AUTO

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sat Aug 12 20:07:34 2017

Program finished at Sat Aug 12 21:38:34 2017 [Runtime:0000:01:31:00]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3216743076

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy:

Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings:

Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a*b*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.9

Haplotyping is turned on:

Output file: outfile_0.9_0.8

Posterior distribution raw histogram file: bayesfile
Raw data from the MCMC run: bayesallfile_0.9_0.8

Print data: No

Print genealogies [only some for some data type]:

Data summary

Data file:

Datatype:

Sequence data

Number of loci:

100

Mutationmodel:

Mutation	nmodel:			
Locus S	ublocus	Mutationmodel	Mutationmodel parameters	
1	1	Jukes-Cantor	[Basefreq: =0.25]	
2	1	Jukes-Cantor	[Basefreq: =0.25]	
3	1	Jukes-Cantor	[Basefreq: =0.25]	
4	1	Jukes-Cantor	[Basefreq: =0.25]	
5	1	Jukes-Cantor	[Basefreq: =0.25]	
6	1	Jukes-Cantor	[Basefreq: =0.25]	
7	1	Jukes-Cantor	[Basefreq: =0.25]	
8	1	Jukes-Cantor	[Basefreq: =0.25]	
9	1	Jukes-Cantor	[Basefreq: =0.25]	
10	1	Jukes-Cantor	[Basefreq: =0.25]	
11	1	Jukes-Cantor	[Basefreq: =0.25]	
12	1	Jukes-Cantor	[Basefreq: =0.25]	
13	1	Jukes-Cantor	[Basefreq: =0.25]	
14	1	Jukes-Cantor	[Basefreq: =0.25]	
15	1	Jukes-Cantor	[Basefreq: =0.25]	
16	1	Jukes-Cantor	[Basefreq: =0.25]	
17	1	Jukes-Cantor	[Basefreq: =0.25]	
18	1	Jukes-Cantor	[Basefreq: =0.25]	
19	1	Jukes-Cantor	[Basefreq: =0.25]	
20	1	Jukes-Cantor	[Basefreq: =0.25]	
21	1	Jukes-Cantor	[Basefreq: =0.25]	
22	1	Jukes-Cantor	[Basefreq: =0.25]	
23	1	Jukes-Cantor	[Basefreq: =0.25]	
24	1	Jukes-Cantor	[Basefreq: =0.25]	
25	1	Jukes-Cantor	[Basefreq: =0.25]	
26	1	Jukes-Cantor	[Basefreq: =0.25]	
27	1	Jukes-Cantor	[Basefreq: =0.25]	
28	1	Jukes-Cantor	[Basefreq: =0.25]	
29	1	Jukes-Cantor	[Basefreq: =0.25]	
30	1	Jukes-Cantor	[Basefreq: =0.25]	
31	1	Jukes-Cantor	[Basefreq: =0.25]	
32	1	Jukes-Cantor	[Basefreq: =0.25]	
33	1	Jukes-Cantor	[Basefreq: =0.25]	
34	1	Jukes-Cantor	[Basefreq: =0.25]	

35	1	Jukes-Cantor	[Basefreq: =0.25]
36	1	Jukes-Cantor	[Basefreq: =0.25]
37	1	Jukes-Cantor	[Basefreq: =0.25]
38	1	Jukes-Cantor	[Basefreq: =0.25]
39	1	Jukes-Cantor	[Basefreq: =0.25]
40	1	Jukes-Cantor	[Basefreq: =0.25]
41	1	Jukes-Cantor	[Basefreq: =0.25]
42	1	Jukes-Cantor	[Basefreq: =0.25]
43	1	Jukes-Cantor	[Basefreq: =0.25]
44	1	Jukes-Cantor	[Basefreq: =0.25]
45	1	Jukes-Cantor	[Basefreq: =0.25]
46	1	Jukes-Cantor	[Basefreq: =0.25]
47	1	Jukes-Cantor	[Basefreq: =0.25]
48	1	Jukes-Cantor	[Basefreq: =0.25]
49	1	Jukes-Cantor	[Basefreq: =0.25]
50	1	Jukes-Cantor	[Basefreq: =0.25]
51	1	Jukes-Cantor	[Basefreq: =0.25]
52	1	Jukes-Cantor	[Basefreq: =0.25]
53	1	Jukes-Cantor	[Basefreq: =0.25]
54	1	Jukes-Cantor	[Basefreq: =0.25]
55	1	Jukes-Cantor	[Basefreq: =0.25]
56	1	Jukes-Cantor	[Basefreq: =0.25]
57	1	Jukes-Cantor	[Basefreq: =0.25]
58	1	Jukes-Cantor	[Basefreq: =0.25]
59	1	Jukes-Cantor	[Basefreq: =0.25]
60	1	Jukes-Cantor	[Basefreq: =0.25]
61	1	Jukes-Cantor	[Basefreq: =0.25]
62	1	Jukes-Cantor	[Basefreq: =0.25]
63	1	Jukes-Cantor	[Basefreq: =0.25]
64	1	Jukes-Cantor	[Basefreq: =0.25]
65	1	Jukes-Cantor	[Basefreq: =0.25]
66	1	Jukes-Cantor	[Basefreq: =0.25]
67	1	Jukes-Cantor	[Basefreq: =0.25]
68	1	Jukes-Cantor	[Basefreq: =0.25]
69	1	Jukes-Cantor	[Basefreq: =0.25]
70	1	Jukes-Cantor	[Basefreq: =0.25]
71	1	Jukes-Cantor	[Basefreq: =0.25]
72	1	Jukes-Cantor	[Basefreq: =0.25]
73	1	Jukes-Cantor	[Basefreq: =0.25]
74	1	Jukes-Cantor	[Basefreq: =0.25]
75	1	Jukes-Cantor	[Basefreq: =0.25]
76	1	Jukes-Cantor	[Basefreq: =0.25]
77	1	Jukes-Cantor	[Basefreq: =0.25]
78	1	Jukes-Cantor	[Basefreq: =0.25]
79	1	Jukes-Cantor	[Basefreq: =0.25]
			- ' '

				AUTO 5
80	1	Jukes-Cantor	[Basefreq: =0.25]	
81	1	Jukes-Cantor	[Basefreq: =0.25]	
82	1	Jukes-Cantor	[Basefreq: =0.25]	
83	1	Jukes-Cantor	[Basefreq: =0.25]	
84	1	Jukes-Cantor	[Basefreq: =0.25]	
85	1	Jukes-Cantor	[Basefreq: =0.25]	
86	1	Jukes-Cantor	[Basefreq: =0.25]	
87	1	Jukes-Cantor	[Basefreq: =0.25]	
88	1	Jukes-Cantor	[Basefreq: =0.25]	
89	1	Jukes-Cantor	[Basefreq: =0.25]	
90	1	Jukes-Cantor	[Basefreq: =0.25]	
91	1	Jukes-Cantor	[Basefreq: =0.25]	
92	1	Jukes-Cantor	[Basefreq: =0.25]	
93	1	Jukes-Cantor	[Basefreq: =0.25]	
94	1	Jukes-Cantor	[Basefreq: =0.25]	
95	1	Jukes-Cantor	[Basefreq: =0.25]	
96	1	Jukes-Cantor	[Basefreq: =0.25]	
97	1	Jukes-Cantor	[Basefreq: =0.25]	
98	1	Jukes-Cantor	[Basefreq: =0.25]	
99	1	Jukes-Cantor	[Basefreq: =0.25]	
100	1	Jukes-Cantor	[Basefreq: =0.25]	
Sites per	locus			
Locus		Sites		
1	1	0000		

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

	10000	
21	10000	
22	10000	
23	10000	
24	10000	
25	10000	
26	10000	
27	10000	
28	10000	
29	10000	
30	10000	
31	10000	
32	10000	
33	10000	
34	10000	
35	10000	
36	10000	
37	10000	
38	10000	
39	10000	
40	10000	
41	10000	
42	10000	
43	10000	
44	10000	
45	10000	
46	10000	
47	10000	
48	10000	
49	10000	
50	10000	
51	10000	
52	10000	
53	10000	
54	10000	
55	10000	
56	10000	
57	10000	
58	10000	
59	10000	
60	10000	
61	10000	
62	10000	
63	10000	
64	10000	
65	10000	
L		non vin an 20.07.041

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	

7 1 1 1.000 1.000 1.00 8 1 1 1.000 1.000 1.00 9 1 1 1.000 1.000 1.00 10 1 1 1.000 1.000 1.0 11 1 1 1.000 1.000 1.0 12 1 1 1.000 1.000 1.0 13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21	00 00 000 000 000 000 000 000 000 000
9 1 1 1.000 1.000 1.00 10 1 1 1.000 1.000 1.00 11 1 1 1.000 1.000 1.00 12 1 1 1.000 1.000 1.00 13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000 000 000 000
10 1 1 1.000 1.000 1.0 11 1 1 1.000 1.000 1.0 12 1 1 1.000 1.000 1.0 13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000 000 000 000
11 1 1 1.000 1.000 1.0 12 1 1 1.000 1.000 1.0 13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000 000 000
12 1 1 1.000 1.000 1.0 13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000 000 000
13 1 1 1.000 1.000 1.0 14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000 000
14 1 1 1.000 1.000 1.0 15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000
15 1 1 1.000 1.000 1.0 16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000 000
16 1 1 1.000 1.000 1.0 17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000 000
17 1 1 1.000 1.000 1.0 18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000 000
18 1 1 1.000 1.000 1.0 19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000
19 1 1 1.000 1.000 1.0 20 1 1 1.000 1.000 1.0 21 1 1 1.000 1.000 1.0	000 000 000
21 1 1 1.000 1.000 1.0	000
22 1 1 1.000 1.000 1.0	200
	JUU
23 1 1 1.000 1.000 1.0	000
24 1 1 1.000 1.000 1.0	000
25 1 1 1 1.000 1.000 1.0	000
26 1 1 1.000 1.000 1.0	000
27 1 1 1.000 1.000 1.0	000
28 1 1 1.000 1.000 1.0	000
29 1 1 1.000 1.000 1.0	000
30 1 1 1.000 1.000 1.0	000
31 1 1 1.000 1.000 1.0	000
32 1 1 1.000 1.000 1.0	000
33 1 1 1.000 1.000 1.0	000
34 1 1 1.000 1.000 1.0	000
35 1 1 1.000 1.000 1.0	000
36 1 1 1.000 1.000 1.0	000
37 1 1 1.000 1.000 1.0	000
38 1 1 1.000 1.000 1.0	000
39 1 1 1.000 1.000 1.0	000
40 1 1 1.000 1.000 1.0	000
41 1 1 1.000 1.000 1.0	000
42 1 1 1.000 1.000 1.0	000
43 1 1 1.000 1.000 1.0	000
44 1 1 1.000 1.000 1.0	000
45 1 1 1.000 1.000 1.0	
46 1 1 1.000 1.000 1.0	
47 1 1 1.000 1.000 1.0	
48 1 1 1.000 1.000 1.0	
49 1 1 1.000 1.000 1.0	
50 1 1 1.000 1.000 1.0	
51 1 1 1.000 1.000 1.0	000

52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Population		ı	1.000	1.000	Locus	Gene copies
1 Roman					1	10
i Koman	3110111_0				2	10
					3	10
					4	10
					5	10
					6	10
					7	10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					33	10
					34	10
					35	10
					36	10
					37	10
					38	10
					39	10
					40	10
					-	

41	10
42	10
43	10
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	10

	0.0	10	
	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
Total of all populations	2	10	
	3	10	
	4	10	
	5		
		10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17	10	
	18	10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	24	10	
	25	10	
	26	10	
	27	10	
	28	10	
	29	10	
	30	10	
	30	10	

31	10
32	10
33	10
34	10
35	10
36	10
37	10
38	10
39	10
40	10
41	10
42	10
43	10
44	10
45	10
46	10
47	10
48	10
49	10
50	10
51	10
52	10
53	10
54	10
55	10
56	10
57	10
58	10
59	10
60	10
61	10
62	10
63	10
64	10
65	10
66	10
67	10
68	10
69	10
70	10
71	10
72	10
73	10
74	10
75	10

	A010 1-
76	10
77	10
78	10
79	10
80	10
81	10
82	10
83	10
84	10
85	10
86	10
87	10
88	10
89	10
90	10
91	10
92	10
93	10
94	10
95	10
96	10
97	10
98	10
99	10
100	10

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00773	0.01413	0.01970	0.02627	0.04373	0.02310	0.02667
2	Θ_1	0.01207	0.01980	0.02370	0.02847	0.04513	0.02703	0.03150
3	Θ_1	0.00767	0.01087	0.01483	0.02060	0.02887	0.01803	0.02001
4	Θ_1	0.01287	0.01920	0.02470	0.03120	0.04693	0.02770	0.03207
5	Θ_1	0.00573	0.01153	0.01197	0.01240	0.02367	0.01430	0.01575
6	Θ_1	0.01773	0.02433	0.03283	0.04247	0.04960	0.03330	0.04151
7	Θ_1	0.00947	0.01307	0.02157	0.03380	0.04507	0.02457	0.02799
8	Θ_1	0.00927	0.01580	0.01957	0.02493	0.04247	0.02337	0.02645
9	Θ_1	0.01307	0.02047	0.02510	0.03240	0.04840	0.02890	0.03427
10	Θ_1	0.00687	0.01087	0.01590	0.02307	0.03620	0.01897	0.02111
11	Θ_1	0.00487	0.00887	0.01443	0.02267	0.03953	0.01817	0.02115
12	Θ_1	0.00760	0.01313	0.01777	0.02467	0.04073	0.02150	0.02421
13	Θ_1	0.00527	0.00953	0.01090	0.01227	0.02087	0.01310	0.01446
14	Θ_1	0.00773	0.01333	0.01750	0.02240	0.03860	0.02043	0.02277
15	Θ_1	0.01153	0.02000	0.02317	0.02553	0.04207	0.02557	0.02922
16	Θ_1	0.01387	0.01893	0.02397	0.03327	0.04560	0.02843	0.03379
17	Θ_1	0.01640	0.02213	0.02970	0.04007	0.04927	0.03197	0.03924
18	Θ_1	0.00467	0.00560	0.01217	0.02353	0.02680	0.01463	0.01635

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 20:07:34]

19	Θ_1	0.00273	0.00273	0.00843	0.01980	0.01980	0.01070	0.01203
20	Θ_1	0.00687	0.01527	0.01590	0.01653	0.03533	0.01930	0.02165
21	Θ_1	0.00387	0.00967	0.01210	0.01487	0.03260	0.01450	0.01609
22	Θ_1	0.00920	0.01660	0.02097	0.02513	0.04553	0.02397	0.02709
23	Θ_1	0.01447	0.02840	0.03317	0.04267	0.05107	0.03450	0.04414
24	Θ_1	0.01487	0.02400	0.03157	0.03967	0.04973	0.03223	0.04314
25	Θ_1	0.00760	0.01540	0.01830	0.02220	0.04367	0.02243	0.02568
26	Θ_1	0.00980	0.01667	0.02183	0.02853	0.04740	0.02530	0.02900
27	Θ_1	0.00380	0.01067	0.01243	0.01460	0.03733	0.01617	0.01868
28	Θ_1	0.00547	0.01013	0.01337	0.01720	0.02967	0.01597	0.01762
29	Θ_1	0.00527	0.01100	0.01203	0.01313	0.02580	0.01470	0.01624
30	Θ_1	0.00960	0.01360	0.02010	0.02973	0.04153	0.02363	0.02677
31	Θ_1	0.00967	0.01667	0.02283	0.03060	0.04853	0.02630	0.03078
32	Θ_1	0.00667	0.00887	0.01270	0.01773	0.02327	0.01517	0.01680
33	Θ_1	0.01647	0.02560	0.03003	0.03887	0.04967	0.03277	0.04284
34	Θ_1	0.00773	0.01427	0.01743	0.02187	0.03967	0.02097	0.02350
35	Θ_1	0.00793	0.01140	0.01837	0.02900	0.04093	0.02170	0.02448
36	Θ_1	0.01493	0.02787	0.03383	0.04127	0.05060	0.03377	0.04476
37	Θ_1	0.01847	0.02587	0.03123	0.03933	0.04947	0.03343	0.04078
38	Θ_1	0.01773	0.02360	0.03257	0.04607	0.04980	0.03377	0.04221
39	Θ_1	0.00753	0.01340	0.01450	0.01553	0.02747	0.01730	0.01912
40	Θ_1	0.00913	0.01667	0.01797	0.01940	0.03527	0.02143	0.02396
41	Θ_1	0.00493	0.00887	0.01417	0.02167	0.03920	0.01777	0.02091

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.01033	0.01873	0.02110	0.02353	0.04153	0.02443	0.02784
43	Θ_1	0.00813	0.01487	0.01743	0.02040	0.03653	0.02057	0.02295
44	Θ_1	0.01293	0.01767	0.02357	0.03147	0.04413	0.02697	0.03084
45	Θ_1	0.00433	0.00907	0.01243	0.01687	0.03133	0.01503	0.01667
46	Θ_1	0.01093	0.01767	0.01983	0.02193	0.03367	0.02303	0.02596
47	Θ_1	0.01013	0.01620	0.02090	0.02773	0.04500	0.02470	0.02804
48	Θ_1	0.00347	0.00767	0.01203	0.01853	0.03427	0.01443	0.01595
49	Θ_1	0.01167	0.01847	0.02163	0.02687	0.04433	0.02590	0.02956
50	Θ_1	0.00413	0.01000	0.01123	0.01253	0.02733	0.01337	0.01472
51	Θ_1	0.01253	0.01900	0.02323	0.02707	0.04047	0.02597	0.02971
52	Θ_1	0.00713	0.01340	0.01677	0.02067	0.03740	0.01997	0.02227
53	Θ_1	0.01580	0.02040	0.02797	0.03833	0.04833	0.03057	0.03661
54	Θ_1	0.01193	0.01693	0.02390	0.03273	0.04693	0.02697	0.03112
55	Θ_1	0.00613	0.01047	0.01257	0.01513	0.02447	0.01523	0.01693
56	Θ_1	0.00920	0.00920	0.01910	0.03567	0.03567	0.02190	0.02469
57	Θ_1	0.01187	0.01293	0.02010	0.03193	0.03473	0.02377	0.02682
58	Θ_1	0.00773	0.00947	0.01663	0.02993	0.03633	0.01990	0.02225
59	Θ_1	0.00687	0.01360	0.01650	0.01967	0.03807	0.01937	0.02148
60	Θ_1	0.01320	0.01880	0.02523	0.03320	0.04833	0.02883	0.03652
61	Θ_1	0.00647	0.01373	0.01850	0.02520	0.04880	0.02203	0.02480

62	Θ_1	0.01887	0.02880	0.03550	0.04167	0.05000	0.03470	0.04408
63	Θ_1	0.00647	0.01187	0.01597	0.02067	0.03740	0.01863	0.02067
64	Θ_1	0.01467	0.02113	0.02743	0.03600	0.04920	0.03043	0.03612
65	Θ_1	0.00780	0.01353	0.01703	0.02167	0.03533	0.02043	0.02290
66	Θ_1	0.00700	0.01073	0.01683	0.02633	0.04013	0.02003	0.02249
67	Θ_1	0.01567	0.02353	0.03083	0.03800	0.04927	0.03177	0.03933
68	Θ_1	0.01727	0.02353	0.02870	0.03753	0.04887	0.03197	0.03873
69	Θ_1	0.01573	0.02360	0.03383	0.04087	0.04980	0.03250	0.04055
70	Θ_1	0.01793	0.02473	0.03170	0.04000	0.04940	0.03310	0.04012
71	Θ_1	0.00740	0.01007	0.01643	0.02640	0.03540	0.01930	0.02145
72	Θ_1	0.00233	0.00580	0.00843	0.01187	0.02247	0.01017	0.01126
73	Θ_1	0.00400	0.01047	0.01337	0.01673	0.03820	0.01670	0.01898
74	Θ_1	0.00700	0.01220	0.01570	0.01967	0.03387	0.01877	0.02093
75	Θ_1	0.01080	0.01653	0.02190	0.02967	0.04473	0.02583	0.02986
76	Θ_1	0.00227	0.00713	0.01057	0.01593	0.04160	0.01437	0.01696
77	Θ_1	0.01307	0.02253	0.02883	0.03993	0.04980	0.03130	0.04638
78	Θ_1	0.01173	0.01307	0.02097	0.03487	0.03893	0.02477	0.02793
79	Θ_1	0.01540	0.01833	0.02890	0.04553	0.04920	0.03123	0.03771
80	Θ_1	0.00553	0.01153	0.01323	0.01553	0.03147	0.01723	0.01992
81	Θ_1	0.00760	0.01587	0.01857	0.02060	0.04013	0.02130	0.02403
82	Θ_1	0.01433	0.01727	0.02710	0.04193	0.04833	0.02983	0.03638
83	Θ_1	0.01860	0.03007	0.03510	0.04313	0.05007	0.03503	0.04604
84	Θ_1	0.01693	0.02273	0.02790	0.03540	0.04827	0.03110	0.03694

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 20:07:34]

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.01160	0.01680	0.02210	0.02947	0.04300	0.02583	0.02963
86	Θ_1	0.01487	0.02213	0.02510	0.03007	0.04560	0.02903	0.03404
87	Θ_1	0.00653	0.00653	0.01423	0.02873	0.02873	0.01677	0.01857
88	Θ_1	0.01107	0.01700	0.02323	0.03167	0.04833	0.02677	0.03106
89	Θ_1	0.01293	0.02160	0.02417	0.02833	0.04667	0.02783	0.03237
90	Θ_1	0.01527	0.02233	0.02877	0.03647	0.04900	0.03103	0.03859
91	Θ_1	0.00813	0.01713	0.02077	0.02487	0.04853	0.02437	0.02798
92	Θ_1	0.01527	0.02087	0.02477	0.03260	0.04600	0.02923	0.03411
93	Θ_1	0.00740	0.01447	0.01950	0.02660	0.04793	0.02370	0.02770
94	Θ_1	0.01813	0.02627	0.03237	0.03947	0.04960	0.03350	0.04154
95	Θ_1	0.02027	0.03267	0.03923	0.04847	0.05067	0.03717	0.05078
96	Θ_1	0.00580	0.00580	0.01310	0.02813	0.02813	0.01577	0.01747
97	Θ_1	0.01693	0.02640	0.02970	0.03433	0.04940	0.03237	0.03905
98	Θ_1	0.00893	0.01540	0.01997	0.02560	0.04373	0.02330	0.02627
99	Θ_1	0.00880	0.01400	0.01870	0.02467	0.03967	0.02183	0.02449
100	Θ_1	0.00793	0.01400	0.01843	0.02433	0.04380	0.02183	0.02450
All	Θ_1	0.01740	0.01913	0.02023	0.02127	0.02293	0.02030	0.02022

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?
In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,
and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-15106.41	-14765.71	-14821.30	-14875.87
2	-14896.25	-14607.61	-14672.92	-14725.97
3	-14743.36	-14447.07	-14506.07	-14562.46
4	-17655.78	-16253.49	-16125.99	-16176.46
5	-14810.36	-14429.19	-14468.67	-14527.40
6	-17165.37	-16277.66	-16252.63	-16300.50
7	-15471.20	-15007.52	-15043.85	-15096.17
8	-15582.55	-15071.35	-15098.46	-15153.28
9	-15068.74	-14771.57	-14839.03	-14894.13
10	-15019.29	-14620.87	-14662.54	-14717.69
11	-20430.98	-17969.01	-17653.60	-17708.54
12	-15007.07	-14635.86	-14684.25	-14738.57
13	-14481.74	-14220.58	-14278.73	-14339.84
14	-14974.20	-14605.22	-14653.59	-14707.86
15	-17441.87	-16247.35	-16157.63	-16210.31
16	-15116.74	-14840.36	-14912.61	-14963.50
17	-15810.54	-15318.49	-15356.01	-15405.57
18	-14419.29	-14180.42	-14242.01	-14301.83
19	-14267.03	-14055.17	-14112.31	-14180.62
20	-14829.39	-14505.96	-14558.46	-14615.70
21	-15419.40	-14865.36	-14876.71	-14935.22
22	-15098.35	-14717.34	-14766.94	-14819.17
23	-16440.87	-15870.64	-15901.88	-15949.90
24	-20424.38	-18082.24	-17797.00	-17844.87
25	-14949.07	-14639.98	-14700.01	-14754.34
26	-15148.91	-14770.73	-14821.54	-14875.06
27	-15710.33	-15197.96	-15222.55	-15279.03
28	-15551.39	-15048.02	-15072.75	-15129.62
29	-14422.32	-14172.89	-14234.06	-14293.64

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 20:07:34]

30	-17742.40	-16299.65	-16162.79	-16215.16
31	-16193.96	-15792.55	-15849.79	-15903.08
32	-14648.56	-14369.17	-14426.92	-14487.11
33	-16567.98	-15928.68	-15947.20	-15994.06
34	-15353.74	-14921.38	-14959.84	-15016.42
35	-15235.02	-14850.07	-14897.91	-14953.31
36	-19583.45	-18603.15	-18588.79	-18635.64
37	-17698.42	-16438.92	-16344.53	-16393.16
38	-15763.64	-15260.11	-15295.93	-15344.12
39	-14882.82	-14514.16	-14559.13	-14616.31
40	-14867.66	-14556.70	-14615.48	-14670.01
41	-19442.07	-17753.26	-17584.96	-17639.63
42	-15172.38	-14825.64	-14882.18	-14935.19
43	-15134.01	-14766.49	-14815.38	-14873.30
44	-15218.96	-14876.26	-14937.15	-14987.64
45	-14729.31	-14403.79	-14453.10	-14514.25
46	-15029.44	-14666.80	-14717.08	-14772.62
47	-15229.45	-14785.22	-14822.63	-14876.20
48	-15446.41	-14887.25	-14895.79	-14954.94
49	-15445.91	-15024.25	-15070.38	-15121.41
50	-14666.28	-14376.06	-14431.12	-14491.62
51	-15607.34	-15082.68	-15109.16	-15161.02
52	-15654.44	-15022.81	-15024.48	-15079.80
53	-15128.89	-14798.98	-14861.48	-14911.36
54	-15411.52	-14979.23	-15022.75	-15075.99
55	-14602.76	-14313.33	-14368.27	-14427.00
56	-14911.01	-14601.76	-14660.78	-14718.68
57	-15532.85	-15180.39	-15240.17	-15293.22
58	-15615.09	-15041.48	-15054.94	-15111.06
59	-15161.60	-14747.35	-14785.86	-14843.41
60	-16911.12	-16256.26	-16274.44	-16323.63
61	-15568.78	-14992.02	-15004.30	-15058.57
62	-15771.78	-15337.67	-15388.79	-15435.46
63	-15023.60	-14625.60	-14667.64	-14723.14
64	-16776.87	-16025.52	-16022.03	-16070.50
65	-16279.08	-15619.52	-15622.57	-15676.95
66	-14859.75	-14594.29	-14660.46	-14715.75
67	-15367.02	-14988.80	-15044.95	-15094.31
68	-15725.07	-15364.44	-15429.72	-15477.93
69	-15725.43	-15264.04	-15308.23	-15356.42
70	-17195.96	-16133.11	-16071.71	-16120.79
71	-15091.04	-14704.96	-14750.29	-14805.23
72	-14301.63	-14061.38	-14118.73	-14182.31
73	-15215.01	-14913.23	-14974.98	-15031.89
74	-14612.48	-14344.48	-14405.98	-14463.30

75	-19263.98	-17151.85	-16896.17	-16947.94
76	-15398.79	-14997.82	-15039.64	-15098.58
77	-27440.64	-23199.17	-22613.59	-22656.75
78	-15422.14	-14944.77	-14978.71	-15030.93
79	-15264.89	-14916.29	-14977.70	-15026.25
80	-15589.46	-15181.77	-15226.89	-15283.65
81	-14961.08	-14673.30	-14737.99	-14793.50
82	-15785.11	-15356.04	-15405.69	-15455.77
83	-18340.62	-17099.83	-17018.54	-17063.73
84	-16337.03	-15722.05	-15742.15	-15790.45
85	-15720.33	-15385.47	-15452.07	-15504.80
86	-15345.63	-14952.00	-15003.05	-15053.12
87	-15303.29	-14981.25	-15040.63	-15097.53
88	-17742.14	-16692.31	-16636.43	-16687.60
89	-15219.19	-14842.77	-14895.56	-14949.71
90	-15740.44	-15298.29	-15344.70	-15395.42
91	-15153.74	-14792.80	-14846.02	-14898.95
92	-16497.75	-15640.46	-15610.48	-15661.52
93	-15067.42	-14750.17	-14809.26	-14866.42
94	-15679.79	-15211.86	-15254.90	-15310.45
95	-17590.69	-16789.51	-16789.16	-16835.52
96	-14913.70	-14561.64	-14608.97	-14666.99
97	-16633.70	-15749.65	-15717.88	-15767.00
98	-14813.38	-14521.61	-14585.61	-14638.16
99	-15099.20	-14785.11	-14845.89	-14900.54
100	-14843.49	-14526.83	-14585.11	-14639.43
All	-1586634.95	-1527715.32	-1529189.85	-1534558.88

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 97.844247]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	353598175/400001122	0.88399
Genealogies	96875802/1599998878	0.06055

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1 Genealogies	0.49252 0.21218	3495038.36 6531001.93
Genealogies	0.21210	0001001.90

Average temperatures during the run

Chain Temperatures 1 0.00000 2 0.00000 3 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

4

0.00000

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou
tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run