CS341

Lecture 6

Yaro Gorban

September 30, 2015

Non dominant points problem:

- Has a worst case of O(n²) by comparing each set of points
- not-dominated points for a "staircase"
- all other points are under the stair case
- split into S_1 and S_2
- solve both halves
- to combine we may have to eliminate some of the non-dominated points in \mathcal{S}_1
- this runs in O(n) time

Complexity

- 1. pre-sort $\Theta(n \log n)$
- 2. $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \lceil) + O(n)$
- 3. sloppy form $T(n) = 2T(\frac{n}{2} + O(n) \ T(n) \in O(n \log n)$
- 4. since we have 2 halves of $n \log n$ time we have a time of $O(n \log n)$

Closest Pair:

- Find a Euclidean distance that is minimized
- \bullet Trivial Algorithm is comparing each point which is $O(n^2$
- Presort with respect to x-coordinates $\Theta(n \log n)$
- Split the points down the middle
- Find the δ_L and the δ_R

- Combine: determine the smallest distance between a point on the left and the right. is this distance $<\min \delta_L, \delta_R$
- Checking every point is not what we want to do
- We create something to create the critical strip
- But what if all the points fall in the critical strip? We didn't cut the run time at all.
- So we sort the points in R(list of candidates) with respect to the y-coordinates
- **LEMMA:** Suppose the points in the critical strip R are sorted WRT y-coordinates. Suppose that R[j] and R[k] have a distance $<\delta$ where j <k. Then k \leq j+7

Complexity

- 1. presort O(nlogn)
- $2. \ T(n) = 2T(\frac{n}{2}) + O(n)(select candidates) + O(n\log n)(sort) + O(n)(check strip)$
- 3. T(n) is $O(n(\log n)^2)$