Graph Learning SD212

1. Graph Structure

Thomas Bonald

2023 - 2024

Motivation

How do (large) real graphs look like?

Outline

- 1. The friendship paradox
- 2. Scale-free property
- 3. Small-world property
- 4. Clustering property

The friendship paradox

You have less friends than your friends have.

Sampling bias

Consider a graph of n nodes and m edges Let D be the degree of a random node

Uniform sampling

$$E(D) = \frac{2m}{n}$$

Sampling bias

Consider a graph of n nodes and m edges Let D be the degree of a random node

Uniform sampling

$$E(D) = \frac{2m}{n}$$

Edge sampling

$$\mathrm{E}'(D) = rac{\mathrm{E}(D^2)}{\mathrm{E}(D)} \geq \mathrm{E}(D)$$

Sampling bias

Consider a graph of n nodes and m edges Let D be the degree of a random node

Uniform sampling

$$E(D)=\frac{2m}{n}$$

Edge sampling

$$\mathrm{E}'(D) = \frac{\mathrm{E}(D^2)}{\mathrm{E}(D)} \ge \mathrm{E}(D)$$

Neighbor sampling

$$\mathrm{E}''(D) \geq \mathrm{E}(D)$$

Outline

- 1. The friendship paradox
- 2. Scale-free property
- 3. Small-world property
- 4. Clustering property

Power law

In real graphs, the degrees typically have a **power law** (= Pareto) The degree D of a random node satisfies

$$\mathrm{P}(D \geq k) pprox \left(rac{k_{\min}}{k}
ight)^{lpha}$$

where

- $ightharpoonup k_{\min}$ is the **minimum degree**
- ightharpoonup lpha is the **exponent**, typically between 1 and 2

Example

In-degree distribution of Wikipedia Vitals (10,011 nodes, 824,999 edges)

A random graph

Erdős-Rényi (1959)

Consider n nodes, with pairs connected with probability p Adjacency matrix = symmetric matrix with

 $A_{ij} \sim \text{Bernoulli}(p) \text{ for } i < j$

Example

Wikipedia Vitals vs. random graph (10,011 nodes, 824,999 edges)

Why the power law?

Barabasi-Albert model (1999)

Start from a clique of d nodes (with $d \ge 1$)

Add new nodes one at a time, each of degree d and with **preferential attachment**

"rich get richer"

Example

Graph generated from the **Barabasi-Albert model** (n = 100, d = 3)

The scale-free property

Let *D* be the degree distribution:

$$P(D \ge k) = \left(\frac{k_{\min}}{k}\right)^{\alpha}$$

For a typical power exponent $\alpha \in (1, 2]$, we have:

$$\mathrm{E}(D) = rac{lpha}{lpha - 1} k_{\mathrm{min}}$$
 $\mathrm{var}(D) = +\infty$

 \rightarrow The average degree is **not** informative!

Scale-free graphs

Source: Barabasi, Network Science, 2016

Outline

- 1. The friendship paradox
- 2. Scale-free property
- 3. Small-world property
- 4. Clustering property

Small world

Which fraction of the articles are **accessible in** k **clicks** from Plato on Wikipedia?

Small world

Which fraction of the articles are accessible in k clicks from Plato on Wikipedia?

Using Wikipedia Vitals (10,011 articles):

# clicks	# nodes	proportion
1	392	4%
2	5866	59%
3	9939	99%
4	9990	99.8%

The six degrees of separation

First mention in *Chains*, a short story by Karinthy in 1929

The six degrees of separation

- First mention in *Chains*, a short story by Karinthy in 1929
- Verified experimentally by Milgram in 1967

Source: Wikipedia

The six degrees of separation

- First mention in *Chains*, a short story by Karinthy in 1929
- ► Verified **experimentally** by Milgram in 1967

Source: Wikipedia

Emails

Dodds, Muhamad, Watts 2003

- ▶ 18 target people from all over the world
- ▶ 24,163 volunteers
- ➤ 384 successful chains Length of successful chains

Facebook

Bhagat, Burke, Diuk, Filiz, Edunov 2016

- Based on the 1.6 billion people active on Facebook
- Compute the average path length to any other people

The 3.5 degrees of separation of Facebook

Erdős number

- ► Graph of co-authors of scientific papers
- Distance to Erdős (1913-1996)

The Bacon number

See The Oracle of Bacon

 Originated from an interview of Kevin Bacon by Premiere Magazine in 1994

The Bacon number

See The Oracle of Bacon

- Originated from an interview of Kevin Bacon by Premiere Magazine in 1994
- Graph of co-starring in movies

Results from YAGO database (44,586 actors)

Planar graphs

Random graphs

Power-law graphs

Outline

- 1. The friendship paradox
- 2. Scale-free property
- 3. Small-world property
- 4. Clustering property

Fraction of **closed** triangles:

$$C = \frac{3 \text{ \#triangles}}{\sum_{i} \binom{d_i}{2}}$$

Graph	C
Karate Club	0.26
Les Miserables	0.50
Openflights	0.25
WikiVitals	0.21

Summary

Graph structure

- 1. Friendship paradox (sampling)
- 2. Power law (degrees)
- 3. Small world (distances)
- 4. Clustering (triangles)

