

Nº Mec	Nome:		P G _
Nota: Imprima e	ste texto de modo a pod	r executar conveniente	mente o trabalho prático.
Trabalho Pr	ático nº1: Element	os de Análise de C	Circuitos (DC)
	ho pretende-se analisar e Ohm, leis de Kirchhoff, pri		nente as leis que regem o eorema de Thévenin.
•	circuito abaixo. <u>Calcule</u> uito na placa branca e ve		
	· · · · · · · · · · · · · · · · · · ·	Vi = 12 V	
Vi +	R3 \$ R4	$R1 = 470 \Omega$ $R3 = 2.2 k\Omega$	R2 = 560 Ω R4 = 1.8 kΩ
<u>Cálculo</u> :	777:		

2) Considere o seguinte circuito:

$$V1 = 10 V$$
 $V2 = 5 V$

 $R5 = 100 \Omega$ $R6 = 1 k\Omega$

- a) Calcule o valor de l1 e l6 utilizando as Leis de Kirchhoff.
- b) Implemente o circuito na placa branca e verifique <u>experimentalmente</u> os valores obtidos. Nota: com o voltímetro meça as quedas de tensão em R1 e R6, para determinar I1 e I6. Mantenha o circuito montado pois vai ser necessário em 6).
- c) Com o osciloscópio meça as tensões em R2 e em R5. Meça também V1 e V2. Com base nestas 4 tensões determine o valor de I1 e I6.

Cálculo:

Medidas (usando apenas uma casa decimal, registe os valores de tensão medidos e os valores calculados, em mA, das correntes):

3) Para o circuito ao lado determine as tensões V1 e V2.

4) Para o cicuito abaixo conhece-se V1 = 12V. Calcule Vs.

- 5) a) Determine analiticamente o ganho V2/V1 no circuito seguinte.
 - b) Se R1=1M Ω , Rg=9M Ω , Rd=50k Ω , RL=10k Ω , gm=10mS, qual o valor do ganho?
 - c) Determine os equivalentes de Thévenin e Norton à esquerda de RL.

6) Considere novamente o circuito do exercício 2.

- a) Calcule I1 e I6 usando, desta vez, o princípio da sobreposição. Em seguida, valide experimentalmente os resultados parciais que obteve.
- b) Calcule e apresente o equivalente de Thévenin do circuito à esquerda de R6.
- c) Monte um circuito em placa branca, contendo o equivalente de Thévenin que determinou na alínea anterior, bem como a resistência R6 e a fonte de tensão V2.

 Moca (indirectamento com o veltímetro) o valor da corrente 16 resultante o conclua sobre a

Meça (indirectamente com o voltímetro) o valor da corrente 16 resultante e conclua sobre a validade do teorema de Thévenin.

