1 Úkol

- 1. Proměřte voltampérovu charakteristiku diaku a z ní určete:
 - (a) spínací napětí při obou polaritách U_{BO1}, U_{BO2}
 - (b) pokles napětí na diaku při překročení spínacího napětí ΔU (při obou polaritách)
 - (c) tzv. symetrii diaku $|U_{BO1} U_{BO2}|$.
- 2. Zapojte diak jako zdroj relaxačních kmitů a změřte závislost periody těchto kmitů T na časové kostantě $\tau=RC$ obvodu při konstantním napětí zdroje (cca 40 V). Kmitočet relaxačních kmitů měřte běžně čítačem, při několika řádově různých hodnotách všah též přímo osciloskopem s porovnáním s kmitočtem generátoru (pomocí Lissajousových obrazců). V referátu porovnejte přesnost použitých metod měření kmitočtů.
- 3. Změřte závislost frekvence kmitů f na napětí zdroje U_O . Pomocí osciloskopu určete z amplitud relaxačních kmitů hodnoty zhášecích napětí U_{zh} a naměřené hodnoty ověřte výpočtem.

2 Teorie

2.1 Diak

Diak je elektrická součástka tvořená třemi vrstvami polovodiče, na kterých jsou dvě elektrody. Schéma je na obrázku 1 v [1]. Jeho voltampérová charakteristika se vyznačuje tím, že je nutné dosáhnout jistého spínacího napětí U_{BO} , aby ním začal protékat proud. Na této hranici prudce klesne napětí o ΔU a proud se vyvijí dle obrázku 2 v [1]. Při příliš malém proudu se diak opět zavře a proud přestane téci úplně. VA charakteristika je symetrická, proto se zavádí další charakteristika zvaná symetrie diaku, která je určena vztahem $|U_{BO1} - U_{BO2}|$, kde jednotlivá napětí jsou zápalné napětí pro různé polarizace.

2.2 Měření VA charakteristiky

Měříme v zapojení na obrázku 3 v [1]. Odpor R si nastavíme na hodnotu 5 kΩ. Zvyšujeme napětí na diaku, dokud nezačne téci proud. Díky maximálnímu voltmetru určíme U_{BO} . Dále měníme napětí od maximální hodnoty, při které nesmíme překročit zrrátový výkon P = 300mW, až do bodu, kdy proud opět přestane téci. Opakujeme pro obě polarizace.

2.3 Relaxační kmity

Měření probíhá v zapojení dle obrázku 4 z [1]. Paralelně k diaku je zapojen kondenzátor. Te se při uzavření obvodu začne nabijet. Jakmile dosáhne napětí hodnoty U_{BO} , diak se

sepne a kondenzátor se vybije. Napětí klesne až na hodnotu zhášecího napětí U_{zhs} . Diak se opět uzavře. Celý cyklus začíná znocu. Teoretický průběh proudu je vidět na obrázku 5a z [1]. Frekvenci tohoto děje můžeme nejejdnodušeji odečíst z čítače. Dále můžeme využít osciloskop ke stanocení periody kmitu nebo při zapojení druhého zdroje kmitů do osciloskopu můžeme dosáhnout Lissajousova obrazce, kdy se frekvence zdrojů shodují, a tak ji můžeme odečíst z druhého zdroje.

Teoretická doba jednoho kmitu je dle [1]

$$T = RC \cdot \ln \left(\frac{U_0 - U_{zh}}{U_0 - U_{BO}} \right). \tag{1}$$

2.4 Chyby

V celém praktiku vystupují chyny způsobené nepřesnostní měřících přístrojů. Její velikost je dána třídou přesnosti měřidla. Její hodnotu získáme dle vztahu

$$\sigma = T \cdot \frac{R}{100},\tag{2}$$

kde T je třída přesnosti a R rozsah, na kterém měříme.

Dále vystupuje nepřímá chyba způobená skládáním chyb. V tomto praktiku se vystupuje pouze chyba rozdílu veličin, kdy se abosluní chyby sčítají, a podílu s násobkem, kdy se sčítají relativní chyby.

3 Výsledky Měření

3.1 VA charakteristika

Dle postupu uvedeném v teorii jsem prověřil VA charakteristiku daného diaku. Zápalné napětí byla

$$U_{BO1} = (32.8 \pm 0.2) \text{V}, \tag{3}$$

$$U_{BO2} = (-32.7 \pm 0.2) \text{V}.$$
 (4)

symetrie diaku je tedy

$$|U_{BO1} - U_{BO2}| = (65.5 \pm 0.4) \text{V}.$$
 (5)

Napětí kleslo o

$$\Delta U_1 = (10.1 \pm 0.4) \text{V}, \tag{6}$$

$$\Delta U_2 = (9.9 \pm 0.4) \text{V},$$
 (7)

Velikost proudu v průběhu vyšetřování je v tabulce 1, kde chyba na napětí je 0.2 V, a výsledná charakteristika je na obrázku 1.

U/V	I/mA	-U/V	$-I/\mathrm{mA}$
22.9	1.5 ± 0.1	23	1.5 ± 0.1
22.7	2 ± 0.1	22.8	2 ± 0.1
22.4	3 ± 0.1	22.5	3 ± 0.1
22.3	4 ± 0.1	22.3	4 ± 0.1
22.1	5 ± 0.1	22.1	5 ± 0.1
22.0	6 ± 0.1	22.0	6 ± 0.1
21.9	7 ± 0.2	21.9	7 ± 0.2
21.8	8 ± 0.2	21.8	8 ± 0.2
21.7	9 ± 0.2	21.7	9 ± 0.2
21.6	10 ± 0.2	21.6	10 ± 0.2

Tabulka 1: Závislost proudu na napětí na diaku.

Obrázek 1: VA charakteristika diaku

$\tau/\mathrm{F}\Omega$	f/Hz	
250 ± 1	4920 ± 50	
300 ± 1	3600 ± 40	
350 ± 1	2980 ± 30	
400 ± 1	2510 ± 30	
450 ± 1	2150 ± 20	
500 ± 1	1890 ± 20	
1000 ± 6	714 ± 7	
1500 ± 9	438 ± 4	
2000 ± 10	315 ± 3	
2500 ± 20	279 ± 3	
3000 ± 20	225 ± 2	
3500 ± 20	188 ± 2	
4000 ± 20	162 ± 2	
4500 ± 30	143 ± 1	
5000 ± 30	128 ± 1	

Tabulka 2: Závislost frekcence kmitů na časové konstantě τ .

$\tau/\mathrm{F}\Omega$	$f_o/{ m Hz}$	f_{L1}/Hz	f_{L2}/Hz
250 ± 1	4930 ± 70	4870 ± 50	4750 ± 50
2500 ± 20	278 ± 4	271 ± 5	274 ± 3
5000 ± 30	128 ± 2	129 ± 1	130 ± 1

Tabulka 3: Závislost frekvence kmitů na na τ měřená různými metodami.

3.2 Harmonické kmity

Dále jsem zapojel diak jako zdroj harmonických kmitů na na čítači měřil jejich frekvenci v závislosti na $\tau=RC$. Tyto hondoty jsou shrnuty v tabulce 2 a zobrazeny na obrázku 2. Pro tři řádově odlišné hodnoty frekvence jsem ještě použil jiné metody měření uvedené v teorii. Tyto hodnoty jsou v tabulce 3, kde f_o je hodnota vypočtená z periody kmitu určené osciloskopem, f_{L1} respektive f_{L2} hodnota stanovena pomocí Lissajousových obrazců odečtená ze stupnice generátoru respektive z čítače napojeném za generátorem.

Dále jsem prověřoval závislost frekvenvce na napětí U_0 . Odpor jsem ponechal na hodnotě 5 k Ω a začal s kapacitou 0.05 F. Hodnoty pro $\tau=250$ F Ω jsou v tabulce 4. Při tomto nasta vení však nebyla příliš znatelná změná U_{zh} a frekvence byla příliš vysoká. Proto jsem zvýšil kapacitu na 0.5 F a výsladná časová konstanta je tedy $\tau=2500$ F Ω . Naměřeně hodnoty jsou v tabulce 5 a závislost je zobrazena na obrázku 3 a 4.

Obrázek 2: Graf závislosti frekvence na časové konstantě τ

U_0/V	$f/{ m Hz}$	U_{zh}/V
40.0 ± 0.2	4800 ± 50	11.0 ± 0.2
50.1 ± 0.2	8100 ± 80	12.0 ± 0.2
60.1 ± 0.2	11200 ± 100	13 ± 0.2
70.0 ± 0.2	14100 ± 100	13 ± 0.2
80.3 ± 0.2	17200 ± 200	13 ± 0.2

Tabulka 4: Závislost frekvence kmitů na U_0 pro $\tau=250\mathrm{F}\Omega$

U_0/V	$f/{ m Hz}$	U_{zh}/V	U_{BO}/V
110.5 ± 0.2	2350 ± 20	12.0 ± 0.2	26 ± 0.4
100.4 ± 0.2	2060 ± 20	12.0 ± 0.2	27 ± 0.4
90.1 ± 0.2	1760 ± 20	11.5 ± 0.2	27 ± 0.4
80.2 ± 0.2	1470 ± 10	11.5 ± 0.2	28 ± 0.4
70.1 ± 0.2	1180 ± 10	11.0 ± 0.2	28 ± 0.4
60.0 ± 0.2	888 ± 9	11.0 ± 0.2	28 ± 0.4
50.3 ± 0.2	622 ± 6	10.5 ± 0.2	29 ± 0.4
40.2 ± 0.2	343 ± 3	10.0 ± 0.2	30 ± 0.5

Tabulka 5: Závislost frekvence kmitů na U_0 pro $\tau=2500\mathrm{F}\Omega$

Obrázek 3: Graf závislosti frekvence na ${\cal U}_0$

Obrázek 4: Graf závislosti U_{BO} a U_{zh} na U_{0}

4 Diskuze

Voltampérová charakteristiku diaku dobře odpovídá teoretickým předpokladům uvedeným v [1]. Došlo pouze k jemné odchylce při změně polarity.

Fit závislosti frekvence na τ má od teoretické odchylku okolo 5 %. Největší chyba je především u nižších hodnot τ . To je podle mě způsobeno především nezapočítáním závislosti U_{zh} a U_{BO} na U_0 , která je vidět v úkolu 3. Také zajisté přispívá větší chyba způsobená vyššími hodnotami na čítači. Z hodnot frekvence stanovenými jinými metodami je podle mě nejpřesnější hodnota vypočtená z periody změřené na osciloskopu, ač je třída přesnosti osciloskopu relativně vysoká. Nejhorší je zajisté stupnice na generátoru, jejíž odchylka od hodnoty na čítači dosahuje až 5 %.

Dle očekávání se velikost zhášecího napětí lineárně měnila se změnou U_0 . Stejně tak tomu bylo i s U_{BO} . Fitovaná křivka tak velmi dobře odpovídá teoretickým předpokladům.

5 Závěr

Proměřil jem VA charakteristiku diaku. Výsledky jsou v tabulce 1 na na obrázku 1. Zjistil jsem důležité charakteristiky diaku, které jsou v rovnivích 3 - 7.

Změřil jsem vývoj frekvence relaxačních kmitů v závislosti na změně τ . Výsledky jsou v tabulce 2 a na obrázku 2. Použil jsem i jiné metody zjištění frekvence, kekiž výsledky jsou v tabulce 3.

Z,ěřil jsem vývoj frekvence, U_{BO} a U_{zh} v závislosti na U_0 . Výsledky jsou v tabulkách 4, 5 a na obrázcích 3 a 4.

Reference

- [1] Studijní text na praktikum II http://physics.mff.cuni.cz/vyuka/zfp/txt_214.htm (28. 10. 2011)
- [2] J. Englich: Zpracování výsldků fyzikálních měření LS 1999/2000