TITLE PAGE

Class	:	BE - 8
Roll. No		42428
Assignment No.		A. 2
Assignment Name	:	4 bit USR
Date Of Performance	:	19-9-2020 to 3-10-2020

Block Diagram:

Truth-Table:

rst	clk	mode	outputs
1	Х	Х	Sout = 0
			Pout = 0000
0	Ţ	00	SISO
0	Ţ	01	SIPO
0	Į.	10	PISO
0	Į	11	PIPO

MAIN VHDL PROGRAM

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;
entity USR_4b is
  Port (rst:in STD_LOGIC;
     clk: in STD_LOGIC;
     Sin: in STD_LOGIC;
     Pin: in STD_LOGIC_VECTOR (3 Downto 0);
     mode: in STD_LOGIC_VECTOR (1 downto 0);
     Sout : out STD_LOGIC;
     Pout : out STD_LOGIC_VECTOR (3 downto 0));
end USR_4b;
architecture USR_4b_arch of USR_4b is
  SIGNAL temp: STD_LOGIC_VECTOR(3 DOWNTO 0):="0000";
SIGNAL flag: STD_LOGIC:='0';
begin
PROCESS(rst, clk, mode, Sin, Pin)
BEGIN
       IF rst='1' THEN
              temp <= "0000";
              Sout <= '0';
              Pout <= "0000";
              flag <= '0';
       ELSIF falling_edge(clk) THEN
              CASE MODE IS
                      WHEN "00" =>
                             temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                             temp(0) \le Sin;
```

```
Sout <= temp(3);
                              Pout <="0000";
                              flag <= '0';
                      WHEN "01" =>
                              temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                              temp(0) \le Sin;
                              Pout<=temp;
                              Sout <= '0';
                              flag <= '0';
                      WHEN "10" =>
                              IF flag='0' THEN
                                temp <= Pin;
                                Pout <= "0000";
                              ELSE
                                Sout <= temp(3);
                                Pout <= "0000";
                                temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                              END IF;
                              flag <= '1';
                      WHEN OTHERS =>
                              temp <= Pin;
                              Pout <= temp;
                              Sout <= '0';
                              flag <= '0';
               END CASE;
       END IF;
END PROCESS;
end USR_4b_arch;
```

RTL SCHEMATIC

TECHNOLOGY SCHEMATIC

SYNTHESIS REPORT

1) **Device Utilisation Summary**

* Final Report	*			
Final Results				
RTL Top Level Output File Nam	e : USR_4b.ngr			
Top Level Output File Name	: USR_4b			
Output Format	: NGC			
Optimization Goal	: Speed			
Keep Hierarchy	: No			
Design Statistics				
# IOs	: 14			
Cell Usage :				
# BELS	: 15			
# INV	:1			
# LUT2	: 5			
# LUT2_D	:1			
# LUT3	:1			
# LUT3_L	: 2			
# LUT4	: 5			
# FlipFlops/Latches	: 10			
# FDC_1 # Clock Buffers	: 10 : 1			
# BUFGP	:1			
# IO Buffers	: 13			
# IBUF	: 8			
# OBUF	:5			
=======================================				
Device utilization summary:				
Selected Device : 3s250epq208	3-5			
Number of Slices:	8 out of 2448 0%			
Number of Slice Flip Flops:	10 out of 4896 0%			
Number of 4 input LUTs:	15 out of 4896 0%			
Number of IOs:	14			
Number of bonded IOBs:				
Number of GCLKs:	1 out of 24 4%			
Partition Resource Summary:				
No Partitions were found in this design.				

2)	TIMING REPORT
	Timing Summary:
	Speed Grade: -5
	Minimum period: 2.909ns (Maximum Frequency: 343.725MHz)
	Minimum input arrival time before clock: 3.778ns
	Maximum output required time after clock: 4.063ns
	Maximum combinational path delay: No path found
	Timing Detail:
	All values displayed in nanoseconds (ns)

TESTBENCH PROGRAM

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE ieee.numeric std.ALL;
ENTITY USR 4b tb IS
END USR_4b_tb;
ARCHITECTURE behavior OF USR_4b_tb IS
  COMPONENT USR_4b
  PORT(
    rst: IN std_logic;
    clk: IN std logic;
     Sin: IN std_logic;
     Pin: IN std logic vector(3 downto 0);
     mode: IN std logic vector(1 downto 0);
     Sout: OUT std logic;
     Pout : OUT std_logic_vector(3 downto 0)
    );
  END COMPONENT;
 signal rst : std_logic := '1';
 signal clk : std_logic := '0';
 signal Sin : std logic := '0';
 signal Pin : std_logic_vector(3 downto 0) := "1111";
 signal mode: std_logic_vector(1 downto 0) := (others => '0');
 signal Sout : std logic;
 signal Pout : std_logic_vector(3 downto 0);
 constant clk_period : time := 10 ns;
BEGIN
 uut: USR_4b PORT MAP (
     rst => rst,
     clk => clk,
     Sin => Sin,
     Pin => Pin,
     mode => mode,
     Sout => Sout,
     Pout => Pout
    );
 clk_process :process
 begin
        clk <= '0';
        wait for clk period/2;
        clk <= '1';
        wait for clk period/2;
```

```
end process;
 stim_proc_rst: process
 begin
        rst<='0';
        wait for 200 ns;
        rst<='1';
        wait for 5 ns;
 end process;
 stim_proc_mode: process
 begin
   mode <= "00";
   wait for 80 ns;
   mode <= "01";
   wait for 50 ns;
   mode <= "10";
   wait for 50 ns;
   mode <= "11";
   wait for 20 ns;
 end process;
 stim_proc_Sin: process
 begin
        wait for 10 ns;
        Sin <= '1';
        wait for 10 ns;
        Sin <= '0';
        wait for 10 ns;
        Sin <= '1';
        wait for 10 ns;
        Sin <= '0';
        wait for 50 ns;
        Sin <= '1';
        wait for 10 ns;
        Sin <= '0';
        wait for 10 ns;
        Sin <= '1';
        wait for 10 ns;
        Sin <= '0';
        wait for 80 ns;
 end process;
END;
```


PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "CLK" LOC = P132;

NET "RST" LOC = P204;

NET "mode[1]" LOC = P205;

NET "mode[0]" LOC = P206;

NET "Sin" LOC = P203;

NET "Pin[3]" LOC = P202;

NET "Pin[2]" LOC = P197;

NET "Pin[1]" LOC = P199;

NET "Pin[0]" LOC = P196;

NET "Sout" LOC = P193;

NET "Pout[3]" LOC = P186;

NET "Pout[1]" LOC = P187;

NET "Pout[1]" LOC = P185;

NET "Pout[0]" LOC = P181;
```

Conclusion:

Thus we have:

- 1) Modeled a 4-bit USR using Behavioral Modeling Style.
- 2) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 3) Interpreted **Device Utilization Summary** in terms of LUTs, SLICES, IOBs, Multiplexers & D FFs used out of the available device resources.
- 4) Interpreted the TIMING Report in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency.
- 5) Written a TESTBENCH to verify the functionality of 4-bit USR & verified the functionality as per the TRUTH-TABLE by observing ISIM Waveforms.
- 6) Used PlanAhead Editor for pin-locking.
- 7) Prototyped the FPGA **XC3S250EPQ208-5** to realize 4-bit USR & verified its operation by giving suitable input combinations.