З ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ МЕХАНИЧЕСКОЙ УСТАЛОСТИ

- **3.1 Цель:** экспериментально определить основные характеристики сопротивления МУ.
- **3.2 Применяемые приборы и оборудование:** испытательные машины серии СИ, объекты испытаний: элементы конструкции (образцы).

3.3	Основные механические х	аракте	ристики	мате	риала	обр	азца

Марка материала:
Предела прочности:
Предел текучести:
Относительное удлинение после разрыва:
Относительное сужение после разрыва:

3.4 Схема испытаний на МУ. Расчет напряжений в образце

При испытаниях на МУ максимальные изгибные напряжения (амплитуду напряжений цикла) в опасном сечении образца определяют по формуле

$$\sigma_a = \sigma_{\text{max}} = ---, \tag{3.1}$$

где $M = $			
W =			
42			

Зависимость амплитуды напряжений от величины изгибающей нагрузки (для заданных размеров образца):

$$\sigma_a = --- = . \tag{3.2}$$

Изм.	Лист	№ докум.	Подпись	Дата	Лабораторная работа №3			
Разр		_			Экспериментальное опре-	Лит.	Лист	Листов
Пров	еер.	Тюрин			деление характеристик	ГГТУ и	1 м. П.О. Сух	5 сого гр.

			t
	<i>a</i>)		<i>б</i>)
$\sigma_{max}, \sigma_{min} - $			
$\sigma_a = $ $\sigma_m = $			
$R_{\sigma} = $			
3.5 Схема построения криво	ой МУ, опре	деление ее п	араметров
	σ_a		
			N
	Рисун	ок 3.3 –	N_{σ}
	Рисун	ок 3.3 —	N_{σ}
	Рисун	ок 3.3 –	N_{σ}
Уравнение кривой МУ:	Рисун	ок 3.3 –	N_{σ}
Уравнение кривой МУ:	Рисун	ок 3.3 –	
Уравнение кривой МУ:		ок 3.3 —	(3.3)

3.6 Обработка результатов испытаний методом наименьших квадратов

Результаты испытаний на МУ и их обработка методом наименьших квадратов приведены в таблице.

№ образца	σ _a , ΜΠα	N, цикл	$y_i = \lg \sigma_a$	$x_i = \lg N_{\sigma}$	x_i^2	$x_i y_i$
1						
2	0					
3						
4						
5						
6	0					
Σ						
7						
8						

Левая ветвь кривой МУ в двойных логарифмических шкалах аппроксимируется прямой линией, которая описывается уравнением

$$y = \underline{\hspace{1cm}}, \tag{3.4}$$

$$\lg \sigma_a = \underline{\qquad} \qquad (3.5)$$

Коэффициенты a и b данного уравнения определяют по формулам:

С учетом полученных значений коэффициентов a и b уравнение кривой МУ:

$$\lg \sigma_a = \underline{\hspace{1cm}} \tag{3.8}$$

Показатель наклона левой ветви кривой МУ:

						Лист
					Лабораторная работа №3	2
Изм.	Лист	№ докум.	Подпись	Дата		3

	$m_{\sigma} = \frac{1}{ a } = \dots = \tag{3.9}$
ставляя в него значение о_	
Тогда получаем, что $N_{G\sigma}$ =	= = циклов.
	многоступенчатого нагружения
	Рисунок 3.4 —
3.8 Экспериментально ления МУ	е определение характеристик сопротив-
	Лабораторная работа №3

Подпись Дата

Изм. Лист

№ докум.

σ _a MIT	, la		Рисуно	к 3.5 –
	Характери свойс		Обозначение	Численное значение
3.9	Выводы			
<u> </u>				
,				
Дата	a		иетка о защите раб цпись преподавате	
Лист	№ докум.	Подпись Дата		горная работа №3