Yuan Yao

University of Southern California | +1 (734) 882-9251 | yyao3787@usc.edu | yuanyao.me

EDUCATION

University of Southern California, Los AngelesCalifornia, USAPh.D. in Computer Science (Aug. 2023 -)GPA: 4.00 / 4.00University of Michigan, Ann ArborMichigan, USAPh.D. in Computer Science and Engineering (Aug. 2021 - Aug. 2023)GPA: 4.00 / 4.00

Advised by: Professor Harsha V. Madhyastha

University of Michigan, Ann Arbor Michigan, USA

B.Eng. in Computer Science and Engineering (Aug. 2019 - May. 2021) GPA: 3.95 / 4.00

Shanghai Jiao Tong University UM-SJTU Joint Institute

B.S.E in Electrical and Computer Engineering (Sept. 2017 - Aug. 2021) GPA: 3.70 / 4.00

Skills: C++, Rust, Java, Go, Python / Google Cloud, AWS / Linux, Docker, Kubernetes, Flask, TensorFlow / Git, LATEX Areas of Interest: Distributed systems / Cloud computing / Machine Learning systems

PROJECT EXPERIENCE

Cost-Effective Support for Cloud-Assisted 3D Printing

Los Angeles, CA

Shanghai, China

Graduate Student Research Assistant, advised by Prof. Harsha Madhyastha

Aug. 2021 - Jan. 2025

- Independently developed *Cosmic*, a serverless framework optimizing cloud-assisted control of 3D printing.
- Leveraged AWS Lambda to reduce idle cost and over-provisioning, cutting computation costs by 2.8× compared to VM-based solutions.
- Implemented speculative execution and group partitioning to achieve stringent millisecond-level timing requirements, ensuring timely execution across diverse print workloads.
- Collaborated with a 3D printing research team as project lead, validating framework feasibility; independently authored and submitted research paper, accepted by USENIX ATC'25.

Towards Sub-second Serverless Serving of Large Models

Los Angeles, CA

Graduate Student Research Assistant, advised by Prof. Harsha Madhyastha

Sept. 2024 - May 2025

- Benchmarked and analyzed model serving latency across various serverless platforms, identifying critical bottlenecks through detailed latency visualization.
- Developed a prototype tool optimizing inference initialization by reducing framework dependencies, decreasing startup latency; designing experiments toward communication-latency-aware optimization for larger-scale distributed GPU inference.

Cloud-Accelerated Real-Time Telepresence System

Los Angeles, CA

Doctoral-level Computer Networks Course Project, advised by Prof. Ramesh Govindan

Jan. 2024 - May. 2024

- Led development of a real-time 3D telepresence system using cloud GPUs and deep learning for webcam-based human rendering.
- Deployed on Azure with NVIDIA V100 GPUs, integrating EasyMocap, PPHumanSeg, and GauHuman models.
- Ensured smooth AR/VR experience by analyzing and minimizing network and processing delays.
- Achieved <150 ms latency and 30 FPS by optimizing inference with batching and image quality tuning.

Consistency Analysis of Data Usage Purposes in Mobile Apps

Ann Arbor, MI

Research Assistant at Real-Time Computing Laboratory, directed by Prof. Kang Shin

May 2020 - Sept. 2021

- Single-handedly developed a smartphone debugging framework capturing and analyzing over 2 million data traffic
 instances from 20,000+ Android apps, identifying inconsistencies in 15% of apps, contributing to privacy policy
 enhancements.
- Independently built a web server supporting crawling for 1M+ app IDs and a webserver to monitor and analyze the captured data.
- Collaborated with privacy experts to annotate data, train models, and co-authored a published research paper.

Connecting high-resolution 3D chromatin organization with epigenomics

Ann Arbor, MI

Research Assistant at Liu Lab, directed by Prof. Jie Liu

Jan. 2020 - Mar. 2022

• Collaborated with team to develop a data pipeline to collect, preprocess, and impute epigenomic data, incorporating a deep learning model to map epigenomic features to 3D chromatin organization.

• Solely responsible for integrating the pipeline into the Chromosomal Structure And Epigenomics Analyzer (CAE-SAR), a web system built using Python Flask; the system hosts and visualizes data via the Nucleome Browser framework, allowing real-time user interaction for attribution calculation; collaborated on manuscript writing and publication.

PUBLICATIONS

- Cosmic: Cost-Effective Support for Cloud-Assisted 3D Printing Yuan Yao, Chuan He, Chinedum Okwudire, Harsha V. Madhyastha (To appear in) 2025 USENIX Annual Technical Conference
- Connecting high-resolution 3D chromatin organization with epigenomics [page] Fan Feng, Yuan Yao, Xue Qing David Wang, Xiaotian Zhang, Jie Liu 2022 Nature Communications
- Consistency Analysis of Data Usage Purposes in Mobile Apps [page] [pdf]
 Duc Bui, Yuan Yao, Jongmin Choi, Junbum Shin, Kang G. Shin
 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS '21)