- 1. コンピュータの基礎知識
- 1.1. コンピュータの基本構成

5 大要素

○制御装置 :必要な指示を出し全体の動きを "制御" します。

○演算装置 : 指示通り、"演算(計算)"を行います。

○入力装置 :情報を "入力" します。

〇出力装置 :情報を "出力" します。

○記憶装置 :情報を "記憶" します。

1.1.1. ハードウェアとソフトウェア

○ハードウェア 形があり、触れるもの

パソコン本体、キーボード、ジョイスティック、USB メモリなど ただし、プログラムが印刷された紙などはハードウェアとは呼びません。

〇ソフトウェア ルールに従って構成されるコンピュータへの指示そのもの。 時には、発想そのものもソフトウェアと呼ぶ場合もあります。

1.2. コンピュータでの情報表現

1.2.1. 現在のコンピュータが理解できる情報

現在のコンピュータは、定められた電圧と比較し、電圧がそれよりも高いか低いかという情報しか扱うことができない。

→ 電圧の高低の組み合わせで様々な状態を表現する。

電圧の高低の情報 1 つ・・・・・・・・・ビット(bit)

電圧の高低の情報を8個まとめたもの・・・バイト(Byte)

※超重要!

まとめて扱う数が増えると、表現できるパターンが多くなる。

n ビットを使うと、 $2^n = 2 \times 2 \times 2 \times \cdots$ 2 を n 回掛ける

1.2.2. 文字の表現

bit の組み合わせに文字をあてはめて表現する。 組み合わせ表 → 文字コード

代表的な文字コード

OASCII(アスキー) 7bit で文字を表現している。その他の文字コードの基本。

OEUC Unix で利用されていた、日本語も利用できる文字コード

英数文字は1バイト、日本語は2バイトで表現する。

OShift-JIS(シフト・ジス) マイクロソフトや日本の企業により策定された

OUnicode(ユニコード) 世界中の文字をひとつの文字コードで表現しようとした。現在は UTF-8/UTF-16 が主流

1.3. 補助単位

1.3.1. 大きな桁の補助単位

大きさ	10 の乗数	記号	読み
1,000	3	K	‡ D
1,000,000	6	М	メガ
1,000,000,000	9	G	ギガ
1,000,000,000,000	12	Т	テラ
1,000,000,000,000,000	15	Р	ペタ
1,000,000,000,000,000	18	Е	エクサ
1,000,000,000,000,000,000	21	Z	ゼタ
1,000,000,000,000,000,000,000	24	Υ	39

1.3.2. 小さな桁の補助単位

大きさ	10 の乗数	記号	読み
0.001	-3	m	シリ
0.000 <mark>001</mark>	-6	μ	マイクロ
0. <mark>000</mark> 000 <mark>001</mark>	-9	n	ナノ
0.000 <mark>000</mark> 000 <mark>001</mark>	-12	р	ピコ
0. <mark>000</mark> 000 <mark>000</mark> 000 <mark>001</mark>	-15	f	フェムト
0.000 <mark>000</mark> 000 <mark>000</mark> 000 <mark>001</mark>	-18	а	アト
0. <mark>000</mark> 000 <mark>000</mark> 000 <mark>000</mark> 000 <mark>001</mark>	-21	Z	ゼプト
0.000 <mark>000</mark> 000 <mark>000</mark> 000 <mark>000</mark> 000 <mark>001</mark>	-24	У	ヨクト

1.4. 各種装置の分類

1.4.1. 主記憶装置と補助記憶装置

検定においては下記のイメージで大丈夫

主記憶装置・・・・メモリ: 速い、高い、少ない補助記憶装置・・・ハードディスク遅い、安い、大きい

1.4.2. 入出力装置

最近ではあまり出題されない

入力装置 : マウス、キーボード、 出力装置 : ディスプレイ、プリンタ

1.4.3. インターフェイス

近年出題傾向が高くなっている

1.4.3.1. USB(Universal Serial Bus)

コンピュータ等の情報機器に周辺機器を接続するため、最も広く利用されているシリアルバス規格の1つ、現在電源供給の規格としてUSB-PD(ユーエスビー・ピーディー)、裏表なしのコネクタになった USB-C がある。コネクタ形状は下記の通り。

速度、給電規格

バージョン	USB	USB	USB	USB	USB	USB-C	USB
	1.0,1.1	2.0	3.0	3.1	3.2		-PD
速度	12Mbps	480Mbps	5Gbps	10Gbps	20Gbps		
最大	500mA	500mA	900mA	1A	1A	3A	5A
給電能力	2.5W	2.5W	4.5W			15W	100W

1.4.3.2. ディスプレイポート

映像出力インタフェースの規格で、高解像度のディスプレイへの対応を当初から視野に入れていたため、医療分野では広く利用されている。

1.4.3.3. HDMI (High-Definition Multimedia Interface)

HDMI はデジタル家電向けのインタフェースで、2002年12月にHDMI 1.0の仕様が策定された。最新規格はHDMI 2.1。 PC とディスプレイの接続標準規格である DVI を基に、音声伝送機能や著作権保護機能など AV 家電向けに改良したものである。

1.4.3.4. D-sub (VGA 端子)

古くから広く利用されている規格でプロジェクタや古いディスプレイで 利用されている。、高解像度に対応できないため、今後の利用は望め ない。

左に、ディスプレイの入力端子の例を挙げておく

1.5. プログラムの作成から実行まで

コンピュータは、最終的に 0/1 の情報しか扱えない。そのため、人間の作成するプログラムを、コンピュータが理解できる情報に変換する必要がある。

1.5.1. プログラムが動作するまでの流れ

①コーディング/プログラミング

言語仕様に沿って人間が、プログラムを作成する。

この段階の情報は"英数文字/記号"のテキストデータ ← プログラム編集ソフト"テキストエディタ"

②コンパイル

テキストデータであるプログラムを解析し、コンピュータが理解できる情報に翻訳/変換する。

③リンカー

定型の処理など、ライブラリより組み込む処理

④実行可能プログラム

実行できるように変換されたプログラム。

1.5.1.1. IDE 環境

上記の機能に加え、デバッグ機能など統合された開発環境、Visual Studio 2017 も IDE のひとつです。

1.6. ネットワークの基礎知識

1.6.1. LAN(Local Area Network)

建物内など限定された範囲のネットワーク環境、しかし近年仮想的な LAN で都市間を結ぶこともあり、物理的な距離ではなく、利用者のお互いの関係性が高いネットワークを表すようになっている。

1.6.2. WAN(Wide Area Network)

LAN に対して都市間など広範囲なネットワーク。

1.6.3. 通信速度

ネットワークでは通信速度を bps(bit/second: ビット・パー・セカンド)で表し、1 秒間で通信できる bit 数で表現する。 % Byte 数ではない。 Byte 変換時には 8 で割る必要がある

以下に関しては、別件での学習あり、今回概要説明のみ

- 1.7. ファイルとデータベース
- 1.8. コンピュータの種類

2. 数値の表現

2.1. 基数変換

基数とは、「桁上がり」ということを考えればよい。 10 進数であれば、 $0\sim9$ の 10 種類の数字を利用する。 そのため 9 以上増えると 桁上がりが発生する。 2 進数は $0 \ge 1$ のふたつ、 16 進数は $0\sim F$ までの 16 の数字を用いる。

2.2. 2 進数と10 進数と16 進数の関係

4bit で 2^4 の組み合わせが可能 \rightarrow $0\sim15$ までの 16 通りの数字に対応させることができる

	10/4#		10 通りの数] に対応させることが くさる]
2 進数	10 進数	16 進数	
0000	0	0	
0001	1	1	
0010	2	2	
0011	3	3	
0100	4	4	
0101	5	5	← なぜ 2 進数 0101 が
0110	6	6	10 進数 5 になるのか?
0111	7	7	$0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
1000	8	8	$=0\times8 + 1\times4 + 0\times2 + 1\times1 = 5$
1001	9	9	2 進数なので基数は "2"
1010	10	Α	
1011	11	В	
1100	12	С	
1101	13	D	
1110	14	Е	
1111	15	F	

同様に (1110)2についても考えてみる

$$1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= $1 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 = (14)_{10}$ また 16 進では (E)₁₆

2.3. 10 進数から 2 進数への変換: 小数点以上編

10 進数から 2 進数への変換方法は、対象の数字を基数である "2" で割って、その余りを並べるだけ!

※8 進数、16 進数は割る数がそれぞれの基数に変わるだけで要領は同じです。

2.4. 小数点以下の場合

(0.101)₂はどのようになるのか?

$$(0.101)_2 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

= $1 \times 1/2 + 0 \times 1/4 + 1 \times 1/8$
= $1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125 = (0.625)_{10}$ となる

2.4.1. 10 進数から 2 進数の変換: 小数点以下編

※8 進数、16 進数は割る数がそれぞれの基数に変わるだけで要領は同じです。 小数点のある数字は、小数点以上と、小数点以下で分けて計算し後で合計します。

いったん2進数に変換することで、16進への変換も楽になります。

2.5. 2 進数の計算

2進数同士の計算は桁上がりに注意するだけ。

2進数の加算は下記のパターンのみ。

教科書の問題では、異なる基数の数字の計算を行っているが、まずは2進数で慣れていこう!減算処理(引き算)はあまり重要ではない。

2.6. その他の数値表現

下記の表現は基本情報で出題されるが、演算に不向きで近年での利用は少ないため、用語の確認だけで良い

2.6.1. BCD コード

教科書 p5 の表記通りに、4bit で 0-9 までの数値を表す方法

2.6.2. ゾーン 10 進表記

- 一桁の数値を1バイトで表す方法で下記の特徴を持つ
- 1 バイトの上位 4 ビットをゾーン部と言い、JIS コードの場合は 0011、EBCDIC コードの場合は 1111 が設定される
- ○1バイトの下位4ビットが数値を表す
- ○最下位桁のゾーン部は正負の符号を表す(正:1100、負 1101 とすることが多い)

2.6.3. パック 10 進表記

ゾーン 10 進と同様に 1 桁の数値を 4 ビットで表現する方法で下記の特徴を持つ

- ○下位の4ビットは正負の符号を示す(正:1100、負 1101 とすることが多い)
- 〇桁数か偶数のときは、左の左端に 0000 を入れ、データを整数バイトで表せるようにする

3. 2 進数での負の数の表現:補数