Indian Institute of Technology Madras

Module II

Nirav Bhatt Email: niravbhatt@iitm.ac.in

Statistical Data Analysis

Module I

- Descriptive statistics: Data analysis through
 - Numerical computation of sample statistics: Mean, variance, mode, range, ...
 - Graphical representation: Organize, summarize, and visualize in terms of different types of graphs, Box plots, scattered plots...

Statistical Data Analysis

Module II

- Module II- Inference or inductive statistics: Data analysis for decision making
 - Parameter estimation: Determine unknown parameters from sample data
 - Hypothesis testing: Verify or validate a postulate (or hypothesis) regarding population(s) or parameters using the data

Module II

Statistical Hypothesis testing and confidence intervals

```
Point estimation of parameters
Confidence interval computation
Statistical hypothesis testing
Learning Outcomes: Students should be able to
estimate parameters from observations
compute confidence intervals
formulate statistical hypothesis and run tests using data
```

Data types, form and variables

- Format: Images, texts, numbers, videos...
- Types:
 - Numerical (or quantitative)
 - Interval: Ordering of scale and difference between two values in data is meaningful
 - GATE Scores, IQ Scores, credit score
 - Ratio: Interval with clear definition of absolute zero Height in meters, Weight in Kg, Concentrations...
 - Categorical (or qualitative)
 - Nominal: Categories with no order Patient's name or ID, color of t-shirt...
 - Ordinal: Categories with order but no different between values Grades, Weight in Healthy, overweight, obese

- Example: Lethal dose of a medicine
- Important to know for assessing the overall efficacy of the medicine
- Variability due to Gender, BMI, Age, Geography...
- FDA needs a representative value or a range for lethal dose of a medicine
- Use sample data to compute a reasonable value of lethal dose
 Point estimate of lethal dose

Hypothesis testing

- Example: Two medicines A and B for a disease
- Scientist conjectures that A is better medicine for the disease
- How can you prove or reject the conjecture?
- If the scientists can perform experiments on different sets of patients having the same disease with both medicines and shows that A is better
- Need to collect data and a procedure to show that A is better medicine than B Statistical hypothesis testing
- Emphasis on the better medicine

- Two problems of parameter estimation
 - ► Estimate parameters of a distribution from data U.S.

 ► Estimate parameters of models from data $y = \alpha_1 x_1 + \alpha_2 x_1$
- Objectives of estimation: (i) Estimating parameters, and (ii) provide a goodness of estimated parameters
- Parameter estimation involves two steps:
 - Estimating parameters using methods for estimation
 - Assessing the "goodness" of the estimated parameters and provide bounds on variables

Elements

Definition: Estimator

It is the process of inferring unknown parameters in a model or distribution from a given set of data and other information using a *mathematical map* between the unknowns parameters and the known information and a decision criterion.

Types

- Point estimators: Produce single-valued estimates (more common)
 - Examples: kinetic parameter estimates from data, mean height of person in the classroom, expected life of a mobile device....
- Interval estimators: Produce an interval Examples: catalyst particle size, age of the students in BT5450
- Other types: Non-parametric, Parametric, and semi-parametric
 Depends on the information available such as function and/or density distribution forms

Random Sample

Random Sample

Consider RVs X_1, X_2, \dots, X_n . These RVs are random sample of size n if

- (i) the X_i 's are independent RVs
- (ii) item Each X_i is drawn from the same probability distribution

Statistics

Statistics

A statistic is any function of the observation in a random sample, $\hat{\Theta} = g(X_1, X_2, \dots, X_n)$

-
$$\theta$$
 is a random variable

- θ is a random variable.

12/77

Sampling distribution

Sampling distribution

The probability density function of a statistic is called a sampling distribution

13/77

Point Estimator

- ▶ Random sample: $X_1 X_2, ..., X_n$ with $f(x, \theta)$; Density function
- \triangleright θ : Unknown parameters in column-vector form

Point Estimator

A point estimate of some population parameters θ is a single numerical vector-value $\hat{\theta}$ of a statistic. The statistic is called the point estimator.

Normal distribution:

$$f(x, \theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-u)^2}{26^2}} \text{ with } \theta = \begin{bmatrix} u \\ 6^2 \end{bmatrix}$$
objective
$$\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-u)^2}{26^2}} \text{ with } \theta = \begin{bmatrix} u \\ 6^2 \end{bmatrix}$$

$$\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-u)^2}{26^2}} \text{ with } \theta = \begin{bmatrix} u \\ 6^2 \end{bmatrix}$$

$$\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-u)^2}{26^2}} \text{ with } \theta = \begin{bmatrix} u \\ 6^2 \end{bmatrix}$$

Estimator

- Statistical properties of the estimate
 - Accuracy: How accurate is the estimate on the average?
 - Precision: Variability of the estimates obtained from different random samples?
- The given estimator gives an estimate with the least variability?
- ▶ What about true value of θ (θ_t) and $\hat{\theta}$ obtained from the estimator?
- How does the sample size n affect the value of estimate?

we does the sample size
$$n$$
 affect the value of estimate $Role \ f \ n$:

 $n \rightarrow \infty \ (Large \ sample \ size)$
 $\hat{\theta} \rightarrow \partial t \ ?$

Unbiased Estimators

- How accurate is the estimate on the average? Closeness of estimate to the true values
- ▶ How close values can be computed using an Estimator $\hat{\Theta}$?

$$E(\hat{\Theta}) = \theta_t$$

Unbiased estimator

A point estimator $\hat{\Theta}$ is an unbiased estimator for the parameter θ if

$$E(\hat{\Theta}) = \theta_t$$

Unbiased Estimators

Bias of an estimator

If the estimator is not unbiased estimator, the bias (b) can be computed as

$$b = E(\hat{\Theta}) - \theta_t$$

$$E(\hat{\theta}) = \theta_b$$
, Then

Example: Show that sample mean and variance are unbiased

Random samples:
$$X_1, X_2, \dots, X_n$$
 $X_i \sim P(\mathcal{M}, G^2) P$: Distribution

 $i=1, \dots, n$

sample mean, $X = \sum_{i=1}^{n} \frac{X_i}{n}$
 $= [X] = E[X_1 + X_2 + \dots + X_n]$

Bias = E[x] - 11 = 11 - 11 = 0

18/77

Variance of a Point Estimator

▶ Two unbiased estimators $\hat{\Theta}_1$ and $\hat{\Theta}_2$

$$E(\hat{\Theta})_1 = \theta_t, \quad E(\hat{\Theta})_2 = \theta_t$$

Question: Which one to choose?

Var(O1) < Var(O2) Choose the estimator with

minimum variance

Variance of a Point Estimator

Minimum variance unbiased estimator (MVUE)

Consider all the unbiased estimators (say total m) of θ ($\hat{\Theta}_1, \, \hat{\Theta}_2, \, \ldots, \hat{\Theta}_m$,), the one with the smallest variance is called MVUE.

$$Var(\hat{\Theta}_2) < Var(\hat{\Theta}_1) < \dots Var(\hat{\Theta}_m)$$

Θ₂ is MVUE

Standard Error

Precision and variability of an estimate? Standard error of the estimate

Standard Error of an Estimator

The standard error of of an estimator $\hat{\Theta}$ is its standard deviation given by

$$\hat{\sigma}_{\hat{\Theta}} = \sqrt{\mathsf{Var}(\hat{\Theta})}$$

Mean Squared error of an Estimator

- Only biased estimators are available How to select an estimator?
- ▶ Means squared error of an estimator $\hat{\Theta}$ of the parameter θ

Means squared error

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta_t)^2]$$

or

$$\mathsf{MSE}(\hat{\Theta}) = (E[\hat{\Theta} - E(\hat{\Theta})])^2 + (\theta_t - E(\hat{\Theta}))^2$$
$$= Var(\hat{\Theta}) + (\mathsf{Bias})^2$$

> Bias-variance trade-off: MSE(8) is total

of variance & Bias 22777

Mean Squared error of an Estimator

- ▶ Two estimators of the parameter θ : MSE($\hat{\Theta}_1$) and MSE($\hat{\Theta}_2$)
- Relative efficiency of estimators

$$\frac{\mathsf{MSE}(\hat{\Theta}_1)}{\mathsf{MSE}(\hat{\Theta}_2)}$$

▶ Relative efficiency < 1: $\hat{\Theta}_1$ is a more efficient $\hat{\Theta}_2$

Methods of Point Estimation

Method of moments: Equate population moments to sample moments

Random Sample: X_1, X_2, \ldots, X_n from a PMF or PDF with unknown p parameters θ . The moment estimators $\hat{\Theta}_1, \ldots, \hat{\Theta}_p$ can be found by equating the first p population moments to the first p sample moments and solving the set of nonlinear equations

Methods of Point Estimation

Method of moments: Equate population moments to sample moments

Random Sample: X_1, X_2, \ldots, X_n from a PMF or PDF with unknown p parameters θ . The moment estimators $\hat{\Theta}_1, \ldots, \hat{\Theta}_p$ can be found by equating the first p population moments to the first p sample moments and solving the set of nonlinear equations

$$k^{th}$$
 moment: $E[X^{k}]: k=1; E[X] \rightarrow mean$

$$E[X^{k}] = \hat{\theta}^{(k)}(x_{1}, x_{2}, ..., x_{n})$$
 k^{th} moment compared from data

Method of moments : Example

2: Unknown parameter. Estimate

$$\frac{1}{\lambda} = \frac{1}{n} \sum X_i$$

$$\Rightarrow \lambda = \frac{n}{\sum x_i}$$

Maximum Likelihood Estimation

- **Proof** RV $X \sim f(x, \theta)$, θ : Unknown parameters
- ▶ Observations x_1, x_2, \ldots, x_n
- The likelihood function of the sample is

$$L(\theta) = L(\theta/x_1, x_2, \dots, x_n) = f(x_1, \theta) \cdot f(x_2, \theta) \cdot f(x_3, \theta) \cdot \dots \cdot f(x_n, \theta)$$

$$MaxL(\theta)$$
: Maximum likelihood estimator
$$Max L C\theta) = Max \prod_{i=1}^{\infty} f(\mathcal{X}_{i}, \theta)$$

Maximum Likelihood Estimation Data: 2, ... 2n ~ Bernoulli R.V. PMF: f(x,0) = px (1-p) 1-x x=0,1 Parameter to be estimated: p 8 = [P] = P - Constauct LCO) L(0) = f(x1,p), f(x2,p).... f(xn,t) = p = (1-p) p = [-2] p = 2 = p = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] = 2 = [-2] =

$$\sum \frac{\chi_i}{p} - \frac{n - \sum \chi_i}{1 - p} = 0 \Rightarrow p = \sum \frac{\chi_i}{n}$$

Maximum Likelihood Estimator: Properties

- ► Unbiased estimator: For Large n
- Variance of Ô is nearly as small as the one that could be obtained with any other estimator
- Θ : An approximate normal distribution

Invariance Property

$$\theta_1, \theta_2 - \theta_p \right) h(\theta_1, \dots \theta_p)$$
 $\hat{\theta}_1, \hat{\theta}_2, \dots \hat{\theta}_p \right) h(\hat{\theta}_1, \hat{\theta}_2, \dots \hat{\theta}_p)$

Bootstrapping Estimation

▶ Non-parametric approach of estimation *Unlike MLE and MoM*:

No need for assumption about underlying distribution

- Often used for computing standard error and confidence intervals for relatively small sample size
- Uses sampling with replacement strategies

Bootstrapping Estimation

- Samples: X_1, X_2, \dots, X_n drawn from independent and identical but unknown distribution
- Let $\hat{\Theta} = \hat{\Theta}(X_1, X_2, \dots, X_n)$ be statistic

Bootstrapping Estimation statistic. Bootstraps Data set # of bootstraps = B

Bootstrapping Estimation

Bootstrap means

$$egin{array}{lll} ar{X}_1 &= & {\sf mean}(X_1^{*,1},\ldots,X_n^{*,1}) \\ ar{X}_2 &= & {\sf mean}(X_1^{*,2},\ldots,X_n^{*,2}) \\ &dots \\ ar{X}_B &= & {\sf mean}(X_1^{*,B},\ldots,X_n^{*,B}) \end{array}$$

Bootstrap estimate of the variance

$$var(\bar{X}) = \frac{1}{B-1} \sum_{i=1}^{B} (\bar{X}_i - \bar{X}_B)^2$$
, with $\bar{X}_B = \frac{1}{B} \sum_{i=1}^{B} \bar{X}_i$

Confidence interval

Introduction

- Point estimate: How close to true value?
- Interested in knowing the variability of the population parameters
- Range of plausible values: Confidence interval
- An interval estimate for a population parameter is called a confidence interval
- ► Confidence: Specifies level of confidence 90%,95%, 99%
- Constructed so that it contains true unknown population parameter(s)

Confidence Interval

Introduction

- ▶ Random sample: $X_1, X_2, ..., X_n$
- ▶ Unknown Distribution, Unknown mean μ and Known variance σ^2
- ▶ Sample mean $\bar{X} \sim F(\mu, \sigma^2/n)$
- Standardize X̄, New R. V.

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Three types of intervals

1. confidence Interval

2. Tolevence Interval

3. Prediction Interval

Introduction

Confidence interval: lower and upper bounds,

$$1 \le \mu \le u$$
 L, L: Unknown

- I and u: End points computed from the data
- I and u: Values of random variable L and U
- Question: How do we determine values of I and u

Introduction

- ▶ L and U: RVs
- Determine values of these RVs such that

$$P\{L \le \mu \le U\} = \gamma = 1 - \alpha, \quad 0 \le \gamma, \alpha \le 1$$

From samples x_1, x_2, \dots, x_n , I and u can be computed to determine CI with $(1-\alpha)$ probability

$$I \leq \mu \leq u$$

I and *u*: Lower and upper-confidence bounds

Introduction

Normal distribution X ~ N(U, 5) Data: X,, X2, ..., Xn le is unknown and or: Known objective: Find interval for unknown Standard Normal R.V., Z = compute x from data x= 21+ x2+ ... + xn

Confidence Interval Introduction z- distribution i

For Z e [-1, 1], d = 0.32

$$(2^{-1})$$
, $\alpha \ge 0.04$
 (2^{-1}) , (2^{-1})

Given
$$d$$
, $z_{d/2}$ can be compailed from z -text
$$P(-z_{d/2} \leq z \leq z_{d/2}) = r$$

≥ C-[-2,2), X ≥ 0.04

P(-1 < Z < 1)=0.68

P(-2 == 52) = 0.96

CI and Precision

- ▶ 90% or 95% or 99%?
- $z_{\alpha/2}$ for $\alpha = 0.05$ and $\alpha = 0.01$

$$z_{0.025} = 1.96$$

$$z_{0.005} = 2.58$$

Length of confidence intervals

95%, Length =
$$2(1.96\sigma/\sqrt{n}) = 3.92\sigma/\sqrt{n}$$

99%, Length =
$$2(2.58\sigma/\sqrt{n}) = 5.16\sigma/\sqrt{n}$$

Introduction

One-sided CI on the mean, known of
100(1-0)7. upper-confidence bound

$$u \leq X + Z_d \leq J_n$$

Lower-confidence bound
 $u \geq X - Z_d \leq J_n$

Introduction

Large Sample,
$$\tilde{n}$$
, CI for u

— e^2 unknown but $\tilde{n} \sim \text{large}$

— Compute sample variance, s^2
 $Z \cong X - \text{le} / \text{Sim} (Approximately}$

— CI
 $\tilde{\chi} - Z_{d_2} \frac{s}{\sqrt{n}} \leq u \leq \tilde{n} + Z_{d_2} \frac{s}{\sqrt{n}}$

- Typically, in procetice, n > 40

Introduction

- ► Error= $\|\bar{\mathbf{x}} \mu\|$
- For given σ, specify E, and α, then n: number of samples required

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

▶ For example, E=0.5, σ = 2, α = 0.05, Then n

$$n = \left(\frac{(1.96)(2)}{0.5}\right)^2 = 61.5$$

- ► For E = 0.25, n=? G= Z, X=0.05, N 5246
- ► $\sigma = 1, n = ?$ E = 0.6, 0 < 0.05, N = 16
- ► For $\alpha = 0.01$, n = ?, $z_{0.005} = 2.58$, n = 107

One-sided Confidence Bounds

- ▶ One-sided Confidence Bounds for a given α : Provides
 - ▶ Lower bound $I \leq \mu$
 - ▶ Upper bound $u \ge \mu$
- For a given alpha Computed by
 - ▶ Lower bound $\bar{x} z_{\alpha} \sigma / \sqrt{n} \le \mu \le \infty$
 - ▶ Upper bound $\bar{x} + z_{\alpha} \sigma / \sqrt{n} \ge \mu \ge -\infty$

Unknown Population variance

- So far
 - *n* random samples, unknown μ , and known σ^2
- ▶ *n* random samples, unknown μ , and σ^2 ?
- ightharpoonup Confidence interval for μ
- ▶ Sample variance, S^2 can be computed from n observations
- A statistic can be computed (on same line as z-statistic,

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{\sigma}}}$$

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{s}}}$$

▶ T is RV from t-distribution with n-1 degrees of freedom

$$f(u) = \frac{\left[\left[\frac{n}{2} \right]}{\sqrt{\pi (n-1)} \left(\frac{n^2}{2} \right)} \frac{1}{\left[\left(\frac{u^2}{n-1} \right) + 1 \right]} \eta_2^{-\sqrt{2}}$$

$$= \frac{1}{\sqrt{46/77}} \frac{1}{\sqrt{46/77}} \frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}}$$

Unknown Population variance

- Ta t-dist. with n-1 degrees of
- Symmetric like
- Ivo (1-d) 1. CT

x-+ 3/m < le

- Large m, Z-dist. ~ t-dist.

CI for σ^2 of a Normal Distribution

- χ^2 -distribution for *n* samples from $\mathcal{N}(\mu, \sigma^2)$
- ► X²-statistic (or RV)

$$X^{2} = \frac{(n-1)S^{2}}{\sigma^{2}}$$

$$X^{2} \sim \chi_{n-1}^{2} \qquad \text{fcx} \qquad \text{fcx} \qquad \text{fightistic}$$

$$-\text{Not symmetric} \qquad n = 6$$

$$P(X^{2} > \chi_{d, K}^{2}) \qquad n = 11$$

$$= \int_{\chi_{d, K}^{2}}^{1} f(u) du = 0$$

$$\chi_{d, K}^{2} = \int_{0.05, 10}^{10} \frac{1}{\chi_{d, K}^{2}} du = 0.05$$

48/77

confidence Interval on the variance 100 (1-d)/ with n observations

(n-1)52 < 62 < (n-1)52, S: sample

x2/2)n-1 x21-d2n-1 variance Interportally of (I: - L& V: Random Variables - CI: Random interval - Interpretation: If large number of random samples are collected then 100(1-d). of these CI will contain the tome value of statistic (mean, variance)

Parameter of interest	symbol	Other Parameter	Confidence Interval
Mean Normal distribution	le	62: Known	2-3/5 < U < 2+3 5
Mean Arbi. distribution large size	u	62: Not known compute 52 from data	2-25 < U < 2+2 5 m
Mean: Normal distribution	M	5? Not known compute s² from data	$\overline{z} - t_{\alpha_{k_0} n-1} \frac{s}{J_N} \leq M \leq N + t_{\alpha_{k_0} n-1} \frac{s}{J_N}$
Variance: Normal distribution	62	Mean It unknow and eofimate us 52	$\frac{(n-1)s^{2}}{\chi^{2}_{0(2)}n^{-1}} \leq 6^{2} \leq (n-1)s^{2}$

Summary: 100(1- x) -1.

Parameter of-interest	Lower-bound	Upper-6ound
M, both 62Known & 62Wnknown but largen	2-26€ < M	2+24 E > 11
u &	x - ta,n-15 ≤ 4	$\tilde{\chi} + t_{\alpha, n-1} \leq \lambda$
con Known	$\frac{(n-1)s^2}{\chi^2_{\alpha}, n-1} \leq \varepsilon^2$	$6^{2} \leq (N-1)s^{2}$ $\sqrt{1-d,n-1}$

Example

- Treatments for a disease: T-A and T-B
- Claim: T-A is better than T-B
- Practitioners question: Does T-A better than T-B?
- Approach to answer practitioners question: Hypothesis testing: Decision making process

Introduction

- Claim: T-A is better than T-B
- Claim(s) or statement(s): Statistical Hypothesis (es)
 Statement about the parameters of one or more populations
- ► Claim: T-A is better than T-B: Claim to population's parameter
- Practitioners' interest: mean number of days to recuperate from the appearance of clinical symptoms

Introduction

 Practitioners' interest: mean number of days to recuperate from the appearance of clinical symptoms

- μ_{T-A} and μ_{T-B} : mean days to recuperate for treatment T-A and T-B
- ▶ $\mu_{T-A} > \mu_{T-B}$
- Formal re-casting of statement as two hypotheses:

$$H_0: \mu_{T-A} = \mu_{T-B}$$

$$H_1: \mu_{T-A} > \mu_{T-B}$$

- \rightarrow H_0 : Null hypothesis: Both treatments are same
- ► H₁: Alternative hypothesis: T-A is better than T-B

Introduction

One-sided alternative hypothesis

$$H_0: \mu_{T-A} = \mu_{T-B} \quad H_1: \mu_{T-A} > \mu_{T-B}$$

or

$$H_0: \mu_{T-A} = \mu_{T-B} \quad H_1: \mu_{T-A} < \mu_{T-B}$$

- ► Claim: Mean number of days to recuperate for T-A is 8 days or $\mu_{T-A} = 8$
- Two-sided alternative hypothesis

$$H_0: \mu_{T-A} = 8$$
 days $H_1: \mu_{T-A} \neq 8$ days

By convention: Null hypothesis is an equality claim

Elements

Hypothesis: A statement about the population or model or distribution not about the sample

 Truth or falsity of a claim (or hypothesis) is never known in practical situation

 Hypothesis testing: Probabilistic approach to reach a conclusion based on population parameter(s)

Elements

Two-sided alternative hypothesis

$$H_0: \mu_{T-A} = 8$$
 days $H_1: \mu_{T-A} \neq 8$ days

- Samples are available for T-A different patients
- Sample mean: Take on many different values
- ▶ Let us define range (recall CI): $7.8 \le \bar{x} \le 8.3$
- Acceptance region: any value in the range
- Critical regions: outside the acceptance region

Elements

- Pitfall I:
 - $\mu_{T-A} = 8$: Truth
 - ▶ Random sample selected: $\bar{x} = 8.7$
 - ▶ Outside acceptance region (7.8 $\leq \bar{x} \leq$ 8.3)
 - Reject H₀ in favor of H₁ Wrong conclusion → Type I error

Type I Error

Rejecting H_0 when it is true is defined as a type I error

Type II Error

Failing to reject H_0 when it is false is defined as a type II error

Elements

Decision	H_0 is true	H_0 is false
Fail to reject H_0	No error	Type II error
Reject H ₀	Type I error	No error

- Quantifying Type I and II errors
- ▶ Type I error: Probability of rejecting H_0 when H_0 is true

Elements

Decision	H_0 is true	H_0 is false
Fail to reject H_0	No error	Type II error
Reject H ₀	Type I error	No error

- Quantifying Type I and II errors
- ▶ Type I error: Probability of rejecting H_0 when H_0 is true

Elements

Type I error

Rejecting the H_0 when it is true is defined as a type I error.

Probability of Type I error

 α = P(type I error)=P(reject H_0 when H_0 is true)

Elements

Type II error

 β =P(Probability of Type II error)=P(fail to reject H_0 when H_0 is false)

claim: Average weight of students: 50 kg
Ho
$$\mu = 50$$
, H, $\mu \neq 50$
Tone mean, $\mu = 52$
Acceptance region: $48.5 \le X \le 51.5$
 $\beta = P(48.5 \le X \le 51.5)$ when $\mu = 52$

Type II error is higher when U = 50.5.

Elements Important points

- 1. The size of the critical region can be reduced by type I error, &.
- 2. For given sample size, n, decrease in the probability of one type error results in an increase in the other type.
- 3. For given of, increase on reduces B
- 4. Value of B decreases as the diff. between the time mean and the hypothesized value increases

Elements

- β: Not constant, depends on true value of parameter and sample size
- Extent of falsity of null hypothesis
- ► Accept H₀: Weak conclusion
- ▶ Failing to reject H₀: Strong conclusion

Le Does not mean " Ho is true", but, it means " more data are required to make strong condusion"

Power

- Power: Power of statistical test: Probability of rejecting null Hypothesis H₀ when H₁ is true
- ▶ Power = 1β
- Power: Probability of correctly rejecting a false H₀
- -> Power is used to compare two statistical test
- a statistical test.

Elements one-sided hypothesis:

claim involving phrases " greater than" less than or at least ...

"one-sided by pothesis testing"

- Appropriate alternative hypothesis test has to be chosen.
- one-sided Hi; Rejecting Ho is a strong conclusion

Elements

- α: Fixed significance level
- α: Doesn't provide any idea location of parameters in critical region

P-value

The P-value is the smallest level of significance that would lead to rejection of H_0 with the given data.

Elements Two-sided hypothesis test Ho: ll = 50, H, ll \$50, n=16,

- Observed sample mean, x = 57.3

It indicates == 57.3 is a rare event. when p= 0.038

General Procedure for Hypothesis tests

Context specific

- Parameter of interest: Identify the parameter of interest for a context
- 2. Null hypothesis, H_0 : State the null hypothesis
- 3. Alternative hypothesis, H_1 : Specify an appropriate alternative hypothesis
- 4. Test statistic: Determine an appropriate test statistic
- 5. Reject H_0 if: State the rejection criteria for the null hypothesis
- Computations: Compute any necessary sample quantities and value of test statistic
- 7. Draw conclusions: Decide whether or not H_0 should be rejected and report that in the problem context

Population, 62 Known, means Data: X1, X2, ..., Xn on the Hypothesis test

-D Zd/2 & - Zd/2 If Zo computed from data $-Z_{N_2} \leq Z_0 \leq Z_{d/2}$, Fail to reject to Swc Reject to if Z_{o} < $-Z_{\alpha/2}$ or $Z_{o} > Z_{\alpha/2}$ compute sample mean on from pata & compute Zo

65 choose & value

(57)
$$Z_0^C > Z_L$$
 or $Z_0^C < -Z_d$ for Reject H.

P2: Population mean is parameter of interest n: Large size, or unknown Apply P1: Zo = 22 - el Sample Str. S.D. P3: Population mean: parameter of interest. n + large, 6 unknown $T_o = \frac{\pi - \mu}{s/\tau_n} \sim t_{n-1} dstos.$ (S5) Turo-sided test; to < 1-6/2, n-1 to > taken-1;
Reject Ho

one-sided test: for Hi: le > leo Reject Sto > td, n-1 100 Hi. M < Mo Variance is parameter of interest, Population in x 62 P4: unknown NWI Hypothems Reject Ho Ho: 62 = 62 (5 > Xd/2/ht H1: 67+6 Two-sided or X° < X1-4/21 M,: 627602 X0 XXXX,M One-sided H,: 62 < 65 X0 < X2 Test statistics $\chi_{0}^{2} = (n-1)S^{2}$ Two-sided

$$z = b_{1}e^{-z_{1}}$$
, $b_{1}e^{-z_{1}}$ $d_{1}e^{-z_{1}}$ $d_{2}e^{-z_{1}}$ $d_{2}e^{-z_{1}}$ $d_{2}e^{-z_{1}}$ $d_{3}e^{-z_{1}}$, $d_{1}e^{-z_{1}}e^{-z_{1}}$ $d_{2}e^{-z_{1}}e^{-z_{1}}$ $d_{2}e^{-z_{1}}e^{-z_{1}}e^{-z_{1}}$ $d_{2}e^{-z_{1}}e^{$

$$P_{1} : \mathcal{U} = \mathcal{U}_{1}, \qquad P_{2} : \mathcal{U} = \mathcal{U}_{2}$$

$$H_{0} : \mathcal{U}_{1} = \mathcal{U}_{2}, \quad H_{1} : \mathcal{U}_{1} \neq \mathcal{U}_{2}$$

$$Z = \underbrace{X_{1} - X_{2} - (\mathcal{U}_{1} - \mathcal{U}_{2})}_{\underbrace{S_{1}^{2} + S_{2}^{2}}}$$