WHAT IS CLAIMED IS:

Selle B	$\downarrow \rangle_1$
Sur /	2
	3
1	4

5

6

A thermal transfer system, comprising:

a container for receiving a medium;

a structure positioned in the container such that the structure segments the container into a plurality of compartments wherein a distal end of the structure is in close proximity to an interior surface of the container to allow formation of a thermal transfer bridge that conducts heat into or out of the medium.

- 1 2. A thermal transfer system as in claim 1 including:
- 2 a heating or cooling device coupled to and provides heating or cooling of the 3 container.
- 1 3. A thermal transfer system as in claim 1 including:
- a heating or cooling devide coupled to and provides heating or cooling of the
- 3 structure.
- 1 4. A thermal transfer system as in claim 1 including:
- 2 a heating or cooling/device coupled to and provides heating or cooling of the 3 container and the structure.
- 1 5. A thermal transfer system as in claim 1 including:
- 2 a plurality of structures in the container.
- 1 6. A thermal transfer system as in claim 1, including:
- a removable liner configured to cover at least a portion of the structure.
- 1 7. A thermal transfer system as in claim 1 wherein:
- 2 a volume of the container is in the range from substantially 1 liter to 250
- 3 liters.
- 1 8. A thermal transfer system as in claim 1 wherein:
- a volume of the container is in the range from substantially 250 liter to
- 3 10,000 liters.
- 1 9. A thermal transfer system as in claim 1 wherein:

Attorney Docket No.: 17882-746

2		the distal end of the structure contacts at least a portion of the interior surface
3	of the	container.
1	10.	A thermal transfer system as in claim 1 wherein:
2	10.	a distance between the distal end of the structure and the interior surface of
3	the co	ntainer is a non-contacting distance not greater than one inch.
3	the co	mamer is a non-contacting distance not greater than one men.
1	11.	A thermal transfer system as in claim 1 wherein:
2		the container includes a jacket defining an interstitial space positioned
3	betwee	en the jacket and a wall of the container for receiving a flow of a heat exchange
4	fluid,	the jacket further including a plurality of spiral baffles for enhancing thermal
5	exchai	nge between the heat exchange fluid and the container.
1	12.	A thermal transfer system as in claim 1 wherein:
2		a heat exchange fluid flows within the structure.
1	13.	A thermal transfer system as in claim 12 wherein:
2		an interior portion of the structure has baffles.
1	14.	A thermal transfer system as in claim 13 wherein:
2	14.	the structure is configured to maximize an area of a surface of the structure
3	that is	in contact with the medium.
5	mat 18	in contact with the medium.
1	15.	A thermal transfer system as in claim 12 wherein:
2		a heat exchange extension is at least partially coupled to the structure.
1	16.	A thermal transfer system as in claim 1 wherein:
2		the medium is substantially uniformly heated or cooled.
1	17.	A thermal transfer system as in claim 1 wherein:
2		the medium is heated of cooled in substantially one direction relative to the
3	structi	ure.
1	18.	A thermal transfer system as in claim 1 wherein:
2		the structure is positioned to induce a thermal gradient in the medium such
3	that th	e thermal gradient is in a predetermined direction.

Attorney Docket No.: 17882-746
C:\NrPortbl\PALIB1\AMS\160320_2.WPD

1	19.	A thermal transfer system as in claim 1 wherein:
2		the medium is heated or cooled in a predetermined direction.
1	20.	A thermal transfer system as in claim 1 wherein:
2		the medium is heated or cooled such that the thermal gradient is in a
3	predet	ermined direction.
1	21.	A thermal transfer system as in claim 1 wherein:
2		the medium is heated or cooled at a predetermined rate.
1	22.	A thermal transfer system as in claim 1 wherein:
	22.	· /
2		the medium is heated or cooled such that the thermal gradient is in a
3	predet	ermined direction and the heating or cooling occurs at a predetermined rate.
1	23.	A thermal transfer system as in claim 1 wherein:
2		the medium is a diopharmaceutical product.
1	24.	A thermal transfer system as in claim 1 wherein:
2		the container has a nonporous bottom.
1	25.	A thermal transfer system as in claim 1 wherein:
2		the container has nonporous walls.
1	26.	A thermal transfer system as in claim 1 wherein:

- 1 27. A thermal transfer system as in claim 1 wherein:
- 2 the container has a nonporous top.

the container has a top.

- 1 28. A thermal transfer/system as in claim 1 including:
- a distal portion of the structure configured to improve thermal transport of
- 3 the thermal transfer bridge.
- 1 29. A thermal transfer system as in claim 1 wherein:
- 2 the medium includes protiens.

Lu	h	0	2>

- 30. A thermal transfer system comprising:
- 2 a container for receiving a medium;
- a structure positioned in the container, a heat exchange member at least
- 4 partially coupled to the structure and extending into the container wherein a distal
- 5 end of the heat exchange member is placed in close proximity to an interior surface
- of the container to allow the formation of a thermal transfer bridge that conducts heat
- 7 into and out of the medium.
- 1 31. A thermal transfer system as in claim 30 wherein:
- 2 a heating or cooling device is coupled to and provides heating or cooling of
- 3 the container.
- 1 32. A thermal transfer system as in claim 30 wherein:
- a heating or cooling device is coupled to and provides heating or cooling of
- 3 the structure positioned inside the container.
- 1 33. A thermal transfer system as in claim 30 wherein:
- a heating or cooling device is coupled to and provides heating or cooling of
- 3 the structure and the container.
- 1 34. A thermal transfer system as in claim 30 wherein:
- 2 there is a plurality of heat exchange members.
- 1 35. A thermal transfer system as in claim 30, further comprising:
- a removable liner configured to cover at least a portion of the heat exchange
- 3 member.
- 1 36. A thermal transfer system as in claim 30 wherein:
- 2 a volume of the container is in the range from substantially 1 liter to 250
- 3 liters.
- 1 37. A thermal transfer system as in claim 30 wherein:
- 2 a volume of the container is in the range from substantially 250 liter to
- 3 10,000 liters.

1	38.	A thermal transfer system as in claim 30 wherein:
2		the container includes a jacket defining an interstitial space positioned
3	betwee	n the jacket and a wall of the container for receiving a flow of a heat exchange
4	fluid, tl	he jacket further including a plurality of spiral baffles for enhancing thermal
5	exchan	ge between the heat exchange fluid and the container.
1	39.	A thermal transfer system as in claim 30 wherein:
1		a heat exchange fluid flows within the structure.
1	40.	A thermal transfer system as in claim 30 wherein:
2		the heat exchange fluid flows into the structure through an interior passage in
3	the stru	acture.
1	41.	A thermal transfer system as in claim 30 wherein:
2		the heat exchange fluid flows out of the structure through an outer passage in
3	the stru	acture wherein one portion of the outer passage comprises an outer wall of the
4	structu	re.
1	42.	A thermal transfer system as in claim 30 wherein:
2		a heat exchange fluid flows within the heat exchange member.
1	43.	A thermal transfer system as in claim 39 wherein:
2		an interior portion of the structure has baffles.
1	44.	A thermal transfer system as in claim 42 wherein:
2		an interior portion of the heat exchange member has baffles.
1	45.	A thermal transfer system as in claim 39 wherein:
2		an interior portion of the portion of the structure extending into the container
3	has bat	ffles.
1	46.	A thermal transfer system as in claim 39 wherein:
2		the heat exchange fluid flows into the heat exchange member from the
2	ctructu	

structure.

2

55.

1	47.	A thermal transfer system as in claim 30 wherein:
2		a heat exchange fluid flows into the heat exchange member from a heat
3	exchar	nge supply line.
1	48.	A thermal transfer system as in claim 38 wherein:
2		the heat exchange fluid flows does not flow through the distal end of the heat
3	exchar	nge member.
1	49.	A thermal transfer system as in claim 30 wherein:
2		a distance between the distal end of the heat exchange member and the
3	interio	r surface of the container is a non-contacting distance not greater than one
4	inch.	
1	50.	A thermal transfer system as in claim 30 wherein:
2		the medium is substantially uniformly heated or cooled.
1	51.	A thermal transfer system as in claim 30 wherein:
2		the medium is heated or gooled in substantially one direction relative to the
3	structu	are.
1	52.	A thermal transfer system as in claim 30 wherein:
2		the medium is heated or cooled at a predetermined rate.
1	53.	A thermal transfer system as in claim 30 wherein:
2		the medium is heated or cooled such that the thermal gradient is in a
3.	predet	ermined direction and the heating or cooling occurs at a predetermined rate.
1	54.	A thermal transfer system as in claim 30 wherein:
2		the medium is a biopharmaceutical product.

A thermal transfer system as in claim 30 wherein:

the medium includes protiens.