SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics & Communication Engineering B. Tech. ECE (5th Sem) Minor-II Examination (Odd) 2023-24

Entry No:	Total Number of Pages	: [02]
Date:	Total Number of Question	ıs: [04]
	Course Title: Digital System Design Using Verilog	
	Course Code: ECL 2071	· harman

Time Allowed: 1.0 Hours

Max Marks: [20]

<u>Instructions / NOTE</u> (Faculty may include any other relevant instruction, if required)

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. Assume an appropriate data / information, wherever necessary / missing.
- iv. Use of IS Code (Mention Number) is permissible in examination.

	Section – A			
QL.	(a) Which out of these is not a positive edge	[01]	CO1	
	(i) 0 to 1 (ii) X to Z (iii) Z to 1 (iv) 0 to Z (b) casex treats and as down! Con contact as down!	[02]	CO1	
Q2.	(a) Design the state diagram (only) of a sequence detector to detect	[03]	CO2	
	"0001" (from left to right), and gives a HIGH output for one clock			
	cycle when detected successfully?			
	(b) Explain the difference between forever -loop and repeat loop [04]			
	Section – B			
Q3.	Write behavioral modeling code for 8:1 Mux using case-statement.	[05]	CO3	
	Write behavioral modeling code for +ve level triggered 4-bit D-Latch with		ř	
	active low asynchronous RESET using if-statement.	[05]	CO3	
Q4.	Write behavioral modeling code for -ve,ed, triggered 8-bit Up-Down	[03]		
1	counter, as UP counter if MODE = HIGH and as DOWN counter if MODE			
and the second	= LOW active low asynchronous RESET.			

Course Outcomes

CO1. Describe the language constructs and programming fundamentals of Verilog HDL.

CO2. Choose the suitable abstraction level for a particular digital design

23. Construct Combinational and sequential circuits in different modeling styles

CO	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
COI	01	05	84
CO2	02	05	84
CO3	Q3, Q4	10	84

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech. ECE (5th Sem) Minor-1 Examination (Odd) 2023-24

Entry	N	0	:
-------	---	---	---

-	The second second	Ninder and					
			-	Principle Commission	Y	The second second	production of the second
Ω	1					1	
2	b	10	6	0	1	1 7	
	who believe to	-	THE RESERVE THE PERSON NAMED IN	-	60	-	

Total Number of Pages: [02]

Date:

Total Number of Questions: [05]

Course Title: Digital System Design Using Verilog

Course Code: ECL 2071

Time Allowed: 1.0 Hours

Max Marks: [20]

<u>Instructions / NOTE</u> (Faculty may include any other relevant instruction, if required)

- i. Attempt All Questions.
- Support your answer with neat freehand sketches/diagrams, wherever appropriate. ii.
- Assume an appropriate data / information, wherever necessary / missing. iii.
- iv. Use of IS Code (Mention Number) is permissible in examination.

	Section – A		
Q1.	(a) Verilog identifier can be two types: and	[01]	CO1
	(b) In behavioral modeling begin-end is a while fork-join	[01]	CO1
	is a		
	(c) If $A=1$ 'b1, $B=4$ 'h B, $C=3$ 'O 3, then, $y=\{4\{A\},2\{B\},C\}$ equals	[01]	CO1
	i) 14 'b1111 1011 1011 11 ii) 15 'b1111_1011_1011_011		-
	ii) 15 'b1000 0000 0110_011 iv) 15 'b0100_1011_1011_011		
Q2.	(a) The two inputs applied to a 4-bit full adder verilog module while	[02]	CO3
Q2.	simulating the design are: $in1 = 4$ 'b $101x$ and $in2 = 4$ 'b 1101 .		
	What would be the SUM and CARRY outputs for this combination of		
	inputs?		
	(b) What values are assigned to left hand side object on its execution if RUN = 'b 0101_1101_1011 and FAST = 'h ABCD?	[03]	СО
	(i) $GOAL = -\& (RUN)$; (ii) $GOAL = \& (-RUN)$;		
	(iii) GOAL =RUN & (~FAST);		
	Section – B	[02]	CO
02	(a) Draw the state diagram of a toggle flip flop.	[03]	CO
Q3.	thing diagram of JK IIIp Hop using togget.	[04]	CO
	a a 1 many using Deligylorus	[0.1]	
Q4.			
	use this 2:1 multiplexer Verilog module to design for 4:1 multiplexer. (Must be supported with Block/circuit diagrams;		
	for 4:1 multiplexer. (Must be supported Note: name of ports must objective of the question)		
	Note: name of ports must objective of		Dage 1

```
C94
                                                                                   [03]
      Draw the test pattern generated from the following Verilog code:
Q5.
      module test_bench ();
          initial
             clk = 1 'b0;
         always
             # 15 clk = \sim clk;
         initial
            begin
               #12 run <= 1;
               #5 bun \le 0;
               begin
                  tun = 1;
                  #5 gun = 0;
                  #5 \text{ run} = 0;
               end
            end
     endmodule
```

CO1. Describe the language constructs and programming fundamentals of Verilog HDL.

CO2. Choose the suitable abstraction level for a particular digital design

CO3. Construct Combinational and sequential circuits in different modeling styles using

CO4. Analyse and Verify the functionality of digital circuits/systems using test benches

CO	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
	1(a), 1(b), 2(b)	06	84
CO2	3(a), 3(b) 2(a), 4	06	84 84
CO4	5	05	