BÁO CÁO THỰC HÀNH KIẾN TRÚC MÁY TÍNH (IT3280) TUẦN 2

Assignment 1:

Trạng thái	\$pc	\$s0
Ban đầu	0x00400000	0x000000000
Gđ1	0x00400004	0x00003007
Gđ2	0x00400008	0x00000000

- Gđ1:

Op: $8 \Rightarrow 001000$

Rs: $0 \Rightarrow 00000$

Rt: $16 \Rightarrow 10000$

Immi: $0x3007 \Rightarrow 0110\ 0000\ 0000\ 0111$

Code: 0010 0000 0001 0000 0110 0000 0000 0111

Mã hex: 0x20103007.

- Gđ2:

Op: 0 => 000000

Rs: $0 \Rightarrow 00000$

Rt: 0 => 00000

Rd: $16 \Rightarrow 01000$

Shamt: 0 => 00000

Funt: 32 => 100000

Code: 0000 0000 0000 0000 0100 0000 0010 0000

Mã hex: 0x00008020

=→ Cửa sổ textsegment trùng với mã máy.

- Sửa lại lệnh addi: addi \$s0, \$zero, 0x2110003d

Nhận xét: Chương trình không biên dịch lệnh addi, thay vào đó là hai lệnh lui và ori do 0x2110003d là số 32 bit, mà addi có instr. Format I nên chỉ truyền được tối đa 16 bit (từ 2^(-15) đến 2^(15) − 1). Do đó chương trình phải truyền 16bit cao vào lui và 16bit thấp vào ori để chương trình có thể chạy được.

Assignment 2:

Trạng thái	\$s0	pc
Ban đầu	0x00000000	0x00400000
Chạy lui	0x21000000	0x00400004
Chạy ori	0x2100003d	0x00400008

- Chuyển sang vùng lệnh .text:

Nhận xét:

- Address của Text Segment và Data Segment trùng nhau.
- Value (+0) và Value (+4) tại Data Segment trùng với phần Code của Text Segment.

Assignment 3:

Nhận xét:

• Lệnh li bị thay bằng hai câu lệnh mới là lui và ori do 0x2110003d là là số 32 bit, mà li có instr. Format I nên chỉ truyền được tối đa 16 bit, vì vậy phải thay thành hai câu lệnh lui và ori để thực hiện câu lệnh.

• 0x2 là 16 bit nhưng do li không phải là lệnh thực hiện trực tiếp lên hệ thống nên phải đổi sang câu lệnh khác (addiu) để có thể thực hiện.

Assignment 4:

- Sự thay đổi của các thanh ghi:

Trạng thái	\$t1	\$t2	\$s0	рс
Ban đầu	0x00000000	0x00000000	0x00000000	0x00400000
Chạy addi 1	0x00000005	0x00000000	0x00000000	0x00400004
Chạy addi 2	0x00000005	0xffffffff	0x00000000	0x00400008
Chạy add 1	0x00000005	0xffffffff	0x0000000a	0x0040000c
Chạy add 2	0x00000005	0xffffffff	0x00000009	0x00400010

Nhân xét:

- Ta khai báo X = 5 và Y = -1, sau khi chạy addi 1 và addi 2 thì ta đã gán t1 = 5 và t2 = -1, sau khi chạy add 1 thì ta thực hiện phép toán 2X = 10 và gán vào thanh ghi s0, cuối cùng chạy add 2 là phép toán 2X + Y = 10 1 = 9 và gán vào thanh ghi s0, lúc này là 0x00000009 = 9, đúng với kết quả của phép tính.
- Ở lệnh addi ta có dạng là addi \$rt, \$rs, immi tương ứng với format I. Ta có 0x2 tương ứng với opcode là 2 là lệnh addi còn vị trí thứ 3 là 9 tương ứng với rt còn vị trí thứ 4 là 0 tương ứng với rs còn 4 bit cuối là 0005 tương ứng với immi.

- Xét: addi \$t2, \$zero, -1 (addi \$10, \$0, 0xffffffff)

Op: $8 \Rightarrow 001000$

Rs: 0 => 00000

Rt: $10 \Rightarrow 01010$

Imm: $0xffffffff => 1000\ 0000\ 0000\ 0000$

Mã Hex: 0x200affff

→ Lệnh addi phù hợp với format I.

- Lệnh add thứ nhất: add \$s0, \$t1, \$t1 (add \$16, \$9, \$9)

Opcode : 0 => 000000

 $Rd: 16 \Rightarrow 10000$

 $Rs: 9 \Rightarrow 10001$

Rt: 9 => 10001

Shamt : 0 => 00000

Funt: 32 => 100000

Code: 0000 0001 0010 1001 1000 0000 0010 0000

Mã hex: 0x01298020

- Lệnh add thứ hai: add \$s0, \$s0, \$t2 (add \$16, \$16, \$10)

Opcode : 0 => 000000

 $Rd: 16 \Rightarrow 10000$

 $Rs: 16 \Rightarrow 10000$

 $Rt: 10 \Rightarrow 01010$

Shamt : $0 \Rightarrow 00000$

Funt: $32 \Rightarrow 100000$

Code: 0000 0010 0000 1010 1000 0000 0010 0000

Mã hex: 0x020a8020

→ Lệnh add phù hợp với format R.

Assignment 5:

Те	Text Segment							
Bkpt	Address	Code	Basic		Source			
	0x00400000	0x20090004	addi \$9,\$0,0x00000004	4:	addi \$t1, \$zero, 4 # X = \$t1 = ?			
	0x00400004	0x200a0005	addi \$10,\$0,0x00000	5:	addi \$t2, \$zero, 5 # Y = \$t2 = ?			
	0x00400008	0x712a8002	mul \$16,\$9,\$10	7:	mul \$s0, \$t1, \$t2 # HI-LO = \$t1 * \$t2 = X * Y ; \$s0 = LO			
	0x0040000c	0x20010003	addi \$1,\$0,0x00000003	8:	mul \$s0, \$s0, 3 # \$s0 = \$s0 * 3 = 3 * X * Y			
	0x00400010	0x72018002	mul \$16,\$16,\$1					
	0x00400014	0x00008812	mflo \$17	10:	mflo \$s1			

Nhận xét: lệnh mul ở dòng 8 bị thay thành lệnh addi do lệnh mul là format R, mà khi ta gõ là format I => Chương trình phải thêm 1 lệnh khác (addi) để chuyển 0x3 thành 1 biến rồi mới thực hiện

- Sau khi chạy xong chương trình:

- Ta có:

Trạng thái	hi	lo
Ban đầu	0x00000000	0x00000000
Chạy add 1	0x00000000	0x00000000
Chạy add 2	0x00000000	0x00000000
Chạy mul 1	0x00000000	0x00000014
Chạy mul 2	0x00000000	0x0000003c

Nhận xét: phép tính 3 * X * Y = 60 = 3c => Kết quả cho ra đúng với phép tính.

Assignment 6:

Nhận xét: Lệnh la chỉ lưu được địa chỉ 16 bit mà địa chỉ của biến là 32 => la sẽ thực hiện 2 câu lệnh lui và ori để lưu địa chỉ của biến.

- Sau 3 lần chạy la thì ta thấy địa chỉ X, Y, Z bằng hằng số:

Biến X

Address	Value (+0)	Value (+4)	Value (+8)
0x10010000	0x00000005	0xfffffff	0x0000000
0x10010020	0x00000000	0x00000000	0x0000000
0x10010040	0x00000000	0x00000000	0x0000000
0x10010060	0x00000000	0x00000000	0x0000000
0x10010080	0x00000000	0x00000000	0x0000000
0x100100a0	0x00000000	0x00000000	0x0000000
0x100100c0	0x00000000	0x00000000	0x0000000
0x100100e0	0x00000000	0x00000000	0x00000000
0x10010100	0x00000000	0x00000000	0x0000000
0x10010120	0x00000000	0x00000000	0x0000000
0x10010140	0x00000000	0x00000000	0x0000000
0x10010160	0x00000000	0x00000000	0x0000000
0x10010180	0x00000000	0x00000000	0x00000000
0x100101a0	0x00000000	0x00000000	0x0000000

Biến Y

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	
0x10010000	0x00000005	0xffffffff	0x00000009	0x00000000	
0x10010020	0x00000000	0x00000000	0x00000000	0x00000000	
0x10010040	0x0000000	0x00000000	0x00000000	0x00000000	
0x10010060	0x0000000	0x00000000	0x00000000	0x00000000	
0x10010080	0x00000000	0x00000000	0x00000000	0x00000000	
0x100100a0	0x00000000	0x00000000	0x00000000	0x00000000	
0×100100c0	0~0000000	0~0000000	0~0000000	0~0000000	

Biến Z

- Ta có sự thay đổi giá trị của thanh ghi:

Trạng	\$s0	\$t1	\$t2	\$t7	\$t8	\$t9
thái						
Ban	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000
đầu						
Chạy					0x10010000	
la 1						
Chạy						0x10010004
la 2						
Chạy		0x00000005				
lw 1						
Chạy			0xffffffff			
lw 2						

Chạy	0x0000000a			
add 1				
Chạy	0x00000009			
add 2				
Chạy			0x10010008	
la				
Chạy				
sw				

➤ Nhận xét:

- lw: dùng để lưu giá trị trên địa chỉ vào địa chỉ còn lại.
 sw: dùng để lưu giá trị trên thanh ghi vào 1 địa chỉ.