16) Více procesorové a více úlohové systémy

Paralyzace

- Možnost současného běhu více zařízení současně -> šetření času. rozměru čipu, rozměr desky a jediná cesta ke zvýšení výkonu MCU (MIPS)
- Proč zvýšení paralelizace? Kvůli šetření času, rozměr čipu, rozměr desky, jediná cesta ke zvýšení výkonu MCU (MIPS)
- K zvýšení paralelizace se využívá přerušení v CPU.

Přerušení

- je metoda, kdy procesor přeruší vykonávání sledu instrukcí, vykoná obsluhu přerušení, a pak pokračuje v předchozí činnosti.
- Původně přerušení sloužilo k obsluze hardwarových zařízení.
- Později byla přidána vnitřní přerušení, která vyvolává sám procesor, který tak oznamuje chyby vzniklé při provádění strojových instrukcí a synchronní softwarová přerušení vyvolávaná speciální strojovou instrukcí, která se obvykle používají pro vyvolání služeb operačního systému

CPU

Register

Cache

Multiprocessing

- koordinované zpracovávání úloh pomocí dvou nebo více procesorů (CPU) jednoho počítače
- případně také dynamické rozdělování běžících úloh mezi více CPU nebo počítačů a jejich paralelní zpracovávání
- Výhodou je, že zde není

Multiprocessing se dělí na:

- symetrický multiprocessing (SMP)
- asymetrický multiprocessing (ASMP)

CPU

Register

Cache

Memory

CPU

Register

Symetritrický a nesymetrický multiprocessing je HW podpora pro systémy

Multiproccesing

SW -> O.S-round robin

- distribuované systémy (TCP/IP)
- Několik procesorů, několik jader vjednom procesoru

Při paralelizaci

- periférie integrované -> multiprocessing
- Jednozdroj ->Multiprocessing

Round robin

- je uspořádaný výběr všech prvků ve stejné skupině v nějakém racionálním pořadí, obvykle od shora ke spodní části seznamu a poté začíná znovu v horní části seznamu a tak dále
- Jde o "střídání se"

TCP/IP(Transmission Control Protocol/Internet Protocol)

 obsahuje sadu protokolů pro komunikaci v počítačové síti a je hlavním protokolem celosvětové sítě Internet

asymetrického multiprocesing (ASMP)

- U něj může například určitý procesor sloužit pro vykonávání kódu jádra či obsluhu vnějšího přerušení a ostatní požadavky (vykonávání procesů) budou rovnoměrně rozděleny mezi ostatní procesory.
- U asymetrického multiprocesingu může se systémovými datovými strukturami pracovat jen jeden procesor, což je jednodušší na návrh a realizaci, ale je typicky méně efektivní než SMP

symetrický multiprocessing(SMP)

- znamená spolupráci dvou (či více) naprosto shodných (tedy včetně taktu) procesorů v rámci jednoho počítače
- Procesory jsou připojeny přes společnou procesorovou sběrnici.
- Všechny součásti procesu jsou oběma procesory využívány stejně, mají tudíž jednu společnou RAM paměť, pevné disky atd.
- Jednoprocesorové a SMP systémy vyžadují různé programovací metody k dosažení maximálního výkonu.
- Je tedy potřeba dvě různé verze téhož programu.
- U programů běžících na SMP systémech může dojít k zvýšení výkonu, i když byly napsány pro jednoprocesorové systémy.

Architektura

- je snadná a implementace je levná
- při připojení většího množství procesorů např.při čtyřech současně běžících nastávají kolize při přístupu do hlavní paměti, kdy na sebe jednotlivé procesory musí čekat -> i malá sekvenčně prováděná část programu může způsobit neefektivní využití většího množství procesorů

Multitasking

- je schopnost operačního systému provádět (přinejmenším zdánlivě) několik procesů současně.
- Jádro operačního systému velmi rychle střídá na procesoru běžící procesy (context switch), takže uživatel počítače má dojem, že běží současně

Context switch(přepínání procesů)

- je operace, při níž dochází k přepnutí kontextu při plánování procesů, kdy je nutné ukončit běh jednoho procesu a vybrat jiný, kterému bude procesor následně přidělen
- V preemptivních multitaskingových operačních systémech poskytuje plánovač každé úloze procesor na určitou dobu, která se nazývá time slice

• **time slice** je tedy doba, za které je proces nechán běžet bez přerušení v preemptivní multitasking operačního systému

Preemptivní multitasking

- je druh multitaskingu, který má přidělování a odebírání procesoru plně pod kontrolou operační systém
- Ten v pravidelných intervalech přeruší provádění běžícího programu a předá ji jinému procesu, případně vrátí tomu zpět původnímu přerušenému procesu.
- Nevýhodou je větší hardwarová náročnost

Nepreemptivní multitasking

- je starší multitaskingová technika, kde operační systém přiděluje CPU jediný proces, dokud není proces dokončen. Program uvolní CPU samostatně, nebo dokud neuplyne plánovaný čas
- Hlavním pozitivem tohoto přístupu je jednodušší implementace, zatímco velikým negativem je "zatuhnutí" PC v době, kdy se jedna úloha zacyklí. To způsobuje veliké ztráty při výkonu PC
- Především proto se dnes nepreemptivní multitasking již u operačních systémů nevyužívá, byť jej v minulosti aplikoval jak Microsoft (Win 95 či 98), tak i Apple.

Základní rozdíl mezi preemptivním a nepreemptivním plánováním

- Preemptivní plánování, lze předvídat; procesy lze je naplánovat
- V Nepreemptivní plánování nelze procesy naplánovat

Synchronizace

- Synchronizace procesů označuje situaci, kdy se více procesů má v určitém okamžiku sejít (tzv. handshake) kvůli vzájemné dohodě nebo společné akci
- Handshake
 - proces obvykle probíhá s cílem stanovit pravidla pro komunikaci, které se nastavuje při navazování kontaktu s neznámým zařízením
 - Pokud počítač komunikuje s jiným zařízením jako je například modem, tiskárna, nebo síťový server, je potřeba provést handshake, aby mohlo být spojení navázáno.

Synchronizační prostředky

Chrání přístup

Semafor

Povolí průchod ke sdílenému zdroji, pouze určitému počtu uživatelů

Mutex

- Povolí pouze jednomu uživateli ke sdílenému zdroji (paměť, port, disk)
- Nevýhody

- Nesprávné použití mutexu může vést ke zpomalení procesů, kdy většinu času jsou zablokovány ze vzájemného čekání, nebo v horším případě k uváznutí dvou a více procesů.
- Jako řešení potom musí být alespoň jeden proces ukončen.

Problémy synchronizace

- Dochází k neřešitelným problémům
- 1) Hladovějící proces

2) Obědvající filozofové

