ULTIMATE MATHEMATICS-01 Solution of (D-5) BY AJAY MITTAL QNI. J + ab - a2 90 ba -bl cb taking a, b, c common from R1, R2 & R3 Seip = 966 -a taking and a common from (1. (2 EC; lup. a2572 R2 -> R2+R1 and R3-7 R3+R1 = azzzck 0 expending = 925(2 -1(0-4) +1(0) +1(0))

= 92622 (4) PROVED. = Malbici = Rns

DNS-2+	grun	1 21	72	1+23	
=		7	25	1+43	=0
		2	2 4	1+23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tely- from 2" defermant

(DT) solutions (3)
ONU 3 + X X 1 + by 3 2 72 1 + by 3 Z 72 1 + by 3
Sum prop in G = x x2 1 x x2 px3 y y 1 + y y py py s
12 72 1 2 72 pzs 1 taking 7 y. z. common from R1, R2 1 R3
= x x + p x y 2 1 x x
9 ← 3 (I* dut.)
$= - \begin{vmatrix} 3 & 1 & 3^2 \\ 2 & 1 & 3^2 \end{vmatrix} + $
= + 1 x x2 1 x x2
= 1 3 x2 (1+ pxyz)
$R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$
0 3-x 32-x2 (1+pxyz) 0 z-x z2-x2
= (y-x) (z-x) 1 x xL (HPxyz)
R3-+ R3-R2

			100	
Ri	- RI+R3			41 4
= 1	2×+6	2×18	2x + 2(a+1)	
	×+3	xty	X+25	
	X+4	2+5	x+20 /	
=	2×16	2×+8	2 × + 4 b	123=a+cy
	x+3 x+4	x+4 x+5	x+26	
faking	a Com	non fan	RI	
= 2	17+3	7+4	21 26 1	
	n+3	7+4	7+25	
	4 744	x+5	X + 2c	
	2x0	& Since	R18R2 all	identically
	= O AN			ig*
		1.0		

ON=6+	d,	BIV	allin	AP	
	20	2B=	4+1		
he has	1	21-3	71-4	X - 4	
		X-5	7-3	71-B	
		x-1	Y-2	x-1	
R1-	RITR	Y .			

 $= |2x - \frac{1}{4}| 2x - 6 | 2x - (x + x)$ = |x - 2| x - 3 | x - 3| | x - 6 = |x - 1| | x - 1| | x - 7

= | 2x-4 2x-6 2x-2B | x-2 x-3 x-B | x-1 x-2 x-V

taking 2 Common form R, [RitRz = 2 | x1-2 x1-3 x-B = 2x0 | aurdentically | x-1 x1-3 x-B = 0 Ams

(D-5) selutions

(6)

ONS-7- N 22 42	
Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
RITHRI, RITHRI ON	$nof R_3 \rightarrow ZR_3$
= 1 2 23	742
742 4 43	
Z ² Z ³	
taking xxz Common	Frem G
= 747 72 73	1 1
- yz ys	
X192 22 23 1	
$R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow$	
	1
$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
9-x y=x5	0
z2-x2 Z3-x3	0
taking (y-x) &(z-x)	Common from R22R3 lesp
= (y-x) (z-x) x2	x3 11
ytx "	y2+x2+xy 0
Z+x	22+22+28
R3 -> B3-RL / X2	×3 1,
= (y-x) (z-x) y+x	y2+x2 +x4 0
12-y	2-4 + x(z-4) 1 0
	em R3
- () / 2 ×) /	x2 x3
= (y-x)(z-x)(z-y)	1+x - y2+x2+xy 0
	1 zty tx 0
Expanding	

(D-5) sorutions (8) expending (1+92+82+CL) (1) = [+q1+b1+c2 = Rnj PROVER 0~1-9+ 1-bc b2+bc c2+bc1 Mulhphy R. R. R. R. by 9. b. C leep. = 1 |-abc ab2+abc ac2+abc abc | a2b + abc - abc | bc2 + abc | a2c + abc | b2c + abc | taking a, b, c common from (1, C, + 13 = abe | - be ab + ac ac+ ab | abc ab + bc - ac bc + ab | ac + bc bc + ac - ab R1 -+ R1 + R2 + R3 = | ab+bc+ca | ab+bc+ca | ab+bc+ca | ab+bc + ca | bc + ab | ac+bc | bc + ac | bc + ab | ac+bc | bc + ac | bc + ac | bc + ac | ac | bc + taking (96+6C+C9) Common from R1 = (ab+b(+ca) 1 abtac -ac bctab actbc bctac -ab R2-1(1-C) and (3-1(3-C) = (ab+b(t(a)) | ab+b(c) = (ab+b(c+ac)) = 0ac+ bc 0 - (ab+bc+ac)

(D-5) Solutions

(9)
DATE
PAGE

PAGE
expending
$= (ab+bc+ac) \left[1 \left(ab+bc+ca \right)^{2} \right]$
= (ab+bc+ta)3 = RN ANS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sum property in (1
= x x x x + y x x x 5x yx 2x + yy yx 2x lox 8x 3x 8y 8x 3x
x common from G. G. G. S, x common from
21, (2 = (3
= x3 5 y 1 2 + y x 2 1 1 1 1 1 1 1 1 1
1 200
12-12-1, 2 (3-13-1) GEC2 are identical
311001
$= x^{\frac{3}{2}} \begin{vmatrix} 5 & -1 & -3 \\ 10 & -2 & -7 \end{vmatrix} + yx^{2}(0)$
expending 213 (1(7-6) -0+0)) + 0
= ((() - 0 + 0)) 1 0
$= \chi^{3} = RHS ANS$
(On 1) + 1+a 1 1
1 1 1+0

Taking 9, b, c common from RI. R. & R. sep

(as) solution (... (") = (a+b+c) R2 + R2 - R1 and R3 + R3 - R1 0 c-b a-c = (a+b+c) 0 a-b b-c expending = (a+b+c) (C-b) (b-c) - (a-b) (a-c)) = (a+b+c) (b/c-c2-b2 +bc- a2+ac+ab+/6c) = (a+b+c) $(-a^2-b^2-c^2+ab+bc+ca)$ = -(a+b+c) $(a^2+b^2+c^2-ab-bc-ca)$ multiply and divide by 2= - 1 (a+b+c) (2a2+2b2+2c2-2ab-2bc-2ca) = - { (a+b+c) (a2+b2-20b) + (b+c2-26c) + (c2+02-200) $= -\frac{1}{2} \left(a+b+c \right) \left(\left(a-b \right)^2 + \left(b-c \right)^4 + \left(c-a \right)^2 \right)$ Clearly pur value of deferminant is -ve And f Since (a+b+c) is the onel sumy square can have be ney Cta atb bt c On 13+ 5run C+ a btc cta 1a+b

(0-5) selutions

(12)

C(-) C(+ C2+ C3 7 2 (a+b+c) cta a+ b 2 (0+640) b+c =0 a+ b 2(a+b+c) cta 1 5+C Cta a+b otc o => 2 (a+b+c) 1 btC ctq ond R, -> -R3-R, R2+R2-R1 1 Cta atb => 2(a+bec) C-a =0 0 b-c
0 b-a expending => 2(a+b+c) (b-c) (c-b) - (b-a) (c-a) =0 = 2(a+b+c) (b(-b2-c2+bc-66+ab+ac-a2)=0 = 2(a+b+c) $(a^2+b^2+c^2-ab-bc-ca)=0$ = (a+b+c) $(2a^2+2b^2+2c^2-2ab-2bc-2(a)=0$ => (a+bec) ((a-b) + (b-c) + (c-a))=0 => either a+61(=0 (0x) (a-6) + (b-c) + (c-9) =0 This a parible only when a-b=0; b-c=0 and c-a=0 a+b+ (=0 (ar) a=b= c proof : Pither

(D-1-) Solution (13)

ONS: 14 + LHS | a+bx Ctdx ptgx ax+ b cx+d px+2. 4 RI-> RI->(R) a-ax2 C-CX2 p-bx2 ax+ b Cx+d px+9 4 a(1-x2) c(1-x2) p(1-x2) ax+ b Cx+d pxtg u W taking (1-x1) Common from Ri-E1-x2) a C ax+b (x+d px +9 u R2 - R2-4R1 þ = ((-xL) = Rns d PROVED 11 OM 15 -A a btc a

cta b c a+b C

> RI + RITRITA 2(c+a) 2(a+b) 2 (bec) Eta Ь 0 973 faking 2 common for RI = 2 | btc cta a+b cta

(5. (D-5) solution (4) R2 + R2 - R1 and R3 - R3 - R1 = 2 | b+c c+a a+b -a -a -a -a -a R1 + R1 + R1 + B3 expandery = 2 (0 - C (0 + ab) + b (ac))

- 2 (abc + abc) = 2 (2abc) = 4abc = Rry = $\begin{vmatrix} a^2 & bc & ac+c+ \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}$ ONT9+ taking a.b. C common from (1, 6, 6 lesp = abc | a | C | a + c| a + b | b | a | b | b | c | c | RI + RI+RI+R3 - 96 (2(9+5) 2(b+c) 2(a+c) | a+b b a | b+c | c | = 29hc | a+b | b+c | a+c | a+c | a+b | b | 9 | b+c | c | R2 - R, - R, and R3 - R3 - R1

(15)

= 2abc a+b b+c atc 0 - 0 --RI + RI+RI+Ry = 295c | b e x pending = 2abc (b (ca-o) - b (0-ac) + o] = 2abc (ak +abc) = 2abc (2abc) = 4925202 ptr 7+2 OH [7+ btc 1+10 7+X Cta xty p+2 = 2 (a+5+c) 2 (p+9+1) 2 (x+y+2) ctq 1+6 Z+X atb p+9

= 2 a+b+c b+9+2 x+y+z c+a+b b+2 x+y

R17 R1+ R2+R3

(D-5) Solutions

$$= 2 | a | b | x |$$
 $| -b | -2 | -y |$
 $| -(-1 - 2 |$

30

taking (-4) Sign Common from R2 & R3

= 2(-1)^{L} | a | b | X |
| b | 2 | Y |
| C | 2 | Z |

- 2 | a | b | X | = Rhs An | C | 2 | = Rhs An |

M19 91

2-17 11374

A. A. T. T. A.