CBSE MATH

Made Simple

G. V. V. Sharma

Copyright ©2023 by G. V. V. Sharma.

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

and

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

Introduction	iii
1 Intersection of Conics	1
1.1 Chords	1
1.2 Curves	2
2 Tangent And Normal	3
2.1 Equation of Tangents	3
2.2 Miscellaneous	3

Introduction

This book links high school coordinate geometry to linear algebra and matrix analysis through solved problems. $\,$

Chapter 1

Intersection of Conics

1.1. Chords

- 1. Using integration, find the area of the region enclosed by the curve $y=x^2$, the x-axis and the ordinates x=-2 and x=1.
- 2. Using integration, find the area of the region enclosed by line $y=\sqrt{3}x$ semi-circle $y=\sqrt{4-x^2}$ and x-axis in first quadrant.
- 3. Using integration, find the area of the smaller region enclosed by the curve $4x^2 + 4y^2 = 9$ and the line 2x + 2y = 3.
- 4. If the area of the regin bounded by the curve $y^2 = 4ax$ and the line x = 4a is $\frac{256}{3}$ sq. units, then using integration, find the value of a, where a > 0.
- 5. Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1, using integration.
- 6. If the area of the region bounded by the line y = mx and the curve $x^2 = y$ is $\frac{32}{3}$ sq. units, then find the positive value of m, using integration.

- 7. The slope of the normal to the curve $y = 2x^2 + 3sinx$ at x = 0 is
- 8. If the area between the curves $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, then find the value of a, using integration.

6

1.2. Curves

- 1. Find the area bounded by the ellipse $x^2 + 4y^2 = 16$ and the ordinates x = 0 and x = 2, using integration.
- 2. Find the area of the region $\{(x,y): x^2 \leq y \leq x\}$, using integration.

Chapter 2

Tangent And Normal

2.1. Equation of Tangents

1. Find the equation of tangent to the curve $y = x^2 + 4x + 1$ at the point (3, 22).

2.2. Miscellaneous

- 1. The total revenue (in \mathfrak{T}) received from sale of x units of a product is $R(x) = 3x^2 + 36x + 5$. The marginal revenue, when x = 12 is _____.
- 2. Find:

$$\int \frac{x}{(x-1)^2(x+2)} dx$$