This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C08J 5/22, 7/16, C08F 291/00, H01M
8/10

(11) International Patent Classification 6:

(13) International Patent Classification 6:

(14) International Patent Classification 6:

(15) International Patent Classification 6:

(16) International Patent Classification 6:

(17) International Patent Classification 6:

(18) International Patent Classification 6:

(19) International Patent Classification 6:

(10) International Patent Classification 6:

(11) International Patent Classification 6:

(11) International Patent Classification 6:

(12) International Patent Classification 6:

(13) International Patent Classification 6:

(14) International Patent Classification 6:

(15) International Patent Classification 6:

(16) International Patent Classification 6:

(17) International Patent Classification 6:

(18) International Patent Classification 6:

(19) International Patent Classification 6:

(19) International Patent Classification 6:

(10) International Patent Classification 6:

(10) International Patent Classification 6:

(10) International Patent Classification 6:

(11) International Patent Classification 6:

(12) International Patent Classification 6:

(13) International Patent Classification 6:

(14) International Patent Classification 6:

(15) International Patent Classification 6:

(16) International Patent Classification 6:

(17) International Patent Classification 6:

(18) International Patent Classification 6:

(18) International Patent Classification 6:

(19) International Patent Classification 6:

(19) International Patent Classification 6:

(10) International Patent Classification 6:

(10) International Patent Classification 6:

(10) International Patent Classification 6:

(11) International Patent Classification 6:

(12) International Patent Classification 6:

(13) International Patent Classification 6:

(14) International Patent Classification 6:

(15) International Patent Classification 6:

(16) International Patent Classification 6:

(17) International Patent

(11) International Publication Number:

WO 99/24497

(43) International Publication Date:

20 May 1999 (20,05.99)

(21) International Application Number:

PCT/CA98/01041

(22) International Filing Date:

12 November 1998 (12,11,98)

(30) Priority Data:

08/967,960

12 November 1997 (12.11.97) US

(81) Designated States: AU, CA, DE, GB, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(71) Applicant (for all designated States except US): BALLARD POWER SYSTEMS INC. [CA/CA]; 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J9 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): STONE, Charles [CA/CA]; 1088 Quebec Street #701, Vancouver, British Columbia V6A 4H2 (CA). STECK, Alfred, E. [CA/CA]; 3956 Westridge Avenue, West Vancouver, British Columbia V7V 3H7 (CA).
- (74) Agent: DE KOCK, Elbie, R.; Russell Reyneke, Two Bentall Centre, Suite 700, 555 Burrard Street, Vancouver, British Columbia V7X 1M8 (CA).

(54) Title: GRAFT POLYMERIC MEMBRANES AND ION-EXCHANGE MEMBRANES FORMED THEREFROM

(57) Abstract

Graft polymeric membranes in which one or more trifluorovinyl aromatic monomers are radiation graft polymerized to a preformed polymeric base film are provided, as well as ion-exchange membranes prepared therefrom. Preferred monomers include substituted α , β , β \$g(-)trifluorostyrenes and trifluorovinyl naphthalenes which are activated towards the grafting reaction or facilitate the introduction of more than one ion-exchange group per monomer unit in the grafted chains. The ion-exchange membranes are useful in dialysis applications, and particularly in electrochemical applications, for example as membrane electrolytes in electrochemical fuel cells and electrolyzers.

en juris juris in de service de la companya de la c La companya de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya de la companya de la companya de la companya del companya del companya del companya de la companya del companya del

the state of the second

The second of the

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	. SK	Slovakia
AT	Austria	FR	France	LU 🕠	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC T	Monaco	TD	. Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG .	Madagascar	ŢJ	Tajikistan
BE	Belgium •	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR .	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
₿J	Benin	IE	Ireland	MN	Mongolia	· UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritanja	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN ·	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	. KG	Kyrgyzstan	NO ·	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	·KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	٠.	Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal	•	•
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/24497 PCT/CA98/01041

GRAFT POLYMERIC MEMBRANES AND ION-EXCHANGE MEMBRANES FORMED THEREFROM

Field Of The Invention

5

30

The present invention relates to graft polymeric membranes in which one or more trif-luorovinyl aromatic monomers are radiation graft polymerized to a preformed polymeric base film. Where the grafted polymeric chains are modified to incorporate ion-exchange groups, the resultant membranes are useful in dialysis applications, and particularly in electrochemical 10 applications, for example as membrane electrolytes in electrochemical fuel cells and electrolyzers.

Background Of The Invention

The preparation of graft polymeric membranes 15 by radiation grafting of a monomer to a polymeric base film has been demonstrated for various combinations of monomers and base films. The grafting of styrene to a polymeric base film, and subsequent sulfonation of the grafted polystyrene membranes.

> U.S. Patent No. 4,012,303, reports the radiation grafting of α , β , β -trifluorostyrene (TFS) to polymeric base films using gamma coirradiation, followed by the introduction of various ion-exchange substituents to the pendant aromatic rings of the grafted chains. With coirradiation, since the TFS monomer is simultaneously irradiated, undesirable processes such as monomer dimerization and/or independent

35

homopolymerization of the monomer may occur in competition with the desired graft polymerization reaction.

U.S. Patent No. 4,012,303 also reports that the TFS monomer may be first sulfonated and then grafted to the base film. Thus, the introduction of ion-exchange groups into the membrane can be done as part of the grafting process, or in a second step.

10 More recently, the grafting of TFS to preirradiated polymeric base films, followed by the introduction of various substituents to the pendant aromatic rings of the grafted chain has been reported in U.S. Patent No. 4,605,685. 15 or porous polymeric base films, such as for example polyethylene and polytetrafluoroethylene, are pre-irradiated and then contacted with TFS neat or in solution. Pre-irradiation is reportedly a more economic and efficient grafting 20 technique, reportedly giving a percentage graft of 10-50% in reaction times of 1-50 hours. Aromatic sulfonation, haloalkylation, amination, hydroxylation, carboxylation, phosphonation and phosphoration are among the reactions subsequently 25 used to introduce ion-exchange groups into the grafted polymeric chains. Post-sulfonation rates of 40% to 100% are reported.

In either case the prior art TFS-based grafted membranes incorporate a maximum of one functional group per monomer unit in the grafted chain. Further, they typically incorporate only one type of functional group as substituents on the pendant aromatic rings in the grafted chains.

In the present invention, one or more types of substituted TFS monomers are grafted to

30

polymeric base films, the substituents being selected to offer particular advantages, for example:

- (a) substituted TFS monomers which are activated

 by virtue of their aromatic substituents have
 increased reactivity in the grafting reaction
 facilitating grafting and/or are activated in
 subsequent reactions to introduce ionexchange functionality into the grafted

 chains;
 - (b) grafted chains comprising monomer units with more than one aromatic ring permit the introduction of more than one ion-exchange group per grafted monomer unit, enabling the achievement of higher ion-exchange capacities at lower percentage grafts than in prior art grafted polymeric, membranes.
- (c) substituted TFS monomers in which the substituents are precursors to ion-exchange groups may be transformed to ion-exchange groups after the grafting reaction, and can facilitate the introduction of more than one type of ion-exchange group into the grafted chains, for example, so that both cation and anion exchange groups may be incorporated in a membrane.

Other trifluorovinyl aromatic or heteroaromatic monomers offering one or more of the above described advantages similarly may be grafted to polymeric base films to give novel graft polymeric membranes.

. ,

india a kamaran

Market Committee Committee

Summary Of The Invention State State

Graft polymeric membranes comprise one or more trifluorovinyl aromatic monomers radiation graft polymerized to a preformed polymeric base film. In a first embodiment, a graft polymeric membrane comprises a preformed polymeric base film to which has been graft polymerized a substituted α,β,β -trifluorostyrene monomer selected from the group consisting of monomers of formula (I):

10

5

15

The group A may be OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl), which are substituents that activate the monomer.

The monomer of formula (I) may have more than one aromatic ring, for example when A is Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl), (CH₂)_nPh or (CF₂)_nPh (where n is an integer greater than zero) Of these, the groups Ph, OPh, SPh, N(R)Ph are particularly preferred.

Other substituents, A, which are useful precursors to ion-exchange groups can be advantageously selected, for example, SO_2X (where X is selected from the group consisting of F, Cl, Br, I), OH, NH_2 , CN, and NO_2 .

In a second embodiment, a graft polymeric membrane comprises a preformed polymeric base film to which has been graft polymerized a

20

25

30

trifluorovinyl naphthalene monomer selected from the group consisting of monomers of formula (II):

B may be hydrogen, or may be selected from

the preferred substituents described above for A

in formula (I).

These and other trifluorovinyl polyaromatic and heteroaromatic monomers may be advantageously graft polymerized to polymeric base films, as such monomer units provide more sites for subsequent introduction of functional groups, and in many cases, the aromatic rings are electron rich and activated compared to that of TFS.

In any of the embodiments described above, the preformed polymeric base film may be grafted with a single monomer whereby the grafted chains are homopolymeric. Alternatively, the preformed polymeric base film may be grafted with a mixture of monomers to give grafted chains which are copolymeric. The monomer mixture may comprise, or may consist predominantly of, one or more monomers described by the formulae. In some embodiments the mixture may consist of monomers described by the formulae.

Preferred vinyl monomers for co-grafting with those described by the formulae include styrene and ethylene-based monomers, fluorinated ethylene-based monomers, and other α , β , β -trifluorostyrene monomers. For example, one or more monomers of

10

15

20

25

formula (III) may be included in the mixture:

where D is selected from the group consisting of hydrogen, halomethyl, perfluoroalkyl, perfluoroalkenyl and fluorine and SO, M*, the latter representing a sulfonic acid salt where M* is a counterion.

Depending on the nature of the monomers incorporated into the grafted chains of the membranes described above, ion-exchange groups may be introduced by the transformation of precursor groups already present as aromatic substituents in the monomers, and/or via post-graft reaction processes. For example, the membranes may be subjected to a reaction process selected from the group consisting of sulfonation, phosphonation, phosphorylation, amination, carboxylation, hydroxylation and nitration whereby ion-exchange groups are introduced into pendant aromatic rings of the grafted chains, directly by these reaction processes or via these reaction processes in combination with subsequent steps.

In one embodiment, an ion-exchange membrane comprises a preformed polymeric base film with grafted chains comprising monomer units of formula (IV):

$$-CF-CF_2-$$

35

30

10

15

where A is OH, OR, SR or NRR! (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl) and at least a portion of the monomer units include at least one ion-exchange substituent on the aromatic ring thereof. In preferred embodiments at least a portion of the monomer units include at least two ion-exchange substituents, which may the same or different from each other, on the aromatic ring thereof. If at least two ion-exchange and the first of the second substituents are present on the ring, A may also, be hydrogen. In a particularly preferred embodiment, A is selected from the group consisting of OR (where R is selected from the group consisting of alkyl and fluoroalkyl) u and at least a portion of the monomer units include two SO₃H substituents on the aromatic ring thereof...

In another embodiment, an ion-exchange membrane comprises a preformed polymeric base film 20 with grafted chains comprising monomer units of formula (IV) where A is (CH2) Ph and (CF2) Ph (where n is an integer greater than zero) or more and a serious preferably Ph, OPh, SPh or N(R), Ph (where R is selected from the group consisting of hydrogen, 25 Ph, alkyl and fluoroalkyl) and at least a portion of the monomer units include at least one ionexchange substituent on an aromatic ring thereof. In preferred embodiments at least a portion of the monomer units include at least two ion-exchange, 30 substituents which may the same or different from each other. These monomer units have more than one aromatic ring and therefore facilitate the introduction of more than one ion-exchange group per monomer unit. In a particularly preferred 35 embodiment A is OPh and at least a portion of the

monomer units include two SO, H substituents.

In a still further embodiment, an ionexchange membrane comprises a preformed polymeric
base film with grafted chains comprising monomer
units of formula (V):

$$-CF-CF_2-$$
(V

10

15

20

25

30

35

5

B is selected from the group consisting of hydrogen, OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl), Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl), (CH₂),Ph and (CF₂),Ph (where n is an integer greater than zero), and at least a portion of the monomer units include at least one ionexchange substituent on the naphthyl ring In preferred embodiments at structure thereof. least a portion of the monomer units include at least two ion-exchange substituents, which may the same or different from each other, on the naphthyl ring structure thereof. These naphthyl monomer units facilitate the introduction of more than one ion-exchange group per monomer unit.

The preferred embodiments described above in which at least a portion of the monomer units include at least two ion-exchange substituents enable ion-exchange membranes wherein the grafted chains include an average of greater than one ion-exchange substituent per monomer unit in the grafted chains. In these particularly preferred

10

15

20

30

35

ion-exchange membranes, not every monomer unit in the grafted chains necessarily includes two or even one ion-exchange substituent, but because enough monomer units include two or more ionexchange substituents, on average the monomer units in the chain include more than one ionexchange substituent.

The ion-exchange membranes described above may include more than one different type of ion-exchange group in the grafted chains, for example it is possible to incorporate both anion- and cation-exchange groups. The different ion-exchange groups may be introduced in post-grafting reactions, however it is generally more convenient to introduce at least one of them via a precursor substituent present on one of the graft polymerized monomers.

Another embodiment of an ion-exchange membrane comprises a preformed polymeric base film with grafted chains comprising a first monomer unit of formula (VI):

$$\frac{-\operatorname{CF}-\operatorname{CF}_{2}}{+\operatorname{CF}_{2}}$$
25

and a second monomer unit of formula (VII):

But the first the factor of the forest the first the fir

wherein X_1 and X_2 are different ion-exchange

30

35

groups. Again these substituents may be introduced via precursor groups present in the grafted monomers, or subsequently to the graft polymerization reaction.

In all the above embodiments of an ionexchange membrane, preferred ion-exchange
substituents or groups are SO₃H, PO₂H₂,
PO₃H₂, CH₂PO₃H₂, COOH, OSO₃H, OPO₂H₂, OPO₃H₂, NRR'R"
and CH₂NRR'R" (where R, R' and R" are
independently selected from the group consisting

of hydrogen, alkyl, fluoroalkyl and aryl). The sulfonic acid substituent SO,H, is particularly preferred.

In any of the embodiments of an ion-exchange

membrane described above, the grafted chains may
be homopolymeric or may be copolymeric.

Copolymeric grafted chains may comprise, or may
consist predominantly of, one or more monomer
units described by the formulae. In some
embodiments, copolymeric grafted chains may
consist of a mixture of monomer units described by
the formulae.

The preformed polymeric film or substrate for the grafting reaction is preferably selected so that it imparts mechanical strength to the membrane and will be physically and chemically stable to irradiation and under the conditions to which it is to be exposed in the end-use application for the membrane. Suitable materials generally include homopolymers or copolymers of non-fluorinated, fluorinated and perfluorinated vinyl monomers. Fluorinated and perfluorinated polymers are preferred for certain applications due to their enhanced oxidative and thermal stability. Suitable materials include, but are

30

35

not limited to, polyvinylidene fluoride, poly(tetrafluoroethylene-co-perfluorovinylether), poly(tetrafluoroethylene-co-hexafluoropropylene), poly(chlorotrifluoroethylene-co-ethylene),.... 5 polyethylene and polypropylene, and particularly poly(ethylene-co-tetrafluoroethylene) and polytetrafluoroethylene. The polymeric base film may be porous or substantially gas impermeable. Porous base films may be used where the resultant grafted membrane 10 is not required to be gas impermeable, for example, in filtration applications. However, for most electrochemical applications it is preferable that the ion-exchange membranes, and therefore the polymeric base film, be substantially gas, 15 impermeable, for example, for use in electrochemical fuel cells. In these or other applications, the ion-exchange membranes may be, used in conjunction with one or more electrodes, in some cases in a consolidated electrode 20 apparatus or a membrane electrode assembly.

Even when the grafted chains have a high ion-exchange capacity, which in isolation would tend to render them more water-soluble, the presence of the polymeric base film in the grafted membranes can reduce the water solubility of the membrane as a whole and increase dimensional stability on hydration/dehydration. This is an important advantage of these grafted ion-exchange membranes in applications, such as fuel cells, where high ion-exchange capacity but water insolubility, dimensional stability and low water content are desirable properties. Also, some of the homopolymers and copolymers described herein as grafted chains, would be unlikely to form

mechanically stable membranes in isolation. Once again the presence of the base film can impart desirable properties to the grafted membrane. Also, depending on the nature of the preformed polymeric base film and the functionality of the grafted chains, the grafted ion-exchange membranes may reduce reactant crossover in fuel cell applications, for example, in direct methanol fuel cells.

10 The properties of the grafted membranes may be modified through varying degrees of cross-linking of the grafted chains by known methods, such as thermolysis, photolysis, plasma treatment and electron beam irradiation processes or the use of crosslinking agents.

As used above the term fluoroalkyl means any partially fluorinated or perfluorinated alkyl group, and the term halomethyl means any partially or fully halogenated methyl group. The abbreviation Ph is used to represent a phenyl group.

Brief Description Of The Drawings

FIG. 1 is a plot of cell voltage as a

function of current density (expressed in
milliamperes per square centimeter) in an
electrochemical fuel cell employing a sulfonated
membrane of p-MeO-TFS grafted poly(ethylene-cotetrafluoroethylene) (Tefzel®, trademark of

DuPont) and operating on hydrogen-oxygen (plot A)
and hydrogen-air (plot B).

FIG. 2 is a plot of cell voltage as a function of current density (expressed in milliamperes per square centimeter) in an liquid

10

15

20

25

30

feed direct methanol fuel cell, employing a sulfonated membrane of p-MeO-TFS grafted poly(ethylene-co-tetrafluoroethylene) (plot C), a Nafion® 112 (trademark of DuPont) membrane (plot D), and a Nafion® 117 (trademark of DuPont) membrane (plot E).

Detailed Description Of The Preferred Embodiments

Any radiation capable of introducing sufficient concentrations of free radical sites on the base polymeric film may be used in the preparation of the grafted polymeric membranes described herein. For example, the irradiation may be by gamma-rays, X-rays or electron beam. Electron beam irradiation is generally preferable as the process times are short and thus more suited to high volume production processes. The decay of the source and typically longer reactions times required with gamma radiation render it less suitable for high volume manufacturing processes.

The preformed polymeric base film may be preirradiated prior to bringing it into contact with the monomer or monomer mixture to be grafted or the substrate and monomer(s) may be irradiated together (co-irradiation).

In the grafting reaction, the polymeric base film is treated with the monomer(s) in the liquid phase, either as neat liquids or in a solution. It can be advantageous to select a solvent which will cause the solution to penetrate the base film and cause it to swell. This facilitates grafting of the monomer(s) throughout the membrane thickness. Preferably the irradiation and grafting process is carried out in an inert atmosphere.

25

30

For the preparation of membranes, grafting to a preformed base film is generally more efficient and cost-effective than grafting to a substrate in some other form such as a powder and then forming a membrane from the graft material.

The following examples are for purposes of illustration and are not intended to limit the invention.

10 EXAMPLE 1

Grafting of $p-SO_2F-TFS$ to poly(ethylene-cotetrafluoroethylene) (Tefzel®) Film

A 2 mil (approx. 50 μm) thick, 7 inch x 7

inch (17.78 cm x 17.78 cm) piece of poly(ethyleneco-tetrafluoroethylene) (Tefzel®) film was
irradiated with a dose of 5.2 Mrad using a cobalt60 gamma radiation source, in an inert atmosphere.
The irradiated base film was kept at -30°C in
inert atmosphere prior to use.

The irradiated membrane was placed in a reactor chamber and treated with neat, freshly distilled p-SO₂F-TFS (200 g) in an inert atmosphere at 50°C for 50 hours. The membrane was removed and washed with heptane. The percentage graft, which is calculated by expressing the weight increase of the film as a percentage of the weight of the grafted film, was 20%. The grafted film was placed in a 33% w/v aqueous solution of potassium hydroxide at 80°C to hydrolyze the sulfonyl fluoride substituents to give a theoretical equivalent weight of approximately 1500 g/mole based on the percentage graft.

The above procedure was also performed using a 3 mil (approx. 75 μm) thick, 7 inch x 7 inch (17.78 cm x 17.78 cm) piece of film, and gave a similar percentage graft.

5

EXAMPLE 2

Grafting of p-PhO-TFS to poly(ethylene-co-tetrafluoroethylene) (Tefzel®) Film and Sulfonation of the Grafted Membrane

10

- a) A 2 mil (approx. 50 μm) thick, 7 inch x
 7 inch (17.78 cm x 17.78 cm) film of poly(ethylene-co-tetrafluoroethylene) (Tefzel®) was irradiated with a dose of 5.3 Mrad using a cobalt-60 gamma radiation source, in an inert atmosphere. The irradiated base film was kept at -30°C in inert atmosphere prior to use. The irradiated membrane was treated with a degassed solution of p-PhO-TFS (86.8 g) in toluene (86.8 g)
- in an inert atmosphere at 50°C for approximately 100 hours. The membrane was removed and washed with heptane and dried at 30°C. The percentage graft was 11%.
- b) The grafted membrane was sulfonated by
 immersion in a solution of chlorosulfonic acid (60
 mL) in 1,1,2,2-tetrachloroethane (140 mL) for 1.5
 hours at 100°C. The resultant ion-exchange
 membrane was washed with water. The equivalent
 weight of the hydrolyzed membrane was 1490 g/mole,
 indicating incorporation of an average of

approximately two sulfonic acid sites per monomer

S. 1. 1. 1. 1. 1.

and the second

5

20

unit in the grafted chains, with a water content of 11%.

EXAMPLE 3

Grafting of p-MeO-TFS to poly(ethylene-cotetrafluoroethylene) (Tefzel®) Film and Sulfonation of the Grafted Membrane

A 2 mil (approx. 50 μm) thick, 7 inch x 7

inch (17.78 cm x 17.78 cm) film of poly(ethyleneco-tetrafluoroethylene) (Tefzel®) was irradiated,
treated with a solution of p-MeO-TFS and
sulfonated using a similar procedure to that
described in Example 2. The resultant ionexchange membrane had an equivalent weight of 1101
g/mole.

EXAMPLE 4

The state of the s

Use of Sulfonated p-MeO-TFS grafted poly(ethyleneco-tetrafluoroethylene) (Tefzel®) Membrane as an Ion-exchange Membrane in a Fuel Cell

The membrane prepared as described in Example 3 was bonded to two catalyzed carbon fiber paper electrodes to form a membrane electrode assembly having a total platinum catalyst loading of 8 mg/cm². The membrane electrode assembly was tested in a Ballard Mark IV single cell fuel cell. The following operating conditions were used:

30 Temperature: 80°C

Reactant inlet pressure:
30 psig for oxidant and fuel

Reactant stoichiometries:

2.0 oxidant and 1.5 hydrogen.

FIG. 1 shows polarization plots of voltage as a function of current density for the sulfonated grafted membrane employed in a membrane electrode assembly in the electrochemical fuel cell operating on hydrogen-oxygen (plot A) and hydrogen-air (plot B).

10 EXAMPLE 5

Grafting of p-MeO-TFS to poly(ethylene-co-, tetrafluoroethylene) Film and Sulfonation of the Grafted Membrane

The second of the second second second

15 A 2 mil (approx. 50 μm) thick 8.5 inch x 8.5 inch film of poly(ethylene-co-tetrafluoroethylene) film was irradiated with a dose of 3 Mrad using a high energy electron beam irradiation source, in an inert atmosphere. The irradiated base film was 20 kept at -30°C in an inert atmosphere prior to use. The irradiated membrane was treated with neat, freshly distilled p-methoxy α, β,β-trifluorostyrene (p-MeO-TFS) in an inert atmosphere at 50°C for 60 hours. The membrane was removed and washed with toluene and then dichloromethane, and then dried under vacuum. The percentage graft was 48%.

The grafted membrane was sulfonated using a similar procedure to that described in Example 2. The resultant ion-exchange membrane had an equivalent weight of 679 g/mole.

4. 3. 1. 1. 1

· 13 · 51

Use of Sulfonated p-MeO-TFS grafted poly(ethyleneco-tetrafluoroethylene) Membrane as an Ionexchange Membrane in a Direct Methanol Fuel Cell

5

10

15

20

25

30

Three membrane electrode assemblies were prepared by bonding a pair of catalyzed carbon fiber paper electrodes to each of three different membranes. The three assemblies had similar, but not identical, electrode structures. In each case the active area was 49 cm², and a platinum black catalyst was used at the cathode and a platinum/ruthenium catalyst was used at the anode. In the first assembly, the membrane of Example 5, with a thickness of 50 microns and an equivalent weight of 679 g/mole was used. In the second assembly a Nafion[®] 112 membrane with a thickness of 50 microns and an equivalent weight of 1100 g/mole was used. The third assembly employed a Nafion® 117 membrane with a thickness of 175 microns and an equivalent weight of 1100 g/mole.

Each membrane electrode assembly was tested in a Ballard liquid feed direct methanol fuel cell (0.4M aqueous methanol as fuel, air as oxidant, operating temperature approximately 110°C and reactant pressure approximately 30 psig).

FIG. 2 shows polarization plots of voltage as a function of current density for the sulfonated grafted membrane (plot C), the Nafion® 112 membrane (plot D) and the Nafion® 117 membrane (plot E) employed in a membrane electrode assembly in the direct methanol fuel cell. The performance of the sulfonated grafted membrane is comparable with that of the Nafion® 112 membrane, and is

considerably better than that of the thicker Nafion® 117 membrane, especially at higher current densities.

The percentage of methanol crossover was determined for each operating cell at two different current densities, by gas chromatograhy analysis of carbon monoxide found in the cathode exhaust. The results are shown in Table 1:

10

15

Table 1

Current Density

Membrane

and the little

s again to the second

100 mA/cm² 200 mA/cm²

Grafted Membrane of Example 5

The war with the control of the control of the coneach of the peach of the Branch of the rate of a constant

-20%

Nafion[®] 112 1 28 1 1 2 3 3 8 1 1 1 2 1 8 1 2 1 8 1 1 2 1 8

international of the contract of the contract

Parallel Greeks at a super was the constitution

Nafion®: 117 18 1 1 1 1 1 8 8 4 7 1 1 1 2 8 7 1 1 1 granded and the state of the st

The values (which have not been corrected for carbon monoxide permeating through the membrane from anode to cathode) indicate that the sulfonated grafted membrane of Example 5 gave a considerably lower percentage of methanol crossover than a conventional Nafion® 112 membrane of substantially the same thickness. The percentage crossover values for the sulfonated grafted membrane were almost as low as for the much thicker Nafion[®] 117 membrane. Thus, in a liquid feed direct methanol fuel cell the sulfonated grafted membrane exhibited excellent

10

fuel cell performance combined with substantially reduced methanol crossover.

While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. It is therefore contemplated by the appended claims to cover such modifications as incorporate those features which come within the spirit and scope of the invention.

What is claimed is:

1. A membrane comprising a preformed polymeric base film to which has been graft polymerized a monomer selected from the group consisting of monomers of formula (I)

and formula (II) are the letter when the

$$CF = CF_2$$

$$(II)$$

15

25

where A and B are independently selected from the group consisting of:

OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl),

Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl), $(CH_2)_n$ Ph and $(CF_2)_n$ Ph (where n is an integer greater than zero),

SO₂X (where X is selected from the group consisting of F, Cl, Br, I), OH, NH₂, CN, and NO₂,

and the group from which B is selected further consists of hydrogen.

10

2 4 5

- 2. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized a monomer of formula (I) wherein A is selected from the group consisting of OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl).
 - 3. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized a monomer of formula (I) wherein A is selected from the group consisting of Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl).
- 4. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized a monomer of formula (II) wherein B is selected from the group consisting of hydrogen, OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl), Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl).
 - 5. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized a single monomer whereby the grafted chains are homopolymeric.
 - 6. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized more than one

C. C. S. S. S. C.

- monomer selected from the group consisting of monomers of formula (I) and formula (II), whereby said grafted chains are copolymeric.
 - 7. A membrane according to claim 1 comprising a preformed polymeric base film to which has been graft polymerized a monomer of formula (III) with said monomer selected from the group consisting of monomers of formula (I) and formula (II):

$$CF = CF_2 \qquad (III)$$

The first and the

2 - 2 - -

10

15

5

where D is selected from the group consisting of hydrogen, halomethyl, perfluoroalkyl, perfluoroalkenyl and fluorine and SO, M.

8. A membrane according to claim 1 wherein at least a portion of the grafted chains are cross-linked.

AND MAIN COURSE OF LIBERTS A CHARGE OF CHARGE AND A STORY

make the grown at the program of the

9. A method of preparing a membrane comprising graft polymerizing to a preformed polymeric base film a monomer selected from the group consisting of monomers of formula (I)

$$CF = CF_2$$

10 and formula (II)

$$\begin{array}{c}
\mathsf{CF} = \mathsf{CF}_2 \\
\\
\mathsf{B}
\end{array}$$

o je elikuje iku gadila i *Ha*lik

15

25

30

5

where A and B are independently selected from the group consisting of:

OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl),

Ph, OPh, SPh, N(R) Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl), $(CH_2)_n$ Ph and $(CF_2)_n$ Ph (where n is an integer greater than zero),

 SO_2X (where X is selected from the group consisting of F, Cl, Br, H), OH, NH, CN, and NO,

and the group from which B is selected further consists of hydrogen.

- 10. A membrane prepared by subjecting a membrane of claim 1 to a reaction process selected from the group consisting of sulfonation, phosphonation, phosphorylation, amination, carboxylation, hydroxylation and nitration.
- 11. An ion-exchange membrane comprising a preformed polymeric base film with grafted chains comprising monomer units selected from the group

consisting of monomer units of formula (IV)

5

10

and formula (V)

 $-CF-CF_2-$

15

25

30

where A and B are independently selected from the group consisting of the selected from

Extra Late

OH, OR, SR, NRR! (where R and R! are independently selected from the group consisting of alkyl, fluoroalkyl and aryl),

Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen; Ph, alkyl and fluoroalkyl), (CH₂)_nPh and (CF₂)_nPh (where n is an integer greater than zero); and the group from which B is selected further consists of hydrogen;

wherein at least a portion of said monomer units comprise at least one ion-exchange substituent.

12. An ion-exchange membrane according to claim 11 wherein at least a portion of said monomer units comprise at least two ion-exchange substituents.

and the second of the second the second of t

5

1.0

- 13. An ion-exchange membrane according to claim 11 wherein said grafted chains comprise an average of greater than one ion-exchange substituent per monomer unit in said grafted chains.
- 14. An ion-exchange membrane according to claim 11 wherein said grafted chains comprise at least two different types of ion-exchange groups.
- 15. An ion-exchange membrane according to claim 14 wherein said grafted chains comprise an anion exchange group and a cation exchange group.

Leave the second second

16. An ion-exchange membrane according to claim 11 wherein at least a portion of the grafted chains are cross-linked.

The state of the second of the second

- 17. An ion-exchange membrane according to claim 11 wherein said ion-exchange membrane is substantially gas impermeable.
- 18. An ion-exchange membrane according to claim 12 wherein said monomer units are of formula (IV) and the group from which A is selected from consists of hydrogen, OR, SR, NRR' (where R and R' are independently selected from the group consisting of alkyl, fluoroalkyl and aryl).

19. An ion-exchange membrane according to claim 18 wherein A is selected from the group consisting of OR (where R is selected from the group consisting of alkyl and fluoroalkyl) and at

. :

5 least a portion of said monomer units comprise two SO₃H substituents.

1. The state of th

- 20. An ion-exchange membrane according to claim 12 wherein said monomer units are of formula (IV) and the group from which A is selected from consists of Ph, OPh, SPh, N(R)Ph (where R is selected from the group consisting of hydrogen, Ph, alkyl and fluoroalkyl), (CH₂)_nPh and (CF₂)_nPh (where n is an integer greater than zero).
- 21. An ion-exchange membrane according to claim 20 wherein A is OPh, and at least a portion of said monomer units comprise two SO_3H substituents.

in a provincial community of the province of t

22. An ion-exchange membrane according to claim 12 wherein said monomer units are of formula (V).

in the second contribution of the second contrib

23. An electrode apparatus comprising an ion-exchange membrane of claim 17.

Sugar County Harvey County Harvey County Her St.

- 24. A membrane electrode assembly comprising an ion-exchange membrane of claim 17.
 - 25. An electrochemical fuel cell comprising an ion-exchange membrane of claim 17.
 - 26. An electrochemical fuel cell according to claim 25 wherein said preformed polymeric base film is less than 50 μm thick.

27. An ion-exchange membrane comprising a preformed polymeric base film with grafted chains comprising a first monomer unit of formula (VI)

5

10 and a second monomer unit of formula (VII)

$$-CF-CF_2-$$
(VII)

15

wherein X_1 and X_2 are different ion-exchange substituents.

In the street of the state of t

- 28. An ion-exchange membrane according to claim 27 wherein at least a portion of the grafted chains are cross-linked.
- 29. An ion-exchange membrane according to claim 27 wherein said ion-exchange membrane is substantially gas impermeable.
- 30. An electrode apparatus comprising an ion-exchange membrane of claim 29.
- 31. A membrane electrode assembly comprising an ion-exchange membrane of claim 29.

- 32. An electrochemical fuel cell comprising an ion-exchange membrane of claim 29.
- the elimination 33. An electrochemical fuel cell according to claim 32 wherein said preformed polymeric base film is less than 50 µm thick.
- 34. A liquid feed electrochemical fuel cell comprising an ion-exchange membrane of claim 17.
- 35. A liquid feed electrochemical fuel cell according to claim 34 wherein said fuel cell is a direct methanol fuel cell.
- 36. A liquid feed electrochemical fuel cell comprising an ion-exchange membrane of claim 29. The state of the state of the state of the
- 37. An electrochemical fuel cell according: to claim 36 wherein said fuel cell is a direct methanol fuel cell. A grant and a second Commence of the Commence of th

And the control of th The Company of the Co and the second second second second second

Award to the second of the sec and the second s

The state of the s

INTERNATIONAL SEARCH REPORT

nal Application No

PCT/CA 98/01041

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C08J5/22 C08J CO8J7/16 C08F291/00 H01M8/10 Jan San According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 COBJ COBF HOIM Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 140 544 A (CHLORINE ENG CORP LTD) 1 - 378 May 1985 see claims 1,20 & US 4 605 685 A cited in the application US 5 602 185 A (LOUSENBERG ROBERT D ET Α 1 - 37AL) 11 February 1997 see column 4, line 37 - column 5, line 36 see claims 2,3 WO 97 25369 A (BALLARD POWER SYSTEMS Α 1 - 37;STONE CHARLES (CA); STECK ALFRED E (CA)) 17 July 1997 see claims 8,12 -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" éarlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the International filing date but later than the priority date claimed: "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24 February 1999 03/03/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk NL - 2200 FV Fijamija Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

1

Heidenhain, R

INTERNATIONAL SEARCH REPORT

iolòra - rei Application No

PUT/CA 98/01041

Interr nat Application No PCT/CA 98/01041

0.10	PCT/CA 98/01041	1017CA 90	,	
	ation)-DOGUMENTS-CONSIDERED-TO-BE-RELEVANT	•	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	•
Category *	Citation of document, with indication, where appropriate, of the relevant passages	٠,	Relevant to claim No.	•
A	WO 95 08581 A (BALLARD POWER SYSTEMS) 30 March 1995		1-37	
•				•
:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			` ` .
•	t to the transfer of the trans			· J
	and the second s	in in the second		
ŕ				· .
	ta v s Colon			
-	en kare kare kare kare kare kare kare kare			
1	2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			:
	en e	to the terms of	ar est kilonet	
•,		N: 3		
:	AND TO BE A COMMENT OF THE STREET		4	
		alterative right		
1		. el el .		
:		10 x 10 10 10 10 10 10 10 10 10 10 10 10 10		

•

Intern: al Application No

TOPLETAL CROT/CA 98/0104104

	nt document search report	Publication date	T	Patent family / MOTCAD member(s)	TERMA T. noitable P. L. L. P. L.
EP 0	140544 A	08-05-1985	JP JP JP JP US	60195131 A 60055033 A 60110711 A 60127332 A 4605685 A	12-08-1986
US 5	602185 A	11÷02-1997	US AU CA WO EP US AU AU CA WO EP JP US	9639379 A 0848702 A 5684192 A 5773480 A 685503 B 7649294 A 2171298 A,C	,
WO 9	725369 A	17-07-1997	US AU CA EP	5834523 A 1187297 A 2240495 A 0882088 A	10-11-1998 01-08-1997 17-07-1997 09-12-1998
WO - 9	508581 A	700 1995	AU CA EP JP	5422411 A	06-06-1995 22-01-1998 10-04-1995 30-03-1995 10-07-1996 24-12-1996 12-03-1996 11-02-1997 04-11-1997 10-11-1998 30-06-1998