G12 Chemistry

Electrochemistry
Class 16

Galvanic Cells

- Converts chemical energy to electrical energy by preventing the reactants from coming into contact with each other
- Electrons flow through an external circuit

Electrodes – the Zn and Cu metal

Electrolyte – the ZnSO₄(aq) and CuSO₄(aq)

2. The Cu²⁺ in solution picks up the electrons and get reduced to copper metal, which accumulates on the copper cathode

Anode – Site of Oxidation

Cathode - Site of Reduction

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

3. The Zn^{2+} that remain in the solution attract SO_4^{2-} through the porous barrier to maintain neutrality

Cathode – Site of Reduction $Cu^{2+} + 2e^{-} \rightarrow Cu$

Anode – Site of Oxidation $Zn \rightarrow Zn^{2+} + 2e^{-}$

2. As the Cu²⁺ from the solution and electrons get reduced to copper metal, the NH₄⁺ migrate towards the CuSO₄ solution to maintain neutrality.

1. When the electrons leave the anode, Zn^{2+} is left in the solution, which causes the Cl^- in the salt bridge to migrate towards the $ZnSO_4$ solution

Cell Diagrams

• Use a shorthand notation:

Anode | Anodic solution | | Cathodic solution | Cathode $Zn^{2+}(s) | ZnSO_4(aq) | | CuSO_4(aq) | Cu^{2+}(s)$

- Remember:
 - AN OX anode, oxidation
 - RED CAT cathode, reduction

Checkpoint

Write the shorthand notation for a galvanic cell that uses the reaction:

Fe(s) +
$$Sn^{2+}(aq) \rightarrow Fe^{2+}(aq) + Sn(s)$$

Inert Electrodes

 An electrode that is made from a material that is neither a reactant nor a product of the reaction

Pt is the inert electrode and it is not included in the overall reaction but it is included in the shorthand notation

Checkpoint

Write the shorthand notation for the following galvanic cell:

Cell Potentials

- Cell Potential (E) the difference between the potential energy at the anode and the cathode
 - Unit: V or J/C measured with a voltmeter

Cell Potential (E) =
$$\frac{W}{Q}$$

Standard Reduction Potentials

• Uses hydrogen (E°) as a standard of 0 V

Table 11.1 Standard Half-Cell Potentials (298 K)

Half-reaction	<i>E</i> ° (V)
$F_{2(g)} + 2e^- \rightleftharpoons 2F^{(aq)}$	2.866
$Br_{2(\ell)} + 2e^- \Leftrightarrow 2Br^{(aq)}$	1.066
$I_{2(s)} + 2e^- \rightleftharpoons 2I^{(aq)}$	0.536
$Cu^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Cu_{(s)}$	0.342
$2H^+_{(aq)} + 2e^- \rightleftharpoons H_{2(g)}$	0.000
$Fe^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Fe_{(s)}$	-0.447
$Zn^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Zn_{(s)}$	-0.762
$Al^{3+}_{(aq)} + 3e^{-} \rightleftharpoons Al_{(s)}$	-1.662
$Na^{+}_{(aq)} + e^{-} \rightleftharpoons Na_{(s)}$	-2.711

- Tables of half-reaction potentials are given for reductions only
- To get the potential of the oxidation reaction, reverse the sign of the tabulated value

Standard Hydrogen Electrode (SHE)

 The hydrogen electrode is used as a reference for all other standard reduction potentials

- Hydrogen gas is bubbled into the [1.0M] HCl solution at 25°C and 1atm
- The platinum electrode provides a surface for the dissociation of hydrogen molecules and serves as an electrical conductor

 2H⁺ + 2e⁻ → H₂ E° = 0V

Zn(s) | Zn²⁺(aq) | | H⁺ (1M) | H₂ (1atm) | Pt(s)

$$\boldsymbol{E^{\circ}_{cell}} = \boldsymbol{E^{\circ}_{cathode}} - \boldsymbol{E^{\circ}_{anode}}$$

$$\boldsymbol{E^{\circ}_{cell}} = \boldsymbol{E^{\circ}_{Hydrogen}} - \boldsymbol{E^{\circ}_{Zinc}}$$

$$0.76V = 0 - \boldsymbol{E^{\circ}_{Zinc}}$$

$$\boldsymbol{E^{\circ}_{Zinc}} = -0.76V$$

Calculating Standard Cell Potentials

Method 1:
$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

$$Zn(s) | Zn^{2+} (aq) | | Cu^{2+} (aq) | Cu(s)$$

Anode: $Zn^{2+} (aq) + 2e^{-} \rightarrow Zn(s)$ $E^{\circ} = -0.762V$
Cathode: $Cu^{2+} (aq) + 2e^{-} \rightarrow Cu(s)$ $E^{\circ} = 0.342V$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$
 $= 0.342V - (-0.762V)$
 $= 1.104V$

7

Method 2:
$$E_{\text{cell}} = E_{\text{red}} + E_{\text{ox}}$$

$$Zn(s) | Zn^{2+} (aq) | | Cu^{2+} (aq) | Cu(s)$$

Anode: $Zn^{2+} (aq) + 2e^{-} \rightarrow Zn(s)$ $E^{\circ} = -0.762V$
Cathode: $Cu^{2+} (aq) + 2e^{-} \rightarrow Cu(s)$ $E^{\circ} = 0.342V$
 $E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{oxid}$
 $= 0.342V + 0.762V$
 $= 1.104V$

Zn (s) | Zn²⁺(aq) | | Cu²⁺(aq) | Cu (s)

$$\boldsymbol{E^{\circ}_{cell}} = \boldsymbol{E^{\circ}_{cathode}} - \boldsymbol{E^{\circ}_{anode}}$$

$$\boldsymbol{E^{\circ}_{cell}} = \boldsymbol{E^{\circ}_{Copper}} - \boldsymbol{E^{\circ}_{Zinc}}$$

$$\boldsymbol{E^{\circ}_{cell}} = 0.34V - (-0.76V)$$

$$\boldsymbol{E^{\circ}_{cell}} = 1.10V$$

Checkpoint

Calculate the standard cell potential for the galvanic cell in which the following reaction occurs.

$$2I^{-}(aq) + Br_{2}(I) \rightarrow I_{2}(s) + 2Br^{-}(aq)$$

Checkpoint

Calculate the standard cell potential for the galvanic cell in which the following reaction occurs.

$$2Na(s) + 2H2O(I) \rightarrow 2NaOH(aq) + H2(g)$$

Thermodynamics of Redox Reactions

• How are standard cell potentials (E°) and free-energy changes (ΔG) related?

$$\Delta G^{\circ} = -nFE^{\circ}$$

 ΔG° = free energy change under standard conditions

n = moles of electrons transferred in the reaction

F = Faraday constant (96 500 C/mol e⁻)

Faraday constant (F) – charge of 1 mol of e⁻

Charge on one mole of electrons =
$$\frac{1.602 \times 10^{-19} \text{ C}}{1\text{e}^{-}} \times \frac{6.022 \times 10^{23} \text{ e}^{-}}{1 \text{ mol}}$$

= $9.647 \times 10^{4} \text{ C/mol}$

$$F = \frac{q_e}{n_e}$$
$$q_e = n_e F$$

Where:

n_e = number of moles of electrons exchanged in the redox reaction

Checkpoint

Calculate the standard free-energy change at 25°C for the following reaction. The standard cell potential is 1.10V.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Concentration and Cell Potentials

To understand the relationship between concentration and cell potential changes, use the Nernst equation:

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

E = cell potential in non-standard state

E° = cell potential at standard state

R = 8.314 J/molK

 $F = 96 500 \text{ C/mol of } e^{-}$

n = mol of electrons transferred

Q = reaction quotient

Checkpoint

Predict whether the following reaction would proceed spontaneously as written at 298K given that $[Co^{2+}] = 0.15M$ and $[Fe^{2+}] = 0.68M$

$$Co(s) + Fe^{2+}(aq) \rightarrow Co^{2+}(aq) + Fe(s)$$

Checkpoint

Calculate the equilibrium constant for the following reaction at 25°C:

$$2Cr^{3+}(aq) + 3Ni(s) \leftrightarrows 2Cr(s) + 3Ni^{2+}(aq)$$

Electrolytic Cells

- The use of electricity to power a nonspontaneous redox reaction
- The external power can be a battery or an electrical outlet which forces the products to turn back into reactants
- Process is called electrolysis
- ΔE° is negative (nonspontaneous)

Galvanic	Electrolytic
Spontaneous (ΔG<0)	Nonspontaneous (ΔG>0)
Is a battery	Needs a battery
Two half-cells to generate electricity	Occurs in a single container
Anode (Oxidation; Negative)	Anode (Oxidation; Positive)
Cathode (Reduction; Positive)	Cathode (Reduction; Negative)

Applications of Electrolytic Cells

- In molten-salt electrolysis, metal cations are reduced to metal atoms at the cathode and nonmetal anions are oxidized at the anode
 - Ex: Manufacture of Na metal

Electrolysis of Water

Oxidation: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$

Reduction: $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \times 2$

Overall: $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$

$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$$
 $E^\circ = 1.229V$
 $2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ $E^\circ = -0.828V$
 $E^\circ = E^\circ_{cathode} - E^\circ_{anode}$
 $= -0.828V - 1.229V$
 $= -2.057V$ (nonspontaneous)

Procedure for Analyzing Electrolytic Cells

- 1) Use the redox table to identify the SOA (strongest oxidizing agent) and SRA (strongest reducing agent)
 - Don't forget to consider water for aqueous electrolytes
- 2) Write equations for the reduction and oxidation. Include all the reduction potentials if required.
- 3) Balance the electrons and write the net cell reaction and cell potential.
- 4) State the minimum electric potential to force the reaction to occur. The minimum voltage is the absolute value of E°_{cell}

Checkpoint

An electrolytic cell containing cobalt(II) chloride solution and lead electrodes is assembled.

Pb (s) |
$$Co^{2+}(aq)$$
, $Cl^{-}(aq)$ | $Pb(s)$

- a) Predict the reactions at the cathode and anode and in the overall cell
- b) Draw and label a cell diagram for this electrolytic cells, including the power supply
- c) What minimum voltage must be applied to make this cell work?

Stoichiometry of Cell Reactions

- Using stoichiometry, we can predict the mass of the reactant used or product made at the electrodes
- Look at the mole ratio of electrons

$$q_e = It$$
 $n_e F = It$

Where:

 q_e = charge of e^- (C) I = current (A) t = time (s) n_e = moles of e^- F = 96500 C/mol

Checkpoint

Calculate the mass of aluminum produced by the electrolysis of molten AlCl₃, if a current of 500mA passes for 1.50h.

Checkpoint

How many minutes does it take to plate 0.925g of silver onto the cathode of an electrolytic cell using a current of 1.55A?

Batteries

- Batteries are the most practical application of galvanic cells and electrolytic cells
 - Lead-Storage Battery used for automobiles; the product that forms is solid PbSO₄ sticks to the surface of the electrodes so it can be recharged with an external current to drive the cell in its reverse, nonspontaneous direction
 - If PbSO₄ dislodges from the electrodes due to driving on bumpy roads, the battery cannot be jumped

 Dry-Cell Battery – zinc metal can (anode) with an inert graphite rod surrounded by a solid manganese dioxide paste (cathode).
 Surrounding this paste is the electrolyte

- Alkaline Cell Battery longer lasting version of the dry cell
 - Alkaline (basic) solution such as KOH replaces the NH₄Cl and ZnCl₂ in dry cells

 Button Cell Battery – used in watches, pacemakers; anode is zinc and cathode is steel in contact with HgO in an alkaline medium of KOH and Zn(OH)₂

 Lithium Battery – used in rechargeable electronics; anode is lithium, cathode is a metal oxide or metal sulfide in an electrolyte of a lithium salt

• Fuel Cells – used in electric vehicles; reactants are not contained but rather supplied through an external reservoir and one of the reactants is methane or hydrogen

Corrosion

- We live in an oxidizing environment and spontaneous oxidation (corrosion) of metal occurs
- Iron Rusting in Water and Oxygen

Anode: Fe(s) \rightarrow Fe²⁺(aq) + 2e⁻¹

Cathode: $\frac{1}{2}O_2(g) + H_2O(l) + 2e^{-} \rightarrow 2OH^{-}(aq)$

 Combination of Fe²⁺ and OH⁻ forms iron (II) hydroxide which is further oxidized to iron (III) hydroxide (yellow-brown solid)

- The red-brown rust is formed by the dehydration of Fe(OH)₃ to form a hydrated form Fe₂O₃
- Rusting can be slowed down significantly by removing oxygen or water
- Electrolytes and acids accelerate rusting (i.e. seawater, road salt, acid rain, etc.)
- Corrosion can be prevented through protective coatings (i.e. paint), galvanizing or cathodic protection

Galvanizing

- Process in which iron is covered with a protective layer of zinc
 - Zinc acts as a protective layer since it is more easily oxidized than iron;
 Zn becomes the sacrificial anode
 - Iron acts as the cathode
- Used to make metal buckets and chain-link fences

Cathodic Protection

- A more reactive metal is attached to the iron object to act as the sacrificial anode while the iron becomes the cathode
- Unlike galvanizing, the metal used in cathodic protection does not completely cover the iron and must be replaced periodically

Other Applications

- Electrorefining (extraction) is a process used to obtain highgrade metals at the cathode from an impure metal at the anode
- Electroplating is a process in which a metal is deposited on the surface of an object placed at the cathode of an electrolytic cell