Homework 2 - Analytic number theory

Frank Thorne, thornef@mailbox.sc.edu

Due Friday, September 9

- 1. (3 points) Describe explicitly (say, by computing tables) all of the Dirichlet characters of modulus ≤ 10.
- 2. (5+ points) Write a program in PARI/GP, Sage, Java, C, or any other computer language to test Dirichlet's theorem on primes in arithmetic progressions numerically. For example, compute whether there are more primes less than X congruent to 1 or 3 modulo 4, for a variety of values of X. Turn in your code and report your findings.
 - (If you don't know any of these languages, I strongly recommend you learn one! PARI/GP and Sage are specialized for mathematics, are open source, and can be downloaded for free.)
 - 5 points for some relevant data, 5 more points if you find and describe anything "interesting", a further 5 points for good guesses on rules for when and how the data is "interesting".
- 3. (3 points) Let χ_4 be the nontrivial Dirichlet character modulo 4. Prove that $L(1,\chi_4) = \frac{\pi}{4}$. (10 points) Discover and prove an exact formula for $L(1,\chi)$ for any other nontrivial character χ .
- 4. (3 points) Prove that if $\delta > 0$ and χ is a Dirichlet character, then the Dirichlet L-function $L(s,\chi)$ converges uniformly for all complex numbers s with $\Re(s) \geq \delta$.
 - This was basically proved in class, but the end of the proof was only sketched, so give a detailed proof of this.
- 5. (5 points) If $L(1,\chi) = 0$ for some Dirichlet character χ , prove that $L(s,\chi) \ll s-1$ for $s \in (1,2)$.
 - There is a proof of this on p. 6 of Davenport which you are free to give, but please use our notation (which Davenport reverts to later in his book) and spell out more of the details.
- 6. (5 points) It was proved in lecture that if χ is a real, nontrivial Dirichlet character to a prime modulus q, then χ is unique and is in fact the quadratic residue symbol modulo q.
 - (a) Write down all of the four real Dirichlet characters modulo 8. 8 is of course not prime; why does the proof from lecture fail to prove that there are only two real χ mod 8?
 - (b) Find an odd (but not prime) modulus q for which there are more than two real characters modulo q, and describe all of these characters.