

2494 - COMPUTATIONAL THINKING & DATA SCIENCE

2019-20, Spring Semester

1st Problem Set

Deadline: February, 24

- 1. Write a short Python function that takes a positive integer n and returns the sum of the squares of all the positive integers smaller than n.
- 2. The Capital Link Inc. is considering 10 investments. The cash required and the streams of cash inflows for each investment are listed in table 1 and 2, respectively. The cash available for investment is \$100000. Capital Link wants to find out the investment policy that maximizes its NPV. All cash outflows occur at the beginning of year 1 and all cash inflows occur at the ends of their respective years. The company uses a 10% discount rate for calculating its NPVs.

Investme	ent 1	2	3	4	5	6	7	8	9	10
	\$14200	\$42700	\$14100	\$15900	\$24200	\$44700	\$3200	\$11000	\$26700	\$15400

Table 1: Cash required for each investment

Investment Year	1	2	3	4	5	6	7	8	9	10
1										
2		\$13440	\$13890	\$13330	\$9320	\$13430				\$12610
3		\$16130			\$10720				\$14540	
4		\$15320			\$10080	\$16550			\$13230	
5						\$14900				
6	\$11450	\$13820			\$8910	\$13410				
7	\$10530					\$12070			\$9970	\$13910
8	\$9690	\$12470	\$9700			\$10860		\$16000	\$9070	
9				\$14630			\$9230		\$8250	
10		\$11260						\$14440		

Table 2: Cash flows for each investment

- a) Which investments should the company make?
 Write a Python program that helps you to solve the problem of Company Link Inc.
 - Suggestion: Start by implement a function that determines the NPV for each investment.
- b) Solve the following modifications of the Capital Link Inc.'s problem by making the appropriate changes in your Python code (solve each part independently of the other):
- i) Suppose that if investment 1 is selected, then investment 3 must also be selected.
 - ii) Suppose that at least one of the investments 5 and 6 must be selected.
- 3. Consider an unweighted graph G = (V, E), where V is the set of nodes and E the set of edges. Suppose that you want to determine the shortest path from node S to node S, but if it is possible you would like to stop by node S in the way. However, you only want to pass by node S if the length of your path doesn't increase more than S%.

Write a Python program that helps you to determine the shortest path between s and t given your preference for stopping at node k.

Note: It should either return the shortest path from s to t or the shortest path from s to t containing k, depending on the situation.

Use the following graph to help you testing your program.

Consider s = A, t = K and k = F.

NOVA SCHOOL OF BUSINESS & ECONOMICS