Um Algoritmo Heurístico Aplicado a Homogeneização das Características Físicas de Produtos

Luis Henrique Leão

Universidade Federal de Ouro Preto luis_ccm14@hotmail.com

01 de agosto de 2016

Contexto Histórico

Antes da Revolução Industrial os produtos eram feitos manualmente e, no máximo com a ajuda de máquinas simples. Essa produção era feita em oficinas que funcionavam na própria casa do artesão que comandava todo o processo, desde a matéria-prima até a comercialização do produto finalizado.

Revolução Industrial

- Proporcionou um grande avanço tecnológico em todo o mundo;
- Substituição em larga escala de processos manuais por processos automatizados ou semi-automatizados;
- Aumento da produtividade e da lucratividade a partir dos bens produzidos.

(a) Antes da Revolução

(b) Depois da Revolução

Figura: contexto histórico industrial.

Dias Atuais

Atualmente, a inteligência computacional e seus métodos têm sido utilizados nas indústrias, basicamente em todas as fases da produção, desde a obtenção da matéria-prima até a entrega do produto acabado ao consumidor final

Figura: Computadores na Indústria.

Peça

Em algumas indústrias há a necessidade de transformar unidades maiores de matéria prima em produtos menores com diferentes formas e tamanhos. É preciso realizar cortes em uma determinada unidade de matéria prima a fim de ser obter unidades menores (ou peças), respeitando algum objetivo pré-estabelecido.

Padrão

Um plano (ou padrão) de corte pode ser caracterizado como a disposição das peças dentro de uma chapa de matéria prima, semelhante a um gabarito. Cada padrão é unicamente reconhecido por possuir uma quantidade finita de peças e para cada uma há uma posição associada

Estágio

Um estágio é definido como uma subdivisão de um processo em uma sequência de sub-processos.

Definição

No meio industrial um estágio da produção pode ser caracterizado como uma unidade de tempo em que determinado padrão de corte é processado.

Critérios de Qualidade

A ordem em que os padrões são processados, pode interferir diretamente na produtividade, ocasionando custos desnecessários. É preciso então planejar a sequência em que os padrões serão cortados atendendo algum critério de qualidade.

Descontinuidade

Uma descontinuidade surge quando uma determinada peça está sendo processada a partir de um padrão em um determinado estágio, e em nos estágios posteriores a referida peça não é produzida, porém, volta a sê-lo em algum estágio posterior.

Consequência

Ao fabricar peças diferentes, a mesma matéria prima é utilizada e, posteriormente, ao retomar a produção de um tipo de peça específica, as características da matéria prima podem ser diferentes, originando variações de características físicas.

Motivação

Motivação

Prática

Trata-se de um problema de aplicação prática no contexto industrial, tornando-se essencial para o planejamento e execução do processo produtivo de diversas indústrias, tais como as relacionadas a produtos de madeira, vidro, papel e cimentícios.

Teórica

Trata-se de um problema NP-Difícil ou seja, não existe algoritmo conhecido que resolva este problema em tempo determinístico polinomial.

Fundamentação Teórica

Fundamentação Teórica

Entrada

É representada por uma matriz M binária que relaciona os padrões de corte e as peças. Cada elemento m_{ij} $(i \in P, j \in S)$ da matriz M é preenchida da seguinte forma:

$$m_{ij} = \begin{cases} 1, & \text{se o padrão } p_j \text{ possui a peça } i \\ 0, & \text{caso contrário} \end{cases}$$

	p_1	p_2	<i>p</i> ₃	p_4	p_5	p_6
1	1	1	0	0	0	0
2	1	0	1	0	0	0
3	0	0	0	1	1	0
4	0	0	0	1	0	1
5	0	1	0	0	1	0
6	1 1 0 0 0	0	1	0	0	1

Fundamentação Teórica

Solução

Uma solução para o MDP é dada por uma permutação π das colunas da matriz M, dando origem à uma Matriz Q^{π} , que consiste nos mesmos elementos da Matriz M, porém, com as colunas permutadas. Essa representação indica qual padrão de corte será processado em cada estágio da produção.

	<i>p</i> ₅	p_2	<i>p</i> ₄	<i>p</i> ₆	<i>p</i> ₃	p_1		p_1	<i>p</i> ₆	p_5	<i>p</i> ₄	p:
	0	1	0	0	0	1	1	1	0	0	0	0
2	0	0	0	0	1	1	2	1	0	0	0	1
3	1	0	1	0	0	0	3	0	0	1	1	0
4	0	0	1	1	0	0	4	0	1	0	1	0
5	1	1	0	0	0	0	5	0	0	1	0	0
6	0	0	0	1	1	0	6	0	1	0	0	1
			(a)							(b)		

Tabela: Dois possíveis sequenciamentos para o processamento dos padrões.

Valor de uma Solução

Uma maneira aproximada de determinar o número de descontinuidades na matriz Q^{π} é determinar o número de inversões de 0 para 1 em cada linha da mesma matriz.

$$Z_{MDP}^{\pi}(Q^{\pi}) = \sum_{j=1}^{J} \sum_{i=1}^{I} q_{ij}^{\pi} (1 - q_{ij-1}^{\pi})$$
 (1)

Função Objetivo

$$\min_{\pi \in \Pi} \ Z_{MDP}^{\pi}(M) \tag{2}$$

Pré-processamento por dominância

Técnica que consiste na remoção de padrões que possuem em sua composição todas as peças existentes em algum outro padrão do problema, a fim de eliminar redundâncias.

Exemplo

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆		p_1p_3	p_2	$p_5 p_4$	р
1	1	1	0	1	1	0	1	1	1	1	(
2	0	1	0	0	0	1	2	0	1	0	1
3	1	1	1	1	1	1	3	1	1	1	-
4	1	0	0	0	1	1	4	1	0	1	1
5	0	0	0	1	1	1	5	0	0	1	1
6	1	0	1	0	0	0	6	1	0	0	1
7	1	1	0	0	1	1	7	1	1	1	-

Metodologia

Grafo

Contrução de um grafo ponderado e não direcionado, em que os vértices representam as peças, havendo ligação entre dois vértices quaisquer se as peças estão presentes em um mesmo padrão. A cada ocorrência desta característica, o peso da aresta correspondente é aumentado em uma unidade.

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	p_6
1	1	1	1	0	0	0
2	1	0	1	0	0	0
3	0	0	0	1	1	0
4	1 1 0 0 0	0	0	1	1	1
5	0	1	0	0	1	1
6	0	0	1	0	0	1

Tabela: Instância MDP.

Figura: Grafo correspondente a instância.

Figura: $\phi = []$

Figura: $\phi = [2]$

Figura: $\phi = [2,1,6]$

Figura: $\phi = [2,1,6,5]$

Figura: $\phi = [2,1,6,5,4,3]$

Sequenciamento dos Padrões

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	<i>p</i> ₆
1	1	1	1	0	0	0
2	1 1 0 0	0	1	0	0	0
3	0	0	0	1	1	0
4	0	0	0	1	1	1
5	0	1	0	0	1	1
6		0	1	0	0	1

Tabela: Instância MDP.

ϕ	π
2	
2,1	ρ_1
2,1,6	<i>p</i> ₁ , <i>p</i> ₃
2,1,6,5	p_1, p_3, p_2
2,1,6,5,4	p_1, p_3, p_2, p_6
2,1,6,5,4,3	$p_1, p_3, p_2, p_6, p_4, p_5$

Tabela: Sequenciamento de padrões a partir da BFS.

Experimentos

Instâncias

Conjunto de quarenta e cinco instâncias artificiais é dividido em nove grupos (A-I), com cinco instâncias cada. Cada instância foi gerada aleatoriamente atendendo o critério de que cada coluna possua pelo menos um valor diferente a zero, e cada linha possua pelo menos um valor igual a um.

Tabela: Comparação de Resultados.

Crupo	\overline{B}	Haddadi	BFS-Blocos	BFS-MDP	
Grupo	D	пациаці	DF3-DIOCOS	DF3-IVIDP	gap
Α	416,0	253,0	298,2	198,2	18,10%
В	955,6	695,8	816,6	716,6	16,93%
С	1789,4	1358,6	1632,4	1532,4	20,15%
D	1027,2	552,0	636,4	536,4	15,29%
Ε	2370,2	1616,0	1953,0	1853,0	20,85%
F	4529,2	3308,4	4098,8	3998,8	23,89%
G	2078,8	1072,4	1222,6	1122,6	14,00%
Н	4778,4	3125,4	3896,6	3796,6	24,67%
	8998,8	6375,4	8123,6	8023,6	11,73%

Conclusões

- Importante problema no contexto industrial, que pode reduzir os custos operacionais da produção de bens de consumo e também auxiliar na homogeneização das características físicas dos mesmos;
- Existem poucas propostas na literatura para a resolução deste problema;
- Método inicial proposto apresentou resultados razoáveis também para a resolução de um problema relacionado;
- Trabalhos futuros incluem o aprimoramento da heurística proposta, a realização de novos experimentos computacionais com a inclusão de outros conjuntos de instâncias.