Логика и алгоритмы Ч. 3: Теория моделей Лекция 1

9 марта 2021

Логическое следование

Определение

Пусть T — теория, A — замкнутая формула в ее сигнатуре. A логически следует из T (обозначение: $T \vDash A$), если любая модель теории T является моделью формулы A.

Теорема о корректности для исчисления предикатов

Если $T \vdash A$, то $T \vDash A$.

Теорема Гёделя о полноте для исчисления предикатов

Если $T \vDash A$, то $T \vdash A$.

Версия для теорий с равенством:

 $T \vdash A$ означает выводимость с использованием аксиом равенства.

 $T \vDash A$ означает логическое следование на нормальных моделях.

Определение

Пусть M, M' — модели сигнатуры Ω . Отображение носителей $\alpha: M \longrightarrow M'$ называется изоморфизмом M на M', если

- α биекция,
- $\alpha(c_M) = c_{M'}$ для всех констант c (из Ω),
- $\alpha(f_M(m_1,\ldots,m_k)) = f_{M'}(\alpha(m_1),\ldots,\alpha(m_k))$ для любого k-местного функционального символа f и $m_1,\ldots,m_k \in M$,
- $P_M(m_1, \ldots, m_k) = P_{M'}(\alpha(m_1), \ldots, \alpha(m_k))$ для любого k-местного предикатного символа P и $m_1, \ldots, m_k \in M$.

Запись $\alpha:M\cong M'$ означает, что α — изоморфизм M на M'.

Лемма 1.1

- $lackbox{0}$ Если $\alpha:M\cong M'$ и $\beta:M'\cong M''$, то $\beta\alpha:M\cong M''$.

Определение

Модели M, M' называются изоморфными (обозначение: $M \cong M'$), если существует изоморфизм $\alpha: M \cong M'$.

≅ задает отношение эквивалентности на классе всех моделей данной сигнатуры.

Обозначения и терминология

Пусть M — модель сигнатуры Ω .

• Терм, оцененный в M, — это замкнутый терм расширенной сигнатуры $\Omega(M)$. Из обычного терма $t(a_1,\ldots,a_n)$ получаются оцененные термы

$$t(m_1,\ldots,m_n):=t[a_1,\ldots,a_n/\underline{m_1},\ldots,\underline{m_n}].$$

 $|r|_{M}$ — значение оцененного терма r в модели M; это элемент из M.

• Формула, оцененная в M, — это замкнутая формула сигнатуры $\Omega(M), \, |A|_M$ — значение оцененной формулы A в M (0 или 1).

Пусть M, M' — модели сигнатуры $\Omega, \alpha: M \cong M'$.

- Для терма t, оцененного в M, обозначим через $\alpha \cdot t$ терм, полученный заменой всех констант m из M на их образы $\alpha(m)$. (Формально $\alpha \cdot t$ определяется по индукции.)
- Аналогично по формуле A, оцененной в M, строится формула $\alpha \cdot A$, оцененная в M'.

Теорема 1.2 Пусть M, M' — модели сигнатуры $\Omega, \alpha : M \cong M'$.

- lacktriangle Если t терм, оцененный в M, то $|\alpha \cdot t|_{M'} = \alpha(|t|_M)$.
- $oldsymbol{2}$ Если A формула, оцененная в M, то $|\alpha \cdot A|_{M'} = |A|_M$.

Определение

• Пусть M — модель сигнатуры Ω . Элементарная теория модели M — это множество всех замкнутых формул сигнатуры Ω , которые истинны в M.

$$Th(M) := \{A \mid M \vDash A\}.$$

• Модели M_1, M_2 одной сигнатуры называются элементарно эквивалентными, если в них истинны одни и те же замкнутые формулы, т.е. $Th(M_1) = Th(M_2)$; обозначение: $M_1 \equiv M_2$.

Следствие 1.3 Если $M \cong M'$, то $M \equiv M'$.

Логика и алгоритмы Ч. 3: Теория моделей Лекция 2

16 марта 2021

Все сигнатуры с равенством, все модели нормальные.

Определения

- Теория сильно категорична, если все ее модели изоморфны.
- Теория конечно аксиоматизируема, если она эквивалентна конечной теории.

Теорема 1.6

Пусть Ω - конечная сигнатура, M — конечная модель Ω . Тогда

- Th(M) конечно аксиоматизируема.
- Th(M) сильно категорична.

Доказательство теоремы.

Пусть M — конечная модель конечной сигнатуры Ω . Строим формулу A_M , которая полностью описывает M.

Пусть
$$M = \{m_1, \dots, m_n\}$$
. Положим

$$A_M := \exists x_1 \dots \exists x_n B_M(x_1, \dots, x_n),$$

где

$$B_{M}(a_{1},\ldots,a_{n}):=\bigwedge_{1\leq i< j\leq n}(a_{i}\neq a_{j})\wedge\forall y\bigvee_{i=1}(y=a_{i})\wedge\\ \bigwedge\{c=a_{i}\mid c\in Const_{\Omega},\ M\vDash c=m_{i}\}\wedge\\ \bigwedge\{f(a_{i_{1}},\ldots,a_{i_{k}})=a_{j}\mid f\in Fun_{\Omega},\ M\vDash f(m_{i_{1}},\ldots,m_{i_{k}})=m_{j}\}\wedge\\ \bigwedge\{P(a_{i_{1}},\ldots,a_{i_{k}})\mid P\in Pred_{\Omega},\ M\vDash P(m_{i_{1}},\ldots,m_{i_{k}})\}\wedge\\ \bigwedge\{\neg P(a_{i_{1}},\ldots,a_{i_{k}})\mid P\in Pred_{\Omega},\ M\vDash \neg P(m_{i_{1}},\ldots,m_{i_{k}})\}.$$

Лемма 1.7. Для модели M' сигнатуры Ω

$$M' \vDash A_M \Leftrightarrow M' \cong M.$$

Доказательство леммы.

- (\Leftarrow) Проверяем $M \vDash A_M$, это следует из $M \vDash B_M(m_1, \ldots, m_n)$.
- (\Rightarrow) Предположим, что $M' \vDash A_M$ и построим изоморфизм M на M'.

По определению истинности, найдутся $m_1', \dots, m_n' \in M'$, для которых

$$M' \vDash B_M(m'_1, \ldots, m'_n).$$

Докажем, что отображение φ , переводящее каждый m_i в m_i' — искомый изоморфизм.

Окончание доказательства теоремы.

Заметим: $Th(M) \sim \{A_M\}.$

1. По лемме 1.7

 $A_M \in Th(M)$ и значит,

$$M' \vDash Th(M) \Rightarrow M' \vDash A_M$$
.

2. Обратно, если $M' \vDash A_M$, то по лемме 1.7, $M' \cong M$. И тогда $M' \vDash Th(M)$.

Th(M) сильно категорична, т.к. эквивалентная ей теория $\{A_M\}$ сильно категорична по лемме 1.7.

Следствие 2.1.

Если M — конечная модель и $M' \equiv M$, то $M' \cong M$.

Доказательство. Если $M' \equiv M$, то $M' \models Th(M)$. Тогда, по теореме 1.6, $M' \cong M$.

Определимость и автоморфизмы

k-местный предикат на множестве M — это отображение $\gamma:M^k\longrightarrow \{0,1\}.$

k-местное отношение на множестве M — это множество $R \subset M^k$.

Рассмотрим формулу $A(\overrightarrow{b})$, где $\overrightarrow{b}=(b_1,\ldots,b_k)$. k-местный предикат, определимый формулой $A(\overrightarrow{b})$ в модели M, — это $A_M:M^k\longrightarrow\{0,1\}$ такое, что для всех m_1,\ldots,m_k

$$A_M(m_1,\ldots,m_k)=|A(m_1,\ldots,m_k)|_M.$$

Теорема 2.2

Пусть α — автоморфизм модели , $A(b_1,\dots,b_k)$ — формула в ее сигнатуре. Тогда для всех $m_1,\dots,m_k\in M$

$$A_M(\alpha(m_1),\ldots,\alpha(m_k))=A_M(m_1,\ldots,m_k).$$

В сокращенной записи:

$$A_M(\alpha \overrightarrow{m}) = A_M(\overrightarrow{m}).$$

Таким образом, определимый в M предикат инвариантен при всех автоморфизмах M.

Логика и алгоритмы Ч. 3: Теория моделей Лекция 3

22 марта 2021

Элементарные подмодели

Определение. Пусть M, M' — модели сигнатуры Ω . M' — подмодель M, если

- $M' \subset M$ как множество,
- $c_M = c_{M'}$ для всех $c \in Const_{\Omega}$,
- $f_M(m_1,\ldots,m_k) = f_{M'}(m_1,\ldots,m_k)$ для всех k-местных $f \in Fun_\Omega$ и $m_1,\ldots,m_k \in M',$
- $P_M(m_1,\ldots,m_k)=P_{M'}(m_1,\ldots,m_k)$ для всех k-местных $P\in Pred_\Omega$ и $m_1,\ldots,m_k\in M'.$

Обозначение подмодели: $M' \subset M$.

Определение. Подмодель $M'\subset M$ — элементарная, если

$$M' \vDash A(m_1, \dots, m_k) \Leftrightarrow M \vDash A(m_1, \dots, m_k)$$

для любой формулы $A(a_1,\ldots,a_k)$ и $m_1,\ldots,m_k\in M'.$ (Тогда, в частности, $M'\equiv M.$)

Обозначение элементарной подмодели: $M' \prec M$.

Теорема о спуске

Мощность сигнатуры Ω

$$|\Omega| := |Const_{\Omega} \cup Fun_{\Omega} \cup Pred_{\Omega}|$$

Теорема (Лёвенгейм – Сколем – Тарский).

Для любой модели M сигнатуры Ω существует $M' \prec M$ такая, что

$$|M'| \leq \max(|\Omega|, \aleph_0).$$

Теорема о спуске

Определение. Зафиксируем модель M и $m_0 \in M$. Для каждой формулы $\exists x A(x, \overrightarrow{a})$, где $\overrightarrow{a} = (a_1, \dots, a_k)$ — список свободных переменных, и для каждого $\overrightarrow{m} \in M^k$ положим

$$S_{\exists x A(x,\overrightarrow{m})} := \begin{cases} \{e \in M \mid M \vDash A(e,\overrightarrow{m})\}, & \text{если это множество непусто,} \\ m_0, & \text{иначе.} \end{cases}$$

Функция выбора для семейства множеств $(S_{\exists xA(x,\overrightarrow{m})})_{\overrightarrow{m}\in M^k}$ называется *сколемовской функцией* для формулы $\exists xA(x,\overrightarrow{d})$ и обозначается $s_{\exists xA(x,\overrightarrow{d})}$ (или короче: $s_{\exists xA}$).

(Случай k=0 тоже включается; тогда просто берем $s_{\exists xA} \in M$.)

Таким образом:

$$s_{\exists xA}(\overrightarrow{m}) \in S_{\exists xA(x,\overrightarrow{m})},$$

и тогда

$$M \vDash A(s_{\exists xA}(\overrightarrow{m}), \overrightarrow{m}),$$

если

$$M \vDash \exists x A(x, \overrightarrow{m}).$$

Теорема о спуске

План доказательства.

Пусть $M_0 := \{m_0\}$ (это множество, еще не модель). По рекурсии строим счетную последовательность множеств $M_0 \subset M_1 \subset M_2 \dots$ Их объединение даст M'.

$$M_{n+1} := M_n \cup \{s_{\exists x A(x, \overrightarrow{a})}[M_n^k] \mid \exists x A(x, \overrightarrow{a}) \in Fm\},\$$

(Fm- множество всех формул нашей сигнатуры).

$$M' := \bigcup_n M_n$$
(как множество).

Его можно превратить в модель $M' \subset M$, положив

- $M' \vDash P(\overrightarrow{m}) \Leftrightarrow M \vDash P(\overrightarrow{m}),$
- $\bullet \ c_{M'} = s_{\exists x(x=c)},$
- $f_{M'}(\overrightarrow{m}) = s_{\exists x(x=f(\overrightarrow{a}))}(\overrightarrow{m}).$

Доказываем, что $M' \prec M$ — искомая.

Логика и алгоритмы Ч. 3: Теория моделей Лекция 4

23 марта 2021

Фильтры и ультрафильтры

Определение. Фильтр на множестве I — это непустое $\mathcal{F}\subset\mathcal{P}(I)$ со свойствами

- $X, Y \in \mathcal{F} \Rightarrow (X \cap Y) \in \mathcal{F}$
- $X \in \mathcal{F} \& X \subset Y \Rightarrow Y \in \mathcal{F}$

Фильтр \mathcal{F} собственный, если $\varnothing \notin \mathcal{F}$ Ультрафильтр — максимальный по включению собственный фильтр.

Лемма 4.1.

Свойства ультрафильтров:

- $X \in \mathcal{F} \& Y \in \mathcal{F} \Leftrightarrow (X \cap Y) \in \mathcal{F}$,
- $X \notin \mathcal{F} \Leftrightarrow (I \setminus X) \in \mathcal{F}$.

Лемма 4.2.

Любой собственный фильтр можно расширить до ультрафильтра,

Фильтры и ультрафильтры

Определение. Фильтр \mathcal{F} главный, если $\bigcap \mathcal{F} \neq \emptyset$.

Лемма 4.3.

Ультрафильтр $\mathcal U$ главный, если и только если существует конечное $J\in\mathcal U.$

Определение. Пусть задан ультрафильтр \mathcal{U} на I. Рассмотрим свойства элементов I (одноместные предикаты). Свойство Φ верно *почти всегда* (относительно \mathcal{U}), если

$$\{i \mid \Phi(i)\} \in \mathcal{U}.$$

Обозначение: $\forall^{\infty} i \, \Phi(i)$.

Лемма 4.4.

Свойства квантора \forall^{∞} .

- $\forall^{\infty} i (\Phi(i) \wedge \Psi(i)) \Leftrightarrow \forall^{\infty} i \Phi(i) \wedge \forall^{\infty} i \Psi(i),$
- $\forall^{\infty} i \neg \Phi(i) \Leftrightarrow \neg \forall^{\infty} i \Phi(i)$.

Ультрапроизведения

Лемма 4.5.

Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры Ω, \mathcal{U} — ультрафильтр на I. Тогда

$$\alpha \approx_{\mathcal{U}} \beta := \forall^{\infty} i \, (\alpha_i = \beta_i)$$

задает отношение эквивалентности на множестве $\prod_{i \in I} M_i$.

Класс элемента $(\alpha_i)_{i\in I}$ обозначается $[\alpha_i]_{i\in I}$.

Ультрапроизведения

Определение. Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры $\Omega,$ \mathcal{U} — ультрафильтр на I.

Ультрапроизведение семейства $(M_i)_{i\in I}$ по ультрафильтру \mathcal{U} задается следующим образом.

- Носитель M это $\prod\limits_{i\in I}M_i/pprox_{\mathcal{U}}.$
- $c_M := [c_{M_i}]_{i \in I}$.
- $f_M([m_i^1], \dots, [m_i^k]) := [f_{M_i}(m_i^1, \dots, m_i^k)].$
- $M \vDash P([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i M_i \vDash P(m_i^1, \dots, m_i^k).$

Обозначение: $\prod_{\mathcal{U}} M_i$.

Теорема Лося.

$$\prod_{i \neq i} M_i \vDash A([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i \, M_i \vDash A(m_i^1, \dots, m_i^k).$$

Логика и алгоритмы Ч. 3: Теория моделей Лекция 5

5 апреля 2021

Фильтры и ультрафильтры

Определение. Фильтр на множестве I — это непустое $\mathcal{F} \subset \mathcal{P}(I)$ со свойствами

- $X, Y \in \mathcal{F} \Rightarrow (X \cap Y) \in \mathcal{F}$
- $X \in \mathcal{F} \& X \subset Y \Rightarrow Y \in \mathcal{F}$

Фильтр $\mathcal F$ собственный, если $\varnothing \notin \mathcal F$ Ультрафильтр — максимальный по включению собственный фильтр.

Лемма 4.1.

Свойства ультрафильтров:

- $X \in \mathcal{F} \& Y \in \mathcal{F} \Leftrightarrow (X \cap Y) \in \mathcal{F}$,
- $X \notin \mathcal{F} \Leftrightarrow (I \setminus X) \in \mathcal{F}$.

Лемма 4.2.

Любой собственный фильтр можно расширить до ультрафильтра,

Фильтры и ультрафильтры

Определение. Фильтр \mathcal{F} главный, если $\bigcap \mathcal{F} \neq \emptyset$.

Лемма 4.3.

Ультрафильтр $\mathcal U$ главный, если и только если существует конечное $J\in\mathcal U.$

Определение. Пусть задан ультрафильтр \mathcal{U} на I. Рассмотрим свойства элементов I (одноместные предикаты). Свойство Φ верно *почти всегда* (относительно \mathcal{U}), если

$$\{i \mid \Phi(i)\} \in \mathcal{U}.$$

Обозначение: $\forall^{\infty} i \, \Phi(i)$.

Лемма 4.4.

Свойства квантора \forall^{∞} .

- $\forall^{\infty} i (\Phi(i) \land \Psi(i)) \Leftrightarrow \forall^{\infty} i \Phi(i) \land \forall^{\infty} i \Psi(i),$
- $\forall^{\infty} i \neg \Phi(i) \Leftrightarrow \neg \forall^{\infty} i \Phi(i)$.

Ультрапроизведения

Лемма 4.5.

Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры Ω, \mathcal{U} — ультрафильтр на I. Тогда

$$\alpha \approx_{\mathcal{U}} \beta := \forall^{\infty} i \, (\alpha_i = \beta_i)$$

задает отношение эквивалентности на множестве $\prod_{i \in I} M_i$.

Класс элемента $(\alpha_i)_{i\in I}$ обозначается $[\alpha_i]_{i\in I}$.

Ультрапроизведения

Определение. Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры $\Omega,$ \mathcal{U} — ультрафильтр на I.

Ультрапроизведение семейства $(M_i)_{i\in I}$ по ультрафильтру \mathcal{U} задается следующим образом.

- Носитель M это $\prod_{i \in I} M_i / \approx_{\mathcal{U}}$.
- $c_M := [c_{M_i}]_{i \in I}$.
- $f_M([m_i^1], \dots, [m_i^k]) := [f_{M_i}(m_i^1, \dots, m_i^k)].$
- $M \vDash P([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i M_i \vDash P(m_i^1, \dots, m_i^k).$

Обозначение: $\prod_{\mathcal{U}} M_i$.

Теорема Лося.

$$\prod_{\mathcal{U}} M_i \vDash A([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i \, M_i \vDash A(m_i^1, \dots, m_i^k).$$

Теорема компактности

Теорема компактности (Гёделя – Мальцева).

Пусть T — теория в некоторой сигнатуре. Если каждое конечное подмножество T выполнимо, то T выполнима.

Доказательство. Рассмотрим

$$I := \{S \subset T \mid I \text{ конечно } \}.$$

Для каждого $S \in I$ существует модель $M_S \models S$. Для $A \in T$ пусть

$$J_A := \{ S \in I \mid A \in S \}.$$

Лемма 5.1. Существует ультрафильтр на I, содержащий все J_A . **Доказательство.** $J_{A_1} \cap \ldots \cap J_{A_k} \neq \emptyset$, т.к. содержит $\{A_1, \ldots, A_k\}$. Поэтому найдется фильтр, содержащий все такие пересечения.

Теорема компактности

Пусть \mathcal{U} содержит все J_A для $A \in T$. Тогда

$$\prod_{\mathcal{U}} M_S \vDash T.$$

Действительно,

$$J_A \in \mathcal{U} \Leftrightarrow \forall^{\infty} S A \in S.$$

Тогда

$$\forall^{\infty} S \, M_S \vDash A.$$

По теореме Лося,

$$\prod_{\mathcal{U}} M_S \vDash A.$$

Теоремы о подъеме

Теорема 5.2

Если теория имеет конечные модели неограниченной мощности, то она имеет и бесконечную модель.

Теорема 5.3 (Лёвенгейма — Сколема о подъеме)

Если теория в сигнатуре Ω имеет бесконечную модель, то она имеет модели любой бесконечной мощности $k \geq |\Omega|$.

Логика и алгоритмы Ч. 3: Теория моделей Лекция 10

27 апреля 2021

Рассматриваем модели в конечной сигнатуре Ω без функциональных символов.

Игра Эренфойхта $G_n(M, \mathbf{m}, M', \mathbf{m}')$ длины n на моделях M, M' с начальной позицией $(\mathbf{m}, \mathbf{m}')$, где $\mathbf{m} \in M^k$, $\mathbf{m}' \in M'^k$ для некоторого k описывается правилами:

- Ходы делаются поочередно, первый ход делает \forall , каждый игрок делает n ходов.
- Ход \forall это пара (M,l), где $l \in M$ или (M',l'). Ответный ход \exists в другой модели.
- Партия последовательность ходов по этим правилам. Законченная партия длины 2n. Последняа позиция $p(\pi)$ в партии π определяется по рекурсии: $p() = (\mathbf{m}, \mathbf{m}')$. Если $p(\pi) = (\mathbf{d}, \mathbf{e})$, то

$$p(\pi, (M, l)) = (\mathbf{d}l, \mathbf{e}), \ p(\pi, (M', l')) = (\mathbf{d}, \mathbf{e}l').$$

• \exists выигрывает законченную партию π , если $p(\pi)$ задает частичный изоморфизм.

Частичный изоморфизм: $M, \mathbf{m} \equiv_0 M', \mathbf{m}',$ если

$$M \vDash A(\mathbf{m}) \Leftrightarrow M' \vDash A(\mathbf{m}')$$

для любой простой атомарной $A(\mathbf{a})$. Простые атомарные формулы:

$$a_i = a_j, \ a_i = c, \ P(a_1, \dots, a_n).$$

Определение. *Стратегия для* \exists .

 σ : партии нечетной длины <2n — допустимые ходы

Партия $\pi = \chi_1, \dots, \chi_{2n}$ согласована $c \sigma$, если

$$\forall p < n \, \chi_{2p} = \sigma(\chi_1, \dots, \chi_{2p-1}).$$

 σ — выигрышная для \exists , если для любой партии π , согласованной с σ , π выиграна \exists .

Определение. Игровая эквивалентность $(M, \mathbf{m}) \approx_n (M', \mathbf{m}')$, если

 \exists имеет выигрышную стратегию в $G_n(M, \mathbf{m}, M', \mathbf{m}')$.

 Π емма $10.1 \approx_n$ задает отношение эквивалентности.

Лемма 10.2 (Индуктивное определение \approx_n)

$$(M, \mathbf{m}) \approx_{n+1} (M', \mathbf{m}') \Leftrightarrow \begin{cases} \forall d \in M \ \exists d' \in M' \ (M, \mathbf{m}d) \approx_n (M', \mathbf{m}'d') \\ \forall d' \in M' \ \exists d \in M \ (M, \mathbf{m}d) \approx_n (M', \mathbf{m}'d'). \end{cases}$$

Определение $q(A) - \kappa ванторная$ глубина формулы A определяется по рекурсии: q(A) = 0 для атомарной A,

$$q(A) \equiv 0$$
 для атомарной A , $q(\neg A) = q(A)$, $q(A*B) = \max(q(A), q(B))$, где $*$ — бинарная связка, $q(\forall x A[a \backslash x]) = q(\exists x A[a \backslash x]) = q(A) + 1$.

Определение. Формульная эквивалентность $(M,\mathbf{m})\equiv_n (M',\mathbf{m}'),$ если для любой простой формулы $A(\mathbf{a}),$ где $q(A)\leq n$

$$M \vDash A(\mathbf{m}) \Leftrightarrow M' \vDash A(\mathbf{m}').$$

Теорема 10.3 (Эренфойхта – Фраиссе)

$$(M, \mathbf{m}) \approx_n (M', \mathbf{m}') \Leftrightarrow (M, \mathbf{m}) \equiv_n (M', \mathbf{m}').$$

Следствие 10.4 $M \equiv M' \Leftrightarrow \forall n M \approx_n M'$.

Логика одноместных предикатов

Рассмотрим сигнатуру Ω_1 с 1-местными предикатами и равенством.

Определение. Замкнутая формула A финитно выполнима, если она имеет конечную модель.

Теорема 10.5 (Лёвенгейм, 1915) Всякая выполнимая формула A сигнатуры Ω_1 выполнима в модели мощности $\leq 2^k \cdot n$, где n = q(A) (для простой A),

k — число предикатных символов в A.

Следствие 10.6 Конечный спектр формулы в Ω_1 не может быть равен 2**N**.

Бесконечные игры Эренфойхта

Бесконечная игра Эренфойхта $G_{\omega}(M,\mathbf{m},M',\mathbf{m}')$ задается теми же правилами, что $G_n(M,\mathbf{m},M',\mathbf{m}')$, с отличиями: число ходов бесконечно,

бесконечная партия выиграна \exists , если выигран любой ее начальный отрезок четной длины.

Игровая эквивалентность $M \approx_{\omega} M'$ определяется соответственно.

Теорема 10.7 Для счетных моделей сигнатуры Ω

$$M \approx_{\omega} M' \Leftrightarrow M \cong M'$$
.

Теорема 10.8 (Кантор) Теория DLO_{\leftrightarrow} счетно категорична.