대중교통 취약성 평가 및 PM 도입 필요지역 연구

Assessment of Tranist vulnerability and possiblity of PM introduction study from the perspective of traffic accessibility and actual travel time

Research Purpose

- In terms of transit vulnerablity,
 - I assess vulnerablity in the perspective of time and accessbility considering that those criterias are the most associated problem in the perspective of PM solutions.
- Scoping down the problem in terms of PM solutions, I research the least PM numbers of region in Seoul compared to the most PM numbers of region assessing the inevitable factors for PM introduction.
- As I cross analyze vulnerablity to public transportation and acceptable areas, the result would be available PM introduction spots to solve transit vulnerability problem.
 - PM 보급률이 낮은 구의 대중교통 취약 문제의 해결을 위한 PM 도입 필요 지점 분석

Research Premise

- 자전거의 도입 특성과 타 PM의 도입가능 지역 특성이 유사할 것
- PM이 필요한 대중교통 취약지 점수 기준 : 소요시간 & 교통 접근성
- PM 서비스 개선 우선순위지역 도출

(Vertical Equity)

1. 대중교통 취약지 점수가 높다

(Horizontal Equity: Need based approach to Equity)

2. 핵심생산 인구비율이 높아 대중교통 수요가 높다

(Requisite for PM)

- 3. 경사도가 낮다
- 4. 자전거 도로 연장률이 높다

Research result

교통이 취약한 지역 위주/ 통행수요가 많은 지역을 중심으로 개선할 것인지에 대한 논의가 필요하므로 모든 측면에서 조건을 충족하도록 PM 서비스 개선이 필요한 것으로 보인다.

예상 결과 : 취약지 점수, PM 도입가능 구역, 핵심생산인구에 대한 2x2 table 작성후 상하위 50%의 교차분석 후 지점 도출

Research Scope

- 구의 100*100 격자 중심점(centroid)
- 도봉구 : 거주인구, 면적, 세대수 대비 공공 자전거 보급률이 가장 낮은 지역
- 종로구 : 거주인구, 면적, 세대수 대비 공공 자전거 보급률이 가장 높은 지역
- 통행시간 목적지 : 강남역 업무중심지구

대중교통 취약성 (PM 도입 필요지역)									
활용데이터	방법	예상 결과							
Supported data	Methodology	Expected Result							
1. 최소 통근 시간과 실제 이동시간 비교 측정									
Measurement of minimum commuting time versus actual travel time									
TOPIS 대중교통환승	목적지 강남역 통근 시간대 이동 소요 시간	정류소별 대중교통 이							
경로 조회 서비스	O-D지점별 이동시간 데이터 추출	동시간, 이동거리							
	Door to O까지의 문제점 해결 필요 (near)								
Tmap API	목적지 강남역 통근 시간대 이동 소요시간	격자 지점별 차량 이							
	O-D지점별 이동시간 데이터 추출 <i>(역)</i>	동시간, 이동거리							
2. 교통 접근성 평가 (대중교통 접근성 함수 이용) Assessment of Transit accessibility									
교통 시설 데이터 통행량 데이터	해당 구역이 포함하는 교통시설의 접근성 크기 합 $SI_A = \sum_N (rac{Area_{Bn}}{Area_A} imes SL_A)$	격자 단위 접근성 크 기 합							
	SI_{A} : 격자 A 의 대중교통 접근성								
	$Area_{\scriptscriptstyle A}$: 격자 A 의 시가화면적								
	$Area_{Bn}$: $교통시설의 서비스 면적(보행접근성)$								
	SL_{A} : $\mathit{교통시설의 서비스 수준}$ (통행량)								
	N: A구역의 교통시설 수								

PM 도입 가능성 (PM 도입 가능지역)									
활용데이터	방법	예상 결과							
Supported data	Methodology	Expected Result							
1. PM 보급률이 높은 지역 & PM 보급률이 낮은 지역의 비교									
자치구 정보	인구수, 세대수, 면적 대비	공공 자전거 보급 비							
공공자전거 정류소	율 순위								
2. PM / 자전거 활성화 지역 미치는 영향 지표									
(3) 생산인구수 (4) 자전거도로 (5) 경사도 → PM 도입 가능 지역									
생산인구 격자자료	격자내 인구수	격자							
자전거 도로 자료	격자내 도로 연장	격자							
	격자별 자전거도로 split								
DEM Raster자료	격자								

대중교통 취약지/ PM 도입 가능지역 교차분석										
활용데이터		방법					예상 결과			
Supported data		Methodology					Expected Result			
(1) 2x2 table										
PM / 자전거 활성			교통 취약성			취약지 및	도입가능			
화 지역에 미치는			상위 50%	하위50%		지역 2x2 터	이블			
영향 지표	PM 도입 가능	상위 50%	High-high	High-low						
		하위 50%	Low-high	Low-low						
(2) 대중교통 취약 하위 50% / PM 도입 가능지역 상위 지역 50% 교차분석										
2x2 테이블	mappi	ng		GIS 지점 시	각화					
	GIS 교차분석									
연구 결론										

연구 결돈

취약지X도입가능지 지점 비교 및 시사점 도출

대중교통이 취약한 지역과 PM 도입가능성이 높은 지역에 PM 인프라 조성등에 노력해야한다는 정책적 시사점 도출

추후 연구 방향

- 추후 연구 범위지역 서울시 25개 자치구로 확대 및 주요도심으로의 교통 취약성 분석을 심화해 업무중심 목적지 지역의 확대 필요
- PM 보급 필요지역에 대해 교통 취약지역 & PM 도입가능 지역에 대한 평가 지표가 적절한 지 대한 추가연구 필요
- 대중교통 Door to D 소요 시간 계산문제 해결 (격장중심-정류소의 거리 고려)
- PM 및 자전거의 도입 가능성에대한 지표의 적절성에 대한 연구논리 필요

Difficulty

서로 상이한 기준에 대한 지표 생성의 어려움