Lesson 17: Inference for One Proportion

Homework

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

Problem	Part	Solution
1	-	$n\hat{p} \ge 10$
		$n(1-\hat{p}) \geq 10$
		$100(0.12) = 12 \ge 10$
		$100(1 - 0.12) = 88 \ge 10$
		The requirements are met.
2	-	$\hat{p} = 0.12$
3	-	(0.067,0.173) We are 90% confident that the true proportion of peanuts in the
		can is between 6.7% and 17.3% .
4	-	$np \ge 10$
		$n(1-p) \ge 10$
		$100(0.2) = 20 \ge 10$
		$100(1 - 0.2) = 80 \ge 10$
		Since both conditions are true, we conclude that n is sufficiently large so that \hat{p}
		will be approximately distributed.
5	-	$\hat{p} = 0.12$
6	-	$H_0: p = 0.2$
		$H_a: p < 0.2$
7	-	z = -2
8	-	P-value = 0.0228

Normal Probability Applet

9	-	
10	-	reject the null hypothesis
11	-	There is sufficient to suggest that the proportion of peanuts in the can is less than 20%.
12	-	(0.023, 0.024) We are 95% confident that the true proportion of the population who die after contracting H1N1 is between $2.3%$ and $2.4%$.
13	-	(0.547, 0.639) We are $95%$ confident that the true proportion of the population who die after contracting H5N1 is between $54.7%$ and $63.9%$.
14	-	The bird flu (H5N1) is by far more deadly! More than half of those who contract the bird flu will die, compared to only 2 to 3% of those who are infected with the swine flu. Fortunately for us, the bird flu is currently onlypassed to humans through contact with infected birds. Epidemiologists are concerned about a global pandemic of this disease, which would almost surely happen if the virus mutates to allow human-to-human transmission.
15	_	n = 423 people
16	-	n = 334 people

Problem Part Solution

17 -

18 $np \ge 10$ $n(1-p) \ge 10$ $800(0.43) = 344 \ge 10$ $800(1 - 0.43) = 456 \ge 10$ Since both conditions are true, we conclude that n is sufficiently large so that \hat{p} will be approximately distributed. 19 $\hat{p} = 0.405$ $H_0: p = 0.43$ 20 $H_a: p \neq 0.43$ 21 z=-1.42822 P-value=0.153223 fail to reject the null hypothesis 24 There is insufficient to suggest that the proportion of adults who received a phishing email in 2012 is different than 43%.