

C আসলে কী?

গণিতে e খুবই পরিচিত একটা ধ্রুবক। আমরা e^x প্রায়ই দেখে থাকি। আবার \log এর ভিত্তি যদি e হয় সেটাকে \ln বলে। এখানে \ln মানে \log arithm এবং \ln মানে \ln মানে \ln এই e টা আসলে কী। এখন আমরা সেটাই জানার চেষ্টা করব। সেটা বোঝার আগে প্রথমে খুব সহজ একটা জিনিস বোঝার চেষ্টা করি। কোনকিছুর পরিমাণ যদি 25% বেড়ে যায় তাহলে সেটা হিসাব করা যায় 1.25 দিয়ে গুণ করে।

ধরা যাক, 25% বৃদ্ধির ফলে কোন বস্তুর

পূর্বমূল্য 100 টাকা হলে বর্তমান মূল্য 125 টাকা

" 1 " "
$$\frac{125}{100}$$
 " $\frac{125}{100}$ X "

অর্থাৎ, পূর্বের দামের সাথে 1.25 গুণ করলে বর্তমান দাম পাওয়া যায়। এটা সবক্ষেত্রে সত্যি। এখন যদি 25% এর পরিবর্তে 42% বৃদ্ধি পায় সেটা আমরা হিসাব করতে পারি 1.42 দিয়ে গুণ করে। ব্যাপারটাকে আমরা generalize করতে পারি। অর্থাৎ, r% বৃদ্ধি পেলে (1+r) দিয়ে গুণ করতে হবে।

1.42 দিয়ে গুণ করা মানে (1+0.42)=(1+42%) দিয়ে গুণ করা বুঝায়

e এর সাথে চক্রবৃদ্ধি সুদের ব্যাপারটা জড়িত। তাই চক্রবৃদ্ধি সুদের বিষয়টা একটু recall করা যাক। চক্রবৃদ্ধি সুদের ক্ষেত্রে 1 বছর শেষে যে টাকা জমা হয় সেটাকে মূলধন ধরে পরের বছরের হিসাব করা হয়।

ধরা যাক, কোন ব্যাংকে বার্ষিক 25% চক্রবৃদ্ধি হার সুদে 100 টাকা রাখা হল।তাহলে 3 বছর পর মোট টাকার পরিমাণ কত হবে? 25% সুদে, ১ম বছর শেষে জমা হয় = 100×1.25 টাকা (অর্থাৎ 125 টাকা)

২য় বছর শেষে জমা হয় = $100 \times 1.25 \times 1.25$ টাকা

৩য় বছর শেষে জমা হয় =100×1.25×1.25×1.25 টাকা

$$=100\times(1.25)^3$$

$$=100\times(1+0.25)^3=p(1+r)^n$$

এটাই চক্রবৃদ্ধি সুদের ক্ষেত্রে সুদাসলের সূত্র, যার সাথে ছোটকাল থেকেই আমরা পরিচিত।

এখন e এর ব্যাপারটা একটু একটু করে বোঝা যাবে। প্রকৃতিতে কিন্তু এমন ঘটনাই বেশী ঘটে যে আগে যতটুকু জমেছে সেটা নিয়েই পরেরটুকু হিসাব করা হয়। যেমন ধরা যাক একটা বালুর ঢিবি থেকে বালু গড়িয়ে পড়ছে। A বিন্দু থেকে কিছু বালু B বিন্দুতে জমা হওয়ার কারনে B বিন্দুতে মোট বালুর চাপে আরও একটু বেশী বালু C বিন্দুতে জমা হবে।আবার C বিন্দুর বালুর চাপে আগের চেয়ে আরও একটু বেশী বালু D বিন্দুতে জমা হবে। আগের হিসাবের সাথে এটার পার্থক্য হলে আগের হিসাবটা ছিল Discrete যা ব 1 বছর পরপর

হিসাব করা হয়, আর এখনকার হিসাবটা হচ্ছে Continuous যা প্রতি মূহুর্তে হিসাব করতে হচ্ছে।

আমরা এখন সেটাই দেখব যে বছরে একবার হিসাব না করে বারবার বা প্রতি মূহুর্তে হিসাব করলে টাকার পরিমাণটা কেমন হয়।

ধরা যাক, কোন ব্যাংকে 100% হার সুদে 1 টাকা রাখা হল।

তাহলে 1 বছর পর মোট জমা হবে $=1(1+1)^1=2$ টাকা $\qquad [এখানে r=100\%=1]$

এখানে আমরা বছরে একবার মোট টাকা হিসাব করেছি। আচ্ছা আমরা যদি বছরে ২ বার অর্থাৎ ৬ মাস পরপর মোট টাকা হিসাব করতাম তাহলে কি ঘটত। এক্ষেত্রে r=50% এবং n=2 হবে, কারন বছরে ২ বার হিসাব করা হচ্ছে এবং ১২ মাসে সুদের হার 100% হলে ৬ মাসের ক্ষেত্রে তা 50% হবে।

সুতরাং এক্ষেত্রে মোট টাকার পরিমাণ= $1(1+\frac{1}{2})^2=2.25$

অনুরূপভাবে, বছরে 3 বার হিসাব করলে(বছরকে 3 ভাগে ভাগ করলে) মোট টাকা= $1(1+\frac{1}{3})^3=2.3703$

বছরকে 6 ভাগে ভাগ করলে মোট টাকা = $1(1+\ \frac{1}{6}\)^6$ = $2.5216\ [অর্থাৎ মোট টাকা ক্রমশ বাড়ছে]$

বছরকে 100 ভাগে ভাগ করলে মোট টাকা = $1(1+\frac{1}{100})^{100}$ = 2.7048

বছরকে
$$10000(10$$
 হাজার) ভাগে ভাগ করলে মোট টাকা = $1(1+\frac{1}{10000})^{10000}$ =2,7181

বছরকে
$$1000000~(10~$$
লক্ষ) ভাগে ভাগ করলে মোট টাকা $=1(1+~\frac{1}{1000000})^{1000000}=2.7183$

বছরকে 100000000 (10 কোটি) ভাগে ভাগ করলে মোট টাকা = $1(1+\frac{1}{100000000})^{100000000}=2.7183$

এটাকে গাণিতিকভাবে লেখা যায় ,
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

এখন যদি আমরা ২ বছরে মোট টাকার পরিমাণ বের করতে চাই তাহলে হিসাবটা হবে $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{2n}$ $=\mathrm{e}^2$

কারন এক্ষেত্রে সময়টা দ্বিগুণ হয়ে যাচ্ছে

অনুরূপভাবে x বছরের জন্য বের করতে চাইলে $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{nx} = e^x$

অর্থাৎ,
$$\mathrm{e}^{\mathrm{x}}=\lim_{n\to\infty}\left(1+rac{1}{n}
ight)^{n\mathrm{x}}$$
 । এখান থেকেই মূলত e^{x} এর formula টা এসেছে ।

aankanon. Wordtheess. com