Extragalactic CO Observations and their Interpretation

E. Sturm

MPE

- High-J CO in local galaxies (Herschel)
- High redshift applications (ALMA, IRAM/NOEMA, ...)
 - CO SLEDs
 - Modes of star formation
- low-J CO in local galaxies: Outflows
- NOT: general low-J CO in local galaxies

Extragalactic High-J CO: "Historical" context

Krolik & Lepp (1989):

If the AGN torus exists, it should emit not only in thermal continuum (mid-IR), but also in molecular cooling lines (e.g. FIR)

→ detectable fraction of L_bol in IR molecular lines (mid-IR H2, far-IR CO)

Promise of high-J CO lines: strong enough, little extinction, not or only weakly produced in normal star formation regions (i.e. direct tracer of torus)

Krolik & Lepp 1989 – FIR CO lines from the Torus

-
$$L_{57} = 7x10^{40} f_{abs} L_{x44} \text{ erg s}^{-1}$$
 (J = 58 → 57, 46 μm)

E.g. NGC1068: Molecular gas ~ 1 pc from $L_x \sim 10^{44}$ erg/s source, $f_{abs}*L_{x,44} = 0.05$ $\rightarrow L_{CO} \sim (f_{abs}*L_{x,44})*J^3$:

Krolik & Lepp 1989 – FIR CO lines from the Torus

$$-L_{57} = 7x10^{40}f_{abs}L_{x44} erg s^{-1}$$
 (J = 58 → 57, 46 μm)

E.g. NGC1068: Molecular gas ~ 1 pc from $L_x \sim 10^{44}$ erg/s source, $f_{abs}*L_{x,44} = 0.05$ $\rightarrow L_{CO} \sim (f_{abs}*L_{x,44})*J^3$:

Extragalactic High-J CO: "modern" context

Spaans & Meijerink 2008

Schleicher+ 2010

High-J is all you get at high z

What can we learn from high-J CO line observations?

- Excitation source (PDR, XDR, shocks, CRs, others)?
- CO (high J) / CO (1-0) ?

High-J CO --> A new probe of warm and dense molecular gas

- SB, AGN, feedback, galaxy evolution
 - UV/X-ray (AGN torus)
 - Cosmic rays
 - Jets
 - turbulence
 - Mergers vs. cold accretion
 - galaxy dynamics
 - outflows
- Methods
 - Galactic templates
 - Non-LTE radiative transfer
 - PDR/XDR/shock models
 - High resolution spectral imaging

Nearby templates

- M82(SB)
- NGC1068 (Sy)

M82 (Panuzzo+2010, SPIRE)

M82 (Panuzzo+2010, SPIRE)

CO(6-5) and CO(7-6) brighter than PDR predictions

⇒ not tracing UV-heated gas

- T ~ 545 K consistent with H₂ S(0)/S(1) ratio --> L/M ~ 2.6 L_{sun}/M_{sun}
- Cosmic ray density too low

Dissipation of turbulence

⇒ stellar wind and supernovae

$$\frac{L}{M} = 0.42 \frac{v_{\rm rms}^3}{\Lambda_d} = 1.10 \left(\frac{v_{\rm rms}}{25 \, km \, s^{-1}} \right)^3 \left(\frac{1 \, \rm pc}{\Lambda_d} \right) \, \frac{L_{\odot}}{M_{\odot}},$$

Mac Low 99, Pan & Padoan 09

NGC 1068 (Hailey-Dunsheath+2012, PACS)

NGC 1068 (Hailey-Dunsheath+2012, PACS)

X-rays

- x11 CO lines --> First extragalactic far-IR CO
- Atomic fine-structure lines ([CII], [OI], [NII], [OIII], [NIII])
- OH, H₂O, OH⁺, H₂O⁺, ...
- Molecular emission concentrated in central spaxel

NGC 1068 (Hailey-Dunsheath+2012, PACS)

- x10 CO lines --> First extragalactic far-IR CO
- Atomic fine-structure lines ([CII], [OI], [NII], [OIII], [NIII])
- OH, H₂O, OH⁺, H₂O⁺, ...
- Molecular emission concentrated in central spaxel

XDR

→ Talk by Steve Hailey-Dunsheath

PDR

Shock

SPIRE (GTO):

→ Sacchi, Spinoglio, Wilson et al. in prep

Application to ULIRGs

Mrk 231 (van der Werf+2010, SPIRE)

- Most luminous ULIRG in RBGS: $L_{IR} = 4 \times 10^{12} L_{sun}$
- Optical BAL QSO
- AGN accounts for ~ 70% of L_{bol}
- Molecular outflows: V ~ 1000 km/s

- All 9 CO lines, [CI], [NII]
- 7 lines of H₂O
- OH+, H₂O+, CH+, HF

Arp220 (Rangwala+2011, SPIRE)

CO Line Ratios in local ULIRGs

Characterizing the excitation of the molecular gas and the nature of the energy source

6.4 F CO (18-1 7.8 Flux density [Jy] Flux density [Jy] 5.8 -400-200 200 400 -400 -200200 400 $v - c z [km s^{-1}]$ $v - c z [km s^{-1}]$

APEX spectrum

CO at high redshifts

Alloin etal 1997, Ao etal. 2007, Barvainis etal 2002, Beelen etal 2004, Bertoldi etal 2003, Downes etal 2003, Greve etal 2003, Greve etal 2005, Hainline etal 2004, Riecherts etal 2006, Tacconi etal 2006/08, Papadopoulos etal 2002, Walter etal 2003, Weiss etal. 2005, Weiss etal. 2007

APM08279+5255 at z =3.9 Weiß+2007

the lensed z=2.3 submillimetre galaxySMMJ2135-0102, Danielson+2011

Carilli+ 2010 SMG GN20 at z = 4.05

The roles of Major Mergers vs. Steady Accretion, and the SFE

Major mergers

Kauffmann et al. 1993, Steinmetz & Navarro 2003, Hernquist, Springel, di Matteo, Hopkins et al. 2003-2006, Robertson & Bullock 2008

Minor mergers and steady accretion:

Dekel & Birnboim 2003,2006, Keres et al. 2005, Nagamine et al. 2005, Davé 2007, Kitzbichler & White 2007, Naab et al. 2007, Governato et al. 2008, Ocvirk et al. 2008, Dekel et al. 2009, Agertz et al. 2009

[Genzel et al. 2010, MNRAS 407: 2091] [Daddi et al. 2010, ApJ 714: L118]

AGN heating

Advanced mergers & starbursts

Early mergers quiet disk galaxies

 L_{FIR} , SFR, $n(H_2)$

CO as tracer of galactic outflows

CO as tracer of galactic outflows

Mrk 231

OH P-Cygni profile with blue-shifted absorption and red-shifted emission

 $\Delta v \sim 1,170 \text{ km/s}$

Fischer + 2010 Sturm + 2011

Mrk 231 – OH Outflow

terminal velocity (obs):

R_{out} (model)

~1.100 km/s

~1.0 kpc

outflow rate (dM/dt):

~1.200 M_⊙/yr

SFR:

~100 M_⊙/yr

gas mass (from CO):

 $4.2 \times 10^9 M_{\odot}$

depletion time scale (M_{gas}/M): ~4 x 10⁶ yr

mechanical energy:

≥ **10**⁵⁶ ergs

 $T = \frac{1}{2} M_{\rm gas} v^2$

mechanical luminosity:

≥ 1% L_{IR}

$$P = \frac{T}{t_{\rm dyn}}$$

Mrk 231 – CO Outflow

outflow mass of 5.8 x 10⁸ M_☉ outflow rate of ≥ 700 M_☉/yr

Aalto+2011

[C II] as substitute for CO?

[C II] as substitute for CO?

[C II] as substitute for CO?

Summary

To be written

- High-J CO, local (Herschel)
- High redshift applications (ALMA, IRAM/NOEMA, ...)
- Modes of star formation
- Outflows, local (low-J CO)