

Reconocimiento de voz Fernando Berzal, <u>berzal@acm.org</u>

NLP

NLP

Reconocimiento de voz

Raw Speech Signal Transcription

FFT: Espectro de la señal

Banco de filtros Mel

Espectrograma & cepstrum

Evolución

Historia de los sistemas de reconocimiento de voz

Modelos de Markov

Cadena de Markov

Modelo oculto de Markov [HMM = Hidden Markov Model]

Reconocimiento de voz estadístico

$$W^* = \operatorname*{argmax}_{W \in V^*} P(W|X)$$

$$P(W|X) = \frac{P(X|W)P(W)}{P(X)}$$

$$W^* = \operatorname*{argmax}_{W \in V^*} P(X|W)P(W)$$

Reconocimiento de voz estadístico

Modelo acústico

Reconocimiento de voz estadístico

Modelo del lenguaje

P(W)

n-gramas

Reconocimiento de voz estadístico

Decodificación del HMM

Secuencia óptima de "palabras" P(x|s) GMM \rightarrow DNN

Sistemas end-to-end basados en deep learning

CTC [Connectionist Temporal Classification]

Reconocimiento de voz

Sistemas end-to-end basados en deep learning **Deep Speech 1**

Sistemas end-to-end basados en deep learning

Deep Speech 2

CTC
Fully Connected
Uni or Bi-directional RNN
1 or 2D Convolution
1 or 2D Convolution
1 or 2D Convolution
Spectrogram

Reconocimiento de voz

Sistemas end-to-end basados en deep learning

Wav2Letter CNN

CTC or ASG
1D Convolution: kw = 7, 2000:40
1D Convolution: kw = 1 2000:2000
1D Convolution: kw = 32, 250:2000
1D Convolution: kw = 7, 250:250
1D Convolution: $kw = 250$, $dw = 2$, $250:250$
1D Convolution: kw = 250, dw = 160, 1:250

Sistemas end-to-end basados en deep learning

Mecanismos de atención (seq2seq)

Reconocimiento de voz

Sistemas end-to-end basados en deep learning

LAS Listen, Attend & Spell

Sistemas end-to-end basados en deep learning

ESPnet

CTC + Atención

Reconocimiento de voz

Sistemas end-to-end basados en deep learning

Embeddings

Software

Frameworks para reconocimiento de voz

- Sphinx (Java, CMU) https://cmusphinx.github.io/
- Kaldi (C++) https://github.com/kaldi-asr/kaldi

ESPNet (deep learning ASR, PyTorch/Chainer)
https://espnet.github.io/espnet/
ESPnet

Procesamiento de audio

- SoX [Sound eXchange] (C) http://sox.sourceforge.net/
- LibROSA (Python) https://librosa.org/

