Submonoid Membership in n-dimensional lamplighter groups

Ruiwen Dong

Magdalen College, University of Oxford

December 2024

Membership problems

Let G be an group (infinite, finitely generated, with solvable Word Problem). Consider the following **membership** problems:

Definition (Subgroup Membership)

Input: Elements $g_1, g_2, \ldots, g_n, g \in G$.

Question: Is g in the subgroup $\langle g_1, g_2, \dots, g_n \rangle_{grp}$?

Membership problems

Let G be an group (infinite, finitely generated, with solvable Word Problem). Consider the following **membership** problems:

Definition (Subgroup Membership)

Input: Elements $g_1, g_2, \ldots, g_n, g \in G$.

Question: Is g in the subgroup $\langle g_1, g_2, \ldots, g_n \rangle_{grp}$?

Definition (Submonoid Membership)

Input: Elements $g_1, g_2, \ldots, g_n, g \in G$.

Question: Is g in the submonoid $\langle g_1, g_2, \ldots, g_n \rangle_{mnd}$?

Membership problems

Let G be an group (infinite, finitely generated, with solvable Word Problem). Consider the following **membership** problems:

Definition (Subgroup Membership)

Input: Elements $g_1, g_2, \ldots, g_n, g \in G$.

Question: Is g in the subgroup $\langle g_1, g_2, \ldots, g_n \rangle_{grp}$?

Definition (Submonoid Membership)

Input: Elements $g_1, g_2, \ldots, g_n, g \in G$.

Question: Is g in the submonoid $\langle g_1, g_2, \ldots, g_n \rangle_{mnd}$?

Definition (Rational Subset Membership)

Input: A rational subset $S \subseteq G$ and an element $g \in G$.

Question: Is g in the rational subset S?

Here, $S\subseteq G$ is called a **rational subset** if there is an alphabet Σ , a monoid homomorphism $\varphi\colon \Sigma^*\to G$, and a regular language $L\subseteq \Sigma^*$, such that $\varphi(L)=S$.

Example: $S = \{g_1\}^* \{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\} \subseteq G$.

Classic decidability results

Obviously, Subgroup Mshp. \leq Submonoid Mshp. \leq Rational Subset Mshp.

Theorem (Benois 1969, Grunschlag 1999)

If G is an **abelian** group or a **free** group, then Subgroup Membership, Submonoid Membership and Rational Subset Membership are decidable in G.

Classic decidability results

Obviously, Subgroup Mshp. \leq Submonoid Mshp. \leq Rational Subset Mshp.

Theorem (Benois 1969, Grunschlag 1999)

If G is an abelian group or a free group, then Subgroup Membership, Submonoid Membership and Rational Subset Membership are decidable in G.

Theorem (Malcev 1958, Romanovskii 1974, Roman'kov 2022)

If G is a **nilpotent** group or a **metabelian** group (i.e. [G,G] is abelian), then Subgroup Membership is decidable. But there are nilpotent groups (such as $H_3(\mathbb{Z})^{10000}$) and metabelian groups where Submonoid Membership and Rational Subset Membership are undecidable.

Classic decidability results

Obviously, Subgroup Mshp. \leq Submonoid Mshp. \leq Rational Subset Mshp.

Theorem (Benois 1969, Grunschlag 1999)

If G is an abelian group or a free group, then Subgroup Membership, Submonoid Membership and Rational Subset Membership are decidable in G.

Theorem (Malcev 1958, Romanovskii 1974, Roman'kov 2022)

If G is a **nilpotent** group or a **metabelian** group (i.e. [G,G] is abelian), then Subgroup Membership is decidable. But there are nilpotent groups (such as $H_3(\mathbb{Z})^{10000}$) and metabelian groups where Submonoid Membership and Rational Subset Membership are undecidable.

Theorem (Shafrir 2018, Bodart 2024)

There exists a group G (such as the two-dimensional lamplighter group $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2$), where Submonoid Membership is decidable but Rational Subset Membership is undecidable.

Hence, Subgroup Mshp. \leq Submonoid Mshp. \leq Rational Subset Mshp.

Theorem (folklore)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then **Subgroup** Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if H is a f.g. subgroup of G, then $H \cap \widetilde{G}$ is a f.g. subgroup of \widetilde{G} .

Theorem (folklore)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then **Subgroup** Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if H is a f.g. subgroup of G, then $H \cap \widetilde{G}$ is a f.g. subgroup of \widetilde{G} .

Theorem (Grunschlag 1999)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then Rational Subset Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if S is a rational subset of G, then $S \cap \widetilde{G}$ is a rational subset of \widetilde{G} .

Theorem (folklore)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then **Subgroup** Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if H is a f.g. subgroup of G, then $H \cap \widetilde{G}$ is a f.g. subgroup of \widetilde{G} .

Theorem (Grunschlag 1999)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then Rational Subset Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if S is a rational subset of G, then $S \cap \widetilde{G}$ is a rational subset of \widetilde{G} .

Problem

What about Submonoid Membership?

Difficulty: if M is a f.g. submonoid of G, then $M \cap \widetilde{G}$ can be an **infinitely** generated submonoid of \widetilde{G} .

Theorem (folklore)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then **Subgroup** Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if H is a f.g. subgroup of G, then $H \cap \widetilde{G}$ is a f.g. subgroup of \widetilde{G} .

Theorem (Grunschlag 1999)

Let G be a group and $\widetilde{G} \leq G$ be a finite index subgroup. Then Rational Subset Membership is decidable in G if and only if it is decidable in \widetilde{G} .

Idea: if S is a rational subset of G, then $S \cap \widetilde{G}$ is a rational subset of \widetilde{G} .

Problem

What about Submonoid Membership?

Difficulty: if M is a f.g. submonoid of G, then $M \cap \widetilde{G}$ can be an **infinitely** generated submonoid of \widetilde{G} .

Theorem (D. 2024 + Shafrir 2024)

There exists a group G and a finite index subgroup \widetilde{G} , such that Submonoid Membership is decidable in \widetilde{G} but undecidable in G.

Definition (*n*-dimensional lamplighter group)

The *n-dimensional lamplighter group* $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1,\ldots,z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Definition (*n*-dimensional lamplighter group)

The *n*-dimensional lamplighter group $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1,\ldots,z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Definition (*n*-dimensional lamplighter group)

The *n-dimensional lamplighter group* $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1,\ldots,z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Definition (*n*-dimensional lamplighter group)

The *n-dimensional lamplighter group* $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1,\ldots,z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Definition (*n*-dimensional lamplighter group)

The *n*-dimensional lamplighter group $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{ \begin{pmatrix} X_1^{z_1} X_2^{z_2} \cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, \dots, z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^{\pm}, \dots, X_n^{\pm}]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Definition (*n*-dimensional lamplighter group)

The *n-dimensional lamplighter group* $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^n$ is defined as a matrix group

$$\left\{ \begin{pmatrix} X_1^{z_1} X_2^{z_2} \cdots X_n^{z_n} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, \dots, z_n \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^{\pm}, \dots, X_n^{\pm}]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Illustration: multiplication

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Illustration: multiplication

$$\begin{pmatrix} X_1^1X_2^1 & X_1^2+X_2^2 \\ 0 & 1 \end{pmatrix} \qquad \times \qquad \begin{pmatrix} X_1^1 & 1 \\ 0 & 1 \end{pmatrix}$$

Illustration: multiplication

$$\begin{pmatrix} X_1^1 X_2^1 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix} \qquad \times \qquad \begin{pmatrix} X_1^1 & 1 \\ 0 & 1 \end{pmatrix} \qquad = \quad \begin{pmatrix} X_1^2 X_2 & X_1^2 + X_1 X_2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Constructing the counter-example: semidirect products

Definition (semidirect products)

Let $\mathcal Y$ be a finitely presented $\mathbb F_2[X_1^\pm,\dots,X_n^\pm]$ -module. One can define a semidirect product $\mathcal Y\rtimes\mathbb Z^n$ as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & y\\ 0 & 1\end{pmatrix} \;\middle|\; z_1,\ldots,z_n\in\mathbb{Z},y\in\mathcal{Y}\right\}.$$

Constructing the counter-example: semidirect products

Definition (semidirect products)

Let $\mathcal Y$ be a finitely presented $\mathbb F_2[X_1^\pm,\dots,X_n^\pm]$ -module. One can define a semidirect product $\mathcal Y\rtimes\mathbb Z^n$ as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & y\\ 0 & 1\end{pmatrix} \;\middle|\; z_1,\ldots,z_n\in\mathbb{Z},y\in\mathcal{Y}\right\}.$$

Example:

One can consider $\mathcal{Y}=\mathbb{F}_2[X_1^\pm]$ as an $\mathbb{F}_2[X_1^\pm,X_2^\pm]$ -module. Then $\mathcal{Y}\rtimes\mathbb{Z}^2$ is simply the direct product of $(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{Z}$ with \mathbb{Z} .

Constructing the counter-example: semidirect products

Definition (semidirect products)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. One can define a semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2}\cdots X_n^{z_n} & y\\ 0 & 1\end{pmatrix} \;\middle|\; z_1,\ldots,z_n\in\mathbb{Z},y\in\mathcal{Y}\right\}.$$

Example:

One can consider $\mathcal{Y}=\mathbb{F}_2[X_1^\pm]$ as an $\mathbb{F}_2[X_1^\pm,X_2^\pm]$ -module. Then $\mathcal{Y}\rtimes\mathbb{Z}^2$ is simply the direct product of $(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{Z}$ with \mathbb{Z} .

Since $\mathcal{Y}=\mathbb{F}_2[X_1^\pm]=\mathbb{F}_2[X_1^\pm,X_2^\pm]/(X_2-1)$, the group $\mathcal{Y}\rtimes\mathbb{Z}^2$ can be seen as a quotient of $(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{Z}^2$ by "wiring" all lamps in the same column together.

$$\begin{pmatrix} X_1^1 X_2^1 & 1 + X_1^2 \\ 0 & 1 \end{pmatrix}$$

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Rational Subset Membership in $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2$ is undecidable even for a fixed rational subset.

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Rational Subset Membership in $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2$ is undecidable even for a fixed rational subset. (Because it can encode tiling problems on a plane.)

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Rational Subset Membership in $(\mathbb{Z}/2\mathbb{Z})$ $\wr \mathbb{Z}^2$ is undecidable even for a fixed rational subset. (Because it can encode tiling problems on a plane.)

Theorem (Shafrir 2024)

Let G be a group. Rational Subset Membership (for a fixed rational subset) in G reduces to Submonoid Membership in $G \times H$ for some virtually abelian H.

In particular, for LSZ'15, H can be taken as a finite extension of \mathbb{Z}^5 .

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Rational Subset Membership in $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2$ is undecidable even for a fixed rational subset. (Because it can encode tiling problems on a plane.)

Theorem (Shafrir 2024)

Let G be a group. Rational Subset Membership (for a fixed rational subset) in G reduces to Submonoid Membership in $G \times H$ for some virtually abelian H.

In particular, for LSZ'15, H can be taken as a finite extension of \mathbb{Z}^5 .

Corollary

The direct product $\left((\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2\right) \times \mathbb{Z}^5$ has a finite extension with undecidable Submonoid Membership.

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Rational Subset Membership in $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2$ is undecidable even for a fixed rational subset. (Because it can encode tiling problems on a plane.)

Theorem (Shafrir 2024)

Let G be a group. Rational Subset Membership (for a fixed rational subset) in G reduces to Submonoid Membership in $G \times H$ for some virtually abelian H.

In particular, for LSZ'15, H can be taken as a finite extension of \mathbb{Z}^5 .

Corollary

The direct product $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2 \times \mathbb{Z}^5$ has a finite extension with undecidable Submonoid Membership.

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

But
$$(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z}^2 \times \mathbb{Z}^5 = \mathbb{F}_2[X_1^{\pm}, X_2^{\pm}] \rtimes \mathbb{Z}^7 !!!$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1=\begin{pmatrix}X_1^1&?\\0&1\end{pmatrix},g_2=\begin{pmatrix}X_1^{-1}&?\\0&1\end{pmatrix},g_3=\begin{pmatrix}X_2^1&?\\0&1\end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

How do submonoids of $\mathcal{Y} \rtimes \mathbb{Z}^n$ look like? Example: n=2, consider the submonoid generated by

$$g_1 = \begin{pmatrix} X_1^1 & ? \\ 0 & 1 \end{pmatrix}, g_2 = \begin{pmatrix} X_1^{-1} & ? \\ 0 & 1 \end{pmatrix}, g_3 = \begin{pmatrix} X_2^1 & ? \\ 0 & 1 \end{pmatrix}.$$

We want to decide whether $g=\begin{pmatrix} X_1^1X_2^2 & ? \\ 0 & 1 \end{pmatrix}$ is in the monoid $\langle g_1,g_2,g_3 \rangle_{\mathsf{mnd}}.$

Satisfy: $X_1^{z_1} \cdot m_1 + X_1^{z_2} \cdot m_2 = m_0$ for some $m_1, m_2, m_0 \in \mathcal{Y}/\mathcal{Y}'$. The quotient by some submodule \mathcal{Y}' accounts for "zigzags".

Proof of decidability result: from submonoids to S-unit equations

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

The proof has two steps. Step ${\bf 1}$ is rather elementary:

Proposition (From Submonoid Membership to S-unit equations)

Submonoid Membership in $\mathcal{Y} \rtimes \mathbb{Z}^n$ reduces to solving **S-unit equations** in some finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module $M=\mathcal{Y}/\mathcal{Y}'$.

Proof of decidability result: from submonoids to S-unit equations

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

The proof has two steps. Step ${\bf 1}$ is rather elementary:

Proposition (From Submonoid Membership to S-unit equations)

Submonoid Membership in $\mathcal{Y} \rtimes \mathbb{Z}^n$ reduces to solving **S-unit equations** in some finitely presented $\mathbb{F}_2[X_1^\pm,\ldots,X_n^\pm]$ -module $M=\mathcal{Y}/\mathcal{Y}'$.

Definition (S-unit equations in modules)

Input: a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, and elements $m_1,\ldots,m_k,m_0\in M$.

Question: Does the following equation have solutions $z_{11}, z_{12}, \ldots, z_{kn} \in \mathbb{Z}$?

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

For example, if $M=\mathbb{F}_2[X^\pm,Y^\pm]/(X+Y+1)$, then we are asking whether $X+Y+1\mid X^{z_{11}}Y^{z_{12}}m_1+\cdots+X^{z_{k1}}Y^{z_{k2}}m_k-m_0$

has integer solutions $z_{11}, z_{12}, \ldots, z_{k1}, z_{k2}$.

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S-unit equation**

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S-unit equation**

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

Example

Let $M=\mathbb{F}_2[X^\pm,Y^\pm]/(X+Y+1).$ The following equation in M

$$X^{z_{11}}Y^{z_{12}} + X^{z_{21}}Y^{z_{22}} = 1$$

is equivalent to the following equation in $\mathbb{F}_2(X)$:

$$X^{z_{11}}(X+1)^{z_{12}} + X^{z_{21}}(X+1)^{z_{22}} = 1.$$

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S-unit equation**

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

Example

Let $M=\mathbb{F}_2[X^\pm,Y^\pm]/(X+Y+1)$. The following equation in M

$$X^{z_{11}}Y^{z_{12}} + X^{z_{21}}Y^{z_{22}} = 1$$

is equivalent to the following equation in $\mathbb{F}_2(X)$:

$$X^{z_{11}}(X+1)^{z_{12}} + X^{z_{21}}(X+1)^{z_{22}} = 1.$$

The solution set is

$$(z_{11}, z_{12}, z_{21}, z_{22}) \in \{(2^k, 0, 0, 2^k) \mid k \in \mathbb{N}\} \cup \{(0, 2^k, 2^k, 0) \mid k \in \mathbb{N}\}.$$

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S-unit equation**

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

Example

Let $M = \mathbb{F}_2[X^{\pm}, Y^{\pm}]/(X + Y + 1)$. The following equation in M

$$X^{z_{11}}Y^{z_{12}} + X^{z_{21}}Y^{z_{22}} = 1$$

is equivalent to the following equation in $\mathbb{F}_2(X)$:

$$X^{z_{11}}(X+1)^{z_{12}} + X^{z_{21}}(X+1)^{z_{22}} = 1.$$

The solution set is

$$(z_{11}, z_{12}, z_{21}, z_{22}) \in \{(2^k, 0, 0, 2^k) \mid k \in \mathbb{N}\} \cup \{(0, 2^k, 2^k, 0) \mid k \in \mathbb{N}\}.$$

Hint:
$$(X+1)^{2^k} = X^{2^k} + 1$$
, so $(X+1)^{2^k} + X^{2^k} = 1$.

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

$$(X+1)^z + X^z = 1$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

$$(X+1)^z + X^z = 1.$$

Let's give the proof idea of step 2.

Instead of an equation with kn integer variables, let's consider a similar equation with one integer variable z.

For example, we want to solve in $M = \mathbb{F}_2[X^\pm, Y^\pm]/(X + Y + 1)$:

$$Y^z + X^z = 1.$$

That is, we need to solve in $\mathbb{F}_2(X)$:

$$(X+1)^z + X^z = 1.$$

From this automaton, we see directly that $z = 2^k$, $k \in \mathbb{N}$.

Proof of 2-automaticity: general case

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S-unit equation**

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

Proof of 2-automaticity: general case

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an S-unit equation

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

We can construct an automaton that recognizes the binary expansion of $(z_{11}, z_{12}, \ldots, z_{kn})$ by guessing the parity of each z_{ij} each time.

Proof of 2-automaticity: general case

Proposition (Solution of S-unit equations)

The solutions $(z_{11}, z_{12}, \dots, z_{kn}) \in \mathbb{Z}^{kn}$ of an **S**-unit equation

$$X_1^{z_{11}}X_2^{z_{12}}\cdots X_n^{z_{1n}}\cdot m_1+\cdots+X_1^{z_{k1}}X_2^{z_{k2}}\cdots X_n^{z_{kn}}\cdot m_k=m_0.$$

over a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module M, form an effectively 2-automatic subset of \mathbb{Z}^{kn} .

We can construct an automaton that recognizes the binary expansion of $(z_{11}, z_{12}, \ldots, z_{kn})$ by guessing the parity of each z_{ij} each time.

Some extra difficulty: the module M is not as nice as a field $\mathbb{F}_2(X)$, so can't use " $(X+1)^2=X^2+1$ ".

Solution: use primary decomposition and Noether Normalization to reduce to case of fields.

 $\textbf{Summary:} \ \, \mathsf{Submonoid} \ \, \mathsf{Membership} \longrightarrow \mathsf{S}\text{-unit equations} \longrightarrow \mathsf{decidable}$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_2[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y} \rtimes \mathbb{Z}^n$ has decidable Submonoid Membership.

Summary: Submonoid Membership \longrightarrow S-unit equations \longrightarrow decidable

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_p[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

(In fact we can replace 2 by any prime p)

 $\textbf{Summary:} \ \, \mathsf{Submonoid} \ \, \mathsf{Membership} \longrightarrow \mathsf{S}\text{-unit equations} \longrightarrow \mathsf{decidable}$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_p[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

(In fact we can replace 2 by any prime p) But can we replace the finite field \mathbb{F}_p by the ring $\mathbb{Z}/k\mathbb{Z}$ for any integer k?

 $\textbf{Summary:} \ \, \mathsf{Submonoid} \ \, \mathsf{Membership} \longrightarrow \mathsf{S}\text{-unit equations} \longrightarrow \mathsf{decidable}$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_p[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

(In fact we can replace 2 by any prime p) But can we replace the finite field \mathbb{F}_p by the ring $\mathbb{Z}/k\mathbb{Z}$ for any integer k?

Conjecture

Let $k \in \mathbb{N}$ and \mathcal{Y} be a finitely presented $(\mathbb{Z}/k\mathbb{Z})[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y} \rtimes \mathbb{Z}^n$ has decidable Submonoid Membership.

 $\textbf{Summary:} \ \, \mathsf{Submonoid} \ \, \mathsf{Membership} \longrightarrow \mathsf{S}\text{-unit equations} \longrightarrow \mathsf{decidable}$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_p[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

(In fact we can replace 2 by any prime p) But can we replace the finite field \mathbb{F}_p by the ring $\mathbb{Z}/k\mathbb{Z}$ for any integer k?

Conjecture

Let $k \in \mathbb{N}$ and \mathcal{Y} be a finitely presented $(\mathbb{Z}/k\mathbb{Z})[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y} \rtimes \mathbb{Z}^n$ has decidable Submonoid Membership. Moreover, let G be a metabelian group with torsion commutator subgroup (i.e. [G,G] is torsion abelian). Then Submonoid Membership is decidable in G.

 $\textbf{Summary:} \ \, \mathsf{Submonoid} \ \, \mathsf{Membership} \longrightarrow \mathsf{S}\text{-unit equations} \longrightarrow \mathsf{decidable}$

Theorem (D. 2024)

Let \mathcal{Y} be a finitely presented $\mathbb{F}_p[X_1^{\pm},\ldots,X_n^{\pm}]$ -module. Then the semidirect product $\mathcal{Y}\rtimes\mathbb{Z}^n$ has decidable Submonoid Membership.

(In fact we can replace 2 by any prime p) But can we replace the finite field \mathbb{F}_p by the ring $\mathbb{Z}/k\mathbb{Z}$ for any integer k?

Conjecture

Let $k \in \mathbb{N}$ and \mathcal{Y} be a finitely presented $(\mathbb{Z}/k\mathbb{Z})[X_1^\pm,\ldots,X_n^\pm]$ -module. Then the semidirect product $\mathcal{Y} \rtimes \mathbb{Z}^n$ has decidable Submonoid Membership. Moreover, let G be a metabelian group with torsion commutator subgroup (i.e. [G,G] is torsion abelian). Then Submonoid Membership is decidable in G.

However we cannot replace the finite field \mathbb{F}_p by \mathbb{Z} :

Theorem (Lohrey, Steinberg, and Zetzsche 2015)

Submonoid Membership in $\mathbb{Z} \wr \mathbb{Z} = \mathbb{Z}[X^{\pm}] \rtimes \mathbb{Z}$ is undecidable. (Because it can encode the halting problem for Minsky machines.)