	No.
	Date
Assignment 5	C) -M Jones All the value
Q1. (a) $L(1) = 1$	and involvery on and
(b) $l(n) = 2 l(n-1) + 2^{n-1}$	(d) " Converse nation
(c) Homogeneous form is $l(n) = 2 l(n)$	1-1), CE: Y2=2Y > Y=2,0
$l^{n}(n) = \alpha \cdot 2^{n}$	dan Sustey
Suppose $({}^{P}(n) = n\beta \cdot 2^{n})$ because	z is the root of CE, so we multiply n
	$3=\frac{1}{2} \Rightarrow l^{p}(n)=n \cdot 2^{n-1}$
Hence, $l(n) = n \cdot 2^{n-1} + \alpha \cdot 2^n$	Q4. Lisprove For A-16231,
1(1)=1·2°+α·2'=1 ⇒	P i voftence and syntax
	(2,1) CE (1,3) CE (2,3) EE
Q2. (a) There're to ballons in a row, as 4 pieces, each piece should co	ntains at least one.
4 pieces, each piece should co	ntains at least one. Cut them into 4 pieces, cose, so $\binom{9}{3}$ = 84 is the answer.

Q4. Prove it. R is reflexive, so $\forall a \in A$, $(a,a) \in R$. Q4. Disprove. For $A = \{1,2,3\}$, $R = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$. R is reflexive and symmetric, but not transitive, because $(2,1) \in R$, $(1,3) \in R$, $(2,3) \notin R$.	and irreflexive are 2 ⁿ²ⁿ .	number is 2 ^{n²} . both reflexive (12)
Only (a,a) can $\in R$ or $\notin R$, but this doesn't influence the transitivity. Represent the transitivit	(d) 2 ⁿ . Symmetric and antisymm	netric implies (a,b)&R (a+b).
transitivity. Q4. Prove it. R is reflexive, so $\forall a \in A$, $(a,a) \in R$. Q4. Disprove. For $A = \{1,2,3\}$, $R = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$. R is reflexive and symmetric, but not transitive, because $(2,1) \in R$, $(1,3) \in R$, $(2,3) \notin R$.		
Q4. Disprove. For $A = \{1,2,3\}$, $R = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$. R is reflexive and symmetric, but not transitive, because $(2,1) \in R$, $(1,3) \in R$, $(2,3) \notin R$. Q5. For $\forall (a,b) \in R$, by definition of $R^2 = R \circ R$, $(a,b) \in R$, $(b,b) \in R$ (because		
(2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (3,4) $\in R$, (4,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (6,4) $\in R$, (7,4) $\in R$, (8,4) $\in R$, (ause 2 is the root of CE, so we multiply n	Suppose IP(n) = NS-2" (bacc
R is reflexive and symmetric, but not transitive, because $(2,1) \in \mathbb{R}, (1,3) \in \mathbb{R}, (2,3) \notin \mathbb{R}$. Q5. For $\forall (a,b) \in \mathbb{R}$, by definition of $\mathbb{R}^2 = \mathbb{R} \circ \mathbb{R}$, $(a,b) \in \mathbb{R}$, $(b,b) \in \mathbb{R}$ (because	Q4. Prove it. R is reflexive, so Vac	eA, (a,a) ER,
(2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (2,1) $\in R$, (1,3) $\in R$, (2,3) $\notin R$. (3,4) $\in R$, (4,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (5,4) $\in R$, (6,4) $\in R$, (7,4) $\in R$, (8,4) $\in R$, (Q4. Disprove. For A= {1,2,3}, R= {1	(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)}
a.5. For \forall (a,b) \in R, by definition of $R^2 = R \circ R$, (a,b) \in R, (b,b) \in R (beca	R is reflexive and symmetric,	but not transitive, because
a.5. For \forall (a,b) \in R, by definition of $R^2 = R \circ R$, (a,b) \in R, (b,b) \in R (beca	•	
Q5. For \forall (a,b) \in R, by definition of $R^2 = R \circ R$, (a,b) \in R, (b,b) \in R (beca R is reflexive), then (a,b) \in R^2 .		
R is reflexive), then $(a,b) \in \mathbb{R}^2$	Q5. For V (a, b) ER, by definition of F	$R^2 = R \circ R$, $(a,b) \in R$, $(b,b) \in R$ (beca
	R is reflexive), then $(a.b) \in R$	4 pieces each piece show

	Date . nat
Q6.	If $(a,b) \in R, \cap R_2$, then $(a,b) \in R_1$, since R_1 symmetric,
	$(b,a) \in R_1$. Similarly, $(a,b) \in R_2 \Rightarrow (b,a) \in R_2$, then $(b,a) \in R_1 \cap R_2$.
	Hence R. N.R. is symmetric.
	If $(a,b) \in R_1 \cup R_2$, then $(a,b) \in R_1$ or $(a,b) \in R_2$. Since both
	R_1 and R_2 are symmetric, so $(b,a) \in R_1$ or $(b,a) \in R_2$, $(b,a) \in R_1 \cup R_2$.
	Hence R.UR. is symmetric.
Q7.	Suppose (a,b) is in the symmetric closure of the transitive closure
	of R. Then (a,b), (b,a) has at least one in the transitive
	closure of R. Their exi
	There exist at least one path in $a \rightarrow b$ and $b \rightarrow a$ this 2 paths.
	① $(a,b) \in R$, then (a,b) is in transitive closure of symmetric closure
	of R.
	(b, a) ER, then (a,b) is in symmetric closure of R, then (a,b) is in
	Lacilia closure and symmetric closure of R.
	According to the arbitrariness of (a,b), the conclusion holds.
	According to the distribution

Q8.	Connectivity Relation R* equals the transitive closure of R.
	Suppose $(a,b) \in \mathbb{R}^*$.
	\mathbb{O} (a,b) $\in \mathbb{R}$. Then $ta = (b,a) \in \mathbb{R}$ since \mathbb{R} is symmetric.
	So $(b,a) \in \mathbb{R}^*$ since $\mathbb{R} \subseteq \mathbb{R}^*$.
- 22	② $(a,b) \notin R$. But $(a,b) \in R^*$ in the trasitive closure of R.
	There exists c, such that $(a,c) \in R$, $(c,b) \in R$.
	Since R is symmetric, $(c,a)\in R$, $(b,e)\in R$, so $(b,a)\in R^*$.
	Above the two cases, $(a,b) \in R^* \Rightarrow (b,a) \in R^*$, R^* symmetric.
Q9. W) Yes. (b) Yes. (c) No.
Q10.	If $(a,b) \in \mathbb{R}$, which means $a-b \in \mathbb{Q}$.
	Then $b-a \in \mathbb{Q}$, $(b,a) \in \mathbb{R}$, \mathbb{R} symmetric.
	Each $(a,a) \in R$ since $a-a=0 \in Q$, R reflexible.
	(a,b), (b,c) $\in \mathbb{R}$ R, a-b $\in \mathbb{Q}$, b-c $\in \mathbb{Q}$, then a-c $\in \mathbb{Q}$, (a,c) $\in \mathbb{R}$, R transitive
	So R is equivalence relation.
	$[i] = [\pm] = Q, [\pi] = \{x \mid x = \pi + y, y \in Q\}$
211.	$R_1 \subseteq R_1 \Rightarrow R_1 \preceq R_1$, thans reflexive.
	If $R_1 \subseteq R_2$ and $R_1 \neq R_2$, then $R_2 \subseteq R_1$ is n't hold, so $R(s)$ is antisymmetric
	$R_1 \preceq R_2$, $R_2 \preceq R_3 \Rightarrow R_1 \subseteq R_3$, $R_2 \subseteq R_3 \Rightarrow R_1 \preceq R_3$, transitive.
	Hence (R(s), 4) is poset.

		No.
-		Date · · · · ·
Q12. R	and S are equivalence relations, R and S nd transitive.	are symmetric, reflexive
0	$(x,y) \in T \Rightarrow (x,y) \in R, (x,y) \in S \Rightarrow (y,x) \in R, (y,x) \in R$	symmetric x)6S (tm.reflexive)
	\Rightarrow $(y,x) \in T$, T is selfexive , symmetric.	
<u> </u>	R, S is reflexive $\Rightarrow \forall x(x,x) \in R$, $(x,x) \in S \Rightarrow 0$	dx (x,x)∈T ⇒ T is reflexiv
3 ($(x,y), (y,z) \in T \Rightarrow (x,y) \in R, (y,z) \in R, (x,y) \in S,$	(y,₹)ES
=	$\Rightarrow (x,z) \in R, (x,z) \in S (transitive) \Rightarrow (x,z) \in S$	T ⇒ T is transitive.
Fro	m OOB, T is equivalence relation.	
(13. (a)	$\forall x \in \mathbb{R}, f(x) \leq f(x), so f \leq f, reflexive.$	
	$f \neq g$, $f \leq g \Rightarrow \forall x \in \mathbb{R}$, $f(x) \leq g(x) \Rightarrow \forall x \in \mathbb{R}$	R.f&)≥g&) doesn't hold
	⇒ antisymmetric	
	$f \leq g \leq h \Rightarrow \forall x \in \mathbb{R}, f(x) \leq g(x), g(x) \leq h(x)$	$\Rightarrow \forall x \in \mathbb{R}, f(x) \leq h(x)$
	⇒ transitive	
(b)	$f(x) = 0$, $g(x) = x$. When $x = 1$, $f(x) \leq g(x)$,	when $\kappa=-1$, $f(x) \ge g(x)$.
	$\forall x$, $f(x) \ge g(x)$ and $f(x) \le g(x)$ both not h	olds. ≤ is not total
	ordering.	
14. (a)	$R = \{\{0\}, \{0,1\}, \{0,1,2\}, \cdots\}, R \text{ doesn't } h$	ave maximala element.
(b)	\emptyset is the greatest minimum of $\mathcal{P}(N)$, s	so $R \in \mathcal{P}(N)$ must have
	minimal element.	
(c)	$T \in \mathcal{P}(N)$ must have minimal element (fr	om (b)), SO I EWI NOT
	has neither maximal nor minimal elemen	1 t .