ΘΕΜΑ 4

Ένα μικρό κιβώτιο μάζας $M=1800\,\mathrm{g}$ είναι ακίνητο στην άκρη ενός πάγκου, του οποίου η επιφάνεια βρίσκεται σε ύψος h από οριζόντιο δάπεδο. Ένα βλήμα μάζας $m=200\,\mathrm{g}$ κινείται οριζόντια στο ύψος του κέντρου του κιβωτίου και συγκρούεται με αυτό. Τη στιγμή που συγκρούεται με το κιβώτιο, το βλήμα είχε ταχύτητα \vec{v}_0 μέτρου $v_0=40\,\frac{\mathrm{m}}{\mathrm{s}}$ και η κρούση είναι πλαστική, ασήμαντης χρονικής διάρκειας.

Το συσσωμάτωμα εκτελεί οριζόντια βολή και τη στιγμή που φτάνει στο οριζόντιο δάπεδο, η ταχύτητά του σχηματίζει με την οριζόντια διεύθυνση γωνία $\varphi=45^{\rm o}$. Να υπολογίσετε:

4.1. το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση

Μονάδες 6

4.2. το ποσοστό της αρχικής κινητικής ενέργειας του βλήματος, που έγινε θερμική ενέργεια κατά την πλαστική κρούση

Μονάδες 6

4.3. την οριζόντια απόσταση του σημείου στο οποίο το συσσωμάτωμα χτύπησε στο οριζόντιο δάπεδο, από τη βάση του πάγκου

Μονάδες 7

4.4. το ύψος h του πάγκου.

Μονάδες 6

Το μέτρο της επιτάχυνσης βαρύτητας θεωρείται $g=10~\frac{\rm m}{\rm s^2}$, οι αντιστάσεις αέρα αμελητέες. Δίνονται επίσης οι τριγωνομετρικοί αριθμοί $\eta\mu45^{\rm o}=\sigma vv45^{\rm o}=\frac{\sqrt{2}}{2}$.