CSCI 570 HOMEWORK 2

Spring 2024

Due: Jan 24, 11:59PM PST

Q1. What is the tight bound on worst-case runtime performance of the procedure below? Give an explanation for your answer. (10 points)

```
int c = 0;

for(int k = 0; k <= log_2n; k++)

for(int j = 1; j <= 2^k; j++)

c=c+1

return c
```

Q2. Given an undirected graph G with n nodes and m edges, design an O(m+n) algorithm to detect whether G contains a cycle. Your algorithm should output a cycle if G contains one. (10 points)

Q3. For each of the following indicate if f = O(g) or f = O(g) or f = O(g) (10 points)

	f(n)	g(n)	
1	nlog(n)	n²log(n²)	
2	log(n)	log(log(5 ⁿ))	
3	n ^{1/3}	(log(n)) ³	
4	2 ⁿ	2 ³ⁿ	
5	n⁴/log(n)	n(log(n))⁴	

Q4. Indicate for each pair of expressions (A,B) in the table below, whether A is O, Ω , or Θ of B (in other words, whether A=O(B), A= Ω (B), or A= Θ (B)). Assume that k and C are positive constants. You can mark each box with Yes or No. No justification needed. (9 points) (Note: log is base 2)

А	В	0	Ω	Θ
n³+log(n)+n²	C*n³			
n ²	C*n*2 ^{log(n)}			
(2 ⁿ)*(2 ^k)	n ^{2k}			

Q5. Find the total number of possible topological orderings in the following graph and list all of them (15 points)

Q6. Given a directed graph with m edges and n nodes where every edge has weight as either 1 or 2, find the shortest path from a given source vertex 's' to a given destination vertex 't'. Expected time complexity is O(m+n). (8 points)

Q7. Given functions f_1 , f_2 , g_1 , g_2 such that $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. For each of the following statements, decide whether you think it is true or false and give a proof or counterexample. (12 points)

(a)
$$f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$

(b)
$$f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

(c)
$$f_1(n)^2 = O g_1(n)^2$$

(d)
$$\log 2 f_1(n) = O(\log 2 g_1(n))$$

Q8. Design an algorithm which, given a directed graph G = (V, E) and a particular edge $e \in E$, going from node u to node v determines whether G has a cycle containing e. The running time should be bounded by O(|V| + |E|). Explain why your algorithm runs in O(|V| + |E|) time. (8 points)

Q9. Solve Kleinberg and Tardos, **Chapter 3, Exercise 6.** (8 points)

Q10. Solve Kleinberg and Tardos, **Chapter 3, Exercise 9.** (10 points)