

HW12 Solutions

Data Structure and Algorithm (New York University)

Scan to open on Studocu

$EL9343\ Homework\ 12$ Due: Dec. 14th 8:00 a.m.

1. Run the Bellman-Ford algorithm on the following graph, with vertex d as the source. In each pass, relax the edges in the order of $\{(a,b),(a,c),(a,e),(a,f),(b,c),(c,e),(d,e),(d,f),(e,f)\}$. Write down the d array after each pass.

Solution:

No.	a	b	С	d	е	f
1	∞	∞	∞	0	∞	∞
2	∞	∞	∞	0	3	1
3	4	∞	8	0	3	1
4	4	10	8	0	3	1

2. Run the Dijkstra's algorithm on the following graph, with node 0 as the source node. Write down the d array before each EXTRACT-MIN, also the final array.

Solution:

No.	0	1	2	3	4	5
1	0	∞	∞	∞	∞	∞
2	0	4	3	∞	∞	∞
3	0	4	3	10	∞	∞
4	0	4	3	6	∞	∞
5	0	4	3	6	8	∞
6	0	4	3	6	8	14

3. Run the Floyd-Warshall algorithm on the following graph. Show the matrix $D^{(k)}$ that results for each iteration of the outer loop.

Solution:

k			I	\mathcal{O}^k		ſ
	0	∞	∞	∞	-1	∞
0	1	0	∞	2	∞	∞
	∞	2	0	∞	∞	-8
	-4	∞	∞	0	3	∞
	∞	7	∞	∞	0	∞
	\ ∞	5	10	∞	∞	0 /
	0	∞	∞	∞	-1	∞
	1	0	∞	2	0	∞
1	∞	2	0	∞	∞	-8
-	-4	∞	∞	0	-5	∞
	∞	7	∞	∞	0	∞
	\ ∞	5	10	∞	∞	0 /
	0	∞	∞	∞	-1	∞
	1	0	∞	2	0	∞
2	3	2	0	4	2	-8
_	-4	∞	∞	0	-5	∞
	8	7	∞	9	0	∞
	\ 6	5	10	7	5	0 /
	0	∞	∞	∞	-1	∞
	1	0	∞	2	0	∞
3	3	2	0	4	2	-8
3	-4	∞	∞	0	-5	∞
	8	7	∞	9	0	∞
	\ 6	5	10	7	5	0 /
	0	∞	∞	∞	-1	∞
	-2	0	∞	2	-3	∞
4	0	2	0	4	-1	-8
-	-4	∞	∞	0	-5	∞
	5	7	∞	9	0	∞
	\ 3	5	10	7	2	0 /
	\int_{0}^{∞}	6	∞	8	-1	∞
	-2		∞	2		∞
5	0	2	0		-1	-8
	-4		∞	0		∞
	5	7	∞	9	0	∞
	\ 3	5	10	7	2	0 /
6	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	6	∞	8	-1	∞
	-2	0	∞	2	-3	∞
	-5	-3	0	-1	-6	-8
	-4	2	∞	0	-5	∞
	5	7	∞	9	0	∞
	3	5	10	7	2	0 /

4. We are given a directed graph G = (V, E) on which each edge $(u, v) \in E$ has an associated value r(u, v), which is a real number in the range $0 \le r(u, v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret r(u, v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices, u and v. Assume that Dijkstra's algorithm runs in $O(|E|\log|V|)$, and your algorithm should also run in $O(|E|\log|V|)$. Briefly describe why your algorithm is correct.

Similar to Dijkstra's algorithm, the time complexity is O(|E|log|V|). Another way is to define a new weight function. Let $c(u,v) = -\log r(u,v)$. Then we can show that, finding the most reliable path is equivalent to finding the shortest path in G if the length of each edge

Algorithm 1 Find The Most Reliable Path

```
Input: graph: G = (V,E)
Input: source and target vertex: s, t
Input: probability matrix: r(u, v) \in R
Output: Most Reliable Path
   for v \in V do
     p[v] = 0
   end for
   p[s] = 1
   S = \{\}
   Q = MAX - HEAPIFY(V)
   while Q \neq \emptyset do
      u = EXTRACT - MAX(Q)
      for v \in Adj[u] do
        if p[v] < p[v] \times r(u, v) then
          p[v] = p[v] \times r(u, v)
        end if
      end for
   end while
```

e is c(e). For the most reliable path, we are to find a path p such that the total reliability is maximized, i.e. $\max_p[\prod_{\{e|e \text{ is in }p\}}r(e)]$. For the shortest path case, we want $\min_p[\sum_{\{e|e \text{ is in }p\}}(-\log r(e))] = \min_p[\sum_{\{e|e \text{ is in }p\}}c(e)]$. It is obvious that the two problem share a same solution.