CHAPTER 5

Trees

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

Definition of Tree

- A tree is a finite set of one or more nodes such that:
- There is a specially designated node called the root.
- The remaining nodes are partitioned into n>=0 disjoint sets T₁, ..., T_n, where each of these sets is a tree.
- We call T₁, ..., T_n the subtrees of the root.

Level and Depth

node (13) degree of a node leaf (terminal) nonterminal parent children sibling degree of a tree (3) ancestor level of a node height of a tree (4)

Terminology

- The degree of a node is the number of subtrees of the node
 - The degree of A is 3; the degree of C is 1.
- The node with degree 0 is a leaf or terminal node.
- A node that has subtrees is the *parent* of the roots of the subtrees.
- The roots of these subtrees are the *children* of the node.
- Children of the same parent are *siblings*.
- The ancestors of a node are all the nodes along the path from the root to the node.

Representation of Trees

- List Representation
 - (A(B(E(K,L),F),C(G),D(H(M),I,J)))
 - The root comes first, followed by a list of sub-trees

Left Child - Right Sibling

Binary Trees

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left subtree* and *the right subtree*.
- Any tree can be transformed into binary tree.
 - by left child-right sibling representation
- The left subtree and the right subtree are distinguished.

*Figure 5.6: Left child-right child tree representation of a tree (p.191)

Abstract Data Type Binary_Tree

structure *Binary_Tree*(abbreviated *BinTree*) is objects: a finite set of nodes either empty or consisting of a root node, left *Binary_Tree*, and right *Binary_Tree*.

functions:

for all bt, bt1, $bt2 \in BinTree$, $item \in element$ Bintree Create()::= creates an empty binary tree Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1, whose right subtree is bt2, and whose root node contains the data *item* Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left subtree of *ht* element Data(bt)::= if (IsEmpty(bt)) return error else return the data in the root node of bt Bintree Rchild(bt)::= if (IsEmpty(bt)) return error else return the right subtree of bt

Samples of Trees

Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.
 - The maximum nubmer of nodes in a binary tree of depth k is 2^k-1 , k>=1.

Prove by induction.

$$\sum_{i=1}^{k} 2^{i-1} = 2^k - 1$$

Relations between Number of Leaf Nodes and Nodes of Degree 2

For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then $n_0=n_2+1$ proof:

Let *n* and *B* denote the total number of nodes & branches in *T*.

Let n_0 , n_1 , n_2 represent the nodes with no children single child, and two children respectively.

$$n = n_0 + n_1 + n_2$$
, $B + 1 = n$, $B = n_1 + 2n_2 = - n_1 + 2n_2 + 1 = n_1 + 2n_2 + 1 = n_0 + n_1 + n_2 = - n_0 = n_2 + 1_{14}$

Full BT VS Complete BT

- A full binary tree of depth k is a binary tree of depth k having 2^k -1 nodes, k>=0.
- A binary tree with *n* nodes and depth *k* is complete *iff* its nodes correspond to the nodes numbered from 1 to *n* in the full binary tree of depth *k*.

Binary Tree Representations

- If a complete binary tree with n nodes (depth = $\log n + 1$) is represented sequentially, then for any node with index i, 1 <= i <= n, we have:
 - parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no parent.
 - left_child(i) ia at 2i if 2i <= n. If 2i > n, then i has no left child.
 - $right_child(i)$ ia at 2i+1 if $2i+1 \le n$. If 2i+1 > n, then i has no right child.

Sequential Representation

A

В

[1]

[2]

<u>C</u>

D

Е

 $\frac{F}{\tilde{\epsilon}}$

<u>U</u> Н

I

Linked Representation

```
typedef struct node *tree_pointer;
typedef struct node {
  int data;
  tree_pointer left_child, right_child;
};
```

left_child data right_child

Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of traversal
 - LVR, LRV, VLR, VRL, RVL, RLV
- Adopt convention that we traverse left before right, only 3 traversals remain
 - LVR, LRV, VLR
 - inorder, postorder, preorder

Arithmetic Expression Using BT

inorder traversal A/B * C * D + Einfix expression preorder traversal + * * / A B C D E prefix expression postorder traversal AB/C*D*E+ postfix expression level order traversal + * E * D / C A B

Inorder Traversal (recursive version)

```
void inorder(tree pointer ptr)
/* inorder tree traversal */
                          A/B * C * D + E
    if (ptr) {
        inorder(ptr->left child);
        printf("%d", ptr->data);
        indorder(ptr->right child);
```

Preorder Traversal (recursive version)

```
void preorder(tree pointer ptr)
/* preorder tree traversal */
                         + * * / A B C D E
    if (ptr) {
        printf("%d", ptr->data);
        preorder(ptr->left child);
        predorder(ptr->right child);
```

Postorder Traversal (recursive version)

```
void postorder(tree pointer ptr)
/* postorder tree traversal */
                       AB/C*D*E+
    if (ptr) {
        postorder(ptr->left child);
        postdorder(ptr->right child);
        printf("%d", ptr->data);
```

Iterative Inorder Traversal

(using stack)

```
void iter inorder(tree pointer node)
  int top= -1; /* initialize stack */
  tree pointer stack[MAX STACK SIZE];
  for (;;) {
   for (; node; node=node->left child)
     add(&top, node);/* add to stack */
   node= delete(&top);
                /* delete from stack */
   if (!node) break; /* empty stack */
   printf("%D", node->data);
   node = node->right child;
```

Trace Operations of Inorder Traversal

Call of inorder	Value in root	Action	Call of inorder	Value in root	Action
1	+		11	C	
2	*		12	NULL	
3	*		11	C	printf
4	/		13	NULL	
5	A		2	*	printf
6	NULL		14	D	
5	A	printf	15	NULL	
7	NULL		14	D	printf
4	/	printf	16	NULL	
8	В		1	+	printf
9	NULL		17	E	
8	В	printf	18	NULL	
10	NULL		17	E	printf
3	*	printf	19	NULL	

Level Order Traversal

(using queue)

```
void level order(tree pointer ptr)
/* level order tree traversal */
  int front = rear = 0;
  tree pointer queue[MAX QUEUE SIZE];
  if (!ptr) return; /* empty queue */
  addq(front, &rear, ptr);
  for (;;) {
    ptr = deleteq(&front, rear);
```

```
if (ptr) {
  printf("%d", ptr->data);
  if (ptr->left child)
    addq(front, &rear,
                  ptr->left child);
  if (ptr->right child)
    addq(front, &rear,
                  ptr->right child);
else break;
                    + * E * D / C A B
```

Copying Binary Trees

```
tree_poointer copy(tree pointer original)
tree pointer temp;
if (original) {
 temp=(tree pointer) malloc(sizeof(node));
 if (IS FULL(temp)) {
   fprintf(stderr, "the memory is full\n");
   exit(1);
 temp->left child=copy(original->left child);
 temp->right child=copy(original->right child)
 temp->data=original->data;
 return temp;
                        postorder
return NULL;
```

28

Equality of Binary Trees

the same topology and data

```
int equal(tree pointer first, tree pointer second)
/* function returns FALSE if the binary trees first and
   second are not equal, otherwise it returns TRUE */
  return ((!first && !second) || (first && second &&
       (first->data == second->data) &&
       equal(first->left child, second->left child) &&
       equal(first->right child, second->right child)))
```

29

Propositional Calculus Expression

- A variable is an expression.
- If x and y are expressions, then $\neg x$, $x \land y$, $x \lor y$ are expressions.
- Parentheses can be used to alter the normal order of evaluation $(\neg > \land > \lor)$.
- Example: $x_1 \lor (x_2 \land \neg x_3)$
- satisfiability problem: Is there an assignment to make an expression true?

 CHAPTER 5 30

postorder traversal (postfix evaluation)

CHAPTER 5

31

node structure

```
left_child data value right_child
```

```
typedef emun {not, and, or, true, false } logical;
typedef struct node *tree_pointer;
typedef struct node {
         tree_pointer list_child;
         logical data;
         short int value;
         tree_pointer right_child;
        };
```

First version of satisfiability algorithm

```
for (all 2<sup>n</sup> possible combinations) {
    generate the next combination;
    replace the variables by their values;
    evaluate root by traversing it in postorder;
    if (root->value) {
        printf(<combination>);
        return;
printf("No satisfiable combination \n");
```

Post-order-eval function

```
void post order eval(tree pointer node)
/* modified post order traversal to evaluate a propositional
calculus tree */
  if (node) {
     post order eval(node->left child);
     post order eval(node->right child);
     switch(node->data) {
       case not: node->value =
            !node->right child->value;
            break;
```

```
case and: node->value =
       node->right child->value &&
       node->left child->value;
       break;
              node->value =
   case or:
       node->right child->value | |
       node->left child->value;
       break;
   case true: node->value = TRUE;
       break;
   case false: node->value = FALSE;
```

Threaded Binary Trees

 Two many null pointers in current representation of binary trees

```
n: number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1
```

• Replace these null pointers with some useful "threads".

Threaded Binary Trees (Continued)

If ptr->left_child is null,
replace it with a pointer to the node that would be
visited before ptr in an inorder traversal

If ptr->right_child is null,
replace it with a pointer to the node that would be
visited after ptr in an inorder traversal

A Threaded Binary Tree

Data Structures for Threaded BT

left thread left child data right child right thread TRUE **FALSE** FALSE: child TRUE: thread typedef struct threaded tree *threaded pointer; typedef struct threaded tree { short int left thread; threaded pointer left child; char data; threaded pointer right child; short int right thread; 39};

Memory Representation of A Threaded BT

Next Node in Threaded BT

```
threaded pointer insucc (threaded pointer
 tree)
  threaded pointer temp;
  temp = tree->right child;
  if (!tree->right thread)
    while (!temp->left thread)
      temp = temp->left child;
  return temp;
            CHAPTER 5
```

Inorder Traversal of Threaded BT

```
void tinorder(threaded pointer tree)
/* traverse the threaded binary tree
 inorder */
    threaded pointer temp = tree;
    for (;;) {
        temp = insucc(temp);
        if (temp==tree) break;
        printf("%3c", temp->data);
                           42
```

Inserting Nodes into Threaded BTs

- Insert child as the right child of node parent
 - change parent->right_thread to FALSE
 - set child->left_thread and child->right_thread
 to TRUE
 - set child->left child to point to parent
 - set child->right_child to parent->right_child
 - change parent->right_child to point to child

Examples

Insert a node D as a right child of B.

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

Right Insertion in Threaded BTs

```
void insert right(threaded pointer parent,
                         threaded pointer child)
   threaded pointer temp;
child->right_child = parent->right_child;
child->right_thread = parent->right_thread;
   child->left child = parent; case (a)
(2)child->left thread = TRUE;
   parent->right child = child;
(3)parent->right thread = FALSE;
  if (!child->right thread) { case (b)
  temp = insucc(child);
(4) temp->left_child = child;
```

Heap

- A *max tree* is a tree in which the key value in each node is no smaller than the key values in its children. A *max heap* is a complete binary tree that is also a max tree.
- A *min tree* is a tree in which the key value in each node is no larger than the key values in its children. A *min heap* is a complete binary tree that is also a min tree.
- Operations on heaps
 - creation of an empty heap
 - insertion of a new element into the heap;
 - deletion of the rangest element from the heap

*Figure 5.25: Sample max heaps (p.219)

Property:

The root of max heap (min heap) contains the largest (smallest).

*Figure 5.26:Sample min heaps (p.220)

structure MaxHeap ADT for Max Heap

objects: a complete binary tree of n > 0 elements organized so that the value in each node is at least as large as those in its children functions:

for all *heap* belong to *MaxHeap*, *item* belong to *Element*, *n*, *max_size* belong to integer

MaxHeap Create(max_size)::= create an empty heap that can hold a maximum of max_size elements

Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE else return FALSE

MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert item into heap and return the resulting heap else return error

Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE else return TRUE

Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one instance of the largest element in the heap and remove it from the heap

chapter 5 else return error 50

Application: priority queue

- machine service
 - amount of time (min heap)
 - amount of payment (max heap)
- factory
 - time tag

Data Structures

- unordered linked list
- unordered array
- sorted linked list
- sorted array
- heap

*Figure 5.27: Priority queue representations (p.221)

Representation	Insertion	Deletion
Unordered array	$\Theta_{(1)}$	$\Theta_{(n)}$
Unordered linked list	$\Theta(1)$	$\Theta_{(n)}$
Sorted array	O(n)	$\Theta_{(1)}$
Sorted linked list	O(n)	$\Theta(1)$
Max heap	$O(\log_2 n)$	$O(\log_2 n)$

Example of Insertion to Max Heap

initial location of new node

insert 5 into heap

insert 21 into heap

Insertion into a Max Heap

```
void insert max heap(element item, int *n)
  int i;
  if (HEAP FULL(*n)) {
    fprintf(stderr, "the heap is full.\n");
    exit(1);
  i = ++(*n);
  while ((i!=1) && (item.key>heap[i/2].key)) {
    heap[i] = heap[i/2];
    i /= 2;
                    2^{k}-1=n ==> k=\lceil \log_{2}(n+1) \rceil
  heap[i] = item; O(log_{\gamma}n)
              CHAPTER 5
                                    55
```

Example of Deletion from Max Heap

Deletion from a Max Heap

```
element delete max heap(int *n)
  int parent, child;
 element item, temp;
  if (HEAP EMPTY(*n)) {
    fprintf(stderr, "The heap is empty\n");
    exit(1);
  /* save value of the element with the
    highest key */
  item = heap[1];
  /* use last element in heap to adjust heap
  temp = heap[(*n)--];
 parent = 1;
  child = 2;
```

```
while (child <= *n) {
    /* find the larger child of the current
       parent */
    if ((child < *n) &&
(heap[child].key<heap[child+1].key))
      child++;
    if (temp.key >= heap[child].key) break;
    /* move to the next lower level */
    heap[parent] = heap[child];
    child *= 2;
  heap[parent] = temp;
  return item;
```

Binary Search Tree

Heap

- a min (max) element is deleted. $O(log_2 n)$
- deletion of an arbitrary element O(n)
- search for an arbitrary element O(n)

Binary search tree

- Every element has a unique key.
- The keys in a nonempty left subtree (right subtree) are smaller (larger) than the key in the root of subtree.
- The left and right subtrees are also binary search trees.

Examples of Binary Search Trees

Searching a Binary Search Tree

```
tree pointer search (tree pointer root,
            int key)
/* return a pointer to the node that
 contains key. If there is no such
 node, return NULL */
  if (!root) return NULL;
  if (key == root->data) return root;
  if (key < root->data)
      return search(root->left child,
                    key);
  return search(root->right child, key);
           CHAPTER 5
```

Another Searching Algorithm

```
tree pointer search2 (tree pointer tree,
 int key)
 while (tree) {
    if (key == tree->data) return tree;
    if (key < tree->data)
        tree = tree->left child;
    else tree = tree->right child;
  return NULL;
                            62
```

Insert Node in Binary Search Tree

Insert 80

Insert 35

```
Insertion into A Binary Search Tree
void insert node(tree pointer *node, int num)
{tree pointer ptr,
      temp = modified search(*node, num);
  if (temp || !(*node)) {
   ptr = (tree pointer) malloc(sizeof(node));
   if (IS FULL(ptr)) {
     fprintf(stderr, "The memory is full\n");
     exit(1);
   ptr->data = num;
   ptr->left child = ptr->right child = NULL;
   if (*node)
     if (num<temp->data) temp->left child=ptr;
        else temp->right child = ptr;
   else *node = ptr;
```

CHAPTER 5

Deletion for A Binary Search Tree

Deletion for A Binary Search Tree

Before deleting 60

After deleting 60

Selection Trees

- (1) winner tree
- (2) loser tree

CHAPTER 5

69

*Figure 5.35: Selection tree of Figure 5.34 after one record has been output and the tree restructured(nodes that were changed are ticked)

Analysis

- K: # of runs
- n: # of records
- setup time: O(K) (K-1)
- restructure time: $O(\log_2 K)$ $\lceil \log_2 (K+1) \rceil$
- merge time: O(nlog₂K)
- slight modification: tree of loser
 - consider the parent node only (vs. sibling nodes)

*Figure 5.36: Tree of losers corresponding to Figure 5.34 (p.235)

Forest

• A forest is a set of $n \ge 0$ disjoint trees

Transform a forest into a binary tree

- T1, T2, ..., Tn: a forest of trees B(T1, T2, ..., Tn): a binary tree corresponding to this forest
- algorithm
 - (1) empty, if n = 0
 - (2) has root equal to root(T1)
 has left subtree equal to B(T11,T12,...,T1*m*)
 has right subtree equal to B(T2,T3,...,Tn)

Forest Traversals

Preorder

- If F is empty, then return
- Visit the root of the first tree of F
- Taverse the subtrees of the first tree in tree preorder
- Traverse the remaining trees of F in preorder

Inorder

- If F is empty, then return
- Traverse the subtrees of the first tree in tree inorder
- Visit the root of the first tree
- Traverse the remaining trees of F is indorer

Set Representation

• $S_1=\{0, 6, 7, 8\}, S_2=\{1, 4, 9\}, S_3=\{2, 3, 5\}$

- Two operations considered here
 - Disjoint set union $S_1 \cup S_2 = \{0,6,7,8,1,4,9\}$
 - -Find(i): Find the set containing the element i.

$$3 \in S_3, 8 \in S_1$$

Disjoint Set Union

Make one of trees a subtree of the other

Possible representation for S₁ union S₂

*Figure 5.41:Data Representation of S₁S₂and S₃ (p.240)

Array Representation for Set

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4

```
int find1(int i)
    for (; parent[i]>=0; i=parent[i])
    return i;
void union1(int i, int j)
    parent[i]= j;
```

80

*Figure 5.43:Degenerate tree (p.242)

union operation O(n) n-1

find operation $O(n^2)$ $\sum_{i=0}^{n} i$

union(0,1), find(0) union(1,2), find(0)

•

•

•

union(n-2,n-1),find(0)

degenerate tree

CHAPTER 5

81

*Figure 5.44: Trees obtained using the weighting rule(p.243)

weighting rule for union(i,j): if # of nodes in i < # in j then j the parent of i

Figure 5.44: Trees obtained using the weighting rule

Modified Union Operation

```
void union2(int i, int j)
     Keep a count in the root of tree
     int temp = parent[i]+parent[j];
     if (parent[i]>parent[j]) {
         parent[j]=temp;
     else { j has fewer nodes
         parent[j]=i;
         parent[i]=temp;
                    If the number of nodes in tree i is
                    less than the number in tree j, then
                    make j the parent of i; otherwise
                    make i the parent of j.
```

Figure 5.45: Trees achieving worst case bound (p.245)

Modified Find(i) Operation

```
int find2(int i)
    int root, trail, lead;
    for (root=i; parent[root]>=0;
                      root=parent[root]);
    for (trail=i; trail!=root;
                      trail=lead) {
         lead = parent[trail];
         parent[trail] = root;
                      If j is a node on the path from
    return root:
                      i to its root then make j a child
                      of the root
```


find(7) find(7) find(7) find(7) find(7) find(7) find(7)

go up 3 1 1 1 1 1 1 1 1 1 reset 2

12 moves (vs. 24 moves)

Applications

- Find equivalence class $i \equiv j$
- Find S_i and S_j such that $i \in S_i$ and $j \in S_j$ (two finds)
 - $-S_i = S_i$ do nothing
 - $-S_i \neq S_i$ union (S_i, S_i)
- example

$$0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, 6 \equiv 8, 3 \equiv 5, 2 \equiv 11, 11 \equiv 0$$

 $\{0, 2, 4, 7, 11\}, \{1, 3, 5\}, \{6, 8, 9, 10\}$

preorder: ABCDEFGHI

inorder: BCAEDGHFI

