

Network Flow Longest Paths Backtracking DFS

Network Flow

 What is the maximum total flow/traffic/capacity possible from node A to node D?

Maximum Flow problem

- Given
 - a directed weighted graph ie, edges labeled with positive numbers = "capacity"
 - a source node and a sink node
- Find
 - a positive flow on each edge that maximises the total flow out of the source such that
 - flow on any edge is at most the capacity of the edge
 - net flow into any node = net flow out of the node except for source and sink nodes.
- Some solutions:
 - Ford-Fulkerson Algorithm
 - Edmonds–Karp algorithm (= Ford-Fulkerson but using BFS)
 - Dinitz blocking flow algorithm
 - Push-relabel maximum flow algorithm (and variations)

1

Edmonds-Karp / Ford-Fulkerson

- Key idea:
 - Each edge $u \rightarrow v$ has a capacity cap(u, v)
 - For every edge $u \to v, \,$ where there is no edge $v \to u \,$ then add a phantom edge $v \to u \,$ with capacity 0
 - Add a flow (=0) for each edge (and phantom edge):
 - flow(u,v) = flow(v,u)
 - for each edge (including all the phantom edges):
 - Remaining-capacity(edge) = capacity(edge) flow(edge)
 - Repeatedly
 - find a path from source to sink with non-zero remaining capacity on each edge of the path
 - find minCap, the smallest remaining-capacity edge along the path
 - add minCap to the flow of each edge on the path

Example

(From Wikipedia)

black = capacity, red = flow

Example

(From Wikipedia)

black = capacity, red = flow,

(green) = remaining capacity

BreadthFirstSearch (flow)	
for each node,	
initialise parent(node) ← null // record queue.enqueue (source) while queue is not empty	remaining capacity on the edge from node to neighbour.
node ← queue.dequeue	neighbour.
for each neighbour node	
<pre>if parent(neighbour) = null && remainingCap(node, neighbour) > 0</pre>	
parent(neighbour) ← node	_
<pre>if neighbour = sink return makePath(sin</pre>	Constructs path back
else queue.enqueue(neighbour)	from sink to source,
return null // failed to find a path.	using parent links.

Ford – Fulkerson repeatedly find "augmenting" paths. doesn't specify how to find the next path to add. there are cases where it is very slow, or even doesn't terminate!

• Edmonds – Karp

- = Ford - Fulkerson, but using Breadth First search to find next path

- O(NE²) (#nodes x #edges²)

Network Flow Algorithms.

Push-relabel

- pushes flow out from source, like fluid flow.

- O(N²E)

Push-relabel with dynamic trees

- O(NE log (N² / E))

Orlin's algorithm (2012)

- O(NE)

Longest Paths: Backtracking DFS Initialise: longestpath ← null, maxLength ← 0, ∀ nodes: unvisit(node) visit(start) recDFS(start, 0, null) recDFS (node, pathLength, path): for each edge from node neighbour ← edge.other, newLength ← pathLength +edge.length if neighbour = goal then if newLength ← newLength longestPath = path else if not visited(neighbour) then visit(neighbour) recDFS(neighbour, newLength, append(neighbour, path) unvisit(neighbour)

```
Longest Paths: Backtracking
   Initialise: fringe ← new Stack / Queue / PriorityQueue
             longestpath ← null, maxLength ← 0,
   push (start, null, 0) onto fringe
   while fringe not empty
        ⟨node, path , pathLength⟩ ← pop fringe
       for each edge from node
            neighbour ← edge.other,
            newLength ← pathLength +edge.length
            if neighbour = goal then
                if newLength > maxLength then

maxLength ← newLength
                                                                     Use path
                                                                     to avoid
                   longestPath = path
                                                                     cycles
            else if neighbour not on path then
               push (neighbour, cons(neighbour, path ) , newLength ) onto fringe
```

Options for General Graph Search Is the graph explicit or implicit — can be hard to record visited with implicit graphs keep track of paths or not — If only want to find a node, then don't record path visit only once or backtrack — visit only once only considers first path to a node ⇒ search constructs a tree — backtrack considers all paths to a node ⇒ search constructs a DAG (Directed acyclic Graph) Note: if you don't care about paths, no point in backtracking DFS, BFS, PFS(priority first search) — If using PFS, what is the priority? • local: next edge, node value, estimate of "promise"

• path cost: cost so far, or cost so far plus estimate to goal.