

Smart connections.

Interface Beschreibung MODBUS

KOSTAL Smart Energy Meter

Version

Erscheinungsdatum: 03.09.2020

Version: 1.1.2

Inhalt

1.	Einführung	4
1.1	MODBUS Protokoll	4
1.2	Modbus RTU über RS485 Schnittstelle	1
1.3	Modbus TCP über Ethernet interface	
2.	MODBUS protocol description	2
2.1	Registerspezifikation	2
2.2	Auslesen von Registern	2
2.3	OBIS-Kennzahlen-System	3
3.	MODBUS Registerbereiche	4
3.1	Übersicht Registerbereiche	4
3.2	Übersicht Interne Momentanwert Register	4
3.3	Übersicht Interne Energie Register	6
3.4	Übersicht KSEM/RM PnP Register	7
3.5	Übersicht SunSpec Register	
3.6	Übersicht Gruppen Register	.14
3.7	Übersicht Sensor Register	.15

1. Einführung

1.1 MODBUS Protokoll

Im folgenden wird die Funktionalität der Modbus-Einstellungen in Form der möglichen Konfiguration, Betriebsmodi, sowie die Modbus Registerspezifikation beschrieben. Ein detaillierte Beschreibung des Modbus Protokolls und seiner Funktionsweise ist in der Modbus-Spezifikation zu finden (z.B. siehe www.modbus.org). Modbus TCP ist Teil der IEC 61158 Norm.

Die Modbus Datenschnittstelle kann in folgenden Betriebsmodi verwendet werden:

- Modbus RTU Slave
- Modbus RTU Master
- Modbus TCP Slave
- Modbus TCP Master

1.2 Modbus RTU über RS485 Schnittstelle

Im Modus Modbus RTU Slave stellt der KOSTAL Smart Energy Meter seine Modbus Register über RS-485 bereit. Beide RS-485 Schnittstellen, RS485 A und RS485 B, können hierfür individuell konfiguriert werden. Details zum Anschluss an der RS-485 Buchse und der Verpolung der Schnittstelle finden Sie in der Installationsanleitung.

1.3 Modbus TCP über Ethernet interface

TCP - Master

Im Modus Modbus TCP Master schreibt der KOSTAL Smart Energy Meter in die Register eines oder mehrerer konfigurierter Slaves. Geschrieben werden können die internen Momentanwertregister und die internen Energiewertregister (siehe Registerspezifikation). Die KSEM/RM PnP Register und die Sun-Spec-Register werden über Modbus Master nicht übertragen.

- Slave Adresse setzt die Adresse eines TCP Slaves. Diese kann in Form einer IP-Adresse oder einer URL angegeben werden.
- Port setzt den TCP Port auf dem der Slave die Modbus Kommunikation erwartet. Es können bis zu 10 TCP Slaves konfiguriert werden.

TCP - Slave

Im Modus Modbus TCP Slave, stellt der KOSTAL Smart Energy Meter seine Modbus Register über TCP/IP bereit. Für den Zugang zu dieser Schnittstelle ist eine Netzwerkanbindung über Ethernet erforderlich. Der Modbus Slave ist standardmäßig unter Port Nummer 502 erreichbar.

Aktiviere TCP Slave aktiviert und deaktiviert die Modbus Slave Funktionalität.

2. MODBUS protocol description

2.1 Registerspezifikation

Die Datenregister können in verschiedene Bereiche unterteilt werden. Die Datenpunkte des KOSTAL Smart Energy Meters sind nach dem OBIS Standard kodiert. Zusätzlich sind im Registerbereich 40000-40177 die Datenpunkte nach Standards der SunSpec Alliance kodiert:

- SunSpec Alliance Interoperability Specification Common Models
- SunSpec Alliance Interoperability Specification Meter Models

2.2 Auslesen von Registern

Die meisten Datenpunkte des KOSTAL Smart Energy Meters werden auf mehrere 16-Bit Register verteilt. Das bedeutet, dass ein RTU Master / TCP Client sämtliche Register eines Datenpunktes in ein und der selben Anfrage anfordern sollte. In anderen Worten: die Modbus-Einstellungen App kann Atomarität nur auf der Ebene einer einzelnen Anfrage garantieren.

Interpretation von Datenpunkten mit mehreren Registern: Im Falle von einem Multi-Register Datenpunkt beinhalten die Register mit der niedrigeren Adresse die "Mostsignificant" Bits. Die "Least-siginificant" Bits sind in den Registern mit der höheren Adresse enthalten.

Beispiel Prinzip:

Ein fiktiver Datenpunkt "TotalOperatingHours" (uint32) befindet sich bei offset 0x1000. Der Datenpunkt soll 2293828 Betriebsstunden beinhalten.

- die Adresse 0x1000 beinhaltet 0x23
- die Adresse 0x1001 beinhaltet 0x44

Während der Anfrage werden beide Register in der Netzwerk-Byte-Reihenfolge (Big Endian) wie von Modbus Spezifikation vorgegeben übertragen. Ein "Read Holding Registers" für beide Register liefert 0x00 0x23 0x00 0x44.

Beispiel Umrechnung:

Um die bezogene Wirkleistung (+) auszulesen, kann man die (Integer) Werte der "holding registers" 0 und 1 verwenden:

Active power+ [W] = ({register 0} \cdot 2^16 + {register 1}) \cdot 0.1 [W]

Um die bezogene Wirkenergie (+), das heißt die bezogene Wirkenergie über alle Phasen auszulesen, kann man die (Integer) Register 512 bis 515 verwenden:

Active energy+ [Wh] = $(\{\text{register 512}\} \cdot 2^48 + \{\text{register 513}\} \cdot 2^32 + \{\text{register 514}\} \cdot 2^16 + \{\text{register 515}\} \cdot 0.1 \text{ [Wh]}$

2.3 OBIS-Kennzahlen-System

Zur Datenübertragung und Unterscheidung der verschiedenen Messdaten einer Datenquelle werden sog. OBIS Codes verwendet. OBIS steht für Object Identification System und wird für die elektronische Datenkommunikation im Energiemarkt eingesetzt.

OBIS-Kennzahlen bestehen aus sechs Wertegruppen (A-F) aus deren Kombination sich die Spezifikation eines Wertes ableitet. Sie werden in der Form A-B:C.D.E*F dargestellt.

Die konkret im Energy Manager verwendeten OBIS-Kennzahlen sind in Abhängigkeit der Datenquelle im Dokumentenanhang beschrieben. Als Basis dient das OBIS-Kennzahlen-System in der Version 2.0 (Stand: 02.02.2009), welches sich nach DIN EN 62056-61:2007-06 richtet und unter edi-energy.de zu finden ist. Nachfolgend werden die einzelnen Gruppen im Kontext des KOSTAL Smart Energy Meter erläutert. Anmerkung: Die Werte der Gruppen A und F sind fix, die der restlichen Gruppen variabel.

Gruppe A (Medium)

A = 1 (Elektrizität)

Gruppe B (Kanal)

Dient zur Unterscheidung der drei möglichen Datenquellen:

- für "Smart Meter"-Werte: B = 0
- für Sensoren-Werte: B = Sensor-ID + 1
- für Gruppen-Werte: B = Gruppen-ID + 100

Gruppe C (Messgröße)

Schlüsselwert der resultierenden Messgröße nach OBIS-Kennzahlen-System

Gruppe D (Messart)

Schlüsselwert der angewandten Messart nach OBIS-Kennzahlen-System

Gruppe E (Tarifstufe)

Schlüsselwert des Tarifs, meistens E = 0 (Total)

Gruppe F (Vorwertzählerstand)

F = 255

3. MODBUS Registerbereiche

3.1 Übersicht Registerbereiche

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	Description
0	147	0x0000	0x0093	148	Internal instantaneous registers
512	791	0x0200	0x0317	280	Internal Energy registers (counters)
8192	8248	0x2000	0x2038	56	KSEM/RM PnP registers
40000	40177	0x9C40	0x9CF1	178	SunSpec registers
59392	61311	0xE00	0xEF7F	1920	Group register
61440	65279	0xF000	0xFED8	3840	Sensor register

3.2 Übersicht Interne Momentanwert Register

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
0	1	0x0000	0x0001	2	RO	0x03	uint32	0.1 W	1-0:1.4.0*255	Active power+
2	3	0x0002	0x0003	2	RO	0x03	uint32	0.1 W	1-0:2.4.0*255	Active power-
4	5	0x0004	0x0005	2	RO	0x03	uint32	0.1 var	1-0:3.4.0*255	Reactive power+
6	7	0x0006	0x0007	2	RO	0x03	uint32	0.1 var	1-0:4.4.0*255	Reactive power-
16	17	0x0010	0x0011	2	RO	0x03	uint32	0.1 VA	1-0:9.4.0*255	Apparent power+
18	19	0x0012	0x0013	2	RO	0x03	uint32	0.1 VA	1-0:10.4.0*255	Apparent power-
24	25	0x0018	0x0019	2	RO	0x03	int32	0.001 (unitless)	1-0:13.4.0*255	Power factor
26	27	0x001A	0x001B	2	RO	0x03	uint32	0.001Hz	1-0:14.4.0*255	Supply frequency
40	41	0x0028	0x0029	2	RO	0x03	uint32	0.1 W	1-0:21.4.0*255	Active power+ (L1)
42	43	0x002A	0x002B	2	RO	0x03	uint32	0.1 W	1-0:22.4.0*255	Active power- (L1)
44	45	0x002C	0x002D	2	RO	0x03	uint32	0.1 var	1-0:23.4.0*255	Reactive power+ (L1)
46	47	0x002E	0x002F	2	RO	0x03	uint32	0.1 var	1-0:24.4.0*255	Reactive power- (L1)
56	57	0x0038	0x0039	2	RO	0x03	uint32	0.1 VA	1-0:29.4.0*255	Apparent power+(L1)
58	59	0x003A	0x003B	2	RO	0x03	uint32	0.1 VA	1-0:30.4.0*255	Apparent power-(L1)
60	61	0x003C	0x003D	2	RO	0x03	uint32	0.001 A	1-0:31.4.0*255	Current (L1)
62	63	0x003E	0x003F	2	RO	0x03	uint32	0.001 V	1-0:32.4.0*255	Voltage (L1)
64	65	0x0040	0x0041	2	RO	0x03	int32	0.001 (unitless)	1-0:33.4.0*255	Power factor (L1)
80	81	0x0050	0x0051	2	RO	0x03	uint32	0.1 W	1-0:41.4.0*255	Active power+ (L2)
82	83	0x0052	0x0053	2	RO	0x03	uint32	0.1 W	1-0:42.4.0*255	Active power- (L2)
84	85	0x0054	0x0055	2	RO	0x03	uint32	0.1 var	1-0:43.4.0*255	Reactive power+ (L2)
86	87	0x0056	0x0057	2	RO	0x03	uint32	0.1 var	1-0:44.4.0*255	Reactive power- (L2)
96	97	0x0060	0x0061	2	RO	0x03	uint32	0.1 VA	1-0:49.4.0*255	Apparent power+ (L2)

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
98	99	0x0062	0x0063	2	RO	0x03	uint32	0.1 VA	1-0:50.4.0*255	Apparent power-(L2)
100	101	0x0064	0x0065	2	RO	0x03	uint32	0.001 A	1-0:51.4.0*255	Current (L2)
102	103	0x0066	0x0067	2	RO	0x03	uint32	0.001 V	1-0:52.4.0*255	Voltage (L2)
104	105	0x0068	0x0069	2	RO	0x03	int32	0.001 (unitless)	1-0:53.4.0*255	Power factor (L2)
120	121	0x0078	0x0079	2	RO	0x03	uint32	0.1 W	1-0:61.4.0*255	Active power+ (L3)
122	123	0x007A	0x007B	2	RO	0x03	uint32	0.1 W	1-0:62.4.0*255	Active power- (L3)
124	125	0x007C	0x007D	2	RO	0x03	uint32	0.1 var	1-0:63.4.0*255	Reactive power+(L3)
126	127	0x007E	0x007F	2	RO	0x03	uint32	0.1 var	1-0:64.4.0*255	Reactive power- (L3)
136	137	0x0088	0x0089	2	RO	0x03	uint32	0.1 VA	1-0:69.4.0*255	Apparent power+(L3)
138	139	0x008A	0x008B	2	RO	0x03	uint32	0.1 VA	1-0:70.4.0*255	Apparent power-(L3)
140	141	0x008C	0x008D	2	RO	0x03	uint32	0.001 A	1-0:71.4.0*255	Current (L3)
142	143	0x008E	0x008F	2	RO	0x03	uint32	0.001 V	1-0:72.4.0*255	Voltage (L3)
144	145	0x0090	0x0091	2	RO	0x03	int32	0.001 (unitless)	1-0:73.4.0*255	Power factor (L3)
146	147	0x0092	0x0093	2	RO	0x03	uint32	0.1 W		Minimum active power+ * 3

3.3 Übersicht Interne Energie Register

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
512	515	0x0200	0x0203	4	RO	0x03	uint64	0.1 Wh	1-0:1.8.0*255	Active energy+
516	519	0x0204	0x0207	4	RO	0x03	uint64	0.1 Wh	1-0:2.8.0*255	Active energy-
520	523	0x0208	0x020B	4	RO	0x03	uint64	0.1 varh	1-0:3.8.0*255	Reactive energy+
524	527	0x020C	0x020F	4	RO	0x03	uint64	0.1 varh	1-0:4.8.0*255	Reactive energy-
544	547	0x0220	0x0223	4	RO	0x03	uint64	0.1 VAh	1-0:9.8.0*255	Apparent energy+
548	551	0x0224	0x0227	4	RO	0x03	uint64	0.1 VAh	1-0:10.8.0*255	Apparent energy-
592	595	0x0250	0x0253	4	RO	0x03	uint64	0.1 Wh	1-0:21.8.0*255	Active energy+ (L1)
596	599	0x0254	0x0257	4	RO	0x03	uint64	0.1 Wh	1-0:22.8.0*255	Active energy- (L1)
600	603	0x0258	0x025B	4	RO	0x03	uint64	0.1 varh	1-0:23.8.0*255	Reactive energy+(L1)
604	607	0x025C	0x025F	4	RO	0x03	uint64	0.1 varh	1-0:24.8.0*255	Reactive energy-(L1)
624	627	0x0270	0x0273	4	RO	0x03	uint64	0.1 VAh	1-0:29.8.0*255	Apparent energy+(L1)
628	631	0x0274	0x0277	4	RO	0x03	uint64	0.1 VAh	1-0:30.8.0*255	Apparent energy-(L1)
672	675	0x02A0	0x02A3	4	RO	0x03	uint64	0.1 Wh	1-0:41.8.0*255	Active energy+ (L2)
676	679	0x02A4	0x02A7	4	RO	0x03	uint64	0.1 Wh	1-0:42.8.0*255	Active energy- (L2)
680	683	0x02A8	0x02AB	4	RO	0x03	uint64	0.1 varh	1-0:43.8.0*255	Reactive energy+(L2)
684	687	0x02AC	0x02AF	4	RO	0x03	uint64	0.1 varh	1-0:44.8.0*255	Reactive energy-(L2)
704	707	0x02C0	0x02C3	4	RO	0x03	uint64	0.1 VAh	1-0:49.8.0*255	Apparent energy+(L2)
708	711	0x02C4	0x02C7	4	RO	0x03	uint64	0.1 VAh	1-0:50.8.0*255	Apparent energy-(L2)
752	755	0x02F0	0x02F3	4	RO	0x03	uint64	0.1 Wh	1-0:61.8.0*255	Active energy+ (L3)
756	759	0x02F4	0x02F7	4	RO	0x03	uint64	0.1 Wh	1-0:62.8.0*255	Active energy- (L3)
760	763	0x02F8	0x02FB	4	RO	0x03	uint64	0.1 varh	1-0:63.8.0*255	Reactive energy+(L3)
764	767	0x02FC	0x02FF	4	RO	0x03	uint64	0.1 varh	1-0:64.8.0*255	Reactive energy-(L3)
784	787	0x0310	0x0313	4	RO	0x03	uint64	0.1 VAh	1-0:69.8.0*255	Apparent energy+(L3)
788	791	0x0314	0x0317	4	RO	0x03	uint64	0.1 VAh	1-0:70.8.0*255	Apparent energy-(L3)

3.4 Übersicht KSEM/RM PnP Register

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Name	Default value / example	Description
8192	8192	0x2000	0x2000	1	RO	0x03	uint16	Manufactu- rerID	0x5233	Fixed value to identify every KOSTAL device
8193	8193	0x2001	0x2001	1	RO	0x03	uint16	Device_ID	0x4852	Indicates that this device is a KOSTAL Smart Energy Meter
8194	8194	0x2002	0x2002	1	RO	0x03	uint16	ProductVer- sion	Example: 0x0000	(Hardware) Revision of the KOSTAL Smart Energy Meter proces- sor board
8195	8195	0x2003	0x2003	1	RO	0x03	uint16	FirmwareVer- sion	Example: 0x0103 = 1.3.x	Firmware Revision of the KOSTAL Smart Energy Meter
8196	8211	0x2004	0x2013	16	RO	0x03	string 32	VendorName	Example: KOSTAL Solar electric	Contains the vendor name as a string, pad- ded with NUL bytes
8212	8227	0x2014	0x2023	16	RO	0x03	string 32	ProductName	Example: KOSTAL Smart Energy Meter	Contains the product name as a string, pad- ded with NUL bytes
8228	8243	0x2024	0x2033	16	RO	0x03	string 32	SerialNumber	Example: 30380912332211	Contains the serial number of the device as a string, padded with NUL bytes
8244	8244	0x2034	0x2034	1	RO	0x03	uint16	MeasuringIn- terval	Example: 0x01F4 = 500 ms	Contains the measuring interval for measure-ment chip in ms
8245	8248	0x2035	0x2038	4	RO	0x03	uint64	UNIXTimes- tamp	Example: 1552323559000 = 2019-03-11 16:59:19	Contains the Current UNIX timestamp in ms

Im Bereich der KSEM/RM PnP Register sind Informationen zur Identität des Gerätes enthalten.

- ManufacturerID ist ein statischer Wert, der die ID des Herstellers enthält. Darüber kann ein übergeordnetes SCADA System zwischen verschiedenen Geräten auf dem RS- 485 unterscheiden.
- ProductID ist ebenfalls ein statischer Wert, der die Identifizierung des konkreten Produktes über diesen Schlüssel ermöglicht.
- ProductVersion bezeichnet die Version der Hardware des Produktes.
- FirmwareVersion bezeichnet die Version der Software des Produktes.
- VendorName und Produktname beinhalten den Markennamen des Herstellers und des Markennamen des Produktes als Strings.

Sämtliche Strings werden durch NUL Bytes und Leerzeichen (0x32) zu ihrer vollen Länge aufgefüllt. Der Modbus RTU Master / TCP Client sollte diese automatisch abschneiden bevor die Strings verwendet werden.

3.5 Übersicht SunSpec Register

Start address (dec)	End address (dec)	Size	R/W	Func- tion codes	Name	Туре	Units		Description	Value range / OBIS mapping
40000	40001	2	RO	0x03	C_Sun- Spec_ID	uint32	N/A	N/A	Indicates that it is a valid SunSpec Modbus map.	0x53756e53
40002	40002	1	RO	0x03	C_SunSpec_ DID	uint16	N/A	N/A	Indicates that it is a valid SunSpec Common Model block.	0x0001
40003	40003	1	RO	0x03	C_SunSpec_ Length	uint16	regis- ters	N/A	Length of Common Model	65
40004	40019	16	RO	0x03	C_Manufac- turer	String (32)	N/A	N/A	Manufacturer name ²	KOSTAL Solar Electric
40020	40035	16	RO	0x03	C_Model	string (32)	N/A	N/A	Model name ²	KSEM
40036	40043	16	RO	0x03	C_Options	String (16)	N/A	N/A	Manufacturer- specific value ²	{empty}
40044	40051	8	RO	0x03	C_Version	String (16)	N/A	N/A	Manufacturer- specific value	1.0
40052	40067	16	RO	0x03	C_SerialNum- ber	String (32)	N/A	N/A	Manufacturer- specific value ²	1900221992
40068	40068	1	RO	0x03	C_DeviceAd- dress	uint16	N/A	N/A	Modbus ID (Modbus address)	247
40069	40069	1	RO	0x03	C_SunSpec_ DID	uint16	N/A	N/A	Indicates that it is a valid Sun-Spec Meter Model block.	203
40070	40070	1	RO	0x03	C_SunSpec_ Length	uint16	regis- ters	N/A	Length of Meter Model	105
40071	40071	1	RO	0x03	M_AC_Current	int16	А	M_AC_Cur- rent_SF	AC Current (sum of active phases)	0x8000
40072	40072	1	RO	0x03	M_AC_Cur- rent_A	int16	А	M_AC_Cur- rent_SF	Phase A AC current	1-0:31.4.0*255
40073	40073	1	RO	0x03	M_AC_Cur- rent_B	int16	А	M_AC_Cur- rent_SF	Phase B AC current	1-0:51.4.0*255
40074	40074	1	RO	0x03	M_AC_Cur- rent_C	int16	А	M_AC_Cur- rent_SF	Phase C AC current	1-0:71.4.0*255
40075	40075	1	RO	0x03	M_AC_Cur- rent_SF	int16	N/A	N/A	AC Current Scale Factor ³	-2
40076	40076	1	RO	0x03	M_AC_Vol- tage_LN	int16	V	M_AC_Vol- tage_SF	Line to Neutral AC Voltage (average of active phases)	0x8000
40077	40077	1	RO	0x03	M_AC_Vol- tage_AN	int16	V	M_AC_Vol- tage_SF	Phase A to Neutral AC Voltage	1-0:32.4.0*255
40078	40078	1	RO	0x03	M_AC_Vol- tage_BN	int16	V	M_AC_Vol- tage_SF	Phase B to Neutral AC Voltage	1-0:52.4.0*255

Start	End			Func-						
address (dec)	address (dec)	Size	R/W	tion codes	Name	Туре	Units	Scale factor	Description	Value range / OBIS mapping
40079	40079	1	RO	0x03	M_AC_Vol- tage_CN	int16	V	M_AC_Vol- tage_SF	Phase C to Neutral AC Voltage	1-0:72.4.0*255
40080	40080	1	RO	0x03	M_AC_Vol- tage_LL	int16	V	M_AC_Vol- tage_SF	Line to Line AC Voltage (average of active phases)	
40081	40081	1	RO	0x03	M_AC_Vol- tage_AB	int16	V	M_AC_Vol- tage_SF	Phase A to Phase B AC Voltage	0x8000
40082	40082	1	RO	0x03	M_AC_Vol- tage_BC	int16	V	M_AC_Vol- tage_SF	Phase B to Phase C AC Voltage	0x8000
40083	40083	1	RO	0x03	M_AC_Vol- tage_CA	int16	V	M_AC_Vol- tage_SF	Phase C to Phase A AC Voltage	0x8000
40084	40084	1	RO	0x03	M_AC_Vol- tage_SF	int16	N/A	N/A	AC Voltage Scale Factor ³	-2
40085	40085	1	RO	0x03	M_AC_Freq	int16	Hz	M_AC_Freq_ SF	AC Frequency	1-0:14.4.0*255
40086	40086	1	RO	0x03	M_AC_Freq_ SF	int16	N/A	N/A	AC Frequency Scale Factor ³	-2
40087	40087	1	RO	0x03	M_AC_Power	int16	W	M_AC_ Power_SF	Total Real Power (sum of active phases)	>0: 1-0:1.4.0*255; <0: 1-0:2.4.0*255
40088	40088	1	RO	0x03	M_AC_Pow- er_A	int16	W	M_AC_ Power_SF	Phase A AC Real Power	>0: 1-:21.4.0*255; <0: 1-0:22.4.0*255
40089	40089	1	RO	0x03	M_AC_Pow- er_B	int16	W	M_AC_ Power_SF	Phase B AC Real Power	>0: 1-0:41.4.0*255; <0: 1-0:42.4.0*255
40090	40090	1	RO	0x03	M_AC_Pow- er_C	int16	W	M_AC_ Power_SF	Phase C AC Real Power	>0: 1-0:61.4.0*255; <0: 1-0:62.4.0*255
40091	40091	1	RO	0x03	M_AC_ Power_SF	int16	N/A	N/A	AC Real Power Scale Factor ³	1
40092	40092	1	RO	0x03	M_AC_VA	int16	VA	M_AC_VA_SF	Total AC Apparent Power (sum of active phases)	>0: 1-0:9.4.0*255; <0: 1-0:10.4.0*255
40093	40093	1	RO	0x03	M_AC_VA_A	int16	VA	M_AC_VA_SF	Phase A AC Apparent Power	>0: 1-0:29.4.0*255; <0: 1-0:30.4.0*255
40094	40094	1	RO	0x03	M_AC_VA_B	int16	VA	M_AC_VA_SF	Phase B AC Apparent Power	>0: 1-0:49.4.0*255; <0: 1-0:50.4.0*255
40095	40095	1	RO	0x03	M_AC_VA_C	int16	VA	M_AC_VA_SF	Phase C AC Apparent Power	>0: 1-0:69.4.0*255; <0: 1-0:70.4.0*255
40096	40096	1	RO	0x03	M_AC_VA_SF	int16	N/A	N/A	AC Apparent Power Scale Factor ³	1
40097	40097	1	RO	0x03	M_AC_VAR	int16	var	M_AC_VAR_ SF	Total AC Reactive Power (sum of active phases)	> 0: 1-0:3.4.0*255; < 0: 1-0:4.4.0*255

Start	End			Func-						Value range /
address (dec)	address (dec)	Size	R/W	tion codes	Name	Туре	Units	Scale factor	Description	OBIS mapping
40098	40098	1	RO	0x03	M_AC_VAR_A	int16	var	M_AC_VAR_ SF	Phase A AC Reactive Power	>0: 1-0:23.4.0*255; <0: 1-0:24.4.0*255
40099	40099	1	RO	0x03	M_AC_VAR_B	int16	var	M_AC_VAR_ SF	Phase B AC Reactive Power	>0: 1-0:43.4.0*255; <0: 1-0:44.4.0*255
40100	40100	1	RO	0x03	M_AC_VAR_C	int16	var	M_AC_VAR_ SF	Phase C AC Reactive Power	>0: 1-0:63.4.0*255; <0: 1-0:64.4.0*255
40101	40101	1	RO	0x03	M_AC_VAR_ SF	int16	N/A	N/A	AC Reactive Power Scale Factor ³	1
40102	40102	1	RO	0x03	M_AC_PF	int16	%	M_AC_PF_SF	Average Power Factor (average of active phases)	1-0:13.4.0*255 - 1000+1000
40103	40103	1	RO	0x03	M_AC_PF_A	int16	%	M_AC_PF_SF	Phase A Power Factor	1-0:33.4.0*255 - 1000+1000
40104	40104	1	RO	0x03	M_AC_PF_B	int16	%	M_AC_PF_SF	Phase B Power Factor	1-0:53.4.0*255 - 1000+1000
40105	40105	1	RO	0x03	M_AC_PF_C	int16	%	M_AC_PF_SF	Phase C Power Factor	1-0:73.4.0*255 - 1000+1000
40106	40106	1	RO	0x03	M_AC_PF_SF	int16	N/A	N/A	AC Power Factor Scale Factor ³	-3
40107	40108	2	RO	0x03	M_Exported	uint32	Wh	M_Ener- gy_W_SF	Total Exported Real Energy	1-0:2.8.0*255
40109	40110	2	RO	0x03	M_Expor- ted_A	uint32	Wh	M_Ener- gy_W_SF	Phase A Exported Real Energy	1-0:22.8.0*255
40111	40112	2	RO	0x03	M_Expor- ted_B	uint32	Wh	M_Ener- gy_W_SF	Phase B Exported Real Energy	1-0:42.8.0*255
40113	40114	2	RO	0x03	M_Expor- ted_C	uint32	Wh	M_Ener- gy_W_SF	Phase C Exported Real Energy	1-0:62.8.0*255
40115	40116	2	RO	0x03	M_Imported	uint32	Wh	M_Ener- gy_W_SF	Total Imported Real Energy	1-0:1.8.0*255
40117	40118	2	RO	0x03	M_Imported_A	uint32	Wh	M_Ener- gy_W_SF	Phase A Imported Real Energy	1-0:21.8.0*255
40119	40120	2	RO	0x03	M_Impor- ted_B	uint32	Wh	M_Ener- gy_W_SF	Phase B Imported Real Energy	1-0:41.8.0*255
40121	40122	2	RO	0x03	M_Impor- ted_C	uint32	Wh	M_Ener- gy_W_SF	Phase C Imported Real Energy	1-0:61.8.0*255
40123	40123	1	RO	0x03	M_Ener- gy_W_SF	int16	N/A	N/A	Real Energy Scale Factor ³	0
40124	40125	2	RO	0x03	M_Expor- ted_VA	uint32	VAh	M_Energy_ VA_SF	Total Exported Apparent Energy	1-0:10.8.0*255
40126	40127	2	RO	0x03	M_Expor- ted_VA_A	uint32	VAh	M_Energy_ VA_SF	Phase A Exported Apparent Energy	1-0:30.8.0*255

Start	End			Func-						
address (dec)	address (dec)	Size	R/W	tion codes	Name	Туре	Units	Scale factor	Description	Value range / OBIS mapping
40128	40129	2	RO	0x03	M_Expor- ted_VA_B	uint32	VAh	M_Energy_ VA_SF	Phase B Exported Apparent Energy	1-0:50.8.0*255
40130	40131	2	RO	0x03	M_Expor- ted_VA_C	uint32	VAh	M_Energy_ VA_SF	Phase C Exported Apparent Energy	1-0:70.8.0*255
40132	40133	2	RO	0x03	M_Impor- ted_VA	uint32	VAh	M_Energy_ VA_SF	Total Imported Apparent Energy	1-0:9.8.0*255
40134	40135	2	RO	0x03	M_Impor- ted_VA_A	uint32	VAh	M_Energy_ VA_SF	Phase A Imported Apparent Energy	1-0:29.8.0*255
40136	40137	2	RO	0x03	M_Impor- ted_VA_B	uint32	VAh	M_Energy_ VA_SF	Phase B Imported Apparent Energy	1-0:49.8.0*255
40138	40139	2	RO	0x03	M_Impor- ted_VA_C	uint32	VAh	M_Energy_ VA_SF	Phase C Imported Apparent Energy	1-0:69.8.0*255
40140	40140	1	RO	0x03	M_Energy_ VA_SF	int16	N/A	N/A	Apparent Energy Scale Factor ³	0
40141	40142	2	RO	0x03	M_Import_ VARh_Q1	uint32	VARh	M_Energy_ VAR_SF	Quadrant 1: Tota Imported Reactive Energy	0x80000000
40143	40144	2	RO	0x03	M_Import_ VARh_Q1A	uint32	VARh	M_Energy_ VAR_SF	Phase A – Quadrant 1: Imported Reactive Energy	0x80000000
40145	40146	2	RO	0x03	M_Import_ VARh_Q1B	uint32	VARh	M_Energy_ VAR_SF	Phase B – Quadrant 1: Imported Reactive Energy	0x80000000
40147	40148	2	RO	0x03	M_Import_ VARh_Q1C	uint32	VARh	M_Energy_ VAR_SF	Phase C – Quadrant 1: Imported Reactive Energy	0x80000000
40149	40150	2	RO	0x03	M_Import_ VARh_Q2	uint32	VARh	M_Energy_ VAR_SF	Quadrant 2: Total Imported Reactive Energy	0x80000000
40151	40152	2	RO	0x03	M_Import_ VARh_Q2A	uint32	VARh	M_Energy_ VAR_SF	Phase A – Quadrant 2: Imported Reac- tive Energy	0x80000000
40153	40154	2	RO	0x03	M_Import_ VARh_Q2B	uint32	VARh	M_Energy_ VAR_SF	Phase B – Quadrant 2: Imported Reac- tive Energy	0x80000000
40155	40156	2	RO	0x03	M_Import_ VARh_Q2C	uint32	VARh	M_Energy_ VAR_SF	Phase C – Quadrant 2: Imported Reac- tive Energy	0x80000000
40157	40158	2	RO	0x03	M_Export_ VARh_Q3	uint32	VARh	M_Energy_ VAR_SF	Quadrant 3: Total Imported Reactive Energy	0x80000000

Start address (dec)	End address (dec)	Size	R/W	Func- tion codes	Name	Туре	Units	Scale factor	Description	Value range / OBIS mapping
40159	40160	2	RO	0x03	M_Export_ VARh_Q3A	uint32	VARh	M_Energy_ VAR_SF	Phase A – Quadrant 3: Imported Reac- tive Energy	0x80000000
40161	40162	2	RO	0x03	M_Export_ VARh_Q3B	uint32	VARh	M_Energy_ VAR_SF	Phase B – Quadrant 3: Imported Reac- tive Energy	0x80000000
40163	40164	2	RO	0x03	M_Export_ VARh_Q3C	uint32	VARh	M_Energy_ VAR_SF	Phase C – Quadrant 3: Imported Reac- tive Energy	0x80000000
40165	40166	2	RO	0x03	M_Export_ VARh_Q4	uint32	VARh	M_Energy_ VAR_SF	Quadrant 4: Tota Imported Reactive Energy	0x80000000
40167	40168	2	RO	0x03	M_Export_ VARh_Q4A	uint32	VARh	M_Energy_ VAR_SF	Phase A – Quadrant 4: Imported Reac- tive Energy	0x80000000
40169	40170	2	RO	0x03	M_Export_ VARh_Q4B	uint32	VARh	M_Energy_ VAR_SF	Phase B – Quadrant 4: Imported Reac- tive Energy	0x80000000
40171	40172	2	RO	0x03	M_Export_ VARh_Q4C	uint32	VARh	M_Energy_ VAR_SF	Phase C – Quadrant 4: Imported Reac- tive Energy	0x80000000
40173	40173	1	RO	0x03	M_Energy_ VAR_SF	int16	N/A	N/A	Reactive Energy Scale Factor ³	0
40174	40175	2	RO	0x03	M_Events	uint32	N/A	N/A	Event flags	0
40176	40176	1	RO	0x03	C_SunSpec_ DID	uint16	N/A	N/A	Indicates that it is a valid SunSpec End Model block.	Oxffff
40177	40177	1	RO	0x03	C_SunSpec_ Length	uint16	regis- ters	N/A	Length of End Model	0

Hinweis:

¹ Anmerkung um off-by-one-Fehler zu vermeiden: Die SunSpec-Spezifikation (wie auf www.sunspec.org zu finden) bezieht sich immer auf Registernummern, wohingegen sich dieses Dokument immer auf Registeradressen bezieht. Um auf SunSpec-Register 40001 zuzugreifen, muss die Registeradresse 40000 verwendet werden, d.h. Hexadezimal-Offset 0x9C40.

 $^{^{\}rm 2}$ Diese Felder können ein Kundenbranding erhalten

³ Beispiel: Das Register M_AC_Freq enthält den Wert 4950 und M_AC_Freq_SF enthält den Wert -2. Dann kann die Frequenz berechnet werden als: 4950 Hz * 10^{-2} = 49.50 Hz

⁴ Wichtige Anmerkung: Obwohl die Skalierungsfaktoren hier als feste Werte angegeben sind, sollten sie nicht als fest betrachtet werden. Die Werte können sich dynamisch ändern, um zu den Messwerten zu passen. Bitte fragen Sie die Skalierungsfaktoren immer zusammen mit den dazugehörigen Werten ab und nehmen Sie Code mit auf, um die Werte dynamisch zu berechnen.

3.6 Übersicht Gruppen Register

Dieser Registerbereich enthält gruppenspezifische Informationen. Insgesamt gibt es 48 Blöcke von Gruppenregistern. Jeder Registerblock ist 40 Register groß, und entspricht einer Gruppe, die im KOSTAL Smart Energy Meter konfiguriert ist. Die Gruppenregister stehen nur zur Verfügung, wenn auf dem Gerät Gruppen aktiviert und konfiguriert sind.

Das Offset jedes Gruppen-Registerblocks wird wie folgt berechnet:

offset = 0xE800 + (Gruppen-ID) * 0x0028

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	Description
59392	59431	0xE800	0xE827	40	Group 0
59432	59571	0xE828	0xE8B3	40	Group 1
61272	61311	0xEF58	0xEF7F	40	Group 47

Der Registerblock ist für alle Gruppen gleich. Daher ist in der folgenden Tabelle nur der Registerblock für die erste Gruppe beschrieben.

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
59392	59395	0xE800	0xE803	4	RO	0x10	uint64	unitless		Group label
59401	59404	0xE809	0xE80C	4	RO	0x10	uint64	1Wh	1-x:1.8.0*255	Active Energy + (group sum)
59405	59408	0xE80D	0xE810	4	RO	0x10	uint64	1Wh	1-x:2.8.0*255	Active Energy - (group sum)
59409	59412	0xE811	0xE814	4	RO	0x10	uint64	1VAh	1-x:9.8.0*255	Apparent Energy + (group sum)
59413	59416	0xE815	0xE818	4	RO	0x10	uint64	1VAh	1-x:10.8.0*255	Apparent Energy - (group sum)
59417	59418	0xE819	0xE81A	2	RO	0x10	uint32	0.001W	1-x:1.4.0*255	Active Power + (group sum)
59419	59429	0xE81B	0xE81C	2	RO	0x10	uint32	0.001W	1-x:2.4.0*255	Active Power - (group sum)
59421	59422	0xE81D	0xE81E	2	RO	0x10	uint32	0.001VA	1-x:9.4.0*255	Apparent Power + (group sum)
59423	59424	0xE81F	0xE820	2	RO	0x10	uint32	0.001VA	1-x:10.4.0*255	Apparent Power - (group sum)
59425	59426	0xE821	0xE822	2	RO	0x10	uint32	0.001A	1-x:11.4.0*255	Current (group sum)

3.7 Übersicht Sensor Register

Dieser Registerbereich enthält sensorspezifische Informationen. Insgesamt gibt es 96 Blöcke von Sensorregistern. Jeder Registerblock ist 40 Register groß, und entspricht einem Sensor, der an den KOSTAL Smart Energy Meter angeschlossen ist. Die Sensorregister stehen nur zur Verfügung, wenn auf dem Gerät Sensoren aktiviert und konfiguriert sind.

Das Offset jedes Sensor-Registerblocks wird wie folgt berechnet:

offset = 0xF000 + (Sensor-ID) * 0x0028

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	Description
61440	61479	0xF000	0xF027	40	Sensor 0
61480	61519	0xF028	0xF04F	40	Sensor 1
65240	65279	0xFED8	0xFEFF	40	Sensor 95

Der Registerblock ist für alle Gruppen gleich. Daher ist in der folgenden Tabelle nur der Registerblock für den ersten Sensor beschrieben. Die OBIS-Codes dienen hier nur der Illustration, da der echte OBIS-Code von der konfigurierten Phase des Sensors abhängt. Wenn die Phase eines Sensors nicht konfiguriert wurde, enthalten dessen Register keine Werte, da die Phase benötigt wird, um mit Hilfe der Spannung und Phasenwinkels aus den internen Messwerten die weiteren Werte zu berechnen.

Start address (dec)	End address (dec)	Start address (hex)	End address (hex)	Size	R/W	Func- tion codes	Туре	Units	OBIS-Code	Description
61440	61443	0xF000	0xF003	4	RO	0x10	uint64	unitless		Label
61444	61447	0xF004	0xF007	4	RO	0x10	uint64	unitless		Serial number+Index
61448	61448	0xF008	0xF008	1	RO	0x10	uint16	unitless		Phase (1,2,3)
61449	61452	0xF009	0xF00C	4	RO	0x10	uint64	1Wh	1-x:1.8.0*255	Active Energy +
61453	61456	0xF00D	0xF010	4	RO	0x10	uint64	1Wh	1-x:2.8.0*255	Active Energy -
61457	61460	0xF011	0xF014	4	RO	0x10	uint64	1Vah	1-x:9.8.0*255	Apparent Energy +
61461	61464	0xF015	0xF018	4	RO	0x10	uint64	1Vah	1-x:10.8.0.*255	Apparent Energy -
61465	61466	0xF019	0xF01A	2	RO	0x10	uint32	0.001W	1-x:1.4.0*255	Active Power +
61467	61468	0xF01B	0xF01C	2	RO	0x10	uint32	0.001W	1-x:2.4.0*255	Active Power -
61469	61470	0xF01D	0xF01E	2	RO	0x10	uint32	0.001VA	1-x:9.4.0*255	Apparent Power +
61471	61472	0xF01F	0xF020	2	RO	0x10	uint32	0.001VA	1-x:10.4.0*255	Apparent Power -
61473	61474	0xF021	0xF022	2	RO	0x10	uint32	0.001A	1-x:11.4.0*255	Current
61475	61476	0xF023	0xF024	2	RO	0x10	uint32	0.001V	1-x:12.4.0*255	Voltage
61477	61478	0xF025	0xF026	2	RO	0x10	int32	0.001	1-x:13.4.0.*255	Power factor

KOSTAL

KOSTAL Solar Electric GmbH Hanferstr. 6 79108 Freiburg i. Br. Deutschland

Telefon: +49 761 47744 - 100 Fax: +49 761 47744 - 111

KOSTAL Solar Electric Ibérica S.L. Edificio abm Ronda Narciso Monturiol y Estarriol, 3 Torre B, despachos 2 y 3 Parque Tecnológico de Valencia 46980 Valencia España

Teléfono: +34 961 824 - 934 Fax: +34 961 824 - 931

KOSTAL Solar Electric France SARL 11, rue Jacques Cartier 78280 Guyancourt France

Téléphone: +33 1 61 38 - 4117 Fax: +33 1 61 38 - 3940

KOSTAL Solar Electric Hellas E.Π.Ε. 47 Steliou Kazantzidi st., P.O. Box: 60080 1st building – 2nd entrance 55535, Pilea, Thessaloniki Ελλάδα Τηλέφωνο: +30 2310 477 - 550

Τηλέφωνο: +30 2310 477 - 550 Φαξ: +30 2310 477 - 551

KOSTAL Solar Electric Italia Srl Via Genova, 57 10098 Rivoli (TO) Italia

Telefono: +39 011 97 82 - 420 Fax: +39 011 97 82 - 432