FDA Homework 4

Seokjun Choi

November 29th, 2019

1 Chapter 4

1.1 Problem 1

Consider the design matrix X in (4.5). Show that if X has rank p, then X^TX is non-singular.

Firstly note that X^TX is symmetric for any case of X. So I'll show that X^TX is positive definite, which is equivalent statement of non-singularity. (For verifying this equivalence, use spectral decomposition to symmetric positive definite matrix and observe all eigenvalues should be non zero.)

Assume n > p, an ordinary situation. But it is direct from below observation. For $v \in \mathbb{R}^p$ and $v \neq 0$,

$$v^T X^T X v = \langle X v, X v \rangle_{\mathcal{R}^n} > 0$$

Last inequality follows from the fact that because X is rank p linear transformation from \mathcal{R}^p to $\mathcal{R}^n, n > p$, only v = 0 can makes Xv = 0, but by assumption, $v \neq 0$ thus $Xv \neq 0$. then combining the definition of inner-product, $\langle a, a \rangle \geq 0$ for all $a \in \mathcal{H}$ and $\langle a, a \rangle = 0$ iff a = 0.

1.2 Problem 2

Consider the linear model (4.6) and the least squares estimator (4.7). Suppose x is a deterministic matrix of rank p and the errors ϵ_i are uncorrelated with variance σ_{ϵ}^2 . Show that $E[\hat{\beta}] = \beta$ and $Var[\hat{\beta}] = \sigma_{\epsilon}^2 (X^T X)^{-1}$.

Under the context and notation of book's and this problem, $\epsilon \sim [0, diag(\sigma_{\epsilon}^2)]$ and $X^T X$ is invertible since X is rank p and by result of problem 1. Then using (4.7),

$$\hat{\beta} = (X^T X)^{-1} X^T Y = (X^T X)^{-1} X^T (X\beta + \epsilon) = \beta + (X^T X)^{-1} X^T \epsilon$$

then since $E(\epsilon) = 0$,

$$E(\hat{\beta}) = E(\beta + (X^T X)^{-1} X^T \epsilon)) = \beta$$

And

$$Var(\hat{\beta}) = Var(\beta + (X^T X)^{-1} X^T \epsilon) = Var((X^T X)^{-1} X^T \epsilon)$$

= $(X^T X)^{-1} X^T Var(\epsilon) X(X^T X)^{-1} = (X^T X)^{-1} X^T \sigma_{\epsilon}^2 IX(X^T X)^{-1} = \sigma_{\epsilon}^2 (X^T X)^{-1}$

2 Chapter 5

2.1 Problem 1

Show that for any functions $\varphi_1, \varphi_2, ..., \varphi_k$, the $K \times K$ matrix I_{φ} with the entries $\varphi_{kl} = \int \varphi_k(t) \varphi_l(t) dt$, $1 \le k, l \le K$, is nonnegative definite, i.e. for any real numbers $x_1, x_2, ..., x_K$,

$$\sum_{k,l=1}^{K} \varphi_{kl} x_k x_l \ge 0$$

For becoming this problem to be proper, there should be a assumption: "each φ_i is in \mathcal{L}^2 ", rather than "any function φ ". Because if not, the value $\varphi_{kk} = \int \varphi_k \varphi_k = \int \varphi_k^2$ may be not well defined. (φ_{kk} may become ∞ , so)

Then, with inner product and norm of \mathcal{L}^2 , observe that for any $x_i \in \mathcal{R}$,

$$\begin{aligned} ||\sum_{i}^{K} x_{i} \varphi_{i}||_{\mathcal{L}^{2}}^{2} &= \langle \sum_{k}^{K} x_{k} \varphi_{k}, \sum_{l}^{K} x_{l} \varphi_{l} \rangle_{\mathcal{L}^{2}} = \sum_{k}^{K} \sum_{l}^{K} \langle x_{k} \varphi_{k}, x_{l} \varphi_{l} \rangle_{\mathcal{L}^{2}} \\ &= \sum_{k}^{K} \sum_{l}^{K} \int x_{k} x_{l} \varphi_{k}(t) \varphi_{l}(t) dt = \sum_{k}^{K} \sum_{l}^{K} x_{k} x_{l} \int \varphi_{k}(t) \varphi_{l}(t) dt = \sum_{k}^{K} \sum_{l}^{K} x_{k} x_{l} \varphi_{kl} \end{aligned}$$

And above norm value $||.|| \ge 0$ by definition of norm.

And incidentally, we get what we want, $\sum_{k=1}^{K} \sum_{l=1}^{K} x_k x_l \varphi_{kl} \ge 0$.

2.2 Problem 2

Show that if $\{u_j, j \geq 1\}$ and $\{v_i, i \geq 1\}$ are base in $\mathcal{L}^2([0,1])$. (not necessarily orthonormal), then

$$\{v_i(s)u_j(t), 0 \le s, t \le 1, i, j \ge 1\}$$

is a basis in $\mathcal{L}^2([0,1] \times [0,1])$.

Show that if $\{u_j, j \geq 1\}$ and $\{v_i, i \geq 1\}$ are both orthonormal systems, then above equation is an orthonormal system as well.

Since \mathcal{L}^2 is separable Hilbert space, we need to show only that for $f \in \mathcal{L}^2([0,1] \times [0,1])$, f has an expression of linear combination of $\{v_i(s)u_i(t)\}$.

So, put $w_{ij}((s,t)) = v_i(s)u_j(t)$ on $[0,1] \times [0,1]$ for all i,j. Then note that, $\int w_{ij} \leq ||v_i|| ||u_j|| < \infty$ by Cauchy-Schwartz inequality, so $w_{ij} \in \mathcal{L}^2([0,1] \times [0,1])$.

3 Chapter 6

3.1 Problem 5

Assume Y_n are independent Bernoullis with mean $E[Y_n] = p_n = logit^{-1}(X_n^T\beta)$ and variance $Var(Y_n) = p_n(1-p_n)$, as in Example 6.1.2. Find the estimating equation (6.6), i.e. replace μ etc with their corresponding values.

4 Chapter 6

4.1 Problem 6

Consider a Gaussian process Z(t) in $\mathcal{L}^2([0,1])$ with mean 0 and covariance C. Suppose we also have a second process $X(t) := \mu(t) + Z(t)$. Let $v_j(t)$ be the eigenfunctions of C and λ_j the eigenvalues. a. Write down the joint density of $\{\langle Z, v_1 \rangle, ..., \langle Z, v_m \rangle\}$ for some fixed $m \in \mathcal{N}$. Write down the joint density of $\{\langle X, v_1 \rangle, ..., \langle X, v_m \rangle\}$. b. You can obtain the density of $\{\langle X, v_i \rangle\}$ with respect to $\{\langle Z, v_i \rangle\}$, by taking their ratio. Write down this ratio.