UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

15 de Julho de 2018

(1) Suponha que a soma dos n primeiros termos da série $\sum_{n=1}^{\infty} a_n$ é

$$S_n = a_1 + a_2 + \dots + a_n = \frac{2n}{3n+5}.$$

Essa série é convergente? Em caso positivo, encontre sua soma.

(2) Dadas as séries abaixo, verifique se elas convergem ou divergem. Se convergir, encontre sua soma.

(a)
$$\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3}{n(n+1)} + \frac{1}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

(3) Para quais valores de $x \in \mathbb{R}$ a série $\sum_{n=1}^{\infty} x^n$ converge? Encontre sua soma para estes valores.

(4) Sejam $\sum a_n$ uma série convergente de termos positivos e (b_n) uma sequência limitada de elementos positivos. Prove que $\sum a_n b_n$ converge.

(5) Teste cada uma das séries seguintes, verificando se converge ou não.

(a)
$$\sum_{n=1}^{\infty} n^b a^n$$
, $0 < a < 1$.

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$
(c)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2 + 1}$$

(6) Encontre o raio de convergência e o intervalo de convergência da série

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$

(7) Demonstre cada afirmação usando ε e δ .

(a)
$$\lim_{x \to -5} \left(4 - \frac{3x}{5} \right) = 7$$

(b)
$$\lim_{x \to 2} \sqrt{x} = \sqrt{2}$$

(8) Dada a função

$$f(x) = \begin{cases} 1+x, & \text{se} & x < -1\\ x^2, & \text{se} & -1 \le x < 1\\ 2-x, & \text{se} & x \ge 1 \end{cases}$$

calcule:

- (a) $\lim_{x \to 0} f(x)$
- (b) $\lim_{x \to -1} f(x);$
- (c) $\lim_{x \to \infty} f(x)$;