Factoradic Representation of Rational Numbers

James Philip Rowell

From 'A Course in Pure Mathematics' by G. H. Hardy. Chapter 1, Miscellaneous Examples.

Miscellaneous example* #2 at the end of chapter 1 in Hardy's 'Pure Mathematics' presents us with a fascinating result. I had never seen it before, but upon seeing it felt like I was looking at a kind of basis-representation-theorem but for rational numbers, . . . beautiful!

Here it is, followed by my proof starting with the lemma.

Theorem

Any positive rational number can be expressed in one and only one way in the form

$$a_1 + \frac{a_2}{1 \cdot 2} + \frac{a_3}{1 \cdot 2 \cdot 3} + \dots + \frac{a_k}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k},$$

where a_1, a_2, \ldots, a_k are integers, and

$$0 < a_1, \quad 0 < a_2 < 2, \quad 0 < a_3 < 3, \quad \dots, \quad 0 < a_k < k$$

Lemma

The set of rational numbers,

$$S = \{ \frac{a_2}{2!} + \frac{a_3}{3!} + \dots + \frac{a_k}{k!} \mid 0 \le a_2 < 2, 0 \le a_3 < 3, \dots, 0 \le a_k < k \},$$

is identical to the set of rational numbers,

$$\mathcal{F} = \{ \frac{0}{k!}, \frac{1}{k!}, \frac{2}{k!}, \dots, \frac{k!-1}{k!} \}$$

Proof of Lemma

The number of values that the coefficient a_2 can assume is 2, a_3 can take on 3 values, ..., up to a_k which can take on k values. So the total number of combinations of values that can be assigned to all the coefficients is $2 \cdot 3 \cdot 4 \cdot \ldots \cdot k = k!$.

^{*}Hardy doesn't call them 'Exercises' or 'Questions', but that's what they are, math exercises like calculations to perform, theorems to prove etc.

Suppose that the rational number $\frac{p}{q} = \frac{a_2}{2!} + \frac{a_3}{3!} + \ldots + \frac{a_k}{k!}$ is not uniquely determined by the coefficients a_2, a_3, \ldots, a_k . That is, suppose there is a second DIFFERENT sequence of coefficients b_2, b_3, \ldots, b_k such that $\frac{p}{q} = \frac{b_2}{2!} + \frac{b_3}{3!} + \ldots + \frac{b_k}{k!}$.

The size of \mathcal{F} is clearly k!