Introduction to Topological Manifold: Chap ${\bf 2}$

Due on March, 2021

Yuchen Ge

Problem 1

Section 3.1

exercise 1

exercise 3.61:

Proof. Simply observe that if q is continuous and open:

 $\left(U \text{ is open in } \mathbf{Y} \Leftrightarrow q^{-1}(U) \text{ is open in } \mathbf{Y}\right) \Leftrightarrow \left(\text{it takes saturated open subsets to open subsets}\right).$

exercise 3.62(d):

Proof. Observe: (Note: the first equivalence is from properties of subspace topology.)

V is open in $q(U) \Leftrightarrow V$ is open in $Y \Leftrightarrow q^{-1}(V)$ is open in X..

exercise 3.62(e):

Proof. Just prove that it takes saturated open subsets to open subsets.

exercise 2

Question: more generally, when the spaces X_{ι} have the trivial topology for all but finitely many indices, then product topology is equal to box topology?:

Proof. Consider basis of box topology can be generated by product topology.

Problem 1

Proof. Consider the C_2 and hausdorff property is inherested by subspace toplogy. We only need to prove that it's locally euclidean of dimension n-1, which is obvious since IntM and ∂M are disjoint.

Problem 2

Proof. Since the closure of A respect to $B \subset X$ is equal to $\bar{A} \cap B$, then

A is dense in X \Leftrightarrow $\bar{A} = X \Leftrightarrow \forall A \subset B \subset X :$ A is dense in B and B is dense in X $\Leftrightarrow \forall A \subset B \subset X : B = \bar{A} \cap B \text{ and } X = \bar{B} \cap X$.

Problem 3

Proof. Consider the space $X = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ with the topology induced by the inclusion $X \subseteq \mathbb{R}$. Pick any non-continuous function $g: X \to \mathbb{R}$, consider the covering

$$\{A_i: i \in \mathbb{N}_0\}$$
 with $A_0 = \{0\}$ and $A_n = \{\frac{1}{n}\}$ for each $n \in \mathbb{N}$,

this is a countable closed covering of X— and define the functions $f_i = g|_{A_i} : A_i \to \mathbb{R}$, for each $i \in \mathbb{N}_0$. All the f_i are continuous, and there does not exists any continuous function $f: X \to \mathbb{R}$ such that $f|_{A_i} = f_i$ for each $i \in \mathbb{N}_0$.

Problem 4

Proof. For the unit ball in \mathbb{R}^n , consider the map

$$\pi \circ \sigma^{-1} : \mathbb{R}^n \to \mathbb{R}^n :$$

where σ is the stereographic projection from \mathbb{R}^{n+1} to \mathbb{R}^n and π is a projection from \mathbb{R}^{n+1} to \mathbb{R}^n that **omits** some coordinate other than the last.

Considering to solve this for the closed unit ball $\bar{\mathbb{B}}^n$ in \mathbb{R}^{n+1} , since any other closed ball $\bar{B}_r(p)$ in \mathbb{R}^n is homeomorphic to $\bar{\mathbb{B}}^n$ by composition of translation $T: \bar{B}_r(p) \to \bar{B}_r(0)$, defined as $x \mapsto x - p$ together with dilation $D: \bar{B}_r(0) \to \bar{\mathbb{B}}^n$, defined as $x \mapsto \frac{x}{r}$.

As a subspace of \mathbb{R}^n , $\bar{\mathbb{B}}^n$ is a second countable Hausdorff space. For any point $p \in \mathbb{B}^n$, the identity map on \mathbb{B}^n serve as the homeomorphism. So we only need to construct homeomorphisms between neighbourhood of points on $\partial \bar{\mathbb{B}}^n = \mathbb{S}^{n-1}$ with open subsets in \mathbb{H}^n . To do this we need to consider $\bar{\mathbb{B}}^n$ as a subspace of \mathbb{R}^{n+1} . Consider the stereographic projection from the south pole $\sigma : \mathbb{S}^n \setminus \{S\} \to \mathbb{R}^n$, which is a homeomorphism, defined as

$$\sigma(x_1,\ldots,x_{n+1}) = \frac{(x_1,\ldots,x_n)}{1+x_{n+1}}.$$

For $i = 1, \ldots, n$, define

$$U_i^+ = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i > 0\}, \quad U_i^- = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i < 0\}$$

be 2n-many open subsets of \mathbb{R}^n , and also for $i = 1, \ldots, n$

$$\widetilde{U}_i^+ = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_i > 0\}, \quad \widetilde{U}_i^- = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_i < 0\}$$

are 2n-many open subsets in \mathbb{R}^{n+1} .

Observe that

$$\sigma^{-1}(U_i^\pm)=\mathbb{S}^n\cap \widetilde{U}_i^\pm$$

for each i = 1, ..., n. That is σ^{-1} map U_i^+ to the open hemisphere of \mathbb{S}^n where $x_i > 0$, and same for U_i^- . Since these hemispheres $\sigma^{-1}(U_i^{\pm})$ homeomorphic to open unit ball \mathbb{B}^n via projection map

$$\pi_i: (x_1,\ldots,x_i,\ldots,x_{n+1}) \mapsto (x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1})$$

, then by restricting the composition map $\pi_i \circ \sigma^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ to $U_i^{\pm} \cap \bar{\mathbb{B}}^n$, we obtain the desired homeomorphisms

$$\varphi := \pi_i \circ (\sigma^{-1})|_{U_i^{\pm} \cap \bar{\mathbb{B}}^n} : U_i^{\pm} \cap \bar{\mathbb{B}}^n \to \mathbb{H}^n,$$

with domains cover $\partial \bar{\mathbb{B}}^n = \mathbb{S}^{n-1}$. By construction, any $p \in \mathbb{S}^{n-1}$ must contained in one such neighbourhoods, with $\varphi(p) = 0 \in \partial \mathbb{H}^n$ and $\varphi(U_i^{\pm} \cap \bar{\mathbb{B}}^n)$ is an open half unit ball in \mathbb{H}^n . Therefore, $\bar{\mathbb{B}}^n$ is an *n*-manifold with boundary with manifold boundary is equal to its topological boundary \mathbb{S}^{n-1} .

Note that by similar way we can show that the complement of any open ball is an n-manifold with boundary, with its topological boundary as the manifold boundary. Only this time we use stereographic projection form the north pole.

Problem 5

Proof. Let $D = \{0\}$ be the one-point discrete space. Let $f : \mathbb{R} \to \mathbb{R} : x \mapsto x$ be the identity map, and let $g : \mathbb{R} \to D : x \mapsto 0$. Both f and g are easily seen to be closed, but $f \times g : \mathbb{R}^2 \to \mathbb{R} \times D$ is not: it maps the graph of xy = 1, which is a closed set in \mathbb{R}^2 , to

$$\Big(\mathbb{R}\setminus\{0\}\Big)\times\{0\}\;,$$

which is not closed in $\mathbb{R} \times D$: (0,0) is in its closure.

Problem 6

Proof. We prove two directions:

Suppose first that Δ is closed in $X \times X$. To show that X is Hausdorff, you must show that if x and y are any two points of X, then there are open sets U and V in X such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. Look at the point $p = (x, y) \in X \times X$. Because $x \neq y$, $p \notin \Delta$. This means that p is in the open set $(X \times X) \setminus \Delta$. Thus, there must be a basic open set B in the product topology such that $p \in B \subseteq (X \times X) \setminus \Delta$. Basic open sets in the product topology are open boxes, i.e., sets of the form $U \times V$, where U and V are open in X, so let $B = U \times V$ for such $U, V \subseteq X$. Then the following is clear.

Now suppose that X is Hausdorff. To show that Δ is closed in $X \times X$, we need only show that $(X \times X) \setminus \Delta$ is open. To do this, just take any point $p \in (X \times X) \setminus \Delta$ and show that it has an open neighborhood disjoint from D. First, $p = \langle x, y \rangle$ for some $x, y \in X$, and since $p \notin D$, $x \neq y$. Now use disjoint open neighborhoods of x and y to build a basic open box around p that is disjoint from Δ .

Problem 7

Proof. First construct $Id_{\mathbb{R}^2}$. Then prove that it sends all basis subsets in \mathbb{R}^2 to all basis subsets in $\mathbb{R}_d \times \mathbb{R}$. \square

Problem 8

Proof. Just prove it by definition as below:

$$f^{-1}(\bigcup_{i=1}^{\infty} \{(x_1, x_2, \dots) : x_i > 1 + \frac{1}{i}\}) = \bigcup_{i=1}^{\infty} f^{-1}(\{(x_1, x_2, \dots) : x_i > 1 + \frac{1}{i}\}) = [1, \infty).$$

Problem 9

Proof. Obviously we have:

Metrizable \implies First Countable \implies There is a sequence of elements of X converging to z.

Problem 10

Proof. It's clear from property of subspace topology that

$$f: \bigsqcup_{\alpha} A_{\alpha} \to A$$
 continuous $\implies f|_{A_{\alpha}}: A_{\alpha} \to A$ continuous

Then the inversed direction is clear, from prop 2.19 (local property of continuous map). \Box

Problem 12

Proof. Let (c) be an example: Just prove it's the biggest topology:

$$U$$
 open in $\bigsqcup_{\alpha} A_{\alpha} \implies \forall \alpha \ j_{\alpha}^{-1}(U) = U \bigcap A_{\alpha}$ is open in A_{α} .

 $\implies U$ open in $\bigsqcup_{\alpha} A_{\alpha}$ with respect to the disjoint topology.

Problem 13

Proof. Let (a) be an example: If the left inverse exist, denoted by f^{-1} , then

$$f^{-1} \circ f = Id \implies f$$
 is injective and $f^{-1}|_{f(X)}$ plays the ROLE of inverse function.

Problem 14

Proof. Since $P^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$, then it's hausdorff by Cor 3.58. Let the quotient map denote π . Consider the subsets $U_i \subset R^n$ where $x_i = 1$, then $\left((\pi|_{U_i})^{-1}, U_i\right)$ is a coordinate system!

Then it follows from Prop 3.56 that it's second countable.

Problem 15

Mimic what we did in Problem 3-14.

Problem 16

It's clear that the quotient map is an open map. Moreover, \sim is not closed in $(\mathbb{R} \times \{0\}) \times (\mathbb{R} \times \{1\})!$ By applying corollary 3.58, it's not hausdorff!

Problem 17

A counter example.

Problem 18

(a) Express both spaces as quotients of a disjoint union of intervals. Let X be disjoint union of intervals, then we suppose two canonical maps:

 $\pi_1: X \to \mathbb{R}/\mathbb{Z}$ and $\pi_2: X \to \text{wedge sum of countably infinitely many circles.}$

The only thing we need to prove is both π_1 and π_2 are quotient maps. For π_1 , it's an open map. For π_2 , we see that it's a composition of quotient topolgy.

Problem 19

Notice that the product with inversion $f: G \times G \to G$ defined by $f(x,y) = xy^{-1}$ is continuous. Therefore, $f^{-1}(\overline{H})$ is closed. Now, notice that $H \times H \subset f^{-1}(\overline{H})$. So, taking closures,

$$\overline{H \times H} \subset f^{-1}(\overline{H}).$$

Now, you just have to show that $\overline{H} \times \overline{H} \subset \overline{H \times H}$, to conclude that

$$f(\overline{H} \times \overline{H}) \subset \overline{H}$$
.

Problem 20

Already apply the conclusion in problem 19.

Problem 21

Proof. (a) From passing down the quotient, just consider the following diagram:

$$G \xrightarrow{L_g} G \xrightarrow{\pi} G/\Gamma$$

$$\downarrow^{\pi}$$

$$G/\Gamma$$

(b) A corollary of (a).

Problem 22

(a) Assume the quotient map be π . If U is open in X, then gU is open in X. Thus

$$GU=\bigcup_{g\in G}gU$$
 is open in X. $\implies \pi(GU)$ is open in X/G. ($\pi^{-1}(\pi(GU)=GU$)
$$\implies \pi(GU)=\pi(U) \text{ is open in X/G}.$$

(b) COrollary 3.58.

Problem 23

Proof. we have the following diagram:

The map $\cdot_{G/H}$ is continuos if and only if $\cdot_{G/H} \circ f$ is continuos because the function f that maps every $(g_1, g_2)H \times H$ to (g_1H, g_2H) is a homeomorphism (oviously could not be an homeomorphism between topological groups because you don't know if they are topological groups).

By property of quotient, $\cdot_{G/H} \circ f$ is continuos if and only if $\cdot_{G/H} \circ f \circ \pi_{G \times G}$ is continuos and you can observe that this map is $\pi_G \circ \cdot_G$ that it is continuos because \cdot_G and π_G are continuos.

So $\cdot_{G/H}$ is a continuou map. We can use a similar way to prove that $\cdot_{G/H}^{-1}$ is a continuou map and so G/H is a topological group.

Problem 24

Consider the function $f: \mathbb{R}^n \to [0,1)$ given by f(x) = |x|.