CH 9. 서포트 벡터 머신

9-1. 최대 마진 분류기

9-1-1. 초평면(Hyperplane)은 무엇인가?

p 차원공간에서 **초평면**은 차원이 p-1인 평평한 아핀(affine) 부분공간이다.

ex) 2차원: 평평한 1차원 부분공간, 선

p차원의 초평면

$$eta_0+eta_1X_1+eta_2X_2+\cdots+eta_pX_p=0$$

초평면은 p차원의 공간을 **두 개의 부분으로 이등분**한다. 어떤 점(샘플)이 초평면의 어느 쪽에 있는지는 위 식의 부호를 계산함으로써 알 수 있다.

9-1-2. 분리 초평면(Seperating Hyperplane)을 사용한 분류

$$x_1 = egin{pmatrix} x_{11} \ dots \ x_{1p} \end{pmatrix}, \cdots, x_n = egin{pmatrix} x_{n1} \ dots \ x_{np} \end{pmatrix} y_1, \cdots, y_n \in \{-1, 1\}$$

p차원의 공간에서 n개의 훈련 관측치로 구성되는 $n \times p$ 데이터 행렬 ${\bf X}$ 가 있다고 가정하자.

모든 훈련 관측치들을 클래스 라벨에 따라 **완벽하게 분리하는 초평면을 구성할 수 있다고 가정**하자.

이 때, 분리 초평면은 다음과 같은 식들을 만족한다.

$$y_i = 1$$
이면, $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p > 0$

$$y_i = -1$$
이면, $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p < 0$

이는 모든 $i=1,\dots,n$ 에 대하여 $y_i(\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\dots+\beta_nx_{in})>0$ 을 만족한다.

검정 관측치 x^* 는 $f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \cdots + \beta_p x_p^*$ 의 부호를 기반으로 분류되고 $f(x^*)$ 의 크기는 검정 관측치가 초평면으로부터 얼마나 떨어져 있는지를 의미한다.

 $f(x^*)$ 가 0과 가까운 값이면 x^* 가 초평면 근처에 놓여 있으므로 x^* 의 클래스 할당(예측)에 대한 확신이 덜하다.

9-1-3. 최대 마진 분류기

초평면을 사용하여 데이터가 완벽하게 분류될 수 있으면 무한개의 초평면이 존재할 것이다. (약간의 이동과 회전) 그 중 어떤 초평면을 선택할 것이냐가 중요하다.

- -> 훈련 관측치들로부터 가장 멀리 떨어진 분리 초평면인 최대 마진 초평면을 선택
 - 마진: 관측치들 중에서 초평면까지의 가장 짧은 거리
 - 최대 마진 초평면 : 마진이 가장 큰 분리 초평면
 - 평판 (slab) : 최대 마진 초평면으로부터 양 쪽으로 마진만큼 떨어진 초평면 사이의 공간
 - 서포트 벡터 (support vector): 평판의 경계에 놓여진 벡터
 - o 서포트 벡터의 위치에 따라 최대 마진 및 최대 마진 초평면이 결정된다. 즉 최대 마진 초평면은 서포트 벡터에 직접적으로 의존적이다.
 - ㅇ 하지만 마진 밖의 다른 벡터들에게는 전혀 영향을 받지 않는다.
 - 단점: p값이 클 때 (차원이 클 때) 과적합에 이를 수 있다.

9-1-4. 최대 마진 분류기의 구성

최대 마진 초평면은 다음 최적화 문제의 해(솔루션)이다.

$$\max_{eta_0,eta_1,\cdots,eta_p} M$$

subject to
$$\sum\limits_{j=1}^p eta_j^2 = 1$$

$$y_i(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip}) \geq M \qquad orall \quad i = 1, \dots, n$$

M이 양수이면 각 관측치가 초평면의 올바른 쪽에 있게 되도록 보장한다. (각 관측치가 일부 완충공간(cushion)을 갖고 초평면의 올바른 쪽에 있도록 한다.)

9-1-5. 분류 불가능한 경우

만일 앞서서 계속 가정했던

모든 훈련 관측치들을 클래스 라벨에 따라 **완벽하게 분리하는 초평면을 구성할 수 있다고 가정** 조건이 만족되지 않는다면 분리 초평면은 존재할 수 없고 최대 마진 분류기 또한 없다.

이 경우 위의 최적화 문제인 M>0의 해 또한 없다.

모든 클래스를 *정확하게 (exactly)* 분류할 수 없으므로

소프트 마진(soft margin)을 사용하여 클래스들을 거의(almost) 분류하는 초평면을 사용한다.

서포트 벡터 분류기 (Support Vector Classifier)이다.

9-2. 서포트 벡터 분류기

9-2-1. 서포트 벡터 분류기의 개요

- 단점: 개별 관측치 (특히 분리 초평면으로부터 가까운 벡터들)에 대해서 민감하다.
 - ㅇ 과적합의 위험도가 높다.

- 1. 개별 관측치에 대해 robust하다.
- 2. *대부분*의 훈련 관측치들을 더 잘 분류한다.

라는 목적을 갖고 초평면에 기반한 새로운 분류기를 생성한다.

- 가능한 한 모든 관측치가 마진의 올바른 쪽에 위치하도록 가장 큰 마진을 찾는다.
- 하지만 일부 관측치들은 마진의 옳지 않은 쪽에 있거나, 심지어 초평면의 올지 않은 쪽에 있을 수 있도록 허용.

9-2-2. 서포트 벡터 분류기의 세부 사항

서포트 벡터 분류기는 다음 최적화 문제의 해(솔루션)이다.

$$egin{array}{ll} maximize & M \ eta_0,eta_1,\cdots,eta_p & \end{array}$$

subject to
$$\sum\limits_{j=1}^p eta_j^2 = 1$$

$$y_i(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip}) \geq M(1 - \epsilon_i)$$

$$\epsilon_i \geq 0$$
, $\sum\limits_{i=1}^n \epsilon_i \leq C$

- \bullet C는 음수가 아닌 하이퍼파라미터
- M은 마진의 폭이고 가능한 한 이 값을 크게 하는 것이 목표
- 슬랙변수 (slack variable) : $\epsilon_i \qquad \forall i=1,\cdots,n$
 - 개별 관측치들이 마진 또는 초평면의 **옳지 않은 쪽에 있도록 허용**해주는 변수
 - \circ i번째 관측치가 **초평면과 마진에 관해** 어디에 위치하는가를 알려줌

이
$$\left\{egin{array}{lll} ext{rn D의 올바른 쪽에 위치} & if & \epsilon_i=0 \ ext{rn D의 옳지 않은 쪽에 위치} & if & \epsilon_i>0 \ ext{ 초평면의 옳지 않은 쪽에 위치} & if & \epsilon_i>1 \ \end{array}
ight.$$

ullet 하이퍼파라미터 C

- 마진과 초평면에 대해 **허용**될 *위반의 수*와 그 *정도*를 결정
- \circ n개의 관측치에 의해 마진이 위반될 수 있는 양에 대한 n선(budget)
- \circ if C=0 : 마진을 위반할 예산이 없다. o $\epsilon_1=\cdots=\epsilon_n=0$ o 단순 최대 마진 초평면의 최적화
- \circ if C>0:C개 이하의 관측치들이 초평면의 옳지 않은 쪽에 있을 수 있다. (최대 C개)
 - \cdots $\epsilon_i > 1$ 은 초평면의 옳지 않은 쪽에 위치 & $\sum\limits_{i=1}^n \epsilon_i \leq C$
- \circ $C \uparrow \to$ 마진 위반 허용 정도 $\uparrow \to$ 마진 폭 $\uparrow \to$ 덜 엄격하게 적합 \to 분산 \downarrow 편향 \uparrow
- \circ $C \downarrow \to$ 마진 위반 허용 정도 $\downarrow \to$ 마진 폭 $\downarrow \to$ 더 엄격하게 적합 \to 분산 \uparrow 편향 \downarrow

서포트 벡터 분류기는 마진 상에 놓이거나 마진을 위반하는 관측치들 (서포트 벡터)로부터만 영향을 받는다. 즉, 엄격하게 마진의 올바른 쪽에 놓인 관측치 (높은 확신을 갖은 관측치)들은 분류기에 영향을 주지 않는다.

- \cdot : 높은 확신을 갖은 관측치들의 ϵ_i 값은 0이고 C에 영향을 주지 않기 때문이다.
- \therefore C가 서포트 벡터 분류기의 bias-variancec trade-off를 제어하는 하이퍼마라미터이다.
- & 초평면으로부터 멀리 떨어진 관측치들에 대해 상당히 robust하다. (민감도가 낮다): 로지스틱 회귀와 관련

9-3. 서포트 벡터 머신

9-3-1. 비선형 결정경계를 가진 분류

위와 같이 클래스 경계가 비선형일 때 기존의 서포트 벡터 분류기의 성능은 매우 나쁘다. 이 경우 설명변수들의 2차, 3차 등의 다항식 함수를 사용하여 변수 공간을 확장함으로써 비선형적으로 문제를 해결할 수 있다.

설명변수들의 2차항을 추가했다고 가정하자. 그러면 다음의 최적화 문제에 대한 해가 비선형 분류기이다.

$$\begin{split} & \underset{\beta_0,\beta_{11},\beta_{12},\cdots,\beta_{p1},\beta_{p2},\epsilon_1,\cdots,\epsilon_n}{maximize} & M \\ & \text{subject to } y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2 \right) \geq M(1-\epsilon_i) \\ & y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}) \geq M(1-\epsilon_i) \\ & \epsilon_i \geq 0, \sum_{i=1}^n \epsilon_i \leq C, \sum_{j=1}^p \sum_{k=1}^2 \beta_{jk}^2 = 1 \end{split}$$

9-3-2. 서포트 벡터 머신

서포트 벡터 머신(SVM): 서포트 벡터 분류기의 확장으로, 커널(kernels)을 사용하여 특정한 방식으로 변수공간을 확장한 결과

서포트 벡터 분류기 문제에 대한 해는 관측치들의 *내적(inner products)*만으로 해결된다.

두 관측치 $x_i, x_{i'}$ 의 내적은 다음과 같다.

$$\langle x_i, x_{i'}
angle = \sum\limits_{i=1}^p x_{ij} x_{i'j}$$

선형 서포트 벡터 분류기는 다음과 같다.

$$f(x) = eta_0 + \sum\limits_{i=1}^n lpha_i raket{x, x_i}$$

여기서 함수 f(x)를 평가하기 위해선 새로운 점 x와 각 훈련 포인트 x_i 사이의 내적을 계산해야 한다. 이 때 α_i 는 서포트 벡터에 대해서만 $\neq 0$, 서포트 벡터가 아닌 관측치들(확신을 갖은 관측치)에 대해선 $\alpha_i=0$ (그래야만 f(x)가 높은 확신을 갖는 관측치들에 대해 robust함)

서포트 포인트들의 인덱스 모임을 S라 하면

$$f(x) = eta_0 + \sum\limits_{i \in S} lpha_i \left\langle x, x_i
ight
angle$$

위의 계산보다 더 적은 항의 계산만을 필요로 한다.

앞으로 모든 내적 표현을 다음과 같은 일반화된 형태로 바꾼다.1

 $K(x_i, x_{i'})$

- 여기서 K는 커널(kernel)이라고 언급될 어떤 함수이다.
- 커널은 두 관측치들의 유사성 (similarity)을 수량화하는 함수이다.

• 선형 커널

$$\circ$$
 $K(x_i,x_{i'})=\sum\limits_{i=1}^p x_{ij}x_{i'j}$

o 피어슨 (Pearson)(표준) 상관을 사용하여 관칙치 쌍의 유사성을 수량화한다.

• 다항식 커널

$$ullet K(x_i,x_{i'}) = \left(1 + \sum\limits_{j=1}^p x_{ij}x_{i'j}
ight)^d$$

- \circ 차수가 d인 다항식 커널 (d는 양의 정수)
- \circ 표준 선형 커널 대신 d>1인 다항식 커널은 사용하면 더 유연한 결정경계가 형성된다.

• 방사 커널 (radial kernel)

$$\circ ~~ K(x_i,x_{i'}) = \exp\Biggl(-\gamma \sum\limits_{j=1}^p (x_{ij}-x_{i'j})^2\Biggr)$$

- \circ γ 는 양의 상수
- 검정 관측치 $x^* = (x_1^*, \cdots, x_p^*)^T$ 가 훈련 관측치 x_i 로부터 유클리드 거리 (Euclidean distance)로 멀리 떨어져 있으면, $\sum\limits_{j=1}^p (x_{ij}-x_{i'j})^2$ 값은 큰 값이 될 것이다. $\therefore K(x_i,x_{i'}) = \exp\left(-\gamma\sum\limits_{j=1}^p (x_{ij}-x_{i'j})^2\right)$ 값은 아

주 작은 값이 된다. 즉, x_i 가 사실상 $f(x^*)$ 에 아무런 역할을 하지 않을 것임을 의미한다.

- $\circ x^*$ 로부터 멀리 떨어진 관측치는 예측된 클래스 라벨에 아무런 영향을 주지 않는다.
- 주변 관측치들만이 클래스 라벨에 영향을 준다 : 방사 커널은 국소적인 (local) 방식으로 동작한다.
- 높은 확신을 갖는 관측치들에 대해서는 모델이 robust하다.

이와 같이 커널을 사용하는 이유 (장점)

- 원래 변수들의 함수를 이용하여 실제로 변수공간을 확장하지 않고
- ullet $inom{n}{2}$ 개의 서로 다른 모든 쌍 i,i'에 대해 $K(x_i,x_{i'})$ 만 계산하면 된다.