Advanced topics on Algorithms

Luciano Gualà www.mat.uniroma2.it/~guala/

What: 3 topics, 4 lectures per topic

approximation algorithms:

- well-established field
- widely used approach for (NP-)hard problems
- cool techniques: rounding, dual-fitting, primal-dual approach

parameterized algorithms:

- multivariate analysis of algorithms
- refined notions of efficiency and hardness
- cool techniques: color coding, kernelization, treewidth

advanced data structures:

- major core of algorithmic problems
- DSs for geometric data, big data, static trees, strings
- cool techniques: fractional cascading, indirection

lecturer of this part: Alessandro Straziota

How (to get credits)

- attend lectures
- final oral exam and/or class presentation (of uncovered material)

Why

- expand your background: wider view of the huge world of algorithms
- useful: be better theorists and practitioners
- fun: amazing material and techniques

any question?

Approximation algorithms: Episode I (pilot)

main reference:

Def.

An α -approximation algorithm for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α the value of an optimal solution.

α: approximation ratio or approximation factor

minimization problem:

- α≥1
- for each instance x, the returned solution s has cost cost(s) $\leq \alpha$ OPT(x)

maximization problem:

- α≤1
- for each instance x, the returned solution s has value(s) $\geq \alpha$ OPT(x)

minimum Vertex Cover problem

min cardinality Vertex Cover problem

Input:

an undirected graph G=(V,E)

Feasible solution:

 $U \subseteq V$ such that every edge $(u,v) \in E$ is covered, i.e. $u \in U$ or $v \in U$

measure (min):

cardinality of U

min cardinality Vertex Cover problem

Input:

an undirected graph G=(V,E)

Feasible solution:

 $U\subseteq V$ such that every edge $(u,v)\in E$ is covered, i.e. $u\in U$ or $v\in U$

measure (min):

cardinality of U

a vertex cover of size 7

min cardinality Vertex Cover problem

Input:

an undirected graph G=(V,E)

Feasible solution:

 $U\subseteq V$ such that every edge $(u,v)\in E$ is covered, i.e. $u\in U$ or $v\in U$

measure (min):

cardinality of U

a better vertex cover of size 4

Def.

Given a graph G=(V,E), a subset of edges $M\subseteq E$ is a matching if no two edges in M share an endpoint.

Def.

A matching $M\subseteq E$ is maximal if for every $e\in E\setminus M$, $M\cup \{e\}$ is not a matching.

Algorithm 1.2 (Cardinality vertex cover)

Find a maximal matching in G and output the set of matched vertices.

the computed vertex cover of size 6

Lemma

The algorithm returns a feasible VC.

proof

let $M\subseteq E$ be the maximal matching computed by the algorithm.

edges in M are clearly covered for maximality of M any other edge (x,y) shares and endpoint with some edge in M...

...and thus it is covered

Theorem

The algorithm is a 2-approximation algorithm for the VC problem.

proof

The returned solution is a feasible VC (previous lemma)

let $M\subseteq E$ be the maximal matching computed by the algorithm, and U the corresponding VC.

any optimal solution must have size OPT at least |M|

Lower bounding scheme: the size of any maximal matching is a lower bound to the size of an optimal VC

thus:

Three important questions:

1. Can the approximation ratio of Algorithm 1.2 be improved by a better analysis?

- 2. Can an approximation algorithm with a better apx ratio be designed using the lower bounding scheme of Algorithm 1.2, i.e. the size of a maximal matching?
- 3. Is there some other lower bounding scheme that can lead to a better approximation algorithm for VC?

1. Can the approximation ratio of Algorithm 1.2 be improved by a better analysis? NO

complete bipartite graph $K_{n,n}$

Algorithm 1.2 will pick all the 2n vertices

OPT=n (one side is an optimal VC)

2. Can an approximation algorithm with a better apx ratio be designed using the lower bounding scheme of Algorithm 1.2, i.e. the size of a maximal matching? NO

complete graph K_n where n is odd

size of any maximal matching is (n-1)/2

OPT=n-1

3. Is there some other lower bounding scheme that can lead to a better approximation algorithm for VC? OPEN

Partial answer:

Theorem

Assuming the unique games conjecture holds, if there exists an α -approximation algorithm for the VC problem with α <2, then P=NP.

roughly: a particular problem (called unique games) is NP-hard

Minimum Set Cover problem

minimum Set Cover problem

Input:

- universe U of n elements
- a collection of subsets of U, $S=\{S_1,...,S_k\}$
- each $S \in S$ has a positive cost c(S)

Feasible solution:

a subcollection $C \subseteq S$ that covers U (whose union is U)

measure (min):

cost of
$$C: \sum_{S \in C} c(S)$$

a set cover of cost 16

a better set cover of cost 15

a better set cover of cost 12 greedy strategy: pick the most cost-effective set and remove the covered elements, until all elements are covered.

Let C be the set of elements already covered.

cost-effectiveness of S: c(S)/|S-C|

average cost at which S covers new elements

Algorithm 2.2 (Greedy set cover algorithm)

- 1. $C \leftarrow \emptyset$
- 2. While $C \neq U$ do

Find the most cost-effective set in the current iteration, say S.

Let $\alpha = \frac{\cos t(S)}{|S-C|}$, i.e., the cost-effectiveness of S.

Pick S, and for each $e \in S - C$, set $\operatorname{price}(e) = \alpha$.

$$C \leftarrow C \cup S$$
.

3. Output the picked sets.

average cost at which e is covered

the computed set cover of cost 17

Number the elements of U in order in which they were covered, resoving ties arbitrarily. Let $e_1,...,e_n$ this numbering.

Lemma

For each $k \in \{1,...,n\}$, price $(e_k) \leq OPT/(n-k+1)$

proof

at any iteration, the leftovers sets of the optimal solution can cover all the remaining elements C'=U-C at cost at most OPT.

one of these leftovers sets has cost-effectiveness at most $OPT/|\mathcal{C}'|$

at iteration in which e_k is covered, C' contains at least n-k+1 elements.

by the greedy choice:

$$price(e_k) \leq OPT/|C'| \leq OPT/(n-k+1)$$

Theorem

The greedy algorithm is H_n factor approximation algorithm for the minimum Set Cover problem, where $H_n = 1+1/2+...+1/n$.

proof

Since the cost of each picked set is distributed among the new covered elements:

cost of the cover=
$$\sum_{k=1}^{n} \text{price}(e_k) \leq \sum_{k=1}^{n} OPT/(n-k+1) \leq H_nOPT$$

$$H_n = \sum_{k=1}^{n} 1/k \le \ln n + 1$$
 $n-th harmonic number$

tight example

Theorem

There exists some constant c>0 such that if there exists a (c ln n)-apx algorithm for the unweighted SC problem, then P=NP.

Theorem

If there exists a (c In n)-apx algorithm for the unweighted SC problem, for some constant c<1, then there is an $O(n^{O(\log \log n)})$ -time alg for each NP-complete problem.

the approximation game: get better and better approximation factor

Polynomial-Time Approximation Scheme: $(1+\epsilon)$ -apx for any $\epsilon>0$. running time depends on ε logkn FPTAS EPTAS PTAS O(1) n^{ϵ} apx factor exact $(1+\varepsilon)$ -apx in time algorithms $f(1/\epsilon)n^{O(1/\epsilon)}$ $(1+\varepsilon)$ -apx in time $f(1/\epsilon) n^{O(1)}$ $(1+\epsilon)$ -apx in time $poly(1/\epsilon) n^{O(1)}$

Application to shortest superstring

the shortest superstring problem

```
Input:
 a set of n strings over a finite alphabet S=\{s_1,...,s_n\}
Feasible solution:
  a string s that contains each s_i as a substring
measure (min):
  length of s
notice: w.l.o.g. we can assume no string s_i is a substring of another s_i
    S={abbc, cccaab, bccc}
   a solution of length 12:
                                    abbcccaabccc
   a better solution of length 9: bcccaabbc
```

reducing the problem to set cover

for $s_i, s_j \in S$, and k>0 if the last k symbols of s_i are the same as the first k symbols of s_j , let $\sigma_{i,j,k}$ be the string obtained by overlapping those k positions

let M be the set of the strings σ_{ijk} for all valid choices of i, j, k. for a given string π , let set(π)={s \in S : s is a substring of π }

the Set Cover instance:

- the set of objects is S
- collection of subsets: we have set(π) for each $\pi \in S \cup M$ of cost $|\pi|$

Algorithm 2.10 (Shortest superstring via set cover)

- 1. Use the greedy set cover algorithm to find a cover for the instance S. Let $set(\pi_1), \ldots, set(\pi_k)$ be the sets picked by this cover.
- 2. Concatenate the strings π_1, \ldots, π_k , in any order.
- 3. Output the resulting string, say s.

Theorem

The above algorithm is a $2H_n$ -approximation algorithm for the shortest superstring problem.

proof

since we have computed a set cover, every seS is a substring of some π_j

the computed string is a feasible superstring

OPT: the value of the optimal solution for the shortest superstring OPT_{SC} : the value of the optimal solution for the SC instance

claim: $OPT_{SC} \leq 2 OPT$.

the computed string has length $\leq H_n OPT_{SC} \leq 2H_n OPT$

Let s be the optimal superstring of length OPT

we show there is a feasible SC of cost at most 2 OPT

notice: π_i and π_{i+2} do not overlap

$$\sum_{i} |\pi_{i}| \leq 2 |s| \leq 2 |OPT|$$

