ESPACES MESURÉS

Exercice 1 (Rappels). Soient $(A_n)_{n\geq 1}$ des événements d'un espace de probabilité $(\Omega, \mathscr{F}, \mathbb{P})$.

a) Montrer que

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

b) On suppose que $\mathbb{P}(A_n) = 1$ pour tout $n \geq 1$. Montrer que

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = 1.$$

c) On suppose que $(A_n)_{n\geq 1}$ est décroissante. Montrer que

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

d) Justifier que les ensembles suivants sont des événements, et les décrire avec des mots.

$$\liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \quad \text{and} \quad \limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

e) Démontrer le premier Lemme de Borel-Cantelli :

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \qquad \Longrightarrow \qquad \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = 0.$$

f) Démontrer la formule du crible de Poincaré (inclusion-exclusion) : pour tout $n \ge 1$,

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \mathbb{P}\left(A_{i_1} \cap \dots \cap A_{i_k}\right).$$

Exercice 2 Soit (A_n) une suite décroissante d'ensembles mesurables et μ une mesure. A-t-on toujours $\mu(\cap A_n) = \lim \mu(A_n)$?

Exercice 3 (La tribu $\mathscr{B}(\mathbb{R})$). Montrer que les classes suivantes engendrent la même tribu sur \mathbb{R} :

- a) Les ouverts de \mathbb{R}
- b) Les fermés de \mathbb{R} .
- c) Les intervalles de la forme (a, b) avec $-\infty < a < b < +\infty$.
- d) Les intervalles de la forme $(-\infty, t], t \in \mathbb{R}$.
- e) Les intervalles de la forme $(-\infty, t], t \in \mathbb{Q}$.

Exercice 4 (Tribu engendrée par une application). Soit f une application d'un ensemble Ω vers un espace mesuré (E, \mathcal{B}) . Montrer que

$$\mathscr{A} \ := \ \left\{ f^{-1}(B) \colon B \in \mathscr{B} \right\},$$

définit une tribu sur $\Omega.$ On l'appelle la tribu engendrée par l'application f.

Exercice 5 (Lemme des classes monotones). Soit Ω un ensemble, et \mathcal{M} un ensemble de parties de Ω . On rappelle que \mathcal{M} est une classe monotone si elle vérifie :

- $\Omega \in \mathcal{M}$;
- si $(A_n)_{n\geq 1}$ est une suite croissante d'élements de \mathscr{M} , alors $\bigcup_{n\geq 1}A_n$ est aussi dans \mathscr{M} ;
- si A, B sont des éléments de \mathcal{M} avec $A \subseteq B$, alors $B \setminus A$ est aussi dans \mathcal{M} .

- a) Montrer que les tribus sont exactement les classes monotones stables par intersection finie.
- b) Soit \mathcal{M} une classe monotone et soit $C \in \mathcal{M}$. Montrer que $\mathcal{M}_C := \{A \in \mathcal{M} : A \cap C \in \mathcal{M}\}$ est encore une classe monotone.
- c) En déduire le lemme des classes monotones : si $\mathscr C$ est stable par intersections finies, alors toute classe monotone qui contient $\mathscr C$ contient aussi $\sigma(\mathscr C)$.
- d) Application : montrer que, si \mathscr{C} est stable par intersection finie, toute mesure de probabilité sur $(\Omega, \sigma(\mathscr{C}))$ est entièrement déterminée par ses valeurs sur \mathscr{C} .

Exercice 6 Montrer que la mesure de Lebesgue d'un ensemble fini est nulle.

Exercice 7 (Fonction de répartition). Soit μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On appelle fonction de répartition associée à μ la fonction $F \colon \mathbb{R} \to [0, 1]$ définie par

$$F(x) := \mu((-\infty, x]).$$

- a) Montrer que μ est caractérisée par sa fonction de répartition.
- b) Montrer que F est croissante et continue à droite et calculer ses limites en $\pm \infty$.
- c) Réciproquement, montrer que toute fonction croissante, continue à droite et de limites 0 et 1 en $\pm \infty$ est la fonction de répartition d'une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- d) Soit $a \in \mathbb{R}$. Exprimer $\mu(\{a\})$ en fonction de F.
- e) Montrer que l'ensemble des atomes $\{a \in \mathbb{R} : \mu(\{a\}) > 0\}$ est au plus dénombrable.
- f) Représenter le graphe d'une fonction de répartition « générale ».
- g) Soit $a \in \mathbb{R}$. Démontrer l'identité

$$\int_{a}^{\infty} (1 - F(x))dx = \int_{\mathbb{R}} (x - a)_{+} \mu(dx).$$

Exercice 8 Donner la mesure de Lebesgue des ensembles suivants : $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R} \setminus \mathbb{Q}$, l'ensemble de Cantor, l'ensemble des entiers algébriques.

Exercice 9 Soit μ une mesure borélienne finie sur \mathbb{R} . Montrer que pour tout borélien X et tout $\varepsilon > 0$, il existe un ouvert O et un fermé F tels que $F \subset X \subset O$ et tel que $\mu(O \setminus F) \leq \varepsilon$.

Exercice 10 Montrer qu'il existe une unique mesure μ sur \mathbb{R} telle que pour tout a < b, $\mu([a,b]) = \int_a^b |x| dx$.

Exercice 11 (Cas particuliers).

a) Lois discrètes : soit Ω un ensemble fini ou dénombrable, et soit $p \colon \Omega \to [0,1]$ une fonction telle que $\sum_{\omega \in \Omega} p(\omega) = 1$. Pour $A \subseteq \Omega$, on pose :

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega).$$

Vérifier que \mathbb{P} définit une mesure de probabilité sur $(\Omega, \mathcal{P}(\Omega))$. Rappeler les définitions des lois discrètes suivantes : uniforme, Bernoulli, Binômiale, Géométrique, Poisson.

b) Lois à densité : Soit $f: \mathbb{R} \to \mathbb{R}_+$ une fonction borélienne avec $\int_{\mathbb{R}} f(x) dx = 1$. Pour $A \in \mathcal{B}(\mathbb{R})$, on pose :

$$\mathbb{P}(A) := \int_A f(x) \, \mathrm{d}x.$$

Vérifier que \mathbb{P} définit une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Rappeler les densités des lois suivantes : uniforme, Exponentielle, Gaussienne, Cauchy, Gamma.

Exercice 12 (Tribu borélienne sur \mathbb{R}^2)On note Σ_1 la plus petite tribu sur \mathbb{R}^2 qui rend les applications coordonnées (à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$) mesurables, Σ_2 la tribu $\sigma(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}))$ (engendrée par les produits de boréliens réels), et Σ_3 la tribu des boréliens de \mathbb{R}^2 . Montrer que $\Sigma_1 = \Sigma_2 = \Sigma_3$.