MATH 240 - Assignment 1

1. a. Contingency.

$$(P \lor Q) \Rightarrow \neg P$$

P	Q	$P \lor Q$	$\neg P$	$(P \lor Q) \Rightarrow \neg P$
Τ	Т	Т	F	F
T	F	Т	F	F
F	Т	Т	T	Т
F	F	F	Т	Т

b. Tautology.

$$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$$

P	Q	R	$P \Leftrightarrow Q$	$Q \Leftrightarrow R$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$	$P \Leftrightarrow R$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$
Τ	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	F	Т
T	F	Т	F	F	F	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	F	Т
F	Т	F	F	F	F	Т	Т
F	F	Т	Т	F	F	F	Т
F	F	F	Т	Т	Т	Т	Т

c. Contradiction.

$$[(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$$

P	Q	$P \oplus Q$	$[(P \oplus Q) \oplus \neg Q]$	$[(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$
Τ	Т	F	F	F
T	F	Т	F	F
F	Т	Т	Т	F
F	F	F	Т	F

$$[(P \Rightarrow Q) \land P] \Rightarrow Q \qquad \equiv [(\neg P \lor Q) \land P] \Rightarrow Q \qquad \text{implies}$$

$$\equiv [(P \land \neg P) \lor (P \land Q)] \Rightarrow Q \qquad \text{distributive}$$

$$\equiv [\mathbb{F} \lor (P \land Q)] \Rightarrow Q \qquad \text{identity}$$

$$\equiv (P \land Q) \Rightarrow Q \qquad \text{identity}$$

$$\equiv \neg P \lor \neg Q \lor Q \qquad \text{implies}$$

$$\equiv \neg P \lor \mathbb{T} \qquad \text{complement}$$

$$\equiv \mathbb{T} \blacksquare \qquad \text{identity}$$

$$\neg (P \land Q) \land (Q \Rightarrow P) \qquad \equiv (\neg P \lor \neg Q) \land (\neg Q \lor P) \qquad \text{DeMorgan's, implies} \\ \equiv \neg Q \lor (\neg P \land P) \qquad \qquad \text{distributive} \\ \equiv \neg Q \lor \mathbb{F} \qquad \qquad \text{complement} \\ \equiv \neg Q \blacksquare \qquad \qquad \text{identity}$$

$$\neg \big[(P \lor Q) \lor \big[(Q \lor \neg R) \land (P \lor R) \big] \big] \qquad \equiv \neg \big[(P \lor Q \lor Q \lor \neg R) \land (P \lor Q \lor P \lor R) \big] \qquad \begin{array}{l} \text{distributive,} \\ \text{associative} \\ \\ \end{array}$$

$$\equiv \neg \big[(P \lor Q \lor \neg R) \land (P \lor Q \lor R) \big] \qquad \qquad \text{idempotent}$$

$$\begin{split} &\equiv \neg [(P \lor Q) \lor (\neg R \land R)] \\ &\equiv \neg [(P \lor Q) \lor \mathbb{F}] \\ &\equiv \neg [P \lor Q] \\ &\equiv \neg P \land \neg Q \blacksquare \end{split}$$

distributive complement identity DeMorgan's

3. a. True.

$$\pi$$
 is an integer if and only if $\sqrt{e+3}$ is a vowel
$$\equiv \pi \text{ is an integer} \Leftrightarrow \sqrt{e+3} \text{ is a vowel}$$

$$\equiv \mathbb{F} \Leftrightarrow \mathbb{F}$$

$$\equiv \mathbb{T} \blacksquare$$

b. False.

$$0 > 1$$
 whenever $2 + 2 = 4$
 $\equiv 2 + 2 = 4 \Rightarrow 0 > 1$
 $\equiv \mathbb{T} \Rightarrow \mathbb{F}$
 $\equiv \mathbb{F} \blacksquare$

c. True.

If (a) implies (b), then pigs cannot fly
$$\equiv ((a) \Rightarrow (b)) \Rightarrow \text{pigs cannot fly}$$

$$\equiv (\mathbb{T} \Rightarrow \mathbb{F}) \Rightarrow \mathbb{T}$$

$$\equiv \mathbb{F} \Rightarrow \mathbb{T}$$

$$\equiv \mathbb{T} \blacksquare$$

4. a. $T \Leftrightarrow R$

Players only love you when they're playing.

b.
$$\forall x \left(\exists y \left(P(y) \Rightarrow \left(B(y, x) \land B(2x + 1, y) \right) \right) \right)$$

c.
$$\forall x (E(x) \land T(x) \Rightarrow P(x)) \Rightarrow G$$