	Row interchange property.
	Interchanging two soms of a matrix changes the
	\sim
	det A = - det B
Ì.e.	$det \left(\frac{A}{X} \right) = -det \left(\frac{A}{B} \right)$
·	$\left \frac{\mathbb{R}}{\mathbb{R}} \right $
	(if X and Y are rows)
	ex. cd = cb - ad = -(ad - bc) = ab
	able d.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0211021100
	Equal rows property If A has two equal rows, then
	det (A) = 0, Proof. Let B be the matrix obtained from A
	by swapping the two equal rows. Then $det(A) = -det(B) = -det(A) = 0$.
	Then $det(A) = -det(B) = -det(A) = 0$
	Idea of proof for row interchange property
	True for 2x2 matrices
	Assume we know it for (n-1) x (n-1) matrices
	Case 1: Swapping two rows, neither of which is the first
	row,
	A, A, (for example)
	A = Az Az Other raw
	Az Swaps are
	[Similar)
	$L A_n J$

```
def(A') = a,, def(A', ) - a, def(A', )+ -- + (-1) a, def(A'n)
                                                     A_{11} = \begin{bmatrix} a_{32} & a_{33} & -- & a_{3n} \\ a_{22} & a_{23} & -- & a_{2n} \\ a_{42} & a_{43} & -- & a_{4n} \end{bmatrix}
= \begin{bmatrix} a_{11} & -- & a_{12} \\ a_{11} & -- & a_{22} \\ a_{12} & -- & a_{22} \\ a_{12} & -- & a_{22} \end{bmatrix}
= \begin{bmatrix} a_{11} & -- & a_{22} \\ a_{12} & -- & a_
                                                      Case 2: Swapping 1st row and ith row, 1>2.
                                                     This is equivalent to: Swap rows I and 2
                                                                                                                                                                         Swap rows 2 and i (changes sign by case 1)
                                                                                                                                                                                         Swap rows 1 and 2 g (changes sigh
                                                   Case 3: Swapping 1st row and 2nd row
 A with
first 2 rows
a first Z
   columns
      releted
                                                                                                                                                    = a_{11} \begin{vmatrix} a_{22} & -a_{2n} \\ -a_{2n} \end{vmatrix} - \cdots = a_{11} a_{22} \begin{vmatrix} a_{33} & -a_{3n} \\ -a_{n3} & -a_{nn} \end{vmatrix}
      det(A)=
                                                                                                                                                                                               Hard part: show every sign changes!
```