МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

КУРСОВАЯ РАБОТА

по дисциплине «Программирование»

Тема: Хранение и обработка числовых данных на основе файлов и массивов

Студент гр. 4354	 Чучалин И. В.
Преподаватель	 Калмычков В.А.

Санкт-Петербург

ЗАДАНИЕ

НА КУРСОВУЮ РАБОТУ

Студент Чучалин И.В.

Группа 4354

Тема работы: хранение и обработка числовых данных на основе файлов и

массивов.

Исходные данные: реализовать алгоритм на основе разбиения программы на

набор функций с параметрами. Программа не должна содержать

стандартных и библиотечных типов и связанных с ними функций. Должны

быть учтены все составляющие формулировки задания и выполнены

действия, причем в качестве результата должны быть

предложены все варианты, удовлетворяющие заданию. Программа должна

предоставлять возможность неоднократного выполнения действий.

Содержание пояснительной записки:

Исходная формулировка задания, математическая постановка задачи,

описание алгоритма, текст программы, вывод программы, выводы.

Предполагаемый объем пояснительной записки:

Не менее 15 страниц.

Дата выдачи задания: 22.11.2024

Дата сдачи реферата:

Дата защиты реферата:

Чучалин И.В. Студент

Преподаватель Калмычков В.А.

АННОТАЦИЯ

В данной курсовой работе рассмотрена работа с числовыми данными, файлами, массивами и функциями на примере языка С++. Необходимо корректно составить математическую постановку задачи, обработать файл с исходными данными, при помощи двухмерных или трёхмерных массивов организовать хранение данных и с помощью функций реализовать программу для решения геометрической задачи. Результатом выполнения курсовой работы служит программа, способная решать геометрическую задачу с разными начальными условиями и реагирующая на некорректные данные.

SUMMARY

In this course work, work with numeric data, files, arrays and functions is considered using the example of the C++ language. It is necessary to correctly formulate a mathematical statement of the problem, process the file with the initial data, organize data storage using two-dimensional or three-dimensional arrays and use functions to implement a program to solve a geometric problem. The result of the course work is a program capable of solving a geometric problem with different initial conditions and responding to incorrect data.

Содержание:

Исходная формулировка задания	5
Ограничения на исходные данные	5
Математическая постановка задачи	5
Дано	5
Найти	5
Способ решения	5
Вычислим длины сторон:	5
Контрольный пример	5
Организация интерфейса пользователя	6
Макет ввода/вывода	6
Реализация вывода в консоль	6
Внутренний формат хранения данных	6
Работа с файлами	7
Описание функций	7
Синтаксис	7
Назначение	7
Описание алгоритма	8
Текст программы	11
Вывод программы	15
Drynawy	1.6

Исходная формулировка задания

Дано N точек на плоскости. Для всех треугольников, образуемых любыми тремя точками, определить, является ли треугольник остроугольным.

Ограничения на исходные данные

Будем обрабатывать не больше 50 точек ($N \le 50$).

Математическая постановка задачи

Дано N точек на плоскости.

Найти все остроугольные треугольники, образуемые любыми тремя точками.

Способ решения

Вычислим длины сторон:

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 $|AC| = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}$ $|BC| = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}$

Получив внутренние углы, можно определить остроугольность треугольника – если все углы меньше 90 градусов, то треугольнк остроугольный.

Контрольный пример

Рассмотрим треугольник с вершинами (872;-98), (78;7), (78;3):

Вычислим длины сторон: $|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(78 - 872)^2 + (7 - (-98))^2} =$ $=\sqrt{(-794)^2+105^2}=\sqrt{630436+11025}=\sqrt{641461}\approx 800.91260447;$ $|AC| = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(78 - 872)^2 + (3 - (-98))^2} =$ $=\sqrt{(-794)^2+101^2}=\sqrt{630436+10201}=\sqrt{640637}\approx 800.39802598;$ $|BC| = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(78 - 78)^2 + (3 - 7)^2} =$ $=\sqrt{0^2+(-4)^2}=\sqrt{0+16}=\sqrt{16}=4$.

Въмислим Внутренние углы по теореме косинусов:
$$\cos \angle A = \frac{|AB|^2 + |AC|^2 - |BC|^2}{2 \cdot |AB| \cdot |AC|} = \frac{(\sqrt{641461})^2 + (\sqrt{640637})^2 - 4^2}{2 \cdot \sqrt{641461} \cdot \sqrt{640637}} = \frac{641461 + 640637 - 16}{2\sqrt{410943650657}} = \frac{1282082}{2\sqrt{410943650657}} = \frac{641041}{410943650657} \sqrt{410943650657},$$

$$\angle A = \arccos\left(\frac{641041}{410943650657}\sqrt{410943650657}\right) \approx 0.0049544 = \left(0.0049544 \cdot \frac{180}{\pi}\right)^0 \approx 0.28386625^\circ;$$

$$\cos \angle B = \frac{|AB|^2 + |BC|^2 - |AC|^2}{2 \cdot |AB| \cdot |BC|} = \frac{(\sqrt{641461})^2 + 4^2 - (\sqrt{640637})^2}{2 \cdot \sqrt{641461} \cdot 4} = \frac{641461 + 16 - 640637}{8\sqrt{641461}} = \frac{840}{8\sqrt{641461}} = \frac{105}{641461} \sqrt{641461},$$

$$\angle B = \arccos\left(\frac{105}{641461}\sqrt{641461}\right) \approx 1.4393174 = \left(1.4393174 \cdot \frac{180}{\pi}\right)^0 \approx 82.46681248^\circ;$$

$$\cos \angle C = \frac{|AC|^2 + |BC|^2 - |AB|^2}{2 \cdot |AC| \cdot |BC|} = \frac{(\sqrt{640637})^2 + 4^2 - (\sqrt{641461})^2}{2 \cdot \sqrt{640637} \cdot 4} = \frac{640637 + 16 - 641461}{8\sqrt{640637}} = \frac{-808}{8\sqrt{640637}} = -\frac{101}{640637}\sqrt{640637},$$

$$\angle C = \arccos\left(-\frac{101}{640637}\sqrt{640637}\right) \approx 1.69732085 = \left(1.69732085 \cdot \frac{180}{\pi}\right)^0 \approx 97.24932127^\circ;$$

Организация интерфейса пользователя Макет ввода/вывода

E 1/1	ввида/вывида
Fresult1.	formed triples of coordinates:
Fresult2.	d_d.d_d.d_dd_d.d_d d_d.d_d d_d.d_d d_d.d_d d_d.d_d
Fresult3.	Task: Find all acute-angled triangles formed by any three points
Fresult4.	number of acute-angled triangles:dd
Fresult5.	acute-angled triangles:
Fresult6.	d_d (d_d). 1. (d_d;d_d) 2. (d_d;d_d) 3. (d_d;d_d)
Fresult7.	this file is not open or does not exist. please, restart the programm
Fprotocol1.	result file is not open or does not exist. please, restart the programm
Fprotocol2.	this file is not open or does not exist. please, restart the programm
Fprotocol3.	Specified number of points (dd) has been reduced to N
Fprotocol4.	Readed number of points: dd
Fprotocol5.	Real number of points: dd
Fprotocol6.	number of acute-angled triangles: dd
Fprotocol7.	end of inputFile
Fprotocol8.	there is no paired coordinate for x (d_d.d_d)
Fprotocol9.	d_d.d_d.d_dd_d.d_d d_d.d_d d_d.d_d d_d.d_d d_d.d_d
Fprotocol10.	This is an acute-angled triangle.
Fprotocol11.	This is not an acute-angled triangle.
Fprotocol12	Selected file:
Cin1.	d
Cin2.	\n
Cout1.	protocol file is not open or does not exist. please, restart the programm
Cout2.	result file is not open or does not exist. please, restart the programm
Cout3.	available files:
Cout4.	d. "ind.txt"
Cout5.	select the file to open:
Cout6.	error: this file is not exist. please, press enter to try again:
Cout7.	this file is not open or does not exist. please, restart the programm
inpurFile1.	S_S
inputFile2.	dd.dd

Реализация вывода в консоль

Библиотека	Вывод
iostream	std::cout <<

Внутренний формат хранения данных

DHYTPCI	ннии формат х	ранения данных			
Имя	Тип	Назначение			
N	const	Ограничение колличества считываемых точек			
	unsigned				
fresult	fstream	Файл результата			
fprotocol	fstream	Файл протокола			
P[]	bool	Масиив для хранения истиности остроугольности			
inputFile	fstream	Входной файл			
x[], y[]	float	Массив считываемых точек			
XP[][],	long double	Двумерный массив с тройками координат			
YP[][]					
tryAgain	char	Вспомогательная			
file	unsigned				

fileselected	bool	
big_number	int	Необработанное считанное число точек
real_number		Обработанное считанное число точек
number		Реальное число точек
result		Число острых треугольников
index		Число троек координат
i, j , k		Перемнные для счета
S	char	Вспомогательная
tmp_x	float	
tmp_y		
longest	int	
x, y ,z		
x1, y1, x2, y2	double	

Работа с файлами

Для работы с файлами используется библиотека «fstream».

——————————————————————————————————————					
Метод	Описание				
fstream f	Создание файловой переменной				
f.open("file.txt", ios::out)	Открытие файла на запись				
f.open("file.txt", ios::in)	Открытие файла на чтение				
filein.seekg(-1, ios::cur);	Перемещение курсора назад относительно текущего				
	положения				
filein >> noskipws	Чтение пробелов, символов перехода на новую строку				
f.is_open()	Определяет, открыт ли файл				
f.eof()	Проверка на конец файла				
f <<	Запись данных в файл				
f >>	Чтение данных из файла				

Описание функций

Синтаксис

Имя	Тип	Параметры				
	возвращаемого	Тип Имя		Изменение		
	значения					
readFile	int	Fsream	inputFile	&		
		Float	x[N], y[N]	-		
		int	big_number,	&		
			real_number, number			
pointsCreation	void	Float	x[N], y[N]	-		
		Long double	XP[100000][3],	-		
		YP[100000][3]				
		Int real_number		-		
		Int	index	&		
proccess	int	Long double	XP[100000][3],	-		
			YP[100000][3]			
		Int	result	&		
		Int	index	-		
distance	double	double	x1, y1, x2, y2	-		
main	void	-	-	-		

Назначение

Имя	Параметры	Назначение
-----	-----------	------------

readFile	Возращ . знач. 0, -1, -2, -3, number	Внешн ие измене ния -	Вход ной inputF ile	Выходн ой x[], y[], big_num ber, real_nu mber,	Модифицир уемый fprotocol	Транзит ный	Считывает координат ы из файла, отфильтров ывая все
pointsCre ation	-	-	x[], y[]	number XP[][], YP[][], index	fprotocol, fresult	real_nu mber	лишнее Создает уникальны е тройки координат
process	0	-	XP[][] , YP[][] , index	result	fprotocol	index	Проверяет треугольни к на остроуголь ность
distance	sqrt(po w(x1 - x2, 2) + pow(y1 - y2, 2))	-	x1, y1, x2, y2	-	-	x1, y1, x2, y2	Высчитыва ет длины сторон треугольни ка
main	-	Открыт ие файлов , резерва ция памяти для массив ов	-	-	fprotocol, fresult	-	Основная функция программы

Описание алгоритма

Программа берет точки и задает треугольники, затем проверяет их на остроугольность. Результат работы программы выводится в файл «result.txt». Все действия программы фиксируются в протоколе «protocol.txt». Блок-схема работы программы представлена ниже:

pointsCreation process main

readFile

```
Текст программы
#include <iostream>;
#include <iomanip>;
#include <math.h>;
#include <fstream>;
using namespace std;
const unsigned N = 50;
fstream fresult, fprotocol;
bool P[10000];
int readFile(fstream& inputFile, float x[N], float y[N], int& big_number, int& real_number, int& number); void pointsCreation(float x[N], float y[N], long double XP[100000][3], long double YP[100000][3], int
real_number, int& index);
int process(long double XP[10000][3], long double YP[10000][3], int& result, int index);
double distance(double x1, double y1, double x2, double y2);
void main(void)
{
         fstream inputFile;
         float x[N], y[N]; long double XP[10000][3], YP[10000][3]; char tryAgain = '!'; unsigned file;
bool fileSelected = false;
         int big_number = 0, real_number = 0, number = 0, result = 0, index = 0, i, j = 0;
         fresult.open("result.txt", ios::out);
         fprotocol.open("protocol.txt", ios::out);
         if (!fprotocol.is_open())
         {
                  cout << "protocol file is not open or does not exist. please, restart the programm";</pre>
                  return;
         if (!fresult.is_open())
                  cout << "result file is not open or does not exist. please, restart the programm";
                  fprotocol << "result file is not open or does not exist. please, restart the programm";</pre>
                  return:
         //file selection
         while (fileSelected != true)
         {
                  cout << skipws << "available files:\n";</pre>
                  cout << "\t0. \"in.txt\"\n";</pre>
                  cout << "\t1. \"in1.txt\"\n";
                  cout << "\t2. \"in2.txt\"\n";
cout << "\t3. \"in3.txt\"\n";</pre>
                  cout << "\t4. \"in4.txt\"\n";</pre>
                  cout << "\t5. \"in5.txt\"\n";</pre>
                  cout<<"select the file to open : ";</pre>
                  cin >> file;
                  switch (file)
                  case 0:
                  {
                           inputFile.open("in.txt", ios::in);
                           fileSelected = true;
                           fprotocol << "selected file: in.txt\n";</pre>
                           break:
                  }
                  case 1:
                           inputFile.open("in1.txt", ios::in);
                           fileSelected = true;
                           fprotocol << "selected file: in1.txt\n";</pre>
                           break;
                  }
                  case 2:
                  {
                           inputFile.open("in2.txt", ios::in);
                           fileSelected = true;
                           fprotocol << "selected file: in2.txt\n";</pre>
                           break:
                  }
                  case 3:
                  {
                           inputFile.open("in3.txt", ios::in);
```

```
fileSelected = true;
                            fprotocol << "selected file: in3.txt\n";</pre>
                  }
                  case 4:
                            inputFile.open("in4.txt", ios::in);
                            fileSelected = true;
                            fprotocol << "selected file: in4.txt\n";</pre>
                  }
                  case 5:
                  {
                            inputFile.open("in5.txt", ios::in);
                            fileSelected = true;
                            fprotocol << "selected file: in5.txt\n";</pre>
                            break;
                  default:
                            cout << "\nerror: this file is not exist. please, press enter to try again: " <</pre>
noskipws;
                            cin.ignore();
                            cin.get();
                            system("cls");
                            fileSelected = false;
                            break;
                  }
                  }
         //checking file opening
         if (!inputFile.is_open())
                  cout << "this file is not open or does not exist. please, restart the programm";
                  fprotocol << "this file is not open or does not exist. please, restart the programm";</pre>
                  fresult << "this file is not open or does not exist. please, restart the programm";</pre>
                  return;
         //checking number of points
         switch (readFile(inputFile, x, y, big_number, real_number, number))
         case 0:
         {
                  cout {\ensuremath{\ensuremath{\,^{\prime\prime}}}} "since the number of points is zero, programm cannot be executed";
                  fprotocol << "since the number of points is zero, programm cannot be executed";</pre>
                  return;
         }
         case -1:
                  cout << "the number of points cannot be less than zero";</pre>
                  fprotocol << "the number of points cannot be less than zero";</pre>
                  return;
         }
         case -2:
         {
                  cout << "file is empty";</pre>
                  fprotocol << "file is empty";</pre>
                  return;
         }
         case -3:
                  cout << "file reading error";</pre>
                  fprotocol << "file reading error";</pre>
                  return;
         }
         if (big_number != 0)
                  //cout << "specified number of points (" << big_number << ") has been reduced to " << N <<
'\n';
                  fprotocol << "specified number of points (" << big_number << ") has been reduced to " << N
<< '\n';
         //cout << "readed number of points: " << number << '\n';
//cout << "real number of points: " << real_number << '\n';</pre>
         fprotocol << "readed number of points: " << number << '\n';
fprotocol << "real number of points: " << real_number << '\n';</pre>
```

```
pointsCreation(x, y, XP, YP, real_number, index);
          process(XP, YP, result, index);
          //cout << "number of acute-angled triangles:" << result;</pre>
          fprotocol << "number of acute-angled triangles:" << result;</pre>
          fresult << "Task: Find all acute-angled triangles formed by any three points \n";
          fresult << "number of acute-angled triangles:" << result << '\n';
fresult << "acute-angled triangles:\n";</pre>
          for (i = 0; i < index; i++)
                     if (P[i] == true)
                               j++;
fresult << setw(2) << left << j << " (" << setw(3) << i << ")." << right << "\t1." << '(' << setw(7) << left << XP[i][0] << ";" << setw(7) << right << YP[i][0] << ')' << "\t2." << '(' << setw(7) << left << XP[i][1] << ";" << setw(7) << right << YP[i][1] << ')' << "\t3." << '(' << setw(7) << left << XP[i][2] << ";" << setw(7) << right << YP[i][2] << ')' << endl;
          inputFile.close();
int readFile(fstream& inputFile, float x[N], float y[N], int& big_number, int& real_number, int& number)
          int i = 0; char s = '!'; float tmp_x, tmp_y;
          inputFile >> number;
          //checking number of points
          if (inputFile.eof())
          {
                     return -2;
          else if (number < 0)
                    return -1;
          else if (number == 0)
                    return 0;
          //programm will work
          else
                    if (number > N)
                    {
                               big_number = number;
                               number = N;
                    while(i < number)</pre>
                               inputFile << skipws;</pre>
                               inputFile >> tmp_x;
                               if (inputFile.eof())
                               {
                                         fprotocol << "end of inputFile\n";</pre>
                                         return number;
                               }
                               else
                                         inputFile << noskipws;</pre>
                                         do inputFile >> s;
while (s == ' ' || s == '\t');
                                         if (s == '\n')
                                         {
                                                    //реакция на то, что есть только х
                                                    fprotocol << "there is no paired coordinate for x (" << tmp_x <<</pre>
")\n";
                                                    continue;
                                         else if (inputFile.eof())
                                         {
                                                    //реакция на то, что есть только х
                                                    fprotocol << "there is no paired coordinate for x (" << tmp_x <<</pre>
")\n";
                                                    return number::
                                         else
                                         {
                                                    inputFile.seekg(-1, ios::cur);
```

```
s = '!';
                                           inputFile << skipws;</pre>
                                           inputFile >> tmp_y;
                                           if (inputFile.eof())
                                                    //реакция на конец файла
                                                    fprotocol << "end of inputFile\n";</pre>
                                                    return number:
                                           else
                                           {
                                                    x[i] = tmp_x;
                                                    y[i] = tmp_y;
                                                    //cout << i+1 << ".\t" << x[i] << ' ' << y[i] << '\n';
fprotocol << i + 1 << ".\t" << x[i] << ' ' << y[i] <<
'\n';
                                                    i++;
                                                    real_number = i;
                                                    inputFile << noskipws;</pre>
                                                   while (!inputFile.eof() && s != '\n') inputFile >> s;
                                           }
                                  }
                          }
                 return number:
        return -3;
void pointsCreation(float x[N], float y[N], long double XP[100000][3], long double YP[100000][3], int
real_number, int& index)
         int i, j, k;
         for (i = 0; i < real_number; i++)</pre>
                 for (j = i + 1; j < real_number; j++)</pre>
                          for (k = j + 1; k < real\_number; k++)
                                  XP[index][0] = x[i];
                                  XP[index][1] = x[j];
                                  XP[index][2] = x[k];
                                  YP[index][0] = y[i];
                                  YP[index][1] = y[j];
                                  YP[index][2] = y[k];
                                  index++;
                          }
         //cout << endl;</pre>
         fresult << "formed triples of coordinates:\n";</pre>
         for (i = 0; i < index; i++) {
YP[i][1] << "\t\t" << XP[i][2] << " " << YP[i][2] << endl;</pre>
        }
         return;
int process(long double XP[10000][3], long double YP[10000][3], int& result, int index)
        int longest, x, y, z, i;
         for (i = 0; i < index; i++)
                 x = distance(XP[i][0], YP[i][0], XP[i][1], YP[i][1]);
                 y = distance(XP[i][1], YP[i][1], XP[i][2], YP[i][2]);
z = distance(XP[i][2], YP[i][2], XP[i][0], YP[i][0]);
                 longest = z;
                 if (longest < x) {</pre>
                          z = longest;
                          longest = x;
                          x = z;
                 if (longest < y) {</pre>
```

Вывод программы

Контрольный пример: входной файл (рис. 5), файл с результатом (рис. 6), протокол (рис. 7).

```
1 20
2 872 -98
3 4.32
4 67
5 6 0 1 2
7 78 7
8 -93 0.9084
9 56 0.45
10 2 3
11 -1 -34
12 78 3
13 -23 0.5
14 2 2
15 59 -10
16 0.45 -12.973
```

Рисунок 5.

				Сун				
Task: F	ind all	acute-an	gled tria	angles	forme	d by any	three p	oints
Acute-a	ngled tr	iangles:						
1 (15). 1.(872 ;	-98)	2.(78		7)	3.(78	; 3)
2 (35). 1.(872 ;	-98)	2.(2		3)	3.(-1	-34)
3 (38). 1.(872	-98)	2.(2		3)	3.(2	2)
4 (40). 1.(872 ;	-98)	2.(2		3)	3.(0.45	;-12.973)
5 (43). 1.(872	-98)	2.(-1		-34)	3.(2	; 2)
6 (45). 1.(872 ;	-98)	2.(-1		-34)	3.(0.45	;-12.973)
7 (54). 1.(872	-98)	2.(2		2)	3.(0.45	;-12.973)
8 (60). 1.(0 ;	1)	2.(78		7)	3.(78	; 3)
9 (67). 1.(Θ ;	1)	2.(-93		0.9884)	3.(-1	-34)
10 (74). 1.(0 ;	1)	2.(56		0.45)	3.(-1	-34)
11 (79). 1.(Θ ;	1)	2.(56		0.45)	3.(0.45	;-12.973)
12 (83). 1.(0 ;	1)	2.(2		3)	3.(2	2)
13 (87). 1.(Θ ;	1)	2.(-1		-34)	3.(-23	(0.5)
14 (89). 1.(0 ;	1)	2.(-1		-34)	3.(59	; -10)
15 (94). 1.(Θ ;	1)	2.(78		3)	3.(0.45	;-12.973)
16 (104). 1.(78 ;	7)	2. (-93		0.9084)	3.(78	; 3)
17 (111). 1.(78 ;	7)	2.(56		0.45)	3.(78	; 3)
18 (117). 1.(78 ;	7)	2.(2		3)	3.(78	; 3)
19 (119). 1.(78 ;	7)	2.(2		3)	3.(2	; 2)
20 (127). 1.(78 ;	7)	2.(78		3)	3.(-23	(0.5)
21 (128). 1.(78 ;	7)	2.(78		3)	3.(2	; 2)
22 (144			0.9084)				3.(-1	-34)
23 (147). 1.(0.9084)			3)	3.(2	; 2)
24 (149			0.9084)				3.(0.45	;-12.973)
25 (152). 1.(-93 ;	0.9084)	2.(-1			3.(2	; 2)
26 (163			0.9084)			2)	3.(0.45	;-12.973)
27 (168). 1.(56 ;	0.45)			3)	3.(2	; 2)
28 (178). 1.(56 ;	0.45)	2.(78		3)	3.(59	; -10)
29 (187				2.(-1			3.(-23	; 0.5)
30 (189				2.(-1			3.(59	; -10)
31 (192				2.(78			3.(2	; 2)
32 (195). 1.(2 ;	3)	2.(-23		0.5)	3.(2	; 2)
33 (197				2.(-23			3.(0.45	;-12.973)
34 (198				2.(2			3.(59	; -10)
35 (200). 1.(2 ;		2.(59		-10)	3.(0.45	;-12.973)
36 (205			-34)	2.(-23		0.5)	3.(2	; 2)
37 (208). 1.(-1 ;	-34)	2.(2		2)	3.(59	; -10)
38 (218		-23 ;	0.5)	2.(2		2)	3.(0.45	;-12.973)
39 (228). 1.(2 ;	2)	2.(59		-10)	3.(0.45	;-12.973)

Рисунок 6.

```
selected file: in.txt
1. 872 -98
there is no paired coordinate for x (4.32)
there is no paired coordinate for x (67)
2. 01
3. 78 7
4. -93 0.9084
5. 56 0.45
6. 23
   -1 -34
8. 78 3
   -23 0.5
10. 2 2
11. 59 -10
12. 0.45 -12.973
end of inputFile
readed number of points: 20
real number of points: 12
formed triples of coordinates:
1. 872 -98
                0 1
                        78 7
2. 872 -98
                        -93 0.9084
                0 1
3. 872 -98
                0 1
                        56 0.45
                        2 3
   872 -98
                0 1
```

•••

```
219. -23 0.5 59 -10 0.45 -12.973
220. 2 2 59 -10 0.45 -12.973

Analyzing triangles...

a: 877
b: 78
c: 800
1. This is not an acute-angled triangle.

a: 877
b: 93
c: 970
2. This is not an acute-angled triangle.
```

```
a: 58
b: 58
c: 15
220. This is an acute-angled triangle.
number of acute-angled triangles:39
```

Рисунок 7.

Выводы

В ходе данной курсовой работы были рассмотрены следующие понятия: обработка и хранение числовых данных, файловые переменные, режимы открытия и закрытия файла, проверка на то, открыт ли файл, считывание и запись информации в файл, динамическая память, указатели, арифметика указателей, удаление данных, одномерные, двумерные и трёхмерные массивы, функции, параметры функций, возвращаемое значение функций, ссылки, типы данных, условные конструкции, циклы и функция main. Также на практике была реализована программа, решающая геометрическую задачу на пересечение фигур на координатной плоскости.