MATH 611, Fall 2007 Final exam Due December 14, 3:00 pm

You may not discuss the questions on this exam with any other person. Your answers are expected to be analytical in nature; supporting numerical evidence will not be considered.

1. Let A be the $m \times m$ matrix of the form $\begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{bmatrix}$.

- (a) Show that for the system $Ax = e_1$, where e_1 is the first column of the identity, GMRES takes m iterations to find the solution. (An elementary argument, without any reference to eigenvalues or polynomials, is available.)
- (b) Show that if the conjugate gradient iteration is applied to the normal equations for Ax = b, the method converges in one iteration, regardless of b.
- 2. Consider the tridiagonal matrix

$$D_m = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}.$$

Its eigenvalues can be shown (by Fourier analysis) to be

$$\lambda_j = 2 - 2\cos\left(\frac{j\pi}{m+1}\right), \quad j = 1, \dots, m.$$

- (a) Let s(m) be the number of CG iterations needed to solve $A_m x = b$ to a fixed accuracy ϵ . Estimate the asymptotic behavior of s(m) as $m \to \infty$. (E.g., $O(\log m)$, $O(m^p)$, etc.)
- (b) Repeat (a) for the linear system $(A_m + \alpha I)x = b$, for any fixed $\alpha > 0$.
- 3. Suppose that the $m \times m$ matrix A is in the form A = I + B, where B is real and skew-symmetric (that is, $B^T = -B$).
 - (a) Show that for the Rayleigh quotient r(x) for A, $r(x) \equiv 1$ for all x.
 - (b) Show that the Hessenberg matrix H_n in the Arnoldi iteration is of the form

- 4. The Lanczos iteration in Algorithm 36.1 requires division by β_n in all steps (except n=m). Hence if $\beta_n=0$ for some n< m, we say that the iteration breaks down.
 - Prove that if *A* has an eigenvalue of algebraic multiplicity greater than 1, then the Lanczos iteration must break down before the last step. (Hint: Use a result from the homework.)
- 5. Suppose the $m \times m$ matrix A is of the form

$$A = \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix},$$

for a matrix Y of any size.

- (a) Write a *simple* expression for p(A), where p is any polynomial.
- (b) Using exact arithmetic, how many steps of GMRES are required to get an exact solution of Ax = b, regardless of b? (Part (a) might suggest a clue.)
- (c) (Bonus) Generalize part (b) to the matrix

$$A = \begin{bmatrix} I & Y_1 & & & \\ & I & Y_2 & & \\ & & \ddots & \ddots & \\ & & & I & Y_{k-1} \\ & & & & I \end{bmatrix}.$$