Методы кластеризации

Bopoнцов Koнстантин Bячеславович vokov@forecsys.ru

http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

ШАД Яндекс ● 27 апреля 2015

Содержание: методы кластеризации

- 1 Статистические методы кластеризации
 - Постановка задачи кластеризации
 - ЕМ-алгоритм
 - Метод k-средних
- 2 Сети Кохонена
 - Модели конкурентного обучения
 - Карты Кохонена
- Иерархическая кластеризация (таксономия)
 - Агломеративная иерархическая кластеризация
 - Дендрограмма и свойство монотонности
 - Свойства сжатия, растяжения и редуктивности

Постановка задачи кластеризации

Дано:

X — пространство объектов; $X^{\ell} = \{x_i\}_{i=1}^{\ell}$ — обучающая выборка;

$$\rho: X \times X \to [0,\infty)$$
 — функция расстояния между объектами.

Найти:

Y — множество кластеров и

 $a: X \to Y$ — алгоритм кластеризации, такие, что:

- каждый кластер состоит из близких объектов;
- объекты разных кластеров существенно различны.

Кластеризация — это обучение без учителя.

Некорректность задачи кластеризации

Решение задачи кластеризации принципиально неоднозначно:

- точной постановки задачи кластеризации нет;
- существует много критериев качества кластеризации;
- существует много эвристических методов кластеризации;
- ullet число кластеров |Y|, как правило, неизвестно заранее;
- результат кластеризации существенно зависит от метрики ρ , которую эксперт задаёт субъективно.

Цели кластеризации

- Упростить дальнейшую обработку данных, разбить множество X^{ℓ} на группы схожих объектов чтобы работать с каждой группой в отдельности (задачи классификации, регрессии, прогнозирования).
- Сократить объём хранимых данных, оставив по одному представителю от каждого кластера (задачи сжатия данных).
- Выделить нетипичные объекты, которые не подходят ни к одному из кластеров (задачи одноклассовой классификации).
- Построить иерархию множества объектов (задачи таксономии).

Типы кластерных структур

внутрикластерные расстояния, как правило, меньше межкластерных

ленточные кластеры

кластеры с центром

Типы кластерных структур

Типы кластерных структур

- Каждый метод кластеризации имеет свои ограничения и выделяет кластеры лишь некоторых типов.
- Понятие «тип кластерной структуры» зависит от метода и также не имеет формального определения.

Проблема чувствительности к выбору метрики

Результат зависит от нормировки признаков:

после перенормировки (сжали ось «вес» вдвое)

Гипотеза (о вероятностной природе данных)

Выборка X^ℓ случайна, независима, из смеси распределений

$$p(x) = \sum_{y \in Y} w_y p_y(x), \qquad \sum_{y \in Y} w_y = 1,$$

 $p_{v}(x)$ — плотность, w_{v} — априорная вероятность кластера y.

Гипотеза (о пространстве объектов и форме кластеров)

$$X=\mathbb{R}^n,\;\; x_i\equiv \left(f_1(x_i),\dots,f_n(x_i)
ight);\;$$
 кластеры n -мерные гауссовские $p_y(x)=(2\pi)^{-\frac{n}{2}}(\sigma_{y1}\cdots\sigma_{yn})^{-1}\exp\left(-\frac{1}{2}\rho_y^2(x,\mu_y)
ight),$ $\mu_y=(\mu_{y1},\dots,\mu_{yn})$ — центр кластера $y;$ $\Sigma_y={
m diag}(\sigma_{y1}^2,\dots,\sigma_{yn}^2)$ — диагональная матрица ковариаций; $\rho_y^2(x,x')=\sum_{i=1}^n\sigma_{yj}^{-2}|f_j(x)-f_j(x')|^2.$

ЕМ-алгоритм (повторение)

- 1: начальное приближение w_y , μ_y , Σ_y для всех $y \in Y$;
- 2: повторять
- 3: E-шаг (expectation):

$$g_{iy} := P(y|x_i) \equiv \frac{w_y p_y(x_i)}{\sum_{z \in Y} w_z p_z(x_i)}, y \in Y, i = 1, \dots, \ell;$$

4: M-шаг (maximization):

$$w_{y} := \frac{1}{\ell} \sum_{i=1}^{\ell} g_{iy}, y \in Y;$$

$$\mu_{yj} := \frac{1}{\ell w_{y}} \sum_{i=1}^{\ell} g_{iy} f_{j}(x_{i}), y \in Y, j = 1, ..., n;$$

$$\sigma_{yj}^{2} := \frac{1}{\ell w_{y}} \sum_{i=1}^{\ell} g_{iy} (f_{j}(x_{i}) - \mu_{yj})^{2}, y \in Y, j = 1, ..., n;$$

- 5: $y_i := \underset{v \in Y}{\operatorname{arg max}} g_{iy}, i = 1, \dots, \ell;$
- пока у; не перестанут изменяться;

Mетод k-средних (k-means)

 $X = \mathbb{R}^n$. Упрощённый аналог ЕМ-алгоритма:

- 1: начальное приближение центров $\mu_{v}, y \in Y$;
- 2: повторять
- 3: аналог Е-шага:

отнести каждый x_i к ближайшему центру:

$$y_i := \underset{y \in Y}{\operatorname{arg min}} \rho(x_i, \mu_y), \quad i = 1, \dots, \ell;$$

4: аналог М-шага:

вычислить новые положения центров:

$$\mu_{yj} := \frac{\sum_{i=1}^{\ell} [y_i = y] f_j(x_i)}{\sum_{i=1}^{\ell} [y_i = y]}, \ y \in Y, \ j = 1, \dots, n;$$

5: **пока** y_i не перестанут изменяться;

Модификации и обобщения

Варианты k-means:

- вариант Болла-Холла (на предыдущем слайде);
- вариант МакКина: при каждом переходе объекта из кластера в кластер их центры пересчитываются;

Основные отличия EM и k-means:

- ЕМ: мягкая кластеризация: $g_{iy} = P\{y_i = y\};$ k-m: жёсткая кластеризация: $g_{iy} = [y_i = y];$
- ЕМ: форма кластеров эллиптическая, настраиваемая; k-m: форма кластеров жёстко определяется метрикой ρ ;

Гибридные варианты по пути упрощения ЕМ:

- ЕМ с жёсткой кластеризацией на Е-шаге;
- ЕМ без настройки дисперсий (сферические гауссианы);

Hедостатки k-means

- Чувствительность к выбору начального приближения.
- \bullet Необходимость задавать k;

Способы устранения этих недостатков:

- Несколько случайных кластеризаций;
 выбор лучшей по функционалу качества.
- Постепенное наращивание числа кластеров k (аналогично ЕМ-алгоритму)

Оптимизационная задача кластеризации

Дано:

$$X = \mathbb{R}^n$$
, $Y = \{1, \dots, M\}$ — множество кластеров; $X^{\ell} = \{x_i\}_{i=1}^{\ell}$ — обучающая выборка объектов; $\rho \colon X \times X \to [0, \infty)$ — функция расстояния между объектами.

Алгоритм кластеризации $a: X \to Y$ относит объект $x \in X$ к ближайшему кластеру

(правило жёсткой конкуренции WTA — Winner Takes All):

$$a(x) = \arg\min_{m \in Y} \rho(x, w_m),$$

где $w_m \in \mathbb{R}^n$, $m=1,\ldots,M$ — центры кластеров.

Минимизация среднего внутрикластерного расстояния:

$$Q(w; X^{\ell}) = \frac{1}{2} \sum_{i=1}^{\ell} \rho^{2}(x_{i}, w_{a(x_{i})}) \to \min_{w}, \quad w = (w_{1}, \dots, w_{M});$$

Метод стохастического градиента

Минимизация среднего внутрикластерного расстояния:

$$Q(w; X^{\ell}) = \frac{1}{2} \sum_{i=1}^{\ell} \rho^{2}(x_{i}, w_{a(x_{i})}) \to \min_{w}, \quad w = (w_{1}, \dots, w_{M});$$

Пусть метрика евклидова, $\rho^2(x_i, w_m) = \|w_m - x_i\|^2$.

$$\frac{\partial Q(w;X^{\ell})}{\partial w_m} = \sum_{i=1}^{\ell} (w_m - x_i) [a(x_i) = m].$$

Градиентный шаг в методе SG: для случайного $x_i \in X^\ell$

$$w_m := w_m + \eta(x_i - w_m)[a(x_i) = m]$$

(если x_i относится к кластеру m, то w_m сдвигается в сторону x_i).

Сеть Кохонена (сеть с конкурентным обучением)

Структура алгоритма — двухслойная нейронная сеть:

$$a(x) = \arg\min_{m \in Y} \rho(x, w_m)$$
:

Градиентное правило обучения напоминает персептрон:

если
$$a(x_i) = m$$
, то $w_m := w_m + \eta(x_i - w_m)$.

Алгоритм SG (Stochastic Gradient)

```
Вход: выборка X^{\ell}; темп обучения \eta; параметр \lambda; Выход: центры кластеров w_1, \dots, w_M \in \mathbb{R}^n;
```

- 1: инициализировать центры w_m , m = 1, ..., M;
- 2: инициализировать текущую оценку функционала:

$$Q := \sum_{i=1}^{\ell} \rho^2(x_i, w_{a(x_i)});$$

- 3: повторять
- 4: выбрать объект x_i из X^ℓ (например, случайно);
- 5: вычислить кластеризацию: $m := \arg\min_{m \in Y} \rho(x_i, w_m);$
- 6: градиентный шаг: $w_m := w_m + \eta(x_i w_m)$;
- 7: оценить значение функционала: $Q := (1 \lambda)Q + \lambda \rho^2(x_i, w_m);$
- 8: **пока** значение Q и/или веса w не стабилизируются;

Жёсткая и мягкая конкуренция

Правило жёсткой конкуренции WTA (winner takes all):

$$w_m := w_m + \eta(x_i - w_m)[a(x_i) = m], \quad m = 1, ..., M,$$

Недостатки правила WTM:

- медленная скорость сходимости;
- некоторые w_m могут никогда не выбираться.

Правило мягкой конкуренции WTM (winner takes most):

$$w_m := w_m + \eta(x_i - w_m) K(\rho(x_i, w_m)), \quad m = 1, \dots, M,$$

где ядро $K(\rho)$ — неотрицательная невозрастающая функция.

Теперь центры *всех* кластеров смещаются в сторону x_i , но чем дальше от x_i , тем меньше величина смещения.

Карта Кохонена (Self Organizing Map, SOM)

 $Y = \{1, \dots, M\} \times \{1, \dots, H\}$ — прямоугольная сетка кластеров.

Каждому узлу (m,h) приписан нейрон Кохонена $w_{mh} \in \mathbb{R}^n$.

Наряду с метрикой $\rho(x_i, x)$ на X вводится метрика на сетке Y:

$$r((m_i, h_i), (m, h)) = \sqrt{(m - m_i)^2 + (h - h_i)^2}.$$

Окрестность (m_i, h_i) :

Обучение карты Кохонена

```
Вход: X^{\ell} — обучающая выборка; \eta — темп обучения; 
Выход: w_{mh} \in \mathbb{R}^n — векторы весов, m=1..M,\ h=1..H;
```

- 1: $w_{mh}:= \operatorname{random}\left(-\frac{1}{2MH}, \frac{1}{2MH}\right)$ инициализация весов;
- 2: повторять
- 3: выбрать объект x_i из X^ℓ случайным образом;
- 4: WTA: вычислить координаты кластера:

$$(m_i, h_i) := a(x_i) \equiv \underset{(m,h) \in Y}{\operatorname{arg min}} \rho(x_i, w_{mh});$$

- 5: для всех $(m, h) \in \mathsf{O}$ крестность (m_i, h_i)
- 6: WTM: сделать шаг градиентного спуска:

$$w_{mh} := w_{mh} + \eta(x_i - w_{mh}) K(r((m_i, h_i), (m, h)));$$

7: пока кластеризация не стабилизируется;

Интерпретация карт Кохонена

Два типа графиков — цветных карт $M \times H$:

- Цвет узла (m,h) локальная плотность в точке (m,h) среднее расстояние до k ближайших точек выборки;
- По одной карте на каждый признак: цвет узла (m,h) — значение j-й компоненты вектора $w_{m,h}$.

Пример:

```
Задача UCI house-votes (US Congress voting patterns) Объекты — конгрессмены;
```

Признаки — вопросы, выносившиеся на голосование; Есть целевой признак {демократ, республиканец}.

Интерпретация карт Кохонена (пример)

Достоинства и недостатки карт Кохонена

Достоинства:

• Возможность визуального анализа многомерных данных.

Недостатки:

- **Субъективность.** Карта зависит не только от кластерной структуры данных, но и...
 - от свойств сглаживающего ядра;
 - от (случайной) инициализации;
 - от (случайного) выбора x_i в ходе итераций.
- Искажения. Близкие объекты исходного пространства могут переходить в далёкие точки на карте, и наоборот.

Рекомендуется только для разведочного анализа данных.

Резюме по сетям Кохонена

- Сеть Кохонена решает задачу кластеризации.
- Основные стратегии мягкая WTM и жёсткая WTA.
- Мягкая конкуренция ускоряет сходимость.
- Карта Кохонена используется для визуализации многомерных данных, разведочного анализа данных, интерпретации кластеров по признакам.
- Карта Кохонена может быть субъективной и искажённой

Агломеративная иерархическая кластеризация

Алгоритм Ланса-Уильямса [1967]

1: сначала все кластеры одноэлементные:

$$t := 1; \quad C_t = \{\{x_1\}, \dots, \{x_\ell\}\}; \\ R(\{x_i\}, \{x_j\}) := \rho(x_i, x_j);$$

- 2: для всех $t = 2, ..., \ell$ (t номер итерации):
- 3: найти в C_{t-1} два ближайших кластера: $(U,V) := \arg\min_{U \neq V} R(U,V);$

$$R_t := R(U, V);$$

4: слить их в один кластер:

$$W := U \cup V;$$

$$C_t := C_{t-1} \cup \{W\} \setminus \{U, V\};$$

- 5: для всех $S \in C_t$
- 6: вычислить R(W, S) по формуле Ланса-Уильямса;

Формула Ланса-Уильямса

Как определить расстояние R(W,S) между кластерами $W=U\cup V$ и S, зная расстояния $R(U,S),\ R(V,S),\ R(U,V)$?

Формула, обобщающая большинство разумных способов определить это расстояние [Ланс, Уильямс, 1967]:

$$R(U \cup V, S) = \alpha_U \cdot R(U, S) +$$

$$+ \alpha_V \cdot R(V, S) +$$

$$+ \beta \cdot R(U, V) +$$

$$+ \gamma \cdot |R(U, S) - R(V, S)|,$$

где α_U , α_V , β , γ — числовые параметры.

Частные случаи формулы Ланса-Уильямса

1. Расстояние ближнего соседа:

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = -\frac{1}{2}.$$

2. Расстояние дальнего соседа:

$$R^{A}(W,S) = \max_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = \frac{1}{2}.$$

3. Групповое среднее расстояние:

$$R^{r}(W,S) = \frac{1}{|W||S|} \sum_{w \in W} \sum_{s \in S} \rho(w,s);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \quad \alpha_{V} = \frac{|V|}{|W|}, \quad \beta = \gamma = 0.$$

Частные случаи формулы Ланса-Уильямса

4. Расстояние между центрами:

$$R^{\mathsf{u}}(W,S) = \rho^2 \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right);$$

$$\alpha_U = \frac{|U|}{|W|}, \ \alpha_V = \frac{|V|}{|W|},$$

$$\beta = -\alpha_U \alpha_V, \ \gamma = 0.$$

5. Расстояние Уорда:

$$\begin{split} R^{y}(W,S) &= \frac{|S||W|}{|S|+|W|} \, \rho^{2} \Big(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \Big); \\ \alpha_{U} &= \frac{|S|+|U|}{|S|+|W|}, \ \alpha_{V} &= \frac{|S|+|V|}{|S|+|W|}, \ \beta &= \frac{-|S|}{|S|+|W|}, \ \gamma &= 0. \end{split}$$

Проблема выбора

Какая функция расстояния лучше?

1. Расстояние ближнего соседа:

Диаграмма вложения

2. Расстояние дальнего соседа:

Диаграмма вложения

3. Групповое среднее расстояние:

Диаграмма вложения

5. Расстояние Уорда:

Диаграмма вложения

Свойство монотонности

Определение

Кластеризация монотонна, если при каждом слиянии расстояние между объединяемыми кластерами только увеличивается: $R_2 \leqslant R_3 \leqslant \ldots \leqslant R_\ell$.

Теорема (Миллиган, 1979)

Кластеризация монотонна, если выполняются условия

$$\alpha_U \geqslant 0$$
, $\alpha_V \geqslant 0$, $\alpha_U + \alpha_V + \beta \geqslant 1$, $\min\{\alpha_U, \alpha_V\} + \gamma \geqslant 0$.

Если кластеризация монотонна, то дендрограмма не имеет самопересечений.

 R^{μ} не монотонно; R^{6} , R^{μ} , R^{r} , R^{y} — монотонны.

Свойства сжатия и растяжения

Определение

Кластеризация *сжимающая*, если $R_t \leqslant \rho(\mu_U, \mu_V)$, $\forall t$. Кластеризация *растягивающая*, если $R_t \geqslant \rho(\mu_U, \mu_V)$, $\forall t$. Иначе кластеризация *сохраняет метрику пространства*.

Свойство растяжения наиболее желательно, так как оно способствует более чёткому отделению кластеров.

 R^6 — сжимающее; $R^{\rm A}$, $R^{\rm y}$ — растягивающие; $R^{\rm r}$, $R^{\rm q}$ — сохраняющие.

Проблема повышения эффективности алгоритма

Проблема эффективности:

• самая трудоёмкая операция в алгоритме Ланса-Уильямса — поиск ближайших кластеров — $O(\ell^2)$ операций:

шаг 3:
$$(U, V) := \underset{U \neq V}{\operatorname{arg min}} R(U, V).$$

• значит, построение всего дерева — $O(\ell^3)$ операций.

Идея повышения эффективности:

• перебирать лишь наиболее близкие пары:

шаг 3:
$$(U,V) := \underset{R(U,V) \leq \delta}{\operatorname{arg \, min}} R(U,V).$$

• периодически увеличивать параметр δ .

Быстрый (редуктивный) алгоритм Ланса-Уильямса

```
1: сначала все кластеры одноэлементные:
   t := 1; \quad C_t = \{\{x_1\}, \dots, \{x_\ell\}\};
   R(\{x_i\},\{x_i\}) := \rho(x_i,x_i);
2: выбрать начальное значение параметра \delta;
   P(\delta) := \{(U, V) \mid U, V \in C_t, R(U, V) \leq \delta\};
3: для всех t = 2, ..., \ell (t — номер итерации):
      если P(\delta) = \emptyset то увеличить \delta так, чтобы P(\delta) \neq \emptyset;
      (U, V) := \arg \min R(U, V);
5:
                   (U,V)\in P(\delta)
      R_t := R(U, V);
      C_t := C_{t-1} \cup \{W\} \setminus \{U, V\}:
6:
7:
      для всех S \in C_t
         вычислить R(W, S) по формуле Ланса-Уильямса;
8:
         если R(W,S) \leqslant \delta то P(\delta) := P(\delta) \cup \{(W,S)\};
9:
```

Свойство редуктивности

Всегда ли быстрый алгоритм строит ту же кластеризацию?

Определение (Брюинош, 1978)

Расстояние R называется ρ едуктивным, если для любого $\delta>0$ и любых δ -близких кластеров $R(U,V)\leqslant \delta$ объединение δ -окрестностей U и V содержит δ -окрестность объединения $W=U\cup V$:

$$\left\{S\colon R(U\cup V,S)<\delta\right\}\subseteq \left\{S\colon R(S,U)<\delta\right\}\cup \left\{S\colon R(S,V)<\delta\right\}.$$

Теорема

Если расстояние R редуктивно, то быстрый алгоритм приводит к той же кластеризации, что и исходный алгоритм.

Свойство редуктивности

Теорема (Диде и Моро, 1984)

Расстояние R является редуктивным, если

$$\alpha_U \geqslant 0, \ \alpha_V \geqslant 0, \ \alpha_U + \alpha_V + \min\{\beta, 0\} \geqslant 1, \ \min\{\alpha_U, \alpha_V\} + \gamma \geqslant 0.$$

Сравните с условием монотонности (теорема Миллигана):

$$\alpha_U \ge 0$$
, $\alpha_V \ge 0$, $\alpha_U + \alpha_V + \beta \ge 1$, $\min\{\alpha_U, \alpha_V\} + \gamma \ge 0$.

Утверждение

Всякое редуктивное расстояние является монотонным.

 R^{μ} не редуктивное; R^{6} , R^{μ} , R^{r} , R^{y} — редуктивные.

Рекомендации и выводы

Стратегия выбора параметра δ на шагах 2 и 4:

- ullet Если $|C_t| \leqslant n_1$, то $P(\delta) := \{(U,V) \colon U, V \in C_t\}.$
- Иначе выбрать n_2 случайных расстояний R(U,V); $\delta :=$ минимальное из них;
- n_1 , n_2 влияют только на скорость, но не на результат кластеризации; сначала можно положить $n_1 = n_2 = 20$.

Общие рекомендации по иерархической кластеризации:

- лучше пользоваться R^y расстоянием Уорда;
- лучше пользоваться быстрым алгоритмом;
- определение числа кластеров по максимуму $|R_{t+1} R_t|$, тогда результирующее множество кластеров := C_t .