Package 'SDPDmod'

April 13, 2024
Title Spatial Dynamic Panel Data Modeling
Version 0.0.5
Description Spatial model calculation for static and dynamic panel data models, weights matrix creation and Bayesian model comparison. Bayesian model comparison methods were described by 'LeSage' (2014) <doi:10.1016 j.spasta.2014.02.002="">. The 'Lee'-'Yu' transformation approach is described in 'Yu', 'De Jong' and 'Lee' (2008) <doi:10.1016 j.jeconom.2008.08.002="">, 'Lee' and 'Yu' (2010) <doi:10.1016 j.jeconom.2008.08.002=""></doi:10.1016></doi:10.1016></doi:10.1016>
License GPL (>= 3)
Depends R (>= 2.10)
Imports Matrix, methods, plm, RSpectra, sf, sp, spdep, stats
Suggests knitr, rmarkdown, splm
<pre>BugReports https://github.com/RozetaSimonovska/SDPDmod/issues/</pre>
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
NeedsCompilation no
Author Rozeta Simonovska [aut, cre]
Maintainer Rozeta Simonovska <simonovska.r@gmail.com></simonovska.r@gmail.com>
Repository CRAN
Date/Publication 2024-04-13 15:10:02 UTC
R topics documented:
blmpSDPD 2 coef.SDPDm 4 DDistMat 5 DistWMat 6 cignor 7

2 blmpSDPD

	ExpDistMat	8
	gN3dist	9
	impactsSDPDm	9
	InvDistMat	10
	isrownor	11
	mNearestN	12
	mOrdNbr	13
	print.blmpSDPD	14
	print.SDPDm	14
	print.summary.impactsSDPDm	15
	print.summary.SDPDm	15
	rownor	16
	SDPDm	17
	SharedBMat	19
	summary.impactsSDPDm	20
	summary.SDPDm	21
	usa46	21
Index		22

blmpSDPD

Bayesian log-marginal posterior probabilities for spatial panel models

Description

Calculates log-marginal posterior probabilities for model comparison purposes.

Usage

```
blmpSDPD(
  formula,
  data,
 W,
  index,
 model = list("ols", "slx", "sar", "sdm", "sem", "sdem"),
 effect = "individual",
  ldet = NULL,
  lndetspec = list(m = NULL, p = NULL, sd = NULL),
  dynamic = FALSE,
  tlaginfo = list(ind = NULL),
 LYtrans = FALSE,
  incr = NULL,
  rintrv = TRUE,
 prior = "uniform",
 bprarg = 1.01
)
```

blmpSDPD 3

Arguments

formula	a symbolic description for the model to be estimated
data	a data.frame
W	spatial weights matrix (row-normalized)
index	the indexes (names of the variables for the spatial and time component)
model	a list of models for which the Bayesian log-marginal posterior probabilities need to be calculated, list("ols", "slx", "sar", "sdm", "sem", "sdem")
effect	type of fixed effects, $c("none","individual","time","twoways")$, default ="individual"
ldet	Type of computation of log-determinant, c("full", "mc"). Default "full" for smaller problems, "mc" for large problems.
lndetspec	specifications for the calculation of the log-determinant
dynamic	logical, if TRUE time lag of the dependent variable is included. Default = FALSE
tlaginfo	specification for the time lag, default = list(ind=NULL), <i>ind</i> - i-th column in the data frame which represents the time lag
LYtrans	logical, default FALSE. If Lee-Yu transformation should be used for demeaning of the variables
incr	increment for vector of values for rho
rintrv	logical, default TRUE, calculates eigenvalues of W. If FALSE, the interval for rho is (-1,1).
prior	type of prior to be used c("uniform", "beta"). Default "uniform"
bprarg	argument for the beta prior. Default = 1.01

Details

For the Spatial Durbin Error Model (SDEM) the marginal distribution is:

$$p(\lambda|y) = \frac{1}{p(y)} p(\lambda) \Gamma(a) (2\pi)^{-a} \frac{|P|^{T-1}}{|Z'Z|^{1/2}} (e'e)^{-a}$$

For the Spatial Durbin Model (SDM) the marginal distribution is:

$$p(\rho|y) = \frac{1}{p(y)} p(\rho) \Gamma(a) (2\pi)^{-a} \frac{|P|}{|Z'Z|^{1/2}} (e'e)^{-a}$$

where $p(\lambda)$ is prior on λ and $p(\rho)$ is prior on ρ , either uniform $\frac{1}{D}$, $D=1/\omega_{max}-1/\omega_{min}$ or beta prior; No priors on beta and sige; ω_{max} and ω_{min} are the maximum and minimum eigenvalues of W - spatial weights matrix; Z=X for lag or error model and Z=[XWX] for Durbin model; X -matrix of k covariates.

For more details, see LeSage (2014).

Based on MatLab function log_marginal_panelprob.m.

In tlaginfo = list(ind = NULL):

ind i-th column in data which represents the time lag, if not specified then the lag from the dependent variable is created and the panel is reduced from nt to n(t-1)

4 coef.SDPDm

Value

A list

lmarginal log-marginal posterior
probs model probability

Author(s)

Rozeta Simonovska

References

LeSage, J. P., & Parent, O. (2007). Bayesian model averaging for spatial econometric models. *Geographical Analysis*, 39(3), 241-267.

LeSage, J. P. (2014). Spatial econometric panel data model specification: A Bayesian approach. *Spatial Statistics*, 9, 122-145.

Examples

```
## US States Production data
data(Produc, package = "plm")
## Spatial weights row-normalized matrix of 48 US states
data(usaww, package = "splm")
isrownor(usaww)
form1 <- log(gsp) \sim log(pcap) + log(pc) + log(emp) + unemp
res1 <- blmpSDPD(formula = form1, data=Produc, W = usaww,
                 index = c("state", "year"),
                 model = list("sar","sdm","sem","sdem"),
                 effect = "twoways")
res1
res2 <- blmpSDPD(formula = form1, data = Produc, W = usaww,
                 index = c("state", "year"),
                 model = list("sar","sdm","sem","sdem"),
                 effect = "twoways", dynamic = TRUE)
res2
```

coef.SDPDm

Extract coefficients from model of class SDPDm

Description

Method for extracting coefficients of objects of class "SDPDm"

Usage

```
## S3 method for class 'SDPDm'
coef(object, ...)
```

DDistMat 5

Arguments

object of class "SDPDm"

. . . additional arguments to be passed

Value

Coefficients extracted from the model object of class "SDPDm".

Author(s)

Rozeta Simonovska

See Also

SDPDm

DDistMat

Double-Power Distance Weights Matrix

Description

This function calculates the double-power distance matrix, for a given distance cutoff and a positive exponent.

Usage

```
DDistMat(distMat, distCutOff = NULL, powr = 2, mevn = FALSE)
```

Arguments

distMat distance matrix

distCutOff distance cutoff. Default = the maximal value from the distance matrix.

powr power (positive exponent), default 2

mevn logical, default FALSE. If TRUE, max-eigenvalue normalization is performed.

Details

W is an *nxn* matrix with elements w_{ij} , i, j = 1, ...n, where $w_{ij} = (1 - (\frac{d_{ij}}{D})^p)^p$, if $0 <= d_{ij} < D$ and $w_{ij} = 0$, if $d_{ij} > D$ or i = j. D is the cut-off distance point (maximum radius of influence), d_{ij} is the distance between spatial units i and j, and p is the power value (e.g. p = 2, 3, 4,...).

Value

W spatial weights matrix (Default, not normalized)

6 DistWMat

Author(s)

Rozeta Simonovska

Examples

DistWMat

Distance weights matrix (Inverse distance, Exponential distance or Double-Distance matrix)

Description

This function calculates the spatial distance weights matrix (inverse, exponential or double-distance), with a given cutoff distance and a positive exponent (alpha).

Usage

```
DistWMat(
  distMat,
  distCutOff = NULL,
  type = "inverse",
  alpha = NULL,
  mevn = FALSE
)
```

Arguments

distNat distance matrix

distCutOff cutoff distance. Default = the maximal value from the distance matrix.

type the type of distance matrix c("inverse", "expo", "doubled"). Default = "inverse".

alpha power (positive exponent), default 1 if type="inverse", 0.01 if type="expo" and 2 if type="double"

mevn logical, default FALSE. If TRUE, max-eigenvalue normalization is performed.

Value

W spatial weights matrix (Default, not normalized)

eignor 7

Author(s)

Rozeta Simonovska

See Also

```
InvDistMat ExpDistMat DDistMat vignette("spatial_matrices", package = "SDPDmod")
```

Examples

eignor

Maximum eigenvalue normalization

Description

Maximum eigenvalue row normalization of a spatial weights matrix.

Usage

```
eignor(W)
```

Arguments

W spatial weights matrix

Value

W Eigenvalue normalized spatial weights matrix

Author(s)

Rozeta Simonovska

See Also

rownor

8 ExpDistMat

Examples

ExpDistMat

Exponential distance matrix

Description

This function calculates the (negative) exponential distance matrix, with a given cutoff distance and a positive exponent value.

Usage

```
ExpDistMat(distMat, distCutOff = NULL, expn = 0.01, mevn = FALSE)
```

Arguments

distMat distance matrix

distCutOff cutoff distance. Default = the maximal value from the distance matrix.

expn positive exponent, default = 0.01

mevn logical, default FALSE. If TRUE, max-eigenvalue normalization is performed.

Details

W is an *nxn* matrix with elements w_{ij} , i, j = I,...n, where $w_{ij} = e^{-\alpha d_{ij}}$, if $0 <= d_{ij} < D$ and $w_{ij} = 0$, if $d_{ij} > D$ or i = j. D is the distance cutoff point (maximum radius of influence), d_{ij} is the distance between spatial units i and j, and α is the positive exponent (e.g. $\alpha = 0.01, 0.02,...$).

Value

W

spatial weights matrix (Default, not normalized)

Author(s)

Rozeta Simonovska

```
data(gN3dist) ##distance in meters
W1 <- ExpDistMat(distMat = gN3dist, distCutOff = 100000)
dist2 <- gN3dist/1000 ##in km
W2 <- ExpDistMat(distMat = dist2, distCutOff = 100, expn = 0.02)
W2nor <- ExpDistMat(distMat = dist2, 100000, 0.001, mevn = TRUE)</pre>
```

gN3dist 9

gN3dist

Distance between the centroids of NUTS3 regions in Germany

Description

Distance between the centroids of NUTS3 regions in Germany

Usage

gN3dist

Format

matrix of distances

impactsSDPDm

Impacts for 'SDPDm' objects

Description

Direct and indirect effects estimates

Usage

```
impactsSDPDm(res, NSIM = 200, sd = 12345)
```

Arguments

res an object of class 'SDPDm'

NSIM number of simulations to be performed, default = 200

sd starting seed, default = 12345

Details

For spatial dynamic panel data model:

$$y_t = \tau y_{t-1} + \rho W y_t + \eta W y_{t-1} + X_t \beta + W X_t \theta + \alpha + \mu + u_t$$

Short term effects for kth explanatory variable:

$$(I - \rho W)^{-1}(\beta_k I_n + \theta_k W)$$

Long term effects for kth explanatory variable:

$$((1-\tau)I_n - (\rho+\eta)W)^{-1}(\beta_k I_n + \theta_k W)$$

The direct effect is the average of the diagonal elements, and the indirect effect is the average of the row sums of the non-diagonal elements of the matrix.

10 InvDistMat

Value

An object of class 'impactsSDPDm'

Author(s)

Rozeta Simonovska

See Also

SDPDm

InvDistMat

Inverse distance matrix

Description

This function calculates the inverse distances, with a given cutoff distance and a positive exponent.

Usage

```
InvDistMat(distMat, distCutOff = NULL, powr = 1, mevn = FALSE)
```

Arguments

distMat distance matrix

distCutOff cutoff distance. Default = the maximal value from the distance matrix.

powr power (positive exponent), default = 1

mevn logical, default FALSE. If TRUE, max-eigenvalue normalization is performed.

Details

W is an nxn matrix with elements w_{ij} , i,j=1,...n, where $w_{ij}=1/d_{ij}^{\gamma}$, if $0 <= d_{ij} < D$ and $w_{ij}=0$, if $d_{ij} > D$ or i=j. D is the distance cutoff point (maximum radius of influence), d_{ij} is the distance between spatial units i and j, and γ is the value for the exponent (e.g. $\gamma=1,2,3,4,...$).

Value

weights matrix (Default, not normalized)

Author(s)

W

Rozeta Simonovska

isrownor 11

Examples

isrownor

Is the matrix row-normalized

Description

Checks if a spatial weights matrix is row-normalized.

Usage

isrownor(W)

Arguments

W

spatial weights matrix

Value

Logical value. If the weights matrix is row-normalized such that all rows sum up to 1, the value is TRUE.

Author(s)

Rozeta Simonovska

See Also

rownor

```
data("usa46", package="SDPDmod")
isrownor(usa46)
```

12 mNearestN

mNearestN	m nearest neighbors based on a distance matrix	

mNearestN

m nearest neighbors based on a distance matrix

Description

This function finds the m nearest neighbors, given a matrix of distances.

Usage

```
mNearestN(distMat, m = 5, listv = FALSE, rn = FALSE)
```

Arguments

distMat	distance matrix
m	number of nearest neighbors, default value 5
listv	logical, default FALSE. If TRUE the list of neighbors should also be returned
rn	logical, default FALSE. If TRUE, the spatial weights matrix will be row-normalized

Value

```
spatial weights matrix
```

list of indexes of the m nearest neighbors nlist

Author(s)

Rozeta Simonovska

```
data(gN3dist, package = "SDPDmod")
fournn <- mNearestN(gN3dist, m = 4)</pre>
mat1 <- rownor(fournn)</pre>
tennn <- mNearestN(gN3dist, 10, listv = TRUE, rn = TRUE)</pre>
mat2 <- tennn$W
```

mOrdNbr 13

mOrdNbr 1st	to m-th order neighbors matrix
-------------	--------------------------------

Description

Finds the 1th to m-th order neighbors matrix.

Usage

```
mOrdNbr(sf_pol = NULL, m = 1, neigbs = NULL, listv = FALSE, rn = FALSE)
```

Arguments

sf_pol	spatial polygons object
m	the order of neighbors up to which they will be included in the weights matrix, default 1
neigbs	neighbors list, default NULL
listv	logical, default FALSE. If TRUE the list of neighbors should also be returned
rn	logical, default FALSE. If TRUE, the weight matrix will be row-normalized

Value

W spatial weights matrix nlist list of neighbors

Author(s)

Rozeta Simonovska

14 print.SDPDm

print.blmpSDPD

Print for class blmpSDPD

Description

Method for printing the results of objects of class "blmpSDPD"

Usage

```
## S3 method for class 'blmpSDPD'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

x object of class "blmpSDPD"

digits number of digits

... additional arguments to be passed

Value

No return value

Author(s)

Rozeta Simonovska

 $\verb"print.SDPDm"$

print for class SDPDm

Description

Method for sprinting the results of objects of class "SDPDm"

Usage

```
## S3 method for class 'SDPDm'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

```
x object of class "SDPDm"
```

digits number of digits

... additional arguments to be passed

Value

No return value

Author(s)

Rozeta Simonovska

See Also

SDPDm

```
print.summary.impactsSDPDm
```

Print summary for class impactsSDPDm

Description

Method for printing the summary the results of objects of class "impactsSDPDm"

Usage

```
## S3 method for class 'summary.impactsSDPDm' print(x, ...)
```

Arguments

x summary object of class "impactsSDPDm"
... additional arguments to be passed

Author(s)

Rozeta Simonovska

```
print.summary.SDPDm
Print of summary for class SDPDm
```

Description

Method for printing the summary the results of objects of class "SDPDm"

Usage

```
## S3 method for class 'summary.SDPDm'
print(x, ...)
```

16 rownor

Arguments

x summary object of class "SDPDm"... additional arguments to be passed

Value

No return value

Author(s)

Rozeta Simonovska

See Also

SDPDm

rownor

Row-normalization

Description

Row-normalization of a spatial weights matrix.

Usage

rownor(W)

Arguments

W spatial weights matrix

Value

W row-normalized spatial weights matrix

Author(s)

Rozeta Simonovska

See Also

eignor

SDPDm 17

Examples

SDPDm

Spatial dynamic panel data lag model with fixed effects maximum likelihood estimation.

Description

This function estimates spatial panel model with fixed effects for static or dynamic model. It includes the transformation approach suggested by Yu et al (2008) and Lee and Yu (2010).

Usage

```
SDPDm(
  formula,
 data,
 W,
  index,
 model = "sar",
 effect = "individual",
 ldet = NULL,
 lndetspec = list(p = NULL, m = NULL, sd = NULL),
 dynamic = FALSE,
  tlaginfo = list(ind = NULL, tl = TRUE, stl = TRUE),
 LYtrans = FALSE,
  incr = NULL,
 rintrv = TRUE,
 demn = FALSE,
 DIRtrans = FALSE
)
```

Arguments

formula	a symbolic description for the (static) model to be estimated, not including the dynamic component
data	a data.frame
W	spatial weights matrix
index	the indexes (Names of the variables for the spatial and time component. The spatial is first and the time second.)
model	a models to be calculated, c("sar", "sdm"), default = "sar"

18 SDPDm

effect type of fixed effects, c("none","individual","time","twoways"), default ="indi-

vidual"

ldet type of computation of log-determinant, c("full", "mc"). Default "full" for smaller

problems, "mc" for large problems.

Indetspec specifications for the calculation of the log-determinant for mcmc calculation.

Default list(p=NULL,m=NULL,sd=NULL), if the number of spatial units is

>1000 then list(p=30,m=30,sd=12345)

dynamic logical, if TRUE time lag of the dependent variable is included. Default =

FALSE

tlaginfo specification for the time lag, default = list(ind=NULL,tl=FALSE,stl=FALSE),

see details

LYtrans logical, default FALSE. If the Lee-Yu transformation should be used for bias

correction

incr increment for vector of values for rho

rintry logical, default TRUE, calculates eigenvalues of W. If FALSE, the interval for

rho is (-1,1)

demn logical, if Lee-Yu transformation for demeaning of the variables to remove fixed

effects is performed (only used in static models). Default FALSE

DIRtrans logical, if direct transformation of variables should be used. Default, FALSE

(only used in dynamic models with "twoways" effects)

Details

Based on MatLab functions sar_jihai.m, sar_jihai_time.m and sar_panel_FE.m

In tlaginfo = list(ind = NULL, tl = TRUE, stl = TRUE):

ind i-th column in data which represents the time lag, if not specified then the lag from the dependent variable is created and the panel is reduced from nt to n(t-1)

tl logical, default TRUE. If TRUE y_{t-1} (the lagged dependent variable in time is included)

stl logical, default TRUE. If TRUE Wy_{t-1} (the lagged dependent variable in space and time is included)

Value

An object of class "SDPDm"

coefficients coefficients estimate of the model parameters (coefficients1 for dynamic model)

rho spatial coefficient sige residuals variance

11ik the value of the log likelihood function

. . .

Author(s)

Rozeta Simonovska

SharedBMat 19

References

Yu, J., De Jong, R., & Lee, L. F. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. *Journal of Econometrics*, 146(1), 118-134.

Lee, L. F., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. *Journal of Econometrics*, 154(2), 165-185.

Lee, L. F., & Yu, J. (2010). A spatial dynamic panel data model with both time and individual fixed effects. *Econometric Theory*, 564-597.

See Also

```
vignette("spatial_model", package = "SDPDmod")
```

Examples

SharedBMat

Shared boundary matrix

Description

This function calculates the shared boundary matrix

Usage

```
SharedBMat(sf_pol, rn = FALSE)
```

Arguments

```
sf_pol spatial polygons, spatial lines object or spatial data frame
rn logical, default FALSE. If TRUE, the spatial weights matrix is row-normalized
```

Value

spatial v

spatial weights matrix (length of shared boundary between spatial units)

Author(s)

W

Rozeta Simonovska

Examples

summary.impactsSDPDm Summary for class impactsSDPDm

Description

Method for summarizing the results of objects of class "impactsSDPDm"

Usage

```
## S3 method for class 'impactsSDPDm'
summary(object, ...)
```

Arguments

```
object object of class "impactsSDPDm"
... additional arguments to be passed
```

Value

Summary of impacts

Author(s)

Rozeta Simonovska

See Also

SDPDm

summary.SDPDm 21

 ${\tt summary.SDPDm}$

Summary for class SDPDm

Description

Method for summarizing the results of objects of class "SDPDm"

Usage

```
## S3 method for class 'SDPDm'
summary(object, ...)
```

Arguments

object

object of class "SDPDm"

... additional arguments to be passed

Value

Summary of SDPDm

Author(s)

Rozeta Simonovska

See Also

SDPDm

usa46

Spatial weights matrix of 46 USA states

Description

Spatial weights matrix of 46 USA states

Usage

usa46

Format

binary coded matrix

Index

```
* data
    gN3dist, 9
    usa46, 21
blmpSDPD, 2
coef.SDPDm, 4
DDistMat, 5, 7
DistWMat, 6
eignor, 7, 16
ExpDistMat, 7, 8
gN3dist, 9
impactsSDPDm, 9
InvDistMat, 7, 10
isrownor, 11
mNearestN, 12
mOrdNbr, 13
print.blmpSDPD, 14
print.SDPDm, 14
print.summary.impactsSDPDm, 15
print.summary.SDPDm, 15
rownor, 7, 11, 16
SDPDm, 10, 17
SharedBMat, 19
summary.impactsSDPDm, 20
\verb|summary.SDPDm|, 21|\\
usa46, 21
```