AE 414, Space Propulsion

Thermodynamic properties

p-pressure (N/m², or Pa) [IPa =
$$1 \frac{N}{m^2}$$
]

 $T = \text{temperature (absolute)}$ (K).

 $P = \text{density (kg/m³)}$
 $V = \text{volume (m³)}$
 $M = \text{mass (kg)}$
 $V = \frac{1}{P}$
 $V = \frac{1}{P}$

$$c_{v} = \left(\frac{\partial e}{\partial T}\right)_{v}$$
 constant volume specific heat $\left(\frac{J}{kg-K}\right)$

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}$$
 constant pressure specific heat $\left(\frac{J}{kg-K}\right)$

I AND I Laws of thermodynamics

I Law:
$$dE = SQ - SW$$

The Law: $dS = \left(\frac{SQ}{T}\right)_{rev}$

Heat is considered positive if added to system.

Work is considered positive if done by system.

If a fluid is in motion, the energy is made up of E, the internal energy; mu2, the kinetic energy; and mgz, the potential energy. The potential energy is negligible in the devices we study in this course Thus the total energy is $(E + \frac{mu^2}{2})$ [see (2.6)]

specific volume (
$$m^3/kg$$
)

 $pv = RT$ (2.13)

Thermodynamic (absolute) temperature (K)

pressure ($\frac{N}{m^2}$ (or) Pa) specific gas constant ($\frac{J}{kg-K}$)

$$P = \frac{1}{v}$$
 \Rightarrow $P = PRT$ (another form of the thermal equation of state)

A gmol of a substance represents an amount of substance with mass equal to its molar mass (M) fmolecular weight, obsoletely.

1 gmol
$$H_2 \equiv 2 \text{ gm H}_2 \left(\overline{M}_{H_2} = 2 \frac{g}{\text{gmol}} \right)$$

1 kgmol $H_2 \equiv 2000 \text{ gm H}_2 = 2 \text{ kg H}_2 \left(\overline{M}_{H_2} = 2 \frac{\text{kg}}{\text{kg mol}} \right)$

gmol is simply written as mol kgmol is simply written as kmol

$$\frac{M}{M_{2}} = \frac{kg}{kmol}$$

$$\frac{Kg}{M_{02}} = \frac{kg}{32 \frac{kg}{kmol}}, \quad \frac{Kg}{N_{2}} = \frac{kg}{kmol}, \quad \frac{kg}{kmol}$$

$$R = \frac{R}{M} \xrightarrow{\frac{1}{\text{kmol}} - K} \Rightarrow \frac{1}{\text{kg} - K}$$

R same for all gases

R different for different gases

$$R_{H_2} = \frac{\overline{R}}{\overline{M}_{H_2}} = \frac{8314.3}{2} = 4157.2 \frac{\overline{J}}{kg-K}$$

$$R_{02} = \frac{R}{M_{02}} = \frac{8314.3}{32} = 259.8 \frac{3}{kg-K}$$

Similarly, RN2 = 296.9 = 189 =

e = e(T), does not depend on specific volume

 $h = e + \frac{p}{p} = e + RT \Rightarrow h = h(T)$, does not depend on pressure.

$$c_{v} = \left(\frac{\partial e}{\partial T}\right)_{v} = \frac{\partial e}{\partial T}$$

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} = \frac{\partial h}{\partial T}$$

$$(2.15)$$

7 - specific heat ratio

$$\gamma = \frac{C_p}{c_v}$$
 (see page 35) $c_p = \frac{7R}{7-1}$ $c_p = \frac{R}{7-1}$

$$\frac{dh}{dT} = \frac{de}{dT} + R \Rightarrow C_p = C_U + R$$

$$C_{p} = \frac{\gamma R}{\gamma - 1}$$

$$C_{U} = \frac{R}{\gamma - 1}$$

Consider
$$TdS = dh - \frac{dp}{p}$$
 for a perfect gas $dh = c_p dT$ (from 2.15), $P = \frac{p}{RT}$ (from 2.13)

$$TdS = C_p dT - \frac{RT}{p} dp$$

$$\Rightarrow dS = C_p \frac{dT}{T} - R \frac{dp}{p} \qquad (2.17)$$

Oftentimes, Cp can be assumed to be constant. Making this assumption, and integrating (2.17) from state 1 to state 1,

$$(S_2 - S_1) = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

As \leq entropy change from \bigcirc to \bigcirc .

Isentropic process is one with no entropy change; dS = d\$ =0.

(2.9) > a reversible, adiabatic (Q=0) process is isentropic.

The above (52-51) expression yields

$$0 = cp \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
 for an isentropic process
$$\Rightarrow \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^R = \left(\frac{T_2}{T_1}\right)^T$$
 since $c_p = \frac{7R}{7-1}$ isentropic relation for an ideal gas with constant c_p or constant c_p .