Limits and Continuous Functions

Seunghwan Park

March 11, 2020

Outline

- Limit
- Continuity

Definition $(\lim_{x\to a+0} f(x) = L)$

L is the right-limit of f(x) as x aprroaches a, if

- 1 f(x) need not be defined at x = a, but it must be defined for all other x in some interval which contains a.
- 2 for every $\epsilon > 0$ there exists some $\delta > 0$ such that for all x in the domain of f, if $a < x < a + \delta$, then $|f(x) L| < \epsilon$.

Definition $(\lim_{x\to a-0} f(x) = L)$

L is the right-limit of f(x) as x aprroaches a, if

- **1** f(x) need not be defined at x = a, but it must be defined for all other x in some interval which contains a.
- 2 for every $\epsilon > 0$ there exists some $\delta > 0$ such that for all x in the domain of f, if $a \delta < x < a$, then $|f(x) L| < \epsilon$.

Definition $(\lim_{x \to a} f(x) = L)$

L is the limit of f(x) as x aprroaches a, if

- 1 f(x) need not be defined at x = a, but it must be defined for all other x in some interval which contains a.
- 2 for every $\epsilon > 0$ there exists some $\delta > 0$ such that for all x in the domain of f, if $|x a| < \delta$, then $|f(x) L| < \epsilon$.

Definition (Another definition of $\lim_{x\to a} f(x) = L$)

- 1 $\lim_{x\to a-0} f(x)$ and $\lim_{x\to a+0} f(x)$ exist.
- $\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = L$

- Properties of the Limit
 Let a and k be constants. Let $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ (with L and M finite).
 - $\lim_{x \to a} x = a$

 - 3 $\lim_{x \to a} \{f(x) \pm g(x)\} = L \pm M$
 - $4 \lim_{x \to a} \{f(x)g(x)\} = LM$
 - 5 $\lim_{x\to a} \{f(x)/g(x)\} = L/M, M \neq 0$
 - 6 $\lim_{x \to a} \{f(x)\}^n = L^n$.

5 / 14

- The value of the limit can become $\pm\infty$: $\lim_{x\to a}\frac{1}{x}$ when a=0 or $\pm\infty$.
- $\frac{0}{0}$?
- $\frac{\infty}{\infty}$?
- $\infty \infty$?
- $0 \cdot \infty$?

mathmatical constant e:

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = 2.71828....$$

• Natural log In:

$$ln(x) = log_e(x)$$

• If $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} (1+f(x))^{\frac{1}{f(x)}} = e$

Theorem (The sandwich Theorem)

Suppose that for all x

$$f(x) \le g(x) \le h(x)$$

and that $\lim_{x\to a} f(x) = \lim_{x\to a} h(x)$. Then

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \lim_{x\to a} h(x).$$

Ex)
$$\lim_{x\to 0} \frac{\sin x}{x}$$

Multiple limits:

$$\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=\lim_{x\to x_0}\left(\lim_{y\to y_0}f(x,y)\right)\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)=\lim_{y\to y_0}\left(\lim_{x\to x_0}f(x,y)\right)$$

- The order of limits matters!
 - $f(x,y) = x^2y e^{-x-y}, (x,y) = (0,1)$
 - f(x,y) = (2x y)/(x + 3y), (x,y) = (0,0)

Definition

A function f is right - continuous at a if

$$\lim_{x\to a+0}f(x)=f(a)$$

Definition

A function f is left - continuous at a if

$$\lim_{x\to a-0}f(x)=f(a)$$

Definition

A function f is continuous at a if

$$\lim_{x\to a} f(x) = f(a)$$

Definition

A function is continuous if it is continuous at every a in its domain.

- Propoerties for continuous function If function f(x) and g(x) are continuous at x = a, the followings are continuous at x = a.
 - 1 kf(x), where k is constant
 - $(x) \pm g(x)$
 - (x)g(x)
- · Examples of continuous function
 - Polynomial($x^2 + 3$), Rational(1/x), Irrational(\sqrt{x})
 - Exponential(e^x), $\log(\log x)$, Trigonometric($\sin x$, $\cos x$)

Theorem (The Maximum-Minimum Theorem)

If f(x) is continuous on I = [a, b], a closed and bounded interval, then f(x) contains both an absolute maximum and an absolute minimum on I.

Theorem (Intermediate value Theorem)

Suppose that f(x) is continuous on I = [a, b], a closed and bounded interval and that $f(a) \neq f(b)$. For all u s.t f(a) < u < f(b), there is a $c \in (a, b)$ such that f(c) = u.

Thank You!