```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.cluster import KMeans
    from sklearn.metrics import davies_bouldin_score
    from sklearn.decomposition import PCA
```

```
In [2]: # Load the datasets
    customers_df = pd.read_csv('Customers.csv')
    products_df = pd.read_csv('Products.csv')
    transactions_df = pd.read_csv('Transactions.csv')
```

```
In [3]: # Convert date columns to datetime format
    customers_df['SignupDate'] = pd.to_datetime(customers_df['SignupDate'])
    transactions_df['TransactionDate'] = pd.to_datetime(transactions_df['TransactionDate'])
```

```
In [4]: # Merge datasets
    merged_df = transactions_df.merge(customers_df, on='CustomerID', how='inner
    merged_df = merged_df.merge(products_df, on='ProductID', how='inner')
    merged_df
```

Out[4]:		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price_x	(
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68	
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68	
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68	I
	3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	300.68	
	4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	300.68	
•	995	T00630	C0031	P093	2024-10-08 23:58:14	2	609.88	304.94	
•	996	T00672	C0165	P044	2024-07-28 00:09:49	4	75.28	18.82	
•	997	T00711	C0165	P044	2024-06-11 15:51:14	4	75.28	18.82	
,	998	T00878	C0165	P044	2024-09-24 21:15:21	3	56.46	18.82	
,	999	T00157	C0169	P044	2024-11-09 09:07:36	2	37.64	18.82	

1000 rows × 13 columns

```
In [6]: # Calculate transaction count per customer
customer_transactions = merged_df.groupby('CustomerID')['TransactionID'].cc
customer_transactions.columns = ['CustomerID', 'TransactionCount']
print(customer_transactions)
```

	CustomerID	TransactionCount
0	C0001	5
1	C0002	4
2	C0003	4
3	C0004	8
4	C0005	3
		• • •
194	C0196	4
195	C0197	3
196	C0198	2
197	C0199	4
198	C0200	5

[199 rows x 2 columns]

In [7]: # Calculate product category preferences per customer
 category_preferences = merged_df.pivot_table(index='CustomerID', columns='(
 print(category_preferences)

Category	CustomerID	Books	Clothing	Electronics	Home Decor
0	C0001	1	0	3	1
1	C0002	0	2	0	2
2	C0003	0	1	1	2
3	C0004	3	0	2	3
4	C0005	0	0	2	1
• •	• • •				• • •
194	C0196	1	1	0	2
195	C0197	0	0	2	1
196	C0198	0	1	1	0
197	C0199	0	0	2	2
198	C0200	1	2	1	1

[199 rows x 5 columns]

In [8]: # Merge all features into a single dataset customer_features = customers_df.merge(customer_spending, on='CustomerID', customer_features = customer_features.merge(customer_transactions, on='Customer_features = customer_features.merge(category_preferences, on='Customer_features)

Out[8]:

		CustomerID	CustomerName	Region	SignupDate	TotalSpending	TransactionCount	В
•	0	C0001	Lawrence Carroll	South America	2022-07-10	3354.52	5.0	
	1	C0002	Elizabeth Lutz	Asia	2022-02-13	1862.74	4.0	
	2	C0003	Michael Rivera	South America	2024-03-07	2725.38	4.0	
	3	C0004	Kathleen Rodriguez	South America	2022-10-09	5354.88	8.0	
	4	C0005	Laura Weber	Asia	2022-08-15	2034.24	3.0	
	195	C0196	Laura Watts	Europe	2022-06-07	4982.88	4.0	
	196	C0197	Christina Harvey	Europe	2023-03-21	1928.65	3.0	
	197	C0198	Rebecca Ray	Europe	2022-02-27	931.83	2.0	
	198	C0199	Andrea Jenkins	Europe	2022-12-03	1979.28	4.0	
	199	C0200	Kelly Cross	Asia	2023-06-11	4758.60	5.0	

200 rows × 10 columns

In [9]: # Fill missing values with 0
customer_features.fillna(0, inplace=True)

In [12]: # Normalize numerical features for clustering numerical_features = ['TotalSpending', 'TransactionCount'] + list(category_ customer_features_normalized = customer_features[numerical_features] customer_features_normalized = (customer_features_normalized - customer_features_normalized - customer_features_normalized_normal

```
In [19]:
         # Clustering
         # -----
         # Use KMeans for clustering
         from sklearn.cluster import KMeans
         from sklearn.metrics import davies_bouldin_score
         import matplotlib.pyplot as plt
         import seaborn as sns
         cluster_metrics = {}
         for k in range(2, 11):
             kmeans = KMeans(n_clusters=k, random_state=42)
             customer_features[f'Cluster_{k}'] = kmeans.fit_predict(customer feature
             db_index = davies_bouldin_score(customer_features[numerical_features],
             cluster_metrics[k] = db_index
In [20]: # Select optimal number of clusters
         optimal_k = min(cluster_metrics, key=cluster_metrics.get)
         print(f"Optimal Number of Clusters: {optimal_k}")
         print(f"Davies-Bouldin Index for Optimal Clusters: {cluster_metrics[optimal
         Optimal Number of Clusters: 8
         Davies-Bouldin Index for Optimal Clusters: 1.2385086058556265
In [21]: # Final clustering with optimal_k
         kmeans = KMeans(n_clusters=optimal_k, random_state=42)
         customer_features['Cluster'] = kmeans.fit_predict(customer_features[numeric
In [22]: # Visualize clusters using PCA (dimensionality reduction)
         from sklearn.decomposition import PCA
         pca = PCA(n_components=2)
         customer_features['PCA1'] = pca.fit_transform(customer_features[numerical +
         customer features['PCA2'] = pca.fit transform(customer features[numerical +
```

```
In [23]: plt.figure(figsize=(10, 8))
    sns.scatterplot(data=customer_features, x='PCA1', y='PCA2', hue='Cluster',
        plt.title('Customer Segmentation (Clustering Visualization)')
        plt.xlabel('PCA Component 1')
        plt.ylabel('PCA Component 2')
        plt.legend(title='Cluster')
        plt.show()
```



```
In [24]: # Save clustering results
    customer_features[['CustomerID', 'Cluster']].to_csv('Customer_Segmentation
```

```
In [25]: # Report clustering metrics
print("\nClustering Metrics:")
for k, db_index in cluster_metrics.items():
    print(f"Number of Clusters: {k}, DB Index: {db_index:.4f}")
```

```
Clustering Metrics:
Number of Clusters: 2, DB Index: 1.4506
Number of Clusters: 3, DB Index: 1.6213
Number of Clusters: 4, DB Index: 1.5238
Number of Clusters: 5, DB Index: 1.3496
Number of Clusters: 6, DB Index: 1.3838
Number of Clusters: 7, DB Index: 1.2603
Number of Clusters: 8, DB Index: 1.2385
Number of Clusters: 9, DB Index: 1.2575
Number of Clusters: 10, DB Index: 1.2484
```

1	127/25	た・ハつ	

In []:	: