MATH2033 Mathematical Analysis Problem Set 7

Problem 1

We consider a function $\mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^3 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}.$$

- (a) Determine if f(x) is differentiable at x = 0.
- **(b)** Determine if f(x) is differentiable at $x \neq 0$.
- (c) Determine if f(x) is twice differentiable at x = 0.

Problem 2

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x = c and f(c) = 0. Show that g(x) = |f(x)| is differentiable at x = c if and only if f'(c) = 0.

Problem 3 (Harder)

A function f(x) is continuous on (a,b) and has finite derivative f'(x) at every $x \in (a,b)\setminus\{c\}$. Suppose that $\lim_{x\to c} f'(x) = A$, show that f is also differentiable at x=c and f'(c)=A.

((3) Hint: Mean value theorem may be useful)

Problem 4

- (a) We consider a function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 2x + 1$. Show that the inverse function f^{-1} exists and is differentiable at any $x_0 \in \mathbb{R}$.
- **(b)** We let $g(x) = \tan x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Show that the inverse function $g^{-1}(y) = \tan^{-1} y$ exists and is differentiable at any $y \in \mathbb{R}$. Find $\frac{d}{dy}g^{-1}(y)$.

Problem 5

- (a) We let f(x), g(x) be two differentiable functions on \mathbb{R} such that f(0) = g(0) and $f'(x) \leq g'(x)$ for all $x \geq 0$, show that $f(x) \leq g(x)$ for all $x \geq 0$.
- (b) Show that for any a>b>0 , we have $a^{\frac{1}{n}}-b^{\frac{1}{n}}<(a-b)^{\frac{1}{n}}$ for all positive integer $n\geq 2$. (ⓐ Hint: Consider the function $f(x)=x^{\frac{1}{n}}-(x-1)^{\frac{1}{n}}$ for $x\geq 1$)

Problem 6

It is given that a function f(x) is continuous on [a,b] and is differentiable on (a,b). Suppose that f(a)=f(b)=0, show that for any $\lambda\in\mathbb{R}$, there exists $c\in(a,b)$ such that $f'(c)=\lambda f(c)$. (3) Hint: Apply Rolle's theorem to g(x)f(x), where g(x) is some function depending on λ .)

Problem 7

We let f(x) be a continuous function on [0,1] which f(0)=0 and is differentiable at any $x\in(0,1)$. Prove that if f'(x) is increasing, then a function defined by $g(x)=\frac{f(x)}{x}$ is also increasing.

Problem 8

Suppose that f(x) is differentiable over the interval $(0,\infty)$ and that $\lim_{x\to\infty}f'(x)=0$. We let a>0 be a positive number and define g(x)=f(x+a)-f(x). Show that $\lim_{x\to\infty}g(x)=0$.

Problem 9

It is given that a function $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and is differentiable on (a,b). Suppose that |f'(x)|<1 for all $x\in(a,b)$, prove that f(x)=x has at most one solution. ($\textcircled{\odot}$ Hint: What will happen if there are two or more solutions?)

Problem 10

Show that
$$1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$$
 for all $x > 0$.

Problem 11

We let f be a twice differentiable function on (a,b) which $f''(x) \ge 0$ for all $x \in (a,b)$. For any $c \in (a,b)$, show that the graph of f(x) is never below the tangent line to the graph at (c,f(c)).