MA 101 (Mathematics - I)

Exercise set 3: Solutions and Hints

- 1. (a) Can a power series $\sum_{n=0}^{\infty} a_n(x-3)^n$ converge at x=0 and diverge at x=5?
 - (b) Suppose $\sum_{n=0}^{\infty} a_n x^n$ converges at -3 and diverges at 4. What can you say about the radius of convergence of the power series?
 - (c) Prove or disprove: There is a power series about 0 which converges at π and diverges at $-\pi$.

Solution:

- (a) No. If the power series about 3 converge a 3, then it must converge in (0,6).
- (b) $R \in [3, 4]$.
- (c) We know the domain of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n}$ is [-1,1).

Check: $\sum_{n=1}^{\infty} \frac{x^n}{n(-\pi)^n}$ has domain of convergence $(-\pi, \pi]$.

2. Suppose $a_n > 0$, $a_n \to 0$ and $a_n^2 > \frac{1}{10^{50}} a_{n+1}$ for each n. Can you determine the domain of convergence of $\sum_{i=1}^{\infty} a_n x^n$?

Solution: $\left| \frac{a_n}{a_{n+1}} \right| = \frac{a_n}{a_{n+1}} > \frac{1}{10^{50} a_n} \to \infty$, since $a_n > 0$ and $a_n \to 0$. Hence $R = \infty$. The domain of convergence is \mathbb{R} .

3. Suppose (a_n) is a sequence converging to 0. One student found that the power series $a_1x + 2a_2x^2 + 3a_3x^3 + \cdots$ converges to f on the interval (-5,5) and another student found that $1 + a_1x + a_2x^2 + a_3x^3 + \cdots$ converges to g with radius of convergence as R. How are the answers of the two students related?

Solution: $R \geq 5$.

- 4. (a) Suppose that $\sum a_n x^n$ is a power series whose radius of convergence is R. Define $f(x) = \sum a_n x^n$ on (-R, R). Argue that $\sum a_n x^n$ is the Taylor series of f about 0?
 - (b) Use your argument and the Taylor series for $\sin x$ to find the Taylor series of $\sin x \cos 3x$ about 0.

Solution: (a) Yes, because $a_n = \frac{f^{(n)}(0)}{n!}$.

- (b) Use $\sin x \cos x = \frac{1}{2}(\sin 4x \sin 2x)$ and the Taylor series for $\sin x$.
- 5. Find radius of convergence and domain of convergence of the following power series:

$$1. \sum \frac{x^n}{n^2}$$

$$2. \sum_{n=0}^{\infty} n(n+1)x^n$$

3.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n^2}$$
4.
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{2^n}$$

$$4. \sum \frac{3^n x^n}{2^n}$$

5.
$$\sum n^n x^n$$

6.
$$2x + \left(\frac{9}{4}x\right)^2 + \dots + \left(\left(\frac{n+1}{n}\right)^n x\right)^n + \dots$$

Solution: Let R = radius of convergence, and D = domain of convergence.

1.
$$R = 1$$
; $D = [-1, 1]$

2.
$$R = 1$$
; $D = (-1, 1)$

3.
$$R = 1$$
; $D = [-1, 1]$

4.
$$R = 2/3$$
; $D = (-2/3, 2/3)$

5.
$$R = 0$$
; $D = \{0\}$

6.
$$|a_n|^{1/n} = \left(\frac{n+1}{n}\right)^n \to e$$
. Therefore, $R = 1/e$. At $x = \pm (1/e)$, $a_n x^n$ does not converge to 0. Hence, $D = \left(-\frac{1}{e}, \frac{1}{e}\right)$.

6. Find the domain of convergence of the power series $\frac{1}{a} - \left(\frac{1}{a}\right)^2(x-a) + \left(\frac{1}{a}\right)^3(x-a)^2 - \frac{1}{a}$ $\left(\frac{1}{a}\right)^4(x-a)^3+\cdots$. Can you give an explicit formula for the function represented by the power series?

Solution: (0, 2a); f(x) = 1/x.

- 7. (a) For f(x) = x on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find $\int_a^b f$.
 - (b) For $f(x) = x^2$ on [0,1] calculate $L(f, \mathbf{P}_n)$ and $U(f, \mathbf{P}_n)$, conclude $f \in \mathcal{R}[0,1]$, and find

Solution: (b)
$$L(f, \mathbf{P}_n) = \sum_{i=1}^n \left(\frac{i-1}{n}\right)^2 \frac{1}{n} \to \frac{1}{3}, \ U(f, \mathbf{P}_n) = \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \frac{1}{n} \to \frac{1}{3}.$$

8. For the function $f: [-2,2] \to \mathbb{R}$ defined by $f(x) = x^5$, find a partition P such that $U(f,P) - L(f,P) < \epsilon$.

Solution: For $n \in \mathbb{N}$,

$$U(f, \mathbf{P}_n) - L(f, \mathbf{P}_n) = \sum_{i=1}^n \left[\left(\frac{i}{n} \right)^5 - \left(\frac{i-1}{n} \right)^5 \right] \frac{1}{n} = \frac{1}{n}.$$

So, for $n > 1/\epsilon$, we have $U(f, \mathbf{P}_n) - L(f, \mathbf{P}_n) < \epsilon$.

9. Give an example of a function on [0,1] such that L(f)=1 and U(f)=2.

Solution: Define $f:[0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} 2, & \text{if } x \in \mathbb{Q}, \\ 1, & \text{otherwise.} \end{cases}$

10. Show by definition that $f:[0,1]\to\mathbb{R}$ defined by $f(x)=x^n$ is integrable.

Solution: Use the argument similar to that of Q.8.

11. Suppose you know that $\lim_{n\to\infty} U(f, \mathbf{P}_n) = \ell$. Is it true that $f \in \mathcal{R}([a, b])$?

Solution: No. Take the Dirichlet function on [0,1].

12. Show that $\frac{1}{2} \le \int_0^1 \frac{1+x-x^2}{1+x^4} dx \le \frac{5}{4}$.

Solution: $\frac{1}{2} \le \frac{1+x-x^2}{1+x^4} \le 1+x-x^2$ on [0, 1]. Therefore,

$$\frac{1}{2} = \int_0^1 \frac{1}{2} \, dx \le \int_0^1 \frac{1 + x - x^2}{1 + x^4} \, dx \le \int_0^1 (1 + x - x^2) dx = \frac{7}{6} < \frac{5}{4}.$$

13. Let f be continuous on [a, b]. If $\int_a^b f = 0$ then show that f(c) = 0 for at least one $c \in [a, b]$. Show that the result may not hold if f is not continuous.

Solution: If false, then using the extreme value theorem, either $f(x) \leq M < 0$ or f(x) > m > 0 for $x \in [a, b]$.

Use the monotonicity of the integral.

(Alternately, use mean value theorem of integrals.)

For the function $f:[-1,1]\to\mathbb{R}$ defined by $f(x)=\begin{cases} 1, & \text{if } x\geq 0,\\ -1, & \text{if } x<0, \end{cases}$ $\int_{-1}^1 f(x)dx=0.$ However, $f(x)\neq 0$ for all $x\in [-1,1].$

14. If f is continuous on [a, b] and $\int_a^b fg = 0$ for every $g \in \mathcal{R}[a, b]$, then show that f = 0.

Solution: Hint: Take g = f.

15. Suppose $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2^n}, & \text{if } x = \frac{k}{2^n} \text{ for some } k, n \in \mathbb{N}, \text{ where } k \text{ is odd,} \\ 0, & \text{otherwise.} \end{cases}$$

Determine whether f is Riemann integrable, and if so, find $\int_0^1 f$.

Solution: Riemann Integrable. The function is similar to the Thomae's function. You can deal it similarly.