618327-2560

PHYSICS OF ELECTRONIC MATERIALS AND DEVICES

Dr. Orrathai Watcharakitchakorn

Lecture 7

- When a semiconductor is doped with some impurities, it becomes an *extrinsic* semiconductor.
- Also, its energy levels are changed.

• The figure shows schematic bond pictures for n-type (a) and p-type (b).

- For n-type, atoms from group **V** impurity release electron for conduction as free charge carrier.
- An electron belonging to the impurity atom clearly needs far less energy to become available for conduction (or to be ionized).
- The impurity atom is called "a donor".
- The donor ionization energy is $\mathbf{E_C} \mathbf{E_D}$ where $\mathbf{E_D}$ is donor level energy.

- For p-type, atoms from group III capture electron from semiconductor valence band and produce hole as free charge carrier.
- $\mathbf{E}_{\mathbf{A}}$ is called "acceptor level" and $\mathbf{E}_{\mathbf{A}}$ $\mathbf{E}_{\mathbf{V}}$ is called "acceptor ionization level energy".
- This acceptor ionization level energy is small since an acceptor impurity can readily accept an electron.

The ionization energy or binding energy, producing a free charge carrier in semiconductor, can be approximately expressed by

$$E = \frac{-m^* e^4}{8(\varepsilon_0 \varepsilon_r)^2 h^2} \tag{1}$$

where

$$m^* = m_e^*$$
 for donor atoms $m^* = m_h^*$ for acceptor atoms

Example 1

• Calculate approximate binding energy for donors in Ge, given that ϵ_r = 16 and m_e *= 0.12 m_o .

(a) donor ions and (b) acceptor ions.

• Consider an n-type semiconductor, if N_D is the number of donor electrons at the energy level E_D , then we define to be the number of free electron carrier (number of N_D that have gone for conduction) or ionized donor atom density can be written as

$$N_D^+ = N_D \left\lceil 1 - F\left(E_D\right) \right\rceil \tag{2}$$

 For a *p-type*, the argument is similar. Therefore, free-hole density or ionized acceptor atom density is written as

$$N_A^- = N_A F(E_A) \tag{3}$$

We can obtain the Fermi level dependence on temperature for three cases:

- Very low temperature
- Intermediate temperature
- Very high temperature.

Very low temperature

$$\begin{split} E_F - E_D >> kT \\ n &= N_D^+ \\ N_C e^{-(E_C - E_F)/kT} = N_D \bigg[1 - \frac{1}{e^{(E_D - E_F)/kT} + 1} \bigg] \\ N_C e^{-(E_C - E_F)/kT} &= N_D \bigg[\frac{1}{e^{(E_F - E_D)/kT} + 1} \bigg] \end{split}$$

$$N_C e^{-(E_C - E_F)/kT} = N_D \left[\frac{1}{e^{(E_F - E_D)/kT}} \right]$$

Divding by N_c and taking \ln

$$\frac{-(E_C - E_F)}{kT} = \ln\left(\frac{N_D}{N_C}\right) - \frac{\left(E_F - E_D\right)}{kT}$$

$$E_F = \left(\frac{E_C + E_D}{2}\right) + \frac{kT}{2} \ln\left(\frac{N_D}{N_C}\right)$$

Intermediate temperature

$$E_F - E_D < kT << E_g$$

In this case, all donors are ionized

$$n = N_D$$

$$N_C e^{-(E_C - E_F)/kT} = N_D$$

$$-\frac{\left(E_C - E_F\right)}{kT} = \ln\left(\frac{N_D}{N_C}\right)$$

$$E_F = E_C + kT \ln \left(\frac{N_D}{N_C}\right)$$

$$E_F = E_C - kT \ln\left(\frac{N_C}{N_D}\right) \tag{4}$$

Very high temperature

- In this case, all donors are ionized and electrons are excited from valence band to conduction band.
- This is acting like an intrinsic semiconductor or $E_F = E_{i\cdot}$
- It may be useful to express electron and hole densities in terms of intrinsic concentration n_i and the intrinsic Fermi level E_i .

For **n-type**, from
$$n = N_C \exp[-(E_C - E_F)/kT]$$
,

$$n = N_C \exp\left[-(E_C - E_F)/kT\right]$$

$$= N_C \exp\left[-(E_C - E_i)/kT\right] \exp\left[(E_F - E_i)/kT\right]$$

$$n = n_i \exp\left[(E_F - E_i)/kT\right]$$
(5)

Similarly to *p***-type**, we have

$$p = n_i \exp[(E_i - E_F)/kT]$$
 (6)

This $n.p = n_i^2$ is valid for both intrinsic and extrinsic semiconductors under thermal equilibrium.

n-type semiconductor

- (a) Schematic band diagram.
- (c) Fermi distribution function

Note that $np = n_i^2$.

- (b) Density of states.
- (d) Carrier concentration.

- We have learned how to find new position of Fermi level for extrinsic semiconductors.
- Now let us consider the new electron density in case of both donors N_D and acceptors N_A are present simultaneously.
- The Fermi level will adjust itself to preserve overall charge neutrality as

$$n + N_A^- = p + N_D^+ \tag{7}$$

• By solving (7) with $n \cdot p = n_i^2$, the equilibrium electron and hole concentrations in an n-type semiconductors yield

$$n_n = \frac{1}{2} \left[N_D^+ - N_A^- + \sqrt{\left(N_D^+ - N_A^-\right)^2 + 4n_i^2} \right]$$
 (8)

$$p_n = \frac{n_i^2}{n_n} \tag{9}$$

• Similarly to p-type semiconductors, the electron and hole concentrations are expressed as

$$p_p = \frac{1}{2} \left[N_A^- - N_D^+ + \sqrt{\left(N_D^+ - N_A^-\right)^2 + 4n_i^2} \right]$$
 (10)

$$n_p = \frac{n_i^2}{p_p} \tag{11}$$

• Generally, in case of all impurities are ionized, the net impurity concentration $N_D - N_A$ is larger than the intrinsic carrier concentration n_i ; therefore, we may simply rewrite the above relationship as,

$$n_n \approx N_D - N_A$$
 if $N_D > N_A$
 $p_p \approx N_A - N_D$ if $N_A > N_D$

• The figure shows electron density in Si as a function of temperature for a donor concentration of $N_D = 10^{15}$ cm⁻³.

- At low temperature, not all donor impurities could be ionized and this is called "Freeze-out region" since some electrons are frozen at the donor level.
- As the temperature increased, all donor impurities are ionized and this remains the same for a wide range of temperature.
- This region is called "Extrinsic region".

- Until the temperature is increased even higher and it reaches a point where electrons are excited from valence band.
- This makes the intrinsic carrier concentration becomes comparable to the donor concentration.
- At this region, the semiconductors act like an intrinsic one.

Degenerate semiconductor

- If the semiconductors are heavily doped for both n- or p-type, E_F will be higher than E_C or below E_V , respectively.
- The semiconductor is referred to as *degenerate* semiconductor.
- This also results in the reduction of the bandgap.

Degenerate semiconductor

• The bandgap reduction ΔE_g for Si at room temperature is expressed by

$$\Delta E_g = 22\sqrt{\frac{N}{10^{18}}} \text{ meV}$$
 (12)

where the doping N is in the unit of cm⁻³.

Example 2

• Si is doped with 10¹⁶ arsenic atoms/cm³. Find the carrier concentration and the Fermi level at room temperature (300K).

Sol^n

At room temperature, complete ionization of impurity atoms is highly possible, then we have $n = N_D = 10^{16}$ cm⁻³.

Example 2

• Solⁿ

• The Fermi level measured from the intrinsic Fermi level

is

- When a bond between neighboring atoms is broken, an electron-hole pair is generated.
- The valence electron moves upward to the conduction band due to getting thermal energy.
- This results in a hole being left in the valence band.

- This process is called *carrier generation* with the generation rate G_{th} (number of electron-hole pair generation per unit volume per time).
- When an electron moves downward from the conduction band to the valence band to recombine with the hole, this reverse process is called *recombination*.
- The recombination rate represents by R_{th} .

• Under thermal equilibrium, the generation rate G_{th} equals to the recombination rate R_{th} to preserve the condition of

$$pn = n_i^2 \tag{13}$$

• The direct recombination rate R can be expressed as

$$R = \beta np \tag{14}$$

where β is the proportionality constant.

• Therefore, for an n-type semiconductor, we have

$$G_{th} = R_{th} = \beta n_{n0} p_{n0}$$
 (15)

where n_{n_0} and p_{n_0} represent electron and hole densities at thermal equilibrium.

- If the light is applied on the semiconductor, it produces electron-hole pairs at a rate G_L , the carrier concentrations are above their equilibrium values.
- The generation and recombination rates become

$$G = G_L + G_{th} \qquad R = \beta n_n p_n = \beta \left(n_{n0} + \Delta n \right) \left(p_{n0} + \Delta p \right)$$
(16)
$$\tag{17}$$

where Δn and Δp are the excess carrier concentrations

$$\Delta n = n_n - n_{n0}$$

$$\Delta p = p_n - p_{n0}$$
(18a)
$$(18b)$$

- $\Delta n = \Delta p$ to maintain the overall charge neutrality.
- The net rate of change of hole concentration is expressed as

$$\frac{dp_n}{dt} = G - R = G_L + G_{th} - R \tag{19}$$

• In steady-state, $dp_n/dt = 0$. From (19) we have

$$G_L = R - G_{th} \equiv U \tag{20}$$

where U is the net recombination rate.

Substituting (15) and (17) into (20), this yields

$$U = \beta (n_{n0} + p_{n0} + \Delta p) \Delta p \tag{21}$$

• For low-level injection Δp , $p_{n_0} << n_{n_0}$, (21) becomes

$$U \approx \beta n_{n0} \Delta p = \frac{p_n - p_{n0}}{1/\beta n_{n0}} = \frac{p_n - p_{n0}}{\tau_p}$$
 (22)

• where au_p is called excess minority carrier lifetime.

$$p_n = p_{n0} + \tau_p G_L \tag{23}$$

• We may write p_n in the function of t as

$$p_n(t) = p_{n0} + \tau_p G_L \exp(-t/\tau_p)$$
(24)

Example 3

• A Si sample with $n_{n_0} = 10^{14}$ cm⁻³ is illuminated with light and 10^{13} electron-hole pairs/cm³ are created every microsecond. If $\tau_n = \tau_p = 2$ µs, find the change in the minority carrier concentration.