

IRFP460LC

HEXFET® Power MOSFET

- Ultra Low Gate Charge
- Reduced Gate Drive Requirement
- Enhanced 30V V_{qs} Rating
- Reduced C_{iss}, C_{oss}, C_{rss}
- Isolated Central Mounting Hole
- Dynamic dv/dt Rated
- Repetitive Avalanche Rated

Description

This new series of Low Charge HEXFET Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing advanced Hexfet technology the device improvements allow for reduced gate drive requirements, faster switching speeds and increased total system savings. These device improvements combined with the proven ruggedness and reliability of HEXFETs offer the designer a new standard in power transistors for switching applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V GS @ 10V	20	
I _D @ T _C = 100°C	Continuous Drain Current, V GS @ 10V	12	Α
I _{DM}	Pulsed Drain Current ①	80	
P _D @T _C = 25°C	Power Dissipation	280	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ②	960	mJ
I _{AR}	Avalanche Current ①	20	A
E _{AR}	Repetitive Avalanche Energy ①	28	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			0.45	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface		0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient				40

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, ID = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.59		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(ON)}	Static Drain-to-Source On-Resistance			0.27	Ω	V _{GS} = 10V, I _D = 12A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9 _{fs}	Forward Transconductance	12			S	$V_{DS} = 50V, I_{D} = 12A$
I	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 500V, V_{GS} = 0V$
I _{DSS}	Diamito Godice Leakage Guiteria			250	μΛ	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
1655	Gate-to-Source Reverse Leakage			-100	IIA.	$V_{GS} = -20V$
Qg	Total Gate Charge			120		I _D = 20A
Q _{gs}	Gate-to-Source Charge			32	nC	$V_{DS} = 400V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			49		V _{GS} = 10V, See Fig. 6 and 13 ⊕
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = 250V$
t _r	Rise Time		77		ns	$I_D = 20A$
t _{d(off)}	Turn-Off Delay Time		40		113	$R_G = 4.3\Omega$
t _f	Fall Time		43			$R_D = 12\Omega$, See Fig. 10 ④
LD	Internal Drain Inductance		5.0			Between lead,
L D	internal Dialit Inductance		5.0		nH	6mm (0.25in.)
-	Internal Source Inductance		13		7 ''''	from package
L _S	internal Source inductance		13			and center of die contact
C _{iss}	Input Capacitance		3600			$V_{GS} = 0V$
Coss	Output Capacitance		440		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		39			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			20		MOSFET symbol
	(Body Diode)			_ 20	Α	showing the
I _{SM}	Pulsed Source Current			00		integral reverse
	(Body Diode) ①			_	80	
V_{SD}	Diode Forward Voltage			1.8	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		570	860	ns	$T_J = 25^{\circ}C, I_F = 20A$
Q _{rr}	Reverse Recovery Charge	_	6.6	9.9	μC	$di/dt = 100A/\mu s$ ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{l} @ I_{SD} \le 20A, \ di/dt \le 160A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_{J} \le 150 \ensuremath{^{\circ}C} \ensuremath{C} \ensuremath{C} \ensuremath{} \ensuremath{}^{\circ} \ensuremath{C} \ensuremath{}^{\circ} \ensuremath{}^{\circ}$
- $^{\odot}$ V_{DD} = 25V, starting T _J = 25°C, L = 4.3mH R_G = 25 Ω , I_{AS} = 20A. (See Figure 12)
- 4 Pulse width \leq 300µs; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics, $T_C = 25^{\circ}C$

Fig 2. Typical Output Characteristics, $T_C = 150$ °C

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

Package Outline TO-247AC

Part Marking Information TO-247AC

International IGR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: 6172 37066 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: (39) 1145 10111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, 0316 Tel: 65 221 8371

Data and specifications subject to change without notice.