Lecture 5

ALGEBRAIC THEORY VIA VARIETIES

COHOMOLOGY AND BASE CHANGE

The references for this section is [Har13, III, §12] and Conrad's lecture notes [Con00, §9].

Setups. Let $f: X \to Y$ be a proper morphism of noetherian schemes and \mathscr{F} be a coherent sheaf of \mathcal{O}_X -modules. Assume that \mathscr{F} is flat over Y, i.e., for any $x \in X$, \mathscr{F}_x is flat as an $\mathcal{O}_{Y,f(x)}$ -module. For any $y \in Y$, we denote

$$X_y := X \times_Y \operatorname{Spec}(k(y))$$

and \mathscr{F}_y the inverse image of \mathscr{F} via the morphism $X_y \to X$.

Goal: For any $i \ge 0$, we want to understand the fiber cohomology $H^i(X_y, \mathscr{F}_y)$ as a function of $y \in Y$. And the idea is to find relations between the sheaf $R^i f_* \mathscr{F}$ and the cohomology groups $H^i(X_y, \mathscr{F}_y)$.

We assume the following result.

Theorem 5.1 (Proper base change). If $f: X \to Y$ is a proper morphism of locally noetherian schemes and \mathscr{F} a coherent sheaf of \mathcal{O}_X -modules on X, then the direct image sheaves $R^p f_* \mathscr{F}$ are coherent sheaves of \mathcal{O}_Y -modules for all $p \geqslant 0$.

When f is projective, this follows from [Har13, III, Thm 8.8]. As for the general case, it follows from EGA III, see [GD66, III, 3.2.1].

Theorem 5.2. Let $f: X \to Y$ be a proper morphism of noetherian schemes with $Y = \operatorname{Spec} A$ affine, and \mathscr{F} be a coherent sheaf of \mathcal{O}_X -module that is flat over Y. Then there exists a finite complex K^{\bullet} , say

$$0 \to K^0 \to K^1 \to \cdots \to K^n \to 0$$

of finitely generated projective A-modules and equivalences of functors

$$H^p(X \times_Y \operatorname{Spec}(\cdot), \mathscr{F} \otimes_A (\cdot)) = H^p(K^{\bullet} \otimes_A (\cdot)), \quad p \geqslant 0$$

on the category of A-algebras. Hence for any $B \in Alg_A$,

$$H^p(X \times_Y \operatorname{Spec} B, \mathscr{F} \otimes_A B) \cong H^p(K^{\bullet} \otimes_A B), \quad p \geqslant 0.$$

Problem 5.3. Here the sheaf $\mathscr{F} \otimes_A B$ is the inverse image sheaf of \mathscr{F} under the projection $X \times_Y \operatorname{Spec} B \to X$. How to give the association $B \mapsto H^p(X \times_Y \operatorname{Spec} B, \mathscr{F} \otimes_A B)$ rise to be a functor on the category of A-algebras? (To remedy this, one can use Čech cohomology, but how to make it formal?)

Remark 5.4. (1) Since \mathscr{F} is flat over $Y = \operatorname{Spec} A$, for any affine open subset $U \subset X$, $\mathscr{F}(U)$ is flat as an A-module.

- (2) Since X is separated and noetherian, the coherent cohomology $H^*(X, \mathscr{F})$ can be computed by Čech cohomology with respect to finite affine open coverings, for any quasi-coherent sheaf \mathscr{F} on X. The same is true for $X \times_Y \operatorname{Spec} B$.
- (3) As for $H^p(K^{\bullet} \otimes_A B)$, it is generally not a finitely generated algebra over A, and the cohomology does not commute with $(\cdot) \otimes_A B$ in most cases.

Date: October 14, 2022.

Proof of Theorem 5.2. Let $\mathcal{U} = \{U_i\}_{i=0,\dots,n}$ be a finite affine open covering of X and $(C^{\bullet}(\mathcal{U}, \mathscr{F}), d^{\bullet})$ be the Čech cochain complex of alternating cochains with respect to the open covering \mathcal{U} and the sheaf \mathscr{F} . In particular,

$$C^{p}(\mathcal{U}, \mathscr{F}) = \bigoplus_{0 \leqslant i_{0} < \dots < i_{p} \leqslant n} \mathscr{F}(U_{i_{0} \cdots i_{p}})$$

is a free A-module for all p (being nonzero only when $0 \le p \le n$), and the Čech cohomology groups $H^{\bullet}(\mathcal{U}, \mathcal{F})$ are isomorphic to $H^{\bullet}(X, \mathcal{F})$.

Moreover, for any A-algebra B, $\{U_i \times_Y \operatorname{Spec} B\}_{i=0,\dots,n}$ is an affine open covering of $X \times_Y \operatorname{Spec} B$, and $C^{\bullet}(\mathcal{U}, \mathscr{F}) \otimes_A B$ is the Čech cochain complex for this open covering and the sheaf $\mathscr{F} \otimes_A B$ on $X \times_Y \operatorname{Spec} B$. Therefore,

$$H^p(X \times_Y \operatorname{Spec} B, \mathscr{F} \otimes_A B) \cong H^p(C^{\bullet}(\mathcal{U}, \mathscr{F}) \otimes_A B), \quad p \geqslant 0,$$

and this isomorphism is functorial for B.

Lemma 5.5. Let C^{\bullet} be a cochain complex of A-modules (but each C^p may not be finitely generated over A) such that $H^i(C^{\bullet})$ are finitely generated A-modules for all $i \geq 0$, and such that C^{\bullet} is bounded on [0,n]. Then there exists a complex K^{\bullet} of finitely generated Amodules, bounded on [0,n] and such that K^p is free for all $1 \leq p \leq n$, and a homomorphism of cochain complexes $\phi: K^{\bullet} \to C^{\bullet}$ such that ϕ induces isomorphisms $H^{i}(K^{\bullet}) \to H^{i}(C^{\bullet})$ for all i; namely, ϕ is a quasi-isomorphism.

Moreover, if all the C^p 's are A-flat, then K^0 will be A-flat as well.

Proof. We will use descending induction on m to construct the following diagram

$$K^{m} \xrightarrow{-d_{K}^{m}} K^{m+1} \xrightarrow{d_{K}^{m+1}} K^{m+2} \longrightarrow \cdots$$

$$\downarrow^{\phi_{m}} \qquad \downarrow^{\phi_{m+1}} \qquad \downarrow^{\phi_{m+2}}$$

$$\cdots \longrightarrow C^{m} \xrightarrow{d_{C}^{m}} C^{m+1} \xrightarrow{d_{C}^{m+1}} C^{m+2} \longrightarrow \cdots$$

with the following properties:

- $\begin{array}{l} (1) \ \ d_K^{p+1} \circ d_K^p = 0 \ \text{for} \ p \geqslant m+1; \\ (2) \ \phi_{p+1} \circ d_K^p = d_C^p \circ \phi_p \ \text{for} \ p \geqslant m+1; \\ (3) \ \phi_p \ \text{induces an isomorphism of cohomology groups} \ H^p(K^{\bullet}) \to H^p(C^{\bullet}) \ \text{for} \ p \geqslant m+2 \\ \text{and a surjective homomorphism } \operatorname{Ker}(d_K^{m+1}) \to H^{m+1}(C^{\bullet}); \end{array}$
- (4) K^p is a finite free A-module for $p \ge m+1$.

We are going to construct K^m , d_K^m , ϕ_m with the above properties. One can find finite free A-modules $(K')^m$ and $(K'')^m$, and surjective maps of A-modules:

$$(K')^m \longrightarrow \operatorname{Ker}(\operatorname{Ker}(d_K^{m+1}) \to H^{m+1}(C^{\bullet})),$$

 $(K'')^m \longrightarrow H^m(C^{\bullet}).$

Roughly speaking, the first surjection is to make ϕ_{m+1} into an isomorphism between cohomology groups; and the second surjection is to force ϕ_m to satisfy the desired property.

By construction, we have an inclusion $i'_m:(K')^m\to (K'')^{m+1}$ that factors through $\operatorname{Ker}(d_K^{m+1})$. Define

$$K^m := (K')^m \oplus (K'')^m, \quad d_K^m = (i'_m, 0) : K^m \to K^{m+1}.$$

¹This is not a standard notation to say that $C^p \neq 0$ implies $0 \leq p \leq n$. Indeed, using the truncation functor, one may replace C^{\bullet} with $\tau^{\geqslant 0}\tau^{\leqslant n}C^{\bullet}$.

Then property (1) and (4) hold for p = m, and ϕ_{m+1} induces an isomorphism $H^{m+1}(K^{\bullet}) \to H^{m+1}(C^{\bullet})$. Since $(K'')^m$ is projective, we can lift the map $(K'')^m \to H^m(C^{\bullet})$ to a map

$$\phi_m'': (K'')^m \to \operatorname{Ker}(d_C^m) \to C^m.$$

On the other hand, the composite

$$(K')^{m} \xrightarrow{i'_{m}} K^{m+1} \xrightarrow{\phi_{m+1}} C^{m+1}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\operatorname{Ker}(d_{K}^{m+1}) \xrightarrow{\phi_{m+1}} \operatorname{Ker}(d_{C}^{m+1})$$

lies in $\operatorname{Ker}(d_C^{m+1})$ and is 0 in $H^{m+1}(C^{\bullet})$. Then

$$(K')^m \xrightarrow{i'_m} \operatorname{Ker}(d_K^{m+1}) \xrightarrow{\phi_{m+1}} \operatorname{Ker}(d_C^{m+1})$$

factors through $\operatorname{im}(d_C^m)$. Since $(K')^m$ is projective, we can lift the map $(K')^m \to \operatorname{im}(d_C^m)$ to a map $\phi'_m : (K')^m \to C^m$ by the universal property. Finally we define

$$\phi_m = (\phi'_m, \phi''_m) : K^m \longrightarrow C^m.$$

It is straightforward to verify that $\phi_{m+1} \circ d_K^m = d_C^m \circ \phi_m$ and ϕ_m induces a surjective map

$$\operatorname{Ker}(d_K^m) = (K'')^m \longrightarrow H^m(C^{\bullet}).$$

This finishes the construction for m. Now we have the following diagram

$$K^{0} \xrightarrow{d_{K}^{0}} K^{1} \xrightarrow{d_{K}^{1}} \cdots$$

$$\downarrow^{\phi_{0}} \qquad \downarrow^{\phi_{1}} \downarrow^{\phi_{1}}$$

$$0 \longrightarrow C^{0} \xrightarrow{d_{C}^{0}} C^{1} \xrightarrow{d_{C}^{1}} \cdots$$

that satisfies (1)-(4) above. We replace K^0 by $K^0/(\mathrm{Ker}(d_K^0)\cap\mathrm{Ker}(\phi_0))$ and d_K^0 , ϕ_0 by their induced maps. Then the new diagram satisfies all the properties (1)-(4) except that K^0 is no longer free.

We still need to prove that K^0 is A-flat. Let $C[-1]^{\bullet}$ be the complex shifted by -1 of the cochain complex C^{\bullet} , i.e.,

$$C[-1]^p := C^{p-1}, \quad d^p_{C[-1]} := -d^{p-1}_C.$$

Consider the mapping cone of the morphism $\phi: K^{\bullet} \to C^{\bullet}$, which is defined as follows:

$$\operatorname{Cone}(\phi)^p := K^p \oplus C^{p-1} = K^p \oplus C[-1]^p,$$

together with²

$$d^{p}_{\operatorname{Cone}(\phi)}: K^{p} \oplus C^{p-1} \longrightarrow K^{p+1} \oplus C^{p}$$
$$(x,y) \longmapsto (d^{p}_{K}(x), \phi_{p}(x) - d^{p-1}_{C}(y)).$$

One can easily check that $(\operatorname{Cone}(\phi)^p, d^p_{\operatorname{Cone}(\phi)})_p$ is a cochain complex. Moreover, we have an exact sequence of cochain complexes for each p, say

$$d_{\operatorname{Cone}(\phi)}^{p}: K^{p} \oplus C[-1]^{p} \to K^{p+1} \oplus C[-1]^{p+1}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} d_{K}^{p} & 0 \\ \phi_{p} & d_{C[-1]}^{p} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

²There is an alternative (and decorated) way to write the differential map as

$$0 \longrightarrow C[-1]^p \longrightarrow K^p \oplus C[-1]^p \longrightarrow K^p \longrightarrow 0$$
$$y \longmapsto (0,y)$$
$$(x,y) \longmapsto x$$

And we have a long exact sequence of cohomology groups

$$\cdots \longrightarrow H^p(C[-1]^{\bullet}) \longrightarrow H^p(\operatorname{Cone}(\phi)^{\bullet}) \longrightarrow H^p(K^{\bullet}) \xrightarrow{\delta^p} H^{p+1}(C[-1]^{\bullet}) \longrightarrow \cdots$$

$$H^{p-1}(C^{\bullet})$$

$$H^p(C^{\bullet})$$

Again, it is easy to verify that under the isomorphism $H^{p+1}(C[-1]^{\bullet}) \cong H^p(C^{\bullet})$, the corresponding homomorphism δ^p is the one induced by the morphism ϕ_p^* , which is an isomorphism as well. Hence

$$H^p(\operatorname{Cone}(\phi)^{\bullet}) = 0, \quad \forall p.$$

So the cochain complex

$$\operatorname{Cone}(\phi)^{\bullet}: \quad 0 \to K^{0} = \operatorname{Cone}(\phi)^{0} \to \operatorname{Cone}(\phi)^{1} \to \cdots \to \operatorname{Cone}(\phi)^{n+1} = C^{n} \to 0$$

is exact, in which $\operatorname{Cone}(\phi)^p$ is A-flat for all $p \geqslant 1$. Also, $\operatorname{Cone}(\phi)^{\bullet}$ breaks into n short exact sequences

$$0 \to \operatorname{Ker}(d^p_{\operatorname{Cone}(\phi)}) \to \operatorname{Cone}(\phi)^p \to \operatorname{Ker}(d^{p+1}_{\operatorname{Cone}(\phi)}) \to 0, \quad p = 1, \dots, n.$$

Since $\operatorname{Ker}(d^{n+1}_{\operatorname{Cone}(\phi)}) = C^n$ is A-flat, so also is $\operatorname{Ker}(d^n_{\operatorname{Cone}(\phi)})$. We use descending induction and conclude that $\operatorname{Ker}(d^0_{\operatorname{Cone}(\phi)}) = K^0$ is A-flat. This proves the lemma.

We apply Lemma 5.5 to the Čech cochain complex $C^{\bullet} = C^{\bullet}(\mathcal{U}, \mathscr{F})$ and obtain a cochain complex K^{\bullet} and a cochain map $\phi: K^{\bullet} \to C^{\bullet}$ such that

- (1) K^{\bullet} is bounded on [0, n]:
- (2) K^0 is finite and A-flat, and K^p are finite free A-modules for $p \ge 1$;
- (3) ϕ is a quasi-isomorphism, i.e., for all $p, \phi_p : H^p(K^{\bullet}) \to H^p(C^{\bullet})$ is an isomorphism.

Granting these conditions, we see K^p is projective as A-module for each $p \ge 0$. It remains to prove that for any A-algebra B,

$$\phi_B: H^p(K^{\bullet} \otimes_A B) \longrightarrow H^p(C^{\bullet} \otimes_A B)$$

is an isomorphism for each $p \ge 0$.

In fact, recall that the mapping cone $Cone(\phi)^{\bullet}$ of ϕ breaks into short exact sequences

$$0 \to \operatorname{Ker}(d^p_{\operatorname{Cone}(\phi)}) \to \operatorname{Cone}(\phi)^p \to \operatorname{Ker}(d^{p+1}_{\operatorname{Cone}(\phi)}) \to 0, \quad p = 1, \dots, n$$

and all the three terms are flat A-modules. Consequently, for each $p = 1, \ldots, n$,

$$0 \to \operatorname{Ker}(d^p_{\operatorname{Cone}(\phi)}) \otimes_A B \to \operatorname{Cone}(\phi)^p \otimes_A B \to \operatorname{Ker}(d^{p+1}_{\operatorname{Cone}(\phi)}) \otimes_A B \to 0$$

is also exact due to the flatness. In particular, the cochain complex $\operatorname{Cone}(\phi)^{\bullet} \otimes_A B$ is exact as well. On the other hand, $\operatorname{Cone}(\phi)^{\bullet} \otimes_A B$ is the mapping cone of $\phi_B = \phi \otimes_A B : K^{\bullet} \otimes_A B \to C^{\bullet} \otimes_A B$. So we have a long exact sequence of cohomology groups

$$\cdots \longrightarrow H^p(\operatorname{Cone}(\phi)^{\bullet} \otimes_A B) \longrightarrow H^p(K^{\bullet} \otimes_A B) \xrightarrow{\phi_B} H^{p+1}((C^{\bullet} \otimes_A B)[-1]) \longrightarrow \cdots$$

$$H^p(C^{\bullet} \otimes_A B)$$

Therefore, ϕ_B is an isomorphism for each p.

Now let $f: X \to Y$ be a proper morphism of noetherian schemes and \mathscr{F} a coherent sheaf of \mathcal{O}_X -module on X that is flat over Y. Recall that for $y \in Y$, we define the fiber $X_y = X \times Y \operatorname{Spec}(k(y))$ and \mathscr{F}_y the inverse image of \mathscr{F} on X_y . (Caution: Y is not necessarily affine.)

Corollary 5.6. Under the above notations, we have

(1) For every $p \ge 0$, the function

$$Y \to \mathbb{Z}, \quad y \mapsto \dim_{k(y)} H^p(X_y, \mathscr{F}_y)$$

is upper semicontinuous on Y. A function $h: Y \to \mathbb{Z}$ is, by definition, upper semicontinuous, if for all $n \in \mathbb{Z}$ the set $\{y \in Y \mid h(y) \ge n\}$ is a closed subset of Y.

(2) The function

$$Y \to \mathbb{Z}, \quad y \mapsto \chi(\mathscr{F}_y) = \sum_{p=0}^{\infty} (-1)^p \dim_{k(y)} H^p(X_y, \mathscr{F}_y)$$

is locally constant on Y.

Proof. The question is local on Y so one may assume that $Y = \operatorname{Spec} A$ is affine. We apply the pervious Theorem 5.2 to the morphism $f: X \to Y$ and the sheaf \mathscr{F} , and obtain a cochain complex K^{\bullet} such that

$$H^p(X_y, \mathscr{F}_y) \cong H^p(K^{\bullet} \otimes_A k(y)), \quad \forall p \geqslant 0, \ y \in Y.$$

Shrinking Y if necessary, we can assume that K^p is free for all p (the idea is to pretend K^p to be the pth Čech complex). For $p \ge 0$, we define

$$W^p := \operatorname{Coker}(d_K^{p-1} : K^{p-1} \to K^p).$$

So we have an exact sequence

$$W^p \xrightarrow{d_K^p} K^{p+1} \longrightarrow W^{p+1} \longrightarrow 0.$$

Applying the functor $(\cdot) \otimes_A k(y)$, we get

$$0 \to H^p(K^{\bullet} \otimes_A k(y)) \to W^p \otimes_A k(y) \to K^{p+1} \otimes_A k(y) \to W^{p+1} \otimes_A k(y) \to 0.$$

This is basically because the cokernel commutes with base changes, and so we have

$$W^p \otimes_A k(y) \cong \operatorname{Coker}(d_K^{p-1} \otimes_A k(y) : K^{p-1} \otimes_A k(y) \to K^p \otimes_A k(y)).$$

Therefore.

$$\dim_{k(y)} H^p(K^{\bullet} \otimes_A k(y)) = \dim_{k(y)} W^p \otimes_A k(y) - \dim_{k(y)} K^{p+1} \otimes_A k(y) + \dim_{k(y)} W^{p+1} \otimes_A k(y).$$

Since the function

$$y \mapsto \dim_{k(y)} K^{p+1} \otimes_A k(y)$$

is (locally) constant, it suffices to prove that the function

$$y \mapsto \dim_{k(y)} W^p \otimes_A k(y)$$

is upper semicontinuous.

Claim. For any finitely generated A-module M, the function

$$Y \to \mathbb{Z}, \quad y \mapsto \dim_{k(y)} M \otimes_A k(y)$$

is upper semicontinuous.

The proof of the claim is leave as an exercise. Granting the claim, (2) follows by taking alternating sum of the dimension equation above.

Corollary 5.7. Under the above notations, assume further that Y is reduced and connected. Then for all p, the following are equivalent.

(1) The function

$$y \mapsto \dim_{k(y)} H^p(X_y, \mathscr{F}_y)$$

is constant.

(2) $R^p f_* \mathscr{F}$ is a locally free sheaf on Y, and for all $y \in Y$, the natural map

$$R^p f_* \mathscr{F} \otimes_{\mathcal{O}_Y} k(y) \to H^p(X_y, \mathscr{F}_y)$$

is an isomorphism.

If any one of (1)(2) hold, we also have that

$$R^{p-1}f_*\mathscr{F}\otimes_{\mathcal{O}_Y} k(y)\cong H^{p-1}(X_u,\mathscr{F}_u)$$

for all $y \in Y$.

We can assume that $Y = \operatorname{Spec} A$ is affine and let K^{\bullet} be the cochain complex in Theorem 5.2. Then $(2) \Longrightarrow (1)$ is obvious. So it boils down to prove $(1) \Longrightarrow (2)$.

Lemma 5.8. Let Y be a reduced affine scheme and \mathscr{F} be a coherent sheaf on Y. If

$$\dim_{k(y)} \mathscr{F} \otimes_{\mathcal{O}_Y} k(y) = r$$

for all $y \in Y$ (as k(y)-vector spaces), then \mathscr{F} is a locally free \mathcal{O}_Y -module of rank r.

Proof. Let $Y = \operatorname{Spec} A$ and $\mathscr{F} = M$. Fix $y \in Y$ that correspond to $\mathfrak{p} \in \operatorname{Spec} A$. We choose $x_1, \ldots, x_r \in M_{\mathfrak{p}}$ such that the images of x_i 's in $M \otimes_A k(\mathfrak{p}) := A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ form a basis of this $k(\mathfrak{p})$ -vector space. By Nakayama's lemma, the $A_{\mathfrak{p}}$ -linear homomorphism $\phi_{\mathfrak{p}} : A_{\mathfrak{p}}^r \to M_{\mathfrak{p}}$ determined by x_1, \ldots, x_r is surjective. Then there exists $a \in A \setminus \mathfrak{p}$ such that $\phi_{\mathfrak{p}}$ extends to a surjective A_a -linear homomorphism $A_a^r \to M_a$. Replacing A by A_a , we can assume that there exists a surjective A-linear map

$$\phi: A^r \longrightarrow M.$$

For any $\mathfrak{q} \in \operatorname{Spec} A$, $\phi \otimes_A k(\mathfrak{q})$ is a surjective $k(\mathfrak{q})$ -linear map of $k(\mathfrak{q})$ -vector spaces of dimension r. Then $\phi \otimes_A k(\mathfrak{q})$ is an isomorphism. Let $K = \operatorname{Ker}(\phi)$, and hence

$$K_{\mathfrak{q}} \subset (\mathfrak{q}A_{\mathfrak{q}})^r, \quad \forall \mathfrak{q} \in \operatorname{Spec} A.$$

Since A is reduced, we have K=0, and then ϕ is an isomorphism. So M is free.

Lemma 5.9. Let Y be a reduced noetherian affine scheme, and $\phi : \mathscr{F} \to \mathcal{G}$ be a morphism of finite and locally free \mathcal{O}_Y -modules. If

$$\dim_{k(y)} \operatorname{im}(\phi \otimes_{\mathcal{O}_Y} k(y))$$

is locally constant, then we can find a decomposition of finite and locally free \mathcal{O}_Y -modules

$$\mathscr{F} = \mathscr{F}_1 \otimes \mathscr{F}_2, \quad \mathscr{G} = \mathscr{G}_1 \otimes \mathscr{G}_2$$

such that ϕ factors through \mathcal{G}_1 , $\phi|_{\mathscr{F}_1} = 0$, and $\phi: \mathscr{F}_2 \to \mathcal{G}_1$ is an isomorphism.

Proof. Write $Y = \operatorname{Spec} A$ and $\mathscr{F} = \widetilde{M}$, $\mathscr{G} = \widetilde{N}$ for locally free A-modules M, N of finite rank; $\phi: M \to N$ is an A-linear map. For any $\mathfrak{p} \in \operatorname{Spec} A$,

$$\dim_{k(y)} \operatorname{Coker}(\phi \otimes_A k(y)) = \dim_{k(y)} N \otimes_A k(y) - \dim_{k(y)} \operatorname{im}(\phi \otimes_A k(y))$$

is locally constant. By Lemma 5.8, Coker ϕ is a locally free A-module of finite rank. Define

$$N_1 := \operatorname{Ker}(N \to \operatorname{Coker} \phi) = \operatorname{im} \phi.$$

So we have an exact sequence

$$0 \to N_1 \to N \to \operatorname{Coker} \phi \to 0.$$

We see that N_1 is locally free of finite rank, and there is a decomposition

$$N = N_1 \oplus N_2$$

such that $N_2 \cong \operatorname{Coker} \phi$ under the natural map $N \to \operatorname{Coker} \phi$. Also define $M_1 = \operatorname{Ker} \phi$. We have an exact sequence

$$0 \to M_1 \to M \xrightarrow{\phi} N_1 \to 0.$$

This shows that M_1 is locally free of finite rank. Moreover, notice that the exact sequence splits at M. So there is a decomposition $M=M_1\oplus M_2$ such that $\phi|_{M_2}:M_2\to N_1$ is an isomorphism. \square

Now we are ready to prove the corollary.

Proof of Corollary 5.7. Applying Theorem 5.2 to $f: X \to Y$ and \mathscr{F} , we attain a cochain complex K^{\bullet} such that for each $p \ge 0$,

$$H^p(X_y, \mathscr{F}_y) = H^p(K^{\bullet} \otimes_A k(y)).$$

Therefore.

$$\begin{split} &\dim_{k(y)} H^p(X_y, \mathscr{F}_y) \\ &= \dim_{k(y)} \operatorname{Ker}(d_K^p \otimes_A k(y)) - \dim_{k(y)} \operatorname{im}(d_K^{p-1} \otimes_A k(y)) \\ &= \dim_{k(y)} K^p \otimes_A k(y) - \dim_{k(y)} \operatorname{im}(d_K^p \otimes_A k(y)) - \dim_{k(y)} \operatorname{im}(d_K^{p-1} \otimes_A k(y)) \end{split}$$

is constant. Hence

$$\underbrace{\dim_{k(y)} \operatorname{im}(d_K^p \otimes_A k(y))}_{=\phi_1(y)} - \underbrace{\dim_{k(y)} \operatorname{im}(d_K^{p-1} \otimes_A k(y))}_{=\phi_2(y)}$$

is locally constant. Shrinking Y if necessary, we can assume that $\phi_1(y) + \phi_2(y) = C$ (constant) on Y. Since $\phi_1(y)$ and $\phi_2(y)$ are lower semicontinuous, there is a natural stratification on Y, read as

$$Y = \bigsqcup_{n=0}^{c} \{ y \in Y \mid \phi_1(y) = n, \ \phi_2(y) = c - n \}$$
$$= \bigsqcup_{n=0}^{c} \{ y \in Y \mid \phi_1(y) \leqslant n, \ \phi_2(y) \leqslant c - n \}.$$

Since Y is connected, ϕ_1 and ϕ_2 are constant on Y. Now we can apply Lemma 5.9 to $d_K^p: K^p \to K^{p+1}$ and $d_K^{p-1}: K^{p-1} \to \operatorname{Ker}(d_K^p)$, to see there is a decomposition of locally free A-modules of finite rank:

$$Z^{p-1} \oplus (K')^{p-1} \quad B^p \oplus H^p \oplus (K')^p \quad B^{p+1} \oplus (K')^{p+1}$$

$$\cdots \longrightarrow K^{p-1} \xrightarrow{d_K^{p-1}} \overset{\parallel}{K^p} \xrightarrow{d_K^p} K^{p+1} \longrightarrow \cdots$$

such that

$$\begin{split} Z^{p-1} &= \operatorname{Ker}(d_K^{p-1}), \qquad d_K^{p-1} : (K')^{p-1} \stackrel{\cong}{\longrightarrow} B^p = \operatorname{im}(d_K^{p-1}); \\ B^p \oplus H^p &= \operatorname{Ker}(d_K^p), \qquad d_K^p : (K')^p \stackrel{\cong}{\longrightarrow} B^{p+1} = \operatorname{im}(d_K^p). \end{split}$$

Therefore, for any A-algebra B,

$$H^p(K^{\bullet} \otimes_A B) \cong H^p \otimes_A B \cong H^p(K^{\bullet}) \otimes_A B.$$

Since $R^p f_* \mathscr{F}$ corresponds to the A-module

$$H^p(X, \mathscr{F}) \cong H^p(K^{\bullet}) \cong H^p,$$

we have that $R^p f_* \mathscr{F}$ is a locally free A-module of finite rank, and

$$(R^p f_* \mathscr{F}) \otimes_A B \cong H^p \otimes_A B \cong H^p (K^{\bullet} \otimes_A B) \cong H^p (X_u, \mathscr{F}_u).$$

This proves (2). Moreover, in this case,

$$(R^{p-1}f_*\mathscr{F}) \otimes_A k(y) \cong H^{p-1}(X,\mathscr{F}) \otimes_A k(y)$$

$$\cong \operatorname{Ker}(d_K^{p-1}) \otimes_A k(y) / \operatorname{im}(d_K^{p-1}) \otimes_A k(y)$$

$$\cong Z^{p-1} \otimes_A k(y) / \operatorname{im}(d_K^{p-1} \otimes_A k(y))$$

$$\cong H^{p-1}(K^{\bullet} \otimes_A k(y)).$$

Therefore,

$$(R^{p-1}f_*\mathscr{F})\otimes_A k(y)\cong H^{p-1}(X_y,\mathscr{F}_y)$$

for all $y \in Y$.

Corollary 5.10. Under the above notations (Y may not be reduced or connected), assume that $H^p(X_y, \mathscr{F}_y) = 0$ for some p and all $y \in Y$. Then the rational map

$$R^{p-1}f_*\mathscr{F}\otimes_{\mathcal{O}_Y}k(y)\stackrel{\cong}{\longrightarrow} H^{p-1}(X_y,\mathscr{F}_y)$$

is an isomorphism for all $y \in Y$.

Proof. Let K^{\bullet} be the cochain complex by Theorem 5.2. Fix $y \in Y$ such that

$$H^p(X_y, \mathscr{F}_y) \cong H^p(K^{\bullet} \otimes_A k(y)) = 0.$$

Then the sequence

$$K^{p-1} \otimes_A k(y) \xrightarrow{d_K^{p-1} \otimes_A k(y)} K^p \otimes_A k(y) \xrightarrow{d_K^p \otimes_A k(y)} K^{p+1} \otimes_A k(y)$$

is exact. We can decompose the k(y)-vector space $K^p \otimes_A k(y)$ as $\overline{W}_1 \oplus \overline{W}_2$ such that

$$\overline{W}_1 = \operatorname{im}(d_K^{p-1} \otimes_A k(y))$$

and $d_K^p \otimes_A k(y)|_{\overline{W}_2}$ is injective. Let $\{\overline{x}_1, \dots, \overline{x}_r\}$ be a basis of \overline{W}_1 and $\{\overline{y}_1, \dots, \overline{y}_s\}$ be a basis of \overline{W}_2 . For $i = 1, \dots, s$, denote

$$\overline{z}_i = d_K^p \otimes_A k(y)(\overline{y}_i) \in K^{p+1} \otimes_A k(y),$$

and extend $\{\overline{z}_1,\ldots,\overline{z}_s\}$ to a basis $\{\overline{z}_1,\ldots,\overline{z}_n\}$ of $K^{p+1}\otimes_A k(y)$. We choose lifting $x_i\in\operatorname{im}(d_K^{p-1})$ of \overline{x}_i for $i=1,\ldots,r,\ y_i\in K^p$ of \overline{y}_j for $j=1,\ldots,s,$ and $z_i\in K^{p+1}$ of \overline{z}_l for $l=1,\ldots,s.$ Shrinking A by a localization A_a at a such that $a(y)\neq 0$, one may assume that $\{x_1,\ldots,x_r,y_1,\ldots,y_r\}$ is a basis of K^p , and $\{z_1,\ldots,z_n\}$ is a basis of K^{p+1} . Let W_1,W_2 be the free modules generated by x_1,\ldots,x_r and y_1,\ldots,y_s , respectively. Then $K^p=W_1\oplus W_2$, where $W_1\subset\operatorname{im}(d_K^{p-1})$ and $d_K^p|_{W_2}$ is injective. Hence $W_1=\operatorname{im}(d_K^{p-1})$. As W_1 is free, it is projective. So there is a decomposition $K^{p-1}=W_1\oplus\operatorname{Ker}(d_K^{p-1})$. Now we have two exact sequences

$$K^{p-2} \xrightarrow{d_K^{p-2}} \operatorname{Ker}(d_K^{p-1}) \longrightarrow H^{p-1}(K^{\bullet}) \cong H^{p-1}(X, \mathscr{F}) \longrightarrow 0,$$

and

$$K^{p-2} \otimes_A k(y) \xrightarrow{d_K^{p-2} \otimes_A k(y)} \operatorname{Ker}(d_K^{p-1} \otimes_A k(y)) \xrightarrow{\qquad \qquad} H^{p-1}(K^{\bullet} \otimes_A k(y)) \xrightarrow{\qquad \qquad} 0.$$

$$\operatorname{Ker}(d_K^{p-1}) \otimes_A k(y) \qquad \qquad H^{p-1}(X_y, \mathscr{F}_y)$$

$$(\text{by } K^{p-1} = W_1 \oplus \operatorname{Ker}(d_K^{p-1}))$$

Since the cokernel is stable under base changes, we have an isomorphism

$$\begin{array}{c}
H^{p-1}(X,\mathscr{F}) \\
 & \stackrel{|}{\otimes}_{A}k(y) \xrightarrow{\cong} H^{p-1}(X_{y},\mathscr{F}_{y}).
\end{array}$$

$$R^{p-1}f_{*}\mathscr{F}$$

This completes the proof.

Corollary 5.11. If $R^k f_* \mathscr{F} = 0$ for $k \geqslant k_0$, then

$$H^k(X_y, \mathscr{F}_y) = 0, \quad \forall y \in Y, \ k \geqslant k_0.$$

Corollary 5.12 (Flat base change). If B is a flat A-algebra, then

$$H^p(X \times_Y \operatorname{Spec} B, \mathscr{F} \otimes_A B) \cong H^p(X, \mathscr{F}) \otimes_A B.$$

Corollary 5.13 (Seesaw's theorem). Let X be a complete³ variety and T be any variety. Choose a line bundle $\mathcal{L} \in \text{Pic}(X \times T)$. Then the set

$$T_1 := \{ t \in T \mid \mathcal{L}|_{X \times \{t\}} \text{ is trivial on } X \times \{t\} \}$$

is closed in T, and $\mathcal{L}|_{X\times T_1}\cong p_2^*\mathcal{M}$ for some $\mathcal{M}\in \mathrm{Pic}(T_1)$, where $p_2:X\times T_1\to T_1$ is the second projection.

Lemma 5.14. A line bundle (i.e., an invertible sheaf) \mathcal{M} on a complete variety X is trivial if and only if

$$\dim H^0(X, \mathcal{M}) > 0$$
, $\dim H^0(X, \mathcal{M}^{-1}) > 0$.

Proof. Exercise.

Proof of Seesaw's Theorem. It follows from Lemma 5.14 that

$$T_1 = \{t \in T \mid \mathcal{L}|_{X \times \{t\}} \text{ is trivial on } X \times \{t\}\}$$

$$= \left\{ t \in T \middle| \begin{array}{l} \dim_{k(t)} H^0((X \times T) \times_T \operatorname{Spec}(k(t)), \mathscr{L} \otimes_{\mathcal{O}_T} k(t)) > 0, \text{ and} \\ \dim_{k(t)} H^0((X \times T) \times_T \operatorname{Spec}(k(t)), \mathscr{L}^{-1} \otimes_{\mathcal{O}_T} k(t)) > 0 \end{array} \right\}.$$

By the semicontinuity theorem (Corollary 5.6), T_1 is closed in T. We regard T_1 as a reduced closed subscheme of T, and $p_2: X \times T_1 \to T_1$ is a proper morphism of noetherian schemes. Denote for simplicity that $\mathcal{L}_1 = \mathcal{L}|_{X \times T_1}$. By definition of T_1 , for any $t \in T_1$,

$$\dim_{k(t)} H^0((X \times T_1) \times_{T_1} \operatorname{Spec}(k(t)), \mathscr{L}_1 \otimes_{\mathcal{O}_{T_1}} k(t)) > 0$$

By Corollary 5.7, $\mathcal{M} := p_{2,*} \mathcal{L}_1$ is an invertible sheaf on T_1 and the natural map

$$p_{2,*}\mathscr{L}_1 \otimes_{\mathcal{O}_{T_1}} k(t) \longrightarrow H^0(X \times \{t\}, \mathscr{L}_1|_{X \times \{t\}})$$

is an isomorphism for any $t \in T_1$.

We prove that the natural morphism $p_2^*\mathcal{M} \to \mathcal{L}_1$ is an isomorphism. In fact, for any $t \in T_1$, the sheaf $p_2^*\mathcal{M}|_{X \times \{t\}}$ is the inverse image of \mathcal{M} under

$$X \times \{t\} \longrightarrow X \times T_2 \xrightarrow{p_2} T_2.$$

It is the trivial invertible sheaf on $X \times \{t\}$ and is the pullback of the k(t)-vector space $p_{2,*}\mathcal{L}_1 \otimes_{\mathcal{O}_{T_1}} k(t)$ under $X \times \{t\} \to \{t\} = \operatorname{Spec}(k(t))$. On the other hand, $\mathcal{L}_1|_{X \times \{t_1\}}$ is also trivial and the restriction of $p_2^*\mathcal{M} \to \mathcal{L}_1$ on $X \times \{t\}$ corresponds to the morphism

$$p_{2,*}\mathcal{L}_1 \otimes_{\mathcal{O}_{T_1}} k(t) \longrightarrow H^0(X \times \{t\}, \mathcal{L}_1|_{X \times \{t\}})$$

of global sections. Therefore, the restriction of $p_2^*\mathcal{M} \to \mathcal{L}_1$ on $X \times \{t\}$ is an isomorphism for each $t \in T_1$. This is enough to show that $p_2^*\mathcal{M} \to \mathcal{L}_1$ is itself an isomorphism.

³Can be replaced with properness.

Remark 5.15. We can assume that T is a (reduced) scheme of finite type over an algebraically closed field k.

References

[Con00] B. Conrad. Grothendieck duality and base change. Lecture notes in mathematics, 1750:1, 2000.

[GD66] A. Grothendieck and J. Dieudonné. Éléments de Géométrie Algébrique, volume 28. 1966.

[Har13] Robin Hartshorne. Algebraic geometry, volume 52. World Publishing Co., Beijing, China, 2013.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $Email\ address$: daiwenhan@pku.edu.cn