Implementing Ensemble Learning Using Boosting Methods

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Using a series of sequential learners in an ensemble

Adaptive boosting or AdaBoost

Gradient Boosting

Hyperparameters tuning of gradient boosting models with early stopping

"Build up your weaknesses until they become your strong points."

Knute Rockne

Adaptive Boosting

<u>Ada</u>ptive <u>Boost</u>ing (AdaBoost)

Construct and train models sequentially

Misclassified training points from each model are up-weighted

Next model sees previously misclassified points more often

Final model output is weighted output of individual predictor outputs

Thus, each individual predictor has weight

Higher weights assigned to more accurate predictors

Predictors that are wrong most often can have negative weights

Predictors that guess at random have weight close to zero

Sequential training

Train the first predictor in a sequence

Increase relative weights of those instances that the first predictor got wrong

Increase relative weights of those instances that previous predictors got wrong

Demo

Performing regression using adaptive boosting

Demo

Performing classification using adaptive boosting

Many machine learning models come together to work on the training data

Many weak learners

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1x + e_1$$

Residuals from Model 1

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Residuals from Model 1

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

What Model 1 fails to learn'

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Focuses on what previous model failed to learn

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$
 Model 2

Residuals from Model 2

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Residuals from Model 2

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

What Model 2 fails to learn'

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

Focuses on what previous model failed to learn

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

These residuals are now unlearnt

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$
 unlearnt

Only these residuals are now unlearnt

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

In practice:
100-200 weak
learners, each
learning from
previous mistakes

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

Combined Model:

y = Sum of outputs of weak learners

Demo

Performing regression using gradient boosting

Demo

Hyperparameter tuning of the number of estimators in gradient boosting models

Summary

Using a series of sequential learners in an ensemble

Adaptive boosting or AdaBoost

Gradient Boosting

Hyperparameters tuning of gradient boosting models with early stopping