cc. AcNMe, after stirring 45 more the mixt. dild. with 5 vols. H₂O, and filtered to give 88% V. When II was used instead of IV, the same yield of III was obtained. Toxicity and tranquilizing affect on rats and mice were studied for III and V.

L. M. Shen

Sulfonated cyclobutane compounds. James Herbert Werntz (to E. I. du Pont de Nemours and Co.). U.S. 3,005,014. Appl. Mar. 18, 1958. Cyclobutane compds. contg. a sulfonic acid and at least one carboxylic acid group were useful as modifiers to improve the dye affinity of polyester fibers. Various 3-methylenecyclobutanecarboxylic acids (cf. U.S. 2,914,541, CA 54, 7588a) and 3-alkyl-2-cyclobutene-1,2-dicarboxylic acids (cf. U.S. 2,848,478, CA 53, 1189h) reacted with water-sol. bisulfites (0-175°) in alcs. or water buffered to pH 3-6. Catalysts used were org. peroxides or hydroperoxides, inorg, peroxy compounds, e.g., ammonium persulfate, azo dyes, and ultraviolet light. Salts, amides, and esters could be prepd. either by using appropriately substituted reactants or by applying known processes to the products. The NH4 salt of 3-sulfomethylcyclobutanecarbonitrile (1) was prepd. by stirring (under N, 4 days) a soln. contg. NH,HSO, 30, deoxygenated water 300, 70% diisopropylbenzene hydroperoxide 2.7, and 3-methylenecyclobutanecarbonitrile 18.4 parts. The pH, initially 5.9, rose to 7.8 at 48 hrs. and was lowered to 6.7 with dil. H₂SO₄. The product was freed of inorg, salts by alternately coneg, the soln, and dilg, with EtOH (yield 18.6 parts). From I, the carboxylic acid, amide, and salts were prepd. The Me ester was prepd. from the 3-methylenecyclobutanecarboxylate. The amide, anilide, salts, and diethyl ester of 3-sulfo-3-methylcyclobutane-1,2-dicarboxylic acid and the 3-hexyl and 3-(1-methylethyl) acids and Na salts were also prepd.

John C. Braun

Cyclchexanol and cyclohexanone. Badische Anilin- und Soda-Fabrik A.-G. (by Guenter Poehler and Anton Wegerich). Ger. 1,091,110, Oct. 20, 1960 (Cl. 120). PhNO2 or PhNH2 were treated in a continuous process with H and H2O over catalysts to give cyclohexanol and cyclohexanone. Diphenylamine, cyclohexylamine, dicyclohexylamine, cyclohexylphenylamine, and similar compds. could be used as feed. A flowsheet was given. Cf. Ger. 785,083.

Frank Wagner Dicyclohexylammonium nitrite. Hokkaido Soda Co., Ltd. (by Osamu Nishijima and Takao Ito). Japan. 8579- ('61). Appl. Oct. 28, 1958. Into a stirred mixt. of 50 g. dicyclohexylamine (70% purity) and 580 cc. H₂O is dropped 9.15 cc. H₂O₂H (924 g./l.) at 20-40°, then the mixt. stirred at 40-5° 00 min., and heated at 80° so that unreacted substance is sepd. from the soln. To the soln. is added 17.5 g. NaNO₂, the mixt. stirred at 15-20° 4 hrs., and dicyclohexylanmonium nitrite, m. 176-8°, obtained in 95% yield.

Hiroshi Kataoka Alicyclic cyano ketones. Rohm & Haas Co. (by Newman Mayer and Gerard E. Gantert). Ger. 1.085,871. July 28, 1960 (Cl. 120). The title compds. having the CN group in β -position bound to a tertiary C atom, were prepd from α,β - or β,γ -unsatd. ketones, in which 1 β -C atom had only C-C bonds, by adding HCN at 145-80° in esp. Me₂NCHO, Me₂NAc, or 1-methyl-2-pyrrolidone and in the presence of e.g. Na, Na₂CO₃, NaOH, Na₂O₂, triethanolamine, but esp. the alkali cyanides. Thus, 46.8 g. HCN in 46.8 g. Mer-NCHO were added dropwise during 45 min. to a stirred soln. of 293.7 g. mixed 2-cyclohexen-1-ylcyclohexanone (93%) and 2-cyclohexylidenecyclohexanone (7%) and 5.4 g. KCN in 293.7 g. Me2NCHO at 160°, the mixt. kept 1 hr. at 146-57°, cooled, 6.4 g. H₂PO₄ added, and the mixt. distd. to give 1-(2-oxocyclohexyl)-1-cyanocyclohexane, 84%, m. 85-86° (isooctane), b_{2.6} 163-74°. Similarly prepd. were: 1-acetonyl-1-cyanocyclohexane from mixed cyclohexylidene- and cyclohexen-1-ylacetone; 1-(2-oxooctyl)-1-cyanocyclohexane from 1-cyclohexylidene-2-octa-none; 1-(1-methyl-2-oxopentyl)-1-cyanocyclopentane from 2-cyclopentylidene-3-hexanone. 3,3,5-Trimethyl-5-cyanocyclohexanone, m. 68-70° (iso-PrOH), was obtained in 432 g. yield by adding dropwise 113 g. HCN during 3 hrs. to a stirred mixt. of 552 g. isophorone, 552 g. Me₂NAc and 14 g. K₂CO₂ at 160-75°, adding 23 g. H₂PO₄ to the mixt., and distg. at 119°/1.7 mm. Similarly prepd. were: 2-acetyl-1methyl-1-cyanocyclopentane from 2-acetyl-1-methyl-1-i cyclopentene; 2-methyl-3-butyl-3-cyanopentanone; from 2-methyl-3-butyl-2-cyclopentenone; 1-cyano-1-(2-oxocyclopentyl)cyclohexane from 2-cyclohexen-1-ylcyclopentanone. 2-(2-Cyanoisopropyl-5-methylcyclohexanone, b_{1.4} 120-5°,

non 1.4669, was on the state of the state of

Hans J. Koetzsch

Diols derived from 1,2-epoxycyclohexane. Societe des
Usines Chimiques Rhone-Poulenc. Fr. 1,241,169. Appl.

d July 31, 1959. The reaction of 1,2-epoxycyclohexane (I)
and diols with a basic catalyst gave H(OC₆H₁₀),0RO(C₆H₁₀O)_mH (II) Thus, 62 g. (CH₂OH)₂ (III), 206 g. I, 140 g.
xylene, and 1 g. NaOH refluxed 12 hrs. under N and distd.
gave 83% II (n = m = 1, R = CH₂CH₂), b_{0.4} 148-50°,
n²₀ 1.4908. Other ratios of I and III gave II (n = 2, m =
1, R = CH₂CH₂), b_{0.4} 192-4°, n²₀ 1.4945, and II (n + m =
approx. 4, R = CH₂CH₂), viscous liquid. The following
II (n = m = 1) were also prepd.: (R and other constants
e given): CH₂OCH₂, b_{0.45} 184-90°, n²₀ 1.488, d₂₀ 1.088;
(CH₂)₆; CHPhCH₂, b_{0.7} 193-200°; p-phenylene, m. 141°;
p-C₆H₄SO₂C₆H₄-p, m. 195°. Cf. CA 55, 9352e.
Criton S. Inglessis

C₁₄ aldchyde. William E. Stieg and John D. Gillis, - Jr. (to Chas. Pfizer & Co., Inc.). U.S. 2,987,550, June 6,

1961. In Darzen glycidic ester synthesis of Me2C.(CH2)3.-

CMe: CCH₂CH: CMeCHO or Me₂C.(CH₂)₃.CMe: CCH:-CHCHN:eCHO the presence of org. diluents, such as HCO-NMe₂, C₅H₅N, α-, β-, or γ-picoline, or AcNHEt during the addn. of alkoxide (MeONa, EtOK, or MeOLi) to a mixt. of β-ionoise and lower alkyl chloroacetate increased the yield to 90%. The product, a yellow oil, b_{1.5} 103-6°, could be used with 1'-pentol in the synthesis of vitamin A.

L. M. Shen

Cycloolefins. George Bosmajian (to Cities Service Research & Development Co.). U.S. 3,004,081. Appl. May 29, 1959. Catalytic dimerization of open chain conjugated C₄ or higher dienes was done with bis(triphenylphosphite)-nickel dicarbonyl (I) at 140-205°. Thus, a reaction bomb was charged with 10 g. (CH₂:CH)₂ (II) and 0.25 g. I to give (after 1 hr. at 170°) 85.5% conversion of II, with a selectivity of 64% to cyclocctadiene (III). The main by-products were 1-vinylcyclohexene (IV) and 2-vinylcyclohexene (V). Dimerization in the presence of up to 30% C₄H₆ solvent gave lower yields, but the ratio of IV + V to III was seldom <1:3. A continuous process for conversion of II into III and cyclododecatriene (with min. amts. of IV, V, and other by-products) was worked out at temps. above the critical temp. of II, as well as in the liquid phase. Bis-(trimethylphosphite)nickel dicarbonyl could be used instead of I. ΔH₆ at 25° for various liquids involved in this process were determined as: IV = 18, 220 BTU/lb.; V = 18, 316; III = 19,111; II = 19,899; av. of other volatile products = 18,316; av. of residue = 17,521. The heat of reaction for II reacting at 25° and 1 atm. was -32.6 kcal./mole (-1083 BTU/lb.). Cf. U.S. 2,964,575; CA 55, 14333i, 2,972,640; 2,991,317.

Catalysts for cycloolefin production. Robert E. Burks, Jr., and Antonio A. Sckul (to Cities Service Research & De-

PATENTAMT

AUSLEGESCHRIFT 1 085 871

R 23345 IVb/12o

ANMELDETAG: 16.MAI 1958

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER

AUSLEGESCHRIFT: 28. JULI 1960

Die Erfindung bezieht sich auf die Herstellung von neuen alicyclischen Cyanketonen.

Die erfindungsgemäß erhältlichen Verbindungen können durch die folgende Formel dargestellt werden:

$$\begin{array}{c|c}
R_{1} & R_{8} \\
C - CH - C - R_{4} \\
R_{8} & CN & O
\end{array}$$

in der R_1 , R_2 und R_4 jeweils eine Alkyl-, Aryl-, Arylalkyloder Alkylarylgruppe und R₈ ein Wasserstoffatom, eine Methyl- oder Athylgruppe bedeuten, R_1 und R_2 zusammen mit dem Kohlenstoffatom in β-Stellung zur Carbonylgruppe einen fünf- bis sechsgliedrigen alicyclischen bzw. 15 Bicyclo-[2,2,1]-heptylring, R₁ und R₂ zusammen mit den Kohlenstoffatomen in α - und β -Stellung zur Carbonylgruppe einen fünf- bis sechsgliedrigen alicyclischen Ring; Re und Re zusammen mit dem Carbonylkohlenstoffatom und den a- und β -Kohlenstoffatomen einen fünf- bis 20 sechsgliedrigen alicyclischen Ring und Ra und Ra zusammen mit dem Carbonylkohlenstoffatom und dem dazu α-ständigen Kohlenstoffatom einen fünf- bis sechsgliedrigen alicyclischen Ring bilden können und in der wenigstens ein fünf- bis sechsgliedriger Ring oder Bicyclo- 25 [2,2,1]-heptylrest vorhanden ist. Die Gesamtzahl der Kohlenstoffatome des Produktes soll vorzugsweise 24, einschließlich des Cyankohlenstoffatoms, nicht überschreiten.

Die neuen Verbindungen werden durch Umsetzung 30 eines alicyclischen Olefinketons mit Cyanwasserstoffsäure bei erhöhten Temperaturen und in Gegenwart eines Cyanidionen bildenden Katalysators hergestellt, nachfolgend noch eingehender beschrieben wird.

Die erfindungsgemäß als Ausgangsmaterial verwen- 35 deten alicyclischen Olefinketone können durch die folgende Formel dargestellt werden

$$R_{1}$$
 $C = C - C - R_{4}$
 R_{2}

deutung haben.

Anmelder:

Verfahren zur Herstellung

von alicyclischen Cyanketonen

Rohm & Haas Company, Philadelphia, Pa. (V.St.A.)

Vertreter: Dr. W. Beil und A. Hoeppener, Rechtsanwälte, Frankfurt/M.-Höchst, Antoniterstr. 36

> Beanspruchte Priorität: V. St. v. Amerika vom 31. Mai 1957

Newman Mayer, Bortnick, Oreland, Pa., und Gerard Edward Gantert, Philadelphia, Pa. (V. St. A.), sind als Erfinder genannt worden

Es ist weitgehend bekannt, daß a,β -ungesättigte Ketone und β , y-ungesättigte Ketone sich in Gegenwart von basischen Katalysatoren in tautomerem Gleichgewicht befinden. Die erfindungsgemäßen Bedingungen sind so 40 beschaffen, daß Gleichgewichtsmischungen dieser Tautomeren gebildet werden und austauschbar mit reinen a, β -ungesättigten Ketonen angewendet werden können. Daher ist das β , y-ungesättigte Keton, 2-(1-Cyclohexenyl)-cyclohexanon, für den vorliegenden Zweck genauso in der R₁, R₂, R₃ und R₄ die oben wiedergegebene Be- 45 zufriedenstellend wie das entsprechende 2-Cyclohexylidencyclohexanon und

009 568/344

und

Der Ausdruck $\partial \beta_i \beta_j$ -disubstituiertes $\alpha_i \beta_j$ -ungesättigtes Ketone ist hier so zu verstehen, daß die entsprechenden β,γ -ungesättigten Ketotautomeren, die mit dem a,β -un- 40 gesättigten Keton vermischt zugegen sein können, oder unter den Reaktionsbedingungen gebildet werden können, eingeschlossen sind. Typische verwendbare alicyclische olefinische Ketone sind 2-Methylcyclopentenylmethylketon, 2-Äthylcyclohexenylbenzylketon, 2-Butylcyclohexenylphenylketon, 2-Propylcyclopentenyloctylketon, 2-Methyl-3-butylcyclopentanon, 2-Athyl-3-octylcyclohexenon, 2-Methyl - 3 - dodecylcyclohexenon, 3 - Hexylcyclopentenon, 3,5,5-Trimethylcyclohexenon, 2-Isopropyliden-5-methylcyclohexanon, 2-Isopropyliden-6-methylcyclohexanon, 50 4-(2-Oxocyclohexyliden)-octan, 2-Cyclohexylidencyclohexanon, 1-Cyclohexyliden-2-octanon, 2-Cyclopentyliden-3-hexanon, 6-Cyclopentyliden-7-tridecanon, Cyclohexylidenbutanon, 2-Cyclohexylidencyclopentanon, 2-Cyclopentylidencyclohexanon und 2-Hexylcyclopentenylbuyl- 55

Cyanhydrierungen wurden in der Technik mit vielen Arten von Verbindungen und unterschiedlichem Erfolg durchgeführt. Es wurde bereits versucht, carbocyclische Olefinketone des erfindungsgemäßen Typs mit Cyanwasserstoffsäure umzusetzen. Jedoch wurde keiner der erfindungsgemäßen Reaktionsteilnehmer jemals erfolgreich mit Cyanwasserstoff umgesetzt, noch wurden die erfindungsgemäß erhältlichen alicyclischen Cyanketone jemals zuvor hergestellt.

Die Reaktion von Cyanwasserstoffsäure mit ungesättigten Ketonen, wie Vinylketon, bei —20 bis 90°C unter Bildung zweier verschiedener Produkte, eines Ketonitrils und eines Cyanhydrins ist bekannt. Kompliziertere Verbindungen, wie die erfindungsgemäß eingesetzten 70

β,β-disubstituierten a,β-ungesättigten Ketone konnten nach den bisherigen Methoden nicht in die entsprechenden
 Cyanketone umgewandelt werden. Erst die vorliegende Erfindung liefert in eindeutiger Reaktion bei höheren Temperaturen und Anwendung eines Cyanidionenerzeugenden Katalysators unter guten Ausbeuten ein Verfahren zur Gewinnung β,β-disubstituierter β-Cyanketone,
 die wenigstens einen fünf- bis sechsgliedrigen Ring enthalten.

Hauptziel der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung der angegebenen alicyclischen Cyanketone.

Die vorliegende Umsetzung wird in einem Temperaturbereich zwischen 125 und 275°C, vorzugsweise 150 und 225°C, durchgeführt. Temperaturen außerhalb des angegebenen Bereichs liefern unbedeutende oder unerwünschte Ergebnisse.

Die Anwendung von Normaldruck ist von Vorteil. Überdruck kann gewünschtenfalls verwendet werden, jedoch werden dabei offensichtlich keine merklichen Vorteile erzielt. Falls Überdruck zur Anwendung kommt, kann er autogen oder mit Hilfe von Stickstoff oder einem anderen inerten Gas gebildet werden.

Die vorliegende Umsetzung wird vorzugsweise diskontinuierlich durchgeführt, jedoch kann gewünschtenfalls auch eine kontinuierliche Arbeitsweise angewendet

Gewünschtenfalls kann ein flüchtiges inertes stark polares organisches Lösungsmittel verwendet werden. Die Anwendung eines Lösungsmittels ist besonders erwünscht, wenn die höher siedenden Ketone angewendet werden. Häufig ist es erwünscht, einen Teil des erfindungsgemäß als Ausgangsmaterial eingesetzten β,β -disubstituierten-

β-Cyanoketons als Lösungsmittel zu verwenden. Geeignete Lösungsmittel sind Dimethylformamid, Dimethylacetamid, 1-Methyl-2-pyrrolidir 1,5-Dimethyl-2-pyrrolidinon und 1,3-Dimethyl-2-im. olidinon.

Ein stark alkalischer Cyanidionen bildender Katalysator ist vorzugsweise in einer Menge von 0,1 bis 20 Gewichtsprozent, bezogen auf das Gesamtgewicht der Reaktionsteilnehmer, erforderlich. Geeignete Katalysatoren dieser Art sind die Alkalimetalle und ihre Carbonate; ferner Erdalkalimetalle und Alkali- und Erdalkalialko- 10 holate, -oxyde, -hydroxyde, -peroxyde und -cyanide; tertiäre Amine und quaternäre Ammoniumbasen. Als Katalysator kann jede Base verwendet werden, die in wäßrigem Medium eine Dissoziationskonstante oberhalb von etwa 10-7 hat. Typische Beispiele von verwendbaren 15 Katalysatoren sind Natrium, Kalium, Lithium, Natriummethylat, Kaliumbutylat, Lithiumäthylat, Magnesiumäthylat, Natriumoxyd, Kaliumhydroxyd, Calciumoxyd, Bariumhydroxyd, Strontriumhydroxyd, Natriumperoxyd, Magnesiumperoxyd, Kaliumcyanid, Lithiumcyanid, Ba- 20 riumcyanid, Magnesiumcyanid, Natriumcarbonat, Kaliumcarbonat, Trimethylamin, Triäthylamin, Triäthanolamin, Octyldimethylamin, N-Methylmorpholin, Benzyltrimethylammoniumhydroxyd, Dibenzyldimethylammo-Dodecenyltriäthylammonium- 25 undniumhydroxyd hydroxyd. Die Alkalicyanide sind für die vorliegenden Zwecke besonders wirksam.

Ausbeuten von etwa 50 bis 90% und mehr werden laufend erzielt. Unter den erfindungsgemäßen Reaktionsbedingungen tritt praktisch keine Polymerisation der 30 Cyanwasserstoffsäure ein, und es bildet sich im wesentlichen keine Cyclisierungs-, Kondensations- oder Zersetzungsverbindung, wogegen die bisher bekannten Cyanhydrierungsverfahren häufig durch eines oder beide

Die vorliegende Umsetzung kann so durchgeführt werden, daß man die Cyanwasserstoffsäure mit oder ohne Lösungsmittel in ein Gemisch aus Katalysator und olefinischem carbocyclischem Keton einführt. Es wird bevorzugt, einen geringen Überschuß an Keton zu ver- 40 wenden, um jede Neigung der Cyanwasserstoffsäure zur Polymerisierung auf ein Minimum herabzusetzen oder im wesentlichen auszuschalten. Ganz gleich, ob kontinuierlich oder diskontinuierlich gearbeitet wird, ist es im vorliegenden Fall von Vorteil, zuerst den Katalysator und 45 einen Teil des Ketons in das Reaktionsgefäß zu geben. Zu diesem Gemisch wird dann ein aus dem gleichen Keton und Cyanwasserstoffsäure bestehendes Gemisch zugegeben. Es ist auch möglich, als Anfangsbeschickung mit such erhaltenen Ketonitrils zu verwenden. Zu diesem Gemisch wird ein Gemisch aus Cyanwasserstoffsäure und Keton zugegeben. Dadurch, daß man als Teil der Anfangsbeschickung das Keton oder das Ketonitril verwendet, wird die Bildung von unerwünschten Kondensations- 55 produkten auf ein Minimum herabgesetzt oder völlig beseitigt. Dies führt bei minimalen Mengen an unerwünschten Produkten zu maximalen Ausbeuten, wodurch das Problem der Trennung und Isolierung des Produktes auf ein Minimum beschränkt oder praktisch völlig ausge- 60 schaltet wird. Bei der vorliegenden Erfindung ist es gleichfalls zweckmäßig — ganz gleich, ob kontinuierlich oder diskontinuierlich gearbeitet wird - wenn der gesamte Katalysator zu Beginn der Umsetzung oder gewünschtenfalls während derselben zugesetzt wird. Es 65 wird jedoch besonders darauf hingewiesen, daß die Cyanwasserstoffsäure nicht auf einmal, sondern mit solcher Geschwindigkeit zugesetzt werden soll, daß konstante Reaktionsbedingungen aufrechterhalten werden. Sind nämlich zu irgendeinem Zeitpunkt große Mengen an 70

Cyanwasserstoffsäure zugegen, so können unerwünschte Polymerisationen begünstigt werden. Die Cyanwasser-Wunsch in gasförmigem oder stoffsäure kann je flüssigem Zustand das Reaktionsgefäß eingeführt 5 werden. Es wird bevorzugt, Cyanwasserstoffsäure allein oder in Lösung mit dem Keton zu einem Gemisch aus Keton und Katalysator oder Nitrilprodukt und Katalysator bei einer mäßigen Geschwindigkeit zuzugeben, so daß die Umsetzung sofort stattfindet, wenn die beiden Reaktionsteilnehmer in Gegenwart des Katalysators und unter den angegebenen Reaktionsbedingungen aufeinandertreffen. Bei einer solchen Anordnung findet keine merkliche Polymerisation der Cyanwasserstoffsäure statt, und dementsprechend sind die Ausbeuten an dem gewünschten Produkt sehr hoch. Vorzugsweise soll die in dem Reaktionsmedium anwesende Cyanwasserstoffsäure zu jedem gegebenen Zeitpunkt äquimolare Mengen an Keton-Reaktionsteilnehmer nicht überschreiten. Die Vorteile der obigen Verfahrensweise ergeben sich für den Fachmann aus den Lehren der vorliegenden Erfindung.

Zusammenfassend muß darauf hingewiesen werden, daß zur Erreichung der erfindungsgemäßen Ziele die Verwendung der aufgeführten Reaktionsteilnehmer der angegebenen Temperaturen und der Einführungsgeschwindigkeit der Cyanwasserstoffsäure in das Reaktionsgefäß von

Bedeutung ist.

In einigen Fällen kann es sein, daß der Katalysator nicht oder wenigstens nicht ganz in dem Reaktionssystem löslich ist, und es ist deshalb zur Gewährleistung der höchsten Aktivität des Katalysators eine gute Durchmischung durch beispielsweise Rühren oder Schütteln wünschenswert. Rühren ist im allgemeinen von Vorteil.

Nach beendeter Umsetzung wird der Katalysator durch Zugabe von Säure, vorzugsweise einer Mineralsäure, wie dieser unerwünschten Ergebnisse beeinträchtigt wurden. 35 Phosphorsäure, Schwefelsäure oder Chlorwasserstoffsäure, neutralisiert. Das Reaktionsgemisch kann dann gewünschtenfalls filtriert und dann vorzugsweise bei vermindertem Druck destilliert werden. Diese Produkte, in technischen Mengen auf einen inerten Träger angewendet, sind als Mittel gegen Moskitos und Nagetiere von Nutzen. Sie sind gleichfalls als Weichmacher für Nitrocellulose

> Die vorliegende Erfindung wird durch die folgenden Beispiele, die nur der Erläuterung dienen, besser verständlich. Bei den angegebenen Teilen handelt es sich stets um Gewichtsteile.

Beispiel 1

In einen Dreihalskolben mit Rührwerk, Thermometer, dem Katalysator einen Teil des bei einem früheren Ver- 50 einem mit Eiswasser gekühlten Kondensator und Tropftrichter mit Druckausgleich werden 293,7 Teile eines Gemisches aus 93% Cyclohexenylcyclohexanon und 7%, Cyclohexalidencyclohexanon, 293,7 Teile Dimethylformamid und 5,4 Teile Kaliumcyanid gegeben. Das Gemisch wird unter Rückfluß erhitzt (160°C), und ein Gemisch aus 46,8 Teilen Dimethylformamid und 46,8 Teilen Cyanwasserstoff wird während eines Zeitraums von 45 Minuten tropfenweise zugesetzt. Während dieser Zugabe fällt die Temperatur auf 146°C. Man rührt und erhitzt das Gemisch noch eine weitere Stunde. Dabei steigt die Temperatur auf 157°C. Das Reaktionsgemisch wird dann auf Raumtemperatur abgekühlt und 6,4 Teile wäßrige 85º/eige Phosphorsäure werden zugegeben. Das Gemisch wird unter vermindertem Druck destilliert. Das Produkt wird bei 163 bis 174°C und einem absoluten Druck von 2,8 mm Hg gewonnen. Beim Stehenlassen kristallisiert es aus und wird dann aus siedendem Isooctan umkristallisiert. Das umkristallisierte Produkt ist ein weißer Feststoff, der bei 85 bis 86°C schmilzt und 6,80°/0 Stickstoff enthält (theoretisch 6,83%. Das Produkt wird als 1-(2-Oxocyclohexyl)-cyclohexan-1-carbonsaurenitril identifiziert und entspricht der folgenden Fo

Die Ausbeute beträgt 83%.

Auf ähnliche Weise stellt man Acetonylcyclohexan- 15 carbonsäurenitril her, wenn man als olefinisches carbocyclisches Keton eine im Gleichgewicht befindliche Mischung von Cyclohexenylaceton und Cyclohexylidenaceton verwendet. In gleicher Weise ergibt 1-Cyclohexyliden-1-(1-Oxooctyl)-cyclohexancarbonsänrenitril ao 2-Cyclopentyliden-3-hexanon 1-(1-Methyl-2-oxopentyl)-cyclopentancarbonsäurenitril.

Beispiel 2

552 Teile Isophoron, 552 Teile Dimethylacetamid und 25 14 Teile Kaliumcarbonat werden in ein Reaktionsgefäß gegeben und auf 175° Cerhitzt. 113 Teile flüssiger Cyanwasserstoff werden 3 Stunden tropfenweise mit einer solchen Geschwindigkeit zugegeben, daß die Gefäßtemperatur zu keinem Zeitpunkt unter 160°C absinkt. 23 Teile 30 einer wäßrigen 85% jeen Phosphorsäure werden zugegeben, und das Gemisch wird dann unter vermindertem Druck destilliert. Das Produkt (465 Teile) hat einen Siedepunkt von 119°C bei einem absoluten Druck von 1,7 mm Hg und kristallisiert bei Kühlung aus. Das Produkt wird in 35 1000 Teilen heißem Isopropanol gelöst, und das Gemisch zuerst auf 0°C und dann auf -25°C gekühlt. Die sich bildende Fällung wird abfiltriert, mit kaltem Isopropanol gewaschen und bei Raumtemperatur an der Luft getrocknet. Das weiße kristalline Produkt (432 Teile) hat 40 einen Schmelzpunkt zwischen 68 und 70°C und einen Stickstoffgehalt von 8,46% (theoretisch 8,48%).

Das Produkt wird als 5-Oxo-1,3,3-trimethylcyclohexancarbonsäurenitril identifiziert und entspricht der Formel:

Auf ähnliche Weise ergeben 2-Methyl-1-cyclopentenylmethylketon 2-Acetyl-1-methylcyclopentancarbonsäurenitril, 2-Methyl-3-butylcyclopent-2-en-1-on 3-Oxo-2-methyl-1-butylcyclopentancarbonsäurenitril und 2-(1-Cyclohexancarbonsäurenitril.

Beispiel 3

Ein Gemisch aus 76 Teilen 2-Isopropyliden-5-methylcyclohexanon (Pulegon), 38 Teilen 1-Methyl-2-pyrrolidinon und 1,6 Teilen Kaliumcyanid wird auf 180°C erhitzt, und 14 Teile HCN werden allmählich mit einer solchen Geschwindigkeit zugegeben, daß die Gefäßtemperatur nicht unter 170°C absinkt. Das Gemisch

erhâlt 81 Teile ro<u>he</u>s Produkt mit einem Siedepunkt von 120 bis 145°C bg em absoluten Druck von 1,4 mm Hg. Erneute Destill unter vermindertem Druck ergibt das reine fitissige Produkt mit einem Siedepunkt von 5 120 bis 125°C bei einem absoluten Druck von 1,4 mm Hg, einem 27-Wert von 1,4669 und einem Stickstoffgehalt von 7,85% (theoretischer Wert für $C_{11}H_{17}ON = 7,83\%$).

Auf genau dieselbe Art werden 1-(1-Pentyl-2-oxooctyl)cyclopentancarbonsäurenitril aus 6-Cyclopentyliden-10 7-oxotridecan, 3-Methyl-2-oxo-1-isopropylcyclohexancarbonsäurenitril aus 2-Isopropyliden-6-methylcyclohexanon und 1-Lauryl-2-methyl-3-oxocyclohexancarbonsäurenitril aus 2-Methyl-3-dodecylcyclohex-2-en-1-on hergestellt.

Beispiel 4

Ein Gemisch aus 138 Teilen Cyclohexylidenaceton und 3,3 Teilen Kaliumcyanid wird auf 150°C erhitzt, und 30 Teile HCN werden tropfenweise zugegeben, während die Temperatur bei 140 bis 150°C gehalten wird. Nachdem die Zugabe beendet ist, wird das Gemisch 20 Minuten bei 150 bis 160°C gehalten, dann wird es mit 4 Teilen wäßriger 85% iger Phosphorsäure behandelt und unter vermindertem Druck destilliert. Das Produkt, 1-(2-Oxopropyl)cyclohexancarbonsäurenitril wird in 75% iger Ausbeute erhalten. Durch Elementaranalyse wurde seine Formel C₁₀H₁₅ON bewiesen. Die Analyse ergab einen Stickstoffgehalt von 8,40% (theoretisch 8,48%). Das Produkt siedet bei 125 bis 135°C bei 1 mm abs. Das Verfahren kann dadurch modifiziert werden, daß 20 Teile 1-(2-Oxopropyl)cyclohexancarbonsäurenitril und 3,3 Teile Kaliumcyanid in das Reaktionsgefäß gegeben werden. Dieses Gemisch wird auf 150°C erhitzt und ein Gemisch von 138 Teilen Cyclohexylidenaceton und 30 Teilen HCN langsam zugegeben, während eine Temperatur von 150 bis 160°C aufrechterhalten wird. Bei dieser Abwandlung beträgt die Ausbeute nur 70%. Unter Erzielung zufriedenstellender Ausbeuten können bei dieser Abwandlung Temperaturen bis zu etwa 200°C angewendet werden.

Auf die gleiche Weise wird (2,2-Dimethylbicyclo-[2,2,1]-heptyliden)-aceton zu 3,3-Dimethyl-2-(2-oxopropyl) - bicyclo - [2,2,1] - heptan - 2 - carbonsäurenitril in 50º/oiger Ausbeute umgewandelt. Eine etwas bessere Ausbeute wird bei Verwendung von 1-Methyl-2-pyrroli-45 dinon als Lösungsmittel erzielt.

Beispiel 5

Zu einem Gemisch aus 150 Teilen 1-Acetyl-2-methylcyclohexen, 50 Teilen Dimethylformamid und 25 Teilen 50 Natriumcyanid werden unter Rückfluß langsam 30 Teile HCN zugegeben, die in 50 Teilen Dimethylformamid gelöst sind. Die Temperatur wird durch Steuerung der Zugabegeschwindigkeit der HCN-Lösung zu dem Reaktionsgemisch auf 145 bis 155°C gehalten. Das Gemisch 55 wird eine Stunde nach Abschluß der Säurezugabe erhitzt, dann werden 4 Teile wäßrige 85% ige Phosphorsäure zugegeben, und das Gemisch wird unter vermindertem Druck destilliert. Durch Elementaranalyse wird das Produkt als 2-Acetyl-1-methylcyclohexancarbonsäurehexen-1-yl)-cyclopentanon 1-(2-Oxocyclopentyl)-cyclo- 60 nitril identifiziert. Der Stickstoffgehalt beträgt 8,35% (theoretisch 8,48%). Das Produkt wurde in einer Ausbeute von 76% erhalten und siedet bei 110 bis 120°C bei 0,3 mm absolut.

Auf gleiche Weise werden 2-Benzoyl-1-methylcyclopentancarbonsäurenitril aus 1-Benzoyl-2-methylcyclopenten und 2-Stearyl-1-methylcyclohexancarbonsäurenitril aus 1-Stearyl-2-methylcyclohexen erhalten. Eine bessere Ausbeute an 2-Stearyl-1-methylcyclohexancarbonsäurenitril wird erhalten, wenn 1-Methyl-2-pyrroliwird unter vermindertem Druck destilliert, und man 70 dinon an Stelle von Dimethylformamid als Lösungs5

mittel verwendet wird, und eine noch bessere Ausbeute wird erhalten, wenn die Reakt emperatur auf 200 bis 225°C erhöht wird.

PATENTANSPROCHE:

 Verfahren zur Herstellung von alicyclischen Cyanketonen, die wenigstens einen fünf- bis sechsgliedrigen Ring bzw. Bicyclo-[2,2,1]-heptylrest enthalten der allgemeinen Formel

in der R_1 , R_2 und R_4 jeweils eine Alkyl-, Aryl-, Arylalkyl- oder Alkylarylgruppe, R_3 ein Wasserstoffatom, eine Methyl- oder Äthylgruppe, R_4 und R_4 zosammen mit dem zur Carbonylgruppe β -ständigen Kohlenstoffatom, R_1 und R_3 zusammen mit den zur Carbonylgruppe α - und β -ständigen Kohlenstoffatomen, R_2 und R_4 zusammen mit dem Carboxylkohlenstoffatom und den dazu α - und β -ständigen Kohlenstoffatomen und dem α -Kohlenstoffatom einen fünfbis sechsgliedrigen alicyclischen Ring bedeuten, R_4 und R_2 zusammen auch einen Bicyclo-[2,2,1]-heptylrest bedeuten können und in der wenigstens ein fünfbis sechsgliedriger alicyclischer Ring bzw. Bicyclo-[2,2,1]-heptylrest enthalten ist, dadurch gekennzeichnet,

daß man Cyanwasserstoffsäure und eine Verbindung der allgemeinen Manel

in der die Reste R, bis R, die vorstehend angegebene Bedeutung besitzen, bei einer Reaktionstemperatur von etwa 125 bis 275°C, vorzugsweise 150 bis 225°C, in Gegenwart eines stark alkalischen Cynanidionen bildenden Katalysators, gewünschtenfalls in Gegenwart eines stark polaren Lösungsmittels, umsetzt und die Cyanwasserstoffsäure im wesentlichen mit der Geschwindigkeit zugibt, mit der sie sich umsetzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Ausgangsverbindung der vorstehend angegebenen allgemeinen Formel mit nicht mehr als

23 Kohlenstoffatomen verwendet wird.

3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Reaktionsteilnehmer in im wesentlichen äquimolekularen Mengen mit etwa der gleichen Geschwindigkeit, wie sich das Reaktionsprodukt bildet, zusammengebracht werden.

In Betracht gezogene Druckschriften:
Deutsche Patentschrift Nr. 691 621;
französische Patentschrift Nr. 820 188;
Stouben-Weyl, Methoden der organ. Chemie, Bd. 8,
1952, S. 272—237.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.