Домашнее задание по ЦОС 2020

Необходимо разработать программное обеспечение на любом языке программирования. Наличие графического интерфейса не обязательно, но добавит к рейтингу дополнительные 5 баллов.

Входные тестовые данные для каждого варианта ДЗ берутся из текстового, либо звукового файла. Содержимое файла может формироваться с помощью пакета Matlab. Выходные данные также должны сохраняться в текстовый или звуковой файл, либо отображаться в окне (консоли) программы. Визуализацию выходных данных допускается производить с помощью пакета Matlab. Использовать Matlab для любых других целей (в том числе реализация основного алгоритма цифровой обработки сигналов) не допускается. Использовать библиотечные функции цифровой обработки сигналов также не допускается.

Варианты

- 1. Реализовать частотно-временное БПФ входного сигнала, используя алгоритм БПФ с прореживанием по времени. Должна быть возможность задания произвольной ширины окна.
- 2. Реализовать частотно-временное БПФ входного сигнала, используя алгоритм БПФ с прореживанием по частоте. Должна быть возможность задания произвольной ширины окна.
- 3. Реализовать четырёхканальный эквалайзер для звукового диапазона частот. Должна быть возможность регулировки параметров ослабления или усиления каждого из каналов. Полосы пропускания выбрать произвольными.
- 4. Разработать программу, выделяющую огибающую амплитудно-модулированного сигнала с помощью преобразования Гильберта. Рассчитать БПФ от полученной огибающей и показать её частотный состав.
- 5. Реализовать ASK-модулятор и демодулятор входного сигнала. Период модулирующего сигнала и несущую частоту выбрать произвольными.
- 6. Реализовать BPSK-модулятор и демодулятор входного сигнала. Период модулирующего сигнала и несущую частоту выбрать произвольными. Построить сигнальное созвездие, демонстрирующее работу модулятора.
- 7. Реализовать QPSK-модулятор и демодулятор входного сигнала. Период модулирующего сигнала и несущую частоту выбрать произвольными. Построить сигнальное созвездие, демонстрирующее работу модулятора.
- 8. Реализовать MSK-модулятор и демодулятор входного сигнала. Период модулирующего сигнала выбрать произвольным. Построить сигнальное созвездие, демонстрирующее работу модулятора.

РПЗ должна содержать:

- 1. Введение.
- 2. Теория.
- 3. Алгоритм работы программы (в любой форме).
- 4. Графическое отображение результатов работы программы (графики сигнала до и после обработки, и т.п.).
- 5. Исходный код (в Приложении).

РПЗ + архив с проектом ПО высылать на почту iu4@leonidov.su

Варианты:

1	Внуков Н. С.	1
2	Кондаков Н. А.	2
3	Корчагин А. И.	3
4	Маковей А.	4
5	Марченко А. Б.	5
6	Петров М. В.	6
7	Присяжнюк С. П.	7
8	Смагулов Н.	8
9	Трошина Д. П.	1
10	Фатхутдинов Т. М.	2
11	Панчо Рамирес П.А.	3
12	Чэн Юйсюань	4
13	Чан Тхань Хай	5
14	Лыонг Куок Ле	6
15	Ян Л.	7
1	Ахметов Н. Р.	8
2	Власов Д. С.	1
3	Григорьев К. А.	2
4	Гудошников И. В.	3
5	Димитров Д. А.	4
6	Захарова А. С.	5
7	Иванов И. В.	6
8	Кадыр А.	7
9	Марикова Е. А.	8
10	Михайлов В. Б.	1
11	Олисевич Е. А.	2
12	Тимонин О. А.	3
13	Узеньков Д. А.	4
14	Фадеев М. А.	5
15	Шанин А. В.	6
16	Шерстюк А. Е.	7