PATENT ABSTRACTS OF JAPAN

(11)Publication number:

58-083313

(43) Date of publication of application: 19.05.1983

(51)Int.CI.

G11B 5/09 H04L 25/49

H04N 5/92 H04N 9/491

(21)Application number: 56-181974

(71)Applicant: SONY CORP

(22)Date of filing:

13.11.1981

(72)Inventor: WATANABE KENJI

(54) ENCODING METHOD FOR DIGITAL PICTURE DATA

(57)Abstract:

PURPOSE: To decrease the value of DSV regarding picture data by substituting a word in a natural binary code by a prescribed word, and inverting it into a complementary word. CONSTITUTION: A color video signal is supplied to an A-D converter 2, which converts the input into a word in an 8-bit natural binary code. This data word is supplied to a DSV control encoding circuit 3, which substitutes the data word by an 8-bit word rearranged by CDS. At the same time, this substituted word is inverted into a complementary word, word by word, by utilizing correlation. Consequently, DSV for picture data is reduced greatly.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

⑩特許出願公開

⑫公開特許公報(A)

昭58-83313

①Int. Cl.³ G 11 B 5/09 H 04 L 25/49 H 04 N 5/92

9/491

識別記号

庁内整理番号 8021--5D 6684--5K 7334--5C 7155--5C ❸公開 昭和58年(1983)5月19日

発明の数 1 審査請求 未請求

-株式会社厚木工場内

(全 10 頁)

例デジタル画像データのエンコーデイング方法

②特

賴 昭56—181974

@出

願 昭56(1981)11月13日

⑩発 明 者

渡辺健治 厚木市旭町 4 丁目14番 1 号ソニ ⑪出 願 /

願 人 ソニー株式会社

東京都品川区北品川6丁目7番

35号

74代 理 人 弁理士 伊藤貞

外1名

明細 書

発明の名称 デジタル面像データのエンコーデ イング方法

特許請求の範囲

デジタル画像データワードを複数ワード毎にブロック化し、これにブロック同期信号及び写合に、ス信号等の付加データを付加して送送すると、上記が対して伝送ピットとを上げ行なりとで対してあるような並べ換えを行なうとしるので、上記付加データは、この付加ド群よりも多数のワード群よりを受からのだけを選択した。その選択したデジタル画像データのエンコーディング方法。

発明の詳細な説明

カラー映像信号をサンプリングし、 1 サンプル 当たり n ピット、例えば 8 ピットのデジタルデー タ (1 ワード) にして V T B に記録し、再生した り、また、このデジタルデータに伝送することが 考えられている。

この場合、1サンブル8ピットのデータをそのまま例えばVTRで記録するとすると、そのときの記録信号の2値レベルの"1"と"0"とは均一に現われないため記録信号には応々にして直流分が含まれる。ところが、一般の磁気ヘッド装置では、再生時に直流分を再生することができないため、記録系にかいて、記録信号中にこの直流分が含まれないようにするエンコーディングが記録信号に対して行なわれる。

この記録時のエンコーデイングは、記録信号のD8V(Digital Sum Variation)がなるべく小さくなるようにする処理である。ここで、D8Vとは2値レベルの"1","0"をそれぞれ+1・,-1に対応させて積分した値であつて、このD8Vは任意の時点あるいは期間について値を持つものである。そして、連続する2値信号について始めからD8Vを求めた場合、そのD8Vが限りなく増加あるいは減少するならば、その信号は直流分を持ち、D8Vが有界ならば、直流分をもたない。

従来、との8ピットの記録信号のDSVを小さくするエンコード処理の方法としては、いわゆる8・9変換、8・10変換のようなプロックコーディングやM²(Modified Miller)のようなエンコーディング方法が採用されている。これらのエンコーディング方法ではソースピットレイトに対する記録ピットレイトが高くなる。換賞すれば、8ピットのデータ長を9ピット、10ピット、16ピットと拡張することにより、記録信号のDSVを小さくするようにしていたのである。

ところが、最近では記録信号の情報量の増大に 伴い、ソースピットレイト自体が高くなる傾向に ある。このため、記録ピットレイトはあまり高く できず、ソースピットレイトのままで記録できる よりにすることが要求されている。

この発明の第1の目的は、配録すべき画像データについて上記の要求を満足させる方法を提供するととにある。

すなわち、この発明においては、次の2つの処理をすることにより画像データについてはソース

ピプトレートを上げないようにする。

第1の処理は、1ワードロビットのデータを1ワード当たりのD8Vの値、すなわちCD8 (Codeword Digital 8um)によつて並べ換えた同じくロビットの各ワードに1対1に対応させて置き換える処理である。

この場合、置き換える処理は、基本的には、面像データワードの相関のあるもののグループに対し、CDSの値が同じであるワードのグループを割り当てて置き換える。

第2の処理は、このCDSの値に基づいて置き 換えられたデータワードを、相関のあるデータワ ードで1ワード毎あるいは複数ワード単位毎にそ の各データワードとコンプリメンタリなワードに さらに置き換える処理である。

この2つの処理を行なうことにより、ソースピットレイトに対し記録ピットレイ、トを高めることなく、後述のように面像データに対してのDSVを大幅に減少させることができる。

ととろで、との画像ゲータを記録する場合におっ

いて、再生時の画像データ処理に便利なように、 画像データを複数サンプル毎にプロック化し、と れに同期ワードやアドレスワードを付加したり、 さらに記録媒体や伝送路の特性を考慮して誤り訂 正コードを付加することが通常行なわれ、また、 必要でもある。

したがつて、実際にはこれらの付加ワードが前述したD8Vが小さくなるようにする処理が施された画像データワードに対して付加されるわけであるが、これらが付加されることによりせつかく減少したD8Vが、前記処理が意味がなくなるほどに大きくなつてしまうことがあつた。

との発明の第2の目的は、画像データワードに 付加ワードを付加したとき上記のような欠点が生 じないようにすることである。

すなわち、この発明においては、付加データとして必要なワード数よりも多数のワード群より CDSの小さいものだけを選び出し、その選び出 した各ワードに付加ワードを置き換える処理をす るものである。 以下、この発明方法の一実施例を図を参照しながら説明しよう。

第1回はこの発明方法を、カラー映像信号をデ ジタル信号にして記録再生する装置に適用した場合の系統図を示すものである。

なか、との場合の主な仕様は次のようなものと なつている。

信号配象方式 焊度信号Y、色差信号U=B-Y、

V=R-Yのコンポーネント

サンプリング周波数 Y;4[sc,U,V; 2[sc

ただし(scは色副搬送波周波数。

元のサンプル数 768サンプル×51H/セグメント

ただし1日は1水平ライン

コーデイング後の 1296サンブル×36H/

サンプル数 セグメント

1 サンプル当り 8 ピットサンプル

1 フィールド当り 5 セグメント / NTSC 以上のような仕様である。

図で、(1)はカラー映像信号の入力値子で、これを通じたカラー映像信号はA-D変換器(2)に供給

。され、サンプリングされ、そのサンプリング値が 8 ピットのナチュラルパイナリーコードのワード ・ に変換される。

とのA - D変換器(2)よりの8ピット並列の画像 データワードはD8Vコントロールエンコーディング回路(3)に供給される。

とのエンコーデイング回路(3) においては、前述したように、各8ピットのデータワードがCD8によつて並べ換えられた1ワード8ピットの各ワードに置換される。この場合、置換されるワードは、例えばBOMに配信されていて、対応するナチュラルパイナリーコードでそのアドレスが指定されることにより読み出されて各ワードが置換されるようにされる。

第 2 図A,B,Cは、8 ビットのナチュラルパイナリーコードの 256 個の全てのワードに対し、並べ換えられるワードの対応の一例を示すものである。図に≯いて、「元の値」と表示したのはA,-D変換器(2)から得られるナチュラルパイナリーコードの各ワードの10進表示であり、ROMのア

る。この反転処理回路(4) においては、例えば1ワード毎に、そのワードとコンプリメンタリなワードに置換される処理がなされる。

すなわち、この反転処理回路(4)においては、あるワードはそのまま出力され、それに続く1ワードは"1"と"0"とが全く反転された状態のコンプリメンタリなワードに置換される。例えば、第2回が一タワード(DSVCC)(00110001)が反転されるとすると、これは〔11001110〕に変換される。この値は「元の値202 置換値206」のデータワードに相当し、そのCDSは十十2である。すなわち、この場合、エンコーディング国路(3)よりのデータワードのコンプリメンタリなワードは元のワードに対しCDSの正負の極性が反対となるワードである。

とうして、との回路(4)からは、そのままのワードと反転されたワードとが交互に得られるものとなり、入力カラー映像信号が相関の強い信号であることを考えれば、この反転処理回路(4)の出力デ

ドレスに相当する。

また、「世換値」と表示したのは世換されるワードの10進表示であり、「DSVCC」と表示したものはそのパイナリーコード表示である。

この第2図から明らかなように、ナチュラルバイナリーコードの隣接する値、つまり相関のあるデジタルデータに対して、基本的にはCDSの値が同一値であるワードのグループが置換ワードとして割り当てられる。そして、相関のある信号に対しCDSが同一値とならないときはそのCDSの差がなるべく小さいものが割り当てられる。

しかも、データとして出現確率の高い中央値「128」の近傍に対しては、CD8が0である8ピットワードが割り扱られ、そして、との値[128]より達ざかるに従つて、値「128」より小さい値となる方向では、-2,-4…、値「128」より大きくなる方向では+2,+4、…と、順次CD8の絶対値の大きいものが割り扱られる。

とうしてとのエンコーデイング囲路(3) において 置換された各ワードは反転処理回路(4) に供給され

ータワードのDSVを計算すれば、その値は「0」 に収束する方向になるととは容易に理解できる。

この反転処理国路(4)からの画像データワードは 記録プロセンサ(5)に供給される。

このプロセッチ(5)では例えば1水平区間分の画像データが4分割され、この4分割された画像データが1プロック分とされて、この1プロック分の画像データに対して第3回に示すように CRCC (Cyclic Redundancy Check Code) が付加されるととしにプロック同期信号及びアドレスコードが付加される。

すなわち、1 ブロック分の画像データ(例えば204ワード) に対して 8 ワード分の CRCC が計算されて求められ、とれが第 3 図に示すように、1 ブロック分の画像データの終わりの部分に付加される

プロック問期信号は、1 プロック分の画像データに対して同じものが 3 ワード分として各プロックの免頭の位置に付加されるもので、この場合、プロック同期信号としては、D S V を考慮して、

特開昭58-83313(4)

例えば(00110001)(11001100)(01110011)の3つのコードワードが用いられる。

アドレスコードはプロック同期信号と面像データとの間に 6 ワード分挿入されるもので、そのうちの初めの 2 ワード CD₃ , CD₂ が実際のアドレスとされる。そしてその 2 ワードのうちの 1 ワード目 CD₃ はヘッド指定、及びセグメント指定アドレスとされ、 2 ワード目 CD₂ はプロック指定アドレスとされる。

との場合、プロック指定アドレスはセグメント 内のプロックの番号に応じて定められるものである。との例においては、1セグメント当たりのプロック数は216とされるが、この数についてはこの発明では要旨ではないので、ここではその説明は省略する。

アドレスデータの 3 ワード目 CD₁ と 4 ワード目 CD₀ は初めの 2 ワードに対する CRCC である。

また、5 ワード目 CW_1 と6 ワード目 CW_2 とは次のようにして得られるコードである。

 $\begin{pmatrix} \mathbf{CW_1} \\ \mathbf{CW_2} \end{pmatrix} = \begin{pmatrix} \mathbf{T^0} & \mathbf{T^0} & \mathbf{T^0} & \mathbf{T^0} \\ \mathbf{T^0} & \mathbf{T^1} & \mathbf{T^2} & \mathbf{T^8} \end{pmatrix} \begin{pmatrix} \mathbf{CD_0} \\ \mathbf{CD_1} \\ \mathbf{CD_2} \\ \mathbf{CD_8} \end{pmatrix}$

そして、この場合、プロックアドレスワード
CD2 は、セグメント内のプロックの服香通りの値をそのまま割り当てるのではなく、第4回に示すように、プロックのセグメント内の服香の若い番号から順に、先ずCD8の値が「0」であるワードが終了した後は、CD8の値が「+2」であるワードをに「-2」であるワードが終了したの8の値が「+2」であるワードが終了

したら、同様にして C D S の値が「+4」である ワードと、「-4」であるワードとが、1ワード 毎に交互に割り当てられる。

このように、CDSの値が正のものと、負のものとを交互に割り当てるのは、正のものと負のものの数が等しくなるようにするためで、全体としてDSVの減少に寄与させるためのものである。

(6)は上記のアドレスワードが記憶されている ROMで、1セグメント内のプロックの番号(順位)で示されるこのROM(6)のアドレスに、対応 するプロックアドレスワード CD₂ が配憶されている。

とうして、1 ブロック当たり第3 図のようなフォーマットのデータとされたものは、ブロセッサ (5)よりパラレル・シリアル変換器(7) に供給されて、8 ピット並列のデータが直列データに変換され、これが V T R(8) に供給されて記録される。

この場合、VTR(8) においては、カラー映像信号の1フィールド分のデータ当たり複数本の斜めトラックとしてテープ上に記録される。

このVTR(8)が再生状態にされると、その再生 データは、シリアル・パラレル変換器(9)に供給されて直列データが8ピット並列のワード単位のデータ列に変換される。この変換器(9)よりのデータワードは再生プロセッサ(4)に供給される。

この再生プロセッサ (Q) においては、各プロック のアドレスワード CD₂ が R O M (I) によつて 1 セグ メント内のプロックの番号を表わすワードに変換 されるとともに CRCCが用いられて誤り検出及び 訂正がなされる。

このプロセッチ(I)からの出力データは逆反転処理 国路(I)に供給されて、配録時コンプリメンタリなワードに変換された顕像データがもとのワードに戻される。この逆反転処理国路(I)の出力データはDSVコントロールデコーデイング回路(I)に供給されて、画像データワードについて記録系のエンコーデイング回路(I)の置換と全く逆の置換がこのDSVコントロールデコーディング回路(I)においてなされる。使つて、この回路(I)はROMを有している。

とのデコーディング回路はから得られるワード

特開昭58-83313(5)

はもとのナチュラルバイナリーコードであり、とれは D - A 変換器 Q4 に供給されてもとのアナログカラー映像信号に戻され、出力増子 Q5 に導出される。

以上のよりにして、この発明においては、面像データについては、ナチュラルバイナリーコテル でで DSの値に基づいて並りたといるのでは、カチュラのでは、カードを T が L が L を T

この場合、入力信号の相関性に着目してナチュラルパイナリーコードのワードをワード毎あるV は複数ワード毎に反転処理するようにしてもDSV の値はある程度小さくすることはできる。しかしながら、ナチュラルパイナリーコードの場合、反 転処理をしてもDSVの減少にならない部分があり、この発明のような効果は得られない。

全てのワード間で小さくなることもわかる。

以上のように、ナチュラルパイナリーコードの場合、第5図及び第6図からも明らかなように、DSVの値は増えたり、被つたりしている。したがつて、反転処理をしても一概にDSVが被少するとは言えない部分が生じる。例えば、第5図で、値「31」のコードから値「32」のコードの部分で反転処理をするとこの部分ではDSVは8となって、かえつて大きくなつてしまうのである。

とれに対し、との発明によつてDSVコントロールエンコーデイングした画像データは、DSVの値が第5図及び第7図から明らかなように相関のあるデータ同志ではCDSはほぼ等しくなつているから、この相関のあるデータ同志で反転処理をすればDSVは必ず減少する傾向を程するのである。

因に、上述の例のようにVTRにカラー映像信号をその1フイールド当たり複数本のトラックを 形成して記録する場合において、1セグメント当 たりについて、ナチュラルパイナリーコードの状

そして、特に通常の入力映像信号の場合、データとしてはレベルが「16」~「240」程度が用いられ、「128」前後のデータの出現確率が高いものとなることを考え併わせれば、DSVコントロールエンローディングしたワードはCDSの値の差が、

整で反転処理したとき、この発明によるD8Vョントロールエンコーデイングをしてさらに反転処理したときのCDSの平均値、DSVの最大値、DSV
1 セグメントについての最終値を、第8図に示す。なか、これは画像データのみについての結果であって、プロック同期信号、アドレス信号及びCRCCは付加していない状態のものである。

この第8図から明らかなように、面像データについて、ナチュラルパイナリーコードのままで反転処理したときのDSVの最終値に対し、この発明によれば最終値は品に減少するものである。

以上は画像データのみについてのDSVについてのDSVについてのDSVについてのDSVについて表演なりに、実際上はVTRへの配象再生について最適な処理を行なりため、画像データを複数ワード毎のプロックをもして、これに同期信号、CRCC、アドレス信号を付加する。これら付加するデータに何かして記録を増加されたときのDSVの最大値等は第9図の上2段に示す如くである。

すなわち、第8図の面像データのみの場合に比べてDSVが大幅な増大がみられ、特に、との発明によるDSVコントロールエンコーデイング及び反転処理した面像データにアドレス等が付加されると、との面像データについて行つた処理の効果が大きく波殺されてしまりことがわかる。

ところで、同期信号は定まつたコードワードを割り当てればよいので、その割り当てるコードワードについて考慮すれば D 8 V の増大はある程度防げるはずである。

また、CRCCは全くランダムに発生するコードであるから、これによるDSVの増大もそれほど問題にならないと考えられる。

すると、DSVの増大の主な原因はアドレスワ ードであると考えられる。

以上のような考えに基づいて、上述の例ではブロックアドレスワード CD2 について、CDS の絶対 位の小さいワードから順次割り当てる処理を施し たのである。

このアドレスワードについて処理を行つて、と

の発明による処理が施された画像データに同期信号、CRCCとともに付加したときのD8Vの最終値等を第9図の最下段に示す。これから明らかなように、アドレスワードについてこの発明による処理を施せば、このアドレス等に何等の処理を施さなかつた場合に比べてD8Vの最大値で約また機会でおれる。

以上述べたようにして、この発明によれば、面像データについてソースピントレートに対して伝送ピットレートを高くすることなく伝送画像データのDSVを大幅に小さくすることができるとともに、この画像データに付加するデータについても特殊な処理を施すようにしたので画像データについてのDSVの減少効果を扱うことはない。つまり、伝送データ全体についてのDSVを大幅に減少することができるものである。

なか、第2図A,B,Cに示した画像データについて対応表及び第4図に示したプロックアドレスワードについての対応表は、一例であり、いずれの場合にかいても、CDSの値が同一値であるワー

ド群の範囲内で適当な並べ換えを行なつてもよい。 また、画像データについての反転処理は1ワー ド毎ではなく相関のあるもの同志であれば複数ワード毎であつてももちろんよい。また、映像信号 の垂直相関性に着目して1水平ライン毎に反転処 理をしてもよい。

また、アドレスワードは上述の例ではCDSの 絶対値の等しいものを、正の値のものと負の値の ものとを交互に割り当てるようにしたが、アドレ スワードは必ず全て出現するものであるから、Eの 値のワードの数と負の値のワードの数とを等しく なるようにすれば、正、負交互に割り当てる必要 はない。

さらに、アドレスワードは画像データワードに 比べてワード数が少ないので、8 ピットのアドレ スワードを 9 ピット又は 1 0 ピットに変換する処 題をして、伝送ピットレートをそれ租上げずに D S V の減少はなすことができるからアドレスワ ードについてはこの 8 - 9 、8 - 1 0 変換等のブ ロックエンコーディングの処理をしてもよい。こ の場合に8ピットのワードから9ピット、10ピットのワードを選ぶときもCDSの小さいものから順次選ぶのは上述の例と阿根である。

また、関り訂正用として、水平パリテイや垂直パリテイを形成して画像データに付加する場合、 とれらパリテイについても、これらパリテイを計算後、とれらのコードに対して8~9変換、8~ 10変換を行なつてもよい。

なお、デジタル画像データをVTRに配録するのではなく、直流分を通さない他の伝送手段によってデジタル信号を伝送する場合全でにこの発明は適用できる。

図面の簡単な説明

第1 図はこの発明方法が適用される装置の一例の系統図、第2 図は画像データについて世換されるワードの例を示す図、第3 図は配録信号の 1 ブロック分のフォーマットを説明するための図、第4 図はアドレスデータについての置換されるワードの例を示す図、第5 図~第7 図はこの発明により画像について置換されるワードと、ナチュラル

バイナリーコードのワードとの違いを説明するための図、第8図及び第9図はこの発明の効果を説明するために用いる図である。

(2)はA-D変換器、(3)はDSVコントロールエンコーデイング回路、(4)は反転処理回路、(5)は配録プロセツサ、(6)はアドレスROMである。

第 3 図

			第 2 図	A							第 2	図 B			
元州畫	直接值	DSVCC	CDS	元•值	直接值	DSVCC	CDS	先 ○往	3.申证	DSVCC	CDS	元の値	254	DSVCC	CDS
0	0	00000000	~ -8					85	168	10101000	-2	86	176	10110000	-2
			-					87	193	11000001	<u>–</u> 2	88	194	11000010	<u>~2</u>
1	1	00000001	6	2	2	01000000	-6	89	196	11000100	<u></u>	90	200	11001000	<u>2</u>
3	4	00000100	-6	4	8	00001000	-6	91	208	11010000	-2	92	224	11100000	2
5	16	00010000	−6	6	32	00100000	-6								
7	64	01000000	 6	8	128	10000000	-6	93	15	00001111	0	94	23	00010111	0
								95	27	00011011	0	96	29	00011101	0
9	3	11000000	→	10	5	00000101	-4	97	30	00011110	0	98	39	00100111	0
11	6 '	00000110	-4	12	9	00001001	-4	99	43	11010100	0	100	45	00101101	0
13	10	00001010	→	14	12	00001100	-4	101	46	00101110	0	102	51	00110011	0
15	17	00010001	-4	16	18	00010010	-4	103	53	00110101	0	104	54	00110110	0
17	20	0010100	-4	18	24	00011000	-4	105	57	00111001	0	106	58	00111010	0
19	33.	00100001	→	20	34	00100010	-4	107	60	00111100	0	108	71	01000111	0
21	36	00100100	-4	22 .	40	00101000	-4	109		01001011	0	110	77	01001101	Ō
23	48	00110000	-4	24	65	01000001	-4	ļ1 <u>1</u>	. 78	01110011	Ó	112	83	01010011	0
25	66	01000010	- 4	26	68	01000100	-4	. 113	85	01010101	o	114	86	01010110	Ō
27	72	01001000	•	28	80	01010000	-4	115		01011001	n	116	90	01011010	0
29	96	01100000	-4	30	1,29	10000001	-4	117		01011100	0	118	99	01100011	o
31	130	10000010	- •	32	132	10000100	-4	119		01100101	0 .	120	102	01100110	Ō
33	136	10001000	- •	34	144	10010000	-4	121	105	01101001.	0	122	106	01101010	0
35	160	10100000	→	36	192	11000000	-4	1 23	108	01101100	0	124	113	01110001	0
	7	00000111		38			_	125	114	01110010	0	126	116	01110100	0
37 39	13	000001101	2 2	40	11	00001011	-2 -2	127 129		01111000	0	128 130	185 141	10000111	ŭ
41	19	11001000	<u>_</u>	42	21	00001110	-2 -2	131	142	10001011	. 0	132	14.7	10011011	. 0
43	22	000101110		44 .	25	00010101	-2	133	149	10010101	. 0	134	150	10010111	. 0
45	26	00011010	2	46	28	00011100	-2	. 135		10011001	ŏ	136	154	10010110	ŏ
47	35	00100011	_ 2	48	37	00100101	-2	i 37	156	10011100	ă.	138	163	10100011	ő
49	38	00100110	_2	50	41	00101001	-2	139		10100101	ŏ	140	166	10100011	Ö
51	42	00101010	-2	52	44	00101100	-2	141	169	10101001	ŏ	142	170	10101010	ŏ
53	49	00110001	<u>-2</u>]	54	50	00110010	-2	143		10101100	ŏ	144	177	10110001	ŏ
55	52	00110100	2	56	56	00111000	-2	145	178	10110010	ă	146	180	10110100	ŏ
57	67	04000011	<u>2</u>	58	69	01000101	-2	147	184	10111000	ŏ	148	195	11000011	ŏ
59	70	01000110	2	60	73	01001001	-2	149		11000101	ŏ	150	198	11000110	ŏ
61	74	01001010	-2	62	76	01001100	-2	151		11001001	ŏ	152	202	11001010	ŏ
63	81	100010001	-2	64	82	01010010	-2	153	204	11001100	ò	154	209	11010001	ŏ
65	84	01010100	2	66	88	01011000	-2	155	210	11010010	. 0	156	212	11010100	ŏ
67	97	01100001	—2	68	98	01100010	-2	157	216	11011000	0	#58	225	10000111	Ö
69	100	01100100	-2	70	104	01101000	-2	į 59	226	11100010	Ö	#60	228	11100100	Ö
71	112	01110000	~2	72	131 .	10000011	-2	161	232	11101000	0	3 6 2	240	11110000	0
73	133	10000101	—2	74	134	10000110	-2	•						•	
75	137	10001001	2	76.	138	10001010	-2	163	31	00011111	2	164	47	00101111	2
77	140	10001100	-2	78		10010001	-2	165		00110111	2	166	59	00111011	. 2
79	146	10010010	-2	80	148	10010100	-2	167		00111101	2	. 168	62	00111110	
81	152	10011000	-2	82	161	10100001	-2	169		01001111	2	≥ 70	87	01010111	2
83	162	10,00010	-2	84	164	10100100	-2	171	91	01011011	2	172	. 93	01011101	2

鉾	2	図	G
75	_ Z ·	IXI	u

元の値	直接值	DSVCC	CDS	元の値	温璃值	DSVCC	CDS
173	94	01011110	2	174	108	01100111	2
175	107	01101011	2	176	109	01101101	2
177	110	01101110	2	178	115	01110011	2
179	117	01110101	2	180	118	01110110	2
181	121	01111001	2	182	1 22	01171010	2
183	124	01111100	2	184	143	10001111	2
185	151	10010111	2	186	155	10011011	2
187	157	10011101	2	188	158	10011110	2
189	167	10100111	2	190	171	10101011	2
191	173	10101101	.2	192	174	10101110	2
193	179	10110011	2	194	181	10110101	2
195	182	10110110	2	196	185	10111001	2
197	186	10111010	2	198	188	10111100	2
199	199	11000111	2	200	203	11001011	2_
201	205	11001101	2	202	206	11001110	2
203	211	11000011	2	204	213	11010101	2
205	214	11010110	2	206	217	11011001	2
207	218	11011010	2	208	220	11011100	2
207	227	11100011	2	210	229	11100101	2
211	230	11100110	2	212	233	11101001	2 2 2 2 2 2
211	234	11101010	2	214	236	11101100	2
215	241	11110001	2	216	242	11110010	2
217	244	11110100	2	218	248	11111000	2
217	244	11110-00	-			,	
219	63	00111111	4	220	95	01011111	4
221	111	01101111	i	222	119	01110111	4
223	123	01111011	4	224	1 25	01111101	4
225	126	01111110	4	226	159	10011111	4
227	175	10101111	4	228	183	10110111	4
229	187	10111011	4	230	189	10111101	4
231	190	10111110	4	232	207	11001111	4
233	215	11010111	4	234	219	11011011	4
235	221	11011101	4	236	222	11011110	4
237	231	11100111	4	238	235	11101011	. 4
239	231	11101101	4	240	238	11,101110	
241	243	11110011	4	242	245	11110101	4
243	246	11110110	4	244	249	11111001	4
245	250	11111010	4	246	252	11111100	4
443	230	11111-10	•				
247	127	01111111	6	248	191	10111111	6
249	223	11011111	6	250	239	11101111	6
251	247	11110111	ě	252	251	11111011	6
253	253	11111101	6	254	254	11111110	6
233	-55		•				•
255	255	111111111	8				

篮 4 段

1セグメント 内の プロックの最多	CD2の 10単.表示	CDS	1セプメント 内の プロックの番号	CD2の 10進長示	CDS	1セグメント 内の プロ ップの番号	CD2の 1D進表示	cos	1セグナント 内の プロックの番号	C D2 の 10 進表 示	CDS	1セグメント 内の プロックの部	CD2の 10 強 表示	C D S	1セグメント 肉,の 7セックの番号	CD2の 10進表示	
0	1 2 0	c	3 6	7.5	0	7.2	208	- 2	108	133	- 2	144	5 2	- 2	180	77	-2
1	1 3 5	0	3 7	180	0	7 3	4.7	+2	109	122	+ 2	145	203	+2	1.8.1	248	+ 2
2	1.16	0	38	7 1	0	7.4	200	_ 2	110	131	- 2	146	50	- 2	182	192	
3	139	0	3 9	184	0	7.5	5.5	+2		1.2.4	+ 2	147_	205	+ 2	183	6.3	+4-
4	1 1 4	0	4 0	60	0	76	196	_ 2	112	112	- 2	148	4.9	- 2	184	160	- 4
5	141	0	4 1	195	٥	7.7	5 9	+2_	113	14.3	+ 2	1 4.9.	206	+2	185	9 5	+4
6	1 1 3	0	4 2	5.8	0	7.8	194	_ 2	114	104	- 2	150	4.4	- 2	1.86	144	
7	1 4 2	0	4 3	197	0 .	7 9	6.1	+2_	115	151	+ 2	151	211	+ 2	187	111	+ 4
8	108	0	4.4	5 7	0	8 0	193	2	116	100	- 2	152	4 2	- 2	1 8 8	136	- 4
9	147	0	4.5	198	0	8 1	62	+2	117	155	+ 2	153	213	+ 2	189	119	+4
10	106	0	4 6	5 4	0	8 2	176	_ 2	118	98	- 2	154	4.1	- 2	190	132	
11	1 4 9	0	4 7	201	0	8 3	7 9	+2	119	157	+ 2	155	2 1 4	+ 2	191	123	+4
12	105	0	4 8	5 3	0	8 4	168	_ 2	120	9.7	- 2	156	3 8	- 2	192	130	1-4-
13	150	0	4.9	202	0	8 5	8 7	+2	121	158	+ 2	157	217	+ 2	193	125	+ 4
1.4	102	0	5.0	5 1	0	8 6	164	- 2	122	8.8	- 2	158	3 7	- 2	194	129	-4
1.5	1 5 3	0	5 1	204	0	8 7	9 1	+ 2	123	167	+ 2	159	2 1 8	+ 2	195	126	+4
16	101	0	5 2	4 6	0	8 8	162	- 2	124	8 4	- 2	1,60	3 5	- 2	196	9 6	-4
17	154	0	5 3	209	0	8 9	9 3	+ 2	125	171	+ 2	161	220	+ 2	197	159	+4
1.8	9 9	0	5 4	4.5	0	9.0	161	_ 2	126	8.2	- 2.	162	28	- 2	198	8.0	- 4
1.9	156	0	5 5	210	0	9 1	9.4	+ 2	127	173	1 + 2	163	227	.+ 2	199	175	+4
2 0	9 2	0	5 6	4 3	0	9 2	152	_ 2	128	8 1	- 2	164	26	- 2	200	7 2	
2 1	163	0	5 7	212	0	9 3	103	+ 2	129	174	+ 2	165	229	+ 2	201	183	+4
2 2	90	0	5.8	.3,9	0	9 4	148	_ Z	130	7 6	- 2	166	2.5	- 2	202	6.8	- 4
2 3	165	0	5 9	216	0	9 5	107	+ 2	131	179	+ 2	167	230	+ 2	203	187	+ 4
2 4	8 9	0	6.0	3 0	0	96	146	_ 2	132	7.4	- 2	168	2 2	- 2	204	6.6	1-4
2 5	166	0	6 1	225	0	9 7	109	+ 2	133	181	+ 2	169	233	+ 2	205	189	+ 4
2 6	86	0	6 2	2 9	0	98	145	- 2	134	7 3	- 2	170	2 1	- 2	206	6.5	- 4
27	169	0	6 3	226	0	9 9	110	+ 2	1 3 5	182	+ 2	171	234	+2	207	190	+ 4
2 8	8.5	0	6.4	2 7	0	100	140	- 2	136	7 0	- 2	172	19	- 2	208	4 8	- 4
2 9	170	0	6.5	228	0	101	115	+ 2	137	185	1 2	173	236	+2	209	207	+ 4
3 0	· 83	ō	6.6	2 3	0	102	138	- 2	138	6 9	- 2	174	1 4	- 2	210	4.0	-4
3 1	172	0	67	232	. 0	103	117	+ 2	139	186	+ 2	175	2 4 1	+ 2	2 1 1	2 1 5	+4
3 2	7.8	- 0	6.8	1.5	Q	104	137	- 2	1 4 0	6.7	- 2	176	1 3	- 2	2 1 2	3 6	-4
3 3	177	0	6 9	240	0	105	118	+ 2	141	188	+ 2	177	242	+ 2	213	2 1 9	+4
3 4	77	0	70	224	- 2	106	134	- 2	142	5 6	- 2	178.	11	- 2	2 1 4	3 4	1-4
3.5	7.8	0	7 1	3.1	+ 2	107	121	+ 2	143	199	+ 2	179	244	+2	2 1 5	221	+ 4

335	5	তিস
オナ	Ų	IX.

元の値				
(サンプル値)	Netural-Binary	CDS	DSVCC	CDS
0	00000000	-8	0000000	8
1	00000001	6	0000001	
2	00000010	-6	00000010	
3	11000000	-4	0010000	
4	00000100	-6	00001000	-6
5	00000101	-4	00010000	
6	00000110	-4	0010000	
7	11110000	-2	0100000	
8	00001000	-6	10000000	
9	10010000	-4	00000011	
10	00001010	-4	00000101	
11	00001011	-2	00000110	
12	00001100	~4	00001001	
13	00001101	-2	00001010	
14	00001110	-2	00001100	
15	00001111	0	00010001	
16	00010000	-6	00010010	
17	00010001	-4	00010100	
18	00010010	-4	00011000	
19	00010011	-2	00100001	
20	00010100	-4	00100010	
21	10101000	-2	00100100	-4
22	00010110	-2	00101000	•
23	00010111	0	00110000	
24	90011000	-4	01000001	
25	00011001	- 2	01000010	
26	00011010	~ 2	01000100	*
27	11011000	0 '	01001000	
28	00011100	- 2	01010000	-2
29	00011101	0	01100000	_
30	00011110	0	10000001	
31	00011111	· +2	10000010	
32	00100000	-6	10000100	
33	00100001	-4	10001000	
34	00100010	-4	10010000	
35	00100011	-2	10100000	
36	00100100	-4	11000000	
37	00100101	-2	00000111	
38***	00100110	-2	00001011	-2
N.	ü		X	1
249	11111001	+4	11011111	
250	11111010	+4	11101111	
251	11111011	+6	11110111	+6
252	11111100	+4	11111011	
253	11111101	+6	11111101	
854	1111110	+6	11111110	
255	1111111	+8	ī ī ī ī ī ī ī ī ī ī ī ī ī ī ī ī	
		•		•

第8図

信号处理	CDS《平均值	DSV o最大值	DSVo最終値
ナチュラルバイナリー	- 0.55	21358	-21358
反転処理	- 0.22	944	-810
DSVCC	- 1.20	46864	-46864
反転処理	-0.0007	104	-28

第 9 図

伯号処理	CDS #平均值	DSVe 最大値	DSVo 最終值
ナナュラルベイナリー ペリティーな 加	- 0.52	22778	-22766
反觀処理	- 0.06	2602	-2482
DSVCC ペリカ 住 20	_ 1,10	48354	-48354
反転处理	- 0.04	1664	-1582
DSVCC FFLX支換 反転処理	- 0,0014	268	- 60

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	Defects in the images include but are not limited to the items checked:					
	☐ BLACK BORDERS					
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES					
	☐ FADED TEXT OR DRAWING					
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING					
	☐ SKEWED/SLANTED IMAGES					
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS					
•	☐ GRAY SCALE DOCUMENTS					
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT					
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY					

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.