Identifier des nœuds IoT en espionnant leur signal radio

Arnaud Tulippe-Hecq
Directeur: Professeur Bruno Quoitin

Département d'Informatique Faculté des Sciences Université de Mons

26 juin 2024

Contexte:

- menaces de sécurité de plus en plus sophistiquées
- plus possible d'uniquement se fier aux identifiant d'un appareil
- Besoin d'une nouvelle approche basé sur les propriétés physiques

Objectif:

 Analyser les propriétés physiques du signal radio d'un nœud utilisant la technologie LoRa via une méthode de RFFI

Spectre des technologies sans fil[1]

Architecture de LoRaWAN[2]

Session LoRaWAN

Over The Air Activation

- Join request (DevUEI, appEUI, code MIC)
- Join accept (DevNonce, NwkSKEY, appSKEY)
- Chiffrement AES

Activation by personnalisation

- Adresse et clés hardcodées
- Devices déployé en zone de couverture LoRaWAN
- Pas de join request, ni join accept

LoRa (Long Range):

- Technologie LPWAN
- Opère sur la bande ISM
- Modulation FSCM

Structure d'un paquet LoRa[3]

Modulation LoRa:

- Mixe entre CSS et FSK
- Dépend de β et SF
- Contient 2^{SF} symboles
- Représentation fréquentielle sous forme de chirps

Downchirp[4]

Radio Frequency Fingerprinting Identification

- Différentes approches
- Propriétés physiques des signaux

Article de référence Par Yu Jiang, Linnning Peng, Aiqun Hu, Sheng Wang, Yi Huang et Lu Zhang [5]

Méthode des DCTFs

- Récupération des échantillons I/Q
- Application d'une équation différentielle
- Plot des données dans le plan complexe
- Récupération du centre de la signature

Matériel

Module RN2483

RTL-SDR R820T2

Configuration

Émetteur:

- Fréquence
- Modulation
- Spreading factor
- Largeur de bande
- Puissance
- Coding rate

Récepteur:

- Fréquence
- Sample rate
- Gain

Résultats pour un échantillon

Résultats pour 25 échantillons

Analyse de la forme géométrique de la signature

Conclusion

- RFFI possible ? Oui
- RFFI Selon la position géographique de la signature
- RFFI selon la forme géométrique de la signature

Références

- [1] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT express, 5(1):1–7, 2019
- [2] https://www.thethingsnetwork.org/docs/lorawan/architecture/
- [3] E. Gambi, L. Montanini, D. Pigini, G. Ciattaglia, and S. Spinsante. A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol. International Journal of Distributed Sensor Networks, 14:155014771880683, 10 2018.
- [4] https://blog.ttulka.com/lora-spreading-factor-explained/
- [5] X. Wu, Y. Jiang, and A. Hu. Lora Devices Identification Based on Differential Constellation Trace Figure. In Artificial Intelligence and Security: 6th International Conference, ICAIS 2020, Hohhot, China, July 17–20, 2020, Proceedings, Part I 6, pages 658–669. Springer, 2020.