CS 193G

Lecture 1: Introduction to Massively Parallel Computing

Course Goals

- Learn how to program massively parallel processors and achieve
 - High performance
 - Functionality and maintainability
 - Scalability across future generations
- Acquire technical knowledge required to achieve above goals
 - Principles and patterns of parallel programming
 - Processor architecture features and constraints
 - Programming API, tools and techniques

People

- Lecturers
 - Jared Hoberock: jaredhoberock at gmail.com
 - David Tarjan: tar.cs193g at gmail.com
 - Office hours: 3:00-4:00 PM, Tu Th, Gates 195
- Course TA
 - Niels Joubert: njoubert at cs.stanford.edu
- Guest lecturers
 - Domain experts

Web Resources

Website:

- http://stanford-cs193g-sp2010.googlecode.com
- Lecture slides/recordings
- Documentation, software resources
- Note: while we'll make an effort to post announcements on the web, we can't guarantee it, and won't make allowances for people who miss things in class

Mailing list

- Channel for electronic announcements
- Forum for Q&A Lecturers and assistants read the board, and your classmates often have answers
- Axess for Grades

Grading

- This is a lab oriented course!
- Labs: 50%
 - Demo/knowledge: 25%
 - Functionality: 40%
 - Report: 35%
- Project: 50%
 - Design document: 25%
 - Project Presentation: 25%
 - Demo/Final Report: 50%

Academic Honesty

- You are allowed and encouraged to discuss assignments with other students in the class.
 Getting verbal advice/help from people who've already taken the course is also fine.
- Any reference to assignments from previous terms or web postings is unacceptable
- Any copying of non-trivial code is unacceptable
 - Non-trivial = more than a line or so
 - Includes reading someone else's code and then going off to write your own.

Course Equipment

- Your own PCs with a CUDA-enabled GPU
- NVIDIA GeForce GTX 260 boards
 - Lab facilities: Pups cluster, Gates B21
 - Nodes 2, 8, 11, 12, & 13
 - New Fermi Architecture GPUs?
 - As they become available

Text & Notes

- Course text:
 - Kirk & Hwu. Programming Massively Parallel Processors: A Hands-on Approach. 2010.
- References:
 - NVIDIA. The NVIDIA CUDA Programming Guide. 2010.
 - NVIDIA. CUDA Reference Manual. 2010.
- Lectures will be posted on the class website.

Schedule

- Week 1:
 - Tu: Introduction
 - Th: CUDA Intro
 - MP 0: Hello, World!
 - MP 1: Parallel For
- Week 2
 - Tu: Threads & Atomics
 - Th: Memory Model
 - MP 2: Atomics
- Week 3
 - Tu: Performance
 - Th: Parallel Programming
 - MP 3: Communication
- Week 4
 - Tu: Project Proposals
 - Th: Parallel Patterns
 - MP 4: Productivity

- Week 5
 - Tu: Productivity
 - Th: Sparse Matrix Vector
- Week 6
 - Tu: PDE Solvers Case Study
 - Th: Fermi
- Week 7
 - Tu: Ray Tracing Case Study
 - Th: Advanced Optimization
- Week 8
 - Tu: Al Case Study
 - Th: Future of Throughput
- Week 9
 - Tu: TBD
 - Th: Project Presentations
- Week 10
 - Tu: Project Presentations

Moore's Law (paraphrased)

"The number of transistors on an integrated circuit doubles every two years."

- Gordon E. Moore

Moore's Law (Visualized)

Buying Performance with Power

Serial Performance Scaling is Over

- Cannot continue to scale processor frequencies
 - no 10 GHz chips

- Cannot continue to increase power consumption
 - can't melt chip

- Can continue to increase transistor density
 - as per Moore's Law

How to Use Transistors?

- Instruction-level parallelism
 - out-of-order execution, speculation, ...
 - vanishing opportunities in power-constrained world
- Data-level parallelism
 - vector units, SIMD execution, ...
 - increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU
- Thread-level parallelism
 - increasing ... multithreading, multicore, manycore
 - Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, ...

Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Computation: TFLOPs vs. 100 GFLOPs

GPU in every PC – massive volume & potential impact

Why Massively Parallel Processing?

A quiet revolution and potential build-up

GPU in every PC – massive volume & potential impact

The "New" Moore's Law

- Computers no longer get faster, just wider
- You must re-think your algorithms to be parallel!
- Data-parallel computing is most scalable solution
 - Otherwise: refactor code for 2 cores 4 cores 8 cores 16 cores...
 - You will always have more data than cores build the computation around the data

Generic Multicore Chip

- Handful of processors each supporting ~1 hardware thread
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Generic Manycore Chip

- Many processors each supporting many hardware threads
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Enter the GPU

Massive economies of scale

Massively parallel

GPU Evolution

DVIDIA

- High throughput computation
 - GeForce GTX 280: 933 GFLOP/s
- High bandwidth memory
 - GeForce GTX 280: 140 GB/s

GeForce 3 60M xtors

High availability to all

GeForce® 256

23M xtors

180+ million CUDA-capable GPUs in the wild

GeForce FX 125M xtors

RIVA 128

3M xtors

2005

GeForce 8800 681M xtors

Lessons from Graphics Pipeline

- Throughput is paramount
 - must paint every pixel within frame time
 - scalability
- Create, run, & retire lots of threads very rapidly
 - measured 14.8 Gthread/s on increment() kernel

- Use multithreading to hide latency
 - 1 stalled thread is OK if 100 are ready to run

Why is this different from a CPU?

- Different goals produce different designs
 - GPU assumes work load is highly parallel
 - CPU must be good at everything, parallel or not
- CPU: minimize latency experienced by 1 thread
 - big on-chip caches
 - sophisticated control logic
- GPU: maximize throughput of all threads
 - # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
 - multithreading can hide latency => skip the big caches
 - share control logic across many threads

NVIDIA GPU Architecture

Fermi GF100

SM Multiprocessor

- 32 CUDA Cores per SM (512 total)
- 8x peak FP64 performance
 - 50% of peak FP32 performance
- Direct load/store to memory
 - Usual linear sequence of bytes
 - High bandwidth (Hundreds GB/sec)
- 64KB of fast, on-chip RAM
 - Software or hardware-managed
 - Shared amongst CUDA cores
 - Enables thread communication

Key Architectural Ideas

- SIMT (Single Instruction Multiple Thread) execution
 - threads run in groups of 32 called warps
 - threads in a warp share instruction unit (IU)
 - HW automatically handles divergence
- Hardware multithreading
 - HW resource allocation & thread scheduling
 - HW relies on threads to hide latency
- Threads have all resources needed to run
 - any warp not waiting for something can run
 - context switching is (basically) free

Enter CUDA

- Scalable parallel programming model
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel computing

45X

100X

35X

CUDA: Scalable parallel programming

- Augment C/C++ with minimalist abstractions
 - let programmers focus on parallel algorithms
 - not mechanics of a parallel programming language
- Provide straightforward mapping onto hardware
 - good fit to GPU architecture
 - maps well to multi-core CPUs too
- Scale to 100s of cores & 10,000s of parallel threads
 - GPU threads are lightweight create / switch is free
 - GPU needs 1000s of threads for full utilization

Key Parallel Abstractions in CUDA

• Hierarchy of concurrent threads

Lightweight synchronization primitives

Shared memory model for cooperating threads

Hierarchy of concurrent threads

- Parallel kernels composed of many threads
 - all threads execute the same sequential program

- Threads are grouped into thread blocks
 - threads in the same block can cooperate

Threads/blocks have unique IDs

CUDA Model of Parallelism

Global Memory

- CUDA virtualizes the physical hardware
 - thread is a virtualized scalar processor

(registers, PC, state)

block is a virtualized multiprocessor

(threads, shared mem.)

- Scheduled onto physical hardware without pre-emption
 - threads/blocks launch & run to completion
 - blocks should be independent

NOT: Flat Multiprocessor

- Global synchronization isn't cheap
- Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model

NOT: Distributed Processors

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI

Heterogeneous Computing

Multicore CPU

Manycore GPU

C for CUDA

- Philosophy: provide minimal set of extensions necessary to expose power
- Function qualifiers:

```
__global__ void my_kernel() { }
__device__ float my_device_func() { }
```

Variable qualifiers:

```
__constant__ float my_constant_array[32];
shared float my_shared_array[32];
```

Execution configuration:

```
dim3 grid_dim(100, 50); // 5000 thread blocks
dim3 block_dim(4, 8, 8); // 256 threads per block
my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel
```

Built-in variables and functions valid in device code:

```
dim3 gridDim;  // Grid dimension
dim3 blockDim;  // Block dimension
dim3 blockIdx;  // Block index
dim3 threadIdx;  // Thread index
void __syncthreads();  // Thread synchronization
```

Example: vector addition

Device Code

```
compute vector sum c = a + b
// each thread performs one pair-wise addition
  global void vector add(float* A, float* B, float* C)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
int main()
    // elided initialization code
    // Run N/256 blocks of 256 threads each
    vector add<<< N/256, 256>>>(d A, d B, d C);
© 2008 NVIDIA Corporation
```

Example: vector_addition


```
compute vector sum c = a + b
// each thread performs one pair-wise addition
 global void vector add(float* A, float* B, float* C)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
                                                Host Code
int main()
    // elided initialization code
    // launch N/256 blocks of 256 threads each
    vector add<<< N/256, 256>>>(d A, d B, d C);
```

Example: Initialization code for vector addition


```
// allocate and initialize host (CPU) memory
float *h A = ..., *h B = ...;
// allocate device (GPU) memory
float *d A, *d B, *d C;
cudaMalloc( (void**) &d A, N * sizeof(float));
cudaMalloc( (void**) &d B, N * sizeof(float));
cudaMalloc( (void**) &d C, N * sizeof(float));
// copy host memory to device
cudaMemcpy( d A, h A, N * sizeof(float),
  cudaMemcpyHostToDevice) );
cudaMemcpy( d B, h B, N * sizeof(float),
  cudaMemcpyHostToDevice) );
// launch N/256 blocks of 256 threads each
vector add<<<N/256, 256>>>(d A, d B, d C);
```

Previous Projects from UIUC ECE 498AL

Application	Description	Source	Kernel	% time
H.264	SPEC '06 version, change in guess vector	34,811	194	35%
LBM	SPEC '06 version, change to single precision and print fewer reports	1,481	285	>99%
RC5-72	Distributed.net RC5-72 challenge client code	1,979	218	>99%
FEM	Finite element modeling, simulation of 3D graded materials	1,874	146	99%
RPES	Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion	1,104	281	99%
PNS	Petri Net simulation of a distributed system	322	160	>99%
SAXPY	Single-precision implementation of saxpy, used in Linpack's Gaussian elim. routine	952	31	>99%
TPACF	Two Point Angular Correlation Function	536	98	96%
FDTD	Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation	1,365	93	16%
MRI-Q	Computing a matrix Q, a scanner's configuration in MRI reconstruction	490	33	>99%

© 2008 NVIDIA Corporation

Speedup of Applications

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- •10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- 25× to 400× speedup if the function's data requirements and control flow suit the GPU and the application is optimized

Final Thoughts

- Parallel hardware is here to stay
- GPUs are massively parallel manycore processors
 - easily available and fully programmable
- Parallelism & scalability are crucial for success
- This presents many important research challenges
 - not to speak of the educational challenges

Machine Problem 0

- http://code.google.com/p/stanford-cs193gsp2010/source/browse/#svn/trunk/tutorials
- Work through tutorial codes
 - hello_world.cu
 - cuda_memory_model.cu
 - global_functions.cu
 - device_functions.cu
 - vector addition.cu