Natural Language Processing (CS5803)

Lecture 3 (Word Representations)

Words as vectors: Word2Vec

- Representation of a word is dictated by other surrounding words
- Assume a fixed length context window
- For example:

- Start with random initialization
- Iterate till convergence

Word2Vec Models: SkipGram (SG)

- Training sentence:
- ... the algorithm's asymptotic complexity is quadratic...
- \bullet W_{-2} W_{-1} C W_1 W_2
- Considering words in a context window of length 5
 - P(context|target)
 - \circ P([W₋₂ W₋₁ W₁ W₂]|c)=?

Skip-gram

Word2Vec Models: CBOW

- Training sentence:
- ... the algorithm's asymptotic complexity is quadratic...
- \bullet W₋₂ W₋₁ C W₁ W₂
- Considering words in a context window of length 5
 - P(target|context)
 - \circ P(c|W₋₂ W₋₁ W₁ W₂)=?

Objective function

• Maximize the probability of seen word-context pairs

$$f_p = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c} \log p(w_{t+j} | w_t)$$

• Where,

$$p(w_O|w_I) = \frac{\exp(dot(v'_{w_O}, v_{w_I}))}{\sum_{w=1}^{W} \exp(dot(v'_{w_I}, v_{w_I}))}$$

With negative sampling, the objective function becomes:

$$\log \sigma(v'_{w_0}.v_{w_I}) + \sum_{i=1}^{\kappa} \log \sigma(-v'_{w_i}.v_{w_I})$$

Ref: "Distributed Representations of Words and Phrases and their Compositionality", by Mikolov (2013)

More examples of target and context

Skip-gram

Slide courtesy of Jurafsky & Martin

Steps with example

Steps with example

Learning the representations: Step by step

Ref: https://towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281

Learning the representations: Step by step

Calculate y_pred

Hidden La	yer - h	Weight 2 -	W2									0
0.236	1	-0.868	-0.406	-0.288	-0.016	-0.560	0.179	0.099	0.438	-0.551		Г
-0.962	l	-0.395	0.890	0.685	-0.329	0.218	-0.852	-0.919	0.665	0.968		ı
0.686	l	-0.128	0.685	-0.828	0.709	-0.420	0.057	-0.212	0.728	-0.690		ı
0.785	l	0.881	0.238	0.018	0.622	0.936	-0.442	0.936	0.586	-0.020		ı
-0.454	np.dot	-0.478	0.240	0.820	-0.731	0.260	-0.989	-0.626	0.796	-0.599	=	ı
-0.833		0.679	0.721	-0.111	0.083	-0.738	0.227	0.560	0.929	0.017		ı
-0.744	l	-0.690	0.907	0.464	-0.022	-0.005	-0.004	-0.425	0.299	0.757		ı
0.677	l	-0.054	0.397	-0.017	-0.563	-0.551	0.465	-0.596	-0.413	-0.395		ı
-0.427	l	-0.838	0.053	-0.160	-0.164	-0.671	0.140	-0.149	0.708	0.425		ı
<u>-0.066</u>	l	0.096	-0.995	-0.313	0.881	-0.402	-0.631	-0.660	0.184	0.487		4
1 x 10		10 x 9									1	

For more details regarding weight updates, you may visit the paper "word2vec Parameter Learning Explained"

Word2Vec: References

- Distributed Representations of Words and Phrases and their Compositionality
- https://www.geeksforgeeks.org/python-word-embedding-using-word2vec/
- https://radimrehurek.com/gensim/models/word2vec.html

Analogy: Embeddings capture relational meaning!

vector('king') - vector('man') + vector('woman') *vector('queen') vector('Paris') - vector('France') + vector('Italy') *vector('Rome')

Wordanalogies

Multicontext representation learning

Evaluation on Word Similarity Task

- 111111	W2V	Glove	TED	LG	MCRL-S	MCRL-U
SimVerb-3500	0.116	0.082	0.075	0.253	0.528	0.527
MEN-TR-3k	0.571	0.420	0.555	0.562	0.659	0.662
RW-STANFORD	0.406	0.334	0.203	0.479	0.446	0.420
SIMLEX-999	0.203	0.154	0.181	0.394	0.502	0.496
MTurk-771	0.477	0.345	0.440	0.580	0.599	0.616
WS-353-ALL	0.566	0.434	0.553	0.581	0.620	0.598
MTurk-287	0.539	0.463	0.515	0.566	0.590	0.601
WS-353-REL	0.555	0.414	0.485	0.436	0.509	0.521
WS-353-SIM	0.611	0.503	0.550	0.728	0.722	0.706
VERB-143	0.254	0.121	0.179	0.322	0.399	0.396
YP-130	0.303	0.170	0.118	0.273	0.688	0.702
RG-65	0.500	0.335	0.272	0.669	0.788	0.720
MC-30	0.548	0.308	0.445	0.777	0.767	0.747
Average	0.435	0.314	0.352	0.509	0.601	0.593
Weighted Average	0.362	0.273	0.298	0.438	0.559	0.555

Evaluation Dataset	W2V	Glove	TED	LG	MCRL-S	MCRL-U
SimVerb-3500	0.174	0.145	0.020	0.313	0.569	0.550
MTR-3k	0.434	0.346	0.207	0.480	0.614	0.609
RW-STANFORD	0.552	0.491	0.069	0.550	0.423	0.409
SIMLEX-999	0.165	0.135	0.032	0.330	0.491	0.473
MTurk-771	0.367	0.280	0.095	0.463	0.607	0.610
WS-353-ALL	0.363	0.322	0.145	0.393	0.547	0.552
MTurk-287	0.513	0.334	0.124	0.459	0.559	0.541
WS-353-REL	0.272	0.268	0.111	0.285	0.415	0.422
WS-353-SIM	0.489	0.406	0.175	0.588	0.668	0.708
VERB-143	0.240	0.084	0.127	0.411	0.303	0.347
YP-130	0.179	0.197	0.111	0.283	0.706	0.750
RG-65	0.478	0.257	0.428	0.639	0.701	0.678
MC-30	0.393	0.446	0.379	0.789	0.715	0.706
Average	0.355	0.285	0.156	0.460	0.563	0.566
Weighted Average	0.342	0.282	0.098	0.422	0.548	0.538

(a) Wikipedia Corpus.

(b) Reviews Corpus

WordSim353: http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Evaluation on semantic textual Similarity Task

Evaluation Dataset

2012 SMTeuroparl

2012_surprise.OnWN

2012_MSRvid

2013 headlines

Weighted Average

2014 OnWN

SICK

Evaluation Dataset	W2V	Glove	TED	LG	MCRL-S	MCRL-U
SICK	0.597	0.544	0.489	0.576	0.639	0.654
2012_MSRvid	0.414	0.265	0.112	0.103	0.255	0.303
2012_SMTeuroparl	0.471	0.411	0.512	0.438	0.458	0.445
2012_surprise.OnWN	0.551	0.528	0.316	0.408	0.510	0.536
2013_headlines	0.599	0.570	0.512	0.522	0.615	0.604
2014_OnWN	0.431	0.315	0.289	0.437	0.514	0.538
2014_headlines	0.556	0.529	0.437	0.475	0.565	0.556
2014_images	0.499	0.402	0.149	0.258	0.415	0.429
2014_tweet-news	0.655	0.621	0.463	0.555	0.648	0.656
2015_headlines	0.646	0.629	0.584	0.551	0.641	0.634
2015_images	0.572	0.508	0.304	0.416	0.540	0.542
2013_OnWN	0.260	0.097	0.266	0.364	0.465	0.514
2012_surprise.SMTnews	0.410	0.406	0.102	0.350	0.392	0.406
2015_belief	0.507	0.452	0.252	0.309	0.451	0.478
2014_deft-news	0.570	0.497	0.366	0.538	0.570	0.584
2016_answer-answer	0.196	0.165	0.193	0.204	0.275	0.290
2017_track5.en-en	0.529	0.508	0.253	0.416	0.478	0.505
2016_headlines	0.612	0.569	0.549	0.566	0.652	0.639
2016_plagiarism	0.535	0.434	0.212	0.441	0.476	0.501
2013_FNWN	0.218	0.168	0.156	0.211	0.220	0.237
Average	0.491	0.431	0.326	0.407	0.489	0.503
Weighted Average	0.544	0.483	0.403	0.474	0.554	0.568

(a) Wikipedia Corpus

2014_headlines	0.373	0.303	0.303	0.279	0.512	0.514
2014_images	0.423	0.291	0.190	0.259	0.420	0.416
2014_tweet-news	0.549	0.443	0.273	0.451	0.629	0.641
2015_headlines	0.474	0.429	0.413	0.386	0.582	0.581
2015_images	0.518	0.415	0.269	0.423	0.545	0.567
2013_OnWN	0.451	0.410	0.279	0.341	0.425	0.459
2012_surprise.SMTnews	0.295	0.238	0.055	0.280	0.364	0.370
2015_belief	0.397	0.251	0.181	0.259	0.497	0.481
2014_deft-news	0.460	0.441	0.347	0.433	0.532	0.521
2016_answer-answer	0.221	0.105	0.097	0.202	0.315	0.322
2017_track5.en-en	0.491	0.358	0.211	0.383	0.531	0.539
2016_headlines	0.356	0.319	0.286	0.295	0.588	0.579
2016_plagiarism	0.434	0.286	0.210	0.364	0.489	0.505
2013_FNWN	0.203	0.164	0.231	0.163	0.227	0.242
Average	0.415	0.326	0.248	0.322	0.473	0.479

Glove

0.487

0.168

0.240

0.401

0.308

0.462

0.587

0.359

0.276

0.491

0.378

0.557

0.493

TED

0.403

0.049

0.245

0.260

0.339

0.326

LG

0.547

0.108

0.226

0.371

0.274

0.403

MCRL-S

0.634

0.301

0.317

0.523 0.535

0.497

0.539

MCRL-U

0.640

0.288

0.314 0.547

0.527

0.520

0.544

0.397 (b) Reviews Corpus

0.314 0.413

GloVE

- Stands for GloVe: Global Vectors for Word Representation
 - Emphasizes on co-occurrence with context/probe words
- Learns two representations (W,W) for each word

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- Focus on radio of co-occurrence probabilities
 - O Given words w_i , w_j , and a probe word w_k , model their co-occurrence probability: $F(w_i, w_i, w_k) = P_{ik}/P_{ik}$

GloVE

- Word embeddings are in linear structures
- Natural way of defining F: use vector subtraction, multiplication

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{P_{ik}}{P_{jk}}$$

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_i^T \tilde{w}_k)}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i)$$

$$w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik})$$

Control the form that F can take

Model P using operations so that role of input and context word can be interchanged later

Model F as exp(.)

Introduce bias terms and absorb $log(X_i)$

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

Final objective function

GloVE (Summary)

- Stands for GloVe: Global Vectors for Word Representation
 - Emphasizes on co-occurrence with context words
- Learns two representations (W,W) for each word
- The prediction problem is given by:

$$w_i^T \cdot \widetilde{w}_j + b_i + \widetilde{b}_j = \log X_{i,j}$$

• The objective function:

$$J = \sum_{i,j=1}^{V} f(X_{i,j}) (w_i^T \cdot \widetilde{w}_j + b_i + \widetilde{b}_j - \log X_{i,j})^2$$

Embeddings reflect societal bias

- Ask "Paris : France :: Tokyo : x"x = Japan
- Ask "father : doctor :: mother : x"x = nurse
- Ask "man : computer programmer :: woman : x"x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In *Advances in Neural Information Processing Systems*, pp. 4349-4357. 2016.

Embeddings Reflect Societal Bias

Extreme she 1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser	Extreme he 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-footbal	Gender stereotype she-he ar registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas	housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant
7. nanny8. bookkeeper9. stylist10. housekeeper	7. financier8. warrior9. broadcaster10. magician	queen-king waitress-waiter	Gender appropriate she-he a sister-brother ovarian cancer-prostate cance	mother-father

 $S_{(a,b)}(x,y) = \cos(\vec{a} - \vec{b}, \vec{x} - \vec{y})$ if $||\vec{x} - \vec{y}|| \le \delta$, 0 else

- Assumption: The aspect of bias is known. E.g. gender
- Find the "gender" dimension
 - Collect explicit gender-based word pairs (f, m): (woman, man), (mother, father), (gal, guy), (girl, boy), (she, he)
 - Get the gender dimension as (f-m) [How?]
- Collect a set N of gender neutral words
- Compute the gender component in elements from N
 - $\bigcirc \text{ DirectBias} = (1/|N|) \sum_{w \in N} |\cos(w,g)|$
 - Can be raised to the power c

- How to capture indirect bias?
- Direct bias: component along gender dimension
- Indirect bias: Component along its perpendicular
- Need to find the component to the perpendicular of the "gender" dimension
- Component of vector a along vector b:
 - \circ Scalar Component: comp_b(a) = (a.b)/|b|
 - Vector component: comp (a).b
- $w_g = (w.g)g, w_{\perp} = w-w_g$
- IndirectBias B(w,v)= (w.v $(w_{\perp}-v_{\perp})/(|w_{\perp}|-|v_{\perp}|))$ / (w.v)

$$J = \sum_{i=1}^{V} f(X_{ij}) (w_i^T \tilde{w_j} + b_i + \tilde{b_j} - \log(X_{ij}))^2 + \lambda \cos(w_i, g) + \gamma \cos(\tilde{w_j}, g) = 0$$

A simple technique for debiasing GloVE

$softball\ { m extreme}$	gender portion	after debiasing
1. pitcher	-1%	1. pitcher
2. bookkeeper	20%	2. infielder
3. receptionist	67%	3. major leaguer
4. registered nurse	29%	4. bookkeeper
5. waitress	35%	5. investigator
$football\ { m extreme}$	gender portion	after debiasing
football extreme 1. footballer	$\begin{array}{c} \mathbf{gender} \ \mathbf{portion} \\ 2\% \end{array}$	after debiasing 1. footballer
	•	
1. footballer	2%	1. footballer
 footballer businessman 	$\frac{2}{2}$ 31%	 footballer cleric

Figure 3: Selected words projected along two axes: x is a projection onto the difference between the embeddings of the words he and she, and y is a direction learned in the embedding that captures gender neutrality, with gender neutral words above the line and gender specific words below the line. Our hard debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words above the horizontal line would all be collapsed to the vertical line.

Reference: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings NeurIPS 2016 Another version is here.