Graph Theory Set 3

- **11.** The **join** of the graphs G and H, denoted $G \vee H$, is the graph created by connecting every vertex in G to every vertex of H.
 - **a.** Show that $\chi(G \vee H) = \chi(G) + \chi(H)$.
 - **b.** Show that $P_{K_n \vee G}(x) = x(x-1) \cdots (x-n+1) P_G(x-n)$.
 - **c.** The **wheel graph** W_n is $K_1 \vee C_{n-1}$. Here is W_{13} : Find $P_{W_n}(x)$.

- **12.** A graph G is k-critical if the chromatic number $\chi(G) = k$ and $\chi(G v) = k 1$ for any vertex *v* in *G*. The graph *G* is **critical** if it is *k*-critical for some *k*.
 - **a.** Why must every graph with $\chi(G) = k$ have a k-critical subgraph?
 - **b.** Show that the join $G \vee H$ is critical if and only if both G and H are critical.
 - **c.** Show that the even wheel graphs W_{2n} are 4-critical. (Open problem: Find a good characterization of all 4-critical graphs.)
 - **d.** Suppose G is k-critical. Why does every vertex have degree at least k-1?
 - **e.** Suppose $\chi(G) = k$. Why must G have at least k vertices with degree $\geq k 1$?
- **13.** Let T be a tree. Properly color T green and gold such that the number of green vertices is at least the number of gold vertices. Prove that a green leaf exists.
- **14.** Let *T* be a tree with *n* vertices and let *G* be a graph with minimum degree at least n-1. Show that T can be found by removing vertices and edges from G.
- 15. This exercise gives another proof of Cayley's theorem. Starting with a labeled tree *T* with *n* vertices, create a list (a_1, \ldots, a_{n-2}) by implementing this algorithm:
 - 1. Set i = 1.
 - 2. Let u be the leaf in T with the minimum label. Let a_i be the label on the vertex
- 3. If i = n 2, stop. If not, increment i, change T to T u, and go back to step 2. For example, if *T* is the tree

then the list is (3, 2, 4, 3).

Describe the inverse function; that is, give instructions on how to change the list (a_1,\ldots,a_{n-2}) with $1 \leq a_i \leq n$ into the corresponding labeled tree T. Why does this imply that there are n^{n-2} labeled trees?