NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 3, Lecture 6

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Sorting

- * Searching for a value
 - * Unsorted array linear scan, O(n)
 - * Sorted array binary search, O(log n)
- * Other advantages of sorting
 - * Finding median value: midpoint of sorted list
 - * Checking for duplicates
 - * Building a frequency table of values

How to sort?

- * You are a Teaching Assistant for a course
- * The instructor gives you a stack of exam answer papers with marks, ordered randomly
- * Your task is to arrange them in descending order

Strategy 1

- * Scan the entire stack and find the paper with minimum marks
- * Move this paper to a new stack
- * Repeat with remaining papers
 - * Each time, add next minimum mark paper on top of new stack
- * Eventually, new stack is sorted in descending order

74 32

1 64

74 32 89 55 21 64 21 NPTEL

- * Select the next element in sorted order
- * Move it into its correct place in the final sorted list

- * Avoid using a second list
 - * Swap minimum element with value in first position
 - * Swap second minimum element to second position

*


```
def SelectionSort(l):
# Scan slices l[0:len(l)], l[1:len(l)], ...
for start in range(len(1)):
  # Find minimum value in slice . . .
  minpos = start
  for i in range(start, len(l)):
    if l[i] < l[minpos]:
       minpos = i
  # . . . and move it to start of slice
  (l[start], l[minpos]) = (l[minpos], l[start])
```

Analysis of Selection Sort

- * Finding minimum in unsorted segment of length k requires one scan, k steps
- * In each iteration, segment to be scanned reduces by 1
- * $T(n) = n + (n-1) + (n-2) + ... + 1 = n(n+1)/2 = O(n^2)$