

Topic 1 for AI

### **Problem Solution**

Yang Muyun

MOE-MS Joint Key Lab of NLP&Speech School of Computer Science and Technology, HIT

#### A problem

How would solve this problem?

How would you code to solve this problem?

How would you teach the computer to solve this kind of problem



- 1. State, Operation and Target
- 2. State Graph
- 3. State Graph Search

- ◆ Three Characteristics in problems
  - Eg: Three cannibals and three missioners want to cross a river by a boat for only two passengers. On either bank, the priests will be killed if there are more savages. How to cross the river?

#### State

- Number of priest at river banks;
- Number of savages at river banks;
- Which bank the boat is available at;

#### ◆ Initial State

|        | 左 岸 | 右 岸 |
|--------|-----|-----|
| 传教士(M) | 3   | 0   |
| 野 人(C) | 3   | 0   |
| 船 (B)  | 有   | 无   |

#### A Simpler Graph

|        | 左 | 岸 |
|--------|---|---|
| 传教士(M) | 5 | 3 |
| 野 人(C) | : | } |
| 船 (B)  | 4 | 有 |

- State Space
  - Missioners on L-bank: 0, 1, 2, 3
  - Cannibals of L-bank: 0, 1, 2, 3
  - Boat: Left or Right bank
  - total: 4\*4\*2=32 situations
- Illegal states: when C kill M
  - (1+2+3)\*2=12 (think why)
- Impractical states: 4 (why)
  - -(3,3,0)/(0,0,1)/(3,0,1)/(0,3,0) (for the left bank)

#### All acceptable states: 16

#### 可能达到的合法状态

| 左           |             |             |             | 右 岸           |             |  |
|-------------|-------------|-------------|-------------|---------------|-------------|--|
| м           | C .         | В           | . м         | · c           | В           |  |
| 0           | 1           | 有           | 3<br>3<br>3 | 2             | 无           |  |
| 0           | 2           | 有           | 3           | 1             | 无           |  |
| 0           | 1<br>2<br>3 | 有<br>有<br>有 | 3           | 2<br>1<br>0   | 无<br>无<br>无 |  |
| 1           | 1           | 有           | 2<br>1      | 2             | 无           |  |
| 1<br>2      | 1<br>2      | 有有          | 1           | 2             | 无<br>光      |  |
| 3           | 1           | 有           | 0           | 2<br>1<br>0   | <i>)</i> c. |  |
| 3           | 2           | 有           | 0           | 1             | 无           |  |
| 3<br>3<br>3 | 1<br>2<br>3 | 有<br>有<br>有 | 0<br>0<br>0 | D             | 无无无 有有有     |  |
| D<br>O<br>D | 0<br>1<br>2 | 无<br>无<br>无 | 3<br>3<br>3 | 3<br>2<br>1   | 有           |  |
| Ð           | ì           | 无           | 3           | 2             | 有           |  |
| D           | 2           | 无           | 3           | . 1           | 有           |  |
| 1           | 1<br>2      | 无           | 2<br>1      | <b>2</b><br>1 | <b>有</b>    |  |
| 1<br>2      | 2           | 无<br>无      | 1           | 1             | 有           |  |
| 3<br>3<br>3 | o           | 光<br>光<br>无 | ٥           | 3<br>2<br>1   | 有有有         |  |
| 3           | 0<br>1<br>2 | 无           | 0 0         | 2             | 有           |  |
| 3           | 2           | Ŧ.          | 1 0         | 1             | 6           |  |

- Operation: what cause the state to change
  - Operators and Descriptions:
- 1,将工个传教士从左岸运到右岸
- 2. 格1个野人从左岸运到石岸
- 3. 将 1 个传教士和 1 个野人从左岸运到右岸
- 4. 将 2 个传教七从左岸运到右岸
- 5. 将 2 个野人从左岸运到右岸
- 6. 将 1 个传教士从右岸运到左岸
- 7. 粮 1 个野人从有岸运到左岸
- 8. 将 1 个传教上和 1 个野人从右岸运到左岸
- 9. 将 2 个传教士从右岸运到左岸
- 10. 将 2 个野人从右岸运到左岸

Target: the desired state by applying operations

|        | 左. 岸 | 右 岸 |
|--------|------|-----|
| 传教上(M) | 0    | 3   |
| 野 人(C) | Û    | 3   |
| 船 (B)  | 无    |     |

#### A Solution to MC problem \*\*\*\*

|                    | 状 态 |   |   |     |   |    |
|--------------------|-----|---|---|-----|---|----|
| 解答                 | 左岸  |   | 岸 | 右岸  |   |    |
|                    | мсв |   |   | мсв |   |    |
| 初始位置               | 3   | 3 | 有 | 0   | 0 | 无  |
| 将1个传教士和1个野人从左岸运到右岸 | 2   | 2 | 无 | 1   | J | 有  |
| 将1个传教士从右岸运到左岸      | 3   | 2 | 有 | С   | 1 | T. |
| 将2个野人从左岸运到右岸       | 3   | C | 龙 | 0   | 3 | 有  |
| 格 1 个野人从右岸运到左岸     | 3   | 1 | 有 | 0   | 2 | 无  |
| 将 2 个传教士从左岸运到右岸    | 1   | 1 | 无 | 2   | 2 | 有  |
| 格1个传教士和1个野人从右岸运到左岸 | 2   | 2 | 无 | 1   | 1 | 天  |
| 将 2 个传教士从左岸运到石岸    | 0   | 2 | 无 | 3   | 1 | f  |
| 将1个野人从右岸运到左岸       | 0   | 3 | 有 | 3   | Q | 天  |
| 格 2 个野人从左岸运到右岸     | o   | 1 | 无 | 3   | 2 | 4  |
| 将1个传教士从右岸运到左岸      | 1   | 1 | 有 | 2   | 2 | 无  |
| 将1个传教士和1个野人从左岸运到右岸 | 0   | 0 | 无 | 3   | 3 | 有  |

注:M 传教士 C 野人 B 船

### State Graph

- Definition for Graph
  - Composed by *dot* and *arc*
  - Not function graph or data graph
- Directed & Undirected Graph
  - · arc representing operation



### State Graph

Directed graph represented by Tree



- Search Tree
  - Root node: initial state
  - Leaf node: where targets exist



- Problem solution by tree searching
  - Each tree node represents a state;
  - -Root node: initial state
  - Search: expand children nodes from the father node according to conditions, i.e. node expansion corresponds to state search;
  - Node expansion sequence represents search strategy;
  - When the target node is expanded, the solution is found;

- Width-first search
  - 首先扩展根节点
  - 接着扩展根节点的所有后继节点
  - 然后再扩展后继节点的后继,依此类推
  - 在下一层任何节点扩展之前搜索树上的本层深度的所有节点都已 经被扩展

#### Performance

- 总能找到一个解
- 如果每步扩展的耗散相同时,广度优先搜索能找到最优解
- 一内存消耗是比执行时间消耗更大的问题
- 指数级的时间消耗

#### Depth-first search

- 总是扩展搜索树的当前扩展分支(边缘)中最深的节点
- 搜索直接伸展到搜索树的最深层,直到那里的节点没有后继节点
- 那些没有后继节点的节点扩展完毕就从边缘中去掉
- 然后搜索算法回退下一个还有未扩展后继节点的上层节点继续扩 展

#### Performance

- 内存需求少—如分支因子=b/最大深度=m的状态空间深 度优先搜索只需要存储bm+1个节点(比较广度优先 O(b<sup>d+1</sup>))
- 不是完备的 / 不是最优的
- 最坏情况下时间复杂性也很高O(bm)

## Implementation in Computer

#### ♦ State: Variable-value

例如,我们可以令M代表传教士的数目,用C代表野人的数目,如果船在左岸,我们可以令B的值为1(或Yes),如果船在右岸则B值为0(或NO),那么下表所列的值:

| <b>一</b> | 值 |
|----------|---|
| М        | 3 |
| c        | 1 |
| В        | 1 |

### Implementation in Computer

#### Operation: operation/calcualtion

- 1. 将 1 个传教士从左岸运到右岸
- 2. 格1个野人从左岸运到右岸
- 3. 将 1 个传教士和 1 个野人从左岸运到右岸
- 4. 将 2 个传教七从左岸运到右岸
- 5. 将 2 个野人从左岸运到右岸
- 6. 将 1 个传教士从右岸运到左岸
- 7. 将 1 个野人从有岸运到左岸
- 8. 将 1 个传教上和 1 个野人从右岸运到左岸
- 9. 将 2 个传教士从右岸运到左岸
- 10. 将 2 个野人从右岸运到左岸

$$M = M - 1, B = 0$$

$$S = S - 1, B = 0$$

$$M = M-1, S = S-1, B = 0$$

$$M = M - 2, B = 0$$

$$S = S - 2, B = 0$$

$$M = M + 1, B = 1$$

$$S = S + 1, B = 1$$

$$M = M+1, S = S+1, B=1$$

$$M = M + 2, B = 1$$

$$S = S + 2, B = 1$$

### Implementation in Computer

Get target: search among operations

LET 
$$M = M - 2$$

5. 
$$B=1$$

$$AND(M-0 OR M=3)$$

LET 
$$C = C - 2$$

#### Summary

- Problem solution is the process to search for the target.
- Problem solution is often referred as search technology.
- This chapter introduces the problem solution via state space search.

#### Assignment

写出伪代码,用时不超过算出这个结果!

# 本章只描述: 状态空间求解

- ◆是搜索问题中的一种
- ◆是问题求解的一种
- ◆ 是人工智能最初提出的技术, 要掌握这种思维方式。
- ◆ 但是,后续不断出现不同的方法,新的技术 , 似乎更有效
  - 有效: 可观察到速度、性能等维度的提升,也可以是更好理解、更方便应用
  - 为什么?是这些方法真的更高级?最高级何在?

### 问题没有那么简单

- ◆体会了前文的精妙,经常有人会以为掌握 了人工智能的真髓,天下无不可去之处...
- ◆但是,从状态空间搜索技术诞生,到今天的机器翻译,人工智能经历了很多:
  - 方法论变化了
  - 方法模型更新了
  - 技术发展了
- ▶这一切很多都会体现在自然语言处理课上 ,请同学们多多体会。

# 课下作业1: 汉字的计算机表示

- ◆ 请回溯汉字当初为什么无法在计算机内表 示;
- ◆请梳理支持汉字的字符编码方式。
- ◆ 2001年,中国工程院颁发了"二十世纪我国重大工程技术成就"评选结果,"汉字信息处理与印刷革命"当选第二项,比第一项"两弹一星"仅差一票。

请谈谈你对这件事的看法