

COMP24112: Machine Learning

Chapter 3: Machine Learning Experiments II

Dr. Tingting Mu

Email: tingting.mu@manchester.ac.uk

Content

- Sample error and true error.
- Issues of limited data.
- How to estimate the error of your model by splitting data?
- How to set a complete machine learning experiment?
- Bias-variance decomposition.

Sample Error and True Error

- Hypothesis: Prediction made by a trained machine learning model.
- Sample error of a hypothesis (error_S):

Error computed by a performance metric using a set of data samples.

- True error of a hypothesis (error_D):
 - For classification, it is the probability that a single sample is misclassified, where the sample is randomly drawn from a distribution.
 - For regression case, it is the expectation of the error. See example:

sample error
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$
 true $E_{p(\mathbf{x},y)} \left[(y - f(\mathbf{x}))^2 \right]$ $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$

Sample Error and True Error

- What we wish to know is the true error.
- In most cases, it is very hard or not possible to compute the true error.

- We can always compute the sample error.
- Infinite samples: Sample error converges to true error.
- Insufficient samples: Sample error may not approximate true error well.

Limited Data: Bias and Variance Issues

Given **limited data**, you will probably encounter the following issues, caused by the gap between the true and sample errors.

Bias Issue:

- Accuracy of the training samples can be a poor estimator of the accuracy of unseen samples.
- It can provide optimistically biased estimate of the hypothesis over future unseen samples.
- To deal with the bias issue, it is better to choose a new set of test examples independent of the training examples.

Variance Issue:

- Accuracy of a new set of test samples can still vary from the true accuracy, depending on the makeup of a particular set of test samples.
- Smaller set of test samples can result in higher variance.

Given a set of finite samples, how to train and evaluate a machine learning model?

Holdout Method

- Holdout method: Split up your dataset into a training and test set.
 - Train your model using the training set.
 - Estimate your model error using the test set.

- Drawback of holdout:
 - If the dataset is small, we may not be able to set aside a portion of the dataset for testing.
- Better methods?

Random Subsampling

- Perform K data splits of the entire dataset.
 - Each split randomly selects a fixed number of samples for testing, and uses the remaining samples for training.
 - For each data split, the classifier is trained from scratch using the training samples, and its error rate is estimated with the testing samples (denoted by E_i for the i-th split).

• The final error estimate is computed by $E = \frac{1}{K} \sum_{i=1}^{K} E_i$

K-fold Cross Validation

- Divide the entire dataset into K partitions.
 - For each of the K experiments, use (K-1) partitions for training and the remaining one for estimating the error rate E_{i} .

- The final error estimate is computed by $E = \frac{1}{K} \sum_{i=1}^{K} E_i$
- Advantage: all the examples in the dataset are eventually used for both training and testing.

Comments on K-fold CV

- Each sample is used as the testing samples only once, but as the training samples K-1 times.
- All the test sets are independent, but there is overlapping between training sets.
- Low number of K results in insufficient training-testing trials.
- High number of K results in small testing set potentially with high variance.
- Some standard settings: 10-fold CV, 5-fold CV.

Leave One Out

- Leave one out (LOO) is a special case of k-fold CV.
 - We have a total of N samples.
 - LOO is an N-fold cross validation.

 Suitable for small sample set.

 Experiment 1

 Experiment 2

 Experiment 3

 Single test example

Bootstrap

- Bootstrap is based on sampling with replacement.
- Repeat the following process K times:
 - Randomly select (with replacement) M samples and use these for training.
 - The remaining samples that were not selected are for testing. The number of testing samples can change over repeats.

Sampling with Replacement:

Choose a sample from the given set, put that sample back to the set, and then choose another sample.

• The final error estimate is computed by
$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Machine Learning Experiments

- A complete machine learning experiment includes
 - 1) Model training
 - Model evaluation
 - 3) Model selection: Select a best model among different options (also known as hyper-parameter selection, model selection)
- Do not train, assess and select hyper-parameters using the same sample set.
- You need to split the data with an appropriate strategy, utilising, e.g., hold-out, random subsampling, K-fold CV, LOO, Bootstrap.

Example: Hyper-parameter Selection

- Different hyper-parameter settings correspond to different model options.
- An example hyper-parameter selection strategy: Holdout for testing with random subsampling embedded for model selection.

Experiment: Handwriting Digit Recognition

- US Postal Service handwritten digit data, <u>https://www.dropbox.com/s/9gamjq7rpdxdi9s/postaldata.mat?dl=0</u>.
- It includes the actual images and label variables of the digits 0-9 (500 examples per digit class, and 256 pixels per image).
- The task is to predict what digit class an input image belongs to.

Example: Neighbour Number Selection for k-NN

3-class k-NN: recognise digits 3,6 and 8.

- Given 400 training samples.
- 20 options of neighbour number k are checked (k=1,2,...20). These correspond to 20 model options.
- Random subsampling is used to estimate the performance of each model.
 - In each trial, 300 out of the 400 samples are randomly selected to train the classifier and use the other 100 to calculate the error rate.
 - Run 50 trials in total.
- k=3 is chosen with the smallest averaged error.

The mean and standard deviation of the 50 error rates is shown as an **error bar** for each hyperparameter option. There are 20 error bars in the plot.

Bias-Variance Decomposition

- Take regression as an example.
- Expected squared error for a new test sample:

$$E\bigg[\Big(y-f\big(x\big)\Big)^2\bigg]$$

- There are various explanations of the expectation range.
- One scenario is the possible choices of training samples.

With some calculation, it has

$$E\left[\left(y - f\left(x\right)\right)^{2}\right] = E\left[\left(f\left(x\right) - \hat{y}\right)^{2}\right] + \left(y - \hat{y}\right)^{2}, \text{ where } \hat{y} = E\left[f\left(x\right)\right]$$

variance error bias error

Trick:

$$E\left[\left(y-f\right)^{2}\right] = E\left[\left(y+\hat{y}-\hat{y}-f\right)^{2}\right]$$

Bias-Variance Decomposition

• Bias error: $(y - E[f])^2$

Bias error measures how much the averaged prediction is close to the true value.

• Variance error: $E\left[\left(f - E[f]\right)^2\right]$

Variance error measures how much the prediction varies among different realisations of the model.

http://scott.fortmann-roe.com/docs/BiasVariance.html

- Over-fitting: low bias error, high variance error, e.g., an over complex model that is sensitive to small fluctuations in the training set.
- Under-fitting: high bias error, low variance error, e.g., an excessively simple model.