STAT 110: Week 7

University of Otago

Outline

- Previous
 - ► Model for linear regression
 - $y = \beta_0 + \beta_1 x + \varepsilon$
- Today:
 - ▶ Fitting the model
 - Estimating β_0 and β_1
 - Fitted model
 - Residuals

Recall: motivating data

- The size of brushtail possums
 - ► Exploring relationship between total length (mm) and head length (mm)
- Height of STAT 110 students
 - Compare father's height (cm) and son's height (cm)
- Squat weight of international power lifters
 - ▶ Look at the relationship between body weight (kg) and max squat weight (kg)

Recall: importing data into R

• Import the data into R

```
possum = read.csv('possum.csv')
height = read.csv('height.csv')
powerlift = read.csv('powerlift.csv')
```


Fitting a regression model

• The (simple) linear regression model is

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{mean response}} + \varepsilon$$

- β_0 and β_1 are parameters
 - ► Estimate parameters (population) with statistics (sample)
 - ▶ What statistics could we use to estimate β_0 and β_1 ?

Fitting a regression model

• The (simple) linear regression model is

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{mean response}} + \varepsilon$$

- β_0 and β_1 are parameters
 - ► Estimate parameters (population) with statistics (sample)
 - ▶ What statistics could we use to estimate β_0 and β_1 ?
 - We could guess by eye: use paper, pencil and ruler (or electronic equivalents)
 - Later in the lecture: find general approach for estimating β_0 and β_1
- For now: assume we have some way to find estimates \hat{eta}_0 and \hat{eta}_1
- Work through using the possum data to illustrate concepts

Fitted model

• The (simple) linear regression model is

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{mean response}} + \varepsilon$$

• Once we have estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ we can write the fitted model

$$\hat{\mu}_y = \hat{\beta}_0 + \hat{\beta}_1 x$$

• The fitted model is commonly written as

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

• The fitted model gives the estimate of the mean at a given x value

Slide 6 STAT 110: Week 7

Fitted model: possum data

- Use estimates $\hat{\beta}_0 = 42.7$ and $\hat{\beta}_1 = 0.057$
- Fitted model is

$$\hat{y} = 42.7 + 0.057x$$

Residuals

- The statistical model can be expressed as
 - ▶ observation = mean response + error
- After fitting the model, we have
 - observation = fitted model + residual
- The residual $\hat{\varepsilon}$ is our best guess (estimate) of the error ε
 - ▶ It is the difference between the observation (y) and the mean response (\hat{y})

$$\hat{\varepsilon} = y - \hat{y}$$

• We often index by i: for the ith observation (x_i, y_i) the residual is

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

Residuals: blue lines

Residuals: possum data (three points in blue)

How do we fit the model?

• The (simple) linear regression model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- Estimate parameters β_0 and β_1
 - Find β_0 and β_1 that give the 'best' description of relationship between x and y
- Suppose we had a choice between two possible fitted models
 - 1. One of them has many large residuals (large positive and large negative residuals)
 - 2. The other one has mostly small residuals (small positive and small negative residuals)
- Which is better?
 - ► Look graphically

Graphical representation

- Same data, two possible fitted models
 - ► One with larger residuals (magnitude): gold
 - ▶ One with smaller residuals (magnitude): blue
- Which describes the relationship between x and y better?

- We want the (magnitude of the) residuals to be as small as possible
- We will find estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ using the method of least squares
 - Find the values $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize the sum of squared residuals
- Explain the process graphically

- We can visualise the squared residual by drawing a square!
 - ► Squared residual is the area of red square

- The sum of squared residuals
 - ► Combined area of the red squares

- Minimise the sum of squared residuals (minimise combined area)
 - ► Left plot: better fit (to the same data)

• The sum of squared residuals:

$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$
$$= \sum_{i=1}^{n} (y_{i} - [\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}])^{2}$$

- Note: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- Find $\hat{\beta}_0$ and $\hat{\beta}_1$ that make $\sum \hat{\varepsilon}_i^2$ as small as possible

Slide 17 STAT 110: Week 7

Parameter estimates

- We can use calculus to find estimates
 - $ightharpoonup \hat{eta}_0$ and \hat{eta}_1 that minimise sum of square residuals

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{s_y}{s_x} r$$

- \triangleright s_{y} : sample standard deviation of outcome y
- $ightharpoonup s_x$: sample standard deviation of predictor x
- ightharpoonup r: sample correlation between x and y

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Slide 18

• Details of how to find these: outside the scope of the course

In R

- We can find the least squares estimates using R
- The R code is

```
lm(y ~ x)
```

- Look at each piece in turn:
 - ▶ 1m: function for fitting a linear model
 - ▶ v: outcome variable
 - x: predictor variable
 - ": thought of as 'is modelled by'
 - ▶ lm(y ~ x): is saying that we are fitting a linear model where the outcome variable y is modelled in terms of the predictor variable x

Fitting the possum data

```
m_possum = lm(possum$head_1 ~ possum$total_1) # assigned the output to object m_possum
summary(m possum) # shows a summary of the results
##
## Call:
## lm(formula = possum$head_1 ~ possum$total_1)
##
## Residuals:
     Min
             10 Median 30
                               Max
## -7.188 -1.534 -0.334 1.279 7.397
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.70979 5.17281 8.26 5.7e-13 ***
## possum$total_1 0.05729 0.00593 9.66 4.7e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.6 on 102 degrees of freedom
## Multiple R-squared: 0.478, Adjusted R-squared: 0.472
## F-statistic: 93.3 on 1 and 102 DF, p-value: 4.68e-16
```

Estimates in R

- The estimates \hat{eta}_0 and \hat{eta}_1 are given in column headed Estimate
 - $\hat{\beta}_0 = 42.71$
 - $\hat{\beta}_1 = 0.057$
- R labels the estimates in terms of the variable names
 - ▶ (Intercept)
 - possum\$total_1

Detour: data option in 1m

- The 1m function includes a data option that can make specification easier
- Separate the variable (e.g. head_1) from the data frame object (possum)
- The code is

```
m_possum2 = lm(head_l ~ total_l, data = possum)
```

• This is fitting the same model as in the slide above

Fitted model: possum data

- The fitted model is $\hat{y} = 42.71 + 0.057x$
 - lacktriangle Recall: y is head length, x is total length
 - We could also write: $\widehat{\text{head}} = 42.71 + 0.057 \text{ total}$

Fitted model: possum data

- Fitted model is $\hat{y} = 42.7 + 0.057x$
 - For x = 800 we have $\hat{y} = 42.7 + 0.057 \times 800 = 88.5$
 - For x = 900 we have $\hat{y} = 42.7 + 0.057 \times 900 = 94.3$

Interpretation

- Fitted model $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
 - For the possum data: $\hat{y} = 42.7 + 0.057x$
- Our interest is $\hat{\beta}_1$:
 - ► We estimate that the average head length of a possum will increase by 0.057 mm for a 1 mm increase in total length.
- This is a comparison of two subpopulations
 - If we compare possums whose total length is x mm to possums whose total length is x+1 mm, the estimated increase in their expected (or mean) head length is 0.057 mm.
- \hat{eta}_0 is the estimated mean head length of possums with total length 0 mm
 - Makes no biological sense
 - ► Do not interpret in this case

Summary

- Fitting a linear regression model
 - Fitted values: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
 - ▶ Residuals: $\hat{\epsilon} = y \hat{y}$
- Method of least squares
 - ► Minimise the sum of squared residuals
 - ► Fit the model using lm in R: lm(y ~ x)

Outline

- Previous:
 - ► Fitting a statistical model
 - Method of least squares
- Today:
 - ► Assumptions underlying linear regression
 - What are the assumptions?
 - How do we check the assumptions?

Motivation

- Exploring relationship between total length (mm) and head length (mm) of brushtail possums
- Recall: fitting linear model

```
m_possum = lm(head_1 ~ total_1, data = possum) # possum data
```

- Linear regression model allows us to:
 - ► Estimate the effect of x (total length) on y (head length)
 - \blacktriangleright Estimate the mean response of y (head length) given x (total length)
 - E.g. estimate mean head length of possums that have total length $x=820~\mathrm{mm}$
- Problem: the model relies on assumptions
 - ▶ Interpretations and conclusions may be invalid if assumptions are badly wrong
- We need to test the model assumptions (so far as possible)

Assumptions for Simple Linear Regression

Recall that the linear regression model is

$$y = \underbrace{\beta_0 + \beta_1 x}_{\mu_y} + \varepsilon$$

- The underlying assumptions are:
 - **Linearity:** The mean response μ_y is described by a straight line
 - ▶ **Independence:** The errors $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are independent
 - **Normality:** The error terms ε are normally distributed
 - **Equal variance:** The errors terms all have the same variance, σ_{ε}^2 ('homoscedastic')
- These are often remembered using the mnemonic LINE.

Tools for checking assumptions

- Fitted line plot: compare the observed data to the fitted model
 - Useful, but not extensively used for checking assumptions

```
plot(possum$total_l, possum$head_l) # plot(x,y): x gives x values, y gives y values abline(m_possum) # draws the fitted regression line
```


Detour: plotting in R

- Show code for 'default' plots: default points, colours, axis labels, etc
 - ▶ All that is needed for this course (STAT 260 explores plotting and visualisation of data)
- For interest: present same plot as above with some modifications

```
plot(possum$total_1, possum$head_1, pch = 20, xlab = "Total length (mm)",
     ylab = "Head length (mm)")
abline(m_possum)
```


Residual plots

- It is more common to use a residual plot
 - ightharpoonup Residuals $\hat{\varepsilon}$ are on the y-axis
 - Recall: $\hat{\varepsilon} = y \hat{y}$
- Look at a small example

STAT 110: Week 7 X Fitted value Slide 33

More on residuals: $\hat{\varepsilon} = y - \hat{y}$

- The residual is $\hat{\varepsilon} = y \hat{\beta}_0 \hat{\beta}_1 x$
- Residuals are estimates of error terms (ε)
 - ightharpoonup Can be used to check assumptions about error terms (ε)
- The residual $\hat{\varepsilon}$ is often called a raw residual
 - Standardised or studentised residuals are often preferred
 - We will use studentised residuals in this course
 - What are studentised (or standardised) residuals?
 - Transformed to have standard deviation pprox 1
 - (Mathematical) details are beyond the scope of the course
 - ▶ Find them in R using function rstudent
 - e.g. for model object m_possum we find studentised residuals using rstudent(m_possum)

Plotting residuals in R

```
poss_fit = fitted(m_possum) # finds the fitted values of the model m_possum
poss_resid = rstudent(m_possum) # finds the studentized residuals of the model m_possum
plot(poss_fit, poss_resid) # plots residuals against fitted values
abline(h=0) # draws a horizontal line at O
```


Checking the linearity assumption

- Looking for clear departure for linearity in trend of data.
 - ▶ Look for patterns in plot of residuals against fitted values
- Plots below illustrate failure of linearity assumption (bad)

Checking the linearity assumption

- Looking for clear departure for linearity in trend of data.
 - ▶ Look for patterns in plot of residuals against fitted values
- Plots below: no evidence of failure of linearity assumption (good)

The independence assumption

- Independence assumption: errors $\varepsilon_1, \ldots, \varepsilon_n$ are independent
- What does it mean that errors ε_1 and ε_2 are independent?
 - Knowing ε_1 tells us nothing about ε_2

$$-\varepsilon_i = y_i - (\beta_0 + \beta_1 x_i)$$

- For the possum example, independence means
 - ► Knowing how much above average one possum's head length is, gives no information about how far above average another possum's head length is.

Checking the independence assumption

- In general: difficult to assess
 - ▶ We are unable to check it by looking at fitted line or residual plots.
- In certain situations, we may be able to check it
 - If the data are collected in time (time series)
 - Expect observations close together in time to be correlated
 - If the data are collected in space (spatial data)
 - Expect observations close together in space to be correlated
 - ▶ If there are multiple measurements from each participant (repeated measures)
 - Expect observations from a given participant to be correlated
- We can look at more complex statistical models for each of the cases above

Outside the scope of this course

Checking the normality assumption

- Assumption: errors ε are normally distributed
- The importance of the normality assumption depends on sample size
 - Sample size small: important, but hard to check
 - As sample size increases (say n > 50) it becomes increasingly less important
 - Looking for large violations of normality
 - Are there one (or more) extreme values: outliers
- We assess outliers using the residual plot

Checking the normality assumption

- Studentized residuals should be approximately normal with standard deviation 1:
 - ▶ Most (approx 95%) within ± 2
 - ▶ Nearly all (> 99%) within ± 3
 - ▶ Values exceeding ± 4 are unusual

Checking equal variance assumption (homoscedasticity)

- Assumption: error terms $\varepsilon_1, \varepsilon_2, \dots, \epsilon_n$ have the same variance
 - ► The magnitude of spread of data about regression line should not change too much with *x*.
- In contrast, if (say) variance of error terms increases with x
 - ▶ We would expect to see data more dispersion as *x* increases.
- Best seen with residual plot against fitted values.

Checking equal variance

- Example where there is evidence of non-constant variance
 - Variance of residuals increases with fitted value

What to do when assumptions fail: linearity

- Failure of the linearity assumption is critical
 - ► Conclusions drawn from the model will be invalid
- Paths forward include
 - Consider transforming outcome or predictor variables (where appropriate)
 - Explore more sophisticated models
 - Move beyond a simple linear regression model
- Both of these are outside the scope of the course
 - ► Considered further in STAT 210, 310

What to do when assumptions fail: independence or equal variance

- When independence or equal variance assumptions fail
 - ▶ Estimates of parameters remain valid
 - Estimates can be inefficient
 - They can be improved
- Follows that fitted regression line is useable
- Confidence intervals and hypothesis tests will be invalid.
- Failure of assumptions can be rectified by sophisticated modelling techniques.

Details beyond this course.

What to do when assumptions fail: normality / outliers

- Outliers can have a dramatic effect on the estimated regression
 - Such values are called influential points
- If outliers are present: check that the data are correctly recorded.
- If outliers remain we may consider removing them, however:
 - ► Think carefully first
 - Often outliers (or unexpected values in general) are the most interesting
 - They could be revealing something important about what we are studying
 - We should first assess if they are influential
 - If removing them has little effect: leave them in
 - ▶ If we do remove observations, we must be transparent
 - It should clear and obvious that values were removed and why

Look at an example

Scottish hill racing

- Data are the record times in 1984 for 35 Scottish hill races (running)
- Interested in the relationship between distance and record time
 - ► Outcome variable (y): record time (in minutes)
 - ► Predictor variable (x): distance (in km)

STAT 110: Week 7 Distance (km) Fitted value Slide 47

Scottish hill races: Investigate the outliers

- Knock Hill: record incorrectly recorded
 - ► Recorded as 78 minutes 39 seconds
 - ▶ It should have been 18 minutes 39 seconds.
- Bens of Jura: other important information?
 - ▶ This race has the largest climb by over 700 m
 - Consider (extended) model that includes climb?
- General: we may want to think about whether it is reasonable to describe the relationship between time and distance as linear for all races between 3 km and 40+ km

Residuals: possum data

```
plot(fitted(m_poss), rstudent(m_poss), pch = 20, xlab = "Fitted value",
     vlab = "Studentised residual")
abline(h = 0)
```


- Linearity: no evidence of a trend
- Outliers: no apparent outliers
- Constant variance: no obvious change in magnitude of spread of residuals

Recall: weightlifting data

- Maximum squat weight of international power lifters
 - ► Found the maximum squat for each athlete across competitions
- Data from 9045 athletes
- Look at the relationship between body weight (kg) and max squat weight (kg)
 - ▶ Outcome variable (y): (best recorded) squat weight
 - ightharpoonup Predictor variable (x): body weight
- Import the data

```
powerlift = read.csv('powerlift.csv')
```

• Fit linear regression model

```
m_power = lm(bestsquat ~ bodyweight, data = powerlift)
```

Residuals: powerlift data

- Linearity: very hard to tell
 - ▶ Too many points: draw points smaller to distinguish observations
- Outliers: some large negative residuals
- Constant variance: no obvious change in magnitude of spread of residuals

Residuals: powerlift data

- To better assess linearity
 - ► Draw points smaller (better see the number of points)

Residuals: powerlift data

- There is an apparent trend in the residuals
 - ▶ Residuals tend to be negative for low and high fitted values
- A more complex model may be required
 - ▶ e.g. there may be an upper 'physiological' limit that a human can squat
 - Consider a model where mean response increases to a maximum value
 - Outside the scope of the course
- Investigate the outliers
 - ▶ Data: maximum squat for each athlete across all recorded competitions
 - Outliers may have been from competitors with a single competition
 - Possible option: restrict to competitors with data from at least 5 competitions

Summary

- Assumptions of linear regression
 - ► LINE
 - Linearity
 - Independence
 - Normality
 - Equal variance
- Introduced residual plots
 - ► Can be used to check assumptions of linear regression model

Outline

- Previous:
 - ► Fitting statistical models
 - ► Checking model assumptions
- Today:
 - ► Standard error
 - Confidence interval
 - Hypothesis test

What does a regression model tell us?

- Consider the height of fathers and sons data
- The fitted model is an estimate of the true regression line in population
 - Population may be all male NZ university students (and their fathers)
- We need to assess the precision of the estimated parameters
 - Standard errors of the regression parameters
- Use standard errors to find confidence intervals and conduct hypothesis tests

The importance of the error variance

• Both sets of data come from populations with identical trend: $\mu_y = 8 + 0.05x$.

The importance of error variance

- The linear regresion model is $y = \beta_0 + \beta_1 x + \varepsilon$
 - lacktriangle The error arepsilon is assumed to be normal with mean 0 and variance $\sigma_{arepsilon}^2$
- The larger the error variance (all else equal)
 - ▶ The larger the spread of points around the true regression line
 - ▶ The more uncertain we are about the fitted regression line
 - That is, the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are less precise
 - ► To quantify our uncertainty about a fitted model
 - We need to estimate the error variance σ_{ε}^2

Estimation of the error variance

- The residuals $(\hat{\varepsilon})$ are estimates of the true errors (ε)
- Good estimate of error variance σ^2_{ε} : sample variance of the residuals $\hat{\varepsilon}_1, \hat{\varepsilon}_2, \dots, \hat{\varepsilon}_n$
- We need a few minor technical modifications
- The sample variance of the residuals is $\frac{1}{n-1}\sum_{i=1}^n (\hat{\varepsilon}_i \bar{\hat{\varepsilon}})^2.$
 - ▶ The sample mean of the residuals is 0: $\hat{\varepsilon} = 0$
 - ▶ The correct divisor for simple linear regression is n-2 (rather than n-1)
- So estimate of error variance is

$$s_{\varepsilon}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \frac{RSS}{n-2}$$

• $RSS = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$ is called the residual sum of squares

In R: father/son height data

• We can get s_{ε} from the R output (called Residual standard error)

```
m height = lm(son ~ father, data = height)
summary(m_height)
## Call:
## lm(formula = son ~ father, data = height)
##
## Residuals:
     Min
             10 Median
                              Max
## -21.89 -3.89 -0.41 4.59 15.92
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.0533 8.4979 13.42 < 2e-16 ***
## father
                0.3699
                          0.0478 7.74 1.9e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.13 on 277 degrees of freedom
## Multiple R-squared: 0.178, Adjusted R-squared: 0.175
## F-statistic: 59.9 on 1 and 277 DF, p-value: 1.9e-13
```

Standard error of $\hat{\beta}_1$

- In many studies β_1 is the parameter we are most interested in
 - lacktriangle Change in the expected value of y for changing x in the population
- We estimate $\hat{\beta}_1$ from the observed data (sample)
- Measure precision of estimate by standard error $\sigma_{\hat{eta}_1}$
 - Standard deviation of the sampling distribution of \hat{eta}_1
 - Variation in \hat{eta}_1 if there were many data sets (of the same size) from the population

Standard error of $\hat{\beta}_1$

• The standard error for \hat{eta}_1 is

$$\sigma_{\hat{\beta}_1} = \frac{\sigma_{\varepsilon}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

- lacktriangle The standard error is proportional to the error standard deviation $\sigma_{arepsilon}$
 - As σ_{ε}^2 increases, the standard error of $\hat{\beta}_1$ also increases
- In principle this tells us about the precision of our estimated slope, \hat{eta}_1
- In practice the formula is useless, since we don't know σ_{ε}
- We can handle that by estimating σ_{ε} by s_{ε}
- In practice, we will then use (estimated) standard error

$$s_{\hat{\beta}_1} = \frac{s_{\varepsilon}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

In R

ullet We can get $s_{\hat{eta}_1}$ from the R output (column called Std. Error)

```
summary(m_height)
##
## Call:
## lm(formula = son ~ father, data = height)
##
## Residuals:
     Min
             10 Median
                              Max
## -21.89 -3.89 -0.41 4.59 15.92
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.0533
                          8.4979
                                  13.42 < 2e-16 ***
## father
                0.3699
                          0.0478
                                   7.74 1.9e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.13 on 277 degrees of freedom
## Multiple R-squared: 0.178, Adjusted R-squared: 0.175
## F-statistic: 59.9 on 1 and 277 DF, p-value: 1.9e-13
```

Confidence intervals and hypothesis tests

- The standard error is needed to find confidence intervals and test statistics
- Earlier in semester we have seen that confidence intervals take the form

estimate
$$\pm$$
 multiplier $imes$ std. error

• For testing H_0 : $\beta_1 = \text{null}$ we use the test statistic

$$t = \frac{\mathsf{estimate} - \mathsf{null}}{\mathsf{std. error}}$$

• These continue to apply for a simple linear regression model

Confidence interval for slope

estimate \pm multiplier \times std. error

- Estimate is $\hat{\beta}_1$
- Multiplier comes from a t-distribution with $\nu = n-2$ degrees of freedom.
 - ▶ Degrees of freedom match denominator in equation $s_{\varepsilon}^2 = RSS/(n-2)$.
 - ▶ So for $100(1-\alpha)\%$ confidence interval, multiplier is $t_{(1-\frac{\alpha}{2},\nu)}$.
- Standard error is

$$s_{\hat{\beta}_1} = \frac{s_{\varepsilon}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Confidence interval 'by hand'

$$\hat{\beta}_1 \pm t_{(1-\frac{\alpha}{2},n-2)} s_{\hat{\beta}_1}$$
$$0.37 \pm t_{(0.975,277)} \times 0.048$$

- There are n=279 observations
- From R: qt(0.975, 277) = 1.969

$$0.37 \pm 1.969 \times 0.048$$

$$0.37 \pm 0.094$$

- We are 95% confident that the true slope is between 0.276 and 0.464
 - ► We estimate that the expected height of a son will increase by between 0.276 and 0.464 cm for a 1 cm increase in height of father

In R

- We typically find confidence intervals in R using confint function
 - ▶ It is important to understand how the confidence interval is found

```
confint(m_height)
## 2.5 % 97.5 %
## (Intercept) 97.325 130.782
## father 0.276 0.464
```

- Confidence interval for father is identical to that calculated on previous slide
- For a 99% confidence interval

Regression

- We might have expected the average height of a son to increase by 1 cm for a 1 cm increase in father's height.
- That it does not, is the origin of the label: regression (to the mean)
 - ▶ The son of a short father tends to be short, but on average he is taller than his father
 - ▶ The son of a tall father tends to be tall, but on average he is shorter than his father
 - Extreme traits tend to regress to the mean
- 'Regression' introduced by Francis Galton when comparing the heights of parents and children
 - Galton, F. (1886). Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15, 246–263

Regression to the mean

Hypothesis test for the slope

- Recall: $y = \beta_0 + \beta_1 x + \varepsilon$
 - \triangleright β_1 describes how the mean response μ_y changes with x at population level
- If $\beta_1 = 0$ then $y = \beta_0 + \varepsilon$
 - $\mu_y = \beta_0$: μ_y does not depend on x
 - ▶ Outcome variable is not (linearly) related to the predictor variable
- A hypothesis test about β_1 assesses the hypothesis that two variables are related
 - ▶ Null hypothesis: statement of no relationship between x and y
 - $H_0: \beta_1 = 0$
 - ► Alternative hypothesis: relationship exists
 - $H_A : \beta_1 \neq 0$

The test statistic

- To compute the p-value, we need a test statistic
- The test statistic is

$$t = \frac{\mathsf{estimate} - \mathsf{null}}{\mathsf{std. error}}$$

- The estimate is $\hat{\beta}_1$
- The null value is 0 (previous slide)
- The standard error is $s_{\hat{\beta}_1} = s_{\varepsilon} / \sqrt{\sum_{i=1}^n (x_i \bar{x})^2}$
 - See previous lecture
- So for testing hypothesis about β_1 , we use the test statistic

$$t = \frac{\hat{\beta}_{\dot{\beta}}}{s_{\hat{\beta}}}$$

Slide 72 STAT 110: Week 7

Example: PCB in trout

- Concern that polychlorinated biphenyls (PCBs) polluting waterways and accumulating in food chain
 - ▶ PCBs used to be commonly found in transformers, capacitors, paints, etc
 - ▶ 28 trout collected¹ from Cayuga Lake, NY in 1970
 - Fish were marked and annually stocked (age was known)
 - Each trout was (mechanically) chopped, ground, and mixed before a 5 gm sample taken
 - Chromatography used to find PCB residue in ppm (parts per million)
- Scientific question: is there evidence that (log) PCB residue increases with age?
 - ▶ Null hypothesis: $H_0: \beta_1 = 0$
 - ▶ Alternative hypothesis: $H_A: \beta_1 \neq 0$
- Treat it as a confirmatory study (specific hypothesis to assess)

Science (1972), 177, 1191–1192

Example: PCB in trout

• Import the data into R

```
pcb = read.csv('pcb.csv')
```

Look at the data

Example: PCB in trout

• Fit simple linear regression

```
m_pcb = lm(logpcb ~ age, data = pcb)
```

• Plot fitted model and residuals: any concerns?

```
plot(pcb$age, pcb$logpcb)
abline(m_pcb)
```



```
plot(fitted(m_pcb), rstudent(m_pcb))
abline(h = 0)
```


R model output

```
summary(m_pcb)
##
## Call:
## lm(formula = logpcb ~ age, data = pcb)
##
## Residuals:
      Min
               10 Median
                              30
                                     Max
## -1.1395 -0.3879 0.0957 0.4327 1.0508
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0315
                        0.2014
                                   0.16
                                            0.88
## age
               0.2591
                       0.0308
                                  8.41 6.8e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.567 on 26 degrees of freedom
## Multiple R-squared: 0.731, Adjusted R-squared: 0.721
## F-statistic: 70.8 on 1 and 26 DF, p-value: 6.78e-09
```

Interpretation

- For a confirmatory study
 - ► Formal test
- Compare the p-value to α
 - ▶ If p-value $< \alpha$: reject H_0
 - Evidence in favour of H_A
 - ▶ If *p*-value $< \alpha$: fail to reject H₀
- For an exploratory study
 - ▶ Interpret the *p*-value as a degree of incompatibility between data and null hypothesis
 - Use α as a guide
 - Try to avoid making a decision between hypotheses

▶ Often prefer to use confidence intervals

Interpretation PCB: $\alpha = 0.05$

- The test statistic t is given in column t value: 8.41
- The p-value is given in the column Pr(>|t|): 6.8e-09
 - ▶ These are found assuming the hypothesis: $H_0: \beta_i = 0$
- p-value $< \alpha$: evidence of incompatibility between the data and null hypothesis
 - ▶ Data are incompatible with assumption of no relationship between PCB and age
 - Data are unusual compared to what we would expect if the null hypothesis were correct
- · As this is a confirmatory study, we conclude that
 - ► There is evidence against H₀
 - ▶ There is evidence of a relationship between (log) PCB and age of fish (H_A)

Summary

- We want to quantify how precise our estimate is
 - ► Estimate of error variance
 - Estimate of standard error for $\hat{\beta}_1$
 - ▶ Found confidence interval for β_1
 - ▶ Hypothesis test for β_1
- Discussed origin of 'regression'