

Analyse I Série de révision Automne 2017

- Pour les questions à **choix multiple**, on comptera :
 - +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera :
 - +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
 - -1 point si la réponse est incorrecte.

Première partie, questions à choix multiple

Pour chaque question mettre une croix dans la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: La limite $\lim_{n\to+\infty} \frac{\sqrt{n^3+3n}-\sqrt{n^3+2n^2+3}}{\sqrt{n+2}}$ vaut

- $+\infty$

Question 2: Parmi les séries numériques

- $a) \quad \sum_{n=0}^{+\infty} \frac{n!}{(2n)!}$
- b) $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ c) $\sum_{n=0}^{+\infty} \frac{(n!)^3}{(2n)!}$

déterminer celles qui sont convergentes:

- \square uniquement a) et b)
- uniquement c)
- uniquement a)
- toutes les trois

Question 3: Soit la fonction $f: [-1,1] \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \frac{e^{3x} - 1}{\sin(2x)}$. S'il existe, soit $g: [-1,1] \to \mathbb{R}$ le prolongement par continuité en 0 de f.

Alors

- g existe et g(0) = 1
- $\int f$ n'admet pas de prolongement par continuité en 0

Question 4: La série entière $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k^4+2} (x+3)^k$ converge si, et seulement si

- $x \in [-4, -2]$
- $x \in [2, 4]$
- $x \in [2,4]$

Question 5: Soit la fonction $f:]0, +\infty[\to \mathbb{R}$ définie par $f(x) = 3x^2 \sin(e^{\sqrt{x}}) + x$. Alors $f'(x) = \frac{3}{2}x^{3/2} e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right) + 3x \sin\left(e^{\sqrt{x}}\right) + 1$ $f'(x) = 3x^{3/2} e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right) + 1$ $f'(x) = \frac{3}{2}x^{3/2} e^{\sqrt{x}} \cos(e^{\sqrt{x}}) + 6x \sin(e^{\sqrt{x}}) + 1$ $f'(x) = 3x^{3/2} e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right) + 6x \sin\left(e^{\sqrt{x}}\right)$ **Question 6:** Soit la fonction $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \frac{\sin(x)}{|x|}$. S'il existe, soit $g \colon \mathbb{R} \to \mathbb{R}$ le prolongement par continuité en 0 de f. f n'admet pas de prolongement par continuité en 0 g existe et g(0) = 0g existe et g(0) = -1g existe et g(0) = 1**Question 7:** Soit la fonction $f: [-1,3] \to \mathbb{R}$ définie par f(x) = x |x-2|. Alors f atteint son minimum en x=-1, atteint son maximum en x=3, admet un maximum local en x=1 et admet un minimum local en x=2f atteint son maximum en x=3 et admet un minimum local en x=1f atteint son minimum en x=1, atteint son maximum en x=3 et admet un minimum local en x=2 $\int f$ atteint son minimum en x=-1 et atteint son maximum en x=1**Question 8:** Pour quels choix de $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$ la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} \beta x & \text{pour } x < 2\\ \sqrt{x^2 + 5} + \alpha & \text{pour } x \ge 2 \end{cases}$ est-elle dérivable sur \mathbb{R} ? $\alpha = -\frac{5}{3}$ et $\beta = \frac{2}{3}$ $\alpha = 0 \text{ et } \beta = \frac{3}{2}$ $\alpha = -\frac{8}{3}$ et $\beta = \frac{1}{6}$ Question 9: Le nombre complexe $\frac{i^{251} - e^{-i\pi}}{\sqrt{2}i - e^{i\pi/4}}$ vaut $1\sqrt{2}$ $\bigcap -\sqrt{2}$ $-i\sqrt{2}$

 $-(1+i)\sqrt{2}$

Question 10 : Soit une suite de nombres réels (a_n) telle que $\frac{1}{4} \le |a_n| \le \frac{1}{2}$ pour tout $n \ge 0$. Alors

- \square la série $\sum_{n=0}^{+\infty} a_n$ converge
- \square la série $\sum_{n=0}^{+\infty} a_n^n$ converge et $\left|\sum_{n=0}^{+\infty} a_n^n\right| \le 2$
- \square la série $\sum_{n=0}^{+\infty} a_n^n$ diverge

Question 11: L'équation $x(e^x - e^{-x}) - e^x = 0$

- $\hfill \square$ n'a pas de solution appartenant à l'intervalle $[0,+\infty[$
- possède exactement une solution réelle
- $\hfill \square$ n'a pas de solution appartenant à l'intervalle $]-\infty,0[$
- possède au moins deux solutions réelles

Question 12 : L'intégrale $\int_0^1 \frac{x}{e^{2x}} dx$ vaut

Question 13: Soit la fonction bijective $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = sh(sh(x)) et soit a = f(1).

Alors la dérivée de la fonction réciproque f^{-1} de f en a vaut

Question 14: La limite $\lim_{n\to+\infty} \left(\frac{n}{n+1}\right)^n$ vaut

- $\perp +\infty$
- ____1
- $\overline{\square} e^{-1}$
- \Box -e

Question 15: La limite $\lim_{x\to 0} \frac{e^{|x|}-1-|x|}{x^2}$ vaut 0 vaut 1 \square vaut $\frac{1}{2}$ n'existe pas Question 16: La partie imaginaire du nombre complexe $\frac{\sqrt{3}i^{99}-i}{\sqrt{5}+i}$ vaut **Question 17:** La limite $\lim_{x \to -1} \left(\frac{1}{x+1} - \frac{4}{(x-1)(x^2-1)} \right)$ \square vaut -1 \square vaut $-\infty$ vaut 0 n'existe pas **Question 18 :** L'équation $z^{-1} = \overline{z}$, où \overline{z} est le complexe conjugué de z, admet une infinité de solutions dans $\mathbb C$ exactement une solution dans $\mathbb C$ aucune solution dans $\mathbb C$ exactement deux solutions dans $\mathbb C$ Question 19: La limite $\lim_{n\to+\infty} \frac{\sqrt[3]{n+2}}{\sqrt[2]{n+3}}$ vaut

Question 20 : Soit la fonction $f \colon \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{(e^x - 1)}$.

Le développement limité d'ordre 2 de f autour de x=0 est

- $f(x) = 1 + x + x^2 + x^2 \epsilon(x)$
- $f(x) = 2x + x^2 + x^2 \epsilon(x)$
- $f(x) = 1 + x + 2x^2 + x^2 \epsilon(x)$

avec $\lim_{x\to 0} \epsilon(x) = 0$.

Question 21 : L'intégrale $\int_0^1 \frac{\sqrt{\operatorname{Arctg}(x)}}{x^2+1} dx$ vaut

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, mettre une croix (sans faire de ratures) dans la case VRAI si l'affirmation est **toujours vraie** ou dans la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

est pariois lausse).		
Question 22: Pour $a < b$ dan dérivable sur $]a, b[$. Si $f(a) = f(a)$		tion $f: [a, b] \to \mathbb{R}$ continue sur $[a, b]$ et deux fois ste $c \in]a, b[$ tel que $f''(c) = 0.$
	☐ VRAI	FAUX
		f^x
Question 23: Soit la fonction Alors $f'(x) = x$ pour tout $x \in \mathbb{R}$		$e par f(x) = \int_0^x t dt.$
	☐ VRAI	FAUX
		
Question 24 : Soit une fonctivée de f au point $y \in I$ sati		ivable sur un intervalle ouvert $I \subset \mathbb{R}$. Alors la
	f(y)	(y+x)-f(y)
	$f'(y) = \lim_{x \to 0} \frac{f(y)}{y}$	$\frac{x}{x}$
	☐ VRAI	FAUX
Question 25: Soient $f: \mathbb{R}$ – njective, alors g est injective.	$\rightarrow \mathbb{R} \text{ et } g \colon \mathbb{R} \rightarrow \mathbb{R}$	deux fonctions définies sur tout \mathbb{R} . Si $f \circ g$ est
	☐ VRAI	FAUX
Question 26: Soit $f:]0,1[\to \mathbb{R}$ une fonction dérivable sur $]0,1[$. Alors la fonction $f':]0,1[\to \mathbb{R}$ est dérivable sur $]0,1[$.		
	☐ VRAI	FAUX
	VICIII	Inox
Question 27: Soit (a_n) une suite numérique et soit (b_n) la suite numérique définie par $b_n = a_n $. Si $\lim_{n \to +\infty} b_n = b \in \mathbb{R}$, alors la suite (a_n) est convergente.		
	☐ VRAI	FAUX
	ion $f \colon \mathbb{R} \to \mathbb{R}$ qui	a, pour tout $\epsilon>0$ et tout $x,y\in\mathbb{R},$ la propriété
suivante:	$ x - y \le 2\epsilon \implies f$	$ f(x) - f(y) \le \epsilon.$
Alors f est continue sur \mathbb{R} .		
	☐ VRAI	FAUX

Question 29 : Soit la suite (x_n) de nombres réels définie de manière récursive par $x_0 = 0$ t $x_{n+1} = \frac{1+x_n^2}{2}$ pour $n \in \mathbb{N}$. Alors la suite de nombres réels (x_n) converge vers 2.		
☐ VRAI ☐ FAUX		
Question 30 : Soit A un sous-ensemble borné et non vide de \mathbb{R} . Alors Inf $A \in A$ et Sup $A \in A$.		
□ VRAI □ FAUX		
Question 31: La série numérique $\sum_{k=0}^{+\infty} \frac{(-1)^k}{8^k + 8^{-k}}$ est absolument convergente.		
□ VRAI □ FAUX		
Question 32 : La série numérique $\sum_{k=0}^{+\infty} \frac{3\cos(\pi k)}{k+1}$ est absolument convergente.		
□ VRAI □ FAUX		