GANS

GENERATIVE ADVERSARIAL NETWORKS

martin @ reddragon.ai sam @ reddragon.ai

13 November 2017

WiFi : SG-Guest

Problems with Installation? ASK!

PLAN OF ACTION

TODAY

- SGInnovate: Careers
- GANs ++
- Personal Project work

PLAN OF ACTION

WEDNESDAY

- Mobile
- Personal Project work

PLAN OF ACTION

27-NOV

• Finalize Projects

PERSONAL PROJECTS

- Form to fill in
- Plan to finish: 27-Nov (last session)
- WSG DEADLINE: 30-Nov, including write-ups:
 - "Punchy Headline"
 - Minimum : README . md on GitHub page
 - Hosted slides / demo
 - Lightning Talk

GPU REQUIREMENTS

- Show of hands:
 - I have GPU(s), need more
 - I have got enough GPU lined up
 - I have no GPU and training v. painful
 - I have no GPU and it should be fine

SGINNOVATE

http://bit.ly/2ialg60 nicolette@sginnovate.com

NEW YORK TIMES

Article Link

LEARNING TO TRANSLATE

WORD DICTIONARY

- Word Embedding picture
- Two Word Embeddings
- 5000 sample translations

WORD EMBEDDING

EG: 300D GLOVE

WORD EMBEDDINGS

EMBEDDING TRANSFORM?

EMBEDDING MATCHES

Exploiting Similarities among Languages for Machine Translation

Need ~ 5000 translation pairs to make it work

LEARNING TO TRANSLATE

WORD DICTIONARY FROM ZERO

- 0 sample translations :
 - Initial random mapping
 - Change mapping until 'similar enough'
 - Find 5000 corresponding words
 - Potentially redo a few times
- Now have 5000 word sample 'translations'

GUESS THE TRANSFORM

Word Translation Without Parallel Data (Oct 2017)

SPOT THE DIFFERENCE

TRICK: DISTRIBUTION

- Train a network to tell apart :
 - random english words; from
 - random chinese words transformed by W
- Train both the network and the W parameters :
 - Optimise network to categorise well
 - Optimise elements of W to fool the detector

SPOT THE DIFFERENCE

TRICK: CONNECTIVITY

- Find examples of en and W. cn words:
 - That have the same 'local' similarity
 - How close are they to nearest neighbours ... in other language?
 - Good 'local similarity' ~ similar 'role'
- Pick 5000 of the 'good' matches
- Use them in the previous method

DICTIONARY FROM ZERO

RESULTS

			Italian P@10			English P@10
Methods with cross-lingual supervision						
Mikolov et al. (2013b) †	33.8	48.3	53.9	24.9	41.0	47.4
Dinu et al. (2015) [†]	38.5	56.4	63.9	24.6	45.4	54.1
CCA [†]	36.1	52.7	58.1	31.0	49.9	57.0
Artetxe et al. (2017)	39.7	54.7	60.5	33.8	52.4	59.1
Smith et al. $(2017)^{\dagger}$	43.1	60.7	66.4	38.0	58.5	63.6
Procrustes - CSLS	44.9	61.8	66.6	38.5	57.2	63.0
Methods with cross-lingual supervision (Wiki)						
Procrustes - CSLS	63.7	78.6	81.1	56.3	76.2	80.6
Methods without cross-lingual supervision (Wiki)						
Adv - Refine - CSLS	66.2	80.4	83.4	58.7	76.5	80.9

Word Translation Without Parallel Data (Oct 2017)

LEARNING TO TRANSLATE

SENTENCES FROM ZERO

- Unsupervised Machine Translation Using Monolingual Corpora Only (Nov 2017)
- Basic approach :
 - Learn to fix sentences in each language
 - First translation : word-by-word using dictionary
 - Iteratively fix-up the result
- No translations required

FIX UP SENTENCES

Corrupt sentences by dropping or switching words

Do this in both languages with same 'latent' space

LANGAUGE MODELS

- Translation model:
 - Encoder : LSTM (to latent space vectors)
 - Decoder: LSTM with attention over latent
- Same model used in both directions with different embedding dictionaries

FIX UP TRANSLATION

Take a bad translation and fix it up

MATCH DISTRIBUTIONS

Three different Losses to fix at same time
This changes Encoder & Decoder

RESULTS

	Multi30k-Task1				WMT				
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en	en-de	
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61	21.33	
word-by-word word reordering oracle word reordering	8.54 11.62	16.77 24.88	15.72 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42	7.06 6.70 11.57	
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33	8.86 9.75 9.64	

Table 1: BLEU score on the WMT and Multi30k-Task1 datasets using greedy decoding.

Similar to system with 100k sample translations...

SAMPLES

Source	un homme est debout près d'une série de jeux vidéo dans un bar.
Iteration 0	a man is seated near a series of games video in a bar.
Iteration 1	a man is standing near a closeup of other games in a bar.
Iteration 2	a man is standing near a bunch of video video game in a bar.
Iteration 3	a man is standing near a bunch of video games in a bar.
Reference	a man is standing by a group of video games in a bar .
Source	une femme aux cheveux roses habillée en noir parle à un homme.
Iteration 0	a woman at hair roses dressed in black speaks to a man.
Iteration 1	a woman at glasses dressed in black talking to a man.
Iteration 2	a woman at pink hair dressed in black speaks to a man.
Iteration 3	a woman with pink hair dressed in black is talking to a man.
Reference	a woman with pink hair dressed in black talks to a man .
Source	une photo d' une rue bondée en ville .
Iteration 0	a photo a street crowded in city.
Iteration 1	a picture of a street crowded in a city.
Iteration 2	a picture of a crowded city street.
Iteration 3	a picture of a crowded street in a city.
Reference	a view of a crowded city street .

Table 2: **Unsupervised translations.** Examples of translations on the French-English pair of the Multi30k-Task1 dataset. Iteration 0 corresponds to word-by-word translation. After 3 iterations, the model generates very good translations.

- QUESTIONS -

MARTIN.ANDREWS@REDDRAGON.AI

My blog: http://mdda.net/

GitHub: mdda

