

planetmath.org

Math for the people, by the people.

proof that C_{\cup} and C_{\cap} are consequence operators

 ${\bf Canonical\ name} \quad {\bf ProofThatCcupAndCcapAreConsequenceOperators}$

Date of creation 2013-03-22 16:29:41 Last modified on 2013-03-22 16:29:41

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 21

Author rspuzio (6075)

Entry type Proof

 $\begin{array}{ll} {\rm Classification} & {\rm msc} \ 03{\rm G}25 \\ {\rm Classification} & {\rm msc} \ 03{\rm G}10 \\ {\rm Classification} & {\rm msc} \ 03{\rm B}22 \end{array}$

The proof that the operators C_{\cup} and C_{\cap} defined in the second example of section 3 of the http://planetmath.org/ConsequenceOperatorparent entry are consequence operators is a relatively straightforward matter of checking that they satisfy the defining properties given there. For convenience, those definitions are reproduced here.

Definition 1. Given a set L and two elements, X and Y, of this set, the function $C_{\cap}(X,Y): \mathcal{P}(L) \to \mathcal{P}(L)$ is defined as follows:

$$C_{\cap}(X,Y)(Z) = \begin{cases} X \cup Z & Y \cap Z \neq \emptyset \\ Z & Y \cap Z = \emptyset \end{cases}$$

Theorem 1. For every choice of two elements, X and Y, of a given set L, the function $C_{\cap}(X,Y)$ is a consequence operator.

Proof.

Property 1: Since Z is a subset of itself and of $X \cup Z$, it follows that $Z \subseteq C_{\cap}(X,Y)(Z)$ in either case.

Property 2: We consider two cases. If $Y \cap Z = \emptyset$, then $C_{\cap}(X,Y)(Z) = Z$, so

$$C_{\cap}(X,Y)(C_{\cap}(X,Y)(Z)) = C_{\cap}(X,Y)(Z).$$

If $Y \cap Z \neq \emptyset$, then

$$Y \cap C_{\cap}(X,Y)(Z) = Y \cap (X \cup Z)$$

= $(Y \cap X) \cup (Y \cap Z).$

Again, since $Y \cap Z \neq \emptyset$, we also have $(Y \cap X) \cup (Y \cap Z) \neq \emptyset$, so

$$C_{\cap}(X,Y)(C_{\cap}(X,Y)(Z)) = X \cup C_{\cap}(X,Y)(Z)$$

$$= X \cup (X \cup Z)$$

$$= X \cup Z$$

$$= C_{\cap}(X,Y)(Z)$$

So, in both cases, we find that

$$C_{\cap}(X,Y)(C_{\cap}(X,Y)(Z)) = C_{\cap}(X,Y)(Z).$$

Property 3: Suppose that Z and W are subsets of L and that Z is a subset of W. Then there are three possibilities:

1. $Y \cap Z = \emptyset$ and $Y \cap W = \emptyset$

In this case, we have $C_{\cap}(X,Y)(Z) = Z$ and $C_{\cap}(X,Y)(W) = W$, so $C_{\cap}(X,Y)(Z) \subseteq C_{\cap}(X,Y)(W)$.

2. $Y \cap Z = \emptyset$ but $Y \cap W \neq \emptyset$

In this case, $C_{\cap}(X,Y)(Z) = Z$ and $C_{\cap}(X,Y)(W) = X \cup W$. Since $Z \subseteq W$ implies $Z \subseteq X \cup W$, we have $C_{\cap}(X,Y)(Z) \subseteq C_{\cap}(X,Y)(W)$.

3. $Y \cap Z \neq \emptyset$ and $Y \cap W \neq \emptyset$

In this case, $C_{\cap}(X,Y)(Z) = X \cup Z$ and $C_{\cap}(X,Y)(W) = X \cup W$. Since $Z \subseteq W$ implies $X \cup Z \subseteq X \cup W$, we have $C_{\cap}(X,Y)(Z) \subseteq C_{\cap}(X,Y)(W)$.

Definition 2. Given a set L and two elements, X and Y, of this set, the function $C_{\cup}(X,Y): \mathcal{P}(L) \to \mathcal{P}(L)$ is defined as follows:

$$C_{\cup}(X,Y)(Z) = \begin{cases} X \cup Z & Y \cup Z = Z \\ Z & Y \cup Z \neq Z \end{cases}$$

Theorem 2. For every choice of two elements, X and Y, of a given set L, the function $C_{\cup}(X,Y)$ is a consequence operator.

Proof.

Property 1: Since Z is a subset of itself and of $X \cup Z$, it follows that $Z \subseteq C_{\cup}(X,Y)(Z)$ in either case.

Property 2: We consider two cases. If $C_{\cup}(X,Y)(Z)=Z$, then

$$C_{\cup}(X,Y)(C_{\cup}(X,Y)(Z)) = C_{\cup}(X,Y)(Z).$$

If $C_{\cup}(X,Y)(Z) = X \cup Z$, then we note that, because $X \cup (X \cup Z) = X \cup Z$, we must have $C_{\cup}(X,Y)(X \cup Z) = X \cup Z$ whether or not $Y \cup (X \cup Z) = X \cup Z$, so

$$C_{\cup}(X,Y)(C_{\cup}(X,Y)(Z)) = C_{\cup}(X,Y)(Z).$$

Property 3: Suppose that Z and W are subsets of L and that Z is a subset of W. Then there are three possibilities:

1. $Y \cup Z = Z$ and $Y \cup W = W$

In this case, we have $C_{\cup}(X,Y)(Z) = X \cup Z$ and $C_{\cup}(X,Y)(W) = X \cup W$. Since $Z \subseteq W$ implies $X \cup Z \subseteq X \cup W$, we have $C_{\cup}(X,Y)(Z) \subseteq C_{\cup}(X,Y)(W)$.

2. $Y \cup Z \neq Z$ but $Y \cup W = W$

In this case, $C_{\cup}(X,Y)(Z) = Z$ and $C_{\cup}(X,Y)(W) = X \cup W$. Since $Z \subseteq W$ implies $Z \subseteq X \cup W$, we have $C_{\cup}(X,Y)(Z) \subseteq C_{\cup}(X,Y)(W)$.

3. $Y \cup Z \neq Z$ and $Y \cup W \neq W$ In this case, $C_{\cup}(X,Y)(Z) = Z$ and $C_{\cup}(X,Y)(W) = W$, so $C_{\cup}(X,Y)(Z) \subseteq C_{\cup}(X,Y)(W)$.