TOTAL	8	7	6	5	4	3	2	1	

- 1. Compute gcd(1380, 1110) using the Extended Euclidean Algorithm and deduce a Bezout Identity.
- 2. Compute the 7-adic valuation $v_7(100!)$.
- 3. Let μ be the Möbius function and denote by * the Dirichlet convolution of arithmetic functions. Prove that k-folded iterated convolution of μ satisfies:

$$(\mu * \mu * \dots * \mu) (n) = \prod_{p} {k \choose v_p(n)} (-1)^{v_p(n)}$$

where for $a \in \mathbf{Z}$ and $b \in \mathbf{N}$, $\binom{a}{b} = \frac{a(a-1)\cdots(a-b+1)}{b!}$ is the binomial coefficient. (suggestion: try first to prove the formula for $k=2,3,\ldots$)

- 4. After having stated Gauss Theorem of existence of primitive roots modulo integers, compute all primitive roots modulo 686.
- 5. Find all integers X in the interval [-10, 200] such that $\begin{cases} X \equiv 3 \mod 4 \\ X \equiv 2 \mod 5 \\ X \equiv 4 \mod 7. \end{cases}$
- 6. After having stated the important properties of the Legendre–Jacobi Symbols, compute $\left(\frac{3073}{2919}\right)_{J}$.
- 7. Prove that

$$\left(\frac{-7}{p}\right)_{\rm J} = \begin{cases} 1 & \text{if } p \equiv 1, 2, 4 \bmod 7 \\ 0 & \text{if } p = 7 \\ -1 & \text{if } p \equiv 3, 5, 6 \bmod 7. \end{cases}$$

- 8. Let $p \geq 3$ be a prime and let $k \in \mathbb{N}$. Prove that
 - i) the equation $X^k \equiv 1 \mod p$ has gcd(k, p 1) solutions,
 - ii) the equation $X^k \equiv 1 \mod p^{\alpha}$ has $\gcd(k, p-1)$ solutions if $p \not | k$.