.
- This transference creates a protein gradient across the inner mitochondrial membrane.
- **Ubiquinone (Coenzyme Q or Q)** and **Cytochrome C (Cyt c)** are mobile e<sup>-</sup> carriers that transport e<sup>-</sup> from protein to protein.
- FADH<sub>2</sub>  $e^{-} \rightarrow Q \rightarrow Cyt c \rightarrow \frac{1}{2} O_2 + 2H^+ \rightarrow 2H_2O$ .
- Electrochemical gradient is used to produce ATP through the ATP synthase rotary motor.
- Iron-sulfur (Fe-S) proteins is iron being associated with either inorganic sulfur or S atoms of Cys residues (Cys-SH) in the protein.
- These Fe-S centres can range from a single Fe atom to 4Cys-SH or Fe-S centres with two or four iron atoms.

RIESKE iron-sulphur proteins are single Fe atoms being coordinated to two His-residues.

### Electrons are funneled to universal e acceptors (page 734)

- When e<sup>-</sup> enter the respiratory chain, oxidative phosphorylation commences.
- They arise from dehydrogenases which collect them from catabolic pathways and funnel them to universal e<sup>-</sup> acceptors, NAD<sup>+</sup> and FMN or FAD<sup>+</sup>.

NAD\*

Nicotinamide
nucleotide-linked
dehydrogenase
oxidised substrate + NADH + H\*

### E pass through a series of membrane bound carriers (page 735)

Q and Cyt c are mobile electron carriers.

### Ubiquinone (Co enzyme $Q_{(10)}/Q$ )

- o Lipid-soluble benzoquinone ring with long isoprenoid side chain.
- Can diffuse across the lipid bilayer of the inner mitochondrial membrane and is able to transport reducing equivalents between other, less mobile e<sup>-</sup> carriers.
- Central role in coupling e<sup>-</sup> flow and H<sup>+</sup> movement.

### Cytochrome c

- Heme C centre.
- Soluble protein associated with outer surface of inner membrane by electrostatic forces.

### Multienzyme Complex (737-

### Complex I: NADH → Ubiquinone

- Known as **NADH dehydrogenase** and made of 42 different peptide chains.
- These peptide chains include an FMN-containing protein and at least six Fe-S centres.
- Catalyses two simultaneous and obligatory coupled processes:
  - 1) Exergonic transfer of H⁻ from NADH → ubiquinone and H⁺ from the matrix.

 $NADH + H^- + Q \rightarrow NAD^+ + QH_2$ 

2) Endergonic transfer of 4H<sup>+</sup> from matrix → intermembrane space.

NADH +  $5H_N^+$  + Q  $\rightarrow$  NAD+ + QH<sub>2</sub> +  $4H_P^+$ 

- This makes **Complex I** a *proton pump* that is driven by the energy of e<sup>-</sup> transfer.
- QH₂ diffuses from Complex I → Complex III.

### Complex II: Succinate → Ubiquinone

- It is succinate dehydrogenase.
- E transfer: succinate-binding site → FAD → FADH<sub>2</sub> → Fe-S → Q-binding site.
- Heme b IS NOT in the direct path of e<sup>-</sup> transfer, and serves to prevent leakage of e<sup>-</sup> from succinate → O<sub>2</sub> to produce H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>-</sup>.

### Complex III: Ubiquinone to Cytochrome c

- Ubiquinone: cytochrome c oxidoreductase or cytochrome bc1 complex.
- This complex <u>couples e<sup>-</sup> transfer</u> from **ubiquinol** (QH<sub>2</sub>) to Cyt c with vectorial transport of H<sup>+</sup> from matrix to intermembrane space.
- The Q cycle is a model used to describe the passage of  $e^-$  and  $H^+$  through Complex III. QH<sub>2</sub> + 2cyt c<sub>1</sub> (oxidised) + 2 $H_N^+ \rightarrow$  Q + 2cyt c<sub>1</sub> (reduced) + 2 $H_P^+$
- **Q cycle** accommodates the switch between  $2e^{-}$  carrier **ubiquinol** and  $1e^{-}$  carriers (cytochromes b, c and  $c_1$ ).
- **Cyt c** is a soluble protein of intermembrane space.
- After heme accepts e<sup>-</sup> from **Complex III**, **Cyt** *c* transverses to donate it to the binuclear copper centre in **Complex IV**.

### Complex IV: Cytochrome $c \rightarrow O_2$

- Known as cytochrome oxidase which carries electrons from Cyt  $c \rightarrow O_2$  to form  $H_2O$ .
- Cytochrome oxidase has three subunits that are vital for its function.
- **Subunit II** contains two Cu ions complexed with –SH groups of two Cys residues in a <u>binuclear centre (Cu<sub>A</sub>)</u>, resembling 2Fe-2S centres.
- **Subunit I** has two heme groups; <u>heme a</u> and <u>a</u><sub>3</sub>, and another Cu ion (<u>Cu</u><sub>B</sub>).
- <u>Second binuclear centre. Heme a<sub>3</sub> and Cu<sub>B</sub></u> accepts e<sup>-</sup> from <u>heme a</u>, transferring them to O<sub>2</sub> which is bound to a<sub>3</sub>.

E transfer: Cyt  $c \rightarrow Cu_A \rightarrow heme a \rightarrow heme a_3-Cu_B centre \rightarrow O_2$ .

- 4H<sup>+</sup> from *N-side* are consumed by enzyme in converting  $O_2 \rightarrow 2H_2O$  after 4e<sup>-</sup> have passed through complex.
- Energy from this reaction is used to pump 1e<sup>-</sup> into *P-side* for each e<sup>-</sup> that has passed through, adding to the electrochemical potential.

4 cyt c (reduced) +  $8H_N^+$  +  $O_2 \rightarrow$  4 cyt c (oxidised) +  $4H_P^+$  +  $2H_2O$ 

### NOTE:



- Reaction involves redox centres that can carry only ONE e<sup>-</sup> at a time and incompletely reduced intermediates MUST NOT be released.
- Intermediates TIGHTLY bound to complex until FULL conversion to water.

### Overview of Glycogen (pp. 255-



### Glycogen Metabolism (pp. 612-619)



### Enzymes in the Glycogenolysis Pathway

### A. Glycogen Phosphorylase

- Cleaves the  $\alpha 1 \rightarrow 4$  glycosidic linkage from the non-reducing end of glycogen.
- Forms **Glucose-1-phosphate** by adding a phosphoryl (PO<sub>3</sub><sup>2-</sup>) on C1.
- Cleavage is continuous but stops when it is 4 residues away from the  $\alpha 1 \rightarrow 6$ glycosidic linkage.

### B. Glycogen Debranching Enzyme

Has two independent active sites that catalyses 2 successive reactions:

### 1. Transferase Activity

Transers 3 glucose residues to the non-reducing end of the glycogen chain.

### 2. $\alpha 1 \rightarrow 6$ Glucosidase Activity

- Cleaves  $\alpha 1 \rightarrow 6$  glycosidic linkage and yields a free glucose residue.
- o Creates a non-branched portion of glycogen chain in which glycogen phosphorylase can begin catalysing.

### C. Phosphoglucomutase

### Glucose-1-Phosphate glucose-6-phosphate

- G-6-P can enter glycolysis in skeletal muscle.
- G-6-P is catalysed by glucose-6 phosphatase in liver and the glucose is released into blood stream.

http://www.youtube.com/watch?v=Eovh2X4sLLA http://oregonstate.edu/instruct/bb450/summer09/lecture/glycogennotes.html

### **Glycogenesis**

- Occurs in skeletal muscle and liver.
- 1. Production of Glucose-6-Phosphate.



- **Hexokinase I** and **Hexokinase II** catalyse this reaction in skeletal muscle.
- **Hexokinase IV** catalyses this reaction in liver.



Downloaded by Daniel Wu (ca.danielwu@gmail.com)

### 2. Conversion of G-6-P to G-1-P.

# Phosphoglucomutase Glucose 6-Phosphate Glucose 1-Phosphate

3. Synthesis of UDP-glucose from G-1-P and UTP.



- UDP-glucose pyrophosphorylase catalyses the reaction of G-1-P to UDP-glucose.
- Nucleotide UTP being used in reaction and two inorganic phosphates are lost.
- UDP is made and is attached to C1 of the glucose residue.
- 4. Glycogen is made by glycogen synthase catalysing the reaction of UDP-glucose.

- UDP-glucose immediately donates glucose residues.
- **Glycogen synthase** then transfers the glucose residue from UDP-glucose to  $\alpha 1 \rightarrow$  4 glycosidic linkage of the branched glycogen molecule.
- By glycogen synthase elongating glycogen chains, the solubility of it increases.
   Glycogen Synthase CANNOT initiate new glycogen chains.

http://www.youtube.com/watch?v=RKUPqmCO6TQ

### Glycogen Branching Enzyme

 Transfers a segment (7 residues) from non-reducing end of glycogen chain to C6 of a glucose residue of a different chain, yielding a branch with α1→ 6 linkage.



Figure 15-33
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

### Glycogenin Primes the initial sugar residues in Glycogen (page 619)

Primer which assembles new chains.

Glycogenin

Enzyme that catalyses the assembly.

- A glucose residue from UDP-glucose is transferred to the hydroxyl (-OH) of tyrosine<sup>194</sup> (Tyr<sup>194</sup>) of glycogenin.
- This reaction is catalysed by the protein's intrinsic **glucosyl-transferase activity**.

## <u>The Allosteric and Hormonal control of glycogen phosphorylase and glycogen synthase</u> (pp. 621-)

### Allosteric Regulation of Glycogen synthase and Glycogen phosphorylase

- **Glycogen synthase** is activated by high intracellular level of G6P.
- Glycogen phosphorylase transitions between the relaxed (R) and tense (T) conformations.
- Transition between these two states is due to the allosteric regulation by AMP, ATP and glucose-6-phosphate.
- AMP activates **glycogen phosphorylase** and the R confirmation is enhanced (**glycogenolysis**).
- ATP and **G-6-P** inhibit **glycogen phosphorylase** activity, enhancing the T confirmation.

### Regulation via Phosphorylation and Dephosphorylation

- Catalytic properties of enzymes can be altered by covalent attachment of a PO<sub>3</sub><sup>2</sup>.
- PO<sub>3</sub><sup>2-</sup> is usually attached to specific amino acid residues (i.e. serine, threonine and tyrosine.
- Phosphorylation can activate or deactivate enzymes.





### Hormonal control of glycogenolysis and glycogenesis

- Insulin, glucagon and epinephrine (adrenaline) regulate glycogen metabolism.
- Insulin promotes glycogenesis.
- Glucagon and epinephrine promotes glycogenolysis.

## Glucagon and Epinephrine Cascade



### Insulin Cascade

- The insulin signal cascade activates phosphorylase phosphatase.
- This phosphatase catalyses the removal of phosphate residues from glycogen phosphorylase and glycogen synthase.
- This inactivates glycogen phosphorylase, but activates glycogen synthase from glycogenesis.

### Chapter 10 - Lipids (pp. 357-

### Overview (page 357)

- Lipids are biomolecules characterised by low solubility in water.
- Two major classes include: storage and structural/functional lipids.
- Ubiquitous constituents of all cells.
- Are exogenous (dietary) as well as endogenous.
- Functions: Storage of energy, insulation (prevents heat loss), water repellent, membrane structure, buoyancy in marine mammals, cofactors (Vit K), signalling molecules (paracrine and steroid hormones) and antioxidants (Vit E).

### Nomenclature

- Carbons numbered 1-n from carboxyl end or,
- Greek lettering system ( $\omega$  carbon is the methyl carbon, C-2 =  $\alpha$ , C-3 =  $\beta$ , C-4 =  $\gamma$ ).
- Notation of saturated FA (N:0), unsaturated FA (N:=)

### Storage Lipids

- Triacylglycerol's, fats or neutral fats.
- Ester linkage of 3 FA chains joined with glycerol.
- Constitute 95% of fat stored in tissue, serving as an energy source.
- Exist as fat droplets in adipocytes, serving as insulation.
- Sources of acylglycerols include: dietary fat and fat stored in adipose tissue.
- Adipose cells: synthesis, storage and mobilisation.

### Processing of TAGs

### Intestinal Lumen

- Incorporated into micelles.
- Pancreatic lipases digest TAGs to monoglycerols and free FA.
- FA then transported to intestinal lumen.

### Intestinal mucosa

- TAGs resynthesised.
- Packaged into chylomicrons which are then released into blood..

### Sterols - Lipids that do not contain FA

- Component of the cell membrane and have a steroid nucleus.
- Cholesterol found in animal tissue.
- Precursors to steroid hormones.

### Phospholipids - Structural Lipids

- Contain a PO<sub>4</sub><sup>3-</sup> group and a nitrogenous base or –OH.
- Essential components of cell membranes.



### Eicosanoids – signalling lipids

- Paracrine hormones that are FA derivatives (Arachidonic acid 20:4( $\Delta^{5, 8, 11, 14}$ )).
- Involved in immune response, coagulation process and inflammation.
- 3 classes:
  - 1) Prostaglandins (PGs)
    - o First isolated in pancreas.
    - Two groups: PGE (ether soluble) and PGF (lipid buffer soluble).
    - Mediate inflammation, pain and fever.
  - 2) Thromboxanes (TXs)
    - Produced by platlets.
    - o Enhance coagulation and vasoconstriction near coagulation sites.
- Hormonal stimuli causes phospholipase A<sub>2</sub> to attach membrane phospholipids releasing arachidonate.
- Arachidonate → PGH<sub>2</sub>.
- PGH<sub>2</sub> is a precursor to other prostaglandins and thromboxanes.
- Cyclooxygenase (COX) synthesises reactions that produce PGH<sub>2</sub>.
- Thromboxane synthase converts PGH<sub>2</sub> to thromboxane A<sub>2</sub>.
  - 3) Leukotrienes (LTs)
    - Location: leukocytes.
    - o Contain 3 conjugated double bonds.
    - Mediate airway constriction.
- Syntesis begins with lipoxygenases.

### Isozymeric forms of COX

### COX-1

Synthesises PGs that regulate gastric mucin secretion.

### COX-2

Synthesis PGs that mediate inflammation, pain and fever.

NOTE: Both isoenzymes are irreversibly inhibited by aspirin. It acelyates a Serine residue that is a competitive inhibitor, which ultimately prevents synthesis of PGs and TXs.

### Utilisation of Fatty Acids (FA)

Occurs in three stages:

### 1. Mobilisation

- Triacylglycerol lipase degrades TAGs to FA and glycerol through lipolysis.
- Phosphorylation actives TAG lipase.
- Adipose tissue releases FA which are then bound to albumin and transported to other tissue.
- Lipolysis stimulated by epinephrine and glucagon but inhibited by insulin.
- Glycerol is stored in liver where it is converted to GAP and used an intermediate for either glycolysis or gluconeogenesis.

### 2. Activation and Transportation

- FA + CoA → fatty-acyl CoA = activation.
- Catalysed by Acyl CoA synthetase.
- Once active, long FA chains are transported to mitochondrial matrix for degradation.
- o Carnitine transports these chains across mitochondrial membrane.
- Translocase moves carnitine across inner mitochondrial membrane.

### 3. Degradation

- Saturated Acyl-CoA undergoes a sequence of 4 recurring reactions:
  - a. 1<sup>st</sup> Oxidation (FAD)
    - Acyl-CoA → Enoyl CoA, catalysed by Acyl CoA dehydrogenase.
    - H<sup>+</sup> from acyl-CoA is given to FAD to form FADH<sub>2</sub>.

### b. Hydration

- Enoyl CoA Hydratase catalyses the hydration of C2=C3 double bond.
- Hydration of Enoyl CoA is stereospecific, only L-isomer of 3-hydroxyacyl CoA.
- c. 2<sup>nd</sup> Oxidation (NAD+)
  - Oxidation of L-3-Hydroxyacyl CoA → 3-ketoacyl CoA catalysed by hydroxyacyl CoA dehydrogenase.
  - Oxidation of L-3-Hydroxyacyl CoA sees 2H loss at C2 and transmitted to NAD<sup>+</sup> to form  $H^+$  + NADH.
- d. Thiolysis
  - Thiolysis of 3-Ketoacyl CoA  $\rightarrow$  Acyl CoA + Acetyl CoA by  $\beta$ -ketothiolase.

### β-oxidation of Fatty Acids

- C16 saturated FA is degraded in seven rounds of β-oxidation to form 8 Acetyl-CoA.
- These 8 Aceytl CoA are then used in the CAC/Krebs Cycle and produce NADH and FADH<sub>2</sub>.
- These high energy molecules along with those made from FA degradation are used in ETC to from ATP.
- FA chains even number of carbons: n/2 acetyl-CoA
- Odd numbered carbon chains: [n/3)/2] acetyl-CoA + 1 propionyl-CoA (3C unit).
- Peropionyl CoA nand Acetyl CoA are final products of degradation.
- Propionyl CoA converted to succinyl CoA which enters CAC.



### FA Synthesis

- FA synthesis occurs in two stages:
  - 1) Formation of malonyl CoA
    - An irreversible reaction that is a committed step and also a major point of regulation. Enzyme = ACC

Acetyl CoA + ATP + HCO<sub>3</sub><sup>-</sup> → Malonyl CoA + ADP + P<sub>i</sub> + H<sup>+</sup>

- The malonyl CoA intermediate that is formed links to the –SH terminus of a phosphopantetheine group.
- o This phosphpantetheine group is attached to a Ser residue of ACP.
- 2) Elongation of the carbon chain
  - o Occurs in four reoccurring reactions catalysed by Fatty Acid Synthase:
    - i. Condensation
      - Acetoacetyl ACP (C4) is formed by the acyl-malonyl ACP condensing enzyme catalysing the condensation reaction between Acetyl ACP and Malyonyl ACP.
    - ii. Reduction
      - Acetoaceytl ACP reduced by β-ketoacyl ACP to form D-3-Hyroxybutyryl ACP.
    - iii. Dehydration
      - D-3-Hyroxybutyryl dehydrated to form Crotonyl ACP.
    - iv. 2<sup>nd</sup> Reduction
      - Reduction of crotonyl ACP by Enoyl ACP reductase sees the formation of Butyryl ACP.
      - After final reduction, FA chain is lengthened by 2C.
- After this 2C addition to the chain, the first cycle of elongation is complete.
- Commencement of second elongation is when Butyryl ACP (C4) and malonyl ACP undergo condensation to form C6-acyl ACP.
- Formation of C16-acyl ACP sees the end of FA synthesis.
- A thioesterase hydrolyses this C16-acyl ACP and yields Palmitate + ACP
- Unsaturated FA and longer chained FA require more synthesis steps.

### Regulation of FA metabolism

- Synthesis is at its peak when carbohydrates and energy are plentiful.
- Acetyl CoA carboxylase (ACC) lays a central role in the synthesis due to it catalysing the committed step of producing malonyl CoA.

ACC is regulated by local and global signals.



### Amino Acid Metabolism

### Biological Molecules containing Nitrogen

- Amino acids and Nucleotides.
- There are 20 known amino acids in biological systems.
- Joined by a peptide bond.
- Have an N-terminus and C-terminus



