Introducción a los Algoritmos Axiomas y Teoremas del Cálculo Proposicional

Ax. Equivalencia, Discrepancia y Negación Ax. de la Implicación y la Consecuencia

A1 Asociatividad \equiv :

$$((P \equiv Q) \equiv R) \equiv (P \equiv (Q \equiv R))$$

A2 Conmutatividad \equiv :

$$P \equiv Q \equiv Q \equiv P$$

A3 Neutro \equiv :

$$P \equiv True \equiv P$$

A4 Definición ¬:

$$\neg (P \equiv Q) \equiv \neg P \equiv Q$$

A5 Definición False:

$$False \equiv \neg True$$

A6 Definición $\not\equiv$:

$$P \not\equiv Q \equiv \neg (P \equiv Q)$$

Ax. de la Disyunción y Conjunción

A7 Asociatividad \vee :

$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

A8 Conmutatividad \vee :

$$P \lor Q \equiv Q \lor P$$

A9 Idempotencia ∨:

$$P \vee P \equiv P$$

A10 Distributividad \vee con \equiv :

$$P \lor (Q \equiv R) \equiv (P \lor Q) \equiv (P \lor R)$$

A11 Tercero excluido:

$$P \vee \neg P$$

A12 Regla dorada:

$$P \wedge Q \equiv P \equiv Q \equiv P \vee Q$$

A13 Definición $de \Rightarrow$:

$$P \Rightarrow Q \equiv P \lor Q \equiv Q$$

A14 Definición \Leftarrow :

$$P \Leftarrow Q \equiv P \lor Q \equiv P$$

Teo. Negación

T1 Doble negación:

$$\neg \neg P \equiv P$$

T2 Equivalencia y negación:

$$P \equiv False \equiv \neg P$$

Teo. Disyunción

T3 Elemento absorbente \vee :

$$P \lor True \equiv True$$

T4 Elemento neutro \vee :

$$P \vee \mathit{False} \equiv P$$

T5 *Teorema* (*):

$$P \vee Q \equiv P \vee \neg Q \equiv P$$

Teo. Conjunción

T6 Asociatividad \wedge :

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

T7 Conmutatividad \wedge :

$$P \wedge Q \equiv Q \wedge P$$

T8 Idempotencia \wedge :

$$P \wedge P \equiv P$$

T9 Neutro \wedge :

$$P \wedge True \equiv P$$

T10 Elemento absorbente \wedge :

$$P \wedge False \equiv False$$

T11 Principio de no contradicción:

$$P \wedge \neg P \equiv False$$

Teo. Disyunción con Conjunción

T12 De Morgan para \vee :

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

T13 De Morgan para \wedge :

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

T14 Distributividad de \vee con \wedge :

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

T15 Distributividad de \land con \lor :

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

T16 Ley de absorción:

$$P \wedge (P \vee Q) \equiv P$$

T17 Ley de absorción (bis):

$$P \lor (P \land Q) \equiv P$$

Teo. Implicación

T18 Definición dual \Rightarrow :

$$P \Rightarrow Q \equiv P \land Q \equiv P$$

T19 Caracterización \Rightarrow :

$$P \Rightarrow Q \equiv \neg P \lor Q$$

T20 Modus ponens:

$$P \wedge (P \Rightarrow Q) \Rightarrow Q$$

T21 Modus ponens con equivalencia:

$$P \wedge (P \Rightarrow Q) \equiv P \wedge Q$$

T22 Modus tollens:

$$(P \Rightarrow Q) \land \neg Q \Rightarrow \neg P$$

T23 Modus tollens con equivalencia:

$$(P \Rightarrow Q) \land \neg Q \equiv \neg P \land \neg Q$$

T24 Currificación:

$$P \Rightarrow (Q \Rightarrow R) \equiv (P \land Q \Rightarrow R)$$

T25 Transitividad \Rightarrow :

$$(P\Rightarrow Q)\wedge (Q\Rightarrow R)\Rightarrow (P\Rightarrow R)$$

T26 Debilitamiento $\Rightarrow y \land :$

$$P \wedge Q \Rightarrow P$$

T27 Debilitamiento $\Rightarrow y \lor$:

$$P \Rightarrow P \lor Q$$

T28 Distributividad a derecha $\Rightarrow y \land$:

$$P \Rightarrow (Q \land R) \equiv (P \Rightarrow Q) \land (P \Rightarrow R)$$

T29 Distributividad a izquierda $\Rightarrow y \lor$:

$$P \lor Q \Rightarrow R \equiv (P \Rightarrow R) \land (Q \Rightarrow R)$$

Niveles de Precedencia

Los que están más arriba tienen mayor precedencia — "pegan más", se ponen entre paréntesis primero, se aplican primero.

E(x:=a),.	sustitución y evaluación
$\sqrt{\ },(\cdot)^2$	raíces y potencias
*,/	producto y división
máx, mín	máximo y mínimo
+,-	suma y resta
$=,\leqslant,\geqslant$	conectivos aritméticos
_	negación
V /\	disyunción y conjunción
$\Rightarrow \Leftarrow$	implicación y consecuencia
≡≢	equivalencia y discrepancia

Los operadores que están en un mismo nivel tienen exactamente la misma prioridad, así que deben ponerse siempre con paréntesis, a menos que asocien entre si $(\lor y \lor, \not\equiv y \equiv, \max y \max)$.