Continuous	O.	ptimization:	\mathbf{A}	ssigni	nent	9

Due on June 25, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 2

The minimization problem is given by

$$\min_{x \in \mathbb{R}^n} ||x||^2 \quad \text{s.t.} \quad Ax = b$$

It is equivalent to

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x||^2 \quad \text{s.t.} \quad Ax = b$$

Let $f(x) = \frac{1}{2}||x||^2$ and $c_i(x) = a_i^{\top}x$ where a_i is the *i*-th row of A.

The constraint Ax = b can be rewritten as m smaller constraints: $c_i(x) = b_i$ for i = 1, ..., m.

Using the Lagrange multiplier method, we compose such equation:

$$\nabla f(x) = \sum_{i=1}^{m} \lambda_i \nabla c_i(x)$$
$$x = \sum_{i=1}^{m} \lambda_i a_i$$
$$x = A^{\top} \lambda$$

where λ_i is the Lagrange multiplier for the *i*-th constraint and λ is a column vector consists of all multipliers. We also have the constraint level sets:

$$Ax = b$$

$$AA^{\top}\lambda = b$$

$$\lambda = (AA^{\top})^{-1}b$$

$$\Rightarrow x = A^{\top}(AA^{\top})^{-1}b$$