BCC202 - Estruturas de Dados I

Aula 8: Recursividade

Pedro Silva

Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Email: silvap@edu.ufop.br

Conteúdo

Conceitos

Recursividade Condição de Parada Consumo de Memória

Dividir para Conquistar Definição

Análise de Complexidade

Conclusão

Exercícios

Conteúdo

Conceitos

Conceitos

Recursividade Condição de Parada Consumo de Memória

Dividir para Conquista Definição

Análise de Complexidade

Conclusão

Exercícios

Visão Geral

- A recursividade é uma estratégia que pode ser utilizada sempre que uma função f pode ser escrita em função dela própria.
- Exemplo: Cálculo do Fatorial:

$$n! = n*(n-1)*(n-2)*(n-3)*...*1*1$$

Como
$$(n-1)! = (n-1)*(n-2)*(n-3)*...*1*1$$

Então:
$$n! = n * (n-1)!$$

Há uma "definição recursiva" do problemas que guero resolver.

Definicão

- Dentro do corpo de uma função, chamar novamente a própria função.
 - Recursão direta: a função A chama a própria função A.
 - Recursão indireta: a função A chama uma função B que, por sua vez, chama A.

Condição de Parada

- ▶ Nenhum programa, nem função, pode ser exclusivamente definido por si só:
 - Um programa seria um loop infinito.
 - Uma função teria definição circular.

```
void func(int n ) {
          printf("%d\n", n);
          func(n);
4
5
```

O que aconteceria?

Condição de Parada

Permite que o procedimento pare de se executar.

```
void func(int n ) {
      printf("%d ", n);
      if(n>0)
        func(n-1);
        printf("* ");
5
6
8
```

Condição de Parada: Se *n* é positivo (caso base).

- n inicialmente positivo.
- O valor de n é decrementado a cada chamada, logo a execução tem um fim.

Se func(4), o que seria impresso?

Condição de Parada

Permite que o procedimento pare de se executar.

```
void func(int n ) {
      printf("%d ", n);
      if(n>0){
        func(n-1);
4
        printf("* "):
5
7
8
```

Condição de Parada: Se *n* é positivo (CASO BASE).

- O valor de *n* é decrementado a cada chamada.
- n inicialmente positivo.
 - A execução tem um fim.

Seria impresso:43210****

Conceitos

Além do critério de parada ou caso base ou caso trivial e da chamada recursiva, que visa resolver uma instância menor do mesmo problema, pode existir também o processamento de apoio ou processamento complementar.

Processamento de Apoio ou Processamento Complementar

É formado pelos demais processamentos que acompanham e/ou utilizam o que resultado da chamada recursiva.

Pilha de Execução

```
Considere n = 4, ou seja, func(4).
```

```
void func(int n) {
      printf("%d ", n);
      if(n>0){
        func(n-1);
        printf("* ";)
8
```


(b) Pilha após a chamada func(3)

Pilha de Execução

Considere n = 4, ou seja, func(4).

```
void func(int n) {
  printf("%d ", n);
  if(n>0){
    func(n-1):
   printf("* ";)
```

func(0)	Ť	n	0
func(1)	ŧ	n	1
func(2)	À	n	2
func(3)	À	n	3
func(4)	Å	n	4
June(4)	T		

(c) Pilha após a chamada func(0)

func(1)	٨	n	1
func(2)	À	n	2
func(3)	À	n	3
func(4)	I	n	4
June (4)	т		

(d) Pilha após retorno de func(0), no contexto de func(1)

Pilha de Execução

Sobre a execução anterior:

A função é iniciadar com func(4).

- ► Exibe o valor 4, chama func(3)
- ► chama func(2)

- ightharpoonup chama func(1)
- ► chama func(0)
- ightharpoonup que retorna sem chamar a função recursivamente pois n não é maior que 0.
- ► Até aqui, a saída é composta por 4 3 2 1 0

Pilha de Execução

Sobre a execução anterior:

Quando a chamada de func(0) retorna, a execução retorna para contexto de func(1), que após a chamada recursiva, exibe o * na tela, e retorna. A execução então retorna para o contexto de func(2), que também imprime um * e retorna, e assim por diante.

Pilha de Execução

- Para cada chamada de uma função, recursiva ou não, os parâmetros e as variáveis locais são empilhados na pilha de execução.
- Qual a implicação disto?
- Internamente, quando uma função é chamada, é criado um Registro de Ativação na Pilha de Execução do programa.
- Este registro armazena os parâmetros e variáveis locais da função bem como o "ponto de retorno" no programa que chamou essa função.
- Ao final da execução dessa função, o registro é desempilhado e a execução volta ao subprograma que chamou a função.

Pilha de Execução

- Para cada chamada de uma função, recursiva ou não, os parâmetros e as variáveis locais são empilhados na pilha de execução.
- Qual a implicação disto? Maior consumo de memória!
- Internamente, quando uma função é chamada, é criado um Registro de Ativação na Pilha de Execução do programa.
- Este registro armazena os parâmetros e variáveis locais da função bem como o
- Ao final da execução dessa função, o registro é desemplihado e a execução volta

Pilha de Execução

- Para cada chamada de uma função, recursiva ou não, os parâmetros e as variáveis locais são empilhados na pilha de execução.
- Qual a implicação disto? Maior consumo de memória!
- Internamente, quando uma função é chamada, é criado um Registro de **Ativação** na **Pilha de Execução** do programa.
- Este registro armazena os parâmetros e variáveis locais da função bem como o "ponto de retorno" no programa que chamou essa função.
- Ao final da execução dessa função, o registro é desempilhado e a execução volta ao subprograma que chamou a função.

Consumo de Memória - Exemplo: Fatorial

```
int fat1(int n) {
       int r:
       if(n == 0)
         r = 1;
       else
         r = n * fat1(n-1):
       return r:
8
     int fat2(int n) {
10
       if (n == 0)
11
         return 1:
13
       else
         return n * fat2(n-1);
14
15
```

```
void main() {
16
       int f, g;
17
       f = fat1(4);
18
       g = fat2(4);
19
       printf("%d -- %d", f, g);
20
21
```

- Qual a diferença entre fat1 e fat2?

Consumo de Memória - Exemplo: Fatorial

```
int fat1(int n) {
       int r:
       if(n == 0)
         r = 1;
       else
         r = n * fat1(n-1):
       return r:
8
     int fat2(int n) {
10
       if (n == 0)
11
         return 1:
13
       else
         return n * fat2(n-1);
14
15
```

```
void main() {
16
       int f, g;
17
       f = fat1(4);
18
       g = fat2(4);
19
       printf("%d -- %d", f, g);
20
21
```

- Qual a diferença entre fat1 e fat2?

Consumo de Memória - Exemplo: Fatorial

```
int fat1(int n) {
       int r:
       if(n == 0)
         r = 1;
       else
         r = n * fat1(n-1):
       return r:
8
     int fat2(int n) {
10
       if (n == 0)
11
         return 1:
13
       else
         return n * fat2(n-1);
14
15
```

```
void main() {
16
       int f, g;
17
       f = fat1(4);
18
       g = fat2(4);
19
       printf("%d -- %d", f, g);
20
21
```

- Qual a diferença entre fat1 e fat2?
- Qual dos dois você escolheria? Justifique.

Fatorial: Elementos da Função Recursiva

1º - Condição de Parada ou Caso Base

```
int fatorial(int n)
{
   if (n == 0)
     return 1;
   return (n * fatorial(n - 1));
}
```

Conceitos

Fatorial: Elementos da Função Recursiva

2º - Chamada Recursiva para uma Instância Menor do Problema

```
int fatorial(int n)
 if (n == 0)
   return 1;
  return (n * fatorial(n - 1));
```

Conceitos

Fatorial: Elementos da Função Recursiva

3° - Processamento Complementar

```
int fatorial(int n)
 if (n == 0)
    return 1;
  return (n * fatorial(n - 1));
```

Fatorial: Pilha de Recursão

int
$$x = fatorial(4);$$

Fatorial: Pilha de Recursão

Fatorial: Pilha de Recursão

n	0
retorno	
n	1
retorno	
n	2
retorno	
n	3
retorno	
n	4
retorno	
х	

Fatorial: Pilha de Recursão

retorno	1
n	1
retorno	
n	2
retorno	
n	3
retorno	
n	4
retorno	
X	

Fatorial: Pilha de Recursão

Fatorial: Pilha de Recursão

Fatorial: Pilha de Recursão

Fatorial: Pilha de Recursão

Fatorial: Pilha de Recursão

Executando a função recursiva para o cálculo de intx = fatorial(4).

24 retorno Х

Fatorial: Pilha de Recursão

Executando a função recursiva para o cálculo de intx = fatorial(4).

int
$$x = fatorial(4);$$

Conceitos

Consumo de Memória - Exemplo: Fatorial

- \triangleright A complexidade de tempo do fatorial recursivo é O(n) (veremos como definir isto através de **equação de recorrência**, em breve).
- Mas a complexidade de espaço também é O(n), devido à pilha de execução.
- Já no fatorial não recursivo a complexidade de espaço é O(1).

```
int fatIter(int n) {
  int f = 1:
  while (n > 1) {
    f = f * n:
    n = n - 1:
  return f:
```

Conceitos

Importante

- Portanto, podemos concluir que a recursividade nem sempre é a melhor solução. mesmo quando a definição matemática do problema é feita em termos recursivos.
- Além disso, pode-se afirmar que:
 - Todo algoritmo recursivo tem uma versão não recursiva.
 - A questão é: vale a pena implementar a versão não-recursiva?

Exemplo: Série de Fibonacci

Conceitos

Consumo de Memória

Outro exemplo clássico de recursividade é a Série de Fibonacci, definida pela expressão:

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n > 2 \\ F(n) = 1 & \text{se } n = 1 \\ F(n) = 0 & \text{se } n = 0 \end{cases}$$

Originando a série: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Exemplo: Série de Fibonacci – Soluções

Solução Recursiva:

```
int fibR(int n) {
  if(n == 0)
    return 0;
  else if (n == 1)
    return 1;
  else
    return fibR(n-1) +
           fibR(n-2):
```

Solução Iterativa:

```
int fibI(int n) {
      int i, k, F;
      i = 1; F = 0;
      for(k = 1; k \le n; k++) {
        F += i;
        i = F - i;
      return F:
9
```

Exemplo: Série de Fibonacci – Soluções

Solução Recursiva:

```
int fibR(int n) {
      if(n == 0)
        return 0:
      else if (n == 1)
        return 1;
      else
        return fibR(n-1) +
                fibR(n-2):
9
```

- Um mesmo n é computado várias vezes.
- Custo: $O(\phi^n)$:
 - $\phi = 1,61803...$ (Golden Ratio).
- Complexidade Exponencial.

Solução Iterativa:

```
int fibI(int n) {
      int i, k, F;
      i = 1; F = 0;
      for(k = 1: k \le n: k++) {
        F += i:
        i = F - i:
      return F:
9
```

Exemplo: Série de Fibonacci – Soluções

Solução Recursiva:

```
int fibR(int n) {
      if(n == 0)
        return 0:
      else if (n == 1)
        return 1;
      else
        return fibR(n-1) +
                fibR(n-2):
9
```

- Um mesmo n é computado várias vezes.
- Custo: $O(\phi^n)$:
 - $\phi = 1,61803...$ (Golden Ratio).
- Complexidade Exponencial.

Solução Iterativa:

```
int fibI(int n) {
      int i, k, F;
      i = 1; F = 0;
      for(k = 1: k \le n: k++) {
        F += i:
        i = F - i:
      return F:
9
```

- Custo: O(n)
- Complexidade Linear!

Exemplo: Série de Fibonacci – Soluções

Solução Recursiva:

Conceitos

Consumo de Memória

```
int fibR(int n) {
   if(n == 0)
    return 0;
   else if(n == 1)
   return 1;
   else
   return fibR(n-1) +
        fibR(n-2);
}
```

- Um mesmo n é computado várias vezes.
- Custo: $O(\phi^n)$:
 - $\phi = 1,61803...$ (Golden Ratio).
- ► Complexidade Exponencial

Solução Iterativa:

```
int fibI(int n) {
  int i, k, F;
  i = 1; F = 0;
  for(k = 1; k <= n; k++) {
    F += i;
    i = F - i;
  }
  return F;
}</pre>
```

- ightharpoonup Custo: O(n)
- Complexidade Linear!

Conclusão

Não se deve utilizar recursividade cegamente!!!

Quando vale a pena usar recursividade?

- Recursividade vale a pena para algoritmos complexos, cuja implementação iterativa é complexa e normalmente requer o uso explícito de uma pilha.
- Exemplos:

- Dividir para Conquistar (Ex. Quicksort).
- Caminhamento em Árvores (pesquisa, backtracking).

Conteúdo

Consumo de Memória

Dividir para Conquistar Definição

Análise de Complexidade

Definição

Muitos algoritmos recursivos seguem uma abordagem dividir para conquistar

Divisão

Divida o problema em vários subproblemas mais simples.

Consquista

Conquiste os subproblemas recursivamente.

Combinação

Combine as soluções intermediárias.

Não se reduz trivialmente como Fatorial.

MergeSort

- **Dividir**: Divide a lista de n elementos em duas listas de n/2 elementos cada.
- Conquistar: Ordena cada subsequência recursivamente.
- ► Combinar: Combina as subsequências ordenadas.

CC202 - Estruturas de Dados I

Conteúdo

Consumo de Memória

Análise de Complexidade

Eguação de Recorrência: Passo a Passo

- Define-se uma função de complexidade f(n).
- ldentifica-se a equação de recorrência T(n):
 - Especifica-se T(n) como uma função dos termos anteriores.
 - Especifica-se a condição de parada (e.g. T(1)).

Exemplo: Função recursiva

```
void exemplo(int n) {
   int i;
   if(n <= 1)
      printf("%d", n);
   else {
      for(i = 0;i < n; i++)
        printf("%d", n);
      exemplo(n-1);
   }
}</pre>
```

Podemos definir a recorrência como:

$$\begin{cases}
T(n) = n + T(n-1) \\
T(1) = 1
\end{cases}$$

Exemplo: Função de complexidade

$$\begin{cases} T(n) = n + T(n-1) \\ T(1) = 1 \end{cases}$$

Expandindo:

$$T(n) = n + T(n-1)$$

$$= n + (n-1) + T(n-2)$$

$$= n + (n-1) + (n-2) + T(n-3)$$

$$\vdots$$

$$= n + (n-1) + (n-2) + \dots + 2 + T(1)$$

$$= n + (n-1) + (n-2) + \dots + 2 + 1$$

$$T(n) = n + (n-1) + (n-2) + ... + 2 + 1$$

$$2T(n) = n + (n-1) + (n-2) + \dots + 2 + 1$$

$$+1 + 2 + 3 + \dots + (n-1) + n$$

$$= (n+1) + (n+1) + (n+1) + \dots + (n+1)$$

$$= n (n+1)$$

Logo:
$$T(n) = \frac{n(n+1)}{2} = O(n^2)$$

Fatorial

```
int fatorial(int n) {
      if(n == 0)
        return 1:
      else{
        return n * fatorial(n-1);
6
```

Podemos definir a recorrência como:

$$\begin{cases} T(n) = 1 + T(n-1) \\ T(0) = 1 \end{cases}$$

$$\begin{cases} T(n) = 1 + T(n-1) \\ T(0) = 1 \end{cases}$$

Expandindo:

$$T(n) = 1 + T(n-1)$$

= 1 + 1 + T(n-2)
:
= 1 + 1 + 1 + ... + 1 + T(1)
= 1 + 1 + 1 + ... + 1 + 1
= n

Logo:
$$T(n) = n = O(n)$$

- Atenção: lembre-se de que, além da análise de custo de tempo, deve-se analisar também o custo de **espaço**.
- Qual a complexidade de espaco da função fatorial (qual o tamanho da pilha de execução)?
 - Proporcional ao número de chamadas?

Mais um exemplo: Equação de Recorrência

Seja a equação de recorrência:

$$\begin{cases}
T(n) = n + T(n/3) \\
T(1) = 1
\end{cases}$$

- Resolva por expansão.
- Considere a simplificação de que n seja sempre divisível por 3. Ou seja, $n=3^k$, k > = 0
- ▶ Dica: Somatório de uma PG finita = $a_1(1-q^n)/(1-q)$, onde n= número de termos da PG

Equação de Recorrência

Mais um exemplo: Resolvendo a Equação de Recorrência

$$\begin{cases}
T(n) = n + T(n/3) \\
T(1) = 1
\end{cases}$$

Resolvendo por expansão:

$$T(n) = n + T(n/3)$$

$$= n + n/3 + T(n/3/3)$$

$$= n + n/3 + n/3/3 + T(n/3/3/3)$$

$$\vdots$$

$$= n + n/3 + n/3/3 + ... + n/3/3/.../3 + T(n/3/3/.../3)$$

Mais um exemplo: Resolvendo a Equação de Recorrência

Pela expansão chegamos a:

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/.../3 + T(n/3/3/.../3)$$

Mas. como $n=3^k$, então: $T(1)=T(n/3^k)$. Assim. temos:

$$T(n) = \sum_{i=0}^{k-1} (n/3^i) + T(1) = n \sum_{i=0}^{k-1} (1/3^i) + 1$$

- Até agora temos: $T(n) = n \sum_{i=0}^{k-1} (1/3^i) + 1$.
- ▶ Mas, $\sum_{i=0}^{k-1} (1/3^i)$ é uma PG finita, com $a_1 = 1$, q = 1/3 e n = k.
- Aplicando o somatório da PG finita. $a_1(1-a^n)/(1-a)$:

$$T(n) = n ((1 - (1/3)^k)/(1 - 1/3)) + 1$$

$$= n (1 - 1/n)/(1 - 1/3)) + 1$$

$$= (n - 1)/(2/3) + 1$$

$$= 3n/2 - 1/2$$

Portanto, T(n) = O(n)

Equação de Recorrência

Conteúdo

Consumo de Memória

Análise de Complexidade

Conclusão

Conclusão

- Conceitos importantes sobre **recursividade**:
 - critério de parada.
 - chamadas de funções recursivas para instâncias menores.
 - processamento de apoio.
 - pilha de execução de fun"cões recursivas e consumo de memória.
- Poderoso paradigma de programação: dividir para conquistar.
- Noção geral sobre complexidade de funções recursivas através de equações de recorrência.

Listas.

BCC202 - Estruturas de Dados I

Aula 8: Recursividade

Conteúdo

Consumo de Memória

Análise de Complexidade

Exercícios

Exercício 01

- Crie uma função recursiva que calcula a potência de um número.
 - Qual a condição de parada?
 - Qual a complexidade de sua função? Apresente a equação de recorrência e resolva-a.