Question 1:

Answer the following True / False questions (Assume [North], [East] is positive)

- 1. I throw a rock d = 100 m in the air and it returns to my hand in $\Delta t = 20$ s
 - (a) The average speed of the ball was $v_{av} = 5 \,\mathrm{m/s}$. (T / F)
 - (b) The average velocity of the ball over $\Delta t = 20 \,\mathrm{s}$ was $\vec{v}_{av} = +5 \,\mathrm{m/s[North]}$. (T / F)
- 2. Suppose a rubber bullet travels at an average speed of $v_{av}=600\,\mathrm{km/s}$ and an average velocity of $v_{av}=+600\,\mathrm{km/s}$.
 - (a) The distance it can cover in $\Delta t = 4\,\mathrm{s}$ is $d = 2.4 \times 10^6\,\mathrm{m}$. (T / F)
 - (b) Suppose the reference point is (0,0). If the gun is placed at $\vec{d_i} = +20 \,\text{m}$ and then fired, then after $\Delta t = 2 \,\text{s}$, $\vec{d_f} = +1.2 \times 10^3 \,\text{m}$. (T / F)
- 3. Suppose that the equation of motion for a rocket was x = -4t 6. Then,
 - (a) The rocket experienced uniform motion. (T / F)
 - (b) The rocket experienced an average velocity of $\vec{v}_{av} = -10\,\mathrm{m/\,s.}$ (T / F)
 - (c) The rocket was initially [West] relative to the reference point. (T / F)
- 4. Suppose that a frisbee has an average speed of v_{av} and that it takes Δt seconds to reach the end of the room.
 - (a) Doubling the average speed of the frisbee will triple the distance it can travel. (T / F)
 - (b) If I want the frisbee to reach the end of the room in $\frac{\Delta t}{3}$ seconds then I must triple the average speed. (T / F)
- 5. Consider the Position V. Time graph for a body in motion below

- (a) The body had an average velocity of $\vec{v}_{av} = +2\,\mathrm{m}/\,\mathrm{s.}$ (T / F)
- (b) The body continued to move in the positive direction after $t=2\,\mathrm{s.}$ (T / F)
- 6. (Relative vector problem)

Question 2:

Convert the following quantities to $\mathrm{\,m/\,s}$

(a) $120 \,\mathrm{mi/h}$

(b) $400 \,\mathrm{km/h}$

(c) 368 m/min

(d) 678 in/min

Question 3: