

\sim $_{-}$	_1 _	_	15ME427	
	Ne.	•		ı.
\mathbf{v}	uv	•		L

_	 	 	 	
Register				
Register		i		
λ/				
Number			l	

IV Semester Diploma Examination, Nov./Dec. 2017

BASIC THERMAL ENGINEERING-I

Time	: 3 Hours]	Max. Marks: 100
Note :	 (i) Answer any six questions from Part – A. (ii) Answer any seven full questions from Part – B. 	
1. P	PART – A Prove that the difference between two specific heats of a gas is constant.	s equal to its gas
2. V	With neat sketch, explain free expansion process.	BETA CONSOLE!
C	0.05 m^3 of air at 500 kPa and 200 °C is expanded adiabatically to change in internal energy. Take R = 0.287 kJ/kg - °k, C _p = 1.00 v = 1.4.	Diploma - [All Branches] 100 kPa. Calculate ducation 45 kj/kg ® k and 5
4. L	ist the conditions for reversibility and main causes for the irrevers	ibility of a cycle. 5 Diploma Question Papers [2015-
5. D	Derive an expression for air standard efficiency of an Otto cycle liagrams.	19]
6. E	explain the nomenclature associated with an IC-Engine.	5
7. V	Vith neat sketch explain the rope brake dynamometer.	5
(a (t (c	b) Absorptivity c) Reflectivity d) Transmissivity	5
9. L	ist any five comparisions of open cycle and closed cycle gas turbin	nes. 5
	1 of 4	[Turn over
	,	

PART - B

3 Define the following properties of a Gas: 10. (a) Enthalpy (ii) Entropy (iii) Internal energy A chamber of volume 25 m³, pressure of 1.026 bar and temperature of 25 °C is to be reduced to pressure of 0.32 bar and temperature of 5 °C. How many kg of air must be removed from the chamber? Express this mass as volume measured at 1.026 bar and 25 °C. Take R = 287 J/kg - °k. 5 State first and second law of thermodynamics. (a) 11. A steel vessel of mass 1.75 kg contains 7.25 kg of water at a temperature of (b) 23 °C. Find heat required to warm the vessel and water to 85 °C. Take specific heat of steel as 0.49 kJ/kg - °k and specific heat of water = 4.187 kJ/kg - °k. Explain the throttling process. 12. (a) One kg of air at a temperature of 40 °C is compressed isothermally from a (b) pressure of 1.5 bar to 6 bar. Determine the heat rejected during the process. Take $C_p = 1.005 \text{ kJ/kg} - {}^{\circ}\text{k}$ and $C_V = 0.712 \text{ kJ/kg} - {}^{\circ}\text{k}$. Diploma - [All Branches] Derive an expression for work done during polytropic process. 13. (a) A quantity of air has a volume of 60.5 lts and a pressure of 7.23 bar. IT is (b) expanded in a cylinder to a pressure of 1.08 bar. Calculate the work done, if the expansion is : (i) Isothermal (ii) Adiabatic (iii) PV^{1.2} = C Diploma Question Papers [2015-Take $\gamma = 1.4$. With the help of P-V and T-S diagrams, derive an expression for air standard 10 efficiency of dual combustion cycle. 5 State the assumptions ARA made in Air Standards Cycles. 15. (a) In an ideal diesel cycle, the temperature at the beginning and end of (b) compression are 57 °C and 603 °C respectively. While those at the beginning and end of expansion are 1950 °C and 870 °C respectively. Determine per kg of working fluid for which $R = 0.287 \text{ kJ/kg} - {}^{\circ}\text{k}$ and $\gamma = 1.4$. The heat received in kJ. (i) (ii) The heat rejected in kJ (iii) The work done in kJ. (iv) Ideal thermal efficiency If the compression ratio is 14:1 and pressure at the beginning of compression is 100 kPa determine the maximum pressure in cycle.

5

5

- 16. With neat sketches, explain construction and working of four stroke petrol engine. 10
- 17. The following observations were made during a test on two stroke cycle oil engine: 10 Cylinder dimensions 20 cm Bore, 25 cm stroke. Speed 6 rps. Effective brake drum diameter = 1.2 mts. Net break load = 440 N. Imep = 280 kPa; Fuel oil consumption = 3.6 kg/hr. C.V. of fuel oil = 42,500 kJ/kg; mass of jacket cooling water per hour = 468 kg; Rise in temperature of jacket cooling water = 28 °C. Air used/kg of fuel oil = 34 kg. Temperature of air in test house = 30 °C. Temperature of exhaust gases = 400 °C. Mean specific heat of exhaust gases = 1 kJ/kg. °k.

Draw up heat balance sheet in kJ/min as % of the heat supplied to the engine. Also calculate : IP, η_{mech} and BMEP.

18. (a) Write the comparisons of petrol and diesel engines.

(b) Derive and expression for Heat Transfer by conduction through a composite wall.

19. (a) A glass windows of a room have a total area of 10 m² and the glass is 4 mm thick. Calculate the quantity of heat that escapes from the room by conduction per second when the inside surfaces of windows are at 25 °C and the outsiden a - [All Branches] surfaces at 10 °C. The value of 'k' is 0.84 w/mk.

(b) With neat sketch explain the working of RAM-JET engine.

Diploma Question Papers [2015

