Série 4 : Dipôle RLC

EXERCICE 1:

On considère le circuit électrique comportant un générateur idéal de tension de fem E, un condensateur de capacité $C=0.47\mu F$ une bibine d'inductance L=0.5H et de résistance négligeable, un conducteur ohmique de résistance R et deux interrupteur K_1 et K_2 (voir figure cicontre).

I-Première expérience

Dans cette expérience on ferme K_1 (en maintenant K_2 ouvert). Le condensateur se charge instantanément.

1)-Donner la raison pour laquelle cette charge de condensateur est instantanée.

- 2)-Déterminer l'expression de la charge Q_0 prise par l'armature du condensateur reliée au pôle positif du générateur.
- 3)-Donner l'expression de l'énergie électrique emmagasinée par le condensateur à la fin de la charge.

II-Deuxième expérience

Une fois la première expérience réalisée on ouvre K_1 puis on ferme K_2

A l'aide d'une interface d'acquisition reliée à un ordinateur et d'un logiciel de traitement de données on obtient la représentation graphique ci-après ou figurent d'une part les variations temporelles de la charge q et d'autre part les variations temporelles de l'énergie E_m emmagasinée dans la bobine.

- 1)- préciser le régime de ces oscillations électriques
- 2)-Déterminer la valeur de la pseudo-période T des oscillations.
- 3)-Déterminer la valeur de la tension U_{c0} aux bornes de condensateur à la date t=0 s. EN déduire la valeur de la fem E du générateur.
- 4)-a-Etablir l'équation différentielle vérifiée par la charge q(t) du condensateur.
- b-Exprimer l'énergie totale E_T du circuit en fonction de L, C, q(t) et i(t)
- c -En déduire que l'énergie totale E_T n'est pas conservé au cours de temps.
- 5)-Déterminer à la date $t_1=2,62~{
 m ms}$: a- les valeurs de l'énergie magnétique E_{1m} emmagasinée dans la bobine

et E_{1c} énergie électrique stockée par le condensateur.

b- la valeur de E_{1T} énergie totale de l'oscillation

6)-a la date $t_2=5,62$ ms la valeur de l'énergie totale de l'oscillateur est $E_{2m}=2,06.10^{-6}J$ Déterminer la variation de l'énergie totale ΔE entre les instants t_1 et t_2 .sous quelle forme cette énergie est dissipée ?

7)- on remplace le résistor R avec un autre de résistance $R'=10~\mathrm{K}\Omega$ on a plus une décharge oscillante du condensateur a-

donner le nom de ce régime

b-Tracer l'allure de la courbe $U_c = f(t)$.

EXERCICE 2:

Un circuit électrique forme par l'association en série d'un générateur de tension continue de fem E = 6v, un conducteur ohmique de résistance $R = 20\Omega$ et une bobine d'inductance L et de résistance r . (fig 1)

I- A l'instant t = 0 s on ferme l'interrupteur K un oscilloscope à mémoire permet d'enregistrer la variation de la tension aux bornes de conducteur ohmique au cours de temps.(fig 2)

- 1)-Reproduire le circuit de la fig 1 et indiquer les connexions nécessaires permettant d'observer la tension $U_R(t)$
- 2)-a-Expliquer le retard de l'établissement du courant permanent dans le circuit
- b-Nommer le phénomène qui est à l'origine de ce retard 3)-a- Montrer que l'équation différentielle vérifiée par l'intensité du courant i(t) s'écrit sous la forme: $L\frac{di}{dt} + (R+r)i = E$
- b-Vérifier que $i(t) = \frac{E}{R+r} (1 e^{-t/\tau})$ est une solution de l'équation différentielle précédente avec $\tau = \frac{L}{R+r}$
- 4)-a-établir l'expression de l'intensité du courant I_0 lorsque le régime permanant est établi
- b-Montrer que l'expression de la tension U_R en régime permanent est $U_R = \frac{R}{R+r}E$
- c-Déduire la valeur de la résistance r de la bobine.
- 5)- a partir de l'oscillogramme de la fig 2 déterminer τ , en déduire la valeur de l'inductance L
- 6)-a-Etablir l'expression de la tension aux bornes de la bobine $U_L(t)$
- b-Représenter l'allure de la courbe représentant les variations de $U_L(t)$, on précisera les coordonnée des points particuliers
- 7)-Déterminer la valeur de l'énergie emmagasinée dans la bobine à l'instant de date $t = \tau$.nommer cette énergie
- 8)-dans une autre expérience on remplace la bobine précédente par une bobine idéale (r = 0) et de même inductance L
- a- comparer sans calcule la nouvelle valeur de constante
- de temps τ' à celle de τ b-Représenter sur la fig 2 l'allure de la tension U_R
- II- a une nouvelle origine de temps t' = 0s. On ouvre l'interrupteur K en gardant la bobine idéale d'inductance L
- 1)- établir l'équation différentielle en $U_R(t)$ du circuit.
- 2)-Vérifier que $U_R = Ee^{-t/\tau}$ est une solution de l'équation différentielle précédente.
- 3)-a-Déterminer la valeur de U_R à l'instant de date t = $5.10^{-2}s$

