Notazione Asintotica

Sommario:

- Ordini di grandezza: la notazione asintotica
- La velocità di crescita delle funzioni

Notazione Asintotica

- La notazione asintotica è un modo per indicare certi insiemi di funzioni caratterizzati da specifici comportamenti all'infinito
- Questi insiemi sono indicati dalle lettere

- Quando una funzione f(n) appartiene ad uno di questi insiemi lo si indica equivalentemente come
 - $ightharpoonup f(n) \in \Theta(n^2)$
 - $f(n) = \Theta(n^2)$
- La seconda notazione è inusuale ma vedremo che ha dei vantaggi di uso

Notazione $\Theta(g(n))$

Con la notazione Θ(g(n)) si indica l'insieme di funzioni f(n) che soddisfano la seguente condizione

```
\Theta(g(n))=\{f(n): \exists c_1, c_2, n_0 \text{ tali che}

\forall n \ge n_0

0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}
```

Ovvero f(n) appartiene a Θ(g(n)) se esistono due costanti c₁, c₂ tali che essa possa essere schiacciata fra c₁ g(n) e c₂ g(n) per n sufficientemente grandi

Notazione $\Theta(g(n))$

Graficamente

Notazione O(g(n))

Con la notazione O(g(n)) si indica l'insieme di funzioni f(n) che soddisfano la seguente condizione

```
O(g(n))={f(n): \exists c, n_0 tali che

\forall n \ge n_0

0 \le f(n) \le c g(n)}
```

 Ovvero f(n) appartiene a O(g(n)) se esiste una costante c tali che essa possa essere maggiorata da c g(n) per n sufficientemente grandi

Notazione O(g(n))

Graficamente

Notazione $\Omega(g(n))$

Con la notazione $\Omega(g(n))$ si indica l'insieme di funzioni f(n) che soddisfano la seguente condizione

```
Ω(g(n))={f(n): ∃ c, n₀ tali che}

∀ n≥ n₀

0 ≤ c g(n) ≤ f(n) }
```

 Ovvero f(n) appartiene a Ω(g(n)) se esiste una costante c tali che essa sia sempre maggiore di c.g(n) per n sufficientemente grandi

Notazione $\Omega(g(n))$

Graficamente

Notazione o(g(n))

- Il limite asintotico superiore può essere stretto o no
- $ightharpoonup 2 n^2 = O(n^2)$ è stretto
- 2 n = O(n²) non è stretto
- Con la notazione o(g(n)) si indica un limite superiore non stretto
- Formalmente, con la notazione o(g(n)) si indica l'insieme di funzioni f(n) che soddisfano la seguente condizione

```
o(g(n))={f(n): \forall c>0 \exists n<sub>0</sub> tali che

\forall n \ge n<sub>0</sub>

0 \le f(n) \le c g(n) }
```

Notazione o(g(n))

- La definizione di o() differisce da quella di O() per il fatto che la maggiorazione in o() vale per qualsiasi costante positiva mentre in O() vale per una qualche costante
- L'idea intuitiva è che la f(n) diventa trascurabile rispetto alla g(n) all'infinito ovvero lim_{n→∞} f(n)/g(n)=0

Notazione $\omega(g(n))$

Analogamente nel caso di limite inferiore non stretto si definisce che con la notazione ω(g(n)) si indica l'insieme di funzioni f(n) che soddisfano la seguente condizione

```
\omega(g(n))=\{f(n): \forall c>0 \exists n_0 \text{ tali che}
 \forall n \geq n_0
 0 \leq c g(n) \leq f(n)\}
```

Qui l'idea intuitiva è che sia la g(n) a diventare trascurabile rispetto alla f(n) all'infinito ovvero $\lim_{n\to\infty} f(n)/g(n)=\infty$

Tralasciare i termini di ordine più basso

- Giustifichiamo perché è possibile tralasciare i termini di ordine più basso, ovvero perché possiamo scrivere 1/2 n² - 3 n= Θ(n²)
- Dalla definizione di Θ(g(n)) si ha che si devono trovare delle costanti c₁, c₂ tali che 1/2 n² - 3 n possa essere schiacciata fra c₁ n² e c₂ n² per n sufficientemente grandi, ovvero per n>n₀

```
c_1 n^2 \le 1/2 n^2 - 3 n \le c_2 n^2

c_1 n^2 \le 1/2 n^2 - 3 n \text{ è vera per } n \ge 7 \text{ e per } c_1 \ge 1/14

1/2 n^2 - 3 n \le c_2 n^2 \text{ è vera per } n \ge 1 \text{ e per } c_2 \ge 1/2
```

Quindi per n₀=7 c₁ = 1/14 e c₂ = 1/2 si è soddisfatta la tesi (altri valori sono possibili ma basta trovarne alcuni)

Tralasciare i termini di ordine più basso

- Intuitivamente si possono tralasciare i termini di ordine più basso perché una qualsiasi frazione del termine più alto prima o poi sarà più grande di questi
- Quindi, nel caso dei polinomi, assegnando a c₁ un valore più piccolo del coefficiente del termine più grande e a c₂ un valore più grande dello stesso consente di soddisfare le disegualianze della definizione di Θ(g(n))
- Il coefficiente del termine più grande può poi essere ignorato perché cambia solo i valori delle costanti

Nota

In sintesi si può sempre scrivere che

a
$$n^2 + b n + c = \Theta(n^2)$$

ovvero

$$\Sigma_{j=o..d} a_j n^j = \Theta(n^d)$$

inoltre dato che una costante è un polinomio di grado 0 si scrive:

$$c = \Theta(n^0) = \Theta(1)$$

Uso della notazione asintotica

- Dato che il caso migliore costituisce un limite inferiore al tempo di calcolo, si usa la notazione Ω(g(n)) per descrivere il comportamento del caso migliore
- Analogamente dato che il caso peggiore costituisce un limite superiore al tempo di calcolo, si usa la notazione O(g(n)) per descrivere il comportamento del caso peggiore
- Per l'algoritmo di insertion sort abbiamo trovato che nel caso migliore si ha T(n)= Ω(n) e nel caso peggiore T(n)=O(n²)

La notazione asintotica nelle equazioni

Seguendo la notazione n = O(n) possiamo pensare di scrivere anche espressioni del tipo

$$2n^2+3n+1=2n^2+O(n)$$

- Il significato di questa notazione è che con O(n) vogliamo indicare una anonima funzione che non ci interessa specificare (ci basta che sia limitata superiormente da n)
- Nel nostro caso questa funzione è proprio 3n+1 che è O(n)
- Tramite l'uso della notazione asintotica possiamo eliminare da una equazione dettagli inessenziali

La notazione asintotica nelle equazioni

La notazione asintotica può anche apparire a sinistra di una equazione come in

$$2n^2 + O(n) = O(n^2)$$

- Il significato è che indipendentemente da come viene scelta la funzione anonima a sinistra è sempre possibile trovare una funzione anonima a destra che soddisfa l'equazione per ogni n
- In questo modo possiamo scrivere:

$$2n^2+3n+1=2n^2+O(n)=O(n^2)$$

Le funzioni di interesse

- O(1) il tempo costante è caratteristico di istruzioni che sono eseguite una o al più poche volte.
- O(log n) il tempo logaritmico è caratteristico di programmi che risolvono un problema di grosse dimensioni riducendone la dimensione di un fattore costante e risolvendo i singoli problemi più piccoli. quando il tempo di esecuzione è logaritmico il programma rallenta solo leggermente al crescere di n: se n raddoppia log n cresce di un fattore costante piccolo.

Le funzioni di interesse

- O(n) il tempo lineare è caratteristico di programmi che eseguono poche operazioni su ogni elemento dell'input. Se la dimensione dell'ingresso raddoppia, raddoppia anche il tempo di esecuzione.
- O(n log n) il tempo n log n è caratteristico di programmi che risolvono un problema di grosse dimensioni riducendoli in problemi più piccoli, risolvendo i singoli problemi più piccoli e ricombinando i risultati per ottenere la soluzione generale. Se n raddoppia n log n diventa poco più del doppio.

Le funzioni di interesse

- O(n²) il tempo quadratico è caratteristico di programmi che elaborano l'input a coppie. Algoritmi con tempo quadratico si usano per risolvere problemi abbastanza piccoli. Se n raddoppia n² quadruplica.
- ► O(2ⁿ) il tempo esponenziale è caratteristico di programmi che elaborano l'input considerando tutte le possibili permutazioni. Rappresentano spesso la soluzione naturale più diretta e facile di un problema. Algoritmi con tempo esponenziale raramente sono applicabili a problemi pratici. Se l'input raddoppia il tempo di esecuzione viene elevato al quadrato

Crescita delle funzioni

Crescita delle funzioni

La conversione dei secondi

Secondi

10² 1.7 minuti

10⁴ 2.8 ore

10⁵ 1.1 giorni

10⁶ 1.6 settimane

10⁷ 3.8 mesi

10⁸ 3.1 anni

10⁹ 3.1 decenni

10¹⁰ 3.1 secoli

10¹¹ mai

Andamento dei tempi di calcolo

N	log N	N log N	N^2	2^N
10	3	30	10^2	10^3
10^2	7	7 10^2	10^4	10^30
10^3	10	10 4	10^6	10^300
10^6	17	2 10^7	10^12	-
10^12	32	3 10^13	10^24	-

Andamento dei tempi di calcolo

N	N	log N	N log N	N^2	2^N
10	istantaneo	istantaneo	istantaneo	istantaneo	secondi
10^2	istantaneo	istantaneo	istantaneo	istantaneo	mai
10^3	istantaneo	istantaneo	istantaneo	secondi	mai
10^6	secondi	istantaneo	secondi	settimane	-
10^12	settimane	istantaneo	mesi	mai	-

Tempo impiegato da un calcolatore capace di 10^6 operazioni al secondo