

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электрический машины ИССЛЕДОВАНИЕ ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ

Лабораторная работа №2

Студенты:

Кулижников Е.

Троицкий М.

Сорокин Д.

Евстигнеев Д.

Матасова Л.

Группа: *R33423*

Преподаватель: Демидова Г.Л.

Цель работы — экспериментальное исследование статических характеристик трехфазного асинхронного двигателя в различных режимах его работы.

Описание лабораторной установки

Лабораторная установка (рис. 8.1) содержит электромеханический блок и комплект измерительной и регулирующей аппаратуры.

Рис. 8.1. Схема лабораторной установки

1. Исследование режима холостого хода

Паспортные данные испытуемого двигателя:

Тип	Uф н, В	Іф н, А	P2 н, Вт	n2 н, об/мин	ηн, %	cosφ	f, Гц	p
ДТ-75	220	0,4	75	2800	65	0,76	50	1

Режим холостого хода:

Uл	Іл	Pa Pb		Uтг x	P1x	cosφ1x	Ктг
В	A	Вт		В	Вт		В/(об/мин)
131	1,67	77	27	17	104	0,274	0,006

Расчетные формулы:

$$P_{1\mathrm{x}} = P_A + P_B$$
 $cos \varphi_{1x} = rac{P_{1\mathrm{x}}}{\sqrt{3}*U_{\pi}*I_{\pi}}$ $K_{\mathrm{Tr}} = rac{U_{\mathrm{Tr}\,\mathrm{x}}}{n_1}$, где $n_1 = 60*f/p$

Вычисления:

$$P_{1\mathrm{x}}=77+24=104\ \mathrm{BT}$$
 $cos \varphi_{1x}=rac{104}{\sqrt{3}*131*1,67}=0,274$ $K_{\mathrm{TF}}=rac{17}{60*50}=0,006\ \mathrm{B/(oб/мин)}$

2. Снятие рабочих характеристик двигателя.

Uл	Іл	Pa	Pb	M2	Uтг	P1	S	P2	η	cos φ1	n2
В	A	Вт		дел	В	Вт		Вт	%		об/мин
131	0,17	7,7	27	0	17	34,7	0	0,00	0,00	0,900	3000
132	0,2	10,5	30	0,0194	17	40,5	0	6,09	15,04	0,886	3000
132	0,235	15	35,5	0,0388	16,5	50,5	0,03	11,82	23,42	0,940	2912
132	0,32	23	47	0,0776	16	70	0,06	22,93	32,76	0,957	2824
132	0,43	33	61,5	0,1164	15	94,5	0,12	32,25	34,13	0,961	2647
132	0,5	38,5	70	0,1358	14,5	108,5	0,15	36,37	33,52	0,949	2559
132	0,615	46	85	0,1552	13	131	0,24	37,27	28,45	0,932	2294

Pасчетные формулы: $P_1 = P_A + P_B$ $cos \varphi_1 = \frac{P_1}{\sqrt{3} * U_{\pi} * I_{\pi}}$ $n_2 = U_{\text{TT}}/K_{\text{TT}}$ $s = (n_1 - n_2)/n_1$ $P_2 = M_2 * \pi * \frac{n_2}{30}$ $\eta = 100 * P_2/P_1$ Вычисления: 1.

1.
$$P_1 = 7.7 + 27 = 34.7$$

$$cos \varphi_1 = \frac{34.7}{\sqrt{3} * 131 * 0.17} = 0.9$$

$$n_2 = \frac{17}{0.006} = 3000$$

$$s = \frac{3000 - 3000}{3000} = 0$$

$$P_2 = 0 * \pi * \frac{3000}{30} = 0$$

$$\eta = 100 * \frac{0}{34,7} = 0$$
2.
$$P_1 = 10,5 + 30 = 40,5$$

$$\cos \varphi_1 = \frac{40,5}{\sqrt{3} * 132 * 0,2} = 0,886$$

$$n_2 = \frac{17}{0,006} = 3000$$

$$s = \frac{3000 - 3000}{3000} = 0$$

$$P_2 = 0,0194 * \pi * \frac{3000}{30} = 6,09$$

$$\eta = 100 * \frac{6,09}{40.5} = 15,04$$

$$P_1 = 15 + 35,5 = 50,5$$

$$\cos\varphi_1 = \frac{50.5}{\sqrt{3} * 132 * 0.235} = 0.94$$

$$n_2 = \frac{16.5}{0.006} = 2912$$

$$s = \frac{3000 - 2912}{3000} = 0.03$$

$$P_2 = 0.0388 * \pi * \frac{2912}{30} = 11.82$$

$$\eta = 100 * \frac{11,82}{50,5} = 23,42$$

4.

$$P_1 = 23 + 47 = 70$$

$$cos\varphi_1 = \frac{70}{\sqrt{3} * 132 * 0.32} = 0.957$$

$$n_2 = \frac{16}{0.006} = 2824$$

$$s = \frac{3000 - 2824}{3000} = 0.06$$

$$P_2 = 0.0776 * \pi * \frac{2824}{30} = 22.93$$

$$\eta = 100 * \frac{22,93}{70} = 32,76$$

5.

$$P_1 = 33 + 61,5 = 94,5$$

$$cos\varphi_1 = \frac{94.5}{\sqrt{3} * 132 * 0.43} = 0.961$$

$$n_2 = \frac{15}{0.006} = 2647$$

$$s = \frac{3000 - 2647}{3000} = 0.12$$

$$P_2 = 0.1164 * \pi * \frac{2647}{30} = 32,25$$

$$\eta = 100 * \frac{32,25}{94,5} = 34,13$$

6

$$P_1 = 38.5 + 70 = 108.5$$

$$\cos\varphi_1 = \frac{108,5}{\sqrt{3} * 132 * 0,5} = 0,949$$

$$n_2 = \frac{14.5}{0.006} = 2559$$

$$s = \frac{3000 - 2559}{3000} = 0.15$$

$$P_2 = 0.1358 * \pi * \frac{2559}{30} = 36.37$$

$$\eta = 100 * \frac{36,37}{108,5} = 33,52$$

7.

$$P_1 = 46 + 85 = 131$$

$$cos\varphi_1 = \frac{131}{\sqrt{3} * 132 * 0.615} = 0.932$$

$$n_2 = \frac{13}{0.006} = 2294$$

$$s = \frac{3000 - 2294}{3000} = 0.24$$

$$P_2 = 0.1552 * \pi * \frac{2294}{30} = 37.27$$

$$\eta = 100 * \frac{37,27}{131} = 28,45$$

3. Снятие механических характеристик двигателя.

№, п/п	Режим работы		Результать	Результаты вычислений			
		Ил, В	Іл, А	Итг, В	М, Н*м	п2, об/мин	S
1	Генераторный	130,00	10,00	17,50	-0,02	2916,67	0,03
2		131,00	7,00	50,00	-0,06	8333,33	-1,78
3	Холостой ход	131,00	0,17	17,00	0,00	2833,33	0,06
4	Двигательный	131,00	1,67	17,00	0,00	2833,33	0,06
5		132,00	20,00	17,00	0,02	2833,33	0,06
6		132,00	23,50	16,50	0,04	2750,00	0,08
7		132,00	32,00	16,00	0,08	2666,67	0,11
8		131,00	85,5/100	6,50	0,12	1083,33	0,64
9		132,00	87,00	5,00	0,10	833,33	0,72
10	К3	132,00	39*2,5/100	0,00	0,29	0,00	1,00
11	ЭМТ	132,00	40*2,5/100	-5,00	0,31	-833,33	1,28
12		131,00	41*2,5/100	-10,00	0,30	-1666,67	1,56

Таблица 8.4

Выводы: в итоге проделанной работы было проведено исследование статических характеристик трехфазного асинхронного двигателя в различных режимах его работы, в том числе в режиме холостого хода, сняты рабочие и механические характеристики двигателя