

Recent Developments in Geant4 Hadronics

Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright

Outline

- Treatment of isotopes (abundance, masses, PDG code)
- Cross section improvements
- Elastic scattering
- Capture reactions
- Neutrons
- INCL/ABLA
- "Grand Validation" at FNAL Hadronic Shower Simulation Workshop
- Shower shapes/energy deposition

Treatment of Isotopes in Geant4 (1)

- G4 hadronic processes currently recognize only natural isotope abundances in elements
 - User-defined abundances ignored (except for HP neutrons and CHIPS models)
- G4HadronicProcess must calculate a cross section for the MFP, and choose an isotope from the abundance to pass to the relevant model
 - in both cases the approximation: $_{Z}$ $_{0}/<A>^{2/3}$)· $_{A}$ abund $_{A}$ · $A^{2/3}$ is used
 - should be: z abund $A \cdot z$.
- Many cross-section sets do not have isotope-wise cross sections or temperature dependence
- Above problems to be fixed for default cross sections in V8.2
- Need methods to access isotope-specific cross sections
- Need a common system for all cross section data sets

Treatment of Isotopes in Geant4 (2)

- Nuclei produced in reaction currently have PDG code =
 - Non-zero PDG code to be returned in V 8.2
- At various places in Geant4 physics, three different isotope mass tables have been used in the past
 - now reduced to 2
- Long-term goal: a unified atomic/nuclear mass table which will have:
 - All long-lived isotopes, isomers, hypernuclei (>4500 entries)
 - Updated nuclear masses
 - Known and predicted decay channels
 - Updated interpolation function for unmeasured nuclei

Cross Sections

- Geant4 hadronic cross sections being reviewed and improved
- Glauber-Gribov cross sections available in V 8.2
 - parameterizations of elastic and inelastic hadron-nucleus cross sections for E > 1 GeV
 - tuning/improvements still being made
- Elastic/charge exchange
 - p-p, n-p cross sections improved
 - elastic, charge exchange cross sections to be separated into separate data sets

Glauber-Gribov Cross Sections

pp Elastic Cross Section

Coherent Elastic Scattering

- Coherent elastic hadron-nucleus scattering for E > 1 GeV
 - Currently process uses large look-up table
 - In V 9.0 data will be parameterized and internal to model

Coherent Elastic Model: 1GeV p on ²⁸Si

Improved Capture Reactions

- Before V 8.0 most capture reactions were handled by GHEISHA-like (parameterized) models
- New option since V 8.0: CHIPS-based capture for:
 - K⁻,p-bar, -bar
- Theory-based with a few parameters
- Slower, but more accurate than the GHEISHA-like models
- n, n-bar capture still GHEISHA-like or in high precision neutron models
 - CHIPS version planned

Anti-proton capture at rest (CHIPS)

Neutrons

- High precision (HP) neutron package
 - Neutron data library G4NDL recently upgraded to 3.9
 - Support for the 0.2 version (without thermal cross sections) to be dropped after December
 - Plans for simplifying G4NDL: will depend only on ENDF and JENDL databases -> no evaluation by Geant4
 - Possible extension of HP neutron energies to 150 MeV
 - Since V 8.0, alternate versions of the HP processes have been available for elastic, inelastic, capture and fission: if no isotope entry is available in G4NDL, process defaults to parameterized (less accurate) models

INCL/ABLA Model

- Intra-nuclear cascade Liege + Ablation model
 - for ~100 MeV to 3 GeV pion, nucleon, light ion beams
 - uses resonance formation and decay, Weisskopf-Ewing evaporation
 - less phenomenology, more predictive power
 - currently used successfully in LAHET and MCNPX
 - currently in FORTRAN, project underway to cast into C++ and include with Geant4
- Planned improvements:
 - INCL5 already extended down to 50 MeV
 - using 2- and 3-pion exchange may extend up to 10 GeV

INCL4 + ABLA Results

R. Chrien et al, Phys. Rev. C21 (1980) 1014

J. McGill et al Phys. Rev. C29 (1984) 204

Proton production

Grand Validation

- 7 validation tests proposed for Hadronic Shower Simulation Workshop at FNAL in September
 - covered wide energy range
 - head-to-head comparison of (5-6) simulation codes for each test
 - data sets agreed upon beforehand
 - voluntary participation
- Due to short time scale, not all tasks could be completed
- Agreed to make this a regular exercise
 - repeat once every 18 months

from 158 GeV/c p on C

TASK 2A

Black symbols - NA49 data, red line - LAQGSM, blue line - MARS, black line - G4, magenta line -DPMJET

Task2a

Task2a: + from 158 GeV/c p on C

TASK 2A

Black symbols - NA49 data, red line - LQGSM, blue line - MARS, black line - G4, magenta

line -DPMJET

from 67 GeV/c p on

+ from 67 GeV/c p on Al

from 67 GeV/c p on Al

Task 5: Total Energy in a Cu Absorber

TASK 5 計算条件メモ Outer Absorber MCNPX 2.40 Heat in inner absorber (J/1.e11 protons) 0.00 Inner Absorber **PHITS 1.83** MARS15 (2006) G4(QDSP) Target ■ KEK exp. ф2:40 単位: (mm) 0.0 outer absorber は C20 だけ面取りしてある。 -80 80 120 材料: Target, inner absorber, outer absorber 往鄉地。 Target position (mm) -6.19 \$69.1 % density of 63Cu in natural copper -2.77 \$30.9 % density of 65Cu in natural copper 入熱分布を計算する。

Atlas (HEC)

Ratio e/π ; GEANT4 v.8.0, 20 μ m cut

Atlas (HEC)

Relative response, GEANT4 v.8.0, 20 μ m cut

CMS

CMS

300 GeV pions, leaving MIP in ECAL and L0.

Summary

- User defined isotope abundances will be used, PDG code assigned to final state nuclei
- Hadronic cross sections being reviewed and improved
- Improved elastic scattering at medium/high energies
- Improved capture reactions based on CHIPS model
- New high precision neutron models added, G4 neutron data library improved
- INCL/ABLA cascade-ablation model to be added to Geant4
- "Grand Validation" at FNAL Hadronic Shower Simulation Workshop provides opportunities for inter-code comparisons
- In test beam calorimeters G4 energy deposits are good, but 56 shower shapes have some problems due to OGS model