PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-201745

(43) Date of publication of application: 04.08.1995

(51)Int.CI.

H01L 21/205 H01L 21/02

(21)Application number : 05-336984

(71)Applicant: HITACHI CABLE LTD

(22)Date of filing:

28.12.1993

(72)Inventor: SAKAGUCHI HARUNORI

NAKAZONO RYUICHI UNNO TSUNEHIRO

KUMA SHOJI

(54) SEMICONDUCTOR WAFER AND ITS MANUFACTURE

(57) Abstract:

PURPOSE: To notably improve the purity and crystallizability of GaN epitaxial crystal while manufacturing high concentration p type GaN in as grown state by tilting the deposited surface of (0001) surfaced sapphire substrate.

CONSTITUTION: Fine oblique (0001) surfaced sapphire single crystal substrate 4 can be formed by mirror polishing the (0001) surface of tilted by several degrees in (21*1*0) direction or (011*0) direction. At this time, numerous steps 6 exist on the fine oblique (0001) surface 5. Accordingly, the step flow mode deposition of GaN epitaxial crystal 2 using the step end as the cardinal point can be easily attained thereby enabling the crystalline defects to be notably diminished.

6 71-7 2 mart House 4 ### (0001)mi#2;47#4

LEGAL STATUS

[Date of request for examination]

16.09.1998

[Date of sending the examiner's decision of

25.07.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公別番号

特開平7-201745

(43)公開日 平成7年(1995)8月4日

徽別記号 广内整理番号

FI

技術表示箇所

H01L 21/205 21/02

В

審査請求 未請求 請求項の数5 OL (全 5 頁)

(72)発明者 坂口 春典				
(22)出顧日 平成5年(1993)12月28日 東京都千代田区丸の内二丁目1番2 (72)発明者 坂口 春典 東城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ (72)発明者 中國 隆一 東城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ 海野 恒弘 天城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ 海野 恒弘 天城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ (74)代理人 弁理土 松本 孝	(21)出顧番号	特額平5-336984	(71)出顧人	000005120
(72)発明者 坂口 春典				日立電線株式会社
(72)発明者 坂口 春典 東城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ (72)発明者 中國 隆一 東城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ 海野 恒弘 ※城県土浦市木田余町3550番地 日 株式会社アドバンスリサーチセンタ (74)代理人 弁理士 松本 孝	(22) 出贈日	平成5年(1993)12月28日		東京都千代田区丸の内二丁目1番2号
株式会社アドパンスリサーチセンタ (72)発明者 中國 際一 実城県土浦市木田余町3550番地 F 株式会社アドパンスリサーチセンタ (72)発明者 海野 恒弘 実城県土浦市木田余町3550番地 F 株式会社アドパンスリサーチセンタ (74)代理人 弁理士 松本 孝		1,442 (1,444) 1,444	(72)発明者	坂口 春典
株式会社アドパンスリサーチセンタ (72)発明者 中國 際一 実城県土浦市木田余町3550番地 F 株式会社アドパンスリサーチセンタ (72)発明者 海野 恒弘 実城県土浦市木田余町3550番地 F 株式会社アドパンスリサーチセンタ (74)代理人 弁理士 松本 孝			(- / / / / / / / / / / / / / / / / / /	爱城県土浦市木田余町3550番地 日立電線
(72)発明者 中國 隆一 東城県土浦市木田余町3550番地 日 株式会社アドパンスリサーチセンタ (72)発明者 海野 恒弘 東城県土浦市木田余町3550番地 日 株式会社アドパンスリサーチセンタ (74)代理人 弁理士 松本 孝				株式会社アドバンスリサーチセンタ内
東城県土浦市木田佘町3550番地 月 株式会社アドパンスリサーチセンタ (72)発明者 海野 恒弘 実城県土浦市木田佘町3550番地 日 株式会社アドパンスリサーチセンタ (74)代理人 弁理士 松本 孝			(72) 發明者	
株式会社アドバンスリサーチセンタ (72)発明者 海野 恒弘			(12/)2/76	. — . —
(72)発明者 海野 恒弘				
楽城県土浦市木田余町3550番地 F 株式会社アドバンスリサーチセンタ (74)代理人 弁理士 松本 孝			(79) 器部日老	
株式会社アドバンスリサーチセンタ (74)代理人 弁理士 松本 孝			(12)76971	
(74)代理人 弁理士 松本 孝				
			(ma) (ham) (
検釈			(74)代理人	·· · · ·
				最終頁に続く

(54) 【発明の名称】 半導体ウェハ及びその製造方法

(57)【要約】

【目的】(0001)面サファイア基板の成長面を傾斜 することによって、GaNエピタキシャル結晶の純度及 び結晶性を大幅に向上し、かつ高濃度p型GaNをアズ グロウンの状態で得る。

【構成】サファイア単結晶基板の(0001)面を<21*1*0>方向もしくは<011*0>方向に数度傾けて鏡面研磨することにより、微傾斜(0001)面サファイア単結晶基板4とする。微傾斜(0001)面5には多くのステップ6が存在する。このためステップ第を基点としたGaNエピクキシャル結晶2のステッププローモード成長が容易に実現する。その結果、結晶欠陥が大幅に低減する。

6 x5x7 2 GaBzt* 外外統法局 6 2 5 数据斜(0001)面 4 数据斜(0001)面 7x7环题

【特許請求の範囲】

【請求項1】(0001)面を<21*1*0>(以 下、1*は上にバーの付いた1を意味する。)方向もし くは<011* 0>方向に微傾斜した鏡面を有するサフ ァイア結晶基板の微傾斜(0001)面上に、窒化ガリ ウム (GaN)、窒化アルミニウム (A1N)、窒化イ ンジウム(InN)、またはこれらの混晶のp型、n 型 または i 型流膜の単層もしくは多層の結晶が積層さ れている半導体ウェハ。

【請求項2】(0001)面を<21*1*0>方向も 10 しくは<011* 0>方向に微傾斜した鏡面を有するサ ファイア結晶基板の微傾斜(0001)面上に、GaN バッファ層、p型GaN層、n型GaN層が積層されて いる半導体ウェハ。

【請求項3】サファイア結晶基板の(0001)面を微 傾斜したまま鏡面研磨し、その上に半導体の単層もしく は多層構造のエピタキシャル層を成長することを特徴と する半導体ウェハの製造方法。

【請求項4】サファイア結晶基板上にバッファ層を成長 し、その上にp型GaN層、n型GaN層を成長してp 20 る。 n構造のGaNエピタキシャル結晶を気相成長する工程 を有する半導体ウェハの製造方法において、

上記サファイア結晶基板に、(0001)面を<21* 1* O>方向もしくは<011* O>方向に微傾斜した 面を鏡面とするサファイア結晶基板を用いたことを特徴 とする半導体ウェハの製造方法。

【請求項5】上記微傾斜角度が2°~10°のいずれか である請求項1もしくは2に記載の半導体ウェハ、また は請求項3もしくは4に記載の半導体ウェハの製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、サファイア結晶基板上 にGa、Al、In等の窒化物薄膜結晶を形成した半導 体ウェハ及びその製造方法に関する。

[0002]

【従来の技術】GaN及びその関連化合物によるLE D、LDやHEMTなどの素子の実現が期待されてい る.

晶のC-面、即ち(0001)面の鏡面に研磨された面 上にエピタキシャル成長されている。

【0004】エピタキシャル成長は主に気相成長により 行なわれている。特に有機金属気相エピタキシー(MO VPE)法が多く用いられているが、化学気相エピタキ シー(VPE)法、分子線エピタキシー(MBE)法 や、これらに光励起やプラズマを用いたものも用いられ

【0005】MOVPE法では、前述のサファイア単結 晶基板を水素もしくは窒素雰囲気中で1000℃程度に 50 検討したところ、成長面を傾斜させると大幅な品質向上

2 加熱し、トリメチルガリウム (TMG) とアンモニア (NH3)のガスを流すことにより、GaNのエピタキ シャル薄膜を成長している。

【0006】A1NやInNの場合は、各々TMGの代 りにトリメチルアルミニウム (TMA) やトリメチルイ ンジウム(TMI)を流して成長する。

【0007】従来、サファイア基板上に、A1NやGa Nの100~1000A程度の薄膜を600℃程度の低 温で成長する。これを1000℃程度に加熱して熱処理 L. その待その温度でGaNを成長することにより、G aN層の品質が向上することが報告されており、キャリ ア濃度が4×10¹⁶~2×10¹⁷cm⁻³程度のn型のアン ドープGaNエピタキシャル結晶が得られている(公知 例1、2)。

【0008】また、亜鉛(Zn)やマグネシウム(M g)を添加したGaNを電子線で照射処理することや (公知例1、3)、不活性ガス中でアニールすることに より(公知例4)1×1017~6×1018cm-3のキャリ ア濃度のp型GaNエピタキシャル結晶が得られてい

【0009】公知例1:「高輝度青色発光のための電子 材料技術、田口編、P51~58,1991年12月発 行 (サイエンスフォーラム社)」

公知例2:S. NAKAMURA:J. J. A. P. V OL30, No10A, 1991, ppL1705~L 1707

公知例3:S. NAKAMURA:J. J. A. P. V OL30, No10A, 1991, ppL1708~L 1711

30 公知例4:S. NAKAMURA:J. J. A. P. v ol31. (1992) pp1258~11266 P artl, No. 5A

[0010]

【発明が解決しようとする課題】前述した従来方法で成 長したGaN結晶は、低温成長バッファ層を介在させて もまだ純度や結晶性が不十分である。

【0011】また、高濃度のn型GaN(ここで高濃度 とはキャリア濃度が1×1018cm-3以上をいう) エピタ キシャル結晶は、Siドープなどにより容易に得られて 【0003】GaN、A1N、InNはサファイア単結 40 いるのに対して、高濃度のp型GaNエピタキシャル結 晶は電子線照射や成長後の熱処理によって一部実験的に 得られているものの、これらの後処理なしにいわゆるア ズグロウン (as grown) の状態で容易に得られるまでに は致っていない。

> 【0012】本発明者等は、従来は基板の成長面につい ては全く未検討で、傾斜していない(0001)面サフ ァイア基板のみを用いて専らエピタキシャル成長法の改 良及び成長結晶の後処理により品質の改善を行なってい た点に着目し、観点を変えて基板の成長面について鋭意

3

がはかれるという知見を得た。

【0013】したがって本発明の目的は、成長面を傾斜 することによって、上述した従来技術の問題点を解決 し、純度及び結晶性が大幅に向上し、かつ高濃度p型ド ーピングが可能となるGaN及び関連化合物(AIN、 InN及びこれらとGaNの混晶)の半導体ウェハ及び その製造方法を提供することにある。

[0014]

【課題を解決するための手段】本発明は、GaN等をエ ピタキシャル成長させる基板としてサファイア単結晶基 10 板の(0001)面を所定晶軸方向に傾けて鏡面研磨し た、いわゆる微傾斜面の基板を用いている。この微傾斜 (0001)面上にGaN等をエピタキシャル成長させ ることにより高品質な高濃度p型GaN及び関連化合物 のエピタキシャル結晶を実現したものである。

【0015】すなわち、本発明の半導体ウェハは、(0 001)面を<21*1*0>方向もしくは<011* 0>方向に微傾斜した鏡面を有するサファイア結晶基板 の微傾斜 (0001) 面上に、 窒化ガリウム (Ga N)、窒化アルミニウム (A1N)、窒化インジウム (InN)、またはこれらの混晶のp型、n型、または i 型薄膜の単層もしくは多層の結晶が積層されているも のである。

【0016】また本発明の半導体ウェハは、(000 1) 面を<21* 1* 0>方向もしくは<011* 0> 方向に微傾斜した鏡面を有するサファイア結晶基板の微 傾斜(0001)面上に、GaNバッファ層、p型Ga N層、n型GaN層が順次積層して、青色発光ダイオー ド用ウェハとしたものである。

【0017】また、本発明の半導体ウェハの製造方法 は、サファイア単結晶基板の(0001)面を微傾斜し たまま鏡面研磨し、その上にウェハの単層もしくは多層 構造のエピタキシャル層を成長するようにしたものであ る.

【0018】また、本発明の半導体ウェハの製造方法 は、サファイア結晶基板上にバッファ層を成長し、その 上にp型GaN層、n型GaN層を成長してpn構造の GaNエピタキシャル結晶を気相成長する工程を有する 半導体ウェハの製造方法において、サファイア結晶基板 に、(0001)面を<21*1*0>方向もしくは< 40 011* 0>方向に微傾斜した面を鏡面とするサファイ ア結晶基板を用いたものである。

【0019】これら半導体ウェハ、及び半導体ウェハの 製造方法において、微傾斜角度は2°~10°のいずれ かであることが好ましい。

【0020】ものである。

[0021]

【作用】従来の(0001)面サファイア基板上に成長 したGaNエピタキシャル結晶には、窒素の抜けた空孔

の純度が良くない原因や、p型GaNが容易に得られな い原因の一つとなっていると考えられる。

【0022】これらの結晶欠陥は結晶のエピタキシャル 成長中に発生すると考えられる。すなわち、GaN/サ ファイア系結晶ではサファイア基板とGaN結晶の格子 定数等の物性がかなり異なるいわゆるヘテロエピタキシ ャル成長のため、図3に示すように、(0001)面サ ファイア単結晶基板1上の(0001)面3に成長する GaNエピタキシャル結晶2は島状の三次元成長をしや すく、これが前記の欠陥を発生しやすくしていると考え Sha.

【0023】これに対して、GaAs基板上のGaAs エピタキシャル成長のような同種基板上に成長するホモ エピタキシャルでは、エピタキシャル成長モードが二次 元成長となるため、結晶欠陥が非常に低減される。

【0024】ところで、前述した低温成長A1Nバッフ ァや低温成長GaNバッファはこの二次元成長を促進す る効果があると考えられるがまだ不十分である。二次元 成長を実現するためには成長モードをステップフローモ 20 ードにすることが有効である。

【0025】この点で、図1に示すように、本発明の微 傾斜(0001)面サファイア単結晶基板4を用いる と、微傾斜(0001)面5に多くのステップ6が存在 するため、このステップ端を基点としたGaNエピタキ シャル結晶2のステップフローモード成長が容易に実現

【0026】したがって、二次元成長による良質なGa N及び関連化合物結晶を得ることができる。また、高濃 度のp型GaNエピタキシャル結晶を電子線照射や成長 30 後の熱処理などの後処理なしにアズグロウンの状態で容 易に得られる一方、n型GaNエピタキシャル結晶の濃 度もより高めることができる。

[0027]

【実施例】以下、本発明の半導体ウェハを、サファイア 単結晶基板上の微傾斜面にA1 Ga等の窒化物薄膜結 晶を気相形成した実施例について説明する。

【0028】<実施例1>

(0001)面を<21*1*0>方向に2・傾けて鏡 面研磨したサファイア単結晶基板をMOVPE装置の反 応炉中のグラファイトサセプタ上にセットし、高純度水 素を十分流して炉内をパージした。

【0029】次に、水素ガスを炉内に流しながらサセプ タを加熱して基板を1000℃以上に加熱し、10分以 上保持した。その後、基板温度を600℃にし、TMA とNH3 を炉内に流していわゆる低温成長のA1Nバッ ファ層を50nm成長した。

【0030】そして、TMAの炉内への供給を止め、水 素とNH3 を流したまま基板を1030℃に加熱し、そ の後TMGを炉内に流してGaNを5μm 成長した。こ や他の結晶欠陥が多く存在し、これがアンドープGaN 50 のアンドープGaNエピタキシャル結晶の電気特性をホ ール効果法により測定したところ、n型でキャリア濃度 が5×1015cm-3程度であり、従来に比べ大幅な純度向 上が認められた。

【0031】なお、成長時の水素、NH3、TMG、T MAの流量は各々、101/min、51/min、3 cc/min. 0. 8cc/mincas.

【0032】<実施例2>

(0001)面を<21*1*0>方向へ5。及び10 傾けたサファイア基板を用いて実施例1と同様なエピ タキシャル成長を評価を行なったところ、同様なキャリ 10 ア濃度のアンドープGaN結晶が得られた。キャリア濃 度は傾斜角度が大きいほど小さくなる傾向が見られた。 【0033】<実施例3>

(0001)面を<011*0>方向へ2°、5°10 。と傾けたサファイア基板を用いて実施例1と同様なエ ビタキシャル成長を行なったところ実施例1、2と同様 な結果が得られた。

【0034】<実施例4>実施例1で用いたA1Nバッ ファ層の代りにGaNバッファ層を600℃で20nm 成長し、その他の条件は実施例1と全く同じ条件でアン 20 ドープGaN結晶を成長した。アンドープGaNエピタ キシャル結晶のキャリア濃度はn型で1×1015cm-3程 度であり、実施例1より高純度の結晶が得られた。

【0035】<実施例5>本実施例は、図2に示すLE D用p n接合GaNエピタキシャル結晶ウェハの例であ る。(0001)面を<21*1*0>方向に2*傾け た面を鏡面とする微傾斜(0001)面サファイア単結 晶基板4を用いてpn構造のGaNエピタキシャル結晶 7、8、9をMOVPE法により成長した。

【0036】実施例1と同様に基板4を1050℃で水 30 素ガスを流しながら加熱し、表面清浄化を行なった。次 に500℃に基板温度を下げて水素とTMGとNH3を 流し低温度成長GaNバッファ層7を25nm成長し た、次に水素とNH3を流しながら基板温度を1030 ℃に上げ水素とTMGとNH3 とビスシクロペンタジエ チルマグネシウム (CP2 Mg) を流してp型GaN層 8を2μm 成長した。

【0037】引き続き水素とTMGとNH3 とジシラン (Si₂ H₆)を流し、n型GaN層9を2μm 成長し 0℃~800℃になった時点で水素とNH3 を流すのを 停止し、代りに高純度N2 ガスを流して室温まで冷却し

【0038】ここで、水素、NH3、TMG、CP2 M g、Si₂ H₆ 、N₂ の各々の流量は、201/mi n, 51/min, 1cc/min, 2cc/min, 1×10-4cc/min, 201/minである。

【0039】成長した結晶のキャリア濃度はn型GaN 層9がジシランによるSiドープで5×1019cm3、p り、ともに1×1018cm-3を超えるはるかに高い高キャ リア濃度のp型GaN層、n型GaN層が得られた。

【0040】<実施例6>実施例5の成長、評価を、< 21* 1* 0>方向へ5°、10°と各々傾けた基板や <011* 0>方向へ2°、5°、10°と傾けた基板 についても行なったところ、実施例5と同様な結果を得

【0041】 <他の実施例>なお、微傾斜(0001) 面サファイア単結晶基板上に成長できる結晶としては、

A1NやGaNの他にInN及びこれらの混晶やこれら を含む多層構造エピタキシャル結晶がある。

【0042】また、エピタキシャル成長法は、MOVP Eの他にMBEやプラズマCVDなど他の気相成長法を 用いることもできる。

【0043】さらに、サファイア基板に代えてシリコン カーバイド(SiC)やシリコン基板などを用いたGa N及び関連化合物のエピタキシャル成長においても本発 明の微傾斜面上成長は可能であり、エピタキシャル結晶 の品質を向上させることができる。

[0044]

【発明の効果】

(1) 請求項1に記載の半導体ウェハによれば、結晶欠陥 の少ない高品質なGaN及び関連化合物エピタキシャル 結晶を実現できる。

【0045】(2) 請求項2に記載の半導体ウェハによれ ば、より高輝度の青色発光ダイオードを作ることができ

【0046】(3) 請求項3に記載の半導体ウェハの製造 方法によれば、サファイア基板上に結晶欠陥の少ない高 品質な半導体エピタキシャル層を形成できる。

【0047】(4) 請求項4に記載の半導体ウェハの製造 方法によれば、アズグロウンの状態で高濃度のp型Ga Nを容易に実現できる。

【0048】(5) 請求項5に記載の発明によれば、微傾 斜角を最適な値に規定したので、結晶欠陥のより少ない 高品質なGaN及び関連化合物エピタキシャル結晶を実 現できる。

【図面の簡単な説明】

【図1】本発明の半導体ウェハの実施例を説明するため た。その後NH3 と水素を流しながら結晶を冷却し60 40 の微傾斜(0001)面サファイア基板上のGaNエビ タキシャル結晶の二次元成長モード(ステップフローモ ード)を示す基板成長断面模式図。

> 【図2】 本発明の半導体ウェハの実施例を説明するため のLED用pn接合GaNエピタキシャル結晶ウェハの 一例の断面図。

> 【図3】従来の(0001)面サファイア基板上のGa Nエピタキシャル結晶の三次元成長モードを示す基板成 長断面模式図。

【符号の説明】

型GaN層8がアズグロウン状態で1×10¹⁸cm⁻³であ 50 2 GaNエピタキシャル結晶

7

4 微傾斜(0001)面サファイア単結晶基板

- 5 微傾斜(0001)面
- 6 ステップ

7 低温成長GaNバッファ層

- 8 p型GaN層
- 9 n型GaN層

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 隈 彰二

茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内