XGT FEnet I/F 모듈 프로토콜 규격

작성일: 2005.3.30

XGT FEnet I/F 모듈 프로토콜 규격

1 전용통신

1.1 개 요

정보

전용통신 서비스는 FEnet I/F 모듈에 내장된 프로토콜로 PC 및 주변기기에서 PLC 내의

및 데이터를 읽고 쓸 수 있는 서비스 입니다. 통신 네트워크에서 슬레이브로 동작하게 되며 외부 기기 나 PC 에서의 XGT 프로토콜이나 모드버스 TCP 프로토콜을 따르는 메모리 읽기, 쓰기 요청이 올 경우 응답 합니다 (XGT 전용 드라이버와 MODBUS TCP 드라이버 지원) FEnet I/F 모듈의 XGT 전용 드라이버를 위한 TCP 포트 2004 와 UDP 포트 2005를 이용하고 있으며, MODBUS TCP 드라이버는 TCP 502를 이용하고 있습니다. 자사 Ethernet 모듈 사이의 통신, 상위 시스템(PC 프로그램, MMI)과 자사의 Ethernet 모듈 사이의 통신에 유용하게 사용 할 수 있습니다.

1) XGT 전용 드라이버 설정

Ethernet 통신을 하기 위해서는 반드시 기본파라미터를 설정해서 다운로드 한 뒤에 사용해야 하듯이, 전용 서비스를 이용해서 통신을 하려면 반드시 설정 후 다운로드 해야합니다.(설정하지 않았을 경우 XGT SERVER)

기본 파라미터 내에 전용 접속 개수는 자사의 전용 포트(2004)를 이용해서 맺어진 채널(MMI 접속) 개수를 의미합니다. 따라서 프레임 편집기의 전용 접속 개수를 변환함으로써 자사의 전용 통신용 채널 접속 개수 변경 할 수 있습니다.

1.2 프레임 구조

자사 Ethernet 모듈의 어플리케이션 프레임의 구조를 아래에 나타냅니다.

1) 헤더 구조(Application Header Format)

항 목	크기(byte)	내용
Company ID	8	"LSIS-XGT" (ASCII CODE : 4C 53 49 53 2D 58 47 54 00 00)
Reserved	2	0x00 : 예약영역
PLC Info	2	* 클라이언트(MMI) → 서버(PLC): Don' care (0x00) * 서버(MMI) → 클라이언트(PLC): 1) Reserved1 이 0x00 인 경우 Bit00~05: CPU TYPE 01(XGK-CPUH), 02(XGK-CPUS) Bit06: 0 (이중화 Master / 단독), 1(이중화 Slave) Bit07: 0(CPU 동장 정상), 1(CPU 동작 에러) Bit08~12: 시스템 상태 2(STOP), 4(RUN), 8(PAUSE), 10(DEBUG) Bit13~15: Reserved
CPU Info	1	0xA0 주 1)
Source of Frame	1	* 클라이언트(MMI) → 서버(PLC): 0x33 * 서버(PLC) → 클라이언트(MMI): 0x11
Invoke ID	2	Frame 간의 순서를 구별하기 위한 ID (응답 프레임에 이 번호를 붙여 보내줌)
Length	2	Application Instruction 의 바이트 크기
FEnet Position	1	Bit0~3 : FEnet I/F 모듈의 슬롯(Slot) 번호 Bit4~7 : FEnet I/F 모듈의 베이스(Base) 번호
Reserved2 (BCC)	1	0x00 : 예약영역 (Application Header 의 Byte Sum)

주 1) Reserved 영역을 통해 XGK/XGI 시리즈임을 판단

2) 프레임 기본 구조(Application Instruction Format)

(1) 헤더

^{**()} 괄호 안의 수는 바이트 개수

- ▷ Company ID : 아스키 문자열로 'LSIS-XGT'
- ▷ PLC Info PLC 에 대한 정보 영역
- ▷ Invoke ID : 프레임간의 순서를 구별하기 위한 ID 로 명령 요구 시 임의로 지정할 수 있으며, 응답 프레임은 명령 요구 시 수신된 Invoke ID 를 재송신 합니다.(PC 나 MMI 에서 에러 체크를 위해서 사용하는 영역)
- ▷ Length : 프레임 중 헤더 뒤에 오는 데이터 영역의 길이
- (2) 명령 요구 프레임(외부 통신 기기 → FEnet I/F 모듈)

헤더	명령어	데이터	예약영역	구조화된
에너	984	타입	(2 바이트)	데이터 영역

(3) ACK 응답 프레임(FEnet 모듈 \rightarrow 외부 통신 기기, 데이터 정상 수신 시)

헤더	H 명령어	데이터	예약영역	에러상태 (2 바	구조화된
에너	50	타입	(2 바이트)	이트 h'0000)	데이터 영역

(4) NAK 응답 프레임(FEnet 모듈 \rightarrow 외부 통신 기기, 데이터 비정상 수신 시)

헤더	명령어	데이터 타입	예약영역 (2 바이트)	에러상태 (2 바이트: h'0000 가 아님)	에러 코드 (1 바이트)
----	-----	-----------	-------------------------	---------------------------------	------------------

알아두기

1) 프레임 내의 숫자 앞에 16 진수 데이터인 경우 01, h'12345, h'34, 0x12, 0x89AB 와 같이 'h''또는 '0x'에 의해 이 데이터가 16 진수 타입 임을 표시합니다.

1.3 명령어 일람

전용 통신 서비스에서 사용되는 명령들은 아래 표와 같습니다.

명령어	명령어 코드	데이터 형식	처 리 내 용
	요구 :h'0054	개별	Bit, Byte, Word, Dword, Lword형의 변수의 각 데이터 타입에 따라 데이터를 읽어 옵니다
읽기	위기 응답 :h'0055	연속	바이트 형의 변수를 블록 단위로 읽어옵니다. (최대 1,400 바이트).
=	요구 :h'0058	개별	Bit, Byte, Word, Dword, Lword형의 변수의 각 데이터 타입에 따라 데이터를 씁니다.
쓰기	쓰기 응답 :h'0059	연속	바이트 형의 변수를 블록 단위로 씁니다. (최대 1,400 바이트).

[표 1.1] 명령어 일람

1.4 데이터 타입

1) 변수의 데이터 종류

XGT PLC 의 메모리 디바이스 종류 : P, M, L, F, K, C, D, T, N, R 등의 변수에 대한 데이터 타입은 변수 표시 문자 '%' 다음에 표시 합니다.

데이터 타입	사용 예.
Bit	%PX0,%LX0,%FX0
Byte	%MB0, %PB0, %DB0
Word	%PW0,%LW0,%FW0,%DW0
DWord	%PD0,%LD0,%FD0,%DD0
LWord	%PL0,%LL0,%FL0,%DL0

[표 1.2] 직접변수의 데이터 종류 일람

2) 데이터 타입

직접변수를 읽거나 쓰고자 할 경우 명령어 타입으로 데이터 타입을 지정합니다.

데이터 타입	코드	데이터 타입	코드
BIT	h' 00	LWORD	h' 04
BYTE	h' 01	DWORD	h' 03
WORD	h' 02	LWORD	h' 04
DWORD	h' 03	연속	h' 14

[표 1.3] 직접변수의 데이터 타입 일람

2. 명령어 실행

2.1 변수 개별 읽기

1) 개 요

PLC 디바이스 메모리를 직접 지정하여 메모리 데이터 타입에 맞게 읽는 기능입니다. 한 번에 16개의 독립된 디바이스 메모리를 읽을 수 있습니다.

2) 요구 포맷(PC -> PLC)

■ 개별 변수 읽기 요구 (MMI → PLC)

항 목	크기(byte)	내용
명령어	2	0x0054 : Read Request
데이터 타입	2	Data Type 표 참조(X,B,W,D,L)
예약 영역	2	0x0000 : Don't Care.
변수 개수	2	읽고자 하는 Variable 의 개수 최대 16개
변수명 길이	2	직접변수의 길이. 최대 16 자.
변수	변수명 길이	직접변수만 사용가능
		(변수 개수만큼 반복/최대 16)
변수명 길이	2	직접변수의 길이. 최대 16 자.
변수	변수명 길이	직접변수만 사용가능

포맷	헤더	명령어	데이터	예약	블록수	변수	직접	
이름	에너		타입	영역	宣令学	길이	변수	
코드(예)		h'0054	h'0002	h'0000	h'0001	h'0006	%MW100	

1 블록(최대 16 블록 까지 반복 설정 가능)

(1) 블록 수

이것은 '[변수 길이][변수]'으로 구성된 블록이 이 요구 포맷에 몇 개가 있는지를 지정하는 것으로 최대 16개의 블록까지 설정할 수 있습니다. 따라서 [블록수]의 값은 h'0001~h'0010 이어야 합니다.

(2) 변수 길이(변수 이름 길이)

변수를 의미하는 이름의 글자 수를 나타내는 것으로 최대 16자까지 허용됩니다. 이 값의 범위는 h'01에서 h'10까지 입니다.

(3) 변수

실제로 읽어올 변수의 어드레스를 입력합니다. 16자 내의 아스키 값이어야 하며, 이 변수 이름에는 숫자, 대/소문자 , '%' 및 ''이외에는 허용되지 않습니다.

PLC 타입에 따라 사용 가능한 변수를 아래 표에 표시 하였습니다.

구 분	Bool	Byte	Word	Double Word	Long Word
XGT 메모리	%(P,M,L,K,F,T)X	-	%(P,M,L,K,F, T,C,D,S)W	-	-

[표 2.1] 변수 종류

알아두기

1) 프레임 작성 시 위의 프레임에서 16 진수 워드 데이터를 표현할 때는 숫자 앞의 h 를 빼고, 두 바이트의 위치를 바꾸어 주어야 합니다.

예) h'0054 ⇒5400

- 3) 응답 포맷(PLC 가 ACK 응답 시)
 - 개별 변수 읽기 응답 (PLC →MMI)

항 목	크기(byte)	내용
명령어	2	0x0055 : Read Response
데이터 타입	2	Data Type 표 참조
예약 영역	2	0x0000 : Don't Care
에러 상태	2	0 이면 정상, 0 이 아니면 에러
에러 정보	2	Error State 가 에러인 경우 하위 Byte 가 에러 번호
변수 개수		Error State 가 정상인 경우 읽어온 Variable 의 개수
데이터 크기	2	Data 의 Byte Size.
데이터	데이터 크기	읽어온 Data .
		(변수 개수만큼 반복/최대 16)
데이터 크기	2	Data 의 Byte Size.
데이터	데이터 크기	읽어온 Data .

포맷	헤더	H 러 시	데이터	예약	에러	븍롴수	데이터	데이터	
이름	에너	명령어	타입	영역	상태	宣令学	개수	네이더	
코드(예)		h'0055	h'0002	h'0000	h'0000	h'0001	h'0002	h'1234	

1 블록(최대 16 블록)

(1) 데이터 개수

HEX형의 바이트 개수를 의미합니다. 이 개수는 컴퓨터 요구 포맷의 변수 이름에 포함되어 있는 메모리 타입(X,B,W,D,L)에 따라 결정됩니다

(2) 블록 수

이것은 '[데이터개수][데이터]'로 구성된 블록이 이 요구 포맷에 몇 개가 있는지를 지정하는 것으로 최대 16개 블록까지 설정할 수 있습니다. 따라서 [블록수]의 값은 h'0001~ h'0010 이어야 합니다.

구 분	가능한 변수	데이터 개수(Byte)
Bool(X)	%(P,M,L,K,F,T)X	1 (최하위 비트만 유효)
Word(W)	%(P,M,L,K,F,T,C,D,S)W	2

[표 2.2] 변수에 따른 데이터 개수

알아두기

- 1) 데이터 개수가 H04 라는 의미는 데이터에 4 바이트의 16 진수(HEX)데이터가 있음(Double Word)을 표시합니다.
- 1) 데이터 타입이 Bool인 경우 읽은 데이터는 한 Byte(HEX)로 표시됩니다. 즉 BIT 값이 0 이면 h'00 으로, 1 이면 h'01 로 표시됩니다.

4) 응답 포맷(NAK 응답 시)

			,			
포맷	헤더	명령어	데이터	예약영역	에러상태	에러 코드
이름	OIICI	0	타입	41707	ળાં વ ઠ વા	(Hex 1 Byte)
코드(예)		h'0055	h'0002	h'0000	h'FFFF (0 이 아닌 값)	h'21

알아두기

1) 에러코드는 헥사로 1 바이트의 내용으로 에러의 종류를 표시합니다. 자세한 내용은 '에러코드 표' 참조하십시오.

2.2 변수 연속 읽기

1) 개 요

PLC 디바이스 메모리를 직접 지정하여 지정된 번지부터 지정된 양 만큼의 데이터를 연속으로 읽는 기능 입니다.

- 2) 요구포맷(PC ⇒ PLC)
 - 연속변수 읽기 요구 (MMI → PLC)

항 목	크기(byte)	내용
명령어	2	0x0054 : Read Request
데이터 타입	2	0x0014 : Block Type
예약 영역	2	0x0000 : Don't Care.
변수 개수	2	읽고자 하는 Variable 의 개수 최대 16 개
변수명 길이	2	변수명의 길이. 최대 16 자.
		Variable 명. 바이트 타입 직접변수만 사용가능.
변수	변수명 길이	(즉, %MB / %PB / %DB 형태 가능:
인구	인구강 일이	지원 디바이스:P,N,L,K,T,C,D,N, F)
		블록의 선두 번지를 나타냄. (예. %MB0, %PB0)
변수명 길이	2	Data 의 Byte Size, 최대 1400byte

포맷이름	헤더	명령어	데이터 타입	예약 영역	블록수	변수 길이	직접 변수	데이터 개수
코드(예)		h'0054	h'0014	h'0000	h'0001	h'0006	%MWOO O	h'0006

알아두기

- 1) 데이터 개수는 데이터의 바이트 개수를 의미합니다(최대 1,400 바이트).
 - (1) 데이터 타입 데이터 타입은 h'0014로만 사용할 수 있습니다.
 - (2) 블록수 블록 수는 반드시 h'0001로만 사용할 수 있습니다.
 - (3) 변수 길이

변수를 의미하는 이름의 자 수를 나타내는 것으로 최대 16자까지 허용되며 범위는 h'0001에서 h'0010까지 입니다.

(4) 변수

실제로 읽어올 변수의 어드레스를 말하며 16자 내의 아스키 값이어야 하고 변수 이름에는 숫자,대소문자, '%' 및 ''이외에는 허용되지 않습니다. 변수의 연속 읽기에 가능한 변수 종류는 PLC 타입에 따라 가능한 종류를 아래 표에 표시하였습니 다.

3) 응답 포맷(PLC ACK 응답 시)

■ 연속 변수 읽기 응답 (PLC → MMI)

항 목	크기(byte)	내용
명령어	2	0x0055 : Read Response
데이터 타입	2	0x0014 : 블록 타입
예약 영역	2	0x0000 : Don't Care
에러 상태	2	0 이면 정상, 0 이 아니면 에러
에러 정보	2	Error State 가 에러인 경우 하위 Byte 가 에러 번호
변수 개수		0x0001 : Error State 가 정상인 경우
데이터 크기	2	Data 의 Byte Size.
데이터	데이터 크기	읽고자 하는 Data, 최대 1400byte

포맷 이름	헤더	명령어	데이터 타입	후 평 평	에러 상태	블록수	데이터 개수	데이터
코드(예)		h'0055	h'0014	h'0000	h'0000	h'0001	h'0006	h'0123456 789AB

▷ 데이터 개수는 헥사형의 바이트 개수를 의미합니다.

4) 응답 포맷 (PLC NAK 응답 시)

포맷	헤더	명령어	데이터 타입	예약영역	에러상태	에러코드
이름	에니	0.0.01	네이디 디ㅂ	MI J O J	에다 중대	(Hex 1Byte)
코드(예)		h'0055	h'0014	h'0000	h'FFFF	h'21

알아두기

1) 에러코드는 HEX 로 1 바이트의 내용으로 에러의 종류를 표시합니다. 자세한 내용은 '에러코드 표' 참조하십시오.

2.3 변수 개별 쓰기

1) 개 요

PLC 디바이스 메모리를 직접 지정하여 메모리 데이터 타입에 맞게 쓰는 기능입니다. 한번에 16개의 독립된 디바이스 메모리에 데이터를 쓸 수 있습니다.

2) 요구 포맷(PC -> PLC)

■ 개별 변수 쓰기 요구 (MMI → PLC)

	<u>`</u>	,
항 목	크기(byte)	내용
명령어	2	0x0058 : Write Request
데이터 타입	2	Data Type 표 참조
예약 영역	2	0x0000 : Don't Care.
변수 개수	2	쓰고자 하는 Variable 의 개수. 최대 16 개.
변수명 길이	2	직접변수의 길이. 최대 16 자.
변수명	변수명 길이	직접변수만 사용가능
		(변수 개수만큼 반복/최대 16)
변수명 길이	2	직접변수의 길이. 최대 16 자.
변수명	변수명 길이	직접변수만 사용가능
데이터 크기	2	Data 의 Byte Size.
데이터	데이터 크기	쓸 Data.
		(변수 개수만큼 반복/최대 16)
데이터 크기	2	Data 의 Byte Size.
데이터	데이터 크기	쓸 Data.

포맷 이름	헤 더	명령어	데이터 타입	후 명 명	블록수	변수 길이	직접 변수		데이터 개수	데이터	
코드(예)		h'0058	h'0002	h'0000	h'0001	h'0006	%MW 100	••	h'0002	h'1234	

1 블록(최대 16 블록 까지 반복 설정 가능)

(1) 블록수

이것은 '[변수 길이][변수]'와 '[데이터 길이][데이터]'로 구성된 블록이 이 요구 포맷에 몇 개가 있는지를 지정하는 것으로 최대 16개 블록까지 설정할 수 있습니다. 따라서 [블록수]의 값은 h'01~h'10 이어야 합니다.

(2) 변수 길이(변수 이름 길이)

변수를 의미하는 이름의 글자 수를 나타내는 것으로 최대 **16**자까지 허용됩니다. 값의 범위는 h'01에서 h'10까지 입니다. (3) 변수

실제로 쓰고자 하는 변수의 어드레스를 입력합니다. 16자 내의 아스키 값이어야 하며, 변수 이름에는 숫자,대소문자 , '%' 및 '.'이외에는 허용되지 않습니다.

알아두기

- 1) 각 블록의 디바이스 데이터 타입은 반드시 동일하여야 합니다. 만일 첫번째 블록의 데이터 타입은 Word 이고, 두번째 블록의 데이터 타입은 Double Word 라면 에러가 발생합니다.
- 2) 데이터 타입이 Bool 인 경우 읽은 데이터는 HEX 로 한 Byte 로 표시합니다. 즉 BIT 값이 0 이면 h'00 으로, 1 이면 h'01 로 표시됩니다.
 - 3) 응답 포맷(PLC 가 ACK 응답 시)

포맷	케디	CH ZH OI	데이터	예약	에러	블록 수
이름	헤더	명령어	타입	영역	상태	블록 수
코드(예)		h'0059	h'0002	h'0000	h'0000	h'0001

(1) 블록수

정상적으로 쓰여진 블록 수를 나타냅니다.

4) 응답 포맷(NAK 응답 시)

포맷 이름	헤더	명령어	데이터 타입	예약 영역	에러상태	에러 코드 (Hex 1 Byte)
코드(예)		h'0059	h'0002	h'0000	h'FFFF (0 이아닌값)	h'21

알아두기

1) 에러 코드는 헥사로 1 바이트의 내용으로 에러 종류를 표시합니다. 자세한 내용은 '에러코드'를 참조하십시오.

2.4 변수 연속 쓰기

1) 개 요

PLC 디바이스 메모리를 직접 지정하여 메모리에 데이터를 쓰는 기능입니다. 지정된 번지부터 지정된 양 만큼의 데이터를 연속으로 쓰는 기능 입니다. 단, 바이트 형태의 변수만 사용 가능 합니다.

나) 요구포맷

■ 연속변수 쓰기 요구 (MMI → PLC)

	,	,
항 목	크기(byte)	내용
명령어	2	0x0058 : Write Request
데이터 타입	2	0x0014 : 블록 타입
예약 영역	2	0x0000 : Don't Care.
변수 개수	2	쓰고자 하는 Variable 의 개수. 0x0001
변수명 길이	2	Variable 명의 길이. 최대 16 자.
변수명	변수명 길이	Variable 명. 바이트 타입 직접변수만 사용가능.
		(즉, %MB / %PB / %DB/ 형태 가능:
		지원 디바이스:P,N,L,K,T,C,D,N)
		블록의 선두 번지를 나타냄. (예. %MB0, %PB0)
데이터	데이터 크기	쓰고자 하는 Data, 최대 1400byte

포맷 이름	헤더	명령어	데이터 타입	후 명 명	블록수	변수 길이	변수	데이터 개수	데이터
코드(예)		h'0058	h'0014	h'0000	h'0001	h'0006	%MB10 0	h'0002	h'1234

(1) 데이터 개수

데이터의 바이트 개수를 의미합니다(최대 1,400 바이트).

(2) 블록수

이 값은 h'0001로만 사용할 수 있습니다.

(3) 변수 길이

변수를 의미하는 이름의 자 수를 나타내는 것으로 최대 16자까지 허용되고, 범위는 h'01에서 h'10까지 입니다.

(4) 변수

실제로 쓸 변수의 어드레스를 말하며 16자 내의 아스키 값이어야 하고 변수 이름에는 숫자, 대소문자, '%' 및 '.'이외에는 허용되지 않습니다. PLC 타입에 따라 변수 연속 쓰기가 가능한 종류는 [표 10.3.2] 변수에 따른 데이터 개수를 참조하기 바랍니다.

알아두기

1) XGT 시리즈 각 디바이스의 영역 지정 방법은 해당 기술자료를 참조하여 주십시오.

3) 응답 포맷(PLC ACK 응답 시)

■ 연속 변수 읽기 응답 (PLC →MMI)

항 목	크기(byte)	내용
명령어	2	0x0059 : Write Response
데이터 타입	2	0x0014 : 블록 타입
예약 영역	2	0x0000 : Don't Care
에러 상태	2	0 이면 정상, 0 이 아니면 에러
에러 정보	2	Error State 가 에러인 경우 하위 Byte 가 에러 번호
변수 개수		0x0001 : Error State 가 정상인 경우

포맷이름	헤더	명령어	데이터 타입	예약영역	에러상태	블록수
코드(예)		h'0059	h'0014	h'0000	h'0000	h'0001

(1) 데이터 타입

가능한 데이터 타입은 바이트 타입(%MB,%IB,%QB)입니다.

(2) 데이터 개수

바이트(헥사) 개수를 의미합니다.

4) 응답 포맷 (PLC NAK 응답 시)

포맷	헤더	명령어	데이터	예약영역	에러상태	에러코드
이름	되니	995	타입	에 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	গাতাওটা	(Hex 1 Byte)
코드(예)		h'0059	h'0014	h'0000	h'FFFF	h'21

(1) 에러 코드

핵사로 **1**바이트의 내용으로 에러 종류를 표시합니다. 자세한 내용은 '에러코드 표'를 참조하십시오.

2.5 STATUS 읽기 요구 (MMI -> PLC)

1) 개 요

PLC 내의 정보 및 상태 등을 통신을 이용해서 사용할 수 있게 하는 서비스 입니다.

2) 컴퓨터 요구 포맷

항 목	크기(byte)	내 용
명령어	2	0x00B0 : Status Request
데이터 타입	2	0x0000 : Don't Care
예약 영역	2	0x0000 : Don't Care

3) 응답 포맷(PLC 에서 ACK 응답)

항 목	크기(byte)	내 용
명령어	2	0x00B1 : Status Response
데이터 타입	2	0x0000 : Don't Care
예약 영역	2	0x0000 : Don't Care
에러 상태	2	0 이면 정상, 0 이 아니면 에러코드
데이터 크기	2	0x0018
데이터	24	Status Data

4) XGT Status Data 구조

항 목	크기 (byte)	Byte 위치	내 용	
Slot Info	4	0	슬롯 정보 Bit00~Bit03: 로컬이 다른 국으로 리모트 접속한 슬롯 정보 Bit04~Bit07: 로컬이 다른 국으로 리모트 접속한 베이스 정보 Bit08~Bit11: 다른 국에서 리모트 접속한 슬롯 정보 Bit12~Bit15: 다른 국에서 리모트 접속한 베이스 정보 Bit16~Bit19: 본 모듈이 장착된 슬롯 정보 Bit20~Bit23: 본 모듈이 장착된 베이스 정보 Bit24~Bit31: Reserved	
_CPU_TYPE	2	4	시스템의 형태 플래그	
_VER_NUM	2	6	OS 버전 번호 플래그	
_SYS_STATE	4	8	PLC 모드와 운전상태 플래그	
_PADT_CNF	2	12	XG5000 연결 상태 플래그	
_CNF_ER	4	14	시스템의 에러(중고장) 플래그	
_CNF_WAR	4	18	시스템의 경고 플래그	
Reserved	2	22	예약영역	

^{*} 각 항목에 대한 상세 설명은 *플래그 설명 참조.

5) 플래그 설명

■ _CPU_TYPE

15Bit : XGK(1)/XGI(0), 15Bit : 단독,이중화 마스터(0)/이중화 슬레이브(1)

단독 : 0x8000~0xffff 0xA001 : XGK-CPUH 0xA002 : XGK-CPUS

_VER_NUM

0xXXYY: xx.yy

_SYS_STATE

시스템의 운전모드와 운전상태 정보를 표시합니다.(DWORD, F00~F01)

변수	타입	디바이스	기능	설명
_RUN	Bit	F00000	RUN	CPU 모듈의 운전 상태가 RUN 중
_STOP	Bit	F00001	STOP	CPU 모듈의 운전 상태가 STOP 중
_ERROR	Bit	F00002	ERROR	CPU 모듈의 운전 상태가 ERROR 중
_DEBUG	Bit	F00003	DEBUG	CPU 모듈의 운전 상태가 DEBUG 중
_LOCAL_CON	Bit	F00004	로컬 컨트롤	모드 키에 의해서만 운전모드 변경이 가능
_MODBUS_CON	Bit	F00005	모드버스 모드 On	모드 버스 슬레이브 서비스 중
_REMOTE_CON	Bit	F00006	리모트 모드 On	리모트 모드에서 운전 중
-	Bit	F00007	-	-
_RUN_EDIT_ST	Bit	F00008	런중 수정 중 (프로그램 다운로드중)	런중 수정 시 수정된 프로그램 대기 중
_RUN_EDIT_CHK	Bit	F00009	런중 수정 중 (내부 처리 중)	런중 수정 내부 처리중
_RUN_EDIT_DONE	Bit	F0000A	런중 수정 완료	런중 수정이 정상적으로 끝남
_RUN_EDIT_END	Bit	F0000B	런중 수정 끝일 때 아는 내부 플래그	런중 수정이 정상적으로 수행되었음
_CMOD_KEY	Bit	F0000C	운전 모드 변경 요인	키에 의한 운전모드 변경
_CMOD_LPADT	Bit	F0000D	운전 모드 변경 요인	로컬 PADT에 의한 운전모드 변경
_CMOD_RPADT	Bit	F0000E	운전 모드 변경 요인	리모트 PADT에 의한 운전모드 변경
_CMOD_RLINK	Bit	F0000F	운전 모드 변경 요인	리모트 통신 모듈에 의한 운전 모드 변경
_FORCE_IN	Bit	F00010	강제 입력	입력접점에 대한 강제 On/Off 실행 중
_FORCE_OUT	Bit	F00011	강제 출력	출력접점에 대한 강제 On/Off 실행 중

변수	타입	디바이스	기능	설명
_SKIP_ON	Bit	F00012	입출력 Skip 실행 중	고장체크 및 데이터 리프레시를 중지하도록 지정된 입출력모듈이 있음
_EMASK_ON	Bit	F00013	고장 마스크 실행 중	고장이 발생하여도 운전을 속행하도록 지정된 입출력 모듈이 있음
_MON_ON	Bit	F00014	모니터 실행 중	프로그램 및 변수에 대한 외부 모니터 실행 중
_USTOP_ON	Bit	F00015	Stop 평션에 의한 Stop	RUN 모드 운전 중 STOP 평션에 의해 스캔 종료 후 정지
_ESTOP_ON	Bit	F00016	ESTOP 평션에 의한 Stop	RUN 모드 운전 중 ESTOP 평션에 의해 즉시 정지
_CONPILE_MODE	Bit	F00017	컴파일중	컴파일 수행 중
_INIT_RUN	Bit	F00018	초기화중	초기화 태스크가 수행 중
-	Bit	F00019	-	-
-	Bit	F0001A	-	-
-	Bit	F0001B	-	-
_PB1	Bit	F0001C	프로그램 코드 1	1 번 프로그램 코드 수행 중
_PB2	Bit	F0001D	프로그램 코드 2	2 번 프로그램 코드 수행 중
_CB1	Bit	F0001E	컴파일 코드 1	1 번 컴파일 코드 수행 중
_CB2	Bit	F0001F	컴파일 코드2	2 번 컴파일 코드 수행 중

_CNF_ER

운전 중지 고장 관련 에러 플래그들을 일괄 표시

변수	타입	디바이스	기능	설명
_CPU_ER	Bit	F00020	CPU 구성 에러	CPU 모듈의 자체진단 에러 발생으로 정상동작이 불가능
_IO_TYER	Bit	F00021	모듈 타입 불일치 에러	각 슬롯의 I/O 구성 파라미터와 실제 장착 모듈의 구성이 서로 다른 경우
_IO_DEER	Bit	F00022	모듈 착탈 에러	운전 중 각 슬롯의 모듈 구성이 달라질 경우 이를 검출하여 표시
_FUSE_ER	Bit	F00023	퓨즈 단선 에러	각 슬롯의 모듈 중 Fuse 가 부착된 모듈의 Fuse 가 단선된 경우 이를 검출하여 표시
_IO_RWER	Bit	F00024	입출력 모듈 읽기/ 쓰기 에러(고장)	각 슬롯의 모듈 중 입출력 모듈을 정상적으로 읽기/쓰기를 할 수 없는 경우의 에러 발생시 표시
_IP_IFER	Bit	F00025	특수/통신 모듈 인터페이스 에러(고장)	각 슬롯의 모듈 중 특수 또는 통신 모듈의 오동작으로 인하여 정상적인 인터페이스가 불가능한 경우의 에러 발생시 표시
_ANNUM_ER	Bit	F00026	외부기기의 중고장 검출 에러	사용자 프로그램에 의해 외부기기의 중고장을 검출하여 ANC_ERR[n]에 기록한 경우 고장검출의 발생을 표시

변수	타입	디바이스	기능	설명
-	Bit	F00027	-	-
_BPRM_ER	Bit	F00028	기본 파라미터 이상	기본 파라미터의 이상 유무를 체크 하여 이상을 표시
_IOPRM_ER	Bit	F00029	IO 구성 파라미터 이상	I/O 구성 파라미터의 이상 유무를 체크 하여 이상을 표시
_SPPRM_ER	Bit	F0002A	특수 모듈 파라미터 이상	특수 모듈 파라미터의 이상 유무를 체크하여 이상을 표시
_CPPRM_ER	Bit	F0002B	통신 모듈 파라미터 이상	통신 모듈 파라미터의 이상 유무를 체크하여 이상을 표시
_PGM_ER	Bit	F0002C	프로그램 에러	사용자 프로그램의 이상 유무를 체크 하여 이상을 표시
_CODE_ER	Bit	F0002D	프로그램 코드 에러	사용자 프로그램 수행 중 해독할 수 없는 명령을 만났을 때 발생
_SWDT_ER	Bit	F0002E	시스템 워치독 에러	시스템 감시 시간(System watchdog)을 초과했을 때 발생
_BASE_POWER_ ER	Bit	F0002F	전원 에러	베이스 전원에 이상이 있을 때 발생하는 에러
_WDT_ER	Bit	F00030	스캔 워치독	프로그램의 스캔 타임이 파라미터에 의해 지정한 스캔 지연 감시시간(Scan Watchdog Time)을 초과했을 때 발생하는 에러
-		F00031 F0003F	-	-

_CNF_WAR

운전 속행과 관련한 경고 플래그들을 일괄 표시(DWORD, F004~F005)

변수	타입	디바이스	기능	설명	
_RTC_ER	Bit	F00040	RTC 데이터 이상	RTC의 데이터 이상 시 이를 표시	
		Bit F00041	데이터 백업 이상	백업 이상으로 데이터 메모리가 훼손되어,	
	Bit			정상적인 (핫 또는) 웜 리스타트 프로그램	
_DBCK_ER				수정이 불가능하여 콜드 리스타트를 수행한	
				경우, 이를 알리는 플래그로 초기화	
				프로그램에서 사용 가능하며 초기화	
				프로그램의 완료 시 자동으로 리셋	
_HBCK_ER	Bit	F00042	핫 리스타트 불가 에러		
	_ABSD_ER Bit	F00043	비정상 운전 정지	프로그램 수행 중 전원 차단 등의 이유로	
_ABSD_ER				프로그램이 중도에 정지한 후, 전원 재투입	
				시 스캔 단위로 동기된 데이터를 보존한	
				연속운전이 되지 못하였음을 경고하는	
				플래그로 초기화 프로그램에서 사용가능	
				하며 초기화 프로그램의 완료 시 자동으로	

		리셋

변수	타입	디바이스	기능	설명
				사용자 프로그램 수행 시 동일한 태스크가
_TASK_ER	Bit	F00044	태스크 충돌	중복으로 실행이 요청되는 경우에 태스크의
				충돌을 표시하는 플래그
				사용자 프로그램 및 데이터 메모리의
_BAT_ER	Bit	F00045	배터리 이상	백업을 위한 배터리 전압이 규정 이하 일
				때 이를 검출하여 표시
		F00046	외부 기기의 경고장	사용자 프로그램에 의해 외부기기의
_ANNUM_ER	Bit			경고장을 검출하여 ANC_WB[n]에 기록한
			검출	경우, 고장 검출의 발생을 표시
_LOG_FULL	Bit	F00047	로그 메모리 풀 경고	PLC의 로그 메모리가 Full이 되었음을
	וטונ	1 00047	<u> </u>	표시
_HS_WAR1	Bit	F00048	HS 라미터 1 이상	
_HS_WAR2	Bit	F00049	HS 라미터 2 이상	
_HS_WAR3	Bit	F0004A	HS 라미터 3 이상	
_HS_WAR4	Bit	F0004B	HS 파라미터 4 이상	
_HS_WAR5	Bit	F0004C	HS 파라미터 5 이상	고속링크 인에이블(Enable) 시 각 고속링크
HS_WAR6	Bit	F0004D	HS 파라미터 6 이상	파라미터의 이상을 체크 하여 고속링크
HS_WAR7	Bit	F0004E	HS 파라미터 7 이상	수행이 불가능할 때 이를 알리는 대표
HS_WAR8	Bit	F0004F	HS 파라미터 8 이상	플래그로서 고속링크 디스에이블 시 리셋
_HS_WAR9	Bit	F00050	HS 파라미터 9 이상	
_HS_WAR10	Bit	F00051	HS 파라미터 10 이상	
_HS_WAR11	Bit	F00052	HS 파라미터 11 이상	
_HS_WAR12	Bit	F00053	HS 파라미터 12 이상	
_P2P_WAR1	Bit	F00054	P2P 파라미터 1 이상	
_P2P_WAR2	Bit	F00055	P2P 파라미터 2 이상	
_P2P_WAR3	Bit	F00056	P2P 파라미터 3 이상	P2P 인에이블(Ena_le) 시 각 P2P
_P2P_WAR4	Bit	F00057	P2P 파라미터 4 이상	파라미터의 이상을 체크 하여 P2P 수행이
_P2P_WAR5	Bit	F00058	P2P 파라미터 5 이상	불가능할 때 이를 알리는 대표 플래그로서
_P2P_WAR6	Bit	F00059	P2P 파라미터 6 이상	P2P 디스에이블시 리셋
_P2P_WAR7	-	F0005A	P2P 파라미터 7 이상	
_P2P_WAR8	-	F0005B	P2P 파라미터 8 이상	
_Constant_ER		F0005C	고정주기 오류	스캔타임이 설정된 '고정주기' 보다 큰 경우
		. 00000	70171 TH	'ON' 됩니다
_		F0005D	_	
		~F0005F		

3. 모드버스/TCP 전용서버

다른 기기 또는 상위 PC(MMI) 모드버스 마스터로 동작하는 경우 사용합니다.

3.1 드라이버 설정

모드버스 TCP 드라이버가 지원하는 모드버스 평션과 응답 데이터의 최대 개수는 다음 표와

같습니다. 상대 마스터 기기는 다음 표의 범위 안에서만 요청을 해야 합니다. 예를 들어, 비트 읽기 요청은 최대 2000 비트까지이며, 비트 쓰기 요청은 최대 1600 비트까지 가능합니다.

코드	내용	어드레스	응답크기
01	Read Coil Status	0XXXX	2000 Coils
02	Read Input Status	1XXXX	2000 Coils
03	Read Holding Registers	4XXXX	125 Registers
04	Read Input Registers	3XXXX	125 Registers
05	Force Single Coil	0XXXX	1 Coil
06	Preset Single Register	4XXXX	1 Register
15	Force Multiple Coils	0XXXX	1600 Coils
16	Preset Multiple Registers	4XXXX	100 Registers

위 Function Code 별 요청에 대해 XG-T PLC 메모리에 대한 매핑(Mapping)을 해줘야 합니다. 각 설정 항목의 의미는 다음과 같습니다.

항목	의미	비고
DI 영역 주소	디지털 입력 영역에 해당하는 XGT 의 주소	Bit 주소
DO 영역 주소	디지털 출력 영역에 해당하는 XGT 의 주소	Bit 주소
AI 영역 주소	아날로그 입력 영역에 해당하는 XGT의 주소	Word 주소
AO 영역 주소	아날로그 출력 영역에 해당하는 XGT 의 주소	Word 주소

각 항목에 설정한 주소 값은 해당 영역의 베이스 주소입니다.

위 화면은 DI 영역을 MX1000 부터 할당하고, AO 영역을 PW200 부터 할당한 경우입니다.

베이스 어드레스 입력 값은 유효한 %M,P 등의 영역 내에 있어야 합니다. 모드버스의 주소는 1~9999 (십진수) 이므로 비트 입, 출력 영역의 크기는 9999/8 = 124875 바이트가 됩니다. 또, 워드 입, 출력 영역의 크기는 9999*2 = 19998 바이트 입니다. 만약, 사용자가 비트 출력(0XXXX) 영역의 베이스 어드레스로 0을 설정했다면, 모드버스비트영역 00001은 0번째 바이트,0번 비트에 대응되고,00002은 0번째 바이트,1번 비트에 대응하게 됩니다.