Grids Computacionais

- Conceituação
- Características
- Aplicações
- Infraestrutura
- Produtos
- Exemplos

Conceituação

- Definição
 - O grid é uma coleção de recursos computacionais e de comunicação utilizados para execução de aplicações
 - Usuário vê o grid como uma entidade única
- Origem do nome:
 - O termo Computational Grid é inspirado no conceito de Power Grid, termo que designa o sistema de geração e distribuição de energia
 - Termo cunhado por Ian Foster em 1998

Conceituação

- Composição
 - Grids são compostos por recursos heterogêneos, reunindo desde clusters e supercomputadores até desktops e dispositivos móveis
- Elementos
 - Nó mestre (eventualmente replicado)
 - Nós de execução
 - Nós de submissão
- Interligação
 - Rede pública de larga escala: Internet!

Conceituação

	Ambiente distribuído convencional	Grid
1	um conjunto virtual de nodos computacionais	um conjunto virtual de recursos
2	um usuário tem acesso a todos os nodos do conjunto	um usuário tem acesso ao conjunto mas não aos sítios individuais
3	acesso a um nodo significa acesso a todos os recursos do nodo	acesso a um recurso pode ser
4	um usuário tem conhecimento das características do nodo	um usuário tem pouco conhecimento sobre cada sítio
5	nodos pertencem a um mesmo domínio administrativo	recursos se espalham por múltiplos domínios administrativos
6	elementos no conjunto: 10-100, praticamente estático	elementos no conjunto: 1000- 10000, dinâmico

Características

- Pervasividade
 - O grid está disponível em todo lugar; basta plugar e usar (assim como a rede elétrica)
- Visão uniforme dos recursos computacionais
 - O usuário executa uma aplicação no grid, sem saber quais serão os nós envolvidos
- Armazenamento remoto de dados
 - Dados do usuário podem ser armazenados de modo transparente e confiável no grid

Caracterísiticas

- Nova abordagem para solução de problemas / execução de aplicações
 - O uso de recursos remotos é a regra, e não a exceção
- Computação distribuída de larga escala
 - É comum que os nós estejam distribuídos em diferentes países

Aplicações

Infraestrutura

Infraestrutura

Collaborative On-line High-energy physics data engineering instrumentation Applications analysis Regional Parameter climate studies studies Distributed Collab. Remote **Application** computing design control Toolkit Layer Data-Remote intensive viz Information Resource mgmt Grid Services Layer Security Data access Fault detection Transport Multicast Grid Fabric Layer *Instrumentation* Control interfaces QoS mechanisms

Infraestrutura

- Middleware para gerenciamento do Grid
 - Gerencia todo o funcionamento do grid, desde a descoberta, alocação e reserva de recursos, até controle de acesso, detecção de falhas, manutenção de registros de utilização, etc.
 - Fundamentado em tecnologias já existentes e amplamente disponíveis
 - Comunicação: protocolos da Internet / Web
 - Software: tecnologia de Web Services

- Globus Toolkit
 - Mantido pela Globus Alliance (http://www.globus.org)
 - Gratuito e de código aberto
 - Baseado nos seguintes padrões e tecnologias:
 - Open Grid Services Architecture (OGSA)
 - Web Services (SOAP, WSDL, Web Service Resource Framework, WS-Management)
 - Job Submission Description Language (JSDL)
 - Distributed Resource Management Application API (DRMAA)
 - Grid Security Infrastructure (GSI)

SGE (Sun Grid Engine)

SGE (Sun Grid Engine)

Exemplos

- Iniciativas Mundiais
 - Large Hadron Collider (LHC) Computing Grid: http://lcg.web.cern.ch/

TeraGrid:
http://teragrid.org

Exemplos

- Iniciativas Mundiais (cont.)
 - Network for Earthquake Engineering Simulation (NEES): http://www.nees.org
 - cancer Biomedical Informatics Grid (caBIG):
 https://cabig.nci.nih.gov/
 - World Community Grid:
 http://www.worldcommunitygrid.org/
- Iniciativas Nacionais
 - LNCC Grid: http://www.portalgrid.lncc.br/
 - OurGrid (UFCG): http://www.ourgrid.org/