Jakub Kopański

e-mail: J.Kopanski@imio.pw.edu.pl

Prowadzący: prof. dr hab. Stanisław Rosłoniec

Projektowanie układów mikrofalowych (PUM) Projekt

Spis treści

Spis rysunków				
1.				7
	1.1. 1.2.			7 7
2.				9
	2.1.			9
	2.2.		zanie	9
		2.2.1.	· · · · · · · · · · · · · · · · · · ·	10
_		2.2.2.	· · · · · · · · · · · · · · · · · · ·	10
3.				11
	3.1. 3.2.			$\frac{11}{11}$
4.	Zada			13
	4.1.			13
	4.2.			13
		4.2.1.		13
		4.2.2.		14
5.				15
	5.1. 5.2.			15 15
6.	Zada	anie 6		17
	6.1.	Treść		17
	6.2.			17
		6.2.1. 6.2.2.		17 18
7.	Zada	anie 7		19
	7.1.			19
	7.2.		•	19
8.	Zada			21
	8.1.			$\frac{21}{21}$
•	8.2.			
9.				$\frac{23}{23}$
	9.1. 9.2.			23 23
	0.2.	9.2.1.		$\frac{23}{23}$
		9.2.2.	Dzielnik typu Π	24
10	.Zada	anie 10		25
		Treść		25
	10.2.	Rozwia		25
			·	$\frac{25}{26}$
11	7.4.			$\frac{20}{27}$
11				21 27
				21 27
12			•	- · 28
		Treść		20 28

12.2. Rozwiązanie	28
12.2.1. Projekt sprzęgacza	28
12.2.2. Charakterystyka sprzęgacza	29
13.Zadanie 13	31
13.1. Treść	31
13.2. Rozwiązanie	31
13.2.1. Projekt sprzęgacza	31
13.2.2. Charakterystyka sprzęgacza	33
14. Z adanie 14	34
14.1. Treść	34
14.2. Rozwiązanie	34
14.2.1. Projekt dzielnika	34
14.2.2. Charakterystyki dzielnika	35
15.Zadanie 15	37
15.1. Treść	37
15.2. Rozwiązanie	37
15.2.1. Projekt dzielnika	37
15.2.2. Charakterystyka sprzężenia dzielnika	38
16. Z adanie 16	39
16.1. Treść	39
16.2. Rozwiązanie	40
17.Zadanie 17	41
17.1. Treść	41
17.2. Rozwiązanie	42
A. Kody użytych funkcji	43
A.1. pum/lines.py	43
A.2. pum/fdm.py	44
A.3. pum/algorithms.py	47
Bibliografia	50

Spis rysunków

1.1	Przekrój przez linie współosiową oraz symbole jej parametrów	7
2.1	Linie z przesuniętym przewodem wewnętrznym	9
3.1	Linia cylindryczno-płaska	11
4.1 4.2	Symetryczna linia paskowa	13 14
5.1 5.2	Linia rozważana w zadaniu 5	15 16
6.1	Niesymetryczna linia paskowa	17
7.1	Lnie cylindryczno-płaskie sprzężone	19
8.1	Symetryczne linie paskowe	21
11.1	Jednosekcyjny sprzęgacz zbliżeniowy	27
12.2	Schemat elektryczny sprzęgacza	28 28 30
13.2	Schemat elektryczny sprzęgacza pierścieniowego	31 32 33
14.2	Schemat elektryczny dzielnika	34 35 36
	Zarys konstrukcyjny projektowanego dzielnika	37 38
	Charakterystyka projektowanego filtru	39 39
	Charakterystyka projektowanego filtru	41 41

1.1. Treść

Udowodnić, że powietrzna linia współosiowa o stosunku promieni przewodów zewnętrznego do wewnętrznego równym $\sqrt{e}=1.648721271\ldots$ może przenosić falę elektromagnetyczną o największej mocy. Zadaną wielkością jest maksymalne natężenie pola elektrycznego, przy którym następuje przebicie elektryczne wypełniającego linię powietrza.

1.2. Rozwiązanie

Rysunek 1.1: Przekrój przez linie współosiową oraz symbole jej parametrów

Współosiową linie transmisyjną pokazano na rysunku 1.1. W treści zadania powiedziano, że mamy do czynienia z linią powietrzną więc $\epsilon = \epsilon_0$ oraz $\mu = \mu_0$. Moc fali przenoszonej przez linie jest równa:

$$P = \oint_{S} \bar{E}(x, y) \times \bar{H}(x, y) \, \mathrm{ds} \tag{1.1}$$

Ponieważ wyrażenia na pole elektryczne i magnetyczne w kartezjańskim układzie współrzędnych byłyby bardzo skomplikowane, należy zmienić układ współrzędnych na polarny:

$$P = \frac{1}{2} \int_{0}^{2\pi} \int_{a}^{b} \bar{E}(\rho, \phi) \cdot \bar{H}(\rho, \phi) \rho \, d\rho d\phi$$
 (1.2)

Pole elektryczne i magnetyczne mają postać:

$$\bar{E}(\rho) = \frac{U_0 \hat{\rho}}{\rho \ln \frac{b}{a}} \tag{1.3}$$

$$\bar{H}(\phi) = \frac{\bar{E}(\rho)\hat{\phi}}{\eta_0} \tag{1.4}$$

gdzie:

 $\begin{array}{ll} \hat{\rho} & \text{- wersor w kierunku } \rho, \\ \hat{\phi} & \text{- wersor w kierunku } \phi, \\ \xi_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \text{ - impedancja falowa linii.} \end{array}$

Możemy teraz policzyć moc fali przenoszonej przez linie:

$$P = \frac{1}{2} \int_{0}^{2\pi} \int_{a}^{b} \bar{E}(\rho, \phi) \cdot \bar{H}(\rho, \phi) \rho \, d\rho d\phi$$

$$= \frac{1}{2} \int_{0}^{2\pi} \int_{a}^{b} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\rho^{2} \ln^{2} \frac{b}{a}} \rho \, d\rho d\phi$$

$$= \frac{1}{2} \int_{0}^{2\pi} \int_{a}^{b} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\rho \ln^{2} \frac{b}{a}} \, d\rho d\phi$$

$$= \frac{1}{2} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\ln^{2} \frac{b}{a}} \int_{0}^{2\pi} \int_{a}^{b} \frac{1}{\rho} \, d\rho d\phi$$

$$= \frac{1}{2} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\ln^{2} \frac{b}{a}} \int_{0}^{2\pi} \ln |\rho| \, \Big|_{a}^{b} \, d\phi$$

$$= \frac{1}{2} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\ln^{2} \frac{b}{a}} \ln \frac{b}{a} \int_{0}^{2\pi} 1 \, d\phi$$

$$= \frac{1}{2} \frac{1}{\xi_{0}} \frac{U_{0}^{2}}{\ln \frac{b}{a}} \phi \, \Big|_{0}^{2\pi}$$

$$= \frac{2\pi}{\xi_{0}} \frac{U_{0}^{2}}{\ln \frac{b}{a}}$$
(1.5)

Korzystając z zależności:

$$U_0 = E_{max} \cdot a \ln \frac{b}{a} \tag{1.6}$$

można wyznaczyć moc fali propagującej się w linii w zależności od maksymalnego natężenia pola elektromagnetycznego (E_{max}) . Podstawiając 1.6 do 1.5 otrzymuję się:

$$P = \frac{2\pi}{\xi_0} \frac{E_{max}^2 \cdot a^2 \ln^2 \frac{b}{a}}{\ln \frac{b}{a}}$$

$$= \frac{2\pi}{\sqrt{\frac{\mu_0}{\epsilon_0}}} E_{max}^2 \cdot a^2 \ln \frac{b}{a}$$

$$= 2\pi \sqrt{\frac{\epsilon_0}{\mu_0}} E_{max}^2 \cdot a^2 \ln \frac{b}{a}$$

$$= K \cdot a^2 \ln \frac{b}{a}$$
(1.7)

K we wzorze 1.7 jest stałe, zależne tylko od podanego w zadaniu maksymalnego natężenia pola.

Moc fali propagującej się w linii będzie maksymalna gdy pochodna mocy określonej wzorem 1.7 $(\frac{dP(a)}{da})$ będzie równa 0.

$$\frac{dP(a)}{da} = K \cdot 2a \ln \frac{b}{a} + K \cdot a^2 \left(-\frac{1}{a}\right)$$

$$= Ka\left[2 \ln \frac{b}{a} - 1\right] \tag{1.8}$$

Wyrażenie 1.8 jest równe 0 gdy $2 \ln \frac{b}{a} - 1 = 0$. Co z kolei przekłada się na warunek $\ln \frac{b}{a} = \frac{1}{2}$, który jest spełniony gdy $\frac{b}{a} = \sqrt{e}$, co należało dowieść.

2.1. Treść

Dana jest powietrzna linia współosiowa o średnicach przewodów a = 7 mm i b = 3.04 mm, patrz rys. 2.1. O ile należy przesunąć przewód wewnętrzny względem przewodu zewnętrznego (c =?) aby jej impedancja charakterystyczna zmieniła się o 5 Ω .

Rysunek 2.1: Linie z przesuniętym przewodem wewnętrznym

2.2. Rozwiązanie

Impedancja linii ekscentrycznej jest określona wzorem:

$$Z_0(x) = 59.952 \sqrt{\frac{\mu_r}{\epsilon_r}} \ln\left(x + \sqrt{x^2 - 1}\right)$$
 (2.1)

$$x = \frac{1}{2a} \left(b + \frac{a^2 - 4c^2}{b} \right) \tag{2.2}$$

Dla c = 0 mamy:

$$Z_0(x) \Big|_{c=0} = 59.952 \sqrt{\frac{\mu_r}{\epsilon_r}} \ln \frac{a}{b}$$
 (2.3)

Jest to zależność przybliżona. Dokładny wzór na impedancje linii współosiowej ma postać:

$$Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln \frac{a}{b} \tag{2.4}$$

Porównując podane wyżej zależności dla $\mathbf{c}=0$ mamy:

wzór dokładny : 50.0085378279 wzór przybliżony : 50.0031234918 co daje bład równy 0.01%.

Zadanie można rozwiązać na 2 sposobu: analitycznie i numerycznie. kolejne zadania będzie można rozwiązać już tylko numerycznie więc porównując rozwiązanie analityczne i numeryczne zadania 2 można przetestować zaprogramowaną metodę newtona.

2.2.1. Rozwiązanie analityczne

Równanie z jakie należy rozwiązać to

$$\underbrace{59.952\sqrt{\frac{\mu_r}{\epsilon_r}}}_{k} \ln\left(x + \sqrt{x^2 - 1}\right) = \underbrace{\frac{1}{2\pi}\sqrt{\frac{\mu}{\epsilon}}\ln\frac{a}{b} - 5}_{d} \tag{2.5}$$

$$\ln\left(x + \sqrt{x^2 - 1}\right) = \frac{d}{k} \tag{2.6}$$

Kluczowe jest spostrzeżenie, że arch $x = \ln (x + \sqrt{x^2 - 1})$. Biorąc cosinus hiperboliczny obu stron równania mamy

$$\operatorname{ch}\left(\operatorname{arch}\left(x\right)\right) = \operatorname{ch}\frac{d}{k}\tag{2.7}$$

$$x = \frac{1}{2} \left(e^{\frac{d}{k}} + e^{-\frac{d}{k}} \right) \tag{2.8}$$

Otrzymane x należy podstawić do wzoru 2.2. Po kilku przekształceniach otrzymuję się zależność:

$$c = \sqrt{\left(a^2 - ab2 \operatorname{ch} \frac{d}{k} + b^2\right)/4} \tag{2.9}$$

Podstawiając dane z treści zadania otrzymuję się przesunięcie c = 0.882307292061mm.

2.2.2. Rozwiązanie numeryczne

W celu znalezienia wymaganego przesunięcia, należy znaleźć wartość x przy którym impedancja spełnia warunek:

$$Z_0(x)\Big|_{c=2} = Z_0(x)\Big|_{c=0} - 5$$
 (2.10)

$$Z_0(x)\Big|_{c=?} - Z_0(x)\Big|_{c=0} + 5 = 0$$
 (2.11)

a następnie znając x wyznaczyć c. Oczywiście stosując rozwiązania numeryczne nie trzeba stosować się do kolejności wyznaczania (tzn. najpierw x a potem c). Dysponując funkcjami wyznaczającymi wartość impedancji można odnaleźć od razu c.

Wynik rozwiązany za pomocą zaprogramowanego algorytmu Newtona-Raphsona wynosi:

 $c_{numeryczne} = 0.882307221883mm$ $c_{analityczne} = 0.882307292061mm$

różnica pomiędzy wynikami wynosi 8.12217580519e-11, co jest zgodne z przyjętym kryterium zatrzymania pracy algorytmu na poziomie 1e-10.

3.1. Treść

Zaprojektować powietrzną linię cylindryczno-płaską o przekroju poprzecznym jak na rys. 3.1 zakładając, że jej impedancja charakterystyczna jest równa $Z_0=30~\Omega$. Odległość pomiędzy równoległymi przewodzącymi płaszczyznami tej linii jest równa b=9~mm. O ile zmieni się impedancja charakterystyczna tej linii (zaprojektowanej) po wypełnieniu jej bezstratnym dielektrykiem o $\epsilon_r=2.04$ i $\mu_r=1$.

Rysunek 3.1: Linia cylindryczno-płaska

3.2. Rozwiązanie

Impedancja charakterystyczna linii cylindryczno-płaskiej wyraża się wzorem:

$$Z_0\left(\frac{d}{b}\right) = 59.952\sqrt{\frac{\mu_r}{\epsilon_r}}\left(\ln\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x - y}} - \frac{R^4}{30} + 0.014R^8\right),\tag{3.1}$$

gdzie:

$$R = \frac{\pi}{4} \frac{d}{b} \tag{3.2}$$

$$x = 1 + 2\operatorname{sh}^{2}(R) \tag{3.3}$$

$$y = 1 - 2\sin^2(R) \tag{3.4}$$

Zależność impedancji od wymiarów linii jest znacznie bardziej złożona niż w przypadku linii z zadania 2. Dlatego w tym przypadku nie można znaleźć rozwiązania w sposób analityczny. W celu określenia wymiarów linii należy rozwiązać równanie:

$$Z_0\left(\frac{d}{b}\right)\Big|_{d=9\ mm} - 30\Omega = 0 \tag{3.5}$$

Do znalezienia rozwiązania użyto zaprogramowanego poprzednio algorytmu Newtona-Raphsona.

Otrzymano następujące wyniki:

$$d = 6.73875214859 \ mm \tag{3.6}$$

$$Z_0 = 30.0 \ \Omega$$
 (3.7)

W celu odpowiedzi na drugie pytanie należy policzyć impedancje linii korzystając ze wzoru 3.1. Jednak zamiast $\mu_r=1$ i $\epsilon_r=1$, podstawić wartości określone w treści zadania. Uzyskana w ten sposób wartość impedancji wynosi $Z_0=21.0042012604~\Omega$. Zmieni się ona zatem o $-8.99579873958~\Omega$. Zmiana impedancji wynika też bezpośrednio ze wzoru 3.1. Po wstawieniu dielektryka nowa wartość

impedancji wyniesie $Z_0 \times \sqrt{\mu_r}$.

4.1. Treść

Zaprojektować symetryczną linię paskową, rys. 4.1, o impedancji charakterystycznej $Z_0=50~\Omega$. Podłoże linii stanowi dielektryk o $\epsilon_r=2.56,~\mu_r=1$ i grubości b=2.8~mm. Obliczenia wykonać, przy założeniu, że grubość przewodu wewnętrznego t=0~mm. Metodą różnic skończonych obliczyć impedancję charakterystyczną tej linii przyjmując, że przewód wewnętrzny t=0.150~mm.

Rysunek 4.1: Symetryczna linia paskowa

4.2. Rozwiązanie

4.2.1. Nieskończenie cienki przewód wewnętrzny

Impedancja charakterystyczna symetrycznej linii paskowej wyraża się wzorem:

$$Z_0(k) = 29.976\pi \sqrt{\frac{\mu_r}{\epsilon_r}} \frac{K(k)}{K'(k)}$$
 (4.1)

gdzie:

$$k = \frac{1}{\operatorname{ch}\left(\frac{\pi w}{2b}\right)} \tag{4.2}$$

przy założeniu nieskończenie cienkiego paska ($t=0\ mm$). Z równania 4.2 można wyznaczyć szerokość paska:

$$w = \frac{2b}{\pi} \ln \left(\frac{1}{k} + \sqrt{\frac{1}{k^2} - 1} \right) \tag{4.3}$$

która to tworzy linie o impedanacji Z_0 .

W pierwszym kroku z równania 4.1 można wyznaczyć stosunek całek eliptycznych $\frac{K(k)}{K'(k)}$:

$$\frac{K(k)}{K'(k)} = \frac{Z_0}{29.976\pi} \sqrt{\frac{\epsilon_r}{\mu_r}}.$$
 (4.4)

Następnie można wyznaczyć stałą modularną q:

$$q = e^{-\pi \frac{K'(k)}{K(k)}}. (4.5)$$

Stała modularna z równania 4.5 pozwala wyznaczyć wartość szeregów:

$$N = \sum_{i=1}^{\infty} q^{i \times (i-1)}, \tag{4.6}$$

$$D = 0.5 + \sum_{i=1}^{\infty} q^{i \times i}.$$
 (4.7)

Szeregi 4.6 i 4.7 są szybko zbieżne i wystarczy już kilka pierwszych wyrazów aby uzyskać dobrą dokładność. W programie obliczanie wartości N oraz D zatrzymuję się automatycznie gdy osiągnięta została dokładność, która jest podawana jako parametr funkcji.

Korzystając z wyznaczonych wartości można obliczyć moduł k:

$$k = \sqrt{q} \left(\frac{N}{D}\right)^2. \tag{4.8}$$

Podstawiając wartość do równania 4.3 można obliczyć wymaganą szerokość paska. Dla danych podanych w treści zadania wymagana wartość $w=2.06265925327\ mm$.

4.2.2. Przewód wewnętrzny o $t = 0.150 \ mm$

W celu obliczenia dokładniejszej wartości impedancji skorzystano z metody różnic skończonych. W tym celu należy wyznaczyć rozkład potencjału w linii. Wykorzystano w tym celu algorytm Liebmanna opisany w [1]. Wynik został przedstawiony na rys. 4.2.

Rysunek 4.2: Rozkład potencjału w symetrycznej linii paskowej

Mając dany rozkład potencjału możemy obliczyć impedancję linii:

$$Z_0 = \sqrt{\frac{\mu}{\epsilon}} \frac{U}{\oint_{S_2} E_n ds}$$
 (4.9)

gdzie U to napięcie pomiędzy przewodem wewnętrznym a zewnętrznym, E_n to składowa normalna natężenia pola elektrycznego określona na linii brzegowej S_2 przewodu zewnętrznego.

W wyniku symulacji uzyskano impedancję równą $Z_0=45.2925852199~\Omega,$ dla przewodu o wymiarach określonych w sekcji 4.2.1. Daję to różnicę równą 4.70741478 Ω od wymaganych 50 Ω .

5.1. Treść

Wykorzystując oprogramowanie napisane do rozwiązania zadania 4 wyznaczyć impedancję charakterystyczną powietrznej linii TEM o przekroju poprzecznym jak na rys. 5.1, przyjmując $b=8\ mm$ i $t=4\ mm$. Wynik otrzymany numerycznie porównać z wynikiem obliczonym według odpowiednich, przybliżonych wzorów wykorzystujących całki eliptyczne.

Rysunek 5.1: Linia rozważana w zadaniu 5

5.2. Rozwiązanie

Impedancja linii została wyznaczona w sposób opisany w sekcji 4.2.2. Dla linii określonej w niniejszym zadaniu wynosi ona $Z_0 = 36.7605605644 \Omega$.

Impedancja obliczona według przybliżonego wzoru opartego o całki eliptyczne wynosi $Z_0=36.807171466~\Omega.$ Jest to wynik bardzo bliski uzyskanemu za pomocą metody różnic skończonych.

Rysunek 5.2: Rozkład potencjału w linii współosiowej z kwadratowymi przewodami

6.1. Treść

Zaprojektować niesymetryczną linię paskową, rys 6.1, o impedancji charakterystycznej $Z_0=50~\Omega$. Podłoże linii stanowi dielektryk o $\epsilon_r=2.56,~\mu_r=1$ i grubości h=1.4~mm. Obliczenia wykonać, przy założeniu, że grubość przewodu wewnętrznego t=0.0035~mm. Obliczyć długość fali w tak zaprojektowanej linii wiedząc, ze jej częstotliwość f=1.5~GHz.

Rysunek 6.1: Niesymetryczna linia paskowa

6.2. Rozwiązanie

6.2.1. Szerokość linii

Niesymetryczna linia paskowa, ze względu na niezwykle łatwe i tanie wytwarzanie, jest jedną z najpopularniejszych prowadnic falowych. Pomimo swojej popularności ciągle nie są znane analityczne zależności projektowe. Dlatego na potrzeby projektu posłużono się wzorami zawartymi w [2].

Rozwiązanie zadania polega na znalezieniu szerokości paska, jaki będzie tworzył linie o wymaganej impedancji. W tym celu należy numerycznie rozwiązać równanie:

$$Z_0(u,f) - Z_0 = 0 (6.1)$$

gdzie:

 Z_0 - wymagana impedancja

 $u = \frac{W}{h}$ - stosunek od którego zależy impedancja

f - częstotliwość pracy

Impedancje linii oblicza się wzorem:

$$Z_0(u,f) = \frac{60}{\sqrt{\epsilon_{ef}(f)}} \ln \left[\frac{f(u)}{u} + \sqrt{1 + \left(\frac{2}{u}\right)^2} \right]$$

$$(6.2)$$

Pomocnicze równania niezbędne do obliczenia impedancji zawarte są w [2].

Należy zwrócić uwagę na to, że wzór 6.2 jest słuszny w przypadku gdy przewód wewnętrzny jest nieskończenie cienki t=0. Gdy chcemy uwzględnić grubość paska należy od u dla którego równanie 6.1 jest spełnione odjąć poprawkę:

$$\Delta u = \frac{t}{2\pi h} \ln\left(1 + \frac{4eh}{t \coth^2 \sqrt{6.517u}}\right) \left(1 + \frac{1}{\cot \sqrt{\epsilon_r - 1}}\right)$$
(6.3)

Uwzględniając to wszystko zadanie rozwiązano korzystając z algorytmu Newtona-Raphsona napisanego dla poprzednich zadań. Wartość szerokości paska w dla którego impedancja wynosi 50 Ω wynosi w=3.90022750273~mm.

6.2.2. Długość fali

Pole elektromagnetyczne w niesymetrycznej linii paskowej rozchodzi się, częściowo poprzez dielektryk a częściowo w powietrzu. Dlatego należy obliczyć efektywną przenikalność dielektryczną:

$$\epsilon_{eff}(u,f) = \frac{\epsilon_{eff}(u,0) + \epsilon_r p(u,f)}{1 + p(u,f)} \tag{6.4}$$

$$\epsilon_{eff}(u,0) = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left(1 + \frac{10}{u} \right)^{-a(u) \times b(\epsilon_r)}$$

$$(6.5)$$

Mając obliczoną efektywną przenikalność elektryczną można obliczyć długość fali rozchodzącej się w linii.

$$\lambda = \frac{c_{osr}}{f} = \frac{c}{\sqrt{\epsilon_{eff}} \times f} \tag{6.6}$$

Dla wartości określonych w treści zadania długość fali rozchodzącej się w zaprojektowanej linii wynosi: $\lambda=13.6746810073~cm$.

7.1. Treść

Zaprojektować powietrzne cylindryczno-płaskie linie sprzężone dla następujących danych: $Z_{0e}=60~\Omega,$ $Z_{0o}=40~\Omega.$ Obliczenia wykonać przy założeniu, że odległość pomiędzy dwoma zewnętrznymi płaszczyznami przewodzącymi jest równa $h=8\ mm,$ rys. 7.1.

Rysunek 7.1: Lnie cylindryczno-płaskie sprzężone

7.2. Rozwiązanie

Impedancje charakterystyczne powietrznych linii cylindryczno-płaskich, przy pobudzeniu synfazowym Z_{0e} i przeciwfazowym Z_{0o} określone są wzorami:

$$Z_{0e}(x,y) = 59.952 \ln \left(\frac{0.523962}{f_1(x)f_2(x,y)f_3(x,y)} \right)$$

$$Z_{0e}(x,y) = 59.952 \ln \left(\frac{0.523962f_3(x,y)}{f_1(x)f_4(x,y)} \right)$$
(7.2)

$$Z_{0o}(x,y) = 59.952 \ln \left(\frac{0.523962 f_3(x,y)}{f_1(x) f_4(x,y)} \right)$$
(7.2)

gdzie:

 $f_{(1/2/3/4)}$ - funkcje opisane w [2],

 $x=rac{d}{h}$ - stosunek średnicy przewodu do odstępu między płaszczyznami, $y=rac{s}{h}$ - stosunek odstępu między przewodami do odstępu między płaszczyznami.

Projektowanie linii sprowadza się do znalezienia takich x i y dla których spełnione są równania:

$$V1(x,y) = Z_{0e}(x,y) - Z_{0e} = 0 (7.3)$$

$$V2(x,y) = Z_{0o}(x,y) - Z_{0o} = 0 (7.4)$$

a finalnie s i d.

Implementując metodę Newtona linia spełniająca wymagania postawione w treści zadania ma wymiary: $s=1.97191812203\ mm$ i $d=4.25688390818\ mm$.

8.1. Treść

Zaprojektować symetryczne linie paskowe sprzężone dla następujących danych o przekroju poprzecznym jak na rys. 8.1. Obliczenia wykonać dla $Z_{0e}=60~\Omega,~Z_{0o}=40~\Omega$ przy założeniu, że podłoże linii stanowi dielektryk o $\epsilon_r=2.56,~\mu_r=1$ i grubości b=2.8~mm. W trakcie obliczeń przyjąć, że grubość przewodów wewnętrznych $t\approx 0~mm$.

Rysunek 8.1: Symetryczne linie paskowe

8.2. Rozwiązanie

Impedancje charakterystyczne symetrycznych sprzężonych linii paskowych wynoszą:

$$Z_{0e} = 29.976\pi \sqrt{\frac{\mu_r}{\epsilon_r}} \frac{K'(ke)}{K(ke)}$$
(8.1)

$$Z_{0o} = 29.976\pi \sqrt{\frac{\mu_r}{\epsilon_r}} \frac{K'(ko)}{K(ko)}$$

$$\tag{8.2}$$

Powyższe wzory są słuszne gdy t << b, co jest spełnione dla $t \approx 0$ określonego w zadaniu. W pierwszym kroku należy wyznaczyć:

$$\frac{K'(ke)}{K(ke)} = Z_{0e}/29.976\pi \sqrt{\frac{\mu_r}{\epsilon_r}} \tag{8.3}$$

$$\frac{K'(ko)}{K(ko)} = Z_{0o}/29.976\pi \sqrt{\frac{\mu_r}{\epsilon_r}}$$
 (8.4)

Z ilorazu całek eliptycznych można wyznaczyć moduły k_e i k_o . Następnie obliczamy parametry linii W i S zgodnie ze wzorami:

$$W = \frac{2b}{\pi} \operatorname{arth}(\sqrt{k_e k_o}) \tag{8.5}$$

$$S = \frac{2b}{\pi} \operatorname{arth}\left(\frac{k_e}{k_o}\right) - W \tag{8.6}$$

Dla wartości podanych w treści zadania potrzebne parametry linii to $w=1.95755230148\ mm$ i $s=0.384595243329\ mm.$

9.1. Treść

Zaprojektować tłumik rezystywny typu T o tłumieniu L=10~dB, który włączony pomiędzy linie długie o impedancjach charakterystycznych $Z_{01}=50~\Omega$ i $Z_{02}=60~\Omega$ powinien zapewniać obustronne dopasowanie w nieskończenie szerokim paśmie częstotliwości. Zaprojektować równoważną wersję tego tłumika typu Π .

9.2. Rozwiązanie

W pierwszym kroku należy sprawdzić realizowalność dzielnika. Należy wyznaczyć stosunek impedancji r:

$$r = \left(\frac{Z_{01}}{Z_{02}}\right)^{\pm 1} \tag{9.1}$$

przy czym znak przy wykładniku dobiera się tak, aby: r > 1.

Dla przypadku określonego w treści zadania:

$$r = \frac{Z_{02}}{Z_{01}} = \frac{60}{50}$$
$$= 1.2$$

Następnie można obliczyć minimalne tłumienie jakie wprowadza dzielnik:

$$L_{min} = 10\log(\sqrt{r} + \sqrt{r-1}) \tag{9.2}$$

Podstawiając wartości określone w treści zadania otrzymuję się $L_{min} = 4.33507363245 \ dB$ co jest mniejsze od wymaganego $L = 10 \ dB$. Oznacza to, że tłumik jest realizowalny.

Projekt tłumików zaczyna się od przekształcenia wartości tłumienia z miary decybelowej na liniową:

$$N = 10^{\left(\frac{L}{10}\right)} = 10\tag{9.3}$$

9.2.1. Dzielnik typu T

W celu zaprojektowania tłumika typu T wyznacza się wartości rezystancji zgodnie ze wzorami:

$$R_3 = \frac{2\sqrt{N \times Z_{01} \times Z_{02}}}{N - 1} = 38.490017946 \ \Omega \tag{9.4}$$

$$R_2 = Z_{02} \frac{N+1}{N-1} - R_3 \qquad = 34.8433153874 \ \Omega \tag{9.5}$$

$$R_1 = Z_{01} \frac{N+1}{N-1} - R_3 \qquad = 22.6210931651 \ \Omega \tag{9.6}$$

9.2.2. Dzielnik typu Π

Wcelu zaprojektowania tłumika typu Π wyznacza się wartości rezystancji zgodnie ze wzorami:

$$R_{a} = \frac{(N-1)\sqrt{Z_{01}Z_{02}}}{2\sqrt{N}} = 77.9422863406 \Omega$$

$$R_{b} = \frac{Z_{01}R_{a}(N-1)}{R_{a}(N+1) - Z_{01}(N-1)} = 86.0997286466 \Omega$$

$$R_{c} = \frac{Z_{02}R_{a}(N-1)}{R_{a}(N+1) - Z_{02}(N-1)} = 132.619585539 \Omega$$

$$(9.7)$$

$$= 86.0997286466 \Omega$$

$$= 132.619585539 \Omega$$

$$(9.9)$$

$$R_b = \frac{Z_{01}R_a(N-1)}{R_a(N+1) - Z_{01}(N-1)} = 86.0997286466 \Omega$$
 (9.8)

$$R_c = \frac{Z_{02}R_a(N-1)}{R_a(N+1) - Z_{02}(N-1)} = 132.619585539 \Omega$$
 (9.9)

10.1. Treść

Zaprojektować schodkowy, ćwierć
falowy transformator impedancji o charakterystyce równomiernie falistej (Czebyszewa) dopasowujący dwie linie współosiowe o impedancjach charakterystycznych $Z_{01}=30~\Omega$ i $Z_{02}=75~\Omega$. Transformator ten powinien zapewniać w paśmie $2\div 3~GHz$ dopasowanie z $WFS \le 1.12$. Projekt transformatora wykonać przy założeniu, że przewody zewnętrzne obu dopasowywanych linii mają średnicę a=7~mm. Zaprojektować równoważny wariant tego transformatora w postaci transformatora II klasy, tj. transformatora złożonego z niewspółmiernych odcinków linii o impedancjach charakterystycznych $Z_{01}=30~\Omega$ i $Z_{02}=75~\Omega$.

10.2. Rozwiązanie

10.2.1. Transformator schodkowy

Projekt transformatora rozpoczyna się od określenia ilości sekcji niezbędnych do realizacji. Minimalna ilość sekcji potrzebnych do realizacji transformatora jest większa lub równa:

$$n \ge \frac{\operatorname{arch}\left(\frac{R-1}{\Gamma_d \times (r+1)}\right)}{\operatorname{arch}\left(\frac{1}{\cos(\pi^{\frac{1-\omega}{2}})}\right)} = 1.47234760626 \tag{10.1}$$

$$n = 2$$

gdzie:

$$R = \frac{Z_{02}}{Z_{01}}$$
 = 2.5,
 $\Gamma_d = \frac{WFS - 1}{WFS + 1}$ = 0.0566037735849.

Następnie należy policzyć wartość impedancji kolejnych sekcji transformatora. Uzyskuję się je poprzez przemnożenie impedancji poprzedniego fragmentu linii poprzez współczynnik V_K . Sposób obliczania współczynników V_K jest zależny od stopnia transformatora i dokładne wzory są podane w [2]. Dla przypadku podanego w treści zadania mamy:

$$\begin{array}{lll} Z_{01} = 30~\Omega \\ Z_1 = Z_{01} \times V_1 \\ Z_2 = Z_1 \times V_2 \\ Z_{02} = 75~\Omega \end{array} \\ = 30~\Omega \times 1.27247425628 = 38.1742276884~\Omega \\ = 38.1742276884~\Omega \times 1.54398116863 = 58.9402886777~\Omega \\ \end{array}$$

Znając impedancje kolejnych odcinków linii oraz transformatora możemy obliczyć szerokości przewodów wewnętrznych linii współosiowych realizujących dane impedancję. W tym celu należy posłużyć się zależnością:

$$b = a \times \exp\left(-\frac{Z_k}{59.952 \times \sqrt{\frac{\mu_r}{\epsilon_r}}}\right)$$
 (10.2)

Dla danych z treści z zdania oraz obliczonych impedancji:

 $b_{01} = 4.24401531258 \ mm$ $b_1 = 3.70307525226 \ mm$ $b_2 = 2.61898150779 \ mm$ $b_{02} = 2.00352744277 \ mm$

Ostatnim etapem projektu jest wyznaczenie długości każdego z odcinków tworzących transformator. Długość elektryczna powinna wynosić $\frac{\lambda}{4}$. Długość fizyczną wyznacza się z zależności:

$$l\left(\frac{\pi}{4}\right) = \frac{c}{\sqrt{\mu_r/\epsilon_r} 4f_0} \tag{10.3}$$

Dla danych z zadania wynosi: $l\left(\frac{\pi}{4}\right) = 2.99792458 \ cm.$

10.2.2. Transformator impedancji II klasy

Transformator złożony z niewspółmiernych odcinków linii różni się od transformatora schodkowego tym, że składa się z odcinków linii o znanej impedancji charakterystycznej Z_0 i $R \times Z_0$, a projektowanie polega na doborze odpowiedniej ilości sekcji oraz długości elektrycznych odcinków. W przypadku tego zadania mamy $Z_0 = 30~\Omega$, $R = \frac{75}{30} = 2.5$.

W pracy [2] przedstawiono metody projektowania dwu-, cztero-, sześcio- i ośmiosekcyjnych transformatorów impednacji II klasy. W przypadku tego zadania, ze względu warunek odpowiadania transformatorowi zaprojektowanemu w sekcji 10.2.1 należy zaprojektować transformator czterosekcyjny.

Długości elektryczne kolejnych sekcji transformatora wynoszą $\theta_i(f)$ i są związane z długością elektryczną pierwszej sekcji $\theta(f)$ zależnością:

$$\theta_i(f) = a_i \theta(f) \quad dla \quad i = 2, 3, \dots n, \tag{10.4}$$

gdzie a_i jest *i*-tą składową *n*-wymiarowego wektora $A = (1, a_2, a_3, \dots, a_n)$

Projektowanie transformatora sprowadza się do aproksymacji funkcji wnoszonego tłumienia $L(A, \theta)$ w paśmie $[\theta_a, x\theta_a]$ gdzie θ_a i $x\theta_a$ oznaczają długości elektryczne pierwszej sekcji dla najmniejszej i największej czestotliwości pracy transformatora.

Z wymagań przedstawionych w [2] mamy: $a_2 = a_3$ i $a_4 = 1$. Dlatego szukane wartości to:

$$\theta_a = \theta(f_1) = \frac{V_4}{1+x} = 0.265397249812 \tag{10.5}$$

$$a_2 = \frac{f_3(r) + f_4(r)(2-x)}{V_4} = 2.73683917651$$
 (10.6)

11.1. Treść

Zaprojektować jednosekcyjny, zbliżeniowy sprzęgacz kierunkowy o sprzężeniu C=13~dB przy częstotliwości f=1.34~GHz. Sprzęgacz zrealizować z odcinków symetrycznych linii paskowych (pojedynczych i sprzężonych) przyjmując, że podłoże linii stanowi dielektryk o $\epsilon_r=2.56,~\mu_r=1$ i grubości b=2.8~mm. Projekt wykonać przy założeniu, że grubość przewodów wewnętrznych jest pomijalnie mała z grubością dielektryka b=2.8~mm a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50~\Omega$.

Rysunek 11.1: Jednosekcyjny sprzęgacz zbliżeniowy

11.2. Rozwiązanie

Sprzęgacz z oznaczeniami przedstawiono na rys. 11.1. Rozważany sprzęgacz jest sprzęgaczem w tyl, tzn. wrota sprzężone to wrota oznaczone numerem 2. Projekt sprzęgacza zaczyna się od wyznaczenia wartości napięciowego współczynnika sprzężenia:

$$k = 10^{-\frac{|C|}{20}}$$

$$= 0.223872113857$$
(11.1)

Następnie, na jego podstawie, wyznacza się wartości impedancji charakterystycznych:

$$Z_{0e} = Z_0 \sqrt{\frac{1+k}{1-k}}$$
 = 62.7872381716 \Omega (11.2)

$$Z_{0o} = Z_0 \sqrt{\frac{1-k}{1+k}}$$
 = 39.8170085642 \Omega (11.3)

(11.4)

Wyznaczone impedancje to prawie koniec projektu. Realizacja sprzęgacza w technice linii paskowych sprowadza się do zagadnienia rozważanego w rozdziale 8. Szerokość i szczelina między ścieżkami opisane są zależnościami 8.5 i 8.6. Dla wartości podanych w treści zadania potrzebne parametry linii to $w=1.85910996355\ mm$ i $s=0.326090134191\ mm$.

Długość sprzęgacza powinna wynosić $\frac{1}{4} \times \lambda$. Dla zadanej częstotliwości i parametrów podłoża sprzęgacza $\lambda = 13.9828571828$ cm, co daję długość sprzęgacza l = 3.49571429571 cm.

12.1. Treść

Zaprojektować dwugałęziowy sprzęgacz kierunkowy zapewniający przy częstotliwości f=1.34~GHz sprzężenie C=3.9~dB. Sprzęgacz zrealizować z odcinków niesymetrycznej linii paskowej przyjmując, że podłoże linii stanowi dielektryk o $\epsilon_r=4.34,~\mu_r=1$ i grubości h=1.4~mm. Projekt wykonać przy założeniu, że grubość przewodu wewnętrznego t=0.035~mm a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50~\Omega$. Wyznaczyć częstotliwościową charakterystykę sprzężenia C(f)~[dB] w paśmie od f=1.75~GHz do f=2.25~GHz.

Rysunek 12.1: Schemat elektryczny sprzęgacza

Rysunek 12.2: Realizacja sprzegacza z niesymetrycznych linii paskowych

12.2. Rozwiązanie

12.2.1. Projekt sprzęgacza

Rysunki 12.1 i 12.2 przedstawiają projektowany sprzęgacz. Sygnał we wrotach 4 jest w przeciwfazie a we wrotach 3 w kwadraturze. Dwugałęziowy sprzęgacz kierunkowy może transformować impedancję.

Jednak w treści zadania zaznaczono, że jest on obciążony liniami o impedancji charakterystycznej $Z_0 = 50 \Omega$. Stąd parametr R = 1.

Współczynnik napięciowego sprzężenia wynosi:

$$k = \frac{1}{\sqrt{10^{\frac{C}{10}} - 1}}$$

$$= 0.829109611422$$
(12.1)

Następnie podstawie współczynnika k, wyznacza się wartości impedancji charakterystycznych:

$$Z_1 = \frac{Z_0}{k} = 60.3056571908 \ \Omega \tag{12.2}$$

$$Z_2 = Z_0 \sqrt{\frac{R}{1+k^2}}$$
 = 38.4908989956 \Omega (12.3)

$$Z_3 = Z_0 \frac{R}{k}$$
 = 60.3056571908 \,\Omega\$ (12.4)

Wyznaczone impedancje należy zamienić na odcinki niesymetrycznych linii paskowych tak samo jak było to wykonane w rozdziale 6. Szerokości ścieżek wynoszą:

 $w1 = 1.90100127159 \ mm$ $w2 = 4.01397627035 \ mm$ $w3 = 1.90100127159 \ mm$

Podobnie jak w rozdziale 6 aby wyznaczyć długość odcinków ćwierćfalowych, należy obliczyć długość fali rozchodzącej się w linii. Długość fali zależy od efektywnej przenikalności dielektrycznej ϵ_{eff} , która jest funkcją wymiarów oraz częstotliwości pracy. Dlatego obliczono 3 różne długości. Dla danych z treści zadania mamy:

$$\begin{split} \frac{\lambda_1}{4} &= 3.11142895539 \ cm \\ \frac{\lambda_2}{4} &= 3.00913769452 \ cm \\ \frac{\lambda_3}{4} &= 3.11142895539 \ cm \end{split}$$

12.2.2. Charakterystyka sprzęgacza

 ${\bf W}$ celu wyznaczenia charakterystyki częstotliwościowej wartości sprzężenie należy posłużyć się zależnością:

$$C = 20\log\left(\frac{1}{|S_{14}|}\right) \tag{12.5}$$

$$S_{14} = \frac{1}{2} \left[\frac{1}{RD_e + jXD_e} - \frac{1}{RD_o + jXD_o} \right]$$
 (12.6)

$$|S_{14}| = \frac{1}{2} \left[\frac{\sqrt{(RD_o - RD_e)^2 + (XD_o - XD_e)^2}}{(RD_e^2 + XD_e^2)(RD_o^2 + XD_e^2)} \right]$$
(12.7)

Dokładne zależności podane zostały w [2]. Charakterystykę sprzęgacza zaprezentowano na rys. 12.3.

Rysunek 12.3: Charakterystyka częstotliwościowa sprzegacza

13.1. Treść

Zaprojektować czteroramienny, pierścieniowy sprzęgacz kierunkowy zapewniający przy częstotliwości f=1.35~GHz sprzężenie C=3.01~dB. Sprzęgacz zrealizować z odcinków niesymetrycznej linii paskowej przyjmując, że podłoże linii stanowi dielektryk o $\epsilon_r=4.34,~\mu_r=1$ i grubości h=1.4~mm. Projekt wykonać przy założeniu, że grubość przewodu wewnętrznego t=0.035~mm a impedancja charakterystyczna linii obciążających sprzęgacz jest równa $Z_0=50~\Omega$. Wyznaczyć częstotliwościową charakterystykę sprzężenia C(f)~[dB] w paśmie od f=1.25~GHz do f=1.45~GHz.

Rysunek 13.1: Schemat elektryczny sprzegacza pierścieniowego

13.2. Rozwiązanie

13.2.1. Projekt sprzęgacza

Rysunki 13.1 i 13.2 przedstawiają projektowany sprzęgacz. Przy pobudzeniu wrót 4 wrota 2 i 3 są wyjściowe, synfazowe. Sprzężenie pomiędzy wrotami 3 i 4 wynosi:

$$C_{34} = 20 \log \left(\frac{1}{|S_{34}|}\right) = 10 \log \left(\frac{1}{y_1^2}\right)$$
 (13.1)

Rysunek 13.2: Realizacja sprzegacza z niesymetrycznych linii paskowych

gdzie:

$$y_1^2 + y_2^2 = 1 (13.2)$$

$$y_1 = \frac{Z_0}{Z_1} \tag{13.3}$$

$$y_2 = \frac{Z_0}{Z_2} \tag{13.4}$$

jest warunkiem na idealne dopasowanie impedancyjne wrót sprzęgacza. Z równania 13.1 wynika zależność:

$$y_1 = \sqrt{10^{-\frac{C_{34}}{10}}} = 0.707131200681 \tag{13.5}$$

Co pozwala wyznaczyć kolejne wielkości:

$$y_2 = \sqrt{1 - y_1^2} = 0.707082360848 \tag{13.6}$$

$$Z_1 = \frac{Z_0}{y_1} = 70.7082362535 \ \Omega \tag{13.7}$$

$$Z_1 = \frac{Z_0}{y_1}$$
 = 70.7082362535 Ω (13.7)
 $Z_2 = \frac{Z_0}{y_2}$ = 70.7131202368 Ω (13.8)

(13.9)

Wyznaczone impedancje należy zamienić na odcinki niesymetrycznych linii paskowych tak samo jak było to wykonane w rozdziale 6. Szerokości ścieżek wynoszą:

$$w_1 = 1.384465672 \ mm$$

 $w_2 = 1.384261365 \ mm$

Podobnie jak w rozdziale 6 aby wyznaczyć długość odcinków ćwierćfalowych, należy obliczyć długość fali rozchodzącej się w linii. Długość fali zależy od efektywnej przenikalności dielektrycznej ϵ_{eff} , która jest funkcją wymiarów oraz częstotliwości pracy. Dlatego obliczono 2 różne długości. Dla danych z treści zadania mamy:

$$\begin{split} \frac{\lambda_1}{4} &= 3.1315202668 \ cm \\ \frac{\lambda_2}{4} &= 3.13153691782 \ cm \end{split}$$

13.2.2. Charakterystyka sprzęgacza

W celu wyznaczenia charakterystyki częstotliwościowej wartości sprzężenie należy posłużyć się zależnością:

$$C = 20 \log \left(\frac{1}{|S_{34}|} \right) \tag{13.10}$$

$$S_{34} = \frac{1}{2} \left(S_{22}^{++} - S_{22}^{+-} \right) \tag{13.11}$$

$$S_{34} = \frac{1}{2} \left(S_{22}^{++} - S_{22}^{+-} \right)$$

$$S_{22}^{++} = \frac{1 - A - B - jD}{1 + A + B + j(C + E)}$$

$$S_{22}^{+-} = \frac{1 - A' + B' - jD'}{1 + A' - B' - j(C' - E)}$$

$$(13.11)$$

$$S_{22}^{+-} = \frac{1 - A' + B' - jD'}{1 + A' - B' - i(C' - E)}$$
(13.13)

(13.14)

Dokładne zależności podane zostały w [2]. Charakterystykę sprzęgacza zaprezentowano na rys. 13.3.

Rysunek 13.3: Charakterystyka częstotliwościowa sprzęgacza

14.1. Treść

Zaprojektować dwusekcyjny, trójwrotowy dzielnik sygnału mikrofalowego obciążony od strony wejścia rezystancją $Z_{01}=35~\Omega$. Wrota wyjściowe tego dzielnika są obciążone rezystancjami $Z_{02}=Z_{03}=50~\Omega$, odpowiednio. Projekt wykonać, przy założeniu, że środkowa częstotliwość pasma pracy $f_0=1.35~GHz$. Wyznaczyć częstotliwościowe charakterystyki dopasowania we wrotach wejściowych WFS(f) i izolacji (separacji) pomiędzy wrotami I(f)[dB] w paśmie od $f_1=1.25~GHz$ do $f_2=1.45~GHz$.

Rysunek 14.1: Schemat elektryczny dzielnika

14.2. Rozwiązanie

14.2.1. Projekt dzielnika

Projektowany dzielnik jest przedstawiony na rys. 14.1. Ze względu na różne impedancje obciążenia i źródła dzielnik musi transformować impedancje. Przyjmując $Z_0=50~\Omega=q\times Z_0$, stąd q=0.7.

Impedancję sekcji dzielnika są opisane zależnościami:

$$Z_1 = Z_0 \times V_1 \tag{14.1}$$

$$Z_2 = Z_0 \times V_2 \tag{14.2}$$

gdzie:

$$V_1^2 = \sqrt{C^2 + 2q} + CV_2 \qquad = \frac{2q}{V_1^2}C = \frac{(2q - 1)u_0^2}{2(2 - u_0^2)}u_0 \qquad = \sin\left(\frac{w\pi}{4}\right)w = \frac{2(f_2 - f_1)}{f_1 + f_2}$$
(14.3)

Dla danych z treści zadania otrzymuje się:

 $Z_1 = 54.4190599649 \ \Omega$

 $Z_2 = 64.3157011947 \ \Omega$

Rezystory separujące oblicza się z zależności:

$$R_2 = \frac{2Z_1 Z_2}{\sqrt{(Z_1 + Z_2)(Z_2 - Z_1 \operatorname{ctg}^2(\theta_3))}}$$
(14.4)

$$R_{2} = \frac{2Z_{1}Z_{2}}{\sqrt{(Z_{1} + Z_{2})(Z_{2} - Z_{1}\operatorname{ctg}^{2}(\theta_{3}))}}$$

$$R_{1} = \frac{2R_{2}(Z_{1} + Z_{2})}{R_{2}\frac{Z_{1} + Z_{2}}{Z_{0}} - 2Z_{2}}\theta_{3}$$

$$= \frac{\pi}{2}\left(1 - \frac{2}{2\sqrt{2}}\right)$$
(14.4)

co daje wynik:

$$R_2 = 80.3347745707 \ \Omega$$

 $R_1 = 307.005233567 \ \Omega$

14.2.2. Charakterystyki dzielnika

W celu wyznaczenia charakterystyki częstotliwościowej dopasowania we wrotach wejściowych:

$$WFS(f) = \frac{1 + |S_{11}|}{1 - |S_{11}|} \tag{14.6}$$

Izolację z kolei określa zależność:

$$I(f) = 20 \log \left(\frac{1}{|S_{23}|}\right)$$
 (14.7)

Niezbędne parametry macierzy rozproszenia S:

$$S_{11} = \frac{-RN + jXN}{RD + jXD} \tag{14.8}$$

$$S_{11} = \frac{-RN + jXN}{RD + jXD}$$

$$S_{23} = \frac{1}{2} \left[\frac{RN + jXN}{RD + jXD} - S_{22}^{+-} \right]$$
(14.8)

$$S_{22}^{+-} = \frac{A+jB}{C+jD} \tag{14.10}$$

(14.11)

Dokładne zależności podane zostały w [2]. Charakterystyki dzielnika zaprezentowano na rys. 14.2 i 14.3.

Rysunek 14.2: Charakterystyka izolacji dzielnika

Rysunek 14.3: WFS na wejściu dzielnika

15. Zadanie 15

15.1. Treść

Zaprojektować dzielnik sygnału mikrofalowego typu Gysel'a przyjmując $f_0=1.35~GHz$ i $Z_0=50~\Omega$. Projekt dzielnika wykonać przy założeniu, że jest on realizowany z odcinków powietrznej, symetrycznej linii paskowej o grubości b=8~mm. Grubość przewodu wewnętrznego t=0.8~mm. Obliczyć charakterystykę sprzężenia C(f)[dB] w paśmie od $f_1=1.25~GHz$ do $f_2=1.45~GHz$.

Rysunek 15.1: Zarys konstrukcyjny projektowanego dzielnika

15.2. Rozwiązanie

15.2.1. Projekt dzielnika

Projektowany dzielnik jest przedstawiony na rys. 15.1. Impedancje poszczególnych sekcji dzielnika opisane są zależnościami:

$$Z_0 = 50 \ \Omega$$

$$Z_1 = \sqrt{2} * Z_0 \qquad = 70.7106781187 \ \Omega \tag{15.1}$$

$$Z_3 = \frac{Z_0}{\sqrt{2}} = 35.3553390593 \ \Omega \tag{15.2}$$

(15.3)

W celu wyznaczenia parametrów realizacji dzielnika za pomocą symetrycznych linii paskowych wykorzystano rozwiązanie zadania 4. Otrzymane szerokości przewodów wewnętrznych wynoszą:

 $w_0 = 8.58657086038 \ mm$

 $w_1 = 4.65264251488 \ mm$

 $w_3 = 14.1720836113 \ mm$

15.2.2. Charakterystyka sprzężenia dzielnika

W celu wyznaczenia częstotliwościowej charakterystyki sprzężenia:

$$C(f) = 20 \log \frac{1}{|S_{12}|}$$

$$S_{12} = \frac{2}{R_{22} + jX_{22}}$$
(15.4)

$$S_{12} = \frac{2}{R_{22} + iX_{22}} \tag{15.5}$$

Rysunek 15.2: Charakterystyka sprzężenia dzielnika

Dokładne zależności podane zostały w [2]. Charakterystyki dzielnika zaprezentowano na rys. 15.2.

16. Zadanie 16

16.1. Treść

Zaprojektować filtr dolnoprzepustowy (FDP) o charakterystyce równomiernie falistej, rys. 16.1, dla następujących danych: $Z_0=50~\Omega,~f_1=10^9~Hz,~L_r=0.2~dB,~f_a=1.43\times10^9~Hz$ i $L_a=30~dB.$ Filtr zrealizować z odcinków linii współosiowej o średnicy przewodu zewnętrznego D=7~mm, rys.16.2. Obliczenia wykonać przy założeniu, że impedancje charakterystyczne niskoomowych i wysokoomowych sekcji filtru są równe odpowiednio $Z_l=10~\Omega$ i $Z_h=120~\Omega.$ Ponadto założyć, że niskoomowe sekcje filtru są odcinkami linii współosiowej wypełnionej dielektrykiem o $\epsilon_r=2.05$ i $\mu_r=1.$

Rysunek 16.1: Charakterystyka projektowanego filtru

Rysunek 16.2: Realizacja filtru przy użyciu linii współosiowej

Tabela 16.1: Parametry zaprojektowanego filtru

i	g	L [nH]	C [pF]	1 [mm]	$d_l \text{ [mm]}$	$d_h \text{ [mm]}$
0	1.0				3.04015838775	3.04015838775
1	1.37229535453	10.9203794528	_	28.6038828188	_	0.945831227808
2	1.37819320784		4.38692523125	6.05098425027	5.51288864551	
3	2.27568854642	18.109354055	_	57.3968306129	_	0.945831227808
4	1.50014664009	_	4.77511506265	6.02588104449	5.51288864551	
5	2.27568854642	18.109354055	_	57.3968306129	_	0.945831227808
6	1.37819320784	_	4.38692523125	6.05098425027	5.51288864551	
7	1.37229535453	10.9203794528	_	28.6038828188	_	0.945831227808
8	1.07602182984					

16.2. Rozwiązanie

W pierwszym kroku należy obliczyć minimalną ilość sekcji filtru:

$$n \ge \frac{\operatorname{arch}\sqrt{\frac{L'_a - 1}{L'_r - 1}}}{\operatorname{arch}\left(\frac{f_a}{f_1}\right)}$$

$$= 7$$
(16.1)

Następnie należy obliczyć parametry filtru dolnoprzepustowego a na ich podstawie wartości elementów filtru o parametrach skupionych. Wyniki tych obliczeń przedstawia tabela 16.1. Długość l_o stanowiąca poprawkę uwzględniającą pojemność C_{f0} wynosi $l_o=2.60235408442\ mm.$

17. Zadanie 17

17.1. Treść

Zaprojektować czebyszewowski filtr pasmowo przepustowy (FPP, rys. 17.1) o strukturze paskowej jak na rys. 17.2 dla następujących danych: $Z_0=50~\Omega,~f_0=2.8\times10^9~Hz,~w=0.1,~L_r=0.2~dB,~f_a=3.2\times10^9~Hz$ i $L_a=30~dB.$ Filtr zrealizować z odcinków symetrycznej linii paskowej opisanej w zadaniu 4.

Rysunek 17.1: Charakterystyka projektowanego filtru

Rysunek 17.2: Realizacja filtru przy użyciu symetrycznej linii paskowej

Tabela 17.1: Parametry zaprojektowanego filtru

i	g	$Z_0 [\Omega]$	w [mm]	<i>l</i> [mm]
0	1.0			
1	1.30287657175	3.20338115776	47.5830406797	16.7294898437
2	1.28442456136	3.46442342228	43.8597176927	16.7294898437
3	1.97619882964	3.39627708893	44.7764554109	16.7294898437
4	0.84680075915	4.9956490685	29.8615873107	16.7294898437
_5	1.0			

17.2. Rozwiązanie

W pierwszym kroku należy obliczyć minimalną ilość sekcji filtru:

$$n \ge \frac{\operatorname{arch}\sqrt{\frac{L'_a - 1}{L'_r - 1}}}{\operatorname{arch}\left(\frac{\sin\frac{\pi w_a}{4}}{\sin\frac{\pi w}{4}}\right)}$$

$$= 4$$
(17.1)

Następnie należy obliczyć parametry filtru dolnoprzepustowego a na ich podstawie wartości elementów filtru o parametrach skupionych. Wyniki tych obliczeń przedstawia tabela 17.1.

A. Kody użytych funkcji

A.1. pum/lines.py

```
import scipy.constants as const
        import numpy as np
        import algorithms as alg
 3
  4
       def coax_z(a, b, mu, epsilon): # impedance of coaxial line
   return np.sqrt(const.mu_0 * mu / (const.epsilon_0 * epsilon)) * np.log(a / b) / (2 * const.pi)
       def skew_coax_z( c, a, b, mu, epsilon):
    x = ( b + ( a * a - ( 4 * c * c)) / b) / (2 * a)
    return 59.952 * np.sqrt( mu / epsilon) * np.log( x + np.sqrt( x * x - 1))
 9
10
11
       def square_coax( b, t, mu, epsilon):
    kkp = ( 1 - ( t / b)) / ( 1 + ( t / b))
    qp = np.exp( - const.pi * ( 1 / kkp))
    p = np.sqrt( qp) * ( ( alg.n_fun( qp) / alg.d_fun( qp)) ** 2)
    q = np.sqrt( 1 - ( p ** 2))
    k = ( ( p - q) ** 2) / ( ( p + q) ** 2)
    kpk = 1 / alg.k_int( k)
    return 47.086 * kpk / np.sqrt( epsilon)
13
14
15
16
17
19
20
        \begin{array}{l} \textbf{def cylindrical\_flat( d, b, mu, epsilon): \# impedance of cylindrical flat line } \\ R = const.pi * d / (4 * b) \\ x = 1 + (2 * (np.sinh(R) ** 2)) \\ y = 1 - (2 * (np.sin(R) ** 2)) \\ \end{array} 
21
22
23
24
25
                 return 59.952 * np.sqrt ( mu / epsilon) *
                        26
27
28
29
        32
33
                34
35
36
38
39
        \mathbf{def} microstrip(w, t, h, f, mu, epsilon):
                 \mathbf{u} = \mathbf{w} / \hat{\mathbf{h}}

\mathbf{i} \mathbf{f} \mathbf{t} != 0:
40
41
42
                         du = (\ t\ /\ (\ 2\ *\ const.pi\ *\ h))\ *\ np.log(\ 1\ +\ (\ (\ 4\ *\ np.exp(1)\ *\ h)\ /\ (\ t\ *\ (\ (\ 1\ /\ np.sqrt(1)\ respectively))))
               u += du
a = 1 + ( (1 / 49) * np.log( ( (u**4) + ( (u / 52)**2)) / ( (u**4) + 0.432))) + ( (1 / 18.7) * np.log
b = 0.564 * ( ( (epsilon - 0.9) / (epsilon + 3))**0.053)
c = 0.33622 * (1 - np.exp( -0.03442 * epsilon))
d = 3.751 - ( 2.75 * np.exp( - ( (epsilon / 15.916)**8)))
fn = f * h * (10**-7)
g = 1 - np.exp( - ( (fn / 3.87)**4.97))
k = 0.363 * g * np.exp( -4.6 * u)
m = 0.525 / ( (1 + (0.157 * fn))**20)
n = 0.27488 + (0.6315 * u) + (m * u) - (0.065683 * np.exp( -8.7513 * u))
p = n * c * ( ( (1.844 * fn) + ( k * d * fn))**1.5763)
eps_0 = ( (epsilon + 1) / 2) + ( ( (epsilon - 1) / 2) * ( (1 + (10 / u))**(-a * b)))
eps_eff = (eps_0 + (epsilon * p)) / (1 + p)
f = 6 + ( (2 * const.pi - 6) * np.exp( - ( (30.666 / u)**0.7528)))
return ( 60 / np.sqrt( eps_eff)) * np.log( ( f / u) + np.sqrt( 1 + ( 2 / u)**2))
43
                         u += du
45
46
47
48
50
51
52
53
54
55
        \begin{tabular}{ll} \bf def & \tt cylindrical\_flat\_coupled ( & s, d, h, mu, epsilon) : \\ \end{tabular}
59
60
                x = d / h

y = s / h
61
62
                 a = 1 + np.exp(16 * x - 18.272)
                63
64
65
66
67
```

```
\begin{array}{l} (\ 0.000636\ /\ (\ y**2)) \\ d = 0.11\ -\ (\ 0.83\ *\ y)\ +\ (\ 1.64\ *\ (\ y**2))\ -\ (\ y**3) \\ e = -0.15\ *\ np.\exp(\ -13\ *\ x) \end{array}
 69
 70
  71
                 \begin{array}{l} e = -0.15 * np.exp( \ -13 * x) \\ g = 2.23 * np.exp( \ ( \ -7.01 * y) + \backslash \\ & (10.24 * ( \ y**2)) - \backslash \\ & (27.58 * ( \ y**3))) \\ k = 1 + ( \ 0.01 * ( \ ( \ -0.0726) - \backslash \\ & ( \ 0.2145 \ / \ y) + \backslash \\ & ( \ 0.222573 \ / ( \ y ** \ 2)) - \backslash \\ & ( \ 0.012823 \ / ( \ y ** \ 3)))) \end{array}
 72
 73
 74\\75
 76
 77
                 1 = 0.01 * ( (-0.26) + \\ ( 0.6866 / y) + \\ ( 0.0831 / (y ** 2)) - \\ ( 0.0076 / (y ** 3)))
 79
 80
 81
 82
                 m = (-0.1098) + 
 83
                           (1.2138 * x) - (2.2535 * (x ** 2)) + (1.1313 * (x ** 3))
 85
 86
                             -0.019) - \
 87
                  n = (
                          88
 89
                  \begin{array}{lll} f1 & = & x * a / b \\ \textbf{if} & y < 0.9: \\ & f2 & = c - (x * d) + (e * g) \end{array}
 91
 92
 93
 94
                  else:
                  f2 = 1 + (0.004 * np.exp(0.9 - y))

f3 = np.tanh(const.pi * (x + y) / 2)
 95
 97
                  if y < 0.9:
 98
                          f4 = k - (x * l) + (m * n)
                  else: f4 = 1
 99
100
                  101
102
                  return ( Z0e, Z0o)
104
105
         \mathbf{def} stripline_coupled ( w, s, b, t, mu, epsilon):
106
                  if t == 0:
                         107
108
109
110
111
112
113
114
115
                          theta = ( const.pi * s) / ( 2 * b) ae = ( np.log( 2) + np.log( 1 + np.tanh( theta))) / \setminus
116
117
                          ae = ( np.log( 2) + np.log( 1 + np.tanh( theta))) / ( 2 * const.pi * np.log( 2)) 

ao = ( np.log( 2) + np.log( 1 + ( 1 / np.tanh( theta)))) / ( 2 * const.pi * np.log( 2)) 

c = 2 * np.log( ( 2 * b - t) / ( b - t)) - ( ( t / b) * np.log( ( t * ( 2 * b - t)) / ( ( b - t) ** 2))) 

Z0e = ( 30 * const.pi * ( b - t)) / ( np.sqrt( epsilon) * ( w + ( ae * b * c))) 

Z0o = ( 30 * const.pi * ( b - t)) / ( np.sqrt( epsilon) * ( w + ( ao * b * c)))
118
119
120
122
123
124
125
                 ( np.sqrt( epsilon) * ( w + ( ao * b * c)))
return (Z0e, Z0o)
126
127
```

A.2. pum/fdm.py

```
import scipy.constants as const
     import scipy.integrate as integ
    import numpy as np
import matplotlib.pyplot as plt
 3
     import shapely geometry as shp
 6
 7
             "Single point of finite difference method net"""
 8
          def __init__( self , u = 0.0, p = 1.0, q = 1.0, r = 1.0): self._-dict_-['u'] = float(u)
 9
10
               self.p = float(p)
self.q = float(q)
11
12
13
               self.r = float(r)
14
    class metal ( pt):
"""Metal point.
15
16
```

```
Assign new potential only upon creation"""

def __setattr__( self , name, val):
    if name == 'u':
  18
  19
  20
  21
                                                       pass
  22
                                                        self._dict_[name] = val
  23
  24
               class imaginary( pt):
    """Imaginary point.
  25
  26
  27
                              Used when dividing structure"""
  28
                              def __init__( self, pt):
    self.ref = pt
  29
  30
  31
                              32
                                                         return self.ref.u
  34
  35
                \begin{array}{c} \textbf{class} \;\; \textbf{struct:} \\ \text{"""Microwave structure to analyze with finite difference method"""} \\ \textbf{def} \;\; \texttt{\_-init\_-} \big( \;\; \textbf{self} \;\; , \;\; \textbf{a} , \;\; \textbf{b} , \;\; \textbf{I} \;\; , \;\; \textbf{J} \;\; , \;\; \textbf{mu} = 1, \;\; \textbf{eps} = 1 \big) \colon \\ \end{array} 
  36
  37
  38
  39
                                            self.a = a
  40
                                            self.b = b
  41
                                             s\,e\,l\,f\,\,.\,\,I\,\,=\,\,I
  42
                                             self.J = J
  43
                                            self.mu = mu
  44
                                            self.eps = eps
                                            self.xstep = a / I
self.ystep = b / J
  45
  46
  47
                                             self.st = [[pt(0.0) for x in xrange(self.I+1)] \setminus
  48
                                                                                   for z in range(self.J+1)]
                                             self.bl = []
  49
  50
  51
                              def add_rect( self, a, b, x, y, u):
                                           xs = a / 2
ys = b / 2
  53
  54
                                             self.bl.append( (shp.Polygon( (x - xs, y + ys), )
  55
                                                                                                                                                                  (x + xs, y + ys),
                                                                                                                                                                (x + xs, y - ys), (x - xs, y - ys)], u)
  56
  57
                              59
  60
  61
  62
                              def init ( self):
                                            for j in range( self.J + 1):
    for i in range( self.I + 1):
        # is it metal?
  63
  64
  65
  66
                                                                        for item in self.bl:
                                                                                      #if item[0].contains( shp.Point( i * self.xstep, j * self.ystep)):
if not item[0].disjoint( shp.Point( i * self.xstep, j * self.ystep)):
    self.st[j][i] = metal( item[1])
  67
  68
  69
  70
                                                                                                    continue
                                                                         \textbf{if not} \ \ isinstance \, ( \ \ self.st \, [\, j \, ] \, [\, i \, ] \, , \ \ metal) : 
  71
                                                                                     # if not is is standard point
# but look for metal vicinity
  72
  \frac{73}{74}
                                                                                      for item in self.bl:

p = self.ystep / self.xstep

q = 1.0
  75
  76
  77
                                                                                                    r = p
  78
                                                                                                     step = self.xstep
                                                                                                    79
  80
                                                                                                                  81
  82
  83
                                                                                                   inter = item[0].intersection( line)
step = shp.Point( i * self.xstep, j * self.ystep).distance( inter)
p = p * self.xstep / step
q = q * self.xstep / step
r = r * self.xstep / step
#if item[0].contains( shp.Point( (i + 1) * self.xstep, (j + 0) * self.ystep)):
if not item[0].disjoint( shp.Point( (i + 1) * self.xstep, (j + 0) * self.ystep)):
  84
  85
  86
  87
  88
                                                                                                                  # calculate new q value
  90
                                                                                                   # calculate new q value  
line = shp.LineString( [( i * self.xstep, j * self.ystep), ( (i + 1) * self.xstep, inter = item [0].intersection( line)  
#q = (inter.bounds[0] - (i * self.xstep)) / step  
q = shp.Point( i * self.xstep, j * self.ystep).distance( inter) / step  
#if item[0].contains( shp.Point( (i + 0) * self.xstep, (j + 1) * self.ystep)):

if not item [0]. disjoint ( shp.Point( (i + 0) * self.xstep, (j + 1) * self.ystep)):
  91
  92
  93
  94
  95
  96
                                                                                                                  \begin{array}{lll} & \text{coll} & \text{col
  97
  98
                                                                                                                  inter = item[0].intersection(line)
#p = (inter.bounds[1] - (j * self.ystep)) / step
p = shp.Point(i * self.xstep, j * self.ystep).distance(inter) / step
  99
100
101
```

```
102
103
                                                                     # calculate new r value
104
                                                                    # Catch the work of the work of the self in the self in the self inter = item [0]. intersection (line)  
#r = ((j * ystep) - inter.bounds.maxy) / step
r = shp. Point (i * self.xstep, j * self.ystep). distance (inter) / step
106
107
108
109
                                                    \#add point
                                                    self.st[j][i] = pt(0.0, p, q, r)
110
111
                   \begin{array}{lll} \textbf{def} & {\rm calc}\,(\,{\rm self}\;,\;\;i\;,\;\;j\,): \\ & u = & {\rm self}\;.\,{\rm st}\,[\,j\;+\;0\,][\,i\;-\;1].\,u\;/\\ & & (1.0\;+\;{\rm self}\:.\,{\rm st}\,[\,j\,][\,i\,].\,q) \\ & u + = & {\rm self}\:.\,{\rm st}\,[\,j\;-\;0\,][\,i\;+\;1].\,u\;/\\ \end{array} 
112
113
114
115
                           \begin{array}{lll} u + & self..st[j - 0][1 + 1].u / \\ & (self.st[j][i].q * (1.0 + self.st[j][i].q)) \\ u + & self.st[j + 1][i - 0].u / \\ \end{array} 
116
117
                                     ( self.st[j][i].p * (self.s
self.st[j - 1][i + 0].u / \
                                                                                (self.st[j][i].p + self.st[j][i].r))
118
119
                          u += self.st[j]
                          ( self.st[j][i].r * (self.st[j][i].p + self.st[j][i].r))
u *= ( self.st[j][i].p * self.st[j][i].q * self.st[j][i].r)
u /= ( self.st[j][i].p * self.st[j][i].r + self.st[j][i].q)
120
121
122
123
124
125
                  def liebmann(self, tol=1e-8):
126
                          k = 0
                          while True:
127
128
                                  Rm = 0.0
129
                                   k += 1
130
                                   for j in range ( self.J + 1):
                                           for i in range (self.I + 1):

#sprawdzic jaki to punkt
131
132
                                                    if not isinstance( self.st[j][i], metal):
    v = self.st[j][i].u
    self.st[j][i].u = self.calc( i, j)
133
134
135
                                                            R = np.abs(self.st[j][i].u - v)
136
137
                                                             if Rm < R:
138
                                                                    Rm = R
139
                                   if Rm < tol:
140
                                           break
                          return k
141
142
                  def liebmann_quater(self, tol=1e-8):
143
144
                          for j in range( self.J/2 + 1):

self.st[j][self.I/2+1] = imaginary( self.st[j][self.I/2-1])

for i in range( self.I/2 + 1):

self.st[self.J/2+1][i] = imaginary( self.st[self.J/2-1][i])
145
146
147
148
149
                           while True:
                                \begin{array}{l} Rm = 0.0 \\ k \mathrel{+}= 1 \\ \text{for } j \text{ in } range( \ self.J/2+1): \\ \text{ } for \text{ } i \text{ } in \text{ } range( \ self.I/2+1): \\ \textit{ } \#sprawdzic \text{ } jaki \text{ } to \text{ } punkt \\ \text{ } if \text{ } not \text{ } ( \ isinstance( \ self.st[j][i], \ metal) \text{ } and \text{ } \\ \text{ } isinstance( \ self.st[j][i], \ imaginary)): \\ \text{ } v = self.st[j][i].u \\ \text{ } self.st[j][i].u = self.calc(i,j) \\ \text{ } R = np.abs(self.st[j][i].u - v) \\ \text{ } if \text{ } Rm < R: \\ \text{ } Rm = R \end{array}
150
                                  Rm = 0.0
151
152
153
154
155
156
157
158
159
160
161
162
163
                                           break
                          break
for j in range( self.J + 1):
    for i in range( self.I + 1):
        if j < self.J / 2 + 1 and i > self.I / 2:
            self.st[j][i] = self.st[j][self.I - i]
        elif j > self.J / 2:
            self.st[j][i] = self.st[self.J - j][i]
164
165
166
167
168
169
170
                          return k
171
172
                  def impedance ( self):
                          Eyt = [float for x in xrange( self.I+1)]
Eyd = [float for x in xrange( self.I+1)]
173
174
175
                                        float for x in xrange (self.J+1)
176
                          Exr = [float for x in xrange(self.J+1)]
177
                           for j in range( self.J + 1):
178
179
                                   # left boundary
                                  180
181
182
183
184
                                   # right boundary
185
```

```
\begin{array}{lll} d1 = & (& self.st [j][self.I-1].q * self.xstep) \\ d2 = d1 + (& self.st [j][self.I-2].q * self.xstep) \\ e1st = & (& self.st [j][self.I-1].u - self.st [j][self.I-0].u) / d1 \\ e2nd = & (& self.st [j][self.I-2].u - self.st [j][self.I-0].u) / d2 \\ Exr[j] = & e1st + & (& e1st - e2nd) / & (& (& d2 / & d1) - 1)) \end{array}
186
187
188
189
190
191
                                                        for i in range( self.I + 1):
192
193
                                                                         \#\ lower\ boundry
                                                                         194
195
196
197
198
                                                                          # upper boundry
199
                                                                         # apper both and # app
200
202
203
204
205
                                                       \begin{array}{l} E = integ.simps(~Exl,~None,~self.ystep) \; + \\ integ.simps(~Exr,~None,~self.ystep) \; + \end{array}
206
207
                                                                        208
209
210
211
212
213
214
                                                       215
216
217
218
                                                                         ( 1 / E)
219
                                      221
                                                       for j in range( self.J + 1):
    for i in range( self.I + 1):
        z[j][i] = self.st[j][i].u
cmap = plt.get_cmap( 'jet')
plt.imshow( z, origin='lower', interpolation='nearest', cmap=cmap)
222
223
224
225
226
                                                        plt.colorbar()
227
228
                                                         plt.show()
```

A.3. pum/algorithms.py

```
import numpy as np
3
    def newton_raphson( func, a, b, args=(), tol=1e-8):
4
         Znajduje\ miejsce\ zerowe\ funkcji\ korzystajac\ z\ metody\ Newtona-Raphsona
5
6
 7
         Parameters
9
         func : function
10
              Funkcja ktorej miejsce zerowe jest poszukiwane
             float
11
              Poczatek zakresu na ktorum szukane jest miejsce zerowe
12
13
         b:float
              Koniec zakresu na ktorym szukane jest miejsce zerowe
         args\ :\ tuple\ ,\ optional
15
              Dodatkowe parametry przekazywane do funkcji
16
         tol : float , optional
Dopuszczalny blad znalezionego moejsca zerowego
17
18
19
20
         Returns
21
22
         zero: float
         23
24
25
26
         # Szukanie punktu startowego
27
         ###
28
         \mathbf{x0} = \mathbf{a} \, * \, 1.0 \, \# \, \text{mnozenie} \, \, \text{przez} \, \, 1.0 \, \, \text{sprawia} \, , \, \, \text{ze} \, \, \text{zmienna} \, \, \, \text{staje} \, \, \, \text{sie} \, \, \, \text{float} \,
         delta_x = (b' - a) / 25

myargs = (x0,) + args
29
30
         fval_min = np.abs( func( *myargs))
31
         for x0 in np.arange( a, b, delta_x):
32
```

```
myargs = (x0,) + args
fval = np.abs( func( *myargs))
if fval < fval_min:</pre>
 34
 35
 37
                            fval_min = fval
 38
                             zero = x0
 39
 40
               ###
               \# Wlasciwa metoda newtona
 41
               ####
 42
 43
               delta_x = 1e-8
 44
               error = 1
 45
               while error > tol:
                     fee error > ton:
    x = zero
    fd1 = func( *(x - delta_x,) + args)
    fd2 = func( *(x + delta_x,) + args)
    fderiv = ( fd2 - fd1) / ( 2 * delta_x)
    if fderiv == 0:
        msg = "derivative_was_zero."
        reconstructive_was_zero."
        reconstructive_was_zero."
 46
 47
 48
 50
 51
                             warnings.warn(msg, RuntimeWarning)
 52
                       fval = func(*(x,) + args) 
 zero = x - (fval / fderiv) 
 53
 54
 55
                      error = zero - x
 56
 57
               return zero
 58
        \operatorname{\mathbf{def}} n_fun( q, tol=1e-19):
 59
 60
 61
               Zwraca wartosc N potrzebna do wyznaczenia modulu
 62
 63
               Parameters
 64
               q:float
 65
               stala modularna
tol: float, optional
 66
 67
                      dokladnosc
 69
 70
               Returns
 \frac{71}{72}
               n:float
               ... _{Jiout} Wartosc\ parametru\ N.
 73
 74
 75
               n\ =\ 0.0
 76
               old = -1.0
 77
78
               i = 1
               \mathbf{while}(\mathbf{n} - \mathbf{old} > \mathbf{tol}):
 79
                      old = n
                      n = old + q ** ( i * ( i - 1) )
 81
                      i = i + 1
 82
               return n
 83
        \mathbf{def} \ d\_fun\left( \ q\,, \ tol {=} 1e {\,-} 19\right) \colon
 84
 85
 86
               Zwraca wartosc D potrzebna do wyznaczenia modulu
 88
               Parameters
 89
               q: float
 90
               stala modularna
tol : float , optional
 91
 92
 93
                      dokladnosc
 94
 95
               Returns
 96
               d:float
 97
               Wartosc\ parametru\ D.
 98
100
               d~=~0.5
101
               old = 0.0
102
               i - 1
               \mathbf{while}(d - old > tol):
103
104
                     old = d
105
                      d = old + q ** ( i * i )
106
                      i = i + 1
107
               return d
108
        \mathbf{def} \hspace{0.2cm} \texttt{k\_int} \hspace{0.1cm} (\hspace{0.2cm} \texttt{k} \hspace{0.1cm}, \hspace{0.2cm} \texttt{tol} \hspace{0.1cm} \texttt{=} 1\hspace{0.1cm} \texttt{e} \hspace{0.1cm} -8) :
109
110
               old = 0
111
               k0 = k
               k0p = np. sqrt(1 - (k ** 2))

k_int = (1 + k0) / (1 + k0p)
112
113
114
               i = 1
               while( k_int - old > tol):
    old = k_int
    k0 = ( 2 / ( 1 + k0 )) * np.sqrt( k0)
115
116
117
```

```
118 | k0p = ( 2 / ( 1 + k0p)) * np.sqrt( k0p)

119 | k_int = k_int * ( 1 + k0) / ( 1 + k0p)

120 | i += 1

121 | return k_int
```

Bibliografia

- [1] S. Rosłoniec, Wybrane metody numeryczne z przykładami w zadaniach inżynierskich, 2nd ed. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2002.
- [2] —, Liniowe obwody mikrofalowe. Metody Analizy i syntezy, 1st ed. Warszawa: Wydawnictwo Komunikacji i Łączności, 1999.
- [3] —, Algorytmy projektowania wybranych liniowych układów mikrofalowych, 1st ed. Warszawa: Wydawnictwo Komunikacji i Łączności, 1987.