Podstawy fizyki – sezon 2

3. Obwody prądu stałego

Agnieszka Obłąkowska-Mucha

AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Obwody w kieszeni

OpenStax jest dostępny za darmo pod https://openstax.org/details/books/fizyka-dla-szkół-wyższych-tom-2

Prąd elektryczny

- Prąd elektryczny uporządkowany (skierowany) ruch ładunków elektrycznych.
- Kierunek przepływu prądu wyznacza ruch ładunku dodatniego (kierunek przeciwny do ruchu elektronów).
- Natężenie prądu szybkość, z jaką ładunki przepływają przez przekrój poprzeczny przewodnika (pochodna przepływającego ładunku po czasie).

$$i = \frac{dq}{dt}$$
 $[i] = \frac{C}{s} = A$ $I = \frac{Q}{t}$

$$q=\int_0^t i\,dt$$

średni prąd

napięcie

ładunek przechodzący przez pow. w czasie t

Na razie omawiać będziemy prąd stały swobodnych elektronów w metalach.

Gęstość prądu

- Prąd jest skalarem (liczbą), a strzałka pokazuje kierunek ruchu ładunku dodatniego
- Patrząc na przekrój przewodnika, określić można gęstość prądu (wektor) przepływ prądu przez jednostkową powierzchnię

$$\vec{j} = \frac{d\vec{i}}{dS}$$

$$I = \int \vec{J} \ \vec{dS}$$

 Elektrony przewodnictwa poruszają się chaotycznie w całej objętości metalu pod wpływem energii cieplnej, zderzają się – brak jest uporządkowanego ruchu, brak przepływu prądu.

Gęstość prądu

 Pod wpływem przyłożonego napięcia ruch elektronów zaczyna być uporządkowany – płynie prąd.

- Prąd wywołany ruchem cząstek naładowanych dodatnio uważamy za równoważny z prądem wywołanym ruchem cząstek naładowanych ujemnie; za kierunek prądu przyjmujemy umownie kierunek poruszania się ładunkow dodatnich.
- Prędkość dryfu elektronów w metalu jest rzędu $10^{-5} \frac{m}{s}$ (b.mała- p. RHW).

Dlaczego zatem światło zapala się bezpośrednio po naciśnięciu, nawet jak przełącznik jest kilkanaście metrów od żarówki?

Opór elektryczny

Jeżeli do przewodnika przyłożymy napięcie U, to przez przewodnik płynie prąd, którego natężenie I jest proporcjonalne do przyłożonego napięcia.

Stosunek napięcia przyłożonego do przewodnika do natężenia prądu przepływającego przez ten przewodnik jest stały i nie zależy ani od napięcia ani od natężenia prądu.

- Prawo Ohma jest słuszne pod warunkiem, że przewodnik znajduje się w stałej temperaturze.
- Opór elektryczny zależy od rodzaju przewodnika i jego wymiarów geometrycznych

$$\rho = \frac{E}{I} \qquad R = \rho \frac{L}{S}$$

Prawo Ohma

$$\frac{U}{I} = const$$

$$\frac{U}{I} = R$$
 $[R] = \Omega$

Stosunek *U/I* nazywamy oporem elektrycznym.

pyt: jak zmieni się opór, jak zwiększymy napięcie dwa razy?

Oporniki

- Prawo Ohma to charakterystyka prądowo- napięciowa metali w stałej temperaturze: natężenie prądu zależy liniowo od przyłożonego napięcia
- Prawo Ohma jest definicją oporu
- Kolor pasków oznacza wartość oporu (kod dla wtajemniczonych)

 Większość elementów elektrycznych we współczesnej technice NIE spełnia prawa Ohma (patrz: tranzystory i półprzewodniki)

Opór właściwy

$$R = \rho \, \frac{l}{S}$$

- Opór właściwy p (rezystywność) zależy od prędkości dryfu nośników, czyli od temperatury.
- Odwrotnością oporu właściwego jest przewodność właściwa $\sigma = \frac{1}{\rho}$

Materiał	Opór właściwy Ωm
srebro	1.6·10 ⁻⁸
miedź	1.7·10 ⁻⁸
glin	2.8·10 ⁻⁸
wolfram	5.3·10 ⁻⁸
platyna	1.1·10 ⁻⁷
krzem	2.5·10 ³
szkło	10 ¹⁰ - 10 ¹⁴

$$\alpha = \frac{1}{\rho} \frac{d\rho}{dT}$$

temp. wsp. oporu właśc. (względna zmiana oporu na jedn. temp)

Charakterystyki I(U)

- Warto zauważyć, że liniowa zależność (prawo Ohma) napięcia od natężenia prądu oporników dotyczy tylko niewielkiej części przyrządów i to jedynie w stałej temperaturze.
- Ciekawe charakterystyki U(I):

termistor – opór silnie zależy od temperatury

Nadprzewodnictwo

- W 1911 roku wykryto zjawisko nadprzewodnictwa, polegające na tym, że w pobliżu zera bezwzględnego niektóre substancje wykazują nagły zanik oporu. Prądy wzbudzone w stanie nadprzewodzącym utrzymują się w obwodzie bez zasilania zewnętrznego przez wiele lat.
- 1986 nagroda Nobla za odkrycie materiałów o właściwoścch nadprzewodzących w temp 100 K (bardzo wysokiej)
- Obecnie nadprzewodniki mają już szerokie zastosowanie techniczne – od eksperymentów fizyki po badanie medyczne – rezonans magnetyczny

Temperatury krytyczne

Jak wytworzyć prąd?

- Prąd przepływ ładunku może być spowodowany:
 - rozładowaniem kondensatora (chwilowy, malejący prąd),
 - podłączeniem źródła utrzymującego stałą różnicę potencjałów na końcach przewodnika (źródło siły elektromotorycznej SEM) – ogniwa (baterii), również słonecznej, prądnicy elektrycznej
 - zmiennym polem magnetycznym (jeszcze nie dzisiaj....)

- źródło SEM źródło energii przesuwającej ładunki,
- dodatnie nośniki płyną od ujemnego do dodatniego (w kier. strzałki),
- ruchowi ładunku przez opór R towarzyszy spadek potencjału V,
- zmiana energii ładunku na ciepło wynosi:

$$dE = dq U = I dt U$$

• moc:
$$P = IU$$
 $\left[\frac{J}{c} \frac{c}{s} = \frac{J}{s} = W\right]$

Prąd w oczku

Oczko – zamknięty obwód elektryczny

- Analiza potencjałów:
 - przesuwamy się po obwodzie i liczymy spadki napięć, zaczynając od dowolnego punktu, np. a,

$$V_a + \mathcal{E} - IR = V_a$$
$$\mathcal{E} - IR = \mathbf{0}$$

 wracając do a, powinno się dostać ten sam potencjał

Drugie prawo Kirchoffa:

Algebraiczna suma zmian potencjałów napotykanych przy przejściu dowolnego oczka musi być równa zero.

Moc prądu

- Moc prądu jest to energia przekazana w jednostce czasu ze źródła do elementu obwodu, np. silnika.
- Widzimy zatem, że energia elektryczna może być zamieniona na energię mechaniczną
- Jeżeli prąd przepływa przez opornik energia elektryczna zamieniana jest na ciepło, tzw. ciepło Joula i jest tracona.
- Moc tracona przez opór R: $P = \frac{U}{R}$

Energia w oczku

stąd:

Praca wykonana przez baterię nad ładunkiem wynosi:

$$dW = \mathcal{E} dq = \mathcal{E} I dt$$

 Zostaje ona zamieniona na energię cieplną wydzieloną na oporniku (ciepło Joule'a):

$$\mathcal{E} I dt = I^2 R dt$$

$$\mathcal{E} = IR$$

 Rzeczywista bateria ma swój opór (wewnętrzny)

II p. Kirch:
$$\mathcal{E} - Ir - IR = 0$$

$$I = \frac{\mathcal{E}}{R + r}$$

Szeregowe połączenie oporników

 Różnica potencjałów przyłożona do oporników połączonych szeregowo powoduje, że przez każdy z nich płynie taki sam prąd

• Obwód można zastąpić obwodem równoważnym, w którym źródło powoduje przepływ prądu o natężeniu I przez równoważny (zastępczy) opór R_Z

Wiele oczek

Układ o trzech oczkach i trzech gałęziach:

Jakie prądy płyną w każdej gałęzi?

$$I_1 + I_3 = I_2$$

Pierwsze prawo Kirchoffa:

Suma natężeń prądów wpływających do dowolnego węzła jest równa sumie natężeń prądów wypływających z tego węzła.

 Rozwiązujemy obwód stosując napięciowe prawo Kirchoffa dla dowolnych dwóch oczek, licząc spadki napięć:

$$\mathcal{E}_1 - I_1 R_1 + I_3 R_3 = 0$$
$$-I_3 R_3 - I_2 R_2 - \mathcal{E}_2 = 0$$

Równoległe połączenie oporników

Na wszystkich opornikach przyłożona jest taka sama różnica potencjałów

Łączenie równoległe pozwala ná uzyskanie rezystancji mniejszej od elementów składowych.

Praktyka czyni zaliczenie

Praktyka czyni zaliczenie

(b) Krok 1: oporniki R₃ i R₄ połączone szeregowo

(c) Krok 2: oporniki R_2 i R_{34} połączone równolegie

(d) Krok 3: oporniki R_1 i R_{234} połączone szeregowo

Praktyka czyni zaliczenie

(e) Uproszczony schemat zawierający opór równoważny R_{rw}

Życie nie jest jednak tak proste...

Czasem jednak oporniki nie są połączone, ani szeregowo, ani równolegle...

Praktyka, praktyka...

Jaki prąd płynie przez każdy z tych oporników? Jaki jest opór zastępczy?

Jaka jest różnica potencjałów pomiędzy danymi punktami? Jaka jest moc (ciepło) rozproszona na każdym oporniku? Co pokazuje amperomierz, woltomierz?

Więcej praktyki

Kierunek obchodzenia

Kierunek obchodzenia

Kierunek obchodzenia

Kierunek obchodzenia

$$U = U_B - U_A = -\varepsilon$$

Jeżeli potencjał maleje – składnik z "-", Jeżeli potencjał rośnie – składnik z "+"

weizeł C: $I_1 + I_2 = I_3$,

oczko *ABCDEFA*: $I_1(R_1 + R_4) - I_2(R_2 + R_5 + R_6) = \varepsilon_1 - \varepsilon_3$,

oczko *CDEFC*: $I_2(R_2 + R_5 + R_6) + I_3R_3 = \varepsilon_2 + \varepsilon_3$.

.----

Niebezpieczeństwo!

- Przepływ prądy elektrycznego o natężeniu powyżej 300 mA może być śmiertelne (ciało składa się z wody).
- Porażenie mięśni to b.częsty skutek przepływu prądu.
- Bezpieczniki zapobiegają przegrzaniu instalacji, gdy płynie prąd o zbyt dużej wartości.
- Wyłącznik różnicowy zmienia drogę prądu w przypadku zwarcia

Podsumowanie

- Prąd elektryczny ruch elektronów.
- Natężenie prądu.
- Opór, opór właściwy, prawo Ohma.
- Moc i ciepło w obwodach.
- Prawa Kirchoffa.

* rysunki pochodzą z:

HALLIDAY & RESNICK

FUNDAMENTALS OF PHYSICS

Jearl Walker

John Wiley & Sons, Inc.