Computational Physics Lecture 7

sieversj@ukzn.ac.za

git clone https://github.com/ukzncompphys/lecture7_2015.git

Tutorial Problems (due Tuesday - today!)

- Write a function that will shift an array by an arbitrary amount using a convolution (yes, I know there are easier ways to do this). The function should take 2 arguments an array, and an amount by which to shift the array. Plot a gaussian that started in the centre of the array shifted by half the array length. (10)
- The correlation function $f \bigstar g$ is $\int f(x)g(x+y)$. Through a similar proof, one can show $f \bigstar g = ift(dft(f)*conj(dft(g)))$. Write a routine to take the correlation function of two arrays. Plot the correlation function of a Gaussian with itself. (10)
- Using the results of part I and part 2, write a routine to take the correlation function of a Gausian (shifted by an arbitrary amount) with itself. How does the correlation function depend on the shift? Does this surprise you? (10)
- The circulant (wrap-around) nature of the dft can sometimes be problematic. Write a routine to take the convolution of two arrays *without* any danger of wrapping around. You may wish to add zeros to the end of the input arrays. (10)

Tutorial Problems 2

- Complete the complex definition to support -,*, and / (__sub__, __mul__, and __div__). Recall that a/b = a*conj(b)/(b*conj(b)). Show from a few sample cases that your functions work. (10)
- Next lecture we will look at n-body simulations. In preparation, write a class that contains masses and x and y positions for a collection of particles. The class should also contain a dictionary that can contain options. Two entries in the dictionary should be the # of particles and G (gravitational constant). The class should also contain a method that calculates the potential energy of every particle, sum(G m₁m₂/r₁₂) . (10)

Tutorial Bonus Problems

- Bonus: extend the complex class to also support arbitrary (i.e. non-integer) powers (keyword is __pow__). +3 if the routine works if a^b works for complex a and real b, +5 if it works for complex a and complex b. (you may ignore branch cuts) (10).
- You have a sample code that calculates an FFT of an array whose length is a power of 2. Using that routine as a guideline, write an FFT routine that works on an array whose length is a power of 3 (e.g. 9, 27, 81). Verify that it gives the same answer as numpy.fft.fft (10)

PDE's

- Partial differential equations are ubiquitous in nature
- Solving PDE's on computers is a huge industry
- Several different techniques are used, each with advantages/disadvantages
- Diffusion, fluid flow, wave propagation, many many others examples of PDE's solved on computers.

Advection Problem

- Next week we will do fluid mechanics. Many of the computational issues can be seen more simply through *advection*, which we will look at today.
- Imagine we have a velocity field v and a density field ρ (could be matter, could be something else).
- In advection, there are no internal forces/viscosities etc. The material just goes with the flow. Velocity is constant and field is conserved.
- Good source is tutorial from Mike Zingale, online at http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf

Some Techniques

- What should code even look like? Two broad classes:
- Eulerian: decompose space into domains (e.g. on a grid). Solve for $\rho(r,t)$, v(r,t), etc.
 - Finite difference function defined on grid cells
 - Finite volume each cell covers a finite volume, value in cell is "average" of quantity across volume.
- Lagrangian: follow discrete packets of mass ("particles") through flow
 - Smoothed particle hydrodynamics (SPH)

Eulerian Visualizations

Figure from Zingale

- Top finite difference. Function defined at grid points.
- Middle finite difference, but with function defined at grid centers.
- Bottom finite volume function value is average across cell.

Finite Volume Advection

- Have density ρ_i and velocity v, with velocity taken to be uniform & constant for all grid cells.
- How does density change with time?
- Assume velocity is to the right. I flow into cell to my right, cell to my left flows into me.
- In (short time) dt flow moves vdt to the right. Cell is dx wide, so fraction of material that leaves cell is vdt/dx, total amount is $\rho_i v$ dt/dx.
- Material flowing in is similarly $\rho_{i-1}vdt/dx$.
- New value is $\rho_i^{\text{new}} = \rho_i \rho_i v dt/dx + \rho_{i-1} v dt/dx$

Finite Volume Advection

```
#simple_advect_finite_volume.py
import numpy
from matplotlib import pyplot as plt
n=300
rho=numpy.zeros(n)
rho[n/3:(2*n/3)]=1
v=1.0
dx=1.0
x=numpy.arange(n)*dx

plt.ion()
plt.clf()
plt.plot(x,rho)
```

Left: set up initial conditions. Density is I in the middle third of region, zero otherwise. Below left: initial density plotted. Bottom: advection code.


```
dt=1.0
for step in range(0,50):
    #take the difference in densities
    drho=rho[1:]-rho[0:-1]
    #update density. We haven't said what happens at
    #cell 0 (since cell -1 doesn't exist), ignore for now
    rho[1:]=rho[1:]-v*dt/dx*drho
    plt.clf()
    plt.plot(x,rho)
    plt.draw()
```

Conservation

- New value is $\rho_i^{\text{new}} = \rho_i \rho_i v dt/dx + \rho_{i-1} v dt/dx$
- But cell i+1 looks the same, with i—> i+1: $\rho_{i+1}^{\text{new}} = \rho_{i+1} \rho_{i+1} \text{ vdt/dx} + \rho_{i} \text{ vdt/dx}$
- if I sum $\rho_i^{\text{new}} + \rho_i^{\text{new}} = \rho_i \rho_i v dt/dx + \rho_{i-1} v dt/dt + \rho_{i+1} \rho_{i+1} v dt/dx + \rho_i v dt/dx$
- Amount leaving me matches amount flowing into neighbour: $\rho_i^{\text{new}} + \rho_i^{\text{new}} = \rho_i + \rho_{i+1} (\rho_{i+1} \rho_{i-1}) v dt dx$
- If I sum over all cells, cancellation continues: $\sum \rho^{\text{new}} = \sum \rho (\rho_{\text{end}} \rho_{\text{begin}}) v dt / dx$
- Modulo funny things at edges, stuff is conserved. This is a good thing.

Differential Form

- Say we have a conserved flow, now with non-constant velocity.
- Amount flowing out in dt is $v_r \rho_r$. Amount flowing in is $v_l \rho_l$. Net amount is $-\partial(v\rho)/\partial x$. If flow is conserved, $\partial \rho/\partial t = -\partial(v\rho)/\partial x$ or $\partial \rho/\partial t + \partial(v\rho)\partial x = 0$. This form is very general, we will see it more in fluids.
- In general, we can have multiple dimensions. In this case, the x-derivative becomes a divergence: $\partial \rho / \partial t + \nabla \cdot (\rho v) = 0$
- For advection, velocity is constant so can pull out. Equation we're really solving is: $\partial \rho / \partial t + v \partial \rho / \partial x = 0$

Boundary Conditions

- For a finite-sized region, we have no way of solving for what happens at domain boundary.
- We need to specify this behaviour as part of the problem.
- One common case is all gradients equal zero on boundary
- Another common case is periodic: $\rho_{-1} = \rho_{end}$.
- What would our advection example look like with periodic boundary conditions?
- You should *always* think carefully about your boundary conditions.

Guard Cells

- The way BC's are implemented in practice is through guard or ghost cells.
- Pad your domain with extra cells. Fill them in as per BC's. Take time step. Extract original domain.
- # of guard cells may depend on details of your algorithm, but you will almost certainly need them.

In Practice

```
#advect finite volume guard.py
  dt=1.0
  for step in range (0,150):
      #we need one guard cell - make a 1-larger temp array
       big rho=numpy.zeros(n+1)
       big_rho[1:]=rho
       #explicitly set the density of the guard cell
       big rho[0]=0
      #take the difference in densities
       drho=big_rho[1:]-big_rho[0:-1]
       big_rho[1:]=big_rho[1:]-v*dt/dx*drho
       rho=big rho[1:]
       plt.clf()
       plt.axis([0,n,0,1.1])
       plt.plot(x,rho)
       plt.draw()
#advect finite volume guard compact.py
dt=1.0
#set up padded array outside loop
big rho=numpy.zeros(n+1)
big rho[1:]=rho
del rho #we can delete the to save space
for step in range (0,150):
    #still need to explicitly set the density of the guard cell
    big rho[0]=0
    #take the difference in densities
    drho=big rho[1:]-big rho[0:-1]
    big rho[1:]=big rho[1:]-v*dt/dx*drho
    plt.clf()
    plt.axis([0,n,0,1.1])
    plt.plot(x,big_rho[1:])
    plt.draw()
```

- Initialization is identical.
- For simple advection need one extra cell.
- Can even do in-place, saving memory, probably faster, too (see bottom)

Time Steps

- Smaller time step normally more accurate.
- Let's look at solution for some different time steps.
- What happened?
- Behaviour of sharp features often very important - in practice, run test problems with known solutions to verify behaviour.

```
#advect_finite_volume_timestep.py
dt=1.0
big rho=numpy.zeros(n+1)
big rho[1:]=rho
del rho #we can delete the to save space
oversamp=10 #let's do finer timestamps
dt use=dt/oversamp
for step in range (0,150):
    big_rho[0]=0
    for substep in range(0,oversamp):
        drho=big_rho[1:]-big_rho[0:-1]
        big_rho[1:]=big_rho[1:]-v*dt_use/dx*drho
    plt.clf()
    plt.axis([0,n,0,1.1])
    plt.plot(x,big_rho[1:])
    plt.draw()
```

Now What Happens With Big Timestep?

- Try this and see what happens.
- Whoa...

```
#advect_finite_volume_timestep_coarse.py
dt=1.0
big_rho=numpy.zeros(n+1)
big_rho[1:]=rho
del rho #we can delete the to save space
oversamp=0.5 #let's do coarser timestamps
dt_use=dt/oversamp
for step in range(0,150):
    big_rho[0]=0
    drho=big_rho[1:]-big_rho[0:-1]
    big_rho[1:]=big_rho[1:]-v*dt_use/dx*drho
    plt.clf()
    plt.axis([0,n,0,1.1])
    plt.plot(x,big_rho[1:])
    plt.draw()
```

Stability

$$\rho_j^{\text{new}} = \rho_j - (\rho_j - \rho_{j-1}) v dt / dx$$

- You can learn a lot by plugging in sine waves.
- If $\rho_j = \exp(ikj)$, $\rho_j^{\text{new}} = \text{what? define } a = \text{vdt/dx}$
- $\rho_j^{\text{new}} = \exp(ikj) a(\exp(ikj) \exp(ikj) \exp(ikj)) = \exp(ikj) a(\exp(ikj) \exp(ikj))$
- $\rho_j^{\text{new}} = \exp(ikj)^*[1-a(1-\exp(-ik))]$
- If quantity in [] gets bigger than unity, solution will grow with time. Our code would be *unstable* this is bad!

CFL Condition (a=vdt/dx)

- Look at I-a(I-exp(-ik)). I-exp(-ik) is bounded by (0,2)
- if 0, []=1, solution always stable.
- if 2, then []=1-2a can have magnitude >1 for sufficiently large a.
- By construction, a is positive, so can't get []>1. But can get []<-1: 1-2a<-1, 2<2a, or a>1.
- For stability, $a \le 1$, or $dt \le dx/v$. In words, dt has to be shorter than crossing time for cell.
- This is called the Courant–Friedrichs–Lewy (CFL) condition. vdt/dx is the Courant number.

Lagrangian

- An alternative way of solving is to label fluid packets, then follow them with time.
- Labelling usually refers to position at time t=0.
- Particularly simple for advection: $x^{new}=x+vdt$, or $x_j(t)=j+vt$

In Practice

```
#advect lagrangian.py
import numpy
from matplotlib import pyplot as plt
n = 300
#set up density the usual way
rho=numpy.zeros(n)
rho[n/3:(2*n/3)]=1
v = 1.0
dx=1.0
x=numpy.arange(n)*dx
plt.ion()
plt.clf()
plt.axis([0,n,0,1.1])
plt.plot(x,rho)
plt.draw()
dt=1.0
#now take time steps
for step in range(0,150):
    #new particle position is just old position plus velocity
    x=x+v*dt
    plt.clf()
    plt.axis([0,1.5*n,0,1.1])
    plt.plot(x,rho,'*')
    plt.draw()
```

- Note differences in code we just find new x position.
- Since we only follow particles that existed at beginning, we can ignore boundary conditions.

Eulerian vs. Lagrangian

- Eulerian vs. Lagrangian choice can depend on problem
- Mass conservation trivial with Lagrangian codes.
- More work to calculate density in Lagrangian code
- Lagrangian codes can have multiple velocities at same position. Unnatural with Eulerian code.
- In astrophysics, streams of dark matter can cross Lagrangian might work better. Streams of gas can't (the wind only blows in one direction) so Eulerian might be simpler there.

Tutorial Problems (part I, will be due Tue.)

- Write a finite-volume advection solver similar to the one we saw in class. Make this one have a negative velocity, and give it periodic boundary conditions. Plot the solution as a function of time how does it behave? How does the total mass behave with time? (10)
- For an Eulerian advection solver, if we increase the grid resolution by a factor of 10, how does the timestep change to maintain stability? To reach a solution at time t, how does the total amount of work scale with grid resolution dx? (10)
- Show that k=0 (infinitely large scale) is still stable even when CFL condition is violated. (5) What other
 k values are still stable when the CFL condition is violated? (5)
- Write a particle-based advection solver. Start with a uniform density for $0 < x < x_0$. Set the velocity to be equal to v_0 at x=0 and 0 at $x=x_0$. Plot the density as a function of time. Note that the density will be the number of particles per unit length so you will have add the particle positions into a grid. (10)

Tutorial Bonus

• We saw in class how to analytically evolve a sine wave. You can couple this with Fourier transforms to write down the solution to the Eulerian advection problem at any given time for any given dt. Write a code to do this and verify it gives the same solution as your code from problem 1). (5) You can also now analytically write down when a Fourier mode will be suppressed by half its initial amplitude. For timesteps of 0.1 and 0.5 the CFL limit, plot the 50% suppression time vs. k (5).