

BC.

PES University, Bangalore

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) B. Tech., I SEMESTER – DEC' 2018 UE18CV101 – Engineering Mechanics

		UE18CV101 – Engineerin	ng Mechanics	
Time: 3 Hrs Answer All Questions Max Marks: 100				
1.a.	Explain the terms a)	Free Vector b) Sliding Vector c) Fixed Vector	6
1.b.	resisting excessive bending caused by the moment about A of a force F as shown in figure 1.b. For given values of F, b, and h, determine the angle Θ which causes the most severe bending strain.			
1.c.	couple system at o.			
1.d.	Under no uniform and slippery road conditions, the four forces as shown in figure 1.d are exerted on the four drive wheels of the all-wheel-drive vehicle. Determine the moment at G and the magnitude only of the resultant of this system.			
	$ \begin{array}{c c} F \\ \theta \\ h \\ h$	0 15° 15° 75 mm figure 1.c.	300 N B G 150 N 760 n 760 n 760 n 1520 mm 1120 mm figure 1.d.	mm -
2.a.	forces.			5
2.b.	The pin A, which connects the 200-kg steel beam with center of gravity at G to the vertical column, is welded both to the beam and to the column. To test the weld, the 80-kg man loads the beam by exerting a 300-N force on the rope which passes through a hole in the beam as shown in figure 2.b. Calculate the torque (couple) M supported by the pin.			
2.c.	A portion of the shifter mechanism for a manual car transmission is shown in the figure 2.c. For the 8-N force exerted on the shift knob, determine the corresponding force P exerted by the shift link BC on the transmission (not shown). Neglect friction in the ball-and-socket joint at O, in the joint at B, and in the slip tube near support D. Note that a soft rubber bushing at D allows the slip tube to self-align with link			

