DOI: 10.1002/chem.200702013

## Controlled Direct Synthesis of C-Mono- and C-Disubstituted Derivatives of $[3,3'-Co(1,2-C_2B_9H_{11})_2]^-$ with Organosilane Groups: Theoretical Calculations Compared with Experimental Results

Emilio José Juárez-Pérez, [a] Clara Viñas, [a] Arántzazu González-Campo, [a] Francesc Teixidor, [a] Reijo Sillanpää, [b] Raikko Kivekäs, [c] and Rosario Núñez\*[a]

Abstract: Mono- and dilithium salts of  $[3,3'-Co(1,2-C_2B_9H_{11})_2]^-$ , (1<sup>-</sup>), react with different chlorosilanes (Me<sub>2</sub>SiHCl, Me<sub>2</sub>SiCl<sub>2</sub>, Me<sub>3</sub>SiCl and MeSiHCl<sub>2</sub>) with an accurate control of the temperature to give a set of novel C<sub>c</sub>-mono- (C<sub>c</sub>= C<sub>cluster</sub>) and C<sub>c</sub>-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions:  $[1-SiMe_2H-3,3'-Co(1,2 C_2B_9H_{10})(1',2'-C_2B_9H_{11})^-$  (3<sup>-</sup>); [1,1'- $\mu$ - $SiMe_2-3,3'-Co(1,2-C_2B_9H_{10})_2$  $[1,1'-\mu\text{-SiMeH-}3,3'\text{-Co}(1,2\text{-C}_2B_9H_{10})_2]^ (5^{-});$  [1-SiMe<sub>3</sub>-3,3'-Co(1,2-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>)- $(1',2'-C_2B_9H_{11})$ ]<sup>-</sup> (6<sup>-</sup>) and  $[1,1'-(SiMe_3)_2 3,3'-\text{Co}(1,2-\text{C}_2\text{B}_9\text{H}_{10})_2$ ] (7<sup>-</sup>). In a similar way, the  $[8.8'-\mu-(1'',2''-C_6H_4)-1.1'-\mu SiMe_2-3,3'-Co(1,2-C_2B_9H_9)_2]^{-1}$  $[8,\!8'\text{-}\mu\text{-}(1'',\!2''\text{-}C_6H_4)\text{-}1,\!1'\text{-}\mu\text{-}SiMeH\text{-}3,\!3'\text{-}$  $Co(1,2-C_2B_9H_9)_2]^-$  (9<sup>-</sup>) and [8,8'- $\mu$ - $(1'',2''-C_6H_4)-1-SiMe_3-3,3'-Co(1,2-1)$  $C_2B_9H_9(1',2'-C_2B_9H_{10})$  (10<sup>-</sup>) have been prepared from [8,8'-\mu-(1",2"-

 $C_6H_4$ )-3,3'-Co(1,2- $C_2B_9H_{10}$ )<sub>2</sub>]  $(2^{-}).$ Thus, depending on the chlorosilane, the temperature and the stoichiometry of nBuLi used, it has been possible to control the number of substituents on the C<sub>c</sub> atoms and the nature of the attached silyl function. All compounds were characterised by NMR and UV/ Vis spectroscopy and MALDI-TOF mass spectrometry; [NMe<sub>4</sub>]-3, [NMe<sub>4</sub>]-4 and [NMe<sub>4</sub>]-7 were successfully isolated in crystalline forms suitable for X-ray diffraction analyses. The 4<sup>-</sup> and 8<sup>-</sup> ions, which contain one bridging -μ-SiMe<sub>2</sub> group between each of the dicarbollide clusters, were unexpectedly ob-

**Keywords:** carboranes • cluster compounds • density functional calculations • sandwich complexes • silanes

tained from the reaction of the monolithium salts of 1<sup>-</sup> and 2<sup>-</sup>, respectively, with Me<sub>2</sub>SiHCl at -78°C in 1,2-dimethoxyethane. This suggests that an intramolecular reaction has taken place, in which the acidic C<sub>c</sub>-H proton reacts with the hydridic Si-H, with subsequent loss of H<sub>2</sub>. Some aspects of this reaction have been studied by using DFT calculations and have been compared with experimental results. In addition, DFT theoretical studies at the B3LYP/6-311G(d,p) level of theory were applied to optimise the geometries of ions 1-10 and calculate their relative energies. Results indicate that the racemic mixtures, rac form, are more stable than the meso isomers. A good concordance between theoretical studies and experimental results has been achieved.

[a] E. J. Juárez-Pérez,\* Prof. C. Viñas, Dr. A. González-Campo, Prof. F. Teixidor, Dr. R. Núñez Institut de Ciència de Materials de Barcelona CSIC, Campus U.A.B., 08193 Bellaterra (Spain) Fax (+34)935-805-729 E-mail: rosario@icmab.es

[b] Dr. R. Sillanpää Department of Chemistry, University of Jyväskylä 40351, Jyväskylä (Finland)

[c] Prof. R. Kivekäs Department of Chemistry, P.O. Box 55 University of Helsinki, 00014 (Finland)

 $[^{\scriptscriptstyle +}]$  Emilio José Juárez-Pérez is enrolled in the Ph.D. program of the U.A.B.

## Introduction

In the last four decades, interest in the functionalisation and application of the cobaltabis(dicarbollide) ion **1**<sup>-</sup> and its derivatives has grown due to their extraordinary chemical, thermal and radiation stability, and their similar properties to the inorganic superacids.<sup>[1]</sup> In addition, these compounds are hydrophobic<sup>[2,3]</sup> and weakly coordinating anions,<sup>[4]</sup> which have made them appropriate to be used as solid electrolytes,<sup>[3]</sup> strong non-oxidizing acids,<sup>[3]</sup> doping agents in conducting polymers<sup>[5]</sup> and extractants of radionuclides.<sup>[6]</sup> Cobaltabis(dicarbollide) derivative have also been used in diverse applications such as medical imaging and radiothera-



