Inference rules in natural deduction.

	Name	rule	coq forward	coq backward
	rume	H1:A	coq forward	coq backward
1	$\wedge I$	$\frac{H1:A}{H2:B}$ $A \wedge B$	${\tt pose\ proof(conj}\ H1\ H2).$	split.
2	$\wedge E_1$	$H1:A\wedge B$ A	${ t pose proof(proj1 \; H1)}$.	_
3	$\wedge E_2$	$\frac{H1:A\wedge B}{B}$	${ t pose proof(proj2 \ H1)}$.	_
4	$\vee I_1$	$\frac{H1:C}{C\vee X}$	pose proof(or_introl (B:= X) $H1$). or pose proof(@or_introl $_{-}X$ $H1$).	left.
5	$\vee I_2$	$\frac{H1:C}{X\vee C}$	pose proof(or_intror (A:= X) $H1$). or pose proof(@or_intror $X = H1$).	right.
6	$\vee E$	$\begin{array}{c} H1:A\vee B\\ H2:A\Rightarrow C\\ \underline{H3:B\Rightarrow C}\\ \hline C \end{array}$	pose proof(or_ind $H2\ H3\ H1$). or destruct $H1$. ($H2$ and $H3$ are not needed)	_
7	$\Rightarrow I$	assumption/discharge	assert(A->B). intros Hn .	intros Hn .
8	$\Rightarrow E$	$\begin{array}{c} H1: A \Rightarrow B \\ \hline H2: A \\ \hline B \end{array}$	${ t pose proof}(H1\;H2)$.	apply $H1$.
9	$\neg I$	$\frac{H1:A\Rightarrow\bot}{\neg A}$	pose proof $(H1: \tilde{\ }A)$.	_
10	$\neg E$	$\frac{H1: \neg A}{A \Rightarrow \bot}$	unfold not in *.	unfold not.
11	$\Leftrightarrow I$	$\begin{array}{c} H1: A \Rightarrow B \\ H2: B \Rightarrow A \\ \hline A \Leftrightarrow B \end{array}$	${\tt pose\ proof(conj}\ H1\ H2\!:\!A\!\!<\!\!-\!\!>\!\!B).$	split.
12	⇔E	$\frac{H1:A\Leftrightarrow B}{H2:(\dots A\dots)}$ $\frac{(\dots B\dots)}{(\dots B\dots)}$	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.
13	$\perp E$	$\frac{H1:\bot}{X}$	${\tt destruct}\ H1.$	exfalso.
14	op I		${ t pose proof}({ t I}).$	_
15	$\forall I$	assumption/discharge	<u> </u>	$\verb"intros"c$
16	$\forall E$	$\frac{H1: \forall x, Px}{c \text{ is a constant}}$	${\tt pose}\;{\tt proof}(H1\;c).$	_
17	$\exists I$	$ \frac{c \text{ is a constant}}{H1:Pc} \\ \underline{\exists x, Px} $	${\tt pose\ proof(ex_intro}\ P\ c\ H1).$	exists c .
18	$\exists E$	$ \frac{H1: \exists x, Px}{c \text{ is a constant (fresh)}} $ $ \frac{Pc}{c} $	$\mathtt{destruct}\ H1.$	_
19	=I	$\frac{c \text{ is a constant}}{c = c}$	${\tt pose\ proof(eq_refl\ }c).$	reflexivity
20	=E	c is a constant d is a constant $H1: c = d$ $H2: Pc$ Pd	rewrite $H1$ in $H2$. or rewrite <- $H1$ in $H2$.	rewrite $H1$. or rewrite <- $H1$.
21	LEM	$\overline{X \vee \neg X}$	pose proof (classic X).	_