

Termodinámica (LFIS 224 - FIS 225) - Prueba $1\,$

Profesor: G. Candlish Semestre II 2017

	Nombre:		
1.	Explicar que es		
	(a) una pared adiabática.		1
	(b) una pared diatérmica.		1
2.	Considerando 3 objetos A,B y $C,$ explicar la ley cero de la termodinámica.		2
3.	Escribir la primera ley de la termod exactas e inexactas.	linámica en forma diferencial. Indicar las diferenciales	3
4.	Escribir la definición de la entropía en	n forma diferencial. Explicar todos los términos.	3
5.	(a) ¿Qué es la definición de la capaci	idad calorífica C_V ?	3
		medición de C_V para determinar la diferencia en entropía temperaturas diferentes (y volumenes iguales).	3
6.	En un sistema aislado térmicamente, ¿la entropía aumenta o permanece constante durante un proceso irreversible ? Justificar su respuesta.		. 3
7.	(a) Dibujar el ciclo de Carnot en un o de calor, y las temperaturas de la	diagrama PV , indicando cada proceso del ciclo, los flujos as fuentes.	6
		onde la sustancia de trabajo es un gas ideal. El flujo de peratura T_1 es Q_1 , y el flujo de calor hacia la fuente fria que	
		$\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \tag{1}$	

Se puede suponer sin prueba que $TV^{\gamma-1}$ es constante para procesos adiabáticos reversibles de un gas ideal.