TECHNISCHE UNIVERSITÄT DORTMUND FAKULTÄT STATISTIK LEHRSTUHL COMPUTERGESTÜTZTE STATISTIK DR. UWE LIGGES
M.SC. DANIEL HORN
M.SC. HENDRIK VAN DER WURP
STEFFEN MALETZ

Übung zur Vorlesung Computergestützte Statistik Wintersemester 2018/2019

Übungsblatt Nr. 6

Abgabe ist Montag der 19.11.2018 an CS-abgabe@statistik.tu-dortmund.de oder Briefkasten 138

Aufgabe 1 (4 Punkte)

Betrachten Sie das Greville Verfahren zur Bestimmung der generalisierten Inversen X^+ .

- a) (3 Punkte) Implementieren Sie die Zeilenvariante des Greville-Algorithmus in einer Funktion greville.
- b) (1 Punkt) Testen Sie Ihre Implementierung. Schreiben Sie dazu eine Test-Funktion, mit der Sie die Korrektheit eines beliebigen Algorithmus zur Bestimmung einer MP-Inverse überprüfen können. Testen Sie in Ihrer Funktion für einige Matrizen, ob bekannte Eigenschaften von MP-Inversen erfüllt sind.

Aufgabe 2 (4 Punkte)

Betrachten Sie die Zielke-Matrizen vom Typ Z1 für p beliebig.

- a) Schreiben Sie eine Funktion zielkeMatrix, die für gegebenes \mathbf{Z} , und n die entsprechende Zielke Testmatrix vom Typ $\mathbf{X}_{Z1}(\mathbf{Z}, n)$ zurückgibt.
- b) Schreiben Sie eine Funktion invZielkeMatrix, die für gegebenes \mathbf{Z} , und n die exakte Inverse der entsprechenden Zielke Matrix zurückgibt.

Testen und Dokumentieren Sie Ihre Funktionen wie üblich. Es bietet sich hier an, eine gemeinsame Testfunktion für a) und b) zu schreiben.

Hinweis: Sie können sich gerne auf die Implementierung des Falles p=1 beschränken. In diesem Fall können jedoch maximal 2 Punkte erreicht werden.

Aufgabe 3 (4 Punkte)

Zeigen Sie, dass die Abschätzung der F-Konditionszahl $K_F(\mathbf{X}_{Z1}(Zn)) \approx 2nZ^2$ am Ende von Kapitel 2.2.1 für Matrizen vom Typ Z1 mit p=1 gilt. **Hinweis**: Gehen Sie in Ihren Abschätzungen davon aus, dass Z >> n gilt.