Vertical shear instability in protoplanetary disks

Min-Kai Lin minkailin@email.arizona.edu

Steward Theory Fellow University of Arizona

June 18 2015

Transport in protoplanetary disks

Magnetic

(Bai, 2013)

Transport in protoplanetary disks

Self-gravity

log column density

(Forgan et al., 2011)

Hydrodynamic instabilities

Vortices

(Fukagawa et al., 2013)

- 'Rossby wave instability' (Lovelace et al., 1999; Li et al., 2000): Kelvin-Helmholtz in a disk
- 'Convective overstability' (Klahr & Hubbard, 2014; Lyra, 2014): growing epicycles
- 'Baroclinic instability' (Lesur & Papaloizou, 2009): non-linear amplification of vortices

Baroclinic disks and vertical shear

ullet Astrophysical disks are generally $baroclinic\ (
abla P imes
abla
ho
eq 0)$ so that

$$\frac{\partial \Omega}{\partial z} \neq 0.$$

• Example: vertically isothermal thin-disk with radial temperature gradient $T \propto r^q$.

$$r \frac{\partial \Omega}{\partial z} \simeq \frac{1}{2} h q \Omega_{\mathrm{Kep}} \left(\frac{z}{H} \right)$$

h=H/r: disk aspect-ratio; Ω_{Kep} : Keplerian rotation

• Shear flow ⇒ free energy ⇒ instability?

The 'vertical shear instability'

5 / 18

Basic physics of the VSI

(Umurhan et al., 2013)

• Change in kinetic energy:

$$\Delta E \sim I_r^2 \left(\Omega^2 + \frac{I_z}{I_r} \cdot r \frac{\partial \Omega^2}{\partial z} \right).$$

Vertical shear is weak, BUT

$$\Delta E < 0$$
 is possible if $|I_z| \gg |I_r|$, \Rightarrow **INSTABILITY!**

Basic physics of the VSI

(Nelson et al., 2013)

Change in kinetic energy:

$$\Delta E \sim I_r^2 \left(\Omega^2 + \frac{I_z}{I_r} \cdot r \frac{\partial \Omega^2}{\partial z} \right).$$

Vertical shear is weak, BUT

$$\Delta E < 0$$
 is possible if $|I_z| \gg |I_r|$, \Rightarrow INSTABILITY!

Role of buoyancy

Vertical motion associated with VSI is opposed by buoyancy forces

- Vertical shear is weak, $r\partial_z ln\Omega \sim O(h) \ll 1$
- ullet Vertical buoyancy is strong, $N_z/\Omega \sim O(1)$

7 / 18

The need for rapid cooling

(Nelson et al., 2013)

- \bullet Buoyancy ineffective if cooling times are short \to VSI can operate
- Stoll & Kley (2014): VSI in radiation-hydrodynamic simulations only when external heating included

Is there a quantitative thermodynamic criteria?

Previous stability analyses and our contribution

- Vertically and radially local analyses: (Urpin & Brandenburg, 1998; Urpin, 2003)
- Vertically global, radially local analyses, no buoyancy: (Nelson et al., 2013; Barker & Latter, 2015)

Previous stability analyses and our contribution

- Vertically and radially local analyses: (Urpin & Brandenburg, 1998; Urpin, 2003)
- Vertically global, radially local analyses, no buoyancy: (Nelson et al., 2013; Barker & Latter, 2015)

Lin & Youdin (2015)

- Vertically global, radially local, including energy equation (i.e. with buoyancy)
- Both constant cooling and realistic cooling functions

Linear theory: simplified model

- Axisymmetric perturbations in a vertically isothermal disk
- Wave-ansatz radial dependence with wavenumber $k_{\rm x}$, low-frequency limit $|\omega| \ll \Omega_{
 m Kep}$
- Vertically constant cooling time, $t_c \equiv \beta \Omega_{\mathrm{Kep}}^{-1}$

Linear theory: simplified model

- Axisymmetric perturbations in a vertically isothermal disk
- Wave-ansatz radial dependence with wavenumber k_x , low-frequency limit $|\omega| \ll \Omega_{\rm Kep}$
- Vertically constant cooling time, $t_c \equiv \beta \Omega_{\mathrm{Kep}}^{-1}$

Reduction to single ODE

$$0 = \delta v_z''(z) - z A \delta v_z'(z) + \left(B - C z^2\right) \delta v_z(z).$$

- Hermite differential equation after transformation
- Dispersion relation $\omega = \omega(k_x; \beta)$ for the frequency

Linear theory: simplified model

- Axisymmetric perturbations in a vertically isothermal disk
- Wave-ansatz radial dependence with wavenumber $k_{\rm x}$, low-frequency limit $|\omega| \ll \Omega_{
 m Kep}$
- Vertically constant cooling time, $t_c \equiv \beta \Omega_{\mathrm{Kep}}^{-1}$

Reduction to single ODE

$$0 = \delta v_z''(z) - zA\delta v_z'(z) + (B - Cz^2) \,\delta v_z(z).$$

- Hermite differential equation after transformation
- Dispersion relation $\omega = \omega(k_x; \beta)$ for the frequency

Seek $Im(\omega) = 0$ for large k_x to find VSI requires

$$t_c\Omega_{\rm Kep}<\frac{h|q|}{\gamma-1}\equiv\beta_{\rm crit}.$$

- h|q|: vertical shear
- $\gamma 1$: vertical buoyancy
- $\beta_{\rm crit} \ll 1$, i.e. rapid cooling required

10 / 18

Linear theory: numerical treatment

Effect of increasing the cooling time

Testing the critical cooling timescale

Visualization

Application to protoplanetary disks

Estimate cooling times in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010) based on dust opacity:

Application to protoplanetary disks

Estimate cooling times in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010) based on dust opacity:

Application to protoplanetary disks

Estimate cooling times in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010) based on dust opacity:

VSI in the Solar Nebula

Conclusions

•

- Astrophysical disks generally possess vertical shear
- ullet Unstable if buoyancy ineffecitive: $N_z=0$ and/or $t_c\Omega_{
 m Kep}<eta_{
 m crit}\ll 1$
- Fast cooling needed because vertical shear is weak but buoyancy is strong

Stringent thermodynamic requirement satisfied at 10s of AU in typical PPDs

References

Bai X.-N., 2013, ApJ, 772, 96

Barker A. J., Latter H. N., 2015, ArXiv e-prints

Chiang E., Youdin A. N., 2010, Annual Review of Earth and Planetary Sciences, 38, 493

Forgan D., Rice K., Cossins P., Lodato G., 2011, MNRAS, 410, 994

Fukagawa M., Tsukagoshi T., Momose M., Saigo K., Ohashi N., Kitamura Y., Inutsuka S.-i., Muto T., Nomura H., Takeuchi T., Kobayashi H., Hanawa T., Akiyama E., Honda M., Fujiwara H., Kataoka A., Takahashi S. Z., Shibai H., 2013, PASJ, 65, L14

Klahr H., Hubbard A., 2014, ApJ, 788, 21

Lesur G., Papaloizou J. C. B., 2009, A&A, 498, 1

Li H., Finn J. M., Lovelace R. V. E., Colgate S. A., 2000, ApJ, 533, 1023

Lin M.-K., Youdin A., 2015, ArXiv e-prints

Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805

Lyra W., 2014, ApJ, 789, 77

Nelson R. P., Gressel O., Umurhan O. M., 2013, MNRAS, 435, 2610

Stoll M. H. R., Kley W., 2014, A&A, 572, A77

Umurhan O. M., Nelson R. P., Gressel O., 2013, in European Physical Journal Web of Conferences Vol. 46 of European Physical Journal Web of Conferences, Breathing Life Into Dead-Zones. p. 3003

Urpin V., 2003, A&A, 404, 397

Urpin V., Brandenburg A., 1998, MNRAS, 294, 399