UNIDAD I: GEOMETRÍA ANALÍTICA

Linda Cabrera

UNIDAD I: GEOMETRÍA ANALÍTICA

Tema 1: Sistema de coordenadas rectangulares y lugares geométricos

Linda Cabrera

2022-10-20

Objetivo de la Unidad I

 Relacionar objetos y métodos algebraicos o analíticos con objetos y métodos geométricos, para la representación, resolución e interpretación analítica de problemas geométricos y viceversa, con laboriosidad.

Objetivos Específicos:

Objetivo de la Unidad I

 Relacionar objetos y métodos algebraicos o analíticos con objetos y métodos geométricos, para la representación, resolución e interpretación analítica de problemas geométricos y viceversa, con laboriosidad.

Objetivos Específicos:

 Reconocer al plano cartesiano como una herramienta útil e indispensable para la representación en forma gráfica de información dada mediante parejas ordenadas.

UNIDAD I: GEOMETRÍA ANALÍTICA

Linda Cabrera

Sistema de coordenadas rectangulares

 Un sistema coordenado rectangular se forma con dos rectas numéricas perpendiculares que se intersecan en el punto correspondiente al número 0 en cada recta.

- Un sistema coordenado rectangular se forma con dos rectas numéricas perpendiculares que se intersecan en el punto correspondiente al número 0 en cada recta.
- El punto de intersección se llama origen y se representa con el símbolo O.

- Un sistema coordenado rectangular se forma con dos rectas numéricas perpendiculares que se intersecan en el punto correspondiente al número 0 en cada recta.
- El punto de intersección se llama origen y se representa con el símbolo O.
- La recta numérica horizontal se llama eje x y la recta numérica vertical se llama eje y.

- Un sistema coordenado rectangular se forma con dos rectas numéricas perpendiculares que se intersecan en el punto correspondiente al número 0 en cada recta.
- El punto de intersección se llama origen y se representa con el símbolo O.
- La recta numérica horizontal se llama eje x y la recta numérica vertical se llama eje y.
- Esos dos ejes dividen al plano en cuatro regiones llamadas cuadrantes, que llevan las marcas I, II, III y IV, como se muestra en la Figura 1.

UNIDAD I: GEOMETRÍA ANALÍTICA

Linda Cahrera

Sistema de coordenadas rectangulares

 Si no se especifican las marcas de intervalo en los ejes coordenados, como en la Figura 1, se puede suponer que una marca corresponde a una unidad, esto quiere decir que las escalas de los ejes coordenados pueden ser diferentes.

- Si no se especifican las marcas de intervalo en los ejes coordenados, como en la Figura 1, se puede suponer que una marca corresponde a una unidad, esto quiere decir que las escalas de los ejes coordenados pueden ser diferentes.
- Un plano que contiene un sistema coordenado rectangular se llama plano xy, plano coordenado o simplemente espacio bidimensional.

- Si no se especifican las marcas de intervalo en los ejes coordenados, como en la Figura 1, se puede suponer que una marca corresponde a una unidad, esto quiere decir que las escalas de los ejes coordenados pueden ser diferentes.
- Un plano que contiene un sistema coordenado rectangular se llama plano xy, plano coordenado o simplemente espacio bidimensional.
- Si una línea vertical y otra horizontal que pasan por P intersectan los ejes x y y en a y b, respectivamente, entonces P tiene coordenadas (a, b), como en la Figura 1.

Linda Cabrera

Figure 1: a) Cuadrantes en el plano cartesiano, b) Coordenadas cartesianas

Ejemplo 1.1

Grafique los puntos dados en el plano cartesiano

$$(2,3),(0,1),(-3,2),(-4,-1),(3,-2)$$

Ejercicios propuestos

- **1** Grafique los siguientes puntos en el plano cartesiano e indique en qué cuadrante se encuentran ubicados estos puntos: (0,3), (3,0), (-2,2), $(-1,-\sqrt{5})$, $(\sqrt{2},-4)$, (1/2,2), (-3/2,-1), (1,-5/2)
- **2** Grafique el polígono que se forma al unir consecutivamente los puntos: $P_1(1,1)$, $P_2(0,4)$, $P_3(2,2)$, $P_4(3,3)$, $P_5(4,2)$, $P_6(6,4)$, $P_7(5,1)$

 Para calcular la distancia entre cualesquiera dos puntos en el plano, existe una fórmula que tiene como base el Teorema de Pitágoras, el cual dice que si a y b son las medidas de los dos catetos de un triángulo rectángulo y c es la medida de su hipotenusa, entonces

$$a^2 + b^2 = c^2$$

 Para calcular la distancia entre cualesquiera dos puntos en el plano, existe una fórmula que tiene como base el Teorema de Pitágoras, el cual dice que si a y b son las medidas de los dos catetos de un triángulo rectángulo y c es la medida de su hipotenusa, entonces

$$a^2 + b^2 = c^2$$

 Ahora considérese cualesquiera dos puntos P y Q, con coordenadas (x₁, y₁) y (x₂, y₂), respectivamente. La distancia entre P y Q vendrían a representar la hipotenusa del triangulo rectángulo, mientras que la distancia entre P y R y la distancia entre Q y R serían los catetos, tal como se muestra en la Figura 2. Linda Cabrera

Distancia entre dos puntos

Figure 2: Distancia entre dos puntos

 Cuando aplicamos el Teorema de Pitágoras y tomamos la raíz cuadrada principal de ambos lados, obtenemos la expresión siguiente para la fórmula de la distancia

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 Cuando aplicamos el Teorema de Pitágoras y tomamos la raíz cuadrada principal de ambos lados, obtenemos la expresión siguiente para la fórmula de la distancia

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 La fórmula es válida incluso si los dos puntos pertenecen a la misma recta horizontal o a la misma recta vertical.

Linda Cabrera

Distancia entre dos puntos

Ejemplo 1.2

Encuentre la distancia entre P(-2,3) y Q(4,-1)

 Primero identifique los puntos x₁, x₂, y₁ y y₂. Observe que no importa si tomo a P o Q como el primer punto, el cuadrado al momento de aplicar la fórmula hará que se desparezca el valor negativo.

$$x_1 = -2$$
, $x_2 = 4$, $y_1 = 3$, $y_2 = -1$

• Luego reemplace los valores en la fórmula.

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(4 - (-2)^2 + ((-1) - 3)^2}$
= $\sqrt{36 + 16} = \sqrt{52} = 7,21$

Ejercicios propuestos

- **1** Encuentre la distancia entre $P(\sqrt{2}, \sqrt{3})$ y $Q(\pi, \pi)$
- 2 Halle el perímetro de un triángulo cuyos vértices son los puntos: $P_1(-4,-2)$, $P_2(-2,5)$, $P_3(6,2)$