Major Exam Total marks: 60 Name: Entry Number:

Instructions

- Please check that your answer script has 24 pages, and use the space provided for your answers (you can ask for more rough sheets if needed).
- The first question (MCQs/Short Answer Questions) has **thirteen** parts, total worth 37 marks. The second question (Signature Combiners) has **three** parts, total worth 10 marks. The third question (Broadcast Encryption) has **three** parts, total worth 13 marks.

• MCQs/Short Answer Questions: Page 2 to Page 10.

 $-\mathbb{Z}_p^*$, DDH: Page 2

- RSA: Page 3

- Random Oracle Model: Page 4

 $-\,$ MAC: Page 6

- CCA: Page 7

- UHFs, CRHFs: Page 9

- Signatures (Long Answer Question): Page 13 to Page 16.
- Broadcast Encryption (Long Answer Question): Page 17 to Page 21.
- Rough work: Page 22 to Page 24.

Notations

- For a positive integer a, [a] denotes the set $\{1, 2, ..., a\}$. For integers a and b > a, [a, b] denotes the set $\{a, a + 1, ..., b\}$.
- $\mathbb{Z}_N = \{0, 1, \dots, N-1\}$. $\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\}$.
- $x \mid\mid y$ denotes the concatenation of x and y.
- $\{0,1\}^{\leq \ell} = \bigcup_{i=1}^{\ell} \{0,1\}^i$ (the set of all bit strings with at most ℓ bits).

1 MCQs/Short Answers (37 marks)

For each of the following questions, provide a short answer in the space provided.

\mathbb{Z}_p^* , Group theory, DDH

	•
1.	(2 marks) Let $p=2q+1$ be a prime, where q is also prime. Which of the following statements are true about the set \mathbb{Z}_p^* (multiple statements can be true; write 'none-of-the-above' if all are false):
	(A) All elements of \mathbb{Z}_p^* are generators of \mathbb{Z}_p^* , except 1.
	(B) For any number $a \in \mathbb{Z}_p^*$, there exists a number $b \in \mathbb{Z}_p^*$ such that $a \cdot b \mod p = 1$.
	(C) For any number $a \in \mathbb{Z}_p^*$, there exists a number $b \in \mathbb{Z}_p^*$ such that $a + b \mod p = 1$.
2.	(3 marks) Recall the Elgamal public key encryption scheme. The message space is a prime-order group $\mathbb G$ of size q . Let $pk = (g,h) \in \mathbb G^2$ be an Elgamal public key. For a message $m \in \mathbb G$, let $\mathcal S_{pk,m}$ denote the set of all Elgamal ciphertexts that are encryptions of m using pk .
	You are given a uniformly random sample $((ct_{1,1},ct_{1,2}),(ct_{2,1},ct_{2,2}))$ from $\mathcal{S}_{pk,m_1} \times \mathcal{S}_{pk,m_2}$. Describe how to generate a uniformly random sample from $\mathcal{S}_{pk,m_1} \times \mathcal{S}_{pk,m_2} \times \mathcal{S}_{pk,m_1 \cdot m_2}$ without knowing m_1, m_2 . You should use $(ct_{1,1}, ct_{1,2}, ct_{2,1}, ct_{2,2})$ and (g, h) for generating this sample.
1	

RSA

- 3. (2 marks) Recall the 'textbook RSA' signature scheme. Complete the following attack on the signature scheme (fill in the blank space provided).
 - 1. Adversary receives vk = (N, e) from the challenger.
 - 2. Adversary picks random $m \leftarrow \mathbb{Z}_N$, queries for a signature on m, receives signature σ .
 - 3. Adversary sends $(m^* = \dots, \sigma^* = 2\sigma \mod N)$ as a forgery.
- 4. (3 marks) A twin prime is a pair of numbers (p, p + 2) such that both p and p + 2 are primes. It is conjectured that there are infinitely many twin primes, and they are also easy to sample. Consider the following public key encryption scheme (defined using a publicly computable hash function $H: \mathbb{Z}_N \to \{0,1\}^n$). The message space is $\{0,1\}^n$, and the algorithms are defined as follows:
 - KeyGen: Choose a twin prime pair (p, p + 2). Set $N = p \cdot (p + 2)$. Choose e co-prime to $\phi(N)$, and an integer d such that $e \cdot d \mod \phi(N) = 1$. Set $\mathsf{pk} = (N, e)$, $\mathsf{sk} = (N, d)$.
 - $\mathsf{Enc}(m,\mathsf{pk})$: Choose $x \leftarrow \mathbb{Z}_N^*$, output $\mathsf{ct}_1 = x^e \bmod N$, $\mathsf{ct}_2 = H(x) \oplus m$.
 - $Dec(ct = (ct_1, ct_2), sk)$: Compute $y_1 = ct_1^d \mod N$. Output $ct_2 \oplus H(y_1)$.

Show that this scheme is not semantically secure. More formally, show a polynomial time algorithm that, given pk and Enc(m, pk) for any $m \in \{0, 1\}^n$, can fully recover m.

¹Trivia: Unfortunately, such errors often arise in implementations of RSA-based encryption schemes. This is completely insecure.

Random Oracle Model

õ.	(2 marks) Is it possible to have a semantically secure private-key encryption scheme with deterministic encryption in the random oracle model ? If yes, then provide a candidate construction (no security proof needed for the candidate). If no, then briefly state why it is not possible.
3.	(6 marks) Let $H:\{0,1\}^* \to \{0,1\}^n$ be a deterministic function. Construct a private-key encryption scheme $\mathcal{E}=(Enc,Dec)$ with key space $\{0,1\}^n$, message space $\{0,1\}^*$. The encryption and decryption algorithms should use the function H , and the scheme should be semantically secure in the random oracle model . The proof of security in random oracle model should not use any other computational assumptions. Provide a short justification why it is semantically secure (formal proof not needed).
	Enc(m,k):

Dec(ct,k):				
Informal security proof for your construction:				

Unconditionally Secure MAC

7.	(5 marks) Construct a MAC scheme with message space $\{0,1\}^n$ that is unconditionally unforgeable against a single query. More formally, for any adversary (even computationally unbounded ones), the adversary's winning probability in the following game is negligible:
	• Challenger picks a MAC key $k \leftarrow \mathcal{K}$.
	• Adversary sends a signing query for message m , and receives $Sign(m,k)$.
	• Adversary must output m' and signature σ' . It wins if $m' \neq m$ and $Verify(m', \sigma', k) = 1$.
	No security proof needed for this question.
	Choose an appropriate key space \mathcal{K} :
L	
	Describe the signing algorithm $Sign(m, k)$:
Γ	
_	
	Describe the verification algorithm $Verify(m,\sigma,k)$:

CCA security

8. (2 marks) Which of the following statements are true about CCA security for public-key encryption schemes (multiple statements can be true; write 'none-of-the-above' if all are false):
(A) In the private-key setting, the 'Encrypt-then-MAC' approach results in a CCA-secure private-key encryption scheme. Similarly, in the public-key setting, 'Encrypt-then-Sign' approach results in a CCA secure encryption scheme.
(B) CCA security in the public key setting implies ciphertext integrity.
(C) Let CCA-no-pre denote the CCA security game where no pre-challenge decryption queries are made by the adversary. This game is equivalent to the CCA security game.

9.	(3 marks) Let $\mathcal{E} = (Enc, Dec)$ be a private-key encryption scheme with key space \mathcal{K} , message
	space $\{0,1\}^n$, satisfying security against chosen ciphertext attacks . Consider the following
	private-key encryption scheme $\mathcal{E}' = (Enc', Dec')$ with key space $\mathcal{K} \times \mathcal{K}$, message space $\{0,1\}^n$:

- $\mathsf{Enc}'(m,(k_1,k_2))$: Compute $\mathsf{ct}_1 \leftarrow \mathsf{Enc}(m,k_1)$, $\mathsf{ct}_2 \leftarrow \mathsf{Enc}(m,k_2)$ and output $(\mathsf{ct}_1,\mathsf{ct}_2)$.
- $\mathsf{Dec}'((\mathsf{ct}_1,\mathsf{ct}_2),(k_1,k_2))$: Compute $y_1 = \mathsf{Dec}(\mathsf{ct}_1,k_1)$ and $y_2 = \mathsf{Dec}(\mathsf{ct}_2,k_2)$. If either y_1 or y_2 is \bot , then output \bot . If $y_1 \neq y_2$, output \bot . Else output y_1 .

Show that \mathcal{E}' is **not** secure against chosen ciphertext attacks. Describe the attack formally, clearly stating the pre-challenge encryption/decryption queries, the challenge query, followed by the post-challenge encryption/decryption queries.

1		

UHFs, CRHFs

(2 marks) Let $\{U_k : \{0,1\}^{2n} \to $		be a	family	of secure	universal	hash	functions.
Consider $U'_k: \{0,1\}^{2n\ell} \to \{0,1\}^n$,	where						

$$U'_k(m_1 \mid\mid \ldots \mid\mid m_\ell) = U_k(m_1) \oplus U_k(m_2) \oplus \cdots \oplus U_k(m_\ell)$$

where each $m_i \in \{0,1\}^{2n}$. Is $\{U'_k\}_{k \in \mathcal{K}}$ a universal hash function family? If it is, provide a two-line justification, else provide an attack.

11. (2 marks) Let $\{H_k: \{0,1\}^{2n} \to \{0,1\}^n\}_{k \in \mathcal{K}}$ be a secure collision-resistant family of hash functions. Consider $H_k': \{0,1\}^{\leq 2n} \to \{0,1\}^n$, where

$$H'_k(x) = \begin{cases} H_k(x) & \text{if } x \in \{0, 1\}^{2n} \\ x \mid\mid 0^i & \text{if } x \in \{0, 1\}^{n-i}, i \in [0, n-1] \\ H_k(x \mid\mid 0^i) & \text{if } x \in \{0, 1\}^{2n-i}, i \in [1, n-1] \end{cases}$$

Is $\{H'_k\}_{k\in\mathcal{K}}$ a collision-resistant hash function family? If it is, provide a two-line justification, else provide an attack.

12. (3 marks)

Let (F, F^{-1}) be a secure PRP with key space, input space and output space $\{0,1\}^n$. Consider the following hash function with key space $\{0,1\}^n$, input space $\{0,1\}^n \times \{0,1\}^n$ and output space $\{0,1\}^n$.

$$H_k(a,b) = F(a \oplus b \oplus k, a) \oplus a.$$

That is, the hash function uses the first input a as the PRP key. The PRP evaluation is on the n-bit string $a \oplus b \oplus k$, and this PRP evaluation is XORd with the string a.

Show that this is not a secure CRHF by providing an explicit attack. ²

13. (2 marks) Let \mathbb{G} be a group of size q, where q is prime. Consider the following candidate hash function. The domain is $\mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q$, the range is $\mathbb{Z}_q \times \mathbb{G}$. The hash key consists of two group generators g, h and an integer $x \in \mathbb{Z}_q$. The hash function is defined as follows:

$$H_{(g,h,x)}(a,b,c) = \left(a \ , \ g^b \cdot h^{a \cdot c} \cdot h^{-x \cdot c}\right)$$

Show that this is not collision resistant (that is, show a collision on the above hash function, given the hash key (g, h, x)).

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
I		
I		
I		
I		

²Trivia: a few variants of this scheme are provably secure in certain idealized models, and are used in practice.

2 Signature Combiner (10 marks)

You are given two signature schemes $S_1 = (\mathsf{KeyGen}_1, \mathsf{Sign}_1, \mathsf{Verify}_1)$ and $S_2 = (\mathsf{KeyGen}_2, \mathsf{Sign}_2, \mathsf{Verify}_2)$. Both schemes have message space $\{0,1\}^*$, signature space $\{0,1\}^n$, and are perfectly correct. However, only one of these schemes is **weakly unforgeable**. We don't know which one it is, and we have no security guarantees for the other signature scheme. Construct a new signature scheme $S = (\mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify})$ by combining these two schemes, such that S is also perfectly correct, and is **weakly unforgeable**, assuming at least one of S_1 or S_2 is weakly unforgeable.

1. (3 marks) First, describe the signature scheme \mathcal{S} . You must describe all three algorithms.

2. (4 marks) Show that if there exists a p.p.t. adversary that breaks the weak unforgeability of \mathcal{S} , then there exists a p.p.t. reduction \mathcal{B}_1 that breaks the weak unforgeability of \mathcal{S}_1 . Similarly show that if there exists a p.p.t. adversary that breaks the weak unforgeability of \mathcal{S} , then there exists a p.p.t. reduction \mathcal{B}_2 that breaks the weak unforgeability of \mathcal{S}_2 .

3. (3 marks) Suppose you are given that one of the schemes is **strongly unforgeable** (but again, you don't know which one). Will your signature scheme \mathcal{S} (described in part 1 above) also be strongly unforgeable? You should not assume that the signing algorithms Sign_1 or Sign_2 are deterministic.

3 Encryption for broadcast channels, with piracy detection (10 marks)

[Since the problem statement is lengthy, feel free to discuss with instructor for problem overview.]

You are starting a new digital content delivery platform, based on subscription model. Suppose you wish to support at most t subscribers, here's the rough plan:

- Initially, you will choose a public key pk together with t secret keys $\mathsf{sk}_1, \mathsf{sk}_2, \ldots, \mathsf{sk}_t$.
- Whenever a new (say i^{th}) subscriber joins, he/she makes a payment, and you give him/her the secret key sk_i . Using this secret key, the subscriber can access all your old/new content.
- Whenever you wish to release new content, say a message m, you encrypt this message using pk (and place it on some public server). Any of the subscribers must be able to decrypt the ciphertext using **their own secret key**. However, if someone is not a subscriber (that is, he/she does not have any of the secret keys) then he/she should not learn anything about the message.

Let us call this a 'broadcast encryption scheme'. Formally, it consists of the following algorithms:

- BKeygen($1^n, 1^t$): The key generation algorithm takes as input the security parameter n, the number of subscribers t. It outputs a public key pk, together with t secret keys $\mathsf{sk}_1, \ldots, \mathsf{sk}_t$.
- $\mathsf{BEnc}(m,\mathsf{pk})$: The encryption algorithm is randomized; it takes as input a message m, a public key pk , and outputs a ciphertext ct .
- $\mathsf{BDec}(\mathsf{ct},\mathsf{sk})$: The decryption algorithm takes as input a ciphertext ct , a secret key sk , and outputs a message m.

For correctness, we require the following guarantee for any message m: if $(\mathsf{pk}, (\mathsf{sk}_1, \ldots, \mathsf{sk}_t)) \leftarrow \mathsf{KeyGen}(1^n, 1^t)$, and $\mathsf{ct} \leftarrow \mathsf{Enc}(m, \mathsf{pk})$, then for all $i \in [t]$, $\mathsf{Dec}(\mathsf{ct}, \mathsf{sk}_i) = m$.

Semantic Security

For semantic security, we require the following guarantee - no p.p.t. adversary should win in the following game with non-negligible advantage:

Broadcast Encryption - Semantic Security

- 1. Challenger chooses $(\mathsf{pk}, (\mathsf{sk}_1, \dots, \mathsf{sk}_t)) \leftarrow \mathsf{BKeygen}(1^n, 1^t)$. It sends pk to the adversary.
- 2. Adversary chooses two messages m_0, m_1 and sends them to the challenger. Challenger picks a uniformly random bit $b \leftarrow \{0, 1\}$, sends $\mathsf{ct} \leftarrow \mathsf{BEnc}(m_b, \mathsf{pk})$ to the adversary.
- 3. Adversary sends its guess b', and wins if b = b'.

Figure 1: Semantic Security Game for Broadcast Encryption

1. (3 marks) Let $\mathcal{E} = (\mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec})$ be a **public key encryption scheme** with message space \mathcal{M} . Construct a broadcast encryption scheme for t users, with message space \mathcal{M} . You must define the three algorithms $\mathsf{BKeygen}, \mathsf{BEnc}$ and BDec .

2. (5 marks) Show that the scheme satisfies semantic security (as described in Figure 1). Carefully define the hybrid experiments, and show that the consecutive hybrids are computationally indistinguishable, assuming $\mathcal E$ is a semantically secure public key encryption scheme.

Piracy detection

In addition to semantic security, you would also want to prevent piracy, especially in subscription-based model. You do not want a subscriber to create a pirate website/decrypting service that can decrypt your ciphertexts. Given access to this pirate website/decrypting service, you would like to identify the 'pirate'.

More formally, we say that a website/decrypting service \mathcal{D} is a 'good pirate decryptor' if it takes as input a ciphertext, and has the following guarantee:

for all messages
$$m, \Pr[\mathcal{D}(\mathsf{ct}) = m : \mathsf{ct} \leftarrow \mathsf{Enc}(m, \mathsf{pk})] = 1$$

where the probability is over the randomness used during encryption. Assume \mathcal{D} is deterministic and stateless.

A broadcast encryption scheme with piracy detection has an additional algorithm called Trace. This algorithm uses the public key pk, has oracle access to a 'good' pirate decryptor \mathcal{D} (that is, it can send ciphertexts to \mathcal{D} and observe the response). Intuitively, we want that if \mathcal{D} is a good pirate decoder, then we should be able to use Trace to recover the pirate subscriber. This is formally captured by the following security game.

The piracy detection security game

- Challenger chooses $(pk, (sk_1, \ldots, sk_t)) \leftarrow KeyGen(1^n, 1^t)$. It sends pk to the adversary.
- Next, the adversary sends an index $j \in [t]$. It receives sk_j from the challenger.
- The adversary sends the pirate decrypting service \mathcal{D} . The challenger runs $j' \leftarrow \mathsf{Trace}^{\mathcal{D}}(\mathsf{pk})$. The adversary wins if \mathcal{D} is a 'good pirate decryptor', but $j \neq j'$.

Figure 2: Piracy detection security game

- 3. (5 marks) Augment your construction in part 1 with a Trace algorithm. This algorithm is a randomized algorithm that has the public key pk and must identify the 'pirate' by making queries to the pirate decryptor \mathcal{D} . Note that the only information you have about \mathcal{D} is the following:
 - it is a stateless, deterministic, polynomial time algorithm.
 - if $\mathsf{ct} \leftarrow \mathsf{Enc}(m, \mathsf{pk})$, then $\mathcal{D}(\mathsf{ct}) = m$.

The tracing algorithm is allowed to make polynomially many queries to \mathcal{D} , and must use this to identify the 'pirate'.

No proof needed for this part, just describe how Trace will work.

(Hint: Trace can send malformed ciphertexts to \mathcal{D} . Of course, if \mathcal{D} can figure out that it is malformed, then it may not send a correct response.)