

Instituto de Ciências Exatas Departamento de Ciência da Computação

Técnica anti-spoofing para leitores biométricos 3D de impressões digitais sem toque

Mateus Mendelson Esteves da Silva

Monografia apresentada como requisito parcial para conclusão do Curso de Engenharia da Computação

> Orientador Prof. Dr. Alexandre Zaghetto

> > Brasília 2015

Instituto de Ciências Exatas Departamento de Ciência da Computação

Técnica anti-spoofing para leitores biométricos 3D de impressões digitais sem toque

Mateus Mendelson Esteves da Silva

Monografia apresentada como requisito parcial para conclusão do Curso de Engenharia da Computação

> Prof. Dr. Alexandre Zaghetto (Orientador) CIC/UnB

Prof. Dr. Banca 1 Prof. Dr. Banca 2 Universidade de Brasília Universidade de Brasília

Prof. Dr. Ricardo Zelenovsky Coordenador do Curso de Engenharia da Computação

Brasília, 07 de dezembro de 2015

Dedicatória

Na dedicatória o autor presta homenagem a alguma pessoa (ou grupo de pessoas) que têm significado especial na vida pessoal ou profissional. Por exemplo (e citando o poeta): Eu dedico essa música a primeira garota que tá sentada ali na fila. Brigado!

Agradecimentos

Nos agradecimentos, o autor se dirige a pessoas ou instituições que contribuíram para elaboração do trabalho apresentado. Por exemplo: Agradeço aos gigantes cujos ombros me permitiram enxergar mais longe. E a Google e Wikipédia.

Resumo

O resumo é um texto inaugural para quem quer conhecer o trabalho, deve conter uma breve descrição de todo o trabalho (apenas um parágrafo). Portanto, só deve ser escrito após o texto estar pronto. Não é uma coletânea de frases recortadas do trabalho, mas uma apresentação concisa dos pontos relevantes, de modo que o leitor tenha uma ideia completa do que lhe espera. Uma sugestão é que seja composto por quatro pontos: 1) o que está sendo proposto, 2) qual o mérito da proposta, 3) como a proposta foi avaliada/validada, 4) quais as possibilidades para trabalhos futuros. É seguido de (geralmente) três palavraschave que devem indicar claramente a que se refere o seu trabalho. Por exemplo: Este trabalho apresenta informações úteis a produção de trabalhos científicos para descrever e exemplificar como utilizar a classe Lasse Lasse Lasse Unbeccio de Ciência da Computação da Universidade de Brasília para gerar documentos. A classe Unbeccio de fine um padrão de formato para textos do CIC, facilitando a geração de textos e permitindo que os autores foquem apenas no conteúdo. O formato foi aprovado pelos professores do Departamento e utilizado para gerar este documento. Melhorias futuras incluem manutenção contínua da classe e aprimoramento do texto explicativo.

Palavras-chave: biometria, impressão, digital, anti, spoofing, LBP, trabalho de conclusão de curso, LISA

Abstract

O abstract é o resumo feito na língua Inglesa. Embora o conteúdo apresentado deva ser o mesmo, este texto não deve ser a tradução literal de cada palavra ou frase do resumo, muito menos feito em um tradutor automático. É uma língua diferente e o texto deveria ser escrito de acordo com suas nuances (aproveite para ler http://dx.doi.org/10.6061% 2Fclinics%2F2014(03)01). Por exemplo: This work presents useful information on how to create a scientific text to describe and provide examples of how to use the Computer Science Department's Lass. The Unb-CIC class defines a standard format for texts, simplifying the process of generating CIC documents and enabling authors to focus only on content. The standard was approved by the Department's professors and used to create this document. Future work includes continued support for the class and improvements on the explanatory text.

Keywords: biometrics, fingerprint, anti, spoofing, LBP, thesis, LISA

Sumário

1	Intr	trodução		1								
	1.1	Biometria		1								
		1.1.1 Características de traços biométricos		2								
	1.2	Impressão Digital		3								
	1.3	Sistemas Biométricos										
		1.3.1 Protocolos de autenticação		5								
		1.3.2 Agente supervisor		6								
		1.3.3 Aquisição por deslize		7								
		1.3.4 Aquisição baseada em toque		7								
		1.3.5 Aquisição sem toque		8								
2	Spo	ooofing		12								
	2.1	Spoofing - Motivação e justificativa do projeto		12								
	2.2	Métricas		12								
3	Téc	cnicas de Manipulação de Imagens		14								
	3.1	Imagens em níveis de cinza		14								
	3.2											
		Piltro circular de média		15								
	3.3			15 16								
	3.3											
	3.3	Segmentação		16								
	3.3	3 Segmentação		16 17								
		3 Segmentação		16 17 17								
	3.4	3 Segmentação		16 17 17 19								
	3.4	Segmentação		16 17 17 19								
	3.4	Segmentação		16 17 17 19 19								
	3.4 3.5	Segmentação		16 17 17 19 19 20 21								
	3.4 3.5	Segmentação		16 17 19 19 20 21 22								

4	Rec	les Neurais Artificiais	2 8
	4.1	Neurônios	28
		4.1.1 Perceptrons	30
		4.1.2 Sigmoides	31
		4.1.3 Funções de transferência	33
	4.2	Redes Neurais Artificiais Feed-forward	34
	4.3	Treinamento	35
5	Alg	oritmo FNF	36
	5.1	Aquisição	36
	5.2	Pré-processamento	37
	5.3	Feature Extraction	39
	5.4	<i>Matching</i>	39
	5.5	Tomada de decisão	40
6	Exp	perimentos e Resultados	42
	6.1	Treinamento da Rede Neural	42
7	Cor	nclusão	43
8	Intr	rodução	45
	8.1	Trabalho de Conclusão de Curso	45
	8.2	Metodologia Científica	45
		8.2.1 Veja Também	46
	8.3	ĿBŢĘX	47
		8.3.1 Veja Também	48
	8.4	Plágio	49
		8.4.1 Veja Também	49
9	A (Classe UnB-CIC	50
	9.1	Gerando o PDF	50
	9.2	Opções	50
	9.3	Informações do Trabalho	51
	9.4	Arquivos	52
	9.5	Documento	52
		9.5.1 Capítulos	52
		9.5.2 Figuras	54
		9.5.3 Equações	56
		9.5.4 Tabelas	57

	9.5.5 Abreviaturas e Siglas	59
10	Trabalho de Conclusão de Curso	61
	10.1 UnB	61
	10.1.1 Os tipos	61
	10.1.2 Teoria e prática	62
	10.1.3 Começo do projeto	62
	10.1.4 Estrutura e regras	63
	10.1.5 O projeto está pronto. E agora?	64
11	Apresentações	65
	11.1 Falando em Público	65
	11.2 BEAMER	67
Re	eferências	68
Ap	pêndice	70
\mathbf{A}	Fichamento de Artigo Científico	71
Aı	nexo	7 5
I	Documentação Original UnB-CIC (parcial)	75

Lista de Figuras

1.1	Exemplo de impressão digital	4
1.2	Fluxograma básico de um sistema biométrico	6
1.3	Sensor biométrico de impressão digital com aquisição por deslize - OBTER	
	IMAGEM PRÓPRIA!	7
1.4	Impressão digital obtida pelo método de aquisição baseado em toque -	
	OBTER IMAGEM PRÓPRIA!	8
1.5	Aquisição realizada por um sensor sem toque 3D de 3 câmeras. $a),\ b)$ e $c)$	
	representam imagens obtidas por cada uma das câmeras	9
1.6	Esquema de câmeras em um sistema de aquisição sem toque $3\mathrm{D}$ - Imagem	
	retirada de [26]	9
1.7	Equivalente 2D de uma aquisição feita por um sensor 3D	10
3.1	(a) imagem original com 8 bits e 256 níveis de cinza. (b) imagem com 4	
	bits e 16 níveis de cinza. (c) imagem com 3 bits e 8 níveis de cinza. (d)	
	imagem com 2 bits e 4 níveis de cinza. (e) imagem com 1 bit e 2 níveis de	
	cinza	15
3.2	(a) mostra a matriz de vizinhança do pixel central, de valor 5. (b) mostra	
	a matriz de pesos	16
3.3	Filtro de média circular de raio 5 gerado pelo MATLAB mostra a matriz	
	de pesos (posição do pixel central em destaque)	16
3.4	(a) mostra a imagem original, disponibilizada em http://sipi.usc.edu/	
	database/. (b) mostra o tanque segmentado. Note que a imagem segmen-	
	tada carece de tratamentos adicionais para remover objetos indesejados	18
3.5	Matrizes de vizinhança de um pixel central, que (a) assumirá o valor 1 após	
	a quantização. (b) assumirá o valor 0 após a quantização. Pixel central, à	
	ser substituído, em destaque	20
3.6	Resultado da quantização realizada após a segmentação	20
3.7	Possível função de transformação para equalização de histograma	22
3.8	Imagem original em níveis de cinza	22
3.9	Imagem em níveis de cinza após a aplicação da equalização de histograma.	22

3.10	Textura de exemplo	23
3.11	Exemplo de cálculo de um código LBP	24
3.12	Exemplo de cálculo de um código ILBP	25
3.13	Exemplo do cálculo completo do descritor ILBP	26
3.14	Exemplo da construção de uma GLCM. Imagem retirada de http://www.	
	mathworks.com/help/images/ref/graycomatrix.html	26
4.1	Estrutura básica de um neurônio real	29
4.2	Estrutura básica de um neurônio artificial	29
4.3	À esquerda, função de transferência de um neurônio perceptron; à direita,	
	de um neurônio sigmoide	32
4.4	À esquerda, função de transferência tan-sigmoide; à direita, de transferên-	
	cia linear	33
4.5	Feed Forward Artificial Neural Network (FFANN) de 3 camadas	34
5.1	Vista lateral que compõe uma aquisição do leitor 3D	37
5.2	Na esquerda, imagem resultante da suvização com o filtro circular de média.	
	Na direita, imagem resultante após o processo de quantização	38
5.3	Imagem final gerada pela etapa de pré-processamento	38
5.4	Histograma de um descritor de textura	39
5.5	Fluxograma em alto nível do Finger or Not Finger (FNF)	41
7 1	I/ for	4.4
7.1	Já posso formar, professor!?	44
8.1	LATEX vs MS Word	48
9.1	Marca P/B	55
9.2	Marca colorida	55
9.3	Outra marca colorida.	56

Lista de Tabelas

9.1	Exemplo de tabela	58
9.2	Matriz de Decisão de Eisenhower	59
9.3	Outro exemplo de tabela	59

Lista de Abreviaturas e Siglas

AFIS Automated Fingerprint Identification System. 5, 6, 10

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. 37, 40

CDU Classificação Decimal Universal. 42

CEP Comissão de Ética Pública. 40

CIC Departamento de Ciência da Computação. 36, 51

CTAN Comprehensive T_EX Archive Network. 38, 39, 58

FNF Finger or Not Finger. xii, 29, 30, 32, 33

GLCM Gray-Level Co-occurrence Matrix. xii, 25–27, 32

ILBP Improved Local Binary Pattern. xii, 24–26, 32

LBP Local Binary Pattern. xii, 23–25

RTFI Reflection-based Touchless Finger Imaging. 11, 34

TTFI Transmission-based Touchless Finger Imaging. 11

UnB Universidade de Brasília. 36, 52

Capítulo 1

Introdução

Este capítulo visa apresentar os conceitos e conhecimentos iniciais necessários ao entendimento dos jargões, classificações e técnicas comumente utilizados no contexto de biometria. O leitor é encorajado a buscar informações complementares nos ítens bibliográficos que o auxiliem no entendimento e/ou aprofundamento do conteúdo aqui apresentado.

1.1 Biometria

A capacidade de autenticar indivíduos de forma eficiente e precisa tem se tornado um requisito cada vez mais imprescindível aos sistemas computacionais. Seu uso varia desde aplicações comuns ao nosso dia-a-dia (como o desbloquear da tela de um celular por meio de impressão digital) até aplicações em que a segurança no acesso é um ítem crítico (tais como controle de acesso a determinados espaços físicos, informações altamente sigilosas e objetos de alto valor). Sendo assim, é necessário escolher características intrínsecas à cada indivíduo e elaborar técnicas que sejam capazes de extraí-las de forma confiável.

O processo de autenticação pode ser feito por meio de três credenciais, sendo elas: a posse de um objeto específico (como um cartão RFID); o conhecimento de certa informação (como uma senha); ou a presença de certa característica (como uma impressão digital) [18].

Define-se biometria como sendo a identificação automatizada de um indivíduo à partir de suas características comportamentais e/ou fisiológicas que sejam únicas e cuja imitação por um terceiro seja não trivial [7, 3].

Características comportamentais são aquelas relacionadas ao modo de agir de uma pessoa. Já as características fisiológicas são aquelas relacionadas à estrutura física do indivíduo.

A fim de ilustrar as definições acima, os seguintes traços biométricos são assim classificados [25, 4]:

1. Comportamentais

- Assinatura
- Marcas de pressão ao escrever
- Voz
- Modo de digitar
- Modo de andar

2. Fisiológicas

- Impressões digitais
- Mãos
- Face
- Íris
- Retina
- Formato dos dedos
- DNA

É fácil notar que, embora cada uma dessas características seja intrínseca ao indivíduo, um sistema baseado em características comportamentais tende a ser mais vulnerável do que outro que se baseia em características fisiológicas. Traços comportamentais são facilmente observáveis e, muitas vezes, podem ser copiados por outros seres humanos sem grandes dificuldades, pois se tratam de sequências de ações executadas de acordo com o padrão observado. Como exemplo, pode-se citar os corriqueiros e bem conhecidos casos de falsificação de assinaturas. Traços fisiológicos, por sua vez, são características físicas, não aprendidas. Para que se possa burlar tal sistema, é necessário o uso de materiais e técnicas específicos para a confecção das falsificações.

1.1.1 Características de traços biométricos

Diante de tantas características presentes nos seres humanos, é necessário definir os prérequisitos para que uma simples característica possa vir a ser utilizada como traço biométrico.

Traços biométricos devem possuir os seguintes requisitos [9]:

1. Universalidade: todos os usuários do sistema devem possuir tal característica;

- 2. Unicidade: a característica deve ser única em cada indivíduo, ou seja, quaisquer dois indivíduos não devem ser capazes de apresentar a mesma formação para a característica em questão. Por exemplo, impressões digitais são uma característica que possui formações distintas em cada pessoa.
- 3. **Permanência**: a característica não deve ser variável, fornecendo sempre resultados suficientemente iguais em medições feitas em quaisquer instantes no tempo.
- Viabilidade de coleta: é necessário que seja possível a obtenção de medições da característica.

Sendo atendidos os requisitos acima, ainda é necessário avaliar se, em termos práticos, a coleta de suas medições é viável.

Primeiramente, é preciso avaliar a aceitabilidade por parte dos usuários. Devem ser considerados o modo com o qual as medições serão feitas (conforto), questões de privacidade (desejo do usuário de fornecer ou não tais medições), ética, etc.

O quão fácil (ou difícil) seria para que um invasor conseguisse imitar o traço biométrico e burlar o sistema também é um ponto que requer atenção, pois de nada serve um traço único que pode ser facilmente copiado.

Por se tratar de uma abordagem computacional, é de grande importância avaliar a performance do sistema. O tempo tomado durante as medições e no processo de busca e autenticação são fatores de alto impacto, bem como a precisão e os recursos utilizados.

Dentre as características aceitas como traços fisiológicos, impressões digitais, face e íris são as mais utilizadas e aceitas nos sistemas biométricos atuais [7], pois estas alcançam níveis aceitáveis nos parâmetros aqui apresentados.

1.2 Impressão Digital

Impressão digital é o nome dado à marca formada pelo conjunto de dobras e vales presentes na ponta de cada dedo (falange). Essa marca é única para cada indivíduo e é imutável, ou seja, mesmo com o passar do tempo esse traço permanece o mesmo. Utilizando os conceitos na Seção 1.1.1, vê-se que se trata de uma característica que possui unicidade, permanência, é universal e de fácil coleta, e, por isso, a impressão digital é um dos traços biométricos mais aceitos e utilizados no mundo. Ela é uma característica tão única que até mesmo irmãos gêmeos possuem formações distintas. Tais marcas podem ser vistas a olho nu se observadas com atenção, como mostrado na Figura 1.1.

Há relatos na literatura de que, com o passar dos anos, algumas digitais podem acabar sendo confundidas como sendo falsas por alguns leitores biométricos. Isso não significa que as impressões digitais tenham se alterado, mas que sua qualidade sofre com o passar

do tempo. Tal problema, entretanto, já possui algumas soluções, como pode ser visto em [2].

Figura 1.1: Exemplo de impressão digital.

1.3 Sistemas Biométricos

Sistemas biométricos são os responsáveis por coletar as medições dos traços biométricos que, em conjunto, são utilizados como credencial de acesso e, ainda, decidem se o usuário possui as devidas permissões. Muitas aplicações fazem uso de mais de um traço biométrico ao mesmo tempo. Recomenda-se que a aquisição das medições dos traços seja realizada em apenas uma única interação com o usuário.

O processo de autenticação de credenciais é dividido em etapas, sendo elas [11, 4]: aquisição de credenciais, pré-processamento das credenciais fornecidas, extração de pontos de interesse (feature extraction), comparação com as credenciais existentes no banco de dados (matching) e tomada de decisão.

O escopo de cada etapa e a ordem nas quais são executadas se definem da seguinte maneira:

- 1. Aquisição de credenciais: esta etapa é iniciada no engajamento¹ e seu objetivo é a obtenção das medições biométricas. Este processo deve ser capaz de obter amostras com qualidade suficiente e, ainda, manter sua viabilidade, ou seja, o conforto do usuário deve ser levado em consideração. Há três principais métodos de aquisição, que serão tratados nas Seções 1.3.3, 1.3.4 e 1.3.5.
- 2. **Pré-processamento**: esta etapa é opcional. Aqui, o intuito é realizar quaisquer atividades prévias à extração de informações que interessam à etapa de extração de pontos de interesse. Tais atividades podem ser processos de melhoria na qualidade das medições (filtragem de ruídos), segmentação da área de interesse, obtenção da medição equivalente em 2D, deslocamentos nas posições das medições, etc.
- 3. Extração de pontos de interesse (feature extraction): o processo de feature extraction consiste em, à partir das medições obtidas, selecionar e preparar os dados que o algoritmo de matching utiliza pra fazer a autenticação do usuário.
- 4. Comparação (*matching*): consiste em utilizar os dados presentes no banco de dados do sistema de forma a compará-los com os dados fornecidos pela etapa de extração e, assim, calcular uma pontuação que indica o grau de similaridade entre eles.
- 5. Tomada de decisão: de acordo com a pontuação obtida pelo *matching*, o sistema utiliza um limiar para decidir se o usuário será aceito ou não. Caso a pontuação esteja dentro do limiar, o usuário será aceito; caso contrário, recusado.

Previamente, é necessário que todas as pessoas que utilizarão o sistema façam o cadastramento de suas credenciais. Tal etapa é denominada **credenciamento**.

O processo acima descrito pode ser organizado das mais diversas maneiras, sendo algumas etapas fundidas, separadas ou recebendo nomenclaturas diferentes, variando de acordo com a literatura e objetivos da aplicação. As atividades realizadas, entretanto, permanecem as mesmas, conforme Figura 1.2.

Deste ponto em diante, adotaremos o termo Automated Fingerprint Identification System (AFIS) para denotar sistemas de identificação de impressões digitais automatizados.

1.3.1 Protocolos de autenticação

Dependendo da política do sistema, pode ser que apenas a apresentação do(s) traço(s) biométrico(s) cadastrado(s) em seus bancos de dados seja suficiente para a autenticação. Há aplicações, entretanto, que também exigem saber se o usuário é realmente quem alega

¹Defini-se *engajamento* como sendo a ação na qual o usuário interage com o sistema biométrico com o intuito de fornecer credenciais (sejam elas verdadeiras ou falsas).

Figura 1.2: Fluxograma básico de um sistema biométrico.

ser. Partindo deste ponto, há dois tipos de protocolos que definem quais informações formam a credencial de acesso de um usuário, sendo eles:

- Verificação (de identidade): no momento do engajamento, o usuário deve dizer ao AFIS quem ele alega ser por meio de um PIN (ou seu CPF, ou seu RG, etc.) e, então, o(s) seu(s) traço(s) biométrico(s). O sistema, por sua vez, busca em seu banco de dados o PIN fornecido e checa se as medições biométricas do usuário são compatíveis com as medições relacionadas ao PIN no banco de dados. Dessa forma, o sistema faz uma busca (1:1). Sendo assim, a verificação exige pelo menos duas informações e diminui o custo computacional ao buscar apenas as medições biométricas ligadas ao PIN fornecido.
- Identificação: neste caso, no momento do engajamento, o usuário fornece apenas o(s) seu(s) traço(s) biométrico(s). O AFIS, por sua vez, irá buscar em seu banco de dados se alguma de suas medições é compatível com as medições do usuário e retornar uma lista contendo as identificações cujas pontuações ficaram dentro do limiar. Sendo assim, o processamento tende a ser mais custoso, pois a busca é (1:N).

A decisão a respeito de qual protocolo deve ser implementado depende do nível de segurança requerido, dos recursos computacionais disponíveis, tempo de resposta desejado, etc.

Por se tratar do foco deste trabalho, à partir deste ponto trataremos apenas o traço biométrico da impressão digital e suas técnicas.

1.3.2 Agente supervisor

Outra ideia que, apesar de simples, merece atenção é a ausência ou presença de um agente (uma pessoa) que supervisiona as interações de um usuário com o sensor biométrico. Ambientes que possuem um agente supervisior são chamados de "supervisionados"; ambientes nos quais não há um agente supervisor, "não supervisionados".

Deve-se destacar que ambientes não supervisionados tendem a ser mais suscetíveis a tentativas de ataque. Tal assunto, entretanto, será abordado no Capítulo 2.

1.3.3 Aquisição por deslize

Este método exige que o usuário deslize seu dedo sobre a superfície do sensor. Conforme o dedo é deslizado, um sequência de imagens é capturada. Essas imagens são, então, utilizadas para montar uma única imagem da digital completa.

Como a superfície de contato é pequena, o custo deste tipo de sensor tende a ser menor do que o de outros tipos, porém pode apresentar alta taxa de falhas de leitura [22].

Seu uso é muito comum em notebooks, como pode ser visto na Figura 1.3.

Figura 1.3: Sensor biométrico de impressão digital com aquisição por deslize - OBTER IMAGEM PRÓPRIA!.

1.3.4 Aquisição baseada em toque

O processo de aquisição de impressões digitais baseado em toque (mais conhecido como touch-based fingerprinting) consiste em pressionar o dedo sobre a superfície do sensor e, dessa forma, a leitura das medições da impressão digital é realizada. É o tipo de aquisição mais comum nos sistemas atuais [11].

Os dados extraídos neste processo representam a versão 2D da impressão digital, comumente representada em níveis de cinza. Um exemplo pode ser visto na Figura 1.4.

Este processo, entretanto, implica em algumas desvantagens, que são inerentes ao modo com o qual o engajamento é realizado.

A pele humana possui um certo grau de elasticidade. Ao realizar o contato entre o dedo e o sensor, a impressão digital sofre deformações. Dessa forma, as medições obtidas pelo sensor podem não ser suficientemente fieis à impressão digital original e sua replicabilidade pode ser afetada. Outras fontes de deformações que também atuam são doenças de pele, umidade do ar, suor, etc.

Figura 1.4: Impressão digital obtida pelo método de aquisição baseado em toque - OBTER IMAGEM PRÓPRIA!.

É importante ressaltar que este método também pode representar uma grande falha de segurança, pois é possível que resíduos do dedo permaneçam na superfície de contato. Dessa forma, torna-se possível que um agente mal intencionado consiga obter uma digital válida à partir destes resíduos, principalmente em ambientes não supervisionados.

1.3.5 Aquisição sem toque

O processo de aquisição de impressões digitais sem toque (mais conhecido como touchless fingerprinting) consiste em posicionar o dedo em frente à um sensor que não exige contato. Tal sensor costuma fazer uso de uma (ou mais) câmera(s) de tal forma que as medições da impressão digital sejam obtidas à partir de imagens do dedo.

Devido a ausência de contato físico com a superfície do sensor, este método não deforma a impressão digital e é menos afetado por fatores como sujeira, umidade e demais condições da pele e ambiente.

Duas abordagens são comumente utilizadas para a aquisição sem toque. A aquisição 2D é feita com o uso de apenas uma câmera. A imagem do dedo é capturada por apenas um ângulo e essa imagem é utilizada para extrair a impressão digital do dedo. O ítem

a) na Figura 1.5 seria a aquisição realizada. É importante notar que este método pode acabar não capturando toda a digital, pois apenas um ângulo do dedo é utilizado.

Também há a aquisição 3D, que, comumente, é feita com o uso de três ou cinco câmeras posicionadas ao redor do dedo (esquema na Figura 1.6). Cada câmera faz a captura da imagem do dedo por um ângulo diferente e, dessa forma, a impressão digital é capturada por completo. Essas imagens são processadas e as partes da digital capturadas em cada imagem são sobrepostas de forma que a impressão digital completa é reconstruída. Figura 1.5 mostra um exemplo de conjunto de imagens que formam uma aquisição feita por um sensor sem toque 3D de 3 câmeras.

Figura 1.5: Aquisição realizada por um sensor sem toque 3D de 3 câmeras. a), b) e c) representam imagens obtidas por cada uma das câmeras.

Figura 1.6: Esquema de câmeras em um sistema de aquisição sem toque 3D - Imagem retirada de [26].

As abordagens mais utilizadas no processo de captura das imagens do dedo são descritas nas Seções abaixo.

Sistema legado

Sabe-se que o método de aquisição mais utilizado nos AFISs é o baseado em toque. Ao criar um novo método de aquisição (sem toque), torna-se inconveniente ter que recadastrar todas as credenciais já existentes no sistema. Sendo assim, é importante garantir que haja compatibilidade entre ambos.

Ainda, note que, no escopo desta discussão, apenas a etapa de aquisição está sendo alterada, sendo que as outras etapas também devem continuar sendo compatíveis com o novo método de aquisição. Nos AFISs atuais, costuma-se utilizar, nas etapas de feature extraction e matching, algoritmos concebidos para imagens obtidas por sistemas baseados em toque [21].

Com o objetivo de unir essas ideias, AFISs de aquisição sem toque costumam transformar suas representações de impressões digitais em equivalentes 2D de sistemas baseados em toque. Dessa forma, consegue-se conciliar os dados obtidos pelos dois métodos no mesmo sistema. Por exemplo, uma aquisição semelhante à Figura 1.5 seria processada de tal forma a obter uma medição semelhante à Figura 1.7

Figura 1.7: Equivalente 2D de uma aquisição feita por um sensor 3D.

Além de lidar com os problemas intrínsecos da aquisição baseada em toque, sistemas legados se beneficiam da aquisição sem toque ao passo que este método também reduz a ocorrência de [21]:

• Derrapagem e borramento devido a umidade.

- Contatos impróprios causados por pele seca.
- Acúmulo de sujeira na superfície de aquisição.
- Diminuição da qualidade da imagem adquirida, devido ao desgaste da superfície de contato.
- Erros de medições causados pela diferença de temperatura entre a superfície de contato do dedo e a superfície de contato do sensor.

Imageamento por Reflexão

Este método, também conhecido pelo termo em inglês Reflection-based Touchless Finger Imaging (RTFI), baseia-se na maneira com que a luz é refletida na superfície de um dedo. Fontes luminosas são colocadas em frente a região da impressão digital em conjunto com sensores (comumente câmeras), que quantificam as reflexões.

Para que seja possível obter medições com constraste suficiente, é necessário que os seguintes requisitos sejam atendidos [21]:

- A pele do dedo deve refletir a maior parte da luz incidente sobre ela, ou seja, a escolha da fonte luminosa e até mesmo do tipo de luz utilizada devem ser tais que a pele humana absorva o mínimo possível.
- As quantidades de luz refletidas pelas dobras e vales devem ser diferentes.
- Fontes luminosas e sensores devem ser posicionados o mais perpendicular possível da superfície do dedo, para que penumbras sejam evitadas e para que os raios refletidos possam ser capturados pelo sensor.

Imageamento por Transmissão

Este método, também conhecido pelo termo em inglês *Transmission-based Touchless Fin*ger *Imaging (TTFI)*, baseia-se na maneira com que a luz atravessa o dedo.

As fontes luminosas são posicionadas acima da área na qual a unha deve estar e, abaixo do dedo, são posicionados os sensores (comumente câmeras) que quantificam a quantidade de luz que atravessa o dedo. Tal método assemelha-se a colocar uma lanterna acesa em um lado do dedo (fonte luminosa) e observar o lado oposto (os olhos são nossos sensores).

Capítulo 2

Spoofing

Nada aqui ainda, mas é de anti-spoofing!

2.1 Spoofing - Motivação e justificativa do projeto

Sistemas não supervisionados são o foco do trabalho. Foco: anti-spoofing para sistemas biométricos 3D touchless não supervisionados Ver o "Presentation attack...", que inclusive classifica os tipos de anti-spoofing (estático e dinâmico).

2.2 Métricas

Métricas (os dois primeiros parágrafos são do guidelines): The two most common metrics used to report biometric system matching accuracy are the Cumulative Match Characteristic (CMC) curve and Receiver Operating Characteristic (ROC) curve.2 But, the CMC curve is only applicable for closed set identification and not open set identification (where the true mate of the probe may not be present in the gallery). Consequently, the CMC curve may not accurately characterize the performance of a biometric system [7]. Open set identification performance is typically reported in terms of False Positive Identification Rate (FPIR) and False Negative Identification Rate (FNIR) [6].

When reporting the ROC curve, the intended application will dictate the operating range (threshold on the match score) where competing systems should be evaluated. There are not many applications where a False Accept Rate (FAR)3 above 1.0% is acceptable, so the ROC curve should be appropriately scaled. Similarly, equal error rate (EER) of a system may not always provide useful information, as it is independent of the application.specific FAR. A confidence band around the ROC curve should also be reported to understand the robustness of the solution.

The ROC curve, measuring verification performance, is based on aggregate statistics of match scores corresponding to all biometric samples, while the CMC curve, measuring identification performance, is based on the relative ordering of match scores corresponding to each biometric sample (in closed-set identification).

To ensure the robustness of biometrics systems, it is necessary to train and evaluate them on data with characteristics similar to what would be encountered in the end application [5].

T. Ahonen, J. Matas, C. He, and M. Pietikäinen, "Rotation invariant image description with local binary pattern histogram fourier features," in Proc. Scandinavian Conference on Image Analysis (SCIA), 2009.

Capítulo 3

Técnicas de Manipulação de Imagens

Este capítulo tem por objetivo apresentar algumas técnicas de manipulação de imagens para que o entendimento do 5 seja facilitado. Algumas dessas técnicas, entretanto, podem causar uma certa confusão no leitor e, nesses casos, serão utilizados exemplos que tornarão sua compreensão mais clara.

3.1 Imagens em níveis de cinza

No dia a dia, entramos em contato com, basicamente, dois tipos de imagens: imagens coloridas e imagens "em preto e branco". Imagens popularmente conhecidas como "em preto e branco" recebem o nome de imagens em níveis de cinza.

Cada valor possível à um pixel representa um nível de cinza. Quantos níveis de cinza são possíveis é algo que depende da quantidade de bits disponíveis para representá-los. Quanto maior for a quantidade de bits, maior é a tendência à sensação de qualidade da imagem (conforme Figura 3.1), pois mais valores podem ser representados e, assim, aumenta-se o nível de detalhamento permitido. A Equação 3.1 mostra como o número de bits e os níveis de cinza se relacionam.

$$L(b) = 2^b (3.1)$$

, onde b é a quantidade de bits utilizada para representar um nível de cinza e L(b) é a quantidade de níveis de cinza representáveis com b bits.

Apenas imagens em níveis de cinza fazem parte do escopo deste trabalho e, portanto, assume-se o seu uso deste ponto em diante.

Figura 3.1: (a) imagem original com 8 bits e 256 níveis de cinza. (b) imagem com 4 bits e 16 níveis de cinza. (c) imagem com 3 bits e 8 níveis de cinza. (d) imagem com 2 bits e 4 níveis de cinza. (e) imagem com 1 bit e 2 níveis de cinza.

3.2 Filtro circular de média

Um filtro de média consiste em substituir o valor de um dado pixel pelo valor da média dos pixels em sua vizinhança, incluindo ele próprio. De forma geral, o cálculo consiste em uma média ponderada. Um filtro de média pode variar de tamanho, de acordo com a necessidade da aplicação em desenvolvimento, e é utilizado para suavizar uma imagem, reduzindo ruídos.

Dado um pixel no ponto P, sua matriz de vizinhança N e a matriz de pesos W, o novo valor para o pixel em P é dado pela Equação 3.2.

$$F(P) = \sum_{p \in N} N(p) \times W(p)$$
(3.2)

Tomando como exemplo a Figura 3.2, podemos expandir a Equação 3.2:

$$f(P) = 1 \times \frac{1}{9} + 2 \times \frac{1}{9} + 3 \times \frac{1}{9} + 4 \times \frac{2}{15} + 5 \times \frac{1}{15} + 6 \times \frac{2}{15} + 7 \times \frac{1}{9} + 15 \times \frac{1}{9} + 9 \times \frac{1}{9}$$

$$\implies f(P) \approx 5, 8$$
(3.3)

Dessa forma, o filtro substitui o pixel central pelo valor 5,8.

Figura 3.2: (a) mostra a matriz de vizinhança do pixel central, de valor 5. (b) mostra a matriz de pesos.

O filtro do exemplo acima é um filtro de média retangular. Um filtro de média circular, entretanto, consiste no mesmo funcionamento, diferenciando-se apenas pela distribuição dos pesos. Figura 3.3 é um exemplo de filtro de média circular.

0	0	0	0.0012	0.0050	0.0063	0.0050	0.0012	0	0	0
0	0	0.0062	0.0124	0.0127	0.0127	0.0127	0.0124	0.0062	0	0
0	0.0062	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0062	0
0.0012	0.0124	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0124	0.0012
0.0050	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0050
0.0063	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0063
0.0050	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0050
0.0012	0.0124	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0124	0.0012
0	0.0062	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0127	0.0062	0
0	0	0.0062	0.0124	0.0127	0.0127	0.0127	0.0124	0.0062	0	0
0	0	0	0.0012	0.0050	0.0063	0.0050	0.0012	0	0	0

Figura 3.3: Filtro de média circular de raio 5 gerado pelo MATLAB mostra a matriz de pesos (posição do pixel central em destaque).

3.3 Segmentação

O processo de segmentação de uma imagem consiste em dividi-la em duas ou mais regiões. Tal processo pode ter por objetivo, por exemplo, encontrar objetos específicos, localizar áreas de desmatamento, detectar a presença de pele humana, etc.

Dentre os diversos métodos existentes que realizam segmentação em imagens, apenas um deles compõe o escopo deste trabalho e é chamado de limiarização global simples.

A limiarização global simples consiste em estabelecer uma ou mais faixas de valor que definem o grupo ao qual cada pixel pertence ao realizar a segmentação. Esta técnica possui duas variantes que merecem atenção, descritas a seguir.

3.3.1 Limiar único

A limiarização global simples de limiar único consiste em definir um único valor T que será utilizado para classificar cada pixel de uma imagem em dois grupos: pixels com valor menor ou igual ao T e pixels com valor maior do que T.

Em termos matemáticos, temos

$$s(i) = \begin{cases} 1, & \text{se } i > T \\ 0, & \text{se } i \le T \end{cases}$$

$$(3.4)$$

, onde s(i) é a função que classifica um pixel de intensidade i.

De posse da Equação 3.4, ainda é necessário definir um método que determine qual o valor mais adequado para o limiar T.

O seguinte algoritmo para o cálculo de T é definido por [5]:

- 1. Escolher o quanto se deseja de precisão para o cálculo de T. Seja ϵ este valor.
- 2. Escolher um valor inicial para T, que pode ser aleatório.
- 3. Classificar os pixels da imagem I em dois grupos, conforme a Equação 3.4. Sejam os dois grupos chamados de S_1 e S_0 .
- 4. Calcular o valor da intensidade média dos pixels em S_1 e S_0 , sendo eles m_1 e m_0 , respectivamente.
- 5. Guardar o valor antigo de T em T_0 e adotar $T = \frac{m_1 + m_2}{2}$
- 6. Se $|T-T_0| < \epsilon$, então deve-se aplicar o valor de T; caso contrário, retornar ao passo 3.

A Equação 3.4 deve, então, ser aplicada em todos os pixels da imagem utilizando o limiar definido pelo algoritmo acima.

A Figura 3.4 mostra uma imagem segmentada pelo método do limiar único.

3.3.2 Múltiplos limiares

Enquanto o limiar único segmenta a imagem em apenas dois grupos, a segmentação com múltiplos limiares permite a segmentação em mais de dois grupos.

Figura 3.4: (a) mostra a imagem original, disponibilizada em http://sipi.usc.edu/database/. (b) mostra o tanque segmentado. Note que a imagem segmentada carece de tratamentos adicionais para remover objetos indesejados.

Matematicamente, temos

$$s(i) = \begin{cases} c_1, & \text{se } i \leq T_1 \\ c_2, & \text{se } T_1 < i \leq T_2 \\ \vdots & \vdots \\ c_k - 1, & \text{se } T_{k-2} < i \leq T_{k-1} \\ c_k, & \text{se } i > T_{k-1} \end{cases}$$

$$(3.5)$$

, onde s(i) é a função que classifica um pixel de intensidade i e k indica a quantidade de classes desejadas.

O seguinte algoritmo implementa a classificação descrita pela Equação 3.5 e presente em [5] (encoraja-se que o leitor busque aprofundamento caso sinta necessidade):

- 1. Escolher o quanto se deseja de precisão. Seja ϵ este valor.
- 2. Coloca-se k centroides $(x_1 \dots x_k)$ em posições aleatórias da imagem I.
- 3. Para cada pixel de I:
 - (a) Encontrar o centroide x_j mais próximo.
 - (b) Designar o pixel atual à classe c_j
- 4. Para cada classe c_i :
 - (a) Guardar o valor antigo de c_j em c_{j_0} e calcular a nova localização para c_j = média dos pixels pertencentes ao cluster c_j .

5. Para cada classe c_j , checar se $|c_j - c_{j_0}| < \epsilon$. Se a condição falhar em qualquer uma das classes, retornar ao passo 3; caso contrário, a classificação está concluída.

3.4 Quantização

Algumas imagens, após a etapa de segmentação, apresentam objetos e falhas indesejados. Tais artefatos devem ser eliminados.

O processo de quantização consiste em analisar a vizinhança de um pixel e decidir se este deve ser incorporado à classe de interesse (caso ainda não faça parte), se deve ser removido (caso faça parte) ou se deve permanecer na classe em que já está.

No contexto deste trabalho, considere que, apenas nesta seção, as imagens são binárias (os pixels assumem apenas os valores 0 ou 1). Sendo assim, o objeto de processamento da quantização é uma imagem binária segmentada na qual os pixel de valor 1 indicam a área de interesse (classe de interesse).

Esta técnica segue o seguinte algoritmo:

- Adotar um valor d que indique a largura do quadrado que definirá a vizinhança de cada pixel.
- 2. Para cada pixel da imagem I:
 - (a) Contar as ocorrências de 0's e 1's dentro do quadrado, incluindo o próprio pixel em análise.
 - (b) Se a ocorrência de 1's for maioria, o pixel central será substituído por 1; caso contrário, por 0.

A Figura 3.5 apresenta dois exemplos de quantização com uma vizinhança de dimensão 3x3.

Para efeito de comparação, observe a imagem na Figura 3.4 (b) e veja que o resultado obtido na Figura 3.6 diminuiu os ruídos, suavizou a imagem e removeu considerável quantidade de artefatos indesejados, além de preencher os "buracos" antes existentes na da área do tanque.

3.5 Histograma

De acordo com [5], um histograma de uma imagem I com L níveis de cinza é definido pela Equação 3.6.

$$h(r_k) = n_k \tag{3.6}$$

Figura 3.5: Matrizes de vizinhança de um pixel central, que (a) assumirá o valor 1 após a quantização. (b) assumirá o valor 0 após a quantização. Pixel central, à ser substituído, em destaque.

Figura 3.6: Resultado da quantização realizada após a segmentação.

, onde $0 \le k \le L-1$, r_k é o k-ésimo nível de cinza e n_k representa a quantidade de pixels em I cujo valor é r_k .

3.5.1 Normalização de histograma

Um histograma puro consiste na apresentação de valores absolutos, o que geralmente dificulta a análise da imagem. O desejado é que o histograma apresente valores relativos,

ou seja, porcentagens/probabilidades. Dessa forma, uma prática comum é normalizar o histograma [5], conversão tal que segue a Equação 3.7.

$$p(r_k) = \frac{n_k}{n} \tag{3.7}$$

, onde $0 \le k \le L - 1$, r_k é o k-ésimo nível de cinza, n_k representa a quantidade de pixels em I cujo valor é r_k e n é o número total de pixels.

Note que a soma de todos os elementos do histograma normalizado deve resultar em 1, por se tratar de uma distribuição de probabilidade.

3.5.2 Equalização de histograma

A equalização de histograma, por sua vez, é utilizada para realçar a imagem revelando detalhes não vistos (facilmente) na imagem original. Aqui, considera-se que a normalização de histograma já foi realizada.

Para que essa técnica seja alcançada, considere a relação de transformação na Equação 3.8.

$$s = T(r) \tag{3.8}$$

, onde $0 \le r \le 1$ representa um nível de cinza e s é o novo nível de cinza correspondente à r.

A função de transformação T(r) deve ser tal que as seguintes premissas sejam atendidas:

- ser monotonicamente crescente em $0 \le r \le 1$.
- $0 \le T(r) \le 1$ no intervalo $0 \le r \le 1$.

A primeira premissa garante que a operação inversa existe e que os valores não serão invertidos na realização da transformação.

A segunda premissa garante que o nível de cinza r será o responsável por definir o intervalo da transformação, ou seja, fica garantido que a função de transformação não irá gerar valores em s que extrapolam os valores em r.

Tomemos como exemplo a função na Figura 3.7, que atende às premissas citadas. Note que esta função tende a realçar os pixels cujos valores se aproximam de 0 e de 1, ou seja, ela tende a realçar os valores extremos e tende a nivelar os valores intermediários.

Para demonstrar o efeito da equalização de histograma, observe a Figura 3.8 e comparea com sua versão realçada, na Figura 3.9.

Figura 3.7: Possível função de transformação para equalização de histograma.

Figura 3.8: Imagem original em níveis de cinza.

Figura 3.9: Imagem em níveis de cinza após a aplicação da equalização de histograma.

3.6 Descritores de Texturas

Descritores de texturas são algoritmos que extraem características de certa área de uma imagem que são capazes de fornecer informações/descritores que a diferenciam de outras imagens. Para o contexto deste trabalho, duas premissas devem ser atendidas:

- O descritor deve ser invariante na escala de cinza.
- O descritor deve ser invariante na rotação da imagem.

As próximas seções são dedicadas a definição de técnicas de descritores de textura. Sendo assim, a Figura 3.10 será tomada como exemplo visual.

Figura 3.10: Textura de exemplo.

3.6.1 Padrão Binário Local

O Padrão Binário Local, em inglês *Local Binary Pattern (LBP)*, é uma técnica que compõe a classe dos descritores de texturas. Em [20], esta técnica é definida, sendo o algoritmo computacionalmente simples e invariante na escala de cinza.

O LBP consiste em analisar a vizinhança de cada pixel de uma região da imagem e gerar um código que a descreve. A fórmula de cálculo deste código é definida na Equação 3.11.

Para definir o conjunto de pixels considerados como sendo a vizinhança, há diversas técnicas. Aqui, adotaremos sempre a $vizinhança\ de\ 8^{1}$.

Considere g_p como sendo o conjunto de pixels que formam a vizinhança de um pixel central g_c . Para calcular o descritor de textura local de um pixel g_c , segue-se a forma genérica da Equação 3.9.

$$LBP(g_c) = t(s(g_0 - g_c), s(g_1 - g_c), \dots, s(g_7 - g_c))$$
(3.9)

, sendo que definimos s(x) como:

¹A vizinhança de 8 de um pixel p é composta por todos os 8 pixels que tocam as bordas e cantos de p.

$$s(x) = \begin{cases} 1, & \text{se } x \ge 0 \\ 0, & \text{se } x < 0 \end{cases}$$
 (3.10)

Com os valores da Equação 3.11, define-se o valor do descritor de textura local de g_c da seguinte maneira:

$$LBP(g_c) = \sum_{p=0}^{7} s(g_p - g_c)2^p$$
(3.11)

Em resumo, o uso de s(x) permite gerar um array de números binários que é convertido para um valor decimal. Este valor decimal é o descritor local (código LBP) daquele pixel g_c . A Figura 3.11 exemplifica este cálculo.

De posse do código LBP de cada pixel da área de interesse da imagem, monta-se um histograma referente a ocorrência desses códigos. O histograma normalizado, então, é o descritor de textura fornecido pelo algoritmo LBP. Ele fornece um conjunto probabilístico para cada tipo de textura.

Figura 3.11: Exemplo de cálculo de um código LBP.

Ainda falta um método para garantir a invariância na rotação. A abordagem aqui adotada é bem simples. O o array de números binários possui seus elementos deslocados de forma circular e, para cada deslocamento, calcula-se o código LBP. O menor código obtido é adotado como o código final daquele pixel.

$$LBP(g_c) = min\left\{ \sum_{p=0}^{7} s(g_{(p+i \bmod 8)} - g_c) 2^p | i = 0, 1, \dots, 7 \right\}$$
 (3.12)

Seguindo o exemplo da Figura 3.11 e a Equação 3.12, temos $LBP(g_c) = 00101101_2 = 45_{10}$.

3.6.2 Padrão Binário Local Aperfeiçoado

Dentre as diversas variações derivadas do LBP [15, 6], merece atenção o Padrão Binário Local Aperfeiçoado, em inglês *Improved Local Binary Pattern (ILBP)*.

O ILBP possui as mesmas características do LBP original, porém aquele é capaz de detectar certas nuâncias/padrões [10] que este não consegue.

A única diferença no seu funcionamento em relação ao algoritmo original, é que o ILBP utiliza em seus cálculos a média de toda a vizinhança (incluindo o pixel central) no lugar do g_c . Ou seja, em vez da Equação 3.11, temos a Equação 3.13

$$ILBP(g_c) = \sum_{p=0}^{8} s(g_p - Avg(g_c))2^p$$
(3.13)

, onde

$$Avg(g_c) = \frac{g_0 + g_1 + \dots + g_7 + g_c}{9}$$
(3.14)

Desta forma, a Figura 3.11 dá espaço à Figura 3.12.

Figura 3.12: Exemplo de cálculo de um código ILBP.

Ainda, a Equação 3.12 é substituída pela Equação 3.15

$$ILBP(g_c) = min \left\{ \sum_{p=0}^{8} s(g_{(p+i \bmod 9)} - Avg(g_c)) 2^p | i = 0, 1, \dots, 8 \right\}$$
 (3.15)

e temos que $ILBP(g_c) = 000001001_2 = 9_{10}$.

Por fim, a Figura 3.13 mostra um exemplo do histograma do descritor ILBP final.

3.6.3 Matriz de Co-ocorrência de Níveis de Cinza

Outro descritor de texturas é a Matriz de Co-ocorrência de Níveis de Cinza [23], em inglês Gray-Level Co-occurrence Matrix (GLCM).

Este método consiste em criar uma matriz quadrada de tamanho L que indica a quantidade de vezes em que dois pixels são adjacentes em determinada direção e, à partir disso, dados estatísticos podem ser extraídos.

Para explicar o funcionamento desta técnica, será utilizado um exemplo. Tomando uma imagem como ponto de partida e analisando sempre o pixel à direita, o elemento da GLCM em P = [i, j] representa a quantidade de vezes que um pixel de valor j (chamado de

Figura 3.13: Exemplo do cálculo completo do descritor ILBP.

 $pixel\ vizinho)$ é adjacente à direita de um pixel de valor i (chamado de $pixel\ de\ referência)$ na imagem em análise.

A Figura 3.14 mostra que a GLCM armazena em [1,2] o valor 2, pois, na matriz de entrada, a quantidades de vezes em que um pixel de valor 2 ocorre à direita de um pixel de valor 1 é 2. Note que é possível a existência de posições zeradas, ou seja, a não ocorrência de todos os padrões possíveis não gera nenhum tipo de problema.

Figura 3.14: Exemplo da construção de uma GLCM. Imagem retirada de http://www.mathworks.com/help/images/ref/graycomatrix.html.

É importante lembrar que este método não se limita apenas ao pixel à direita e nem apenas à um único pixel. De acordo com a aplicação, pode-se analisar quaisquer posições, sendo de livre escolha do usuário.

Após a montagem da matriz, há 4 métricas que são comumente extraídas.

Contraste

Medição do contraste entre um pixel e seus vizinhos. É cálculada através de

$$Contraste = \sum_{i,j} |i - j|^2 glcm(i,j)$$
(3.16)

Correlação

Medição de quão correlacionado está um pixel em relação a sua vizinhança.

$$Correlação = \sum_{i,j} \frac{(i-\mu i)(j-\mu j)glcm(i,j)}{\sigma_i \sigma_j}$$
(3.17)

Energia

É a soma do quadrado de cada elemento da GLCM

$$Energia = \sum_{i,j} glcm(i,j)^2$$
(3.18)

Homogeneidade

Medição da proximidade da distribuição dos elementos na GLCM em relação à diagonal da GLCM.

$$Homogeneidade = \sum_{i,j} \frac{glcm(i,j)}{1 + |i-j|}$$
(3.19)

Tais medições probabilísticas podem compor o descritor GLCM. Dependendo do objetivo, pode-se adotar apenas um subconjunto destas medições ou, ainda, adotar outros. Desde que sejam métodos que independam da rotação da matriz, são passíveis de uso.

Retomando a textura de exemplo na Figura 3.10, a técnica de GLCM gera os seguintes descritores:

• Contraste: 504.195398

• Correlação: 0.836115

• Energia: 0.000134

• Homogeneidade: 0.162959

Redes Neurais Artificiais

Um dos maiores desafios na computação é a definição de métodos que sejam capazes de classificar elementos em suas respectivas classes. Na maioria das vezes, essa é uma atividade que não oferece grandes dificuldades quando realizada por seres humanos. Entretanto, há situações complexas e também situações que envolvem uma grande quantidade de elementos. O desafio da classificação de elementos veio a se tornar, então, uma atividade desempenhada por computadores.

Há diversas abordagens computacionais voltadas à classificação, porém este ainda é um problema em aberto, não tendo sido encontrada, ainda, uma solução definitiva. Dentre tantas técnicas, uma delas tem se destacado por seu alto nível de aprendizado: as redes neurais artificiais [27].

Redes neurais artificiais surgiram inspiradas nas redes neurais biológicas presentes no sistema nervoso central humano. Tais redes consistem em um arranjo de neurônios interconectados que trocam informações entre si, permitindo a detecção, aprendizado e aplicação de padrões. Redes neurais artificiais são muito utilizadas em áreas ligadas à inteligência artificial, principalmente para resolver problemas de classificação, de ajuste de função (regressão), de robótica, de controle, etc.

Para compreender melhor o funcionamento de uma rede neural artificial, é preciso, primeiro, entender sua estrutura mais básica: o neurônio.

4.1 Neurônios

Assim como em uma rede neural biológica, as redes neurais artificiais são compostas por neurônios, que tentam modelar o funcionamento de um real.

Um neurônio real possui três estruturas básicas: o corpo celular, os dendritos e o axônio. O corpo celular contém o núcleo da célula e é responsável por praticamente toda a produção de proteínas e membranas, bem como a respiração celular. Em suma,

o corpo celular é responsável pelas funções vitais do neurônio. Os dendritos e os axônios são responsáveis por realizar a conexão entre neurônios. Dendritos se conectam apenas à axônios; axônios, apenas à dendritos. Os dendritos são responsáveis por receber os impulsos provenientes de outros neurônios e transmití-los para o corpo celular, que processa essas informações. Tendo processado as informações, o corpo celular excita o axônio, que transmite novas informações aos dendritos do neurônio conectado à ele.

Desta forma, os impulsos nervoso são transmitidos e processados em nosso cérebro. De forma geral, um neurônio possui a estrutura da Figura 4.1.

Figura 4.1: Estrutura básica de um neurônio real.

Analogamente, um neurônio artificial tem seu comportamento dividido em três partes, cujos nomes adotaremos da seguinte forma: núcleo, entrada e saída. Entrada e saída são, respectivamente, dendritos e axônio, tendo a função de apenas conectar um neurônio à outro. O núcleo é o responsável por realizar cálculos.

Figura 4.2: Estrutura básica de um neurônio artificial.

A forma com a qual um neurônio define sua saída em função de sua entrada, será melhor detalhada mais adiante. Neste ponto, entretanto, é necessário esclarecer quais tipos de cálculos são realizados em geral. A entrada p de um neurônio pode ser composta por um único valor escalar ou por um vetor de R elementos. Então, cada elemento de p é multiplicado por um peso e, depois, um deslocamento b (sempre um valor escalar) pode

ser adicionado. O conjunto contendo também R pesos é denotado por w. Neste ponto, o resultado é submetido à uma função (que chamaremos de função de transferência) que determina sua saída s (também um escalar). Tomando a Figura 4.2 como referência, temos:

$$n = \left(\sum_{i=1}^{R} p_i \times w_i\right) + b \tag{4.1}$$

De posse de n, podemos definir a saída s como:

$$s = f(p \cdot w + b) = f(n) \tag{4.2}$$

, onde f(n) é a função de transferência, ainda a ser definida.

Há duas variantes predominantes quando se trata de tipos de neurônios artificiais [19]: perceptrons e sigmoides.

4.1.1 Perceptrons

Os perceptrons são a categoria mais básica de neurônios artificiais. Eles seguem o mesmo modelo básico descrito acima, recebendo R entradas e fornecendo uma única saída s.

O que caracteriza um perceptron é o tipo de sua saída e suas entradas, sendo que s e cada elemento de p sempre assumirão apenas um de dois valores, 0 ou 1. Ao se utilizar este tipo de neurônio, é necessário determinar um parâmetro que terá influência direta em sua função de transferência. Tal parâmetro é indicado por T. Dessa forma, definimos a função de transferência f(n) do perceptron como:

$$u(n) = f(n) = \begin{cases} 1, & \text{se } n > T \\ 0, & \text{se } n \le T \end{cases}$$

$$(4.3)$$

Em resumo, um perceptron não faz nada mais, nada menos do que aplicar pesos sobre suas entradas e comparar o resultado com um limiar.

Um exemplo pode tornar seu funcionamento ainda mais claro. Inspirado pela Figura 3.8, considere a situação na qual um imperador do mal se depara com seu filho após muitos anos de busca e, pelas condições nas quais o momento de seu encontro se deu, o imperador deve decidir entre manter o seu império (saída s=0) ou se unir a seu filho, livrando-o da morte (saída s=1).

O imperador faz 3 perguntas a si próprio:

- O seu filho demonstrava algum sinal de que queria estar com ele?
- A queda de seu império era eminente?

• Ele tinha vontade de ter o filho a seu lado?

Ele responde negativamente para as duas primeiras perguntas e positivamente para a terceira. Forma-se, assim, o conjunto de entradas do perceptron: $p = [0 \ 0 \ 1]$. Além disso, o quão importante é a resposta de cada uma dessas perguntas, em uma escala de 0 à 10? Para o imperador, os pesos são: $w = [5 \ 8 \ 7]$.

Agora, só resta definir qual o limiar a ser usado. Vamos considerar que um ser humano que tenha o mínimo de amor à família geraria uma saída s=12. Então T=12.

Temos:

$$n = \left(\sum_{i=1}^{3} p_i \times w_i\right) + 0 = 0 \times 5 + 0 \times 8 + 1 \times 7 = 7$$

$$\implies u(n) = u(7 < T = 12)$$

$$\implies s = 0$$

$$(4.4)$$

e, portanto, o imperador decide manter o império, deixando seu filho para a morte.

Note que o deslocamento b foi deixado em 0 por simplicidade. Quanto maior for o valor de b, mais fácil será atingir a condição de disparo (s=1). Dessa forma, concluímos que a função dessa constante de deslocamento é simplesmente definir o grau de dificuldade para que sua saída seja 1.

4.1.2 Sigmoides

Apesar da simplicidade dos perceptrons, o mais comum é que outros modelos de neurônios sejam utilizados Saídas puramente binárias acabam deixando um sistema pouco preciso. Seria interessante ter saídas que pudessem ter, por exemplo, o valor 0,5 (no caso do imperador, poderia indicar que ele deveria encontrar um meio termo, mantendo o império e seu filho). Ainda, pequenas mudanças nos pesos poderiam causar uma mudança brusca na saída do perceptron. Buscamos uma solução na qual pequenas variações nos valores dos pesos e do deslocamento causem pequenas variações na saída. Como uma abordagem para tentar resolver esses problemas e prover mais adaptabilidade, surgem os neurônios artificiais sigmoides. Eles se destacam por uma característica em especial: o tipo de valor de suas entradas e saída.

Neurônios sigmoides são capazes de receber entradas de números reais, não se limitando apenas a 0's e 1's, mas podendo receber quaisquer valores dentro deste intervalo. Todavia, permitir valores reais nas entradas ainda não é o suficiente para que uma rede neural possa aprender algo.

Ainda, a função de transferência dos sigmoides não é uma simples função degrau. Ao adotar uma função que permita saídas entre 0 e 1, consequentemente o neurônio também

fornece saídas entre 0 e 1. Finalmente, temos um modelo que nos permite inserir valores reais e que respondem com valores reais.

Define-se a função de transferência deste neurônio da seguinte forma:

$$\sigma(p) = f(p) = \frac{1}{1 + e^{-\left(\sum_{i=1}^{R} p_i \times w_i\right) + b}}$$
(4.5)

que, para tornar a notação mais compacta, pode ser reescrita como:

$$\sigma(p) = f(n) = \frac{1}{1 + e^{-n}} \tag{4.6}$$

É interessante realizar uma análise rápida do comportamento de $\sigma(n)$ em alguns pontos. Com n positivo e muito grande, temos:

$$\lim_{n \to \infty} \sigma(n) = \lim_{n \to \infty} \frac{1}{1 + e^{-n}} = 1 \tag{4.7}$$

e, para n muito negativo, temos:

$$\lim_{n \to -\infty} \sigma(n) = \lim_{n \to -\infty} \frac{1}{1 + e^{-n}} = 0 \tag{4.8}$$

Nos extremos, o comportamento de $\sigma(n)$ e de u(n) é praticamente o mesmo. Note, então, que a função de transferência sigmoide (também conhecida como log-sigmoide) consiste em uma versão suavizada da função de transferência do neurônio perceptron (Figura 4.3).

Figura 4.3: À esquerda, função de transferência de um neurônio perceptron; à direita, de um neurônio sigmoide.

Retornando ao exemplo do imperador e considerando que ele tenha alterado suas respostas, podemos dizer que seu filho tinha uma mínima vontade de estar com ele (0,1),

que ele acreditava que a queda de seu império seria muito improvável (0,1) e que não queria tanto assim estar com o filho (0,1). Mantendo os pesos e o deslocamento inalterado, temos:

$$n = \left(\sum_{i=1}^{3} p_i \times w_i\right) + 0 = 0.1 \times 5 + 0.1 \times 8 + 0.1 \times 7 = 20$$

$$\implies \sigma(n) = \sigma(20) = \frac{1}{1 + e^{-20}}$$

$$\implies s = 0.88$$

$$(4.9)$$

Provavelmente, o imperado ainda tomaria a mesma decisão, mas com menos convição.

4.1.3 Funções de transferência

Como já foi possível notar, as funções de transferência são responsáveis por definir a maneira com a qual o neurônio irá tratar as entradas. Se de forma binária, se com variações mais suavez ou mais abruptas. Há diversas funções que podem ser utilizadas como funções de transferência para neurônios artificiais, entretanto, além das já citadas, vale a pena citar mais duas delas, geralmente utilizadas em redes de múltiplas camadas [1]. Note que o importante é o formato das funções de transferência. Ver Figura 4.4.

Figura 4.4: À esquerda, função de transferência tan-sigmoide; à direita, de transferência linear.

Apesar de tudo, é fácil perceber que os neurônios artificiais ainda não chegaram nem perto de reproduzir o comportamento complexo de um neurônio real. Mesmo assim, a modelagem computacional atingida até o presente momento tem demonstrado ser válida para a resolução de problemas que são simples para humanos, mas difíceis para computadores.

4.2 Redes Neurais Artificiais Feed-forward

Tendo definido o modelo de neurônio a ser utilizado, uma rede neural é formada por uma combinação de ligações entre neurônios. Na Figura 4.5, podemos ver que há 3 colunas de neurônios. Cada uma dessas colunas formam o que é chamado de camada. Cada camada, com exceção da última, fornece novos valores de entrada para outras. A primeira camada é denominada camada de entrada; a última, de camada de saída; as demais, de camadas ocultas. Redes neurais podem ter uma ou múltiplas camadas.

Figura 4.5: Feed Forward Artificial Neural Network (FFANN) de 3 camadas.

Por se tratar do escopo deste trabalho, apenas um tipo de rede neural será abordado neste texto.

Uma Feed Forward Artificial Neural Network (FFANN) é um tipo de rede neural com as seguintes características:

- Possuem pelo menos duas camadas.
- Cada neurônio de uma camada se conecta com todos os neurônios da camada seguinte e não se comunicam com camadas anteriores.
- Não há conexão entre neurônios de uma mesma camada.

Assim, uma FFANN não possui loops nem realimentação de neurônios. Os dados fluem à partir da entrada da rede sempre em direção à saída. Este tipo de rede é altamente utilizada na resolução de problemas de reconhecimento de padrões.

Há um tipo de FFANN que possui loops, conhecidas como redes neurais recorrentes, porém seus algoritmos de aprendizagem não são tão poderosos [19] e, por isso, não são tão utilizadas.

4.3 Treinamento

Para fazer uso uma rede neural, é necessário definir 3 conjuntos de dados. Os elementos de cada conjunto devem pertencer somente à este conjunto, não estando presente em nenhum outro. Define-se:

- Treinamento: este conjunto deve ser utilizado para calibrar/treinar a rede, definindo os pesos w e deslocamentos b.
- Validação: para cada tentativa de treinamento, este conjunto é submetido à análise da rede para que se possa decidir se os valores atuais são ótimos.
- Teste: é o conjunto de elementos que realmente serão colocados à prova no sistema, é o conjunto de dados final.

Em outras palavras, o primeiro conjunto treina a rede, o segundo conjunto checa se a rede foi bem treinada e a rede neural é aplicada sobre o terceiro conjunto.

Dois paradigmas de treinamento merecem atenção:

- Supervisionado: este paradigma consiste em fornecer os elementos em conjunto com um gabarito. Durante o treinamento, o rede neural tem acesso tanto aos elementos quanto à classe em que eles devem ser classificados.
- Não-supervisionado: o paradigma não-supervisionado, por sua vez, somente tem acesso aos elementos e tenta separá-los em diferentes classes para distinguí-los.

Por fim, é necessário definir um método para calcular os valores ótimos para os pesos w e deslocamentos b. Dentro de cada paradigma, há diferentes técnicas de treinamento. Um dos algoritmos mais utilizados para treinamento supervisionado é o backpropagation. Ele consiste em tentar reduzir o erro entre as saídas obtidas e as desejadas. Isso feito por meio do cálculo de o quanto o erro varia (primeira derivada) ao aumentar ou diminuir os pesos. Ao perceber que a taxa está aumentando demais, o treinamento é terminado e os pesos que geraram os menores erros são adotados.

Ainda, outras técnicas que podem ser utilizados em combinação para resultar em redes melhores. As técnicas de Levenberg-Marquardt e BFGS Quasi-Newton são as mais rápidas, apesar de tenderem a consumir mais memória. Para treinamentos com grandes bases de dados, Scaled Conjugate Gradient e Resilient Backpropagation costumam ser mais eficientes e consomem menos memória [1]. A escolha de qual método utilizar depende de cada caso e deve ser estudada com cuidado.

Algoritmo FNF

De posse do conteúdo teórico apresentado nos capítulos anteriores e tomando os termos credencial e impressão digital como sinônimos, definimos aqui o sistema desenvolvido.

O sistema desenvolvido consiste em um algoritmo que avalia as imagens capturadas por um leitor biométrico 3D de impressão digital e decide se as aquisições são compostas por um dedo ou por um objeto que não é dedo (tentativa de spoofing). Este trabalho não se preocupa em associar credenciais à usuários, mas apenas em decidir se a credencial apresentada é válida ou não. Este algoritmo foi desenvolvido com o objetivo de ser adotado como o ponto de entrada de um sistema biométrico de autenticação de impressões digitais. Para simplificar as referências ao decorrer do texto, este algoritmo recebe o nome de Finger or Not Finger (FNF).

O FNF recebe, como entrada, uma imagem e fornece, como saída um valor que indica se a credencial é válida ou não. Se a credencial não for válida, o sistema é encerrado. Caso a credencial seja válida, o FNF invoca o módulo responsável por realizar a autenticação da impressão digital, de acordo com uma das políticas descritas na Seção 1.3.1.

Utilizando a definição de sistema biométrico apresentada na Seção 1.3, podemos concluir que o FNF pode ser classificado como tal. Ele decide se a credencial apresentada possui permissão para ser processada pelo sistema de autenticação de digitais.

Com o objetivo de tornar o entendimento do FNF mais fácil, a descrição teórica de cada etapa estará acompanhada de seus respectivos produtos, exibidos de forma gráfica. Neste ponto, os produtos não são objeto de análise (o que ocorrerá no 6).

5.1 Aquisição

Um leitor biométrico 3D realiza esta etapa. Cada aquisição é formada pelo conjunto de 3 imagens, cada uma representando um ângulo de visão da credencial apresentada.

É importante ressaltar que o FNF trata cada uma dessas imagens individualmente. A Figura 1.5 apresenta um exemplo de aquisição.

Como exemplo, tomemos a Figura 5.1 como imagem de entrada.

Figura 5.1: Vista lateral que compõe uma aquisição do leitor 3D.

5.2 Pré-processamento

Como dito anteriormente, esta etapa consiste em manipular a imagem de entrada de forma a prepará-la para as etapas seguintes. O produto desta fase é uma imagem com a área do dedo segmentada e realçada. O pré-processamento do FNF consiste nos seguintes passos:

- Filtro circular de média: todas as aquisições realizadas apresentam ruídos e, muitas delas, borrões indesejados (como reflexos). Ao aplicar este filtro, a imagem é suavizada e tais artefatos tendem a diminuir.
- 2. **Limiarização**: à partir da imagem suavizada, é realizado o processo de limiarização global simples de limiar único.
- 3. Segmentação: de posse do valor do limiar global, a imagem é segmentada.
- 4. Quantização: em certas situações, a aplicação do filtro de média não é suficiente para que todos os artefatos indesejados sejam removidos. Por causa disso, alguns borrões acabam, erroneamente, sendo segmentados como parte da credencial. Em outras situações, ocorre de parte da credencial não ser segmentada, gerando buracos e falhas no meio da área de interesse. Para a maior parte destes casos, a quantização

- é suficientemente eficaz e remove tais inconvenientes, seja excluindo as áreas de borrões da segmentação ou preenchendo as falhas e buracos.
- 5. **Equalização de Histograma**: com a imagem já segmentada, é aplicado o processo de equalização de histograma, para que mais detalhes sejam realçados.

Os produtos intermediários desta etapa podem ser vistos na Figura 5.2.

Figura 5.2: Na esquerda, imagem resultante da suvização com o filtro circular de média. Na direita, imagem resultante após o processo de quantização.

O produto final, na Figura 5.3.

Figura 5.3: Imagem final gerada pela etapa de pré-processamento.

5.3 Feature Extraction

Neste ponto, a imagem não é mais alterada. A área de interesse já está devidamente segmentada e com detalhes realçados. Resta, agora, extrair características que sejam capazes de descrever a credencial fornecida.

O FNF é um algoritmo que utiliza descritores de textura como forma de caracterizar credenciais. Sendo assim, ele utiliza uma combinação dos descritores ILBP e GLCM.

Com o objetivo de reduzir o consumo de valiosos recursos computacionais, o FNF apenas realiza o cálculo do ILBP para pixels pertencentes à área de interesse, não calculando nenhum código relativo aos pixels de fundo.

Para o algoritmo do GLCM, é necessário definir quais estatísticas comporão o descritor. O FNF utiliza quatro: contraste, correlação, energia e homogeneidade.

Após o cálculo de cada um dos descritores, a forma adotada para combiná-los consiste na concatenação de seus valores. Dessa forma, o nosso exemplo gera o descritor cujo histograma se encontra na Figura 5.4.

Figura 5.4: Histograma de um descritor de textura.

5.4 Matching

Após todas essas etapas, tem-se o produto final capaz de descrever a textura de uma credencial. Este produto, então, é utilizado para classificar o tipo de credencial.

Como o descritor de textura é composto por um grande conjunto de valores, uma simples classificação linear não seria suficiente. É necessária uma técnica capaz de identificar quais os padrões que cada tipo de textura segue.

Conforme visto no 4, uma rede neural é suficiente para atender as necessidades do FNF. Dessa forma, é adotada uma rede neural com arquitetura do tipo feed-forward.

Essa rede neural é composta por 2 camadas, sendo que a primeira camada possui 16 neurônios de entrada e a camada de saída possui apenas um neurônio. A função de transferência dos neurônios nas duas camadas é a tan-sigmoide, já que funções de transferência do tipo sigmoide são largamente utilizadas para a resolução de problemas de reconhecimento de padrões [1].

O neurônio de saída provê valores que permitem classificar cada descritor em uma das seguintes 3 categorias: "não dedo", "dedo falso" e "dedo real". A categoria "dedo falso" indica credenciais que se parecem com um dedo, porém suas texturas não são de dedos. A existência da categoria "dedo falso" se dá para fins estatísticos, permitindo avaliar como o FNF se comporta ao ser confrontado por um dedo forjado ou adulterado.

Apesar da possibilidade de 3 categorias, o FNF apenas precisa classificar duas categoria ("não dedo" ou "dedo real"), sendo que a categoria "dedo falso" é incorporada na primeira.

5.5 Tomada de decisão

Finalmente, a decisão é tomada. Caso a rede neural indique que a credencial não pertence à categoria "dedo real", a decisão tomada é que aquela credencial não possui permissão para ser processada pelo sistema de autenticação de digitais e o sistema é encerrado. Caso a credencial pertença à classe "dedo real", a aquisição realizada pelo sensor é fornecida ao sistema de autenticação de digitais, que assume o controle do fluxo de execução.

Sendo assim, o FNF é um sistema biométrico completo. Sua estrutura e divisões podem ser vistas em sua totalidade na Figura 5.5.

Figura 5.5: Fluxograma em alto nível do Finger or Not Finger (FNF).

Experimentos e Resultados

- Fazer um teste usando só dedos reais e os dedos com liquid paper (19) e adesivo (2).
- Nos experimentos, foi utilizado um leitor biométrico 3D de impressão digital com 3 câmeras que utiliza RTFI Para mostrar a utilidade e funcionamento da quantização no nosso algoritmo, rode:

6.1 Treinamento da Rede Neural

- Foi treinamento supervisionado. - Como a rede neural foi treinada (base de dados, conjuntos de treino, validação e teste). - Algoritmo de treinamento backpropagation com Levenberg-Marquardt: página 18 do [1]. Nem tente explicar o que esse cara aí faz! Só apresente e cite [12, 16, 13].

Conclusão

- Encontra maior aplicabilidade em ambientes não supervisionados.
 - É isso, foi m
t bom e eu vou formar!

Figura 7.1: Já posso formar, professor!?.

Introdução

8.1 Trabalho de Conclusão de Curso

Todos os cursos do Departamento de Ciência da Computação (CIC) da Universidade de Brasília (UnB) exigem a produção de um texto científico como requisito para formação. As etapas desta monografia/dissertação/tese devem seguir o *método científico*.

8.2 Metodologia Científica

Ciência (do Latim *scientia*, traduzido como "conhecimento") é uma forma sistemática de produzir conhecimento (via método científico), ou o nome dado a estrutura organizada do conhecimento obtido.

O método científico é um conjunto de regras básicas de como proceder para produzir conhecimento, criando algo novo ou corrigindo/incrementando conhecimentos préexistentes. Consiste em juntar evidências empíricas verificáveis baseadas na observação sistemática e controlada, geralmente resultantes de experiências ou pesquisa de campo, e analisá-las logicamente.

Esta ideia foi formalizada por Newton em sua obra *Philosophiae Naturalis Principia Mathematica* [?] da seguinte forma:

- 1. Não se deve admitir causas das coisas naturais além daquelas que sejam verdadeiras e sejam suficientes para explicar seus fenômenos.
- 2. Efeitos naturais do mesmo gênero devem ser atribuídos as mesmas causas.
- 3. Características de corpos são consideradas universais.
- 4. Proposições deduzidas da observação de fenômenos são consideradas corretas até que outro fenômeno mostre o contrário.

Uma abordagem para esta metodologia é seguir os seguintes passos:

Caracterização do Problema: Qual a pergunta a ser respondida? Quais informações/recursos necessários na investigação?

Formulação da Hípotese: Quais explicações possíveis para o que foi observado?

Previsão: Dadas explicações [corretas] para as observações, quais os resultados previstos?

Experimentos:

- 1. Execute testes [reproduzíveis] da hipótese, coletando dados.
- 2. Analise os dados.
- 3. Interprete os dados e tire conclusões:
 - que comprovam a hipótese;
 - que invalidam a hipótese ou levam a uma nova hipótese.

Documentação: Registre e divulgue os resultados.

Revisão de Resultados: Validação dos resultados por outras pessoas [capacitadas].

Geralmente se começa com a revisão sistemática, uma metodologia de pesquisa específica para juntar e avaliar material relevante a determinado tópico [?].

8.2.1 Veja Também

- Google Acadêmico
 - http://scholar.google.com.br/
- ACM Digital Library

http://dl.acm.org/

• Portal CAPES

http://www.periodicos.capes.gov.br/

• IEEE Xplore

http://ieeexplore.ieee.org/Xplore/home.jsp

• ScienceDirect

http://www.sciencedirect.com/

• Springer Link

http://link.springer.com/

Para buscar referências, *The DBLP Computer Science Bibliography*¹ é um ótimo recurso. Veja o Apêndice A para instruções sobre como organizar as informações de artigos científicos.

8.3 LATEX

TEX é "a typesetting system intended for the creation of beautiful books - and especially for books that contain a lot of mathematics" [?], um sistema de tipografia muito utilizado na produção de textos técnicos devido a qualidade final, principalmente das fórmulas e símbolos matemáticos gerados.

LATEX é um conjunto de macros para facilitar o uso de TEX [?, ?], cujos pacotes (a maioria centralizada na rede CTAN [?]), oferecem inúmeras possibilidades. Este sistema tipográfico visa explorar as potencialidades da impressão digital, sem que o resultado seja alterado em função de diferenças entre plataformas/sistemas.

Em uma publicação, um *autor* entrega o texto a uma editor que define a formatação do documento (tamanho da fonte, largura de colunas, espaçamento, etc.) e passa as instruções (e o manuscrito) ao tipógrafo, que as executa. Neste processo, LATEX assume os papéis de editor e tipógrafo, mas por ser "apenas" um programa de computador, o autor deve prover algumas informações adicionais [?], geralmente por meio de marcações (comandos).

Esta abordagem de linguagem de marcação (em que se indica como o texto deve ser formatado) é diferente da abordagem OQVVEOQVO ("o que você vê é o que você obtém²") de programas para edição de texto tradicionais (como MS Word, LibreOffice Write, etc.). Apesar destes programas serem extremamente úteis para gerar textos simples, que são a grande maioria dos documentos, eles geralmente não têm a capacidade de lidar corretamente com documentos complexos (como dissertações ou teses), conforme ilustrado na Figura 8.1.

Existem diversas discussões quanto ao uso de editores de texto³, não há um consenso quanto a melhor forma de se gerar um documento de qualidade, e a maioria das mídias científicas disponibiliza modelos para ambas.

Mas pode-se dizer que LATEX é mais indicado para:

- notação matemática;
- referências cruzadas;

¹http://dblp.uni-trier.de/

²Do inglês WYSIWYG - "What You See Is What You Get".

³Por exemplo: Word Processors: Stupid and Inefficient http://ricardo.ecn.wfu.edu/~cottrell/wp.html

Figura 8.1: LaTeX vs MS Word (Fonte: [?]).

• separação clara entre conteúdo e formatação.

Enquanto os editores tradicionais são indicados para:

- edição colaborativa (são mais populares);
- produção imediata (leve curva de aprendizado).

8.3.1 Veja Também

- Introdução ao IATEX http://latexbr.blogspot.com.br/2010/04/introducao-ao-latex.html
- LATEX A document preparation system http://www.latex-project.org/
- The Comprehensive TEX Archive Network http://ctan.org
- TEXUsers Group http://tug.org
- TEX LATEX Stack Exchange http://tex.stackexchange.com
- LATEX Wikibook
 http://en.wikibooks.org/wiki/LaTeX
- writeIATEX http://www.writelatex.com

8.4 Plágio

O JusBrasil⁴ define plágio como "reprodução, total ou parcial, da propriedade intelectual de alguém, inculcando-se o criador da idéia ou da forma. Constitui crime contra a propriedade imaterial violar direito de autor de obra literária, científica ou artística."

A Comissão de Ética Pública (CEP) da Presidência da República decidiu "pela aplicação de sanção ética aos servidores públicos que incorrerem na prática de plágio", e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) recomenda que se adote políticas de conscientização e informação sobre a propriedade intelectual, baseando-se na Proposição 2010.19.07379-01, referente ao plágio nas instituições de ensino⁶.

8.4.1 Veja Também

- IEEE Plagiarism FAQ

 http://www.ieee.org/publications_standards/publications/rights/plagiarism_
 FAQ.html
- Relatório da Comissão de Integridade de Pesquisa do CNPq http://www.cnpq.br/web/guest/documentos-do-cic

⁴http://www.jusbrasil.com.br

 $^{^5}$ http://www.comissaodeetica.unb.br/index.php?view=article&id=8:plagio-academico

 $^{^6} https://www.capes.gov.br/images/stories/download/diversos/OrientacoesCapes_CombateAoPlagio.pdf$

A Classe UnB-CIC

Este capítulo descreve a classe UnB-CIC, e demonstra os comandos disponíveis. A última versão foi atualizada pelo Prof. Ralha, em 2008 (vide Anexo I). A melhor forma de entender o funcionamento é observar o arquivo principal deste documento (monografia.tex).

9.1 Gerando o PDF

Para gerar corretamente as referências cruzadas, é necessário processar os arquivos mais de uma vez com a seguinte sequência de comandos (supondo que o arquivo principal seja monografia.tex).

pdflatex monografia bibtex monografia makeglossaries monografia pdflatex monografia

O primeiro comando processa os arquivos, indicando quais referências foram citadas no texto (bibliográficas ou cruzadas), o segundo comando processa o arquivo .bib que contém as informações bibliográficas, o terceiro gera o índice de siglas/abreviaturas, e o último comando junta todas estas informações, produzindo um texto com referências cruzadas funcionais.

9.2 Opções

O documento é gerado em função do curso dado como opção [obrigatória] a classe. Os cursos disponíveis são:

bacharelado Bacharelado em Ciência da Computação

licenciatura Elicenciatura em Computação

engenharia Engenharia de Computação

mestrado, ppginf Mestrado em Informática

doutorado, ppginf Doutorado em Informática

mestrado, ppca Mestrado Profissional em Computação Aplicada

9.3 Informações do Trabalho

O passo seguinte é definir as informações do trabalho, identificando os autores e os membros da banca (atenção a definição do gênero!). Por exemplo, para este documento foram utilizadas as seguintes definições:

\orientador{\prof \dr Guilherme Novaes Ramos}{CIC/UnB}% \\coordenador{\prof \dr José Ralha}{CIC/UnB} \\coordenador[a] {\prof[a] \dr[a] Ada Lovelace}{Bibliothèque universelle de Genève}% \\diamesano{24}{dezembro}{2014}%

\membrobanca{\prof \dr Donald Knuth}{Stanford University}%
\membrobanca{\dr Leslie Lamport}{Microsoft Research}%

\autor{Guilherme N.}{Ramos}%

Sobre o texto, definiu-se:

\titulo{UnB-CIC: Uma classe em LaTeX para textos do Departamento de Ciência da Computação}%

\palavraschave{LaTeX, metodologia científica}%
\keywords{LaTeX, scientific method}%

\CDU{002}%

O título, apesar do tamanho reduzido, deveria apresentar uma ideia clara de todo o trabalho. As palavras-chave devem indicar os conceitos genéricos mais relevantes utilizados, e servem para indexação e busca de documentos que tratam os mesmos temas. Por fim, a Classificação Decimal Universal (CDU) é um sistema de classificação documentária

baseado na classificação decimal de Dewey¹. O valor padrão definido é 004 (Ciência e tecnologia dos computadores, informática), mas tente ser o mais preciso possível conforme o conteúdo de seu documento. Neste, foi definido como 002 (documentação, documentos em geral).

9.4 Arquivos

Os seguintes arquivos são exigidos:

tex/abstract.tex Contém o abstract do texto.

tex/agradecimentos.tex Contém os agradecimentos do autor.

bibliografia.bib Contém as referências bibliográficas no formato BibT_EX².

tex/dedicatoria.tex Contém a dedicatória do autor.

tex/siglas.tex Contém as definições de siglas/abreviaturas.

tex/resumo.tex Contém o resumo do texto.

Demais arquivos não são inseridos automaticamente, mas a classe oferece comandos para inclusão, facilitando a organização destes.

9.5 Documento

Todo documento em IATEX é delimitado pelo ambiente document. O caso aqui não é diferente, mas a interação é simplificada. Basicamente, a classe UnB-CIC funciona "automagicamente" em função dos comandos e dos nomes dos arquivos.

9.5.1 Capítulos

O texto de cada capítulo deve estar em seu próprio arquivo, dentro do diretório correto tex. A inclusão do texto é feita pelo comando:

\capitulo{arquivo}{título}%

Os dois argumentos são:

arquivo argumento obrigatório que define o nome do arquivo que contém o texto do capítulo.

¹http://pt.wikipedia.org/wiki/Classifica%C3%A7%C3%A3o_decimal_de_Dewey

²http://www.bibtex.org

título argumento obrigatório que define o título do capítulo.

Por exemplo, este texto está no arquivo 2_UnB-CIC.tex, e para criar os dois capítulos vistos até agora, o documento seria:

```
\begin{document}%
```

```
\capitulo{1_Introducao}{Introdução}% inclui o arquivo 1_Introducao.tex \capitulo{2_UnB-CIC}{A Classe \unbcic}% inclui o arquivo 2_UnB-CIC.tex \end{document}%
```

Para incluir um terceiro capítulo neste texto, cujo conteúdo trata de trabalhos conclusão de curso, basta criar o arquivo tex/3_TCC.tex e adicioná-lo com o comando descrito.

No caso de apêndices ou anexos necessários, o texto de cada um deve estar em seu próprio arquivo, também dentro do diretório tex/capitulos. Para facilitar as referências cruzadas, estes devem ser inclusos com os seguintes comandos (respectivamente):

```
\apendice{arquivo}{título}%
\anexo{arquivo}{título}%
```

Os dois argumentos funcionam exatamente como \capitulo. Desta forma, o exemplo de um documento "completo" seria:

```
\begin{document}%
  \capitulo{1_Introducao}{Introdução}%
  \capitulo{2_UnB-CIC}{A Classe \unbcic}%
  \capitulo{3_TCC}{Trabalho de Conclusão de Curso}%
  \apendice{Apendice_Fichamento}{Fichamento de Artigo Científico}%
  \anexo{Anexo1}{Parte da Documentação Original}%
  \end{document}%
```

Usando estes comandos, o rótulo de cada capítulo/apêndice/anexo é criado automaticamente a partir do nome do arquivo para posterior referência cruzada. Por exemplo, este capítulo pode ser referenciado com o comando \ref{2_UnB-CIC} (cujo resultado é: 9), mas a classe oferece opções mais interessantes. Os comandos para referenciar çapítulos são:

```
\refCap{referência}%
\refCaps{referência inicial}{referência final}%
```

Onde os argumentos são:

referência nome da referência do capítulo.

referência inicial nome da referência do capítulo inicial da sequência de capítulos.

referência final nome da referência do capítulo final da sequência de capítulos.

O Capítulo 1 é referenciado com o comando:

\refCap{1 Introducao}%

Considerando Capítulo 1 e também o Capítulo 9, é possível referenciar a sequência de Capítulos 1 a 9 com o comando:

\refCaps{1_Introducao}{2_UnB-CIC}%

Embora estes comandos não "simplifiquem" a inclusão de figuras, eles certamente facilitam a referência a elas com um padrão uniforme, e nada impede o uso dos comandos padrões.

9.5.2 Figuras

Para manter a organização dos arquivos de seu documento, as figuras devem ficar separadas no diretório img. As funções de inclusão de figuras permanecem as mesmas, mas a classe UnB-CIC oferece uma forma mais simples de inserir uma figura (e de referenciá-la). Basta executar o comando:

\figura[posição]{arquivo}{legenda}{referência}{tamanho}%

Os 5 argumentos são:

posição argumento [opcional] para posicionar a figura no texto³.

arquivo nome do arquivo da imagem.

legenda da figura.

referência nome da referência da figura para referências cruzadas.

tamanho tamanho da imagem⁴.

Por exemplo, a Figura 9.1, inserida com o seguinte comando:

\figura[!h]{contorno preto}{Marca P/B}{unbPB}{width=0.5\textwidth}%

Figura 9.1: Marca P/B.

Os comandos para referenciar figuras são:

\refFig{referência}%
\refFigs{referência inicial}{referência final}%

Onde os argumentos são:

referência nome da referência da figura.

referência inicial nome da referência da figura inicial da sequência de figuras.

referência final nome da referência da figura final da sequência de figuras.

A Figura 9.1 é referenciada com o comando:

\refFig{unbPB}%

Figura 9.2: Marca colorida.

Considerando a Figura 9.2 e também a Figura 9.3, é possível referenciar a sequência de Figuras 9.1 a 9.3 com o comando:

\refFigs{unbPB}{unb2}%

³Mais informações na documentação do ambiente *figure*, mas este é um bom começo: http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions.

⁴Mais informações na documentação do comando \includegraphics.

Algumas vezes deseja-se usar a figura de uma das referências bibliográficas. Neste caso, utilize o comando:

\figuraBib[posição]{arquivo}{legenda}{bib}{referência}{tamanho}%

Os argumentos são os mesmos do comando \figura, acrescidos de:

bib nome da referência bibliográfica que originou a figura.

Por exemplo, a Figura 8.1 foi gerada com o comando:

\figuraBib{miktex}{\LaTeX\ vs MS Word} {pinteric latex 2004}{latexvsword}{width=.45\textwidth}%

Embora estes comandos não "simplifiquem" a inclusão de figuras, eles certamente facilitam a referência a elas com um padrão uniforme, e nada impede o uso dos comandos padrões.

Figura 9.3: Outra marca colorida.

9.5.3 Equações

As funções de inclusão de equações permanecem as mesmas, mas a classe UnB-CIC oferece uma forma mais simples de inserir uma equação (e de referenciá-la). Basta executar o comando:

\equacao{referência}{fórmula}%

Os 2 argumentos são:

referência nome da referência da equação para referências cruzadas.

fórmula a equação em si.

Por exemplo, a Equação 9.1, inserida com o seguinte comando:

 $\qquad \qquad \equacao{pitagoras}{a^2 + b^2 = c^2}\%$

$$a^2 + b^2 = c^2 (9.1)$$

Além disso, é possível quebrar em linhas, como na Equação 9.2, com o mesmo comando:

$$a = (x+y)^2$$

$$b = (x*y)^2$$
(9.2)

Os comandos para referenciar equações são:

\refEq{referência}%

\refEqs{referência inicial}{referência final}%

Onde os argumentos são:

referência nome da referência da equação.

referência inicial nome da referência da equação inicial da sequência de equações.

referência final nome da referência da equação final da sequência de equações.

Considerando a Equação 9.1 e também a Equação 9.3, é possível referenciar a sequência de Equações 9.1 a 9.3 com o comando:

\refEqs{pitagoras}{eq}%

Embora estes comandos não "simplifiquem" a inclusão de equações, eles certamente facilitam a referência a elas com um padrão uniforme e nada impede o uso dos comandos padrões.

$$d = c^3 - \frac{a}{h} \tag{9.3}$$

9.5.4 Tabelas

As funções de inclusão de tabelas permanecem as mesmas, mas a classe UnB-CIC oferece uma forma mais simples de inserir uma tabela (e de referenciá-la). Basta executar o comando:

\tabela{legenda}{referência}{especificações}{tabela}%

Os 4 argumentos são:

Tabela 9.1: Exemplo de tabela.

Item	Descrição
1	Descrição 1
2	Descrição 2
3	Descrição 3

legenda da tabela.

referência nome da referência da tabela para referências cruzadas.

especificações alinhamento de cada coluna da tabela.

tabela o conteúdo da tabela⁵.

Por exemplo, a Tabela 9.1, inserida com o seguinte comando:

 $\label{lem:local_example} $$ \tilde{E}xemplo de tabela{exemplo}{| c | c |}%$

{\hline

\textbf{Item} & \textbf{Descrição} \\\hline

- 1 & Descrição 1 \\hline
- 2 & Descrição 2 \\hline
- 3 & Descrição 3 \\hline}%

Os comandos para referenciar tabelas são:

\refTab{referência}%

\refTabs{referência inicial}{referência final}%

Onde os argumentos são:

referência nome da referência da tabela.

referência inicial nome da referência da tabela inicial da sequência de tabelas.

referência final nome da referência da tabela final da sequência de tabelas.

Considerando a Tabela 9.1 e também a Tabela 9.3, é possível referenciar a sequência de Tabelas 9.1 a 9.3 com o comando:

\refTabs{exemplo}{exemplo2}%

Algumas vezes deseja-se usar a tabela de uma das referências bibliográficas. Neste caso, utilize o comando:

⁵Mais informações na documentação do ambiente tabular.

Tabela 9.2: Matriz de Decisão de Eisenhower (Fonte: [?]).

	Urgente	Não Urgente
Importante	Crises	Planejamentos
Não importante	Interrupções	Distrações

Tabela 9.3: Outro exemplo de tabela.

#	A	В	Comentário
1	a_1	b_1	comentário 1
2	a_2	b_2	comentário 2
3	a_3	b_3	comentário 3

\tabelaBib{legenda}{bib}{referência}{especificações}{tabela}%

Os argumentos são os mesmos do comando \tabela, acrescidos de:

bib nome da referência bibliográfica que originou a tabela.

Por exemplo, a Tabela 9.2^6 foi gerada com o comando:

Embora estes comandos não "simplifiquem" a inclusão de tabelas, eles certamente facilitam a referência a elas com um padrão uniforme, e nada impede o uso dos comandos padrões.

9.5.5 Abreviaturas e Siglas

Abreviaturas e siglas devem ser definidas no arquivo tex/siglas.tex, e a inserção feita com o comando:

\sigla{sigla}{descrição}%

Onde os argumentos são:

sigla a própria sigla/abreviatura.

 $^{^6{\}rm Vale}$ a pena assistir o vídeo da palestra $\it Time~Management$ de Randy Pausch: http://www.cs.virginia.edu/~robins/Randy/

descrição definição completa do que representa a sigla/abreviatura.

Por exemplo:

\sigla{CIC}{Departamento de Ciência da Computação}%

A inserção de uma sigla/abreviaruta no texto é simples, e pode ser feita de três formas diferentes:

\acrshort{CIC} CIC

\acrlong{CIC} Departamento de Ciência da Computação

\acrfull{CIC} Departamento de Ciência da Computação (CIC)

Capítulo 10

Trabalho de Conclusão de Curso

Este capítulo oferece sugestões para produção de um documento descrevendo um Trabalho de Conclusão de curso...

10.1 UnB

A Universidade de Brasília oferece diversas informações em seu sítio¹. O texto existente em 21/11/2014 é reproduzido a seguir:

Os cursos de graduação, especialização e pós-graduação têm como objetivo formar o aluno e prepará-lo para o exercício profissional. Como avaliação do aprendizado, a universidade exige um projeto que mobiliza os estudantes a colaborar com a pesquisa acadêmica. Desde a escolha do tema até a apresentação do trabalho final, o tempo do aluno é ocupado quase integralmente. Para facilitar a vida desses estudantes, o Portal UnB preparou uma série de dicas de professores especialistas no assunto.

10.1.1 Os tipos

A monografia, a dissertação e a tese são, respectivamente, os trabalhos de conclusão de curso de graduação ou especialização, mestrado e doutorado. A grande diferença é a profundidade exigida no projeto, aumentada de acordo com a importância do título de cada nível acadêmico. Mas, em todos os casos, a pesquisa deve abordar o tema selecionado com coerência, consistência e referencial teórico adequado.

Alguns cursos de graduação não exigem monografia, mas um relatório de estágios realizados, como acontece nas licenciaturas. A metodologia de pesquisar e apresentar resultados se mantém, como é exigido em todo projeto final.

¹http://www.unb.br/oportunidades/projeto_final_de_curso

Uma monografia é, genericamente, um relatório de pesquisa sobre o assunto estudado. É específico a um tema pré-definido dentro de uma área de conhecimento e aborda questões e análises de um problema, a construção de uma teoria ou o desenvolvimento de um produto.

Exigida no mestrado, a dissertação cobra do futuro mestre um conhecimento mais profundo. A pesquisa deve ser o resultado em relatório que representa o trabalho experimental ou exposição científica com um tema bem delimitado, e demonstrar o conhecimento de literatura existente sobre o assunto.

A mais densa entre todos os projetos finais, a tese de doutorado exige mais no que diz respeito a teoria e metodologia do tema pesquisado. Deve apresentar contribuições reais para o desenvolvimento específico da especialidade em questão. A base do estudo demanda uma investigação original.

10.1.2 Teoria e prática

Todo projeto de conclusão de curso exige um relatório escrito baseado em teorias, mesmo que o assunto estudado seja algo prático como uma campanha publicitária ou um projeto arquitetônico. Porém, o inverso não se aplica.

As divisões dos tipos de trabalho variam entre cada área de conhecimento. Em suma, o projeto pode ser teórico, prático ou uma união dos dois. Na primeira situação, o aluno pode fazer estudo de caso - pesquisar sobre um fato histórico ou evento importante - ou formular uma teoria - por meio de pesquisa ou reavaliação das semelhantes.

O projeto prático se dedica a criação e construção de um produto, que pode variar de um novo motor a uma composição musical. O curso de graduação costuma oferecer a opção de um trabalho prático aos alunos. No caso dos cursos de mestrado e doutorado, nem todos os departamentos da universidade dispõem de linhas de pesquisa que permitam um projeto que vá além da teoria acadêmica.

A união dos dois gêneros é comum quando o universitário relata a experiência de estágio ou na simulação de um projeto, como a construção de maquetes ou esquemas computacionais. As opções são vastas e o aluno deve explicar como e o que se deve fazer para que o projeto se torne possível.

10.1.3 Começo do projeto

Parece óbvio, mas muitos alunos esquecem a questão principal na hora de escolher o tema: o assunto deve interessar e estimular a pesquisa. Conviver meses com um tema que não agrada torna o trabalho mais complicado. Porém, escolher um bom tema não é abraçar

e desenvolver sobre tudo que ele \acute{e} e engloba. \acute{E} preciso delimitar o assunto de forma específica.

Um trabalho sobre a história do mundo, por exemplo, está fadado a se tornar superficial. Além de extremamente amplo, é grande o volume de informações a ser levantado e estudado. É importante ter foco para desenvolver um projeto coeso e com credibilidade.

Além disso, o estudante necessita desenvolver um problema e traçar uma hipótese. Em um exemplo bem simples: a Guerra no Iraque (tema) e o terrorismo mundial (problema) – o aumento dos ataques depois da invasão americana (hipótese); ou seja, o que o aluno quer tratar e onde ele espera chegar na pesquisa. A não comprovação da hipótese não inviabiliza o trabalho, desde que o desenvolvimento da análise enriqueça os conhecimentos sobre o tema tratado.

A prática essencial para o desenvolvimento de qualquer projeto é a pesquisa bibliográfica. As consultas às bibliotecas respaldam a parte teórica do estudo e podem elucidar diversas questões, sejam específicas do projeto ou sobre metodologias científicas. Nesse ponto, o papel do professor orientador é fundamental para a condução da pesquisa. Além da seleção dos livros, o docente analisa as melhores possibilidades de desenvolver o assunto, em todas as suas fases. Ele também pode indicar a aplicação de entrevistas e outros elementos de apoio ao conteúdo do projeto.

Atualmente, o meio mais difundido de pesquisa é a Internet. Além de facilitar o acesso a documentos, pela rede é possível saber quanto o tema escolhido já foi objeto de estudo de outros acadêmicos. Mas essa facilidade deve ser utilizada para indicar um caminho.

10.1.4 Estrutura e regras

Antes do próprio trabalho escrito, o estudante deve fazer um projeto ou plano de pesquisa. O documento identifica o que deve ser feito, o porquê, como e onde será realizado o levantamento. Não há um modelo rígido para a apresentação do projeto de pesquisa, mas os seguintes elementos devem ser respondidos no texto:

- 1. Definição do objeto de estudo (tema/problema da pesquisa)
- 2. Justificativa
- 3. Hipóteses de trabalho
- 4. Discussão teórica
- 5. Metodologia
- 6. Pesquisa Bibliográfica

Seja monografia, dissertação ou tese, a parte escrita possui uma estrutura semelhante, embora cada uma tenha características próprias referentes à profundidade do tema estudado.

De acordo com a Associação Brasileira de Normas Técnicas (ABNT), um trabalho acadêmico deve englobar os elementos pré-textuais (como resumo e índice), pós-textuais (bibliografia, anexos, entre outros) e textuais. Esses últimos compõem a parte central do trabalho - introdução, desenvolvimento e conclusão.

A introdução é a parte inicial do texto e deve constar o objeto de pesquisa, os objetivos, a justificativa da escolha do tema e outras informações que sejam necessárias para esclarecer o assunto.

A parte principal do trabalho está concentrada no desenvolvimento. É uma exposição sistematizada e ordenada de toda o estudo desenvolvido, apresentando análise e interpretação das informações e dados obtidos. A conclusão é a etapa final do texto. Nela, são apresentados os resultados tendo como referência os objetivos e hipóteses da pesquisa.

Em todo o trabalho a linguagem utilizada deve ser interessante, sem apelar para a linguagem coloquial. O trabalho deve estar de acordo com as normas da ABNT. Procure livros sobre estrutura e regras do tipo de projeto final específico de seu interesse.

10.1.5 O projeto está pronto. E agora?

Após a finalização do projeto, chega o momento de preparar a apresentação. Em geral, a banca examinadora é formada por três docentes, sendo um deles o professor orientador do projeto. Também é comum aos alunos o direito de escolha dos avaliadores, desde que seja pertinente ao assunto e ao objetivo do estudo.

Esses professores recomendam uma apresentação resumida do projeto, pontuando as características essenciais e como se chegou às conclusões. É sempre bom explicar o cronograma de todo o trabalho. É preciso, também, ficar atento ao tempo. Não é necessário explicar os conceitos já citados no projeto e pode influenciar a nota final. Lembre-se que as explicações são voltadas para os avaliadores, que já leram o seu trabalho.

Durante as considerações da banca examinadora não se deve interromper a avaliação dos professores, exceto quando eles dirigirem diretamente uma pergunta ao aluno. Educação e conhecimento dos procedimentos acadêmicos são essenciais para uma boa apresentação. Após a avaliação, os professores pedem para os presentes se retirarem da sala. É feita uma reunião onde será decidida a nota do projeto.

Cada departamento possui regras e orientações para a apresentação dos trabalhos de conclusão. Cabe ao aluno perguntar à coordenação do curso e ao orientador todas as etapas do processo de elaboração do projeto final.

Capítulo 11

Apresentações

Este capítulo oferece sugestões de como fazer a apresentação do trabalho. Uma apresentação é necessária ao final do curso, é nela que se mostra os resultados obtidos de forma

resumida e, preferencialmente, simplificada. Embora o "verdadeiro" resultado seja o texto

técnico, que de fato representa a contribuição científica obtida, a apresentação serve para

divulgar seus resultados e incentivar outros a se interessarem por seu trabalho.

Falando em Público 11.1

A ideia de uma apresentação não é mostrar todos os detalhes técnicos ou tentar impressionar o público com seu conhecimento. O objetivo é apresentar suas principais ideias de

forma intuitiva, de modo que os presentes entendam o que foi feito e se interessem em

conhecer as minúcias lendo o texto técnico.

Vale lembrar que embora você veja seu trabalho como extremamente interessante,

geralmente seu público [ainda] não acha, e provavelmente têm coisas melhores para fazer...

É preciso atrair e manter a atenção deles, bem como garantir que eles se lembrem do que

foi dito (pelo menos da ideia principal).

Algumas noções importantes:

Motivação: Qual o problema e por que ele merece atenção?

Ideia Principal: Clara e explicitamente especificada.

Exemplos: A melhor forma de passar informações (ilustram motivação, funcionamento,

casos extremos, limitações, etc.).

65

Slides são uma excelente ferramenta **de apoio** ao apresentador, mas muitas vezes tomam vida própria e se tornam o elemento principal. É essencial, embora um pouco difícil, evitar a "morte por Powerpoint".

Existem muitas sugestões para fazer uma boa apresentação², por exemplo, imitar um bom apresentador³, boas práticas na elaboração de slides⁴, como organizar o conteúdo de um slide⁵ (ou mesmo "vida após a morte"⁶). Entretanto, as duas noções mais importantes são: você nunca se prepara demais para fazer uma apresentação, e a única regra de uma apresentação é a de atenção⁷.

Olivia Mitchell sugere as seguintes formas de manter a atenção da platéia⁸:

- 1. Fale sobre algo que interesse a platéia.
- 2. Diga porque deveriam prestar atenção.
- 3. Não apresente algo muito fácil ou muito difícil.
- 4. "Mudanças" prendem a atenção.
- 5. Conte estórias.
- 6. Faça pausas.
- 7. Seja breve.

Demonstrações ao vivo são impressionantes, desde que funcionem corretamente e não evidenciem as limitações do seu trabalho. Lembre-se que eventos importantes são, em sua maioria, regidos pela *Lei de Murphy*.

Por fim, lembre-se que é normal ficar nervoso perante uma platéia, e não há uma cura genérica para este problema. Há muitas sugestões de como lidar com isso⁹, inclusive uma que diz que o problema é você¹⁰. Tente descobrir o que funciona melhor para si (boa sorte!).

 $^{^{1}} http://www.smallbusinesscomputing.com/biztools/article.php/684871/\\ Death-By-Powerpoint.htm$

²https://hbr.org/2014/11/how-to-give-a-stellar-presentation

³https://www.youtube.com/watch?v=2-ntLGOyHw4

⁴https://www.youtube.com/watch?v=Iwpi1Lm6dFo

⁵https://hbr.org/2012/10/do-your-slides-pass-the-glance-test

⁶https://www.youtube.com/watch?v=lpvgfmEU2Ck

 $^{^{7}}$ http://finiteattentionspan.wordpress.com/2009/11/02/the-only-rule-about-giving-presentations-tha

 $^{^8}$ http://www.speakingaboutpresenting.com/content/7-ways-audience-attention-presentation

⁹http://www.wikihow.com/Overcome-Stage-Fright

¹⁰http://seriouspony.com/blog/2013/10/4/presentation-skills-considered-harmful

11.2 BEAMER

A classe BEAMER, disponível no CTAN¹¹, é a recomendada para criar apresentações. Não só possibilita um resultado visualmente interessante, como também aproveita parte do texto escrito em LATEX. O manual¹² oferece instruções sobre o uso da classe e, principalmente, diretrizes para criar apresentações (especialmente as Seções 4 e 5 do Capítulo I).

¹¹http://www.ctan.org/pkg/beamer

¹²http://www.ctan.org/tex-archive/macros/latex/contrib/beamer/doc/beameruserguide.pdf

Referências

- [1] Mark Hudson Beale, Martin T. Hagan, e Howard B. Demuth. Neural Network Toolbox: User's Guide. MathWorks, 2015. 33, 35, 40, 42
- [2] George D. C. Cavalcanti, Luis Filipe A. Pereira, Hector N. B. Pinheiro, Jose Ivson S. Silva, Anderson G. Silva, Thais M. L. Pina, Daniel B. O. Carvalho, e Tsang Ing Ren. A modular architecture based on image quality for fingerprint spoof detection. *IEEE International Conference on Systems, Man, and Cybernetics*, Outubro 2012. 4
- [3] Roger Clarke. Human identification in information systems: Management challenges and public policy issues. *Information Technology and People*, 1994. 1
- [4] Luciano R. Costa, Rafael R. Obelheiro, e Joni S. Fraga. Introdução à biometria. In Livro-texto dos Minicursos, VI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, pages 103–151. SBSeg, 2006. 1, 4
- [5] Rafael C. Gonzalez e Richard E. Woods. *Digital Image Processing*. Prentice Hall, second edition, 2002. 17, 18, 19, 21
- [6] Di Huang, Caifeng Shan, Mohsen Ardebilian, Yunhong Wang, e Liming Chen. Local binary patterns and its application to facial image analysis: A survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2011. 24
- [7] Anil Jain, Brendan Klare, e Arun Ross. Guidelines for best practices in biometrics research. 8th IAPR International Conference on Biometrics, 2015. 1, 3
- [8] Anil Jain e Sharath Pankanti. Fingerprint classification and matching. In *HAND-BOOK FOR IMAGE AND VIDEO PROCESSING*. Academic Press, 2000.
- [9] Anil K. Jain, Arun Ross, e Salil Prabhakar. An introduction to biometric recognition. *IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNO-LOGY*, 14(1), Janeiro 2004.
- [10] Hongliang Jin, Qingshan Liu, Hanqing Lu, e Xiaofeng Tong. Face detection using improved lbp under bayesian framework. Multi-Agent Security and Survivability, 2004 IEEE First Symposium on, 2004. 25
- [11] Ruggero Donida Labati, Angelo Genovese, Vincenzo Piuri, e Fabio Scotti. Touchless fingerprint biometrics: a survey on 2d and 3d technologies. *Journal of Internet Technology*, 15(3):325–332, May 2014. 1607-9264. 4, 7

- [12] K. Levenberg. A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 1944. 42
- [13] K. Madsen, N.B. Nielsen, e O. Tingleff. Methods for nonlinear least squares problems. Technical report, Technical University of Denmark, 2004. 42
- [14] Sébastien Marcel, Mark S. Nixon, e Stan Z. Li. *Handbook of Biometric Anti-Spoofing:* Trusted Biometrics under Spoofing Attacks. Springer-Verlag London, 2014.
- [15] Sébastien Marcel, Yann Rodriguez, e Guillaume Heusch. On the recent use of local binary patterns for face authentication. INTERNATIONAL JOURNAL OF IMAGE AND VIDEO PROCESSING, SPECIAL ISSUE ON FACIAL IMAGE PROCESSING, 2007. 24
- [16] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

 Journal of the Society for Industrial and Applied Mathematics, 1963. 42
- [17] Shahzad Ahmed Memon. Novel Active Sweat Pores Based Liveness Detection Techniques for Fingerprint Biometrics. PhD thesis, Brunel University, Abril 2012.
- [18] Benjamin Miller. Vital signs of identity. IEEE Spectrum, 1994. 1
- [19] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, August 2015. 30, 34
- [20] Timo Ojala, Matti Pietikäinen, e Topi Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 2002. 23
- [21] Nalini K. Ratha e Venu Govindaraju. Advances in Biometrics: Sensors, Algorithms and Systems. Springer-Verlag London Limited, 2008. 10, 11
- [22] Ctirad Sousedik e Christoph Busch. Presentation attack detection methods for fingerprint recognition systems: a survey. *IET Biometrics*, 3, Dezembro 2014. 7
- [23] Vishal S.Thakare, Nitin N. Patil, e Jayshri S. Sonawane. Survey on image texture classification techniques. *International Journal of Advancements in Technology*, 2013. 25
- [24] Elham Tabassi, Charles L. Wilson, e Craig I. Watson. Fingerprint Image Quality. National Institute of Standards and Technology, 2004.
- [25] James Wayman, Anil Jain, Davide Maltoni, e Dario Maio. Biometric Systems: Technology, Design and Performance Evaluation. Springer-Verlag London Limited, 2005.
- [26] Caue Zaghetto, Alexandre Zaghetto, Flávio de B. Vidal, e Luiz H. M. Aguiar. Touchless multiview fingerprint quality assessment: Rotational bad-positioning detection using artificial neural networks. *Biometrics (ICB)*, 2015 International Conference on, pages 394 – 399, May 2015. xi, 9

[27] Guoqiang Peter Zhang. Neural networks for classification: A survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 30:451 – 462, 2000. 28

Apêndice A Fichamento de Artigo Científico

Fichamento de Artigo Científico

Prof. Guilherme N. Ramos

Um fichamento reúne elementos relevantes do conteúdo, apresentando a estrutura do texto, e deve seguir a seqüência do pensamento do autor, destacando suas ideias, argumentos, justificativas, exemplos, fatos, etc.

1 Artigo Científico

Geralmente, um artigo científico é escrito com a seguinte estrutura (buscando responder algumas questões):

I. Introdução

- Qual o contexto do problema? (O que? Onde? Quando?)
- Qual a principal questão ou problema colocado? (Por quê? Como? Qual?)
- Qual o objetivo visado? O que se pretende constatar ou demonstrar? (investigar, analisar, refletir, contribuir,...)

II. Referencial Teórico

- Quais são os autores/teorias/conceitos que já estudaram os principais assuntos abordados e que sustentam ao texto?
- Quais os resultados mais recentes relacionados a eles?

III. Metodologia/Desenvolvimento

- Quais os procedimentos metodológicos adotados? (natureza do trabalho: empírico, teórico, histórico) (coleta de dados: questionário, entrevista, levantamento bibliográfico).
- Como a pesquisa foi desenvolvida? Quais as principais relações entre teoria e prática?
- Havendo artefato proposto, ele está disponível para utilização e/ou modificação?

IV. Resultados

- Houve validação (por meio de experimentação)? Como foi feita?
- Os resultados obtidos são corretos/válidos?

V. Conclusões

- Qual o problema atacado?
- Quais os resultados obtidos para os objetivos propostos?
- Quais conclusões podem ser tiradas destes resultados?
- Quais as limitações da metodologia utilizada?
- Quais as possibilidades de trabalhos futuros para o problema?

2 Fichamento

Neste contexto, um fichamento deve conter a seguinte estrutura:

- 1. *Identificação do aluno:* indicação precisa de quem é o autor do fichamento.
- 2. *Identificação do texto:* indicação precisa de quem são os autores do texto analisado e dos detalhes do documento, de modo que se possa buscá-lo para uma leitura completa.
- 3. **Pontos-chave:** noções mais relevantes do texto analisado. *Proposta* (o que é apresentado?), *mérito* (por que é relevante?), *validação* (como verificar a utilidade?), e *perspectivas* (o que pode ser melhorado?).
- 4. *Palavras-chave:* expressões que identificam o assunto abordado.
- 5. **Sinopse do texto:** resumo com suas palavras. Deve ser mais detalhado que um abstract, geralmente apresentando pelo menos um parágrafo por seção do texto original. No caso de inclusão de trechos, o texto deve ser identificado entre "aspas" e concatenado através de suas próprias palavras.
- 6. **Análise crítica:** posicionar-se em relação as seguintes questões: pertinência do assunto; forma como foi abordado; comparação com outras abordagens do mesmo assunto (caso conheça). Junto ao *resumo*, é a parte mais interessante para o leitor, pois apresenta uma avaliação do conteúdo apresentado.

2.1 Exemplo

- 1. *Identificação do aluno:* Alan Mathison Turing, 00/000000
- 2. *Identificação do texto:*Guilherme N. Ramos, Yutaka Hatakeyama, Fangyan Dong, and Kaoru Hirota, Hyperbox clustering with Ant Colony Optimization (HACO) method and its application to medical risk profile recognition, Applied Soft Computing, Vol. 9, Issue 2, pp 632-640, 2009. (doi:10.1016/j.asoc.2008.09.004)
- 3. Pontos-chave:

Proposta: HACO - método para aglomeração de dados utilizando hipercaixas com posicionamento otimizado via algoritmo de colônia de formigas.

Mérito: apresenta uma nova forma de fazer agrupamentos considerando a topologia do espaço de dados e fornecendo resultados intuitivos e facilmente utilizáveis.

Validação: comparação com algoritmos conhecidos em testes com dados padrões e com dados de infecção viral para diagnóstico auxiliado por computador.

Perspectivas: adequação das dimensões das hipercaixas, diminuição de parâmetros.

4. *Palavras-chave*: colônia de formigas, hipercaixa, otimização, reconhecimento de padrões.

5. Sinopse do texto: A Colônica de Formigas (ACO) é um método de otimização que pode ser utilizado para agrupar dados. Hyperbox clustering with Ant Colony Optimization (HACO) é um método de agrupamento que utiliza ACO tentar posicionar hipercaixas no espaço de forma a agrupar a maior quantidade de dados possível, e ainda gera uma forma simples de classificar novos dados.

ACO é baseado no comportamento de formigas reais, que otimizam o caminho percorrido entre o alimento e o formigueiro. Hipercaixas definem de forma muito simples uma região em um espaço n-dimensional, combinadas para definir regiões de topologia complexa, e utilizadas como um classificador de forma trivial.

HACO busca encontrar uma partição de dados, efetivamente definindo grupos. Primeiro, aplica ACO para tentar posicionar hipercaixas de forma que estas contenham a maior quantidade possível de dados. A seguir, se não há conhecimento prévio da quantidade de classes, considerase que as hipercaixas que se sobrepõem representam uma mesma classe de dados, e [grupos de] hipercaixas distintas representam classes diferentes. Caso o número de classes seja conhecido, HACO aplica o algoritmo Nearest-neighbor (NN) para definir a quantidade correta de grupos. Uma consequência de se usar hipercaixas é que o resultado do agrupamento define também um classificador: se um novo dado está dentro de uma hipercaixa, sua classe será a mesma da definida por esta hipercaixa.

Os resultados experimentais de HACO fora, comparados a três algoritmos que têm o mesmo fim: testado em NN, Fuzzy C-Means (FCM), e o próprio ACO (com uma abordagem diferente para agrupamento). O primeiro teste foi em conjuntos de dados sintéticos, e serviu como prova de conceito, oferecendo diversas informações sobre o comportamento do método em função de certas configurações. Um segundo experimento foi realizado com dados reais de pacientes para agrupá-los em "saudáveis" e "não saudáveis", e HACO obteve o melhor resultado dentre os algoritmos testados. A análise da estrutura do classificador gerado possibilita descobrir informações relativas às características das classes, indicando um "perfil de risco" para os pacientes.

Foi apresentado o método HACO para agrupar dados, utilizando a meta-heurística ACO e hipercaixas, que possibilita a extração de informações inerentes a estrutura dos dados. HACO foi validado com experimentos, e demonstrou grande potencial. Os resultados são muito influenciados pela configuração dos parâmetros, que será investigada.

6. Análise crítica: Este é o melhor artigo de todos os tempos. O artigo apresenta uma forma inovadora de agrupar dados, de forma não-supervisionada (embora possa aproveitar informações se houver). O resultado pode ainda ser utilizado como classificador de novos dados, e - o mais interessante - analisado para descobrir informações sobre as classes. Além disso, explora as vantagens de cada elemento que compõe o método, obtendo melhores resultados e diminuindo o custo computacional. A aplicação em um caso real, cujos resultados podem ser utilizados para auxiliar o diagnóstico de pacientes, dá mais destaque ao trabalho.

O problema de agrupamento de dados é muito pertinente e, em tempos de excesso de dados, a possibilidade de análise intuitiva da estrutura e descoberta de conhecimento é bastante interessante. Além disso, a solução proposta é de uso geral, oferecendo mais possibilidades de uso.

Os experimentos realizados foram coerentes e suficientes para demonstrar o que foi afirmado. Entretanto, o método só foi comparado a outros algoritmos simples, seria interessante uma comparação com algoritmos mais avançados, bem como específicos para aplicação. A comparação também foi em uma única aplicação específica, seria mlehor que houvesse mais testes com outros dados para conclusões melhor embasadas. Além disso, é preciso uma análise mais profunda quanto às configurações de HACO, que influenciam muito o resultado.

Anexo I

Documentação Original UnB-CIC (parcial)

```
% -*- mode: LaTeX; coding: utf-8; -*-
: unb-cic.cls (LaTeX2e class file)
%% Authors : Flávio Maico Vaz da Costa
                                             (based on previous versions by José Carlos L. Ralha)
%% Version : 0.96
\hfill 
%%
                               : 0.75 [04/04/2005] - Fixed font problems, UnB logo
%%
                                                                                            resolution, keywords and palavras-chave
%%
                                                                                            hyphenation and generation problems,
%%
                                                                                            and a few other problems.
                               : 0.8 [08/01/2006] - Corrigido o problema causado por
%%
%%
                                                                                            bancas com quatro membros. O quarto
%%
                                                                                            membro agora é OPCIONAL.
%%
                                                                                            Foi criado um novo comando chamado
%%
                                                                                            bibliografia. Esse comando tem dois
%%
                                                                                            argumentos onde o primeiro especifica
%%
                                                                                            o nome do arquivo de referencias
%%
                                                                                            bibliograficas e o segundo argumento
%%
                                                                                            especifica o formato. Como efeito
%%
                                                                                            colateral, as referências aparecem no
%%
                                                                                            sumário.
%%
                               : 0.9 [02/03/2008]
                                                                                      - Reformulação total, com nova estrutura
%%
                                                                                            de opções, comandos e ambientes, adequação
%%
                                                                                            do logo da UnB às normas da universidade,
%%
                                                                                            inúmeras melhorias tipográficas,
```

%%	aprimoramento da integração com hyperref,
%%	melhor tratamento de erros nos comandos,
%%	documentação e limpeza do código da classe.
%%	: 0.91 [10/05/2008] - Suporte ao XeLaTeX, aprimorado suporte para
%%	glossaries.sty, novos comandos \capa, \CDU
%%	e \subtitle, ajustes de margem para opções
%%	hyperref/impressao.
%%	: 0.92 [26/05/2008] - Melhora do ambiente {definition}, suporte
%%	a hypcap, novos comandos \fontelogo e
%%	\slashedzero, suporte [10pt, 11pt, 12pt].
%%	Corrigido bug de seções de apêndice quando
%%	<pre>usando \hypersetup{bookmarksnumbered=true}.</pre>
%%	: 0.93 [09/06/2008] - Correção na contagem de páginas, valores
%%	load e config para opção hyperref, comandos
%%	\ifhyperref e \SetTableFigures, melhor
%%	formatação do quadrado CIP.
%%	: 0.94 [17/04/2014] - Inclusão da opção mpca.
%%	: 0.95 [06/06/2014] - Remoção da opção "mpca", inclusão das opções
%%	"doutorado", "ppginf", e "ppca" para identificar
%%	o programa de pós-graduação. Troca do teste
%%	@mestrado por @posgraduacao.
%%	: 0.96 [24/06/2014] - Ajuste do nome do curso/nome do programa.
%%	