Исследование методов принятия решения при организации спортивных соревнований

Нефедова Марина Михайловна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н. Сушков Ю.А. Рецензент: асп. Кушербаева В.Т.

Санкт-Петербург 2009г

Постановка задачи

- Проблема шкал:
 - статистическое исследование шкал метода анализа иерархий (МАИ) и метода расстановки приоритетов (МРП);
 - выявление закономерностей параметров шкал, влияющих на результаты этих методов.
- Проблема транзитивности:
 - исследование влияния структурной транзитивности на получаемые в методах результаты;
 - ограничения на параметры методов, влияющие на непротиворечивость исходных данных.
- Практический пример:
 - исследование круговой и кубковой систем проведения соревнований.

Задача о лидере

Пусть $A=(a^i_j)$ — матрица смежности р-графа G с вершинами $x_1,x_2,...,x_n.$

 $p^k(i)$ — итерированная сила порядка i альтернативы x_k . $p^k(0) = 1$ для $\forall \ k = 1..n$.

 p^k может быть вычислена итерационно по следующей формуле

$$p^{k}(t) = \sum_{m=1}^{n} a_{km} p^{m}(t-1).$$

Определим силу альтернативы x_j как предел при $t \to \infty$ отношения

$$\pi^{j}(t) = \frac{p^{j}(t)}{p^{1}(t) + p^{2}(t) + \ldots + p^{n}(t)}.$$

Основные методы

```
Метод анализа иерархий (МАИ):
\mathbf{a}_{j}^{i} = \left\{ egin{array}{l} x \; , \; \mbox{если} \; i\text{-} \mathrm{я} \; \mbox{альтернатива предпочтительнее} \; j\text{-} \mbox{й} \ 1, \; \mbox{если} \; \mbox{альтернативы равнозначны} \ 1/x, \; \mbox{если} \; i\text{-} \mathrm{я} \; \mbox{альтернатива} \; \mbox{уступает} \; j\text{-} \mbox{й}, \end{array} 
ight.
  где x любое натуральное число больше единицы.
```

Метод расстановки приоритетов (МРП): $A=1\pm x$ $\mathbf{a}_{j}^{i} = \left\{egin{array}{l} 1+x \ , \ \mathrm{ec}$ ли i-я альтернатива предпочтительнее j-й 1, если альтернативы равнозначны 1-x, если i-я альтернатива уступает j-й, где x любое рациональное число в интервале $0 < x \le 1$.

Метод расстановки приоритетов

Утверждение

```
Пусть A – матрица смежности, такая что,
если a_{ij}=c+x, то a_{ji}=c-x для \forall i\neq j,
a_{ii} = c для \forall i, i,j=1..n.
Тогда вектор сил альтернатив \pi(t) = const для \forall c, x,
удовлетворяющих условию \frac{c}{m} = const.
```

Проблема транзитивности

Определение

Упорядочение $b_1 \geq b_2 \geq ... \geq b_n$ удовлетворяет условию структурной транзитивности, если для $\forall i, j, k \in \{1,..,n\}$ из того, что $b_i \geq b_j$ и $b_j \geq b_k$ следует, что $b_i \geq b_k$.

Лемма

Пусть:

- $b_1 \geq b_2 \geq ... \geq b_n$ упорядочение альтернатив, удовлетворяющее условию структурной транзитивности;
- B соответствующая ему матрица смежности;
- большей качественной степени превосходства соответствует большее численное значение шкалы.

Тогда результат решения задачи о лидере совпадет с упорядочением $b_1 \geq b_2 \geq ... \geq b_n$.

Проблема транзитивности

Лемма

Пусть:

- $b_1 \ge b_2 \ge ... \ge b_n$ упорядочение альтернатив, удовлетворяющее условию структурной транзитивности;
- A соответствующая ему матрица смежности;
- единая численная шкала не обязательно существует, т.е. каждой альтернативе можно присваивать свою степень превосходства одного элемента над другим, независимо от остальных элементов;

•

$$\sum_{j=1}^{n} a_{b_i j} \ge \sum_{j=1}^{n} a_{b_{i+1} j} \quad \forall i \in \{1, ..., n-2\}.$$

Тогда результат решения задачи о лидере совпадет с упорядочением $b_1 \geq b_2 \geq ... \geq b_n$.

Системы проведения соревнований

Круговая система:

- каждый участник турнира играет с каждым;
- очки, набранные участниками в течение всего турнира, суммируются;
- места распределяются по убыванию количества набранных очков.

Кубковая система:

- участник выбывает из турнира после первого же проигрыша;
- победителем становится участник, выигравший финальный круг, его последний соперник получает второе место.

Системы проведения соревнований

```
Пусть b_1, ..., b_n — участники соревнований.
Рассмотрим матрицу A, такую что
P(b_i выиграет у b_i) = p_{ij};
P(b_i \text{ проиграет } b_i) = p_{ii};
P(b_i \text{ сыграет вничью с } b_i) = 1 - p_{ii} - p_{ii}.
0 \le p_{ij} \le 1 для \forall i \ne j, i, j \in \{1, ..., n-2\}
A' - турнирная матрица, разыгранная по матрице A.
\mathbf{a}_{ij}^{'} = \left\{ egin{array}{l} 0 , если i-й участник проиграл j-му 1, если участники сыграли вничью 2, если i-й участник выиграл j-го
```

Совпадение мест в результирующих упорядочениях по круговой и кубковой системам проведения соревнований

Рис.1 Произвольная расстановка участников в пары.

Рис.2 Расстановка участников в пары по принципу «сильный-слабый».

Сравнение круговой и кубковой систем проведения соревнований с «методом лидера»

Рис.3 Круговая система и «метод лидера».

Рис.4 Кубковая система при расстановке участников в пары по принципу «сильный-слабый» и «метод лидера».

Сравнение круговой и кубковой систем проведения соревнований с «методом лидера»

метод	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3}$	$\overline{x_4}$	$\overline{x_5}$	$\overline{x_6}$	$\overline{x_7}$	$\overline{x_8}$
лидер	1.06	5.20	4.50	3.86	4.55	3.29	5.73	7.77
круговой	1.05	5.03	4.20	3.94	4.46	3.33	6.00	7.95
кубковый	1.84	5.26	4.41	4.09	4.51	3.37	5.63	6.85

 $\overline{x_n}$ — среднее место, занимаемое n-м участником.

метод	$\overline{\sigma_1^2}$	$\overline{\sigma_2^2}$	$\overline{\sigma_3^2}$	$\overline{\sigma_4^2}$	$\overline{\sigma_5^2}$	$\overline{\sigma_6^2}$	$\overline{\sigma_7^2}$	$\overline{\sigma_8^2}$
лидер	0.06	2.63	2.85	2.59	2.91	2.14	2.02	0.36
круговой	0.05	2.52	2.70	2.55	2.63	1.98	1.34	0.05
кубковый	2.33	3.98	3.77	4.15	3.59	3.08	2.92	2.26

Рекомендации по выбору системы проведения соревнования

Кубковая система:

- сильно зависит от разбиения участников на пары;
- наилучшая расстановка участников по принципу "сильный-слабый".

Круговая система:

- сумма набранных очков учитывает только результаты встреч конкретного участника, независимо от результатов игр его соперников;
- является упрощенным «методом лидера».

«Метод лидера»:

• наиболее полно учитывает результаты игр всех участников соревнования.

Перспективы

- обоснование существующих способов численного оценивания нетранзитивности;
- влияния нетранзитивности на результаты методов принятия решений;
- исследование более общей задачи о выборе системы проведения соревнований, исходя из денежных средств организаторов, времени, отведенного на проведения турнира и количества участников.