TEN1 2019-06-14

MMA130 Mathematical Logic for Computer Science

Duration: 3 hours

Tools: none

Attached: Collection of Formulas (4 pages)

Passing grade requires 15 p or more

Mälardalen University Division of Applied Mathematics Lars Hellström

(1 p)

(3p)

Questions may be answered in English or Swedish. Solutions should be presented in such a way that reasoning and calculations are easy to follow. All answers must be supported by an argument, e.g., if you claim something has a particular property then you must also show that this is the case.

- 1 In your own words,
- a explain the purpose of Gödel numbers,

b describe in detail some system of Gödel numbers for formulae (there are several such systems described in the literature, which differ in details but generally serve the same purpose; you do not need to reproduce any particular system, but your system must support encoding the formulae of Peano arithmetic),

- **c** explain the role played by recursive functions in the proof of Gödel's incompleteness theorem. (1 p)
- **d** Encode the formula $\forall x \neg (Sx = 0)$ (first axiom of Peano arithmetic: 0 is not the successor of any natural number) using the Gödel number system you described above. (1 p)
- **2** Give a natural deduction proof that $p \land q, \neg r \rightarrow \neg p \vdash r$. Provide justifications of all steps. (6 p)
- 3 Russell's paradox in set theory starts with considering the set R of all sets that do not contain themselves as elements.
 - a Using set membership \in as only predicate, write down a predicate logic formula expressing the claim that R is the set of all sets that do not contain themselves. (For simplicity, assume that everything is a set.) (2 p)
 - **b** Write down a proof, with justification of all steps, that the Russell set R does not exist. Hint: Consider the matter of whether $R \in R$. (4 p)
- 4 Consider the Kripke model M = (W, R, L) where $W = \{a, b, c, d\}$, $L(a) = \{p\}$, $L(b) = \emptyset$, $L(c) = \{q\}$, $L(d) = \{p, q\}$, and $R = \{(a, d), (b, a), (b, b), (c, a), (d, b), (d, c)\}$.
 - **a** Draw a graph for M. (2 p)
 - **b** Determine the set of worlds where $p \to q$ is satisfied. (1 p)
- **c** Determine the set of worlds where $\Diamond(p \to q)$ is satisfied. (1 p)
- **d** Determine the set of worlds where $\Box p \to q$ is satisfied. (1 p)
- e Determine the set of worlds where Fp is satisfied. (1p)
- 5 Check the validity in the non-classical logic L_2 (see attached pages) of the following statements.
- $\mathbf{a} \models p \to \neg \neg p \tag{1p}$
- $\mathbf{b} \models \neg \neg p \to p \tag{1p}$
- $\mathbf{c} \models p \lor \neg p$ (1 p)
- $\mathbf{d} \quad p \models \neg p \to \bot. \tag{1 p}$
- $\mathbf{e} \models (p \land \neg p) \to \bot.$ (1 p)
- $\mathbf{f} \quad p \to r, q \to r \models (p \lor q) \to r. \tag{1p}$

MÄLARDALEN UNIVERSITY School of Education, Culture and Communication (UKK)

MMA130, Mathematical Logic for Computer Science

Collection of Formulas

Anna Fedyszak-Koszela

November 10, 2015

1 Natural deduction - basic rules

1.
$$(\wedge i)$$
: $\frac{\phi}{\phi \wedge \psi}$

2.
$$(\wedge e)$$
: $\frac{\phi \wedge \psi}{\phi}$, $\frac{\phi \wedge \psi}{\psi}$

3.
$$(\vee i)$$
: $\frac{\phi}{\phi \vee \psi}$, $\frac{\psi}{\phi \vee \psi}$

4.
$$(\lor e)$$
: $\phi \lor \psi$ $\begin{bmatrix} \phi \\ \vdots \\ \chi \end{bmatrix}$ $\begin{bmatrix} \psi \\ \vdots \\ \chi \end{bmatrix}$

5.
$$(\rightarrow i)$$
: $\begin{bmatrix} \phi \\ \vdots \\ \psi \end{bmatrix}$

$$\hline \phi \rightarrow \psi$$

6.
$$(\rightarrow e)$$
: $\frac{\phi \quad \phi \rightarrow \psi}{\psi}$

8.
$$(\neg e)$$
: $\frac{\phi \quad \neg \phi}{\bot}$

9.
$$(\perp e)$$
: $\frac{\perp}{\phi}$

10.
$$(\neg \neg e)$$
: $\frac{\neg \neg \phi}{\phi}$

11.
$$(MT)$$
: $\frac{\phi \to \psi \quad \neg \psi}{\neg \phi}$

12.
$$(\neg \neg i)$$
: $\frac{\phi}{\neg \neg \phi}$

13.
$$(PBC)$$
: $\begin{bmatrix} \neg \phi \end{bmatrix}$

$$\begin{bmatrix} \downarrow \vdots & \downarrow \\ \downarrow & \downarrow \end{bmatrix}$$

14.
$$(LEM)$$
: $\overline{\phi \vee \neg \phi}$

15.
$$(copy)$$
: $\frac{\phi}{\phi}$

16. (=
$$i$$
): $\frac{1}{t=t}$, for any term t

17. Principle of Substitution (= e):

$$\frac{t_1 = t_2 \qquad \phi \left[t_1 / x \right]}{\phi \left[t_2 / x \right]} ,$$

for t_1 free for x in ϕ , and for t_2 free for x in ϕ ; all occurrences of t_1 in $\phi[t_1/x]$ are replaced by t_2

18. $(\forall x \ i)$:

$$\begin{array}{c|c}
 \begin{bmatrix}
 x_0 \\
 & \phi \left[x_0/x \right]
 \end{bmatrix} \\
 & \forall x \phi
\end{array},$$

for x_0 - new, doesn't occur anywhere outside its box,

for x_0 - not free in open P before its box

19.
$$(\forall x \ e)$$
: $\frac{\forall x \phi}{\phi [t/x]}$,

for any term t free for x in ϕ ; all free occurrences of x in ϕ are replaced by t

20.
$$(\exists x \ i)$$
: $\frac{\phi[t/x]}{\exists x \phi}$,

for some term t free for x in ϕ

21. $(\exists x \ e)$:

$$\begin{bmatrix} x_0 & \phi \left[x_0/x \right] & 1, P \\ \vdots & \vdots & \vdots \\ \exists x \phi, & \begin{bmatrix} & \chi & \end{bmatrix} & 2 \end{bmatrix}$$

for x_0 - new, doesn't occur anywhere outside its box;

1: x_0 not free in open P before its box,

2: x_0 not free in χ

2 Modal logic

- Let M = (W, R, L) be a Kripke model of basic modal logic, $x \in W$, and ϕ be a formula. We will define when formula ϕ is true in the world x. This is done via a satisfaction relation $x \parallel \phi$ by structural induction on ϕ :
 - 1. $x \parallel T$
 - $2. \ not \ (x \parallel \perp)$
 - 3. $x \parallel p \text{ iff } p \in L(x)$
 - 4. $x \parallel \neg \phi \text{ iff } not (x \parallel \neg \phi)$
 - 5. $x \parallel \phi \wedge \psi$ iff $x \parallel \phi$ and $x \parallel \psi$
 - 6. $x \parallel \phi \lor \psi$ iff $x \parallel \phi$ or $x \parallel \psi$
 - 7. $x \parallel -\phi \rightarrow \psi$ iff $x \parallel -\psi$, whenever we have $x \parallel -\phi$
 - 8. $x \parallel \phi \leftrightarrow \psi$ iff $(x \parallel \phi$ iff $x \parallel \psi)$
 - 9. $x \parallel \Box \psi$ iff, for each $y \in W$ with R(x, y), we have $y \parallel \psi$
 - 10. $x \parallel \diamondsuit \psi$ iff there is a $y \in W$ such that R(x,y) and $y \parallel \psi$

When $x \parallel - \phi$ holds, we say 'x satisfies ϕ ' or ' ϕ is true in world x'.

A model M = (W, R, L) of basic modal logic is said to satisfy a formula
 φ if every state (world) x in the model satisfies it.
 We write: M ⊨ φ iff, for each x ∈ W, x || − φ.

3 Logic systems with multiple truth values

- Let L be a formal language without non-logical symbols and S_L the set with all sentences in L. For every positive integer n we define the non-classical logic system $L_n = (L, V_n)$ with n+1 truth values and with the valuation $V_n: S_L \longrightarrow \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\}$ by following 5 conditions:
 - 1. $V_n(\neg \phi) = 1 V_n(\phi)$ for any sentence $\phi \in S_L$
 - 2. $V_n(\phi \wedge \psi) = \min \{V_n(\phi), V_n(\psi)\}\$ for any two sentences $\phi, \psi \in S_L$
 - 3. $V_n(\phi \vee \psi) = \max \{V_n(\phi), V_n(\psi)\}\$ for any two sentences $\phi, \psi \in S_L$
 - 4. $V_n(\phi \to \psi) = \min \{1, (1 V_n(\phi) + V_n(\psi))\}$ for any two sentences $\phi, \psi \in S_L$
 - 5. $V_n(\phi \leftrightarrow \psi) = 1 |V_n(\phi) V_n(\psi)|$ for any two sentences $\phi, \psi \in S_L$
- L_2 is a non-classical logic with 3 truth values $\{0, \frac{1}{2}, 1\}$:

φ	φ	$\neg \phi$	$\phi \wedge \varphi$	$\phi \lor \varphi$	$\phi \to \varphi$
$x = V(\phi)$	$y = V(\varphi)$	1-x	$min\{x,y\}$	$max\{x,y\}$	$min\{1, 1-x+y\}$
1	1	0	1	1	1
1	1/2	0	1/2	1	1/2
1	0	0	0	1	0
1/2	1	1/2	1/2	1	1
1/2	1/2	1/2	1/2	1/2	1
1/2	0	1/2	0	1/2	1/2
0	1	1	0	1	1
0	1/2	1	0	1/2	1
0	0	1	0	0	1