# Fundamentele limbajelor de programare

C03

Denisa Diaconescu Traian Serbănută

Departamentul de Informatică, FMI, UB

Lambda calcul -  $\beta$ -reducții

# $\beta$ -reducții

Convenție. Spunem că doi termeni sunt egali, notat M = N, dacă sunt  $\alpha$ -echivalenți.

- β-reducție = procesul de a evalua lambda termeni prin "pasarea de argumente funcțiilor"
- $\beta$ -redex = un termen de forma ( $\lambda x.M$ ) N
- redusul unui redex  $(\lambda x.M)$  N este M[N/x]
- reducem lambda termeni prin găsirea unui subtermen care este redex, și apoi înlocuirea acelui redex cu redusul său
- repetăm acest proces de câte ori putem, până nu mai sunt redex-uri
- formă normală = un lambda termen fără redex-uri

# $\beta$ -reducții

Un pas de  $\beta$ -reducție  $\rightarrow_{\beta}$  este cea mai mică relație pe lambda termeni care satisface regulile:

$$(\beta) \qquad \overline{(\lambda x.M)N \to_{\beta} M[N/x]}$$

$$(cong_1) \qquad \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N}$$

$$(cong_2) \qquad \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'}$$

$$(\xi) \qquad \frac{M \to_{\beta} M'}{\lambda x.M \to_{\beta} \lambda x.M'}$$



# $\beta$ -reducții

La fiecare pas, subliniem redexul ales în procesul de  $\beta$ -reducție.

$$(\lambda x.y) ((\underline{\lambda z.zz}) (\lambda w.w)) \longrightarrow_{\beta} (\lambda x.y) ((zz)[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((z[\lambda w.w/z]) (z[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((\underline{\lambda w.w}) (\lambda w.w))$$

$$\longrightarrow_{\beta} (\underline{\lambda x.y}) (\underline{\lambda w.w})$$

$$\longrightarrow_{\beta} y$$

Ultimul termen nu mai are redex-uri, deci este în formă normală.

$$(\lambda x.y) ((\lambda z.zz) (\lambda w.w)) \rightarrow_{\beta} (\lambda x.y) ((\lambda w.w) (\lambda w.w))$$

$$\rightarrow_{\beta} (\lambda x.y) (\lambda w.w)$$

$$\rightarrow_{\beta} y$$

$$(\lambda x.y) ((\lambda z.zz) (\lambda w.w)) \rightarrow_{\beta} y [(\lambda z.zz) (\lambda w.w)/x]$$

$$\equiv y$$

#### Observăm că:

- reducerea unui redex poate crea noi redex-uri
- reducerea unui redex poate sterge alte redex-uri
- numărul de pași necesari până a atinge o formă normală poate varia, în funcție de ordinea în care sunt reduse redex-urile
- rezultatul final pare că nu a depins de alegerea redex-urilor

# $\beta$ -reducții divergente

Totuși, există lambda termeni care nu pot fi reduși la o  $\beta$ -formă normală (evaluarea nu se termină).

$$\omega \equiv \underbrace{(\lambda x. x \, x) \, (\lambda y. y \, y)}_{\beta} \quad \rightarrow_{\beta} \quad (\lambda y. y \, y) \, (\lambda y. y \, y) \equiv \omega$$
$$\rightarrow_{\beta} \quad \dots$$

Observați că lungimea unui termen nu trebuie să scadă în procesul de  $\beta$ -reducție; poate crește sau rămâne neschimbată.

# $\beta$ -formă normală

Există lambda termeni care deși pot fi reduși la o formă normală, pot să nu o atingă niciodată.

$$\frac{(\lambda xy.y) ((\lambda o.o o) (\lambda p.p p))}{\lambda z.z} (\lambda z.z) \xrightarrow{\beta} \frac{(\lambda y.y) (\lambda z.z)}{\lambda z.z} 
(\lambda xy.y) ((\lambda o.o o) (\lambda p.p p)) (\lambda z.z) \xrightarrow{\beta} (\lambda xy.y) ((\lambda p.p p) (\lambda p.p p)) (\lambda z.z) 
\xrightarrow{\beta} \dots$$

Contează strategia de evaluare.

# $\beta$ -formă normală

Notăm cu  $M woheadrightarrow_{\beta} M'$  faptul că M poate fi  $\beta$ -redus până la M' în 0 sau mai mulți pași (închiderea reflexivă și tranzitivă a relației  $\to_{\beta}$ ).

M este slab normalizabil (weakly normalising) dacă există N în formă normală astfel încât  $M woheadrightarrow_{\beta} N$ .

*M* este puternic normalizabil (strong normalising) dacă nu există reduceri infinite care încep din *M*.

Orice termen puternic normalizabil este și slab normalizabil.

# **Example**

 $(\lambda x.y)((\lambda z.zz)(\lambda w.w))$  este puternic normalizabil.

 $(\lambda xy.y)((\lambda o.o o)(\lambda p.p p))(\lambda z.z)$  este slab normalizabil, dar nu puternic normalizabil.

# Confluența $\beta$ -reducției

Teorema Church-Rosser. Dacă  $M woheadrightarrow_{\beta} M_1$  și  $M woheadrightarrow_{\beta} M_2$  atunci există M' astfel încât  $M_1 woheadrightarrow_{\beta} M'$  și  $M_2 woheadrightarrow_{\beta} M'$ .



Consecință. Un lambda termen are cel mult o  $\beta$ -formă normală (modulo  $\alpha$ -echivalență).

# Exerciții

**Exercițiu.** Verificați dacă termenii de mai jos pot fi aduși la o  $\beta$ -formă normală:

- 1.  $(\lambda x.x) M$
- 2.  $(\lambda xy.x) MN$
- 3.  $(\lambda x.xx)(\lambda y.yyyy)$

# Exerciții

**Exercițiu.** Verificați dacă termenii de mai jos pot fi aduși la o  $\beta$ -formă normală:

- 1.  $(\lambda x.x)M$  Corect: M
- 2.  $(\lambda xy.x) MN$  Corect: M
- 3.  $(\lambda x.xx)(\lambda y.yyy)$  Infinit:  $(\lambda y.yyyy)(\lambda y.yyyy)(\lambda y.yyyy)...$

# Strategii de evaluare

# Strategii de evaluare

De cele mai multe ori, există mai mulți pași de  $\beta$ -reducție care pot fi aplicați unui termen. Cum alegem ordinea? Contează ordinea?

O strategie de evaluare ne spune în ce ordine să facem pașii de reductie.

Lambda calculul nu specifică o strategie de evaluare, fiind nedeterminist. O strategie de evaluare este necesară în limbaje de programare reale pentru a rezolva nedeterminismul.

# Strategia normală (normal order)

# Strategia normală = *leftmost-outermost*

(alegem redex-ul cel mai din stânga care nu e conținut în alt redex)

- dacă M<sub>1</sub> și M<sub>2</sub> sunt redex-uri și M<sub>1</sub> este un subtermen al lui M<sub>2</sub>, atunci M<sub>1</sub> nu va fi următorul redex ales
- printre redex-urile care nu sunt subtermeni ai altor redex-uri (și deci sunt incomparabili față de relația de subtermen), îl alegem pe cel mai din stânga.

Dacă un termen are o formă normală, atunci strategia normală va converge la acea formă normală (știm că e unică).

$$((\lambda a.a)\,(\lambda xy.y))\,((\lambda o.o\,o)\,(\lambda p.p\,p))\,(\lambda z.z)\quad \rightarrow_{\beta}$$

# Strategia normală (normal order)

# Strategia normală = *leftmost-outermost*

(alegem redex-ul cel mai din stânga care nu e conținut în alt redex)

- dacă M<sub>1</sub> și M<sub>2</sub> sunt redex-uri și M<sub>1</sub> este un subtermen al lui M<sub>2</sub>, atunci M<sub>1</sub> nu va fi următorul redex ales
- printre redex-urile care nu sunt subtermeni ai altor redex-uri (și deci sunt incomparabili față de relația de subtermen), îl alegem pe cel mai din stânga.

Dacă un termen are o formă normală, atunci strategia normală va converge la acea formă normală (știm că e unică).

$$\frac{\left((\lambda a.a)(\lambda xy.y)\right)((\lambda o.o o)(\lambda p.p p))(\lambda z.z)}{(\lambda xy.y)((\lambda o.o o)(\lambda p.p p))}(\lambda z.z) \xrightarrow{\beta} \frac{(\lambda y.y)(\lambda x.x)}{\lambda x.x}$$

# Strategia aplicativă (applicative order)

# Strategia aplicativă = *leftmost-innermost*

(alegem redex-ul cel mai din stânga care nu conține alte redex-uri)

- dacă M<sub>1</sub> și M<sub>2</sub> sunt redex-uri și M<sub>1</sub> este un subtermen al lui M<sub>2</sub>, atunci M<sub>2</sub> nu va fi următorul redex ales
- printre redex-urile care nu sunt subtermeni ai altor redex-uri (și deci sunt incomparabili față de relația de subtermen), îl alegem pe cel mai din stânga.

$$(\lambda xy.y)\left(\left(\lambda x.x\,x\right)\left(\lambda x.x\,x\right)\right)\left(\lambda z.z\right) \quad \rightarrow_{\beta} \quad (\lambda xy.y)\left(\left(\lambda x.x\,x\right)\left(\lambda x.x\,x\right)\right)\left(\lambda z.z\right)$$

# Strategii în programare funcțională

În limbaje de programare funcțională, în general, reducerile din corpul unei  $\lambda$ -abstractizări nu sunt efectuate (deși anumite compilatoare optimizate pot face astfel de reduceri în unele cazuri).

Strategia call-by-name (CBN) = strategia normală fără a face reduceri în corpul unei  $\lambda$ -abstractizări

Strategia call-by-value (CBV) = strategia aplicativă fără a face reduceri în corpul unei  $\lambda$ -abstractizări

Majoritatea limbajelor de programare funcțională folosesc CBV, excepție făcând Haskell.

#### **CBN vs CBV**

O valoare este un  $\lambda$ -term pentru care nu există  $\beta$ -reducții date de strategia de evaluare considerată.

De exemplu,  $\lambda x.x$  este mereu o valoare, dar  $(\lambda x.x)$  1 nu este.

Sub CBV, funcțille pot fi apelate doar prin valori (argumentele trebuie să fie complet evaluate). Astfel, putem face  $\beta$ -reducția  $(\lambda x.M) N \rightarrow_{\beta} M[N/x]$  doar dacă N este valoare.

Sub CBN, amânăm evaluarea argumentelor cât mai mult posibil, făcând reducții de la stânga la dreapta în expresie. Aceasta este strategia folosită în Haskell.

CBN este o formă de evaluare leneșă (lazy evaluation): argumentele funcțiilor sunt evaluate doar când sunt necesare.

#### **CBN vs CBV**

# **Example**

Considerăm 3 și succ primitive.

# Strategia CBV:

$$(\lambda x.succ x) ((\lambda y.succ y) 3) \longrightarrow_{\beta} (\lambda x.succ x) (succ 3)$$

$$\rightarrow (\lambda x.succ x) 4$$

$$\rightarrow_{\beta} succ 4$$

$$\rightarrow 5$$

# Strategia CBN:

$$(\lambda x.succ x) ((\lambda y.succ y) 3) \longrightarrow_{\beta} succ ((\lambda y.succ y) 3)$$

$$\longrightarrow_{\beta} succ (succ 3)$$

$$\rightarrow succ 4$$

$$\rightarrow 5$$

# Expresivitatea *λ*-calculului

# Expresivitatea *λ*-calculului

Deși lambda calculul constă doar în  $\lambda$ -termeni, putem reprezenta și manipula tipuri de date comune.

Vom vedea cum putem reprezenta:

- valori booleene (Bool)
- valori opțiune (Maybe a)
- perechi (Pair a b)
- liste (List a)
- numere naturale

## **Bool**

#### Ce este o valoare Bool?

O alegere simplă între două variante

#### Ce este o functie cu domeniu Bool?

O analiză de caz simplă, care produce un rezultat dacă intrarea e **T** și altul dacă intrarea e **F** 

Idee: Definim T și F astfel încât

bool ifTrue ifFalse b = b ifTrue ifFalse

#### Ce este o valoare Bool?

O alegere simplă între două variante

#### Ce este o functie cu domeniu Bool?

O analiză de caz simplă, care produce un rezultat dacă intrarea e **T** și altul dacă intrarea e **F** 

# Idee: Definim T și F astfel încât

bool ifTrue ifFalse b = b ifTrue ifFalse

- $T \triangleq \lambda tf.t$  (dintre cele două alternative o alege pe prima)
- $\mathbf{F} \triangleq \lambda tf. f$  (dintre cele două alternative o alege pe a doua)

$$\mathbf{T} \triangleq \lambda t f. t$$

$$\mathbf{F} \triangleq \lambda t f. f$$

**bool**  $\triangleq \lambda tfb.btf$ 

Folosind doar aceste 3 funcții putem defini toate celelalte funcții cu argumente Bool:

```
if :: Bool -> a -> a -> a
(&&) :: Bool -> Bool -> Bool
(||) :: Bool -> Bool -> Bool
```

#### **Exercitiu**

Definiți aceste funcții

not :: Bool -> Bool

$$\mathbf{T} \triangleq \lambda xy.x \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \mathbf{bool} \triangleq \lambda tfb.btf$$

$$\mathbf{if} \triangleq \lambda btf.\mathbf{bool}\ t\ f\ b$$

$$\mathbf{and} \triangleq \lambda b_1b_2.\mathbf{if}\ b_1\ b_2\ \mathbf{F}$$

$$\mathbf{or} \triangleq \lambda b_1b_2.\mathbf{if}\ b_1\ \mathbf{T}\ b_2$$

$$\mathbf{not} \triangleq \lambda b_1.\mathbf{if}\ b_1\ \mathbf{F}\ \mathbf{T}$$

Observați că aceste operații lucrează corect doar dacă primesc ca intrări valori booleene.

Nu există nicio garanție să se comporte rezonabil pe orice alți  $\lambda$ -termeni.

Folosind lambda calcul fără tipuri, avem garbage in, garbage out.

```
\mathbf{T} \triangleq \lambda xy.x \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \mathbf{bool} \triangleq \lambda tfb.btf
\mathbf{if} \triangleq \lambda btf.\mathbf{bool}\ t\ f\ b
\mathbf{and} \triangleq \lambda b_1b_2.\mathbf{if}\ b_1\ b_2\ \mathbf{F}
\mathbf{or} \triangleq \lambda b_1b_2.\mathbf{if}\ b_1\ \mathbf{T}\ b_2
\mathbf{not} \triangleq \lambda b_1.\mathbf{if}\ b_1\ \mathbf{F}\ \mathbf{T}
```

Exercițiu. Aduceți la o formă normală următorii termenii:

- and TF
- or FT
- not T

# **Booleeni**

$$\mathbf{T} \triangleq \lambda xy.x \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \mathbf{bool} \triangleq \lambda tfb.btf$$

$$\mathbf{if} \triangleq \lambda btf.\mathbf{bool} \ t \ f \ b$$

$$\mathbf{and} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ b_2 \ \mathbf{F}$$

$$\mathbf{or} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ \mathbf{T} \ b_2$$

$$\mathbf{not} \triangleq \lambda b_1.\mathbf{if} \ b_1 \ \mathbf{F} \mathbf{T}$$

# Soluții:

and TF = 
$$(\lambda b_1 b_2.if b_1 b_2 F)$$
 TF  $\twoheadrightarrow_{\beta}$  if TFF =  $(\lambda btf.bool t f b)$  TFF  
 $\twoheadrightarrow_{\beta}$  bool FFT =  $(\lambda tfb.btf)$  FFT  $\twoheadrightarrow_{\beta}$  TFF =  $(\lambda xy.x)$  FF  $\twoheadrightarrow_{\beta}$  F  
or FT =  $(\lambda b_1 b_2.if b_1 T b_2)$  FT  $\twoheadrightarrow_{\beta}$  if FTT  
 $\twoheadrightarrow_{\beta}$  FTT =  $(\lambda xy.y)$  TT  $\twoheadrightarrow_{\beta}$  T  
not T =  $(\lambda b_1.if b_1 FT)$  T  $\twoheadrightarrow_{\beta}$  if TFT  
 $\twoheadrightarrow_{\beta}$  TFT =  $(\lambda xy.x)$  FT  $\twoheadrightarrow_{\beta}$  F

# Maybe a

# Ce este o valoare Maybe a?

Două variante din care una încapsulează o valoare de tip a

Ce este o funcție cu domeniu Maybe a?

O functie (pentru **Just** *a*) sau o valoare implicită (pentru **Nothing**)

maybe :: 
$$b \rightarrow (a \rightarrow b) \rightarrow Maybe a \rightarrow b$$

Idee: Definim Nothing și Just astfel încât

**maybe** ifNothing ifJust m = m ifNothing ifJust

# Maybe a

# Ce este o valoare Maybe a?

Două variante din care una încapsulează o valoare de tip a

#### Ce este o funcție cu domeniu Maybe a?

O funcție (pentru **Just** *a*) sau o valoare implicită (pentru **Nothing**)

maybe :: 
$$b \rightarrow (a \rightarrow b) \rightarrow Maybe a \rightarrow b$$

# Idee: Definim Nothing și Just astfel încât

maybe ifNothing ifJust m = m ifNothing ifJust

- Nothing ≜ λnj.n (dintre cele două alternative o alege pe prima)
- Just ≜ λanj.ja
   (Just a aplică al doilea argument valorii a)

**Nothing**  $\triangleq \lambda n j. n$  **Just**  $\triangleq \lambda a n j. j a$ 

**maybe**  $\triangleq \lambda n j m. m n j$ 

Folosind doar aceste 3 functii putem defini toate celelalte functii cu argumente **Maybe** a:

fromMaybe ::  $a \rightarrow Maybe a \rightarrow a$ isNothing :: Maybe a -> Bool

isJust :: Maybe a -> Bool

fmapMaybe ::  $(a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b$ 

bindMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b

# Exercitiu

Definiti aceste funcții (la laborator)

#### Pair a b

#### Ce este o valoare Pair a b?

O valoare care încapsulează o valoare de tip a și o valoare de tip b

## Ce este o funcție cu domeniu Pair a b?

O funcție care știe ce să facă cu ambele valori

unpair :: 
$$(a \rightarrow b \rightarrow c) \rightarrow Pair a b \rightarrow c$$

#### Idee: Definim Pair astfel încât

unpair 
$$f p = p f$$

#### Pair a b

#### Ce este o valoare Pair a b?

O valoare care încapsulează o valoare de tip a și o valoare de tip b

## Ce este o funcție cu domeniu Pair a b?

O funcție care știe ce să facă cu ambele valori

unpair :: 
$$(a \rightarrow b \rightarrow c) \rightarrow Pair a b \rightarrow c$$

#### Idee: Definim Pair astfel încât

unpair 
$$f p = p f$$

Pair ≜ λabf.fab (Pair a b aplică funcția valorilor încapsulate)

#### **Pair** $\triangleq \lambda abf.fab$

**uncons**  $\triangleq \lambda fp.pf$ 

Folosind doar aceste 2 funcții putem defini alte funcții cu argumente **Pair** *a b*:

**fst** :: Pair a b -> a **snd** :: Pair a b -> b

#### **Exercitiu**

Definiți aceste funcții (la laborator)

#### List a

#### Ce este o valoare List a?

Două variante, una încapsulând o valoare de tip a și o altă listă

#### Ce este o functie cu domeniu List a?

O funcție care știe să agregheze lista

**foldr** :: 
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow List a \rightarrow b$$

Idee: Definim Nil și Cons astfel încât

foldr 
$$f i | = | f i$$

#### List a

#### Ce este o valoare List a?

Două variante, una încapsulând o valoare de tip a și o altă listă

#### Ce este o functie cu domeniu List a?

O funcție care știe să agregheze lista

**foldr** :: 
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow List a \rightarrow b$$

#### Idee: Definim Nil și Cons astfel încât

foldr 
$$f i \mid = \mid f i$$

- Nil  $\triangleq \lambda fi.i$  (alege valoarea inițială)
- Cons ≜ λalfi.fa(lfi) (Cons a l agregează lista, apoi agreghează valorea a în rezultat)

# $Nil \triangleq \lambda fi.i$

Cons  $\triangleq \lambda alfi.fa(lfi)$ 

 $foldr \triangleq \lambda fil.lfi$ 

Folosind doar aceste 3 funcții putem defini alte funcții cu argumente **List** *a*:

```
(++) :: List a -> List a -> List a
null :: List a -> Bool
map :: (a -> b) -> List a -> List b
filter :: (a -> Bool) -> List a -> List a
foldl :: (b -> a -> b) -> b -> List a -> b -- greu
reverse :: List a -> List a
uncons :: List a -> Maybe (Pair a (List a)) -- greu
head :: List a -> Maybe a
```

# Exercițiu

tail :: List a -> Maybe (List a)

#### Ce este un număr natural?

Zero sau succesor de un număr natural

#### Ce este o functie cu domeniu natural?

O funcție care iterează o funcție dată peste o valoare inițială

iterate :: 
$$(b \rightarrow b) \rightarrow b \rightarrow Natural \rightarrow b$$

Idee: Definim Zero și Succ astfel încât

#### Ce este un număr natural?

Zero sau succesor de un număr natural

#### Ce este o functie cu domeniu natural?

O funcție care iterează o funcție dată peste o valoare inițială

iterate :: 
$$(b \rightarrow b) \rightarrow b \rightarrow Natural \rightarrow b$$

#### Idee: Definim Zero și Succ astfel încât

Zero ≜ λfi.i

- (alege valoarea inițială)
- Succ  $\triangleq \lambda n f i.f(n f i)$  (Succ n iterează de n ori f peste i, apoi aplică f din nou)

Succ 
$$\triangleq \lambda n fi. f(n fi)$$

iterate  $\triangleq \lambda fin.nfi$ 

Numeralul Church pentru numărul  $n \in \mathbb{N}$  este notat  $\overline{n}$ .

Numeralul Church  $\overline{n}$  este forma normală a  $\lambda$ -termenului **Succ**<sup>n</sup> **Zero**, adică  $\lambda fi.f^ni$ , unde  $f^n$  reprezintă compunerea lui f cu ea însăși de n ori:

```
Zero \triangleq \lambda fi.i
                   Succ \triangleq \lambda n fi. f(n fi)
                                           iterate \triangleq \lambda fin.nfi
Folosind doar aceste 3 functii putem defini alte functii:
(+), (*) :: Natural -> Natural -> Natural
isZero :: Natural -> Bool
pred :: Natural -> Maybe Natural -- greu
diff :: Natural -> Natural -> Maybe Natural
(-) :: Natural -> Natural -> Natural -- 0 daca nu se p
(<=), (==) :: Natural -> Natural -> Bool
max :: Natural -> Natural -> Natural
length :: List a -> Natural
```

sum, product, maximum :: List Natural -> Natural

#### Exercițiu

Definiți aceste funcții (la laborator)

# Quiz time!



https://tinyurl.com/C03-Quiz1

Pe săptămâna viitoare!