Experiment 5 Arithmetic Processor

1. Sequence assignment

Op ₂ Op ₁	Arithmetic Function
0 0	
0 1	
1 0	
1 1	

Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	\mathbf{c}_0
00			
01			
10			
11			

Experiment 5 Arithmetic Processor

1. Sequence assignment

Op ₂ Op ₁	Arithmetic Function
0 0	2B + 1
0 1	A - B
1 0	A + B
1 1	A - 1

Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	c_0
00	b _i	b _i	1
01	a _i	b _i ,	1
10	a _i	a _i b _i	
11	a _i	1	0

Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	\mathbf{c}_0
00	b _i	1	
01	a _i	b _i	1
10	a _i	b _i	0
11	a _i	1	0

Label the data inputs of the two 4-to-1 multiplexers given below for the realization of x_i, y_i.

Express the initial carry c_0 as a function of Op_2 and Op_1 .

$$c_0 =$$

Processor Design <u>Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)</u>

Op ₂ Op ₁	x _i y _i		c_0
00	b _i	b _i	1
01	a _i	b _i	1
10	a _i	b _i	0
11	a _i	1	0

Label the data inputs of the two 4-to-1 multiplexers given below for the realization of x_i , y_i .

Use the following signal names for input processor 1QD for ai, 2QD for bi, Op2, Op1, xi, yi, zi

Use the following signal names for control signals 1s1, 1s0, 2s1, 2s0, c0, C2, C1

Express the initial carry c_0 as a function of Op_2 and Op_1 .

$$c_0 = Op_2$$

Construct the truth table for the control circuit.

State	START	(s ₁) _{R1}	$(s_0)_{R1}$	$(s_1)_{R2}$	$(s_0)_{R2}$	C_2	C ₁
T _o	0						
T _o	1						
T ₁	d						
T ₂	d						
T ₃	d						
T ₄	d						
T ₅	d						

$$(s_1)_{R1} = (s_0)_{R1} = (s_1)_{R2} = (s_0)_{R2} = C_2 = C_1 =$$

Note the difference in the data inputs of the two multiplexers.

Lab 5 schematic diagram

