Improved two-regime method for spatial stochastic simulations of cellular signaling

October 3, 2013

Adrian Martinez Gomez Supervisors: Michael Klann and Heinz Koeppl

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

1. Compartment-based simulations

- Divide the space Ω_C into U compartments V_1, \ldots, V_U called voxels.
- For a given voxel ν the number of particles is denoted as N_{ν} .
- According to Gillespie , the next diffusion event in voxel ν is given by the putative time

$$t_{\nu} = t + \varepsilon_{\nu}.\tag{1}$$

$$\varepsilon$$
: exponential distributed r. n. of mean $\mu_{\varepsilon_{\nu}}=\frac{1}{\alpha(N_{\nu})}=\frac{1}{k_{\mathrm{jump}}^{\nu\to\kappa}N_{\nu}}=\frac{1}{\frac{D_{i}}{h^{2}}\cdot N_{\nu}}$

Algorithm 1 Gillespie

 $N_{\nu} = N_{\nu} - 1$ $t_{\nu} = t + \varepsilon_{\nu}$

 $N_{\kappa} = N_{\kappa} + 1$ $t_{\kappa} = t + \varepsilon_{\kappa}$ endwhile

while
$$t < t_{\mathrm{End}}$$

$$[t',
u] = exttt{getFirstDiffusionTime}() = exttt{m}$$

$$[t',
u] = \mathtt{getFirstDiffusionTime}() = \min$$

t = t'

 $[t',
u] = \mathtt{getFirstDiffusionTime}() = \min \mathrm{loc}\left([t_1, \dots, t_U]
ight)$

Require: Ω_C , t, $t_{\rm End}$, $\triangle t$, $[N_1, \ldots, N_U]$

 $\kappa = \texttt{selectNewVoxel}()$ (New voxel has to be adjacent)

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

2. Particle-based simulations

- \bullet Particle-based simulations that track every molecule on its diffusive path through the cell. \to Brownian motion
- ullet The diffusion of the j-th particle is computed as follows with the Brownian dynamics:

$$\mathbf{x}_{j}(t + \Delta t) = \mathbf{x}_{j}(t) + \Delta \mathbf{x} \cdot \boldsymbol{\xi} \tag{2}$$

 ξ : three-dimensional zero-mean Gaussian random vector of unit variance $\triangle \mathbf{x} = \sqrt{2D_j \triangle t}$: moved distance.

• The expected theoretical distribution is

The expected theoretical distribution is
$$p(\mathbf{x},t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{1}{2} \left(\frac{\mathbf{x} - \mathbf{x}_0}{\sqrt{2Dt}}\right)^2\right)$$

for a <u>delta distribution</u>, where at the beginning all the particles are located at position \mathbf{x}_0 .

(3)

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

3. Hybrid method

- Domain is split into two regions:
 - Ω_C is the Gillespie region, where voxels of size h containing number of particles $[N_1, \ldots, N_U]$ are defined.
 - Ω_M is the space where the particles move according to the Brownian dynamics.
- A key feature of this hybrid algorithm are the putative times. Some useful notation of Flegg et al. was taken.
 - $-t_C$ denotes the time for the next Gillespie C-event
 - $-t_M$ is the time until the next Particle M-event.

- Simulation: for $N_{\text{particles}} = 10000$ particles distributed with a <u>standard uniform distribution</u>, where $\Omega_C = [1.0, 31.0]$ and $\Omega_M = [31.0, 41.0]$, thus the interface is at I = 31.0.
 - Simulated from t=0 s to $t_{\rm End}=10$ s, with time intervals $\triangle t=0.01$ s.
 - Do 10 runs and average the results for better statistics.

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

4. Offset particle-based simulations

• Diffusion experiment: assume $\Omega_M = [0.0, 1.0]$ and $N_{\text{particles}} = 10000$ particles distributed with a delta distribution at different starting positions $x_0 = \{0.6, 0.7, 0.8, 0.9\}.$

Simulated from t=0 s to $t_{\rm End}=1$ s, with fixed time intervals $\Delta t=0.01$

• The exponential function

s.

$$f(t) = (x_0 - x_0^*) \cdot e^{-c_2 \cdot t} \tag{4}$$

is fitted to the offset, where c_2 is the decaying constant and $x_0^* = 0.5$ the domain center.

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

5. Improved hybrid method

- The offset gives a more precise jumping propensity, because the particles are no longer assumed to be in the center of the voxel.
- We assume the offset decays to zero with first order kinetics

$$v_{\text{offset}}(\kappa) = v_{\text{offset}}(\kappa) \cdot e^{-k_{\text{offset}} \cdot (t - t_{\kappa, \text{offset}})},$$
 (5)

where $t_{\kappa, \text{offset}}$ is the time of the last change in voxel κ .

• Actualize $t_{\kappa, \text{offset}}$ to the current time t, and the number of particles in the voxel κ : $N_{\kappa} = N_{\kappa} + 1$.

• The jump of a new particle into a voxel κ has as a consequence that the voxel offset $v_{\text{offset}}(\kappa)$ has to be actualized with the addition in a weighted manner,

 $v_{\text{offset}}(\kappa) = \frac{N_{\kappa}}{N_{\kappa} + 1} \cdot v_{\text{offset}}(\kappa) + \frac{1}{N_{\kappa} + 1} \cdot p_{\text{offset}}$

(6)

• Virtual voxel size, which takes into account the voxel offset, is defined as

$$h'(\kappa) = h - 2 \cdot v_{\text{offset}}(\kappa)$$
 (7)

for every voxel κ .

• Function createParticle(), which creates a particle if the jump is from Ω_C to Ω_M , has to be adapted. Subtle difference depending on whether the jump is to the right, in which case the formula is

(8)

(9)

 $x_{i}(t) = \kappa + h + \min(h', 1) \cdot \xi,$

 $x_i(t) = \kappa - \min(h', 1) \cdot \xi,$

where ξ is a normal distributed random number .

- Offset simulation: for $N_{\text{particles}} = 10000$ particles distributed with a standard uniform distribution, where $\Omega_C = [1.0, 31.0]$ and $\Omega_M = [31.0, 41.0]$, thus the interface is at I = 31.0.
 - Use 2 different k_{offset} : $k_{\text{offset}} = \{8.5, 2.5\}$.
 - Do 10 runs and average the results for better statistics.

• Diffusion experiment: assume $\Omega_M = [18.0, 41.0]$ and $\Omega_C = [1.0, 18.0]$ with $\mathbf{N}_{\text{particles}} = 10000$ particles distributed with a <u>delta distribution</u> at $x_0 = 21.0$.

Simulated from t=0 s to $t_{\rm End}=10$ s, with time intervals $\triangle t=0.01$ s.

- Do 10 runs and average the results for better statistics..
- \bullet Compare to normalized theoretical distribution (3).

- 1. Compartment-based simulations
- 2. Particle-based simulations
- 3. Hybrid model
- 4. Offset particle-based simulations
- 5. Improved hybrid model
- 6. Conclusion and outlook

6. Conclusion and outlook

- Definition of the offset and virtual voxel length h' helps towards a better interface interaction.
- A good selection of c_2 , and therefore of the offset decay rate constant $k_{\text{offset}} = \frac{D}{h^2} \cdot c_2$, corrects flux problems.

• Here only 1D problems. Would be interesting to test the principle on 2D and 3D.

• The concentration dent right at the interface should be smoothed in fur-

- Find an approximative function $c_2\left(t_{\rm End},\Delta t\right)$ for the decaying parameter. Find optimal solution.
- The method of Flegg et al. should be implemented for comparison.

ther projects.