成果简介

成果曾获奖励情况	获 奖	奖项名称	获 奖	授 奖
	时间		等 级	部门
	2023.8	智能教育中精准学习 理论和方法	安徽省科学技术二等奖	安徽省人民政府
	2020.1	编程实践能力培养导 向的课程建设与实践	安徽省高等学校教学成果特等奖	安徽省教育厅
	2017	面向在线用户消费行 为理解的数据挖掘方 法研究	中国人工智能学会优秀博士论文奖	中国人工智能学会
	2016	面向移动商务的数据 挖掘方法及应用研究	中国人工 智能学会 优秀博士 论文奖	中国人工智能学会
	2016	面向移动商务的数据 挖掘方法及应用研究	中国科学 院优秀博 士论文奖	中国科学院
	2014	基于用户兴趣建模的 推荐方法及应用研究	中国科学 院优秀博 士论文奖	中国科学院

1

	2022	基于用户决策行为的 个性化推荐方法及应 用研究	中国计算 机学会优 秀博士论 文奖	中国计算机学会
	2010	基于大规模搜索日志 挖掘的上下文感知搜 索研究	中国计算 机学会优 秀博士论 文奖	中国计算机学会
	2020	数据科学与大数据技 术专业建设探索与实 践	教育部首 批新工科 研究与实 践项目优 秀案例集	教育部
	2024.10	中国科学院优秀导师	省部级	中国科学院
	2022	安徽省教坛新秀	省部级	安徽省教育厅
			共立即到	
	2025	大规模个性化分类的 机器学习理论与方法	教育部科 学研究优 秀成果奖 自然科学	教育部
	2025		学研究优 秀成果奖 自然科学	教育部 中国人工智能 学会

	2018	情境大数据融合表示 与分析挖掘研究及应 用	教育部科 学研究果	教育部
	2023	面向推荐系统的数据 挖掘基础理论与方法	中国计算 机学会自 然科学一 等奖	中国计算机学会
成果起止	,,	005年9月 020年7月	实践检验期:	5 年
时间				

1. 成果简介及主要解决的教学问题(不超过 1000 字,仅限文本格式,下同)

习近平总书记指出,人工智能要占领先机、赢得优势,必须在基础理论、方法、工具等方面取得突破。而数据科学作为其核心环节,其高质量人才培养既是人工智能坚实发展的保障,也是落实习总书记"深化数据资源开发利用和开放共享"重要指示的积极举措。由于数据科学的学科交叉与多域应用特性,既需要推动理论创新的科学领军人才,也需要聚焦系统实践的技术领军人才,两者相辅相成,共同响应国家重大战略与经济社会发展需求。为此,自2005年起,中国科大大数据分析与应用团队秉承"按需育才、分类培养"理念,构建了贯通产学研全流程的研究生人才培养体系,实现了"以国家战略为牵引、系统思维为核心、多元创新为导向"的数据科学人才培养改革:

(1) **面向战略需求**: 围绕国家战略和社会发展的分类人才需求制定长期规划, 打造杰出人才领军的攻关专班, 通过多类型重大科研项目引导学生在"解真问题、啃硬骨头"中锤炼技能。

- (2) **强化系统思维**:构建协同培养体系,通过多维交叉课程体系设计与自主研发平台建设双管齐下,着力锻炼学生的系统集成能力,助力学生成长为具有全局视角的数据科学领军人才。
- (3) **坚持创新导向:** 破除"唯论文"单一评价,构建学术/工程分类评价标准与培养体系,通过国际学术交流、校企协同创新等举措实现因材施教,并依托双创项目推进复合型人才培养。

近二十年来,团队通过在情境数据挖掘、推荐系统等数据科学领域前沿问题的持续攻关,培养了大批高水平研究生,相关成果先后获得教育部/中国电子学会/中国计算机学会/中国人工智能学会等省部级或国家学会一等奖。所培养的毕业生广泛进入知名高校、一流科研院所和领军企业工作,其中 5 位毕业生入选国家级青年人才项目,10 余人获得中国科学院院长特别奖(中科院博士生最高奖)和中科院/各类全国性学会优秀博士论文,多人担任百度、OPPO、讯飞等领军企业高管或成为政府部门/军队系统技术骨干。

本项目主要解决的教学问题如下:

- (1) **学什么——培养目标树立难题**: 学术热点演化导致技术方向庞杂, 学生缺乏长周期发展规划。如何坚持战略牵引与需求导向, 在研究"真问题"中树立分类培养的明确目标?
- (2) **怎么学——系统思维锤炼难题**:数据科学人才需求从"单一模型创新"转向"系统集成创新",系统型思维需求陡增,如何通过课程建设与工程实践,培养系统型领军人才?
- (3) **学怎样——评价体系完善难题**: 当下,数据学科研究生培养导向仍面临"重论文、轻实践"单一化问题,如何通过完善分类评价体系与培养模式,增强研究生教育的适应度?
- 2. 成果解决教学问题的方法 (不超过 1000 字)
 - (一) 加强战略牵引,引导学生聚焦前沿问题

完善顶层科研规划:构建服务国家战略需求与经济发展方向的"红专并进式"分类培养模式与长远规划。一方面,从团队承担的科技部重点研发计划项目等重大攻关项目中提炼"卡脖子"前沿问题,引导学术型学生进行理论创新;另一方面,依托军委装备发展部重大项目、国家自科重大仪器研制项目等锤炼工程类学生的实践技能,形成"以需定题、以题促学、以学强能"的培养机制。

打造交叉导师团队: 以 4 名国家级人才为基础,结合化学、仪器科学、教育学等跨学科专家打造一流导师队伍,深入一线指导选题训练、方法指导、成果打磨、价值引导等环节,并依托中科院先导项目等形成专项攻坚团队,通过"有组织科研"培养高素质人才;同时,立足业界实际需求,遴选企业高管担任实践导师,并依托安徽高等研究院等平台,通过企业工程实践教学实现"产教融合"。

(二) 拓宽全局视野, 构建系统能力培养路径

建设系统课程方案:依托我校理、工学科优势构建系统课程体系,既包括计算机数学、数据科学基础等理论基础课程,又包括社会计算、生物信息学等交叉学科课程,并要求学生修读"机器学习与数据挖掘前沿"课程和至少一门跨学院课程,在培养数据科学系统性能力的同时拓展视野,从而满足数据科学"宽、专、新"的教学要求,并为跨领域科研打下扎实基础。

加强应用研发实践:根据分类培养需求,引导学术型学生参与科研竞赛,通过前沿理论成果在复杂现实问题中的组合应用锻炼系统性思维,以实践促科研,十余次获得相关国际竞赛冠军;同时,推动自主研发平台建设,由学生主导需求分析、系统设计、软件开发的全流程,在锻炼全局视野的同时取得良好应用成效,其中自研 CODIA 智能辅导平台已在多所学校推广应用。

(三) 完善分类评价, 拓展多元成才发展通道

打破单一评价局限:面向多样化人才需求及学生不同志趣,构建分类支持机制。在鼓励学术型研究生发表高水平论文的同时,引导学生通过学科竞赛、社会公益等方式检验研究成果,6名学生获中国科学院院长特别奖等荣誉;同时,面向工程类学生,推动毕业评定标准向系

统、专利、转化等多元成果拓展,提升了培养质量与就业匹配度,多位毕业生担任企业高管,更好地服务经济社会发展需求。

建立分类过程管理:从知识/工程创新的需求差异出发,制定针对性培养计划与支持方案。在知识创新方面,建设认知智能全国重点实验室等一流科研平台,并通过联培、访学等形式建立国际学术合作网络,为学术性人才提供全方位托举;在工程创新方面,与阿里巴巴、科大讯飞、OPPO等构建多个产学研协同创新平台,通过企业实践环节的产业级工程培训,充分锻炼工程类人才的应用技能。

培养双创复合人才: 鼓励学术型、工程型学生联合组队参与"互联网+"等实践类赛事,在形成"学以致用"良好风气的同时,实现理论基础与工程实践紧密结合的复合型人才培养。相关成果获安徽省"互联网+"大学生创新创业大赛金奖等多项荣誉,并支持多项智能化产品,如"智学网"已在全国推广应用,服务千万师生。

3. 成果的创新点 (不超过 800 字)

(一) 理念创新: 需求牵引, 分类培养

数据科学既需要聚焦理论创新的学术型人才,也需要主持系统开发的应用型人才。因此,迫切需要分类培养以精准对接差异化需求。为此,本团队秉承"按需育才、分类培养"理念,构建以国家战略需求为牵引、以社会经济发展为支点的数据科学人才分类成长路径,依托承担的不同类型重大科研项目,结合以国家级人才和企业高管为核心的跨学科、路领域交叉导师团队,既通过有组织科研的专项攻关夯实学生理论基础,又通过产学研协同创新锻炼学生工程实践能力,这种差异化培养模式优化了人才结构,也为"人工智能+X"跨域深度融合提供多元人才支撑。

(二) 举措创新: 理实交融, 系统增效

数据科学涉及从采集分析到决策支持的完整链条,具有高度的交叉性和复杂性,必须通过培养学生的系统性思维,指导其全面提升解决复杂问题的能力。为此,本团队聚焦"系统集成创新"范式转型,建设从基础

理论、交叉方向到前沿研讨的课程体系,在培养学生完整知识体系的同时拓展跨学科视野。进而结合分类培养需求引导学生开展应用实践,通过参与学术竞赛和研发自主平台的双管齐下,促使学生从"问题驱动"的实际场景出发锤炼系统性思维,实现拔尖创新人才与产业前沿任务的高质量耦合,显著增强学生全局视野、工程素养和系统创新能力。

(三) 机制创新: 以人为本, 因材施教

数据科学具有鲜明应用导向,其价值不仅体现在理论创新,更在于解决真实场景问题。因此,应避免"重理论、轻应用",重视实践成效在人才培养中的价值。为此,本团队立足"多元成果、多维评价",通过建立学术/工程双通道毕业评价体系,在打破"唯论文"局限的同时鼓励学生积极开展应用实践。同时,面向知识/工程创新的差异化培养模式,依托所建设的一流科研平台和国际学术合作网络,以及多个领军企业产研协同创新平台,赋予学生更广阔的成长可能。进而通过双创项目,在孵化智能化成果的同时培育"理实交融"的复合型人才。

4. 成果的推广应用效果 (不超过 1000 字)

(1) 培养理实交融的高层次人才

团队秉承"红专并进、为国育才"的指导原则,培养了一大批研究性人才。其中,5人入选国家级青年人才计划。十余名毕业生赴普林斯顿、清华大学、中山大学等一流高校任教或从事博士后研究。

同时在工程类人才方面,多人担任领军企业高管或成为政府部门/军队系统技术骨干,如李莹(百度副总裁)、刘海峰(OPPO副总裁)、谭昶(科大讯飞副总裁)、曹欢欢(字节跳动首席算法架构师)、陈勇(北方自动控制技术研究所所长助理)等。

(2) 提升数据科学研究生培养质量

团队先后指导学生获权威国际会议论文奖项十余项,其中于数据科学领域旗舰会议 KDD 2008、ICDM 2011 和 KDD 2018 所获论文奖

项均为中国大陆首次获此殊荣。同时,10余人次获中科院院长特别奖(中科院研究生最高奖)、郭永怀奖学金(校研究生最高奖)及中科院/国家级学会优博论文奖,张载熙、叶升宇获首届国家自然科学基金青年学生项目资助。相关成果也荣获教育部/中国电子学会/中国计算机学会/中国人工智能学会等省部级或国家学会一等奖5项。

同时,团队也积极鼓励学生参与各类赛事实践,在国际计算机教育数据挖掘竞赛等权威国际竞赛中获得冠军 20 余项,并先后获得第七届与第九届安徽省"互联网+"大学生创新创业大赛金奖、中国国际大学生创新大赛银奖、升腾人工智能创新大赛全国总决赛金奖等双创类项目奖项,且支持了多项智能化产品,如面向基础教育的智能教育大数据系统"智学网"已在全国 220 个地市的 16000 余所学校推广应用,服务师生约 2500 万人;全球首个围术期风险智能监护系统"术智明哨"已应用于安徽省立医院,服务健康中国。

(3) 建设高水平协同育人科研/校企平台

团队先后建设了科技部重点领域创新团队、认知智能全国重点实验室等国家级科研平台,并与安徽省芜湖市政府共建了长三角信息智能创新研究院,为学术型人才培养提供全方位助力。

在工程协同实践方面,团队与科大讯飞、OPPO 公司等领军企业 共建产学研协同创新平台,还与阿里巴巴共建国家级工程实践教育中 心。同时,加强自研平台建设,在重大工程中锻炼学生的系统应用能 力,如研发在线实践及智能辅导平台课达编程(CODIA)并推广至多 所学校使用,获批 2020 年度安徽省重大线上教学改革研究项目(结 题验收为优秀)。

(4) 推动数据科学领域人才培养经验交流

依托上述成果,团队体现出了良好的影响力。其中,团队负责人陈恩红教授主持的"数据科学与大数据技术专业建设探索与实践"项目于 2020 年入选教育部首批新工科研究与实践项目优秀案例集,并多次进行人才培养经验分享和交流,如 2021 中国计算机大会、2020第二届西部高校计算机学院院长论坛等。还作为教指委委员在国内多

所高校推广介绍团队在人工智能人才培养相关经验,实现了本课题成果的有效推广应用。