Math 31BH: Final Exam

- 1. [10 points] Let **V** and **W** be Euclidean spaces, and let $f: \mathbf{V} \to \mathbf{W}$ be a function such that $||f(\mathbf{v})|| \le C||\mathbf{v}||$ for all $\mathbf{v} \in \mathbf{V}$, where C is a positive constant. Give a delta/epsilon proof that f is continuous.
- 2. [10 points] Find a parametric equation for the tangent line to the curve $f(t) = (\cos t, \sin t)$ at $t = \frac{\pi}{3}$.
- 3. [10 points] A particle is moving on a helix H in \mathbb{R}^3 such that its position at time t is $f(t) = (at, b\cos\omega t, b\sin\omega t)$, where $b, \omega > 0$ are positive constants.
 - (a) Calculate the velocity vector of the particle at time t.
 - (b) Calculate the speed of the particle at time t.
 - (c) Calculate the acceleration vector at time t and show that it is orthogonal to the velocity vector at time t.
- 4. [10 points] Let $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ be differentiable functions, and define $f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}$ by $f_1(x, y) = g_1(x + y)$ and $f_2(x, y) = g_2(x y)$. Prove that the gradient of f_1 is orthogonal to the gradient of f_2 at every point of \mathbb{R}^2 .
- 5. [10 points] Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{v})^a$, where $a \in \mathbb{R}$ is a constant. Show that $\nabla f(\mathbf{v}) = 2a(\mathbf{v} \cdot \mathbf{v})^{a-1}\mathbf{v}$.
- 6. [10 points] Let $f(x,y) = x^2 + xy$, and let $S \subset \mathbb{R}^2$ be the convex hull of the points (0,0),(1,0),(1,1),(0,1).
 - (a) Prove that $f(x,y) = x^3 + xy$ has a maximum value on S.
 - (b) Calculate the maximum of f on S.
- 7. [10 points] Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x,y) = (e^x \cos y, e^x \sin y)$.
 - (a) Prove that f is not an invertible function on \mathbb{R}^2 .
 - (b) Calculate the Jacobian matrix $J_f(x,y)$.
 - (c) Prove that f is locally invertible at any point $\mathbf{v} \in \mathbb{R}^2$.