Big Data Project (52017) - The arXiv data set Author's collaboration network - Final report

Nadav Katz (315314328) & Yishai Shor (311460257)

1 Background

This work focuses on studying the arXiv scientific papers data set to identify relationships between authors of different articles. Identifying existing relationships and their degree of strength can help generate relevant insights regarding collaborations between researchers, such as identifying research communities, locating frequent collaborations between fields and universities, and even predicting future collaborations between researchers or communities.

2 Data and problem definition

The data we used contained metadata for each paper on the arXiv website (a data set of over 1.5 million papers from all fields). Our goal was to create an undirected graph representing the author's collaboration network, where each node stands for an author, and each edge represents a co-authorship relation, with the weight being the number of papers written together.

3 Network Construction

To deal with the problem, we started by extracting all the authors from each article and creating a list for each article that included all possible combinations between the different pairs of authors (which will later be used for creating an undirected graph), assuming the co-authorship relation between each pair co-authored a certain paper, is the same. To do that, we needed to access the metadata available on Kaggle, which includes the authors of each paper in the data set among the rest. Since the data has over 2 million papers recorded in it, this task is not so simple since the initial space of the file is over 3GB. There are some additional space and time considerations. The time takes to construct edges from a single paper can be done in $\mathcal{O}(k^2)$, where k is the number of authors in the paper. hence, the total cost should be around $\mathcal{O}(k^2n)$, where n is the number of papers in the data set. As for itself, it may seem relatively inexpensive to construct the network. Nevertheless, there are some important matters regarding the space requirements this construction requires, which are discussed further.

In addition to those basic time calculations, some search operations are performed repeatedly. Given a newly generated edge from a paper being parsed in the current iteration, we need to check whether this relation is already present in the network, and if so - increment the weight by 1. Performing this search may be highly inefficient when using the wrong data structure. Our implementation uses a hash table to store generated edges in the form of (author 1, author 2), weight, using a Python dictionary. This allows us to overcome costly repeated search operations.

3.1 Overcoming space and time issues

Once the basic operations needed to construct the network are clear, we can address our implementation key concepts. The core concept used t save time and space is called Multi-Threading. This concept allows several processes to work together to execute the desired task at a higher speed. In that case, why not just split the file and run each part severally? The main reason for this is that this approach may cause inefficient use of the resources and shut the program down. Using multi-threading allows all the running processes to share the memory resources and use the same resources together, which lowers memory usage by several factors, and also gives more accurate results. To overcome the time and space issues raised above, we designed the network builder according to a commonly known Design Pattern - the "Producer-Consumer." Our implementation is based on creating some entities that connect using simple interfaces, as in object-oriented programming.

Design pattern, as stated in Wikipedia is "a general, reusable solution to a commonly occurring problem within a given context in software design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or template for how to solve a problem that can be used in many different situations." In our case, we needed to design our system to work using as low resources as possible on the one hand and work as fast as it could on the other hand. Our implementation is based on a few building blocks:

- Data Generator: iterates through data and yields batches of papers to process. This way, only a small amount of the data is in the memory at a given time.
- **Producer**: Takes data batch (papers), processes the information, i.e., creates all co-authorship relations from each paper in batch, and puts to a shared queue for further processing.
- Shared Queue: contains all edges waiting to be included in the network or updated.
- Consumer: Consumes data from the shared queue and puts it in a shared Python dictionary.
- Shared memory: Updating shared network dictionary that is shared between all consumers. That way, we make sure no edge is inserted twice.

These building blocks are intended to make the construction process run smoothly and fast. In our Implementation, one of the key features is the ability to use multiple "Producers" of data together with multiple "Consumers." This way, we can distribute the work between cores without the fear of losing data or counting data twice.

There are some additional details to the implementation, which is publicly available as a Python package with a relatively simple interface. Also, the full technical details are available in the code itself. Also, for easier work for other teams that relied on our work, we published the code as a simple-to-install Python package and added features to support various teams' work. For example, using a specific argument while constructing the network adds extra features to each edge, which include the paper Arxiv unique ids of each co-authorship relation and the last update date of each paper. Moreover, we also provided a simple method that allows converting the network data straight into a network object for easier analysis to be performed on the data.

4 Possible problems and solutions

During the construction of the graph, we encountered some problems. For example, A major one is misidentifying different writers as if they were the same writer. To address that, we didn't use the author name as given, but a parsed name is also available in the metadata. This assures, with higher confidence, that the code is not treating different authors as if they were the same. Regarding the time and space consumption problem, as detailed above, we built our network methods keeping in mind the need for speed and low memory consumption, which is why we chose to use multi-threading.

5 Possible extensions

The graph we created is full of fascinating information. For example, one may find extremely influential authors pretty easily by just searching for a high degree of nodes. Also, edges with high weight are interesting. Having said that, the analysis that can be performed on this data set has no limit. In this project, we focused on creating the network, a challenging task of its own. Nevertheless, we provide a preliminary analysis, which is also available on GitHub. For example, we analyze the degree distribution of the network and find that surprisingly (or not), it does not follow the power law. Also, we show that nodes in a graph tend to cluster together using the global clustering coefficient. Of course, there is some extra analysis that may be performed on this network. For example, one may identify the key communities among the researchers and thereby characterize research fields or universities that tend to collaborate between them. Another possible application would be to try to predict the domain or authors most likely to publish the next article.