Analyse

Isabelle Galagher et Pierre Gervais

September 16, 2016

Contents

Ι	Topologie des espaces vectoriels normés	1
1	Espaces vectoriels normés : premières définitions	1
	1.1 Distances et normes	1
	1.2 Ouverts et fermés	3

Part I

Topologie des espaces vectoriels normés

1 Espaces vectoriels normés : premières définitions

1.1 Distances et normes

Définition 1. Étant donné un ensemble E, une distance sur E est une application $d: E \times E \longrightarrow \mathbb{R}$ vérifiant les propriétés suivantes :

- 1. d est $d\acute{e}finie$ $positive: <math>d(x,y) \geqslant 0$ et $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d est symétrique : d(x, y) = d(y, x)
- 3. d vérifie l'inégalité triangulaire : $\forall z \in E, \ d(x,y) \leq d(x,z) + d(z,y)$

Exemple 1.

- $E = \mathbb{R}$ et d(x,y) = |x-y|
- $E = \mathbb{R}^2$ et $d\left(\binom{a}{b}, \binom{c}{d}\right) = \sqrt{(a-c)^2 + (b-d)^2}$

Remarque 1. Par l'inégalité triangulaire, on déduit

- $d(x,z) \geqslant d(x,y) d(y,z)$
- $d(x,z) \geqslant d(z,y) d(x,y)$

d'où $|d(x, y) - d(z, y)| \le d(x, z)$

Définition 2. Soit E un K-espace vectoriel, une norme sur E est une application notée N ou $\|\cdot\|$ telle que

- 1. $(x,y) \mapsto ||x-y||$ est une distance
- 2. $\forall \lambda \in \mathbb{R}, \ \forall u \in E, \ \|\lambda u\| = |\lambda| \|u\| \ (homogénéité)$

Proposition 1. Une fonction $\|\cdot\|: E \longrightarrow \mathbb{R}$ est une norme si et seulement si :

- 1. elle est homogène
- 2. elle est définie
- 3. elle vérifie l'inégalité triangulaire

Preuve 1.

 \Longrightarrow

Soit $\|\cdot\|$ une norme.

- 1. ✓
- 2. ||x|| = d(x,0) où d(x,y) = ||x-y||, donc $||x|| \ge 0$ et $||x|| = 0 \iff d(x,0) = 0 \iff x = 0$
- 3. ||x+y|| = d(x+y,0) = d(x,-y), or $\forall x,y,z \in E$, $d(x,z) \le d(x,y) + d(y,z)$ donc $d(x,-y) \le d(x,0) + d(0,-y)$ D'où $||x+y|| \le d(x,0) + d(0,-y) \le ||x|| + ||-y|| \le ||x|| + ||y||$

 \leftarrow

Soit $\|\cdot\|$ vérifiant les trois propriétés, alors soit $d(x,y) = \|x-y\|$ et montrons que de st une distance.

- 1. $d(x,y) \ge 0$ car $||x-y|| \ge 0$ par (2). $d(x,y) = 0 \iff ||x-y|| = 0 \iff x = y$
- 2. d(x,y) = ||x y|| = ||-(x y)|| = ||y x|| = d(y,x)
- 3. $d(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-x|| \le d(x,y) + d(z,y)$

Exemple 2.

1. Dans
$$\mathbb{R}^n$$
, on définit les normes $||x||_1 = \sum_{k=1}^n |x_k|$, $||x||_2 = \sqrt{\sum_{k=1}^n |x_k|^2}$, $||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p}$ et $||x||_\infty = \max_k ||x_k||$

- 2. Dans \mathbb{R}^n muni d'un produit scalaire, $||x|| = \sqrt{\langle x, x \rangle}$
- 3. Soit A un ensemble et F une espace vectoriel normé, et $\mathcal{B}(A,F)$ les fonctions bornées de A dans F, alors $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|$ est une norme.

4. Sur
$$\mathcal{C}([0,1],\mathbb{R})$$
, $||f||_1 = \int_0^1 |f(x)|$, $||f||_2 = \sqrt{\int_0^1 |f(x)|^2} \text{ et} ||f||_{\infty} = \sup_{0 \leqslant x \leqslant 1} |f(x)|$

Définition 3. Deux normes N_1 et N_2 sont dites équivalentes s'il existe des constantes positives C_1 et C_2 telles que $\forall x \in E, C_1 N_2(x) \leq N_1(x) \leq C_2 N_2(x)$

Exemple 3. Par exemple dans \mathbb{R}^n , les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont équivalentes. En effet

$$||x||_1 = |x_1| + |x_2| \leqslant 2||x||_{\infty}$$

et $||x_i|| \ge ||x||_{\infty}$, i = 1, 2

En dimension finie, toutes les normes sont équivalentes! Cela n'est en revanche pas vraie en dimension infinie.

Figure 1: Différentes boules unités

En bleu : $\mathcal{B}_{\infty}(0,1)$ En rouge : $\mathcal{B}_{2}(0,1)$ En turquoise : $\mathcal{B}_{1}(0,1)$

1.2 Ouverts et fermés

Définition 4. Soit E un espace vectoriel normé, on appelle boule fermée de centre x et de rayon r > 0 l'ensemble $\overline{\mathcal{B}}(x,r) = \{u \in E \mid ||x-u|| \leq r\}$, et la boule ouverte de centre x et de rayon r > 0 l'ensemble $\mathcal{B}(x,r) = \{u \in E \mid ||x-u|| < r\}$.

Définition 5. Soit $X \subseteq E$

- 1. On dit que $U \subseteq X$ est un ouvert de X si $\forall x \in U, \exists r > 0 : \mathcal{B}(x,r) \cap X \subseteq U$
- 2. On dit que $F \subseteq X$ est un fermé de X si son complémentaire dans X est un ouvert de X.

Figure 2: Deux exemples d'ouverts

Remarque 2.

- 1. Un ouvert dans X n'est pas nécessairement ouvert dans E, comme montré dans le deuxième exemple de la figure ci-dessus.
- 2. Un ouvert de E sera appelé un **ouvert**, de même pour les fermés.
- 3. Toute boule ouverte est un ouvert.
- 4. Toute boule fermée est un fermé.

Preuve 2. On considère une boule ouverte $\mathcal{B}(x_0, r)$, montrons que c'est un ouvert. Soit $x \in \mathcal{B}(x_0, r)$, alors $||x - x_0|| < r$. On cherche r' tel que $\mathcal{B}(x, r') \subseteq \mathcal{B}(x_0, r)$ donc r' doit vérifier

$$||x - y|| < r' \Longrightarrow ||x_0 - y|| < r$$

Mais $||x_0 - y|| \le ||x - y|| + ||x - x_0|| < ||x - y|| + r$. Soit $\delta = r - ||x - x_0|| > 0$, on pose alors $r' = \frac{\delta}{2} > 0$, alors $||x_0 - y|| \le r' + ||x - x_0|| \le r' + r - \delta < r$

Figure 3: Construction de la boule ouverte

Proposition 2. L'intersection de deux ouverts est un ouvert et toute réunion d'ouverts est un ouvert. Preuve 3. Soient U et U' deux ouverts, montrons que $U \cap U'$ est un ouvert. Soit $x \in U \cap U'$, il existe r > 0 et r' > 0 tels que $(B)(x,r) \subseteq U$ et $\mathcal{B}(x,r') \subseteq U'$. On pose $\widetilde{r} = \min(r,r')$ et on a $\mathcal{B}(x,\widetilde{r}) \subseteq U \cap U'$

Preuve 4. Soit $(U_i)_{i\in I}$ une famille d'ouverts, montrons que $U=\bigcup U_i$ est un ouvert.

Soit $x \in U$, alors il existe $i_0 \in I$ tel que $x \in U_{i_0}$, il existe donc r tel que $\mathcal{B}(x,r) \subseteq U_{i_0}$ car U_{i_0} est ouvert, d'où $\mathcal{B}(x,r) \subseteq U$.

Proposition 3. Soit $X \subseteq E$, tout ouvert U de X s'écrit sous la forme $U = X \cap \widetilde{U}$, où \widetilde{U} est un ouvert. De même pour tout fermé F de X s'écrit $F = X \cap \widetilde{F}$ où \widetilde{F} est un fermé.

Preuve 5. Soit \widetilde{U} un ouvert de E, alors $\widetilde{U} \cap X$ est un ouvert de X par construction. Inversement soit U ouvert de X, alors $\forall x \in U, \ \exists r(x) > 0$ tel que $\mathcal{B}(x, r(x)) \cap X \subseteq U$ Soit alors $\widetilde{U} = \bigcup_{x \in U} \mathcal{B}(x, r(x))$, alors \widetilde{U} est un ouvert et $U = X \cap U$

Définition 6. Une suite à valeurs dans E est dite convergente vers $x \in E$ si pour tout $\epsilon > 0$ il existe un rang N tel que pour tout $n \ge N$ on ait $||x_n - x|| < \epsilon$.

On note $\lim_{n} x_n = x$