Mathematik I Gruppen

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Ringe, Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme
	9	26.05.		Lineare Gleichungssysteme
	10	01.06.	Pfingstmontag	
	11	08.06.		Matrizen
	12	09.06.		Lineare Abbildungen

Lernziele

- Begriffe bzw. Aussagen kennen:
 - ✓ Gruppe, Untergruppe, Ordnung
- Beispiele von Gruppen kennen
- Nachweisen können, dass es sich bei einem Beispiel um eine Gruppe handelt
- Untergruppen einer Gruppe, Ordnung einer Gruppe bzw. eines Elements bestimmen können
- Inverse Elemente ausrechnen können

Wiederholungsfragen...

1.
$$ggT(186,66) = ?$$

2. In welcher Zeile ist der erste Fehler passiert?

3. In welcher Restklasse liegen 17, 22 und -13?

i	a	b	\boldsymbol{x}	y	k
0	186	66	1	0	_
1	66	54	0	1	2
2	54	12	1	-2	1
3	12	6	-1	-1	4
4	6	0	5	-6	2

4. Wieviele Äquivalenzklassen hat die folgende Äquivalenzrelation?

$$a \equiv_7 b :\Leftrightarrow \exists k \in \mathbb{Z} \colon a-b = 7k$$

Wiederholung

Frage 2

$$99T(186,66) = 6$$

$$6 = 5 \cdot 186 + (-14) \cdot 66$$

$$x_{i+1} = x_{i-1} - k_i \cdot x_i$$

 $y_{i+1} = y_{i-1} - k_i \cdot y_i$

$$186 = 2.66 + 54$$

$$x = 1 - 0.2$$

$$y = 0 - 1.2$$

$$66 = 1.54 + 12$$

$$x = 0 - 1.1$$

$$y = 1 - (-2).1$$

$$54 = 4.12 + 6$$

$$x = 1 - 4.(-1)$$

$$y = -2 - 3.4 = -14$$

$$12 = 2.6 + 0$$

Wiederholung

Rest Washen

Aquivalent relation a = 7b : $\Rightarrow b = 7k \in \mathbb{Z}$: a - b = 7k($\Rightarrow b = 6 = 7k$ ($\Rightarrow b = 6 = 7k$ te flexiv? fix $a \in \mathbb{Z}$: $a - a = 0 = 7 \cdot 0$, also a = 7aSymmetrisel? fix $a \in \mathbb{Z}$: a - b = 7k.

Also ist $b - a = 7 \cdot (-k)$. Da $(-7k) \in \mathbb{Z}$, ist b = 6 = 7k.

tousitiv? for $a,b,c \in \mathbb{Z}$ mit $a=_{7}b$ and $b=_{7}c$ of \mathbb{Z} : $\exists k,k': a-b=7k$ and b-c=7k!Gleichungen addiesen: a-b+b-c=a-c=7(k+k')Mathematik I-Prof. Dr. Doris Bohnet-Vorlesung 6 also $a=_{7}c$

Restklassen - Einführung

Äquivalent klamen
$$[0] = \{..., -14, -1, 0, 7, 14, ...\}$$

$$\alpha \in \mathbb{Z}: \quad \alpha = 0 = 7k$$

$$\alpha = 7k$$

$$[1] = \{..., -13, -6, 1, 8, 15, ...\}$$

$$\alpha \in \mathbb{Z}: \quad \alpha = 1 = 7k \implies \alpha = 1 + 7k$$

$$[2], [3], [4], [5], [6], [7] = [0]$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

$$\alpha = 1 \implies \alpha^2 - b^2 = \alpha - b$$

03.05.2020

Restklassen - Definition

Zu jedem $n \in \mathbb{N}$ können wir die folgende Äquivalenzrelation auf der Menge der ganzen Zahlen \mathbb{Z} definieren:

$$a \equiv_n b :\Leftrightarrow \exists k \in \mathbb{Z} : a - b = \mathbf{Z}k \ (\Leftrightarrow a - b = 0 \ mod \ \mathbf{Z} \Leftrightarrow a = b \ mod \ \mathbf{Z})$$

Diese Äquivalenzrelation besitzt näquivalenzklassen:

$$[0] = \{a \in \mathbb{Z} | \ a \equiv 0 \ mod \ n \ \}, [1] = \{a \in \mathbb{Z} | \ a \equiv 1 \ mod \ n \ \}, \dots, [n-1] = \{a \in \mathbb{Z} | \ a \equiv (\underline{n-1}) \ mod \ n \ \}$$

Wir nennen diese Äquivalenzklassen Restklassen und schreiben kurz für die Menge der Äquivalenzklassen:

$$\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}, |\mathbb{Z}_n| = n$$

Beispiel:

Es gibt nur eine Restklasse von 1, deswegen ist $\mathbb{Z}_1=\{[0]\}=\mathbb{Z}_{\mathscr{A}}$

Es gibt zwei Restklassen von 2, deswegen ist $\mathbb{Z}_2 = \{[0], [1]\}$. Die Restklassen enthalten die geraden bzw. ungeraden Zahlen.

Modulorechnung - Beispiele

$$(38 + 22) \mod 9$$

= $38 \mod 9 + 22 \mod 9 = 2 \mod 9 + 4 \mod 9$
= $6 \mod 9$

$$(101.234) \mod 5 = (101 \mod 5)(234 \mod 5)$$

$$= (101 \mod 5)(4 \mod 5)$$

$$= 1.4 \mod 5 = 4 \mod 5$$

$$(38 + 22.17)$$
 mod $4 = 38$ mod $4 + 22$ mod $4 \cdot 17$ mod 4
 $= 2$ mod $4 \cdot 17$ mod $4 \cdot 17$

03.05.2020

Modulorechnung (Rechnen mit Restklassen)

Seien $n_1 \equiv a \mod m$, $n_2 \equiv b \mod m$.

Addition:

$$(n_1+n_2)$$
 mod $m = (a+b)$ mod m

Multiplikation:

$$(n_1 \cdot n_2) mod \ m = (a \cdot b) \ mod \ m$$

Teilbarkeitsregeln

187 1782 durch 3 teilbar?

$$1782 \mod 3 = (1 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10 + 2) \mod 3$$

$$= (1 \cdot 10^3 \mod 3 + 7 \cdot 10^2 \mod 3 + 8 \cdot 10 \mod 3 + 2 \mod 3)$$

$$= (1 \cdot 10^3 \mod 3 + 7 \cdot 10^2 \mod 3 + 8 \cdot 10 \mod 3)$$

$$NR: 10 \mod 3 = 1 \mod 3$$

 $10^2 \mod 3 = 1 \mod 3$
 $10^k \mod 3 = 1 \mod 3$

$$= (1+7+8+2) \mod 3$$

Wir farsen alle La \ Zn Fusammen, die teilerfremd zu n E / sind =

BSP:

$$\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\} \in \text{alle ResHillarssen} = \mathbb{Z}_{7}$$

$$\mathbb{Z}_{8}^{*} = \{1, 3, 5, 7\}$$
 ~ \mathbb{P} $\mathbb{P}(8) = |\mathbb{Z}_{8}^{*}| = 4$ $99^{\frac{1}{2}}(6, 8) = 2$ Eulersche 9 -Funktion

$$\varphi(8) = |Z_8^*| = 4$$

$$\varphi(7) = |Z_7^*| = 6$$

Anwendung: Prüfziffern

Eine ISBN-Nummer besteht aus 13 Ziffern, die letzte Ziffer ist eine Prüfziffer. Die Prüfziffer berechnet sich aus der Modulorechnung wie folgt:

ISBN: $a_1 a_2 \dots a_9$

Prüfziffer: Man wählt die Prüfziffer a_{13} , so dass

$$(1 \cdot a_1 + 3 \cdot a_2 + 1 \cdot a_3 + \dots + 3 \cdot a_{12} + 1 \cdot a_{13}) \mod 10 = 0$$

Anwendung: Prüfziffern

Hier ist ein Tippfehler passiert. Berechnen Sie die Prüfziffer für die falsche ISBN

979-3-540-89106-2

Berechnen Sie die Prüfziffer der folgenden ISBN, bei der zwei Ziffern vertauscht wurden:

973-8-540-89106-2

Eulersche Phi-Funktion

Wir bezeichnen mit

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \setminus \{0\} | ggT(a, n) = 1 \}$$

die Menge aller zu n teilerfremden Zahlen und mit

$$\phi(n) = |\mathbb{Z}_n^*|$$

die Anzahl der zu *n* teilerfremden Zahlen.

Eulersche phi-Funktion

Euler Phi-Funktion - Aufgabe

Berechnen Sie

- 1. $\phi(256)$
- 2. $\phi(19)$
- 3. $\phi(57)$