Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 25

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard A3.

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

$$\text{(a)} \ \ S:\mathbb{R}^4\to\mathbb{R}^3 \text{ where } S(\vec{e_1})=\begin{bmatrix}2\\1\\0\end{bmatrix}, \ S(\vec{e_2})=\begin{bmatrix}1\\2\\1\end{bmatrix}, \ S(\vec{e_3})=\begin{bmatrix}0\\-1\\0\end{bmatrix}, \ \text{and} \ S(\vec{e_4})=\begin{bmatrix}3\\2\\1\end{bmatrix},$$

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 where $T(\vec{e_1}) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $T(\vec{e_2}) = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$, and $T(\vec{e_3}) = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.

Standard A4.

Mark:

Let $T: \mathcal{P}^3 \to \mathcal{P}^3$ be the linear transformation given by

$$T(ax^3 + bx^2 + cx + d) = (a + 3b + 3c + 7d)x^3 + (a + 3b - c - d)x^2 + (2a + 6b + 3c + 8d)x + (a + 3b - 2c - 3d)x + (a + 3b - 2c$$

Compute a basis for the kernel and a basis for the image of T.

Additional Notes/Marks