Power Series

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots + x^n + \cdots$$

which converges when -1 < x < 1 and diverges when $|x| \ge 1$. (See Equation 11.2.5.) More generally, a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$

is called a **power series in** (x - a) or a **power series centered at** a or a **power series about** a. Notice that in writing out the term corresponding to n = 0 in Equations 1 and 2 we have adopted the convention that $(x - a)^0 = 1$ even when x = a. Notice also that when x = a all of the terms are 0 for $n \ge 1$ and so the power series 2 always converges when x = a.

- **Theorem** For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:
 - (i) The series converges only when x = a.
- (ii) The series converges for all x.
- (iii) There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

	Series	Radius of convergence	Interval of convergence
Geometric series	$\sum_{n=0}^{\infty} x^n$	R = 1	(-1, 1)
Example 1	$\sum_{n=0}^{\infty} n! \ x^n$	R = 0	{0}
Example 2	$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$	R = 1	[2, 4)
Example 3	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$	$R = \infty$	$(-\infty,\infty)$

Representations of Functions as Power Series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$$

EXAMPLE 1 Express $1/(1 + x^2)$ as the sum of a power series and find the interval of convergence.

SOLUTION Replacing x by $-x^2$ in Equation 1, we have

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n$$
$$= \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + x^8 - \cdots$$

Because this is a geometric series, it converges when $|-x^2| < 1$, that is, $x^2 < 1$, or |x| < 1. Therefore the interval of convergence is (-1, 1). (Of course, we could have

EXAMPLE 5 Express $1/(1-x)^2$ as a power series by differentiating Equation 1. What is the radius of convergence?

SOLUTION Differentiating each side of the equation

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

we get

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots = \sum_{n=1}^{\infty} nx^{n-1}$$

If we wish, we can replace n by n + 1 and write the answer as

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$$

EXAMPLE 6 Find a power series representation for ln(1 + x) and its radius of convergence.

SOLUTION We notice that the derivative of this function is 1/(1 + x). From Equation 1 we have

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + x^2 - x^3 + \dots \qquad |x| < 1$$

Integrating both sides of this equation, we get

$$\ln(1+x) = \int \frac{1}{1+x} dx = \int (1-x+x^2-x^3+\cdots) dx$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + C$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} + C \qquad |x| < 1$$

To determine the value of C we put x = 0 in this equation and obtain ln(1 + 0) = C. Thus C = 0 and

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \qquad |x| < 1$$

The radius of convergence is the same as for the original series: R = 1.

3–10 Find a power series representation for the function and determine the interval of convergence.

3.
$$f(x) = \frac{1}{1+x}$$

4.
$$f(x) = \frac{5}{1 - 4x^2}$$

7.
$$f(x) = \frac{x}{9 + x^2}$$

9.
$$f(x) = \frac{1+x}{1-x}$$

Taylor and Maclaurin Series

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \qquad |x-a| < R$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3 + \cdots$$

The series in Equation 6 is called the **Taylor series of the function** f at a (or about a or centered at a). For the special case a=0 the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

EXAMPLE 4 Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

SOLUTION We arrange our computation in two columns as follows:

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

EXAMPLE 5 Find the Maclaurin series for $\cos x$.

SOLUTION We could proceed directly as in Example 4, but it's easier to differentiate the Maclaurin series for sin *x* given by Equation 15:

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right)$$
$$= 1 - \frac{3x^2}{3!} + \frac{5x^4}{5!} - \frac{7x^6}{7!} + \cdots = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

EXAMPLE 6 Find the Maclaurin series for the function $f(x) = x \cos x$.

See solution from the book.

EXAMPLE 7 Represent $f(x) = \sin x$ as the sum of its Taylor series centered at $\pi/3$.

EXAMPLE 7 Represent $f(x) = \sin x$ as the sum of its Taylor series centered at $\pi/3$.

SOLUTION Arranging our work in columns, we have

$$f(x) = \sin x \qquad \qquad f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$f'(x) = \cos x \qquad \qquad f'\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

$$f''(x) = -\sin x \qquad \qquad f''\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$f'''(x) = -\cos x \qquad \qquad f'''\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

and this pattern repeats indefinitely. Therefore the Taylor series at $\pi/3$ is

$$f\left(\frac{\pi}{3}\right) + \frac{f'\left(\frac{\pi}{3}\right)}{1!} \left(x - \frac{\pi}{3}\right) + \frac{f''\left(\frac{\pi}{3}\right)}{2!} \left(x - \frac{\pi}{3}\right)^2 + \frac{f'''\left(\frac{\pi}{3}\right)}{3!} \left(x - \frac{\pi}{3}\right)^3 + \cdots$$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2 \cdot 1!} \left(x - \frac{\pi}{3}\right) - \frac{\sqrt{3}}{2 \cdot 2!} \left(x - \frac{\pi}{3}\right)^2 - \frac{1}{2 \cdot 3!} \left(x - \frac{\pi}{3}\right)^3 + \cdots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$
 $R = 1$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots \qquad R = 1$$

5–12 Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion.

$$f(x) = (1 - x)^{-2}$$

$$f(x) = e^{-2x}$$

$$f(x) = 2^x$$

13–20 Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show

$$f(x) = x^4 - 3x^2 + 1$$
, $a = 1$

$$f(x) = \ln x, \quad a = 2$$

$$f(x) = e^{2x}, \quad a = 3$$