[Total No. of CO's: 2]Seat No:	[Total No. of	Pages: 1]
[I otal I to: of CO 5: 2] Scat I to:	[1000110001	1 4505. 1

G. H. Raisoni College of Engineering and Management, Pune.

(An Autonomous Institution)
F.Y B.Tech (All Branches) (Term-I)
CAE-2(2020 Pattern)

Subject Name: Matrices and Differential Calculus(USBL301)

[Time: 1 Hours] [Max. Marks-15]

COURSE OUTCOME:

- 1. Understand and use the theory of Matrices to solve the system of linear equations and engineering problems in respective disciplines.
- 2. Determine the Eigen values and Eigen vectors of a matrix and apply to various engineering problems in respective disciplines.
- 3. Apply concepts of differentiation in solving engineering problems.
- 4. Use applications of partial differentiation to solve various problems in engineering.
- 5. Apply the Knowledge of vector differentiation to solve various problems in engineering.

CO3	<i>a)</i>	State Leibnitz Theorem	[1]	L1
	Find n th order derivative of $y = \frac{x^3}{x^2 - 3x + 2}$ OR		[3]	L3
		Using Taylor's series express $(x-2)^4 - 3(x-2)^3 + 4(x-2)^2 + 5$ in powers of x.	[3]	L3
	c)	Expand $y = \sin(m\sin^{-1}x)$ show that $(1 - x^2)y_{n+2} = (2n+1)xy_{n+1} + (n^2 - m^2)y_n$	[4]	L4
CO4	<i>a</i>)	State Commutative property of mixed partial derivatives.	[1]	L1
	<i>b</i>)	If $u=ax^2+2hxy+by^2$ then find $\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}$	[2]	L2
	<i>c)</i>	If $u = \log(tanx + tany + tanz)$, then show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$	[4]	L4

BEST	

