Chapter 1

ALGORITHM'S ANALYSIS

What is an Algorithm?

A set of clear instructions to solve a problem.

Algorithms are usually written in an English-like language called Pseudo code.

Algorithms are not programs!

Data Structure

Data

Data structure

- Representation of the logical relationship existing between individual elements of data.
- A specialized format for organizing, managing and storing data in memory that considers not only the elements stored but also their relationship to each other.

Properties of Algorithms

Finiteness	terminates after a finite number of steps
Definiteness	Each step must be clear.
Input	Valid inputs must be clearly specified.
Output	The data that result upon completion of the algorithm must be specified.
Effectiveness	Steps must be sufficiently simple and basic.

How do you know an algorithm is correct

→ produces the correct output on every input

Comparison between two algorithms Computing gcd(m, n)

Euclid's algorithm

Repeat $gcd(m,n) = gcd(n, m \mod n)$ until the second number becomes 0.

Example:

gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

while $n \neq 0$ do

 $r \leftarrow m \mod n$

m← n

 $n \leftarrow r$

endWhile

return m

Consecutive integer checking algorithm

Step 1: $t \leftarrow \min\{m, n\}$

Step 2: if (m/t) == 0, go to Step 3;

otherwise, go to Step 4

Step 3 if(n / t) == 0, return t and stop;

otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Why Performance Matter?

Suppose $N = 10^6$

A PC can read/process N records in 1 sec.

If an algorithm does N*N computation, then it takes 1M seconds = 11 days!!!

Faster Algorithm vs. Faster CPU

- ► Algorithm \$1 sorts n keys in **2n2 instructions**
- ► Computer C1 executes 1 billion instruc/sec
 - ▶ When n = 1 million
 - Number of instructions $2n^2: 2 * (10^6)^2 = 2 * 10^{12}$
 - ightharpoonup Time to execute: 2 * 10¹² / 10⁹ = 2000 sec
- Algorithm S2 sorts n keys in 50nlog2n instructions
- ► Computer C2 executes 10 million instruc/sec
 - ▶ When n = 1 million
 - Number of instructions: $50 * 10^6 \log_2 (10^6)$
 - ▶ Time to execute:

 $50 * 10^6 \log_2 (10^6) / 10^6 = 50 \log_2 (10^6) = 1000 \text{ sec}$

A faster algorithm running on a slower machine will always win for large enough instances

The growth rate

The rate at which running time increases as a function of input is called Rate of Growth.

Which is smaller f(n) = 1000 N or $g(n) = N^2$?

- For small values of N, we see that f(N) is greater than g(N).
- But g(N) grows at faster rate.
- Thus g(N) will eventually be the larger function.

The turning point is N = 1000

N	F(n) = 1000 n	$g(n) = N^2$
100	100,000	10,000
500	500,000	250,000
700	700,000	490,000
1000	1000,000	1000,000
1500	1,500,000	2,250,000
2000	2,000,000	4,000,000
3000	3,000,000	9,000,000

Factors Affecting Choosing An Algorithm

Running time (Speed)

Storage usage

Graphical User Interface (GUI). (Ease of use)

Security

Maintenance

Portability

Open Source

Algorithm Performance

Performance = Efficiency = Complexity

Two ways to compute an algorithm performance

Empirical Method.

Analytical Method.

Empirical Method

Factors affecting running speed:

- CPU speed.
- RAM size.
- Hard Disk Drive (HDD).
- Graphics Card.
- Operating System (OS).
- Compiler.
- Environment (Backup, Antivirus, ...etc).

To compare two algorithms

Convert to the same programming language Run on machines with same configuration

Compare the running time

Analytical Method

Functions are compared in terms of their growth rate to decide which is better.

Each algorithm is mapped to a function

Mathematical Review

Exponents

- $X^0 = 1$
- $X^{a}X^{b} = X^{(a+b)}$
- Xa / Xb = X (a-b)
- $X^{-n} = 1 / X^n$
- $(X^a)^b = X^{ab}$

Logarithms

- $\log_a X = Y \Leftrightarrow a^Y = X$, a > 0, X > 0
- $\log_a 1 = 0$ because $a^0 = 1$
- logX means log₂X
- lgX means $log_{10}X$
- InX means $\log_{e} X$ (e ≈ 2.71828183)

Logarithms

- $\log_a(XY) = \log_a X + \log_a Y$
- $\log_a(X/Y) = \log_a X \log_a Y$
- $\log_a(X^n) = n\log_a X$
- $\bullet \log_a b = (\log_2 b)/(\log_2 a)$
- $a^{\log}a^x = x$

Typical Function Families

				n		
1-04				__		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	106
n * log ₂ n	30	664	9,965	105	10 ⁶	107
n^2	10 ²	104	10 ⁶	108	1010	1012
n ³	10 ³	10 ⁶	10 ⁹	1012	1015	1018
2 ⁿ	103	1030	1030	103,0	10 1030),103 10 301,030

Typical Functions: Examples

Growth rate	Name
С	Constant, we write O(1)
logN	Logarithmic
N	Linear
NlogN	Linearithmic
N ²	Quadratic
N^3	Cubic
2 ^N	Exponential
N!	Factorial

Typical Growth Rates

Function Growth

$$\lim_{n\to\infty}(n^a)=\infty,a>0$$

$$\lim_{n\to\infty} \left(\frac{1}{n^a}\right) = 0, a > 0$$

$$\lim_{n\to\infty}(\log(n))=\infty$$

$$\lim_{n\to\infty}(a^n)=\infty,a>0$$

Function Growth

- $\blacktriangleright \lim(f(x) + g(x)) = \lim(f(x)) + \lim(g(x))$
- $\blacktriangleright \lim(f(x) \times g(x)) = \lim(f(x)) \times \lim(g(x))$
- $\blacktriangleright \lim(\frac{f(x)}{g(x)}) = \frac{\lim(f(x))}{\lim(g(x))}$
- $\blacktriangleright \lim(\frac{f(x)}{g(x)}) = \lim(\frac{f'(x)}{g'(x)})$

Examples

$$\blacktriangleright \lim_{n\to\infty} \left(\frac{n}{n^2}\right) = \mathbf{0}$$

$$\blacktriangleright \lim_{n \to \infty} \left(\frac{n^3}{n^2} \right) = \infty$$

Asymptotic Growth Classes

Asymptotic growth: The rate of growth of a function

Given a particular differentiable function f(n), all other differentiable functions fall into three classes:

growing with the same rate	Theta
growing faster	Little oh, Big Oh
growing slower	Little omega, Big Omega

Theta

f(n) and g(n) have the same rate of growth, if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c,\qquad 0< c<\infty$$

Notation:
$$f(n) = \Theta(g(n))$$

Little oh

f(n) grows slower than g(n), (or g(n) grows faster than f(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Notation: f(n) = o(g(n))

Little omega

f(n) grows faster than g(n), (or g(n) grows slower than f(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Notation: $f(n) = \omega(g(n))$

if
$$g(n) = o(f(n))$$
 then $f(n) = \omega(g(n))$

Examples

Compare $\log n$ and $\log n^2$

• $\lim (\log n / \log n^2) = \frac{1}{2} \rightarrow \log n^2 = \Theta(\log n)$

Compare n and (n+1)/2

• $\lim(n / ((n+1)/2)) = 2 \rightarrow (n+1)/2 = \Theta(n)$

Compare n² and n²+ 6n

• $\lim (n^2 / (n^2 + 6n)) = 1 \rightarrow n^2 + 6n = \Theta(n^2)$

Θ(n³)

- n³
- $5n^3 + 4n$
- $105n^3 + 4n^2 + 6n$

Θ(n2)

- n²
- $5n^2 + 4n + 6$
- $n^2 + 5$

Θ(log n)

- log n
- log n²
- $\log (n + n^3)$

Big oh

$$f(n) = \Theta(g(n)) \quad O \Gamma f(n) = o(g(n))$$

$$N^2 = o(N^2)$$
 little oh \rightarrow False because $N^2 = \Theta(N^2)$
 $N^2 = O(N^2)$ Big oh \rightarrow True

Big omega

The inverse of Big-Oh is Ω

If
$$g(n) = O(f(n)) \rightarrow f(n) = \Omega(g(n))$$

f(n) grows faster or with the same rate as g(n): $f(n) = \Omega(g(n))$

Rules

If
$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$, then
(a) $T_1(N) + T_2(N) = \max(O(f(N)), O(g(N)))$
(b) $T_1(N) \times T_2(N) = O(f(N) \times g(N))$

For example:

- If $T_1(N) = O(N^2)$ and $T_2(N) = O(N)$ then
- (a) $T_1(N) + T_2(N) = O(N^2)$
- (b) $T_1(N) * T_2(N) = O(N^3)$
- Do not say $T(N) = O(2N^2)$ or $T(N) = O(N^2 + N)$. The correct form is $T(N) = O(N^2)$.

Computing the Running Time

Computing $\sum_{i=1}^{N} i^3$

int sum (int N)	We ignore the costs of calling the function,		
{	thus the total is $\underline{1}$ to initialize N		
int i, partialSum ;	The declarations count for no time.		
partialSum = 0;	The cost is 1 to initialize Sum.		
for (i = 1; i <= N; i++)	1 to initialize i, N+1 for all the tests (i <= N), and N for all the increments, which is 2N + 2.		
partialSum += i * i * i;	4 units per time executed and is executed N times, for a total of 4N units.		
return partialSum;	We ignore the costs of returning.		
}			
Total cost: $6N + 4 = O(N)$			

Rule 1 the for loop:

The running time of a for loop is at most [the running time of the statements inside the for loop (including tests)] x [the number of iterations].

For example:

```
for ( i = 1; i <= n ; i++ )
k++
```

► Total cost is 1 + N + 1 + N + N * 1 = 3N + 2, which has O(N).

- Rule 2 Nested for loops:
- The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the for loops.
- For example:

```
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
k++
```

- Total cost is:
 - 1 + (N+1) + N + N * (1 + (N+1) + N + N * 1) = 3N2 + 4N + 2, which has O(N2)

```
O(N<sup>2</sup>) program fragment:

sum = 0

for (j = 0; j < n; j++)

for (k = 0; k < j; k++)

sum++;

\sum_{j=0}^{N-1} \sum_{k=0}^{j-1} 1 = \sum_{j=0}^{N-1} j = \frac{(N-1)N}{2}
```

```
O(N^3) program fragment:

sum = 0

for ( j = 0; j < n; j++ )

for ( k = 0; k < n * n; k++ )

sum++;
```

$$\sum_{i=0}^{N-1} \sum_{k=0}^{N^2-1} 1 = \sum_{i=0}^{N-1} N^2 = N^2 N = N^3$$

Rule 3 Consecutive Statements:

```
for (i = 0; i < n; i++)

a[i] = 0;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[i] += a[j] + i + j;
```

The program fragment, which has O(N) work followed by $O(N^2)$ work, is also $O(N^2)$.

Rule 4 Condition Statement: For the fragment

```
if (condition)
$1
else
$2
```

the running time of a if/else statement is never more the running time of the test plus the larger of the running times of \$1 and \$2.

Logarithms in the Running Time

Binary Search: Given an integer X and integers $A_0, A_1, ..., A_{N-1}$, which are presorted and already in memory, find i such that $A_i = X$, or return i = -1 if X is not in the input.

Binary search algorithm: Compare the search element with **the middle element** of the array, If not equal, then apply binary search to half of the array (if not empty) where the search element would be.

Recurrence equation

$$T(N) = T(\frac{N}{2}) + c$$

Solving the recurrence:

$$T(N) = T(\frac{N}{2}) + c$$

$$= T(\frac{N}{2^2}) + 2c$$

$$= T(\frac{N}{2^3}) + 3c$$

$$\vdots$$

$$= T(\frac{N}{2^k}) + kc$$

With k = log N (i.e. $2^k = N$), we have Thus, the running time is O(log N).

binarySearch Running Time

```
int binarySearch(int a[], int x)
    int low = 0, high = a.length() - 1;
    while (low <= high)
         int mid = (low + high) / 2;
         if( a[mid] < x)
              low = mid + 1;
         else if( a[mid] > x)
              high = mid - 1;
         else
              return mid; // Found
    return -1;
```

Logarithms in the Running Time

Exponentiation: The following algorithm for computing X^N where X and N are two positive integers.

$$X^{N} = \begin{cases} 1 & \text{if } N = 0 \\ X & \text{if } N = 1 \\ X^{N/2}.X^{N/2} & \text{if } N \text{ is even} \\ X^{(N-1)/2}.X^{(N-1)/2}.X & \text{if } N \text{ is odd} \end{cases}$$

The algorithm:

Logarithms in the Running Time

Exponentiation: The following algorithm for computing X^N where X and N are two positive integers.

```
The algorithm:
                          long pow(long x, int n)
                            if( n == 0 )
                              return 1;
                                                                 Running Time:
                            if(n == 1)
                              return x;
                            if( isEven( n ) )
                              return pow( x * x, n / 2 );
                            else
                              return pow( x * x, n / 2 ) * x;
```

Worst Case, Best Case, and Average Case

When sorting a list of numbers in ascending order, we might have one of the following cases:

- Worst Case: The list is sorted in descending order, then maximum number of swaps is performed.
- Average Case: The list is unsorted, then average number of swaps is performed.
- Best Case: The list is sorted in ascending order, then minimum number of swaps is performed.

Best, Worst and Average Case Analysis Sequential Search

- <u>Best case</u>: Searching key element present at first index
- Best Case Time: 1 O(1), B(n) = O(1)
- Worst Case: Searching a key element, present at last index
- Worst Case Time= n, O(n), W(n)=O(n)
- Average case: (all possible case time) / no. of cases
- b Avg. Time = (1+2+3+4+...+n)/n = ((n(n+1))/2)/n = (n+1)/2
 - Average(n) = (n+1)/2

8 6 12 7 5 18 9

$$\sum_{i=a}^{b} constant = constant \times (b-a+1)$$

$$\sum_{i=0}^{N+1} i = \sum_{i=1}^{N+1} i = \frac{N^2 + 3N + 2}{2}$$

$$\sum_{i=0}^{N} i = \sum_{i=1}^{N} i = \frac{N^2 + N}{2}$$

$$\sum_{i=0}^{N-1} i = \sum_{i=1}^{N-1} i = \frac{N^2 - N}{2}$$

$$\sum_{i=0}^{N+1} i = \sum_{i=1}^{N+1} i = \frac{N^2 + 3N + 2}{2}$$

$$\sum_{i=0}^{N} i^2 = \sum_{i=1}^{N} i^2 = \frac{2N^3 + 3N^2 + N}{6}$$

$$\sum_{i=1}^{N} 2^i = 2^{N+1} - 1$$