Theoretical Statistical Physics (MKTP1) Version: 25.1.2021

# 1 Introduction to probability theory Bayes' theorem

$$p(B|A) = \frac{p(A|B) \cdot p(B)}{p(A)} = \frac{p(A|B) \cdot p(B)}{\sum_{B'} p(A|B) \cdot p(B')}$$

## **Expactation and covariance**

$$\langle f \rangle = \sum_{i} f(i)p_{i} \text{ or } \langle f \rangle = \int f(x)p(x)dx$$

$$\mu = \langle i \rangle = \sum_{i} ip_{i} \text{ or } \mu = \langle x \rangle = \int xp(x)dx$$

$$\sigma^{2} = \langle i^{2} \rangle - \langle i \rangle^{2}$$

$$\sigma_{ij}^{2} = \langle ij \rangle - \langle i \rangle^{2}$$

#### **Binomial distribution**

$$\frac{N!}{(N-i)!i!} = \binom{n}{i} \text{ binomial coefficient}$$

$$p_i = \binom{N}{i} \cdot p^i q^{N-i} \text{ distribution}$$

$$\mu = \langle i \rangle = N \cdot p$$

$$\langle i^2 \rangle = p \cdot N + p^2 \cdot N \cdot (N-1)$$

$$\sigma^2 = N \cdot p \cdot q$$

## **Gauss distribution**

$$p(x) = \frac{1}{\left(2\pi\sigma^2\right)^{\frac{1}{2}}} \cdot e^{-\frac{x-\mu}{2\sigma^2}}$$

$$e = \sigma^2$$

#### **Poisson distribution**

$$p(k;\mu) = \frac{\mu^k}{k!} e^{-\mu}, \quad E[k] = \mu, \ V[k] = \mu$$

#### Information entropy

$$S = -\sum_{i} p_i \ln(p_i)$$

#### 2 The microcanonical ensemble The fundamental postulate

$$\Omega(E) = \sum_{n:E-\delta E \le E_n \le E} 1$$

$$\Omega(E; \delta E) = \frac{1}{h^{3N} N!} \int_{n:E-\delta E \le \mathcal{H}(\vec{q}, \vec{p}) \le E} d\vec{q} d\vec{p}$$

$$S = -k_B \sum_{i=1}^{\Omega} p_i \ln(p_i) = k_B \ln(\Omega)$$

microcanonical partition sum for an ideal gas

$$\Omega(E) = \frac{V^N \pi^{3N/2} (2mE)^{3N/2}}{h^{3N} N! \left(\frac{3N}{2}\right)!}$$

$$S = k_B N \left\{ \ln \left[ \left(\frac{V}{N}\right) \left(\frac{4\pi mE}{3h^2 N}\right)^{3/2} \right] + \frac{5}{2} \right\}$$

## **Equilibrium conditions**

Thermal contact

$$\left. \frac{\partial S(E,V,N)}{\partial E} \right|_{V,N} = \frac{1}{T(E,V,N)}$$

Contact with volume excahnge

$$\left. \frac{\partial S(E,V,N)}{\partial V} \right|_{E,N} = \frac{p(E,V,N)}{T(E,V,N)}$$

Contact with exchange of particle number

$$\left. \frac{\partial S(E,V,N)}{\partial N} \right|_{E,V} = -\frac{\mu(E,V,N)}{T(E,V,N)}$$

#### **Equations of state**

$$dE = TdS - pdV + \mu dN$$

## Equations of state fo ideal gas

$$S = k_B N \left[ \ln \left( \frac{V}{N \lambda^3} \right) + \frac{5}{2} \right] \text{ fundamental}$$
 
$$E = \frac{3}{2} N k_B T \qquad \text{caloric}$$
 
$$pV = N k_B T \qquad \text{thermal}$$
 
$$\mu = k_B T \ln \left( \frac{N \lambda^3}{V} \right) \text{ chemical potentail}$$

#### Einstein model for specific heat of a solid

$$E = \hbar\omega \left(\frac{N}{2} + Q\right)$$

$$\Omega(E, N) = \frac{(Q + N)!}{Q!N!}$$

$$S = k_B \ln(\Omega)$$

$$= k_B \left[Q \ln\left(\frac{Q + N}{Q}\right) + N \ln\left(\frac{Q + N}{N}\right)\right]$$

$$= k_B N \left[(e + \frac{1}{2}) \ln(e + \frac{1}{2}) - (e - \frac{1}{2}) \ln(e - \frac{1}{2})\right]$$

$$e = E/E_0; E_0 = N\hbar\omega$$

$$\rightarrow E = N\hbar\omega \left(\frac{1}{2} + \frac{1}{e^\beta - 1}\right)$$

#### **Entropic elasticity of polymers**

$$N_{+} - N_{-} = \frac{L}{a}$$

$$N_{+} = \frac{1}{2} \left( N + \frac{L}{a} \right)$$

$$\Omega = \frac{N!}{N_{+}! N_{-}!}$$

$$S = -k_{B} \left( N_{+} \ln \left( \frac{N_{+}}{N} \right) + N_{-} \ln \left( \frac{N_{-}}{N} \right) \right)$$

#### Statistical deviation from average

Two ideal gases in thermal conact  $T_1 = T_2$ 

$$S_{i} = \frac{3}{2}k_{B}N_{i}\ln(E_{i}) + \text{independent of } E_{i}$$

$$S = S_{1} + S_{2}$$

$$dS = 0 \rightarrow \frac{\partial S_{1}}{\partial E_{1}} = \frac{\partial S_{2}}{\partial E_{2}}$$

$$\rightarrow \overline{E}_{1} = \frac{N_{1}}{M}E$$

consider small deviation:

$$E_1 = \overline{E}_1 + \Delta E, \quad E_2 = \overline{E}_2 - \Delta E$$

$$S(\overline{E}_1 + \Delta E) \approx \frac{3}{2} k_B \left[ N_1 \ln \overline{E}_1 + N_2 \ln \overline{E}_2 - \frac{N_1}{2} \left( \frac{\Delta E}{\overline{E}_1} \right)^2 - \frac{N_2}{2} \left( \frac{\Delta E}{\overline{E}_2} \right)^2 \right]$$

$$\rightarrow \Omega = \overline{\Omega} e^{\left[ -\frac{3}{4} \left( \frac{\Delta E}{E} \right)^2 N^2 \left( \frac{1}{N_1} + \frac{1}{N_2} \right) \right]}$$

## 3 The canonical ensemble Boltzmann distribution

Temperature *T* is fixed.

$$p_i = rac{1}{Z}e^{-\beta E_i}$$
 Boltzmann distribution  $Z = \sum_i e^{-\beta E_i}$  partition sum

For classical Hamiltonian systems:

$$p(\vec{q}, \vec{p}) = \frac{1}{ZN!h^{3N}} e^{-\beta \mathcal{H}(\vec{q}, \vec{p})}$$
$$Z = \frac{1}{N!h^{3N}} \int d\vec{q} d\vec{p} e^{-\beta \mathcal{H}(\vec{q}, \vec{p})}$$

#### Free energy

probability that the system has energy E

$$\begin{split} p(E) &= \frac{1}{Z} \Omega(E) e^{-\beta E} = \frac{1}{Z} e^{-\beta E + S(E)/k_B} \\ &= \frac{1}{Z} e^{-\frac{E - TS}{k_B T}} = \frac{1}{Z} e^{-\beta F} \end{split}$$

This is maximal, if F has a minimum with respect to E:

$$0 = \frac{\partial F}{\partial E} = 1 - T \frac{\partial S}{\partial E} = 1 - T \frac{1}{T_1}$$

thas is when the system is as the temperature of the heath bath. In the canonical ensemble, equilibrium cor-

responds to the minimum of the free energy 
$$F(T,V,N)$$
 
$$\frac{1}{T}=\frac{\partial S(E,V,N)}{\partial E}$$

total differential of F(T, p, V)

$$\begin{split} dF &= dE + d(TS) \\ &= TdS - pdV + \mu N - TdS - SdT \\ &= -SdT - pdV + \mu N \end{split}$$

**Equations of state** 

$$S = -\frac{\partial F}{\partial T}$$

$$p = -\frac{\partial F}{\partial V}$$

$$\mu = \frac{\partial F}{\partial N}$$
te F:

how to calculate *F*:

$$\to F(T, V, N) = -k_B T \ln(Z(T, V, N))$$

how to calculate average energy  $U = \langle E \rangle$  directly from the partition sum:

$$\langle E \rangle = \sum_{i} p_{i} E_{i} = \frac{1}{Z} \sum_{i} E_{i} e^{-\beta E_{i}}$$
$$= -\partial_{\beta} \ln(Z(\beta))$$

#### Non-interacting systems

 $\epsilon_{ij}$  is the  $j^{th}$  state of the  $i^{th}$  element

$$Z = \sum_{j_1} \sum_{j_2} \dots \sum_{j_N} e^{-\beta \sum_{i=1}^N \epsilon_{ij_i}}$$

$$= \left(\sum_{j_1} e^{-\beta \epsilon_{1j_1}}\right) \dots \left(\sum_{j_N} e^{-\beta \epsilon_{Nj_1N}}\right)$$

$$= z_1 \dots z_N = \prod_{i=1}^N z_i$$

$$\rightarrow F = -k_B T \sum_{i=1}^{N} \ln(z_i) = -k_B T \ln(Z)$$

$$Z = z^N$$
,  $F = -k_B T N ln(z)$ 

#### TODO: ADD EXAMPLES Equipartition theorem

f are the degrees of freedom. harmonic Hamiltonian with f = 2

$$\mathcal{H} = Aq^{2} + Bp^{2}$$

$$z \propto \int dq dp e^{-\beta \mathcal{H}}$$

$$= \left(\frac{\pi}{A\beta}\right)^{\frac{1}{2}} \cdot \left(\frac{\pi}{B\beta}\right)^{\frac{1}{2}}$$

$$\propto \left(T^{\frac{1}{2}}\right)^{f}$$

For sufficiently high temperture (classical limit), each quadratic term in the Hamiltonian contributes a factor  $T^{\frac{1}{2}}$  to the partition sum ('equipartition theorem')

$$F = -k_B T \ln(z) = -\frac{f}{2} k_B T \ln(T)$$

$$S = -\frac{\partial F}{\partial T} = \frac{f}{2} k_B (\ln(T) + 1)$$

$$U = -\partial_\beta \ln(z) = \frac{f}{2} k_B T$$

$$c_v = \frac{dU}{dT} = \frac{f}{2} k_B$$

Molecular gases

$$Z = Z_{trans} \cdot Z_{vib} \cdot Z_{rot} \cdot Z_{elec} \cdot Z_{nuc}$$
$$Z_x = z_x^N$$

Vibrational modes

often described by the Morse potential:

$$V(r) = E_0 \left( 1 - e^{-\alpha(r - r_0)} \right)^2$$

An exact solution of the Schrödinger equation gives:

$$E_n = \hbar \omega_0 \left( n + \frac{1}{2} \right) - \frac{\hbar^2 \omega_0^2}{eE_0} \left( n + \frac{1}{2} \right)^2$$
$$\omega_0 = \frac{\alpha}{2\pi} \sqrt{\frac{2E_0}{\mu}}, \quad \mu = \frac{m}{2}$$

For  $\hbar\omega_0\ll E_0$  we can use the harmonic approximation:

$$z_{vib} = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega_0}}$$
 
$$T_{vib} \approx \frac{\hbar\omega_0}{k_B} \approx 6.140 \text{K for } H_2$$

**Rotational modes** 

standart approximation is the one of a rigid rotator. The moment of inertia is given as:

$$I = \mu r_0^2 \quad T_{rot} = \frac{\hbar^2}{Ik_B}$$
 
$$\rightarrow E_l = \frac{\hbar^2}{2I} l(l+1)$$

Nuclear contributions: ortho- and parahydrogen

$$z_{ortho} = \sum_{l=1,3,5,...} (2l+1)e^{-\frac{l(l+1)T_{rot}}{T}}$$
$$z_{para} = \sum_{l=0,2,4} (2l+1)e^{-\frac{l(l+1)T_{rot}}{T}}$$

Theoretical Statistical Physics (MKTP1) Version: 25.1.2021

## Specific heat of a solid

**Debye model** 

$$\rightarrow \omega(k) = \left(\frac{4\kappa}{m}\right)^{\frac{1}{2}} \left| \sin\left(\frac{ka}{2}\right) \right|$$
$$\omega = \frac{2\pi}{T}, \quad k = \frac{2\pi}{\lambda}$$

Debye frequency:

$$\omega_D = c_s \left( \frac{6\pi^2 N}{V} \right)^{\frac{1}{3}}$$

$$c_s = \left. \frac{d\omega}{dk} \right|_{k=0} = \sqrt{\frac{\kappa}{m}} a$$

density of states in  $\omega$ -space:

$$D(\omega) = 3\frac{\omega^2}{\omega_D^3} \quad \text{for } \omega \le \omega_D$$

count modes in frequency-space:

$$\sum_{modes} (\dots) = 3 \sum_{k} (\dots) = 3N \int_{0}^{\omega_{D}} d\omega D(\omega) (\dots)$$

partition sum:

$$z(\omega) = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$

$$u = \beta \hbar \omega$$

$$c_v(T) = \frac{9Nk_B}{u_m^3} \int_0^{u_m} \frac{e^u u^4}{(e^u - 1)^2} du$$

the limit for  $\hbar\omega_D \ll k_B T$ :

$$c_v(T) = 3Nk_B$$

the limit for  $k_B T \ll \hbar \omega_D$ :  $(T_D = \frac{\hbar \omega_D}{k_B})$ 

$$c_v(T) = \frac{12\pi^4}{5} N k_B \left(\frac{T}{T_D}\right)^3$$

#### Black body radiation

$$E = \frac{4\sigma}{c}VT^4, \quad \sigma = \frac{\pi^2 k_B^4}{60\hbar^3 c^2}$$
$$c_v = \frac{16\sigma}{c}VT^3$$

$$J = \frac{P}{A} = \sigma T^4$$
 Stefan-Boltzmann law

Plank's law for black body radiation

$$u(\omega) := \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/(k_B T)} - 1}$$

The Plank distribution has a maximum at:  $\hbar\omega_{max} = 2.82k_BT$  Wien's displacement law

#### 4 The grandcanonical ensemble **Probability distribution**

T and  $\mu$  are fixed.

$$p_i = \frac{1}{Z_G} e^{-\beta(E_i - \mu N_i)} \text{ prob. distribution}$$
 
$$Z_G = \sum_i e^{-\beta(E_i - \mu N_i)} \text{ partition sum}$$
 
$$\Psi = -k_B T \ln(Z_G) \text{ thermodynamic potential}$$

### **Grandcanonical potential**

The probability to have a macroscopic value (E,N) is:

$$p(E,N) = \frac{1}{Z_G} \Omega(E,N) e^{-\beta(E-\mu N)}$$
$$= \frac{1}{Z_G} e^{-\beta(E-TS-\mu N)} = \frac{1}{Z_G} e^{-\beta\Psi(T,V,\mu)}$$

$$\Psi(T, V, \mu) := E - TS - \mu N$$

p is maximal, if  $\Psi$  is minimal. Total differential:

$$d\Psi = d(E - TS - \mu N)$$

$$= TdS - pdV + \mu dN - d(TS + \mu N)$$

$$= -SdT - pdV - Nd\mu$$

Equations of state:

$$S=-\frac{\partial \Psi}{\partial T}, p=-\frac{\partial \Psi}{\partial V}, N=-\frac{\partial \Psi}{\partial \mu}$$

#### **Fluctuations**

$$\begin{split} \langle N \rangle &= \sum_{i} p_{i} N_{i} = \frac{1}{\beta} \partial_{\mu} \ln(Z_{G}) \\ \sigma_{N}^{2} &= \langle N^{2} \rangle - \langle N \rangle^{2} = \frac{1}{\beta^{2}} \partial_{\mu}^{2} \ln(Z_{G}) \\ \frac{\sigma_{N}}{\langle N \rangle} &\propto \frac{1}{N^{\frac{1}{2}}} \end{split}$$

**Ideal** gas

$$Z(T,V,N) = \frac{1}{N!} \left(\frac{V}{\lambda^3}\right)^N, \ \lambda = \frac{h}{(2\pi m k_B T)^{\frac{1}{2}}}$$

$$Z_G = \sum_{N=0}^{\infty} Z(T,V,N) e^{\beta \mu N}$$

$$= \sum_{N=0}^{\infty} \frac{1}{N!} \left(e^{\beta \mu} \frac{V}{\lambda^3}\right)^N$$

$$= e^{z \frac{V}{\lambda^3}} \quad \text{fugacity: } z := e^{\beta \mu}$$

$$\langle N \rangle = \frac{1}{\beta} \partial_{\mu} \ln(Z_G) = \frac{V}{\lambda^3} d^{\beta \mu}$$

$$\mu = k_B T \ln\left(\frac{N\lambda^3}{V}\right)$$

#### Molecular adsorption onto a surface

$$\begin{split} Z_G &= z_G^N; z_G = 1 + e^{-\beta(\epsilon - \mu)} \\ \langle n \rangle &= \frac{1}{e^{-\beta(\mu - \epsilon)} + 1} \; \text{ per site} \\ \langle \epsilon \rangle &= \epsilon \langle n \rangle \end{split}$$

## 5 Ouantum fluids

#### Fermion vs. bosons

Particles with half-integer (integer) spin are called fermions (bosons). Their total wave function (space and spin) must be antisymmetric (symmetric) under the exchange of any pair of identical particles.

#### 6 Others

#### Stirling's formula

$$\ln(n!) = n\ln(n) - n + \frac{1}{2}\ln(2\pi n)$$