Bihar Engineering University, Patna End Semester Examination - 2023

Course: B.Tech. Code: 105402 Semester-IV

Subject: Design and Analysis of Algorithms

Time: 03 Hours Full Marks: 70

Inst	ruction	ns:-				
<i>(i)</i>	The marks are indicated in the right-hand margin.					
(ii)		There are NINE questions in this paper.				
	-	empt FIVE questions in all.				
(iv)	Questi	ion No. 1 is compulsory.		. D		
Q.1	Choose the correct answer of the following (Any seven question only): $[2 \times 7 = 1]$					
	(a)	The fractional Knapsack problem can	be solved by using			
		(i) Greedy method.	(ii) Divided and conquer me	thod		
		(iii) Dynamic programming	(iv) None of these	03		
	(b)	BFS on a graph $G = (V,E)$ has running	g time	36		
		(i) O (V + E) -	(ii) O (V)			
		(iii) O (E)	(iv) None of the above			
	(c)	The minimum number of colors needed to color a graph having $n > 3$ vertices and 2 edges is				
		(i) 2	(ii) 3			
		(iii) 4	(iv) 1 0 0 1			
	(d)	Complexity the recurrence relation To				
		(i) O (n)	(ii) O (n ²) (iv) O (n ³).			
		(iii) O ($\log_2 n$)	(iv) O (n ³).			
	(e)	Travelling salesman problem belongs	to			
		(i) P class				
		(ii) NP class.				
		(iii) NP- hard				
	(0	(iv) NP- complete class				
	(f)	Kruskal's algorithm uses and the MST	nd Prism' algorithm uses	_ in determining		
		(i) Edges, vertex	(ii) vertex, edges			
		(iii) Edges, edges	(iv) Vertex, vertex			
	(g)	Level order traversal of a rooted tree c	an be done by starting from root an	d performing		
		(i) Depth first search	(ii) Breadth first sear	ch '		
	1	(iii) Pre-order traversal	(iv) In-order traversa			
	(h)	An algorithm is made up of two indep complexities of the algorithm is in ord		d g (n). Then the		
1	V.	(i) $f(n) \times g(n)$	(ii) $\max(f(n)).g(n)$			
X		(iii) min $(f(n).g(n)$	(iv) $f(n)+g(n)$			
	(i)	Which of the following standard algori	ithms is not a greedy alogorithm?			
		(i) Dijkstra's shortest path algorithm	(ii) Kruskal algorithm			
		(iii) Bellmen ford shortest path algorith	nm (iv) Prim's algorithm			
	(j)	The node removal of which makes a gr	raph disconnected is called			
		(i) Pendant vertex				
		(ii) Bridge				
		(iii) Articulation point.				
		(iv) Coloured vertex				

Q.2	2 (a) Discuss the average, worst best time complexity of the algorithm. Give suitable examples.		[7]	
	(b)	Write the algorithm for quick-sort and find its complexity.	[7]	
Q.3	(a)	Construct the Huffman coding tree for the text of characters with given frequencies: Characters T I V K L E O Z P R Frequencies 43 38 16 8 56 12 41 13 22 6	[7]	
	(b)	State the general Knapsack problem. Write a greedy algorithm for this problem and derive its time complexity.	[7]	
Q.4	(a)	State master's theorem and find the time complexity for the following recurrence: $T(n) = 2T (n^{1/2}) + \log n$	[6]	
	(b)	What is negative weight-cycle? Write Bellman- Ford algorithm to find single source shortest distance of a directed graph.	[8]	
Q.5	(a)	Find the minimum number of operation required for the following matix chain multiplication using dynamic programming A (10 x 20) * B (20 x 50) * C (50 x 1) * D (1 x 100)	[7]	
	(b)	Write Knuth-Morirs-Pratt algorithm for string matching problem.	[7]	
Q.6	(a)	Write an algorithm to find a minimum spanning tree (MST) for an undirected graph. Estimate the time complexity of your algorithm.	[7]	
	(b)	Using greedy strategy. Schedule the following jobs within deadline so as to maximize the profit. Deadline and profits are mentioned as follow: Job i	[7]	
Q .7	(a)	Write an algorithm for n-queen's problem find its time- complexity and explain the algorithm using an example.	[7]	
	(b)	Solve the single source shortest path problem for the following graph considering '1' as the source vertex using Dijkstra's algorithm.	[7]	
	, .	2 5 10 9 4 5 10 5 5 13 5 5 5 13 5 5 5 13 5 5 5 13 5 5 13 5 10 5 10		
Q.8	(a)	Define the classes P and NP.	[2]	
	(b)	Discuss what you mean by polynomial reduction	[2]	
10	(c)	Discuss diagrammatically the relation among P class, NP class, NP hard and NP complete.	[2]	
	(d) (e)	Describe Clique Decision Problem (CDP) Explain the max-flow min-cut theorem with an example.	[2] [6]	
Q.9	Write short notes on any two of the following:			
	(a)	Asymptotic notations Heap greation technique		
	(b)	Heap creation technique Strassen's matrix multiplication		
	(c) (d)	Divide-and-Conquer vs Dynamic programming.		
	(4)	2. The and conquer vs Dynamic programming.		