TECNICA PARA LA RESOLUCIÓN DE PROBLEMAS CON EL APOYO DEL COMPUTADOR:

EJERCICIO

Un cuerpo posee una velocidad inicial de 12 m/s y una aceleración de 2 m/s2 ¿Cuánto tiempo tardará en adquirir una velocidad de 144 Km/h?

PASOS:

1. Análisis y clasificación del enunciado del problema en sus elementos

Elemento	Valor				
Captura de Datos					
Captura de Datos	Velocidad inicial 12 m/s				
	Aceleración 2m/s				
	Velocidad final 144km/h				
	vel2 = (vel2*1000)/3600				
	t = (vel2 - vel1) / r				
Operaciones Aritméticas					
Preguntas	¿Cuánto tiempo tardará en adquirir una velocidad de 144				
roguntas	Km/h?				
Observaciones					
	El programa funciona con cualquier variable no solo con la				
	pedida en el enunciado				

2. Diagrama Entrada – Proceso – Salida

3. Análisis de Procesos Aritméticos

andio 40 i 1000000 / ii iiiii otiooo
vel2 = (vel2*1000)/3600
t = (vel2 - vel1) / r

14 S

BORRAR

txttiemal

btncal

CALCULAR

5. Algoritmos

btnborr

	D : ''					
Paso	Descripción					
0	Inicio					
	Declaraci ó n de variables					
1	Declarar Velocidad inicial					
2	Declarar Velocidad final					
3	Declarar aceleración					
	Inicializaci ó n de las variables					
	vel1= 0.0					
	vel2=0.0					
	r = 0.0					
	t = 0.0					
	Captura de datos					
4	Leer Velocidad inicial					
5	Leer Velocidad final					
6	Leer aceleración					
	Procesos aritmeticos					
7	vel2 = (vel2*1000)/3600					
8	t = (vel2 - vel1) / r					
	Imprimir resultado					
9	t					
10	Fin					
11						

6. Tabla de Datos

Identificador	Tipo	TipoDato	Valor	Ambito			Observations	D
			Inicial	Ε	Р	S	Observaciones	Documentación
Vel1	Variable	real	0.0	Е				Variable donde se va a almacenar un dato ingresado por el usuario(velocidad inicial).
Vel2	Variable	Real	0.0	E	P			Variable donde se va a almacenar un dato ingresado y se ejecuta un proceso (vel final)
t	Variable	real	0.0		P	S		Variable donde se ejecuta un proceso aritmético y se le notifica el resultado al ususario(tiempo).
г	Variable	Real	0.0	E				Variable donde se va a almacenar un dato ingresado y se ejecuta un proceso (aceleracion)

7. Tabla de Expresiones Aritméticas y Computacionales

Expresiones Aritméticas	Expresiones Computacionales			
Conversión = velocidadfinal * 1000 */3600	vel2 = (vel2*1000)/3600			
Tiempo= velocidafinal -velocidadinicial / aceleracion	t = (vel2 - vel1) / r			

8. Diagrama de Flujo de Datos

9. Prueba de Escritorio

10.pseudocodigo

```
Algoritmo Trabajo 4
//programa que calcula el tiempo en llegar a la vel maxima la unidad de km/h a m/s //
//desarrollado por : juan sebastian ortiz ibarra /
// fecha 19/02/2023//
//version 1.0//
//declaracion de las variables
definir vel1, vel2, t, r como Real
//inicializacion de las variables
vel1 = 0.0
vel2=0.0
r = 0.0
t = 0.0
//capturad de datos //
escribir "Cual es la velocidad final"//vel final en km/h
leer vel2
escribir "cual es su aceleracion"
leer r
escribir "cual es la velocidad inicial"
leer vel1
// procesos aritmeticos//
vel2 = (vel2*1000)/3600 //formula pasar de km/h a m/s
t = (vel2 - vel1) / r // formula tiempo
//impresion de resultados//
escribir " el tiempo que se demoro en alcanzara la velocidad maxima es : " t " s"
```

FinAlgoritmo