INDIAN INSTITUTE OF TECHNOLOGY PATNA

CE320: DESIGN OF STEEL STRUCTURES

PROJECT REPORT

Analysis and Design of Roof Truss for Industrial Building

WARREN TRUSS

By Group: 08

Under The Supervision of

Dr. Vaibhav Singhal

Department of Civil and Environmental Engineering

Our Team Members

Ayushman Singh	2201CE10
Boddu Bhumika	2201CE11
Gautam Kumar	2201CE17
Harshdeep Kharwar	2201CE20
N. Avinash Naidu	2201CE37
Priyadarshni Sinha	2201CE46
Rabi Kumar Shaw	2201CE49

Table of contents

Sr. no.	Topic	Page no.
1	Objective	4
2	2D and 3D View	5
3	Wind Load Calculations	6
4	Details of Applied Loads	9
5	Analysis:	10
5.1	Column	11
5.2	Beam	14
5.3	Purlin	15
5.4	Bottom chord	17
5.5	Top Chord	19
5.6	Vertical Chord	21
5.7	Diagonal Chord	22
6	Design Forces in Critical Members	24

Objective

The objective of this project is to perform both the **structural analysis** and **design** of a steel **Warren truss** roof system for an industrial shed located in **Silchar**, ensuring safety, stability, and compliance with relevant Indian Standards. The truss is to be analysed using **SAP2000** software, and the critical members will be designed based on internal forces obtained from the analysis.

Key project parameters include:

• Location: Silchar

• **Design life**: 50 years

• Terrain category: Category 1

• Shed dimensions: $60 \text{ m} \times 20 \text{ m}$

• Column spacing: 15 m (centre to centre)

• **Ceiling height**: 10 m (from shop floor to truss bottom)

• Truss type: Warren Truss

• Rise of truss: 4 m

• **Truss spacing**: Not more than 5 m

• **Material**: Structural steel with yield strength $f_y = 250$ MPa

The primary objectives of the analysis are:

- To model the **Warren truss** structure accurately in SAP2000 based on the given geometry and support conditions.
- To apply relevant loads and combinations in accordance with IS codes, particularly:
 - o 1.5 (Dead Load + Live Load)
 - 1.5 (Dead Load + Wind Load)
 - 1.2 (Dead Load + Live Load + Wind Load)
- To determine internal axial forces, support reactions, and member force distribution under different loading scenarios.
- To perform the **final design** of critical members in accordance with **IS 800:2007**, using the results from the analysis.

2D and 3D View

Figure: 2D View

Figure: 3D View

Wind Load Calculations

(As per IS 875-Part 3: 2015)

As per the location given in the question, from IS 875- Part 3: 2015, by using the Basic Wind Speed map,

Basic wind speed, $V_b = 55 \text{ m/s}$

Using Clause 6.3,

Design Wind Speed, $V_z = V_b * k_1 * k_2 * k_3 * k_4$

Where, k1 = Probability factor (risk coefficient)

k2 = Terrain roughness and height factor

k3 = Topography factor

k4 = importance factor for the cyclonic region

According to Clause 6.3.1,

Considering our structure under the important building category,

From Table 1,

k1 = 1.08

From Clause 6.3.2.2 and Table 2,

For terrain category 1, and Height of structure = 14 m

By interpolation,

k2 = 1.082

Using Clause 6.3.3.1,

k3 = 1.0

Using Clause 6.3.4,

For industrial structures,

k4 = 1.15

Therefore,

$$V_z = V_b * k_1 * k_2 * k_3 * k_4$$

$$V_z = 55*1.08*1.082*1.0*1.15$$

i.e., Vz = 73.91 m/s

From Clause 7.2,

Design Wind Pressure, $P_d = k_d * k_a * k_c * p_z$

Where,

 k_d = wind directionality factor

 K_a = area averaging factor

 $K_c = combination factor$

$$p_z = 0.6 \text{ Vz2}$$

$$=0.6*(73.91)2$$

$$p_z = 3277.61 \text{ Pa}$$

From Clause 7.2.1, for trussed structure, $k_d = 0.9$

From Clause 7.2.2 and Table 4,

Tributary area = (10/3) * 5 = 16.67 m2

By interpolation,

$$k_a = 0.95$$

From Clause 7.3.3.13,

$$k_c = 0.9$$

Therefore,

$$P_d = k_d * k_a * k_c * p_z$$

= 3277.61 * 0.9 * 0.95 * 0.9

i.e.,

$$P_d = 2522.12 Pa$$

From Clause 7.3.2.2,

For openongs larger than 20%, $C_{p_i} = \pm 0.7$

From Clause 7.3.2.2 and Table 6,

We have, h = 10m

$$W = 20 \text{ m}$$

Therefore,
$$\frac{h}{w} = \frac{10}{20} = \frac{1}{2}$$

Assume, $\theta = roof \ angle$

Therefore,
$$\tan \theta = \frac{4}{10/3}$$

i.e.,
$$\theta = 50.2^{\circ}$$

Wind Direction	C_{p_i}	C_{pe}		$C_{p_e} - C_{p_i}$	
		Windward (EF , EG)	Leeward (GH , FH)	Windward	Leeward
Normal to	+ 0.7	+ 0.35	- 0.52	- 0.35	- 1.22
levee strut (0°)	-0.7	+ 0.35	- 0.52	+ 1.05	+ 0.18
Normal to	+ 0.7	- 0.70	- 0.60	- 1.40	- 1.30
ridge strut (90°)	- 0.7	- 0.70	- 0.60	+ 0.00	+ 0.10

Therefore,
$$\left(\mathcal{C}_{pe} - \mathcal{C}_{Pi} \right)_{\mathrm{max}} = -1.40$$

From Clause 7.3.1,

$$P'_d = (C_{pe} - C_{pi}) \times P_d$$

= -1.40 * 2522.12
= -3530.97 Pa

$$P'_d = -3.53 \text{ kPa}$$

Since, spacing of Purlins = 3.33 m

Therefore, **Resultant Wind Load = -** 3.53 * 3.33

= -11.75 kN/m

Details of Applied Loads

Type of Load	Load Value
Dead Load	Self-weight
Dead Load	GI Sheet: 1.2 KPa
Live Load	1.0 Kpa
Wind Load	-11.75 KN/m

Analysis

Column

- Maximum Axial Compression Load: 856.409 kN
- Load Combination: 1.5 (DL+LL)

Major Axis

Maximum Shear Force: 2.918 kN

• Maximum Bending Moment: 14.5923 kNm

• Loading Combination: 1.5 (DL+LL)

Minor Axis

Maximum Shear Force: 0 kN

• Maximum Bending Moment: 0 kNm

• Loading Combination: 1.5 (DL+LL)

Beam

• Maximum Shear Force: - 32.494 kN

• Maximum Bending Moment: 28.2869 kNm

• Load Combination: 1.5(DL+WL)

Purlins

Major Axis

Maximum Shear Force: 30.849 kN

• Maximum Bending Moment: 38.5608 kNm

• Loading Combination: 1.5 (DL+LL)

Minor Axis

• Maximum Shear Force: 0 kN

• Maximum Bending Moment: 0 kNm

Truss Members

Bottom Chord

- Maximum Axial Tension Load: 143.157 kN
- Load Combination: 1.5(DL+LL)

- Maximum Axial Compression Load: 46.878 kN
- Load Combination: 1.5(DL+WL)

Page | 18

Top Chord

Maximum Axial Tension Load: 29.949 kN

• Load Combination: 1.5(DL+WL)

Maximum Axial Compression Load: - 45.44 kN

• Load Combination: 1.5(DL+LL)

Vertical Chord

- Maximum Axial Tension Load: 12.476 kN
- Load Combination: 1.5(DL+WL)

Diagonal Chord

Maximum Axial Tension Load: 31.199 kN

• Load Combination: 1.5(DL+LL)

- Maximum Axial Tension Load: -8.318 kN
- Load Combination: 1.5(DL+WL)

Design Forces in Critical Members

Member no.	Member	Load Type	Maximum Load	Load Case (in which maximum is coming)
1	Top Chord	Axial Force	- 45.44 kN	1.5 (DL+LL)
			29.95 kN	1.5(DL+WL)
2	Bottom Chord	Axial Force	143.157 kN	1.5 (DL+LL)
			- 46.878KN	1.5(DL+WL)
3	Diagonal Chord	Axial Force	31.2 kN	1.5 (DL+LL)
			- 8.318 kN	1.5(DL+ WL)
4	Vertical Chord	Axial Force	12.476 kN	1.5 (DL+WL)
			0	
5	Purlin	Moment (Major)	38.561 kN-m	1.5 (DL+LL)
		Moment (minor)	0	
6	Beam	Shear Force	- 32.494 kN	1.5 (DL+WL)
		Bending Moment	27.287 kN-m	
7	Column	Axial Force	- 856.41 kN	1.5 (DL+LL)
		Major axis Moment	14.5923 kN-m	
		Minor axis Moment	0 kN-m	

Thank