Optimización de costos de acuñación de moneda con Programación Entera Mixta

Carlos A. Alfaro

Banco de México

Contenido

- Programación Lineal
- Programación Lineal Entera
- Descripción del problema
- Capacidades y costos de producción de moneda
- Modelo de optimización
- Simulación
- Beneficios por la optimización
- Conclusiones

Programación lineal

Programación lineal

Programación lineal

Metodo simplex

- George Dantzig propuso el método simplex para resolver PL
- Consiste en "viajar" sobre las aristas glotonamente hasta encontrar el óptimo
- En el peor caso se visitan 2ⁿ vértices (Klee&Minty,1972)
- El tiempo esperado de ejecución es polinomial
- La PL está en P (método del punto interior)

George B. Dantzig

Metodo simplex

- George Dantzig propuso el método simplex para resolver PL
- Consiste en "viajar" sobre las aristas glotonamente hasta encontrar el óptimo
- En el peor caso se visitan 2ⁿ vértices (Klee&Minty,1972)
- El tiempo esperado de ejecución es polinomial
- La PL está en P (método del punto interior)

La conjetura de Hirsch afirma que si un poliedro esta definido por **n** desigualdades lineales en d variables, entonces es posible viajar entre cualesquiera dos vértices en a lo más **n-d** aristas.

Francisco Santos encontró un contraejemplo en 2010 y lo publicó en el Annals of Mathematics

George B. Danting

Programación lineal entera

- En la programación lineal entera se pide que las variables sean enteras
- La PLE está en NP-duros
- Las técnicas son más complejas (Heurísticas, Branch&Bound, Deep Learning)

$$\begin{array}{llll} \max \ 1000x_1 + 700x_2 \\ \mathrm{s.t.} & 100x_1 + \ 50x_2 \leq 2425 \\ & 20x_2 \leq \ 510 \\ & x_1, x_2 \geq 0, \ \ \mathbf{enteros} \end{array}$$

Descripción del problema

- El Banco de México (BM) tiene entre sus finalidades proveer de efectivo a la economía del país.
- Específicamente para la moneda metálica, el BM es el responsable de planear la producción y distribución de moneda corriente que acuña la Casa de Moneda.
- Mediante una **orden de acuñación**, \mathbf{f}_t , el BM detalla el número de piezas a fabricar en cada trimestre.
- El proceso de fabricación de moneda consiste en 3 procesos: Corte,
 Horno y Acuñación.
- El BM paga a la CMM una renta anual que contempla el uso del nivel básico de los tres procesos.
- Si el BM requiriera mayor capacidad en alguno de estos procesos, el BM puede contratar terceros turnos para producir la orden de acuñación.

Descripción del problema

Minimizar el costo de los terceros turnos

Al satisfacer las capacidades de producción de la CMM

Adicionalmente:

- Satisfacer las demandas trimestrales de moneda,
- No sobre pasar la capacidad de las bóvedas,
- Mantener al menos el inventario mínimo para operar.

Nuestro modelo no contempla el costo del metal, pues la CMM es quién gestiona la compra y el almacenamiento del metal.

Descripción del problema

Evolución del horiazonte de planeación dependiendo del cuatrimestre

Capacidades trimestrales de producción de la CMM

• El primer proceso en la línea de producción es el **corte**. Este consiste en obtener las partes que conforman las monedas: **núcleos y arillos**. Para medir el consumo de este recurso utilizamos el **número**, $D(\mathbf{f}_t)$, **de días** necesarios para producir la orden de acuñación.

$$\mathscr{C}(\mathbf{f}_t) = \begin{cases} 0, & \text{if } D(\mathbf{f}_t) \le x_0, \\ C_1, & \text{if } x_0 < D(\mathbf{f}_t) \le x_1, \\ \vdots & \vdots \\ C_{nc} & \text{if } x_{nc-1} < D(\mathbf{f}_t) \le x_{nc}, \end{cases}$$

Capacidades trimestrales de producción de la CMM

• El proceso de **recocido en horno** es utilizado para controlar la dureza de las partes de la moneda que contienen una aleación basada en cobre. El uso trimestral del proceso de recocido se determina por la **suma** $W(\mathbf{f}_t)$ **de los pesos** de las partes hechas de esas aleaciones que se fabricaron en un trimestre.

$$\mathcal{H}(\mathbf{f}_t) = \begin{cases} 0, & \text{if} & W(\mathbf{f}_t) \leq y_0 \text{ Ton.} \\ H, & \text{if} & y_0 < W(\mathbf{f}_t) \leq y_1 \text{ Ton.,} \end{cases}$$

Capacidades trimestrales de producción de la CMM

 El proceso de acuñación es donde se imprimen y sellan las caras de la moneda. El uso de este recurso se mide directamente por el número de piezas que se acuñan en un trimestre y es independiente de la denominación.

$$\mathscr{A}(\mathbf{f}_t) = \begin{cases} 0, & \text{if} \quad N(\mathbf{f}_t) \le z_0 \\ A_1, & \text{if} \quad z_0 < N(\mathbf{f}_t) \le z_1 \\ \vdots & & \\ A_{na}, & \text{if} \quad z_{na-1} < N(\mathbf{f}_t) \le z_{na} \end{cases}$$

Modelo de optimización

	Índices
\overline{i}	<i>i</i> -ésimo nivel de tercer turno de corte
j	j-ésimo nivel de tercer turno de acuación
t	cuatrimestre $t \in \{1, \dots, T\}$
d	denominación
	Parámetros
T	número de cuatrimestres en el horizonte de planeación
C_{i}	costo del i-ésimo nivel de terceros turnos de corte
A_{j}	costo del j -ésimo nivel de terceros turnos de acuñación
H	costo del tercer turno de horno
P_t^d	pronónstico de la demanda de moneda de la denominación d en el cuatrimestre t
IMAX	capacidad máxima de bóveda
$IMIN^d$	inventario mínimo de la denominación d
x_i	cota superior para el número de dias laborales requeridos por el i-ésimo nivel
	de corte
y_1	cota superior para el peso requerido en el tercer turno de horno
z_{j}	cota superior para el número de monedas acuadas por el j -ésimo nivel
J	acuñación

	Variables
c_t^i	variable binaria que asigna el <i>i</i> -ésimo nivel de los terceros turnos de corte
h_t	variable binaria que representa si se está usando el tercer turno de horno
a_{t}^{j}	variable binaria que asigna el j -ésimo nivel de los terceros turnos de acuñación
f_t^d	variable que representa el número de monedas acuñadas de la denominación d en el cuatrimestre t
E_t^d	variable que representa el inventario de moneda de la denominación d en el cuatrimestre t
K	variable que maximiza el uso de los niveles de producción

$$h_t = \begin{cases} 1, & \text{si se utiliza el recocido en horno en tercer turno durante el trimestre } t \\ 0, & \text{si se utiliza el recocido en horno en producción base durante el trimestre } t \end{cases}$$

$$a_t^j = \begin{cases} 1, & \text{si en el trimestre } t \text{ se utiliza el nivel de acuñación } j \\ 0, & \text{en caso contrario} \end{cases}$$

$$c_t^i = \begin{cases} 1, & \text{si en el trimestre } t \text{ se utiliza el nivel de corte } i \\ 0, & \text{en caso contrario} \end{cases}$$

• Minimizar:
$$\sum_t \sum_i C_i c_t^i + \sum_t H h_t + \sum_t \sum_j A_j a_t^j - K$$

• Sujeto a:

(1)
$$\forall t,$$
 $W(\mathbf{f}_t) \leq y_0 + (y_1 - y_0)h_t$

(4)
$$\forall t,$$
 $D(\mathbf{f}_t) \le x_0 + \sum_i (x_i - x_0) c_t^i$

(5)
$$\forall t,$$

$$\sum_{i} c_t^i \leq 1$$

(6)
$$\forall t, d,$$
 $E_t^d = E_{t-1}^d + f_t^d - P_t^d$

(7)
$$\forall d,$$
 $E_T^d \ge IMIN^dK$

(8)
$$\forall t, \qquad \sum_{d} E_{t}^{d} \leq IMAX$$

(9)
$$\forall t, d,$$
 $E_t^d \ge IMIN_t^d$

Datos históricos

- Usaremos datos reales de 21 cuatrimestres consecutivos.
- En el cuatrimestre 2-II hubo una limitación en la producción debido a un problema de suministro de gas.
- Mantendremos esa restricción en la simulación.

Heurísticas adicionales

 Si la solución del modelo utiliza menos de la capacidad base de alguna de los procesos, entonces trataremos que el modelo use completamente la capacidad básica siempre y cuando el costo de los terceros turnos no aumente.

(acuñación)
$$\sum_{d} f_1^d = z_0$$
 o (corte) $D(\mathbf{f}_1) = x_0$.

 Si la solución del modelo utiliza un turno extra de alguno de los procesos, entonces intentaremos postergarlo mientras que esto no implique un aumento en los costos de los terceros turnos.

(acuñación)
$$\sum_{j} a_{1}^{j} = 0$$
, (corte) $\sum_{i} c_{1}^{i} = 0$, u (horno) $h_{1} = 0$.

Simulación

- La simulación se implementó en C++,
- Para resolver el modelo usamos el método de "Ramificación-y-Poda" implementado en la librería GLPK.

Beneficios por la optimización de las órdenes de producción

Porcentaje del uso de los procesos (histórico)

Porcentaje del uso de los procesos (simulación)

Comparación de costos acumulados

El costo de los terceros turnos se reduce al 24%

¡Muchas gracias!

alfaromontufar@gmail.com