# Описание проекта

Вы работаете в интернет-магазине «Стримчик», который продаёт по всему миру компьютерные игры. Из открытых источников доступны исторические данные о продажах игр, оценки пользователей и экспертов, жанры и платформы (например, Xbox или PlayStation). Вам нужно выявить определяющие успешность игры закономерности. Это позволит сделать ставку на потенциально популярный продукт и спланировать рекламные кампании.

Перед нами данные до **2016** года. Представим, что сейчас декабрь **2016** г., и мы планируем кампанию на **2017-**й. Нужно отработать принцип работы с данными.

В наборе данных попадается аббревиатура *ESRB* (*Entertainment Software Rating Board*) — это ассоциация, определяющая возрастной рейтинг компьютерных игр. *ESRB* оценивает игровой контент и присваивает ему подходящую возрастную категорию, например, «Для взрослых», «Для детей младшего возраста» или «Для подростков».

## Изучение данных из файла

```
In [1]:
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats as st
```

```
In [2]:
```

```
df = pd.read_csv('/datasets/games.csv')
```

```
In [3]:
```

```
df.head()
```

Out[3]:

|   | Name                           | Platform | Year_of_Release | Genre            | NA_sales | EU_sales | JP_sales | Other_sales | Critic_Score | User_Score        |
|---|--------------------------------|----------|-----------------|------------------|----------|----------|----------|-------------|--------------|-------------------|
| 0 | Wii Sports                     | Wii      | 2006.0          | Sports           | 41.36    | 28.96    | 3.77     | 8.45        | 76.0         | 8                 |
| 1 | Super Mario<br>Bros.           | NES      | 1985.0          | Platform         | 29.08    | 3.58     | 6.81     | 0.77        | NaN          | NaN               |
| 2 | Mario Kart Wii                 | Wii      | 2008.0          | Racing           | 15.68    | 12.76    | 3.79     | 3.29        | 82.0         | 8.3               |
| 3 | Wii Sports<br>Resort           | Wii      | 2009.0          | Sports           | 15.61    | 10.93    | 3.28     | 2.95        | 80.0         | 8                 |
| 4 | Pokemon<br>Red/Pokemon<br>Blue | GB       | 1996.0          | Role-<br>Playing | 11.27    | 8.89     | 10.22    | 1.00        | NaN          | NaN               |
| 4 |                                |          |                 |                  |          |          |          |             |              | ) · · · · · · · · |

```
In [4]:
```

```
df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 16715 entries, 0 to 16714

Data columns (total 11 columns):
```

Name 16713 non-null object
Platform 16715 non-null object
Year of Release 16446 non-null float64

Genre 16713 non-null object

NA\_sales 16715 non-null float64

EU\_sales 16715 non-null float64

JP\_sales 16715 non-null float64

Other\_sales 16715 non-null float64

Critic\_Score 8137 non-null float64

User\_Score 10014 non-null object

Rating 9949 non-null object

dtypes: float64(6), object(5)

memory usage: 1.4+ MB

#### План

- Поменять регистр столбцов
- Решение о переводе типа данных:
  - Year\_of\_Release **B TU**П int;
  - Critic\_Score в тип int исходя из первичного осмотра;
  - User\_Score **B TU** float
- Изучить пропуски в столбцах и их решение:
  - Name
  - Year of Release
  - Genre
  - Critic Score
  - User Score
  - Rating
- Дубликаты
- Анализ аномалий, их визуализация по необходимости

# Подготовка данных

```
In [5]:
```

```
# Переведем в нижний регистр все названия колонок:

df.columns = df.columns.str.lower()

df.head(2)
```

Out[5]:

| _ |   | name                    | platform | year_of_release | genre    | na_sales | eu_sales | jp_sales | other_sales | critic_score | user_score | rating |
|---|---|-------------------------|----------|-----------------|----------|----------|----------|----------|-------------|--------------|------------|--------|
| ( | ) | Wii Sports              | Wii      | 2006.0          | Sports   | 41.36    | 28.96    | 3.77     | 8.45        | 76.0         | 8          | E      |
|   | 1 | Super<br>Mario<br>Bros. | NES      | 1985.0          | Platform | 29.08    | 3.58     | 6.81     | 0.77        | NaN          | NaN        | NaN    |

## Перевод данных в другой тип

```
In [6]:
```

```
# Переведем год в целый тип:
df['year_of_release'] = df['year_of_release'].astype('Int64')
```

```
# переведем оценки критиков в целочисленный тип:
#df['critic_score'] = df['critic_score'].astype('Int64')

print('Тип данных у года выхода игры:', df['year_of_release'].dtype)

print('Тип данных у оценки критиков:', df['critic_score'].dtype)
```

Тип данных у года выхода игры: Int64

Тип данных у оценки критиков: float64

## Пропуски

## In [7]:

```
print(df.isna().sum())
                       2
name
platform
                       0
year_of_release
                    269
                       2
genre
                       0
na sales
                       0
eu sales
jp sales
                       0
other sales
                       0
critic score
                  8578
user score
                   6701
rating
                   6766
dtype: int64
In [8]:
```

```
# Сперва изучим наименование игр, где у нас два пропуска:

df[df['name'].isna()]
```

#### Out[8]:

|   |       | name | platform | year_of_release | genre | na_sales | eu_sales | jp_sales | other_sales | critic_score | user_score | rating |
|---|-------|------|----------|-----------------|-------|----------|----------|----------|-------------|--------------|------------|--------|
|   | 659   | NaN  | GEN      | 1993            | NaN   | 1.78     | 0.53     | 0.00     | 0.08        | NaN          | NaN        | NaN    |
| 1 | 14244 | NaN  | GEN      | 1993            | NaN   | 0.00     | 0.00     | 0.03     | 0.00        | NaN          | NaN        | NaN    |

• Удалять эти строки не нужно, ведь в них есть данные по продажам (хоть и маленькие), поэтому все пропуски в этих двух строках заменим на нули. В колоке жанр и наименование пропуски можно заменить на unknown.

```
In [9]:
```

```
df['name'] = df['name'].fillna('unknown')
df['genre'] = df['genre'].fillna('unknown')
df[df['name'] == 'unknown']
```

Out[9]:

|       | name<br>unknown | mlotform | year_of_release<br>year_of_release<br>1993 | genre   | na_sales<br>na_sales<br>1.78 |      | il   | -46  | critic_score<br>critic_score<br>NaN |     |            |
|-------|-----------------|----------|--------------------------------------------|---------|------------------------------|------|------|------|-------------------------------------|-----|------------|
| 14244 | unknown         | GEN      | 1993                                       | unknown | 0.00                         | 0.00 | 0.03 | 0.00 | NaN                                 | NaN | Na         |
| 4     |                 |          |                                            |         |                              |      |      |      |                                     | [8  | <b>≫</b> ▶ |

Пока в численных показателях не буду заполнять пропуски, прежде не проанализировав пропуски во всех остальных пропусках.

## In [10]:

df.corr()

Out[10]:

|                 | year_of_release | na_sales  | eu_sales | jp_sales  | other_sales | critic_score |
|-----------------|-----------------|-----------|----------|-----------|-------------|--------------|
| year_of_release | 1.000000        | -0.092500 | 0.003978 | -0.168366 | 0.037820    | 0.011411     |
| na_sales        | -0.092500       | 1.000000  | 0.765335 | 0.449594  | 0.638649    | 0.240755     |
| eu_sales        | 0.003978        | 0.765335  | 1.000000 | 0.435061  | 0.722792    | 0.220752     |
| jp_sales        | -0.168366       | 0.449594  | 0.435061 | 1.000000  | 0.291089    | 0.152593     |
| other_sales     | 0.037820        | 0.638649  | 0.722792 | 0.291089  | 1.000000    | 0.198554     |
| critic_score    | 0.011411        | 0.240755  | 0.220752 | 0.152593  | 0.198554    | 1.000000     |

## In [11]:

```
df['user score'].value counts().head()
```

#### Out[11]:

tbd 2424 7.8 324 8 290 8.2 282 8.3 254

Name: user\_score, dtype: int64

- Оценки критиков и оценки пользователей ни с чем не коррелируют, поэтому заполнять эти пропуски, группируя по каким-то данным нет смысла.
- Загуглив значение аббревиатуры tbd, узнала расшифровку: *То Ве Decided (в перевод. с английского "Будет решено/определено"*. Можно сделать предположение, что это игры поздних годов (2016). Надо изучить.

## In [12]:

```
df[df['user_score'] == 'tbd'].head()
```

## Out[12]:

|     | name                                    | platform | year_of_release | genre     | na_sales | eu_sales | jp_sales | other_sales | critic_score | user_score | rat |
|-----|-----------------------------------------|----------|-----------------|-----------|----------|----------|----------|-------------|--------------|------------|-----|
| 119 | Zumba<br>Fitness                        | Wii      | 2010            | Sports    | 3.45     | 2.59     | 0.0      | 0.66        | NaN          | tbd        |     |
| 301 | Namco<br>Museum:<br>50th<br>Anniversary | PS2      | 2005            | Misc      | 2.08     | 1.35     | 0.0      | 0.54        | 61.0         | tbd        | E.  |
| 520 | Zumba<br>Fitness 2                      | Wii      | 2011            | Sports    | 1.51     | 1.03     | 0.0      | 0.27        | NaN          | tbd        |     |
| 645 | uDraw<br>Studio                         | Wii      | 2010            | Misc      | 1.65     | 0.57     | 0.0      | 0.20        | 71.0         | tbd        |     |
| 657 | Frogger's<br>Adventures:<br>Temple of   | GBA      | NaN             | Adventure | 2.15     | 0.18     | 0.0      | 0.07        | 73.0         | tbd        |     |

|    | year_of_release | name |
|----|-----------------|------|
| 0  | 1997            | 1    |
| 1  | 1999            | 8    |
| 2  | 2000            | 43   |
| 3  | 2001            | 82   |
| 4  | 2002            | 192  |
| 5  | 2003            | 95   |
| 6  | 2004            | 107  |
| 7  | 2005            | 121  |
| 8  | 2006            | 124  |
| 9  | 2007            | 192  |
| 10 | 2008            | 326  |
| 11 | 2009            | 405  |
| 12 | 2010            | 331  |
| 13 | 2011            | 217  |
| 14 | 2012            | 24   |
| 15 | 2013            | 15   |
| 16 | 2014            | 21   |
| 17 | 2015            | 38   |
| 18 | 2016            | 34   |
|    |                 |      |

• Предположение оказалось неверным, тогда просто заменим на NaN, чтобы можно было перевести колонку в целочисленный тип и делать вычисления.

```
In [15]:
```

```
df['user_score'] = pd.to_numeric(df['user_score'], errors='coerce')
print('Тип данных у оценок пользователей:', df['user_score'].dtype)
```

Тип данных у оценок пользователей: float64

## Дубликаты

```
In [16]:
```

```
df.duplicated().sum()
```

```
Out[16]:
```

• Ура! Явных дубликатов нет.

## Подсчет суммарных продаж

```
In [17]:

df['total_sales'] = df['na_sales'] + df['eu_sales'] + df['jp_sales'] + df['other_sales']
df.head()
```

Out[17]:

|   | name                           | platform | year_of_release | genre            | na_sales | eu_sales | jp_sales | other_sales | critic_score | user_score | ratin    |
|---|--------------------------------|----------|-----------------|------------------|----------|----------|----------|-------------|--------------|------------|----------|
| 0 | Wii Sports                     | Wii      | 2006            | Sports           | 41.36    | 28.96    | 3.77     | 8.45        | 76.0         | 8.0        |          |
| 1 | Super Mario<br>Bros.           | NES      | 1985            | Platform         | 29.08    | 3.58     | 6.81     | 0.77        | NaN          | NaN        | Na       |
| 2 | Mario Kart Wii                 | Wii      | 2008            | Racing           | 15.68    | 12.76    | 3.79     | 3.29        | 82.0         | 8.3        |          |
| 3 | Wii Sports<br>Resort           | Wii      | 2009            | Sports           | 15.61    | 10.93    | 3.28     | 2.95        | 80.0         | 8.0        |          |
| 4 | Pokemon<br>Red/Pokemon<br>Blue | GВ       | 1996            | Role-<br>Playing | 11.27    | 8.89     | 10.22    | 1.00        | NaN          | NaN        | Na       |
| 4 |                                |          |                 |                  |          |          |          |             |              |            | <b>•</b> |

# Исследовательский анализ данных

## Сколько игр выпускалось в разные годы.

```
In [18]:
```

```
games_per_year = df.pivot_table(index='year_of_release', values='name', aggfunc='count')
games_per_year.plot(kind='bar', figsize=(16,6))
```

## Out[18]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7feaaa835550>



## In [19]:

#games\_per\_year

```
games_per_year.query('year_of_release < 1993')['name'].sum() / games_per_year['name'].su
m() * 100</pre>
```

## Out[19]:

1.85455429891767

• 1.85 процентов довольно НЕбольшой объем для того, чтобы оставлять в анализе. Поэтому удолим.

Посмотрите, как менялись продажи по платформам. Выберите платформы с наибольшими суммарными продажами и постройте распределение по годам. За какой характерный срок появляются новые и исчезают старые платформы?

## In [20]:

#### Out[20]:

<matplotlib.axes. subplots.AxesSubplot at 0x7feaaa9aead0>



#### In [21]:

```
top_platforms_new = df.groupby('platform', as_index = False).total_sales.sum().sort_valu
es(by = 'total_sales',

ascending=False)

# as_index - Toxe camoe, uto u reset_index()

top_platforms_list_new = top_platforms_new.head(10)['platform'].tolist()
top_platforms_list_new
```

## Out[21]:

```
['PS2', 'X360', 'PS3', 'Wii', 'DS', 'PS', 'GBA', 'PS4', 'PSP', 'PC']
```

- В среднем продолжительность одной девяти самых продаваемых платформ составляет около **10** лет. Потом идет смена "поколений".
- Дополнительно было решено добавить в диаграмму **PC**, тк. это самая долгоживущая платформа. После **2011** годов идет спад в продажах для ПК, но начиная с **2013** года наблюдается тенденция подъема продаж игр на данной платформе.

Возьмите данные за соответствующий актуальный период. Актуальный период определите самостоятельно в результате исследования предыдущих вопросов. Основной фактор — эти данные помогут построить прогноз на **2017** год.

Исходя из среднего жизненного цикла каждой наиболее продаваемой платформы, который составляет около **10** лет, до актуальным периодом возьмем года с **2013 по 2016** 

Какие платформы лидируют по продажам, растут или падают? Выберите несколько потенциально прибыльных платформ.

Из ранее сделанного графика можно вывести топ-10 платформ, лидирующие по продажам:

```
In [22]:
```

```
top_platforms_list
Out[22]:
['PS2', 'X360', 'PS3', 'Wii', 'DS', 'PS', 'GBA', 'PS4', 'PSP', 'PC']
```

В основном все лидеры продаж уже на закате. Если только взять потенциально прибыльную платформу под названием **PS4**. Ну и ПК.

Теперь выведем таблицу с топами платформ, но с хвоста.

```
In [23]:
```

```
df_actual = df.query('2012 < year_of_release <= 2016')</pre>
```

## In [24]:

#### Out[24]:

<matplotlib.axes. subplots.AxesSubplot at 0x7feaaa88dc50>



```
20 2013.0 2013.5 2014.0 2014.5 2015.0 2015.5 2016.0 year_of_release
```

• В актуальном периоде тенденцию роста показывают две платформы: **PS4** и **XOne.** Остальные платформы идут на спад.

#### In [25]:

```
top_platforms.tail(10).index.tolist()
Out[25]:
['SAT', 'GEN', 'DC', 'SCD', 'NG', 'WS', 'TG16', '3DO', 'GG', 'PCFX']
```

# Постройте график «ящик с усами» по глобальным продажам игр в разбивке по платформам. Опишите результат.

#### In [26]:

```
# Построим таблицу, вбирающая в себя все значения за 2006-2016 года.

df_actual.head()
```

## Out[26]:

|    | name                            | platform | year_of_release | genre            | na_sales | eu_sales | jp_sales | other_sales | critic_score | user_score | rating   |
|----|---------------------------------|----------|-----------------|------------------|----------|----------|----------|-------------|--------------|------------|----------|
| 16 | Grand<br>Theft Auto<br>V        | PS3      | 2013            | Action           | 7.02     | 9.09     | 0.98     | 3.96        | 97.0         | 8.2        | М        |
| 23 | Grand<br>Theft Auto<br>V        | X360     | 2013            | Action           | 9.66     | 5.14     | 0.06     | 1.41        | 97.0         | 8.1        | М        |
| 31 | Call of<br>Duty: Black<br>Ops 3 | PS4      | 2015            | Shooter          | 6.03     | 5.86     | 0.36     | 2.38        | NaN          | NaN        | NaN      |
| 33 | Pokemon<br>X/Pokemon<br>Y       | 3DS      | 2013            | Role-<br>Playing | 5.28     | 4.19     | 4.35     | 0.78        | NaN          | NaN        | NaN      |
| 42 | Grand<br>Theft Auto<br>V        | PS4      | 2014            | Action           | 3.96     | 6.31     | 0.38     | 1.97        | 97.0         | 8.3        | M        |
| 4  |                                 |          |                 |                  |          |          |          |             |              |            | <b>)</b> |

• Отлично, теперь переходим к ящику с усами для каждой платформы (всего по 10 штукам будем строить)

## In [27]:

## Out[27]:

<seaborn.axisgrid.FacetGrid at 0x7feaa2117d10>



## Вывод

- Только несколько платформ могут похвастаться тем, что их диапазон нормального значения до миллиона проданных копий. Эти платформы: PS, PS4, PS3, X360
- На данном графике можно пронаблюдать, что очень много выбросов. Возможно, это выстрельнувшие хиты, которые успели выйти за 3 года.

Посмотрите, как влияют на продажи внутри одной популярной платформы отзывы пользователей и критиков. Постройте диаграмму рассеяния и посчитайте корреляцию между отзывами и продажами. Сформулируйте выводы.

Возьмем в качестве примера игры на ПК.

### In [28]:

```
scores_to_sales = df_actual.query('platform == "PC"')
scores_to_sales.plot(kind='scatter', x='user_score', y='total_sales', alpha=.3)
plt.title('user_score_ratio_PC')
scores_to_sales.plot(kind='scatter', x='critic_score', y='total_sales', alpha=.3)
plt.title('critic_score_ratio_PC')
```

## Out[28]:

```
Text(0.5, 1.0, 'critic score ratio PC')
```





#### In [29]:

```
print('Корелляция оценки пользователей к продажам:', scores_to_sales['total_sales'].corr(
scores_to_sales['user_score']))
print('Корелляция оценки критиков к продажам:', scores_to_sales['total_sales'].corr(score
s_to_sales['critic_score']))
```

Корелляция оценки пользователей к продажам: -0.09384186952476739

Корелляция оценки критиков к продажам: 0.19603028294369382

• Как можно увидеть из диаграмм рассеяний и коэфициентам корреляции, оценка пользователей не имеет влияния на продажи игр. А вот оценка критиков уже имеет влияние, но слабое.

## Соотнесите выводы с продажами игр на других платформах.

```
In [30]:
```

```
scores_to_sales = df_actual.query('platform == @top_platforms_list')
scores_to_sales['platform'].unique()

Out[30]:
array(['PS3', 'X360', 'PS4', 'Wii', 'PC', 'DS', 'PSP'], dtype=object)
```

Возьмем любые пять платформ из десяти самых продаваемых платформ и построим диаграммы рассеивания по оценкам критиков и оценкам пользователей.

```
In [31]:
```

```
for platform, scores_to_sales in df_actual.groupby('platform'):
    print('='*30)
    print(platform)
```

```
scores_to_sales.plot(kind='scatter', x='critic_score', y='total_sales')
scores_to_sales.plot(kind='scatter', x='user_score', y='total_sales')
plt.show()
print(scores_to_sales[['critic_score', 'user_score', 'total_sales']].corr()['total_s
ales'])
```

\_\_\_\_\_

3DS





critic\_score 0.357057

user score 0.241504

total sales 1.000000

Name: total\_sales, dtype: float64

\_\_\_\_\_

DS



0.390



critic\_score NaN

user\_score NaN

total\_sales 1.0

Name: total\_sales, dtype: float64

\_\_\_\_\_

РC





critic\_score 0.196030

user\_score -0.093842

total\_sales 1.000000

Name: total\_sales, dtype: float64



critic\_score

0.334285

user\_score

0.002394

total\_sales

1.000000

Name: total\_sales, dtype: float64

PS4







critic score 0.406568

user\_score -0.031957

total\_sales 1.000000

Name: total\_sales, dtype: float64

\_\_\_\_\_

PSP





critic\_score NaN

user\_score -1.0

total\_sales 1.0

Name: total\_sales, dtype: float64

\_\_\_\_\_

PSV







critic\_score 0.254742

user\_score 0.000942

total\_sales 1.000000

Name: total\_sales, dtype: float64

\_\_\_\_\_

## Wii





critic\_score

NaN

user\_score

0.682942

total\_sales

1.000000

Name: total\_sales, dtype: float64

\_\_\_\_\_

WiiU





critic\_score 0.376415

user\_score 0.419330

total\_sales 1.000000

Name: total\_sales, dtype: float64

X360





critic\_score 0.350345

user\_score -0.011742

total\_sales 1.000000

Name: total\_sales, dtype: float64

XOne





critic\_score 0.416998

user\_score -0.068925

total\_sales 1.000000

Name: total\_sales, dtype: float64

## In [32]:

```
scores_to_sales.platform.unique()
```

## Out[32]:

array(['XOne'], dtype=object)

#### Вывод

- Для пользователей **PS3** важна оценка только от критиков.
- Для владельцев платформы **X360, PC** и **PS4** мнение пользователй не особо важно, а вот критиков повышает спрос
- На Wii так мало продаж в актуальном периоде, что сумма продаж не зависит от оценки игроков.
- Исходя из матрицы корреляции, оценка критикаа имеет слабое влияние. Оценка пользователя имеет обратную корреляцию.

# Посмотрите на общее распределение игр по жанрам. Что можно сказать о самых прибыльных жанрах? Выделяются ли жанры с высокими и низкими продажами?

#### In [33]:

```
# Струппирую по жанру и построю график по кол-ву вышедших игр и их продажам

(df_actual.groupby('genre')
   .agg({'name': 'count', 'total_sales': 'sum'})
   .sort_values('name', ascending=False)
   .plot(kind='bar', figsize=(16, 6))
)
```

#### Out[33]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fea9bef9bd0>



#### Вывод

- Самый прибыльный жанр и чаще всего выпускающийся Action
- Адвенчуры имеют среднюю популярность, но низкий доход. Можно предположить, что это инди-игры с низким "ценником"
- Платформеры хоть и менее популярны, чем адвенчуры, но в разы доходнее;
- Пазлы наименее популярны и приносят одни из самых маленьких доходов;
- Хоть спортивных игр меньше экш-игр, но они более доходны, чем экшены:
- Шутеры самые окупаемые игры.

# Портрет пользователя каждого региона

Самые популярные платформы (топ-5) для пользователя каждого региона (NA, EU, JP)

#### In [34]:

```
# Группирую по платформам и считаю сумму продаж по каждому региону
na_sales = (df_actual.pivot_table(index='platform', values='na_sales', aggfunc='sum')
           .sort values('na sales', ascending=False)).reset index()
na sales = na sales.iloc[:5]
eu sales = (df actual.pivot table(index='platform', values='eu sales', aggfunc='sum')
           .sort values('eu sales', ascending=False)).reset index()
eu sales = eu sales.iloc[:5]
jp sales = (df actual.pivot table(index='platform', values='jp sales', aggfunc='sum')
           .sort values('jp sales', ascending=False)).reset index()
jp_sales = jp sales.iloc[:5]
x1 = na sales['na sales']
x2 = eu sales['eu sales']
x3 = jp sales['jp sales']
fig, ax = plt.subplots(1, 3, figsize=(22, 22))
ax[0].pie(x1, labels=na_sales['platform'], autopct='%1.1f%%')
ax[0].set title('Norh America')
ax[1].pie(x2, labels=eu sales['platform'], autopct='%1.1f%%')
ax[1].set title('Europe')
ax[2].pie(x3, labels=jp sales['platform'], autopct='%1.1f%%')
ax[2].set title('Japan')
```

## Out[34]:

Text(0.5, 1.0, 'Japan')



## Топ 5 платформ в Северной Америке

- 1. PS4
- 2. XOne
- 3. X360
- 4. PS3
- 5. 3DS

## Топ 5 платформ в Европе

- 1. PS4
- 2. PS3
- 3. XOne
- 4. X360
- 5. 3DS

## Топ 5 платформ в Японии

- 1. 3DS
- 2. PS3

- 3. PSV
- 4. PS4
- 5. WiiU

## Самые популярные жанры (топ-5)

### In [35]:

```
# Группирую по жанру и считаю суммы продаж по каждому региону
na sales = (df actual.pivot table(index='genre', values='na sales', aggfunc='sum')
           .sort values('na sales', ascending=False)).reset index()
na sales = na sales.iloc[:5]
eu sales = (df actual.pivot table(index='genre', values='eu sales', aggfunc='sum')
           .sort values('eu sales', ascending=False)).reset index()
eu sales = eu sales.iloc[:5]
jp sales = (df actual.pivot table(index='genre', values='jp sales', aggfunc='sum')
           .sort values('jp sales', ascending=False)).reset index()
jp sales = jp sales.iloc[:5]
x1 = na sales['na sales']
x2 = eu sales['eu sales']
x3 = jp_sales['jp_sales']
fig, ax = plt.subplots(1, 3, figsize=(22, 22))
ax[0].pie(x1, labels=na sales['genre'], autopct='%1.1f%%')
ax[0].set title('Norh America')
ax[1].pie(x2, labels=eu sales['genre'], autopct='%1.1f%%')
ax[1].set title('Europe')
ax[2].pie(x3, labels=jp sales['genre'], autopct='%1.1f%%')
ax[2].set title('Japan')
```

#### Out[35]:





## Топ 5 популярных жанров в Северной Америке

- 1. Action
- 2. Sports
- 3. Shooter
- 4. Role-play
- 5. Misc

## Топ 5 популярных жанров в Европе

- 1. Action
- 2. Shooter

- 3. Sports
- 4. Role-play
- 5. Racing

#### Топ 5 популярных жанров в Японии

- 1. Role-play
- 2. Action
- 3. Misc
- 4. Fighting
- 5. Shooter

#### Вывод

Жанровые предпочтение в Северной Америке и Европе схожи. А вот в Японии имеются сильные различия. Самый популярный жанр в японии РПГ, это можно обусловить тем, что изначально Япония развивалась с этой стороны, взять даже отдельных жанр **J-RPG**, который , скорее всего, тоже входит в РПГ в данном анализе. Плюсом выступает разница в культурах, поэтому тоже можно наблюдать такие различия между Западом и Востоком.

## Влияет ли рейтинг **ESRB** на продажи в отдельном регионе?

#### In [36]:

```
# Группирую по рейтингу и считаю общие продажи с каждого региона

df_actual['rating'] = df_actual['rating'].astype('str')

region_rating = df_actual.groupby('rating').agg({'na_sales': 'sum', 'eu_sales': 'sum', '
jp_sales': 'sum'})

region_rating.plot(kind='bar')

/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer, col indexer] = value instead

See the caveats in the documentation:  $http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy$ 

## Out[36]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fea9be04c10>



Действительно, чем ниже рейтинг (т.е. насколько больше происходит охват аудитории) - тем выше продажи. Работает это в каждом региона почти одинаково (кроме Японии). У Японии самые высокие продажи с рейтингом *E*, а оставшиеся 4 рейтинга имеют одинаковый уровень продаж, кроме *T*. Также можно заметить, что игры, у которых не определен рейтин, также очень большое кол-во продаж (кэп).

## Проверьте гипотезы

## Средние пользовательские рейтинги платформ **Xbox One** и **PC** одинаковые

Т.к. альтернативная гипотеза строится на неравенстве, то нулевую построим на равенстве: *средние оценки двух платформ одинаковые.* 

Альтернативная гипотеза: *средние пользовательские рейтинги платформы Xbox One и PC различаются*.

#### In [37]:

p-value: 0.14012658403611647

Не получилось отвергнуть нулевую гипотезу

• Делаем вывод, что оценки пользователей двух платформ не отличаются.

# Средние пользовательские рейтинги жанров **Action** (англ. «действие», экшен-игры) и **Sports** (англ. «спортивные соревнования») разные.

Нулевая теория будет звучать так: *средние пользовательские рейтинги перечисленных жанров равны.* Альтернативная гипотеза: \*средние пользовательские рейтинги перечисленных жанров различаются"

А в качестве критерия будем использовать p-value и ttest'ы.

#### In [38]:

```
action = df_actual[df_actual['genre'] == 'Action']['user_score'].dropna()
sports = df_actual[df_actual['genre'] == 'Sports']['user_score'].dropna()

results = st.ttest_ind(
    action,
    sports
)

print('p-value:', results.pvalue)

if results.pvalue < alpha:
    print("Отвергаем нулевую гипотезу")
else:
    print("Не получилось отвергнуть нулевую гипотезу")
```

p-value: 1.0517832389140023e-27

• Средние пользовательские оценки для двух жанров различаются.

# Общий вывод

- Если выбирать западный рынок, то лучше выбирать жанры экшен, шутер
- Если выбирать японский рынок, то подойдет РПГ, но, опять же, со спецификой японского менталитета.
- Среди экшн игр огромная конкуренция, если шанс остаться незамеченными
- У шутеров и платформеров высокая окупаемость, т.к. на фоне кол-ва экшенов их меньше
- В северной америке стоит выпускать игры на **PS4** и консоли от **Microsoft.**
- В европе есть спрос и есть тенденция на рост PS4, овольно перспективной консоли. PS3 все еще в тренде.
- Для Японского рынка стоит выпускать игры на крайне популярную консоль **3DS**, также в тренде остается **PS3** и **PSV**.