Empirical Software Engineering

Performance Messungen

Overview

Task

- Determine the fastest sorting algorithm
 - Group 1: Merge sort vs. quick sort
 (http://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Java)
 - Group 2: Mergesort recursive vs. Mergesort iterative
 - Group 3: Mergesort Java vs. Mergesort Python
 - Group 4: Mergesort Java vs. Mergesort C
 - Link to all merge sorts: https://www.geeksforgeeks.org/iterative-merge-sort/
- Put the results on a poster
- Do you trust the results of your colleagues?

Goals

- Understand difficulties of performance analyses
- Evaluate performance analyses
- Get a first impression of statistical tests

Why Performance Analysis?

- Compare alternatives
- Understand influence of a configuration option
- System tuning
- Understand relative performance (over time)
- Understand absolute performance for single case
- Set expectations (e.g., min/optimal system requirements for PC games)
- Analyze system behavior

```
File Edit View Search Jerminal Help
.config - Linux/i386 3.0.0 Kernel Configuration
                                              Processor type and features
    Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y>
    includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>> for Search. Legend:
    [*] built-in [ ] excluded <M> module < > module capable
                           1 RDC R-321x SoC
                          [ ] Support non-standard 32-bit SMP architectures
                         <M> Eurobraille/Iris poweroff module
                         [*] Single-depth WCHAN output
                         [*] Paravirtualized guest support --->
                          [ ] paravirt-ops debugging
                          [ ] Memtest
                             Processor family (Pentium-Pro) --->
                         [*] Generic x86 support
                         [*] PentiumPro memory ordering errata workaround
                         [*] Supported processor vendors --->
                          [*] HPET Timer Support
                         [*] Enable DMI scanning
                         (8) Maximum number of CPUs
                         [*] SMT (Hyperthreading) scheduler support
                         [*] Multi-core scheduler support
                          [ ] Fine granularity task level IRQ time accounting
                          Preemption Model (Voluntary Kernel Preemption (Desktop)) --->
                         [*] Reroute for broken boot IRQs
                          [*] Machine Check / overheating reporting
                         [*] Intel MCE features
                          [*] AMD MCE features
                          [ ] Support for old Pentium 5 / WinChip machine checks
                         <M> Machine check injector support
                         [*] Enable VM86 support
                         < > Toshiba Laptop support
                                            <Select>
                                                       < Exit > < Help >
```

Analysis Techniques

- Measurement
 - No simplifying assumptions
 - Most trustworthy results
 - Inflexible, one selected system
- Simulation
 - Abstraction
 - Flexible
- Analytical modeling
 - Mathematical description of system
 - Strong abstraction, results are often unrealistic
 - Especially for early validation

Benchmark

- Exectute existing programs on existing hardware components in realistic environment (no simulation)
- Measure performance, memory consumption, etc.
- Can be automated
- No human influence

Benchmark - Examples

- 3DMark (Graphics chip)
- TCP-H (Datawarehouse)
- TCP-C (On-line transaction processing)
- Sintel (Video encoder)

What Can We Measure?

- Execution time
- CPU cycles
- MIPS (Million instructions per second)
- MFLOPS (Million floating-point operations per second)
- SPEC (System Performance Evaluation Cooperative)
- QUIPS (Quality improvements per second)
- Transactions per second

- What criteria should a good metric fulfill?
- Are the presented metrics good metrics?
 - Execution time
 - CPU cycles
 - MIPS (Million instructions per second)
 - MFLOPS (Million floating-point operations per second)
 - SPEC (Standard Performance Evaluation Cooperative)
 - QUIPS (Quality improvements per second)
 - Transactions per second

Criteria

Criterion	Execution time	CPU Cycles	MIPS	MFLOPS	SPEC	QUIPS	Transactions/sec ond
Linearity	+	-	-	+	-	+	+
Reliability	+	-	-	-	-	-	+
Repeatability	+	+	+	+	+	+	+
Easy to measure	+	+	+	+	+	+	+
Consistency	+	+	-	-	+	+	+
Independence	+	+	+	-	-	+	+

Confounding Parameters

- Influence measurement result systematically or unsystematically
- Examples:
 - Background processes
 - Differences in hardware
 - Differences in temperature
 - Input data, random?
 - Heap size
 - System interrupts
 - Parallel execution in single/multicore systems
 - Garbage collector

• How can we control the influence of a confounding parameters

Typical: Best Measurement

- Repeat measurement
- Best, second best, or worst measurement
- Bsp: Execution time
- R: Read einlesen
 - data <- read.csv("rt.csv", header=TRUE, sep = ";", dec = ".")</pre>
 - header: Do variables have heading
 - sep: Separator for data entries
 - dec: Decimal point/comma
 - rt <- data[,'time']</pre>
 - min(rt)/max(rt)

Arithmetic Mean

- Repeat measurement
- Compute mean:

$$\frac{1}{x_{arithm}} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- R:
 - mean(rt)

Median

- Value that is in the middle
- Robust against outliers
- R:
 - median(rt)
- Even number of measurements:
 - Arithmetic mean of the two middle values
 - Use one of the two middle values

Median or Arithmetic Mean?

- Median, if:
 - Ordinal Data*
 - Few measurement values
 - Non-normal distribution
 - Outliers
- *Scale types
 - Nominal (z.B. Gender)
 - Ordinal (z.B. Ranking)
 - Metric (z.B. Temperature, response time)

Look At Data

- Go swim in the data!
- Get an overview
- Look at how data are distributed
- Are there outliers?

Histograms

Frequency of measurement values in fixed buckets

- R
 - rtNum <-as.numeric(unlist(rt))</pre>
 - hist(rt)

Boxplots

- Median as thick line
- Quartiles as box (50% of all values within the box)
- Whiskers (-> box and whisker plots)
- Outliers as dots

R: boxplot(rt)

Violin-Plot

- Like box plots, but show additionally the distribution of data
- R:
 - install.packages("vioplot")
 - library(vioplot)
 - vioplot(rtNum)

Measurement Model

• $y = \tau + \varepsilon$

• y: Observed value

• τ: True value

• ε: Error

Population: greek letters

• Sample: german letters

Error Model

- True mean: 10
- 1 random error, influence of +/- 1
- Measurement: 9 (50%) and 11 (50%)
- 2 random errors, each +/- 1
- Measurement: 8 (25%), 10 (50%), 12 (25%)
- 3 random errors, each +/- 1
- Measurement: 7 (12.5%), 9 (37.5%), 11 (37.5%), 13 (12.5%)
- N random errors, each +/- 1
- Normal distribution

Dispersion

- Mean: 45.55
- Roxnlot

Standard Deviation

Standard Deviation

- R:
 - sd(rtNum)
 - -21.55
- Mean: 45.55
- 45.55 21.55 = 24 -> 45.55 (34 % of measurement values)
- 45.55 + 21.55 = 67.1 (34% of measurement values)

Use cases for Standard Deviation

- Define outlier
- Define giftedness
- Announce the discovery of the Higgs-Boson

Variance

• Is the squared standard deviation

Accuracy vs. Precision

Accuracy:

Deviation of observed mean from true mean

Important when measuring response time

Precision:

Dispersion around mean

Cause of measurement errors is unclear

Random vs. Systematic Errors

- Systematic errors: Errors of the epxeriment/measurement methods
 - CPU speed: measurement during different tempertatures
 - State not resetted for second measurement
 - Low variance, or constant variance for all measurements
 - Need to be excluded during design, which requires practice and experience
 - → Affect accuracy
- Random errors:
 - Cannot be controlled
 - Requires statistical methods
 - → Affect precision

Significance Tests

To evaluate whether an observed result appeared rather randomly or not

T-Test

- Designed by Student (William Sealy Gosset)
- Comparision of two measurements

Null hypothesis (H ₀)	Alternative hypothesis (H ₁)				
Statistical hypotheses					
Measurements do not differ, i.e., they come from the same population	Data of both measurements are from different populations				
Formal: $H_0 : x_1 = x_2$	Formal: $H_1: x_1 \neq x_2$				

T-Test: Result

- Determines probability of observed result, under the assumption that the null hypothesis is valid -> conditional probability
- If probability visis mealing is the signain in cant

```
– 0.001 very significant
```

– 0.01 typical significance level

– 0.05for exploraty/initial studies

-0.10

null hypothesis must be wrong

Significance level must be defined in advance!

T-Test: Conclusion

- What does significant result mean?
- Is null hypothesis incorrect? -> No
- Is alternative hypotheses correct? -> No
- There is no evidence that the null hypothesis is valid (thus, I can only make statements about the null hypothesis)
- Writing a report:
 - Reject/could not reject null hypothesis
 - Never: Confirmation of null or alternative hypothesis

T-Test by Hand (1)

Computation of test value
$$t = \frac{x_1 - x_2}{\hat{\sigma}_{(x_1 - x_2)}}$$
 rt.csv: t = 1.522

$$\hat{\sigma}_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{\sum_{i=1}^{n_1} (x_{i1} - \bar{x}_1)^2 + \sum_{i=1}^{n_2} (x_{i2} - \bar{x}_2)^2}{(n_1 - 1) + (n_2 - 1)}} \bullet \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

T-Test by Hand (2)

- Degrees of freedom, df
 - for t-Test: $n_1 + n_2 2$ (in this example: 11)
- Table with t distribution (e.g., wikipedia) $t_{\alpha/2,df=11} = 2,201$
- Comparison with calculated value $(t_{emp} = 1.522)$
 - is t_{emp} >
 - no, so not significant $\alpha/2, df=11$

One-tailed vs. Two-tailed

- Two-tailed:
 - No assumption about direction of effect (e.g., which of two UIs is more usable
 - Compute half of significance level
- One-tailed:
 - Assumption that one UI is more usable
 - No need to cut significance level in half

$$t_{\alpha,df=11} = 1,796$$

T-Test: R

- t.test(rt1, rt2)
- Output:

```
Welch Two Sample t-test

data: dataPC1 and dataPC2
t = 1.5222, df = 10.566, p-value = 0.1573
alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
    -5.095727 27.583584

sample estimates:
mean of x mean of y
    50.74243 39.49850
```

- p value: conditional probability of having observed result under the assumption that nul hypothesis is valid
- If p value is smaller than defined significance level, result is significant and null hypothesis can be rejected

Types of errors

 H_1

β error; Type-2 error

T-Test: Variants

- T test for independent samples:
 - Creation of samples must not be dependent on each other
 - E.g., random assignment of participants to one or the other sample
- T test for dependent samples:
 - Creation of samples depends on each other
 - E.g., in a within-subjects design, or when spouses are distributed to different samples

T-Test: Prerequisits

- Metric scale type
- Normally distributed data (e.g., Shapiro-Wilk)
- Or: sample size >= 30

Mann-Whitney-U

- Non-parametric test
- Ordinal data (or non-normal distributed metric data)
- Computation of test:

$$U = n_1 \bullet n_2 + \frac{n_1(n_1+1)}{2} - T_1$$

- r_i: Ranks in the sample

$$T = \sum_{i=1}^{n} r_i$$

Goals

- Understand difficulties of performance analyses
- Evaluate performance analyses
- Get a first impression of statistical tests

Literature

- David Lilja. *Measuring Computer Performance: A practitioner's guide.* Cambridge University Press. 2000.
- Performance-Paper
- Beliebiges Statistikbuch

Assignment

- Read excerpts of the following papers:
 - How Do Professional Developers Comprehend Software? (Section II, skim Section III)
 - An Experiment About Static and Dynamic Type Systems (Section 4, skim Section 5)
- What do you think of the experiment
 - What would you do in the same way? Why?
 - What would you do differently? Why?