1 Teoretický úvod

Rezonanční obvod je komplexní jednobran tvořený v ideálním případě seriovým nebo paralerním zapojením kondenzátoru a cívky. V reálném strátovém světě všek musíme počítat, ještě ze ztrátovým odporem cívky R_L a ztrátovým odporem kondenzátoru R_C . Popřípadně může ještě nastat situace, kdy bude do obvodu přidáno dalších n rezistorů, kondenzátorů či cívek. Rezonanční obvody můžeme rozdělit na dvě skupiny.

1.1 Sériový rezonanční obvod

V sériovém rezonančním obvodu při rezonanční frekvenci f_0 obvodem protéká maximální proud, napětí na prvcích rezonančního obvodu poklesne na minimum. Komplexní složky reaktencí mají opačnou hodnotu, díky tomu proud omezují jen ztrátové odpory R_C a R_L . Schéma sériového rezonančního obvodu: viz. sch. 1.

Odvození vztahu pro výpočet napětí na okraji pásma sériového rezonančního obvodu. Vycházím z toho že pásmo končí u zisku napětí o $3\ dB$.

$$20 \log \frac{U_2}{U_1} = 3$$

$$\log \frac{U_2}{U_1} = \frac{3}{20}$$

$$\frac{U_2}{U_1} = 10^{\frac{3}{20}}$$

$$U_2 = U_1 10^{\frac{3}{20}}$$
(1)

kde:

 U_1 napětí při rezonanci U_2 napětí na konci pásma

1.2 Paralerní rezonanční obvod

V paralerním rezonančním obvodu, při rezonanční frekvenci f_0 si sou reaktance rovny $X_C = X_L$, obvodem protéká minimální proud a napěrí na prvcích rezonančního obvodu je maximální. Schéma paralerního rezonančního obvodu: viz. sch. 2 a 3. Ze vztahu $X_C = X_L$ se dá odvodit Thomsonův vztah.

$$X_{L} = X_{C}$$

$$\omega L = \frac{1}{\omega C}$$

$$\omega^{2} = \frac{1}{LC}$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$2\pi f_{0} = \frac{1}{\sqrt{LC}}$$

$$f_{0} = \frac{1}{2\pi\sqrt{LC}}$$
(2)

kde:

 X_L indukční reaktance X_C kapacitní reaktance L indukčnost C kapacita ω úhlová rychlost f_0 rezonanční frekvence

Vyjádření R_L jako nezatíženého děliče, ze schématu 1, Za předpokladu C má hodnotu v řátech μF .

$$\frac{R_G}{R_G + R_L} \cdot U_0 = U_0 - U_m
R_G U_0 = (U_0 - U_m)(R_G + R_L)
R_L = \frac{U_0}{U_0 - U_m} \cdot R_G - R_G$$
(3)

kde:

Odvození indukčnosti L ze vztahu pro X_L .

$$X_L = 2\pi f L$$

$$L = \frac{X_L}{2\pi f} \tag{4}$$

Odvození napětí na okraji pásma paralerního rezonančního obvodu. Vycházím z toho že pásmo končí u poklesu napětí pod $-3\ dB$.

$$20 \log \frac{U_2}{U_1} = -3$$

$$\log \frac{U_2}{U_1} = -\frac{3}{20}$$

$$\frac{U_2}{U_1} = 10^{-\frac{3}{20}}$$

$$U_2 = U_1 10^{-\frac{3}{20}}$$
(5)

kde:

 U_1napětí při rezonanci U_2napětí na konci pásma

2 Schéma

Schéma č. 1: Měření závislosti ${\cal U}_m$ na f

Schéma č. 2: Měření závislosti ${\cal U}_m$ na f

Schéma č. 3: Měření závislosti ${\cal U}_m$ na f

3 Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Тур	Evidenční číslo	Poznámka
_	DMM	MASTECH MY-64	0659	_
FG	generátor	GoldStar FG-2002C	0382	_
mV	milivoltmetr	TESLA BK-128	0132	_

Tabulka č. 1: Tabulka použitých přístrojů

4 Postup měření

- Zapojíme úlohu podle schématu č. 1 a po kontrole začneme měřit.
- Nastavíme napětí U_0 na hodnotu dle zadání. (U_0 nastavujeme z odpojeným rezonančním obvodem)
- Laděním nalezneme frekvenci f_0 . $(U_m$ bude minimální)
- Proměříme charakteristiku \pm 50 kHz kolem f_0 .
- Zapojíme úlohu podle schématu č. 2 a po kontrole začneme měřit.
- Laděním nalezneme frekvenci f_0 . $(U_m$ bude maximální)
- Proměříme charakteristiku \pm 50 kHz kolem f_0 .
- Zapojíme úlohu podle schématu č. 3 a po kontrole začneme měřit.
- \bullet Laděním nalezneme frekvenci $f_0.~(U_m$ bude maximální)
- Proměříme charakteristiku \pm 50 kHz kolem f_0 .

5 Tabulky naměřených a vypočítaných hodnot

f[kHz]	$U_m[V]$	$\delta_{\%}[\%]$	$\Delta U[mV]$
114, 2	$\frac{1,60}{1}$	± 5	$\pm 80,0$
119, 3	1,40	±5	$\pm 70,0$
122,3	1, 20	±5	$\pm 60, 0$
126, 5	1, 10	±5	$\pm 55, 0$
130,6	0,98	±5	$\pm 49,0$
135, 0	0,80	±5	$\pm 40, 0$
140, 4	0,60	±5	$\pm 30, 0$
146, 1	0,42	±5	$\pm 21,0$
150, 0	0,30	±5	$\pm 15, 0$
153, 1	0,22	± 5	$\pm 11,0$
156, 0	0, 18	± 5	$\pm 09, 0$
158, 0	0, 20	±5	$\pm 10, 0$
160, 0	0, 20	±5	$\pm 10, 0$
163, 6	0, 26	±5	$\pm 13, 0$
167, 0	0,35	±5	$\pm 17, 5$
172.0	0,49	± 5	$\pm 24,5$
177, 0	0,62	± 5	$\pm 31,0$
182,0	0,79	± 5	$\pm 39, 5$
185, 0	0,86	± 5	$\pm 43,0$
190, 0	1,00	± 5	$\pm 50,0$

Tabulka č. 2: Tabulka změřených a vypočítaných hodnot pro schéma č. 1

f[kHz]	$U_m[V]$	$\delta_\%[\%]$	$\Delta U[mV]$
099, 7	0,016	± 3	± 00.48
105, 1	0,018	±3	$\pm 00,54$
110,8	0,022	±3	$\pm 00,66$
120, 4	0,030	±3	$\pm 00,90$
126, 0	0,036	± 3	$\pm 01,08$
131,8	0,044	± 3	$\pm 01,32$
135, 6	0,054	± 3	$\pm 01,62$
144, 4	0,100	± 3	$\pm 03,00$
148, 0	0,130	± 3	$\pm 03,90$
151,6	0,180	± 3	$\pm 05,40$
154, 0	0,220	± 5	$\pm 11,00$
155, 2	0,220	±5	$\pm 11,00$
159, 3	0,180	±5	$\pm 09,00$
163, 1	0, 140	±5	$\pm 07,00$
167, 5	0,094	±3	$\pm 02,82$
173,0	0,070	±3	$\pm 02, 10$
179,0	0,052	±3	$\pm 01,56$
182,9	0,046	±3	$\pm 01,38$
187,0	0,040	±3	$\pm 01, 20$
190, 4	0,038	±3	$\pm 01, 14$

Tabulka č. 3: Tabulka změřených a vypočítaných hodnot pro schéma č. $2\,$

f[kHz]	$U_m[V]$	$\delta_{\%}[\%]$	$\Delta U[mV]$
099, 7	0,016	±3	$\pm 0,48$
105, 1	0,018	±3	$\pm 0,54$
110,8	0,022	±3	$\pm 0,66$
120, 4	0,030	±3	$\pm 0,90$
126, 0	0,034	± 3	$\pm 1,02$
131,8	0,040	± 3	$\pm 1,20$
135, 6	0,050	± 3	$\pm 1,50$
144, 4	0,070	± 3	$\pm 2, 10$
148, 0	0,090	± 3	± 2.70
151,6	0,100	± 3	$\pm 3,00$
155, 2	0,100	± 3	$\pm 5,00$
157, 0	0,100	± 5	$\pm 5,00$
159, 3	0,100	±5	$\pm 5,00$
163, 1	0,080	± 5	$\pm 4,00$
167, 5	0,074	± 3	$\pm 2,22$
173, 0	0,060	± 3	$\pm 1,80$
179, 0	0,048	±3	$\pm 1,44$
182,9	0,043	±3	$\pm 1,28$
187, 0	0.039	±3	$\pm 1, 17$
190, 4	0.036	±3	$\pm 1,08$

Tabulka č. 4: Tabulka změřených a vypočítaných hodnot pro schéma č. 3

6 Vzory vápočtů

 Δ_{U_m} nám udává o kolik voltů jsme od skutečné hodnoty.

$$\Delta_{U_m} = \frac{\delta_{\%}}{100} \cdot U_m = \frac{114, 2 \cdot 10^6}{100} \cdot 1,60 = \underline{80 \ mV}$$

 R_L spočítáme dosazením do vstahu (3). Kde: R_G je odpor menerující proud, v zapojeních se sérivou rezonancí jsme použili jmenovitou hodnotu 1 $k\Omega$ a u paralerní reronance 180 $k\Omega$.

$$R_L = \frac{U_0}{U_0 - U_m} \cdot R_G - R_G = \frac{6}{6 - 1} \cdot 983 - 983 = \underline{\underline{983 - 983}}$$

L spočítáme dosazením do vstahu (4).

$$L = \frac{X_L}{2\pi f} = \frac{196, 6}{2\pi 190} = \underline{196, 6 \ \mu H}$$

Napětí na okraji pásma sériového rezonančního obvodu vypočítáme z využitím vztahu (1).

$$U_2 = U_1 10^{\frac{3}{20}} = 0,18 \cdot 10^{\frac{3}{20}} \doteq 0,254 \ V$$

Napětí na okraji pásma paralerního rezonančního obvodu vypočítáme z využitím vztahu (5).

$$U_2 \ = \ U_1 10^{-\frac{3}{20}} = 0,22 \cdot 10^{-\frac{3}{20}} \doteq \underline{0,156\ V}$$

Napětí na okraji pásma paralerního rezonančního obvodu se sníženým činětelem jakosti vypočítáme z využitím vztahu (5)

$$U_2 = U_1 10^{-\frac{3}{20}} = 0, 1 \cdot 10^{-\frac{3}{20}} \doteq \underline{0,071 \ V}$$

7 Grafy

Graf č. 1: Závislost U_0 na f, zapojení dle schématu č. 1

Graf č. 2: Závislost U_0 na f, zapojení dle schématu č. 2

Graf č. 3: Závislost U_0 na f, zapojení dle schématu č. 3

8 Závěr

8.1 Chyby měřících přístrojů

Procentuální chyba milovoltmetru se pobybovala v intervalu $<\pm3\%$; $\pm5\%>$. Tento měřící přístoj tety nespadá do kategorie těch nejpěsnější, nicměně lepší přístoj pro malá napětí o vysokých frekvencích jsme neměli k dospozici.

8.2 Zhodnocení

- 1. V úvodu jsem shrnul základní poznatky o paralerním a sériovém rezonačním obvodu, takže bych měl mít bod 1 splněný.
- 2. Změřil jsem frekvenční charakteristiku sériového rezonančního obvodu v rozsahu $\pm 50~kHz$ kolem rezonanční frekvence f_0 . Naměřené charakteristika není plně kompatibilní s teoretickým modelem tohoto zapojení. To může být způsobeno chybou měření nebo porazitními vlastnostmi použitého přípravku.
- 3. Odpor R_L byl spočítán s využitím vztahu (3). Jeho hodnota byla výpočtem určena na 196,9 Ω . Tata hodnota všek nemůže být povačována za správnou, protože jsem musel odvodit vztah ve kterém se nebude vyskytovat C. To bylo prakticky i teoreticky nemožné, tak sem jeho hodnotu X_C zanedbal v doufání, že bude mít kapacitu větčí než 1 μF . Z této vypočítané hodnoty jsem pak s využitém odpozeného vztahu (4) určil teoretickou inukčnost cívky L. Tu jsem stanovil na 196,6 μH .
- 4. Tento bod nebyl realizovatelný, protože nám nebyla sdělen jmenovité hodnota kondenzátoru C.
- 5. Změřil jsem frekvenční charakteristiku paralerního rezonančního obvodu v rozsahu $\pm 50 \ kHz$ kolem rezonanční frekvence f_0 . Naměřená charakteristika také není plně kompatibilní s teoretickým modelem tohoto zapojení.
- 6. Změřil jsem frekvenční charakteristiku paralerního rezonančního obvodu se sníženým činitelem jakosti v rozsahu $\pm 50~kHz$ kolem rezonanční frekvence f_0 . Naměřené charakteristika opět není plně kompatibilní s teoretickým modelem tohoto zapojení.
- 7. Z naměřených hodnot jsem vytvořil grafy, ve vektorovém formátu *.eps, což se dá ocenit zejména při elektronickém prohlížení dokumentu.