Proof of Correctness Prim's Algorithm

Prim's Algorithm (MinHeap with vertices)

- T = Ø [invariant: X = vertices spanned by tree-so-far T]
- for each $u \in V$
 - Key[u] = ∞
 - Pred[u] = nill
- Key[s] = 0 // select any random vertex and make its cost 0
- Heap Q is initialized with all vertices
- While heap ≠ Ø
 - u = ExtractMin from Heap
 - Add u to X
 - for each $v \in adj[u]$
 - If $(v \in Q \text{ and } cost[u,v] < key[v])$
 - DecreaseKey(Q, v, cost[u,v]) // DecreaseKey will update key of vertex v only if cost[u,v] < key [v]
 - Pred[v] = u

Cuts

Claim: Prim's algorithm outputs a spanning tree.

Definition: A <u>cut</u> of a graph G = (V, E) is a partition of V into 2 non-empty sets.

Slide Credit: Tim Roughgarden

Quiz on Cuts

Question: Roughly how many cuts does a graph with n vertices have?

- a) n
- b) 2ⁿ
- c) n^2
- d) nⁿ

Quiz on Cuts

Question: Roughly how many cuts does a graph with n vertices have?

- a) n
- b) 2ⁿ (for each vertex, choose whether in A or in B)
- c) n^2
- d) n^r

Empty Cut Lemma

Empty Cut Lemma: A graph is <u>not</u> connected $\iff \exists$ cut (A, B) with no crossing edges.

Proof: (\Leftarrow) Assume the RHS. Pick any $u \in A$ and $v \in B$. Since no edges cross (A, B) there is no u, v path in $G. \Rightarrow G$ not connected.

Empty Cut Lemma

```
(\Rightarrow) Assume the LHS. Suppose G has no u-v path. Define A=\{\text{Vertices reachable from } u \text{ in } G\} (u's connected component) B=\{\text{All other vertices}\} (all other connected components) Note: No edges cross cut (A,B) (otherwise A would be bigger!)
```


Two Easy Facts

Double-Crossing Lemma: Suppose the cycle $C \subseteq E$ has an edge crossing the cut (A, B): then so does some other edge of C.

Lonely Cut Corollary: If e is the only edge crossing some cut (A, B), then it is not in any cycle. [If it were in a cycle, some other edge would have to cross the cut!]

Proof Part 1

Claim: Prim's algorithm outputs a spanning tree.
[Not claiming MST yet]

Proof: (1) Algorithm maintains invariant that T spans X

- (2) Can't get stuck with $X \neq V$ [otherwise the cut (X, V - X) must be empty; by Empty Cut Lemma input graph G is disconnected]
- (3) No cycles ever get created in T. Why? Consider any iteration, with current sets X and T. Suppose e gets added. Key point: e is the first edge crossing (X, V X) that gets added to $T \Rightarrow$ its addition can't create a cycle in T (by Lonely Cut Corollary).

Correctness of Prim's Algorithm

Theorem: Prim's algorithm always outputs a minimum-cost spanning tree.

Key Question: When is it "safe" to include an edge in the tree-so-far?

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to f MST of f.

Turns out MST is unique if edge costs are distinct

Cut Property Implies Correctness

Claim: Cut Property \Rightarrow Prim's algorithm is correct.

Proof:

Prim's algorithm outputs a spanning tree

 T^* .

Key point: Every edge $e \in T^*$ is explicitly justified by the Cut Property.

- $\Rightarrow T^*$ is a subset of the MST
- \Rightarrow Since T^* is already a spanning tree, it must be the MST

Assumption: Distinct edge costs.

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to the MST of G.

Proof Plan

Will argue by contradiction, using an exchange argument.

Suppose there is an edge e that is the cheapest one crossing a cut (A, B), yet e is not in the MST T^* .

Idea: Exchange e with another edge in T^* to make it even cheaper (contradiction).

Question: Which edge to exchange e with?

Attempted Exchange

Note: Since T^* is connected, must construct an edge $f(\neq e)$ crossing (A, B).

Idea: Exchange e and f to get a spanning tree cheaper than T^* (contradiction).

Exchanging Edges

Question: Let T* be a spanning tree of G, $e \notin T^*$, $f \in T^*$. Is $T^* \cup \{e\} - \{f\}$ a spanning tree of G?

- a) Yes always
- b) No never
- c) If e is the cheapest edge crossing some cut, then yes
- d) Maybe, maybe not (depending on the choice of e and f)

Exchanging Edges

Question: Let T* be a spanning tree of G, $e \notin T^*$, $f \in T^*$. Is $T^* \cup \{e\} - \{f\}$ a spanning tree of G?

- a) Yes always
- b) No never
- c) If e is the cheapest edge crossing some cut, then yes
- d) Maybe, maybe not (depending on the choice of e and f)

Exchanging Edges

Exchange e, f:

(not a spanning tree)

Exchange e, e':

(a spanning tree)

Smart Exchanges

Hope: Can always find suitable edge e' so that exchange yields bona fide spanning tree of G.

How? Let C = cycle created by adding e to T^* .

By the Double-Crossing Lemma: Some other edge e' of C [with $e' \neq e$ and $e' \in T^*$] crosses (A, B).

You check: $T = T^* \cup \{e\} - \{e'\}$ is also a spanning tree.

Since $c_e < c_{e'}$, T cheaper than purported MST T^* , contradiction.