Group Member 1. TAN JIAN XIN A24C60303
1. TANI TIANI YINI AZILCEDZOZ
1 THIN OUT IN NUMBER OF THE
2. LIEW SHAN NENG AC4G0263
3. KOR YEE HENG AZ4CS0257
4. SIVARAJ

a. 17

take 0/5 =- (250-x-y) 110 student -110 = 250 (m/aximym)

$$90 + 50 = 140$$

-: 140

$$(150-90)+(100-50)=60+50$$

-: 110

$$A = \{3, 5, 7, 9, 11, 13, 15, 17, 19\}$$

 $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$
 $C = \{5\}$

i) IAI = 9

student take 05:

90+50+(60-x)+(50-y) = 250-x-y

ii)

511 proper subsets of A is 511

	a i) Your play table tennis and you miss the midterm test								
nger i		¬(m V	Maria Cara	U			do not play table tennis and don't miss the midterm		
	(-m1-n) Vo - De Morgan's Law test, or you pass the subject								
	b)	a	b	a→b	MA	7aVb	41. 40) x -> y		
		т.	Т.	T	F	(hattis i ght)	ii) ¬(x∨Z) → ¬y		
		Τ	F ·	F	F	F	iii) y ←→ (x∧Z)		
		F	7	T to at	T	ere a Tri	on the state of		
		F	F	Т	Т	T gibe	$H = \pi H = \pi H$		
	$(a \rightarrow b) \equiv (\neg a \lor b)$								
							v v v v v v v v v v v v v v v v v v v		
Q3	a) i) P(5) = 15/5 = 3						b) Im In P(m,n) = True, there exist positive		
	True, because 15 is divisible by 5						Integers m and n where m ≥ n. For example		
	ii) Vn Pcn) : False, not all positive integers can divides 15						when m=5 and n=1.		
	When n=2, 15 is not divisible by 2						negation: Vm Vn 7 Pcm,n): For all positive		
	ii) In TP(n): True, There exists positive integer n						integers m and n, ni is not greater or		
	which cannot divides is for example 2						equal to n		

Q4	direct proof		method 2				
	let x=1, y=2		accume a and b are	e integers, then a < b)		
	$a = \frac{3}{2} = 1.5$	or		1 de la compu	(1.1)		
	neacy		a a+b b a a a that the				
	1<=<2 (Tru	ie)	a+a < a+b	a+b <b+b td="" thus<=""></b+b>			
			20<0+b	a+b < 2b	a< 2 < b		
			a < atb	$\frac{a+b}{2} < b$	(prove)		
1							
	indirect proof		contradictio	n proof			
		numbers with x>y,	1, p(1)	are real numbers u	•		
	there exists a rationa	I number a satisfying x>	azy exists a ra	tional number a sortist	fying octary		
	let x=2	xxa>y	le	$t : u = 1 \qquad x = 2$	azy		
	y= 1	2>=>1 (True)	1	y=2 12	3 >2 (True)		
	$a = \frac{3}{2} = 1.5$			$a=\frac{3}{2}$			
			1)	11.17			
T		That we to	onclude that the statemen	t le true			

a. $(m,n) \in R \text{ if } 2 \text{ divides } m-n$ 2 devides $(1-5) \quad \sqrt{-2+2}=-2$ 2 devides (1-4)2 devides $(1-3) \quad \sqrt{-2+2}=-1$ 2 devides (1-2)2 devides (1-1)2 devides (2-5)2 devides $(2-4) \quad \sqrt{-2+2}=-1$ 2 devides $(2-4) \quad \sqrt{-2+2}=-1$ 2 devides (2-3)2 devides (2-2)2 devides (2-1)

```
1 -2 -2 = -1
          (3-5)
 2 divides
 2 divides (3-4)
 2 divides (3-3
 \frac{1}{2} divides (3-2)
                     V (2+2=1)
            C4-5)
    divides
            (4-4)
    divides
    divides (4-3)
                       V 2+2=1
    divides (4-2
    divides (
             (5-5)
    divides
             (5-4)
    divides
    divides
                               2+2=1
              (5-2)
    divides
              (5-1)
     divides
                               4+2=2
 R= { (1,5), (1,3), (2,4), (3,5), (3,1), (4,2), (5,3), (5,1), (1,1), (2,2), (3,3), (4,4), (5,5)}
 R^{-1} = \{ (5,1), (3,1), (4,2), (5,3), (1,3), (1,1), (5,2), (3,3), (4,4), (5,5) \}
                                       (2,4), (3,5), (1,5)
                2+5 64 X
 1+3 54 X
                              3+5 <4 x
1 +4 54
                           ×
          × 2+4 ≤ 4
                                 3+4 54 X
 1 +3 < 4 / 2+3 < 4
                           ×
                                 3+3 64 X
                               3+2 54 X
 1+2 < 4 V 2+2 < 4
                                 3+154 /
 1+1 54 V
                2+1 & 4
                  5+5 < 4 x
4+5 &4 X
                  5+4 & 4 x
 4+4 & 4 X
                   5+3 & 4 X
 4+3 5 4
                   5+2 & 4 X
 4+1 < 4 x
                  5+1
R= { C(1), (1,2), (1,3), (2, 1', (2,2), 13,1)}
both of them are symmetric
Ynyex, (x,y) ER -> (y,x) ER
```

