7- AMALIY MASHGULOT. Takroriy guruhlash, o'rinlashtirish, o'rin almashtirish formulalarini qullab misollar yechish

Reja:

- 1. Takroriy guruhlash, o'rinlashtirish, o'rin almashtirish formulalari.
- 2. Mustaqil bajarish uchun masala va topshiriqlar
- 2.1. Takroriy o'rin almashtirish formulalarini qo'llashga doir topshiriqlar.
- 2.2. Takroriy guruhlash formulalarini qo'llashga doir topshiriqlar.
- 2.3. Kombinator tenglamalar doir topshiriqlar.

1. Takroriy guruhlash, o'rinlashtirish, o'rin almashtirish formulalari. Takrorlanuvchi guruhlashlar.

7.1-Ta'rif. n ta elementli toʻplamning barcha tartiblanmagan takrorlanuvchi k ta elementli qism toʻplamlarini ajratish takrorlanuvchi guruhlash deyiladi.

S to`plamning elementlari 1;2;...;n sonlari bilan raqamlangan bo`lsin. S to`plam chekli yoki sanoqli bo`lgani uchun, har doim S to`plam elementlari va N natural sonlar to`plami elementlari o`rtasida bir qiymatli moslik o`rnatish mumkin. U holda S to`plam o`rniga o'zaro bir qiymatli moslik kuchiga asosan, unga ekvivalent bo`lgan $S' = \{1;2;...;n\}$ to`plamning C_n^k guruhlashlarini topish mumkin.

S' to`plamning har qanday tanlanmasini $\{n_1; n_2; ...; n_k\}$ ko`rinishda yozish mumkin, bunda $n_1 \le n_2 \le ... \le n_k$ ketma-ketlik o'rinli bo'lib, "tenglik" amali tanlanma takrorlanuvchi bo`lishi mumkinligini bildiradi.

k ta elementli tanlanma $\{n_1;n_2;...;n_k\}$ ga k ta elementli to`plam $\{n_1;n_2+1;...;n_k+k-1\}$ ni mos qo`yamiz, bunda elementlar turlicha bo`ladi.

 $\{n_1; n_2; ...; n_k\}$ va $\{n_1; n_2 + 1; ...; n_k + k - 1\}$ to`plamlar orasidagi moslik yana o`zaro bir qiymatli bo`lib, $\{n_1; n_2 + 1; ...; n_k + k - 1\}$ to`plam $S' \cup \{1; 2; ...; k - 1\}$ to`plamdan n + k - 1 tadan takrorlanmaydigan k elementli guruhlash bo`ladi.

U holda takrorlanmaydigan C_{n+k-1}^k guruhlashlar soni \widetilde{C}_n^k takrorlanuvchi guruhlash soniga teng bo'ladi, ya'ni

$$\widetilde{C}_{n}^{k} = C_{n+k-1}^{k} = \frac{(n+k-1)!}{k! \cdot (n-1)!} = \frac{n \cdot (n+1) \cdot \dots \cdot (n+k-1)}{k!}$$

7.1-Teorema. n ta elementdan k ta elementli takrorlanuvchi guruhlashlar soni $\widetilde{C}_n^k = C_{n+k-1}^k$ ga teng.

Misol. 4 ta o'yin kubigini tashlab, nechta turlicha variant hosil qilish mumkin?

Yechilishi: Har bir o'yin kubigida 1 dan 6 gacha raqamlardan bittasi tushishi mumkin, ya'ni har bir kubikda 6 ta variant bo'lishi mumkin. Agar 4 ta o'yin kubigi tashlansa, har bir variantni 4 ta ob'yektning tartiblanmagan takrorlanuvchi ketmaketligi deyish mumkin, ularning har biri uchun esa 6 ta imkoniyat bor:

$$\widetilde{C}_n^k = \frac{(n+k-1)!}{k!(n-1)!} = \frac{(6+4-1)!}{4!\cdot 5!} = \frac{9!}{4!\cdot 5!} = \frac{6 \cdot 7 \cdot 8 \cdot 9}{1 \cdot 2 \cdot 3 \cdot 4} = 126.$$

N'yuton binomi.

Maktab kursidan qisqa ko`paytirish formulalari bilan tanishsiz, masalan ikki son yig`indisining kvadrati

$$(a+b)^2 = (a+b) \cdot (a+b) = aa + ab + ba + bb = a^2 + 2ab + b^2$$

yoki ikki son yig`indisining kubini topish

$$(a+b)^3 = (a+b) \cdot (a+b) \cdot (a+b) = a^3 + 3a^2b + 3ab^2 + b^3$$

kabi masalalarda *a* va *b* lar oldidagi koeffitsiyentlarni topish masalasi kelib chiqadi. Koeffitsiyentlarni topish usulini frantsuz matematigi Blez Paskal (1623 – 1662 yy) fanga kiritgan, hozirda **Paskal uchburchagi** deb ataladi:

1	n=0
1 1	n=1
1 2 1	n=2
1 3 3 1	n=3
1 4 6 4 1	n=4
1 5 10 10 5 1	n=5
1 6 15 20 15 6 1	<i>n</i> =6
1 7 21 35 35 21 7 1	n=7

n soni yetarlicha katta bo`lganda, $(a+b)^n$ uchun Paskal uchburchagini tashkil qiluvchi sonlar C_n^k ga teng bo'ladi:

$$C_n^0$$
 C_n^1 C_n^{n-1} C_n^n

Paskal uchburchagining tashqi tomonlaridagi sonlar har doim 1 ga teng bo'ladi, chunki $C_n^0 = C_n^n = 1$. Paskal uchburchagining yana bir qonuniyati, uchburchakdagi 2 ta ketma-ket sonni qo'shish natijasida keyingi qatordagi shu 2 son o'rtasida turgan sonni topish mumkin. Bu xossa **Paskal formulasi** deb nomlanadi:

$$C_{n-1}^{k-1} + C_{n-1}^{k} = C_{n}^{k}$$

Bunda 0 < k < n.

Isboti:

$$C_{n-1}^{k-1} + C_{n-1}^{k} = \frac{(n-1)!}{(n-k)!(k-1)!} + \frac{(n-1)!}{(n-k-1)!k!} = \frac{(n-1)!}{(n-k-1)!(k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \frac{(n-1)!}{(n-k)!(k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \frac{(n-1)!}{(n-k)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \frac{(n-1)!}{$$

$$=\frac{(n-1)!}{(n-k-1)!(k-1)!}\cdot\frac{n}{(n-k)k}=\frac{n!}{(n-k)!k!}=C_n^k.$$

7.2-Teorema (Binomial teorema). Quyidagi tenglik oʻrinli

$$(a+b)^{n} = \sum_{k=0}^{n} C_{n}^{k} \cdot a^{k} \cdot b^{n-k} =$$

$$= C_{n}^{0} \cdot a^{0} \cdot b^{n} + C_{n}^{1} \cdot a^{1} \cdot b^{n-1} + \dots + C_{n}^{k} \cdot a^{k} \cdot b^{n-k} + \dots + C_{n}^{n} \cdot a^{n} \cdot b^{0}$$

bu yerda C_n^k sonlarga binomial koeffitsiyentlar, tenglamaga esa N'yuton binomi deyiladi.

Isboti: Formulani matematik induktsiya metodidan foydalanib isbotlash mumkin. Haqiqatan ham,

$$n = 1 \text{ bo`lganda } (a+b)^1 = C_1^0 \cdot a^0 \cdot b^1 + C_1^1 \cdot a^1 \cdot b^0 = b+a;$$

$$n = 2 \text{ da } (a+b)^2 = C_2^0 \cdot a^0 \cdot b^2 + C_2^1 \cdot a^1 \cdot b^{2-1} + C_2^2 \cdot a^2 \cdot b^0 = b^2 + 2ab + a^2.$$

Endi formulani n-1 uchun o'rinli deb faraz qilib, quyidagiga ega bo'lamiz:

$$(a+b)^n = (a+b)^{n-1}(a+b) = a \cdot (a+b)^{n-1} + b \cdot (a+b)^{n-1} =$$

$$=\sum_{k=0}^{n-1}C_{n-1}^{k}a^{k+1}b^{(n-1)-k}+\sum_{k=0}^{n-1}C_{n-1}^{k}a^{k}b^{(n-1)-k+1}.$$

Yig'indida indekslarni almashtiramiz: k = j - 1, j = k + 1, u holda

$$\sum_{k=0}^{n-1} C_{n-1}^k a^{k+1} b^{(n-1)-k} = \sum_{j=1}^n C_{n-1}^{j-1} a^j b^{n-j}$$

bo'ladi. Bundan

$$(a+b)^{n} = \sum_{k=1}^{n} C_{n-1}^{k-1} a^{k} b^{n-k} + \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k} b^{n-k}.$$

Oxirgi tenglikda yig'indilar chegaralarini tenglashtiramiz. Buning uchun yordamchi $C_{n-1}^{-1} = 0$, $C_{n-1}^{n} = 0$ tengliklarni kiritamiz, u holda

$$\sum_{k=1}^{n} C_{n-1}^{k-1} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n-1}^{k-1} a^{k} b^{n-k}$$

va

$$\sum_{k=0}^{n-1} C_{n-1}^k a^k b^{n-k} = \sum_{k=0}^n C_{n-1}^k a^k b^{n-k}$$

tengliklar hosil bo'ladi.

Bu tengliklarni o'rniga qo'yib, quyidagini hosil qilamiz:

$$(a+b)^{n} = \sum_{k=0}^{n} \left(C_{n-1}^{k-1} + C_{n-1}^{k} \right) a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k}.$$

Teorema isbotlandi.

Hozirda N'yuton binomi deb yuritiladigan yuqoridagi formulani Isaak N'yuton(1643-1727 yy)gacha O'rta osiyolik olimlar, yurtdoshlarimiz: matematik, astronom, shoir Umar Xayyom (1048-1122 yy) va Mirzo Ulug'bekning shogirdi G'iyosiddin Jamshid al-Koshiy "Arifmetika kaliti" asarida yorqin misollarda ko'rsatib bergan. Yevropada esa B. Paskal o'z ishlarida qo'llagan. N'yutonning xizmati shundaki, u formulani daraja ko'psatkichi n ning butun bo'lmagan holi uchun umumlashtirdi.

|x| < 1 uchun n ning butun bo'lmagan qiymatida N'yuton binomi formulasining ko'rinishi quyidagicha bo'ladi:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-k+1)}{k!}x^k + \dots$$

Binom yoyilmasi ko'pgina konbinatorika formulalarida asos bo'lib xizmat qiladi, masalan:

1. a = b = 1 bo'lganda $\sum_{k=0}^{n} C_n^k = 2^n$ hosil bo'ladi. Bu son n ta elementli S to'plamning barcha mumkin bo'lgan tartiblanmagan qism to'plamlari soniga teng.

2. a = 1, b = -1 bo'lganda $\sum_{k=0}^{n} C_n^k (-1)^k = 0$ ga teng, ya'ni toq va juft o'rinda turgan binomial koeffitsiyentlar yig'indisi 2^{n-1} ga va ular o'zaro ham teng bo'ladi.

Polinomial teorema.

7.3-Teorema (N'yuton binomining umumlashgan teoremasi).

k ta qo'shiluvchiga ega bo'lgan $(a_1 + a_2 + ... + a_k)^n$ ifoda uchun N'yuton formulasi quyidagiga teng:

$$(a_1 + a_2 + \dots + a_k)^n = \sum_{\substack{r_1 \ge 0, \dots r_k \ge 0 \\ r_1 + r_2 + \dots + r_k = n}} \frac{n!}{r_1! r_2! \dots r_k!} \cdot a_1^{r_1} \cdot a_2^{r_2} \cdot \dots \cdot a_k^{r_k}$$

ya'ni yig'indi $r_1 + r_2 + ... + r_k = n$ tenglamaning barcha nomanfiy butun yechimlari uchun hisoblanadi.

7.1-Misol. N'yuton polinomi formulasidan foydalanib $(a+b+c)^3$ ni hisoblaymiz.

Agar qavslarni ochib, soddalashtiradigan bo'lsak, bir qancha amallarni bajargandan keyin quyidagi tenglikka kelamiz:

$$(a+b+c)^3 = a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3ab^2 + 3b^2c + 3ac^2 + 3bc^2 + 6abc$$
.
Barcha hisoblashlardan keyin 10 ta haddan iborat bo'lgan tenglik hosil bo'ladi.

Bu tenglikni polynomial formuladan oson topish mumkin: bizning misolda $n=3,\ k=3$, ya'ni

$$\begin{cases} r_1 \ge 0, r_2 \ge 0, r_3 \ge 0, \\ r_1 + r_2 + r_3 = 3. \end{cases}$$

Turli koeffitsiyentlar ham 3 ta, bular:

$$\frac{3!}{3! \cdot 0! \cdot 0!} = 1$$
, $\frac{3!}{2! \cdot 1! \cdot 0!} = 3$, $\frac{3!}{1! \cdot 1! \cdot 1!} = 6$.

Natijani yozish uchun chekli sondagi r_1, r_2, r_3 indekslarni barcha mumkin bo'lgan kombinatsiyalari jadvalini tuzgan ma'qul:

r_1	r_2	r_3
3	0	0
0	3	0
0	0	3
2	1	0
2	0	1

1	2	0
0	2	1
1	0	2
0	1	2
1	1	1

U holda

$$(a+b+c)^3 = 1 \cdot (a^3+b^3+c^3) + 3 \cdot (a^2b+a^2c+ab^2+b^2c+ac^2+bc^2) + 6 \cdot abc.$$
hosil bo'ladi.

7.2-Misol. $(x + y + z)^9$ darajani yoyishdan hosil bo'lgan $x^3y^2z^4$ had oldidagi koeffitsiyentni toping.

Yechilishi:
$$\frac{9!}{3!2!4!} = 1260.$$

7.3-Misol. 15 talabani nechta usulda 3 ta o'quv guruhiga 5 nafardan guruhlarga ajratish mumkin?

Yechilishi: Bizda 15 ta ob'yekt bor, ularni 5 tadan 3 ta guruhga ajratish kerak. Bu ishni

$$\frac{15!}{5!5!5!} = 68796$$

usulda bajarish mumkin.

7.4-Misol 4. "MASALA" so'zidagi harflarni necha xil usulda o'rin almashtirish mumkin?

Yechilishi: Ushbu so'z 6 ta harfdan iborat bo'lgani uchun uni 6! Usulda o'rin almashtirish mumkin. Biroq unda 3 ta "A" harfi qatnashgan, "A" harflarini o'rin almashtirgan bilan yangi so'z hosil bo'lmaydi. 3 ta harfni o'rin almashtirishlar soni

3! ga tengligidan
$$\frac{7!}{3!} = 840$$
 qiymat topiladi.

Demak, "MASALA" so'zidagi harflarni o'rin almashtirish bilan 840 ta turli "so'z" hosil qilish mumkin ekan.

Takrorlanuvchi oʻrin almashtirishlar

7.4-Teorema. Aytaylik $k_1, k_2, ..., k_m$ - butun manfiymas sonlar boʻlib, $k_1 + k_2 + ... + k_m = n$ va A toʻplam n ta elementdan iborat boʻlsin. A ni elementlari mos ravishda $k_1, k_2, ..., k_m$ ta boʻlgan $B_1, B_2, ..., B_m$ m ta toʻplam ostilar yigindisi koʻrinishida ifodalash usullari soni

$$C_n(k_1,...,k_m) = \frac{n!}{k_1! * k_2! * ... * k_m!}$$

ta boʻladi.

 $C_n(k_1,...,k_m)$ sonlar *polinomial koeffitsiyentlar* deyiladi.

2. Mustaqil bajarish uchun masala va topshiriqlar 2.1. Takrorlanuvchi oʻrin almashtirishlarga doir topshiriqlar

- **2.1.0.** "Matematika" soʻzidagi harflardan nechta soʻz yasash mumkin?
- **2.1.1.** "Kombinatorika" soʻzidagi harflardan nechta soʻz yasash mumkin?
- **2.1.2.** Familiyangizdagi harflardan nechta soʻz yasash mumkin?
- **2.1.3.** *a,b,c* harflaridan *a* harfi koʻpi bilan 2 marta, *b* harfi koʻpi bilan bir marta, *c* harfi koʻpi bilan 3 marta qatnashadigan nechta 5 ta harfli soʻz yasash mumkin?
- **2.1.4.** $(1+x)^n$ yoyilmasida x^5 va x^{12} hadlar oldidagi koeffitsiyentlar teng boʻlsa, n nimaga teng?
- **2.1.5.** $(\sqrt{2} + \sqrt[4]{3})^{100}$ yoyilmasida nechta ratsional had mavjud?
- **2.1.6.** Polinomial teorema yordamida $(x+y+z)^3$ yoyilmani toping?
- **2.1.7.** $(x+y+z)^7$ ning yoyilmasida $x^2y^3z^2$ had oldidagi koeffitsiyent nimaga teng?
- **2.1.8.** 8 ta fanning har biridan 3, 4, 5 baholar olish mumkin. Baholar yigʻindisi 30 ga teng boʻladigan qilib imtixonlarni necha xil usulda topshirish mumkin?
- **2.1.9.** Abituriyent 3 ta fandan imtixon topshirishi lozim. Har bir imtixondan ijobiy baho (3,4,5-baholar) olgandagina, keyingi imtixonga qoʻyiladi. Oʻqishga kirish uchun oʻtish bali 17 ball boʻlgan boʻlsa, abituriyent imtixonlarni necha xil usulda topshirishi mumkin?
- **2.1.10.** $(1+2t-3t^2)^8$ yoyilmasida t^9 oldidagi koeffitsiyent nimaga teng?
- **Masala 2.1.11.- 2.1.20** Soʻz oʻzbek alifbosidagi ixtiyoriy chekli harflar ketmaketligidir. Quyida berilgan soʻzlardagi harflardan nechta soʻz yasash mumkin?
- **2.1.11.** BISSEKTRISSA; **2.1.12.** PARABOLA; **2.1.13.** GIPERBOLA;
- **2.1.14.** ELLIPS; **2.1.15.** SIMMETRIK; **2.1.16.** PARALEL;
- 2.1.17. PARALELOGRAM; 2.1.18. PARALELOPIPED; 2.1.19. REFLEKSIV;
- **2.1.20.** TRANZITIV.
- **2.1.21.** Mevalar korzinkasida 2 ta olma, 3ta nok, 4 ta apelsin bor. Har kuni bitta meva yeyish mumkin boʻlsa, buni necha xil usulda amalga oshirish mukin?
- **2.1.22.** Talabalar turar joyida 1 kishilik, 2, kishilik va 4 kishilik xonalar mavjud. 7 ta talabani necha xil usulda joylashtirish mumkin?
- **2.1.23.** Shaxmat taxtasining birinchi gorizontalida oq shaxmat donalari komplekti: 1ta shox, 1ta farzin, 2 ta ot, 2 ta fil, 2 ta toʻrani necha xil usulda joylashtirish mumkin?
- 2.1.24. Beshta A harfi va koʻpi bilan 3 ta B harfidan nechta soʻz yasash mumkin?

- **2.1.25.** 7xil gul turidan 3 tadan yoki 5 tadan qilib nechta gul buketi yasash mumkin?
 - 2.1. Takrorlanuvchi oʻrin almashtirishlarga doir topshiriq(na'muna)
- **2.1.0.** "Matematika" soʻzidagi harflardan nechta soʻz yasash mumkin?

2.1. Topshiriqning bajarilishi bo'yicha na'muna

2.1.0. Misolning yechilishi. "Matematika" soʻzidagi harflardan nechta soʻz yasash mumkin?

$$k_1$$
=2 ("m"- harfi), k_2 =2 ("a" – harfi), k_3 =2 ("t" - harfi), k_4 =1 ("e" - harfi), k_5 =1 ("i"-harfi), k_6 =1 ("k"- harfi), n =10 (soʻzdagi harflar soni)

$$C_{10}(2,3,2,1,1,1) = \frac{10!}{2!*3!*2!*1!*1!*1!} = 151200$$

Shu oʻrinda eslatib oʻtamiz BMI, magistrlik dissertatsiyasi yoki ilmiy ishingizda koʻp miqdordagi takrorlanuvchi oʻrin almashtirishlarni hisoblashga toʻgʻri kelsa, unda Excel dasturlar paketidagi МУЛЬТИНОМ komandasidan foydalanish

mumkin: Masalan $C_{10}(1,2,4,3) = \frac{10!}{1!*2!*4!*3!} = 12600$ ekanligini tezlik bilan hisoblash hech qanday qiyinchilik tugʻdirmaydi.

2.2. Takrorlanuvchi guruhlashlarga doir topshiriqlar

Teorema. n ta elementdan k ta elementli takrorlanuvchi guruhlashlar soni

$$f_n^k = C_{n+k-1}^{n-1} = C_{n+k-1}^k$$

ta boʻladi.

- **2.2.1.** 0,1,2,3,4,5,6 raqamlaridan iborat DOMINO o'yini toshlari nechta?
- **2.2.2.** 0,1,2,...,k raqamlaridan iborat DOMINO oʻyini toshlari nechta?
- **2.2.3.** Qandalotchilik sexida 11 turdagi shirinlik mavjud. 6 ta bir xil yoki 6 ta har xil shirinlikni necha xil usulda tanlash mumkin?
- **2.2.4.** Muzqaymoq do'konida 8 xil turdagi muzqaymoq sotilayapti. 5 kishiga necha xil usulda muzqaymoq olish mumkin?
- **2.2.5.** Asaka avtomobil zavodi tayyor mahsulotlar maydonchasida 15 xil rangdagi NEXIA avtomobillari turibdi. Mashina tashiydigan trallerga 8 ta mashina sigʻsa, necha xil usulda NEXIA avtomobillarini trallerga yuklash mumkin?
- **2.2.6.** TATU da barcha viloyatlardan talabalar oʻqishadi. 5 ta talabadan iborat guruhni necha xil usulda tuzish mumkin?

Masala: Quyida berilgan tengsizliklar nechta musbat butun yechimga ega?

2.2.7.	$3 < x + y + z + v + w \le 7$	2.2.8.	6 < x + y + z + v < 10
2.2.9.	$5 < x + y + z + v \le 8$	2.2.10.	$11 < x + y + z + v + w + t \le 14$
2.2.11.	$6 < x + y + z + v + w \le 10$	2.2.12.	$9 < x+y+z \le 12$
2.2.13.	$8 < x + y + z + v + w + t \le 12$	2.2.14.	<i>3</i> < <i>x</i> + <i>y</i> + <i>z</i> + <i>v</i> + <i>w</i> < <i>6</i>
2.2.15.	$4 < x + y + z \le 9$	2.2.16.	$10 < x + y + z \le 14$
2.2.17.	2 < x+y+z+v < 5	2.2.18.	$5 < x + y + z + v \le 8$
2.2.19.	$2 < x+y+z+v+w+t \le 5$	2.2.20.	$6 < x + y + z \le 9$
2.2.21.	$5 < x + y \le 9$	2.2.22.	2 < x + y + z < 5
2.2.23.	$3 < x + y + z + v \le 7$	2.2.24.	8 < x + y + z + v < 12
2.2.25.	2 < x+y+z+v+w < 6	2.2.26.	3 < x + y + z < 7
2.2.27.	$11 < x + y + z \le 15$	2.2.28.	5 < x + y + z + v + w + t < 10
2.2.29.	$7 < x + y + z + v + w + t + m \le 11$	2.2.30.	$9 < x + y + z + v + w + t \le 12$

2.2. Takrorlanuvchi guruhlashlarga doir topshiriq(na'muna)

2.5.0. Bogʻdagi besh xil turdagi guldan 3 tadan qilib necha xil usulda buket yasash mumkin?

2.2. Topshiriqning bajarilishi bo'yicha na'muna

2.5.0. Bogʻdagi besh xil turdagi guldan 3 tadan qilib necha xil usulda buket yasash mumkin?

$$f_5^3 = C_{5+3-1}^{5-1} = C_{5+3-1}^3 = C_7^3 = \frac{7!}{3!*4!} = 35$$
 usulda buket yasash mumkin.

2.3. Kombinator tenglamalarga doir topshiriqlar

2.3.1.
$$A_{2x-1}^{x-1} \cdot P_x = x \cdot P_{2x-1}$$

2.3.2. $(C_x^0)^2 + (C_x^1)^2 + (C_x^2)^2 = 5A_7^2$
2.3.3. $C_{x-2}^{x-3} : C_x^{x-1} = A_{x-1}^{x-4} : 30$
2.3.4. $A_x^{x-3} = (C_{x-1}^{x-3} + C_{x-1}^{x-4})\underline{P}_3$
2.3.5. $A_{x+1}^2 \cdot A_x^2 \cdot A_{x-1}^2 = \underline{P}_3 \cdot P_{x+1}$

2.3.6
$$A_x^3 = P_{x-2} + C_x^4 - P_{x-1} = 39$$
 2.3.7 $A_x^4 \cdot P_{x-4} = 42 \cdot P_{x-2}$

2.3. Kombinator tenglamalarga doir topshiriqlar

2.3.0.
$$12C_{x+3}^{x-1} = 55A_{x+1}^2$$

2.3. Topshiriqning bajarilishi bo'yicha na'muna

2.3.0.
$$12C_{x+3}^{x-1} = 55A_{x+1}^2$$

Tenglamani yechish uchun $C_n^k = \frac{n!}{k!*(n-k)!}$, $A_n^k = k!*C_n^k = \frac{n!}{(n-k)!}$ va x birdan katta

natural son boʻlishi mumkinligini e'tiborga olib, tenglamada qatnashgan mos koeffitsiyentlarni yuqoridagi formulalarga asoslanib yoyib chiqamiz:

$$12 * \frac{(x+3)!}{(x-1)!*(x+3-(x-1))!} = 55 * \frac{(x+1)!}{(x+1-2)!}$$

Soddalashtiramiz, surat va maxrajlarda qisqarishi mumkin boʻlgan faktoriallarni qisqartiramiz.

$$12*\frac{(x+3)*(x+2)*(x+1)*x}{4!} = 55*(x+1)*x$$

Tenglamaning ikkala tomonini $x^*(x+1)$ ga qisqartiramiz, 12 bilan 4!=1*2*3*4=24 ni qisqartirib, tenglamada ayrim shakl almashtirishlarni amalgam oshirib, quyidagi koʻrinishga olib kelamiz:

$$\frac{(x+3)*(x+2)}{2} = 55;$$

(x+2)(x+3) = 55*2 = 110 = 10*11.

Kvadrat tenglama yechimlari x_1 =-13 bizning shartni (x>1) bajarmaydi Ø, x_2 =8 yechim esa kombinator tenglamamiz yechimi boʻladi.