

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi) Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

Department of Mathematics

Fourth Semester B.E. (Autonomous)

Question Bank

Module 5

Ques	Question								
tion Num									
ber									
	The joint probability distribution is given by								
1.			y distr		1 is given by				
	<u>X</u> Y	-3 0.1	0.2	0.2	_				
	3	0.1	0.2	0.2	_				
				_	n of X and Y (ii) COV(X,Y)				
2					n of two random variables X and Y are given as:				
	X Y	1	3	9	Tortwo random variables x and r are given as.				
	$\frac{n}{2}$	1/8	1/2	1/1					
		_, _	4	2					
	4	1/4	1/4	0					
	6	1/8	1/2	1/1	7				
			4	2					
	Find the (i)	Margin	al distr	ibution	n of X and Y (ii) COV(X,Y)				
3.	_		ř – – –		n table for two random variables X and Y is as follows.				
	XY	-2	-1	4	5				
	1	0.1	0.2	0	0.3				
	2	0.2	0.1	0.1					
			_		tion of X and Y. Also compute (a) Expectations of X,Y (b)				
4		` _			nd Y (d) Correlations of X and Y. n of two random variables X and Y are given as:				
4	X	-4	2	7	Tor two random variables x and r are given as.				
	$\frac{\lambda}{1}$	1/8	1/4	1/8	-				
	5	1/4	1/8	1/8					
					and E(Y) (ii) E(XY) (iii) COV(X,Y) (iv) $\rho(X,Y)$ (v)				
	σ_x and σ_v .		0()	()					
5		and Y ar	e indep	endent	nt random variables with the following respective				
			_		bution of X and Y. Also verify that $COV(X,Y)=0$				
	x_i	1 2		y_j	j -2 5 8				
	$f(x_i)$	0.7 0.3	3	g(y)					
		1	<u></u>	00)	7'				

6	If X and Y are independent random variables, find the joint probability distribution of X and Y with the following marginal distribution of X and Y.								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
7	Two cards are selected at a random from a box which contains five cards numbered 1,1,2,2 and 3. Find the joint distribution of x and Y where X denotes the sum and Y, the maximum of the two numbers drawn. Also determine COV(X,Y) and ρ (X,Y).								
8	X and Y are independent random variables. X take values 2,5,7 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, respectively take values 3,4,5 with probabilities $\frac{1}{3}$,1/3,1/3. (i) find the joint distribution of X and Y. (ii) Show that $COV(X,Y)=0$ (iii) Find the probability distribution of Z=X+Y								
9	The joint probability distribution of two discrete random variables X and Y is given by $f(x,y) = k(2x + y)$, where x and y are integers such that $0 \le x \le 2$, $0 \le y \le 3$. (i) Find the value of the constant k (ii) Find the marginal distribution of X and Y.(iii) Show that the random variables X and Y are dependent.								
10	A coin is tossed three times. Let X denotes 0 and 1according as a tail or a head occurs on the first toss. Let Y denote the total number of tails which occur. Determine (i) the marginal distribution of X and Y and (ii) The joint probability distribution of X and Y. Also, find the expected values of X+Y and XY.								
11	If X and Y are independent random variables, prove the following results. (a) E (XY) = E(X).E(Y) (b) COV(X, Y) = 0 and (c) $\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y$.								
12	Two marbles are drawn from a box containing 3 blue, 2 red and 3 green marbles. If x is the number of blue marbles and Y is the number of red marbles. Form (i) The joint probability distribution of X and Y (ii) Find E(x) and E(Y)								
13	X and Y are random variables having joint density function $f(x,y) =$								
	$\begin{cases} 4xy, & 0 \le x \le 1, & 0 \le y \le 1 \end{cases}$								
	(0,								
14	The joint density function of two continuous random variables X and Y is given by $f(x,y) = \begin{cases} kxy, & 0 \le x \le 4, 1 < y < 5 \\ 0, & otherwise \end{cases}$								
	Find (a) the value of k (b) E(X) (c) E(Y) (d) E(XY) (e) E(2X+3Y)								
15	If X and Y are continuous random variables having joint density function $(a(x^2 + y^2)) = 0 < x < 1, 0 < y < 1$								
	$f(x,y) = \begin{cases} c(x^2 + y^2), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & otherwise \end{cases}$								
	Determine (i) c (ii) $P(x < \frac{1}{2}, y > \frac{1}{2})$ (iii) $P(\frac{1}{4} < x < \frac{3}{4})$ (iv) $P(y < \frac{1}{2})$								
16	The joint density function of 2 continuous random variables $f(x,y) =$								
	$\begin{cases} \frac{xy}{96}, & 0 < x < 4, 1 < y < 5 \\ 0, & otherwise \end{cases}$								
	0, otherwise								
17	Find $P(x + y < 3)$ If the joint Probability function of 2 continuous random variables X and Y is given by								
1/									
	$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), & 0 < x < 2, 2 < y < 4 \\ 0, & otherwise \end{cases}$								
	Find (i) $P(x + y < 3)$ (ii) $P(x < 1, y < 3)$								
18	Find (i) $P(x + y < 3)$ (ii) $P(x < 1, y < 3)$ Verify that $f(x,y) = \begin{cases} e^{-(x+y)}, & x \ge 0, y \ge 0 \\ 0, & otherwise \end{cases}$ is a density function of joint probability								

	distribution. Also evaluate (i) $P(x < 1)$ (ii) $P(x > y)$ (ii) $P(x + y \le 1)$							
19	The joint density function of two continuous random variables X and Y is given by							
	$f(x,y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, & otherwise \end{cases}$							
	Find the covariance between x and y							
20	Find the covariance between x and y $(k(x+1)e^{-y}, \ 0 < x < 1, y > 0$							
	Find the constant k so that $f(x,y) = \begin{cases} k(x+1)e^{-y}, & 0 < x < 1, y > 0 \\ 0, & otherwise \end{cases}$ is a joint probability							
	density function. Are x and y independent?							
21	Define the following							
	(i) Stochastic process (ii) Probability vector (iii) Stochastic matrix (iv) Regular Stochastic matrix							
22	Explain (i) Absorbing state of Markov chain (ii) Transient state (iii) Recurrent state							
23	Find the unique probability vector for the regular stochastic matrix $\begin{bmatrix} 0.7 & 0.3 \\ 0.8 & 0.2 \end{bmatrix}$							
24	[0 0.75 0.25]							
	Find the unique fixed probability vector for the regular stochastic matrix 0.5 0.5 0							
25								
25	Verify that the matrix A= 0.5 0.25 0.25 is a regular stochastic matrix							
26	[0.5 0.25 0.25] Show that P= 0.5 0.25 0.25							
	Show that $P = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$ is a regular stochastic matrix. Also find the associated							
	unique fixed probability vector.							
27	Show that $v = (b \ a)$ is fixed point of the stochastic matrix $P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$							
28	FO 1 01							
	Show that $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ is a regular stochastic matrix. Also find the associated unique fixed							
	$\left \frac{1}{2} \frac{1}{2} 0 \right $							
	probability vector.							
29	Prove that the Markov chain whose transition probability matrix is P=							
	$\begin{bmatrix} 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$							
	$\begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$ is irreducible. Also find the corresponding stationary probability vector							
	$\begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ is irreducible. Also find the corresponding stationary probability vector							
20	$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$							
30	The transition probability matrix of a Markov Chain is given by $\begin{bmatrix} \Gamma^1 & 0 & 1 \end{bmatrix}$							
	$P = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix} \text{ and the initial probability distribution is } p^{(0)} = (\frac{1}{2}, \frac{1}{2}, 0) \text{ find } p_{13}^{(2)}, p_{23}^{(2)}$							
	$P=\begin{bmatrix}1&0&0\\1&1&1\end{bmatrix}$ and the initial probability distribution is $p^{(3)}=(\frac{1}{2},\frac{1}{2},0)$ find p_{13} , p_{23}							
	$p^{(2)}$ and $p_1^{(2)}$							
31	Prove that the Markov chain whose transition probability matrix is $P = \frac{1}{10}$							
	[6 2 2]							
	1 8 1 is irreducible. Also find the corresponding stationary probability vector							
32	The transition probability matrix of a Markov Chain is given by							
	[1 0]							
	$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$							
33	A habitual gambler is a member of two clubs A and B. He visits either of the clubs every day							

	for playing cards. He never visits club A on two consecutive days. But, if he visits club B on a particular day, then the next day he is as likely to visits club B or club A. Find the transition
	matrix of this Markov Chain also.
	(a) Show that the matrix is a regular stochastic matrix and find the unique fixed
	probability vector.
	(b) If the person had visited club B on Monday, find the probability that he visits club A on Thursday.
34	A students study habits are as follows. If he studies one night, he is 70% sure not to study
	the next night. On the other hand if he does not study one night, he is 60% sure not to study the next night. In the long ran how often does he study?
35	A man's smoking habits are as follows. If he smokes filter cigarettes one week, he switches
33	to non-filter cigarettes the next week with probability 0.2. on the other hand, if he smokes
	non filter cigarettes one week there is a probability of 0.7 that he will smoke non filter
	cigarettes the next week as well. In the long run how often does he smoke filter cigarettes.
36	Three boys A, B, C are throwing ball to each other. A always throws ball to B and B always
	throws the ball to C. C is just as likely to throw the ball to b as to A. If C was the first person
	to throw the ball find the probabilities that after three throws (i) A has the ball (ii) B has the
	ball (iii) C has the ball.
37	A gambler's luck follows a pattern. If he wins a game, the probability of winning the next
	game is 0.6. However if he loses a game, the probability of losing the next game is 0.7. There
	is an even chance of gambler winning the first game. If so (i) What is the probability of
	winning the second game?(ii)What is the probability of winning the third game? (iii) In the
	long run, how often he will win?
38	Each year a man trades his car for a new car in 3 brands of the popular company Maruthi
	Udyog limited. If he has a 'Standard' he trades it for 'Zen'. If he has a 'Zen' he trades it for a
	'Esteem'. If he has a 'Esteem' he is just as likely to trade it for new 'Esteem' or for a 'Zen' or a
	'Standard' one. In 1996 he bought his first car which was Esteem.(i) Find probability that he
	has (a) 1998 Esteem (b) 1998 Standard (c) 1999 Zen (d) 1999 Esteem. (ii) In the long run
	how often he will have a Esteem.
39	Two boys B_1 , B_2 and two girls G_1 , G_2 are throwing ball from one to the other. Each boy
	throws the ball to the other boy with probability $\frac{1}{2}$ and to each girl with probability $\frac{1}{4}$. On the
	other hand each girl throws the ball to each boy with probability $\frac{1}{2}$ and never to the other
	girl. In the long run how often does each receive the ball?
40	A Player luck follows a pattern. If he wins a game the probability of winning next game is
	0.6 .However if he loses the game the probability of losing the next game is 0.7. There is an
	en chance of winning the first game. If so (i) what is the probability of winning second gam
	what is the probability of winning third game?