TP n°2

Dynamique et commande

1 Introduction

On propose d'étudier la modélisation dynamique et la commande du bras manipulateur développé par le *Laboratoire de Robotique Interactive* du *CEA List* (Fig. 1). Pour rappel, les modèles géométriques et cinématiques de ce robot ont déjà été étudiés dans le TP n°1.

FIGURE 1 – Prototype de bras robotique poly-articulé du CEA-LIST.

Ce TP s'inscrit dans la continuité du TP précédent. Le recours aux questions traitées dans le TP n°1 est parfois nécessaire pour résoudre certaines questions du TP n°2.

Les valeurs numériques des paramètres du robot sont renseignées dans le tableau 1. Il est nécessaire de disposer des outils logiciels $Matlab^{TM}$ et $Simulink^{TM}$ pour pouvoir traiter ce sujet.

2 Modèle dynamique

Nous rappelons l'expression matricielle du modèle dynamique inverse du bras robotique :

$$A\left(q\right)\ddot{q}+C\left(q,\dot{q}\right)\dot{q}+G\left(q\right)+\Gamma_{f}\left(\dot{q}\right)=\Gamma$$

- $-A(q) \in \mathbb{R}^{6 \times 6}$ matrice d'inertie, symétrique et définie positive;
- $C(q, \dot{q}) \dot{q} \in \mathbb{R}^6$ vecteur des couples articulaires dus aux forces de *Coriolis* et centrifuge;
- $-G(q) \in \mathbb{R}^6$ vecteur des couples articulaires de gravité;
- $-\Gamma_{f}(\dot{q}) = \begin{bmatrix} \tau_{f_{1}} & \dots & \tau_{f_{6}} \end{bmatrix}^{t} \in \mathbb{R}^{6}$ vecteur des couples de frottement.

Nous désignons les vecteurs des positions, vitesses et accélérations articulaires par $q = [q_1, \ldots, q_6]^t$, $\dot{q} = [\dot{q}_1, \ldots, \dot{q}_6]^t$, $\ddot{q} = [\ddot{q}_1, \ldots, \ddot{q}_6]^t$, et le vecteur des couples articulaires par $\Gamma = [\tau_1, \ldots, \tau_6]^t$.

Pour rappel, les différents repères \mathcal{R}_i attachés aux corps du robot ont été définis dans la question Q1.

Q12 Dans cette question, nous souhaitons déterminer la vitesse ${}^{0}V_{G_{i}}$ du centre de masse G_{i} et la vitesse de rotation ${}^{0}\omega_{i}$ de tous les corps C_{i} dans le repère \mathcal{R}_{0} . Proposer une fonction capable de retourner les matrices jacobiennes ${}^{0}J_{v_{G_{i}}}$ et ${}^{0}J_{\omega_{i}}$ définies par :

$${}^{0}V_{G_{i}}={}^{0}J_{v_{G_{i}}}\left(q\right)\dot{q}\quad\text{ et }\quad {}^{0}\omega_{i}={}^{0}J_{\omega_{i}}\left(q\right)\dot{q}.$$

Pour ce faire, nous donnons la position du centre de masse G_i exprimée dans le repère \mathcal{R}_i du corps \mathcal{C}_i :

$$i\overrightarrow{O_iG_i} = \begin{bmatrix} x_{G_i} & y_{G_i} & z_{G_i} \end{bmatrix}^t$$
 pour $i = 1, \dots, 6$

où les coordonnées x_{G_i} , y_{G_i} , et z_{G_i} sont données dans le tableau 1.

Pour traiter cette question, vous pourrez utiliser les fonctions développées à la question Q3 et la fonction CalculJacobienne (alpha, d, theta, r) développée à la question Q6 retournant la matrice jacobienne $^0J_{O_E}$ à la base du calcul de la vitesse $^0\mathcal{V}_{0,E}$ (0_E) du point terminal O_E .

La fonction à programmer sera appelée de la manière suivante 1 : $\begin{bmatrix} {}^0J_{v_{G_i}}, {}^0J_{\omega_i} \end{bmatrix} = CalculMatriceJacobienneGi (alpha, d, theta, r, x_G, y_G, z_G).$

Q13 Proposer une fonction retournant la matrice d'inertie $A(q) \in \mathbb{R}^{6 \times 6}$ du robot. La fonction sera appelée par A = CalculMatriceInertie(q).

Pour cela, on donne les tenseurs d'inertie I_i exprimés dans leur repère \mathcal{R}_i (d'origine O_i) 2 et la masse m_i de chaque corps \mathcal{C}_i .

En outre, vous tiendrez compte de l'ajout des contributions des inerties des actionneurs J_{m_i} $(i=1,\ldots,6)$ ramenées côté corps sur la diagonale de A(q) (on donne les valeurs des rapports de réduction r_{red_i} et des inerties J_{m_i} dans le tableau 1).

$${}^{0}J_{G_{i}}=\left[\begin{array}{cc}I_{3\times3}&-{}^{0}\widehat{O_{E}G_{i}'}\\0_{3\times3}&I_{3\times3}\end{array}\right]{}^{0}J_{O_{E}}$$

^{1.} Le recours à la formule de Varignon est utile : $V_{G_i} = V_{O_E} + \omega_i \times \overrightarrow{O_EG_i}$, soit :

^{2.} Il faudra alors exprimer les tenseurs d'inertie dans le repère \mathcal{R}_i (d'origine G_i) à l'aide du théorème d'Huygens.

Q14 A partir du calcul des valeurs propres de A(q), proposer deux scalaires $0 < \mu_1 < \mu_2$ pour borner inférieurement et supérieurement la matrice d'inertie, i.e.

$$\mu_1 \mathbb{I} \leq A(q) \leq \mu_2 \mathbb{I}$$

lorsque les variables articulaires varient entre les butées articulaires q_{min} et q_{max} définies à la question Q10.

Q15 Proposer une fonction G = CalculCoupleGravite(q) capable de retourner le vecteur des couples articulaires de gravité $G(q) \in \mathbb{R}^6$.

On pourra utiliser la formulation analytique du gradient de l'énergie potentielle $E_{p}\left(q\right)=g^{t}\left(\sum_{i=1}^{6}m_{i}^{0}p_{G_{i}}\left(q\right)\right)$, soit :

$$G(q) = -\left({}^{0}J_{v_{G_{1}}}^{t}m_{1}g + \ldots + {}^{0}J_{v_{G_{6}}}^{t}m_{6}g\right)$$

où
$$g = \begin{bmatrix} 0 & 0 & -9.81 \end{bmatrix}^t$$
.

Q16 Proposer un majorant g_b de $||G(q)||_1$, tel que :

$$\forall q \in [q_{min}, q_{max}], \ \|G(q)\|_1 \le g_b;$$

où $\|\bullet\|_1$ désigne la norme 1 d'un vecteur.

Q17 Proposer un bloc de simulation du robot sous $Simulink^{TM}$ en programmant son modèle dynamique direct à partir des fonctions calculées précédemment, d'une fonction $\Gamma_f = CalculCoupleFrottement(\dot{q})$ à programmer et de la fonction $c = CalculCoupleCoriolisCentrifuge(q, \dot{q})$ donnée.

Figure 2 – Modèle de simulation du robot sous $Simulink^{TM}$.

La fonction $\Gamma_f = CalculCoupleFrottement$ (\dot{q}) à programmer retournera le vecteur des couples articulaires produit par les forces de frottement. Dans ce TP, nous choisissons un modèle de frottement du type :

$$\tau_{f_i}(\dot{q}_i) = diag(\dot{q}_i) F_{v_i}$$
 pour $i = 1, \dots, 6$

où les constantes F_{v_i} sont données dans le tableau 1.

En outre, la fonction $c = CalculCoupleCoriolisCentrifuge(q, \dot{q})$, qui est donnée, retourne le vecteur des couples articulaires produit par les forces de *Coriolis* et centrifuges (où le vecteur c correspond à la quantité $C(q, \dot{q})$ \dot{q}).

3 Génération de trajectoire articulaire

 $m{Q}18$ On souhaite générer une trajectoire polynomiale de degré 5 à suivre dans l'espace articulaire permettant d'atteindre en temps minimal t_f la configuration finale désirée q_{d_f} à partir de la configuration initiale q_{d_i} . Ce mouvement est effectué à vitesses et accélérations initiales et finales nulles, et est échantillonné à une période $T_e=1 \mathrm{ms}$. On donne :

- $-\ q_{d_i} = [-1.00, 0.00, -1.00, -1.00, -1.00, -1.00]^t \text{ rad},$
- $-q_{d_f} = [0.00, 1.00, 0.00, 0.00, 0.00, 0.00]^t \text{ rad.}$

Quel est le temps minimal final t_{f_i} pour chaque articulation i en ne tenant compte que du vecteur k_a des accélérations articulaires maximales? Les termes k_{a_i} seront calculés à partir du rapport des couples moteurs maximaux τ_{max_i} (donnés dans le tableau 1), des rapports de réduction r_{red_i} et des inerties maximales vues par les articulations (supposées toutes égales à la valeur μ_2 calculée à la question $\mathbf{Q}14$).

Q19 Programmer une fonction $q_c = GeneTraj(q_{d_i}, q_{d_f}, t)$ capable de générer le point de consigne $q_c(t)$ à l'instant t de la trajectoire demandée précédemment. Dans cette question, vous choisirez un temps global final minimum de $t_f = 0.5$ s pour coordonner toutes les articulations 3 .

Créer le bloc de génération de trajectoire correspondant sous $Simulink^{TM}$.

Figure 3 – Génération de trajectoire sous $Simulink^{TM}$.

Tracer l'évolution temporelle des trajectoires articulaires désirées q_{c_i} (pour i = 1, ..., 6) lorsque t varie de 0 à t_f .

^{3.} Ce temps global final minimum est un majorant des temps t_{f_i} qui ont été calculés à la question $\mathbf{Q}18$.

4 Commande dans l'espace articulaire

 ${\it Q}20$ Le robot est asservi en position au moyen d'une commande articulaire P.D. décentralisée avec compensation de la gravité :

$$\Gamma = K_p (q_d - q) + K_d (\dot{q}_d - \dot{q}) + \hat{G}(q)$$

Créer le bloc de commande en position correspondant sous $Simulink^{TM}$, puis construire le schéma de commande en boucle fermée intégrant les blocs précédemment définis.

Proposer un réglage des gains articulaires K_{p_i} et K_{d_i} capables d'assurer une réponse temporelle stable et amortie du système en boucle fermée, dont l'erreur $e(t) = q_{c_i}(t) - q_i(t)$ en suivi de trajectoire soit au plus de 0.05 rad pour chaque articulation. En outre, votre réglage des gains K_{p_i} et K_{d_i} doit être acceptable du point de vue des couples articulaires maximaux admissibles (calculés à partir des couples moteurs maximaux τ_{max_i}).

Donner les valeurs numériques retenues pour votre réglage de gains.

Tracer l'évolution temporelle des trajectoires articulaires $q_i(t)$, ainsi que celle des erreurs e(t) en suivi de trajectoire.

Tracer l'évolution temporelle des couples articulaires de commande $\tau_i(t)$ correspondant à votre réglage de gain.

Annexe

——————————————————————————————————————	Valeurs numériques	Grandeurs
$\overline{x_{G_1}, y_{G_1}, z_{G_1}}$	0 m, 0 m, -0.25 m	Coordonnées de G_1 dans \mathcal{R}_1
$x_{G_2}, y_{G_2}, z_{G_2}$	0.35 m, 0 m, 0 m	Coordonnées de G_2 dans \mathcal{R}_2
$x_{G_3}, y_{G_3}, z_{G_3}$	0 m, -0.1 m, 0 m	Coordonnées de G_3 dans \mathcal{R}_3
$x_{G_4}, y_{G_4}, z_{G_4}$	$0\mathrm{m},0\mathrm{m},0\mathrm{m}$	Coordonnées de G_4 dans \mathcal{R}_4
$x_{G_5}, y_{G_5}, z_{G_5}$	$0 \mathrm{m}, 0 \mathrm{m}, 0 \mathrm{m}$	Coordonnées de G_5 dans \mathcal{R}_5
$x_{G_6}, y_{G_6}, z_{G_6}$	$0\mathrm{m},0\mathrm{m},0\mathrm{m}$	Coordonnées de G_6 dans \mathcal{R}_6
m_1	$15.0 \mathrm{kg}$	Masse du corps 1
m_2	$10.0 \mathrm{kg}$	Masse du corps 2
m_3	1.0kg	Masse du corps 3
m_4	$7.0 \mathrm{kg}$	Masse du corps 4
m_5	$1.0 \mathrm{kg}$	Masse du corps 5
m_6	$0.5 \mathrm{kg}$	Masse du corps 6
	$\begin{bmatrix} 0.80 & 0 & 0.05 \end{bmatrix}$	
I_1	$0 0.80 0 kg.m^2$	Tenseur d'inertie du corps 1
	$\begin{bmatrix} 0.05 & 0 & 0.10 \end{bmatrix}_{\mathcal{R}_{O_1}}$	
	$\begin{bmatrix} 0.10 & 0 & 0.10 \end{bmatrix}$	
I_2	$\begin{bmatrix} 0.15 & 0.15 & 0.15 \\ 0 & 1.50 & 0 & kg.m^2 \end{bmatrix}$	Tenseur d'inertie du corps 2
12		remount a merene da corps 2
	\perp κ_{O_2}	
T	$\begin{bmatrix} 0.05 & 0 & 0 \\ 0 & 0.01 & 0 \end{bmatrix}$	T 12: 2
I_3	$\begin{bmatrix} 0 & 0.01 & 0 \\ 0 & 0.07 \end{bmatrix}$ $kg.m^2$	Tenseur d'inertie du corps 3
	$\begin{bmatrix} 0 & 0 & 0.05 \end{bmatrix}_{\mathcal{R}_{O_3}}$	
	$\begin{bmatrix} 0.50 & 0 & 0 \end{bmatrix}$	
I_4	$0 0.50 0 kg.m^2$	Tenseur d'inertie du corps 4
	$\begin{bmatrix} 0 & 0 & 0.05 \end{bmatrix}_{\mathcal{R}_{O_4}}$	
	$\begin{bmatrix} 0.01 & 0 & 0 \end{bmatrix}$	
I_5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tenseur d'inertie du corps 5
	$\begin{bmatrix} 0 & 0 & 0.01 \end{bmatrix}_{\mathcal{R}_{O_5}}$	
	$\begin{bmatrix} 0.01 & 0 & 0 \end{bmatrix}$	
I_6	$\begin{bmatrix} 0 & 0.01 & 0 \\ 0 & 0.01 & 0 \end{bmatrix}$ $kg.m^2$	Tenseur d'inertie du corps 6
10	$\begin{bmatrix} 0 & 0.01 & 0 & 0.01 \\ 0 & 0 & 0.01 \end{bmatrix}_{\mathcal{D}}$	Temseur a mertile da corps o
I (; 1 e)	\perp \perp κ_{O_6}	Mamont d'inantis des estere
$J_{m_i} \ (i=1,\ldots,6)$	$10 \times 10^{-6} kg.m^2$	Moment d'inertie des rotors
$r_{red_i} \ (i=1,\ldots,3)$	100	Rapport de réduction
$r_{red_i} \ (i=4,\ldots,6)$	70 $10 N \approx 2 d^{-1} = 2$	Rapport de réduction
F_{v_1},\ldots,F_{v_6}	$10N.m.rad^{-1}.s$	Frottements visqueux articulaires
$\tau_{max_i} \ (i=1,\ldots,6)$	5N.m	Couple maximal des moteurs

Table 1 – Données numériques du robot.