

# Instalações Elétricas 1

Stéfani Vanussi Silva de Melo stefani.melo@ufes.br

#### Quadro de fornecimento

A Escelsa, em seu fornecimento, classifica a unidade consumidora da seguinte maneira:

Quadro 1- Categorias de Fornecimento. [NOR-TEC-01]

| Categoria de fornecimento | Carga                                                                                                | Ligação         | Fornecimento a:                     |
|---------------------------|------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|
| I                         | Uma unidade consumidora com carga total<br>instalada até 9.000W                                      | Monofá-<br>sica | 2 fios                              |
| II                        | Uma unidade consumidora com carga total<br>Instalada superior a 9.000W e até 15.000W                 | bifásica        | 3 fios                              |
| III                       | Uma unidade consumidora com carga total<br>instalada superior a 15.000W e até 75.000W                | trifásica       | 4 fios                              |
| IV                        | Uma unidade consumidora com carga total<br>instalada superior a 75kW e demanda máxima<br>até 2.500kW | trifásica       | Através de<br>Subestação Particular |

#### Quadro de fornecimento



Quadro 1- Categorias de Fornecimento. [NOR-TEC-01]

| Categoria de fornecimento | Carga                                                                                                                     | Ligação   | Fornecimento a:                                 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|
| V                         | Instalação com mais de uma unidade consumidora com carga total instalada:  Residencial: até 600 kW  Comercial: até 250 kW | trifásica | Direta da Rede de<br>Distribuição<br>Secundária |
| VI                        | Instalação com mais de uma unidade consumidora com carga máxima maior que o indicado na categoria V.                      | trifásica | Através de Câmara de transformação              |
| VII                       | Instalação com mais de uma unidade<br>consumidora com carga Superior a 750 kW                                             | trifásica | Através de Câmara de<br>transformação           |

#### Fornecimento de energia elétrica

- Existem dois tipos de circuitos elétricos: de distribuição e terminais. O circuito de distribuição liga o medidor do padrão de entrada ao quadro de distribuição que deve atender aos requisitos:
  - Visível, fácil acesso, desobistruído, limpo e ventilado;
  - Próximo ao padrão de entrada para reduzir o comprimeto dos condutores do circuito de distribuição.





#### Fornecimento de energia elétrica





#### Quadro de distribuição

- OWNES OUNES OUNES OF THE OWNES OF THE OWNES.
- Do quadro de distribuição partem os circuitos terminais que alimentam a iluminação, as TUG's, as TUE's.
- É necessário dividir as instalações em circuitos para limitar as consequências de curtos-circuitos e falhas.





#### Quadro de distribuição





#### Quadro de distribuição





#### Exemplo de circuito de uma TUE 127V







- Para a divisão dos circuitos a NBR 5410 determina que:
  - 1. Todo ponto de utilização previsto para alimentar equipamento com corrente nominal superior a **10A** deve constituir um circuito independente.
  - 2. Os pontos de tomadas de cozinhas, copas, copas-cozinhas, áreas de serviço, lavanderias e locais análogos devem ter seus próprios circuitos.
  - 3. Os pontos de iluminação podem ser agrupados com as TUG's desque não sejam as dos circuitos citados no item 2 e também não podem exceder **16A**.



 Ainda que não especificado pelas normas, recomenda-se dividir os circuitos de iluminação de forma que cada um não ultrapasse a potência máxima de 1270 VA, na tensão de 127V, ou de 2200 VA na tensão de 220V.

OUNIVERSION OF THE OWNER OWNER OF THE OWNER OW

• Para o nosso projeto exemplo a distribuição dos circuitos ficariam

assim:



• Para o nosso projeto exemplo, na aula passada, nós chegamos a

estes valores:

| Cômodo          |        | Potência | Aparente |      | Potênc | ia Ativa |
|-----------------|--------|----------|----------|------|--------|----------|
| comodo          | llumii | nação    | TU       | G's  | TU     | E's      |
|                 | Quant. | (VA)     | Quant.   | (VA) | Quant. | (W)      |
| Sala            | 1      | 100      | 3        | 300  | -      |          |
| Copa            | 1      | 100      | 4        | 1900 | -      |          |
| Cozinha         | 1      | 160      | 4        | 1900 | 1      | 3500     |
| Dormitório A    | 1      | 160      | 3        | 300  | -      |          |
| Banheiro        | 1      | 100      | 1        | 600  | 1      | 5400     |
| Hall            | 1      | 100      | 1        | 100  | -      |          |
| Dormitório B    | 1      | 160      | 3        | 300  | -      |          |
| Área de serviço | 1      | 100      | 3        | 1800 | -      |          |
| Área externa    | 1      | 100      | -        | -    | -      |          |
| To              | tais   | 1080     | -        | 7200 | -      | 8900     |

• Então, a nossa divisão de circuitos ficará da seguinte maneira:



| Circuitos | Descrição          | Ambientes                                        |  |  |  |
|-----------|--------------------|--------------------------------------------------|--|--|--|
| 1         | Iluminação 01      | Sala, Dormitório A, Banheiro, Hall, Dormitório B |  |  |  |
| 2         | Iluminação 02      | Cozinha, Copa, Área de Serviço                   |  |  |  |
| 3         | Tomadas 01 - TUG's | Sala, Dormitório A                               |  |  |  |
| 4         | Tomadas 02 TUG's   | Banheiro, Hall, Dormitório B                     |  |  |  |
| 5         | Tomadas 03 TUG's   | Copa 1                                           |  |  |  |
| 6         | Tomadas 04 TUG's   | Copa 2                                           |  |  |  |
| 7         | Tomadas 05 TUG's   | Cozinha 1                                        |  |  |  |
| 8         | Tomadas 06 TUG's   | Cozinha 2                                        |  |  |  |
| 9         | Tomadas 07 TUG's   | Área de serviço 1                                |  |  |  |
| 10        | Tomadas 08 TUG's   | Área de serviço 2                                |  |  |  |
| 11        | Tomada 01 TUE      | Chuveiro                                         |  |  |  |
| 12        | Tomada 02 TUE      | Torneira Cozinha                                 |  |  |  |

• E seus respectivos valores são:



|    |                  |                          |      | PO    | TÊNCIA INSTA | LADA  |      | POTÊ  | NCIA DEMANI | DADA  |      |        |
|----|------------------|--------------------------|------|-------|--------------|-------|------|-------|-------------|-------|------|--------|
| Nō | EQUIPAMENTOS     | TENSÃO<br>NOMINAL<br>(V) | FP   | kW    | kVar         | kVA   | FD   | kW    | KVAr        | KVA   | Tipo | Ib (A) |
|    |                  |                          |      | QDC   |              |       |      |       |             |       |      |        |
| 1  | Iluminação 01    | 127                      | 1,00 | 0,62  | 0,00         | 0,62  | 1,00 | 0,62  | 0,00        | 0,62  | F+N  | 4,88   |
| 2  | Iluminação 02    | 127                      | 1,00 | 0,46  | 0,00         | 0,46  | 1,00 | 0,46  | 0,00        | 0,46  | F+N  | 3,62   |
| 3  | Tomadas 01 TUG's | 127                      | 0,80 | 0,48  | 0,36         | 0,60  | 1,00 | 0,48  | 0,36        | 0,60  | F+N  | 4,72   |
| 4  | Tomadas 02 TUG's | 127                      | 0,80 | 0,80  | 0,60         | 1,00  | 1,00 | 0,80  | 0,60        | 1,00  | F+N  | 7,87   |
| 5  | Tomadas 03 TUG's | 127                      | 0,80 | 0,96  | 0,72         | 1,20  | 1,00 | 0,96  | 0,72        | 1,20  | F+N  | 9,45   |
| 6  | Tomadas 04 TUG's | 127                      | 0,80 | 0,56  | 0,42         | 0,70  | 1,00 | 0,56  | 0,42        | 0,70  | F+N  | 5,51   |
| 7  | Tomadas 05 TUG's | 127                      | 0,80 | 0,96  | 0,72         | 1,20  | 1,00 | 0,96  | 0,72        | 1,20  | F+N  | 9,45   |
| 8  | Tomadas 06 TUG's | 127                      | 0,80 | 0,56  | 0,42         | 0,70  | 1,00 | 0,56  | 0,42        | 0,70  | F+N  | 5,51   |
| 9  | Tomadas 07 TUG's | 127                      | 0,80 | 0,96  | 0,72         | 1,20  | 1,00 | 0,96  | 0,72        | 1,20  | F+N  | 9,45   |
| 10 | Tomadas 08 TUG's | 127                      | 0,80 | 0,48  | 0,36         | 0,60  | 1,00 | 0,48  | 0,36        | 0,60  | F+N  | 4,72   |
| 11 | Tomadas 01 TUE   | 220                      | 1,00 | 4,40  | 0,00         | 4,40  | 1,00 | 4,40  | 0,00        | 4,40  | F+F  | 20,00  |
| 12 | Tomadas 02 TUE   | 220                      | 1,00 | 3,50  | 0,00         | 3,50  | 1,00 | 3,50  | 0,00        | 3,50  | F+F  | 15,91  |
|    | SUBTOTAL         |                          |      | 14,74 | 4,32         | 15,36 | 1,00 | 14,74 | 4,32        | 15,36 | F+F  | 69,82  |

#### Simbologia



- Para elaboração de projetos de instalações elétricas, são utilizados símbolos gráficos para representação de pontos e demais elementos que constituem os circuitos elétricos.
- A seguir é apresentado a simbologia mais utilizada em projetos elétricos.



| Símbolo                                  | Significado                   |  |  |
|------------------------------------------|-------------------------------|--|--|
| — ₹ø 25                                  | Eletroduto embutido na laje   |  |  |
| <del>*</del> <del>ø</del> <del>2</del> 5 | Eletroduto embutido na parede |  |  |
|                                          | Eletroduto embutido no piso   |  |  |
| <del></del>                              | Condutor de fase              |  |  |
| <del></del>                              | Condutor de neutro            |  |  |
|                                          | Condutor de retorno           |  |  |
|                                          | Condutor de proteção (PE)     |  |  |



## Simbologia

Tabela 3 - Quadros de distribuição

| mannan | Quadro geral de luz e força<br>aparente |
|--------|-----------------------------------------|
|        | Quadro geral de luz e força<br>embutido |
| MED    | Caixa para medidor                      |

#### Tabela 4 - Interruptores

| Símbolo     | Significado                              | Observações                                          |
|-------------|------------------------------------------|------------------------------------------------------|
| O°          | Interruptor de uma seção                 | A letra minúscula indica o ponto<br>comandado        |
| °⊕ <b>b</b> | Interruptor de duas seções               | As letras minúsculas indicam os<br>pontos comandados |
| °⊗°         | Interruptor de três seções               | As letras minúsculas indicam os<br>pontos comandados |
| • a         | Interruptor paralelo ou Three-Way        | A letra minúscula indica o ponto<br>comandado        |
| <b>•</b> •  | Interruptor intermediário ou<br>Four-Way | A letra minúscula indica o ponto comandado           |



## Simbologia



Tabela 6 - Tomadas

| N°  | Símbolo        | Significado                                              |
|-----|----------------|----------------------------------------------------------|
| 9.1 | HO.3.          | Tomada de luz na parede, baixo (300 mm do piso acabado)  |
| 9.2 | <b>∤-</b> 2-3- | Tomada de luz a meio a altura (1.300 mm do piso acabado) |
| 9.3 | 10.6-          | Tomada de luz alta (2.000 mm do piso acabado)            |
| 9.4 |                | Tomada de luz no piso                                    |

#### Detalhes importantes



- Algumas recomendações para o caminhamento dos eletrodutos:
  - 1. Considerar que os eletrodutos podem "chegar" às caixas de derivação situadas nas paredes não apenas a partir do teto, mas também do piso (principalmente no caso das tomadas baixas);
  - 2. Não permitir que as caixas de derivação utilizem o máximo das suas interligações;
  - 3. Limitar no máximo em 5 circuitos dentro de um mesmo eletroduto.

### Detalhes importantes





### Instalação dos eletrodutos











- Uma vez estabelecido o caminhamento dos eletrodutos, o próximo passo é representar graficamente os fios dos circuitos que eles conduzem.
- Entretanto, é imprescindível conhecer os esquemas das ligações que precisarão ser executadas lembrando que:
  - Interruptores **SEMPRE** seccionam a fase e **NUNCA** o neutro, como exigido pela NBR 5410 para impedir choque elétrico nas trocas de lâmpadas;







• Como ficaria então representado a instalação de ponto de luz e seu respectivo interruptor?



#### Novo padrão de tomadas

OO UNIVERSIDATION

Padronização ABNT NBR 14136/2002:

 Plugues e tomadas para uso doméstico e análogo – 20A até 250V;







 Padrão Antigo: Há risco de choque!



#### Novo padrão de tomadas

O WINERSON OF THE OWNES OF THE

Novo Padrão: Não há risco de choque!



• Tomada de 10A e 20A



es

• Diversas lâmpadas comandadas pelo mesmo interruptor devem ser ligadas em paralelo, para que caso uma queime, as demais possam continuar funcionando normalmente;



(b) Várias lâmpadas comandadas por 1 interruptor simples

• Lâmpadas alimentadas por duas fases exigem interruptor bipolar simples e nunca dois

interruptores simples.



(c) Lâmpada comandada por interruptor bipolar simples

• Interruptores threeway (paralelos simples) são ligados corretamente desta comples maneira:















Entendido?



• Representação de interruptor Threeway:



• Dois interruptores paralelos para os dois primeiros pontos e um fourway para cada comando suplementar:



#### Esquema Funcional











• Representação do circuito:





• Representação na planta:



Luminárias externas exigem a conexão do fio terra à carcaça metálica para proteger as pessoas e também devido a exposição à umidade que favorece a fuga de corrente.



• As figuras abaixo mostram as ligações em TUE's e TUG's









Representação do interruptor e tomada na mesma caixa de passagem:





Representação desta situação numa planta:





• Outra informação importante é não esquecer de representar a campainha: sua fase vai para o botão localizado na parte frontal da residência e seu retorno vai até a parte que está no interior da casa e juntamente com o neutro.

Simbologia utilizada na nossa planta exemplos Simbologia Gráfica para Instalações Elátricas Residenciale

Quadro de distribuição

Ponto de luz fluorescente embulido no tato:
A, B, C, De idem ao ponto de luz fluorescente na parede

Fio fasse

Fio neutro

Tomada baixa monefásica

|                     | Simbologia Gráfica para Insta                                                                   | lações Elétricas Re    | esidencials                                                                                    |  |  |
|---------------------|-------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|--|--|
|                     | Quadro de distribuição                                                                          | . OO °                 | Ponto de luz ¶uorescente<br>embutido no teto:<br>A, B, C, D=idem ao ponto de luz               |  |  |
|                     | Fio fase                                                                                        | BL                     | fluorescente na parede                                                                         |  |  |
| <del></del>         | Fio neutro<br>(sempre azul claro)                                                               | $\ominus$              | Tomada baixa monofásica<br>(instalada a 0,3m do piso)                                          |  |  |
|                     | Flo de retorno                                                                                  | 0                      | Tomada baixa monofásica com                                                                    |  |  |
| _ <del></del>       | Condutor de proteção<br>(sempre verde ou verde-amarelo)                                         | 9                      | terra (installada a 0,3m do piso)  Tomada baixa bifásica                                       |  |  |
|                     | Eletroduto embutido na laje                                                                     | $\Box$                 | (instalada a 0,3m do piso)                                                                     |  |  |
|                     | Eletroduto embutido na parede                                                                   | 0                      | Tomada baixa bifásica com<br>terra (instalada a 0,3m do piso)                                  |  |  |
|                     | Eletroduto embutido no piso                                                                     | <u> </u>               | Tomada média monofásica                                                                        |  |  |
| Z¢.                 | X=1: disjuntor monopolar<br>X=2: disjuntor bipolar                                              | Ţ                      | (Instalada a 1,3m do piso)                                                                     |  |  |
| ₹\$                 | X=3: disjuntor tripolar                                                                         | $\Phi$                 | Tomada média monofásica com<br>terra (instalada a 1,3m do piso)                                |  |  |
| S                   | Interruptor simples de<br>1 seção                                                               | d                      | Tomada média bifásica                                                                          |  |  |
| S2                  | Interruptor simples de<br>2 seções                                                              | <u> </u>               | (instalada a 1,3m do piso)                                                                     |  |  |
| S₃                  | Interruptor simples de<br>3 seções                                                              | •                      | Tomada média bifásica com<br>terra (installada a 1,3m do piso)                                 |  |  |
| Š                   | Interruptor bipolar                                                                             | $\rightarrow$          | Caixa de saída alta monofásica<br>(instalada a 2,2m do piso)                                   |  |  |
| S <sub>3W</sub> , S | Interruptor paralelo<br>(three-way)                                                             | $\oplus$               | Cabra de saída alta monofásica<br>c/ terra (instalada a 2,2m do piso)                          |  |  |
| S <sub>4W</sub>     | Interruptor intermediário<br>(four-way)                                                         | $\rightarrow$          | Cabra de saída alta bifásica<br>(instalada a 2,2m do piso)                                     |  |  |
| (A)                 | Ponto de luz no teto:<br>A=potência de lluminação<br>B=número do circuito<br>C=comando          |                        | Caixa de saída alta bifásica com<br>terra (installada a 2,2m do piso)                          |  |  |
| ABC                 | Ponto de luz na parede:<br>A, B, C=idem ao ponto de luz<br>no teto                              | Cs. pass. (A x B x C)  | Caixa de passagem no piso:<br>A x B x C=dimensões em [mm]                                      |  |  |
| a Co                | Ponto de luz fluorescente na<br>parede:<br>A-número de lâmpadas                                 | Cs., pass, (A x B x C) | Caixa de passagem no teto:<br>A x B x C=dimensões em [mm]                                      |  |  |
| mhor XII            | B=número do circuito<br>C=comando<br>D =potência das lâmpadas                                   | (A x B x C)            | Caixa de passagem na parede:<br>A x B x C=dimensões em [mm]<br>h = altura de instalação em [m] |  |  |
| B C AXD             | Ponto de luz fluorescente no teto:<br>A, B, C, D=idem ao ponto de luz<br>fluorescente na parede | 6 ⊙                    | Campainha Botão de Campainha                                                                   |  |  |





### Diagrama unifilar

• O Diagrama unifilar é utilizado para representar graficamente como

está interligada toda a instalação elétrica.

