Tutorial-1: Systems of Linear Equations CZ1104 2020-2021

Presented by: Svetlana (Lana) Obraztsova

Required

Find the values of k for which the following system has non-trivial solutions

Solution:

Required

Find the values of k for which the following system has non-trivial solutions

Augmented Matrix

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 5 & 1 & -k & 0 \\ 1 & 2 & k & 0 \end{bmatrix}$$

$$\Leftarrow$$

Solution: via Gaussian elimination

Required

Find the values of k for which the following system has non-trivial solutions

Augmented Matrix

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 5 & 1 & -k & 0 \\ 1 & 2 & k & 0 \end{bmatrix}$$

$$\Leftarrow$$

Solution: via Gaussian elimination

$$r_{2} \leftarrow r_{2} - 5r_{1} \qquad r_{3} \leftarrow 8r_{3} - r_{2}$$

$$r_{3} \leftarrow r_{3} - r_{1}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -24 & -k - 15 & 0 \\ 0 & -3 & k - 3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -24 & -k - 15 & 0 \\ 0 & 0 & 9k - 9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -24 & -k - 15 & 0 \\ 0 & 0 & 0k & 0 & 0 \end{bmatrix}$$

 $r_3 \leftarrow 8r_3 - r_2$

Required

Find the values of k for which the following system has non-trivial solutions

Augmented Matrix

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 5 & 1 & -k & 0 \\ 1 & 2 & k & 0 \end{bmatrix}$$

$$\Leftarrow$$

Solution: via Gaussian elimination

Non-trivial solution \Rightarrow infinitely many solution for homogeneous system

Required

Find the values of k for which the following system has non-trivial solutions

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 5 & 1 & -k & 0 \\ 1 & 2 & k & 0 \end{bmatrix}$$

$$\Leftarrow$$

Solution: via Gaussian elimination

Non-trivial solution \Rightarrow infinitely many solution for homogeneous system \therefore The last row should be all zeros $\Rightarrow 9k-9=0 \Rightarrow k=1$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations

$$2x + 3y + 4z = 1$$

 $x + 2y + 3z = 1$
 $x + 4y + 5z = 2$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations

In matrix form

Solution

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Augmented matrix
$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$r_1 \leftarrow \frac{1}{2} r_1$$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

Step-1: Reduce augmented matrix to row-echelon form

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} r_3 \leftarrow r_3 - r_1 \\ 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 5/2 & 3 & 3/2 \end{bmatrix}$$

 $r_1 \leftarrow \frac{1}{2}r_1$

$$r_{2} \leftarrow r_{2} - r_{1}$$

$$r_{3} \leftarrow r_{3} - r_{1}$$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 5/2 & 3 & 3/2 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$r_3 \leftarrow r_3 - 5r_2$$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

Step-1: Reduce augmented matrix to row-echelon form

$$r_2 \leftarrow r_2 - r_1$$

$$r_3 \leftarrow r_3 - r_1$$

$$1 \quad 3/2 \quad 2 \quad 1/2$$

$$0 \quad 1/2 \quad 1 \quad 1/2$$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

 $r_3 \leftarrow r_3 - 5r_2$

row-echelon form

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

Step-1: Gaussian elimination done. Now apply back substitution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

 $r_3 \leftarrow r_3 - 5r_2$

row-echelon form

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

Row-echelon form
$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Row-echelon form System
$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \end{bmatrix}$$
 $x + \frac{3}{2}y + 2z$

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix} \qquad \begin{array}{c} x + \frac{3}{2}y + 2z & = & 1/2 \\ \frac{1}{2}y + z & = & 1/2 \\ -2z & = & -1 \end{array}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow$$

$$x + 4y + 5z = 2$$

system of linear equations In matrix form Augmented matrix
$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ x + 4y + 5z = 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow$$

$$x + 4y + 5z = 2$$

system of linear equations In matrix form Augmented matrix
$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ x + 4y + 5z = 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

$$\Rightarrow \frac{1}{2}y + \frac{1}{2} = \frac{1}{2}$$
$$\Rightarrow z = \frac{1}{2}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow$$

$$x + 4y + 5z = 2$$

system of linear equations In matrix form Augmented matrix
$$\begin{bmatrix} 2x+3y+4z&=&1\\ x+2y+3z&=&1\\ x+4y+5z&=&2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2&3&4\\1&2&3\\1&4&5 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2&3&4&1\\1&2&3&1\\1&4&5&2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
1 & 4 & 5
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
2
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

In matrix form
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 5 & 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -1 \end{bmatrix}$$

, $y = 0$, $z = \frac{1}{2}$

$$\therefore x = -\frac{1}{2}, y = 0, z = \frac{1}{2}$$

Required

Use Gaussian elimination and back substitution to solve the following system of linear equations In matrix form Augmented matrix

$$2x + 3y + 4z = 1$$

$$x + 2y + 3z = 1 \Rightarrow$$

$$x + 4y + 5z = 2$$

system of linear equations In matrix form Augmented matrix
$$\begin{bmatrix} 2x+3y+4z&=&1\\ x+2y+3z&=&1\\ x+4y+5z&=&2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2&3&4\\1&2&3\\1&4&5 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2&3&4&1\\1&2&3&1\\1&4&5&2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 3/2 & 2 & 1/2 \\ 0 & 1/2 & 1 & 1/2 \\ 0 & 0 & -2 & -1 \end{bmatrix}$$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Solution:

- (a) Run Gaussian elimination and back-substitution
- (b) Last row will give equation in z and a
 - * For some values of a, the equation will have no solution
 - * For some values of a it will hold for any z
 - * For some values of a it will give a unique z

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Solution: (a) Run Gaussian elimination and back-substitution

Augmented matrix

$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & a^2 - 14 & a + 2 \end{bmatrix}$$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Solution: (a) Run Gaussian elimination and back-substitution

Augmented matrix

$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & a^2 - 14 & a + 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & -7 & 14 & -10 \\ 0 & -7 & a^2 - 2 & a - 14 \end{bmatrix}$$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Solution: (a) Run Gaussian elimination and back-substitution

$$r_{2} \leftarrow -3r_{1} + r_{2} \qquad r_{3} \leftarrow -1r_{2} + r_{3}$$

$$r_{3} \leftarrow -4r_{1} + r_{3}$$

$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & -7 & 14 & -10 \\ 0 & -7 & a^{2} - 2 & a - 14 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & -7 & 14 & 10 \\ 0 & 0 & a^{2} - 16 & a - 4 \end{bmatrix}$$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

Solution: (a) Run Gaussian elimination and back-substitution

$$r_3 \leftarrow -1r_2 + r_3$$

$$\begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & -7 & 14 & 10 \\ 0 & 0 & a^2 - 16 & a - 4 \end{bmatrix} \quad \begin{array}{l} x + 2y - 3z & = & 4 \\ -7y + 14z & = & 10 \\ (a^2 - 16)z & = & a - 4 \end{array}$$

Back Substitution

$$\begin{array}{rcl}
 x + 2y - 3z & = & 4 \\
 -7y + 14z & = & 10 \\
 (a^2 - 16)z & = & a - 4
 \end{array}$$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

$$(a^2 - 16)z = a - 4 \Rightarrow (a+4)(a-4)z = a - 4$$

- (a) If a=-4, this equation is 0z=-8, which has no solution
- (b) If a=4, this equation is 0z=0, and z is a free variable
- (c) If $a \neq \pm 4$, the equation's solution is $z = \frac{1}{a+4}$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

$$(a^{2} - 16)z = a - 4 \Rightarrow (a + 4)(a - 4)z = a - 4$$

- (a) If a = -4, the system has no solution
- (b) If a=4, this equation is 0z=0, and z is a free variable
- (c) If $a \neq \pm 4$, the equation's solution is $z = \frac{1}{a+4}$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

$$(a^{2} - 16)z = a - 4 \Rightarrow (a + 4)(a - 4)z = a - 4$$

- (a) If a = -4, the system has no solution
- (b) If a=4, the system has infinitely many solutions
- (c) If $a \neq \pm 4$, the equation's solution is $z = \frac{1}{a+4}$

Required

Determine the value of a for which the following linear system has:

(i) no solutions, (ii) infinite number of solutions, (ii) exactly one solution

$$(a^2 - 16)z = a - 4 \Rightarrow (a+4)(a-4)z = a - 4$$

- (a) If a = -4, the system has no solution
- (b) If a=4, the system has infinitely many solutions
- (c) If $a \neq \pm 4$, the system has exactly one solution

Problem-4: Span

Required

Let
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$.

Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, and let $W = Span\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$. Is $b \in W$? How many vectors are in W?

Problem-4: Span

Required

Let
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$.

Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, and let $W = Span\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$. Is $b \in W$? How many vectors are in W?

Solution:

To determine if **b** is in $W = Span\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$, is to check if there exist scalars x_1, x_2, x_3 such that $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$. I.e. check that the equation Ax = b is consistent: form an augmented matrix [A, b] and reduce to row-echelone form

Problem-4: Span

Required

Let
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$.

Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, and let $W = Span\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$. Is $b \in W$? How many vectors are in W?

Solution: form an augmented matrix $\left[A,b\right]$ and reduce to row-echelon

Each row of A' has a pivot \Rightarrow the system is consistent \Rightarrow $\mathbf{b} \in W$ There are infinitely many vectors in W

Problem-5: Span properties

Required

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$, and \mathbf{v} be vectors in \mathbb{R}^n . Suppowe that $\mathbf{u}, \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Required

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$, and \mathbf{v} be vectors in \mathbb{R}^n . Suppose that $\mathbf{u}, \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Solution

$$\mathbf{u} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$$

$$\mathbf{v} = d_1\mathbf{w}_1 + d_2\mathbf{w}_2 + d_3\mathbf{w}_3$$

Hence,
$$\mathbf{u} + \mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3 + d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$$

Required

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$, and \mathbf{v} be vectors in \mathbb{R}^n . Suppose that $\mathbf{u}, \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Solution

$$\mathbf{u} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$$

$$\mathbf{v} = d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$$
Hence, $\mathbf{u} + \mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3 + d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$

$$= (c_1 + d_1) \mathbf{w}_1 + (c_2 + d_2) \mathbf{w}_2 + (c_3 + d_3) \mathbf{w}_3$$

Required

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$, and \mathbf{v} be vectors in \mathbb{R}^n . Suppowe that $\mathbf{u}, \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Solution

$$\mathbf{u} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$$

$$\mathbf{v} = d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$$
Hence, $\mathbf{u} + \mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3 + d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$

$$= (c_1 + d_1) \mathbf{w}_1 + (c_2 + d_2) \mathbf{w}_2 + (c_3 + d_3) \mathbf{w}_3$$

Since
$$(c_1+d_1), (c_2+d_2), (c_3+d_3) \in \mathbb{R}$$
 are scalars,
the vector $\mathbf{u}+\mathbf{v}$ is in $Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$

Required

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$, and \mathbf{v} be vectors in \mathbb{R}^n . Suppowe that $\mathbf{u}, \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v} \in Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Solution

$$\mathbf{u} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$$

$$\mathbf{v} = d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$$
Hence, $\mathbf{u} + \mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3 + d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$

$$= (c_1 + d_1) \mathbf{w}_1 + (c_2 + d_2) \mathbf{w}_2 + (c_3 + d_3) \mathbf{w}_3$$

Since
$$(c_1+d_1), (c_2+d_2), (c_3+d_3) \in \mathbb{R}$$
 are scalars, the vector $\mathbf{u}+\mathbf{v}$ is in $Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$

Required

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$

- (a) How many rows of A contain a pivot position? Does the equation $Ax = \mathbf{b}$ have a solution for each $\mathbf{b} \in \mathbb{R}^4$?
- (b) Do the columns of B span \mathbb{R}^4 ? Does the equation Bx = y have a solution for each $y \in \mathbb{R}^4$?
- (c) Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A? Do the columns of A span \mathbb{R}^4 ?
- (d) Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B? Do the columns of B span \mathbb{R}^3 ?

Required: (a) How many rows of A contain a pivot position? Does the equation $Ax = \mathbf{b}$ have a solution for each $\mathbf{b} \in \mathbb{R}^4$?

$$\text{Let } A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution: Tranform A to row-echelon form, check pivots

$$A \Rightarrow \begin{bmatrix} r_2 \leftarrow r_1 + r_2 & r_3 \leftarrow r_3 + 2r_2 & r_3 \leftrightarrow r_4 \\ r_4 \leftarrow r_4 - 2r_2 & r_4 \leftarrow r_4 + 3r_2 \\ 0 & 2 & -1 & 4 \\ 0 & -4 & 2 & -8 \\ 0 & -6 & 3 & -7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 0 & 3 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} \boxed{1} & 3 & 0 & 3 \\ 0 & \boxed{2} & -1 & 4 \\ 0 & 0 & 0 & \boxed{5} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since every row of A does *not* contain a pivot position, $Ax = \mathbf{b}$ does not have a solution for each $\mathbf{b} \in \mathbb{R}^4$

Required: (b) Do the columns of B span \mathbb{R}^4 ? Does the equation Bx = y have a solution for each $y \in \mathbb{R}^4$?

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$

Solution: Tranform B to row-echelon form, check pivots

Since not every row of B contains a pivot position, Bx = y does **not** have a solution for every $y \in \mathbb{R}^4$.

Required: (b) Do the columns of B span \mathbb{R}^4 ? Does the equation $B\mathbf{x} = \mathbf{y}$ have a solution for each $\mathbf{y} \in \mathbb{R}^4$?

$$\text{Let } A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution: Tranform B to row-echelon form, check pivots

$$B \Rightarrow \begin{bmatrix} r_3 \leftarrow r_3 - r_1 & r_3 \leftarrow r_2 + r_3 & r_3 \leftrightarrow r_4 \\ r_4 \leftarrow 2r_1 + r_4 & r_4 \leftarrow r_4 - 2r_3 \\ 0 & 1 & 1 & -5 \\ 0 & -1 & -1 & 5 \\ 0 & -2 & -2 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -7 \end{bmatrix} \Rightarrow \begin{bmatrix} \boxed{1} & 3 & -2 & 2 \\ 0 & \boxed{1} & 1 & -5 \\ 0 & 0 & 0 & \boxed{-7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Columns of B do **not** span \mathbb{R}^4 . For columns to span \mathbb{R}^4 , every $\mathbf{y} \in \mathbb{R}^4$ must satisfy $B\mathbf{x} = \mathbf{y}$ for some \mathbf{x} .

Required: (c) Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A? Do the columns of A span \mathbb{R}^4 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are either all true or all false:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P oldsymbol{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Required: (c) Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A? Do the columns of A span \mathbb{R}^4 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are equivalent:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P \boldsymbol{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Required: (c) Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A? Do the columns of A span \mathbb{R}^4 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are equivalent:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P oldsymbol{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Since A does not have a pivot position in every row, not all vectors in \mathbb{R}^4 can be written as a linear combination of the columns of A. Also, the columns of A do not span \mathbb{R}^4 .

Required: (d) Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B? Do the columns of B span \mathbb{R}^3 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are equivalent:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P \mathbf{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Required: (d) Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B? Do the columns of B span \mathbb{R}^3 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are equivalent:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P \boldsymbol{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Required: (d) Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B? Do the columns of B span \mathbb{R}^3 ?

$$\operatorname{Let} A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$

Solution

For a matrix P of size $m \times n$ the following statements are equivalent:

- (i) For each $\mathbf{b} \in \mathbb{R}^m$, $P oldsymbol{x} = \mathbf{b}$ has a solution
- (ii) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of P
- (iii) The columns of P span \mathbb{R}^m
- (iv) P has a pivot position in every row

Same as for A, not all vectors in \mathbb{R}^4 can be written as a linear combination of the columns of B.

Also, the columns of B do not span \mathbb{R}^3 , because they are in \mathbb{R}^4

Required

Construct a 2×2 matrix A such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b} \in \mathbb{R}^2$ such that the solution set of $Ax = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax = 0.

Required

Construct a 2×2 matrix A such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b} \in \mathbb{R}^2$ such that the solution set of $Ax = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax = 0.

Solution

Solution is a line. That is, there is 1 free variable.

Required

Construct a 2×2 matrix A such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b} \in \mathbb{R}^2$ such that the solution set of $Ax = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax = 0.

Solution

Solution is a line. That is, there is 1 free variable.

Consider 1 out of 2 possibilities
$$A = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}$$
.

Required

Construct a 2×2 matrix A such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b} \in \mathbb{R}^2$ such that the solution set of $Ax = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax = 0.

Solution

Solution is a line. That is, there is 1 free variable.

Consider 1 out of 2 possibilities $A = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}$.

Vector $\vec{x}=(4,1)$ satisfies $A\vec{x}=0$, so, $4c+d=0 \Leftrightarrow d=-4c$.

 $d=4,\,c=-1$ is one of possible solutions. Problem solution is

$$A = \begin{bmatrix} -1 & 4 \\ 0 & 0 \end{bmatrix}$$

Required

Construct a 2×2 matrix A such that the solution set of the equation Ax=0 is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b}\in\mathbb{R}^2$ such that the solution set of $Ax=\mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax=0.

Solution

Solution is a line. That is, there is 1 free variable.

Consider 1 out of 2 possibilities $A = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}$.

Vector $\vec{x}=(4,1)$ satisfies $A\vec{x}=0$, so, $4\vec{c}+d=0 \Leftrightarrow d=-4c$.

 $d=4,\,c=-1$ is one of possible solutions. Problem solution is

$$A = \begin{bmatrix} -1 & 4 \\ 0 & 0 \end{bmatrix}$$

MCQ variant of problem 7a

Required

Which a 2×2 matrix A is such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin?

$$\begin{pmatrix} \mathsf{a} \end{pmatrix} \ A = \begin{bmatrix} -1 & 4 \\ 0 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -2 & 8 \\ -3 & 12 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 2 & -8 & 0 \\ -4 & 7 & 0 \\ 1 & -3 & 4 \end{bmatrix}$$

MCQ variant of problem 7a

Required

Which a 2×2 matrix A is such that the solution set of the equation Ax = 0 is the line in \mathbb{R}^2 through (4,1) and the origin?

(a)
$$A = \begin{bmatrix} -1 & 4 \\ 0 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -2 & 8 \\ -3 & 12 \end{bmatrix}$$

$$\begin{pmatrix} \mathsf{c} \end{pmatrix} \ A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 2 & -8 & 0 \\ -4 & 7 & 0 \\ 1 & -3 & 4 \end{bmatrix}$$

Required

Construct a 2×2 matrix A such that the solution set of the equation $A\boldsymbol{x}=0$ is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b}\in\mathbb{R}^2$ such that the solution set of $A\boldsymbol{x}=\mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\boldsymbol{x}=0$.

Solution

Solution is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax = 0.

From previous solution: In matrix ${\cal A}$ there is the only one row with pivot element. That is, only 2 statements possible:

- (a) No solutions.
- (b) 1 solution.
- (c) Infinitely many solutions (line parallel to the solution set of $Aoldsymbol{x}=0$).

Required

Construct a 2×2 matrix A such that the solution set of the equation $A\boldsymbol{x}=0$ is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b}\in\mathbb{R}^2$ such that the solution set of $A\boldsymbol{x}=\mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\boldsymbol{x}=0$.

Solution

Solution is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax=0. From previous solution: In matrix A there is the only one row with pivot element. That is, only 2 statements possible:

- (a) No solutions.
- (b) 1 solution.
- (c) Infinitely many solutions (line parallel to the solution set of Ax = 0).

Set of solutions empty \Leftrightarrow second coordinate is non-zero. For example, (1,1).

Required

Construct a 2×2 matrix A such that the solution set of the equation $A\boldsymbol{x}=0$ is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector $\mathbf{b}\in\mathbb{R}^2$ such that the solution set of $A\boldsymbol{x}=\mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\boldsymbol{x}=0$.

Solution

Solution is *not* a line in \mathbb{R}^2 parallel to the solution set of Ax=0. From previous solution: In matrix A there is the only one row with pivot element. That is, only 2 statements possible:

- (a) No solutions.
- (b) 1 solution.
- (c) Infinitely many solutions (line parallel to the solution set of Ax = 0).

Set of solutions empty \Leftrightarrow second coordinate is non-zero. For example, (1,1).

Problem-8: Solution set size

Required

Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{y}$ does *not* have a solution. Does there exist a vector $\mathbf{z} \in \mathbb{R}^3$ such that the equation $A\mathbf{x} = \mathbf{z}$ has a unique solution? Why?

Solution

In matrix A there is at least one row without pivot element.

Problem-8: Solution set size

Required

Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x}=\mathbf{y}$ does *not* have a solution. Does there exist a vector $\mathbf{z}\in\mathbb{R}^3$ such that the equation $A\mathbf{x}=\mathbf{z}$ has a unique solution? Why?

Solution

In matrix A there is at least one row without pivot element.

That is, only 2 statements possible:

- (a) No solutions: after reducing to row-echelon form one of zero-row corresponds to non-zero element of right side vector.
- (b) 1 solution
- (c) Infinitely many solutions: after reducing to row-echelon form every zero-row corresponds to zero element of right side vector.

Problem-8: Solution set size

Required

Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{y}$ does *not* have a solution. Does there exist a vector $\mathbf{z} \in \mathbb{R}^3$ such that the equation $A\mathbf{x} = \mathbf{z}$ has a unique solution? Why?

Solution

In matrix \boldsymbol{A} there is at least one row without pivot element.

That is, only 2 statements possible:

- (a) No solutions: after reducing to row-echelon form one of zero-row corresponds to non-zero element of right side vector.
- (b) 1 solution.
- (c) Infinitely many solutions: after reducing to row-echelon form every zero-row corresponds to zero element of right side vector.

Problem-9: Linear dependence

Required

Find the value of h for which the vectors $\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$ are linearly dependent.

Solution

To study the linear dependence of three vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, row reduce the augmented matrix $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \vec{0}]$.

$$\begin{bmatrix} 2 & -6 & 8 & 0 \\ -4 & 7 & h & 0 \\ 1 & -3 & 4 & 0 \end{bmatrix} \xrightarrow[r_3 \leftarrow r_3 - \frac{1}{2}r_1]{r_2 \leftarrow 2r_1 + r_2} \begin{bmatrix} \boxed{2} & -6 & 8 & 0 \\ 0 & \boxed{-5} & 16 + h & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = 0$ has a free variable and, hence, non-trivial solution no matter the value of h. So, the vectors are *linearly dependent* for *all* values of h.

Required

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 , and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

By definition
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix} = 5\mathbf{e}_1 - 3\mathbf{e}_2$$
.

Required

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 , and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

By definition
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix} = 5\mathbf{e}_1 - 3\mathbf{e}_2$$
.
 $T(5\mathbf{e}_1 - 3\mathbf{e}_2) = T(5\mathbf{e}_1) - T(3\mathbf{e}_2) = 5T(\mathbf{e}_1) - 3T(\mathbf{e}_2) = 5\mathbf{y}_1 - 3\mathbf{y}_2 = 5T(5\mathbf{e}_1) - 3T(5\mathbf{e}_2) = 5T(5\mathbf{e}_1) - 3T(5\mathbf{e}_2$

Required

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 , and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

By definition
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix} = 5\mathbf{e}_1 - 3\mathbf{e}_2$$
.

$$T(5\mathbf{e}_1 - 3\mathbf{e}_2) = T(5\mathbf{e}_1) - T(3\mathbf{e}_2) = 5T(\mathbf{e}_1) - 3T(\mathbf{e}_2) = 5\mathbf{y}_1 - 3\mathbf{y}_2 = 5 \begin{bmatrix} 2 \\ 5 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 6 \end{bmatrix} = \begin{bmatrix} 13 \\ 7 \end{bmatrix}$$

Required

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 , and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

By definition
$$\begin{bmatrix} 5 \\ -3 \end{bmatrix} = 5\mathbf{e}_1 - 3\mathbf{e}_2$$
.
 $T(5\mathbf{e}_1 - 3\mathbf{e}_2) = T(5\mathbf{e}_1) - T(3\mathbf{e}_2) = 5T(\mathbf{e}_1) - 3T(\mathbf{e}_2) = 5\mathbf{y}_1 - 3\mathbf{y}_2 = 5 \begin{bmatrix} 2 \\ 5 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 6 \end{bmatrix} = \begin{bmatrix} 13 \\ 7 \end{bmatrix}$

Problem-11: Rotations and reflections

Required

Find the standard matrix of the linear transformation

- (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, which first rotates points through $-3\pi/4$ (clock-wise) and then reflects points through the horizontal x-axis.
- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, which first reflects points through the horizontal x-axis and then reflects points through the line y=x. Show that the transformation is merely a rotation about the origin. What is the angle of rotation?