	a a chiave pub	oblica)		E	DITIVIL	DI FI	NE S	SEMESTE	EE	Roma, 28 Maggio, 201
$gnome \dots \dots \dots$		Nom	e					$\dots Matr$	$icola \dots$	
olvere il massimo numero o	di esercizi forn E SCRITTE SU	endo s $UALT$	piega:	zioni cl	hiare e s	inteti	che.	Inserire le	$e\ risposte$	negli spazi predisposti. NC sto: 2 ore. Nessuna domano
	1	2	3	4 5	6	7	8	TOT.		
Rispondere alle seguenti	${\text{domande che}}$	fornisc	ono u	ına giu	stificazi	one d	i 1 ris	ga:	1	
				6				9		
a. Fornire un esempio	li un'equazion	e di W	/eierst	trass si	ngolare	•				
1 172 1 1 1	1	.1 1	٠,	1.	, ,	. 1		, C :1	1 1 1	9
b. E' vero che in alcuni	gruppi ciclici	11 loga	aritmo	discre	eto e pa	rticola	armei	nte facile	ia calcola	re:
a Famina dua asampi a	li gomni finiti	E in	ovi tv	utti ali	alaman	Ŀ; ⊿; Т	. 7∗√ (1) cono m	on ove to vi	
c. Fornire due esempi c	li campi finiti	\mathbf{F}_q in	cui tı	ıtti gli	elemen	ti di I	$\mathbb{F}_q^*\setminus\{$	1} sono g	eneratori	
c. Fornire due esempi o	li campi finiti	\mathbf{F}_q in	cui tı	ıtti gli	elemen	ti di I	$F_q^*\setminus \{$	1} sono g	eneratori	
c. Fornire due esempi o	li campi finiti	\mathbf{F}_q in	cui tı	utti gli	elemen	ti di I	$rac{1}{q}^*\setminus\{0\}$	1} sono g	eneratori 	
c. Fornire due esempi o	li campi finiti	\mathbf{F}_q in	cui tı	ıtti gli	elemen	ti di I	$rac{1}{q}^*\setminus \{$	1} sono g	eneratori 	
c. Fornire due esempi o	li campi finiti	\mathbf{F}_q in	cui tı	ıtti gli	elemen	ti di I	$\{q^*\}$	1} sono g	eneratori 	

d. Fornire un esempio di un polinomio primitivo in un campo con 9 elementi.

2.	Enunciare e dimostrare il Teorema di struttura dei sottocampi di \mathbf{F}_{p^n} . Lo si utilizzi per costruire un esempio di campo finito con esattamente 5 sottocampi.
3.	Supponiamo che n,m siano interi, che $m\equiv 5 \bmod 4n$, che $n\equiv 7 \bmod 10$. Calcolare il simbolo di Jacobi $\binom{n}{m}$.

4.	Spiegare il funzionamento di alcuni sistemi crittografici che basano la propria sicurezza sul problema del logaritmo discreto
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.
5.	Spiegare la rilevanza del metodo Baby-Steps-Giant-Steps nella teoria delle curve ellittiche su campi finiti.

