Содержание

1	Базовые определения	2
2	Вторая теорема о π - и λ -системах. Следствия из неё.	3

1 Базовые определения

Определение 1.1. Система ${\mathcal F}$ подмножеств Ω называется алгеброй, если

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F}$, to $\overline{A} := (\Omega \setminus A) \in \mathcal{F}$
- 3. $A, B \in \mathcal{F}$, to $A \cap B \in \mathcal{F}$

Определение 1.2. Система $\mathcal F$ подмножеств Ω называется σ -алгеброй, если

- 1. \mathcal{F} алгебра
- 2. $\forall \{A_n, n \in \mathbb{N}\}, A_n \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Определение 1.3. P называется вероятностной мерой на (Ω, \mathcal{F}) , если $P: \mathcal{F} \to [0, 1]$, удовлетворяющая свойствам:

- 1. $P(\Omega) = 1$
- 2. Если $\{A_n, n \in \mathbb{N}\}$, то

$$P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Определение 1.4. Вероятностное пространство – это тройка (Ω, \mathcal{F}, P) , где

- Ω множество элементарных исходов
- $\mathcal{F}-\sigma$ -алгебра подмножеств Ω , элементы \mathcal{F} называются событиями
- P вероятностная мера на измеримом пространстве (Ω, \mathcal{F})

Определение 1.5. Система \mathcal{M} подмножеств в Ω называется π -системой, если из того, что $A, B \in \mathcal{M}$ следует, что $A \cap B \in \mathcal{M}$

Определение 1.6. Система \mathcal{L} подмножеств в Ω называется λ -системой, если

- 1. $\Omega \in \mathcal{L}$
- 2. $(A, B \in \mathcal{L}; A \subset B) \Rightarrow B \setminus A \in \mathcal{L}$
- 3. $(A_n \uparrow A; \forall n A_n \in \mathcal{L}) \Rightarrow A \in \mathcal{L}$

Теорема 1.1. Первая теорема о π - λ -системах

 $Cucmema~\mathcal{F}~noдмножеств~\Omega~является~\sigma$ -алгеброй $\Leftrightarrow~oнa~является~\pi$ -системой и λ -системой.

 \Leftarrow Проверим сначала, что \mathcal{F} – алгебра. Свойства 1), 2) уже есть. По свойству 2) λ -системы $\overline{A} = \Omega \setminus A \in \mathcal{F}$, если $A \in \mathcal{F}$. Значит \mathcal{F} – алгебра.

Пусть $\{A_n, n \in \mathbb{N}\}, \forall n \ A_n \in \mathcal{F}, \forall i \neq j \ A_i \cap A_j = \emptyset$. Рассмотрим $B_n = \bigsqcup_{m=1}^n A_m \in \mathcal{F}$. Тогда $B_n \subset B_{n+1}$ и $\bigcup_{n=1}^{\infty} B_n = \bigsqcup_{n=1}^{\infty} A_n \Rightarrow$ по 3) свойству λ -системы: $B_n \uparrow \bigsqcup_{n=1}^{\infty} A_n \in \mathcal{F}$. \square

Лемма 1.1. Пусть \mathcal{M} – система подмножеств Ω . Тогда существует минимальная (по включению) σ -алгебра (алгебра, π -система, λ -система), обозначаемая $\sigma(\mathcal{M})$ ($\lambda(\mathcal{M}), \pi(\mathcal{M}), \lambda(\mathcal{M})$), содержащая \mathcal{M} .

Пример. 1. Если $\Omega = \mathbb{R}$, то борелевской σ -алгеброй на \mathbb{R} называется наименьшая σ -алгебра, содержащая все интервалы

$$\mathcal{B}(\mathbb{R}) = \sigma((a; b), a < b)$$

2. Если $\Omega = \mathbb{R}^n, n > 1$.

Борелевской σ -алгеброй в \mathbb{R}^n называется минимальная σ -алгебра, содержащая множества вида $B_1 \times \cdots \times B_n, B_i \in \mathcal{B}(\mathbb{R})$, то есть

$$\mathcal{B}(\mathbb{R}^n) = \sigma(B_1 \times \cdots \times B_n : B_i \in \mathcal{B}(\mathbb{R}))$$

3. Если $\Omega = \mathbb{R}^{\infty}$, то есть Ω содержит все счётные последовательности вещественных чисел.

Для $n \in \mathbb{N}$ и $B_n \in \mathcal{B}(\mathbb{R}^n)$ введём циллиндр:

$$F_n(B_n) = \{ \vec{x} \in \mathbb{R}^\infty : (x_1, \cdots, x_n) \in B_n \}$$

Тогда минимальная σ -алгеьра, содержащая все циллиндры называется борелевской в \mathbb{R}^{∞} , то есть

$$\mathcal{B}(\mathbb{R}^{\infty}) = \sigma(F_n(B_n) : n \in \mathbb{N}, B_n \in \mathcal{B}(\mathbb{R}^n))$$

2 Вторая теорема о π - и λ -системах. Следствия из неё.

Теорема 2.1. Вторая теорема о π - λ -системах.

Если \mathcal{M} – это π -система подмножеств в Ω , то $\sigma(\mathcal{M}) = \lambda(\mathcal{M})$

Доказательство. Заметим, что $\sigma(\mathcal{M}) - \lambda$ -система, содержащая $\mathcal{M} \Rightarrow \lambda(\mathcal{M}) \subset \sigma(\mathcal{M})$.

Проверим, что $\lambda(\mathcal{M})$ – это σ -алгебра. Раз $\lambda(\mathcal{M})$ – это λ -система, то по (1.1) достаточно проверить, что $\lambda(\mathcal{M})$ – это π -система.

Рассмотрим $\mathcal{M}_1 = \{B \in \lambda(\mathcal{M}) : \forall A \in \mathcal{M}, A \cap B \in \lambda(\mathcal{M})\}$. Заметим, что $\mathcal{M} \subset \mathcal{M}_1$. Проверим, что \mathcal{M}_1 – это λ -система:

- 1. $\Omega \in \mathcal{M}_1$ очевидно
- 2. Пусть $B, C \in \mathcal{M}_1, C \subset B$, пусть $A \in \mathcal{M}$. Заметим, что $B \setminus C \in \lambda(\mathcal{M})$ и

$$(B \setminus C) \cap A = \stackrel{\in \lambda(\mathcal{M})}{(B \cap A)} \setminus \stackrel{\in \lambda(\mathcal{M})}{(C \cap A)}$$

Значит по второму свойству λ -систем $(B \setminus C) \cap A \in \lambda(\mathcal{M})$

3. Пусть $B_n \uparrow B, B_n \in \mathcal{M}_1, A \in \mathcal{M} \Rightarrow$

$$B_n \cap A \uparrow B \cap A$$

Тогда по третьем свойству λ -систем $B \cap A \in \lambda(\mathcal{M})$. Но $B_n \in \lambda(\mathcal{M}) \Rightarrow$ по третьему свойству λ -системы получаем, что $B \in \lambda(\mathcal{M}) \Rightarrow B \in \mathcal{M}_1$.

По условию $\mathcal{M} \subset \mathcal{M}_1 \Rightarrow$ в силу минимальности $\lambda(\mathcal{M}) \subset \mathcal{M}_1$. По построению $\mathcal{M}_1 \subset \lambda(\mathcal{M}) \Rightarrow \lambda(\mathcal{M}) = \mathcal{M}_1$, то есть $\forall B \in \lambda(\mathcal{M}) \ \forall A \in \mathcal{M} : A \cap B \in \lambda(\mathcal{M})$.

Далее рассмотрим $\mathcal{M}_2 = \{B \in \lambda(\mathcal{M}) : \forall A \in \lambda(\mathcal{M}) \ A \cap B \in \lambda(\mathcal{M})\}$. В силу доказанного $\mathcal{M} \subset \mathcal{M}_2$. Совершенно аналогично с \mathcal{M}_1 проверяем, что \mathcal{M}_2 – это λ -система. Тогда $\lambda(\mathcal{M}) \subset \mathcal{M}_2$. По построению $\mathcal{M}_2 \subset \lambda(\mathcal{M}) \Rightarrow \lambda(\mathcal{M}) = \mathcal{M}_2 \Rightarrow \lambda(\mathcal{M})$ – это π -система.

Следствие. Пусть \mathcal{M} – это π -система на Ω , и \mathcal{L} – это λ -система на Ω и $\mathcal{M} \subset \mathcal{L}$. Тогда $\lambda(\mathcal{M}) \subset \mathcal{L}$