New Sinod

New Sinod - Basic

1 Preliminaries

1.1 Color index

1.2 Abbreviation

1.3 Notation

1.3.1 Object

1. Empty object

2. Interior

1.3.2 Operator

1. Operation

2. Assignment

$a \stackrel{\cup}{=} b \quad a = a \cup b$ $a \stackrel{\cap}{=} b$ $a = a \cap b$

3. Increment

$\begin{vmatrix} + \\ +a \end{vmatrix}$	++a
a_{+}^{+}	a++
-a	a
a_	a

4. Comparison

$a \equiv b$	a is equal to b
$b \neq b$	a is not equal to b

5. Multiplication

$a \times matrix$	scalar product
$coordinates \times coordinates$	inner product
$matrix \times matrix$	matrix multiplication

6. Negation

 $\neg a \mid \text{not } a$

7. Absolute value $\mid \mid$

real	absolute value of real	
array	number of elements in $array$	
matrix	determinant of matrix	
xy	norm of xy	
Point2D	norm of Point2D	
Segment2D	length of Segment2D	

1.3.3 Array

1. $\left[\begin{array}{c|c} value_1 & value_2 \end{array}\right]$

4. We regard array as a set if there is no confusion.

1.3.4 Control

1. Conditional

IF	condition 1	excution 1
	condition 2	excution 2
	excution 3	

2. **For**

3. Switch

4. While

1.3.5 Function

1. Define

2. Call

1.3.6 Class

1. Define

2. Assign

- $\boxed{1 \quad \mathbf{name} \, (value)}$
- 2 We regard **name** as **name**() if there is no confusion

3. Access

2 We regard method as method() if there is no confusion

4. Extend

 $this \blacktriangleleft parent$

1.4 Types

1.4.1 Boolean

1. Every expression is either TH or FA.

2 JSON

2.1 Cartesian2D

menu		
elements		
axis		
grid		
	color	text background
font	size	
iont	decoration	underline bold italic
position	left top	
margin	top bottom left right	
size		
ratio		
rotation		
flip	х	
bounds	x min max	
2341143	y min max	
display		
elmAlign		
interaction	zooming panning rotation	

2.2 Angle2D

	center	х
coords	start	х
	end	х
	color	
	height	
	curve	
	rigntAn	gle
	fill	
style	dash	
	arrow	start end
	marker	
	markerl	Hegiht
	interact	ive
interaction	selected	

2.3 Arc2D

measure			
coords	center	x y	
coords	start	У	
angle			
	color		
	dash		
style	arrow	start end	
	marker1		
	marker2		
	marker3		
interaction			

2.4 Curve2D

domain	x min max y min max	
points		
equation		
style	color dash	
interaction	movable-mode selectable removable	
	domain	

2.5 Face2D

coords			
interaction	interactive		
	selected		
	selectable		
	movable		
style	color		

2.6 Label2D

label	
coords	х
target	х
arrowColor	
dash	

2.7 Measure2D

2.8 MeasureArc2D

	height	
	color	
	dash	
		start
style	arrow	end
	marker	
	handle	
	handleDash	
interaction	selectable	
interaction	movable	

2.9 Point2D

coord	х
style	fill color
interaction	selected selectable movable
	removable

2.10 Region2D

curves	[object]		
fill	[< fill > fill]		
style	color		
interaction	selectable		

2.11 Segment2D

measure		
coords	start x y	
coolus	end x y	
	color	
	dash	
style	arrow	start end
	marker1	
	marker2	
	marker3	
interaction	interactive	
interaction	selected	

3 Structure

3.1 Cartesian2D

type	Cartesian2D
elements	[]
rotation	
size	
zoom	

3.2 Angle-free

type	arc-free	
_id		
struct	coords	center
	style	height rightAngle

3.3 Arc-free

type	angle-free		
_id			
struct	coords	center	x y x y
	angle		
	height		

3.4 Curve-free

type	curve-free
_id	
struct	

3.5 Face-free

type	face-free		
_id			
struct	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

3.6 Label-free

Laber free			
type	label-free		
_id			
	coords	х	
struct	target	x y	
	label	type content	
	dependency	[]	

3.7 Point-free

type	point-free		
_id			
struct	coord	×	

3.8 Region-free

type	region-free
_id	
struct	

3.9 Segment-free

type	segment-free		
_id			
struct	coords	start	x y x y
	measure	height	

4 Basic

4.1 Math

4.1.1 numeric

1. Definition numeric

2. Note

We omit $\mathbf{numeric} \triangleright$ if there is no confusioion.

method

3. Method

 $\boxed{1}$ mod: compute remainder of division $real_1$ by $real_2$

 $\boxed{2}$ sign: sign of real

4.1.2 angle (radian)

1. Definition

2. Note

We omit $\mathbf{angle} \triangleright$ if there is no confusioion.

3. Method

 $\fbox{1}$ polar: polar coordinate angle of angle

4.1.3 xy

1. Descritption

- $\boxed{1}$ A class to represent coordinates in xy-plane.
- $\boxed{2}$ For simplicity, we regard it as a point $\left[\begin{array}{c|c} x & y \end{array}\right]$ in xy-plane.

2. Definition

3. Method

1 construct

 $\boxed{2}$ angle: vector angle of this

3 rotation: rotated this arround center with angle angle anticlockwisely

 $\boxed{4}$ vector_angle: vector angle of xy-this

4.1.4 Bezier

1. Definition

2. Method

1 construct

2 cener: center of this

 $\boxed{4}$ height: height of this

 $\boxed{5}$ interval: interval of this with given axis

6 quadratic: quadratic equation of this

 $\boxed{7}$ vector_tangent: tangent vector at t

4.1.5 index

1. **Definition**

4.1.6 Interval

1. Definition

2. Method

1 construct

 $\boxed{2}$ extension: compute the minimal interval that contains this and real

 $\boxed{3}$ indicator: determine if this contains real or not

 $\boxed{4}$ translation: translated this

4.1.7 Interval_angle

1. **Definition**

2. Method

3 mid: mid angle of this

4.1.8 Matrix

1. Description

 $\begin{bmatrix} M[0][0] & M[0][1] \\ M[1][0] & M[1][1] \end{bmatrix}$ We regard a 2 × 2 matrix M as a 2-dimensional matrix with M=

2. Definition

Matrix ∢ Array	array
	method

3. Method

4.1.9 Poset

1. Definition

2. Method

4.1.10 Relation

1. Definiton

2. Method

1 construct

4.1.11 Quadratic

1. Definition

2. Method

1 construct

 $\boxed{2}$ discriminat: compute discriminant of this

 $\boxed{3}$ evaluation: eveluate this with x

 $\boxed{4}$ image: image of this with domain

 $\boxed{5}$ preimage: preimage of this with codomain

 $\boxed{6}$ solution: solve equation $this \equiv constant = 0$

${\bf 4.1.12}\quad {\bf Union_interval_angle}$

1. Definition

2. Method

 $\boxed{2}$ complement: complement of this

 $\fbox{3}$ max: max size interval_angle in this

New Sinod - Figure

1	Figure

1.1 Angle2D

2. Method

 $engle_start = this \blacktriangleright \begin{bmatrix} center \\ vector_angle(this \blacktriangleright s) \end{bmatrix}$ angle_end = this ▶ center vector_angle(this ▶ end)

angle_end = this ▶ angle_end angle_start

3 height_contact: compute height when an object contacts

2. Method

1 construct

1.3 Curve2D 1. Definition

1. Delinicion	
	type = Curve2D
	equation
Curve2	bounds
Curvez	key
	key_object
	key_label
1	.1. 1

1.4 Face2D 1. Definition

. Method

1.5 Label2D

	$parity = \text{mod} \left(\left\lfloor \frac{\pi}{2} \times angle Jabel \right\rfloor \right)$
	lengths_label = index(direction)
	$lengths.label \blacktriangleright left = \boxed{ \left[\begin{array}{c c} parity & 1-parity \\ this \blacktriangleright size \end{array} \right]}$
	$lengths_label \blacktriangleright right = \boxed{\times} \left[\begin{array}{c} \left[\begin{array}{c} 1 - parity \mid parity \end{array} \right] \\ this \blacktriangleright size \end{array} \right]$
	$widths_label = index(direction)$
	widths Jabel \blacktriangleright left = $\boxed{\times}$ $\begin{bmatrix} lengths Jabel \blacktriangleright left \\ cos(angles Jabel \blacktriangleright left) \end{bmatrix}$
	$widths \textit{_label} \blacktriangleright right = \boxed{\times} \begin{bmatrix} lengths \textit{_label} \blacktriangleright right \\ cos(angles \textit{_label} \blacktriangleright right) \end{bmatrix}$
	heights_label = index(direction)
1 5 3	$\begin{array}{c} \textit{heights} . \textit{label} \blacktriangleright \textit{left} = \\ \times \\ \boxed{ \begin{array}{c} \textit{lengths} . \textit{label} \blacktriangleright \textit{left} \\ \sin(\textit{angles} . \textit{label} \blacktriangleright \textit{left}) \end{array} } \end{array} }$
	$heights \ \ \bot \ \ $
	$angle = \min \left(\begin{array}{c} angles Jabel \triangleright left \\ angles Jabel \triangleright right \end{array} \right)$
	$sign = sign \left(\begin{array}{c} \square \left[\begin{array}{c} angles _label \blacktriangleright left \\ angles _label \blacktriangleright right \end{array} \right] \right)$
	$length = \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \max \left(\begin{array}{c} sign \\ 0 \end{array} \right) \\ lengths, label \\ \end{array} \right] \end{array} \right] \\ \left[\begin{array}{c} \min \left(\begin{array}{c} sign \\ 0 \end{array} \right) \\ lengths, label \\ \end{array} \right] \end{array} \right]$
	$x \textit{Label_min} = \boxed{\dot{\div}} \left[\begin{array}{l} \frac{1}{2} \times length \\ \cos \left(angle + \frac{\pi}{4} \right) \end{array} \right]$
	$a = \boxed{+} \left[\begin{array}{l} \frac{1}{2} \times Segment2D \\ distance_min \end{array} \right]$
	$\boxed{\equiv} \left[\begin{array}{l} b \\ \frac{1}{2} \times Measure2D \blacktriangleright height \end{array} \right]$
	$ \equiv \left[\begin{array}{l} y _label_min \\ -\frac{b}{a^2} \times (x _label_min)^2 + b \end{array} \right] $
	$length_diagonal_half = \frac{1}{2} \times \sqrt{\boxed{-} \left[\begin{array}{c} \left(lengths_label \blacktriangleright left\right)^2 \\ \left(lengths_label \blacktriangleright right\right)^2 \end{array} \right]}$
1 5 4	$angle_diagonal = vector_angle \left(\begin{array}{c} lengths_Jabel \blacktriangleright right \\ lengths_Jabel \blacktriangleright left \end{array} \right)$
	$label_min = \mathbf{x}\mathbf{y} \begin{pmatrix} x_label_min \\ y_label_min \end{pmatrix}$
	$translation = \mathbf{x}\mathbf{y} \left(\begin{array}{c} length_diagonal_half \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	$translation_center = \boxed{+} \left[\begin{array}{c} label_min \\ translation \end{array} \right] \blacktriangleright \text{rotation} \left(\begin{array}{c} center_rotation \\ -angle_rotation \end{array} \right)$
	this ▶ center

	$distance_min_center = \boxed{+} \left[\begin{array}{c} distance_min \\ radius_arc \end{array} \right]$
2 1	$ \equiv \left[\begin{array}{l} angle_rotation \\ \frac{\pi}{2} - interval_angle \blacktriangleright \text{mid} \end{array} \right] $
	$angle_arc = \max \left(\begin{array}{c} 0 \\ \text{polar} \left(\begin{array}{c} + \\ -\pi \end{array} \middle[\begin{array}{c} interval_angle \blacktriangleright start \\ angle_rotation \end{array} \right] \right) \right)$
	$angle_label = \boxed{+} \left[\begin{array}{c} this \blacktriangleright rotation \\ angle_rotation \end{array} \right]$
	$angles Jabel ightharpoonup right = mod \left(\frac{angle Jabel}{\frac{\pi}{2}} \right)$
	$ \equiv \left[\begin{array}{l} angles \ Label \ \blacktriangleright \ left \\ \frac{\pi}{2} - angles \ Label \ \blacktriangleright \ right \end{array} \right] $
	$parityJabel = \operatorname{mod}\left(\begin{bmatrix} \frac{2}{\pi} \times angleJabel \\ 2 \end{bmatrix} \right)$
	$lengths_label = \mathbf{index}(direction)$
	$lengths \textit{_Jabel} \blacktriangleright left = \biguplus \begin{bmatrix} \boxed{ & & 1 - parity \textit{_Jabel} \\ & & & & \\ & & & & \\ & & & & \\ \boxed{ & & & & \\ \hline{ & & & & \\ \hline{ & & & & \\ \hline{ &$
	$lengths \textit{_Jabel} \blacktriangleright right = \bigoplus \left[\begin{array}{c} \left[\times \right] & parity \textit{_Jabel} \\ this \blacktriangleright & size \\ x \\ \end{array} \right] \\ \left[\times \left[\begin{array}{c} 1 - parity \textit{_Jabel} \\ this \blacktriangleright \\ size \\ y \\ \end{array} \right] \\ \end{bmatrix}$
	$widths Jabel = \mathbf{index}(direction)$
2 2	$widths \textit{_label} \blacktriangleright left = \boxed{\times} \left[\begin{array}{c} lengths \textit{_label} \blacktriangleright left \\ cos(angles \textit{_label} \blacktriangleright left) \end{array} \right]$
	$widths_label \blacktriangleright right = \boxed{\times} \left[\begin{array}{c} lengths_label \blacktriangleright right \\ \cos(angles_label \blacktriangleright right) \end{array} \right]$
	$heights_label = index(direction)$
	$heights_label \blacktriangleright left = \boxed{\times \begin{bmatrix} lengths_label \blacktriangleright left \\ sin(angles_label \blacktriangleright left) \end{bmatrix}}$
	$heights_label \blacktriangleright left = \left[\times \left[\begin{array}{c} lengths_label \blacktriangleright right \\ sin(angles_label \blacktriangleright right) \end{array} \right]$
	widths_label_min = index(direction)
	$angle_label_min = \max \left(\begin{array}{c} angle_larc \\ angles_label \blacktriangleright left \\ angles_label \blacktriangleright right \end{array} \right)$
	$widths \textit{Jabel_min} \blacktriangleright left = \boxed{ \begin{bmatrix} widths \textit{Jabel} \blacktriangleright left \\ \vdots \\ sin(angle \textit{Jabel_min}) \end{bmatrix} }$
	$widths \textit{_label_min} \blacktriangleright right = \boxed{ \begin{bmatrix} widths \textit{_label} \blacktriangleright right \\ \vdots \\ heights \textit{_label} \blacktriangleright right \\ \sin(anote \textit{_label_min}) \end{bmatrix} }$

	$x.label_min = \boxed{-} \left[\begin{array}{c} widths.label_min \blacktriangleright left \\ widths.label_min \blacktriangleright right \end{array} \right] \times \frac{1}{2}$	
	$yJabel_min_fit = \underbrace{+} \begin{bmatrix} \times \begin{bmatrix} xJabel_min \\ \tan(angle_arc) \end{bmatrix} \\ distance_min \end{bmatrix}$	
	$xs_label = index(direction)$	
	$xs.label \blacktriangleright left = \boxed{ \begin{bmatrix} x.label.min \\ widths.label \blacktriangleright left \end{bmatrix}}$	
	$xs.Label ightharpoonup right = \boxed{+} \left[\begin{array}{c} x.Label.min \\ widths.Label ightharpoonup right \end{array} \right]$	
2 3	$y Jabel_contact_min = \sqrt{\max \left(\begin{array}{c} 0 \\ \square \end{array} \left[\begin{array}{c} (distance_min_center)^2 \\ (x Jabel_min)^2 \end{array} \right] \right)}$	
	$ys_label_contact = index(direction)$	
	$ys \textit{Label_contact} \blacktriangleright left = \sqrt{\max \left(\bigcap_{i=1}^{0} \underbrace{\left(\textit{distance_min_center} \right)^2 \ \right]} \right)}$	
	$ys.label.contact \blacktriangleright left = \sqrt{\max \left(\bigcap_{i=1}^{0} \left[\frac{(distance_min_center)^2}{(x.label \blacktriangleright right)^2} \right] \right)}$	
	$y.labelcontact.min \\ y.labelcontact \rightarrow left \\ \Box y.s.labelcontact \rightarrow left \\ heights.label \rightarrow left \\ ys.labelcontact \rightarrow right \\ heights.label \rightarrow right $	
	$ \begin{array}{c c} & -distance_min_center \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	
	[≡] [intervals_x_min_Langent index(direction)]	
2 4	$intervals_x_min_tangent \blacktriangleright left = \mathbf{Interval} \left(\boxed{ \begin{bmatrix} interval_x_min_contact \blacktriangleright min \\ widths_label \blacktriangleright left \\ interval_x_min_contact \blacktriangleright min \\ \end{bmatrix}} \right]$	
	$intervals_x_min_tangent \blacktriangleright right = \mathbf{Interval} \left(\begin{array}{l} interval_x_min \blacktriangleright max \\ \\ + \\ interval_x_min_contact \blacktriangleright max \\ widths_labet \blacktriangleright right \end{array} \right)$)
	$indicators_tangent = \mathbf{index}(direction)$	
	$indicators \bot angent \blacktriangleright left = intervals _x_min \bot angent \blacktriangleright \begin{bmatrix} left \\ indicator(x_label_min) \end{bmatrix}$	
	$indicators_tangent \blacktriangleright right = intervals_x_min_tangent \blacktriangleright \left[\begin{array}{c} right \\ indicator(x_Jabel_min) \end{array} \right]$	

	$ys_tangent = index(direction)$	
	$ys.tangent \triangleright left = \boxed{\times} \begin{bmatrix} distance_min_center \\ \sin(angles_label \triangleright left) \end{bmatrix}$	
	$ys.tangent \blacktriangleright right = \boxed{\times} \left[\begin{array}{c} distance.min.center \\ \sin(angles.Jabel \blacktriangleright right) \end{array} \right]$	
	$y.label.min.langent = \begin{bmatrix} \boxed{\times} & indicators.tangent \blacktriangleright left \\ ys.tangent \blacktriangleright left \\ \hline{\times} & indicators.tangent \blacktriangleright right \\ ys.tangent \blacktriangleright right \end{bmatrix}$	
	$y . label.min = \max \left(\begin{array}{l} y . label.min.fit \\ y . label.min.contact \\ y . label.min.langent \end{array} \right)$	
2 5	$length_diagonal_half = \frac{1}{2} \times \sqrt{\square \left[\frac{\left(legnths_label \blacktriangleright left\right)^2}{\left(lengths_label \blacktriangleright right)^2} \right]}$	
	$angle_diagonal = vector_angle \left(\begin{array}{c} lengths_label \blacktriangleright right \\ lengths_label \blacktriangleright left \end{array} \right)$	
	$label_min = \mathbf{xy} \begin{pmatrix} x_label_min \\ y_label_min \end{pmatrix}$	
	$translation = \mathbf{x}\mathbf{y} \begin{pmatrix} length . diagonal . half \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
	$center_rotation = \mathbf{x}\mathbf{y} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
	$translation_center = \begin{bmatrix} + \end{bmatrix} \begin{bmatrix} label_min \\ translation \end{bmatrix} \blacktriangleright \text{rotation} \begin{pmatrix} center_rotation \\ -angle_rotation \end{pmatrix}$	

1.6 Line2D
1. Definition

1.7 Measure2D 1. Definition

	type = Measure2D
	start
3.4	end
Measure2D	height
	key_object
	key_label
	method

	CO	start end height
		$\equiv \begin{bmatrix} this \triangleright start \\ start \end{bmatrix}$
1		\equiv $\begin{bmatrix} this \triangleright end \\ end \end{bmatrix}$

		line_Segment2D Segment2D_moved ▶ line	
		$sign_height$ $sign(interval_y_Segment2D \triangleright m$	aar)
4	Segm	$ent 2 D_intersection_label_this =$	
	IF		$[action Jabel this] \\ action Jabel this $
,	neigh	$t.Segment2D.start = \boxed{\div}$	$ \begin{bmatrix} Segment2D.intersection \blacktriangleright start \\ (interval.x.this \blacktriangleright max)^2 \\ (interval.x.this \blacktriangleright max)^2 \\ \left(Segment2D.intersection \blacktriangleright \left[\begin{array}{c} start \\ x \end{array} \right] \right)^2 \\ \end{bmatrix} $
,	ieigh	$t_Segment2D_end = $ $ = \begin{bmatrix} \times \\ \div \\ - \end{bmatrix} $	$ \begin{array}{c} \textit{Segment2D.intersection} \blacktriangleright \textit{end} \\ \textit{(interval.x.this} \blacktriangleright \textit{max})^2 \\ \textit{(interval.x.this} \blacktriangleright \textit{max})^2 \\ \textit{(Segment2D.intersection} \blacktriangleright \begin{bmatrix} \textit{end} \\ x \end{bmatrix} \end{pmatrix}^2 \\ \end{bmatrix} $
		height_Segment2D_tangent	
	IF	[line_Segment2D \triangleright b]	$A = \left\{ \begin{array}{l} -line_Segment2D \triangleright a \\ line_Segment2D \triangleright b \end{array} \right\}$ $C = \left\{ \begin{array}{l} -line_Segment2D \triangleright e \\ line_Segment2D \triangleright b \end{array} \right\}$ $D_height = \left[\begin{array}{c} C^2 \\ A \times (interval_x lhis \triangleright max)^2 \end{array} \right]$
	IF	\neq $\begin{bmatrix} the Segmen 2D $	$ \mathbf{F} D \text{\it Jheight} \geq 0 \qquad \begin{vmatrix} sign.C & sign \begin{pmatrix} C \\ 1 \end{pmatrix} \\ \times = \frac{1}{\sqrt{2}} \left[\frac{A \times (interval.xJhis \blacktriangleright max)^2}{\sqrt{D.height}} \right] + C \\ \times \left[\frac{sign.C}{\sqrt{D.height}} \right] + C \end{vmatrix}$ $ \mathbf{F} \subseteq \begin{bmatrix} x \\ Segment2D.intersection \blacktriangleright interval(x) \end{bmatrix} \text{\it height_Segment2D.tangent} = \frac{1}{2} \times \left[\frac{sign.C}{\sqrt{D.height}} \right] + C $
,	reigh	$t_Segment2D = min$ height_S	egment2D_start egment2D_end egment2D_langent
/	neigh	$t_abs = min \begin{pmatrix} height_label_this \\ height_Segment2 \end{pmatrix}$	
,	neigh		n.height]
,	neigh		ign_height)
I	RE	heights	*

1.8 MeasureArc2D

1. Definition

| type = MeasureArc2D | center | start | angle | height | key_object | key_label | method |

2. Method

1.9 Path2D

1.10 Point2D

1. Definition

1.11 Rectangle2D

1. Definition

Rectangle | type = Rectangle2D | center | size | rotation | method | method

2. Method

1.12 Sector2D 1. Definition

1.13 Segment2D

1. Definition

2. Method

New Sinod - Cartesian2D

1 Defnition

	type = Cartesian2D
	structure
Cartesian2D	rotation
Cartesian2D	size
	zoom
	sizes
ŀ	method

2 Method

1. construct

2. algorithm: algorithm to apply

3. object: convert structure to object

		$Angle2D \blacktriangleright center = \mathbf{x}\mathbf{y}$	structure struct coords center x struct coords
		angle_	structure center y
			tructure struct coords start
1 a	ngle-free	$Angle2D ightharpoonup start = \mathbf{x}\mathbf{y}$ $angle_s$	tructure struct coords start y
		angle_str	ructure struct coords end
		$Angle2D \blacktriangleright end = \mathbf{xy}$ $angle_str$	struct
		$Angle2D \blacktriangleright height = angle_struct$	ure style height
		$Angle2D \blacktriangleright right = angle_structu$	$re \left[egin{array}{c} struct \\ style \\ rightAngle \end{array} ight]$
		RE Angle2D	

		arc.structure object_structure
	arc-free	Arc2D = Arc2D
2		$Arc2D \blacktriangleright center = \mathbf{x}\mathbf{y} \left(\begin{array}{c} arc_structure \\ arc_structure \\ \\ arc_structure \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		$Arc2D \blacktriangleright start = \mathbf{xy} \begin{pmatrix} arc_structure & struct \\ arc_structure & start \\ x & \\ arc_structure & start \\ y & \\ y &$
		$angle_sign = sign \left(arc_structure \middle[angle \] \right)$
		angle_abs = arc_structure
		$Arc2D \blacktriangleright angle = \boxed{\times} \left[\begin{array}{c} angle_sign \\ angle_abs \\ \frac{\pi}{180} \end{array} \right]$
		$ \boxed{ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
		$Arc2D \blacktriangleright measure = \mathbf{MeasureArc2D} \begin{pmatrix} Arc2D \blacktriangleright center \\ Arc2D \blacktriangleright start \\ Arc2D \blacktriangleright angle \\ arc_structure \begin{bmatrix} struct \\ height \end{bmatrix} \end{pmatrix}$
		RE Arc2D
3	curve-free	
4	face-free	

		Label2D = Label2D
		$Label2D \blacktriangleright center = \mathbf{x}\mathbf{y} \begin{pmatrix} label_structure \begin{bmatrix} struct \\ coords \\ \mathbf{x} \\ struct \\ label_structure \begin{bmatrix} struct \\ coords \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \end{pmatrix}$
		$Label2D \blacktriangleright target = \mathbf{xy} \begin{pmatrix} label_structure & struct \\ target \\ x \\ label_structure & target \\ y \\ \end{bmatrix}$
		SW label_structure struct label type
5	label-free	
		Text Label2D_size = text_size label_structure struct label content
		E Label2D ▶ rotation this ▶ rotation
		FO $[this \triangleright struct[elements]]$ $[key_object_structure]$ $[object_structure]$
		$ \boxed{ \boxed{ \begin{bmatrix} \not = \begin{bmatrix} object_structure[type] \\ label-free \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} elbel_structure \\ elbel_structure \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \boxed{ \begin{bmatrix} Label2D \blacktriangleright key_Jabeled \\ key_object_structure \end{bmatrix} } $
		RE Label2D
	point-free	point_structure object_structure
6		$Point2D = \textbf{Point2D} \begin{pmatrix} point_structure \\ point_structure \\ \\ point_structure \\ \\ point_structure \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		RE Point2D
7	region-free	
		RE Region2D

4. info: compute imformation of object

info	type			
	sw	type		
		Angle2D	next level	
		Arc2D	next level	
		Curve2D	next level	
		Point2D next lev		
		Segment2D	next level	

		index_info = [objects poset]	
		$info = index(index_info)$	
		[info ▶ objects]	
		index_object = [label key_object]	
		index_object_label = [intervals_angle]	
		relations = 0	
1	Angle2D		
		$angles_forbidden [Angle2D \blacktriangleright angle] = Angle \blacktriangleright \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
		next level	
		angles_forbidden = angles_forbidden ▶ ksort next level	
		label	
		object $ object $ $ o$	
		object	
		□ info ▶ poset □ Recent (volutions)	
		[FOSET(TEXALLORS)]	
		RE info	
		objects A LODA	
	FO	this \blacktriangleright $\begin{bmatrix} objects \\ Angle2D \end{bmatrix}$ $\begin{bmatrix} Angle2D.1 \\ \end{bmatrix}$	
next level			
		relation	

		IF A	$ \left[\begin{array}{c} \neq \left[\begin{array}{c} Angle2D.1 \blacktriangleright right \\ Angle2D \blacktriangleright right \end{array} \right] \\ \cap \left[\begin{array}{c} Angle2D \\ Angle2D.1 \end{array} \right] \neq \emptyset \end{array} \right] $	$ \begin{array}{ c c c c }\hline & Angle 2D.1 \blacktriangleright right & & & & \\\hline & & & & \\\hline & & & & \\\hline & & & &$
1 1 1] IF	$\not\equiv \left[\begin{array}{c} Angle2D_1 \blacktriangleright key_object \\ Angle2D \blacktriangleright key_object \end{array} \right]$	$\begin{bmatrix} \begin{bmatrix} \begin{bmatrix} Angle2D \blacktriangleright right \\ \hline \mathbf{FA} \end{bmatrix} \\ \begin{bmatrix} \begin{bmatrix} Angle2D.1 \blacktriangleright right \\ \hline \mathbf{FA} \end{bmatrix} \end{bmatrix} \\ \begin{bmatrix} Angle2D \\ Angle2D.1 \end{bmatrix} \neq \emptyset \end{bmatrix}$	
	FO	this ▶ objects Segment2D		$ \boxed{ \boxed{ } \begin{bmatrix} Angle2D.1_size \\ Angle2D.size \\ Angle2D.1 \blacktriangleright key.object \\ Angle2D.1 \blacktriangleright key.object \end{bmatrix} } $
	FU	Segment2D Segment2D		
			$angle_Segment2D_start = Angle2$	$D \blacktriangleright \left[\begin{array}{c} center \\ vector_angle(Segment2D \blacktriangleright start) \end{array} \right]$
1 2			$ \begin{array}{ c c c }\hline \textbf{IF} & \in \begin{bmatrix} angle_Segment2D_st \\ (interval_angle)^{\circ} \end{bmatrix} \end{array} $	$\begin{bmatrix} art \\ angles_forbidden \\ \hline \begin{bmatrix} - \\ angle_Angle2D_start \\ angle_Angle2D_strict \\ \end{bmatrix} \end{bmatrix} = angle_Segment2D_start \\ \end{bmatrix}$
		$Angle 2D \triangleright center$	angle_Segment2D_end = Angle2L	$) \blacktriangleright \left[\begin{array}{c} center \\ vector_angle(Segment2D \blacktriangleright end) \end{array} \right]$
			$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} angle_Segment2D_end \\ angle_Angle2D_start \end{bmatrix} = angle_Segment2D_end \end{bmatrix}$
ř	FO	$0 \le i < angles_forbidden $		
1 3			$ngles_forbidden[i]$ $= \begin{bmatrix} angles_forbidden[i+1] \\ angles_forbidden[i] \end{bmatrix}$	

3 Curve2D

	FO	this	$ \begin{array}{c c} \hline & objects \\ Angle2D \\ \end{array} Angle2D$	
				$angles_Angle2D = \mathbf{index}(position)$
				$angles_Angle2D \blacktriangleright start = Angle2D \blacktriangleright \begin{bmatrix} center \\ vector_angle(Angle2D \blacktriangleright start) \end{bmatrix}$
				$angles_Angle2D \blacktriangleright end = Angle2D \blacktriangleright \begin{bmatrix} center \\ vector_angle(Angle2D \blacktriangleright end) \end{bmatrix}$
				parities = index(position)
				$parities \blacktriangleright end = \text{sign} \left(\left \Box \left[\begin{array}{c} Angle2D \blacktriangleright center \\ Segment2D \blacktriangleright end \end{array} \right] \right \right)$
				$angles_start = \mathbf{index}(position)$
				$angles_start \blacktriangleright end = \left[\times \left[\begin{array}{c} signs \blacktriangleright start \\ \\ + \left[\begin{array}{c} angles_Angle2D \blacktriangleright end \\ \\ -angles_Segment2D \blacktriangleright start \\ \\ -\pi \end{array} \right] \right]$
				$angles_end = \mathbf{index}(position)$
5 1 1		IF	$\boxed{\subseteq} \left[\begin{array}{c} Angle2D \blacktriangleright center \\ Segment2D \end{array} \right]$	$angles_end \blacktriangleright start = \boxed{\times} \begin{bmatrix} signs \blacktriangleright end \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
				$angles_end \blacktriangleright end = \boxed{\times} \begin{bmatrix} signs \blacktriangleright end \\ + \\ -angles_Angle2D \blacktriangleright end \\ -\pi \end{bmatrix}$
				$angles \blacktriangleright start \stackrel{\pm}{=} + \left[\begin{array}{ c c c } \hline \\ \hline $
				$angles \blacktriangleright start \stackrel{\pm}{=} + \left[\begin{array}{ c c c } \hline & \\ & \\$
				$angles \blacktriangleright end \stackrel{\pm}{=} \left[\begin{array}{ c c c } \hline \times & parities \blacktriangleright end \\ angles_start \blacktriangleright start \\ \hline \times & 1 - parities \blacktriangleright end \\ \hline \pi \times \text{sign}(angles_start \blacktriangleright start) \end{array} \right]$
				$angles \blacktriangleright end \stackrel{\dot{=}}{=} \left[\begin{array}{ c c c } \hline \times & parities \blacktriangleright end \\ angles_start \blacktriangleright end \\ \hline \hline \times \\ \hline \\ \hline \end{array} \right] \begin{array}{ c c c } \hline parities \blacktriangleright end \\ \hline 1-parities \blacktriangleright end \\ \hline \pi \times \operatorname{sign}(angles_start \blacktriangleright end) \\ \hline \end{bmatrix}$

			11
512		$angle_contact = Arc2D \blacktriangleright \text{ center} \text{ evetor_angle}(Segment)$ $angle_contact = \text{index}(\text{sign})$ $\equiv \begin{bmatrix} angles_contact \blacktriangleright negative \\ angle_contact - \frac{\pi}{2} \end{bmatrix}$ $\equiv \begin{bmatrix} angles_contact \blacktriangleright positive \\ angle_contact + \frac{\pi}{2} \end{bmatrix}$ $sign_start = \begin{vmatrix} sign \left(- \right) & \text{interval_angle_Arc2D} \blacktriangleright \\ angle_contact \\ + \frac{\pi}{2} \end{bmatrix}$ $sign_start = \begin{vmatrix} sign \text{ sign_start} \\ signs \blacktriangleright start \\ + \frac{\pi}{2} \end{vmatrix}$ $angles_segment2D$	gative Dr start
	Segment2D ▶ end Arc2D	$angle_contact = Arc2D \blacktriangleright \begin{bmatrix} center \\ vector_angle(Segment2) \\ angles_contact = index(sign) \\ \hline \equiv \begin{bmatrix} angles_contact \rightarrow negative \\ angle_contact - \frac{\pi}{2} \end{bmatrix}$ $\equiv \begin{bmatrix} angles_contact \rightarrow positive \\ angle_contact + \frac{\pi}{2} \end{bmatrix}$ $sign_end = \begin{vmatrix} sign (\Box [interval_angle_Arc2D \blacktriangleright st \\ angle_contact \end{vmatrix}$ $angles_b = end \triangleq X$ $= \begin{bmatrix} sign_end \\ signs_b = end \\ -angles_Segment2D \blacktriangleright \\ -\pi \end{bmatrix}$ $angles_b = end \triangleq X$ $= \begin{bmatrix} sign_end \\ signs_b = end \\ -angles_Segment2D \blacktriangleright \\ -angles_Segment2D \\ -angles_Segment$	art]) ive end]

		(
	[_ [Arc2D ▶ start]]							
IF	$ \boxed{ \begin{bmatrix} & Arc2D \blacktriangleright start \\ Segment2D \end{bmatrix} \\ & \begin{bmatrix} & Arc2D \blacktriangleright end \\ Segment2D \end{bmatrix} \end{bmatrix} } $							
5 1 2 1								
	Arc2D ightharpoonup is.tangent($Segment2D$)	$angles_Arc2D_Segment2D \blacktriangleright end = Arc2D \blacktriangleright \begin{bmatrix} center \\ vector_angle(Segment2D \blacktriangleright end) \end{bmatrix}$ $sign = sign \begin{pmatrix} \pi - polar \begin{pmatrix} \Box \\ angles_Arc2D_Segment2D \blacktriangleright end \\ angles_Arc2D_Segment2D \blacktriangleright start \end{bmatrix} \end{pmatrix}$ $angles \blacktriangleright start \pm \boxed{\times} \begin{bmatrix} sign \\ angles_Arc2D_Segment2D \blacktriangleright start \end{bmatrix}$						
		$angles \blacktriangleright end \stackrel{\bot}{=} \boxtimes \left[\begin{array}{c} sign \\ angles_Arc2D_Segment2D \blacktriangleright end \end{array} \right]$						

	FO	this ▶	objec Face	Face21)					
		FO	$0 \le i <$	$ Face2D \blacktriangleright vertices $					
			edge_i	$edge_i = \mathbf{Segment2D} \left(\begin{array}{c} Face2D \blacktriangleright vertices[i] \\ Face2D \blacktriangleright vertices[i+1] \end{array} \right)$					
					$signs_start = \mathbf{index}(position)$				
					$signs_start \blacktriangleright start = 1 - sign \left(\boxed{ \boxed{ \begin{bmatrix} Segment2D \blacktriangleright start \\ edge.i \blacktriangleright start \end{bmatrix}}} \right)$				
					$signs_start \blacktriangleright start = 1 - sign \left(\begin{bmatrix} Segment2D \blacktriangleright start \\ edge_i \blacktriangleright end \\ \end{bmatrix} \right)$				
					angles_edge_i = index(position)				
			IF						
				[cages	$angles \blacktriangleright start \stackrel{\pm}{=} \boxed{\times} \begin{bmatrix} signs_start \blacktriangleright start \\ signs \blacktriangleright start \\ angles_edge_i \blacktriangleright start \\ -angles_Segment2D \blacktriangleright start \end{bmatrix}$				
5 1 3					$\begin{bmatrix} -n & & & \\ signs_start \blacktriangleright end \\ signs \blacktriangleright start \\ & signs \blacktriangleright start \\ & \\ = angles_edge.i \blacktriangleright start \\ & \\ -\pi \end{bmatrix}$				
					$signs_end = index(position)$				
					$signs_end \blacktriangleright start = 1 - sign \left(\boxed{\square} \begin{bmatrix} Segment2D \blacktriangleright end \\ edge_ \blacktriangleright start \end{bmatrix} \right)$				
					$ signs_end \blacktriangleright end = 1 - sign \left(\left[- \left[\begin{array}{c} Segment2D \blacktriangleright end \\ edge_ \blacktriangleright end \end{array} \right] \right] \right)$ $ angles_edge_i = index(position)$				
					[angles edge i > end]				
					edge_i ▶ vector_angle				
				$\subseteq \begin{bmatrix} Segment2D \blacktriangleright end \\ edge_i \end{bmatrix}$					
				[~]					
					$angles \blacktriangleright end \stackrel{\pm}{=} \boxed{\times} \begin{bmatrix} signs_end \blacktriangleright end \\ signs \blacktriangleright end \\ + \begin{bmatrix} angles_edge_i \blacktriangleright end \\ -angles_Segment2D \blacktriangleright end \\ -\pi \end{bmatrix} \end{bmatrix}$				

			$signs_start = \mathbf{index}(position)$					
			$signs_start \triangleright start = 1 - sign \left(\left \bigcirc \left[\begin{array}{c} Segment2D \triangleright start \\ Segment2D.1 \triangleright end \end{array} \right] \right \right)$					
			$\boxed{signs_start \blacktriangleright end = 1 - sign \left(\boxed{ } \left[\begin{array}{c} Segment2D \blacktriangleright start \\ Segment2D \lrcorner 1 \blacktriangleright start \end{array} \right] \right)}$					
	IF	$ \begin{tabular}{ c c c c c }\hline & Segment2D \blacktriangleright start\\ & Segment2D.1\\ \end{tabular}$	$angles \blacktriangleright start \stackrel{\pm}{=} \stackrel{\textstyle \times}{\times} \left[\begin{array}{c} signs_start \blacktriangleright start \\ signs \blacktriangleright start \\ \hline = angles_Segment2D.1 \blacktriangleright start \\ -\pi \\ -\pi \end{array} \right]$					
			$angles \blacktriangleright start \stackrel{\pm}{=} \boxed{\times} \begin{bmatrix} signs_start \blacktriangleright end \\ signs \blacktriangleright start \\ = angles_Segment2D.1 \blacktriangleright end \\ -angles_Segment2D \blacktriangleright start \\ -\pi \end{bmatrix}$					
			$signs_end = index(position)$					
			$signs_end \blacktriangleright start = 1 - sign \left(\left \Box \left[\begin{array}{c} Segment2D \blacktriangleright end \\ Segment2D_ \blacktriangleright end \end{array} \right] \right \right)$					
			$signs_end \blacktriangleright end = 1 - sign \left(\left \Box \left[\begin{array}{c} Segment2D \blacktriangleright end \\ Segment2D \bot \ast start \end{array} \right] \right \right)$					
		$\boxed{\subseteq} \left[\begin{array}{c} Segment2D \blacktriangleright end \\ Segment2D_1 \end{array} \right]$	$ \begin{array}{c} sign_end \blacktriangleright start \\ signs \blacktriangleright end \\ \\ \vdots \\ \\ \vdots \\ \\ -angles_Segment2D_1 \blacktriangleright start \\ \\ -angles_Segment2D \blacktriangleright end \\ \\ \end{bmatrix} \right] $					
5 1 5 1			$angles \blacktriangleright end \stackrel{\dot{=}}{=} \times \begin{bmatrix} sign.end \blacktriangleright end \\ signs \blacktriangleright end \\ & angles_Segment2D_1 \blacktriangleright start \\ -angles_Segment2D \blacktriangleright end \\ -\pi \end{bmatrix} \end{bmatrix}$					
			$signs_end = \mathbf{index}(position)$					
			$signs_end \blacktriangleright start = sign \left(\begin{array}{ c c } \hline + \\ \hline - \\ 1 \end{array} \right[\begin{array}{ c c } angles_Segment2D_1 \blacktriangleright end \\ -angles_Segment2D \blacktriangleright end \\ \hline -\pi \\ \end{array} \right] \right)$					
		$\subseteq \left[\begin{array}{c} Segment2D.1 \blacktriangleright start \\ Segment2D \end{array}\right]$	$signs_end \blacktriangleright end = sign \left(\begin{array}{c} -angles_Segment2D.1 \blacktriangleright end \\ +angles_Segment2D \blacktriangleright start \\ +\pi \end{array} \right)$					
			$ \stackrel{\pm}{=} \left[\begin{array}{c} angles \blacktriangleright start \\ \pi \times sign_end \blacktriangleright start \end{array} \right] $					
			signs_start = index(position)					
			$signs_start \blacktriangleright start = sign \left(\begin{array}{c} + \\ + \\ -\pi \\ 1 \end{array} \right) \left(\begin{array}{c} -angles_Segment2D.1 \blacktriangleright start \\ -angles_Segment2D \blacktriangleright end \\ -\pi \\ -\pi \\ \end{array} \right)$					
		$\subseteq \left[\begin{array}{c} Segment2D_1 \blacktriangleright end \\ Segment2D \end{array}\right]$	$signs_start \blacktriangleright end = sign \left(\begin{array}{c} + \\ + \\ + \\ 1 \end{array} \right] \begin{bmatrix} -angles_Segment2D.1 \blacktriangleright start \\ +angles_Segment2D \blacktriangleright start \\ +\pi \\ 1 \end{bmatrix}$					
			$ \begin{array}{ c c } \hline \pm \\ \hline & \\ \hline \pi \times signs_start \blacktriangleright start \\ \end{array} $					
			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					

5. update: update status

			FO	$this_updated \blacktriangleright \left[\begin{array}{c} objects \\ Angle2D \end{array} \right] Angle2D$										
				$this_updated \blacktriangleright structure \begin{bmatrix} elements \\ Angle2D \blacktriangleright key \\ struct \\ styleheight \end{bmatrix} = Angle2D \blacktriangleright height$										
			FO	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
			-	$ \begin{array}{ c c c c c } \hline \textbf{IIF} & this_updated \blacktriangleright structure & elements \\ Arc2D \blacktriangleright key \\ struct \\ measure \\ type & \\ \hline \end{array} \neq \textbf{Blank} & this_updated \blacktriangleright structure & elements \\ Arc2D \blacktriangleright key \\ struct \\ measure \\ style \\ height \\ \hline \end{array} = Arc2D \blacktriangleright \begin{bmatrix} meausure \\ height \end{bmatrix} $										
			FO	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
				$\begin{bmatrix} \text{elements} \\ Label2D \blacktriangleright key \\ \text{struct} \\ \text{struct} \\ \text{coords} \\ \text{center} \\ \times \end{bmatrix} = Label2D \blacktriangleright \begin{bmatrix} center \\ x \end{bmatrix}$										
1	structure			$this_updated \blacktriangleright structure \begin{bmatrix} elements \\ Label2D \blacktriangleright key \\ struct \\ coords \\ center \\ y \end{bmatrix} = Label2D \blacktriangleright \begin{bmatrix} center \\ y \end{bmatrix}$										
				$this_updated \blacktriangleright structure \begin{bmatrix} \text{elements} \\ Label2D \blacktriangleright key \\ \text{struct} \\ \text{coords} \\ \text{target} \\ \times \end{bmatrix} = Label2D \blacktriangleright \begin{bmatrix} target \\ x \end{bmatrix}$										
				$\begin{array}{ c c c c }\hline & elements \\ Label2D \blacktriangleright key \\ struct \\ coords \\ target \\ y \end{array} = Label2D \blacktriangleright \begin{bmatrix} center \\ y \end{bmatrix}$										
			FO	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
				$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
2	Arc2D	he	tnis	$\begin{bmatrix} updated \triangleright \inf(type) \end{bmatrix}$ $rement = \frac{1}{2}$										
		ne	ext level											

	_	ni abt —	tted \blacktriangleright info(type) $\left] \frac{1}{\sqrt{2}} \right.$
	height.	increme	
		ntervals	2 angle_forbidden
			[poset]
	FO	$0 \le i \le$	$(info \triangleright \begin{bmatrix} poset \\ rank_max \end{bmatrix}$
		FO	$[info \blacktriangleright poset[i] \mid relation]$
			$\begin{bmatrix} Angle 2D = this_updated \blacktriangleright \begin{bmatrix} objects \\ Angle 2D[relation \blacktriangleright element] \end{bmatrix}$
			$parity = intval \left(Angle 2D \blacktriangleright \begin{bmatrix} measure \\ height \end{bmatrix} \right)$
3 Angle2D			f f f f f f f f f
			$height_max = \max \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
			$ \begin{bmatrix} objects \\ Angle2D[relation \blacktriangleright element] \\ height \end{bmatrix} = height_max $
			$ \boxed{ \begin{bmatrix} Angle 2D \blacktriangleright key.label \\ \emptyset \end{bmatrix} } \boxed{ \begin{matrix} \textbf{CO} \end{matrix} } $
			$ info \blacktriangleright $
			$interval_angle = info \blacktriangleright \begin{bmatrix} objects[relation \blacktriangleright element] \\ label \\ intervals_angle[0] \end{bmatrix}$
			$ \begin{array}{ c c } \hline this_update \blacktriangleright \begin{bmatrix} objects \\ Label2D[Angle2D \blacktriangleright key_label] \\ center \end{bmatrix} = this_updated \blacktriangleright \begin{bmatrix} objects \\ Label2D[Angle2D \blacktriangleright key_label] \\ center \\ \begin{pmatrix} Angle2D \\ interval_angle \\ \end{pmatrix} \end{bmatrix} $

	relation ▶ lowers lower
	$ \left[\begin{array}{c} Segment2DJower = this_updated \blacktriangleright \left[\begin{array}{c} objects \\ Segment2D[lower] \end{array} \right] \end{array} \right. $
	$sign Lower = sign \left(\begin{array}{c} Segment 2D Lower \blacktriangleright \left[\begin{array}{c} measure \\ height \end{array} \right] \right)$
	$heights \blacktriangleright positive = \max \left(\underbrace{ \begin{array}{c} heights \blacktriangleright positive \\ \hline \\ \\ \hline \\ \end{array} \left[\begin{array}{c} max \left(\begin{array}{c} sign_lower \\ 0 \\ \\ height_label_max \end{array} \right) \end{array} \right] \right)$
6 1 1 1 1	$heights \blacktriangleright negative = \max \left(\begin{array}{c} heights \blacktriangleright positive \\ \\ \boxtimes \\ \left[-\min \begin{pmatrix} sign.lower \\ 0 \\ height.label_max \\ \end{array} \right) \end{array} \right]$
	$heights \blacktriangleright positive = \min \left(\begin{array}{c} heights \blacktriangleright positive \\ Segment2D \blacktriangleright \left[\begin{array}{c} measure \\ height(angles \blacktriangleright positive) \end{array} \right] \right)$
	$heights \blacktriangleright negative = \min \left(\begin{array}{c} heights \blacktriangleright positive \\ Segment2D \blacktriangleright \left[\begin{array}{c} measure \\ height(angles \blacktriangleright negative) \end{array} \right] \end{array} \right)$
	$sign = sign \left(\Box \begin{bmatrix} angles \triangleright positive \\ angles \triangleright negative \end{bmatrix} \right)$
	$this_updated \blacktriangleright \begin{bmatrix} objects \\ Segment2D[relation \blacktriangleright element] \\ measure \\ height \end{bmatrix} = \begin{bmatrix} \boxed{\times} \begin{bmatrix} \max\left(\begin{array}{c} sign \\ 0 \\ \end{array} \right) \\ heights \blacktriangleright positive \end{bmatrix} \\ \boxed{\min\left(\begin{array}{c} sign \\ 0 \\ \end{array} \right)} \\ heights \blacktriangleright positive \end{bmatrix}$

New Sinod - String

1 Definition

string

2 Method

	latex_separation	string								
		$parts = \emptyset$								
		$funcitons Jength = \left[\begin{array}{c c c} & & & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & & \\ \hline &$								
		$pairs = \begin{bmatrix} \text{left}\{ & \text{left} & \text{left} \\ \text{right}\} & \text{right} & \text{right} \end{bmatrix}$								
		$pairs_left_length = \left[\frac{ left }{ left } \frac{ left }{ left } \frac{ left }{ left } \right]$								
		$pairs_right Length = \left[\begin{array}{c c} right\rangle & right\rangle & right\rangle \\ \hline right\rangle & right\rangle & right\rangle & right\rangle & right\rangle \\ \hline \end{array} \right]$								
		$functions_openJength = \left[\begin{array}{c c} \backslash & [& \{ & (& \\ \hline \backslash & [] & \{ &] \end{array}\right]$								
		$alphabets \textit{Lower} = \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $								
		$alphabets_upper = \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $								
3.		$alphabets = \bigcup \begin{bmatrix} alphabets.lower \\ alphabets.upper \end{bmatrix}$								
		next level								
		next level								
		next level								
		next level								
		next level								
		next level								
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
		$parts[value] = substr \begin{cases} string \\ 0 \end{cases}$								
		$parts \stackrel{+}{=} part$								
		$string = substr\left(\frac{string}{1}\right)$								

		n	$umerator_size = this \blacktriangleright latex_size \left(part \left[\begin{array}{c} value \\ numerator \end{array} \right] \right)$					
		d	$enominator_size = this \blacktriangleright latex_size \left(part \left[\begin{array}{c} value \\ denominator \end{array}\right]\right)$					
2	\frac	l	$utex_size \blacktriangleright x \stackrel{\pm}{=} \max \left(\begin{array}{c} numerator_size \blacktriangleright x \\ denominator_size \blacktriangleright x \end{array} \right) + \frac{1}{3.5}$					
		l	$ntex_size \blacktriangleright y \stackrel{\pm}{=} \stackrel{+}{=} \left[\begin{array}{c} numerator_size \blacktriangleright y \\ denominator_size \blacktriangleright y \\ \frac{1}{10} \end{array} \right]$					
			$index.size = this \blacktriangleright latex.size \left(part \begin{bmatrix} value \\ index \end{bmatrix}\right)$					
			$index_size \triangleright x = \max \left(\begin{array}{c} index_size \triangleright x \\ \frac{3}{14} \end{array} \right)$					
3	\nthroot		$radicand_size \blacktriangleright x = \max \left(\begin{array}{c} radicand_size \blacktriangleright x \\ \frac{3}{7} \end{array} \right)$					
			$width_space = \frac{1}{11} + \frac{1}{5.5} + \frac{1}{7} + \frac{1}{12} + \frac{1}{17.5}$					
			$height_space = \frac{1}{16}$					
			$latex_size \blacktriangleright x \stackrel{\pm}{=} \max \left(\begin{array}{c} \frac{5}{5.4} \times ratio \\ \hline + \\ [radicand_size \blacktriangleright x \\ width_space \\ \end{array} \right) \right)$					
			$latex_size \blacktriangleright y \stackrel{\pm}{=} \max \left(\begin{array}{c} \frac{4}{5} \times ratio \\ index_size \blacktriangleright y \\ \hline \pm \left[\begin{array}{c} radicand_size \blacktriangleright x \\ width_space \end{array} \right] \right)$					
		Г	part_size					
			this ▶ latex_size (part[value])					
4	\sqrt	l	$atex_size \blacktriangleright x \stackrel{\pm}{=} \boxed{ \begin{vmatrix} part_size \blacktriangleright x \\ \frac{2}{2} - \frac{1}{3.2} \end{vmatrix}}$					
		l	$atex_size \blacktriangleright y \stackrel{\pm}{=} \boxed{+} \begin{bmatrix} part_size \blacktriangleright y \\ \frac{2}{3.2} - \frac{2}{3.7} \end{bmatrix}$					
		Г	part_size					
			this ▶ text_size (part[value])					
5	\text		$ \begin{array}{c} \pm \\ $					
			$ \stackrel{\pm}{=} \begin{bmatrix} latex_size \triangleright y \\ part_size \triangleright y \end{bmatrix} $					
		_						

	[\hookleftarrow	\hookrightarrow	\leftarrow	\Leftarrow	\leftrightarrow	\longleftarrow	\Longleftarrow	\longleftrightarrow	\longrightarrow	\Longrightarrow	\nearrow	\nwarrow	\rightarrow	\Rightarrow	\searrow	\swarrow
	$widths \stackrel{\cup}{=}$	1 1.7	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$	$\frac{1}{1.7}$
1	$widths \stackrel{\cup}{=} \left[\right.$	$\begin{array}{c c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1 7														
	$widths \stackrel{\cup}{=} \left[\right.$	$\begin{array}{c c} \hline \\ \hline $	1 1 2 2	narrow $ $ \Up $\frac{1}{3.2}$	downarrow												

	$widths \stackrel{\cup}{=}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		\[\frac{1.5}{1.5} \seta \frac{1.5}{1.5} \seta \frac{1.5}{1.5} \seta \frac{1.5}{1.5} \seta \frac{1.5}{1.5} \seta \frac{1.5}{1.5} \seta \frac{1.5}{1.5} \]
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\text{bigcirc}}{1} & \frac{1}{1.7} \\ \frac{1}{1.7} & \frac{1}{1.7} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{1}{1} \\ \frac{1}{2.2} \end{bmatrix}$
2	$widths \stackrel{\cup}{=}$	$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $
٢	$widths \stackrel{\cup}{=}$	$\left[\frac{\backslash cdot}{\frac{1}{3}}\right]$
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\text{dagger}}{1} & \frac{\text{ddagger}}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\text{bullet}}{\frac{1}{5}} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{circ}{1} \\ \frac{1}{6} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \sqrt{\text{sim}} \\ \frac{1}{1.8} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	
3	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\text{(frown smile}}{1} \\ \frac{1}{2.5} & \frac{1}{2.5} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\left[\frac{\sqrt{vdash}}{\frac{1}{4.5}}\right]$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\text{mid}}{1} \\ \frac{1}{6} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	
4	$widths \stackrel{\cup}{=}$	
		$\begin{bmatrix} \text{\backslash} \\ \frac{1}{6} \end{bmatrix}$
5	$widths \stackrel{\cup}{=} \left[\begin{array}{c} \\ \end{array} \right]$	$ \begin{array}{c cccc} \text{\backslashdots} & \text{\backslashdots} \\ \hline \frac{1}{1.7} & \frac{1}{1.7} & \frac{1}{1.7} \\ \end{array} $

```
\frac{\text{\circle}}{\frac{1}{6}}
                                               widths \stackrel{\cup}{=}
                                           widths \stackrel{\cup}{=}
                                                                                                                       \frac{\text{\psi}}{\frac{1}{2.7}}
                                               widths \stackrel{\cup}{=}
                                           widths \stackrel{\cup}{=}
                                                                                                                    \begin{bmatrix} \text{| alpha | beta | keta | mu | pi | keta | varrho | vartheta | phi | } \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 & 3.2 \end{bmatrix} \underbrace{ \begin{bmatrix} \text{| alpha | beta | mu | pi | keta | varrho | vartheta | phi | } \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 3.2 & 3.2 & 3.2 & 3.2 & 3.2 \end{bmatrix} }_{3.2} \underbrace{ \begin{bmatrix} \text{| alpha | beta | mu | phi | keta | varrho | varrheta | phi | } \\ \hline 1 & 1 & 1 & 1 \\ \hline 2 & 2 & 3.2 & 3.2 & 3.2 \end{bmatrix} }_{3.2} \underbrace{ \begin{bmatrix} \text{| alpha | beta | mu | phi | keta | varrho | varrheta | phi | } \\ \hline 2 & 2 & 3.2 & 3.2 & 3.2 \\ \hline 2 & 3.2 & 3.2 & 3.2 \\ \hline 2 & 3.2 & 3.2 & 3.2 \\ \hline 2 & 3.2 & 3.2 & 3.2 \\ \hline 2 & 3.2 & 3.2 \\ \hline 3 & 3.2 & 3.2 \\ \hline 2 & 3.2 \\
                                               widths \stackrel{\cup}{=}
                                                                                                                 \begin{bmatrix} \frac{\text{\sigma}}{1} \\ \frac{1}{3.3} \end{bmatrix}
                                               widths \stackrel{\cup}{=}
    7
                                                                                                                     widths \stackrel{\cup}{=}
                                                                                                                 widths \stackrel{\cup}{=}
                                                                                                                  \begin{bmatrix} \left| \begin{array}{c|c|c} \left| \begin{array}{c|c} \left| \begin{array}{c|c} \left| \begin{array}{c|c} \end{array} \right| & \left| \begin{array}{c|c} \left| \begin{array}{c|c} \end{array} \right| & \left| \begin{array}{c|c} \end{array} \right| \\ \hline \frac{1}{4.2} & \frac{1}{4.2} & \frac{1}{4.2} & \frac{1}{4.2} \\ \hline \end{bmatrix} \\ \end{bmatrix} 
                                           widths \stackrel{\cup}{=}
                                                                                                               widths \stackrel{\cup}{=}
                                               widths \stackrel{\cup}{=}
                                         widths \stackrel{\cup}{=} \left[ \frac{ \backslash \mathsf{Pi}}{\frac{1}{2.3}} \right]
                                                                                                                  \begin{bmatrix} \begin{array}{c|c|c} \text{Phi} & \text{NSi} & \text{Omega} \\ \hline 1 & 1 & 1 \\ \hline 2.4 & 2.4 & 2.4 \\ \end{bmatrix} 
                                               widths \stackrel{\cup}{=}
                                                                                                                       widths \stackrel{\cup}{=}
                                                                                                                     8 widths \stackrel{\cup}{=}
                                                                                                                      \begin{bmatrix} \frac{\langle \mathsf{Gamma} \mid \backslash \mathsf{Xi}}{1} \\ \hline \frac{1}{2.7} & \frac{1}{2.7} \end{bmatrix} 
                                           widths \stackrel{\cup}{=}
                                                                                                                     \begin{bmatrix} \frac{\text{Delta}}{1} \\ \hline \frac{1}{2.9} \end{bmatrix}
                                           widths \stackrel{\cup}{=}
```

111	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\left[\frac{NRE}{\frac{1}{2.3}}\right]$
	$widths \stackrel{\cup}{=}$	$\left[\frac{\backslash IM}{\frac{1}{2.7}}\right]$
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\left[\frac{partial}{\frac{1}{3.2}}\right]$
	$widths \stackrel{\cup}{=}$	
12	$widths \stackrel{\cup}{=}$	$ \begin{bmatrix} \operatorname{arccos} & \operatorname{arcsin} & \operatorname{arctan} & \operatorname{linflim} & \operatorname{liminf} & \operatorname{limsup} \\ \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{0.5} & \frac{1}{0.5} \end{bmatrix} $
	$widths \stackrel{\cup}{=}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$widths \stackrel{\cup}{=}$	$ \begin{bmatrix} \langle \cosh \mid \langle \coth \mid \langle \sinh \mid \\ \frac{1}{0.9} & \frac{1}{0.9} & \frac{1}{0.9} \end{bmatrix} $
	$widths \stackrel{\cup}{=}$	$ \begin{bmatrix} \left\langle \dim \middle \left\langle \exp \middle \left\langle \min \middle \right\rangle \right\rangle \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} \end{bmatrix} $
	$widths \stackrel{\cup}{=}$	$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	
	$widths \stackrel{\cup}{=}$	$\left[\frac{Pr}{\frac{1}{1.7}}\right]$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{ \mathbf{g} }{1} & \frac{ \mathbf{h} }{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
13	$widths \stackrel{\cup}{=}$	$\left[\frac{H}{\frac{1}{2}}\right]$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{R}{1} \\ \frac{1}{2.2} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	$\begin{bmatrix} \frac{\langle C \mid \langle Z \rangle}{1} & \frac{1}{2.5} \end{bmatrix}$
	$widths \stackrel{\cup}{=}$	$\left[\frac{P}{\frac{1}{2.5}}\right]$

	text_size_character	· character
		$widths = \emptyset$
		next level
8.		$height_standard = \frac{2}{3.5}$
		$width_standard = \frac{2}{3.5}$
		array_key_exists (character widths xy (widths[character]) RE xy (widths[character])
		RE xy (width_standard height_standard)
,	$\boxed{1} \ widths \stackrel{\cup}{=} \boxed{\frac{1}{3}}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
		\a \b \c \d \ell \ell \c \d \ell \ell \ell \g \d \ell \ell \k \n \d \ell \o \d \p \d \ell \d \u \d \k \d \ell \del \de
		\frac{\frac{1}{r}}{5} \frac{1}{5}
	2 widths $\stackrel{\cup}{=}$ $\begin{bmatrix} - \\ \end{bmatrix}$	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$widths \stackrel{\cup}{=} \begin{bmatrix} - \\ - \end{bmatrix}$	\s \\ \frac{1}{4.5}
	$widths \stackrel{\cup}{=} \begin{bmatrix} - \\ - \end{bmatrix}$	$\begin{array}{c c} \backslash \mathbf{m} & \backslash \mathbf{w} \\ \hline \frac{1}{2.2} & \frac{1}{2.2} \end{array}$
	L	\\ A \ B \ \C \ \D \ \E \ \G \ \H \ \K \ \L \ \N \ \O \ \P \ \Q \ \R \ \T \ \U \ \V \ \X \ \Y \ \Z \\\\\\\\\\\\\\\\\\\\\\\\
	$widths \stackrel{\cup}{=} \begin{bmatrix} - \\ - \end{bmatrix}$	\frac{\frac{\frac{\range \parts}{\sqrt{\sq}\sqrt{\sq}}}}}}}}\signt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
	widths =	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$widths \stackrel{\cup}{=} \begin{bmatrix} - \\ \end{bmatrix}$	$\begin{bmatrix} \sqrt{J} \\ \frac{1}{4} \end{bmatrix}$
	$widths \stackrel{\cup}{=} \begin{bmatrix} - \\ - \end{bmatrix}$	$\left[\frac{\backslash M}{2}\right]$
	$widths \stackrel{\circ}{=} $	$\left[\begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \end{array}\right \\ \hline 1.8 \end{array}\right \end{array}\right]$

 $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} \\ \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} & \frac{1}{3.5} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{9} & \frac{1}{9} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{9} & \frac{1}{9} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{9} & \frac{1}{9} \end{bmatrix}$ $widths \stackrel{\sqcup}{=} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix}$