

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to

FCC Part 15, Subpart C (15.247) DTS Specifications Industry Canada RSS 210 Issue 6 Industry Canada RSS-Gen Issue 1 / RSS 310 Issue 1

> Intentional Radiator on the Simrex Corp Model: DataMover ESS-II

FCC ID: T72-DMESSII UPN: 6492A-DMESSII

GRANTEE: Simrex Corp

> 2120 E. Nantuckett Drive Gilbert, AZ. 85234

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: May 2, 2006

FINAL TEST DATE: November 16, November 17 and

November 18, 2005

AUTHORIZED SIGNATORY:

Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	4
SUMMARY OF RESULTS	5
DIGITAL TRANSMISSION SYSTEMS (902 – 928 MHz) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS MEASUREMENT UNCERTAINTIES	5
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL OTHER EUT DETAILS ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION DURING TESTING ANTENNA REQUIREMENTS	7 7 8 8
MEASUREMENT INSTRUMENTATION	9
GENERAL INFORMATIONCONDUCTED EMISSIONS CONSIDERATIONSRADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	10 10 11 11
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	12 13 17
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS	18 19
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS	19 20 20
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION EXHIBIT 1: Test Equipment Calibration Data EXHIBIT 2: Test Data Log Sheets EXHIBIT 3: Test Configuration Photographs	1

SCOPE

An electromagnetic emissions test has been performed on the Microwave Data Systems model iNETII pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4:2003 as outlined in Elliott Laboratories test procedures.

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Microwave Data Systems model iNETII and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of Microwave Data Systems.

Testing performed on the Microwave Data Systems model iNETII was considered representative of the Simrex Corp model DataMover ESS-II. The only difference is the paint and other cosmetic changes necessary for rebranding.

File: R63834 Page 3 of 22 pages

Test Report Report Date: May 2, 2006

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US and Canada.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R63834 Page 4 of 22 pages

SUMMARY OF RESULTS

DIGITAL TRANSMISSION SYSTEMS (902 – 928 MHz)

2101712 718 8101810 610 1 0 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
FCC Part 15 Reference	RSS Reference	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	649 kHz	>500kHz	Complies
	RSP100	99% Bandwidth	1.5 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power, 902 – 928 MHz	28.4 dBm (0.74 Watts) EIRP = 2.95 W	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	7.94 dBm / MHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 9.28 GHz	47.4dBuV/m @ 3710.6 MHz (-6.6dB)	15.207 in restricted bands, all others < -20dBc	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Part 15	RSS 210	Description	Measured Value /	Limit /	Result
Section	Section	Description	Comments	Requirement	(margin)
15.203	1	RF Connector	Standard TNC-Type connector. Professional installation required. Not a consumer radio.	Standard rf connectors permitted for professionally installed systems	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	44.8dBuV/m @ 792.160MHz	FCC 15.109 RSSGen Table 1	Complies (-1.2dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	49.6dBuV @ 9.602MHz	Refer to standards	Complies (-0.4dB) Note 2
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations	Refer to OET 65, FCC Part 1 and RSS 102	Complies

Note 2: The device is intended to be operated from a dc power source. Measurements were made on the AC input of the AC-DC power supply used to power the device during testing.

File: R63834 Page 5 of 22 pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

File: R63834 Page 6 of 22 pages

Test Report Report Date: May 2, 2006

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Simrex Corp. model DataMover ESS-II is a spread spectrum radio, which is a wireless modem that is designed to provide wireless internet access. The device is identical to the Microwave Data Systems iNETII wireless modem with the exception of the enclosure color and the product labels.

Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 14-30Volts, 2 Amps.

The sample was received on November 16, 2005 and tested on November 16, November 17 and November 18, 2005. The EUT consisted of the following component(s):

	Manufacturer	Model	Description	Serial Number	FCC ID
	Microwave Data	iNETII	Wireless Modem	1425430	E5MDS-
١	Systems				INETII

OTHER EUT DETAILS

The EUT may use the following antennas:

- Yagi antenna, gain 12dBi or less, such as MDS pn 97-3194A14
- Omni antenna, gains not exceeding 9.2dBi (2dBd), such as MaxRad MFB series.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

The EUT is designed for professional installation, thereby allowing the output power to be set based on the antenna configuration used.

ENCLOSURE

The EUT enclosure is primarily constructed of DIECAST aluminum. It measures approximately 17 cm wide by 11 cm deep by 3 cm high. .

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R63834 Page 7 of 22 pages

SUPPORT EQUIPMENT

CC1 C 11 '	•			
The tollowing	equipment was	e niced ac loca	l support equipmen	t tor testing.
THE TOHOWINE	cuuldinent wa	s uscu as roca	i subboli caulbilicii	tioi tesung.

Manufacturer	Model	Description	Serial Number	FCC ID
Topward	3603D	DC Supply	677301	-
Winbook	Winbook XL	PC Laptop	UXI456W3528X8 3	-
Microwave Data Systems	97-3194A14	Antenna	-	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To		Cable(s)	
Fort	Connected 10	Description	Shielded or Unshielded	Length(m)
Ethernet LAN	Laptop	Cat 5	Unshielded	1.0
Com 1	Laptop	Serial	Shielded	3.0
DC Power	DC Power Supply	-	Unshielded	1.0
Link	Antenna	RF Cable	Shilded	3.0

EUT OPERATION DURING TESTING

During emissions testing a ping was exercising the ethernet interface for all radiated spurious measurements. The radio was in receive mode on the specified channel(s) for receiver emissions measurements which were measured with the highest gain Yagi and highest gain Omni antennas, representing the highest gain antennas of each type.

For transmitter emissions measurements the EUT was configured to continuously transmit a modulated signal. For radiated spurious emissions the output power was set to a nominal 24dBm for the measurements with the Yagi antenna connected and a nominal 30dBm for measurements with the omni antenna connected. The purpose of setting the power to the maximum setting for the omni antenna was to cover all lower gain antennas of that type.

PSD and bandwidth measurements were made with the transmitter at the highest compliant power setting (the maximum power setting to comply with the PSD limit of 8dBm/3kHz). Output power measurements were made at the maximum power setting and at the power settings for use with the Yagi antennas and with the omni antennas of gains between 6dBi and 9.2dBi.

ANTENNA REQUIREMENTS

The antenna port is a standard, N-type connector, which is permitted as the system is intended to be professionally installed.

File: R63834 Page 8 of 22 pages

MEASUREMENT INSTRUMENTATION

GENERAL INFORMATION

Final test measurements were taken on November 16, November 17 and November 18, 2005 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

File: R63834 Page 9 of 22 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R63834 Page 10 of 22 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R63834 Page 11 of 22 pages

Test Report Report Date: May 2, 2006

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R63834 Page 12 of 22 pages

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

File: R63834 Page 13 of 22 pages

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

Typical Test Configuration for Radiated Field Strength Measurements

File: R63834 Page 14 of 22 pages

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R63834 Page 15 of 22 pages

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

File: R63834 Page 16 of 22 pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

File: R63834 Page 17 of 22 pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R63834 Page 18 of 22 pages

GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D) and the limits for all emissions for a low power device operating under the general rules of RSS 210, FCC Part 15 Subpart C.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for emissions from the receiver as detailed in FCC Part 15.109, RSS 210 table 2, RSS GEN table 1.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R63834 Page 19 of 22 pages

Test Report
Report Date: May 2, 2006

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R63834 Page 20 of 22 pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R63834 Page 21 of 22 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter

where P is the eirp (Watts)

File: R63834 Page 22 of 22 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R63834 Exhibit Page 1 of 3

Conducted Emissions - AC Power Ports, 07-Nov-05

_		D (~ .
-nc	ıineer:	PATAR	Salbe

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	08-Jul-06
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	17-Dec-05
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	07-Jul-06
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	11-Feb-06

Radiated Emissions, 30 - 2,000 MHz, 07-Nov-05

Enai	ineer.	Dotor	Calac

ziigiiiooii i otoi oaloo				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	17-Dec-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-06
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	955	31-Mar-06
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)30Hz sunnyvale	3115	1142	11-Jun-06
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	30-Mar-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	15-Jun-06

Transmitter and Receiver Spurious Emissions, 30MHz - 10 GHz, 17 and 18-Nov-05

Engineer: Mehran Birgani, Mark Briggs

Linginice: . Weili ali Dirgani, Wair	t briggs			
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	26-Apr-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	28-Mar-06
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	05-Oct-06
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	30-Mar-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
EMCO	Horn antenna, D. Ridge 1-18GHz	3115	1386	????

Re, 18-Nov-05

Engineer: Mark Briggs

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
EMCO	Horn Antenna D. Ridge 1-18 GHz (SA40 horn)	3115	1386 07-Jul-06

Radiated Emissions, 30 - 5,000 MHz, 18-Nov-05 Engineer: Mehran Birgani

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	26-Apr-06
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	957	18-Apr-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	28-Mar-06
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	30-Mar-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
EMCO	Horn Antenna D. Ridge 1-18 GHz (SA40 horn)	3115	1386	07-Jul-06

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T61789 34 Pages

File: R63834 Exhibit Page 2 of 3

Elliott EMC Test Date				
Job Number	: J61736			
Log Number:	T61789			
ect Manager	Esther Zhu			
Class	: В			
Environment	-			
(Log Number ect Manager Class			

EMC Test Data

For The

Microwave Data Systems

Model

INETII

Date of Last Test: 11/18/2005

Ellio1	t	EMC Test Da		
Client:	Microwave Data Systems	Job Number:	J61736	
Model:	INETII	Test-Log Number:	T61789	
		Project Manager:	Esther Zhu	
Contact:	Dennis McCarthy			
Emissions Spec:	FCC, FCC 15.247, RSS-210	Class:	В	
Immunity Spec:	-	Environment:	-	

EUT INFORMATION

General Description

The EUT is a wireless modem that is designed to provide wireless internet access. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 14-30Volts, 2 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data	INETII	Wireless Modem	1425430	
Systems	INETII	Wireless Modelli	1423430	-

EUT Antenna (Intentional Radiators Only)

The EUT may use the following antennas:

Yagi antenna, gain 12dBi or less, such as MDS pn 97-3194A14

Omni antenna, gains not exceeding 9.2dBi (7dBd), such as MaxRad MFB series

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203. The EUT is designed for professional installation, thereby allowing the output power to be set based on the antenna configuration used.

EUT Enclosure

The EUT enclosure is primarily constructed of DIECAST aluminum. It measures approximately 17 cm wide by 11 cm deep by 3 cm high.

Modification History

Mod.#	Test	Date	Modification			
1						

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliot	t		ЕМ	C Test Data		
Client:	Microwave Data Systems		Job Number:	J61736		
Model:	INETII		T-Log Number:	T61789		
			Project Manager:	Esther Zhu		
Contact:	Dennis McCarthy					
Emissions Spec:	FCC, FCC 15.247, RSS-2	10	Class:	В		
Immunity Spec:	-		Environment:	-		
Test Configuration #1 Local Support Equipment						
Manufacturer	Model	Description	Serial Number	FCC ID		

Remote Support Equipment

DC Supply

PC Laptop

Antenna

677301

UXI456W3528X83

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Topward

Winbook

Microwave Data

Systems

3603D

Winbook XL

97-3194A14

Interface Cabling and Ports

Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
Ethernet LAN	Laptop	Cat 5	Unshielded	1.0
Com 1	Laptop	Serial	Shielded	3.0
DC Power	DC Power Supply	-	Unshielded	1.0
Link	Antenna	RF Cable	Shilded	3.0

Note: The Com 2 port was not connected during testing. The manufacturer stated that these are for Configuration purposes and therefore would not normally be connected.

EUT Operation During Emissions Tests (Digital Device)

During emissions testing a ping was exercising the ethernet interface and the radio was in receive mode on the center channel.

EUT Operation During Emissions Tests (Transceiver)

During emissions testing a ping was exercising the ethernet interface for all radiated spurious measurements. The radio was in receive mode on the specified channel for receiver emissions measurements.

For transmitter emissions measurements the EUT was configured to continuously transmit a modulated signal. For radiated spurious emissions the output power was set to a nominal 24dBm for the measurements with the Yagi antenna connected and a nominal 30dBm for measurements with the omni antenna connected. The purpose of setting the power to the maximum setting for the omni antenna was to cover all lower gain antennas of that type.

PSD and bandwidth measurements were made with the transmitter at the highest compliant power setting (the maximum power setting to comply with the PSD limit of 8dBm/3kHz). Output power measurements were made at the maximum power setting and at the power settings for use with the Yagi antennas and with the omni antennas of gains between 6dBi and 9.2dBi.

		EIVIC	i est Data
Client:	Microwave Data Systems	Job Number: J617	'36
Model	INETII	T-Log Number: T617	789
wodei.		Account Manager: Esthe	er Zhu
Contact:	Dennis McCarthy		
Snec:	FCC, FCC 15.247, RSS-210	Class: B	

Radiated Emissions - Digital Device

Test Specifics

C T 11: 44

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective:

specification listed above.

Date of Test: 11/7/2005 Config. Used: 1
Test Engineer: Pete Sales Config Change: None
Test Location: SVOATS #2 EUT Voltage: 15Vdc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 65 °F

Rel. Humidity: 70 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 -1000 MHz, Preliminary Scan	FCC B	Pass	42.0dBµV/m @ 140.002MHz (-1.5dB)
2	RE, 30 - 1000MHz, Maximized Emissions	FCC B	Pass	42.0dBµV/m @ 140.002MHz (-1.5dB)
3	RE, 1000 - 2000 MHz, Maximized Emissions	FCC B	Pass	38.1dBµV/m @ 1155.0MHz (-15.9dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Elliott	EM	EMC Test Data		
Client:	Microwave Data Systems	Job Number:	J61736		
Model	INETII	T-Log Number:	T61789		
Model.	INCIII	Account Manager:	Esther Zhu		
Contact:	Dennis McCarthy				
Spec:	FCC, FCC 15.247, RSS-210	Class:	В		

Run #1: Preliminary Radiated Emissions, 30-1000 MHz

Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
140.002	42.0	٧	43.5	-1.5	QP	18	1.0	
100.003	39.2	٧	43.5	-4.3	QP	327	1.0	
120.005	38.1	h	43.5	-5.4	QP	49	1.6	
160.002	35.6	٧	43.5	-7.9	QP	1	1.0	
160.002	35.3	h	43.5	-8.2	QP	71	2.1	
150.002	32.6	h	43.5	-10.9	QP	77	2.1	
100.002	32.5	h	43.5	-11.0	QP	91	1.7	
150.001	32.0	٧	43.5	-11.5	QP	27	1.0	
380.003	34.2	٧	46.0	-11.8	QP	10	1.1	

Run #2: Maximized Readings From Run #1

<u> </u>								T = .
Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
140.002	42.0	٧	43.5	-1.5	QP	18	1.0	
100.003	39.2	٧	43.5	-4.3	QP	327	1.0	
120.005	38.1	h	43.5	-5.4	QP	49	1.6	
160.002	35.6	٧	43.5	-7.9	QP	1	1.0	
160.002	35.3	h	43.5	-8.2	QP	71	2.1	
150.002	32.6	h	43.5	-10.9	QP	77	2.1	

Client: Microwave Data Systems Model: INETII Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 EMC Test Data Job Number: J61736 T-Log Number: T61789 Account Manager: Esther Zhu Class: B

Frequency	Level	Pol	FCC C	lass B	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1154.980	38.1	٧	54.0	-15.9	Avg	150	1.0	
1430.120	37.5	h	54.0	-16.5	Avg	181	1.0	
1122.615	37.3	٧	54.0	-16.7	Avg	131	1.0	
1099.880	36.6	٧	54.0	-17.4	Avg	192	1.0	
1002.370	34.2	٧	54.0	-19.8	Avg	187	1.0	
1100.075	33.5	h	54.0	-20.5	Avg	149	1.0	
1100.075	51.0	h	74.0	-23.0	Pk	149	1.0	
1430.120	44.5	h	74.0	-29.5	Pk	181	1.0	
1154.980	44.2	٧	74.0	-29.8	Pk	150	1.0	
1122.615	43.9	٧	74.0	-30.1	Pk	131	1.0	
1099.880	43.3	٧	74.0	-30.7	Pk	192	1.0	
1002.370	42.8	٧	74.0	-31.2	Pk	187	1.0	

F	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INIETII	T-Log Number:	T61789
iviodei.	INETH	Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	В

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/7/2005 Config. Used: 1

Test Engineer: Pete Sales Config Change: None

Test Location: SVOATS #2 EUT Voltage: 13.8Vdc

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area.

Ambient Conditions: Temperature: 65 °F

Rel. Humidity: 70 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	EN 55022 B	Pass	49.6dBµV @ 9.602MHz (-0.4dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Elli Microway	e Data Sy	/stems				Job Number:	J61736
Model:	INIETII						T-Log Number:	T61789
Model.							Account Manager:	Esther Zhu
Contact:	t: Dennis McCarthy							
Spec:	FCC, FC	C 15.247,	RSS-210				Class:	В
				0.0	l			
requency		AC		C B	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave			
9.602	49.6	Neutral	50.0	-0.4	Average			
9.602 28.806	49.3 43.8	Line	50.0	-0.7 -6.2	Average			
28.806	43.5	Neutral	50.0 50.0	-6.2 -6.5	Average			
9.602	49.7	Line Neutral	60.0	-0.5 -10.3	Average QP			
9.602	49.1	Line	60.0	-10.5	QP QP			
0.515	33.6	Line	46.0	-12.4	Average			
0.515 19.203	33.6 37.3	Line Neutral	46.0 50.0	-12.4 -12.7	Average Average			
0.515 19.203 28.806	33.6 37.3 43.9	Line Neutral Neutral	46.0 50.0 60.0	-12.4 -12.7 -16.1	Average Average QP			
0.515 19.203 28.806 28.806	33.6 37.3 43.9 43.4	Line Neutral Neutral Line	46.0 50.0 60.0 60.0	-12.4 -12.7 -16.1 -16.6	Average Average QP QP			
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP	node for ans levels.	AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.
0.515 19.203 28.806 28.806 0.515 19.203	33.6 37.3 43.9 43.4 35.1 37.4 Transr	Line Neutral Neutral Line Line Neutral Neutral	46.0 50.0 60.0 60.0 56.0 60.0	-12.4 -12.7 -16.1 -16.6 -20.9 -22.6	Average Average QP QP QP QP QP QP		AC conducted e	missions.

		EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INETII	T-Log Number:	T61789
MOUEI.		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	N/A

FCC 15.247 DTS - Power and Bandwidth

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/16/2005 Config. Used: 1
Test Engineer: Jmartinez Config Change: None
Test Location: SVOATS #2 EUT Voltage: 15VDC

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 15 °C

Rel. Humidity: 47 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Antenna port spurious	15.247(a)	Pass	All spurious signals more than -30dBc
2	Bandwidth	15.247(a)	Pass	6dB: 649kHz 99%: 1.514MHz
3	Output Power at highest power setting	15.247(b)	Pass	Refer to run
4	Power Spectral Density (PSD) at highest power setting	15.247(d)	Pass	7.94dBm/3kHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J61736 Client: Microwave Data Systems T-Log Number: T61789 Model: INETII Account Manager: Esther Zhu Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A Run #2: Signal Bandwidth Power Resolution Frequency (MHz) 6dB Signal Bandwidth 99% Signal Bandwidth Bandwidth Setting 1.514 MHz 29 902 100 kHz 649 kHz 915 649 kHz 1.431 MHz 30 100 kHz 927 649 kHz 1.464 MHz 30 100 kHz Analyzer Settings 30.0 HP8564E,EMI 25.0 CF: 902.82 MHz 20.0 SPAN:5,000 MHz 15.0-RB 100 kHz 10.0-VB 100 kHz Detector POS 5.0-Att 40 Æ 0.0-RL Offset 10.00 Sweep Time 50.0ms -5.0 Ref Lvl:40.00DBM -10.0--15.0 Comments -20.0 -25.0 905.3 901.0 901.5 902.0 902.5 903.0 903.5 904.0 904.5 900.3 Frequency (MHz) **Elliott** 903.137 28.50 Delta Freq. 649 kHz Cursor 1 22.50 Cursor 2 902.488 Delta Amplitude 6.00

Elliott

EMC Test Data

U			
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INIETII	T-Log Number:	T61789
	INETII	Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	N/A

Run #3: Output Power

Note 3:

Maximum antenna gain: 12.2 dBi (10dBd)

This setting used for Yaqi antennas with gains not exceeding 12.2dBi

٠.٣	g accarding raginal transfer game net exceeding 12:2abi							
	Power	Power Frequency (MHz) Output Power Note:		ower Note 1	EIRP	Peak Po	wer Note 2	
	Setting	i requericy (Miriz)	dBm	W	W	dBm	W	
	20	902.8165	23.7	0.234	3.890	23.7	0.234	
	24	915.0000	23.8	0.240	3.981	23.8	0.240	
	26	927.5035	23.6	0.229	3.802	23.7	0.234	

Maximum antenna gain: 9.2 dBi (7dBd) Power max = 26.8dBm
This setting used for omni antennas with gains above 6dBi but not exceeding 9.2dBi)

Ī	Power	Frequency (MHz)	Output Power Note 1		EIRP	Peak Power Note 2	
	Setting	riequelicy (Miliz)	dBm	W	W	dBm	W
	25	902.8165	26.1	0.407	3.388	26.0	0.398
	26	915.0000	26.6	0.457	3.802	26.6	0.457
	26	927.5035	26.6	0.457	3.802	26.7	0.468

Maximum antenna gain: 6 dBi

This setting used for omni antennas with gains of 6dBi or less and is the highest output power setting available.

Power	Frequency (MHz)	Output Power Note 1		EIRP	Peak Power Note 2	
Setting	riequency (wiriz)	dBm	W	W	dBm	W
28	902.8165	28.4	0.692	2.754	28.3	0.676
29	915.0000	28.4	0.692	2.754	28.3	0.676
29	927.5035	28.7	0.741	2.951	28.7	0.741

Output power measured using a spectrum analyzer, zero span, sample detector and RB = VB= 3MHz and power Note 1: averaging over 100 sweeps (knowledge database reference 558074, option 2, method 2). [Note actual span is 10kHz to allow power averaging to be enabled]. Plots are provided for the highest output power setting only.

Nbote 2: Output power measured with RB=VB=3MHz, peak detector for reference only

The output power is different depending on the antennas used. Yagi antennas are limited to the output power in the first table. The omni antennas with gains between 6dBi and 9.2dBi are limited to the output power in the center table. The Omni antennas with a gain not exceeding 6dBi (4.8dBd) the maximum output power is detailed in the last table. Note that the spurious emissions for all of the omni range of antennas are covered by the spurious tests performed on the highest gain omni antenna as these tests were performed with the output power set to the maximum permitted.

Note 4: Output power for antennas with 6dBi of gain or less is limited to the values in the table above to ensure compliance with the limits for PSD.

Note 5: Power setting is the setting used in the control software to set the output power with the software confiougred for "cal on" and "pwrctrl off" and are provided for reference purposes only.

EMC Test Data Job Number: J61736 Client: Microwave Data Systems T-Log Number: T61789 Model: INETII Account Manager: Esther Zhu Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A **Elliott** 28.7 Spectrum Analyzer Settings CF: 927.5MHz SPAN: 10kHz RB 3.0MHz VB 3.0MHz Detector Sample Att 10 RL Offset 30.90 Sweep Time 20.0ms Ref Lvl:31.00DBM Pwr avg: 100 sweeps Amp corr: 0.0dB Bin size: 25Hz Highest PSD 28,70 dBm/3.0MHz 99% Bandwidth 3.00 MHz Power Over Span 28.6-927.5 741,289 mW 927.5 927.5 28.70 dBm Frequency (MHz) Output Power Plot - Top Channel

EMC Test Data

Client:	Microwave Data Systems	Job Number:	J61736
Model:	INETII	T-Log Number:	T61789
		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	N/A

Run #4: Power Spectral Density

Power Setting	Operating Frequency (MHz)	Freq. @ PPSD	Res BW	P.S.D. (dBm/3kHz)
29	902	902.88	3kHz	7.94
30	915	915.05	3kHz	7.84
30	927	927.52	3kHz	7.84

Note 1: Freq. @ PPSD: Frequency of the Peak Power Spectral Density (PPSD)

Power spectral density measured using RB=3 kHz, VB=10kHz and power averaging enabled over 100 sweeps option 2 detailed in the FCC knowledge database). The same basic method (i.e. power averaging) was used for the measurement of output power.

Note 3: Power spectral density was measured at the highest output power setting.

Elliott EMC Test Data Job Number: J61736 Client: Microwave Data Systems T-Log Number: T61789 Model: INETII Account Manager: Esther Zhu Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A **Elliott** 10.0 Spectrum Analyzer Settings 7.5 CF: 915.0MHz 5.0-SPAN: 1.0MHz RB 3kHz 2.5-VB 10kHz 0.0-Detector Sample AH 30 -2.5-RL Offset 0.00 -5.0 Sweep Time 280,0ms Ref Lvl:20.00DBM -7.5 Pwr avg: 100 sweeps -10.0-Amp corr: 10.0dB Bin size: 2kHz -12.5 -Highest PSD -15.0-7,84 dBm/3kHz -17.5 -99% Bandwidth -20.0 -0.59 MHz -22.5-Power Over Span -25.0 -914.5 914.6 914.7 914.8 914.9 915.0 915.1 915.2 915.3 915.4 915.5 772,413 mW 28.88 dBm Frequency (MHz) 915 MHz (PSD) **Elliott** 10.0 Spectrum Analyzer Settings CONTRACTOR OF THE PARTY OF THE CF: 927.5MHz 5.0-SPAN: 1.0MHz RB 3kHz 0.0-VB 10kHz Detector Sample Att 30 -5.0-RL Offset 0.00 Sweep Time 280.0ms Ref Lvl:20.00DBM 튳 -10.0• Pwr avg: 100 sweeps Amp corr: 10.0dB -15.0Bin size: 2kHz Highest PSD 7,84 dBm/3kHz -20.0 99% Bandwidth -25.0 0.59 MHz Power Over Span -30.0 = 664.134 mW 927.0 927.1 927.2 927.3 927.4 927.5 927.6 927.7 927.8 927.9 928.0 Frequency (MHz) 28,22 dBm 927.5 MHz (PSD)

		EMC Test Data		
Client:	Microwave Data Systems	Job Number:	J61736	
Model:	INICTII	T-Log Number:	T61789	
wodei.	INETII	Account Manager:	Esther Zhu	
Contact:	Dennis McCarthy			
Spec:	FCC, FCC 15.247, RSS-210	Class:	N/A	

Transmitter Spurious Emissions - 10dBd Yagi Antenna

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/17/2005 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: EUT power set to a nominal 24dBm

Test Location: SVOATS #2 EUT Voltage: 15V dc

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 12 °C

Rel. Humidity: 45 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1b	RE, 30 - 10000 MHz	FCC Part 15.209 /	Door	44.2dBµV/m @
10	Spurious Emissions	15.247(c)	Pass	3659.9MHz (-9.8dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Elliott EMC Test Data Job Number: J61736 Client: Microwave Data Systems T-Log Number: T61789 Model: INETII Account Manager: Esther Zhu Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A Run #1a: Radiated Spurious Emissions, 30 - 10000 MHz. Low Channel @ 902.817 MHz 15.209 / 15.247 Pol Frequency Level Detector Azimuth Height Comments MHz $dB\mu V/m$ V/H Margin Pk/QP/Avg degrees Limit meters 42.7 3611.229 ٧ 54.0 -11.3 **AVG** 4 1.0 20 2708.420 39.7 ٧ 54.0 -14.3 AVG 1.0 AVG 324 2708.517 38.1 Н 54.0 -15.9 1.0 ٧ -22.5 PΚ 3611.229 51.5 74.0 4 1.0 20 2708.420 49.2 ٧ 74.0 -24.8 PΚ 1.0 2708.517 47.5 Н 74.0 PK 324 -26.6 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1: the level of the fundamental and is based on a peak measurement in 100kHz bandwidth. Run #1b: Radiated Spurious Emissions, 30 - 10000 MHz. Center Channel @ 915.000 MHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ V/H Pk/QP/Avg Limit Margin degrees meters 3659.925 44.2 Н -9.8 AVG 54.0 21 1.0 2744.985 42.5 Н 54.0 -11.5 **AVG** 21 1.0 2745.045 37.7 ٧ 54.0 -16.4 **AVG** 34 1.0 Η -21.3 PΚ 21 3659.925 52.7 74.0 1.0 2744.985 Н 74.0 -23.9 PK 21 1.0 50.1 2745.045 48.6 74.0 -25.4 PΚ 34 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1: the level of the fundamental and is based on a peak measurement in 100kHz bandwidth. Run #1c: Radiated Spurious Emissions, 30 - 10000 MHz. High Channel @ 927.504 MHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments V/H MHz $dB\mu V/m$ Limit Margin Pk/QP/Avg degrees meters 3710.066 54.0 -9.8 AVG 44.2 Η 55 1.0 2782.540 39.9 Η 54.0 -14.1 **AVG** 30 1.0 2782.390 38.4 ٧ 54.0 -15.6**AVG** 140 1.0 Н -22.5 PΚ 55 3710.066 51.5 74.0 1.0 2782.540 49.0 Н 74.0 -25.1 PΚ 30 1.0 ٧ -25.5 PK 140 2782.390 48.5 74.0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1:

the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.

Elliott	EMC Test Data
Client: Microwave Data Systems	Job Number: J61736
Model: INETII	T-Log Number: T61789
Model. IIVE I II	Account Manager: Esther Zhu
Contact: Dennis McCarthy	
Spec: FCC, FCC 15.247, RSS-210	Class: B

Radiated Emissions - 10 dBd Yagi Antenna

Test Specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective:

specification listed above.

Date of Test: 11/18/2005 Config. Used: 1 Config Change: None Test Engineer: Mehran Birgani Test Location: SVOATS #2 EUT Voltage: 15V dc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 21 °C

42 % Rel. Humidity:

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 5000MHz, Maximized	FCC Class B	Doos	44.8dBµV/m @
I	Emissions	FUU UIASS D	Pass	792.160MHz (-1.2dB)
2	RE, 30 - 5000MHz, Maximized	FCC Class B	Doos	46.5dBµV/m @
2	Emissions	FUU UIASS D	Pass	2410.7MHz (-7.5dB)
2	RE, 30 - 5000MHz, Maximized	FCC Class B	Door	41.4dBµV/m @
J	Emissions	FUU UIASS D	Pass	816.806MHz (-4.6dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Elliott

EMC Test Data

Client:	Microwave Data Systems	Job Number:	J61736
Model:	INIETII	T-Log Number:	T61789
		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	В

Run #1: Maximized readings, 30 - 5000 MHz (Rx Mode, Low Channel)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
792.160	44.8	Н	46.0	-1.2	QP	275	1.1		
792.116	42.3	V	46.0	-3.7	QP	60	1.1		
2375.110	44.1	Н	54.0	-9.9	Pk	120	1.0	Pk Reading average limit	
2377.328	43.8	V	54.0	-10.2	Pk	100	1.0	Pk Reading average limit	
1584.356	41.3	V	54.0	-12.7	Pk	0	1.0	Pk Reading average limit	
1583.839	41.1	Н	54.0	-12.9	Pk	0	1.0	Pk Reading average limit	

Run #2: Maximized readings, 30 - 5000 MHz (Rx Mode, Center Channel)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2410.663	46.5	Н	54.0	-7.5	Pk	16	1.9	Pk Reading average limit
2410.685	42.7	V	54.0	-11.3	Pk	0	1.0	Pk Reading average limit
1606.200	42.1	V	54.0	-11.9	Pk	19	1.0	Pk Reading average limit
1606.543	41.6	Н	54.0	-12.4	Pk	20	2.1	Pk Reading average limit
803.650	32.1	Н	46.0	-13.9	QP	60	1.0	
803.650	31.7	V	46.0	-14.3	QP	15	1.1	

Run #3: Maximized readings, 30 - 5000 MHz (Rx Mode, High Channel)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
816.806	41.4	Н	46.0	-4.6	QP	30	1.0	
816.806	39.0	V	46.0	-7.0	QP	180	1.3	
2450.032	43.9	Н	54.0	-10.1	Pk	0	2.4	Pk Reading average limit
1633.925	43.8	Н	54.0	-10.2	Pk	15	2.5	Pk Reading average limit
2449.245	43.7	V	54.0	-10.3	Pk	0	1.0	Pk Reading average limit
1632.418	42.2	V	54.0	-11.8	Pk	145	1.0	Pk Reading average limit

6	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INETII	T-Log Number:	T61789
Model.		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Snoc.	FCC FCC 15 247 RSS-210	Class:	B

Radiated Emissions - 7 dBd Omni Antenna

Test Specifics

6 Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/18/2005 Config. Used: 1 Config Change: None Test Engineer: Mehran Birgani Test Location: SVOATS #2 EUT Voltage: 15V dc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 42 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 5000MHz, Maximized	FCC Class B	Doos	40.9dBµV/m @
I	Emissions	FCC Class D	Pass	792.116MHz (-5.1dB)
2	RE, 30 - 5000MHz, Maximized	FCC Class B	Doos	44.5dBµV/m @
Z	Emissions	FCC Class D	Pass	2410.1MHz (-9.5dB)
2	RE, 30 - 5000MHz, Maximized	FCC Class B	Pass	42.1dBµV/m @
J	Emissions	FUU UIASS D	rass	816.806MHz (-3.9dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Elliott

EMC Test Data

_			
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INIETII	T-Log Number:	T61789
woder.		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	В

Run #1: Maximized readings, 30 - 5000 MHz (Rx Mode, Low Channel)

Frequency	Level	Pol	FCC C	lass B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
792.116	40.9	V	46.0	-5.1	QP	230	1.0	
792.160	39.8	Н	46.0	-6.2	QP	313	1.0	
2375.032	46.0	Н	54.0	-8.0	Pk	161	1.0	Pk Reading average limit
2377.395	45.7	V	54.0	-8.3	Pk	360	1.0	Pk Reading average limit
1583.833	41.3	Н	54.0	-12.7	Pk	360	1.0	Pk Reading average limit
1584.335	41.1	V	54.0	-12.9	Pk	0	1.0	Pk Reading average limit
		V						<u> </u>

Run #2: Maximized readings, 30 - 5000 MHz (Rx Mode, Center Channel)

Frequency	Level	Pol	FCC C	lass B	Detector	Azimuth	Height	Comments
rrequericy	Level		1000	กลอง บ			Height	Continents
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2410.070	44.5	Н	54.0	-9.5	PK	0	1.0	Pk Reading average limit
2410.625	43.2	V	54.0	-10.8	Pk	0	1.0	Pk Reading average limit
1606.125	42.5	V	54.0	-11.5	Pk	139	1.0	Pk Reading average limit
1607.225	41.9	Н	54.0	-12.1	PK	158	1.0	Pk Reading average limit
803.650	32.1	Н	46.0	-13.9	QP	60	1.0	
803.650	31.7	V	46.0	-14.3	QP	15	1.1	

Run #3: Maximized readings, 30 - 5000 MHz (Rx Mode, High Channel)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
816.806	42.1	Н	46.0	-3.9	QP	181	1.2	
816.806	41.4	V	46.0	-4.6	QP	322	1.0	
2451.157	43.7	Н	54.0	-10.3	Pk	120	1.0	Pk Reading average limit
2449.207	43.7	V	54.0	-10.3	Pk	360	1.0	Pk Reading average limit
1634.255	42.8	Н	54.0	-11.2	Pk	0	1.0	Pk Reading average limit
1632.178	41.7	V	54.0	-12.3	Pk	275	1.0	Pk Reading average limit

13	ZIIIOU	EIVI	C Test Data
Client:	Microwave Data Systems	Job Number:	J61736
Model:	INIETII	T-Log Number:	T61789
wodei.		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	N/A

Transmitter Spurious Emissions - 7dBd Yagi Antenna

Test Specifics

C T 11: 44

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/18/2005 Config. Used: 1

Test Engineer: Mark Briggs Config Change: EUT power set to 30dBm

Test Location: SVOATS #2 EUT Voltage: 15V dc

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 17 °C

Rel. Humidity: 45 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 30 - 10000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	47.4dBµV/m (233.3µV/m) @ 3710.6MHz (-6.6dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Cilent.	Microwave	Data S	ystems				,	lob Number:	J61736
	IN IETII						T-L	og Number:	T61789
Model:	INEIII						Accou	nt Manager:	Esther Zhu
Contact:	Dennis Mo	Carthy							
Spec:	FCC, FCC	: 15.247,	RSS-210					Class:	N/A
Run #1a:	Radiated S	purious	Emissions	s, 30 - 1000	0 MHz. Low	Channel @	902.817 M	Hz	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
3611.575	43.1	V	54.0	-10.9	AVG	9	1.2		
3610.525	42.1	Н	54.0	-11.9	AVG	7	2.5		
2708.428	40.4	Н	54.0	-13.6	AVG	24	1.0		
2708.128	39.9	V	54.0	-14.1	AVG	351	1.0		
3610.525	54.5	Н	74.0	-19.5	PK	7	2.5		
1805.926	78.2	V	98.0	-19.8	Pk(100k)	2	2.0		
3611.575	54.0	V	74.0	-20.0	PK	9	1.2		
2708.428	51.8	Н	74.0	-22.2	PK	24	1.0		
1805.933	75.4	Н	98.0	-22.6	Pk(100k)	9	1.0		
1000.000					-:-	^ - <i>'</i>			
	50.2	V	74.0	-23.8	PK	351	1.0		
2708.128 902.817	50.2 128.0 For emissi	V ions in re	- estricted bar	- nds, the limi	Peak	17 as used. Fo	1.2 r all other e	missions, the	W - fundamental sign
2708.128 902.817 lote 1:	50.2 128.0 For emissi the level o	V ions in re f the fun	- estricted bar damental ar	- nds, the limi nd is based	Peak t of 15.209 w	17 as used. Fo easurement	1.2 r all other e in 100kHz b	missions, the pandwidth.	_
2708.128 902.817 lote 1:	50.2 128.0 For emissi the level o	V ions in re f the fun	- estricted bar damental ar s Emissions	- nds, the limi nd is based	Peak t of 15.209 w on a peak m	17 as used. Fo easurement	1.2 r all other e in 100kHz b	missions, the pandwidth.	_
2708.128 902.817 lote 1:	50.2 128.0 For emissi the level o	V fons in refethe fundaments	- estricted bar damental ar s Emissions	- nds, the limi nd is based s, 30 - 1000	Peak t of 15.209 w on a peak m	17 as used. Fo easurement ter Channel	1.2 r all other e in 100kHz b	missions, the pandwidth.	_
2708.128 902.817 lote 1: Run #1b: requency MHz 3659.280	For emissing the level of the l	V Jons in ref the fundamental formula for the fundamental for the	estricted bar damental ar s Emissions 15.209 Limit 54.0	- ands, the limited is based s, 30 - 1000 / 15.247 Margin -8.9	Peak t of 15.209 w on a peak m MHz. Cen Detector Pk/QP/Avg AVG	as used. Fo easurement ter Channel Azimuth degrees 345	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0	missions, the pandwidth.	_
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383	For emissing the level of the l	V Jons in ref the fundamental formula for the fundamental for the	estricted bardamental ar s Emissions 15.209 Limit 54.0 54.0	- nds, the limind is based s, 30 - 1000 / 15.247 Margin -8.9 -10.3	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG	as used. Fo easurement ter Channel Azimuth degrees 345 11	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: requency MHz 3659.280 3660.383 4574.753	For emissing the level of the l	V Jons in ref the fundamental from the fundamental	estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0	- nds, the limind is based s, 30 - 1000 / 15.247 Margin -8.9 -10.3 -11.2	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG	as used. Fo easurement ter Channel Azimuth degrees 345 11 0	1.2 r all other e in 100kHz t @ 915.000 Height meters 1.0 1.0 1.0	missions, the pandwidth.	e limit was set 30dB b
2708.128 902.817 lote 1: requency MHz 3659.280 3660.383 4574.753 2744.625	50.2 128.0 For emissing the level of the le	V fons in ref f the fundamental formula for the fundamental formula for the following formula for the following formula for the following formula for the following for the fo	estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 54.0	- nds, the limind is based s, 30 - 1000 / 15.247 Margin -8.9 -10.3 -11.2 -14.6	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44	1.2 r all other e in 100kHz t @ 915.000 Height meters 1.0 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: requency MHz 8659.280 3660.383 4574.753 2744.625 2744.565	For emissis the level of the l	V fons in ref f the fundamental formula for the fundamental formula for the following formula for the following formula for the following formula for the following for the fo	estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0	- nds, the limind is based 5, 30 - 1000 7 15.247 Margin -8.9 -10.3 -11.2 -14.6 -14.7	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43	1.2 r all other e in 100kHz t @ 915.000 Height meters 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383 4574.753 2744.625 2744.625	50.2 128.0 For emissing the level of the le	ons in ref f the fundamental Spurious Pol V/H V H V H V H	-setricted bardamental ardamental	- Inds, the limited is based state of the limited and is based state of the limited state of	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG PK	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383 4574.753 2744.625 2744.625 2744.625 3659.280	50.2 128.0 For emissing the level of the le	ons in ref f the fundamental Spurious Pol V/H V H V H V H V	-setricted bardamental ardamental	- Inds, the limited is based state of the limited and is based state of the limited state of	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383 4574.753 2744.625 2744.625 3659.280 1829.693	50.2 128.0 For emissing the level of the le	ons in reference from the function of the func	- estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 54.0 74.0 74.0 94.0	- nds, the limind is based 5, 30 - 1000 7 15.247 Margin -8.9 -10.3 -11.2 -14.6 -14.7 -19.2 -19.3 -19.7	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK Pk(100k)	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345 360	1.2 r all other e in 100kHz to 100kH	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: requency MHz 8659.280 3660.383 4574.753 2744.625 2744.625 2744.625 2744.625 3659.280 1829.693 3660.383	50.2 128.0 For emissing the level of the le	ons in ref f the fundamental Spurious Pol V/H V H V H V H V H V H	- estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 74.0 74.0 94.0 74.0 74.0	- nds, the limind is based 5, 30 - 1000 7 15.247 Margin -8.9 -10.3 -11.2 -14.6 -14.7 -19.2 -19.3 -19.7 -20.2	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK(100k) PK	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345 360 11	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments Noise floor	e limit was set 30dB b
2708.128 902.817 ote 1: dun #1b: requency MHz 3659.280 3660.383 4574.753 2744.625 2744.625 2744.625 3659.280 1829.693 3660.383 4574.753	50.2 128.0 For emissing the level of the le	ons in reference for the fundamental formula for the fundamental for t	- estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	- nds, the limind is based s, 30 - 1000 / 15.247 Margin -8.9 -10.3 -11.2 -14.6 -14.7 -19.2 -19.3 -19.7 -20.2 -20.8	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG PK PK PK PK(100k) PK PK	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345 360 11 0	1.2 r all other e in 100kHz t @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments	e limit was set 30dB b
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383 4574.753 2744.625 2744.625 2744.625 3659.280 1829.693 3660.383 4574.753 2744.565	50.2 128.0 For emissing the level of the le	ons in ref the fundamental form of the fundamental for	-setricted bardamental ardamental	- Index, the limit and is based so that should be seen as a second so that should be s	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK PK(100k) PK PK PK	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345 360 11 0 43	1.2 r all other e in 100kHz b @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments Noise floor	e limit was set 30dB b
2708.128 902.817 lote 1: Run #1b: Frequency MHz 3659.280 3660.383 4574.753 2744.625 2744.625	50.2 128.0 For emissing the level of the le	ons in reference for the fundamental formula for the fundamental for t	- estricted bar damental ar s Emissions 15.209 Limit 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	- nds, the limind is based s, 30 - 1000 / 15.247 Margin -8.9 -10.3 -11.2 -14.6 -14.7 -19.2 -19.3 -19.7 -20.2 -20.8	Peak t of 15.209 w on a peak m O MHz. Cen Detector Pk/QP/Avg AVG AVG AVG AVG PK PK PK PK(100k) PK PK	as used. Fo easurement ter Channel Azimuth degrees 345 11 0 44 43 44 345 360 11 0	1.2 r all other e in 100kHz t @ 915.000 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	missions, the pandwidth. MHz Comments Noise floor Noise floor	e limit was set 30dB b

Colinit: Microwave Data Systems Job Number: J61736
Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A
Contact: Dennis McCarthy Spec: FCC, FCC 15.247, RSS-210 Class: N/A
Spec: FCC, FCC 15.247, RSS-210 Class: N/A
Run #1c: Radiated Spurious Emissions, 30 - 10000 MHz. High Channel @ 927.504 MHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 3710.555 47.4 V 54.0 -6.6 AVG 15 1.1 3710.330 44.8 H 54.0 -9.2 AVG 336 1.0 2782.065 39.3 H 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.350 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.275 48.8 V 74.0 -25.3
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 3710.555 47.4 V 54.0 -6.6 AVG 15 1.1 3710.330 44.8 H 54.0 -9.2 AVG 336 1.0 2782.275 38.5 V 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 3710.555 47.4 V 54.0 -6.6 AVG 15 1.1 3710.330 44.8 H 54.0 -9.2 AVG 336 1.0 2782.065 39.3 H 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V -
3710.555 47.4 V 54.0 -6.6 AVG 15 1.1 3710.330 44.8 H 54.0 -9.2 AVG 336 1.0 2782.065 39.3 H 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.055 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - <td< td=""></td<>
3710.330 44.8 H 54.0 -9.2 AVG 336 1.0 2782.065 39.3 H 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit
2782.065 39.3 H 54.0 -14.7 AVG 19 1.0 2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
2782.275 38.5 V 54.0 -15.5 AVG 314 1.0 3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
3710.555 56.5 V 74.0 -17.5 PK 15 1.1 3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
3710.330 54.6 H 74.0 -19.4 PK 336 1.0 1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
1855.248 71.8 V 92.0 -20.2 Pk(100k) 19 1.0 2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
2782.065 49.4 H 74.0 -24.6 PK 19 1.0 2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
2782.275 48.8 V 74.0 -25.3 PK 314 1.0 1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V - - Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
1855.263 65.7 H 92.0 -26.3 Pk(100k) 10 1.2 902.817 122.0 V Peak 5 1.0 100kHz RBW - fundamental signa Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
902.817 122.0 V Peak 5 1.0 100kHz RBW - fundamental signal Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
the level of the fundamental and is based on a peak measurement in 100kHz bandwidth.
Note 2: There were no signals related to the transmitter in the restricted band that starts at 960MHz.

Elliott		EMC Test Data		
Client:	Microwave Data Systems	Job Number:	J61736	
Model:	INETII	Test-Log Number:	T61789	
		Project Manager:	Esther Zhu	
Contact:	Dennis McCarthy			
Emissions Spec:	FCC, FCC 15.247, RSS-210	Class:	В	
Immunity Spec:	-	Environment:	-	
			•	

EMC Test Data

For The

Microwave Data Systems

Model

INETII

Date of Last Test: 11/18/2005

EI C	Elliott EMC Test D		C Test Data
Client:	Microwave Data Systems	Job Number:	J61736
Modal:	INETII	T-Log Number:	T61789
Model.		Account Manager:	Esther Zhu
Contact:	Dennis McCarthy		
Spec:	FCC, FCC 15.247, RSS-210	Class:	В

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/7/2005 Config. Used: 1

Test Engineer: Pete Sales Config Change: None

Test Location: SVOATS #2 EUT Voltage: 13.8Vdc

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area.

Ambient Conditions: Temperature: 65 °F

Rel. Humidity: 70 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	EN 55022 B	Pass	49.6dBµV @ 9.602MHz (-0.4dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Client !	Elli(e Data Sv	vstems				Job Number:	J61736
		o Bata O	yotomo				T-Log Number:	
Model: I	INETII					_	Account Manager:	
Contact: [
Spec: F	FCC, FCC	15.247,	RSS-210				Class:	В
equency	Level	AC	FC	СВ	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave	Comments		
9.602	49.6	Neutral	50.0	-0.4	Average			
9.602	49.3	Line	50.0	-0.7	Average			
28.806	43.8	Neutral	50.0	-6.2	Average			
8.806	43.5	Line	50.0	-6.5	Average			
9.602	49.7	Neutral	60.0	-10.3	QP			
9.602	49.1	Line	60.0	-10.9	QP			
0.515	33.6	Line	46.0	-12.4	Average			
9.203	37.3	Neutral	50.0	-12.7	Average			
28.806	43.9	Neutral	60.0	-16.1	QP			
8.806	43.4	Line	60.0	-16.6	QP			
0.515	35.1	Line	56.0	-20.9	QP			

EXHIBIT 3: Test Configuration Photographs

Pages

File: R63834 Exhibit Page 3 of 3