

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
28 July 2005 (28.07.2005)

PCT

(10) International Publication Number
WO 2005/069527 A1

(51) International Patent Classification⁷: H03M 13/11

(21) International Application Number: PCT/US2005/000948

(22) International Filing Date: 10 January 2005 (10.01.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/536,071 12 January 2004 (12.01.2004) US
10/815,133 31 March 2004 (31.03.2004) US

(71) Applicant (for all designated States except US): INTEL CORPORATION [US/US]; 2200 Mission College Boulevard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): XIA, Bo [CN/US]; 102 West Palomino Drive, #218, Chandler, AZ 85225 (US). JACOBSEN, Eric [US/US]; 10539 East Salt Bush Drive, Scottsdale, AZ 85259 (US).

(74) Agent: SCOTT, John, C.; The Law Offices of John C. Scott, LLC, c/o PortfolioIP, P.O. Box 52050, Minneapolis, MN 55402 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

(57) Abstract: A low density parity check (LDPC) code is used within a wireless apparatus to perform forward error correction (FEC) coding. Encoding comprises the multiplication (42) with a transpose of a portion (44) of a parity check matrix followed by differential encoding (46). In at least embodiment of the invention, a (2000, 1600) bit-length LDPC code is used.

WO 2005/069527 A1

METHOD AND APPARATUS FOR IMPLEMENTING A LOW DENSITY PARITY CHECK CODE IN A WIRELESS SYSTEM

5 The present application claims the benefit of U.S. Provisional Application Serial No. 60/536071, filed Jan 12, 2004, entitled "A SYSTEM APPARATUS AND ASSOCIATED METHODS FOR HIGH THROUGHPUT WIRELESS NETWORKING."

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction 10 by any one of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

TECHNICAL FIELD

15 The invention relates generally to wireless communications and, more particularly, to error correction coding schemes for use in wireless systems.

BACKGROUND

Wireless channels are often plagued by noise and/or interference effects that can 20 compromise the quality of the communication flowing there through. One strategy for addressing these concerns involves the use of a forward error correction code to encode data before it is transmitted. The forward error correction code adds redundant information to the original data that allows errors in transmission to be corrected after signal reception. Structures and techniques are needed for reliably and efficiently implementing forward error 25 correction in wireless systems.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram illustrating an example wireless network arrangement in 30 accordance with an embodiment of the present invention;

Fig. 2 is a block diagram illustrating an example orthogonal frequency division multiplexing (OFDM) transmitter chain that may be used within a wireless device in accordance with an embodiment of the present invention;

Fig. 3 is a block diagram illustrating an example LDPC encoder in accordance with an embodiment of the present invention;

Fig. 4 is a diagram illustrating a Tanner graph that describes an example LDPC code; and

Fig. 5 is a flowchart illustrating an example method for use in processing data within a wireless device in accordance with an embodiment of the present invention.

10

DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that the various embodiments of the invention, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein in connection with one embodiment may be implemented within other embodiments without departing from the spirit and scope of the invention. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the claims are entitled. In the drawings, like numerals refer to the same or similar functionality throughout the several views.

Fig. 1 is a block diagram illustrating an example wireless network arrangement 10 in accordance with an embodiment of the present invention. As illustrated, one or more wireless user devices 12, 14, 16 are communicating with a wireless access point (AP) 18 via corresponding wireless links. The AP 18 provides access to a network for the user devices 12, 14, 16 (e.g., a private network, a public network, the Internet, a public switched telephone network, a local area network (LAN), a municipal area network (MAN), a wide area network

(WAN), and/or others). The wireless user devices 12, 14, 16 may include any form of device that may be used to wirelessly access a network including, for example, a laptop, desktop, palmtop, or tablet computer having wireless networking capability, a personal digital assistant (PDA) having wireless networking capability, a cellular telephone or other handheld wireless 5 communicator, a pager, and/or others. The wireless links between the wireless devices 12, 14, 16 and the access point 18 may experience noise and/or various interference effects that can compromise communication quality. To overcome such problems, forward error correction may be used. That is, a forward error correction (FEC) coder may be provided within a transmitting device to encode data before it is wirelessly transmitted. When the signal is 10 received, a FEC decoder may be used to decode the signal. The FEC decoder is capable of detecting and correcting one or more errors in the received data. In this manner, errors caused by noise and/or interference effects in the channel may be overcome. In one aspect of the present invention, a low density parity check (LDPC) code is used as a FEC code within a wireless device.

15 In at least one embodiment, features of the present invention are implemented within an orthogonal frequency division multiplexing (OFDM) based wireless system. Fig. 2 is a block diagram illustrating an example OFDM transmitter chain 20 that may be used within a wireless device (e.g., a wireless user device, a wireless access point, etc.) in accordance with an embodiment of the present invention. As illustrated, the transmitter chain 20 may include 20 one or more of: a FEC coder 22, a mapper 24, a serial to parallel converter 26, an inverse fast Fourier transform (IFFT) unit 28, a guard interval (GI) addition unit 30, a wireless transmitter 32, and one or more transmit antennas 34. The FEC coder 22 receives user data at an input thereof and encodes the data using a forward error correction code. As will be described in greater detail, in at least one embodiment, the FEC coder 22 may utilize a special form of low 25 density parity check (LDPC) code to perform the coding. The mapper 24 receives code words from the FEC coder 22 and maps the code words based upon a predetermined modulation constellation. Any form of modulation scheme may be used, including, for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 symbol quadrature amplitude modulation (16-QAM), 64 symbol quadrature amplitude modulation (64-QAM), 30 and/or others. The serial to parallel converter 26 transforms a serial stream of modulation symbols output by the mapper 24 into a parallel format for delivery to the IFFT 28. The IFFT 28 performs an inverse fast Fourier transform on the modulation symbols input thereto to

convert the symbols from a frequency domain representation to a time domain representation.

Although illustrated as an inverse fast Fourier transform in Fig. 2, it should be understood that any form of inverse discrete Fourier transform may be used in the transmitter chain 20.

The GI addition unit 30 adds a guard interval to the time domain signal representation

5 output by the IFFT 28. Guard intervals are placed in transmitted signals to, among other things, increase the immunity of the signals to, for example, multipath effects in the channel. The wireless transmitter 32 is operative for performing functions such as, for example, up-converting the signal, power amplifying the signal, etc. before transmission. One or more transmit antennas 34 may be provided to facilitate signal transmission into the wireless
10 channel. Any form of antenna(s) may be used including, for example, a dipole, a patch, a helix, an antenna array, and/or others. In at least one embodiment, antenna diversity techniques are implemented. In some other embodiments, multiple input, multiple output (MIMO) techniques are used. Other forms of wireless transducer may alternatively be used instead of antennas (e.g., a infrared (IR) diode in an IR-based wireless system, etc.).

15 It should be appreciated that the transmitter chain 20 of Fig. 2 is merely illustrative of one possible transmitter architecture that may utilize features of the invention. Many other architectures may alternatively be used. In at least one embodiment, a transmitter chain is used that is configured in accordance with an IEEE 802.11 wireless networking standard (ANSI/IEEE Std 802.11-1999 Edition and its progeny). Other wireless standards may
20 alternatively or additionally be used.

As described above, in at least one embodiment of the invention, the FEC coder 22 may utilize a low density parity check (LDPC) code to perform the forward error correction coding. In a general analysis, an (n,k) LDPC code has k information bits and n coded bits with code rate $r = k/n$. A parity check matrix H of dimension $(n-k) \times n$ may be developed that
25 fully describes the LDPC code. The parity check matrix H defines a set of equations:

$$\bar{v} \cdot H^t = 0 \quad (\text{Equation 1})$$

for all code words v of the code, where H^t is the transpose of parity check matrix H . An
30 example parity check matrix H and the corresponding expanded parity check equations are shown below for an LDPC code (9,3):

$$\text{II} \quad \left[\begin{array}{cccccc|c} 1 & 1 & 1 & 1 & 1 & | & \\ 1 & 1 & 1 & 1 & 1 & | & \\ 1 & 1 & 1 & 1 & 1 & | & \\ 1 & 1 & 1 & 1 & 1 & | & \\ 1 & 1 & 1 & 1 & 1 & | & \end{array} \right] \iff \left\{ \begin{array}{l} v_1 + v_4 + v_7 = 0 \\ v_2 + v_3 + v_8 = 0 \\ v_3 + v_5 + v_9 = 0 \\ v_1 + v_3 + v_9 = 0 \\ v_2 + v_5 + v_7 = 0 \\ v_3 + v_4 + v_8 = 0 \end{array} \right.$$

where v_k represents the bits of the codeword v . LDPC codes may be encoded via a generator matrix G . For a given information vector \bar{u} to be encoded, the corresponding code word \bar{v} may be generated as follows:

$$\bar{v} = \bar{u} \cdot G \quad (\text{Equation 2})$$

From equations 1 and 2, it follows that:

10

$$\bar{u} \cdot G \cdot H^t = 0 \quad (\text{Equation 3})$$

Since \bar{u} is an arbitrary vector, the following relationship applies:

15

$$G \cdot H^t = 0 \quad (\text{Equation 4})$$

For a given parity check matrix H , there will typically be 2^k different G matrices that satisfy Equation 4, provided the rank of the H matrix is $n-k$. One of these generator matrices has the format:

20

$$G = [I_{k \times k} \mid P_{k \times (n-k)}] \quad (\text{Equation 5})$$

where $I_{k \times k}$ is a $k \times k$ identity matrix and $P_{k \times (n-k)}$ is a $k \times n-k$ matrix. A coder implementing the generator matrix of Equation 5 is known as a systematic encoder since the first k bits of the code word are identical to the k information bits.

25 The parity check matrix H for an LDPC code may be represented as having two sub-matrices, as follows:

$$H = [H_1 | H_2] \quad (\text{Equation 6})$$

where sub-matrix H_1 has dimension $(n-k)*k$ and sub-matrix H_2 has dimension $(n-k)*(n-k)$. According to Equation 4, and assuming that H_2 is non-singular, it follows that:

$$I \cdot H_1' + P \cdot H_2' = 0 \Rightarrow P = H_1' H_2^{-1} \quad (\text{Equation 7})$$

and the codeword \bar{v} is in the format:

10

$$\bar{v} = \bar{u} \cdot G = [\bar{u} | \bar{u}P] = [\bar{u} | \bar{u}H_1' H_2^{-1}] \quad (\text{Equation 8})$$

For some LDPC codes, high encoding complexity may arise if a high density H_2^{-1} matrix is used in Equation 8 above. However, in at least one embodiment of the present invention, the sub-matrix H_2 is implemented as $f(D) = 1 + D$, which allows H_2^{-1} to be realized using a well known differential encoder. The encoding process in such an embodiment may be expressed as:

$$\bar{v} = [\bar{u} | \bar{u}H_1' H_2^{-1}] = \left[\bar{u} | \bar{u}H_1' \frac{1}{1+D} \right] \quad (\text{Equation 9}).$$

20

where D is a unit delay.

Fig. 3 is a block diagram illustrating an example LDPC encoder 40 in accordance with an embodiment of the present invention. The LDPC encoder 40 may be implemented as part of, for example, the FEC unit 22 of Fig. 2 or FEC functionality within other wireless devices. As illustrated, the LDPC encoder 40 includes: a matrix multiplier 42, a storage medium 44, a differential encoder 46, and a concatenation unit 48. The storage medium 44 is operative for storing a representation of the sub-matrix H_1 (or the entire parity check matrix H) for use in LDPC encoding. The matrix representation stored on the storage medium 44 may be in conventional matrix form, in list file form (as in Appendix A), in transpose form, or in any other form that is descriptive of the content of the matrix.

Although not shown, the information stored within the storage medium 44 may also be used to perform LDPC decoding within the corresponding wireless apparatus (i.e., during receive operations). Any type of storage medium may be used including, for example, a semiconductor memory, a read only memory (ROM), a random access memory (RAM), an erasable programmable read only memory (EPROM), an electrically erasable programmable read only memory (EEPROM), a flash memory, a magnetic or optical card, a magnetic disk, an optical disk, a CD-ROM, a magneto-optical disk, and/or other forms of machine readable storage. The storage medium 44 may be a dedicated storage unit (e.g., to store only the parity check matrix H , the sub-matrix H'_1 , etc.) or it may also be used to store other information.

The matrix multiplier 42 receives an information vector \bar{u} at an input thereof. The matrix multiplier 42 then performs a matrix multiplication of the vector \bar{u} and the sub-matrix H'_1 . The result of the matrix multiplication is then delivered to the differential encoder 46 which performs a differential encoding operation thereon (i.e., $\frac{1}{1+D}$). The matrix multiplier 42 and the differential encoder 46 may operate independently of one another or their operation may be pipelined (e.g., once a bit is output from the matrix multiplier 42 it is immediately used by the differential encoder 46). The output of the differential encoder 46 is vector \bar{p} . The concatenation unit 48 concatenates the original information vector \bar{u} with the vector \bar{p} to generate the codeword \bar{v} . The codeword \bar{v} may then be delivered to a next processing stage within a wireless transmitter chain (e.g., mapper 24 in the transmitter chain 20 of Fig. 2).

In at least one embodiment of the present invention, a (2000, 1600) LDPC code is implemented within the transmitter chain of a wireless apparatus. A list file describing a parity check matrix H that is used in one such implementation is set out in Appendix A herein. The list file of Appendix A describes the data within the corresponding parity check matrix. The parity check matrix H of Appendix A (or a portion thereof) may be stored within, for example, the storage medium 44 of Fig. 3. In at least one embodiment, only the portion of the parity check matrix H of Appendix A that corresponds to sub-matrix H_1 (or the transpose thereof) is stored within the storage medium 44 (i.e., the columns having a weight of 4 in the matrix description of Appendix A). The sub-matrix H_1 of the parity check matrix H of Appendix A is relatively low-

density with a uniform column weight of four. The LDPC code corresponding to the matrix H of Appendix A has been designed to provide good performance with variable-length data blocks, while still achieving a manageable implementation complexity. The codeword length has been selected to provide a good tradeoff between performance and 5 complexity for use in wireless (and some wireline) applications. It should be appreciated that small variations may be made to the parity check matrix H of Appendix A with little or no degradation in performance. As used herein, a matrix is "substantially as described in the list file of Appendix A" if the matrix is the same as the matrix described in Appendix A or the matrix varies from the matrix described in Appendix A in a manner that 10 produces little or no degradation in performance.

It should be understood that the parity check matrix H described in Appendix A is merely one example of a parity check matrix that may be used in accordance with embodiments of the present invention. In other embodiments, other parity check matrices may be used.

15 As described above, the parity check matrix H of Appendix A is described using a list file. This method of matrix description will be discussed below. A parity check matrix H will typically include ones and zeros in locations throughout the matrix. The list file of Appendix A describes the locations of these one and zeros for the subject matrix. A full definition of an LDPC code can be accomplished through identification of the locations 20 of the "edges" between the "variable nodes" (codeword bits) and "check nodes" (parity relationships). Fig. 4 is a diagram illustrating a Tanner graph 50 that describes an example LDPC code. The Tanner graph 50 illustrates the arrangement of the check nodes 52, the variable nodes 54, and the "edges" 56 connecting them for the corresponding code. The codeword is made up of the bits represented by the variable nodes 54. For the code of Fig. 4, 25 each codeword has ten bits. Each check node 52 represents a parity relationship between the codeword bits represented by the variable nodes 54 connected to it by the edges 56. The number of edges 56 connected to a check node 52 is called the "degree" of the check node 52. Likewise, the number of edges 56 connected to a variable node 54 is called the "degree" of the variable node 54. For the illustrated code, all check nodes 52 30 are of degree eighteen, all variable nodes 54 related to the systematic information bits are of degree four, and all variable nodes 54 corresponding to parity bits are of degree two, except for the last, which is of degree one.

Since the organization of the edges in LDPC codes appears random, the edge locations must be explicitly defined by means of a list. A straightforward means of describing a code by means of such a list follows. The matrix $H = [H_1 \ H_2]$ comprises a regular matrix H_1 with constant column weight 4 and a weight-2 lower-triangular inverse matrix H_2 for efficient encoding purposes. An LDPC code list file may contain three parts to fully describe a parity check matrix H (i.e., all of the ones of the matrix): (a) matrix size (column, row); (b) column weights (number of ones) of each column; and (c) locations of ones in each column. It should be noted that the convention for the indices is zero-based, with the index of the first element of each column being zero. An example H matrix for a $(9,3)$ LDPC code follows:

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

and the corresponding list file is:

15

96
222222222

03

14

20

25

04

15

23

05

25

13

24

The list file set out in Appendix A for the (2000, 1600) LDPC code follows the same basic

approach.

Fig. 5 is a flowchart illustrating an example method 60 for use in processing data within a wireless device in accordance with an embodiment of the present invention. Input data is first matrix multiplied by a transpose of a first portion (i.e., H'_1) of a parity check matrix H (block 62). The parity check matrix H (or some portion thereof) may be stored within a storage medium of the wireless device. In at least one embodiment, the parity check matrix H described in Appendix A is used. A result of the matrix multiplication may then be processed by a differential encoder to generate coded data (block 64). The original input data and the coded data are then concatenated to form a code word (block 66). A wireless signal is subsequently generated and transmitted that includes the code word (block 68). Other code words may also be part of the transmission. In at least one embodiment, the wireless signal is an orthogonal frequency division multiplexing (OFDM) signal. In at least one implementation, the method 60 of Fig. 5 (or a variant thereof) is embodied as a plurality of instructions stored on a machine readable storage medium that may be executed by a digital processing device.

The inventive techniques and structures may be used in any of a wide variety of different wireless devices, components, and systems. For example, in various embodiments, features of the invention may be implemented within laptop, desktop, palmtop, and/or tablet computers having wireless networking functionality, personal digital assistants (PDAs) having wireless networking functionality, cellular telephones and other handheld wireless communicators, pagers, satellite communication devices, devices for use in point to point wireless links, devices for use in local multipoint distribution systems (LMDS) and/or multi-channel multipoint distribution services (MMDS), wireless network interface cards (NICs) and other network interface structures, integrated circuits, and/or other devices.

In the foregoing detailed description, various features of the invention are grouped together in one or more individual embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects may lie in less than all features of each disclosed embodiment.

Although the present invention has been described in conjunction with certain embodiments, it is to be understood that modifications and variations may be resorted to

without departing from the spirit and scope of the invention as those skilled in the art readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and the appended claims.

APPENDIX A

The list file for an example (2000, 1600) LDPC code is set out below:

5

2000 400

	143 225 316 323	180 186 241 251	57 211 274 360
	92 140 191 358	239 254 331 342	12 291 311 348
	69 315 329 343	107 149 250 295	34 220 258 282
	6 121 205 284	73 221 295 362	52 58 109 379
5	58 66 254 337	75 97 242 279	116 248 337 369
	1 47 178 395	32 197 244 313	87 146 183 278
	129 151 212 228	245 248 276 296	42 96 318 361
	66 146 243 265	59 230 322 347	32 176 312 361
	22 140 157 180	17 246 291 364	69 258 310 389
10	120 208 313 321	125 157 227 390	1 84 182 300
	290 350 370 382	122 205 279 348	45 124 161 396
	56 94 184 215	61 298 340 380	15 76 99 101
	84 119 337 344	12 31 256 328	62 248 354 375
	2 156 244 398	119 163 178 217	78 258 262 311
15	9 106 200 336	61 129 185 200	181 265 364 368
	22 37 150 270	34 38 104 295	60 168 227 254
	3 110 326 367	119 289 349 377	162 231 270 377
	235 276 290 335	50 314 322 367	14 102 139 158
	82 187 193 297	28 48 248 382	28 79 155 318
20	43 183 297 379	32 41 128 201	28 40 63 236
	194 239 243 293	91 115 220 368	163 181 258 279
	90 144 228 350	45 151 196 265	158 176 273 334
	170 206 321 395	152 190 198 317	80 236 256 380
	72 138 254 300	157 212 242 275	74 156 214 358
25	25 196 201 279	2 40 249 283	176 229 251 283
	56 59 362 379	195 280 299 345	19 104 114 162
	28 121 170 277	142 151 220 395	141 284 291 358
	61 273 351 386	70 121 252 382	77 123 157 361
	71 76 232 328	52 244 279 297	141 154 215 338
30	62 109 190 201	22 131 256 349	55 294 296 298
	111 162 190 227	47 52 339 346	80 109 272 364
	189 272 288 302	50 288 342 388	43 206 287 363
	14 49 147 334	26 87 247 283	81 175 206 261
	33 53 213 238	67 127 132 136	31 94 275 317
35	53 219 368 379	146 264 321 323	10 123 141 279
	126 149 188 339	210 275 319 346	44 64 157 270
	108 118 182 393	57 160 252 261	160 243 290 373
	0 37 160 295	26 54 170 197	39 217 262 324
	158 200 335 356	120 218 229 341	19 185 312 389
40	11 20 229 397	44 53 124 323	211 271 277 291
	77 86 212 250	0 113 315 358	19 148 155 324
	79 193 262 336	110 144 246 298	24 94 124 314
	43 104 125 376	89 91 99 346	3 85 193 349
	55 114 134 293	21 32 216 393	68 175 202 253
45	240 283 299 333	37 170 209 342	139 160 337 377
	0 24 57 100	49 58 357 399	21 224 249 398
	46 84 322 341	18 23 31 373	113 122 206 327
	5 43 45 221	159 172 195 366	7 10 156 245
	29 217 274 301	213 335 337 378	55 140 182 192 235
50	81 93 116 278	1 103 159 277	161 291 324 387
	93 174 213 231	96 159 209 387	31 232 237 350
	64 201 251 385	102 165 234 378	30 184 235 387
	76 134 278 370	173 245 356 376	136 226 269 327
	71 93 182 398	57 230 240 314	60 4 93 136 167
	38 174 250 377	1 89 153 166	47 148 309 348
	19 116 357 372	25 32 264 342	73 225 252 290
	81 91 164 307	265 276 321 324	44 213 361 386

	79 319 361 381	118 150 267 324	132 197 238 279
	74 251 339 356	68 82 309 398	16 94 150 222
	100 105 246 293	72 154 226 231	241 344 375 386
	68 101 191 285	76 135 151 384	31 121 161 231
5	32 103 323 355	39 48 80 309	9 33 197 350
	122 188 228 305	0 178 305 353	87 197 233 312
	6 77 291 397	88 136 196 321	100 111 129 368
	70 76 259 276	37 95 222 300	184 278 289 346
	72 270 335 348	23 343 358 369	76 177 227 356
10	93 147 255 312	195 252 303 349	11 132 246 314
	92 112 259 388	9 81 102 317	46 93 103 309
	9 18 61 308	20 219 285 316	20 33 64 196
	3 137 139 257	219 281 304 354	111 134 194 204
	165 217 345 354	33 121 319 351	76 116 140 238
15	78 134 263 280	21 157 191 260	189 298 326 381
	186 213 227 303	0 88 303 307	235 317 320 333
	68 194 294 346	13 23 62 268	127 301 348 376
	35 225 284 312	13 173 279 320	51 286 309 377
	117 188 340 346	117 189 253 392	17 70 139 187
20	258 299 306 331	32 40 57 350	54 180 184 344
	83 194 207 349	57 123 148 368	85 311 318 327
	43 141 175 329	18 96 164 326	263 312 364 369
	0 68 170 262	84 103 107 359	97 149 198 336
	25 36 153 309	92 338 350 355	31 141 151 285
25	57 62 273 323	16 70 242 338	72 163 187 311
	7 19 75 264	20 74 141 179	24 54 249 297
	21 254 259 366	159 246 248 365	64 143 322 360
	8 97 156 172	207 292 387 399	53 73 122 256
	9 185 313 330	38 148 303 347	100 138 214 226
30	55 219 253 393	68 113 296 389	265 348 373 378
	86 120 185 233	12 257 286 325	42 62 113 174
	41 136 191 242	50 287 294 327	29 313 349 358
	194 265 303 393	149 259 356 367	154 179 217 268
	256 285 310 399	3 12 178 309	164 289 380 392
35	103 247 275 378	63 92 166 368	109 165 236 312
	115 218 225 285	97 190 199 363	92 141 193 238
	98 196 217 328	13 86 92 308	190 243 267 275
	177 267 306 350	132 141 221 322	95 143 203 393
	82 299 320 395	213 257 348 396	130 213 264 308
40	139 251 364 381	91 147 294 325	102 133 217 226
	42 118 178 194	14 27 48 222	69 88 116 295
	73 100 198 286	11 81 110 360	108 217 273 322
	68 249 292 376	10 50 357 393	26 287 306 343
	13 216 221 256	35 89 248 252	50
45	127 138 177 398	6 55 319 345	8 18 136 152
	20 69 239 264	107 116 223 271	110 240 245 334
	3 126 132 163	168 240 261 384	225 255 278 310
	66 88 169 271	54 204 295 351	63 168 170 303
	88 197 201 387	3 51 146 299	8 17 255 314
	1 51 135 149	74 184 307 361	55
	257 294 331 356	9 202 272 387	28 92 98 200
	204 260 288 294	106 198 281 329	112 201 244 392
	45 144 185 383	36 105 225 236	134 216 344 383
	173 310 329 362	90 139 183 299	21 97 115 396
	15 165 305 348	152 160 292 354	28 69 120 380
	27 66 85 182	11 115 227 236	60
	47 235 238 246	152 202 211 373	34 259 267 314
	230 276 293 367	4 173 346 374	55 72 87 223

	246 253 318 399	60 109 199 348	22 132 258 368
	12 78 90 369	27 89 214 388	65 124 129 325
	17 93 96 102	77 79 83 289	95 105 111 385
	109 162 318 360	119 236 323 383	109 233 250 302
5	22 83 151 290	144 271 372	8 33 80 318
	141 191 240 266	25 42 104 215	51 253 281 288
	25 90 138 390	144 153 357 362	209 237 346 391
	81 113 265 382	133 153 273 383	12 198 221 269
	88 142 210 283	152 174 269 355	9 141 229 306
10	10 40 43 140	107 193 210 320	0 114 219 300
	2 195 268 328	194 298 317 331	242 289 318 335
	117 240 257 374	22 112 139 222	41 90 163 215
	298 332 350 365	147 152 221 365	65 80 99 167
	60 122 240 313	20 48 130 353	269 296 303 356
15	157 215 274 397	58 100 125 172	45 106 232 346
	11 41 164 274	79 181 242 313	86 195 293 391
	67 76 92 104	174 254 304 321	140 193 245 321
	19 192 305 344	70 129 283 385	88 150 183 380
	23 35 125 224	18 79 296 345	230 253 315 373
20	152 163 352 385	14 25 34 52	53 184 258 263
	40 161 165 329	31 88 212 226	17 79 261 286
	113 215 245 378	26 53 123 165	94 293 302 397
	80 168 262 382	101 108 248 328	170 218 358 376
	81 136 165 239	49 115 190 395	61 246 287 292
25	2 42 248 323	23 119 139 282	61 162 245 303
	111 127 157 330	27 206 209 324	25 286 333 355
	79 125 239 341	203 221 332 356	159 241 263 354
	147 172 187 397	181 190 288 379	134 186 305 327
	230 245 277 352	38 73 249 368	33 38 283 301
30	49 202 350 381	45 49 264 394	17 44 159 398
	34 56 167 242	89 112 218 316	108 167 174 374
	36 58 61 83	144 186 297 343	90 105 172 257
	107 110 133 251	152 177 233 237	93 165 180 353
	100 245 295 330	74 171 223 334	40 137 289 296 386
35	16 71 175 397	4 16 44 89	241 273 276 359
	106 206 229 236	103 165 177 358	44 94 211 286
	177 308 371 387	53 217 342 383	166 184 204 226
	89 122 207 362	58 88 126 370	98 281 357 389
	3 166 190 305	4 214 243 383	45 41 107 187 298
	155 171 289 336	5 96 155 354	19 47 379 399
	34 37 293 301	7 61 214 237	1 16 272 296
	143 189 255 338	90 241 261 367	107 203 283 322
	38 75 137 166	39 161 202 206	77 245 266 390
	62 92 124 366	101 132 135 250	50 29 166 345 364
	73 83 105 136	117 191 213 352	61 229 356 361
	69 134 200 366	132 233 270 303	70 105 229 250
	179 324 366 386	16 251 266 370	268 334 344 368
	72 82 188 192	41 45 60 99	78 82 283 393
	100 120 189 375	182 197 276 331	55 7 299 327 334
	244 252 318 329	40 257 262 322	47 82 117 126
	3 105 116 203	148 208 332 352	86 100 337 379
	280 282 288 365	127 159 253 290	299 347 372 375
	38 196 330 369	273 289 325 341	150 156 299 302
	20 31 113 381	95 145 231 297	60 145 252 294 377
	56 173 205 390	70 110 225 313	155 218 250 392
	2 30 165 366	50 112 166 302	131 172 250 278
	41 75 169 302	68 97 128 218	17 64 107 195
	210 271 330 334	90 264 269 280	26 55 142 181

106	181 327 342	22 47 353 387	33 71 91 112
101	103 340 368	0 137 143 167	13 132 247 391
44	196 198 280	21 162 195 339	22 208 226 392
39	148 192 385	24 225 233 338	56 60 158 164
5	37 130 182 207	177 225 232 281	20 105 120 199
	57 242 262 316	77 149 241 310	133 232 236 341
	20 171 259 396	319 325 363 374	90 107 293 370
	257 288 338 361	77 251 308 379	17 32 254 263
	12 290 362 367	183 203 290 330	8 173 238 266
10	153 236 304 330	158 246 275 352	30 167 169 391
	12 144 261 329	78 99 210 238	43 213 328 362
	33 92 106 173	222 271 380 393	73 231 244 282
	68 89 159 308	79 107 201 351	71 221 245 253
	9 23 41 301	66 90 275 287	215 225 258 335
15	109 160 278 387	65 219 247 398	46 87 263 384
	138 235 241 356	16 203 207 237	81 96 282 338
	225 256 321 332	101 216 333 357	192 222 306 353
	32 42 253 275	2 39 326 373	8 115 292 305
	95 199 219 225	51 151 305 341	36 170 186 260
20	116 328 345 395	6 25 30 130	10 85 212 300
	128 159 161 207	2 91 146 227	5 129 198 365
	111 306 363 373	46 141 273 298	19 107 153 308
	174 256 368 381	157 331 374 385	10 57 98 215
	18 104 115 317	172 223 237 258	30 181 211 228 339
25	102 115 140 394	15 93 128 250	62 89 163 295
	91 96 128 327	94 261 312 341	43 77 113 143
	97 99 300 385	167 186 202 372	125 149 196 218
	40 150 229 316	8 29 355 393	83 147 183 279
	124 315 322 359	36 126 155 373	35 62 145 180 397
	21 221 286 301	145 195 227 333	84 280 331 360
	27 88 147 216	45 206 344 369	114 190 281 359
	10 124 128 309	8 166 301 397	69 129 168 187
	57 131 209 296	11 47 141 184	119 144 180 249
	230 237 264 371	7 112 256 377	40 7 47 218 308
	28 118 231 283	108 300 310 312	217 251 269 390
	5 114 230 309	208 218 364 378	189 200 275 372
	122 189 204 251	53 114 278 291	157 218 296 363
	74 151 203 218	131 138 201 365	52 110 151 319
	69 270 288 359	225 279 371 378	45 30 131 153 174
	22 49 291 383	122 275 376 395	28 32 182 198
	80 90 174 249	169 217 239 357	56 263 316 328
	182 310 314 318	18 65 128 288	87 168 275 343
	115 254 336 399	6 62 86 198	24 31 131 148
	42 63 135 343	37 80 119 211	50 166 203 208 231
	46 232 385 391	0 46 139 339	126 170 224 369
	24 27 171 183	0 30 216 306	20 78 193 213
	237 293 322 352	82 152 277 367	123 180 253 323
	81 90 223 363	23 178 350 366	208 229 271 386
	71 85 128 380	121 212 243 384	55 1 52 116 383
	159 309 314 334	257 284 326 382	13 55 71 106
	17 117 315 379	57 138 311 343	7 306 347 364
	87 120 206 267	295 318 322 377	145 163 197 228
	67 116 188 349	78 343 373 377	66 97 212 320
	63 232 338 365	79 89 131 254	60 133 176 282 305
	178 272 327 392	61 74 304 382	22 187 205 372
	19 35 204 386	30 70 168 253	102 160 180 258
	194 235 289 345	64 156 306 332	164 197 311 398
	29 50 154 315	162 197 255 275	75 119 186 254

6 15 65 396	23 82 144 396	6 45 123 126
30 108 341 399	78 93 95 275	69 241 268 274
217 276 326 347	145 169 211 278	158 324 371 399
160 237 274 285	29 163 300 320	62 232 264 373
5 173 248 262 348	33 147 219 391	103 106 146 344
52 65 218 351	199 214 265 280	134 268 295 398
135 140 253 366	62 133 156 219	120 220 250 354
5 81 176 260	31 34 72 115	115 208 355 398
58 215 326 364	246 260 267 286	74 190 343 352
10 76 87 102 315	7 266 309 337	258 325 332 371
98 131 259 332	24 69 142 394	14 256 347 353
15 30 35 55	98 138 228 351	24 33 122 234
0 122 269 346	72 181 336 355	98 272 300 342
38 162 311 373	12 47 160 172	20 210 221 268 337
15 143 313 329 340	84 178 230 343	8 94 154 347
80 260 316 348	80 238 321 376	195 285 321 327
44 158 220 292	170 213 331 367	12 51 54 354
117 241 295 363	12 136 274 326	16 41 149 389
187 321 355 378	13 51 96 147	25 55 66 206 297
167 226 281 351	23 264 334 346	129 202 214 285
0 200 309 384	29 122 183 356	73 96 104 310
36 171 193 328	78 287 330 349	55 200 270 318
107 178 228 240	42 69 131 198	58 120 150 217
80 146 156 375	36 43 189 216	30 58 279 339 397
75 90 290 312	44 142 195 344	60 180 247 308
20 55 131 215	40 147 260 330	48 127 213 356
99 127 231 344	125 325 379 387	62 128 291 329
156 176 301 313	90 111 126 301	26 35 127 323
41 146 247 290	113 177 226 273	35 77 144 286 296
49 52 61 76	96 172 181 218	10 47 192 259
24 74 310 326	17 124 154 373	122 196 210 329
56 196 212 332	87 285 306 376	63 162 235 268
76 205 335 385	83 163 173 299	25 45 218 310
75 101 209 349	65 87 245 333	40 67 336 354 393
28 172 242 294	161 267 284 293	16 278 347 381
18 71 267 297	1 29 54 379	14 39 209 395
84 115 233 384	141 170 183 232	21 55 85 304
63 139 216 325	5 40 167 238	128 135 194 325
23 64 310 348	15 44 95 239	45 116 159 258 341
63 130 188 352	13 75 152 188	125 132 210 219
23 45 160 165	216 224 305 331	60 67 150 203
42 114 382 399	29 93 197 381	18 60 167 328
25 207 339 365	21 222 282 284	55 112 179 381
16 334 374 398	175 193 361 372	50 288 317 324 389
86 251 274 277	54 69 298 308	43 320 334 382
157 166 297 316	93 169 209 328	5 29 145 281
171 200 230 265	39 59 334 391	25 124 232 345
34 107 325 364	108 254 340 376	11 119 339 359
71 220 227 330	141 246 264 388	55 5 36 231 316
177 263 277 344	96 267 362 392	15 138 354 389
75 138 262 293	131 234 291 330	25 82 136 180
189 300 366 377	4 168 220 235	20 103 167 266
147 175 296 320	130 195 216 367	112 292 359 371
2 51 145 208	108 148 290 302	60 184 201 240 328
126 271 310 351	85 214 362 395	77 160 307 339
144 197 277 360	48 100 118 346	74 147 280 389
28 35 115 289	91 104 355 358	127 149 358 387
54 108 270 279	176 342 351 390	50 59 117 185

	11 189 212 220	65 183 369 376	14 26 72 304
	123 135 226 372	60 169 292 350	51 162 194 387
	83 86 149 386	44 169 240 362	94 245 273 287
	26 95 121 163	146 187 293 319	26 177 205 314
5	30 54 178 315	198 219 343 380	14 92 385 389
	136 301 341 365	148 188 256 304	111 211 366 390
	21 59 265 299	171 189 266 341	27 71 110 327
	111 154 282 297	94 108 244 288	99 257 359 389
	6 74 290 349	16 42 200 250	15 124 295 372 397
10	121 142 174 236	2 64 193 399	12 43 117 356
	108 129 152 261	129 172 276 379	65 117 136 354
	152 164 205 377	26 176 234 319	39 67 191 212
	144 281 332 335	118 135 205 312	80 166 176 358
	92 244 315 326	115 176 290 359	20 99 208 353 361
	66 128 170 221	9 143 188 374	32 46 104 222
	21 109 174 397	96 186 247 353	4 25 72 203
	5 154 201 239	30 72 320 388	2 124 130 262
	80 183 261 293	17 137 186 193	28 113 210 232
	18 143 335 392	34 229 265 284	25 66 77 158 268
	13 139 155 230	129 207 282 287	61 98 202 330
	145 156 300 327	68 118 275 305	47 67 181 247
	118 153 171 366	153 172 249 307	51 204 209 307
	15 152 331 364	106 179 212 378	125 198 289 301
	161 171 307 317	22 48 105 347	30 136 214 216 263
	49 56 127 185	98 137 346 379	97 270 314 338
	104 168 283 305	41 98 165 232	78 127 215 226
	199 202 343 399	54 63 99 123	27 242 348 357
	15 164 192 273	81 213 315 394	94 181 191 363
	62 199 222 228	38 66 87 191	35 7 91 93 348
	67 94 166 256	71 121 294 396	60 193 267 333
	85 227 250 321	109 200 345 375	185 237 272 381
	91 121 295 324	33 70 217 266	15 52 166 225
	3 16 308 340	11 111 210 240	27 100 126 275
	143 157 307 395	261 271 290 396	40 70 96 163 333
	36 77 116 340	190 225 298 369	11 175 273 282
	3 98 101 125	16 140 227 352	14 212 392 398
	39 151 364 377	118 183 262 383	91 105 300 382
	194 227 231 267	17 218 260 350	4 79 232 370
	59 200 206 389	50 56 278 351	45 21 75 158 347
	21 106 287 389	15 36 150 280	331 341 343 386
	33 268 340 387	18 107 151 176	0 103 163 270
	140 150 395 398	22 188 244 337	7 95 171 326
	88 352 360 367	72 186 302 350	16 24 49 133
	55 91 145 168	65 145 221 239	50 58 242 363 390
	126 130 181 323	52 117 331 393	8 236 254 290
	34 120 227 316	7 37 265 285	50 83 140 370
	237 337 355 394	56 283 338 382	233 258 340 364
	34 186 219 313	78 217 337 351	63 289 292 313
	280 330 340 375	6 247 249 370	55 231 245 336 342
	76 230 354 378	1 161 241 255	35 38 246 299
	5 178 293 297	101 166 183 220	104 246 249 281
	142 223 234 381	99 198 326 335	161 248 285 325
	48 239 260 399	105 234 340 384	13 21 192 220
	58 270 336 360	60 233 242 397	60 82 89 200 209
	24 123 271 347	207 215 223 293	8 264 313 368
	12 76 137 280	233 279 351 380	11 26 242 286
	107 226 302 367	83 106 188 311	37 248 303 388
	175 186 208 366	97 185 361 392	64 187 324 392

209 216 230 243	8 47 113 153	156 247 278 334
73 241 250 260	194 233 361 377	130 235 319 390
181 187 235 239	88 202 284 394	0 108 120 213
63 193 300 329	29 118 285 380	10 11 93 146 235
291 332 354 396	96 154 312 383	96 255 374 376
19 103 260 383	19 250 318 359	85 146 204 366
5 303 328 375	32 282 289 334	146 254 365 391
131 237 298 384	56 272 294 303	114 148 151 373
103 183 281 286	10 68 72 210	15 60 121 145 343
5 224 263 358	184 261 382 386	112 195 277 296
197 199 247 382	202 204 315 342	29 302 310 334
18 228 332 344	66 102 195 207	38 156 251 280
16 26 57 68	97 243 272 301	130 209 249 266
2 158 259 384	92 128 156 304	20 43 161 250 322
128 181 371 398	68 313 385 390	7 168 182 185
98 179 247 319	13 32 49 271	15 45 189 286
41 71 138 326	4 80 123 277	191 205 301 305
175 244 301 317	89 135 243 375	155 235 282 299
81 145 226 371	88 372 381 388	25 40 114 194 372
125 202 226 309	66 108 222 274	249 263 323 372
115 169 276 298	28 59 164 167	36 214 252 380
192 268 296 391	201 204 313 324	176 201 258 373
31 167 220 223	73 311 388 397	102 208 340 379
39 241 358 382	109 186 243 261	30 85 161 240 262
67 112 159 236	116 125 276 398	5 17 199 339
71 180 208 266	58 185 287 293	150 230 306 341
59 143 248 394	40 203 279 314	46 123 204 318
99 128 223 388	46 50 86 255	71 130 143 271
6 192 221 351	23 48 109 120	35 208 268 365 396
129 238 257 378	236 297 325 333	257 263 336 395
29 192 252 392	123 155 320 384	218 267 334 360
6 110 177 269	36 67 169 274	53 74 255 302
29 79 205 241	54 102 191 239	104 175 302 311
233 246 325 331	8 109 198 391	40 228 338 360 369
11 211 321 384	143 176 238 370	8 35 112 394
144 282 337 386	39 41 105 208	39 130 336 365
33 79 327 385	126 197 342 357	13 170 198 378
30 110 179 321	9 40 191 384	56 156 162 181
86 133 234 284	51 148 207 270	45 47 95 104 272
54 58 72 289	49 114 243 360	9 291 333 362
22 145 269 373	60 87 303 370	121 128 193 322
81 172 211 381	138 190 248 283	159 276 311 392
59 246 252 255	78 97 139 144	15 42 105 267
34 113 207 286	177 180 244 272	50 4 23 202 388
69 100 222 231	44 123 243 287	23 61 260 307
14 150 387 396	122 211 304 388	42 124 355 380
17 73 228 248	70 117 278 332	124 259 374 386
29 193 232 259	31 85 343 394	136 140 207 317
40 148 359 374	47 133 244 312	55 9 278 280 325
38 281 316 327	20 144 299 368	4 19 59 360
70 87 100 395	25 84 335 395	21 79 94 356
26 231 295 369	102 199 213 283	26 158 345 353
214 234 269 288	64 164 169 224	95 172 261 374
77 154 320 365	50 152 224 276	27 119 364 373
27 76 86 155	42 184 390 398	35 245 335 374
65 139 175 240	1 73 349 396	139 162 184 228
33 130 223 286	5 238 317 354 385	53 84 214 363
215 271 317 344	46 70 296 379	17 153 242 386

30 137 274 313	70 95 306 391	15 83 88 180 363
68 169 256 369	178 187 249 316	153 371 374 393
30 119 206 394	37 52 162 307	142 161 286 312
224 325 365 380	173 211 237 344	34 111 221 243
50 178 188 274	41 114 210 233	40 66 91 391
2 56 169 225	102 202 287 354	20 55 120 165 209
43 75 167 296	136 185 223 303	4 28 46 292
28 131 274 304	86 265 287 355	149 222 244 357
107 263 309 385	11 66 131 255	190 339 362 364
101 238 310 395	124 147 319 392	10 67 187 338
35 58 238 345	46 67 152 380	25 2 132 168 263
43 61 106 391	64 82 111 312	9 63 294 305
86 113 161 390	78 123 264 317	26 60 148 224
35 316 329 376	24 45 85 295	59 157 188 224
37 161 224 306	118 141 244 255	139 220 320 349
14 53 98 269	17 164 229 252	30 69 202 336 385
179 207 236 269	27 132 134 179	20 92 313 331
10 163 205 369	173 216 220 247	44 79 316 392
31 92 162 396	246 306 375 384	104 177 254 335
85 268 314 345	75 160 187 263	4 199 234 308
1 31 249 319	171 236 329 389	35 76 139 192 332
35 56 281 333	58 178 196 380	1 252 322 331
137 199 223 376	171 203 256 370	89 217 352 378
52 320 338 362	5 134 277 330	83 156 175 211
65 224 307 390	110 153 320 336	75 132 341 364
146 310 346 384	24 93 369 383	40 78 106 204 272
101 138 193 307	35 100 244 361	65 159 214 284
234 314 342 394	327 345 369 396	141 161 342 353
19 109 127 214	27 37 185 277	336 375 381 397
40 80 132 196	257 259 321 362	143 260 291 302
183 213 229 249	23 253 280 370	45 84 298 339 375
105 228 232 238	13 44 99 224	219 234 357 374
64 278 290 357	57 69 114 224	0 118 292 328
20 116 173 251	70 154 185 352	19 119 226 387
97 261 308 393	34 269 338 367	115 167 294 319
20 100 146 165	77 170 234 326	50 53 222 233 236
67 84 164 376	138 171 192 269	18 52 63 182
155 260 300 352	173 192 284 371	79 102 148 311
116 118 147 233	68 155 164 353	140 270 351 369
61 174 328 371	4 22 201 212	91 255 289 389
30 60 155 368	206 234 259 270	55 163 285 330 338
39 142 169 232	35 168 176 389	237 251 312 359
54 76 318 358	103 162 351 370	39 186 288 301
196 341 352 391	49 59 102 212	29 188 211 367
61 63 333 350	155 192 270 287	269 298 391 397
42 130 307 331	4 81 95 119	85 95 292 307
25 190 224 282	135 138 200 301	72 150 266 314
57 238 375 393	11 32 294 357	101 199 253 359
5 158 186 355	5 10 73 84 173	18 41 259 368
83 110 385 399	25 48 97 145	122 125 185 324
48 154 166 308	7 223 280 366	58 294 318 365
2 75 288 340	83 137 247 276	84 210 216 235
86 223 248 264	31 56 117 325	54 142 147 355
67 135 158 350	10 211 281 307 358	73 91 174 353
80 133 345 351	49 118 211 372	15 48 292 323
51 195 265 335	70 179 221 371	4 62 67 126
63 117 159 196	38 260 266 388	109 129 191 203
13 16 37 143	142 222 253 335	143 154 168 205

24 75 127 304	69 281 347 371	
34 142 182 363	59 264 271 348	25 109 153 189 370
10 198 303 308	175 255 277 357	14 110 338 381
146 258 273 361	51 97 374 399	101 142 257 376
113 132 220 359	108 223 317 360	93 129 359 394
39 179 252 274	82 125 216 228	133 137 142 314
6 176 199 318	134 154 172 317	187 215 269 294
33 55 95 124	49 65 74 157	30 116 121 300 363
134 228 283 329	3 112 266 356	57 251 267 386
75 175 339 371	81 204 254 262	14 126 335 379
78 89 202 322	3 113 263 332	31 133 250 268
85 197 310 390	100 151 205 240	9 183 241 342
59 112 305 323	95 125 180 303	35 37 164 279 324
154 163 287 305	234 292 306 352	118 130 187 270
83 195 206 264	149 227 349 355	135 169 182 319
45 209 255 311	111 142 267 321	6 149 204 220
54 182 261 302	27 203 228 361	63 150 214 259
128 190 241 384	52 277 309 390	40 19 65 348 388
7 48 66 82	33 57 284 302	15 46 151 383
173 315 372 382	35 50 66 219	22 160 227 230
41 49 117 320	22 27 149 215	124 166 279 317
45 82 120 133	13 28 84 206	45 130 237 361
6 42 195 295	59 108 337 349	45 189 316 347
171 201 344 377	73 171 273 345	74 135 142 311
94 179 205 344	68 140 200 363	85 153 177 222
32 144 219 315	38 111 233 358	120 154 210 237
226 257 333 386	157 289 328 372	0 98 291 388
24 102 182 375	160 188 284 327	50 32 259 287 333
49 86 123 175	137 304 349 374	184 314 389 397
62 151 266 298	140 168 204 341	101 189 296 383
272 323 339 367	132 223 298 336	126 160 235 240
99 160 273 330	71 114 184 200	111 120 212 288
194 274 324 368	60 135 323 399	55 10 174 209 291
51 127 158 191	9 38 179 245	112 114 186 239
2 98 164 393	114 157 229 366	164 179 304 346
90 108 149 315	229 297 323 342	90 127 252 284
8 122 129 299	24 36 89 106	53 173 282 333
8 48 64 210	101 134 140 381	82 87 98 354
56 106 207 240	50 148 194 257	77 106 138 345
48 87 212 340	5 1 222 340 378	74 329 360 366
38 231 288 394	67 155 220 365	167 322 332 395
137 353 378 393	15 156 210 262	52 88 276 294
119 150 272 355	53 125 134 231	47 199 299 391
64 92 190 291	192 337 357 360	3 219 275 297
4 51 121 215	10 170 203 216 266	3 30 375 378
119 171 229 253	2 71 74 362	110 134 158 282
65 357 363 370	40 97 101 356	151 188 359 388
83 172 197 280	54 117 145 201	191 199 304 333
27 131 360 396	34 81 147 326	42 191 274 383
77 136 150 309	15 5 121 256 311	51 99 384 394
3 121 179 230	14 176 272 383	146 343 367 376
10 104 152 326	283 297 340 396	153 247 284 375
64 134 178 182	7 36 307 320	36 133 204 243
214 300 353 386	114 241 271 315	110 224 265 277
110 254 268 346	20 96 179 249 302	86 129 319 371
272 304 337 347	7 9 170 394	103 127 201 336
37 165 235 262	46 284 308 388	39 50 247 256
1 36 234 297	104 158 332 362	119 165 230 370
		21 82 248 311

84 137 239 315	21 22	79 80
1 155 239 268	22 23	80 81
265 278 329 342	23 24	35 81 82
18 118 234 242	24 25	82 83
135 189 337 353	25 26	83 84
18 28 123 159	26 27	84 85
26 44 88 267	27 28	85 86
12 50 103 251	28 29	40 86 87
144 242 244 372	29 30	87 88
53 181 221 229	30 31	88 89
46 89 180 281	31 32	89 90
3 53 285 382	32 33	90 91
175 184 205 209	33 34	45 91 92
94 208 276 349	34 35	92 93
14 37 131 266	35 36	93 94
135 227 367 392	36 37	94 95
13 59 103 207	37 38	95 96
48 78 84 243	38 39	50 96 97
94 252 262 306	39 40	97 98
168 316 324 380	40 41	98 99
196 255 260 394	41 42	99 100
11 105 178 243	42 43	100 101
19 122 177 339	43 44	55 101 102
64 203 304 319	44 45	102 103
12 174 194 208	45 46	103 104
46 52 271 377	46 47	104 105
62 149 169 353	47 48	105 106
133 205 239 387	48 49	106 107
174 206 285 292	49 50	107 108
14 43 99 137	50 51	108 109
87 111 371 377	5 51 52	109 110
73 137 177 261	52 53	110 111
10 105 184 352	53 54	111 112
126 286 347 390	54 55	112 113
72 91 148 196	55 56	113 114
12 162 292 363	10 56 57	114 115
6 112 273 399	57 58	115 116
0 1	58 59	116 117
1 2	59 60	117 118
2 3	60 61	118 119
3 4	15 61 62	119 120
4 5	62 63	120 121
5 6	63 64	121 122
6 7	64 65	122 123
7 8	65 66	123 124
8 9	20 66 67	124 125
9 10	67 68	125 126
10 11	68 69	126 127
11 12	69 70	127 128
12 13	70 71	128 129
13 14	25 71 72	129 130
14 15	72 73	130 131
15 16	73 74	131 132
16 17	74 75	132 133
17 18	75 76	133 134
18 19	30 76 77	134 135
19 20	77 78	135 136
20 21	78 79	136 137

137 138	195 196	253 254
138 139	196 197	254 255
139 140	197 198	255 256
140 141	198 199	45 256 257
141 142	199 200	257 258
142 143	200 201	258 259
143 144	201 202	259 260
144 145	202 203	260 261
145 146	203 204	50 261 262
146 147	204 205	262 263
147 148	205 206	263 264
148 149	206 207	264 265
149 150	207 208	265 266
150 151	208 209	55 266 267
151 152	209 210	267 268
152 153	210 211	268 269
153 154	211 212	269 270
154 155	212 213	270 271
155 156	213 214	271 272
156 157	214 215	272 273
157 158	215 216	273 274
158 159	5 216 217	274 275
159 160	217 218	275 276
160 161	218 219	276 277
161 162	219 220	277 278
162 163	220 221	278 279
163 164	10 221 222	279 280
164 165	222 223	280 281
165 166	223 224	281 282
166 167	224 225	282 283
167 168	225 226	283 284
168 169	15 226 227	284 285
169 170	227 228	285 286
170 171	228 229	286 287
171 172	229 230	287 288
172 173	230 231	288 289
173 174	20 231 232	289 290
174 175	232 233	290 291
175 176	233 234	291 292
176 177	234 235	292 293
177 178	235 236	293 294
178 179	25 236 237	294 295
179 180	237 238	295 296
180 181	238 239	296 297
181 182	239 240	297 298
182 183	240 241	298 299
183 184	30 241 242	299 300
184 185	242 243	300 301
185 186	243 244	301 302
186 187	244 245	302 303
187 188	245 246	303 304
188 189	35 246 247	304 305
189 190	247 248	305 306
190 191	248 249	306 307
191 192	249 250	307 308
192 193	250 251	308 309
193 194	40 251 252	309 310
194 195	252 253	310 311

311 312	342 343	373 374
312 313	343 344	374 375
313 314	344 345	375 376
314 315	345 346	376 377
315 316	346 347	377 378
316 317	347 348	378 379
317 318	348 349	379 380
318 319	349 350	380 381
319 320	350 351	5 381 382
320 321	351 352	382 383
321 322	352 353	383 384
322 323	353 354	384 385
323 324	354 355	385 386
324 325	355 356	10 386 387
325 326	356 357	387 388
326 327	357 358	388 389
327 328	358 359	389 390
328 329	359 360	390 391
329 330	360 361	15 391 392
330 331	361 362	392 393
331 332	362 363	393 394
332 333	363 364	394 395
333 334	364 365	395 396
334 335	365 366	20 396 397
335 336	366 367	397 398
336 337	367 368	398 399
337 338	368 369	399
338 339	369 370	
339 340	370 371	
340 341	371 372	
341 342	372 373	

©2004 Intel Corporation

What is claimed is:

1. A wireless apparatus comprising:

a forward error correction (FEC) coder to encode digital data using a low density parity check (LDPC) code, said FEC coder including:

5 a matrix multiplication unit to multiply input data by a transpose of a first portion of a parity check matrix to generate modified data;

a differential encoder to differentially encode said modified data to generate coded data; and

10 a concatenation unit to concatenate the input data and the coded data to form a code word; and

a wireless transmitter to transmit a wireless signal that includes said code word.

2. The wireless apparatus of claim 1, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

3. The wireless apparatus of claim 1, further comprising:

15 a mapper, between said FEC coder and said wireless transmitter, to map said code word based on a predetermined modulation scheme; and

an inverse discrete Fourier transform unit to convert mapped data from a frequency domain representation to a time domain representation.

4. The wireless apparatus of claim 1, wherein:

20 said parity check matrix is substantially as described in the list file of Appendix A.

5. The wireless apparatus of claim 1, wherein:

said parity check matrix is the same as the matrix described in the list file of Appendix A.

6. The wireless apparatus of claim 1, further comprising:

25 a storage medium to store a representation of at least said first portion of said parity check matrix for use by said matrix multiplication unit.

7. The wireless apparatus of claim 6, wherein:
said storage medium is operative to store a representation of the entire parity check matrix.

8. The wireless apparatus of claim 6, wherein:
5 said storage medium is operative to store a matrix that is substantially as described in the list file of Appendix A.

9. The wireless apparatus of claim 6, wherein:
said storage medium is operative to store a matrix that is a portion of a matrix that is substantially as described in the list file of Appendix A, said portion of said matrix being a
10 portion having columns of weight 4.

10. The wireless apparatus of claim 1, wherein:
said LDPC code is a (2000, 1600) bit-length code.

11. The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless user device for use in a wireless network.

15 12. The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless access point.

13. The wireless apparatus of claim 1, wherein:
said wireless apparatus is a wireless network interface module.

14. The wireless apparatus of claim 1, wherein:
20 said wireless apparatus is an integrated circuit.

15. A method comprising:
matrix multiplying input data by a transpose of a first portion of a parity check matrix;
processing a result of said matrix multiplication using differential encoding to
generate coded data;

concatenating said input data and said coded data to form a code word; and generating and transmitting a wireless signal that includes said code word.

16. The method of claim 15, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

5 17. The method of claim 15, further comprising:

accessing a storage medium storing a representation of at least a portion of said parity check matrix before matrix multiplying.

18. The method of claim 15, wherein:

said parity check matrix is substantially as described in the list file of Appendix A.

10 19. The method of claim 15, wherein:

said parity check matrix is the same as the matrix described in the list file of Appendix A.

20. The method of claim 15, wherein:

said parity check matrix defines a (2000, 1600) bit-length LDPC code.

15 21. The method of claim 15, wherein:

generating and transmitting a wireless signal includes mapping said code word into modulation symbols and processing said modulation symbols using an inverse discrete Fourier transform.

22. An article comprising a machine readable storage medium having a representation of 20 at least a portion of a parity check matrix stored thereon, said parity check matrix being substantially as described in the list file of Appendix A.

23. The article of claim 22, wherein:

said machine readable storage medium has a representation of the entire parity check matrix stored thereon.

24. The article of claim 22, wherein:
said machine readable storage medium has a portion of said parity check matrix stored thereon that includes all columns of weight 4.
25. The article of claim 22, wherein:
5 said parity check matrix is the same as the matrix described in the list file of Appendix A.
26. The article of claim 22, wherein:
said parity check matrix defines a (2000, 1600) bit-length LDPC code.
27. The article of claim 22, wherein:
10 said article includes a wireless communication device.
28. The article of claim 22, wherein:
said article comprises only said machine readable storage medium.
29. The article of claim 22, wherein:
said machine readable storage medium comprises at least one of the following: a
15 semiconductor memory, a read only memory (ROM), a random access memory (RAM), an
erasable programmable read only memory (EPROM), an electrically erasable programmable
read only memory (EEPROM), a flash memory, a magnetic card, an optical card, a magnetic
disk, an optical disk, a CD-ROM, and a magneto-optical disk.
30. A system comprising:
20 a forward error correction (FEC) coder to encode digital data using a low density
parity check (LDPC) code, said FEC coder including:
a matrix multiplication unit to multiply input data by a transpose of a first
portion of a parity check matrix to generate modified data;

a differential encoder to differentially encode said modified data to generate coded data; and

a concatenation unit to concatenate the input data and the coded data to form a code word;

5 a wireless transmitter to transmit a wireless signal that includes said code word; and at least one dipole antenna coupled to said wireless transmitter to facilitate transmission of said wireless signal.

31. The system of claim 30, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

10 32. The system of claim 30, further comprising:

a storage medium to store a representation of at least said first portion of said parity check matrix for use by said matrix multiplication unit.

33. The system of claim 30, wherein:

said parity check matrix is substantially as described in the list file of Appendix A.

15 34. An article comprising a storage medium having instructions stored thereon that, when executed by a computing platform, operate to:

matrix multiply input data by a transpose of a first portion of a parity check matrix; process a result of said matrix multiplication using differential encoding to generate coded data;

20 concatenate said input data and said coded data to form a code word; and

generate and transmit a wireless signal that includes said code word.

35. The article of claim 34, wherein:

said wireless signal is an orthogonal frequency division multiplexing (OFDM) signal.

36. The article of claim 34, wherein said instructions, when executed by the computing 25 platform, further operate to:

access a storage medium having at least a portion of said parity check matrix stored thereon before matrix multiplying.

37. The article of claim 34, wherein:

said parity check matrix is substantially as described in the list file of Appendix A.

5 38. The article of claim 34, wherein:

said parity check matrix defines a (2000, 1600) bit-length LDPC code.

1/5

Fig. 1

2/5

Fig. 2

3/5

Fig. 3

4/5

Fig. 4

5/5

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2005/000948

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H04L1/00 H03M13/11

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H04L H03M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>YANG M ET AL: "DESIGN OF EFFICIENTLY ENCODEABLE MODERATE-LENGTH HIGH-RATE IRREGULAR LDPC CODES" PROCEEDINGS OF THE ANNUAL CONFERENCE ON COMMUNICATION, CONTROL AND COMPUTING, 2 October 2002 (2002-10-02), pages 1415-1424, XP009042018 page 1419 - page 1422; figure 1a</p> <p>-----</p> <p style="text-align: center;">-/--</p>	1-21, 30-38

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

19 May 2005

Date of mailing of the international search report

01/06/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Marzenke, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2005/000948

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>FUTAKI H ET AL: "Performance of low-density parity-check (LDPC) coded OFDM systems" ICC 2002. 2002 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS. CONFERENCE PROCEEDINGS. NEW YORK, NY, APRIL 28 - MAY 2, 2002, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, NEW YORK, NY : IEEE, US, vol. VOL. 1 OF 5, 28 April 2002 (2002-04-28), pages 1696-1700, XP010589776 ISBN: 0-7803-7400-2 page 1696 - page 1698; figure 3</p> <p>-----</p> <p>SYED M J ET AL: "LDPC-based space-time coded OFDM systems performances over correlated fading channels" COMMUNICATIONS, 2003. APCC 2003. THE 9TH ASIA-PACIFIC CONFERENCE ON 21-24 SEPT. 2003, PISCATAWAY, NJ, USA, IEEE, vol. 2, 21 September 2003 (2003-09-21), pages 590-594, XP010688253 ISBN: 0-7803-8114-9 page 590; figure 1</p> <p>-----</p>	1-21, 30-38
A		1-21, 30-38

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2005/000948

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 22-29
because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.1

Claims Nos.: 22-29

Independent Claim 22 relates to an "article" comprising a machine readable storage medium that is merely characterised by the content of the information stored thereon - that is at least a portion of a parity check matrix being substantially as described in Appendix A of present application. Such subject-matter is however excluded from International search according to Rule 39.1(v) PCT (see PCT-Guidelines 9.02 and 9.11).

Any type of machine readable storage medium can be construed from Claim 22, for instance a conventional CD-ROM, a conventional MP3 player or a conventional personal computer (see also Claim 29 listing further possible interpretations). Claim 22 fails to define any structural or functional relationship whatsoever between the stored information and the storage medium. No technical effect can be derived from the fact that the CD-ROM, MP3 player or PC stores information, be it part of a parity check matrix, digitized music or a computer program code.

Consequently, Claim 22 has no technical character as it is solely defined by the content of the stored information (PCT-Guidelines 9.11).

The same applies to the subject-matter of dependent Claims 23-29. Claims 23-26 further specify the information stored in the storage medium and Claim 29 further specifies the type of storage medium used. Again, no technical interaction becomes apparent between the storage medium and the information stored thereon. This problem exists irrespective of whether the claimed "article" comprises only the storage medium (Claim 28) or also a wireless communication device (Claim 27) which does not interact in any way with the storage medium or the information stored.