Package 'Toolsets'

August 4, 2019

Type Package
Title Toolsets
Version 1.0.0
Date 2018-11-01
Author Zhixin Li

Maintainer Zhixin Li <zxlee@hku.hk></zxlee@hku.hk>
Description Toolsets
License GPL $(i=2)$
Depends R ($\xi = 3.0$)
LazyData true
Encoding UTF-8
RoxygenNote 6.1.1
R topics documented:
-
add.background.point
example.function
gsea.GO.genes.keyWords
gsea.go.kegg.clusterProfiler
gsea.ID2gene
ora.go.kegg.clusterProfiler
plot.dotplot.SC3
plot.GO.barplot
plot.gsea.GO.KEGG.barplot.batch
plot.ora.GO.KEGG.barplot.batch
plot.violin
pre.pheatmap.anno
pre.scale.data
rep.col
rep.row
Index 12

2 example.function

```
add.background.point for facet plot, add background point
```

Description

for facet plot, add background point

Usage

```
add.background.point(all_tsne, cluster = "cluster", group = "group",
   cor1 = "X", cor2 = "Y", sample.order, group.order)
```

Arguments

```
all_tsne all_tsne cluster cluster group group cor1 x cor2 y
```

sample.order sample.order
group.order group.order

Value

a merged dataframe

Examples

```
merged_df <- add.background.point(all_tsne, sample.order = sample.order, group.order = group.order)</pre>
```

```
{\tt example.function} description of the example function
```

Description

description of the example function

Usage

```
example.function(param1 = NULL)
```

Arguments

param1 param1

Value

the return object

Examples

```
example.function()
```

```
gsea.GO.genes.keyWords
```

Get the genes of interested GO terms by some key words

Description

Get the genes of interested GO terms by some key words

Usage

```
gsea.GO.genes.keyWords(organism = "hs", keyWords = "axon",
  returnAll = F)
```

Arguments

organism (hs and mm)

keyWords (for grey function, e.g. cell cycle—DNA replication)

returnAll if return all the GO terms

Value

a list with the GO terms and genes

Examples

```
gsea.go.kegg.clusterProfiler
```

GSEA analysis by newest fgsea

Description

GSEA analysis by newest fgsea

Usage

```
gsea.go.kegg.clusterProfiler(geneList = DEGs_list_full,
  use.score = "cor", organism = "hs", pvalueCutoff = 0.05)
```

4 gsea.ID2gene

Arguments

geneList a gene list

use.score the score used for the GSEA analysis

organism (hs and mm)

pvalueCutoff pvalueCutoff

Value

a list with GO and KEGG GSEA annotation result (clusterProfiler format)

Examples

```
gsea_list <- gsea.go.kegg.clusterProfiler(geneList = pheno_DEGs, use.score = "cor", organism="mm")</pre>
```

gsea. ID2gene

transfer the ID string to gene vector or string

Description

transfer the ID string to gene vector or string

Usage

```
gsea.ID2gene(ID, organism = "hs", returnVector = T)
```

Arguments

ID the ID string, like 4171/4175/5422/4172

organism organism (hs and mm)
returnVector return vector or string

Value

a transfromed gene name list or string

Examples

```
tmpgenes <- gsea.ID2gene("4171/4175/5422/4172", organism="hs")</pre>
```

```
{\it ora.go.kegg.clusterProfiler} \\ {\it GO~KEGG~ORA~analysis}
```

Description

```
GO KEGG ORA analysis
```

Usage

```
ora.go.kegg.clusterProfiler(geneList = markerList, organism = "hs")
```

Arguments

```
geneList a gene list
organism organism (hs and mm)
```

Value

```
a list with GO and KEGG annotation result (clusterProfiler format)
```

Examples

```
result <- ora.go.kegg.clusterProfiler(geneList = new_moduleList, organism="mm")</pre>
```

```
plot.dotplot.SC3
```

Draw dotplot for human SC3 object

Description

Draw dotplot for human SC3 object

Usage

```
## S3 method for class 'dotplot.SC3'
plot(sce, genes.plot, use = "cellGroup2",
    xAngle = 60, cols.use = c("lightgrey", "blue"), col.min = -2.5,
    col.max = 2.5, dot.min = 0, dot.scale = 6, group.order = c(),
    scale.by = "radius", scale.min = NA, scale.max = NA, group.by,
    title = "", plot.legend = FALSE, do.return = FALSE,
    x.lab.rot = FALSE)
```

6 plot.GO.barplot

Arguments

sce SC3 object genes.plot genes

use group used in SC3 object

xAngle angle of x title
cols.use colors used
col.min col.max
dot.min dot.min

dot.scale whether to scale or not

group.order group.order
scale.by scale.by
scale.min scale.min
scale.max scale.max
group.by group.by
title title

plot.legend plot legend or not
do.return return object or not
x.lab.rot rotate x title or not

Value

a ggplot dotplot

Examples

```
options(repr.plot.width=4, repr.plot.height=6)
plot.dotplot.human(sce = sce_HSCR_pure, genes.plot = uniquegenes2, use="cellGroup", group.order = grosscale.min=0, scale.max=100, title="", plot.legend = T, xAngle=90)
```

plot.GO.barplot

Draw barplot for GO dataframe

Description

Draw barplot for GO dataframe

Usage

```
## S3 method for class 'GO.barplot'
plot(barplot_df, color = "random")
```

Arguments

barplot_df GO dataframe from clusterProfiler

Value

```
a ggplot barplot object
```

Examples

```
options(repr.plot.width=4, repr.plot.height=9)
plot.GO.barplot(df)
```

```
plot.gsea.GO.KEGG.barplot.batch
```

Draw GSEA GO KEGG barplot for a gene list

Description

Draw GSEA GO KEGG barplot for a gene list

Usage

```
## S3 method for class 'gsea.GO.KEGG.barplot.batch'
plot(anno_list = gsea_list$go_list,
    type)
```

Arguments

anno_list a gene list

type type of the input data

Value

a dataframe

Examples

```
options(repr.plot.width=10, repr.plot.height=6)
go_list <- plot.gsea.GO.KEGG.barplot.batch(gsea_list$go_list, type = "GO")
kegg_list <- plot.gsea.GO.KEGG.barplot.batch(gsea_list$kegg_list, type = "KEGG")</pre>
```

```
plot.ora.GO.KEGG.barplot.batch
```

Draw GO KEGG barplot for a gene list

Description

Draw GO KEGG barplot for a gene list

Usage

```
## S3 method for class 'ora.GO.KEGG.barplot.batch'
plot(anno_list = go_list, type)
```

8 plot.violin

Arguments

anno_list a gene list

type type of the input data

Value

a dataframe

Examples

```
options(repr.plot.width=4, repr.plot.height=9)
go_list <- plot.GO.KEGG.barplot.batch(result$go_list, type="GO")</pre>
```

plot.violin

Draw violin plot

Description

Draw violin plot

Usage

```
## S3 method for class 'violin'
plot(exprData, cellAnno, genes, use, direction = "h",
    showGroup = T, groupOrder = NULL)
```

Arguments

exprData the expression matrix to be used cellAnno the annotation of the cells genes wanted to show

use the group selected in the cellAnno

direction direction of the violin plot

showGroup whether to show the group names

 ${\tt group0rder} \qquad \quad {\rm the \ order \ of \ the \ group}$

Value

a ggplot violin object

Examples

pre.pheatmap.anno 9

pre.pheatmap.anno

prepare the annotation for the pheatmap

Description

prepare the annotation for the pheatmap

Usage

```
pre.pheatmap.anno(sce = sce, group.order = group.order,
    sample.order = sample.order, Cluster = "impute_cluster",
    Sample = "cellGroup")
```

Arguments

scesce objectgroup.ordergroup.ordersample.ordersample.order

Cluster the feature take as Cluster
Sample the feature take as Sample

Value

anno list

Examples

pre.scale.data

scale the matrix

Description

scale the matrix

Usage

```
pre.scale.data(raw.data = logcounts(sce_HSCR), max.value = 2)
```

Arguments

raw.data raw.data

max.value after scale

10 rep.row

Value

scale.data

Examples

```
scale.data <- pre.scale.data(logcounts(sce_HSCR))</pre>
```

rep.col

 $repeat\ the\ col\ or\ row\ for\ n\ times$

Description

repeat the col or row for n times

Usage

```
## S3 method for class 'col'
rep(x, n)
```

Arguments

 $\begin{array}{ccc} \textbf{x} & & \textbf{x} \\ \textbf{n} & & \textbf{n} \end{array}$

Value

df

Examples

```
rep.df <- rep.col(all_tsne[,cluster], length(groups))</pre>
```

rep.row

 $repeat\ the\ col\ or\ row\ for\ n\ times$

Description

repeat the col or row for n times

Usage

```
## S3 method for class 'row'
rep(x, n)
```

Arguments

```
x x n
```

rep.row 11

Value

 $\mathrm{d}\mathrm{f}$

Examples

```
rep.df <- rep.col(all_tsne[,cluster], length(groups))</pre>
```

Index

```
add.background.point, 2

example.function, 2

gsea.GO.genes.keyWords, 3

gsea.go.kegg.clusterProfiler, 3

gsea.ID2gene, 4

ora.go.kegg.clusterProfiler, 5

plot.dotplot.SC3, 5

plot.GO.barplot, 6

plot.gsea.GO.KEGG.barplot.batch, 7

plot.ora.GO.KEGG.barplot.batch, 7

plot.violin, 8

pre.pheatmap.anno, 9

pre.scale.data, 9

rep.col, 10

rep.row, 10
```