Word Embedding + Word2Vec

Chihuahua is cute dog.

This is called tokenizer!!!

How to change the word to vector ???

Just using word embedding!!!

We're going to do something called Word2Vec

Vocabulary

Chihuahua

is

cute

dog

Vectors

features	Chihuahua	is	cute	dog
X	-0.08	0.1	-0.1	-0.09
у	0.1	0.02	-0.1	0.09

features	Chihuahua	is	cute	dog
Х	-0.08	0.1	-0.1	-0.09
У	0.1	0.02	-0.1	0.09

features	Chihuahua	is	cute	dog
Х	-0.08	0.1	-0.1	-0.09
У	0.1	0.02	-0.1	0.09

How can we determine whether words are similar or not?

Apply Cosine Similarity

If the θ is **closer to** 0°, then it's y probably **similar**.

What if our vocabulary is too huge and the dimension is more than 2D, How to calculate this ???

Cosine Similarity =
$$\frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}$$

7		
l		

features	Chihuahua	dog
X	-0.08	-0.09
У	0.1	0.09

Cosine Similarity =
$$\frac{\sum_{i=1}^{n} A_{i} \cdot B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$$

$$\frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}} = \frac{(-0.08 \cdot -0.09) + (0.1 \cdot 0.09)}{\sqrt{(-0.08)^2 + (0.1)^2} \cdot \sqrt{(-0.09)^2 + (0.09)^2}}$$

$$\frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}} = 0.99 \rightarrow This is the same value as cos(0.6°)$$

features	Chihuahua	is	cute	dog
X	-0.08	0.1	-0.1	-0.09
У	0.1	0.02	-0.1	0.09

But, how to get all these value ???

features	Chihuahua	is	cute	dog
Chihuahua	-0.08	0.1	-0.1	-0.09
Is	0.1	0.02	-0.1	0.09
cute	***		•••	
dog	•••			

Just apply the DEEP LEARNING

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do $R \times 2$ word classifications, with the current word as input, and each of the R+R words as output. In the following experiments, we use C=10.

One-Hot encode!!!

Chihuahua

is

cute

Chihuahua is dog <EOS>

Dog is cute <EOS>

dog

<EOS>

CBOW (Continuous bag of words)

SKIP-GRAM (Continuous skip grams)

I'm going to use CBOW

Train and save the weight of this state.

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \\ w_5 & w_6 \\ w_7 & w_8 \\ w_9 & w_{10} \end{bmatrix} = \begin{bmatrix} x_1w_1 + x_2w_3 + x_3w_5 + x_4w_7 + x_5w_9 & x_1w_2 + x_2w_4 + x_3w_6 + x_4w_8 + x_5w_{10} \end{bmatrix}$$

$$(1 \times 5)$$

$$(5 \times 2)$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \\ w_5 & w_6 \\ w_7 & w_8 \\ w_8 & w_{10} \end{bmatrix} = [h_1 \quad h_2]$$
 Random all weights
$$[h_1 \quad h_2] = [1 \quad 0 \quad 1 \quad 0 \quad 0] \times \begin{bmatrix} 0.1 & 0.6 \\ 0.3 & -0.2 \\ -0.4 & -0.2 \\ -0.1 & 0.5 \\ 0.7 & -0.1 \end{bmatrix} = [-0.3 \quad 0.4]$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] \times \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \\ w_5 & w_6 \\ w_7 & w_8 \\ w_8 & w_{10} \end{bmatrix} = [h_1 \quad h_2]$$

$$[h_1 \quad h_2] = [1 \quad 0 \quad 1 \quad 0 \quad 0] \times \begin{bmatrix} 0.1 & 0.6 \\ 0.3 & -0.2 \\ -0.4 & -0.2 \\ -0.1 & 0.5 \\ 0.7 & -0.1 \end{bmatrix} = [-0.3 \quad 0.4]$$

$$[sum_1 \quad sum_2 \quad sum_3 \quad sum_4 \quad sum_5] = [0.01 \quad -0.11 \quad -0.13 \quad 0.39 \quad -0.12]$$

$$[S_1 \quad S_2 \quad S_3 \quad S_4 \quad S_5] = [0.20 \quad 0.17 \quad 0.17 \quad 0.29 \quad 0.17]$$

Argmax

Input Output

$$\begin{bmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \longrightarrow (Chihuahua, cute) \rightarrow dog$$

But we need this answer: $[S_1 \quad S_2 \quad S_3 \quad S_4 \quad S_5] = [0 \quad 1 \quad 0 \quad 0 \quad 0] \rightarrow is$

Loss Calculation

$$CE = -\sum_{i=1}^{n} Observed \cdot \log(Softmax_i)$$

$$CE = -\log(0.17)$$

$$CE = 0.76$$

Then, Backpropagation

Time to code in

1. Import Library

2. Do Tokenizer

```
sentence = "Chihuahua is cute dog"
                                                                                               Train data
                                    ✓ 0.0s
                               D ~
                                      def tokenizer(sentence):
                                         vocabulary = sentence.split()
                                         vocabulary.append("<EOS>")
                                                                                           Tokenizer function
                                         return vocabulary
Do tokenizer
                                        → tokens = tokenizer(sentence)
                                           print(tokens)
                                       ✓ 0.0s
                                [8]
                                ··· ['Chihuahua', 'is', 'cute', 'dog', '<EOS>']
           Output
```

3. Convert Tokens to One Hot Vector

```
D ~
        def vocabulary one hot encoder(tokens):
             results = []
             for i, _ in enumerate(tokens):
                 one_hot_encode_vector = [0. for i in range(len(tokens))]
                                                                                                        One hot vector
                 for j in range(i + 1):
                                                                                                        encoder function
                     one hot encode vector[j] = 1. if j == i else 0.
                 results.append(one_hot_encode_vector)
             return results
                                                                                                        Output
      ✓ 0.0s
                                                                            + Code
        training x = vocabulary one hot encoder(tokens)
        print(training_x)
      ✓ 0.0s
     [[1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]
```

4. Make CBOW Training Data

Context size it to define the words surrounding size.

Example: CONTEXT_SIZE=2 [0.25, 0.25, 0.25, 0.25]

5. Declaring Deep Learning The Model

```
class CBOWModeler(nn.Module):
    def __init__(self, volcabulary_size, embedding_dim):
                                                                                                     Layers
       super(CBOWModeler, self).__init__()
       self.linear1 = nn.Linear(volcabulary_size, embedding_dim, bias=False)
       self.linear2 = nn.Linear(embedding dim, volcabulary size, bias=False)
   def forward(self, x):
       out = self.linear1(x)
                                                                                                Forward propagation
       out = self.linear2(out)
       return F.softmax(out, dim=-1)
   def save_embedding_model(self):
                                                                                                 Save weights for
       params = self.linear1.state_dict()
       torch.save(params, "./embedding_model.pt")
                                                                                                 linear1 layer.
0.0s
```

6. Training Setup

```
Loss Function
        EMBEDDING DIM = 2
        losses = []
        loss_function = nn.CrossEntropyLoss() 
                                                                                            Model.to(device)
        model = CBOWModeler(len(tokens), EMBEDDING_DIM).to(device) 
        optimizer = optim.Adam(model.parameters(), lr=0.001)
                                                                                            means to using
                                                                                            GPU.
        print(model)
     ✓ 0.7s
[12]
    CBOWModeler(
      (linear1): Linear(in_features=5, out_features=2, bias=False)
                                                                                      Optimizer
      (linear2): Linear(in features=2, out features=5, bias=False)
```

7. Training Step

7. Losses Inspection

View Result

