Gate Assignment

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Kunal Thorawade **EE23BTECH11035**

Question: In the circuit shown below, the amplitudes of the voltage across the resistor and the capacitor are equal. What is the value of the angular frequency ω_o (in rad/s)? (Round off the answer to one decimal place.) (GATE BM 32 2023)

Solution:

Parameter	Value	Description
R	1 kΩ	Resistance
C	$100\mu F$	Capacitance
ω_o	?	Angular Frequency
$Z_R = R$	10^{3}	Impedance for resistor
$Z_C = \frac{1}{i\omega_o C}$	$\frac{10^{-6}}{i\omega_0}$	Impedance for capacitor

TABLE 1 PARAMETER TABLE

$$V_R = V_C \tag{1}$$

$$\implies |Z_R| = |Z_C| \tag{2}$$

$$\Rightarrow R = \left| \frac{1}{j\omega_o C} \right|$$

$$\Rightarrow \omega_o = \frac{1}{RC}$$

$$\Rightarrow \omega_o = \frac{1}{(1 \text{ k}\Omega)(100 \mu\text{F})}$$
(5)

$$\implies \omega_o = \frac{1}{RC}$$
 (4)

$$\implies \omega_o = \frac{1}{(1 \text{ k}\Omega)(100 \text{ }\mu\text{F})} \tag{5}$$

$$\therefore \omega_o = 10.0 \tag{6}$$