Digital Image Processing

Image Enhancement
by
Paresh Kamble

Background

- □ Very first step in Digital Image Processing.
- ☐ It is purely subjective.
- \square It is a cosmetic procedure.
- ☐ It improves subjective qualities of images.
- ☐ It has two domains:
 - ☐ Spatial domain
 - ☐ Frequency domain

Spatial Domain

- ☐ Spatial means working in space i.e. (given image).
- ☐ It means working with pixel values or raw data.
- \Box Let g(x, y) be original image
- \square where g is gray level values & (x, y) is co-ordinates
- \square For 8-bit image, g can take values from 0 255

where o – BLACK, 255 – WHITE & others - shades of GRAY

Spatial Domain

In an image with size 256 x 256, (x, y) can assume any value from (0, 0) to (255, 255).

Spatial Domain

☐ Applying transform modifies the image

$$f(x,y) = T g(x,y)$$

where,

g(x,y) is original image T is transformation applied on g(x,y) f(x,y) is new modified image

- ☐ In spatial domain techniques simply T changes.
- Spatial domain enhancement is carried out in two ways:
 - □Point processing
 - □Neighborhood processing

- \square Here, we work on singe pixel i.e. T is 1 x 1 operator.
- □New image depends on transform T and original image.
- ☐ Some important examples of point processing are:
 - ☐ Digital Negative
 - ☐ Contrast Stretching
 - ☐ Thresholding
 - Gray level slicing
 - ☐ Bit plane slicing
 - ☐ Dynamic range compression

☐ <u>Identity Transformation:</u>

- It does not modify the input image at all.
- In general, s = r

- 1) <u>Digital Image Negative:</u>
- ➤ Useful in large applications e.g. X-ray images.
- ➤ Negative means inverting gray levels.

➤ Digital Negative can be obtained by:

$$s = 255 - r$$

(where, $r_{max} = 255$)

when,
$$r = 0$$
; $s = 255$
& if $r = 255$; $s = 0$

Generally,
$$s = (L-1) - r$$

where, L – total number of gray levels (e.g. 256 for 8-bit image)

2) Contrast Stretching:

- □Reasons:
 - □ Poor Illumination
 - ☐ Wrong setting of lens aperture
- ☐ Idea behind *Contrast Stretching* is to make dark portion darker and bright portion brighter.
- ☐ In above figure, dotted line indicated *Identity Transformation* & solid line indicates *Contrast Stretching*.
- \square Dark portion is being made darker by assigning slope of < 1.
- \square Bright portion is being made brighter by assigning slope of > 1.
- ☐ Any set of slopes cant be generalized for all kind of images.
- □Formulation is given below:

```
s = l.r ; for 0 \le r \le a
```

= m(r-a) + v; for $a \le r \le b$

= n(r-b) + w; for $b \le r \le L-1$

3) Thresholding:

Input Image Intensity level

- □ Extreme Contrast Stretching yields Thresholding.
- ☐ In Contrast Stretching figure, if l & n slope are made ZERO & if m slope is increased then we get Thresholding Transformation.
- ☐ If r1 = r2, s1 = 0 & s2 = L-1Then we get Thresholding function.
- ☐ Expression goes as under:

$$s = 0$$
; if $r \le a$
 $s = L - 1$; if $r > a$

where, L is number of Gray levels.

Note: It is a subjective phenomenon.

Thresholded image has maximum contrast as it has only **BLACK** & WHITE gray values.

4) Gray Level Slicing (Intensity Slicing):

fig. (1) Slicing w/o background

fig. (2) Slicing with background

- ☐ Thresholding splits the image in 2 parts
- □At times, we need to highlight a specific range of gray levels. eg. X-ray scan, CT scan
- □ It looks similar to thresholding except that we select a band of gray levels.
- □ Formulation of Gray level slicing w/o background (fig. 1):

s = L-1; for $a \le r \le b$

= o ; otherwise

- ☐ No background at all.
- □Sometimes we may need to retain the background.
- ☐ Formulation of Gray level slicing with background (fig. 2):

s = L-1; for $a \le r \le b$

= r ; otherwise

5) Bit Plane Slicing:

□E.g. Stignography

☐ Here, we find the contribution made by each bit to the final image. □ Consider a 256 x 256 image with 256 gray levels i.e. 8-bit representation for each pixel. E.g. BLACK is represented as 0000_0000 & WHITE by 1111_1111. □ Consider LSB value of each pixel & plot image. Continue till MSB is reached. □All 8 images will be binary. ☐ Observing the images we conclude that Higher order images contain visually sufficient data. Lower order bits contain suitable details of image. ☐ Hence, BPS can be used in Image Compression. □ We can transmit only higher order bits & remove lower order bits.

Ex. Plot bit planes of the given 3 x 3 image.

1	2	0
4	3	2
7	5	2

1 -	\cap	\cap	\cap	\cap	\cap		
	w	U	U	U	U		
_	~	~	_	~	~		

2 - 00000010

0 - 0000000

4 - 00000100

3 - 00000011

2 - 00000010

7 - 00000111

5 - 00000101

2 - 00000010

001	010	000
100	011	010
111	101	010

Max. Intensity is 7 thus 3 – bits

1	0	0
0	1	0
1	1	0

LSB plane

Middle Plane

MSB Plane

6) <u>Dynamic Range Compression (Log transformation)</u>:

- ☐ At times, dynamic range of image exceeds the capability of display device.
- ☐ Some pixel values are so large that the other low value pixel gets obscured. E.g. stars in day time are not visible though present due to large intensity of sun.
- ☐ Thus dynamic range needs to be compressed.

- □ Log operator is an excellent compression function.
- ☐ Thus, Dynamic range compression is achieved using log operator.
- □ Formulation:

$$s = C.log(1 + |r|)$$

where, $C - normalization constant$
 $r - input intensity$

7) <u>Power law Transform:</u>

 $f(x, y) = C .g(x, y)^{\mu}$

s = C. r μ where, C & μ are positive constants

Correction factor.	s shown for different values of	μ' which is also t	ne gamma
correction factor.			
☐ By changing II we ob	otain the family of transformat	ion curves	

- □Nonlinearity encountered during image capturing, storing & displaying can be corrected using gamma correction.
- □ Power Law Transform can be used to increase dynamic range of image.

End of Point Processing