

UNIDAD 11: Estadística

EJERCICIOS Y ACTIVIDADES - PÁG. 218

1. Indica tres ejemplos de variable estadística:

a) Cualitativa

Sexo de un paciente en un estudio médico.

Grado de satisfacción con un producto.

Marca de un vehículo en un estudio sobre modelos más vendidos.

b) Cuantitativa

Número de pacientes sanados mediante un procedimiento.

Cantidad de unidades vendidas de un producto.

Número de vehículos matriculados por mes.

c) Discreta

Número de pacientes sanados mediante un procedimiento.

Número de unidades fabricadas en una fábrica en un día.

Cilindrada del motor en un estudio sobre vehículos más vendidos.

d) Continua

Gramos de medicamento suministrados a un paciente.

Tiempo dedicado al estudio por el alumnado de un centro.

Temperatura medida en una ciudad en cada día.

2. Indica de qué tipo es cada variable estadística:

- a) El número de personas que habitan en una vivienda: Cuantitativa discreta.
- b) La longitud de las alas de las aves: Cuantitativa continua.
- c) El color del automóvil: Cualitativa.
- d) La cadena televisiva preferida: Cualitativa.

EJERCICIOS Y ACTIVIDADES - PÁG. 219

3. Estudiamos el número de personas que habitan en las viviendas de una localidad y obtenemos los siguientes datos:

3, 2, 4, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 5, 2, 3, 3, 1, 1, 2, 5, 6, 4, 3, 3, 4, 4, 4, 5, 6, 2, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 5, 5, 6, 6, 5, 2, 4, 3, 3, 4, 2, 3, 4, 5, 6, 1
Construye la tabla de frecuencias.

X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_i
1	7	0,0875	8,75%	7	0,0875	8,75%
2	17	0,2125	21,25%	24	0,3	30,00%
3	27	0,3375	33,75%	51	0,6375	63,75%
4	13	0,1625	16,25%	64	0,8	80,00%
5	10	0,125	12,50%	74	0,925	92,50%
6	6	0,075	7,50%	80	1	100,00%
Totales	80	1	1			

4. Construye una tabla de frecuencias con los siguientes datos observados: 10, 14, 10, 12, 12, 13, 12, 11, 14, 15, 16, 16, 15, 14, 12, 13, 10, 11, 11, 12, 13, 13, 12, 12, 13, 14, 14, 15, 15, 15, 14, 14, 15, 14, 14, 15, 15, 16, 16, 16, 16, 16, 12, 12, 14, 14

X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_i
10	3	0,05455	5,45%	3	0,05455	5,45%
11	4	0,07273	7,27%	7	0,12727	12,73%
12	12	0,21818	21,82%	19	0,34545	34,55%
13	13 8 0,1454 14 12 0,2181		14,55%	27	0,49091	49,09%
14			21,82%	39	0,70909	70,91%
15	9	0,16364	16,36%	48	0,87273	87,27%
16	7	0,12727	12,73%	55	1	100,00%
Totales	55	1	1			

EJERCICIOS Y ACTIVIDADES - PÁG. 220

5. Se ha realizado un estudio sobre el consumo de agua en las viviendas, en dos meses, de un determinado barrio y se han obtenido los datos que se muestran en la siguiente tabla:

Consumo en m ³	[0,5)	[5,10)	[10,15)	[15,20)	[20,25)
f_{i}	28	54	65	125	28

Completa la tabla de frecuencias.

I_i	x_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
[0,5)	2,5	28	0,09333	9,33%	28	0,09333	9,33%
[5,10)	7,5	54	0,18	18,00%	82	0,27333	27,33%
[10,15)	12,5	65	0,21667	21,67%	147	0,49	49,00%
[15,20)	17,5	125	0,41667	41,67%	272	0,90667	90,67%
[20,25)	22,5	28	0,09333	9,33%	300	1	100,00%
Totales:		300	1	1			

EJERCICIOS Y ACTIVIDADES - PÁG. 221

6. Completa la tabla de frecuencias y representa el diagrama de barras:

X_i	100	120	140	160	180	200
f_{i}	25	36	42	50	33	28

\mathcal{X}_{i}	f_{i}	h_i	p_{i}	F_{i}	H_{i}	P_{i}
100	25	0,11682	11,68%	25	0,11682	11,68%
120	36	0,16822	16,82%	61	0,28505	28,50%
140	42	0,19626	19,63%	103	0,48131	48,13%
160	50	0,23364	23,36%	153	0,71495	71,50%
180	33	0,15421	15,42%	186	0,86916	86,92%
200	28	0,13084	13,08%	214	1	100,00%
Totales:	214	1	1			

7. Completa la tabla de frecuencias y representa el histograma:

I_{i}	I_i [1,5) [5,9)		[9,13) [13,17)		[17,21)	[21,25)
f_{i}	12	14	18	16	15	10

I_{i}	x_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
[1,5)	3	12	0,14	14%	12	0,14	14%
[5,9)	7	14	0,16	16%	26	0,31	31%
[9,13)	11	18	0,21	21%	44	0,52	52%
[13,17)	15	16	0,19	19%	60	0,71	71%
[17,21)	19	15	0,18	18%	75	0,88	88%
[21,25)	23	10	0,12	12%	85	1,00	100%
Totales:		85	1	100%			•

EJERCICIOS Y ACTIVIDADES - PÁG. 222

8. Representa el polígono de frecuencias y el diagrama de sectores de la siguiente tabla:

\mathcal{X}_{i}	10	20	30	40
f_{i}	7	15	12	6

X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_i
10	7	0,18	18%	10	7	18%
20	15	0,38	38%	30	22	55%
30	12	0,30	30%	60	34	85%
40	6	0,15	15%	100	40	100%
Total:	40	1	100%		•	•

9. Representa el polígono de frecuencias asociado a esta tabla utilizando la frecuencia absoluta y la absoluta acumulada:

I_{i}	[20,30)	[30,40)	[40,50)	[50,60)	[60,70)	[70,80)
f_{i}	12	18	26	17	13	4

Construimos la tabla de frecuencias:

I_i	X_i	f_{i}	h_{i}	p_i	F_{i}	H_{i}	P_i			
[20,30)	25	12	0,13	13%	12	0,13	13%			
[30,40)	35	18	0,20	20%	30	0,33	33%			
[40,50)	45	26	0,29	29%	56	0,62	62%			
[50,60)	55	17	0,19	19%	73	0,81	81%			
[60,70)	65	13	0,14	14%	86	0,96	96%			
[70,80)	75	4	0,04	4%	90	1,00	100%			
Totales:		90	1	100%						

Los gráficos pedidos son:

EJERCICIOS Y ACTIVIDADES - PÁG. 223

10. Calcula la media aritmética y la moda de las siguientes distribuciones:

\mathcal{X}_{i}	4	8	12	16	20	24
f_{i}	17	23	28	12	14	6

I_{i}	[0,10)	[10,20)	[20,30)	[30,40)	[40,50)
f_{i}	35	43	52	27	13

Construimos la tabla de frecuencias para cada una de ellas y calculamos la media:

		· ·
\mathcal{X}_{i}	f_{i}	$x_i \cdot f_i$
4	17	68
8	23	184
12	28	336
16	12	192
20	14	280
24	6	144
Total:	100	1204

I_{i}	x_i	f_i	$x_i \cdot f_i$
[0,10)	5	35	175
[10,20)	15	43	645
[20,30)	25	52	1300
[30,40)	35	27	945
[40,50)	45	13	585
	Total:	170	3650

La media en el primer caso es: $\bar{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{N} = \frac{1204}{100} = 12,04$.

En el segundo caso, la media es :
$$\bar{x} = \frac{\sum\limits_{i=1}^{n} x_i \cdot f_i}{N} = \frac{3650}{170} \approx 21,47$$

La moda es el valor que tiene mayor frecuencia absoluta (12) y la clase modal [20,30) respectivamente.

EJERCICIOS Y ACTIVIDADES - PÁG. 224

11. Calcula la mediana de las siguientes distribuciones:

\mathcal{X}_{i}	25	26	27	28	29
f_{i}	11	16	24	21	8
\mathcal{X}_{i}	3,4	3,5	3,6	3,7	3,8
f_{i}	15	20	21	24	10
\mathcal{X}_{i}	5	10	15	20	25
f_i	20	23	25	10	8

Construimos las tres tablas de frecuencias:

X_i	f_{i}	F_{i}
25	11	11
26	16	27
27	24	51
28	21	72
29	8	80
Total:	80	

$$Me = 27$$

\mathcal{X}_{i}	f_i	F_{i}
3,4	15	15
3,5	20	35
3,6	21	56
3,7	24	80
3,8	10	90
Total:	90	

$$Me = 3,6$$

$$egin{array}{c|cccc} x_i & f_i & F_i \\ \hline 5 & 20 & 20 \\ 10 & 23 & 43 \\ \hline 15 & 25 & 68 \\ \hline 20 & 10 & 78 \\ \hline 25 & 8 & 86 \\ \hline \textbf{Total:} & 86 \\ \hline \end{array}$$

$$Me = \frac{10 + 15}{2} = 12,5$$

EJERCICIOS Y ACTIVIDADES - PÁG. 225

12. Se ha realizado un estudio sobre el consumo de agua doméstica y se han obtenido los siguientes datos en m³:

I_i	[4,6)	[6,8)	[8,10)	[10,12)	[12,14)	[14,16)
f_{i}	12	17	25	36	18	10

Determina:

a) La media aritmética

Construimos la tabla de frecuencias:

I_i	x_i	f_{i}	$x_i \cdot f_i$	F_i
[4,6)	5	12	60	12
[6,8)	7	17	119	29
[8,10)	9	25	225	54
[10,12)	11	36	396	90
[12,14)	13	18	234	108
[14,16)	15	10	150	118
Total:		118	1184	

La media aritmética es:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{N} = \frac{1184}{118} \approx 10,03$$

b) La clase modal

La frecuencia absoluta más alta se corresponde con Mo = [10,12)

c) La mediana

El tamaño de la población es 118 y por tanto: $\frac{N}{2}=59$. Observando la columna de las frecuencias acumuladas vemos que la mediana se encuentra en el intervalo: $\begin{bmatrix} 10,12 \end{bmatrix}$:

$$\frac{90-54}{12-10} = \frac{59-54}{Me-10} \Rightarrow \frac{36}{2} = \frac{5}{Me-10} \Rightarrow Me = 10 + \frac{5}{18} = 10, 2\hat{7}$$

EJERCICIOS Y ACTIVIDADES - PÁG. 226

13. Determina el recorrido absoluto y el recorrido relativo de la siguiente distribución de datos:

X_i	5	7	9	11	13	15	17	19
f_{i}	18	25	36	41	32	17	8	3

Recorrido absoluto es: $R_a = |x_n - x_1| = |19 - 5| = 14$

Recorrido relativo: $R_r = \frac{x_n}{x_1} = \frac{5}{19} = 0,2$.

EJERCICIOS Y ACTIVIDADES - PÁG. 227

14. Calcula la varianza y la distribución típica de las siguientes distribuciones:

I_{i}	[0,4)	[4,8)	[8,12)	[12,16)	[16,20)	[20,24)	[24,28)
f_{i}	6	12	15	21	11	6	3

I_i	X_i	f_i	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
[0,4)	2	6	12	24
[4,8)	6	12	72	432
[8,12)	10	15	150	1500
[12,16)	14	21	294	4116
[16,20)	18	11	198	3564
[20,24)	22	6	132	2904
[24,28)	26	3	78	2028
Tota	ıl:	74	936	14568

La media aritmética de la distribución es: $\bar{x} = \frac{936}{74} \approx 12,65$

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^7 x_i^2 \cdot f_i}{N} - \frac{1}{x^2} = \frac{14568}{74} - \left(\frac{936}{74}\right)^2 \approx 36,8766$$

Desviación típica: $\sigma \approx \sqrt{36,8766} \approx 6,0726$

X_i	10	20	30	40	50	60	70	80	90	100
f_{i}	4	7	10	18	21	16	9	7	5	2

X_i	f_i	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
10	4	40	400
20	7	140	2800
30	10	300	9000
40	18	720	28800
50	21	1050	52500
60	16	960	57600
70	9	630	44100
80	7	560	44800
90	5	450	40500
100	2	200	20000
	99	5050	300500

La media aritmética de la distribución es: $\frac{-}{x} = \frac{5050}{99} \approx 51,01$

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^7 x_i^2 \cdot f_i}{N} - \sum_{i=1}^{7} x_i^2 \cdot f_i = \frac{300500}{99} - \left(\frac{5050}{99}\right)^2 \approx 433,323$$

Desviación típica: $\sigma \approx \sqrt{433,323} \approx 20,8164$

EJERCICIOS Y ACTIVIDADES DE RECAPITULACIÓN - PÁGS. 230-232

VARIABLE ESTADÍSTICA. TABLA DE FRECUENCIAS

- 1. Indica el tipo de variable estadística y la población que estudia:
 - a) Edad a la que salimos con los amigos por primera vez en mi pueblo Cuantitativa discreta
 - b) La cadena de radio que escuchan los españoles Cualitativa
 - c) El precio del pan en los municipios de tu comunidad Cuantitativa continua
 - d) El gasto de electricidad en un mes en las viviendas de tu ciudad Cuantitativa continua
 - e) El peso de los alumnos de tu clase Cuantitativa continua
 - f) El tiempo que dedican diariamente a ver la televisión tus compañeros de instituto Cuantitativa continua
- 2. Construye la tabla de frecuencias asociada a la siguiente tabla:

х	1	2	3	4	5	6			
f	12	16	26	11	9	6			

\mathcal{X}_{i}	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
1	12	0,15	15%	12	0,15	15%
2	16	0,20	20%	28	0,35	35%
3	26	0,33	33%	54	0,68	68%
4	11	0,14	14%	65	0,81	81%
5	9	0,11	11%	74	0,93	93%
6	6	0,08	8%	80	1,00	100%
Total:	80	1	100%			

3. Se ha realizado un estudio sobre el número de personas que cogen el autobús entre las 7 y las 8 de la mañana en una determinada parada y se han obtenido los siguientes datos. Completa en tu cuaderno la tabla de frecuencias.

\mathcal{X}_{i}	f_i	h_{i}	p_i	F_i	H_{i}	P_i
Lunes	45	0,13	13%	45	0,13	13%
Martes	54	0,16	16%	99	0,30	30%
Miércoles	69	0,21	21%	168	0,50	50%
Jueves	78	0,23	23%	246	0,74	74%
Viernes	65	0,19	19%	311	0,93	93%
Sábado	18	0,05	5%	329	0,99	99%
Domingo	5	0,01	1%	334	1,00	100%
Total:	334	1	100%			

- a) ¿Qué porcentaje corresponde al sábado? El sábado cogen el autobús el $p_6 = 5\%$
- b) ¿Qué porcentaje de personas cogen este autobús en fin de semana? $p_6+p_7=6\%$

- c) ¿Cuánto vale P_4 ? ¿Qué significa? P_4 = 74% . El 74% de las veces que se coge el autobús se hace de lunes a jueves.
- 4. Completa en tu cuaderno la siguiente tabla de frecuencias:

\mathcal{X}_{i}	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
10	25	0,15625	15,625%	25	0,15625	15,625%
20	34	0,21250	21,250%	59	0,36875	36,875%
30	26	0,16250	16,250%	85	0,53125	53,125%
40	75	0,46875	46,875%	160	1	100%
Total:	160	1	100%			

5. Haz una tabla de frecuencias con los siguientes datos:

2, 3, 4, 3, 3, 2, 2, 2, 1, 2, 3, 4, 5, 6, 6, 6, 5, 5, 4, 4, 4, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 3, 5, 5, 6, 5, 6, 4, 5, 6, 3, 2, 1, 3, 4, 5, 6, 6, 6, 5, 4, 6, 5, 6, 5, 5, 4, 3, 3, 3, 4, 2, 5, 2, 1, 1, 1, 3, 4, 2, 1, 1, 1, 2, 3, 4, 4, 3, 3, 2, 2, 3, 6, 5

x_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_i
1	14	0,14	14%	14	0,14	14%
2	19	0,19	19%	33	0,33	33%
3	20	0,20	20%	53	0,53	53%
4	17	0,17	17%	70	0,70	70%
5	17	0,17	17%	87	0,87	87%
6	13	0,13	13%	100	1,00	100%
Total:	100	1	100%			

6. Haz una tabla de frecuencias con los siguientes datos: 20,3; 23,5; 34,2; 29,5; 30; 31; 31,2; 31,3; 31,5; 29,7; 29,1; 27,7; 34,7; 28,8; 30,4; 30,5; 31,2; 31,4; 34,1; 23,7; 21; 22,7; 27,3; 28,2; 27,5; 27,1; 25,2; 24,3; 24,5; 26,3; 26,9; 28; 25; 30,7; 32,4; 32; 20,9; 20,3; 34,3; 23,4; 27,8; 27,2; 23,6; 25,6; 24,3; 21,2; 21,5; 20,8; 25,3; 25,4; 30,1; 31; 25,1; 22,3; 26,3; 26; 27; 32; 33; 27,3; 22 (Nota: Utiliza intervalos de amplitud 4 empezando en 20)

I_i	x_i	f_i	h_{i}	p_{i}	F_{i}	H_{i}	P_i
[20,24)	22	14	0,23	23%	14	0,23	23%
[24,28)	26	21	0,34	34%	35	0,57	57%
[28,32)	30	18	0,30	30%	53	0,87	87%
[32,36)	34	8	0,13	13%	61	1,00	100%
Totales:		61	1	100%			

7. Completa en tu cuaderno la siguiente tabla de frecuencias:

X_i	f_{i}	h_i	p_{i}	F_{i}	H_{i}	P_i
7	15	0,1875	18,75%	15	0,1875	18,75%
17	19	0,2375	23,75%	34	0,4250	42,50%
27	20	0,2500	25,00%	54	0,6750	67,50%
37	9	0,1125	11,25%	63	0,7875	78,75%

47	17	0,2125	21,25%	80	1	100%
Total:	80	1	100%			

8. Completa en tu cuaderno la siguiente tabla de frecuencias:

\mathcal{X}_{i}	f_{i}	h_i	p_{i}	F_{i}	H_{i}	P_i
5	37	0,15	15%	37	0,15	15%
10	45	0,18	18%	82	0,33	33%
15	65	0,26	26%	147	0,59	59%
20	85	0,34	34%	232	0,93	93%
25	18	0,07	7%	250	1	100%
Total:	250	1	100%			

GRÁFICO ASOCIADO A UNA TABLA DE FRECUENCIAS

9. Haz un histograma y el polígono de frecuencias utilizando la frecuencia absoluta asociado a la siguiente tabla:

I_i	[5, 10)	[10, 15)	[15,20)	[20,25)	[25,30)
f_{i}	18	32	45	34	15

Construimos la tabla de frecuencias y el gráfico asociado:

•	de l'eddellelds y el granies assendas.							
	I_{i}	X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_i
	[5,10)	7,5	18	0,13	13%	18	0,13	13%
	[10,15)	12,5	32	0,22	22%	50	0,35	35%
	[15,20)	17,5	45	0,31	31%	95	0,66	66%
	[20,25)	22,5	34	0,24	24%	129	0,90	90%
	[25,30)	27,5	15	0,10	10%	144	1,00	100%
	Tota	les:	144	1	100%			

10. Representa el diagrama de barras y el polígono de frecuencias asociado a esta tabla:

X_i	100	200	300	400	500	600

f_i 25 35 45 50 30 20

a) Utilizando la frecuencia absoluta

X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
100	25	0,12	12%	25	0,12	12%
200	35	0,17	17%	60	0,29	29%
300	45	0,22	22%	105	0,51	51%
400	50	0,24	24%	155	0,76	76%
500	30	0,15	15%	185	0,90	90%
600	20	0,10	10%	205	1	100%
Total:	205	1	100%			

Polígono de frecuencia absoluta

60
40
30
20
100
200
300
400
500
600

b) Utilizando la frecuencia absoluta acumulada

11. Un estudio sobre el beneficio alcanzado por una empresa en bolsa arroja el siguiente resultado en 4 años, donde los datos están dados en millones de euros:

Año	2010	2011	2012	2013
Beneficio	5,8	7,3	8,2	9,4

Haz un gráfico que muestre la evolución del beneficio de la empresa.

Realizaremos un gráfico para la evolución del beneficio (frecuencia absoluta) y otro para la evolución del beneficio acumulado. Para ello, construimos la tabla de frecuencias:

\mathcal{X}_{i}	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
2010	5,8	0,19	19%	6	0,19	19%
2011	7,3	0,24	24%	13	0,43	43%

i i			1	1		
2012	8,2	0,27	27%	21	0,69	69%
2013	9,4	0,31	31%	31	1,00	100%
Total:	30,7	1	100%			

y representamos las gráficas de los polígonos de frecuencias asociados a la frecuencia absoluta y a la frecuencia relativa:

12. Haz un histograma y el polígono de frecuencias utilizando la frecuencia absoluta acumulada asociado a la siguiente tabla:

I_i	[10,20)	[20,30)	[30,40)	[40,50)
f_{i}	12	18	25	3

Realizamos la tabla de frecuencias y el gráfico asociado:

I_i	X_i	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
[10,20)	15	12	0,21	21%	12	0,21	21%
[20,30)	25	18	0,31	31%	30	0,52	52%
[30,40)	35	25	0,43	43%	55	0,95	95%
[40,50)	45	3	0,05	5%	58	1,00	100%
Total	es:	58	1	100%			

13. En la biblioteca del instituto tienen los libros clasificados de la siguiente forma:

Tipo	Científicos	Literatura	Históricos	Novela
Nº	150	135	215	300

Haz un diagrama de sectores para esta tabla.

MEDIDAS DE CENTRALIZACIÓN

14. Calcula la media aritmética y la moda de las distribuciones siguientes:

x_i	2	4	6	8	10	12	14
f_{i}	7	12	16	18	13	10	4

x_i	f_{i}	$x_i \cdot f_i$
2	7	14
4	12	48
6	16	96
8	18	144
10	13	130
12	10	120
14	4	56
Total:	80	608

La media es
$$\bar{x} = \frac{\sum_{i=1}^{7} x_i \cdot f_i}{N} = \frac{608}{80} = 7,6 \text{ y la moda } Mo = 8$$

X_i	10	20	30	40	50	60	70	80
f_{i}	6	8	13	14	17	12	8	6

χ_{i}	f_{i}	$x_i \cdot f_i$
•		
10	6	60
20	8	160
30	13	390
40	14	560
50	17	850
60	12	720
70	8	560
80	6	480
Total:	84	3780

La media es
$$\bar{x} = \frac{\sum_{i=1}^{8} x_i \cdot f_i}{N} = \frac{3780}{84} = 45 \text{ y la moda } Mo = 50$$

15. Calcula la media aritmética de la siguiente distribución de datos:

ı	I_{i}	[2,5)	[5,8)	[8,11)	[11,14)	[14,17)
	f_i	10	13	18	7	2

I_{i}	x_i	f_{i}	$x_i \cdot f_i$
[2,5)	3,5	10	35
[5,8)	6,5	13	84,5
[8,11)	9,5	18	171
[11,14)	[11,14) 12,5		87,5
[14,17) 15,5		2	31
Tot	al:	50	409

La media es
$$\bar{x} = \frac{\sum_{i=1}^{5} x_i \cdot f_i}{N} = \frac{409}{50} = 8,18$$

16. Calcula la mediana y la moda de la siguiente distribución de datos:

\mathcal{X}_{i}	5	8	11	14	17	20	23	26
f_{i}	6	12	18	21	14	11	8	4

Calculamos la tabla de frecuencias acumuladas:

\mathcal{X}_{i}	f_{i}	F_{i}
5	6	6
8	12	18
11	18	36
14	21	57
17	14	71
20	11	82
23	8	90
26	4	94
Total:	94	

La mediana es Me = 14 y la moda Mo = 14

17. Calcula la mediana y la moda de la siguiente distribución de datos:

X_i	10	20	30	40	50	60	70
f_{i}	6	8	12	15	5	3	2

Calculamos la tabla de frecuencias acumuladas:

\mathcal{X}_{i}	f_{i}	F_{i}
10	6	6
20	8	14

30	12	26
40	15	41
50	5	46
60	3	49
70	2	52
Total:	51	

La mediana es Me = 30 y la moda Mo = 40

18. Calcula la mediana y la moda de la siguiente distribución de datos:

X_i	20	25	30	35	40	45	50
$\overline{f_i}$	8	9	11	15	7	6	4

Calculamos la tabla de frecuencias acumuladas:

La mediana es Me = 35 y la moda Mo = 35

\mathcal{X}_{i}	f_{i}	F_{i}
20	8	8
25	9	17
30	11	28
35	15	43
40	7	50
45	6	56
50	4	60
Total:	60	

19. Calcula la mediana y la moda de la siguiente distribución de datos:

\mathcal{X}_{i}	100	200	300	400	500	600
f_i	12	18	21	23	19	9

Calculamos la tabla de frecuencias acumuladas:

X_i	f_i	F_{i}
100	12	12
200	18	30
300	21	51
400	23	74
500	19	93
600	9	102

Total: 102

La mediana es
$$Me = \frac{300 + 400}{2} = 350$$
 y la moda $Mo = 400$

20. Calcula la media aritmética y la mediana de la siguiente distribución de datos:

I_i	[5,7)	[7,9)	[9,11)	[11,13)	[13,15)
f_{i}	12	16	21	14	9

Calculamos la tabla de frecuencias acumuladas y los valores necesarios para la media:

I_i	\mathcal{X}_{i}	f_{i}	$x_i \cdot f_i$	F_{i}
[5,7)	6	12	72	6
[7,9)	8	16	128	14
[9,11)	10	21	210	24
[11,13)	12	14	168	36
[13,15) 14		9	126	50
Total:		72	704	

Media:
$$\bar{x} = \frac{\sum_{i=1}^{5} x_i \cdot f_i}{N} = \frac{704}{72} = 9, \hat{7}$$

Mediana: Me = 13

21. Calcula la media aritmética y la mediana de la siguiente distribución de datos:

X_i	10	20	30	40	50	60
h_{i}	0,12	0,16	0,23	0,25	0,19	0,05

Calculamos la tabla de frecuencias acumuladas y los valores necesarios para la media:

xi	hi		
10	0,12	1,2	0,12
20	0,16	3,2	0,28
30	0,23	6,9	0,51
40	0,25	10	0,76
50	0,19	9,5	0,95
60	0,05	3	1
Total:	1	33,8	

Media:
$$\bar{x} = \sum_{i=1}^{6} x_i \cdot h_i = 33.8$$

Mediana: Me = 30

MEDIDAS DE DISPERSIÓN

22. Calcula el recorrido absoluto y relativo de la siguiente distribución de datos:

X_i	10	20	30	40	50	60	70
f_{i}	12	16	18	21	15	17	8

El recorrido absoluto es: $R_a = |x_n - x_1| = |70 - 10| = 60$ y el recorrido relativo: $R_r = \frac{10}{70} = 0.7$

23. Calcula la varianza y la desviación típica de la siguiente distribución de datos:

\mathcal{X}_{i}	5	10	15	20	25	30	35
f_{i}	4	7	12	15	11	9	5

				_
Calculamos	la tabla 1	de frecuencia	can lac datac	nacacariac
Calculation	ia tabia i	ue irecuencia	con ios datos	HECESAHOS.

X_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
5	4	20	100
10	7	70	700
15	12	180	2700
20	15	300	6000
25	11	275	6875
30	9	270	8100
35	5 175		6125
Total:	63	1290	30600

La media aritmética de la distribución es: $\frac{-}{x} = \frac{1290}{63} \approx 20,47$

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^7 x_i^2 \cdot f_i}{N} - \sum_{i=1}^{7} x_i^2 \cdot f_i = \frac{30600}{63} - \left(\frac{1290}{63}\right)^2 \approx 66,4399$$

Desviación típica: $\sigma \approx \sqrt{66,4399} \approx 8,1511$

24. Calcula la varianza y la desviación típica de la siguiente distribución de datos:

\mathcal{X}_i	1	2	3	4	5	6	7
f_{i}	5	7	12	9	4	3	2

Calculamos la tabla de frecuencia con los datos necesarios:

\mathcal{X}_{i}	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
1	5	5	5
2	7	14	28
3	12	36	108
4	9	36	144
5	4	20	100
6	3	18	108
7	2	14	98
Total:	42	143	591

La media aritmética de la distribución es: $\bar{x} = \frac{143}{42} \approx 3,4048$

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^7 x_i^2 \cdot f_i}{N} - \sum_{i=1}^{7} x_i^2 \cdot f_i = \frac{591}{42} - \left(\frac{143}{42}\right)^2 \approx 2,479$$

Desviación típica: $\sigma \approx \sqrt{2,479} \approx 1,5745$

25. Calcula la varianza y la desviación típica de la siguiente distribución de datos:

I_{i}	[0,4)	[4,8)	[8,12)	[12,16)	[16,20)
f_i	7	16	21	9	4

Calculamos la tabla de frecuencia con los datos necesarios:

I_{i}	x_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
[0,4)	2	7	14	28
[4,8)	6	16	96	576
[8,12)	10	21	210	2100
[12,16)	14	9	126	1764
[16,20)	18	4	72	1296
Tot	al:	57	518	5764

La media aritmética de la distribución es: $\bar{x} = \frac{518}{57} \approx 9,0877$

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^5 x_i^2 \cdot f_i}{N} - \sum_{i=1}^{N} x_i^2 \cdot f_i = \frac{5764}{57} - \left(\frac{518}{57}\right)^2 \approx 18,5362$$

Desviación típica: $\sigma \approx \sqrt{18,5362} \approx 4,3054$

26. Calcula la varianza y la desviación típica de la siguiente distribución de datos:

I_{i}	[1,4)	[4,7)	[7,10)	[10,13)	[13,16)	[16,19)
f_{i}	5	7	9	18	4	2

Calculamos la tabla de frecuencia con los datos necesarios:

I_i	x_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
[1,4)	2,5	5	12,5	31,25
[4,7)	5,5	7	38,5	211,75
[7,10)	8,5	9	76,5	650,25
[10,13)	11,5	18	207	2380,5
[13,16)	14,5	4	58	841
[16,19)	17,5	2	35	612,5
Tot	Total:		427,5	4727,25

La media aritmética de la distribución es: $\bar{x} = \frac{427.5}{45} = 9.5$

Varianza:
$$\sigma^2 = \frac{4727,25}{45} - (9,5)^2 = 14,8$$

Desviación típica: $\sigma \approx \sqrt{14.8} \approx 3.8471$

27. Calcula la varianza y la desviación típica de la siguiente distribución de datos:

\mathcal{X}_{i}	10	11	12	13	14	15	16
f_{i}	5	12	18	7	4	3	1

X_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
10	5	50	500
11	12	132	1452
12	18	216	2592
13	7	91	1183
14	4	56	784
15	3	45	675
16	1	16	256
Total:	50	606	7442

La media aritmética de la distribución es: $\bar{x} = \frac{606}{50} = 12,12$

Varianza:
$$\sigma^2 = \frac{7442}{50} - \left(\frac{606}{50}\right)^2 = 1,9456$$

Desviación típica: $\sigma \approx \sqrt{1,9456} \approx 1,3948$

PROBLEMAS

28. La siguiente tabla está incompleta. Es el estudio realizado en un instituto sobre el tipo de música preferida por sus alumnos.

a) Completa la tabla en tu cuaderno

\mathcal{X}_{i}	f_{i}	h_{i}	p_{i}	F_{i}	H_{i}	P_{i}
Rock	25	0,14	14%	25	0,14	14%
Pop	45	0,25	25%	70	0,39	39%
Flamenco	57	0,32	32%	127	0,71	71%
Rap	32	0,18	18%	159	0,88	88%
Punk	12	0,07	7%	171	0,95	95%
Heavy	9	0,05	5%	180	1	100%
Total:	180	1	100%			

- b) ¿Qué porcentaje de individuos prefiere el rap? El 18% de los individuos prefiere el rap.
- c) ¿Qué porcentaje de individuos prefiere el heavy o el rock? Sumando sus porcentajes, obtenemos que el 14% + 5% = 19% prefieren el heavy o el rock.
- 29. Los gastos de un instituto se resumen en la siguiente tabla:

Concepto	Gasto (€)
Mantenimiento	22.345,30€
Material de oficina	12.345,20€
Otros gastos	6.360,50€

Realiza un diagrama de sectores que represente los gastos del centro.

30. La nota final de un examen se calcula como media aritmética de las notas parciales. Rodolfo ha sacado un 7,3 y un 6,2 en sendas pruebas parciales, y quedan por realizar una última prueba. Al final ha obtenido una media final de 5,2. ¿Sabrías determinar la nota de la última prueba parcial?

$$\frac{7,3+6,2+x}{3} = 5,2 \Rightarrow 7,3+6,2+x = 15,6 \Rightarrow x = 2,1.$$

En la última prueba ha obtenido una nota de 2,1.

31. El valor catastral de una vivienda se determina teniendo en cuenta una serie de factores: zona en la que está la vivienda, precio del suelo en esa zona, tamaño de la vivienda y otros factores económicos más. A partir de ese valor se determina el impuesto de bienes e inmuebles que el propietario debe pagar por esa vivienda. En la siguiente tabla se muestra el valor catastral de las viviendas de una determinada zona de la ciudad:

X_i	f_i
[0, 60 000)	62
[60 000, 90 000)	78
[90 000, 120 000)	90
[120 000, 150 000)	45
[150 000, 200 000)	15
[200 000, 300 000)	10

a) Calcula el valor catastral medio del barrio estudiado.

Construimos la tabla con los datos necesarios pero, para mayor comodidad, escribimos el importe en miles de euros:

I_i	X_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$	F_{i}
[0, 60)	30	62	1860	55800	62
[60, 90)	75	78	5850	438750	140
[90, 120)	105	90	9450	992250	230
[120, 150)	135	45	6075	820125	275
[150, 200)	175	15	2625	459375	290
[200, 300)	250	10	2500	625000	300
Total:		300	28360	3391300	

La media es
$$\bar{x} = \frac{28360}{300} = 94,5\hat{3}$$
 miles de euros.

b) Calcula la mediana

La mediana se alcanza en el intervalo $\left[90{,}120\right)$ y es:

$$\frac{\textit{Me} - 90}{150 - 140} = \frac{120 - 90}{230 - 140} \Rightarrow \frac{\textit{Me} - 90}{10} = \frac{30}{90} \Rightarrow \textit{Me} = 90 + \frac{300}{90} = 93, \widehat{3} \text{ miles de } \textbf{£}.$$

c) Calcula la varianza.

$$\sigma^2 = \frac{\sum_{i=1}^{7} x_i^2 \cdot f_i}{N} - \frac{1}{x^2} = \frac{3391300}{300} - \left(\frac{28360}{300}\right)^2 \approx 2367,7822$$

d) Calcula la desviación típica.

$$\sigma \approx \sqrt{2367,7822} \approx 48,6599$$

e) A la vista de los datos obtenidos, ¿qué podemos afirmar sobre la media aritmética?

La media aritmética de los datos está situada cerca de la mediana y por tanto cerca de la posición central. Sin embargo, por ser la varianza y la desviación típica valores muy altos, la distribución no es homogénea y sería un error tomar el valor de la media como un valor aproximado del importe que paga cada una de las casas, ya que los datos son muy homogéneos.

La media solamente informa de que, si todas las casas pagaran lo mismo, ese importe tendría que ser 93 333,33 € para que la recaudación total fuera igual.

32. En una fábrica de montaje de automóviles montan coches de tres tipos: utilitarios, gama media y gama alta. Para determinar los vehículos que es conveniente montar en función de sus posibilidades de venta, se realiza un estudio tomando a 120 personas a las que se les pregunta por el vehículo que responde mejor a sus necesidades, y se obtienen los resultados que se resumen en la siguiente tabla:

Tipo de coche	Utilitario	Media	Alta
Nº de personas	84	24	12

a) Según estos datos, ¿qué porcentaje de vehículos de cada clase se deberían montar?

Utilitario:
$$\frac{84}{120} \cdot 100 = 70\%$$

Media: $\frac{24}{120} \cdot 100 = 20\%$

Alta:
$$\frac{12}{120} \cdot 100 = 10\%$$

b) Realiza un diagrama de sectores.

c) Si se montan 2500 vehículos, ¿cuántas de cada clase se deberían fabricar?

<u>Utilitario</u>: 70% de $2500 = 0,7 \cdot 2500 = 1750$ vehículos <u>Media</u>: 20% de $2500 = 0,2 \cdot 2500 = 500$ vehículos <u>Alta</u>: 10% de $2500 = 0,1 \cdot 2500 = 250$ vehículos

33. En una determinada empresa, cada trabajador tiene un sueldo distinto en función de la dificultad del trabajo y la necesaria preparación para realizar la actividad, de forma que los salarios de los trabajadores se distribuyen de la siguiente forma:

Sueldo	Nº de trabajadores
[800, 1000)	45
[1000, 1200)	62
[1200, 1400)	86
[1400, 1600)	91
[1600, 1800)	24
[1800, 2000)	14
[2000, 2200)	8

a) Haz un histograma y un polígono de frecuencias

	r	f
Sueldo	X_{i}	J_i
[800, 1000)	900	45
[1000, 1200)	1100	62
[1200, 1400)	1300	86
[1400, 1600)	1500	91
[1600, 1800)	1700	24
[1800, 2000)	1900	14
[2000, 2200)	2100	8
Totale	330	

b) Calcula la media aritmética

Realizamos una tabla de frecuencia con todos los datos necesarios:

I_i	x_i	f_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$	F_{i}
[800, 1000)	900	45	40500	36450000	45
[1000, 1200)	1100	62	68200	75020000	107
[1200, 1400)	1300	86	111800	145340000	193
[1400, 1600)	1500	91	136500	204750000	284
[1600, 1800)	1700	24	40800	69360000	308
[1800, 2000)	1900	14	26600	50540000	322
[2000, 2200)	2100	8	16800	35280000	330
Total:		330	441200	616740000	

Media:
$$\bar{x} = \frac{441200}{330} = 1336,97$$

c) Calcula la mediana

La mediana se alcanza en el intervalo $\begin{bmatrix} 1200,1400 \end{bmatrix}$ y es:

$$\frac{\textit{Me} - 1200}{165 - 107} = \frac{1400 - 1200}{193 - 107} \Rightarrow \frac{\textit{Me} - 1200}{58} = \frac{200}{86} \Rightarrow \textit{Me} = 1200 + \frac{11600}{86} = 1334,88 \in$$

d) Calcula la varianza y la desviación típica.

Varianza:
$$\sigma^2 = \frac{\sum_{i=1}^{7} x_i^2 \cdot f_i}{N} - x^2 = 81421,1203$$

Desviación típica: $\sigma \approx \sqrt{81421,1203} \approx 285,3439$

DESAFÍO PISA - PÁG. 233

UNA NOTICIA INQUIETANTE

A continuación se muestra la evolución del paro registrado en el país en el año 2014-15. Se presentan dos gráficos, uno en el que se muestra la evolución del paro por sectores profesionales y otro en el que se muestra la distribución por sexos.

Observa la evolución del número de parados por sectores y por sexos, y contesta a las siguientes cuestiones.

ACTIVIDAD 1. A la vista del gráfico, el paro registrado en el sector servicios ha bajado, ¿en qué porcentaje?

A: 23% , ya que
$$\frac{2202511}{2856994} \cdot 100 = 77\%$$
 y $100\% - 77\% = 33\%$

ACTIVIDAD 2. Según se puede extraer del gráfico, el paro registrado de septiembre de 2014 a septiembre de 2015 ha bajado en un:

C: 19% La suma de parados en septiembre de 2014 era de $4447\,660$ y un año más tarde de $3589\,042$. La bajada en el número de parados es $\left(1-\frac{3589\,042}{4447\,660}\right)\cdot 100=19\%$

ACTIVIDAD 3. Observando la gráfica de evolución de desempleo por meses relativa a las mujeres, ¿qué mes se puede ver como generador de empleo estacional y solo por poco tiempo?

B: Diciembre, ya que el paro registrado baja pero en seguida vuelve a subir en enero.

ACTIVIDAD 4. A la vista de la gráfica, el número de parados mujeres es mayor que el de parados hombres; aproximadamente en septiembre de 2015 se diferencian en:

B: 300000

ACTIVIDAD 5. Estima el número de mujeres paradas sin empleo anterior en septiembre de 2015.

B: $200\,000$. Puesto que en septiembre de 2015 hay 2,3 millones de mujeres desempleadas frente a 1,8 millones, las mujeres representan el $\frac{2,3}{2,3+1,8}\cdot 100=56\%$ de los parados. Si son la misma proporción de los parados sin empleo anterior serán el 56% de 361797, esto es, más o menos unas doscientas mil.

