Da Vinci Robot Haptic Feedback Gloves

Sara Perez, Julio Membreno, Jenna Saiontz, Paloma Laso, and Michael Luchini

Problem Statement

Although Minimally Invasive Surgical (MIS) robots, such as the da Vinci Surgical System, have reduced post-op care and recovery time, the robot does not provide haptic feedback to surgeons.

Project Description

Our goal is to design soft robotic gloves that provide haptic feedback when the pressure applied by the Cadiere forceps approaches the maximum pressure that human tissue can safely withstand.

Our Overall Design

Actuator

Actuator

Sensor

Tekscan FlexiForce A101 Sensor

Piezoresistive sensor is easy to use with the Arduino and is placed on the tips of the Cadiere forceps.

In the circuit, the sensor acts as a resistor. The resistance is high when the sensor is unloaded and is low when the sensor is loaded

Sensor Circuitry

Integration of Flexiforce is done via non-inverting op-amp circuit.

Feedback resistor and capacitor help to smooth out noise in sensor's response.

Actuator Pneumatics

Overall Controls Flow Chart

Glove Design

We purchased simple fingerless nylon gloves for the prototype but will fabricate our own for the final product. The fingerless design allows the surgeon to maintain a better grip on the controls.

The actuator pocket is composed of a thinner fabric sewn into the palm of the glove interior.

Notes From Operating Room Visit

Dr. Suzuki's feedback on our initial placement of the actuator has caused us to reconsider using a glove in our haptic feedback system design.

We are contemplating alternative actuator placement for the final design.

Prototype Demonstration

