SUMESH R -20104169

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:
 df = pd.read_csv("11_winequality-red.csv")
 df

Out[2]:		fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qι
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
	•••			•••									
	1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	

0.062

0.076

0.075

0.067

39.0

29.0

32.0

18.0

51.0 0.99512 3.52

40.0 0.99574 3.42

44.0 0.99547 3.57

42.0 0.99549 3.39

0.76

0.75

0.71

0.66

11.2

11.0

10.2

11.0

1599 rows × 12 columns

5.9

6.3

5.9

6.0

0.550

0.510

0.645

0.310

0.10

0.13

0.12

0.47

2.2

2.3

2.0

3.6

1595

1596

1597

1598

In [3]: df.head()

Out[3]: free total fixed volatile citric residual sulfur chlorides sulfur pH sulphates alcohol qualit density acidity acidity acid sugar dioxide dioxide 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qualit
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	

Data cleaning and pre processing

```
In [4]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1599 entries, 0 to 1598
        Data columns (total 12 columns):
             Column
                                   Non-Null Count Dtype
         0
             fixed acidity
                                                   float64
                                   1599 non-null
                                   1599 non-null
             volatile acidity
                                                   float64
         1
         2
             citric acid
                                   1599 non-null
                                                   float64
         3
             residual sugar
                                   1599 non-null
                                                   float64
         4
             chlorides
                                   1599 non-null
                                                   float64
         5
             free sulfur dioxide
                                   1599 non-null
                                                   float64
             total sulfur dioxide 1599 non-null
                                                   float64
             density
                                   1599 non-null
                                                   float64
                                                   float64
         8
                                   1599 non-null
             рΗ
         9
             sulphates
                                   1599 non-null
                                                   float64
         10 alcohol
                                   1599 non-null
                                                    float64
                                   1599 non-null
                                                    int64
         11 quality
        dtypes: float64(11), int64(1)
        memory usage: 150.0 KB
In [5]:
         df.describe()
```

Out[5]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	•
	count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.
	mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.
	std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.
	25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.
	50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.
	75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.
	max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.

In [6]: df.columns

ut[6]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',

```
'pH', 'sulphates', 'alcohol', 'quality'], dtype='object')
```

EDA and VISUALIZATION

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x2bad46d89d0>

In [8]: sns.distplot(df["quality"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='quality', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

split the data into training and test data

```
In [12]:
           x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [13]:
           lr = LinearRegression()
           lr.fit(x_train, y_train)
Out[13]: LinearRegression()
In [14]:
           lr.intercept
          -0.9683188489407915
Out[14]:
In [15]:
           coeff = pd.DataFrame(lr.coef_, x.columns, columns =['Co-efficient'])
           coeff
                             Co-efficient
Out[15]:
                fixed acidity
                               -0.003509
              volatile acidity
                               -0.975441
                  citric acid
                               -0.038469
               residual sugar
                               0.023625
                   chlorides
                               -1.782321
           free sulfur dioxide
                               0.002288
          total sulfur dioxide
                               -0.003088
                    density
                               5.701786
                        рΗ
                               -0.669198
                  sulphates
                               0.871954
                    alcohol
                               0.318164
In [16]:
           prediction = lr.predict(x_test)
           plt.scatter(y_test, prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x2badc843e20>
```


In [17]: lr.score(x_test,y_test)

Out[17]: 0.3233822981954787