K-Nearest Neighbors (K-NN) Classification

Question

You are given a dataset with two input features x_1 and x_2 , and a continuous output y. The dataset is as follows:

S. No.	x_1	x_2	y
1	4	1	0
2 3	2	$\begin{vmatrix} 4 \\ 3 \end{vmatrix}$	0
	2	3	0
4 5	3	6	0
5	$\begin{bmatrix} 2\\2\\3\\4\\9 \end{bmatrix}$	4	0
6	9	10	1
7	6	8	1
6 7 8 9	9 8	8 5 7 8	1
9	8	7	1
10	10	8	1

Using the K-Nearest Neighbors (K-NN) classification algorithm with k=3, predict the output y for a new data point $(x_1,x_2)=(5,8)$. Show all mathematical steps and calculations leading to the predicted output.

Solution

Step 1: Calculate Euclidean Distances

The Euclidean distance between two points (x_1, x_2) and (x'_1, x'_2) is given by:

$$d = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2}$$

We compute the Euclidean distance between the point (5,8) and all other points in the dataset.

S. No.	(x_1,x_2)	Distance from (5,8)
1	(4,1)	$\sqrt{(5-4)^2 + (8-1)^2} = \sqrt{1+49} = \sqrt{50} \approx 7.07$
2	(2,4)	$\sqrt{(5-2)^2 + (8-4)^2} = \sqrt{9+16} = \sqrt{25} = 5.00$
3	(2,3)	$\sqrt{(5-2)^2 + (8-3)^2} = \sqrt{9+25} = \sqrt{34} \approx 5.83$
4	(3,6)	$\sqrt{(5-3)^2 + (8-6)^2} = \sqrt{4+4} = \sqrt{8} \approx 2.83$
5	(4,4)	$\sqrt{(5-4)^2 + (8-4)^2} = \sqrt{1+16} = \sqrt{17} \approx 4.12$
6	(9,10)	$\sqrt{(5-9)^2 + (8-10)^2} = \sqrt{16+4} = \sqrt{20} \approx 4.47$
7	(6,8)	$\sqrt{(5-6)^2 + (8-8)^2} = \sqrt{1+0} = \sqrt{1} = 1.00$
8	(9,5)	$\sqrt{(5-9)^2 + (8-5)^2} = \sqrt{16+9} = \sqrt{25} = 5.00$
9	(8,7)	$\sqrt{(5-8)^2 + (8-7)^2} = \sqrt{9+1} = \sqrt{10} \approx 3.16$
10	(10, 8)	$\sqrt{(5-10)^2 + (8-8)^2} = \sqrt{25+0} = \sqrt{25} = 5.00$

Step 2: Select the 3 Nearest Neighbors

We sort the distances in ascending order:

S. No.	Distance	Class
7	1.00	1
4	2.83	0
9	3.16	1
5	4.12	0
6	4.47	1
2	5.00	0
8	5.00	1
10	5.00	1
3	5.83	0
1	7.07	0

The 3 nearest neighbors are:

S. No.	Distance	Class
7	1.00	1
4	2.83	0
9	3.16	1

Step 3: Predict the Class

We now use the majority vote from the 3 nearest neighbors:

- Class 1 appears twice (Points 7 and 9). - Class 0 appears once (Point 4).

Thus, the predicted class for the point (5,8) is Class 1.