Math 129 Problem Set 4

Lev Kruglyak

February 28, 2022

For any number field K, we'll use \mathcal{O}_K to denote the ring of integers of K, i.e. $\mathcal{O}_K = \mathbb{A} \cap K$. Also let $\Delta(\cdots)$ be the discriminant. We'll use Δ_K to mean the discriminant of a number field K.

Problem 2.40. In the notation of Theorem 2.13, establish the formula

$$\Delta(\alpha) = (d_1 d_2 \cdots d_{n-1})^2 \Delta_K.$$

Notice that by Theorem 2.13, we have

$$\Delta_K = \Delta\left(1, \frac{f_1(\alpha)}{d_1}, \dots, \frac{f_{n-1}(\alpha)}{d_{n-1}}\right).$$

By properties of discriminant and determinant, multiplying the matrix by $d_1d_2\cdots d_{n-1}$ gives us $\Delta(1, f_1(\alpha), \ldots, f_{n-1}(\alpha)) = (d_1d_2\cdots d_{n-1})^2\Delta_K$. We next claim that $1, f_1(\alpha), \ldots, f_{n-1}(\alpha)$ is an integral basis for $\mathbb{Z}[\alpha]$. This follows by induction and because f_i are all monic of degree i, so we can show that α^i can be generated by $1, f_1(\alpha), \ldots, f_i(\alpha)$. Thus $\Delta(\alpha) = \Delta(1, f_1(\alpha), \ldots, f_{n-1}(\alpha))$, completing the proof.

Problem 2.43. Let $f(x) = x^5 + ax + b$ where $a, b \in \mathbb{Z}$ and assume that f(x) is irreducible in $\mathbb{Q}[x]$. Let α be a root of f(x).

- (a) Show that $\Delta(\alpha) = 4^4 a^5 + 5^5 b^4$.
- (b) Suppose $\alpha^5 = \alpha + 1$. Show that $\mathcal{O}_{\mathbb{Q}[\alpha]} = \mathbb{Z}[\alpha]$.
- (a) First note that $\alpha^5 + a\alpha + b = 0$ so $\alpha^4 = \frac{a\alpha + b}{-\alpha}$. Thus $f'(\alpha) = \frac{5a\alpha + 5b}{-\alpha} + a\alpha = \frac{4a\alpha + 5b}{-\alpha}$. By Theorem 2.8, and because $d \equiv 1 \mod 4$ we have

$$\Delta(\alpha) = \mathcal{N}^{\mathbb{Q}[\alpha]}(f'(\alpha)) = \frac{\mathcal{N}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b)}{\mathcal{N}^{\mathbb{Q}[\alpha]}(-\alpha)}.$$

Note that $4a\alpha + 5b$ is a root of the irreducible polynomial $g_1(x) = \left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b$, so by Theorem 2.4 and Vieta's formulas,

$$N^{\mathbb{Q}[\alpha]}(4a\alpha + 5b) = (-1)^5 \left(\frac{x^0 \text{ coefficient of } g_1}{x^5 \text{ coefficient of } g_1}\right) = \frac{\left(-\frac{5b}{4a}\right)^5 - \frac{5b}{4} + b}{\left(\frac{1}{4a}\right)^5}$$
$$= -5^5b^5 - 5 \cdot 4^4a^5b + 4^5a^5b = 4^4a^5b + 5^5b^5.$$

Similarly, $-\alpha$ is the roof of the irreducible polynomial $g_2(x) = x^5 + ax - b$ so $N^{\mathbb{Q}[\alpha]}(-\alpha) = b$. Thus $\Delta(\alpha) = 4^4 a^5 + 5^5 b^4$.

(b) First we'll show that $f(x) = x^5 - x - 1$ is irreducible, since α is a root. Clearly if f(x) were reducible, it would not have any linear factors because $f(x) \equiv 1 \mod 2$ so it has no integral roots. So it must have one quadratic factor and one cubic factor. Let g(x) be the irreducible quadratic factor of f(x). Then $\mathbb{F}_5[x]/(g(x)) \cong \mathbb{F}_5[\alpha] \cong \mathbb{F}_{25}$. However in \mathbb{F}_{25} , $\alpha^2 = \alpha$, yet $\alpha^2 = (\alpha^5)^5 = (\alpha + 1)^5 = \alpha^5 + 1 = \alpha + 2$, so $\alpha + 2 = \alpha$. This is impossible, so f(x) must be irreducible.

Then by (a), $\Delta(\alpha) = 2869$ which is squarefree, so by Theorem 2.9, $\{1, \alpha, \alpha^2, \alpha^3, \alpha^4\}$ is an integral basis for $\mathbb{Q}[\alpha]$. Thus $\mathcal{O}_{\mathbb{Q}[\alpha]} = \mathbb{Z}[\alpha]$.

Problem 3.1. For any integral domain R, prove that the following conditions are equivalent:

- 1. Every ideal is finitely generated.
- 2. Every increasing sequence of ideals $I_1 \subset I_2 \subset \cdots$ is eventually constant.
- 3. Every non-empty set S of ideals of R has a maximal member; i.e. $\exists M \in S$ such that $M \subset I \in S$ implies that M = I.
- (1) \Longrightarrow (2): Suppose $I_1 \subset I_2 \subset \cdots$ is an increasing chain of ideals of R. Then $\bigcup_i I_i$ is an ideal in R, so it must be finitely generated by (1), say $\bigcup_i I_i = (r_1, \ldots, r_n)$. We can assume without loss of generality that all of the inclusions are proper. Say $r_1 \in I_1$. Then I_2 must contain one of the other r_i or else $I_1 = I_2$, say $r_2 \in I_2$. Then by induction $I_n = (r_1, \ldots, r_n)$ so $I_m = I_n$ for all m > n. So the sequence is eventually constant.
- (2) \implies (3): S can be given the structure of a partially ordered set, and (2) implies that every chain has an upper bound, so by Zorn's lemma there must be some maximal element satisfying the conditions of (3).
- (3) \Longrightarrow (1): Let I be an ideal in R. Consider the family of ideals $\{(S)\}_{S \text{ finite subset of } I}$ where (S) is the ideal generated by the set $S \subset I$. By (3), there must be some maximal member of this family, say $M = (r_1, \ldots, r_n)$. Then for any element $r \in I$, we have $M \subset (r_1, \ldots, r_n, r)$ so $r \in M$. This means that I = M so I is finitely generated.

Problem 3.2. Prove that every finite integral domain is a field.

Let K be a finite integral domain and let $\alpha \in K$ be a nonzero element. Consider the set $S_{\alpha} = \{1, \alpha, \alpha^2, \ldots\} \subset K$. Since K is an integral domain, $0 \notin S_{\alpha}$. So by the pigeonhole principle there must be some n > m such that $\alpha^n = \alpha^m \neq 0$. Then $\alpha^{n-m} = 1$ and so α^{n-m-1} is a multiplicative inverse for α . Thus K is a field.

Problem 3.7. Show that if I, J are ideals in a commutative ring such that $1 \in I + J$, then $1 \in I^n + J^m$ for all m, n.

Since $1 \in I + J$, there is an $\alpha \in I$ and $\beta \in J$ such that $1 = \alpha + \beta$. Then

$$1 = (\alpha + \beta)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} \alpha^k \beta^{n+m-k}$$
$$= \underbrace{\sum_{k=0}^{n} \binom{n+m}{n-k} \alpha^{n-k} \beta^{m+k}}_{I^m} + \underbrace{\sum_{k=1}^{m} \binom{n+m}{k+n} \alpha^{k+n} \beta^{m-k}}_{I^n}.$$

Thus $1 \in I^n + J^m$.

Problem 3.9. Let $K \subset L$ be number fields

- (a) Let $I, J \subset \mathcal{O}_K$ be ideals and suppose $I \cdot \mathcal{O}_L \mid J \cdot \mathcal{O}_L$. Show that $I \mid J$.
- (b) Show that for each ideal I in \mathcal{O}_K , we have $I = I \cdot \mathcal{O}_L \cap \mathcal{O}_K$.
- (c) Characterize those ideals I of \mathcal{O}_L such that $I = (I \cap \mathcal{O}_K) \cdot \mathcal{O}_L$.
- (a) Factor $I = \prod_i \mathfrak{p}_i^{e_i}$ and $J = \prod_i \mathfrak{p}_i^{r_i}$ where only a finite number of the e_i, r_j are nonzero. Then we have $I \cdot \mathcal{O}_L = \prod_i (\mathfrak{p}_i \cdot \mathcal{O}_L)^{e_i}$ and $J \cdot \mathcal{O}_L = \prod_i (\mathfrak{p}_i \cdot \mathcal{O}_L)^{r_i}$. However by Theorem 3.20, each $\mathfrak{p}_i \cdot \mathcal{O}_L = \prod_{j \in S_i} \mathfrak{P}_j^{s_j}$ where \mathfrak{P}_j is a prime in \mathcal{O}_L and $S_i \cap S_n = \emptyset$ for $i \neq n$. Thus

$$I \cdot \mathcal{O}_L = \prod_i (\mathfrak{p}_i \cdot \mathcal{O}_L)^{e_i} = \prod_i \prod_{j \in S_i} \mathfrak{P}_j^{e_i s_j}$$

and likewise for J. Thus if $I \cdot \mathcal{O}_L \mid J \cdot \mathcal{O}_L$ then $e_i s_j \leq r_i s_j$ for all i and $j \in S_i$. Since S_i are nonempty, this means that $e_i \leq r_i$ for all i. However this implies that $I \mid J$ so we are done.

- (b) Again factor $I = \prod_i \mathfrak{p}_i^{e_i}$, setting $I \cdot \mathcal{O}_L = \prod_i \prod_{j \in S_i} \mathfrak{P}_j^{e_i s_j}$. Then note that by Theorem 3.19 $\mathfrak{P}_j \cap \mathcal{O}_K = \mathfrak{p}_i$ whenever $j \in S_i$. This means that $\left(\prod_{j \in S_i} \mathfrak{P}_j^{s_j}\right) \cap \mathcal{O}_K = \mathfrak{p}_i$ and so by extension $I \cdot \mathcal{O}_L \cap \mathcal{O}_K = I$.
- (c) We claim that this is only true if $I = J \cdot \mathcal{O}_L$ for some ideal $J \subset \mathcal{O}_K$. Indeed if $J \subset \mathcal{O}_K$ is an ideal then by (b), $(J \cdot \mathcal{O}_K \cap \mathcal{O}_K) \cdot \mathcal{O}_L = J \cdot \mathcal{O}_L = I$. Conversely, if I is some ideal in \mathcal{O}_L satisfying $I = (I \cap \mathcal{O}_K) \cdot \mathcal{O}_L$ then $J = (I \cap \mathcal{O}_K)$. This completes the proof.