Снижение размерности пространства зависимой переменной в задачах прогнозирования

Мария Владимирова

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. В. В. Стрижов

29 июня 2017 г.

Цели и задачи

Исследуются

Способы обнаружения зависимостей в прогнозируемой переменной.

Проблема

Для построения длительного прогноза требуется последовательно применить прогностическую модель.

Задачи исследования:

- построить алгоритм прознозирования, снижающего мультикоррелированность в пространстве зависимой переменной,
- учесть зависимость между прогностическими переменными, упростив модель и повысив точность прогноза,
- сравнить модели без учета зависимостей между целевыми переменными с учетом линейной, криволинейной и 4□ > 4回 > 4 回 > 4 回 > □ ■ 9 Q (P) нелинейной зависимости.

Литература

- Höskuldsson A. PLS regression methods //Journal of chemometrics. 1988. – T. 2. – № 3. – C. 211-228.
- ► Frank I. E. A nonlinear PLS model //Chemometrics and intelligent laboratory systems. 1990. T. 8. №. 2. C. 109-119.
- Rosipal R. Nonlinear partial least squares: An overview
 //Chemoinformatics and advanced machine learning perspectives. 2010.
 C. 169-189.

Постановка задачи

Дано:

Временной ряд $\mathbf{x} = [x_t], \ t = 1, \dots, n, \ x_t \in \mathbb{R}.$

Требуется спрогнозировать следующие r значений сигнала:

$$\mathbf{y} = [y_t], \ t = 1, \ldots, r, \ y_t \in \mathbb{R}.$$

Матрица плана: $\mathbf{X} = [\chi_1, \dots, \chi_n]$

Матрица ответов: $\mathbf{Y} \in \mathbb{R}^n$

Выборка:
$$\mathfrak{D} = (\mathbf{X}, \mathbf{Y})$$

$$[\mathbf{X} \mid \mathbf{Y}] = \begin{bmatrix} x_1 & \dots & x_n & y_1 & \dots & y_r \\ x_2 & \dots & x_{n+1} & y_2 & \dots & y_{r+1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_m & \dots & x_{m+n-1} & y_m & \dots & y_{r+m-1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{y}_1 \\ \mathbf{x}_2 & \mathbf{y}_2 \\ \vdots & \vdots \\ \mathbf{x}_m^{m-1} & \mathbf{\bar{y}}_m \end{bmatrix}_{\stackrel{?}{\downarrow}_{1/16}}$$

Авторегрессионная модель

$$\mathbf{Y} = \mathbf{f}(\mathbf{X}, \mathbf{\Theta}) + \varepsilon(\mathbf{X}),$$

где $\mathbf{f}(\mathbf{X}, \mathbf{\Theta}) = \mathbf{X}\mathbf{\Theta}$ – модель.

$$S(\Theta|\mathfrak{D}) = \|\mathbf{f}(\mathbf{X}, \mathbf{\Theta}) - \mathbf{Y}\|_{2}^{2} = \|\mathbf{X}\mathbf{\Theta} - \mathbf{Y}\|_{2}^{2}.$$

$$\mathbf{\Theta}^{*} = \underset{\mathbf{\Theta} \in \mathbb{R}^{n \times r}}{\min} S(\mathbf{\Theta}|\mathfrak{D}).$$

Метод PLSR

$$\mathbf{X} = \mathbf{TP}^T + \mathbf{E} \qquad \mathbf{Y} = \mathbf{UQ}^T + \mathbf{F}$$

$$\mathbf{XP} \neq \mathbf{T} \qquad \mathbf{YQ} \neq \mathbf{U} \qquad \mathbf{X} \in \mathbb{R}^{n \times m}, \ \mathbf{T} \in \mathbb{R}^{n \times p}$$

$$\mathbf{Y} \in \mathbb{R}^{n \times r}, \ \mathbf{U} \in \mathbb{R}^{n \times r}$$

Используется итеративный алгоритм, инициализиируем $\mathbf{u} := \mathbf{y}_1$

1.
$$\mathbf{w} = \mathbf{X}^{\mathsf{T}} \mathbf{u} / \| \mathbf{X}^{\mathsf{T}} \mathbf{u} \|$$
2. $\mathbf{t} = \mathbf{X} \mathbf{w}$
3. $\mathbf{c} = \mathbf{Y}^{\mathsf{T}} \mathbf{t} / \| \mathbf{Y}^{\mathsf{T}} \mathbf{t} \|$
4. $\mathbf{u} = \mathbf{Y} \mathbf{c}$

$$\mathbf{p} = \mathbf{X}^{\mathsf{T}} \mathbf{t} / \| \mathbf{X}^{\mathsf{T}} \mathbf{t} \|, \quad \mathbf{q} = \mathbf{Y}^{\mathsf{T}} \mathbf{u} / \| \mathbf{Y}^{\mathsf{T}} \mathbf{u} \|$$

Полученное значение **р** максимизирует ковариацию между новыми признаками и ответом

$$[Cov(\mathbf{t}, \mathbf{u})]^2 = [Cov(\mathbf{X}\mathbf{w}, \mathbf{Y}\mathbf{c})]^2$$

Мультиколлинеарность в ${f X}$ и ${f Y}$

Преобразование **Y**

 ▶ Криволинейное преобразование целевой переменной с вектором параметров v

$$\mathbf{\check{Y}} = g(\mathbf{Y}, \mathbf{v}).$$

Настройка параметров ${f v}$ с помощью градиентного спуска.

 Нелинейное преобразование целевой переменной с помощью непараметрической функции

$$\tilde{\mathbf{Y}} = h(\tilde{\mathbf{Y}}) = h(g(\mathbf{Y})) = f(\mathbf{Y})$$

Схема композиции преобразований

$$\mathbf{Y} \xrightarrow{g(\mathbf{Y},\mathbf{v})} \mathbf{\check{Y}} \xrightarrow{h(\mathbf{\check{Y}})} \mathbf{\check{Y}} \quad \Rightarrow \quad \mathbf{Y} \xrightarrow{f(\mathbf{Y},\mathbf{v})} \mathbf{\check{Y}}$$

Преобразование **X**

 Криволинейное преобразование зависимой переменной с вектором параметров v

$$\mathbf{\breve{X}} = g(\mathbf{X}, \mathbf{v}).$$

 Нелинейное преобразование зависимой переменной с помощью непараметрической функции

$$\tilde{\mathbf{X}} = h(\tilde{\mathbf{X}}) = h(g(\mathbf{X})) = f(\mathbf{X}).$$

Схема композиции преобразований

$$\mathbf{X} \xrightarrow{g(\mathbf{X},\mathbf{v})} \check{\mathbf{X}} \xrightarrow{h(\check{\mathbf{X}})} \tilde{\mathbf{X}} \Rightarrow \mathbf{X} \xrightarrow{f(\mathbf{X},\mathbf{v})} \tilde{\mathbf{X}}$$

Примеры преобразований

N∘	Функция	Параметры
1	$g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x) - 1)$	a, b > 0
2	$g(x) = \operatorname{sign}(x) \exp(a)(\exp(b \ln(1 + x) - 1)$	a, b > 0
3	$g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^{1/2}) - 1)$	a, b > 0
4	$g(x) = \operatorname{sign}(X) \exp(a) (\exp(b x ^{1/3}) - 1)$	a, b > 0
5	$g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^{1/4}) - 1)$	a, b > 0
6	$g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^2) - 1)$	a, b > 0

Таблица: Криволинейные преобразования

Алгоритм cnIPLS для зависимой переменной

Криволинейное + нелинейное преобразование f в пространстве целевой переменной ${\bf Y}$ в алгоритме PLSR

Инициализировать \mathbf{v} , $\mathbf{Y} := \mathbf{y}_1$, $\mathbf{u}_0 := f(\mathbf{Y}, \mathbf{v})$, выполнить в цикле

$$1. \ \boldsymbol{w} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{u}_0/\|\boldsymbol{X}^{\mathsf{T}}\boldsymbol{u}_0\|$$

2.
$$t = Xw$$

3.
$$\tilde{\mathbf{Y}} = f(\mathbf{Y}, \mathbf{v})$$

4.
$$\mathbf{c} = \mathbf{\tilde{Y}}^\mathsf{T} \mathbf{t} / \|\mathbf{\tilde{Y}}^\mathsf{T} \mathbf{t}\|$$

5.
$$\mathbf{u} = \tilde{\mathbf{Y}}\mathbf{c}$$

6.
$$e = u - u_0$$

7.
$$J = \partial u / \partial v$$

8.
$$\Delta \mathbf{v} = (\mathbf{J}^{\mathsf{T}} \mathbf{J})^{-1} \mathbf{J}^{\mathsf{T}} \mathbf{e}$$

9.
$$\mathbf{v} = \mathbf{v} + \Delta \mathbf{v}$$
, $\|\mathbf{v}\| \to 1$

10.
$$u_0 := u$$

Вычислить $\mathbf{p} = \mathbf{X}^\mathsf{T} \mathbf{t} / \| \mathbf{X}^\mathsf{T} \mathbf{t} \|, \ \mathbf{q} = \mathbf{\tilde{Y}}^\mathsf{T} \mathbf{u} / \| \mathbf{\tilde{Y}}^\mathsf{T} \mathbf{u} \|.$

Эксперимент

- данные содержат временные ряды электроэнергии, погоду (температура, осадки, сила ветра, влажность, солнечная энергия), график отпусков;
- потребление энергии измерялось ежечасно с 1999 по 2004 год, 52512 наблюдений;
- погода измерялась ежедневно, 2188 наблюдений.

Рисунок: Временной ряд потребления электроэнергии

Предсказания на разные временные отрезки

Зависимость ошибки от числа компонент для разных функций преобразования

Результаты

Алгоритм	N=3	N=5	N=10	N=20
PLS	0,00404	0,00337	0,00151	0,00135
cnIPLS $g(x) = sign(x)e^{a}(exp(b x) - 1)$	0.00529	0.00514	0.00536	0.00506
cnIPLS $g(x) = sign(x)e^{a}(exp(bln(1 + x) - 1)$	0.00362	0.00386	0.00326	0.00317
cnIPLS $g(x) = \operatorname{sign}(x)e^{a}(\exp(b x ^{1/2}) - 1)$	0.00272	0.00236	0.00287	0.00128
cnIPLS $g(x) = \operatorname{sign}(x)e^{a}(\exp(b x ^{1/3}) - 1)$	0.00241	0.00233	0.00221	0.00173
cnIPLS $g(x) = \operatorname{sign}(x)e^{a}(\exp(b x ^{1/4}) - 1)$	0.00796	0.00768	0.00737	0.00803
cnIPLS $g(x) = \operatorname{sign}(x)e^{a}(\exp(b x ^{2}) - 1)$	0.00816	0.00798	0.00796	0.00775

Таблица: Значения ошибки MSE для разных чисел компонент и разных функций

Результаты, выносимые на защиту

- Предложены алгоритмы прогнозирования временных рядов.
- Предложены методы снижения мультиколлинеарности в пространстрах зависимой и независимой переменной.
- ► Выполнена программная реализация и проведены численные эксперименты, показавшие повышение качества решения задачи прогнозирования сигналов.