Modbus Communications CHAPTER

In This Chapter ...

SureServo™ Communication Parameters6–2
SureServo™ Parameter Memory Addresses6–3
Connecting to <i>Direct</i> Logic PLCs
Step 1: Modbus RTU Master PLCs6-8
Step 2: Make the Connections6–8
Step 3: Confirm/Set Servo Communication Parameters6–10
Step 4: Configure the <i>Direct</i> LOGIC CPU Port 2 6–10
SureServo™ / DirectLOGIC PLC Control Example .6–13
DirectLOGIC Ladder Programming Example – Multiple Drives6–22
Communicating with Third-party Devices6-24
Common Modbus RTU Masters6–24
Modbus Protocol Modes
Modbus ASCII and RTU Data Format6-25
Communication Protocol

SureServo™ Communication Parameters

The *Sure*Servo[™] drives support the Modbus RTU/ASCII communications protocols as a slave device only. Drive serial port CN3 can be connected to a Modbus master using RS-232, RS-422 or RS-485 communications (port pin-outs and wiring diagrams are shown later in this chapter). This chapter lists all of the drive's parameters along with the corresponding Modbus addresses. Network masters, such as *Direct*Logic PLCs, can be used to read/write drive(s) parameters. The *Sure*Servo drive Communications Parameters listed below must be set using the *Sure*Servo Pro software or the drive keypad unless the defaults are appropriate for your application. For a detailed explanation of all *Sure*Servo Parameters, refer to Chapter 4.

	Communications Parameters					
Parameter	Description	Range	Default			
P3-00	Communication Address	01 to 254	01			
P3-01	Transmission Speed	00: 4800 baud 01: 9600 baud 02: 19200 baud 03: 38400 baud 04: 57600 baud 05: 115200 baud	02			
P3-02	Communication Protocol	 00: Modbus ASCII mode 7 data bits, no parity, 2 stop bits 01: Modbus ASCII mode 7 data bits, even parity, 1 stop bit 02: Modbus ASCII mode 7 data bits, odd parity, 1 stop bit 03: Modbus ASCII mode 8 data bits, no parity, 2 stop bits 04: Modbus ASCII mode 8 data bits, even parity, 1 stop bit 05: Modbus ASCII mode 8 data bits, odd parity, 1 stop bit 06: Modbus RTU mode 8 data bits, no parity, 2 stop bits 07: Modbus RTU mode 8 data bits, even parity, 1 stop bit 08: Modbus RTU mode 8 data bits, even parity, 1 stop bit 08: Modbus RTU mode 8 data bits, odd parity, 1 stop bit 	08			
P3-03	Transmission Fault Action	00: Display fault and continue operating 01: Display fault and RAMP to stop	00			
P3-04	Communication Watchdog Time Out	0 to 20.0 seconds	00			
P3-05	Communication Selection	00: RS-232 01: RS-422 02: RS-485	00			
P3-06	Reserved	-	-			
P3-07	Communication Response Delay Time	00 to 255ms (increments of 0.5 ms)	00			

*Sure*Servo[™] Parameter Memory Addresses

	Parameter Memory Addresses						
Parameter	Description	Hexadecimal	Modbus Decimal	Octal			
	Group 0: Monitor F	Parameters					
P0-00	Software Version	0000	40001	0			
P0-01	Drive Fault Code	0001	40002	1			
P0-02	Drive Status (Front Panel Display)	0002	40003	2			
P0-03	Analog Monitor Outputs	0003	40004	3			
P0-04	Status Monitor 1	0004	40005	4			
P0-05	Status Monitor 2	0005	40006	5			
P0-06	Status Monitor 3	0006	40007	6			
P0-07	Status Monitor 4	0007	40008	7			
P0-08	Status Monitor 5	0008	40009	10			
P0-09	Block Transfer Parameter 1	0009	40010	11			
P0-10	Block Transfer Parameter 2	000A	40011	12			
P0-11	Block Transfer Parameter 3	000B	40012	13			
P0-12	Block Transfer Parameter 4	000C	40013	14			
P0-13	Block Transfer Parameter 5	000D	40014	15			
P0-14	Block Transfer Parameter 6	000E	40015	16			
P0-15	Block Transfer Parameter 7	000F	40016	17			
P0-16	Block Transfer Parameter 8	0010	40017	20			
P0-17	Output Functions Status	0011	40018	21			
P0-18	Servo On Time Record	0012	40019	22			
	Group 1: Basic Pa	rameters					
P1-00	External Pulse Type Input	0100	40257	400			
P1-01	Control Mode and Output Direction	0101	40258	401			
P1-02	Speed and Torque Limit	0102	40259	402			
P1-03	Output Polarity Setting	0103	40260	403			
P1-04	Analog Monitor Output Scaling 1 (ch 1)	0104	40261	404			
P1-05	Analog Monitor Output Scaling 2 (ch 2)	0105	40262	405			
P1-06	Analog Speed Command Low-pass Filter	0106	40263	406			
P1-07	Analog Torque Command Low-pass Filter	0107	40264	407			
P1-08	Position Command Low-pass Filter	0108	40265	410			
P1-09	Velocity Command 1	0109	40266	411			
	Speed Limit 1						
P1-10	Velocity Command 2 Speed Limit 2	010A	40267	412			
D4 44	Velocity Command 3	0100	40070	440			
P1-11	Speed Limit 3	- 010B	40268	413			
P1-12	Torque Command 1	010C	40269	414			
	Torque Limit 1						
P1-13	Torque Command 2 Torque Limit 2	- 010D	40270	415			
P1-14	Torque Command 3	- 010E	40271	416			
	Torque Limit 3						

	Parameter Memory Addre	sses (continue	ed)					
Parameter	Description	Hexadecimal	Modbus Decimal	Octal				
	Group 1: Basic Parameters (continued)							
P1-15	Position Command 1- Revolutions	010F	40272	417				
P1-16	Position Command 1- Pulse	0110	40273	420				
P1-17	Position Command 2- Revolutions	0111	40274	421				
P1-18	Position Command 2- Pulse	0112	40275	422				
P1-19	Position Command 3- Revolutions	0113	40276	423				
P1-20	Position Command 3- Pulse	0114	40277	424				
P1-21	Position Command 4- Revolutions	0115	40278	425				
P1-22	Position Command 4- Pulse	0116	40279	426				
P1-23	Position Command 5- Revolutions	0117	40280	427				
P1-24	Position Command 5- Pulse	0118	40281	430				
P1-25	Position Command 6- Revolutions	0119	40282	431				
P1-26	Position Command 6- Pulse	011A	40283	432				
P1-27	Position Command 7- Revolutions	011B	40284	433				
P1-28	Position Command 7- Pulse	011C	40285	434				
P1-29	Position Command 8- Revolutions	011D	40286	435				
P1-30	Position Command 8- Pulse	011E	40287	436				
P1-31	Motor Code	011F	40288	437				
P1-32	Motor Stop Code	0120	40289	440				
P1-33	Position Control Mode	0121	40290	441				
P1-34	Acceleration Time	0122	40291	442				
P1-35	Deceleration Time	0123	40292	443				
P1-36	Acceleration/Deceleration S-curve	0124	40293	444				
P1-37	Inertia Mismatch Ratio	0125	40294	445				
P1-38	Zero Speed Output Threshold	0126	40295	446				
P1-39	Target Speed Output Threshold	0127	40296	447				
P1-40	Analog Full Scale Velocity Command/Limit	0128	40297	450				
P1-41	Analog Full Scale Torque Command/Limit	0129	40298	451				
P1-42	On Delay Time of Electromagnetic Brake	012A	40299	452				
P1-43	Off Delay Time of Electromagnetic Brake	012B	40300	453				
P1-44	Electronic Gear Numerator 1	012C	40301	454				
P1-45	Electronic Gear Denominator	012D	40302	455				
P1-46	Encoder Output Scaling Factor	012E	40303	456				
P1-47	Homing Mode	012F	40304	457				
P1-48	Homing Speed 1 - Fast Search Speed	0130	40305	460				
P1-49	Homing Speed 2 - Creep Speed	0131	40306	461				
P1-50	Home Position Offset (revolutions)	0132	40307	462				

Parameter Memory Addresses (continued)							
Parameter	Description	Hexadecimal	Modbus Decimal	Octal			
	Group 1: Basic Parameters (continued)						
P1-51	Home Position Offset (counts)	0133	40308	463			
P1-52	Regenerative Resistor Value	0134	40309	464			
P1-53	Regenerative Resistor Capacity	0135	40310	465			
P1-54	In Position Window	0136	40311	466			
P1-55	Maximum Speed Limit	0137	40312	467			
P1-56	Overload Output Warning Threshold	0138	40313	470			

Group 2: Extended Parameters						
P2-00	Position Loop Proportional Gain (KPP)	0200	40513	1000		
P2-01	Position Loop Gain Boost	0201	40514	1001		
P2-02	Position Feed Forward Gain (KFF)	0202	40515	1002		
P2-03	Smooth Constant of Position Feed Forward Gain	0203	40516	1003		
P2-04	Velocity Loop Proportional Gain (KVP)	0204	40517	1004		
P2-05	Velocity Loop Gain Boost	0205	40518	1005		
P2-06	Velocity Loop Integral Compensation	0206	40519	1006		
P2-07	Velocity Feed Forward Gain	0207	40520	1007		
P2-08	Factory Defaults and Security	0208	40521	1010		
P2-09	Debounce Filter	0209	40522	1011		
P2-10	Digital Input Terminal 1 (DI1)	020A	40523	1012		
P2-11	Digital Input Terminal 2 (DI2)	020B	40524	1013		
P2-12	Digital Input Terminal 3 (DI3)	020C	40525	1014		
P2-13	Digital Input Terminal 4 (DI4)	020D	40526	1015		
P2-14	Digital Input Terminal 5 (DI5)	020E	40527	1016		
P2-15	Digital Input Terminal 6 (DI6)	020F	40528	1017		
P2-16	Digital Input Terminal 7 (DI7)	0210	40529	1020		
P2-17	Digital Input Terminal 8 (DI8)	0211	40530	1021		
P2-18	Digital Output Terminal 1 (DO1)	0212	40531	1022		
P2-19	Digital Output Terminal 2 (DO2)	0213	40532	1023		
P2-20	Digital Output Terminal 3 (DO3)	0214	40533	1024		
P2-21	Digital Output Terminal 4 (DO4)	0215	40534	1025		
P2-22	Digital Output Terminal 5 (DO5)	0216	40535	1026		
P2-23	Notch Filter (resonance suppression)	0217	40536	1027		
P2-24	Notch Filter Attenuation (resonance suppress.)	0218	40537	1030		
P2-25	Low-pass Filter (resonance suppression)	0219	40538	1031		
P2-26	External Anti-Interference Gain	021A	40539	1032		
P2-27	Gain Boost Control	021B	40540	1033		
P2-28	Gain Boost Switching Time	021C	40541	1034		

	Parameter Memory Addresses (continued)							
Parameter	Description	Hexadecimal	Modbus Decimal	Octal				
Group 2: Extended Parameters (continued)								
P2-29	Gain Boost Switching Condition	021D	40542	1035				
P2-30	Auxiliary Function	021E	40543	1036				
P2-31	Auto and Easy Mode Response Level	021F	40544	1037				
P2-32	Tuning Mode	0220	40545	1040				
P2-34	Overspeed Fault Threshold	0222	40547	1042				
P2-35	Position Deviation Fault Window	0223	40548	1043				
P2-36	Position 1 Velocity	0224	40549	1044				
P2-37	Position 2 Velocity	0225	40550	1045				
P2-38	Position 3 Velocity	0226	40551	1046				
P2-39	Position 4 Velocity	0227	40552	1047				
P2-40	Position 5 Velocity	0228	40553	1050				
P2-41	Position 6 Velocity	0229	40554	1051				
P2-42	Position 7 Velocity	022A	40555	1052				
P2-43	Position 8 Velocity	022B	40556	1053				
P2-44	Digital Output Mode	022C	40557	1054				
P2-45	Index Mode Output Signal Delay Time	022D	40558	1055				
P2-46	Index Mode - Stations	022E	40559	1056				
P2-47	Position Deviation Clear Delay Time	022F	40560	1057				
P2-48	Backlash Compensation (index mode)	0230	40561	1060				
P2-49	Jitter Suppression	0231	40562	1061				
P2-50	Clear Position Mode	0232	40563	1062				
P2-51	Servo On Command	0233	40564	1063				
P2-52	Dwell Time 1 (auto index mode)	0234	40565	1064				
P2-53	Dwell Time 2 (auto index mode)	0235	40566	1065				
P2-54	Dwell Time 3 (auto index mode)	0236	40567	1066				
P2-55	Dwell Time 4 (auto index mode)	0237	40568	1067				
P2-56	Dwell Time 5 (auto index mode)	0238	40569	1070				
P2-57	Dwell Time 6 (auto index mode)	0239	40570	1071				
P2-58	Dwell Time 7 (auto index mode)	023A	40571	1072				
P2-59	Dwell Time 8 (auto index mode)	023B	40572	1073				
P2-60	Electronic Gear Numerator 2	023C	40573	1074				
P2-61	Electronic Gear Numerator 3	023D	40574	1075				
P2-62	Electronic Gear Numerator 4	023E	40575	1076				
P2-63	Velocity and Position Deviation Scaling Factor	023F	40576	1077				
P2-64	Advanced Torque Limit Mode	0240	40577	1100				
P2-65	Special Input Functions	0241	40578	1101				

Parameter Memory Addresses (continued)						
Parameter	Description	Hexadecimal	Modbus Decimal	Octal		
	Group 3: Communication	n Parameters				
P3-00	Communication Address	0300	40769	1400		
P3-01	Transmission Speed	0301	40770	1401		
P3-02	Communication Protocol	0302	40771	1402		
P3-03	Communication Fault Action	0303	40772	1403		
P3-04	Communication Watchdog Time Out	0304	40773	1404		
P3-05	Communication Selection	0305	40774	1405		
P3-07	Communication Response Delay Time	0307	40776	1407		
P3-08	Digital Input Software Control Mask	0308	40777	1410		

	Group 4: Diagnostic Parameters						
P4-00	Fault Record (N) (most recent)	0400	41025	2000			
P4-01	Fault Record (N-1)	0401	41026	2001			
P4-02	Fault Record (N-2)	0402	41027	2002			
P4-03	Fault Record (N-3)	0403	41028	2003			
P4-04	Fault Record (N-4)	0404	41029	2004			
P4-05	Jog Function	0405	41030	2005			
P4-06	Force Outputs Command	0406	41031	2006			
P4-07	Input Status	0407	41032	2007			
P4-09	Output Status	0409	41034	2011			
P4-20	Analog Monitor 1 Offset (ch 1)	0414	41045	2024			
P4-21	Analog Monitor 2 Offset (ch 2)	0415	41046	2025			
P4-22	Analog Velocity Input Offset	0416	41047	2026			
P4-23	Analog Torque Input Offset	0417	41048	2027			

Connecting to DirectLOGIC PLCs

The following steps explain how to connect and communicate with the *Sure*Servo drives using *Direct*LOGIC PLCs.

Step 1: Modbus RTU Master PLCs

The *Sure*Servo[™] servo drives will communicate with the following *Direct*LOGIC CPUs using the Modbus RTU protocol.

Modbus RTU Master Support				
MRX/MWX Instructions DL06 or DL-260 CPU port 2				
RX/WX Instructions	DL05, DL06, DL250-1 or DL260 CPU port 2			

Step 2: Make the Connections

There are several means of communicating serially from a *Direct*logic PLC.

CPU Connections			
RS-232	DL05/DL06/DL250-1/DL260 port 2		
RS-485	DL06/DL260 port 2		
RS-422	DL06/DL250-1/DL260 port 2		

DL06/DL250-1/DL260: RS-232 Connection Wiring

DL06/DL260: RS-485 Connection Wiring

DL06/DL250-1/DL260: RS-422 Connection Wiring

Termination Resistors are required at both ends of RS-422/485 networks. It is necessary to select resistors that match the impedance rating of the cable (between 100 and 500 Ohms.)

SureServo drives have a provision for shutting down control or power to the drive in the event of a communications timeout. This is set up using drive parameters P3-03 and P3-04 along with a digital output configured for servo fault alarm.

Step 3: Confirm/Set Servo Communication Parameters

Most drive parameters can be written to or updated from a master controller using Modbus communications. However, the drive's operational "run" commands (i.e Servo On, Command Trigger, RESET, etc) can only be executed by controlling the drive's physical digital inputs.

The following *Sure*Servo[™] communications parameters must match the *Direct*LOGIC CPU port settings in order to establish communications. Refer to the servo Communication parameters (P3-**) for available settings.

- P3-00: Communication address (default 1) PLC read/write instructions use comm address to target a specific drive
- P3-01: Communication baud rate (default 19200 bps)
- P3-02: Communication protocol (default Modbus RTU mode <8 data bits, odd parity, 1 stop bit>
- P3-05: Communication Selection (default RS-232)

Other related Parameters to note:

P2-30: Aux Function - setting this parameter to (5) will disable "parameter write to EEPROM" each time communications is attempted with the drive (default 0). This parameter setting is not retained when power is disconnected from the drive.

The previous list of parameter settings is the minimum required to establish communications with a **Direct**LOGIC PLC. There are several other parameters that must be set through the drive keypad to configure the drive up for your application.

Step 4: Configure the *Direct*LOGIC CPU Port 2

The *Direct*LOGIC CPUs must be configured as a Modbus RTU master PLC to communicate with the *Sure*Servo drives. This includes setting up the PLC communication port parameters and creating ladder logic programming code that uses read/write instructions to communicate with the drive(s).

The set up for all of the *Direct*LOGIC CPUs is very similar. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

DirectLOGIC Modbus RTU Master Port Configuration for DL06/DL260

The following configuration example is specific to the DL06/DL260 CPU. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

- In *Direct*SOFT, select the PLC menu, then Setup, then "Secondary Comm Port"
- From the Port list box, select "Port 2"
- For the Protocol, select "Modbus"
- In the Timeout list box, select "800 ms"
- Response Delay Time should be "0 ms"
- The Station Number should be set to "1" to allow the CPU to function as network master
- The Baud Rate should be set at "19200"
- In the Stop Bits list box, select "1"
- In the Parity list box, select "Odd"
- In the Echo Suppression box, select the wiring method used in the application

DirectLOGIC Modbus RTU Master Port Configuration for DL05/DL250-1

The following configuration example is specific to the DL05 or DL250-1 CPU. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

- In *Direct*SOFT, select the PLC menu, then Setup, then "Secondary Comm Port"
- From the Port list box, select "Port 2"
- For the Protocol, select "Modbus"
- In the Timeout list box, select "800 ms"
- Response Delay Time should be "0 ms"
- The Station Number should be set to "1" to allow the CPU to function as network master
- The Baud Rate should be set at "19200"
- In the Stop Bits list box, select "1"
- In the Parity list box, select "Odd"

The DL05/DL250-1 network instructions used in Master mode will access only slaves 1 to 90. Each slave must have a unique number.

SureServo™ / DirectLOGIC PLC Control Example

SureServo™ Block Transfer Function

A group of Status Monitor Registers (P0-04 to P0-08) and a group of Block Data Registers (P0-09 to P0-16) are available in the *Sure*Servo drive. These continuous blocks of registers can be used to "group" miscellaneous drive parameters together allowing you to read/write the desired parameters in one block instead of having to use a Read/Write command for each parameter.

SureServo[™] Drive Parameter Settings Example - Position Mode

The parameters listed below must be entered through the drive keypad or $SureServo^{TM}$ Pro software in order for the provided ladder logic example to function properly. (Parameters marked with * must be entered from the drive keypad only.) Prior to configuring a new SureServo drive or re-configuring an existing drive for a new application, it is recommended to set P2-08 = 10, then cycle drive power. This will reset drive parameters to factory defaults.

P1-01 = 101: sets drive to **position mode** with internal control

P1-33 = 1: sets drive to incremental mode

P1-34 = 500: sets the accel time to 500ms

P1-35 = 500: sets the decel time to 500ms

P1-36 = 1000: >1 to allow the accel and decel to operate

Read transfer block from drive

P0-04 = 1: assigns motor feedback rotation to Status Monitor 1

P0-05 = 0: sets the motor feedback pulse to Status Monitor 2

P0-06 = 6: assigns motor rpm to Status Monitor 3

P0-07 = 11: assigns current % load to Status Monitor 4

P0-08 = 12: assigns peak % load to Status Monitor 5

* P0-09 = 409: assigns the digital output word to Block Transfer 1

* P0-10 = 407: assigns the digital input word to Block Transfer 2

Write transfer block to drive

* P0-11 = 21E: assigns Aux Function EEPROM write control to Block Transfer 3

* PO-12 = 10F: assigns the 1st position command revolution word to Block Trans 4

* P0-13 = 110: assigns the 1st position command pulse word to Block Transfer 5

* P0-14 = 224: assigns the 1st position velocity reference to Block Transfer 6

P2-10 = 101: assigns digital input 1 to Servo On bit

P2-11 = 108: assigns digital input 2 to Command Trigger bit

P2-12 = 104: assigns digital input 3 Pulse Clear

P2-13 = 111: assigns digital input 4 Position Zero

P2-14 = 102: assigns digital input 5 to Reset bit

P2-15 = 22: assigns digital input 6 to CWL limit (NC)

P2-16 = 23: assigns digital input 7 to CCWL limit (NC)

P2-17 = 21: assigns digital input 8 to External Fault (NC)

P2-18 = 101: assigns digital output 1 to Servo Ready

P2-19 = 103: assigns digital output 2 to Low Speed

P2-20 = 109: assigns digital output 3 to Home Search

P2-21 = 105: assigns digital output 4 to In Position

P2-22 = 7: assigns digital output 5 to Servo Fault (NC)

^{*} These parameters *must* be entered using the drive keypad.

The following list provides the *Direct*LOGIC PLC V-memory locations and control bits along with the associated *Sure*Servo parameters used in the following ladder logic drive control example.

Parameters Read from drive (RX) and Placed in PLC V-memory

V3000 - P0-00: Firmware Version

V3001 - P0-01: Drive fault

V3002 - P0-02: Drive Status

V3003 - P0-03: Analog Monitor Output

V3004 - P0-04: Motor Feedback Rotation

V3005 - P0-05: Motor Feedback Pulse

V3006 - P0-06: Motor RPM

V3007 - P0-07: Current Load (% of rated torque)

V3010 - P0-08: Peak Load (% of rated torque since powerup)

V3011 - P0-09: Digital Output Word

V3012 - P0-10: Digital Input Word

V3013 - P0-11: Read drive EEPROM control value

Parameters/Values Written to drive (WX) from PLC V-memory

V2000 - P0-11: Drive write to EEPROM control

V2001 - P0-12: Position Command Revolutions

V2002 - P0-13: Position Command pulse

V2003 - P0-14: Velocity Reference (rpm)

V2013 - User memory location to compare velocity reference and update

Drive's digital outputs mapped from V3011 to VC120

C120 - P2-18: Digital output 1 - Servo Ready

C121 - P2-19: Digital output 2 - Low Speed

C122 - P2-20: Digital output 3 - Home Search

C123 - P2-21: Digital output 4 - In position

C124 - P2-22: Digital output 5 - Servo Fault (normally closed)

Drive's digital input terminals connected to PLC discrete outputs

Digital Input 1 - SERVO ENABLE

Digital Input 2 - CMD TRIGGER

Digital Input 3 - Pulse Clear

Digital Input 4 - Position Zero

Digital Input 5 - RESET

Digital Input 6 - CWL Limit (normally closed)

Digital Input 7 - CCWL Limit (normally closed)

Digital Input 8 - External Fault (normally closed)

DirectLOGIC Ladder Logic Programming Example

The setup for all of the *Direct*LOGIC CPUs is very similar. Refer to the appropriate CPU User Manual for the specifics on your particular *Direct*LOGIC CPU model.

The following ladder program shows an example of how to control the *Sure*Servo drive (configured for Position Mode) using communications instructions via the Modbus RTU protocol. The drive should be set up and tested for communications before it is connected to a load.

Warning: A drive should never be connected to a load until any applicable communication programs have been proven.

This program is for example purposes only and not intended for a specific application. The drive parameters listed on the previous pages are required for the following example program to function properly.

Rung 1 initializes the drive on first scan. The motor pulse and revolutions registers are set to zero and the motor velocity reference is set to 3000rpm.

In many drive applications, electromagnetic interference can at times cause frequent, short duration, communication errors. Unless the application environment is perfect, an occasional communication error will occur. In order to distinguish between these non-fatal transients and a genuine communication failure, you may want to use the instructions as shown in Rungs 2 and 3.

Rung 2 monitors the number of times that the PLC attempts to communicate with the drive. When the PLC's communication attempts are successful, SP116 (port busy) will count up and SP117 (comm error) will not count. Once the count reaches 9999, the counter will reset and resume counting.

```
Port Busy SP116

CNT

Comm transaction count CT0

K9999
```

Rung 3 monitors the number of times the PLC fails in communicating with the drive.

```
Port Comm Error SP117

CNT

Comm error count CT1

K9999
```


Alternative resets/control bits can be used in your application program.

The Read(RX) and Write(WX) commands are supported in the DL05/06/250-1/260 *Direct*LOGIC CPUs. These instructions use octal addressing only, so the octal equivalent of the Parameter's Modbus addresses must be used.

Rung 4 reads the first 12 Monitor Parameters (P0-00 to P0-11) in the drive and places the values in V3000 - V3013 in the PLC. (Octal V0 - V13 equals Modbus 40001 - 40012).

Rung 5 writes 4 words (V2000 - V2003) from the PLC to drive Block Read/Write registers P0-11 to P0-14 (Octal V13 - V16 equals Modbus 40012 - 40015).

Alternate Rungs 4 and 5 for use with DL06/DL260 PLC

The DL06/260 CPUs support the Modbus Read (MRX) and Modbus Write (MWX) instructions. These instructions allow you to enter Modbus Slave Memory Addresses (no need to use octal addressing conversions to communicate with the drive).

Rung 4 reads the first 12 (P0-00 to P0-11) Monitor Parameters from the drive and places the values in V3000 - V3013 in the PLC.

Rung 5 writes 4 words (V2000 - V2003) from the PLC to drive Block Transfer Registers P0-11 - P0-14 (Modbus 40012 - 40015).

Rung 6 maps the drive's digital output word that was read using the RX or MRX instruction from V3011 to C120 - C124 for bit level use.

Rung 7 enables the drive (digital input 1 = Servo Enable) when C1 is turned on. Y0 is connected to drive digital input 1.

```
7 C1 Y0 SET ) Servo enable control
```

Rungs 8 loads the position (revolutions and pulse) counts to the drive when C2 is turned on. The registers are written by the WX or MWX instruction.

Rung 9: C12 is triggered once the Position is loaded into the drive.

Rung 10 sets the drive's Command Trigger input to begin the motor position movement and sets C13, the drive triggered bit. Y1 is connected to drive digital input 2.

Rung 11: If the drive has been triggered and is not in position (motor is moving), the drive input CMD trigger and drive triggered flag are reset.

Rung 12: If C4 is turned on, drive faults and the ladder logic is reset. Y2 is connected to drive input 3. Y4 is connected to drive input 5.

Rung 13: If the EEPROM write control register (V2000) is not equal to the value read (RX or MWX) and stored in V3013, C10 will be set to enable the WX or MWX command (rung 4). This will update the drive with the value in V2000. For example, drive parameter P2-30 (write to EEPROM control) is not retentive during drive power cycle, so the read value stored in V3013 will be 0 (zero) and the value in V2000 may be (5). This will enable the rung 13 and cause rung 4 to execute the write to drive transfer block.

Rung 14: If the motor velocity reference register (V2003) is not equal to the previous velocity value stored in V2013 (user V-memory location), the WX command (rung 4) will execute and write the new velocity reference to the drive and will map the current value (V2003) to user V-memory location V2013.

Rung 15: All ladder logic programs must be terminated with an (END) command.

DirectLOGIC Ladder Programming Example - Multiple Drives

The set up for all of the *Direct*LOGIC CPUs is very similar. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

The following ladder program shows an example of a DL06 or DL260 CPU port 2 controlling two *Sure*Servo[™] drives using MRX/MWX instructions. The drive must be set up and tested for communications before it is connected to a load. See the previous ladder example for rung instruction explanations.

Warning: A drive should never be connected to a load until any applicable communication programs have been proven.

This program is for example purposes only and not intended for a specific application.

```
Port Busy SP116

CNT
Comm transaction count CT0
K9999

Port Comm Error SP117

CNT
Comm error count CT1
CT0
K9999
```

Rung 3 contains a counter which is used to determine which MRX or MWX instruction to execute. Its purpose is to prevent multiple MRX/MWX rungs being active at the same time. Since the counter may only have one value at any particular time, only a single rung may be executed.

```
Port Busy SP116

CNT

Comm transaction count CT2

K4
```

DirectLOGIC Modbus Ladder Programming -Multiple Drives, cont.

Please also note that adding additional MRX/MWX rungs would be accomplished simply by increasing the K4 value to the new total number of MRX and MWX instructions needed. SP116 is used to increment the counter so that each time an MRX or MWX is executed, the counter then enables the next MRX or MWX once the current MRX or MWX is complete.

```
Port Busy
                                                           MRX
         SP116
                       CTA2
                                K0
                                                             Port Number:
                                                                                                              K2
4
                             |=|
                                                             Slave Address:
                                                                                                              K1
                                                             Function Code:
                                                                                      03 - Read Holding Registers
                                                                                                           40001
                                                             Start Slave Memory Address:
                                                             Start Master Memory Address:
                                                                                                           V3000
                                                             Number of Elements:
                                                                                                              12
                                                             Modbus Data type:
                                                                                                   584/984 Mode
                                                             Exception Response Buffer:
                                                                                                           V405
       Port Busy
                                                           MWX
         SP116
                      CTA2
                                K1
                                                             Port Number:
                                                                                                              K2
5
                                                             Slave Address:
                                                                                                              K1
                                                             Function Code:
                                                                                      16 - Preset Multiple Registers
                                                             Start Slave Memory Address:
                                                                                                           40012
                                                             Start Master Memory Address:
                                                                                                           V2000
                                                             Number of Elements:
                                                             Modbus Data type:
                                                                                                   584/984 Mode
                                                             Exception Response Buffer:
                                                                                                            V400
       Port Busy
                                                           MRX
                       CTA2
         SP116
                                K2
                                                             Port Number:
                                                                                                              K2
6
                                                             Slave Address:
                                                                                                              K2
                                                             Function Code:
                                                                                       03 - Read Holding Registers
                                                                                                          40001
                                                             Start Slave Memory Address:
                                                             Start Master Memory Address:
                                                                                                           V3020
                                                             Number of Elements:
                                                                                                              12
                                                             Modbus Data type:
                                                                                                   584/984 Mode
                                                             Exception Response Buffer:
                                                                                                            V415
       Port Busy
                                                           MWX
         SP116
                       CTA2
                                K3
                                                             Port Number:
                                                                                                              K2
7
                                                             Slave Address:
                                                                                                              K2
                                                             Function Code:
                                                                                      16 - Preset Multiple Registers
                                                             Start Slave Memory Address:
                                                                                                           40012
                                                             Start Master Memory Address:
                                                                                                           V2020
                                                             Number of Elements:
                                                             Modbus Data type:
                                                                                                   584/984 Mode
                                                             Exception Response Buffer:
                                                                                                           V410
```

Communicating with Third-party Devices

The *Sure*Servo™ Serial Comm Port supports RS-232/422/485 communications. The drive can be set up to communicate on standard Modbus networks using ASCII or RTU transmission modes. Using the drive's Communication Protocol parameters, you can select the desired mode, data bits, parity, and stop bits. The communication parameters must be the same for all devices on a Modbus network.

Most drive parameters can be written to or updated from a master controller using Modbus communications. However, the drive's operational "run" commands (i.e Servo On, Command Trigger, RESET, etc) can only be executed by controlling the drive's physical digital inputs.

IEEE 1394 Plug Connector

Serial Comm Port
RS-232/422/485 Interface

- 1: GND (0V) 2: RS-232 TX
- 3: RS-422 RX+
- 4: RS-232 RX, RS-422 RX-
- 5: RS-422 TX+
- 6: RS-422 TX-

SureServo™ Block Transfer Function

A group of Status Monitor Registers (P0-04 to P0-08) and a group of Block Data Registers (P0-09 to P0-16) are available in the *Sure*Servo drive. These continuous block of registers can be used to "group" miscellaneous drive parameters together allowing you to read/write the desired parameters in one block instead of having to use a Read/Write command for each parameter.

P2-30 – setting this parameter to (5) will disable "parameter write to EEPROM" each time communications is attempted with the drive (default 0). This parameter setting is not retained when power is disconnected from the drive.

SureServo drives have a provision for shutting down control power to the output of the drive in the event of a communications timeout. This is set up using drive parameters P3-03 and P3-04, along with a digital output configured for servo fault alarm.

Common Modbus RTU Masters

- KEP Direct for PLCs (serial communications only)
- Think & Do Live 5.6, Studio 7.2.1 (serial communications only)
- MODSCAN from www.wintech.com

For additional technical assistance, go to our Technical support home page at: http://support.automationdirect.com/technotes.html

Modbus Protocol Modes

This section explains the specifics of the Modbus protocols. It is not necessary to use this information if your drive control is capable of serving as a Modbus master controller.

ASCII Mode:

Each 8-bit data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

The following table shows the available hexadecimal characters and their corresponding ASCII codes.

Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII Code	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII Code	38H	38H	41H	42H	43H	44H	45H	46H

RTU Mode:

Each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, a 1-byte data: 64 Hex.

Modbus ASCII and RTU Data Format

10-bit character frame (For 7-bit character):

P3-02 = 00: ASCII mode (7 data bits, no parity, 2 stop bits)

P3-02 = 01: ASCII mode (7 data bits, even parity, 1 stop bit)

P3-02 = 02: ASCII mode (7 data bits, odd parity, 1 stop bit)

Data Formats (Cont.)

11-bit character frame (For 8-bit character):

P3-02 = 03: ASCII mode (8 data bits, no parity, 2 stop bits)

P3-02 = 06: RTU mode (8 data bits, no parity, 2 stop bits)

P3-02 = 04: ASCII mode (8 data bits, even parity, 1 stop bit)

P3-02 = 07: RTU mode (8 data bits, even parity, 1 stop bit)

P3-02 = 05: ASCII mode (8 data bits, odd parity, 1 stop bit)

P3-02 = 08: RTU mode (8 data bits, odd parity, 1 stop bit)

Communication Protocol

Modbus ASCII Mode:

STX	Start Character: (3AH)	
ADR 1		
ADR 0	Communication Address: 8-bit address consists of 2 ASCII codes	
CMD 1	Communication Address. 6-bit address consists of 2 A3CII codes	
CMD 0		
DATA (n-1)		
	Contents of data: n x 8-bit data consists of 2n ASCII codes. n[]25 maximum of 50 ASCII codes	
DATA 0		
LRC CHK 1	LRC check sum: 8-bit check sum consists of 2 ASCII codes	
LRC CHK 0		
END 1	END characters: END 1=CR (0DH), END 0 =LF (0AH)	
END-0	EIND Glialaciels, LIND 1-CR (ODH), EIND 0 = LF (OAH)	

Modbus RTU Mode:

START	A silent interval of more than 10 ms	
ADR	Communication Address: 8-bit address	
CMD		
DATA (n-1)		
	Contents of data: n x 8-bit data,n<=25	
DATA 0		
CRC CHK Low	CRC check sum: 16-bit check sum consists of 2 8-bit characters	
CRC CHK High		
END	A silent interval of more than 10 ms	

ADR (Communication Address)

Valid communication addresses are in the range of 0 to 254. A communication address equal to 0 means broadcast to all *Sure*Servo drives. In this case, the drive will not reply any message to the master device.

For example, communication to drive with address 16 decimal:

Modbus ASCII mode: (ADR 1, ADR 0)='1','0' => '1'=31H, '0'=30H

Modbus RTU mode: (ADR)=10H

CMD (Command) and DATA (data characters)

The format of data characters depends on the command code. The available command codes are described as follows: Command code: 03H, read N words. The maximum value of N is 10. For example, reading continuous 2 words from starting address 0200H of drive with address 01H.

Modbus ASCII mode:

Command Message	
STX	1,0
ADR 1	'0'
ADR 0	'1'
CMD 1	'0'
CMD 0	'3'
	'0'
Starting data address	'2'
	'0'
	'0'
	'0'
Number of data	'0'
(Count by word)	'0'
	'2'
LRC CHK 1 LRC CHK 0	'F'
	'8'
END 1 END 0	CR
	LF

Response Message		
STX ':'	1,1	
ADR 1	,0,	
ADR 0	'1'	
CMD 1	'0'	
CMD 0	'3'	
Number of data	,0,	
(Count by byte)	'4'	
Content of starting data address 0200H	'0'	
	,0,	
	'B'	
	'1'	
	'1'	
Content data	'F'	
address 0201H	'4'	
	,0,	
LRC CHK 1 LRC CHK 0	'E'	
	'8'	
END 1 END 0	CR	
	LF	

Modbus RTU mode:

Command Message	
ADR	01H
CMD	03H
Starting data address	02H
	00H
Number of data	00H
(Count by word)	02H
CRC CHK Low CRC CHK High	C5H
	ВЗН

Response Message	
ADR	01H
CMD	03H
Number of data (Count by byte)	04H
	'0'
Content of data address 0200H	00H
	B1H
Content of data address 0201H	1FH
	40H
CRC CHK Low CRC CHK High	АЗН
	D4H

Command code: 06H, write 1 word

For example, writing 100(0064H) to address 0200H of drive with address 01H.

Modbus ASCII mode:

Command Message	
STX	1:1
ADR 1	'0'
ADR 0	'1'
CMD 1	'0'
CMD 0	'6'
	'0'
	'2'
	'0'
Data Address	'0'
Data Address	'0'
	'0'
	'6'
	'4'
LRC CHK 1 LRC CHK 0	'9'
	'3'
END 1	CR
END 0	LF

Response Message	
STX ':'	1,1
ADR 1	'0'
ADR 0	'1'
CMD 1	'0'
CMD 0	'6'
	'0'
Data Address	'2'
Data Address	'0'
	'0'
	'0'
Data Content	'0'
	'6'
	'4'
LRC CHK 1 LRC CHK 0	'9'
	'3'
END 1 END 0	CR
	LF

Modbus RTU mode:

This is an example of using function code 16 for writing to multiple registers.

Command Message	
ADR	01H
CMD	10H
Starting data address	02H
	00H
Number of data (Count by byte)	04H
Content of data address 0200H	00H
	02H
Content of data address 0201H	02H
	58H
CRC CHK Low CRC CHK High	СВН
	34H

Response Message	
ADR	01H
CMD	10H
Starting data address	02H
	00H
Number of data (Count by word)	00H
	02H
CRC CHK Low CRC CHK High	4AH
	08H

CHK (check sum)

Modbus ASCII Mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up module 256, the values of the bytes from ADR1 to last data character, then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example, reading 1 word from address 0201H of the drive with address 01H.

Command Message	
STX	1,1
ADR 1	'0'
ADR 0	'1'
CMD 1	,0,
CMD 0	'3'
	'0'
Starting data	'2'
address	,0,
	'1'
	'0'
Number of data	,0,
(Count by word)	,0,
	'1'
LRC CHK 1 LRC CHK 0	'F'
	'8'
END 1 END 0	CR
	LF

01H+03H+02H+01H+00H+01H=08H, the 2's complement negation of 08H is F8H.

Modbus RTU Mode:

Response Message	
ADR	01H
CMD	03H
Starting data address	02H
	01H
Number of data (Count by word)	00H
	02H
CRC CHK Low CRC CHK High	6FH
	F7H

CRC (Cyclical Redundancy Check) is calculated by the following steps:

- Step 1: Load a 16-bit register (called CRC register) with FFFFH.
- Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- Step 3: Shift the CRC register one bit to the right with MSB zero filling. Extract and examine the LSB.
- Step 4: If the LSB of CRC register is 0, repeat step 3, else Exclusive or the CRC register with the polynomial value A001H.
- Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed
- .Step 6: Repeat steps 2 to 5 for the next 8-bit byte of the command message.

Continue doing this until all bytes have been processed. The final contents of the CRC register equal the CRC value.

When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data ← a pointer to the message buffer
Unsigned char length ← the quantity of bytes in the message buffer

The function returns the CRC value as a type of unsigned integer.

```
Unsigned int crc_chk(unsigned char* data, unsigned char length){
  int j;
  unsigned int reg_crc=0xFFFF;
  while(length--){
    reg_crc ^= *data++;
    for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0xA001;
    }else{
        reg_crc=reg_crc >>1;
    }
  }
}
return reg_crc;
```


Modbus RTU mode is preferred. Limited support is available to Modbus ASCII users.

BLANK PAGE