Name:		
	Section	:
Ho	mework 21 (Po	sets)
	Due Tue	4/30

 ${f 54.6}$ Prove that refines is a partial order relation on the set of all partitions of a set A.

Let \mathcal{P} and \mathcal{Q} be partitions of a set A. We say that \mathcal{P} refines \mathcal{Q} if every part in \mathcal{P} is a subset of some part in \mathcal{Q} . We also say that \mathcal{P} is finer than \mathcal{Q} .

 ${f 55.8}$ Let P be a finite, nonempty poset. We know that P must have a minimal and a maximal element. Prove the following stronger statement:

Let P be a finite, nonempty poset. Prove that P must contain a minimal element x and a maximal element y with $x \leq y$.

57.4 Let $P = (X, \leq)$ be a finite poset that is not a total order. Prove that P contains incomparable elemnets x and y such that

$$\leq' = \leq \cup \{(x,y)\}$$

is a partial order relation. Such a pair of elements is called a $critical\ pair.$

58.1 Let P be the poset in the following figure:

- **a.** Find $d = \dim P$.
- **b.** Find a realizer of P containing d linear extensions.
- **c.** Give an embedding of P in \mathbb{R}^d (either via a picture or by specifying coordinates).