Statistics 135

Chapter 3
Sample Geometry
and
Random Sampling

Chris Drake

Department of Statistics

University of California, Davis

Sample Mean, Covariance and Expectations

Recall data matrix, sample mean vector $\bar{\mathbf{x}}$ and covariance matrix $\mathbf{S_n}$

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2k} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} & \dots & x_{np} \end{pmatrix}$$

note: column 1 contains the data on variable 1, column 2 contains the data on variable 2 etc, row one contains the measurements for subject 1, row 2 contains the measurements for subject 2 etc.

$$ar{\mathbf{X}} = egin{pmatrix} ar{x}_1 \ ar{x}_2 \ dots \ ar{x}_p \end{pmatrix} \qquad \mathbf{S_n} = egin{pmatrix} s_{11} & s_{12} & \dots & s_{1p} \ s_{21} & s_{22} & \dots & s_{2p} \ dots & dots & \ddots & dots \ s_{p1} & s_{p2} & \dots & s_{pp} \end{pmatrix}$$

- assumption: the sample of observations $\mathbf{x_i}$ for i = 1, ..., n consists of n independent units with a common multivariate distribution $f(\mathbf{x_i}) = f(x_{1i}, ..., x_{pi})$; ie we assume that subjects (sampling units) are sampled independently but the measurements taken on each unit are typically correlated.
- 2 fact: $E[\bar{\mathbf{X}}] = \mu$ therefore, $\bar{\mathbf{X}}$ is unbiased for μ
- 3 fact: the covariance of \bar{X} is given by

$$Cov(\mathbf{\bar{X}}) = \frac{1}{n^2} \Big(\sum_{j=1}^n E((\mathbf{X_j} - \mu)(\mathbf{X_j} - \mu)') \Big) = \frac{1}{n} \mathbf{\Sigma}$$

- 4 an unbiased estimate of Σ is given by $\mathbf{S} = (n/(n-1))\mathbf{S_n}$, recall that in $\mathbf{S_n}$ the diagonal and off-diagonal terms were divided by n; that estimator is biased.
- 5 the generalized sample variance is defined as |S|, the determinant of S.
- 6 if the sample covariance matrix is not of full rank (p), then the generalized sample variance is zero.

Sample statistics in matrix notation

1 Let **X** be the data matrix, then

$$\bar{\mathbf{x}} = \frac{1}{n} \mathbf{X'l}$$
 $since$ $\mathbf{x'l} = \sum_{i=1}^{n} x_i$

note, the transpose of the data matrix contains the sample observations for variable x_1 in the first row, furthermore

$$\mathbf{l} \ \mathbf{\bar{x}'} = \frac{\mathbf{1}}{\mathbf{n}} \mathbf{l} \mathbf{l'X} = \begin{pmatrix} \bar{x}_1 & \bar{x}_2 & \dots & \bar{x}_p \\ \bar{x}_1 & \bar{x}_2 & \dots & \bar{x}_p \\ \vdots & \vdots & \ddots & \vdots \\ \bar{x}_1 & \bar{x}_2 & \dots & \bar{x}_p \end{pmatrix}$$

and

$$\mathbf{X} - \frac{1}{n} \mathbf{l} \mathbf{l}' \mathbf{X} = \begin{pmatrix} x_{11} - \bar{x}_1 & x_{21} - \bar{x}_2 & \dots & x_{p1} - \bar{x}_p \\ x_{21} - \bar{x}_1 & x_{22} - \bar{x}_2 & \dots & x_{p2} - \bar{x}_p \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_1 & x_{n2} - \bar{x}_2 & \dots & x_{np} - \bar{x}_p \end{pmatrix}$$

from this we get

$$\mathbf{S} = \frac{1}{n-1} (\mathbf{X} - \frac{1}{n} \mathbf{l} \mathbf{l}' \mathbf{X})' (\mathbf{X} - \frac{1}{n} \mathbf{l} \mathbf{l}' \mathbf{X}) = \frac{1}{n-1} \mathbf{X}' (\mathbf{l} - \frac{1}{n} \mathbf{l} \mathbf{l}') \mathbf{X}$$

if we let

$$\mathbf{D}^{1/2} = \begin{pmatrix} \sqrt{s_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{s_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{s_{pp}} \end{pmatrix}$$

and $\mathbf{D}^{-1/2}$ the diagonal matrix with $\sqrt{x_{ii}}$ replaced by $1/\sqrt{x_{ii}}$ and \mathbf{R} is the sample correlation matrix with diagonal elements 1 and off-diagonal elements $s_{ik}/(\sqrt{s_{ii}}\sqrt{s_{kk}})$ then we can write

$$R = D^{-1/2}SD^{-1/2}$$
 and $S = D^{1/2}RD^{1/2}$

Linear combinations of random vectors

1 **c** a random vector and $\mathbf{c}'\mathbf{X}$ a linear combination with values $\mathbf{c}'\mathbf{x_j} = c_1x_j1 + c_2x_{j2} + ... + c_nx_{jn}$ then

sample mean of
$$\mathbf{c}'\mathbf{X} = \mathbf{c}'\mathbf{\bar{x}}$$

and

sample variance of
$$\mathbf{c}'\mathbf{X} = \mathbf{c}'\mathbf{S}\mathbf{c}$$

2 if **b** is another random vector and $\mathbf{b'X}$ another linear combination, then sample mean and variance are given by $\mathbf{b'\bar{x}}$ and $\mathbf{b'Sb}$ the sample covariance between $\mathbf{b'X}$ and $\mathbf{c'X}$ is given by

$$sample \ covariance = \mathbf{b'Sc}$$