WHAT IS CLAIMED IS:

1. A compound having the structure:

HO
$$X^1$$
 Y^2 X^2 X^3 X^4

wherein:

 X^1 and X^2 are each independently H, Me, F, Cl, Br, I, SO₃H, CO₂H, CONH₂, CONMe₂, CN, or NO₂;

X³ is NHCH₂R, or NHSO₂R, wherein R is CH₂COOH, CH₂CH₂NG¹G², substituted 2-hydroxyphenyl, or a five or six-membered heterocyclic ring, G¹ and G² are H, Me, Et, CH₂CH₂OH, or together are -(CH₂)₄-, -(CH₂)₅-, -CH₂CH₂OCH₂CH₂-, or -CH₂CH₂NHCH₂CH₂-;

X⁴ is H, Me, F, Cl, Br, I, SO₃H, CO₂H, CN, OMe, NHCH₂R, or NHSO₂R, wherein R is as defined above,

Y¹ and Y² are each independently H, or taken together are -O-, -S-, -Se-, -CMe₂-,-NH-, -NMe-, or -NPh-;

A is N, CH, C-CN, C-CF₃, C-CH₂CH₂COOH, C-CH=CHCOOH, or

$$z^5$$
 z^4
 z^3

wherein:

 Z^1 is H, CO₂H, or SO₃H;

Z² and Z⁵ are each independently H, F, or Cl;

Z³ and Z⁴ are independently H, F, Cl, CO₂H,

NO₂, NH₂, NCS, NHCOCH₂I, SCH₂COOH, SCH₂CH₂NH₂,

(N-succinimidyl)oxycarbonyl,

(N-succinimidyl)oxycarbonylmethylthio, N-maleimidyl,

3,5-dichloro-2,4,6-triazinylamino, CONHQ, or SO₂NHQ, wherein Q is

H, C_1 - C_{20} alkyl, $(CH_2)_mCOOH$, $(CH_2)_nNH_2$, or

(CH₂CH₂O)_kCH₂CH₂NH₂, wherein m is 1 to about 11, n is 2 to about

12, and k is 1 to about 3

or tautomers and physiologically acceptable salts thereof.

2. The compound of claim 1, wherein A is

$$z^5$$
 z^1
 z^2

wherein:

 Z^1 is H, CO₂H, or SO₃H;

Z² and Z⁵ are each independently H, F, or Cl;

Z³ and Z⁴ are independently H, F, Cl, CO₂H,

NO₂, NH₂, NCS, NHCOCH₂I, SCH₂COOH, SCH₂CH₂NH₂,

(N-succinimidyl)oxycarbonyl,

(N-succinimidyl)oxycarbonylmethylthio, N-maleimidyl,

3,5-dichloro-2,4,6-triazinylamino, CONHQ, or SO₂NHQ, wherein Q is

H, C_1 - C_{20} alkyl, $(CH_2)_mCOOH$, $(CH_2)_nNH_2$, or

(CH₂CH₂O)_kCH₂CH₂NH₂, wherein m is 1 to about 11, n is 2 to about

12, and k is 1 to about 3

- 3. The compound of claim 3, wherein Z^1 is CO_2H , and Z^2 , Z^3 , Z^4 , and Z^5 are each independently H.
- 4. A compound having the structure:

$$X^{1}$$
 X^{2}
 X^{3}
 X^{3}
 X^{4}
 X^{2}
 X^{4}

wherein:

X¹ and X² are each independently H, Me, F, Cl, Br, I, SO₃H, CO₂H, CONH₂, CONMe₂, CN, or NO₂; and

X³ and X⁴ are NHCH₂R or NHSO₂R, wherein R is CH₂COOH, CH₂CH₂NG¹G², substituted 2-hydroxyphenyl, or a five or six-membered heterocyclic ring, G¹ and G² are H, Me, Et, CH₂CH₂OH, or together are -(CH₂)₄-, -(CH₂)₅-, -CH₂CH₂OCH₂CH₂-, or -CH₂CH₂NHCH₂CH₂-.

- 5. The compound of claim 4, wherein X^3 and X^4 are each independently NHSO₂R, wherein R is CH₂COOH, CH₂CH₂NG¹G², substituted 2-hydroxyphenyl, or a five or six-membered heterocyclic ring, and wherein G^1 and G^2 are H, Me, Et, CH₂CH₂OH, or G^1 and G^2 taken together are -(CH₂)₄-, -(CH₂)₅-, -CH₂CH₂OCH₂CH₂-, or -CH₂CH₂NHCH₂CH₂-.
- 6. The compound of claim 4 having the structure

$$X^1$$
 X^2 X^2

wherein:

 X^1 and X^2 are each independently Me or Cl.

7. The compound of claim 5 having the structure

8. The compound of claim 5 having the structure

9. The compound of claim 5 having the structure

10. The compound of claim 1 having the structure

wherein X^1 and X^2 are each independently H or Me.

- 11. The compound of claim 1, wherein the compound reacts with a target sequence in the presence of Zn^{2+} ion to generate a detectable signal.
- 12. The compound of claim 1, wherein the compound reacts with a target sequence in the presence of Zn^{2+} ion to generate a fluorescent signal.
- 13. The compound of claim 12, wherein the target sequence is a histidine-rich peptide sequence.
- 14. The compound of claim 13, wherein the histidine-rich peptide sequence comprises about 6 histidine residues.
- 15. The compound of claim 1, wherein the compound is capable of traversing a biological membrane.

- 16. A kit comprising a compound of claim 1, wherein in the presence of Zn²⁺ ion, the compound is capable of binding to a target sequence in a recombinant fusion protein; and a binding partner comprising a target sequence, the target sequence comprising a histidine-rich peptide sequence.
- 17. The kit of claim 16, wherein the target sequence comprises about 6 histidine residues.
- 18. The kit of claim 16, wherein the compound reacts with the target sequence in the presence of Zn^{2+} ion to generate a detectable signal.
- 19. The kit of claim 18, wherein the detectable signal is a fluorescent signal.
- 20. A complex comprising
 - a. a compound of claim 1;
 - b. a targeting sequence comprising a histidine-rich peptide sequence; and
 - c. Zn²⁺ ion.
- 21. The complex of claim 20, wherein the histidine-rich peptide sequence comprises about 6 histidine residues.

22. A method of labeling a histidine-rich protein, comprising providing a fusion protein comprising a native protein and a targeting sequence, and contacting the fusion protein in the presence of an effective amount of Zn^{2+} ion with a compound having the structure:

HO
$$X^1$$
 Y^2 X^2 X^3 X^4

wherein:

or

X¹ and X² are each independently H, Me, F, Cl, Br, I, SO₃H, CO₂H, CONH₂, CONMe₂, CN, or NO₂;

X³ is NHCH₂R, or NHSO₂R, wherein R is CH₂COOH, CH₂CH₂NG¹G², substituted 2-hydroxyphenyl, or a five or six-membered heterocyclic ring, G¹ and G² are H, Me, Et, CH₂CH₂OH, or together are -(CH₂)₄-, -(CH₂)₅-, -CH₂CH₂OCH₂CH₂-, or -CH₂CH₂NHCH₂CH₂-;

X⁴ is H, Me, F, Cl, Br, I, SO₃H, CO₂H, CN, OMe, NHCH₂R, or NHSO₂R, wherein R is as defined above,

Y¹ and Y² are each independently H, or taken together are -O-, -S-, -Se-, -CMe₂-,-NH-, -NMe-, or -NPh-;

A is N, CH, C-CN, C-CF₃, C-CH₂CH₂COOH, C-CH=CHCOOH,

$$z^5$$
 z^4
 z^3
 z^3

wherein:

Z¹ is H, CO₂H, or SO₃H;

Z² and Z⁵ are each independently H, F, or Cl;

Z³ and Z⁴ are independently H, F, Cl, CO₂H,

NO₂, NH₂, NCS, NHCOCH₂I, SCH₂COOH, SCH₂CH₂NH₂,

(N-succinimidyl)oxycarbonyl,

(N-succinimidyl)oxycarbonylmethylthio, N-maleimidyl,

3,5-dichloro-2,4,6-triazinylamino, CONHQ, or SO₂NHQ, wherein Q is

H, C_1 - C_{20} alkyl, $(CH_2)_mCOOH$, $(CH_2)_nNH_2$, or

(CH₂CH₂O)_kCH₂CH₂NH₂, wherein m is 1 to about 11, n is 2 to about

12, and k is 1 to about 3,

or tautomers and physiologically acceptable salts thereof, thereby labeling a histidine-rich protein.

- 23. The method of claim 22, wherein the targeting sequence is a histidine-rich peptide sequence.
- 24. The method of claim 23, wherein the histidine-rich peptide sequence comprises about 6 histidine residues.
- 25. The method of claim 22, wherein the compound generates a detectable signal.
- 26. The method of claim 25, wherein the signal is a fluorescent signal.
- 27. The compound of claim 5 having the structure: