Total No. of Questions: 8]	290	SEAT No. :
P3605	155601 560	[Total No. of Pages : 3
	155601-560	

T. E. (E & TC)

SYSTEM PROGRAMMING & OPERATING SYSTEM (2015 Course) (Semester - II)

Time : 2 ½ *Hours*] [Max. Marks: 70

Instructions to the candidates:

- Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- *2*) Neat diagrams must be drawn wherever necessary.
- Figures to the right side indicate full marks. 3)
- Assume suitable data if necessary. 4)
- Q1) Explain the terms w.r.t. language processing.
 - Lexical analysis, syntax analysis & semantic analysis with one example.

[7]

- What is function of loader? Explain different loading schemes with b) appropriate examples. [7]
- Differentiate between pre-emptive & non-pre-emptive scheduling [6] c)

Differentiate between macro & function with one example. **Q2)** a)

- What is need for code optimization? Explain methods of intermediate b) code generation. [7]
- Consider following processes where arrival time and burst time are as c) followes. Calculate average waiting time and average turn around time if List Control of the C the processes are scheduled using SJF algorithm. [6]

Process	Burst time	
P1	10	
P2	20	
Р3	50	
P4	70.	

arrival time is 0 for all processes.

- Q3) a) What is dead lock in operating system? Explain in brief dead lock avoidance method. [6]
 - b) Explain Dinning Philosophers problem with solution. [6]
 - c) Find out the safe sequence for execution of 3 processes using bankers algorithm. [6]

Maximum resources are.

$$R_{1} = 15$$

$$R_2 = 08$$

Allocation Matrix

	R	R_2	
$P_{1_{\mathcal{C}}}$	2	1	
P_2	3	2	
\mathbb{P}_3	3	0	

Maximum Required Matrix

	R_1	R_2
\mathbf{P}_{1}	58	6
P ₂	8	5
P_3	4	8

OR

- Q4) a) What is semaphore? Explain how semaphore is used to solve critical section problem. [6]
 - b) Write a note on reader writer problem in process synchrorization. [6]
 - c) Find out safe sequence for execution of three processes using bankers algorithm. Number of instances of each resource types are [6]

$$R_1 = 7, R_2 = 7, R_3 = 10.$$

1	_			
	R_1	R_2	R_3	
\mathbf{P}_{1}	2	2	3	
P ₂	2	0	3	
P_3	1	2	4	

Allocation Matrix

R_1	R_{2}	R ₃
3	6	8
4 ,	3	3
3	4	4

Maximum Required Matrix

Q5) a) Explain concept of paging & give significant advantages & disadvantages of the paging mechanism[6]

	0)	address space are 256 page size of 2 ¹⁰ bytes. How many bits are in	the
	,	logical address.	[6]
	c)	Consider the page reference string.	[4]
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9
		Page frame size = 3	
		Calculate page faults using <u>LRU</u> .	
		OR	
Q6)	a)	Consider the page reference string as following	[6]
		2 3 2 1 5 2 4 5 3 2 5 2	
		Page frame size = 3	
		Calculate page faults using FIFO.	
	b)	Given the memory partitions of size 100k, 500k, 200k, 300k, 600	k in
	1	order. How would each of the first fit, best fit worst fit algorithms p	
	\	the process of 300k, 530k, 190k, 425k. Which algorithm well make r	nost
		efficient use of memory? Comment.	[6]
	c)	Differentiate between paging & segmentation.	[4]
Q 7)	a)	Explain linux file system.	[6]
~ /	b)	Give significance of disc sheduling algorithms. Consider the follow	On
		disc request sequence for a disc with 100 tracks.	[6]
		45 21 67 90 4 50 89 52 61 87 25	
		Head pointer is at 50	0
		Calculate avg. seek length. With FCFS algorithm.	
	c)	Explain different directory structures and directory operations.	[4]
	•)	OD	[.]
(8)	o)	Explain in brief:	[6]
Q 8)	a)	Explain in orier.	[6]
		i) Interrupt driven I/O	
	1.\	Explain in brief: i) Interrupt driven I/O ii) I/O using DMA Explain I/O sofware layer Write a note on RAID disc	[7]
	b)	Explain I/O sofware layer	[6]
	c)	Write a note on RAID disc	[4]
		442 442 442 O	