Katholieke Universiteit Leuven Departement Wiskunde Nicolas Daans 18.10.2024

Extra oefeningen: eerste-orde structuren, theorieën en modellen

Oefening 1. Vind voor elk van de volgende klassen van wiskundige concepten een passende axiomatisering, i.e. beschrijf een \mathcal{L} -theorie zodanig dat de te beschrijven objecten precies de modellen van deze theorie zijn.

- (a) Velden van karakteristiek 0, met $\mathcal{L} = \{+, -, \cdot, 0, 1\}$.
- (b) Totaal geordende verzamelingen zonder maximum, met $\mathcal{L} = \{<\}$.
- (c) Grafen zonder lus, met $\mathcal{L} = \{E\}$. (De elementen van een \mathcal{L} -structuur interpreteer je hierbij als knopen in de graf, E is een binair relatiesymbool dat je interpreteert als "er is een zijde tussen deze twee knopen".)

Oefening 2. Zij \mathcal{L} een signatuur, \mathfrak{A} en \mathfrak{B} twee \mathcal{L} -structuren en $H:A\to B$ een afbeelding. Bewijs volgende uitspraken:

- (a) Als H een homomorfisme is, $t(x_1, \ldots, x_n)$ een \mathcal{L} -term, en $a_1, \ldots, a_n \in A$, dan geldt, $H(t^{\mathfrak{A}}[a_1, \ldots, a_n]) = t^{\mathfrak{B}}[H(a_1), \ldots, H(a_n)]$.
- (b) Als H een inbedding is, $\varphi(x_1, \ldots, x_n)$ een kwantorvrije formule, en $a_1, \ldots, a_n \in A$, dan $\mathfrak{A} \models \varphi[a_1, \ldots, a_n]$ als en slechts als $\mathfrak{B} \models \varphi[H(a_1), \ldots, H(a_n)]$.
- (c) Als H een isomorfisme is, $\varphi(x_1, \ldots, x_n)$ een \mathcal{L} -formule, en $a_1, \ldots, a_n \in A$, dan $\mathfrak{A} \models \varphi[a_1, \ldots, a_n]$ als en slechts als $\mathfrak{B} \models \varphi[H(a_1), \ldots, H(a_n)]$.

Besluit dat als $\mathfrak A$ en $\mathfrak B$ isomorf zijn, dat ze dan ook elementair equivalent zijn.

Oefening 3. Beschouw $\mathcal{L} = \{+,0,<\}$ en beschouw de gehele getallen \mathbb{Z} als een \mathcal{L} -structuur: $+^{\mathbb{Z}}$ is de gebruikelijke optelling met neutraal element $0^{\mathbb{Z}}$, en $<^{\mathbb{Z}}$ is de gebruikelijk orde. Toon aan dat de volgende deelverzamelingen van \mathbb{Z} definieerbaar zijn, i.e. er bestaat een \mathcal{L} -formule φ zodanig dat de verzameling gelijk is aan $\varphi[\mathbb{Z}]$.

- (1) De verzameling $\{3\}$,
- (2) de verzameling $2\mathbb{Z} = \{2x \mid x \in \mathbb{Z}\}.$

Zijn deze verzamelingen ook definieerbaar wanneer we \mathbb{Z} als \mathcal{L}' -structuur beschouwen met $\mathcal{L}' = \{+,0\}$?

Oefening 4. Beschouw $\mathcal{L} = \{f, +, -, \cdot, 0, 1\}$ met f een unair functiesymbool (dus $f \in \mathcal{F}_1$). Beschouw de reële getallen \mathbb{R} als een \mathcal{L} -structuur door $+, -, \cdot, 0$ en 1 op de gebruikelijke manier te interpreteren, en f als een willekeurige functie $\mathbb{R} \to \mathbb{R}$. Vind een \mathcal{L} -uitspraak φ zodanig dat $\mathbb{R} \models \varphi$ als en slechts als $f^{\mathbb{R}}$ continu is.

Oefening 5. Stel dat \mathfrak{A} en \mathfrak{B} \mathcal{L} -structuren zijn en dat A eindig is. Toon dat \mathfrak{A} en \mathfrak{B} isomorf zijn als en slechts als ze elementair equivalent zijn.