

Danilo Meleleo, Giovanni Pietrucci and Daniele Polidori

Index

1. Dataset

a. Data preparation

2. Implementation

- a. Spark setting
- b. Ward Algorithm
- c. Sequential vs Parallel vs Distributed

3. Performances

- a. Local (Sequential vs Parallel)
- b. Google Cloud Platform (Weak vs Strong scaling)
- c. Graphs

1. Dataset

Dataset

1. CO2 Emissions _ 1960 - 2018

https://www.kaggle.com/datasets/kkhandekar/co2-emissions-1960-2018

https://data.worldbank.org/indicator/NY.GDP.PCAP.KN?end=2021&most_recent_year_desc=false&start=2021&view=map

DataPreparation

Data Cleaning

- Drop unused column
- Drop NaN
- Discard useless group of country

Join data on Country Name

- CO2
- GDP

Minor Adjustment

- Round double values
- Fill missing values

Implementation

Implementation

Implemented in **Scala+Spark**

Follows the **MapReduce** paradigm

Main collections:

df_annuali : List[Dataframe]

RDD_label_annuali : RDD[List[Int]]

forest : List[Int]

dizionario: List[List[Int]]

Main functions:

ward

number_cluster

Spark setting

```
val spark: SparkSession = SparkSession
  .builder()
  //.master("local[*]")
  .master("yarn")
  .appName("Ward on annual co2-gdp")
  .getOrCreate()

import spark.sqlContext.implicits.__
```

We use:

- .master("local[*]") to run locally.
- .master("yarn") to run on a distributed cluster.

SQLImplicits:

 A collection of implicit methods for converting common Scala native objects or RDD into DataFrame/Datasets through implicit Encoders.

- Agglomerative hierarchical clustering method based on minimizations of the total within-cluster variance.
- 2. Start from a forest of **n clusters** each containing a single point p such as $p_{\cdot}=(co2,gdp)$.
- At each steps we search for all the possible merge combinations of two clusters available in the forest
- Once all the clusters combinations are obtained, calculate the midpoint among all the points belonging to the clusters under analysis.

```
var forest: List[Int] = List.range(0, original lenght)
var dizionario: List[List[Int]] = forest.map(List())
1)).combinations(2).toList
 val error list = combinazioni.par.map(
combinazioni(error list.indexOf(error list.min))
 forest = forest.updated(coppia(), -1)
 forest = forest.updated(coppia(), -1)
 dizionario = dizionario :+ coppia
```

- Agglomerative hierarchical clustering method based on minimizations of the total within-cluster variance.
- 2. Start from a forest of **n clusters** each containing a single point p such as $p_{p} = (co2, gdp)$.
- At each steps we search for all the possible merge combinations of two clusters available in the forest
- Once all the clusters combinations are obtained, calculate the midpoint among all the points belonging to the clusters under analysis.

```
var forest: List[Int] = List.range(0, original lenght)
var dizionario: List[List[Int]] = forest.map(List())
```

- Agglomerative hierarchical clustering method based on minimizations of the total within-cluster variance.
- 2. Start from a forest of **n clusters** each containing a single point p such as $p_{i}=(co2,gdp)$.
- At each steps we search for all the possible merge combinations of two clusters available in the forest

```
Number of Combinations = n!/[(n-2)!*(2)!]
```

4. Once all the clusters combinations are obtained, calculate the midpoint among all the points belonging to the clusters under analysis.

```
forest.filter( !=(-1)).combinations(2).toList
```

- Agglomerative hierarchical clustering method based on minimizations of the total within-cluster variance.
- 2. Start from a forest of **n clusters** each containing a single point p such as $p_i = (co2, gdp)$.
- At each steps we search for all the possible merge combinations of two clusters available in the forest
- Once all the clusters combinations are obtained, calculate the midpoint among all the points belonging to the clusters under analysis.

```
DISTANCE:

val all_x = points_new.map(dataFrame(_)._1) //CO2

val all_y = points_new.map(dataFrame(_)._2) //GDP

val ptMedio = Point(
    all_x.sum / points_new_length
    all_y.sum / points_new_length
    )

(\bar{X}, \bar{Y}) = \left(\frac{1}{k} \sum_{i=1}^{k} x_i, \frac{1}{k} \sum_{i=1}^{k} y_i\right)
```

- 5. **Variance (SE)** calculation between the cluster's point and the midpoint calculated previously
- Search for the cluster u with the minimum variance
- 7. **Delete** from the forest the cluster composing u
- 8. **Adding** u to the forest
- 9. Repeat until there's only one cluster in the forest (root of the tree)

```
DISTANCE:

val error_square = (all_x zip all_y).map(
punto =>
ptMedio.error_square_fun( Point(punto._1, punto._2) )
).sum

def error_square_fun(other: Point): Double =
    pow(other.x - x, 2) + pow(other.y - y, 2)
}

SE = \sum_{i=1}^{k} \left( (x_i - \bar{X})^2 + (y_i - \bar{Y})^2 \right)
```

- 5. **Variance(SE)** calculation between the cluster's point and the midpoint calculated previously
- Search for the cluster u with the minimum variance
- 7. **Delete** from the forest the cluster composing u
- 8. **Adding** u to the forest
- Repeat until there's only one cluster in the forest (root of the tree)

```
combinazioni(error list.indexOf(error list.min))
```

- 5. **Variance(SE)** calculation between the cluster's point and the midpoint calculated previously
- Search for the cluster u with the minimum variance
- 7. **Delete** from the forest the cluster composing u
- 8. **Adding** u to the forest
- 9. Repeat until there's only one cluster in the forest (root of the tree)

```
forest = forest.updated(coppia(), -1)
forest = forest.updated(coppia1), -1)
```

- Variance(SE) calculation between the cluster's point and the midpoint calculated previously
- Search for the cluster u with the minimum variance
- 7. **Delete** from the forest the cluster composing u
- 8. Adding u to the forest and to dizionario
- Repeat until there's only one cluster in the forest (root of the tree)

```
forest = forest :+ forest.length
dizionario = dizionario :+ coppia
```

- 5. **Variance(SE)** calculation between the cluster's point and the midpoint calculated previously
- Search for the cluster u with the minimum variance
- 7. **Delete** from the forest the cluster composing u
- 8. **Adding** u to the forest
- 9. **Repeat** until there's only one cluster in the forest (root of the tree)

```
while(forest.count( > -1) > 1) {
```

Number Cluster function

It returns the **roots** of the clusters created.

The **dendrogram**'s root is the couple (*dizionario.last*).

dizionario.last(o) has the longest branch of the couple.

Discard the values lower than *last* because I'm interested only in the ones included between the two in the **root**.

Flat and discard the values higher than *last*.

```
def number_cluster (dizionario: List[List[Int]]): List[Int]
= {
  val last = dizionario.last(0)
  val out = last :: dizionario.drop(last +
1).flatten.filter(_ < last)
  out
}</pre>
```


Implementation - Parallel

• Data parallelism:

```
// Mapping della lista di combinazioni con l'errore quadratico associato
val error_list = combinazioni.par.map( distance(xy_zip, _, dizionario))
```

```
// Applicazione dell'algoritmo ward sui dataframe annuali
val label_annuali = input_ward_annuali.par.map(t => ward(t._1, t._2, t._3, t._4))
```


Implementation - Distributed

• RDD usage:

We **convert** into RDD *input_ward_annuali*, a structure that contains the input for the annual Ward function.

We apply the Ward function on this RDD with a map, taking as input these values.

```
val RDD_inputWardAnnuali = spark.sparkContext.parallelize(input_ward_annuali)

// Applicazione dell'algoritmo ward sui dataframe annuali
val RDD_label_annuali = RDD_inputWardAnnuali.map(t => ward(t._1, t._2, t._3, t._4))
```

Performances

Performances - Local

With .master("local[*]")

data_gdp_co2.csv (1965-2018)

	Sequential	Parallel	Distributed
Execution Time (s)	258	68	67

Scalability Test

Strong

We run the application on a different number of workers (with the same configuration) without changing the dataset.

Weak

We run the application on a different number of workers (with the same configuration) scaling the dataset.

Strong scaling

data_gdp_co2.csv (1965-2018)

Master: **n2-standard-8** (8 vCPU, 32 GB di memoria) Worker: **n1-custom** (6 vCPU, 22.5 GB di memoria)

Worker	Time (ms)	Speedup
1	230'236	1
2	138'447	1,66
3	132'149	1,74
4	117'461	1,96

Speedup = t_1 / t_1

Weak scaling

data_gdp_co2.csv (1967-2018)

Master: **n2-standard-8** (8 vCPU, 32 GB di memoria) Worker: **n1-custom** (6 vCPU, 22.5 GB di memoria)

Dataset Size	Worker	Time (ms)	Efficiency
25%	1	55'417	1
50%	2	60'296	0,9
75%	3	95'255	0,58
100%	4	114'125	0,38

Efficiency = t₁ / t_i

Increasing Complexity

Change Dataset:

- Old Dataset = 214 Countries per year
 - Number of <u>Starting Combination</u> = 22791
- New Dataset = 264 Countries per year
 - Number of <u>Starting</u> Combination = 34716
 - Grouping Countries
 - Cannot be showed on the map

```
Number of Combinations = n! / [(n-2)! * (2)!]
```

Old: 214! / [(214-2)! * (2)!] = 22791

New: 264! / [(264-2)! * (2)!] = 34716

Strong scaling

data_gdp_co2_with_groups.csv (1990-2013)

Master: **n2-standard-8** (8 vCPU, 32 GB di memoria) Worker: **n1-custom** (6 vCPU, 22.5 GB di memoria)

77 O T C T C T C T C T C T C T C T C T C T			
Worker	Time (ms)	Speedup	
1	178'291	1	
2	116'127	1,53	
3	59'982	2,97	
4	55'018	3,24	

Speedup = t_1 / t_i

Weak scaling

data_gdp_co2_with_groups.csv (1990-2013)

Master: **n2-standard-8** (8 vCPU, 32 GB di memoria) Worker: **n1-custom** (6 vCPU, 22.5 GB di memoria)

Dataset Size	Worker	Time (ms)	Efficiency
25%	1	45'480	1
50%	2	50'334	0,9
75%	3	56'775	0,80
100%	4	55'018	0,82

Efficiency = t_1 / t_i

Comparison

Graphs

Year 1965 Year 2018

DEMO