Problem: System of 1st-Order Equations – Bài Tập: Hệ Phương Trình Bậc Nhất

Nguyễn Quản Bá Hồng*

Ngày 21 tháng 10 năm 2023

Mục lục

1	1st-Order Equations of 2 Unknowns – Phương Trình Bậc Nhất 2 Ẩn	1
2	System of 1st-Order Equations of 2 Unknowns – Hệ Phương Trình Bậc Nhất 2 Ẩn	1
3	Giải Bài Toán Bằng Cách Lập Hệ Phương Trình	3
4	Miscellaneous	3
Tà	ıi liêu	3

1 1st-Order Equations of 2 Unknowns – Phương Trình Bậc Nhất 2 Ẩn

- 1 ([Bìn23], VD66, p. 5). Cho đường thẳng: d:(m-2)x+(m-1)y=1 với tham số m. (a) Chứng minh đường thẳng d luôn đi qua 1 điểm cố định với mọi giá trị của m. (b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến d lớn nhất.
- 2 ([Bìn23], VD67, p. 6). Tìm các điểm thuộc đường thẳng 3x 5y = 8 có tọa độ là các số nguyên \mathcal{E} nằm trên dải song song tạo bởi 2 đường thẳng y = 10, y = 20.
- 3 ([Bìn23], 198., p. 8). Xét các đường thẳng d có phương trình: (2m+3)x + (m+5)y + 4m 1 = 0 với tham số m. (a) Vẽ đường thẳng d ứng với m = -1. (b) Tìm điểm cố định mà mọi đường thẳng d đều đi qua.
- 4 ([Bìn23], 199., p. 8). Tìm các giá trị của b, c để các đường thẳng 4x + by + c = 0, cx 3y + 9 = 0 trùng nhau.
- 5 ([Bìn23], 200., p. 8). Vẽ đồ thị biểu diễn tập nghiệm của phương trình $x^2 2xy + y^2 = 1$.
- 6 ([Bìn23], 201., p. 8). Dường thẳng ax + by = 6 với a > 0, b > 0, tạo với 2 trực tọa độ 1 tam giác có diện tích bằng 9. Tính ab.
- 7 ([Bìn23], 202., p. 8). Cho đường thẳng d:(m+2)x-my=-1 với tham số m. (a) Tìm điểm cố định mà d luôn đi qua. (b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến d lớn nhất.
- 8 ([Bìn23], 203., p. 8). Trong hệ trực tọa độ Oxy, A(1,1), B(9,1). Viết phương trình của đường thẳng $d \perp AB$ & chia ΔOAB thành 2 phần có diện tích bằng nhau.
- 9 ([Bìn23], 204., p. 8). Tìm các điểm nằm trên đường thẳng 8x + 9y = -79, có hoành độ & tung độ là các số nguyên & nằm bên trong góc vuông phần tư III.
- 10 ([Bìn23], 205., p. 8). Cho 2 điểm A(3,17), B(33,193). (a) Viết phương trình của đường thẳng AB. (b) Có bao nhiêu điểm thuộc đoạn thẳng AB & có hoành độ & tung độ là các số nguyên?
- 11 ([Bìn23], 206., p. 8). (a) Vẽ đồ thị hàm số $d: y = \frac{3}{2}x + \frac{7}{4}$. (b) Có bao nhiều điểm nằm trên cạnh hoặc nằm trong tam giác tạo bởi 3 đường thẳng x = 6, y = 0, d.

2 System of 1st-Order Equations of 2 Unknowns – Hệ Phương Trình Bậc Nhất 2 Ẩn

12 ([Bìn23], VD68, p. 9). Cho hệ phương trình với tham số a:

$$\begin{cases} (a+1)x - y = a+1, \\ x + (a-1)y = 2. \end{cases}$$

^{*}Independent Researcher, Ben Tre City, Vietnam

- (a) Giải hệ phương trình với a=2. (b) Giải & biện luận hệ phương trình. (c) Tìm các giá trị nguyên của a để hệ phương trình có nghiệm nguyên. (d) Tìm các giá trị nguyên của a để nghiệm của hệ phương trình thỏa mãn điều kiện x+y nhỏ nhất.
- 13 ([Bìn23], VD69, p. 10). Tìm $a, b, c \in \mathbb{Z}$ thỏa mãn cả 2 phương trình 2a + 3b = 6, 3a + 4c = 1.
- 14 ([Bìn23], VD70, p. 10). Cho 2 đường thẳng: d: 2x 3y = 4, d': 3x + 5y = 2. Tìm trên trực Ox điểm có hoành độ là số nguyên dương nhỏ nhất, sao cho nếu qua điểm đó ta dựng đường vuông góc với Ox thì đường vuông góc ấy cắt 2 đường thẳng d, d' tại 2 điểm có tọa độ là các số nguyên.
- 15 ([Bìn23], VD71, p. 11). Giải hệ phương trình với 3 ẩn x, y, z \mathscr{C} các tham số a, b, c khác nhau đôi một:

$$\begin{cases} a^{2}x + ay + z = 5, \\ b^{2}x + by + z = 5, \\ c^{2}x + cy + z = 5. \end{cases}$$

Giải hệ phương trình:

16 ([Bìn23], 207., p. 12).

$$\begin{cases} (x+3)(y-5) = xy, \\ (x-2)(y+5) = xy, \end{cases} \begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{3}{4}, \\ \frac{1}{6x} + \frac{1}{5y} = \frac{2}{15}. \end{cases}$$

17 ([Bìn23], 208., p. 12).

$$\begin{cases} \frac{x}{y} - \frac{x}{y+12} = 1, \\ \frac{x}{y-12} - \frac{x}{y} = 2, \end{cases} \qquad \begin{cases} 4(x+y) = 5(x-y), \\ \frac{40}{x+y} + \frac{40}{x-y} = 9. \end{cases}$$

18 ([Bìn23], 209., p. 12).

$$\begin{cases} |x-2|+2|y-1| = 9, \\ x+|y-1| = -1, \end{cases} \begin{cases} x+y+|x| = 25, \\ x-y+|y| = 30. \end{cases}$$

19 ([Bìn23], 210., p. 12). Tìm các giá trị của $a \in \mathbb{R}$ để 2 hệ phương trình tương đương:

$$\begin{cases} 2x + 3y = 8, \\ 3x - y = 1, \end{cases} \qquad \begin{cases} ax - 3y = -2, \\ x + y = 3. \end{cases}$$

20 ([Bìn23], 211., p. 12). Tìm các giá trị của $m \in \mathbb{R}$ để nghiệm của hệ phương trình sau là 2 số dương:

$$\begin{cases} x - y = 2, \\ mx + y = 3. \end{cases}$$

- **21** ([Bìn23], 212., p. 12). Chứng minh tam giác tạo bởi 3 đường thẳng $y = 3x 2, y = -\frac{1}{3}x + \frac{4}{3}, y = -2x + 8$ là tam giác vuông cân.
- **22** ([Bìn23], 213., p. 13). Tim các giá trị của $m \in \mathbb{R}$ để hệ phương trình sau vô nghiệm, vô số nghiệm:

$$\begin{cases} 2(m+1)x + (m+2)y = m-3, \\ (m+1)x + my = 3m+7. \end{cases}$$

23 ([Bìn23], 214., p. 13). Cho hệ phương trình với tham số m:

$$\begin{cases} mx + 2y = 1, \\ 3x + (m+1)y = -1. \end{cases}$$

- (a) Giải hệ phương trình với m = 3. (b) Giải & biện luận hệ phương trình theo m. (c) Tìm các giá trị nguyên của m để nghiệm của hệ phương trình là các số nguyên.
- **24** ([Bìn23], 215., p. 13). Cho hệ phương trình với tham số m:

$$\begin{cases} (m-1)x + y = 3m - 4, \\ x + (m-1)y = m. \end{cases}$$

- (a) Giải & biên luận hệ phương trình theo m. (b) Tim các giá tri nguyên của m để nghiêm của hệ phương trình là các số nguyên.
- (c) Tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất.

25 ([Bìn23], 216., p. 13). Cho hệ phương trình với tham số m.

$$\begin{cases} x + my = m + 1, \\ mx + y = 3m - 1. \end{cases}$$

(a) Giải & biện luận hệ phương trình theo m. (b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.

26 ([Bìn23], 217., p. 13). Các số không âm x, y, z thỏa mãn hệ phương trình:

$$\begin{cases} 4x - 4y + 2z = 1, \\ 8x + 4y + z = 8. \end{cases}$$

(a) Biểu thị x, y theo z. (b) Tìm GTNN, GTLN của biểu thức A = x + y - z.

27 ([Bìn23], 218., p. 13). Tìm $a, b, c \in \mathbb{Z}$ thỏa mãn hệ phương trình:

$$\begin{cases} 2a + 3b = 5, \\ 3a - 4c = 6. \end{cases}$$

28 ([Bìn23], 219., p. 14). Tìm trên trục tung các điểm có tung độ là số nguyên, sao cho nếu qua điểm đó ta dựng đường vuông góc với trục tung thì đường vuông góc ấy cắt 2 đường thẳng: d: x + 2y = 6, d': 2x - 3y = 4 tại các điểm có tọa độ là các số nguyên.

29 ([Bìn23], 220., p. 14). Tìm trên trục hoành các điểm có hoành độ là số nguyên sao cho nếu qua điểm đó ta dựng đường thẳng vuông góc với trục hoành thì đường vuông góc ấy cắt cả 3 đường thẳng sau tại các điểm có tọa độ là các số nguyên: $d_1: x-2y=3, d_2: x-3y=2, d_3: x-5y=-7$.

Giải hệ phương trình ẩn x, y, z:

30 ([Bìn23], 221., p. 14).

$$\begin{cases} x+y+z = 11, \\ 2x-y+z = 5, \\ 3x+2y+z = 14, \end{cases} \begin{cases} x+y+z+t = 4, \\ x+y-z-t = 8, \\ x-y+z-t = 12, \\ x-y-z+y = 16. \end{cases}$$

31 ([Bìn23], 222., p. 14).

$$\begin{cases} x + y + z = 12, \\ ax + 5y + 4z = 46, \\ 5x + ay + 3z = 38, \end{cases} \begin{cases} ax + y + z = a^2, \\ x + ay + z = 3a, \\ x + y + az = 2. \end{cases}$$

32 ([Bìn23], 223., p. 14). $a, b, c \in \mathbb{R}$ là tham $s\acute{o}$, $a + b + c \neq 0$.

$$\begin{cases} (a+b)(x+y) - cz = a - b, \\ (b+c)(y+z) - ax = b - c, \\ (c+a)(z+x) - by = c - a. \end{cases}$$

33 ([Bìn23], 224., p. 14). Giải hệ phương trình với 3 tham số $a, b, c \in \mathbb{R}$ đôi một khác nhau, $a + b + c \neq 0$:

$$\begin{cases} ax + by + cz = 0, \\ bx + cy + az = 0, \\ cx + ay + bz = 0, \end{cases} \begin{cases} ax + by + cz = a + b + c, \\ bx + cy + az = a + b + c, \\ cx + ay + bz = a + b + c. \end{cases}$$

34 ([Bìn23], 225., p. 14).

$$\begin{cases} x^2 + xy + xz = 2, \\ y^2 + yz + xy = 3, \\ z^2 + xz + yz = 4. \end{cases}$$

3 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình

4 Miscellaneous

Tài liệu

[Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tâp 2. Nhà Xuất Bản Giáo Duc Việt Nam, 2023, p. 290.