

En los siguientes circuitos, identificar qué elementos están conectados en serie y qué elementos están conectados en paralelo.

Ley de Ohm:
$$I_1=V_{R1}/R_1=6V/60\Omega=0.1A$$

$$I_2=V_{R2}/R_2=6V/20\Omega=0.3A$$

$$I_3=V_{R3}/R_3=6V/10\Omega=0.6A$$

Calcular la resistencia equivalente del conjunto de tres resistencias:

LCK: $I_T = I_1 + I_2 + I_3 = 1A$

Ley de Ohm: $R_{Eq} = 6V/1A = 6\Omega$

Calcular las corrientes indicadas en los siguientes circuitos aplicando la ley de Kirchhoff de las corrientes:

Calcular v_{AB} en los siguientes circuitos:

$$-10V-8V+v_{AB}+5V=0V$$
 $-10V+8V+v_{AB}-5V=0V$ $10V-8V+v_{AB}+5V=0V$ $v_{AB}=13V$ $v_{AB}=7V$ $v_{AB}=-7V$

Calcular v_X en el siguiente circuito:

$$-4V+v_X-4V+3V-10V=0V \rightarrow v_X=15V$$

Calcular v_{AB} aplicando la ley de Kirchhoff de las corrientes:

LCK: $I_{AB} = 5A + 2A = 7A$

Ley de Ohm: $v_{AB} = 7A \cdot 2\Omega = 14V$

Calcular I_1 , I_2 , I_3 e I_4 en el siguiente circuito:

LCK: Nodo A: $I_1+I_2=2A$

Nodo B: $0A = I_2 + 3A + 7A$

Nodo C: $I_4+7A=I_3$ $\longrightarrow I_1=12A, I_2=-10A, I_3=5A, I_4=-2A,$

Nodo D: *2A=I*₄+*4A*

Calcular la potencia consumida total por el siguiente circuito:

$$P_{3k\Omega}=12mW$$
 (consumida)

$$P_{15k\Omega}=15mW$$
 (consumida)

$$P_{8V}$$
=24mW (entregada)

$$P_{1mA} = 7mW$$
 (entregada)

$$P_{2mA}$$
=4 mW (consumida)

$$P_{Cons} = 31 \, \text{mW (consumed)}$$

$$i_X = 0A$$

$$-10V + 1V + 0A \cdot 4\Omega + v_{AB} = 0V \qquad v_{AB} = 9V$$

Calcular la tensión entre A y B.

 $i_3 = i_1 = 3A$

LCK:
$$i_1 = i_2 + i_3$$

C. abierto:
$$i_2 = 0A$$

LTK:
$$-3A \cdot 10\Omega + 3V + v_{TH} = 0V$$