Physics of Semiconductor: Lecture # Lec 2

Dr. Sudipta Som

Department of Physics

Shiv Nadar University Chennai

CYBERSECURITY

What we have learnt last week

Let us take the example of Na,

$$Z = 11 (1s^2, 2s^2, 2p^6, 3s^1)$$

N no of quantum states are empty

@ RT, with thermal energy those electron which are posited in the quantum states can move to the empty states.

Thereby, takes part in conduction

As the conduction electrons are available, this band is called as conduction band

LUMO and **HOMO**

Metal

Semi-metal (overlapping conduction band)

Highest energy band occupied by electrons – valence band Next highest band that is empty – Conduction band

Availability of unoccupied and allowed slightly higher energy states for electrons to move into makes the material a good conductor

What about Z= 14--- A very important element-- Si

1s2 2s2 2p6 3s2 3p2

CYBERSECURITY

Dr Sudipta Som

When N atoms come together to form a solid

Definition of valence band and conduction band

SHIV NADAR

Fig. 29.18

Dr Sudipta Som

Semiconductor

CYBERSECURITY

SEMICONDUCTORS: They are here, there, and everywhere

Computers,

laptops,

♦ Cell phones

Silicon (Si) MOSFETs, ICs, CMOS

Si ICs, GaAs FETs, BJTs

CYBERSECURITY

SHIV NADAR

