Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Matemàtiques

Sèrie 1

Responeu a CINC de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2 punts.

Podeu utilitzar calculadora, però no s'autoritzarà l'ús de calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

1. Considereu el sistema d'equacions lineals següent, que depèn del paràmetre λ :

$$\begin{cases} \lambda x + y - z = 0 \\ y + z = 10 \\ 2\lambda x - y + 5\lambda z = 30 \end{cases}$$

- *a*) Estudieu per a quins valors del paràmetre λ el sistema és incompatible. [1 punt]
- **b**) Resoleu el sistema per al cas $\lambda = 1$. [1 punt]
- **2.** Considereu els plans π_1 : 5x y 7z = 1 i π_2 : 2x + 3y + z = 5.
 - a) Determineu l'equació general (és a dir, la que té la forma Ax + By + Cz = D) del pla que passa per l'origen de coordenades i és perpendicular als plans π_1 i π_2 . [1 punt]
 - **b**) Calculeu l'angle que formen els plans π_1 i π_2 . [1 punt]
- 3. Sigui la funció $f(x) = \frac{1}{x^2 k}$, en què k és un paràmetre real diferent de 0. Per als

diferents valors del paràmetre k:

- a) Calculeu el domini i les asímptotes de la funció.
 [1 punt]
- b) Calculeu els punts amb un màxim o un mínim relatiu.[1 punt]

4. Sabem que el sistema d'equacions lineals següent té una única solució:

$$\begin{cases} x + ay = 1 \\ x + az = 1 \\ y + z = a \end{cases}$$

a) Comproveu que $a \neq 0$.

[1 punt]

- **b**) Trobeu la solució del sistema en funció del paràmetre *a*. [1 punt]
- 5. Considereu les matrius quadrades d'ordre 2 de la forma $M = \begin{pmatrix} x & -1 \\ y^2 + 1 & x \end{pmatrix}$, amb x i y nombres reals.
 - a) Comproveu que la matriu M és sempre invertible, independentment dels valors de x i de y.
 [1 punt]
 - **b)** Per a x = 1 i y = -1, calculeu M^{-1} . [1 punt]
- **6.** Considereu un con de $120 \,\mathrm{cm}^3$ de volum que té una altura h, un radi de la base x i una aresta a, com el de la figura següent:

- a) Comproveu que $a^2 = \frac{360}{\pi} \cdot \frac{1}{h} + h^2$.
- **b**) Calculeu l'altura del con que té l'aresta de longitud mínima. [1 punt]

Nota: Recordeu que el volum del con és un terç del volum del cilindre recte que té la mateixa base i la mateixa altura que el con.

Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Matemàtiques

Sèrie 5

Responeu a CINC de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2 punts.

Podeu utilitzar calculadora, però no s'autoritzarà l'ús de calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

- 1. Siguin les rectes de \mathbb{R}^3 $r: \begin{cases} 2x y = 1 \\ y 2z = 0 \end{cases}$ i $s: x + 1 = \frac{y 2}{2} = z 1$.
 - *a*) Comproveu que són paral·leles. [1 punt]
 - b) Calculeu l'equació vectorial del pla que les conté.
 [1 punt]
- 2. Considereu el sistema d'equacions lineals següent:

$$\begin{cases} x - y + z = 0 \\ 2x + kz = 1 \\ x + (k+1)y + z = k^2 - 4 \end{cases}$$

en què k és un paràmetre real.

- *a*) Discutiu el sistema per als diferents valors de *k*. [1 punt]
- **b**) Resoleu el sistema per al cas k = -2. [1 punt]
- 3. Responeu a les questions seguents:
 - a) Comproveu que la recta tangent a la corba $y = x^2$ en el punt d'abscissa x = 2 és la recta y = 4x 4 i calculeu els punts d'intersecció d'aquesta recta amb els eixos de coordenades.

[1 nunt]

b) Calculeu l'àrea limitada per la corba de l'apartat anterior, la recta tangent en x = 2 i l'eix de les abscisses.

[1 punt]

4. Considereu la matriu
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$
.

- *a*) Calculeu les potències A^2 , A^3 i A^6 . [1 punt]
- **b)** Calculeu la inversa de la matriu A^5 .
- 5. Sigui $\begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & a \\ 1 & 1 & a & a^2 \end{pmatrix}$ la matriu ampliada d'un sistema d'equacions lineals.
 - *a*) Discutiu el sistema segons els valors del paràmetre *a*, i interpreteu el resultat geomètricament.

[1 punt]

- b) Per a a = 1 trobeu la forma paramètrica del pla solució i doneu un punt i dos vectors directors d'aquest pla.
 [1 punt]
- **6.** El croquis de sota representa la paret d'unes golfes amb el sostre inclinat, en la qual es vol construir un armari rectangular com el de la zona ombrejada.

- *a*) Expresseu l'àrea del rectangle en funció de la longitud *x* del segment *AB*. [1 punt]
- **b**) Determineu les dimensions del rectangle si volem que tingui una superfície màxima i calculeu aquesta superfície màxima.

 [1 punt]