PROGRAMACIÓN DINÁMICA CONTINUA DETERMINISTA

Objetivo— El estudiante, al finalizar el caso de estudio, debe ser explicar detalladamente los principios básicos de la metodología y realizar su aplicación a la optimización de sistemas simples.

Tipo de actividad— Grupo de estudio.

Formato— Grupos de tres (3) personas.

Duración—30 min.

Descripción— Se desea optimizar la operación de un sistema de generación conformado por una planta hidráulica y una planta térmica. La información detallada del sistema es la siguiente:

Planificación: 4 etapas.

Planta hidráulica: Vol. máximo (V*) = 100, Caudal máx. turbinado (Q*) = 50, Factor conversión (ρ) = 1

Aporte por etapa $(A_i) = \{21, 15, 12, 18\}$, Volumen inicial (Vo) = 75.

Planta térmica: Generación máxima (G^*) = 45, Costo combustible (CC) = 15.

Racionamiento: Costo racionamiento (CR) = 1000 para todas las etapas.

Demanda: 50 para todas las etapas

Definición de variables:

V_p	Volumen al final de la etapa p .
\dot{Q}_p	Caudal turbinado en la etapa p .
S_p	Volumen vertido en la etapa p .
GH_p	Generación hidráulica en la etapa p .
A_p	Aporte en la etapa p .

 G_p Generación térmica en la etapa p. R_p Energía racionada en la etapa p.

 FCI_p Función de costo inmediato para la etapa p. FCF_p Función de Costo Futuro para la etapa p.

SOLUCIÓN

Se discretiza el volumen del embalse en $V = \{0, 25, 50, 75, 100\}$.

ETAPA 4

Para cada volumen inicial de embalse en la etapa 4 –o sea el volumen final de la Etapa 3: $V_3 = \{0, 25, 50, 75, 100\}$ se soluciona el modelo de la Etapa 4 con $FCF_4(V_4) = 0$.

$$\min z = +1000 \, R_4 \quad +15 \, G_4 \quad +FCF_4(V_4) \,, \qquad S/a: \begin{cases} +R_4 \quad +G_4 \quad & +Q_4 \quad & = 50 \\ & \quad +V_4 \quad +Q_4 \quad +S_4 \quad = 18 + V_3 \\ & \quad +Q_4 \quad & \leq 50 \\ & \quad +G_4 \quad & \leq 45 \end{cases}$$

FCI(4) FCF(4) FCF(3) V(3) R(4) G(4) V(4) Q(4) **S(4)**

ETAPA 3

$$\min z = +1000 \ R_3 \quad +15 \ G_3 \quad +FCF_3(V_3), \quad \text{S/a:} \begin{cases} +R_3 \quad +G_3 \qquad & +Q_3 \qquad & = 50 \\ & +V_3 \quad +Q_3 \quad & +S_3 \quad = 12 + V_2 \\ & +Q_3 \quad & \leq 50 \\ & +G_3 \quad & \leq 45 \end{cases}$$

$$+Q_3$$
 = 50
 $+V_3$ $+Q_3$ $+S_3$ = 12 + V_2
 $+Q_3$ \leq 50
 \leq 45

V(2)	R(3)	G(3)	V(3)	Q(3)	S(3)	FCI(3)	FCF(3)	FCF(2)
0	0	38	0	12	0	570	480	1050
25	0	30	17	20	0	445	230	675
50	0	7	19	43	0	146	154	300
75	0	0	37	50	0	0	55	55
100	0	0	62	50	0	0	0	0

ETAPA 2

$$\min z = +1000 \, R_2 \quad +15 \, G_2 \quad +FCF_2(V_2), \quad \text{S/a:} \begin{cases} +R_2 & +G_2 & +Q_2 & =50 \\ & +V_2 & +Q_2 & +S_2 & =15+V_1 \\ & & +Q_2 & \leq 50 \\ & +G_2 & \leq 45 \end{cases}$$

V(1)	R(2)	G(2)	V(2)	Q(2)	S(2)	FCI(2)	FCF(2)	FCF(1)
0	0	45	10	5	0	675	900	1575
25	0	45	35	5	0	675	525	1200
50	0	35	50	15	0	405	420	825
75	0	10	50	40	0	0	450	450
100	0	0	65	50	0	0	153	153

ETAPA 1

$$\min z = +1000 \, R_1 \quad +15 \, G_1 \quad +FCF_1(V_1) \quad \text{S/a:} \begin{cases} +R_1 & +G_1 & & +Q_1 & & =50 \\ & & +V_1 & +Q_1 & +S_1 & =21+V_0 \\ & & & +Q_1 & & \leq 50 \\ & & & \leq 45 \end{cases}$$

Solución: $R_1 = 0$; $G_1 = 9.7$; $V_1 = 55.7$; $Q_1 = 40.3$; $S_1 = 0$; $FCI_1 = 145$; $FCF_1 = 740$; $FCI_1 + FCF_1 = 885$.