Tutoricl: 04

Solution:
$$L$$
 $T_f = \frac{L}{R} = \frac{1000}{1\times10^6} = L m sec$

$$O$$
 $V = \frac{1}{1+2A}$ $A = \frac{Tp}{T_f} = \frac{270 \text{ m/e}}{1 \text{ m/e}} = 270$

$$= \frac{1}{1+2\times270} = 0.0018 \quad \text{or} \quad 0.18\%$$

$$OU = \frac{127}{1+2\times270} = 0.2347 \text{ or } 23.47\%$$

a
$$u = \frac{255}{1+2x270} = 0.4713 \text{ or } 47.13\%$$

Solution: 2 Civen probability of a single frame to be in error p = 0.01 = Pf

(a) link
$$0$$
 link 0 link 0

= 0.00183 or 0.183%

$$U = \frac{127(1-0.01)}{1+2\times270} = 0.2324 \text{ or } 23.24\%$$

①
$$U = \frac{255(1-0.01)}{1+2\times270} = 0.4666 \text{ or } 46.66\%$$

Johnson: 3 Ceo to PPT 10. Lecture-performance analysis Slide Na & 3 and 8

Solution: 4 Cliver L = 1000 bits in one packet

Total Lize of data = 106 bits

Humber of packets = $\frac{10^6}{1000} = 10^3$ $T_p = \frac{5000 \times 10^3}{2 \times 10^8}$ See = 0.025 see

Time taken by one frame = $2 \times T_p = 0.05$ see

Time taken by 1000 frames = 50 see Any

Scanned with CamScanner

Solution: 5 Before sending any frames.

After sending frames 0,1,2 and Backnowledge 0,1 (Ack received by A)

C) After A sends frame 3,4 and 5 and B acknowledges 4 and the ACK is received by A 0 1 2 3 4 5 6 7 0 1 2 3 4 5 ...