

Introduction to Data Science Course

Big Data Parallel and Distributed Computing

Le Ngoc Thanh
Inthanh@fit.hcmus.edu.vn
Department of Computer Science

Contents

- Introduction to Big Data
- Big data architecture
- Big data and data science
- Parallel and distributed computing

Data Science Process

fit@hcmus

Data Never Sleeps

fit@hcmus

O How much data is generated every minute?

Data Never Sleeps

Data Growth

Expected to Continue Accelerating

2025E: 163 ZB, 36%

Brontobyte

Zettabyte

Geopbyte

Yottabyte

Exabyte

What is Big Data

Big data is term used to describe the massive volume of both structured and unstructured data that is so large it is difficult to process using traditional techniques.

Characteristics of Big data

The characteristics of Big data are characterized by the V's.

6 Vs of Big Data

Big data ecosystem

fit@hcmus

Structured Data

Unstructured/

Semi-structured Data

To learn about big data in more detail, enroll in the big data course

Contents

- Introduction to Big Data
- Big data architecture
- Big data and data science
- Parallel and distributed computing

Big Data and Data Science

fit@hcmus

Big Data and Data Science

fit@hcmus

Contents

- Introduction to Big Data
- Big data architecture
- Big data and data science
- Parallel and distributed computing

Massive Data Analyzing Problem

Parallel and distributed computing

Parallel computing

Serial operation schematic diagram

Parallel computing

Parallel computing with GPU

To learn parallel programming, enroll in the parallel programming with GPU course

Limitations of parallel processing

Intel Core i9 – 9900K

	Peak Performance
Transistor Count	54 billion
Die Size	826 mm²
FP64 CUDA Cores	3,456
FP32 CUDA Cores	6,912
Tensor Cores	432
Streaming Multiprocessors	108
FP64	9.7 teraFLOPS
FP64 Tensor Core	19.5 teraFLOPS
FP32	19.5 teraFLOPS
TF32 Tensor Core	156 teraFLOPS 312 teraFLOPS*
BFLOAT16 Tensor Core	312 teraFLOPS 624 teraFLOPS*
FP16 Tensor Core	312 teraFLOPS 624 teraFLOPS*
INT8 Tensor Core	624 TOPS 1,248 TOPS*
INT4 Tensor Core	1,248 TOPS 2,496 TOPS*
GPU Memory	40 GB
GPU Memory Bandwidth	1.6 TB/s
Interconnect	NVLink 600 GB/s PCIe Gen4 64 GB/s
Multi-Instance GPUs	Various Instance sizes with up to 7MIGs @5GB
Form Factor	4/8 SXM GPUs in HGX A100
Max Power	400W (SXM)
CDU Tools A100	

GPU Tesla A100

Distributed computing

fit@hcmus

Distributed computing

Get a larger server or larger data arrays

Scale out

Distribute the data and workload over several servers

Distributed computing

- Some terms are related to:
 - Cloud computing
 - Grid computing
 - Cluster computing
 - Network computing
 - Edge computing
 - Fog computing

Distributed vs Parallel Computing

Distributed Computing

fit@hcmus

Parallel Computing

