CSL 101 DISCRRETE MATHEMATICS

Dr. Barun Gorain
Department of CSE, IIT Bhilai
Email: barun@iitbhilai.ac.in

REVIEW

A recursive definition of a sequence specifies

- Initial conditions
- Recurrence relation

LINEAR RECURRENCES

Linear recurrence:

Each term of a sequence is a linear function of earlier terms in the sequence.

For example:

$$a_0 = 1$$
 $a_1 = 6$ $a_2 = 10$
 $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3}$
 $a_3 = a_0 + 2a_1 + 3a_2$
 $= 1 + 2(6) + 3(10) = 43$

LINEAR RECURRENCES

Linear recurrences

- 1. Linear homogeneous recurrences
- 2. Linear non-homogeneous recurrences

A linear homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$

where $c_1, c_2, ..., c_k$ are real numbers, and c_k ; 0.

a_n is expressed in terms of the previous k terms of the sequence, so its degree is k.

This recurrence includes k initial conditions.

$$a_0 = C_0$$
 $a_1 = C_1$... $a_k = C_k$

Determine if the following recurrence relations are linear homogeneous recurrence relations with constant coefficients.

- $P_n = (1.11)P_{n-1}$ a linear homogeneous recurrence relation of degree one
- $a_n = a_{n-1} + a_{n-2}^2$ not linear
- $f_n = f_{n-1} + f_{n-2}$ a linear homogeneous recurrence relation of degree two
- a_n = a_{n-6}
 a linear homogeneous recurrence relation of degree six
- $B_n = nB_{n-1}$ does not have constant coefficient

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ be a linear homogeneous recurrence.
- \blacksquare Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.
- (α is any constant)

Proof:

- $b_n = a_n + a'_n$
- = $(c_1a_{n-1} + c_2a_{n-2} + ... + c_ka_{n-k}) + (c_1a'_{n-1} + c_2a'_{n-2} + ... + c_ka'_{n-k})$
- = $c_1(a_{n-1} + a'_{n-1}) + c_2(a_{n-2} + a'_{n-2}) + ... + c_k(a_{n-k} + a'_{n-k})$
- $\bullet = c_1b_{n-1} + c_2b_{n-2} + \dots + c_kb_{n-k}$
- So, b_n is a solution of the recurrence.

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ be a linear homogeneous recurrence.
- \blacksquare Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.
- $(\alpha \text{ is any constant})$

Proof:

- $d_n = \alpha a_n$
- = $\alpha (c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k})$
- = $c_1 (\alpha a_{n-1}) + c_2 (\alpha a_{n-2}) + ... + c_k (\alpha a_{n-k})$
- $\bullet = c_1 d_{n-1} + c_2 d_{n-2} + \dots + c_k d_{n-k}$
- So, d_n is a solution of the recurrence.

 It follows from the previous proposition, if we find some solutions to a linear homogeneous recurrence, then any linear combination of them will also be a solution to the linear homogeneous recurrence.

Geometric sequences come up a lot when solving linear homogeneous recurrences.

So, try to find any solution of the form $a^n = r^n$ that satisfies the recurrence relation.

Recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

□ Try to find a solution of form rⁿ

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$

$$r^{n} - c_{1}r^{n-1} - c_{2}r^{n-2} - \dots - c_{k}r^{n-k} = 0$$

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$$
 (dividing both sides by r^{n-k})

This equation is called the **characteristic equation**.

Example:

The Fibonacci recurrence is

$$F_n = F_{n-1} + F_{n-2}$$

Its characteristic equation is

$$r^2 - r - 1 = 0$$

Proposition 2:

```
r is a solution of r^k - c_1 r^{k-1} - c_2 r^{k-2} - ... - c_k = 0 if and only if r^n is a solution of a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}.
```

Example:

consider the characteristic equation $r^2 - 4r + 4 = 0$.

$$r^2 - 4r + 4 = (r - 2)^2 = 0$$

So, r=2.

So, 2^n satisfies the recurrence $F_n = 4F_{n-1} - 4F_{n-2}$.

$$2^n = 4 \cdot 2^{n-1} - 4 \cdot 2^{n-2}$$

$$2^{n-2}(4-8+4)=0$$

Theorem 1:

- Consider the characteristic equation $r^k c_1 r^{k-1} c_2 r^{k-2} ... c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.
- \square Assume r_1 , r_2 , ...and r_m all satisfy the equation.
- Let $\alpha_1, \alpha_2, ..., \alpha_m$ be any constants.
- So, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_m r_m^n$ satisfies the recurrence.

Proof:

By Proposition 2, ∴ ir in satisfies the recurrence.

So, by Proposition 1, $\therefore \phi \alpha_i r_i^n$ satisfies the recurrence.

Applying Proposition 1 again, the sequence $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_m r_m^n$ satisfies the recurrence.

What is the solution of the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$

with $a_0=2$ and $a_1=7$?

Solution:

 Since it is linear homogeneous recurrence, first find its characteristic equation

- So, by theorem $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ is a solution.
- Now we should find α_1 and α_2 using initial conditions.

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$

- So, α_1 = 3 and α_2 = -1.
- $a_n = 3 \cdot 2^n (-1)^n$ is a solution.

What is the solution of the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

with $f_0=0$ and $f_1=1$?

Solution:

 Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^2 - r - 1 = 0$$

$$r_1 = (1+\sqrt{5})/2$$
 and $r_2 = (1-\sqrt{5})/2$

- □ So, by theorem $f_n = \alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$ is a solution.
- Now we should find α_1 and α_2 using initial conditions.

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 (1 + \checkmark 5)/2 + \alpha_2 (1 - \checkmark 5)/2 = 1$$

- So, $\alpha_1 = 1/\checkmark 5$ and $\alpha_2 = -1/\checkmark 5$.
- □ $a_n = 1/\sqrt{5}$. $((1+\sqrt{5})/2)^n 1/\sqrt{5}((1-\sqrt{5})/2)^n$ is a solution.

What is the solution of the recurrence relation

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$

with $a_0=8$, $a_1=6$ and $a_2=26$?

Solution:

 Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^3 + r^2 - 4r - 4 = 0$$

 $(r+1)(r+2)(r-2) = 0$ $r_1 = -1, r_2 = -2 \text{ and } r_3 = 2$

- So, by theorem $a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$ is a solution.
- Now we should find α_1 , α_2 and α_3 using initial conditions.

$$a_0 = \alpha_1 + \alpha_2 + \alpha_3 = 8$$

 $a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$
 $a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$

- So, α_1 = 2, α_2 = 1 and α_3 = 5.
- $a_n = 2 \cdot (-1)^n + (-2)^n + 5 \cdot 2^n$ is a solution.

If the characteristic equation has k distinct solutions $r_1, r_2, ..., r_k$, it can be written as

$$(r - r_1)(r - r_2)...(r - r_k) = 0.$$

If, after factoring, the equation has m+1 factors of (r - r₁), for example, r₁ is called a solution of the characteristic equation with multiplicity m+1.

When this happens, not only r_1^n is a solution, but also nr_1^n , $n^2r_1^n$, ... and $n^mr_1^n$ are solutions of the recurrence.

Proposition 3:

- Assume r₀ is a solution of the characteristic equation with multiplicity at least m+1.
- \square So, $n^m r_0^n$ is a solution to the recurrence.

When a characteristic equation has fewer than k distinct solutions:

- We obtain sequences of the form described in Proposition 3.
- By Proposition 1, we know any combination of these solutions is also a solution to the recurrence.
- We can find those that satisfies the initial conditions.

Theorem 2:

- Consider the characteristic equation $r^k c_1 r^{k-1} c_2 r^{k-2} ... c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.
- Assume the characteristic equation has tSk distinct solutions.
- Let ς i (1:Si:St) r_i with multiplicity m_i be a solution of the equation.
- Let $\varsigma i, j$ (1:Si:St and 0:Sj:Sm₋1) α_{ij} be a constant.

So,
$$a_n = (\alpha_{10} + \alpha_{11} n + ... + \alpha_{1,m_{1}-1} n^{m_{1}-1}) r_1^n + (\alpha_{20} + \alpha_{21} n + ... + \alpha_{2,m_{2}-1} n^{m_{2}-1}) r_2^n + ... + (\alpha_{t0} + \alpha_{t1} n + ... + \alpha_{t,m_{t}-1} n^{m_{t}-1}) r_t^n$$
 satisfies the recurrence.

What is the solution of the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0=1$ and $a_1=6$?

Solution:

First find its characteristic equation

$$r^2 - 6r + 9 = 0$$

$$(r - 3)^2 = 0$$

$$r_1 = 3$$

 $(r-3)^2 = 0$ $r_1 = 3$ (Its multiplicity is 2.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n)(3)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} = 1$$

$$a_1 = 3 \alpha_{10} + 3\alpha_{11} = 6$$

- □ So, α_{11} = 1 and α_{10} = 1.
- $a_n = 3^n + n3^n$ is a solution.

What is the solution of the recurrence relation

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

with $a_0=1$, $a_1=-2$ and $a_2=-1$?

Solution:

Find its characteristic equation

$$r^3 + 3r^2 + 3r + 1 = 0$$

 $(r + 1)^3 = 0$ $r_1 = -1$ (Its multiplicity is 3.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n + \alpha_{12}n^2)(-1)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} = 1$$

 $a_1 = -\alpha_{10} - \alpha_{11} - \alpha_{12} = -2$
 $a_2 = \alpha_{10} + 2\alpha_{11} + 4\alpha_{12} = -1$

- □ So, α_{10} = 1, α_{11} = 3 and α_{12} = -2.
- $a_n = (1 + 3n 2n^2) (-1)^n$ is a solution.

What is the solution of the recurrence relation

$$a_n = 8a_{n-2} - 16a_{n-4}$$
, for n24,

with $a_0=1$, $a_1=4$, $a_2=28$ and $a_3=32$?

Solution:

Find its characteristic equation

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n)(2)^n + (\alpha_{20} + \alpha_{21}n)(-2)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} + \alpha_{20} = 1$$

$$a_1 = 2\alpha_{10} + 2\alpha_{11} - 2\alpha_{20} - 2\alpha_{21} = 4$$

$$a_2 = 4\alpha_{10} + 8\alpha_{11} + 4\alpha_{20} + 8\alpha_{21} = 28$$

$$a_3 = 8\alpha_{10} + 24\alpha_{11} - 8\alpha_{20} - 24\alpha_{21} = 32$$

- So, α_{10} = 1, α_{11} = 2, α_{20} = 0 and α_{21} = 1.
- $a_n = (1 + 2n) 2^n + n (-2)^n$ is a solution.

A **linear non-homogenous recurrence relation** with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n),$$

where $c_1, c_2, ..., c_k$ are real numbers, and f(n) is a function depending only on n.

The recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$$

is called the **associated homogeneous recurrence relation**.

This recurrence includes k initial conditions.

$$a_0 = C_0$$
 $a_1 = C_1 ...$ $a_k = C_k$

The following recurrence relations are linear non-homogeneous recurrence relations.

$$a_n = a_{n-1} + 2^n$$

$$a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$$

$$a_n = a_{n-1} + a_{n-4} + n!$$

$$a_n = a_{n-6} + n2^n$$

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear non-homogeneous recurrence.
- \blacksquare Assume the sequence b_n satisfies the recurrence.
- Another sequence a_n satisfies the nonhomogeneous recurrence if and only if h_n = a_n - b_n is also a sequence that satisfies the associated homogeneous recurrence.

Proof:

Part1: if h_n satisfies the associated homogeneous recurrence then a_n is satisfies the non-homogeneous recurrence.

$$b_n = c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$h_n = c_1 h_{n-1} + c_2 h_{n-2} + \dots + c_k h_{n-k}$$

$$b_n + h_n$$

= $c_1 (b_{n-1} + h_{n-1}) + c_2 (b_{n-2} + h_{n-2}) + ... + c_k (b_{n-k} + h_{n-k}) + f(n)$

Since $a_n = b_n + h_n$, $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$. So, a_n is a solution of the non-homogeneous recurrence.

Proof:

Part2: if a_n satisfies the non-homogeneous recurrence then h_n is satisfies the associated homogeneous recurrence.

$$b_n = c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$a_n - b_n$$

$$= c_1 (a_{n-1} - b_{n-1}) + c_2 (a_{n-2} - b_{n-2}) + ... + c_k (a_{n-k} - b_{n-k})$$

Since
$$h_n = a_n - b_n$$
, $h_n = c_1 h_{n-1} + c_2 h_{n-2} + ... + c_k h_{n-k}$

So, h_n is a solution of the associated homogeneous recurrence.

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear non-homogeneous recurrence.
- Assume the sequence b_n satisfies the recurrence.
- Another sequence a_n satisfies the non-homogeneous recurrence if and only if $h_n = a_n b_n$ is also a sequence that satisfies the associated homogeneous recurrence.
- We already know how to find h_n.
- For many common f(n), a solution b_n to the non-homogeneous recurrence is similar to f(n).
- Then you should find solution a_n = b_n + h_n to the non-homogeneous recurrence that satisfies both recurrence and initial conditions.

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for $n \square 2$, with $a_0 = 2$ and $a_1 = 3$?

Solution:

Since it is linear non-homogeneous recurrence, b_n is similar to f(n)

Guess:
$$b_n = cn + d$$

 $b_n = b_{n-1} + b_{n-2} + 3n + 1$
 $cn + d = c(n-1) + d + c(n-2) + d + 3n + 1$
 $cn + d = cn - c + d + cn - 2c + d + 3n + 1$
 $0 = (3+c)n + (d-3c+1)$
 $c = -3$ $d=-10$

So, $b_n = -3n - 10$. (b_n only satisfies the recurrence, it does

(b_n only satisfies the recurrence, it does not satisfy the initial conditions.)

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for n22,

with $a_0=2$ and $a_1=3$?

Solution:

- We are looking for a_n that satisfies both recurrence and initial conditions.
- $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = h_{n-1} + h_{n-2}$
- By previous example, we know $h_n = \alpha_1((1+-["5]/2)^n + \alpha_2((1--["5]/2)^n)$. $a_n = b_n + h_n$

$$= -3n - 10 + \alpha_1((1+-["5]/2)^n + \alpha_2((1--["5]/2)^n)$$

Now we should find constants using initial conditions.

$$a_0 = -10 + \alpha_1 + \alpha_2 = 2$$

 $a_1 = -13 + \alpha_1 (1 + -["5]/2 + \alpha_2 (1 - -["5]/2 = 3)$
 $\alpha_1 = 6 + 2 -["5]$
 $\alpha_2 = 6 - 2 -["5]$

So,
$$a_n = -3n - 10 + (6 + 2 - (5)((1 + (5)/2)^n + (6 - 2 - (5)((1 - (5)/2)^n))$$

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for n22,

with $a_0=1$ and $a_1=2$?

Solution:

Since it is linear non-homogeneous recurrence, b_n is similar to f(n)

Guess:
$$b_n = c2^n + d$$

$$b_n = 2b_{n-1} - b_{n-2} + 2^n$$

$$c2^{n} + d = 2(c2^{n-1} + d) - (c2^{n-2} + d) + 2^{n}$$

$$c2^{n} + d = c2^{n} + 2d - c2^{n-2} - d + 2^{n}$$

$$0 = (-4c + 4c - c + 4)2^{n-2} + (-d + 2d - d)$$

$$c = 4$$
 $d=0$

So, $b_n = 4 \cdot 2^n$.

(b_n only satisfies the recurrence, it does not satisfy the initial conditions.)

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for n22, with $a_0=1$ and $a_1=2$?

Solution:

- We are looking for a_n that satisfies both recurrence and initial conditions.
- $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = 2h_{n-1} h_{n-2}$.
 - Find its characteristic equation

$$r^{2} - 2r + 1 = 0$$

 $(r - 1)^{2} = 0$
 $r_{1} = 1$ (Its multiplicity is 2.)

So, by theorem $h_n = (\alpha_1 + \alpha_2 n)(1)^n = \alpha_1 + \alpha_2 n$ is a solution.

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for n22,

with $a_0=1$ and $a_1=2$?

Solution:

- \Box $a_n = b_n + h_n$
- $a_n = 4 \cdot 2^n + \alpha_1 + \alpha_2 n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = 4 + \alpha_1 = 1$$

$$a_1 = 8 - \alpha_1 + \alpha_2 = 2$$

$$\alpha_1 = -3$$
 $\alpha_2 = -3$

So,
$$a_n = 4 \cdot 2^n - 3n - 3$$
.