GFM: Building Geospatial Foundation Models via Continual Pretraining

Matías Mendieta Boran Han, Xingjian Shi, Yi Zhu, Chen Chen, Mu Li

AWS AI Research and Education Labs

Deepearth team

Introduction

- Geospatial technologies
 - Understand the earth
 - How we interact with it
 - Various features

GFM (our model)

Background and Related Work: Contrastive Learning

• Limitation in augmentations:

Data augmentation that affects the intensity of the values should be discarded.

Neumann, et. al, In-domain representation learning for remote sensing.

Inconsistent performance on downstream tasks

Ayush et, al, Geography-aware self-supervised learning.

Oscar Ma nas, et, al.. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data.

Background and Related Work: Masked Image Modeling

- Masked Image Modeling
 - Strong downstream transfer
 - Simple spatial augmentations
 - Underexplored in geospatial applications

Xie et. al., Simmim: A simple framework for masked image modeling.

Background and Related Work: Masked Image Modeling

SatMAE

- Multiple temporal inputs
- Temporal positional encoding
- Independent masking

Downsides

- Carbon footprint
 - 109.44 kg. CO2 eq.
 - More than 12x our GFM
- Often falls behind ImageNet-22k counterpart

Cong et. al., Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery

GFM – A sustainable approach

- Investigation
 - Pretraining data matters
 - GeoPile
 - Effective and sample efficient
 - Multi-objective continual pretraining
 - Leverage diverse representations
 - Adapt in-domain knowledge
- GFM
 - Strong performance
 - Broad set of tasks

- Sentinel-2 imagery
 - Common choice
 - Gather 1.3M images
 - Train Swin-B with MIM
- 7 downstream datasets
 - Change detection
 - Single and multi-label classification
 - Segmentation
 - Super-resolution

Method	# Images	Epochs	ARP↑	CO2↓
ImageNet-22k Sup.	14M	-	0.0	-
Sentinel-2 [29]	1.3M	100	-5.53	17.76

$$ARP(M) = \frac{1}{N} \sum_{i=1}^{N} \frac{score(M, task_i) - score(baseline, task_i)}{score(baseline, task_i)}$$

- Sentinel-2 imagery
 - Common choice
 - Gather 1.3M images
 - Train Swin-B with MIM
- ImageNet-1k
 - Domain gap
 - Higher entropy (5.1 vs 3.9)
 - Diverse features
 - Within image
 - Across images

Method	# Images	Epochs	ARP↑	CO2↓
ImageNet-22k Sup.	14M	-	0.0	-
ImageNet-1k	1.3M	100	1.82	17.76
Sentinel-2 [29]	1.3M	100	-5.53	17.76

$$\mathsf{ARP}(M) = \frac{1}{N} \sum_{i=1}^{N} \frac{\mathsf{score}(M, \mathsf{task}_i) - \mathsf{score}(\mathsf{baseline}, \mathsf{task}_i)}{\mathsf{score}(\mathsf{baseline}, \mathsf{task}_i)}$$

• GeoPile

- Labeled and unlabeled sources
- Informative samples
 - Ground sample distance (GSD) variations
 - Wide variety of classes and scenes

Dataset	# Images	GSD	# Classes
NAIP [31]	300,000	1m	n/a
RSD46-WHU [28]	116,893	0.5m - 2m	46
MLRSNet [33]	109,161	0.1m - 10m	60
RESISC45 [8]	31,500	0.2m - 30m	45
PatternNet [47]	30,400	0.1m - 0.8m	38

GeoPile

- Labeled and unlabeled sources
- Informative samples
 - Ground sample distance (GSD) variations
 - Wide variety of classes and scenes

Further improvement

- Train longer, scale up training data.
- Vast datasets with poor quality
- More cost, marginal benefit.

Method	# Images	Epochs	ARP↑	CO2↓
ImageNet-22k Sup.	14M	-	0.0	-
ImageNet-1k	1.3M	100	1.82	17.76
Sentinel-2 [29]	1.3M	100	-5.53	17.76
GeoPile	600k	200	2.02	12.64
GeoPile	600k	800	2.44	50.56

Can we significantly improve performance with minimal compute and carbon footprint overhead?

Methodology: GFM via continual pretraining

- ImageNet-22k models
 - Not perfect for geospatial
 - Still valuable features
 - Ignoring not ideal
 - Especially for data hungry transformers
- Multi-objective continual training paradigm

Methodology: GFM via continual pretraining

Loss functions:

$$\mathcal{L}_{feat} = -\frac{P(f_L^S)}{\left\|P(f_L^S)\right\|_2} \cdot \frac{f_L^T}{\left\|f_L^T\right\|_2}$$

$$\mathcal{L}_{MIM} = \frac{\left\|\mathbf{O}_{\kappa} - \mathbf{G}_{\kappa}\right\|_{1}}{N}$$

$$\mathcal{L} = \mathcal{L}_{MIM} + \alpha \mathcal{L}_{feat}$$

Methodology: GFM via continual pretraining

- Distillation
 - Benefit from diverse knowledge
 - Learn more in less time
- Masked Image Modeling
 - Freedom for in-domain adaptation
 - Geospatial features
 - Improved performance

Method	# Images	Epochs	ARP↑	CO2↓
ImageNet-22k Sup.	14M	-	0.0	-
ImageNet-1k	1.3M	100	1.82	17.76
Sentinel-2 [29]	1.3M	100	-5.53	17.76
GeoPile	600k	200	2.02	12.64
GeoPile	600k	800	2.44	50.56
GFM	600k	100	4.47	8.56

Experiments: Change Detection

- Onera Satellite Change Detection
 - Sentinel-2 imagery
 - 10m GSD
- DSFIN
 - WorldView-3 and GeoEys-1
 - 1m GSD

White – True Positive Green – False Positive Red – False Negative

Onera Satellite Change Detection

Method	Precision ↑	Recall ↑	F1 ↑
ResNet50 (ImageNet-1k) [20]	70.42	25.12	36.20
SeCo [29]	65.47	38.06	46.94
MATTER [1]	61.80	57.13	59.37
ViT (ImageNet-22k) [14]	48.34	22.52	30.73
SatMAE [9]	48.19	42.24	45.02
Swin (random) [26]	51.80	47.69	49.66
Swin (ImageNet-22k) [26]	46.88	59.28	52.35
GFM	58.07	61.67	59.82

DSFIN

Method	Precision ↑	Recall ↑	F1 ↑
ResNet50 (ImageNet-1k) [20]	28.74	92.07	43.80
SeCo [29]	39.68	81.02	53.27
ViT (ImageNet-22k) [14]	70.77	66.34	68.49
SatMAE [9]	70.45	60.29	64.98
Swin (random) [26]	57.97	62.06	59.94
Swin (ImageNet-22k) [26]	67.11	72.33	69.62
GFM	74.83	67.98	71.24

Experiments: Classification

- UC Merced
 - 21 classes
 - 1 foot GSD
- BigEarthNet
 - 19 classes
 - 10m GSD
- Baseline comparisons
 - SeCo lower in UCM
 - SatMAE lower in BEN

Method	UCM	BEN 10%	BEN 1%
ResNet50 (ImageNet-1k) [20]	98.8	80.0	41.3
SeCo [29]	97.1	82.6	63.6
ViT (ImageNet-22k) [14]	93.1	84.7	73.6
SatMAE [9]	92.6	81.8	68.9
Swin (random) [26]	66.9	80.6	65.7
Swin (ImageNet-22k) [26]	99.0	85.7	79.5
GFM	99.0	86.3	80.7

- Sample efficiency
 - BigEarthNet 10% and 1%
 - Maintain strong performance

Experiments: Segmentation and Super resolution

- WHU Aerial
 - Building segmentation
 - GSD 0.3m
- Vaihingen
 - 6 class
 - GSD 0.9m

Method	WHU Aerial	Vaihingen
ResNet50 (ImageNet-1k) [20]	88.5	74.0
SeCo [29]	86.7	68.9
ViT (ImageNet-22k) [14]	81.6	72.6
SatMAE [9]	82.5	70.6
Swin (random) [26]	88.2	67.0
Swin (ImageNet-22k) [26]	90.4	74.7
GFM	90.7	75.3

SpaceNet2

1.24m 8-band input

Generate 0.3m pan-sharpened equivalent

Method	PSNR ↑	SSIM ↑
ViT (ImageNet-22k) [14]	23.279	0.619
SatMAE [9]	22.742	0.621
Swin (random) [26]	21.825	0.594
Swin (ImageNet-22k) [26]	21.655	0.612
GFM	22.599	0.638

Ablation Studies

- Distillation Stage
 - Stage 3 is best
 - Appropriate distillation supervision
 - Purely in-domain features for final layers

• Balancing Term α

•
$$\mathcal{L} = \mathcal{L}_{MIM} + \alpha \mathcal{L}_{feat}$$

• Simply $\alpha = 1.0$ is best

Ablation Studies

- GeoPile pretraining dataset
 - Labeled datasets
 - Better performance, less images
 - Unlabeled data
 - Easily sourced and scaled
 - Further scaling
 - Increased training and CO2 impact

Data	# Images	ARP↑
w/o WHU-RSD46	444,061	2.87
w/o MLRSNet	451,793	3.30
w/o Resisc45	529,454	2.72
w/o PatternNet	557,554	2.98
w/o curated datasets	300,000	1.62
w/o NAIP	260,954	2.65

- Continual pretraining comparison
 - Basic approach
 - Initialize with ImagNet-22k
 - MIM training on GeoPile
 - GFM
 - More effective and efficient

Method	Epochs	ARP↑	CO2↓
ImageNet-22k Init.	200	2.66	12.64
ImageNet-22k Init.	800	2.98	50.56
GFM	100	4.47	8.56

Conclusion

- GFM
 - Sustainable approach
 - Strong performance
 - Broad set of tasks
- GeoPile
 - Diverse and effective
- Multi-objective continual pretraining
 - Leverage diverse representations
 - Adapt in-domain knowledge

Thank you