(19) World Intellectual Property Organization International Bureau

(43)-International-Publication-Date-31 July 2003 (31.07.2003)

PCT

(10) International Publication Number WO 03/061648 A1

- (51) International Patent Classification⁷: A A61P 5/50, 3/10
- A61K 31/27,
- (21) International Application Number: PCT/CA03/00078
- (22) International Filing Date: 27 January 2003 (27.01.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/350,958

25 January 2002 (25.01.2002) U

- (71) Applicant (for all designated States except US): DI-AMEDICA INC. [CA/CA]; 6-1200 Waverley Street, Winnipeg, Manitoba R3T 0P4 (CA).
- (71) Applicant and
- (72) Inventor: LAUTT, Wayne, W. [CA/CA]; 631 Drake Centre, 181 Freedman Crescent, Winnipeg, Manitoba R3T 5V4 (CA).
- (74) Agent: MCKAY, Margaret, H., Ridout & Maybee LLP, 150 Metcalfe Street, Suite 1900, Ottawa, Ontario K2P 1P1 (CA).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: USE OF CHOLINESTERASE ANTAGONISTS TO TREAT INSULIN RESISTANCE

Effect of neostigmine, an anticholinesterase agent, in rats given atropine to produce a 75% HDIR

Control

SSSS Post Atropine

Neostigmine 1µg/kg/min

(57) Abstract: There is provided a method of reducing insulin resistance in a mammalian subject comprising administering a suitable acetylcholine esterase antagonist.

WO 03/061648 A

WO 03/061648 PCT/CA03/00078

USE OF CHOLINESTERASE ANTAGONISTS TO TREAT INSULIN RESISTANCE

This application claims priority of invention from United States Patent Application 60/350,958, filed 25 January 2002.

5

15

20

25

FIELD OF THE INVENTION

The invention relates to the field of treatments for insulin resistance.

BACKGROUND

Insulin resistance is a significant health challenge for a wide range of patients, including those with type II diabetes, metabolic obesity, and various liver conditions.

The picture that is emerging is one of complex multiple interacting systems with reflex parasympathetic effects in the liver capable of causing more than one reaction and of triggering reactions in other organs.

fasted cats, the hypoglycemic response bolus In to administration of insulin was reduced by 37% by hepatic denervation. These cats developed insulin resistance immediately following acute denervation of the liver. The degree of reduction of response to insulin was maximal after anterior plexus denervation and did not increase further with addition of denervation of the posterior nerve plexus or bilateral vagotomy thus demonstrating that all of the nerves of relevance were in the anterior plexus. To avoid the complexity of the reaction to hypoglycemia, the rapid insulin sensitivity test (RIST) was employed (Lautt et al., Can. J. Physiol. Pharmacol. 76:1080 (1998)) wherein a euglycemic clamp was used following the administration of insulin and the response was quantitated as the amount of glucose required to be infused over the test period in order to hold arterial blood glucose levels constant. The RIST methodology has been published in detail and has been demonstrated in both cats and rats. It is highly reproducible. Insulin, glucagon, and catecholamine levels remain unchanged between tests.

10

315

20

25

30

Cats showed a dose-related development of insulin resistance using_atropine_(a_cholinergic_muscarinic_receptor_antagonist) that was of a similar magnitude to that produced by surgical denervation. The dose of atropine required to produce a full insulin resistance is 3 mg/kg (4 µmol/kg) administered into the portal vein. A similar degree of insulin resistance was achieved with 10⁻⁷ mmol/kg of the M₁ muscarinic selective antagonist, pirenzepine, and with 10⁻⁶ µmol/kg of the M₂ selective antagonist, methoctramine. Although not conclusive, the data suggest that the response may be mediated by the M₁ muscarinic receptor subtype.

Although the liver appeared to be the organ that produced the insulin resistance, it was not clear that the liver was the resistant organ. In order to determine the site of insulin resistance, a further series was done in cats that measured arterial-venous glucose responses across the hindlimbs, extrahepatic splanchnic organs, and liver. The intestine was unresponsive to the bolus insulin administration both before and after atropine or anterior plexus denervation or the combination of both. The hepatic response was also not notably altered whereas the glucose uptake across the hindlimbs, primarily representing skeletal muscle uptake, was decreased following atropine or hepatic parasympathetic denervation. These results indicated that interference with hepatic parasympathetic nerves led to insulin resistance in skeletal muscle.

It was further demonstrated that the same degree of resistance could be produced by pharmacological blockade of parasympathetic nerve function using the muscarinic receptor antagonist, atropine. Following a meal, insulin is released from the pancreas. The presence of insulin in the blood elicits a hepatic parasympathetic reflex that results in the release of acetylcholine in the liver that results in the generation and release of nitric oxide which acts to control the sensitivity of skeletal muscle to insulin through the action of a hormone released from the liver, a hepatic insulin sensitizing substance (HISS) which selectively stimulates glucose uptake and storage as glycogen in tissues including skeletal muscle.

In the absence of HISS, the large muscle mass is highly resistant to insulin and the glucose storage in skeletal muscle is severely reduced.

15

20

25

30

Interruption of any part of the parasympathetic-mediated release of HISS results in-insulin-resistance. This-parasympathetic-reflex-regulation-of-HISS-release is a fundamental mechanism by which the body regulates responsiveness to insulin and this mechanism is adjusted according to the prandial state, that is, according to how recently there has been a consumption of nutrients.

In a fasted condition, HISS release in response to insulin is minimal or absent so that if insulin is released in this situation, there is a minimal metabolic effect. Following a meal, the parasympathetic reflex mechanism is amplified so that HISS release occurs and results in the majority of the ingested glucose stored in skeletal muscle.

The consequence of lack of HISS release is the absence of HISS which results in severe insulin resistance, referred to as HISS-dependent insulin resistance ("HDIR"). In this situation, the pancreas is required to secrete substantially larger amounts of insulin in order that the glucose in the blood is disposed of to prevent hyperglycemia from occurring. If this condition persists, insulin resistance will progress to a state of type 2 diabetes (non-insulin dependent diabetes mellitus) and eventually will lead to a complete exhaustion of the pancreas thus requiring the patient to resort to injections of insulin. Thus, it appears that any condition in which the hepatic parasympathetic reflex is dysfunctional will result in insulin resistance.

It is believed that the insulin resistance that is seen in a variety of conditions (non-insulin dependent diabetes, essential hypertension, obesity, chronic liver disease, fetal alcohol effects, old age, and chronic inflammatory diseases) represents a state of HDIR parasympathetic dysfunction. Lack of HISS would also be anticipated to result in obesity at the early stage of the resultant metabolic disturbance (the obese often become diabetic).

Normally after a meal, the liver takes up a small proportion of glucose and releases HISS to stimulate skeletal muscle to take up the majority of the glucose load. In the absence of HISS, the skeletal muscle is unable to take up the majority of glucose thus leaving the liver to compensate. The hepatic glycogen storage capacity is insufficient to handle all of the glucose, with the excess being converted to lipids which are then incorporated into

- 5

10

15

20

25

lipoproteins and transported to adipose tissue for storage as fat. Provision of HISS to these individuals would restore the nutrition partitioning so that the nutrients are stored primarily as glycogen in the skeletal muscle rather than as fat in the adipose tissue.

Thus, it is an object of the invention to provide a method of reducing insulin resistance.

SUMMARY OF THE INVENTION

Insulin resistance in skeletal muscle relating to insufficient response to the hepatic parasympathetic reflex can be alleviated by increasing the effect of released acetylcholine on hepatic muscarinic receptors. This can be accomplished by reducing the rate at which acetylcholine is broken down by acetylcholine esterase. Thus, in an embodiment of the invention there is provided the use of an acetylcholine esterase antagonist to reduce insulin resistance.

In an embodiment of the invention there is provided a method of reducing insulin resistance in a mammalian patient comprising administering a suitable cholinesterase antagonist.

In an embodiment of the invention there is provided a method of amplifying the effect of the hepatic parasympathetic reflex on skeletal muscle sensitivity comprising administering a cholinesterase antagonist.

BRIEF DESCRIPTION OF THE FIGURES

FIGURE 1 is a graphical representation of the effect of neostigmine, on the RIST index of rats given atropine.

FIGURE 2 is a graphical depiction of the results of Example 2.

FIGURE 3 is a graphical depiction of results of Example 3.

15

20

25

30

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The weak response of isolated perfused livers to insulin appears secondary to the lack of hepatic parasympathetic innervation. This hypothesis is supported by the fact that glycogen synthase activity rapidly increases following vagus nerve or lateral hypothalamic stimulation. Acetylcholine or choline alone, or insulin alone, do not enhance the deposition of glycogen in isolated perfused rat liver, but stimulation of glycogen synthesis required the combined action of insulin plus cholinergic stimulation.

Direct electrical stimulation of the hepatic anterior nerve plexus in cats leads to a rapid decrease in glucose output reaching approximately 75% of maximal response by two minutes. No net increase in hepatic uptake by parasympathetic stimulation in fasted cats was observed.

In the isolated rat liver in non-fasted rats, electrical stimulation of parasympathetic nerves did not alter glucose or lactate metabolism unless insulin was simultaneously presented. While the parasympathetic nerves had a synergistic effect with insulin they were antagonistic to the glucose liberating effect of glucagon.

In both of the previous experiments, direct electrical stimulation of the parasympathetic nerves was demonstrable only after the sympathetic nerves had been eliminated. In the cat studies, the hepatic sympathetic nerves had been destroyed by prior administration of intraportal 6-hydroxydopamine whereas in the latter study the sympathetic nerves in the isolated rat liver were blocked using simultaneous administration of an alpha and beta adrenergic receptor blocker.

Thus, it appears that under conditions of elevated sympathetic nerve input or activation of glycogen phosphorylase above a certain threshold level, the hepatic parasympathetic nerves are without effect.

The amount of a glucose load taken up by the liver is highly dependent upon the route of glucose delivery to the liver. Intravenously administered glucose, even in the presence of hyperinsulinemia, resulted in the liver taking up less than 15% of the total glucose load. In dramatic contrast,

after oral glucose administration at least 60% of the total glucose load was taken up by the liver. Orally consumed glucose may cause a hepatic parasympathetic reflex effect that enhances insulin-mediated glucose uptake by the liver.

Hepatic denervation eliminates the selective effect of portal glucose delivery on glucose uptake. This, and the demonstration that atropine similarly reduced the proportion of glucose sequestered by the liver following oral administration from 80% to 44%, suggested that hepatic parasympathetic nerves are involved with producing the selective hepatic uptake of glucose in response to oral or intraportal glucose loading.

The portal glucose signal appears to ordinarily be needed in order for the liver to respond effectively to insulin by producing glucose uptake. This effect can be blocked by administration of atropine to the liver and could be duplicated by the administration of acetylcholine thus identifying the process as acting through cholinergic receptors.

The above study was carried out in an isolated perfused liver preparation. Although the liver was perfused *in situ*, it is a reasonable assumption that no extrahepatic nerves retained function. One possible conclusion is that sensory nerves within the liver sense the glucose gradient and transmit the information by intrahepatic nerves releasing acetylcholine to act on muscarinic receptors. This would suggest a purely intrahepatic reflex system. This study is compatible with the study which found that hepatic denervation eliminated the selective effect of portal glucose delivery on glucose uptake if one assumes that intrahepatic nerves deteriorate with surgical denervation of the nerve trunk supplying the liver (since the surgical denervation was carried out three weeks prior to the experiment). This is the first data offering support for the existence of a reflex arc located entirely within the liver.

The efferent limb of this reflex appears to be dependent upon hepatic parasympathetic nerves. The afferent limb of the reflex appears to depend upon the presence of glucose receptors located in the portal vein. The nerve pathway does not pass through the CNS and may, in fact, be entirely intrahepatic.

. 5

10

g 15

20

25

30

The absorption of orally administered glucose in conscious dogs was suppressed and delayed by administration of atropine. The mechanism of this response has recently been demonstrated using an isolated, jointly perfused small bowel and liver preparation in rats. Administration of insulin into the portal blood supply leads to a parasympathetic nerve-mediated increase in absorption of glucose from the lumen of the intestine. The effect can be blocked by atropine and mimicked by carbachol. The afferent limb of the reflex is activated by insulin with receptors located in the portal vein or liver and the efferent limb represents muscarinic nerves supplying the intestine.

10

15

The neural pathway connecting the sensory and effector branches of the reflex is not known but, in this unique preparation, would likely occur through one of two sources. One route would be from the liver along the portal vein through the posterior hepatic plexus to the intestine. The other would involve transmission through the celiac ganglion which remained intact in this preparation. Regardless of the course, this is another example of a splanchnic reflex that does not pass through the central nervous system. This mechanism likely serves the function of assuring that maximum glucose absorption only occurs at a time when the organs sensitive to insulin-induced uptake have also been stimulated.

20

25

30

Cats showed a dose-related development of insulin resistance using atropine that was of a similar magnitude to that produced by surgical denervation. The dose of atropine required to produce a full insulin resistance is 3 mg/kg (4 μ mol/kg) administered into the portal vein. A similar degree of insulin resistance was achieved with 10⁻⁷ mmol/kg of the M₁ muscarinic selective antagonist, pirenzepine, and with 10⁻⁶ μ mol/kg of the M₂ selective antagonist, methoctramine. These data suggest that the response may be mediated by the M₁ muscarinic receptor subtype.

In order to determine the site of insulin resistance, a further series was done in cats that measured arterial-venous glucose responses across the hindlimbs, extrahepatic splanchnic organs, and liver. The intestine was unresponsive to the bolus insulin administration both before and after atropine or anterior plexus denervation or the combination of both. The hepatic response

WO 03/061648 PCT/CA03/00078

- 8 -

was also not notably altered whereas the glucose uptake across the hindlimbs, primarily-representing-skeletal-muscle-uptake, was decreased following atropine or hepatic parasympathetic denervation. These results indicated that interference with hepatic parasympathetic nerves can lead to insulin resistance in skeletal muscle.

It was further determined that the same degree of resistance could be produced by pharmacological blockade of parasympathetic nerve function using the muscarinic receptor antagonist, atropine. Following a meal, insulin is released from the pancreas. The presence of insulin in the blood elicits a hepatic parasympathetic reflex that results in the release of acetylcholine in the liver which results in the generation and release of nitric oxide which acts to control the sensitivity of skeletal muscle to insulin.

Acetylcholine infused directly into the portal vein (2.5 μ g/kg/min) results in a complete reversal of the insulin resistance induced by surgical denervation. Administration of the same dose of acetylcholine intravenously produces no reversal. Intraportal administration directly targets the liver whereas intravenous infusion bypasses the liver and is not organ selective. This demonstration is extremely important in that the data suggest that the signal from the liver skeletal muscle is blood-borne.

While the invention is not limited to any particular mechanism of action, the model for insulin resistance which has emerged is that, in normal individuals, the eating of a meal results not only in the release of insulin, but also in a hepatic parasympathetic reflex. The hepatic parasympathetic effect results in the release of acetylcholine (ACh) which activates muscarinic receptors in the liver, leading to activation of hepatic nitric oxide synthase (NOS) and the generation of nitric oxide (NO), which in turn causes increased guanyl cyclase (GC) activity, resulting in increased levels of cyclic guanosine monophosphate ("cGMP") and the release of a hepatic insulin sensitizing substance (HISS) into the blood which ultimately leads to an increase in insulin sensitivity in skeletal muscle.

5

10

÷15

20

25

30

10

15

20

25

30

In some instances, such as disease or injury, the release of acetylcholine by the hepatic parasympathetic neurons is impaired, and it may be desirable to enhance the effectiveness of the reduced amount which is present.

A method for enhancing the effectiveness of acetylcholine and the use of this method in the treatment of insulin resistance has been developed.

HISS-dependent insulin resistance ("HDIR") is defined as a reduction in the response to insulin secondary to a failure of HISS action on glucose disposal. When insulin fails to result in HISS release from the liver or its action on skeletal muscle is otherwise impaired, a state of HDIR is said to exist. With a pure state of HDIR, the direct glucose uptake stimulation effect of insulin is not impaired.

During normal nervous system function, acetylcholine is broken down by acetylcholine esterase in the synaptic cleft. This prevents the unlimited build-up of acetylcholine in the synaptic cleft, which, in normal patients, could result in an undesirably high level of acetylcholine binding to its receptor long after the initial release of acetylcholine from the presynaptic terminal.

However, where acetylcholine production or release is below normal levels (or receptor levels on the post-synaptic neuron are unusually low), it may be desirable to increase the residency time of acetylcholine in the synaptic cleft, thereby allowing a greater interaction between acetylcholine and its receptors on the post-synaptic neuron and potentially amplifying its effects.

In one embodiment of the invention, an acetylcholine esterase antagonist is used to reduce the breakdown of acetylcholine in the hepatic parasympathetic nerve synapses. The precise dose of ACh esterase antagonist desirable will be determined by a number of factors which will be apparent to those skilled in the art, in light of the disclosure herein. In particular, the identity of the antagonist, the formulation and route of administration employed, the patient's gender, age and weight, as well as the extent of ACh production in the hepatic parasympathetic neurons, the number and effectiveness of the ACh receptors on the post-synaptic terminal and the severity of the condition to be treated will often be considered. Where it is impractical to conduct the tests necessary to determine the receptor abundance on the post-synaptic terminal

-5

10

<u>;</u> 15

20

25

30

and/or the other factors such as the extent of hepatic ACh production, the appropriate_dose_can_be_determined_through_the_administration_of_a dose suitable for a majority of patients similar to the subject in respect of those factors which have been assessed with subsequent examination of insulin resistance and symptoms of excessive ACh esterase exposure.

A wide variety of acetylcholine esterase antagonists are known in the art and specifically contemplated for use in certain embodiments of the invention. By way of non-limiting example, donepezil, galantamine, rivastigme and tacrine are currently in therapeutic use for the treatment of Alzheimer's disease. If compounds such as those listed above were used to reduce insulin resistance they would preferably be targeted to the liver. Further non-limiting examples of acetylcholine esterase antagonists include physostigimine (eserine), edrophonium, demecarium, pyridostigmine, phospholine, metrifonate, neostigmine, galanthamine, zanapezil and ambenonium.

Any suitable acetylcholine esterase antagonist may be employed. An acetylcholine esterase antagonist will be "suitable" if: (a) at the dose and method of administration to the mammalian patient, it is not acutely toxic, and does not result in chronic toxicity disproportionate to the therapeutic benefit derived from treatment; and (b) at the dose and method of administration to the mammalian patient it reduces insulin resistance in the patient.

It is preferable to minimize the diffusion of the acetylcholine esterase into the spinal cord and brain.

In one embodiment, the acetylcholine esterase antagonist is preferentially targeted to the liver. Targeting of the antagonist to the liver can be accomplished through the use of any pharmaceutically acceptable liver-targeting substance. For example, it can be bound to albumin or bile salts for preferential delivery to liver. Alternatively, the antagonist may be incorporated into or encapsulated within liposomes which are preferentially targeted to the liver. In one embodiment, the antagonist is administered in a precursor form, and the precursor is selected to be metabolised to the active form by enzymes preferentially found in the liver.

In some instances it will be desired to prepare and administer a composition comprising an acetylcholine esterase antagonist and at least one other drug used in the treatment of diabetes. Examples of such drugs are listed in Table I.

5 Table I

					•	
				in analogues		
	*		Il Diabetes		•	
•		1.	Sulfonylure		•	
	÷			Generation		
10				. Tolbutamid		
	And the second			 Acetohexar 		•
			C	. Tolazamide	•	4
			d	. Chlorpropa	mide	
			2. Seco	and Generation	n	
15			а	. Glyburide		
		•	b	. Glipizide		
			C	. Glimepiride	,	
		ii.	Biguanide a	igents .		
			1. metfe			
20		iii.		sidase inhibit	ors	
			1. Acar			
		·. ·	2. Migli	tol		
•		iv.		dione Agents	(insulin ser	ısitizers)
				glitazone	. •	ĺ
25		•	2. Piogl			
			3. Trog			- "
	•	٧.	Meglitinide /			
			1. Repa			
•		c. Phosi	ohodiesteras			•
30			Anagrelide	·		
			Tadalafil			
			Dipyridamol	е		
	•		Dyphylline			
÷			Vardenafil			
35			Cilostazol	.*		•
<i>-</i>			Milrinone			
	•		Theophyllin	9	10	
			Sildenafil			
		х.	Caffeine			
40		,	nergic Agonis	ts		
			Acetylcholin			
			Methacholin			
	•		Bethanecho	· · · · · · · · · · · · · · · · · · ·		•
		116.		•		

iv. Carbachol

•		v. Pilocarpine hydrochloride
•	e.	Nitric Oxide Donors
		i. Products or processes to increase NO synthesis in the liver
	•	(increasing NO synthase activity)
5	•	Variety I
		1. SIN-1
		2. Molsidamine
		Variety II – nitrosylated forms of:
	•	1. N-acetylcysteine
10		2. Cysteine esters
	•	L-2-oxothiazolidine-4-carboxolate (OTC)
		Gamma glutamylcystein and its ethyl ester
		Glutathione ethyl ester
٠.,		Glutathione isopropyl ester
15		7. Lipoic acid
		8. Cysteine
		9. Cystine
• • •		10. Methionine
		11. S-adenosylmethionine
20		ii. Products or processes to reduce the rate of NO degradation
		in the liver
		iii. Products or processes to provide exogenous NO or an
		exogenous carrier or precursor which is taken up and
		releases NO in the liver
25	f. :	Antioxidants
		i. Vitamin E
		ii. Vitamin C
		iii. 3-morpholinosyndnonimine
	g.	Glutathione increasing compounds
30		i. N-acetylcysteine
		ii. Cysteine esters
	•	iii. L-2-oxothiazolidine-4-carboxolate (OTC)
		iv. Gamma glutamylcystein and its ethyl ester
		v. Glutathione ethyl ester
35		vi. Glutathione isopropyl ester
		vii. Lipoic acid
•	•	viii. Cysteine
		ix. Cystine
40		x. Methionine
40		xi. S-adenosylmethionine

In light of the disclosure herein, one skilled in the art could readily determine if a particular candidate antagonist is a suitable antagonist by determining the method and dose of administration and performing toxicity studies according to standard methods (generally beginning with studies of toxicity in animals, and then in humans if no significant animal toxicity is

45

15

20

25

30

observed). If the method and dose of administration do not result in acute toxicity, the antagonist is administered to the subject at the dose of administration and insulin resistance following treatment for at least three days in compare to pre-treatment insulin resistance. (Insulin resistance is assessed using the RIST test.) Where treatment results in increased insulin resistance without significant chronic toxicity (or having only modest chronic activity in a patient where untreated insulin resistance is life threatening), the antagonist is a suitable antagonist for that patient at the dose tested.

In some instances it will be desirable to manufacture and administer a pharmaceutical composition comprising a suitable acetylcholine esterase antagonist and another drug used in the treatment of diabetes.

In one embodiment acetylcholine esterase antagonists are preferably administered prior to each meal and having a duration of action about 4 to 6 hours.

For oral administration of acetylcholine esterase antagonists twice per day, each dose is preferably between 0.01 mg/kg body weight and 5 mg/kg body weight, when administered orally. In some embodiments an oral dose of between 0.05 mg/kg and 1.0 mg/kg will be desired. In some embodiments oral doses of between 0.15 and 0.7 mg/kg body weight will be desired. When the antagonist to be administered orally is pyridostigmine, in some embodiments dose of between 0.5 and 2.9 mg/kg body weight may be desired. Where the antagonist is specially targeted to the liver, the dose may be reduced accordingly.

For administration of acetylcholine esterase antagonists by twice-daily injection, a per-injection dose of between 0.001 and 0.05 mg/kg body weight may be desired. In some instances a per-injection dose of neostigmine of between 0.002 and 0.01 mg/kg body weight will be desired. In some instances a per-injection dose of an acetylcholine esterase antagonist of between 0.002 and 0.008 mg/kg body weight will be desired. Where the antagonist is targeted to the liver, dosages may be reduced accordingly.

The acetylcholine esterase antagonist may be administered so as to maintain a relatively constant level of the antagonist in the liver at all times.

10

20

25

30

Alternatively, the antagonist may be administered to have antagonist concentrations peak when blood glucose is high, such as after a meal, so as to allow enhanced glucose uptake at that time. Where toxicity is a concern, it may be desirable to keep antagonist levels low until blood glucose levels become elevated above normal fasting levels. In many instances it will be desirable to administer the antagonist immediately before each meal. It will frequently be desirable to administer the antagonist so as to cause the acetylcholine concentration peak immediately prior to each meal and remain elevated for about 2-4 hours.

When administering or preparing to administer one or more acetylcholine esterase antagonists to a patient, reference should be had to toxicity studies performed according to standard techniques and relating to the compounds to be administered. In general, a patient should not receive a dose of one or more acetylcholine esterase antagonists sufficient to induce acute toxicity.

Patients should be monitored for signs of excessive exposure to acetylcholine esterase antagonists. These signs include (in typical order of appearance): salivation, sweating, decreased heart rate, bronchial constriction similar to asthma, and gastro intestinal upset including diarrhea and bladder incontinence.

In some instances it will be desirable to screen potential patients for HDIR prior to administering an acetylcholine esterase antagonist. One method of screening involves using the RIST methodology, described herein.

In one embodiment of the invention there is provided a kit containing an acetylcholine esterase antagonist in a pharmaceutically acceptable carrier together with instructions for the administration of the acetylcholine esterase antagonist to reduce insulin resistance in a patient. In one embodiment the kit further includes means to administer the acetylcholine esterase antagonist. Suitable administration means may be selected by one skilled in the art, depending on the route of administration desired.

15

20

In one embodiment of the invention there is provided a method of reducing insulin resistance in a mammalian patient comprising administering a suitable acetylcholine esterase antagonist.

In another embodiment of the invention there is provided a method of reducing insulin resistance in a mammalian patient suffering from inadequate levels of acetylcholine in the hepatic parasympathetic nerve synapses, the method comprising selecting a patient suffering from insulin resistance and administering a suitable acetylcholine esterase antagonist.

As used herein the phrase "suffering from inadequate levels of acetylcholine" means being in a condition where there is not sufficient acetylcholine to allow levels of signalling by the post-synaptic neuron sufficient to reduce insulin resistance to the level observed in an average healthy subject of the same gender, age, weight, fed-state, and blood sugar level as the patient.

In another embodiment of the invention there is provided a method of increasing glucose uptake by skeletal muscle of a patient suffering from suboptimal hepatic regulation of blood glucose levels, comprising selecting the patient and administering a suitable acetylcholine esterase antagonist.

Individuals suffering from insulin resistance who could in many cases benefit from treatment according to the methods described herein include those suffering from any one or more of: chronic liver disease, chronic hypertension, type II diabetes, fetal alcohol syndrome, gestational diabetes, and age-related insulin resistance and liver transplant recipients.

Examples

Example 1

25 Animal Studies

Male Sprague Dawley rats (250-300g) were allowed free access to water and normal rodent food for 1 week prior to all studies. Rats were fasted for 8 hours overnight and fed for 2 hours before the start of study.

Surgical preparation

5

10

15

20

25

Rats were anesthetized with pentobarbital-sodium (65mg/ml, ip injection, 0.1 ml/100 g body weight). Animals were placed on a heated thermostatically controlled surgical table to maintain body temperature during surgery and the experimental procedure.

An extracorporeal arterial-venous shunt (the loop) was established between the right femoral artery and right femoral vein, according to a published, standard operating procedure developed in our laboratory (Xie et al., 1996). The loop allows for regular blood sampling of arterial blood throughout the experiment as well as infusion of intravenous drugs and monitoring of arterial blood pressure.

A tracheal breathing tube was inserted to ensure a patent airway and the jugular vein was cannulated for administration of supplemental anesthetic through out the study, and 10% w/vol glucose solution during the insulin sensitivity test procedure (rapid insulin sensitivity test, RIST). A laparotomy was performed and an indwelling portal venous catheter was inserted using a portal vein puncture technique. The portal catheter was used to administer the anticholinesterase agents directly to the liver.

Rapid Insulin Sensitivity Test (the RIST)

The Rapid Insulin Sensitivity Test (the RIST) is a euglycemic approach to test whole body glucose uptake in response to a low dose insulin challenge. It has been extensively validated against other standard approaches and has proven to be a sensitive, reliable and reproducible technique (Reid, et al., 2002).

Once surgery is completed, the rat is allowed to stabilize for approximately 30 minutes. At this point, blood samples (25µI) are taken at regular intervals from the loop and analyzed for glucose concentration. Once a stable baseline glucose level is obtained, animals are given a 5 minute infusion of insulin (50 mU/kg) through the loop. Glucose levels are monitored every 2

10

15

minutes during and after the infusion of insulin. Exogenous glucose is infused into the jugular vein to prevent the hypoglycemic effect of insulin. Based on the glucose levels obtained from the regular blood sampling, the infusion rate of glucose can be adjusted to maintain the baseline euglycemia. Glucose infusion rates progressively increase as the effect of insulin reaches a maximum (at approximately 15 minutes into the test) and then progressively decrease as the effect of insulin wears off. Typically, the effect of insulin is complete by 35 minutes. The total amount of glucose infused during the RIST is considered the RIST index and is reported in terms of mg glucose infused/kg body weight of the subject.

Production of insulin resistance

As some degree of neural activation must remain for the anticholinesterase compounds to be effective, an atropine model of 75% blockade of HISS-dependent insulin resistance (HDIR) was developed. The dose of atropine used (5×10^{-6} mg/kg) was based on previously obtained doseresponse data obtained in the rat. To this end, atropine was infused into the loop for 5 minutes. After allowing time to re-establish a stable blood glucose level, a RIST was performed to determine the degree of insulin resistance.

Reversal of insulin resistance with neostigmine, an anticholinesterase agent

Neostigmine is an anticholinesterase agent that prevents the metabolism of acetylcholine, the neurotransmitter released from the parasympathetic nerves. After determining the degree of insulin resistance produced by atropine, neostigmine was constantly infused into the portal vein at a dose of 1 μ g/kg/min. Neostigmine was infused for at least 30 minutes before a RIST was conducted to determine if this agent could reverse the insulin resistance.

25

Summary of experimental protocol

- 1. control RIST to determine insulin sensitivity
- 2. atropine infusion to produce a 75% block of HISSdependent insulin resistance
- 3. post-atropine RIST
- 4. constant infusion of neostigmine into portal vein
- 5. RIST during neostigmine infusion

Drugs

5

Human insulin (Humulin R) was obtained from Eli Lilly and Company. Atropine and neostigmine-bromide were obtained from Sigma Chemical Company. All drugs were diluted or dissolved in normal saline.

Results

The average control RIST index was 192.4±11 mg /kg (n=3). Following the atropine-induced 75% HDIR, the RIST index was 90.5±15.2 mg /kg. The RIST index during the constant infusion of neostigmine (1µg/kg/min, ipv) was increased to 152.6±15.2 mg/kg and is significantly increased from the blocked state. These data indicate that neostigmine is able to reverse the HDIR produced by atropine (Figure 1).

Example 2

20 <u>Development of HDIR in a model of insulin resistance produced by high</u> sucrose diets in rats

It has been well documented that feeding rats a diet high in sucrose leads to a state of insulin resistance. The insulin resistance produced by this model has recently been shown to be HDIR.

15

20

25

Sucrose-fed model of insulin resistance

Two approaches to sucrose-feeding were used in this investigation. In group one, 3 week old (weanlings), male, Sprague Dawley rats, were supplied for 12 weeks with a solid pellet diet in which 35% of all calories came from sucrose (solid diet group, Research Diets Inc.). In a second group, male, Sprague Dawley rats, approximately 6 weeks of age were provided free access to a 35% w/vol sucrose and water solution in addition to regular rodent pellet diet and normal drinking water for a 9 week period (liquid diet group).

Series 1: Assessment of HDIR in sucrose fed rats

After the noted feeding period, both groups of rats were tested to determine the degree of HDIR that developed while on these diets. A control group consisted of rats fed only regular rodent diet.

Rats were fasted for 8 hours overnight and fed for 2 hours before the start of study. The surgical preparation was similar to that described above for normal rats treated with neostigmine except that no laparotomy was performed and no portal vein cannula was inserted. In brief, an arterial-venous shunt/loop was established, a tracheal breathing tube inserted and the jugular vein was cannulated.

Following a stabilization period and establishment of a baseline blood glucose level, a control RIST was conducted. Atropine was then administered (1 mg/kg) intravenously over 5 minutes to block the acetylcholine muscarinic receptors and produce a state of full HDIR. A second RIST was then conducted. The difference between the two RIST indexes indicates the degree of HDIR produced by sucrose feeding. For example, if the control RIST index and the post-atropine RIST index are similar, it suggests that the sucrose-feeding produces HDIR; if the difference is large, it suggest that sucrose-feeding is not producing HDIR.

10

15

Human insulin (Humulin R) was obtained from Eli Lilly and Company. Atropine was obtained from Sigma Chemical Company. Both drugs were diluted or dissolved in normal saline.

RIST indexes for the solid and liquid diet groups were 88±15 mg/kg (n=6) and 106 ± 8 mg/kg (n=11), respectively and were not different. RIST indexes in the sucrose fed groups were significantly reduced from RIST indexes obtained from the control rats (n=9) fed only a regular rodent diet (197±10 mg/kg, **).

As shown in Figure 2, following atropine administration to produce a full block of HISS release, RIST indexes were significantly reduced in the control rats (80±6 mg/kg, *), but were not significantly reduced in the sucrose fed groups (solid diet: 76±14 mg/kg; liquid diet: 89±7 mg/kg). These findings support the hypothesis that the insulin resistance observed following sucrose feeding is due to a reduction in HISS release/action, i.e., diminishment of the HISS-dependent component of insulin action.

Example 3

Reversal of HISS-dependent insulin resistance in sucrose-fed rats using anticholinesterase agents

Since both forms of diet produced the same degree of HDIR, the model of sucrose feeding using the liquid diet was used to determine whether this HDIR was reversible with the anticholinesterase agent, neostigmine.

The model of insulin resistance produced by the 35% liquid sucrose diet (in addition to regular rodent food pellets and normal drinking water) was identical to the protocol described above for the assessment of HDIR in sucrose-fed rats.

Rats were fasted for 8 hours overnight and fed for 2 hours before the start of study. The surgical preparation was identical to that described above for sucrose-fed rats tested for HDIR. In addition, a laparotomy and portal vein cannulation were carried out. In brief, an arterial-venous shunt/loop was

25

established, a tracheal breathing tube inserted and the jugular vein was cannulated. Following a laporotomy, the portal vein was cannulated.

After conducting a control RIST, neostigmine was infused into the portal vein for at least 30 before a second RIST was conducted to determine if this agent could reverse the insulin resistance. The doses of neostigmine were 1 and 2 μ g/kg/min.

The control RIST index was 94.8 ± 11.2 mg/kg and demonstrated that the liquid sucrose-fed rats were insulin resistant. As shown in Figure 3, the dose of 1 µg/kg/min did not produce a reversal of insulin resistance (RIST index, 80.9 ± 27.3 mg/kg) however, the dose of 2 µg/kg/min increased the RIST index to 178.0 ± 17.7 mg/kg.

Thus, there has been provided a method of reducing insulin resistance.

References of relevance to these examples include:

Xie, H. et al.: Am. J. Physiol. 270:E858 (1996); Sadri, P. et al.: Am. J. Physiol.
 277:G1 (1999); Lautt, W.W. et al.: Can. J. Physiol. Pharmacol. 76:1 (1998); and
 Xie, H. et al.: J. Pharmacol. Toxicol. Meth. 35: 77-82 (1996).

We Claim:

- 1. Use of an acetylcholine esterase antagonist in the manufacture of a medicament useful in reducing insulin resistance in a mammalian patient suffering therefrom.
- 2. Use of an acetylcholine esterase antagonist in reducing insulin resistance in a mammalian patient suffering therefrom.
- 3. Use of any one of claims 1 or 2 wherein the insulin resistance is at least partially the result of inadequate levels of acetylcholine in the patient's hepatic parasympathetic nerve synapses.
- 4. Use of an acetylcholine esterase antagonist in the manufacture of a medicament useful to increase skeletal muscle glucose uptake in a mammalian patient.
- 5. Use of an acetylcholine esterase antagonist to increase skeletal muscle glucose uptake in a mammalian patient.
- 6. Use of claim 1, 2, 4 or 5 wherein the patient suffers from suboptimal hepatic regulation of blood glucose levels.
- 7. Use of claim 1, 2, 3, 4, 5 or 6 wherein the acetylcholine esterase antagonist is at least one of donepezil, galanthamine, rivastigme, tacrine, physostigime, neostigmine, edrophonium, pyridostigmine, demecarium, pyridostigmine, phospholine, metrifonate, zanapezil, and ambenonium.
- 8. Use of any preceding claim wherein the patient is a human.
- 9. A pharmaceutical composition comprising a suitable acetylcholine esterase antagonist and at least one other drug used in the treatment of diabetes.

- 10. The composition of claim 9 further including a pharmaceutically acceptable liver-targeting substance.
- 11. The composition of claim 9 or 10 wherein the antagonist is at least one of donepezil, galanthamine, rivastigme, tacrine, physostigime, neostigmine, edrophonium, pyridostigmine, demecarium, pyridostigmine, phospholine, metrifonate, zanapezil, and ambenonium.
- 12. The composition of claim 9, 10 or 11 wherein the other drug is at least one of insulin, insulin analogues, sulfonylurea agents, tolbutamide, acetohexamide, tolazamide, chlorpropamide, glyburide, glipizide, glimepiride, biguanide agents, metformin, alpha-glucosidase inhibitors, acarbose, miglitol, thiazolidinedione agents (insulin sensitizers), rosiglitazone, pioglitazone, troglitazone, meglitinide agents, repaglinide, phosphodiesterase inhibitors, anagrelide, tadalafil, dipyridamole, dyphylline, vardenafil, cilostazol, milrinone, theophylline, sildenafil, caffeine, cholinergic agonists, acetylcholine, methacholine, bethanechol, carbachol, pilocarpine hydrochloride, nitric oxide donors, products or processes to increase NO synthesis in the liver, SIN-1, molsidamine, nitrosylated N-acetylcysteine, nitrosylated cysteine esters, nitrosylated L-2-oxothiazolidine-4-carboxolate (OTC), nitrosylated gamma glutamylcystein and its ethyl ester, nitrosylated glutathione ethyl ester, nitrosylated glutathione isopropyl ester, nitrosylated lipoic acid, nitrosylated cysteine, nitrosylated cystine, nitrosylated methionine, S-adenosylmethionine, products or processes to reduce the rate of NO degradation in the liver, products or processes to provide exogenous NO or an exogenous carrier or precursor which is taken up and releases NO in the liver, antioxidants, vitamin E, vitamin C, 3-morpholinosyndnonimine, glutathione increasing compounds, Nacetylcysteine, cysteine esters, L-2-oxothiazolidine-4-carboxolate (OTC), gamma glutamylcystein and its ethyl ester, glutathione ethyl ester, glutathione isopropyl ester, lipoic acid, cysteine, cystine, methionine, and Sadenosylmethionine.

- 13. The composition of claim 10, 11 or 12 wherein the liver-targeting substance is at least one of albumin, bile salts and liposomes.
- 14. A kit comprising:

an acetylcholine esterase antagonist in a pharmaceutically acceptable carrier; and

instructions for the administration of the acetylcholine esterase antagonist to reduce insulin resistance in a mammalian patient.

- 15. The kit of claim 14 further comprising means to administer the acetylcholine esterase antagonist.
- 16. A method of reducing insulin resistance in a mammalian patient comprising administering a suitable acetylcholine esterase antagonist.
- 17. A method of amplifying the effect of the hepatic parasympathetic reflex on skeletal muscle insulin sensitivity comprising administering an acetylcholine esterase antagonist.
- 18. A method of increasing glucose uptake by skeletal muscle of a patient suffering from suboptimal hepatic regulation of blood glucose levels, comprising identifying the patient as suffering from suboptimal hepatic regulation of blood glucose levels and administering a suitable acetylcholine esterase antagonist.
- 19. A method of reducing insulin resistance in a mammalian patient suffering from inadequate levels of acetylcholine in the hepatic parasympathetic nerve synapses, said method comprising identifying the patient as suffering from inadequate levels of acetylcholine in the hepatic parasympathetic nerve synapses and administering a suitable acetylcholine esterase antagonist.
- 20. The method of any preceding claim wherein the acetylcholine esterase antagonist is at least one of donepezil, galanthamine, rivastigme,

tacrine, physostigime, neostigmine, edrophonium, pyridostigmine, demecarium, pyridostigmine, phospholine, metrifonate, zanapezil, and ambenonium.

- 21. The method of any preceding claim wherein the acetylcholine esterase antagonist is targeted to the liver.
- 22. The method of claim 21 wherein the acetylcholine esterase is targeted to the liver using albumin.
- 23. The method of claim 21 wherein the acetylcholine esterase is targeted to the liver using a plurality of liposomes.
- 24. The method of claim 21 wherein the acetylcholine esterase is targeted to the liver using bile salts.
- 25. The method of any preceding claim wherein the acetylcholine esterase is administered by intravenous administration.
- 26. The method of any preceding claim wherein the acetylcholine esterase is administered by transdermal administration.
- 27. The method of any preceding claim wherein the acetylcholine esterase is administered by oral administration.
- 28. The method of any preceding claim wherein the acetylcholine esterase is administered by intra peritoneal administration.
- 29. The method of any preceding claim wherein the acetylcholine esterase antagonist is administered by portal vein injection.
- 30. The method of any preceding claim wherein the acetylcholine esterase antagonist is administered by immobilization of the acetylcholine

esterase antagonist on a solid support and implantation of the support adjacent the patient's liver.

- The method of any preceding claim wherein the patient suffers from at least one of chronic liver disease, chronic hypertension, type II diabetes, fetal alcohol syndrome, gestational diabetes, age-related insulin resistance, and hepatic nerve damage.
- 32. The method of any preceding claim wherein the patient is a human.
- 33. Use of claim 1, 2 or 3 wherein the insulin resistance is hepatic insulin sensitizing substance-dependent insulin resistance.
- 34. The method of any preceding claim wherein the insulin resistance is hepatic insulin sensitizing substance-dependent insulin resistance.

1/3

Figure 1

Figure 1: Effect of neostigmine, an anticholinesterase agent, in rats given atropine to produce a 75% HDIR.

Figure 2

3/3

Figure 3

PCT/CA 03/00078

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/27 A61P5/50

A61P3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\label{lem:minimum} \begin{tabular}{ll} Minimum\ documentation\ searched\ (classification\ system\ followed\ by\ classification\ symbols) \\ IPC\ 7\ A61K\ A61P \end{tabular}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE, MEDLINE, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, o	f the relevant passages	Relevant to claim No
X	PATENT ABSTRACTS OF JAPAN vol. 005, no. 194 (C-082), 10 December 1981 (1981-12-10) & JP 56 115715 A (TAKABE AYAN 11 September 1981 (1981-09-11 abstract	ORI),	1-34
	PATENT ABSTRACTS OF JAPAN vol. 006, no. 208 (C-130), 20 October 1982 (1982-10-20) & JP 57 114512 A (AYANORI TAK 16 July 1982 (1982-07-16) abstract	ABE),	1-34
X	US 5 561 165 A (LAUTT W WAYNE 1 October 1996 (1996-10-01) cited in the application column 5, line 24-35; claims;		1-34
X Furth	er documents are listed in the continuation of box C.	Patent family members are listed	n annex.
A* docume	egories of cited documents : It defining the general state of the art which is not pred to be of particular relevance	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention	the application but ory underlying the
E" earlier de filling da L" documer which is citation O" documer other m P" documer	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"X" document of particular relevance; the cl cannot be considered novel or cannot involve an inventive step when the doc "Y" document of particular relevance; the cl cannot be considered to involve an inv document is combined with one or moi ments, such combination being obviou in the art. "&" document member of the same patent for the same pa	be considered to with the considered to with the considered to when the entire such docu-s to a person skilled
E" earlier de filling da filling da la documer which is citation O" documer other m O" documer later tha	ate It which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) In referring to an oral disclosure, use, exhibition or eans It published prior to the international filing date but	cannot be considered novel or cannot involve an inventive step when the doc "Y" document of particular relevance; the cl cannot be considered to involve an inv document is combined with one or more ments, such combination being obviou in the art.	be considered to ument is taken alone aimed invention entive step when the e other such docusto a person skilled
E" earlier de filing da L" documer which is citation O" documer other m P" documer later tha ate of the a	ate It which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) It referring to an oral disclosure, use, exhibition or eans It published prior to the international filing date but an the priority date claimed	cannot be considered novel or cannot involve an inventive step when the doc "Y" document of particular relevance; the cl cannot be considered to involve an inv document is combined with one or more ments, such combination being obvious in the art. "&" document member of the same patent for the same paten	be considered to ument is taken alone aimed invention entive step when the e other such docusto a person skilled

Form PCT/ISA/210 (second sheet) (July 1992)

Interponal Application No PCT/CA 03/00078

<u> </u>		PCT/CA 0	3/000/8
<u> </u>	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Y	XIE HONGSHENG ET AL: "Insulin resistance caused by hepatic cholinergic interruption		1-8, 16-34
	and reversed by acetylcholine administration." AMERICAN JOURNAL OF PHYSIOLOGY, vol. 271, no. 3 PART 1, 1996, pages		
	E587-E592, XP009011012 ISSN: 0002-9513 abstract		
	SZABO O ET AL: "Neuropharmacological characterization of insulin sensitive CNS glucoregulator"		1-8, 16-34
,	AMERICAN JOURNAL OF PHYSIOLOGY 1975, vol. 229, no. 3, 1975, pages 663-668, XP009011092		
	page 667, column 1, last paragraph -column 2, paragraph 1		
	GOTOH M ET AL: "Vagally mediated insulin secretion by stimulation of brain cholinergic neurons with neostigmine in bilateral adrenalectomized rats." BRAIN RESEARCH. NETHERLANDS 24 JUL 1989,		
	vol. 493, no. 1, 24 July 1989 (1989-07-24), pages 97-102, XP009011022 ISSN: 0006-8993		
	abstract DEL RIO G ET AL: "Cholinergic enhancement by pyridostigmine increases the insulin		
	response to glucose load in obese patients but not in normal subjects." INTERNATIONAL JOURNAL OF OBESITY AND RELATED METABOLIC DISORDERS: JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR THE		
	STUDY OF OBESITY. ENGLAND DEC 1997, vol. 21, no. 12, December 1997 (1997-12), pages 1111-1114, XP009011020 ISSN: 0307-0565		
	abstract 		

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.:
ن د	because they relate to subject matter not required to be searched by this Authority, namely:
	see FURTHER INFORMATION sheet PCT/ISA/210
•	
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	ar, one is the meaning at the meaning could be earlied eat, openingly.
,	
را ،	Outline Name
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
. —	
انا '	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
<u> </u>	
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
	restricted to the invertibilities memorited in the claims, it is dovered by claims reas.
-	
Remark (on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.
	The protect accompanies the payment of additional scalor locs.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 2, 3, 5-8 and 16-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.1

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

formation on patent family members

Intermonal Application No PCT/CA 03/00078

Patent document cited in search report		Publication date	•	Patent family member(s)	Publication date
JP 56115715	Α	11-09-1981	JP ·	1335840 C	11-09-1986
			JP	61001006 B	13-01-1986
-JP_57114512	Α	16-07-1982	JP	1158912 C	25-07-1983
•			JP	57051811 B	04-11-1982
US 5561165	Α	01-10-1996	NONE		·

Form PCT/ISA/210 (patent family annex) (July 1992)

(19) World Intellectual Property Organization International Bureau

(43)-International-Publication-Date 31 July 2003 (31:07.2003)

PCT

(10) International Publication Number WO 03/061638 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/CA03/00077

(22) International Filing Date: 27 January 2003 (27.01.2003)

English

A61K 31/00

(26) Publication Language:

English

(30) Priority Data:

60/350,954

(25) Filing Language:

25 January 2002 (25.01.2002) US

(71) Applicant (for all designated States except US): DI-AMEDICA INC. [CA/CA]; 6-1200 Waverley Street, Winnipeg, Manitoba R3T 0P4 (CA).

(71) Applicants and

- (72) Inventors: LAUTT, Wayne, W. [CA/CA]; 631 Drake Centre, 181 Freedman Crescent, Winnipeg, Manitoba R3T 5V4 (CA). MACEDO, Paula [PT/PT]; Caminho do Forte 1, 2780 Caxias, Oeiras (PT).
- (74) Agent: MCKAY, Margaret, H., Ridout & Maybee LLP, 150 Metcalfe Street, Suite 1900, Ottawa, Ontario K2P 1P1. (CA).

- Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: USE OF PHOSPHODIESTERASE ANTAGONISTS TO TREAT INSULIN RESISTANCE

Control RIST **IIIII** Post Atropine E Zaprinast 0.1 mg/kg

O 03/061638 (57) Abstract: There is provided the use of a phosphodiesterase antagonist to reduce insulin resistance, and to amplify the effect of nitric oxide on skeletal muscle insulin-mediated glucose uptake in a mammal. In some instances, the antagonist is targeted to the liver. In some instances, the insulin resistance is hepatic insulin sensitizing substance ("HISS") dependant insulin resistance.

WO 03/061638 PCT/CA03/00077

USE OF PHOSPHODIESTERASE ANTAGONISTS TO TREAT INSULIN RESISTANCE

This application claims priority of invention from United States Patent Application 60/350,954, filed 25 January 2002.

FIELD OF THE INVENTION

The invention relates to the field of treatments for insulin resistance.

BACKGROUND

Insulin resistance is a significant health challenge for a wide range of patients, including those with type II diabetes, metabolic obesity, and various liver conditions.

The picture that is emerging is one of complex multiple interacting systems with reflex parasympathetic effects in the liver capable of causing more than one reaction and of triggering reactions in other organs.

In fasted cats, hypoglycemic response to a bolus administration of insulin was reduced by 37% by hepatic denervation. These cats developed insulin resistance immediately following acute denervation of the liver. The degree of reduction of response to insulin was maximal after anterior plexus denervation and did not increase further with addition of denervation of the posterior nerve plexus or bilateral vagotomy thus demonstrating that all of the nerves of relevance were in the anterior plexus. To avoid the complexity of the reaction to hypoglycemia, the rapid insulin sensitivity test (RIST) was employed (Lautt et al., Can. J. Physiol. Pharmacol. 76:1080 (1998)) wherein a euglycemic clamp was used following the administration of insulin and the response was quantitated as the amount of glucose required to be infused over the test period in order to hold arterial blood glucose levels constant. The RIST methodology has been published in detail and has been demonstrated in both cats and rats. It is highly reproducible. Insulin, glucagon, and catecholamine levels remain unchanged between tests.

5

10

15

20

25

10.

15

20

25

30

Cats showed a dose-related development of insulin resistance using-atropine-(a cholinergic muscarinic receptor antagonist) that was of a similar magnitude to that produced by surgical denervation. The dose of atropine required to produce a full insulin resistance is 3 mg/kg (4 µmol/kg) administered into the portal vein. A similar degree of insulin resistance was achieved with 10⁻⁷ mmol/kg of the M₁ muscarinic selective antagonist, pirenzepine, and with 10⁻⁶ µmol/kg of the M₂ selective antagonist, methoctramine. Although not conclusive, the data suggest that the response may be mediated by the M₁ muscarinic receptor subtype.

Although the liver appeared to be the organ that produced the insulin resistance, it was not clear that the liver was the resistant organ. In order to determine the site of insulin resistance, a further series was done in cats that measured arterial-venous glucose responses across the hindlimbs, extrahepatic splanchnic organs, and liver. The intestine was unresponsive to the bolus insulin administration both before and after atropine or anterior plexus denervation or the combination of both. The hepatic response was also not notably altered whereas the glucose uptake across the hindlimbs, primarily representing skeletal muscle uptake, was decreased following atropine or hepatic parasympathetic denervation. These results indicated that interference with hepatic parasympathetic nerves led to insulin resistance in skeletal muscle.

It was further demonstrated that the same degree of resistance could be produced by pharmacological blockade of parasympathetic nerve function using the muscarinic receptor antagonist, atropine. Following a meal, insulin is released from the pancreas. The presence of insulin in the blood elicits a hepatic parasympathetic reflex that results in the release of acetylcholine in the liver that results in the generation and release of nitric oxide which acts to control the sensitivity of skeletal muscle to insulin through the action of a hormone released from the liver, a hepatic insulin sensitizing substance (HISS) which selectively stimulates glucose uptake and storage as glycogen in tissues including skeletal muscle.

In the absence of HISS, the large muscle mass is highly resistant to insulin and the glucose storage in skeletal muscle is severely reduced. Interruption of any part of the parasympathetic-mediated release of HISS results

15

20

25

30

in insulin resistance. This parasympathetic reflex regulation of HISS release is a fundamental mechanism by which the body regulates responsiveness to insulin and this mechanism is adjusted according to the prandial state, that is, according to how recently there has been a consumption of nutrients.

In a fasted condition, HISS release in response to insulin is minimal or absent so that if insulin is released in this situation, there is a minimal metabolic effect. Following a meal, the parasympathetic reflex mechanism is amplified so that HISS release occurs and results in the majority of the ingested glucose stored in skeletal muscle.

The consequence of lack of HISS release is the absence of HISS which results in severe insulin resistance, referred to as HISS-dependent insulin resistance ("HDIR"). In this situation, the pancreas is required to secrete substantially larger amounts of insulin in order that the glucose in the blood is disposed of to prevent hyperglycemia from occurring. If this condition persists, insulin resistance will progress to a state of type 2 diabetes (non-insulin dependent diabetes mellitus) and eventually will lead to a complete exhaustion of the pancreas thus requiring the patient to resort to injections of insulin. Thus, it appears that any condition in which the hepatic parasympathetic reflex is dysfunctional will result in insulin resistance.

It is believed that the insulin resistance that is seen in a variety of conditions (non-insulin dependent diabetes, essential hypertension, obesity, chronic liver disease, fetal alcohol effects, old age, and chronic inflammatory diseases) represents a state of HDIR parasympathetic dysfunction. Lack of HISS would also be anticipated to result in obesity at the early stage of the resultant metabolic disturbance (the obese often become diabetic).

Normally after a meal, the liver takes up a small proportion of glucose and releases HISS to stimulate skeletal muscle to take up the majority of the glucose load. In the absence of HISS, the skeletal muscle is unable to take up the majority of glucose thus leaving the liver to compensate. The hepatic glycogen storage capacity is insufficient to handle all of the glucose, with the excess being converted to lipids which are then incorporated into lipoproteins and transported to adipose tissue for storage as fat. Provision of HISS to these individuals would restore the nutrition partitioning so that the

- 5

10

73

7

15

20

25

nutrients are stored primarily as glycogen in the skeletal muscle rather than as _____fat-in-the-adipose-tissue._____

Thus, it is an object of the invention to provide a method of reducing insulin resistance.

SUMMARY OF THE INVENTION

The invention provides uses and methods for reducing insulin resistance. Insulin resistance of certain tissues, including skeletal muscle, is modulated by the splanchnic reflex, which is normally triggered by consumption of a meal. Downstream of the splanchnic reflex, changes necessary for the reduction of insulin resistance are triggered by increased levels of cyclic GMP ("cGMP"). Thus, in one embodiment the invention provides a method of reducing insulin resistance by inhibiting the breakdown of cGMP.

In another embodiment of the invention there is provided the use of a phosphodiesterase antagonist to reduce insulin resistance in a patient suffering therefrom.

BRIEF DESCRIPTION OF THE FIGURES

FIGURE 1 is a graphical depiction of the effect of zaprinast on insulin sensitivity in atropine-treated rats.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Insulin resistance is modulated by a multi-step process normally initiated by the consumption of a meal. The consumption of a meal results in the release of acetylcholine, which is believed to activate muscarinic receptors, leading ultimately to an increase in guanyl cyclase activity and an increase in the level of cGMP. This normal pathway can be blocked by in number of disease states, as well as by hepatic denervation. Such blockage can be mimiced by the administration of atropine, which blocks normal acetylcholine release, reducing or preventing normal activation of the hepatic muscarinic receptors. Such

10

15

20

25

30

blockage interferes with the release of hepatic insulin sensitizing substance ("HISS") which is necessary for normal insulin sensitivity in some tissues, including skeletal muscle.

The present invention provides methods and uses alleviating the symptoms of such blockages by increasing the effective level of cGMP available to stimulate a reduction in HISS-dependent insulin resistance ("HDIR"). HDIR is a reduction in the response to insulin secondary to a failure of HISS action on glucose disposal. When insulin fails to result in HISS release from the liver or its action on skeletal muscle is otherwise impaired, a state of HDIR is said to exist. In a pure state of HDIR, the direct glucose uptake stimulation effect of insulin is not impaired.

Cats show a dose-related development of insulin resistance using atropine that was of a similar magnitude to that produced by surgical denervation. The dose of atropine required to produce a full insulin resistance was 3 mg/kg (4 µmol/kg) administered into the portal vein. A similar degree of insulin resistance was achieved with 10⁻⁷ mmol/kg of the M₁ muscarinic selective antagonist, pirenzepine, and with 10⁻⁶ µmol/kg of the M₂ selective antagonist, methoctramine. The data suggest that the response may be mediated by the M₁ muscarinic receptor subtype.

In order to determine the site of insulin resistance, a further series was done in cats that measured arterial-venous glucose responses across the hindlimbs, extrahepatic splanchnic organs, and liver. The intestine was unresponsive to the bolus insulin administration both before and after atropine or anterior plexus denervation or the combination of both. The hepatic response was also not notably altered whereas the glucose uptake across the hindlimbs, primarily representing skeletal muscle uptake, was decreased following atropine or hepatic parasympathetic denervation. These results indicated that interference with hepatic parasympathetic nerves leads to insulin resistance in skeletal muscle.

It was further demonstrated that the same degree of resistance could be produced by pharmacological blockade of parasympathetic nerve function using the muscarinic receptor antagonist, atropine.

10

15

20

25

30

While the invention is not limited to any particular model or mechanism of action, it appears that in normal individuals, the eating of a meal results not only in the release of insulin, but also in a hepatic parasympathetic reflex. The hepatic parasympathetic effect results in the release of acetylcholine (ACh) which activates muscarinic receptors in the liver. This activation leads to increased guanyl cyclase activity, resulting in increased levels of cyclic guanosine monophosphate (cGMP) which increases activated intracellular hepatic glutathione which acts in stimulating the release into the blood of a hepatic insulin sensitizing substance (HISS) which leads to an increase in insulin sensitivity in skeletal muscle.

Thus, the invention provides, in one embodiment, a method of increasing glucose uptake by skeletal muscle of a patient suffering from suboptimal hepatic regulation of blood glucose levels by administering a suitable phosphodiesterase antagonist.

In some instances it will be desirable to enhance the response to cGMP. For example, where an injury or abnormality causes reduced cGMP production in response to a meal, it is desirable to amplify the effect of the cGMP which is produced. Similarly, where cGMP, ACh, or a similar compound involved in the normal response to a meal is absent or present only at insufficient levels, and cGMP (or another suitable compound acting prior to cGMP and leading to cGMP production in the liver) must be provided exogenously to reduce insulin resistance, such as through medication, it is desirable to enhance the effectiveness of the exogenously supplied compound. Also, where cGMP is produced at normal levels, but due to disease or other abnormality, activated glutathione is produced at lower than normal levels, it may be desirable to increase the effectiveness of the endogenous cGMP. This can be accomplished by reducing the rate at which cGMP is degraded by phosphodiesterases in the liver, thereby increasing the cGMP available and allowing the effect of a given cGMP molecule on insulin sensitivity to be amplified. Similarly, the effect of NO release on insulin sensitivity can be amplified by administering a cGMP phosphodiesterase antagonist.

During normal liver function, intracellular cGMP is broken down by its phosphodiesterase. This prevents the unlimited build-up of cGMP in liver

15

20

25

30

cells, which, in normal patients, could result in an undesirably high level of activated glutathione production long-after-the-initial-release of NO which lead to cGMP synthesis.

Phosphodiesterase subtypes 3 and 5 are believed to be responsible for the breakdown of cGMP. Thus, in some instances it will be desirable to inhibit the function of phosphodiesterase subtype 3 and/or 5.

Non-limiting examples of antagonists of phosphodiesterase subtypes 3 and 5 are vinpocetine, zaprinast and dipyridamole, and sildenafil. Non-limiting examples of other phosphodiesterase antagonists which might be desirable to use in some situations are: theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol and caffeine.

Where it is desired to antagonize phosphodiesterases of subclasses other than 3 and 5 the following compounds may be employed: milrinone, amrinone pimobendan, cilostamide, enoximone, teroximone, vesmarinone, rolipram and R020-1724.

In one embodiment of the invention, a cGMP phosphodiesterase (cGMP PE) antagonist is used to reduce the breakdown of cGMP in liver cells. The precise dose and method of administration of the cGMP phosphodiesterase antagonist desirable will be determined by a number of factors which will be apparent to those skilled in the art, in light of the disclosure herein. In particular, the identity of the antagonist, the formulation and route of administration employed, the patient's gender, age and weight, as well as the extent of cGMP production in the hepatic parasympathetic neurons of interest, the number and effectiveness of the cGMP response in liver cells and the severity of the condition to be treated should be considered. Where it is impractical to conduct the tests necessary to determine the cGMP response and/or the other factors such as the extent of hepatic cGMP production, the appropriate dose can be determined through the administration of a dose suitable for a majority of patients similar to the subject in respect of those factors which have been assessed, followed by routine monitoring of insulin resistance (via RIST) where the dose provided does not cause insulin resistance to decline to normal or

10

15

20

25

30

tolerable levels, the dose should be increased. The patient should be monitored for-signs of excess cGMP PE antagonist exposure.

In some instances it will be desirable to administer the phosphodiesterase antagonist intravenously at a dose of between about 5 and 500 μ g/kg body weight. In some instances a dose of between about 50 μ g/kg and 150 μ g/kg body weight will be desirable. In some cases an intravenous dose of 50 μ g/kg to 70 μ g/kg will be desirable.

In some instances it will be desirable to administer the phosphodiesterase antagonist orally at between about 1 to 500 mg/kg body weight. In some instances, an oral dose of between about 2 mg/kg and 300 mg/kg body weight will be desired. In some instances oral doses in the range of 10 to 100 mg/kg body weight will be desired. In some instances an oral dose of 15 to 50 mg/kg body weight will be desired. The phosphodiesterase antagonist will frequently be administered so as to ensure that it reaches maximum plasma concentrations just prior to the meal and remains high for at least one hour and preferably no more than 4 to 6 hours thereafter. For example, sildenafil (when administered orally) typically reaches maximum plasma concentrations within 30 to 120 minutes of administration. Thus, the oral dose (e.g. 50 mg) would be taken approximately 30 minutes prior to the meal.

In some instances, transdermal administration or intraperitoneal administration of the phosphodiesterase antagonist will be desired.

Any suitable phosphodiesterase antagonist may be employed. A phosphodiesterase antagonist will be "suitable" if: (a) at the dose and method of administration to the mammalian patient, it is not acutely toxic, and does not result in chronic toxicity disproportionate to the therapeutic benefit derived from treatment; and (b) at the dose and method of administration to the mammalian patient it reduces insulin resistance in the patient.

It will be apparent that a combination of phosphodiesterase antagonists (specific for the same or different subtypes, or non-specific) may be administered.

The phosphodiesterase antagonist may be administered together with one or more acetylcholine esterase antagonists as described in the co-

pending International Patent Application claiming priority from US 60/350,958, filed on 25 January 2002 of Lautt.

The phosphodiesterase antagonist may be administered together with other drugs used in the treatment of diabetes, non-limiting examples of which are provided in Table I. In some instances, a pharmaceutical composition comprising a suitable phosphodiesterase antagonist and one or more other drugs used in the treatment of diabetes will be desired.

Table I

. :	i abie i			
•		a Inqui	lin and inculin analogues	•
10			lin and insulin analogues e Il Diabetes drugs	
			Sulfonylurea agents	
		1.	1. First Generation	
		i	a. Tolbutamide	
			b. Acetohexamide	
15			c. Tolazamide	
			d. Chlorpropamide	
•			2. Second Generation	
			a. Glyburide	
			b. Glipizide	
20		•	c. Glimepiride	
		įi.	Biguanide agents	
. *			1. metformin	
		·iii.		
• • •			1. Acarbose	
25		_	2. Miglitol	
		iv.	Thiazolidinedione Agents (insulin sens	itizers)
	÷	·	1. Rosiglitazone	
			2. Pioglitazone	
	•		3. Troglitazone	٠.
30		V.	Meglitinide Agents	
		• Cholin	Repaglinide nesterase Inhibitors	
	•	i.	Donepezil	
		ii.	Tacrine	
35		iii.	Edrophonium	
			Demecarium	
		v.	Pyridostigmine	
			Phospholine	
			Metrifonate	
40		viii.	Neostigmine	*
	:	ix.	Galanthamine	
			7	

x. Zanapezil

NSDOCID: <WO_____03061638A2_I

	d.	Cholinergic Agonists
		i. Acetylcholine
		ii. Methacholine
	•	iii. Bethanechol
5		iv. Carbachol
		v. Pilocarpine hydrochloride
	e.	Nitric Oxide Donors
		i. Products or processes to increase NO synthesis in the liver
		(increasing NO synthase activity)
10	•	Variety I
		1. SIN-1
		2. Molsidamine
		Variety II – nitrosylated forms of:
		1. N-acetylcysteine
15	•	2. Cysteine esters
		3. L-2-oxothiazolidine-4-carboxolate (OTC)
		4. Gamma glutamylcystein and its ethyl ester
		5. Glutathione ethyl ester
•		6. Glutathione isopropyl ester
20	•	7. Lipoic acid
		8. Cysteine
		9. Cystine
		10. Methionine
		11. S-adenosylmethionine
25 .		ii. Products or processes to reduce the rate of NO degradation
		in the liver
		iii. Products or processes to provide exogenous NO or an
		exogenous carrier or precursor which is taken up and
		releases NO in the liver
30 .	f.	Antioxidants
		i. Vitamin E
		ii. Vitamin C
		iii. 3-morpholinosyndnonimine
	g. (Glutathione increasing compounds
35		i. N-acetylcysteine
		ii. Cysteine esters
		iii. L-2-oxothiazolidine-4-carboxolate (OTC)
		iv. Gamma glutamylcystein and its ethyl ester
		v. Glutathione ethyl ester
40		vi. Glutathione isopropyl ester
		vii. Lipoic acid
		viii. Cysteine
		ix. Cystine
		x. Methionine
45		xi. S-adenosylmethionine
		•

In one embodiment, the phosphodiesterase antagonist is preferentially targeted to the liver. Targeting of the antagonist to the liver can be

15

20

25

30

accomplished through the use of any pharmaceutically acceptable liver-targeting substance. For example, it can be bound to albumin or bile salts for preferential delivery to liver; alternatively, the antagonist may be incorporated into or encapsulated within liposomes which are preferentially targeted to the liver. In one embodiment, the antagonist is administered in a precursor form, and the precursor is selected to be metabolised to the active form by enzymes preferentially found in the liver.

In light of the disclosure herein, one skilled in the art could readily determine if a particular candidate cGMP PE antagonist is a suitable antagonist by determining the method and dose of administration and performing toxicity studies according to standard methods (generally beginning with studies of toxicity in animals, and then in humans if no significant animal toxicity is observed). If the method and dose of administration do not result in acute toxicity, the antagonist is administered to the subject at the dose and method of administration for at least 3 days. Insulin resistance following treatment for at least three days is compared to pre-treatment insulin resistance. (Insulin resistance is assessed using the RIST test). Where treatment results in decreased insulin resistance without significant chronic toxicity (or having only modest chronic toxicity in a patient where untreated insulin resistance is life threatening), the antagonist is a suitable antagonist for that patient at the dose and method tested.

Methods for conducting toxicity studies are known in the art. Of particular interest with respect to phosphodiesterase antagonist toxicity are tests of liver function and cardiovascular observations.

It will often be desirable to monitor patients receiving phosphodiesterase antagonists for signs suggesting excessive exposure to the antagonist, including decreased blood pressure, headache, flushing of the face, and nasal congestion. Erection may be observed as a side-effect in male patients but is not necessarily indicative of excess phosphodiesterase antagonist exposure.

The patient is preferably mammalian. In one embodiment the patient is a human being. In another embodiment the patient is a domestic animal such as a cat, dog, or horse. Where the patient is a ruminant animal, it

10

15

20

25

30

may be particularly desirable to test blood glucose levels after a meal to determine the rate of blood glucose elevation and select a suitable time for antagonist administration. In some instances it may be desirable to screen a potential patient to confirm that he or she suffers from HDIR prior to administering a phosphodiesterase antagonist.

The phosphodiesterase antagonist may be administered so as to maintain a relatively constant level of the antagonist in the liver at all times. Alternatively, the antagonist may be administered to have antagonist concentrations peak when blood glucose is high, such as after a meal, so as to allow glucose uptake at that time. Where toxicity is a concern, it may be desirable to keep antagonist levels low until blood glucose levels become elevated above normal levels.

In one embodiment of the invention there is provided a method of reducing insulin resistance in a mammalian patient suffering from insufficient levels of hepatic cGMP. The method comprises: selecting a patient suffering from above average levels of insulin resistance, and administering a suitable cGMP phosphodiesterase antagonist.

As used herein, the phrase "insufficient levels of hepatic cGMP" means levels of hepatic cGMP insufficient to reduce insulin resistance to the average level observed in healthy subjects of the same gender, age, weight, fed-state, and blood glucose level as the patient.

As used herein, the phrase "above average levels of insulin resistance" means levels of insulin resistance above the average level observed in healthy subjects of the same gender, age, weight, fed-state, and blood glucose level as the patient.

In one embodiment of the invention there is provided a kit containing a phosphodiesterase antagonist in a pharmaceutically acceptable carrier together with instructions for the administration of the cGMP phosphodiesterase antagonist to reduce insulin resistance in a patient. In one embodiment the kit further includes means to administer the cGMP phosphodiesterase antagonist. Suitable means may be selected by one skilled in the art, depending on the route of administration desired.

Individuals suffering from insulin resistance who could in many cases benefit from treatment according to the methods described herein include those suffering from any one or more of: chronic liver disease, chronic hypertension, type II diabetes, fetal alcohol syndrome, gestational diabetes, obesity, and age-related insulin resistance as well as liver transplant recipients.

L-NAME and L-NMMA are nitric oxide synthase (NOS) antagonists. SIN-1 is a nitric oxide (NO) donor. Atropine interrupts the hepatic reflex response to insulin.

Example

10

15

20

25

Methods for reversal of HISS-dependent insulin resistance using a phosphodiesterase inhibitor in normal rats

Male Sprague Dawley rats (250-300g) were allowed free access to water and normal rodent food for 1 week prior to all studies. Rats were fasted for 8 hours overnight and fed for 2 hours before the start of study.

Rats were anesthetized with pentobarbital-sodium (65mg/ml, ip injection, 0.1 ml/100 g body weight). Animals were placed on a heated thermostatically controlled surgical table to maintain body temperature during surgery and the experimental procedure.

An extra-corporeal arterial-venous shunt (the loop) was established between the right femoral artery and right femoral vein, according to a published, standard operating procedure developed in our laboratory (Xie et al., 1996). The loop allows for regular blood sampling of arterial blood throughout the experiment as well as infusion of intravenous drugs and monitoring of arterial blood pressure.

A tracheal breathing tube was inserted to ensure a patent airway and the jugular vein was cannulated for administration of supplemental anesthetic through out the study, and 10% w/vol glucose solution during the insulin sensitivity test procedure (rapid insulin sensitivity test, RIST). A laparotomy was performed and an indwelling portal venous catheter was

10

15 ...

20.

25

30

inserted using a portal vein puncture technique. The portal catheter was used to ----administer-the phosphodiesterase-inhibitor-directly to the liver.

The Rapid Insulin Sensitivity Test (the RIST) is a euglycemic approach to test whole body glucose uptake in response to a low dose insulin challenge. It has been extensively validated against other standard approaches and has proven to be a sensitive, reliable and reproducible technique (Reid, et al., 2002).

Once surgery was completed, the rat was allowed to stabilize for approximately 30 minutes. At this point, blood samples (25µI) were taken at regular intervals from the loop and analyzed for glucose concentration. Once a stable baseline glucose level was obtained, animals were given a 5 minute infusion of insulin (50 mU/kg) through the loop. Glucose levels were monitored every 2 minutes during and after the infusion of insulin. Exogenous glucose was infused into the jugular vein to prevent the hypoglycemic effect of insulin. Based on the glucose levels obtained from the regular blood sampling, the infusion rate of glucose was adjusted to maintain the baseline euglycemia. Glucose infusion rates progressively increased as the effect of insulin reached a maximum (at approximately 15 minutes into the test) and then progressively decreased as the effect of insulin wore off. Typically, the effect of insulin is complete by 35 minutes. The total amount of glucose infused during the RIST is considered the RIST index and is reported in terms of mg glucose infused/kg body weight of the subject.

As some degree of neural activation must remain for the phosphodiesterase inhibitors to be effective, an atropine model of 75% blockade of HISS-dependent insulin resistance (HDIR) was developed. The dose of atropine used (5 x 10⁻⁶ mg/kg) was based on previously obtained dose-response data obtained in the rat. To this end, atropine was infused into the loop for 5 minutes. After allowing time to re-establish a stable blood glucose level, a RIST was performed to determine the degree of insulin resistance.

Zaprinast is a phosphodiesterase inhibitor and prevents the metabolism of cyclic guanosine monophosphate (cGMP).

After determining the degree of insulin resistance produced by atropine, a 0.5 ml bolus of zaprinast was infused into the portal vein at a dose of

0.1 mg/kg over 20 minutes. A stable blood glucose baseline was established and a RIST was conducted to determine if this agent could reverse the insulin resistance.

Summary of experimental protocol

5

10

15

20

- 1. control RIST to determine insulin sensitivity
- 2. atropine infusion to produce a 75% block of HISS-dependent insulin resistance
- 3. post-atropine RIST
- 4. bolus infusion of zaprinast into portal vein
- 5. RIST after zaprinast administration

Human insulin (Humulin R) was obtained from Eli Lilly and Company. Atropine and zaprinast were obtained from Sigma Chemical Company. Insulin and atropine were diluted or dissolved in normal saline. Zaprinast was suspended in saline and then dissolved with 200 μ l of 1 N sodium hydroxide (NaOH). The solution was then titrated to a pH of 8-9 using 1 M hydrochloric acid (HCl).

As shown in Figure 1, the average control RIST index was $196.5\pm11.4~\text{mg/kg}$ (n=8). Following the atropine-induced 75% HDIR, the RIST index was significantly decreased to $106.1\pm6.3~\text{mg/kg}$ (*). The RIST index following the zaprinast (0.1 mg/kg, ipv) was increased to $157.4\pm6.1~\text{mg/kg}$ and was significantly increased from the blocked state (**). These data indicate that zaprinast is able to reverse the HDIR produced by atropine.

Thus, it will be apparent that there has been provided a method of reducing insulin resistance.

We Claim:

- 1. Use of a phosphodiesterase antagonist to reduce insulin resistance in a mammalian patient suffering therefrom.
- 2. Use of a phosphodiesterase antagonist in the manufacture of a medicament useful in reducing insulin resistance in a patient suffering therefrom.
- 3. Use of a phosphodiesterase antagonist in the manufacture of a medicament useful in amplifying the effect of nitric oxide on skeletal muscle insulin-mediated glucose uptake in a mammalian patient.
- 4. Use of claim 1, 2 or 3 wherein the insulin resistance is hepatic insulin sensitizing substance-dependent insulin resistance ("HDIR").
- 5. Use of claim 1, 2, 3 or 4 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol, caffeine, milrinone, amrinone pimobendan, cilostamide, enoximone, teroximone, vesmarinone, rolipram and R020-1724.
- 6. Use of claim 1, 2, 3 or 4 wherein the phosphodiesterase antagonist is an antagonist of at least one phosphodiesterase of subtype 3 and 5.
- 7. Use of claim 5 wherein the antagonist is zaprinast.
- 8. Use of claim 5 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol and caffeine.
- 9. Use of any preceding claim wherein the patient is a human.

- 10. A pharmaceutical composition comprising a phosphodiesterase antagonist and at least one other drug used in the treatment of diabetes.
- 11. The pharmaceutical composition of claim 10 further including a pharmaceutically acceptable liver-targeting substance.
- 12. The composition of claim 10 or 11 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol, caffeine, milrinone, amrinone pimobendan, cilostamide, enoximone, teroximone, vesmarinone, rolipram and R020-1724.
- 13. The composition of claim 12 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol and caffeine.
- 14. The composition of claim 9 or 10 wherein the phosphodiesterase antagonist is an antagonist of at least one of phosphodiesterase of subtype 3 and 5.
- 15. The composition of claim 10, 11, 12, 13 or 14 wherein the other drug is at least one of insulin, insulin analogues, sulfonylurea agents, tolbutamide, acetohexamide, tolazamide, chlorpropamide, glyburide, glipizide, glimepiride, biguanide agents, metformin, alpha-glucosidase inhibitors, acarbose, miglitol, thiazolidinedione agents (insulin sensitizers), rosiglitazone, pioglitazone, troglitazone, meglitinide agents, repaglinide, cholinesterase inhibitors, donepezil, tacrine, edrophonium, demecarium, pyridostigmine, phospholine, metrifonate, neostigmine, galanthamine, zanapezil, cholinergic agonists, acetylcholine, methacholine, bethanechol, carbachol, pilocarpine hydrochloride, nitric oxide donors, products or processes to increase NO synthesis in the liver (increasing NO synthase activity), SIN-1, molsidamine, N-acetylcysteine, cysteine esters, L-2-oxothiazolidine-4-carboxolate (OTC),

gamma glutamylcystein and its ethyl ester, glutathione ethyl ester, glutathione isopropyl-ester, lipoic-acid, cysteine, cystine, methionine, S-adenosylmethionine. products or processes to reduce the rate of NO degradation in the liver, products or processes to provide exogenous NO or an exogenous carrier or precursor which is taken up and releases NO in the liver, antioxidants, vitamin E, vitamin 3-morpholinosyndnonimine. glutathione increasing compounds. acetylcysteine, cysteine esters, L-2-oxothiazolidine-4-carboxolate (OTC), gamma glutamylcystein and its ethyl ester, glutathione ethyl ester, glutathione isopropyl ester, lipoic acid. cysteine, cystine, methionine. adenosylmethionine.

- 16. The composition of claim 11 wherein the liver-targeting substance is at least one of bile salts, albumin and liposomes.
- 17. A kit comprising:

a phosphodiesterase antagonist in a pharmaceutically acceptable carrier; and

instructions for the administration of the phosphodiesterase antagonist to reduce insulin resistance in a mammalian patient.

- 18. The kit of claim 17 further comprising means to administer the phosphodiesterase antagonist.
- 19. A method of reducing insulin resistance in a mammalian patient comprising administering a suitable phosphodiesterase antagonist.
- 20. The method of claim 19 wherein the insulin resistance is HISS-dependent insulin resistance.
- 21. A method of amplifying the effect of nitric oxide on skeletal muscle insulin sensitivity comprising administering a phosphodiesterase antagonist.

- 22. A method of increasing glucose uptake by skeletal muscle of a patient, comprising administering a phosphodiesterase antagonist.
- 23. The method of one of claims 19, 20, 21 or 22 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol, caffeine, milrinone, amrinone pimobendan, cilostamide, enoximone, teroximone, vesmarinone, rolipram and R020-1724.
- 24. The method of claim 23 wherein the antagonist is at least one of vinpocetine, zaprinast and dipyridamole, sildenafil, theophylline, aminophylline, isobutylmethyl xanthine anagrelide, tadalafil, dyphylline, vardenafil, cilostazol and caffeine.
- 25. The method of any one of claims 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is an antagonist of at least one of phosphodiesterase of subtype 3 and 5.
- 26. The method of any preceding claim further comprising administering at least one other drug used in the treatment of diabetes.
- 27. The method of claim 26 wherein the other drug is at least one of insulin, insulin analogues, sulfonylurea agents, tolbutamide, acetohexamide, tolazamide, chlorpropamide, glyburide, glipizide, glimepiride, biguanide agents, metformin, alpha-glucosidase inhibitors, acarbose, miglitol, thiazolidinedione agents (insulin sensitizers), rosiglitazone, pioglitazone, troglitazone, meglitinide agents, repaglinide, cholinesterase inhibitors, donepezil, tacrine, edrophonium, neostigmine, demecarium. pyridostigmine, phospholine. metrifonate. galanthamine, zanapezil, cholinergic agonists, acetylcholine, methacholine, bethanechol, carbachol, pilocarpine hydrochloride, nitric oxide donors, products or processes to increase NO synthesis in the liver (increasing NO synthase activity), SIN-1. molsidamine, N-acetylcysteine, cysteine esters, L-2oxothiazolidine-4-carboxolate (OTC), gamma glutamylcystein and its ethyl ester,

glutathione ethyl ester, glutathione isopropyl ester, lipoic acid, cysteine, cystine, methionine,—S-adenosylmethionine,—products or processes to reduce the rate of NO degradation in the liver, products or processes to provide exogenous NO or an exogenous carrier or precursor which is taken up and releases NO in the liver, antioxidants, vitamin E, vitamin C, 3-morpholinosyndnonimine, glutathione increasing compounds, N-acetylcysteine, cysteine esters, L-2-oxothiazolidine-4-carboxolate (OTC), gamma glutamylcystein and its ethyl ester, glutathione ethyl ester, glutathione isopropyl ester, lipoic acid, cysteine, cystine, methionine, and S-adenosylmethionine.

- 28. The method of any preceding claim wherein the phosphodiesterase antagonist is preferentially targeted to the liver.
- 29. The method of claim 28 wherein the phosphodiesterase antagonist is targeted to the liver using albumin.
- 30. The method of claim 28 wherein the phosphodiesterase antagonist is targeted to the liver using a plurality of liposomes.
- 31. The method of claim 28 wherein the phosphodiesterase antagonist is targeted to the liver using bile salts.
- 32. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered by intravenous administration.
- 33. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered by transdermal administration.
- 34. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered by oral administration.
- 35. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered by intra peritoneal administration.

- 36. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered by portal vein injection.
- 37. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered orally at a dose of between about 2 and 300 mg/kg body weight.
- 38. The method of claim 19, 20, 21, 22 or 23 wherein the phosphodiesterase antagonist is administered intravenously at a dose of between about 5 and 500 μg/kg body weight.
- 39. The method of any preceding claim wherein the patient suffers from at least one of: chronic liver disease, chronic hypertension, type II diabetes, fetal alcohol syndrome, gestational diabetes, obesity, age-related insulin resistance, and hepatic nerve damage.
- 40. The method of any preceding claim wherein the patient is a human.

Figure 1

(19) World Intellectual Property Organization International Bureau

-(43)-International-Publication-Date 31 July 2003 (31.07.2003)

PCT

(10)-International-Publication-Number WO 03/061638 A3

- (51) International Patent Classification⁷: A61K 31/00, 31/40, 31/4166, 31/444, 31/4375, 31/4709, 31/519, 31/52, 31/522, A61P 3/10
- (21) International Application Number: PCT/CA03/00077
- (22) International Filing Date: 27 January 2003 (27.01.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/350,954

25 January 2002 (25.01.2002) U;

- (71) Applicant (for all designated States except US): DI-AMEDICA INC. [CA/CA]; 6-1200 Waverley Street, Winnipeg, Manitoba R3T 0P4 (CA).
- (71) Applicants and
- (72) Inventors: LAUTT, Wayne, W. [CA/CA]; 631 Drake Centre, 181 Freedman Crescent, Winnipeg, Manitoba R3T 5V4 (CA). MACEDO, Paula [PT/PT]; Caminho do Forte 1, 2780 Caxias, Oeiras (PT).
- (74) Agent: MCKAY, Margaret, H.; Ridout & Maybee LLP, 150 Metcalfe Street, Suite 1900, Ottawa, Ontario K2P 1P1 (CA).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 2 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: USE OF PHOSPHODIESTERASE ANTAGONISTS TO TREAT INSULIN RESISTANCE

Control RIST

Post Atropine

Zaprinast 0.1 mg/kg

(57) Abstract: There is provided the use of a phosphodiesterase antagonist to reduce insulin resistance, and to amplify the effect of nitric oxide on skeletal muscle insulin-mediated glucose uptake in a mammal. In some instances, the antagonist is targeted to the liver. In some instances, the insulin resistance is hepatic insulin sensitizing substance ("HISS") dependant insulin resistance.

Interr ial Application No PCT/CA 03/00077

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 A61K31/00 A61K31/40 A61K31/4166 A61K31/444 A61K31/4375 A61K31/4709 A61K31/519 A61K31/52 A61K31/522 A61P3/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. E WO 03 028730 A (NOVARTIS AG ET AL) 1 - 4010 April 2003 (2003-04-10) claims 1-9 X,P WO 02 24698 A (SCHERING CORPORATION) 1-4,9,10, 28 March 2002 (2002-03-28) 17-20, 22,32-40claims 1.31 page 92, line 7 - line 24 page 84, line 13 -page 85, line 16 X,P WO 02 13798 A (PFIZER LTD ET AL) 1-40 21 February 2002 (2002-02-21) claims 1-63 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. *P* document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24 July 2003 07/08/2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Siatou, E

Form PCT/ISA/210 (second sheet) (July 1992)

Inter 1al Application No
PCT/CA 03/00077

		PCT/CA 0	3/000//
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.
X	EP 1 142 879 A (FUJISAWA PHARMACEUTICAL CO. LTD.) 10 October 2001 (2001-10-10) claims 1-10 page 12, paragraph 54		1-4,9, 10, 17-20, 22,32-40
X	EP 1 020 452 A (FUJISAWA PHARMACEUTICAL CO. LTD.) 19 July 2000 (2000-07-19) page 68, paragraph 391 claims 1-16		1-9, 17-20, 22-25, 28,32-40
i	page 13, paragraph 45 – paragraph 47 	. •	
X	Y. NAKAYA ET AL: "Cilostazol, a phosphodiesterase inhibitor, improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty Rat, a model of spontaneous NIDDM" DIABETES, OBESITY AND METABOLISM, vol. 1, no. 1, January 1999 (1999-01), pages 37-41, XP002248686 the whole document		1-5,8,9, 19,20, 22-24, 32-40
A	LAUTT W W: "THE HISS STORY OVERVIEW: A NOVEL HEPATIC NEUROHUMORAL REGULATION OF PERIPHERAL INSULIN SENSITIVITY IN HEALTH AND DIABETES" CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, OTTAWA, ONT, CA, vol. 77, no. 8, August 1999 (1999-08), pages 553-562, XP009011015 cited in the application the whole document		1-40
A	PETRIE J R ET AL: "ENDOTHELIAL NITRIC OXIDE PRODUCTION AND INSULIN SENSITIVITY. A PHYSIOLOGICAL LINK WITH IMPLICATIONS FOR PATHOGENESIS OF CARDIOVASCULAR DISEASE" CIRCULATION, AMERICAN HEART ASSOCIATION, DALLAS, TX, US, vol. 93, no. 7, 1 April 1996 (1996-04-01), pages 1331-1333, XP002924506 ISSN: 0009-7322 the whole document		1-40
A	ALISON J. EVANS ET AL: "Insulin resistance and beta-cell dysfunction as therapeutic targets in type 2 diabetes" DIABETES, OBESITY AND METABOLISM, vol. 3, 2001, pages 219-229, XP002248687 page 224, right-hand column -page 226, left-hand column		1–40

ational application No. PCT/CA 03/00077

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	1
This inte	rnational Search Report has not been established in respect of certain dalms under Article 17(2)(a) for the following reasons:	Ì
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
	Although claims 1, 19-40 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
·	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
This Inter	national Searching Authority found multiple inventions in this international application, as follows:	
		 -
1 /s	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
• • • •		
3. A	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. N	lo required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark or	n Protest The additional search fees were accompanied by the applicant's protest.	
	No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

Information on patent family members

Inter 1al Application No PCT/CA 03/00077

								,,	
		atent document d in search report		Publication date		Patent family member(s)		Publication date	
	WO	03028730	Α	10-04-2003	WO	03028730		10-04-2003	
					US	2003114469	A1 	19-06-2003	
	WO	0224698	Α	28-03-2002	AU	9102201		02-04-2002	٠.
		*			CA	2421910 /		28-03-2002	
				•	EP	1319003 /		18-06-2003	
					NO.	20031238 /		14-05-2003	
					WO	0224698 /		28-03-2002	
				· ·	US	2002169174	41	14-11-2002	
	WO	0213798	A	21-02-2002	AU	7660701 A		25-02-2002	
				•	CA	2419033 A	۱1	21-02-2002	
			•		EP	1307183		07-05-2003	
		•			WO	0213798 A		21-02-2002	
					US	2002165237 A		07-11-2002	
					WO	02060422 A		08-08-2002	
					ÜS	2002143015 A		03-10-2002	
	EP	1142879	A	10-10-2001	AU	758325 B		20-03-2003	•
			* *		AU	1690500 A		31-07-2000	
				•	BR	9917112 A		29-01-2002	
					CA	2356838 A	-	06-07-2000	
					EP	1142879 A		10-10-2001	
					CN	1335837 T		13-02-2002	
					CZ	20012338 A		12-12-2002	
					ΗŪ	0104657 A	-	29-05-2002	- [
					WO	0039097 A		06-07-2000	- [
					TR	200101865 T		21-12-2001	1
								21-12-2001	1
	ΕP	1020452	Α	19-07-2000	AU	748541 B	2	06-06-2002	- 1
		•			AU	7934698 A		19-01-1999	- 1
					BR	9811273 A		18-07-2000	ł
			•		EP	1020452 A		19-07-2000	ł
				•	HU	0002324 A		28-05-2001	- 1
•					US	6420409 B	1	16-07-2002	-
		*			CN	1268123 T		27-09-2000	1
•					WO	9900373 A		07-01-1999	- {
					TR	9903277 T	2	21-07-2000	- 1
					TW	453999 B		11-09-2001	j
			•		ZA	9805598 A		25-01-1999	[
•									1

Form PCT/ISA/210 (patent family annex) (July 1992)