Chapitre 1

Ensembles, dénombrement et équiprobabilité

Ensembles

Exemple 1. $\{0,1,2\}$ est l'ensemble contenant les éléments 0, 1 et 2.

Exemple 2. \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathcal{M}_{n,p}(\mathbb{R})$, \mathbb{R}^n , $\mathbb{R}^\mathbb{N}$, $\mathcal{C}([0,1],\mathbb{R})$...

Exemple 3. $\{2\}$ est l'ensemble contenant seulement le nombre 2, qui est son unique élément. **Attention :** $2 \neq \{2\}$!

Remarque 1. L'ensemble vide \emptyset est l'ensemble ne contenant aucun élément.

L'ensemble des parties (ou sous-ensembles) $\mathcal{P}(\Omega)$

Définition 1 (Parties d'ensemble). Soient Ω et A deux ensembles. On note $A \subset \Omega$ si pour tout $x \in A$, $x \in \Omega$. On dit alors que A est un sous-ensemble de Ω ou que A est une partie de Ω . L'ensemble de toutes les parties de Ω est notée $\mathcal{P}(\Omega)$.

Exemple 4. $\mathcal{P}(\{1,2\}) = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}.$

Opérations sur $\mathcal{P}(\Omega)$

Définition 2 (Opérations sur $\mathcal{P}(\Omega)$). Soient A et B deux sous-ensembles de Ω (donc éléments de $\mathcal{P}(\Omega)$). On définit les opérations suivantes.

- 1. Union de A et B : $A \cup B$:= $\{x \in \Omega \text{ tels que } x \in A \text{ ou } x \in B\}$.
- 2. Intersection de A et B : $A \cap B := \{x \in \Omega \text{ tels que } x \in A \text{ et } x \in B\}.$
- 3. Complémentaire de $A: \overline{A}(=A^c) = \{x \in \Omega \text{ tels que } x \notin A\}.$

Exemple 5. Si $\Omega = \mathbb{N}$, $A = \{0, 1, 2\}$ et $B = \{1, 2, 3\}$ alors $A \cup B = \{0, 1, 2, 3\}$, $A \cap B = \{1, 2\}$, $A^c = \{3, 4, 5, \dots\}$.

Propriétés des opérations

Théorème 2. Soient A, B et C trois sous-ensembles de Ω (donc éléments de $\mathcal{P}(\Omega)$).

- 1. $(A \cup B)^c = A^c \cap B^c$
- 2. $(A \cap B)^c = A^c \cup B^c$
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 4. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 5. $A \cap (B \cap C) = (A \cap B) \cap C = (A \cap C) \cap B = ... =: A \cap B \cap C$
- 6. $A \cup (B \cup C) = (A \cup B) \cup C = (A \cup C) \cup B = \dots =: A \cup B \cup C$

Ensembles disjoints et partitions

Définition 3. Soient A_1, A_2, \ldots et A_n n sous-ensembles de Ω .

- 1. On dit que $A_1, A_2,$ et A_n sont deux à deux disjoints si pour tous i, j = 1, ..., n tels que $i \neq j$, on a $A_i \cap A_j = \emptyset$.
- 2. On dit que $A_1, A_2,$ et A_n forment une partition de Ω si $A_1 \cup A_2 \cup ... \cup A_n = \Omega$ et pour tous i, j = 1, ..., n tels que $i \neq j, A_i \cap A_j = \emptyset$ $(A_1, A_2,$ et A_n sont deux à deux disjoints).

Exemple 6. Soient $\Omega = \{0, 1, 2, 3, 4\}.$

- $A_1 = \{0, 2\}, A_2 = \{1\}$ et $A_3 = \{3, 4\}$ forment une partition de Ω .
- $B_1 = \{0, 1, 2\}$ et $B_2 = \{2, 3, 4\}$ ne forment pas une partition de Ω .
- $B_3 = \{0,3\}$ et $B_4 = \{1,2\}$ ne forment pas une partition de Ω .

Produit cartésien, liste

Définition 4. Soient n un nombre entier non nul et $\Omega_1, ..., \Omega_n$ n ensembles.

1. Le produit cartésien des ensembles $\Omega_1, ..., \Omega_n$ se note $\Omega_1 \times ... \times \Omega_n$ et est défini par $\Omega_1 \times ... \times \Omega_n = \{(x_1, ..., x_n) : \forall j \in \{1, ..., n\}, x_j \in \Omega_j\}.$

Ses éléments sont appelés des n-uplets.

- 2. Si pour tout $j \in \{1, ..., n\}$, $\Omega_j = \Omega$, alors un élément de $\Omega_1 \times ... \times \Omega_n = \Omega^n$ est appelé une n-liste de Ω .
- 3. Soit $(x_1, ..., x_n)$ une n-liste d'un ensemble Ω . Si pour tout $i \neq j$, $x_i \neq x_j$, alors on dit que $(x_1, ..., x_n)$ est une n-liste sans remise (ou n-liste sans répétition ou arrangement de n éléments) de Ω .

ATTENTION: $(x_1, ..., x_n) \neq \{x_1, ..., x_n\}$

Cardinalité

Définition 5. Un ensemble E est dit fini s'il ne possède qu'un nombre fini d'élément(s). Dans ce cas, le nombre d'élément(s) est appelé cardinal de E et est noté card(E) ou #(E).

Exemple 7. Soit E un ensemble.

- 1. Si $E = \{0, 1, 2\}$, alors E est fini et card(E) = 3
- 2. Si $E = \mathbb{N}$, alors E n'est pas fini.
- 3. Si $E = \mathbb{R}$, alors E n'est pas fini.
- 4. Exercice: si $E = \mathcal{P}(\{0,1,2\})$, alors E est fini et card(E) = 8 (remarque: $8 = 2^3$)

Pour la suite de ce chapitre, nous supposerons que tous les ensembles sont finis.

Théorème 3. Si card(E) = n alors on a les propriétés suivantes.

- 1. Nombre de sous-ensembles de $E : \operatorname{card} \mathcal{P}(E) = 2^n$
- 2. Nombre de k-listes de E: $card(E^k) = n^k$

Exemple 8. Soit $E = \{0, 1\}$

- $\mathcal{P}(E) = \{\emptyset, \{0\}, \{1\}, E\} \text{ et } \operatorname{card}(\mathcal{P}(E)) = 2^2 = 4.$
- les 3-listes sont (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) et (1,1,1). Il y en a $2^3 = 8$.

Permutations

Définition 6. Si card(E) = n, on appelle permutation de E une n-liste sans répétition de E.

Exemple 9. Les permutations de l'ensemble $\{0, 1, 2\}$ sont (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 1, 0) et (2, 0, 1). Il y en a 6=3!

Théorème 4. Si card(E) = n, alors le nombre de permutations de E est n!.

Nombre d'arrangements

Définition 7. Pout tous $k, n \in \mathbb{N}$, on pose

$$A_n^k = \begin{cases} \frac{n!}{(n-k)!} & \text{si } n \ge k, \\ 0 & \text{si } n < k. \end{cases}$$

Théorème 5. Pour tous $k, n \in \mathbb{N}$, A_n^k est le nombre de k-listes sans répétition que nous pouvons former à partir d'un ensemble de n éléments.

Exemple 10. Les 2-listes sans répétition de l'ensemble $\{0,1,2\}$ sont (0,1), (0,2), (1,0), (1,2), (2,1) et (2,0). Il y en a $\frac{3!}{(3-2)!} = 6$.

Coefficients binomiaux

Définition 8. Pour tous $k, n \in \mathbb{N}$, on pose

$$C_n^k = \frac{A_n^k}{k!} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } n \ge k, \\ 0 & \text{si } n < k. \end{cases}$$

Théorème 6. Soient $k, n \in \mathbb{N}$ (avec $k \leq n$). Le nombre de sous-ensembles de k éléments d'un ensemble de n éléments est égal à C_n^k .

Exemple 11. Les sous-ensembles de 2 éléments de l'ensemble $\{0,1,2\}$ sont $\{0,1\}$, $\{0,2\}$ et $\{1,2\}$. Il y en a $\frac{3!}{2!(3-2)!}=3$.

Propriétés des coefficients binomiaux

Théorème 7. Soient $k, n \in \mathbb{N}$ (avec $k \le n$) et $x, y \in \mathbb{C}$. On a les propriétés suivantes.

1.
$$C_{n+1}^{k+1} = C_n^{k+1} + C_n^k$$

2.
$$(x+y)^n = \sum_{j=0}^n C_n^j x^j y^{n-j}$$
.

$$3. C_n^k = C_n^{n-k}.$$

4.
$$2^n = \sum_{j=0}^n C_n^j$$
.

Équiprobabilité

Définition 9. On appelle équiprobabilité sur un ensemble Ω une application $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ définie par

$$\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)} \quad \text{pour tout } A \in \mathcal{P}(\Omega).$$