An Experimental Study of Home Gateway Characteristics

NOKIA

Seppo Hätönen Aki Nyrhinen Lars Eggert Stephen Strowes Pasi Sarolahti Markku Kojo University of Helsinki University of Helsinki Nokia Research Center University of Glasgow HIIT University of Helsinki

Motivation

- CPE boxes ("home gateways") are everywhere
- their characteristics and behaviors vary widely
- they control the quality and performance of consumer Internet access
- most "standards" are about the control plane but the data plane counts
- very few studies of home gateway behavior are (publicly) available
- just lots of second-hand hear-say

Approach

Setup: Device Collection

- HU and Nokia bought 20 devices to seed the testbed
- another 14 were donated
- 34 devices tested in total

- follow-up studies planned; many more donations in the meantime
- talk to me if you have a spare box!

Vendor	Model	Firmware	Tag
A-Link	WNAP	e2.0.9A	al
Apple	Airport Express	7.4.2	ар
Asus	RT-N15	2.0.1.1	as1
Belkin	Wireless N Router	F5D8236-4_WW_3.00.02	be1
	Enhanced N150	F6D4230-4_WW_1.00.03	be2
Buffalo	WZR-AGL300NH	R1.06/B1.05	bu1
D-Link	DIR-300	1.03	dl1
	DIR-300	1.04	dl2
	DI-524up	v1.06	dl3
	DI-524	v2.0.4	dl4
	DIR-100	v1.12	dl5
	DIR-600	v2.01	dl6
	DIR-615	v4.00	dl7
	DIR-635	v2.33EU	dl8
	DI-604	v3.09	dl9
	DI-713P	2.60 build 6a	dl10
Edimax	6104WG	2.63	ed
Jensen	Air:Link 59300	1.15	je
Linksys	BEFSR41c2	1.45.11	ls 1
	WR54G	v7.00.1	ls2
	WRT54GL v1.1	v4.30.7	ls3
	WRT54GL-EU	v4.30.7	ls5
	WRT54G	OpenWRT RC5	owr
	WRT54GL v1.1	tomato 1.27	to
Netgear	RP614 v4	V1.0.2_06.29	ng1
	WGR614 v7	$(1.0.13_1.0.13)$	ng2
	WGR614 v9	V1.2.6_18.0.17	ng3
	WNR2000-100PES	v.1.0.0.34_29.0.45	ng4
	WGR614 v4	V5.0_07	ng5
Njetwjork	54M	Ver 1.2.6	nw1
SMC Barricade	SMC7004VBR	R1.07	smc
Telewell	TW-3G	V7.04b3	te
Webee	Wireless N Router	e2.0.9D	we
ZyXel	P-335U	V3.60(AMB.2)C0	zy1

Setup: Testbed

Tests & Results

UDP Binding Timeouts

UDP-1: Single packet, outbound only

- measures NAT UDP binding timeout after client sends a single packet
- server sends no return traffic

result: very short timeouts (min = 30 sec), almost all less than IETF

UDP Binding Timeouts

UDP-2: Single packet outbound, multiple packets in-bound

- client sends a single UDP packet to the test server and then remains silent
- server then sends a stream of responses, increasing delay between each
- result: longer timeouts overall; some boxes shorter compared to UDP-1

Company Confidential

UDP Binding Timeouts

UDP-3: Multiple packets out- and inbound

- similar to UDP-2, except that client sends response to each server packet
- intent is to determine whether outbound traffic refreshes a binding
- result: longer timeouts overall; no boxes shorter compared to UDP-2

TCP Binding Timeouts

- similar to UDP-1, except TCP connection (no keep-alives)
- note: log scale and unit different!

Company Confidential

TCP Throughput

- throughput over of a 100 MB bulk transfer (2x unidirectional, 1x bidirectional)
- result: 1/3 of boxes reaches max, median in bidirectional case much less than when sending unidirectional, lots of weirdness

Queuing Delays

- queuing delay introduced by the box when fully loaded
- result: mostly OK (< 50 ms); some boxes really bad/weird

Company Confidential

Max. Number of TCP Bindings

- maximum number of TCP bindings allowed to a single server port
- result: some very low (16), max. is 1024

Other Results DCCP & SCTP

DCCP: zilch

• **SCTP**: 18/34 ?!?

- theory: single SCTP association "works", because those 18 devices translate just the IP addresses for unknown IP protocol numbers
- need to look deeper

Other Results DNS

DNS over UDP: worked

DNS over TCP: so-so

- 14 accept connections on TCP port 53
- 10 respond to DNS queries
- one box forwards inbound DNS-over-TCP as DNS-over UDP

Other Results ICMP handling

- in a nutshell: many issues
- one box doesn't translate ICMP at all
- all others translate at least "Port unreachable" and "TTL Exceeded"
- one box translates TCP-related ICMP messages into TCP RST
- 16 out of 34 do not correctly translate the transport header contained in the ICMP payload
- two do not correctly translate the IP checksum in the ICMP payload

Next Steps: Refine & Expand the Study

Related Work

- L. D'Acunto, J. Pouwelse, and H. Sips. A Measurement of NAT & Firewall **Characteristics in Peer to Peer Systems.** In Proc. ASCI Conference, 2009.
- B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer Communication Across Network Address Translators. In Proc. USENIX Annual Technical Conference, pages 13–13, 2005.
- S. Guha and P. Francis. Characterization and Measurement of TCP Traversal through NATs and Firewalls. In Proc. ACM SIGCOMM IMC, pages 199–211, 2005.
- C. Jennings. NAT Classification Test Results. Internet-Draft draft-jenningsbehave-test-results-04, Internet Engineering Task Force, July 2007. Work in Progress.
- L. Mäkinen and J. Nurminen. Measurements on the Feasibility of TCP NAT Traversal in Cellular Networks. In Proc. Conference on Next Generation Internet Networks, pages 261–267, 2008.

Thank You

NOKIA

Talk to me if you have a spare home gateway to donate to the testbed.

lars.eggert@nokia.com

Masterbrand color palette

To prevent printing a hidden slide (like this), de-select "Printing hidden slides" option in print menu.

The pink highlight color is to be used sparingly, not in large areas and can only be used as 100%, never as a tint.

