Mi: Mère année; Résuré d'Algébre. Chapo: Un peu de logique I - Proposition (pp) logique: . The pp est un Evence don't on p est dire s'itest visiglance ex: 3, -18 66 (AA=0) / XEW DE - Calcul propositionnel; Soient p, q 2 pp données = de Négation: P expres >15, p: Ja <15. -des connecteurs logiques 1 conjunction: - pet q, on vote p 1 q - prop est viaie est p, q sont viaies simultanément. & Disjonction: - pou q, on note pvq - pvq est fausse ssi p, q sont fausses simultanément. 3_ 1 implication: Mp., alors .q., on vote p=q plisses - P=>9 = PV9 -P=> q out fames es pest wai et quit fames. 4-d'équi volence:-p > 9 (p=>919=>p). - Tableau de virété: Waie = 4 fourse 0).

9	9	PAq	pvq	P	PM9
1	1	1	7	1	4
7	0	D	1	0	•
0	1	0	1	1	0
0	0	ō	0	1	1

II - Predicat (but proposition melle): - C'est un énvoucé qui contient une on plus variables, tel que sion donne aux variables des voleurs, en obtient des potions - Quant fricateurs: - des quantificateur transforment le prédicata une pption.

* Règles de Négation: p, q deux pption: PAG = PVG.

(PG) = PKG - PAG = PKG

(PG) = PKG - PAG = PKG

(PG) = PKG - PAG = PKG

(AG) = PKG - PAG = PKG

(AG) = PKG - PAG = PKG

(AG) = PKG - PKG = PKG

(AG) = PKG - PKG

(AG) = PKG - PKG

(AG) = PKG - PKG

(AG) = PKG

(AG) = PKG - PKG

(AG) = Methodes de raisonnement: Un exercice: hy pothéses (p) => Resultats à démostrar (a) o de dément ration déserte démosé de p'et arrivé à "a". au lieu de démentrer p-ra en démentre que q= p. absurde on suppose que A=0 (A=1) et en avive à une contradiction. A whoir _ contradiction. P= 196>PAG On présente un ex qui le met a défaut. · la récurence: - elle est réservé pour les prop dans M. - étape 1: véri fier les propriétes (pour 1, 1,1). -étape à : Suppos en que la prop est viair à l'ordine M(n), et Montrer qu'elle reste vrai à l'ordre M(n+1).

www.exomaroc.com: MIHAD

2

Chop I: Ensembles-Relations-Applications: 1. Ensembles d'entende Oli antende * Relations entre ensembles: 1. Inclusion: E est incluy dans F si bous les éléments de E sont dons F. mothinal quest ECF = (Yx:xEE -> xEF) - proprietes. QCE/ECE/ECFAFCG => ECG. 2- Egglité: E estégodàF si ECFAFCE. walk (E=F) = (ECFXFCE) = (Ax.xEE =>xeF) * Opération sur les ensembles: (1) Intersection " (": ANB est l'ensemble des elements communes ANB = IN/xEAN xEBG Rem: si A MB = \$, on dit que A et B sont disjoints 2 Réllnion "U": A union B est l'ens = {x/xEAV xEBf. preprietes de act U: . A = ØUA . · AUA=A/ANA=A $\phi = \phi \cap A$. . AUB=BUN/AUB=BUA · AUBUC = (AUBUC = AUBUC) . ANBNC = (ANB)NC = AN(BNC). · An (BUC)=(ANB) U(ANC) . AU(BNC)=(AUB) N(AUC). 3 Difference A-B(A/B)= fx/xeA1x & Bf PPTES: A-Q=A/Q-A=Q/A-A=Q+0/(A-B + B-A). (4) Difference synetrique: A. della A &B = (A-B) U(B-A) = (AUB) - (A NB).

www.exomaroc.com: MIHAD

* Ensemble desPosties d'un ensemble: , le etter - A est une partie de E si ACE _ d'ens desparties de E est: P(E) = {A/ACE} (toute les partiente E) * Complementaire d'une partie: Euneus, A une postre de E, On appolle Compl de Adaus E l'ens: CEA= { x/xeE xx & Af =E-A(xeCeA => x & A) prepriétés: E ens : A.B: des ponties de E: · CO=E/GE= 0/E(CEA)=A. · ANCA = \$ / AUGA=E. · Regles de Holgan) LE (AUB) = CEAMS CEB -CE(AMB)=CAUCEB * Produit Cartesien: ExF={(a,b)/acEnbeFf Complet ordonné (a 100 composante du comple, 6 2 en comp) - EXF + FXE / On note EXE pour E. -ExEx.xE = TE ExEx.xE = E - Les géméral 11

www.exomaroc.com: MIHAD

Tar Ay- But to the But to Aye Bit h

美国门口证的国际国际

2_ Robbiens

* Une relation entre E. F (ensemble) est une régle qui permet d'associer aux elts de E des elts de F.

On lavota: a Rb: a est en sel avec b.

* Geroiphe d'une ral:

Go= {(a,b) EExF/aRb}

* Relations binaîre (Propriétés): alb

C'est une ral définie entre les ells de même ens.

reflixive	Symetrique	Franklive	antisymetrique
VacE:	Ya,beE: aRb⇔bRa	Ya,b,ce E: aRbAbRc ⇒aR	Ya,b eR aRbnbRa⇒a=b
Q	a ->b	a	

· Kelotion d'équipalence: P est une ral d'exprisoner si elle est: rafle + syn + trais. - Classe d'équivelence

C'est l'ess. a= fxeE/nRal.

· Kelston d'eribre Rest une red d'ordre si elle est: refl , trans + antigen. - On dit que l'erate est total si: Y a, DE E: aRbybRa et i) est partiel si: Jaibe E: a Rb Ab Ra.

www.exomaroc.com: MIHAD

3_ Applications: d'associon à chaque elles de Eunseil elle de F. * Egalité de deux app: &=g & E=E x F=F; Yx: flx=qix) * Image directe d'une partie A: P(A) "cut P: E - F (une appl) / ACE; & (A) = } f(m) / x e A; & (A) CF * Image reciproque de B: 6 2(B) B.EJF/BCF 6-4(B) = FREE/ fry EBJ; 6-4(B) CE * do Composition des applications: P.E -F ; g. F ->G do composee de fetgest: him = g(fin) = gofin: (of compose a). 4 Mapphietes d'une app: · injective ValocE: fraj= (6)=00= b. do negation: I a, b E E: f(a)=f(b) A a + b. · surjective: YyeF: 3? x EE: y= f(x) . Notion de Bijection: flaij => fing + & surj

www.exomaroc.com: MIHAD