Medical/Bio Research Topics I: Week 04 (28.03.2024)

Structural MRI (2): Data Processing

구조 자기공명영상 (2): 데이터 처리 방법

Brain Mapping with Structural MRI (sMRI)

T1/T2-weighted sMRI

Automatic Abnormality Detection

- Segmentation
 - 3D residual convolutional neural network for volumetric segmentation of stroke lesions on a T1-weighted image [Tomita et al., 2020]
- Grading
 - 3D residual convolutional neural network for predicting the severity of enlarged perivascular spaces on a T2-weighted image [Williamson et al., 2022]

[Tomita et al., 2020]

[Tomita et al., 2020]

Evaluation of the performance of stroke lesion segmentation

Preprocessing

- Numerous steps to clean and standardise sMRI data before brain morphometry
 - Correction for bias fields (intensity non-uniformities)
 - From a broader range of sources, including imperfections in the MRI scanner's main magnetic field, inhomogeneities in the radiofrequency coil performance, and magnetic susceptibility-induced field inhomogeneities
 - Often characterized by a smooth variation in image brightness

Segmentation

 Classifies an image into the non-brain and brain and, furthermore, the brain into different tissues usually including grey matter, white matter, and cerebrospinal fluid

Normalisation

 Transforms an image from a native space to the standard space usually in the Montreal Neurological Institute (MNI) coordinate system

Correction for intensity non-uniformity

Grey matter

White matter

Cerebrospinal fluid

Segmentation into different tissues

Grey matter

White matter

Cerebrospinal fluid

Template tissue probability maps

Normalisation

[Preprocessing of sMRI]

• SPM12 [https://www.fil.ion.ucl.ac.uk/spm/software/spm12/]

GUI of the SPM toolbox

Input

T1-weighted and T2-weighted sMRI

Output

Correction for intensity non-uniformity

Correction of the T1-weighted image for intensity non-uniformity

Correction of the T2-weighted image for intensity non-uniformity

Output

Segmentation

Segmentation

Grey matter

White matter

Cerebrospinal fluid

Bone

Soft tissue

Air/background

Tissue classification based on a mixture of Gaussians

OutputNormalisation

Normalisation

Unified segmentation and normalisation

Confirmation

MNI152 template brain

Individual's normalized brain

Voxel-based Morphometry

- Without defining boundaries and modelling cortical surfaces
- CAT12 [https://neuro-jena.github.io/cat/]

CAT12 toolbox

Grey matter volume

- Computed by multiplying voxel-wise grey matter probability by voxel volume
- For a grey matter probability map in the native space or its modulated one in the standard space

Voxel size: $1.5 \text{ mm} \times 1.5 \text{ mm} \times 1.5 \text{ mm}$

Voxel volume: 3.375 mm³

Computation of grey matter volume for a voxel or a region

Normalisation and modulation

Features of grey matter volume

[Statistical Analysis of sMRI]

```
    Grey matter volume ~
        Age +
        Sex +
        Education year +
        Total intracranial volume (TIV) +
        Memory performance
```

Design matrix

OutputRegression

Positive correlaton

Negative correlation

- Input to machine learning models
 - Table of voxel-wise or region-wise grey matter volume values

	Features ————				
		Voxel or region 1 grey matter volume	Voxel or region 2 grey matter volume	Voxel or region 3 grey matter volume	
Samples	Subject 1	-	-	-	-
\downarrow	Subject 2	-	-	-	-
	Subject 3	-	-	-	-
	:	-	-	-	-

Grey matter volume map

AAL atlas

Hammers atlas

Harvard-Oxford atlas

Yeo atlas

AICHA atlas

Craddock atlas

Brain atlases

333 areas Resting-State Correlations atlas

360 areas HCP MMP 1.0 atlas

246 areas Brainnetome atlas

Higher-resolution brain atlases

Surface-based morphometry

- Independent of registration and modulation
- Not applicable to subcortical regions
- FreeSurfer [https://surfer.nmr.mgh.harvard.edu/]
 - sMRI analysis software of choice for the Human Connectome Project

Surface reconstruction

- White matter surface: inner cortical boundary between the grey matter and white matter
- Pial surface: outer cortical boundary between the grey matter and pia mater

White matter surface

Pial surface

[https://www.physio-pedia.com/Meninges]

Cortical surfaces beneath cranial meninges

[https://surfer.nmr.mgh.harvard.edu/]

Surface representation of the cerebral cortex

Surface representation with different numbers of vertices

Cortical thickness

 Distance between the inner (white matter surface) and outer (pial surface) cortical boundaries

Features of cortical thickness

- Input to machine learning models
 - Table of vertex-wise or region-wise cortical thickness values

sMRI as an Individual's Spatial Reference

- Anatomical localization of other modalities of MRI
 - Within-subject between-modality registration

Rigid registration Within-subject within-modality Registration (global shift and rotation) Affine registration Within-subject between-modality Registration (global shift, rotation, scale, and shear) Deformable registration Between-subject Registration (local transformations)

[https://kr.mathworks.com/help/medical-imaging/ug/medical-image-registration.html]

Image registration

Coregistration between sMRI and functional MRI

Brain activity on a functional image

Brain activity on a structural image

Anatomical localization of brain activity