process P P = nonCritP.P + is_wantq_false.P1 P1 = set_wantp_true.P2 P2 = critical.P3 P3 = set_wantp_false.P

process q

Q = nonCritQ.Q + is_wantp_false.Q1

Q1 = set_wantq_true.Q2

Q2 = critical.Q3

wantP (all actions are coactions)

WP = is wantp false.WP + set wantp true.WP1 WP1 = is wantp true.WP1 + set wantp false.WP wantQ (all actions are coactions)

WQ = is wantq false.WQ + set wantq true.WQ1 WQ1 = is wantq true.WQ1 + set wantq false.WQ

Q3 = set_wantq_false.Q system: (P || WP || WQ || Q) \ {is_wantp_false, is_wantp_true, set_wantp_true, set_wantp_false, is_wantq_true, set_wantq_false} tau (set_wantp_false) tau (set_wantp_false) nonCritP√ nonCritQ Y1 tau (is_wantq_false) tau (is_wantp_false) nonCritP nonCritQ Y2 **Y3** tau (is_wantp_false) tau (is_wantq_false) tau (set_wantq_true) tau (set_wantp_true) Y6 tau (set_wantp_true) tau (set_wantq_true) nonCritQ nonCritP Y5 **Y**4 Y7 critical Y8 critical nonCritQ nonCritP Y10 tau (set_wantq_true) tau (set_wantp_true) Y9 critical critical Y12 Y13 Y11 critical critical tau (set_wantq_true) tau (set_wantp_true) tau (set_wantq_false) tau (set_wantp_false) Y15 Y14 6 5 critical tau (set_wantq_false) critical tau (set_wantp_false) Y16 tau (set_wantp_false) tau (set_wantq_false) legend correct states states reachable, wich do not respect all constraints