

This listing of claims will replace all prior versions, and listings, of claims in the application.

*Listing of Claims*

1. (currently amended) A compound of formula



an N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof

wherein  $-a^1=a^2-a^3=a^4-$  represents a bivalent radical of formula



wherein each hydrogen atom in the radical (a-1) may optionally be replaced by halo, C<sub>1-6</sub>alkyl, nitro, amino, hydroxy, C<sub>1-6</sub>alkyloxy, polyhaloC<sub>1-6</sub>alkyl, carboxyl, aminoC<sub>1-6</sub>alkyl, mono- or di(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxycarbonyl, hydroxyC<sub>1-6</sub>alkyl, or a radical of formula



wherein =Z is =O, =CH-C(=O)-NR<sup>5a</sup>R<sup>5b</sup>, =CH<sub>2</sub>, =CH-C<sub>1-6</sub>alkyl, =N-OH or =N-O-C<sub>1-6</sub>alkyl;

Q is a radical of formula





wherein

Alk is C<sub>1</sub>-6 alkanediyl;

$\text{Y}^1$  is a bivalent radical of formula  $-\text{NR}^2-$  or  $-\text{CH}(\text{NR}^2\text{R}^4)-$ ;

$X^1$  is NR<sup>4</sup>, S, S(=O), S(=O)<sub>2</sub>, O, CH<sub>2</sub>, C(=O), C(=CH<sub>2</sub>), CH(OH), CH(CH<sub>3</sub>), CH(OCH<sub>3</sub>), CH(SCH<sub>3</sub>), CH(NR<sup>5a</sup>R<sup>5b</sup>), CH<sub>2</sub>-NR<sup>4</sup> or NR<sup>4</sup>-CH<sub>2</sub>;

$X^2$  is a direct bond,  $\text{CH}_2$ ,  $\text{C}(=\text{O})$ ,  $\text{NR}^4$ ,  $\text{C}_{1-4}\text{alkylene-NR}^4$ , or  $\text{NR}^4\text{-C}_{1-4}\text{alkylene}$ ;

t is 2, 3, 4 or 5;

$u$  is 1, 2, 3, 4 or 5;

v is 2 or 3; and

whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by R<sup>3</sup>; with the proviso that when R<sup>3</sup> is hydroxy or C<sub>1-6</sub>alkyloxy, then R<sup>3</sup> can not replace a hydrogen atom in the  $\alpha$  position relative to a nitrogen atom;

G is a direct bond or C<sub>1-10</sub>alkanediyI optionally substituted with one, two or three substituents selected from hydroxy, C<sub>1-6</sub>alkyloxy, arylC<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkylthio, arylC<sub>1-6</sub>alkylthio, arylcarbonyl, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, C<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, arylC<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, amino, mono-or di(C<sub>1-6</sub>alkyl)amino, C<sub>1-6</sub>alkyloxycarbonylamino and aryl;

$R^1$  is a bicyclic heterocycle selected from quinolinyl, quinoxaliny, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, pyridopyridyl, naphthyridinyl,  $1H$ -imidazo[4,5- $b$ ]pyridinyl,  $3H$ -imidazo[4,5- $b$ ]pyridinyl, imidazo[1,2- $a$ ]pyridinyl, 2,3-dihydro-1,4-dioxino[2,3- $b$ ]pyridyl or a radical of formula



(c-1)



(c-2)



(c-3)



(c-4)



(c-5)



(c-6)



(c-7)



(c-8)

and said bicyclic heterocycles may optionally be substituted in either of the two cycles with 1 or where possible more substituents selected from halo, hydroxy, amino, cyano, carboxy, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkylthio, C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl, aryl, arylC<sub>1-6</sub>alkyl, arylC<sub>1-6</sub>alkyloxy, hydroxyC<sub>1-6</sub>alkyl, mono-or di(C<sub>1-6</sub>alkyl)amino, mono-or di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylcarbonylamino, C<sub>1-6</sub>alkyl-SO<sub>2</sub>-NR<sup>5c</sup>-, aryl-SO<sub>2</sub>-NR<sup>5c</sup>-, C<sub>1-6</sub>alkyloxycarbonyl, -C(=O)-NR<sup>5c</sup>R<sup>5d</sup>, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, halo(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, C<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, arylC<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>- and mono-or di(C<sub>1-6</sub>alkyl)amino(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-;

each n independently is 1, 2, 3 or 4;

each m independently is 1 or 2;

each p independently is 1 or 2;

each R<sup>2</sup> independently is hydrogen, formyl, C<sub>1-6</sub>alkylcarbonyl, Hetcarbonyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C<sub>3-7</sub>cycloalkyl substituted with N(R<sup>6</sup>)<sub>2</sub>, or C<sub>1-10</sub>alkyl substituted with N(R<sup>6</sup>)<sub>2</sub> and optionally with a second, third or fourth substituent selected from amino, hydroxy, C<sub>3-7</sub>cycloalkyl, C<sub>2-5</sub>salkanediyl (**wherein** said C<sub>2-5</sub>salkanediyl is substituted on one carbon atom of said C<sub>1-10</sub>alkyl substituted with N(R<sup>6</sup>)<sub>2</sub> to form a spiro moiety), piperidinyl, mono-or di(C<sub>1-6</sub>alkyl)amino, C<sub>1-6</sub>alkyloxycarbonylamino, aryl and aryloxy;

R<sup>3</sup> is hydrogen, hydroxy, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy, arylC<sub>1-6</sub>alkyl or arylC<sub>1-6</sub>alkyloxy;

R<sup>4</sup> is hydrogen, C<sub>1-6</sub>alkyl or arylC<sub>1-6</sub>alkyl;

$R^{5a}$ ,  $R^{5b}$ ,  $R^{5c}$  and  $R^{5d}$  each independently are hydrogen or  $C_{1-6}$ alkyl; or  
 $R^{5a}$  and  $R^{5b}$ , or  $R^{5c}$  and  $R^{5d}$  taken together form a bivalent radical of formula  
-( $CH_2$ ) $_s$ - wherein s is 4 or 5;  
 $R^6$  is hydrogen,  $C_{1-4}$ alkyl, formyl, hydroxy $C_{1-6}$ alkyl,  $C_{1-6}$ alkylcarbonyl or  
 $C_{1-6}$ alkyloxycarbonyl;  
aryl is phenyl or phenyl substituted with 1 or more substituents selected from  
halo, hydroxy,  $C_{1-6}$ alkyl, hydroxy $C_{1-6}$ alkyl, polyhalo $C_{1-6}$ alkyl, and  $C_{1-6}$ alkyloxy; and  
Het is pyridyl, pyrimidinyl, pyrazinyl, or pyridazinyl.

2. (*cancelled*)

3. (*previously presented*) A compound according to claim 1, wherein Q is a radical of formula (b-5) wherein v is 2 and  $Y^1$  is -NR<sup>2</sup>-.

4. (*previously presented*) A compound according to claim 1, wherein R<sup>2</sup> is  $C_{1-10}$ alkyl substituted with NHR<sup>6</sup>.

5. (*previously presented*) A compound according to claim 1, wherein G is a direct bond or  $C_{1-10}$ alkanediyl optionally substituted with one, two or three substituents selected from the group consisting of hydroxy,  $C_{1-6}$ alkyloxy, aryl $C_{1-6}$ alkyloxy, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-,  $C_{1-6}$ alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, and aryl $C_{1-6}$ alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-.

6. (*previously presented*) A compound wherein the compound is  
(±)-N-[1-(2-aminoethyl)-4-piperidinyl]-4-methyl-1-[1-(8-quinolinyl)ethyl]-  
*1H*-benzimidazol-2-amine monohydrate;  
(±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(2-bromo-5,6,7,8-tetrahydro-8-quinolinyl)-*1H*-benzimidazol-2-amine trihydrochloride trihydrate;  
(±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)-8-quinolinylmethyl]-4-methyl-*1H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(2-chloro-5,6,7,8-tetrahydro-5-quinoxaliny)-1*H*-benzimidazol-2-amine trihydrochloride trihydrate;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(1-methyl-1*H*-benzimidazol-4-yl)methyl]-1*H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(ethoxy-8-quinolinylmethyl)-1*H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4-methyl-1-(5,6,7,8-tetrahydro-5-quinoxaliny)-1*H*-benzimidazol-2-amine;

*N*-[1-(2-aminoethyl)-4-piperidinyl]-4-methyl-1-(8-quinolinylmethyl)-1*H*-benzimidazol-2-amine;

*N*-[1-(8-quinolinylmethyl)-1*H*-benzimidazol-2-yl]-1,3-propanediamine trihydrochloride monohydrate;

(±)-*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)-8-quinolinylmethyl]-1*H*-benzimidazol-2-amine trihydrochloride dihydrate;

(±)-*N*-[1-[1-(aminomethyl)-2-methylpropyl]-4-piperidinyl]-1-[(2-ethoxyethoxy)-8-quinolinylmethyl]-1*H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(1-isoquinolinylmethyl)-1*H*-benzimidazol-2-amine trihydrochloride trihydrate;

*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-(5,6,7,8-tetrahydro-5-quinoxaliny)-1*H*-benzimidazol-2-amine trihydrochloride trihydrate;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4-methyl-1-(8-quinolinylmethyl)-1*H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-(2-chloro-5,6,7,8-tetrahydro-5-quinoxaliny)-4-methyl-1*H*-benzimidazol-2-amine trihydrochloride trihydrate;

(±)-*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-(5,6,7,8-tetrahydro-2,3-dimethyl-5-quinoxaliny)-1*H*-benzimidazol-2-amine trihydrochloride trihydrate;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)-8-quinolinylmethyl]-1*H*-benzimidazol-2-amine;

(±)-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(3-chloro-5,6,7,8-tetrahydro-5-quinoxaliny)-1*H*-benzimidazol-2-amine trihydrochloride monohydrate;

( $\pm$ )-*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-(3-chloro-5,6,7,8-tetrahydro-5-quinoxalinyl)-4-methyl-1*H*-benzimidazol-2-amine trihydrochloride dihydrate;  
( $\pm$ )-*N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)-8-quinolinylmethyl]-4-methyl-1*H*-benzimidazol-2-amine monohydrate;  
( $\pm$ )-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4-methyl-1-[(1-methyl-1*H*-benzimidazol-4-yl)methyl]-1*H*-benzimidazol-2-amine;  
( $\pm$ )-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-(2-chloro-5,6,7,8-tetrahydro-5-quinoxalinyl)-4-methyl-1*H*-benzimidazol-2-amine;  
((1-isoquinolin-1-ylmethyl)-1*H*-benzoimidazol-2-yl)-piperidin-4-yl-amine;  
(1-(4-(1-isoquinolin-1-ylmethyl-1*H*-benzoimidazol-2-ylamino)-piperidin-1-ylmethyl)-2-methyl-propyl)-carbamic acid tert-butyl ester; or  
an *N*-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof.

7. (*previously presented*) A method of treating a respiratory syncytial viral infection, comprising the step of administering a therapeutically effective amount of a compound as claimed in any one of claims 1 and 3 to 6.
8. (*previously presented*) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as claimed in any one of claims 1 and 3 to 6.
9. (*previously presented*) A process of preparing a composition as claimed in claim 8, comprising the step of intimately mixing said carrier with said compound.
10. (*original*) An intermediate of formula



with  $R^1$ ,  $G$  and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1,  $P$  being a protective group, and  $Q_1$  being defined as  $Q$  according to claim 1 but being devoided of the  $R^2$  or  $R^6$  substituent.

11. (*original*) An intermediate of formula



with  $R^1$ ,  $G$  and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and  $(O=)Q_3$  being a carbonyl derivative of  $Q$ , said  $Q$  being defined according to claim 1, provided that it is devoided of the  $NR^2R^4$  or  $NR^2$  substituent.

12. (*original*) An intermediate of formula



with  $R^1$ ,  $Q$  and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and  $(O=G_2)$  being a carbonyl derivative of  $G$ , said  $G$  being defined according to claim 1.

13. (*previously presented*) A process of preparing a compound as claimed in claim 1, comprising at least one step selected from the group consisting of:

- a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula (III)



with R<sup>1</sup>, G, Q and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and W<sub>1</sub> being a suitable leaving group, in the presence of a suitable base and in a suitable reaction-inert solvent;

- b) deprotecting an intermediate of formula (IV)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, H-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen, and P being a protective group;

- c) deprotecting and reducing an intermediate of formula (IV-a)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, H-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen, Q<sub>1a</sub>(CH=CH) being defined as Q<sub>1</sub> provided that Q<sub>1</sub> comprises an unsaturated bond, and P being a protective group;

- d) deprotecting an intermediate of formula (V)



with  $R^1$ , G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 1, and  $H_2N-Q_2$  being defined as Q according to claim 1 provided that both  $R^6$  substituents are hydrogen or  $R^2$  and  $R^4$  are both hydrogen;

- e) deprotecting an intermediate of formula (VI)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and H<sub>2</sub>N-Q<sub>2</sub> being defined as Q according to claim 1 provided that both R<sup>6</sup> substituents are hydrogen or R<sup>2</sup> and R<sup>4</sup> are both hydrogen, and P being a protective group;

- f) deprotecting an intermediate of formula (VII) or (VIII)



with  $\text{R}^1$ ,  $\text{G}$ , and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1,  $\text{H}-\text{Q}_1'(\text{OH})$  being defined as  $\text{Q}$  according to claim 1 provided that  $\text{R}^2$  or at least one  $\text{R}^6$  substituent is hydrogen and provided that  $\text{Q}$  comprises a hydroxy moiety,  $\text{H}_2\text{N}-\text{Q}_2'(\text{OH})$  being defined as  $\text{Q}$  according to claim 1 provided that both  $\text{R}^6$  substituents are hydrogen or  $\text{R}^2$  and  $\text{R}^4$  are both hydrogen and provided that  $\text{Q}$  comprises a hydroxy moiety, and  $\text{P}$  being a protective group;

- g) amination of an intermediate of formula (IX)



with  $\text{R}^1$ ,  $\text{G}$ , and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and  $\text{H}_2\text{N}-\text{Q}_3\text{H}$  being defined as  $\text{Q}$  according to claim 1 provided that both  $\text{R}^6$  substituents are hydrogen or  $\text{R}^2$  and  $\text{R}^4$  are both hydrogen, and the carbon adjacent to the nitrogen carrying the  $\text{R}^6$ , or  $\text{R}^2$  and  $\text{R}^4$  substituents contains at least one hydrogen, in the presence of a suitable amination reagent;

- h) reducing an intermediate of formula (X)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and H<sub>2</sub>N-CH<sub>2</sub>-Q<sub>4</sub> being defined as Q according to claim 1 provided that Q comprises a -CH<sub>2</sub>-NH<sub>2</sub> moiety, in the presence of a suitable reducing agent;

- i) reducing an intermediate of formula (X-a)



with G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, H<sub>2</sub>N-CH<sub>2</sub>-Q<sub>4</sub> being defined as Q according to claim 1 provided that Q comprises a -CH<sub>2</sub>-NH<sub>2</sub> moiety, and R<sup>1'</sup> being defined as R<sup>1</sup> according to claim 1 provided that it comprises at least one substituent, in the presence of a suitable reducing agent and suitable solvent;

- j) amination of an intermediate of formula (XI)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and H<sub>2</sub>N-CH<sub>2</sub>-CHOH-

- $\text{CH}_2\text{-Q}_4$ , being defined as Q according to claim 1 provided that Q comprises a  $\text{CH}_2\text{-CHOH-CH}_2\text{-NH}_2$  moiety, in the presence of a suitable amination reagent;
- k) reacting an intermediate of formula (XII) with formic acid, formamide and ammonia



- with  $\text{R}^1$ , G, and  $-\text{a}^1=\text{a}^2=\text{a}^3=\text{a}^4$  defined as in claim 1, and  $\text{H-C}(=\text{O})-\text{Q}_1$  being defined as Q according to claim 1 provided that  $\text{R}^2$  or at least one  $\text{R}^6$  substituent is formyl;
- l) amination of an intermediate of formula (XIII) by reaction with an intermediate of formula (XIV)



- with  $\text{R}^1$ , G, and  $-\text{a}^1=\text{a}^2=\text{a}^3=\text{a}^4$  defined as in claim 1, and  $\text{R}^{2a}\text{-NH-HQ}_5$  being defined as Q according to claim 1 provided that  $\text{R}^2$  is other than hydrogen and is represented by  $\text{R}^{2a}$ ,  $\text{R}^4$  is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the  $\text{R}^2$  and  $\text{R}^4$  substituents, carries also at least one hydrogen atom, in the presence of a suitable reducing agent;
- m) reducing an intermediate of formula (XV)



with  $R^1$ ,  $G$ , and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and  $(R^6)_2N\text{-}[(C_{1-9}\text{alkyl})CH_2OH]\text{-NH-HQ}_5$  being defined as Q according to claim 1 provided that  $R^2$  is other than hydrogen and is represented by  $C_{1-10}\text{alkyl}$  substituted with  $N(R_6)_2$  and with hydroxy, and the carbon atom carrying the hydroxy, carries also two hydrogen atoms, and provided that  $R^4$  is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the  $R^2$  and  $R^4$  substituents, carries also at least one hydrogen atom, with a suitable reducing agent;

- n) deprotecting an intermediate of formula (XVI), (XVI-a) or (XVI-b)



with G, and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and H-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen, and R<sup>1a</sup>-(A-O-H)<sub>w</sub>, R<sup>1a'</sup>-(A-O-H)<sub>2</sub> and R<sup>1a''</sup>-(A-O-H)<sub>3</sub> being defined as R<sup>1</sup> according to claim 1 provided that R<sup>1</sup> is substituted with hydroxy, hydroxyC<sub>1-6</sub>alkyl, or HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, with w being an integer from 1 to 4 and P or P<sub>1</sub> being a suitable protecting group, with a suitable acid;

- o) amination of an intermediate of formula (XVII)



with R<sup>1</sup>, G,  $-a^1=a^2-a^3=a^4-$ , Alk, X<sup>1</sup> R<sup>2</sup> and R<sup>4</sup> defined as in claim 1, in the presence of a suitable amination agent;

- p) amination of an intermediate of formula (XIX)



with R<sup>1</sup>, G, and  $-a^1=a^2-a^3=a^4-$  defined as in claim 1, and Q<sub>6</sub>N-CH<sub>2</sub>-C<sub>1-3</sub>alkyl-NR<sup>4</sup> being defined as Q according to claim 1 provided that in the definition of Q, X<sup>2</sup> is C<sub>2-4</sub>alkyl-NR<sup>4</sup>, in the presence of a suitable amination agent;

- q) deprotecting an intermediate of formula (XXI)



with R<sup>1</sup>, Q, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and HO-G<sub>1</sub> being defined as G according to claim 1 provided that G is substituted with hydroxy or HO-(CH<sub>2</sub>CH<sub>2</sub>O-)<sub>n</sub>; and

- r) reducing an intermediate of formula (XXII)



with  $R^1$ ,  $Q$ , and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 1, and  $H-G_2-OH$  being defined as  $G$  according to claim 1 provided that  $G$  is substituted with hydroxy and the carbon atom carrying the hydroxy substituent carries also at least one hydrogen, in the presence of a suitable reducing agent.

**14. (*cancelled*)**

**15. (cancelled)**

16. *(previously presented)* The process of claim 13, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or *N*-oxide forms thereof, into a therapeutically active non-toxic acid addition salt by treatment with an acid.

17. *(previously presented)* The process of claim 13, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or *N*-oxide forms thereof, into a therapeutically active non-toxic base addition salt by treatment with alkali.

18. (*previously presented*) The process of claim 13, further comprising the step of converting the acid addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or *N*-oxide forms thereof, into the free base by treatment with alkali.
19. (*previously presented*) The process of claim 13, further comprising the step of converting the base addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or *N*-oxide forms thereof, into the free acid by treatment with acid.