Report No: CCISE161101906

FCC REPORT

Applicant: Shenzhen Fortuneship Technology Co., LTD

Room 701-716, 7th Floor, Kanghesheng Building, No.1

Address of Applicant: ChuangSheng Road, Nanshan District, Shenzhen, Guangdong,

China

Equipment Under Test (EUT)

Product Name: 4G Smart phone

Model No.: PCD508

Trade mark: PCD

FCC ID: 2ABXI-PCD508

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 10 Nov., 2016

Date of Test: 10 Nov., to 21 Nov., 2016

Date of report issued: 22 Nov., 2016

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	22 Nov., 2016	Original

Tested by: Date: 22 Nov., 2016

Test Engineer

Reviewed by: Query (New Date: 22 Nov., 2016

Project Engineer

3 Contents

		Pa	age
1	C	COVER PAGE	1
2	٧	/ERSION	2
3	C	CONTENTS	3
4	Т	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	
7	Т	EST SETUP PHOTO	. 17
8	Е	EUT CONSTRUCTIONAL DETAILS	. 18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCISE161101906

5 General Information

5.1 Client Information

Applicant:	Shenzhen Fortuneship Technology Co., LTD		
Address of Applicant:	Room 701-716, 7th Floor, Kanghesheng Building, No.1 ChuangSheng Road, Nanshan District, Shenzhen, Guangdong, China		

5.2 General Description of E.U.T.

Product Name:	4G Smart phone
Model No.:	PCD508
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
	Model: FJ-SW1160501000UA
AC adapter :	Input: AC100-240V 50/60Hz 0.3A
	Output: DC 5.0V, 1A

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE161101906

5.5 Description of Support Units

Manufacturer	lanufacturer Description		Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router	MW150R	12922104015	FCC ID
NAKAMICHI	Bluetooth earphone	T8	N/A	FCC ID

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.8 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Test Equipment Manufacturer Model No		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017		
10	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107 ANSI C63.4:2014					
Test Method:						
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Fraguenay rango (MHz)	Lir	mit (dBµV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
	* Decreases with the logarit	hm of the frequency.				
Test setup:	Test setup: Reference Plane					
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices at a LISN that provides a 50 termination. (Please refer photographs). Both sides of A.C. line at interference. In order to fi positions of equipment ar according to ANSI C63.4 	on network(L.I.S.N.) pedance for the meare also connected to bohm/50uH coupling as to the block diagrate checked for maximind the maximum emind all of the interface	The provide a asuring equipment. The main power through impedance with 500hm am of the test setup and mum conducted hission, the relative a cables must be change			
Test environment:		mid.: 56%	Press.: 101kPa			
i est environment.		1				
Test Instruments:	Refer to section 5.7 for deta	ils				
	Refer to section 5.7 for deta					

Measurement data:

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 4G Smart phone Site Condition

EUT

Model : PCD508 Test Mode : PC mode

Power Rating: AC120/60Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

tomark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu₹	dB	
1	0.174	26.50	0.15	10.77	37.42	64.77	-27.35	QP
2	0.258	20.51	0.16	10.75	31.42	61.51	-30.09	QP
3	0.258	15.16	0.16	10.75	26.07	51.51	-25.44	Average
1 2 3 4 5 6 7 8 9	0.385	10.48	0.23	10.72	21.43	48.17	-26.74	Average
5	0.471	16.96	0.24	10.75	27.95	56.49	-28.54	QP
6	4.269	19.65	0.34	10.88	30.87	56.00	-25.13	QP
7	5.564	16.02	0.35	10.83	27.20	50.00	-22.80	Average
8	8.367	14.27	0.33	10.87	25.47	50.00	-24.53	Average
9	17.944	29.21	0.31	10.90	40.42	60.00	-19.58	QP
10	18.232	24.68	0.31	10.91	35.90	50.00	-14.10	Average
11	22.775	28.12	0.35	10.89	39.36	60.00	-20.64	QP
12	22.896	24.16	0.35	10.89	35.40	50.00	-14.60	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 15

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 4G Smart phone Site Condition

EUT

: PCD508 Model Test Mode : PC mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>		dBu∜	—dBu∀	<u>ab</u>	
0.162	26.29	0.13	10.77	37.19			
	ACC 1/2077 (CC) 1/2074 (CC)						THE RESIDENCE AND ADDRESS OF THE PARTY OF TH
0.361	17.61	0.22	10.73	28.56	58.69	-30.13	QP
0.385	10.07	0.22	10.72	21.01	48.17	-27.16	Average
1.296	9.72	0.26	10.90	20.88	46.00	-25.12	Average
1.810	14.90	0.26	10.95	26.11	56.00	-29.89	QP
1.810	9.18	0.26	10.95	20.39	46.00	-25.61	Average
	23.33						
		0.0000000000000000000000000000000000000					
							105 Tolking
23.018	23.02	0.25	10.89	34.16			
	MHz 0.162 0.258 0.258 0.361 0.385 1.296 1.810 1.810 17.291 17.475 22.655	Freq Level MHz dBuV 0.162 26.29 0.258 20.17 0.258 14.04 0.361 17.61 0.385 10.07 1.296 9.72 1.810 9.18 17.291 23.33 17.475 26.51 22.655 27.38	Freq Level Factor MHz dBuV dB	Freq Level Factor Loss MHz dBuV dB dB 0.162 26.29 0.13 10.77 0.258 20.17 0.17 10.75 0.258 14.04 0.17 10.75 0.361 17.61 0.22 10.73 0.385 10.07 0.22 10.72 1.296 9.72 0.26 10.95 1.810 9.18 0.26 10.95 17.291 23.33 0.27 10.91 17.475 26.51 0.27 10.91 22.655 27.38 0.25 10.89	MHz dBuV dB dB dBuV 0.162 26.29 0.13 10.77 37.19 0.258 20.17 0.17 10.75 31.09 0.258 14.04 0.17 10.75 24.96 0.361 17.61 0.22 10.73 28.56 0.385 10.07 0.22 10.72 21.01 1.296 9.72 0.26 10.90 20.88 1.810 14.90 0.26 10.95 26.11 1.810 9.18 0.26 10.95 20.39 17.291 23.33 0.27 10.91 34.51 17.475 26.51 0.27 10.91 37.69 22.655 27.38 0.25 10.89 38.52	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.162 26.29 0.13 10.77 37.19 65.34 0.258 20.17 0.17 10.75 31.09 61.51 0.361 17.61 0.22 10.73 28.56 58.69 0.385 10.07 0.22 10.73 21.01 48.17 1.296 9.72 0.26 10.90 20.88 46.00 1.810 14.90 0.26 10.95 26.11 56.00 1.810 9.18 0.26 10.95 20.39 46.00 17.291 23.33 0.27 10.91 34.51 50.00 17.475 26.51 0.27 10.91 37.69 60.00 22.655 27.38 0.25 10.89 38.52 60.00	Freq Level Factor Loss Level Line Limit MHz

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission										
Test Requirement:	FCC Part 15 B Section 15.109									
Test Method:	ANSI C63.4:201	ANSI C63.4:2014								
Test Frequency Range:	30MHz to 26000	OMHz								
Test site:	Measurement D	istance:	3m (Se	mi-Anechoi	c Chan	nber)				
Receiver setup:	Frequency	Dete		RBW	VB\		Remark			
·	30MHz-1GHz	Quasi-		120kHz	300kHz		Quasi-peak Value			
	Above 1GHz	Pea RM		1MHz	3MHz 3MHz		Peak Value			
Limit:	Frequenc			1MHz (dBuV/m @		72	Average Value Remark			
LIIIII.	30MHz-88M		Liiiii	40.0	, (111)	(Quasi-peak Value			
	88MHz-216N			43.5			Quasi-peak Value			
	216MHz-960			46.0			Quasi-peak Value			
	960MHz-1G			54.0			Quasi-peak Value			
				54.0			Average Value			
	Above 1GI	1Z		74.0			Peak Value			
	Below 1GHz Antenna Tower Search Antenna Tum Table Antenna Antenna RF Test Receiver									
	Ground Plane —									
	Above 1GHz									
	80CM	Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller								

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								
		2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.							
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.								
	4. For each suspected emission, the EUT was arranged to its wo and then the antenna was tuned to heights from 1 meter to 4 n and the rotatable table was turned from 0 degrees to 360 degr find the maximum reading.								
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa			
Test Instruments:	Refer to se	ection 5.7 for	details						
Test mode:	Refer to se	Refer to section 5.3 for details							
Test results:	Passed								
Remark:		All of the observed values above 6GHz were the niose floor , which were not recorded							

Measurement Data:

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : 4G Smart phone Condition

EUT

Model : PCD508 Test mode : PC mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike REMARK :

uuvvv	•								
		ReadAnt enna		Cable Preamp		Limit		Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	dB/π		<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
1	119.856	48.11	11.80	2.17	29.39	32.69	43.50	-10.81	QP
1 2 3	135.032	48.11	11.98	2.34	29.30	33.13	43.50	-10.37	QP
3	209.313	49.71	10.65	2.86	28.77	34.45	43.50	-9.05	QP
4	239.987	55.45	11.80	2.82	28.59	41.48	46.00	-4.52	QP
5 6	281.008	46.56	12.21	2.89	28.48	33.18	46.00	-12.82	QP
6	345.595	41.60	14.02	3.08	28.55	30.15	46.00	-15.85	QP

Vertical:

Site Condition EUT : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 4G Smart phone

Model : PCD508

Test mode : PC mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK

	Freq		intenna Factor						Remark
_	MHz	—dBuV	<u>dB</u> /π	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	46.178	46.24	17.08	1.28	29.85	34.75	40.00	-5.25	QP
2	119.856	47.76	11.80	2.17	29.39	32.34	43.50	-11.16	QP
3	134.559	47.57	12.02	2.34	29.30	32.63	43.50	-10.87	QP
4	165.487	47.45	9.84	2.62	29.09	30.82	43.50	-12.68	QP
5	239.987	51.15	11.80	2.82	28.59	37.18	46.00	-8.82	QP
6	365.539	42.63	14.72	3.09	28.63	31.81	46.00	-14.19	QP

Above 1GHz

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 4G Smart phone Condition

EUT

: PCD508 Model

Test mode : PC mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Mike REMARK :

2 MICHAIL										
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
_	MHz	dBu∇	dB/m			$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		-
1	3309.293	48.42	27.01	5.53	41.38	39.58	74.00	-34.42	Peak	
2	3309.293	38.43	27.01	5.53	41.38	29.59	54.00	-24.41	Average	
3	4320.298	49.60	33.73	6.58	41.90	48.01	74.00	-25.99	Peak	
4	4320.298	39.61	33.73	6.58	41.90	38.02	54.00	-15.98	Average	
5	4960.389	50.27	36.71	6.91	41.87	52.02	74.00	-21.98	Peak	
6	4960.389	40.33	36.71	6.91	41.87	42.08	54.00	-11.92	Average	

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 4G Smart phone : PCD508 Condition

EUT

Model Test mode : PC mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

CHICHAL.									
	Freq		Antenna Factor						Remark
=	MHz	—dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>d</u> B	
1	3091.412	48.28	26.02		41.46			-35.78	
2	3091.412	38.31	26.02	5.38	41.46	28.25	54.00	-25.75	Average
3	4020.176	48.52	32.35	6.13	41.81	45.19	74.00	-28.81	Peak
4	4020.176	38.46	32.35	6.13	41.81	35.13	54.00	-18.87	Average
5	4960.389	50.71	36.71	6.91	41.87	52.46	74.00	-21.54	Peak
6	4960.389	40.52	36.71	6.91	41.87	42.27	54.00	-11.73	Average