

ELEC 341: Systems and Control

Lecture 2 Laplace transform

Course roadmap

Analysis

Modeling

Laplace transform

Transfer function

Ctobility (

Stability

- Routh-Hurwitz
- Nyquist

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

 \dashv

Time response

- Transient
- Steady state

Frequency response

• Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Laplace transform

- One of most important math tools in the course!
- Definition: For a function f(t) (f(t) = 0 for t < 0),

$$F(s) = \mathcal{L}\left\{f(t)\right\} := \int_0^\infty f(t)e^{-st}dt$$
A:=B (A is defined by B.) (s: complex variable)

 $f(t) \downarrow \qquad \qquad \mathcal{L} \qquad F(s)$

• We denote Laplace transform of f(t) by F(s).

Advantages of s-domain

 We can transform an ordinary differential equation into an algebraic equation which is easy to solve.

(Next lecture)

• It makes it easier to analyze and design interconnected (series, feedback, etc.) systems.

(Throughout the course)

• Frequency domain information of signals can be dealt with.

(Lectures for frequency responses)

Examples of Laplace transform

Unit step function

$$f(t) = u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F(s) = \int_0^\infty 1 \cdot e^{-st} dt = -\frac{1}{s} \left[e^{-st} \right]_0^\infty = \frac{1}{s}$$

• Unit ramp function
$$f(t) = tu(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F(s) = \int_0^\infty t e^{-st} dt = -\frac{1}{s} \left[t e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt = \frac{1}{s^2}$$

(Integration by parts: see formula below)

$$\int u \ dv = uv - \int v \ du$$

Integration by parts

Formula

$$\int f'(t)g(t)dt = f(t)g(t) - \int f(t)g'(t)dt$$

Why?

$$[f(t)g(t)]' = f'(t)g(t) + f(t)g'(t)$$

$$\int [f(t)g(t)]' dt = \int [f'(t)g(t) + f(t)g'(t)] dt$$

$$f(t)g(t) = \int f'(t)g(t)dt + \int f(t)g'(t)dt$$

$$\int f'(t)g(t)dt = f(t)g(t) - \int f(t)g'(t)dt$$

Ex. of Laplace transform (cont'd)

• Unit impulse function $f(t) = \delta(t)$

$$\int_{-\infty}^{\infty} \delta(t)g(t)dt = g(0)$$

$$F(s) = \int_0^\infty \delta(t)e^{-st}dt = e^{-s \cdot 0} = 1$$

Exponential function

$$f(t) = e^{-\alpha t}u(t) = \begin{cases} e^{-\alpha t} & t \ge 0\\ 0 & t < 0 \end{cases}$$

$$F(s) = \int_0^\infty e^{-\alpha t} \cdot e^{-st} dt = -\frac{1}{s+\alpha} \left[e^{-(s+\alpha)t} \right]_0^\infty = \frac{1}{s+\alpha}$$

Ex. of Laplace transform (cont'd)

Sine function

$$\mathcal{L}\left\{\sin\omega t \cdot u(t)\right\} = \frac{\omega}{s^2 + \omega^2}$$

Cosine function

$$\mathcal{L}\left\{\cos\omega t \cdot u(t)\right\} = \frac{s}{s^2 + \omega^2}$$

Remark: Instead of computing Laplace transform for each function, you can use the Laplace transform table.

Laplace transform table

$$f(t) \qquad F(s)$$

$$\delta(t) \qquad 1$$

$$u(t) \qquad \mathcal{L} \qquad \frac{1}{s}$$

$$tu(t) \qquad \frac{1}{s^2} \qquad \text{Inverse Laplace Transform}$$

$$t^n u(t) \qquad \frac{n!}{s^{n+1}}$$

$$e^{-at} u(t) \qquad \frac{1}{s+a}$$

$$\sin \omega t \cdot u(t) \qquad \frac{\omega}{s^2 + \omega^2}$$

$$\cos \omega t \cdot u(t) \qquad \frac{s}{s^2 + \omega^2}$$

$$te^{-at} u(t) \qquad \frac{1}{(s+a)^2} \qquad (u(t) \text{ is often omitted.})$$

Properties of Laplace transform 1. Linearity

$$\mathcal{L}\{\alpha_1 f_1(t) + \alpha_2 f_2(t)\} = \alpha_1 F_1(s) + \alpha_2 F_2(s)$$

Proof.
$$\mathcal{L}\{\alpha_{1}f_{1}(t) + \alpha_{2}f_{2}(t)\} = \int_{0}^{\infty} (\alpha_{1}f_{1}(t) + \alpha_{2}f_{2}(t))e^{-st}dt$$

$$= \alpha_{1}\underbrace{\int_{0}^{\infty} f_{1}(t)e^{-st}dt}_{F_{1}(s)} + \alpha_{2}\underbrace{\int_{0}^{\infty} f_{2}(t)e^{-st}dt}_{F_{2}(s)}$$

Ex.
$$\mathcal{L}\left\{5u(t) + 3e^{-2t}\right\} = 5\mathcal{L}\left\{u(t)\right\} + 3\mathcal{L}\left\{e^{-2t}\right\} = \frac{5}{s} + \frac{3}{s+2}$$

Properties of Laplace transform 2. Time delay

$$\mathcal{L}\left\{f(t-T)u(t-T)\right\} = e^{-Ts}F(s)$$

Proof.

$$\mathcal{L}\left\{f(t-T)u(t-T)\right\}$$

$$= \int_{T}^{\infty} f(t-T)e^{-st}dt$$

$$= \int_{0}^{\infty} f(\tau)e^{-s(T+\tau)}d\tau = e^{-Ts}F(s)$$

EX.
$$\mathcal{L}\left\{e^{-0.5(t-4)}u(t-4)\right\} = \frac{e^{-4s}}{s+0.5}$$

Properties of Laplace transform 3. Differentiation

$$\mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0)$$

Proof.

$$\mathcal{L}\left\{f'(t)\right\} = \int_0^\infty f'(t)e^{-st}dt$$
$$= \left[f(t)e^{-st}\right]_0^\infty + s\int_0^\infty f(t)e^{-st}dt = sF(s) - f(0)$$

Ex.

$$\mathcal{L}\{(\cos 2t)'\} = s\mathcal{L}\{\cos 2t\} - 1$$

$$= \frac{s^2}{s^2 + 4} - 1 = \frac{-4}{s^2 + 4}$$

$$(= \mathcal{L}\{-2\sin 2t\})$$

Properties of Laplace transform *4. Integration*

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$$

Proof.

$$\mathcal{L}\left[\int_{0}^{t} f(\tau)d\tau\right] = \int_{0}^{\infty} \left(\int_{0}^{t} f(\tau)d\tau\right) e^{-st}dt$$

$$= -\frac{1}{s} \left[\left(\int_{0}^{t} f(\tau)d\tau\right) e^{-st} \right]_{0}^{\infty}$$

$$+\frac{1}{s} \int_{0}^{\infty} f(t)e^{-st}dt$$

$$= \frac{F(s)}{s}$$

EX.
$$\mathcal{L}\left\{\int_0^t u(\tau)d\tau\right\} = \frac{\mathcal{L}\left\{u(t)\right\}}{s} = \frac{1}{s^2}$$

Properties of Laplace transform 5. Final value theorem

"Open" means that it does not include imaginary axis. "Closed" means that it does include imaginary axis.

Properties of Laplace transform 5. Final value theorem (FVT)

If all the poles of sF(s) are in open left half plane (LHP), with possibly $\longrightarrow \lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$ one simple pole at the origin.

Ex.
$$F(s) = \frac{5}{s(s^2 + s + 2)} \implies \lim_{t \to \infty} f(t) = \lim_{s \to 0} \frac{5}{s^2 + s + 2} = \frac{5}{2}$$

Poles of sF(s) are in LHP, so final value theorem applies.

(poles = roots of the denominator)

Ex.
$$F(s) = \frac{4}{s^2 + 4}$$
 $\implies \lim_{t \to \infty} f(t) \neq \lim_{s \to 0} \frac{4s}{s^2 + 4} = 0$

Since some poles of sF(s) are not in open LHP, final value theorem does NOT apply.

Properties of Laplace transform 6. Initial value theorem (IVT)

$$\lim_{t\to 0+} f(t) = \lim_{s\to \infty} sF(s)$$
 if the limits exist.

Remark: In this theorem, it does not matter if pole location of sF(s) is in LHP or not.

Ex.
$$F(s) = \frac{5}{s(s^2 + s + 2)}$$
 $\implies \lim_{t \to 0+} f(t) = \lim_{s \to \infty} sF(s) = 0$

Ex.
$$F(s) = \frac{4}{s^2 + 4}$$
 $\implies \lim_{t \to 0+} f(t) = \lim_{s \to \infty} sF(s) = 0$

Properties of Laplace transform 7. Convolution

$$F_{1}(s) = \mathcal{L} \{f_{1}(t)\}$$

$$F_{2}(s) = \mathcal{L} \{f_{2}(t)\}$$

$$F_{1}(s)F_{2}(s) = \mathcal{L} \{\int_{0}^{t} f_{1}(\tau)f_{2}(t-\tau)d\tau \}$$

$$= \mathcal{L} \{\int_{0}^{t} f_{1}(t-\tau)f_{2}(\tau)d\tau \}$$

IMPORTANT REMARK

$$F_1(s)F_2(s) \not\succeq \mathcal{L} \{f_1(t)f_2(t)\}$$

Properties of Laplace transform 8. Frequency shift theorem

$$\mathcal{L}\left\{e^{-at}f(t)\right\} = F(s+a)$$

Proof.

$$\mathcal{L}\left\{e^{-at}f(t)\right\} = \int_0^\infty e^{-at}f(t)e^{-st}dt$$
$$= \int_0^\infty f(t)e^{-(s+a)t}dt = F(s+a)$$

Ex.

$$\mathcal{L}\left\{te^{-2t}\right\} = \frac{1}{(s+2)^2}$$

Example 1

$$\mathcal{L}\left\{\delta(t-2T)\right\} = ?$$

$$\begin{cases} \mathcal{L} \{\delta(t)\} = 1 \\ \mathcal{L} \{f(t-2T)\} = e^{-2Ts} F(s) \end{cases}$$

Example 2

$$\mathcal{L}\left\{\sin 2t\cos 2t\right\} = ?$$

$$\mathcal{L}\left\{\sin 2t \cos 2t\right\} = \mathcal{L}\left\{\frac{1}{2}\sin 4t\right\}$$
$$= \frac{1}{2}\mathcal{L}\left\{\sin 4t\right\}$$
$$= \frac{1}{2} \cdot \frac{4}{s^2 + 4^2}$$

Euler's formula

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$\begin{cases} e^{j\theta} = \cos \theta + j \sin \theta \\ e^{-j\theta} = \cos \theta - j \sin \theta \end{cases}$$

Example 3

$$\mathcal{L}\left\{t\sin 2t\right\} = ?$$

$$\mathcal{L}\left\{t \sin 2t\right\} = \frac{\sin \theta}{\sin \theta} = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$\mathcal{L}\left\{t \sin 2t\right\} = \mathcal{L}\left\{t \cdot \frac{e^{2jt} - e^{-2jt}}{2j}\right\}$$

$$= \frac{1}{2j}\left\{\mathcal{L}\left\{te^{2jt}\right\} - \mathcal{L}\left\{te^{-2jt}\right\}\right\}$$

$$= \frac{1}{2j}\left\{\frac{1}{(s-2j)^2} - \frac{1}{(s+2j)^2}\right\}$$

$$= \frac{1}{2j} \cdot \frac{(s+2j)^2 - (s-2j)^2}{(s^2+4)^2} = \frac{4s}{(s^2+4)^2}$$

Summary

- Laplace transform (an important math tool!)
 - Definition
 - Laplace transform table
 - Properties of Laplace transform
- Next
 - Solution to ODEs via Laplace transform