Guia Completo: Balanceamento de Árvores AVL

1. Conceitos Fundamentais

O que é uma Árvore AVL?

Uma árvore AVL é uma árvore binária de busca **auto-balanceada** onde, para cada nó, a diferença entre as alturas das subárvores esquerda e direita não pode ser maior que 1.

Fator de Balanceamento (FB)

O **Fator de Balanceamento** de um nó é calculado como:

FB = Altura(subárvore direita) - Altura(subárvore esquerda)

Valores possíveis:

- **FB** = **0**: Árvore perfeitamente balanceada
- **FB** = **+1**: Subárvore direita é 1 nível mais alta
- **FB = -1**: Subárvore esquerda é 1 nível mais alta
- **FB** = **+2 ou -2**: Árvore **DESBALANCEADA** → Precisa rotacionar!

2. Como Calcular a Altura de um Nó

Definição de Altura

• Altura: Maior caminho do nó até uma folha

• **Folha**: altura = 0

• **Nó interno**: altura = 1 + max(altura_esquerda, altura_direita)

• **Nó nulo**: altura = -1

Exemplo Prático

Calculando alturas:

- Altura(2) = 0 (folha)
- Altura(7) = 0 (folha)

• Altura(20) = 0 (folha)

• Altura(5) = $1 + \max(0, 0) = 1$

• Altura(15) = 1 + max(-1, 0) = 1

• Altura(10) = $1 + \max(1, 1) = 2$

Calculando fatores de balanceamento:

• FB(2) = (-1) - (-1) = 0

• FB(7) = (-1) - (-1) = 0

• FB(20) = (-1) - (-1) = 0

• FB(5) = 0 - 0 = 0

• FB(15) = 0 - (-1) = +1

• FB(10) = 1 - 1 = 0

3. Os 4 Casos de Rotação

Quando um nó tem FB = +2 ou -2, precisamos identificar qual rotação aplicar:

Caso 1: Rotação Simples à Direita (LL)

Quando usar: $FB(no) = -2 e FB(filho_esquerdo) = -1$

Caso 2: Rotação Simples à Esquerda (RR)

Quando usar: $FB(no) = +2 e FB(filho_direito) = +1$

Caso 3: Rotação Dupla Esquerda-Direita (LR)

Quando usar: $FB(no) = -2 e FB(filho_esquerdo) = +1$

Caso 4: Rotação Dupla Direita-Esquerda (RL)

Quando usar: $FB(no) = +2 e FB(filho_direito) = -1$

4. Algoritmo Passo a Passo

Para cada inserção/remoção:

- 1. **Execute a operação normal** (inserir/remover como em BST)
- 2. **Recalcule as alturas** dos nós no caminho da raiz até o nó modificado
- 3. Calcule os fatores de balanceamento
- 4. Identifique nós desbalanceados (FB = ± 2)
- 5. **Determine o tipo de rotação** necessária
- 6. Execute a rotação
- 7. **Recalcule alturas** após a rotação

5. Exemplo Detalhado: Inserção

Vamos inserir os valores: 10, 5, 15, 2, 7, 12, 20, 1

Passo 1: Inserir 10

Passo 2: Inserir 5

```
10 (FB=-1, h=1)
5 (FB=0, h=0)
```

Passo 3: Inserir 15

Passo 4: Inserir 2

Passo 5: Inserir 7

Passo 6: Inserir 12

Passo 7: Inserir 20

Passo 8: Inserir 1 → **DESBALANCEAMENTO!**

Análise:

- $FB(10) = -2 \rightarrow Desbalanceado$
- FB(5) = -1 → Caso LL (Rotação Simples à Direita)

Após rotação:

6. Dicas Importantes

Como Identificar o Tipo de Rotação:

- 1. Identifique o nó desbalanceado (FB = ± 2)
- 2. Olhe para o filho na direção do desbalanceamento:
 - Se FB = -2, olhe o filho esquerdo
 - Se FB = +2, olhe o filho direito
- 3. Compare os sinais:
 - Sinais iguais \rightarrow Rotação simples
 - Sinais diferentes → Rotação dupla

Tabela de Decisão:

FB(nó)	FB(filho)	Rotação
-2	-1 ou 0	LL (Simples à direita)
+2	+1 ou 0	RR (Simples à esquerda)
-2	+1	LR (Dupla esq-dir)
+2	-1	RL (Dupla dir-esq)
[∢		

7. Exercícios Práticos

Questão 1 (Básico)

Calcule o fator de balanceamento de cada nó na árvore:

Questão 2 (Básico)

Determine se a seguinte árvore é AVL:

Questão 3 (Intermediário)

Insira o valor 4 na árvore AVL abaixo e mostre o estado final:

Questão 4 (Intermediário)

Que tipo de rotação é necessária quando um nó tem FB = +2 e seu filho direito tem FB = -1?

Questão 5 (Intermediário)

Construa uma árvore AVL inserindo os valores na ordem: 1, 2, 3, 4, 5, 6

Questão 6 (Intermediário)

Remova o valor 10 da árvore AVL:

Questão 7 (Avançado)

Insira os valores 25, 30, 35 na árvore AVL abaixo e mostre todas as rotações necessárias:

Questão 8 (Avançado)

Determine a sequência de rotações necessárias para balancear a árvore após inserir o valor 8:

Questão 9 (Avançado)

Construa uma árvore AVL com altura mínima que contenha exatamente 15 nós.

Questão 10 (Difícil)

Dada a sequência de inserções: 50, 25, 75, 10, 30, 60, 80, 5, 15, 27, 35, 55, 65, 90, 85. Mostre o estado da árvore após cada rotação necessária.

Questão 11 (Difícil)

Prove que após uma rotação simples em uma árvore AVL, todos os fatores de balanceamento ficam entre -1 e +1. Use um exemplo específico para demonstrar.

Questão 12 (Muito Difícil)

Você tem uma árvore AVL com 1000 nós. Após uma sequência de operações, você precisa inserir os valores de 1001 a 1010 em ordem crescente. Determine:

- a) Quantas rotações serão necessárias no pior caso?
- b) Qual será a altura final da árvore?
- c) Desenhe a estrutura da árvore após as 3 primeiras inserções, mostrando todas as rotações.

Respostas dos Exercícios

Resposta 1:

• FB(1) = 0, FB(3) = -1, FB(6) = 0, FB(9) = 0, FB(5) = -1, FB(8) = 0

Resposta 2:

Não é AVL. O nó 15 tem FB = +2.

Resposta 3:

Após inserir 4, será necessária uma rotação RL no nó 6.

Resposta 4:

Rotação dupla direita-esquerda (RL).

Resposta 5:

A árvore final terá 4 como raiz, com rotações necessárias após inserir 3, 5 e 6.

[As demais respostas podem ser desenvolvidas individualmente conforme necessário]

Conclusão

O balanceamento de árvores AVL segue um padrão sistemático:

- 1. **Identifique** o desbalanceamento (FB = ± 2)
- 2. **Determine** o tipo de rotação baseado nos fatores de balanceamento
- 3. Execute a rotação apropriada
- 4. **Recalcule** as alturas

Com prática, esse processo se torna automático. Lembre-se sempre de que o objetivo é manter a propriedade AVL: $|FB| \le 1$ para todos os nós.