MA1102R

AY20/21 sem 2 by jovyntls

00. FUNCTIONS & SETS

sets

$$A = \{x \mid properties \ of x\}$$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B
- $A = B \leftrightarrow A \subseteq B \land B \subseteq A$

operations on sets

- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}$

notations of sets

notations of intervals

- · closed interval (inclusive): $[a, b] = \{x \mid a < x < b\}$
- open interval (exclusive):
- $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ $(a,b) = \{x \mid a < x < b\}$ $\cdot \mathbb{N} = \mathbb{Z}^+$
- ∅: empty set • $(a, \infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- uniqueness: $\forall a \in A$ has only one image in B.
- for $f:A\to B$
 - domain: A
 - codomain: B
- range: $\{f(x) \mid x \in A\}$
- · for this mod:
 - $A, B \subseteq \mathbb{R}$
 - if A is not stated, the domain of f is the largest possible set for which f is defined
 - if B is not stated, $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set $G(f) := \{(x, f(x)) \mid x \in A\}$

- if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$
- each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/g)(x) := f(x)/g(x)	$\{x \in A \cap B \mid g(x) \neq 0\}$

types of functions

- rational function: $R(x) = \frac{P(x)}{Q(x)}$, where P, Q are polynomials and $Q(x) \neq 0$
 - every polynomial is a rational function (Q(x) = 1)
- · algebraic function: constructed from polynomials using algebraic operations

- a function f is **increasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$.
- ullet a function f is **decreasing** on a set I if $x_q < x_2 \Rightarrow f(x_1) > f(x_2)$ for any $x_1, x_2 \in I$.
- · even/odd:
 - even function: $\forall x, f(-x) = f(x)$
 - * symmetric about the y-axis
 - odd function: $\forall x, f(-x) = -f(x)$
 - * symmetric about the origin O
 - any function defined on \mathbb{R} can be decomposed *uniquely* into the sum of an even function and an odd function
- power function: xⁿ

•
$$x^n$$
 is $\begin{cases} \text{an odd function,} & \text{if } n \text{ is odd} \\ \text{an even function,} & \text{if } n \text{ is even} \end{cases}$

01. LIMITS

precise definition of limits

Let f be a function defined on an open interval containing a, except possibly at a.

The limit of f(x) as x approaches a, equals L if, for every $\epsilon > 0$ there is $\delta > 0$ such that

informally,

- $0 < |x a| < \delta \Rightarrow x$ is close to but not equal to a.
- $0 < |f(x) L| < \epsilon \Rightarrow f(x)$ is arbitrarily close to L.

limit laws

- Let $c \in \mathbb{R}$. $\lim_{x \to a} c = c$
- $\lim x = a$

Suppose $\lim f(x) = L$ and $\lim g(x) = M$. Let c be a

- $\lim_{x \to a} (cf(x)) = cL = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} (f(x) + g(x)) = L + M = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x) + g(x)) = E + M = \lim_{x \to a} f(x) + \lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x)g(x)) \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\cdot \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided that } \lim_{x \to a} g(x) \neq 0$
- $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

if
$$\lim_{x\to a}\frac{f(x)}{g(x)}$$
 exists and $\lim_{x\to a}g(x)=0,$ then $\lim_{x\to a}f(x)=0$

inequalities on limits

Suppose
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$.

if $f(x) \leq g(x)$ for all x near a (except possibly at a), then $L \leq M$.

lemma

If
$$f(x) \ge 0$$
 for all x , then $L \ge 0$.

direct substitution property

Let f be a polynomial or rational function. If a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

If
$$f(x)=g(x)$$
 for all x near a except possibly at a , then
$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)$$

applications

- if a is not in the domain (e.g. 0 denominator), don't apply
- · convert to an equivalent function and then sub in

one-sided limits

· limit laws also hold for one-sided limits

If as x is close to a from the right, f(x) is close to L, the right-hand limit of f as x approaches a equals L.

$$(x \to a^+ \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^+} f(x) = L$$

If as x is close to a from the left, f(x) is close to L, the left-hand limit of f as x approaches a equals L. $(x \to a^- \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^-} f(x) = L$

$$\lim_{x \to a} f(x) = L \leftrightarrow \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

$$f(x) \to L \Leftarrow x \to a \Leftrightarrow \begin{cases} x \to a^{+} \Rightarrow f(x) \to L \\ x \to a^{-} \Rightarrow f(x) \to L \end{cases}$$

definition of one-sided limits

LH Limit:
$$\lim_{x \to a^-} f(x) = L$$
 if for every $\epsilon > 0$ there exists $\delta > 0$ such that $0 < a - x < \delta \Rightarrow |f(x) - L| < \epsilon$

RH Limit:
$$\lim_{x \to a^+} f(x) = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that $0 < x - a < \delta \Rightarrow |f(x) - L| < \epsilon$

definition of infinite limits

$$\lim_{x\to a}f(x)=\infty$$
 if for every $M>0$ there exists $\delta>0$ such that
$$0<|x-a|<\delta\Rightarrow f(x)>M$$

negative infinite limit:

$$0 < |x - a| < \delta \Rightarrow f(x) < M$$

limits to infinity

$$\lim_{x\to\infty}f(x)=L;$$
 For every $\epsilon>0$, there exists N such that
$$x>N\Rightarrow |f(x)-L|<\epsilon$$

$$\lim_{x\to\infty}f(x)=\infty\text{:}$$
 For every $M>0$, there exists N such that $x>N\Rightarrow f(x)>M$

squeeze theorem

• Suppose f(x) is bounded by g(x) and h(x) where • q(x) < f(x) < h(x) for all x near a (except at a), • and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$.

02. CONTINUOUS FUNCTIONS

definition of continuity

a function f is **continuous at** $a \Leftrightarrow$ f is continuous from the left and from the right at a. $\lim f(x) = f(a)$

Then $\lim f(x) = L$

a function f is continuous at an interval if it is continuous at every number in the interval.

$$\begin{array}{l} f \text{ is continuous on } \mathbf{open interval} \ (a,b) \\ \Leftrightarrow f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous on } \mathbf{closed interval} \ [\mathbf{a},\mathbf{b}] \\ \Leftrightarrow \begin{cases} f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous from the right at } a \\ f \text{ is continuous from the left at } b \end{cases} \end{array}$$

continuity test

f is continuous at $a \Leftrightarrow$

- 1. f is defined at a (a is in the domain of f)
- 2. $\lim f(x)$ exists
- 3. $\lim f(x) = f(a)$

precise definition of continuity

a function f is continuous at a number a if $\forall \epsilon > 0, \exists \delta > 0$ such that $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon$

examples of discontinuity

- · removable discontinuity
- · infinite discontinuity
- · jump discontinuity

properties of continuous functions

let f and g be functions continuous at g, let g be a constant.

- 1. cf is continuous at a
- 2. f + q is continuous at a
- 3. f g is continuous at a
- 4. fq is continuous at a
- 5. $\frac{f}{a}$ is continuous at a, provided $g(a) \neq 0$

other properties

- a polynomial is continuous everywhere:
- · a rational function is continuous on its domain
- let c be a real number. f(x) = c is continuous on \mathbb{R} .
- f(x) = x is continuous on \mathbb{R} .

trigonometric functions

- $f(x) = \sin x$ and $g(x) = \cos x$ are continuous everywhere
- $\tan x, \sec x$ are continuous whenever $\cos x \neq 0$
- $\cot x$, $\csc x$ are continuous whenever $\sin x \neq 0$
 - domain: $\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$

composite of continuous functions

if f is continuous at b and $\lim_{x\to a}g(x)=b$, then $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$

if q is continuous at a and f is continuous at q(a), then $f \circ q$ is continuous at a. $\lim (f \circ q)(x) = (f \circ q)(a)$

substitution theorem

Suppose y = f(x) such that $\lim_{x \to a} f(x) = b$. If

- 1. q is continuous at b, OR
- 2. $\forall x \text{ near } a$, except at $a, f(x) \neq b$ and $\lim_{x \to a} g(y)$ exists

Then $\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$

intermediate value theorem

Let f be a function continuous on [a, b] with $f(a) \neq f(b)$. Let N be a number between f(a) and f(b). Then there exists $c \in (a, b)$ such that f(c) = N.

03. DERIVATIVES

tangent line

the **tangent line** to y = f(x) at (a, f(a)) is the line passing through (a, f(a)) with slope f'(a): y = f'(a)(x - a) + f(a)

definition of derivatives

- f is differentiable at a if f'(a) exists
- f'(a) is the slope of y = f(x) at x = a

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$
- $\frac{dy}{dx} := \lim_{x \to 0} \frac{\Delta y}{\Delta x}$ (derivative of y with respect to x)
- $f'(a) = \frac{dy}{dx}|_{x=a}$

differentiable functions

- f is differentiable at a if $f'(a) := \lim_{x \to 0} \frac{f(a+h) f(a)}{h}$
- f is differentiable on (a, b) if f is differentiable at every $c \in (a,b)$

differentiability & continuity

- if f is differentiable at a, then f is continuous at a.
- differentiability ⇒ continuity
- continuity
 ⇒ differentiability

differentiation

- · every polynomial and rational function is differentiable on its domain
- the domain of f' may be smaller than the domain of f.
- trigonometric functions are differentiable on the domain

chain rule

If q is differentiable at a and f is differentiable at b = q(a), then $F = f \circ q$ is differentiable at a and $F'(a) = (f \circ g)'(a) = f'(b)g'(a) = f'(g(a))g'(a)$ If z = f(y) and y = g(x), then

 $\frac{dz}{dz}|_{x=a} = \frac{dz}{dz}|_{y=b} \frac{dy}{dz}|_{x=a}$

generalised chain rule

h is differentiable at a; g is differentiable at B = h(a); f is differentiable at c = q(b).

$$(f \circ (g \circ h))' = f' \circ (g \circ h) \cdot (g \circ h)'$$
$$= f'(c)g'(b)h'(a)$$

Leibniz notation:

If
$$y = h(x), z = g(y), w = f(z),$$

$$\frac{dw}{dx} = \frac{dw}{dz} \frac{dz}{dy} \frac{dy}{dx}$$

implicit differentiation

• assumes that $\frac{dy}{dx}$ exists

second derivative

$$f''(x) = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

$$f' = D(f) \Rightarrow f'' := D^2(f)$$

higher derivatives

$$f^{(0)}:=f$$
 For any positive integer $n, f^{(n)}:=(f^{(n-1)})'$ if $y=f(x)$, then $f^{(n)}(x)=y^{(n)}=\frac{d^ny}{dx^n}=D^nf(x)$

04. APPLICATIONS OF DIFFERENTIATION

extreme values of functions

Let f be a function with domain D.

global (absolute) max/min

- · aka absolute max/min
- extreme values = absolute maximum and absolute minimum

$$f$$
 has a global **maximum** at $c \in D$ $\Leftrightarrow f(c) \geq f(x)$ for all $x \in D$ f has a global **minimum** at $c \in D$ $\Leftrightarrow f(c) \leq f(x)$ for all $x \in D$

local max/min

aka relative max/min aka "turning points"

$$\begin{array}{l} f \text{ has a local } \mathbf{maximum} \text{ at } c \in D \\ \Leftrightarrow f(c) \geq f(x) \text{ for all } x \text{ near } c \\ f \text{ has a local } \mathbf{minimum} \text{ at } c \in D \\ \Leftrightarrow f(c) \leq f(x) \text{ for all } x \text{ near } c \end{array}$$

extreme value theorem

existence

if f is continuous on a finite closed interval [a, b], then f attains extreme values on [a, b].

value

the extreme value occurs at either critical numbers or the endpoints (x = a, x = b).

critical numbers

Then $c \in D$ is a *critical number* of f if f'(c) = 0, or f'(c) does not exist.

fermat's theorem

Suppose f has a local maximum or minimum at c. If f'(c) exists, then f'(c) = 0.

Rolle's Theorem

Let f be a function such that f is continuous on [a, b], f is differentiable on (a, b), and f(a) = f(b). Then there is a number $c \in (a, b)$ such that f'(c) = 0.

mean value theorem

Let f be a function such that f is continuous on [a, b] and f is differentiable on (a, b). Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b}$

• generalisation of Rolle's theorem when f(a) = f(b).

ordinary differential equations

Let f and g be continuous on [a, b]. If f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + C on [a, b] for a constant C.

misc

triangle inequality

$$|a=b| \leq |a| + |b|$$
 for all $a, b \in \mathbb{R}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

= $a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{n-1} a b^{n-1} + b^n$

where the binomial coefficient is given by ${n \choose k} = \frac{n!}{k!(n-k)!}$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

factorisation

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$