Chapter 2

Database System Concepts and Architecture

Addison-Wesley is an imprint of

Chapter 2 Outline

- Data Models, Schemas, and Instances
- Three-Schema Architecture and Data Independence
- Database Languages and Interfaces
- The Database System Environment
- Centralized and Client/Server Architectures for DBMSs
- Classification of Database Management Systems

Database System Concepts and Architecture

- Basic client/server DBMS architecture
 - Client module
 - Server module

Data Models, Schemas, and Instances

Data abstraction

- Suppression of details of data organization and storage
- Highlighting of the essential features for an improved understanding of data

Data Models, Schemas, and Instances (cont'd.)

Data model

- Collection of concepts that describe the structure of a database
- Provides means to achieve data abstraction
- Basic operations
 - Specify retrievals and updates on the database
- Dynamic aspect or behavior of a database application
 - Allows the database designer to specify a set of valid operations allowed on database objects

Categories of Data Models

- High-level or conceptual data models
 - Close to the way many users perceive data
- Low-level or physical data models
 - Describe the details of how data is stored on computer storage media
- Representational data models
 - Easily understood by end users
 - Also similar to how data organized in computer storage

Categories of Data Models (cont'd.)

Entity

Represents a real-world object or concept

Attribute

- Represents some property of interest
- Further describes an entity
- Relationship among two or more entities
 - Represents an association among the entities
 - Entity-Relationship model

Categories of Data Models (cont'd.)

- Relational data model
 - Used most frequently in traditional commercial DBMSs
- Object data model
 - New family of higher-level implementation data models
 - Closer to conceptual data models

Categories of Data Models (cont'd.)

Physical data models

Describe how data is stored as files in the computer

Access path

 Structure that makes the search for particular database records efficient

Index

- Example of an access path
- Allows direct access to data using an index term or a keyword

Schemas, Instances, and Database State

- Database schema
 - Description of a database
- Schema diagram
 - Displays selected aspects of schema
- Schema construct
 - Each object in the schema
- Database state or snapshot
 - Data in database at a particular moment in time

http://english.stackexchange.com/questions/40702/difference-between-scheme-and-schema

Two Components of Database

1) Database Schema (Meta Data)

Intension:

Database Schema Converted from Designed ER Model

Tables

Attributes: Columns

Constraints: Relationships among Entities, Database Rules

Stored as System Catalogues by System (SQL Server)

2) Database State: Extension

Instances of database: Records of Tables

Keep Changing

Initial State: First Populated Database State

Schemas, Instances, and Database State (cont'd.)

Figure 2.1 Schema diagram for the database in Figure 1.2.

STUDENT Name Student number Class Major COURSE Course_number Credit hours Department Course_name PREREQUISITE Course number Prerequisite number SECTION Section_identifier Course number Semester Year Instructor GRADE REPORT Section_identifier Student number Grade

PEARSON

⁶Schema changes are usually needed as the requirements of the database applications change. Newer database systems include operations for allowing schema changes, although the schema change process is more involved than simple database updates.

 $^{^{7}}$ It is customary in database parlance to use *schemas* as the plural for *schema*, even though *schemata* is the proper plural form. The word *scheme* is also sometimes used to refer to a schema.

Schema Diagram

¹⁴CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is the committee that specified the network model and its language.

Three-Schema Architecture and Data Independence

Internal level

Describes physical storage structure of the database

Conceptual level

 Describes structure of the whole database for a community of users

External or view level

 Describes part of the database that a particular user group is interested in

Three-Schema Architecture and Data Independence (cont'd.)

Figure 2.2 **End Users** The three-schema architecture. External External External Level View View External/Conceptual Mapping Conceptual Level Conceptual Schema Conceptual/Internal Mapping Internal Level Internal Schema Stored Database

Data Independence

- Capacity to change the schema at one level of a database system
 - Without having to change the schema at the next higher level
- Types:
 - Logical
 - Physical

DBMS Languages

- Data definition language (DDL)
 - Defines both schemas
- Storage definition language (SDL)
 - Specifies the internal schema
- View definition language (VDL)
 - Specifies user views/mappings to conceptual schema
- Data manipulation language (DML)
 - Allows retrieval, insertion, deletion, modification

Database Language: SQL

```
Data Definition Language (DDL)
```

To create Database Schema

Create Table

Data Manipulation Language (DML)

To populate, modify, and maintain database

Insert

Delete

Update

Data Retrieval Language:

Select

View Definition Language (VDL)

Create View As Select

DBMS Languages (cont'd.)

- High-level or nonprocedural DML
 - Can be used on its own to specify complex database operations concisely
 - Set-at-a-time or set-oriented
- Low-level or procedural DML
 - Must be embedded in a general-purpose programming language
 - Record-at-a-time

DBMS Interfaces (Client Forms)

- Menu-based interfaces for Web clients or browsing
- Forms-based interfaces
- Graphical user interfaces (GUI)
- Natural language interfaces
- Speech input and output
- Interfaces for parametric users
- Interfaces for the DBA

The Database System Environment

- DBMS component modules
 - Buffer management
 - Stored data manager
 - DDL compiler
 - Interactive query interface
 - Query compiler
 - Query optimizer
 - Precompiler

The Database System Environment (cont'd.)

- DBMS component modules
 - Runtime database processor
 - System catalog
 - Concurrency control system
 - Backup and recovery system

Figure 2.3
Component modules of a DBMS and their interactions.

PEARSON

PARSER and EXECUTION V/MPLAN FLOW

Steps to Dispatcher

Resolver

Retrieve dictionary information

From dictionary cache if possible

Annotate skeleton tree (database, table, column)

Derive new conditions using transitivity

Handle views and macros

Handle derived tables

Identify access requirements

Report semantic errors

Optimizer Input and Output

Parallel DBMS Architecture

DBMS Parallel Architecture

DBMS Parallel Architecture

DBMS Parallel Architecture

PEARSON

Database System Utilities

- Loading
 - Load existing data files
- Backup
 - Creates a backup copy of the database

Database System Utilities (cont'd.)

Database storage reorganization

 Reorganize a set of database files into different file organizations

Performance monitoring

 Monitors database usage and provides statistics to the DBA

Tools, Application Environments, and Communications Facilities

- CASE Tools (Computer-aided software engineering)
- Data dictionary (data repository) system
 - Stores design decisions, usage standards, application program descriptions, and user information
- Application development environments
- Communications software

Centralized and Client/Server Architectures for DBMSs

Centralized DBMSs Architecture

 All DBMS functionality, application program execution, and user interface processing carried out on one machine

Figure 2.4
A physical centralized architecture.

Basic Client/Server Architectures

- Servers with specific functionalities
 - File server
 - Maintains the files of the client machines.
 - Printer server
 - Connected to various printers; all print requests by the clients are forwarded to this machine
 - Web servers or e-mail servers

Basic Client/Server Architectures (cont'd.)

Client machines

- Provide user with:
 - Appropriate interfaces to utilize these servers
 - Local processing power to run local applications

PEARSON

Basic Client/Server Architectures (cont'd.)

Client

 User machine that provides user interface capabilities and local processing

Server

- System containing both hardware and software
- Provides services to the client machines
 - Such as file access, printing, archiving, or database access

Two-Tier Client/Server Architectures for DBMSs

- Server handles
 - Query and transaction functionality related to SQL processing
- Client handles
 - User interface programs and application programs

Two-Tier Client/Server Architectures (cont'd.)

- Open Database Connectivity (ODBC)
 - Provides application programming interface (API)
 - Allows client-side programs to call the DBMS
 - Both client and server machines must have the necessary software installed

JDBC

 Allows Java client programs to access one or more DBMSs through a standard interface

Three-Tier and n-Tier Architectures for Web Applications

Application server or Web server

- Adds intermediate layer between client and the database server
- Runs application programs and stores business rules

N-tier

 Divide the layers between the user and the stored data further into finer components

PEARSON

Classification of Database Management Systems

Data model

- Relational
- Object
- Hierarchical and network (legacy)
- Native XML DBMS

Number of users

- Single-user
- Multiuser

Classification of Database Management Systems (cont'd.)

- Number of sites
 - Centralized
 - Distributed
 - Homogeneous
 - Heterogeneous
- Cost
 - Open source
 - Different types of licensing

Data Warehouse: A Multi-Tiered Architecture

Data Storage

OLAP Engine Front-End Tools

Summary

- Concepts used in database systems
- Main categories of data models
- Types of languages supported by DMBSs
- Interfaces provided by the DBMS
- DBMS classification criteria:
 - Data model, number of users, number of sties, access paths, cost

