Practica 4: Convolución: Método Grafico

Flores Chavarria Diego

1. Utilice Matlab para calcular y graficar la convolución de las siguientes secuencias:

$$x(n) = \left(\frac{4}{5}\right)^n [u(n) - u(n-6)]$$

$$h(n) = u(n) - u(n-11)$$

$$y = \begin{pmatrix} 1 & 9 & 61 & 369 & 2101 & 11529 & 11529 & 11529 & 11529 & 11529 & 11529 & 11529 & 11529 & 3125 & 31$$

2. Utilice Matlab para crear una animación que muestre el método grafico para calcular la convolución de las secuencias del inciso anterior

a. Grafique cada uno de los casos analizados en el método de convolución grafica.

Caso (i) n < 0

Caso (ii) $0 \le n \le 5$

Caso (iii) $6 \le n \le 10$

Caso (v) $n \ge 16$

Anexo de Código

```
%Ejercicio 1
escalon = @(n) n>=0;
n=-5:10;
figure('Position',[500 400 600 250])
y = conv((4/5).^n.*(escalon(n)-escalon(n-6)),escalon(n)-escalon(n-11));
n = -10:20;
stem(n,y,'filled','LineWidth',2)
title('$ Convolucion\hspace{.2cm}Grafica $','Interpreter','latex')
xlabel('k')
xlim([-5,20]);
y = sym(y(11:26))

%Ejercicio 2. simulacion
figure('Position',[500 400 600 250])
escalon = @(n) n>=0;
```

```
n = -15:20;
x1 = @(n) (4/5).^n.*(escalon(n)-escalon(n-6));
h1 = @(n)  escalon(n)-escalon(n-11);
yconv = zeros(1,36);
figure('Position',[500 400 600 250])
for k = n
    y = @(n) conv(x1(k),h1(n-k));
    yconv = + yconv + y(n);
    subplot(311)
    stem(n,x1(n),'filled','LineWidth',2)
    title('$ Convolucion\hspace{.2cm}Grafica $','Interpreter','latex')
    xlabel('k')
    ylabel('x(k)')
    xlim([-5,20]);
    subplot(313)
    stem(n,yconv,'filled','LineWidth',2)
    xlabel('k')
    ylabel('h(n-k)')
    xlim([-5,20]);
    drawnow
    pause(0.1)
    subplot(312)
    stem(n,h1(n-k),'filled','LineWidth',2)
    title('h(n-k)')
    xlabel('n')
    ylabel('y(n)'),
    xlim([-5,20]);
    drawnow
    pause(0.1)
end
%Ejercicio 2. casos de la convolucion
%Caso 1
figure('Position',[500 400 600 250])
n=-12:6;
escalon = @(n) n>=0;
x = (4/5).^n.*(escalon(n)-escalon(n-6));
subplot(211)
stem(n,x,'filled','LineWidth',3)
ylabel('x(k)')
ylim([-.2 1])
subplot(212)
```

```
h = zeros(1,33);
n=-12:20;
h = escalon(n+11)-escalon(n);
stem(n,h,'filled','LineWidth',3)
ylabel('h(n-k)')
xlim([-12 6]);
ylim([-.2 1])
%Caso 2
figure('Position',[500 400 600 250])
n=-12:6;
escalon = @(n) n>=0;
x = (4/5).^n.*(escalon(n)-escalon(n-6));
subplot(211)
stem(n,x,'filled','LineWidth',3)
ylabel('x(k)')
ylim([-.2 1])
subplot(212)
h = zeros(1,33);
n=-12:20;
h = escalon(n+9)-escalon(n-2);
stem(n,h,'filled','LineWidth',3)
ylabel('h(n-k)')
xlim([-12 6]);
ylim([-.2 1])
%Caso 3
figure('Position',[500 400 600 250])
n=-12:11;
escalon = @(n) n>=0;
x = zeros(20);
x = (4/5).^n.*(escalon(n)-escalon(n-6));
subplot(211)
stem(n,x,'filled','LineWidth',3)
ylabel('x(k)')
xlim([-7 11]);
ylim([-.2 1])
subplot(212)
h = zeros(1,33);
n=-12:20;
h = escalon(n+2)-escalon(n-8);
stem(n,h,'filled','LineWidth',3)
ylabel('h(n-k)')
xlim([-6 11]);
```

```
ylim([-.2 1])
%Caso 4
figure('Position',[500 400 600 250])
n=-3:15;
escalon = @(n) n>=0;
x = zeros(20);
x = (4/5).^n.*(escalon(n)-escalon(n-6));
subplot(211)
stem(n,x,'filled','LineWidth',3)
ylabel('x(k)')
xlim([-3 15]);
ylim([-.2 1])
subplot(212)
h = zeros(1,33);
n=-12:20;
h = escalon(n-1)-escalon(n-12);
stem(n,h,'filled','LineWidth',3)
ylabel('h(n-k)')
xlim([-3 15]);
ylim([-.2 1])
%Caso 5
figure('Position',[500 400 600 250])
n=-3:17;
escalon = @(n) n>=0;
x = zeros(20);
x = (4/5).^n.*(escalon(n)-escalon(n-6));
subplot(211)
stem(n,x,'filled','LineWidth',3)
ylabel('x(k)')
xlim([-1 17]);
ylim([-.2 1])
subplot(212)
h = zeros(1,33);
n=-12:20;
h = escalon(n-6)-escalon(n-17);
stem(n,h,'filled','LineWidth',3)
ylabel('h(n-k)')
xlim([-1 17]);
ylim([-.2 1])
```