İkil Görüntü İşleme

Samsun - 2011

İkil X aritmetik

- İkil x aritmetik
- ikil: 0 1
- Aritmetik: 8 bit 16 bit vs

İkil işlemler

Mantıksal işlemler

NOT
$$c = \overline{a}$$

OR $c = a + b$
AND $c = a \cdot b$
XOR $c = a \oplus b = a \cdot \overline{b} + \overline{a} \cdot b$
SUB $c = a \setminus b = a - b = a \cdot \overline{b}$

• Her bir piksele uygula: $c[m,n] = a[m,n] \cdot \overline{b}[m,n]$

OR	b	
а	0	1
0	0	1
1	1	1

AND	D	
а	0	1
0	0	0
1	0	1

AND

XOR	b	
а	0	1
0	0	1
1	1	0

SUB	b	
a	0	1
0	0	0
1	1	0

Örnek

a) Image a

b) Image b

c) NOT(b) = \overline{b}

d) OR(a,b) = a + b

e) AND $(a,b) = a \cdot b$

f) $XOR(a,b) = a \oplus b$

g) SUB $(a,b) = a \setminus b$

Aritmetik İşlemler

Operation	Definition	preferred data type
ADD	c = a + b	integer
SUB	c = a - b	integer
MUL	$c = a \cdot b$	integer or floating point
DIV	c = a / b	floating point
LOG	c = log(a)	floating point
EXP	$c = \exp(a)$	floating point
SQRT	c = sqrt(a)	floating point
TRIG.	$c = \sin/\cos/\tan(a)$	floating point
INVERT	$c = (2^B - 1) - a$	integer

Katlama tabanlı işlemler

- Tüm resmi dolaş: soldan-sağa, üstten-alta
- Pikselin komşuluğunda çalış: ör. 3x3
- Komşularının ağırlıklı toplamını hesapla
 - Komşuluk penceresi: kernel penceresi
 - Ağırlık: filtre katsayısı
- h: filtre katsayıları, a: girdi resmi, c: çıktı resmi

$$c[m,n] = a[m,n] \otimes h[m,n] = \sum_{j=-J_0}^{J_0} \sum_{k=-K_0}^{K_0} h[j,k] a[m-j,n-k]$$

Temel

- Doğrusal zamanla değişmezlik (LSI)
- Doğrusallık

If
$$a_1 \rightarrow c_1$$
 and $a_2 \rightarrow c_2$
Then $w_1 \cdot a_1 + w_2 \cdot a_2 \rightarrow w_1 \cdot c_1 + w_2 \cdot c_2$

Zamanla değişmezlik

If
$$a(x,y) \rightarrow c(x,y)$$

Then $a(x-x_o, y-y_o) \rightarrow c(x-x_o, y-y_o)$

• w1,w2, x0, y0: keyfi sabitler

Temel

- Birim vuruş tepkesi PSF (Point Spread Func)
- Fourier Transform(PSF) → OTF (Optical Transfer Func)

- Konumsal düzlemde katlama, frekans düzleminde çarpma
 - FT
 - Çarp
 - IFT

Doğrusal Filtreler

(a) Rectangular filter (J=K=5) (b) Circular filter (R=2.5)

$$h_{rect}[j,k] = \frac{1}{81} \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix} \qquad h_{circ}[j,k] = \frac{1}{25} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 2 & 0 \\ 1 & 2 & 5 & 2 & 1 \\ 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

(a) Pyramidal filter (J=K=5) (b) Cone filter (R=2.5)

Figure 27: Triangular filters for image smoothing

Gauss Filtre

$$h(x,y) = g_{2D}(x,y) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\left(\frac{x^2}{2\sigma^2}\right)}\right) \cdot \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\left(\frac{y^2}{2\sigma^2}\right)}\right)$$
$$= g_{1D}(x) \cdot g_{1D}(y)$$

$$g_{1D}[n] = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{n^2}{2\sigma^2}\right)} & |n| \le N_o \\ 0 & |n| > N_o \end{cases}$$

Doğrusal olmayan filtre

- Median
- Max/min/range

Sonuçlar

Figure 30: Illustration of various linear and non-linear smoothing filters