RandNLA approaches to estimate logarithm-based matrix functions

Eugenia-Maria Kontopoulou

SIAM Conference on Applied Linear Algebra 05/19/2021

Log-Based Matrix Functions

Functions of Form

$$f(\log(g(\mathbf{A}))) = \gamma$$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Log-Based Matrix Functions

Functions of Form

$$f(\log(g(\mathbf{A}))) = \gamma$$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Von Neumann Entropy

$$\mathcal{H}\left(\mathbf{A}\right) = -Tr\left[\mathbf{A}\log\left[\mathbf{A}\right]\right]$$

$$f(\mathbf{X}) = -Tr\left[\mathbf{X} \cdot \exp\left[\mathbf{X}\right]\right] : \mathbb{C}^{n \times n} \to \mathbb{R}$$
$$g(\mathbf{X}) = \mathbf{X} : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$$

Log-Based Matrix Functions

Functions of Form

$$f(\log(g(\mathbf{A}))) = \gamma$$

where $f(\cdot)$ is a matrix or scalar function, $g(\cdot)$ is a matrix function, $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a PSD and $\gamma \in \mathbb{R}$.

Von Neumann Entropy

$$\mathcal{H}(\mathbf{A}) = -Tr[\mathbf{A}log[\mathbf{A}]]$$

$$f(\mathbf{X}) = -Tr\left[\mathbf{X} \cdot \exp\left[\mathbf{X}\right]\right] : \mathbb{C}^{n \times n} \to \mathbb{R}$$

 $g(\mathbf{X}) = \mathbf{X} : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$

Logarithm of Determinant

$$logdet(\mathbf{A}) = log(det[\mathbf{A}])$$

$$f(x) = x : \mathbb{R} \to \mathbb{R}$$

 $g(\mathbf{X}) = \det[\mathbf{X}] : \mathbb{C}^{n \times n} \to \mathbb{R}$

Von-Neumann Entropy of Density Matrices I

Definition

Given a Density Matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) the Von-Neumann entropy, $\mathcal{H}(\mathbf{R})$. A Density Matrix is represented by the statistical mixture of pure states and has the form

$$\boldsymbol{R} = \sum_{i=1}^n p_i \boldsymbol{y}_i \boldsymbol{y}_i^\top = \boldsymbol{Y} \boldsymbol{\Sigma}_p \boldsymbol{Y}^\top \; \in \; \mathbb{R}^{n \times n},$$

where the vectors $\mathbf{y}_i \in \mathbb{R}^n$ represent the pure states of a system and are pairwise orthogonal and normal, while p_i 's correspond to the probability of each state and satisfy $p_i > 0$ and $\sum_{i=1}^n p_i = 1$.

Application: Information theory, quantum mechanics,

Von-Neumann Entropy of Density Matrices II

Straightforward Computation

- **1** Compute the singular values of **R**, p_1, p_2, \ldots, p_n (e.g. using SVD).
- 2 Compute the Von-Neumann Entropy of **R** using p_i , i = 1, ..., n:

$$\mathcal{H}\left(\mathbf{R}\right) = -\sum_{i=1}^{n} p_{i} \log p_{i}.$$

Time Complexity: $\mathcal{O}(n^3)$.

Mathematical Manipulation of $\mathcal{H}(\mathbf{R})$

Assume the function $h(x) = x \log x \in \mathbb{R}$.

$$h(\mathbf{R}) = \mathbf{R} \log \mathbf{R}$$

$$= \mathbf{Y} \mathbf{\Sigma}_{\rho} \mathbf{Y}^{\top} \log(\mathbf{Y} \mathbf{\Sigma}_{\rho} \mathbf{Y}^{\top})$$

$$= \mathbf{Y} \mathbf{\Sigma}_{\rho} \log(\mathbf{\Sigma}_{\rho}) \mathbf{Y}^{\top}$$

$$= \mathbf{Y} h(\mathbf{\Sigma}_{\rho}) \mathbf{Y}^{\top}$$

$$= -Tr \left[\mathbf{Y} \mathbf{Y}^{\top} h(\mathbf{\Sigma}_{\rho}) \mathbf{Y}^{\top} \right]$$

$$= -Tr \left[\mathbf{Y} h(\mathbf{\Sigma}_{\rho}) \mathbf{Y}^{\top} \right]$$

$$= -Tr \left[h(\mathbf{R}) \right]$$

Two Approaches

- lacktriangledown Using a Taylor expansion for the logarithm we can further manipulate $\mathcal{H}(\mathbf{R})$.
- 2 Estimating $h(\mathbf{R})$ with Chebyshev Polynomials.

Lemma

Let $\mathbf{R} \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix with unit trace and whose eigenvalues lie in the interval $[\ell,u]$, for some $0 < \ell \le u \le 1$. Then,

$$\mathcal{H}(\mathbf{R}) = \log u^{-1} + \underbrace{\sum_{k=1}^{\infty} \frac{Tr\left[\mathbf{R}(\mathbf{I} - u^{-1}\mathbf{R})^{k}\right]}{k}}_{\Delta}.$$

We estimate the trace of $\mathbf{R}(\mathbf{I}-u^{-1}\mathbf{R})^k$ using Gaussian trace estimator and Δ by truncation. The largest eigenvalue, u, is estimated using the power method with provable bounds.

Relative Error Approximation

The Taylor-based Algorithm

Input: $R \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{\mathcal{H}(R)}$, the approximation to the $\mathcal{H}(R)$.

- 1: Compute $\hat{p_1}$, the estimation of the largest singular value of R, using power method.
- 2: Set $u = \min\{1, 6\hat{p_1}\}$
- 3: $C = I_n u^{-1}R$
- 4: Create $p=\lceil 20\log(2/\delta)/\epsilon^2
 ceil$ i.i.d random Gaussian vectors, g_1,g_2,\ldots,g_p .
- 5: Compute $\widehat{\mathcal{H}(R)}$ as:

$$\widehat{\mathcal{H}(R)} = \log u^{-1} + \frac{1}{\rho} \sum_{i=1}^{\rho} \sum_{k=1}^{m} \frac{g_i^{\top} R C^k g_i}{k}.$$

Relative Error Approximation II

Bounding the Error & Running Time for the Taylor-based Algorithm

Theorem

Let **R** be a density matrix such that all probabilities p_i , $i=1\dots$ n satisfy $0<\ell\leq p_i$. Let u using the power method and let $\widehat{\mathcal{H}(\mathbf{R})}$ be the output of the algorithm above on inputs **R**, m, and $\epsilon<1$; Then, with probability at least $1-2\delta$,

$$\left|\widehat{\mathcal{H}(\mathbf{R})} - \mathcal{H}(\mathbf{R})\right| \leq 2\epsilon \mathcal{H}(\mathbf{R}),$$

by setting $m = \left\lceil \frac{u}{\ell} \log \left(1/\epsilon \right) \right\rceil$.

Computation Time

$$\mathcal{O}\left(\frac{u}{\ell} \cdot \frac{\log\left(1/\epsilon\right)\log\left(1/\delta\right)}{\epsilon^2} \cdot \mathsf{nnz}(\mathbf{R}) + \log n \cdot \log\left(1/\delta\right) \cdot \mathsf{nnz}(\mathbf{R})\right).$$

In (Kon+20) further appears an analysis of the Taylor-based Algorithm for Hermitian density matrices.

Mathematical Manipulation of $\mathcal{H}\left(\mathbf{R}\right)$ III

Using Chebyshev Polynomials

Lemma

We can approximate $h(x) = x \log x$ in the interval (0, u] by

$$f_m(x) = \sum_{t=0}^m \alpha_t \mathcal{T}_t(x),$$

where $\mathcal{T}_t(x) = \cos(t \cdot \arccos((2/u)x - 1))$, the Chebyshev polynomials of first kind for t > 0 and.

$$\alpha_0 = \frac{u}{2} \left(\log \frac{u}{4} + 1 \right), \quad \alpha_1 = \frac{u}{4} \left(2 \log \frac{u}{4} + 3 \right), \quad \text{and} \quad \alpha_t = \frac{(-1)^t u}{t^3 - t} \text{ fort } \geq 2.$$

For any $m \ge 1$,

$$|h(x)-f_m(x)|\leq \frac{u}{2m(m+1)}\leq \frac{u}{2m^2},$$

for $x \in [0, u]$. Then

$$\widehat{\mathcal{H}(\mathbf{R})} = -\operatorname{Tr}\left[f_m(\mathbf{R})\right] = -\frac{1}{\rho} \sum_{i=1}^{\rho} \mathbf{g}_i^{\top} f_m(\mathbf{R}) \mathbf{g}_i$$

We estimate the trace using Gaussian trace estimator and we compute the scalars $\mathbf{g}_i^{\top} f_m(\mathbf{R}) \mathbf{g}_i$ using the Clenshaw algorithm.

Relative Error Approximation

The Chebyshev-based Algorithm

Input: $R \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{\mathcal{H}}(R)$, the approximation to the $\mathcal{H}(R)$.

- 1: Compute $\hat{p_1}$, the estimation of the largest singular value of R, using power method.
- 2: Set $u = \min\{1, 6\hat{p_1}\}$
- 3: Create $p=\lceil 20\log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, g_1,g_2,\ldots,g_p .
- 4: Compute $\widehat{\mathcal{H}(R)}$ as:

$$\widehat{\mathcal{H}(R)} = -\frac{1}{\wp} \sum_{i=1}^{\wp} g_i^{\top} f_m(R) g_i.$$

Relative Error Approximation II

Bounding the Error & Running Time for the Chebyshev-based Algorithm

Lemma

Let **R** be a density matrix such that all probabilities p_i , $i=1\dots$ n satisfy $0<\ell\leq p_i$. Let u be computed using the power method and let $\widehat{\mathcal{H}(\mathbf{R})}$ be the output of the algorithm above on inputs **R**, m, and $\epsilon<1$; Then, with probability at least $1-2\delta$,

$$\left|\widehat{\mathcal{H}(\mathbf{R})} - \mathcal{H}(\mathbf{R})\right| \leq 3\epsilon \mathcal{H}(\mathbf{R}),$$

by setting
$$m = \sqrt{\frac{u}{2\epsilon\ell\ln(1/(1-\ell))}}$$
.

Computation Time

$$\mathcal{O}\left(\sqrt{\frac{u}{\ell \ln(1/(1-\ell))}} \cdot \frac{\ln(1/\delta)}{\epsilon^{2.5}} \cdot nnz(\mathbf{R}) + \ln(n) \cdot \ln(1/\delta) \cdot nnz(\mathbf{R})\right).$$

In (Kon+20) further appears an analysis of the Chebyshev-based Algorithm for Hermitian density matrices.

Low Rank Density Matrices

Assume that the density matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, has at most k non-zero probabilities, p_i . This means that at most k of its states are pure.

Issue & Solution

- x n-k probabilities are zero \rightarrow Chebyshev/Taylor approaches are not working.
- \checkmark Project to a smaller full-dimension space \rightarrow Random Projections.
- √ Fast construction of the random projector.

Construction of the Random Projector

- Gaussian Random Projector
- Sub-sampled Randomized Hadamard Transform
- Input Sparsity Transform
- Hartley Transform

Additive-Relative Approximation

Random Projection Algorithm

Input: $R \in \mathbb{R}^{n \times n}$, integer $k \ll n$.

Output: $\widehat{\mathcal{H}(R)}$, the approximation to the $\mathcal{H}(R)$.

- 1: Construct the random projection matrix $\Pi \in \mathbb{R}^{n \times s}$.
- 2: Compute $\tilde{R} = R\Pi \in \mathbb{R}^{n \times s}$.
- 3: Compute and return the (at most) k non-zero singular values of \tilde{R} , \tilde{p}_i , $i=1\ldots k$.
- 4: Compute $\widehat{\mathcal{H}(R)}$ as:

$$\widehat{\mathcal{H}(R)} = \sum_{i=1}^k \tilde{p}_i \log \frac{1}{\tilde{p}_i}$$

Additive-Relative Approximation

Bounding the Error & Running Time for the Random Projection Algorithm

Theorem

Let **R** be a density matrix with at most $k \ll n$ non-zero probabilities and let $\epsilon < 1/2$ be an accuracy parameter. Then, with probability at least 0.9, the output of Algorithm 4 satisfies

$$\left| p_i^2 - \tilde{p}_i^2 \right| \leq \epsilon p_i^2$$

for all i = 1 ... k. Additionally,

$$\left|\mathcal{H}(\mathbf{R}) - \widehat{\mathcal{H}(\mathbf{R})}\right| \leq \sqrt{\epsilon}\mathcal{H}(\mathbf{R}) + \sqrt{\frac{3}{2}}\epsilon.$$

Computation Time

Algorithm 4 (combined with the Input Sparsity Transform) runs in time

$$\mathcal{O}\left(\mathsf{nnz}(\mathbf{R}) + \mathsf{nk}^4/\epsilon^4\right)$$
 .

Experiment

Polynomial based Algorithms

Matrix of size 30,000 imes 30,000, m=[5:5:20] and $upprox \lambda_{max}$.

$$p = [50:50:200]$$

$$p = \{50, 100, 200\}$$

Notes

- Exact computation: 5.6 hours.
- Approximation of λ_{max} : 3.6 minutes.

Experiment 2

Random Projections based Algorithms

Matrix of size 16, 384 \times 16, 384 and $k = \{50, 500\}$.

Notes

- Exact computation for rank 50: 1.6 minutes
- Exact computation for rank 500: 20 minutes

Publications

- (Kon+18) E. Kontopoulou, A. Grama, W. Szpankowski, P. Drineas, "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices, in Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2486-2490
- (Kon+20) E. Kontopoulou, G. Dexter, A. Grama, W. Szpankowski & P. Drineas, "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices", in IEEE Transactions on Information Theory, to appear

The problem of logdet (A)

Definition

Given a Symmetric Positive Definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) $\operatorname{logdet}(\mathbf{A})$.

Application: Maximum likelihood estimations, Gaussian processes prediction, logdet-divergence metric, barrier functions in interior point methods . . .

Straightforward Computation

- 1 Compute the Cholesky Factorization of **A**, and let **L** be the Cholesky factor.
- 2 Compute the log-determinant of A using L:

logdet (A) = logdet (L)² = 2 log
$$\prod_{i=1}^{n} I_{ii} = 2 \sum_{i=1}^{n} log(I_{ii})$$
.

Time Complexity: $\mathcal{O}(n^3)$.

Prohibitive for Large Data!!!!

logdet (A) Formulas

Additive Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose dominant eigenvalue is bounded by α . Define $\mathbf{C} = \mathbf{I}_n - \mathbf{A}/\alpha$. Then,

logdet (A)
$$\approx n \log(u) - \sum_{k=1}^{m} \frac{1}{k} \left(\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} \mathbf{C}^{k} \mathbf{g}_{i} \right)$$

Relative Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $(\theta_1, 1)$, for some $0 < \theta_1 < 1$. Let $\mathbf{C} = \mathbf{I}_n - A$. Then,

logdet
$$(\mathbf{A}) \approx -\sum_{k=1}^{m} \frac{1}{k} \left(\frac{1}{s} \sum_{i=1}^{s} \mathbf{g}_{i}^{\top} \mathbf{C}^{k} \mathbf{g}_{i} \right)$$

Additive Error Algorithm/Lemma Additive Error Experiments Relative Error Algorithm/Lemma

Publications

(Bou+17) C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias, "A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix", in Linear Algebra and its Applications, 533, pp.95-117.

Thank you!

Questions?

References I

- (Bou+17) Christos Boutsidis et al. "A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix". In: Linear Algebra and its Applications 533 (2017), pp. 95-117.
- (Kon+18) E. Kontopoulou et al. "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices". In: 2018 IEEE International Symposium on Information Theory. 2018.
- (Kon+20) E. Kontopoulou et al. "Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices". In: IEEE Transactions on Information Theory to appear (2020).
- (Tre11) L. Trevisan. Graph Partitioning and Expanders. Handout 7. 2011.

Analysis of the Power Method

Boutsidis et al., LAA 2017 (Bou+17)

In (Bou+17) appears the following lemma that builds on (Tre11) and guarantees a relative error approximation to the dominant eigenvalue:

Lemma

Let \tilde{p}_1 be the output of the Power Method algorithm with $q = \lceil 4.82 \log(1/\delta) \rceil$ and $t = \lceil \log \sqrt{4n} \rceil$. Then, with probability at least $1 - \delta$,

$$\frac{1}{6}p_1 \leq \tilde{p}_1 \leq p_1.$$

Back to Main Slides

Trace Estimators Avron & Toledo 2011 (AT2010)

Definition

A Gaussian trace estimator for a symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is

$$\mathbf{G} = rac{1}{
ho} \sum_{i=1}^{
ho} \mathbf{g}_i^{ op} \ \mathbf{A} \ \mathbf{g}_i,$$

where the \mathbf{g}_i 's are p independent random vectors whose entries are i.i.d. standard normal variables.

Lemma

Let **A** be an SPD matrix in $\mathbb{R}^{n\times n}$, let $0<\epsilon<1$ be an accuracy parameter, and let $0<\delta<1$ be a failure probability. Then for $p=\lceil 20\log(2/\delta)\epsilon^{-2}\rceil$, with probability at least $1-\delta$.

$$|\mathit{Tr}\left[\mathbf{A}\right] - \mathbf{G}| \leq \epsilon \cdot \mathit{Tr}\left[\mathbf{A}\right].$$

Back to Main Slides

The Clenshaw Algorithm

The Clenshaw algorithm is a recursive procedure that evaluates fast Chebyshev polynomials:

Input: Coefficients α_i , $i=0,\ldots,m$, matrix $R\in\mathbb{R}^{n\times n}$ and vectors $g\in\mathbb{R}^n$

1: Set
$$y_{m+2} = y_{m+1} = 0$$

2: **for**
$$k = m, m - 1, ..., 0$$
 do

3:
$$y_k = \alpha_k g + \frac{4}{u} R y_{k+1} - 2 y_{k+1} - y_{k+2}$$

4: end for

Output:
$$g^{ op} f_m(R)g = \frac{1}{2} \left(lpha_0(g^{ op}g) + g^{ op}(y_0 - y_2)
ight)$$

Mathematical Manipulation of logdet (A) I

Theorem

Any symmetric (hermitian) matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$ ($\mathbb{C}^{n \times n}$):

- 1) has only real eigenvalues, $\lambda_1, \lambda_2, \dots, \lambda_n$;
- 2 has orthogonal eigenvectors, U;
- **3** is always diagonalizable : $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$.

$$\begin{aligned} \operatorname{logdet}\left(\mathbf{A}\right) &= \operatorname{logdet}\left(\mathbf{U} \ \mathbf{\Lambda} \ \mathbf{U}^{\top}\right) \\ &= \operatorname{log}\left(\operatorname{det}\left[\mathbf{\Lambda}\right]\right) \\ &= \operatorname{log}\left(\prod_{i=1}^{n} \lambda_{i}\right) \\ &= \sum_{i=1}^{n} \operatorname{log}(\lambda_{i}) \\ &= \operatorname{Tr}\left[\operatorname{log}(\mathbf{A})\right] \end{aligned}$$

$oldsymbol{\Lambda} = egin{bmatrix} \lambda_2 & & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$

Issues

- Computing the trace is easy.
- **2** Computing $\log \mathbf{A} \operatorname{costs} \mathcal{O}(n^3)$.

Solution

Further manipulation of $Tr[\log(\mathbf{A})]...$

Mathematical Manipulation of logdet (A) II

Lemma

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix whose eigenvalues lie in the interval (-1,1). Then

$$\log (\mathbf{I}_n - \mathbf{A}) = -\sum_{k=1}^{\infty} \frac{\mathbf{A}^k}{k}.$$

$$\begin{array}{lll} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- 2 Computing $Tr [\mathbf{C}^k]$.

Solution

- Truncate the Taylor Series.
- Trace Estimators!!!

Back to Main Slides

Input: $A \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{logdet}(A)$, the approximation to the logdet(A).

- 1: Compute $\tilde{\lambda_1}(A)$, the estimation of the largest eigenvalue of A, using the power method.
- 2: Set $u = 7\tilde{\lambda}_1(A)$
- 3: $C = I_n u^{-1}A$
- 4: Create $p = \lceil 20 \log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, g_1, g_2, \dots, g_p .
- 5: Compute logdet (A) as:

$$\widehat{logdet}\left(A\right) = n\log\left(u\right) - \sum_{k=1}^{m} \frac{1}{k} \left(\frac{1}{p} \sum_{i=1}^{p} g_{i}^{\top} C^{k} g_{i}\right).$$

Additive Error Approximation II

Bounding the Error & Running Time

Lemma

Let $\widehat{\log}$ det (A) be the approximation of $\widehat{\log}$ det (A) using the algorithm LogDetAdditive on inputs A, m and ϵ . Then, we **prove** that with probability at least $1-2\delta$,

$$|\widehat{logdet}(\mathbf{A}) - \operatorname{logdet}(\mathbf{A})| \leq 2\epsilon\Gamma$$

where
$$\Gamma = \sum_{i=1}^n \log\left(7 \cdot \frac{\lambda_1(\mathbf{A})}{\lambda_i(\mathbf{A})}\right)$$
 and $m \geq \lceil 7\kappa(\mathbf{A})\log(\frac{1}{\epsilon}) \rceil$.

Running Time

$$\mathcal{O}\left(\mathsf{nnz}(\mathbf{A})\cdot\left(\frac{\mathsf{m}}{\epsilon^2}+\log \mathsf{n}\right)\cdot\log\left(\frac{1}{\delta}\right)\right).$$

25/28

Relative Error Approximation

Algorithm LogDetRelative

Input: $A \in \mathbb{R}^{n \times n}$ with eigenvalues lie in $(\theta_1, 1)$ where $\theta_1 > 0$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{logdet}(A)$, the approximation to logdet(A).

- 1: $C = I_n A$
- 2: Create $p=\lfloor 20\log(2/\delta)/\epsilon^2
 ceil$ i.i.d random Gaussian vectors, g_1,g_2,\ldots,g_p .
- 3: Compute logdet (A) as:

$$\widehat{logdet}(A) = \sum_{k=1}^{m} \frac{1}{k} \left(\frac{1}{p} \sum_{i=1}^{p} g_i^{\top} C^k g_i \right).$$

Relative Error Approximation II

Bounding the Error & Running Time

Lemma

Let $\widehat{\log}$ det (A) be the approximation of $\widehat{\log}$ det (A) using the algorithm LogDetRelative on inputs A, m and ϵ . Then, we **prove** that with probability at least $1-\delta$,

$$|\widehat{logdet}(\mathbf{A}) - \operatorname{logdet}(\mathbf{A})| \leq 2\epsilon \cdot |\operatorname{logdet}(\mathbf{A})|$$

and $m \geq \lceil \frac{1}{\theta_1} \cdot \log(\frac{1}{\epsilon}) \rceil$.

Running Time

$$\mathcal{O}\left(rac{\log(1/\epsilon)\log(1/\delta)}{\epsilon^2 heta_1}\cdot \mathsf{nnz}(\mathbf{A})
ight).$$

25/28

Experiments

Implementation

Implementation of LogDetAdditive

- C++
- OpenMPI 1.8.4
- Boost 1.55
- Elemental + OpenBLAS
- Eigen 3.2.4 (incl. BLAS, LAPACK)

Environment

- 60-core Intel Xeon E7-4890@ 2.7Ghz
- 1TB RAM

Experiments I Dense Random Matrices

n	I	logdet (A)	time (secs)			
	exact	mean	std	exact	mean	std
5000	-3717.89	-3546.920	8.10	2.56	1.15	0.0005
7500	-5474.49	-5225.152	8.73	7.98	2.53	0.0015
10000	-7347.33	-7003.086	7.79	18.07	4.47	0.0006
12500	-9167.47	-8734.956	17.43	34.39	7.00	0.0030
15000	-11100.9	-10575.16	15.09	58.28	10.39	0.0102

Parameters: p=60, m=4, $t=\log(\sqrt{4n})$. Ground truth computed via Cholesky. Mean and standard deviation reported over 10 repetitions.

Experiments II

Real Sparse Matrices
University of Florida Sparse Matrix Collection

	n	nnz	logdet (A)			time (sec)		
matrix name			exact	approx		exact	approx	m
				mean	std	exaci	mean	
thermal2	1228045	8580313	1.3869e6	1.3928e6	964.79	31.28	31.24	149
ecology2	999999	4995991	3.3943e6	3.403e6	1212.8	18.5	10.47	125
Idoor	952203	42493817	1.4429e7	1.4445e7	1683.5	117.91	17.60	33
thermomech_TC	102158	711558	-546787	-546829.4	553.12	57.84	2.58	77
boneS01	127224	5516602	1.1093e6	1.106e6	247.14	130.4	8.48	125

Parameters: p=5, m=1:5:150 and select the one with best avg, t=5). Ground truth computed via Cholesky. Mean reported over 10 repetitions.

Back to Main Slides