Analysis II

Sommersemester 2014

Prof. Dr. D. Lenz

Blatt 3

Abgabe Mittwoch 30.04.2014

(1) Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} e^{-1/t} & \text{für } t > 0, \\ 0 & \text{für } t \le 0. \end{cases}$$

Zeigen Sie, dass f beliebig oft differenzierbar ist und bestimmen Sie die Werte der Ableitungen in t = 0.

(Hinweis: Für $n \in \mathbb{N}$ ist die n-te Ableitung von f auf $(0, \infty)$ gerade gegeben durch $\frac{d^n}{dt^n} f(t) = f(t) p_n(1/t)$ wobei p_n ein Polynom ist.)

- (2) Bestimmen Sie die folgenden Grenzwerte, falls sie existieren:
 - (a) $\lim_{x\to 0} \frac{e^x + e^{-x} 2}{1 \cos x}$.
 - (b) $\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right)$.
 - (c) $\lim_{x \to 1^{-}} \ln x \cdot \ln (1 x).$
 - (d) $\lim_{x\to 0} \frac{\sin x + \cos x}{x}$.
- (3) Es sei f eine stetige Funktion auf [0,1] mit f(0)=f(1)=0, die in (0,1) zweimal stetig differenzierbar ist. Es existiere eine Konstante C>0, so dass $|f''(x)| \leq C$ für alle $x \in (0,1)$ ist. Zeigen Sie, dass dann für alle $x \in (0,1)$ gilt

$$|f(x)| \le C.$$

Hinweis: Betrachten Sie die Taylor-Entwicklung von f an der Stelle x in (0,1)!

(4) Berechnen Sie das Taylor-Polynom in $x_0 = 0$ von

$$f(x) = \sqrt{1 - 2x + x^3}$$

bis $o(x^2)$.

Zusatzaufgabe:

- (Z1) Sei $f : \mathbb{R} \to \mathbb{R}$ stetig und auf $\mathbb{R} \setminus \{0\}$ differenzierbar, so dass $\lim_{x\to 0} \lim f'(x)$ existiert. Untersuchen Sie f auf Differenzierbarkeit in x = 0.
- (Z2) Beweisen Sie unter den Voraussetzungen von Aufgabe 3, dass $|f| \leq C/4$ auf (0,1) ist.