Smoothing Structured Decomposable Circuits

Andy Shih¹, Guy Van den Broeck¹, Paul Beame², Antoine Amarilli³

¹University of California, Los Angeles, ²University of Washington, ³LTCI Télécom Paris, IP Paris

Smoothness is necessary for linear-time Weighted Model Counting and All-Marginals on circuits. But, the current smoothing algorithm is quadratic.

Structured decomposability

Example from Shen et al. "Tractable operations for arithmetic circuits of probabilistic models."

Contributions

Task	Operations	Complexity
Smoothing	\oplus, \otimes	$O(m \cdot lpha(m,n))$
Smoothing*	\oplus, \otimes	$\Omega(m\cdot lpha(m,n))^*$
All-Marginal	$\oplus,\ominus,\otimes,\oslash$	$\Theta(m)$

* For smoothing-gate algorithms on decomposable circuits.

Smoothing gate algorithms

Think "Filling in missing variables":

The output circuit has a subcircuit that is isomorphic to input circuit (after edge contraction).

Missing variables form 2 intervals

Traverse vtree in-order to get ordering of vars π . The vars of a subtree is a continuous interval in π .

Smoothing in one pass

Gate p with interval A. Gate c with interval B. \oplus -gate: replace child c with c \otimes SG(A\B)

Gate p_l with interval A_l . Gate p_r with interval A_r . Gate c_l with interval B_l . Gate c_r with interval B_r . \otimes -gate: replace child c_l with $c_l \otimes SG(A_l \setminus B_l)$ replace child c_r with $c_r \otimes SG(A_r \setminus B_r)$

Semigroup Range-Sum

Given n variables defined over a semigroup and m intervals, the sum of each interval can be computed in time $O(m \cdot \alpha(m, n))$ [Chazelle and Rosenberg, 1989].

Split N into B blocks of size A

Trace additions using circuits

All-Marginals by range increments

- 1. Backpropagate to get marginals for node
- 2. Update a range of missing variables

Efficient smoothing / all-marginals

Table 2: Experiments on smoothing hand-crafted circuits and experiments on computing All-Marginals as part of the collapsed sampling algorithm. Sizes are reported in thousands (k).

(a) Time (in seconds) taken to smooth circuits.

SizeNaiveOursSpeedup \times 40k 0.82 ± 0.01 0.04 ± 0.01 21 ± 1 416k 50 ± 0.3 0.31 ± 0.01 161 ± 6 1,620k 293 ± 2 0.74 ± 0.04 390 ± 30 8,500k 6050 ± 20 4.13 ± 0.09 1470 ± 40

(b) Number of \oplus , \ominus , \otimes , \oslash operations to compute All-Marginals when sampling the Segmentation-11 network.

Siz	ze	Naive	Ours	Impr %
100)k	$28,494 \pm 598$	$20,207 \pm 411$	29 ± 3
200)k	$55,875 \pm 1,198$	$36,101 \pm 1,522$	35 ± 5
400)k	$86,886 \pm 6,330$	$56,094 \pm 817$	35 ± 6