

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Semantic Point Cloud Segmentation Deep Learning

Bastian Lampe

Institute for Automotive Engineering

Overview

Modern Deep Learning methods often have improved performance over traditional machine learning methods when it comes to complex, high dimensional data, e.g. point clouds.

Supervised learning

- Input + desired output
- Input: Point cloud as e.g. range view representation
- Output: Segmentation map as e.g. range view representation

Image: Semantic Kitti

- E.g. Convolutional Neural Networks
 - Encoder-Decoder Architectures with skip connections

Datasets

- Semantic KITTI
 - Annotated classes as in Cityscapes
 - Velodyne LiDAR sensor
 - 64 layers
 - 10 Hz
- Point cloud characteristics depend on the specific sensor configuration
- Models trained on this dataset not easily transferable to other sensors

Video: Semantic Kitti

Datasets

Manual annotations are expensive

Cross-Modal Label Transfer

- Use a semantic image segmentation to transfer the label annotations to the point cloud
- Point cloud is **projected** on the segmented image
- Copy the label information for each point
- Store automatically annotated point clouds as new dataset

Point Cloud Representation

• Unstructured Representation:

- List of Points with coordinates and additional data
- E.g. Coordinate, Intensity and Ring: [X, Y, Z, I, R]
- Difficult to process with DNNs

Structured Representation:

- Range View
- Native representation from the viewpoint of the sensor
- 2D image like tensor
- Efficient processing with CNNs possible

Image: ika

Image: ika

Point Cloud Representation

• Unstructured Representation:

- List of Points with coordinates and additional data
- E.g. Coordinate, Intensity and Ring: [X, Y, Z, I, R]
- Difficult to process with DNNs

Structured Representation:

- Range View
- Native representation from the viewpoint of the sensor
- 2D image like tensor
- Efficient processing with CNNs possible
- Voxel Representation ("3D Grid")
- Discretization along the X, Y and Z coordinates
- Processing with CNNs possible
- Fine grained details are lost due to discretization

Image: ika

Video: ika

Range View Representation

- Cylindrical point cloud projection
- 2D image-like representation
- Shape: [Height, Width, Number of Channels]
- Height: Number of laser rings
- Width: FOV discretized with horizontal resolution
- Channels: X, Y, Z, Intensity, Depth, Timestamp...

Easy and efficient processing with CNN

Range View Representation

- Cylindrical point cloud projection
- 2D image-like representation
- Shape: [Height, Width, Number of Channels]
- Height: Number of laser rings
- Width: FOV discretized with horizontal resolution
- Channels: X, Y, Z, Intensity, Depth, Timestamp...

Easy and efficient processing with CNN

Label Representation

- How to represent the label of semantic segmentation ?
 - Color Encoding
 - Each class has a specific RGB Value
 - Data format: 3 x uint8
 - Shape: [Height, Width, 3]
 - Segmentation Map
 - Each class has a specific class ID
 - Data format: 1 x uint8
 - Shape: [Height, Width, 1]
 - One-Hot Encoding
 - A class is represented as a one-hot vector
 - The i`th value is set to 1 all other values are set to 0. The index i corresponds to the i`th class
 - Data format: Number of classes x Boolean
 - Shape: [Height, Width, Number of Classes]

Example with 3 Classes:

2	0	1	1
2	0	0	1
2	0	0	1
2	0	0	1

Segmentation Map

Network Architecture

- Fully-Convolutional Network
- Network as a sequence of convolutional layers
 - With downsampling and upsampling inside the network
- Make class predictions for all pixels at once

Summary

- Lack of public datasets
- Possible to create you own dataset with Cross-Modal Label Transfer
- Transform point cloud to range view representation

CNN architectures can be applied

Image: arxiv

Image: ika, PlotNeuralNet, SqueezeSegV2