Università degli studi di Catania Corso di laurea Triennale in Matematica Prova scritta di Fisica Matematica Appello del 23.12.2021

Un piano verticale Π ruota uniformemente, con velocitá angolare $\vec{\omega}$ attorno ad una sua retta verticale r.

Tale piano coincide con il piano coordinato xy di un riferimento ortonormale levogiro $\{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\} \equiv \{O, x, y, z\}$ con l'asse delle y verticale ascendente sovrapposto alla retta r (vedi figura).

In Π é mobile un disco S omogeneo, di massa m, raggio R e centro G, avente un estremo A di un suo diametro vincolato a muoversi sull'asse delle x.

Scegliando come parametri lagrangiani le coordinate generali $\{X, \vartheta\}$, dove X l'ascissa del baricentro di S e ϑ l'angolo che il vettore (G-A) forma con la verticale discendente (vedi figura), e che su S, oltre alla forza peso, agiscano le forze

$$\{F_1 = -K(G - \bar{G}), G\}$$
 ed $\{F \vec{e_1}, B\}$ con $K > 0, F \ge 0$

essendo \bar{G} la proiezione ortogonale di G sull'asse delle y, B il punto del disco tale che $(B-G)=\vec{e_3}\wedge (A-G)$.

Nella ipotesi che i vincoli siano realizzati senza attrito, si chiede di:

- 1. Determinare sotto quali condizioni sui parametri non esistono configurazioni di equilibrio relativo per S.
- 2. Escludendo il caso di cui al punto 1. determinare tutte le possibili configurazioni di equilibrio relativo di S, analizzando la stabilitá ed instabilitá solo nel caso $F \neq mg$ ed $m\omega^2 k \neq 0$.
- 3. Scrivere le equazioni del moto relativo di S e gli eventuali integrali primi
- 4. Studiare ove possibile in maniera esatta o, almeno, qualitativamente il moto di S.
- 5. Supposto che su S agisca l'ulteriore forza $\{\tilde{F}=-h\,\dot{G},G\}$ (con h>0), dire come si modificano le configurazioni di equilibrio e la relativa stabilità.
- 6. Nell'ipotesi di cui al punto 5. scrivere le corrispondenti nuove equazioni di Lagrange studiando i moti in prima approssimazione (sempre nel caso in cui $F \neq mg$ ed $m\omega^2 k \neq 0$) attorno ad una eventuale configurazione di equilibrio stabile.

