

高等数学 (I)

李锦

影對

主讲教师: 李铮

高等数学(I)

上一次课程内容回顾

第六章 微分方程

第六章 微分方程

6.1 微分方程的概念

6.1.1 引例

【引例1】设曲线 y = f(x) 上任意点 (x,y) 处切线的斜率为 2x,

且曲线经过点(1,4),求此曲线的方程。

解:由题意知:y'=2x,

所以, $y = x^2 + c$, 其中 c 为常数,

又由 $y|_{y=1}=4$, 得 c=3, 因此: $y=x^2+3$ 。

6.1 微分方程的概念

【引例2】设一列车在平直线路上以 20m/s 的速度行驶,当列车 制动时,获得加速度为 $-0.4m/s^2$,问列车从制动开始到完全停止

共行驶了多少米? 其中m为米,s为秒。

解: 由题意知:
$$\frac{d^2S}{dt^2} = a = -0.4$$
,

所以,
$$v = \frac{dS}{dt} = -0.4t + c_1$$
, $S = -0.2t^2 + c_1t + c_2$,

所以,
$$v = \frac{dS}{dt} = -0.4t + c_1$$
, $S = -0.2t^2 + c_1t + c_2$, 又由 $S|_{t=0} = 0, \frac{dS}{dt}|_{t=0} = v|_{t=0} = 20$, 得: $c_1 = 20, c_2 = 0$,

因此,
$$S = -0.2t^2 + 20t$$
, 当 $v = 0$ 时, $t = 50(s)$,

故,
$$S = -0.2 \times 50^2 + 20 \times 50 = 500 (m)$$
。

6.1 微分方程的概念

6.1.2 微分方程的概念

含有自变量、函数及函数的各阶导数的方程:

 $F(x,y,y',y'',...,y^{(n)})=0$ 称为微分方程。

- 微分方程的阶微分方程中导数的最高阶称为微分方程的阶。
- 微分方程的解

满足微分方程的函数称为微分方程的解,如果解中含有独立的任意常数且个数等于与阶数相同,则此解称为通解。

确定了任意常数的解称为特解,确定任意常数的条件称为初始条件。

6.2 一阶微分方程

一阶微分方程的一般形式为: F(x,y,y')=0,

我们主要讨论一阶微分方程 y' = f(x,y) 的几种特殊类型。

6.2.1 可分离变量的微分方程

可分离变量的微分方程具有如下形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \cdot g(y) \quad \text{if} \quad P(x) \cdot Q(y) \, \mathrm{d}x + R(x) \cdot S(y) \, \mathrm{d}y = 0$$

分离变量,两边积分:
$$\int \frac{1}{g(y)} dy = \int f(x) dx + c$$
,

得微分方程的通解为: G(y) = F(x) + c

【例题1】求解微分方程: $y' = \frac{y}{1+x^2}$ 。

解: 分离变量, 两边积分: $\int \frac{1}{y} dy = \int \frac{1}{1+x^2} dx + c,$

通解为: $\ln|y|=\arctan x+c$,

或 $y=c_1 \cdot e^{\arctan x}$,其中 $c=\ln |c_1|$ 为常数,

【例题2】 求微分方程: $y dx + (2x^2 - x) dy = 0$ 满足条件 $y|_{y=1} = 2$ 的特解。

解: 分离变量, 两边积分:

$$\int \frac{1}{y} dy = \int \frac{1}{x - 2x^2} dx = \int \left[\frac{1}{x} + \frac{2}{1 - 2x} \right] dx$$

通解为:
$$\ln |y| = \ln |\frac{x}{1-2x}| + \ln |c|$$
, 或 $y = \frac{cx}{1-2x}$,

由于
$$y|_{x=1}=2$$
, 故 $c=-2$,

特解为:
$$y = \frac{2x}{2x-1}$$
。

【例题3】一艘船以指向正北的速度 ν_0 朝河对岸驶去,两岸间的距离为l,设水流速度与其位置到两岸的距离的乘积成正比,比例系数为k,求船到达河对岸时的位置。

解:建立坐标系,设正北方向为y轴正向,水流流向x轴正向,

设船从原点出发,在t时刻位于P(x,y)处,

由已知条件可得:

$$\frac{\mathrm{d} y}{\mathrm{d} t} = v_0,$$

$$\frac{\mathrm{d} x}{\mathrm{d} t} = k \cdot y \cdot (l - y),$$

所以,
$$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{v_0}{k} \cdot \frac{1}{y(l-y)}$$
, 是可分离变量的微分方程。

【例题3】解(续):

分离变量,两边积分: $\int (ly-y^2)dy = \int \frac{v_0}{k}dx$

通解为:
$$\frac{l}{2} \cdot y^2 - \frac{1}{3} \cdot y^3 = \frac{v_0}{k} \cdot x + c$$
,

由于
$$y|_{x=0}=0$$
, 故 $c=0$,

所以, 特解为:
$$x = \frac{k}{v_0} (\frac{l}{2} \cdot y^2 - \frac{1}{3} \cdot y^3)$$
,

当
$$y = l$$
 时,有 $x = \frac{kl^3}{6v_0}$ 。

6.2.2 齐次微分方程

形如: $\frac{dy}{dx} = \varphi(\frac{y}{x})$ 的微分方程称为齐次微分方程,

简称齐次方程。

此时原方程化为 $u+x\cdot\frac{\mathbf{d}u}{\mathbf{d}x}=\varphi(u)$ 是可分离变量的微分方程,

分离变量,两边积分:
$$\int \frac{1}{\varphi(u)-u} du = \int \frac{1}{x} dx$$
,

微分方程的通解为: $\Phi(u) = \ln|x| + c$,或 $\Phi(\frac{y}{r}) = \ln|x| + c$ 。

【例题4】 求微分方程: $x \cdot y' = y + x \cdot e^x$ 。

解: 先将微分方程化为: $y' = \frac{y}{x} + e^{\frac{y}{x}}$ 是齐次方程,

此时原方程化为 $u+x\cdot\frac{\mathrm{d}u}{\mathrm{d}x}=u+\mathrm{e}^u$

分离变量,两边积分: $\int \frac{1}{e^u} du = \int \frac{1}{x} dx$

通解为: $-e^{-u} = \ln|x| + c$, 或 $-e^{-\frac{y}{x}} = \ln|x| + c$ 。

【例题5】 求微分方程: $y \cdot dx - (x + y \cdot \tan \frac{x}{v}) dy = 0$ 。

解: 此题是齐次微分方程的一种变化形式,

考虑把 y 看成自变量, 而把 x 看成因变量,

原方程化为
$$\frac{dx}{dy} = \frac{x}{y} + \tan \frac{x}{y}$$
 是齐次方程,

所以:
$$u + y \cdot \frac{du}{dy} = u + \tan u$$
, $\int \frac{1}{\tan u} du = \int \frac{1}{y} dy$

通解为:
$$\ln|\sin u|=\ln|y|+\ln|c|$$
, 或 $\sin\frac{x}{y}=cy$ 。

【例题6】设C是一条平面曲线,其上任意一点P(x,y)(x>0)到原点 的距离恒等于曲线在该点的切线在 y 轴上的截距,且曲线 c经过点 $(\frac{1}{2},0)$, 求曲线 C 的方程。

解: 曲线上的点 P(x,y)到原点的距离为: $d=\sqrt{x^2+y^2}$,

曲线 C 上经过点 P(x,y) 的切线方程为: Y-y=y'(X-x),

在 y 轴上的截距为: $Y = y - x \cdot y'$, 由题意知:

$$y-x\cdot y'=\sqrt{x^2+y^2}$$
, 或: $y'=\frac{y}{x}-\sqrt{1+(\frac{y}{x})^2}$ 是齐次方程。

【例题6】解(续):

分离变量,两边积分:
$$\int \frac{1}{\sqrt{1+u^2}} du = -\int \frac{1}{x} dx$$
,

通解为:
$$\ln |u+\sqrt{1+u^2}| = -\ln |x| + \ln |c|$$
, 或: $y+\sqrt{x^2+y^2} = c$,

由于曲线经过点
$$(\frac{1}{2},0)$$
, 故 $c=\frac{1}{2}$,

因此,曲线方程为:
$$y + \sqrt{x^2 + y^2} = \frac{1}{2}$$
。

【例题7】田野上有四条猎犬,分别在距训犬人距离为 a 的东南西北处,一声令下,每头猎犬均以同样的速度追向其左上侧的猎犬,求初始位置在东面的猎犬的运动轨迹。

解: 建立坐标系,设位于东面的猎犬在t时刻位于P(x,y),

而位于北面的猎犬在t时刻位于Q(-y,x),

追逐方向为: \overrightarrow{PQ} , 所以

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \alpha = -\tan \beta = -\frac{x-y}{x+y} = -\frac{x-y}{x+y},$$

是齐次方程。

【例题7】解(续): 令
$$u = \frac{y}{x}, y = x \cdot u$$
,则 $\frac{dy}{dx} = u + x \cdot \frac{du}{dx}$

所以:
$$u+x\cdot\frac{\mathrm{d}u}{\mathrm{d}x}=-\frac{1-u}{1+u}$$
, 或: $x\cdot\frac{\mathrm{d}u}{\mathrm{d}x}=-\frac{1-u}{1+u}-u=-\frac{1+u^2}{1+u}$,

分离变量,积分
$$-\int \frac{1+u}{1+u^2} du = \int \frac{1}{x} dx$$
,

得通解为:
$$-\arctan u - \frac{1}{2}\ln(1+u^2) = \ln|x| + \frac{1}{2}\ln|c|$$
,

或
$$-\arctan\frac{y}{x} = \frac{1}{2}\ln[c(x^2 + y^2)]$$
,由 $y(a) = 0$ 得 $c = a^{-2}$,

或
$$-\arctan\frac{y}{x} = \frac{1}{2}\ln\frac{x^2 + y^2}{a^2}$$
,极坐标形式为: $r = a \cdot e^{-\theta}$ 。

可化为基本型的微分方程

形式一: 微分方程
$$\frac{dy}{dx} = f(ax+by+c), (b \neq 0)$$

微分方程化为:
$$\frac{du}{dx} = a + b \cdot f(u)$$
 是可分离变量的微分方程。

【例题8】求解微分方程:
$$\frac{dy}{dx} = (x+y)^2$$
。

解: 令
$$u = x + y$$
,则微分方程化为: $\frac{du}{dx} = 1 + u^2$,

通解为:
$$\arctan u = x + c$$
 或 $\arctan(x + y) = x + c$ 。

形式二: 微分方程
$$\frac{dy}{dx} = f(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}),$$

当
$$c_1, c_2$$
 不全为零,且 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 时,令: $X = x - x_0, Y = y - y_0$,

$$\text{III: } a_1x + b_1y + c_1 = a_1X + b_1Y + a_1x_0 + b_1y_0 + c_1,$$

$$a_2x + b_2y + c_2 = a_2X + b_2Y + a_2x_0 + b_2y_0 + c_2$$

取
$$(x_0, y_0)$$
 是方程组:
$$\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$$
 的解,

则微分方程化为:
$$\frac{dY}{dX} = f(\frac{a_1X + b_1Y}{a_2X + b_2Y}) = f(\frac{a_1 + b_1 \cdot \frac{I}{X}}{a_2 + b_2 \cdot \frac{Y}{Y}})$$
 是齐次方程。

【例题9】求解微分方程: $\frac{dy}{dx} = \frac{x-y-3}{x+y+1}$ 。

解: 先解方程组: $\begin{cases} x-y-3=0 \\ x+y+1=0 \end{cases}$ 得: $x_0=1, y_0=-2$,

令 X = x - 1, Y = y + 2,则微分方程化为: $\frac{dY}{dX} = \frac{X - Y}{X + Y}$

设
$$u = \frac{Y}{X}, Y = X \cdot u$$
,则 $\frac{dY}{dX} = u + X \cdot \frac{du}{dX}$,

所以,
$$u+X\cdot\frac{\mathrm{d}u}{\mathrm{d}X}=\frac{1-u}{1+u}, \frac{u+1}{u^2+2u-1}\cdot\mathrm{d}u=-\frac{\mathrm{d}X}{X},$$

通解为:
$$\frac{1}{2}\ln|u^2+2u-1|=-\ln|X|+\frac{1}{2}\ln|c|$$
,或 $Y^2+2XY-X^2=c$,

故,原微分方程的通解为: $y^2 + 2xy - x^2 + 6x + 2y - 1 = 0$ 。

6.2.3 一阶线性微分方程

开乡口:
$$y' + p(x) \cdot y = q(x) \cdot \cdots \cdot (1)$$

的微分方程称为一阶线性微分方程,

其中p(x),q(x)为连续函数, q(x) 称为非齐次项。

当
$$q(x) \equiv 0$$
, 方程 $y' + p(x) \cdot y = 0 \cdot \cdots \cdot (2)$

称为齐次线性微分方程,或称非齐次对应的齐次微分方程。

济次线性微分方程是可分离变量的:
$$\frac{dy}{y} = -p(x) \cdot dx$$

通解为:
$$\ln |y| = -\int p(x) dx + \ln |c|$$
 或: $y = c \cdot e^{-\int p(x) dx}$ 。

一阶线性微分方程:

$$y' + p(x) \cdot y = q(x) \cdot \cdots \cdot (1)$$

解法1: 方程 (1) 两边乘上 $e^{\int p(x)dx}$,则可得:

$$[y \cdot e^{\int p(x) dx}]' = q(x) \cdot e^{\int p(x) dx},$$

所以,一阶线性微分方程的通解公式为:

$$y = e^{-\int p(x) dx} \cdot \left[\int q(x) \cdot e^{\int p(x) dx} dx + c \right].$$

注意: 这种方法称为积分因子法, 我们以后会进一步介绍。

• 一阶非齐次线性微分方程: $y' + p(x) \cdot y = q(x) \cdot \dots \cdot (1)$

解法2: 常数变易法

由于(1)对应的齐次线性微分方程(2)的通解为:

$$y = c \cdot e^{-\int p(x) dx}$$
,设 $y = c(x) \cdot e^{-\int p(x) dx}$ 微分方程 (1) 的解,
则 $c'(x) \cdot e^{-\int p(x) dx} = q(x) \Rightarrow c(x) = \int q(x) \cdot e^{-\int p(x) dx} + c_1$,

所以,同样可得到一阶线性微分方程的通解公式为:

$$y = e^{-\int p(x) dx} \cdot \left[\int q(x) \cdot e^{\int p(x) dx} dx + c \right] \circ$$

注意:通解公式要求:(1)标准化,(2)一个c。

【例题10】求解微分方程: $x \ln x \cdot dy + (y - \ln x) \cdot dx = 0$ 。

解:将微分方程标准化: $y'+\frac{1}{v \ln v}\cdot y=\frac{1}{v}$ 是一阶线性微分方程,

分两步: 先计算 $\int p(x) dx = \int \frac{1}{v \ln v} dx = \ln \ln x$,

然后由公式,可得通解为:

$$y = e^{-\int p(x)dx} \cdot \left[\int q(x) \cdot e^{\int p(x)dx} dx + c \right] = e^{-\ln \ln x} \cdot \left[\int \frac{1}{x} \cdot e^{\ln \ln x} dx + c \right]$$
$$= \frac{1}{\ln x} \left(\int \frac{\ln x}{x} dx + c \right) = \frac{1}{\ln x} \left(\frac{1}{2} \ln^2 x + c \right).$$

注:一般在求微分方程通解时,不考虑绝对值问题。

【例题11】求解微分方程: $\frac{dy}{dx} = \frac{2y}{6x - y^2}$ 。

解: 考虑微分方程的变化形式, 将微分方程化为:

$$\frac{dx}{dy} = \frac{6x - y^2}{2y},$$
 再将微分方程标准化:
$$\frac{dx}{dy} - \frac{3}{y} \cdot x = -\frac{y}{2},$$

$$\overline{\text{fit}}$$
: $\int p(y) dy = -\int \frac{3}{y} dy = -3 \ln y$,

由通解公式得:

$$x = e^{-\int p(y)dy} \cdot \left[\int q(y) \cdot e^{\int p(y)dy} dy + c \right]$$

$$= e^{3\ln y} \cdot \left[\int \left(-\frac{y}{2} \right) \cdot e^{-3\ln y} dy + c \right] = y^3 \left(\frac{1}{2y} + c \right) \cdot$$

【例题12】设函数 f(x) 连续,且 $f(x) = \int_0^x f(t) dt + e^{2x}$,求 f(x)。

解: 这是积分方程,通常遇到变上限函数直接选择求导数!

求导得: $f'(x) = f(x) + 2 \cdot e^{2x}$, 标准化: $f'(x) - f(x) = 2 \cdot e^{2x}$,

由通解公式得:

$$f(x) = e^{-\int (-1) dx} \cdot \left[\int 2e^{2x} \cdot e^{\int (-1) dx} dx + c \right] = e^{x} \cdot \left[2e^{x} + c \right] \circ$$

注意: 此题有隐含初始条件: f(0)=1, 所以: c=-1,

因此: $f(x) = 2 \cdot e^{2x} - e^x$ 。

思考: 能否对积分方程求导?

6.2.4 伯努里(Bernoulli)方程

刑》如:
$$y' + p(x) \cdot y = q(x) \cdot y^{\lambda} \ (\lambda \neq 0,1)$$

的微分方程称为伯努里(Bernoulli)方程。

作变量代换, 令
$$z=y^{1-\lambda}$$
,则 $z'=(1-\lambda)\cdot y^{-\lambda}\cdot y'$,

原微分方程化为: $z' + (1-\lambda) \cdot p(x) \cdot z = (1-\lambda) \cdot q(x)$

是一阶线性微分方程。

【例题13】求解微分方程: $y dx - (x - x^2 \ln y) dy = 0$ 。

解: 考虑微分方程的变化形式, 将微分方程化为:

$$\frac{\mathrm{d}x}{\mathrm{d}y} - \frac{1}{y} \cdot x = -\frac{\ln y}{y} \cdot x^2$$
 是伯努里方程,

$$\frac{\mathrm{d}x}{\mathrm{d}y} - \frac{1}{y} \cdot x = -\frac{\ln y}{y} \cdot x^2$$
 是伯努里方程,
令: $z = x^{-1}$,则原微分方程化为: $z' + \frac{1}{y} \cdot z = \frac{\ln y}{y}$,

由通解公式得:

$$z = e^{-\int \frac{1}{y} dy} \cdot \left[\int \frac{\ln y}{y} \cdot e^{\int \frac{1}{y} dy} dy + c \right] = \frac{1}{y} \left(\int \ln y \, dy + c \right) = \frac{1}{y} (y \ln y - y + c),$$

原微分方程的通解:
$$x^{-1} = \frac{1}{y}(y \ln y - y + c)$$
.

【例题14】求解微分方程: $x \cdot (e^y - y') = 2$ 。

解: 微分方程可化为: $y' = e^y - \frac{2}{x}$, 怎么办?

作变量代换, 令 $u=e^y$,则 $u'=e^y\cdot y'=u\cdot y'$,

原微分方程化为: $u' = u \cdot (u - \frac{2}{x})$, $u' + \frac{2}{x} \cdot u = u^2$ 是伯努里方程,

令: $z=u^{-1}$, 则: $z'-\frac{2}{x}\cdot z=-1$, 由通解公式得:

$$z = e^{-\int (-\frac{2}{x}) dx} \cdot \left[\int (-1) \cdot e^{\int (-\frac{2}{x}) dx} dx + c \right] = x^2 \cdot (\frac{1}{x} + c),$$

原微分方程的通解: $e^{-y} = x + c x^2$.

第六章 微分方程

本次课程内容小结

下次课程内容预告

第六章 微分方程

