Grafica A.A.2015/16

Sistema di Coordinate 3D

Sia xyzO un sistema di riferimento Cartesiano, allora si distingue tra destrorso e sinistrorso in base alla regola della mano destra.

Definizione Oggetto Mesh 3D

Su un sistema di coordinate 3D destrorso xyzO, definiamo un oggetto mesh dando la lista dei suoi Vertici (punti 3D), e da che vertici sono definite le Facce piane.

```
Coordinate (X,Y,Z) dei Vertici
1> 1.000000 -1.000000 1.000000
2> -1.000000 -1.000000 1.000000
3> -1.000000 1.000000 1.000000
4> 1.000000 1.000000 1.000000
5> 1.000000 -1.000000 -1.000000
6> -1.000000 1.000000 -1.000000
7> -1.000000 1.000000 -1.000000
8> 1.000000 1.000000 -1.000000
Indici dei Vertici di ogni Faccia
1> 4 3 2 1
```

x z

Cubo: 8 Vertici e 6 Facce

Geometria e Topologia

- definizione geometrica (dove sono posizionati nello spazio 3D i vertici)
- definizione topologica (come sono connessi i vertici da lati e facce)

G. Casciola

2> 8 7 3 4 3> 7 8 5 6

4> 5 1 2 6

5> 8 4 1 5

Scalari, Punti e Vettori

Scalare: $\alpha \in \mathbb{R}$ specifica una grandezza

Punto: $p=[x,y,z] \in \mathbb{R}^3$ specifica una posizione nello spazio

Vettore: $\underline{v} = [x, y, z] \in \mathbb{R}^3$ specifica modulo, direzione e verso

Attenzione: adottiamo la convenzione di usare vettori riga; quando faremo prodotti tra vettori e matrici, per questa convenzione, avremo "vettore riga" per "matrice".

Lo Spazio Vettoriale Rⁿ

Sia \mathbb{R}^n l'insieme dei vettori \underline{v} . \mathbb{R}^n è uno spazio lineare quando:

A) esiste un'operazione binaria interna "+" detta addizione e

A1.
$$(\underline{u}+\underline{v})+\underline{w}=\underline{u}+(\underline{v}+\underline{w})$$
 per ogni $\underline{u},\underline{v},\underline{w}\in R^n$

- A2. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ per ogni $\underline{u}, \underline{v} \in \mathbb{R}^n$
- A3. Esiste $\underline{0} = [0,0,0]$ tale che $\underline{u} + \underline{0} = \underline{u}$ per ogni $\underline{u} \in \mathbb{R}^n$
- A4. Per ogni $\underline{u} \in \mathbb{R}^n$ esiste un unico $\underline{v} \in \mathbb{R}^n$ tale che $\underline{u} + \underline{v} = \underline{0}$ (indicheremo \underline{v} come $-\underline{u}$)
- B)esiste un'operazione binaria esterna " \bullet " detta moltiplicazione per uno scalare $\alpha \in R$ e

B1.
$$\alpha \cdot (\underline{u} + \underline{v}) = \alpha \cdot \underline{u} + \alpha \cdot \underline{v}$$

B2.
$$(\alpha + \beta) \cdot \underline{u} = \alpha \cdot \underline{u} + \beta \cdot \underline{u}$$

B3.
$$(\alpha\beta) \cdot \underline{u} = \alpha \cdot (\beta \cdot (\underline{u}))$$

B4.
$$1 \cdot \underline{u} = \underline{u}$$
 cioè 1 è l'unità moltiplicativa

Lo Spazio Vettoriale Rⁿ

Per ogni spazio lineare a dimensione finita n (R^3 ha dimensione 3) è possibile determinare n vettori linearmente indipendenti $\underline{v}_1, \underline{v}_2, \dots \underline{v}_n$ (una base) così che ogni vettore di R^n può essere scritto come una combinazione lineare

$$\underline{u} = a_1 \underline{v1} + a_2 \underline{v2} + \dots + a_n \underline{vn}$$

per opportuni coefficienti reali $a_1, a_2, ..., a_n$

 $[a_1, a_2, ..., a_n]$ sono le "coordiante" di \underline{u} nella base $\underline{v1}, \underline{v2}, ..., \underline{vn}$.

Prodotto scalare

Dati due vettori $\underline{u} = [u_1, u_2, ..., u_n]$ e $\underline{v} = [v_1, v_2, ..., v_n]$ di R^n , si definisce l'operazione "prodotto scalare", e la si indica con "•", come:

$$\underline{u} \cdot \underline{v} = \sum_{i=1}^{n} u_i v_i$$

Altri modi di indicarla sono

$$\underline{u} \bullet \underline{v} = \langle \underline{u}, \underline{v} \rangle = \underline{u} \underline{v}^T$$

Norma Euclidea

Si può definire per ogni \underline{u} in \mathbb{R}^n una funzione detta "norma" (norma Euclidea e che indicheremo con la notazione $\| \bullet \|_2$) in questo modo

$$||\underline{v}||_2 = \sqrt{\underline{v} \cdot \underline{v}} = \sqrt{\langle \underline{v}, \underline{v} \rangle} = \sqrt{\underline{v} \underline{v}^T} = \sqrt{\sum_{i=1}^n v_i^2}$$

Norma Euclidea

La lunghezza o modulo di un vettore di R^3 è

$$//\underline{v}//_2 = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Un vettore di modulo 1 è detto "vettore unitario"

Si può sempre normalizzare un vettore per renderlo un vettore unitario, dividendolo per la sua norma

$$\underline{v} / / / \underline{v} / /_2$$

Prodotto scalare

In \mathbb{R}^n è noto che il prodotto scalare fra due vettori permette di determinare l'angolo che essi formano:

$$<\underline{u},\underline{v}> = /|\underline{u}|/|/|\underline{v}|/|\cos(\theta)$$

$$\cos(\theta) = \langle \underline{u}, \underline{v} \rangle / (/|\underline{u}|/|/|\underline{v}|/|)$$

$$\theta = arcos(\langle \underline{u}, \underline{v} \rangle / (||\underline{u}|/|||\underline{v}|/|))$$

Nota: se il prodotto scalare fra due vettori è nullo $(\langle \underline{u}, \underline{v} \rangle = 0)$ i due vettori sono ortogonali ossia formano un angolo di 90 gradi

Prodotto vettoriale

Dati due vettori di R^3 $\underline{u} = [u_x, u_y, u_z]$ e $\underline{v} = [v_x, v_y, v_z]$, si definisce l'operazione "prodotto vettoriale", e la si indica con "X", come:

$$\underline{u} \times \underline{v} = \begin{bmatrix} u_y v_z - u_z v_y, & u_z v_x - u_x v_z, & u_x v_y - u_y v_x \end{bmatrix}$$

$$= \begin{bmatrix} u_y & u_z \\ v_y & v_z \end{bmatrix}, \begin{vmatrix} u_z & u_x \\ v_z & v_x \end{vmatrix}, \begin{vmatrix} u_x & u_y \\ v_z & v_y \end{bmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Prodotto vettoriale

 \underline{u} x \underline{v} è un vettore perpendicolare sia ad \underline{u} che a \underline{v} nella direzione e verso definita dalla regola della mano destra

$$/|\underline{u} \times \underline{v}|/ = /|\underline{u}|/ |/\underline{v}|/ \sin(\theta)$$
 $/|\underline{u} \times \underline{v}|/ = \text{area con segno del parallelo-}$

gramma costruito su <u>u</u> e <u>v</u>

 $/|\underline{u}x\underline{v}|/=\underline{0}$ se \underline{u} e \underline{v} sono paralleli

Nota: è utile per determinare il vettore normale di un triangolo 3D o l'area di un triangolo 3D

Area
$$(\Delta P_1 P_2 P_3) = \frac{1}{2} ||(P_2 - P_1) x (P_3 - P_1)||$$

Grafica 15/16

<u>u</u>x<u>v</u>

Trasformazioni Geometriche

L'obiettivo è trasformare le coordinate dei vertici di un oggetto per ottenere un oggetto "trasformato" che differisce in posizione, orientazione e dimensione.

Modificare la geometria, ma non la topologia

Traslazione 2D

Ogni punto/vertice viene traslato del vettore $\underline{d} = [d_x, d_y]$

$$\underline{p} = \underline{p} + \underline{d}$$

$$[p_{x}, p_{y}] = [p_{x}, p_{y}] + [d_{x}, d_{y}]$$

$$\begin{cases} p_x' = p_x + d_x \\ p_y' = p_y + d_y \end{cases}$$

Scala 2D

Ogni punto/vertice viene scalato dei fattori $s_x ed s_y$

Nota: I'origine è un punto fisso $s_x = s_y$ scala uniforme $s_x \neq s_y$ scala non uniforme

$$\begin{cases} p_x' = p_x s_x \\ p_y' = p_y s_y \end{cases}$$

$$[p_x, p_y]$$

$$[p_{x}, p_{y}] = [p_{x}, p_{y}] \begin{pmatrix} s_{x} & 0 \\ 0 & s_{y} \end{pmatrix}$$

$$\underline{p} = \underline{p} S \quad \text{con } S = \begin{pmatrix} s_{x} & 0 \\ 0 & s_{y} \end{pmatrix}$$

Nota: $s_x, s_y \in [0,1]$ riduce $s_x, s_y > 1$ amplifica

Esempio: $s_x=2$, $s_y=2$

Rotazione 2D

Ogni punto/vertice viene ruotato intorno all'origine di un angolo θ in senso antiorario

Nota: l'origine è un punto fisso

$$\begin{cases} p_x' = p_x \cos(\theta) - p_y \sin(\theta) \\ p_y' = p_x \sin(\theta) + p_y \cos(\theta) \end{cases}$$

$$[p_x, p_y] = [p_x, p_y] \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$con R(\theta) = \begin{pmatrix} cos(\theta) & sin(\theta) \\ -sin(\theta) & cos(\theta) \end{pmatrix}$$

G. Casciola

Grafica 15/16

Trasformazione lineare

Una "trasformazione lineare" A di R^3 è un'applicazione che mappa $\underline{u} \in R^3$ in $\underline{u}' \in R^3$ ($\underline{u}' = A(\underline{u})$) con le proprietà:

1)
$$A(\underline{u}+\underline{v})=A(\underline{u})+A(\underline{v})$$

2)
$$A(\alpha \underline{u}) = \alpha A(\underline{u})$$
 con $\alpha \in R$

Una trasformazione lineare può essere rappresentata da una matrice A 3x3 non singolare, infatti

$$\begin{bmatrix} u_{x}^{'}, u_{y}^{'}, u_{z}^{'} \end{bmatrix} = \begin{bmatrix} u_{x}, u_{y}, u_{z} \end{bmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$$

E valgono le proprietà sopra dette.

A

Trasformazione affine

Una "trasformazione affine" è la composizione di una trasformazione lineare ed una traslazione; in forma matriciale sarà:

$$[u'_{x}, u'_{y}, u_{z}'] = [u_{x}, u_{y}, u_{z}] A + [d_{x}, d_{y}, d_{z}]$$

Od anche

$$\underline{u}' = \underline{u} A + \underline{d}$$

Spazio Affine

In uno spazio lineare non c'è il concetto di punto e quindi di posizione

Uno spazio affine è l'estensione di uno spazio lineare che contiene anche i punti

Nuove operazioni:

- 1) punto + vettore --- definisce un punto
- 2) punto punto 🗪 definisce un vettore

G. Casciola

Nuove operazioni

Definiamo:

$$1)q = p + \underline{v}$$

2)
$$\underline{u} = q - p$$
 e $\underline{v} = p - q$

Attenzione:

l'operazione punto + punto non è definita!!

Una "combinazione affine" è una combinazione lineare di punti con coefficienti che fanno somma 1

$$p = a_1 p 1 + a_2 p 2 + ... + a_n p n$$

 $con a_1 + a_2 + ... + a_n = 1$

Nota: che cosa è ap con $a \in \mathbb{R}$ e p punto?

-se $a_i \in [0,1]$ allora una combinazione affine è detta "combinazione convessa"

```
-esempio: p = (1-t) p1 + t p2
retta passante per p1 e p2 per t \in \mathbb{R};
segmento di estremi p1 e p2 per t \in [0,1]
-esempio: p = (1-\alpha-\beta) p1 + \alpha p2 + \beta p3
piano per p1, p2 e p3 per \alpha, \beta \in \mathbb{R};
triangolo per p1, p2 e p3 per \alpha, \beta \in [0,1].
```

G. Casciola

esempio: punto medio di un segmento

$$p = (p1 + p2)/2$$

Ma le addizioni fra punti non erano vietate?...

-esempio:

$$p = s p1 + t p2$$
 con $s+t=1$
= $(1-t) p1 + t p2$
= $p1 + t (p2-p1)$
= $p1 + t v$

Cioè punto + vettore che dà un punto.

Vediamo un altro esempio:

$$p = \gamma p 1 + \alpha p 2 + \beta p 3 \quad \text{con } \alpha + \beta + \gamma = 1$$

$$= (1 - \alpha - \beta) p 1 + \alpha p 2 + \beta p 3$$

$$= p 1 + \alpha (p 2 - p 1) + \beta (p 3 - p 1)$$

$$= p 1 + \alpha u + \beta v$$

Cioè punto + (vettore + vettore) che dà un punto + vettore e quindi un punto

In generale:

$$p = a_1 p 1 + a_2 p 2 + \dots + a_n p n \quad \text{con} \quad a_1 + a_2 + \dots + a_n = 1$$

$$= (1 - a_2 - \dots - a_n) p 1 + a_2 p 2 + \dots + a_n p n$$

$$= p 1 + a_2 (p 2 - p 1) + \dots + \beta a_n (p n - p 1)$$

$$= p 1 + a_2 u 2 + \dots + a_n u n$$

Cioè punto + (vettore + ... + vettore) che dà un punto + vettore e quindi un punto

Frame (Sistema di Riferimento)

In uno spazio affine definiamo un "sistema di riferimento" mediante una quadrupla data da

dove

- ➤ O è un punto (origine)

Un punto *p* dello spazio affine viene allora rappresentato univocamente come

$$p = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + O$$

Le coordinate di p sono $[a_1, a_2, a_3, 1]$

Frame (Sistema di Riferimento)

Rappresentare sia vettori che punti usando tre valori scalari risulta ambiguo.

Considereremo un sistema di coordinate che permetta una rappresentazione univoca per punti e vettori

Un vettore è rappresentato come $\underline{u} = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3}$

Un punto è rappresentato come $p = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + O$

Coordiante Omogenee

Se assumiamo

$$1 p = p$$

e

$$0 p = 0$$

Un vettore è dato da

$$\underline{u} = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + 0 O$$

Un punto è dato da

$$p = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + 1 O$$

Coordinate Omogenee

Aggiungendo una dimensione, ciascun elemento dello spazio affine ha un valore extra θ o 1

Ogni punto/vettore viene definito da 4 coordinate:

$$p = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + O$$

le coordinate di p sono $[a_1, a_2, a_3, 1]$

Nel contempo un vettore dello spazio affine viene rappresentato univocamente come

$$\underline{u} = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3}$$

le coordinate di \underline{v} sono $[a_1, a_2, a_3, 0]$

Coordinate Omogenee

Dato un sistema di riferimento (v1,v2,v3,0), ogni punto e vettore è localizzato moltiplicando le sue coordinate per la matrice 4x4 che definisce il frame

$$\underline{u} = a_1 \underline{v1} + a_2 \underline{v2} + a_3 \underline{v3} + 0 \ O = [a_1, a_2, a_3, 0] \begin{pmatrix} v_{1x} & v_{1y} & v_{1z} & 0 \\ v_{2x} & v_{2y} & v_{2z} & 0 \\ v_{3x} & v_{3y} & v_{3z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$p = a_{1}\underline{v1} + a_{2}\underline{v2} + a_{3}\underline{v3} + 10 = [a_{1}, a_{2}, a_{3}, 1] \begin{pmatrix} v_{1x} & v_{1y} & v_{1z} & 0 \\ v_{2x} & v_{2y} & v_{2z} & 0 \\ v_{3x} & v_{3y} & v_{3z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Trasformazioni Affini in Spazi Affini (Coordinate Omogenee)

$$p'=pA+d \qquad \text{diventa} \qquad p'=pM$$

$$[p'_{x},p'_{y},p'_{z},l]=[p_{x},p_{y},p_{z},l] \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{32} & 0 \\ \hline d_{x} & d_{y} & d_{z} & 1 \end{bmatrix}$$

$$p'_{x}=a_{11}p_{x}+a_{21}p_{y}+a_{31}p_{z}+d_{x}$$

$$p'_{y}=a_{12}p_{x}+a_{22}p_{y}+a_{32}p_{z}+d_{y}$$

$$p'_{z}=a_{13}p_{x}+a_{23}p_{y}+a_{33}p_{z}+d_{z}$$

G. Casciola

Trasformazioni Affini 3D (Coordinate Omogenee)

Scala

$$[p'_{x},p'_{y},p'_{z},1] = [p_{x},p_{y},p_{z},1]$$

$$\begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Traslazione

$$[p'_{x},p'_{y},p'_{z},1]=[p_{x},p_{y},p_{z},1]$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ d_x & d_y & d_z & 1 \end{pmatrix}$$

Rotazione intorno all'asse z

$$[p'_{x},p'_{y},p'_{z},1]=[p_{x},p_{y},p_{z},1]$$

$$\begin{array}{ccccc}
\cos(\theta) & \sin(\theta) & 0 & 0 \\
-\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}$$

$$\begin{array}{cccccc}
R_z(\theta) & & & & & \\
\end{array}$$

G. Casciola

Grafica 15/16

Trasformazioni Affini 3D (Coordinate Omogenee)

Rotazione intorno all'asse y

$$[p'_{x},p'_{y},p'_{z},1]=[p_{x},p_{y},p_{z},1]$$

Rotazione intorno all'asse x

$$[p'_{x},p'_{y},p'_{z},1]=[p_{x},p_{y},p_{z},1]$$

$$\begin{pmatrix}
\cos(\theta) & 0 & -\sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
\sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$R_y(\theta)$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) & 0 \\ 0 & -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{x}(\theta)$$

Perché Trasformazione Affine?

Perché una tale trasformazione, essendo lineare, gode delle proprietà viste che garantiscono che punti allineati vengono trasformati in punti allineati e punti che stanno su uno stesso piano in punti che stanno su uno stesso piano. Vediamolo per punti di un segmento:

Sia
$$p(t)=(1-t) p1 + t p2$$
 con $t \in [0,1]$ allora $p'(t)=p(t)M$ e

$$p' = p M = ((1-t)p1 + t p2) M$$

= $(1-t)p1 M + t p2 M$
= $(1-t)p1' + t p2'$

Questa semplice osservazione è alla base del fatto che per trasformare un oggetto definito da Vertici e Facce piane risulta sufficiente applicare le trasformazioni ai vertici e considerare la stessa connettività (topologia).

Trasformazioni Inverse

Se M trasforma p in p, allora M^{-1} trasforma p in p

$$M M^{-1} = M^{-1} M = I$$

$$p' = p M$$
 allora $p = p' M^{-1}$

Inversa della traslazione: $T^{-1}(\underline{d})=T(-\underline{d})$

Inversa della scala: $S^{-1}(\underline{s})=S(1/s_x, 1/s_y, 1/s_z)$

Inversa della rotazione: $R^{-1}(\theta) = R^{T}(\theta) = R(-\theta)$

Trasformazioni Composte

Più trasformazioni successive su un oggetto si chiamano composte e si ottengono mediante prodotti di matrici

$$p' = p \text{ M1 M2 ... Mn} = p \text{ M} \text{ con M= M1 M2 ... Mn}$$

Il prodotto di matrici è associativo, ma non commutativo, per cui l'ordine delle matrici è importante

Nota: se si applicano trasformazioni composte dello stesso tipo, cioè scale con scale, traslazioni con traslazioni, rotazioni con rotazioni rispetto allo stesso asse, allora il prodotto di tali matrici risulta commutativo.

Trasformazioni rispetto ad un punto

Scala di un oggetto 2D rispetto ad un punto (per esempio il suo baricentro)

Procedimento a passi:

- 1. traslazione di O' nell'origine O;
- 2. scala rispetto all'origine con matrice S;
- 3. traslazione inversa per portare l'origine O in O'.

Comporre Trasformazioni

In forma matriciale:

$$\begin{bmatrix} p_{x}, p_{y}, 1 \end{bmatrix} = \begin{bmatrix} p_{x}, p_{y}, 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ d_{x} & d_{y} & 1 \end{pmatrix} \begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -d_{x} & -d_{y} & 1 \end{pmatrix}$$

Comporre più trasformazioni in una singola matrice:

$$[p_x, p_y, 1] = [p_x, p_y, 1] \mathbf{M}$$

con
$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ d_x & d_y & 1 \end{pmatrix} \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -d_x & -d_y & 1 \end{pmatrix}$$

G.Casciola

Trasformazioni rispetto ad un punto

Rotazione di un oggetto 2D rispetto ad un punto (per esempio il suo baricentro):

Procedimento a passi:

- 1. Traslazione di O' nell'origine O;
- 2. Rotazione dell'angolo θ rispetto all'origine;
- 3. Traslazione inversa per portare l'origine O in O'.

trasla ruota trasla

Comporre Trasformazioni

In forma matriciale:

$$\begin{bmatrix} p_{x}, p_{y}, 1 \end{bmatrix} = \begin{bmatrix} p_{x}, p_{y}, 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ d_{x} & d_{y} & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -d_{x} & -d_{y} & 1 \end{pmatrix}$$

Comporre più trasformazioni in una singola matrice:

$$[p_{x}, p_{y}, 1] = [p_{x}, p_{y}, 1] M$$

con
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ d_x & d_y & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -d_x & -d_y & 1 \end{pmatrix}$$

Trasformazioni rispetto ad un punto

Scala di un oggetto 3D rispetto ad un punto (per esempio il suo baricentro), viene gestita in modo simile all'esempio 2D;

Rotazione di un oggetto 3D rispetto ad un asse arbitrario:

Esercizio: controllare la correttezza della matrice R.

Trasformazione di Simmetria

In 3D abbiamo le seguenti simmetrie elementari:

$$S_{xy} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_{yz} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_{xy} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad S_{yz} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad S_{xz} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Trasformazione Shear

Permette di modificare 2 o 3 coordinate di un punto di \mathbb{R}^3 in modo proporzionale alle altre; vediamo prima in 2D

$$[p'_{x},p'_{y},1] = [p_{x},p_{y},1] \text{ H(0,b)} \quad \text{con } \text{H}(a,b) = \begin{pmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= [p_{x} + b p_{y}, p_{y},1]$$
Viene modificata solo la coord. x ; la y rimane uguale.

In 2D avremo anche la deformazione in
$$y \grave{e}$$
: $H(a,0) = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Trasformazione Shear

In 3D abbiamo

$$H(z_1,...,z_6) = \begin{pmatrix} 1 & z_1 & z_2 & 0 \\ z_3 & 1 & z_4 & 0 \\ z_5 & z_6 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Per esempio:

$$[p'_{x}, p'_{y}, p'_{z}, 1] = [p_{x}, p_{y}, p_{z}, 1] \text{ H}(a, b, 0, 0, 0, 0) \text{ con}$$

= $[p_{x}, a p_{x} + p_{y}, b p_{x} + p_{z}, 1]$

Diremo che H e una matrice di shear pura quando solo una delle costanti è non nulla.

Per una matriche di shear pura che indichiamo con l'unico parametro non nullo vale: $H^{-1}(z_k) = H(-z_k)$ con k=1,...,6.

Cambio di Sistema di Riferimento (frame)

Problema: sia dato un frame cartesiano (e1,e2,e3,O) e un punto p in questo sistema. Sia poi dato un nuovo frame (u,v,w,O'). Si determinino le coordinate di p rispetto al nuovo frame.

Procediamo mediante trasformazioni geometriche elementari per portare il primo frame a coincidere con il secondo; la trasformazione M cercata, cioè tale che applicata a p (pM) fornisca le sue coordinate rispetto al nuovo sistema, si ottiene...

componendo nell'ordine le matrici inverse delle trasformazioni elementari per portare il primo sistema sul secondo.

Esempio 2D: Sia dato il frame cartesiano ([1,0,0],[0,1,0],[0,0,1])e il nuovo frame ($[1/2cos(\theta), 1/2sin(\theta), 0], [-1/2sin(\theta), 1/2cos(\theta), 0],$ [2,1,1]), dove i vettori e punti sono espressi rispetto al primo sistema.

Le trasformazioni per portare il primo frame sul secondo sono

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} S = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} R(\theta) = \begin{pmatrix} c & s & 0 \\ -s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Da cui
$$\mathbf{M} = \mathbf{T}^{-1} \, \mathbf{S}^{-1} \, \mathbf{R}^{-1}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 dove $c = \cos(\theta)$, $s = \sin(\theta)$

E moltiplicando le tre matrici:

$$\mathbf{M} = \begin{pmatrix} 2c & -2s & 0 \\ 2s & 2c & 0 \\ -4c-2s & 4s-2c & 1 \end{pmatrix}$$

Concludendo, le coordinate di p nel nuovo sistema di riferimento saranno:

$$p_{new} = p M$$

Seguiamo ora una procedura diretta: dobbiamo determinare le coordinate $p_{new}=[u,v,w,1]$ così che

$$\begin{bmatrix} u, v, w, 1 \end{bmatrix} \begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{w} \\ O \end{pmatrix} = [x, y, z, 1] \begin{pmatrix} \underline{e1} \\ \underline{e2} \\ \underline{e3} \\ O \end{pmatrix} \tag{1}$$

Sappiamo che \underline{u} , \underline{v} , \underline{w} sono vettori linearmente indipendenti e formano una base per R^3 . Scriviamo ogni vettore $\underline{e1}$, $\underline{e2}$ ed $\underline{e3}$ in questa base:

$$\underline{e1} = [1,0,0,0] = a_{11}\underline{u} + a_{12}\underline{v} + a_{13}\underline{w}
\underline{e2} = [0,1,0,0] = a_{21}\underline{u} + a_{22}\underline{v} + a_{23}\underline{w}
\underline{e3} = [0,0,1,0] = a_{31}\underline{u} + a_{32}\underline{v} + a_{33}\underline{w}$$

Poiché O-O' è un vettore, posiamo trovare la sua rappresentazione nella base $\underline{u}, \underline{v}, \underline{w}$

$$O-O' = [0,0,0,1]-O' = a_{41}\underline{u} + a_{42}\underline{v} + a_{43}\underline{w}$$

e quindi:

$$O = [0,0,0,1] = a_{41}\underline{u} + a_{42}\underline{v} + a_{43}\underline{w} + O$$

mettendo quest'ultima insieme alle precedenti si ha:

$$\begin{vmatrix} \underline{e1} \\ \underline{e2} \\ \underline{e3} \\ O \end{vmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & 1 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{w} \\ O \end{pmatrix}$$

sostituendo nella relazione (1):

$$[u, v, w, 1] \begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{w} \\ O \end{pmatrix} = [x, y, z, 1] \begin{pmatrix} \underline{e1} \\ \underline{e2} \\ \underline{e3} \\ O \end{pmatrix} = [x, y, z, 1] \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & 1 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{w} \\ O \end{pmatrix}$$

da cui risulta:

Quanto ottenuto dice che il cambio di sistema di riferimento può essere rappresentato da una matrice 4x4

Ovviamente si devono determinare i coefficienti a_{ij} per poter dire di aver risolto il problema.

Le prime tre righe sono le coord. dei vettori $\underline{e1}$, $\underline{e2}$ ed $\underline{e3}$, nel nuovo sistema, mentre la quarta sono le coord. di O nel nuovo sistema.

Solitamente, nella pratica, sono note le coordinate di \underline{u} , \underline{v} , \underline{w} e O' rispetto al primo sistema, cioè:

$$\begin{bmatrix}
\underline{u} \\
\underline{v} \\
\underline{w} \\
O
\end{bmatrix} =
\begin{bmatrix}
b_{11} & b_{12} & b_{13} & 0 \\
b_{21} & b_{22} & b_{23} & 0 \\
b_{31} & b_{32} & b_{33} & 0 \\
b_{41} & b_{42} & b_{43} & 1
\end{bmatrix}
\begin{bmatrix}
\underline{e1} \\
\underline{e2} \\
\underline{e3} \\
O
\end{bmatrix}$$

Allora $A=B^{-1}$.

Riprendiamo il seguente esempio 2D già visto: sia dato il frame cartesiano ([1,0,0], [0,1,0], [0,0,1]) e il nuovo frame ($[1/2cos(\theta),1/2sin(\theta),0]$, $[-1/2sin(\theta),1/2cos(\theta),0]$, [2,1,1]), dove i vettori e punti sono espressi rispetto al primo sistema.

$$\begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{O} \end{pmatrix} = \begin{pmatrix} c/2 & s/2 & 0 \\ -s/2 & c/2 & 0 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \underline{e1} \\ \underline{e2} \\ \underline{O} \end{pmatrix}$$

E l'inversa della matrice B sarà: (confrontare con quanto trovato precedentemente):

$$A = B^{-1} = \begin{pmatrix} 2c & -2s & 0 \\ 2s & 2c & 0 \\ -4c - 2s & 4s - 2c & 1 \end{pmatrix}$$

dove
$$c = \cos(\theta)$$
, $s = \sin(\theta)$