Investigating 3SAT

(Guide presentation for 380CT Coursework 2)

Kamal Bentahar

December 6, 2016

Notation

Let $x_1, x_2, ..., x_n$ be Boolean **variables**, and let ϕ be a Boolean formula written in 3-cnf (Conjunctive Normal Form)

$$\phi = c_1 \wedge c_2 \wedge \cdots \wedge c_\ell,$$

where each **clause** $c_m = x_i \lor x_j \lor x_k$, for some i, j, k = 1, 2, ..., n and $m = 1, ..., \ell$.

A **literal** can be x_i or $\neg x_i$ for some i = 1, 2, ..., n.

The ratio ℓ/n is important for experiments, and will be denoted by ρ .

Definition of the problem

Decisional 3SAT

Decide if ϕ is satisfiable.

Computational/Search 3SAT

If ϕ is satisfiable then find a satisfying assignment.

Optimization 3SAT (Max 3SAT)

Find an assignment that minimizes the number of non-satisfying clauses.

Sampling strategy

General 3SAT instances will be generated by selecting literals from

$$\{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n \neg x_n\}$$

uniformly at random.

For 'yes' instances, a random variable assignment is fixed first, then clauses are randomly constructed making sure each is satisfiable.

Exhaustive search – theory

- 1: **for** all possible variable assignments of $x_1, x_2, ..., x_n$ **do**
- 2: **if** $\phi(x_1, x_2, \dots, x_n)$ evaluates to True **then**
- 3: **return** True
- 4: end if
- 5: end for
- 6: return False

There are 2^n possible assignments, and each evaluation of ϕ costs $O(\ell)$. So this algorithm costs

$$O(\ell 2^n)$$
.

Exhaustive search – empirical results

Average time in $100 \times$ seconds [TODO: REDO EXPERIMENT] for randomly generated instances with $n = \ell$ for $n = 10, \dots, 20$. Dotted line: fitted exponential curve.

6/9

Greedy method

Find the variable that appears most often and assign it accordingly to maximize ...

- 1: $L \leftarrow \emptyset$
- 2: **for** $w \in \{x_1, \neg x_1, \dots, x_n, \neg x_n\}$ **do**
- 3: Count occurrences of w in ϕ
- 4: Append pair $(w, count of occurrences of w in \phi)$ to L
- 5: end for
- 6: Sort *L* with respect to the second component
- 7: for $(w, c) \in L$ do
- 8: Set w to True \triangleright If $w = \neg x_i$ then set x_i to False
- 9: end for
- 10: return count of satisfied clauses

Cost: $O(n \log n)$ assuming the use of an $O(n \log n)$ sorting algorithm.

Ratio of average ratio satisfied by Greedy compared to ℓ . Blue when $\rho=1$ giving about 98%, and orange when $\rho=10$ dropping to about 93%.

References

- Hoos, H. and Stutzler, T. (2005) Stochastic Local Search: Foundations and Applications. Morgan Kaufmann
- Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman