오유진(2015325) 회귀분석론 과제1

5.2

5.2.1

헬스클럽자료 중 Y를 설명변수, X1,X2,X3,X4를 설명변수라고 두고 스튜던트화잔차와 적합값의 잔 차산점도는 아래와 같다.

이는 회귀모형이 적절하게 적합되었을 때 보여지는 잔차산점도라고 볼 수 있다.

5.2.2 정규확률그림

두 그림 모두 직선에서 크게 벗어났다고 볼 수 없다.

5.2.3

* 오차의 등분산성

스코어검정을 통해 오차의 등분산을 알아보고자한다.

 σ^2 =SSE/표본의수 = 20551/30=685.03333 이라는 것을 구해서, ei 2 /685.03333를 새로운 변수인 u로 두고 u를 각각의 설명변수 x1, x2, x3, x4 로 회귀하였고 Y와 모든 설명변수의 등분산성을 보기위해 u를 4개의 설명변수 (x1, x2, x3, x4)로 회귀하여 진행했다.

아래 사진들은 u를 x1, x2, x3, x4, 4개 모두(x1 x2 x3 x4)로 회귀시켰을 때 결과이다.

각각의 설명변수 스코어 검정 통계량은 x1, x2, x3, x4, 그리고 전체 변수 x1 x2 x3 x4 순으로 각각 0.02726/2=0.01363, 0.48178/2=0.24089, 1.31474/2=0.65737, 0.05400/2=0.027 이다. 그리고 p-값이 각각 0.8804, 0.5254, 0.2911, 0.8322, 0.1911 로 0.05보다 크므로 귀무가설을 기각하지 못한다. 이때 x1과 x3, x4는 매우 크므로 이분산의 현상은 몸무게(x1), 근력(x3), 1/4마일 시험주행속도(x4) 과는 무관하다. 그리고 x2를 보면 분산은 분당 정지 맥박수의 함수는 아니라는 것을 알 수 있고, x1, x3, x4와는 무관하므로 x2의 영향을 받는 다는 것을 알 수 있다. 4개 전체를 회귀한 것을 보면 분산이 어느정도 4개의 함수라는 것을 알 수 있다.

*모형의 선형성

잔차산점도를 통해 모형의 선형성을 진단할 수 있다.

위 5.2.1의 잔차산점도를 보면, 스튜던트화잔차값이 곡선의 형태를 보이지 않기 때문에 비선형성을 나타낸다고 볼 수 있다.

*오차의 정규성

UNIVARIATE 프로시저 변수: e1 (Residual)							UNIVARIATE 프로시저 변수: r1 (Studentized Residual)						
적률							적률						
N	30	가중	가중합		30		N	30		가중합		30	
평균	(관측	관측값 합		0		평균	0,00281541		관측값 합		0.08446243	
표준 편차	26,6208121	분산	분산		708,667637		표준 편차	1,03290	819 분산			1,06689933	
왜도	0,05541453	첨도	첨도		-0,8358721		왜도	0,09192	?792 첨도			-0,7849332	
제곱합	20551,3615	수정	수정 제곱합		20551,3615		제곱함	30,9403	183 4	수정 제곱합		30,9400805	
변동계수	68	평균의 표준 오차		오차 4	4,8602731		변동계수	36687,6086		평균의 표준 오차		0,18858237	
		정규성	성 검정						정규성	성 검정			
검정		8	통계량		p Zt		검정		통계량		p 22:		
Shapiro-Wilk		W	0,960525	Pr < W		0,3195	Shapiro-Wilk		W	0.962364	Pr < W		0,3555
Kolmogorov-Smirnov		D	0,114788	Pr > D		>0,1500	Kolmogorov-Smirnov		D	0,107803	Pr > D		>0,1500
Cramer-von Mises		W-Sq	0,074372	Pr > W-Sq		0,2405	Cramer-von Mises		W-Sq	0.067761	Pr > W	-Sq	>0,2500
Anderson-Darling		A-Sq	0.437994	Pr > A-Sq		>0,2500	Anderson-Darling		A-Sq	0,41039	Pr > A	-Sq	>0,2500

w-통게량의 값은 각각 0.9605, 0.9624이고 이때 p value가 각각 0.3195, 0.3555 로 크게나와서 귀무가설을 기각하지 못하므로 정규분포를 따른다고 할 수 있다. 또한 5.2.2의 정규확률그림을 통해서도 정규분포를 따른다고도 할 수 있다.

5.5

위의 Y와 x의 잔차산점도를 보면, 이는 적합값의 증가에 따라 잔차가 증가했다가 감소한다. 즉 이 잔차산점도를 통해 분산이 일정하지않다는 것을 알 수 있다. 소비자가 쓰는 전기수요를 계수 (count)로 본다면 이는 포아송분포로 볼 수 있기 때문에 제곱근변환을 통해 분산을 안정화시킬수 있다. 스코어 검정은 $\sigma^2=SSE/$ 표본의 수=126.86602/53=2.393698을 통해, ei 2 2.393698를 새로운 변수인 u로 두고 u를 설명변수 x로 회귀시켰다.

스코어 검정 통계량은 13.66027/2=6.83 이고 p-값은 0.0084로 0.05보다 작으므로 귀무가설을 기

각할 수 있다.

5.5.2

제곱근변환이 적절한 변환인지 파악하기 위해 Box-Cox 변환방법을 이용하여 알아볼 수있다. 표 5.15에 따르면 λ는 [-1,1]범위 내에서 약 0.6이므로 λhat을 0.5로 어림하여 제곱근변화에 해당하는 것을 알 수 있다. 아래그림에서 파란색 범위는 신뢰구간을 뜻한다. 이 신뢰구간을 1을 포함하지않고 있으므로 변환이 요구된다는 의미로 해석할 수 있다.

5.53

 $\sqrt{(y)}$ 를 yy라는 새로운 설정변수을 생성하여 추가하여 $\sqrt{(y)}$ 로 제곱근 변환한 모형에 대해 잔차산 점도는 다음과 같다.

이는 오른쪽에 동떨어진 한 개의 점을 제외하고는 회귀모형이 적절하게 적합되었을 때 보여지는 잔차산점도로, 골고루 잘 퍼져있는 것을 볼 수 있다. 또한 이 분포는 정규분포를 따른다고 할 수 있다. 따라서 제곱근변환과 같은 변수변환은 분산을 안정화한다.