Biostatistics 515/518, Winter 2020

HW5 (4 problems)

Questions 1-3 use the MRI dataset used in previous assignments. The file "mri.txt" contains the data and the documentation is in the file "mri.pdf"

- 1. We are interested in examining how mean systolic blood pressure varies by age and sex.
 - a. Create a scatterplot of systolic blood pressure versus age. Use different symbols and/or colors for each sex group, and include LOWESS (or LOESS) smooths for each sex group separately.
 - b. Do you see evidence from the scatterplot that sex modifies the association between systolic blood pressure and age? Explain your reasoning.
 - c. Perform a formal statistical analysis to investigate whether sex modifies the association between systolic blood pressure and age. Provide full statistical inference and reporting of your findings.
 - d. Regardless of statistical significance in part c, interpret the model you fit in part c. Do results make sense in light of the plot you made in part a? Comment.
- 2. We now turn our attention to systolic blood pressure and age, with race as the covariate.
 - a. Write the form of a multiple regression model for examining the race-adjusted association between mean systolic blood pressure (as the response) and age. Make sure the definitions of variables you include in your model and variable coding are clear.
 - b. Fit your model to the dataset and interpret the results (age is the predictor of interest). Use language suitable for a scientific publication, and include an interpretation of any confidence interval.
- 3. .
- a. Fit a multiple regression model to predict systolic blood pressure based on patient age, sex, and race. Write out your fitted model.
- b. Give a 95% prediction interval for systolic blood pressure among 70-year-old black women.
- c. Make a plot of residuals vs. fitted values and a QQ plot of the residuals. Comment on whether cast doubt on any of the assumptions required for the validity of prediction. (Note: the course may not cover these diagnostics before this assignment is due, so 3c may become optional.)

4. Consider the results from a study, which may have been a cross-sectional study, a cohort study, or a case-control study. D and E are indicator variables for "disease" and "exposure," respectively.

	D=0	D=1	
E=0	а	b	a+b
E=1	С	d	c+d
	a+c	b+d	n=a+b+c+d

- a. Derive the odds ratio for disease given exposure.
- b. Derive the odds ratio for exposure given disease.
- c. Compare the two odds ratios in A and B.

NOTE: in a and b you should start from the definitions of odds and take ratios.