- Autoevaluación Trimestre 3
- 1. Representa y calcula las coordenadas de las siguientes combinaciones de \overrightarrow{u} y \overrightarrow{v} :
 - (a) $2\overrightarrow{u} 3\overrightarrow{v}$, $-2\overrightarrow{u}$, $-2\overrightarrow{u} 2\overrightarrow{v}$. Siendo \overrightarrow{u} y \overrightarrow{v} :

Sol:
$$2\overrightarrow{u} - 3\overrightarrow{v}$$
, $-2\overrightarrow{u}$, $-2\overrightarrow{u} - 2\overrightarrow{v}$

2. Calcular, usando las identidades fundamentales de la trigonometría, las razones trigonométricas de un ángulo agudo x sabiendo que:

(a)
$$\cos x = \frac{1}{2}$$

Sol:

$$\sin x = \frac{\sqrt{3}}{2}, \cos x = \frac{1}{2}, \tan x = \sqrt{3}.$$

El ángulo agudo que cumple esas razones es 60° .

(b)
$$\tan x = \frac{1}{2}$$

Sol:

$$\sin x = \frac{\sqrt{5}}{5}, \cos x = \frac{2\sqrt{5}}{5}, \tan x = \frac{1}{2}.$$

El ángulo agudo que cumple esas razones es 26,57°.

(c)
$$\cos x = \frac{1}{3}$$

(d)
$$\tan x = 3$$

 $\sin x = \frac{2\sqrt{2}}{3}, \cos x =$

 $\frac{1}{3}, \tan x = 2\sqrt{2}.$ El ángulo agudo que

cumple esas razones

es $70,53^{\circ}$.

Sol:

$$\sin x = \frac{3\sqrt{10}}{10}, \cos x = \frac{\sqrt{10}}{10}, \tan x = 3.$$

El ángulo agudo que cumple esas razones es 71,57°.

(e)
$$\sin x = \frac{4}{5}$$

Sol:

$$\sin x = \frac{4}{5}, \cos x = \frac{3}{5}, \tan x = \frac{4}{3}.$$

El ángulo agudo que

cumple esas razones es $53,13^{\circ}$.

(f)
$$\tan x = 5$$

Sol:
$$\sin x = \frac{5\sqrt{26}}{26}, \cos x = \frac{\sqrt{26}}{26}, \tan x = 5.$$
 El ángulo agudo que cumple esas razones es $78,69^{\circ}$.

- 3. Resuelve los triángulos rectángulos:
 - (a) Sabiendo que los catetos miden 8 y 15 cm.

Sol: Los lados del triángulo miden: 8, 15, 17 cm. Y los ángulos: $28,07,61,93,90^{\circ}$

(b) Sabiendo que un cateto mide 12 cm. y su ángulo opuesto 30°

Sol: Los lados del triángulo miden: 12, 20,78, 24 cm. Y los ángulos: $30, 60, 90^{\circ}$

(c) Sabiendo que un cateto mide 8 cm. y su ángulo opuesto 45°

Sol: Los lados del triángulo miden: 8, 8, 11,31 cm. Y los ángulos: 45, 45, 90 $^{\circ}$

(d) Sabiendo que la hipotenusa mide 18 cm. y un ángulo 60°

Sol: Los lados del triángulo miden: $15,59,~9,~18~{\rm cm.}~{\rm Y}$ los ángulos: 60,~30,~90 $^{\rm o}$

(e) Sabiendo que un cateto mide 18 cm. y el ángulo opuesto al otro cateto 30º

Sol: Los lados del triángulo miden: 18, 10,39, 20,78 cm. Y los ángulos: 60, 30, 90 $^{\circ}$

4. Calcular las razones trigonométricas de un ángulo α si:

(a)
$$\cos \alpha = -\frac{\sqrt{3}}{2} \wedge \alpha \in III$$

Sol:
$$\sin \alpha = \frac{1}{2}, \cos \alpha = \frac{\sqrt{3}}{2}, \tan \alpha = \frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 210°

(b)
$$\sin \alpha = \frac{\sqrt{3}}{2} \wedge \alpha \in II$$

Sol:
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
, $\cos \alpha = \frac{1}{2}$, $\tan \alpha = -\sqrt{3}$.
El ángulo que cumple las condiciones del ejercicio es: 120°

(c)
$$\sin \alpha = \frac{1}{2} \wedge \alpha \in II$$

Sol:
$$\sin \alpha = \frac{1}{2}, \cos \alpha = \frac{\sqrt{3}}{2}, \tan \alpha = -\frac{\sqrt{3}}{3}.$$
 El ángulo que cumple las condiciones del ejercicio es: 150°

(d)
$$\cos \alpha = -\frac{1}{2} \wedge \alpha \in III$$

Sol:
$$\sin \alpha = \frac{\sqrt{3}}{2}, \cos \alpha = \frac{1}{2}, \tan \alpha = \sqrt{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 240°

(e) $\tan \alpha = 1 \land \alpha \in III$

Sol:
$$\sin \alpha = -\frac{\sqrt{2}}{2}, \cos \alpha =$$

$$\begin{split} -\frac{\sqrt{2}}{2}, &\tan\alpha = 1.\\ &\text{El ángulo que cum-}\\ &\text{ple las condiciones}\\ &\text{del ejercicio es: } 225^{\circ} \end{split}$$

(f)
$$\sin \alpha = -\frac{\sqrt{2}}{2} \wedge \alpha \in IV$$

Sol:
$$\sin \alpha = \frac{\sqrt{2}}{2}, \cos \alpha = \frac{\sqrt{2}}{2}, \tan \alpha = -1.$$

El ángulo que cumple las condiciones del ejercicio es: 315°

5. Calcular las razones trigonométricas de un ángulo α si:

(a)
$$\cos \alpha = -\frac{\sqrt{3}}{2} \wedge \tan \alpha > 0$$

Sol:

$$\sin \alpha = -\frac{1}{2}, \cos \alpha = -\frac{\sqrt{3}}{2}, \tan \alpha = \frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del cirreirio es: 210°

del ejercicio es: 210°

(b)
$$\sin \alpha = \frac{\sqrt{3}}{2} \wedge \tan \alpha < 0$$

Sol:

$$\sin \alpha = \frac{\sqrt{3}}{2}, \cos \alpha = -\frac{1}{2}, \tan \alpha = -\sqrt{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 120°

(c)
$$\sin \alpha = \frac{1}{2} \wedge \cos \alpha < 0$$

Sol:

$$\sin \alpha = \frac{1}{2}, \cos \alpha = -\frac{\sqrt{3}}{2}, \tan \alpha = -\frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del ciorcipio es: 150°

del ejercicio es: 150°

(d) $\cos \alpha = -\frac{1}{2} \wedge \tan \alpha > 0$

Sol:
$$\sin \alpha = -\frac{\sqrt{3}}{2}, \cos \alpha = -\frac{1}{2}, \tan \alpha = \sqrt{3}$$
. El ángulo que cumple las condiciones

(e)
$$\tan \alpha = 1 \wedge \cos \alpha < 0$$

del ejercicio es: 240°

Sol:
$$\sin\alpha = -\frac{\sqrt{2}}{2}, \cos\alpha = -\frac{\sqrt{2}}{2}, \tan\alpha = 1.$$
 El ángulo que cumple las condiciones del ejercicio es: 225°

(f)
$$\sin \alpha = -\frac{\sqrt{2}}{2} \wedge \tan \alpha < 0$$

Sol:
$$\sin\alpha = -\frac{\sqrt{2}}{2}, \cos\alpha = \frac{\sqrt{2}}{2}, \tan\alpha = -1.$$
 El ángulo que cumple las condiciones del ejercicio es: 315°

6. Resuelve las siguientes ecuaciones

(a)
$$\cos x = \frac{\sqrt{3}}{2}$$

Sol:
$$x = 30^{\circ}, x = 330^{\circ}$$

(b)
$$\cos x = -\frac{\sqrt{3}}{2}$$

Sol:
$$x = 150^{\circ}, x = 210^{\circ}$$

Sol:
$$x = 60^{\circ}, x = 120^{\circ}, x = 240^{\circ}, x = 300^{\circ}$$

(c)
$$4(\cos x)^2 - 1 = 0$$

(d)
$$2(\sin x)^2 - \sin x - 1 = 0$$

Sol:
$$x = -30^{\circ}, x = 90^{\circ}, x = 210^{\circ}$$

- 7. Resuelve los siguientes problemas:
 - (a) El lado de un rombo mide 30 cm y el ángulo menor es de 40°. ¿Cuánto miden las diagonales del rombo?

Sol: las diagonales miden 20,52 y 56,38 respectivamente

(b) Desde el punto donde estoy, la visual al punto más alto de una torre que tengo enfrente forma un ángulo de 30° con la horizontal. Si me acerco 100 m, el ángulo es de 60°. ¿Cuál es la altura del edificio?

Sol:
$$\begin{cases} \tan{(60)} = \frac{y}{x} \\ \tan{(30)} = \frac{y}{x+100} \end{cases} \to \{x: 50,0043301290378, \ y: 86,6125002165064\}$$

(c) Dos torres distan entre sí 200 m. Desde un punto que está entre las torres vemos que las visuales a los puntos más altos de estos forman con la horizontal ángulos de 45° y 60°. ¿Cuál es la altura de las torres si sabemos que uno es 40 m más alto que el otro?

Sol:

Si la mayor altura se corresponde con el ángulo 45°: $\begin{cases} \tan{(60)} = \frac{y}{200-x} \\ \tan{(45)} = \frac{y+40}{x} \end{cases} \to \{x: 141,436989861279, \ y: 101,436989861279\} \to 101,436989861279$ Si la mayor altura se corresponde con el ángulo 60°:

 $\begin{cases} \tan{(60)} = \frac{y+40}{200-x} \\ \tan{(45)} = \frac{y}{x} \end{cases} \rightarrow \{x: 112, 155484791918, \ y: 112, 155484791918\} \rightarrow 112, 155484791918$

(d) Halla el área de un paralelogramo cuyos lados miden 40 cm y 45 cm y forman un ángulo de 60°.

Sol: La altura mide mide 34,64 cm y por tanto el área es 1559,0 cm²