CMSC 141 AUTOMATA AND LANGUAGE THEORY CONTEXT-FREE LANGUAGES

Mark Froilan B. Tandoc

September 24, 2014

■ Not all languages are regular

- Not all languages are regular
 - e.g. $\{a^n b^n : n > 0\}$

- Not all languages are regular
 - e.g. $\{a^n b^n : n > 0\}$
- There are many other non-regular languages that can be very useful

- Not all languages are regular
 - e.g. $\{a^n b^n : n > 0\}$
- There are many other non-regular languages that can be very useful
- We need something more powerful than finite automata that can express non-regular languages

What's Wrong With FAs?

WHAT'S WRONG WITH FAS?

■ We can only have finite number of states where we can store information, hence, finite memory.

WHAT'S WRONG WITH FAS?

- We can only have finite number of states where we can store information, hence, finite memory.
- A more powerful machine needs more (theoretically infinite) memory

WHAT'S WRONG WITH FAS?

- We can only have finite number of states where we can store information, hence, finite memory.
- A more powerful machine needs more (theoretically infinite) memory
- One simple storage we can use is a *stack*

A stack is a data structure with some basic operations

- A stack is a data structure with some basic operations
 - **PUSH**, store data to the top of the stack,

- A stack is a data structure with some basic operations
 - **PUSH**, store data to the top of the stack,
 - **POP**, read and remove data from the top of the stack,

- A stack is a data structure with some basic operations
 - **PUSH**, store data to the top of the stack,
 - **POP**, read and remove data from the top of the stack,
 - PEEK/TOP, to just read data from the top of the stack, and

- A stack is a data structure with some basic operations
 - **PUSH**, store data to the top of the stack,
 - **POP**, read and remove data from the top of the stack,
 - PEEK/TOP, to just read data from the top of the stack, and
 - NOP, or no operation

- A stack is a data structure with some basic operations
 - PUSH, store data to the top of the stack.
 - **POP**, read and remove data from the top of the stack,
 - PEEK/TOP, to just read data from the top of the stack, and
 - NOP, or no operation

PUSHDOWN AUTOMATA (PDA)

Addition of stack for storage increases the power of the automaton

- Addition of stack for storage increases the power of the automaton
- We can assume that the stack size is unbounded, giving us infinite memory

- Addition of stack for storage increases the power of the automaton
- We can assume that the stack size is unbounded, giving us infinite memory The class of languages PDAs recognize are called

Context-Free Languages (CFL)

$\overline{\mathrm{PDA}} \text{ FOR } \{a^nb^n : n > 0\}$

■ Idea is to **push** *a*'s while we are reading them, and **pop** them one by one for every matching *b*.

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \left\{ a^n b^n : n > 0 \right\}$

- Idea is to **push** a's while we are reading them, and **pop** them one by one for every matching b.
- We accept the string if we ended up at the bottom of the stack after reading the whole input

- Idea is to **push** a's while we are reading them, and **pop** them one by one for every matching b.
- We accept the string if we ended up at the bottom of the stack after reading the whole input

BOTTOM OF THE STACK

Often times, a special marker Z is placed at the bottom of the stack

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \left\{ a^n b^n : n > 0 \right\}$

■ If (a, Z) or (a, a), then push a

- If (a, Z) or (a, a), then push a
- If (b, a), then pop

- If (a, Z) or (a, a), then push a
- If (b, a), then pop
- If (ε, Z) , then accept the string

$\overline{\mathrm{PDA}\ \mathrm{FOR}\ \{a^nb^n:n>0\}}$

- If (a, Z) or (a, a), then push a
- If (b, a), then pop
- If (ε, Z) , then accept the string

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \{a^nb^n : n > 0\}$

- If (a, Z) or (a, a), then push a
- If (b, a), then pop
- If (ε, Z) , then accept the string

$\overline{\mathrm{PDA}} \ \mathrm{FOR} \ \{a^n b^n : n > 0\}$

- If (a, Z) or (a, a), then push a
- If (b, a), then pop
- If (ε, Z) , then accept the string

SYNTAX

(current symbol on tape, symbol on top of the stack; replacement symbols for the top)

$\overline{\mathrm{PDA}\ \mathrm{FOR}\ \{a^nb^n:n>0\}}$

aaabbb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle \varepsilon, Z; Z \rangle$ q_2 q_0 q_1 start

$\overline{\mathrm{PDA}} \ \overline{\mathrm{FOR}} \ \{a^n b^n : n > 0\}$

PDA FOR $\{a^nb^n: n>0\}$

PDA FOR $\{a^nb^n: n>0\}$

aaabbb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $\langle \varepsilon, Z; Z \rangle$ q_0 q_2 start a

$\overline{\mathrm{PDA}}$ FOR $\{a^n\overline{b^n}: n>0\}$

$\overline{\mathrm{PDA}} \ \overline{\mathrm{FOR}} \ \{a^n \overline{b}^n : n > 0\}$

aaa<mark>b</mark>bb

PDA FOR $\{a^nb^n: n>0\}$

aaabbb b, a; ε a, a; aa a, Z; aZb, a; ε $\varepsilon, Z; Z$ q_0 **q**₂ q_1 start a

aaabbb b, a; ε a, a; aa a, Z; aZb, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{\!\scriptscriptstyle R}$ q_2 q_0 q_1 start a

aaabb<mark>b</mark>

aaabbb a, a; aa $b, a; \varepsilon$

aaabbb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $(\varepsilon, Z; Z)$ q_0 q_1 start

aaabbb b, a; ε a, a; aa a, Z; aZb, a; ε $\langle arepsilon, \pmb{Z}; \pmb{Z}_{/\!\!/}$ q_0 q_2 q_1 start

aaabbb b, a; ε a, a; aa $\langle a, Z; aZ \rangle$ b, a; ε $_{\scriptscriptstyle \backslash} arepsilon, \pmb{Z}; \pmb{Z}$ q_0 q_1 start

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

 \blacksquare $Q \rightarrow$ finite set of states

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- lacksquare Q o finite set of states
- $\blacksquare \ \Sigma \to \mathsf{input} \ \mathsf{alphabet}$

Formal Definition of PDA

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $lue{Q} \rightarrow \text{finite set of states}$
- lacksquare Σo input alphabet
- \blacksquare $\Gamma \rightarrow$ stack alphabet

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $lue{Q} \rightarrow \text{finite set of states}$
- $\blacksquare \ \Sigma \to \mathsf{input} \ \mathsf{alphabet}$
- \blacksquare $\Gamma \rightarrow$ stack alphabet
- lacksquare $\delta
 ightarrow$ transition function

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $lue{Q} \rightarrow \text{finite set of states}$
- $\quad \blacksquare \ \Sigma \to \mathsf{input} \ \mathsf{alphabet}$
- lacksquare $\Gamma \rightarrow$ stack alphabet
- lacksquare $\delta
 ightarrow$ transition function
- $lack q_0
 ightarrow ext{start/initial state}$

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $lue{Q} \rightarrow \text{finite set of states}$
- $\quad \blacksquare \ \Sigma \to \mathsf{input} \ \mathsf{alphabet}$
- \blacksquare $\Gamma \rightarrow$ stack alphabet
- lacksquare $\delta
 ightarrow$ transition function
- $lack q_0
 ightarrow ext{start/initial state}$
- $Z \rightarrow \text{initial/bottom stack symbol}$

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $lue{Q} \rightarrow \text{finite set of states}$
- lacksquare Σo input alphabet
- \blacksquare $\Gamma \rightarrow$ stack alphabet
- lacksquare $\delta
 ightarrow$ transition function
- $lack q_0
 ightarrow ext{start/initial state}$
- $Z \rightarrow \text{initial/bottom stack symbol}$
- \blacksquare $F \rightarrow$ set of final/accepting states

TRANSITION FUNCTION

TRANSITION FUNCTION

 δ takes as argument a triple $\delta(q, a, X)$ where:

TRANSITION FUNCTION

 δ takes as argument a triple $\delta(q, a, X)$ where:

 \blacksquare q is a state in Q

Transition Function

 δ takes as argument a triple $\delta(q, a, X)$ where:

- \blacksquare q is a state in Q
- lacksquare a is either an input symbol in Σ or $a = \varepsilon$

Transition Function

 δ takes as argument a triple $\delta(q, a, X)$ where:

- \blacksquare q is a state in Q
- lacksquare a is either an input symbol in Σ or $a = \varepsilon$
- \blacksquare X is a stack symbol that is a member of Γ

Transition Function

 δ takes as argument a triple $\delta(q, a, X)$ where:

- \blacksquare q is a state in Q
- lacksquare a is either an input symbol in Σ or $a = \varepsilon$
- \blacksquare X is a stack symbol that is a member of Γ

The output is a finite set of pairs (p, γ) , where p is the new state, and γ is the string of stack symbols to replace X

SYNTAX

(current state, remaining input, stack contents)

SYNTAX

(current state, remaining input, stack contents)

SYNTAX

(current state, remaining input, stack contents)

EXECUTION OF AABB

$$(q_0, aabb, Z) \vdash (q_1, abb, aZ) \vdash (q_1, bb, aaZ) \vdash (q_2, b, aZ) \vdash (q_2, \varepsilon, Z) \vdash (q_3, \varepsilon, Z)$$

ACCEPTANCE IN PDAS

ACCEPTANCE IN PDAS

■ A PDA accepts a string x by final state if (q_0, x, Z) eventually leads to $(p, \varepsilon, ?)$ for some final state p

Acceptance in PDAs

- A PDA accepts a string x by final state if (q_0, x, Z) eventually leads to $(p, \varepsilon, ?)$ for some final state p
- A PDA accepts a string x by empty stack if (q_0, x, Z) eventually leads to $(p, \varepsilon, \varepsilon)$

ACCEPTANCE IN PDAS

- A PDA accepts a string x by final state if (q_0, x, Z) eventually leads to $(p, \varepsilon, ?)$ for some final state p
- A PDA accepts a string x by empty stack if (q_0, x, Z) eventually leads to $(p, \varepsilon, \varepsilon)$
- A PDA accepts a language *L* if every string in *L* is accepted and every other string is rejected

ACCEPTANCE IN PDAS

- A PDA accepts a string x by final state if (q_0, x, Z) eventually leads to $(p, \varepsilon, ?)$ for some final state p
- A PDA accepts a string x by empty stack if (q_0, x, Z) eventually leads to $(p, \varepsilon, \varepsilon)$
- A PDA accepts a language *L* if every string in *L* is accepted and every other string is rejected
- The two forms of acceptance in PDAs are shown to be equivalent. That is one can be converted to the other

EXAMPLES/EXERCISES

Construct PDAs for the following languages:

Construct PDAs for the following languages:

Construct PDAs for the following languages:

■ palindromes =
{a, b, aa, bb, aaa, bbb, aba, bab, ...}

Construct PDAs for the following languages:

- palindromes =
 {a, b, aa, bb, aaa, bbb, aba, bab, ...}
- equal number of a's and b's (in any order) =
 {ab,ba,aabb,abab,baba,bbaa,...}

Construct PDAs for the following languages:

- palindromes =
 {a, b, aa, bb, aaa, bbb, aba, bab, ...}
- equal number of a's and b's (in any order) =
 {ab,ba,aabb,abab,baba,bbaa,...}
- balance pair of parentheses =
 {(), (()), ()(), ((())), (())(), ...}

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials