

Disciplina: Estruturas de Dados II	
Aluno(a):	Nota:
Prof. Tiago Pessoa Ferreira de Lima	
1. O Merge Sort é afetado pela ordem inicial dos elem A ordem inicial dos elementos da lista de entrada influ algoritmo Merge Sort? Justifique sua resposta com base na desse algoritmo.	encia o tempo de execução do

2. Quicks	ort	t é um alg	orit	mo de orden	ação	estável?		
Evaliana	_	aanaaita	40	actabilidada	2122	algoritmas	40	andanaa

Explique o conceito de estabilidade em algoritmos de ordenação e avalie se a implementação padrão do Quicksort é estável. Dê um exemplo com elementos repetidos para ilustrar sua resposta.

-

3. Intercalação de listas ligadas

Implemente o método intercalar(outra_lista) para uma lista ligada, que intercala seus nós com os da outra_lista. O método deve reorganizar os ponteiros, sem criar novos nós.

Antos	da	intercal	اممقمه
Antes	ua	mittica	ıaçau.

- Lista A: $1 \rightarrow 3 \rightarrow 5$
- Lista B: $2 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$

Depois de A.intercalar(B) (sem criar novos nós):

• Lista A modificada: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$

4. Substituir por soma dos vizinhos

Implemente o método substituir_por_soma_vizinhos() em uma lista que substitui cada elemento (exceto o primeiro e o último) pela soma dos seus vizinhos imediatos.

Antes da substituição:

Lista: $2 \rightarrow 5 \rightarrow 7 \rightarrow 4 \rightarrow 9$

Durante o processamento:

- O primeiro (2) e o último (9) permanecem iguais.
- O 5 vira 2 + 7 = 9
- O 7 vira 5 + 4 = 9
- O 4 vira 7 + 9 = 16

-	

5. Eliminação a cada N posições (variação do problema de Josephus)

Implemente o método eliminar_n_em_n(n) em uma lista circular que elimina um nó a cada n saltos, até restar apenas um. O método deve retornar o valor do último nó restante.

Exemplo	com	valores	simn	les:
Excinition	CUIII	vaioi cs	amp	165.

- Lista inicial: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ (circular)
- Parâmetro n = 3

•

Processo de eliminação:

1. Começa no 1. Conta 1 (1), 2 (2), $3 \rightarrow$ elimina 3

 $\circ \quad \text{Lista: } 1 \to 2 \to 4 \to 5$

2. Continua no 4. Conta 1 (4), 2 (5), $3 \rightarrow$ elimina 1

o Lista: $2 \rightarrow 4 \rightarrow 5$

3. Continua no 2. Conta 1 (2), 2 (4), $3 \rightarrow$ elimina 5

 \circ Lista: $2 \rightarrow 4$

4. Continua no 2. Conta 1 (2), 2 (4), $3 \rightarrow$ elimina 2

o Lista: 4

-	
-	
-	

Rascunho