

## Plano de Ensino

Curso: Engenharia de Controle e Automação

Componente Curricular: Cálculo numérico

Período de Execução: 2020.1

Professor (es): Hilário Tomaz Alves de Oliveira

Período Letivo: 4º Período

Carga Horária: Aulas Previstas: 60h Teoria: 40h Prática: 20h

#### **OBJETIVOS**

### Geral:

 Compreender a aplicação de métodos numéricos à solução de problemas de Engenharia.

### **Específicos:**

- Encontrar numericamente a raiz de funções reais;
- Resolver numericamente sistemas de equações lineares;
- Realizar numericamente aproximação de funções;
- Resolver numericamente equações diferenciais;
- Resolver numericamente integrais.

### **EMENTA**

- Introdução ao Matlab/Octave;
- Estudo sobre erros em aritmética de ponto flutuante;
- Cálculo de raízes reais de funções reais por métodos numéricos;
- Resolução numéricas de sistemas de equações lineares;
- Aproximação numérica de funções;
- Integração numérica;
- Resolução de equações diferenciais ordinárias por métodos numéricos.

## PRÉ-REQUISITOS OU CO-REQUISITOS (SE HOUVER)

O aluno deve ter cursado todas as disciplinas de Cálculo e de Álgebra Linear.

| CONTEÚDOS PROGRAMÁTICOS                    | CARGA<br>HORÁRIA |
|--------------------------------------------|------------------|
| Introdução ao Matlab/Octave                | 6                |
| <ul> <li>Variáveis e operações;</li> </ul> | 0                |

| <ul> <li>Regras para nomeação de variáveis;</li> </ul>             |    |
|--------------------------------------------------------------------|----|
| Ordem dos cálculos;                                                |    |
| <ul> <li>Funções matemáticas;</li> </ul>                           |    |
| <ul> <li>Criação de scripts e funções;</li> </ul>                  |    |
| <ul> <li>Declaração de funções anônimas;</li> </ul>                |    |
| <ul> <li>Declaração de condições e ciclos condicionais;</li> </ul> |    |
| <ul> <li>Estruturas de repetição.</li> </ul>                       |    |
| Estudo sobre erros em aritmética do ponto flutuante                |    |
| Erro absoluto e relativo;                                          | 6  |
| Truncamento e arredondamento;                                      | O  |
| Aritmética do ponto flutuante.                                     |    |
| Cálculo das raízes reais de equações não lineares por              |    |
| métodos numéricos                                                  |    |
| <ul> <li>Método da Bissecção;</li> </ul>                           |    |
| <ul> <li>Método da Posição falsa;</li> </ul>                       | 10 |
| Método do Ponto fixo;                                              |    |
| <ul> <li>Método do Newton Raphson;</li> </ul>                      |    |
| Método da Secante.                                                 |    |
| Resolução de sistemas de equações lineares                         | 10 |
| Métodos exatos                                                     |    |
| <ul> <li>Método de eliminação de Gauss;</li> </ul>                 |    |
| Métodos iterativos                                                 |    |
| <ul> <li>Método iterativo de Gauss-Seidel;</li> </ul>              |    |
| <ul> <li>Método iterativo de Gauss-Jacobi.</li> </ul>              |    |
| Aproximação de funções                                             | 8  |
| <ul> <li>Interpolação polinomial</li> </ul>                        |    |
| Mínimos quadrados                                                  |    |
| Integração numérica                                                | 8  |
| Regra dos Trapézios                                                |    |
| Regra 1/3 de Simpson                                               |    |
| Resolução de equações diferenciais ordinárias por                  | 12 |
| métodos numéricos                                                  |    |

- Equações diferencias e o problema do valor inicial;
- Método do Euler;
- Método do Euler Estendido;
- Métodos de Runge-Kutta;

TOTAL 60h

### **ESTRATÉGIAS DE APRENDIZAGEM**

- Aulas expositivas do conteúdo teórico.
- Aulas em laboratório com atividades práticas referentes aos conteúdos abordados usando as ferramentas Octave/Matlab.
- Aulas de exercícios para revisão da teoria e prática.
- Atendimento individualizado.

## RECURSOS DIDÁTICOS

- Pincel;
- Quadro branco;
- Datashow;
- Material didático (Livros, sites da internet, entre outros).
- Ferramenta Octave/Matlab.

## **AVALIAÇÃO DA APRENDIZAGEM**

#### Critérios:

A nota do semestre (NS) é a somatória das notas obtidas pelo estudante nos cincos instrumentos de avaliação (P1 + P2 + LE + TG).

NS = P1 + P2 + LE + TI

Para aprovação na disciplina, a nota do semestre tem de ser maior ou igual a 60,00 pontos e a frequência às aulas tem de ter sido de no mínimo 75%.

Os estudantes que não tiverem atingido o mínimo de 60,00

### Instrumentos:

A nota do semestre (NS) é a A verificação de aprendizagem será feita somatória das notas obtidas pelo por meio de quatro (4) instrumentos:

- Duas provas individuais (P1 = 35,00 pontos e P2 = 35,00 pontos);
- Listas de Exercícios Individuais (LE
   = 15,00 pontos); e
- Trabalhos de Implementação em grupo (TI = 15,00 pontos).

pontos, mas tiverem o mínimo de 75% de presença deverão ser submetidos a uma Prova Final (PF = 100,00 pontos), de acordo com o calendário acadêmico do Ifes Campus Serra. Neste caso, a nota final do aluno (NF) será dada pela média aritmética da nota do semestre e da prova final.

• NF = (NS + PF) / 2

Estará aprovado o aluno que obtiver nota final maior ou igual a 60,00 pontos (NF >= 60,00).

# AÇÕES PEDAGÓGICAS ADEQUADAS ÀS NECESSIDADES ESPECÍFICAS

Não se aplica.

# BIBLIOGRAFIA BÁSICA (Título. Periódicos, etc.)

| Autor             | Título            | Edição         | Local     | Editora | Ano  |
|-------------------|-------------------|----------------|-----------|---------|------|
| Cálculo Numérico  | Márcia Ruggiero e | 2 <sup>a</sup> | São Paulo | Pearson | 2008 |
|                   | Vera Lúcia Lopes  |                |           |         |      |
| Cálculo Numérico: | Selma Arenales e  | <b>1</b> a     |           | Thomson | 2007 |
| Aprendizagem      | Artur Darezzo     |                |           |         |      |
| com apoio de      |                   |                |           |         |      |
| software          |                   |                |           |         |      |
| Cálculo Numérico  | Neide Bertoldi    | 1 <sup>a</sup> | São Paulo | Pearson | 2009 |
|                   | Franco            |                |           |         |      |

# **BIBLIOGRAFIA COMPLEMENTAR (Título. Periódicos, etc.)**

| Autor                              | Título             | Edição                | Local     | Editora | Ano  |
|------------------------------------|--------------------|-----------------------|-----------|---------|------|
| Cálculo numérico                   | D. M. Cláudio e J. | 3 <sup>a</sup>        | São Paulo | Atlas   | 2000 |
| computacional:<br>teoria e prática | M. Marins.         |                       |           |         |      |
| Cálculo Numérico                   | Leônidas           | <b>2</b> <sup>a</sup> | São Paulo | Editora | 1987 |

| (Com Aplicações)   | Conceição          |                | Harbra   |      |
|--------------------|--------------------|----------------|----------|------|
|                    | Barroso e outros   |                |          |      |
| Cálculo numérico   | DORN, W, S.;       | 1 <sup>a</sup> | Campus   | 1978 |
| com estudos de     | McCRACKEN, D.      |                |          |      |
| casos em           | D.                 |                |          |      |
| FORTRAN IV         |                    |                |          |      |
| Applied Numerical  | Won Y. Yang        | 1 <sup>a</sup> | John     | 2005 |
| Methods Using      | Wenwu Cao          |                | Wiley &  |      |
| MATLAB             |                    |                | Sons     |      |
| An Introduction to | S.R. Otto and J.P. | 1 <sup>a</sup> | Springer | 2005 |
| Programming and    | Denier             |                |          |      |
| Numerical          |                    |                |          |      |
| Methods            |                    |                |          |      |
| in MATLAB          |                    |                |          |      |