Semi-Supervised Classification with Graph Convolutional Networks (GCN)

Published as a conference paper at ICLR 2017

DOI: arXiv:1609.02907

Thomas N. Kipf
University of Amsterdam
T.N.Kipf@uva.nl

Max Welling

University of Amsterdam Canadian Institute for Advanced Research (CIFAR) M.Welling@uva.nl

Presented by:

Jerry Liao, MS in Data Engineering María Victoria Liendro, MS in Data Engineering

Introduction

Problem: classifying nodes in a graph, where labels are limited

Traditional approach: graph Laplacian regularization term in the loss function

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}$$
, with $\mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2 = f(X)^\top \Delta f(X)$.

Limitations: assumes that connected nodes are likely to share the same label. This restricts modeling capacity, as graph edges may not mean node similarity, but could contain complex relationships

Contributions

- Introduce a propagation rule for neural network models
- Comparison with traditional approaches and show that is faster and scalable

Model: Propagation rule

$$H^{(l+1)} = \sigma \Big(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \Big)$$

Ã=A+In: adjacency matrix of the graph with added self-connections

 $\tilde{\mathbf{D}}$: degree matrix: $\tilde{D}_{ii} = \sum_{j} \tilde{A}_{ij}$

H: matrix of features in the 1-th layer. H(0) = X

W: layer-specific trainable weight matrix

 σ : activation function, we will use Softmax for final result and ReLU for H⁽¹⁾

Model: Semi-supervised node classification

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \ \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

- Two-layer GCN on a graph with a symmetric adjacency matrix
- Calculated $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$ in a pre-processing step
- Ws were trained using batch gradient descent using the full dataset for every training iteration
- W(0): input-to-hidden weight matrix for a hidden layer with H feature maps
- W(1): hidden-to-output weight matrix
- Evaluate the cross-entropy error over all labeled

Simple example

$$A = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

$$ilde{A} = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix}$$

$$ilde{D} = egin{bmatrix} 2 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 2 \end{bmatrix}$$

$$\tilde{D}^{-\frac{1}{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & \frac{1}{\sqrt{3}} & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\hat{A} = egin{bmatrix} rac{1}{2} & rac{1}{\sqrt{6}} & 0 \ rac{1}{\sqrt{6}} & rac{1}{3} & rac{1}{\sqrt{6}} \ 0 & rac{1}{\sqrt{6}} & rac{1}{2} \end{bmatrix}$$

Assume:

$$X = egin{bmatrix} 1 & 0 \ 0 & 1 \ 1 & 0 \end{bmatrix}$$

$$W^{(0)} = egin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$$

$$W^{(1)} = egin{bmatrix} 0.8 & 0.2 \ -0.3 & 0.7 \end{bmatrix}$$

Simple example: first layer

$$H^{(1)}=\mathrm{ReLU}(\hat{A}XW^{(0)})$$

$$X = egin{bmatrix} 1 & 0 \ 0 & 1 \ 1 & 0 \end{bmatrix}$$

$$XW^{(0)} = egin{bmatrix} 1 & -1 \ -1 & 1 \ 1 & -1 \end{bmatrix}$$

$$W^{(0)} = egin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$$

$$H^{(1)} = ext{ReLU} \left(egin{bmatrix} rac{1}{2} & rac{1}{\sqrt{6}} & 0 \ rac{1}{\sqrt{6}} & rac{1}{3} & rac{1}{\sqrt{6}} \ 0 & rac{1}{\sqrt{6}} & rac{1}{2} \end{bmatrix} egin{bmatrix} 1 & -1 \ -1 & 1 \ 1 & -1 \end{bmatrix}
ight)$$

$$H^{(1)} = \begin{bmatrix} \text{ReLU}(\frac{1}{2} - \frac{1}{\sqrt{6}}) & \text{ReLU}(-\frac{1}{2} + \frac{1}{\sqrt{6}}) \\ \text{ReLU}(\frac{2}{\sqrt{6}} - \frac{1}{3}) & \text{ReLU}(-\frac{2}{\sqrt{6}} + \frac{1}{3}) \\ \text{ReLU}(\frac{1}{2} - \frac{1}{\sqrt{6}}) & \text{ReLU}(-\frac{1}{2} + \frac{1}{\sqrt{6}}) \end{bmatrix}$$

$$H^{(1)} = egin{bmatrix} 0.0918 & 0 \ 0.4832 & 0 \ 0.0918 & 0 \end{bmatrix}$$

Simple example: Second layer

$$H^{(2)} = \text{softmax}(\hat{A}H^{(1)}W^{(1)})$$

$$H^{(1)} = egin{bmatrix} 0.0918 & 0 \ 0.4832 & 0 \ 0.0918 & 0 \end{bmatrix} \hspace{0.5cm} W^{(1)} = egin{bmatrix} 0.8 & 0.2 \ -0.3 & 0.7 \end{bmatrix}$$

$$H^{(1)}W^{(1)} = \begin{bmatrix} (0.0918 \times 0.8) + (0 \times -0.3) & (0.0918 \times 0.2) + (0 \times 0.7) \\ (0.4832 \times 0.8) + (0 \times -0.3) & (0.4832 \times 0.2) + (0 \times 0.7) \\ (0.0918 \times 0.8) + (0 \times -0.3) & (0.0918 \times 0.2) + (0 \times 0.7) \end{bmatrix}$$

$$= \begin{bmatrix} 0.0734 & 0.0184 \\ 0.3865 & 0.0966 \\ 0.0734 & 0.0184 \end{bmatrix}$$

$$H_{\text{raw}}^{(2)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{3} & \frac{1}{\sqrt{6}}\\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0.0734 & 0.0184\\ 0.3865 & 0.0966\\ 0.0734 & 0.0184 \end{bmatrix}$$

$$H_{
m raw}^{(2)} = egin{bmatrix} 0.1945 & 0.0486 \ 0.1888 & 0.0472 \ 0.1945 & 0.0486 \end{bmatrix}$$

Simple example: Second layer

$$H^{(2)} = \operatorname{softmax}(\hat{A}H^{(1)}W^{(1)}) \qquad p_i = rac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

$$H_{
m raw}^{(2)} = egin{bmatrix} 0.1945 & 0.0486 \ 0.1888 & 0.0472 \ 0.1945 & 0.0486 \end{bmatrix}$$

$$e^{H_{
m raw}^{(2)}} = egin{bmatrix} e^{0.1945} & e^{0.0486} \ e^{0.1888} & e^{0.0472} \ e^{0.1945} & e^{0.0486} \end{bmatrix}$$

$$H_{1,1}^{(2)} = rac{1.2148}{2.2646} pprox 0.5364, \quad H_{1,2}^{(2)} = rac{1.0498}{2.2646} pprox 0.4636$$

$$H_{2,1}^{(2)} = rac{1.2080}{2.2563} pprox 0.5353, \quad H_{2,2}^{(2)} = rac{1.0483}{2.2563} pprox 0.4647$$

$$H_{3,1}^{(2)} = rac{1.2148}{2.2646} pprox 0.5364, \quad H_{3,2}^{(2)} = rac{1.0498}{2.2646} pprox 0.4636$$

$$H^{(2)} = egin{bmatrix} 0.5364 & 0.4636 \ 0.5353 & 0.4647 \ 0.5364 & 0.4636 \end{bmatrix}$$

Simple example: Results

In this model we consider 2 layer which means H2 is the results:

For Node1: classified to C1, with probability 0.5364 For Node2: classified to C1, with probability 0.5353 For Node3: classified to C1, with probability 0.5364

Example: Loss function

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$
 $H^{(2)} = \begin{bmatrix} 0.5364 & 0.4636 \\ 0.5353 & 0.4647 \\ 0.5364 & 0.4636 \end{bmatrix}$

$$\mathbf{Y}_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Y_{true} means that the true label of the node

$$L_1 = -(1*ln(0.5364)+0*ln(0.4636)) \approx 0.6229$$

 $L_2 = -(0*ln(0.5353)+1*ln(0.4647)) \approx 0.7664$
 $L_3 = -(1*ln(0.5364)+0*ln(0.4636)) \approx 0.6229$

$$L_{\text{total}} = 0.6229 + 0.7664 + 0.6229 = 2.0122$$

To minimize Loss, H2 should approach Y_{true}

Example: Update Weights

$$W^{(l)} \leftarrow W^{(l)} - \underbrace{\eta \cdot \frac{\partial L}{\partial W^{(l)}}}$$

$$rac{\partial L}{\partial H_{i,c}^{(2)}} = H_{i,c}^{(2)} - Y_{i,c}$$

$$\frac{\partial L}{\partial H^{(2)}} = \begin{bmatrix} 0.5364 - 1 & 0.4636 - 0 \\ 0.5353 - 0 & 0.4647 - 1 \\ 0.5364 - 1 & 0.4636 - 0 \end{bmatrix}$$

$$= \begin{bmatrix} -0.4636 & 0.4636 \\ 0.5353 & -0.5353 \\ -0.4636 & 0.4636 \end{bmatrix}$$

By back propagation rule:

Gradient of L with aspect to $\mathsf{H}^{(1)}\mathsf{W}^{(1)}$, denoted by $H^{(1)}W_{\mathrm{grad}}^{(1)}$

$$H^{(1)}W_{\text{grad}}^{(1)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{3} & \frac{1}{\sqrt{6}}\\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{2} \end{bmatrix}^T \begin{bmatrix} -0.4636 & 0.4636\\ 0.5353 & -0.5353\\ -0.4636 & 0.4636 \end{bmatrix}$$

$$H^{(1)}W_{
m grad}^{(1)} = egin{bmatrix} -0.0694 & 0.0694 \ 0.0721 & -0.0721 \ -0.0694 & 0.0694 \end{bmatrix}$$

Example: Update Weights

$$W^{(l)} \leftarrow W^{(l)} - \eta \cdot rac{\partial L}{\partial W^{(l)}}$$

$$W_{
m new}^{(1)} = W^{(1)} - \eta \cdot W_{
m grad}^{(1)}$$

By back propagation rule:

Gradient of L with aspect to W1 denoted by $W_{\text{grad}}^{(1)}$

$$H^{(1)}W_{
m grad}^{(1)} = egin{bmatrix} -0.0694 & 0.0694 \ 0.0721 & -0.0721 \ -0.0694 & 0.0694 \end{bmatrix}$$

$$W_{\text{grad}}^{(1)} = \begin{bmatrix} 0.0918 & 0 \\ 0.4832 & 0 \\ 0.0918 & 0 \end{bmatrix}^T \begin{bmatrix} -0.0694 & 0.0694 \\ 0.0721 & -0.0721 \\ -0.0694 & 0.0694 \end{bmatrix}$$

$$= \begin{bmatrix} -0.0192 & 0.0192 \\ -0.0231 & 0.0231 \end{bmatrix}$$

Result:

$$W_{
m new}^{(1)} = egin{bmatrix} 0.8 & 0.2 \ -0.3 & 0.7 \end{bmatrix} - 0.1 egin{bmatrix} -0.0192 & 0.0192 \ -0.0231 & 0.0231 \end{bmatrix}$$

$$W_{
m new}^{(1)} = egin{bmatrix} 0.8019 & 0.1981 \ -0.2977 & 0.6977 \end{bmatrix}$$

Repeat this until find the minimize! Then do the same to W⁽⁰⁾

Experiments

Set-Up:

- Validation set: 500 labeled data for hyperparameter optimization
- Test set: 1,000 labeled data
- 200 epochs
- Adam with learning rate of 0.01 and early stopping if validation loss does not decrease in 10 epochs

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Results: Classification

- Mean accuracy of 100 runs with random initializations
- Time testing: Planetoid it used the implementation provided by the authors and used the same hardware as our model

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Results: Propagation model

• Mean accuracy of 100 runs with random initializations

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = \frac{K}{K}$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
$K = \frac{\text{Chebyshev litter (Eq. 5)}}{K}$		69.6	81.2	73.8
1st-order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	$\boldsymbol{79.0}$
1st-order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron (Not graph structure)	$X\Theta$	46.5	55.1	71.4

Results: Training time

• Mean training time per epoch of 100 runs with random initializations

Figure 2: Wall-clock time per epoch for random graphs. (*) indicates out-of-memory error.

Discussion

Overcoming Previous Limitations:

- o Graph-Laplacian regularization: assumes that edges encode similarity of nodes
- Skip-gram: are based on a multi-step pipeline which is difficult to optimize
- **Feature propagation:** information from neighboring nodes in every layer improves classification performance, outperforming methods where only label information is aggregated
- **Propagation model:** improved efficiency and better predictive performance

Discussion: Limitations

- **Memory requirement**: it grows linearly with the size of the dataset. Large graphs that do not fit in GPU memory can still be train in CPU.
 - o Proposition: mini-batch stochastic gradient descent.
- Directed edges and edge features: this model does not naturally support edge features and is limited to undirected graphs.
- Limiting assumptions: We assume locality and equal importance of selfconnections vs edges to neighboring nodes.
 - oProposition: introduce a trade-off parameter.

Thank you

Franck Fotso, MS in Electrical Engineering

Jerry Liao, MS in Data Engineering

María Victoria Liendro, MS in Data Engineering