

UNIDAD II

Filtros Digitales Introducción

FILTRO

 Sistema o red que modifica selectivamente la forma de onda, amplitud, frecuencia y/o fase de una señal de una manera definida deseada.

Filtro digital:

 Algoritmo matemático implementado en HW o SW que opera sobre una entrada digital para producir una salida digital filtrada.

FILTRO DIGITAL

• Diagrama a bloques

VENTAJAS

- Tienen respuesta lineal en fase.
- No son susceptibles a cambios ambientales (p. ej. temperatura)
 - Sin calibración periódica.
- Su respuesta en frecuencia puede ajustarse automáticamente usando un procesador programable.
- Múltiples señales o canales pueden filtrarse sin usar filtros duplicados.

VENTAJAS

- Los datos filtrados y sin filtrar pueden almacenarse para otro uso.
- Gracias al VLSI tienen menor tamaño, menor consumo de potencia, menor costo.
- Su precisión se limita sólo por el tamaño de palabra que usa.
- Su desempeño es reproducible en cada unidad.

VENTAJAS

- Pueden emplearse a muy bajas frecuencias.
 - No como los filtros analógicos.
 - Aplicaciones biomédicas.
- Pueden trabajar sobre un amplio rango de frecuencias.
 - Cambio en la frecuencia de muestreo.

DESVENTAJAS

- Velocidad limitada
 - Ancho de banda limitado por tiempos de conversión, velocidad del procesador, tiempos de muestreo.
- Efectos de la longitud de palabra finita.
 - Ruido en la conversión, ruido computacional (redondeo).
- Tiempo de diseño y desarrollo elevados.
 - Se compensa con su uso recurrente.

TIPOS

- FIR
 - Respuesta Impulsorial Finita
- IIR
 - Respuesta Impulsorial Inifinita

ECUACIONES

Suma de convolución

• FIR

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

• IIR

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

ECUACIONES

IIR

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

- La longitud no permite su implementación.
- Se emplea su forma recursiva

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{N} b_k x(n-k) - \sum_{k=1}^{M} a_k y(n-k)$$

ak y bk = coeficientes del filtro

ECUACIONES ALTERNATIVAS

• FIR

$$H(z) = \sum_{k=0}^{N-1} h(k)z^{-k}$$

• IIR

$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k} / \left(1 + \sum_{k=1}^{M-1} a_k z^{-k} \right)$$

ELECCIÓN DEL TIPO DE FILTRO

- Los filtros FIR pueden tener una respuesta lineal en fase. La respuesta en fase del IIR es no lineal, especialmente en los límites de la banda.
- Los filtro FIR diseñados no recursivamente siempre son estables. La estabilidad en los IIR no siempre puede garantizarse.
- Los efectos de usar un número de bits limitado (errores de redondeo y cuantización) son menos en los filtros FIR que en los IIR)

ELECCIÓN DEL TIPO DE FILTRO

- FIR requiere más coeficientes que IIR para una frecuencia de corte más precisa.
- Los filtros analógicos pueden transformarse fácilmente en IIR.
- Los filtros FIR son más difíciles de sintetizar.
 - Si el CAD no está disponible.

ELECCIÓN

- IIR
 - Frecuencias de corte bien definidas
- FIR
 - Si el número de coeficientes no es muy grande.

DISEÑO

- Especificación de los requerimientos
- Cálculo de los coeficientes adecuados
- Representación del filtro en una estructura realizable
- Análisis de los efectos de la longitud de palabra en el desempeño del filtro
- Implementación del filtro en SW/ HW

ESPECIFICACIÓN DE LOS REQUERIMIENTOS

- Características de la señal
 - Tipos de señal, fuente, interfaz E/S, frecuencias, velocidad y ancho de datos.
- Características del filtro
 - Respuestas deseadas en fase y amplitud y su tolerancia, la velocidad y modo (en tiempo real o por lotes) de filtrado.
- Tipo de implementación
 - DSP, procesador, PLDs.
- Otros aspectos
 - · Costo.

ESPECIFICACIÓN DE LOS REQUERIMIENTOS

Banda de transición

ESPECIFICACIÓN DE LOS REQUERIMIENTOS

- $\delta_{_{p}}$ Desviación de la banda de paso
- $\delta_{\rm s}$ Desviación de la banda de rechazo
- f_p Frecuencia límite de la banda de paso
- f_s Frecuencia límite de la banda de rechazo
- A_p (Rizo de la banda de paso) = $20 \log_{10} (1 + \delta_p)$
- A_s (Atenuación de la banda de rechazo) = $-20\log_{10}\delta_s$

CÁLCULO DE COEFICIENTES (MÉTODOS)

• IIR

- Impulso invariante
- Transformación bilineal
- Colocación de polos y ceros

• FIR

- Ventanas
- Muestreo de frecuencia
- Óptimo

REPRESENTACIÓN POR ESTRUCTURAS

• IIR

- Directa
- Cascada
- Paralela

• FIR

- Transversal (Directa)
- Muestreo de frecuencia
- Convolución rápida

Ambos

Lattice

ESTRUCTURAS IIR

Directa

ESTRUCTURAS FIR

Transversal (Directa)

ANÁLISIS DE LOS EFECTOS DE LA LONGITUD DE PALABRA

- Cuantización de las señales de Entrada/Salida
- Cuantización de coeficientes
- Errores de redondeo aritmético
- Sobreflujo

IMPLEMENTACIÓN

- Consideraciones
 - Memoria
 - ROM
 - RAM
 - Unidades
 - HW
 - SW
 - ALU