Вычислимость и сложность 2018. Домашняя работа 2. Срок сдачи 13.05.2018

Пожалуйста оформите решения, как можно подробней и понятней, наберите их в любом удобном редакторе, и отправъте в формате pdf на адрес yury.savateev@qmail.com.

- 1. Рассмотрим следующее доказательство того, что $P \neq NP$: Рассмотрим следующий разрешающий алгоритм для SAT. На входе $A(p_1, \ldots, p_n)$ перебираем все возможные оценки пропозициональных переменных p_1, \ldots, p_n , если при любой такой оценке формула истинна, то принимаем эту формулу, иначе отвергаем. Поскольку существует 2^n оценок n пропозициональных переменных, алгоритм требует экспоненциального времени для своего выполнения. Следовательно, проблема SAT имеет экспоненциальную сложность по времени. Получаем, что $SAT \notin P$. Поскольку $SAT \in NP$, мы можем заключить, что $P \neq NP$. В чем состоит ошибка?
- 2. Дана булева формула A. Рассмотрим задачу TAUT: выяснить, является ли формула A тавтологией, т.е. является ли она истинной при всех возможных оценках переменных. Также рассмотрим сложностной класс $coNP = \{L \mid L \in NP\}$. Покажите, что NP = coNP тогда и только тогда, когда $3SAT \leqslant_m^p TAUT$ и $TAUT \leqslant_m^p 3SAT$.
- 3. Все слова языка L принимаются машиной Тьюринга M за полиномиальное время, и никакие другие слова машиной M не принимаются (но, возможно, и не отвергаются). Верно ли, что L лежит в P?
- 4. Рассмотрим множество $T=\{n\mid n$ десятичная записть числа 3^k для некоторого $k\in\mathbb{N}\}.$ Докажите, что $T\in P.$
- 5. Гамильтоновым циклом называется цикл, проходящий через все вершины графа ровно по одному разу. Докажите, что язык

$$HAMCYCLE = \{\langle G \rangle \mid \text{y графа } G \text{ есть гамильтонов цикл.} \}$$

лежит в NP.

6. Рассмотрим следующую задачу. SUDOKU: Дана таблица размера $n^2 \times n^2$, в которой каждая клетка либо пуста, либо содержит некоторое число из множества $\{1,\ldots,n^2\}$. Таблица разбита на n^2 малых квадратов размера $n\times n$. Можно ли заполнить пустые клетки числами из множества $\{1,\ldots,n^2\}$ таким образом, чтобы в каждой строке, в каждом столбце и в каждом малом квадрате $n\times n$ каждое число из $\{1,\ldots,n^2\}$ встречалось бы ровно один раз? Докажите, что $SUDOKU \leqslant_m^p SAT$.