

MODLE ACADÊMICO

Questão **1**Correto

Atingiu 1,00 de 1,00

A superfície x = 0 separa dois dielétricos perfeitos. Para x >0, seja ϵ_{r1} = 3, enquanto ϵ_{r2} = 7 onde x < 0. Se E₁ = 61**a**_x - 48**a**_y - 30**a**_z V/m, calcule o ângulo θ_2 entre **E**₂ e uma normal à superfície.

Resposta:

graus

E N

A resposta correta é: 65,21 graus.

Tentar outra questão como esta

Questão **2**Correto

Atingiu 1,00 de 1,00 A região 1 (x \geq 0) é um dielétrico com ε_{r1} = 2,1, enquanto a região 2 (x < 0) tem ε_{r2} = 5,9. Seja $\mathbf{E_1}$ = 20 $\mathbf{a_x}$ - 10 $\mathbf{a_v}$ + 50 $\mathbf{a_z}$ V/m. Calcule $|\mathbf{D_2}|$.

Resposta: ✓ C/m² nC/m² pC/m²

 $|D_2|| = \sqrt{D_1^2 + D_N^2}$

Normal + ax

A resposta correta é: 2,68948903e-9 C/m².

Tentar outra questão como esta

Questão **3**Correto

Atingiu 2,00 de 2.00

Uma esfera de raio a contém uma densidade volumétrica de carga uniforme ρ_0 . Encontre a energia total armazenada de duas formas (usando a densidade de carga e o potencial e usando o campo elétrico devido a distribuição de carga). Avalie sua resposta considerando $\rho_0 = 10,0 \,\mu\text{C/m}^3$ e $a = 8.5 \,\text{m}$.

Resposta: ✓ J mJ KJ

 $W_2 = \frac{1}{2} \int_{V} \mathcal{E} \cdot \mathcal{E}^2 \int_{V} V$

A resposta correta é: 419830,24 J.

Tentar outra questão como esta

Questão **4**Correto

Atingiu 2,00 de 2,00

Uma esfera de raio a contém uma densidade volumétrica de carga uniforme ρ_0 . Encontre, **numericamente**, a energia total armazenada de duas formas (usando a densidade de carga e o potencial e usando o campo elétrico devido a distribuição de carga). Avalie sua resposta considerando $\rho_0 = 2.7 \ \mu\text{C/m}^3$ e $a = 8.2 \ \text{m}$.

Resposta:

J mJ KJ

A resposta correta é: 25572,66 J.

Tentar outra questão como esta

Questão **5**Correto

Atingiu 2,00 de 2,00

Uma densidade superficial de carga, ρ_s , está distribuída em uma casca esférica de raio b, centrada na origem e imersa no espaço livre. Calcule a energia armazenada na esfera por meio da consideração da densidade de carga e do potencial. Calcule também a energia armazenada no campo elétrico e mostre que esses dois resultados são idênticos. Avalie sua resposta considerando $\rho_s = 6.5 \ \mu\text{C/m}^2 \text{ e} \ b = 8.5 \ \text{m}$.

Resposta:

J mJ KJ

Diferença

EIN= C

A resposta correta é: 18412,97 J.

Tentar outra questão como esta

Questão **6**Incorreto

Atingiu 0,00 de

Uma densidade superficial de carga, ρ_s , está distribuída em uma casca esférica de raio b, centrada na origem e imersa no espaço livre. Calcule, **numericamente**, a energia armazenada na esfera por meio da consideração da densidade de carga e do potencial. Calcule também a energia armazenada no campo elétrico e mostre que esses dois resultados são idênticos. Avalie sua resposta considerando $\rho_s = 8,1 \ \mu\text{C/m}^2 \text{ e } b = 6,7 \text{ m}$.

Resposta: X J mJ KJ

A resposta correta é: 14003,44 J.

Tentar outra questão como esta