CYK Algorithm

a*nd*

Probabilistic

Context Free Grammar

Aashraya Sachdeva

Automata Theory and Computability

Dept. of Computer Science and Automation

18th Nov, 2016

$$S \to XY$$

$$X \to XA|a|b$$

$$Y \to AY|a$$

$$A \to a$$

How can you tell if $baaaa \in L(G)$?

bbbbaaabaaabaaabbaaabaabaabaaabaa?

Can you make parse tree for

C: Cocke, J Y: Younger, D Algorithm

K: Kasami, T.

- 1. Works with Chomsky Normal Form.
- 2. Bottom-up parsing.
- 3. Dynamic Programming.
- 4. Polynomial time in length of input sentence.

$n \times n \ matrix$	5		baaaa				
Different length Substrings	4		baaa	aaaa			
	3		baa	aaa	aaa		
	2		ba	aa	aa	aa	
	1		b	а	а	а	а
Input Sentence			b	а	а	а	а

Input Sentence	b	а	а	а	а

X

X,Y,A

X,Y,A

X,Y,A

X,Y,A

1

$S \to XY$ $X \to XA a b$ $Y \to AY a$	5	baaaa				
$A \rightarrow A \cap a$	4	baaa	аааа			
	3	baa	ааа	ааа		_
Substrings of length 2	2	S,X	S,X,Y	S,X,Y	S,X,Y	
	1	X	X,Y,A	X,Y,A	X,Y,A	X,Y,A
Innut	Sentence	b	а	а	а	а

$$S \to XY$$

$$X \to XA|a|b$$

$$Y \to AY|a$$

$$A \to a$$

Maintain Back pointers!!!

Ambiguity

Context Free Grammar, G

 T_G : set e set of all possible left-most derivations (parse trees) under the grammar G. s: a given sentence

Define,

$$T_G(s) = \{t: t \in T_G, yield(t) = s\}$$

$$s \in L(G) \Leftrightarrow |T_G(s)| > 0$$

s is ambiguous $\Leftrightarrow |T_G(s)| > 1$

Natural Language Grammar

Non-terminals

S = sentence

VP = verb phrase

NP = noun phrase

PP = prepositional phrase

DT = determiner

Vi = intransitive verb

Vt = transitive verb

NN = noun

IN = preposition.

S	\longrightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\longrightarrow	Vt	NP
VP	\longrightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\longrightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\longrightarrow	sleeps
Vt	\longrightarrow	saw
NN	\rightarrow	man
NN	\longrightarrow	woman
NN	\longrightarrow	telescope
NN	\longrightarrow	dog
DT	\longrightarrow	the
IN	\rightarrow	with
IN	\longrightarrow	in

the man saw the dog with the telescope

Which one is preferred over the other ...?

Probabilistic Context Free Grammar

Something New

$$\forall \alpha \rightarrow \beta \in R$$

$$q(\alpha \to \beta) = P(\alpha \to \beta | \alpha)$$
:

Probability of choosing rule $\alpha \rightarrow \beta$ in a left-most derivation, given that the non-terminal being expanded is α .

Let's add probability constraints:

$$q(\alpha \to \beta) \ge 0$$

$$\sum_{\alpha \to \beta \in R, \alpha = X} q(\alpha \to \beta) = 1$$

Coming back to Natural language

S	\longrightarrow	NP	VP	1.0	
VP	\rightarrow	Vi		0.3	
VP	\rightarrow	Vt	NP	0.5	= 1
VP	\longrightarrow	VP	PP	0.2	
NP	\rightarrow	DT	NN	0.8	
NP	\longrightarrow	NP	PP	0.2	
PP	\rightarrow	IN	NP	1.0	

_					
	Vi	\rightarrow	sleeps	1.0	
	Vt	\rightarrow	saw	1.0	
ĺ	NN	\rightarrow	man	0.1	
	NN	\rightarrow	woman	0.1	
ı	NN	\rightarrow	telescope	0.3	= 1
ı	NN	\longrightarrow	dog	0.5	
Ì	DT	\rightarrow	the	1.0	
ĺ	IN	\rightarrow	with	0.6	
	IN	\rightarrow	in	0.4	

Lets come back to which parse tree is better ...?

We need something to measure to compare two different parse trees. Let's define that measure,

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

$$\begin{array}{ll} p(t) &=& q(\mathtt{S} \to \mathtt{NP} \ \mathtt{VP}) \times q(\mathtt{NP} \to \mathtt{DT} \ \mathtt{NN}) \\ &\times q(\mathtt{DT} \to \mathtt{the}) \times q(\mathtt{NN} \to \mathtt{dog}) \times \\ &\qquad \qquad q(\mathtt{VP} \to \mathtt{Vi}) \times q(\mathtt{Vi} \to \mathtt{sleeps}) \end{array}$$

Let's make a parse tree probabilistically....!

- Define $s_1 = S$, i = 1.
- While s_i contains at least one non-terminal:
 - Find the left-most non-terminal in s_i , call this X.
 - Choose one of the rules of the form $X \to \beta$ from the distribution $q(X \to \beta)$.
 - Create s_{i+1} by replacing the left-most X in s_i by β .
 - Set i = i + 1.

In the end we reach a tree, t with score p(t).

- Define $s_1 = S$, i = 1.
- While s_i contains at least one non-terminal:
 - Find the left-most non-terminal in s_i , call this X.
 - Choose one of the rules of the form $X \to \beta$ from the distribution $q(X \to \beta)$.
 - Create s_{i+1} by replacing the left-most X in s_i by β .
 - Set i = i + 1.

How do we choose a

rule?

Can we do it using CYK algorithm?

Obviously we can, that's why I asked...!!!

$$S \rightarrow XY \qquad 1.0$$

$$X \rightarrow XA \qquad 0.5$$

$$X \rightarrow a \qquad 0.2$$

$$X \rightarrow b \qquad 0.3$$

$$Y \rightarrow AY \qquad 0.2$$

$$Y \rightarrow a \qquad 0.8$$

$$A \rightarrow a \qquad 1.0$$

Can you find *score* of most probable parse tree of *baaaa*?

$$\max_{t' \in T_G(sentence)} p(t')$$

$S \rightarrow XY$	1.0	5	baaaa		Keep track of probabilities also		
$X \to XA$	0.5						
$X \rightarrow a$	0.2	4	baaa	aaaa			
$X \to b$	0.3		Dada				
$Y \rightarrow AY$	0.2	3	baa	aaa	aaa		
$Y \rightarrow a$	0.8						1
$A \rightarrow a$	1.0	2	ba	aa	aa	aa	
		1	b	а	а	а	а
			b	a	a	а	а

$S \to XY$	1.0		5		baaaa				
$X \to XA$	0.5				Dadaa				
$X \rightarrow a$	0.2		4		baaa	aaaa			
$X \to b$	0.3				Dada	aaaa			
$Y \rightarrow AY$	0.2		3		baa	aaa	aaa		
$Y \rightarrow a$	0.8								1
$A \rightarrow a$	1.0		2		ba	аа	аа	аа	
			1		X: 0.3	X:0.2 Y:0.8 A:1.0	X:0.2 Y:0.8 A:1.0	X:0.2 Y:0.8 A:1.0	X:0.2 Y:0.8 A:1.0
				1					
	Ir	Input Sentence			b	а	а	а	а

S
$$\rightarrow$$
 XY
 1.0

 X \rightarrow XA
 0.5

 X \rightarrow a
 0.2

 X \rightarrow b
 0.3

 Y \rightarrow AY
 0.2

 Y \rightarrow a
 0.8

 A \rightarrow a
 1.0

 2
 S->XY:.24 X->XA:.15

 X ->a
 0.2 X->a:0.2 X->a:0.2 X->a:0.2 X->a:0.2 X->a:0.8 Y->a:0.8 Y->a:0.8 Y->a:0.8 X->a:1.0 X->a:1.0 X->a:1.0 X->a:1.0 X->a:1.0 X->a:1.0

Input Sentence b a a a

$$S \rightarrow XY \qquad 1.0$$

$$X \rightarrow XA \qquad 0.5$$

$$X \rightarrow a \qquad 0.2$$

$$X \rightarrow b \qquad 0.3$$

$$Y \rightarrow AY \qquad 0.2$$

$$Y \rightarrow a \qquad 0.8$$

$$A \rightarrow a \qquad 1.0$$

$$2$$

$$X \rightarrow b \qquad 0.3$$

$$Y \rightarrow AY \qquad 0.2$$

$$Y \rightarrow a \qquad 0.8$$

$$A \rightarrow a \qquad 1.0$$

$$2$$

$$X \rightarrow b \qquad 0.3$$

$$X \rightarrow a \qquad 0.8$$

$$A \rightarrow a \qquad 1.0$$

$$3$$

$$2$$

$$X \rightarrow b \rightarrow a \qquad 0.8$$

$$4 \rightarrow a \qquad 0.8$$

$$A \rightarrow a \qquad 0.8$$

$S \to XY$	1.0	_ 5	baaaa				
$X \to XA$	0.5		Daada				
$X \rightarrow a$	0.2	4	baaa	aaaa			
$X \to b$	0.3	4	Daaa	aaaa			
$Y \rightarrow AY$	0.2	_ 3	baa	aaa	aaa		
$Y \rightarrow a$	0.8						ı
$A \rightarrow a$	1.0	_ 2	S->XY:0.24 X->XA:0.15	S->XY:0.16 X->XA:0.1 Y->AY:?	aa	aa	
		1	X->b:0.3	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0
		Input Sentence	b b	a	a	a	a

$S \to XY$	1.0	_ 5	baaaa				
$X \to XA$	0.5		Daada				
$X \rightarrow a$	0.2	4	baaa	aaaa			
$X \to b$	0.3		Dada	aaaa			
$Y \rightarrow AY$	0.2	_ 3	baa	aaa	aaa		
$Y \rightarrow a$	0.8						
$A \rightarrow a$	1.0	_ 2	S->XY:0.24 X->XA:0.15	S->XY:0.16 X->XA:0.1 Y->AY:0.16	aa	aa	
		1	X->b:0.3	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0
			_	<u> </u>			1
		Input Sentence	b	a	a	a	a

$S \to XY$	1.0	_ 5	haaaa				
$X \to XA$	0.5	_ 5	baaaa				
$X \rightarrow a$	0.2	4	baaa	aaaa			
$X \to b$	0.3	4	Dada	aaaa			
$Y \rightarrow AY$	0.2	_ 3	baa	aaa	aaa		
$Y \rightarrow a$	0.8						
$A \rightarrow a$	1.0	_ 2	S->XY:0.24 X->XA:0.15	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16	
		1	X->b:0.3	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0
		Input Sentence	b b	a	a	a	a

Input Sentence b a a a

$S \to XY$	1.0	_	hanaa						
$X \to XA$	0.5	5	baaaa						
$X \rightarrow a$	0.2	4	haaa	2222					
$X \to b$	0.3	4	baaa	аааа					
$Y \rightarrow AY$	0.2	3	S->XY:0.12	aaa	aaa				
$Y \rightarrow a$	0.8		X->XA:.075	add	add				
$A \rightarrow a$	1.0	2	S->XY:0.24 X->XA:0.15	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16			
		1	X->b:0.3	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0		
	Input S	Sentence	b	a	а	а	а		

$S \to XY$	1.0	_	h						
$X \to XA$	0.5	5	baaaa						
$X \rightarrow a$	0.2	4	haaa	2222					
$X \to b$	0.3	4	baaa	аааа					
$Y \rightarrow AY$	0.2	3	S->XY:0.12	S->XY:.08 X->XA:0.05	S->XY:.08 X->XA:0.05				
$Y \rightarrow a$	0.8		X->XA:.075	Y->AY:.032	Y->AY:.032				
$A \rightarrow a$	1.0	2	S->XY:0.24 X->XA:0.15	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16	S->XY:0.16 X->XA:0.1 Y->AY:0.16			
		1	X->b:0.3	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0	X->a:0.2 Y->a:0.8 A->a:1.0		
	Input S	Sentence	b	a	a	a	a		

$S \to XY$	1.0		haaaa						
$X \to XA$	0.5	5	baaaa						
$X \rightarrow a$	0.2	4	S->XY:0.06	S->XY:0.04					
$X \to b$	0.3	4	X->XA: 0.0375	X->AX:? Y->AY:?					
$Y \rightarrow AY$	0.2	3	S->XY:0.12	S->XY:.08 X->XA:0.05	S->XY:.08 X->XA:0.05				
$Y \rightarrow a$	0.8		X->XA:.075	Y->AY:.032	Y->AY:.032				
$A \rightarrow a$	1.0	2	S->XY:0.24	S->XY:0.16 X->XA:0.1	S->XY:0.16 X->XA:0.1	S->XY:0.16 X->XA:0.1			
			X->XA:0.15	Y->AY:0.16	Y->AY:0.16	Y->AY:0.16			
		1	X->b:0.3	X->a:0.2 Y->a:0.8	X->a:0.2	X->a:0.2	X->a:0.2		
			λ->b:0.5	A->a:1.0	Y->a:0.8 A->a:1.0	Y->a:0.8 A->a:1.0	Y->a:0.8 A->a:1.0		
	Input S	Sentence	b	а	а	а	а		

$S \to XY$	1.0	_	C > VV 0 02				
$X \to XA$	0.5	5	S->XY:0.03				
$X \rightarrow a$	0.2	4	S->XY:0.06	S->XY:0.04			
$X \rightarrow b$	0.3	4	X->XA: 0.0375	X->AX:? Y->AY:?			
$Y \rightarrow AY$	0.2	3	S->XY:0.12	S->XY:.08 X->XA:0.05	S->XY:.08 X->XA:0.05		
$Y \rightarrow a$	0.8	5	X->XA:.075	Y->AY:.032	Y->AY:.032		
$A \rightarrow a$	1.0	2	S->XY:0.24	S->XY:0.16 X->XA:0.1	S->XY:0.16 X->XA:0.1	S->XY:0.16 X->XA:0.1	
			X->XA:0.15	Y->AY:0.16	Y->AY:0.16	Y->AY:0.16	
		_		X->a:0.2	X->a:0.2	X->a:0.2	X->a:0.2
		1	X->b:0.3	Y->a:0.8 A->a:1.0	Y->a:0.8 A->a:1.0	Y->a:0.8 A->a:1.0	Y->a:0.8 A->a:1.0
				7 7 4 . 1 . 0	7 7 4.1.0	7,4.1.0	A 70.1.0
	Input S	Sentence	b	a	а	а	а

$$\max_{t' \in T_G(sentence)} p(t') = 0.03$$

Can we infer most probable parse tree?

$$arg \max_{t' \in T_G(sentence)} p(t')$$

Proof of correctness

$$p(t) = q(X \rightarrow YZ) * p(t_1) * p(t_2)$$

At each step, we take $\max p(t)$

It is enough to show that:

- 1. Tree t_1 , rooted at Y, has max probability over the words it spans.
- 2. Tree t_2 rooted at \mathbf{Z} , has maximum probability over the words its spans.

$$s = \{w_1, ... wi, ... ws, ... wj, ... wn\}$$

Recursive definition of probability build up!

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R \\ s \in (i,j)}} q(X \to YZ) * \pi(i,s,Y) * \pi(s+1,j,Z)$$
 Highest scoring tree rooted at X.

How do you get **q**...?

Treebank: text corpus that annotates syntactic sentence structure. E.g., Penn Tree Bank¹.

$$q = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$