How much did Bonus Unemployment Insurance Payments During the COVID Pandemic Depress Aggregate Employment?

Did supplemental unemployment compensation discourage a return to full-time work?

Robert Winslow

Department of Economics University of Minnesota, Twin Cities

Outline

- Motivation
- Partial Unemployment Insurance in the US
- Model
 - Model Setup
 - Parameterization
- 4 Policy Experiments in the Model

- During the Pandemic, large supplemental payments were given to anyone collecting even a dollar of Unemployment Insurance.
- These payments were made to the fully unemployed and to those with reduced hours.
- (Ganong et al 2022) found these programs only slightly reduced the job finding rate.
- But what about the effect on the intensive margin?

Regular State UI Recipients Over Time, All US

Partial Unemployment Insurance

- If a person is eligible for UI, a weekly benefit amount (WBA) is determined based on employment history.
 - Except for high earners, it's about half of their typical income.
 - Constant throughout entire UI spell.
- Benefits depend both on the current week's gross earnings, and on the individual's WBA.
 - Your WBA is the amount you collect when totally unemployed.
 - As earnings increase, benefits decrease
 - Details vary by state.
- During the pandemic, the Federal Pandemic Unemployment Compensation supplement was paid out in full to anyone collecting even a single dollar of state UI.
 - 600 dollars per week April to July, 2020
 - 300 dollars per week January to September, 2021

Example: State UI Benefits in Minnesota

In Minnesota, the rule is that the benefits for a given week are determined by:

$$benefits = \begin{cases} WBA - \frac{earnings}{2} & \text{if } earnings < WBA \\ 0 & \text{if } earnings \ge WBA \end{cases}$$

where WBA is weekly benefit amount (person-specific, fixed for entire duration of benefits spell). Frame and the earnings refers to the current week's labor income before taxes and transfers.

Figure on right: earnings and benefits for a hypothetical Minnesota worker with a WBA of 477 USD

Regular State UI Recipients Over Time, MN

 Model of unemployment insurance with partial employment and moral hazard.

•

Outline

- Motivation
- Partial Unemployment Insurance in the US
- Model
 - Model Setup
 - Parameterization
- 4 Policy Experiments in the Model

Consumer's Choices

The consumer's optimand is straightforward:

$$\mathbb{E}\sum_{i}\beta^{t}U(c_{t},l_{t})=\mathbb{E}\sum_{t}\beta^{t}\frac{(c_{t}^{1-\sigma}l_{t}^{\sigma})^{1-\rho}-1}{1-\rho}$$

Two decisions the consumer faces:

- How to split income between consumption and (non-interest-bearing) savings
 - budget is $a' + c = a + y_d$, where a is assets, and y_d is disposable income.
 - assets are subject to the constraint $a' \ge 0$
- Whether and how much to work when give a job opportunity. (See next slide.)

Job Search

Employment opportunity $s \in \{E, P, U\}$ represents whether the person has a job opportunity (s = E), a partial job opportunity (s = P) or no job opportunity (s = U). (Employment, Partial employment, full Unemployment)

ullet s evolves according to a 3x3 transition matrix χ

$$\chi = \begin{bmatrix} \chi(E, E) & \chi(E, P) & \chi(E, U) \\ \chi(P, E) & \chi(P, P) & \chi(P, U) \\ \chi(U, E) & \chi(U, P) & \chi(U, U) \end{bmatrix}$$

employment status $\eta \in \{E, P, U\}$ represents the level of work the consumer actually chooses to engage in.

- If s = E, consumer can choose from $\eta \in \{E, P, U\}$
- If s = P, consumer can choose from $\eta \in \{E, P, U\}$
- If s = U, consumer can choose from $\eta = U$

Unemployment Benefits

- $\mu \in \{0,1\}$ is a binary variable indicating whether the person collects unemployment benefits.
 - If s = E, then $\mu = 0$
 - If $(s, \eta) = (P, P)$ or (U, U), then $\mu = 1$
 - If $\eta = \mathsf{U}$, but $s \neq \mathit{U}$, then $\mu = 1$ with probability π_{u} , 0 otherwise
 - If $\eta = \mathsf{P}$, but $s \neq \mathsf{P}$, then $\mu = 1$ with probability π_{p} , otherwise
- If Consumer collects benefits, the benefits adjust their disposable income to some fraction of employed disposable income, called the "replacement rate".
 - θ_p is replacement rate for partially employed (when $(\eta, \mu) = (P, 1)$)
 - θ_u is replacement rate for unemployed (when $(\eta, \mu) = (\mathsf{U}, 1)$)

Utility Flows, Income, and Leisure

Utility flow is $U(a - a' + y_d(\eta, \mu), I(\eta))$

where $y_d(\eta, \mu)$ is the disposable income and $I(\eta)$ is the leisure that results from the worker's decisions.

$$y_{d}(\eta, \mu) = \begin{cases} (1 - \tau)w & \text{if } (\eta, \mu) = (E, 0) \\ (1 - \tau)w\frac{\hat{h}_{p}}{\hat{h}_{e}} & \text{if } (\eta, \mu) = (P, 0) \\ 0 & \text{if } (\eta, \mu) = (U, 0) \\ (1 - \tau)(w\theta_{p} + b) & \text{if } (\eta, \mu) = (P, 1) \\ (1 - \tau)(w\theta_{u} + b) & \text{if } (\eta, \mu) = (U, 1) \end{cases}$$

$$I(\eta) = \begin{cases} 1 - \hat{h}_{e} & \text{if } \eta = E \\ 1 - \hat{h}_{p} & \text{if } \eta = P \\ 1 & \text{if } \eta = U \end{cases}$$

Utility Flows, Income, and Leisure

Utility flow is $U(a - a' + y_d(\eta, \mu), I(\eta))$

where $y_d(\eta, \mu)$ is the disposable income and $I(\eta)$ is the leisure that results from the worker's decisions.

$$y_{d}(\eta, \mu) = \begin{cases} (1 - \tau)w & \text{if } (\eta, \mu) = (\mathsf{E}, 0) \\ (1 - \tau)w\frac{\hat{h}_{p}}{\hat{h}_{e}} & \text{if } (\eta, \mu) = (\mathsf{P}, 0) \\ 0 & \text{if } (\eta, \mu) = (\mathsf{U}, 0) \\ (1 - \tau)(w\theta_{p} + b) & \text{if } (\eta, \mu) = (\mathsf{P}, 1) \\ (1 - \tau)(w\theta_{u} + b) & \text{if } (\eta, \mu) = (\mathsf{U}, 1) \end{cases}$$

Utility Flows, Income, and Leisure

Utility flow is $U(a - a' + y_d(\eta, \mu), I(\eta))$

where $y_d(\eta, \mu)$ is the disposable income and $I(\eta)$ is the leisure that results from the worker's decisions.

$$y_{d}(\eta, \mu) = \begin{cases} (1 - \tau)w & \text{if } (\eta, \mu) = (\mathsf{E}, 0) \\ (1 - \tau)w\frac{\hat{h}_{p}}{\hat{h}_{e}} & \text{if } (\eta, \mu) = (\mathsf{P}, 0) \\ 0 & \text{if } (\eta, \mu) = (\mathsf{U}, 0) \\ (1 - \tau)(w\theta_{p} + b) & \text{if } (\eta, \mu) = (\mathsf{P}, 1) \\ (1 - \tau)(w\theta_{u} + b) & \text{if } (\eta, \mu) = (\mathsf{U}, 1) \end{cases}$$

$$I(\eta) = \begin{cases} 1 - \hat{h}_{e} & \text{if } \eta = \mathsf{E} \\ 1 - \hat{h}_{p} & \text{if } \eta = \mathsf{P} \\ 1 & \text{if } \eta = \mathsf{U} \end{cases}$$

Timeline Within Each Period

- **①** Consumer receives potential job offer $s \in \{E, P, U\}$
- ② Consumer chooses employment status $\eta \in \{E, P, U\}$
- **3** Draw $\mu \in \{0,1\}$: does the Consumer get unemployment benefits?
- Consumer chooses m' after seeing μ

Value Functions

$$V(a,s) = \max_{\eta} \left\{ \mathbb{E} \left[\max_{m'} \left\{ U \left(y^d(\eta, \mu) + a - a', I(\eta) \right) \right. \right. \right.$$

$$\left. + \beta \sum_{s'} \chi(s,s') V(a',s') \right\} \right] \right\}$$
s.t.
$$\eta \in \left\{ \begin{cases} \{E,P,U\} & \text{if } s = E \\ \{P,U\} & \text{if } s = U \end{cases} \right.$$

$$0 \le a' \le a + y^d(\eta, \mu)$$

Market Clearing and Equilibrium

State of a person is $x = (a, s, \eta, \mu)$ Stationary equilibrium consists of

- decision rules c(x), a'(x), $\eta'(a,s)$
- time-invariant measure $\lambda(x)$ of people in state x
- tax rate τ

Such that

- Given the tax rate, the decision rules solve the worker's maximization problem.
- 2 The goods market clears.
- The government's budget constraint is balanced each period.
- $\lambda(x') = \lambda(x)$

Adding heterogeneity to the model.

In *US* unemployment insurance replacement rates during the pandemic (Ganong, Noel, and Vavra, 2020), the authors use CPS data to estimate the income distribution of workers benefitting from the Pandemic Unemployment Compensation.

Quintile	1	2	3	4	5
Pre-pandemic Weekly Income	372	592	886	1280	2323

From Table 1 from (Ganong, Noel, and Vavra, 2020) Adding this to model:

- 5 'types' of people corresponding to these income quintiles.
- Income scaled so that 886 corresponds to y = 1

Outline

- Motivation
- Partial Unemployment Insurance in the US
- Model
 - Model Setup
 - Parameterization
- 4 Policy Experiments in the Model

Calibrating χ

- Each period is 1 month.
- Transition matrix calculated from Current Population Survey data to match pre-pandemic economy:

$$\chi = \begin{bmatrix} \chi(E,E) & \chi(E,P) & \chi(E,U) \\ \chi(P,E) & \chi(P,P) & \chi(P,U) \\ \chi(U,E) & \chi(U,P) & \chi(U,U) \end{bmatrix} = \begin{bmatrix} 0.965 & 0.017 & 0.018 \\ 0.598 & 0.343 & 0.059 \\ 0.339 & 0.057 & 0.604 \end{bmatrix}$$

• This matrix gives a stationary distribution for E, P, and U of approximately 92.6%, 2.8%, 4.6%, which is close to the actual distribution of 92.6%, 2.9%, 4.5%

Working Time

- \hat{h}_e is set to 0.45, representing a full work week of 45 hours out of possible 100.
- And time spent for part-time work is set to $\hat{h}_p = 0.15$

Other Parameters

•
$$\beta = 0.9966$$

•
$$\sigma = 0.5$$

$$\rho = 2$$

•
$$\theta_{u} = 0.5$$

•
$$\theta_p = 0.\bar{6}$$

•
$$\pi = 0.12$$

Simulation of Pandemic and FPUC

- Start in pre-pandemic stationary equilibrium.
- Iterate measure month by month. 24 periods representing 2020 and 2021.
- Represent the direct effect of the pandemic as one time shock, where transition between months 3 and 4 is:

$$\chi_{shock} = \begin{bmatrix} 0.783 & 0.065 & 0.152 \\ 0.360 & 0.252 & 0.388 \\ 0.268 & 0.053 & 0.679 \end{bmatrix}$$

• Then transition process reverts to normal.

Simulation without bonus UI payments

Simulation with bonus UI payments

