Trying to learn a function f

Trying to learn a function f

f can mean different things in different cultures

f(x) for prediction

$$Z_1, Z_2, ..., Z_{\Omega}$$

$$Y = g(Z)$$

Some set of causally-connected variables

We have

$$X_1, X_2, ..., X_p$$

A set of potential predictor variables

$$Y = f(X) + \epsilon$$

Systematic component

Error

Prediction

$$\widehat{Y} = \widehat{f}(X)$$

Hats indicate predicted Y and estimated f

Goal of prediction

Use data to find a function \hat{f} that has good predictive performance given X

That is, \hat{f} is accurate on new observations

Goal of machine learning

To predict accurately!

- Species distribution
 - map
 - predict accurately for places we won't visit
- Climate change forecast
 - predict accurately for the future
- Antelopes in camera trap images
 - hand over the identification task to a machine so we don't have to look at images!
 - predict accurately for images that we'll never look at

Predictive performance

Basic idea: out-of-sample accuracy

 \hat{f} fitted on training data

 \hat{f} predicting new data

e.g. mean square error (MSE)
$$\frac{1}{n}\sum_{i}^{n}e_{i}^{2}$$

Effective d.f. = amount of wiggliness in \hat{f}

Goal: balance underfit and overfit

Bias-variance tradeoff

Bias-variance tradeoff

Bias-variance tradeoff

Inference algorithm

Basic idea: out-of-sample validation

Fit model to training dataset

Test model on validation dataset

e.g. mean square error (MSE)

k-fold cross validation (CV)

Divide dataset into k parts (preferably randomly)

... repeat with each test subset

k-fold CV inference algorithm

Algorithm divide dataset into k parts i = 1...k for each i test dataset = part i training dataset = remaining data find f using training dataset use f to predict for test dataset e_i = prediction error CV_error = mean(e)

Typical values for k: 5, 10, k

Leave-one-out cross validation

- LOOCV
- = k-fold CV for k = n

Algorithm

```
for each data point
fit model without point
predict for that point
measure prediction error (compare to observed)
CV_error = mean error across points
```

(AIC and Bayesian WAIC are equivalent asymptotically)