Inference 1: Hypothesis testing (cont)

Last updated: September 21, 2017

Which test to use

- ▶ Depends on data
- \triangleright S (test stat) depends on H_A (alternative)
- justifying the assumptions = CRUCIAL.

Tests we learn	num	cat	cat. vs cat.	num. vs cat.
Fisher's exact			✓	
permutation (randomization)	\checkmark	\checkmark	\checkmark	\checkmark
chi-square		\checkmark	\checkmark	
z-test for proportions		\checkmark		
t-test	\checkmark			
two-sample t-test				✓
ANOVA				\checkmark

Chi-square: > Fisher and Permutation

Data: $m \times n$ contingency table (cat. vs cat.) Example: sex vs survived, true vs guessed, class vs survived

- ▶ H₀: row and column variables are independent
- $ightharpoonup H_A$: they are not independent

Our choices so far:

- ▶ Fisher's exact: (+) exact, solid math; (-) hard to compute
- Permutation: (+) easy to compute; (-) not exact, hard to prove solid mathematical properties
- ▶ Chi-square (χ^2) : (+) mathematically solid approximation (ie: it is very good if the table entries are LARGE); (+) easy to compute

The chi-square test for frequency tables

Data: frequency table with k categories

Example: class, race

 $ightharpoonup H_0$: frequencies do not deviate significantly from population values

 \blacktriangleright H_A : frequencies deviate significantly from population values

► Test statistic

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

 O_i = observed cell count, E_i = expected cell count under H_0

▶ Key: under H_0 , χ^2 approximately follows the $\chi^2(k-1)$ distribution. The parameter k-1 is called the *degrees of freedom* of the distribution.

Data example: hsb2 race.

The chi-square test for contingency tables

Data: $m \times n$ contingency table (cat. vs cat.) Example: true vs guessed, class vs survived

- $ightharpoonup H_0$: row and column variables are independent
- ► H_A: row and column variables are NOT independent
- Test statistic

$$\chi^2 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

 O_{ij} = observed count in cell ij, E_{ij} = expected count in cell ij under H_0

▶ Key: under H_0 , χ^2 approximately follows the $\chi^2((m-1)\cdot(n-1))$ distribution.

Data example: Titanic class vs survived

z-test for proportions

Example: hsb2: the proportion of white students is significantly different from the national average?

Last lecture: used permutation test.

z-test = take ∞ samples on this permutation test. Data: binary variable (yes/no), and a baseline proportion $p_0 \in [0,1]$

Example: survived ($\rho_0=0.5$), race == white ($\rho_0=0.75$), math.score >= 60 ($\rho_0=0.1$) etc

- ▶ H_0 : the data is a representative sample from the population (ie: each entry is 'yes' with probability p_0)
- H_A (two-sided): the data is NOT a representative sample from the population
 (ie: the proportion of 'yes' in the data is significantly different from p₀)
- ▶ H_A (one-sided): 'yes' in data is $\gg p_0$ (or $\ll p_0$).
- ► Test statistic: $Z = \frac{\hat{p} p_0}{\sqrt{p_0(1-p_0)/n}}$.
- Key: under H₀, for large n, Z approximately follows the standard normal distribution.

Data example: UT Austin sexual assault survey

z-test for difference of proportions

Data: binary vs binary

Example: survived vs sex, math.score >= 60 vs sex, etc

Different math from Fisher/chi-square. Good when sample size is large.

- ▶ H_0 : The proportion of 'yes' in each group are not significantly different. That is, $p_1 p_2 = 0$
- ▶ H_A (two-sided): $|p_1 p_2| > 0$ significantly
- ▶ H_A (one-sided): $p_1 p_2 > 0$
- ► Test statistic: $Z = \frac{\hat{p}}{\sqrt{\hat{p}(1-\hat{p})/(n_1+n_2)}}$ where $\hat{p} := \frac{\hat{p}_1 n_1 + \hat{p}_2 n_2}{n_1+n_2}$.
- Key: under H₀, for large n, Z approximately follows the standard normal distribution.

Data example: UT Austin sexual assault survey.

t-test for sample mean

Data: numerical, and a baseline mean μ_0 Example: read score ($\mu_0=50$), linebreaks ($\mu_0=100$), sleep time of New Yorkers ($\mu_0=8$)

- H₀: the data is a representative sample from the population
 ie: sample mean is not significantly different from the population mean μ₀
- ▶ H_A (two-sided): the data is NOT a representative sample from the population (ie: the sample mean \bar{x} is significantly different from μ_0)
- H_A (one-sided): $\bar{x} \mu_0 \gg 0$ (greater), $\bar{x} \mu_0 \ll 0$ (less)
- ► Test statistic: $t = \frac{\bar{x} \mu_0}{se/\sqrt{n}}$, where $se = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (x_i \bar{x})^2}$ is the sample standard deviation
- ▶ Key: under H_0 , t has the t(n-1) distribution. The parameter n-1 is called the degree of freedom.

Data example: sleep time of New Yorkers

t-test for difference in sample mean

Data: numerical vs binary

Example: read vs gender, linebreaks vs spam, salary vs degree

- H_0 : $\mu_1 = \mu_2$
- \blacktriangleright H_A (two-sided): $\mu_1 \mu_2 \neq 0$
- ▶ H_A (one-sided): $\mu_1 \mu_2 > 0$
- ▶ Test statistic: the general form is $t = \frac{\bar{x}_1 \bar{x}_2}{se\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$, where se is the pooled sample standard deviation. Formulae for se differ, depend on whether we assumed equal variances or not.
- ▶ Key: under H_0 , t has the t-distribution with $(n_1 + n_2 1)$ degrees of freedom.

Data example: teacher: salary vs degree.

ANOVA = t-test with more than 2 categories

Data: numerical vs categorical

Example: home runs vs position, number killed vs bacteria type, read vs race, etc

- H_0 : $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$
- ► H_A: not all equal
- ► Test statistic: *F* =...
- ▶ Key: Under H_0 , this follows the F-distribution

Data example: Major League Baseball 2010: home runs vs position