Réseaux de neurones opérant sur des graphes pour le traitement automatique des documents Théorie et applications

Adrien Guille (ERIC, Université Lyon 2) @ Atelier TextMine (EGC 2023)

Encodage du texte

- Séquence de représentations vectorielles des mots
 - Soit un texte de longueur N, usuellement un réseau de neurones opère sur une séquence de la forme :

$$X = \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ x_{1,3} \\ \vdots \\ x_{1,d} \end{pmatrix} \rightarrow \begin{pmatrix} x_{2,1} \\ x_{2,2} \\ x_{2,3} \\ \vdots \\ x_{2,d} \end{pmatrix} \rightarrow \dots \rightarrow \begin{pmatrix} x_{N,1} \\ x_{N,2} \\ x_{N,3} \\ \vdots \\ x_{N,d} \end{pmatrix}$$

Résolution de tâches supervisées

Réseaux convolutifs

- Détection de n-grammes de mots (i.e. carte d'attributs)
- Sous-échantillonnage de la carte d'attributs
- Classification

Résolution de tâches supervisées

• Réseaux récurrents

- Propagation d'un état caché à travers toute la séquence
 - Mise à jour de l'état caché en chaque position de la séquence
- Classification en fonction du dernier état caché

Résolution de tâches supervisées

- Réseaux Transformer (encodeur)
 - ullet Les paramètres du réseau ($\mathcal{O}(100)$ millions) sont pré-entraînés
 - Classification en fonction de la représentation d'un token spécial en lien direct avec toute la séquence

(Figure modifiée d'après « Attention Is All You Need », Vaswani *et al.*, 2017)

Adrien Guille (ERIC, Université Lyon 2) @ Atelier TextMine (EGC 2023)

Données et tâches

Tâches définies au niveau des sommets

Données

- Soit un graphe attribué $\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$
 - \mathcal{V}: sommets
 - $\mathscr{E} \subset \mathscr{V} \times \mathscr{V}$: arêtes
 - $X \in \mathbb{R}^{|\mathscr{V}| \times d}$: attributs des sommets ; signal $\mathscr{V} \to \mathbb{R}^d$

Tâches

• Classification supervisée ou semi supervisée des sommets

Tâches définies au niveau des graphes

Données

- Soit une collection de graphes attribués $\{\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i, X_i)\}$
 - \mathcal{V}_i : sommets
 - $\mathscr{E}_i \subset \mathscr{V}_i \times \mathscr{V}_i$: arêtes
 - $X_i \in \mathbb{R}^{|\mathcal{V}_i| \times d}$: attributs des sommets ; signal $\mathcal{V}_i \to \mathbb{R}^d$

Tâches

• Classification supervisée de graphes

Formulation spectrale

Formulation spectrale

- Convolution d'un signal temporel par un noyau
 - Soit un signal temporel $x \in \mathbb{R}^N$ et un noyau $g \in \mathbb{R}^N$
 - La convolution x * g est une série $c \in \mathbb{R}^N$
 - ullet Somme de x pondérée par g, avec décalage progressif de g autour de

l'origine

(Lautaro Carmona, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3066394)

Formulation spectrale

Convolution d'un signal temporel par un noyau

• Dans le domaine temporel la convolution s'obtient via le produit matriciel entre la matrice circulante G obtenue d'après g^{T} et le signal x

$$c = \begin{pmatrix} g_1 & g_2 & g_3 & \cdots & g_N \\ g_N & g_1 & g_2 & \cdots & g_{N-1} \\ g_{N-1} & g_N & g_1 & \cdots & g_{N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_2 & g_3 & g_4 & \cdots & g_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{pmatrix}$$

Formulation spectrale

Convolution d'un signal temporel par un noyau

- ullet La matrice G est diagonalisable dans la base de Fourier
 - $G = Q\Lambda Q^{\mathsf{T}}$, avec $Q \in \mathbb{R}^{N \times N}$ les vecteurs propres de G, qui correspondent aux modes de Fourier du noyau
- D'après le théorème de la convolution la convolution dans le domaine temporel équivaut à la multiplication dans le domaine de Fourier

•
$$x * g = \mathcal{F}^{-1}(\mathcal{F}(x) \otimes \mathcal{F}(g)) = Q(Q^{\mathsf{T}}x \otimes Q^{\mathsf{T}}g) = Q \operatorname{diag}(g) Q^{\mathsf{T}}x$$

Formulation spectrale

- « Convolution » d'un signal défini sur un graphe par un noyau
 - On considère maintenant un signal $x \in \mathbb{R}^{|\mathcal{V}|}$, un signal $\mathcal{V} \to \mathbb{R}$
 - On formule une sorte de « convolution » par analogie, dans le domaine de Fourier, la notion de translation n'étant pas définie sur un graphe
 - - Matrice laplacienne normalisée symétrique : $L_{sym} = I D^{-1/2}AD^{-1/2}$

Formulation spectrale

- « Convolution » d'un signal défini sur un graphe par un noyau
 - Décomposition spectrale de la matrice laplacienne
 - $L_{sym} = Q\Lambda Q^{\mathsf{T}}$, avec Q les vecteurs propres du laplacien, i.e. les modes du graphe
 - Pour un noyau $g \in \mathbb{R}^{|\mathcal{V}|}$, on définie une opération imitant la formulation spectrale de la convolution $x * g = Q(Q^{\mathsf{T}}x \otimes Q^{\mathsf{T}}g) = Q \operatorname{diag}(g) \ Q^{\mathsf{T}}x$
 - ullet Problème : le nombre de paramètres est dépendant de la taille de ${\mathcal G}$

Formulation spectrale

- « Convolution » d'un signal défini sur un graphe par un noyau
 - Approximation polynomiale du filtre
 - $g_{\Theta} = \sum_{k=0}^{K-1} \Theta_k \Lambda^k$: fixe le nombre de paramètres à K
 - Approximation par polynôme de Tchebychev

$$\hat{g}_{\Theta'} = \sum_{k=0}^{K-1} \Theta'_k T_k(\tilde{\Lambda}) : \operatorname{avec} \tilde{\Lambda} = \frac{2}{\lambda_{\mathsf{max}}} \Lambda - I \text{ et où } T_0(\tilde{\Lambda}) = \vec{1}, \, T_1(\tilde{\Lambda}) = \tilde{\Lambda} \text{ et les}$$

termes suivants définis par récurrence

Formulation spectrale

- Graph Convolutional Network : GCN (Kipf et al. 2017)
 - On fixe K = 2 et on considère que $\lambda_{max} = 2$
 - ullet On substitue A par $\tilde{A}=A+I$ et on corrige la matrice des degrés, \tilde{D}
 - Kipf nomme cela le « renormalization trick » car les valeurs propres sont translatées de [0;2] vers [-1;1] : concrètement on ajoute des boucles
 - Couche GCN
 - $H^{(n)}=\text{ReLU}(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(n-1)}W^{(n)})$ avec $H^0=X$, et où $W^{(n)}$ est une matrice de poids propre à la n-ième couche GCN

Formulation spectrale

- Graph Convolutional Network: GCN (Kipf et al. 2017)
 - Définition d'un réseau GCN à deux couches pour la classification de sommets
 - $\hat{y} = \operatorname{softmax} \left(\tilde{L} \left(\operatorname{ReLU} (\tilde{L}XW^{(1)}) \right) W^{(2)} \right)$, avec $\hat{y} \in [0; 1]^C$
 - Estimation, semi supervisée, des paramètres
 - Soit $y: \mathcal{V}' \subset \mathcal{V} \to \{0;1\}^C$ les vraies classes d'un sous-ensemble de sommets
 - On minimise l'entropie croisée $-\sum_{v\in\mathcal{V}'}\sum_{c}y_{vc}\log\hat{y}_{vc}$

Formulation par passage de messages

Passage de messages

• Un cadre général pour décrire les GNN

- Chaque couche réalise 2 étapes
 - 1) Chaque sommet envoie un message à ses voisins
 - 2) Chaque sommet agrège (e.g. somme pondérée) les messages reçus

• Une vision beaucoup plus élémentaire du GCN

$$h_i^{(n)} = \sum_{v_j \in \mathcal{N}(i)} \frac{1}{\sqrt{d(i)} \sqrt{d(j)}} h_j^{(n-1)} W^{(n)}, \text{ avec } \mathcal{N}(i) \subset \mathcal{V} \text{ les voisins du sommet } i,$$

ainsi que lui-même (boucle)

Passage de messages

- Graph Attention Network: GAT (Veličković, 2018)
 - $h_i^{(n)} = \sum_{v_j \in \mathcal{N}(i)} \alpha_{ij}^{(n)} h_j^{(n-1)} W^{(n)}$, avec $\mathcal{N}(i) \subset \mathcal{V}$ les voisins du sommet i, ainsi que lui-même

(boucle) et α_{ij} un poids qui quantifie l'attention qu'accorde le sommet i à la représentation du sommet j

ullet Le poids d'attention est proportionnel à une somme pondérée de $W^{(n)}h_i^{(n-1)}$ et $W^{(n)}h_j^{(n-1)}$

$$\alpha_{ij}^{(n)} = \frac{\exp\left(\text{LeakyReLU}\left(a \cdot \left[W^{(n)}h_i^{(n-1)}, W^{(n)}h_j^{(n-1)}\right]\right)\right)}{\sum_{k \in \mathcal{N}(i)} \exp\left(\text{LeakyReLU}\left(a \cdot \left[W^{(n)}h_i^{(n-1)}, W^{(n)}h_k^{(n-1)}\right]\right)\right)}, \text{ avec } a \in \mathbb{R}^{2d} \text{ un paramètre supplémentaire de la couche et où } [\cdot, \cdot] \text{ désigne la concaténation}$$

Application au traitement automatique des documents

Classification transductive

- Graph Convolutional Networks for Text Classification: TextGCN (Yao et al. 2019)
 - Graphe au niveau corpus mêlant sommets-mots et sommets-documents

(Figure tirée de « Graph Convolutional Networks for Text Classification », Yao et al., 2019)

Adrien Guille (ERIC, Université Lyon 2) @ Atelier TextMine (EGC 2023)

Classification inductive

- Message Passing Attention Networks for Document Understanding: MPAD (Nikolentzos et al. 2020)
 - Graphes au niveau document mêlant sommets-mots et sommets-phrases

(Figure tirée de « Message Passing Attention Networks for Document Understanding », Nikolentzos et al., 2020)

Résumé extractif

- Heterogeneous Graph Neural Networks for Extractive Document Summarization (Wang et al. 2020)
 - Graphes mêlant sommets-mots et sommets-phrases

(Figure tirée de « Heterogeneous Graph Neural Networks for Extractive Document Summarization » (Wang et al. 2020)

Résumé extractif

- Enhancing Scientific Papers Summarization with Citation Graph (An et al. 2021)
 - Graphe de sommets-documents

(Figure tirée de « Enhancing Scientific Papers Summarization with Citation Graph » (An et al. 2021)

Adrien Guille (ERIC, Université Lyon 2) @ Atelier TextMine (EGC 2023)

Pistes de recherche

Pistes de recherche

De l'espace euclidien à l'espace hyperbolique

• Efficient Document Classification with Hyperbolic Hierarchical Graph Neural Networks (Guille et al. 2023)

• Chaque couche apprend des représentations sur une surface de courbure

Matrice Identifiants

Adjacence Couche de représentation euclidienne euclidienne sommet document docum

Pistes de recherche

De graphes fixes à des graphes appris

• Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification (Piao et al. 2022)

(Figure tirée de « Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification » Piao et al. 2022)

Adrien Guille (ERIC, Université Lyon 2) @ Atelier TextMine (EGC 2023)