Grado en Ingeniería Informática

Examen de Matemáticas III (Convocatoria de septiembre)

Ejercicio 1: (1 pto) Consideremos dos sucesos A y B para los que se verifica que P(A) = 1/3, P(B) = 1/5 y $P(A|_B) + P(B|_A) = 2/3$. Calcular $P(\overline{A} \cap \overline{B})$.

Ejercicio 2: (0.75 pto) Se escogen al azar cuatro personas de un grupo de 4 españoles, 3 franceses y 2 ingleses. Calcular la probabilidad de que entre los cuatro elegidos haya, al menos, uno de cada nacionalidad.

Ejercicio 3. El tiempo de respuesta de un servidor viene dado por una variable aleatoria X con función de densidad

$$f(x) = \begin{cases} \frac{1}{2}\lambda^3 x^2 e^{-\lambda x} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

donde $\lambda > 0$ es un parámetro desconocido. Se sabe que $E(X) = \frac{3}{\lambda}$ y que $Var(X) = \frac{3}{\lambda^2}$. Sea X_1, \ldots, X_n una muestra aleatoria simple de la variable X. Se pide:

- (a) (0.75 pto.) Construir la función de densidad conjunta de la muestra. ¿Es el estadístico $T_1 = 1 + 2\sum_{i=1}^{n} X_i$ suficiente de cara a estimar el parámetro λ ?
- (b) (0.75 pto) Demostrar que el estimador de $\frac{1}{\lambda}$ definido por $T_2 = \frac{\overline{X}}{3}$ es consistente.

Ejercicio 4: Una fábrica produce un tipo de componente electrónico en dos calidades diferentes. El 60% de la producción es de calidad A y el resto de calidad B. La duración X de un componente de calidad A sigue una distribución normal de media 4 años y desviación típica 2, mientras que la duración Y de los componentes de calidad B es una variable aleatoria con función de densidad

$$f(x) = \begin{cases} \frac{-x^2}{36} + \frac{1}{6}x & \text{si} \quad x \in (0,6) \\ 0 & \text{si} \quad x \notin (0,6) \end{cases}$$

- (a) (1 pto) ¿Cuál es la probabilidad de que un componente dure más de 2 años si es de calidad A?¿Y si es de calidad B?
- (b) (0.75 pto) Si tomamos un componente de calidad A y otro de calidad B, ¿cuál es la probabilidad de que sólo uno de los dos dure más de 2 años?
- (c) (0.75 pto) Se toma un componente al azar de toda la producción y se observa que dura más de 2 años. ¿Cuál es la probabilidad de que fuera de calidad A?
- (d) (0.75pto) Se eligen al azar 20 componentes de calidad B. ¿Cuál es la probabilidad de que al menos 4 de esas componentes duren menos de 2 años?

Ejercicio 5: La velocidad X de un procesador, en GHz, sigue una distribución $N(\mu, \sigma^2)$. Se han tomado 40 medidas de la velocidad del procesador observándose un valor medio de 1.4 GHz y desviación típica 0.17 GHz.

- (a) (0.75 pto) Se construye un intervalo de confianza para la varianza poblacional resultando el intervalo (L_1 , 0.0539528). Determinar, razonadamente, el valor de L_1 .
- (b) (0.75 pto) A partir de los datos muestrales, ¿tenemos evidencia para afirmar, al 1% de significación, que la velocidad media del procesador es superior a 1.3 GHz? (Plantear y resolver un contraste de hipótesis adecuado).

Ejercicio 6: La siguiente tabla recoge el tiempo de funcionamiento (en nanosegundos) de un circuito lógico en frío (x) y el tiempo de respuesta (en nanosegundos) tras una hora de funcionamiento intensivo (y), para un conjunto de 5 máquinas:

- (a) (0.75 pto) Ajustar a los datos un modelo del tipo $y = \beta_0 + \beta_1 x$, justificando los pasos realizados. Calcular e interpretar una medidad de la bondad del ajuste realizado.
- (b) (1 pto) Ajustar a los datos un modelo del tipo $y = \alpha e^{\beta x}$, justificando los pasos realizados. Calcular e interpretar una medidad de la bondad del ajuste realizado.
- (c) (0.25 pto) ¿Qué modelo resulta más adecuado para predecir el tiempo de respuesta, a partir del tiempo de funcionamiento? (Justificar la respuesta)

16 de septiembre de 2015

DURACIÓN: HASTA LAS 12:45H.

Ejercicio 1:

Tenemos que calcular P(ANB) = P(AUB) = 1-P(AUB)

Salemos que
$$\frac{2}{3} = P(A|_B) + P(R|_A) = \frac{P(A \cap B)}{P(B)} + \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{1/5} + \frac{P(A \cap B)}{1/3} = \frac{8 \cdot P(A \cap B)}{1/3} = \frac{1}{1/3} = \frac{1}{$$

Endouces 8. $P(A \cap B) = \frac{2}{3} \implies P(A \cap B) = \frac{1}{12}$

Ejercicio 2:

Usaremos la regla de laplace para colculor la probabilidad.

El numero de coso posibles es Ca,4 = (9).

Respecto al número de cosos favorables, puesto que de le haber al menos una persona de coda nacionalidad los posibilidades son:

- · 2 españoles, 1 francès, 1 inglés: C4,2· C3,1· C2,1 = (4)·(3)·(2)
- · & español, 2 franceses, 1 inglés: C4,3. C3,2. C2,3 = (4). (3). (2)
- · 1 español, 1 francés, 2 jugleses: C4, 3. C3, 5. C32 = (4). (3). (2)

Por tanto, la probabilidad pedida es:

$$\frac{\text{n' casos favorables}}{\text{n'' casos posibles}} = \frac{\binom{4}{2} \cdot \binom{3}{1} \binom{2}{1} + \binom{4}{1} \cdot \binom{3}{2} \cdot \binom{2}{1} + \binom{4}{1} \cdot \binom{3}{1} \cdot \binom{2}{2}}{\binom{9}{1}} = \frac{72}{126} = \frac{4}{7}$$

Ejercicio 3:

a) Calculoures primero la función de deusidad conjunta de la sumestra:

$$\{(x_{i_1-\cdots i_r} \times_{n_i} \lambda) = \prod_{i=1}^n \{(x_{i_i} > \lambda) = \prod_{i=1}^n \frac{1}{2} \cdot \lambda^3 \times_i^2 \cdot e^{-\lambda \times_i} = \lambda^3 \cdot e^{\lambda \cdot \sum_{i=1}^n x_i} \cdot \frac{1}{2^n} \cdot \prod_{i=1}^n x_i^2$$

Comprobannes alora que T, es suficiente para estimar A:

$$T_3 = 1 + 2 \cdot \sum_{i=1}^{n} x_i \Rightarrow \sum_{i=1}^{n} x_i = \frac{T_3 - 1}{2}$$
. Sustituyendo en la expresión de la función de densidad conjunta,

$$\delta(x_{i,--},x_{n};\lambda) = \lambda^{3n} e^{-\lambda \cdot \frac{T_{i}-1}{2}} \cdot \frac{1}{2^{n}} \cdot \prod_{C=1}^{n} x_{i}^{2}$$

$$\delta(T_{i},\lambda) = \lambda^{3n} e^{-\lambda \cdot \frac{T_{i}-1}{2}} \cdot \frac{1}{2^{n}} \cdot \prod_{C=1}^{n} x_{i}^{2}$$

Hemos descompresto la función de densidad conjunto de la muestra como producto de dos funciones: 'g', que es función de Tiy à, y 'h', que es función de la muestra. En consecuencia, Ti es un estadístico suficiente para estimar à.

b) Si se compler les condiciones

entonces T2 es un estimader consistente para . Veames entonces que se anneller esas condiciones.

$$E(T_2) = E\left(\frac{\overline{X}}{3}\right) = \frac{1}{3} E(\overline{X}) = \frac{1}{3} \cdot E\left(\frac{\overline{\Sigma}_1 X_1}{n}\right) = \frac{1}{3n} \cdot \frac{\overline{\Sigma}_1}{2n} E(X_1) = \frac{1}{3n} \cdot \frac{\overline{\Sigma}_1}{2n} = \frac{1}{3n} \cdot \frac{3}{2n} = \frac{1}{3n} \cdot \frac$$

Eutonas, lim E(T2)= lim 1=1

$$Var(T_1) = Var(\frac{\overline{X}}{3}) = \frac{1}{9} \cdot Var(\frac{\overline{X}}{3}) = \frac{1}{9} \cdot Var(\frac{\overline{X}}{3}) = \frac{1}{9} \cdot Var(\overline{X}_1) = \frac{1}{9} \cdot Var(\overline$$

Puesto que se ampleu is y ii), podemes afirmer que T2 es un

Ejercicio 4:

Di Si la componente es de colidad A, la probabilidad de que dure más de dos años es (82N(4,22)):

Si la componente es de colidad B, la probabilidad de que dure más de dos años es:

$$P(Y>2) = 1 - P(Y \le 2) = 1 - \int_{0}^{2} \frac{-x^{2}}{36} + \frac{1}{6} \times dx = 1 - \left(\frac{-x^{3}}{108} + \frac{1}{6} \cdot \frac{x^{2}}{2}\right)_{0}^{2} = 1 - \left(\frac{-Y}{108} + \frac{1}{12}\right) = \frac{20}{27}$$

b)
$$P((\Xi>2 \cap \Xi<2) \cup (\Xi<2 \cap \Xi>2)) = P(\Xi>2 \cap \Xi<2) + P(\Xi<2 \cap \Xi>2) =$$

$$= P(\Xi>2) \cdot P(\Xi<2) + P(\Xi<2) \cdot P(\Xi>2) =$$

$$\Xi, \Xi \text{ independients}$$

=
$$0^{1}8413 \cdot \left(1 - \frac{20}{27}\right) + \left(1 - 0^{1}8413\right) \cdot \frac{20}{27} = 0^{1}33567$$

C) Considerames los sucesos:

· A = la componente elegida es de colidad A.

·B= " " " B

y la variable abeatoria D = duración de la componente elegida. Tenemos que colcular $P(A|_{D>2})$. Usaremos la regla de Bayes.

$$P(A|_{D>2}) = \frac{P(A \cap (D>2))}{P(D>2)} = \frac{P(D>2|_{A}) \cdot P(A)}{P(D>2|_{A}) \cdot P(A) + P(D>2|_{B}) \cdot P(B)} = \frac{o'8413 \cdot o'6}{o'8413 \cdot o'6 + \frac{20}{27} \cdot o'4} = o'630127$$

de la probabilidad de que una componente de tipo B dure menor de los avier es $P(T \ge 2) = 1 - P(T \ge 2) = 1 - \frac{20}{27} = \frac{7}{27}$.

Entonces s; W= número de componentes, de los 20 elezidas, que duran menos de dos años, Wr B(20, 7/27) y tenemos que coluitor P(W>4).

 $P(w \ge 4) = 1 - P(w < 4) = 1 - P(w \le 3) = 1 - (P(w = 0) + P(w = 1) + P(w = 2) + P(w = 3)) =$ $= 1 - {20 \choose 0} \left(\frac{2}{27}\right)^0 \cdot \left(\frac{20}{27}\right)^{20} - {20 \choose 1} \cdot \left(\frac{7}{27}\right)^{\frac{1}{2}} \cdot \left(\frac{20}{27}\right)^{\frac{19}{2}} - {20 \choose 27} \cdot \left(\frac{7}{27}\right)^{\frac{1}{2}} \cdot \left(\frac{20}{27}\right)^{\frac{19}{2}} - {20 \choose 27} \cdot \left(\frac{7}{27}\right)^{\frac{17}{2}} \cdot \left(\frac{20}{27}\right)^{\frac{17}{2}} \cdot \left(\frac{2$

Ejercicio 5: Data del problema n=40, x=1/4, Sx=0/17, Xx N(M, 42)

a) El intervalo de confienta para la varianta de una pobleción normal es

$$\left(\frac{n \cdot S_{x}^{2}}{\chi_{n-1,1-\kappa/2}^{2}}, \frac{n \cdot S_{x}^{2}}{\chi_{n-1,\kappa/2}^{2}}\right)$$
 Eudonces, debe ser $\frac{n \cdot S_{x}^{2}}{\chi_{n-1,\kappa/2}^{2}} = 0'0539528$

 $y_1, por tauto, \chi^2_{n-1, x/2} = \chi^2_{39, x/2} = \frac{40.0'17^2}{0'0539528} = 21'4261.$

Al ser $\chi^2_{39,8/2} = 21'4261$ y puesto que de la table de la distribución χ^2 Se deduce que $\chi^2_{39,0'01} = 21'4261$, necesariamente $\frac{d}{2} = do1$ y el extremo ièquierdo del intervalo se colcula como

$$L_{3} = \frac{n \cdot S_{x}^{2}}{\chi_{n-1,1-\alpha/2}^{2}} = \frac{n \cdot S_{x}^{2}}{\chi_{n-1,0}^{2}/99} = \frac{40 \cdot 0^{1}/7^{2}}{62^{1}/428/7} = 0^{1}0/85/75.$$

El intervalo Luscado es (0'0185173,0'0539528)

b) Tenemos que resolver el contrate

| Ho!/H=1'3 con d=0'01. Es un contraste sobre la media de una | H1:/H>1'3 pobloción normal con varianza desnouacida.

Pechataremas la higótesis nula si $\overline{X} \ge \mu_0 + \frac{S_c}{\sqrt{n}} \cdot t_{n-1,1-\alpha}$ $\frac{t_{3q,0'qq} = 2'426}{\sqrt{n}}$

Puesto que $S_c = \sqrt{\frac{n \cdot S_x^2}{n-1}} = \sqrt{\frac{40 \cdot 0' 17^2}{39}} \approx 0' 1722$

se rechezarà Ho si $\bar{x} \ge 1'3 + \frac{0'1722}{\sqrt{40}} \cdot 2'426 = 1'36605$.

Puesto que, según los datos del problema $\tilde{X}=1'4$, se verifica la regla de reclusto y tenemos evidencia significativa ($\alpha=0'01$) para afirmar que la velocidad media del procesador es superior a 1'3 GHz.

Ejercicio 6

a) La ecuación de la recta de regresión es $y-\bar{y}=\frac{S_{xy}}{S_x^2}$ $(x-\bar{x})$. De los datas del problema, $\bar{x}=9'8$, $S_x^2=14'16$, $\bar{y}=9'6$, $S_y^2=20'24$, $S_y=\frac{\Sigma_{x'}\bar{y}}{n}-\bar{x}.\bar{y}=\frac{4.5+...+14.16}{5}-9'8\cdot9'6=\frac{545}{5}-94'08=14'92$,

con la mal, la recta de regresion viene dada por:

Al tratarse de un ajuste de regresión lineal simple el coeficiente de determinación viene dada por $R^2 = \left(\frac{S_{XY}}{S_XS_Y}\right)^2 = \frac{S_{XY}^2}{S_X^2 \cdot S_Y^2} = \frac{14'92^2}{14'16 \cdot 20'24} \approx 0'7767$

b) Tenemos que ajustar a los dotos una curva del tipo $y=\alpha\cdot e^{\beta x}$. Tomando logoritumo reperione a ambos lados de la ignaldad, resulta: $\ln y = \ln(\alpha\cdot e^{\beta x}) = \ln \alpha + \ln e^{\beta x} = \ln \alpha + \beta \cdot x$. Entonces, si $y = \ln y$, resulta el ajusta lineal $y = \ln x + \beta \cdot x$. Aplicamos el combio de variable a los datos del problema y se obtiene:

Eutouces, $\bar{X} = 918$, $S_{X}^{2} = 14'16$, $\bar{Y} = 2'/518$, $S_{Y}^{2} = 0'2178$ $S_{XY} = \frac{4 \cdot 1'6094 + \dots + 14 \cdot 2'7726}{5} - 918 \cdot 2'1518 = \frac{1/3'5098}{5} - 21'0876 = 1'6143$ Con la cual la recta de regresión entre x e I viene dada por

$$(Y-\overline{Y}) = \frac{S_{\times Y}}{S_{\times}^{2}} (x-\overline{x}) \rightarrow Y-2'1518 = \frac{1'6143}{14'16} (x-9'8)$$

I dentificando aeficiento: $\underline{Y} = \frac{0'1/40 \cdot x + 1'0346}{8 \times 10346}$

lux=1'0346 => d=2'8140

Por la tanta, la curva buscada as y= 2'814. e0114.x

Calculannes alvora el coeficiente R2 que, por tratarse de un ajuste no lineal, lo calculamas como $12^2 = 1 - \frac{SS_{Rel}}{SS_{Tht}}$

SSTON = n. Sy = 5. 20124 = 101/2 ; SSEE = = [(4: -4:)2 Com g= 2'814.e0114.xi

×ċ	4	7	11	13	14
٦ _' .	5	6	7	14	16
Í.	4'4398	6'2502	9'8612	12'3865	13'8822

SSper = (5-44398) + + (16-13 8822) 2 = 156513

Con la cual R2 = 1 - 15'65/3 = 0'8453

Desultaria más adousedo el modelo propuesto en el apertado 6) por tener un mayor valor del coeficiente R2.