16 串 50A 通讯后备电池 BMS 规格书

保护机	板型号: TS-LP16S50A	TS-LP16S50A255080-C10A			
拟定:	: 审核:	批准:			
单位:	: 深圳市创芯技术有限公司				
地址:	: 深圳市宝安区福永街道和平社区福园一路	各德金工业园二区 B 栋			
电话:					
传真					
邮编:	:				
网址:	: www.transin.net				
Email:	:				

内容

一、概述

本规格书描述了由创芯技术技术有限公司生产的 15 串 (兼容 16 串)磷酸铁锂通讯用后备电池保护板的应用范围、电性能参数、尺寸规格等项目的相关内容,可作为保护板测试及应用的依据。

二、产品应用范围及功能

本保护板可应用于采用 15 串磷酸铁锂电池的 UPS 通信后备电源,提供过充、过放、过流、短路、过温等保护,提供 4 路温度采集,并提供隔离的 485 通信及 232 通信,可传输各单体电压、电流、温度、电量等,各 BMS 系统地址可通过拨码开关设定,其中只能有一个主板,其余为从机。主板的地址为 0,从机的地址为 1~15,从机地址是从 1 开始的。主板通过串口与上位机相连,从机通过 485 总线与主板相连。多个 BMS 可同时接入 485 总线,数据通过在上位机选择相应地址读取相应 BMS 数据。

三、电气特性

序号	项目	详细内容	参考标准 (可设定值以实际设 定值为准)
1	过充报警	3.55±0.02V	
1		总体过充报警电压	53.25±0.5V
2	过充保护	3.65±0.02V	
		单体过充电检测延迟时间	200mS

			_
		单体过充电解除电压	3.45±0.02V
		总体过充电检测电压	56. 25±0. 5V
		总体过充电检测延迟时间	5000mS
		总体过充电解除电压	$51.0\pm0.5V$
2	计计记数	单体过放报警电压	2.90±0.02V
3	过放报警	总体过放报警电压	43.5 ±0.5V
		过放电检测电压	2.50 ± 0.02 V
		过放电检测延迟时间	5000mS
	过放保护	过放电解除电压	3.1±0.02V
4		总体过放电检测电压	37.5 ±0.5V
		总体过放电检测延迟时间	5000mS
		总体过放电解除电压	42.75 ± 0. 5V
F	\.十\\\ \ \ \	充电过流报警电流	12A ±0.5A
5	过流报警	放电过流报警电流	53A ±0.5A
		放电过流保护电流 1	55A ±0.5A
	过流保护	放电过流检测延迟时间1	15
6		放电过流保护电流 2	60A ±0.5A
		放电过流检测延迟时间 2	250ms
		放电过流保护解除条件	延时恢复
		充电过流保护电流	15A ±0.5A

			充电过流检测延迟时间	15	
			充电过流保护解除条件	延时恢复	
			保护条件	外部电路短路	
7	短路保护		短路保护 检测延迟时间		
			保护解除条件	断开负载	
			充电高温保护条件	65 ℃±5℃	
			充电高温恢复条件	50 °C±5°C	
			充电低温保护条件	- 15 ℃ ± 5 ℃	
8	温度保护		充电低温恢复条件	- 5 ℃±5℃	
8			放电高温保护条件	65 ℃±5℃	
			放电高温恢复条件	50 ℃±5℃	
			放电低温保护条件	- 25 ℃ ± 5 ℃	
			放电低温恢复条件	-5°C±5°C	
		开启	$3.40 V \pm 0.02 V$		
	1.4-	电压	3.40 v ± 0. 02v	- 充电状态下均	
9	均	开启	F0m\/		
	衡	压差	50mV	衡功能开启	
		电流	160mA ±20mA		
10	持续通过电		50A		
10	流		JUN		
11	充电限流		10A ±1A		

11	隔离的 232	有	默认波特率为 9600bit/S	
	通讯			
12	隔离的 485	有	默认波特率为 9600bit/S	
	通讯			
13	内阻	主回路导通电阻	$\leqslant 4$ m Ω	
14	功耗	电路工作时消耗电流	≤50mA	
		休眠模式消耗电流	≪300 µ A	

注:上述为保护板具有的基本功能,其余功能或参数依据客户需要定制。

四、保护板接线图及简介

BMS 原理示意图(一)

面板各部件实物图(二)

保护板正面实物图(三)

请按照上述示意图连线,注意正负,不得接错,否则,有可能烧坏保护板。其中与电池组连接的排插为 CN1~CN4,按图三所示,从PIN1 脚开始,从左到右,CN1 依次连接 B0(B-)、B1、B2、B3、B4、NTC1、NTC1;CN2 依次连接 B5、B6、B7、B8、NTC2、NTC2;CN3 依次连接 B9、B10、B11、B12、NTC3、NTC4;CN4 依次连接 B13、B14、B15、NC(空)、NTC4、NTC4。

连接方法参见图(一)。先连接保护板的 B-(接线端子)与电池组的负端,再将图(三)中所示的 CN1~CN4 插头分别 与电池组的对应电极及 NTC 相连,检查连接无误后,将插头对应插入 CN1~CN4 插

座,注意不要插错,再将保护板的 B+(P+)与电池组的总正端连接,最后将 P-连接到输出端。连接正确后,按下按键持续 3S 左右,程序复位,系统将正常工作。

若是将几个保护板组成 485 通讯网络,则只能将其中一块板设为 主板,地址通过拨码开关设为 0,其余板为从机,地址范围一般为 1~15,各从机地址不能重复,否则,将引起冲突。将各个板的 485 通讯通过网线连接,主板通过 232 串口与上位机连接。其中,485 总线通讯口采用 RJ45 插座 (8 芯插座),其中,1、8 脚为总线的 A 线,2、7 脚为总线的 B 线,3、6 脚为 485 的地 (屏蔽地)。232 串口通过 RJ11 (4 芯插座)连接到上位机,其中,RJ11 插座的 4 脚为保护板串口的发送端 TX (连接到母头 DB9 的 2 脚),3 脚为保护板串口的接收端 RX (连接到母头 DB9 的 3 脚),2 脚为保护板的 GND (连接到母头 DB9 的 5 脚),对于没有串口的上位机,可通过 USB 转串口转接。

RS232 及 485 通讯插座信号图 (五)

五、LED 指示灯说明

指示灯		状态灯 (绿 灯 LED6)	告警灯 (红灯 LED5)	电量指示灯 (绿 LED4LED1)	说明	
大作模式 待机			OFF	OFF		
掉电		OFF	OFF	OFF	需充电激活	
充电	<25%	亮	OFF	LED1 闪 2,其余 灭		
	25%~50%	亮	OFF	LED2 闪 2,LED1 亮,其余灭		
	50%~75%	亮	OFF	LED3 闪 2, LED1、 LED2 亮, LED4 灭		
	75%~100%	亮	OFF	LED4 闪 2, LED1、 LED2、LED3 亮		
	100%	亮	OFF	LED1~LED4 全亮		
	充电单体过 压、总体过压 过温、欠温	OFF	亮	OFF		
	充电过流	OFF	闪 3	OFF		
放电	0	闪 3	OFF	OFF		
	<25%	闪 3	OFF	LED1 亮,其余灭		
	25%~50%	闪 3	OFF	LED1、LED2 亮, 其余灭		
	50%~75%	闪 3	OFF	LED1~LED3 亮, LED4 灭		
	75%~100%	闪 3	OFF	LED1~LED4 亮		
	放电过流	OFF	闪 3	灭		
	过放电	OFF	OFF	OFF	保护板过放电1分 钟后进入掉电状 态,需充电激活	
	放电单体欠 压、总体欠 压、过温、欠 温	OFF	OFF	OFF		

静置时单体 电压低、总体 低	OFF	闪 3	OFF	
放电时单体 低、总体低	闪 3	闪 3	对应电量的 LED 亮	

备注:

闪 1: LED 亮 0.25S,灭 3.75S;

闪 2: LED 亮 0.5S, 灭 0.5S:

闪 3: LED 亮 0.5S,灭 1.5S。

声音告警: 当系统出现如下告警和保护,声音告警将出现,3 分钟后声音告警会自动关闭,直到出现新的告警信息: 过放电, 高低温、充放电过流。当系统出现短路保护时,出现连续二声短 促声音警示,连续三次。

六、编码开关的操作说明

拨码开关图示(六)

编码开关用于设定各 UPS 保护板地址,拨至 ON 位置的码值为 1,否则为 0,如上图所示,1为低位,4为高位,可设置值范围为 0000至 1111,上图 1、2 两个码已拨至 ON (为 1),3、4 两个码在 OFF (为 0)位置,其二进制地址为 0011,对应十进制地址为 3。

七、上位机软件

运行"锂电管理系统测试软件.exe",出现如下界面:

上位机界面图 (六)

连接好上位机与 BMS,点击上位机软件界面中的"串口设置",选择当前使用的串口号,确定,见下图,波特率默认是 9600,改成其他的波特率可能不能通讯。

串口设置界面图(七)

在"目标电池组"框中输入目标地址(范围为0~15),这时可在界面中观察到目标地址 BMS 的各种参数,主要有单体电压、容量、温度、电流,以及各种充电放电相关信息及告警提示。更换目标地址,可观察到其他地址的 BMS 的参数,如上图所示。点击"设置信息"

后,点击"回读",出现如下界面:

BMS 参数设置界面(八)

在上图中,可设置各种参数(一般不建议用户修改参数,以免设置错误。),设置好对应的目标地址,点击"设置",即可将设置参数发送到对应 BMS,正常时,有提示"修改成功",若未提示成功,应查找原因。

使用中若需要保存参数(各单体电压、充放电电流、温度等),则点击"循环记录",出现如下界面,点击"开始记录",在对话框中选择好保存数据的路径,确定后将自动定时(2S一次)保存,见下图,若需停止,则需要再次点击"开始记录"那个按键(此按键上的字符在开始记录后,变成"循环记录"或记录的次数,按键上的字符在这两者间来回变换),记录停止,保存的数据用 EXCEL 可以打开查看。

数据保存记录界面图(九)

八、保护板的节电和唤醒操作

在系统有充放电电流或有通讯的情况下,BMS 系统处于正常工作状态,功耗相对较大。若系统处于长时间(暂设置为 5 小时)无充放电电流,则系统进入掉电模式,功耗将降低至很低的水平。在工作模式下,按压按键持续 3S 左右,可观察到 4 个电量指示灯全灭后,25%电量指示的 LED 灯点亮,此时松开按键,BMS 系统将自动复位;按压按键持续 3S 以上,25%及 50%电量指示的两个 LED 灯点亮,此时松开按键,BMS 系统进入掉电模式,充放电 MOS 也全部关闭;在掉电状态下,按压按键,系统将从掉电模式唤醒,唤醒后,所有 LED 指示灯点亮,然后熄灭,进入正常工作模式,掉电模式下也可通过充电唤醒。

九、RS232 通讯

将 BMS 的地址拨码开关设为 0 (主板地址),用通讯线通过 232 接口连接 BMS 与上位机,波特率默认为 9600bit/S,通讯连接后,可

查看各种数据。

十、RS485 通讯

电池组做并联时,主板可通过 RS485 接口与从板连接通讯,从而可在上位机查看各个 Pack 的信息。主板地址设为 0,各从板从 1 开始设置,不得重复。主板通过 RS232 与上位机连接,从板与主板之间通过 RS485 连接。

十一、固件升级

固件升级前,请确认当前固件版本,确认用于升级的固件版本, 不可使用非本保护板的固件对本保护板升级,否则可能导致保护板永 久性损坏。

固件升级仅支持 RS232 串口。升级前应先终止"循环记录", "终止监听",关闭监听串口。升级界面如下:

固件升级		-						23
串口操作	打开串口]	串口号:	COM1	•	波特率:	115200	
固件文件 文件路径:							打开:	文件
							开始	升级

打开对应串口,波特率为 115200。打开用于升级的固件 bin 文件,点击"开始升级"后,按下多功能按键,直至第一个 SOC 灯点亮后松开按键,程序开始升级。提示升级完成后,程序自动开始运行,关闭"固件"升级框。

十二、校准

校准功能仅为生产厂家对保护板测量数据的校准使用,校准需要专业设备及仪表,不对用户开放。

十三、保护板尺寸规格(单位: mm)

保护板尺寸为: 255(L)x80(W)x20(H) (单位: mm)

锂电池保护板尺寸图(十)

十二、保护板操作注意事项

1、装配和使用中应防止静电

不要用手随意去接触保护板导电的部分;如必须直接接触时,应 使人体良好接地或释放掉身体的静电;焊接使用的烙铁及装配使用的 电动工具必须良好接地,没有漏电。

2、装配和使用中应避免保护板受力,以免损坏电子元器件导致 电路板失效。

3、焊接

烙铁头温度小于 280 度,焊接同一器件的时间不超过 10S,不要使用酸性助焊剂。

4、储存

若长期带电池组储存,由于保护板的静态电流和电池自放电,需 要定期对电池组充电;储存时注意防水防潮。

5、运输

运输过程中应注意防水、防潮、避免挤压、碰撞等,以免损坏保护板。

6、维护

保护板故障时应请专业人员检测、维护。