Question		
Question Number	Answer	Mark
12(a)	Equates $F = \frac{mv^2}{r}$ and $F = BQv$ (1)	
	Substitutes $p = mv$ with suitable algebra to arrive at $r = \frac{p}{BQ}$ (1)	2
	$\frac{\text{Example of derivation}}{\frac{mv^2}{r}} = BQv$	
	$\frac{\frac{mv}{r}}{r} = BQ$ $\frac{\frac{p}{r}}{r} = BQ$	
	$\left \frac{p}{r} \right = BQ$	
	$r = \frac{p}{BQ}$	
12(b)	Use of conversion factor from eV to J (1)	
	p^2	
	Use of $E_k = \frac{p^2}{2m}$ Or	
	Oi	
	Use of $E_k = \frac{1}{2} mv^2$ and $p = mv$ (1)	
	Use of $r = \frac{p}{BQ}$ (1)	
	$B = 3.5 \text{ T} \tag{1}$	4
	Example of calculation $E = 5.4 \text{ MeV} \times 10^6 \times 1.6 \times 10^{-19} \text{ C}$ $= 8.64 \times 10^{-13} \text{ J}$	
	$8.64 \times 10^{-13} \mathrm{J} = \frac{p^2}{2 \times 6.64 \times 10^{-27} \mathrm{kg}}$	
	$p = 1.07 \times 10^{-19} \mathrm{Ns}$	
	$0.096 \text{ m} = 1.07 \times 10^{-19} \text{ Ns} / B \times 2 \times 1.6 \times 10^{-19} \text{ C}$ B = 3.48 T	
	D = 0.10 1	
	Total for question 12	6