Quora Question Pairs

1. Business Problem

1.1 Description

Quora is a place to gain and share knowledge—about anything. It's a platform to ask questions and connect with people who contribute unique insights and quality answers. This empowers people to learn from each other and to better understand the world.

Over 100 million people visit Quora every month, so it's no surprise that many people ask similarly worded questions. Multiple questions with the same intent can cause seekers to spend more time finding the best answer to their question, and make writers feel they need to answer multiple versions of the same question. Quora values canonical questions because they provide a better experience to active seekers and writers, and offer more value to both of these groups in the long term.

Credits: Kaggle

Problem Statement:

- Identify which questions asked on Quora are duplicates of questions that have already been asked.
- This could be useful to instantly provide answers to questions that have already been answered.
- · We are tasked with predicting whether a pair of questions are duplicates or not.

1.2 Sources/Useful Links

• Source: https://www.kaggle.com/c/quora-question-pairs

Useful Links

- Discussions: https://www.kaggle.com/anokas/data-analysis-xgboost-starter-0-35460-lb/comments
- Kaggle Winning Solution and other approaches: https://www.dropbox.com/sh/93968nfnrzh8bp5/AACZdtsApc1QSTQc7X0H3QZ5a?dl=0
- Blog 1: https://engineering.guora.com/Semantic-Question-Matching-with-Deep-Learning
- Blog 2: https://towardsdatascience.com/identifying-duplicate-questions-on-quora-top-12-on-kaggle-4c1cf93f1c30

1.3 Real world/Business Objectives and Constraints

- 1. The cost of a mis-classification can be very high.
- 2. You would want a probability of a pair of questions to be duplicates so that you can choose any threshold of choice.
- 3. No strict latency concerns.
- 4. Interpretability is partially important.

2. Machine Learning Probelm

2.1 Data

2.1.1 Data Overview

- · Data will be in a file Train.csv
- Train.csv contains 5 columns : qid1, qid2, question1, question2, is_duplicate
- Size of Train.csv 60MB
- Number of rows in Train.csv = 404,290

2.1.2 Example Data point

- 1. "id", "gid1", "gid2", "guestion1", "guestion2", "is duplicate"
- 2. "0","1","2","What is the step by step guide to invest in share market in india?","What is the step by step guide to invest in share market?","0"
- 3. "1","3","4","What is the story of Kohinoor (Koh-i-Noor) Diamond?","What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?","0"
- 4. "7","15","16","How can I be a good geologist?","What should I do to be a great geologist?","1"
- 5. "11","23","24","How do I read and find my YouTube comments?","How can I see all my Youtube comments?","1"

2.2 Mapping the real world problem to an ML problem

2.2.1 Type of Machine Leaning Problem

It is a binary classification problem, for a given pair of questions we need to predict if they are duplicate or not.

2.2.2 Performance Metric

Source: https://www.kaggle.com/c/quora-question-pairs#evaluation

Metric(s):

- log-loss : https://www.kaggle.com/wiki/LogarithmicLoss
- Binary Confusion Matrix

2.3 Train and Test Construction

 We build train and test by randomly splitting in the ratio of 70:30 or 80:20 whatever we choose as we have sufficient points to work with.

3. Exploratory Data Analysis

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from subprocess import check_output
%matplotlib inline
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph objs as go
import plotly.tools as tls
import os
import gc
import re
from nltk.corpus import stopwords
import distance
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup
```

3.1 Reading data and basic stats

```
In [2]:

df = pd.read_csv("train.csv")

print("Number of data points:",df.shape[0])

Number of data points: 404290
```

```
In [3]:
```

```
df.head()
```

Out[3]:

	id	qid1	qid2	question1	question2	is_duplicate
0	0	1	2	What is the step by step guide to invest in sh	What is the step by step guide to invest in sh	0
1	1	3	4	What is the story of Kohinoor (Koh-i-Noor) Dia	What would happen if the Indian government sto	0
2	2	5	6	How can I increase the speed of my internet co	How can Internet speed be increased by hacking	0
3	3	7	8	Why am I mentally very lonely? How can I solve	Find the remainder when [math]23^{24}[/math] i	0
4	4	9	10	Which one dissolve in water quikly sugar, salt	Which fish would survive in salt water?	0

In [4]:

```
df_sample= df.sample(n = 20000)
```

In [5]:

```
df = df_sample
```

In [6]:

```
df.head(2)
```

Out[6]:

	id	qid1	qid2	question1	question2	is_duplicate
271918	271918	390102	208688	How do I relieve lower back pain and stiffness?	What is the best way to relieve lower back pain?	1
284108	284108	317372	13720	Why do some educated people in developed count	Why do some people with PhD's join groups like	1

In [7]:

```
y_true = df["is_duplicate"]
```

In [8]:

```
df.info()
```

We are given a minimal number of data fields here, consisting of:

- id: Looks like a simple rowID
- qid{1, 2}: The unique ID of each question in the pair
- question{1, 2}: The actual textual contents of the questions.
- is_duplicate: The label that we are trying to predict whether the two questions are duplicates of each other.

3.2.1 Distribution of data points among output classes

• Number of duplicate(smilar) and non-duplicate(non similar) questions

In [9]:

```
df.groupby("is_duplicate")['id'].count().plot.bar()
```

Out[9]:

<matplotlib.axes. subplots.AxesSubplot at 0x2cc8a5be470>

In [10]:

```
print('~> Total number of question pairs for training:\n {}'.format(len(df)))
```

~> Total number of question pairs for training: 20000

In [11]:

- ~> Question pairs are not Similar (is_duplicate = 0):
 63.61%
- ~> Question pairs are Similar (is_duplicate = 1):
 36.39%

3.2.2 Number of unique questions

In [12]:

```
qids = pd.Series(df['qid1'].tolist() + df['qid2'].tolist())
unique_qs = len(np.unique(qids))
qs_morethan_onetime = np.sum(qids.value_counts() > 1)
print ('Total number of Unique Questions are: {}\n'.format(unique_qs))
#print len(np.unique(qids))

print ('Number of unique questions that appear more than one time: {}
({}\%)\n'.format(qs_morethan_onetime,qs_morethan_onetime/unique_qs*100))

print ('Max number of times a single question is repeated: {}\n'.format(max(qids.value_counts())))

q_vals=qids.value_counts()
q_vals=q_vals.values
```

```
Total number of Unique Questions are: 37751

Number of unique questions that appear more than one time: 1821 (4.823713279118434%)

Max number of times a single question is repeated: 11
```

In [13]:

```
x = ["unique_questions", "Repeated Questions"]
y = [unique_qs , qs_morethan_onetime]

plt.figure(figsize=(10, 6))
plt.title ("Plot representing unique and repeated questions ")
sns.barplot(x,y)
plt.show()
```

Plot representing unique and repeated questions

3.2.3 Checking for Duplicates

In [14]:

```
#checking whether there are any repeated pair of questions

pair_duplicates =
df[['qid1','qid2','is_duplicate']].groupby(['qid1','qid2']).count().reset_index()

print ("Number of duplicate questions", (pair_duplicates).shape[0] - df.shape[0])
```

Number of duplicate questions 0

3.2.4 Number of occurrences of each question

In [15]:

```
plt.figure(figsize=(20, 10))
plt.hist(qids.value_counts(), bins=160)
plt.yscale('log', nonposy='clip')
plt.title('Log-Histogram of question appearance counts')
plt.xlabel('Number of occurences of question')
plt.ylabel('Number of questions')
print ('Maximum number of times a single question is repeated: {}\n'.format(max(qids.value_counts()))
```

Maximum number of times a single question is repeated: 11

3.2.5 Checking for NULL values

```
In [16]:
```

```
#Checking whether there are any rows with null values
nan rows = df[df.isnull().any(1)]
print (nan_rows)
                                                      question1 question2
            id
                 qid1
                         qid2
201841 201841 303951 174364 How can I create an Android app?
        is_duplicate
201841
```

In [17]:

```
# Filling the null values with ' '
df = df.fillna('')
nan_rows = df[df.isnull().any(1)]
print (nan_rows)
```

Empty DataFrame Columns: [id, qid1, qid2, question1, question2, is duplicate] Index: []

3.3 Basic Feature Extraction (before cleaning)

Let us now construct a few features like:

- freq_qid1 = Frequency of qid1's
- freq_qid2 = Frequency of qid2's
- q1len = Length of q1
- q2len = Length of q2
- q1_n_words = Number of words in Question 1
- q2_n_words = Number of words in Question 2
- word_Common = (Number of common unique words in Question 1 and Question 2)

- word | Iotal = (Iotal num of words in Question 1 + Iotal num of words in Question 2)
- word_share = (word_common)/(word_Total)
- freq_q1+freq_q2 = sum total of frequency of qid1 and qid2
- freq_q1-freq_q2 = absolute difference of frequency of qid1 and qid2

In [18]:

```
if os.path.isfile('df fe without preprocessing train.csv'):
    df = pd.read csv("df fe without preprocessing train.csv",encoding='latin-1')
    df['freq qid1'] = df.groupby('qid1')['qid1'].transform('count')
    df['freq_qid2'] = df.groupby('qid2')['qid2'].transform('count')
    df['q1len'] = df['question1'].str.len()
    df['q2len'] = df['question2'].str.len()
    \label{eq:df-def} $$ df['q1_n_words'] = df['question1'].apply($lambda$ row: len(row.split(" "))) $$
    df['q2_n_words'] = df['question2'].apply(lambda row: len(row.split(" ")))
    def normalized word Common(row):
        w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))
        return 1.0 * len(w1 & w2)
    df['word Common'] = df.apply(normalized word Common, axis=1)
    def normalized word Total(row):
        w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))
        return 1.0 * (len(w1) + len(w2))
    df['word_Total'] = df.apply(normalized_word_Total, axis=1)
    def normalized word share(row):
        \texttt{w1} = \texttt{set}(\texttt{map}(\textbf{lambda} \texttt{ word}.\texttt{lower}().\texttt{strip}(), \texttt{row}['\texttt{question1'}].\texttt{split}(""))))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))
        return 1.0 * len(w1 & w2)/(len(w1) + len(w2))
    df['word_share'] = df.apply(normalized_word_share, axis=1)
    df['freq q1+q2'] = df['freq qid1']+df['freq qid2']
    df['freq_q1-q2'] = abs(df['freq_qid1']-df['freq_qid2'])
    df.to csv("df fe without preprocessing train.csv", index=False)
df.head()
```

Out[18]:

	id	qid1	qid2	question1	question2	is_duplicate	freq_qid1	freq_qid2	q1len	q2len	q1_n_words	q2_n_wor
0	68765	16044	118786	How can I have more casual sex in India?	How can I have casual sex with a girl in India?	1	1	1	40	47	9	11
1	173815	268046	268047	How much money does a TV weather person earn?	How much money does a mid level (appears on TV	0	1	1	45	108	9	21
2	329526	456195	456196	What or who has influenced your life the most	Which person has influenced your life the most?	1	1	1	54	47	11	8
3	315567	56798	194687	What's the difference between the title "found	What is the difference between the term founde	1	1	1	67	63	9	10
				Is it okay to	At what							

4	4009 18	37 0pa4	53 4µ82	irquestion1	r eļu ēstishi@	ts_duplicate	freq_qid1	freq_qid2	q3len	Q 2len	¢3_n_words	ሲշ _n_wor
-				reiauonsnip	does an							
				fo	Indian							
4		•	•		•							P

3.3.1 Analysis of some of the extracted features

```
In [19]:
```

```
print ("Minimum length of the questions in question1 : " , min(df['q1_n words']))
print ("Minimum length of the questions in question2 : " , min(df['q2 n words']))
print ("Number of Questions with minimum length [question1] :", df[df['q1 n words']== 1].shape[0])
print ("Number of Questions with minimum length [question2] :", df[df['q2 n words'] == 1].shape[0])
Minimum length of the questions in question1: 1
Minimum length of the questions in question2: 1
Number of Questions with minimum length [question1] : 4
Number of Questions with minimum length [question2] : 1
```

3.3.1.1 Feature: word share

```
In [20]:
```

```
plt.figure(figsize=(12, 8))
plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'word_share', data = df[0:])
plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['word_share'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is duplicate'] == 0.0]['word share'][0:] , label = "0" , color = 'blue' )
plt.show()
```

C:\Users\BALARAMI REDDY\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning:

Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` inst ead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

C:\Users\BALARAMI REDDY\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning:

The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

C:\Users\BALARAMI REDDY\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning:

The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

3.3.1.2 Feature: word_Common

In [21]:

```
plt.figure(figsize=(12, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'word_Common', data = df[0:])

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['word_Common'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['word_Common'][0:] , label = "0" , color = 'blue' )
plt.show()
```

 $\verb|C:\USers\BALARAMI| REDDY\Anaconda3\lib\site-packages\scipy\stats\.py:1713: Future Warning: | Packages | Pa$

Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` inst ead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

C:\Users\BALARAMI REDDY\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning:

The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

C:\Users\BALARAMI REDDY\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning:

The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

1.2.1: EDA: Advanced Feature Extraction

```
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from subprocess import check output
%matplotlib inline
import plotly.offline as py
py.init notebook mode (connected=True)
import plotly.graph_objs as go
import plotly.tools as tls
import os
import gc
import re
from nltk.corpus import stopwords
import distance
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
# This package is used for finding longest common subsequence between two strings
# you can write your own dp code for this
import distance
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup
from fuzzywuzzy import fuzz
from sklearn.manifold import TSNE
# Import the Required lib packages for WORD-Cloud generation
# https://stackoverflow.com/questions/45625434/how-to-install-wordcloud-in-python3-6
from wordcloud import WordCloud, STOPWORDS
from os import path
from PIL import Image
```

In [23]:

df.head(2)

Out[23]:

	id	qid1	qid2	question1	question2	is_duplicate	freq_qid1	freq_qid2	q1len	q2len	q1_n_words	q2_n_words
0	68765	16044	118786	How can I have more casual sex in India?	casual sex	1	1	1	40	47	9	11
1	173815	268046	268047	How much money does a TV weather person earn?	How much money does a mid level (appears on TV	0	1	1	45	108	9	21

3.4 Preprocessing of Text

- Preprocessing:
 - Removing html tags
 - Removing Punctuations
 - Performing stemming
 - Removing Stopwords
 - Expanding contractions etc.

```
# To get the results in 4 decemal points
SAFE DIV = 0.0001
STOP WORDS = stopwords.words("english")
def preprocess(x):
   x = str(x).lower()
   x = x.replace(",000,000", "m").replace(",000", "k").replace("'", "'").replace("'", "'")
                            .replace("won't", "will not").replace("cannot", "can not").replace("can'
", "can not") \
                            .replace("n't", " not").replace("what's", "what is").replace("it's", "it
is")\
                             .replace("'ve", " have").replace("i'm", "i am").replace("'re", " are")\
                             .replace("he's", "he is").replace("she's", "she is").replace("'s", " own
) \
                            .replace("%", " percent ").replace("₹", " rupee ").replace("$", " dollar
")\
                            .replace("€", " euro ").replace("'ll", " will")
   x = re.sub(r"([0-9]+)000000", r"\lm", x)

x = re.sub(r"([0-9]+)000", r"\lk", x)
    porter = PorterStemmer()
    pattern = re.compile('\W')
    if type(x) == type(''):
       x = re.sub(pattern, ' ', x)
    if type(x) == type(''):
        x = porter.stem(x)
        example1 = BeautifulSoup(x)
        x = example1.get text()
    return x
                                                                                                     . ▶
```

3.5 Advanced Feature Extraction (NLP and Fuzzy Features)

Definition:

- Token: You get a token by splitting sentence a space
- Stop_Word : stop words as per NLTK.
- Word : A token that is not a stop word Features:
- cwc min: Ratio of common word count to min lenghth of word count of Q1 and Q2
- cwc_min = common_word_count / (min(len(q1_words), len(q2_words))
- cwc_max : Ratio of common_word_count to max lenghth of word count of Q1 and Q2
- cwc_max = common_word_count / (max(len(q1_words), len(q2_words))
- csc min: Ratio of common stop count to min lenghth of stop count of Q1 and Q2
- csc_min = common_stop_count / (min(len(q1_stops), len(q2_stops))
- . csc_max : Ratio of common_stop_count to max lenghth of stop count of Q1 and Q2
- csc_max = common_stop_count / (max(len(q1_stops), len(q2_stops))
- ctc min: Ratio of common token count to min lenghth of token count of Q1 and Q2
- ctc min = common token count / (min(len(q1 tokens), len(q2 tokens))
- ctc_max : Ratio of common_token_count to max lenghth of token count of Q1 and Q2
- ctc_max = common_token_count / (max(len(q1_tokens), len(q2_tokens))
- last_word_eq : Check if First word of both questions is equal or not
- last_word_eq = int(q1_tokens[-1] == q2_tokens[-1])
- first_word_eq : Check if First word of both questions is equal or not
- first_word_eq = int(q1_tokens[0] == q2_tokens[0])
- abs_len_diff : Abs. length difference
- abs_len_diff = abs(len(q1_tokens) len(q2_tokens))
- mean_len : Average Token Length of both Questions
- mean_len = (len(q1_tokens) + len(q2_tokens))/2

- fuzz_ratio: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
- fuzz_partial_ratio: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
- token_sort_ratio: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
- token_set_ratio: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
- · longest substr ratio: Ratio of length longest common substring to min lengthh of token count of Q1 and Q2
- longest_substr_ratio = len(longest common substring) / (min(len(q1_tokens), len(q2_tokens))

In [25]:

```
def get token features(q1, q2):
   token features = [0.0]*10
   # Converting the Sentence into Tokens:
   q1 tokens = q1.split()
   q2\_tokens = q2.split()
   if len(q1 tokens) == 0 or <math>len(q2 tokens) == 0:
       return token_features
    # Get the non-stopwords in Questions
   q1_words = set([word for word in q1_tokens if word not in STOP_WORDS])
   q2_words = set([word for word in q2_tokens if word not in STOP_WORDS])
   #Get the stopwords in Questions
   q1_stops = set([word for word in q1_tokens if word in STOP_WORDS])
   q2 stops = set([word for word in q2 tokens if word in STOP WORDS])
    # Get the common non-stopwords from Question pair
   common word count = len(q1 words.intersection(q2 words))
    # Get the common stopwords from Question pair
   common stop count = len(q1 stops.intersection(q2 stops))
    # Get the common Tokens from Question pair
   common token count = len(set(q1 tokens).intersection(set(q2 tokens)))
   token features[0] = common word count / (min(len(q1 words), len(q2 words)) + SAFE DIV)
   token features[1] = common word count / (max(len(q1 words), len(q2 words)) + SAFE_DIV)
   token features[2] = common stop count / (min(len(q1 stops), len(q2 stops)) + SAFE DIV)
   token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV)
   # Last word of both question is same or not
   token features[6] = int(q1 tokens[-1] == q2 tokens[-1])
    # First word of both question is same or not
   token_features[7] = int(q1_tokens[0] == q2_tokens[0])
   token features[8] = abs(len(q1 tokens) - len(q2 tokens))
   #Average Token Length of both Questions
   token features[9] = (len(q1 tokens) + len(q2 tokens))/2
   return token_features
# get the Longest Common sub string
def get longest substr ratio(a, b):
   strs = list(distance.lcsubstrings(a, b))
   if len(strs) == 0:
       return 0
       return len(strs[0]) / (min(len(a), len(b)) + 1)
def extract features(df):
    # preprocessing each question
   df["question1"] = df["question1"].fillna("").apply(preprocess)
   df["question2"] = df["question2"].fillna("").apply(preprocess)
```

```
print("token features...")
    # Merging Features with dataset
   token_features = df.apply(lambda x: get token features(x["question1"], x["question2"]), axis=1)
   df["cwc min"]
                       = list (map (lambda x: x[0], token features))
   df["cwc max"]
                      = list(map(lambda x: x[1], token_features))
   df["csc min"]
                      = list(map(lambda x: x[2], token features))
   df["csc_max"]
                       = list(map(lambda x: x[3], token_features))
   df["ctc min"]
                       = list(map(lambda x: x[4], token_features))
   df["ctc max"]
                       = list(map(lambda x: x[5], token_features))
   df["last_word_eq"] = list(map(lambda x: x[6], token_features))
   df["first word eq"] = list(map(lambda x: x[7], token features))
   df["abs_len_diff"] = list(map(lambda x: x[8], token_features))
                      = list(map(lambda x: x[9], token_features))
   df["mean len"]
    #Computing Fuzzy Features and Merging with Dataset
    # do read this blog: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
   # https://stackoverflow.com/questions/31806695/when-to-use-which-fuzz-function-to-compare-2-st
rings
   # https://github.com/seatgeek/fuzzywuzzy
   print("fuzzy features..")
   df["token set ratio"]
                               = df.apply(lambda x: fuzz.token_set_ratio(x["question1"],
x["question2"]), axis=1)
   # The token sort approach involves tokenizing the string in question, sorting the tokens alpha
betically, and
   # then joining them back into a string We then compare the transformed strings with a simple r
atio().
   df["token sort ratio"]
                               = df.apply(lambda x: fuzz.token sort ratio(x["question1"],
x["question2"]), axis=1)
   df["fuzz ratio"]
                               = df.apply(lambda x: fuzz.QRatio(x["question1"], x["question2"]), a:
is=1)
                               = df.apply(lambda x: fuzz.partial ratio(x["question1"],
   df["fuzz partial ratio"]
x["question2"]), axis=1)
   df["longest_substr_ratio"] = df.apply(lambda x: get_longest_substr_ratio(x["question1"], x["qu
estion2"]), axis=1)
   return df
```

In [26]:

```
import fuzzywuzzy as fuzzy
if os.path.isfile('nlp_features_train.csv'):
    df = pd.read_csv("nlp_features_train.csv",encoding='latin-1')
    df.fillna('')
else:
    print("Extracting features for train:")
    df = df_sample
    df = extract_features(df)
    df.to_csv("nlp_features_train.csv", index=False)
df.head(2)
```

Out[26]:

	id	qid1	qid2	question1	question2	is_duplicate	cwc_min	cwc_max	csc_min	csc_max	 ctc_max	last_w
0	68765	16044	118786	how can i have more casual sex in india	how can i have casual sex with a girl in india	1	0.999967	0.749981	0.833319	0.714276	 0.727266	1
1	173815	268046	268047	how much money does a tv weather person earn	how much money does a mid level appears on tv	0	0.666656	0.307690	0.999967	0.499992	 0.333332	1

```
In [27]:

y_true = df['is_duplicate']
```

3.5.1 Analysis of extracted features

3.5.1.1 Plotting Word clouds

- · Creating Word Cloud of Duplicates and Non-Duplicates Question pairs
- We can observe the most frequent occuring words

In [28]:

```
df_duplicate = df[df['is_duplicate'] == 1]
dfp_nonduplicate = df[df['is_duplicate'] == 0]

# Converting 2d array of q1 and q2 and flatten the array: like {{1,2},{3,4}} to {1,2,3,4}
p = np.dstack([df_duplicate["question1"], df_duplicate["question2"]]).flatten()
n = np.dstack([dfp_nonduplicate["question1"], dfp_nonduplicate["question2"]]).flatten()

print ("Number of data points in class 1 (duplicate pairs) :",len(p))
print ("Number of data points in class 0 (non duplicate pairs) :",len(n))

#Saving the np array into a text file
np.savetxt('train_p.txt', p, delimiter=' ', fmt='%s',encoding ="utf-8")
np.savetxt('train_n.txt', n, delimiter=' ', fmt='%s',encoding ="utf-8")
```

Number of data points in class 1 (duplicate pairs) : 14932 Number of data points in class 0 (non duplicate pairs) : 25068

In [29]:

```
# reading the text files and removing the Stop Words:
d = path.dirname('.')
textp_w = open(path.join(d, 'train_p.txt'),encoding="utf8").read()
textn w = open(path.join(d, 'train n.txt'), encoding="utf8").read()
stopwords = set(STOPWORDS)
stopwords.add("said")
stopwords.add("br")
stopwords.add(" ")
stopwords.remove("not")
stopwords.remove("no")
#stopwords.remove("good")
#stopwords.remove("love")
stopwords.remove("like")
#stopwords.remove("best")
#stopwords.remove("!")
print ("Total number of words in duplicate pair questions :",len(textp w))
print ("Total number of words in non duplicate pair questions :",len(textn w))
```

Total number of words in duplicate pair questions: 815775 Total number of words in non duplicate pair questions: 1623200

Word Clouds generated from duplicate pair question's text

In [30]:

```
wc = WordCloud(background_color="black", max_words=len(textp_w), stopwords=stopwords)
wc.generate(textp_w)
print ("Word Cloud for Duplicate Question pairs")
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
```

Word Cloud for Duplicate Question pairs

Word Clouds generated from non duplicate pair question's text

In [31]:

```
wc = WordCloud(background_color="black", max_words=len(textn_w), stopwords=stopwords)
# generate word cloud
wc.generate(textn_w)
print ("Word Cloud for non-Duplicate Question pairs:")
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
```

Word Cloud for non-Duplicate Question pairs:

3.5.1.2 Pair plot of features ['ctc_min', 'cwc_min', 'csc_min', 'token_sort_ratio']

In [32]:

```
n = df.shape[0]
sns.pairplot(df[['ctc_min', 'cwc_min', 'csc_min', 'token_sort_ratio', 'is_duplicate']][0:n], hue='i
s_duplicate', vars=['ctc_min', 'cwc_min', 'csc_min', 'token_sort_ratio'])
plt.show()
```


In [33]:

```
# Distribution of the token_sort_ratio
plt.figure(figsize=(10, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'token_sort_ratio', data = df[0:] , )

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['token_sort_ratio'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['token_sort_ratio'][0:] , label = "0" , color = 'blue' )
plt.show()
```


In [34]:

```
plt.figure(figsize=(10, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'fuzz_ratio', data = df[0:] , )

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['fuzz_ratio'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['fuzz_ratio'][0:] , label = "0" , color = 'blue' )
```

plt.show()

3.5.2 Visualization

In [35]:

```
# Using TSNE for Dimentionality reduction for 15 Features(Generated after cleaning the data) to 3
dimention

from sklearn.preprocessing import MinMaxScaler

dfp_subsampled = df[0:5000]
X = MinMaxScaler().fit_transform(dfp_subsampled[['cwc_min', 'cwc_max', 'csc_min', 'csc_max', 'ctc_min', 'ctc_max', 'last_word_eq', 'first_word_eq', 'abs_len_diff', 'mean_len', 'token_set_ratio', 'token_sort_ratio', 'fuzz_ratio', 'fuzz_partial_ratio', 'longest_substr_ratio']])
y = dfp_subsampled['is_duplicate'].values
```

In [36]:

```
tsne2d = TSNE(
   n components=2,
   init='random', # pca
   random state=101,
   method='barnes hut',
   n iter=1000,
   verbose=2,
   angle=0.5
).fit transform(X)
[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 5000 samples in 0.046s...
[t-SNE] Computed neighbors for 5000 samples in 1.061s...
[t-SNE] Computed conditional probabilities for sample 1000 / 5000
[t-SNE] Computed conditional probabilities for sample 2000 / 5000
[t-SNE] Computed conditional probabilities for sample 3000 / 5000
[t-SNE] Computed conditional probabilities for sample 4000 / 5000
[t-SNE] Computed conditional probabilities for sample 5000 / 5000
[t-SNE] Mean sigma: 0.143517
[t-SNE] Computed conditional probabilities in 0.624s
[t-SNE] Iteration 50: error = 82.7032547, gradient norm = 0.0480684 (50 iterations in 8.724s)
[t-SNE] Iteration 100: error = 70.8729019, gradient norm = 0.0087711 (50 iterations in 6.010s)
[t-SNE] Iteration 150: error = 69.1524887, gradient norm = 0.0055995 (50 iterations in 5.302s)
[t-SNE] Iteration 200: error = 68.4579544, gradient norm = 0.0036117 (50 iterations in 5.735s)
```

```
[t-SNE] Iteration 250: error = 68.0476608, gradient norm = 0.0027974 (50 iterations in 5.814s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 68.047661
[t-SNE] Iteration 300: error = 1.8392988, gradient norm = 0.0012084 (50 iterations in 5.298s)
[t-SNE] Iteration 350: error = 1.4433486, gradient norm = 0.0004864 (50 iterations in 5.836s)
[t-SNE] Iteration 400: error = 1.2777306, gradient norm = 0.0002794 (50 iterations in 6.951s)
[t-SNE] Iteration 450: error = 1.1881936, gradient norm = 0.0001884 (50 iterations in 6.358s)
[t-SNE] Iteration 500: error = 1.1333711, gradient norm = 0.0001402 (50 iterations in 5.558s)
[t-SNE] Iteration 550: error = 1.0981762, gradient norm = 0.0001146 (50 iterations in 5.662s)
[t-SNE] Iteration 600: error = 1.0749811, gradient norm = 0.0001008 (50 iterations in 5.521s)
[t-SNE] Iteration 650: error = 1.0592834, gradient norm = 0.0000927 (50 iterations in 5.787s)
[t-SNE] Iteration 700: error = 1.0482447, gradient norm = 0.0000835 (50 iterations in 6.911s)
[t-SNE] Iteration 750: error = 1.0397959, gradient norm = 0.0000788 (50 iterations in 6.741s)
[t-SNE] Iteration 800: error = 1.0334688, gradient norm = 0.0000715 (50 iterations in 5.495s)
[t-SNE] Iteration 850: error = 1.0275393, gradient norm = 0.0000681 (50 iterations in 5.113s)
[t-SNE] Iteration 900: error = 1.0225691, gradient norm = 0.0000654 (50 iterations in 5.915s)
[t-SNE] Iteration 950: error = 1.0184410, gradient norm = 0.0000601 (50 iterations in 5.332s)
[t-SNE] Iteration 1000: error = 1.0146582, gradient norm = 0.0000574 (50 iterations in 5.884s)
[t-SNE] KL divergence after 1000 iterations: 1.014658
```

In [37]:

```
df = pd.DataFrame({'x':tsne2d[:,0], 'y':tsne2d[:,1],'label':y})
# draw the plot in appropriate place in the grid
sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,palette="Set1",markers=['s','o'])
plt.title("perplexity: {} and max_iter: {}".format(30, 1000))
plt.show()
```


In [38]:

```
from sklearn.manifold import TSNE
tsne3d = TSNE(
    n_components=3,
    init='random', # pca
    random_state=101,
    method='barnes_hut',
    n_iter=1000,
    verbose=2,
```

```
angle=0.5
).fit transform(X)
[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 5000 samples in 0.024s...
[t-SNE] Computed neighbors for 5000 samples in 0.910s...
[t-SNE] Computed conditional probabilities for sample 1000 / 5000
[t-SNE] Computed conditional probabilities for sample 2000 / 5000
[t-SNE] Computed conditional probabilities for sample 3000 / 5000
[t-SNE] Computed conditional probabilities for sample 4000 / 5000
[t-SNE] Computed conditional probabilities for sample 5000 / 5000
[t-SNE] Mean sigma: 0.143517
[t-SNE] Computed conditional probabilities in 0.503s
[t-SNE] Iteration 50: error = 83.0664520, gradient norm = 0.0388372 (50 iterations in 25.856s)
[t-SNE] Iteration 100: error = 69.8177338, gradient norm = 0.0030177 (50 iterations in 13.641s)
[t-SNE] Iteration 150: error = 68.5871811, gradient norm = 0.0016061 (50 iterations in 11.169s)
       Iteration 200: error = 68.0660400, gradient norm = 0.0012006 (50 iterations in 11.401s)
[t-SNE] Iteration 250: error = 67.7567368, gradient norm = 0.0008811 (50 iterations in 11.639s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 67.756737
[t-SNE] Iteration 300: error = 1.5812273, gradient norm = 0.0007478 (50 iterations in 15.111s)
[t-SNE] Iteration 350: error = 1.2287776, gradient norm = 0.0002089 (50 iterations in 19.892s)
[t-SNE] Iteration 400: error = 1.0784249, gradient norm = 0.0001058 (50 iterations in 19.730s)
[t-SNE] Iteration 450: error = 1.0034419, gradient norm = 0.0000614 (50 iterations in 19.836s)
[t-SNE] Iteration 500: error = 0.9628308, gradient norm = 0.0000480 (50 iterations in 19.430s)
[t-SNE] Iteration 550: error = 0.9401002, gradient norm = 0.0000425 (50 iterations in 19.223s)
[t-SNE] Iteration 600: error = 0.9266233, gradient norm = 0.0000386 (50 iterations in 19.202s)
[t-SNE] Iteration 650: error = 0.9175710, gradient norm = 0.0000363 (50 iterations in 19.147s)
[t-SNE] Iteration 700: error = 0.9114534, gradient norm = 0.0000315 (50 iterations in 19.791s)
[t-SNE] Iteration 750: error = 0.9062611, gradient norm = 0.0000282 (50 iterations in 19.240s)
[t-SNE] Iteration 800: error = 0.9013082, gradient norm = 0.0000285 (50 iterations in 20.480s)
[t-SNE] Iteration 850: error = 0.8969287, gradient norm = 0.0000278 (50 iterations in 19.721s)
[t-SNE] Iteration 900: error = 0.8929207, gradient norm = 0.0000261 (50 iterations in 19.409s)
[t-SNE] Iteration 950: error = 0.8897073, gradient norm = 0.0000257 (50 iterations in 19.636s)
[t-SNE] Iteration 1000: error = 0.8867765, gradient norm = 0.0000251 (50 iterations in 19.446s)
[t-SNE] KL divergence after 1000 iterations: 0.886777
```

In [39]:

```
trace1 = go.Scatter3d(
   x=tsne3d[:,0],
    y=tsne3d[:,1],
    z=tsne3d[:,2],
   mode='markers',
    marker=dict(
       sizemode='diameter',
       color = y,
       colorscale = 'Portland',
        colorbar = dict(title = 'duplicate'),
        line=dict(color='rgb(255, 255, 255)'),
        opacity=0.75
data=[trace1]
layout=dict(height=800, width=800, title='3d embedding with engineered features')
fig=dict(data=data, layout=layout)
py.iplot(fig, filename='3DBubble')
```

3.6 Featurizing text data with tfidf

```
In [40]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import re
import time
import warnings
import numpy as np
from nltk.corpus import stopwords
from sklearn.preprocessing import normalize
from sklearn.feature extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
warnings.filterwarnings("ignore")
import sys
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
# exctract word2vec vectors
# https://github.com/explosion/spaCy/issues/1721
# http://landinghub.visualstudio.com/visual-cpp-build-tools
import spacy
```

In [41]:

```
df.shape
Out[42]:
(404290, 6)
In [43]:
df = df.sample(n = 20000)
In [44]:
df.head(2)
Out[44]:
             id
                                                                                             question2 is_duplicate
                  qid1
                          qid2
                                                         question1
 351337
        351337
                480175
                        480176
                                How is popcorn made?
                                                                    How are Popcorners made?
                                What are some ways of removing
                                                                    How do you remove permanent marker
270606 | 270606 | 81304
                        388531
                                                                                                       0
                                permanent marke...
                                                                   from leather?
In [45]:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
tfidf = TfidfVectorizer(lowercase=False, max features=1000 )
tfidf_vec_q1 = tfidf.fit_transform(df['question1'])
tfidf_vec_q2 = tfidf.fit_transform(df['question2'])
In [46]:
# Assigning the Sparse Matrices of Q1 and Q2 Sparse Matrices
q1 vec = tfidf vec q1[:df.shape[0]]
q2_vec = tfidf_vec_q2[:df.shape[0]]
In [47]:
q1_vec = q1_vec.toarray()
q2_vec = q2_vec.toarray()
In [48]:
q1 vec.shape
Out[48]:
(20000, 1000)
In [49]:
q2_vec.shape
Out[49]:
(20000, 1000)
In [50]:
index_x = ["x_" + str(i) \text{ for } i \text{ in } range(0, q1_vec.shape[1]) ]
index_y = ["y_" + str(i) \text{ for } i \text{ in } range(0, q2_vec.shape[1])]
df3_q1 = pd.DataFrame(data=q1_vec, columns=index_x)
df3_q2 = pd.DataFrame(data=q2_vec, columns=index_y)
```

```
In [51]:

df3_q2.head(5)

Out[51]:
```

у.	_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	 y_990	y_991	y_992	y_993	y_994	y_995	y_996	y_997	y_99
0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.00000
1 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.336794	0.00000
2 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.292347	0.0	0.0	0.0	0.0	0.0	0.0	0.207821	0.00000
3 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.00000
4 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.26435

5 rows × 1000 columns

In [52]:

```
#prepro_features_train.csv (Simple Preprocessing Feartures)
#nlp_features_train.csv (NLP Features)
if os.path.isfile('nlp_features_train.csv'):
    dfnlp = pd.read_csv("nlp_features_train.csv",encoding='latin-1')
else:
    print("download nlp_features_train.csv from drive or run previous notebook")

if os.path.isfile('df_fe_without_preprocessing_train.csv'):
    dfppro = pd.read_csv("df_fe_without_preprocessing_train.csv",encoding='latin-1')
else:
    print("download df_fe_without_preprocessing_train.csv from drive or run previous notebook")
```

In [53]:

```
df1 = dfnlp.drop(['qid1','qid2','question1','question2'],axis=1)
df2 = dfppro.drop(['qid1','qid2','question1','question2','is_duplicate'],axis=1)
```

In [54]:

```
dfl.head(2)
```

Out[54]:

	id	is_duplicate	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	last_word_eq	first_word_eq	abs_len_
0	68765	1	0.999967	0.749981	0.833319	0.714276	0.888879	0.727266	1	1	2
1	173815	0	0.666656	0.307690	0.999967	0.499992	0.777769	0.333332	1	1	12
4						183					

In [55]:

```
df2.head(2)
```

Out[55]:

	id	freq_qid1	freq_qid2	q1len	q2len	q1_n_words	q2_n_words	word_Common	word_Total	word_share	freq_q1+	
0	68765	1	1	40	47	9	11	8.0	20.0	0.40	2	
1	173815	1	1	45	108	9	21	7.0	28.0	0.25	2	
4	4											

In [56]:

```
print("Number of features in nlp dataframe :", df1.shape[1])
print("Number of features in preprocessed dataframe :", df2.shape[1])
print("Number of features in question1 w2v dataframe :", df3_q1.shape[1])
print("Number of features in question2 w2v dataframe :", df3_q2.shape[1])
```

```
print("Number of features in final dataframe :", df1.shape[1]+df2.shape[1]+df3 q1.shape[1]+df3 q2.
shape[1])
Number of features in nlp dataframe : 17
Number of features in preprocessed dataframe: 12
Number of features in question1 w2v dataframe: 1000
Number of features in question2 w2v dataframe : 1000
Number of features in final dataframe : 2029
In [57]:
# storing the final features to csv file
if not os.path.isfile('final features.csv'):
    df3 q1['id']=df1['id']
    df3_q2['id']=df1['id']
    df1 = df1.merge(df2, on='id',how='left')
    df2 = df3_q1.merge(df3_q2, on='id',how='left')
    result = df1.merge(df2, on='id',how='left')
    result.to_csv('final_features.csv')
```

4. Machine Learning Models

In [58]:

```
import pandas as pd
import matplotlib.pyplot as plt
import re
import time
import warnings
import sqlite3
from sqlalchemy import create_engine # database connection
import csv
import os
warnings.filterwarnings("ignore")
import datetime as dt
import numpy as np
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import normalize
from sklearn.feature extraction.text import CountVectorizer
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion matrix
from sklearn.metrics.classification import accuracy score, log loss
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
from scipy.sparse import hstack
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.model selection import StratifiedKFold
from collections import Counter, defaultdict
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
import math
from sklearn.metrics import normalized mutual info score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import SGDClassifier
from mlxtend.classifier import StackingClassifier
from sklearn import model_selection
from sklearn.linear model import LogisticRegression
from sklearn.metrics import precision recall curve, auc, roc curve
```

4.1 Reading data from file and storing into sql table

```
In [59]:
data = pd.read_csv("final_features.csv")

In [60]:
data.shape

Out[60]:
(20000, 2029)

In [61]:
data.head(2)
Out[61]:
```

	ι	Jnnamed: 0	id	is_duplicate	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	last_word_eq	 y_990	y _
(0 0	0	68765	1	0.999967	0.749981	0.833319	0.714276	0.888879	0.727266	1	 0.0	0.1
Γ.	1 1	1	173815	0	0.666656	0.307690	0.999967	0.499992	0.777769	0.333332	1	 0.0	0.

2 rows × 2029 columns

1

```
In [62]:
```

```
# remove the first row
data.drop(data.index[0], inplace=True)
y_true = data['is_duplicate']
data.drop(['Unnamed: 0', 'id', 'is_duplicate'], axis=1, inplace=True)
```

```
In [63]:
```

```
data.head()
```

Out[63]:

	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	last_word_eq	first_word_eq	abs_len_diff	mean_len	
1	0.666656	0.307690	0.999967	0.499992	0.777769	0.333332	1	1	12	15.0	 0.0
2	0.999950	0.666644	0.799984	0.444440	0.749991	0.545450	0	0	3	9.5	 0.0
3	0.749981	0.749981	0.999980	0.999980	0.727266	0.727266	1	1	0	11.0	 0.3
4	0.799984	0.499994	0.499994	0.444440	0.615380	0.470585	0	0	4	15.0	 0.0
5	0.749981	0.749981	0.999975	0.799984	0.777769	0.777769	1	1	0	9.0	 0.0

5 rows × 2026 columns

4.2 Converting strings to numerics

```
In [64]:
```

```
# after we read from sql table each entry was read it as a string
# we convert all the features into numaric before we apply any model
cols = list(data.columns)
for i in cols:
    data[i] = data[i].apply(pd.to_numeric)
    print(i)
cwc min
```

cwc_max csc_min csc_max ctc_min ctc_max last_word_eq first_word_eq abs_len_diff mean len token_set_ratio token_sort_ratio ${\tt fuzz_ratio}$ fuzz_partial_ratio longest_substr_ratio freq_qid1 freq_qid2 qllen q21en q1_n_words q2_n_words word Common word_Total word_share freq q1+q2 freq_q1-q2 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_10 x 11 x_12 x_13 x_14 x_15 x_16 x_17 x_18 x_19 x_20 x_21 x_22 x_23 x_24 x_25 x_26 x_27 x 28 x_29 x_30 x_31 x_32 x_33 x_34 x_35 x_36 x_37 x_38 x_39 x_40 x_41 x_42 x_43 x_44 x_45 x_46 x_47 x_48 x_49 x_50

x_51

x_52 x_53 x_54 x_55 x_56 x_57 x_58 x_59 x_60 x_61 x_62 x_63 x_64 x_65 x_66 x_67 x_68 x_69 x_70 x_71 x_72 x_73 x_74 x_75 x_76 x_77 x_78 x_79 x_80 x_81 x_82 x_83 x_84 x_85 x_86 x_87 x_88 x_89 x_90 x_91 x_92 x_93 x_94 x_95 x_96 x_97 x_98 x_99 x_100 x_101 x_102 x_103 x_104 x 105 x_106 x_107 x_108 x_109 x_110 x_111 x_112 x_113 x_114 x_115 x_116 x_117 x_118 x_119 x_120 x_121 x_122 x_123 x_124 x_125 x_126 x_127 x 128

x_129 x_130 x_131 x_132 x_133 x_134 x_135 x_136 x_137 x_138 x_139 x_140 x_141 x_142 x_143 x_144 x_145 x_146 x_147 x_148 x_149 x_150 x_151 x_152 x 153 x_154 x_155 x_156 x_157 x_158 x_159 x_160 x_161 x_162 x_163 x_164 x_165 x 166 x_167 x_168 x_169 x_170 x_171 x_172 x_173 x_174 x_175 x_176 x_177 x_178 x_179 x_180 x_181 x_182 x_183 x_184 x_185 x_186 x_187 x_188 x_189 x_190 x_191 x_192 x_193 x_194 x_195 x_196 x 197 x_198 x_199 x_200 x_201 x_202 x_203 x_204 x 205

x_206 x_207 x_208 x_209 x_210 x_211 x_212 x_213 x_214 x_215 x_216 x_217 x_218 x_219 x_220 x_221 x_222 x_223 x_224 x_225 x_226 x_227 x_228 x_229 x_230 x_231 x_232 x_233 x_234 x_235 x_236 x_237 x_238 x_239 x_240 x_241 x_242 x_243 x_244 x_245 x_246 x_247 x_248 x_249 x_250 x_251 x_252 x_253 x_254 x_255 x_256 x_257 x_258 x_259 x 260 x 261 x_262 x_263 x_264 x_265 x_266 x_267 x_268 x_269 x_270 x_271 x_272 x_273 x_274 x_275 x_276 x_277 x_278 x_279 x_280 x_281 x 282

x_283 x_284 x_285 x_286 x_287 x_288 x_289 x_290 x_291 x_292 x_293 x_294 x_295 x_296 x_297 x_298 x_299 x_300 x_301 x_302 x_303 x_304 x_305 x_306 x_307 x_308 x_309 x_310 x_311 x_312 x_313 x_314 x_315 x_316 x_317 x_318 x_319 x_320 x_321 x_322 x_323 x_324 x_325 x_326 x_327 x_328 x_329 x_330 x_331 x_332 x_333 x_334 x_335 x_336 x_337 x_338 x_339 x_340 x_341 x_342 x_343 x_344 x_345 x_346 x_347 x_348 x_349 x_350 x_351 x_352 x_353 x_354 x_355 x_356 x_357 x_358

× 359

x_360 x_361 x_362 x_363 x_364 x_365 x_366 x_367 x_368 x_369 x_370 x_371 x_372 x_373 x_374 x_375 x_376 x_377 x_378 x_379 x_380 x_381 x_382 x_383 x_384 x_385 x_386 x_387 x_388 x_389 x_390 x_391 x_392 x_393 x_394 x_395 x_396 x_397 x_398 x_399 x_400 x_401 x_402 x_403 x_404 x_405 x_406 x_407 x_408 x_409 x_410 x_411 x_412 x_413 x_414 x_415 x 416 x_417 x_418 x_419 x_420 x_421 x_422 x_423 x_424 x_425 x_426 x_427 x_428 x_429 x_430 x_431 x_432 x_433 x_434 x_435

× 436

x_437 x_438 x_439 x_440 x_441 x_442 x_443 x_444 x_445 x_446 x_447 x_448 x 449 x_450 x_451 x_452 x_453 x_454 x_455 x_456 x_457 x_458 x_459 x_460 x_461 x_462 x_463 x_464 x_465 x_466 x_467 x_468 x_469 x_470 x_471 x_472 x_473 x_474 x_475 x_476 x_477 x_478 x_479 x 480 x_481 x_482 x_483 x_484 x_485 x_486 x_487 x_488 x_489 x_490 x_491 x_492 x 493 x_494 x_495 x_496 x_497 x_498 x_499 x_500 x_501 x_502 x_503 x_504 x_505 x_506 x_507 x_508 x_509 x_510 x_511 x_512 v 513

x_514 x_515 x_516 x_517 x_518 x_519 x_520 x_521 x_522 x_522 x_523 x_524 x_525 x_526 x_527 x_528 x_529 x_530 x_531 x_532 x_533 x_534 x_535 x_536 x_537 x_538 x_539 x_540 x_541 x_542 x_543 x_544 x_545 x_546 x_547 x_548 x_549 x_550 x_551 x_552 x_553 x_554 x_555 x_556 x_557 x_558 x_559 x_560 x_561 x_562 x_563 x_564 x_565 x_566 x_567 x_568 x_569 x_570 x_571 x_572 x_573 x_574 x_575 x_576 x_577 x_578 x_579 x_580 x_581 x_582 x_583 x_584 x_585 x_586 x_587 x_588 x_589 v_500 x_591 x_592 x_593 x_594 x_595 x_596 x_597 x_598 x_599 x_600 x_601 x_602 x_603 x 604 x 605 x_606 x_607 x_608 x_609 x_610 x_611 x_612 x_613 x_614 x_615 x_616 x_617 x_618 x_619 x_620 x_621 x_622 x_623 x_624 x_625 x_626 x_627 x_628 x_629 x_630 x_631 x_632 x_633 x_634 x 635 x_636 x_637 x_638 x_639 x_640 x_641 x_642 x_643 x_644 x_645 x_646 x_647 x 648 x_649 x_650 x_651 x_652 x_653 x_654 x_655 x_656 x_657 x_658 x_659 x_660 x_661 x_662 x_663 x_664 x_665

x_666

x_00/ x_668 x_669 x_670 x_671 x_672 x_673 x_674 x_675 x_676 x_677 x_678 x_679 x_680 x_681 x_682 x_683 x_684 x_685 x_686 x_687 x_688 x_689 x_690 x_691 x_692 x_693 x_694 x_695 x_696 x_697 x_698 x_699 x_700 x_701 x_702 x_703 x_704 x_705 x_706 x_707 x_708 x_709 x_710 x_711 x_712 x_713 x_714 x_715 x_716 x_717 x_718 x_719 x_720 x_721 x_721 x_722 x_723 x_724 x_725 x_726 x_727 x_728 x_729 x_730 x_731 x_732 x_733 x_734 x_735 x_736 x_737 x_738 x_739 x_740 x_741 x_742 x_743

x_/44 x_745 x_746 x_747 x_748 x_749 x_750 x_751 x_752 x_753 x_754 x_755 x_756 x_757 x_758 x_759 x 760 x_761 x_762 x_763 x_764 x_765 x_766 x_767 x_768 x_769 x_770 x_771 x_772 x_773 x_774 x_775 x_776 x_777 x_778 x_779 x_780 x_781 x_782 x_783 x_784 x_785 x_786 x_787 x_788 x_789 x_790 x_791 x_792 x_793 x_794 x_795 x_796 x_797 x_798 x_799 x_800 x_801 x_802 x_803 x_804 x_805 x_806 x_807 x_808 x_809 x_810 x_811 x_812 x_813 x_814 x_815 x_816 x_817 x_818 x_819 x_820

x_851 x_822 x_823 x 824 x_825 x_826 x_827 x_828 x_829 x_830 x_831 x_832 x_833 x_834 x_835 x_836 x_837 x_838 x_839 x_840 x_841 x_842 x_843 x_844 x_845 x_846 x_847 x_848 x_849 x_850 x_851 x_852 x_853 x_854 x_855 x_856 x_857 x_858 x_859 x_860 x_861 x_862 x_863 x_864 x_865 x_866 x_867 x_868 x_869 x_870 x_871 x_872 x_873 x_874 x_875 x_876 x_877 x_878 x_879 x_880 x_881 x_882 x_883 x_884 x_885 x_886 x_887 x_888 x_889 x_890 x_891 x_892 x_893 x_894 x_895 x_896 x_897

x 898 x_899 x_900 x_901 x_902 x_903 x_904 x_905 x_906 x_907 x_908 x_909 x_910 x_911 x_912 x_913 x_914 x_915 x_916 x_917 x_918 x_919 x_920 x_921 x_922 x_923 x_924 x_925 x_926 x_927 x_928 x_929 x_930 x 931 x_932 x_933 x_934 x_935 x_936 x_937 x_938 x_939 x_940 x_941 x_942 x_943 x_944 x_945 x_946 x_947 x_948 x_949 x_950 x_951 x_952 x_953 x_954 x_955 x_956 x_957 x_958 x 959 x_960 x_961 x 962 x_963 x_964 x_965 x_966 x_967 x_968 x_969 x_970 x_971 x_972 x_973 x_974

x_975 x_976 x_977 x_978 x_979 x_980 x_981 x_982 x_983 x_984 x_985 x_986 x_987 x_988 x_989 x_990 x_991 x_992 x_993 x_994 x_995 x_996 x_997 x_998 x_999 **л**_0 y_1 y_2 y_3 y_4 y_5 у_6 у_7 у_8 y_9 y_10 y_11 y_12 y_13 y_14 y_15 y_16 y_17 y_18 y_19 y_20 y_21 y_22 y_23 y_24 y_25 y_26 y_27 y_28 y_29 y_30 y_31 y_32 y_32 y_33 y_34 y_35 y_36 y_37 y_37 y_38 y_39 y_40 y_41 y_42 y_43 y_44 y_45 y_46 y_47 y_48 y_49 y_50 y_51

у_52 у_53 у_54 y_55 y_56 y_57 y_58 y_59 у_60 y_61 у_62 у_63 у_64 у_65 y_66 y_67 y_68 y_69 y_70 y_71 y_72 y_73 y_74 y_75 y_76 y_77 y_78 y_79 y_80 y_81 y_82 у_83 y_84 y_85 у_86 y_87 y_88 y_89 y_90 y_91 y_92 y_93 y_94 y_95 y_96 y_97 y_98 y_99 y_100 y_101 y_102 y_103 y_104 y_105 y_106 y_107 y_108 y_109 y_110 y_111 y_112 y_113 y_114 y_115 y_116 y_117 y_118 y_119 y_120 y_121 y_122 y_123 y_124 y_125 y_126 y_127 y_128

y_129 y_130 y_131 y_132 y_133 y_134 y_135 y_136 y_137 y_138 y_139 y_140 y_141 y_142 y_143 y_144 y_145 y_146 y_147 y_148 y_149 y_150 y_151 y_152 y_153 y_154 y_155 у_156 y_157 y_158 y_159 y_160 y_161 y_162 y_163 y_164 y_165 y_166 y_167 y_168 у_169 y_170 y_171 y_172 y_173 y_174 y_175 y_176 y_177 y_178 y_179 y_180 y_181 y_182 y_183 y_184 y_185 y_186 y_187 y_188 у_189 у_190 y_191 y_192 y_193 y_194 y_195 y_196 y_197 y_198 y_199 y_200 y_201 y_202 y_203 y_204 y_205

у_206 у_207 y_208 y_209 y_210 y_211 y_212 y_213 y_214 y_215 y_216 y_217 y_218 y_219 y_220 y_221 y_222 y_223 y_224 y_225 y_226 y_227 у_228 у_229 y_230 y_231 y_232 y_233 y_234 y_235 y_236 y_237 y_238 y_239 y_240 y_241 y_242 y_243 y_244 y_245 y_246 y_247 y_248 y_249 y_250 y_251 y_252 y_253 y_254 y_255 y_256 y_257 y_258 y_259 y_260 y_261 y_262 y_263 y_264 y_265 у_266 у_267 y_268 y_269 y_270 y_271 y_272 y_273 y_274 y_275 y_276 y_277 y_278 y_279 y_280 y_281 y_282

y_283 y_284 y_285 y_286 y_287 y_288 у_289 у_290 y_291 y_292 y_293 y_294 y_295 y_296 y_297 y_298 y_299 y_300 y_301 y_302 y_303 y_304 y_305 y_306 y_307 y_308 у_309 y_310 y_311 y_312 y_313 y_314 y_315 y_316 y_317 y_318 y_319 y_320 y_321 y_322 y_323 y_324 у_325 y_326 y_327 y_328 y_329 y_330 y_331 y_332 y_333 y_334 y_335 у_336 y_337 y_338 y_339 y_340 y_341 y_342 y_343 y_344 y_345 y_346 y_347 y_348 y_349 y_350 y_351 y_352 y_353 y_354 у_355 у_356 y_357 y_358 y_359

y_360 y_361 y_362 y_363 y_364 y_365 у_366 у_367 у_368 y_369 y_370 y_371 y_372 y_373 y_374 y_375 y_376 y_377 y_378 y_379 y_380 y_381 y_382 y_383 y_384 y_385 y_386 y_387 у_388 у_389 у_390 y_391 y_392 y_393 y_394 y_395 y_396 y_397 y_398 y_399 y_400 y_401 y_402 y_403 y_404 y_405 y_406 y_407 y_408 y_409 y_410 y_411 y_412 y_413 y_414 y_415 y_416 y_417 y_418 y_419 y_420 y_421 y_422 y_423 y_424 y_425 y_426 y_427 y_428 y_429 y_430 y_431 y_432 y_433 y_434 y_435 y_436

--y_437 y_438 y_439 y_440 y_441 y_442 y_443 y_444 y_445 y_446 y_447 y_448 y_449 y_450 y_451 y_452 y_453 y_454 y_455 y_456 y_457 y_458 y_459 y_460 y_461 y_462 y_463 y_464 y_465 у_466 y_467 y_468 y_469 y_470 y_471 y_472 y_473 y_474 y_475 y_476 y_477 y_478 y_479 y_480 y_481 y_482 y_483 y_484 y_485 y_486 y_487 y_488 y_489 y_490 y_491 y_492 y_493 y_494 y_495 y_496 y_497 y_498 y_499 y_500 y_501 y_502 y_503 y_504 y_505 y_506 y_507 y_508 y_509 y_510 y_511 y_512 y 513

--у_514 y_515 y_516 y_517 y_518 y_519 y_520 y_521 y_522 y_523 y_524 y_525 y_526 y_527 y_528 y_529 y_530 y_531 y_532 y_533 y_534 y_535 y_536 y_537 y_538 y_539 y_540 y_541 y_542 y_543 y_544 y_545 y_546 y_547 y_548 y_549 y_550 y_551 y_552 y_553 y_554 y_555 y_556 y_557 y_558 y_559 y_560 y_561 y_562 y_563 y_564 y_565 y_566 y_567 y_568 y_569 y_570 y_571 y_572 y_573 y_574 y_575 y_576 y_577 y_578 y_579 y_580 y_581 y_582 y_583 y_584 y_585 y_586 у_587 у_588 у_589

v 590

y_591 y_592 y_593 y_594 y_595 y_596 y_597 y_598 у_599 у_600 y_601 y_602 y_603 y_604 у_605 у_606 у_607 у_608 y_609 у_610 y_611 y_612 y_613 y_614 y_615 y_616 y_617 y_618 y_619 y_620 у_621 y_622 y_623 y_624 y_625 y_626 у_627 у_628 y_629 y_630 y_631 у_632 у_633 y_634 y_635 y_636 y_637 y_638 у_639 у_640 y_641 y_642 y_643 y_644 y_645 y_646 y_647 y_648 y_649 y_650 у_651 y_652 y_653 y_654 y_655 y_656 y_657 y_658 y_659 у_660 y_661 у_662 y_663 y_664 у_665 у_666

v 667

у_668 y_669 y_670 у_671 у_672 y_673 y_674 y_675 y_676 у_677 у_678 y_679 y_680 у_681 y_682 у_683 y_684 y_685 y_686 y_687 у_688 у_689 y_690 y_691 y_692 у_693 у_694 y_695 у_696 y_697 у_698 y_699 y_700 y_701 y_702 y_703 y_704 y_705 y_706 y_707 y_708 y_709 y_710 y_711 y_712 y_713 y_714 y_715 y_716 y_717 y_717 y_718 y_719 y_720 y_721 y_722 y_723 y_724 y_725 y_726 y_727 y_728 y_729 y_730 y_731 y_732 y_733 y_734 y_735 y_736 y_737 y_738 y_739 y_740 y_741 y_742 y_743 v_744

y_745 y_746 y_747 y_748 y_749 y_750 y_751 y_752 y_753 y_754 y_755 y_756 y_757 y_758 y_759 y_760 y_761 y_762 y_763 y_764 y_765 y_766 y_767 y_768 y_769 y_769 y_770 y_771 y_772 y_773 y_774 y_775 y_776 y_777 y_778 y_779 y_780 y_781 y_782 y_783 y_784 y_785 y_786 y_787 y_788 y_789 y_790 y_791 y_792 y_793 y_794 y_795 y_796 y_797 y_798 y_799 y_800 y_801 y_802 y_803 y_804 y_805 У_806 у_807 y_808 У_809 у_810 y_811 y_812 y_813 y_814 y_815 y_816 y_817 y_818 y_819 y_820

у_021 у_822 y_823 y_824 y_825 у_826 y_827 y_828 y_829 y_830 y_831 y_832 y_833 y_834 y_835 у_836 y_837 у_838 y_839 у_840 y_841 y_842 у_843 y_844 y_845 y_846 y_847 у_848 y_849 y_850 y_851 y_852 y_853 y_854 y_855 у_856 y_857 y_858 y_859 у_860 y_861 y_862 y_863 y_864 у_865 y_866 y_867 у_868 у_869 у_870 y_871 y_872 y_873 y_874 y_875 у_876 y_877 y_878 y_879 y_880 y_881 y_882 у_883 y_884 y_885 у_886 y_887 y_888 у_889 у_890 y_891 y_892 y_893 y_894 y_895 у_896 y_897

y_0 э 0 у_899 у_900 y_901 y_902 y_903 y_904 y_905 y_906 y_907 y_908 y_909 y_910 y_911 y_912 y_913 y_914 y_915 y_916 y_917 y_918 y_919 y_920 y_921 y_922 y_923 y_924 y_925 y_926 y_927 y_928 y_929 y_930 y_931 у_932 у_933 у_934 y_935 y_936 y_937 y_938 y_939 y_940 y_941 y_942 y_943 y_944 y_945 y_946 y_947 y_948 y_949 у_950 y_951 y_952 y_953 y_954 y_955 y_956 y_957 y_958 у_959 у_960 у_961 y_962 y_963 у_964 у_965 у_966 y_967 у_968 y_969 y_970 y_971 y_972 y_973 y_974 ...075

```
y_976
y_977
y_978
y 979
у_980
y_981
y_982
y_983
y_984
y_985
у_986
у_987
у 988
y_989
у 990
y_991
у_992
y_993
y_994
у 995
y_996
y_997
у_998
у_999
In [65]:
# https://stackoverflow.com/questions/7368789/convert-all-strings-in-a-list-to-int
y true = list(map(int, y true.values))
4.3 Random train test split(70:30)
In [66]:
X train, X test, y train, y test = train test split(data, y true, stratify=y true, test size=0.3)
In [67]:
print("Number of data points in train data :",X train.shape)
print("Number of data points in test data :",X test.shape)
Number of data points in train data: (13999, 2026)
Number of data points in test data: (6000, 2026)
In [68]:
print("-"*10, "Distribution of output variable in train data", "-"*10)
train distr = Counter(y train)
train_len = len(y_train)
print("Class 0: ",int(train distr[0])/train len, "Class 1: ", int(train distr[1])/train len)
print("-"*10, "Distribution of output variable in train data", "-"*10)
test distr = Counter(y_test)
test len = len(y test)
print("Class 0: ",int(test_distr[1])/test_len, "Class 1: ",int(test_distr[1])/test_len)
 ----- Distribution of output variable in train data ------
Class 0: 0.6267590542181585 Class 1: 0.3732409457818416
----- Distribution of output variable in train data ------
In [69]:
# This function plots the confusion matrices given y i, y i hat.
def plot_confusion_matrix(test_y, predict_y):
   C = confusion_matrix(test_y, predict_y)
    \# C = 9,9 matrix, each cell (i,j) represents number of points of class i are predicted class j
    A = (((C.T) / (C.sum(axis=1))).T)
    #divid each element of the confusion matrix with the sum of elements in that column
```

у_910

```
\# C = [[1, 2],
         [3, 4]]
    \# C.T = [[1, 3],
            [2, 4]]
   \# C.sum(axis = 1)
                      axis=0 corresonds to columns and axis=1 corresponds to rows in two
diamensional array
   \# C.sum(axix = 1) = [[3, 7]]
   \# ((C.T)/(C.sum(axis=1))) = [[1/3, 3/7]
                                 [2/3, 4/7]]
    \# ((C.T)/(C.sum(axis=1))).T = [[1/3, 2/3]
                                [3/7, 4/7]]
   # sum of row elements = 1
   B = (C/C.sum(axis=0))
    #divid each element of the confusion matrix with the sum of elements in that row
    \# C = [[1, 2],
         13, 411
    # C.sum(axis = 0) axis=0 corresonds to columns and axis=1 corresponds to rows in two
diamensional array
   \# C.sum(axix = 0) = [[4, 6]]
    \# (C/C.sum(axis=0)) = [[1/4, 2/6],
                           [3/4, 4/6]]
   plt.figure(figsize=(20,4))
   labels = [1,2]
   # representing A in heatmap format
   cmap=sns.light_palette("blue")
   plt.subplot(1, 3, 1)
   sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
   plt.xlabel('Predicted Class')
   plt.ylabel('Original Class')
   plt.title("Confusion matrix")
   plt.subplot(1, 3, 2)
   sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
   plt.xlabel('Predicted Class')
   plt.ylabel('Original Class')
   plt.title("Precision matrix")
   plt.subplot(1, 3, 3)
    # representing B in heatmap format
   sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
   plt.xlabel('Predicted Class')
   plt.ylabel('Original Class')
   plt.title("Recall matrix")
   plt.show()
```

4.4 Building a random model (Finding worst-case log-loss)

In [70]:

```
# we need to generate 9 numbers and the sum of numbers should be 1
# one solution is to genarate 9 numbers and divide each of the numbers by their sum
# ref: https://stackoverflow.com/a/18662466/4084039
# we create a output array that has exactly same size as the CV data
predicted_y = np.zeros((test_len,2))
for i in range(test_len):
    rand_probs = np.random.rand(1,2)
    predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0])
print("Log loss on Test Data using Random Model",log_loss(y_test, predicted_y, eps=le-15))
predicted_y =np.argmax(predicted_y, axis=1)
plot_confusion_matrix(y_test, predicted_y)
```

Log loss on Test Data using Random Model 0.8700255736979046

```
0.504
Class
                                                                                                                                            0.498
                                         1350
                                                                                           0.45
                          1155.000
                                                                                                                              0.516
          1085.000
                                                            0.365
                                                                            0.381
                                                                                                              0.484
                                                                                                                                            0.492
                                         1200
                                                                                           0.40
                                                                                                                                           -0486
                Predicted Class
                                                                  Predicted Class
                                                                                                                   Predicted Class
In [93]:
results=pd.DataFrame(columns=['Model', 'Featuraization', 'Hyperparameter', 'Train loss','Test-
loss', ])
```

4.4 Logistic Regression with hyperparameter tuning

```
In [71]:
```

```
alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.
# read more about SGDClassifier() at http://scikit-
learn.org/stable/modules/generated/sklearn.linear\ model.SGDC lassifier.html
# default parameters
# SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, 11 ratio=0.15, fit intercept=True, max i
ter=None, tol=None,
# shuffle=True, verbose=0, epsilon=0.1, n jobs=1, random state=None, learning rate='optimal', eta0
=0.0, power t=0.5,
# class weight=None, warm start=False, average=False, n iter=None)
# some of methods
# fit(X, y[, coef init, intercept init, ...]) Fit linear model with Stochastic Gradient Descent.
# predict(X) Predict class labels for samples in X.
# video link:
log error array=[]
for i in alpha:
   clf = SGDClassifier(alpha=i, penalty='12', loss='log', random_state=42)
    clf.fit(X_train, y_train)
    sig clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict y = sig clf.predict proba(X test)
   log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:",log loss(y test, predict y, labels=clf.cl
asses , eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log error array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
   ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=alpha[best alpha], penalty='12', loss='log', random state=42)
clf.fit(X_train, y_train)
sig clf = CalibratedClassifierCV(clf, method="sigmoid")
sig clf.fit(X train, y train)
predict y = sig clf.predict proba(X train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train,
predict_y, labels=clf.classes_, eps=1e-15))
predict y = sig clf.predict proba(X test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, p
redict y, labels=clf.classes , eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
```

```
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)
```

```
For values of alpha = 1e-05 The log loss is: 0.6115483961310546

For values of alpha = 0.0001 The log loss is: 0.5597209010695454

For values of alpha = 0.001 The log loss is: 0.5818704081186798

For values of alpha = 0.01 The log loss is: 0.5597998364467709

For values of alpha = 0.1 The log loss is: 0.5639873739066641

For values of alpha = 1 The log loss is: 0.5740423038443414

For values of alpha = 10 The log loss is: 0.5962905057201728
```


For values of best alpha = 0.0001 The train log loss is: 0.5599676132394837 For values of best alpha = 0.0001 The test log loss is: 0.5597209010695454 Total number of data points : 6000


```
In [94]:
```

```
new = ["Logistic-Regession",'TFIDF','alpha = 0.0001','0.559','0.559']
results.loc[0] = new
```

4.5 Linear SVM with hyperparameter tuning

```
In [72]:
```

```
# video link:
log error array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='11', loss='hinge', random state=42)
    clf.fit(X train, y train)
    sig clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict_y = sig_clf.predict_proba(X_test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:",log_loss(y_test, predict_y, labels=clf.cl
asses_, eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log error array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log error array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='ll', loss='hinge', random_state=42)
clf.fit(X train, y train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(X_train, y_train)
predict_y = sig_clf.predict_proba(X_train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train,
predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best alpha], "The test log loss is: ", log loss (y test, p
redict_y, labels=clf.classes_, eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)
For values of alpha = 1e-05 The log loss is: 0.5550291567960447
For values of alpha = 0.0001 The log loss is: 0.5589397519756102
```


For values of best alpha = 1e-05 The train log loss is: 0.5551932301332952 For values of best alpha = 1e-05 The test log loss is: 0.5550291567960447 Total number of data points : 6000


```
In [95]:
```

```
new = ['Linear SVM','TFIDF','alpha = 10e-05','0.555','0.555']
results.loc[1] = new
```

4.6 XGBoost with hyperparameter tuning

```
In [87]:
```

```
# Finding optimal number of base learners using k-fold CV ->
base_learn = [x for x in range(30, 120,10)]
base_learn

Out[87]:
[30, 40, 50, 60, 70, 80, 90, 100, 110]

In [88]:

# Learning rate values ->
#learning_rate = [x/10 for x in range(1,11)]
#learning_rate
```

In [89]:

```
# Max-depth values- >
#max_depth = [x for x in range(1,6)]
#max_depth
```

In [90]:

```
# Using RandomSearchCv to get optimal parameters ->
from sklearn.model_selection import RandomizedSearchCV
import xgboost as xgb
#params = {'n_estimators': base_learn, 'learning_rate': learning_rate, 'max_depth': max_depth}
#clf =xgb.XGBClassifier()
#model = GridSearchCV(clf, params)
#model.fit(X_train, y_train)
```

In [91]:

```
log error array=[]
for i in base_learn:
   clf = xgb.XGBClassifier(n estimators = i,objective = 'binary:logistic',eval metric = 'logloss',
eta = 0.02, max depth = 4)
    clf.fit(X train, y train)
    sig clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict_y = sig_clf.predict_proba(X_test)
    log error array.append(log loss(y test, predict y, labels=clf.classes , eps=1e-15))
    print('For values of base learn = ', i, "The log loss is:", log loss(y test, predict y, labels=c
lf.classes_, eps=1e-15))
fig, ax = plt.subplots()
ax.plot(base learn, log error array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
   ax.annotate((base_learn[i],np.round(txt,3)), (base_learn[i],log_error_array[i]))
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Base learn i's")
```

```
plt.ylabel("Error measure")
plt.show()
best base learn = np.argmin(log error array)
clf = xgb.XGBClassifier(n estimators = base learn[best base learn], objective =
'binary:logistic', eval metric = 'logloss', eta = 0.02, max depth = 4 )
clf.fit(X train, y train)
sig clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(X_train, y_train)
predict_y = sig_clf.predict_proba(X_train)
print('For values of best base_learn = ', base_learn[best_base_learn], "The train log loss is:",lo
g_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict y = sig clf.predict proba(X test)
print('For values of best base learn = ', base learn[best base learn], "The test log loss is:",log
_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
print("Total number of data points :", len(predicted y))
plot confusion matrix(y test, predicted y)
```

```
For values of base_learn = 30 The log loss is: 0.45242326880770384

For values of base_learn = 40 The log loss is: 0.4493511060325324

For values of base_learn = 50 The log loss is: 0.44765847857133295

For values of base_learn = 60 The log loss is: 0.44638462889253955

For values of base_learn = 70 The log loss is: 0.44589820716408457

For values of base_learn = 80 The log loss is: 0.4457846101029815

For values of base_learn = 90 The log loss is: 0.44583655838410036

For values of base_learn = 100 The log loss is: 0.4453380663908674

For values of base_learn = 110 The log loss is: 0.44590082661756264
```


For values of best base_learn = 100 The train log loss is: 0.4063534804815736 For values of best base_learn = 100 The test log loss is: 0.4453380663908674 Total number of data points : 6000


```
In [96]:
```

```
new = ['XGBoost','TFIDF','n-estimators = 100',0.406,0.445]
results.loc[2] = new
```

Performance Table:

In [97]:

results

Out[97]:

	Model	Featuraization	Hyperparameter	Train_loss	Test-loss
0	Logistic-Regession	TFIDF	alpha = 0.0001	0.559	0.559
1	Linear SVM	TFIDF	alpha = 10e-05	0.555	0.555
2	XGBoost	TFIDF	n-estimators = 100	0.406	0.445

Conclusion:

- 1.XGBoost with tfidf featuraization and hyper parameter tuning gives best results (log loss = 0.445) compared to logistic regression and Linear SVM
- 2.But time complexity is high compared to logistic regression and linear svm