Introduction to Computation Theory

Lecture Slides 1–2

Vinsong

NTU AMFL

October 18, 2025

Course Roadmap

Lecture 1: Basic Knowledge

Section Map

Lecture 1 Goals

- Review foundational mathematical objects needed for automata theory.
- Establish proof vocabulary and common proof strategies.
- Introduce deterministic finite automata and regular operations.

Set Basics

Definition (Set)

A set collects distinct elements without regard to order or multiplicity.

- $\{1,2,3\} = \{3,2,1\}$ because order is ignored.
- $\{1,1,2,3\} = \{1,2,3\}$ because repetition does not change membership.

Sequences and Tuples

Definition (Sequence)

An ordered list of objects where order and repetition matter.

Definition (Tuple)

A finite sequence; (1, 2, 3) is a 3-tuple.

- $(1,2,3) \neq (2,1,3)$ since order differs.
- (1,2,2) and (1,2,3) are distinct because repetition counts.

Sets vs. Sequences

- Order: ignored in sets, preserved in sequences.
- Multiplicity: collapsed in sets, tracked in sequences.
- Example:

Sequence
$$(1,1,2,3) \neq (1,2,3)$$
, Set $\{1,1,2,3\} = \{1,2,3\}$.

Cartesian Product

Definition (Cartesian Product)

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Example

For $A = \{1, 2\}$ and $B = \{x, y\}$,

$$A \times B = \{(1, x), (1, y), (2, x), (2, y)\}.$$

Function as a Machine

Definition (Function)

Associates each input with exactly one output.

- Domain: permissible inputs.
- Codomain: possible outputs.
- Think of a machine with a single exit.

Equivalence Relation

Definition (Equivalence Relation)

A relation R is equivalent when

- Reflexive: $\forall x, xRx$.
- Symmetric: $\forall x, y, xRy \Rightarrow yRx$.
- Transitive: $\forall x, y, z, xRy \land yRz \Rightarrow xRz$.

Example: Modulo 7

Example

 $i \equiv_7 j$ if i - j is divisible by 7.

- Reflexive: $i i = 0 \equiv 0 \pmod{7}$.
- Symmetric: $i j = 7a \Rightarrow j i = -7a$.
- Transitive: i j = 7a and $j k = 7b \Rightarrow i k = 7(a + b)$.

Alphabet and Strings

- **Alphabet**: finite set of symbols, e.g., $\{0,1\}$.
- String: finite sequence of symbols, e.g., 01000.

Languages

Definition (Language)

A set of strings over an alphabet. For machine A, write L(A).

- Languages can be finite or infinite.
- Example: all binary strings ending with 01.

Terminology

- **Definition**: introduces a new concept.
- Statement: a sentence that is true or false.
- Theorem: a statement proven true.
- Lemma: a helping theorem.
- Corollary: follows quickly from another theorem.

Proof by Construction

Proposition

The sum of degrees of every graph is even.

Idea.

Each edge touches two vertices, so

$$\sum_{v\in V} \deg(v) = 2|E|,$$

which is even.

elies on the definition of how edges contribute to degree.

Proof by Contradiction

- Assume the statement is false.
- Deduce a contradiction.
- Conclude the original statement must be true.

Proof by Induction

- Basis: prove the statement for a simple starting case, e.g., n = 0 or n = 1.
- Inductive Step: assume truth for n = k and prove for n = k + 1.

Automata Vocabulary

- Automaton: a single machine.
- Automata: plural form.

Definition of DFA

Definition

A DFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q: finite set of states,
- Σ: finite alphabet,
- $\delta: Q \times \Sigma \to Q$,
- $q_0 \in Q$: start state,
- $F \subseteq Q$: accept states.

Example DFA

Transition Function Table

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Language of a Machine

Definition

The language recognized by M is L(M) = A. We say A is accepted by M.

Computation of a DFA

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1 \cdots w_n$.

Theorem

M accepts w if there exist states r_0, \ldots, r_n such that

- ② $r_{i+1} = \delta(r_i, w_{i+1})$ for $0 \le i < n$,
- \circ $r_n \in F$.

Regular Languages

Definition (Regular Language)

A language is regular if it is recognized by some finite automaton.

Regular Operations

Let A and B be languages.

- Union: $A \cup B = \{ w \mid w \in A \lor w \in B \}$.
- Concatenation: $A \circ B = \{w_1w_2 \mid w_1 \in A, w_2 \in B\}.$
- Kleene Star: $A^* = \{w_1 \cdots w_k \mid k \geq 0, w_i \in A\}.$

Kleene Star Detail

$$A^* = \{\epsilon\} \cup A \cup A^2 \cup A^3 \cup \cdots$$

with

- $A^0 = \{\epsilon\},\$
- $A^n = \{ wv \mid w \in A^{n-1}, v \in A \}$ for $n \ge 1$.

Closure Concepts

Definition (Closed Operation)

An operation R is closed on a set A if $x, y \in A$ implies $xRy \in A$.

Theorem

Regular languages are closed under union, concatenation, and Kleene star.

Closure Under Union

Given

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \quad M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),$$

build product automaton

$$M = (Q, \Sigma, \delta, q_0, F)$$

with

- $Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2),$
- $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$
- $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

Then $L(M) = L(M_1) \cup L(M_2)$.

Lecture 2: Nondeterminism

Section Map

Lecture 2 Goals

- Define nondeterministic finite automata (NFAs).
- Show equivalence between NFAs and DFAs.
- Construct NFAs for union, concatenation, and Kleene star.

Sample NFA

- Accepts strings with a 1 in the third position from the end.
- $\delta(q_1,1)$ returns q_1 or q_2 .
- ϵ between q_2 and q_3 consumes no input.

Determinizing the Example

- Subset construction encodes sets of NFA states as DFA states.
- May require up to $2^{|Q|}$ deterministic states.

Power Set Reminder

Definition (Power Set)

 $P(Q) = \{X \mid X \subseteq Q\}$ contains all $2^{|Q|}$ subsets of Q.

Definition of NFA

Definition (NFA)

$$M = (Q, \Sigma_{\epsilon}, \delta, q_0, F)$$
 with

- Q: finite set of states,
- $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$,
- $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$,
- $q_0 \in Q$,
- $F \subseteq Q$.

Acceptance in an NFA

Take $w = y_1 \cdots y_m$ with $y_i \in \Sigma_{\epsilon}$.

Theorem

M accepts w if there exist states r_0, \ldots, r_m such that

- ② $r_{i+1} \in \delta(r_i, y_{i+1})$ for $0 \le i < m$,
- \circ $r_m \in F$.

he sequence length \emph{m} may differ from the input length because ϵ -moves consume no symbols.

DFA as NFA

- A DFA is an NFA with no true nondeterminism.
- Add $\delta(q, \epsilon) = \emptyset$ to align alphabets: $\Sigma \subset \Sigma_{\epsilon}$.

Example NFA

Subset Construction Result

Refining the Converted DFA

- Remove unreachable subsets.
- Include all ϵ -reachable states in the start subset:

$$\{q_1\}\ (\mathsf{wrong}) \quad o \quad \{q_1,q_3\}\ (\mathsf{correct}).$$

Epsilon-Closure

Definition

 $\textit{E}(\{q_0\}) = \{q_0\} \cup \{ \text{states reachable by } \epsilon \text{ from } q_0 \}.$

Subset Construction Theorem

Given NFA $M = (Q, \Sigma, \delta, q_0, F)$, define DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ with

- Q' = P(Q),
- $q'_0 = E(\{q_0\}),$
- $F' = \{R \mid R \cap F \neq \emptyset\},\$
- $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a)).$

NFA Building Blocks

Take $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ with $\epsilon \notin \Sigma$.

Union Construction (Diagram)

Union Construction (Formal)

Proposition (Union)

$$N_1 \cup N_2 = (Q, \Sigma, \delta, q_0, F)$$

where

•
$$Q = Q_1 \cup Q_2 \cup \{q_0\},$$

$$egin{aligned} oldsymbol{Q} & oldsymbol{Q}$$

• $F = F_1 \cup F_2$.

Concatenation Construction (Diagram)

Concatenation Construction (Formal)

Proposition (Concatenation)

$$N_1 \circ N_2 = (Q, \Sigma, \delta, q_0, F)$$

where

$$oldsymbol{Q} oldsymbol{Q} = Q_1 \cup Q_2, \ oldsymbol{\delta}(q, oldsymbol{a}) = egin{cases} \delta_1(q, oldsymbol{a}) & q \in Q_1 \setminus F_1, \ \delta_2(q, oldsymbol{a}) & q \in Q_2, \ \delta_1(q, oldsymbol{\epsilon}) \cup \{q_2\} & q \in F_1, \ oldsymbol{a} = oldsymbol{\epsilon}, \ \delta_1(q, oldsymbol{\epsilon}) & q \in F_1, \ oldsymbol{a}
otin oldsymbol{\epsilon}, \ oldsymbol{a}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol{\epsilon}
otin oldsymbol{\epsilon}
otin oldsymbol{\epsilon}, \ oldsymbol{\epsilon}
otin oldsymbol$$

- $q_0 = q_1$,
- $F = F_2$.

Kleene Star Construction (Diagram)

Kleene Star Construction (Formal)

Proposition (Kleene Star)

$$N_1^* = (Q, \Sigma, \delta, q_0, F)$$

where

$$egin{aligned} oldsymbol{Q} &= Q_1 \cup \{q_0\}, \ \delta_1(q,a) & q \in Q_1 \setminus F_1, \ \delta_1(q,a) \cup \{q_1\} & q \in F_1, \ a = \epsilon, \ \delta_1(q,\epsilon) & q \in F_1, \ a
eq \epsilon, \ \{q_1\} & q = q_0, \ a = \epsilon, \ \emptyset & q = q_0, \ a
eq \epsilon, \end{aligned}$$

• $F = F_1 \cup \{q_0\}.$

Additional Closure Notes

Regular languages are also closed under

- Intersection: accept when both components of the product automaton accept.
- **Set Difference**: accept when in F_1 but not F_2 .
- **Complement**: $A_1^c = \Sigma^* A_1$; difference preserves regularity.

Wrap Up

Section Map

Key Takeaways

- Lecture 1 established sets, sequences, proof methods, and deterministic automata.
- Lecture 2 introduced nondeterminism, subset construction, and NFA-based closures.
- Regular languages remain closed under core operations in both DFA and NFA settings.