Multi-modal Association Testing, with Applications to Imaging Genetics

Dustin Pluta, Tong Shen, Hernando Ombao, Zhaoxia Yu University of California, Irvine

Overview of Talk

- Motivation from Imaging Genetics
- The Mantel Test
- Score Tests for Fixed Effects, Random Effects, and Ridge Regression
- Onnecting the Mantel and Score Tests
- Simulation Study

Motivating Application

- Imaging genetics studies include genetic data (SNPs) and neuroimaging data (fMRI, EEG, DTI).
- We are interested in testing for association of genetic similarity with similarity of particular neurological phenotypes.
- This can be difficult since
 - The data is high-dimensional: 500K SNPs, 500K voxels at 0.5 Hz for fMRI data,
 - Small effect sizes distributed across many genetic locations,
 - The data is noisy with many possible confounders,
 - Results are sensitive to numerous pre-processing choices,

Motivating Application

The Data

- 209 subjects,
- 500K SNP values for each subject,
- fMRI readings from 375 parcellated regions for resting state, decision-making task, and working memory task,
- Behavioral data for decision-making and working memory tasks.

Cups Task

Figure 1: Example of Cups Task trial.

fMRI

Figure 2: fMRI scanner diagram, and illustration of BOLD response.

Genetics

Figure 3: Illustration of a SNP.

Multi-modal Association Testing

The Inference Goal

Given a sample of N subjects containing two data modalities X and Y, is distance in X significantly associated with distance in Y?

Multi-modal Association Testing

Application Context

- For our application, X is SNP data and Y is a measure functional connectivity from fMRI.
- We wish to know: is genetic similarity significantly correlated with similarity of functional connectivity?
- This is closely related to the concept of heritability of phenotypes commonly considered in genetics studies.

- Assume X is an $N \times P$ column-centered matrix and Y is an $N \times 1$ centered vector.
- Given metrics $d_X : \mathbb{R}^P \times \mathbb{R}^P \to \mathbb{R}$ and $d_Y : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we can form two $N \times N$ distance (or dissimilarity) matrices K and H, where

$$K_{ij} = d_X(X_i, X_j)$$

 $H_{ij} = d_Y(Y_i, Y_j).$

• The correlation of these distance matrices is

$$\rho = \frac{\langle K, H \rangle}{\|K\|_2 \|H\|_2},$$

Figure 4: Simulated multi-modal data.

Statistical Question

How should we test the significance of the correlation?

Statistical Question

How should we test the significance of the correlation?

One Approach

The common approach, originally suggested by Mantel (1967), is to permute rows and columns of one of the matrices to generate the reference distribution.

Classical Mantel Test Statistic (Mantel 1967)

Since $\|K\|$ and $\|H\|$ are constant under permutations, we can take the test statistic to be

$$Z = \frac{1}{2}\langle K, H \rangle = \sum_{i=1}^{N} \sum_{j>i} K_{ij} H_{ij}.$$

• **Note:** Since the diagonals for both H and K are 0, they do not affect the calculation of Z, so a total of $\binom{N}{2}$ pairwise distances are used.

Mantel with Similarity Matrices

- The Mantel test is most often applied using distance or dissimilarity matrices.
- Some applications have used similarity matrices, but still used the same test statistic given above.
- However, with K and H as similarity matrices, we can instead use a modified Mantel statistic

$$Z^* = \langle K, H \rangle = \sum_{i=1}^{N} \sum_{i=1}^{N} K_{ij} H_{ij} = \operatorname{tr}(KH),$$

which uses $\binom{N+1}{2}$ inner products.

Classical Mantel and Modified Mantel

Classical Mantel
$$Z = \sum_{i=1}^{N} \sum_{j>i} K_{ij} H_{ij}$$

Modified Mantel $Z^* = \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij} H_{ij} = \operatorname{tr}(KH)$

- If K and H are distance matrices, then $Z^* = 2Z$.
- If K and H instead contain the inner products, then Z* will
 not be equivalent to Z whenever the diagonals of K and H are
 not constant.

Figure 5: Diagram of the Mantel Test.

Inner Product Similarity

$$K_{ij} = \langle X_i, X_j \rangle, \quad H_{ij} = \langle Y_i, Y_j \rangle$$

Similarity with General Inner Products

Allowing for **general inner products** defined by some positive semi-definite matrix W, we can write

$$K = XWX^T$$
, $H = YY^T$

Kernel Mantel Test Statistic

$$Z^* = \operatorname{tr}(XWX^TYY^T) = Y^TXWX^TY = \|X^TY\|_{\mathcal{W}}^2.$$

Simulated Data

Figure 6: Simulated multi-modal data.

Figure 7: Comparison of L_2 distance and similarity measures.

The Score Test

Score Test Statistic

$$S = \mathcal{U}(\beta^0)^T \mathcal{I}^{-1}(\beta^0) \mathcal{U}(\beta^0).$$

Some nice properties of the Score Test are

- It uses only the null hypothesis parameter values,
- Can be useful when dealing with boundaries of the parameter space,
- It's the most powerful test for small effect sizes,
- It's asymptotically equivalent to the Wald and Likelihood Ratio tests.

Three Classes of Linear Models

Fixed Effects

$$Y \sim N(X\beta, \sigma_{\varepsilon}^2 I_N)$$

Ridge Regression

$$Y \sim N(X\beta, \sigma_{\varepsilon}^2 I_N), \quad \|\beta\|_2^2 < c(\lambda)$$

Random Effects

$$Y \sim N(0, \sigma_b^2 K + \sigma_\varepsilon^2 I_N), \quad K = XX^T$$

The Score Test: Fixed Effects Model

For the fixed effects model, the log-likelihood, score vector and Fisher Information are

$$\ell(\beta|\sigma_{\varepsilon}^{2}) \propto (Y - X\beta)^{T} (Y - X\beta) + c$$

$$\mathcal{U}(\beta|\sigma_{\varepsilon}^{2}) \propto X^{T} (Y - X\beta).$$

$$\mathcal{I}(\beta|\sigma_{\varepsilon}^{2}) \propto X^{T} X.$$

The resulting global score test for H_0 : $\beta = 0$ is

Fixed Effects Score Test

$$S_F = \frac{1}{\sigma_{\varepsilon}^2} Y^T X (X^T X)^{-1} X^T Y \stackrel{\cdot}{\sim} \chi_r^2.$$

The Score Tests

Score Tests for Three Classes of Linear Models

Model	Equiv. Score Stat. [†]	Equiv. Norm
Fixed	$S_F = Y^T X (X^T X)^{-1} X^T Y$	$\ X^TY\ _{\mathcal{M}}^2$
Ridge	$S_{\lambda} = Y^{T}X(X^{T}X + \lambda I)^{-1}X^{T}Y$	$ X^TY _{\mathcal{M}_{\lambda}}^2$
Random	$S_R = Y^T X X^T Y$	$ X^TY _2^2$

 $^{^{\}dagger}$ These statistics yield equivalent P-values when using the permutation procedure to produce the reference distribution.

Connecting the Mantel and Score Tests

Similarity Mantel Test Statistic

The Similarity Mantel test statistics can be formulated as

$$Z_{\mathcal{W}}^* = \operatorname{tr}(K_{\mathcal{W}}H)$$

The Three Classes of Linear Models and Corresponding Kernels

Model	Mantel Stat.	Kernel ${\cal W}$
Fixed	$Z_F^* = \operatorname{tr}(YY^TX(X^TX)^{-1}X^T)$	$(X^T X)^{-1}$
Ridge	$Z_{\lambda}^* = \operatorname{tr}(YY^TX(X^TX + \lambda I)^{-1}X^T)$	$(X^TX + \lambda I)^{-1}$
Random	$Z_R^* = \operatorname{tr}(YY^TXX^T)$	I_P

Comparing Fixed, Random, and Penalized Models

Question

How does the statistical performance of the three classes of models compare for different values of N, P, and effect size?

- Intuitively, we may expect
 - Fixed effects is best when N >> P,
 - Random effects is best when P >> N,
 - Penalized models somewhere in between.

The Score Test

- We see that if we have **orthogonal design** with $X^TX \propto I_P$, then the fixed effects, random effects, and penalized models will give identical results.
- The discrepancy of testing with S_F vs S_R will increase as X^TX deviates further from the identity.
- For penalized models, $S_0 = S_F$. To examine S_λ as $\lambda \to \infty$, apply the Woodbury formula

$$(X^TX + \lambda I)^{-1} = \frac{1}{\lambda}I_P - \frac{1}{\lambda^2}X^T(I_N + \frac{1}{\lambda}XX^T)^{-1}X$$

• Thus, for large λ , $S_{\lambda} \approx S_R$.

Simulation with Identity Covariance for *X*

Simulation with AR(1) + Diagonal Trend Cov. for X

Multivariate Mantel

- We can easily extend the Mantel test framework to accommodate multivariate responses.
- Suppose Y is an N × Q response matrix, and define the similarity matrices

$$K = X(X^T X)^{-1} X^T$$
$$H = Y(Y^T Y)^{-1} Y^T.$$

Multivariate Mantel

- The Mantel test procedure can be performed exactly the same as before with test statistic $Z^* = tr(KH)$.
- Assuming rank(K) = P and rank(H) = Q:

$$\begin{split} \operatorname{tr}(KK) &= \operatorname{tr}(K) = \operatorname{rank}(K) = P \\ \operatorname{tr}(HH) &= \operatorname{tr}(H) = \operatorname{rank}(H) = Q \\ \rho(K,H) &= \frac{1}{\sqrt{PQ}} \operatorname{tr}(KH) = \frac{1}{\sqrt{PQ}} Z^* \end{split}$$

Summary

- The Similarity Mantel Test is equivalent to the Score test for a linear model whose form depends on the choice of inner product.
- Consequently, the Similarity Mantel Test is most powerful for small effects
- The Mantel Test implies an underlying parametric model through the choice of similarity or distance measure.
- The Ridge Regression Score Test converges to the Random Effects Score Test as $\lambda \to \infty$.
- The Mantel test can be easily extended to multivariate response data, and can accommodate multi-modal data of arbitrary type and arbitrary dimension in each mode.

Acknowledgements

- Gui Xue, PI, Center for Brain and Learning Sciences, Beijing Normal University
- Chuansheng Chen, Dept. of Psychology and Social Behavior, UCI
- Hernando Ombao, Dept. of Statistics, KAUST & UCI
- Zhaoxia Yu, Dept. of Statistics, UCI
- Tong Shen, Dept. of Statistics, UCI (PhD Student)

References

- Ge T, et al. Massively Expedited Genome-Wide Heritability Analysis (MEGHA). PNAS. 2015. 112, 2479-2484.
- Xue G, et al. Functional Dissociations of Risk and Reward Processing in the Medial Prefrontal Cortex. Cerebral Cortex. 2009. 19, 1019-1027.
- Yang J, et al. GCTA: A Tool for Genome-wide Complex Trait Analysis. The American Journal of Human Genetics. (2011) 88, 76-82.
- Tzeng et al. (2009) Biometrics 65, 822.
- Visscher et al. (2014) Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genetics, 10(4): e1004269.