

# वर्तुण संअधित क्षेत्रइण 12

#### 12.1 પ્રાસ્તાવિક

તમે તમારા અગાઉના વર્ગોમાંથી લંબચોરસ, ચોરસ, સમાંતરબાજુ ચતુષ્કોણ, ત્રિકોણ અને વર્તુળના જેવી સરળ સમતલીય આકૃતિઓની પરિમિતિ અને ક્ષેત્રફળ શોધવાની કેટલીક રીતો વિશે પહેલેથી જ પરિચિત છો. આપણા દૈનિક જીવનમાં આપણે એક અથવા બીજી રીતે વર્તુળના આકારને સંબંધિત ઘણી વસ્તુઓના પરિચયમાં આવીએ છીએ. સાઇકલનું પૈડું, પૈડાવાળો ઠેલો, તીરંદાજીનું પાટિયું, ગોળાકાર કેક, પાપડ, ગટરનું ઢાંકશું, વિવિધ પ્રકારની ભાત, બંગડી, આંકડીવાળું ઘરેણું, વર્તુળાકાર રસ્તો, વાઇસર, ફૂલોની ક્યારી વગેરે આવી વસ્તુઓનાં કેટલાંક ઉદાહરણો છે (જુઓ આકૃતિ 12.1.) આકૃતિઓની પરિમિતિ અને ક્ષેત્રફળ શોધવાના કૂટપ્રશ્નનું ખૂબ જ પ્રાયોગિક મહત્ત્વ છે. આ પ્રકરણમાં આપણે આપણી ચર્ચાની શરૂઆત વર્ત્ળની પરિમિતિ (પરિઘ) અને ક્ષેત્રફળની કલ્પનાની સમાલોચનાથી કરીશું અને વૃત્તીય ક્ષેત્રના (અથવા ટૂંકમાં વર્તુળના) બે વિશિષ્ટ 'ભાગ' વૃત્તાંશ અને વૃત્તખંડના ક્ષેત્રફળ શોધવામાં આ જ્ઞાનનો ઉપયોગ કરીશું. વર્તુળ અથવા તેના ભાગનો સમાવેશ થાય તેવી કેટલીક સંયુક્ત સમતલ આકૃતિઓનું ક્ષેત્રફળ કેવી રીતે શોધવું તે પણ આપણે જોઈશું.



આકૃતિ 12.1

### 12.2 વર્તુળની પરિમિતિ અને ક્ષેત્રફળ – એક સમીક્ષા

યાદ કરીએ કે, વર્તુળ ઉપરની એક વખતની મુસાફરીથી કપાતા અંતરને તેની પરિમિતિ અથવા સામાન્ય ભાષામાં uરિઘ કહે છે. તમે તમારા આગળના વર્ગોમાંથી એ પણ જાણો છો કે, વર્તુળના પરિઘ અને તેના વ્યાસનો ગુણોત્તર અચળ છે. આ અચળ ગુણોત્તરને ગ્રીક અક્ષર  $\pi$  ('પાઇ' વાંચીશું)થી દર્શાવાય છે. બીજા શબ્દોમાં,



$$\frac{\mathrm{u} \mathrm{l} \mathrm{l} \mathrm{l}}{\mathrm{cu} \mathrm{l} \mathrm{l} \mathrm{l}} = \pi$$

અથવા પરિઘ = 
$$\pi$$
  $\times$  વ્યાસ 
$$= \pi \times 2r \qquad \qquad (r એ વર્તુળની ત્રિજયા છે.)$$
 
$$= 2\pi r$$

ભારતના મહાન ગણિતશાસ્ત્રી **અર્યભટ્ટે** (C.E. 476-550)  $\pi$  નું લગભગ મૂલ્ય આપ્યું હતું. તેમણે  $\pi = \frac{62832}{20000}$  નું આસન્ન મૂલ્ય 3.1416 જણાવ્યું છે. એ પણ નોંધવું રસપ્રદ છે કે, ભારતના મહાન પ્રતિભાશાળી ગણિતજ્ઞ **શ્રીનિવાસ રામાનુજને** (C.E.1887- C.E.1920) આપેલા નિત્યસમના ઉપયોગથી ગણિતશાસ્ત્રીઓ  $\pi$  ના આસન્ન મૂલ્યની ગણતરી એક લાખ દશાંશસ્થળ સુધી કરી શક્યા. ધોરણ IX ના પ્રકરણ 1 પરથી તમે જાણો છો કે,  $\pi$  એ અસંમેય સંખ્યા છે અને તેનું દશાંશ વિસ્તરણ અનંત અને અનાવૃત્ત છે. તેમ છતાં સામાન્ય રીતે વ્યાવહારિક હેતુ માટે આપણે તેનું મૂલ્ય  $\frac{22}{7}$  અથવા લગભગ 3.14 લઈશું.

તમને એ પણ યાદ હશે કે, r ત્રિજ્યાવાળા વર્તુળનું ક્ષેત્રફળ  $\pi r^2$  છે. યાદ કરો કે, તમે ધોરણ VII માં વર્તુળને અનેક વૃત્તાંશમાં કાપી અને તેમની આકૃતિ 12.2 પ્રમાણેની પુનઃ ગોઠવણી કરીને આ ચકાસ્યું છે.



આકૃતિ 12.2

તમે જોઈ શકશો કે, આકૃતિ 12.2 (ii)નો આકાર લગભગ  $\frac{1}{2} \times 2 \pi r$  લંબાઈ અને r પહોળાઈવાળા લંબચોરસના જેટલો છે. આ સૂચવે છે કે, **વર્તુળનું** ક્ષેત્રફળ =  $\frac{1}{2} \times 2\pi r \times r = \pi r^2$ . આપણે આગળના વર્ગોમાં કરેલી સંકલ્પનાઓને એક ઉદાહરણ દ્વારા યાદ કરીએ.

ઉદાહરણ 1 : એક વર્તુળ આકારના ખેતરને વાડ કરવાનો ખર્ચ મીટરના ₹ 24 પ્રમાણે ₹ 5280 થાય છે. ખેતરને ખેડવાનો ખર્ચ ચોરસ મીટરના  $\ref{0.50}$  છે. ખેતર ખેડવાનો ખર્ચ શોધો.  $(\pi = \frac{22}{7}$  લો.)

ઉકેલ : વાડની લંબાઈ (મીટરમાં) = 
$$\frac{4}{6}$$
લ ખર્ચ  $=\frac{5280}{24}=220$  મી

તેથી વર્તુળનો પરિઘ = 220 મી

તેથી, જો ખેતરની ત્રિજ્યા r મીટર હોય, તો

$$2\pi r = 220$$

અથવા, 
$$2 \times \frac{22}{7} \times r = 220$$

અથવા, 
$$r = \frac{220 \times 7}{2 \times 22} = 35$$

અર્થાત. ખેતરની ત્રિજ્યા 35 મીટર છે.

તેથી, ખેતરનું ક્ષેત્રફળ = 
$$\pi r^2 = \frac{22}{7} \times 35 \times 35 \,\text{H}^2 = 22 \times 5 \times 35 \,\text{H}^2$$

1મી² ખેતર ખેડવાનો ખર્ચ = ₹ 0.50 હવે,

#### स्वाध्याय 12.1

ઉલ્લેખ કર્યો ન હોય, તો  $\pi = \frac{22}{7}$  લો.

1. બે વર્તુળની ત્રિજ્યા 19 સેમી અને 9 સેમી છે. જે વર્તુળનો પરિઘ આ બે વર્તુળના પરિઘના સરવાળા જેટલો હોય, તે વર્તુળની ત્રિજ્યા શોધો.

2. બે વર્તુળની ત્રિજ્યા 8 સેમી અને 6 સેમી છે. જે વર્તુળનું ક્ષેત્રફળ આ બે વર્તુળનાં ક્ષેત્રફળના સરવાળા જેટલું હોય, તે વર્તુળની ત્રિજ્યા શોધો.

- આકૃતિ 12.3 માં તીરંદાજીનું લક્ષ્ય, કેન્દ્રથી બહારના ભાગ તરફ સોનેરી, લાલ, ભૂરું, કાળું અને સફેદ એમ પાંચ વિભાગમાં ગુણલક્ષણ દર્શાવે છે. ગુણની ગણતરી માટે સોનેરી રંગ દ્વારા દર્શાવાતા પ્રદેશનો વ્યાસ 21 સેમી છે અને દરેક વિભાગની પહોળાઈ 10.5 સેમી છે. ગણતરી કરવાના પાંચ પ્રદેશ પૈકી પ્રત્યેકનું ક્ષેત્રફળ શોધો.
- એક ગાડીના દરેક પૈડાનો વ્યાસ 80 સેમી છે. જો ગાડી 66 કિમી/કલાકની ઝડપે મુસાફરી કરે, તો દરેક પૈડું 10 મિનિટમાં કેટલાં પરિભ્રમણ પૂર્ણ કરશે?
- આકૃતિ 12.3 નીચેનામાંથી સાચા જવાબ પર નિશાન કરો અને તમારી પસંદગીની યથાર્થતા ચકાસો : જો વર્તુળની પરિમિતિ અને ક્ષેત્રફળ સમાન સંખ્યા હોય, તો વર્તુળની ત્રિજ્યા ....... થાય.

(A) 2 એકમ

- (B) π એકમ
- (C) 4 એકમ
- (D) 7 એકમ

### 12.3 વર્તુળના વૃત્તાંશ અને વૃત્તખંડનું ક્ષેત્રફળ



તમારા આગળનાં ધોરણોમાં તમે વર્તુળ વિષયક પદો *વૃત્તાંશ (sector)* અને *વૃત્તખંડ (segment)* થી પહેલેથી પરિચિત થયા છો જ. યાદ કરો કે, વર્તુળાકાર પ્રદેશની બે ત્રિજ્યાઓ અને તેમને અનુરૂપ ચાપ વચ્ચે ઘેરાયેલા પ્રદેશ (અથવા ભાગ)ને વર્તુળનો *વૃત્તાંશ* કહે છે અને જીવા તથા તેને અનુરૂપ ચાપની વચ્ચે ઘેરાયેલા વર્તુળાકાર પ્રદેશના અંશ (અથવા ભાગ) ને વર્તળનો વૃત્તખંડ કહે છે.



આકૃતિ 12.4

આમ, આકૃતિ 12.4 માં O કેન્દ્રવાળા વર્તુળનો રંગીન પ્રદેશ OAPB એ વૃત્તાંશ છે. ∠AOBને વૃત્તાંશનો ખૂણો કહે છે. આ આકૃતિમાં નોંધીશું કે, રંગીન ન હોય તેવો પ્રદેશ OAQB એ પણ વર્તુળનું વૃત્તાંશ છે. OAPB ને લઘુવૃતાંશ (minor sector) કહે છે અને OAQB ને ગુરુવૃતાંશ (major sector) કહે છે. આ વસ્તુ તરત સમજી શકાય તેમ છે. તમે એ પણ જોઈ શકશો કે, ગુરુવૃત્તાંશનો ખૂણો 360° – ∠AOB છે.

હવે, આકૃતિ 12.5 તરફ જુઓ. તેમાં O કેન્દ્રવાળા વર્તુળની જીવા AB છે. આથી રંગીન પ્રદેશ APB વર્તુળનો વૃત્તખંડ (segment) છે. તમે એ પણ નોંધી શકશો કે, જીવા AB થી વર્તુળનો છાયાંકિત ન હોય તેવો બીજો વૃત્તખંડ AQB બને છે. દેખીતી રીતે APB ને લઘુવૃત્તખંડ (minor segment) કહે છે અને AQB ને ગુરુવૃત્તખંડ (major segment) કહે છે.

નોંધ : જો દર્શાવવામાં આવ્યું ન હોય, તો આપણે 'વૃત્તખંડ' અને 'વૃત્તાંશ' લખીએ, ત્યારે આપણે તેનો અર્થ અનુક્રમે 'લઘુવૃત્તખંડ' અને 'લઘુવૃત્તાંશ' કરીશું.

હવે આ જ્ઞાન સાથે, ચાલો આપણે તેમના ક્ષેત્રફળની ગણતરી માટે કેટલાંક સંબંધ (સૂત્રો) શોધવાનો પ્રયાસ કરીએ.

ધારો કે, OAPB એ O કેન્દ્રવાળા અને r ત્રિજ્યાવાળા વર્તુળનું વૃત્તાંશ છે. (જુઓ આકૃતિ 12.6.) ધારો કે,  $\angle AOB$ નું અંશ માપ  $\theta$  છે. તમે જાણો છો કે વર્તુળ (વર્તુળાકાર પ્રદેશ અથવા તાસક)નું ક્ષેત્રફળ  $\pi r^2$  છે.

આપણે આ વર્તુળાકાર પ્રદેશને કેન્દ્ર O આગળ 360° (અર્થાત્ અંશમાપ 360)નો ખૂશો બનાવતા વૃત્તાંશ તરીકે લઈએ. હવે એકમ પદ્ધતિ અપનાવતાં, આપણે નીચે પ્રમાણે વૃત્તાંશ OAPB ના ક્ષેત્રફળ સુધી પહોંચી શકીશું :

જ્યારે કેન્દ્ર આગળ 360 અંશ માપવાળો ખૂણો હોય, ત્યારે વૃત્તાંશનું ક્ષેત્રફળ =  $\pi r^2$ 



તેથી, જ્યારે કેન્દ્ર આગળ  $\theta$  અંશ માપવાળો ખૂણો હોય, ત્યારે વૃત્તાંશનું ક્ષેત્રફળ =  $\frac{\pi r^2}{360} \times \theta = \frac{\theta}{360} \times \pi r^2$  આમ, આપણે વર્તુળના વૃત્તાંશના ક્ષેત્રફળ માટે નીચેનો સંબંધ (અથવા સૂત્ર) મળે છે :

## heta ખૂશાવાળા વૃત્તાંશનું ક્ષેત્રફળ = $\frac{ heta}{360} imes \pi r^2$

જ્યાં r એ વર્તુળની ત્રિજ્યા અને  $\theta$  એ અંશમાં વૃત્તાંશનો ખુણો છે.

હવે, સ્વાભાવિક એક પ્રશ્ન ઉદ્દભવે : શું આપણે આ વૃત્તાંશને અનુરૂપ ચાપ  $\Lambda PB$  ની લંબાઈ શોધી શકીએ? હા, ફરીથી આપણે એકમની પદ્ધતિ અપનાવતાં અને વર્તુળની પૂરેપૂરી લંબાઈ (360° ના ખૂણાથી)  $2\pi r$  લેતાં, આપણે જરૂરી ચાપ  $\Lambda PB$  ની લંબાઈ  $\frac{\theta}{360} \times 2\pi r$  મેળવી શકીએ.

# આથી, heta ખૂણાવાળા વૃત્તાંશના ચાપની લંબાઈ = $rac{ heta}{360} imes 2\pi r$



વૃત્તખંડ APB નું ક્ષેત્રફળ = વૃત્તાંશ OAPB નું ક્ષેત્રફળ  $-\Delta$ OAB નું ક્ષેત્રફળ





આકૃતિ 12.6



આકૃતિ 12.7

$$=\frac{\theta}{360} imes\pi r^2-\Delta {
m OAB}$$
 નું ક્ષેત્રફળ

નોંધ : તમે અનુક્રમે આકૃતિ 12.6 અને આકૃતિ 12.7નું નિરીક્ષણ કરી શકશો કે, ગુરુવૃત્તાંશ OAQB નું ક્ષેત્રફળ =  $\pi r^2$  – લઘુવૃત્તાંશ OAPB નું ક્ષેત્રફળ અને ગુરુવૃત્તખંડ AQB નું ક્ષેત્રફળ =  $\pi r^2$  – લઘુવૃત્તખંડ APB નું ક્ષેત્રફળ ચાલો, હવે આપણે આ સંકલ્પના સમજવા કેટલાંક ઉદાહરણ જોઈએ :

ઉદાહરણ 2:4 સેમી ત્રિજ્યાવાળા અને કેન્દ્ર આગળ  $30^\circ$  નો ખૂશો બનાવતા વર્તુળના વૃત્તાંશનું ક્ષેત્રફળ શોધો. ગુરુવૃત્તાંશનું ક્ષેત્રફળ પણ શોધો.  $(\pi=3.14$  લો.)

ઉકેલ : આપેલું વૃત્તાંશ OAPB છે. (જુઓ આકૃતિ 12.8.)

વૃત્તાંશનું ક્ષેત્રફળ = 
$$\frac{\theta}{360} \times \pi r^2$$
  
=  $\frac{30}{360} \times 3.14 \times 4 \times 4$  સેમી²  
=  $\frac{12.56}{3}$  સેમી² =  $4.19$  સેમી² (આસન્ન મૂલ્ય)  
અનુરૂપ ગુરુવૃત્તાંશનું ક્ષેત્રફળ =  $\pi r^2$  – લઘુવૃત્તાંશ OAPB નું ક્ષેત્રફળ  
=  $(3.14 \times 16 - 4.19)$  સેમી²  
=  $46.05$  સેમી² =  $46.1$  સેમી² (આસન્ન મૂલ્ય)

ઉદાહરણ 3: જો વર્તુળની ત્રિજ્યા 21 સેમી અને  $\angle AOB = 120^\circ$  હોય, તો આકૃતિ 12.9 માં દર્શાવેલ વૃત્તખંડ AYB નું ક્ષેત્રફળ શોધો. ( $\pi = \frac{22}{7}$  લો.) ઉકેલ: વૃત્તખંડ AYB નું ક્ષેત્રફળ = વૃત્તાંશ OAYB નું ક્ષેત્રફળ  $-\Delta$  OAB નું ક્ષેત્રફળ (1)

હવે, વૃત્તાંશ OAYB નું ક્ષેત્રફળ

$$= \frac{120}{360} \times \frac{22}{7} \times 21 \times 21 \text{  $\&hl^2$ }$$
$$= 462  $\&hl^2$  (2)$$





આકૃતિ 12.8



આકૃતિ 12.9

 $\Delta OAB$  નું ક્ષેત્રફળ શોધવા માટે, આકૃતિ 12.10 માં બતાવ્યા પ્રમાણે  $OM \perp AB$  દોરો. આપણે નોંધીએ કે, OA = OB. આથી, કાકબા એકરૂપતાને આધારે  $\Delta$  AMO  $\cong \Delta$  BMO

આથી, M એ AB નું મધ્યબિંદુ છે અને 
$$\angle AOM = \angle BOM = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

OM = 
$$x$$
 સેમી લેતાં, 
$$\Delta \text{OMA પરથી,} \qquad \frac{\text{OM}}{\text{OA}} = \cos 60^{\circ}$$
 અથવા, 
$$\frac{x}{21} = \frac{1}{2} \qquad (\cos 60^{\circ} = \frac{1}{2})$$
 આફતિ 12.10 અથવા, 
$$x = \frac{21}{2}$$
 તેથી, 
$$\text{OM} = \frac{21}{2} \text{ સેમી}$$
 વળી, 
$$\frac{\text{AM}}{\text{OA}} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 તેથી, 
$$\text{AM} = \frac{21\sqrt{3}}{2} \text{ સેમી}$$
 માટે, 
$$\text{AB} = 2\text{AM} = \frac{2 \times 21\sqrt{3}}{2} \text{ સેમી} = 21\sqrt{3} \text{ સેમી}$$
 તેથી, 
$$\Delta \text{ OAB tj} \text{ સેમ$} = \frac{1}{2} \text{AB} \times \text{OM}$$
 
$$= \frac{1}{2} \times 21\sqrt{3} \times \frac{21}{2} \text{ સેમી}^{2}$$
 
$$= \frac{441}{4} \sqrt{3} \text{ સેમી}^{2}$$
 (3) માટે, વૃત્તખંડ AYB tj ક્ષેત્રફળ =  $(462 - \frac{441}{4} \sqrt{3})$  સેમી<sup>2</sup> [(1), (2) અમે (3) પરથી] 
$$= \frac{21}{4} (88 - 21\sqrt{3}) \text{ સેમી}^{2}$$

स्वाध्याय 12.2

ઉલ્લેખ કર્યો ન હોય, તો  $\pi = \frac{22}{7}$  લો.

- જો 6 સેમી ત્રિજ્યાવાળા વર્તુળના વૃત્તાંશ દ્વારા કેન્દ્ર આગળ બનતો ખૂરાો 60° હોય, તો વૃત્તાંશનું ક્ષેત્રફળ શોધો.
- 2. 22 સેમી પરિઘવાળા વર્તુળના ચતુર્થાંશનું ક્ષેત્રફળ શોધો.
- એક ઘડિયાળના મિનિટકાંટાની લંબાઈ 14 સેમી છે. મિનિટકાંટો 5 મિનિટમાં પરિભ્રમણ કરીને જે ક્ષેત્રફળ રચે તે શોધો.
- 4. 10 સેમી ત્રિજ્યાવાળા વર્તુળની જીવા કેન્દ્ર આગળ કાટખૂર્શો આંતરે છે. તેને અનુરૂપ (i) લઘુવૃત્તખંડ (ii) ગુરુવૃત્તાંશનું ક્ષેત્રફળ શોધો. ( $\pi=3.14$  લો.)
- 21 સેમી ત્રિજ્યાવાળા વર્તુળનું એક ચાપ કેન્દ્ર આગળ 60° નો ખૂશો આંતરે છે. તેને અનુરૂપ (i) ચાપની લંબાઈ (ii) ચાપ વડે બનતા વૃત્તાંશનું ક્ષેત્રફળ (iii) અનુરૂપ જીવા વડે બનતા વૃત્તખંડનું ક્ષેત્રફળ શોધો.
- 6. 15 સેમી ત્રિજ્યાવાળા વર્તુળની જીવા કેન્દ્ર આગળ  $60^\circ$  નો ખૂણો આંતરે છે. તેને અનુરૂપ લઘુવૃત્તખંડ અને ગુરુવૃત્તખંડનું ક્ષેત્રફળ શોધો. ( $\pi=3.14$  અને  $\sqrt{3}=1.73$  લો.)
- 7. 12 સેમી ત્રિજ્યાવાળા વર્તુળની જીવા કેન્દ્ર આગળ  $120^\circ$  નો ખૂશો આંતરે છે. તેને અનુરૂપ વૃત્તખંડનું ક્ષેત્રફળ શોધો. ( $\pi=3.14$  અને  $\sqrt{3}=1.73$  લો.)

- 8. 15 મી બાજુવાળા ચોરસ આકારના ઘાસના ખેતરના એક ખૂણે ઘોડાને 5 મી લાંબા દોરડાથી ખીલા સાથે બાંધેલો છે. (જુઓ આકૃતિ 12.11.)
  - (i) ઘોડો ખેતરના જેટલા ભાગમાં ચરી શકે તેનું ક્ષેત્રફળ શોધો.
  - (ii) દોરડું 5 મી ને બદલે 10 મી લાંબું રાખ્યું હોત, તો ચરવાના ક્ષેત્રફળમાં થતો વધારો શોધો. ( $\pi = 3.14$  લો.)



આકૃતિ 12.11

- 9. ચાંદીના તારથી 35 મિમી વ્યાસવાળું વર્તુળ આકારનું એક બક્કલ જેવું ઘરેણું બનાવ્યું છે. આકૃતિ 12.12 માં બતાવ્યા પ્રમાણે વર્તુળને 10 સમાન વૃત્તાંશમાં વિભાજિત કરે તેવા 5 વ્યાસ બનાવવામાં પણ તારનો ઉપયોગ કર્યો છે.
  - (i) જરૂરી ચાંદીના તારની કુલ લંબાઈ શોધો.
  - (ii) ઘરેણાના દરેક વૃત્તાંશનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.12

10. એક છત્રીમાં સમાન અંતરે 8 સળિયા આવેલાં છે. (જુઓ આકૃતિ 12.13.) છત્રીને 45 સેમી ત્રિજ્યાવાળું સમતલીય વર્તુળ ધારી, છત્રીના બે ક્રમિક સળિયા વચ્ચેના ભાગનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.13

- 11. એક ગાડીને એકબીજા પર આચ્છાદિત ન થાય તેવાં બે વાઇપર છે. દરેક વાઇપરને 115° ના ખુણા જેટલી સફાઈ કરતી 25 સેમી લંબાઇની બ્લેડ છે. પ્રત્યેક વખતે વાઇપરથી સાફ થતા વિસ્તારનું કુલ ક્ષેત્રફળ શોધો.
- 12. પાણીની નીચેના ખડકો વિશે જહાજને ચેતવણી આપવા માટે, એક દીવાદાંડી 16.5 કિમી અંતર સુધી 80° ના ખુશાના વૃત્તાંશ પર લાલ રંગનો પ્રકાશ પાથરે છે. સમુદ્રના જેટલા ક્ષેત્રફળ પર જહાજને ચેતવણી અપાતી હોય તે શોધો. (π = 3.14 લો.)
- 13. આકૃતિ 12.14 માં બતાવ્યા પ્રમાણે એક મેજ પર છ ભાતવાળું એક વર્તુળાકાર આવરણ પાથરેલું છે. જો આવરણની ત્રિજ્યા 28 સેમી હોય, તો ₹ 0.35 પ્રતિ સેમી² ના દરે ડિઝાઇન બનાવવાનો ખર્ચ શોધો.  $(\sqrt{3} = 1.7 \text{ el.})$



14. નીચેનામાં સાચા જવાબ આગળ નિશાની કરો : R ત્રિજ્યાવાળા વર્તુળનો વૃત્તાંશ ખૂણો  $p^{\circ}$  હોય, તો વૃત્તાંશનું ક્ષેત્રફળ ........ થાય.

- (A)  $\frac{p}{180} \times 2\pi R$  (B)  $\frac{p}{180} \times \pi R^2$  (C)  $\frac{p}{360} \times 2\pi R$  (D)  $\frac{p}{720} \times 2\pi R^2$

### 12.4 સંયોજિત સમતલ આકૃતિઓનું ક્ષેત્રફળ

અત્યાર સુધી આપશે ભિન્ન-ભિન્ન આકૃતિઓનાં ક્ષેત્રફળની પૃથક રીતે ગણતરી કરી. ચાલો, હવે આપશે કેટલીક સંયોજિત સમતલીય આકૃતિના ક્ષેત્રફળની ગણતરીનો પ્રયત્ન કરીએ. આપણા રોજિંદા જીવનમાં આપશે આ પ્રકારની આકૃતિઓ અને વિવિધ રસપ્રદ ભાત સ્વરૂપના સંપર્કમાં પણ આવીએ છીએ. ફૂલોની ક્યારી, ગટરનાં ઢાંકણા, બારીની ભાત, ટેબલ પરના આવરણની ભાત એ કેટલાંક આવાં ઉદાહરણ છે. આપશે કેટલાંક ઉદાહરણ દ્વારા આ આકૃતિઓના ક્ષેત્રફળની ગણતરીની પ્રક્રિયા સમજીએ.



ઉદાહરણ 4 : 56 મી બાજુવાળી ચોરસ લોન ABCD ની બે સામસામેની બાજુઓ પર ફૂલની બે વર્તુળાકાર ક્યારી આકૃતિ 12.15 માં બતાવી છે તે રીતે બનાવી છે. જો ચોરસ લોનના વિકર્જ્યનું છેદબિંદુ O એ ફૂલની વર્તુળાકાર ક્યારીનું કેન્દ્ર હોય, તો લોન અને ફૂલની ક્યારીના ક્ષેત્રફળનો સરવાળો શોધો.

ઉંકેલ : ચોરસ લોન ABCD નું ક્ષેત્રફળ = 
$$56 \times 56$$
 મી<sup>2</sup> (1)

ધારો કે 
$$OA = OB = x$$
 મીટર

આથી, 
$$x^2 + x^2 = 56^2$$

અથવા 
$$2x^2 = 56 \times 56$$

અથવા 
$$x^2 = 28 \times 56$$

આકૃતિ 12.15

હવે, વૃત્તાંશ OAB નું ક્ષેત્રફળ 
$$= \frac{90}{360} imes \pi r^2$$
  $= \frac{1}{4} imes \pi r^2$ 

$$=\frac{1}{4} \times \frac{22}{7} \times 28 \times 56 \text{ મી}^2$$
 [(2) પરથી] (3)

વળી, 
$$\Delta$$
 AOB નું ક્ષેત્રફળ =  $\frac{1}{4} \times 56 \times 56$  મી $^2$ 

$$(\angle AOB = 90^\circ)$$
 (4)

(2)

તેથી, ફૂલોની ક્યારી AB નું ક્ષેત્રફળ =  $\left(\frac{1}{4} \times \frac{22}{7} \times 28 \times 56 - \frac{1}{4} \times 56 \times 56\right)$  મી<sup>2</sup>

[(3) અને (4) પરથી]

$$= \frac{1}{4} \times 28 \times 56 \left(\frac{22}{7} - 2\right) \, \text{H}^2$$

$$= \frac{1}{4} \times 28 \times 56 \times \frac{8}{7} \, \text{H}^2$$
(5)

આ જ પ્રમાણે, બીજી ફૂલની ક્યારીનું ક્ષેત્રફળ

$$=\frac{1}{4}\times28\times56\times\frac{8}{7}\text{ Hl}^2$$
 (6)

માટે, કુલ ક્ષેત્રફળ = 
$$\left(56 \times 56 + \frac{1}{4} \times 28 \times 56 \times \frac{8}{7} + \frac{1}{4} \times 28 \times 56 \times \frac{8}{7}\right)$$
 મી<sup>2</sup>

[(1), (5) અને (6) પરથી]

= 
$$28 \times 56 \left(2 + \frac{2}{7} + \frac{2}{7}\right) \text{ H}^2$$
  
=  $28 \times 56 \times \frac{18}{7} \text{ H}^2 = 4032 \text{ H}^2$ 

### वै अस्पि अरीते ७ डेस :

કુલ ક્ષેત્રફળ = વૃત્તાંશ OAB નું ક્ષેત્રફળ + વૃત્તાંશ ODCનું ક્ષેત્રફળ + 
$$\Delta$$
OADનું ક્ષેત્રફળ +  $\Delta$ OBCનું ક્ષેત્રફળ =  $\left(\frac{90}{360} \times \frac{22}{7} \times 28 \times 56 + \frac{90}{360} \times \frac{22}{7} \times 28 \times 56 + \frac{1}{4} \times 56 \times 56 + \frac{1}{4} \times 56 \times 56\right)$  મી $^2$  =  $\frac{1}{4} \times 28 \times 56 \left(\frac{22}{7} + \frac{22}{7} + 2 + 2\right)$  મી $^2$  =  $\frac{7 \times 56}{7} \left(22 + 22 + 14 + 14\right)$  મી $^2$  =  $56 \times 72$  મી $^2 = 4032$  મી $^2$ 

ઉદાહરણ 5 : આકૃતિ 12.16 માં દર્શાવ્યા પ્રમાણેના 14 સેમી બાજુવાળા ચોરસ ABCD માં આવેલા રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

ઉંકેલ : ચોરસ ABCD નું ક્ષેત્રફળ =  $14 \times 14$  સેમી<sup>2</sup> = 196 સેમી<sup>2</sup>

પ્રત્યેક વર્તુળનો વ્યાસ = 
$$\frac{14}{2}$$
 સેમી =  $7$  સેમી

આથી, પ્રત્યેક વર્તુળની ત્રિજ્યા  $=\frac{7}{2}$  સેમી

તેથી, એક વર્તુળનું ક્ષેત્રફળ 
$$\pi r^2=rac{22}{7} imesrac{7}{2} imesrac{7}{2}$$
 સેમી $^2=rac{154}{4}$  સેમી $^2=rac{77}{2}$  સેમી $^2$ 

માટે, ચાર વર્તુળનું ક્ષેત્રફળ  $= 4 \times \frac{77}{2}$  સેમી $^2 = 154$  સેમી $^2$ 

આથી, રંગીન પ્રદેશનું ક્ષેત્રફળ = (196 - 154) સેમી $^2 = 42$  સેમી $^2$ 

ઉદાહરણ 6:10 સેમી બાજુવાળા ચોરસ ABCD ની પ્રત્યેક બાજુ વ્યાસ હોય તેવાં અર્ધવર્તુળ આકૃતિ 12.17 માં દોરેલાં છે. આકૃતિમાં દર્શાવેલા રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો. ( $\pi=3.14$  લો.)



આકૃતિ 12.17



આકૃતિ 12.18

ઉકેલ : ચાલો, આપણે રંગીન પ્રદેશ ન હોય તેવા ચાર પ્રદેશને I, II, III અને IV થી અંકિત કરીએ. (જુઓ આકૃતિ 12.18.)



આકૃતિ 12.16

I નું ક્ષેત્રફળ + III નું ક્ષેત્રફળ

$$=(10\times 10-2\times \frac{1}{2}\times \pi \times 5^2)$$
 સેમી<sup>2</sup>

$$= (100 - 3.14 \times 25) \text{ A} + \text{M}^2$$

$$= (100 - 78.5) \text{ A} + \text{M}^2 = 21.5 \text{ A} + \text{M}^2$$

આ જ પ્રમાણે, II નું ક્ષેત્રફળ + IV નું ક્ષેત્રફળ = 21.5 સેમી²

આથી, રંગીન પ્રદેશનું ક્ષેત્રફળ = ABCD નું ક્ષેત્રફળ 
$$-(I + II + III + IV)$$
 નું ક્ષેત્રફળ

$$= (100 - 2 \times 21.5) \text{ A} + \text{H}^2$$

$$= (100 - 43) \text{ A} + \text{M}^2 = 57 \text{ A} + \text{M}^2$$

स्वाध्याय 12.3

ઉલ્લેખ કર્યો ન હોય, તો  $\pi = \frac{22}{7}$  લો.

રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

1. જો PQ = 24 સેમી, PR = 7 સેમી અને વર્તુળનું કેન્દ્ર O હોય, તો આકૃતિ 12.19 માં દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

2. જો O કેન્દ્રવાળાં બે સમકેન્દ્રી વર્તુળોની ત્રિજ્યા અનુક્રમે 7 સેમી અને

14 સેમી તથા  $\angle$  AOC = 40° હોય, તો આકૃતિ 12.20 માં દર્શાવેલ



આકૃતિ 12.19



આકૃતિ 12.20



3. 14 સેમી બાજુવાળા ચોરસ ABCD માં જો અર્ધવર્તુળો APD અને BPC આવેલાં હોય, તો આકૃતિ 12.21 માં દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.21



આકૃતિ 12.22

4. 12 સેમી બાજુવાળા સમભુજ ત્રિકોણ OAB ના શિરોબિંદુ O ને કેન્દ્ર તરીકે અને ત્રિજ્યા 6 સેમી લઈ, વર્તુળાકાર ચાપ દોર્યું છે. આકૃતિ 12.22 માં દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

5. આકૃતિ 12.23 માં દર્શાવ્યા પ્રમાણે 4 સેમી બાજુવાળા ચોરસના પ્રત્યેક ખૂરો 1 સેમી ત્રિજ્યાવાળા વર્તુળનો ચતુર્થાંશ ભાગ કપાયેલો છે તથા 2 સેમી વ્યાસવાળું એક વર્તુળ પણ કાપેલું છે. ચોરસના બાકીના ભાગનું ક્ષેત્રફળ શોધો.



6. આકૃતિ 12.24 માં દર્શાવ્યા પ્રમાણે ટેબલના એક 32 સેમી ત્રિજયાવાળા વર્તુળાકાર આવરણના વચ્ચેના ભાગમાં એક સમભુજ ત્રિકોણ ABC છોડી બાકીના ભાગમાં ભાત બનાવી છે. આ ભાતનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.24

7. આકૃતિ 12.25 માં 14 સેમી બાજુવાળો ચોરસ ABCD છે. પ્રત્યેક વર્તુળ બાકીનાં ત્રણ વર્તુળોમાંથી બે વર્તુળને બહારથી સ્પર્શે તેમ A, B, C અને D કેન્દ્રવાળાં ચાર વર્તુળ દોર્યા છે. દર્શાવેલા રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.25

8. આકૃતિ 12.26 માં દોડમાર્ગનું નિરૂપણ કરેલું છે. તેના ડાબા અને જમણા છેડા અર્ધવર્તુળાકાર છે. અંદરના બે સમાંતર રેખાખંડ વચ્ચેનું અંતર 60 મી છે અને તે પ્રત્યેકની લંબાઈ 106 મી છે. જો માર્ગ 10 મી પહોળો હોય, તો (i) માર્ગની અંદરની ધારનું ચારેય તરફનું અંતર શોધો. (ii) માર્ગનું ક્ષેત્રફળ શોધો.



9. આકૃતિ 12.27 માં O કેન્દ્રવાળા વર્તુળના બે વ્યાસ AB અને CD પરસ્પર લંબ છે અને નાના વર્તુળનો વ્યાસ OD છે. જો OA = 7 સેમી હોય, તો દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.27

10. એક સમભુજ ત્રિકોણ ABCનું ક્ષેત્રફળ 17320.5 સેમી² છે. ત્રિકોણની બાજુની લંબાઈથી અડધી ત્રિજ્યાવાળાં અને પ્રત્યેક શિરોબિંદુ કેન્દ્ર હોય તેવાં વર્તુળ દોર્યા છે. (જુઓ આકૃતિ 12.28.) દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

$$(\pi = 3.14 \text{ set} \sqrt{3} = 1.73205 \text{ ell.})$$



આકૃતિ 12.28

11. એક ચોરસ હાથરૂમાલ પર 7 સેમી ત્રિજ્યાવાળી નવ વર્તુળાકાર ભાત બનાવી છે. (જુઓ આકૃતિ 12.29.) હાથરૂમાલના બાકીના ભાગનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.29

- 12. આકૃતિ 12.30 માં દર્શાવેલ, ચતુર્થાંશ OACB નું કેન્દ્ર O છે અને ત્રિજ્યા 3.5 સેમી છે. જો OD = 2 સેમી હોય, તો (i) ચતુર્થાંશ OACB નું ક્ષેત્રફળ શોધો. (ii) દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.
- 13. આકૃતિ 12.31 માં, એક વર્તુળના ચતુર્થાંશ OPBQ ની અંતર્ગત ચોરસ OABC છે. જો OA = 20 સેમી હોય, તો દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો. ( $\pi = 3.14$  લો.)



આકૃતિ 12.30





21 સેમી

આકૃતિ 12.32

14. O કેન્દ્રવાળા, 21 સેમી અને 7 સેમી ત્રિજ્યાવાળા બે સમકેન્દ્રી વર્તુળનાં ચાપ અનુક્રમે AB અને CD છે. (જુઓ આકૃતિ 12.32.) જો  $\angle AOB = 30^{\circ}$  હોય, તો દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.

15. આકૃતિ 12.33 માં, ABC એ 14 સેમી ત્રિજ્યાવાળા વર્તુળનો ચતુર્થાંશ છે. BC ને વ્યાસ તરીકે લઈ વર્તુળ દોરવામાં આવ્યું છે. તો દર્શાવેલ રંગીન પ્રદેશનું ક્ષેત્રફળ શોધો.



આકૃતિ 12.33

 આકૃતિ 12.34 માં, 8 સેમી ત્રિજ્યાવાળા બે વર્તુળના સામાન્ય ચતુર્થાંશની ભાતના પ્રદેશના ક્ષેત્રફળની ગણતરી કરો.



આકૃતિ 12.34

### **12.5** સારાંશ

આ પ્રકરણમાં તમે નીચેના મુદાઓ શીખ્યા :

- 1. વર્તુળનો પરિઘ =  $2\pi r$
- 2. વર્તુળનું ક્ષેત્રફળ =  $\pi r^2$
- 3. r ત્રિજ્યાવાળા અને  $\theta$  માપનો ખૂશો બનાવતા વર્તુળના વૃત્તાંશના ચાપની લંબાઈ  $\frac{\theta}{360} imes 2\pi r$  છે.
- 4.~~r ત્રિજ્યાવાળા અને heta માપનો ખૂશો બનાવતા વર્તુળના વૃત્તાંશનું ક્ષેત્રફળ  $rac{ heta}{360} imes\pi r^2$  છે.
- 5. વર્તુળના વૃત્તખંડનું ક્ષેત્રફળ = અનુરૂપ વૃત્તાંશનું ક્ષેત્રફળ અનુરૂપ ત્રિકોણનું ક્ષેત્રફળ

