UNIVERSIDADE FEDERAL DE GOIÁS

Programa de Pós-Graduação em Engenharia Elétrica e da Computação

TITULO DA DISSERTAÇÃO

Nome do Autor

[UFG] & [EMC]Goiânia - Goiás - Brasil6 de Setembro de 2017

UNIVERSIDADE FEDERAL DE GOIÁS

Programa de Pós-Graduação em Engenharia Elétrica e da Computação

TITULO DA DISSERTAÇÃO

Nome do Autor

Dissertação apresentada à Banca Examinadora como exigência parcial para a obtenção do título de Mestre em Engenharia Elétrica e de Computação pela Universidade Federal de Goiás (UFG), Escola de Engenharia Elétrica, Mecânica e de Computação (EMC), sob a orientação do Prof. Dr. Wesley Pacheco Calixto e co-orientação do Prof. Dr. Fulano de Tal

[UFG] & [EMC] Goiânia - Goiás - Brasil 6 de Setembro de 2017 C1984s Sobrenome, Nome.

Titulo do Trabalho/ Nome do Autor. – Goiânia: Universidade Federal de Goiás, 2016.

13 f.: il.

Orientador: Prof. Fulano de tal.

Tese Dissertação — Universidade Federal de Goiás. Inclui apêndices.

- 1. palvra1 palavra2 palavra3. I. Tal, Fulano de (orientador).
- II. Universidade Federal de Goiás. III. Título.

CDD 004.6

Ficha catalográfica elaborada por Nome Bibliotecario CRB X/X.xxx Biblioteca

Universidade Federal de Goiás, Goiânia - Goiás - Brasil

Copyright © 6 de Setembro de 2017 by Universidade Federal de Goiás. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, eletronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Library of [UFG] & [EMC], with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use of the reader of the work.

"Far better is it to dare mighty things, to win glorious triumphs, even though checkered by failure... than to rank with those poor spirits who neither enjoy nor suffer much, because they live in a gray twilight that knows not victory nor defeat.".

Theodore Roosevelt "The Man in the Arena: Citizenship in a Republic" Paris, April 23, 1910.

A todas as pessoas que me apoiaram de alguma forma e tornaram possivel a realização deste trabalho.

AGRADECIMENTOS

Agradeço a
Agradeço também a
Agradeço ao meu orientador

RESUMO

Este trabalho ...

ABSTRACT

This work ...

SUMÁRIO

		Pág.
LISTA DE FIG	URAS	
LISTA DE TAI	BELAS	
LISTA DE ABI	REVIATURAS E SIGLAS	
CAPÍTULO 1	Introdução	. 1
CAPÍTULO 2	TÍTULO DO CAPÍTULO	. 3
CAPÍTULO 3	MODELAGEM MATEMÁTICA	. 5
CAPÍTULO 4	PROCEDIMENTOS E METODOLOGIA	. 7
ANEXO A	TÍTULO DO ANEXO	. 9
	TÍTULO DO APÊNDICE	
ÍNDICE	odigo ionic	. 11

LISTA DE FIGURAS

		Pá	<u>g.</u>
2.1	Marca do NExT		3
2.2	Método de Wenner		3

LISTA DE TABELAS

	${f P}$	P ág.	
4.1	Manipulação dos dados medidos para a produção da curva $\rho_{aE}(a)$		7
4.2	Teste da primeira aula em LaTeX, veja Fig. 2.2.		7

LISTA DE ABREVIATURAS E SIGLAS

SIGLA – Sigla

CAPÍTULO 1 INTRODUÇÃO

CAPÍTULO 2

TÍTULO DO CAPÍTULO

Neste Capítulo ...

Acabei de colocar aqui uma figura que é a marca do NExT, veja-a Fig. 2.1.

Figura 2.1 - Marca do NExT.

Assim é que colocamos as figuras:

Figura 2.2 - Método de Wenner.

Assim é que colocamos as equações:

$$V_{q2} = \frac{\rho \cdot I}{4\pi} \left[\frac{1}{a} + \frac{1}{\sqrt{a^2 + (2P)^2}} - \frac{1}{2a} - \frac{1}{\sqrt{(2a)^2 + (2P)^2}} \right]$$
 (2.1)

$$V_{q3} = \frac{\rho \cdot I}{4\pi} \left[\frac{1}{2a} + \frac{1}{\sqrt{(2a)^2 + (2P)^2}} - \frac{1}{a} - \frac{1}{\sqrt{a^2 + (2P)^2}} \right]$$
(2.2)

Em (2.1) e (2.2), a é a distância entre os eletrodos, P é a profundidade do eletrodo, ρ a resistividade do solo. A diferença de potencial entre os pontos q_2 e q_3 é dada pela expressão (2.3).

$$V = V_{q2} - V_{q3} = \frac{\rho \cdot I}{4\pi} \left[\frac{1}{a} + \frac{1}{\sqrt{a^2 + (2P)^2}} - \frac{1}{\sqrt{(2a)^2 + (2P)^2}} \right]$$
(2.3)

Dividindo-se a diferença de potencial (2.3) pela corrente I, obtém-se uma grandeza R_m dimensionalmente igual a uma resistência elétrica (??).

$$R_m = \frac{\rho}{4\pi} \left[\frac{1}{a} + \frac{1}{\sqrt{a^2 + 4P^2}} - \frac{1}{\sqrt{4a^2 + 4P^2}} \right]$$
 (2.4)

Logo, isolando ρ em (2.4), tem-se a expressão para o cálculo da resistividade elétrica do solo.

$$\rho = \frac{4\pi a R_m}{1 + \frac{2a}{\sqrt{a^2 + 4P^2}} - \frac{2a}{\sqrt{4a^2 + 4P^2}}} \tag{2.5}$$

Para cada distância a têm-se os valores de V e I, medidos em campo e consequentemente obtém-se R_m e, portanto pode-se calcular ρ em (2.5). Como o solo foi inicialmente considerado homogêneo, variando-se a, o valor de R_m deve também variar de tal forma que ρ permanece inalterado em (2.5). Porém, na prática, o solo dificilmente se comporta com homogeneidade, e assim, o valor de ρ calculado em (2.5) deve variar com a distância a. A grandeza ρ deixa de ter o significado de resistividade elétrica do solo, porém, contêm nos seus valores em função de a, propriedades que permitem identificar as diversas camadas homogêneas do solo.

CAPÍTULO 3

MODELAGEM MATEMÁTICA

Neste Capítulo é apresentada...

CAPÍTULO 4

PROCEDIMENTOS E METODOLOGIA

Assim é que colocamos uma tabela:

Tabela 4.1 - Manipulação dos dados medidos para a produção da curva $\rho_{aE}(a)$.

$\rho_a(a)$	D_1	D_2	D_3	D_4	D_5	D_6	D_7	Média
$\rho_a(1)$	11487	12615	11538	11929	11561	11642	13084	11979
$\rho_a(2)$	10032	9901	9922	9982	9881	10027	9873	9945
$\rho_a(4)$	7781	8009	7979	8179	8194	7878	8301	8046
$\rho_a(8)$	14820	14424	14460	14297	14246	14209	14011	14352
$\rho_a(16)$	14931	15693	16397	15451	15825	15273	16459	15718
$\rho_a(32)$	10334	9138	9046	9599	10148	8991	20187	11063

Você também pode utilizar o Software La Table para gerar tabela e colocá-la no I⁴TEX, conforme (??). Conforme a expressão (4.1)

$$F(x) = \sum_{-\infty}^{+\infty} \xi \cdot \sum_{-\infty}^{+\infty} \gamma \tag{4.1}$$

Tabela 4.2 - Teste da primeira aula em L^aT_EX, veja Fig. 2.2.

$\rho_a(a)$	D_1	D_2	D_3	D_4	D_5	D_6	D_7	Média
$\rho_a(1)$	11487	12615	11538	11929	11561	11642	13084	11979
$\rho_a(2)$	10032	9901	9922	9982	9881	10027	9873	9945
$\rho_a(4)$	7781	8009	7979	8179	8194	7878	8301	8046
$\rho_a(8)$	14820	14424	14460	14297	14246	14209	14011	14352
$\rho_a(16)$	14931	15693	16397	15451	15825	15273	16459	15718
$\rho_a(32)$	10334	9138	9046	9599	10148	8991	20187	11063

ANEXO A

TÍTULO DO ANEXO

Abaixo o desenvolvimento do...

APÊNDICE A

TÍTULO DO APÊNDICE

Neste Apêndice ...

A.1 EXEMPLO DE CÓDIGO FONTE

Abaixo está o código fonte \dots

Para incluir um codigo fonte, edite as configuracoes do arquivo config-listings.tex.

ÍNDICE

eletrodos, 3

homogeneidade, 4

Wenner, 3