Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем

Отчет о проделанной работе по НИР

ФИО студента: Тасканов В.Е.
Группа: <u>ЭР-15-16</u>
Дата:
Подпись:
ФИО преподавателя: Шатилов А.Ю.
Оценка:

Содержание

1.Добавление расчета координат НС			
1.1. Алгоритм расчета для ГНСС Галилео	4		
1.2. Алгоритм расчета координат	6		
2. Реализация алгоритмов в программе	9		
2.1. Скачивание файла	9		
2.2. Обработка файла	9		
3. Пример расчета с использованием новых функций	10		

1.Добавление расчета координат НС

Алгоритм расчета координат в программе будет следующий:

- Скачиваем файл с данными альманаха,
- Обрабатываем файл,
- Рассчитываем координаты

Файл будет скачивать с официального сайта Галилео, по адресу: «https://www.gsc-europa.eu/product-almanacs#current», где далее следует выбор дата нужного альманаха, который содержится в файле в формате XML.

Скачав файл необходимо его оцифровать (перенести нужные данные в программу для реализации последующих алгоритмов).

•

1.1. Алгоритм расчета для ГНСС Галилео

В файле с расширением – "xml", содержатся альманахи, записанные в виде:

Рисунок 1 – Пример скаченного файла с расширением xml

В следующей таблице представлено описание различных параметров, включенных в альманах Галилео:

Parameter	Field in XML file	Definition	Units
SVID	SVID	Satellite ID (1 constellation of 36 satellites)	dimensionless
Δ(a ^{1/2})	aSqRoot	Difference with respect to the square root of the nominal semi- major axis (29 600 km)	meters 1/2
е	ecc	Eccentricity	dimensionless
δ_i	deltai	Inclination at reference time relative to $i_0 = 56^{\circ}$	semi-circles*
Ω_0	omega0	Right ascension	semi-circles*
Ω	omegaDot	Rate of right ascension	semi- circles/s*
ω	w	Argument of perigee	semi-circles*
M ₀	m0	Satellite mean anomaly at reference time	semi-circles*
af ₀	af0	Satellite clock correction bias "truncated"	S
af ₁	af1	Satellite clock correction linear "truncated"	s/s
IODa	iod	Almanac Issue Of Data	dimensionless
t _{0a}	t0a	Almanac reference time	S
WN _a	wna	Almanac reference Week Number. WNa term is a Modulo 4 binary representation of the Galileo System Time Week Number.	week
SV _{stotus} **	statusE5a statusE5b statusE1B	Satellite signal health status	dimensionless

1.2. Алгоритм расчета координат

Далее полученные значения подставляются в алгоритм расчета координат, который возьмем из ИКД GPS.

Следует учесть, что в полученном альманахе, дано значение разницы а между квадратным корнем из большой полуоси и квадратным корнем из номинальной большой полуоси, поэтому:

Большая полуось определяется, как:

$$\Delta(A^{1/2}) = A^{1/2} - A_{HOM}^{1/2}$$

А также следует учесть, что значение номера недели задан по модулю 4, для этого воспользуемся уже встроенной в программу расчета времени для Галилео алгоритмом, где дата отчета будет являться датой получения альманаха, получив значение недели, возьмем модуль 4 этого числа и сравним со значением альманаха.

1.1.2.1. Определим время, отсчитываемое от опорной эпохи эфемерид:

$$t_k = t - t_{oc}$$

1.1.2.2. Определим среднее движение:

$$n_0 = \sqrt{\frac{\mu}{A_0^3}}$$

1.1.2.3. Определим скорректированное среднее движение:

$$n_A = n_0 + \Delta \lambda$$

1.1.2.4. Определим среднюю аномалию:

$$\boldsymbol{M}_{k} = \boldsymbol{M}_{0} + \boldsymbol{n}_{A} \cdot \boldsymbol{t}_{k}$$

1.1.2.5. Решим уравнение Кеплера минимум 3-мя итерациями и определим E_k :

$$M_k = E_k - e_n \cdot \sin(E_k) \Longrightarrow E_k = M_k + e_n \cdot \sin(E_k)$$

1.1.2.6. Определим истинную аномалию:

$$v_k = arctg\left(\frac{\sqrt{1 - e_n^2} \sin(E_k)}{\left(\cos(E_k) - e_n\right)}\right)$$

1.1.2.7. Определим скорректированный радиус орбиты спутника:

$$A_k = A_0 + (A)t_k$$

$$r_{k} = A_{k} \left(1 - e_{n} \cos(E_{k}) \right) + \delta r_{k}$$

1.1.2.8. Определим аргумент широты:

$$\Phi_k = v_k + \omega$$

$$u_k = \Phi_k + \delta u_k$$

1.1.2.9. Определим координаты НС в орбитальной плоскости:

$$\begin{cases} x_k = r_k \cdot \cos(u_k) \\ y_k = r_k \cdot \sin(u_k) \end{cases}$$

1.1.2.10. Определим скорректированную долготу восходящего узла Ω_k определяется из соотношения:

$$\dot{\Omega} = \dot{\Omega}_{REF} + \Delta \dot{\Omega}$$

$$\Omega_k = \Omega_{0-n} + \left(\stackrel{\bullet}{\Omega} - \stackrel{\bullet}{\Omega}_e \right) - \stackrel{\bullet}{\Omega}_e t_{oe}$$

1.1.2.11. Определим скорректированное наклонение орбиты спутника

$$i_k = i_{0-n} + \overline{(i_{0-n} - DQT)t_k} + \delta u_k$$

1.1.2.12. Определим координаты НС в геоцентрической системе координат:

$$\begin{cases} x_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ z_k = y_k \sin i_k \end{cases}$$

2. Реализация алгоритмов в программе

2.1. Скачивание файла

Воспользуемся встроенной библиотекой "Urlmon". Функция для скачивания – "URLDownloadToFileA", где на входе задается ссылка на файл и название скаченного файла, а на выходе, если файл скачен получаем значение "S_OK".

Для удобства использования в основном алгоритме программы функции – "URLDownloadToFileA", создадим функцию "Downloadhttp", где на входе задается ссылка на файл и название скаченного файла, а на выходе, если файл скачен получаем значение "1".

2.2. Обработка файла

Для обработки файлов также создадим отдельную функцию "parserGalileo", где на входе задается название файла, а также указатель на структуру "almanaxGalileo" в которую будут переданы значения альманаха.

Для алгоритма обработки файла воспользуемся библиотекой – "fstream", в которой содержится класс "ifstream" – файловый ввод. Алгоритм обрабатывает последовательно каждое заданное значение, далее переносит полученные значения в массив значений – «almanaxGalileo».

Основная проблема данного алгоритма, что значения альманаха записываются без пробела и из-за этого в массив передаются символьные значения или строка, состоящая из названия параметра альманаха и его значения, для этого создадим еще одну функцию, только уже для обработки значения – "parserstruct".

На вход функции "parserstruct" задается символьное значения, а также указатель на значение, которое будет обработано.

Все функции содержатся в файле – "parserGalileo.cpp", а также существует заголовочный файл – "parserGalileo.h", в котором хранятся применяемые классы и методы.

Далее импортируем функцию в основной алгоритм программы.

3. Пример расчета с использованием новых функций

Рисунок 2 – Пример расчета