

Escuela Superior Politécnica del Litoral Facultad de Ingeniería en Mecánica y Ciencias de la Producción Guía de Práctica de Instrumentación

PRÁCTICA # 6 "MEDICIÓN DE POSICIÓN"

OBJETIVOS:

- Conocer diferentes instrumentos de medición de posición lineal y angular y sus modos de funcionamiento.
- Realizar la calibración de un sensor de distancia ultrasónico y observar el efecto de usar objetivos con diferentes propiedades acústicas.
- Realizar la calibración de un sensor de distancia inductivo con probetas de diferentes materiales (acero "dulce", acero inoxidable, aluminio, cobre, y latón) y comprobar sus factores de compensación.
- Observar el efecto del área del objeto metálico de un mismo material en el sensor inductivo.

EQUIPOS:

- Kit de Calibración de Sensores de Proximidad Festo
- Posicionador deslizante
- Sensor ultrasónico UK1A-E1-0E
- Sensor inductivo AT9-10-1H
- Regla milimetrada (0 1000 mm)
- Multímetro
- Fuente de voltaje regulable

PROCEDIMIENTO EXPERIMENTAL:

- 1) Montar el sensor inductivo de tal forma que éste quede frente a las placas de prueba del posicionador deslizante.
- 2) Conectar el sensor, la fuente y el multímetro (configurado para medición de voltaje) de acuerdo a la figura 1 para la salida de 0 10 Vdc.
- 3) Coloque la placa de acero dulce y anote los valores de corriente en el rango de medición (0 20 mm) con incrementos de 2 mm.
- 4) Realice el procedimiento anterior para las placas de acero inoxidable, latón,

- aluminio, y cobre; llenando los datos en la tabla 1.
- 5) Realice la misma prueba anterior usando placas del mismo material (acero dulce) pero de diferentes áreas (10x10, 20x20 y 30x30 [mm²])
- 6) Monte la regla de aluminio en una placa perfilada y el sensor ultrasónico de tal forma que quede frente a las placas de prueba del posicionador deslizante.
- 7) Conecte la fuente, el sensor y el multímetro (configurado para medición de voltaje) de acuerdo a la figura 2.
- 8) Usando la placa de prueba gris obtenga mediciones de voltaje de salida del sensor en el rango de medición (50 400 mm) en los incrementos mostrados en la tabla 2
- 9) Realice la misma prueba anterior usando una esponja de sección cuadrada del mismo tamaño de la placa gris.

Figura 1. Diagrama de conexión para sensor inductivo.

Diagram 3

Figura 2. Diagrama de conexión para sensor ultrasónico.

CÁLCULOS:

Distancia máxima teórica (sensor inductivo):

$$d_{I_max} = f * (A_{I_max} - A_0) * \frac{R_{din_I}}{R_{out_I}}$$
 Ecuación 2

Donde:

d_{I max} = distancia máxima medida (mm)

f = factor de corrección por material (de la hoja de datos)

A_{I max} = corriente de salida máxima del sensor (mA)

A₀ = corriente inicial o de partida, 4 para un rango de salida de 4-20 (mA)

R_{din_l} = rango dinámico de medición del sensor (mm)

R_{out_l} = rango dinámico de la salida del sensor (mA)

Distancia teórica (sensor ultrasónico):

$$d_U = V_U * \frac{R_{din_U}}{R_{out_U}}$$

Ecuación 1

Donde:

 $d_U = distancia medida (mm)$

 V_U = voltaje de salida medido del sensor (V)

R_{din_l} = rango dinámico de medición del sensor (mm)

R_{out_U} = rango dinámico de la salida del sensor (V)

NOTA: los rangos dinámicos se obtienen a partir de los datos de las hojas de especificaciones de los sensores adjuntas a la guía.

TABLAS DE DATOS Y RESULTADOS:

Distancia	Lectura del sensor inductivo (mA)					
(mm)	Acero dulce	Acero inoxidable	Latón	Aluminio	Cobre	
0						
2						
4						
6						
8						
10						
12						
14						
16						
18						
20						
22						

Tabla 1. Datos de medición de sensor inductivo para diferentes materiales metálicos

Distancia	Lectura del sensor inductivo (mA)			
(mm)	Placa 10mm x 10mm	Placa 20mm x 20mm	Placa 30mm x 30mm	
0				

2		
4		
6		
8		
10		
12		
14		
16		
18		
20		
22		

Tabla 2. Datos de medición de sensor inductivo para diferentes áreas de un mismo material

Distancia (mm)	Lectura del sensor ultrasónico placa gris (V)	Lectura del sensor ultrasónico esponja (V)
50		
60		
80		
100		
120		
140		
160		
180		
200		
220		
240		
260		
280		
300		
320		
340		
360		
380		
400		

Tabla 3. Datos de medición de sensor ultrasónico para materiales con diferentes propiedades acústicas

ANÁLISIS Y RESULTADOS:

• Graficar la distancia medida en el posicionador deslizante (eje X) versus la salida de voltaje y/o corriente del sensor inductivo para cada material (eje Y), obtener las ecuaciones experimentales que expresen la distancia en función del voltaje y/o corriente y el material. Compare con las curvas de la hoja de datos y

- establezca una relación que describa la influencia del material en la salida y rango de medición del sensor.
- Graficar la distancia medida en el posicionador deslizante (eje X) versus la salida de voltaje y/o corriente del sensor inductivo para cada área del mismo material (eje Y). Determine una expresión que describa la influencia del área en el rango de salida del sensor.
- Graficar la distancia medida en el posicionador (eje X) versus la salida de voltaje del sensor ultrasónico (eje Y), aplicar la mejor curva de ajuste y obtener la ecuación experimental que exprese la distancia en función del voltaje para la placa gris y la esponja.

REFERENCIAS

- Manual de Sensores Ultrasónicos Serie UK1.
- Manual de Sensores Inductivos de Proximidad Analógicos Serie AT.
- Hoja de Datos del sensor de la serie AT9-10 M30.